Lecture 3: Region Based Vision

Dr Carole Twining
Tuesday 10th March 2020
14:00pm – 15:00pm

COMP61342

MANCHESTER

Slide 3 of 30

S

Segmenting an Image

Assigning labels to pixels (cat, ball, floor)

- Point processing:
 - colour or grayscale values, thresholding
- Neighbourhood Processing:
 - Regions of similar colours or textures
- Edge information (next lecture)
- Prior information: (model-based vision)
 - I know what I expect a cat to look like

COMP61342

MANCHESTER 1824

Overview

- Automatic threshold detection
 - Earlier, we did this by inspection/guessing
- Multi-Spectral segmentation
 - Satellite & medical image data
- Split and Merge
 - Hierarchical, region-based approach
- Relaxation labelling
 - **Probabilistic**, learning approach
- Segmentation as optimisation

COMP61342

The University of Manchester

Automatic Threshold Selection

The University of Mancheste

Automatic Thresholding: GMM

Segmentation Rule

Image Histogram

- Assume scene mixture of substances, each with normal/gaussian distribution of possible image values
- Minimum error in probabilistic terms
- But mixture of gaussians not easy to find
- Doesn't always fit actual distribution

COMP61342

MANCHESTER

Slide 7 of 30

Automatic Thresholding: Otsu's Method

The Universion

Mean across purples:

$$ar{\mathbf{i}}_{\mathrm{P}} = rac{1}{\mathrm{N}_{\mathrm{P}}} \sum_{\mathrm{i}=0}^{\mathrm{T}} \mathrm{i} imes \mathrm{n}(\mathrm{i})$$

Variance for purples:

$$\sigma_P^2 = \frac{1}{N_P} \sum_{i=0}^T n(i) \left[i - \overline{i}_P\right]^2$$

Choose T to minimize: $N_P \sigma_P^2 + N_G \sigma_G^2$

Extend to multiple classes

The University of Mancheste

Automatic Thresholding: Max Entropy

For two sub-populations: $p_P(i) = \frac{n(i)}{N_P}, \ i < T, \label{eq:populations}$

$$p_G(i) = \frac{n(i)}{N_G}, i \ge T.$$

Entropy: $-\sum p \ln p$

Two Entropies:

$$H_P = -\sum\limits_{i < T} p_P(i) \ \text{ln} \ p_P(i) \ \& \ H_G = -\sum\limits_{i \geq T} p_G(i) \ \text{ln} \ p_G(i)$$

Minimise: $H_G + H_P$ to find T.

Makes two sub-populations as peaky as possible

COMP61342

MANCHESTER

Slide 9 of 30

f Manchest

Automatic Thresholding: Example

combine

Automatic Thresholding: Summary

- Geometric shape of histogram (bumps, curves etc)
 - Algorithm or just by inspection
- Statistics of sub-populations
 - Otsu & variance
 - **Entropy** methods
- Model-based methods:
 - Sum of gaussians, gaussians & partial voluming etc.
- Detailed comparative evaluations for 40 methods
 - Sezgin M, Sankur B; Survey over image thresholding techniques and quantitative performance evaluation.
 Journal of Electronic Imaging, 13(1): pages 146-168, (2004).
- Fundamental limit on effectiveness:
 - Never be perfect if distributions overlap (two objects, shared colour!)
- Whatever method, need further processing

COMP61342

The University of Manchester

Multi-Spectral Segmentation

Multi-spectral Segmentation

- Multiple measurements at each pixel:
 - Satellite remote imaging, various wavebands
 - MR imaging, various imaging sequences
 - Colour (RGB channels, HSV etc)
 - Multispectral imaging of historical documents (visible+IR+UV)
- Scattergram of pixels in vector space:

- Can't separate using single measurement
- Can using multiple

COMP61342

MANCHESTER 1824

Slide 13 of 30

Multi-Spectral Segmentation: Example

Spectral Bands

Over-ripe Orange

Scratched Orange

Multispectral Image Segmentation by Energy Minimization for Fruit Quality Estimation: Multispectral image Segilleritation by Energy minimization of the Martínez-Usó, Pla, and García-Sevilla, Pattern Recognition and Image Analysis, 2005

COMP61342

Split and Merge

COMP61342

MANCHESTER

Slide 15 of 30

Split and Merge/Quadtree Segmentation

- Obvious approaches to segmentation:
 - Start from small regions and stitch them together
 - Start from large regions and split them
- -Combine
- Start with large regions, split non-uniform regions
 - e.g. variance σ^2 > threshold
- Merge similar adjacent regions
 - e.g. combined variance σ^2 < threshold
- e.g. combined variance of timesing
- Region adjacency graph
 - housekeeping for adjacency as regions become irregular
 - regions are nodes, adjacency relations arcs
 - simple update rules during splitting and merging

Split and Merge/Quadtree Segmentation

Original

Split

Merge

High Variance Regions

Split

Low Variance Regions

Merge

High Variance Regions

Split

COMP61342

MANCHESTER

Slide 17 of 30

Split & Merge: Example

Result

Original

Detail of Blocks

COMP61342, 10th March, Region-Based Vision

Relaxation Labelling

COMP61342

Relaxation Labelling:

Image histogram, object/background

MANCHESTER 1824

Slide 21 of 30

Relaxation Labelling

- Evidence for a label at a pixel:
 - Measurements at that pixel (e.g., pixel value)
 - Context for that pixel (i.e., what neighbours are doing)
- Iterative approach, labelling evolves
- Soft-assignment of labels:

Possible labels: $\{l_{\mu}: \mu = 1, \dots n\}$

 $\mathbf{P_i}(\mu)$: Probability that pixel i has label l_{μ} .

 $\sum_{\mu} \mathbf{P_i}(\mu) \equiv \mathbf{1}$. normalised probability.

- Soft-assignment allows you to consider all possibilities
- Let context act to find stable solution

Relaxation Labelling

Compatibility:

Pixels i and j, labels μ and ν :

no effect
$$c_{\mathbf{i},\mathbf{j}}(\mu,\nu)=0$$

If not neighbours

support (+ve)
$$c_{i,j}(\mu,\mu) = \alpha$$

Neighbours & same label

oppose (-ve) $\mathbf{c_{i,j}}(\mu,\nu) = -\alpha$ if $\mu \neq \nu$ Neighbours & different label

Contextual support for label μ at pixel i :

COMP61342

MANCHESTER

Slide 23 of 30

Relaxation Labelling:

Update soft labelling given context:

$$P_{i}(\mu) \Leftarrow A_{i}P_{i}(\mu)(1 + s_{i}(\mu))$$

 A_i chosen so sums to 1 at i.

- The more support, more likely the label
- **Iterate**

main idea!

Noisy Image

Threshold labelling

After iterating

COMP61342, 10th March, Region-Based Vision

Relaxation Labeling:

• Value of α alters final result

Initialisation

 $\alpha = 0.90$

COMP61342

The University of Manchester

Segmentation as Optimisation

Segmentation as Optimisation

Image: \mathcal{I} , value at pixel i: $\mathcal{I}(i)$

Label Image: L, label at pixel i: L(i)

Label configuration in neighbourhood of i: l(i)

Maximise probability of labelling given image:

$$P(L|\mathcal{I}) = \prod_{i} P(L(i)|\mathcal{I}(i)) P(L(i)|l(i))$$
i label at i given label at i given labels
value at i in neighbourhood of i

• Re-write by taking logs, minimise cost function:

$$C(L, \mathcal{I}) = \sum_{i} \left[-\log P(L(i)|\mathcal{I}(i)) - \log P(L(i)|l(i)) \right]$$
 label-data match label consistency

- How to find the appropriate form for the two terms?
- How to find the optimum?

COMP61342

MANCHESTER 1824

Slide 27 of 30

he University

Segmentation as Optimisation

P(L(i)|l(i)) • Exact form depends on type of data

label consistency ullet Histogram gives: $p(\mathcal{I}(i))$

 $P(L(i)|\mathcal{I}(i))$ • Model of histogram $P(L(i)|\mathcal{I}(i))$ label-data match (e.g., sum of gaussians, relaxation case)

Learning approach:

- Explicit training data (i.e., similar labelled images)
- Unsupervised, from image itself (e.g., histogram model):

Expectation/Maximization

- Given labels, construct model
- Given model, update labels
- Repeat

Segmentation as Optimisation

• General case:

Cost function: $C(L, \mathcal{I})$

- High-dimensional search space, local minima
- Analogy to statistical mechanics
 - crystalline solid finding minimum energy state
 - stochastic optimisation
 - simulated annealing
- Search:
 - Downhill
 - Allow slight uphill

MANCHESTER 1824

Slide 29 of 30

Segmentation as Optimisation

Original

Relaxation

Optimisation