Universidad Católica del Norte Magíster en Geometalurgia

Escalamiento Extracción de Cu Microcolumnas a Columnas

5 y 6 de Mayo 2023

Introducción

Escalamiento desde un test de laboratorio de baja escala (minicolumna) a un test piloto con la altura de diseño de pila de lixiviación (columna).

Si bien el modelo geometalúrgico es estimado con los resultados de los test de minicolumna, posteriormente es preciso escalar estos resultados en el modelo de bloques para el proceso de evaluación económica del proyecto.

Microcolumna y Columna

Minicolumna (h = 0.3 m)

<u>Datos de Carga</u>	
Fecha de Carga	05/03/20
P ₁₀₀ :	10 mallas
Diámetro Columna	10.6 cm
Mineral Cargado	3,075 gr
Humedad Natural	0 gr
Refino en Curado	440 gr
Ácido en Curado	63 gr
Cloruro Na en Curado	62 gr
Cloruro Ca en Curado	0 gr
Carga Total	3,640 gr
Altura de Columna	30 cm
Densidad de Columna	1.37 ton/m ³
Datos de Descarga	
Fecha de Descarga	
Ripio Húmedo	3,570 gr
Ripio Seco	3,065 gr
Altura Final	30 cm
Densidad Final	1.35 ton/m ³

Columna (h = 5 m)

Escalamiento

6 columnas de 5 m (A a F), representando 3 UGMs del proyecto. Muestras de minicolumnas en triplicado por cada columna (muestreo representativo).

UGM	Columna	RecCu (%)	Microcolumna	RecCu (%)	RecCu Promedio Microcolumna	Factor Escalamiento
Óxidos	А	78.0	ÓX-1	81.3	80.6	3.2%
			ÓX-2	79.7		
			ÓX-3	45.1		
			ÓX-4	80.8		
	В	79.4	ÓX-5	83.8	82.5	3.7%
			ÓX-6	81.4		
			ÓX-7	82.2		
Enriquecimiento Secundario	С	73.0	ES-1	76.7	75.7	3.6%
			ES-2	74.9		
			ES-3	75.5		
	D	71.1	ES-4	75.2	74.1	4.0%
			ES-5	73.5		
			ES-6	73.6		
Primario	E	14.1	PRI-1	12.4	14.6	3.4%
			PRI-2	16.3		
			PRI-3	15.1		
	F	10.9	PRI-1	9.8	11.3	3.5%
			PRI-2	12.3		
			PRI-3	11.8		

Conclusión

Es posible definir un factor de escalamiento de 4%. Esto representa la pérdida de recuperación desde la escala laboratorio a piloto.

Se aplica entonces un script al modelo de bloques (MB), representando:

(RecCu escalada) = (RecCu estimada) en MB * 0.96

