Filtro de Kalman - Processos Estocásticos

Cristyan Lisbôa

I. INTRODUÇÃO

O filtro desenvolvido por Rudolf Kalman, em 1960, sem dúvida é uma das principais ferramentas teóricas responsáveis por levar o homem à Lua. Em seu famoso artigo entitulado "Uma Nova Abordagem para Filtragem Linear e Problemas de Predição", Kalman propôs um estimador linear recursivo ótimo capaz de extrair informação útil a partir de medidas com ruídos gaussianos e, dessa forma, estimar os estados de um sistema linear variante no tempo [1]. Sob a ótica da teoria de controle, a vantagem mais explícita do filtro de Kalman (FK) é que ele pode ser utilizado como estimador de estados mesmo quando sistema está sujeito a ruído branco aditivo, o que não é caso do clássico observador de Luenberger. Atualmente, o filtro está presente em uma ampla gama de aplicações da engenharia, por exemplo: em sistemas rastramento e localização, fusão de sensores, síntese de observadores de estado, detecção de falhas, processamento de sinais, robótica, visão computacional, entre outros.

Sob a ótica da teoria de filtragem, assim como o estimador de mínimos quadrados, o FK consiste em um estimador não polarizado que minimiza o erro médio quadrático. Em comparação com os filtros calculados com base em funções de autocorrelação (que satisfazem as equações de Wiener-Hopf), ele apresenta duas vantagens: a dimensionalidade e estacionariedade. No FK o número de equações para projetar os coeficientes é independente da quantidade de dados observados e a premissa de processos estocásticos estacionários não é necessária, ou seja, pode lidar com processos de média variável. Por outro lado, uma desvantagem é a necessidade de mais informações sobre o sinal, pois ele requer o conhecimento do modelo linear que deu origem ao sinal a ser filtrado [2].

Na maioria da aplicações práticas do FK ele é implementado na forma de um algoritmo iterativo, em tempo real, cuja ideia básica é o uso de informações do passo anterior e da medida corrente do estado na estimativa de seu valor atual [3]. Tipicamente, o FK apresenta uma estrutura do tipo predição-correção (ou propagação-assimilação), isto é, a estimativa do estado é realizada em duas etapas. Na estimativa *a priori*, também chamada de etapa de predição, o estado atual é estimado com base no modelo linear e do estado anterior. Já na estimativa *a posteriori*, também chamada de etapa de correção, o estado corrente é estimado combinando a estimativa *a priori* com a medida do estado atual. Esse mecanismo de recursão, que tem com objetivo aprimorar a estimativa do estado a partir de uma nova medida, é ponto central do FK [1].

Da forma como proposto inicialmente, o FK aplica-se apenas para sistemas lineares. Contudo, a literatura já apresenta algumas extensões no caso de sistemas não lineares, cada uma com suas premissas de aplicação, vantagens e desvantagens. Uma das mais conhecidas é o chamado FK Extendido, que lineariza o sistema não linear no entorno do estado atual para então aplicar as equações do FK. Já o FK *Unscented* visa determinar estatísticas de uma variável aleatória sob uma transformação não linear para então calcular a matriz de covariância do erro de estimação e a média de vetores propagados pelo modelo não linear. Além destas duas possibilidades, pode-se mencionar: FK Extendido Invariante, Duplo FK Extendido, FK *Quaternion*, entre outros.

A essência do FK pode ser verificada através de um exemplo simples. Suponha, inicialmente, que se deseja determinar a temperatura x (constante) de um objeto. Para isso, obtém-se uma medida y_1 através de um sensor. Em teoria, se a confiança no sensor é absoluta, então a temperatura x seria exatamente igual y_1 . Na prática, isso raramente acontece, pois existe algum nível de incerteza associado a observação y_1 . Tomando-se outra observação y2 com um instrumento diferente, é possível combinar ambas as medidas y_1 e y_2 para estimar a temperatura do objeto. Assumindo que as observações de cada um dos sensores segue uma distribuição condicional gaussiana, uma interpretação gráfica segue na Figura 1. Em preto, observa-se a distribuição $f_1(x|y_1)$ e em vermelho a distribuição $f_2(x|y_2)$, que apresenta menor variância. Já a curva em azul ilustra a distribuição condicional $f_3(x|y_1, y_2)$ resultante da utilização em ambas as medidas.

Figura 1. Ideia do FK.

No caso particular dos sensores apresentarem mesmo nível de precisão, então uma estimativa plausível da temperatura x pode ser construída através $\hat{x}=0,5y_1+0,5y_2$. Por outro lado, como as variâncias são distintas, uma alternativa é ponderar as duas medidas da seguinte maneira:

$$\begin{cases} \hat{x}_1 = y_1 \\ \hat{x}_2 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} y_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} y_2 \end{cases}$$
 (1)

onde σ_1 e σ_2 são as variâncias dos sensores. Deste modo, a estimativa \hat{x}_2 fornece maior ponderação para o sensor com maior precisão, isto é, com menor variância. Esse comportamento é o que justifica a curva em azul estar mais próximo

de 2 do que de 1. A partir deste ponto, pode-se reescrever (1) através de manipulações algébricas simples gerando

$$\begin{cases} \hat{x}_1 = y_1 \\ \hat{x}_2 = \hat{x}_1 + K(y_2 - \hat{x}_1) \\ K = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \end{cases}$$
 (2)

Uma interpretação de (2) é que a estimativa \hat{x}_2 é o resultado da estimativa anterior \hat{x}_1 , mais um fator de correção devido a medida y_2 . É importante destacar que caso a observação y_2 seja igual a anterior, não há necessidade de correção uma vez que o desvio é zero. Em outras palavras, a estimativa \hat{x}_2 incorpora na estimativa a priori y_1 informação nova através do termo de correção constituindo, portanto, a estimativa a posteriori \hat{x}_2 . Este exemplo foi adaptado de [4] e serve como uma breve introdução aos elementos do FK no caso estático.

Em resumo, a ideia central deste trabalho consiste em projetar um FK capaz de recuperar um sinal senoidal de período conhecido corrompido por ruído branco. Os resultados numéricos foram realizados com auxílio do *software* MATLAB, da empresa MathWoks Inc. Maiores detalhes do problema a ser resolvido estão especificados na seção a seguir.

II. APRESENTAÇÃO DO PROBLEMA

O problema a ser resolvido pode ser interpretado a partir do diagrama de blocos da Figura 2. O objetivo é determinar um estimador \hat{z}_k para o sinal z_k tendo acesso apenas as medidas y_k corrompidas pelo ruído v_k . O sinal z_k e o processo estocástico v_k são descorrelacionados, isto é, $\mathbb{E}[z_k v_k] = 0$ para todo k. Neste caso, h_β consiste em um filtro e z_k é um sinal senoidal de amplitude e fase desconhecida, mas com período fundamental T=100 amostras.

Figura 2. Diagrama de blocos.

No caso do FK, é possível estabelecer o diagrama de blocos da Figura 3. O objetivo continua sendo a mesmo, a diferença é que agora na própria formulação do problema é utilizado o conhecimento da estrutura que deu origem ao sinal z_k (modelo dinâmico) com duas fontes de ruído gaussiano independentes w_k e v_k . Além disso, também serão realizados alguns experimentos numéricos para determinar influência dos parâmetros do FK na qualidade da estimativa \hat{z}_k . Os principais elementos teóricos são apresentados na seção a seguir.

Figura 3. Diagrama de blocos do FK.

III. FUNDAMENTAÇÃO TEÓRICA

O FK considera que o sinal z_k é obtido a partir do seguinte sistema linear de tempo discreto:

$$\begin{cases} x_{k|k-1} = Ax_{k-1} + Bu_{k-1} + w_{k-1} \\ z_k = Cx_k \\ y_k = z_k + v_k \end{cases}$$
 (3)

onde (A, B, C) são matrizes reais e constantes que especificam a dinâmica do sistema; $x_k \in \mathbb{R}^n$ é vetor de estados no instante k; w e v são variáveis aleatórias independentes, respectivamente, o ruído de processo e o ruído de medição; $u_k \in \mathbb{R}^m$ é o sinal de controle e $y_k \in \mathbb{R}^p$ é a saída medida. Assim, tanto x_k quanto y_k são processos estocásticos de tempo discreto. Por definição, o FK é um estimador linear ótimo de estados para sistemas lineares variantes no tempo que tem acesso apenas as medidas y_k sem atraso. Em (3) a dependência das amostras nas matrizes foi omitida pois é suficiente, para o escopo deste trabalho, um modelo invariante no tempo. O sentido de otimalidade é porque ele minimiza o erro médio quadrático (mean square error - MSE), ou seja, produz a estimativa de variância mínima. Além disso, assume-se que os seguintes pressupostos são verificados pelo FK [5]:

$$\begin{cases} \mathbb{E}[w_i w_j^\top] = 0 \ \forall i \neq j, \quad \mathbb{E}[w_k w_k^\top] = Q_k \ \forall k \in \mathbb{Z} \\ \mathbb{E}[v_i v_j^\top] = 0 \ \forall i \neq j, \quad \mathbb{E}[v_k v_k^\top] = R_k \ \forall k \in \mathbb{Z} \\ \mathbb{E}[w_i v_j^\top] = 0 \ \forall i, j \in \mathbb{Z}, \ \mathbb{E}[x_0 w_i^\top] = \mathbb{E}[x_0 v_i^\top] \ \forall i \in \mathbb{Z} \end{cases}$$

onde $w \sim \mathcal{N}(0, Q_k)$ e $v \sim \mathcal{N}(0, R_k)$ são descorrelacionados, sendo Q_k e R_k matrizes simétricas positiva definidas. A partir destes elementos, pode-se definir a sequência de operações do FK na forma do seguinte algoritmo:

- 1 Estimativa a priori do estado $\hat{x}_{k|k-1} = A\hat{x}_{k-1} + Bu_{k-1}$
- 2 Estimativa a priori da matrix de covariância do erro $P_{k|k-1} = AP_{k-1}A^\top + Q_{k-1}$
- 3 Ganho de Kalman

$$K_k = P_{k|k-1}C^{\top}(CP_{k|k-1}C^{\top} + R_k)^{-1}$$

- 4 Estimativa a posteriori do estado e da saída $\hat{x}_k = \hat{x}_{k|k-1} + K_k(y_k C\hat{x}_{k|k-1})$ $\hat{z}_k = C\hat{x}_k$
- 5 Estimativa a posteriori da matrix de covariância do erro $P_k = (I K_k C) P_{k|k-1}$

sendo $P_k = \mathbb{E}[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^{\top}] \geq 0$ a matriz de covariância do erro de estimação $e_k = x_k - \hat{x}_k$, o qual satisfaz $\mathbb{E}[e_k] = \mathbb{E}[e_k y_k^{\top}] = \mathbb{E}[e_k \hat{z}_k^{\top}] = 0$; $y_k - C\hat{x}_{k|k-1}$ o termo de inovação ou resíduo; K_k o ganho do FK; $\hat{x}_{k,1}$ a estimativa *a priori* ou o estado predito e \hat{x}_k a estimativa *a posteriori* ou o estado estimado [6]. Para deduzir o ganho de Kalman, que verifica a condição de ortogonalidade, a ideia é minimizar a função $J = \mathbb{E}[e_k e_k^{\top}] = tr(P_k)$ com respeito a K_k . O primeiro passo é reescrever P_k na forma Joseph, a qual garante a positividade de P_k , e substituir no critério J. O segundo passo é derivar e igual a zero. Por último, ao realizar algumas manipulações algébricas simples, obtém-se o ganho ótimo demonstrado no terceiro passo do algoritmo acima [5].

Além disso, também foram realizadas análises simples a partir do projeto do filtro com base no método de correlação (estudado em aula). O primeiro passo é determinar a amplitude da senoíde, por exemplo, através da Transformade de Furier. Contudo, como existe ruído e o problema de vazamento espectral (leaking) ocasionado pela janela finita de dados, a estimativa foi relizada aplicando-se uma busca local baseada em grade centrada no valor de pico da densidade espectral de potência $\max\{S_y(f)\}$. A figura de mérito utilizada foi o MSE do filtro resultante. Já para o cômputo dos coeficientes do filtro h_{β} , utilizou-se as equações de Wiener-Hopf como segue [4]:

$$r_{zy}(k) = \sum_{i=0}^{\infty} h(i)r_{yy}(k-i)$$
 (4)

onde r_{yy} é a função autocorrelação de y e r_{zy} é a função de correlação cruzada entre z e y. Como o ruído e o sinal determinístico são descorrelacionados, tem-se que $r_{zy}=r_{zz}$. Assim, uma vez que a amplitude já foi estimada, é possível utilizar a expressão $r_{zz}(k)=\frac{A}{2}\cos\left(\frac{2\pi}{T}k\right)$ para calcular a autocorrelação de um sinal senoidal de fase desconhecida entre $[-\pi,\pi]$, sendo T o período do sinal. Finalizada esta etapa, o lado esquerdo de (4) está determinado.

Em seguida, deve-se calcular a autocorrelação r_{yy} utilizando a expressão

$$r_{yy}(k) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{i=-N}^{N} y(i)y(i+k)$$
 (5)

onde N é um valor real positivo elevado. Para implementar computacionalmente, deve-se aplicar um estimador consistente da autocorrelação capaz de lidar com séries finitas de dados, tais como:

$$\hat{r}_{yy}(k) = \frac{1}{N} \sum_{i=1}^{N-k} y(i)y(i+k) \quad k = [0, 1, \dots, N-1] \quad (6)$$

$$\hat{r}_{yy}(k) = \frac{1}{N-k} \sum_{i=1}^{N-k} y(i)y(i+k) \quad k = [0, 1, \dots, N-1]$$

onde (6) é um estimador polarizado com variância que decresce com o aumento de N; (7) é um estimador não polarizado cuja variância aumenta na medida em que k se aproxima de N já que menos dados são utilizados e N consiste na ordem do filtro, isto é, a quantidade de coeficientes a ser calculado. Uma discussão sobre este comportamento pode ser encontrado em [7].

A última etapa é realizada organizando os dados calculados na forma matricial-vetorial

$$\mathbf{r}_{\mathbf{z}\mathbf{y}} = R_{yy}\mathbf{h} \tag{8}$$

sendo os coeficientes h obtidos via deconvolução $\mathbf{h} = R_{yy}^{-1}\mathbf{r}_{\mathbf{z}\mathbf{y}}$ se R_{yy} for uma matriz quadrada não singular, ou seja, com N+1 colunas linearmente independentes. Finalmente, uma das métricas utilizadas para avaliar o desempenho dos estimadores projetados foi através do MSE calculado da seguinte maneira:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (z_k - \hat{z}_k)^2.$$
 (9)

IV. RESULTADOS NUMÉRICOS

Nesta seção são demonstrados alguns exemplos numéricos com o objetivo de avaliar a influência dos parâmetros no desempenho do filtro. Na primeira parte são demonstrados os resultados com o projeto baseado em funções correlação, já na segunda são ilustrados aqueles com base no FK.

O primeiro experimento consiste em estimar a amplitude da senóide. A Figura 4 ilustra os dados y_k no gráfico superior e o espectro do sinal no gráfico inferior. Em primeiro lugar, note que o pico ocorre no ponto $(f \ S_y(f)) = (0,0105 \ 0,97236)$. Assim, no entorno de $\max\{S_y(f)\}$ aplicou-se um grid com os valores apresentados na Tabela I.

Figura 4. Dados do experimento e espectro do sinal.

O parâmetro γ , que aparece na primeira coluna da Tabela I, é um escalar que multiplica $\max\{S_y(f)\}$. Já na segunda coluna consta o valor do MSE calculado conforme a expressão a seguir [2]:

$$\mathbb{E}[e_k^2] = r_{zz}(0) - \sum_{\beta=0}^{N} h_{\beta} r_{zz}(\beta).$$
 (10)

Com base nestes elementos, o valor que fornece o menor MSE ocorre com A=1,1668 sendo esta a amplitude estimada do sinal senoidal z_k com período T=95,24. Este resultado foi coletado utilizando um filtro de ordem N=40, o que corresponde a 2% do tamanho da amostra de dados.

Tabela I Busca no entorno do ponto máximo do espectro

•	OMING DO I ON	
	Valor de γ	$\mathbb{E}[e_k^2]$
	0,8	0,1362
	0,9	0,1178
	1,0	0,0916
	1,1	0,0574
	1,2	0,0154

O segundo experimento consiste em demonstrar a influência da ordem do filtro e do estimador \hat{r}_{yy} da autocorrelação r_{yy} . A Figura 5 ilustra a autocorrelação r_{zz} em vermelho, a estimativa não polarizada em preto e a estimativa polarizada em azul. Observe que para valores de k até 400 amostras, ambas as estimativas estão compatíveis com a correlação r_{zz} com excessão do valor inicial que é corrompido pela autocorrelação do ruído $r_{vv}(k) = \sigma_v^2 \delta(k)$. Já para valores maiores, a estimativa não polarizada fica mais próxima de r_{zz} ,

ao passo que a estimativa polarizada tende a zero. Além disso, nota-se que para valores de k maiores que 1500 (próximo à borda da janela de dados), a estimativa não polarizada aumenta sua distorção. Esses comportamentos são resultados do aumento da variância do estimador não polarizado e da redução da variância do estimador polarizado. A consequência disso é que os filtros projetados a partir destes estimadores devem apresentar desempenho distintos conforme a ordem escolhida.

Figura 5. Autocorrelação.

O terceiro experimento visa ilustrar a influência da variação da ordem do filtro para os dois estimadores. A ideia é que se a estimativa for boa, então ao analisar o espectro de frequências do erro, ou seja, da diferença entre y_k e \hat{z}_k , o resultado seja um espectro parecido ao de um ruído branco teórico. Assim, registrou-se na Tabela II o valor de pico $\max\{S_e(f)\}$ para diferentes valores de N. Observa-se que o menor valor ocorre com um filtro de ordem N=36 em ambos os casos, ao passo que o maior ocorre em ordens distintas. Além disso, é possível verificar que o pico tem crescimento não linear com a ordem do filtro, porém para ordens maiores que 200 o estimador com base em (7) tem desempenho pior.

Tabela II Pico do espectro de frequências do erro.

ICO DO ESI ECTRO DE TREQUENCIAS DO ERRO							
N	$\max\{S_e(f)\}^{\mathrm{u}}$	$\max\{S_e(f)\}^{b}$					
4	0,1856	0,1852					
20	0,1838	0,1837					
36	0,1031	0,1031					
50	0,3087	0,3125					
100	0,9228	0,9405					
150	0,7987	0,7816					
200	1,0875	1,1000					
300	1,1936	1,1728					
350	1,8618	0,9480					
500	4,8506	1,1801					

Para os casos N=350 e N=36, a Figura 6 ilustra o resultado da estimação. O gráfico superior mostra os resultados calculados utilizando (7) e o gráfico inferior empregando (6). Nota-se que em ambos os cenários ocorre deterioração de desempenho com o aumento da ordem do filtro, sendo mais evidente no caso não polarizado. Ao realizar o espectro de frequências do erro, demonstrado no Figura 7, observa-se que com a ordem maior ocorre um residual no erro próximo da frequência do sinal z_k . Já com a ordem menor este residual

é eliminado restando apenas a componentes do ruído, o que explica o melhor desempenho na Figura 6.

Figura 6. Variação da ordem do filtro.

Figura 7. Espectro do erro de estimação.

A partir de agora são demonstrados os resultados do FK. O projeto do filtro inicia a partir da determinação das matrizes $(A,\,B,\,C)$ que especificam a dinâmica do filtro. Com base na informação de que z_k se trata de uma senóide com período conhecido, é possível implementar o seguinte modelo de referência (na forma canônica controlável) a partir da transformada de Laplace de um sinal senoidal:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x \end{cases}$$
 (11)

onde $\omega=2\pi/T$ é frequência angular em radianos por segundo. Efetuando-se uma discretização com período de amostragem $T_s=100s$ do modelo (11) através do segurador de ordem zero, que mantém constante a amplitude entre dois instantes de amostragem, obtém-se as seguintes matrizes do modelo em tempo discreto (3):

$$\begin{cases} A = \begin{bmatrix} 0,9978 & -0,2649 \\ 0,0166 & 0,9978 \end{bmatrix} & B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \quad (12)$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

A partir disso, o primeiro experimento consiste em avaliar a influência das matrizes de covariância do ruído de processo e de medição. Neste caso, selecionando os parâmetros $\hat{x}_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\top$ e $P_0 = 10^{-3}I$ foi possível elaborar a Tabela III. O MSE foi calculado somando-se o valor do $tr(P_k)$ e dividindo por n. Em primeiro lugar, verifica-se que quando os autovalores de Q são muito menores que os R, então o

MSE é pequeno. Isso é explicado pois o filtro prioriza a etapa de predição em detrimento a de correção, já que em regime permanente os ganhos do filtro assumem valores pequenos. O mesmo comportamento acontece com o incremento dos autovalores da matriz R, conforme demonstrado na última coluna da tabela. Esse resultado indica que existe uma solução de compromisso na escolha das matrizes Q e R que produzam uma solução razoável. A Figura 8 fornece uma representação gráfica do comportamento observado. Por último, é importante destacar que o modelo interno utilizado apresenta incerteza associado a amplitude e fase da senóide.

Tabela III								
	Influência das matrizes de covariância.							
\overline{R}	Q	MSE	Q	R	MSE			
	$10^{-5}I$	0,0118		10^{-3}	0,0439			
	$10^{-4}I$	0,0357		10^{-1}	0,0888			
1,	$1 10^{-3}I$	0,0971	$10^{-2}I$	10^{0}	0,2454			
	$10^{-2}I$	0,2582		10^{1}	0,9172			

0,9177

 10^{2}

3,3816

Tabala III

Figura 8. Matrizes de covariância.

No intuito de ilustrar o resultado da estimação ao longo das amostras foram selecionados os casos R = 1,1 e Q = $\{10^{-5}I, 10^{-1}I\}$ da Tabela III. Dessa forma, ao simular o FK para cada um dos cenários especificados é possível comparar qual o efeito destes parâmetros na qualidade da estimação. A Figura 9 demonstra os resultados \hat{z}_k em vermelho para $Q = 10^{-1}I$ e em azul para $Q = 10^{-5}I$. Nota-se, no caso dos autovalores maiores, que a etapa de assimilação tem maior contribuição na estimativa e, como ela apresenta ruído, o sinal resultante acompanha y_k . Por outro lado, ao priorizar a etapa de propagação observa-se que \hat{z}_k foi capaz de atenuar o ruído gerando uma estimativa de melhor qualidade. Ao reduzir ainda mais os autovalores de Q, a incerteza associada a fase do sinal senoidal fica mais evidente na estimativa \hat{z}_k , uma vez que o modelo considera T=100 e não T=95,24 como determinado no espectro de y_k da Figura 4.

Figura 9. Variação das matrizes de covariância do processo.

O segundo experimento tem como objetivo avaliar a influência da matriz de covariância do erro de estimação P_0 . Aos parâmetros Q, R e \hat{x}_0 foram definidos os valores $10^{-3}I$, $1, 1 \in [5 \quad 0]^{\top}$, respectivamente. Considerando um intervalo de simulação de $k = \begin{bmatrix} 1 & 600 \end{bmatrix}$, determinou-se o tempo de acomodação T_a , em número de amostras, do erro de estimação com diferente inicializações de P_0 . Ele foi calculado com base na quantidade de amostras necessárias para que o $tr(P_k)$ permaneça dentro de uma faixa de 10% em torno do valor final do regime permanente. Os resultados foram registrados na Tabela IV. É possível constatar que autovalores maiores de P_0 implicam em menor tempo de acomodação no intervalo avaliado. Assim, P_0 influencia apenas no regime transitório já que em todos os casos $tr(P_k)$ converge para o mesmo valor de regime 0,0144. A Figura 10 ilustra o aumento do regime transitório (degradação de desempenho) para diferentes valores de P_0 .

Tabela IV INFLUÊNCIA DA MATRIZ DE COVARIÂNCIA DO ERRO. $\frac{P_0}{10^{-6}I} \frac{T_a}{243}$ $10^{-5}I \qquad 242$ $10^{-4}I \qquad 237$ $9\times 10^{-3}I \qquad 217$ $8\times 10^{-3}I \qquad 216$ $7\times 10^{-3}I \qquad 215$ $6\times 10^{-3}I \qquad 214$ $5\times 10^{-3}I \qquad 173$

Figura 10. Variação da matriz de covariância do erro de estimação.

Outro aspectro que também foi investigado trata-se da condição inicial do estimador. Selecionando os parâmetros $Q = 10^{-5}I$, R = 1, 1, $P_0 = 10^{-1}I$ e $\hat{x}_0 = [\hat{x}_1(0) \ 0]^{\top}$, a Figura 11 demonstra o resultado da estimação para três valores de $\hat{x}_1(0)$ distintos. À esquerda, é possível notar um comportamento semelhante ao que acontece com a covariância do erro de estimação, uma vez que ocorre influência apenas no regime transitório. Em particular, quanto mais distante for a condição inicial do valor observado, maior é o regime transitório. A consequência disso é perceptível no gráfico da direita, o qual ilustra o espectro do erro de estimação. Nota-se que o residual do erro no entorno da frequência da senóide é tão maior quanto mais distante for \hat{x}_1 do valor medido. Uma inicialização trivial é considerar $\hat{x}_1(0)$ igual ao valor y_0 , ou ainda $\hat{x}_0 = 0$. Neste último caso, a estimativa seguinte \hat{x}_1 é uma combinação linear apenas das medidas y_1 se $u_0 = 0$.

Figura 11. Variação da condição inicial.

O que acontece com o desempenho do filtro ao utilizar um ganho que não seja o de Kalman? Para responder esta pergunta foi elaborada a Figura 12 com os mesmos parâmetros do experimento anterior e $\hat{x}_1(0) = 1$. Em primeiro lugar, é válido mencionar que filtro resultante não é ótimo no sentido de mínima variância. Além disso, é necessário que as condições de estabilidade do filtro sejam mantidas, ou seja, que os autovalores de A - KC estejam contidos no círculo unitário. Nota-se, no primeiro cenário, que a estimativa acompanha y_k gerando um comportamento do tipo passaalta, uma que ocorre atenuação das baixas frequências no gráfico à direita. Por outro lado, no segundo cenário com [-0,2], existe um residual no espectro do erro K = [0, 1]no entorno da frequência da senóide z_k , o que explica o comportamento oscilatório observado no gráfico à esquerda. Com o ganho de Kalman restam apenas as componentes do ruído no espectro de frequências, sendo este o motivo do melhor desempenho no gráfico à esquerda.

Figura 12. Resultado com ganhos arbitrários.

A proposta do último experimento consiste em avaliar a influência da variação de incerteza no modelo interno. Para isso, foi utilizado um escalar α positivo que multiplica a matriz A em (12). Os parâmetros selecionados foram os mesmos do experimento anterior, isto é, o filtro prioriza a etapa de propagação, e os cenários avaliados foram $\alpha = \{0,95 \quad 1,2\}$. No primeiro caso, é possível observar que o espectro do erro é praticamente igual ao de y_k . Isso significa que a estimativa \hat{z}_k tende a zero rapidamente, pois o módulo dos autovalores de αA é menor que de A. Para corrigir este comportamento uma alternativa seria aumentar os autovalores de Q, forçando o filtro a corrigir mais. Já no segundo cenário, a estimativa tem espectro de baixa magnitude em algumas frequências, por

exemplo em $f = \{0, 01 \quad 0, 1\}$, indicando que as componentes do ruído no entorno desta frequência vão estar presentes na estimativa \hat{z}_k . Isso é justamente o que explica as oscilações do observadas no gráfico da direita.

Figura 13. Variação do modelo interno.

V. Conclusão

O desenvolvimento deste trabalho proporcionou o estudo de filtros ótimos lineares projetados com base em funções de correlação e do FK. No primeiro caso, foi avaliado o impacto da amplitude da senóide estimada; dos estimadores empregados para cálculo da correlação e da ordem do filtro. No segundo caso, os princípios teóricos que caracterizam o FK foram brevemente mencionados ao longo da Seção III. Além disso, diversas simulações numéricas foram implementadas no intuito de caracterizar o efeito dos parâmetros do FK, em particular, das matrizes de covariância do ruído de processo e de medição; da matriz de covariância do erro de estimação; da condição inicial do estimador; comparação com ganhos arbitrários e da variação do modelo interno. Por último, é válido mencionar que todo material resultante deste artigo pode ser consultado em [8].

AGRADECIMENTOS

O autor agradece a oportunidade de realização deste trabalho ao professor Dr. Alexandre Sanfelice Bazanella, pois o desenvolvimento deste relatório oportunizou a leitura e o estudo de diferentes temas da área de processos estocásticos, tais como: filtros complementares, filtro de partículas, extensões do filtro de Kalman, problemas numéricos e decomposições matriciais, entre outros.

REFERÊNCIAS

- M. B. Rhudy, R. A. Salguero, and K. Holappa, "A kalman filtering tutorial for undergraduate students," *International Journal of Computer Science & Engineering Survey*, vol. 8, no. 1, pp. 1–18, February 2017.
- [2] A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd ed. USA: Prentice Hall, 2008.
- [3] L. Wang and R. P. Guan, State Feedback Control and Kalman Filtering with MATLAB/Simulink Tutorials. John Wiley & Sons, 2022.
- [4] L. A. Aguirre, Introdução à identificação de sistemas: técnicas lineares e não-lineares aplicadas a sistemas reais, 4th ed. Ed. UFMG, 2004.
- [5] M. Grewal and A. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 4th ed., ser. IEEE Press. Wiley, 2011.
- [6] B. Anderson and J. Moore, Optimal Filtering, ser. Information and system sciences series. Prentice-Hall, 1979.
- [7] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications. USA: Prentice-Hall, Inc., 1996.
- [8] C. Lisbôa. (2022) Filtro de Kalman. [Online]. Available: https://github.com/Cristyan-Lisboa/Kalman