Modeling PalEON biomass

Wesley Brooks

UW-Madison

May 24, 2013

Outline

- 🕕 Data
 - Overview of the data
 - Models

- Methodological details
 - Branching process details

Goal

• Produce a model of per-species biomass at time of settlement

Table of Contents

- Data
 - Overview of the data
 - Models

- Methodological details
 - Branching process details

Data

- Computed from settlement-era survey
- Working with composition, biomass, and stem density

Table of Contents

- Data
 - Overview of the data
 - Models

- Methodological details
 - Branching process details

Models

There are two divisions for modeling biomass data:

One-stage
Two-stage

Two-stage models

- First stage: zero/non-zero
 - Logistic regression
 - $ightharpoonup Z \sim \text{Bernoulli}(\gamma)$
- Second stage: distribution of positive biomass
 - $ightharpoonup Y|Z=1\sim \mathsf{Gamma}(\alpha,\beta)$
 - $E(Y|Z=1) = \mu = \alpha\beta = f(x, y, p_k)$

Tweedie model

The Tweedie model is a Gamma-Poisson mixture. How to visualize a Tweedie random variable:

- Draw $N \sim \text{Poisson}(\lambda)$
- Now make N iid draws: $V_{\ell} \sim \mathsf{Gamma}(\alpha, \beta)$

$$\bullet \ \ Y = \sum_{\ell=1}^N V_\ell$$

GLMs, Independent observations

GMRF

Splines

Table of Contents

- Data
 - Overview of the data
 - Models

- 2 Methodological details
 - Branching process details

15 / 12