المادة: الفيزياء _ لغة فرنسية الشهادة: المتوسطة نموذج رقم 3 / 2019 المدة: ساعة و احدة

الهيئة الأكاديميّة المشتركة قسم: العلوم

Cette épreuve comporte quatre exercices obligatoires répartis sur deux pages.

L'usage des calculatrices non programmables est autorisé.

Exercice 1 (3 points) Vrai ou Faux

Répondre par "Vrai" ou "Faux" et écrire la phrase corrigée.

- 1) La pression exercée par une boîte posée au sol augmente en augmentant sa surface de contact avec ce sol.
- 2) La pression exercée par un liquide au fond d'un récipient augmente en augmentant la quantité de liquide dans ce récipient.
- 3) La même quantité d'huile exerce toujours la même pression au fond d'un récipient de n'importe quelle forme.

Exercice 2 (7 points) Une lentille convergente utilisée en biologie

Le but de cet exercice est de déterminer, à l'aide d'une construction géométrique, les caractéristiques de l'image (A'B') d'un objet lumineux (AB) donnée par une lentille convergente (L) de distance focale f=12 cm.

L'objet, de taille AB = 1 cm, est placé à 6 cm de (L), perpendiculairement à son axe optique, A étant sur cet axe.

Le document (Doc. 1) montre la lentille convergente (L), son centre optique O et son axe optique x'Ox.

1) Construction de l'image

- 1-1) Dessiner, sur un papier millimétré, en utilisant l'échelle indiquée, le schéma représentant cette lentille convergente (L), son axe optique x'Ox, le foyer objet F, le foyer image F' et l'objet (AB).
- **1-2**) Construire sur le schéma, en donnant les explications nécessaires, la marche du rayon émergent correspondant au rayon incident issu du point B :
 - **1-2-1**) et passant par O;
 - 1-2-2) parallèlement à l'axe optique.
- 1-3) Construire l'image (A'B') de l'objet (AB) donnée par (L).

2) Caractéristiques de l'image

- 2-1) Préciser la nature de (A'B').
- 2-2) Indiquer le sens de l'image (A'B') par rapport à celui de l'objet (AB).
- **2-3**) Déterminer la taille A'B' de (A'B').

3) Application

Déduire le rôle des lentilles convergentes dans l'étude des parties de petits insectes en biologie.

Exercice 3 (5 points) Circuit électrique

Le circuit représenté dans (Doc. 2) est constitué de :

- Un générateur (G) délivrant à ses bornes une tension constante U_{PN};
- Trois conducteurs ohmiques (R_1) , (R_2) et (R_3) , de résistances respectives $R_1 = 3 \Omega$, $R_2 = 2 \Omega$ et $R_3 = 10 \Omega$, branchés comme l'indique (Doc. 2).
- 1) Calculer la résistance R' du conducteur ohmique (R') équivalent à (R_1) et (R_2) .
- 2) L'intensité I_2 du courant électrique traversant le conducteur ohmique (R_3) est de 0.8 A. Calculer la tension U_{AB} .
- 3) Un oscilloscope est branché pour visualiser la tension U_{PN} . Calculer la sensibilité verticale S_{ν} utilisée si la ligne médiane lumineuse est déplacée de 4 divisions vers le haut.

5) Calculer l'intensité I du courant principal traversant (G).

Exercice 4 (5 points) Poussée d'Archimède

Un ballon plat et vide, en caoutchouc, de masse 12 g, est rempli d'hélium gazeux de masse volumique $\rho_{He}=0.18~kg/m^3$. Il prend alors la forme d'une sphère de rayon R=0.6~m. Donnée :

- g = 10 N/kg;
- Masse volumique de l'air : $\rho = 1.3 \text{ kg/m}^3$;
- Volume V d'une sphère de rayon R : $V = \frac{4}{3}\pi R^3$.
- 1) Calculer le volume du gaz d'hélium utilisé pour remplir le ballon.
- 2) Calculer la masse du gaz d'hélium utilisé dans ce ballon.
- 3) Calculer la valeur P du poids du système (Ballon gaz d'hélium).
- 4) Calculer la valeur F de la poussée d'Archimède exercée par l'air ambiant sur le ballon.
- 5) Préciser si le ballon s'élève.

المادة: الفيزياء – لغة فرنسية الشهادة: المتوسطة نموذج رقم 3 / 2019 المدّة: ساعة واحدة

الهيئة الأكاديمية المشتركة قسم: العلوم

أسس التصحيح

Exercice 1 (3 points) Vrai ou Faux

Question	Réponse	Note
1	Faux. La pression exercée par une boîte posée au sol diminue en augmentant	1
	sa surface de contact avec ce sol.	
2	Vrai.	1
3	Faux. La même quantité d'huile peut exercer une pression différente au fond	1
	d'un récipient de n'importe quelle forme.	

Exercice 2 (7 points) Une lentille convergente utilisée en biologie Question Réponse Note 1-1 Schéma: (L) 0 Le rayon issu de B et passant par O continue son chemin sans déviation. 1-2-1 1/2 Construction: 1/2 (L) 1-2-2 Le rayon émergent correspondant au rayon incident issu de B parallèlement à l'axe optique converge en passant par le foyer image F'. 1/2 Construction: 1/2

Exercice 3 (5 points) Circuit électrique

Question	Réponse	Note
1	$R' = R_1 + R_2 = 3 + 2 = 5 \Omega$	1
2	D'après la loi d'Ohm : $U_{AB} = I_2.R_3 = 0.8 \times 10 = 8 \text{ V}$	1
3	$U_{PN} = U_{AB} = 8 \text{ V}$	
	$U_{PN} = S_v.Y \text{ donc } S_v = U_{PN}/Y = 8 \text{ V} / 4 \text{ div} = 2 \text{ V/div}$	1
4	$U_{CD} = U_{AB} = 8 \text{ V}$	
	$I_1 = U_{CD}/R' = 8/5 = 1,6 \text{ A}$	1
5	$I = I_1 + I_2 = 1.6 + 0.8 = 2.4 \text{ A}$	1

Exercice 4 (5 points) Poussée d'Archimède

Question	Réponse	Note
1	Le gaz prend la forme du récipient, donc : $V = \frac{4}{3}\pi(0.6)^3 = 0.905 \text{ m}^3$	1/2
2	$\rho_{He} = m_{H\acute{e}lium}/V$	1/2
	Ainsi : $m_{H\acute{e}lium} = \rho_{He} \times V = 0.18 \times 0.905 = 0.163 \text{ kg}$	1/2
3	$P = m_{totale}.g = (m_{ballon} + m_{H\'elium}).g$	1
	$P = (0.012 + 0.163) \times 10 = 1.75 \text{ N} \approx 1.8 \text{ N}$	1/2
4	$F = \rho Vg$	1/2
	$F = 1.3 \times 0.905 \times 10 = 11,765 \text{ N} \approx 11.8 \text{ N}$	1/2
5	\vec{P} agit verticalement vers le bas; \vec{F} agit verticalement vers le haut.	
	Le ballon monte puisque F > P.	1