CENG 213 Veri Yapıları 5: AVL Ağaçları

Öğr.Gör. Şevket Umut ÇAKIR

Pamukkale Üniversitesi

Hafta 5

Anahat

- AVL Ağaçları
 - AVL Ağaçları Tanım
 - AVL Ağacı Ekleme
 - Silme

Dengeli Ağaçlar

 Yukardaki n elemanlı ikili arama ağaçlarda arama ve ekleme işlemleri en iyi ve en kötü durumda kaç adımda yapılır?

- İsmini geliştiricileri olan Adelson-Velskii ve Landis'den almıştır
- Dengeli bir ikili arama ağacıdır
- Dengeleme işlemi ekleme ve silme sırasında yapılır
- Her düğüm için denge faktörü -1'den küçük veya 1'den büyük olamaz
- Denge faktörü bir düğümün hangi yöne yatık olduğunu gösterir

Denge Faktörü

Yükseklik

Bir düğümün yüksekliği düğüm ile soyundan gelen yapraklardan en uzağı arasındaki mesafedir.

Denge Faktörü

Sağ çocuğun yüksekliği ile sol çocuğun yüksekliği arasındaki farktır.

Denge Faktörü/Balance Factor

Şekil: AVL Ağacı(Dengeli İkili Arama Ağacı)

Denge Faktörü/Balance Factor

Şekil: AVL Ağacı(Dengeli İkili Arama Ağacı)

Şekil: AVL Ağacıdır

Şekil: AVL Ağacı değildir

Ekleme

- Ekleme işlemi ikili arama ağaçlarındaki gibidir
- Ekleme işlemi sırasında denge bozulabilir
- Dengesi bozulan düğümler eklenen düğümden köke kadarki yolda olacaktır
- Dengenin tekrar sağlanması için döndürme işlemleri yapılır
- 4 farklı durum ortaya çıkabilir
- Tekli veya ikili döndürme ile ağaç tekrar dengelenir

Ekleme

- Yeni eklenen düğümden köke doğru gittikçe dengesi bozulan ilk düğüm α olsun
- 4 farklı ekleme biçiminden ötürü denge bozulmuş olabilir:
 - $oldsymbol{0}$ α 'nın sol çocuğunun soluna ekleme
 - $\mathbf{2} \ \alpha$ 'nın sol çocuğunun sağına ekleme
 - $oldsymbol{\circ}$ α 'nın sağ çocuğunun soluna ekleme
 - $oldsymbol{a}$ 'nın sağ çocuğunun sağına ekleme
- Durum 1 ve 4 tekli döndürme ile düzeltilebilir
- Durum 2 ve 3 için çift döndürme gereklidir

Tekli Döndürme(Sağa)

Şekil: Durum 1'in çözümü

Tekli Döndürme(Sağa)

Şekil: Durum 1'in çözümü

Tekli Döndürme(Sola)

Şekil: Durum 4'ün çözümü

Tekli Döndürme(Sola)

Şekil: Durum 4'ün çözümü

Çift Döndürme(sol, sağ)

Şekil: Durum 2'nin çözümü

Çift Döndürme(sol, sağ)

Şekil: Durum 2'nin çözümü

Çift Döndürme(sağ, sol)

Şekil: Durum 3'ün çözümü

Çift Döndürme(sağ, sol)

Şekil: Durum 3'ün çözümü

Durum 3 Örnek

Bir AVL ağacına 3, 2, 1, 4, 5, 6, 7, 16, 15, 14, 13, 12, 11, 10, 8, 9 değerlerini sırasıla ekleyelim.

Şekil: Sola döndür

Şekil: Mavi sağa, sonra kırmızı sola

Şekil: Tüm ağacı sola döndür

Şekil: Tüm ağacı sola döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Sağa döndür

Şekil: Kırmızı sola, mavi sağa

Soru

13, 21, 45, 8, 10, 65, 7, 4, 16, 46, 15 değerlerini sırasıyla AVL ağacına ekleyin.

Soru

13, 21, 45, 8, 10, 65, 7, 4, 16, 46, 15 değerlerini sırasıyla AVL ağacına ekleyin.

Şekil: Değerler eklenince ortaya çıkan AVL Ağacı

Silme İşlemi

- Silinecek düğüm w olsun
- w düğümünü ikili arama ağacındaki gibi sil
- w'dan köke doğru ilk dengesiz z düğümünü bul
- y, z'nin yüksek çocuğu olsun
- x, y'nin yüksek çocuğu olsun
- 4 farklı durum ortaya çıkmaktadır

Sol'un solu durumu

Şekil: Sağa döndürme

Sol'un sağı durumu

Şekil: Önce sola sonra sağa döndürme

Sağ'ın sağı durumu

Sağ'ın solu durumu

Şekil: Önce sağa sonra sola döndürme

Şekil: Sola döndürme

Şekil: Sola döndürme

Şekil: 32 silindikten sonra ağaç dengelendi

Görselleştirme

- https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
- https://visualgo.net/bn/bst

THE MAIN PRINCIPLES OF SOFTWARE ENGINEERING

PART 1

