

STIC-Biotech/ChemLib

1040 86

From: Landsman, Robert
Sent: Tuesday, September 16, 2003 6:45 PM
To: STIC-Biotech/ChemLib
Subject: 09/841,720

RECEIVED

SEP 17 2003

LCR/CHEM. DIVISION
(STIC)

all databases (interference on separate disk):

SEQ ID NO:1

at least 25 contiguous bases of SEQ ID NO:1

SEQ ID NO:2

thanks

Robert Landsman, Ph.D
Patent Examiner
CM1, 9D11, AU 1647
703-306-3407
U.S. Patent and Trademark Office
robert.landsman@uspto.gov

Searcher: _____
Phone: _____
Location: _____
Date Picked Up: _____
Date Completed: _____
Searcher Prep/Review: _____
Clerical: _____
Online time: _____

TYPE OF SEARCH:
NA Sequences: _____
AA Sequences: _____
Structures: _____
Bibliographic: _____
Litigation: _____
Full text: _____
Patent Family: _____
Other: _____

VENDOR/COST (where applic.)
STN: _____
DIALOG: _____
Questel/Orbit: _____
DRLink: _____
Lexis/Nexis: _____
Sequence Sys.: _____
WWW/Internet: _____
Other (specify): _____

Sequence Comparison A

SEQ ID NO:1

LOCUS RATMORA 1586 bp mRNA linear ROD 04-AUG-1993
 DEFINITION Rattus norvegicus mu opioid receptor mRNA, complete cds.
 ACCESSION L13069
 VERSION L13069.1 GI:348250
 KEYWORDS mu opioid receptor.
 SOURCE Rattus norvegicus (Norway rat)
 ORGANISM Rattus norvegicus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae;
 Rattus.
 REFERENCE 1 (bases 1 to 1586)
 AUTHORS Chen,Y., Mestek,A., Liu,J., Hurley,J.A. and Yu,L.
 TITLE Molecular cloning and functional expression of a mu-opioid receptor
 from rat brain
 JOURNAL Mol. Pharmacol. 44 (1), 8-12 (1993)
 MEDLINE 93341493
 PUBMED 8393525
 COMMENT Original source text: Rattus norvegicus Whole brain cDNA to mRNA.
 FEATURES Location/Qualifiers
 source 1..1586
 /organism="Rattus norvegicus"
 /mol_type="mRNA"
 /db_xref="taxon:10116"
 /tissue_type="Whole brain"
 CDS 210..1406
 /codon_start=1
 /evidence=experimental
 /label=RATMOR1
 /product="mu opioid receptor"
 /protein_id="AAA41630.1"
 /db_xref="GI:348251"
 /translation="MDSSTGPGNTSDCSDPLAQASCSPAPGSWLNLSHVDGNQSDPCG
 LNRTGLGGNDSLCPQTGSPSMVTAITIMALYSIVCVVGLFGNFLVMYIVRYTKMKT
 TNIYIFNLALADALATSTLFPFQSVMNYLMGTWPFGTILCKIVISIDYYNMFTSIFTLCT
 MSVDRYIAVCHPVKALDFRTPRNAKIVNVCNWISSAIGLPVMFMATTKYRQGSIDCT
 LTFSHPTWYWEENLLKICVFIFAFIMPILIIITVCYGLMILRLKSVRMLSGSKEDRNL
 RITRMVLVVVAFFIVCWTFPIHYVIIKALITIPEITTFTQTVSWHFCIALGYTNNSCLNPV
 LYAFLDENFKRCFREFCIPTSSTIEQQNSTRVRQNTREHPSTANTVDRTNHQLENLEA
 ETAPLP"
 BASE COUNT 376 a 479 c 361 g 370 t
 ORIGIN

Query Match 98.0%; Score 1586; DB 10; Length 1586;
Best Local Similarity 100.0%; Pred. No. 0;
Matches 1586; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

```

Qy      5 GAAGGGGGCTACAAGCAGAGGAGAAATATCAGACGCTCAGACGTTCCCTCTGCCTGCCGC 64
       ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      1 GAAGGGGGCTACAAGCAGAGGAGAAATATCAGACGCTCAGACGTTCCCTCTGCCTGCCGC 60

Qy     65 TCTTCTCTGGTTCACTAGGGCTGGTCCATGTAAGAATCTGACGGAGCCTAGGGCAGCTG 124
       ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     61 TCTTCTCTGGTTCACTAGGGCTGGTCCATGTAAGAATCTGACGGAGCCTAGGGCAGCTG 120

Qy    125 TGAGAGGAAGAGGCTGGGGCGCGTGGAACCCGAAAAGTCTGAGTGCTCTCAGTTACAGCC 184
       ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db    121 TGAGAGGAAGAGGCTGGGGCGCGTGGAACCCGAAAAGTCTGAGTGCTCTCAGTTACAGCC 180

Qy    185 TACCTAGTCCGCAGCAGGCCCTCAGCACCATGGACAGCAGCAGCACCGGCCAGGGAACACCA 244
       ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db    181 TACCTAGTCCGCAGCAGGCCCTCAGCACCATGGACAGCAGCAGCACCGGCCAGGGAACACCA 240

```

Qy	245	GCGACTGCTCAGACCCCTTAGCTCAGGCAAGTTGCTCCCCAGCACCTGGCTCCTGGCTCA	304
Db	241	GCGACTGCTCAGACCCCTTAGCTCAGGCAAGTTGCTCCCCAGCACCTGGCTCCTGGCTCA	300
Qy	305	ACTTGTCCCACGTTATGGCAACCAGTCGATCCATGCGGCTGAACCGCACCGGCTTG	364
Db	301	ACTTGTCCCACGTTATGGCAACCAGTCGATCCATGCGGCTGAACCGCACCGGCTTG	360
Qy	365	GCGGGAACGACAGCCTGTGCCCTCAGACGGCAGCCCTTCATGGTCACAGCCATTACCA	424
Db	361	GCGGGAACGACAGCCTGTGCCCTCAGACGGCAGCCCTTCATGGTCACAGCCATTACCA	420
Qy	425	TCATGGCCCTCTACTCTATCGTGTGTAGTGGCCTTCGGAAACTCCTGGTCATGT	484
Db	421	TCATGGCCCTCTACTCTATCGTGTGTAGTGGCCTTCGGAAACTCCTGGTCATGT	480
Qy	485	ATGTGATTGTAAGATAACACAAAATGAAGACTGCCACCAACATCTACATTTAACCTTG	544
Db	481	ATGTGATTGTAAGATAACACAAAATGAAGACTGCCACCAACATCTACATTTAACCTTG	540
Qy	545	CTCTGGCAGACGCCTTAGCGACCAGTACACTGCCCTTCAGAGTGTCAACTACCTGATGG	604
Db	541	CTCTGGCAGACGCCTTAGCGACCAGTACACTGCCCTTCAGAGTGTCAACTACCTGATGG	600
Qy	605	GAACATGGCCCTCGAACCATCCTCTGCAAGATCGTATCTCAATAGATTACTACAACA	664
Db	601	GAACATGGCCCTCGAACCATCCTCTGCAAGATCGTATCTCAATAGATTACTACAACA	660
Qy	665	TGTTCACCAAGCATATTCACCCCTCTGCACCATGAGCGTGGACCGCTACATTGCTGTGCC	724
Db	661	TGTTCACCAAGCATATTCACCCCTCTGCACCATGAGCGTGGACCGCTACATTGCTGTGCC	720
Qy	725	ACCCAGTCAAAGCCCTGGATTCCGTACCCCCGAAATGCCAAATCGTCAACGTCTGCA	784
Db	721	ACCCAGTCAAAGCCCTGGATTCCGTACCCCCGAAATGCCAAATCGTCAACGTCTGCA	780
Qy	785	ACTGGATCCTCTTCTGCCATCGCTGCCCTGTAATGTTATGGCAACCACAAAATACA	844
Db	781	ACTGGATCCTCTTCTGCCATCGCTGCCCTGTAATGTTATGGCAACCACAAAATACA	840
Qy	845	GGCAGGGTCCATAGATTGACCCCTCACGTTCTCCCACCCAACCTGGTACTGGAGAAC	904
Db	841	GGCAGGGTCCATAGATTGACCCCTCACGTTCTCCCACCCAACCTGGTACTGGAGAAC	900
Qy	905	TGCTCAAAATCTGTCTTATCTTCGCTTCATCATGCCGATCCTCATCATCACTGTGT	964
Db	901	TGCTCAAAATCTGTCTTATCTTCGCTTCATCATGCCGATCCTCATCATCACTGTGT	960
Qy	965	GTTACGGCTGATGATCTACGACTCAAGAGCGTTCGATGCTATGGCTCCAAAGAAA	1024
Db	961	GTTACGGCTGATGATCTACGACTCAAGAGCGTTCGATGCTATGGCTCCAAAGAAA	1020
Qy	1025	AGGACAGGAATCTGCGCAGGATCACCGGATGGTGTGGTCGTGGCTGTATTTATCG	1084
Db	1021	AGGACAGGAATCTGCGCAGGATCACCGGATGGTGTGGTCGTGGCTGTATTTATCG	1080
Qy	1085	TCTGCTGGACCCCCATCCACATCTACGTCATCATCAAAGCGCTGATCACGATTCCAGAAA	1144
Db	1081	TCTGCTGGACCCCCATCCACATCTACGTCATCATCAAAGCGCTGATCACGATTCCAGAAA	1140
Qy	1145	CCACATTCAGACCGTTCTGGCACTTCTGCATTGCTTGGTTACACGAACAGCTGCC	1204
Db	1141	CCACATTCAGACCGTTCTGGCACTTCTGCATTGCTTGGTTACACGAACAGCTGCC	1200

Qy	1205	TGAATCCAGTTCTTACGCCTTCCTGGATGAAAACCTCAAGCGATGCTTCAGAGAGTTCT	1264
Db	1201	TGAATCCAGTTCTTACGCCTTCCTGGATGAAAACCTCAAGCGATGCTTCAGAGAGTTCT	1260
Qy	1265	GCATCCCAACCTCGTCACGATCGAACAGCAAAACCTCCACTCGAGTCGTCAGAACACTA	1324
Db	1261	GCATCCCAACCTCGTCACGATCGAACAGCAAAACCTCCACTCGAGTCGTCAGAACACTA	1320
Qy	1325	GGGAACATCCCTCCACGGCTAATACAGTGGATCGAACTAACCAACCAGCTAGAAAATCTGG	1384
Db	1321	GGGAACATCCCTCCACGGCTAATACAGTGGATCGAACTAACCAACCAGCTAGAAAATCTGG	1380
Qy	1385	AGGCAGAAACTGCTCCATTGCCCTAACGGGTCTCACACCCTCAGACCCCTCGCTAAGCT	1444
Db	1381	AGGCAGAAACTGCTCCATTGCCCTAACGGGTCTCACACCCTCAGACCCCTCGCTAAGCT	1440
Qy	1445	TAGAGGCCGCCATCTACGTGGAATCAGGTTGCTGCAGGGTGTGGGAGGCTCTGGTTT	1504
Db	1441	TAGAGGCCGCCATCTACGTGGAATCAGGTTGCTGCAGGGTGTGGGAGGCTCTGGTTT	1500
Qy	1505	CCTGAGAAACCATCTGATCCTGCATTCAAAGTCATTCCCTCTGGCTACTCACTCTGCA	1564
Db	1501	CCTGAGAAACCATCTGATCCTGCATTCAAAGTCATTCCCTCTGGCTACTCACTCTGCA	1560
Qy	1565	CATGAGAGATGCTCAGACTGATCAAG	1590
Db	1561	CATGAGAGATGCTCAGACTGATCAAG	1586

B

ID AAD11041 standard; cDNA; 1981 BP.
 XX
 AC AAD11041;
 XX
 DT 24-SEP-2001 (first entry)
 XX
 DE Murine delta opioid receptor (DOR-2) partial cDNA.
 XX
 KW Mouse; delta opioid receptor; DOR-2; analgesic; enkephalin;
 KW opioid addiction; anti-addictive; ss.
 XX
 OS Mus sp.
 XX
 PN US6265563-B1.
 XX
 PD 24-JUL-2001.
 XX
 PF 13-FEB-1995; 95US-0387707.
 XX
 PR 13-AUG-1992; 92US-0929200.
 XX
 PA (REGC) UNIV CALIFORNIA.
 XX
 PI Evans CJ, Keith DE, Edwards RH, Kaufman D;
 XX
 DR WPI; 2001-463944/50.
 XX
 PT Nucleic acids encoding mammalian kappa and mu opioid receptors, useful
 PT e.g. to identify substances for treating opioid addiction and/or useful
 PT as analgesics -
 XX
 PS Claim 7; Fig 9; 46pp; English.
 XX

CC The invention relates to recombinant nucleic acid molecules which encode
CC the murine delta opioid receptor, as well as recombinant nucleic acid
CC molecules which can be retrieved using low-stringency hybridisation to
CC this disclosed DNA. The invention provides genes encoding delta, kappa,
CC and mu receptors of any species containing genes encoding such receptors
CC sufficiently homologous to hybridise under low-stringency conditions.
CC The nucleic acids may be used to recombinantly express kappa and
CC mu opioid receptors in host cells. These cells may then be used in
CC assays to identify modulators of the receptors activity that may be
CC used, for example as analgesics or to combat the effects of opioid
CC addiction. The nucleic acids and their complements may also be used as
CC probe sequences to identify and characterise opioid receptor nucleic
CC acids. The present sequence is murine delta opioid receptor (DOR-2)
CC partial cDNA, mMOR-1.

XX

SQ Sequence 1981 BP; 499 A; 550 C; 436 G; 495 T; 1 other;

Query Match 85.7%; Score 1386.4; DB 22; Length 1981;
Best Local Similarity 92.2%; Pred. No. 0;
Matches 1494; Conservative 0; Mismatches 122; Indels 5; Gaps 3;

Qy	2	GTGGAAGGGGGCTACAAGCAGAGGAGAATATCAGACGCTCAGACGTTCCCTCTGCCTGC	61
Db	43	GTGGGAGGGGGATAACAAGCAGAGGAGAATATCGGACGCTCAGACGTTCCATTCTGCCTGC	102
Qy	62	CGCTCTTCTCTGGTCCACTAGGGCTGGTCCATGTAAGAACCTGACGGAGCCTAGGGCAG	121
Db	103	CGCTCTTCTCTGGTCCACTAGGGCTTGCTTGTAAAGAAACTGACGGAGCCTAGGGCAG	162
Qy	122	CTGTGAGAGGAAGAGGCTGGGGCGCGTGGAACCCGAAAAGTC-TGAGTGCTCTCAGTTAC	180
Db	163	CTGTGAGAGGAAGAGGCTGGGGCGCTGGAACCCGAAACACTCTTGAGTGCTCTCAGTTAC	222
Qy	181	AGCCTACCTAGTCCGAGCAGGCCTTCAGCACCATGGACAGCAGCACCGGCCAGGAAAC	240
Db	223	AGNCTACCGAGTCCGAGGAAGCATTAGAACCATGGACAGCAGCGCCGCCAGGAAAC	282
Qy	241	ACCAGCGACTGCTCAGACCCCTTAGCTCAGGCAAGTTGCTCCCAGCACCTGGCTCTGG	300
Db	283	ATCAGCGACTGCTCTGACCCCTTAGCTCCTGCAAGTTGCTCCCAGCACCTGGCTCTGG	342
Qy	301	CTCAACTTGTCCCACGTTGATGGCAACCAAGTCCGATCCATGCGGTCTGAACCGCACCGG	360
Db	343	CTCAACTTGTCCCACGTTGATGGAAACCAAGTCCGACCCATGCGGTCTAACCGACGGC	402
Qy	361	CTTGGCGGGAACGACAGCCTGTGCCCTCAGACCGGAGCCCTTCATGGTCACAGCCATT	420
Db	403	CTTGGCGGGAACGACAGCCTGTGCCCTCAGACCGGAGCCCTTCATGGTCACAGCCATC	462
Qy	421	ACCATCATGCCCTCTACTCTATCGTGTGTAGTGGCCTCTTCGGAAACTTCTGGTC	480
Db	463	ACCATCATGCCCTCTATTCTATCGTGTGTAGTGGCCTCTTGAAACTTCTGGTC	522
Qy	481	ATGTATGTGATTGTAAGATAACACAAAAATGAAGACTGCCACCAACATCTACATTTCAAC	540
Db	523	ATGTATGTGATTGTAAGATAACACAAAAATGAAGACTGCCACCAACATCTACATTTCAAC	582
Qy	541	CTTGCTCTGGCAGACGCCCTAGCGACCAGTACACTGCCCTTCAGAGTGTCAACTACCTG	600
Db	583	CTTGCTCTGGCAGATGCCCTAGCCACTAGCACGCTGCCCTTCAGAGTGTAACTACCTG	642

Qy	601 ATGGGAACATGGCCCTCGGAACCACCTCTGCAAGATCGTATCTCAATAGATTACTAC	660
Db	643 ATGGGAACGTGGCCTTGGAAACATCCTCTGCAAGATCGTATCTCAATAGACTACTAC	702
Qy	661 AACATGTTACCCAGCATATTCACCCCTGCACCATGAGCGTGGACCGCTACATTGCTGTC	720
Db	703 AACATGTTACCCAGTATCTCACCCCTGCACCATGAGTGTAGACCGCTACATTGCCGTC	762
Qy	721 TGCCACCCAGTCAAAGCCCTGGATTCGTACCCCCCGAAATGCCAAATCGTCAACGTC	780
Db	763 TGCCACCCGGTCAAGGCCCTGGATTCGTACCCCCCGAAATGCCAAATTGTCAATGTC	822
Qy	781 TGCAACTGGATCCTCTTCTGCCATCGGTCTGCCTGTAATGTTATGGCAACCACAAAA	840
Db	823 TGCAACTGGATCCTCTTCTGCCATTGGTCTGCCGTAATGTTATGGCAACCACAAAA	882
Qy	841 TACAGGCAGGGTCCATAGATTGCACCCCTCACGTTCTCCACCCACCAACCTGGTACTGGGAG	900
Db	883 TACAGGCAGGGTCCATAGATTGCACCCCTCACGTTCTCATCCCACATGGTACTGGGAG	942
Qy	901 AACCTGCTAAAATCTGTGTTATCTCGCTTCATCATGCCATCCTCATCATCACT	960
Db	943 AACCTGCTAAAATCTGTGTTATCTCGCTTCATCATGCCGGCCTCATCATCACT	1002
Qy	961 GTGTGTTACGGCCTGATGATCTTACGACTCAAGAGCGTTCGCATGCTATCGGGCTCCAAA	1020
Db	1003 GTGTGTTATGGACTGATGATCTTACAGCTCAAGAGTGTCCGATGCTGTCGGGCTCCAAA	1062
Qy	1021 GAAAAGGACAGGAATCTGCGCAGGATCACCCGGATGGTCTGGTGGTGTGGCTGTATTT	1080
Db	1063 GAAAAGGACAGGAACCTGCGCAGGATCACCCGGATGGTCTGGTGGTGTGGCTGTATTT	1122
Qy	1081 ATCGTCTGGACCCCCATCCACATCTACGTATCATCAAAGCGCTGATCACGATTCCA	1140
Db	1123 ATTGTCTGGACCCCCATCCACATCTATGTATCATCAAAGCACTGATCACGATTCCA	1182
Qy	1141 GAAACCACATTTCAGACCGTTCCCTGGCACTTCTGCATTGCTTGTTACACGAACAGC	1200
Db	1183 GAAACCACTTCCAGACTGTTCCCTGGCACTTCTGCATTGCTTGTTACACAAACAGC	1242
Qy	1201 TGCCTGAATCCAGTTACGCCTCCTGGATGAAAACCTCAAGCGATGCTCAGAGAG	1260
Db	1243 TGCCTGAACCCAGTTCTTATGCGTTCCCTGGATGAAAACCTCAAACGATGTTTAGAGAG	1302
Qy	1261 TTCTGCATCCAACCTCGTCCACGATCGAACAGCAAAACTCCACTCGAGTCCGTACAAC	1320
Db	1303 TTCTGCATCCAACCTCTCCACAATCGAACAGCAAAACTCTGCTCGAATCCGTAAAAC	1362
Qy	1321 ACTAGGGAACATCCCTCCACGGCTAATACAGTGGATCGAACTAACCAACAGCTAGAAAAT	1380
Db	1363 ACTAGGGAACACCCCTCCACGGCTAATACAGTGGATCGAACTAACCAACAGCTAGAAAAT	1422
Qy	1381 CTGGAGGCAGAAACTGCTCCATTGCCCTAAGTGGTCTCACACCATCCAGACCCCTCGCTA	1440
Db	1423 CTGGAAGCAGAAACTGCTCCATTGCCCTAAGTGGTCCCACGCCATCCAGACCCCTCGCTA	1482
Qy	1441 AGCTTAGAGGCCGCATCTACGTGGAATCAGGTTGCTGTCAGGGTGTGGGAGGCTCTG	1500
Db	1483 AACCTAGAGGCTGCCATCTACTTGGAAATCAGGTTGCTGTCAGGGTTGTGGGAGGCTCTG	1542
Qy	1501 GTTCTGAGAAACATCTGATCCTG---CATTCAAAGTCATTCTCTGGCTACTTCA	1557
Db	1543 GTTCTGGAAAAGCATCTGATCCTGCATCATTCAAAGTCATTCTCTGGCTA-TTCA	1601

Qy	1558	CTCTGCACATGAGAGATGCTCAGACTGATCAAGACCAGAAGAAAAGAAGAGACTACCGGAC	1617
Db	1602	CGCTACACGTCAGAGACACTCAGACTGTGTCAAGCACTCAGAAGGAAGAGACTGCAGGCC	1661
Qy	1618	A 1618	
Db	1662	A 1662	

SEQ ID NO:2

R;Chen, Y.; Mestek, A.; Liu, J.; Hurley, J.A.; Yu, L.
Mol. Pharmacol. 44, 8-12, 1993

A;Title: Molecular cloning and functional expression of a mu-opioid receptor from rat brain.

A:Reference number: I57951; MJD:93341493; PMTD:8393525

A:Accession: T57951

A:Status: preliminary; translated from GB/EMBL/DDBJ/T

A;status: preliminary
A;Molecule type: mRNA

A:Residues: 1-388 <RE3>

Query Match 100.0%; Score 2111; DB 2; Length 398;
Best Local Similarity 100.0%; Pred. No. 3.5e-170;
Matches 398; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 MDSSTGPGNTSDCSDPLAQASCSPAPGSWLNLSHVDGNQSDPCGLNRRTGLGGNDLCPQT 60
Pb 1 MDSSTGPGNTSDCSDPLAQASCSPAPGSWLNLSHVDGNQSDPCGLNRRTGLGGNDLCPQT 60

Ox 61 GSPSMVTAITIMALYSIVCVVGLGNEFLVMVYLVRYTKMKTAATNLYLENLALADALATST 120

Pb 61 CSRSMSVTAITIMALYSIVCVVCLFGNLVYVILVPTVCKTITVHLENLVLLVLLATL 100

Qy 121 LPEOSVNYL MGTWREGTI LCKIVISIDYXNMETSIELT CTMSVDRXIAVCHVKA DERT 122

121. LEUCOSINUS MONTICRESTUS (GUINIER) SUBSPECIES LUTEUS STANLEY & WILSON

181. PRNAKLYVNYCNWILLSSAICLRYMMEMATTKYDGGSLDCTLTESCHETSYKVENYLKICHENEL 818

101 | P a g e

341 EJEMPLOS DE LINGÜISTICA MUY DIFÍCIL DE USAR EN EL COMERCIO INTERNACIONAL

二
三
四
五
六
七
八
九
十
十一
十二
十三
十四
十五
十六
十七
十八
十九
二十
二十一
二十二
二十三
二十四
二十五
二十六
二十七
二十八
二十九
三十
三十一
三十二
三十三
三十四
三十五
三十六
三十七
三十八
三十九
四十
四十一
四十二
四十三
四十四
四十五
四十六
四十七
四十八
四十九
五十
五十一
五十二
五十三
五十四
五十五
五十六
五十七
五十八
五十九
六十
六十一
六十二
六十三
六十四
六十五
六十六
六十七
六十八
六十九
七十
七十一
七十二
七十三
七十四
七十五
七十六
七十七
七十八
七十九
八十
八十一
八十二
八十三
八十四
八十五
八十六
八十七
八十八
八十九
九十
九十一
九十二
九十三
九十四
九十五
九十六
九十七
九十八
九十九
一百