

Design Calculation Sheet for trial

Designer:
Location:
City:
Country:

Date: 2020-06-22 04:22:53

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
45	(23.7,10,6)	(23.7,15,6)	5	1.18	0.94
44	(23.7,5,6)	(23.7,10,6)	5	1.18	0.94
43	(23.7,0,6)	(23.7,5,6)	5	1.18	0.94
2	(0,5,6)	(0,10,6)	5	1.34	1.07
3	(0,10,6)	(0,15,6)	5	1.34	1.07
1	(0,0,6)	(0,5,6)	5	1.34	1.07

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Md: 1.34 t.m

Vd: 1.07 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.13 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 26.08 < 81.98 => Compact Web

c/tf= 4.21 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 105.86 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.23 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.13 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.58 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.07 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.08 \text{ t/cm}^2 \text{ eq} = 0.05 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.11 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.05 \text{ t/cm}^2 \text{ a qmt} = 0.08 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.09 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.09 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout => L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
39	(21.1,10,6)	(21.1,15,6)	5	2.25	1.8
37	(21.1,0,6)	(21.1,5,6)	5	2.25	1.8
36	(19.8,10,6)	(19.8,15,6)	5	2.25	1.8
35	(19.8,5,6)	(19.8,10,6)	5	2.25	1.8
34	(19.8,0,6)	(19.8,5,6)	5	2.25	1.8
38	(21.1,5,6)	(21.1,10,6)	5	2.25	1.8
40	(22.4,0,6)	(22.4,5,6)	5	2.25	1.8
42	(22.4,10,6)	(22.4,15,6)	5	2.25	1.8
41	(22.4,5,6)	(22.4,10,6)	5	2.25	1.8

6	(1.5,10,6)	(1.5,15,6)	5	2.58	2.07
9	(3,10,6)	(3,15,6)	5	2.58	2.07
8	(3,5,6)	(3,10,6)	5	2.58	2.07
7	(3,0,6)	(3,5,6)	5	2.58	2.07
5	(1.5,5,6)	(1.5,10,6)	5	2.58	2.07
4	(1.5,0,6)	(1.5,5,6)	5	2.58	2.07
31	(18.5,0,6)	(18.5,5,6)	5	2.83	2.26
32	(18.5,5,6)	(18.5,10,6)	5	2.83	2.26
33	(18.5,10,6)	(18.5,15,6)	5	2.83	2.26
10	(4.5,0,6)	(4.5,5,6)	5	3	2.4
11	(4.5,5,6)	(4.5,10,6)	5	3	2.4
12	(4.5,10,6)	(4.5,15,6)	5	3	2.4

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Md: 3 t.m

Vd: 2.4 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.26 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 31.06 < 81.98 => Compact Web

c/tf= 4.66 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 142.01 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.19 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.18 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.36 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.4 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.17 \text{ t/cm}^2 \text{ a} = 0.11 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.25 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.11 \text{ t/cm}^2 \text{ a qmt} = 0.17 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.2 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.2 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
15	(6.5,10,6)	(6.5,15,6)	5	3.41	2.73
13	(6.5,0,6)	(6.5,5,6)	5	3.41	2.73
14	(6.5,5,6)	(6.5,10,6)	5	3.41	2.73
20	(10.5,5,6)	(10.5,10,6)	5	3.41	2.73
16	(8.5,0,6)	(8.5,5,6)	5	3.41	2.73
17	(8.5,5,6)	(8.5,10,6)	5	3.41	2.73

18	(8.5,10,6)	(8.5,15,6)	5	3.41	2.73
19	(10.5,0,6)	(10.5,5,6)	5	3.41	2.73
21	(10.5,10,6)	(10.5,15,6)	5	3.41	2.73
22	(12.5,0,6)	(12.5,5,6)	5	3.41	2.73
24	(12.5,10,6)	(12.5,15,6)	5	3.41	2.73
25	(14.5,0,6)	(14.5,5,6)	5	3.41	2.73
26	(14.5,5,6)	(14.5,10,6)	5	3.41	2.73
27	(14.5,10,6)	(14.5,15,6)	5	3.41	2.73
28	(16.5,0,6)	(16.5,5,6)	5	3.41	2.73
29	(16.5,5,6)	(16.5,10,6)	5	3.41	2.73
30	(16.5,10,6)	(16.5,15,6)	5	3.41	2.73
23	(12.5,5,6)	(12.5,10,6)	5	3.41	2.73

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Md: 3.41 t.m

Vd: 2.73 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.4 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 31.06 < 81.98 => Compact Web

c/tf= 4.66 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 142.01 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.35 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.21 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.56 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.73 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.19 \text{ t/cm}^2 \text{ a} = 0.12 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.29 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.12 \text{ t/cm}^2 \text{ a qmt} = 0.19 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.23 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.23 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
13	(0,15,6)	(4.5,15,6)	4.5	3.23	2.18
1	(0,0,6)	(4.5,0,6)	4.5	3.23	2.18

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Md: 3.23 t.m

Vd: 2.18 ton

Service Limit State

Combo: LIVE

Span: 4.5 m

Load: -0.33 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 31.06 < 81.98 => Compact Web

c/tf= 4.66 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 142.01 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.28 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.17 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.31 cm < dall= 1.5 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.18 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.15 \text{ t/cm}^2 \text{ a} = 0.1 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.23 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.1 \text{ t/cm}^2 \text{ a qmt} = 0.15 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.18 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.18 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
16	(18.5,15,6)	(23.7,15,6)	5.2	4.85	2.83
4	(18.5,0,6)	(23.7,0,6)	5.2	4.85	2.83
14	(4.5,15,6)	(10.5,15,6)	6	5.68	2.88
2	(4.5,0,6)	(10.5,0,6)	6	5.68	2.88
9	(0,10,6)	(4.5,10,6)	4.5	6.33	4.25
5	(0,5,6)	(4.5,5,6)	4.5	6.33	4.25

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Md: 6.33 t.m

Vd: 4.25 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.33 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 34.73 < 81.98 => Compact Web

c/tf= 5.3 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 174.28 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.47 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.24 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.46 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 4.25 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.3 \text{ t/cm}^2 \text{ a} = 0.19 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.45 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.19 \text{ t/cm}^2 \text{ a qmt} = 0.3 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.35 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.36 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

12	(18.5,10,6)	(23.7,10,6)	5.2	9.54	5.53
8	(18.5,5,6)	(23.7,5,6)	5.2	9.54	5.53
10	(4.5,10,6)	(10.5,10,6)	6	11.14	5.61
6	(4.5,5,6)	(10.5,5,6)	6	11.14	5.61
15	(10.5,15,6)	(18.5,15,6)	8	11.32	4.29
3	(10.5,0,6)	(18.5,0,6)	8	11.32	4.29

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Md: 11.32 t.m

Vd: 4.29 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.38 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 38.65 < 81.98 => Compact Web

c/tf= 5.38 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 219.47 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE360

fact= 1.25 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.15 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.59 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 4.29 ton

Rleast= 3.46 ton

N= 3 with Pitch= 84 mm & Full Layout: (42;84 84 42)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.17 \text{ t/cm}^2 & q = 0.14 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.3 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.14 \text{ t/cm}^2 \text{ a} \text{ qmt} = 0.17 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.22 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.2 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 252 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
11	(10.5,10,6)	(18.5,10,6)	8	22.23	8.39
7	(10.5,5,6)	(18.5,5,6)	8	22.23	8.39

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Md: 22.23 t.m

Vd: 8.39 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.75 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 41.66 < 81.98 => Compact Web

c/tf= 5.19 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 245.29 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE450

fact= 1.48 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.2 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.56 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 8.39 ton

Rleast= 4.06 ton

N= 3 with Pitch= 105 mm & Full Layout: (52;105 105 52.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.21 \text{ t/cm}^2 \text{ a} q = 0.23 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.45 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.23 \text{ t/cm}^2 \text{ a qmt} = 0.21 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.31 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.25 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 315 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
8	(10.5,5,0)	(10.5,5,6)	6	-19.81
13	(10.5,10,0)	(10.5,10,6)	6	-19.81
9	(18.5,5,0)	(18.5,5,6)	6	-18.8
14	(18.5,10,0)	(18.5,10,6)	6	-18.8
7	(4.5,5,0)	(4.5,5,6)	6	-15.01
12	(4.5,10,0)	(4.5,10,6)	6	-15.01
3	(10.5,0,0)	(10.5,0,6)	6	-10.26
18	(10.5,15,0)	(10.5,15,6)	6	-10.26
4	(18.5,0,0)	(18.5,0,6)	6	-9.74
19	(18.5,15,0)	(18.5,15,6)	6	-9.74
2	(4.5,0,0)	(4.5,0,6)	6	-7.81
17	(4.5,15,0)	(4.5,15,6)	6	-7.81
10	(23.7,5,0)	(23.7,5,6)	6	-7.77
15	(23.7,10,0)	(23.7,10,6)	6	-7.77
6	(0,5,0)	(0,5,6)	6	-6.74
11	(0,10,0)	(0,10,6)	6	-6.74
20	(23.7,15,0)	(23.7,15,6)	6	-4.13
5	(23.7,0,0)	(23.7,0,6)	6	-4.13
16	(0,15,0)	(0,15,6)	6	-3.6
1	(0,0,0)	(0,0,6)	6	-3.6

Design Limit state:

Combo: 1.4*Dead + 1.6*Live

Nd: -19.81 ton

1-Check Local Buckling

dw/tw= 36.23 < 37.44 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE300

lambda = 179.1 > 100

fc= 0.37 t/cm^2 < Fc= 0.23 t/cm^2