

# Chapter 1 Linux and TCP/IP Networking

TCP/IP Essentials
A Lab-Based Approach

**Spring 2017** 

# **Linux and TCP/IP Implementations**

- Unix: a family of multitasking computer operating systems
  - -Developed in 1970s by Bell Labs Research
  - Unix systems included TCP/IP utilities in Berkeley Software Distribution
     (BSD) release 4.1c
- •The first widely available Unix release with TCP/IP is 4.2 BSD
- Unix TCP/IP implementations
  - Solaris
  - -FreeBSD
  - Linux

# **Networking Code Organization**

- Most applications are implemented as *User Space* processes.
- Protocols are implemented in the system kernel
  - Socket layer
  - Protocol layer
  - Interface layer



#### **Network Daemons and Services**

- Daemon: a process running in the background of the system. popular network daemons are managed by
  - inetd (most TCP/IP applications, xinetd in Red Hat Linux 9)
  - httpd (web service)
  - named (DNS service)
- Port numbers
  - Well-known port numbers, used by servers
  - <u>Dynamic/private</u> port numbers (per RFC 6335), used by clients (never assigned)
  - The <u>Protocol Type</u>, the IP address and port number pairs of the server and client preserve the uniqueness of a communication session → IP Five—Tuple information

# **Network Configurations Files**

- When a host is configured to boot locally, TCP/IP configuration parameters are stored in files.
  - /etc/services (well-known port numbers, a.k.a. System Port numbers)
  - /etc/inetd.conf (inetd daemon parameters)
  - /etc/sysconfig/network (host name, default gateway IP address)
  - /etc/resolv.conf (IP addresses of DNS servers)
- When the system boots up, parameters are read from the files and used to configure the daemons and the network interface.
- A parameter may be changed by editing the corresponding configuration file.
- Most user hosts today are configured remotely by DHCP server (dynamic host configuration protocol) with distributed network configuration parameters

#### **Linux Commands and Tools**

- •Basic Linux commands: man, passwd, ls, ... many more
- Text editor
  - -vi
  - -Other text editors: Emacs, gedit, OpenOffice.org
- Window Dump using PrintScreen key
- •Using USB memory stick, ...to collect lab data for reports

# **Diagnostic Tools**



Tcpdump – a network traffic sniffer

Ethereal – a network protocol analyzer

# More about Domain Name System

# **DNS: domain name system**

#### People: many identifiers:

SSN, name, passport #

#### Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., www.nyu.edu used by humans

**Q:** how to map between IP address and name, and vice versa?

#### Domain Name System:

distributed database implemented in hierarchy of many name servers application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)

- note: core Internet function, implemented as application-layer protocol
- complexity at network's "edge"

#### **DNS: services, structure**

#### DNS services

hostname to IP address translation

host aliasing

canonical, alias names

mail server aliasing

load distribution

 replicated Web servers: many IP addresses correspond to one name

#### Why not centralize DNS?

single point of failure
traffic volume
distant centralized database
maintenance

A: It doesn't scale!

## DNS: a distributed, hierarchical database



#### client wants IP for www.amazon.com; 1st approx:

client queries root server to find .com DNS server client queries .com DNS server to get amazon.com DNS server client queries amazon.com DNS server to get IP address for www.amazon.com

#### **DNS: root name servers**

#### Root name server:

- contacts authoritative name server if name mapping not known
- gets mapping
- returns mapping to local name server



## **TLD** servers, authoritative servers

## Top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Verisign Global Registry maintains servers for .com TLD
- Educause for .edu TLD

#### Authoritative DNS servers:

- organization 's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

#### **Local DNS name server**

Does not strictly belong to hierarchy

Each ISP (residential ISP, company, university) has one

also called "default name server"

When host makes DNS query, query is sent to its local DNS server

- has local cache of recent name-to-address translation pairs (but may be out of date!)
- acts as proxy, forwards query into hierarchy

# **DNS** name resolution example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

# Iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"



root DNS server

[Source: "Computing Networking: A Top Down Approach", J.F Kurose and K.W. Ross]

gaia.cs.umass.edu

# **DNS** name resolution example

# Recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?



root DNS server

# DNS: caching, updating records

Once (any) name server learns mapping, it caches mapping

- cache entries timeout (disappear) after some time (TTL)
- TLD servers typically cached in local name servers
  - thus root name servers not often visited

Cached entries may be *out-of-date* (best effort name-to-address translation!)

•if name host changes IP address, may not be known Internet-wide until all TTLs expire

Update/notify mechanisms proposed by IETF

•RFC 2136