

Dominik Kopczynski, Christian Schröder, Jürgen Zanghellini

Wintersemester 2024/25

Übung zu Digitalisierung und Statistik

Abgabe & Bearbeitung: Mittwoch, 13. November

Aufgabe 6.1 (1 Punkt)

Machen Sie sich mit der Programmierumgebung Spyder oder den Jupyter Notebooks¹ (oder einer IDE Ihrer Wahl) vertraut. Starten Sie ein leeres Python-Dokument, geben Sie die Zeichenkette "Hello World!" auf der Konsole aus. Schreiben Sie alle nachfolgenden Aufgaben in das selbe Python-Dokument².

Aufgabe 6.2 (3 Punkte)

Gegeben sind aus der Mathematik zwei Punkte $S = (x_1 / y_1)$ und $E = (x_2 / y_2)$ in einem Koordinatensystem. Gesucht wird die Gerade

G:
$$y = mx + b$$

welche die beiden Punkte S, E schneidet. Zur Erinnerung, die Gleichungen zur Berechnung der Steigung m und dem Achsenabschnitt b sind: $m = (y_2 - y_1) / (x_2 - x_1)$ und b = y - mx. Berechnen Sie die Parameter m, b für die Punkte S = (2 / 7) und E = (-3 / -8) und geben Sie diese in der Konsole aus.

Aufgabe 6.3 (3 Punkte)

Manipulieren Sie die folgenden Zeichenketten nach folgenden Eigenschaften:

- Erstellen Sie eine Zeichenkette bestehend aus den Zeichen mit Index 2, 5, 8, 11, ... in der Zeichenkette von "Digitalisierung und Statistik" durch Splicing
- Erstellen Sie die umgekehrte Sequenz von "vitaler nebel mit sinn ist im leben relativ" durch Splicing
- Ersetzen Sie alle Vorkommen der Zeichenkette "er" durch "sie" in der Zeichenkette "Heute arbeitete er am Computer etwas länger."

Aufgabe 6.4 (3 Punkte)

Die Gauß'sche Osterformel ist eine Formel zur Berechnung des Datums vom Ostersonntag. Die Eingabe ist hierbei die Jahreszahl *J* und die Ausgabe der *OS*-te Märztag. Die Formal lautet folgendermaßen³:

Schritt	Bedeutung	Formel
1.	die Säkularzahl	K = J div 100
2.	die säkulare Mondschaltung	M = 15 + (3K + 3) div 4 - (8K + 13) div 25
3.	die säkulare Sonnenschaltung	S = 2 - (3K + 3) div 4
4.	den Mondparameter	A = J mod 19
5.	den Keim für den ersten Vollmond im Frühling	D = (19A + M) mod 30
6.	die kalendarische Korrekturgröße	R = (D + A div 11) div 29
7.	die Ostergrenze	OG = 21 + D - R
8.	den ersten Sonntag im März	SZ = 7 - (J + J div 4 + S) mod 7
9.	die Entfernung des Ostersonntags von der Ostergrenze (Osterentfernung in Tagen)	OE = 7 - (OG - SZ) mod 7
10.	das Datum des Ostersonntags als Märzdatum (32. März = 1. April usw.)	OS = OG + OE

Hierbei ist **div** die ganzzahlige Division und **mod** die Modulo-Rechnung. Schreiben Sie die Formel nach und berechnen Sie die Monatstage der Ostersonntage für die Jahre 1984, 2004, 2024 durch wiederholtes Kopieren und Einfügen des Codes im Dokument.

¹ Um Python-Skripte aus Jupyter-Notebooks zu exportieren: File ightarrow Export Notebook as ightarrow Executable Script

 $^{2\,}$ Als Abgabe wird nur ein *.py Dokument akzeptiert, keine *.ipynb Dokumente

³ Quelle: https://de.wikipedia.org/wiki/Gaußsche_Osterformel