

— Sets on graphs — (Professor version)

Silvio Jamil F. Guimarães

— Independent sets — (Professor version)

Silvio Jamil F. Guimarães

Let G = (V, E) be an undirected connected graph.

- ► A subset $S \subseteq V$ is an independent set if $\forall u, v \in S$ there is no exist an edge $(u, v) \in E$.
- ► Independent sets have also been called internally stable sets.

Let G = (V, E) be an undirected connected graph, and S an independent set of G

- ▶ We say that the subset $S \subseteq V$ is a maximal independent set if there is no other independent set A in which $S \subset A$;
- ► The number of internal stability $\beta(G)$ is equal to the cardinality of the largest maximal independent set.

As S is an independent set of G, then S is a clique in the complement graph.

Let G = (V, E) be an undirected connected graph, and S an independent set of G

- ▶ We say that the subset $S \subseteq V$ is a maximal independent set if there is no other independent set A in which $S \subseteq A$;
- ► The number of internal stability $\beta(G)$ is equal to the cardinality of the largest maximal independent set.

As S is an independent set of G, then S is a clique in the complement graph.

Let G = (V, E) be an undirected connected graph. Design a method for computing an independent set of G

Algorithm: A method for computing an independent set

```
input : A graph G = (V, E).
  output: A independent set S
1 S = \emptyset:
2 while V \neq \emptyset do
u = \text{vertex with the smallest degree in G};
4 | V = V - \{u\} - \Gamma(u);
5 S = S \cup \{u\};
6 end
7 return S;
```

Questions?

Sets on graphs

Independent sets –

— Dominating sets — (Professor version)

Silvio Jamil F. Guimarães

Dominating sets

Let G = (V, E) be an undirected connected graph.

- ▶ A subset $S \subseteq V$ is an dominating set if $\forall u \in S$ there exist a $v \in V S$ such that $(u, v) \in E$.
- ► Dominating sets have also been called externally stable sets.

Let G = (V, E) be an undirected connected graph, and S a dominating set of G

- ▶ We say that the subset $S \subseteq V$ is a minimal dominating set if there is no other dominating set A in which $A \subset S$;
- ► The number of external stability $\beta(G)$ is equal to the cardinality of the smallest minimal dominating set.

Let G = (V, E) be an undirected connected graph. Design a method for computing a dominance set of G

```
Algorithm: A method for computing a dominating set input: A graph G = (V, E). output: A dominating set D

1 D = \emptyset;

2 while V \neq \emptyset do

3 | u = \text{vertex with the highest degree in } G;

4 | V = V - \{u\} - \Gamma(u);

5 | D = D \cup \{u\};

6 end

7 return D;
```

Questions?

Sets on graphs

Dominating sets –

— Vertex cover —

(Professor version)

Silvio Jamil F. Guimarães

Vertex cover

Let G = (V, E) be an undirected connected graph.

▶ A subset $S \subseteq V$ is an vertex cover if $\forall (u, v) \in E$, either $u \in S$ or $v \in S$.

Vertex cover

Let G = (V, E) be an undirected connected graph, and S a vertex cover of G

As S is a vertex cover of G, then V-S is an independent set.

Vertex cover

Let G = (V, E) be an undirected connected graph. Design a method for computing a vertex cover in G

```
Algorithm: A method for computing a minimum vertex cover input: A graph G = (V, E). output: A independent set S A vertex cover S

1 S = \emptyset;
2 while E \neq \emptyset do
3 | Let (u, v) an arbitrary edge of E;
4 | Choose either u or v to be included to C; S
5 | S = S \cup \{u\} for instance; V = V - u; V = V
```

Questions?

Sets on graphs

Vertex cover -