Übungen zur Algorithmischen Bioinformatik I

Blatt 6

Xiheng He

Mai 2021

3. Aufgabe: Palindrom (10 Punkte)

Ein Palindrom ist ein Wort $w = w_1 w_2 \dots w_n$, das vorwärts gelesen gleich ist wie rückwärts gelesen, also $w = \overleftarrow{w}$ bzw. $\forall_{x=1,\dots,n} w_x = w_{n+1-x}$.

(a) Gegeben sei ein Wort $w \in \{0,1\}^*$ auf dem Band einer 1-band deterministischen Turing Maschne (DTM). Definieren Sie formal eine DTM (d.h. Γ , Q und δ), welche die Palindrom-Eigenschaft für dieses Wort entscheidet. Beschreiben Sie kurz, was jede einzelne Regel leistet.

$$DTM = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject});$$

$$\Sigma = \{0, 1\}^*;$$

$$\Gamma = \{0, 1, \varepsilon\};$$

$$Q = \{q_0, q_{accept}, q_{reject}, q_1^0, q_1^1, q_2^0, q_2^1, q_3\};$$

	δ	0	1	ε
$\delta := \left\{ ight.$	q_0	(q_1^0, ε, R)	(q_1^1, ε, R)	q_{accept}
	q_1^0	$(q_1^0, 0, R)$	$(q_1^0, 1, R)$	(q_2^0, ε, L)
	q_1^1	$(q_1^1, R, 0)$	$(q_1^1, R, 1)$	(q_2^0, ε, L)
	q_2^0	(q_3, ε, L)	q_{reject}	q_{accept}
	q_2^1	q_{reject}	(q_3, ε, L)	q_{accept}
	q_3	$(q_3,0,L)$	$(q_3, 1, L)$	(q_0, ε, R)

 q_0 : akzeptiert ε oder fährt nach rechts zum weiteren Vergleich und ersetzen das aktuelle Zeichen mit ε .

 q_1^0 und q_1^1 : markieren ein aktuelle Zeichen (0 oder 1) und fahren weiter nach rechts bis ε .

 q_2^0 und q_2^1 : Vergleichen das letzte Zeichen vor ε mit 0 oder 1 und gehen in q_3 über falls zwei Zeichen übereinstimmen; ablehnen falls nicht übereinstimmen; akzeptieren falls das Zeichen ε ist.

 q_3 : fährt nach links bis ε .

(b) Analysieren Sie das Laufzeitverhalten dieser DTM.

Nach δ in DTM kann es leicht abgeleitet werden, dass es n+1+n Schritte braucht um zwei Zeichen zu Vergleichen.

$$(n+1) + n + (n-1) + (n-2) + (n-3) + (n-4) + (n-5) + \dots + 1$$

$$= \sum_{i=0}^{n+1} i$$

$$= \frac{(n+2)(n+1)}{2}$$
(1)

Aus (1) ist die Laufzeit dieser DTM in $O(n^2)$

(c) Betrachten Sie nun eine k-Band-DTM, d.h. neben dem Eingabeband sind k-1 weitere Arbeitsbänder vorhanden, die wie das Eingabeband verwendet werden können (also auch einen eigenen Schreib-/Lesekopf besitzen). Wieviele Bänder sind ausreichend, um das Problem effizienter als die 1-Band-DTM zu lösen? Beschreiben Sie die Arbeitsweise dieser k-Band-DTM.

Um das Problem effizienter als die 1-Band-DTM zu lösen betrachten wir eine 2-Band-DTM, d.h. k=2, ein Band ist w wie das Band in 1-Band-DTM und andere ist \overline{w} , d.h. diese Band ist umgedreht sodass es rückwärts gelesen werden kann. Bewegen alle zwei Bänder bis ε und vergleichen jede Zeichen auf zwei Bänder das Lese-Schreibkopf aktuell zeigt. Falls zwei Zeichen inzwischen nicht übereinstimmen, dann geht 2-Band-DTM in q_{reject} und das Wort ist kein Palindrom. Falls keine Zeichen bis zum Ende nicht übereinstimmen, dann ist das Wort ein Palindrom und akzeptiert 2-Band-DTM es.

(d) Analysieren Sie das Laufzeitverhalten der k-Band-DTM.

Zum Bestimmen ein Palindrom braucht 2-Band-DTM genau 2n mal Operationen (Band Bewegung 1 mal und Vergleich 1 mal) wobei n Länge des Wortes ist. Somit beträgt die Laufzeit der 2-Band-DTM in O(n).