PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C12N 15/54, 9/12, 1/21, 5/10, C07K	A2	(11) International Publication Number:	WO 94/17189	
15/28, C12Q 1/48, A61K 37/52, 48/00		(43) International Publication Date:	4 August 1994 (04.08.94)	
(21) International Application Number: PCT/US94/00795		(81) Designated States: CA, JP, European patent (AT, BE, CH, DE DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).		
(22) International Filing Date: 21 January 1994	(21.01.9	9)	,	
(30) Priority Data: 08/008,001 21 January 1993 (21.01.93) [Published Without international search re upon receipt of that report.	eport and to be republished	
(71) Applicant: THE SALK INSTITUTE FOR BIO STUDIES [US/US]; 10010 North Torrey Pines Jolla, CA 92307 (US).				
(72) Inventor: HOEKSTRA, Merl, F.; 10321 216th S Shohomish, WA 98290 (US).	treet, S.I			
(74) Agent: NOLAND, Greta, E.; Marshall, O'Toole. Murray & Borun, 6300 Sears Tower, 233 Sou Drive, Chicago, IL 60606 (US).				

(54) Title: PROTEIN KINASES

(57) Abstract

Protein kinase mutant and wild-type genes encoding polypeptides of the class heretofore designated "casein kinase I" and useful in screening compositions which may effect DNA double-strand break repair activity are disclosed. Also disclosed are methods using the polynucleotides in cell-proliferative disorders.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinca	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	ĦU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	· NZ	New Zealand
BJ	Benin	ΠT	Italy	PL	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CB	Switzerland	KR	Republic of Korea	SI	Slovenia
Cī	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Сапистооп	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	11	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		• • • • • • • • • • • • • • • • • • • •		

WO 94/17189 PCT/US94/00795

PROTEIN KINASES

This application is a Continuation-in-Part of U.S. Application Serial No. 08/008,001, filed January 21, 1993, which is a Continuation-in-Part of U.S. Application Serial No. 728,783, filed July 3, 1991.

5

FIELD OF THE INVENTION

The present invention relates to novel polynucleotides encoding polypeptides which correspond to the class of protein kinase isolates heretofore referred to as casein kinase I and which possess protein kinase and/or DNA recombination/repair promoting functional capabilities.

10

15

20

25

BACKGROUND OF THE INVENTION

Protein Kinases

The protein kinases comprise an exceptionally large family of eukaryotic proteins which mediate the responses of cells to external stimuli and are related by amino acid sequence homology within the so-called "catalytic domain" of the enzymes. To date, in excess of 100 unique members of the protein kinase family from a wide variety of eukaryotic organisms have been described and characterized at the amino acid sequence level. See, e.g., Hanks, et al. (Science, 241:42-52, 1988) which presents a sequence alignment of 65 protein kinase catalytic domains which range in size from about 250 to 300 amino acids and Hanks, et al. (Methods in Enzymol., 200:38-62, 1991) presenting a catalytic domain sequence alignment for 117 distinct protein kinase family members including a variety of vertebrate, invertebrate, higher plant and yeast species enzymes. The location of the catalytic domain within a protein kinase is not fixed. In most single subunit enzymes, the domain is near the carboxy terminus of the polypeptide while in multimeric protein kinases the catalytic domain takes up almost the entirety of the subunit polypeptide.

Protein kinases are generally classified into a proteinserine/threonine subfamily or a protein-tyrosine subfamily on the basis of phosphorylation substrate specificity. Among the many classes of enzymes within

10

15

20

25

30

the protein-serine/threonine kinase subfamily are two distinct classes which have been designated casein kinase I and casein kinase II based on the order of their elution from DEAE-cellulose. The casein kinases are distinguished from other protein kinases by their ability to phosphorylate serine or threonine residues within acidic recognition sequences such as found in casein. Tuazon, et al., (Adv. in Second Messenger and Phosphoprotein Res., 23:123-164, 1991) presents a review of over 200 publications related to casein kinase I and II, addressing the physicochemical characterization, recognition sequences, substrate specificity and effects on metabolic regulation for these two classes of enzymes. Casein kinase II is active as a heterotetramer and the complete amino acid sequences of human, rat, Drosophila and yeast species catalytic regions have been determined. Despite the fact that partially purified casein kinase I preparations have been obtained from cell nuclei, cytoplasm, and cell membranes of various plant and animal species, prior to the present invention, nothing was known concerning the primary structure of its enzymatically active monomeric subunit.

As of the time of the present invention, therefore, there existed a significant need in the art for information concerning the primary structure (amino acid sequence) of protein-serine/threonine kinase enzymes of the casein kinase I class. Such information, provided in the form of DNA sequences encoding one or more of these kinases (from which primary structures could be deduced), would allow for the large scale production of kinases by recombinant techniques as well as for determination of the distribution and function of these enzymes, the structural distinctions between membrane-bound and non-membranous forms, the potential ligand-receptor interactions in which these kinases interact, and the identification of agents capable of modulating ligand-receptor binding, kinase, and other activities.

DNA Recombination And Repair

Chromosomes experience single-stranded or double-stranded breaks as a result of energy-rich radiation, chemical agents, as well as spontaneous breaks occurring during replication among others. Although genes present in the chromosomes undergo continuous damage, repair, exchange, transposition, and

10

15

20

25

30

1

splicing, certain enzymes protect or restore the specific base sequences of the chromosome.

The repair of DNA damage is a complex process that involves the coordination of a large number of gene products. This complexity is in part dependent upon both the form of DNA damage and cell cycle progression. For example, in response to ultraviolet (UV) irradiation, cells can employ photoreactivation or excision repair functions to correct genetic lesions. The repair of strand breaks, such as those created by X-rays, can proceed through recombinational mechanisms. For many forms of DNA damage, the cell is induced to arrest in the G2 phase of the cell cycle. During this G2 arrest, lesions are repaired to ensure chromosomal integrity prior to mitotic segregation.

Since the transfer of genetic information from generation to generation is dependent on the integrity of DNA, it is important to identify those gene products which affect or regulate genetic recombination and repair. Through the use of organisms with specific genetic mutations, the normal functional gene can be obtained, molecularly cloned, and the gene products studied.

In eukaryotes such as Saccharomyces cerevisiae, genetic studies have defined repair-deficient mutants which have allowed the identification of more than 30 radiation-sensitive (RAD) mutants (Haynes, et al., in Molecular Biology of the Yeast Saccharomyces, pp. 371, 1981; J. Game in Yeast Genetics: Fundamental and Applied Aspects, pp. 109, 1983). These mutants can be grouped into three classes depending upon their sensitivities. These classes broadly define excision-repair, error-prone repair, and recombinational-repair functions. The molecular characterization of yeast RAD genes has increased the understanding of the enzymatic machinery involved in excision repair, as well as the arrest of cell division by DNA damage.

The understanding of RAD genes and their expression products has become increasingly important as research continues to develop more effective therapeutic compositions. Often these new compositions appear quite effective against a particular disease condition, such as certain tumors, but prove to be too toxic for *in vivo* therapy in an animal having the disease. Indeed, these compositions can actually increase the likelihood of mutagenesis.

10

15

20

25

30

Most agents that are mutagenic or carcinogenic are in themselves unreactive, but are broken down to reactive intermediates *in vivo*. It is these reactive intermediates which interact with DNA to produce a mutation. This event is thought to be the initial step in chemical carcinogenesis. Mutations in a large number of genes affect the cellular response to agents that damage DNA. In all likelihood, many of these mutated genes encode enzymes that participate in DNA repair systems. Consequently, when the repair system is compromised, the cells become extremely sensitive to toxic agents. Although the DNA may revert to normal when DNA repair mechanisms operate successfully, the failure of such mechanisms can result in a transformed tumor cell which continues to proliferate.

Although there are currently available tests to determine the toxicity or mutagenicity of chemical agents and compositions, there are limitations in both laboratory screening procedures and animal toxicity tests. These limitations include extrapolating laboratory data from animals to humans. There is often a large measure of uncertainty when attempting to correlate the results obtained in laboratory animals with effects in human subjects. In most cases, doses of the test drug have been used in the animal which are too high to be safely administered to humans. In addition, some types of toxicity can be detected if the drug is administered in a particular species, yet may be missed if the experiment is not done in the correct animal species. Moreover, many currently available laboratory tests are incapable of detecting certain types of toxic manifestations which occur in man.

Phenotypic complementation, as a way of identifying homologous normal functional genes, is widely used. For example, the human homologue of the yeast cell cycle control gene, cdc 2, was cloned by expressing a human cDNA library in *Schizosaccharomyces pombe* and selecting those clones which could complement a mutation in the yeast cdc 2 gene (Lee, et al., Nature, 327:31, 1987). A mammalian gene capable of reverting the heat shock sensitivity of the RAS2^{val19} gene of yeast, has also been cloned by using complementation (Colicelli, et al., Proc. Nat'l. Acad. Sci. USA, 86:3599, 1989). A rat brain cDNA library was used to clone a mammalian cDNA that can complement the loss of

10

15

20

25

30

growth control associated with the activated RAS2 gene in yeast. The gene, DPD (dunce-like phosphodiesterase), encodes a high-affinity CAMP phosphodiesterase.

In summary, limitations and uncertainties of existing laboratory tests fail to provide an accurate method of examining the effects of a composition on DNA integrity. In view of this, a considerable need exists for screening methodologies which are inexpensive, rapid, and contain the relevant gene from the animal which is to be treated with the composition. Such methods provide a direct assay to determine if a composition interferes with the DNA repair system of a cell.

SUMMARY OF THE INVENTION

In one of its aspects, the present invention provides purified and isolated polynucleotides (e.g., DNA sequences and RNA transcripts thereof) encoding eukaryotic protein kinases of the casein kinase I class herein designated as "HRR25-like" proteins and characterized by greater than 35% amino acid sequence homology with the prototypical yeast enzyme HRR25 through the protein kinase catalytic domain thereof. Polynucleotides provided by the invention include RNAs, mRNAs and DNAs, including antisense forms thereof. Preferred DNA sequences of the invention include genomic and cDNA sequences as well as wholly or partially chemically synthesized DNA sequences and biological Specifically illustrating the invention are Saccharomyces replicas thereof. encoding HRR25 and NUF1. including those cerevisiae DNAs Schizosaccharomyces pombe DNAs including those encoding Hhp1 + and Hhp2+, and human DNAs including those encoding CKIα1Hu, CKIα2Hu, CKIα3Hu, CKIγ1Hu, CKIγ2Hu, and CKIδHu. Also provided are autonomously replicating recombinant constructions such as plasmid and viral DNA vectors incorporating such sequences and especially vectors wherein DNA encoding an HRR25-like casein kinase I protein is linked to an endogenous or exogenous expression control DNA sequence.

According to another aspect of the invention, host cells, especially unicellular host cells such as procaryotic and eukaryotic cells, are stably transformed with DNA sequences of the invention in a manner allowing the

10

15

20

25

30

desired polypeptides to be expressed therein. Host cells expressing such *HRR25*-like products can serve a variety of useful purposes. To the extent that the expressed products are "displayed" on host cell surfaces, the cells may constitute a valuable immunogen for the development of antibody substances specifically immunoreactive therewith.

Host cells of the invention are conspicuously useful in methods for the large scale production of *HRR25*-like proteins wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown.

Also comprehended by the present invention are antibody substances (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, CDR-grafted antibodies and the like) and other binding proteins which are specific for HRR25-like proteins (i.e., non-reactive with protein kinase molecules which are not related by at least 35% homology with HRR25 through the protein kinase catalytic domain). Antibody substances can be developed using isolated natural or recombinant HRR25-like proteins or cells expressing such products on their surfaces. The antibody substances are useful, in turn, for purifying recombinant and naturally occurring HRR25-like polypeptides and identifying cells producing such polypeptides on their surfaces. The antibody substances and other binding proteins are also manifestly useful in modulating (i.e., blocking, inhibiting, or stimulating) ligand-receptor binding reactions involving HRR25-like proteins. Anti idiotypic antibodies specific for anti-HRR25-like antibody substances are also contemplated. Assays for the detection and quantification of HRR25-like proteins on cell surfaces and in fluids such as serum and cytoplasmic fractions may involve a single antibody substance or multiple antibody substances in a "sandwich" assay format.

Recombinant *HRR25*-like protein products obtained according to the invention have been observed to display a number of properties which are unique among the eukaryotic protein kinases. As one example, the *HRR25* protein possesses both protein-tyrosine kinase and protein-serine/threonine kinase activities. Moreover, *HRR25* operates to promote repair of DNA strand breaks

10

15

20

25

1

at a specific nucleotide sequence and is the only protein kinase known to have such recombination/repair promoting activity.

The DNA sequence information for yeast and mammalian (including human) species *HRR25*-like proteins which is provided by the present invention makes possible the identification and isolation of DNAs encoding other *HRR25*-like proteins by such well-known techniques as DNA/DNA hybridization and polymerase chain reaction (PCR) cloning.

Recombinant *HRR25*-like proteins and host cells expressing the same are useful in screening methods designed to examine the effects of various compositions on DNA break repair and protein kinase activities of the proteins. Protein kinase inhibitory effects may be assessed by well-known screening procedures such as described in Hidaka, *et al.* (*Methods in Enzymology*, 201:328-339, 1991).

BRIEF DESCRIPTION OF THE DRAWING

Further aspects and advantages of the present invention will be apparent upon consideration of the following detailed description of presently preferred embodiments thereof, reference being made to the drawing wherein:

Figure 1 (A) presents an alignment of the predicted amino acid sequence of *HRR25* with the catalytic domains of the yeast CDC28, yeast KSS1 and human RAF1 protein kinases. Figure 1(B) shows a schematic representation of the structure of *HRR25*, and

Figure 2 presents an alignment of the predicted amino acid sequences of HRR25 with the sequences of three other Saccharomyces cerevisiae HRR25-like proteins (YCK1/CKI2, YCK2/CKI1, and NUF1), two HRR25-like proteins (Hhp1+ and Hhp2+) from Schizosaccharomyces pombe and three putative isoforms ($CKI\alpha1Hu$, $CKI\alpha2Hu$, and $CKI\alpha3Hu$) of a human HRR25-like protein.

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

In one of its aspects, the present invention relates to a DNA

encoding a recombination/repair promoting polypeptide which can be used in an assay system to examine the effects of various compositions on DNA integrity. These functional sequences, which can be characterized by their ability to promote restoration of DNA strand breaks, permit the screening of compositions to determine whether a particular composition has an effect on the restoration of such repair activity. The invention also provides a DNA sequence encoding a polypeptide which promotes normal mitotic recombination, but is defective in protein kinase activity and essentially unable to repair DNA strand breaks. This defective DNA sequence is highly useful for identifying other DNA sequences which encode proteins with functional protein kinase activity. In addition, the present invention relates to the polypeptide encoded by the defective DNA sequence, as well as the polypeptide encoded by the functional wild-type DNA.

In order to identify a DNA sequence encoding a polypeptide with protein kinase activity, a method is provided whereby a DNA library is screened for nucleotide sequences capable of restoring DNA strand break repair in a mutant lacking such activity. A method is further provided for identifying a composition which affects the activity of a mammalian polypeptide having protein kinase activity, wherein the polypeptide is capable of restoring DNA double-strand break repair activity in a mutant lacking such activity.

In general, the defective protein kinase can be characterized by its ability to promote normal mitotic recombination, while being essentially unable to repair DNA double-strand break including that which occurs at the cleavage site:

CAACAG GTTGTC

The DNA double-strand breaks which the defective protein kinase is essentially unable to repair can be induced by various means, including endonucleases, x-rays, or radiomimetic agents including alkylating agents. Preferred endonucleases

are those which recognize the same nucleotide cleavage site as endonuclease *HO*. Radiomimetic alkylating agents having methylmethane sulfonate activity are preferred. Those of skill in the art will be able to identify other agents which induce the appropriate DNA strand breaks without undue experimentation.

The present invention specifically discloses mutants sensitive to continuous expression of the DNA double-strand endonuclease HO, which codes for a 65 kDa site-specific endonuclease that initiates mating type interconversion (Kostriken, et al., Cold Spring Harbor Symp. Quant. Biol., 49:89, 1984). These mutants are important to understanding the functions involved in recognizing and repairing damaged chromosomes. This invention also discloses a yeast wild-type DNA recombination and repair gene called HRR25 (HO and/or radiation repair). Homozygous mutant strains, hrr25-1, are sensitive to methylmethane sulfonate and X-rays, but not UV irradiation. The wild-type gene encodes a novel protein kinase, homologous to other serine/threonine kinases, which appears critical in activation of DNA repair functions by phosphorylation.

The HRR25 kinase is important for normal cell growth, nuclear segregation, DNA repair and meiosis, and deletion of HRR25 results in cell cycle defects. These phenotypes, coupled with the sequence similarities between the HRR25 kinase and the Raf/c-mos protein kinase subgroup suggest that HRR25 might play a similar role in S. cerevisiae growth and development. The defects in DNA strand break repair and the aberrant growth properties revealed by mutations in HRR25 kinase, expands the role that protein kinases may play and places HRR25 in a functional category of proteins associated with DNA metabolism.

The development of specific DNA sequences encoding protein kinase polypeptides of the invention can be accomplished using a variety of techniques. For example, methods which can be employed include (1) isolation of a double-stranded DNA sequence from the genomic DNA of the eukaryote; (2) chemical synthesis of a DNA sequence to provide the necessary codons for the polypeptide of interest; and (3) in vitro synthesis of a double stranded DNA sequence by reverse transcription of mRNA isolated from a eukaryotic donor cell.

¥.

5

10

15

20

25

WO 94/17189 PCT/US94/00795

-10-

In the latter case, a double stranded DNA complement of MRNA is eventually formed which is generally referred to as CDNA.

The novel DNA sequences of the invention include all sequences useful in providing for expression in prokaryotic or eukaryotic host cells of polypeptides which exhibit the functional characteristics of the novel protein kinase of the invention. These DNA sequences comprise: (a) the DNA sequences as set forth in SEQ. I.D. No. 1 or their complementary strands; (b) DNA sequences which encode an amino acid sequence with at least about 35% homology in the protein kinase domain with the amino acid sequences encoded by the DNA sequences defined in (a) or fragments thereof; and (c) DNA sequences defined in (a) and (b) above. Specifically embraced in (b) are genomic DNA sequences which encode allelic variant forms. Part (c) specifically embraces the manufacture of DNA sequences which encode fragments of the protein kinase and analogs of the protein kinase wherein the DNA sequences thereof may incorporate codons which facilitate translation of mRNA. Also included in part (c) are DNA sequences which are degenerate as a result of the genetic code.

The term "conservative variation" as used herein denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acids, or glutamine for asparagine, and the like.

With the DNA sequences of the invention in hand, it is a routine matter to prepare, subclone, and express smaller DNA fragments from this or a corresponding DNA sequences. The term "polypeptide" denotes any sequence of amino acids having the characteristic activity of the mutant or wild-type protein kinase of the invention, wherein the sequence of amino acids is encoded by all or part of the DNA sequences of the invention.

The polypeptide resulting from expression of the DNA sequence of the invention can be further characterized as being free from association with other eukaryotic polypeptides or other contaminants which might otherwise be associated with the protein kinase in its natural cellular environment.

5

10

15

20

25

Isolation and purification of microbially expressed polypeptides provided by the invention may be by conventional means including, preparative chromatographic separations and immunological separations involving monoclonal and/or polyclonal antibody preparation.

In general, recombinant expression vectors useful in the present invention contain a promotor sequence which facilitates the efficient transcription of the inserted eukaryotic genetic sequence. The expression vector typically contains an origin of replication, a promoter, and a terminator, as well as specific genes which are capable of providing phenotypic selection of the transformed cells. The transformed hosts can be grown in fermentors and cultured according to techniques known in the art to achieve optimal cell growth. The polypeptides of the invention can then be isolated from the growth medium, cellular lysates, or cellular membrane fractions.

The DNA sequences of the present invention can be expressed *in vivo* in either prokaryotes or eukaryotes. Methods of expressing DNA sequences containing eukaryotic coding sequences in prokaryotes are well known in the art. Biologically functional viral and plasmid DNA vectors used to incorporate DNA sequences of the invention, for expression and replication in the host cell are well known in the art. For example, DNA can be inserted in yeast using appropriate vectors and introducing the product into the host cells. Various shuttle vectors for the expression of foreign genes in yeast have been reported (Heinemann, *et al.*, *Nature*, 340:205, 1989; Rose, *et al.*, *Gene*, 60:237, 1987). Those of skill in the art will know of appropriate techniques for obtaining gene expression in both prokaryotes and eukaryotes, or can readily ascertain such techniques, without undue experimentation.

Hosts include microbial, yeast, insect and mammalian host organisms. Thus, the term "host" is meant to include not only prokaryotes, but also such eukaryotes such as yeast, filamentous fungi, as well as plant and animal cells which can replicate and express an intron-free DNA sequence of the invention. The term also includes any progeny of the subject cell. It is understood that not all progeny are identical to the parental cell since there may

5

10

15

20

25

WO 94/17189 PCT/US94/00795

-12-

be mutations that occur at replication. However, such progeny are included when the terms above are used.

Transformation with recombinant DNA may be carried out by conventional techniques well known to those skilled in the art. Where the host is prokaryotic, such as *E. coli*, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl₂ method using procedures well known in the art. Alternatively, MgCl₂ or RbCl could be used in the reaction. Transformation can also be performed after forming a protoplast of the host cell.

10

5

Where the host is a eukaryote, various methods of DNA transfer can be used. These include transfection of DNA by calcium phosphate-precipitates, conventional mechanical procedures such as microinjection, insertion of a plasmid encased in liposomes, spheroplast electroporation, salt mediated transformation of unicellular organisms or the use of virus vectors.

15

20

25

30

Analysis of eukaryotic DNA has been greatly simplified since eukaryotic DNA can be cloned in prokaryotes using vectors well known in the art. Such cloned sequences can be obtained easily in large amounts and can be altered in vivo by bacterial genetic techniques and in vitro by specific enzyme modifications. To determine the effects of these experimentally induced changes on the function and expression of eukaryotic genes, the rearranged sequences must be taken out of the bacteria in which they were cloned and reintroduced into a eukaryotic organism. Since there are still many functions in eukaryotic cells which are absent in prokaryotes, (e.g., localization of ATP-generating systems to mitochondria, association of DNA with histones, mitosis and meiosis, and differentiation of cells), the genetic control of such functions must be assessed in a eukaryotic environment. Cloning genes from other eukaryotes in yeast has been useful for analyzing the cloned eukaryotic genes as well as other yeast genes. A number of different yeast vectors have been constructed for this purpose. All vectors replicate in E. coli, which is important for amplification of the vector DNA. All vectors contain markers, e.g., LEU 2, HIS 3, URA 3, that can be selected easily in yeast. In addition, these vectors also carry antibiotic resistance markers for use in E. coli.

Many strategies for cloning human homologues of known yeast genes are known in the art. These include, but are not limited to: 1) low stringency hybridization to detect shared nucleotide sequences; 2) antibody screening of expression libraries to detect shared structural features; and 3) complementation of mutants to detect genes with similar functions.

For purposes of the present invention, protein kinases which are homologous can be identified by structural as well as functional similarity. Structural similarity can be determined, for example, by assessing amino acid homology or by screening with antibody, especially a monoclonal antibody, which recognizes a unique epitope present on the protein kinases of the invention. When amino acid homology is used as criteria to establish structural similarity, those amino acid sequences which have homology of at least about 35% in the protein kinase domain with the prototypical *HRR25* protein are considered to uniquely characterize polypeptides.

Conserved regions of amino acid residues in *HRR25* can be used to identify *HRR25*-like genes from other species. Conserved regions which can be used as probes for identification and isolation of *HRR25*-like genes (homologues) include the nucleotides encoding amino acid sequences GPSLED (amino acids 86 to 91 in SEQ ID NO: 2), RDIKPDNFL (amino acids 127 to 135 in SEQ ID NO: 2), HIPYRE (amino acids 164 to 169 in SEQ ID NO: 2), and SVN (amino acids 181 to 183 in SEQ ID NO: 2), for example. These conserved motifs can be used, for example, to develop nucleotide primers to detect other *HRR25*-like genes by methods well known to those skilled in the art, such as polymerase chain reaction (PCR).

When homologous amino acid sequences are evaluated based on functional characteristics, then a homologous amino acid sequence is considered equivalent to an amino acid sequence of the invention when the homologous sequence is essentially unable to repair (in the case of the repair defective mutant gene) or able to repair (in the case of the natural gene), DNA double-strand breaks, including that which occurs at a nucleotide cleavage site

5

10

15

20

25

15

20

25

30

CAACAG GTTGTC

5 and when the homologous amino acid sequence allows normal mitotic recombination.

This invention provides screening methods whereby genes are cloned from plasmid libraries by complementation of a recessive marker. A recipient strain such as Saccharomyces cerevisiae is constructed that carries a recessive mutation in the gene of interest. This strain is then transformed with a plasmid, for example, pYES2 (Invitrogen, San Diego, CA) containing the wild-type genomic DNA or cDNA. The clone carrying the gene of interest can then be selected by replica plating to a medium that distinguishes mutant from wild-type phenotypes for the gene of interest. The plasmid can then be extracted from the clone and the DNA studied. Several yeast vectors allow the application of complementation systems to go beyond isolation of yeast genes. Genes from a wide variety of species can be isolated using these vectors. In such systems, DNA sequences from any source are cloned into a vector and can be screened directly in yeast for activities that will complement specific yeast mutations.

In a preferred embodiment, the present invention uses a mutation in yeast, the *hrr25* mutation, which was identified by sensitivity to DNA double-strand breaks induced by the HO endonuclease. The genomic DNA which complements this mutation was isolated by transforming the *hrr25* strain with a DNA library and subsequently screening for methylmethane sulfonate (MMS) resistance. Alternately, functional genes from a variety of mammalian species can now be cloned using the system described.

Yeast genes can be cloned by a variety of techniques, including use of purified RNA as hybridization probes, differential hybridization of regulated RNA transcripts, antibody screening, transposon mutagenesis, cross suppression of mutant phenotypes, cross hybridization with heterologous CDNA or oligonucleotide probes, as well as by complementation in *E. coli*.

Minor modifications of the primary amino acid sequence may result in proteins which have substantially equivalent or enhanced activity as compared to the sequence set forth in SEQ. I.D. NO. 2. The modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous by *HRR25* producing organisms. All of these modifications are included in the invention as long as *HRR25* activity is retained. Substitution of an aspartic acid residue for a glycine acid residue at position 151 in the sequence shown in SEQ. I.D. NO. 2 identifies the mutant *hrr25*.

Antibodies provided by the present invention are immunoreactive with the mutant polypeptides and/or the naturally occurring protein kinase. Antibody which consist essentially of numerous monoclonal antibodies with different epitopic specificities, as well as distinct monoclonal antibody preparations are provided. Monoclonal antibody is made from antigen containing fragments of the polypeptide by methods well known in the art (Kohler, G. et al., Nature 256:495, 1975; Current Protocols in Molecular Biology, Ausubel, F. et al., ed., 1989).

The invention also discloses a method for identifying a composition which affects the activity of a polypeptide having tyrosine kinase activity. The polypeptide is capable of promoting restoration of DNA double-strand break repair activity in host cells containing the *hrr25* gene. The composition and the polypeptide are incubated in combination with host cells for a period of time and under conditions sufficient to allow the components to interact, then subsequently monitoring the change in protein kinase activity, for example, by decreased repair of DNA double-strand breaks. The DNA strand breaks are induced, for example, by a radiomimetic agent, such as methylmethane sulfonate, x-rays, or by endonuclease like *HO*. Other means of inducing double-strand breaks that are well known in the art may be employed as well.

One embodiment of the invention provides a method of treating a cell proliferative disorder associated with or *HRR25* or an *HRR25*-like protein comprising administering to a subject with the disorder, a therapeutically effective amount of reagent which modulates an *HRR25*-like protein activity. The term "cell proliferative disorder" denotes malignant as well as non-malignant cell

1_

5

10

15

20

25

10

15

20

25

30

. 6

populations which differ from the surrounding tissue both morphologically and/or genotypically. Such disorders may be associated, for example, with abnormal expression of *HRR25*-like protein genes. "Abnormal expression" encompasses both increased or decreased levels of expression as well as expression of mutant forms such that the normal function of *HRR25*-like genes is altered. Abnormal expression also includes inappropriate temporal expression during the cell cycle or expression in an incorrect cell type. Antisense polynucleotides of the invention are useful in treating malignancies of the various organ systems. Essentially, any disorder which is etiologically linked to altered expression of *HRR25*-like genes is a candidate for treatment with a reagent of the invention. "Treatment" of cell proliferative disorder refers to increasing or decreasing populations of malignant or non-malignant cells.

As used herein, the term "modulate" envisions the suppression of HRR25-like protein expression or the augmentation of expression. When a cell proliferative disorder is associated with HRR25-like gene overexpression, appropriate reagents such as antisense or binding antibody can be introduced to a cell. This approach utilizes, for example, antisense nucleic acid and ribozymes to block translation of a specific HRR25-like protein mRNA, either by masking that mRNA with an antisense nucleic acid or by cleaving it with a ribozyme. Alternatively, when a cell proliferative disorder is associated with insufficient HRR25-like protein, a sense polynucleotide sequence (the DNA coding strand) or HRR25-like polypeptide can be introduced into the cell by methods known in the art.

As used herein, the term "therapeutically effective" refers to that amount of polynucleotide, antibody or polypeptide that is sufficient to ameliorate the *HRR25*-associated disorder. "Ameliorate" denotes a lessening of the detrimental effect of the *HRR25*-associated disorder in the subject receiving therapy.

Antisense nucleic acids are DNA or RNA molecules that are complementary to at least a portion of a specific mRNA molecule (Weintraub, Scientific American, 262:40, 1990). In the cell, the antisense nucleic acids hybridize to the corresponding mRNA, forming a double-stranded molecule. This

interferes with the translation of the mRNA since the cell will not translate a mRNA that is double-stranded. Antisense oligomers of about 15 nucleotides are preferred, since they are easily synthesized and are less likely to cause non-specific interference with translation than larger molecules when introduced into the target *HRR25* producing cell. The use of antisense methods to inhibit the *in vitro* translation of genes is well known in the art (Marcus-Sakura, *Anal.Biochem.*, 172:289, 1988).

Ribozymes are RNA molecules possessing the ability to specifically cleave other single-stranded RNA in a manner analogous to DNA restriction endonucleases. Through the modification of nucleotide sequences which encode these RNAs, it is possible to engineer molecules that recognize specific nucleotide sequences in an RNA molecule and cleave it (Cech, *J. Amer. Med. Assn.*, 260:3030, 1988). A major advantage of this approach is that, because ribosomes are sequence-specific, only mRNAS with particular sequences are inactivated.

There are two basic types of ribozymes namely, tetrahymena-type and "hammerhead"-type. Tetrahymena-type ribozymes recognize sequences which are four bases in length, while "hammerhead"-type ribozymes recognize base sequences 11-18 bases in length. The longer the recognition sequence, the greater the likelihood that sequence will occur exclusively in the target mRNA species. Consequently, hammerhead-type ribozymes are preferable to tetrahymena-type ribozymes for inactivating a specific mRNA species and longer recognition sequences are preferable to shorter recognition sequences.

The present invention also provides gene therapy for the treatment of cell proliferative disorders which are mediated by *HRR25*-like polypeptides. Such therapy comprises introducing into cells of subjects having the proliferative disorder, the *HRR25*-like antisense polynucleotide. Delivery of antisense polynucleotide can be achieved using a recombinant expression vector such as a chimeric virus or a colloidal dispersion system. Disorders associated with under-expression of *HRR25* can similarly be treated using gene therapy with nucleotide coding sequences.

Various viral vectors which can be utilized for gene therapy as taught herein include adenovirus, herpes virus, vaccinia, or, preferably, an RNA

١,

5

10

15

20

25

10

15

20

25

30

virus such as a retrovirus. Preferably, the retroviral vector is a derivative of a murine or avian retrovirus. Examples of retroviral vectors in which a single foreign gene can be inserted include, but are not limited to: Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), and Rous Sarcoma Virus (RSV). A number of additional retroviral vectors can incorporate multiple genes. All of these vectors can transfer or incorporate a gene for a selectable marker so that transduced cells can be identified and generated. By inserting an HRR25-like sequence of interest into the viral vector, along with another gene which encodes the ligand for a receptor on a specific target cell, for example, the vector is now target specific. Retroviral vectors can be made target specific by inserting, for example, a polynucleotide encoding a sugar, a glycolipid, or a protein. Preferred targeting is accomplished by using an antibody to target the retroviral vector. Those of skill in the art will know of, or can readily ascertain without undue experimentation, specific polynucleotide sequences which can be inserted into the retroviral genome to allow target specific delivery of the retroviral vector containing the HRR25-like antisense polynucleotide.

Since recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided, for example, by using helper cell lines that contain plasmids encoding all of the structural genes of the retrovirus under the control of regulatory sequences within the LTR. These plasmids are missing a nucleotide sequence which enables the packaging mechanism to recognize an RNA transcript for encapsidation. Helper cell lines which have deletions of the packaging signal include but are not limited to $\Psi 2$, PA317 and PA12, for example. These cell lines produce empty virions, since no genome is packaged. If a retroviral vector is introduced into such cells in which the packaging signal is intact, but the structural genes are replaced by other genes of interest, the vector can be packaged and vector virion produced.

Alternatively, NIH 3T3 or other tissue culture cells can be directly transfected with plasmids encoding the retroviral structural genes gag, pol and env, by conventional calcium phosphate transfection. These cells are then

transfected with the vector plasmid containing the genes of interest. The resulting cells release the retroviral vector into the culture medium.

Another targeted delivery system for HRR25-like antisense polynucleotides comprises a colloidal dispersion system. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome. Liposomes are artificial membrane vesicles which are useful as delivery vehicles in vitro and in vivo. It has been shown that large unilamellar vesicles (LUV), which range in size from 0.2-4.0 μ m can encapsulate a substantial percentage of an aqueous buffer containing large macromolecules. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., Trends Biochem. Sci., 6:77, 1981). In addition to mammalian cells, liposomes have been used for delivery of polynucleotides in plant, yeast and bacterial cells. In order for a liposome to be an efficient gene transfer vehicle, the following characteristics should be present: (1) encapsulation of the genes of interest at high efficiency while not compromising their biological activity; (2) preferential and substantial binding to a target cell in comparison to non-target cells; (3) delivery of the aqueous contents of the vesicle to the target cell cytoplasm at high efficiency; and (4) accurate and effective expression of genetic information (Mannino, et al., Biotechniques, 6:682, 1988).

The targeting of liposomes has been classified based on anatomical and mechanistic factors. Anatomical classification is based on the level of selectivity, for example, organ-specific, cell-specific, and organelle-specific. Mechanistic targeting can be distinguished based upon whether it is passive or active. Passive targeting utilizes the natural tendency of liposomes to distribute to cells of the reticulo-endothelial system (RES) in organs which contain sinusoidal capillaries. Active targeting, on the other hand, involves alteration of the liposome by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein, or by changing the composition or size of

X.

5

10

15

20

25

the liposome in order to achieve targeting to organs and cell types other than the naturally occurring sites of localization.

The surface of the targeted delivery system may be modified in a variety of ways. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting ligand.

In general, the compounds bound to the surface of the targeted delivery system will be ligands and receptors which will allow the targeted delivery system to find and "home in" on the desired cells. A ligand may be any compound of interest which will bind to another compound, such as a receptor.

The present invention will be better understood upon consideration of the following illustrative examples wherein: Example 1 addresses isolation of hrr25 mutant strains of Saccharomyces cerevisiae; Example 2 describes the isolation of HRR25 DNA by complementation screening; Example 3 is drawn to characterization of the DNA and putative amino acid sequence of HRR25; Example 4 addresses microscopic analysis of HRR25 wild type and hrr25 mutant yeast morphology; Example 5 addresses the relationship of the amino acid sequence of HRR25 and three exemplary protein kinases which are not HRR25like; Example 6 describes the isolation of DNAs encoding Schizosaccharomyces pombe HRR25-like protein kinases; Example 7 is directed to isolation of DNA encoding another Saccharomyces cerevisiae protein, NUF1; Example 8 is drawn to isolation of DNAs encoding various eukaryotic species HRR25-like proteins including three human isoforms, $CKI\alpha 1Hu$, $CKI\alpha 2Hu$, and CKIα3Hu; Examples 9 and 10 are respectively directed to determination of casein kinase and both serine-threonine kinase and tyrosine kinase activities for HRR25; Example 11 is drawn to the recombinant expression of HRR25 products and the generation of antibodies thereto; Example 12 relates to the isolation of human CKI isoforms, CKI₁1Hu and CKI₂2Hu; Example 13 addresses isolation of another human isoform CKIδHu; Example 14 describes complementation of yeast CKI mutants with human CKI isoforms; and Example 15 is directed to generation of monoclonal antibodies against peptide fragments of human CKIaHu isoforms.

5

10

15

20

25

The following examples are intended to illustrate but not limit the invention. While they are typical of those that might be used, other procedures known to those skilled in the art may alternatively be used.

Example 1

5

10

15

20

25

30

Isolation of hrr25

S. cerevisiae strain K264-5B (MAT α ho ura3 can1^R tyr1 his7 lys2 ade5 met13 trp5 leu1 ade5) was employed for the mutant isolation. The yeast were transformed according to standard procedures with a URA3-based integrating plasmid that contained a GAL1, 10-regulated HO endonuclease and a transformant was mutagenized to approximately 50% survival with ethyl methanesulfonate (EMS), as described (Current Protocols in Molecular Biology, supra). culture was spread onto glycerol-containing rich medium (YPG, to avoid petites), colonies were allowed to form at 30°C, and plates were replicated to glucose (HO repressing) and galactose (HO inducing) media. Mutants were identified by their inability to grow on galactose. Approximately 200 mutants were chosen for initial characterization and 62 maintained the gal- phenotype through repeated single colony purification. Among these, many were not complemented by various gal mutants. The remainder (25 mutants) were surveyed for overlapping DNA repair defects by determining sensitivity to ultraviolet (UV) irradiation and to methyl methane sulfonate (MMS). This screening method identified five alleles of known rad mutations and one new mutation. This new mutation hrr25-1 (HO and/or radiation repair), presented severe defects and was studied further.

A recessive DNA repair defect is conferred by hrr25-1 that includes sensitivity to MMS. Hrr25-1 strains also show sensitivity at 5-20 Krad X-irradiation similar to that observed with mutations in the radiation repair genes RAD50 and RAD52 (Cole, et al., Mol.Cell.Biol., 9:3101, 1989). The hrr25-1 strains are no more sensitive to UV irradiation than wild type and are not temperature sensitive for growth at 37°C. Unlike hypo- and hyper-rec rad mutants which have several of the hrr25-1 phenotypes, hrr25-1 strains undergo normal mitotic recombination (Cole, et al., Mol.Cell.Biol., 9:3101, 1989). Spontaneous gene conversion and crossing-over were the same for homozygous

hrr25-1 and wild type strains. However, HRR25 is required for the correct completion of meiosis. The hrr25-1 homozygotes showed less than 1% spores (tetranucleate cells) under conditions that produced 75-80% spores in an isogenic wild type strain. The hrr25-1 mutation could be complemented by a number of radiation sensitive mutations (rad6, 50, 52, 54, and 57) that present some of the hrr25 phenotypes, suggesting that hrr25-1 is a newly uncovered rad-like mutation and not one of these previously described genes. These results also indicate that HRR25 plays a role in DNA repair and meiosis, but is not specifically required for the repair of spontaneous mitotic lesions by recombination.

10

15

5

Example 2

Isolation of HRR25

The *HRR25* gene was obtained by complementing for MMS sensitivity using a yeast genomic library constructed in the plasmid YCp50 (Rose, et al., Gene, 60:237, 1987). An hrr25-1 strain, MHML 3-36d (ura3 hrr25), was transformed by standard methods (Nickoloff, et al., J.Mol.Biol., 207:527, 1989) to uracil prototrophy, transformants were amplified on media without uracil and replicated to media containing 0.01% MMS. Among 1200 transformants, a single MMS resistant isolate was identified. Complementation for MMS sensitivity was found to segregate with the plasmid as determined by methods known in the art.

20

25

30

A 12 kb genomic fragment was identified and complementing activity was localized to a 3.1 kb *BamHI-Sal*I fragment by transposon mutagenesis and subcloning. This region complemented DNA repair defects as well as meiotic deficiencies. Gene targeting experiments linked this cloned region to *hrr25-1*. Transposon insertion mutations within the *BamHI-Sal*I fragment replaced into the cognate *HRR25* genomic locus did not complement *hrr25-1* for MMS sensitivity, whereas adjacent chromosomal insertions outside the complementing region segregated in repulsion when crossed against *hrr25-1*.

Mini-Tn10LUK transposons (Huisman, et al., Genetics, 116:191, 1987) were used to delineate the approximate location of HRR25 on the 12 kb BamHI-SalI fragment. Insertions located to the left hand 9 kb (of the 12 kb genomic fragment) did not inactivate complementation of hrr25-1 MMS resistance

compared with the un-mutagenized plasmid. Two insertions, located near an EcoRV site in the right hand 2 kb inactivated complementation. HRR25 complementation activity was localized to a 3.4 kb SalI fragment. Approximately 300 bp of this fragment (right hand side of the 12 kb) were part of the pBR322 tetracycline resistance gene (between the BamHI site of PBR322-based YCp50). The HRR25 open reading frame spans an internal region across an EcoRV site and two BglII sites within the right terminal 3 kb.

The DNA sequence of the 3.1 kb fragment revealed a centrally located open reading frame of 1482 nucleotide. A transposon insertion mutation in this open reading frame inactivated *HRR25* complementation whereas insertions elsewhere in the 12 kb clone did not affect *HRR25* complementation. Transposon-mediated disruption of *HRR25* also revealed several phenotypes not seen with *hrr25-1*. As expected, a Tn10-based LUK transposon insertion (Huisman, et al., Genetics, 116:191, 1987) into the middle of plasmid-borne *HRR25* coding region inactivated complementation for MMS sensitivity. Transplacement of this insertion into the genomic *HRR25* gene revealed a severe growth defect in addition to MMS sensitivity and meiotic inviability. This severe growth defect was not observed with *hrr25-1* strains. Wild type *HRR25* strains doubled in rich media at 30°C every 80-90 minutes whereas isogenic *hrr25::LUK* strains and *hrr25* doubled every 9-12 hours. *hrr25-1* had a doubling time of 2-4 hours.

To determine whether the mutant phenotypes revealed by the hrr::LUK disruption allele represent a null phenotype, the entire HRR25 coding sequence was deleted. Briefly, deletion of the HRR25 coding sequence employed a hisG::URA3::hisG cassette (Alani, et al., Genetics, 116:541, 1988). The 3.1 kb HRR25 SalI fragment was cloned into pBluescript (Stratagene, La Jolla, CA). This plasmid was digested with BgIII and the two BgIII fragments that span the entire HRR25 gene and its flanking sequences were deleted. Into this deletion was introduced the 3.8 kb BamHI-BgIII hisG::URA3::hisG fragment from pNKY51 to create the $hrr25\Delta$ allele. SalI digestion yielded a linearized fragment that deleted the entire HRR25 locus. Yeast carrying the deletion-disruption allele $(hrr25\Delta)$ showed phenotypes identical to those with the hrr25::LUK allele for all properties examined, including MMS sensitivity, slow growth, and the sporulation defect.

, **1**;

5

10

15

20

25

10

15

20

25

indicating that wild-type HRR25 protein is associated with these processes and that the hrr25::LUK allele does not indirectly interfere with DNA repair, growth or sporulation. In direct parallel comparisons, the hrr25::LUK and $hrr25\Delta$ alleles behaved identically.

Yeast strain MFH14 (MATa/MATα ura3/ura3) was transformed with BgIII-linearized YCp50-HRR25::LUK to uracil prototrophy, heterozygous disruption of HRR25 was verified by Southern blot analysis, the diploid was sporulated by starvation for nitrogen and fermentable carbon sources, tetrads dissected and cells allowed to germinate at 30°C for 7 days. After a normal germination period of 2 days, the severe growth defect of hrr25::LUK suggested that the deletion of HRR25 was lethal. However, microscopic examination of segregants revealed that hrr25::LUK germinating cells grew slowly and in every case examined (20/20 tetrads), slow growth, MMS sensitivity, and uracil prototrophy co-segregated. A color variation was seen with diploid MFH14 segregants, due to mutations in adenine biosynthesis. MFH14 is ade5/ADE5 ade2/ade2. An ade5/ade2 strain was white, while an ADE5/ade2 strain was red.

Example 3

Sequence and Structure of the HRR25 GENE

DNA sequencing of both strands of the *HRR25* gene was done by uni-directional deletions employing Sequenase (USB, Cleveland, OH) and Exo-Meth (Stratagene, La Jolla, CA) procedures as described by the manufacturers. DNA and deduced amino acid sequences are set out respectively in SEQ. I.D. NOs. 1 and 2. Figure 1A, shows the alignment of the amino acid sequences for *HRR25*, CDC28, KSS1, and RAF1. Figure 1B shows a schematic representation of the structure of *HRR25*. The protein kinase homology is represented by a shaded region while the P/Q rich region is indicated by cross-hatchings. The mutant, *hrr25*, can be distinguished from *HRR25* by one amino acid substitution. At position 151, an aspartic acid is substituted for glycine.

The predicted translation product of *HRR25* revealed an unexpected feature for a *rad*-like DNA repair function. *HRR25* contains the hallmark signatures of sequence homology with the catalytic domain of serine/threonine

10

15

20

25

30

ኺ

protein kinase superfamily members (Hanks, et al., Science, 241:42, 1988). For comparison, the HRR25 translation product was aligned with the catalytic domains for two subgroups of yeast protein kinases, the CDC28/cdc2 group and the KSS1/FUS3 group. Located between amino acids 15 and 30 is a region that contains the conserved GXGXXG region. Just C-terminal to this region is a conserved lysine and glutamic acid present in most known kinases. These regions are thought to function in the nucleotide binding and phosphotransfer steps of the kinase reaction (Hanks, et al., Science, 241:42,1988). Between amino acid residues 120 to 150 are regions containing the HRD and DFG motifs, also found in most protein kinase family members. In addition, sequence examination of all known serine/threonine kinases indicates that HRR25 shares some additional similarities with the Raf/PKS/mos subgroup (Hanks, et al., Science, 241:42, 1988). The strongest homologies can be found in areas around the GXGXXG, DFG, and DXXSXG conserved regions in protein kinase catalytic domains.

The functional relevance of the observed sequence similarity between *HRR25* and protein kinases was studied by altering specific residues within the *HRR25* kinase domain and examining the phenotypic consequences of these changes. A lysine at position 38 (Lys ³⁸) was mutated to an arginine residue by site directed mutagenesis, by methods known in the art. The mutagenic oligonucleotide SEQ. I.D. NO. 22 was:

5'-CCTGATCGATTCCAGCCTGATCGCTACTTCTTCACCACT-3'.

Lys³⁸ in HRR25 corresponds to the lysine found in all known protein kinases, and this subdomain is involved in ATP binding. Mutations at the conserved lysine in protein kinases such as v-src, v-mos, and DBF2 inactivate these proteins. The mutant hrr25-Lys³⁸ allele was incapable of complementing hrr25-1, hrr25::LUK, and $hrr25\Delta$ alleles for all properties examined, an indication that the HRR25 kinase domain is required for $in\ vivo$ function of HRR25.

The predicted *HRR25* translation product (SEQ. I.D. NO. 2) has a number of notable features outside the region of homology to protein kinase catalytic domains. For example, the last 100 amino acids is proline and glutamine

10

15

rich, containing 50 of these residues. Other proteins with regions rich in these two amino acids include the transcription factors Sp1, jun, and HAP2, steroid hormone receptors, the S. pombe ran1 kinase, and mak-male germ cell-associated kinase (Courey, et al., Cell, 55:887, 1988; Bohmann, et al., Science, 238:1386, 1987; Roussou, et al., Mol. Cell. Biol., 8:2132, 1988; Arriza, et al., Science, 237:268, 1987; Matsushime, et al., Mol. Cell. Biol., 10:2261, 1990). In the case of Sp1 and jun, the proline-glutamine regions are involved in transactivation, whereas the P/Q region in the human mineralocorticoid receptor is thought to serve as an intramolecular bridge. This proline-glutamine region in HRR25 might function as a structural feature for substrate interaction, or for subcellular localization. Also, the glutamine richness of this region is similar to the opa or M-repeat seen in the Drosophila and Xenopus Notch/Xotch proteins (Wharton, et al., Cell, 40:55, 1985; Coffman, et al., Science, 249:1438, 1990). The function of the opa repeat is not certain, but it is found in several Drosophila genes. Lastly, the sequence TKKQKY at the C-terminal end of the region homologous to protein kinases is similar to the nuclear localizing signal of SV40 large T antigen and yeast histone H2B (Silver, et al., J. Cell. Biol., 109:983, 1989; Moreland, et al., Mol. Cell. Biol., 7:4048, 1987).

Example 4

20

25

30

Microscopic Analysis of Germinating and Proliferating hrr25 Cells

Photomicrographs of *HRR25* and *hrr25::LUK* colonies were taken after germination on rich medium. An MFH14 *hrr25::LUK* heterozygous transformant was dissected onto a thin film of YPD rich medium on a sterilized microscope slide and segregants were allowed to germinate under a coverslip by incubating the slide in a moist 30°C chamber. Photographs of colonies were taken after 2 days of growth. Phase contrast and DAPI staining of proliferating *HRR25* and *hrr25::LUK* cells were compared. Cells were inoculated into YPD rich medium and grown at 30°C to a mid-log density of 1-3 X 10⁷ cells/ml, briefly sonicated to disrupt clumps, fixed with formaldehyde, and stained with

10

15

20

25

30

4

DAPI (Williamson, et al., Meth. Cell. Biol., 12:335, 1975). Many cells with hrr25::LUK lacked DAPI stainable nuclei.

Microscopic examination of germinating and actively growing midlog phase hrr25::LUK cells revealed aberrant cellular morphologies. Transposon disruption of HRR25 resulted in large cells, and 25-40% of cells were filamentous or extended. DAPI nuclear staining (Williamson, et al., Meth. Cell. Biol., 12:335, 1975) of mid-log populations showed that orderly cell cycle progression in hrr25 mutants was lost. There were a large number of cells lacking DAPI-stainable nuclei which, by single cell manipulations proved to be inviable. Consistent with this nuclear segregation defect, the plating efficiency of hrr25::LUK haploids was also reduced to 75-80% of wild type. However, this reduction in plating efficiency is insufficient to account for the severe growth rate reduction. Plating efficiency was measured from mid-log phase cells by comparing the efficiency of colony formation on rich medium relative to the total number of cells determined by hemocytometer count. Cell populations were analyzed for DNA content distribution by flow cytometric analysis following staining with propidium iodide as described (Hutter, et al. J. Gen. Microbiol., 113:369, 1979). Cell sorting analysis showed that a large number of the cells in a haploid hrr25::LUK population were delayed in the cell cycle and exhibited G2 DNA content, but the population was not arrested uniformly in the cell cycle.

Example 5

Sequence Comparison of HRR25 with CDC28, KSS1, and RAF1

The predicted translation product of *HRR25* (SEQ. I.D. NO. 2) was compared with the catalytic domains of several members of the serine/threonine protein kinase superfamily. Initial sequence comparisons employed the UWGCG programs (Devereux, et al., Nuc.Acids.Res., 12:387, 1984), whereas subgroup comparisons used the methods of Hanks, et al., supra. HRR25 contains all eleven subdomains described by Hanks, et al., supra. Structurally similar groupings were compared in the sequence comparisons. These included nonpolar chain R

groups, aromatic or ring-containing R groups, small R groups with near neutral polarity, acidic R groups, uncharged polar R groups, and basic polar R groups.

CDC28 and KSS1 represent members of two subgroups of serine/threonine protein kinases in yeast. CDC28 is involved in cell cycle regulation while KSS1 acts in the regulation of the yeast mating pathway. HRR25 shows 21% identity and 41% similarity to CDC28 and 19% identity and 43% similarity to KSS1 (Figure 1A). HRR25 shows highest similarity to members of the Raf1/PKS/Mos family of protein kinases. Through the catalytic domain, HRR25 shows 30% identity and 49% similarity to Raf1.

10

15

20

5

Example 6

<u>Identification</u>, <u>Isolation</u>, <u>and Analysis of</u> <u>Sc. pombe Hhp1</u> + and <u>Hhp2</u> + Genes

A. <u>Isolation of the Hhp1+ and Hhp2+ Genes</u>

The clones were isolated by a two-pronged approach: i) DNA-based screening methods; and ii) direct complementation in S. cerevisiae hrr25 mutant strains. Two genes were identified (Hhp1+ and Hhp2+ - so named for HRR25 Homologue from Schizosaccharomyces pombe). Expression of Hhp1+ in S. cerevisiae hrr25 mutants fully rescued all mutant defects. Expression of Hhp2+ in S. cerevisiae also rescued, to varying degrees, the defects associated with hrr25 mutations.

DNA-based amplification of HRR25-like DNAs from Sc. pombe genomic and CDNA sequences prepared according to Fikes, et al. (Nature, 346:291-293, 1990) was conducted using polymerase chain reaction with the following partially degenerate oligonucleotide primers:

25

(1) Primer No. 4583 (SEQ. ID. NO. 13) representing top strand DNA encoding residues 16 through 23 of HRR25; [1 nmol/5 μ 1], $T_m = 52$ °C;

- Primer No. 4582 (SEQ. ID. NO. 14) representing top strand DNA encoding residues 126 through 133 of HRR25;
 [1.5 nmol/5 μ1], T_m = 54°C;
- (3) Primer No. 4589 (SEQ. ID. NO. 15) representing bottom strand DNA encoding residues 126 through 133 of HRR25; [0.5 nmol/5 μ 1], $T_m = 54$ °C;
- (4) Primer No. 4590 (SEQ. ID. NO. 16) representing bottom strand DNA encoding residues 194 through 199 of HRR25; [2 nmol/5 μ 1], $T_m = 38$ °C.

Two series of amplifications were conducted using Perkin Elmer Automated apparatus; a first series using *HRR25*-based primer Nos. 4583 and 4589 and a second series employing all four of the primers. In the first series, 30 cycles of denaturation (94°C, 1 min), annealing (48°C, 1 min), and extension (66°C, 3 min) were performed and in a final cycle, the extension time was extended to 5 min. Reaction products were sized on an agarose gel revealing a prominent band of the expected size of about 306 bp. In the second series of amplifications, 30 cycles were carried out as above except that annealing and extension were carried out at 35°C and 60°C, respectively. Three major products of the expected sizes (513 bp, 180 bp, and 306 bp) were developed in both genomic and CDNA libraries and were purified by preparative agarose gel electrophoresis.

Products were cloned into M13mp19 and sequenced by the dideoxy method (Maniatis, et al., Molecular Cloning: A Laboratory Manual, 1982). Two classes of sequences were identified. A representative clone from each class was radiolabelled with 32 P by random primed cut labeling to a specific activity of 10^6 cpm/ μ g (Maniatis, et al., supra) and used as a hybridization probe to isolate full length CDNA clones and to prove yeast genomic DNA in Southern blots and total RNA on Northern blots. Hybridization was carried out for 16 hours in a buffer

10

15

20

15

20

25

30

containing 6 x SSPE, 0.1% SDS, 5% dextran sulfate. Two genes were identified and designated Hhp1+ and Hhp2+ for <u>HRR25</u> <u>Homologues from Sc. pombe</u>.

For *Hhp1*+, 7 clones were identified (6 partial and 1 full length clone). For *Hhp2*+, 2 full length clones were identified. Both Southern and Northern analysis confirmed that these clones were from separate genes. These genes were sequenced using standard dideoxy method (Maniatis, *et al.*, *supra*). The nucleotide and deduced amino acid sequences for *Hhp1*+ are set out in SEQ. ID. NOS. 3 and 4; the nucleotide and deduced amino acid sequences for *Hhp2*+ are set out in SEQ. ID. NOS. 5 and 6.

10 B. Functional analysis of *Hhp1* + and *Hhp2* + in *S. cerevisiae hrr25* mutants.

Sc. pombe Hhp1+ and Hhp2+ cDNAs were cloned in a location which placed them under the control of the S. cerevisiae alcohol dehydrogenase-1 (ADH1) promoter in a URA3-based vector pDB20 to allow for expression in S. cerevisiae (Fikes, et al., supra). These resulting clones were analyzed for their ability to alter/modify the suppress phenotypes associated with the hrr25-1 mutation and the hrr25_A mutation following transformation into appropriate yeast strains by standard methods (Ito, et al., J. Bacteriol. 153:163, 1983). Transformants were analyzed for their ability to overcome defects associated with the hrr25 mutations (Hoekstra, et al., Science, 253:1031, 1991). Hhp1+ expression fully complemented hrr25-associated defects and was indistinguishable from wild type HRR25 in all analyses. Complementation was analyzed for the effect on DNA repair, cell cycle progression, cellular morphology, and Hhp2+ complemented to a lesser degree than Hhp1+ (its sporulation. complementation level was 50%-75% that of bona fide HRR25). The alteration of hrr25-associated phenotypes was dependent upon the transformed yeast strains containing both a complementing Sc. pombe Hhp plasmid and having hrr25 mutations.

The degree of amino acid homology between *HRR25* protein and *Hhp1* + protein is 73% through the kinase domain. The degree of similarity, which considers the presence of similar as well as identical amino acids, is greater than 85%. The amino acid identity of *HRR25* protein and *Hhp2* + protein is 63%

15

20

25

30·

with a percent similarity score of 80%. The intraspecies comparison of *Hhp1*+ protein to *Hhp2*+ protein is 72% identity. This structural and complementation analysis clearly indicates that these *Sc. pombe* clones are functional homologues of the *S. cerevisiae HRR25*. Such a high degree of relatedness is not seen with any other group of protein kinases. As a measure of comparison here, *bona fide* functional homologues (i.e., *cdc2* protein kinases from *S. cerevisiae*, *Sc. pombe*, and humans) show 40%-45% identity. Any two randomly compared protein kinases, regardless of whether the comparison is inter-or intra-species show a degree of identity of about 20%-25%.

10 C. Disruption and mutation of Hhp1 + and Hhp2 + in Sc. pombe

Mutations that inactivate or reduce the protein kinase activity of *HRR25* in *S. cerevisiae* result in a wide variety of phenotypes including: sensitivity to various forms of DNA damage, severe cell cycle delay, sensitivity to drugs

that affect cell cycle progression (e.g., caffeine), sensitivity to agents that affect microtubule integrity (e.g., benomyl), and sensitivity to agents that affect the integrity of replicating DNA (e.g., hydroxyurea).

Similarity, in Sc. pombe, inactivation of the Hhp1+ and the Hhp2+ genes to reduce or abolish the encoded protein kinase activity resulted in cellular phenotypes that mimicked hrr25 mutations. For example, deletion of the Hhp1+ gene resulted in a cell cycle delay and aberrant cellular morphology, in sensitivity to DNA damaging agents like MMS, and in sensitivity to benomyl and hydroxyurea. Deletion of the Hhp2+ gene resulted in caffeine sensitivity, benomyl sensitivity, and hydroxyurea sensitivity, amongst other defects.

The *Hhp1*+ gene was disrupted as follows: CDNA was subcloned into the *Sc. pombe* vector pHSS19 (Hoekstra *et al.*, *Meth. Enzymol.*, 194:329, 1991), which was digested with *NheI-EcoRI*. The *Sc. pombe* URA4 gene was inserted resulting in deletion of the *Hhp1*+ kinase domain. *Sc. pombe* was transformed by standard methods (Moreno, *et al.*, *Meth. Enzymol.*, 194:795, 1991) with the linearized DNA from the resulting plasmid construction. Stable

10

15

20

25

30

transformants were identified and haploid hhpla strains were verified by standard methods (Moreno, et al., Maniatis, et al.).

The Hhp2+ gene was disrupted as follows: the Hhp2+ CDNA was cloned into the Sc. pombe based vector, plasmid pHSS19, and was disrupted by transposon shuttle mutagenesis using the mini-Tn3 transposon mTn3Leu2 (Hoekstra, et al., Meth. Enzymol supra.). Sc. pombe was transformed by standard methods with the linearized DNA from the resulting plasmid construction. Stable transformants were identified and haploid hhp2a strains were verified by standard methods (see above).

Standard physiological methods as described for *S. cerevisiae HRR25* (Hoekstra, *et al.*, *Science* 253:1031, 1991) were employed to characterize *hhp* mutant strains. Phenotypic analysis revealed that both *hhp1* and *hhp2* mutants showed defects previously seen in *hrr25* mutants, including sensitivity to various DNA damaging treatments that include MMS treatment and X-ray treatment.

The foregoing substantiates that Hhp1+ and Hhp2+ are isoforms of S. cerevisiae HRR25 protein kinase. These three protein kinases show high levels of sequence identity. In addition, mutations that inactivate these kinases result in very similar defects in widely divergent organisms.

D. Complementation of Sc. pombe mutant strains with the S. cerevisiae HRR25 gene.

To show that Sc. pombe hhp mutants prepared as described above, were identical to S. cerevisiae hrr25 mutants and to show that HRR25-like protein kinases with greater than 35% amino acid identity are functional homologues, the S. cerevisiae HRR25 gene was introduced into a Sc. pombe expression vector and transformed into Sc. pombe hhp mutants. The DNA sequence at the HRR25 initiating methionine was changed into an Ndel site, (a silent coding alteration that maintains the reading frame but allows the HRR25 gene to be introduced into appropriate Sc. pombe plasmids). This was done by a site-directed DNA change was made in the S. cerevisiae HRR25 gene by standard methods using a commercially available system (Bio-Rad, Cambridge, MA). The altered HRR25 gene was ligated into the Sc. pombe expression plasmid, pREP 1 (Maundrell, K.

10

15

20

25

30

J., Biol. Chem. 265:10857, 1990), at an Ndel site and the resulting construction was transformed by standard methods into Sc. pombe hhp mutants. Expression of HRR25 in Sc. pombe mutant strains resulted in complementation of the mutant defects as evaluated by physiological methods described by Hoekstra, et al. (Science, supra).

Example 7

Isolation and Characterization of

Yeast HRR25-like Genes

Isolation of additional *HRR25*-like genes from *S. cerevisiae* was accomplished by performing DNA-based amplification of genomic DNA from an *S. cerevisiae* strain lacking *HRR25* coding sequences [Strain 7D of DeMaggio, *et al.* (*Proc. Natl. Acad. Sci., USA*, <u>89</u>:7008-7012, 1992, incorporated herein by reference) thereby eliminating the chance of obtaining *HRR25* sequences from the amplification. The primers and amplification conditions were as in Example 6.

The resulting amplification products were cloned in M13mp19 and sequenced by dideoxy chain termination methods. Three unique classes of amplified products were identified. Two of these products respectively corresponded to the YCK1/CKI2 and YCK2/CKI1 genes of Robinson, et al. (Proc. Natl. Acad. Sci. USA, 89:28-32, 1992) and Wang, et al. (Molecular Biology of the Cell, 3:275-286, 1992). The third gene product was designated "NUF1" (for Number Four). The amplified products corresponding to NUF1 were radiolabelled as described in Example 6 and used to screen a yeast YCp50based genomic library (ATCC, Rockville, MD). Eight clones were identified and one of these clones included approximately 4 Kb HindIII fragment containing the NUF1 hybridizing gene. Southern analysis revealed that NUF1 is a separate gene from HRR25, YCK1/CKI2, and YCK2/CKI1. The HindIII fragment was sequenced and revealed a protein kinase with about 65% identity to HRR25 through its protein kinase domain. The DNA and deduced amino acid sequences for NUF1 are set out in SEQ. ID. NOS. 23 and 24.

To further characterize the NUF1 gene, the *Hind*III fragment was subcloned into the yeast plasmid YEplac112 [Gietz and Sugino, *Gene 74*:527-541

(1988)]. The resulting construct was transformed into the hrr25 Δ deletion strain 7d and NUF1 was found to complement for hrr25 Δ mitotic defects (e.g., NUF1 complemented for slow growth defect, aberrant morphology defect, DNA damaging agent sensitivities). Furthermore, a null mutant allele of NUF1 was constructed by transposon shuttle mutagenesis and strains lacking the NUF1 gene product were found to have hrr25 Δ mutant-like defects. In particular, like hrr25 Δ mutants, NUF1 mutants showed slower mitotic growth rates and increased sensitivity to DNA damaging agents like MMS, UV, and X-irradiation.

Example 8

10

15

20

25

5

Identification and Isolation of Human HRR25-like Genes

Oligonucleotides derived from amino acid sequences described above in Example 6A were used to amplify cDNAS from the following sources: Arabidopsis thaliana, Drosophila melanogaster, Xenopus, chicken, mouse, rat, and human HeLa cells. These cDNAS were obtained from reverse transcribed mRNA (Maniatis, et al., supra) or from commercially-available cDNA libraries (Stratagene, La Jolla, CA, and Clonetech, Palo Alto, CA) Amplification products of similar migration size to those obtained from S. cerevisiae HRR25 and Sc. pombe, Hhpl+ and Hhp2+ genes were observed in 1.0% Agarose gels (Maniatis, et al., supra). This result indicated that HRR25-like genes exist in all species examined.

Isolation of full length DNAs encoding human *HRR25*-like protein kinases was accomplished by PCR amplification of human genomic DNA using unique sequence oligonucleotide primers based on portions of a bovine brain casein kinase I cDNA which had been reported in Rowles, *et al.* (*Proc. Natl. Acad. Sci. USA*, <u>88</u>:9548-9552, 1991) to encode a mammalian protein that was 60% homologous to *HRR25* over its catalytic domain.

A variety of primers were prepared and used in pairwise fashion including:

-35-

- (1) Primer JH21 (SEQ. ID. NO. 17) representing bovine top strand DNA bases 47-67;
- (2) Primer JH22 (SEQ. ID. NO. 18) representing bovine top strand DNA bases 223-240;
- 5 (3) Primer JH29 (SEQ. ID. NO. 19) representing bovine top strand DNA bases 604-623;
 - (4) Primer JH30 (SEQ. ID. NO. 20) representing bovine top strand DNA bases 623-604; and
 - (5) Primer JH31 (SEQ. ID. NO. 21) representing bovine top strand DNA bases 835-817.

amplification with combination of oligonucleotides DNA JH21/JH30, JH22/JH30, and JH29/JH31 were carried out for 30 cycles with denaturation performed at 94°C for 4 min for the first cycle and for 1 min for the remaining cycle annealing at 50°C for 2 min and extension at 72°C for 4 min. Products of the expected size from the three amplifications were purified on preparative acrylamide gels and labeled with ³²P using random nick translation (to a specific activity between 7 x 10^6 cpm/ μ g and 1.4 x 10^7 cpm/ μ g. The labelled probes were employed as a group to screen a commercial human fetal brain cDNA library (Stratagene). Hybridization was carried out for 16 hours at 65°C in a hybridization buffer containing 3 x SSC, 0.1% Sarkosyl, 10 x Denhart's solution and 20 mM sodium phosphate (Ph 6.8). Three washes at 65°C in 2 x SSC, 0.1% SDS were performed. Approximately 1.5 x 10⁶ plaques were screened on 30 plates using duplicate filters. Six strong positive clones were isolated, purified and converted to plasmid form according to procedures recommended by the supplier of the library. Restriction digestion revealed the

10

15

20

-36-

following insert sizes for the six clones: clone 35A1, 1kb; clone 35B1, 1.4kb; clone 41A1, 3.7kb; clone 42A1, >4kb; clone 47A1, 3.35kb; and clone 51A1, 2.75kb. All six inserts contained sequences which could be aligned with both the DNAs and deduced protein sequence of the bovine CKIα gene. The abbreviated, partial cDNA clones 35A1 and 35B1 were not further analyzed. Clones 41A1 and 42A1 were identical except for size. Clones 42A1, 51A1, and 47A1 were redesignated as CKIα1Hu, CKIα2Hu, and CKIα3Hu. The DNA and deduced amino acid sequences of the inserts are set out in SEQ. ID. NOS. 7 and 8; 9 and 10; and 11 and 12, respectively. The deduced amino acid sequence for CKIα1Hu was identical to the reported bovine CKIα sequence. Table 1, below sets out differences in nucleotides between the bovine and human DNAs, numbered from the first base in the initiation codon, ATG.

5

-37
<u>TABLE 1</u>

<u>COMPARISON OF HUMAN AND BOVINE CKIα DNA</u>

	Position	Bovine	<u>Human</u>	Position	Bovine	Human
	+ 9	С	Т	+591	A	G
5	+ 27	Α	T	+594	Α	G
	+ 93	T	C	+669	A	G
	+126	G	Α	+687	Α	G
	+147	C	T	÷690	G	Α
	+186	Α	G	+705	Α	G
10	+255	Т	С	+729	Α	G
	+258	С	T	+731	С	· T
	+261	G	Α	+753	Α	G
	+267	T	C	+771	C	G
	+279	T	G	+798	G	Α
15	+285	C	· T	+816	G	Α
	+291	T	С	+828	С	T
	+372	С	T	+867	T	С
	+540	T	C	+870	С	T
	+555	T	C	+936	Α	С
20	+558	G	Α			

The CKI α 3Hu DNA also includes an insertion of 84 bases at position +454 in the coding sequence providing an intermediate extension of the CKI α 2Hu expression product by 28 amino acids. This DNA insert is not present in the bovine gene, but it encodes an amino acid sequence insert which Rowles, et al. designated as CKI-alpha-L. The CKI α 2Hu and CKI α 3Hu DNAs insertion at position +971 of the CKI α 1Hu DNA. This insertion is not found in any of the bovine sequences and encodes an extension of the 13 amino acids adjacent the carboxy terminal. The last two codons of the CKI α 3Hu sequences differ from

-38-

any of the bovine sequences or the sequences of $CKI\alpha 1Hu$ and $CKI\alpha 2Hu$, causing the $CKI\alpha 3Hu$ expression product to terminate with a lysine, rather than a phenylalanine as found in all the other bovine and human casein kinase I sequences. The 3' flanking sequence of $CKI\alpha 3Hu$ DNA differs significantly from that of $CKI\alpha 1Hu$ and $CKI\alpha 2Hu$.

FIGURE 2 provides an alignment of the catalytic domain amino acid sequences of HRR25-like proteins whose DNAs were isolated in the above illustrative examples, including HRR25, Hhp1+, Hhp2+, $CKI\alpha1Hu$, $CKI\alpha2Hu$, and $CKI\alpha3Hu$ as well as YCK1/CKI2, and YCK2/CKI1. Note that with the exception of the $CKI\alpha3Hu$ intermediate insert and the carboxy terminal region inserts of $CKI\alpha2Hu$ and $CKI\alpha3Hu$, the sequences of the three human products are identical. "Common" residues are indicated in the Figure where at least 3 of the seven residues are identical at the corresponding position (the human sequences being taken as a single sequence).

Like Hhp1+ and Hhp2+, the three human HRR25-like protein kinases showed very high degrees of amino acid identity to the HRR25 gene product (68%), establishing that these human clones were enzymatic isoforms of the yeast HRR25 gene. The alignment of HRR25, Hhp1+, Hhp2+, and the human complementing-like kinase isoforms show that these enzymes share a number of primary structural features that indicate that these enzymes provide comparable activities in different species. This conclusion is reached based on several lines of evidence. First, all enzymes share the common primary sequence identifiers characteristic of protein kinases. Second, the enzymes share high degrees of amino acid identity in regions of the protein kinase domain that are not conserved in unrelated protein kinases. Finally, these enzymes share regions of identity in the kinase domain which regions differ in primary sequence from other protein kinases, but are identical among the members of this isoform grouping. For example, greater than 95% of all known protein kinases have a so-called A-P-E sequence (Alanine-Proline-Glutamate) approximately two-thirds of the way through the kinase domain. HRR25-like protein kinases lack the A-P-E sequence and have instead a S-I/V-N sequence (Serine-Isoleucine or Valine-Asparagine). Based on this primary sequence comparison, between known protein kinases and

5

10

15

20

25

10

15

20

25

30

the protein kinases of the invention from evolutionarily divergent organisms, these enzymes of the invention are isoforms of *HRR25* protein kinase.

Example 9

Comparison of HRR25 with a Casein Kinase

In all eukaryotes examined, two of the major protein kinases are casein kinase I and II (CKI and CKII, respectively). These enzymes have been found in all cell types and species examined. Both enzymes recognize Ser/Thr residues in an acidic environment in the substrate. These two protein kinases are found throughout the cell and their activities have been purified from or found to be associated with cytoplasmic fractions, membranes, nuclei, mitochondria, and cytoskeleton. CKII is predominantly a nuclear enzyme, but similar studies have yet to be described for CKI.

To determine whether *HRR25* gene product might function as a casein kinase, the ability of *HRR25*-containing immunoprecipitates to phosphorylate casein was studied. *HRR25*-containing immunoprecipitates from yeast were incubated with casein and phosphorylated proteins were examined.

Yeast extracts were prepared by physical disruption. Equal volumes of a cells were suspended in lysis buffer and acid-washed 0.5 mm beads were mixed, 30 second bursts were interspersed with 1 min on ice, and the extent of disruption was followed microscopically. Lysis buffer contained 10 Mm sodium phosphate (Ph 7.2), 150 Mm NaCl, 1% Nonidet P-40, 1% Trasylol, 1 Mm DTT, 1 Mm benzamidine, 1 Mm phenylmethyl sulfonyl fluoride, 5 Mm EDTA, pepstatin (1 ug/ml), Pepstatin A (2 ug/ml), leupeptin (1 ug/ml), 100mM sodium vanadate, and 50 Mm NaF. Extracts were clarified by a 100,000 x g centrifugation for 30 min., made to 50% (vol/vol) with glycerol, frozen in liquid nitrogen, and stored at -70 degrees C. Little loss in protein kinase activity was seen in frozen extracts over several months.

Immune complex protein kinase assays were performed on the extracts according to the methods described in Lindberg, et al. (Mol. Cell. Biol. 10:6316, 1991). Frozen extracts were diluted to 25% glycerol with lysis buffer

10

15

20

25

30

or fresh extracts were used directly. Extracts were precleared with preimmune serum and protein A-Sepharose, and then treated with immune serum (obtained as described in Example 11, *infra*, from immunization of rabbits with *E. coliderived* type-*HRR25* fusion products). *HRR25* kinase-containing immune complexes were precipitated with protein A-Sepharose. Immune complexes were washed four times with lysis buffer and twice with kinase buffer containing 15 Mm Hepes (Ph 7.4), 100 Mm NaCl, and 10 Mm MgCl₂

Reaction mixtures of *HRR25* immunoprecipitates and heat-treated casein (300 ng/20ul reaction volume) were incubated at 30 degrees C for 5-10 min and contained 10 uCi of gamma-³²P-ATP per 20 ul reaction volume. Reactions were stopped by the addition of SDS and EDTA, boiled in SDS/PAGE sample buffer and resolved in 10 % gels. Phosphoamino acid analysis was as described (Hunter *et al.*, *Proc.Natl.Acad.Sci.USA* 77:1311, 1980).

Immunoprecipitates from *HRR*+ strains were able to phosphorylate casein. To verify that the appropriate amino acids were phosphorylated, the phosphoamino acid composition of the *HRR25*-phosphorylated casein was examined by phosphoamino acid analysis. Samples were resolved by two-dimensional electrophoresis at Ph 1.9 and Ph 3.5. Consistent with mammalian CKI specificity, serine and threonine residues were phosphorylated. *HRR25* phosphorylated serine residues on casein 3-fold greater than threonine residues. Similarly, the autophosphorylation of *HRR25* in immune complexes *in vitro* occurred on serine and threonine residues. Coupled with the high degree of sequence identity, these results suggest that *HRR25* might be a CKI isoform.

To extend and confirm that *HRR25* immunoprecipitates from yeast could phosphorylate casein, several experiments were performed. *HRR25* immunoprecipitated from *E. coli* strains expressing *HRR25* (See Example 11) also showed casein kinase activity, whereas *E. coli* extracts lacking *HRR25* protein did not phosphorylate casein. *HRR25*-containing baculovirus constructs produced casein kinase activity in immunoprecipitates. Wild-type baculovirus-infected cells showed $\langle 0.5\%$ casein kinase activity under comparable conditions. The protein kinase activity from S19 cells expressing *HRR25* protein was sensitive to the same conditions that reduced or inactivated the *HRR25* protein activity from yeast

extracts. The observations that HRR25-dependent casein kinase activity was present in immunoprecipitates from $E.\ coli$ cells expressing wild-type HRR25, in insect cells infected with HRR25-containing baculovirus, and in wild-type but not $hrr25\Delta$ mutants indicated that the HRR25 gene product could function as a casein kinase and that the casein kinase activity in HRR25 protein-containing immunoprecipitates was due to HRR25 gene product.

Example 10

Analysis of Protein Kinase

Activity of HRR25-like Proteins

Because the predominant protein kinase activity in E. coli is 10 histidine kinase, rather than serine/threonine or tyrosine kinase, those procaryotic cells provide a system for examination of HRR25-like protein kinase activities which is not compromised by presence of endogenous kinases. Both HRR25 and Hhpl + DNAs were, therefore, expressed in the IPTG-inducible T7 gene 10-based commercial expression system (Invitrogen, San Diego, CA) using E. coli strain 15 BL21 (DE3) which contains an IPTG-inducible T7 RNA polymerase and T7 lysozyme gene. See, DeMaggio, et al., Proc. Natl. Acad. Sci. USA, 89:7008-7012, (1991). In a first series of experiments, E. coli lysates were prepared by inducing mid-log phase cells with IPTG for 2 hours, pelleting the cells, and preparing extracts by a freeze-thaw method using buffers described in DeMaggio, 20 et al., supra. Extracts were electrophoresed in polyacrylamide gels, transferred to nylon-based support membranes, and probed by Western analysis with antibodies directed against phosphotyrosine (UBI, Lake Placid, NY). These procedures revealed that HRR25 and Hhp1+ expressing cells contained novel tyrosine phosphorylated proteins not observed in control cells (transformed with 25 the vector alone or with kinase inactive mutants). In a second experiment, the HRR25 and Hhp1+-containing E. coli strains were examined for tyrosinephosphorylated protein by a sensitive and accurate radiolabelling and phosphoamino acid procedure. To do this experiment, cells were induced with IPTG and grown in the presence of ³²P-orthophosphate. Radiolabelled extracts 30 were prepared by the freeze-thaw method, electrophoresed in polyacrylamide gels,

and the gels were examined by autoradiographic methods. Novel phosphoproteins were observed in the strains expressing *HRR25* and *Hhp1*+, but not in the above controls. Phosphoproteins were examined by extracting and hydrolyzing the proteins from the gels using standard methods (Boyle, *et al.*, *Meth. Enzymol*, 201:110, 1991). These experiments verified that *HRR25* and *Hhp1*+ could phosphorylate tyrosine, serine, and threonine residues on protein substrates.

Example 11

Recombinant Expression of HRR25

Products and Generation of Antibodies Thereto

10

15

5

Two different plasmid constructions were developed for expression of HRR25 DNA in *E. coli* to generate immunogens useful in preparation of anti-HRR25 antibodies.

The first plasmid construction involved plasmid pATH according to Koerner et al., Meth. Enzymol., 194:477-491 (1991). An approximately [606] base pair DNA fragment was isolated from the HRR25 open reading frame by Bgl II digestion and this fragment (which encodes amino acid residues 275-476) was ligated into pATH which had been digested with BamHI. The resulting plasmid encoded a fusion protein comprising the E. coli TrpE gene product at its amino terminus and a carboxy terminal fragment of HRR25 at its carboxyl terminus.

20

25

30

Inclusion bodies were isolated from $E.\ coli$ DH5 α (Bethesda Research Laboratories, Bethesda, MD) host cells transformed the plasmid using lysis buffers as described in Koerner $et\ al.$, supra, and were purified by polyacrylamide gel electrophoresis. The gel purified materials were then employed in the immunization of rabbits by subcutaneous injection as recommended by Harlow, $et\ al.$, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988), using gel purified products with complete Freund's adjuvant for primary injections and incomplete Freund's adjuvant for subsequent injections. Serum reactivity was followed by Western blotting against the gel purified antigen. Affinity purification of serum antibodies was effected using the $E.\ coli$ -produced antigen immobilized on a nitrocellulose membrane support.

10

15

20

25

30

-43-

Example 12

Isolation of CKI₂1Hu and CKI₂2Hu

Additional human HRR25-like protein kinase encoding DNAs were isolated by combined DNA amplification and library screening methods. Oligonucleotides based on conserved regions in HRR25-like protein kinases were used to amplify DNA segments for use as probes in screening human a cDNA library. Redundant oligonucleotides of the sequence

5'-GAR YTI MGI YTI GGI AAY YTI TA-3' (SEQ ID NO. 28) and

5'-GTY TTR TTI CCI GGI CKI CCI AT-3' (SEQ ID NO. 29)

(where G, A, T, and C = standard nucleotides and R = A and G; Y = C and T; I = Inosine; M = A and C; and K = G and T) were used to amplify an approximately 540 nucleotide from a human fetal brain cDNA library (Clonetech). Amplification conditions used 200 Mm Tris.Hcl (Ph 8.2), 100 Mm KCl, 60 Mm (NH4)2SO4, 15 Mm MgCl2, 1% Triton X-100, 0.5 μ M of each primer, 100 ng library DNA template, 200 μ M dNTPs and 2.5 U polymerase. The reactions were performed for 30 cycles. Reactions were started with a 4 minute treatment at 94°C and all cycles were 1 minute at 94°C, 2 minutes at 5°C for annealing, and 4 minutes at 72°C for extension.

agarose gel and the region corresponding to approximately 540 base pairs was excised and DNA was eluted using a NaI extraction and glass powder binding (GeneClean, Bio101, La Jolla, CA). The gel-purified fragment was ligated into SmaI-digested Bluescript II SK(+) and the resulting plasmid contained a partial protein kinase domain that was used as a source of cDNA for library screening. Ten micrograms of this plasmid was digested with *Eco*RI and *Bam*HI to liberate the subcloned fragment and the reaction was electrophoresed through a 1% agarose gel. The approximately 540 nucleotide fragment was eluted from the gel and was radiolabelled by random primed oligonucleotide directed labelling (Amersham, Arlington Heights, IL) using ³²P-dCTP as the radioactive nucleotide.

The radioactive probe was used to screen a human Manca B cell lymphoma library [Wiman, et al., Proc. Natl. Acad. Sci. (USA) 81:6798-6802 (1984)] prepared in phage cloning vector $\lambda gt10$ prepared as follows. Poly d(A)⁺RNA was prepared from 2.8 x 108 cells of the B-cell lymphoma Manca using the "Fast Track" kit (Invitrogen). 5 µg of RNA was used for oligo d(T) primed cDNA 5 synthesis with the cDNA Synthesis System (Gibco BRL, Burlington, Ontario, Canada); the resulting cDNA was size selected by agarose gel electrophoresis and ligated to EcoRI adapters with the Ribo Clone kit (Promega, Madison, WI). Varying amounts of the adapted cDNA were ligated to EcoRI-digested \(\lambda \text{to} \text{to} \text{to} \text{to} \text{to} \text{to} \) 10 1 unit of T4 DNA ligase (Boehringer Mannheim, Indianapolis, IN) in a commercially prepared buffer supplied by the manufacturer with the enzyme. The ligations were packaged with Gigapack packaging extracts (Stratagene) and the resulting phage pool (1.5 x 10⁶ phage) was amplified in the C600 Hfl strain. A total of 1 x 10⁶ phage plaques were screened by standard hybridization methods 15 (Maniatis, et al., supra). Hybridizations were at 65°C for 18 hours in 6X SSPE (20X SSPE is 175.3 g/l NaCl, 27.6 g/l NaH₂PO₄.H₂O), 7.4 g/l EDTA, pH 7.4). 100 μg/ml salmon sperm carrier DNA, 5X Denhardt Reagent (50X Denhardts is 5% ficoll, 5% polyvinyl pyrolidone, 5% bovine serum albumin), 0.1% SDS and 5% sodium dextran sulfate. Filters were washed four times in 0.1X SSPE, 1% 20 SDS. Each wash was at 65°C for 30 minutes. Five clones were chosen for further analysis.

DNA from these phage clones was prepared using a Qiagen lambda DNA preparation kit (Qiagen, Chatsworth, CA) and human cDNA inserts were excised by EcoRI digestion. These inserts were subcloned into EcoRI-digested plasmid Bluescript II SK(+) (Stratagene) and the inserts were sequenced using an ABI 373A automated DNA sequencer. Two of the five cDNA contained near full-length cDNAS with a polyA tail and a protein kinase open reading frame. These protein kinases were most closely related to isoforms of casein kinase I were designated CKI γ 1Hu and CKI γ 2Hu. The DNA sequences of CKI γ 1Hu and CKI γ 2Hu are set out in SEQ ID NOS: 30 and 32, respectively; the deduced amino acid sequences of CKI γ 1Hu and CKI γ 2Hu are set out in SEQ ID NOS: 31 and 33, respectively.

25

-45-

Example 13

Isolation of CKIδHu

Human CKI δ was subcloned by first isolating the human gene from a human fetal brain library constructed in λ ZAPII (Stratagene). A 2.2 kb *Eco*RI fragment containing rat CKI δ was gel purified through 1% agarose, isolated from the gel by NaI extraction with glass powder (Bio101, La Jolla, CA), and radiolabelled by random primer methods (Boehringer Mannheim) using ³²P-dCTP. This probe was used to screen 1 X 10⁶ plaques containing human fetal brain cDNA library. Plaque hybridization conditions were 3X SSC, 0.1% Sarkosyl, 10X Denhardts reagent, 50 μ g/ml salmon sperm DNA carrier. Hybridization was allowed to proceed for 18 hours at 65°C after which time the filters were washed 4 times for 30 minutes each at 65°C in 2X SSC, 1.0% SDS. Positive clones were identified by autoradiography at -70°C with an enhancing screen and sequenced using an automated ABI373A DNA sequencer (Applied Biosystems, Foster City, California)..

One clone was determined to encode a full length CKIδ isoform and was designated CKIδHu. The nucleotide sequence for CKIδHu is set out in SEQ ID NO: 34, and the deduced amino acid sequence is set out in SEQ ID NO: 35.

Expression of the CKIδHu isoform was then determined in eight different human tissues using an approximately 1.2 kb *Eco*RI fragment as a probe. CKIδHu mRNA levels were highest in kidney, liver and placenta cells, in contrast to the testes-specific expression of rat CKIδ demonstrated by Graves, *et al.*,[supra].

5

10

15

-46
Table 2 - Sequence Homology Between CKI Isoforms

		HRR25	<u>Human</u> CKIα1	<u>Human</u> <u>CKIγ1</u>	<u>Human</u> <u>CKIγ2</u>	<u>Human</u> <u>CKIδ</u>
	HRR25	100	68	50	50	65
	Human CKIα1		100	52	52	76
	Human CKIγ1			100	99	55
5	Human CKIγ2				100	55
	Human CKIδ					100

Example 14 Complementation of Yeast CKI Mutants by Human CKI Genes

In order to determine if CKI γ 1Hu was an isoform of yeast HRR25-like protein the gene was expressed in yeast protein kinase mutants. The cDNA was expressed under control of the yeast GAL1 promoter. The expression plasmid was a derivative of plasmid pRS305 (Stratagene) that contains the yeast GAL1 promoter. The parental plasmid with the GAL1 promoter was previously described [Davis et al., Cell 61:965-978 (1990)] and contained a BglII site adjacent to the GAL1 promoter as well as BamHI and SacI sites adjacent to the BglII site. This plasmid was modified by site-directed mutagenesis to contain a unique NcoI site between the GAL1 promoter and the BglII site. The NcoI site was adjacent to the GAL1 promoter such that the order of genetic elements was GAL1 promoter-NcoI-BglII-BamHI-SacI. Site-directed mutagenesis (MutaGene kit, BioRad) employed the oligonucleotide

5'-CTA GAT CTA GCT AGA <u>CCA TGG</u> TAG TTT TTT CTC CTT GAC G-3' (SEQ ID NO. 36)

10

15

10

15

20

25

30

and generated a unique NcoI site (underlined in SEQ ID NO: 36). The resulting plasmid was called pRS305(N) 2μ GAL1.

To clone CKI γ 1Hu into pRS305(N) 2μ GAL1, the CKI γ 1Hu cDNA was amplified from cDNA with oligonucleotides that would introduce an *Nco*I site at the initiating ATG and a *Bam*HI site in the 3' untranslated region. The sequence of the mutagenic oligonucleotide (with the *Nco*I site underlined) for the amino terminus was

5'-CAT GCC ATG GCA CGA CCT AGT-3' (SEQ ID NO: 37).

The oligonucleotide M13rev, purchased from Stratagene (Stratagene, La Jolla, CA) was used to introduce the *Bam*HI site in the 3' untranslated region. Amplification conditions used 200 Mm Tris-HCl (Ph 8.2), 100 Mm KCl, 60 mM (NH₄)₂SO₄, 15 mM MgCl₂, 1% Triton X-100, 0.5 μ M of each primer, 100 ng template, 200 μ M of each dNTP and 2.5 units polymerase. The reactions were performed for 30 cycles. Reactions were started with a 4 minute treatment at 94°C and all cycles were 1 minute at 94°C for denaturing, 2 minutes at 50°C for annealing, and 4 minutes at 72°C for extension. The amplified product was digested with *NcoI* and *Bam*HI and was cloned into *NcoI/Bam*HI-digested pRS305(N) 2μ GAL1.

Complementation of yeast CKI mutants employed yeast strains 7D (hrr 25 Δ , ura3-1, trp1-1, leu2-3, 112, his3-11,15, can1-100, ade2-1) [DeMaggio, et al., (1992) supra] and YI227 (cki1D, cki2D, FOA^R, ade2-1, can1-100, his3-11,15, leu2-3,12, trp1-1, ura3-1, pRS415::Cki1ts) Strain 7D lacked the HRR25 isoform of yeast CKI and strain YI227 contained a temperature sensitive allele of yeast CKI1. Yeast strains were transformed by lithium acetate-mediated transformation methods and transformants were selected on SD-leucine medium (Bio101). Controls for transformation were plasmids pRS305(N) 2µg GAL1 alone, plasmid pRS315 (Stratagene), and plasmid pRS315::HRR25, which contains a SalI-EcoRI genomic fragment that spans the genomic HRR25 fragment [Hoekstra et al., Science, supra]. Plasmid pRS315::HRR25 was constructed by ligating a SalI/EcoRI genomic fragment of HRR25 into SalI/EcoRI-digested

WO 94/17189

5

10

20

pRS315. Both HRR25 and CKI γ 1Hu, when expressed in yeast mutants, are capable of fully complementing for the temperature-sensitive growth defect of CKI. In addition, CKI γ 1Hu partially suppressed a severe growth rate defect associated with HRR25 mutants. The partial suppression of HRR25 growth defects by CKI γ 1Hu was detected by a 10-20 fold greater plating efficiency relative to pRS305(N) 2μ GAL1.

To extend the complementation analysis to additional CKI family members, the ability of other human CKI α Hu and CKI δ Hu genes to complement for the HRR25 mutant defects was examined. Human CKI α 1Hu was subcloned into plasmid pRS305(N) 2μ GAL1 by first introducing an *Nco*I site at the initiating methionine by site-directed mutagenesis. The mutagenic oligonucleotide (with the *Nco*I site underlined) was

5´-CTA GAT CTA GCT AGA <u>CCA TGG</u> TAG TTT TTT CTC CTT GAC G-3´

15 (SEQ ID NO. 38)

and mutagenesis was performed using the Mutagene kit (BioRad). The mutagenized cDNA was digested with NcoI and BgIII and the CKI α 1Hu fragment was ligated into pRS305(n) 2μ GAL1.

Two constructs containing the CKIδHu cDNA were examined for complementation. Plasmid pEC7B (containing CKIδHu cDNA) was used as a template for site-directed mutagenesis (MutaGene, BioRad). The mutagenic oligonucleotide

5'-GAA TCG GGC CGC CG<u>A GAT CT</u>C ATA TGG AGC TGA GAG TC-3' (SEQ ID NO: 39)

was used to introduce *BgI*II (underlined in SEQ ID NO: 39) and *Nde*I (in italics in SEQ ID NO: 39) sites at the initiating ATG of CKIδHu. One plasmid construction employed *BgI*II/SacI-digested CKI DNA from the mutagenized cDNA that was ligated into *BgI*II/SacI-digested pRS305(N) 2μ GAL1 to produce

10

15

20

pRS305(CKI δ). The second plasmid construct employed *NcoI/SacI*-digested CKI δ Hu cDNA from unmutagenized pEC7B cDNA that was ligated into *NcoI/SacI*-digested pRS305(N) 2μ GAL1 to produce pRS305(N)(CKI δ). Plasmid pRS305(CKI δ) contained the nucleotides

5'-CCC GGA TCT AGC AGA TCT CAT-3' (SEQ ID NO: 40)

between the GAL1 promoter and the initiating methionine of CKIδ. Plasmid pRS305(N)(CKIδ) had a near-perfect fusion between the initiating methionine of CKIδHu and the 3' end of GAL1. Near perfect fusion indicates that the promoter and initiating methionine codon have few or no intervening nucleic acid sequences, and therefore are approximately abutting.

The CKIα1Hu and CKIδHu-containing plasmids were transformed into yeast strains 7D and YI227 and were examined for their ability to complement for their mutant defects. Like CKIγHu, CKIα1Hu partially complemented the growth defect associated with HRR25 mutations. CKIδHu was able to complement for the growth defect of temperature-conditional CKI strains, for the growth defect of HRR25 mutants, and for the DNA repair defect of HRR25. The ability of CKIδHu to complement for mutant defects in these yeast strains was indistinguishable from yeast HRR25 or CKI genes only when the appropriate plasmid construct was employed. Plasmid pRS305(CKIδ), which contained the additional 21 bases was unable to complement for any mutant phenotypes, while the near-perfect fusion in pRS305(N)(CKIδ) was fully functional. This difference was attributed to the inability of yeast to translate extended and/or CG rich leader sequences.

-50-

Example 15

Generation of Monoclonal Antibodies

A. <u>CKIαHu Peptides</u>

Monoclonal antibodies were raised against the following peptides. SEQ ID NO: 41 was derived from the common amino terminus of CKIα1Hu, CKIα2Hu, and CKIα3Hu, and SEQ ID NO: 42 was derived from an internal alternative splice region in CKIα3Hu.

NH₂-ASSSGSKAEFIVGGY-COOH (SEQ ID NO: 41) NH₂-RSMTVSTSQDPSFSGY-COOH (SEQ ID NO: 42)

10 These peptides were initially each coupled to bovine gamma globulin (Sigma, St Louis, MO). Five mg of gamma globulin and 5 mg of peptide were resuspended in 0.4 ml 100 mM K₂HPO₄ (pH 7.2) and to this mixture, 35 mg 1-ethyl-3(3-dimethylamino propyl)-carbodiimide-HCl (EDC, Pierce) previously dissolved in 50 μl K₂HPO₄ (pH 7.2) was added. The reaction was allowed to proceed for 16 hr at 4°C and was quenched by addition of 0.25 ml 2 M ethanolamine and 0.25 ml acetic acid. The reaction mixture was then diluted to a final volume of 2.5 ml with PBS and desalted using Sephadex G-25M (Pharmacia) chromatography. Protein containing fractions were concentrated by centrifugal microconcentration (Amicon). Mice were then injected with 50 μg of the coupled peptide nine times over a period of 8 months. Antibody production was measured against the respective peptides by ELISA.

Fusions were performed by standard methods. Briefly, a single-cell suspension was formed by grinding the spleen between the frosted ends of two glass microscope slides submerged in serum free RPMI 1640 media, supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin, and 100 μ g/ml streptomycin (RPMI) (Gibco). The cell suspension was filtered through a sterile 70-mesh Nitex cell strainer (Becton Dickinson, Parsippany, NJ), and washed twice by centrifuging at 200 g for 5 minutes and the pellet resuspended in 20 ml serum free RPMI. Thymocytes taken from 3 naive Balb/c mice were prepared in a similar manner.

25

NS-1 myeloma cells, kept in log phase in RPMI with 11% fetal bovine serum (FBS) (Hyclone, Laboratories, Inc., Logan, Utah) for three days prior to fusion, were centrifuged at 200 g for 5 minutes, and the pellet was washed twice as described in the foregoing paragraph. After washing, each cell suspension was brought to a final volume of 10 ml in serum free RPMI, and 10 μ l was diluted 1:100. From each dilution, 20 μ l was removed, mixed with 20 μ l 0.4% trypan blue stain in 0.85% saline (Gibco), loaded onto a hemacytometer (Baxter Healthcare Corp., Deerfield, IL) and cells counted.

Approximately 2 x 10⁸ spleen cells were combined with 4 x 10⁷ NS-1 cells, centrifuged, and the supernatant was aspirated. The cell pellet was dislodged by tapping the tube and 2 ml of 37°C PEG 1500 (50% in 75 mM Hepes, Ph 8.0) (Boehringer Mannheim) was added with stirring over the course of 1 minute, followed by adding 14 ml of serum free RPMI over 7 minutes. An additional 16 ml RPMI was added and the cells were centrifuged at 200 g for 10 minutes. After discarding the supernatant, the pellet was resuspended in 200 ml RPMI containing 15% FBS, 100 μM sodium hypoxanthine, 0.4 μM aminopterin, 16 μM thymidine (HAT) (Gibco), 25 units/ml IL-6 (Mallinckrodt, St. Louis, MO) and 1.5 x 10⁶ thymocytes/ml. The suspension was dispensed into ten 96-well flat bottom tissue culture plates (Corning, Essex, United Kingdom) at 200 μl/well. Cells in the plates were fed 2-3 times between fusing and screening by aspirating approximately half of the medium from each well with an 18 gauge needle (Becton Dickinson), and replenishing plating medium described above except containing 10 units/ml IL-6 and lacking thymocytes.

Fusions were screened when cell growth reached 60-80% confluency (usually 7-9 days). Fusion 75 was screened by ELISA on either the common amino terminal peptide (SEQ ID NO: 41) or the internal peptide (SEQ ID NO: 42), and fusion 80 was screened on the amino terminal peptide (SEQ ID NO: 41) only. Immulon 4 plates (Dynatech, Cambridge, MA) were coated at 4° C overnight with 100 ng/well peptide in 50 mM carbonate buffer, Ph 9.6. Plates were washed three times with PBS containing 0.05% Tween 20 (PBST) and 50 μ l culture supernatant was added. After incubation at 37°C for 30 minutes, and washing as above, 50 μ l horseradish peroxidase conjugated goat anti-mouse

5

10

15

20

25

10

15

20

25

IgG(fc) (Jackson ImmunoResearch, West Grove, PA) diluted 1:3500 in PBST was added. Plates were incubated as above, washed four times with PBST and 100 μ l substrate, consisting of 1 mg/ml o-phenylene diamine (Sigma) and 0.1 μ l/ml 30% H_2O_2 in 100 mM citrate, pH 4.5, was added. The color reaction was stopped in 5 minutes with the addition of 50 μ l of 15% H_2SO_4 . Absorbance at 490 nm was read on a plate reader (Dynatech).

Three wells from each fusion (designated 75D3G, 75C10H, 75C2g, 80G10H, 80H4F, and 80J9E) were cloned two to three times, successively, by doubling dilution in RPMI, 15% FBS, 100μ M sodium hypoxanthine, 16μ M thymidine and 10 units/ml IL-6. Wells of clone plates were scored visually after 4 days and the number of colonies in the least dense wells were recorded. Selected wells of each cloning were tested by ELISA as above. In the final cloning, positive wells containing single colonies were expanded in RPMI with 11% FBS.

Three antibodies were determined to be reactive for the peptide raised against the amino terminus of CKIαHu (80 G10H11D, 80 H12F12B, and 80 J9E10C), and three antibodies were reactive with the peptide raised against the internal fragment of CKIα3Hu (75 D3G10A, 75 C10H1D, and 75 C2G11F). Clones 75D3G, 75C10H, 75C2G, and 80G10H were isotyped to be IgG1, clone 80H4F IgG3, and 80J9E IgG2a.

B. <u>CKIHu/Thioredoxin Fusion Proteins</u>

Expression plasmids were constructed in order to express the CKIHu isoforms as fusion proteins with thioredoxin. Specifically, the coding sequence for each isoform was amplified by PCR with primers which created a 5 'XbaI restriction site and a 3 'BamHI site. The primer used to create the XbaI site for the CKI α Hu isoforms is set out in SEQ ID NO: 43 with the XbaI site underlined.

5'-T ACA <u>TCT_AGA</u> ATT ATG GCG AGT AGC AGC GGC-3' (SEQ ID NO: 43) The primer used to create the 3'BamHI site in the CKI α 1Hu coding sequence is set out in SEQ ID NO: 44, with BamHI site underlined.

- 5'-AAT <u>GGA TCC</u> TTA GAA ACC TGT GGG GGT-3' (SEQ ID NO: 44)
- The primer used to create the BamHI site in the CKIα2Hu and CKIα3Hu coding sequences is set out in SEQ ID NO: 45, with the BamHI site underlined.
 - 5'-AAT <u>GGA TCC</u> TTA GAA ACC TTT CAT GTT ACT CTT GGT-3' (SEQ ID NO: 45)

The XbaI and BamHI sites were created in the CKIδHu coding sequences with primers set out in SEQ ID NOS: 46 and 47, respectively.

5'-T ACA <u>TCT AGA</u> ATT ATG GAG CTG AGA GTC GGG-5'
(SEQ ID NO: 46)

5'-<u>GGA TCC</u> TCA TCG GTG CAC GAC AGA CTG-3'
(SEO ID NO:47)

- The primers used to create the XbaI and BamHI sites in the coding regions of the CKIγHu isoforms are set out in SEQ ID NO: 48 and 49.
 - 5 'T ACA <u>TCT AGA</u> ATT ATG GCA CGA CCT AGT GGT CGA TCG-3' (SEQ ID NO: 48)
 - 5'-G GGG ATC CTA CTT CAG TAG GGG CTG-3'
- 20 (SEQ ID NO: 49)

Digestion of the resulting PCR products with XbaI and BamHI allowed the fragments to be directionly cloned in frame at the carboxy terminus of sequences encoding thioredoxin in plasmid pTRXFUS [LeVallie, et al., Nature/Biotechnology 11:187-193 (1993)]. The resulting expression constructions contained the laq Iq gene, followed by the tacII promoter (from plasmid pMal-c2,

10

15

20

New England Biolabs, Beverly, MA) which drives expression of the *E.coli* thioredoxin gene fused at the amino termini of the CKI catalytic domains.

E.coli XL-1 Blue cells (Stratagene) were transformed with the individual expression plasmids by standard methods and grown at 37°C to mid-log phase. Samples were collected to serve as controls for uninduced cells and the remaining cells were induced for four hours with 0.25 mM IPTG at 37°C. Cells were then lysed and inclusion bodies in the insoluble extract from cleared lysate were used to inject mice.

C. Other CKI Peptides

Monoclonal antibodies were also raised against other CKI peptides coupled to bovine gamma globulin as in section A of this example. Peptides derived from the amino termini of the CKIγHu isoforms are set out in SEQ ID NOS: 50 and 51; peptides derived from the amino termini of bovine CKIβ [Rowles, et al., supra] are set out in SEQ ID NOS: 52 and 53; peptides derived from the amino terminus and carboxy terminus of CKIδHu are set out in SEQ ID NOS: 54 and 55, respectively; a peptide derived from the carboxy termini of CKIα2Hu and CKIα3Hu is set out in SEQ ID NO: 56; and a peptide common to all CKIHu isoforms is set out in SEQ ID NO: 57. The common CKI sequence set out in SEQ ID NO: 57 was also injected into rabbits to produce polyclonal antisera.

NH₂-RSGHNTRGTGSS-COOH (SEQ ID NO: 50) NH₂-RLGHNTRGTGSS-COOH (SEQ ID NO: 51) NH₂-SSRPKTDVLVG-COOH (SEQ ID NO: 52) NH2-KSDNTKSEMKHS-COOH (SEQ ID NO: 53) 25 NH₂-GTDIAAGE-COOH (SEQ ID NO: 54) NH2-ERRDREERLR-COOH (SEQ ID NO: 55) NH2-TGKQTDKTKSNMKGY-COOH (SEQ ID NO: 56) NH₂-DLLGPSLEDLFGY-COOH (SEQ ID NO: 57)

10

15

20

25

30

Mice were injected with 50 μ g of the peptide/gamma globulin complex on a varying schedule over a period of eight months.

Subsequent to the filing of U.S. Patent Application Serial No. 07/728,783 on July 3, 1991, there have been numerous reports in the scientific literature of the isolation of DNAs encoding HRR25-like proteins. For example, Rowles, et al. (Proc. Natl. Acad. Sci. USA, 88:9548-9592, 1991) reported the purification of a bovine thymus casein kinase I (CKI) enzyme. The sequencing of tryptic fragments reveled nearly 25% of the primary sequence of the enzyme. PCR cloning resulted in development of partial clones coding for the CKI enzyme isolate and a homologue enzyme referred to as CKI- δ . Screening of bovine brain libraries with the partial clones yielded full length cDNAs for the CKI isolate (designated CKI α) and two additional homologues (CKI β and CKI γ). The deduced sequence for bovine CKI α was noted by Rowles, et al., [supra] to be 60% homologous to HRR25 over its catalytic domain. As noted earlier, a comparison of the bovine CKI α sequence of Rowles, et al. to human CKI α 1 sequence set out in SEQ. ID. NO. 7 and 8 reveals 100% homology in the catalytic domain.

As another example, Robinson, et al. (Proc. Natl. Acad. Sci. USA, 89:28-32, 1992) describes the isolation of two Saccharomyces cerevisiae genes, YCK1 and YCK2 which encode yeast casein kinase 1 homologues and also describes purification and partial sequencing of a rabbit casein kinase I from a rabbit reticulocyte lysate preparation. HRR25 was noted to be 50% homologous to YCK1 and YCK2 and 60% homologous to the partial rabbit CKI sequence. As a further example, Wang, et al. (Molecular Biology of the Cell, 3:275-286, 1992) describes the isolation of a 54 kDa CKI from S. cerevisiae and the use of amino acid sequence information therefrom for cloning two yeast cDNAs encoding homologous casein kinase I proteins, CKI1 and CKI2. Comparison of the catalytic domains of the protein encoded by the CKI1 gene produced few alignments revealing greater than 20-25% homology. The closest matches were with HRR25 (50-56%) and with the three bovine isozymes of Rowles, et al. (51-56%). The YCK1 sequence of Robinson, et al. corresponds to the CKI2

-56-

sequence of Wang, et al.; the YCK2 sequence corresponds to CKI1. Brockman, et al. (Proc. Natl. Acad. Sci, USA, 89:9454-9458, 1992) reported the immunopurification and sequencing of a human erythroid casein kinase I and noted that it was 62% homologous to HRR25. As a final example, Graves, et al. (J.Biol. Chem. 265:6394-6401, 1993) reported the cloning and characterization of a casein kinase I from rat testes. This CKI, designated CKI δ , shared 76% homology at the amino acid level with CKI α isolated from bovine brain and 65% homology with HRR25.

While the foregoing illustrative examples are specifically directed to isolation of "full length" polynucleotides encoding the HRR25-like proteins HRR25, Hhp1+, Hhp2+, CKIα1Hu, CKIα2Hu, CKIα3Hu, CKIδHu, CKIγ1Hu and CKI₂2Hu, it will be readily understood that the present invention is not limited to those polynucleotides. Rather it embraces all polynucleotides which are comprehended within the class of genes encoding HRR25-like proteins characterized protein kinase activity and by homology of 35% or more with the HRR25 protein through the protein kinase catalytic domain. By way of example, employing information concerning the DNA sequence of HRR25, the procedures of Example 7 allowed the isolation partial cDNA clones of expected length from cDNA libraries derived from Arabidopsis thaliana, Drosophila melanogaster, Xenopus, chicken, mouse, rat, and human species. These partial cDNAs may, in turn, be employed in the manner of Examples 6 and 7 to isolate full length DNA clones encoding HRR25-like proteins from these species. Each of these may be employed in the large scale production of the corresponding proteins by recombinant methods or for the generation of other useful polynucleotides such as antisense RNAs. Recombinant expression products of such HRR25-like DNAs may be employed for generation of antibodies and in screens for compounds which modulate the protein kinase and/or recombination/repair functions of these enzymes. Moreover, as suggested in the publication of Rowles, et al., Robinson, et al., and Wang, et al., multiple HRR25-like isozymes are expected to exist in a variety of eukaryotic species as both membrane bound and cytoplasmic proteins. It appears reasonable to expect that a number of genes and gene products exist in

5

10

15

20

25

human species, all of which are functionally related as well as structurally related to each other and to *HRR25*.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made without departing from the spirit or scope of the invention.

SUMMARY OF SEQUENCES

SEQ ID N0: 1 is the nucleic acid sequence and the deduced amino acid of a genomic fragment encoding a yeast-derived protein kinase, *HRR25* of the present invention.

5 SEQ ID NO: 2 is the deduced amino acid sequence of a yeastderived protein kinase *HRR25* of the present invention.

SEQ ID NO: 3 is the nucleic acid sequence (and the deduced amino acid sequence) of a genomic fragment encoding Hhp1+ of the present invention.

SEQ ID NO: 4 is the deduced amino acid sequence of Hhp1+ of the present invention.

SEQ ID NO: 5 is the nucleic acid sequence (and the deduced amino acid sequence) of a genomic fragment encoding Hhp2+ of the present invention.

SEQ ID NO: 6 is the deduced amino acid sequence of Hhp2+ of the present invention.

SEQ ID NO: 7 is the nucleic acid sequence (and the deduced amino acid sequence) of a genomic fragment encoding $CK1\alpha1Hu$ of the present invention.

SEQ ID NO: 8 is the deduced amino acid sequence of $CK1\alpha1Hu$ of the present invention.

SEQ ID NO: 9 is the nucleic acid sequence (and the deduced amino acid sequence) of a genomic fragment encoding $CK1\alpha 2Hu$ of the present invention.

10

SEQ ID NO: 10 is the deduced amino acid sequence of $CK1\alpha 2Hu$ of the present invention.

SEQ ID NO: 11 is the nucleic acid sequence (and the deduced amino acid sequence) of a genomic fragment encoding $CK1\alpha3Hu$ of the present invention.

SEQ ID NO: 12 is the deduced amino acid sequence of $CK1\alpha 3Hu$ of the present invention.

SEQ ID NO: 13 is the primer, 4583, representing top strand DNA encoding residues 16-23 of *HRR25*.

SEQ ID NO: 14 is the primer, 4582, representing top strand DNA encoding residues 126-133 of *HRR25*.

SEQ ID NO: 15 is the primer, 4589, representing bottom strand DNA encoding residues 126-133 of *HRR25*.

SEQ ID NO: 16 is the primer, 4590, representing bottom strand DNA encoding residues 194-199 of *HRR25*.

SEQ ID NO: 17 is the primer JH21, representing bovine top strand DNA bases 47-67.

SEQ ID NO: 18 is the primer JH22, representing bovine top strand DNA bases 223-240.

SEQ ID NO: 19 is the primer JH29, representing bovine top strand DNA bases 604-623.

-60-

SEQ ID NO: 20 is the primer JH30, representing bovine bottom strand DNA bases 623-604.

SEQ ID NO: 21 is the primer JH31, representing bovine bottom strand DNA bases 835-817.

SEQ ID NO: 22 is the mutated *HRR25* kinase domain primer found on p. 33, Example 3.

SEQ ID NO: 23 is the nucleic acid sequence (and the deduced amino acid sequence) of a genomic fragment encoding NUF1 of the present invention.

SEQ ID NO: 24 is the deduced amino acid sequence of NUF1 of the present invention.

SEQ ID NOS: 25, 26 and 27 are the conserved motifs found on page 18.

SEQ ID NOS: 28 and 29 are redundant oligonucleotides, based on conserved regions of HRR25-like proteins, used to amplify a probe from a human cDNA library.

SEQ ID NO: 30 is the nucleotide sequence of the CKIγ1Hu gene.

SEQ ID NO: 31 is the deduced amino acid sequence of the $CKI\gamma 1Hu$ protein.

20 SEO ID NO: 32 is the nucleotide sequence of the CKIγ2Hu gene.

SEQ ID NO: 33 is the deduced amino acid sequence of the CKI_{γ} 2Hu protein.

SEQ ID NO: 34 is the nucleic acid sequence for CKIδHu.

SEQ ID NO: 35 is the deduced amino acid sequence for CKIδHu.

SEQ ID NO: 36 is the mutagenic oligonucleotide used to generate an *NcoI* restriction site in expression plasmid pRS305.

SEQ ID NO: 37 is the mutagenic oligonucleotide used to generate an NcoI restriction site in $CKI\gamma 1$.

SEQ ID NO: 38 is the mutagenic oligonucleotide used to create an Ncol restriction site in human CKIαa.

SEQ ID NO: 39 is the mutagenic oligonucleotide used to introduce a Bg/II restriction site in CKIδ.

SEQ ID NO: 40 is the intervening nucleic acids sequence between the GAL1 promoter and initiating methionine codon in the CKIô expression plasmid.

SEQ ID NOS: 41 and 42 are amino terminal and internal peptide fragments of $CKI\alpha$ isoforms to generate monoclonal antibodies.

SEQ ID NO: 43 is the primer used to create a XbaI restriction site in $CKI\alpha Hu$ coding sequences.

SEQ ID NO: 44 is the primer used to create a *Bam*HI restriction site in the CKIα1Hu coding sequence.

SEQ ID NO: 45 is the primer used to create a BamHI restriction site in the $CKI\alpha 2Hu$ and $CKI\alpha 3Hu$ coding sequences.

SEQ ID NO: 46 is the primer used to create a XbaI restriction site in the CKIôHu coding sequence.

5 SEQ ID NO: 47 is the primer used to create a *Bam*HI restriction site in the CKIδHu coding sequence.

SEQ ID NO: 48 is the primer used to create a *XbaI* restriction site in the CKI γ 1Hu and CKI γ 2Hu coding sequences.

SEQ ID NO: 49 is the primer used to create a *BamHI* restriction site in the CKI γ 1Hu and CKI γ 2Hu coding sequences.

SEQ ID NO: 50 is an amino terminal peptide fragment of $CKI\gamma Hu$ coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

SEQ ID NO: 51 is an amino terminal peptide fragment of CKIγHu
coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

SEQ ID NO: 52 is an amino terminal peptide fragment of bovine $CKI\beta$ coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

SEQ ID NO: 53 is an amino terminal peptide fragment of bovine CKIβ coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

SEQ ID NO: 54 is an amino terminal peptide fragment of CKIδHu coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

SEQ ID NO: 55 is a carboxy terminal peptide fragment of CKIδHu
coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

SEQ ID NO: 56 is an carboxy terminal peptide fragment of $CKI\alpha 2Hu$ and $CKI\alpha 3Hu$ coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

SEQ ID NO: 57 is an internal terminal peptide fragment common to all human CKI isoforms coupled to bovine gamma globulin and used to generate monoclonal antibodies in mice.

- 64 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: The Salk Institute For Biological Studies
- (ii) TITLE OF INVENTION: Protein Kinases
- (iii) NUMBER OF SEQUENCES: 57
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun
 - (B) STREET: 233 South Wacker Drive, 6300 Sears Tower
 - (C) CITY: Chicago (D) STATE: Illinois

 - (E) COUNTRY: USA
 - (F) ZIP: 60606-6402
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (B) FILING DATE:

 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/008,001
 - (B) FILING DATE: 21-JAN-1993
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/728,783
 - (B) FILING DATE: 03-JUL-1991
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Noland, Greta E.
 - (B) REGISTRATION NUMBER: 35,302
 - (C) REFERENCE/DOCKET NUMBER: 27866/31853
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 312-474-6300 (B) TELEFAX: 312-474-0448 (C) TELEX: 25-3856
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3098 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Protein Kinase

-65-

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 879..2360

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GTCGACTCGC CAATCACCAA GTTCTTATCC CACATCCGAC CAGTGTCTGA GTC	ATGGTTT 60
ACCACCACCA TACCATCGCT GGTCATTTGT AAATCCGTTT CTATTACATC AGC	ACCTGCT 120
GCATAAGCCT TCTCAAATGC TAGTAGCGTA TTTTCAGGAT ATCTTGCTTT AAA	AGCTCTG 180
TGGCCCACAA TTTCAACCAT CCTCGTGTCC TTGTTGTTAT CTTACACTTC TTA	TTTATCA 240
ATAACACTAG TAACATCAAC AACACCAATT TTATATCTCC CTTAATTGTA TAC	TAAAAGA 300
TCTAAACCAA TTCGGTATTG TCCTCGATAC GGCATGCGTA TAAAGAGATA TAA	TTAAAAG 360
AGGTTATAGT CACGTGATGC AGATTACCCG CAACAGTACC ACAAAATGGA TAC	CATCTAA 420
TTGCTATAAA AGGCTCCTAT ATACGAATAA CTACCACTGG ATCGACGATT ATT	TCGTGGC 480
AATCATATAC CACTGTGAAG AGTTACTGCA ACTCTCGCTT TGTTTCAACG CTT	CTTCCCG 540
TCTGTGTATT TACTACTAAT AGGCAGCCCA CGTTTGAATT TCTTTTTTC TGG	AGAATTT 600
TTGGTGCAAC GAGGAAAAGG AGACGAAGAA AAAAAGTTGA AACACGACCA CAT	ATATGGA 660
ACGTGGTTGA AATACAAAGA GAAGAAAGGT TCGACACTCG AGGAAAGCAT TTG	GTGGTGA 720
AAACACATCT TAGTAGCATC TTTAAACCTC TGTTGGGTAC TTAGAAAAAT ATT	TCCAGAC 780
TTCAAGGATA AAAAAAGTCG AAAAGTTACG ACATATTCGA CCAAAAAAAA AAA	CCAAAAA 840
GAAAAGATAT ATTTATAGAA AGGATACATT AAAAAGAG ATG GAC TTA AGA Met Asp Leu Arg	
1	5
GGA AGG AAA TTT CGT ATT GGC AGG AAG ATT GGG AGT GGT TCC TT Gly Arg Lys Phe Arg Ile Gly Arg Lys Ile Gly Ser Gly Ser Ph	5 T GGT 941
GGA AGG AAA TTT CGT ATT GGC AGG AAG ATT GGG AGT GGT TCC TT Gly Arg Lys Phe Arg Ile Gly Arg Lys Ile Gly Ser Gly Ser Ph	5 T GGT 941 e Gly 0 C ATC 989
GGA AGG AAA TTT CGT ATT GGC AGG AAG ATT GGG AGT GGT TCC TT Gly Arg Lys Phe Arg Ile Gly Arg Lys Ile Gly Ser Gly Ser Ph 10 15 2 GAC ATT TAC CAC GGC ACG AAC TTA ATT AGT GGT GAA GAA GTA GC Asp Ile Tyr His Gly Thr Asn Leu Ile Ser Gly Glu Glu Val Al	5 T GGT 941 e Gly 0 C ATC 989 a Ile G TCC 1037
GGA AGG AAA TTT CGT ATT GGC AGG AAG ATT GGG AGT GGT TCC TT Gly Arg Lys Phe Arg Ile Gly Arg Lys Ile Gly Ser Gly Ser Ph 10	5 T GGT 941 e Gly 0 C ATC 989 a Ile G TCC 1037 u Ser C AGA 1085
GGA AGG AAA TTT CGT ATT GGC AGG AAG ATT GGG AGT GGT TCC TT Gly Arg Lys Phe Arg Ile Gly Arg Lys Ile Gly Ser Gly Ser Phe 10	5 T GGT 941 e Gly 0 C ATC 989 a Ile G TCC 1037 u Ser C AGA 1085 e Arg T CTA 1133
GGA AGG AAA TTT CGT ATT GGC AGG AAG ATT GGG AGT GGT TCC TTG ATT TAC CAC GGC ACG AAC TTA ATT AGT GGT GAA GAA GTA GCASP Ile Tyr His Gly Thr Asn Leu Ile Ser Gly Glu Glu Val Al 30 35 AAG CTG GAA TCG ATC AGG TCC AGA CAT CCT CAA TTG GAC TAT GAA Lys Leu Glu Ser Ile Arg Ser Arg His Pro Gln Leu Asp Tyr Gl AG TCG GTC TAC AGA TAC AGG TCC GGT GGT GGT GGA ATC CCG TTC ATA AGT GGT GGT Tyr Arg Tyr Leu Ser Gly Gly Val Gly Ile Pro Phe Iles Trp Phe Gly Arg Glu Gly Gly Tyr Asn Ala Met Val Ile Asp Leu Asp Leu Tyr Phe Gly Arg Glu Gly Gly Tyr Asn Ala Met Val Ile Asp Leu Asp Leu Asp Leu Asp Leu CTT ATT AND AGT ATT AND AGT ATT AND AGT ATC CTC ATC GAT CTC TTP Phe Gly Arg Glu Gly Gly Tyr Asn Ala Met Val Ile Asp Leu Asp	5 T GGT 941 e Gly 0 C ATC 989 a Ile 989 C TCC 1037 C AGA 1085 e Arg 1133 U Leu 85 C TCC 1181 e Ser

TAT Tyr	ATA Ile	CAT His 120	Gly	AGG Arg	TCG Ser	TTC Phe	ATT Ile 125	CAT His	AGA Arg	GAT Asp	ATC Ile	AAA Lys 130	CCA Pro	GAC Asp	AAC Asn	1277
TTT Phe	TTA Leu 135	ATG Met	GGG	GTA Val	GGA Gly	CGC Arg 140	CGT Arg	GGT Gly	AGC Ser	ACC Thr	GTT Val 145	CAT	GTT Val	ATT	GAT Asp	1325
TTC Phe 150	Gly	CTA Leu	TCA Ser	AAG Lys	AAA Lys 155	TAC	CGA Arg	GAT Asp	TTC Phe	AAC Asn 160	ACA Thr	CAT His	CGT Arg	CAT His	ATT Ile 165	1373
CCT Pro	TAC Tyr	AGG Arg	GAG Glu	AAC Asn 170	AAG Lys	TCC Ser	TTG Leu	ACA Thr	GGT Gly 175	ACA Thr	GCT Ala	CGT Arg	TAT Tyr	GCA Ala 180	AGT Ser	1421
GTC Val	AAT Asn	ACG Thr	CAT His 185	CTT Leu	GGA Gly	ATA Ile	GAG Glu	CAA Gln 190	AGT Ser	AGA Arg	AGA Arg	GAT Asp	GAC Asp 195	TTA Leu	GAA Glu	1469
TCA Ser	CTA Leu	GGT Gly 200	TAT Tyr	GTC Val	TTG Leu	ATC Ile	TAT Tyr 205	TTT Phe	TGT Cys	AAG Lys	GGT Gly	TCT Ser 210	TTG Leu	CCA Pro	TGG Trp	1517
CAG Gln	GGT Gly 215	TTG Leu	AAA Lys	GCA Ala	ACC Thr	ACC Thr 220	AAG Lys	AAA Lys	CAA Gln	AAG Lys	TAT Tyr 225	GAT Asp	CGT Arg	ATC Ile	ATG Met	1565
GAA Glu 230	AAG Lys	AAA Lys	TTA Leu	AAC Asn	GTT Val 235	AGC Ser	GTG Val	GAA Glu	ACT Thr	CTA Leu 240	TGT Cys	TCA Ser	GGT Gly	TTA Leu	CCA Pro 245	1613
TTA Leu	GAG Glu	TTT Phe	CAA Gln	GAA Glu 250	TAT Tyr	ATG Met	GCT Ala	TAC Tyr	TGT Cys 255	AAG Lys	AAT Asn	TTG Leu	yyy	TTC Phe 260	GAT Asp	1661
GAG Glu	AAG Lys	CCA Pro	GAT Asp 265	TAT Tyr	TTG Leu	TTC Phe	TTG Leu	GCA Ala 270	AGG Arg	CTG Leu	TTT Phe	AAA Lys	GAT Asp 275	CTG Leu	AGT Ser	1709
ATT Ile	AAA Lys	CTA Leu 280	GAG Glu	TAT Tyr	CAC His	AAC Asn	GAC Asp 285	CAC His	TTG Leu	TTC Phe	GAT Asp	TGG Trp 290	ACA Thr	ATG Met	TTG Leu	1757
CGT Arg	TAC Tyr 295	ACA Thr	AAG Lys	GCG Ala	ATG Met	GTG Val 300	GAG Glu	AAG Lys	CAA Gln	AGG Arg	GAC Asp 305	CTC Leu	CTC Leu	ATC Ile	GAA Glu	1805
AAA Lys 310	Gly	GAT Asp	TTG Leu	AAC Asn	GCA Ala 315	AAT Asn	AGC Ser	AAT Asn	GCA Ala	GCA Ala 320	AGT Ser	GCA Ala	AGT Ser	AAC Asn	AGC Ser 325	1853
ACA Thr	GAC Asp	AAC Asn	AAG Lys	TCT Ser 330	GAA Glu	ACT Thr	TTC Phe	AAC Asn	AAG Lys 335	ATT Ile	AAA Lys	CTG Leu	TTA Leu	GCC Ala 340	ATG Met	1901
AAG Lys	AAA Lys	TTC Phe	CCC Pro 345	ACC Thr	CAT His	TTC Phe	CAC His	TAT Tyr 350	TAC Tyr	AAG Lys	AAT Asn	GAA Glu	GAC Asp 355	AAA Lys	CAT His	1949
AAT Asn	CCT Pro	TCA Ser 360	CCA Pro	GAA Glu	GAG Glu	ATC Ile	AAA Lys 365	CAA Gln	CAA [.] Gln	ACT Thr	ATC Ile	TTG Leu 370	AAT Asn	AAT Asn	AAT Asn	1997
GCA Ala	GCC Ala 375	TCT Ser	TCT Ser	TTA Leu	CCA Pro	GAG Glu 380	GAA Glu	TTA Leu	TTG Leu	AAC Asn	GCA Ala 385	CTA Leu	GAT Asp	AAA Lys	GGT Gly	2045

-67-

ATG GAA AAC TTG AGA CAA CAG CAG CCG CAG CAG CAG GTC CAA AGT TCG Met Glu Asn Leu Arg Gln Gln Gln Pro Gln Gln Gln Val Gln Ser Ser 390 395 400 405	•
CAG CCA CAA CCA CAG CCC CAA CAG CTA CAG CAG CAA CCA AAT GGC CAA Gln Pro Gln Pro Gln Gln Leu Gln Gln Gln Pro Asn Gly Gln 410 415 420	2141
AGA CCA AAT TAT TAT CCT GAA CCG TTA CTA CAG CAG CAA CAA AGA GAT Arg Pro Asn Tyr Tyr Pro Glu Pro Leu Leu Gln Gln Gln Arg Asp 435	
TCT CAG GAG CAA CAG CAG CAA GTT CCG ATG GCT ACA ACC AGG GCT ACT Ser Gln Glu Gln Gln Gln Val Pro Met Ala Thr Thr Arg Ala Thr 440 445 450	
CAG TAT CCC CCA CAA ATA AAC AGC AAT AAT TTT AAT ACT AAT CAA GCA Gln Tyr Pro Pro Gln Ile Asn Ser Asn Asn Phe Asn Thr Asn Gln Ala 455	
TCT GTA CCT CCA CAA ATG AGA TCT AAT CCA CAA CAG CCG CCT CAA GAT Ser Val Pro Pro Gln Met Arg Ser Asn Pro Gln Gln Pro Pro Gln Asp 470 480 485)
AAA CCA GCT GGC CAG TCA ATT TGG TTG TAAGCAACAT ATATTGCTCA Lys Pro Ala Gly Gln Ser Ile Trp Leu 490	2380
AAACGCACAA AAATAAACAT ATGTATATAT AGACATACAC ACACACATAT ATATATAT	'AT 2440
ATTATTATTA TTATTTACAT ATACGTACAC ACAATTCCAT ATCGAGTTAA TATATACA	AT 2500
TCTGGCCTTC TTACCTAAAA AGATGATAGC TAAAAGAACC ACTTTTTTTA TGCATTTT	TT 2560
TCTTCGGGAA GGAAATTAAG GGGGAGCGGA GCACCTCTTG GCCAATTTGT TTTTTTTT	TA 2620
TGTAATAAAG GGCTAACGAT CGAAGATCAA TCACGAATAT TGGACGGTTT TAAAGGAG	GG 2680
CCTCTGAGAA GACAGCATCA ATTCGTATTT TCGATAATTA ACTTGCCTTA TAGTGTCT	GA 2740
TTAGGAAACA ATCACGAGAC GATAACGACG GAATACCAAG GAAGTTTGTG CAAATATA	.CA 2800
GCCGGCACAA ACAGCAGCTT CACTCAGGTT AACTCACATA CTGTTGAAAA TTGTCGGT	AT 2860
GGAATTCGTT GCAGAAAGGG CTCAGCCAGT TGGTCAAACA ATCCAGCAGC AAAATGTT	AA 2920
TACTTACGGG CAAGGCGTCC TACAACCGCA TCATGATTTA CAGCAGCGAC AACAACAA	CA 2980
ACAGCAGCGT CAGCATCAAC AACTGCTGAC GTCTCAGTTG CCCCAGAAAT CTCTCGTA	TC 3040
CAAAGGCAAA TATACACTAC ATGACTTCCA GATTATGAGA ACGCTTGGTA CTGGATCC	3098

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 494 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asp Leu Arg Val Gly Arg Lys Phe Arg Ile Gly Arg Lys Ile Gly 10

Ser Gly Ser Phe Gly Asp Ile Tyr His Gly Thr Asn Leu Ile Ser Gly Glu Glu Val Ala Ile Lys Leu Glu Ser Ile Arg Ser Arg His Pro Gln 40 Leu Asp Tyr Glu Ser Arg Val Tyr Arg Tyr Leu Ser Gly Gly Val Gly Ile Pro Phe Ile Arg Trp Phe Gly Arg Glu Gly Glu Tyr Asn Ala Met 65 70 75 80 Val Ile Asp Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Tyr Cys His Arg Arg Phe Ser Phe Lys Thr Val Ile Met Leu Ala Leu Gln Met Phe Cys Arg Ile Gln Tyr Ile His Gly Arg Ser Phe Ile His Arg Asp Ile Lys Pro Asp Asn Phe Leu Met Gly Val Gly Arg Arg Gly Ser Thr 135 Val His Val Ile Asp Phe Gly Leu Ser Lys Lys Tyr Arg Asp Phe Asp 155 150 Thr His Arg His Ile Pro Tyr Arg Glu Asn Lys Ser Leu Thr Gly Thr Ala Arg Tyr Ala Ser Val Asn Thr His Leu Gly Ile Glu Gln Ser Arg 185 Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Ile Tyr Phe Cys Lys 195 200 205 Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Thr Thr Lys Lys Gln Lys 210 215 220 Tyr Asp Arg Ile Met Glu Lys Lys Leu Asn Val Ser Val Glu Thr Leu 225 230 235 240 Cys Ser Gly Leu Pro Leu Glu Phe Gln Glu Tyr Met Ala Tyr Cys Lys Asn Leu Lys Phe Asp Glu Lys Pro Asp Tyr Leu Phe Leu Ala Arg Leu Phe Lys Asp Leu Ser Ile Lys Leu Glu Tyr His Asn Asp His Leu Phe 280 Asp Trp Thr Met Leu Arg Tyr Thr Lys Ala Met Val Glu Lys Gln Arg 290 295 300 Asp Leu Leu Ile Glu Lys Gly Asp Leu Asn Ala Asn Ser Asn Ala Ala 315 Ser Ala Ser Asn Ser Thr Asp Asn Lys Ser Glu Thr Phe Asn Lys Ile Lys Leu Leu Ala Met Lys Lys Phe Pro Thr His Phe His Tyr Tyr Lys 340 345 Asn Glu Asp Lys His Asn Pro Ser Pro Glu Glu Ile Lys Gln Gln Thr 360

-69-

									•							•
Ile	Leu 370		Asn	Asn	Ala	Ala 375	Ser	Ser	Leu	Pro	Glu 380	Glu	Leu	Leu	Asn	
Ala 385	Leu	Asp	Lys	Gly	Met 390	Glu	Asn	Leu	Arg	Gln 395	Gln	Gln	Pro	Gln	Gln 400	
Gln	Val	Gln	Ser	Ser 405	Gln	Pro	Gln	Pro	Gln 410	Pro	Gln	Gln	Leu	Gln 415	Gln	
Gln	Pro	Asn	Gly 420	Gln	Arg	Pro	Asn	Tyr 425	Tyr	Pro	Glu	Pro	Leu 430	Leu	Gln	
Gln	Gln	Gln 435	Arg	Asp	Ser	Gln	Glu 440	Gln	Gln	Gln	Gln	Val 445	Pro	Met	Ala	
Thr	Thr 450	Arg	Ala	Thr	Gln	Tyr 455	Pro	Pro	Gln	Ile	Asn 460	Ser	Asn	Asn	Phe	
Asn 465	Thr	Asn	Gln	Ala	Ser 470	Val	Pro	Pro	Gln	Met 475	Arg	Ser	Asn	Pro	Gln 480	
Gln	Pro	Pro	Gln	Asp 485	Lys	Pro	Ala	Gly	Gln 490	Ser	Ile	Trp	Leu			
	(ii) (vii) (ix)	(E) MOI (IMM) (E) FEA (A) (E) (E) SEQ	ECUI ECUI ECUI ECUI ECUI ECUI ECUI ECUI	ENGTH PE: TRANI DPOLO LE TY ATE S LONE: AME/K DCATI	PE: COURCEY: COURCEY: COURCEY: CON:	leic Ess: line DNA CE: cteir CDS 113.	oase acic sing ear (ger Nir	paingle nomiconase	cd no		TTPC	·	ecc (cecci	\GTGTG	60
					_			TTA			•					115
														Me	it 1	
GCT Ala	TTG Leu	GAC Asp	CTC Leu 5	CGG Arg	ATT Ile	GGG Gly	AAC Asn	AAG Lys 10	TAT Tyr	CGC Arg	ATT Ile	GGT Gly	CGT Arg 15	AAA Lys	ATT Ile	163
GGC Gly	AGT Ser	GGA Gly 20	TCT Ser	TTC Phe	GGA Gly	GAC Asp	ATT Ile 25	TAT Tyr	CTT Leu	Gly	ACT Thr	AAT Asn 30	GTC Val	GTT Val	TCT Ser	211
GGT Gly	GAA Glu 35	GAG Glu	GTC Val	GCT Ala	ATC Ile	AAG Lys 40	CTA Leu	GAA Glu	TCA Ser	ACT Thr	CGT Arg 45	GCT Ala	AAA Lys	CAC His	CCT Pro	259
CAA Gln 50	TTG Leu	GAG Glu	TAT Tyr	GAA Glu	TAC Tyr 55	AGA Arg	GTT Val	TAT Tyr	CGC Arg	ATT Ile 60	TTG Leu	TCA Ser	GGA Gly	Gly	GTC Val 65	307

-70-

																•
											TGT					355
	_				-	_				_	GAC Asp					403
											CTC Leu					451
											TCT Ser 125					499
											GGT Gly					547
										Lys	AAG Lys					595
											AAG Lys					643
											GGT Gly					691
CGC Arg	CGT Arg 195	GAT Asp	GAC Asp	CTC Leu	GAA Glu	TCT Ser 200	TTA Leu	GGT Gly	TAT Tyr	GTG Val	CTC Leu 205	GTC Val	TAC Tyr	TTT Phe	TGT	739
											ACC Thr					787
AAG Lys	TAT Tyr	GAA Glu	AAG Lys	ATT Ile 230	ATG Met	GAG Glu	AAG Lys	AAG Lys	ATC Ile 235	TCT Ser	ACG Thr	CCT Pro	ACA Thr	GAG Glu 240	GTC Val	835
TTA Leu	TGT Cys	CGG Arg	GGA Gly 245	TTC Phe	CCT Pro	CAG Gln	GAG Glu	TTC Phe 250	TCA Ser	ATT Ile	TAT Tyr	CTC Leu	AAT Asn 255	TAC Tyr	ACG Thr	883
AGA Arg	TCT Ser	TTA Leu 260	CGT Arg	TTC Phe	GAT Asp	GAC Asp	AAA Lys 265	CCT Pro	GAT Asp	TAC Tyr	GCC Ala	TAC Tyr 270	CTT Leu	CGC Arg	AAG Lys	931
CTT Leu	TTC Phe 275	CGA Arg	GAT Asp	CTT Leu	TTT Phe	TGT Cys 280	CGG Arg	CAA Gln	TCT Ser	TAT Tyr	GAG Glu 285	TTT Phe	GAC Asp	TAT Tyr	ATG Met	979
TTT Phe 290	GAT Asp	TGG Trp	ACC Thr	TTG Leu	AAG Lys 295	AGA Arg	AAG Lys	ACT Thr	CAA Gln	CAA Gln 300	GAC Asp	CAA Gln	CAA Gln	CAT His	CAG Gln 305	1027
CAG Gln	CAA Gln	TTA Leu	CAG Gln	CAA Gln 310	CAA Gln	CTG Leu	TCT Ser	GCA Ala	ACT Thr 315	CCT Pro	CAA Gln	GCT Ala	ATT Ile	AAT Asn 320	CCG Pro	1075
CCG Pro	CCA Pro	GAG Glu	AGG Arg 325	TCT Ser	TCA Ser	TTT Phe	AGA Arg	AAT Asn 330	TAT Tyr	CAA Gln	AAA Lys	CAA Gln	AAC Asn 335	TTT Phe	GAT Asp	1123

-71-

GAA Glu	AAA Lys	GGC Gly 340	Gly	Asp	ATT Ile	AAT Asn	ACA Thr 345	ACC Thr	GTT Val	CCT Pro	GTT Val	ATA Ile 350	RAA 18A	GAT Asp	CCA Pro		1171
			GGA Gly									TGAT	CAT	CCT			1217
TTCF	TATI	'AT	TATT	ATATA	G C	ATGGO	CAC	A TT	ATTT	TAT	ATT	rtcti	CT	CATC	rgga	3 T	1277
CTTC	CAAI	'AC	TTGC	CTTTI	A TO	CTC	CAGAC	GTO	CTT	TAAT	TTTC	STTGA	ATA	GCGC	AGGG	CT	1337
TTTI	CCTI	GG (GATGO	CGAA	LA GI	TACT	TTGC	TT	TAG	ATT	TTG	AGGGI	TC	ATAGO	CTTA:	ГT	1397
TGGC	TGAA	GA '	TCTTC	TGTI	G AC	CTTA	ATTC	TAT	GCT	AACC	TCAT	CATC	CAT	ATCC	CAT	ra	1457
TGGC	AAGI	TT:	TGGT	AAAA	A T	TTTT	TAAT	A TT	GTAC	CATT	TGC	ATAAT	LAT	ACATT	TGG	ra	1517
TTTG	TTTI	TA (CTACC	CTGTG	A A	CTAT	TCAI	AC	TTAT	CAT	ATAT	rgtti	CG	AGCC	AGGA	AC	15 7 7
AGAA	AAAA	GT (GAGAC	AATI	T TO	CTGC	AGAAA	A TGF	ATCA1	TAAT	TTT	ATCTI	CG	CTTA	CAC	3A	1637
ATCC	TGGT	GA (CAGAI	TATO	G TO	GTTI	DAAAT	cci	TTTT	TTT	ACG	CGCC	AT	AAGC	LAATI	rG	1697
GTTA	CTTI	TT :	TATGI	rgtga	T G?	AGCCI	TGGG	GTI	TAAT	CTA	ATT	AGAAG	GC	ATTGO	CATTO	CA	1757
TATA	CTTI	TA Z	CAATA	TATAT	T AT	CAGO	TATI	TGC	TGCI	TTT	CTTT	TATAG	AT	ACCGI	CTT	T	1817
CCAA	GCTG	AA (CTCAT	TTAA	T C	GCGI	CGTI	TAP	CCTI	AGG	ATGO	AATTS	GA	TGCGI	TTA	Y A	1877
TTCA	ATGA	ĊT :	TAATO	CTCG	A GO	GATO	AATG	GTI	TGTI	TTA	GTTC	GTGT	TC	TGGG1	GCAT	rG	1937
ATCI	CGTG	CT :	TGACT	GTTT	LA T	TGA#	GCGI	TCA	TTTC	CATG	AAGI	GTCT	TT	CGATO	TTGI	T	1997
CACA	CTTC	TG :	TTTGC	TAAA	LA T	TAAT	AATA	TTI	TGCI	TTT	CACT	TTAG	AG	CACAC	TGG	CG	2057
GCCG	CTCG	AA (GCTTI	GGAC	T TO	CTTCC	CCAT	TGG	TCAP	GTC	TCC	ATCA	AG	GTTGI	CGGC	T	2117
TGTC	TACC	TT (GCCAG	TAAA	T T	CGAP	AAGA	TGG	AAA	\GGG	ATC	TAAA	.ce	TTGGI	AGAT	CA.	2177
CTTG	TTGA	CA (CTTCI	TAAAT	'A AC	CGAA	TTTC	TTA	TGAT	TTA	TGAT	TTTT	'AT	TATTA	LAAT	A A	2237
GTTA	AAAT.	AA I	AAATA	AGGT	A TA	CAAP	TTTI	. AAA	GTGA	CTC	TTAG	GTTT	'TA	AAAC	AAA	AΤ	2297
TCTT	ATTC	TT (GAGTA	ACTO	T TI	CCTG	TAGG	TCA	GGTI	GCT	TTCI	CAGG	TA	TAGCA	TGAG	G G	2357
TCGC	TCTT	AT :	IGAC C	CACAC	C TC	TACC	GGCA	TGC	CGAG	CAA	ATGO	CTGC	AA	ATCGC	TCC	cc	2417
ATTT	CACC	CA I	ATTGI	AGAT	A TO	CTAP	CTCC	: AGC	AATG	AGC	CGAT	GAAT	CT	CC			2469

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 365 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ala Leu Asp Leu Arg Ile Gly Asn Lys Tyr Arg Ile Gly Arg Lys 1 5 10 15

Ile Gly Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Thr Asn Val Val 20 25 30

21

Ser Gly Glu Glu Val Ala Ile Lys Leu Glu Ser Thr Arg Ala Lys His Pro Gln Leu Glu Tyr Glu Tyr Arg Val Tyr Arg Ile Leu Ser Gly Gly Val Gly Ile Pro Phe Val Arg Trp Phe Gly Val Glu Cys Asp Tyr Asn Ala Met Val Met Asp Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys Asn Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Ala Asp Gln Leu Ile Ser Arg Ile Glu Phe Ile His Ser Lys Ser Phe Leu His Arg Asp Ile Lys Pro Asp Asn Phe Leu Met Gly Ile Gly Lys Arg Gly Asn Gln Val Asn Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp His Lys Thr His Leu His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln 185 Ser Arg Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Val Tyr Phe 200 Cys Arg Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Thr Thr Lys Lys 210 225 220 Gln Lys Tyr Glu Lys Ile Met Glu Lys Lys Ile Ser Thr Pro Thr Glu Val Leu Cys Arg Gly Phe Pro Gln Glu Phe Ser Ile Tyr Leu Asn Tyr Thr Arg Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ala Tyr Leu Arg 260 265 270 Lys Leu Phe Arg Asp Leu Phe Cys Arg Gln Ser Tyr Glu Phe Asp Tyr Met Phe Asp Trp Thr Leu Lys Arg Lys Thr Gln Gln Asp Gln Gln His Gin Gin Gin Leu Gin Gin Leu Ser Ala Thr Pro Gin Ala Ile Asn Pro Pro Pro Glu Arg Ser Ser Phe Arg Asn Tyr Gln Lys Gln Asn Phe 330 Asp Glu Lys Gly Gly Asp Ile Asn Thr Thr Val Pro Val Ile Asn Asp Pro Ser Ala Thr Gly Ala Gln Tyr Ile Asn Arg Pro Asn

-73-

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1989 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Protein Kinase
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 50..1249
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CCGCCAGTGT GCTCTAA	AGG TCATCTCTGT G	AATTAGAAT CTTAGCAAA ATG ACG Met Thr 1	55
		A TAT CGT ATA GGT AGA AAA ATT s Tyr Arg Ile Gly Arg Lys Ile 15	103
		C CTG GGA TTA AAT ACG GTA AAT r Leu Gly Leu Asn Thr Val Asn 30	151
		G CCT TTA AAG GCT CGT CAT CAT u Pro Leu Lys Ala Arg His His 45 50	199
	Phe Arg Val Ty	T AAT ATT CTT AAA GGA AAT ATT r Asn Ile Leu Lys Gly Asn Ile 60 65	247
		T GTA ACC AAT AGT TAT AAT GCT y Val Thr Asn Ser Tyr Asn Ala 5 80	295
		T CTG GAA GAT TTA TTC TGC TAT r Leu Glu Asp Leu Phe Cys Tyr 95	343
		G GTT CTT TTA CTT GCT GAT CAA r Val Leu Leu Ala Asp Gln 110	391
		C TCC AAG TCA TTC TTA CAT CGA s Ser Lys Ser Phe Leu His Arg 125 130	439
	Asn Phe Leu Met	G AAG AAG CAC AGC AAT GTT GTT t Lys Lys His Ser Asn Val Val 140 145	487
		A AAA TAC AGG GAT TTT AAA ACT s Lys Tyr Arg Asp Phe Lys Thr 5 160	535

CAT His	GTT Val	CAT His 165	ATT Ile	CCA Pro	TAT	CGA Arg	GAT Asp 170	AAT Asn	AAG Lys	AAT Asn	CTT Leu	ACG Thr 175	GGA Gly	ACG Thr	GCT Ala	58
CGA Arg	TAT Tyr 180	GCT Ala	AGT Ser	ATT Ile	AAC Asn	ACC Thr 185	CAT His	ATT Ile	GGT Gly	ATT Ile	GAA Glu 190	CAA Gln	TCT Ser	CGC Arg	CGT Arg	63
GAT Asp 195	GAC Asp	CTC Leu	GAA Glu	TCG Ser	TTA Leu 200	GGT Gly	TAT Tyr	GTT Val	TTA Leu	CTT Leu 205	TAT Tyr	TTT	TGT Cys	CGC Arg	GGC Gly 210	67
														AAG Lys 225		72
CAA Gln	CGG Arg	ATA Ile	CGT Arg 230	GAT Asp	ACC Thr	AAG Lys	ATT Ile	GGC Gly 235	ACT Thr	CCT Pro	TTG Leu	GAA Glu	GTC Val 240	CTT Leu	TGC Cys	77
AAA Lys	GGT Gly	CTT Leu 245	CCC Pro	GAA Glu	GAG Glu	TTT Phe	ATC Ile 250	ACT Thr	TAC Tyr	ATG Met	TGT Cys	TAC Tyr 255	ACT Thr	CGT Arg	CAG Gln	82.
CTT Leu	TCG Ser 260	TTT Phe	ACC Thr	GAG Glu	AAG Lys	CCA Pro 265	AAC Asn	TAT Tyr	GCT Ala	TAT Tyr	TTG Leu 270	AGA Arg	AAG Lys	CTG Leu	TTT Phe	87
CGT Arg 275	GAT Asp	TTA Leu	CTT Leu	ATT Ile	CGT Arg 280	AAA Lys	GGA Gly	TAC Tyr	CAG Gln	TAT Tyr 285	GAC Asp	TAT Tyr	GTT Val	TTT Phe	GAC Asp 290	919
TGG Trp	ATG Met	ATA Ile	TTA Leu	AAA Lys 295	TAC Tyr	CAA Gln	AAG Lys	CGA Arg	GCT Ala 300	GCT Ala	GCT Ala	GCT Ala	GCC Ala	GCC Ala 305	GCT Ala	96
TCT Ser	GCT Ala	ACA Thr	GCA Ala 310	CCT Pro	CCA Pro	CAG Gln	GTT Val	ACA Thr 315	TCT Ser	CCT Pro	ATG Met	GTG Val	TCA Ser 320	CAA Gln	ACT Thr	101
CAA Gln	CCG Pro	GTT Val 325	TAA Asn	CCC Pro	ATT Ile	ACT Thr	CCT Pro 330	AAT Asn	TAT Tyr	TCA Ser	TCC Ser	ATT Ile 335	CCC Pro	TTA Leu	CCT Pro	106:
GCT Ala	GAG Glu 340	CGG Arg	AAT Asn	CCA Pro	AAG Lys	ACT Thr 345	CCA Pro	CAA Gln	TCT Ser	TTC Phe	TCC Ser 350	ACT Thr	AAT Asn	ATT Ile	GTT Val	,111:
CAA Gln 355	TGT Cyb	GCT Ala	TCT Ser	CCC Pro	TCA Ser 360	CCT Pro	CTT Leu	CCT Pro	CTC Leu	TCC Ser 365	TTT Phe	CGT Arg	TCT Ser	CCT Pro	GTT Val 370	1159
CCC Pro	AAC Asn	AAA Lys	GAT Asp	TAT Tyr 375	GAA Glu	TAC Tyr	ATT Ile	CCA Pro	TCT Ser 380	TCG Ser	TTG Leu	CAA Gln	CCT Pro	CAA Gln 385	TAC Tyr	1201
AGT Ser	GCT Ala	CAA Gln	CTG Leu 390	AGG Arg	CGT Arg	GTT Val	TTA Leu	GAT Asp 395	GAA Glu	GAA Glu	CCA Pro	GCT Ala	CCT Pro 400			1249
TGAT	TTTT	TG A	CTTT	ACTI	T TC	ATCA	ATTC	CTC	TCTI	'ACA	CTAC	GTCI	TT 1	TAGTO	TTAAA	1309
TCC	AAAC	CA T	CTGT	TGAC	G TT	TTAA	AGTT	CCA	CAAA	TAT	CTTI	'AATA	TAL	CCTG	GCTTI	1369
TTT	TTTG	TC T	ATGG	ATGG	c cc	GATT	GCTA	CAC	TAAT	ACA	CTTI	GAGG	TT 1	AGCI	ATTGI	1429
TTG	AGCT	AT T	CCAT	TTTG	с ст	AGAA	GTTG	AGT	ጥጥጥል	ATG	ССТ	بململت	ייייןיי ב	בדבב	GACAT	1489

ATTGTGTAAA	CCTCATACAT	GCTTTACTGA	AAAGACATAA	TTAGAGGACA	AAATTTAAAT	1549
CGTGCTGTTT	GTTTATATTC	AGCTCGTTCC	GGTCAAGTTC	TTGCCAAAGA	ATTGAGTCAG	1609
TCGTGCTATT	CATTTCTAAA	TTTCTTCTTC	CCAGAATTTT	ATTTTATTGT	TTTCGTTCCC	1669
CATTGGTTCT	TACATTCCGT	TTTTATTCAA	AACTGAAAAG	TTTGTACCTC	CATTGCTAGA	1729
AGTAATATAC	ACAAGGAGCA	TGTTTCTTTT	TTTACACTAT	CATTTGCGTG	GCTCTAAACC	1789
AGTCTTTATT	GCCTACCTTT	GCAATAAAAG	ATATAATATC	AATTGCATAA	GAAATAATTC	1849
TAATAATT	GATAAATTTC	ATCGATTAAA	TAAAAAAAA	AAACTTTAGA	GCTTTAGAGC	1909
ACAACTGGCG	GCCGCTCGAA	GCTTTGGACT	TCTTCGCCAT	TGGTCAAGTC	TCAATCAAGG	1969
TTGTCGGCTT	GTCTACCTTC					1989

(2) INFORMATION FOR SEQ ID NO:6:

180

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Thr Val Val Asp Ile Lys Ile Gly Asn Lys Tyr Arg Ile Gly Arg Lys Ile Gly Ser Gly Ser Phe Gly Gln Ile Tyr Leu Gly Leu Asn Thr 20 25 30 Val Asn Gly Glu Gln Val Ala Val Lys Leu Glu Pro Leu Lys Ala Arg His His Gln Leu Glu Tyr Glu Phe Arg Val Tyr Asn Ile Leu Lys Gly Asn Ile Gly Ile Pro Thr Ile Arg Trp Phe Gly Val Thr Asn Ser Tyr Asn Ala Met Val Met Asp Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Cys Tyr Cys Gly Arg Lys Phe Thr Leu Lys Thr Val Leu Leu Ala Asp Gln Leu Ile Ser Arg Ile Glu Tyr Val His Ser Lys Ser Phe Leu His Arg Asp Ile Lys Pro Asp Asn Phe Leu Met Lys Lys His Ser Asn Val Val Thr Met Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Phe Lys Thr His Val His Ile Pro Tyr Arg Asp Asn Lys Asn Leu Thr Gly Thr Ala Arg Tyr Ala Ser Ile Asn Thr His Ile Gly Ile Glu Gln Ser

Arg	Arg	Asp 195	Asp	Leu	Glu	Ser	Leu 200	Gly	Tyr	Val	Leu	Leu 205	Tyr	Phe	Cys
Arg	Gly 210	Ser	Leu	Pro	Trp	Gln 215	Gly	Leu	Gln	Ala	Asp 220	Thr	Lys	Glu	Gln
Lys 225	Tyr	Gln	Arg	Ile	Arg 230	Asp	Thr	Lys	Ile	Gly 235	Thr	Pro	Leu	Glu	Val 240
Leu	CAa	Lys	Gly	Leu 245	Pro	Glu	Glu	Phe	Ile 250	Thr	Tyr	Met	Сув	Tyr 255	Thr
Arg	Gln	Leu	Ser 260	Phe	Thr	Glu	Lys	Pro 265	Asn	Tyr	Ala	Tyr	Leu 270	Arg	Lys
Leu	Phe	Arg 275	Asp	Leu	Leu	Ile	Arg 280	Lys	Gly	Tyr	Gln	Tyr 285	Asp	Tyr	Val
Phe	Asp 290	Trp	Met	Ile	Leu	Lys 295	Tyr	Gln	Lys	Arg	Ala 300	Ala	Ala	Ala	Ala
Ala 305	Ala	Ser	Ala	Thr	Ala 310	Pro	Pro	Gln	Val	Thr 315	Ser	Pro	Met	Val	Ser 320
Gln	Thr	Gln	Pro	Val 325	Asn	Pro	Ile	Thr	Pro 330	Asn	Tyr	Ser	Ser	Ile 335	Pro
Leu	Pro	Ala	Glu 340	Arg	Asn	Pro	Lys	Thr 345	Pro	Gln	Ser	Phe	Ser 350	Thr	Asn
Ile	Val	G1n 355	Сув	Ala	Ser	Pro	Ser 360	Pro	Leu	Pro	Leu	Ser 365	Phe	Arg	Ser
Pro	Val 370	Pro	Asn	Lys	Asp	Tyr 375	Glu	Tyr	Ile	Pro	Ser 380	Ser	Leu	Gln	Pro
Gln 385	Tyr	Ser	Ala	Gln	Leu 390	Arg	Arg	Val	Leu	Asp 395	Glu	Glu	Pro	Ala	Pro 400

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1210 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Protein Kinase
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 173..1147
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGCGGTGATC AGTTCCCCTC TGCTGATTCT GGGCCCGAAC CCGGTAAAGG CCTCCGTGTT 60 CCGTTTCCTG CCGCCCTCCT CCGTAGCCTT GCCTAGTGTA GGAGCCCCGA GGCCTCCGTC 120

-77-

CTC	TTCC	CAG	AGGT(GTCG	GG G	CTTG	ccci	A GC	CTCC	ATCT	TCG'	TCTC:	CA (rg et 1	175
					TCC Ser										223
					ATC Ile										271
					AAC Asn						_				319
					CCC Pro 55										367
					GTT Val										415
					GTA Val										463
					TTC Phe										511
					CAG Gln										559
			_		AGA Arg 135										607
_	_				AAT Asn								_		655
					AAC Asn										703
					GGC Gly										751
					AGT Ser										799
					AAT Asn 215										847
					CAA Gln										895
					GTT Val										943

WO 94/17189 PCT/US94/00795

-78-

	TAC Tyr														 991
	ATG Met 275														1039
	CAA Gln														1087
	CAG Gln												_	_	1135
	ACA Thr			TAAC	CATO	AA 1	TGAC	GAA(CA GI	\AGAI	AGCA	G AGO	CAGA!	igat	1187
CGA	CGAGCAGCAT TTGTTTCTCC CAA 1210														

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 325 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

165

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

 Met
 Ala
 Ser
 Ser
 Gly
 Ser
 Lys
 Ala
 Glu
 Phe
 Ile
 Val
 Gly
 Lys
 Lys
 Ile
 Gly
 Ser
 Gly
 Ser
 Phe
 Gly
 Asp
 Ile
 Tyr
 Apr
 Lys
 Lys
 Ile
 Gly
 Gly
 Gly
 Ser
 Phe
 Gly
 Asp
 Ile
 Tyr

 Leu
 Ala
 Ile
 Thr
 Asn
 Gly
 Glu
 Glu
 Val
 Ala
 Val
 Lys
 Leu
 Lys
 Leu
 Glu
 Ser
 Lys
 Leu
 Lys
 Leu
 Tyr
 Glu
 Ser
 Lys
 Leu
 Tyr
 Gly
 Ile
 Ile
 Ile
 Arg
 Ile
 Ile
 Ile
 Arg
 Ile
 Ile

PCT/US94/00795 WO 94/17189

-79-

Glu	Asp	Lys	Asn 180	Leu-	Thr	Gly	Thr	Ala 185	Arg	Tyr	Ala	Ser	Ile 190	Asn	Ala
His	Leu	Gly 195	Ile	Glu	Gln	Ser	Arg 200	Arg	Asp	Asp	Met	Glu 205	Ser	Leu	Gly
Tyr	Val 210	Leu	Met	Tyr	Phe	Asn 215	Arg	Thr	Ser	Leu	Pro 220	Trp	Gln	Gly	Leu
Lys 225	Ala	Ala	Thr	Lys	Lys 230	Gln	Lys	Tyr	Glu	Lys 235	Ile	Ser	Glu	Lys	Lys 240
Met	Ser	Thr	Pro	Val 245	Glu	Val	Leu	Cys	Lys 250	Gly	Phe	Pro	Ala	Glu 255	Phe
Ala	Met	Tyr	Leu 260	Asn	Tyr	Сув	Arg	Gly 265	Leu	Arg	Phe	Glu	Glu 270	Ala	Pro
Asp	Tyr	Met 275	Tyr	Leu	Arg	Gln	Leu 280	Phe	Arg	Ile	Leu	Phe 285	Arg	Thr	Leu
Asn	His 290	Gln	Tyr	Asp	Tyr	Thr 295	Phe	Asp	Trp	Thr	Met 300	Leu	Lys	Gln	Lys
Ala 305	Ala	Gln	Gln	Ala	Ala 310	Ser	Ser	Ser	Gly	Gln 315	Gly	Gln	Gln	Ala	Gln 320
Thr	Pro	Thr	Gly	Phe											

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2385 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 297..1388

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAATTCCGAT AGTATTATGT	GGAGTTCCAT TTTTATGTAT	TTTTTGTATG AAATATTCTA	60
GTATAAGTAA ATATTTTATC	AGAAGTATTT ACATATCTTT	TTTTTTTTTA GTTTGAGAGC	120
GGCGGTGATC AGGTTCCCCT	CTGCTGATTC TGGGCCCCGA	ACCCCGGTAA AGGCCTCCGT	180
GTTCCGTTTC CTGCCGCCCT	CCTCCGTAGC CTTGCCTAGT	GTAGGAGCCC CGAGGCCTCC	240
GTCCTCTTCC CAGAGGTGTC	GGGGCTTGGC CCCAGCCTCC	ATCTTCGTCT CTCAGG	296
	GC TCC AAG GCT GAA TTC ly Ser Lys Ala Glu Phe 10		344
	AG ATC GGG TCT GGC TCC ys Ile Gly Ser Gly Ser 25		392

TTG Leu	GCG Ala	ATC Ile 35	Asn	ATC Ile	ACC Thr	AAC Asn	GGC Gly 40	GAG Glu	GAA Glu	GTG Val	GCA Ala	GTG Val 45	AAG Lys	CTA Leu	GAA Glu	440
TCT Ser	CAG Gln 50	AAG Lys	GCC Ala	AGG Arg	CAT His	CCC Pro 55	CAG Gln	TTG Leu	CTG Leu	TAC Tyr	GAG Glu 60	AGC Ser	AAG Lys	CTC Leu	TAT Tyr	488
						GTT Val										536
						GTA Val										584
CTC Leu	GAA Glu	GAC Asp	CTC Leu 100	TTC Phe	AAT Asn	TTC Phe	TGT	TCA Ser 105	AGA Arg	AGG Arg	TTC Phe	ACA Thr	ATG Met 110	AAA Lys	ACT Thr	632
GTA Val	CTT Leu	ATG Met 115	TTA Leu	GCT Ala	GAC Asp	CAG Gln	ATG Met 120	ATC Ile	AGT Ser	AGA Arg	ATT	GAA Glu 125	TAT Tyr	GTG Val	CAT His	680
Thr	Lys 130	Asn	Phe	Ile	His	AGA Arg 135	Asp	Ile	Lys	Pro	Asp 140	Asn	Phe	Leu	Met	728
Gly 145	Ile	Gly	Arg	His	Cys 150	AAT Asn	Lys	Сув	Leu	Glu 155	Ser	Pro	Val	Gly	Lys 160	776
Arg	Lys	Arg	Ser	Met 165	Thr	GTT Val	Ser	Thr	Ser 170	Gln	Asp	Pro	Ser	Phe 175	Ser	824
Gly	Leu	Asn	Gln 180	Leu	Phe	CTT Leu	Ile	Asp 185	Phe	Gly	Leu	Ala	Lys 190	Lys	Tyr	872
Arg	Asp	As n 195	Arg	Thr	Arg	CAA Gln	His 200	Ile	Pro	Tyr	Arg	Glu 205	Asp	Lys	Asn	920
Leu	Thr 210	Gly	Thr	Ala	Arg	TAT Tyr 215	Ala	Ser	Ile	Asn	Ala 220	His	Leu	Gly	Ile	968
Glu 225	Gln	Ser	Arg	Arg	Авр 230	Asp	Met	Glu	Ser	Leu 235	Gly	Tyr	Val	Leu	Met 240	1016
Tyr	Phe	Asn	Arg	Thr 245	Ser	CTG Leu	Pro	Trp	Gln 250	Gly	Leu	Lys	Ala	Ala 255	Thr	1064
AAG Lys	AAA Lys	CAA Gln	AAA Lys 260	TAT Tyr	GAA Glu	AAG Lys	ATT Ile	AGT Ser 265	GAA Glu	AAG Lys	AAG Lys	ATG Met	TCC Ser 270	ACG Thr	CCT Pro	1112
Val	Glu	Val 275	Leu	Сув	Lys	GGG Gly	Phe 280	Pro	Ala	Glu	Phe	Ala 285	Met	Tyr	Leu	1160
AAC Asn	TAT Tyr 290	TGT Cys	CGT Arg	GGG Gly	CTA Leu	CGC Arg 295	TTT Phe	GAG Glu	GAA Glu	GCC Ala	CCA Pro 300	GAT Asp	TAC Tyr	ATG Met	TAT Tyr	1208

-81-

CTG AGG C Leu Arg G 305	AG CTA	Phe A	GC ATT	CTT Leu	TTC Phe	AGG Arg	ACC Thr 315	CTG Leu	AAC Asn	CAT His	CAA Gln	TAT Tyr 320	12!	56
		-												
GAC TAC A Asp Tyr T							Gln						130	
GCA GCC T Ala Ala S	CT TCC er Ser 340	AGT GO	GG CAG Ly Gln	GGT Gly	CAG Gln 345	CAG Gln	GCC Ala	CAA Gln	ACC Thr	CCC Pro 350	Thr	GGC Gly	13	52
AAG CAA A Lys Gln T 3	CT GAC hr Asp 55	AAA AG Lys Ti	CC AAG	AGT Ser 360	AAC Asn	ATG Met	AAA Lys	GGT Gly	TAGT	AGC	CAA		139	98
GAACCAAGT	G ACGT	racagg	GAAAA	AATTG	TAA :	ACAP	TAA	TGGG	TAAT	TC.	ATTTC	CTAACA	14	58
GTGTTAGAT	C AAGG	AGGTGG	TTTTA	AAATA	CAT	'AAAA'	TTAL	TGGC	TCTG	CG	KAATT	AAAAA	15	18
AAAAGACGT	C CTTG	TAAAA	TTGAC	CACTA	ACI	TTAF	ACC	CAAA	TGTC	CT	TGTTC	CATATA	15	78
TATGTATAT	G TATT	CTATA	TACATA	TATG	TGI	GTAT	TTAT	TATA	TCAT	TT	CTCTI	GGGAT	163	38
TTTGGGTCA	T TTTT	TAACA	ACTGC	ATCTI	TTI	TACI	CAT	TCAT	TAAC	cc ·	CCTTI	CCAAA	169	98
AATTTGGTG	T TGGG!	ATATA	ATATA	ATCAA	TCA	ATC	AAA	ATCC	TAGA	CC	TAAC	CTTGT	17!	58
TGATTTCTA	A TAATO	SAATTT	GGTTAG	CCAT	ATI	TTGA	CTT	TATI	TCAG	AC	TAAC	ATGTT	18:	18
AAGATTTT	T ATTT	CCATG	TTAATO	CTTT	AGC	TTA	'AAA'	ATGG	AAAA	TT	GTGA	CATGT	18	78
TGTAATTTC	A AGAGO	STGAGT	TTGGC	ATTAC	ccc	CAAA	GTG	TCTA	TCTT	CT	CAGTI	CGCAGA	19:	38
GCATCTCAT	T TICTO	CTCTTA	AATGCT	CAAA	TAP	ATGO	AAA	GCTC	AGCA	CA	TCTTI	TCTAG	199	98
TCACAAAA	T AATTO	CTTTTA	TTTGC	GTTI	ACG	TATO	ATC	TTAA	TTTC	AA .	AACG?	TTTCT	20!	58
TTGTTTTTG	G CTTG	TTTTT	CACAA	rGTTG	CAA	LATAI	CAG	GCTC	CCAG	GG	TTTA	ATGTGG	21:	18
AATTGAAGT	C TGCA	CCAGG	CCTTG	CAAAT	TGA	\AGG1	AAC	TGGG	GCAA	AT	GCCAT	TGAAA	21	78
CCGCTAGTC	T TATTI	CCTTT	CTACT	rttci	TTG	GCAC	TCT	TACI	GCCI	GT.	AAGG!	AGTAGA	22	38
ACTGTTAAG	G CACAC	CTGTTG	CTATAC	CAGTI	AAC	CTCCC	ATT	TTCA	TGTI	TT	GTCTI	TTTTT	229	98
TCCCATTTC	T GGGG	CTTACC	TCCTG	ATACC	: TGC	TTAC	TTT	CTGG	AAGT	'AG	TGGG	CAAGTA	23!	58
AGATTTGGC													23	85

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 364 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Ala Ser Ser Ser Gly Ser Lys Ala Glu Phe Ile Val Gly Gly Lys
1 10 15

Tyr Lys Leu Val Arg Lys Ile Gly Ser Gly Ser Phe Gly Asp Ile Tyr 20 25 Ser Phe Gly Asp Ile Tyr 30

Leu Ala Ile Asn Ile Thr Asn Gly Glu Glu Val Ala Val Lys Leu Glu Ser Gln Lys Ala Arg His Pro Gln Leu Leu Tyr Glu Ser Lys Leu Tyr Lys Ile Leu Gln Gly Gly Val Gly Ile Pro His Ile Arg Trp Tyr Gly 65 70 75 80 Gln Glu Lys Asp Tyr Asn Val Leu Val Met Asp Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys Ser Arg Arg Phe Thr Met Lys Thr Val Leu Met Leu Ala Asp Gln Met Ile Ser Arg Ile Glu Tyr Val His Thr Lys Asn Phe Ile His Arg Asp Ile Lys Pro Asp Asn Phe Leu Met Gly Ile Gly Arg His Cys Asn Lys Cys Leu Glu Ser Pro Val Gly Lys Arg Lys Arg Ser Met Thr Val Ser Thr Ser Gln Asp Pro Ser Phe Ser 170 Gly Leu Asn Gln Leu Phe Leu Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Asn Arg Thr Arg Gln His Ile Pro Tyr Arg Glu Asp Lys Asn Leu Thr Gly Thr Ala Arg Tyr Ala Ser Ile Asn Ala His Leu Gly Ile Glu Gln Ser Arg Arg Asp Asp Met Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Arg Thr Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Lys Gln Lys Tyr Glu Lys Ile Ser Glu Lys Lys Met Ser Thr Pro Val Glu Val Leu Cys Lys Gly Phe Pro Ala Glu Phe Ala Met Tyr Leu Asn Tyr Cys Arg Gly Leu Arg Phe Glu Glu Ala Pro Asp Tyr Met Tyr Leu Arg Gln Leu Phe Arg Ile Leu Phe Arg Thr Leu Asn His Gln Tyr Asp Tyr Thr Phe Asp Trp Thr Met Leu Lys Gln Lys Ala Ala Gln Gln Ala Ala Ser Ser Gly Gln Gly Gln Gln Ala Gln Thr Pro Thr Gly Lys Gln Thr Asp Lys Thr Lys Ser Asn Met Lys Gly

-83-

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2914 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 265..1275
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GAATTCCCGA GAAACAAGTG GCCCAGCC	TG GTAACCGCCG AGAAGCCCTT CACAAACTGC 60
GGCCTGGCAA AAAGAAACCT GACTGAGC	GG CGGTGATCAG GTTCCCCTCT GCTGATTCTG 120
GGCCCGAAC CCCGGTAAAG GCCTCCGT	GT TCCGTTTCCT GCCGCCCTCC TCCGTAGCCT 180
TGCCTAGTGT AGGAGCCCCG AGGCCTCC	GT CCTCTTCCCA GAGGTGTCGG GGCTTGGCCC 240
	GCG AGT AGC AGC GGC TCC AAG GCT 291 Ala Ser Ser Ser Gly Ser Lys Ala 5
	T AAA CTG GTA CGG AAG ATC GGG TCT 339 r Lys Leu Val Arg Lys Ile Gly Ser 20 25
	G GCG ATC AAC ATC ACC AAC GGC GAG u Ala Ile Asn Ile Thr Asn Gly Glu 35 40
	T CAG AAG GCC AGG CAT CCC CAG TTG 435 r Gln Lys Ala Arg His Pro Gln Leu 50 55
	G ATT CTT CAA GGT GGG GTT GGC ATC s Ile Leu Gln Gly Gly Val Gly Ile 5 70
	G GAA AAA GAC TAC AAT GTA CTA GTC 531 n Glu Lys Asp Tyr Asn Val Leu Val 85
	C GAA GAC CTC TTC AAT TTC TGT TCA 579 u Glu Asp Leu Phe Asn Phe Cys Ser 100 105
	A CTT ATG TTA GCT GAC CAG ATG ATC 1 Leu Met Leu Ala Asp Gln Met Ile 115 120
	A AAG AAT TTT ATA CAC AGA GAC ATT 675 r Lys Asn Phe Ile His Arg Asp Ile 130 135
	T ATT GGG CGT CAC TGT AAT AAG TTA 723 y Ile Gly Arg His Cys Asn Lys Leu 5 150

			GAT Asp													7 7.
			ATA Ile													81
			AGC Ser													86
			GAA Glu 205													91
			TGG Trp													96.
			AGT Ser													101
			CCT Pro													1059
			GAG Glu													110
CGC Arg	ATT Ile	CTT Leu	TTC Phe 285	AGG Arg	ACC Thr	CTG Leu	AAC Asn	CAT His 290	CAA Gln	TAT Tyr	GAC Asp	TAC Tyr	ACA Thr 295	TTT Phe	GAT Asp	115
			TTA Leu													120
			CAG Gln													125
			AAC Asn					TAAG	CATG	r aag	TGAG	GAAC	CA GA	AGA	AGCAG	130
AGCA	GATG	AT C	GGAG	CAGO	A TI	TGTI	TCTC	ccc	TAAA	CTA	GAAA	\TTT1	AG 1	TCAT	ATGTA	136
CACT	'AGCC	AG I	GGTI	GTGG	A CA	ACCA	TTTA	CTI	GGTG	TAA	AGAA	CTTA	LAT I	TCAC	AATAT	142
ACTG	ACTO	TG G	GCAG	CATI	G GI	GATG	CTGI	ATC	CTGA	GTT	GTAG	CCTC	TG 1	TAATI	GTGAA	1489
TATT	'AACI	GA G	DATAG	TGAA	LA CA	TGGI	GTCC	GG1	TTTC	TAT	TGCA	TTTI	TT C	CAAGI	CGAAA	1549
AGTT	'AACI	'AA A	TGGI	TGAC	CA CA	CAAA	LAATI	GGI	GGAG	AAA	TTGI	CAT	AT C	CCAF	TTTTT	1609
TGTT	'AAAA'	CC I	TTTG	TTTI	G AA	CTAI	ACTO	CTI	TGAG	ATC	TCAT	TTCA	GA A	AGAAC	GGCAT	1669
GAAC	AGTO	TT C	AGCC	ACAG	T TG	TGAT	GGTI	GTI	'AAA'	GCT	CACA	ATTG	TG C	CATTO	TTAGG	1725
GTTT	TTCC	AT C	CCTG	GGGT	T TG	CAAG	TTGI	TCA	CTTA	AAA	CATI	CTTA	AA A	ATGGI	TGGCT	1789
TCTT	GTCI	GC A	AGCC	AGCI	G AI	ATGG	TAGO	: AAC	CAAA	GAT	TCCA	GTGI	TT C	SAGCA	TATGA	1849
AAGA	CTCT	GC C	TGCT	TAAT	T GT	GCTA	GAAA	TAR	CAGO	ATC	TAAD	СТС2	AG Z	CTT	AGAAA	1909

-85-

aacttagi	'GA	CTACTAGATT	ATCCTTAGGA	CTCTGCATTA	ACTCTATAAT	GTTCTTGGTA	1965
AAAAATT	AA	AGCATATTTG	TCACAGAAAT	TTAGTTAACA	TCTTACAACT	GAACATGTAT	2025
STATGTTG	CT	TAGATAAATG	TAATCACTGT	AAACATCTAT	ATGATCTGGG	ATTTTGTTTT	2085
TATTTTGA	AA	TGGGAGCTTT	TTTGTTTACA	AGTTCATTAA	AAACTAAAAA	CTGTTTCTGT	2145
AAGGAAAT	'GA	GATTTTTTT	AAACAACAAA	AAATGCCTTG	CTGACTCACT	AAATAAATTA	2209
AATCTCCC	CA	ATTTTTTGAT	AGACTACTTC	AAGCCATTTG	TTACATGGTA	TTCCTTTGCA	2265
AGTCAATT	TA	GGTTTCGTGT	TATAACTTTT	CCTCTTTTTT	TAAGAAAAAT	GAAAAAGTA	2325
ATTCTTTT	GT	CTGAAGGGGA	AAGGCATTCT	TTCATTTTTT	TCTTTTTTT	TTTTTTTTT	2385
rtatgact	TG	CAGGCACAAT	ATCTAGTACT	GCAACTGCCA	GAACTTGGTA	TTGTAGCTGC	2445
rgcccgct	'GA	CTAGCAGCTG	GACTGATTTT	GAATAAAAAT	GAAAGCAGTA	CTGGGATTAC	2505
AGGTGAGC	CA	CAGTGCCTGG	CCCTTTTTTG	TTTTTATTGT	CTGTCTCCCC	ACTAGAAGGT	2565
ACGCTCTA	CA	AGGGCAGGGA	TTTGTGCATC	TTATTCATAG	TGTTTCCCAC	GTGGCAGATG	2625
CTCACTAA	AG	ATTTCAAAGG	AGAAACTGTG	ATGGACTCGT	TCTGTAGATG	AGAGAACAGA	2685
GCACAGA	GA	CCTGTCCATG	GTCCCCTGGC	AGAAGGAGGT	GGGGTCTGGA	TTCCACCCCA	2745
GGCTGCG	TG	GCTGCAGGAC	CTCAGTGCTT	GACTCCACAC	TGCTGAGGGC	TGTGAGTCCC	2805
rggccagc	cc	AGACACAGTC	CTGCAGCCCA	GGCTGAGCAT	TCTCAGACCT	TCATGGAGAT	2865
CCCACTO	TC	CTGTGAGCCT	CCTGCTTCCT	TTGCCCAGGG	CCGGAATTC		2914

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 337 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Ala Ser Ser Ser Gly Ser Lys Ala Glu Phe Ile Val Gly Gly Lys
1 10 15

Tyr Lys Leu Val Arg Lys Ile Gly Ser Gly Ser Phe Gly Asp Ile Tyr
20 25 30

Leu Ala Ile Asn Ile Thr Asn Gly Glu Glu Val Ala Val Lys Leu Glu
35 40 45

Ser Gln Lys Ala Arg His Pro Gln Leu Leu Tyr Glu Ser Lys Leu Tyr 50 55 60

Lys Ile Leu Gln Gly Gly Val Gly Ile Pro His Ile Arg Trp Tyr Gly 65 70 75 80

Gln Glu Lys Asp Tyr Asn Val Leu Val Met Asp Leu Leu Gly Pro Ser 85 90 95

Leu Glu Asp Leu Phe Asn Phe Cys Ser Arg Arg Phe Thr Met Lys Thr 100 105 110

ï

Val Leu Met Leu Ala Asp Gln Met Ile Ser Arg Ile Glu Tyr Val His Thr Lys Asn Phe Ile His Arg Asp Ile Lys Pro Asp Asn Phe Leu Met Gly Ile Gly Arg His Cys Asn Lys Leu Phe Leu Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Asn Arg Thr Arg Gln His Ile Pro Tyr Arg Glu Asp Lys Asn Leu Thr Gly Thr Ala Arg Tyr Ala Ser Ile Asn Ala His Leu Gly Ile Glu Gln Ser Arg Arg Asp Asp Met Glu Ser Leu Gly 200 Tyr Val Leu Met Tyr Phe Asn Arg Thr Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Lys Gln Lys Tyr Glu Lys Ile Ser Glu Lys Lys Met Ser Thr Pro Val Glu Val Leu Cys Lys Gly Phe Pro Ala Glu Phe 245 Ala Met Tyr Leu Asn Tyr Cys Arg Gly Leu Arg Phe Glu Glu Ala Pro Asp Tyr Met Tyr Leu Arg Gln Leu Phe Arg Ile Leu Phe Arg Thr Leu Asn His Gln Tyr Asp Tyr Thr Phe Asp Trp Thr Met Leu Lys Gln Lys 295 Ala Ala Gln Gln Ala Ala Ser Ser Ser Gly Gln Gly Gln Gln Ala Gln Thr Pro Thr Gly Lys Gln Thr Asp Lys Thr Lys Ser Asn Met Lys Gly 325 330

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Protein Kinase
- (ix) FEATURE:

Phe

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..23
- (D) OTHER INFORMATION: /note= "Bases designated N at positi ns 3, 6, 9, 12 and 18 are Inosine."

-87-

(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:13:	
GGNWSNGG	NW SNTTYGGNGA YAT	23
(2) INFO	RMATION FOR SEQ ID NO:14:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(Vii)	IMMEDIATE SOURCE: (B) CLONE: Protein Kinase	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 123 (D) OTHER INFORMATION: /note= "Bases designated N at positions 6, 12 and 18 are Inosine."	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
CAYGMNGA	YA TNAARCCNGA YAA	23
(2) INFO	RMATION FOR SEQ ID NO:15:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vii)	IMMEDIATE SOURCE: (B) CLONE: Protein Kinase	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 124 (D) OTHER INFORMATION: /note= "Bases designated N at positions 7, 13 and 19 are Inosine."	
(x i)	SEQUENCE DESCRIPTION: SEQ ID NO:15:	
RTTRTCNGG	GY TTNATRTCNC KRTG	24
(2) INFOR	RMATION FOR SEQ ID NO:16:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vii)	IMMEDIATE SOURCE: (B) CLONE: Protein Kinase	

PCT/US94/00795

WO 94/17189

-88-

<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 118 (D) OTHER INFORMATION: /note= "Bases designated N at</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
NCCNARNSWY TCNARRTC	18
(2) INFORMATION FOR SEQ ID NO:17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vii) IMMEDIATE SOURCE: (B) CLONE: Protein Kinase</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 120	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
ATATAAACTG GTACGGAAGA	20
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vii) IMMEDIATE SOURCE: (B) CLONE: Protein Kinase</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 117	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
ACATACGGTG GTATGGT	17
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA (genomic)

PCT/US94/00795

-89-

(Vii)	IMMEDIATE SOURCE: (B) CLONE: Protein Kinase	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 119	
(x i)	SEQUENCE DESCRIPTION: SEQ ID NO:19:	
ATGACATG	GA ATCATTAGG	19
(2) INFO	RMATION FOR SEQ ID NO:20:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vii)	IMMEDIATE SOURCE: (B) CLONE: Protein Kinase	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 119	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:20:	
CCTAATGA:	TT CCATGTCAT	19
(2) INFO	RMATION FOR SEQ ID NO:21:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(vii)	IMMEDIATE SOURCE: (B) CLONE: Protein Kinase	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 118	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:21:	
TCAGGTAC	AT GTAATCCG	18
(2) INFO	RMATION FOR SEQ ID NO:22:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(;;)	MOI FCIII F TYPE. DNA (Genomic)	

 WO 94/17189 PCT/US94/00795

-90-

(vii)	IMME	DIATE SO	OURCE:	
•			Protein	Kinase

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..39

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

CCTGATCGAT TCCAGCCTGA TCGCTACTTC TTCACCACT

39

1020

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3627 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: Protein Kinase

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1633..3204

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GATCAGATGA	TATAGCTTTT	TGTGTGCCGT	ACCTTTCCGC	GATTCTGCCC	GTATATCTTG	60
GTCCCTGAGC	TATTTTCTGA	GATTCTTTTT	GTTGCTTTGC	CAAATCATTG	GCGTCATTCA	120
TGGTCATACC	AAATCCCAAT	TTGGCAAACT	TGGGTGTTAA	AGTATCTTGC	TGTTCTTTTC	180
TAGTTGTGTC	GAAGCTGTTT	GAAGTGTCAT	TTAAAAAATC	ATTGAATTCA	TCAGGCTGGG	240
TATTAATATC	ATCTATACTG	TTATTATTGT	TGCCTTTACT	GTTATTCATA	AATTGGGAAT	300
CGTAATCATT	TGTCTAATTT	TGGTGCTAGA	AGACGAATTA	GTGAACTCGT	CCTCCTTTTC	360
TTGTTGAGCC	TCTTTTTAA	ATTGATCAAA	CAAGTCTTCT	GCCTGTGATT	TGTCGACTTT	420
CTTTGCGGTT	AGTCTAGTGG	GCTTTCTTGA	CGAAGACAAA	ATTGAATGTT	TCTTTTTATC	480
TTGCGAGTTT	AATACCGGTT	TCTTTCTGCA	TGCCGTTAAG	ATGGAACTCT	CGTTTTAGTG	540
ACAGTGGTCT	TGGGTGTGCT	GCCTGTGGTG	TTGTTTTTTG	GGGCGAGAGA	GCCTGTATTT	600
ACATTGAGTT	TAGAACTGGA	ATTGGAGCTT	GGTTTTTGCC	AATTAGAGAA	AAAATCGTCA	660
ACACTATTTT	CTTTGGAAGT	CGACCTGGAA	GCGTCTGAAT	CGGTGTCCAA	CGGTGAGTCC	720
GAAGAATCTT	GACCGTTCAA	GACTAATTCT	GATGGGTATA	ACTCCATATC	CTTTTGAACC	780
TTCTTGTCGA	GATGTATCTT	ATATTTCTTA	GCAACAGGGC	TCGTATATTT	TGTTTTCGCG	840
TCAACATTTG	CTGTATTTAG	TAGCTGTTTC	CCATTGTTCT	TTAAGAAAAA	ATCACGAGCC	900
TTATGGTTCC	CACCCAACTT	AAACCTTCTT	AAATTGTTAA	TTGTCCATTT	ATCTAATGTA	960

GAAGACTTTA CAAAGGTGAT ATGAACACCC ATGTTTCTAT GCACAGCAGA GCATTGAATA

CACAGCATCA CACCAAAAGG TACCGAAGTC CAGTAGGATT CTTGTTACCA CAATCAAAAC	1080
AAACTCGATT TTCCATGTTG CTACCTAGCT TCTGAAAAAC TTGTTGAGTA GTCTGTTCCG	1140
TGGCAAATGT TTCTCCTTCA TCGTTACTCA TTGTCGCTAT GTGTATACTA AATTGCTCAA	1200
GAAGACCGGA TCAACAAGTA CTTAACAAAT ACCCTTTCTT TGCTATCGCC TTGATCTCCT	1260
TTTATAAAAT GCCAGCTAAA TCGTGTTTAC GAAGAATAGT TGTTTTCTTT TTTTTTTTT	1320
TTTTTCGAAA CTTTACCGTG TCGTCGAAAA TGACCAAACG ATGTTACTTT TCCTTTTGTG	1380
TCATAGATAA TACCAATATT GAAAGTAAAA TTTTAAACAT TCTATAGGTG AATTGAAAAG	1440
GGCAGCTTAG AGAGTAACAG GGGAACAGCA TTCGTAACAT CTAGGTACTG GTATTATTTG	1500
CTGTTTTTTA AAAAAGAAGG AAATCCGTTT TGCAAGAATT GTCTGCTATT TAAGGGTATA	1560
CGTGCTACGG TCCACTAATC AAAAGTGGTA TCTCATTCTG AAGAAAAAGT GTAAAAAGGA	1620
CGATAAGGAA AG ATG TCC CAA CGA TCT TCA CAA CAC ATT GTA GGT ATT Met Ser Gln Arg Ser Ser Gln His Ile Val Gly Ile 1 5 10	1668
CAT TAT GCT GTA GGA CCT AAG ATT GGC GAA GGG TCT TTC GGA GTA ATA His Tyr Ala Val Gly Pro Lys Ile Gly Glu Gly Ser Phe Gly Val Ile 15 20 25	1716
TTT GAG GGA GAG AAC ATT CTT CAT TCT TGT CAA GCG CAG ACC GGT AGC Phe Glu Gly Glu Asn Ile Leu His Ser Cys Gln Ala Gln Thr Gly Ser 30 35 40	1764
AAG AGG GAC TCT AGT ATA ATA ATG GCG AAC GAG CCA GTC GCA ATT AAA Lys Arg Asp Ser Ser Ile Ile Met Ala Asn Glu Pro Val Ala Ile Lys 45 50 55 60	1812
TTC GAA CCG CGA CAT TCG GAC GCA CCC CAG TTG CGT GAC GAA TTT AGA Phe Glu Pro Arg His Ser Asp Ala Pro Gln Leu Arg Asp Glu Phe Arg 65 70 75	1860
GCC TAT AGG ATA TTG AAT GGC TGC GTT GGA ATT CCC CAT GCT TAT TAT Ala Tyr Arg Ile Leu Asn Gly Cys Val Gly Ile Pro His Ala Tyr Tyr 80 85 90	1908
TTT GGT CAA GAA GGT ATG CAC AAC ATC TTG ATT ATC GAT TTA CTA GGG Phe Gly Gln Glu Gly Met His Asn Ile Leu Ile Ile Asp Leu Leu Gly 95 100 105	1956
CCA TCA TTG GAA GAT CTC TTT GAG TGG TGT GGT AGA AAA TTT TCA GTG Pro Ser Leu Glu Asp Leu Phe Glu Trp Cys Gly Arg Lys Phe Ser Val 110 115 120	2004
AAA ACA ACC TGT ATG GTT GCC AAG CAA ATG ATT GAT AGA GTT AGA GCA Lys Thr Thr Cys Met Val Ala Lys Gln Met Ile Asp Arg Val Arg Ala 130 135 140	2052
ATT CAT GAT CAC GAC TTA ATC TAT CGC GAT ATT AAA CCC GAT AAC TTT Ile His Asp His Asp Leu Ile Tyr Arg Asp Ile Lys Pro Asp Asn Phe 145 150 155	2100
TTA ATT TCT CAA TAT CAA AGA ATT TCA CCT GAA GGA AAA GTC ATT AAA Leu Ile Ser Gln Tyr Gln Arg Ile Ser Pro Glu Gly Lys Val Ile Lys 160 165 170	2148
TCA TGT GCC TCC TCT TCT AAT AAT GAT CCC AAT TTA ATA TAC ATG GTT Ser Cys Ala Ser Ser Asn Asn Asp Pro Asn Leu Ile Tyr Met Val 175 180	2196

-92-

						CAA Gln 195											2244
						AAA Lys					-						2292
						GGA Gly										٠.	2340
						TTT Phe											2388
						CCA Pro											2436
						TTG Leu 275											2484
						GCC Ala											2532
						GAT Asp											2580
						GAC Asp											2628
ATG Met	GAT Asp	TTG Leu 335	AAT Asn	GGT Gly	GGT Gly	AAA Lys	GGC Gly 340	TGG Trp	AAT Asn	ATC Ile	AAG Lys	ATT Ile 345	AAT Asn	AGA Arg	AGA Arg		2676
						GGA Gly 355											2724
						AAT Asn											2772
						CAA Gln											2820
						TCT Ser											2868
						ATC Ile											2916
						CGG Arg 435										•	2964
						CAA Gln											3012

-93-

			AAC Asn													3060
			AAC Asn 480													3108
			CAA Gln													3156
			AAA Lys							-					TGT Cys	3204
TGAI	'AAAC	GCG 1	ATTTI	TATA	C TI	TTCI	CTTI	TTC	CTT	TTT	TTTT	TGA	TG (GCTG1	TTCCI	3264
TATO	CCGC	CTC :	TTTC	CAAI	T T	TGAC	TTTC	CAF	TAAT	GTA	TTAT	TTTT	GTT 1	TCTCI	TTCTC	3324
TCTG	TTAC	cc :	PATTI	TTTT	T CF	TCTA	CAAI	' AA	TGA	ATTC	CGG	GAGO	GT A	AAAGA	AACAG	3384
GAAA	AAGA	AAG A	LAAA	GAGA	C A	AGTO	CAGCA	TCC	TAAT	CGT	TTTC	CTTC	CTG :	TATAI	TCCTI	3444
TATO	AAAA	GA (CTACA	ACGCA	C AI	TATAT	ATTA	ATO	cccc	TAT	GTTT	TTGC	STG :	rgct?	AATCI	3504
ATCI	TCAA	GC A	ACTAI	TATA	G CF	TTTI	TTTA	AGA	LATAI	CCA	AAAT	TAAT	ATG	TAATI	TATGA	3564
TTAA	TCAA	AGG 1	TCAA	GAAT	T GO	AGAA	ACC	TG	AGCG?	CTT	CTTI	GAT	ACT :	TGGAT	GTAAC	3624
CTT																3627

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 524 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Ser Gln Arg Ser Ser Gln His Ile Val Gly Ile His Tyr Ala Val Gly Pro Lys Ile Gly Glu Gly Ser Phe Gly Val Ile Phe Glu Gly Glu

Asn Ile Leu His Ser Cys Gln Ala Gln Thr Gly Ser Lys Arg Asp Ser

Ser Ile Ile Met Ala Asn Glu Pro Val Ala Ile Lys Phe Glu Pro Arg 50 55 60

His Ser Asp Ala Pro Gln Leu Arg Asp Glu Phe Arg Ala Tyr Arg Ile

Leu Asn Gly Cys Val Gly Ile Pro His Ala Tyr Tyr Phe Gly Glu

Gly Met His Asn Ile Leu Ile Ile Asp Leu Leu Gly Pro Ser Leu Glu 100

Asp Leu Phe Glu Trp Cys Gly Arg Lys Phe Ser Val Lys Thr Thr Cys 120

Met	Val 130	Ala	Lys	Gln	Met	Ile 135	Asp	Arg	Val	Arg	Ala 140	Ile	His	Asp	His
Asp 145	Leu	Ile	Tyr	Arg	Asp 150	Ile	Lys	Pro	Asp	Asn 155	Phe	Leu	Ile	Ser	Gln 160
Tyr	Gln	Arg	Ile	Ser 165	Pro	Glu	Gly	Lys	Val 170	Ile	Lys	Ser	Сув	Ala 175	Ser
Ser	Ser	Asn	Asn 180	Asp	Pro	Asn	Leu	Ile 185	Tyr	Met	Val	Asp	Phe 190	Gly	Met
Ala	Lys	Gln 195	Tyr	Arg	Asp	Pro	Arg 200	Thr	Lys	Gln	His	Ile 205	Pro	Tyr	Arg
Glu	Arg 210	Lys	Ser	Leu	ser	Gly 215	Thr	Ala	Arg	Tyr	Met 220	Ser	Ile	Asn	Thr
His 225	Phe	Gly	Arg	Glu	Gln 230	Ser	Arg	Arg	Asp	Asp 235	Leu	Glu	Ser	Leu	Gly 240
His	Val	Phe	Phe	Tyr 245	Phe	Leu	Arg	Gly	Ser 250	Leu	Pro	Trp	Gln	Gly 255	Leu
Lys	Ala	Pro	Asn 260	Asn	Lys	Leu	Lys	Tyr 265	Glu	Lys	Ile	Gly	Met 270	Thr	Lys
Gln	Lys	Leu 275	Asn	Pro	Asp	Asp	Leu 280	Leu	Leu	Asn	Asn	Ala 285	Ile	Pro	Tyr
Gln	Phe 290	Ala	Thr	Tyr	Leu	Lys 295	Tyr	Ala	Arg	Ser	Leu 300	Lys	Phe	Asp	Glu
Asp 305	Pro	Asp	Tyr	Asp	Tyr 310	Leu	Ile	Ser	Leu	Met 315	Asp	Asp	Ala	Leu	Arg 320
Leu	Asn	Asp	Leu	Lys 325	Asp	Asp	Gly	His	Tyr 330	Asp	Trp	Met	Asp	Leu 335	Asn
Gly	Gly	Lys	Gly 340	Trp	Asn	Ile	Lys	Ile 345	Asn	Arg	Arg	Ala	Asn 350	Leu	His
Gly	Tyr	Gly 355	Asn	Pro	Asn	Pro	Arg 360	Val	Asn	Gly	Asn	Thr 365	Ala	Arg	Asn
Asn	Val 370	Asn	Thr	Asn		Lys 375	Thr	Arg	Asn	Thr	Thr 380	Pro	Val	Ala	Thr
Pro 385	Lys	Gln	Gln	Ala	Gln 390	Asn	Ser	Tyr	Asn	Lys 395	Asp	Asn	Ser	Lys	Ser 400
Arg	Ile	Ser	Ser	Asn 405	Pro	Gln	Ser	Phe	Thr 410	Lys	Gln	Gln	His	Val 415	Leu
Lys	Lys	Ile	Glu 420	Pro	Asn	Ser	Lys	Tyr 425	Ile	Pro	Glu	Thr	His 430	Ser	Asn
Leu	Gln	Arg 435	Pro	Ile	Lys	Ser	Gln 440	Ser	Gln	Thr	Tyr	Asp 445	Ser	Ile	Ser
His	Thr 450	Gln	Asn	Ser	Pro	Phe 455	Val	Pro	Tyr	Ser	Ser 460	Ser	Lys	Ala	Asn
Pro 465	Lys	Arg	Ser	Asn	Asn 470	Glu	His	Asn	Leu	Pro 475	Asn	His	Tyr	Thr	Asn 480

PCT/US94/00795

-95-

Leu Ala Asn Lys Asn Ile Asn Tyr Gln Ser Gln Arg Asn Tyr Glu Gln 485 490 495

Glu Asn Asp Ala Tyr Ser Asp Asp Glu Asn Asp Thr Phe Cys Ser Lys
500 505 510

Ile Tyr Lys Tyr Cys Cys Cys Cys Phe Cys Cys Cys 515 520

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Protein Kinase
 - (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 1..6
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
 - Gly Pro Ser Leu Glu Asp
- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Protein Kinase
 - (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 1..9
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Arg Asp Ile Lys Pro Asp Asn Phe Leu

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

WO 94/17189 PCT/US94/00795

-96-

(vii) IMMEDIATE SOURCE:

(B) CLONE: Protein Kinase

(ix) FEATURE:

- (A) NAME/KEY: Peptide
- (B) LOCATION: 1..6
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

His Ile Pro Tyr Arg Glu
1 5

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 6
 - (C) OTHER INFORMATION: /note= "The nucleotide at this position is inosine."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 9
 - (C) OTHER INFORMATION: /note= "The nucleotide at this position is inosine."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 12
 - (C) OTHER INFORMATION: /note= "The nucleotide at this position is inosine."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 15
 - (C) OTHER INFORMATION: /note= "The nucleotide at this position is inosine."
 - (ix) FEATURE:

GARYTNMGNY TNGGNAAYYT N

- (A) NAME/KEY: Modified-site
- (B) LOCATION: 21
- (C) OTHER INFORMATION: /note= "The nucleotide at this position is inosine."

21

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

...

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: singl
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

BNSDOCID: <WO___9417189A2_I_>

PCT/US94/00795

-97-

		•										
(ix	(B)	NAME/KEY LOCATION	: 9									
	(C)	OTHER IN		i: /no	te=	"The	nucleo	otide	at	this	posit	ion
(ix	(B)	NAME/KEY	: 12								•	
	(c)	OTHER IN		l: /no	te=	"The	nucle	otide	at	this	posit:	ion
(ix		NAME/KEY		d-sit	e							
	(C)	LOCATION OTHER INI is inosine	FORMATION	I: /no	te=	"The	nucle	otide	at	this	posit:	ion
(ix) FEAT	URE: NAME/KEY	: Modifie	d-sit	e							
		LOCATION OTHER IN is inosine	FORMATION	I: /no	te=	"The	nucle	otide	at	this	posit	ion
(ix) FEAT	URE: NAME/KEY	: Modifie	d-sit	e							
		LOCATION OTHER IN is inosine	FORMATION	l: /no	te=	"The	nucle	otide	at	this	posit	ion
(xi) SEQU	ENCE DESC	RIPTION:	SEQ I	D NO	:29:						
GTYTTRT	TNC CN	iggnckncc i	TAN									2
(2) INF	ORMATI	ON FOR SE	Q ID NO:3	: O					ŧ			
(i	(Ā) (B) (C)	ENCE CHAR LENGTH: 1 TYPE: nu STRANDEDI TOPOLOGY	2405 base cleic aci NESS: sin	pair d	s							
(ii) MOLE	CULE TYPE	: CDNA									
(ix		URE: NAME/KEY LOCATION		7								
(xi) SEQU	ENCE DESC	RIPTION:	SEQ I	D NO	:30:						
AAAGTGG	AGT AC	CGCAAACT '	rgatatgga	TAA AA	AAAA	AGA A	AAGACAI	AGGA (CAAA	ATCAG	AT.	6
		A CGA CCT a Arg Pro				ly Hi						10

			TCA Ser													156
15 GTT	GGA	AAA	AAA	ATT	20 GGA	TGT	GGC	AAT	TTT	25 GGA	GAA	TTA	CGA	TTA	30 GGG	204
Val	Gly	Lys	Lys	Ile 35	Gly	Cys	Gly	Asn	Phe 40	Gly	Glu	Leu	Arg	Leu 45	Gly	
			TAC Tyr 50													252
			GCA Ala													300
			GGA Gly													348
			AAT Asn													396
			GAC Asp													444
			ATA Ile 130													492
AAC Asn	TTG Leu	ATA Ile 145	TAC Tyr	AGA Arg	GAT Asp	GTA Val	AAA Lys 150	CCT Pro	GAG Glu	AAC Asn	TTC Phe	TTA Leu 155	ATA Ile	GGA Gly	CGA Arg	540
CCA Pro	GGA Gly 160	AAC Asn	AAA Lys	ACC Thr	CAG Gln	CAA Gln 165	GTT Val	ATT Ile	CAC His	ATT Ile	ATA Ile 170	GAT Asp	TTT Phe	GGT Gly	TTG Leu	588
GCA Ala 175	AAG Lys	GAA Glu	TAT Tyr	ATT Ile	GAT Asp 180	CCG Pro	GAG Glu	ACA Thr	AAG Lys	AAA Lys 185	CAC His	ATA Ile	CCA Pro	TAC Tyr	AGA Arg 190	636
GAA Glu	CAC His	AAG Lys	AGC Ser	CTT Leu 195	ACA Thr	GGA Gly	ACA Thr	GCT Ala	AGA Arg 200	TAT Tyr	ATG Met	AGC Ser	ATA Ile	AAC Asn 205	ACA Thr	684
			AAA Lys 210													732
			ATG Met												TTA Leu	. 780
			ACA Thr													828
	Ala		CCA Pro													876
			CTT Leu													924

-99-

				Thr Asp	TTG TTT GA Leu Phe As 30	p Arg Lys	972
Gly Tyr M					GGT AAA CAG Gly Lys Gl: 315		1020
			Gln Asp		CTG TCA TC Leu Ser Se: 330		1068
					TCC AAA AAG Ser Lys Ass		1116
		Gly Glu			GAC CCC ACC Asp Pro Th		1164
	TG CAC CCA let His Pro 370			Leu Lys	TAGAAGTGAT	GGATGAAACC	1217
AACTGCCAG	A AAGTGTTO	AA CATGI	GGTGC TG	CTGTTTTT	TCAAACGAAG	GAAAAGGAAA	1277
ACCATACAG	C GCCACAA	TG ACTCI	GGACA CA	GACAGATC	CTGGGGAGTT	ACTTACATGT	1337
TCATCTGCT	G TCTTGTG!	TAAAA TT	CATCT CT	GTAGTGAC	CACGTATATT	TTCAAGGACT	1397
CACTCTTAG	A AACAAAA	TG TCATA	CTTTC AT	ACTTCATT	TTGTGGTTGT	CTTACATTCT	1457
TTTTCTTTT	T TTTTTTC	CT AATTI	AACCT TT	ATGGAAGC	TTTAAAGTTT	TGTCAAAAAC	1517
ATGAGTGCT	T TTGCCCC	TC AGTGA	ATGGA AT	GGACCAAT	GAGGTGGTAT	CAATGAATAT	1577
AGTTCCATA	G AACATTTO	CA GAAGT	TCTTC TG	TTGTAGAA	AGCAGTACAG	TATCTTAAGT	1637
GTCAACCAG	T TATATACO	TA ATCTG	GTTTT TT	ATAACTTC	TGTAAGAGCA	TAATCAAACA	1697
GGAATTTTC	T TTTCTCAC	TG GATAA	TACAA CA	GAGAAAAC	AGAGTTGCCC	AAATATTTAA	1757
AAGAAGTTA	T TCCTTGAG	AA GTTCA	TATTT TG	TGACATCT	GCATTGATTT	CAGTATTACT	1817
GATGGTACT	G TTATTCAT	'AA GTCAT	ATTAA CA	TTCTCTCC	GTGAAATCAT	GGTACAGTCG	1877
CTGCCCAGA	G GTACTGAG	GA AAAAG	CAATA TG	GGTTCGGC	AGATGGTGGT	GGTAAAATGA	1937
ATCTTAAGG	A GTGTGGT	AA TATGO	GTCCG CT	TTTGTTGC	ATCACTATGT	GAAGTACTGT	1997
GTTGCAGAA	G TGGCAAAA	GC GCTTA	TTTTT AA	AAATGCAA	AATATTTGTA	CAATGTAACT	2057
TTATGCTTC	C AAATAATA	AT GTATG	TTAGA CA	GCAAGAAA	TGAATACTTT	AAAAAGTGAT	2117
GTATGTTGG	A GTTATAAA	GA AATAC	ACTAA GG	AGAGGTAG	TAAATGTGAA	CCTTGTTGCA	2177
GTGTATAAG	G TGGAAGCC	TA AAGAA	ATCTC AC	CGAAACTT	ACTGCTGAAT	GATTACATTC	2237
TCCCTTAAG	C AGAAAACT	TT GGATG	TGCCA TG	CAATGGTG	TCTGTGTAAT	TATTTTGCTC	2297
TTTGATTAA	A AAAAAGAC	CC CCAGC	AATAA AA	AGTGGGTC	ACTCTAAAAA	AAAAAAAA	2357
~~~~		*****	****	CACACCAA	CCCAATTC		2405

-100-

- (2) INFORMATION FOR SEQ ID NO:31:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 377 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Met Ala Arg Pro Ser Gly Arg Ser Gly His Asn Thr Arg Gly Thr Gly Ser Ser Ser Gly Val Leu Met Val Gly Pro Asn Phe Arg Val Gly Lys Lys Ile Gly Cys Gly Asn Phe Gly Glu Leu Arg Leu Gly Lys Asn Leu Tyr Thr Asn Glu Tyr Val Ala Ile Lys Leu Glu Pro Met Lys Ser Arg Ala Pro Gln Leu His Leu Glu Tyr Arg Phe Tyr Lys Gln Leu Gly Ser Gly Asp Gly Ile Pro Gln Val Tyr Tyr Phe Gly Pro Cys Gly Lys Tyr Asn Ala Met Val Leu Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asp Leu Cys Asp Arg Thr Phe Ser Leu Lys Thr Val Leu Met Ile Ala Ile Gln Leu Ile Ser Arg Met Glu Tyr Val His Ser Lys Asn Leu Ile Tyr Arg Asp Val Lys Pro Glu Asn Phe Leu Ile Gly Arg Pro Gly Asn Lys Thr Gln Gln Val Ile His Ile Ile Asp Phe Gly Leu Ala Lys Glu Tyr Ile Asp Pro Glu Thr Lys Lys His Ile Pro Tyr Arg Glu His Lys Ser Leu Thr Gly Thr Ala Arg Tyr Met Ser Ile Asn Thr His Leu Gly Lys Glu Gln Ser Arg Arg Asp Asp Leu Glu Ala Leu Gly His Met Phe Met Tyr Phe Leu Arg Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Asp Thr Leu Lys Glu Arg Tyr Gln Lys Ile Gly Asp Thr Lys Arg Ala Thr Pro Ile Glu Val Leu Cys Glu Asn Phe Pro Glu Glu Met Ala Thr Tyr Leu Arg Tyr Val Arg Arg Leu Asp Phe Phe Glu Lys Pro Asp Tyr

Asp Tyr Leu Arg Lys Leu Phe Thr Asp Leu Phe Asp Arg Lys Gly Tyr

WO 94/17189 PCT/US94/00795

-101-

Met Ph Asp Tyr Glu Tyr Asp Trp Ile Gly Lys Gln Leu Pro Thr Pro 310 305 Val Gly Ala Val Gln Gln Asp Pro Ala Leu Ser Ser Asn Arg Glu Ala 330 His Gln His Arg Asp Lys Met Gln Gln Ser Lys Asn Gln Val Val Ser Ser Thr Asn Gly Glu Leu Asn Thr Asp Asp Pro Thr Ala Asp Val Gln 360 Met His Pro Ser Gln Pro Leu Leu Lys 375 370

### (2) INFORMATION FOR SEQ ID NO: 32:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1233 base pairs
  - (B) TYPE: nucleic acid(C) STRANDEDNESS: single

  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
  - (ix) FEATURE:

115

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1041

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

							TTA Leu		. 48
							TTG Leu 30		96
	_						TTC Phe		144
 		 	 	 	 	 	TTC Phe		192
							CCT Pro		240
							AAA Lys		288
							GTC Val 110		336
							TTA Leu		384

CGA Arg	CCA Pro 130	GGA Gly	AAC Asn	AAA Lys	ACC	CAG Gln 135	CAA Gln	GTT Val	ATT Ile	CAC His	ATT Ile 140	ATA Ile	GAT Asp	TTT Phe	GGT Gly	432
TTG Leu 145	GCA Ala	AAG Lys	GAA Glu	TAT Tyr	ATT Ile 150	GAT Asp	CCG Pro	GAG Glu	ACA Thr	AAG Lys 155	AAA Lys	CAC His	ATA Ile	CCA Pro	TAC Tyr 160	480
AGA Arg	GAA Glu	CAC His	AAG Lys	AGC Ser 165	CTT Leu	ACA Thr	GGA Gly	ACA Thr	GCT Ala 170	AGA Arg	TAT Tyr	ATG Met	AGC Ser	ATA Ile 175	AAC Asn	528
						CAA Gln										576
GGT Gly	CAT His	ATG Met 195	TTC Phe	ATG Met	TAT Tyr	TTT Phe	CTG Leu 200	AGA Arg	GGC Gly	AGT Ser	CTT Leu	CCT Pro 205	TGG Trp	CAA Gln	GGC Gly	624
TTA Leu	AAG Lys 210	GTT Val	GAC Asp	ACA Thr	TTA Leu	AAG Lys 215	GAG Glu	AGG Arg	TAT Tyr	CAG Gln	AAA Lys 220	ATT Ile	GGA Gly	GAT Asp	ACA Thr	672
AAA Lys 225	CGG Arg	GCT Ala	ACA Thr	CCA Pro	ATA Ile 230	GAA Glu	GTG Val	TTA Leu	TGT Cys	GAA Glu 235	Asn	TTT Phe	CCA Pro	GAA Glu	ATG Met 240	720
GCA Ala	ACA Thr	TAT Tyr	CTT Leu	CGT Arg 245	TAT Tyr	GTA Val	AGA Arg	AGG Arg	CTA Leu 250	GAT Asp	TTT Phe	TTT Phe	GAA Glu	AAA Lys 255	CCA Pro	768
GAC Asp	TAT Tyr	GAC Asp	TAC Tyr 260	TTA Leu	AGA Arg	AAG Lys	CTT Leu	TTT Phe 265	ACT Thr	GAC Asp	TTG Leu	TTT Phe	GAT Asp 270	CGA Arg	AAA Lys	816
GGA Gly	TAT Tyr	ATG Met 275	TTT Phe	GAT Asp	TAT Tyr	GAA Glu	TAT Tyr 280	GAC Asp	TGG Trp	ATT Ile	GGT Gly	AAA Lys 285	CAG Gln	TTG Leu	CCT Pro	864
ACT Thr	CCA Pro 290	GTG Val	GGT Gly	GCA Ala	GTT Val	CAG Gln 295	CAA Gln	GAT Asp	CCT Pro	GCT Ala	CTG Leu 300	TCA Ser	TCA Ser	AAC Asn	AGA Arg	912
GAA Glu 305	GCA Ala	CAT His	CAA Gln	CAC His	AGA Arg 310	GAT Asp	AAG Lys	ATG Met	CAA Gln	CAA Gln 315	TCC Ser	AAA Lys	AAC Asn	CAG Gln	GTT Val 320	960
GTA Val	AGT Ser	TCT Ser	ACA Thr	AAT Asn 325	GGA Gly	GAG Glu	TTA Leu	AAC Asn	ACA Thr 330	GAT Asp	GAC Asp	CCC Pro	ACC Thr	GCA Ala 335	GAC Asp	1008
GTT Val	CAA Gln	ATG Met	CAC His 340	CCA Pro	TCA Ser	CAG Gln	CCC Pro	CTA Leu 345	CTG Leu	AAG Lys	TAGA	AGTG	AT G	GATG	AAACC	1061
AACT	GCCA	GA A	AGTG	TTGA	A CA	TGTG	GTGC	TGC	TGTT	TTT	TCAA	ACGA	AG G	AAAA	GGAAA	1121
ACCA	TACA	GC G	CCAC	AAAT	G AC	TCTG	GACA	CAG	ACAG	ATC	CTGG	GGAG	TT A	CTTA	CATGT	1181
TCAT	CTGC	TG T	CTTG	TGAT	T AA	ATCA	TCTC	TGT	AGTG	ACC	ACGT	'ATAT	TT T	'C		1233

-103-

### (2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 347 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Arg Val Gly Lys Lys Ile Gly Cys Gly Asn Phe Gly Glu Leu Arg Leu Gly Lys Asn Leu Tyr Thr Asn Glu Tyr Val Ala Ile Lys Leu Glu Pro Met Lys Ser Arg Ala Pro Gln Leu His Leu Glu Tyr Arg Phe Tyr Lys Gln Leu Gly Ser Gly Asp Gly Ile Pro Gln Val Tyr Tyr Phe Gly Pro Cys Gly Lys Tyr Asn Ala Met Val Leu Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asp Leu Cys Asp Arg Thr Phe Ser Leu Lys Thr Val Leu Met Ile Ala Ile Gln Leu Ile Ser Arg Met Glu Tyr Val His Ser Lys Asn Leu Ile Tyr Arg Asp Val Lys Pro Glu Asn Phe Leu Ile Gly 120 Arg Pro Gly Asn Lys Thr Gln Gln Val Ile His Ile Ile Asp Phe Gly Leu Ala Lys Glu Tyr Ile Asp Pro Glu Thr Lys Lys His Ile Pro Tyr Arg Glu His Lys Ser Leu Thr Gly Thr Ala Arg Tyr Met Ser Ile Asn Thr His Leu Gly Lys Glu Gln Ser Arg Arg Asp Asp Leu Glu Ala Leu Gly His Met Phe Met Tyr Phe Leu Arg Gly Ser Leu Pro Trp Gln Gly Leu Lys Val Asp Thr Leu Lys Glu Arg Tyr Gln Lys Ile Gly Asp Thr Lys Arg Ala Thr Pro Ile Glu Val Leu Cys Glu Asn Phe Pro Glu Met 225 230 235 240 Ala Thr Tyr Leu Arg Tyr Val Arg Arg Leu Asp Phe Phe Glu Lys Pro 245 Asp Tyr Asp Tyr Leu Arg Lys Leu Phe Thr Asp Leu Phe Asp Arg Lys Gly Tyr Met Phe Asp Tyr Glu Tyr Asp Trp Ile Gly Lys Gln Leu Pro Thr Pro Val Gly Ala Val Gln Gln Asp Pro Ala Leu Ser Ser Asn Arg

PCT/US94/00795 WO 94/17189

-104-

Glu Ala His Gln His Arg Asp Lys Met Gln Gln Ser Lys Asn Gln Val 310 315 Val Ser Ser Thr Asn Gly Glu Leu Asn Thr Asp Asp Pro Thr Ala Asp 325 330 Val Gln Met His Pro Ser Gln Pro Leu Lys 340

# (2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3505 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: single
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

  - (A) NAME/KEY: CDS
    (B) LOCATION: 154..1398

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

	•				
GAATTCCGAC .	AGGAAAGCGA T	GGTGAAAGC GGG	GCCGTGA GGGG	GGCGGA GCCGC	GAGCC 60
GGACCCGCAG	TAGCGGCAGC A	SCGGCGCCG CCT	CCCGGAG TTCA	GACCCA GGAAG	CCGCC 120
GGGAGGCAG	GAGCGAATCG G	GCCGCCGCC GCC		AGA GTC GGG Arg Val Gly 5	
		AAG ATC GGC Lys Ile Gly 15			
		GCT GCA GGA Ala Ala Gly 30			
		CAC CCT CAG His Pro Gln			
		GGA GTG GGC Gly Val Gly			
GGG GCA GAG Gly Ala Glu	GGG GAC TAC Gly Asp Tyr 75	AAC GTC ATG Asn Val Met 80	GTG ATG GAG Val Met Glu	CTG CTG GGG Leu Leu Gly 85	CCA 414 Pro
		AAC TTC TGC Asn Phe Cys 95			
		GAC CAA ATG Asp Gln Met 110			
		CAC CGG GAT His Arg Asp			

-105-

									105							
ATG Met	GGC Gly	CTG Leu	GGG Gly	AAG Lys 140	AAG Lys	GGC Gly	AAC Asn	CTG Leu	GTG Val 145	TAC Tyr	ATC Ile	ATC Ile	GAC Asp	TTC Phe 150	GGG Gly	606
CTG Leu	GCC Ala	AAG Lys	AAG Lys 155	TAC Tyr	CGG Arg	GAT Asp	GCA Ala	CGC Arg 160	ACC Thr	CAC His	CAG Gln	CAC His	ATC Ile 165	CCC Pro	TAT Tyr	654
CGT Arg	GAG Glu	AAC Asn 170	AAG Lys	AAC Asn	CTC Leu	ACG Thr	GGG Gly 175	ACG Thr	GCG Ala	CGG Arg	TAC Tyr	GCC Ala 180	TCC Ser	ATC Ile	AAC Asn	702
ACG Thr	CAC His 185	CTT Leu	GGA Gly	ATT Ile	GAA Glu	CAA Gln 190	TCC Ser	CGA Arg	AGA Arg	GAT Asp	GAC Asp 195	TTG Leu	GAG Glu	TCT Ser	CTG Leu	750
GGC Gly 200	TAC Tyr	GTG Val	CTA Leu	ATG Met	TAC Tyr 205	TTC Phe	AAC Asn	CTG Leu	GGC Gly	TCT Ser 210	CTC	CCC Pro	TGG Trp	CAG Gln	GGG Gly 215	. 798
CTG Leu	AAG Lys	GCT Ala	GCC Ala	ACC Thr 220	AAG Lys	AGA Arg	CAG Gln	AAA Lys	TAC Tyr 225	GAA Glu	AGG Arg	ATT Ile	AGC Ser	GAG Glu 230	AAG Lys	846
AAA Lys	ATG Met	TCC Ser	ACC Thr 235	CCC Pro	ATC Ile	GAA Glu	GTG Val	TTG Leu 240	TGT Cys	AAA Lys	GGC Gly	TAC Tyr	CCT Pro 245	TCC Ser	GAA Glu	894
TTT Phe	GCC Ala	ACA Thr 250	TAC Tyr	CTG Leu	AAT Asn	TTC Phe	TGC Cys 255	CGT Arg	TCC Ser	TTG Leu	CGT Arg	TTT Phe 260	GAC Asp	GAC	AAG Lys	942
CCT Pro	GAC Asp 265	TAC Tyr	TCG Ser	TAC Tyr	CTG Leu	CGG Arg 270	<b>CA</b> G Gln	CTT Leu	TTC Phe	CGG Arg	AAT Asn 275	CTG Leu	TTC Phe	CAT His	CGC Arg	990
CAG Gln 280	GGC Gly	TTC Phe	TCC Ser	TAT Tyr	GAC Asp 285	TAC Tyr	GTG Val	TTC Phe	Asp	TGG Trp 290	AAC Asn	ATG Met	CTC Leu	AAA Lys	TTT Phe 295	1038
													AGG Arg			1086
GAG Glu	GAG Glu	CGG Arg	CTG Leu 315	AGA Arg	CAC His	TCG Ser	CGG Arg	AAC Asn 320	CCG Pro	GCT Ala	ACC Thr	CGC Arg	GGC Gly 325	CTC Leu	CCT Pro	1134
													GCT Ala			1182
ACA Thr	CCC Pro 345	CTC Leu	ACC Thr	CCT Pro	ACC Thr	TCA Ser 350	CAC His	ACG Thr	GCT Ala	AAC Asn	ACC Thr 355	TCC Ser	CCC Pro	CGG Arg	CCC Pro	1230
GTC Val 360	TCC Ser	GGC Gly	ATG Met	GAG Glu	AGA Arg 365	GAG Glu	CGG Arg	AAA Lys	GTG Val	AGT Ser 370	ATG Met	CGG Arg	CTG Leu	CAC His	CGC Arg 375	1278
													CGA Arg			1326
ACC Thr	TCT Ser	CGC Arg	ATG Met 395	TCC Ser	ACC Thr	TCA Ser	CAG Gln	ATT Ile 400	CCT Pro	GGT Gly	CGG Arg	GTG Val	GCT Ala 405	TCC Ser	AGT Ser	1374

GGT CTT CAG Gly Leu Glr 410	n Ser Val V		TGAGAACTCT (	CCTTATTGCT	STGAAGGGCA	1428
GACAATGCAT	GGCTGATCTA	CTCTGTTACC	AATGGCTTTA	CTAGTGACAC	GTCCCCCGGT	1488
CTAGGATCGA	AATGTTAACA	CCGGGAGCTC	TCCAGGCCAC	TCACCCAGCG	ACGCTCGTGG	1548
GGGAAACATA	CTAAACGGAC	AGACTCCAAG	AGCTGCCACC	GCTGGGGCTG	CACTGCGGCC	1608
CCCCACGTGA	ACTCGGTTGT	AACGGGGCTG	GGAAGAAAAG	CAGAGAGAGA	ATTGCAGAGA	1668
ATCAGACTCC	TTTTCCAGGG	CCTCAGCTCC	CTCCAGTGGT	GGCCGCCCTG	TACTCCCTGA	1728
CGATTCCACT	GTAACTACCA	ATCTTCTACT	TGGTTAAGAC	AGTTTTGTAT	CATTTTGCTA	1788
AAAATTATTG	GCTTAAATCT	GTGTAAAGAA	AATCTGTCTT	TTTATTGTTT	CTTGTCTGTT	1848
TTTGCGGTCT	ТАСАААААА	ATGTTGACTA	AGGAATTCTG	AGACAGGCTG	GCTTGGAGTT	1908
AGTGTATGAG	GTGGAGTCGG	GCAGGGAGAA	GGTGCAGGTG	GATCTCAAGG	GTGTGTGCTG	1968
TGTTTGTTTT	GCAGTGTTTT	ATTGTCCGCT	TTGGAGAGGA	GATTTCTCAT	CAAAAGTCCG	2028
TGGTGTGTGT	GTGTGCCCGT	GTGTGGTGGG	ACCTCTTCAA	CCTGATTTTG	GCGTCTCACC	2088
CTCCCTCCTC	CCGTAATTGA	CATGCCTGCT	GTCAGGAACT	CTTGAGGCCC	TCGGAGAGCA	2148
GTTAGGGACC	GCAGGCTGCC	GCGGGGCAGG	GGTGCAGTGG	GTGTTACCAG	GCAAAGCACT	2208
GCGCGCTTCT	TCCCCAGGAG	GTGGGCAGGC	AGCTGAGAGC	TTGGAAGCAG	AGGCTTTGAG	2268
ACCCTAGCAG	GACAATTGGG	AGTCCCAGGA	TTCAAGGTGG	AAGATGCGTT	TCTGGTCCCT	2328
TGGGAGAGGA	CTGTGAACCG	AGAGGTGGTT	ACTGTAGTGT	TTGTTGCCTT	GCTGCCTTTG	2388
CACTCAGTCC	ATTTTCTCAG	CACTCAATGC	TCCTGTGCGG	ATTGGCACTC	CGTCTGTATG	2448
AATGCCTGTG	GTTAAAACCA	GGAGCGGGC	TGTCCTTGCC	ACGTGCCAAG	ACTAGCTCAG	2508
AAAAGCCGGC	AGGCCAGAAG	GACCCACCCT	GAGGTGCCAA	GGAGCAGGTG	ACTCTCCCAA	2568
CCGGACCCAG	AACCTTCACG	GCCAGAAAGT	AGAGTCTGCG	CTGTGACCTT	CTGTTGGGCG	2628
CGTGTCTGTT	GGTCAGAAGT	GAAGCAGCGT	GCGTGGGGCC	GAGTCCCACC	AGAAGGCAGG	2688
TGGCCTCCGT	GAGCTGGTGC	TGCCCCAGGC	TCCATGCTGC	TGTGCCCTGA	GGTTCCCAGG	2748
ATGCCTTCTC	GCCTCTCACT	CCGCAGCACT	TGGGCGGTAG	CCAGTGGCCA	TGTGCTCCCA	2808
ACCCCAATGC	GCAGGGCAGT	CTGTGTTCGT	GGGCACTTCG	GCTGGACCCC	ATCACGATGG	2868
ACGATGTTCC	CTTTGGACTC	TAGGGCTTCG	AAGGTGTGCA	CCTTGGTTCT	CCCTTCTCCT	2928
CCCCAGAGTT	CCCCGGATG	CCATAACTGG	CTGGCGTCCC	AGAACACAGT	TGTCAACCCC	2988
CCCACCAGCT	GGCTGGCCGT	CTGTCTGAGC	CCATGGATGC	TTTCTCAATC	CTAGGCTGGT	3048
TACTGTGTAA	GCGTGTTGGA	GTACGGCGCC	TTGAGCGGGT	GGGAGCTGTG	TGTTGAAGTA	3108
CAGAGGGAGG	TTGGGGTGGG	TCAGAGCCGA	GTTAAGAGAT	TTTCTTTGTT	GCTGGACCCC	3168
TTCTTGAAGG	TAGACGTCCC	CCACCCGGAG	AGACGTCGCG	CTGTGGCCTG	AAGTGGCGCA	3228
AGCTTGCTTT	GTAAATATCT	GTGGTCCCGA	TGTAGTGCCC	AGAACGTTTG	TGCGAGGCAG	3288
CTCTGCGCCC	GGGTTCCAGC	CCGAGCCTCG	CCGGGTCGCG	TCTTCGGAGT	GCTTGTGACA	3348

WO 94/17189 PCT/US94/00795

-107-

GTCCTTGCCC AGTATCTAGT CCCCGTCGCC CCGTGCAGGA GACGTAGGTA GGACGTCGTG

TCAGCTGTGC ACTGACGGCC AGTCTCCGAG CTGTGCGTTT GTATCGCCAC TGTATTTGTG

TACTTTAACA ATCGTGTAAA TAATAAATTC GGAATTC

3408

#### (2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 415 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Met Glu Leu Arg Val Gly Asn Arg Tyr Arg Leu Gly Arg Lys Ile Gly Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Thr Asp Ile Ala Ala Gly Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Thr Lys His Pro Gln Leu His Ile Glu Ser Lys Ile Tyr Lys Met Met Gln Gly Gly Val Gly Ile Pro Thr Ile Arg Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met 65 70 75 80 Val Met Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Leu Ala Asp Gln Met Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160 Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys 210 225 220 Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu Cys Lys Gly Tyr Pro Ser Glu Phe Ala Thr Tyr Leu Asn Phe Cys Arg WO 94/17189 PCT/US94/00795

-108-

Ser	Leu	Arg	Phe 260	Asp	Asp	Lys	Pro	Asp 265	Tyr	Ser	Tyr	Leu	Arg 270	Gln	Leu
Phe	Arg	Asn 275	Leu	Phe	His	Arg	Gln 280	Gly	Phe	Ser	Tyr	Asp 285	Tyr	Val	Phe
Asp	Trp 290	Asn	Met	Leu	Lys	Phe 295	Gly	Ala	Ser	Arg	Ala 300	Ala	Asp	Asp	Ala
Glu 305	Arg	Glu	Arg	Arg	Asp 310	Arg	Glu	Glu	Arg	Leu 315	Arg	His	Ser	Arg	Asn 320
Pro	Ala	Thr	Arg	Gly 325	Leu	Pro	Ser	Thr	Ala 330	Ser	Gly	Arg	Leu	Arg 335	Gly
Thr	Gln	Glu	Val 340	Ala	Pro	Pro	Thr	Pro 345	Leu	Thr	Pro	Thr	Ser 350	His	Thr
Ala	Asn	Thr 355	Ser	Pro	Arg	Pro	Val 360	Ser	Gly	Met	Glu	Arg 365	Glu	Arg	Lys
Val	Ser 370	Met	Arg	Leu	His	Arg 375	Gly	Ala	Pro	Val	Asn 380	Ile	Ser	Ser	Ser
<b>Asp</b> 385	Leu	Thr	Gly	Arg	Gln 390	Asp	Thr	Ser	Arg	Met 395	Ser	Thr	Ser		Ile 400
Pro	Gly	Arg	Val	Ala 405	Ser	Ser	Gly	Leu	Gln 410	Ser	Val	Val	His	Arg 415	

- (2) INFORMATION FOR SEQ ID NO:36:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CTAGATCTAG CTAGACCATG GTAGTTTTTT CTCCTTGACG

40

- (2) INFORMATION FOR SEQ ID NO:37:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CATGCCATGG CACGACCTAG T

21

-109-

(2)	INFO	RMATION FOR SEQ ID NO.38.	
	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:38:	
CTA	GATCT	AG CTAGACCATG GTAGTTTTTT CTCCTTGACG	40
(2)	INFO	RMATION FOR SEQ ID NO:39:	
	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA .	•
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GAA!	rcggg	CC GCCGAGATCT CATATGGAGC TGAGAGTC	38
(2)	INFO	RMATION FOR SEQ ID NO:40:	
	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:40:	
ccc	GGATC	IA GCAGATCTCA T	21
(2)	INFO	RMATION FOR SEQ ID NO:41:	
	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 15 amino acids  (B) TYPE: amino acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: peptide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	Ala	Ser Ser Ser Gly Ser Lys Ala Glu Phe Ile Val Gly Gly Tyr	

-110-

(2)	INFORMATION FOR SEQ ID NO:42:	
	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 16 amino acids  (B) TYPE: amino acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
	Arg Ser Met Thr Val Ser Thr Ser Gln Asp Pro Ser Phe Ser Gly Tyr 1 5 10 15	
(2)	INFORMATION FOR SEQ ID NO:43:	
	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 31 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
TACE	ATCTAGA ATTATGGCGA GTAGCAGCGG C	31
(2)	INFORMATION FOR SEQ ID NO:44:	
	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 27 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
AATO	GGATCCT TAGAAACCTG TGGGGGT	27
(2)	INFORMATION FOR SEQ ID NO:45:	
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 36 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	

36 ...

AATGGATCCT TAGAAACCTT TCATGTTACT CTTGGT

WO 94/17189 PCT/US94/00795

-111-

(2) INFORMATION FOR SEQ ID NO:46:

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
	SEQUENCE DESCRIPTION: SEQ ID NO:46:	
TACATCTA	GA ATTATGGAGC TGAGAGTCGG G	31
(2) INFO	RMATION FOR SEQ ID NO:47:	
(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 27 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:47:	*
GGATCCTC	AT CGGTGCACGA CAGACTG	27
(2) INFO	RMATION FOR SEQ ID NO:48:	
(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 37 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
( <u>i</u> i)	MOLECULE TYPE: cDNA	
, ,		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:48:	
TACATCTA	GA ATTATGGCAC GACCTAGTGG TCGATCG	37
(2) INFO	RMATION FOR SEQ ID NO:49:	
(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
/vi)	SEQUENCE DESCRIPTION: SEQ ID NO:49:	
GGGGATCC	TA CTTCAGTAGG GGCTG	25

WO 94/17189 PCT/US94/00795

-112-

- (2) INFORMATION FOR SEQ ID NO:50:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Arg Ser Gly His Asn Thr Arg Gly Thr Gly Ser Ser

- (2) INFORMATION FOR SEQ ID NO:51:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids

    - (B) TYPE: amino acid(C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Arg Leu Gly His Asn Thr Arg Gly Thr Gly Ser Ser

- (2) INFORMATION FOR SEQ ID NO:52:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 11 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Ser Ser Arg Pro Lys Thr Asp Val Leu Val Gly

- (2) INFORMATION FOR SEQ ID NO:53:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 12 amino acids

    - (B) TYPE: amino acid(C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Lys Ser Asp Asn Thr Lys Ser Glu Met Lys His Ser

-113-

- (2) INFORMATION FOR SEQ ID NO:54:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 8 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Gly Thr Asp Ile Ala Ala Gly Glu

- (2) INFORMATION FOR SEQ ID NO:55:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids

    - (B) TYPE: amino acid (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Glu Arg Arg Asp Arg Glu Glu Arg Leu Arg

- (2) INFORMATION FOR SEQ ID NO:56:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids (B) TYPE: amino acid

    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Thr Gly Lys Gln Thr Asp Lys Thr Lys Ser Asn Met Lys Gly Tyr

- (2) INFORMATION FOR SEQ ID NO:57:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Asp Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Gly Tyr

#### **CLAIMS**

- 1. An isolated polynucleotide sequence encoding a polypeptide with an amino acid sequence having at least about 35% homology in the protein kinase domain with the polynucleotide encoding *HRR25* protein kinase.
- 5 2. The polynucleotide of claim 1 wherein the encoded polypeptide possesses casein kinase activity.
  - 3. The polynucleotide of claim 1 wherein the encoded polypeptide possesses protein-serine/threonine kinase activity.
- 4. The polynucleotide of claim 1 wherein the encoded polypeptide possesses protein-tyrosine kinase activity.
  - 5. The polynucleotide of claim 1 wherein the encoded polypeptide possess protein-serine/threonine and protein-tyrosine kinase activity.
  - 6. The polynucleotide of claim 1, wherein the polypeptide is characterized as:
- a) promoting normal meiotic recombination; and
  - b) promoting the repair a DNA strand break which occurs at the cleavage site:

CAACAG GTTGTC.

20

25

7. The polynucleotide of claim 1, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of GPSLED (amino acids 86 to 91 in SEQ ID NO: 2), RDIKPDNFL (amino acids 127 to 135 in SEQ ID NO: 2), HIPYRE (amino acids 164 to 169 in SEQ ID NO: 2), and

WO 94/17189 PCT/US94/00795

-115-

SVN (amio acids 181 to 183 in SEQ ID NO: 2) and conservative variations thereof.

- 8. The polynucleotide of claim 1, selected from the group consisting of RNA, mRNA, genomic DNA and cDNA.
- 5 9. An antisense polynucleotide according to claim 1.
  - 10. The polynucleotide of claim 1, selected from the group consisting of the DNA sequences of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 23, 30, 31, and 34.
- 11. An isolated and purified polypeptide encoded by a DNA sequence of claim 10.
  - 12. The polynucleotide of claim 1 wherein the polynucleotide is isolated from organisms selected from the group consisting of *Saccharomyces*, *Schizosaccharomyces*, human, bovine, porcine, murine, avian and *Drosophila* species.
- 13. An autonomously replicating DNA vector comprising a DNA according to claim 8.
  - 14. A procaryotic or eukaryotic host cell stably transformed or transfected with a DNA according to claim 8.
- 15. A method for the production of a polypeptide possessing protein kinase and/or recombination/repair promoting activity comprising growing a host cell according to claim 14 in a suitable nutrient medium and isolating the desired polypeptide from said host cell or from the medium of its growth.
  - 16. A polypeptide product of the method of claim 15.

WO 94/17189 PCT/US94/00795

-116-

- 17. An antibody substance specific for a polypeptide of claim 15.
- 18. A monoclonal antibody according to claim 17.
- 19. A method for identifying a composition which modulates the protein kinase and/or recombination/repair promoting activity of an HRR25-like protein comprising:
  - (a) incubating a system of components comprising the composition and the protein in the presence of a substrate for said protein wherein incubation is carried out under conditions sufficient to allow the components to interact; and
- 10 (b) measuring the change in activity of said protein on said substrate.
  - 20. The method of claim 19 wherein the activity is promotion of repair of a DNA double strand break.
  - 21. The method of claim 19 wherein the activity is protein kinase activity.
- 22. A method of treating a cell proliferative disorder associated with an HRR25-like protein comprising administering, to a subject with the disorder, a therapeutically effective amount of a composition which modulates the activity of the protein.

5



FIGURE 1

Brr25	EEVA
Yck1/Cki2	SSRDDSTIIGLHYKIGKKIGEGSFGVLFEGTNMINGVPVA
Yck2/Ckil	-SGSQSRDDSTIIGLHYKIGKKIGEGSFGVLFEGTNMINGLPVA
Nufl	MSQRSSQHIVGIHYAVGPKIGEGSFGVIFEGENILHSCQAQTGSKRDSSIIMANEPVA
Hhp1	MALDLRIGNKYRIGRKIGSGSFGDIYLGTNVVSGEEVA
Hhp2	MTVVDIKIGNKYRIGRKIGSGSFGQIYLGLNTVNGEOVA
CKIalHu	MASSSGSKAEFIVGGKYKLVRKIGSGSFGDIYLAINITNGEEVA
CKIa2Hu	MASSSGSKAEFIVGGKYKLVRKIGSGSFGDIYLAINITNGEEVA
CKI@3Hu	MASSSGSKAEFIVGGKYKLVRKIGSGSFGDIYLAINITNGEEVA
Common	G-KYKIGRKIGSGSFGDIY-GTN-NGE-VA
Hrr25	IKLESIRSRHPQLDYESRVYRYLSGGVGIPFIRWFGREGEYNAMVIDLLGPSLEDLFNYCH
Yck1/Cki2	
Yck2/Cki1	
Nuf1	IKFEPRHSDAPOLRDEFRAYRILNGCVGIPHAYYFGOEGMHNILIIDLLGPSLEDLFEWCN
Hhp1	IKLESTRAKHPQLEYEYRVYRILSGGVGIPFVRWFGVECDYNAMVMDLLGPSLEDLFNFCG
Hhp2	VKLEPLKARHHQLEYEFRVYNILKGNIGIPTIRWFGVTNSYNAMVMDLLGPSLEDLFCYCG
CKIalHu	VKLESQKARHPQLLYESKLYKILQGGVGIPHIRWYGQEKDYNVLVMDLLGPSLEDLFNFCS
CKIa2Hu	VKLESQKARHPQLLYESKLYKILQGGVGIPHIRWYGQEKDYNVLVMDLLGPSLEDLFNFCS
CKI@3Hu	VKLESQKARHPQLLYESKLYKILQGGVGIPHIRWYGQEKDYNVLVMDLLGPSLEDLFNFCS
Common	IKLEP-KA-HPQL-YE-RVYKIL-G-VGIPRWFGG-YNALVIDLLGPSLEDLFCG
Hrr25	RRFSFKTVIMLALOMFCRIQYIHGRSFIHRDIKPDNFLMGVGRRGST
Yck1/cki2	RKFSVKTVVQVAVQMITLIEDLHAHDLIYRDIKPDNFLIGRPGQPDANN
Yck2/cki1	
Nufl	RKFSVKTTCMVAKQMIDRVRAIHDHDLIYRDIKPDNFLISQYQRISPEGKVIKSCASSSNN
Hhp1	RKFSLKTVLLLADQLISRIEFIHSKSFLHRDIKPDNFLMGIGKRGNQ
Hhp2	RRFTLKTVLLLADQLISRIEYVHSKSFLHRDIKPDNFLMKKHSNV
CKI al Hu	
	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa2Hu	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa2Hu CKIa3Hu	
	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa3Hu Common	RRFTMKTVLMLADOMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNKRRFTMKTVLMLADOMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNKCLESPVGKRKRSRRFS-KTVLMLADOMISRIEYIHDFIHRDIKPDNFLMGGN
CKI@3Hu Common Hrr25	RRFTMKTVLMLADOMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa3Hu Common Hrr25 Yck1/Cki2	RRFTMKTVLMLADOMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKI@3Hu Common Hrr25	RRFTMKTVLMLADOMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKI@3Hu Common Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa3Hu Common Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1 Hhp1	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa3Hu Common Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1 Hhp1 Hhp2	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa3Hu Common  Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1 Hhp1 Hhp2 CKIa1Hu	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa3Hu Common Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1 Hhp1 Hhp2	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK
CKIa3Hu Common  Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1 Hhp1 Hhp2 CKIa1Hu	RRFTMKTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLMGIGRHCNK

FIGURE 2A

Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1 Hhp1 Hhp2 CKIa1Hu CKIa2Hu CKIa3Hu Common	QSRRDDLESLGYVLIYFCKGSLPWQGLKATTKKQKYDRIMEKKLNVSVETLCSGLPLEF QSRRDDMEALGHVFFYFLRGHLPWQGLQAPNNKQKYEKIGEKKRLTNLYDLAQGLPVQF QSRRDDMEAMGHVFFYFLRGQLPWQGLQAPNNKQKYEKIGEKKRLTNLYDLAQGLPIQF QSRRDDLESLGHVFFYFLRGSLPWQGLKAPNNKLKYEKIGMTKQKLNPDDLLLNNAIPYQF QSRRDDLESLGYVLVYFCRGSLPWQGLAATTKKQKYEKIMEKKISTPTEVLCRGFPQEF QSRRDDLESLGYVLLYFCRGSLPWQGLQADTKEQKYQRIRDTKIGTPLEVLCKGLPEEF QSRRDDMESLGYVLMYFNRTSLPWQGLKAATKKQKYEKISEKKMSTPVEVLCKGFPAEF QSRRDDMESLGYVLMYFNRTSLPWQGLKAATKKQKYEKISEKKMSTPVEVLCKGFPAEF QSRRDDMESLGYVLMYFNRTSLPWQGLKAATKKQKYEKISEKKMSTPVEVLCKGFPAEF QSRRDDMESLGYVLMYFNRTSLPWQGLKAATKKQKYEKISEKKMSTPVEVLCKGFPAEF QSRRDDMESLGYVL-YF-RGSLPWQGLKAATKKQKYEKIGEKKT-LEVLC-GLPEF
Hrr25 Yck1/Cki2 Yck2/Cki1 Nuf1 Hhp1 Hhp2 CKIalHu CKIa2Hu CKIa3Hu Common	-QEYMAYCKNLKFDEKPDYLFLARLFKDLSIKLEYHNDHLFDWTMLRYTKAMVE GRYLEIVERSLSFEECPDYEGYRKLLLSVLDDLGETADGQYDWMKLNDGRG GRYLEIVERNLSFEETPDYEGYRMLLLSVLDDLGETADGQYDWMKLNGGRG -ATYLKYARSLKFDEDPDYDYLISLMDDALRLNDLKDDGHYDWMDLNGGKG -SIYLNYTRSLRFDDKPDAYFRKRLRKDFCRQSEEFNYMLFDWTLKRKT -T-YMCYTRQLSFTEKPNYAYLMKAFRDLLIRKGYQYDYVFDWMILK -AMYLNYCRGLRFEEAPDYMYLRQLFRILFRTLNHQYDYTFDWTMLKQKAAQQAASSSGQG -AMYLNYCRGLRFEEAPDYMYLRQLFRILFRTLNHQYDYTFDWTMLKQKAAQQAASSSGQG -AMYLNYCRGLRFEEAPDYMYLRQLFRILFRTLNHQYDYTFDWTMLKQKAAQQAASSSGQGYL-Y-R-LSFDEKPDY-YLR-LFLLDFDWT-L-
CKIalHu CKIa2Hu CKIa3Hu	QQAQTPTGF QQAQTPTGFKQTDKTKSNMKGF QQAQTPTGFKQTDKTKSNMKG

FIGURE 2B



FEGURE 1

# BEST AVAILABLE COPY

Brr25	belrygrffigrrigsgsfgdiyegtnlisgbe	V.
Yck1/Cki2	BarddatiiqLaykigkrigegafgvlfegtnxing	VA
Yek2/Ckil	-sgaqsrddstiiglbykigkrigegbygylfegtnxing	VΆ.
Nufl	MSQRBSQBIVGIBYAV@PKIGEQBFGVIFEGENILBSCQACTGSRRDSSIIMANEP	WA
Shpl	KALDLRIGHKIRIGRRIGSGSFGDITLGTNVVSG	TIE.
Bhp2	KTVVDÍKÍGNKYRIGRKÍGSGSFGQÍYLGLNTVNGZO	VA
CKIe18u	MASSEGEKAEFIVOGKYKLVRXIGSGEFGDIYLAINITNOEE	VA
CKID280	MASSEGSKAEFIVOGKIKLVRKIGEGSFGDIYLAINITNGEE	
CKIa 3Hu	MASSSGSKAEFIVGGRYKLVRRIGSGSFGDIYLAINITNGEE	
Common		VA,
Brr25	ixlesirsrapoldyesrvyrylsggvgipfirwfgregeyrahvidligpsleolfny	CB
Yok1/cki2	IKFEPRKTEAPQLADETKTYKILNGTPNIPYAYYFGQEGLHNILVIDLLGPBLEDLFDW	ca
Yck2/Ckil	IKFEPRKTEAPOLKDEYRTYKILAGTPGIPGEYYPGGEGLERILVIDLLGPSLEDLFDN	?CG
Mufl	ikfeprhedapqlrdefrayrilngcvgifhayyfgqeghhxiliidligpsledlygw	
Shp1	iklestrakhpqleyeyrvyrilsggvgipfvrwfgvecdymaxvmdligpbledlynf	
Bhp2	vxleplkarheqleyeprvynilkghigiptirhfgvtnefhanvndllgpsledlycy	
CKIAlbu	vxle9qkarhpqllye6xlyxilqqqvgip8ihwygqerdynvlvmdllgpsledlynf	
CKIE2Hu	VXLESQKARHPQLLYESKLYKILQGGVGIPHIRWYGQEKDYNVLVMDLLGPSLEDLFNF	CB.
CRI&3Hu	vxlesqrarhpqllyesklykilqqqvqiphirwyqqexdynvlymdliqpsledlynp	<b>72</b>
Common	IXLEP-KA-HPQL-YE-RVYKIL-G-VGIPRWFGG-YMALVIDLLGPSLEDLF	CG
Arr25	RRFSFKTVIMLALQMFCRIQYIEGRSFIERDIKPDMFLMGVGRRGST	
Yck1/cki2	RKFSVKTVVQVAVQMITLIEDLRAHDLIYRDIKPDNFLIGRPGQPDANN	
Yok2/ckil	RRF6VKTVLLLADQLITLIEDLRANDLIYRDIRPDNFLIGRPGQPDANK	
Nufl	RKFBVKTTCMVAKQMIDRVRAIHDEDĻIYRDIKFDMFLISQYQRISPEGKVIKBCA988	
Mhp1	RKFSLKTVLLLADGLISRIEFIRSKSFLHRDIKPDNFLMGIGKRGNQ	
Hhp2 CKIolRu	REFILETVILLADQLISRIEYVHSESFILERDIEFDWFLKKEHSHV	
CRIG2HU	RRFTMKTVLMLADQMISRIEYVRTKMFIRRDIKPDMYLMGIGRHCMK	
CKIGZHU	RRFTMKTVLMLADQMIBRIEYVHTKNFIHRDIKPDNFLHGIGRECHE	
Common	RRFTMRTVLMLADQMISRIEYVHTKNFIHRDIKPDNFLNGIQRHCMKCLHSPVGKRK	
COMMOR	RRPS-KTVLMLADQMISRIEYIHDFIHRDIKPDNPLNGGN	
Brr25		
Yek1/Cki2	THE CLASSIFIC STREET FRANKSLY GTARYABYNTHLO	IE
Yck2/ckil	iblidfgharqyrdpktkqhipyrekkslsgtaryksinthig	RE
Nuf1	WHEN THE THE THE TAKE THE TRUE TRUE THE TRUE TRUE THE TRU	HE.
Rippl	NDFNLIYNVDFGHARQYRDPRTKQHIFYRERKSLSGTARYMSINTHYG	RE
Bhp2		E
CKIe1Hu		IE
CRIG2Hu		EE
CKI038u	LFLIDFGLAKKYRDNRTROHIPYREDKNLTGTARYASINAHLO MTVSTSQDPSFBGLMQLFLIDFGLAKKYRDNRTROHIPYREDKNLTGTARYASINAHLO	IE

# BEST AVAILABLE COPY

Brr25	qerrddleslgyvliyfcagslpwqglkattkrqrydrihekklnvsvetlceglplef
Rekl/Cki2	ofriddhealghyffyflrgelfwogloapnniokyekigekkrlinlydlaoglfv—of
Yck2/Ckil	óbrrddmeamgevffyflrdolfwogloapknkoktekigekkrlinlydlagglpiof
mufl	osrrddlesigevffyflrgelfwogleapunklryerightkoklnpddllinnaipyof
Hhpl	obrrddleigyvlvyfcroslpwoglaattkrokterimekribtytevlcrofpoef
Hhp2	OBERDDLEBIGYVILYFCRG61PWGGLQADTRECKTQRIRDTRIGTFLEVLCKGLP6EF
CKIOIAU	QSRRDDMEELGYVLNYFRRTSLPWQGLRAATKRQKYERISERKMSTFVEVLCRGFPA-~SF
CKIQ2Hu	osrrodneblgyvinyfhrtslpwoglkaatkkoryerisekrhstpvevlckoffaEt
CKIMINU	OSRRODMEGLGYVLMYFNRTSLFWÖGLKAATKKÖKYEKIGERKMSTFVEVLCKGFPAEF
Common	QSRRODMESLGYVL-YF-RGSLPWQGLKAPTKKQKYEKIGERKT-LEVLC-GLPEF
Hrr25	-ORYMAYCKNLRFDERPDYLFLARLFRDLBIKLEYHNDHLFDWTMLRYTKAMVE
Yck1/Ck12	GRYLEIVERSLSFEECPDIEGIRKILLSVLDDLGETADGOYDWMXLNDGRG
Yck2/ckil	GRYLEIVERNLBFEETPOYEGYRMILLSVLDDLGETADGOYDWHYLNGGRG
Nuf1	-atylkyarslkfdedfdydylisinddalrindirddghydwndinggkg
Hhp1	-SIYLNTTRSLPFDDRPDAYFRKRLRKDFCROSEEFNIMLFDWTLKRKT
Bhp2	-t-ymcytrolsfterpnyaylmxafrdllirkgyoydyvfdwmilr
CKIALHU	-AMYLNYCRGLRFEEAPDYMYLROLFRILFRTLMEOYDYTYDWTMLKGRAAOGAASSSGGG
CKIa2Bu	-AMYLNICRGLRFEEAPDYMYLROLFRILFRILNEGYDYTFDWINLKGEARGGAASSEGOG
CKI#3Bu	-amylnycrolrfeeapdymylrolyrilyriinegydytfdwtklkokaagoaabsbGGG
Common	YL-Y-R-LSFDZKPDY-YLR-LFLL
CKImlHu	QQAQTPTGF
CKIe2Hu	OGAGTPTGFROTDKTKBNMKGF
CKIo3Nu	QQAQTFTGFKQTDKTKSNMKG
•	

FIGURE 2B

# THIS PAGE BLANK (USPTO)

## PCT

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

12 A

(11) International Publication Number:

WO 94/17189

C12N 15/54, C07K 15/28, C12N 5/10, 9/12 C12Q 1/48, A61K 37/52, 48/00

A3

(43) International Publication Date:

4 August 1994 (04.08.94)

(21) International Application Number:

PCT/US94/00795

(22) International Filing Date:

21 January 1994 (21.01.94)

(30) Priority Data:

08/008,001

21 January 1993 (21.01.93) US

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(71) Applicant: THE SALK INSTITUTE FOR BIOLOGICAL STUDIES [US/US]; 10010 North Torrey Pines Road, La Jolla, CA 92307 (US).

(72) Inventor: HOEKSTRA, Merl, F.; 10321 216th Street, S.E., Shohomish, WA 98290 (US).

(74) Agent: NOLAND, Greta, E.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

(88) Date of publication of the international search report:
13 October 1994 (13.10.94)

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

#### (54) Title: PROTEIN KINASES

#### (57) Abstract

Protein kinase mutant and wild-type genes encoding polypeptides of the class heretofore designated "casein kinase I" and useful in screening compositions which may effect DNA double-strand break repair activity are disclosed. Also disclosed are methods using the polynucleotides in cell-proliferative disorders.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	СВ	United Kingdom	MR	Mauritania
ÂÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinca	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BC	Bulgaria	IE	Ircland	NZ	New Zealand
BJ	Benin	1T	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KC	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korca	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	ĹK	Sri Lanka	TD	Chad
cs	Czechoslovakia	เบ	Luxembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	•	MC	Monaco	TT	Trinidad and Tohago
	Germany	MD	Republic of Moldova	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	ML	Mali	UZ	Uzhekistan
FI	Finland	MN	Mongolia	VN	Vict Nam
FR	France	MIN	MOUROUS	•••	
GA	Gabon				

Internati. Application No PCT/US 94/00795

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C12N15/54 C07K15/28 A61K37/52

A61K48/00

C12N5/10 C12N9/12 C12Q1/48

According to International Patent Classification (IPC) or to both national classification and IPC

#### **B. FIELDS SEARCHED**

•)

Minimum documentation searched (classification system followed by classification symbols) IPC 5 C12N C07K C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	SCIENCE vol. 253 , 30 August 1991 , LANCASTER, PA US pages 1031 - 1034 M. F. HOEKSTRA ET AL. 'HRR25, a putative protein kinase from budding yeast:Association with repair of damaged DNA' see the whole document	1,4,6, 11,12
X	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 89 , August 1992 , WASHINGTON US pages 7008 - 7012 ANTHONY DEMAGGIO ET AL. 'The budding yeast HRR25 gene product is a casein kinase I isoform.' see the whole document	1,2,6-8, 10-15
	-/	

"Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  "&" document member of the same patent family		
Date of the actual completion of the international search  24 August 1994	Date of mailing of the international search report  0 5 -09- 1994		
Name and mailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  Fax: (+31-70) 340-3016	Authorized officer  Delanghe, L		
Fax: (+31-70) 340-3016	Detailyne, L		

Form PCT/ISA/210 (second sheet) (July 1992)

Further documents are listed in the continuation of box C.

Y Patent family members are listed in annex.

2



	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *		Relevant to claim No.
x	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 89 , October 1992 , WASHINGTON US pages 9454 - 9458 JENNIFER BROCKMAN 'Cell cycle-dependent localization of casein kinase I to mitotic spindles.' see the whole document	1-8, 10-18
P,X	JOURNAL OF BIOLOGICAL CHEMISTRY. vol. 268, no. 9 , March 1993 , BALTIMORE US pages 6394 - 6401 PAUL GRAVES ET AL. 'Molecular cloning , expression and characterization of a 49-kilodalton casein kinase I isoform from rat testis.' see the whole document	1-8, 10-18
P,X	WO,A,93 01205 (THE SALK INSTIUTE) 21 January 1993 see the whole document	1-21

2

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

## ◆ INTERNATIONAL SEARCH REPORT

Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:  Remark: Although claim 22 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the composition.
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
rnational Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
as only some of the required additional search fees were timely paid by the applicant, this international search report overs only those claims for which fees were paid, specifically claims Nos.:
o required additional search fees were timely paid by the applicant. Consequently, this international search report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Information on patent family members

PCT/US 94/00795 A " "

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
WO-A-9301205	21-01-93	EP-A-	0594710	04-05-94	
			/		
			,		
		•			
					1
					•