Pushdown Automata

- The table-driven predictive parser is a specific example of a class of automata called pushdown automata (PDA) that recognize exactly the class of context-free languages.
 - The generalizations come in several areas.
 - The set of PDA (Q) can differ from the non-terminals of the grammar.
 - The stack symbols can be drawn from another alphabet Γ .
 - The actions taken for (X, a) combinations are generalized to be mappings from $Q \times F \times \Gamma$ to finite subsets of $Q \times \Gamma^*$.

Pushdown Automata

- The table-driven predictive parser is a specific example of a class of automata called pushdown automata (PDA) that recognize exactly the class of context-free languages.
 - The generalizations come in several areas.
 - The set of PDA (Q) can differ from the non-terminals of the grammar.
 - The stack symbols can be drawn from another alphabet Γ .
 - The actions taken for (X, a) combinations are generalized to be mappings from $Q \times F \times \Gamma$ to finite subsets of $Q \times \Gamma^*$.
- As in the case of finite automata, PDAs can come in deterministic or non-deterministic flavors.
 - Non-deterministic PDAs are more powerful than deterministic PDAs.

Towards Grammar Flow Graphs

- Is there a graphical interpretation equivalent to PDAs, just as there was for finite automata?
 - Yes, it's called a Grammar Flow Graph (GFG).
 - It's a little more complicated than the graph of a FA, because we need to split the *finite* structure of the graph (the states) from the *unbounded* amount of memory of the input prefix that it needs to retain (the stack).

Towards Grammar Flow Graphs

- Is there a graphical interpretation equivalent to PDAs, just as there was for finite automata?
 - Yes, it's called a Grammar Flow Graph (GFG).
 - It's a little more complicated than the graph of a FA, because we need to split the *finite* structure of the graph (the states) from the *unbounded* amount of memory of the input prefix that it needs to retain (the stack).

Game plan

- Introduce the structure of GFGs as a graphical representation of a CFG.
- Show why an NFA simulation of the GFG (i.e., treating acceptance as a simple path problem) is insufficient and inaccurate.
- Introduce the the NGA and its inherently non-deterministic semantics.

Towards Grammar Flow Graphs

- Is there a graphical interpretation equivalent to PDAs, just as there was for finite automata?
 - Yes, it's called a Grammar Flow Graph (GFG).
 - It's a little more complicated than the graph of a FA, because we need to split the *finite* structure of the graph (the states) from the *unbounded* amount of memory of the input prefix that it needs to retain (the stack).

Game plan

- Introduce the structure of GFGs as a graphical representation of a CFG.
- Show why an NFA simulation of the GFG (i.e., treating acceptance as a simple path problem) is insufficient and inaccurate.
- Introduce the the NGA and its inherently non-deterministic semantics.
- Show a correct way to formulate acceptance as a path problem using tags (Earley's algorithm).
- Cast other parsing algorithms in the GFG framework.
- Show how the GFG devolves to a FA for right-linear grammars.

An Example GFG (Nodes Only)

S→Ab | bA A→bb .S

S→.Ab

A→.bb

S→b.A

S→.bA

S→A.b

A→b.b

S→Ab.

A→bb.

S→bA.

A.

S.

An Example GFG (Nodes + Edges)

S→Ab | bA A→bb

NFA Interpretation of GFG Is Incorrect

NFA Interpretation of GFG Is Incorrect

GFG Terminology

Key property: Call and return nodes come in matched pairs.

Nondeterministic GFG Automaton (NGA)

- Given: a CFG G = (N, T, P, S) and its corresponding GFG $\Gamma(G) = (V(G), E(G))$.
 - Let $R \subset V$ be the set of return nodes of Γ .
- A configuration is a triple $\langle v, k, w \rangle$ with $v \in V, k \in R^*, w \in T^* \times T^*$ ("node-stack-input").
- Initial configuration: $\langle \bullet S, [], \bullet s \rangle$, where s is the input string.
- Accepting configuration: $\langle S \bullet, [], s \bullet \rangle$.
- The transition function depends on the node type.
 - Start node: $\langle \bullet B, k, w \rangle \Longrightarrow \langle B \to \bullet \beta, k, w \rangle$ (non-deterministic choice).
 - Exit node: $\langle B \to \beta \bullet, k, w \rangle \Longrightarrow \langle B \bullet, k, w \rangle$.
 - Scan node: $\langle A \rightarrow \alpha \bullet t \gamma, k, u \bullet t v \rangle \Longrightarrow \langle A \rightarrow \alpha t \bullet \gamma, k, u t \bullet v \rangle$.
 - Call node: $\langle A \to \alpha \bullet B\gamma, k, c \rangle \Longrightarrow \langle \bullet B, [A \to \alpha B \bullet \gamma, k], c \rangle$.
 - End node: $\langle B \bullet, [A \to \alpha B \bullet \gamma, k], w \rangle \Longrightarrow \langle A \to \alpha B \bullet \gamma, k, w \rangle$.
 - Return node: Nothing to do (why?).

Properties of the NGA

- The NGA is a special kind of PDA.
- Paths traversed in the GFG by the NGA are complete balanced paths.
 - Complete: Goes from S to S •.
 - Balanced: Call and return nodes are correctly matched.

Theorems

- Every complete balanced path corresponds to a parse tree, and every parse tree has a corresponding complete balanced path.
- The label of every completely balanced path is a sentence generated by the grammar, and every sentence generated by the grammar corresponds to the label of a completed balanced path.
- An unambiguous grammar is one in which every string in the language of the grammar is generated by exactly one complete balanced path.