Universitatea Politehnica din București 2022 Disciplina: Algebră și Elemente de Analiză Matematică Varianta Mb $^{\rm 1}$

1. Fie sistemul $\begin{cases} mx+y-z=1\\ x+y-z=2\\ -x+y+z=0 \end{cases}$, unde m este un parametru real. Pentru câte valori $m\in\mathbb{Z}$ sistemul are soluție unică (x_0,y_0,z_0) , cu componentele numere întregi? (7 pct.)

a) o infinitate; b) 5; c) 4; d) 1; e) 2; f) 3.

Soluție. Determinantul matricei coeficienților este $\binom{m-1-1}{1-1-1}$. Scăzând linia a doua din prima linie și dezvoltând apoi după prima linie, obținem

$$\Delta = \left| \begin{array}{cc} m & 1 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{array} \right| = \left| \begin{array}{cc} m-1 & 0 & 0 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{array} \right| = (m-1) \cdot \left| \begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right| = (m-1) \cdot 2 = 2 \cdot (m-1).$$

Sistemul este compatibil determinat dacă și numai dacă determinatul este nenul, deci pentru $m \neq 1$. Determinăm cu ajutorul regulii Cramer soluțiile reale ale sistemului:

$$x_0 = \frac{\Delta_x}{\Delta} = \frac{1}{2(m-1)} \begin{vmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = \frac{-2}{2(m-1)} = \frac{-1}{m-1},$$

$$y_0 = \frac{\Delta_y}{\Delta} = \frac{1}{2(m-1)} \begin{vmatrix} m & 1 & -1 \\ 1 & 2 & -1 \\ -1 & 0 & 1 \end{vmatrix} = \frac{2m-2}{2(m-1)} = 1,$$

$$z_0 = \frac{\Delta_z}{\Delta} = \frac{1}{2(m-1)} \begin{vmatrix} m & 1 & 1 \\ 1 & 1 & 2 \\ -1 & 1 & 0 \end{vmatrix} = \frac{-2m}{2(m-1)} = \frac{-m}{m-1},$$

deci $(x_0, y_0, z_0) = (\frac{-1}{m-1}, 1, \frac{-m}{m-1}) \in \mathbb{R}^3$. Observăm că $y_0 = 1 \in \mathbb{Z}$. Dacă $x_0 \in \mathbb{Z}$, atunci şi $z_0 = x_0 - 1 \in \mathbb{Z}$. Reciproc, dacă $z_0 \in \mathbb{Z}$, atunci şi $x_0 = z_0 + 1 \in \mathbb{Z}$. Deci $(x_0, y_0, z_0) \in \mathbb{Z}^3 \Leftrightarrow x_0 \in \mathbb{Z}$. Examinăm situația în care $x_0 \in \mathbb{Z}$. Folosind faptul că prin ipoteză avem $m \in \mathbb{Z}$. Atunci $x_0 = \frac{-1}{m-1}$ este număr întreg doar dacă este satisfăcută condiția de divizibilitate (m-1)|(-1), care ce se realizează doar pentru $m-1 \in \{-1,1\}$, ceea ce revine la $m \in \{0,2\}$. Deci există două valori m care produc soluții cu componente întregi. (\mathbf{e})

- 2. Să se rezolve în \mathbb{R} inecuația 2x-1>x+2. (7 pct.)
 - a) $x \in \emptyset$; b) $x \in (\frac{1}{3}, \frac{1}{2})$; c) $x \in (1, 2)$; d) $x \in (\frac{1}{3}, 1)$; e) $x \in (3, +\infty)$; f) $x \in (2, 3)$.

Soluție. Inecuația se poate rescrie $2x-1>x+2 \Leftrightarrow x>3$, deci $x\in (3,\infty)$.

- 3. Multimea soluțiilor reale ale ecuației $x^2 11x + 18 = 0$ este: (7 pct.)
 - a) {3,6}; b) {1,3}; c) {2,9}; d) {1,4}; e) {2,7}; f) {0,1}.

Soluţie. O ecuație $ax^2 + bx + c = 0$, unde $a \neq 0$, are două rădăcini reale distincte $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, dacă $b^2 - 4ac > 0$ și are o singură rădăcină reală (dublă) $x_1 = x_2 = \frac{-b}{2a}$, dacă $b^2 - 4ac = 0$. În cazul nostru, avem a = 1, b = -11, c = 18, deci $b^2 - 4ac = 25 > 0$ și deci soluțiile reale ale ecuației sunt $\{x_1, x_2\} = \{\frac{11 \pm 7}{2}\} = \{2, 9\}$. ©

4. Ecuația $2^{2x+1} = 8$ are soluția: (7 pct.)

a)
$$x = 1$$
; b) $x = 0$; c) $x = 2$; d) $x = -1$; e) $x = 3$; f) $x = -2$.

Soluție. Ecuația se rescrie $2^{2x+1}=2^3$. Logaritmând în baza 2, obținem egalitatea exponenților, 2x+1=3, de unde rezultă x=1. (a)

- 5. Determinantul matricei $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ este: (7 pct.)
 - a) 1; b) 6; c) 5; d) 0; e) 4; f) 3.

Soluţie. Folosind formula $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$, obţinem $\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 1 \cdot 1 = 4 - 1 = 3$.

- 6. Să se rezolve ecuația $\sqrt{x+1} + x = 5$. (7 pct.)
 - a) x = 5; b) x = -1; c) x = 0; d) x = 4; e) x = 3; f) x = 7.

 $^{^1}$ Subiecte date la Admiterea UPB/Sesiunea iulie 2022 la facultățile: ETTI, AC, FILS.

Soluție. Existența radicalului necesită satisfacerea condiției $x+1\geq 0$, deci $x\in [-1,\infty)$. Ecuația se rescrie $5-x=\sqrt{x+1}$, deci din pozitivitatea radicalului obținem $5-x\geq 0$, deci $x\in (-\infty,5]$. Din cele două condiții, rezultă $x\in [-1,5]$. Reordonând termenii ecuației și ridicând la pătrat, obținem

$$\sqrt{x+1} + x = 5 \Leftrightarrow \sqrt{x+1} = 5 - x \Leftrightarrow x+1 = (5-x)^2 \Leftrightarrow x^2 - 11x + 24 = 0 \Leftrightarrow x \in \{3,8\}.$$

Observăm că $x=8 \notin [-1,5]$, deci această rădăcină nu convine. Dar $3 \in [-1,5]$ satisface ecuația dată, deci x=3 este singura soluție a acesteia.

Altfel. Din condiția de existență a radicalului obținem condiția $x+1 \ge 0$, deci $x \in [-1, \infty)$. Reordonând termenii ecuației și ridicând la pătrat, obținem

$$\sqrt{x+1} + x = 5 \Leftrightarrow \sqrt{x+1} = 5 - x \Leftrightarrow x+1 = (5-x)^2 \Leftrightarrow x^2 - 11x + 24 = 0 \Leftrightarrow x \in \{3,8\}.$$

Ambele rădăcini satisfac condiția $\{3,8\} \subset [-1,\infty)$. Se poate constata prin înlocuire că rădăcina x=8 nu satisface ecuația dată, deci nu convine. Rădăcina x=3 satisface ecuația dată, deci x=3 este singura soluție a acesteia.

- 7. Fie $(a_n)_{n\geq 1}$ o progresie aritmetică astfel ca $a_2=3$ și $a_3=5$. Să se calculeze a_4 . (7 pct.) a) 7; b) 11; c) 9; d) 8; e) 10; f) 6.
 - **Soluție.** Condiția de progresie aritmetică implică $2 \cdot a_3 = a_2 + a_4$, deci $10 = 3 + a_4 \Rightarrow a_4 = 7$.

Altfel. Rația r a progresiei este $r=a_3-a_2=5-3=2$. Atunci $a_4=a_3+r=5+2=7$.

8. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x^2$. Să se calculeze f'(1). (7 pct.) a) 3; b) 4; c) 2; d) 0; e) 7; f) 5.

Soluţie. Prin derivare termen cu termen a sumei f, obţinem $f'(x) = 3x^2 + 2x$, deci f'(1) = 3 + 2 = 5.

- 9. Să se calculeze $I = \int_0^1 (3x^2 + 2x) dx$. (7 pct.)
 - a) $I = \frac{2}{5}$; b) I = 0; c) I = 2; d) $I = \frac{1}{3}$; e) I = 3; f) I = 5.

Soluție. Integrând termen cu termen, obținem $I = \int_0^1 (3x^2 + 2x) dx = (x^3 + x^2)|_0^1 = 1 + 1 = 2$.

- 10. Fie $f: \mathbb{N}^* \to \mathbb{R}$, $f(n) = n + [\frac{2022}{n}]$, unde prin [x] notăm partea întreagă a numărului real x. Pentru câte valori $n \in \mathbb{N}^*$, funcția f își atinge cea mai mică valoare? (7 pct.)
 - a) 2; b) 4; c) 6; d) 5; e) 3; f) 1.

Soluție. Se constată ușor că $n \in \mathbb{N}^{\star} \subset \mathbb{Z}$ și proprietățile părții întregi

$$[n]=n, \forall n\in\mathbb{Z}$$
 și $[m]+[n]=[m+n], \forall m\in\mathbb{Z}, n\in\mathbb{R}$

justifică egalitatea $f(n) = \left[n + \frac{2022}{n}\right]$. Dar funcția $\tilde{f}: (0, \infty) \to \mathbb{R}$, $\tilde{f}(x) = x + \frac{2022}{x}$ are un minim în punctul $x_* = \sqrt{2022} \sim 44.9\ldots \in (44,45)$. Funcția continuă \tilde{f} este strict descrescătoare pe intervalul $(0,x_*]$ și strict crescătoare pe intervalul (x_*,∞) . Atunci, folosind monotonia funcției parte întreagă, rezultă că f este descrescătoare pe $\{1,2,3,\ldots,44\}$ și crescătoare pe $\{45,46,47,\ldots\}$. Comparăm valorile minime ale funcției f pe cele două mulțimi, deci f(44) și f(45). Avem

$$f(44) = \left[44 + \frac{2022}{44}\right] = 44 + \left[\frac{2022}{44}\right] = 44 + \left[45.9...\right] = 44 + 45 = 89,$$

$$f(45) = \left[45 + \frac{2022}{45}\right] = 45 + \left[\frac{2022}{45}\right] = 45 + \left[44.9...\right] = 45 + 44 = 89.$$

Se constată însă că avem:

$$\left\{ \begin{array}{l} f(43) = [90.02\ldots] = 90 > f(44) = [89.9\ldots] = 89, \\ f(45) = [89.9\ldots] = 89, \\ f(46) = [89.9\ldots] = 89 < f(47) = [90.02\ldots] = 90, \end{array} \right.$$

deci, tinând cont de inegalitățile nestricte date de monotonie,

$$f(1) \ge ... \ge f(42) \ge f(43) > f(44) = f(45) = f(46) < f(47) \le f(48) \le ...$$

rezultă că există trei valori $n \in \{44, 45, 46\}$, pentru care se atinge valoarea minimă 89 a funcției f.