REPORT DOCUMENTATION PAGE

Form Approved
OME No. 0704-0188

Public reserving burson for this tellection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching easting data sources, eathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burson estimate or any other aspect of this collection of information, including suggestions for reducing this burson to Washington Hasquisters Services, precipitate for information Operations and Reports, 1219 Jefferson Dears Hother, visit 2-764, Adjination, Visit 2-227-4302, and to the Orkice of Measurement and Audious Paperwork Reduction Process (2004 of 1281 Washington, Co. 2004).

Davis Highway, Suite 1204, Arlington, VA 22202-4302.		id Budget, Paperwork Redi	CHON FIG	min mather where there are notices, 12 is neversor ect (2704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE			O DATES COVERED
A. TITLE AND SUBTITLE	<u> </u>	Summary	1 Jur	ne 95 – 31 May 96
				S. FUNDING NUMBERS
Ultrasonic Characteriza		ind Other	•	PE 61153N
Unconventional Supercon	ductors			N0014-91-J-1211
& AUTHOR(S)				
Moises Levy				
3				
		r4		
7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)			B. PERFORMING ORGANIZATION REPORT NUMBER
Physics Department				,,,,
University of Wisconsin-Milwaukee				
Milwaukee, WI 53201				÷
S. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(E	5)		10. SPONSORING / MONITORING
Office of Naval Researc	:h			AGENCY REPORT NUMBER
ONR 331				
800 North Quincy Street				•
Arlington, VA 33317-566	0			AAAAFIA AAA
11. SUPPLEMENTARY NOTES			1	9960510 006
				3300010 VVV
			•	
124. OISTRIBUTION / AVAILABILITY STAT	71,71,7			
				126. DISTRIBUTION CODE
Approved for public rel	.ease;			
distribution unlimited				
13. ABSTRACT (Maximum 200 words) Ultrasonic techniques hav	ve been used to characte	erize the properti	es of h	nigh T _c superconductors. A model
is being developed to explain the	radiation losses from	a resonating fus	ed sili	ca sample. A new very sensitive
				acting state of an untwinned single
				tem to a rigid strongly interacting
				A percolation model developed in
our group to describe surface acc	oustic wave SAW atter	nuation in a gran	ular sı	uperconducting film was modified
to include the resistivity of the in	idividual grains in a m	atrix of Josephso	n jund	ctions. SAW measurements using
				ate the importance of pinning sites
in determining the nature of a v	ortex transition; the v	ortex system wi	ll und	ergo a depinning transition if the
				onic spectroscopy data obtained by
the UCLA group as a function of	gas pressure has been	analyzed. A pre	elimina	ary two dimensional model for the
				with gas pressure, the increase in
				tenuation for torsional modes than
for compressional modes. It a	ppears that a three di	mensional mode	l will	be necessary in order to obtain

IL SUBJECT TERMS

NSN 7540-01-280-5500

High $T_{\rm C}$ Superconductors, YBCO, ultrasonic techniques, surface acoustic waves SAW, vortex melting transition, vortex depinning

transition, resonant ultrasonic spectroscopy, radiation impedance

OF REPORT
UNCLASSIFIED

quantitative agreement.

OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED

20. LIMITATION OF ABSTRACT

DITC OT AT THE

Standard Form 298 (Rev. 2-89) Processed by ANH std. 239-18

15. NUMBER OF PAGES

16. PRICE CODE

Ultrasonic Characterization of High T_c and Other Unconventional Superconductors

Moisés Levy

ANNUAL SUMMARY REPORT

June 1, 1995 to June 30, 1996

A. Description of Project

The objectives of this research project are to characterize the properties of high T_c superconductors and other unconventional superconductors using ultrasonic techniques in order to provide insights into the mechanisms that are responsible for the unusual superconducting properties of high T_c superconductors.

B. Approaches Taken

A new very sensitive resonance technique was developed for investigating small platelet single crystal samples of high $T_{\rm c}$ superconductors.

Bulk acoustic wave attenuation and velocity measurements as a function of temperature and magnetic field were performed on melt textured samples of Y₁Ba₂Cu₃O₇.

Surface acoustic waves were used to investigate single crystals and thin films of Y₁Ba₂Cu₃O₇.

The resonant ultrasonic spectrometer technique was used to determine the elastic constants of small samples of single crystal Si.

The radiation impedance of RUS modes was analyzed.

C. Accomplishments

A new technique was developed for studying vortex motion in the superconducting state of an untwinned single crystal of $Y_1Ba_2Cu_3O_7$ whose dimensions are 1 mm by 1 mm by 50 μ m. The crystal is brought into close proximity of a 5 MHz x-cut quartz transducer. It is pressed by two 25 μ m strands of varnish to the transducer, which is held by copper wires. This

ensemble has a resonant frequency of 3 MHz. The quality factor Q of the system is the measured as a function of temperature and magnetic field in the vicinity of the superconducting transition temperature. Quality factors as high as 10⁴ may be achieved in this system; and, the change in O produced by a change in attenuation in the superconducting sample is proportional to O. This is how the sensitivity of the measurements is enhanced. A sensitivity of 1 x 10⁴ dB/cm can be achieved for the system which translates to a sensitivity of 5 x 10⁻³ dB/cm for the superconducting sample. The measurements were done with the magnetic field parallel to the ab plane of the crystal. The motion of the transducer was parallel to the c-axis. This resulted in a Lorentz force parallel to the ab plane so that the vortex motion was also along the ab plane. As a function of magnetic field at a constant temperature below T_c, the attenuation was proportional to the magnetic field below 0.2 T, which indicates that the interaction is proportional to the vortex density and therefore the interaction is, essentially, with individual, weakly interacting vortices, or a soft vortex system. At fields above 0.28 T the attenuation is proportional to approximately the cube of the applied field. This is probably due to the fact that with increasing vortex density the interaction between vortices becomes stronger leading to a quadratic increase in the viscosity of the system. Thus, at around 0.2 to 0.28 T there is a transition from a soft vortex system to a rigid, strongly interacting vortex system. Preliminary measurements very close to T_c, appear to indicate that slightly below the upper critical field the vortex lattice undergoes another transition from the rigid vortex system to the soft vortex system, as predicted by a recent theoretical model in a paper we submitted to Philosophical Magazine Letters.

Surface acoustic wave SAW measurements were made on a granular thin film of YBCO.

The film is modeled as a two-dimensional network of Josephson junctions. A percolation model developed in our group to describe the SAW attenuation was modified to take into account the

resistivity of the grains in the normal state, and a reasonable fit to the data was obtained.

SAW measurements, using the pontoon technique described in a previous report were continued on an untwinned single crystal platelet of YBCO, and preliminary evidence for a peak in attenuation associated with a melting transition in this crystal with a low density of pinning sites is verified. Pontoon SAW measurements on a thin film of YBCO grown epitaxially on a LiNbO₃ subtrate were also continued. Since the film had a large density of vortex pinning sites, the behavior of the observed peak in attenuation for different applied constant magnetic fields, as a function of temperature, was consistent with a depinning transition, since the magnitudes of the peak depended on the square of the applied magnetic field. This dependence is expected from thermally activated flux flow models, where the attenuation can be shown to be proportional to the shear modulus of the vortex system which is proportional to the square of the flux density. The field dependence of the magnitude of the peaks observed in the untwinned single crystal was larger than quadratic which may imply that there is increased defect motion in the vortex system which could be associated with a melting transition. Thus, these two sets of measurements demonstrate the role played by pinning sites in determining whether a vortex system will undergo a depinning transition, a melting transition, or both, depending on the density of pinning sites.

The data on resonant ultrasonic spectroscopy RUS that the UCLA group have obtained on fused silica as a function of pressure for different gas compositions has been analyzed. For both compressional and torsional modes, the inverse of the Q's appear to be linearly dependent on the applied pressure. If it is assumed that this effect is being produced by the radiation of sound into the surrounding gas, then one can deduce that the radiation resistance is linearly dependent on the pressure; and, furthermore, the data also show that the radiation resistance increases monotonically as the molecular mass M of the surrounding gas is increased. These

effects appear to be larger for the compressional modes than for the torsional modes. The velocity of the individual vibrating rectangular surfaces of the sample have been approximated by the product of two orthogonal sine functions for the torsional modes and two orthogonal cosine functions for the compressional modes. The radiation impedance of these surfaces has been calculated numerically. It is found that this model yields that the radiation resistance increases linearly with pressure, and increases with the molecular mass of the gas. However, the experimental data show a change that increases linearly with M for the torsional modes and as M^{3/4} for the compressional modes, while the model gives an increase as M^{1/2}; and, although, the model does predict a larger value for the compressional modes it is not as large as is found experimentally. It appears that it may be necessary to solve the problem three dimensionally instead of modeling the rectangular parallelopiped sample as six independent vibrating surfaces which do not interact with each other. It was assumed that this was a valid model since the wavelengths in the gases are much larger than the individual dimensions of the sample, and the directivity would be mostly perpendicular to the vibrating surfaces.

OFFICE OF NAVAL RESEARCH PUBLICATIONS/PATENTS/PRESENTATIONS/HONORS REPORT

of June 95 through 31 May 96

Contract/Grant Number	er: N00014-91-J-121	11		
Principal Investigator:	Moises Levy			
Mailing Address with 2	ZIP+4 if applicable:	Physics Department University of Wisconsin-Mi Milwaukee, WI 53201	.1waukee	
Phone Number: Facsimile Number: E-mail Address:	(414) 229-4168 (414) 229-5589 levy@csd.uwm.edu			
a. Number of papers subm	nitted to refereed journals	but not yet published:	_	5
b. Number of papers published in refereed journals (ATTACH LIST):				
c. Number of books or chapters submitted but not yet published:				
d. Number of books or chapters published (ATTACH LIST):				
e. Number of printed techn	ical reports & non-referee	ed papers (ATTACH LIST):	_	3
f. Number of patents filed:			_	0
g. Number of patents grant	ed (ATTACH LIST):		_	0
h. Number of invited prese	ntations at workshops or	professional society meetings:	_	1
i. Number of contributed p	resentations at workshop:	s or professional society meetings:	_	7.
j. Honors/awards/prizes for and faculty awards/offices		s, such as scientific society		0
k. Number of graduate students supported at least 25% this year this contract/grant:				
I. Number of post docs supported at least 25% this year this contract/grant:				
Minorities include Blacks,	Aleuts, Amindians, etc.,	ese six numbers are for ONR's EEO/ and those of Hispanic or Asian extr eting reporting semantics re "und	action/natio	onality
Graduate student	FEMALE: 1	Post doc FEMALE:	0	
Graduate student N	MINORITY: 0	Post doc MINORITY:	0	
Graduate student	ASIAN E/N: 1	Post doc ASIAN E/N:	0	

OFFICE OF NAVAL RESEARCH PUBLICATIONS/PATENTS/PRESENTATIONS/HONORS REPORT 1 June 1995 through 31 May 1996

Ultrasonic Characterization of High T_c and Other Unconventional Superconductors Moisés Levy

- a. Number of Papers Submitted to Referred Journals but not yet published: 5
 - 1. "Ultrasonic Attenuation and Sound Velocity Changes in a Superconducting La_{2x}Sr_xCuO₄ Single Crystal," Hong Zhang, Mark J. McKenna, Carsten Hucho, Bimal K. Sarma, Moises Levy, T. Kimura, K. Kishio and K. Kitazawa, Physica B (to be published).
 - 2. "On the Peak Effect and Vortex Lattice Melting in YBCO," Carsten Hucho and Moises Levy, Philosophical Magazine Letters (to be published).
 - 3. "Ultrasonic Studies on UPt₃ in High Magnetic Fields," S. W. Lin, I. Kouroudis, A.G. M. Jansen, P. Wyder, B. Luthi, D. G. Hinks, J. B. Ketterson, M. Levy and Bimal K. Sarma, SCES-95, Conference, Goa, India, Sept. 27-30, 1995, Physica B (to be published).
 - 4. "Ultrasonic Studies of Superconducting and Magnetic Transitions in La_{2-x}Sr_xCuO₄ Single Crystal," Hong Zhang, Mark J. McKenna, Carsten Hucho, Bimal K. Sarma, Moises Levy, T. Kimura, K. Kishio and K. Kitazawa, SCES-95 Conference, Goa, India, Sept. 27-30, 1995, Physica B (to be published).
 - "Transitions in the Vortex Lattice in YBa₂Cu₃O_{7-δ} Single Crystal," C. Hucho and M. Levy, (submitted to Phys. Rev. Letters).
- b. Number of Papers Published in Referred Journals: 1
 - 1. "Ultrasonic Velocity and Attenuation Measurements at the Metamagnetic Transition in Upt₃," S. W. Lin, I. Kouroudis, A. G. M. Jansen, P. Wyder, B. Luthi, D. G. Hinks, J. B. Ketterson, M. Levy, and Bimal K. Sarma, Journal of Low Temperature Physics 101, 635-640 (1995).
- c. Number of Books or Chapters Submitted But Not Yet Published: 1
 - "High Field Ultrasonic Measurements on UPt₃," S. W. Lin, I. Kouroudis, A. G. M. Jansen, P. Wyder, B. Luthi, D. G. Hinks, J. B. Ketterson, M. Levy and Bimal K. Sarma (to be published in <u>Physical Phenomena at High Magnetic Fields II</u>, World Publishing Co., Singapore).

- d. Number of Books or Chapters Published: 1
 - 1. <u>IEEE 1995 Ultrasonics Symposium Proceedings</u>, 1636 pages, (95CH35844, IEEE, Piscataway, N. J., 1995).
- e. Number of Printed Technical Reports and Non-referred papers: 3
 - "Design Dependent Transition Behavior for Superconducting Transducers and Reflectors." H. Fredricksen, D. Ritums, N. J. Wu, X. Y. Li, J. Willis, A. Ignatiev, B. K. Sarma and M. Levy, 1995 IEEE Ultrasonics Symposium Proceedings, pages 555-558, (95 CH35844, M. Levy, S. C. Schneider and B. R. McAvoy, editors, IEEE, Piscataway, N. J. 1995).
 - "Surface Acoustic Wave Investigation of Mixed State Phases in Y₁Ba₂Cu₃O₇," C. Hucho, J. Feller, R. Gaffney, M. McKenna, B. Sarma and M. Levy, 1995 IEEE Ultrasonics Symposium Proceedings, pages 559-561, (95 CH35844, M. Levy, S. C. Schneider and B. R. McAvoy, editors, IEEE, Piscataway, N. J. 1995).
 - 3. "Ultrasonic Studies of Superconducting and Magnetic Transitions in a La_{2-x}Sr_xCuO₄ Single Crystal," H. Zhang, M. J. McKenna, C. Hucho, B. K. Sarma, M. Levy, T. Kimura, K. Kishio and K. Kitazawa, 1995 IEEE Ultrasonics Symposium Proceedings, pages 563-566, (95 CH35844, M. Levy, S. C. Schneider and B. R. McAvoy, editors, IEEE, Piscataway, N. J. 1995).
- f. Number of Patents Filed: 0
- g. Number of Patents Granted: 0
- h. Number of Invited Presentations at Workshops or Professional Society Meetings: 1
 - "Ultrasonic Measurements in High T_c Superconductors," M. Levy, Phonon 95, Fourth International Conference on Phonon Physics and Eighth International Conference on Phonon Scattering in Condensed Matter, Sapporo, Japan, 23-28 July (1995). INVITED.
- i. Number of Presentations at Workshops or Professional Society Meetings: 7
 - 1. "Design Dependent Transition Behavior for Superconducting Transducers and Reflectors." H. Fredricksen, D. Ritums, N. J. Wu, X. Y. Li, J. Willis, A. Ignatiev, B. K. Sarma and M. Levy, 1995 IEEE Ultrasonics Symposium, Seattle, Washington, November 7-10, 1995.
 - 2. "Surface Acoustic Wave Investigation of Mixed State Phases in Y₁Ba₂Cu₃O₇," C. Hucho, J. Feller, R. Gaffney, M. McKenna, B. Sarma and M. Levy, 1995 IEEE Ultrasonics Symposium, Seattle, Washington, November 7-10, 1995.

- "Ultrasonic Studies of Superconducting and Magnetic Transition in a La_{2-x}Sr_xCuO₄ Single Crystal," H. Zhang, M. J. McKenna, C. Hucho, B. K. Sarma, M. Levy, T. Kimura, K. Krishio and K. Kitazawa, 1995 IEEE Ultrasonics Symposium, Seattle, Washington, November 7-10, 1995.
- 4. "Preliminary Studies of Resonant Ultrasound Spectroscopy of Silicon and YBa₂Cu₃O₇ Single Crystals," Hong Zhang, Mark J. McKenna, Bimal K. Sarma and Moises Levy, Second Annual Meeting of the Consortium on Resonant Ultrasound Spectroscopy, held August 24 and 25, 1995 in Santa Fe, NM.
- 5. "Ultrasonic Studies on UPt₃ in High Magnetic Fields," S. W. Lin, I. Kouroudis, A.G. M. Jansen, P. Wyder, B. Luthi, D. G. Hinks, J. B. Ketterson, M. Levy and Bimal K. Sarma, SCES-95 Conference, Goa, India, Sept. 27-30, 1995.
- 6. "Ultrasonic Studies of Superconducting and Magnetic Transitions in La_{2-x}Sr_xCuO₄ Single Crystal," Hong Zhang, Mark J. McKenna, Carsten Hucho, Bimal K. Sarma, Moises Levy, T. Kimura, K. Kishio and K. Kitazawa, SCES-95 Conference, Goa, India, Sept. 27-30, 1995.
- 7. "Surface Acoustic Wave Investigation of Mixed State Phase in Y₂Ba₃Cu₃O₇," C. Hucho, J. Feller, R. Gaffney, M. McKenna, B. Sarma and M. Levy, 1995 World Congress on Ultrasonics, Berlin, Germany, Sept. 3-7, 1995.
- 8. "Radiation Impedance of RUS modes in Fused Silica and KCl, J. Herro, H. Zhang, C. Hucho, D. Beck, M. Levy, D. Isaak, J. D. Carnes, and O. Anderson, 131st Meeting of ASA, 13-17 May, 1996, Indianapolis, IN.
- j. Honors/Awards/Prizes for Grant employee: 0
- k. Total Number of Graduate Students and Post Docs Supported at Least 25% This Year on This Grant:

Graduate Students: 4

Post Docs: 1

Jeffrey Feller Ron Gaffney Joseph Herro Hong Zhang Mark J. McKenna