Clustering

Ankit Gupta

Room E105

Email: ankit.gupta@vsb.cz, gupta.ankit894@gmail.com

Clustering

Clustering- unsupervised technique to group unlabeled samples based on similarities with the following conditions:

- 1. High intra-cluster similarity.
- 2. Low inter-cluster similarity.

For example:

1. Patient study for evaluating a new treatment protocol.

Question: How many times a patients experience symptoms and severity of symptoms?

How to reach a conclusion that this data can be clustered into n clusters?

Simpson's Family

School Employees

Females

Males

- The quality or state of being similar; likeliness; resemblance; similarity of features.
- Pragmatic Approach

Definition: Let O1 and O2 be two objects from the universe of possible objects. The distance (dissimilarity) between O1 and O2 is a real number denoted by D(O1,O2).

gene1

gene2

A few examples:

• Euclidian distance

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

• Correlation coefficient

cient
$$\sum_{i} (x_i - \mu_x)(y_i - \mu_y)$$
$$\sigma(x, y) = \frac{1}{\sigma_x \sigma_y}$$

Clustering

Partitional/Non-hierarchical

(Centroid, distribution, Density)

Hierarchical

(Agglomerative, Divisive)

Partitional/Hierarchical Clustering

Centroid Based clustering

Distribution based clustering

Density based clustering

Algorithm *k-means*

- 1. Decide on a value for *K*, the number of clusters.
- 2. Initialize the *K* cluster centers (randomly, if necessary).
- 3. Decide the class memberships of the *N* objects by assigning them to the nearest cluster center.
- 4. Re-estimate the *K* cluster centers, by assuming the memberships found above are correct.
- 5. Repeat 3 and 4 until none of the *N* objects changed membership in the last iteration.

K-means Clustering

- Data={1,2,3,5,6}
- Let's assume there are three clusters, C(i), C(j), C(k) with initial centroid as 1,3, and 5.
- Let's say we want {2} to assign a cluster from three clusters. To do that let's calculate the Euclidean distance between 2 and centroids of clusters.
- E{2,1}= $\sqrt{(2-1)^2}$ = 1, E{2,3}= $\sqrt{(2-3)^2}$ = 1, and E{2,5}= $\sqrt{(2-5)^2}$ = 9. Let's keep 2 in the cluster with centroid 1.
- New clusters are c{i}={1,2}, C{j}={3}, C{k}={5}.

K-means Clustering

- Re-estimate cluster by calculating centroid:
 - The centroid of C(i)=(1+2)/2=1.5
 - The centroid of C{j}=3 (No change since there is only one element in the set).
 - The centroid of C{k}=5 (No change since there is only one element in the set).
- Let's try to assign {6} a cluster.
- E{6,1.5}= $\sqrt{(6-1.5)^2}$ = 4.5, E{6,3}= $\sqrt{(6-3)^2}$ = 3, and E{6,5}= $\sqrt{(6-5)^2}$ = 1. 6 will be assigned to C{k}.

Update the centroids: $C\{i\}=1.5$, $C\{j\}=3$, $C\{k\}=5.5$. Keep on repeating these steps, until elements keep on shifting from one cluster to another.

Final clusters $C\{i\}=\{1,2\}, C\{j\}=3, c\{k\}=\{5,6\}.$

Agglomerative Hierarchical

The number of dendrograms with n leafs = $(2n - 3)!/[(2^{(n-2)})(n - 2)!]$

Number of Leafs	Number of Possible Dendrograms
2	1
3	3
4	15
5	105
10	34,459,425

Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Bottom-Up (agglomerative):

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Bottom-Up (agglomerative):

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Bottom-Up (agglomerative):

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Final Result

How to do it with clusters?

Problem

Distance matrix

5	
4	
3	
2	

	1	2	3	4	5
1	0	2	6	10	9
2	2	0	3	9	8
3	6	3	0	7	5
4	10	9	7	0	4
5	9	8	5	4	0

Rule: Cluster points based on minimum distance D{(i,j),k}=min (D{i,j}, D{i,k})

Example:D
$$\{(1,2),3\}$$
 = min(D $\{1,3\}$, D $\{2,3\}$)
= min(6,3)
=3

Agglomerative Clustering

	1,2	3	4	5
1,2 3 4 5	0	3	9	8
3	0 3 9 8	0	7	5
4	9	7	0	4
5	8	5	4	0

	1,2,3	4	5
1,2,3	0	7	5
4	7	0	4
5	5	4	0

1

2.

3.

Divisive Clustering (Top Down)

• It is just **opposite of agglomerative clustering** (Split the points based on dissimilarity).

Rules:

- Start with all data points in one cluster.
- **Divide the cluster into two smaller clusters** by finding dissimilar points. Repeat the process: For each of the new clusters, repeat the splitting process:
 - Choose the cluster with the most dissimilar points (opposite to what we do in agglomerative clustering).
 - Split it again into two smaller clusters.

Divisive Clustering in Action (Same Example)

Cluster splitting:

	1	2	3	4	5
1	0 2 6 10 9	2	6	10	9
1 2 3 4 5	2	0	3	9	8
3	6	3	0	7	5
4	10	9	7	0	4
5	9	8	5	4	0

Let's assume that cluster C{i} has all points:

$$C{i}={1,2,3,4,5}$$
 and another set $C{j}={}$

Calculate dissimilar points using average distance:

Dist
$$\{1\}$$
 = $(2+6+10+9)/4 = 6.75$

$$Dist{2} = (2+3+9+8)/4 = 5.5$$

$$Dist{3} = (6+3+7+5)/4 = 5.25$$

Dist
$$\{4\}$$
 = $(10+4+7+4)/4 = 7.5$

$$Dist{5} = (9+8+5+4)/4 = 6.5$$

Most dissimilar point is {4}, since it has the maximum distance.

$$C{i}={1,2,3,5}, C{j}={4}.$$

Divisive Clustering in Action (Same Example)

Cluster splitting:

	1	2	3	4	5
1	0 2 6 10 9	2	6	10	9
1 2 3 4 5	2	0	3	9	8
3	6	3	0	7	5
4	10	9	7	0	4
5	9	8	5	4	0

Calculating dissimilar points calculates the mean distance between intra-set points (C{i})— distance of current point with the points in another set (C{j}).

Calculate dissimilar points using average distance:

Dist{1}=(Dist{1,2}+Dist{1,3}+Dist{1,5})/3-Dist{1,4}/1

Dist
$$\{1\}$$
 = $(2+10+9)/3 - 10 = -3$
Dist $\{2\}$ = $(2+3+8)/3 - 9 = -4.7$
Dist $\{3\}$ = $(6+3+5)/3 - 7 = -2.4$
Dist $\{5\}$ = $(9+8+5)/3 - 4 = 3.3$

Most dissimilar point is {4}, since it has the maximum distance.

$$C{i}={1,2,3}, C{j}={4,5}.$$

Divisive Clustering in Action (Same Example)

Cluster splitting:

	1	2	3	4	5
1	0 2 6 10 9	2	6	10	9
1 2 3 4 5	2	0	3	9	8
3	6	3	0	7	5
4	10	9	7	0	4
5	9	8	5	4	0

If all distances are negative, split clusters based on the distance between pairs. Calculate dissimilar points using average distance:

 $Dist{1}=-5.5$, $Dist{2}=-4$, $Dist{3}=-1.5$.

Check the distance between the points of cluster, and split

$$C{i}={1,2,3}, C{j}={4,5}.$$

Diameter $\{4,5\}$ =Dist $\{4,5\}$ =4

Diameter({1,2,3})=max{Dist{1,2}, Dist{2,3}, Dist{1,3}}

Diameter($\{1,2,3\}$)= $\{2,3,6\}$ = $\{6\}$

Split $\{1\}$ and $\{3\}$ into two clusters $C\{i\}=\{1,2\}, C\{j\}=\{4,5\}, C\{k\}=\{3\}.$

Final Result

1.

2.

3.

Let's try some code!!! GitHub