Movie recommendation: Collaborative Filtering

Vishal Anand (UNI: va2361) Department of Computer Science, Columbia University New York City, NY, USA vishal.anand@columbia.edu

Abstract—As part of homework 1 of COMS-6998: Advanced Machine Learning with Personalization, a movie recommendation engine is built which performs collaborative filtering. The rank matrices are factorized and completed by decomposing through low-rank factorization.

INTRODUCTION (HEADING 1) I.

We are working on the MovieLens 20M dataset which contains 20000263 ratings across 27278 movies as generated by 138493 users between January 09, 1995 to March 31, 2015. All selected users have rated at least 20 movies. The file 'ratings.csv' contains the ratings given to some movies on a 5star scale with half-increments. On each line, the file has a rating with the following format: (userId; movieId; rating; timestamp).

II. **APPROACH**

We have 80 data-outputs for each of these configurations:

- Ranks = [10, 20, 30, 60]
- Lambda = [0.001, 0.02, 0.1, 1.0]
- Splits = [split 1, split_2, split_3, split_4, split_5]

Data produced for Rank=10 on Split1 is displayed at the end (all the data is placed at https://github.com/vishalanand/ Advanced-ML-Product-Ranking):

Parts C, D, E and F are described in the algorithm section and in the code

A. Creating multiple data-splits

We created randomized index based split for each user and the training and testing were carried out based on SGD on perceptron based updates per user and movie input data point

B. Loading the data-set

The data-set is read as a text file and the elements are loaded per entry-wise. Such as, we iterate over each data-point

- C. Matrix Update and Stochastic Gradient Descent
- D. Root Mean Square Error Calculation
- E. Mean Reciprocal Rank Calculation
- Grid Search

GRAPHS

A. Surface-Plots of MRR:

Surface Plot: Rank, Lambda, MRR on split2

Surface Plot: Rank, Lambda, MRR on split3

Surface Plot: Rank, Lambda, MRR on split4

Surface Plot: Rank, Lambda, MRR on split5

B. Surface-Plots of RMSE test

C. Heat-maps Mean MRR, RMSE test over splits:

E. Heat-maps StdDev MRR, RMSE_test over splits: StdDev over RMSE_Test(image1), MRR(image2)

D.

F. Heat-Maps for RMSE Test on split 1

G. Heat-Maps for MRR on split 1

H. RMSE train, RMSE test and Epochs

V. $\begin{aligned} & \underset{\mathbf{w}, \mathbf{h}}{\operatorname{argmin}} \sum_{(u, i) \in \mathcal{Z}} (v_{ui} - \mathbf{w}_{u}^{T} \mathbf{h}_{i})^{2} \\ & + \lambda (\sum_{i} ||\mathbf{w}_{i}||^{2} + \sum_{u} ||\mathbf{h}_{u}||^{2}) \\ & e_{ui} \leftarrow v_{ui} - \mathbf{w}_{u}^{T} \mathbf{h}_{i} \\ & \mathbf{w}_{u} \leftarrow \mathbf{w}_{u} + \gamma (e_{ui} \mathbf{h}_{i} - \lambda \mathbf{w}_{u}) \\ & \mathbf{h}_{i} \leftarrow \mathbf{h}_{i} + \gamma (e_{ui} \mathbf{w}_{u} - \lambda \mathbf{h}_{i}) \end{aligned}$

The core logic is mentioned in the code here:

https://github.com/vishalanand/Advanced-ML-Product-Ranking/blob/master/final.py#L54

VI. RMSE-TEST, RMSE-TRAIN, MRR DATA PRODUCED

A. Data generated for Split-1, Rank=10

The data is described for split=1, Rank=10 over different lambda values. All the rest of the information is located in https://github.com/vishalanand/Advanced-ML-Product-Ranking.

We have 80 data-outputs for each of these configurations:

- Ranks = [10, 20, 30, 60]
- Lambda = [0.001, 0.02, 0.1, 1.0]
- Splits = [split 1, split 2, split 3, split 4, split 5]

Rank	Lambda	Iter	RMSE_train	RMSE_test	MRR		Rank	Lambda	Iter	RMSE_train	RMSE_test	MRR
10	0.001	1	1.038286	0.953560	0.144645		10	0.02	1	1.039179	0.950775	0.144744
10	0.001	2	0.920051	0.907733	0.144786		10	0.02	2	0.919648	0.906044	0.144821
10	0.001	3	0.891892	0.891609	0.144810		10	0.02	3	0.891683	0.890161	0.144827
10	0.001	4	0.879021	0.883577	0.144815		10	0.02	4	0.878897	0.882247	0.144842
10	0.001	5	0.871695	0.878953	0.144821		10	0.02	5	0.871627	0.877696	0.144857
10	0.001	6	0.867026	0.876059	0.144823		10	0.02	6	0.867002	0.874848	0.144851
10	0.001	7	0.863824	0.874144	0.144818		10	0.02	7	0.863839	0.872963	0.144856
10	0.001	8	0.861506	0.872826	0.144818		10	0.02	8	0.861558	0.871662	0.144858
10	0.001	9	0.859752	0.871889	0.144813		10	0.02	9	0.859842	0.870732	0.144851
10	0.001	10	0.858373	0.871202	0.144809		10	0.02	10	0.858503	0.870045	0.144842
10	0.001	11	0.857244	0.870679	0.144803		10	0.02	11	0.857419	0.869519	0.144840
10	0.001	12	0.856283	0.870260	0.144797		10	0.02	12	0.856511	0.869096	0.144841
10	0.001	13	0.855425	0.869898	0.144789		10	0.02	13	0.855717	0.868735	0.144840
10	0.001	14	0.854620	0.869553	0.144789		10	0.02	14	0.854993	0.868401	0.144841
10	0.001	15	0.853821	0.869186	0.144783		10	0.02	15	0.854298	0.868062	0.144843
10	0.001	16	0.852982	0.868757	0.144765		10	0.02	16	0.853594	0.867686	0.144841
10	0.001	17	0.852056	0.868226	0.144768		10	0.02	17	0.852843	0.867242	0.144840
10	0.001	18	0.850996	0.867553	0.144765		10	0.02	18	0.852007	0.866695	0.144831
10	0.001	19	0.849760	0.866707	0.144755		10	0.02	19	0.851046	0.866013	0.144829
10	0.001	20	0.848324	0.865678	0.144751		10	0.02	20	0.849927	0.865172	0.144833
			TABLE I							TABLE II		
SPLIT1: RANK=10, λ =0.001							SPLIT1: RANK=10, λ =0.02					
Rank	Lambda	Iter	RMSE_train	RMSE_te:	st MRI	₹	Rank	Lambda	Iter	RMSE_train	RMSE_test	MRI
10	0.1	1	1.045042	0.94975	7 0.14477	2	10	1.0	1	1.420639	1.389550	0.14463
10	0.1	2	0.926225		5 0.14485	6	10	1.0	2	1.363616	1.355283	0.14477
10	0.1	3	0.899134	0.89432	3 0.14487	1	10	1.0	3	1.345713	1.343128	0.14482
10	0.1	4	0.886671	0.88699	6 0.14487	1	10	1.0	4	1.336905	1.336768	0.14484
10	0.1	5	0.879550	0.88272	7 0.14486	7	10	1.0	5	1.331614	1.332913	0.14485
10	0.1	6	0.874995	0.88000	8 0.14485	7	10	1.0	6	1.328114	1.330373	0.14487
10	0.1	7	0.871867	0.87816	6 0.14486	7	10	1.0	7	1.325657	1.328603	0.14487
10	0.1	8	0.869608				10	1.0	8	1.323859	1.327322	0.14488
10	0.1	9	0.867914				10	1.0	9	1.322504	1.326367	0.14488
10	0.1	10	0.866605				10	1.0	10	1.321457	1.325638	0.14489
10	0.1	11	0.865568				10	1.0	11	1.320635	1.325073	0.14489
10	0.1	12	0.864731				10	1.0	12	1.319979	1.324628	0.14489
10	0.1	13	0.864041				10	1.0	13	1.319448	1.324273	0.14489
10	0.1	14	0.863465				10	1.0	14	1.319015	1.323987	0.14490
10	0.1	15	0.862976				10	1.0	15	1.318658	1.323754	0.14490
10	0.1	16	0.862555				10	1.0	16	1.318361	1.323564	0.14490
10	0.1	17	0.862189				10	1.0	17	1.318112	1.323407	0.14490
10	0.1	18	0.861866				10	1.0	18	1.317903	1.323277	0.14490
10	0.1	19	0.861576				10	1.0	19	1.317725	1.323169	0.14490
10	0.1	20	0.861314	0.87245	1 0.14487	5	10	1.0	20	1.317574	1.323078	0.14490
	0.1	20			1 0.11107							
	0.1		TABLE	Ш	0.11107	_				TABLE I		
	0.1			Ш	0.17107	_			SI	TABLE I PLIT1: RANK=1		

REFERENCES

- https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture25-mf.pdf
- $2. \qquad \underline{https://github.com/vishalanand/Advanced-ML-Product-Ranking}$
- 3. http://www.cs.columbia.edu/~jebara/6998/Notes1.pdf