

Математическое моделирование в ГАМ 6 сентября 2022, Санкт-Петербург, Россия

Расчет статистических сумм и теплоемкостей в высокотемпературных течениях газов с учетом электронных степеней свободы

Истомин В.А.

канд. физ.-мат. наук, старший научный сотрудник, Санкт-Петербургский государственный университет

- Введение
- Цели
- Макропараметры и кинетические уравнения
- ▶ Коэффициенты переноса
- ▶ Квантовые числа
- Статистическая сумма и внутренняя энергия
- Внутренняя энергия и теплоёмкость
- Столкновительный диаметр нейтральных и ионизованных атомов и молекул
- Приложение разработанной модели для описания течения за ударной волной
- Результаты
- Нейронные сети
- Использование ML-методов в ПО

Введение

- Исследование влияния электронного возбуждения на коэффициенты переноса локально-равновесной плазмы в поуровневом приближении с учетом электронного возбуждения [Capitelli et al. (2000–2013)].
- Расчет коэффициентов переноса в поуровневом приближении с разделением на низко- и высоколежащие электронные уровни [Johnston (2006), Magin et al. (2008), Capitelli et al. (2013)].
- В то время, как поуровневые модели широко применяются при моделировании колебательно-неравновесных течений [Nagnibeda, Kustova (2009), Capitelli et al. (2013)], их применение для электронно-возбужденных газов только начинается [Aliat et al. (2003, 2005), Capitelli et al. (2013), Guy et al. (2015)].
- Расчет коэффициентов переноса в поуровневом приближении в чистых атомарных и ионизованных атомарных газах с учетом электронного возбуждения [Istomin, Kustova (2016), Istomin, Kustova (Chemical Physics, 485-486, P. 125-139, 2017)].

- Создание программы с возможностью расчета для произвольных температуры и давления поступательной и внутренней: 1) Статистической суммы 2) Удельной энергии 3) Удельной теплоемкости при постоянном объеме
- Расчет указанных величин должен проводиться с учетом поступательных/электронных степеней свободы атомов и поступательных/электронных/колебательных/вращательных степеней свободы молекул (где вращательная энергия зависит от электронного и колебательного уровня, а колебательная от электронного уровня).
- Язык программирования на ваш выбор. Если язык программирования объектно-ориентированный, то должны быть созданы классы: "частица", "атом" (наследуемый), "молекула" (наследуемый), с определенной/переопределенной логикой и функциональностью.

Макропараметры и кинетические уравнения

Характерные времена процессов

$$au_{ch-tr} \sim au_{tr} \ll au_{ET} \sim au_{ioniz} \sim heta$$

Макроскопические уравнения

$$\begin{split} &\frac{d\mathbf{n}_{c_n}}{dt} + \mathbf{n}_{c_n} \nabla \cdot \mathbf{v} + \nabla \cdot (\mathbf{n}_{c_n} V_{c_n}) = R_{c_n}^{ET} + R_{c_n}^{ioniz}, \quad c = 1, ..., L, \\ &c = X, X^+, e^-, \quad n = 1, ..., L_c, \\ &\rho \frac{d\mathbf{v}}{dt} + \nabla \cdot \mathbf{P} = 0, \\ &\rho \frac{dU}{dt} + \nabla \cdot \mathbf{q} + \mathbf{P} : \nabla \mathbf{v} = 0. \end{split}$$

Коэффициенты переноса

Полная энергия

$$\rho U = \frac{3}{2}nkT + \sum_{c,k} \varepsilon_k n_{c_k} + \sum_{c,k} E_{i_c} n_{c_k}.$$

- ▶ Первое приближение
 - Скорость диффузии:

$$\mathbf{V}_{c_n} = -\sum_{d,m} D_{c_n d_m} \mathbf{d}_{c_n} - D_{Tc_n} \nabla \ln T,$$

Поток тепла:

$$\mathbf{q} = -\lambda' \nabla T - p \sum_{c,n} D_{Tc_n} \mathbf{d}_{c_n} + \sum_{c,n} \left(\frac{5}{2} kT + \varepsilon_{c_n} + E_{i_c} \right) \mathbf{n}_{c_n} \mathbf{V}_{c_n}$$

Тензор напряжений:

$$P = pI - 2\eta S$$

Квантовые числа

n - главное квантовое число, являющееся наиболее важным квантовым числом для определения величины энергии атома. Оно может иметь значения n=1,2,3...

l - орбитальное квантовое число, определяющее величину момента импульса электрона при его движении "по орбите". Оно может иметь значения l=1,2,3,...,(n-1).

 m_l - магнитное квантовое число, определяющее величину проекции момента импульса на заданную ось и связанное с ориентацией орбиты электрона в пространстве в случае приложения внешнего магнитного поля. Оно имеет значения -l,-(l-1),...,0,...,(l-1),l, т.е. 2l+1 значение для заданного l.

s - спиновое квантовое число электрона, определяющее величину момента спина, т.е. "собственного" момента импульса электрона. Оно имеет фиксированное значение, равное $\frac{1}{2}$, и поэтому его не нужно задавать для определения состояния электрона.

 m_s - квантовое число, определяющее величину проекции момента спина на заданную ось и имеющее смысл при взаимодействии электрона с магнитным полем. Это число имеет два возможных значения: $+\frac{1}{5}$ и $-\frac{1}{5}$.

Saint Petersburg Статистическая сумма и внутренняя энергия State University www.spbu.ru

q_n		2:	1	1
q_n	_	41	+	1.

N		0	
$\varepsilon_n^{el,c},[\mathrm{cm}^{-1}]$	g_n	$\varepsilon_n^{el,c},[^{\mathrm{cm}^{-1}}]$	g_n
0	4	0	5
19227.9	10	158.5	3
28839.2	6	226.5	1
83335	12	15867.7	5
86192	6	33792.4	1
88132.4	12	73767.81	5
93581	2	76794.69	3
94837	20	86625.35	3
95509	12	86627.37	5
96750	4	86631.04	7
96833	10	88630.84	5
97793	6	88630.3	3
99663	10	88631	1
103693	12	95476.43	5
104195	6	96225.5	3
104628	6	97420.24	9
104719	28	97420.37	7
104846	12	97420.5	5
104850	14	97420.5	3
105006	20	97420.5	1
105133	10	97488.14	7
106477	2	97488.14	5
106792	20	97488.14	3
107013	12	99092.64	3
107224	10	99093.31	5

$$\varepsilon_{nij}^{c} = \varepsilon_{nij}^{el,\,c} + \varepsilon_{nij}^{vibr,\,c} + \varepsilon_{nij}^{rot,\,c}$$

Колебательная энергия молекулы (модель ангармонического осциллятора):

$$\frac{\varepsilon_i^{c,n}}{hc} = \omega_e^{c,n} \left(i + \frac{1}{2}\right) - \left.\omega_e^{c,n} x_e^{c,n} \left(i + \frac{1}{2}\right)^2 + \left.\omega_e^{c,n} y_e^{c,n} \left(i + \frac{1}{2}\right)^3 + \ldots \right.$$

Вращательная энергия молекулы:

$$\frac{\varepsilon_j^{c,\,ni}}{hc} = B_{ni}^c j(j+1) - D_{ni}^c j^2 (j+1)^2 + \dots,$$

где c – скорость света,

$$B^c_{ni} = B^c_{n,e} - \alpha^c_{n,e} \left(i + \frac{1}{2}\right) + \dots, \qquad D^c_{ni} = D^c_{n,e} - \beta^c_{n,e} \left(i + \frac{1}{2}\right) + \dots$$

Спектроскопические постоянные для молекулярного азота N_2 :

\overline{n}	Состояние	ε_n^{el} ,	g_n	ω_e^n ,	$\omega_e^n x_e^n$,	B_e^n ,	α_e^n ,	E_{diss}^{n} ,
		$10^4 cm^{-1}$		$_{\rm CM}^{-1}$	$_{\rm CM}^{-1}$	$_{\rm CM}^{-1}$	10^{-3}cm^{-1}	$10^4 {\rm cm}^{-1}$
0	$X^1 \sum_{a}^+$	0	1	2358,57	14,32	1,998	17,3	7,871424
1	$A^3 \sum_{n=1}^{\infty} A^n$	5,020360	3	1460,64	13,87	1,454	18	7,989793
2	$B^3\Pi_q$	5,961935	6	1733,39	14,12	1,637	17,9	9,910935
3	$W^3\Delta_u$	5,980800	6	1501,40	11,60	1,473	16.6	9,910900
4	$B'^3 \sum_{u}^{-}$	6,627240	3	1516,88	12,18	1,479	16.5	10,87244

Статистическая сумма и внутренняя энергия

Статистическая сумма:

$$Z_c = Z_{tr,c} Z_{int,c}$$

Статистическая сумма поступательная:

$$Z_{tr,c} = \left(\frac{2\pi m_c kT}{h^2}\right)^{3/2}$$

Статистическая сумма внутренняя для атомов:

$$Z_{int,c} = \sum_{n} g_n^c \exp\left(-\frac{\varepsilon_n^c}{kT}\right)$$

Статистическая сумма внутренняя для молекул:

$$Z_{int,c} = \sum_{nij} g_n^c g_i^c g_j^c \exp\left(-\frac{\varepsilon_{nij}^c}{kT}\right)$$

Внутренняя энергия и теплоёмкость

Внутренняя энергия:

$$E_{int,c} = \frac{1}{m_c Z_{int,c}} \sum_{nij} g_{c,nij} \varepsilon_{nij}^c \exp(\frac{-\varepsilon_{nij}^c}{kT})$$

Теплоёмкость при постоянном объёме:

$$c_V = \left(\frac{dU}{dT}\right)_V = \left(\frac{dE_{int}}{dT}\right)_V + \left(\frac{dE_{tr}}{dT}\right)_V = c_{V,int} + c_{V,tr} = c_{V,int} + \frac{3}{2}\frac{k}{m}$$

Тогда, беря производную по внутренней энергии:

$$\begin{split} c_{V} &= c_{V,int} + c_{V,tr} = \frac{1}{m} \left(\frac{\sum_{nij} \varepsilon_{nij} g_{n} g_{i} g_{j} \exp\left(\frac{-\varepsilon_{nij}}{kT}\right)}{\sum_{nij} g_{n} g_{i} g_{j} \exp\left(\frac{-\varepsilon_{nij}}{kT}\right)} \right)_{T}^{'} + \frac{3}{2} \frac{k}{m} = \\ \frac{k}{m} \left(\frac{\sum_{nij} \frac{\varepsilon_{nij}^{2} g_{n} g_{i} g_{j} \exp\left(\frac{-\varepsilon_{nij}}{kT}\right)}{k^{2}T^{2}}}{Z_{int}} - \left(\frac{\sum_{nij} \frac{\varepsilon_{nij}}{kT} g_{n} g_{i} g_{j} \exp\left(\frac{-\varepsilon_{nij}}{kT}\right)}{Z_{int}} \right)^{2} \right) + \frac{3}{2} \frac{k}{m} \end{split}$$

▶ Для определения орбиталей типа Слейтера используется волновая функция, рассчитанная с помощью численных методов:

$$\psi(r,\theta,\phi) = Nr^{n^*-1} \exp^{\varsigma r/\mathsf{ao}} Y_{lm_l}(\theta,\phi), \qquad \varsigma = \frac{Z-S}{n^*},$$

 Столкновительный диаметр может быть представлен через полуэмперическую формулу Слэйтера:

$$\sigma_{Slater_{ij}} = r_i + r_j + 1.8A, \qquad r_k = \frac{2n_k^* + 1}{2\varsigma_k}a_0, \qquad k = i, j,$$

ightharpoonup Для главного квантового числа n > 6

$$n_{h-1}^* = 1.8886 \log n + 0.9124, \qquad R^2 = 0.9877$$

\	1	1	2	3	4	5	6	7	8	9	
n	*	1	2	3	3.7	4	4.2	-	-		
n_h^*	-1	0.91	2.22	2.99	3.53	3.95	4.30	4.59	4.84	5.06	

Тепловая карта нахождения электронов на атомных орбиталях водородоподобных атомов.

Феноменологический потенциал межчастичного взаимодействия:

$$\varphi(x) = \varepsilon_0 \left(\frac{m}{n(x) - m} \left(\frac{1}{x} \right)^{n(x)} - \frac{n(x)}{n(x) - m} \left(\frac{1}{x} \right)^m \right),$$

 $\sigma = x_0 r_e, \ \varphi(x_0) = 0$

Столкновительный диаметр при столкновении иона с родительским атомом

$$X_n + X_m^+ \Longrightarrow (X_2^+ \Longrightarrow) X_n^+ + X_m, \qquad X = N, O,$$

$$\Omega^{(I,s)*} = \sqrt{(\Omega_{el}^{(I,s)*})^2 + (\Omega_{ch-tr}^{(I,s)*})^2}, \quad I = odd,$$

$$\sigma_{ij} = 2\sigma_{eff} = 2(r_i + r_j), \qquad r_k = \frac{2n_k^* + 1}{2c_k} a_0$$

Атомарный радиус

Атомарный радиус основного электронного состояния:
 1: Slater; 2: ESA data.

Atom	Configuration (term)	r ₁ , [A]	r ₂ , [A]	$\frac{r_1-r_2}{r_2}\cdot 100\%$ [%]
C	2s2.2p2 (3P)	0.814	0.784	3.89
N	2s2.2p3 (4S)	0.678	0.673	0.76
0	2s2.2p4 (3P)	0.582	0.606	-4.08
Ar	2s2.2p6 (1S)	0.823	0.783	5.14
C^+	2s2.2p1 (2P)	0.735	0.580	26.7
N^+	2s2.2p2 (3P)	0.623	0.592	5.24
O^+	2s2.2p3 (4S)	0.540	0.546	-1.15
Ar^+	2s2.2p5 (2P)	0.783	0.602	29.9

Столкновительный диаметр для основного электронного состояния:
 Slater; 2: ESA data.

Interaction	σ_1 , [A]	σ_2 , [A]	$\frac{\sigma_{1}-\sigma_{2}}{\sigma_{2}}\cdot 100\% \ [\%]$
C(3P) - C(3P)	3.428	3.367	1.81
N(4S) - N(4S)	3.157	3.147	0.32
O(3P) - O(3P)	2.963	3.012	-1.64
Ar(1S) - Ar(1S)	3.446	3.366	2.39
$C(3P) - C^{+}(2P)$	3.098	2.727	13.6
$N(4S) - N^{+}(3P)$	2.602	2.530	2.86
$O(3P) - O^+(4S)$	2.243	2.305	-2.69
$Ar(1S) - Ar^+(2P)$	3.211	2.771	15.9

О Атомные спектры и эффективные сечения:

#	Configuration(Term)	Electronic level, $[cm^{-1}]$	σ, Α
1.	2s2.2p4(3P)	0	2.96303
2.	2s2.2p4(3P)	158.265	2.96303
3.	2s2.2p4(3P)	226.977	2.96303
4.	2s2.2p4(1D)	15867.862	2.96303
5.	2s2.2p4(1S)	33792.583	2.96303
6.	2s2.2p3.3s(5S)	73768.200	8.15013
7.	2s2.2p3.3s(3S)	76794.978	8.15013
8.	2s2.2p3.3p(5P)	86625.757	8.15013
9.	2s2.2p3.3p(5P)	86627.778	8.15013
10.	2s2.2p3.3p(5P)	86631.454	8.15013
11.	2s2.2p3.3p(3P)	88630.587	8.15013
12.	2s2.2p3.3p(3P)	88631.146	8.15013
13.	2s2.2p3.3p(3P)	88631.303	8.15013
14.	2s2.2p3.4s(5S)	95476.728	18.24683

N Атомные спектры и эффективные сечения:

	#	Configuration(Term)	Electronic level, $[cm^{-1}]$	σ , A
4	1.	2s2.2p3(4S)	0	3.15686
	2.	2s2.2p3(2D)	19224.464	3.15686
	3.	2s2.2p3(2D)	19233.177	3.15686
	4.	2s2.2p3(2P)	28838.920	3.15686
	5.	2s2.2p3(2P)	28839.306	3.15686
	6.	2s2.2p2.3s(4P)	83284.070	8.74545
	7.	2s2.2p2.3s(4P)	83317.830	8.74545
	8.	2s2.2p2.3s(4P)	83364.620	8.74545
	9.	2s2.2p2.3s(2P)	86137.350	8.74545
	10.	2s2.2p2.3s(2P)	86220.510	8.74545
	11.	2s2.2p4(4P)	88107.260	3.15686
	12.	2s2.2p4(4P)	88151.170	3.15686
	13.	2s2.2p4(4P)	88170.570	3.15686
	14.	2s2.2p2.3p(2P)	93581.550	8.74545

Атомарный радиус и столкновительный диаметр σ_{nn} как функция электронной

Атомарный радиус и столкновительный диаметр σ_{nm} как функция электронной энергии и номера электронного уровня.

$$\sigma_{XY_I - XY_I} = \frac{2}{3}(r_X + r_Y + r_e) + 1.8 \,\mathbf{A}$$

Молекулярный столкновительный диаметр σ_{nm} как функция электронной энергии.

Приложение за ударной волной

Experiment	Pre/Post	Velocity, m/s	Temperature, K	Pressure, Pa
Hermes	Pre-Shock	7198	205	2
	Post-Shock	1207	24234	1763
Fire II (1634s)	Pre-Shock	11360	195	2
	Post-Shock	1899	62377	3827

Максимально возможный атомарный радиус электронно-возбужденных частиц как функция температуры для двух моделей.

Приложение за ударной волной

Experiment	Pre/Post	Velocity, m/s	Temperature, K	Pressure, Pa
Fire II (1634s)	Pre-Shock	11360	195	2
	Post-Shock	1899	62377	3827

Заселенности электронных уровней N и O за ударной волной на расстоянии x=0.7 см и 2.5 см для двух распределений.

Теплопроводность λ и сдвиговая вязкость η атомарных газов как функция температуры с учетом двух нижних электронных уровней.

Теплопроводность λ нейтральных атомарных газов как функция температуры.

Сдвиговая вязкость η нейтральных атомарных газов как функция температуры.

Коэффициент термодиффузии $oldsymbol{D}_{Tn}$ как функция температуры.

Архитектура сети для расчета теплоёмкости \mathcal{C}_p , теплопроводности λ' и сдвиговой вязкости η произвольной смеси газов при заданных значениях температуры T и давления p.

Parameters	Value
Input vector	(T, p, n_i)
Input vector ranges	$T = 1000-50000 \text{ K}; p = 1000-202650 \text{ Pa}; n_i = 0-1 \text{ n/d}.$
2 hidden layers	8 neurons - 8 neurons
3 hidden layers	8 neurons - 8 neurons - 8 neurons
Activation function	tanh
Output vector	(C_p, λ', η)
Weights and biases	Glorot initialization
Learning rate	0.1
Momentum rate	0.01
Educational epochs	500
Education sets	3000 for one-component gas; 20000 for mixtures

Mixture	C_p	λ'	η
N	0.2 % / 0.7 %	1.7 % / 33.7 %	0.6 % / 10.1 %
0	0.5 % / 1.6 %	1.1 % / 17.1 %	0.6 % / 10.9 %

Сравнение средних и максимальных ошибок при точном расчете и симуляции посредством нейронной сети для C_p , λ' и η .

Mixture	C_p	λ'	η
N ₂	0.3 % / 2.4 %	0.5 % / 3.2 %	0.6 % / 6.5 %
O_2	0.2 % / 0.6 %	0.2 % / 1.9 %	0.1 % / 1.2 %

Сравнение средних и максимальных ошибок при точном расчете и симуляции посредством нейронной сети для C_p , λ' и η .

Mixture	C_p	λ'	η
(N_2, N, O_2, O)	2.5 % / 4.9 %	3.7 % / 41.6 %	4.0 % / 47.4 %
(N_2, N, O_2, O, Ar)	2.4 % / 6.4 %	12.5 % / 121.8 %	12.0 % / 122.2 %

Сравнение средних и максимальных ошибок при точном расчете и симуляции посредством нейронной сети для C_p , λ' и η .

Прирост производительности вычислений с использованием нейронной сети при расчете C_p , λ' , и η в однокомпонентных газах и смесях как функции времени обучения.

Структура программного обеспечения для задач ГАМ:

- ► Спроектировано на основе фнукциональной API библиотеки TensorFlow (Jupyter Notebook)
- ► Подготовка данных (NumPy format)
- ► Кофигурирование модели (TensorFlow 1.15 API)
- ► Обучение модели: различные функции потерь (Binary Crossentropy, MAE, MSE), а также возможности для спецификации процесса обучения посредством отслеживаемых метрик (Accuracy, Binary Crossentropy, MAE, MSE)
- Анализ данных (включая функциональность TensorBoard functions)

In [

	a filenam	e: db	/datase	ts/TCs_air5.t	d		Load rav	w data		Headers			
57.50	(rows):		1										
Sh	eet												
eft:	1					Right: 1	.34						
op:	1000					Bottom:	Bottom: 1003						
	Shows	heet											
	1	T	2:P	3:x_N2	4:x_02	5:x_NO	6:x_N	7:x_O	8:Eta	9:Zeta	10:Lam	11:[0]	
10	00	500	50000	0.06577069	0.2861828	0.261032	8 0.07210976	0.3149039	0.04293181	0.00002969215	0.00001972874	1.845445e-7	1.845445e-7
10	01	500	55000	0.2555299	0.06577069	0.286182	8 0.2610328	0.07210976	0.04120377	0.00002884604	0.00001938685	-4.993725e-8	-4.993725e-8
10	02		55000		0.01855508	0.129873	2 0.007792603	0.6789058	0.04447092	0.00003044473	0.00001926741	3.70337e-7	3.70337e-7
10	03	500	55000	0.07290792	0.31117	0.251742	9 0.2915336	0.0726457	0.04184377	0.00002886398	0.00001936428	8.279718e-8	8.279718e-8

ПРимер подготовки данных для смеси (N_2 , N, O_2 , O, NO).

oad model/dataset Compile Fit						
Model						
Model Blename: db/models/tita.json	Load	rs.				
Dataset						
Imputs:	Outputs:					
n_N2 (48): 11-58	eta (1): 8					
n_O2 (36): 59-94 n_NO (36): 95-132						
P_NO (88): 95-132 Dataset Rename: dbitlatasets/TCs_airS.npy	Los	ut				
10,000,000						
▼ Model						
n_N2: InputLayer input: [(?, 48)] output: [(?, 48)]	n_O2: InputLayer	input:	[(?, 36)]	n_NO: InputLayer	input:	[(2, 38)]
output: [(?, 48)]		output:	[(2, 36)]		output:	[(2, 38)]
+		+				
N2_dense: Dense input: (?, 48)	O2 dense: Dense	input:	(2, 36)	NO dense: Dense	input:	(2, 38)
output: (?, 20)		output:	(?, 20)		output:	(?, 20)
	_	↓	_			
concat	: Concatenate inpu	at: [(?,	20), (?, 20),	(2, 20)]		
CONCIL	outp	ut:	(?, 60)			
		1				
		input:	(?, 60)			
	dense1: Dense	output:	(?, 40)			
		input:	(?, 40)			
	dense2: Dense	output:	(2, 40)			
		Ι				
		input: (2, 40)			
			(2, 1)			

Пример конфигурирования модели для смеси (N_2 , N, O_2 , O, NO).

Использование ML-методов в ПО для задач

Layer range etc. Type Dante Units I Convect to dense2 Add Add Summary Food e1: "Eta"	Oreste	nnse 1
Layer range etc. Type Dante Units I Convect to dense2 Add Add Summary Food e1: "Eta"	n_N2	nnse 1
Type: Dense	n_02 n_N0 n_N0 N2_den 02_den N0_der concat! dense1	nnse 1
Jones 1 Convect to dense 2 Activation Unear Add Summery Model: "Eta"	n_N0	nnse 1
Convect to dense2 Activation: Linear Add - Summary Model: "Eta"	N2_den O2_den NO_der concat1 dense1 dense2	nnse 1
Activation: Unear Add - Summary Mod el: "Eta"	O2_den NO_der concati dense1 dense2	nnse 1
Add - Summary Model: "Eta"	□ NO_der □ concact □ dense1 □ dense2 ☑ eta	ense 1
- Summery	□ concat1 □ dense1 □ dense2 ☑ eta	1
Model: "Eta"	☐ dense1 ☐ dense2 ☑ eta	
Model: "Eta"	☐ dense2	
Model: "Eta"	eta	2
Model: "Eta"		
Model: "Eta"	Set	
Model: "Eta"		
n N2 (InputLayer) [(None, 48)]		
		Connected to
n 02 (InputLayer) [(None, 36)]	0	
n NO (InputLayer) [(None, 38)]	9	
N2_dense (Dense) (None, 20)	980	n_N2[0][0]
D2_dense (Dense) (None, 20)	740	n_02[0][0]
) = 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	780	n_N0[0][0]
concat1 (Concatenate) (None, 60)		N2_dense[0][0] 02_dense[0][0] N0_dense[0][0]
densel (Dense) (None, 40)	2440	concat1[0][0]
dense2 (Dense) (None, 40)	1640	dense1[0][0]
eta (Dense) (None, 1)	41	dense2[0][0]
Total params: 6,621 Trainable params: 6,621 Non-trainable params: 0		

Пример конфигурирования модели для смеси (N_2, N, O_2, O, NO) .

	R
anch size: 1024	Calbacis:
pachs: 500	S CSV Logger
alidation spilit 0.1	Log Sename: logs/Eta.log
Rt	 Early Stopping
	Monitor: val siss
	Miles delta: 0
	Patience: 10
	Model Checkpoint
	Model Bename: loos/Eta.h5
	Monitor val loss
	Tensor Board
	Log dir. logsignaphs/Eta
	Histogram fequency 30
	With graph
	Witte images
Model	
Long	
och 53/500	
och 53/500 1984/42120 [
100ch 53/500 1984/42120 [
120/42120 190ch 53/500 1904/42120 190ch 80053: val_toss did no 120/42120 1904/42120	. TIL 0s. loss: 0.8172 - accuracy: 0.0000e-00
poch 53/500 1984/42120 [.] - ETA: 0s - loss: 0.0172 - accuracy: 0.0000e+00 ot isprove from 0.01306 - 9s Turicample - loss: 0.0172 - accuracy: 0.0000e+00 - val_loss: 0.0151 - val_accuracy: 0.0000e+00 -] - ETA: 0s - loss: 0.0164 - accuracy: 0.0000e+00 - val_loss: 0.0151 - val_accuracy: 0.0000e+00 wit isprove from 0.0100
2120/3/588 1984/42120 [. TIL 0s. loss: 0.8172 - accuracy: 0.0000e-00
2169/74110 l poch 53/508 l 1984/42120 [poch 80053: val loss did no 2120/42120 [poch 54/508] 1984/42120 [poch 69054: val loss did no 2120/42120 [poch 55/508] 1984/42120 [
poch 53/508 1984/42120	1. 111 0s loss 0.0172 accuracy: 0.0000e+00
110/7110 poch 53/508 poch 6053: val_loss did no 1210/4120 poch 60653: val_loss did no 1210/4120 poch 54/508 1904/42120 110/421	FTA: 0s - loss: 0.0172 - accuracy: 0.0000e+00
1107-1108 poch 537588 1984/42128 1984/42128 1984/42128 1984/42128 1984/42128 1984/42128 1984/42128 1984/42128 1984/42128 1984/42128 1984/42128	THI 0s - loss 0.0172 - accuracy: 0.0000e+00 - val_loss: 0.0151 - val_accuracy: 0.0000e+00 - val_loss: 0.0156 - val_accuracy: 0.0000e+00 - val_accuracy: 0.0000e+00 - val_loss: 0.0151 - val_accuracy: 0.0000e+00 - val_accuracy:
1100 74110 poch 33/588 poch 33/588 poch 34/583 val_loss did no 2120/47128 poch 54/588 poch 54/588 poch 54/580 poch 56/580 po	TIL 18
pack 32,508 1984,44218 [1984,44218 [1984,44218 [1984,42218 [1984,4	THI 08 08 08172 accuracy: 0.0000e+00 val_loss: 0.0172 accuracy: 0.0000e+00 val_loss: 0.0151 val_accuracy: 0.0000e+00 val_loss: 0.0151 val_accuracy: 0.0000e+00 val_loss: 0.0151 val_accuracy: 0.0000e+00 val_loss: 0.0156 val_accuracy: 0.0000e+00 val_accuracy: 0.0000e+00 val_accuracy: 0.0000e+00 val_accuracy: 0.0000e+00 val_accuracy: 0.0000e+00 val_accuracy: 0.000e+00 val_a
Epoch 53/500 1308/472120 [Thi is loss 0.8172 - accuracy: 0.0000e+00 - val_loss: 0.8151 - val_accuracy: 0.0000e+00 - val_loss: 0.8156 - val_accuracy: 0.000e+00 - val_loss: 0.8156 - val_accuracy: 0.0000e+00 - val

Пример обучения модели для смеси (N_2 , N, O_2 , O, NO).

Пример анализа результатов для смеси (N_2, N, O_2, O, NO) .

