See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/42607911

Protein Profiles of the Midgut of Spodoptera litura Larvae at the Sixth Instar Feeding Stage by Shotgun ESI-MS Approach

ARTICLE in JOURNAL OF PROTEOME RESEARCH · MARCH 2010

Impact Factor: 4.25 · DOI: 10.1021/pr900826f · Source: PubMed

CITATIONS

15

READS

120

5 AUTHORS, INCLUDING:

Jisheng Liu Guangzhou University

14 PUBLICATIONS 339 CITATIONS

SEE PROFILE

Lin Liu

South China Normal University

18 PUBLICATIONS 164 CITATIONS

SEE PROFILE

Qili Feng

South China Normal University

74 PUBLICATIONS 2,884 CITATIONS

SEE PROFILE

Protein Profiles of the Midgut of *Spodoptera litura* Larvae at the Sixth Instar Feeding Stage by Shotgun ESI-MS Approach

Jisheng Liu, Sichun Zheng, Lin Liu, Ling Li,* and Qili Feng*

Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China

Received September 14, 2009

By using shotgun HPLC–ESI–MS proteomics approach, 2043 peptides were identified from the midgut of *Spodoptera litura* larvae at the sixth instar feeding stage, out of which 1489 (72.9%) were found to have their homologues in the public protein databases and 842 had identities of molecular functions. Seven-hundred forty-one peptides were annotated according to Gene Ontology Annotation in terms of molecular function, biological process, and cellular localization, with 336 and 251 peptides being related to catalytic activity and binding activity, respectively. Most of the catalytic proteins had activity of hydrolases, oxidoreductases and transferases and most of the binding proteins were involved in protein-binding activity. Among the annotated peptides, 487 were classified into different cellular processes and 490 were classified to locate in the cytoplasm. Nonredundant enzymes associated with the metabolisms of carbohydrates, lipids and fatty acids, amino acids and proteins, translation, transport, and stress resistance were identified. Presence and expression at high levels of numerous enzymes of glycolysis pathway, synthesis of proteins, and absorption and transport of fatty acids and lipids indicate that active metabolism processes of carbohydrates, proteins, and lipids occurred in the midgut of sixth instar feeding larvae of *S. litura*. The protein profile provides a basis for further study of the physiological events in the midgut of *S. litura*.

Keywords: ESI-MS • shotgun • midgut • metabolism • food digestion I Spodoptera litura

1. Introduction

Many methods, such as two-dimensional gel electrophoresis/ mass spectrometer (2-DE/MS), matrix-assisted laser desorption/ionization time-of-flight/mass spectrometer (MALDI-TOF-MS), surface-enhanced laser desorption/ionization time-offlight/mass spectrometry (SELDI-TOF-MS), and liquid chromatography mass spectrometry (LC-MS/MS), have been used to study protein expression profiles in insect tissues. The 2-DE/MS method is currently the main approach for separation and comparison of complex protein mixtures and is advantageous because of its high resolution and sensitivity. However, it has a few restrictions, such as limited loading capacity, dependence on physicochemical properties of proteins, and problems of transferring proteins from the first-dimensional gel onto the second one. The 2-DE/MS method is often unable to detect those proteins that have extremes in molecular mass and isoelectric points and that are hydrophobic or unsolvable, such as the integral membrane proteins. During the past several years, shotgun proteomics has been proven to be an alternative technology capable of identifying hundreds of proteins from single samples and to be complementary to 2-DE-based analysis.^{2–4} Shotgun proteomics relies on protein separation after the proteolytic digestion and takes advantage

of MS/MS to infer the amino acid sequences of individual peptides. Compared to the 2-DE/MS proteomics approach, the shotgun method possesses the virtues of high efficiency and time and labor saving.

Insect gut is a main organ for food digestion, nutrient absorption and protection from pathogen invasion and, therefore, is an important target for novel biological and chemical controlling strategies. Studies on expression profiles of genes and/or proteins in the midgut can facilitate identification of molecular targets that can be used for developing novel and environmentally benign controlling strategies. Four-hundred fifty individual proteins were detected in the brush border membrane vesicles (BBMV) of the midgut of Manduca sexta fifth instar larvae by using a 2-DE/MS approach.⁵ Changes of gut proteins in fourth instar larvae of the Indianmeal moth Plodia interpunctella exhibiting resistance to Bacillus thuringiensis toxins were examined, and approximately 300 individual proteins with molecular sizes ranging from 15 to 150 kDa and isoelectric points between 4 and 10 in 2-DE gels were identified.⁶ In the posterior midgut of fifth instar larvae of *Bombyx* mori, 1100 individual protein spots were identified by using 2-DE gels.⁷ Protein profiles of midguts of the trypanosomesusceptible and wild type tsetse flies, Glossina morsitans morsitans, were compared using isotope coded affinity tag (ICAT) technique, and a total of 207 proteins were identified in the trypanosome-susceptible flies, including 17 up-regulated proteins and 9 down-regulated proteins.8 Most of the up-

^{*} To whom correspondence should be addressed. School of Life Sciences, South China Normal University, Guangzhou, China, 510631. Dr. Qili Feng, e-mail qlfeng@scnu.edu.cn; Fax +86-20-85215291. Dr. Ling Li, e-mail liling@scnu.edu.cn; Fax +86-20-85211372.

research articles Liu et al.

regulated proteins were associated with midgut immunity. Nine proteins that were differentially expressed in response to dietary Bowman-Birk inhibitor in the *Drosophila melanogaster* midgut were identified. Using 2-DE/MS/MS *de novo* peptide sequencing major proteins persisting in the midgut lumen were examined in the cotton bollworm *Helicoverpa armigera*.

Spodoptera litura is one of the most damaging insect pests in the tropical and subtropical areas around the world. In the present study, midgut protein profile of *S. litura* sixth instar larvae at the feeding stage was analyzed for the first time by using the shotgun high performance liquid chromatography electrospray ionization mass spectrometry (HPLC–ESI–MS) proteomics approach. A detailed list of midgut proteins involved in different metabolisms are given and discussed.

2. Materials and Methods

2.1. Preparation of Protein Extracts from the S. litura Midgut. Spodoptera litura (Lepidoptera:Noctuidae) larvae were provided by the Entomology Institute of SUN YAT-SEN University, Guangzhou, China, and reared at 25 °C on artificial diet after egg hatching. Midguts were dissected carefully from the larvae at day 3 after ecdysis into sixth instar stage, when the larvae were actively feeding. Protein extraction procedure was conducted as described in Feng et al. 11 with modification. The midguts were homogenized in homogenization buffer (5 mL/g tissue; 50 mM Tris, 10 mM EDTA, 15% glycerol, 0.005% phenylthiourea, pH 7.8) using a motor-driven Teflon pestle in a 1.5 mL polypropylene microcentrifuge tube. The homogenate was centrifuged at 10 000× g for 5 min. The supernatant was collected and recentrifuged again under the same conditions. A mixture of 0.07% β -mercaptoethanol and 10% trichloracetic acid in cold acetone were added to the supernatant, which was then kept at 4 °C for 10 min. The protein extract was then centrifuged at 12 000× g and 4 °C for 10 min. The pellet was washed in cold acetone with 0.07% β -mercaptoethanol and centrifuged at 12 000× g and 4 °C for 10 min. This washing step was repeated twice. The resultant pellet was resuspended in 10 mL lysis buffer consisting of 7 M urea, 2 M thiourea, 4% (w/v) CHAPS and 40 mM Tris, 1% (w/v) dithiothreitol12 and then centrifuged at 12 000× g and 4 °C for 10 min. The supernatant was stored at -80 °C and total protein concentration was determined using Bradford's method¹³ according to the manufacturer's instruction (Invitrogen, Carlsbad, CA).

2.2. SDS-PAGE Separation of the Proteins. One-hundred micrograms of the midgut proteins was denatured at 100 °C for 5 min in an equal volume of $2\times$ protein loading buffer (0.1 M Tris buffer, pH 6.8, 4% SDS, 0.2% β -mercaptoethanol, 40% glycerol, and 0.002% brompenol blue) and subjected to SDS-PAGE in 12.5% acrylamide gels and Tris-glycine-SDS buffer (10 mM Tris, 50 mM glycine, 0.1% SDS, pH 8.0) at 15 mA for 20 min and then 30 mA for 1.5 h in a mini-vertical electrophoresis system. The gels were then stained with Coomassie Brilliant Blue G250 (Invitrogen, Carlsbad, CA).

2.3. In-Gel Trypsin Digestion. The in-gel trypsin digestion of proteins was conducted according to Shevchenko et al. ¹⁴ The protein lane of the stained gel was cut into four pieces in equal size (Figure 1), which were destained with 0.2 mL of 100 mM NH₄HCO₃ in 50% acetonitrile for 45 min at 37 °C, followed by excision and dehydration in acetonitrile for 5 min. The gel pieces were then dried in a vacuum centrifuge. A volume of 10 mM dithiotreitol in 100 mM NH₄HCO₃ sufficient to cover the gel pieces was added to treat the proteins at 56 °C for 1 h. After cooling to room temperature, the dithiotreitol solution was

Figure 1. Separation of the midgut proteins by SDS-PAGE. One hundred micrograms of the midgut proteins isolated from 3-day-old 6th instar feeding larvae of *S. litura* were separated on a 12.5% acrylamide SDS-PAGE gel. Four equally spaced sections were excised and subsequently used for shotgun ESI–MS analysis. The portion I contained the proteins larger than 66 kDa; the portion II contained the proteins between 39 and 66 kDa; the portion III contained the proteins between 27 and 39 kDa and the portion IV contained the proteins smaller than 27 kDa.

replaced with the same volume of 55 mM iodoacetamide in 100 mM NH₄HCO₃. After 45 min incubation at room temperature in the dark with occasional vortexing, the gel pieces were washed with 100 µL of 100 mM NH₄HCO₃ for 10 min, dehydrated in 100 μ L of acetonitrile, swollen by rehydration in $100 \mu L$ of $100 \text{ mM NH}_4 HCO_3$, and shrunk again by adding the same volume of acetonitrile. The liquid phase was removed and the gel pieces were dried in a vacuum centrifuge. The gel pieces were swollen in 10 μ L of digestion buffer containing 50 mM NH₄HCO₃, 5 mM CaCl₂, and 12.5 ng/μL of trypsin in an ice-cold bath. After 45 min, the supernatant was removed and replaced with 10 μ L of the same buffer, but without trypsin, to keep the gel pieces wet during enzymic cleavage at 37 °C for overnight. Peptides were extracted by one change of 20 mM NH₄HCO₃ and three changes of 5% formic acid in 50% acetonitrile (20 min for each change) at room temperature.

2.4. HPLC-ESI-MS/MS Shotgun Analysis. Chromatography was performed using a surveyor LC system (Thermo Finnigan, San Jose, CA) on a C18 reverse phase column (RP, 180 μ m \times 150 mm, BioBasic C18, 5 μ m, Thermo Hypersil-Keystone). The pump flow rate was split 1:100 for a column flow rate of 1.5 μ L/min. The mobile phase A was 0.1% formic acid in water, and the mobile phase B was 0.1% formic acid in acetonitrile. Separation of the peptides obtained by enzymatic digestion was achieved with a gradient of 2-80% solution B over 60 min. The effluent from the reverse phase column was analyzed by an ESI mass spectrometer (LCQ Deca XP; Thermo Finnigan, San Jose, CA). The microelectrospray interface used a 30 μM metal needle, which was orthogonal to the inlet of the LCQ. The mass spectrometer was set so that one full MS scan was followed by three MS/MS scans on the three most intense ions from the MS spectrum with the following Dynamic Exclusion settings: repeat count, 2; repeat duration, 0.5 min; exclusion duration, 3.0 min.

2.5. Protein Identification and Annotation. Protein identification results were extracted from the SEQUEST out.file with in-house software (BuildSummary). The protein identification and annotation criteria were based on Delta CN (\geq 0.1) and Xcorr (one charge \geq 1.9, two charges \geq 2.2, three charges \geq 3.75). Insect protein databases in the National Center for

Table 1. Numbers of the Peptides Identified from the Midgut of the Sixth Instar Feeding Larvae of *S. litura* by Shotgun ESI–MS Analysis

	no. of proteins	percentage (%)
Total	2043	100
Unannotated	1201	58.8
No homologue	554	27.1
Hypothetical/putative/predicted	647	31.7
Annotated	842	41.2
Mitochondrial proteins	17	8.0
Ribosomal proteins	84	4.1
Others	741	36.3

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/) were searched for protein identification and annotation. Classifications were performed using Gene Ontology Annotation (GOA; http://www.ebi.ac.uk/goa/) according to the protein accession numbers.

3. Results and Discussion

3.1. Identification and Annotation of the Midgut Proteins.

Protein extracts from the midgut of sixth instar actively feeding larvae was separated by SDS-PAGE and the gel was cut into four equal pieces in size for shotgun ESI—MS analysis (Figure 1). The portion I contained the proteins larger than 66 kDa; the portion III contained the proteins between 39 and 66 kDa; the portion IV contained the proteins between 27 and 39 kDa and the portion IV contained the proteins smaller than 27 kDa. A total of 2043 peptides were identified by the shotgun ESI—MS analysis, of which 842 (41.2%) peptides were annotated by Blast search in the NCBI insect protein databases and the remaining 1201 (58.8%) peptides could not be annotated (Table 1). Among these unknown (or unannotated) proteins, 647 were either hypothetical, putative or predicted proteins, while the remaining 554 had no any homologues in these databases.

Among the 842 annotated proteins, 741 had identities of molecular functions, while 84 were ribosomal proteins and 17 were mitochondrial proteins. Overall, 1489 (72.9% of 2,043) proteins, including hypothetical, putative, predicted and annotated proteins, were found to have their homologues in these insect protein data sets.

3.2. Characterization of the Midgut Protein Profile. Distribution of molecular mass and isoelectric points (p1) of the identified proteins was analyzed. Molecular mass ranged between 1.38 kDa (a homologue of vespid chemotactic peptide L from *Vespula lewisii*¹⁶ and 2353 kDa [a predicted protein similar to the isoform C of *B. mori* BmKettin (CG1915-PC)¹⁷] with 1541 proteins (75.4%) smaller than 100 kDa (Figure 2A). For the annotated proteins, most of them were between 10 and 60 kDa in size (Figure 2B). p1 of the proteins ranged between 3.8 (a homologue of peritrophic matrix insect intestinal mucin from *Plutella xylostella*¹⁸ and 11.99 (a predicted protein similar to that in *Anopheles gambiae* str. PEST) with the most p1s between 5 and 10 (Figure 3).

Classification of the 741 annotated peptides (except mitochondrial and ribosomal proteins) in terms of molecular function, biological process and cellular localization was performed according to the Gene Ontology Annotation (http:// www.ebi.ac.uk/goa/). Twelve catalogues of molecular function were clustered (Figure 4A) and the catalytic activity (336 proteins, 45.3% of 741 annotated peptides) and binding activity (251, 33.9%) groups were the most majority. The proteins in the catalytic activity group were further classified into nine subgroups based on their specific functions (Figure 4B). Most proteins are related to hydrolase activity (122 out of 336, 36.3%), oxidoreductase activity (81, 24.1%) and transferase activity (70, 20.8%). High levels of hydrolases, oxidoreductase and transferases indicated that hydrolysis, oxidoreduction and transformation of carbohydrates, lipids and proteins were extremely active in the feeding midgut. More than a half of the binding

Figure 2. Distributions of molecular mass for all of the proteins (A) and for the annotated proteins (B) identified by the shotgun ESI–MS approach.

research articles Liu et al.

Figure 3. Distribution of isoelectric points (p/) for all of the proteins (A) and for the annotated proteins (B) identified by the shotgun ESI-MS approach.

proteins (142 out of 251, 56.6%) were associated with the protein-binding (Figure 4C).

Most (487 out of 741, 65.7%) of the annotated proteins were involved in different cellular processes, particularly in various metabolism processes (320 out of 487 peptides, 65.7%) and cellular component organization and biogenesis (114, 23.4%). Less than 3% (19 proteins) were directly involved in developmental events. This suggests that at the feeding stage, most of physiological and biochemical events occurring in the midgut are involved in the metabolic processes associated with the feeding functions such as food digestion and nutrient absorption, but not associated with tissue formation or degeneration.

Most (490, 66.1%) of the annotated proteins were localized in the cytoplasm, while only 130 (17.5%) and 93 (12.6%) proteins were localized in cell membranes and nuclei, respectively. Although the extraction of the membrane and nuclear proteins is usually more difficult than soluble cytoplasmic proteins and the method of protein isolation in this study may be favor to soluble proteins, a high ration of cytoplasmic proteins to membrane and nuclear proteins indicates that at the feeding stage, the epithelium cells of the *S. litura* midgut was undertaking the active metabolic activities.

3.3. Most Abundant Proteins in the Midgut of Sixth Instar Feeding Larvae. The top 20 most abundant proteins in the midgut of sixth instar feeding larvae are listed in Table 2. Most were the products of the so-called house-keeping genes, such as vascular ATP synthase subunit, tubulin, actin, arginine kinase and heat shock proteins. As these house-keeping proteins are constitutively and highly expressed in cells and provide the basic but essential functions for cell survival and growth, it is therefore not surprised to find that these proteins are the most majority in the epithelium cells of the midgut. ¹⁹ This result simply proves that this shotgun strategy is an unbiased approach for protein profile analysis.

The top 20 most abundant nonredundant proteins are listed in Table 3 after excluding the house-keeping proteins listed in Table 2. Three proteins, diazepam-binding inhibitor, apolipophorin, and sterol carrier protein 2/3-oxoacyl-CoA thiolase, were found to be highly expressed in the feeding midgut. Some proteins involved in the transport and metabolisms of proteins

and carbohydrates, such as aminopeptidase N (EC3.4.11.2), methionine-rich storage protein, glucose-3-phosphate dehydrogenase (EC1.1.1.49), enoyl-CoA hydratase precursor 1, glucosidase, glutamate dehydrogenase (EC1.4.1.3), fructose 1,6-bisphosphate aldolase (EC4.1.2.13) and triosephosphate isomerase (EC5.3.1.1) also had high expression levels.

3.4. Proteins that are Involved in Different Metabolism Processes. 3.4.1. Carbohydrate Metabolism. Several key enzymes in the carbohydrate metabolism, particularly glycolysis pathway, were identified at relatively high levels, including phosphopyruvate dehydratase (EC4.2.1.11), glucose-3-phosphate dehydrogenase (EC1.1.1.49), glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC1.2.1.12), glycerol-3-phosphate dehydrogenase (GPDH, EC1.1.1.8), fructose 1,6-bisphosphate aldolase (FBPA, EC4.1.2.13), isocitrate dehydrogenase (IDH, EC1.1.1.42), acyl-CoA dehydrogenase (EC1.3.99), alcohol dehydrogenase (ADH, EC1.1.1.1), aldehyde dehydrogenase (EC1.2.1.3), and triosephosphate isomerase (TIM, EC5.3.1.1) (Table 4). Phosphopyruvate dehydratase (also called enolase or 2-phospho-D-glycerate hydrolase) is a key glycolytic enzyme responsible for catalyzing the interconversion of 2-phospho-D-glycerate (2-PG) and phosphoenolpyruvate (PEP) between the glycolysis and gluconeogenesis pathways (Figure 5). 20 In vertebrates, three tissue-specific isoenzymes (designated alpha, beta and gamma) of enolase were found and the functional enzyme exists as a dimer of any 2 isoforms. The existence of this essential glycolytic enzyme at high abundance in the midgut of feeding larvae indicates that the glycolysis pathway is very active for the carbohydrate conversion during the feeding stage.

For the glycolysis pathway, three key enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC1.2.1.12), fructose-bisphosphate aldolase (FBPA, EC4.1.2.13), and triosephosphate isomerase (TIM, EC5.3.1.1), were identified (Figure 5). FBPA catalyzes conversion of D-fructose 1,6-bisphosphate into D-glyceraldehyde 3-phosphate, which can subsequently be conversed by GAPDH into 3-phospho-D-glyceroyl phosphate, which is used for gluconeogenesis. TIM catalyzes interconversion between D-glyceraldehyde 3-phosphate and glycerone phosphate. High levels of expression of these enzymes indicate that the pentose phosphate pathway might be essential for carbohydrate utilization in the midgut of *S. litura* feeding larvage

For the further phosphoenolpyruvate metabolism, several key enzymes were identified (Figure 5), including pyruvate kinase (PK, EC2.7.1.40), D-lactate dehydrogenase (LDH, EC1.1. 1.27), pyruvate dehydrogenase (PDH, EC1.2.4.1), dihydrolipoyl dehydrogenase (DLD, EC1.8.1.4), alcohol dehydrogenase (EC1.1.1.1), and aldehyde dehydrogenase (EC1.2.1.3). LDH catalyzes pyruvate synthesis from D-lactate, while PK converses phosphoenolpyruvate into pyruvate, which then enters either the citrate cycle through acetyl-CoA or the amino acids metabolism pathway. PDH catalyzes the pyruvate conversion into dihydroxyethyl-ThPP, 6-S-acetyl-dihydrolipoamide and finally acetyl-CoA. DLD catalyzes the interconversion between dihydrolipoamide and lipoamide in the formation of acetyl-CoA. Alcohol dehydrogenase and aldehyde dehydrogenase catalyze the reactions of ethanol to aldehyde and of aldehyde to acetate, respectively. The existence of these enzymes for formation of phosphoenolpyruvate, pyruvate, acetyl-CoA and acetate implies that pyruvate metabolism, therefore glycolysis pathway, is very active in the feeding midgut.

Figure 4. Classification of molecular functions of the annotated midgut proteins of *S. litura* 3-day-old 6th instar feeding larvae (L6D3). (A) Numbers and percentages of the annotated proteins in 12 groups of molecular functions; (B) numbers and percentages of the annotated proteins with catalytic activity; (C) numbers and percentages of the annotated proteins with binding activity.

Other enzymes, including trehalase (EC3.2.1.28), which is involved in the hydrolysis of ingested trehalose, and UTP-glucose-1-phosphate uridylyltransferase (EC2.7.7.9), which catalyzes the formation of UDP-glucose and plays a central role as a glucosyl donor in the glycogen biosynthetic process, were also found in the midgut, implying that different types of carbohydrates such as trehalose, glucose and fructose can be

used for sugar sources for carbohydrate metabolism in the S. litura midgut. On the other hand, α -amylase, which preferentially hydrolyzes long α -1,4-glucan chains of native starch or glycogens, had a relatively low abundance in the feeding midgut of the insect.

3.4.2. Lipid and Fatty Acid Metabolisms. For lipid and fatty acid metabolisms, most of lipid- and fatty acid-related proteins

Top 20 Most Abundant Proteins Identified in the Midgut of Sixth Instar Feeding Larvae of S. Iituraby Shotgun ESI-MS Analysis Table 2.

	saouanbas	K.AVVGEEALTPDDLLYLEFLTK.F; K.AVVQVFEGTSGIDAK.N; K.GPPILAEDFLDIQGQPINPWSR.I; K.HVLVILTDM*SSYAEALR.E; K.HVLYILTDMSSYAEALR.E; K.PIFSAAGLPHNEIAAQICR.Q; K.NFISQGNYENR.T; K.NTLCEFTGDILR.T; K.RIPASILAEFYPR.D; K.TVSGVNGPLYILDEWK.F; K.TVSGVNGPLVILDEVKFPK.F; R.DFISQPR.I; K.GFPGYM*YTDLATIYFR.A; R.IPASILAEFYPR.D; R.NFSTQIPLYM*PNDDTTHPIPDLTGYTTEGQIYVDR.Q; R.NGSTQIPLTM*PNDDTTHPIPDLTGYTTEGQIYVDR.Q; R.QIYPPVNVLPSLSR.I; R.TPVSEDM*LGR.V; R.TYFEST DIGMOTTR F; R.VENGSCKPIDK.G;	K.AVYGEEALTPOLLYLEFLTKF; KAVYOVFEGTSGIDAK.N; K.FSEIVQLR.L; K.GPPILAEDFLDIQGQPINPWSR.I; K.HVLYILTDM*SSYAEAL.R.E; K.HVLYILTDMSSYAEAL.R.E; K.HPILAAGICR.Q; K.NFISQGNYENR.T; K.NTLCEFTGDILR.T; K.RIPASILAEFYPR.D; R.GFPCYM*YTDLATIYER.A; R.IPASILAEFYPR.D; R.NGSTYQPLITM*PNDDITHPIDLTGYITEGQIYVDR.Q; R.NGSTYQIPLITM*PNDDITHPIDLTGYITEGQIYVDR.Q; R.QIYPPVNVLPSISAL, R.SGQVLEVSGTK.A; R.TPVSEDM*LGR.V; R.TVFFSI.DIGWOLI R.I. R.VFNGSGRPIDK.G	K.DVNAAIATIK.T; K.EIVDIVLDR.I; .LADQCTGLQGFLIFHSFGGGTGSGFTSLLM*ER.L; K.TVGGGDDSFNTFFSETGAGK.H; K.VGINYQPPTVVPGGDLAK.V; R.AVCM*LSNTTAIAEAWAR.L, R.FDGALNVDLTEFQTNLVPYPR.I; R.HFPLYTYAPVISAEK.A; R.LIGQIVSSITASLR.F; R.NI DIFRPTYTN NR I: R. OI FHPFOLITICK F	VAIQAVI.SIYASGR.T; K.AGFAGDDAPR.A; K.DIYANTVI.SGGTTM*YPGIADR.M; K.DSYVGDEAQSK.R; K.DSYVGDEAQSKR.G; K.EITALAPSTM*K.I; K.EITAXAPSTM*K.I K.IKIIAPPER.K; K.IKIXAPPER.K; K.IWHHTFYNELR.V; K.LCYVALDFEQEMATAASSSI.EK.S; K.QEYDESGPSIVHR.K; K.SYELPDGQVITIGNER.F; K.YPIEHGIITNWDDM*EK.I; R.AVFPSIVGR.P; R.AVFPSIVGRPR.H; R.GYSFTITAER.E; R.HQGVMVGMGQK.D; R.TTGIVLDSGDGVSHTVPIYEGYALPH; R.TTGIVLDSGDGVSHTVPIYEGYALPHAILR.L; R.VAPEHPVI.TFAPI.NPK.A	VAIQAVI.SIYASGR.T; K.AGFAGDDAPR.A; K.DIYANTVI.SGGTTM*YPGRADR.M; K.DSYVGDEAQSK.R; K.DSYVGDEAQSKR.G; K.IKIDAPPER.K; K.IWHHTFYNEI.R.V K.SYELPDGQVITIGNER.F; K.YPIEHGIITNWDDM*FK.I; R.AVFPSIVGR.P; R.AVFPSIVGRPR.H; R.GYSFTTTAER.E; R.HQGVMVGMGQK.D; R.TTGIVI.DSGDGVSHTVPIYEGYALPH-; R.TTGIVI.DSGDGVSHTVPIYEGYALPHAII.R.L; R.VAPFFHDII TTFAPI NDFK S.	K.ADFOQLIEDMSAAFR.N: K.ASLAETDKTTLEVAKI.; K.DDFLQQNSYSSYDR.F; K.DINELTQSIYIPK.G; K.ELQEEEDLSEIVQLVGKA; K.LKDDFLQQNSYSSYDR.F; K.LPANHPLITGQR.V; K.VGSHITGGDLYGIVHENTLVK.H; K.VKEILQEEEDLSEIVQLVGKA; K.VTDVVLETEFDGEK.A; K.YSNSDVIIYVGCGER.G; R.DAM*GNVLYQLSSM*K.F; R.DM*GYNVSM*W*ADSTSR.W; R.EASIYTGTISEYFR.D; R.EGSVSIVGAVSPGGFSDPVTAATLGIVQVFWGLDK.K; R.GNEM*SEYLX.D; R.HAVESTAQSDNK.I; R.LAEM*PADSGYPAYLGAR.L; R.M*SGSAM*YELVR.V; R.MSGSAMYELVR.V; R.TALVANTSNM*PVAAR.E; R.TALVANTSNMPVAAR.E; R.TGKPLSVELGPGILGSIFDGIQRPLK.D
,	cover percent (%)	60.41	59.92	40.67	62.77	50.27	50.73
	no. of unique peptides	21	21	Ξ	19	16	73
)	no. of peptide sequences	134	129	121	119	107	103
	species	D. melanogaster	H. virescens	D. melanogaster	A. aegypti	T. castaneum	M. sexta
,	$I_{\mathbf{q}}$	5.25	5.26	5.00	5.30	5.29	5.14
	MW	54549.54	54894.03	49890.44	41821.9	41828.9	68165.8
	protein description	Vacuolar ATP synthase subunit B	Vacuolar ATP synthase subunit B	Tubulin alpha-3	Actin 5	Actin-87E isoform 1	Vacuolar ATP synthase catalytic subunit A
	GAN^a of homologues	P31409	P31410	P06605	AAY81972	XP_966415	P31400
	no.	_	2	က	4	ro	ဖ

Q
e e
⋷
Έ
0
Ö
٧i
<u>e</u>
ॼ
-σ

sednences	VAIQAVLSIYASGR.T; K.AGFAGDDAPR.A; K.DIYANTVMSGGTTMYPGIADR.M; K.DSYVGDEAQSK.R; K.DSYVGDEAQSKR.G; K.EYDESGPGIVHR.K; K.IKIIAPPER.K K.IWHHTFYNELR.Y; K.SYELPDGQVITIGNER.F; K.YPIEHGIITIWWDDM*EK.I; R.AVFPSIVGR.P; R.AYFPSIVGRPR.H; R.GYSFTTTAER.E; R.HQGVMVGMGQK.D; R.TTGIVLDSGDGVSHTVPIYEGYALPH; TTGIVLDSGDGVSHTVPIYEGYALPHAILR.L; R.VAPFFHDVI TTFAPI NUR. A	VMQAVLSIYASGR.T; K.AGFAGDDAPR.A; K.DIXANITVMSGGTTMYPGIADR.M; K.DSYVGDEAQSK.R; K.DSYVGDEAQSKR.G; K.IKIDAPER.K; K.IWHHTFYNELR.V; K.LCYVALDFEQEMATASSSSIEK.S; K.SYELPDGQVITIGNER.F; R.AVFPSIVGR.P. R.AVFPSIVGRPR.H; R.GYSFTTTAÈR.E; R.HQGVMVGMGQK.D; R.TTGIVLDSGDGVSHTVPIYEGYALPH; R.TTGIVLDSGDGVSHTVPIYEGYALPHAILR.L. R.VAPFFHDVI TTFAPI NDR. A.	VMOAUZINASGR.T; K.AGFAGDDAPR.A; K.DSYVGDEAQSK.R; K.DSYVGDEAQSKR.G; K.EITALAPSTM*K.I; K.KILIAPPER.K; K.IKTAAPPER.K; K.IWHHTFYNDLR.V; K.QEYDESGPSIVHR.K; K.SYELPDGQYTIGNER.F; R.AVFPSIVGR.P; R.AVFPSIVGR.P; R.GYSFTTTAER.E; R.LAPEEHPVLLTEAPLNPK.A; R.TTGVILDSGDGYSHTVPIPEGYALPH.; P.TTGVILDSGDGYSHTVPIPEGYALPH.;	K.ETOGOLDOLOGY M. M. I. T. COMBANES. K. F. ETOGOLDOLOGY M. K. TELVWCNEEDHLR. I. K. NWGDVETLGNLDPAGEFVVSTR. V. K. TFLVWCNEEDHLR. I. K. VASTLSGLEGELK. G. R. FLQAANACR. F. R. GEHTLSGEGGVYDISNK. R. R. GIYHNENK. T.; R. GTRGEHTEAEGGVYDISNK. R. R. GTRGEHTEAEGGVYDISNK. R. R. GTRGEHTEAEGGVYDISNKR. R. L. GFLTFCPTNLGTTVR. A; R. L. SAW ŠQM*GGDLK. G. P. L. VTANVNDIEKR. I. P. R. VTANVNDIEKR. I. P. SAW ŠECVENDOT TEAOVY	K.AVVQVEGTSGDAK.N.; K.GPPILAEDFLDIEGQPINPWSR.J; K.HVLVILTDM*SSYAEALR.E; K.HVLVILTDMSSYAEALR.E; K.HVEANGLPHNEIAAQICR.Q; .PIDKGPPILAEDFLDIEGQPINPWSR.J; K.TVSGVNGPLVILDEVK.E; K.TVSGVNGPLVILDEVKFPK.F; R.DFISQPR.L; R.GFPGYM*YTDLATIYER.A; R.LALTAAEFLAYQCEK.H; R.NGSITQIPILTM*PNDDITHPIPDLTGYITEGQIYVDR.Q; R.NGSITQIPILTM*PNDDITHPIPDLTGYITEGQIYVDR.Q; R.YGFST DIGNAMOT 18 I. B. VENGSGCAPIDR.C;	K.DAGTISGLINUKLI, K.FELTGIPPAPR, G. K.ISDSDKQTILDK.C; K.LLQDFFNGK.E, K.M*KETAEAYLGK.T; K.MKETAEAYLGK.T; K.NQVAM*NPNNTIFDAK.R; K.QTQTFTTYSDNQPGVLQVFEGER.A; K.SQIHDIVLVGGSTR.I; K.TFFPEVSSM*VLTK.M; K.TFFPEVSSMVLTK.M; K.TVQNAVITYPAPYFNDSOR.Q; K.VEIIANDQGNR.T; R.ARFEELNADLFR.S; R.IINEPTAAAIAYGLDK.K; R.INEPTAAAIAYGLDK.K.G; R. KREDATVQADM*K.H; R.M*VNHFVQEFK.R; R.MVNHFVQEFK.R; R.STAGDTH.GGEDFDNR.1; R.TYPSVVAFTNTR.1	K.ASLAFTDKTLEVAKLI, K.EILQEEBLSEHVQLVGK.A; K.LPANHPLLTGQR.V.; K.NFQEFVPTAYKVK.E; K.VKEILQEEBLSEHVQLVGK.A; K.YSNBVIITYGCGER.G; R.DM*GYNVSM*M*ADSTSR.W.; R.EASIYTGTTISEYFR.D; R.GNEM*SEVIR.D; R.LAEM*PADSGYPAYIGAR.L; R.M*SGSAM*YELVR.V; R.MSGSAMYELVR.V; R.TALVANITSNM*PVAAR.E; R.TALVANITSNMPVAAR.E
cover percent (%)	53.72	52.13	43.88	65.10	43.84	35.38	25.20
no. of unique peptides	17	16	15	16	15	70	13
no. of peptide sequences	101	86	93	88	88	73	73
species	A. aegypti	A. aegypti	A. mellifera	Epicephala sp. E97AT	A. mellifera	T. mi	A. aegypti
Iq	5.22	5.30	5.29	6.23	5.41	5.50	5.44
MW	41776.85	41791.86	41796.87	28993.77	55144.19	71863.22	68599.51
protein description	Actin	Actin	Actin	Arginine kinase	H(+)-transporting ATPase	Heat shock protein 70	Vacuolar ATP synthase catalytic subunit A
GAN^a of homologues	EAT47188	ABF18092	XP_625015	AAS92314	XP_624112	AAB06239	016109
no.	<u></u>	∞	6	10	11	12	13

inued
Conti
6
<u>e</u>
abl
\vdash

seduenbes	K.DAGTISGLNVLR.I, K.FELTGIPPAPR.G; K.ISDSDKQTILDK.C K.LLQDFFNGK.E; K.M*KETAEAYLGK.T; K.MKETAEAYLGK.T K.NQVAM*NPNNTIFDAK.R; K.OTQTFTTYSDNOPGYLJOVEGERA; K.OTQTFTTYSDNOPGYLJOVEGERA; K.TPFDEVSSM*VLTK.M; K.TFFPEEVSSMVLTK.M; K.TYPORAVTYVPAYFNDSQR.Q; K.VEIIANDQGONR.T; R.ARFEELNADLFR.S; R.JINEPTAAAIAYGLDK.K; R.IINEPTAAAIAYGLDKK.G; R.KFEDATVQADM*K.H; P. GTA COLDTER SIR MANNHFVQFFK.R;	K. FELTGIPPAPE, G. K. ISDSDKQTILDK.C. K.LLQDFFNGK.E; K.M*KETAEAYLGK.T; K.MKETAEAYLGK.T; K.M*VAM*NPNNTIFDAK.R; K.NQVAM*NPNNTIFDAK.R; K.QTQTFTTYSDNQPQVLQVYEGER.A; K.SINPDEAVAYGAAVQAAILHGDK.S; K.TFFPEEVSSM*VLTK.M; K.TFFPEEVSSMVLTK.M; K.TVQNAVITVPAYFNDSQR.Q; K.YEILANDQGNR.T; R.ARFEELNADLER.S; R.INEPTAAALAYGLDKK.R; R.IINEPTAAALAYGLDK.G; R.KFEDATVQADM*K.H; R.M*VNHFVQEFK.R; R.MYNHFVQEFK.R; R.MYNHFYQEFK.R; R.MYNHFYQEFK.R; R.MYNHFYQEFK.R;	K. J. I.Y. SYVAF I. J. I. EK. L. K. DAGTISGLNULR. J. K. FELTGIPPAPR. G.; K. LLQDFFNGK. E; K. M*KETAEAYLGK. T. K. MKETAEAYLGK. T. K. NQVAM*NPNNTIFDAK. R; K. OTGTFTTYSDNQPGVLIQVFEGER. A; K. SINPDEAVAYGANQANLHGDK. S. K. SQIHDIVLVGGSTR. I; K. TFPFEEVSSM*VLTK. M; K. TFPFEEVSSMYLTK. M; K. TFPFEEVSSMYLTK. M; K. TYQNAVITYPAATYNDSQR. Q; K. TYGNAVITYPAATYNDSQR. Q; K. TYQNAVITYPAATYNDSQR. Q; K. TYGNAVITYPAATYNDSQR. Q; K. TYPEDATYQADM*K. H;	K.SIAGDTHJGGEDFDMK.I; K.TIPSYVAFIDIEK.L K.EVDEQM*LNIQNK.N; K.EVDEQMLNIQNK.N; K.FWEIISDEHGIPPTGAYHGDSDLOJER.I; K.GHYTEGAELVDSVLDVVR.K; K.IAVNM*VPFPR.L; K.AVNMYPPPR.L; K.MAATFIGNSTAIQELFK.R; R.AILVDLEPGTM*DSVR.S; R.AITVPELTQQM*FDAK.N; R.PGGJ.NADJR.K; R.IMYNTYSVVPSPK.V; R.IMNTYSVVPSPK.V; R.INVYNEASGGK.Y; R.ISEQFTAM*FR.R; R.ISEQFTAMFR.R; P. XIAVNM*VPFPR.L; R.SGPFGQIFRPDNFVFGQSGAGNNWAK.G;	K. ETOOKALIDDHELFK.E; K.GTFYPLTGM*SK.E; K.NWGDVETLGNLDPAGEFVVSTR.V; K.TFLVWCNEEDHLR.I; K.VASTLSGLEAELK.G; R.FLQAANACR.F; R.GIYHNENK.T; R.LGFLTFCPTNLGTTVR.A; R.LISM*QM*GGDLK.Q; R.LVTAVNDIEKR; R.XLYTAVNDIEKR.I; R.RLYTAVNDIEKR.I;	K.EVDEQM*LNIQNK.N; K.EVDEQMLNIQNK.N; K.GHYTEGAELVDSVLDVVR.K; K.IAVNM*VPPPR.L; K.IAVNMWPPPR.L; RALTVPELTQQM*FDAK.N; R.AVLVDLEPGTM*DSVR.S; R.AVLVDLEPGTMDSVR.S; R.PGGLJANDJR.K; R.IM*VTYSVVPSPK.V; R.INNTYSVVPSPK.V; R.INVYNNEASGGK.Y; R.ISEQFTAM*FR.R; R.ISEQFTAMFR.R; P. KIAVNM*VPPPR.L; R.SGPFGQIFRPDNFVFGQSGAGNNWAK.G;	K.EM*DOGIAELKI; K.ETQQKLIDDHFLFK.E; K.NWGDVETLGNLDPAGEFVVSTR.V; K.TFLVWCNEEDHLR.I; R.FLQAANACR.F; R.GEHTFAEGGVYDISNK.R; R.GIYHNENK.T; R.GTRGEHTFAEGGVYDISNK.R; R.GTRGEHTEAEGGVYDISNK.R; R.GTRGEHTEAEGGVYDISNK.R; R.GTRGEHTEAEGGVYDISNK.R; R.GTRGEHTEAEGGVYDISNK.R; R.GTRGEHTEAEGGVYDISNK.R; R.GTRGEHTEAEGGVYDISNK.R; R.ISM*ECYPFNPCLTEAQYK.E
cover percent (%)	36.96	36.98	35.47	43.40	57.25	33.56	42.54
no. of unique peptides	20	20	19	14	14	12	13
no. of peptide sequences	72	70	89	29	65	65	59
species	M. sexta	B. mori	L. obliqua	B. mori	<i>Epicephala</i> sp. E90AT	D. melanogaster	P. interpunctella
Iq	5.33	5.33	5.33	4.75	80.9	4.76	6.24
MW	71431.58	71175.3	71602.76	50214.47	28863.63	50147.37	39879.37
protein description	Heat shock 70 kDa protein cognate 4	Heat shock cognate protein	Heat shock protein 4	Beta-tubulin	Arginine kinase	Tubulin beta-1 chain	Arginine kinase
GAN^a of homologues	Q9U639	BAB92074	AAV91465	BAB86853	AAS92300	Q24560	Q95PM9

^a GAN stands for GenBank Accession Numers in all of the tables.

20

15

16

17

18

19

Table 3. Top 20 Most Abundant Nonredundant Proteins Identified in the Midgut of Sixth Instar Feeding Larvae of S. Iituraby Shotgun ESI-MS Analysis

))			
no.	GAN of homologues	protein description	MW	Id	species	no. of peptides	no. of unique peptides	cover percent (%)	saouanbas
1	AAR37334	Diazepam-binding inhibitor	9823.28	8.86	H. armigera	45	9	00.09	K.AKFEAWSK.Q; K.APGFLDLK.G; K.FEAWSK.Q; K.QATVGDSDPSKAPGFLDLK.G; K.SLPSDADLLELYALFK.Q; K.VEKLIASIGLO
2	077248	Apolipophorin-3 precursor	20649.27	7.03	S. litura	41	6	53.19	KAIKDGSDSVLQQLSALSSSLQSAM*TDANAKA; K.DGSDSVLQQLSALSSSLQSAM*TDANAKA; K.DGSDSVLQQLSALSSSLQSAMTDANAKA; K.EVASNVEETNEK.L; K.HVEEVQK.K; K.LKEAYENFSK.H; K.LQAAVQNTAQEVQK.L; K.TRESOLINSYANSK.N. R.DAPDANTILODIFK H
က	AAO32817	ADP/ATP translocase	32891.13	9.88	B. mori	28	11	36.67	K.DFLAGGISAOKKT; K.FGGLLSFWR.G; K.GYDDAFVR.I; K.LLLQVQHVSK.Q; K.SDGIIGLYR.G; R.ASYFGFYDTAR.G; R.GNFANVIR.Y; R.GTGGAFVLVLYYDEIK.K; R.LAADVGKGDGQR.E; R.YFPTQALNFAFK.D; R.YKGYDAFVR.I
4	AAS79891	GST1	23939,4	6.20	S. litura	26	9	48.39	K.EQTDKLNSAYEHLDK.F; K.LTAWFNTIQQEDWYK.K; K.NPQHTVPLLEDGDFYVADSHAINTYLASK.Y; K.YGGAQSAQLYPTDLQVR.A; R.GDITSPTKEQTDK.L; R.TYFDISAJAGNSGAUSALI.R.G
5	CAB55605	Arylphorin subunit	84112.88	6.70	S. litura	21	10	17.05	K.DLHQYSYEIIAR.H; K.DYDIEANIQNYSNK.Q; K.FYELDWFVQK.L; K.QAVEEFLLLYR.T; K.SDVASDAVFK.I; K.TFFQFLQK.A; K.VPYDM*SVQPDNM*PR.R; K.YTFM*PSALDFYQTSLR.D; R.DFAIALFHVLYYAR.D; R.SNDYNLHNEK.N
9	ABB90022	Glucose-3-phosphate dehydrogenase	33604.26	7.17	C. meadii	21	9	31.33	K.ASAHIEGGAK.K; K.GAKVVAINDPFIGLDYM*VYLFK.Y; K.GAKVVAINDPFIGLDYMVYLFK.Y; K.VIHDNFEIVEGLM*TTVHATTATQK.T; K.VIHDNFEIVEGLMTTVHATTATQK.T; K.VISNASCTTNCLAPLAK.V; R.GAOONIIPAATGARAK.R.I.GKPASSYDAIK.O
2	ABD36107	Enoyl-CoA hydratase precursor 1	31853.56	8.44	B. mori	19	ις	17.91	KAFAAĞADIK.E; K.FGQPEINIGTIPGAGGTQR.L; K.LLEETIK.L; K.NVGLQLNRPK.A; K.SGLOFEK.S
ω	AAT72922	Sterol carrier protein 2/ 3-oxoacyl-coa thiolase (lipid)	57450.85	8.21	S. littoralis	18	ω	19.25	K.EAVLAALADAR.I; K.FIDAGDNTYGGR.V; K.GHPLGATGLAQCAELVWQLR.G; K.ILEEAM*ANDTDNLIEK.V; K.ILEAMANDTDNLIEK.V; K.ILEAMANDTDNLIEK.V; K.KYGTTELHLAK.I; R.EYTVEEVLNSR.R; R.LYQNTGVSPK.Q; R.VYVNPSGGIJAK.G
6	Q9V3P0	Peroxiredoxin 1	21737.93	5.52	D. melanogaster	18	4	22.16	R.DYGVLDEETGIPFR.G; R.GLFIIDDK.Q; R.LVQAFQYTDK.H; R.QITVNDLPVGR.S

												<u></u>
	sednences	K.QGGLGPM*NIPLISDK.S; R.DYGVLDEETGIPFR.G; R.GLFIIDDK.Q; R.KIGCEVLGASTDSHFTHLAWINTPR.K; R.KQGGLGPM*NIPLISDK.S; R.KOGGLGPMMIPLISDK.S;	K.IGLQVAAVK.A; K.IVQDVANNTNEAGDGTTTATVLAR.A; K.VEFODALVI FSFK K. B. NVIIFOSWCSDK 7.	K.DTGSTTSLEVGGDSASEWILK.); K.SENVWDR.L; K.SYNDPPIYITENGFSDRGTLQDYGR.I; R.I.FOFDDYWIOR I	K.AYEGENM*INFK.C; K.CACVDVPFGGAK.A; K.FNLGLDIR.T; K.GFIGPGVDVPAPDM*GTGER.E; K.IIAEANGPTTPAADKI; R.FSNVHIJESVOESI FR. R. RIPVTPSFSFOK R.	K.AGETVVVTGAAGAVGSLVGQIAK.I	K.GILAADESTGTMGK.R; K.VTEVVLAAVYK.A; R.IVPIVEPEVLPDGEHDLDR.A; R.KIAEAIVAPGK.G; R.LQDIGVENTEENR.R; R.YASICOSOR.I	K.AANAVTPTVELR.K; K.AIGVGLITR.K; K.SVCTFEGNTLK.Q; R.KAANAVTPTVELR.K	K.AANDPVLM*NYYGIK.V; K.AANDPVLMNYYGIK.V; K.LLNHILQPTIYDDVR.E; R.GEVFVHTNELHIQAVK.V; R.LGGFPLQM*VYISPVK.T; R.M*VLGGM*GLVSDDAK.F; R.M*VLGGM*GLVSDDAK.F;	K.AIAEDHTFI.SDFPNINFGNVFDSWVQNR.G; K.TLGFEVLDFLR.S; K.VNLENIDLEGAR.F; R.AQIVNDVLHFIR.S; R.EAYLLYDPANTNLVNK.I; R.SETDYYVWNGALTOLDWIR.R	K.AIGSGSEGAQQSLK.E; R.GVNTFSPEGR.L; R.LFOVEYAIEAIK.L; R.PFGVAVMFAGIDEK.G	K.VLVVGNPANTNALICSK.Y; R.IFKEQGQALDK.V; R.KDLLAANVR.I; R.WVSM*GVVSDGSYGTPR.D
COVET	percent (%)	32.31	10.28	13.03	16.79	6.87	21.15	25.00	13.45	10.29	20.58	16.01
no. of	unique peptides	9	4	4	! ~	П	9	4	L	9	4	4
, ,	no. or peptides	17	15	14	13	13	12	10	6	6	6	6
	species	B. mori	A. aegypti	B. mori	B. mori	B. mori	A. yamamai	M. sexta	S. litura	S. litura	B. mori	B. mori
	pI	60.9	5.47	4.80	8.36	06.9	7.59	5.65	9.12	5.53	4.98	6.85
	MW	21916.03	60793.61	55596.07	61397.42	36784.2	39708.37	14770.83	88965.34	108505.87	26874.64	35462.92
nwotoin	protein description	Thiol peroxiredoxin	Chaperonin-60kd	Glucosidase	Glutamate dehydrogenase	NADP-dependent oxidoreductase	Fructose 1,6-bisphosphate aldolase	Cellular retinoic acid binding protein	Methionine-rich storage protein	Aminopeptidase N	Triosephosphate isomerase	Proteasome zeta subunit
Continued	homologues	AAR15420	EAT36327	AAP13852	ABD36303	ABF51427	BAD12426	AAC24317	CAB55604	AAK69605	ABD36156	ABD36319
l able 3.	no.	10	11	12	13	14	15	16	17	18	19	20

Table 4. Proteins Involved in Carbohydrate Transport and Metabolism in the Midgut of Sixth Instar Feeding Larvae of S. lituraby Shotgun ESI-MS Analysis

sednences	R.IGSGVDNIDVK.A	K.AERPLIIVGK.G	K.EGASVAFVGR.N; K.GSIVNVSSILSTIVR.I; K.LDVLVNNAGILR.F	K.AGVVGM*TLPLAR.D	K.CIDFMGGVGFTR.D; K.IGTIYEGTSNM*QLQTIAK.L; K.IGTIYEGTSNMQLQTIAK.L; K.YAAGFLNEGR.I; R.VDPAVARYVDIHNTLVNSLFM*K.L; R.VDPAVARAVVDIHNTLVNSLFM*K.L;	K. FGYNEFYNEY, D. R. LIGYDINPDKFEVAK.K; K. NMFLPFFLGFGCPIGDGK.Q	K.NGFISHEEFSGPK.H K.M*EFSITEQQVPMLI.R.L	K.RVTLELGGK.S; R.ANNSEYGLAAAVFTKDLDK.A K FEIFGPVOSIIK F: K VAFTGSVFTGR I.: R IARFEIFGPVOSII.K F	K. DSDGDGGDLINGTTSKLSYLK.E K. SSIFVNPNVIFI. PTK. N	K.M*FITFINEPR.E: K.MFITFINEPR.E; R.FGLYEVDFSDPAR.T K.LI.RTINNAIVAAEDEIHNS	R.EANLLLGDIIK.V K.VLVVGNPANTINALICSK.Y; R.IFKEQGQALDK.V; R.KDLLAANVR.I;	R.WVSM*GVVSDGSYGTPR.D K-ATDVILGTHIIGPGGGELINEAVIAQEYGAAAEDVAR.V; D EAMIT A VYCZYDINIE	R.EANTART CONTINE.: R.GNPIVEVDI.YTELGLFR.A; R.SGETEDTFIADLVVGLSTGQIK.T R.AEDRLM*YSILIYLSR.A	K.AFAAGADIK.E; K.FGQPEINIGTIPGAGGTQR.L; K.LLEETIK.L; v nvgtioi nrdk a. k sci offik s	K.GILADESTGTMGK.R; K.VTEVVLAAVYK.A; R.IVPIVEPEVLPDGEHDLDRAAVS, R.KIAEAIVAPGK.G; P.I.OPICVENTEEND D. DVASTOGOD I	R.IAKAIVAPGK.G	K.II.M*LSGIGPK.K R.ATIMEELHKSQQK.Q K.FTCDM*FHPNIFADGR.V K.ASAHIEGGAK.R. K.GAKIVAINDPFIGLDYM*VYLFK.Y; K.GAKIVAINDPFIGLDYMYLFK.Y; V.HDNFEIVEGLM*TTVHATTATQK.T; K.VIHDNFEIVEGLM*TTVHATTATQK.T;	K.LGKPASIDAIK.Q K.DTGSITSLEVGGDSASEWLR.V; K.SENVWDR.L; v cenniddintengeridging onegd i. d iegendymiod i	K.M*GNQLRTEMSQR.G R.PYLPNIVEVGGLQIK.A	K.AYEGENM*LYEK.C; K.CACVDVPFGGAK.A; K.FNLGLDLR.T; K.GFIGPGVDVPAPDM*GTGER.E; K.IIAEAANGPTTPAADK.I;	K. VIDIN THILES VÇESTERA, N. H. V. ITS SETÇEK. N. K. VIDINELKA, K. VIHDNFEIVEĞLM*TTYHATTATÇK. T; K. VIHDNFEIVEĞLM*TTATÇK. T; K. VIHDNFEIVEĞLMTTVHATTATÇK. T; K. VIISANSADAPM*FVVĞYNLDAYDPSYK. V; D. CAOONITDA AFÇA AFÇA AFÇA AFÇA AFÇA AFÇA AFÇA AF	K.DADLILEVVPHQFYR.T.; K.FPLFTAVFR.I; K.FVDVFYPGSK.L; K.GEDIAFGGGIIISHIITR.C	K.ASAHIEGGAK.K. K.GAKIVVAINDPFIGLDYM*VYLFK.Y; K.GAKVVAINDPFIGLDYMVYLFK.Y; K.VIDILK.A; K.VIHDNFEIVFGIM*TTYPHATTATQK.T; K.VISNASCTTNCLAPLAK.V; R.VPVÄNVSVVDLTVR.L
cover percent (%)	2.52	1.69	14.86	4.71	14.69	6.65	$12.50 \\ 0.41$	5.38	3.50	4.32	0.93 16.01	10.26	9.01	17.91	21.15	2.75	1.61 7.84 8.98 31.33	13.03	2.17 2.86	16.79	21.69	15.01	28.01
no. of unique peptides	-	1	3	1	4	2		2 8) — —	7 2 -	1 4	2	3	22	9	1	9	4	11	8	4	4	2
no. of peptides	-	2	4	1	13	7		7.5		3 - 1	1	2	29 1	19	12	3	2 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1	14	11	13	15	12	34
species	A. aegypti	B. mori	S. littoralis	B. mori	B. mori	B. mori B. mori	D. yakuba A. mellifera	D. melanogaster A. aegynti		S. frugiperda A. aegynti		M. sexta	O. nigricans D. pseudoobscura	B. mori	A. yamamai	A. aegypti	A. aegypti D. pseudoobscura D. melanogaster C. meadii	B. mori	A. aegypti A. aegypti	B. mori	H. coagulata	B. mori	B. mori
$I^{\mathbf{d}}$	89.9	7.11	5.82	8.55	7.07	6.47	4.44 5.80	6.37	5.27	4.79	6.43 6.85	8.86	5.92	8.44	7.59	8.02	9.27 4.57 4.68 7.17	4.80	4.52 9.12	8.36	8.30	5.62	7.7
MW	46960.83	64844.86	26079.02	26931.12	47080.19	40033.17 33423.56	11741.98 414742.62	57018.95	68470.4	58137.54	130633.97 35462.92	53082.37	46692.18 116718.76	31853.56	39708.37	39119.67	68893.4 16746.81 18456.27 33604.26	55596.07	63039.28 58560.18	61397.42	35476.5	38684.94	35428.41
protein description	2-hydroxyacid	2-hydroxyphytanoyl-CoA	Jyase 3-dehydroecdysone 3	3-hydroxyacyl-CoA	denydrogenase dehydrogenase	Alcohol dehydrogenase Alcohol dehydrogenase	Alcohol dehydrogenase Aldehyde dehydrogenase	Aldehyde dehydrogenase Aldehyde dehydrogenase	Alpha-amylase Alpha-Ifucosidase	Brain Chitinase and chia	Carboxylase Cytosolic malate	dehydrogenase Dihydrolipoamide	uenyurogenase Enolase Enolase	Enoyl-CoA hydratase	Fructose 1,6-bisphosphate aldolase	Fructose-bisphosphate	autorase Glucose dehydrogenase Glucose dehydrogenase Glucose-3-phosphate dehydrogenase	Glucosidase	Glucosidase II beta subunit Glucosyl/glucuronosyl	uansterases Glutamate dehydrogenase	Glyceraldehyde 3-phosphate dehydrogenase	Glycerol-3-phosphate	Glycerol-3-phosphate dehydrogenase
GAN of homologues	EAT43123	ABD36222	AAF70499	ABF51362	ABF71566	ABF51211 ABF51508	AAR09963 XP_396487	NP_609285 FAT33638	EAT45278 AAV84202	AAC06038 EAT42323	EAT38418 ABD36319	018480	AAU95200 EAL33448	ABD36107	BAD12426	EAT42704	EAT44642 EAL29916 NP_524684 ABB90022	AAP13852	EAT35441 EAT47339	ABD36303	AAT01075	BAD38675	BAE96011
no.	1	2	3	4	22	9	86	10	121	14 5	16	18	19 20	21	22	23	24 25 26 27	28	29 30	31	32	33	34

seouenbes	K.LISWYDNEFGYSNR.V; K.VIDILK.A; K.VIHDNFEINEGLM*TTVHATTATQK.T; K.VIHDNIFEINEGLM*TTVHATTATQF.T	K.VHJDNETVEGLM1.VHATTATOK.T. KASAHIEGGAKK, K.LISWYDNEYGYSNR.V; K.VIHDNETVEGLM*TTVHATTATOK.T; K.VIHDNETVEGLMTTVHATTATOK.T; K.VIKONAGGTINGTATATOK.T;	N.VISINASCI IN CLAPLAN.V; K.GAQQINIIPAA I GAAN.A; R.TVSINLIGSFNMIR.L	R.FVNEAVLSLEEK.1	K.TVDSSISGLGGCPYAR.G; R.VPGVNYPVLVPNLK.G	R.AAAATATIQRYIKVAR.V	KAGPVVDVLGDEM*TR.1; K.ETSTNPIASIFAWTR.G;	K.SEGGFVWACK.II, K.1VEAEAAHG1V1R.II, R.INLGG1VFR.E K.ETSTIPHASIFAKTIG, K.SEGGFVWACK.NI. V. TYDARAA ALICHYTED H. D. HARDLIFF E. D. NIII COTWIED D.	K.I.DLVVESIR.F	K.AVALDPNFL.DAYINLGNVLK.E	KTLAILGLGR.I	K.M*XETKTPAAHPNSR.F	K.M*YDALKEVVEKLPSHK.V	R.SEATAAAEHAGK.V	K.VLNNM*EIGRSLFDEEGSKIVQK.L R.YSGHSM*SDPGTSYR.S K.NITINVVKPGNR.I; R.KGVNLPGIPVDLPAVSEK.D K.GNIVNVSSVTGLR.S; K.TKGNIVNVSSVTGLR.S	K.VCIIGSGNWGSAIAK.I	R.KNDAIQSLQFLR.G K.LASTWEGIQAAR.V K.LASTWEGIQAAR.V B.TSDINITYIT VORNIGHTER V.	R.1SKPN JAILTYNDEVFIN.V R.AATYGGLAQQQUDD, R.EFAKNINDIWPLLAR.K; D. VA ATYGGLA AGGIAND D	R.DIGAD WILLGHSER, K.TATPDQAQEVHASIR.Q; K.VIACIGETLEER.E; R.IQYGGSVTAANAK
cover percent (%)	13.21	24.10	3.80	1.57	10.79	2.58	13.56	13.24	1.24	7.02	2.71	6.70	29.9	6.63	5.30 3.32 7.20 5.79	4.29	2.50 3.60 6.11	4.77	21.86
no. of unique peptides	6	ıS	1	1	2	1	9	9	1	1	1	1	1	1	2 2 1 1 1	1	3 1 1	3	4
no. of peptides	11	18	1	1	2	1	14	13	1	2	1	1	1	2	33351	1	7 1 7	3	7
species	G. morsitans morsitans	P. xylostella	A. aegypti	B. mori	B. mori	D. melanogaster	D. melanogaster	B. mori	A. aegypti	A. aegypti	A. aegypti	C. grandidieri	A. gambiae str. PEST	G. fabri	A. aegypti A. aegypti B. mori B. mori	L. migratoria	A. aegypti A. aegypti B. mori	S. frugiperda	D. melanogaster
I^{d}	96.9	6.54	8.66	9.38	8.86	9.16	7.59	6.24	8.87	5.71	8.08	5.46	10.03	5.53	8.21 8.61 5.34 7.63	29.9	6.18 6.40	4.72	00.9
MW	35662.69	35468.4	38416.14	82141.33	30625.28	67446.89	50431.75	46176.05	84443.63	32004.34	35344.88	23082.2	27425.8	19898.54	44057.63 45901.15 43580.99 27639.57	38165.62	52181.00 36991.64 67384.01	67210.2	26579.47
protein description	Glycerol-3-phosphate dehydrogenase	Glycerol-3-phosphate dehydrogenase	Hydroxyacyl	denydrogenase Hydroxyacyl-coenzyme A	denydrogenase Hydroxymethylglutaryl-CoA	lyase 18010rm 2 Inositol-pentakisphosphate	z-kinase Isocitrate dehydrogenase	Isocitrate dehydrogenase	Mannosyl-oligosaccharide	giucosidase O-linked N-acetylglucosamine	transferase Phosphoglycerate	phosphoenolpyruvate	carboxykinase Phosphoenolpyruvate	carboxykinase Phosphoenolpyruvate	Carboxykliase Phosphoglycerate kinase Pyruvate dehydrogenase Pyruvate kinase Short-chain dehydrogenase/	reductase 2 SN-glycerol-3-phosphate	ucrymogenae isorom Sugar transporter Transaldolase Transketolase	Trehalase	Triosephosphate isomerase
GAN of homologues	AAY41178	CAD33827	EAT32291	ABD36131	ABD36133	Q9W2Q7	NP_788476	ABD36136	EAT35353	EAT35463	EAT43202	AAO32154	XP_562547	AAF32488	AAL58080 EAT43251 BAD01636 ABD36166	AAD05302	EAT37543 EAT38745 ABD36172	ABE27189	CAA40804
no.	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49 50 51 52	53	54 55 56	22	58

Figure 5. Glycolysis and gluconeogenesis pathways constructed by KEGG bioinformatics resource developed by the Kanehisa Laboratories in the Bioinformatics Center of Kyoto University and the Human Genome Center of the University of Tokyo (http://www.kegg.jp/). The enzymes that were identified in this study are labeled with gray background. EC4.2.1.11, phosphopyruvate dehydratase; EC1.2.1.12, glyceraldehyde-3-phosphate dehydrogenase; EC4.1.2.13, fructose-bisphosphate aldolase; EC5.3.1.1, triose-phosphate isomerase; EC2.7.1.40, pyruvate kinase; EC1.2.4.1, pyruvate dehydrogenase; EC1.8.1.4, dihydrolipoyl dehydrogenase; EC1.1.1.1, alcohol dehydrogenase; EC1.2.1.3, aldehyde dehydrogenase; EC1.1.1.27, L-lactate dehydrogenase.

were generally in low abundance, while the expression levels of diazepam-binding inhibitor, apolipophorin-3 precursor, and sterol carrier protein 2/3-oxoacyl-CoA thiolase were much higher than the others (Table 5). Diazepam-binding inhibitor (DBI) or acyl-CoA-binding protein (ACBP) is a small and highly conserved multifunctional protein involved in regulation of gamma-aminobutyric acid (GABA) receptor activity, synthesis and transport of medium-chain acyl-CoA-ester, synthesis of steroid hormones, and secretion of glucose-induced insulin.²¹ In H. armigera this protein is found to regulate biosynthesis of ecdysteroids in the prothoracic gland.²² This protein is also found to express predominantly in the midgut columnar cells of *H. armigera* and to be stimulated by a high juvenile hormone titer and increased along with feeding at 12 h postecdysis, suggesting that it is probably associated with nutrition absorption.²³ This protein also plays a significant role in the production of sex pheromones regulated by the pheromone biosynthesis activating neuropeptide (PBAN) in B. mori.24 In this study, DBI/ACBP was found to express at the highest abundance in the lipid metabolism catalog, implicating that this protein may play an unidentified role in the feeding process. Apolipophorin 3 is a lipid carrier protein in the hemolymph of insects. It helps loading diacylglycerol onto the hemolymph lipoprotein, lipophorin, increasing its lipid carrying capacity and therefore plays a critical role in the transport of lipids. ²⁵ In *Galleria mellonella*, the level of apolipophorin-3 reached a maximum in the hemolymph at the end of the feeding phase of the seventh instar larvae and declined to a background level in the pupal and the adult stages. ²⁶ This is consistent with the result observed in this study.

Sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) belongs to a well-characterized SCP-2 gene family. SCP-2 is present in both vertebrates and invertebrates and involved in intracellular sterol/lipid transfer, synthesis and metabolism of steroids and fatty acids.²⁷ In insects, cholesterol is required for cellular membranes and ecdysteroid biosynthesis.²⁸ Cholesterol, which is converted from phytosterols, is a precursor of ecdysteroids, which are synthesized in the prothoracic glands.²⁸ However, insects can not synthesize cholesterol via *de novo* biosynthesis pathway using simple molecules because they lack at least two key enzymes, squalene monooxygenase and lanosterol synthase, therefore insects must uptake cholesterol

Table 5. Proteins Involved in Lipid and Fatty Acid Transport and Metabolism in the Midgut of Sixth Instar Feeding Larvae of S. lituraby Shotgun ESI-MS Analysis

			IAK.A;	K.A. .A; K.L; MEK.H			dK.N				NEK.K; GER.V																			
secuenbes	K.APIDVMKTPNAIPNIPVM*M*GVNNR.E K.YSDPTPASSSISPK.W	K.LQAAVQNTVQESQK.L	K.AIKDGSDSVLQQLSALSSSLQSAM*TDANAKA;	K.DGSDSVLQQLSALSSSLQSAMI IDANAR.A, K.DGSDSVLQQLSALSSSLQSAMTDANAK.A; K.EVASNVEETNEK.L; K.HVEEVQK.K; K.LKEAYENFSK.H; K.LQAAVQNTAQEVQK.L; K.TFSEQLNSIANSK.N; R.DAPPANTLLQDIEK.H	K.LQNNLAEDM*ESLVRER.D	K.EVAKALLKEIAVK.R;	R.AVVVNGQHIFTFDGR.H; R.LEFHATNDNK.N	K.IMVTGVM*ADRK.P	K.INDAADQIR.K	TARREST OFFICE CREEK OF A	K.AGTAPDAEETŲFWDK.L; K.YGNPTPDDSLGVK.W; R.GGLEINFTVVNEK.K; R.SLGFYSEDDKELYEFFK.N; R.VNEGLLEGER.V	R.NESLAEEPVVISR.L	MMESLCQQRLAVLSFDQVK.R	R.EARFLGLKMFIENLM*TAPSR.V		K.KGGTSGEVNANRQVCVR.M	K.VAIEKFMAPGGDGAKLOK.L	,	K.AKFEAWSK.Q	R.RAFELGRIVGCGHTNVSAELK.D	K.DKDVLEFLQNVK.A	K.DIKM*M*GIMHR.M	R.ELYLPTRIEKIVINPAR.H	K.EYNGDDLVVTITSSNWDGVAR.R	K.LPGTIYTAAEEIEALGGK.A	R.AAAATTTQRYTKVAR.V		K.FTYDAEVTAPEEFTVLMSALR.G; K.VWSEKEEIER.S	R.WDDASSISNSNFNPANPTR.F	R.TINALDYEGKKLR.T
cover percent (%)	4.26	7.53	53.19		5.48	2.26	92.0	1.33	1.57	0	12.66	2.19	4.81	2.40		0.42	2.93		00.09	3.86	2.10	3.91	0.70	15.91	4.43	2.58		5.12	5.62	0.70
no. of unique peptides	1 -		6		1	П	2	1	_	ı	Ω	1		П		П	П		7	П	1	П	1	1	1	1		2	1	П
no. of peptides	1	2	41		П	1	4	1	1	ı	~	1	_ ,	П		П	_		45	1	1	1	4	1	9	1		2	1	
species	A. aegypti M. brassicae	B. mori	D. melanogaster		A. mellifera	T. castaneum	M. sexta	A. aegypti	A. gambiae	:	S. Uttura	A. aegypti	A. mellifera	D. melanogaster		D. melanogaster	A. aegypti	3	H. armigera	D. melanogaster	D. melanogaster	D. melanogaster	A. aegypti	M. sexta	B. mori	D. melanogaster		B. mori	A. aegypti	A. aegypti
Iq	5.96	9.04	7.03		4.83	5.79	8.66	6.13	8.11	i I	5.69	5.79	6.76	5.39		6.14	8.76		8.86	6.33	60.9	6.16	6.21	5.10	8.51	9.16		5.34	5.12	5.21
MM	63689.21	20727.37	20649.27		33262.91	66866.71	366946.45	90190.19	64764.97		60622.21	67912.26	45057.75	96196.43		456825.96	68537.51		9823.28	61054.31	65435.93	28998.5	265056.27	14211.75	44073.93	67446.89		69314.08	36443.94	205372.14
protein description	Alpha-esterase Antennal esterase	Apolipophorin-3	Apolipophorin-3	precursor	Apolipophorin-3 precursor	Apolipophorin-3	Apolipophorins precursor	Calcium-independent phospholipase	Calcium-independent	phospholipase	Carboxylesterase	Carboxylesterase	Carboxylesterase	Carboxylase:pyruvate/	acetyl-coa/ propionyl-CoA	Carbamoylphosphate synthetase	Carnitine	O-acetyltransferase	Diazepam-binding inhibitor	Esterase P precursor	Esterase-7	Fat body protein 2	Fatty acid synthase	Fatty acid-binding protein 2	Hydroxysteroid	uenydrogenase Inositol-pentakisphosphate	2-kinase	Leukotriene A4 hydrolase	Lipase	Low-density lipoprotein receptor
GAN of homologues	EAT43442 AAR26516	AAQ17038	077248		XP_624415	XP_967513	Q25490	EAT34967	CAD29634		ABE01157	EAT48423	XP_395028	$NP_{-}648696$		NP_609857	EAT36562		AAR37334	P18167	$NP_{-}524261$	P54398	EAT47728	P31417	ABF51385	Q9W2Q7		ABF51345	EAT41283	EAT40623
no.	1 2	၊က	4		C)	9	7	∞	6	,	10	11	12	13		14	15		16	17	18	19	20	21	22	23		24	25	26

K.ILEEAMANDTDNLIEK.V; K.KYGTTELHLAK.I; K.KYGTTELHLAK.I; R.NGPDGAEGYWVINAK.E; K.EAVLAALADAR.I; K.FIDAGDNTYGGR.V; R.EYTVEEVLNSR.R; R.LYQNTGVSPK.Q; K.GHPLGATGLAQCAELVWQLR.G; sednences K.TGKFSLFDYGSSENM*VK.Y K.ILEEAM*ANDTDNLIEK.V; K.TGVGLIGDKVLVAIK.G R.WVNPSGGLIAK.G K.ELIDFTSLYSYK.Q R.DASVDPFSR.T cover percent (%) 4.00 9.74 19.25 7.09 4.10 no. of unique peptides 3 no. of peptides 2 18 5 D. melanogaster P. argentipes T. castaneum species S. littoralis mori mori В. В. 10.18 6.19 8.21 8.27 8.86 6.54 I^{d} 34364.48 17109.25 57879.03 46629.78 67063.08 57450.85 MW dioxygenase peroxisomal 2/3-oxoacyl-CoA thiolase Sphingomyelin synthase Sterol carrier protein x protein description Sterol carrier protein Salivary lipase-like Salivary lipase-like Phytanoyl-CoA protein SP14 precursor protein GAN of homologues XP_967659 ABD36151 ABA53824 ABA12145 AAT72922 09SA6Ò no. 29 27 28 32 30

Table 5. Continued

R.WVNPSGGLIAK.G

or sterols from diet to fulfill the requirements for their normal growth, development and reproduction. ^{29,30} In the lepidopteran insects B. mori and S. littoralis, a single SCPx gene encodes a fusion protein containing 3-oxoacyl-CoA thiolase (SCPx-t) and SCPx-2 domains, which are post-translationally cleaved into two separate proteins. 31,32 A S. litura SCPx gene was cloned and characterized.³³ High levels of S. litura SCPx expression in the midgut of sixth instar feeding larvae were detected and overexpression of this gene increased cholesterol absorption in the cells in vitro cultured.

A low-density lipoprotein (LDL) receptor was found in the feeding midgut. LDL receptor binds LDL, the major cholesterolcarrying lipoprotein of plasma, and transports it into cells by endocytosis, an important mechanism for cholesterol uptake in mammals.34 But in insects, it seems this receptor has a different mechanism from the mammal system for cholesterol shuttle.35 Another protein that was highly expressed in the feeding midgut and involved in steroidogenesis is hydroxysteroid dehydrogenase, or 3-beta-hydroxy-delta (5)-steroid dehydrogenase (EC1.1.1.145). This protein is a bifunctional enzyme that catalyzes the oxidative conversion of delta (5)ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-steroid dehydrogenase enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. It would be interesting to know the physiological roles of this enzyme in the midgut of the feeding larvae.

The discovery of LDL receptor, hydroxysteroid dehydrogenase and SCPx in the midgut indicates that active absorption and conversion of steroids take place during the feeding stage. Other enzymes and proteins involved in lipid and fatty acid absorption, transport and metabolism included esterases, lipases, transferases, fatty acid synthase, which catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH, and fatty acid-binding proteins (Table 5), but transcripts of these enzymes were relatively low abundant.

3.4.3. Protein and Amino Acid Metabolism. Numerous proteins that are involved in transport and metabolism of proteins and amino acids were found in the feeding midgut (Table 6). Among these identified proteins, as expected, proteasome-related proteins were relatively abundant. Many uniquitin and uniquitin-related proteins are found, including ubiquitin, ubiquitin-like protein, E3 ubiquitin ligase, ubiquitinconjugating enzyme and ubiquitin specific proteases. Proteasomes are large protein complexes and their main function is to degrade proteins by proteolysis into small polypeptides. Proteins to be degraded are tagged by ubiquitin through ubiquitin ligases. This ubiquitin-proteasome system is essential for many cellular processes, including the cell cycle, the regulation of gene expression, and responses to oxidative stress.³⁶ The presence of numerous enzymes of this system indicates that active protein degradation was in processing in the epithelial cells of the midgut during the feeding stage.

Another group of abundant enzymes for degradation of proteins include aminopeptidase N (EC 3.4.11.2), prolyl endopeptidase (EC 3.4.21.26), tripeptidyl peptidase II (EC 3.4.14.10), chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), cysteine proteinase (EC 3.4.22.1) and other serine proteases. Unlike the ubiquitin-proteasome system, this group of protein-degradation enzymes usually are involved in degradation of secreted, intercellular or exogenous proteins, such as hemolymphic, pathogenic and food proteins. These proteases usually digest the peptides internally or from terminal ends of the protein peptides in the processes of protein activation and/or degrada-

Table 6. Proteins Involved in Amino Acid and Protein Transport and Metabolism of in the Midgut of Sixth Instar Feeding Larvae of S. lituraby Shotgun ESI-MS Analysis

anie	riotellis IIIVC	lable 6. Flotellis illyolyed ill Allillo Acid alid Flotelli illalispore	- 1	ומ ואופומר		ar or sixtil r	ווארמו בפניוו	ולו רמו עמנו ח	alid Metabolishi of ili tile Midgut of Sixti Ilista Feeding Lafvae of S. Maraby Shotgul ESITING Alialysis
no.	GAN of homologues	protein description	MW	$I_{\mathbf{q}}$	species	no. of peptides	no. or unique peptides	cover percent (%)	sedundes
-	AAP76306	Amino acid transporter	62321.25	4.96	A. aegypti	1	1	2.31	R.VDLQLSNPLAKDK.L
2	AAK69605	Aminopeptidase N	108505.87	5.53	S. litura	6	9	10.29	K.AIAEDHTFLSDFPNINFGNVFDSWVQNR.G; K.TLGFEVLDFLR.S; K.VNLENIDLEGAR.F; .AQIVNDVLHFIR.S; .EAYLLYDPANTNLVNK.I; R.SETDYYWWGAI.TOLDWIR.R
က	CAB55605	Arylphorin subunit	84112.88	6.70	S. litura	21	10	17.05	K.DLHQYSYEIIAR.H; K.DYDIEANIQNYSNK.Q; K.FYELDWFVQK.L; K.QAVEEFLLIYR.T; K.SDVASDAVFK.I; K.TFFQFLQK.A; K.VPYDM*SVQPDNM*PR.R; K.YTFM*PSALDFYQTSLR.D; R.DEAALFHYI.XYAK.D; R.SNDYNI.HNFK.N
4	ABC69171	Asparagine synthetase	62857.93	6.98	B. mori	_	1	2.18	R.LLSDIYLYDGLR.A
2	EAT40065	Aspartate ammonia lyase	46719.75	7.11	A. aegypti	1	1	4.14	K.PAIQILHDALKAKSNEFK.D
9	EAT44761	Calcium-dependent	48778.2	6.07	A. aegypti	1	1	4.07	R.GRVM*LDTPEWKHVSSTGK.D
7	EAT41045	protein kinase cAMP-dependent protein	40667.72	8.78	A. aegypti	1	1	4.53	K.VRFPSHFGSELKDLLR.N
c		kinase catalytic subunit		I C		,	,	C L	The state of the s
_∞	AAF35867	Cathepsin b-like cysteine proteinase	37580.2	5.95	H. armıgera	4	-	5.33	K.NGPVEGAF1VYSDLLNYK.1
6	P32023	cGMP-dependent protein kinase	105907.04	8.42	D. melanogaster	1	1	0.86	R.ЕРРРЕРРК.R
10	AAO75039	Chymotrypsin precursor	30734.69	7.62	S. frugiperda	8	4	19.19	K.NINVEDAIDLEDITAYGYLAK.I; R.FTVVLGSIR.L; R.GCOVGSDAAFAR V: R.STCOGDSGGDI VVTR S
11	CAA72958	Chymotrypsin-like	29254.83	8.63	H. armigera	1	1	3.99	R.VTSYISWINQR.L
12	EAT33817	protease D-alanyl-D-alanine	53256.98	6.13	A. aegypti	П	1	2.73	R.RLVDDLTATIDEK.R
13	ABD36207	carboxypepudase DNA-damage inducible	43501.65	5.20	B. mori	1	1	3.34	R.M*M*NSDPFDTEAQR.M
14	Q9VVI3	protein E3 ubiquitin-protein	114875.1	6.13	D. melanogaster	1	1	1.19	R.IISSVTKTDLLK.T
15	EAT39376	ngase Ecotropic viral	60572.45	2.67	A. aegypti	1	1	2.47	K.YAM*HGLFIEGFPK.L
16	EAT37261	integration site Glutaminyl-peptide	39944.59	6.01	A. aegypti	1	П	4.62	K.LNFANIIGTLNPNAER.F
17	EAT40581	cyclotransferase Hect E3 ubiquitin ligase	311338.74	5.34	A. aegypti	Н	П	0.49	K.VVSVCDDM*GKAAAK.E
18	EAT43483	Heterogeneous nuclear	30833.82	8.44	A. aegypti	1	1	5.23	R.NHFGQYGEIESVNVK.T
Ç	TA T 420070	ribonucleoprotein	00001	0		-	-	, C	
20	ARF51218	filstolle deacetylase Karvonherin alnha 3	56500 85	3.03 4.85	A. uegypu B. mori	1 6		3.23	K.DGNRFEDGQIVER.S K.DTOVINIXII DGI SNMI K.M
21	EAT47540	Mannose-1-phosphate	40055.78	6.22	A. aegypti	1 -		3.06	R.ALILVGGYGTR.L
		guanyltransferase							

_	
7	
(
	_
4	Ξ
3	Ξ
Ċ	200
¢	0
_	ψ
3	0

sacuenbas	K.AANDPVLM*NYYGIK.V; K.AANDPVLMNYGIK.V; K.DNM*VNFDIK.M; K.LLNHILQPTIYDDVR.E; R.GEVFVHTNELHIIQAVK.V; R.LGGFPLQM*VIISPVK.T; R.M*VLGGM*GLVSDDAK.F; R.WSVCFDTM*PLGFPFDR.K	K.ATFDITLVR.D; R.LGFIEGTNGNFMDDLLR.M; R VI DFNI SNFK V	K.AAVPDFAAGAM*ENWGLVIYR.E; R.VOGTGTTVII NAFAR R	K.AQIVNDVFSFAR.A; K.FINENLYTEK.I	K.AIASYLNSNNR.E; K.TLGFEVLDFLR.S; R.AQIVNDVLHFIR.S; R.SETDYVXVNCAI TOI DWIR R	K.AIASYLNSNNR.E	K.NILFVINSPDVYK.N	K AVAI DDNEI DAYINI GNVI K F		K.HTGPGVMSMANAGPNTNGSQFFITTVK.T	K.FIAALQHAAR.D	K.YLPDCIRKSGIFAVVR.V K.SILYDEHSVNK.V	K.MRIVVFVGSPVNTDEK.E	1 GOS ISOVETTANIA 8.5 X IST I ONTI X	R.WGWYHTGPK.L	K.AVENSGTVIGLR.G; R.GKDGVVFAVEK.L	K.ATCIGNNSAAAVSSI.K.Q; K.ENETTI.AEAOALAIK.V	K.TFSAM*LSNLLYER.R; K.TFSAMLSNLLYER.R; R.DAISGWGAVVYIIEK.D; P.ECIOAOTVSTNLEDEVV	K.NYTADEVATENGAVK.L	R.LHQVEYAM*EAVK.L; R.LHQVEYAMEAVK.L; P. NOVDSDVTYAMSBOCR I	KAINQGGLTSVALR.G
cover percent (%)	13.45	3.53	3.75	2.19	5.57	5.57	6.16	2 02		16.36	18.52	10.26	4.42	0 70	9::0	9.05	12.06	20.49	6.05	10.67	5.28
no. of unique peptides		33	2	2	4	4	1	-	4	1	1		1	c	0	2	2	က	-	2	П
no. of peptides	6	വ	က	4	rC	7	2	c	1	4	1	1 2	1	Ľ	ז	4	8	9	2	4	က
species	S. litura	S. exigua	S. exigua	S. exigua	S. exigua	S. litura	B. mori	A apmyri	and Commercial	G. atropunctata	S. frugiperda	D. melanogaster B. mori	B. mori	B more	D. 11011	B. mori	P. xylostella	B. mori	B. mori	A. aegypti	B. mori
Iq	9.12	5.11	4.89	5.38	5.65	8.96	4.65	7.7	5	8.99	5.66	10.25 5.88	4.76	7 02	3.35	5.27	5.87	5.03	8.29	7.61	6.44
MW	88965.34	114922.27	108106.6	114146.63	108491.28	90345.37	22673.24	32004 34		17954.25	6002.65	18101.83 25824.45	39297.00	37707 59	00:404.0	28258.04	28550.43	23060.58	27871.9	28322.08	27143
protein description	Methionine-rich storage protein	Midgut class 1	Midgut class 2	Midgut class 3	Midgut class 4 aminopeptidase N	Moderately methionine	Nascent polypeptide	associated complex protein alpha subunit O-linked	N-acetylglucosamine transferase	Peptidyl-prolyl cis-trans isomerase	Prolyl endopeptidase	Prolyl endopeptidase Proteasome 25 kda	subunit Proteasome 26s	non-ATPase subunit 4	non-ATPase subunit 7	Proteasome alpha 3 subunit	Proteasome alpha 4 subunit	Proteasome beta 3 subunit	Proteasome beta-subunit	Proteasome subunit	arpria type Proteasome subunit alpha type 6-A
GAN of homologues	CAB55604	AAP44964	AAP44965	AAP44966	AAP44967	CAB55603	ABF51260	FAT35463		ABD98771	AAN38751	DAA04179 ABF51224	ABD36244	ARE51478	0.1410.100	ABF51297	BAD52258	ABF51431	ABD36245	EAT34701	ABF51430
no.	22	23	24	25	26	27	28	29	ì	30	31	32 33	34	c L	S	36	37	38	39	40	41

р
Φ
\Box
:=
Ċ
ō
Õ
O
_
9
9
_
9
9

	sednences	R.FFPYYVSNVLAGLDADGK.G	K.AIGSGSEGAQQSLK.E; R.GVNTFSPEGR.L; R i fovfyatfaik 1 · r pegvavmfagidek g	R.M*DATANELEHTK.J; K.VLVEFYAPWCGHCK.Q; R.II.EFFGMK.K	K.QHLLSEDLPADWAAK.P; K.TGPPAVEVTSAEQAK.B; K.VIVJEVADWICGHOR O: B II EFFCMK K	K.VLVLTTA WOGILOK,Ç, K.LLLTTGÜKK. K.SQFDVSGFPTTYWK.P	K.DETRPTPEDAAQR.F P DCEVJI MEAIVICANI DSCD D	N.DGFN LMEALASIALE SGR.D K.RNTTVASNLAASGAVVDDTK.D	R.KEMWEKMMSLEQK.S	K.IGGKMPIK.W	R.WIKYNACGRVIEGTR.J	K.DSCQGDSGGPLVAER.P	R.TAEMTDLQAKVIEM*PFK.N	K.KNKLIPVSTMYK.I	K.MRIVVFVGSPVNTDEK.E	K.KVDSSPEALCPERHR.S	R.ELQLQKRDR.G	R.IYLPLTAELADDFAAASR.D	K.FKIETEIDLMEILPK.I	K.IIILGDSGVGK.T; K.NSTNVEQAFMTMAAEIK.A	R.FYTDDSPGVK.V	R.LGSM*ETGTALVR.A	R.LADSGSSYYVGMK.C	R.TLDNDIAILR.S	R.IVGGSVTTIDR.Y	R.KNSSSSGTVSNKGGSK.S	K.ESTLHLVLR.L; K.IQDKEGIPPDQQR.L; K.TITLEVEPSDTIENVKA; R.TLSDYNIQK.E	K.NFMTSNAELFENNSDDEK.E	K.STSNGGGGSSGATTLPK.A	R.WEVLIIGPPDTLYEGGFFK.A
	cover percent (%)	7.79	20.58	6.88	10.53	90.9	1.73		1.78		7.08			2.78	4.42	1.15	2.74	4.56	3.80	13.86	10.31	1.43	5.22				15.41	0.71	1.64	11.38
	no. of unique peptides	1	4	8	4	1			1	1	1	П		1	1	1	1	П	П	2	П	1	1	1	1	П.	4	1	1	1
	no. of peptides	5	6	9	9	1		1 -	П	1	П	2	1	1	1	П	1	П	1	33	П	1	1	4	2		22	1	1	2
	species	A. aegypti	B. mori	A. aegypti	B. mori	A. pernyi	A. aegypti T. coctanoum	1. castaneum D. melanogaster	A. aegypti	D. melanogaster	B. mori	A. aegypti	G. morsitans morsitans	T. castaneum	B. mor	D. melanogaster	D. melanogaster	P. xylostella	L. obliqua	B. mori	B. mori	A. aegypti	A. aegypti	C. fumiferana	H. armigera	A. aegypti	A. aegypti	A. aegypti	A. aegypti	A. aegypti
	Iq	6.31	4.98	4.95	4.60	5.68	6.31	5.58	9.30	9.43	9.68	5.55	4.49	5.64	4.76	8.87	8.94	5.11	5.22	5.44	11.8	6.23	8.54	8.76	9.35	6.29	6.94	6.85	7.24	5.27
	MW	25623.3	26874.64	55953.62	55588.87	26205.49	85062.8	114440.44	84531.36	5775.77	24582.63	28104.97	48740.79	47626.35	39297.00	144770.04	38252.86	43786.28	43764.36	22364.31	10121.47	91002.31	27919.14	27332.8	26948.07	145472.11	34319.34	288338.99	113312.4	19189.92
	protein description	Proteasome subunit beta	type Proteasome zeta subunit	Protein disulfide isomerase	Protein disulfide isomerase	Protein disulfide	Protein kinase C	Protein kinase c Protein kinase shaggy	Protein regulator of cytokinesis 1	Protein tyrosine kinase	Protein tyrosine phosphatase	Serine protease	Serine protease inhibitor	Serine protease inhibitor 3	Serine protease inhibitor 5	Serine-enriched protein	Serine/threonine-protein kinase Ial	Serpin 1	Serpin 2	Small GTP-binding	Transport protein Sec61	beta subunit Tripeptidyl peptidase II	Trypsin	Trypsin CFT-1 precursor	Trypsin-like protease	Tyrosine-protein kinase	Ubiquitin	Ubiquitin ligase E3 alpha	Ubiquitin specific	Ubiquitin-conjugating enzyme
5	GAN of homologues	EAT39423	ABD36156	EAT48286	AAG45936	BAA36352	EAT48086	AF_300007 P18431	EAT39320	CAA05747	BAD02367	EAT40776	ABC25080	XP_971070	ABD36244	061366	AAD34349	BAD52261	AAV91429	AAB67169	ABF85698	EAT41156	EAT42004	P35042	CAA72962	EAT36899	EAT48092	EAT38992	EAT36643	EAT37186
	no.	42	43	44	45	46	47	40	20	51	52	53	54	22	26	22	28	59	09	61	62	63	64	65	99	29	89	69	20	71

no.	GAN of homologues	protein description	MW	$I_{\mathbf{q}}$	species	no. of peptides	no. of unique peptides	cover percent (%)	seduenbes
72	ABD36355	Ubiquitin-like protein	10308.64	5.29	B. mori	1	1	13.19	K.VLGQDNAIVQFK.I
73	EAT42894	Utp-glucose-1-phosphate	57970.61	69.9	A. aegypti	4	2	5.26	R.LLEIAQVPK.E; R.NDLTFLDLTVQQIEHLNK.T
74	EAT38904	Zinc metalloprotease	98225.75	5.46	A. aegypti	1	1	1.29	K.HVKFNPTEKAK.V

Fable 6. Continued

tion. Aminopeptidases N from several insect species have been shown to be putative receptors for *Bacillus thuringiensis* (Bt) toxins in the midgut epithelial cells of susceptible insects.^{37–39} Homologues of all four midgut class of aminopeptidase N that were found in Bt Cry1Ca-resistant *S. exigua*⁴⁰ were present in the midgut of *S. litura* at relatively high levels as compared to other proteases. Interestingly, not many carboxypeptidases, which hydrolyze single amino acids from the *C*-terminus of the protein peptide chains, were identified in the midgut of *S. litura* feeding larvae.

Serine proteases are one of the most important groups of digestive enzymes in the larval gut and account for about 95% of digestive activity. 40-42 Insects produce and release serine proteases into the lumen of the gut to digest food proteins for being absorbed by the insects.⁴³ In addition to protein digestion, serine proteases may be involved in other physiological processes in the gut. For example, a *M. sexta* chymotrypsin is involved in activation of chitin synthase, which is necessary for peritrophic matrix formation.⁴⁴ In this study, both trypsin and chymotrypsin were identified at similar abundance in the feeding midgut (Table 6). Interestingly, several serine protease inhibitors including serpin 1 and serpin 2 were also found in the same sample, suggesting that serine proteases and serpins can simultaneously exist in an organ at the same stage, although it is not clear whether or not the identified serpins act at these serine proteases.

Another major group of the identified proteins includes protein kinases, such as calcium-dependent protein kinase (EC2.7.11.1), cAMP-dependent protein kinase (EC2.7.11.11), cGMP-dependent protein kinase (EC2.7.11.12), Serine/threonine-protein kinase Ial (EC2.7.11.1), protein kinase C, protein kinase shaggy (EC2.7.11.1) and protein tyrosine kinase (EC2.7.10.2). Protein kinases are a superfamily of enzymes that catalyze phosphorylation of proteins involved in different signal transduction pathways. Phosphorylation usually results in a functional change of the target proteins by changing enzyme activity, cellular location, or association with other proteins. Ca²⁺-dependent and cAMP-dependent protein kinases and protein kinase C were found in this study, indicating that active phosphorylation of proteins is necessary for functions of the midgut proteins.

High level (21 peptides) of arylphorin protein was found in the feeding midgut (Table 6). Arylphorin is a larval storage protein and used primarily as a source of aromatic amino acids for protein synthesis. It is also involved in the sclerotizing system of the cuticle and serves as a carrier for ecdysteroid hormone and usually secreted into the hemolymph and binds with its substrates such as ecdysteroid hormones. 46

3.4.4. Nucleotide Metabolism. Abundance of proteins related to nucleotide transport and metabolism was relatively lower as compared to the proteins for other metabolisms (Table 7). A high level of ADP/ATP translocase protein was found. This enzyme catalyzes the exchange of ADP and ATP across the mitochondrial inner membrane. ⁴⁷ The presence of this enzyme at a high level in the feeding midgut indicated that active exchange of ADP and ATP between the mitochondria and cytoplasm and energy supply were required for the feeding midgut.

Several homologues of DEAD box DNA/RNA helicases were found in the protein profile, including DNA repair helicase rad3/xp-d, ATP-dependent RNA helicase (EC 3.6.1.), Dead-box protein 3 and DEAD/DEAH RNA helicase 1 (Table 7). DNA/RNA helicases unwind double-stranded DNA/RNA in a 3′ to 5′

Table 7. Proteins Involved in Nucleotide Metabolism of in the Midgut of Sixth Instar Feeding Larvae of S. lituraby Shotgun ESI-MS Analysis

	sacuenbas	MGDEGGGGGGGKGDLK.S; R.YFPTQALNFAFK.D	K.FCVCHLSTGDM*LR.A; K.KPM*TDDVTGEPLIR.R; K.NGFLLDGFPR.T	R.FGAENETEGPPILATPR.Y	K.GIVDAFVR.I; K.LLLQVQHVSK.Q; K.SDGIIGLYR.G; R.ASYFGFYDTAR.G; R.GNFANVIR.Y; R.GTGGAFVLVLYDEIK.K; R.GTGGAFVLVLYDEIKK.V; R.LAADVGKGDGQR.E; R.YFPTQALNFAFK.D; R.YKGIVDAFVR.I	K.IVDLTNEISQAQISYWK.K R.DPEWVCFOEAYETVEGGNAK.M		R.IELGFKDLKNK.Q	R.FFVLDEADGLLK.Q	K.TLAYILPAIVHIINOPR.L	R.NNFVTPTKIQAAAIPMALAK.M	K.NIHVNWLRFTLGKTQK.H	K.KDVLSEELLYPK.F	R.VSEGVDFDHHLGR.A	K.MWTGKQIFSLILK.P; K.QSEILLISDVIAK.H; R.TTRGQLEAFLTQVRNK.Y	R.NASINNTDLEEELTPLQK.S;	K.IKLDTLDEELYESDK.N	K.LPFAAAOIGNSFR.N	K.TASPIKSPKAR.S	K.GISIILFLNKTDLLEQK.V	
101	cover percent (%)	9.12	15.42	1.01	20:00	1.76		0.65	1.65	15.04	1.95	5.03	3.03	1.71	3.24	3.78	9.62	1.70	2.07	3.72	
2010 (25	no. of unique peptides	2	က	1.5	77			-	П	П	П	1	П	1	က	1	П	-	П	1	
	no. of peptides	4	4	1 20	70			1	1	н	1	1	1	2	3	1	1	Н	1	1	
5	species	D. melanogaster	D. melanogaster	D. melanogaster	D. 1801.	B. mori A. aegvpti	8	A. aegypti	A. aegypti	B. mori	D. melanogaster	B. mori	D. melanogaster	A. aegypti	A. aegypti	D. melanogaster	C. quinquefasciatus	A. aegvpti	A. aegypti	D. melanogaster	
32.0.0	$I_{\mathbf{q}}$	9.60	69.2	6.29	000	5.68		8.72	6.47	6.92	02.9	8.49	5.76	7.20	5.24	5.30	6.95	6.98	9.56	8.78	
	MW	33744.24	26542.54	186869.89	52031.13	108177.97		190226.62	81149.95	12445.39	116508.25	37136.99	46906.4	86903.57	17855.51	53143.16	18225.79	85754.76	60981.58	52753.21	
	protein description	Adenine nucleotide translocase	Adenylate kinase-2	Adenylyl cyclase	ADFIAIF HAIBIOGASE	Alanyl-tRNA synthetase ATP-dependent RNA	helicase	Bifunctional aminoacyl-tRNA synthetase	DEAD box ATP-dependent RNA	Dead box protein 3	DEAD/DEAH RNA helicase 1	DNA polymerase accessory subunit	DNA polymerase interacting tpr containing protein	DNA repair helicase	raus/xp-u DNA-directed RNA polymerase II largest subunit	Equilibrative nucleoside	transporter 1 FK506-binding nuclear	protein Glycyl-tRNA synthetase	Guanine nucleotide exchange factor	Guanine Guanine nucleotide-binding	protein subuint aipiia homologue
	GAN of homologues	NP_788898	NP_523836	NP_001014745	74035017	P21894 EAT41170		EAT42685	EAT46335	BAA20268	NP_524019	ABD36142	NP_525106	EAT48594	EAT3738	$NP_{-}608519$	AAR18459	EAT42765	EAT43236	P25157	
2																				_	

 18 19

no.

Table 7. Continued

							no. of	cover		1
_	GAN of homologues	protein description	MW	$I^{\mathbf{d}}$	species	no. of peptides	unique peptides	percent (%)	saouanbas	
	NP_788565	Isoleucyl-tRNA	141099.33	7.3	D. melanogaster	1	1	1.46	R.NDIERSVALM*QSVVELGR.V	
_	Q07152	Inosine-5-monophosphate	57829.23	7.1	D. melanogaster	1	1	2.98	K.YRGM*GSLEAMERGDAK.G	
_	003427	denydrogenase Lamin-C	69859.85	6.45	D. melanogaster	_	_	2.09	R.OIEISEIDGRISR.O	
	EAT42009	Leucyl-tRNA synthetase	134875.19	6.72	A. aegypti	- 1	- 1	0.93	K.FKVQSQNDRDK.L	
	BAB86288	Mariner transposase	39876.79	9.34	A. cerana	1	1	3.27	R.KGVVFHHDNAK.A	
	EAT44749	Methionine-tRNA	63352.61	7.00	A. aegypti	1	1	3.07	R.PLADTDAVLFRRIIPPK.V	
		synthetase								
	EAT42010	Mitosis protein dim1	16782.31	5.53	A. aegypti	1	1	10.56	R.NKHIMIDLGTGNNNK.I	
	EAT36079	Nonsense-mediated	125193.26	6.70	A. aegypti	1	1	0.98	R.NVFVLGFIPAK.A	
		mRNA decay protein 1								
	EAT46256	Nuclear matrix protein	77939.92	2.00	A. aegypti	1	1	1.46	K.LIEESPPNGK.K	
	EAT43446	Nuclear RNA export	27318.54	10.79	A. aegypti	3	2	8.43	R.QGGGGSSGAPR.G; R.SLGTADVVFER.R	
		factor 1								
	EAT34275	Nucleolar protein 10	77826.29	69.9	A. aegvvti	П	_	1.62	K.FERCFDSEVVK.F	
	ABF51275	Phosphoribosylaminoimidazole 47344.42	ole 47344.42	8.08	B. mori	1	1	3.53	R.NLTTVTAADLDTVKR.N	
		carboxylase								
	EAT37710	Polyadenylate-binding	69723.44	9.48	A. aegypti	2	1	2.71	R.SLGYAYVNFQQPADAER.A	
		protein								
	EAT40603	Prokaryotic DNA	113359.86	9.05	A. aegypti	1	1	1.18	R.GGGGGAISTGSR.T	
		topoisomerase								
	EAT39227	Regulator of telomere elongation helicase 1	113780.29	8.39	A. aegypti	-	_	1.68	R.KKLGGDGGSGM*EELLDK.L	
	EAT34982	Replication factor a 1,	67743.26	7.09	A. aegypti	1	1	1.78	R.VLIILDLHVVK.P	
	EAT40967	Doting managed and be	1150016	60.0	A gommeti	-	-	1 26	D CCI ODIVI IMPETIT I	
_	5A140967	Retinal guanylate cyclase	0.100011	8.23	A. aegypti	۰,	- ,	1.26	K.GSLQDVLIMDEIK.L	
4	AAZ15235	Reverse transcriptase	41430.51	9.46	A. aegypti	-	-	5.03	K.LRNFGIDLVFSSRDNQLR.1	
4	ABD72698	Reverse transcriptase	21226.52	6.17	A.pisum	_	_	9.42	K.NVFDEALLAALEPPEPVK.K	
$\overline{}$	Q9V727	Reverse transcriptase	179841.76	5.89	D. melanogaster	1	1	1.08	K.LSASIKSEPKPPATSQQK.P	
_	P56721	Reverse transcriptase	62494.54	89.8	 D. melanogaster 	1	1	1.74	K.LYPSAVSGPR.S	
_	EAT34801	Rho guanine dissociation factor	23089.3	5.08	A. aegypti	-1	1	4.50	K.IRIDFIVQR.E	
	EAT44565	RNA binding motif	97225.42	8.90	A. aegypti	1	1	1.86	K.LFFRNLAYSVKEDDLK.Q	
		protein								
	EAT43532	Seryl-tRNA synthetase	55968.86	5.99	A. aegypti	1	1	3.00	R.VVNIVSGALNHAASK.K	
	EAT47530	Small nuclear	10737.38	6.05	A. aegypti	П	1	20.00	K.NDLSICGTLHSVDQYLNIK.L	
_	Q9VEU5	Soluble guanylate cyclase	75882.25	5.57	D. melanogaster	1	1	1.79	K.TFIGSHILERFK.C	
		0,700		0	:	(,	0		
7	AAC28260 ABC16633	Transposase	17870.68 10097443	10.26	D.nikananu A gamhiae	- 5		13.25	K.SWVNPGQPSTSTAKPDRFGK.K R.Scaaafcknnaenvkk r	
, ,	RAA2353	Transposase	39206 58	030	R mori	٠.	٠.	1:02	R FRSCHEDI ONOPROR P	
	EAT36273	Tyrosyl-DNA	59864.54	9.32	A. aegypti			2.61	K.PEAQPSTSGSQAPK.Q	
		phosphodiesterase								

research articles Liu et al.

Table 7.	Table 7. Continued								
							no. of	cover	
	GAN of					no. of	unique	percent	
no.	homologues	protein description	MW	$I^{\mathbf{d}}$	species	peptides	peptides	(%)	sednences
20	EAT37451	Tyrosyl-tRNA synthetase	51511.58	9.15	A. aegypti	1	1	2.81	R.IIGAGGFTINLNK.A
51	EAT40421	Zinc finger protein	56998.64	8.35	A. aegypti	1	П	3.02	K.CDKCYEVYFDEAKLK.E
52	XP_966821	Zinc finger protein	40843.63	5.26	T. castaneum	1	1	5.18	K.CSLKIEPRLAFGGVGLPPK.I

direction and influence the interactions between the proteins and their target DNA or RNA molecules. Therefore, DNA/RNA helicases usually function as a transcriptional activator and are involved in mRNA splicing. Several proteins that are involved in RNA modification post transcription were found, such as nonsense-mediated decay protein, which is involved in decay of mRNAs containing premature stop codons, 48 Ser/Arg repetitive matrix protein 2, poly(A)-binding protein 1, RNA binding motif protein (mRNA 3'-end-processing protein RNA15), mitosis protein DIM1 and small nuclear ribonucleoprotein, which is required for splicing of pre-mRNA.⁴⁹ At least three proteins involved in RNA transport between nucleus and cytosol were identified, such as equilibrative nucleoside transporter 1, importin subunit alpha-3 and nuclear RNA export factor 1.

Numerous amino acid-tRNA synthetases (or amino acidtRNA ligases) were identified, including alanyl-tRNA synthetase (EC6.1.1.7), glycyl-tRNA synthetase (EC6.1.1.14), isoleucyl-tRNA synthetase (EC6.1.1.5), leucyl-tRNA synthetase (EC6.1.1.4), methionine-tRNA synthetase (EC6.1.1.10), seryl-tRNA synthetase ((EC6.1.1.11), tyrosyl-tRNA synthetase (EC6.1.1.1) and bifunctional aminoacyl-tRNA synthetase. Abundance of helicases and proteins for RNA modification, RNA transport and amino acidtRNA synthesis indicated that active RNA and protein synthesis were taking place in the epithelial cells of the feeding midgut.

3.4.5. Protein Translation. A large number of proteins that are associated to protein translation initiation and elongation processes were found in the midgut (Table 8). Different eukaryotic initiation factor (eIF) proteins were found, including eIF-1, eIF-2, eIF-3, eIF-4 and eIF-6. These factors are required for the formation of initiation complexes with 5' mRNA, the binding mRNA-eIF to Met-tRNA, and the scanning mRNA for the initiator codon AUG. Several different eukaryotic elongation factors (eEFs) were detected in high abundance. Totally, 619 peptides of eEFs were identified and these include α , β and γ subunits of eEF-1 and eEF-2. The α and β subunits and the γ subunit of eEF-1 act as the prokaryotic counterparts EF-Tu and EF-Ts, respectively. eEF-2 is homologous to the prokaryotic EF-G. High levels of eIFs and eEFs presenting in the feeding midgut indicate again that very active protein synthesis was occurring during the feeding stage.

3.4.6. Transporters. Midgut maintains balance of ions and water between the midgut epithelium and the lumen by transmembrane transporters. Many transporters and membranebound receptor proteins were detected in the midgut but at a relatively low abundance, such as ATP-binding cassette transporter (ABC transporter), adaptin and voltage-dependent ion channels (Table 9). ABC transporters are members of a transmembrane protein superfamily⁵⁰ and they utilize energy generated by ATP hydrolysis to transport a wide variety of substrates across extra- and intracellular membranes, including metabolic products, lipids, sterols and exogenous drugs. Transferrin is a blood plasma protein for iron ion delivery in insects. When a transferrin protein loaded with iron reaches a transferrin receptor on the surface of a cell, it binds to its receptor and is transported into the cell in a vesicle. Vacuole sorting proteins are transmembrane proteins that associate with different functions such as autophagy, cell adhesion and membrane traffic.51 Many proteins associated with voltage gradient and ion channels such as calcium, potassium and sodium channels were also identified. Although the abundance of these proteins was relatively low, they play important roles in regulation of the ion balance in the midgut of the insect.

Table 8. Proteins Involved in Transcription and Translation in the Midgut of Sixth Instar Feeding Larvae of S. lituraby Shotgun ESI-MS Analysis

		5				6	(
no.	GAN of homologues	protein description	MW	Iq	species	no. of peptides	no. of unique peptides	cover percent (%)	sezuenbes
1	AAV66691	Elongation factor 1 alpha AAO16241	37730.16	7.80	B. polystictus	42	10	21.16	GSFRYAWVLDK.L;VTIIDAPGHR.D; K.EVSSYIK.K; K.IGGIGTVPVGR.V; K.MDSTEPPYSER.F; K.QLXVGVNK.M;
2	AAG45065	Elongation factor 1 alpha	28787.94	6.36	C. asperatus	27	æ	23.64	N. IYY IIIDAPGHR.D; K.EHALLAF ILGV K.QVTIIDAPGHR.D; K.EVSSYIK K; K.IGGIGTVPVGR.V; K.MDSTEPPYSESR.F; K.QLXVGVNK.M; K.YYYTIIDAPGHR.D;
က	AAW71508	Elongation factor 1 alpha	32101.89	7.14	N. aoede	30	ω	23.29	A. CHILDAR WAY ELIMAN. I VTIIDAP GHEND, K. CPIEALDAIL PPARPTDK. A; K. EVSSYIK. K; K. IGGIGTVPVGR. V; K. QIXVGVNK, K. YYYTIIDAP GHR. D; R. PHALLAFTI GVK. O
4	BAD26687	Elongation factor 1 beta	24473.6	4.59	P. xylostella	9	2	14.35	K.IQEFEDEROVQSVDIAAFNKI.; R.TTEM*DG1JWGASK1: R.TTEMDG1JWGASK1.
2	BAB21108	Elongation factor 1	48388.00	5.84	B. mori	3	2	6.15	K.FDPENYSIWYAEYK.Y; K.VAPNFVFGETNK.S
9	P84322	Elongation factor 1-alpha	45119.71	8.67	A. infecta	44	13	31.48	VTIIDAPGHR.D; .EVSSYIK.K; .IGGIGTVPVGR.V; .MDSTEPPYSESR.F; .QLXVGVNK.M;. SGDAAIVNIVPSKPLCVESFQEFPPLGR.F; K.STITGHLIYK.C; K.STITGHLIYK.CGGIDK.R; K.YYTIIDAPGHR.D; R.EHALLAFILGVK.Q; R.VFTGIIKPGTIVVHAPAPANITTHYK.S.
2	ABB90869	Elongation factor 1-alpha	45000.55	7.72	M. menophilus	27	8	18.40	VTIIDAPGHR.D; K.EVSSYIK.K; K.IGGIGTVPVGR.V; K.MDSTEPPYSESR.F; K.QLXVGVNK.M; K.STTTGHLIYECGGIDK.R; R.EHALLAFTLGVK.O
∞	AAK54633	Elongation factor 1-alpha	20351.35	7.11	P. compertus	17	9	32.61	-,VTIIDAPGHR.D; K.EGKAEGKTLIDALDAILQPSR.P; K.EVSSYIK.K; K.QLXVGVNK.M; K.YYVTIIDAPGHR.D; R.EHALLAFTLGVK.O
6	AAV31943	Elongation factor 1-alpha	13700.75	9.16	P. brevibarbis	21	9	25.25	K.EVSSYIK.K; K.IGGIGTVPVGR.V; K.QLXVGVNK.M; K.YYVTIIDAPGHR.D; R.XHATLAFTI.GVK.O
10	AAY18606	Elongation factor 1-alpha	14349.58	6.83	T. hematodes	13	က	21.88	K.QLXVGVNK.M; R.EHALLAFTLGVK.Q; R.LPLEDVYK.I
111	P_975086 ABD36111	Elongation factor Ts Elongation factor Ts	199251.13 51025.15	8.76	T. castaneum B. mori	1 4	3	1.05	K.LTSSQDIPPLPEPEGTILK.N K.GYADIDNAPEEK.A; K.QIGIQHVVVFINK.V; p.1 cditti ctcamty 1
13	ABA19107	Elongation factor-1 alpha	38123.84	8.23	A. rubricornis	15	4	12.50	K.IGGIGTVPVGR.V; K.MDSTEPPYSESR.F; K.TTEENPKAIKSGDAAIIILVP
14	AAO50241	Elongation factor-1 alpha	15109.39	7.03	A. bicolor	11	3	20.25	K.M*DSTEPPXXEXR.F; K.QLXVGVNK.M; R.EHALLAFTLGVK.Q

Table 8.	8. Continued								
no.	GAN of homologues	protein description	MW	$I_{\mathbf{q}}$	species	no. of peptides	no. of unique peptides	cover percent (%)	sacuentes
15	AAM13778	Elongation factor-1 alpha	38623.31	8.19	A. paphia	35	8	25.07	-,VTIIDAPGHR.D; K.EVSSYIK.K; K.IGGIGTVPVGR.V; K.QLXVGVNK.M; K.YYVTIIDAPGHR.D; R.EHALLAFTLGVK.Q; R.GITIDIALWKFETNK.Y; R.VETCH KPGTTVAFA PA NITTFVY S
16	AAC47898	Elongation factor-1 alpha	44824.47	8.67	C. hercules	44	13	32.93	K. VETGELEG CHAVITANIA LEVINE, TIEKFEKEAQEMGKGSFK.Y; VTIIDAPGHR.D; K. QLXVGVNK.M; K. SGDAAIVNIVPSKPLCVESFQEFPPLGR.F; K. STTTGHLIYK.G, K. STTTGHLIYKCGGIDK.R; K. YYYTIIDAPGHR.D; R. EHALLAFTLGVK.Q;
17	ABA19133	Elongation factor-1 alpha	38015.62	7.23	D. stigma	30	2	20.29	R.VETGLIAPGTIVVFAFANITIEV.R.SVTIIDAPGHR.D; K.EVSSYIK.K; K.ITGGIGTVPVGR.V; K.QLXVGVNK.M; K.TTENPKAIKSGDAAIIILVP; K.VXYTIIDA B.CHD. D. B EHALLAFTI CVR.O.
18	AAL34067	Elongation factor-1 alpha	39490.44	8.62	D. distinctus	46	∞	23.35	A.TI VIII DAT GIII. D. A.LII DATA IL DAVE, C. GSFRYAWVLDKL; VTIIDAPGHR. D; K. EVSSYIK. K. K. IGGIGTVPVGR. V; K. QLXVGVNK. M; K. YYYTIIDAPGHR. D; R. EHALLAFTGVK. Q; P. VETCH K. PGCTIVANA ADA MITTENY. S
19	AAK93885	Elongation factor-1 alpha	33775.8	6.93	H. nevadensis	31	ω	25.81	A. VETGELEN CHTWITTANTILLY K.S TIEKFEKEAQEMGKGSFK.Y; VTIIDAPGHR.D; K.EVSSYIK.K; K.IGGIGTVPVGR.V; K.MDSTEPPPSESR.F; K.QLXVGVNK.M; K. VXXTIIDA PG-UP. P. B-HATLA ETT CVR.O
20	AAZ76698	Elongation factor-1 alpha	27915.17	7.21	I. excavata	34	2	25.29	K.TIVIIIDAPGHR.D; R.EHALLAYILGVK.ÇVTIIIDAPGHR.D; K.ESSYIK.K; K.IGGIGTVPVGR.V; K.QLXVGVNK.M; K.YVTIIIDAPGHR.D; R.EHALLAFTLGVK.Q;
21	AAF89848	Elongation factor-1 alpha	36293.72	8.73	O. nubilali	14	9	18.13	A.GIIDJALWATETAR. I VTIIDAPGHR.D; K.EVSSYIK.K; K.IGGIGTVPVXR.V; K.MDSTEPPYSESR.F; K.OI XVGVNK M: R FHAII AFTI GWF O
22	AAF31080	Elongation factor-1 alpha	45073.71	8.63	S. reptans	37	∞	17.19	VTIDAPGHR.D; K.IGGIGTVPVGR.V; K.M*DSTEPPFCESR.F; K.QLXVGVNK.M; K.STTTGHLIYK.G; K.STTTGHLIYKCGGIDK.R;
23	AAM13781	Elongation factor-1 alpha	38119.57	6.79	V. egista	30	7	17.95	N.TITOTHEOTHELD; R.ELITALIZATI LEGYR.ÇVTIIDAPGHR.D; K.ESSYIK.K; K.IGGIGTVPVGR.V; K.QLXVGVNK.M; K.YYVTIIDAPGHR.D; R.EHALLAFTLGVK.Q; R. CXVA.G.DSFNNDDR.C.
24	AR01306	Elongation factor-2	81605.3	6.11	N. meinerti	12	ιΩ	8.13	K.GVQYLNEIK.D; K.STLTDSLVSK.A; R.ALLELQLEQEELYQTFQR.I; R.GGGQIIPTTR.R; R.NM*SVIAHVDHGK.S
25	AAZ15319	Eukaryotic initiation factor 5A	17524.78	5.16	B. mori	9	က	17.50	K.VHLVGIDIFNGK.K; K.VHLVGIDIFNGKK.Y; R.EDLKIPDGDLGTQLR.S

Q
ne
.⊑
Ħ
8
Ξ.
œ
<u>e</u>
_

no.	GAN of homologues	protein description	MW	Id	species	no. of peptides	no. of unique peptides	cover percent (%)	seouenbes
26	EAT44263	Eukaryotic translation	17079.13	5.01	A. aegypti	3	1	9.46	K.VWINQGDIILIGLR.D
27	XP_623849	Eukaryotic translation initiation factor 2 alpha	127884.99	6.40	A. mellifera	1	1	1.33	K.WFPSPEERVLHFLTR.T
28	EAT4818	Eukaryotic translation initiation factor 3	161576.88	6.44	A. aegypti	9	1	1.25	R.KLHGDLM*YLYVVTMEDKR.F
29	XP_971369	Eukaryotic translation initiation factor 3	144665.97	5.36	T. castaneum	1	1	1.27	K.DLPPSYQKYASAFKSK.T
30	ABD36299	Eukaryotic translation initiation factor 3 subunit 6	52114.33	5.54	B. mori	က	က	8.76	K.LASEILVQNWDGALDDLTKL; R.SEALTSLVER.K; R.YLATAVIINR.G
31	EAT41266	Eukaryotic translation initiation factor 3, theta subunit	133297.75	8.81	A. aegypti	2	1	0.88	R.ALDTLQEVFR.I
32	ABF51379	Eukaryotic translation initiation factor 4A	47540.21	5.10	B. mori	14	L	23.33	K.LFVLDEADEM*LSR.G; K.TATFSISILQQIDTSIR.E; K.VVIALGDHLNAK.C; R.DFTVSAM*HGDM*DQR.E; R.GFKDQIHDVFK.M;, GIYAYGFEKPSAIQQR.A; R.OI.ESGVHVVVGTPGR.V
33	ABF51282	Eukaryotic translation initiation factor 6	26345.77	4.70	B. mori	1	1	5.71	R.VQFENNNEVGVFSK.L
34	AAL83698	Translation elongation factor 2	94621.05	6.14	S. exigua	44	18	22.04	K.AYLPVNESFGFTADLR.S; K.DLVFITNPDQR.E; K.DSVVAGFQWAAK.E; K.GSVGFGSGLHGWAFTLK.Q; K.GVQYLNEIK.D; K.GVQYLNEIKDSVVAGFQWAAK.E; K.PYTIVQDTR.K; K.SDPVVSYR.E; K.STAISM*FFELEEK.D; K.STLTDSLVSK.A; K.VFDAIM*NFK.K; R.ALLELQLEAEELYQTFQR.I; R.GGGQIIPTTR.R; R.IM*GPNFTPGK.K; R.LGGQIIPTTR.R; R.IM*SVIAHVDHGK.S; P. SEPAM*NJ DDIVK V
35	EAT34087	Translation elongation	73992.76	5.46	A. aegypti	1	1	1.79	R.NIGILAHIDGGK.T
36	CAG29675	Translation initiation factor 2 gamma subunit	50500.73	9.12	S. libatrix	2	1	3.85	R.LVGQVLGAVGALPGIFVK.L

research articles Liu et al.

Table 9. Proteins Involved in Transporter and Signaling Pathway of in the Midgut of Sixth Instar Feeding Larvae of S. lituraby Shotgun ESI-MS Analysis

aio		۷.		٠.,	,	,												
sednences	R.MKTAAIPNGYNNHSNGNPK.P	R.LLFRFYDVESGSISIDGQNIK.T	R.ITPRLAHANAAVVLSAVK.V	K.SLPPNLKELMAQILYR.L	K.SELTGNLENVIVALM*TPLPHFYAK.E	K.M*VKNEGYGTFYK.G	R.KNDAIQSLQFLR.G	K.IANEVLQTGYDYTEGKIVYNR.F	R.TALKAQLIKPEMQCFK.A	R.HPFNLTAAM*FQETEKEK.Y	R.FYTDDSPGVK.V	R.NWLVCLLGTPERTTLLR.F	K.LEDPNIKKLEK.E	MPNLQSSIPHTKKAPK.A	R.IGLETFSAKLGEVSK.H	R.LVKLLARGEGIR.T	M*YGMLYESVQHYIQK.E	K.SNSRCSLLNTSDHR.Q
cover percent (%)	3.20	2.48	1.95	2.42	7.43	3.35	2.50	7.07	2.04	2.19	10.31	1.70	2.76	69.9	1.76	99.0	2.25	0.44
no. of unique peptides	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П
no. of peptides	1	2	1	1	1	2	2	1	1	1	1	1	1	1	1	1	1	1
species	A. aegypti	A. aegypti	D. melanogaster	A. aegypti	B. mori	B. mori	A. aegypti	D. melanogaster	A. aegypti	A. aegypti	B. mori	D. melanogaster	A. mellifera	D. melanogaster	A. aegypti	A. aegypti	D. pseudoobscura	A. aegypti
Ιd	6.22	8.40	5.00	9.24	5.00	9.01	5.59	9.29	6.24	4.98	11.80	5.52	5.96	11.01	4.91	6.11	5.80	6.25
MW	66288.38	96606.27	101179.74	74491.26	35748.67	39210.79	52181.00	32871.19	88986.77	85597.31	10121.47	115334.42	45613.67	26566.35	95057.62	206218.09	75765.4	360473.38
protein description	ABC transporter	ABC transporter	Adaptin	Ion channel nompc	Ion channel nompc	Phosphate transport protein	Sugar transporter	Synaptotagmin	Transferrin	Transferrin	Transport protein Sec61 beta subunit	Vacuolar protein sorting 18	Vacuolar sorting protein	Vacuole membrane protein	Vesicle docking protein	Voltage-dependent p/q type calcium channel	Voltage-gated potassium channel	Voltage-gated sodium channel
GAN of homologues	EAT39576	EAT40111	NP_523415	EAT45339	BAA92811	ABF51479	EAT37543	001666	EAT35928	EAT36265	ABF85698	Q24314	XP_392829	DAA03342	EAT43838	EAT36648	EAL28531	EAT45488
no.	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18

3.4.7. Stress Resistance. Three major groups of proteins related to stress resistance were identified in the midgut (Table 10). The first group is cytochrome P450 (CYP, EC 1.14.14.1), which is a family of dedox enzymes involved in metabolism of an extremely large number of endogenous and exogenous compounds.⁵² Fifteen peptides of CYPs were identified in the midgut; it would be interesting to know the functions of these CYPs in the midgut involved in exogenous compounds and undertakes remodeling during molting and metamorphosis.

The second group consists of glutathione peroxidase (EC1.11.1.9) and glutathione S-transferase (GST, EC 2.5.1.18). Glutathione peroxidase is the general name of an enzyme family with peroxidase activity. Glutathione peroxidase reduces lipid hydroperoxides to their corresponding alcohols and reduces free hydrogen peroxide to water, protecting the organism from oxidative damage. GSTs are involved in detoxification of xenobiotics. In insects, GSTs have been classified into six classes: delta, epsilon, omega, sigma, theta and zeta. $^{53,54}\,\mathrm{Several}$ GSTs including delta, epsilon, omega, sigma and theta were found in the feeding midgut of S. litura.⁵⁵

Heat shock proteins (HSPs) is the third group. A large number (452) of different HSP peptides were identified in the feeding midgut (Table 10). High levels of HSPs can be triggered by exposure to elevated temperatures and different kinds of environmental stress conditions, such as infection, inflammation, exercise, toxins, starvation, hypoxia, nitrogen deficiency or water deprivation.⁵⁶ HSPs, particularly Hsp70, are involved in binding antigens and presenting them to the immune system.⁵⁷ Of all the HSPs identified in this study, Hsp70 was most highly expressed, though its role in the feeding midgut is not clear.

3.5. Shotgun Analysis and Protein Expression Profile. Shotgun protein sequencing strategy has been proven to be a powerful proteomics analysis approach.^{2,58,59} The prominent advantage of this method is avoiding complicated sample preparation and high efficiency to identify hundreds of proteins in a single run. In this study, 2043 peptides were identified by using shotgun approach in the midgut of the sixth instar feeding larvae. However, only approximately 600 protein spots were identified in the same sample using 2-DE/MS approach (Jisheng Liu and Qili Feng, unpublished data). McNall and Adang identified 450 individual proteins from BBMV of the midgut of M. sexta fifth instar larvae by using 2-DE/MS technique.⁵ Approximately 300 individual protein spots were identified in the gut of fourth instar larvae of Plodia interpunctella by 2-DE/MS analysis.6 Zhang et al. identified 1100 individual protein spots from the posterior midgut of B. mori fifth instar larvae by using 2-DE/MS method.⁷ Haddow et al. used isotope coded affinity tag (ICAT) technique to identify a total of 207 proteins from the midgut of G. morsitans morsitans.8 It appears that the shotgun approach has a higher efficiency to identify proteins than 2-DE/MS analysis, as indicated by identification of 2,043 peptides in the midgut of the sixth instar feeding larvae. Among the proteins identified in M. sexta,5 P. interpunctella,6 B. mori,7 and G. morsitans morsitans,8 at least 56 proteins were detected in the midgut of S. litura in this study.

In addition, the identified proteins from this study had broad ranges of molecular mass and pI (Figure 2 and 3). Molecular mass of the identified proteins from the midgut ranged between 2353 and 1.38 kDa, with the most (74.4% of the total proteins) being 10 to 100 kDa and pIs ranged between 3.8 and 11.99. 2-DE/MS method can efficiently separate proteins between 7

R.KFEDATVQADM*K.H; R.M*VNHFVQEFK.R;

R.IINEPTAAAIAYGLDKK.G; R.IINEPTAAAIAYGLDK.K;

R.MVNHFVQEFK.R; R.STAGDTHLGGEDFDNR.L

K.VEIIANDQGNR.T; R.ARFEELNADLFR.S;

K.TFFPEEVSSMVLTK.M; K.TVQNAVITVPAYFNDSQR.Q;

K.TFFPEEVSSM*VLTK.M; K.SQIHDIVLVGGSTR.I;

K.QTQTFTTYSDNQPGVLIQVFEGER.A; K.SINPDEAVAYGAAVQAAILHGDK.S;

Table 10. Proteins Involved in Stress Resistance in the Midgut of Sixth Instar Feeding Larvae of S. lituraby Shotgun ESI-MS Analysis

			0			,	,		
no.	GAN of homologues	protein description	MW	$I_{\mathbf{q}}$	species	no. of peptides	no. of unique peptides	cover percent (%)	seouenbes
1	EAT39564	Cytochrome P450	61222.92	8.87	A. aegypti	1	1	1.87	R.RYHVEYNYEK.L
2	EAT38452	Cytochrome P450	58046.46	8.28	A. aegypti	1	1	2.94	R.M*GEKVLAHDLITSLR.L
3	EAT39028	Cytochrome P450	56819.02	8.60	A. aegypti	1	1	2.40	R.KVFQLQGLGFLK.L
4	EAT40473	Cytochrome P450	57164.51	8.99	A. aegypti	1	1	2.62	R.KCNGNITHVSIKR.M
5	NP_610418	Cytochrome P450	59433.09	5.19	D. melanogaster	1	1	2.01	K.YAVGAAATILK.V
9	AAC23917	Cytochrome P450	58428.89	5.61	D. melanogaster	1	1	3.26	K.YNLPFLM*VVGGGGYTIR.K
2	ABC72318	Cytochrome P450	17296.81	4.98	S. litura	2	2	17.69	K.DTSVILNIYQIQR.Q; K.NPFSFLAFSAGPR.N
8	ABF51323	Cytochrome P450	25756.35	2.97	B. mori	1	1	3.88	K.DVFISAAER.D
6	P13527	Cytochrome P450	58730.88	8.63	M. domestica	2	1	4.32	R.FSPEM*VKQRDSVDWLGFGDGPR.N
10	AAT52056	Cytochrome P450	82969.69	6.22	D. buzzatii	1	1	2.32	K.AQLEQLLAKPAAHWVSK.P
Ξ	ABD18735	Cytochrome P450	58237.44	9.29	M. sexta	1	1	3.49	R.FVELELHLLLAKIM*QRWR.V
12	ABB58823	Cytochrome P450	58132.7	8.48	B. mandarina	1	1	3.37	R.FELAKNTPRNLDIDPTR.L
13	AAY85606	Cytochrome P450	28912.27	5.47	A. funestus	1	1	4.80	R.LDM*IHLLMQANK.G
14	NP_725339	Glutathione peroxidase	989550.2	5.50	D. melanogaster	1	1	0.10	K.ADPAVRDIK.A
15	ABB29466	Glutathione S-transferase	24475.96	8.55	C. cephalonica	2	2	12.96	R.FADYFYPQVFGGAPADK.D; R.LYFDIGTLYQR.F
		(epsilon)							
16	EAT41000	Glutathione S-transferase	228499.66	5.50	A. aegypti	1	1	0.59	K.ELAQETEMDVLK.A
7	FAI 25669	(sigma)	36095 77	6.31	D nearly doobs	-	-	7 33	K KYDLI TILITEN/SOB V
7.7	60067777	Giudanione 3-uansierase 2 (sigma)	30023.11	10.0	D. pseudoobscuiu	1	1	4.33	N.N.DELIELIT VOÇIN.V
18	ABC79690	Glutathione S-transferase	24661.49	5.15	B. mori	က	1	2.00	R.LDFDIGTLYPR.F
		3 (omega)							
19	P13276	Glutathione-s-transferase (theta)	20793.33	6.98	M. sexta	П	1	7.41	K.LQAAVQTTVQESQK.L
20	AAS79891	Glutathione S-transferase (delta)	23939.4	6.20	S. litura	26	9	48.39	K.EQTDKLNSAYEILDK.F; K.LTAWFNTIQQEDWYK.K;
									K.NPQHTVPLLEDGDFYVADSHAINTYLASK.Y; K.YGGAQSAQLYPTDLQVR.A;
									R.GDITSPTKEQTDK.L; R.IVEDISAIAGNSCAIVSAITR G
21	Q9U639	Heat shock 70 kda protein cognate 4 (Hsc	71431.58	5.33	M. sexta	72	20	36.96	K.DAGTISGLINILI; K.FELTGIPPAPR.G; K.ISDSDKOTILDK.C: K.I.J.DDFFNGK.E:
		70-4)							K.M*KETAEAYLGK.T; K.MKETAEAYLGK.T;

saouanbas	K.DSGIDIRKDNIAMQR.L; K.EQQIVIQSSGGLSK.D; R.RFDDPEVKK.D; R.SKLESLYGDLIK.R;	K. VINEP I AAALAYGM* DK. I K. DVDEIVLVGGSTR.I; K. EFFNGKEPSR.G; K. EKRVITNDQNR.L; K. IVITNDQNR.L; K. M*KETAEAYLGK.T; K. MKETAEAYLGK.T; K. NQLTTNPENTVFDAK.R K. SQIFSTASDNQHTVTIQVYEGERPM*TK.D; V. EIIANDQGNR.T; AKFEELNM*DLFR.S; R. IEIESFYEGDDFSETLTR.A; R. IINEPTAAAIAYGLDKK.G;	K.IIPSYVAFTADGEKL. K.DVDEIVLVGGSTR.I. K.EFFNGKEPSR.G; K.EKRVITNDQNR.L; K.IVITNDQNR.L; K.M*KETAEAYLGK.T; K.MKETAEAYLGK.T; K.NQLTTNPENTVFDAK.R; K.SLEDVVQPIIAK.L; K.SQIFSTASDNQHTVTIQVYEGERPM*TK.D; K.VEIIANDQGNR.T; R.AKFEELNM*DLFR.S; R.IIEESFFEGEDFSETLTR.A; R.IINEPTAAAAYGLDK.K;	K.IINEP I AAAAIN G.D.KG. K.DAGTISGLNVLR.I; K.FELTGIPPAPR.G; K.ISDSDKQTILDK.C; K.LLQDFFNGK.E; K.M*KETAEAYLGK.T; K.MKETAEAYLGK.T; K.NQVAM*NPNNTIFDAK.R; K.QTQTFTTYSDNQPGVLIQVFEGER.A; K.SINPDEAVAYGAAVQAAILHGDK.S; K.TFFPEEVSSM*VLTK.M; K.TFFPEEVSSMVLTK.M; K.TYQNAVITVPAYFNDSQR.Q; K.VEIIANDQGNR.T; R.ARFEELNADLFR.S; R.IINEPTAAAIAYGLDK.K; R.IINEPTAAAIAYGLDK.K; R.REEDATVQADM*K.H; R.M*VNHFVQEFK.R; R.STAGDTHLGGEDFDNR.L; P. TETBEVANATERIED.	R. LIPSTVAFIDJER.E. K.GVVDSEDJPLNISR.E; R.ELISNASDALEK.F. K.ADLVNNLGTIAK.S; K.EGLELPEDEEEK.K; K.FENLCKVMKSVLDNK.V; K.GVVDSEDJPLNLSR.E; K.HSQFIGYPIK.L; K.SLTNDWEDHLAVK.H; R.ELISNSSDALDK.I; R.ELISNSSDALDKIR.Y; R.YESLTDPSKLDSGK.E
cover percent (%)	9.62	24.27	23.82	36.98	3.70
no. of unique peptides	ro.	13	13	50	0 0
no. of peptides	2	40	52	02	9
species	D. melanogaster	А. аедурtі	S. frugiperda	B. mori	A. aegypti A. aegypti
Iq	6.02	5.06	5.20	5.33	6.66
MW	74065.99	72286.68	73108.71	71175.3	79782.09
protein description	Heat shock 70 kda protein cognate 5	Heat shock cognate 70	Heat shock cognate 70 protein	Heat shock cognate protein	Heat shock protein Heat shock protein
O. Continued GAN of homologues	P29845	ABF18258	AAN86047	BAB92074	EAT48688 EAT36187
Table 10.	22	73	24	52	26 27

$\overline{}$
ŏ
⋾
nued
-=
īŦ
≍
ပ္ပ
\circ
~
6
•
Ф
ᅙ
=

seonenbes	K.DAGTISGLNVLR.I; .FELTGIPPAPR.G; .LLQDFFNGK.E; .M*KETAEAYLGK.T; .MKETAEAYLGK.T; .NQVAM*NPNNTIFDAK.R; K.QTQTFTTYSDNQPGVLJQVFEGER.A; SINPDEAVAYGAAVQAAILHGDK.S; K.SQHDIVLVGGSTR.I; K.TFFPEEVSSM*VLTK.M; K.TFFPEEVSSMVLTK.M; K.TVQNAVITVPAYFNDSQR.Q; K.VEIIANDQGNR.T; R.ARFEELNADLFR.S; .IINEPTAAAIAYGLDK.K; .IINEPTAAAIAYGLDK.K; .IINEPTAAAIAYGLDKK.G; KFEDATVQADM*K.H; R.STAGDTHLGGEDFDNR.L; R.TTPSVVAFTDTR.R.	K.IGLQVAAVK.A; .IVQDVANNTNEEAGDGTTTATVLAR.A; DOIKETTSOVER F. B NVIIEOSWGSPK I	K.VCQIM. SAKM*HGGAGAGQK.A; R.IINEPTAAAAYGLDK.K; STAGDTHI GGFDFDMR I	K.GVNDSEDIPLOLISTE, K.HFSVEGQLEFR.A; K.HSQFIGYPIK.L; K.SLTNDWEDHLAVK.H; R.MKENQKHVYFITGESK.D; P. VEGT TIDDSET DSCEVE	KADLVNNLGTIAKS, K.DQVANSSFVER.V; K.EGLELPEDEEEK, K.GVVDSEDIPLNLSR.E; K.HFSVEGQLEFR.A; K.HIYYITGENR.D; K.HLEINPDHSIVETIR.Q; K.HSQFIGYPIK.L; K.SEGTLTIIDTGIGM*TK.A; K.SEGTLTIIDTGIGMTK.A; R.NAPFDLFENK.K; P. VEGTLTIIDTGIGMTK.A;	KADLVNNLGTJAKS, K.DQVANSSFVER.V; K.EGLELPEDEEK.K; K.GVVDSEDIPLNLSR.E; K.HFSVEGQLEFR.A; K.HIYYTGENR.D; K.HLEINPDHSIVETJR.Q; K.HSQFIGYPIK.L; SEGTLTIIDTGIGM*TK.A; K.SEGTLTIIDTGIGM*TK.A; K.SEGTLTIIDTGIGMTK.A; K.SETNDWEDHLAVK.H; K.YYEQFSK.N; R.BLISNSSDALDK.I; R.ELISNSSDALDKIR.Y; NADDITQEEYGDFYK.S; R.RAPFDLFENK.K; R.YESLTDPSKLLDSGK.E;	R.QDDGSTVNIDKDKFEVK.L
cover percent (%)	35.47	9.98	7.75	10.89	22.73	27.62	9.94
no. of unique peptides	19	4	က	9	13	17	1
no. of peptides	89	9	7	19	36	74	2
species	L. obliqua	C. variipennis	C. yoshimatsui	D. auraria	C. suppressalis	S. frugiperda	L. sativae
Iq	5.33	6.39.	5.76	4.89	4.99	4.98	5.56
MW	71602.76	61850.13	71205.46	81760.34	82472.45	82573.6	19467.89
protein description	Heat shock protein 4 heat shock cognate 70 protein	Heat shock protein 60	Heat shock protein 70	Heat shock protein 83 (HSP 82)	Heat shock protein 90	Heat shock protein HSP83	Heat shock protein Hsp19.5
GAN of homologues	AAV91465	AAB94640	BAD42358	002192	BAE44307	AAG44630	ABE57140
no.	28	29	30	31	32	33	34

research articles

Liu et al.

and 200 kDa with p*Is* between 4 and 9.6.⁶⁰ Although there are some shortcomings with the shotgun approach, such as lower resolution of protein isoforms as compared to the 2-DE/MS method,⁶¹ this technique holds great promises to be a more valid and high-throughput strategy for insect proteomics, particularly, given that the midgut lumens of Lipidoptera usually have a broad and alkaline pH range.⁶²

4. Conclusion

In summary, 2043 peptides were identified, out of which 842 were annotated, from the midgut of S. litura sixth instar feeding larvae by the shotgun RP-HPLC-ESI-MS approach. Numerous nonredundant proteins, particularly associated with the processes of carbohydrate conversion, protein synthesis and degradation, lipid and sterol absorption and metabolism are identified, with many being found to be highly expressed, such as diazepam-binding inhibitor, sterol carrier protein 2/3oxoacyl-CoA, glucose-3-phosphate dehydrogenase, enoyl-CoA hydratase, glutamate dehydrogenase, fructose 1,6-bisphosphate aldolase and triosephosphate isomerase in the feeding midgut. The results suggest that these processes of carbohydrate, protein and lipid metabolisms are extremely active in the midgut during the feeding stage. This protein profile provides for the first time comprehensive information on midgut protein expression of this tropical and subtropical lepidopteran species, which feeds on large numbers of plant species, and will benefit the comparative analysis of feeding habits and digestive enzyme systems with other insects, such as polyphagous D. melanogaster, blood-feeding A. gambiae and monophagous B. mori, and further study of the relationships between the physiological events and functions of the related proteins in the midgut and development of novel controlling strategies against S. litura, as well as other Lepidoptera.

Acknowledgment. This research was supported in part by the Chinese National Natural Science Foundation (Grant no.: 30671408), the Guangdong Province Natural Science Foundation (Grant no.: 06105204) and the PSA project from MOST and KNAW (Grant no.: 2008AA000238). We thank the Research Centre for Proteome Analysis of Shanghai Institutes for Biological Sciences, Shanghai, China, for help in protein analysis.

References

- (1) Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. *Proteomics* **2002**. *2*. 3–10.
- McDonald, W. H.; Yates, J. R. 3rd. Shotgun proteomics and biomarker discovery. *Dis. Markers* 2002, 18, 99–105.
- (3) Wolters, D. A.; Washburn, M. P.; Yates, J. R. 3rd. An automated multidimensional protein identification technology for shotgun proteomics. *Anal. Chem.* 2001, 73, 5683–5690.
- (4) Wienkoop, S.; Glinski, M.; Tanaka, N.; Tolstikov, V.; Fiehn, O.; Weckwerth, W. Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins. *Rapid Commun. Mass Spectrom.* 2004, 18, 643–650.
- (5) McNall, R. J.; Adang, M. J. Identification of novel *Bacillus thuringiensis* CrylAc binding proteins in *Manduca sexta* midgut through proteomic analysis. *Insect Biochem. Mol. Biol.* 2003, 33, 999–1010.
- (6) Candas, M.; Loseva, O.; Oppert, B.; Kosaraju, P.; Bulla, L. A., Jr. Insect resistance to *Bacillus thuringiensis*: alterations in the indianmeal moth larval gut proteome. *Mol. Cell Proteomics* **2003**, *2*, 19–28.
- (7) Zhang, P.; Yamamoto, K.; Wang, Y.; Banno, Y.; Fujii, H.; Miake, F.; Kashige, N.; Aso, Y. Utility of dry gel from two-dimensional

electrophoresis for peptide mass fingerprinting analysis of silkworm proteins. *Biosci. Biotechnol. Biochem.* **2004**, *68*, 2148–2154.

- (8) Haddow, J. D.; Haines, L. R.; Gooding, R. H.; Olafson, R. W.; Pearson, T. W. Identification of midgut proteins that are differentially expressed in trypanosome-susceptible and normal tsetse flies (*Glossina morsitans morsitans*). *Insect Biochem. Mol. Biol.* 2005. 35. 425–433.
- (9) Li, H. M.; Margam, V.; Muir, W. M.; Murdock, L. L.; Pittendrigh, B. R. Changes in *Drosophila melanogaster* midgut proteins in response to dietary Bowman-Birk inhibitor. *Insect Mol. Biol.* 2007, 16, 539–549.
- (10) Pauchet, Y.; Muck, A.; Svatos, A.; Heckel, D. G.; Preiss, S. Mapping the larval midgut lumen proteome of *Helicoverpa armigera*, a generalist herbivorous insect. *J. Proteome Res.* 2008, 7, 1629–1639.
- (11) Feng, Q. L.; Davey, K. G.; Pang, A. S.; Primavera, M.; Ladd, T. R.; Zheng, S. C.; Sohi, S. S.; Retnakaran, A.; Palli, S. R. Glutathione S-transferase from the spruce budworm, Choristoneura fumiferana: identification, characterization, localization, cDNA cloning, and expression. *Insect Biochem. Mol. Biol.* 1999, 29, 779–793.
- (12) Vierstraete, E.; Cerstiaens, A.; Baggerman, G.; Van den Bergh, G.; De Loof, A.; Schoofs, L. Proteomics in *Drosophila melanogaster* first 2D database of larval hemolymph proteins. *Biochem. Biophys. Res. Commun.* 2003, 304, 831–838.
- (13) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 1976, 72, 248–254.
- (14) Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. *Anal. Chem.* 1996, 68, 850–858.
- (15) Washburn, M. P.; Wolters, D.; Yates, J. R., 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. *Nat. Biotechnol.* 2001, 19, 242–247.
- (16) Yasuhara, T.; Nakajima, T.; Erspamer, V.; Erspamer, G. F.; Tukamota, Y.; Mori, M. *Peptide Chemistry*, Protein Research Foundation: Osaka, Japan, 1986, 363–368.
- (17) Koike, Y.; Mita, K.; Suzuki, M. G.; Maeda, S.; Abe, H.; Osoegawa, K.; deJong, P. J.; Shimada, T. Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog. *Mol. Genet. Genomics* **2003**, *269*, 137–149.
- (18) Sarauer, B. L.; Gillott, C.; Hegedus, D. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. *Insect Mol. Biol.* 2003, 12, 333–343.
- (19) Scharlaken, B.; de Graaf, D. C.; Goossens, K.; Peelman, L. J.; Jacobs, F. J. Differential gene expression in the honeybee head after a bacterial challenge. *Dev. Comp. Immunol* 2008, 32, 883–889.
- (20) Sugahara, T.; Nakajima, H.; Shirahata, S.; Murakami, H. Purification and characterization of immunoglobulin production stimulating factor-II beta derived from Namalwa cells. *Cytotech.* 1992, 10, 137– 146.
- (21) Knudsen, J.; Mandrup, S.; Rasmussen, J. T.; Andreasen, P. H.; Poulsen, F.; Kristiansen, K. The function of acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor (DBI). *Mol. Cell. Biochem.* 1993, 123, 129–138.
- (22) Liu, M.; Zhang, T. Y.; Xu, W. H. A cDNA encoding diazepambinding inhibitor/acyl-CoA-binding protein in *Helicoverpa armig*era: molecular characterization and expression analysis associated with pupal diapause. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2005, 141, 168–176.
- (23) Wang, J. L.; Wang, J. X.; Zhao, X. F. Molecular cloning and expression profiles of the acyl-CoA-binding protein gene from the cotton bollworm *Helicoverpa armigera*. Arch. Insect Biochem. Physiol. 2008, 68, 79–88.
- (24) Matsumoto, S.; Yoshiga, T.; Yokoyama, N.; Iwanaga, M.; Koshiba, S.; Kigawa, T.; Hirota, H.; Yokoyama, S.; Okano, K.; Mita, K.; Shimada, T.; Tatsuki, S. Characterization of acyl-CoA-binding protein (ACBP) in the pheromone gland of the silkworm *Bombyx mori. Insect Biochem. Mol. Biol.* 2001, 31, 603–609.
- (25) Kim, E.; Kim, S. H.; Choi, C. S.; Park, Y. I.; Kim, H. R. Cloning and expression of apolipophorin-III from the common cutworm, Spodoptera litura. Arch. Insect Biochem. Physiol. 1998, 39, 166– 173.
- (26) Halwani, A. E.; Niven, D. F.; Dunphy, G. B. Apolipophorin-III in the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). *Arch. Insect Biochem. Physiol.* **2001**, *48*, 135–143.
- (27) Vyazunova, I.; Lan, Q. Insect sterol carrier protein-2 gene family: structures and functions. Adv. Insect Physiol. Toxicol. Mol. Biol. 2008, 37, 173–198.
- (28) Gilbert, L. I.; Rybczynski, R.; Warren, J. T. Control and biochemical nature of the ecdysteroidogenic pathway. *Ann. Rev. Entomol.* 2002, 47, 883–916.

- (29) Guo, D.; Venkatramesh, M.; Nes, W. D. Developmental regulation of sterol biosynthesis in Zea mays. Lipids 1995, 30, 203-219.
- Jouni, Z. E.; Zamora, J.; Wells, M. A. Absorption and tissue distribution of cholesterol in Manduca sexta. Arch. Insect Biochem. Physiol. 2002, 49, 167-175.
- (31) Takeuchi, H.; Chen, J. H.; Jenkins, J. R.; Bun-Ya, M.; Turner, P. C.; Rees, H. H. Characterization of a sterol carrier protein 2/3-oxoacyl-CoA thiolase from the cotton leafworm (Spodoptera littoralis): a lepidopteran mechanism closer to that in mammals than that in dipterans. Biochem. J. 2004, 382, 93-100.
- (32) Gong, J.; Hou, Y.; Zha, X.-F.; Lu, C.; Zhu, Y.; Xia, Q.-Y. Molecular cloning and characterization of *Bombyx mori* sterol carrier protein x/sterol carrier protein 2 (SCPx/SCP2) gene. DNA Seq. 2006, 17, 326-333.
- (33) Guo, X.-R.; Zheng, S.-C.; Liu, L.; Feng, Q.-L. The sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) is involved in cholesterol uptake in the midgut of Spodoptera litura: gene cloning, expression, localization and functional analyses. BMC Mol. Biol. 2009, 10, 102.
- (34) Rodenburg, K. W.; Van der Horst, D. J. Lipoprotein-mediated lipid transport in insects: analogy to the mammalian lipid carrier system and novel concepts for the functioning of LDL receptor family members. Biochim. Biophys. Acta 2005, 1736, 10-29.
- van der Horst, D. J.; van Hoof, D.; van Marrewijk, W. J.; Rodenburg K. W. Alternative lipid mobilization: the insect shuttle system. Mol. Cell. Biochem. 2002, 239, 113-119.
- (36) Mykles, D. L. Intracellular proteinases of invertebrates: calciumdependent and proteasome/ubiquitin-dependent systems. Int. Rev. Cytol. 1998, 184, 157-289.
- Yaoi, K.; Kadotani, T.; Kuwana, H.; Shinkawa, A.; Takahashi, T.; Iwahana, H.; Sato, R. Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. Eur. J. Biochem. 1997, 246, 652-657.
- (38) Gómez, I.; Arenas, I.; Benitez, I.; Miranda-Ríos, J.; Becerril, B.; Grande, R.; Almagro, J. C.; Bravo, A.; Soberón, M. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J. Biol. Chem. 2006, 281, 34032-34039.
- (39) Zhang, R.; Hua, G.; Andacht, T. M.; Adang, M. J. A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae. Biochem. 2008, 47, 11263-11272
- (40) Herrero, S.; Gechev, T.; Bakker, P. L.; Moar, W. J.; de Maagd, R. A. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics **2005**, 6, 96,
- (41) Terra, W. R.; Ferreira, C. Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol. **1994**, 109B, 1-62.
- Srinivasan, A.; Giri, A. P.; Gupta, V. S. Structural and functional diversities in lepidopteran serine proteinases. Cell. Mol. Biol. Lett. **2006**, 11, 132–154.
- Muhlia-Almazán, A.; Sánchez-Paz, A.; García-Carreño, F. L. Invertebrate trypsins: a review. J. Comp. Physiol. B. 2008, 178, 655-672.
- Broehan, G.; Zimoch, L.; Wessels, A.; Ertas, B.; Merzendorfer, H. A chymotrypsin-like serine proteinase interacts with the chitin synthase from the midgut of the tobacco hornworm. J. Exp. Biol. **2007**, 210, 3636-3643.
- (45) Willott, E.; Wang, X. Y.; Wells, M. A. cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acid-rich larval serum protein. Homology to arthropod hemocyanins. J. Biol. Chem. 1989, 264, 19052-19059.

- (46) Burmestera, T.; Scheller, K. Ecdysteroid-mediated uptake of arylphorin by larval fat bodies of Calliphora vicina: Involvement and developmental regulation of arylphorin binding proteins. Insect Biochem. Mol. Biol. 1995, 25, 799-806.
- (47) Kokoszka, J. E.; Waymire, K. G.; Levy, S. E.; Sligh, J. E.; Cai, J.; Jones, D. P.; MacGregor, G. R.; Wallace, D. C. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004, 427, 461-465.
- Metzstein, M. M.; Krasnow, M. A. Functions of the nonsensemediated mRNA decay pathway in *Drosophila* development. *PLoS* Genet. 2006, 2, 180.
- (49) Xie, J.; Beickman, K.; Otte, E.; Rymond, B. C. Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation. EMBO J. 1998, 17, 2938-2946.
- Jones, P. M.; George, A. M. The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci. **2004**, 61, 682-699.
- (51) Wendland, B.; Emr, S. D.; Riezman, H. Protein traffic in the yeast endocytic and vacuolar protein sorting pathways. Curr. Opin. Cell Biol. 1998, 10, 513-522.
- Guengerich, F. P. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70-83.
- (53) Chelvanayagam, G.; Parker, M. W.; Board, P. G. Fly fishing for GSTs: a unified nomenclature for mammalian and insect glutathione transferases. Chemico-Biol. Interact. 2001, 133, 256-260.
- (54) Ranson, H.; Rossiter, L.; Ortelli, F.; Jesen, B.; Wang, X.; Roth, C. W.; Collins, F. H.; Hemingway, J. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem. J. 2001, 359, 295-
- (55) Deng, H.-M.; Huang, Y.-F.; Feng, Q.-L.; Zheng, S.-C. Two epsilon glutathione S-transferase cDNAs from the common cutworm, Spodoptera litura: Characterization and developmental and induced expression by insecticides. J. Insect Physiol. 2009, 55, 1174-1183
- (56) Santoro, M. G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 2000, 59, 55-63.
- (57) Nishikawa, M.; Takemoto, S.; Takakura, Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm. 2008, 354, 23-27.
- (58) Wu, S. L.; Choudhary, G.; Ramström, M.; Bergquist, J.; Hancock, W. S. Evaluation of shotgun sequencing for proteomic analysis of human plasma using HPLC coupled with either ion trap or Fourier transform mass spectrometry. J. Proteome Res. 2003, 2, 383–393.
- (59) He, P.; He, H. Z.; Dai, J.; Wang, Y.; Sheng, Q. H.; Zhou, L. P.; Zhang, Z. S.; Sun, Y. L.; Liu, F.; Wang, K.; Zhang, J. S.; Wang, H. X.; Song, Z. M.; Zhang, H. R.; Zeng, R.; Zhao, X. The human plasma proteome: analysis of Chinese serum using shotgun strategy. Proteomics 2005, 5, 3442–3453.
- (60) Görg, A.; Obermaier, C.; Boguth, G.; Harder, A.; Scheibe, B.; Wildgruber, R.; Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis **2000**, *21*, 1037–1053.
- (61) Lee, C. L.; Hsiao, H. H.; Lin, C. W.; Wu, S. P.; Huang, S. Y.; Wu, C. Y.; Wang, A. H.; Khoo, K. H. Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics 2003, 3, 2472-2486.
- (62) Dow, J. A. Extremely high pH in biological systems: a model for carbonate transport. Am. J. Physiol. 1984, 246, R633-636.

PR900826F