Università Degli Studi di Ferrara

Corso di Laurea in Informatica - A.A. 2022 - 2023

Basi di Dati e Laboratorio

Lez. 04 - Modello EER

Concetti del modello EER

- Include tutti i concetti di modellazione del modello ER
- Concetti addizionali: sottoclassi/superclassi, specializzazione, categorie, propagazione (ereditarietà) degli attributi.
- Il modello risultante è chiamato Modello Enhanced-ER o Extended ER (E2R or EER)
- È utilizzato per modellare applicazioni in maniera più accurata e più specifica
- Include alcuni concetti derivati dalla programmazione ad oggetti come l'ereditarietà.

Sottoclassi e Superclassi (1)

- Un'entità potrebbe avere alcuni sottogruppi addizionali di istanze, aventi un significato particolare per il mini-mondo di interesse.
- Esempio: DIPENDENTE potrebbe essere ulteriormente suddiviso in SEGRETARIO, INGEGNERE, DIRETTORE, TECNICO, TEMPORANEO, TEMPO_INDETERMINATO, ...
 - Ciascuno di questi gruppi è costituito da un sottoinsieme delle istanze dell'entità DIPENDENTE
 - Ciascuno di questi gruppi viene chiamato una sottoclasse di DIPENDENTE.
 - DIPENDENTE è chiamata superclasse di ciascuna di queste sottoclassi.
- Queste sono dette associazioni di superclasse/sottoclasse.
- Esempio: DIPENDENTE/SEGRETARIO, DIPENDENTE/TECNICO

Sottoclassi e Superclassi (2)

- Sono anche chiamate associazioni È-UN (IS-A): SEGRETARIO È-UN DIPENDENTE, TECNICO È-UN DIPENDENTE, ...
- Nota: Un'istanza membro di una sottoclasse rappresenta *la stessa istanza del mini-mondo* di un qualche membro della superclasse.
 - Il membro della sottoclasse è la stessa istanza in un (distinto) ruolo specifico.
 - Un'istanza non può esistere nel database solamente in qualità di membro di una sottoclasse; deve essere membro della superclasse.
 - Un membro della superclasse può essere eventualmente incluso nei membri di un qualsiasi numero delle sue sottoclassi.
- Esempio: Un dipendente temporaneo che sia anche un ingegnere appartiene sia alla sottoclasse INGEGNERE che a TEMPORANEO.
 - Non è necessario che tutte le istanze di una superclasse siano membri di qualche sottoclasse

Ereditarietà degli Attributi

- Un entità che sia membro di una sottoclasse eredita tutti gli attributi dell'entità considerata come membro della superclasse.
- Eredita inoltre anche tutte le associazioni.

Specializzazione

- **Specializzazione**: il processo di definizione di un *insieme* di *sottoclassi* di una *superclasse*.
- L'insieme di sottoclassi è basato su alcune caratteristiche peculiari delle istanze della superclasse.
- Esempio: {SEGRETARIO, INGEGNERE, TECNICO} è una specializzazione di DIPENDENTE basata sul tipo di lavoro.
 - Ci possono essere diverse specializzazioni della stessa superclasse.
- Esempio: Un'altra specializzazione di DIPENDENTE basata sul tipo di contratto di lavoro è {TEMPORANEO, TEMPO INDETERMINATO}.
 - Le associazioni superclasse/sottoclasse e la specializzazione può essere rappresentata graficamente nei diagrammi EER
 - Gli attributi di una sottoclasse sono detti attributi specifici.
 Ad esempio, VelocitàBattitura di SEGRETARIO
 - Una sottoclasse può partecipare a specifiche associazioni (a cui non partecipa la superclasse)

Esempio di Specializzazione

Generalizzazione

- Il processo inverso rispetto alla specializzazione
- Alcune classi con caratteristiche comuni vengono generalizzate in una superclasse. Le classi originali diventano sottoclassi della superclasse creata.
- Esempio: AUTO, CAMION generalizzate in VEICOLO; sia AUTO che CAMION diventano sottoclassi della superclasse VEICOLO.
 - Si può vedere {AUTO, CAMION} come una specializzazione di VEICOLO
 - Di converso si può vedere VEICOLO come una generalizzazione di AUTO e CAMION

Generalizzazione e Specializzazione

- A volte vengono usati nei diagrammi alcune notazioni per distinguere tra generalizzazione e specializzazione.
 - Frecce dirette verso la superclasse rappresentano una generalizzazione
 - Frecce dirette verso le sottoclassi rappresentano una specializzazione
 - Notazione ambigua: spesso è molto soggettiva, e soggettivo è decidere quale processo adottare nella situazione particolare
 - A volte è meglio non indicare alcuna freccia.
- Modello dei Dati con Specializzazione e Generalizzazioni
 - Una superclasse o sottoclasse rappresenta un insieme di istanze
 - Rappresentate nei diagrammi EER come rettangoli (come le entità)
 - A volte tutti gli insiemi di istanze vengono chiamati semplicemente classi, indipendentemente dal fatto che siano entità, superclassi o sottoclassi.

Vincoli (1)

sulle Specializzazioni e sulle Generalizzazioni

- Se è possibile determinare esattamente le istanze che diventeranno membri di una sottoclasse mediante una condizione, le sottoclassi vengono chiamate definite da un predicato (o definite da una condizione)
 - La condizione è un vincolo che determina i membri di una sottoclasse
 - Questo tipo di sottoclassi si indicano scrivendo il *predicato di condizione* vicino alla linea che unisce la sottoclasse alla specializzazione
- Se tutte le sottoclassi di una specializzazione hanno la condizione di appartenenza sullo stesso attributo, la specializzazione è detta definita da un attributo
 - L'attributo è chiamato attributo di specializzazione
 - Esempio: TipoLavoro è l'attributo che definisce la specializzazione {SEGRETARIO, TECNICO, INGEGNERE} di DIPENDENTE
- Se nessuna condizione determina l'appartenenza, la sottoclasse è chiamata definita dall'utente

Vincoli (2)

sulle Specializzazioni e sulle Generalizzazioni

• Vincolo di disgiunzione:

- Specifica che le sottoclassi di una specializzazione devo essere disgiunte (un'istanza può essere membro di solo una sottoclasse della specializzazione)
- Denotata con una d nei diagrammi EER
- Se non sono disgiunte: sovrapposte. la stessa istanza può appartenere a più di una sottoclasse della specializzazione
- Denotata con una o (overlap) nei diagrammi EER

• Vincolo di completezza:

- Completezza Totale: specifica che ogni istanza della superclasse deve appartenere ad almeno una sottoclasse della specializzazione/generalizzazione
- Denotata nei diagrammi EER con una linea doppia
- **Completezza Parziale**: consente alle istanze di non appartenere a nessuna sottoclasse.
- Denotata nei diagrammi EER con una linea singola

Vincoli (2)

sulle Specializzazioni e sulle Generalizzazioni

- Si hanno quindi quattro tipi di generalizzazioni/specializzazioni:
 - Disgiunta, totale
 - Disgiunta, parziale
 - Sovrapposta, totale
 - Sovrapposta, parziale
- Nota: Una generalizzazione è solitamente totale in quanto la superclasse è derivata dalle sottoclassi

Esempio di Specializzazione Disgiunta, Parziale

Gerarchie e Reticoli

di Specializzazione/Generalizzazione

- Una sottoclasse può avere essa stessa ulteriori sottoclassi specificate su di essa (ed essere quindi superclasse per queste)
- Si può formare quindi una gerarchia o un reticolo (di sottoclassi/superclassi)
- Una gerarchia impone il vincolo che ciascuna sottoclasse abbia una sola superclasse (detta anche ereditarietà singola)
- In un **reticolo** invece una sottoclasse può essere sottoclasse *di più di una* superclasse (detta anche *ereditarietà multipla*)
- In un reticolo o in una gerarchia, una sottoclasse eredita gli attributi non solo della sua superclasse diretta, ma anche delle superclassi precedenti.
- Una sottoclasse con più di una superclasse (possibile solo in un reticolo) viene chiamata sottoclasse condivisa.
- Si possono avere gerarchie o reticoli di specializzazione oppure gerarchie o reticoli di generalizzazione.
- Nelle specializzazione, si inizia con un'entità e si definiscono sottoclassi dell'entità mediante specializzazioni successive (processo di raffinamento concettuale top-down)
- Nelle generalizzazioni, si inizia con alcune entità e si generalizzano (in successione) quelle che hanno proprietà comuni (processo di sintesi concettuale bottom-up)
- In pratica, viene utilizzata molto spesso una combinazione dei due processi.

ESEMPIO

Reticolo di Specializzazione/Generalizzazione

Categorie (tipi UNIONE)

- Tutte le associazioni superclasse/sottoclasse finora viste hanno una sola superclasse.
- Anche una sottoclasse condivisa ha in definitiva una singola superclasse per ogni associazione superclasse/sottoclasse a cui appartiene.
- In alcuni casi è necessario modellare i dati in modo tale che una singola associazione superclasse/ sottoclasse abbia più di una superclasse.
- Le superclassi in questo caso rappresentano differenti entità (con ruoli e caratteristiche differenti)
- Questo tipo di sottoclassi vengono chiamate categorie oppure tipi UNIONE.
- Esempio: In un database per il PRA, il proprietario di un veicolo può essere una persona, una banca (con un leasing) o una ditta.
 - La categoria (sottoclasse) PROPRIETARIO contiene un sottoinsieme delle istanze provenienti dall'unione delle istanze delle entità DITTA, BANCA, PERSONA (superclassi)
 - Un membro della categoria deve esistere in almeno una delle sue superclassi
- Nota: La differenza tra categorie e sottoclassi condivise è che una sottoclasse condivisa contiene tutte le
 istanze provenienti dall'intersezione delle sue superclassi. Un membro della sottoclasse condivisa deve
 esistere in tutte le sue superclassi.

ESEMPIO di Categorie

(UNION TYPES)

Definizioni Formali (1)

del Modello EER

- **Classe** *C*: Un insieme di istanze; può essere un'entità, una sottoclasse, una superclasse, una categoria.
- **Sottoclasse** *S*: Una classe le cui istanze debbano sempre essere un sottoinsieme delle istanze di un'altra classe, detta **superclasse** *C* dell'associazione superclasse/sottoclasse (o È-UN, IS-A) *C/S*. Si ha quindi:

 $S \subseteq C$

- **Specializzazione** $Z: Z = \{S_1, S_2, ..., S_n\}$ è un insieme di sottoclassi che hanno la stessa superclasse G; quindi G/Si è un'associazione di superclasse $\forall i = 1, ..., n$.
 - G è chiamata una **generalizzazione** delle sottoclassi $\{S_1, S_2, ..., S_n\}$
 - Z è **totale** se si ha sempre (in ogni istante di tempo):

$$S_1 \cup S_2 \cup ... \cup S_n = G$$

- Altrimenti, Z è parziale.
- Z è **disgiunta** se si ha sempre: $Si \cap Sj = \emptyset$ (insieme vuoto) per $i \neq j$;
- Altrimenti, Z è sovrapposta.

Definizioni Formali (2)

del Modello EER

- Una sottoclasse S di C è definita tramite un predicato (attributo) se si usa un predicato p sugli attributi di C per specificare quali istanze di C sono anche membri di S; cioé, S = C[p], dove C[p] è l'insieme delle istanze di C che soddisfano p.
- Una sottoclasse non definita tramite un predicato è detta definita dall'utente.
- Specializzazione **definita tramite un attributo**: se viene usato un predicato $A = c_i$ (dove A è un attributo di G e c_i è un valore costante del dominio di A) per specificare l'insieme dei membri di ciascuna sottoclasse S_i in Z.
- Nota: Se $c_i \neq c_j$ per $i \neq j$, e A è un attributo a valore singolo, allora la specializzazione sarà disgiunta.
- **Categoria** (o tipo UNIONE) *T*:
 - una classe sottoinsieme dell'unione di n superclassi che la definiscono $D_{_{I}}, D_{_{2}}, ..., D_{_{n}}, n > r$:

$$T \subseteq (D_{_{I}} \cup D_{_{2}} \cup \dots \cup D_{_{n}})$$

- Un predicato p_i sugli attributi di D_i può essere usato per specificare i membri di ciascuna superclasse D_i che sono anche membri di T.
- . Se un predicato è specificato su ciascun D_i , si ha:

$$T = (D_{I}[p_{I}] \cup D_{2}[p_{2}] \cup ... \cup D_{n}[p_{n}])$$

• *Nota*: La definizione di **associazione** deve essere estesa rispetto al modello ER consentendo ad ogni **classe** di parteciparvi (non solo alle entità)

Esempio UML

Notazione per specializzazioni/generalizzazioni

Notazioni Alternative

Symbols for entity type / class, attribute and relationship

Notations for displaying specialization / generalization

Displaying attributes

Various (min, max) notations

Displaying cardinality ratios

Associazioni di grado 3

- Associazione ternaria: Si considerino ad esempio le entità FORNITORE, PARTE e PROGETTO e l'associazione di grado 3 FORNITURA le cui istanze sono un insieme di elementi della forma (s, j, p) con s istanza di FORNITORE, j di PARTE e p di PROGETTO.
- Possiamo considerare 3 associazioni binarie tra queste entità: PUÒ_FORNIRE tra FORNITORE e PARTE USA tra PROGETTO e PARTE FORNISCE tra FORNITORE e PROGETTO
 - Si può verificare che l'esistenza delle istanze (s, p), (j, p) e (s, j) in PUÒ_FORNIRE, USA e FORNISCE non implica necessariamente l'esistenza di un'istanza (s, j, p) nell'associazione ternaria FORNITURA Servono ulteriori **vincoli**!
- Si può anche rappresentare FORNITURA come entità debole con tre associazioni identificanti e le entità FORNITORE, PARTE e PROGETTO in qualità di proprietari. Equivalenza!

Domande?