INGENIERÍA EN BIOTECNOLOGÍA 2022I GBI6 – BIOINFORMÁTICA EXAMEN DE RECUPERACIÓN

APELLIDOS, Nombres: _			

Vaya a alguno de los siguientes enlaces

• https://www.genenames.org/data/genegroup/#!/group/1054,

- http://ribosome.med.miyazaki-u.ac.jp/rpg.cgi?mode=orglist&org=Homo%20sapiens&type=m,
- https://www.arb-silva.de/browser/ssu-138.1/AADB02002318

En ellas se tiene información sobre las proteínas o RNA ribosomales¹:

• S Ribosomal proteins:

Firma: ___

- L Ribosomal proteins:
- S Ribosomal proteins Mitochondrial:
- L Ribosomal proteins Mitochondrial:
- RNA ribosomal:

uS2 Decoding uS5 centre uS12 uS8 uS17 (a) uL5 CP uL18 bL27 L7/L12 stalk L1 stalk bL28 ul 3 uL22 ul 29 bL17 Body uL23 uL24

¹ Razi, Aida and Ortega, Joaquin (September 2017) Ribosomal Proteins: Their Role in the Assembly, Structure and Function of the Ribosome. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000535.pub2

INGENIERÍA EN BIOTECNOLOGÍA 2022I GBI6 – BIOINFORMÁTICA EXAMEN DE RECUPERACIÓN

Seleccione alguna de ellas y realice lo siguiente:

		Programación	Defensa Oral
1.	[1 punto] Crear un repositorio de nombre		
	"2022I_Recuperacion". Generar un Readme con los detalles		
	de las actividades, del equipo utilizado y de los programas		
	utilizados. Mantenga un control de cambios.		
2.	[1 punto] Con el grupo de componentes ribosomales		
	seleccionado, realizar una búsqueda con Python de la		
	información para cada componente (formato gdb) y separar		
	en secuencias para células humanas sanas y cancerosas.		
3.	[1 punto] Realizar un histograma (matplotlib) para cada		
	componente con el número de nucleótidos de las secuencias.		
	Explique los hallazgos.		
4.	[2 puntos] Realizar un árbol filogenético donde se muestre		
	las secuencias de células normales y las células cancerosas.		
	Explique los hallazgos.		