

Objetivo

- Entender o que é AutoML.
- Desenvolver experimentos de modelagem utilizando o Pycaret.
- Ter mais produtividade e velocidade no desenvolvimento de projetos de Machine Learning.
- Saber se comparar modelos, técnicas, algoritmos e pipelines para implementação de modelos de Machine Learning.
- Estar pronto para enfrentar qualquer desafio.

Pra quem é esse curso?

- Cientistas de Dados.
- Engenheiros de Machine Learning.
- Gerentes e Heads de Tecnologia.

Responsabilidades dos Profissionais

- ★ Cientistas de Dados.
 - Definir etapas para compor o Pipeline de Machine Learning.
 - Amostragem.
 - Preparação de dados.
 - Missing Values
 - Conversão de tipos de dados.
 - One Hot, Cardinal, Ordinal Encoding.
 - Desbalanceamento de classes.
 - Transformação.
 - Normalização.
 - Escala e Tránsformação.
 - Engenharia e Seleção de Features.
 - Interação de Features.
 - Agrupamento.Binarização.
 - Importância de Features.
 - Remoção de Multicolinearidade.
 - Análise de componentes principais.
 - Ignorar baixa variância.
 - Definição de tarefas.
 - Otimização e Validação.
 - Definir técnicas é métodos a serem executados.
 - Algoritmos.
 - Estratégia para seleção de hiperparâmetros.
 - Métricas de avaliação.
 - Deploy, Monitoramento e análise.
 - Interpretação de Resultados.
 - Configurar experimentos e integrações.

Responsabilidades dos Profissionais

- Engenheiro de Machine Learning
 - Todas as atribuições do Cientista de Dados citadas anteriormente e ainda.
 - Definir ambiente e arquitetura para treinamento e otimização de modelos.
 - On Premise, On Cloud
 - Implementar modelos utilizando Frameworks e Linguagens para realizar predições em escala.
 - PyŚpark, Scala, Java, Python, C++
 - Definir formas de processamento.
 - Streaming, Clusters.
 - Monitoramento e avaliação de resultados.

Introdução a AutoML

AutoML - Machine Learning Automatizado.

Fornece métodos, técnicas e processos para fazer Machine Learning disponível a profissionais não experts, melhorando resultados com menos esforço.

Automação de tarefas como:

- Pré-processar e limpar dados.
- Selecionar e construir features apropriadas.
- ☐ Selecionar o melhor modelo.
- Otimizar hiperparâmetros do modelo.
- → Projetar a topologia de redes neurais.
- ☐ Desenvolver pipelines para predição.
- ☐ Analisar os resultados obtidos.

Machine Learning Pipeline

Etapas de um Pipeline para disponibilização de um modelo de Machine Learning.

Machine Learning Pipeline

Pycaret nos permite automatizar todas as etapas de um Pipeline para disponibilização de um modelo de Machine Learning.

Machine Learning Pipeline Preparação de Dados e Ingestão

Detecção de tipos de colunas.

- Boolean.
- Numérica discreta/contínua.
- Textual.
- Label/Target

Detecção de tarefas.

- Classificação binária.
- Regressão.
- Clustering.
- Ranking.

Machine Learning Pipeline Feature Engineer

- Seleção de Features.
- Extração de Features.
- Meta learning e transfer learning
- Detecção e manipulação de dados enviesados.
- Manipulação de valores faltantes.

Machine Learning Pipeline Seleção de Modelos e Otimização de Hiperparâmetros

- Seleção de modelos.
- Otimização de hiperparâmetros.
- Seleção de métricas e validação.
- Deploy e avaliação.

O que NÃO é AutoML

AutoML não é Auto Data Science.

5. Evaluating Relevant Literature

- CARET

Data Preparation

Model Training

Hyperparameter Tuning

Analysis & Interpretability

Model Selection

Experiment Logging

"PyCaret is an open-source, low-code machine learning library in Python that aims to reduce the cycle time from hypothesis to insights.

It is well suited for seasoned data scientists who want to increase the productivity of their ML experiments by using PyCaret in their workflows or for citizen data scientists and those new to data science with little or no background in coding.

PyCaret allows you to go from preparing your data to deploying your model within seconds using your choice of notebook environment."

Pycaret

Biblioteca Python Open Source e Low Code para trabalhar com Machine Learning.

Pycaret automatiza tarefas para resolução de problemas utilizando Machine Learning.

- Classificação.
- Regressão.
- Clustering.
- Detecção de Anomalias.
- Processamento de Linguagem Natural.
- Mineração de regras de associação.

Data Preparation

Model Training

Tuning

Analysis & Interpretability

Model Selection

Experiment Logging

Pycaret

Pycaret encapsula funções, técnicas, métodos e algoritmos de outras bibliotecas e frameworks como:

- CatBoost.
- LightGBM.
- XG Boost.
- Scikit-learn.
- Spacy.
- Optuna.
- Ray.

CatBoost LightGBM XGBoost CatBoost SpaCy @ OPTUNA H

HANDS ON!

Funções para implementar o Pipeline de Machine Learning do Pycaret

Inicializa o ambiente no Pycaret e cria o pipeline de transformação e prepara os dados para modelagem e deploy.

Inicializa o ambiente no Pycaret e cria o pipeline de transformação e prepara os dados para modelagem e deploy.

Esta função **treina e compara a performance de todos os modelos** para a determinada tarefa escolhida (Classificação, Regressão, Clustering etc) utilizando cross validation e retorna as métricas para avaliação e o tempo de treinamento.

Esta função **treina o modelo especificado** utilizando cross validation e retorna as métricas para avaliação..

Esta função **otimiza o modelo através dos seus hiperparâmetros** utilizando diferentes técnicas e ferramentas de otimização como scikit-learn, scikit-optimize, hyperopt e optuna.

Esta função **realiza a predição** utilizando o modelo especificado utilizando a amostra separada de teste.

Esta função realiza a predição utilizando o modelo especificado utilizando a amostra separada como um conjunto de validação.

Esta função realiza a predição utilizando o modelo especificado utilizando a amostra separada como um conjunto de validação.

SETUP - Inicializa o ambiente no Pycaret e cria o pipeline de transformação e prepara os dados para modelagem e deploy.

				/
Session_id	Target	Target_type	Label Encoded	
Missing Values	Shuffle Train-Test	Fold Number	CPU Jobs	
Use GPU	Log Experiment	Imputation Type	Normalize	
Transformation	PCA Components	Remove Outliers	Fix Imbalance	
Clustering	Feature Selection	Remove Multicollinearity		

Nome da coluna alvo a ser passada como uma string.

Proporção do conjunto de dados que será utilizado para treino dos algoritmos e criação dos modelos.

O valor deve ser passado entre os intervalos 0.0 a 1.0.

Por padrão: 0.7

Aplica tarefas de pré processamento aos dados de entrada. Quando setado para False, não aplica as transformações apenas o **train_test_split** e as transformações personalizadas no parâmetro **custom_pipeline**.

Quando definido como False os dados já devem ter passado por transformações como **missing_values**, **encoding** e estarem prontos para modelagem.

Estabelece os tipos de input e iterações para tratamento de dados missing. Os valores podem ser:

- simple (default) ou interative.
- default 5 iterações.

Como será feito o input em features categóricas.

- constant (default) = "not_available"
- mode = valor mais frequente da distribuição.

Estimator utilizado para input interativo.

default lightgbm

Como será feito o input em features numéricas.

- mean (default) = valor médio dos dados de treinamento.
- median = valor da mediana dos dados de treinamento.
- zero.

Estimator utilizado para input interativo.

• default lightgbm

Métodos de input simple - Features categóricas

Tratando missing values em features categóricas com input do tipo **constant** (default).

Sex	Occupation	
Male	Analyst	
Female	Data Scientist	
NaN	Data Scientist	
Male	Data Scientist	
Male	NaN	

Sex	Occupation		
Male	Analyst		
Female	Data Scientist		
not_available	Data Scientist		
Male	Data Scientist		
Male	not_available		

Métodos de input simple - Features categóricas

Tratando missing values em features categóricas com input do tipo **mode**.

Sex	Occupation
Male	Analyst
Female	Data Scientist
NaN	Data Scientist
Male	Data Scientist
Male	NaN

Sex	Occupation	
Male	Analyst	
Female	Data Scientist	
Male	Data Scientist	
Male	Data Scientist	
Male	Data Scientist	

Métodos de input simple - Features numéricas

Tratando missing values em features numéricas com input como valor da **média** (default).

Salary	Vacation	
\$ 7.300	25.0	
\$ 5.900	15.0	
NaN	0	
\$ 7.300	15.0	
\$ 6.500	NaN	

Salary	Vacation	
\$ 7.300	25.0	
\$ 5.900	15.0	
\$ 6.750	0	
\$ 7.300	15.0	
\$ 6.500	13.7	

Métodos de input simple - Features numéricas

Tratando missing values em features numéricas com input com o valor da **mediana.**

Salary	Vacation	
\$ 7.300	25.0	
\$ 5.900	15.0	
NaN	0	
\$ 7.300	15.0	
\$ 6.500	NaN	

Salary	Vacation
\$ 7.300	25.0
\$ 5.900	15.0
\$ 6.900	0
\$ 7.300	15.0
\$ 6.500	15.0

Métodos de input simple - Features numéricas

Tratando missing values em features numéricas com input de valores **zero**.

Salary	Vacation	
\$ 7.300	25.0	
\$ 5.900	15.0	
NaN	20.0	
\$ 7.300	15.0	
\$ 6.500	NaN	

Salary	Vacation
\$ 7.300	25.0
\$ 5.900	15.0
0	20.0
\$ 7.300	15.0
\$ 6.500	0

Métodos de input iterative - Features numéricas

Tratando missing values em features utilizando o método iterativo.

D	ataset		Tr	ain	Te	st
Salary	Comission		Salary	Comission	Salary	Comission
\$ 7.300	730		\$ 7.300	730	\$ 6.500	?
\$ 5.900	590	Estimator	\$ 5.900	590		
\$ 4.300	430		\$ 4.300	430		
\$ 6.500	?				Salary	Comission
	I	1			\$ 6.500	650

- Lista de string usada para sobrescrever a inferência de data types para features categóricas.
- Default = None.

categorical data setup imputation categorical ite target rative imputer numeric train size imputation numeric iterati test_data ve_imputer categorical preprocess features ordinal imputation_type features iterative imputat ion_iters

- Codifica dados de uma feature categórica para seguir uma ordem de grandeza.
- Exemplo: "low", "medium", "high" onde low < medium < high.
- Default = None.

data	categorical_ imputation	high_cardinalit y_method			
target	categorical_ite rative_imputer				
train_size	numeric_ imputation				
test_data	numeric_iterati ve_imputer				
preprocess	categorical_ features				
imputation_type	ordinal_ features				
iterative_imputat ion_iters	high_cardinalit y_features				

- Nos permite fazer um agrupamento de features que contém alta cardinalidade em poucos níveis.
- Método por frequência: Dados são substituídos pela sua frequência.
- Método por clustering: Treina o K-Means sobre os dados de treinamento e substitui os dados pela label do clustering. O número de clusters é otimizado pelos critérios Calinski-Harabasz e Silhouette.

Tratando features com alta cardinalidade. Cenário com **One Hot Encoding**.

Age	Capital-Gain	Sex	Native-Country
38	27700	Male	United-States
29	54841	Female	México
55	69880	NaN	Germany
32	35444	Male	India
18	25699	Male	Cuba

Age	Capital-Gain	Sex	Native-Country_ United_States	Native-Country _México	Native-Country_ India
38	27700	Male	1.0	0.0	0.0
29	54841	Female	0.0	1.0	0.0
44	54887	Female	0.0	0.0	1.0

Tratando features com alta cardinalidade utilizando o método de frequência.

Dados de treinamento

Age	Capital-Gain	Sex	Native-Country
38	27700	Male	United-States
29	54841	Female	México
55	69880	NaN	Germany
32	35444	Male	India
18	25699	Male	United-States

Feature transformada

Age	Capital-Gain	Sex	Native-Country
38	27700	Male	2
29	54841	Female	1
55	69880	NaN	1
32	35444	Male	1
18	25699	Male	2

Tratando features com alta cardinalidade utilizando o método de clustering.

Dados de treinamento

Age	Capital-Gain	Sex
38	27700	Male
29	54841	Female
55	69880	NaN
32	35444	Male
18	25699	Male

Features criadas

Native- country_0	Native- country_1	Native- country_2
1.0	0.0	0.0
1.0	0.0	0.0
0.0	0.0	1.0
0.0	1.0	0.0
1.0	0.0	0.0

data	categorical_ imputation	high_cardinalit y_method
target	categorical_ite rative_imputer	numeric_ features
train_size	numeric_ imputation	
test_data	numeric_iterati ve_imputer	
preprocess	categorical_ features	
imputation_type	ordinal_ features	
iterative_imputat ion_iters	high_cardinalit y_features	

 Definição da lista de features numéricas.
Sobrescreve a inferência automática do Pycaret.

			/
data	categorical_ imputation	high_cardinalit y_method	
target	categorical_ite rative_imputer	numeric_ features	
train_size	numeric_ imputation	date_ features	
test_data	numeric_iterati ve_imputer		
preprocess	categorical_ features		
imputation_type	ordinal_ features		
iterative_imputat ion_iters	high_cardinalit y_features		

 Definição da lista de features do tipo datetime. Sobrescreve a inferência automática do Pycaret.

			/
data	categorical_ imputation	high_cardinalit y_method	/
target	categorical_ite rative_imputer	numeric_ features	/
train_size	numeric_ imputation	date_ features	
test_data	numeric_iterati ve_imputer	ignore_ features	
preprocess	categorical_ features		
imputation_type	ordinal_ features		
iterative_imputat ion_iters	high_cardinalit y_features		

 Definição da lista de features que deve ser ignorada durante o processo de treinamento.

			/
data	categorical_ imputation	high_cardinalit y_method	
target	categorical_ite rative_imputer	numeric_ features	
train_size	numeric_ imputation	date_ features	
test_data	numeric_iterati ve_imputer	normalize	
preprocess	categorical_ features	normalize_ method	
imputation_type	ordinal_ features		•
iterative_imputat ion_iters	high_cardinalit y_features		

- Quando definida como True aplica um método de scaling nas features numéricas.
- normalize_method especifica qual o método de scaling a ser utilizado.
 Default: z-score.

Outras opções são:

• minmax, maxabs, robust.

			/
data	categorical_ imputation	high_cardinalit y_method	
target	categorical_ite rative_imputer	numeric_ features	
train_size	numeric_ imputation	date_ features	
test_data	numeric_iterati ve_imputer	normalize	
preprocess	categorical_ features	normalize_ method	
imputation_type	ordinal_ features	transformation	
iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	

- Quando definida como True aplica um método de transformação nos dados.
- transformation_method especifica qual o método de transformação a ser utilizado.
 Default: yeo-johnson.
 Outras opções são:
 - quantile.

data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical
target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method
train_size	numeric_ imputation	date_ features	
test_data	numeric_iterati ve_imputer	normalize	
preprocess	categorical_ features	normalize_ method	
imputation_type	ordinal_ features	transformation	
iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	

- Como manipular dados desconhecidos em features categóricas.
- unknown_categorical_method especifica qual o método de substituição dos dados desconhecidos: least_frequency (default), most_frequency dos dados de treinamento.

			/	/
data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical	
target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method	
train_size	numeric_ imputation	date_ features	рса	
test_data	numeric_iterati ve_imputer	normalize	pca_ method	
preprocess	categorical_ features	normalize_ method	pca_ components	
imputation_type	ordinal_ features	transformation		
iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method		

- Habilita a aplicação do PCA para reduzir a dimensionalidade dos dados.
- pca_method especifica qual o método a ser utilizado.
- Opções:
 - o linear, kernel e incremental.
- **pca_components** define o número de componentes a serem mantidos.

data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical
target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method
train_size	numeric_ imputation	date_ features	рса
test_data	numeric_iterati ve_imputer	normalize	pca_ method
preprocess	categorical_ features	normalize_ method	pca_ components
imputation_type	ordinal_ features	transformation	ignore_low_ variance
iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	

- Quando habilitada essa configuração todas as features com variância insignificante são removidas do dataset.
- O cálculo da variância se dar pela taxa do número de registros únicos pela quantidade de registros e a taxa do valor mais comum pela frequência do segundo valor mais comum.

•	data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical	rare_level_ threshold
	target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method	
	train_size	numeric_ imputation	date_ features	рса	
	test_data	numeric_iterati ve_imputer	normalize	pca_ method	
	preprocess	categorical_ features	normalize_ method	pca_ components	
	imputation_type	ordinal_ features	transformation	ignore_low_ variance	
	iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	combine_rare_ levels	

 Quando habilitada essa configuração combina níveis raros em features categóricas. Isto é, valores abaixo do limiar determinado em rare_level_threshold. Default 0.1

_					\angle	
	data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical		rare_level_ threshold
	target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method		bin_numeric_ features
	train_size	numeric_ imputation	date_ features	рса		
	test_data	numeric_iterati ve_imputer	normalize	pca_ method		
	preprocess	categorical_ features	normalize_ method	pca_ components		
	imputation_type	ordinal_ features	transformation	ignore_low_ variance		
	iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	combine_rare_ levels		

Transforma features contínuas em categóricas através de grupos com bins semelhantes gerados pelo algoritmo K-means.

_					
1	data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical	rare_level_ threshold
	target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method	bin_numeric_ features
	train_size	numeric_ imputation	date_ features	рса	remove_ outliers
	test_data	numeric_iterati ve_imputer	normalize	pca_ method	outliers_ threshold
	preprocess	categorical_ features	normalize_ method	pca_ components	
	imputation_type	ordinal_ features	transformation	ignore_low_ variance	
	iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	combine_rare_ levels	

Aplicar o algoritmo SVD para remover registros outliers. Por padrão são removidos 0.05% do conjunto de dados.

		/				$\overline{\ }$
*	data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical	rare_level_ threshold	
	target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method	bin_numeric_ features	
	train_size	numeric_ imputation	date_ features	рса	remove_ outliers	
	test_data	numeric_iterati ve_imputer	normalize	pca_ method	outliers_ threshold	
	preprocess	categorical_ features	normalize_ method	pca_ components	remove_ multicollinearity	
	imputation_type	ordinal_ features	transformation	ignore_low_ variance	multicollinearity _threshold	
	iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	combine_rare_ levels	remove_ perfect_ collinearity	

Remoção de multicollinearity baseado em um limite estabelecido através do multicollinearity_ threshold.

Por padrão em features altamente correlacionadas (correlação igual a 1) a feature menos correlacionada com a variável alvo é removida do dataset.

-	data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical	rare_level_ threshold	feature_ selection
	target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method	bin_numeric_ features	feature_ selection_ threshold
	train_size	numeric_ imputation	date_ features	рса	remove_ outliers	feature_ selection_ method
	test_data	numeric_iterati ve_imputer	normalize	pca_ method	outliers_ threshold	
	preprocess	categorical_ features	normalize_ method	pca_ components	remove_ multicollinearity	
	imputation_type	ordinal_ features	transformation	ignore_low_ variance	multicollinearity _threshold	
	iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	combine_rare_ levels	remove_ perfect_ collinearity	

Configurações para realizar feature selection. Métodos utilizando o algoritmo boruta ou permutação ("classic")

		/	/	/		/	$\overline{}$
•	data	categorical_ imputation	high_cardinalit y_method	handle_ unknown_ categorical	rare_level_ threshold	feature_ selection	
	target	categorical_ite rative_imputer	numeric_ features	unknown_ categorical_ method	bin_numeric_ features	feature_ selection_ threshold	
	train_size	numeric_ imputation	date_ features	рса	remove_ outliers	feature_ selection_ method	
	test_data	numeric_iterati ve_imputer	normalize	pca_ method	outliers_ threshold		
	preprocess	categorical_ features	normalize_ method	pca_ components	remove_ multicollinearity	use_gpu	
	imputation_type	ordinal_ features	transformation	ignore_low_ variance	multicollinearity _threshold	log_ experiment	
	iterative_imputat ion_iters	high_cardinalit y_features	transformatio_ method	combine_rare_ levels	remove_ perfect_ collinearity	profile	

use_gpu Habilita a execução de algoritmos utilizando gpu.

log_experiment: integra o Pycaret com o MLFlow.

profile: Integração do Pycaret com o Pandas-Profiling.

Módulo de Regressão

- Algoritmos
- Métricas
- Parâmetros

Módulo de Clustering

- Algoritmos
- Métricas
- Parâmetros

