Chapter 10

10.1 a.
$$\frac{\sigma_1}{\sigma_3}$$
 = $\frac{\sigma_y + \sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_y - \sigma_x}{2}\right)^2 + \tau_{xy}^2}$
 $\sigma_x = 162 \text{ kN/m}^2$; $\sigma_y = 128 \text{ kN/m}^2$; $\tau_{xy} = +32 \text{ kN/m}^2$

$$\frac{\sigma_1}{\sigma_3} = \frac{128 + 162}{2} \pm \sqrt{\left(\frac{128 - 162}{2}\right)^2 + (32)^2}$$

 $\sigma_1 = 181.23 \text{ kN/m}^2$; $\sigma_3 = 108.76 \text{ kN/m}^2$

b.
$$\sigma_n = \frac{\sigma_y + \sigma_x}{2} + \frac{\sigma_y - \sigma_x}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
; $\theta = 35^\circ$

$$\sigma_n = \frac{128 + 162}{2} + \frac{128 - 162}{2} \cos[(2)(35)] + 32 \sin[(2)(35)] = \mathbf{169.25 \, kN/m^2}$$

$$\tau_n = \frac{\sigma_y - \sigma_x}{2} \sin 2\theta - \tau_{xy} \cos 2\theta$$

$$= \frac{128 - 162}{2} \sin[(2)(35)] - 32\cos[(2)(35)] = -26.92 \text{ kN/m}^2$$

10.2 a.
$$\sigma_x = 72 \text{ kN/m}^2$$
; $\sigma_y = 121 \text{ kN/m}^2$; $\tau_{xy} = 39 \text{ kN/m}^2$; $\theta = 147^{\circ}$

$$\frac{\sigma_1}{\sigma_3} = \frac{121 + 72}{2} \pm \sqrt{\left(\frac{121 - 72}{2}\right)^2 + (39)^2}$$

$$\sigma_1$$
= 142.55 kN/m²; σ_3 = 50.45 kN/m²

b.
$$\sigma_n = \frac{121 + 72}{2} + \frac{121 - 72}{2} \cos[(2)(147)] + 39 \sin[(2)(147)] = 131.33 \text{ kN/m}^2$$

$$\tau_n = \frac{121 - 72}{2} \sin[(2)(147)] - (39)\cos[(2)(147)] = -38.24 \,\text{kN/m}^2$$

10.3 a. The Mohr's circle is shown below.

$$\overline{OO_1} = \frac{550 + 350}{2} = 450 \text{ lb/ft}^2; O_1O_2 = 550 - 450 = 100 \text{ lb/ft}^2$$

$$\overline{O_1B} = \sqrt{\left(\frac{350 - 550}{2}\right)^2 + (-175)^2} = 201.5 \text{ lb/ft}^2$$

$$\sigma_3 = \overline{OS} = 450 - 201.5 = 248.4 \text{ lb/ft}^2 (+)$$

$$\sigma_1 = \overline{ON} = 450 + 201.5 = 651.5 \text{ lb/ft}^2 (+)$$

$$\angle BO_1O_2 = \tan^{-1}\left(\frac{175}{100}\right) = 60.25^{\circ}$$

b.
$$\sigma_n = \overline{OO_1} - \overline{O_1D}\cos(29.75) = 450 - 201.5\cos(29.75) = 275.1 \text{ lb/ft}^2 (+)$$

$$\tau_n = \overline{O_1D}\sin(29.75) = 99.98 \text{ lb/ft}^2 (+)$$

10.4 a. The Mohr's circle is shown below.

$$\overline{OO_1} = \frac{200 + 50}{2} = 125 \text{ lb/ft}^2; O_1O_2 = 200 - 125 = 75 \text{ lb/ft}^2$$

$$\overline{O_1B} = \sqrt{(75)^2 + (62)^2} = 97.3 \,\text{lb/ft}^2$$

$$\sigma_1 = \overline{ON} = 125 + 97.3 = 222.3 \text{ lb/ft}^2$$

$$\sigma_3 = \overline{OS} = 125 - 97.3 = 27.7 \text{ lb/ft}^2$$

$$\angle BO_1O_2 = \tan^{-1}\left(\frac{62}{75}\right) = 39.57^{\circ}$$

b.
$$\sigma_n = \overline{OO_1} + \overline{O_1D}\cos(20.43) = 125 + 97.3\cos(20.43) = 216 \text{ lb/ft}^2$$

$$\tau_n = 97.13\sin(20.43) = 33.9 \text{ lb/ft}^2$$

10.5 a. The Mohr's circle is shown below.

$$\sigma_1 = \overline{ON} = 99 \text{ kN/m}^2; \quad \sigma_3 = \overline{OS} = 33 \text{ kN/m}^2$$

b. σ_n and τ_n are coordinates of D. So

$$\sigma_n \approx 96 \text{ kN/m}^2; \quad \tau_n \approx 15.8 \text{ kN/m}^2 (-)$$

10.6 a. The Mohr's circle is shown below.

$$\sigma_1 = \overline{ON} = 136.5 \text{ lb/ft}^2$$
; $\sigma_3 = \overline{OS} = 47.3 \text{ lb/ft}^2$

b. σ_n and τ_n are coordinates of D. So

$$\sigma_n \approx 48 \text{ lb/ft}^2$$
; $\tau_n \approx 10 \text{ lb/ft}^2$

						, P,
Load	P	r	<i>z</i> .	<u>r</u>	I_1	$\Delta \sigma_z = \frac{P}{z^2} I_1$
@	(kN)	(m)	(m)	z	(Table 10.1)	(kN/m^2)
В	100	6	6	1.0	0.0844	0.234
C	200	$(6^2 + 6^2)^{0.5} = 8.48$	6	1.41	0.0311	0.173
D	400	$(6^2 + 3^2) = 6.708$	6	1.118	0.0648	0.72

 $\Delta \sigma_z = \sum 1.127 \text{ kN/m}^2$

10.8 Eq. (10.15):

$$\Delta\sigma_z = \frac{2q_1z^3}{\pi[(x_1 + x_2)^2 + z^2]^2} + \frac{2q_2z^3}{\pi[x_2^2 + z^2]^2} = \frac{(2)(90)(3)^3}{\pi[(6.5)^2 + (3)^2]^2} + \frac{(2)(325)(3)^3}{\pi[2.5^2 + 3^2]^2}$$
$$= 24.6 \text{ kN/m}^2$$

10.9 Eq. (10.15): In this case, $x_2 = 0$

$$\Delta\sigma_z = \frac{2q_1z^3}{\pi[(x_1 + x_2)^2 + z^2]^2} + \frac{2q_2z^3}{\pi[x_2^2 + z^2]^2}$$
$$= \frac{(2)(90)(3)^3}{\pi[(4+0)^2 + (3)^2]^2} + \frac{(2)(325)(3)^3}{\pi[0^2 + 3^2]^2} = \mathbf{71.44 \, kN/m^2}$$

10.10
$$\Delta \sigma_z = \frac{2q_1 z^3}{\pi [(x_1 + x_2)^2 + z^2]^2} + \frac{2q_2 z^3}{\pi [x_2^2 + z^2]^2}$$

$$48 = \frac{(2)(q_1)(6)^3}{\pi [19^2 + 6^2]^2} + \frac{2(930)(6)^3}{\pi [5^2 + 6^2]^2} = 34.36 + 0.00087q_1$$

 $q_1 = 15,678 \text{ lb/ft}$

10.11
$$\Delta \sigma_z$$
 at A due to $q_1 = \frac{2q_1z^3}{\pi[x^2 + z^2]^2}$, or $(\Delta \sigma_z)_1 = \frac{(2)(292)(3)^3}{\pi[(3)^2 + (3)^2]^2} = 15.49 \text{ kN/m}^2$

Vertical component of $q_2 = q_2 \sin 45^\circ$

$$(\Delta \sigma_z)_2 = \frac{2q_2(\sin 45)(3)^3}{\pi[(7.5)^2 + (3)^2]^2}; \ (\Delta \sigma_z)_2 = 0.00285q_2$$

Horizontal component of $q_2 = q_2 \cos 45^{\circ}$

From Eq. (10.17):
$$(\Delta \sigma_z)_3 = \frac{2q_2xz^2}{\pi(x^2+z^2)^2} = \frac{2q_2(\cos 45)(7.5)(3)^2}{\pi[7.5^2+3^2]^2} = 0.007136q_2$$

Total vertical stress,

$$\Delta \sigma_z = 42 \text{ kN/m}^2 = (\Delta \sigma_z)_1 + (\Delta \sigma_z)_2 + (\Delta \sigma_z)_3$$

$$42 = 15.49 + 0.00285q_2 + 0.007136q_2$$

$$q_2 = 2656.3 \, \text{kN/m}$$

10.12
$$B = 36 \text{ ft}$$
; $q = 900 \text{ lb/ft}^2$; $x = 21 \text{ ft}$; $z = 15 \text{ ft}$

$$\frac{2x}{B} = \frac{(2)(27)}{36} = 1.5; \ \frac{2z}{B} = \frac{(2)(15)}{36} = 0.833.$$
 From Table 10.4, $\frac{\Delta \sigma_z}{q} = 0.18$

$$\Delta \sigma_z = (0.18)(900) =$$
162 lb/ft²

10.13
$$\frac{2x}{B} = \frac{(2)(0)}{6} = 0; \frac{2z}{B} = \frac{(2)(5)}{6} = 1.67.$$
 From Table 10.4, $\frac{\Delta \sigma_z}{q} = 0.61$

$$\Delta \sigma_z = (120)(0.61) = 73.2 \text{ kN/m}^2$$

10.14 Refer to the figure.

For the left side (with the notations given in Figure 10.19):

$$\frac{B_1}{z} = \frac{0}{22.5} = 0$$
; $\frac{B_2}{z} = \frac{52.5}{22.5} = 2.33$. From Figure 10.20, $I_{2(L)} = 0.375$

For the right side:

$$\frac{B_1}{z} = \frac{34}{22.5} = 1.51; \ \frac{B_2}{z} = \frac{52.5}{22.5} = 2.33.$$
 From Figure 10.20, $I_{2(R)} = 0.48$

$$\Delta \sigma_z = q[I_{2(L)} + I_{2(R)}] = (3360)(0.375 + 0.48) =$$
2872.8 lb/ft²

10.15 At A:

$$\Delta \sigma_z = (15)(19)(0.46 + 0.46) = 262.2 \text{ kN/m}^2$$

At *B*:

For the left side: right side:

$$\frac{B_1}{z} = \frac{0}{8} = 0 \qquad \frac{B_1}{z} = \frac{7}{8} = 0.875$$

$$\frac{B_2}{z} = \frac{30}{8} = 3.75$$
 $\frac{B_2}{z} = \frac{30}{8} = 3.75$

$$I_2 = 0.41$$
 $I_2 = 0.48$

$$\Delta \sigma_z = (15)(19)(0.41 + 0.48) = 253.65 \text{ kN/m}^2$$

At *C*:

For the left side: For the right side:

$$\frac{B_1}{z} = 0 \qquad \qquad \frac{B_1}{z} = \frac{37}{8} = 4.625$$

$$\frac{B_2}{z} = \frac{30}{8} = 3.75 \quad \frac{B_2}{z} = \frac{30}{8} = 3.75$$

$$I_2 = 0.41$$
 $I_2 = 0.5$

$$\Delta \sigma_z = (15)(19)(0.5 - 0.41) = 25.65 \text{ kN/m}^2$$

10.16 Eq. (10.26) and Table 10.6: $q = 2200 \text{ lb/ft}^2$

R (ft)	z (ft)	$\frac{z}{R}$	$\frac{arDelta\sigma_z}{q}$	$\Delta\sigma_z$ (lb/ft ²)
12	0	0	1	2200
12	4	0.333	0.9634	2119.5
12	8	0.666	0.8251	1815.2
12	16	1.333	0.4983	1096.2
12	32	2.667	0.1809	397.9

10.17 Eq. (10.27) and Tables 10.7 and 10.8: $q = 380 \text{ kN/m}^2$

z (m)	<i>r</i> (m)	<i>R</i> (m)	$\frac{z}{R}$	$\frac{r}{R}$	A'	<i>B'</i>	$\Delta\sigma_z (\mathrm{kN/m}^2)$
3	0	5	0.6	0	0.48550	0.37831	328.24
3	1	5	0.6	0.2	0.47691	0.37531	323.84
3	3	5	0.6	0.6	0.40427	0.32822	278.34
3	5	5	0.6	1	0.25588	0.14440	152.1
3	7	5	0.6	1.4	0.12657	0.00085	48.42

10.18 Refer to the Newmark's chart.

The plan is drawn to scale.

$$\overline{AB} = 6 \text{ m. } M \approx 65.$$

$$\Delta \sigma_z = (IV) \, q \, M$$

=(0.005)(450)(65)

 $= 146.25 \text{ kN/m}^2$

10.19 Point *A*:

Eqs. (10.32) and (10.33):
$$n = \frac{L}{z} = \frac{6}{3} = 2; \ m = \frac{B}{z} = \frac{3}{3} = 1$$

Eq. (10.30):
$$\Delta \sigma_z = q I_3$$
; Table 10.9: $I_3 = 0.1999$

$$\Delta \sigma_z = (225)(0.1999) = 44.97 \text{ kN/m}^2 \approx 45 \text{ kN/m}^2$$

Point *B*:

Refer to the figure on the next page.

For rectangle 1:
$$m = \frac{3.6}{3} = 1.2$$
; $n = \frac{1.8}{3} = 0.6$; $I_3 = 0.1431$

For rectangle 2:
$$m = \frac{3.6}{3} = 1.2$$
; $n = \frac{1.2}{3} = 0.4$; $I_3 = 0.1063$

For rectangle 3:
$$m = \frac{2.4}{3} = 0.8$$
; $n = \frac{1.8}{3} = 0.6$; $I_3 = 0.1247$

For rectangle 4:
$$m = \frac{2.4}{3} = 0.8$$
; $n = \frac{1.2}{3} = 0.4$; $I_3 = 0.0931$

$$\Delta \sigma_z = q[I_{3(1)} + I_{3(2)} + I_{3(3)} + I_{3(4)}] = (225)(0.1431 + 0.1063 + 0.1247 + 0.0931)$$
$$= 105.12 \text{ kN/m}^2$$

Point *C*:

Refer to the figure.

$$\Delta \sigma_z = \begin{pmatrix} \text{stress at } C \text{ due to} \\ \text{area } 7.8 \,\text{m} \times 3 \,\text{m} \end{pmatrix} - \begin{pmatrix} \text{stress at } C \text{ due to} \\ \text{area } 1.8 \,\text{m} \times 3 \,\text{m} \end{pmatrix}$$

For rectangular area 7.8 m × 3 m:
$$m = \frac{7.8}{3} = 2.6$$
; $n = \frac{3}{3} = 1$; $I_3 = 0.2026$

For rectangular area 1.8 m × 3 m:
$$m = \frac{1.8}{3} = 0.6$$
; $n = \frac{3}{3} = 1$; $I_3 = 0.1361$

$$\Delta \sigma_z = q(0.2026 - 0.1361) = (225)(0.2026 - 0.1361) =$$
14.96 kN/m²

10.20 Eqs. (10.35), (10.37), (10.38), and (10.39):

$$b = \frac{B}{2} = \frac{3}{2} = 1.5 \text{ m}$$

$$m_1 = \frac{L}{B} = \frac{6}{3} = 2$$

			z (m)		
	2	4	6	8	10
$n_1 = \frac{z}{b}$	1.33	2.66	4	5.33	6.66
<i>I</i> ₄ (Table 10.10)	0.682	0.356	0.190	0.119	0.079
$\Delta \sigma_z = qI_4$ (kN/m ²)	153.4	80.1	42.7	26.8	17.8

CRITICAL THINKING PROBLEM

10.C.1

1. Vertical stress increase due to wheel load:

$$y = 0.305 \text{ m}$$
; $R = 0.15 \text{ m}$; $q = 565 \text{ kN/m}^2$

Element	<i>r</i> (m)	$\frac{y}{R}$	$\frac{r}{R}$	A'	<i>B'</i>	$\Delta \sigma_y (kN/m^2)$
\overline{A}	0.457	2.03	3.05	0.02221	0.00028	12.7
\boldsymbol{B}	0.267	2.03	1.78	0.05278	0.04391	54.63
C	0	2.03	0	0.10557	0.17889	160.71

Overburden pressure at the middle of the layer = $0.305 \times 19.4 = 5.92 \text{ kN/m}^2$

Total vertical pressure, $\Delta \sigma_{v}$:

At A: $\sigma_{y-A} = 12.7 + 5.92 = 18.62 \text{ kN/m}^2$

At B: $\sigma_{y-B} = 54.63 + 5.92 = 60.55 \text{ kN/m}^2$

At C: $\sigma_{y-C} = 160.71 + 5.92 = 166.63 \text{ kN/m}^2$

These values are entered into the following table.

Element	Horizontal	Shear	Vertical			
at	stress, σ_x	stress, τ	stress, σ_y	σ_1	σ_3	α_i
	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(deg)
A	25	17	18.62	39	4.5	55
В	32	45	60.55	93	1	48
\overline{C}	7	0	166.63	167	7	0

2. Element at *A*:

The Mohr's circle is shown. $\sigma_1 \approx 39 \text{ kN/m}^2$; $\sigma_3 \approx 4.5 \text{ kN/m}^2$

These values are entered in the above table. The pole is located at point P. The maximum principal stress acts on a plane which is inclined at 35° with the horizontal. Therefore, $\alpha_A = 90 - 35 = 55^{\circ}$.

Element at *B*:

The Mohr's circle is shown. $\sigma_1 \approx 93 \text{ kN/m}^2$; $\sigma_3 \approx 1 \text{ kN/m}^2$

These values are entered in the table on the previous page. The pole is located at point P. The maximum principal stress acts on a plane which is inclined at 42° with the horizontal. Therefore, $\alpha_B = 90 - 42 = 48^{\circ}$.

Element at *C*:

Since there is no shear stress, the horizontal and vertical stresses are principal stresses. Therefore, $\sigma_1 \approx 167 \text{ kN/m}^2$; $\sigma_3 \approx 7 \text{ kN/m}^2$; $\alpha_C = 0^\circ$. These values are entered in the table on the previous page.

3. The plot is shown in the figure.

