Road Traffic Injuries

B. Shilpa - CSE K. Ashwini - CSE Rubina Sultana - CSE

BVRIT-H

17-June-2016

What is Dataset

A Dataset is a collection of related data, usually presented in tabular form.

Dataset Choosen:

Road Traffic Injuries

Github Repository:

https://github.com/ShilpaBatthineni/Road-Traffic-Injuries

Dataset

Types of Data

Data is broadly classified into 2 types

- Qualitative data.
- Quantitative data

Each is broken down into sub-types:

- Qualitative data can be ordinal and nominal.
- Quantitative data can be discrete (often, integer), continuous, Interval scale and Ratio scale.

Phases of data

- Requirements
- Collection :

https://data.gov.uk/dataset/road-accidents-safety-data/resource/1ae84544-6b06-425d-ad62-c85716a80022

https://data.gov.uk/dataset/road-accidents-safety-data/resource/0dc990b8-10e9-40d1-a6fd-f34efccd2799

Size Of Data: 252 MB

Phases of data...

- Cleaning: Sorted the data and removed all missing values
- Exploring :

Simple Findings

- 4 At what time zone more accidents occur.
- Severity Of Accidents In a Week and which day of week has more no of accidents.
- Severity Of Accidents In Month and which month has highest rate of Accidents.

Phases of data...

Severity of accidents, no of accidents in each mode and determine which mode has more frequent occurrence of accidents.

Complex Findings

- Using Non spatial analysis (chi- Square) we can validate accidents that are distributed uniformly according to the different types variables for the accidents.
- Spatial Analysis to specify the locations where the crashes occurred, and to assess specific patterns of distribution through map visualization.

Phases of data...

• Modelling:

Statistical Technique : Correlation is a statistical technique that can show how strongly pairs of variables are related.

- Transforming
- Visualizing : Bar plots, Ggplots, Ggmaps, Line charts

Figure: Days Of Week

```
| Source on Save | G. Z | Source on Save | G. Z | Source | Source
```

Figure: Days Of Week Code

Figure: Severity

```
ile Edit Code View Plots Session Build Debug Iools Help
____data × ____Road_Traffic_Injuries_2002.2010 × ____z × ____a × ____a1 × _____DtTRoadSafety_Accidents × ____rtia ×
 1 ck-table(rtiaSAccident_Severity)
 2 1 2 3
 3 7243 84099 524422
 4 c1 <- round(c/sum(c) * 100, 1)</pre>
 5 c1 <- paste(car_labels, "%", sep="")</pre>
 6 pie(c, main="Severity", col-colors, labels-c1,cex-0.8)
 7 >legend(1.5, 0.8, c("Nonfatal", "Fatal", "Killed"), cex=0.8, fill=colors)
     (Top Level) $
```


Figure: Hours and Severity

Figure: Weeks and Severity

Figure: Month and Severity

Figure: Modes and Severity

Figure: Modes and Injuries

Figure: Urban

Figure: Rural

Figure: Ages, Gender And Injuries

Figure: correlation

Figure: correlation

Analysis

Analysis is classified into 6 types :

- Descriptive
- 2 Exploratory
- Inferential
- Predictive
- Casual
- Mechanist

Analysis

Spatial Analysis:

Spatial analysis was used to geographically specify the locations where the crashes occurred, and to assess specific patterns of distribution through map visualization.

Non Spatial Analysis:

Using Non spatial analysis (chi- Square) we can validate accidents that are distributed uniformly according to the different types variables and whether or not the variables have significant relationships with them.

Figure: Spatial analysis

Figure: Non Spatial analysis

Figure: Non Spatial analysis — Chi Square test

