Геол. ан. Балк. полуос.
 64 (2001)
 13-43
 Београд, децембар 2002

 Ann. Géol. Pénins. Balk.
 64 (2001)
 13-43
 Belgrade, Decembre 2002

UDC (YIIK) 551.763.31:551.26:563/564(497.11-15)

Original scientific paper Оригинални научни рад

THE MIDDLE CENOMANIAN BASAL SERIES OF PLANINICA, WESTERN SERBIA

by

Dragoman Rabrenović, Nebojša Vasić, Jovanka Mitrović-Petrović, Vladan Radulović, Barbara Radulović and Danica Srećković-Batoćaniu

Sedimentary rocks of the Upper Cretaceous basal series found at the village of Planinica, Western Serbia, are composed of thick coarse clastics and beds and intercalations of medium— to fine—grained clastics. The series lies transgressively over Jurassic serpentinite and peridotite, and under Upper Miocene maristone and marly limestone. Sedimentary, petrographic, paleontological, and biostratigraphic characteristics of the basal series are described and its lithological members and their structural features are identified. From medium—grained sandy matrix in thick coarse clastics, two ammonite taxa, four brachiopod taxa (including the new taxa Orbirhynchia oweni and "Terebratula" n. gen. et sp.), and eleven echinoid taxa are described. The brachiopod species Kingena concinna Owen is used in dating the basal series as Middle Cenomanian, whereas limestone fragments in coarse clastics correspond to the Late Albian and Early Cenomanian.

Key words: Late Cretaceous, Middle Cenomanian, clastics, ammonites, brachiopods, echinoids, Planinica, Western Serbia.

Код села Планиница (западна Србија) откривени су седименти базалне серије горње креде која је изграђена од банковитих грубозрних кластита и слојева и прослојака средњозрних до финозрних кластита. Серија лежи трансгресивно преко јурских серпентинита и перидотита а прекривају их горњоценомански лапорци и лапоровити кречњаци. Изложене су седиментно-петрографске, палеонтолошке и биостратиграфске карактеристике базалне серије, одређени су литолошки чланови са њиховим структурним карактеристикама. Из средњозрног-песковитог матрикса банковитих грубозрних кластита одређена и описана су 2 таксона амонита, 4 таксона брахиопода (међу којима су Orbirhynchia oweni и "Terebratula" п. gen. et sp. нови таксони), и 11 таксона јежева. На основу брахиоподске врсте Kingena concinna Owen утврђено је да је базална серија стварана за време средњег ценомана, док старост одломака кречњака из грубозрних кластита одговара горњем албу и доњем ценоману.

Кључве речи: горња креда, средњи ценоман, кластити, амолити, брахиоподи, јежеви, Планиница, западна Србија.

^{*} University of Belgrade, Faculty of Mining and Geology, Institute of Regional Geology and Paleontology, Kamenička 6, P. Box 227, 11 000 Belgrade (e-mail: vrad@eu:net.yu).

[&]quot;University of Belgrade, Faculty of Mining and Geology, Institute of Petrology, Djušina 7, 11 000 Belgrade.

[&]quot;14 Decembra 82, 11 000 Delgrade.

INTRODUCTION

The studied basal series of the Late Cretaceous is composed of coarse-, medium-, and fine-grained clastics, exposed in many places at Struganik and Planinica. The clastic series lies unconformably over Jurassic serpentinites, but their direct contact has not been found in the examined section. Fifty metres to the north, clastics are superposed over a relatively narrow mantle of serpentinite waste.

Fig. 1. Ge тарhic position of the investigation area, Asterisk = fossiliferous locality. Сл. 1. Географски положај изучаваног терена. Звездица = фосилоносни локалитет.

The series of Upper Cretaceous basal clastics was studied more in detail by Marković & Anđelković (1953) and identified as "the Gault-Cenomanian conglomerates". Cenomanian marlstones and marly limestones overlie this series where from thirty different groups of organisms (bivalves, ammonites, corals, echinoids, and orbitolinids) the mentioned authors identify.

LITHOLOGY AND PETROLOGY OF THE BASAL SERIES*

Sedimentary rocks of the Upper Cretaceous basal series (Fig. 1) are found by a new road route leading from Struganik through Planinica to Ravna Gora. These rocks form thick beds of coarse clastics and beds and interbeds of medium-grained (lower part of the column) and fine-grained clastics (upper part of the column; Fig. 2). Coarse clastic beds decrease upwards in thickness, whereas medium- and fine-grained clastic beds increase in thickness. Also, grading is noted in the progressively upward direction. This vertical distribution is a sedimentological indication of the growing distance of the transgression border both in time and space.

by D. Rabrenović, N. Vasić and D. Srećković-Batoćanin

Petrological analyses revealed certain particularities of the basal series, viz. (a) fragments in coarse clastics are of limestone; (b) matrix of coarse clastic rock is slightly cemented medium-grained clastics (sandy sediment); (c) bedded medium- and fine-grained clastics are uncemented; (d) prevailing terrigene compound in medium-grained clastics derives from serpentinite; and (e) clay minerals, found in all medium- and fine-grained clastics, are magnesian smectite-saponite.

Coarse clastic rocks, as mentioned above, consist of limestone fragments embedded in medium-grained sandy matrix. According to composition and structural features, these rocks can be defined as "limestone breccia-conglomerates". The below described fauna of ammonites, brachiopods and echinoids is found in medium-grained sandy matrix.

Fig. 2. Lithological column of the basal series. Сл. 2. Литолошки стуб базалне серије.

Limestone fragments are the most abundant constituents of these rocks, varying in size from 5 cm to 40 cm (Fig. 3). A sporadic constituent is well-rounded serpentinite pebbles. Limestone fragments are subrounded, primarily because limestone is susceptible to physical desintegration and chemical decomposition. This character and the poor sorting suggest the proximity of the source of the material.

Limestone fragments (micrite and fine sandy packstone) contain only corals and small planktonic foraminifers (*Praecyclotruncana delrioensis* (Plummer)).

Fig. 3. Coarse-clastics sediments of the Albian-Cenomanian basal series. a – limestone fragments; b – matrix (medium-grained clastics). Сл. 3. Грубокластични седименти базалне серије алб-ценомана.

а - фрагменти кречњака; b - матрикс (средњозрни кластити).

Petrologically limestone fragments are of the same type, microfacially uniform throughout the column. Basically, the limestone is composed of carbonate and clastic materials. The clastic rate compound varies from 18 to 29%, largely represented by sand fraction. Grains coarser than 2 mm sporadically distributed are dominantly fragments of serpentinite and serpentinized peridotite, and a much lower percentage of gabbro and monomineral fragments of pyroxene, plagioclase and quartz. The carbonate part of the rock, mineralogically, is calcite. Sedimentologically, allochem (interbasinal) constituents and orthochem represent it. The allochem constituents, though much changed in diagenetic processes, primarily recrystallization, are dominantly of organogenic derivation. Their amount varies from 30% to 55%. The orthochem (cementing constituent) is coarse–crystalline calcite–sparite. According to Folk's (1974) three–component diagram for mixed carbonate–clastic sediments (Fig. 4), the examined limestone correspond to "impure allochemical limestone". Also, according to Folk's classification from 1959, these limestones are defined as "sandy biosparites".

Mechanical, optical, instrumental, and chemical methods establish characteristics of the matrix enclosing coarse, medium— and fine—grained clastics. These uncemented or slightly cemented rocks are texturally gravel—sand—siltstone—clay systems. Depending on the component rates, the rocks are identified as gravely sand, sand, silty sand, and silty/sandy clay (Konta, 1969; Fig. 5).

According to their composition, these rocks are defined by the clastic component/calcite ratios. The clastic component varies from 60% to 97%, and calcite from 3% to 40%. If the clastic component exceeds 50%, these rocks fall into the area of terrigene

sediments in Folk's (1974) three-component diagram for mixed carbonate-clastic rocks (Fig. 4).

Fig. 4. Three-component diagram of clastic component-allochem-ortochem (Folk, 1974) with field of investigated limestone fragments. A - carbonate rocks; B - terrigene sediments.

- Сл. 4. Трокомпонентни дијаграм кластична компонента-алохем-ортохем (Folk, 1974), са пољем испитиваних кречњачких одломака. А – карбонатне стене; В – теригени седименти.
- Fig. 5. Three-component diagram of gravel-sand—siltstone (Konta, 1969) with positions of investigated medium-grained clastics. ∇ medium-grained clastics from the matrix; - bedded medium-grained clastics; B gravel.
- Сл. 5. Трокомпонентни дијаграм шљунак-песак--алеврит (Копта, 1969) са позицијама испитиваних средњозрних кластита. V - средњозрни кластити из матрикса; - слојевити средњозрни кластити; В - шљунак.

The clastic component of the medium-grained clastic rock from the matrix is uniform throughout the column; it consists of serpentinite, serpentinized peridotite, and subordinately gabbro, plagioclase, quartz, and pyroxene fragments, undistinguished from the clastic component in limestone fragments. The carbonate part is an allochem, mostly of biogenic rock fragments. Clastic component from bedded medium and fine-grained clastics is different in composition; quartz and feldspar fragments prevail over serpentinite fragments.

The clay component, found in all medium— and fine—grained rocks, belongs to the group of smectite clays (X-ray analysis), specifically magnesian smectite—saponite (DTA and TGA; Ivanov et al., 1974). Smectite is the highest in beds at the top of the column.

FOSSIL FAUNA*

The clastic series contains an abundance of fossil remains of different groups: corals, bivalves, gastropods, echinoderms, brachiopods, ammonites, belemnites, etc.

^{*} by J. Mitrović-Petrović and V. Radulović

The incidence of Echinodermata is the highest with ten species and a subspecies identified. Irregular echinoderms (eight species and one subspecies) are dominant, whereas regular ones are represented by only two species. The genus Discoides is the highest in the number (three) of species, and Holectypus in the number of specimens. Seven, of the eleven identified taxa, are the first found in Serbia: Heterodiadema lybicum (Desor) Agassiz, Discoides minimus Agassiz, D. subuculus Klein, D. infera Desor, Holectypus larteti major Blanckenhorn, Holaster cf. marginalis Agassiz, and Micraster (Epiaster) cf. acutus Agassiz. All of these species are characteristic of the Cenomanian.

The identified brachiopods are: Monticlarella lineolata (Phillips), Orbirhynchia oweni n. sp., "Terebratula" n. gen. et sp., and Kingena concinna Owen.

Ammonites are represented by two taxa: Puzosia sp. and Turrilites sp.

As the identified species are described more than once in international publications, presently are given only their photographs and basic information about the material, stratigraphic position, location, and geographical distribution.

SYSTEMATIC PALAEONTOLOGY

Amonitida*

Order AMMONOIDEA Zittel, 1884 Suborder AMMONITINA Hyatt, 1889 Superfamily DESMOCERATACEAE Zittel, 1895 Family DESMOCERATIDAE Zittel, 1895 Subfamily PUZOSINAE Spath, 1922 Genus Puzosia Bayle, 1878

Puzosia sp. Pl. I, Fig. 1

Material. One specimen (RD 29) with a diameter of 60 mm, very eroded externally.

Remarks. Externally, the specimen shows only visible sinuous furrows, which characterize genus *Puzosia*.

Order LYTOCERATIDA Hyatt, 1889 Suborder ANCYLOCERATINA Wiedmann, 1966 Superfamily TURRILITACEAE Gill, 1871 Family TURRILITIDAE Meek, 1876 Genus Turrilites Lamarck, 1801

by D. Rabrenović

Turrilites sp. Pl. I, Figs. 2, 3

Material. Two poorly preserved whorl fragments of different individuals (RD 30, RD 31).

Description. Shell fragment of turrilitid type of coiling. Transverse section circular. Ornament is of weakly preserved ribs and tubercles ranged in four rows. Due to its poor state of preservation, no precise identification is possible, although the specimens are close to *Turrilites costatus* Lamarck.

Brachiopoda"

Order RHYNCHONELLIDA Kuhn, 1949 Superfamily BASILIOLLOIDEA Cooper, 1959 Family NORELLIDAE Ager, 1959 Subfamily MONTICLARELLINAE Childs, 1969 Genus Monticlarella Wisniewska, 1932

Monticlarella lineolata (Phillips, 1829)

Pl. I, Fig. 4

1854	Rhynchonella lineolata Phillips - Davidson, p. 98, pl. 12, figs. 6, 10 (non figs. 7-9 =
	Monticlarella carteri (Davidson)).
1872	Rhynchonella lineolata Phillips - Pictet, p. 48 pl. 200, fig. 14.
1907	Rhynchonella lineolata Dav Karakasch, p. 208, text-fig. 1.
1907	Rhynchonela nova n. sp Karakasch, p. 209, text-fig. 2.
1913	Monticlarella lineolata Phillips - Jacob & Fallot, p. 17, pl. 1, figs. 9-14.
1968	Monticlarella lineolata Phillips - Owen, p. 24, pl. 2, fig. 2 (see for extensive synonymy).

Monticlarella lineolata Phillips - Smirnova, p. 24, pl. 1, fig. 3.
 Monticlarella lineolata Phillips - Smirnova, p. 13, pl. 2, fig. 7.

2000 Monticlarella? cf. lineolata Phillips - Sulser, p. 52.

Material. One internal moulds (VR 72/1).

Description. External morphology. Shell small, 8.8 mm long, 7.4 mm wide, 5.5 mm thick, rounded triangunal in outline, with moderately convex valves. Maximum width on anterior third, maximum convexity at midvalve. Beak short, suberect with small foramen. Beak ridges fairly distinct, short. Shell folded anteriorly. Lateral commissures slightly arched ventrally, anterior commissure broadly uniplicate with additional rounded lateral plicae. Shell surface covered with fine capillae.

Internal morphology. As we have only one rycristalized specimen the interior is not studied.

Remarks. The described species differs from the other Albian-Cenomanian Monticlarella species by its "somewhat terebratulid appearance" (Owen, 1968: 25). It can be

^{*} by V. Radulović and B. Radulović

distinguished from the holotype, which is adult and strongly biconvex individual, by its smaller size and by moderately convex valves.

Distribution. Owen (1968: 26) stated that the range of the holotype from the Speeton Clay of Knapton, Yorkshire is Lower Albian-Cenomaian and concluded "any attempt to place an age on the specimen concerned must remain speculative until more material becomes available". Up to now the precise stratigraphic position of the Speeton Clay has not been solved. The same author (personal communication, 2001) writes: "It was a common mistake in the day when Phillips was working, that anything collected from Speeton or Knapton was assigned to the Speeton Clay". Holotype "is from a limestone matrix similar to that which is found in the cliff sections at Speeton, Yorkshire and Hunstanton, Norfolk. These beds have a characteristic red coloration which is unmistakable and is clearly seen on the specimen of M. lineolata now assumed to be the type specimen of Phillips. As to whether or not this species has a range other than that stated by me (1968) is possible. This could be as great as from the Lower Albian to Cenomanian". According to Owen (1988: 77) the Red Rock of the cliff section at Hunstanton, Norfolk is Middle to Late Albian in age.

It is known from the Early Barremian of Crimea, Barremian-Aptian of Georgia, and Hauterivian-Albian of France.

In Western Serbia the species is found together with Middle Cenomanian Kingena concinna Owen, which is a stratigraphic marker for A. rothomagense Zone.

Family BASILIOLIDAE Cooper, 1960 Subfamily LACUNOSELLINAE Smirnova, 1963 Genus *Orbirhynchia* Pettitt, 1954

Orbirhynchia oweni n. sp. Pl. I, Figs. 5-7

Name derivation. Named after Dr. Ellis F. Owen, competent connoisseur of Mesozoic and Cenozoic brachiopods.

Holotype. Specimen VR 72/3 figured on Pl. I, Fig. 6, in the author collection of the Institute of Regional Geology and Paleontology, Faculty of Mining and Geology, Belgrade.

Paratypes. VR 72/2 and VR 72/4 figured on Pl. I, Figs. 5, 7 from the same locality and horizon as the holotype.

Stratum tipicum. The Middle Cenomanian fine to coarse-grain clasts.

Locus typicus. Planinica, Western Serbia.

Fig. 6. Orbirhynchia oweni n. sp. Serial transverse sections through a specimen VR 72/2. Dimensions (in mm): L = 17.3, W = +16.0, T = 11.6. Middle Cenomanian, Planinica, Western Serbia. Enlargment of the hinge plates and crural bases are shown above the original structures in sections 2.0 and 2.6.

Сл. 6. Orbirhynchia oweni n. sp. Серија попречних пресека кроз примерак ВР 72/ 2. Димензије (у mm): Д = 17,3, Щ = +16,0, д = 11,6. Средњи ценоман, Планиница, западна Србија. Увећане бравне плочице и базе крура су приказане изнад оригиналних структура на пресецима 2,0 и 2,6.

22

Material. Three specimens from the type locality in Serbia (VR 72/2-4).

Diagnosis. This *Orbirhynchia* has symmetric or asymmetric anterior commissure, and 24-28 subangular lows ribs.

Description. External morphology. Medium size shell, subpentagonal in outline, and lenticular in anterior profile. Almost equally biconvex or the dorsal valve somewhat more convex. Maximum width and thickness at the midvalve. Beak suberect with hypothyrid foramen. Beak ridges indistinct. Ornamentation consists of 24–28 subangular low ribs on each valve. Anterior commissure symmetric or asymmetrically twisted with right or left side up. In symmetrical shell, fold and sulcus barely developed.

Dimensions of figured specimens (in mm).

VR 72/2: L = 17.3, W = +16.0, T = 11.6;

VR 72/3 (holotype): L = 18.6, W = 18.4, T = 11.6;

VR 72/4: L = +20.3, W = 21.5, T = +13.0.

Internal morphology. Pedicle collar present. Dental lamellae thin, subparallel, disappearing after the full development of teeth. Teeth massive and smooth inserted at right angle in the shallow dental sockets. Hinge plates at the beginning subhorizontal, anteriorly dorsally inclined. Crura fine, falcifer with additional crural plates, persist to one quarter of the shell length.

Remarks. O. oweni n. sp. differs from other species of Orbirhynchia by its tendency to shell asymmetry. Externally, the species is very close to the Cenomanian Cyclothyris difformis (Valenciennes in Lamarck) from which it differs in fewer ribs. It is interesting to note that asymmetry in both species is facultative. The new species can be distinguished from the Lower Barremian O. asymmetrica Smirnova from Northern Caucasus by its fewer ribs.

Order TEREBRATULIDA Waagen, 1883 Suborder TEREBRATULIDINA Waagen, 1883 Superfamily TEREBRATULACEA Gray, 1840 Family TEREBRATULIDAE Gray, 1840 Subfamily TEREBRATULINAE Gray, 1840 Genus "Terebratula" Müller, 1776; s. 1.

"Terebratula" n. gen. et sp. Pl. I, Fig. 8

Material. One specimen (VR 72/5) from the Middle Cenomanian of Planinica, Western Serbia.

Description. External morphology. Shell medium in size, 18.6 mm long, 15.00 wide, and 9.0 mm thick, elongate oval in outline, moderately biconvex, dorsal valve somewhat more convex than ventral valve. The maximum width and thickness at midvalve. Beak short, massive, suberect with mesothyrid circular foramen. Beak ridges indistinct. Lateral commissures gently curved toward ventral valve; anterior commissure very wide and low incipiently sulcate.

Fig. 7. "Terebratula" n. gen. et sp. Serial transverse sections through a specimen VR 72/5. Dimensions (in mm): L = 18.6, W = 15.0, T = 9.0. Middle Cenomanian, Planinica, Western Serbia.

Сл. 7. "Terebratula" п. gen. et sp. Серија попречних пресека кроз примерак VR 72/5. Димензије (у mm): $\Pi=18,6, \Pi=15,0, \pi=9,0.$ Средњи ценоман, Планиница, западна Србија.

Internal morphology. Pedicle collar present. Cardinal process flat, and short. Hinge teeth strongly elongated, linguiform, with well-developed denticula. Hinge plates ventrally inclined. Low crural bases ventrally set at right angle to hinge plates. Crural processes thick and incurved, subparallel, with sharp ventral ends and thickened at their dorsal ends. Transversal band low arched. Loop narrow and very short, taking 0.22 of the dorsal shell length. Terminal points very short.

Remarks. The specimen figured here differs in external and internal characters from all other known terebratulids. We do not wish to create a new genus and species based on one specimen only.

Suborder TEREBRATELLIDINA Muir-Wood, 1955 Superfamily DALLINOIDEA Beecher, 1893 Family KINGENIDAE Elliot, 1948 Subfamily KINGENINAE Elliott, 1948 Genus Kingena Davidson, 1852

Kingena concinna Owen, 1970 Pl. I, Figs. 9, 10

1970	Kingena concinna sp. nov Owen, p. 57, pl. 5, figs. 6-7; pl. 6, figs. 4-6.
1972	Kingena concinna Owen - Popiel-Barczyk, p. 124, pl. 2, figs. 2.
1988	Kingena concinna Owen - Owen, p. 69, 73, 77, 78, 80, 81.
1997	Kingena concinna Owen - Gaspard, p. 156.

Material. Two slightly damaged bivalved specimens (VR 72/6 and 72/7).

Description. External morphology. Medium size shell elongate oval in outline with equally and strongly convex valves. In juvenile specimen valves moderately convex, in adult valves strongly and equally convex. Beak low and erect, foramen small, mesothyrid, beak ridges short, indistinct. Lateral commissures straight; anterior commissure broad with shallow sulcation. In juvenile specimen dorsal median septum long 0.75, in adult 0.70 of valve length.

Internal morphology the same as those described for genus (Owen, 1970: 50). In sectioned specimen the loop is as long as the median septum.

Dimensions of figured specimens (in mm).

VR 72/6: L=10.2, W=9.1, T=5.6;

VR 72/7: L=15.9, W=15.0, T=11.9.

Remarks. The species, as indicated by Owen (1970: 58), differs from other species of Kingena in its "extreme convexity or semiglobose outline and general terebratulid appearance". The representatives of this genus are characterized by the presence of pustules on outer layer of the shell. Our specimens were worn on their surface, and only the punctae are visible, which is also stated by Davidson (1852: 43) for some French Senonian forms.

Distribution. Kingena concinna is a typical species from the A. rhotomagense Zone of Middle Cenomanian of southern England, northern France, and (?) Early Cenomanian of Poland (environs of Annapol).

Fig. 8. Kingena concinna Owen. Serial transverse sections through a specimen VR 72/7. Dimensions (in mm): L = 15.9, W = 15.0, T = 11.9. Middle Cenomanian, Planinica, Western Serbia.

Сл. 8. Kingena concinna Owen. Серија попречних пресека кроз примерак VR 72/7. Димензије (у mm): Д = 15,9, Ш = 15,0, д = 11,9. Средњи ценоман, Планиница, западна Србија.

10/7

Echinodermata^{*}

Order HENICIDAROIDA Beurlen, 1937 Family HEMICIDARIDAE Wright, 1875 Genus Heterodiadema Cotteau, 1864

Heterodiadema lybicum (Desor) Cotteau, 1864 Pl. II, Fig. 1

1862-67	Heterodiadema lybicum Cotteau - Cotteau, p. 522, pl. 1124, figs. 1-14.
1925-26	Heterodiadema lybicum Cotteau - Blanckenhorn, p. 85, pl. 7, fig. 1a-c.
1966	Heterodiadema lybicum (Desor) - Wagner & Durham, p. 384, text-fig. 286 (1a-c).
1985	Heterodiadema lybicum (Agasis & Desor) - Bandel & Gcys, p. 106, pl. 4, figs. 6-7; tab.
	5, figs. 1-2.

Material. One specimen (JM 2/1).

Distribution. Cenomanian of Palestine, Jordan and Serbia (Planinica); Turonian of France.

Order ARBACIOIDES Gregory, 1900 Family ARBACIDAE Gray, 1855 Genus Codiopsis Agassiz, 1821

Codiopsis doma Desmarest, 1825 Pl. II, Fig. 2

1047	Codiopsis doma Agassiz - Archiac, p. 299, pl. 13, lig. 1a-c.
186267	Codiopsis doma Desmerest - Cotteau, p. 781, pl. 1191, figs. 1-9; pl. 1192, figs. 1-11.
1935	Codiopsis doma Desmarest - Smiser, p. 34, pl. 2, figs. 9a-c, 10
1966	Codiopsis doma Desmarest - Wagner & Durham, p. 412, text-fig. 308 (1b-g).
1985	Codiopsis doma Desmarest - Geys, p. 141, pl. 4, figs. 6-9; pl. 5, figs. 3-7.

Codionale dama Agassia Archico n 200 nl 13 fig 1a a

Material. One specimen (JM 2/2).

Remarks. Although the specimen is damaged, the species could be determined with certainity because of the morphological features of ornamentation on oral side. The species is an important stratigraphical marker of Cenomanian age. It has been known in Serbia only from the Cenomanian sediments of Kosmaj so far.

Distribution. Cenomanian of France, Belgium, Algeria, and Serbia (Kosmaj, Planinica).

Order HOLECTIPOIDA Duncan, 1889 Suborder HOLECTYPINA Duncan, 1889 Family HOLECTYPIDAE Lambert, 1899 Genus *Holectypus* Desor, 1842

by J. Mitrović-Petrović

Holectypus larteti major Blenckenhorn, 1925–26 Pl. II, Fig. 6

1925-26 Holectypus larteti var. major nov. v. - Blanckenhorn, p. 91, pl. 7, fig. 12.

Material. Nine specimens (JM 2/6).

Remarks. Species is represented with greatest number of specimens and all of them are well preserved.

Distribution. Cenomanian of Palestine, and Serbia (Planinica).

Family DISCOIDIDAE Lambert, 1899 Genus Discoides Parkinson, 1811

Discoides minimus Agassiz, 1840 Pl. II, Fig. 3

1862-67 Discoidea minima Agassiz - Cotteau, p. 33, pl. 1012, figs. 1-3. 1935 Discoides minimus Agassiz - Smiser, p. 38, pl. 3, fig. 5a-d.

Material. Five specimens (JM 2/3).

Distribution. Cenomanian of France, Belgium, and Serbia (Planinica).

Discoidea infera Desor, 1858 Pl. II, Fig. 5

1858 Discoidea infera Desor - Desor, p. 176, pl. 7, fig. 4. 1862-67 Discoidea infera Desor - Cotteau, p. 37, pl. 1013, figs. 1-9.

Material. One specimen (JM 2/5).

Distribution. Cenomanian of France, and Serbia (Planinica).

Discoides subuculus Klein, 1734 Pl. II, Fig. 4

1858 Discoidea subuculus Klein - Desor, p. 176, pl. 24, figs. 1-4.
 1862-67 Discoidea subuculus Klein - Cotteau, p. 23, pl. 1009, figs. 8-16.
 1955 Discoidea subuculus Klein (in Leske) - Szorenyi, p. 187, pl. 4, figs. 7, 8, 10-17, 21.

Material. Four specimens (JM 2/4).

Distribution. Cenomanian of France, Belgium, Germany, Swiss, England, and Hungary.

Suborder ECHINONEINA Clarck, 1925 Family ECHINONEIDAE Agassiz & Desor, 1847 Genus *Echinoconus* Breynius, 1847

28

Echinoconus rothomagensis d'Orbigny, 1853-60 Pl. II, Fig. 8; Pl. III, Fig. 4

Echinoconus rothomagensis d'Orbigny - d'Orbigny, p. 509., pl. 993, figs. 1-6. 1850-60 Echinoconus rothomagensis d'Orbigny - Mitrović-Petrović, p. 208, pl. 1, fig. 2a-c. 1983

Material. Two specimens (JM 2/8, JM 2/12).

Remarks. Genus Echinoconus has wide distribution both in our country and abroad. It is known from the Albian, Cenomanian and Senonian sediments. In Serbia it is found in four out of five localities with echinoid fauna.

Distribution. In Serbia the species is found in Cenomanian sediments of Rajac and Albian-Cenomanian rocks of Kosmaj. Outside the country it is known from France, Belgium, England, former SSSR, Tunisia, India, and USA.

Genus Pygopyrina Pomel, 1883

Pygopyrina desmoulinsii Archiac, 1847 Pl. II, Fig. 7

Pyrina desmoulinsii Archiac - Archiac, p. 297, pl. 13, fig. 4a-d. 1847 Pyrina desmoulinsii Archiac - Cotteau, p. 476, pl. 981, figs. 7-11. 1862-67

Material. One specimen (JM 2/7).

Distribution, Cenomanian of France, and Serbia (Paninica).

Order HOLASTEROIDA Durham & Melville, 1957 Family HOLASTERIDAE Pictet, 1857 Genus Holaster Agassiz, 1836

Holaster nodulosus Goldfuss, 1863 Pl. III, Fig. 2

1847 Holaster nodulosus Agassiz - Archiac, p. 296.

Holaster nodulosus Goldfuss - Smiser, p. 66, pl. 7, fig. 2. 1935

1966 Holaster nodulosus Golgfuss - Wagner & Durham, p. 528, 529, text-fig. 416 (5a-c).

Material. One specimen (JM 2/10).

Distribution. In Serbia, the species come from Albian-Cenomanian sediments of Kosmaj and Planinica. Outside Serbia it is known from the Cenomanian of Belgium.

Holaster cf. marginalis Agassiz, 1836 Pl. III, Fig. 1

1853-60 Holaster marginalis Agassiz - d'Orbigny, p. 109, pl. 819, figs. 1-6.

Material. One specimen (JM 2/9).

Remarks. On the posterior half of the aboral side the shell is missing, and on the oral side the external shell layer is eroded so that the ornamentation is not preserved. Thus the species could not be determined with certainity, although by available characteristic completely corresponds to *Holaster marginalis* Agassiz.

Distribution. Cenomanian of France, and Serbia (Planinica).

Order SPATANGOIDA Claus, 1876 Suborder MICRASTERINA Fischer, 1966 Family MICRASTERIDAE Lembert, 1920 Genus Micraster Agassiz, 1836

> Micraster cf. acutus Agassiz, 1836 Pl. III, Fig. 3

1858 Micraster (Epiaster) acutus Agassiz — Desor, p. 360, pl. 41, figs. 1-4. 1853-60 Epiaster crassisimus d'Orbigny — d'Orbigny, p. 194, pl. 860, figs. 1-8.

Material. One specimen (JM 2/11).

Remarks. Due to the considerable damage of the external shell layer in the anterior end of the aboral side and marginal end of the oral side the species could not be precisely determined, but it most resembles *Micraster (Epiaster) acutus* Agassiz.

Distribution. Cenomanian of France, and Serbia (Planinica).

PALEOECOLOGY*

Cenomanian fauna of Planinica, as bottom-dwelling life, is classified into epifauna, endofauna living at the sandy sea floor or nekton.

The epifauna includes representatives of both vagile and sessile benthos. The former consists mostly of Echinoidea (Codiopsis, Heterodiadema, Holectypus, Discoides, Pygopyrina) and the latter are brachiopods. Juvenile rhynchonellids were attached by pedicles to the substrate, and adults had relatively small foramen indicating thin pedicles in transition to a supported mode of life. Terebratellids were briefly attached by pedicles to the solids, limestone fragments on the sea floor.

The endofauna includes several echinoderm genera, which lived buried shallow in the substrate (*Holaster*, *Micraster*).

Ammonites had the living mode of nekton.

The described fauna of ammonites, brachiopods and echinoids is found in medium-grained and sandy clastics, which formed the matrix of breecia-conglomerate. The Middle Cenomanian fauna of Planinica most likely populated very shallow transgressive sea bottom of an littoral rather than sublittoral area.

Ager (1965) maintains that this type of the sea floor of detrital sediments is characteristic of the Cenomanian transgression.

Associated with this environment are mainly rhynchonellids with weak fold and sulcus and asymmetrical shell, because high water mobility rapidly carries away the used water. Terebratullid specimens also have weak folds and sulcuses. This can be an expla-

by J. Mitrović-Petrović and V. Radulović

nation for the atrophy of one of the two aperture systems and the occurrence of asymmetrical shell in rhynchonellids.

Different in feeding habits are depositovores (majority of irregular echinoids), suspensivores (Brachiopoda), herbivores (some irregular echinoids, such as *Codiopsis*), and predators (ammonites).

The relatively good preservation and the absence of mechanical damages suggest a likely short transport of shells from their living area.

The systematic composition and the morphologic features of the found fauna indicate a stenohaline environment of normal salinity, high water temperature, and loose-sand sea floor.

BASAL SERIES DATING*

Marković & Anđelković (1953) and Anđelković (1978) date the basal conglomerate or the basal series as Albian-Cenomanian.

The basal series is made up of thick coarse clastics and beds and interbeds of medium- to fine-grained clastic rocks. The thick coarse clastics enclose limestone fragments in medium-grained sandy matrix.

Limestone fragments (micrite and fine sandy packstone) contain only corals and small planktonic foraminifers from which the Albian-Cenomanian species *Praeglobotruncana delrioensis* (Plummer) is identified but could not be used in a finer dating. Limestone fragments are obviously older than the matrix (sandy and slightly cemented medium-grained clastics), most likely of the Late Albian-Early Cenomanian age.

Matrix of thick coarse clastics yielded an abundant assemblage of different fossil groups (ammonites, brachiopods, echinoids). It is accurately dated as Middle Cenomanian (A. rhotomagense Zone) using the brachiopod species Kingena concinna Owen and inferred the same age for the entire series.

Acknowledgements

The authors (V. R. & B. R.) express warmest thanks to Dr. Ellis F. Owen (The Natural History Museum, London) for helpful comments and assistance with the English language of the brachiopod part.

REFERENCES – ЛИТЕРАТУРА

Ager D.V., 1965: The adaptation of Mesozoic brachiopods to different environments.— Palaeogeogr. Palaeoclimatol. Palaeoecol., 1, 143-171.

Andjelković M., 1978: Stratigrafija Jugoslavije.- Minerva, 1017 pp., Beograd-Subotica.

Archiac M., 1847: Rapport sur les fossiles du Tortia. - Mem Soc. Géol. Fr., 2 (2), 291-351, Paris.

Bandel K., Geys J.F., 1985: Regular echinoids in the Upper Cretaceous of the Hashemite Kingdom of Jordan.— Ann. Soc. Geol. Nord, pp. 97-115, Lille.

Blanckenhorn M., 1925-1926: Die Seegelfauna der Kriede Palästines.- Palacontographica, 67, 83-114, Stuttgart.

^{*} by V. Radulović and D. Rabrenović

- Cotteau G., 1862-1867: Paléontologie Française. Description des animaux invertébrés commencé par Alcide d'Orbigny. Terrain Crétecé 7, Echinides Réguliers. Masson, Paris, 892 pp., pl. 1007-1204.
- Davidson T., 1852-1855: A monograph of the British fossil Brachiopoda, Part II.- Paleontogr. Soc. (Monogr.), 177 pp., London.
- Desor A., 1858: Synopsis des Echinides fossiles. Reinwald, 490 pp., 44 pls., Paris,
- Folk R.L., 1959: Practical petrographic classification of limestone.— Bull. Amer. Assoc. Petrol. Geol., 43, 1, 1–38.
- Folk R.L., 1969: Klasifikacija karbonatnih i klastičnih stijena.— Geol Glasnik, 13, 1-74, Sarajevo.
- Gaspard D., 1997: Distribution and recognition of phases in Aptian-Turonian (Cretaceous) brachiopod development in NW Europe.— Geologica Carpathica, 48, (3), 145-161.
- Geys J., 1985: Regular echinoids from the Cenomanian of Hainaut (Belgium and France).— Bull. Soc. Belg. geol., 129-157, Bruxelles.
- Ivanov P.V., Kasatov K.B., Krasavina N.T., Rozainova L.E., 1974: Termičeskij analiz mineralov i gornih porod. Nedra, 398 pp., Leningrad.
- Jacob C., Fallot P., 1913: Etude sur les Rhynchonelles portlandiennes, néocomiennes et mésocrétacées du Sud-Est de la France. Abh. Scweiz. Paläont. Ges., 39 (2), 82 pp.
- Karakasch N.I, 1907: Le crétacé inférieur de la Crimeé et sa faune.— Trav. Soc. Imp. Nat. St. Petersbourg, Sec. Géol. Minéral., 32 (5), 1-482 (in Russian with French summary).
- Konta J., 1969: Quantitative analytical petrological classification of sedimentary rocks.— Acta Universitatis Carolinae, Geologica, 3, 175-253.
- Marković O., Anđelković M., 1953: Geološki sastav i tektonika šire okoline sela Osečenice, Brežda i Struganika (Z. Srbija).— Zbornik radova SAN, 33, 5, 111-149.
- Mitrović-Petrović J., 1983: Novo mesto nalaska cenomanskih sedimenata na planini Rajac.- Geol. an. Balk. poluos., 47, 203-211, Beograd.
- Orbigny A. d', 1853-1860: Paléontologie française. Terrains Crétacés. 6. Texte: 596 pp., Atlas: 1006 pls., Paris.
- Owen E.F., 1968: A further study of some Cretaceous rhynchonelloid brachiopods.— Bull. Ind. Geol. Ass., 1, 17-32.
- Owen E.F., 1970: A revision of the brachiopod subfamily Kingeninae Elliott.—Bull. Br. Mus. nat. Hist. (Geol.), 19, (2), 27-83.
- Owen E.F. 1988: Cenomanian brachiopods from the Lower Chalk of Britain and northern Europe.— Bull. Br. Mus. nat. Hist. (Geol.), 44 (2), 65-175.
- Pictet F.J. 1872: In: Pictet F.J. & Campiche G.: Description des fossiles du Terrain Crétacé des environs de Sainte-Croix. 5. Partie: Brachiopodes (terminé par P. de Loriol). Matér. Paléont. Suisse, 158 pp.
- Popiel-Barczyk E., 1972: Albian-Cenomanian brachiopods from the environs of Annopol of the Vistula with some remarks on related species from Cracow region, Poland.— Pr. Muz. Ziemi, 20, 119-149.
- Smirnova T.N., 1972: Early Cretaceous brachiopods of the Crimea and the northern Caucasus.— Akad. Nauk. SSSR, 139 pp., Moscow. (In Russian).
- Smirnova T.N., 1990: Systematics of Early Cretaceous brachiopods. Nauka, 239 pp. Moscow, (In Russian).
- Smiser J., 1935: A monograph of the Belgian Cretaceous echinoid.— Mém. Mus. r. Hist. nat. Belg., 68, 1-93, Bruxelles.
- Szörényi E., 1955: Bakonyi Kréta Echinoideak.- Geol. Hung., Ser. Paleont., 26, 1-332.
- Sulser H., 1999: Die fossilen Brachiopoden der Schweiz und der angrenzenden Gebiete Juragebirge und Alpen.— Paläont. Inst. Mus. Univ. Zürich., H. Tschudy & Co. AG, St. Gallen, 315 pp.
- Wagner C.D., Durham J.W. 1966: Holectypoids. In: Moore R.C. (Ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3.— Geol. Soc. America, Boulder, U.S.A., U440-U450.

РЕЗИМЕ

СРЕДЊОЦЕНОМАНСКА БАЗАЛНА СЕРИЈА ПЛАНИНИЦЕ (ЗАПАДНА СРБИЈА)

УВОД

Изучавана базална серија горње креде представљена грубозрним, средњозрним и финозрним кластитима, откривена је у више локалитета код Струганика и Планинице. Серија кластита лежи дискордантно преко јурских серпентинита, мада директан контакт на изучаваном профилу није откривен. Однос налегања кластита преко релативно уске коре распадања серпентинита уочен је 50 m северније.

Серију базалних кластита горње креде детаљније су изучавали Marković & Anđelković (1953) издвојивши је под именом "конгломерати голт-ценомана". Преко ове серије леже ценомански лапорци и лапоровити кречњаци из којих су поменути аутори описали 30 врста припадника различитих група организама (шкољака, амонита, корала, јежева и орбитолина).

ЛИТОЛОШКИ СТУБ И ПЕТРОЛОГИЈА БАЗАЛНЕ СЕРИЈЕ

Поред трасе новог пута што води од Струганика преко Планинице до Равне горе, код села Планиница, откривени су седименти базалне серије горње креде (сл. 1). Изграђени су од банака грубокластичних седимената и слојева и прослојака средњозрних (у доњем делу стуба) и финозрних кластита (у горњем делу стуба) (сл. 2). Дебљина банака грубокластита се смањује од старијих ка млађим, а дебљина слојева средњозрних и финозрних кластита расте. Такође, у гранулометријском смислу, уочљив је тренд опадања величине фрагмената и зрна од старијих ка млађим седиментима. Оваква вертикална дистрибуција у седиментолошком смислу указује на удаљавање трансгресивне границе у времену и простору.

Петролошка испитивања су указала на извесне специфичности базалне серије, које се огледају у следећем: а) фрагменти у грубокластитима су предстаљени одломцима кречњака; б) матрикс грубокластичних седимената је слабо везани средњозрни кластит (песковити седимент); ц) услојени средњозрни и финозрни кластити представљају невезане седименте; д) преовлађујућа теригена компонента код средњозрних кластита води порекло од серпентинита, и е) минерали глина, утврђени у свим средњозрним и финозрним кластитима припадају магнезијском смектиту – сапониту.

Грубокластични седименти, као што је већ истакнуто, изграђени су од одломака кречњака "уваљаних" у средњозрно-песковити матрикс. Према саставу и структурним карактеристикама могу се дефинисати као "кречњачки бречо-конгломерати". У средњозрном-песковитом матриксу нађена је описана фауна амонита, брахиопода и јежева.

Одломци кречњака су најзаступљенији састојак ове серије, њихове димензија се крећу од 5 па до 40 cm (сл. 3). Поред одломака кречњака, спорадично се могу запазити добро заобљени валутци серпентинита, не већи од неколико cm. Степен заобљености одломака кречњака је низак имајући у виду, пре свега, предиспонираност ове стене на физичко и хемијско распадање. Та карактеристика као и слаба сортираност, упућују на врло блиско исходиште материјала. У одломцима кречњака

(микрити и фино песковити пекстон) нађени су само корали и ситни планктонски фораминифери (*Praecyclotruncana delrioensis* (Plummer)).

Петролошка испитивања кречњачких одломака указује на њихову истоврсност, ті, у њима нису запажене никакве микрофацијалне разлике кроз цео стуб. У основи, ови кречњаци су изграђени од карбонатног и кластичног материјала. Садржај кластичне компоненте се креће од 18 до 29% и углавном је представљена песковитом фракцијом. Спорадично се сусрећу зрна већа од 2 mm, а међу њима преовлађује присуство одломака серпентинита и серпентинисаног перидотита, а следе, знатно мање заступљени, одломци габра и мономинерални одломци плагиокласа, пироксена и кварца. Карбонатни део стене, у минералошком смислу, је калцитски. У седиментолошком погледу представљен је алохемним (унутарбасенским) састојцима и ортохемом. Алохеми састојци, иако доста нарушени услед дијагенетских процеса, пре свега прекристализације, доминантно су органогеног порекла. Њихов садржај је у границама од 30 до 55%. Ортохем (састојак у својству цемента) је крупнокристаласти калцит - спарит. Према Folk-овом (1974) трокомпонентном дијаграму за мешане карбонатно-кластичне седименте (сл. 4) испитивани кречњаци се дефинишу као "нечисти алохемијски кречњаци". Такође, према Folk-овој класификацији из 1959. год. ови кречњаци се дефинишу као "песковити биоспарити".

Карактеристике матрикса грубокластичних, средьозрних и финозрних кластита, утврђене су механичким, оптичким, инструменталним и хемијским методама испитивања.

Обзиром да се ради о невезаним или слабовезаним седиментима, гранулометријским испитивањима утврђено је, у структурном смислу, да се ради о системима на релацији шљунак-песак-алеврит-глина. У зависности од садржаја компонената, седименти су одређени као шљунковити пескови, пескови, алевритски пескови и алевритско-песковите глине (Konta, 1969; сл. 5).

Према саставу ови седименти су системи дефинисани различитим односима у оквиру релације кластична компонента-калцит. Садржај кластичне компоненте се креће од 60 до 97%, а калцита од 3 до 40%. Обзиром да је садржај кластичне компоненте већи од 50% ови седименти падају у поље теригених седимената на Folk-овом (1974) трокомпонентном дијаграму за мешане карбонатно-кластичне седименте (сл. 4).

Кластична компонента код средњозрних кластита из матрикса је истоврсна у целом стубу тј. изграђена је од одломака серпентинита, серпентинисаних перидотита, подређено од одломака габрова, плагиокласа, кварца и пироксена и не разликује се од кластичне компоненте у кречњачким одломцима. Карбонатни део стене је алохем и углавном се ради о биогеним одломцима. Састав кластичне компоненте из услојених средњозрних и финозрних кластита је другачији, наиме, преовлађују одломци кварца и фелдспата над одломцима серпентинита.

Глиновита компонента, констатована у свим средњозрним и финозрним седиментима, припада групи смектитских глина (рендгенска анализа) и то магнезијском смектиту – сапониту (ДТА и ТГ анализа; I vanov et al., 1974). Највећи садржај смектита констатован је у слојевима при врху стуба.

ПАЛЕОНТОЛОШКЕ ОСОБИНЕ ФАУНЕ

Серија кластита у себи садржи много фосилних остатака различитих група: корала, шкољака, пужева, ехинодермата, брахиопода, амонита, белемнита итд.

34

Представници ехинодермата су најбројнији, идентификовано је 10 врста и једна подврста. Доминирају неправилни јежеви (8 врста и 1 подврста), док су правилни представљени само са 2 врсте. Род Discoides се одликује највећим бројем врста (3), а Holectypus највећим бројем примерака. Од укупно индентификованих 11 таксона, 7 је по први пут пронађено у Србији: Heterodiadema lybicum (Desor) Agassiz, Discoides minimus Agassiz, D. subuculus Klein, D. infera Desor, Holectypus larteti major Blanckenhorn, Holaster cf. marginalis Agassiz u Micraster (Epiaster) cf. acutus Agassiz. Све поменуте врсте су карактеристичне за ценоман.

Од брахиопода индентификовни су: Monticlarella lineolata (Phillips), Orbirhynchia oweni n. sp., "Terebratula" n. gen. et sp., и Kingena concinna Owen.

Амонити су представљени са два таксона: Puzosia sp. и Turrilites sp.

С обзиром да су идентифоковане врсте више пута описиване у светској литератури, у овом раду смо дали само фотографије и основне податке о материјалу, стратиграфском положају, месту наласка и географском распрострањењу, док су у српском тексту приказани само нови брахиоподски таксони.

Brachiopoda*

Ред RHYNCHONELLIDA Kuhn, 1949 Надфамилија BASILIOLLOIDEA Cooper, 1959 Фамилија BASILIOLIDAE Cooper, 1960 Подфамилија LACUNOSELLINAE Smirnova, 1963 Род Orbirhynchia Pettitt, 1954

> Orbirhynchia oweni n. sp. Таб. І, сл. 5-7

Порекло назива. Име је дато у част др Ellis F. Owen, врсног познаваоца мезозојских и кенозојских брахиопода.

Типски слој. Средњоценомански груби кластити.

Типски локалитет. Планиница, западна Србија.

Холотип. VR 72/3, Таб. I, сл. 6, у ауторовој колекцији Института за регионалну геологију и палеонтологију, Рударско-геолошког факултета, Београд.

Паратипови. VR 72/2, 72/4, Таб. I, сл. 5, 7.

Материјал. Три примерка из типског локалитета. (VR 72/2-4).

Дијагноза. Ова Orbirhynchia поседује унипликатну или асиметричну предњу комисуру.

Опис. Спољашња морфологија. Љуштура средње величине, субпетоугаоних контура, сочиваетог предњег профила. Капци скоро подједнако испупчени, или дорзални капак нешто више испупчен. Љуштура најшира и највише испупчена по средини. Кљун слабо повијен са подтеменим фораменом. Темени гребени нејасно изражени. Орнаментика сваког капка се састоји од 24-28 субугластих и ниских ребара. Предња комисура унипликатна или асиметрична са издигнутом десном или левом страном. Код унипликатне љуштуре гребен и сулкус слабо развијени.

^{*} В. Радуловић и Б. Радуловић

Димензије приказаних примерака (y mm).

VR 72/2: $\Pi = 17.3$, $\Pi = +16.0$, $\pi = 11.6$;

VR 72/3 (холотип): $\Pi = 18.6$, $\Pi = 18.4$, $\pi = 11.6$;

VR 72/4: $\Pi = +20.3$, $\Pi = 21.5$, $\pi = +13.0$.

Унутрашња морфологија. Оковратник дршке присутан. Зубне плочице танке, субпаралелне, нестају пре потпуног развића зуба. Зуби масивни и глатки, улазе под правим углом у плитке зубне јаме. Бравне плочице у почетку субхоризонталне, унапред постају дорзално искошене. Круре фине, фалциферне са додатним круралним плочицама, дуге једну четвртину дужине дорзалног капка.

Примедбе. Нова врста разликује се од осталих представника рода Orbirhynchia по асиметричној љуштури. По спољашњим карактеристикама, као што је асиметрична љуштура, врста веома личи на ценоманску врсту Cyclothyris difformis (Valenciennes in Lamarck) од које се разликује по мањем броју ребара. Интересантно је напоменуту да је асиметричност код обе врсте необавезујућа. О. oweni n. sp. се разликује од доњобаремске О. asymmetrica Smirnova са Севреног Кавказа по мањем броју ребара.

Ред TEREBRATULIDA Waagen, 1883 Подред TEREBRATULIDINA Waagen, 1883 Надфамилија TEREBRATULACEA Gray, 1840 Фамилија TEREBRATULIDAE Gray, 1840 Подфамилија TEREBRATULINAE Gray, 1840 Род "Terebratula" Müller, 1776; s. 1.

"Terebratula" n. gen. et sp. Таб. I, сл. 8

Материјал. Један примерак (VR 72/5) из средњег ценомана Планинице, западна Србија.

Опис. Спољашња морфологија. Љуштура средњих димензија, 18,6 mm дуга, 15,0 mm широка и 9,0 mm дебела, издужено-овалне контуре. Капци умерено испупчени, дорзални капак нешто више испупчен од дорзалног капка. Љуштура најшира и најдебља по средини. Кљун кратак, масиван, повијен, са округлим теменим фораменом. Темени гребени нејасни. Бочне комисуре благо повијене према вентралном капку; предња комисура јако широко и благо сулкатна.

Унутрашња морфологија. Оковратник дршке присутан. Бравни израштај раван и кратак. Бравни зуби јако издужени, језичасти са добро развијеним зубићима. Бравне плочице вентрално искошене. Ниске базе крура належу под правим углом са вентралне стране на бравне плочице. Крурални израштаји дебели и повијени, субпаралелни, са оштрим вентралним и задебљаним дорзалним крајевима. Попречна трака петље ниско засвођена. Петља уска и веома кратка, дуга око 0,22 дужине дорзалног капка. Крила петље веома кратка.

Примедбе. Описани примерак се разликује, како по спољашњим, тако и по унутрашњим карактеристикама од свих до сада познатих теребратулида. За сада нисмо желели да уводимо нови род и нову врсту на основу само једног расположивог примерка.

ПАЛЕОЕКОЛОШКЕ ОДЛИКЕ

Ценоманска фауна Планинице се на основу односа према подлози може сврстати у епифауну, ендофауну која је била везана за песковито морско дно и нектон.

У оквиру епифауне има представника и вагилног и сесилног бентоса. Првој групи припада већина Echinoidea (Codiopsis, Heterodiadema, Holectypus, Discoides, Pygopyrina). У другу групу спадају брахиоподи. Младе индивидуе ринхонелида су биле причвршћене за подлогу помоћу дршке. Одрасле индивидуе су поседовале релативно мали форамен који указује на тању дршку и прелаз на подупирујући начин живота. Теребратулиди су целог живота били причвршћени дршком за чврсте предмете, одломке кречњака на морском дну.

Ендофауни припадају неколико ехинодерматских родова који су се доста плитко закопавали у подлогу на којој су живели (*Holaster*, *Micraster*).

Амонити су водили нектонски начин живота.

Описана фауна амонита, брахиопода и јежева нађена је у средњозрним и песковитим кластитима који су формирали матрикс бречо-конгломератима. Популација средњег ценомана Планинице највероватније је насељавала веома плитко трансгресивно морско дно литорала, пре него сублиторала.

Ager (1965) сматра да је такав тип морског дна са грубим детритичким седиментима карактеристичан за ценоманску трансгресију.

За овакву средину су углавном везани ринхонелиди са слабо развијеним седлом и синусом и асиметричном љуштуром јер снажни покрети воде веома брзо односе искоришћену воду. Представници теребратулида такође поседују веома слабо изражено седло и синус. Можда на овај начи може и да се објасни атрофија једног од два улазна система и појава асиметричне љуштуре код ринхонелида.

По начину исхране издвајају се депозитивори (већина неправилних јежева), суспензивори (Brachiopoda), хербивори (неки неправилни јежеви, као нпр. *Codiopsis*) и предатори (амонити)

На основу релативно добре очуваности и одсуства трагова механичких повреда може се закључити да су љуштуре вероватно претрпеле мањи транспорт од места живљења.

На основу систематског састава и морфолошких одлика фауне може се сматрати да је средина била стенохалинска, салинитет нормалан, температура воде висока, а дно песковито и растересито.

СТАРОСТ БАЗАЛНЕ СЕРИЈЕ

Marković & Anđelković (1953) и Anđelković (1978) сматрају да су базални конгломерати тј. да је базална серија албско-ценоманске старости.

Базална серија је изграђена од банковитих грубозрних кластита и слојева и прослојака средњозрних до финозрних кластита. Уклопци у банковитим грубозрним кластитима су одломци кречњака везани средњозрно-пековитим матриксом.

У одломцима кречњака (микрити и фино песковити пекстон) нађени су само корали и представници ситних планктонских фораминифера, међу којима је константована алб-ценоманска врста *Praeglobotruncana delrioensis* (Plummer), а на основу којих се није могла одредити њихова прецизнија старост. Очигледно је да су одломци кречњака старији од матрикса (песковити и слабовезани средњозрни кластити), а највероватније су горњоалбско-доњоценоманске старости.

У матриксу банковитих грубозрних кластита нађена је богата асоцијација различитих фосилних група (амонита, брахиопода, јежева). Прецизнија старост матрикса је одређена на основу брахиоподске врсте *Kingena concinna* Owen као средњоценоманска (*A. rhotomagense* зона), тако да се може закључити да је и читава серија настала током тог периода.

PLATE I ТАБЛА

Fig. (Сл.) 1.	Puzosia sp. RD 29, ×1.
Fig. (Сл.) 2.	Turillites sp. 1 RD 30, ×1.
Fig. (Сл.) 3.	Turillites sp. 2 RD 31, ×1.
Fig. (Сл.) 4.	Monticlarella lineolata (Phillips) VR 72/1, ×2.
Figs. (Сл.) 5-7.	Orbirhynchia oweni n. sp. 5. VR 72/2, paratype, sectioned specimen (паратип, сечени примерак), ×1.2. 6. VR 72/3, holotype (холотип), ×1.2. 7. VR 72/4, paratype (паратип), ×1.2.
Figs. (Сл.) 8.	"Terebratula" n. gen. et sp. VR 72/5, sectioned specimen (сечени примерак), ×1.2.
Figs. (Сл.) 9–10.	Kingena concinna Owen 9. VR 72/6, juvenile specimen, ×1.2. 10. VR 72/7, sectioned specimen (сечени примерак), ×1.2.

All specimens are from the Middle Cenomanian (A. torhomagense Zone) of Planinica, Western Serbia. Each specimen was coated with ammonium chloride before photographing. For brachiopods are shown: a = dorsal view, b = ventral view, c = lateral view, c = anterior view.

Photogrpah by V. Radulović

Сви примерци потичу из средњег ценомана (A. rothomagense зона) Планиница, западна Србија. Сваки примерак је запрашиван са амонијум хлоридом пре фотографисања. За брахиоподе приказане су: а = дорзална страна, b = вентрална страна, c = бочна страна, д = предња страна. Фотографија: В. Радуловић.

РІАТЕ ІІ ТАБЛА

Fig. (Сл.) 1. Heterodiadema lybicum (Desor) Agassiz JM 2/1, ×1.2. a. aboral side (аборална страна).

b. oral side (орална страна).

c. side view (профил).

Fig. (Сл.) 2. Codiopsis doma Desmarest

JM 2/2, $\times 1$.

a. aboral side (аборална страна).

b. oral side (орална сграна).

c. side view (профил).

Fig. (Cn.) 3. Discoides minimus Agassiz JM 2/3, ×1.2.

a. aboral side (аборална страна).

b. oral side (орална страна).

c. side view (профил).

Fig. (Сл.) 4. Discoides subuculus Klein

JM 2/4, ×1.2.

a. aboral side (аборална страна).

b. oral side (орална страна).

с. side view (профил).

Fig. (C_{JI.}) 5. Discoides infera Desor JM 2/5, ×1.2.

a. aboral side (аборална страна).

b. oral side (орална страна).

c. side view (профил).

Fig. (Сл.) 6. Holectypus larteti major Blanckenhorn JM 2/6, ×1.2.

a. aboral side (аборална страна).

b. oral side (орална страна).

c. side view (профил).

Fig. (Сл.) 7. Pygopyrina desmoulinsii Archiac JM 2/7, ×1.2.

a. aboral side (аборална страна).

b. oral side (орална страна).

с. lateral view (уздужни профил).

d. posterior view (попречни задњи профил).

Fig. (Cn.) 8. Echinoconus torhomagense d'Orbigny JM 2/8, ×1.2.

a. aboral side (аборална страна).

b. oral side (орална страна).

с. lateral view (уздужни профил).

РІАТЕ ІІІ ТАБЛА

- Fig. (Cm.) 1. Holaster cf. marginalis Agassiz JM 2/9, ×1.
 - a. aboral side (аборална страна).
 - b. oral side (орална страна).
 - с. lateral view (уздужни профил).
 - d. front view (попречни предњи профил).
- Fig. (Сл.) 2. Holaster nodulosus Goldfuss JM 2/10, ×1.
 - a. aboral side (аборална страна).
 - b. oral side (орална страна).
 - с. lateral view (уздужни профил).
 - d. front view (попречни предњи профил).
- Fig. (Сл.) 3. Micraster (Epiaster) cf. acutus Agassiz JM 2/11, ×1.
 - a. aboral side (аборална страна)
 - b. oral side (орална страна).
 - с. lateral view (уздужни профил).
 - d. front view (попречни предњи профил).
- Fig. (Cπ.) 4. Echinoconus rothomagense d'Orbigny JM 2/12, ×1.
 - a. aboral side (аборална страна).
 - b. oral side (орална страна).
 - с. lateral view (уздужни профил).

PLATE II ТАБЛА

РГАТЕ І ТАБЛА

