Generalized Suffix Trees

Suffix Trees for Multiple Strings

- Suffix trees store information about a single string and exports a huge amount of structural information about that string.
- However, many applications require information about the structure of multiple different strings.

Generalized Suffix Trees

- A **generalized suffix tree** for $T_1, ..., T_k$ is a Patricia trie of all suffixes of T_1 \$1, ..., T_k \$k. Each T_i has a unique end marker.
- Leaves are tagged with i:j, meaning "jth suffix of string T_i "

Generalized Suffix Trees

- Claim: A generalized suffix tree for strings $T_1, ..., T_k$ of total length m can be constructed in time $\Theta(m)$.
- Use a two-phase algorithm:
 - Construct a suffix tree for the single string T_1 \$1 T_2 \$2 ... T_k \$k in time $\Theta(m)$.
 - This will end up with some invalid suffixes.
 - Do a DFS over the suffix tree and prune the invalid suffixes.
 - Runs in time O(m) if implemented intelligently.

Longest Common Substring

Consider the following problem:

Given two strings T_1 and T_2 , find the longest string w that is a substring of both T_1 and T_2 .

- Can solve in time $O(|T_1| \cdot |T_2|)$ using dynamic programming.
- Can we do better?

Longest Common Substring

nonsense\$1 012345678 offense\$2 01234567

Longest Common Substring

- Build a generalized suffix tree for T_1 and T_2 in time O(m).
- Annotate each internal node in the tree with whether that node has at least one leaf node from each of T_1 and T_2 .
 - Takes time O(m) using DFS.
- Run a DFS over the tree to find the marked node with the highest string depth.
 - Takes time O(m) using DFS
- Overall time: O(m).