Résumé

La mitose est une étape clé du cycle cellulaire, très préservée chez toutes les cellules eucaryotes, durant laquelle le matériel génétique de la cellule (les chromosomes) est séparé en deux puis réparti de manière égale dans les deux cellules filles. Cette équipartition du matériel génétique est crucialle pour le maintien de la stabilité génétique. Durant ce processus, la cellule forme une plaque métaphasique au centre du fuseau mitotique composé des chromatides sœurs. Chaque chromatide est attachée à son pôle respectif (on parle d'attachement bipolaire) vers lequel elle se dirigera durant l'anaphase.

Les chromatides sont l'unité indivisible du matériel génétique durant la mitose, à l'image des atomes dans une molécule. Initialement chacun de ces « objets » est libre (non attaché) et positionné de manière non ordonné dans le noyau. Toute la compléxité de la mitose est d'attacher chacune des chromatides au bon pôle afin d'exercer des forces sur ces derniers pour les positionner sur la plaque métaphasique au centre du fuseau avant leur séparation et migration vers les pôles durant l'anaphase.

Cette étape de la divison cellulaire requiert donc non seulement un complexe réseau d'intéraction et de signalisation métabolique comme dans beaucoup d'autre processus biologiques mais aussi un fin contrôle spatio-temporel du mouvement et du positionnement des ces objets de grande taille à l'echelle de la cellule: les chromatides.

Il est à ce jour clairement établi qu'une grande partie de l'énergie nécessaire au mouvement des chromatides durant la mitose provient de la dépolymérisation de l'extrémité + des microtubules (MTs) qui attache chaque chromatide par l'intermédiaire d'un grand complexe protéique appelé le kinétochore. Bien que le mécanisme de transfert d'énergie entre la dépolymérisation des MTs et le mouvement des chromatides reste encore très largement hypothétique.

La dynamique des chromosomes durant la mitose est par ailleurs largement controlée par un grand nombre d'acteurs autres que les microtubules. Certains d'entre eux étant responsables de l'attachement MTs-kinétochore comme les complexes NDC80 et DAM1, tandis que d'autres sont impliqués dans la régulation de la dynamique des microtubules comme la kinésine-8 et la kinésine-13.

Durant mon travail de thèse j'ai étudié la dynamique des chromosomes en mitose chez la levure à fission qui à l'avantage de conserver les mécanismes primordiaux de la mitose avec les eucaryotes supèrieurs. Deux mécanismes que l'on retrouve chez de nombreuses cellules sont l'alignement des chromosomes durant la métaphase ainsi qu'un mouvement de va et vient plus ou moins régulier le long du fuseau aussi appelé oscillations des chromosomes. J'ai montré en analysant les trajectoires des chromosomes que ces deux processus sont pour une large part indépendants chez la levure à fission (article accepté). De plus le processus d'alignement des chromosomes, encore mal compris, est en parti contrôlé par la kinésine-8 via une activité dépendante de la longueur des microtubules. Il semblerait donc qu'une protéine, la kinésine-8, soit capable de fournir une information spatiale le long du fuseau mitotique afin de positionner correctement les chromosomes. Enfin j'ai utilisé un modèle mathématique du fuseau mitotique développé dans l'équipe afin de tester de manière quantitative les hypothèses de mécanisme du centrage des chromosomes par la kinésine-8.

L'ensemble de mon travail s'est donc intéressé au contrôle du mouvement, de l'attachement et du positionnement des chromosomes durant la mitose afin de mieux comprendre la biophysique du fuseau mitotique.

Summary

Mitosis is a highly preserved process in all eukaryotic cells during which genetic material (chromosomes) is divided in two parts and then spread in both daughter cells. This equipartition is crucial for maintaining genetic stability. During this process, cell forms a metaphasic plate at the center of the mitotic spindle composed of sisters chromatid. Each chromatid is attached to his respective pole (called bipolar attachment) toward which it will go during anaphase.

Chromatids are the indivisible unit of genetic material during mitosis just like atoms in a molecule. Originally each of these « objects » is not attached and located in a no ordered way. All the complexity of mitosis is to attach each of the chromatids to the correct pole to be able to exert forces and then position them on the metaphasic plate at the center of the mitotic spindle just before their separation and migration toward the poles during anaphase.

This step of cell division not only requires a complex interaction network and metabolic signaling just like in many others biological processes but also a fine spatio-temporal control of the movement and positioning of these big objects according to the cell size: chromatids.

It is today clearly established that much of the energy necessary for chromatids movement during mitosis comes from the depolymerization of microtubule + end (MT) which attach each chromatid through a large protein complex called the kinetochore. Although the energy transfer mechanism between MT depolymerization and chromatid movement is still largely unknown.

Moreover chromosome dynamic during mitosis is largely regulated by a large number of actors other than microtubules. Some of them being responsible for the MT-kinetochore attachment such as NDC80 and DAM1 complex. While others are involved in the regulation of MT dynamic such as kinesin-8 and kinesin-13.

During my PhD work I studied chromosome dynamic during mitosis in fission

yeast which has the advantage of preserving most fundamental mechanisms of mitosis with higher eukaryotes. Two mechanisms that are found in many cells are chromosome alignment during metaphase and a back and forth movement more or less uniform along the spindle also called chromosomes oscillation. By analyzing chromosomes trajectories I showed that both processes are in large part independent in fission yeast (article accepted). Moreover the chromosome alignment process, still not well understood, is in part regulated by the kinesin-8 via a length dependent activity on the microtubules. This suggests that a protein, the kinesin-8, is capable of providing a spatial information along the mitotic spindle to properly position chromosomes. Finally, I used a mathematical model of the mitotic spindle previously developed in the team, in order to test quantitatively hypothesis about chromosome centering mechanism by the kinesin-8.

This work is therefore about the control of the movement, the attachment and the positioning of chromosomes during mitosis in order to better understand the mitotic spindle biophysic.