MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2015-16 EIC0009 | COMPLEMENTOS DE MATEMÁTICA | 1º ANO - 2º SEMESTRE

Prova sem consulta. Duração: 2h.

2ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [3,0] Considere $a \in \mathbb{R}^+$ e o campo vetorial $\vec{f}(x, y, z) = (z^2, y^2, xz)$. Seja a curva simples fechada, C, intersecção das superfícies $x^2 + z^2 = a^2$ e y = z.
 - **a**) Esboce a curva C e calcule $\int_C z^2 dx + y^2 dy + xz dz$.
 - **b**) Tendo em atenção a alínea **a**) poderá concluir-se que \vec{f} é gradiente? Justifique.
- **2.** [4,5] Seja o campo vetorial $\vec{f}(x, y) = (x + \alpha y + \beta y^2, x + 2\beta xy)$, em que α e β são constantes reais. Considere a curva, C, fronteira da região limitada por y = 1 x e $y = (x 1)^2$, percorrida no sentido retrógrado.
 - a) Seja $\alpha = \beta = 0$. Esboce a curva, C, e calcule $\int_C \vec{f} \cdot d\vec{r}$ usando, se possível, o teorema de Green.
 - **b**) Determine os valores de α e β de modo que o campo $\vec{f}(x, y)$ seja gradiente.
 - c) Para os valores de α e β obtidos em **b**), obtenha o campo escalar, $\varphi(x, y)$, tal que $\vec{f} = \nabla \varphi$ e calcule $\int_C \vec{f} \cdot d\vec{r}$ entre os pontos Q = (0,1) e P = (1,0).
- **3.** [3,0] Seja a superfície $z = 4 \sqrt{x^2 + y^2}$, $x \ge 0$, $y \ge 0$ e $z \ge 0$. Faça o seu esboço e calcule a sua área.

.....(continua no verso)

Prova sem consulta. Duração: 2h.

2ª Prova de Reavaliação

GRUPO II

- **4.** [3,0] Considere o campo vetorial $\vec{f}(x, y, z) = (z, y, x)$ e a superfície, S, do paraboloide $z = 1 x^2 y^2$, $z \ge 0$.
 - a) Obtenha uma parametrização, $\vec{r}(u,v)$, para a superfície e indique um versor, $\vec{n}(u,v)$, do vetor fundamental.
 - **b**) Determine $\iint_S (\vec{f} \cdot \vec{n}) dS$.
- **5.** [4,5] Seja o integral triplo $\int_{-\sqrt{2}/2}^{0} \int_{-y}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{1} dz dx dy + \int_{0}^{\sqrt{2}/2} \int_{y}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{1} dz dx dy.$
 - a) Esboce o domínio de integração.
 - b) Calcule o valor do integral usando uma mudança de coordenadas apropriada.
 - c) Reescreva-o de modo que a última integração se faça em ordem a x.
- 6. [2,0] O momento de inércia polar, I_p, de uma superfície plana, S, limitada por uma linha fechada, C, em relação à origem de um referencial de coordenadas cartesianas é dado por I_p = ∫∫_S r²(x, y)dxdy, em que r(x, y) é a distância do ponto (x, y) à origem. Obtenha uma expressão que lhe permita obter o valor de I_p a partir de um integral de linha ao longo de C.