1. 14. sz. laboratóriumi mérés

Mérés dátuma:

1.1. A mérés célja

Az ellenállás mérésére használatos néhány módszer alkalmazásának elsajátítása. Igen kis ellenállások nagypontosságú mérése. A méréseknél előforduló mérési hibák meghatározása.

1.2. Mérési feladatok

1.2.1. Feszültség összehasonlító módszerrel határozza meg a 4. sz mérőpanelen található R7 = 10Ω és R4 = 82Ω névleges értékű ellenállások pontos értékét és bizonytalanságukat! A mért és a számított eredményeket foglalja össze táblázatba. A méréseknél az elérhető legnagyobb pontosságra törekedjék!

Mérendő objektum:

1. ábra. Feszültség összehasonlító módszer

Határadatok: mivel R_G a legnagyobb ellenállás, és mindegyiknek a megengedett maximálisan felvehető teljesítménye 0,25W, ezért célszerű $R1=R_G$ ellenállással a maximális tápfeszültséget meghatározni.

$$P = I_m^2 * R$$

$$I_m = \sqrt{\frac{P}{R}} = \sqrt{\frac{0,25W}{1k\Omega}} = 15,8mA$$

$$U_{Tmax} = \frac{I_m * R_G}{3} = \frac{15,8mA * 1k\Omega}{3} = 5V$$

Mért értékek:

R_x	R_4	R_7
U_N		
U_X		
R_{valodi}	-	

Hibaszámítás (HM8012):

1.2.2. Áramösszehasonlító módszerrel határozza meg a 4. sz mérőpanelen található R15 = $100k\Omega$ névleges értékű, valamint az R11 ismeretlen értékű ellenállásokat és bizonytalanságukat! A mért és a számított eredményeket foglalja össze táblázatba. A méréseknél az elérhető legnagyobb pontosságra törekedjék!

Mérendő objektum:

2. ábra. Áram összehasonlító módszer

Határadatok: Áramkorlát I = 3mA, feszültségkorlát:

$$P = U * I$$

$$U_{max} = \sqrt{P * R} = \sqrt{0,25 * 100k\Omega} = 158V$$

$$U_T = \frac{U_{max}}{5} = 30V$$

Mért értékek:

R_x	R_{11}	R_{15}
I_N		
I_X		
R_{valodi}		

$$R_X = R_N * \frac{I_N}{I_X}$$

Hibaszámítás (Maxwell):

1.3. Két- ill. négyvezetékes módszer segítségével határozza meg a 4. sz mérőpanelen található $\mathbf{R3}=0,5\Omega$ névleges értékű ellenállást! A mért és a számított eredményeket foglalja össze táblázatba A méréseknél az elérhető legnagyobb pontosságra törekedjék!

Mérendő objektum:

2 vezetékes ellenállásmérés (V-A mérős módszer)

3. ábra. 4 vezetékes ellenállásmérés

Határadatok:

or.
$$I = \sqrt{\frac{P_{R2}}{R_2}}I = \sqrt{\frac{20W}{20\Omega}} = 1A$$

$$U_T = I*(R2 + R3) = 1A*(20\Omega + 0, 5\Omega) = 20, 5V$$

$ m M\'odszer$	I	U	R
Kétvezetékes rövid			
Két vezetékes hosszú			
Négyvezetékes rövid			
Négyvezetékes hosszú			