# 分数阶 Poisson 过程性质及应用的探究

## 吴昆\*

February 15, 2018

#### Abstract

推导了分数阶 Poisson 过程的分裂性和到达时刻的条件分布.由于到达间隔时间期望为无限大,使得我们无法很好刻画到达间隔时间的特征,更导致更新过程或排队论应用中有直接的困难.我们先利用Fubini 定理推导分数阶矩,以冀一窥其特征.再将到达间隔时间概率密度进行截尾,使其矩有限,并用于排队论.计算并仿真了 M/G/1 排队模型的平稳性质.理论和仿真结果表明了截尾在现实中的可行性,而且一阶矩和二阶矩表达式简洁,可以立即应用于更新过程等其它模型. KeyWords—分数阶 Poisson 过程, M/G/1 排队模型,更新过程,截尾,矩

# 1 分数阶 Poisson 过程的基本性质探究

## 1.1 分数阶 Poisson 过程文献调研评注

### 1.1.1 **复合分数阶** Poisson 过程的矩

分数阶 Poisson 过程及复合分数阶 Poisson 过程在 [1] 中已经研究得很详尽了. [7] 的 2.1 节及 2.2 节补充地给出了复数分数阶 Poisson 过程的概率密度和一阶矩和二阶矩, 且其二阶矩形式相比 [1](27) 更为规整.

将[7] 复合分数阶 Poisson 过程的一阶矩二阶矩抄录如下,

<sup>\*</sup>无 58 2015010625

记复合分数阶 Poisson 过程  $Y(t) = \sum_{i=1}^{N(t)} X_i$ ,  $\{X_i\}$  为独立同分布随机变量且与 N(t) 独立. 则,

$$E(Y(t)) = \frac{\mu t^{\nu} d_1}{\Gamma(\nu+1)} \tag{1}$$

$$E(Y^{2}(t)) = \frac{\mu t^{\nu} d_{2}}{\Gamma(\nu+1)} + \frac{2(\mu t^{\nu})^{2} d_{1}^{2}}{\Gamma(2\nu+1)}$$
(2)

其中, $d_i = E(X_1^i)$ , i = 1, 2.

显然标准分数阶 Poisson 过程是复合分数阶的特例. 特别地, (1)(2)中令  $d_1 = d_2 = 1$  即得标准分数阶 Poisson 过程的一阶矩和二阶矩.

值得一提的是, [1](27) 须要对(2)稍作变换得到. [1](27) 形式为,

$$\bar{n}_{\mu}^{2} = \sum_{n=0}^{\infty} n^{2} P_{\mu}(n, t) = \bar{n}_{\mu} + \bar{n}_{\mu}^{2} \frac{\sqrt{\pi} \Gamma(\mu + 1)}{2^{2\mu - 1} \Gamma(\mu + \frac{1}{2})} \qquad \text{(equation (27) from [1])}$$

变换用到了  $\Gamma(z)\Gamma(z+\frac{1}{2})=2^{1-2z}\sqrt{\pi}\Gamma(2z)$ .

#### 1.1.2 最后一次更新距观测点时长 U 的概率密度

[4] 研究了最后一次更新距观测点时长 U 的概率密度, 这是更新过程中的一个重要议题, 并且直接导致了更新过程的检视悖论 (inspection paradox).

记观测时刻为  $t_1$ . 记  $f_{U_{n_1}}$  为 U 在观测时刻计数为  $n_1$  条件下的概率密度,

$$U_{n_1} := [T_{n_1} | N_{\beta}(t_1) = n_1]$$
 (equation (18) from [4])

$$f_{U_{n_1}}(t) = \frac{f_{\tau}^{*n_1}(t)[1 - F_{\tau}(t_1 - t)]dt}{\int_0^{t_1} du f_{\tau}^{*n_1}(u)[1 - F_{\tau}(t_1 - u)]}$$
 (equation (20) from [4])

 $f_{\tau}(t)$  是到达间隔时间概率密度,  $F_{\tau}(t)$  为到达间隔时间概率分布.

代入标准 Poisson 过程  $\mu = 1$ , 此时  $f_{\tau}^{*n}(t) = \lambda e^{-\lambda t} \frac{(\lambda)^{n-1}}{(n-1)!}$  满足 Erlang 分布, 推导 U 的概率密度  $f_U(t)$ , 不出意外会推得指数分布.

Theorem 1.1. 强度为  $\lambda$  的标准 Poisson 过程中, 观测时刻为  $t_1$ . U 的概率密度在  $t \in [0^+, t_1]$  中的表达式  $f_U(t) = \lambda e^{-\lambda(t_1 - t)}$ .

Proof. 代入(equation (20) from [4])得到,

$$f_{U_{n_1}}(t) = \frac{nt^{n_1 - 1}}{t_1^{n_1}} \tag{3}$$

进而

$$f_U(t) = \sum_{n=0}^{\infty} P(N(t_1) = n) \cdot f_{u_n}(t)$$

$$= \lambda e^{-\lambda(t_1 - t)}$$
(4)

Remark. 课上推导检视悖论时,"标准 Poisson 过程的  $f_U(t)$  同样满足指数分布"的性质起初让我们有些难以接受. 但是上面的论述证实了这一点,从而可以放心大胆地计算. 但这样的"证明""舍近求远",该结论的本质我猜测是由 CTRW(Continuous Time Random Walk) 模型和标准 Poisson 所对应的 Kolmogorov-Feller 方程的时间可逆性得到.

(equation (20) from [4])给出的条件概率密度  $f_{U_{n_1}}(t)$  只适用于  $t \in [0^+, t_1]$ . 在 t < 0 或  $t > t_1$  时,显然  $f_{U_{n_1}}(t) = 0$ . 因此,由于概率密度的积分为 1,完整的  $f_{U_{n_1}}(t)$  表达式须增加一项  $C\delta(t)$ . 当然对应地,(equation (20) from [4])所示加项要乘以一个时间区间指示函数. 课上讲过,这个狄拉克函数项导致了检视悖论.

#### 1.1.3 事件到达间隔时间 {τ<sub>i</sub>} 独立同分布

分数阶 Poisson 过程依然满足 {τ<sub>i</sub>} 为独立同分布. 这是由 CTRW 模型和分数阶 Poisson 对应的 Kolmogorov-Feller 方程描述的就是这样的计数变化过程, 因此是分数阶 Poisson 过程的基本特性.

对于不满足独立增量和平稳增量的分数阶 Poisson 过程,这个性质在推导时相当有用.

## 1.2 **分数阶** Poisson 过程的非 Markov 性

对此有两点讨论.

1) 到达间隔时间概率密度  $\psi(t)$  不满足指数分布, 因而有记忆. 但到达间隔时间相互独立.

2) N(t) 不满足独立增量. 可以把 t 写成  $t = \sum_{i=1}^{N(t)} \tau_i + U$ , 由于到达间隔时间有记忆, 最后一次到达到 t 的时长 U 是导致 N(t) 不满足独立增量的原因.

### 1.3 分数阶 Poisson 过程到达时间的条件分布

利用到达间隔时间  $\tau_i$  相互独立来推导. 到达时刻  $T_i$  与到达间隔时刻  $\{\tau_i\}$  满足  $T_k = \sum_{i=1}^k \tau_i$ .

下面计算在  $N_{\mu}(t) = n$  条件下, t 时刻前的 n 个到达时刻为  $T_i$  的概率.

$$P(T_{1} = t_{1}, T_{2} = t_{2}, \cdots, T_{n} = t_{n} | N_{\mu}(t) = n)$$

$$= \frac{P(T_{1} = t_{1}, T_{2} = t_{2}, \cdots, T_{n} = t_{n}, T_{n+1} > t)}{P(N_{\mu}(t) = n)}$$

$$= \frac{P(\tau_{1} = t_{1}, \tau_{2} = t_{2} - t_{1}, \cdots, \tau_{n} = t_{n} - t_{n-1}, \tau_{n+1} > t - t_{n})}{P(N_{\mu}(t) = n)}$$

$$= \frac{\prod_{i=1}^{n} \nu \tau_{i}^{\mu-1} E_{\mu,\mu}(-\nu \tau_{i}^{\mu}) \int_{t-t_{n}}^{+\infty} \nu \tau_{n+1}^{\mu-1} E_{\mu,\mu}(-\nu \tau_{n+1}^{\mu}) d\tau_{n+1}}{P(N_{\mu}(t) = n)}$$

$$= \frac{n! \prod_{i=1}^{n} \tau_{i}^{\mu-1} E_{\mu,\mu}(-\nu \tau_{i}^{\mu}) \cdot E_{\mu}(-\nu (t - t_{n})^{\mu})}{(t^{\mu})^{n} \sum_{k=0}^{\infty} \frac{(k+n)!}{k!} \frac{(-\nu t^{\mu})^{k}}{\Gamma(\mu(k+n)+1)}}$$
(5)

以上分子中的积分运算用到了 [1] 的结论  $\int_{t-t_n}^{+\infty} \psi_{\mu}(\tau) d\tau = E_{\mu} \left(-\nu (t-t_n)^{\mu}\right)$ . 没有有关 Mittag-Leffler 函数乘积的恒等式, 以上式子无法再被化简.

Remark. 上式中令  $\mu = 1$ , 就得到了标准 Poisson 过程的条件分布.

 $\mu$  < 1 时, "标准 Poisson 过程到达时间条件分布符合独立均匀分布的顺序统计量" 这样优秀的性质不再适用.

除此之外, 在打草稿的过程中, 我们还推出了以下等式:

$$\int_{0}^{\tau} E_{\mu,\mu}(-\nu\tau_{i}^{\mu})\tau_{i}^{\mu-1}d\tau_{i} = \frac{1}{\nu}[1 - E_{\mu}(-\nu\tau^{\mu})] \tag{6}$$

## 1.4 分数阶 Poisson 过程的和与分裂

我们知道,标准 Poisson 过程的和依然是标准 Poisson 过程. 标准 Poisson 过程的分裂依然是标准 Poisson 过程: 对于标准复合 Poisson 过

程  $Y(t) = \sum_{i=1}^{N(t)} X_i$  中, 如果  $X_i$  为二项分布, 那么 Y(t) 可以分解成两个独立的标准 Poisson 过程  $Y_1(t)$  和  $Y_2(t)$ , 他们的强度分别为  $\lambda p$  和  $\lambda(1-p)$ .

对于  $\mu$  < 1 的分数阶 Poisson 过程, 我们证明其和不为分数阶 Poisson 过程, 但复合分数阶 Poisson 过程依然满足分裂.

Theorem 1.2 (分数阶 Poisson 过程的分裂). 对于复合分数  $\mu \leq 1$  阶 Poisson 过程  $Y(t) = \sum_{i=1}^{N_{\mu}(t)} Y_i$ , 其强度为  $\nu$ ,  $\{Y_i\}$  为独立同分布的 0-1 分布  $Y_i \sim b(1,p)$ . 则代表  $Y_i = 1$  到来的计数过程  $N_1(t)$  和代表  $Y_2 = 0$  到来的计数过程  $N_2(t)$  均为分数  $\mu$  阶 Poisson 过程, 强度分别为  $\nu p$  和  $\nu(1-p)$ .

Proof. 根据 [1](54), 复合分数阶 Poisson 过程的母函数

$$J_{\mu}(s,t) = E_{\mu} \left( \nu t^{\mu} (g(s) - 1) \right) \tag{7}$$

0-1 分布的 g(s) 为

$$g(s) = pe^{s} + (1 - p) \tag{8}$$

因此, Y(t) 的母函数为

$$J_{\mu}(s,t) = E_{\mu} \left( \nu t^{\mu} p(e^{s} - 1) \right) \tag{9}$$

即  $N_1(t)$  为  $\mu$  阶, 强度  $\nu p$  的分数阶 Poisson 过程. 同理可证  $N_2(t)$  为  $\mu$  阶, 强度为  $\nu(1-p)$  的分数阶 Poisson 过程.

Remark. 实际应用中,满足分裂意味着对分数阶 Poisson 过程按照 0-1 分布进行随机采样,得到的新过程依然是分数阶 Poisson 过程.

分裂性可以显然地推广至多分类,即按照固定概率将每个到达事件分为 1 到 n 类,每类事件的到达计数依然满足  $\mu$  阶 Poisson 过程,强度对应为  $\nu p_i$ .

Theorem 1.3 (分数阶 Poisson 过程的和).  $\mu < 1$  的两个分数阶 Poisson 过程  $N_{\mu,1}(t), N_{\mu,2}(t)$  的和 N'(t) 不为分数阶 Poisson 过程 (或标准 Poisson 过程).

Proof.

$$P(N'(t) = n) = \sum_{j=0}^{n} P_{\mu,1}(j,t) \cdot P_{\mu,2}(n-j,t)$$

$$= (\nu t^{\mu})^{n} \sum_{j=0}^{n} \sum_{k=0}^{\infty} \frac{(k+j)!}{j!k!} \frac{(-\nu t^{\mu})^{k}}{\Gamma(\mu(k+j)+1)} \sum_{k_{2}=0}^{\infty} \frac{(k_{2}+j)!}{j!k_{2}!} \frac{(-\nu t^{\mu})^{k_{2}}}{\Gamma(\mu(k_{2}+j)+1)}$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{j} \frac{(\nu_{1} t^{\mu} (e^{-s}-1))^{k}}{\Gamma(k\mu+1)} \frac{(\nu_{2} t^{\mu} (e^{-s}-1))^{j-k}}{\Gamma((j-k)\mu+1)}$$

$$? = \sum_{j=0}^{\infty} \frac{(\nu' t^{\mu'} (e^{-s}-1))^{j}}{\Gamma(j\mu'+1)}$$

$$(10)$$

若 N'(t) 为一分数阶 Poisson 过程,则最后一个等号成立,令  $t'=t^{\mu}$ ,则  $t^{\mu}$  各阶系数相等,因此

$$\mu' = \mu \tag{11}$$

$$\Gamma(j\mu+1) = \Gamma(k\mu+1)\Gamma((j-k)\mu+1) \cdot \alpha^k, \alpha$$
 为定值. (12)

但是, 由于当 k = 0 和 k = j 时, 有  $\Gamma(j\mu+1) = \Gamma(k\mu+1)\Gamma((j-k)\mu+1)\cdot 1$ , 因而  $\alpha$  只能等于 1, 这显然是不对的, 因为在  $\mu < 1$  时,

$$\Gamma(j\mu+1) \not\equiv \Gamma(k\mu+1)\Gamma\left((j-k)\mu+1\right) \tag{13}$$

而  $\mu = 1$  时, 上式恒等, 即标准 Poisson 过程的和依然为标准 Poisson 过程.

可以证明更强的结论:

Theorem 1.4 (分数阶 Poisson 过程到达间隔时间概率密度卷积  $\psi^{*2}(t)$ ). 两个分数阶 Poisson 过程求和得到的计数过程, 其到达间隔时间概率密度  $\psi'(t)$  不再服从分数阶 Poisson 过程的到达间隔时间分布. 也就是说, 卷积  $\psi^{*2}(t)$  不再服从分数阶 Poisson 过程到达间隔时间  $\psi(t)$  的分布.

Proof. 我们知道, 对于同时开始的强度为  $\lambda_1$ ,  $\lambda_2$  的两个标准 Poisson 过程的和, 可以如下计算在 t 时刻来了第一个事件的概率密度,

$$\psi'(t) = \lambda_1 e^{-\lambda_1 t} e^{-\lambda_2 t} + \lambda_2 e^{-\lambda_1 t} e^{-\lambda_2 t} = (\lambda_1 + \lambda_2) e^{-(\lambda_1 + \lambda_2)t}$$
(14)

它仍然满足标准 Poisson 过程, 且该到达的事件属于两个过程的概率分别为  $\frac{\lambda_1}{\lambda_1+\lambda_2}$  和  $\frac{\lambda_2}{\lambda_1+\lambda_2}$ , 只与强度有关, 而与时刻 t 无关.

而对于分数阶 Poisson 过程, 采取同样的方法计算,

$$\psi'(t) = \nu_1 t^{\mu-1} E_{\mu,\mu}(-\nu_1 t^{\mu}) E_{\mu}(-\nu_2 t^{\mu}) + \nu_2 t^{\mu-1} E_{\mu,\mu}(-\nu_2 t^{\mu}) E_{\mu}(-\nu_1 t^{\mu})$$
(15)

它是否可以写成  $v't^{\mu-1}E_{\mu,\mu}(-v't^{\mu})$ ?

考察最简单的情形, 令  $\nu_1 = \nu_2$ , 由于  $E_{\mu,\mu}(\cdot)E_{\mu}(\cdot)$  无恒等式变成  $E_{\mu,\mu}(\cdot)$ , 故不行.

Remark. 更有甚者, 该到达的事件属于两个过程的概率含时刻 t, 这意味着包含  $N_1(t)$  和  $N_2(t)$  的状态, 因此无法利用离散 Markov 链来研究事件到达时刻观测到的两个分数阶 Poisson 过程的和的状态集合  $\{X_i\}$ .

#### 1.5 分数阶 Poisson 过程的相关函数

[4] 研究了更新过程和分数阶 Poisson 过程的多元分布, 利用  $\{\tau_i\}$  的独立性, 和 [4](23) 的剩余寿命概率密度  $f_{Y_{n_1}}(t)$ , 可以推导分数阶 Poisson 过程的相关函数. 将  $f_{Y_{n_1}}(t)$  中的观测时刻  $t_1$  设为 s.

$$E(N(s)(N(t))) = E(E(n \cdot N(t)|N(s) = n))$$

$$= E(n(\int_{s}^{t} f_{Y_{n_{1}},s}(\tau) \cdot (E(N(t-\tau)) + n)d\tau + \int_{t}^{+\infty} f_{Y_{n_{1}},s}(\tau) \cdot nd\tau))$$
(16)

## 1.6 过滤分数阶 Poisson 过程

由于分数阶 Poisson 过程的条件分布无法拆分成 n 个独立同分布的概率密度, 因此无法继续化简.

$$\phi_{Y(t)}(\omega) = \int_{0}^{t} \int_{0}^{\tau_{n}} \cdots \int_{0}^{\tau_{2}} (E_{A_{k}}(\exp(j\omega \sum_{k=1}^{n} h(t, \tau_{k}, A_{k})) | N(t) = n, \tau_{1}, \cdots, \tau_{n})) \cdot \frac{n! \prod_{i=1}^{n} \tau_{i}^{\mu-1} E_{\mu,\mu}(-\nu \tau_{i}^{\mu}) \cdot E_{\mu}(-\nu (t-t_{n})^{\mu})}{(t^{\mu})^{n} \sum_{k=0}^{\infty} \frac{(k+n)!}{k!} \frac{(-\nu t^{\mu})^{k}}{\Gamma(\mu(k+n)+1)}} d\tau_{1} \cdots \tau_{n}$$
(17)

# 2 分数阶 Poisson 过程的到达间隔时间

### 2.1 到达间隔时间 S 的矩

在研究排队论及更新过程中,要首先分析出到达间隔时间的特征,通常 只关心其一阶矩和二阶矩.将它们代入相应公式,即可算出排队论及更新过 程的相应性质.

我们知道,  $\psi(t)$  的 Laplace 变换函数  $F(s) = \frac{\gamma}{\gamma + s''}$ , 利用公式

$$E(S^n) = (-1)^n \frac{\partial^n}{\partial s^n} F(s) \bigg|_{s=0}$$
 (18)

可以算得

$$E(S) = \frac{\nu}{(\nu + s^{\mu})^2} \mu s^{\mu - 1} \bigg|_{s = 0} = \infty$$
 (19)

$$E(S^{2}) = \frac{2\nu}{(\nu + s^{\mu})^{3}} \mu^{2} s^{2\mu - 2} - \frac{\nu}{(\nu + s^{m}u)^{2}} \mu(\mu - 1) s^{\mu - 2} \bigg|_{s = 0} = \infty$$
 (20)

我们还想求  $\frac{E(S^2)}{E(S)}$ 

$$\frac{E(S^2)}{E(S)} = \frac{1}{\left(\frac{1}{(\nu + s^{\mu})}\mu s^{\mu - 1} - (\mu - 1)s^{-1}\right)\Big|_{s = 0}} = 0$$
 (21)

## 2.2 到达间隔时间 S 分数阶矩的计算

矩是一个随机过程的重要性质. 由于 S 的一阶矩和高阶矩为无限大, 计算阶数小于 1 的期望, 或许为理解其性质带来一些帮助.

利用 Laplace 变换进行计算, 要用到来自 [15] 的结论, 先将该结论及其证明抄录如下:

Lemma 2.1 (分数阶矩的 Laplace 变换求解法). 对于  $\alpha > 0$ , 记 $F(\theta) = \mathcal{L}\{\psi(t)\}$  为  $\psi(t)$  的 Laplace 变换,则有 S 的  $s = n - \alpha$  阶矩:  $E(S^s) = (-1)^n \frac{1}{\Gamma(\alpha)} \int_0^\infty F^{(n)}(\theta) \theta^{\alpha-1} d\theta$ 

Proof. 由 Fubini 定理,

$$\int_0^\infty F^{(n)}(\theta)\theta^{\alpha-1}d\theta = (-1)^n E\left(\int_0^\infty X^n e^{-\theta X}\theta^{\alpha-1}d\theta\right)$$

$$= (-1)^n E(S^{n-\alpha}) \int_0^\infty \theta^{\alpha-1}e^{-\theta}d\theta$$
(22)

当  $\alpha > 0$ , 等式右边积分收敛.

我们先试着求 n = 1,0 < s < 1 的正分数阶矩.

$$E(S^{s}) = \frac{-1}{\Gamma(\alpha)} \int_{0}^{\infty} F'(\theta) \theta^{\alpha - 1} d\theta$$

$$= \frac{-1}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{(-1)\mu \theta^{\mu - 1} \nu}{(\nu + \theta^{\mu})^{2}} \theta^{\alpha - 1} d\theta$$

$$= \frac{\mu}{(\mu + \alpha - 1)\Gamma(\alpha)} \int_{0}^{\infty} \frac{\nu}{(\nu + \theta^{\mu})^{2}} d\theta^{\mu + \alpha - 1}$$
(23)

取  $\mu + \alpha - 1 = \frac{\mu}{k}$ , 即  $\alpha = 1 - \frac{k-1}{k}\mu$ ,  $s = \frac{k-1}{k}\mu$ . 有

$$E(S^{\frac{k-1}{k}\mu}) = \frac{1}{\Gamma(1 - \frac{k-1}{k}\mu)\frac{1}{k}} \int_{0}^{+\infty} \frac{\nu}{(\nu + u^{k})^{2}} du$$

$$= \frac{\nu^{1/k}}{\nu\Gamma(1 - \frac{k-1}{k}\nu)\frac{1}{k}} \int_{0}^{+\infty} \frac{1}{(1 + (\frac{u}{\nu^{1/k}})^{k})^{2}} d\frac{u}{\nu^{1/k}}$$

$$= \frac{k}{\nu^{\frac{k-1}{k}}\Gamma(1 - \frac{k-1}{k}\mu)} \frac{k-1}{k^{2}} \pi \csc(\frac{\pi}{k})$$

$$= \frac{1}{\nu^{\frac{k-1}{k}}\Gamma(1 - \frac{k-1}{k}\mu)} \frac{k-1}{k} \pi \csc(\frac{\pi}{k})$$
(24)

其中 k >= 2 and  $k \in \mathbb{Z}^+$ .

此外, 计算负分数  $-\frac{\mu}{k}$  阶矩,  $k \in \mathbb{Z}^+$ .

$$E(S^{s}) = (-1)\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \theta^{\alpha-1} dF(\theta)$$

$$= (-1)\frac{1}{\Gamma(\alpha)} [\theta^{\alpha-1} F(\theta)]_{0}^{\infty} - \int_{0}^{\infty} F(\theta) d\theta^{\alpha-1}]$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} F(\theta) d\theta^{\alpha-1}$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{\nu}{\nu + \theta^{\mu}} d\theta^{\alpha-1}$$
(25)

以上式子在  $\alpha < 1 + \mu$  成立. 在  $a = 1 + \mu$  时,  $\theta^{\alpha} F(\theta) \Big|_{\theta \to +\infty}$  为非零有限值, 但这在的求解范围之外.

再令  $\alpha = \frac{\mu}{k}$ , 有,

$$E(S^{-\frac{\mu}{k}}) = \frac{\nu^{\frac{1}{k}}}{\Gamma(\frac{\mu}{k})} \int_0^\infty \frac{1}{1 + (\frac{\theta}{\nu^{\frac{1}{\mu}}})^{\mu}} d(\frac{\theta}{\nu^{\frac{1}{\mu}}})^{\frac{\mu}{k}}$$

$$= \frac{\nu^{\frac{1}{k}}}{\Gamma(\frac{\mu}{k})} \frac{\pi}{k} \csc(\frac{\pi}{k})$$
(26)

其中 k >= 2 and  $k \in \mathbb{Z}^+$ .

k=1 时,  $E(S^{-\mu})=\infty$ .

本节中的推导用到了

$$\int_{0}^{\infty} \frac{1}{(1+u^{k})^{2}} du = \frac{k-1}{k^{2}} \pi \csc(\frac{\pi}{k})$$

$$\int_{0}^{\infty} \frac{1}{1+u^{k}} du = \frac{\pi}{k} \csc(\frac{\pi}{k})$$
(27)



Figure 1: S 的 s 分数阶矩  $E(S^s)$ 



Figure 2: Figure  $1s \in [-0.1, 0]$  部分放大

由下节的渐进性质, 可知  $E(S^s)$  在  $s \ge \mu$  和  $s \le \mu$  均为  $\infty$ , Figure 1很好地体现了这一点, 正分数阶部分尤为明显.

# 2.3 到达间隔时间渐近性质

1. 在 E(S) = ∞ 时 Wald 等式依然成立, 可以得到如下渐近性质,

Theorem 2.2. 由 Wald 等式,

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{E(S)} = 0, \text{ with probability 1.}$$
 (29)

- 2. 另一方面由于  $\mu = \infty$ , 导致无法运用中心极限定理分析到达间隔时间 概率密度  $\psi(t)$ .
- 3. 在 [1] 中, 给出了在  $t \to 0$  和  $t \to \infty$  的幂率近似,

$$\psi(t) \simeq \begin{cases} 1/\nu t^{\mu+1}, t \to +\infty \\ \nu t^{\mu-1}, t \to 0 \end{cases}$$

(分数阶 Poisson 到达间隔时间概率密度幂率近似)

### 2.4 对排队论和更新过程的影响

由于分数阶 Poisson 过程到达间隔时间一阶矩为无限大, 导致  $N_{\mu}(t)$  作为更新过程和以  $\Psi(t)$  作为 G 分布的排队模型意义不大. 比如, 对于 G/M/1 系统, 到来  $\lim_{t\to\infty}\frac{N_a(t)}{t}=0$ , 而离开  $\lim_{t\to\infty}\frac{N_d(t)}{t}=\lambda$ , 那么研究稳态情形显然没有什么信息量.

事实上, [12][13][14] 等文献研究了到达间隔时间概率密度满足幂率  $t \to +\infty, 1-\Psi(t) \sim L(t)1/t^{-a}, 1 < a \leq 2$  的排队系统, 此时  $\psi(t)$  一阶矩有限而高阶矩为无限大. 而分数阶 Poisson 过程的一阶矩也为无限大. 这点可由equation (分数阶 Poisson 到达间隔时间概率密度幂率近似)在  $t \to \infty$  的幂率近似直接看出, 相当漂亮.

在这样不利的条件下,我们能否构造出或者推出一些有意义的模型和结论呢?

# 3 M/G/1 排队模型与截尾到达间隔时间

排队模型是电子信息科学中受到广泛应用的模型,如分析 ALOHA, CDMA 的信道利用率和碰撞率,就运用了排队论.

## 3.1 M/G/1 排队模型

以顾客为例. M/G/1 排队模型是指一条服务线, 顾客的到达间隔时间服从指数分布, 而服务时间符合一般分布 G.

如果在顾客离开时刻观测处在排队的人数 N, 则 N 为参数的状态集合  $\{N_i\}$  满足 Markov. 这种分析办法称作嵌入 Markov 链 [16]. 之所以  $\{N_i\}$  满足 Markov 性, 是因为顾客到达无记忆. 又由于处在排队的人数 N 足以描述 该系统, 因此就研究  $\{N_i\}$ .

研究分数阶 Poisson 过程在 M/G/1 排队系统中的应用, 由于分数阶 Possion 的到达间隔时间的一阶矩 E(S) 为无限大, 不满足 M/G/1 的  $\lambda E(S)$  < 1 的要求. 因此须要对 G 做某种操作.

我们使用一个截尾的服务时间概率密度  $\psi'(t)$ (见下一节), 也就是将服务时间限制在 [0,T] 区间内. 它的现实意义是, 当服务时间超过一定时长, 直

接放弃转而服务下一个,这在现实中可以理解为系统死机/放弃消耗时间已超过正常阈值的请求等,具有现实意义.

本章的工作有两点启示, 其一是使用截尾/超时来处理服务时间概率密度, 解决一阶矩 (和二阶矩) 为无限大的问题, 其二是含含有  $\delta$  函数的截尾分布的式子计算.

下一章探讨计算机仿真办法及结果.

### 3.2 有关 M/G/1 系统抄录的式子

记 S 为服务时间, 下同.

[10] 总结了 M/G/1 系统的平均性质公式,

1. 给定顾客在队列中等待的时间由 Pollaczek-Khintchine 公式给出,

$$W_{Q} = \frac{\lambda E(S^{2})}{2(1 - \lambda E(S))}$$
 (Pollaczek-Khintchine formula)

2. 队列中平均顾客数为到达强度  $\lambda$  与顾客的平均停留时间 W 乘积,

$$L = \lambda W = \lambda (W_Q + E(S)) = \frac{\lambda^2 E(S^2)}{2(1 - \lambda E(S))} + \lambda E(S)$$
 (30)

为了使得这些量有限, 须要满足  $\lambda E(S) < 1$ , 即离开率 1/E(S) 小于到达率  $\lambda$ .

Remark.  $L = \lambda W$  用到了 Little 定理.

上述两个量为到达者观察到的结果.

3. 引入忙期 (系统中至少有一个顾客, 服务线忙) 和闲期 (系统中没有顾客) 概念. 记 I 和 B 分别为闲期和忙期的长度, C 为一个忙期中服务过的顾客数 C. 则

$$E(I) = \frac{1}{\lambda} \tag{31}$$

$$E(B) = \frac{E(S)}{1 - \lambda E(S)} \tag{32}$$

$$E(C) = \frac{1}{1 - \lambda E(S)} \tag{33}$$

[16] 推导出了 M/G/1 系统平稳分布 (equilibrium distribution) 的母函数,

$$G_N(z) = \frac{(1-\rho)(1-z)}{S^*((1-z)\lambda) - z} \cdot S^*((1-z)\lambda) = \frac{(1-\rho)(1-z)}{1-z/S^*((1-z)\lambda)}$$
(eq:ed)

 $S^*(u)$  为服务时间的 Laplace 变换.

以及逗留时间 (sojourn time) 和 N 母函数的关系.

$$G_N(z) = T^*((1-z)\lambda) \tag{34}$$

可见, 为了得到 M/G/1 平稳分布, 以及其他队列的平均性质, 关键是求得 G 分布对应的服务时间 S 的一阶矩和二阶矩.

### 3.3 截尾到达间隔时间概率密度 $\psi_T(t)$ 与超时率 $P_{TD}$

将分数阶 Poisson 过程的到达间隔时间概率密度  $\psi(t)$  在 T 时刻进行截尾,得到  $\psi_T(t)$ ,即令

$$\psi_T(t) = \psi(t) \cdot I(t, 0, T) + (1 - \int_0^T \psi(t)dt)\delta(t - T)$$
 (35)

其中

$$I(t,0,T) = \begin{cases} 1, 0 \le t \le T \\ 0, \text{ otherwise} \end{cases}$$
 (36)

对应地, 引入超时率  $P_{TD}$  概念.

$$P_{TD} = 1 - \int_0^T \psi(t)dt \tag{37}$$

 $P_{TD}$  表示被截断的概率,即服务超时未完成而放弃 (如丢包, 死机等) 的概率.

### 3.4 截尾到达间隔时间 $S_T$ 的矩

先求  $\psi_T(t)$  的 Laplace 变换  $F_T(s)$ .

$$F_{T}(s) = \mathcal{L}\{\psi_{T}(t)\}\$$

$$= \int_{0}^{T} e^{-s\tau} \psi(t) dt + e^{-sT} (1 - \int_{0}^{T} \psi(\tau) d\tau)$$

$$= \int_{0}^{T} e^{-s\tau} d[-E_{\mu}(-\nu\tau^{\mu})] + e^{-sT} E_{\mu}(-\nu T^{\mu})$$

$$= -e^{-s\tau} E_{\mu}(-\nu\tau^{\mu}) \Big|_{0}^{T} + \int_{0}^{T} E_{\mu}(-\nu\tau^{\mu}) de^{-s\tau} + e^{-sT} E_{\mu}(-\nu T^{\mu})$$

$$= \int_{0}^{T} E_{\mu}(-\nu\tau^{\mu}) de^{-s\tau}$$
(38)

则 n 阶矩可以如下计算,

$$E(S_T^n) = (-1)^n \frac{\partial^n}{\partial s^n} F_T(s) \bigg|_{s=0}$$
(39)

则一阶矩和二阶矩为,

$$E(S_T) = (-1)\frac{\partial}{\partial s}F_T\bigg|_{s=0} = \int_0^T E_\mu(-\nu\tau^\mu)d\tau \tag{40}$$

$$E(S_T^2) = \frac{\partial 2}{\partial s^2} F'(s) \bigg|_{s=0} = 2 \int_0^T \tau E_\mu(-\nu \tau^\mu) d\tau \tag{41}$$

这里用到了  $\frac{\partial 2}{\partial s^2}e^{-s\tau} = \tau^2 e^{-s\tau}$ .

# $3.5 \quad E(S_T), E(S_T^2), P_{TD}$ 随 T 变化图线

我们作图出不同  $\mu$  下的一阶矩和二阶矩随 T 的变化, 作为比较, 同时单独作出了  $\mu = 1$  的情形.

同时, 作出超时率  $P_{TD} \sim T$ ,  $\mu = 1$  情形只在放大图中出现.

由于  $\mu = 1$  时矩和超时率上升/下降过快,覆盖其他图线,因此作了如上所述的处理.

上述图一律取  $\nu = 5$ .

可以看到, 超时率在 T=0 附近有一个陡降. 在 T=5 时,  $\mu=0.8$  及  $\mu=0.5$  的超时率已经分别降到了 1.29% 和 5.03%, 而  $\mu=0.2$  也降到了

11.17. 在 T = 9.4,  $\mu = 0.2$  的超时率跌破 10%(精度 0.1), 到达 9.99%. 而此时三者的一阶矩均在 1 以内.  $\mu = 0.8$ ,  $\mu = 0.5$ , 在 T = 5 时一阶矩分别为 0.4666,0.6756, 即离开强度为 2.1432, 1.4808. 对于  $\nu = 5$  来说, 10% 的丢包率和 2 左右的离开强度尚能接受. 而  $\mu = 0.2$  的情况要相对糟糕一些.

总的来说,  $\mu$  越小情况越糟糕. 对于  $\mu \ge 0.5$  的情况, 截尾的处理办法是可以接受的.



Figure 3:  $\mu = 1$  时的  $E(S_T)$  和  $E(S^2)$  随截尾时刻 T 的变化



Figure 4: 不同  $\mu$  下  $E(S_T)$  随截尾时刻 T 的变化



Figure 5: 不同  $\mu$  下  $E(S_T^2)$  随截尾时刻 T 的变化



Figure 6: Figure 4  $T \in [0, 100]$  局部放大



Figure 7: Figure 5  $T \in [0, 100]$  局部放大



Figure 8: 超时率  $P_{TD}$  随 T 变化



Figure 9: Figure 8  $T \in [0, 16]$  局部放大

# 4 计算机仿真 $M/\Psi_T/1$ 排队模型

### 4.1 截尾服务时间 ST 随机变量的生成

使用计算机仿真该排队系统, 第一步准备是生成符合分布的服务时间 S 随机变量. 在计算机数值系统中, 最基本, 最常见的是均匀分布的随机变量. 因此, 我们要用均匀随机变量, 生成符合分数阶 Poisson 过程的等待间隔时间概率密度  $\psi(t)$  的随机变量 S. [8] 给出了生成方法,

Lemma 4.1 (用三个均匀随机变量生成随机变量 S).

$$T := \frac{|\ln U_1|^{1/\nu}}{\mu^{1/\nu}} \frac{\sin(\nu \pi U_2) [\sin((1-\nu)\pi U_2)]^{1/\nu-1}}{[\sin(\pi U_2)]^{1/\nu}||^{1/\nu-1}}$$
((3.7) from [8])

其中,  $U_1, U_2, U_3$  独立同分布, $X_i \sim U[0, 1]$ .

显然, 把生成的 S 过一个限幅器即可得到所需的截尾服务时间随机变量  $S_T$ .

### 4.2 排队模型仿真算法

M/G/1 的再生点为顾客服务完离开, 仿真再生点的情形使得仿真算法相当简单. 算法如下,

N 为当前系统人数. t 为当前时间. ST 为随机变量截尾服务时间. ta 为随机变量下一个顾客到达所需时间. nc 为随机变量服务时间完进入顾客数量.

```
while 1
if N==0%闲置,顾客到来立即开始服务
以lambda为参数,生成指数分布随机变量ta;
T=T+ta;
else
随机生成ST;
N=N-1;
T=T+S_T;
以lambda*ST为参数,生成泊松分布随机变量nc.
N=N+nc.
```

Listing 1: 排队系统仿真伪代码

Remark. 这里有一个细节问题须要注意, 当最后一个顾客服务完  $(t_1)N=0$  后在服务时间里没有新的顾客来, 排队系统会闲置, 下一个顾客来  $(t_2)$  系统会立即进行服务. 这种情形需要单独讨论. 算法中处理比较简单, 在顾客服务完条件判断一下生成的随机.

这会导致构建 Markov 模型有小小的麻烦, 但是不影响最后平稳分布的结果.

### 4.3 仿真结果

对  $\nu = 5$ ,  $\mu = 0.5$ , T=5 时的情形进行仿真. 由(37)(40)(41)计算得到

Table 1:  $\nu = 5$ ,  $\mu = 0.5$ , T=5  $E(S) \qquad E(S^2) \qquad 1/E(S) \qquad P_{TD}$ 0.466637031400487 0.832431327732974 2.142993231803241 0.0503

分别取  $\lambda = 2.0$ ,  $\lambda = 2.1$ ,  $\lambda = 2.2$ , 每次做十遍仿真.

我们发现, 在  $\lambda = 2.1$  和  $\lambda = 2.0$  时仿真结果的超时率和平均队长和理论计算相吻合.

在  $\lambda = 2.2$  时理论计算  $\lambda E(S) > 1$ , 从 Figure 12中可以直观地看出系统中顾客数量一直在增长, 无法收敛到平稳分布.

| Table 2. $\mathcal{X} = 2$ 仍其纪木   |                   |                   |                   |                   |                   |  |  |
|-----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
| 名称                                | Exp. No.1         | 2                 | 3                 | 4                 | 5                 |  |  |
| avg Queue Length<br>Timeout Ratio | 43.5063<br>0.0506 | 42.1694<br>0.0501 | 36.2571<br>0.0497 | 70.6925<br>0.0510 | 41.6948<br>0.0501 |  |  |
| 6                                 | 7                 | 8                 | 9                 | 10                | 十次平均值             |  |  |
| 40.3805                           | 48.3466           | 39.4688           | 41.0774           | 46.9206           | avg45.0514        |  |  |
| 0.0495                            | 0.0514            | 0.0503            | 0.0501            | 0.0498            | $avg \ 0.0502$    |  |  |

Table 2:  $\lambda = 2$  仿直结果

5 结论与展望 22

| 名称                                | Exp. No.1          | 2                 | 3                  | 4                  | 5                  |  |  |  |
|-----------------------------------|--------------------|-------------------|--------------------|--------------------|--------------------|--|--|--|
| avg Queue Length<br>Timeout Ratio | 383.1234<br>0.0515 | 68.2720<br>0.0478 | 201.3576<br>0.0506 | 188.3571<br>0.0503 | 164.2789<br>0.0509 |  |  |  |
|                                   |                    |                   |                    |                    |                    |  |  |  |
| 6                                 | 7                  | 8                 | 9                  | 10                 | 十次平均值              |  |  |  |

Table 3:  $\lambda = 2.1$  仿真结果

# 5 结论与展望

我们首先尝试平行推广标准 Poisson 过程的结果, 推导出分式 Poisson 过程具分裂性, 及其到达时刻的条件分布. 由于分数阶 Poisson 不具备独立增量, 平稳增量的性质, 我们能依靠的几乎就是  $\{\tau_i\}$  独立同分布. 加上结果中的 Mittag-Leffler 函数, 使得分数阶 Poisson 不具备 "到达时刻的条件分布独立同分布顺序统计量"等等优秀的性质, 从而实际应用中的计算往往不能避免多重积分.

由于更新过程和排队论均极其依赖到达间隔时间的一阶矩和二阶矩, 我们研究了分数阶 Poisson 过程的一阶矩和二阶矩,发现均为无限大. 我们 利用 Fubini 定理推导了分数阶矩,或许可以揭示一部分其性质. 此外还探 讨了其渐近性质.

我们将到达间隔时间概率密度截尾,从而使其一阶矩和二阶矩为有限. 并应用于 M/G/1 模型. 截尾在现实中有其对应,且具体数值计算验证了其可行性. 计算机仿真结果验证了理论计算.

对于同样依赖一阶矩和二阶矩的更新过程, 截尾服务时间的一阶矩和 二阶矩推导结果可以立即应用, 从而研究其在更新过程的性质.

截尾的方法或许对研究有同样毛病的分布有借鉴意义. 未来工作有:

1. 研究 Mittag-Leffler 函数性质, 及近似表达式. 在近似条件下, 化简结果, 得到分数阶 Poisson 过程好的性质.

5 结论与展望 23

2. 进一步推导  $M/\Psi_T/1$  排队模型性质, 如根据母函数计算平衡分布等. 并推广至 M/G/1 排队模型变种.

3. 将截尾服务时间分布应用至更新过程, 推导性质.



Figure 10:  $\lambda = 2.0$  系统中顾客数随时间变化

5 结论与展望 24



Figure 11:  $\lambda = 2.1$  系统中顾客数随时间变化



Figure 12:  $\lambda = 2.2$  系统中顾客数随时间变化

REFERENCES 25

#### References

[1] Nick Laskin. Fractional Poisson Process[J]. Communications in Nonlinear Science and Numerical Simulation, 8 (2003) 201-213.

- [2] Nick Laskin. Some Applications of the Fractional Poisson Probability Distribution[J]. Journal of Mathematical Physics, 2009, 50(11):201-227
- [3] Nikolai Leonenko, Enrico Scalas and Mailan Trinh. The Fractional Non-homogeneous Poisson Process[J]. Statistics and Probability Letters, 2016.
- [4] Mauro Politi and Taisei Kaizoji. Full Characterization of the Fractional Poisson Process[J]. Europhysics Letters, 2011, 96(2).
- [5] 陆大纟金, 张灏. 随机过程及其应用 [M]. 第 2 版. 北京: 清华大学出版 社, 2011.
- [6] 陆大纟金. 随机过程及其应用 [M]. 北京: 清华大学出版社, 1984.
- [7] 王颖. 复合分数阶泊松过程的参数估计及应用 [D]. 吉林大学: 吉林大学 数学研究所, 2015.
- [8] Dexter Odchigue. Fractional Poisson Process in terms of Alpha-stable Densities[D]. Case Western Reserve University: Department of Statistics, 2007.
- [9] Rudolf Gorenflo and Francesco Mainardi. Laplace-Laplace Analysis of the Fractional Poisson Process[J]. Mathematics, 2013.
- [10] Sheldon M. Ross. Introduction to Probability Models[M]. 11th edition. 龚光鲁译. 北京: 人民邮电出版社, 2016.
- [11] Robert G. Gallager. Stochastic Processes: Theory for Applications[M]. Cambridge University Press, 2014. http://www.rle.mit.edu/rgallager/documents/Renewal.pdf
- [12] Mattew Roughan, Darryl Veitch and Michael Rumsewicz. Computing Queue-Length Distributions for Power-Law Queues[J]. Infocom, 1998.

REFERENCES 26

[13] A. Saichev and D. Sornette. Effects of Diversity and Procrastination in Priority Queuing Theory: the Different Power Law Regimes[J]. Physical Review, 2010, 81(1).

- [14] Vladimir N. Zadorozhnyi and Tatiana R. Zakharenkova. Minimization of Packet Loss Probability in Network with Fractal Traffic[J]. ITMM, 2017.
- [15] Jeff Schenker. Laplace transform and fractional moments[Z]. https://mathoverflow.net/questions/5525/laplace-transform-and-fractional-moments
- [16] J. Virtamo. Queueing Theory: M/G/1-queue[Z]. https://www.netlab.tkk.fi/opetus/s383143/kalvot/E\_mg1jono.pdf