



Establish a reasonable customer value evaluation model

Classify customers accurately - formulate personalized service plans

Create better relationships with customers - will lead to increased company profits

Fierce business competition shift from a product-centric approach to a
customer-centric approach

# Objectives

Customer Value Analysis based on LRFMC Indicators

1. Perform customer segmentation (clustering) through the airline customer dataset. Use LRFMC indicators and perform K-Means clustering algorithm.

2. Analysis of the characteristics of each cluster resulting from segmentation.

3. Provide business insight related to the analysis results.

- Data collection.
- 2. Data understanding by performing the statistic descriptive of data and check correlation among features by correlation matrix.
- Data preprocessing that includes handling missing value, feature selection based on LRFMC, handling outlier and also data scaling.
- 4. Clustering process by K-Means algorithm
- 5. Analyze the result customer value analysis



### **About the Data**

The dataset consists of 62988 rows and 23 columns

#### 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62988 entries, 0 to 62987
Data columns (total 23 columns):

| Data  | COLUMNS (COCAL 23      | COTUMNS):        |         |  |  |  |  |  |  |  |
|-------|------------------------|------------------|---------|--|--|--|--|--|--|--|
| #     | Column                 | Non-Null Count   | Dtype   |  |  |  |  |  |  |  |
|       |                        |                  |         |  |  |  |  |  |  |  |
| 0     | MEMBER_NO              | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 1     | FFP_DATE               | 62988 non-null   | object  |  |  |  |  |  |  |  |
| 2     | FIRST_FLIGHT_DATE      | 62988 non-null   | object  |  |  |  |  |  |  |  |
| 3     | GENDER                 | 62985 non-null   | object  |  |  |  |  |  |  |  |
| 4     | FFP_TIER               | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 5     | WORK_CITY              | 60719 non-null   | object  |  |  |  |  |  |  |  |
| 6     | WORK_PROVINCE          | 59740 non-null   | object  |  |  |  |  |  |  |  |
| 7     | WORK_COUNTRY           | 62962 non-null   | object  |  |  |  |  |  |  |  |
| 8     | AGE                    | 62568 non-null   | float64 |  |  |  |  |  |  |  |
| 9     | LOAD_TIME              | 62988 non-null   | object  |  |  |  |  |  |  |  |
| 10    | FLIGHT_COUNT           | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 11    | BP_SUM                 | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 12    | SUM_YR_1               | 62437 non-null   | float64 |  |  |  |  |  |  |  |
| 13    | SUM_YR_2               | 62850 non-null   | float64 |  |  |  |  |  |  |  |
| 14    | SEG_KM_SUM             | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 15    | LAST_FLIGHT_DATE       | 62988 non-null   | object  |  |  |  |  |  |  |  |
| 16    | LAST_TO_END            | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 17    | AVG_INTERVAL           | 62988 non-null   | float64 |  |  |  |  |  |  |  |
| 18    | MAX_INTERVAL           | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 19    | EXCHANGE_COUNT         | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 20    | avg_discount           | 62988 non-null   | float64 |  |  |  |  |  |  |  |
| 21    | Points_Sum             | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| 22    | Point_NotFlight        | 62988 non-null   | int64   |  |  |  |  |  |  |  |
| dtyp  | es: float64(5), int    | 64(10), object(8 | )       |  |  |  |  |  |  |  |
| memoi | memory usage: 11.1+ MB |                  |         |  |  |  |  |  |  |  |

| Code              | Description                                                            |
|-------------------|------------------------------------------------------------------------|
| MEMBER_NO         | : Member ID                                                            |
| FFP_DATE          | : Frequent Flyer Program Join Date                                     |
| FIRST_FLIGHT_DATE | : Date of First Flight                                                 |
| GENDER            | : Gender                                                               |
| FFP_TIER          | : Tier of Frequent Flyer Program                                       |
| WORK_CITY         | : City of Origin                                                       |
| WORK_PROVINCE     | : Province of Origin                                                   |
| WORK_COUNTRY      | : Country of Origin                                                    |
| AGE               | : Customer Age                                                         |
| LOAD_TIME         | : Date Data was Taken                                                  |
| FLIGHT_COUNT      | : Number of Customer Flights                                           |
| BP_SUM            | : Travel Plans                                                         |
| SUM_YR_1          | : Fares Revenue                                                        |
| SUM_YR_2          | : Votes Prices                                                         |
| SEG_KM_SUM        | : Total Distance (Km) Flights that have been done                      |
| LAST_FLIGHT_DATE  | : Date of Last Flight                                                  |
| LAST_TO_END       | : Time Range Between the Last Flight to the Most Recent Flight Booking |
| AVG_INTERVAL      | : Average Time Interval                                                |
| MAX_INTERVAL      | : Maximum Time Interval                                                |
| EXCHANGE_COUNT    | : Exchange Count                                                       |
| avg_discount      | : The Average Discount that Customers Get                              |
| Points_Sum        | : The Total Points that Earned by Customer                             |
| Point_NotFlight   | : Points not Used by Members                                           |





# Statistic Descriptive

**Numerical Data Type** 

- There are 14 numeric columns after dropping `MEMBER\_NO` column,
- There are some columns that seem to have a normal distribution which mean equal/close to median value. Those columns are `FFP\_TIER`, `AGE`, `avg\_discount`.
- Other columns seem to have a positive skew distribution which mean > median value.
- Some columns have value of 0. For the example it can be seen in the `SUM\_YR\_1` and `SUM\_YR\_2` columns which is a bit strange if fare with 0 value. So those kind of columns need to be checked further.
- `AGE` (Customer Age) column ranged between 6-110, with mean 42yo and median 41yo. A bit strange that there are over 100yo. Looks like it needs to be checked further if required to analyze using that data.

|       | FFP_TIER     | AGE          | FLIGHT_COUNT | BP_SUM        | SUM_YR_1      | SUM_YR_2      | SEG_KM_SUM    | LAST_TO_END  | AVG_INTERVAL | MAX_INTERVAL | EXCHANGE_COUNT | avg_discount | Points_Sum  | Point_NotFlight |  |
|-------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|----------------|--------------|-------------|-----------------|--|
| count | 62988.000000 | 62568.000000 | 62988.000000 | 62988.000000  | 62437.000000  | 62850.000000  | 62988.000000  | 62988.000000 | 62988.000000 | 62988.000000 | 62988.000000   | 62988.000000 | 62988.0000  | 62988.000000    |  |
| mean  | 4.102162     | 42.476346    | 11.839414    | 10925.081254  | 5355.376064   | 5604.026014   | 17123.878691  | 176.120102   | 67.749788    | 166.033895   | 0.319775       | 0.721558     | 12545.7771  | 2.728155        |  |
| std   | 0.373856     | 9.885915     | 14.049471    | 16339.486151  | 8109.450147   | 8703.364247   | 20960.844623  | 183.822223   | 77.517866    | 123.397180   | 1.136004       | 0.185427     | 20507.8167  | 7.364164        |  |
| min   | 4.000000     | 6.000000     | 2.000000     | 0.000000      | 0.000000      | 0.000000      | 368.000000    | 1.000000     | 0.000000     | 0.000000     | 0.000000       | 0.000000     | 0.0000      | 0.000000        |  |
| 25%   | 4.000000     | 35.000000    | 3.000000     | 2518.000000   | 1003.000000   | 780.000000    | 4747.000000   | 29.000000    | 23.370370    | 79.000000    | 0.000000       | 0.611997     | 2775.0000   | 0.000000        |  |
| 50%   | 4.000000     | 41.000000    | 7.000000     | 5700.000000   | 2800.000000   | 2773.000000   | 9994.000000   | 108.000000   | 44.666667    | 143.000000   | 0.000000       | 0.711856     | 6328.5000   | 0.000000        |  |
| 75%   | 4.000000     | 48.000000    | 15.000000    | 12831.000000  | 6574.000000   | 6845.750000   | 21271.250000  | 268.000000   | 82.000000    | 228.000000   | 0.000000       | 0.809476     | 14302.5000  | 1.000000        |  |
| max   | 6.000000     | 110.000000   | 213.000000   | 505308.000000 | 239560.000000 | 234188.000000 | 580717.000000 | 731.000000   | 728.000000   | 728.000000   | 46.000000      | 1.500000     | 985572.0000 | 140.000000      |  |



# Statistic Descriptive

**Object & DateTime Data Type** 

|        | FFP_DATE            | FIRST_FLIGHT_DATE   | LOAD_TIME           | LAST_FLIGHT_DATE    |
|--------|---------------------|---------------------|---------------------|---------------------|
| count  | 62988               | 62988               | 62988               | 62567               |
| unique | 3068                | 3406                | 1                   | 730                 |
| top    | 2011-01-13 00:00:00 | 2013-02-16 00:00:00 | 2014-03-31 00:00:00 | 2014-03-31 00:00:00 |
| freq   | 184                 | 96                  | 62988               | 959                 |
| first  | 2004-11-01 00:00:00 | 1905-12-31 00:00:00 | 2014-03-31 00:00:00 | 2012-04-01 00:00:00 |
| last   | 2013-03-31 00:00:00 | 2015-05-30 00:00:00 | 2014-03-31 00:00:00 | 2014-03-31 00:00:00 |

|        | GENDER | WORK_CITY | WORK_PROVINCE | WORK_COUNTRY |
|--------|--------|-----------|---------------|--------------|
| count  | 62985  | 60719     | 59740         | 62962        |
| unique | 2      | 3234      | 1165          | 118          |
| top    | Male   | guangzhou | guangdong     | CN           |
| freq   | 48134  | 9386      | 17509         | 57748        |

- Most of customer of this airline is Male which is around 76.42%.
- The top city of origin is Guangzhou which is 15.46%.
- The top province of origin is Guangdong which is 29.31%.
- The top country of origin is CN (China) which is 91.72%.
- Guangzhou is a city in Guangdong Province China.
- Seems that this is China's airline data.

- From `FFP\_DATE` (Frequent Flyer Program Join Date), we know that many customers joined the program on 13 January 2011. with a ddmmyy range from the 1 November 2004 to 31 March 2013.
- Based on column `FIRST\_FLIGHT\_DATE` (Customer's Date of First Flight), we get the information that many customers have their first flight (on this airline) on 16 February 2013, where the time range ranges from 31 December 1905 to 30 May 2015.
- On column `LAST\_FLIGHT\_DATE` (Customer Date of Last Flight), it can be seen that many customers have their last flight on 31 March 2014 during time range between 1 April 2012 till 31 March 2014.
- Based on `LOAD\_TIME` column, seems that the data was taken on 31 March 2014. This will be the cut off date of this dataset on this project.

# **Correlation Analysis**

From the correlation heatmap, It can be seen that there are some features that have a high correlation with other features, such as:

- FLIGHT\_COUNT (Number of Customer Flights)
- BP\_SUM (Travel Plans)
- SUM\_YR\_1 (Fares Revenue)
- SUM\_YR\_2 (Votes Prices)
- SEG\_KM\_SUM (Total Distance (Km) Flights that have been done)
- Points\_Sum (The Total Points that Earned by Customer)

| FFP_TIER        | 1.00     | 0.08  | 0.58         | 0.58   | 0.46     | 0.61     | 0.52       | -0.21       | -0.14        | -0.13        | 0.34           | 0.25         | 0.56       | 0.19            |
|-----------------|----------|-------|--------------|--------|----------|----------|------------|-------------|--------------|--------------|----------------|--------------|------------|-----------------|
| AGE             | 0.08     | 1.00  | 0.07         | 0.10   | 0.11     | 0.08     | 0.09       | -0.03       | -0.02        | 0.01         | 0.03           | 0.13         | 0.07       | -0.09           |
| FLIGHT_COUNT    | 0.58     | 0.07  | 1.00         | 0.79   | 0.75     | 0.79     | 0.85       | -0.40       | -0.32        | -0.19        | 0.50           | 0.14         | 0.75       | 0.29            |
| BP_SUM          | 0.58     | 0.10  | 0.79         | 1.00   | 0.85     | 0.88     | 0.92       | -0.32       | -0.25        | -0.15        | 0.53           | 0.31         | 0.92       | 0.24            |
| SUM_YR_1        | 0.46     | 0.11  | 0.75         | 0.85   | 1.00     | 0.66     | 0.80       | -0.19       | -0.24        | -0.15        | 0.49           | 0.27         | 0.79       | 0.24            |
| SUM_YR_2        | 0.61     | 0.08  | 0.79         | 0.88   | 0.66     | 1.00     | 0.85       | -0.42       | -0.25        | -0.15        | 0.47           | 0.23         | 0.83       | 0.24            |
| SEG_KM_SUM      | 0.52     | 0.09  | 0.85         | 0.92   | 0.80     | 0.85     | 1.00       | -0.37       | -0.28        | -0.16        | 0.51           | 0.11         | 0.85       | 0.26            |
| LAST_TO_END     | -0.21    | -0.03 | -0.40        | -0.32  | -0.19    | -0.42    | -0.37      | 1.00        | -0.11        | -0.34        | -0.17          | -0.02        | -0.29      | -0.12           |
| AVG_INTERVAL    | -0.14    | -0.02 | -0.32        | -0.25  | -0.24    | -0.25    | -0.28      | -0.11       | 1.00         | 0.72         | -0.13          | -0.04        | -0.22      | -0.08           |
| MAX_INTERVAL    | -0.13    | 0.01  | -0.19        | -0.15  | -0.15    | -0.15    | -0.16      | -0.34       | 0.72         | 1.00         | -0.09          | -0.02        | -0.14      | -0.04           |
| EXCHANGE_COUNT  | 0.34     | 0.03  | 0.50         | 0.53   | 0.49     | 0.47     | 0.51       | -0.17       | -0.13        | -0.09        | 1.00           | 0.11         | 0.58       | 0.40            |
| avg_discount    | 0.25     | 0.13  | 0.14         | 0.31   | 0.27     | 0.23     | 0.11       | -0.02       | -0.04        | -0.02        | 0.11           | 1.00         | 0.26       | -0.01           |
| Points_Sum      | 0.56     | 0.07  | 0.75         | 0.92   | 0.79     | 0.83     | 0.85       | -0.29       | -0.22        | -0.14        | 0.58           | 0.26         | 1.00       | 0.41            |
| Point_NotFlight | 0.19     | -0.09 | 0.29         | 0.24   | 0.24     | 0.24     | 0.26       | -0.12       | -0.08        | -0.04        | 0.40           | -0.01        | 0.41       | 1.00            |
|                 | FFP_TIER | AGE   | FLIGHT_COUNT | BP_SUM | SUM_YR_1 | SUM_YR_2 | SEG_KM_SUM | LAST_TO_END | AVG_INTERVAL | MAX_INTERVAL | EXCHANGE_COUNT | avg_discount | Points_Sum | Point_NotFlight |





# Handling Missing Values

Because the number of missing values can be categorized as still small, then we will just drop it.

```
# Drop missing values

df = df.dropna().reset_index(drop=True)
df
```





All missing values have been dropped. Number of rows become 57860.



### FEATURE SELECTION - LRFMC



# What is LRFMC ???





#### **RECENCY**

The freshness of the customer activity, be it purchases or visits

E.g. Time since last order or last engaged with the product



#### **FREQUENCY**

The frequency of the customer transactions or visits

E.g. Total number of transactions or average time between transactions/ engaged visits



#### **MONETARY**

The intention of customer to spend or purchasing power of customer

E.g. Total or average transactions value

RFM stands for Recency, Frequency, and Monetary value, each corresponding to some key customer trait. These RFM metrics are important indicators of a customer's behavior because the frequency and monetary value affect a customer's lifetime value, and recency affects retention, a measure of engagement.

In this project, we extend the RFM model to have 5 indicators namely LRFMC. Since the length of time for airline members to join a meeting can affect customer value to a certain extent, so we add the L indicator. Apart from that, the average value C of the discount coefficient is also used as an airline identification customer value indicator, so that is why we add the C indicator too.

Image source: <a href="https://clevertap.com/blog/rfm-analysis/">https://clevertap.com/blog/rfm-analysis/</a>

# FEATURE SELECTION



1. L = LOAD TIME - FFP DATE

The number of months since the member 's membership time from the end of the observation window = end time of the observation window-time to join [unit: month]

2. R = LAST TO END

The number of months since the customer 's most recent flight to the end of the observation window = the time from the last flight to the end of the observation window [Unit: Month]

3. F = FLIGHT COUNT

The number of times the customer took the company aircraft in the observation window = the number of flights in the observation window [Unit: times]

4. M = SEG KM SUM

The accumulated mileage of the customer in the company during the observation period = the total number of flight kilometers in the observation window [Unit: km]

5. C = AVG\_DISCOUNT

The average value of the discount coefficients corresponding to the passengers who traveled during the observation period = average discount rate [Unit: None]



### **OUTLIER HANDLING & SCALING**





Before Handling Outlier



After Log Transformation



After Remove Outlier based on IQR

- rows before IQR outlier filter: 57860
- rows after IQR outlier filter: 55220
- # Check duplicated value after removing outlier
  df\_IQR\_LRFMC.duplicated().sum()

78

- 78 is considering small qty, so we will just drop them
- rows after drop duplicated values 55142

## OUTLIER HANDLING

# **SCALING** - Standardization

Because K-Means is a distance-based ML algorithm, we need to scale it with StandardScaler.

```
# Standardize data

std = StandardScaler().fit_transform(df_IQR_LRFMC)

df_std_LRFMC = pd.DataFrame(std, columns = list(df_IQR_LRFMC))

df_std_LRFMC
```

|       | L         | R         | F         | М         | С         |
|-------|-----------|-----------|-----------|-----------|-----------|
| 0     | 1.638865  | -0.567751 | 1.254030  | 2.899821  | 2.436112  |
| 1     | -1.074189 | -2.522903 | 3.064036  | 2.888030  | 2.021912  |
| 2     | 1.661903  | -1.102449 | 2.233282  | 2.689878  | 2.767354  |
| 3     | 0.208871  | -1.667148 | 2.739982  | 2.883933  | 1.551613  |
| 4     | 0.222830  | -1.495477 | 1.515226  | 2.753655  | 2.263657  |
|       |           |           |           |           |           |
| 55137 | 0.982026  | 0.715355  | -1.320471 | -2.917142 | -0.075190 |
| 55138 | 0.409956  | 0.804703  | -1.320471 | -2.450463 | -2.157817 |
| 55139 | 0.754495  | 0.656189  | -1.320471 | -2.446033 | -2.199887 |
| 55140 | 0.226301  | 1.212296  | -1.320471 | -2.526536 | -2.326994 |
| 55141 | -1.339799 | 1.247406  | -1.320471 | -2.619335 | -2.326994 |

55142 rows x 5 columns







#### **INERTIA**



#### Silhouette Score



# CLUSTERING - K-MEANS

#### **K-MEANS Model**

```
# Create clusters using K-Means
kmeans = KMeans(n_clusters=5, random_state=0).fit(df_std_LRFMC)

# Assign Cluster
cluster = kmeans.labels_
df_std_LRFMC['clusters'] = cluster
df_IQR_LRFMC['clusters'] = cluster

# see cluster on data after IQR step
df_IQR_LRFMC.head()
```

|   | L        | R        | F        | М        | С        | clusters |
|---|----------|----------|----------|----------|----------|----------|
| 0 | 2.049606 | 1.544068 | 1.397940 | 5.278328 | 0.319568 | 0        |
| 1 | 1.339783 | 0.301030 | 2.045323 | 5.273207 | 0.304486 | 0        |
| 2 | 2.055633 | 1.204120 | 1.748188 | 5.187151 | 0.331630 | 0        |
| 3 | 1.675473 | 0.845098 | 1.929419 | 5.271428 | 0.287361 | 0        |
| 4 | 1.679125 | 0.954243 | 1.491362 | 5.214849 | 0.313289 | 0        |

```
# see cluster on data after scaling
df_std_LRFMC.head()
```

|   | L         | R         | F        | М        | С        | clusters |
|---|-----------|-----------|----------|----------|----------|----------|
| 0 | 1.638865  | -0.567751 | 1.254030 | 2.899821 | 2.436112 | 0        |
| 1 | -1.074189 | -2.522903 | 3.064036 | 2.888030 | 2.021912 | 0        |
| 2 | 1.661903  | -1.102449 | 2.233282 | 2.689878 | 2.767354 | 0        |
| 3 | 0.208871  | -1.667148 | 2.739982 | 2.883933 | 1.551613 | 0        |
| 4 | 0.222830  | -1.495477 | 1.515226 | 2.753655 | 2.263657 | 0        |

#### **Check Visualization using PCA & Scatter Plot**



# CLUSTERING - K-MEANS

After evaluating through visualization and compare it with what we've done through inertia and silhouette score, the number of clusters (k=5) is appropriate. The scatter plot shows the data has been clustered quite well.



## **CUSTOMER VALUE ANALYSIS**



|   | cluster | count | percentage |
|---|---------|-------|------------|
| 0 | 0       | 10289 | 17.78      |
| 1 | 1       | 11400 | 19.70      |
| 2 | 2       | 9629  | 16.64      |
| 3 | 3       | 12465 | 21.54      |
| 4 | 4       | 11359 | 19.63      |



### Cluster Count

There are 5 cluster (customer segment/group) with the number of customers from each cluster as follows:

- 1. Cluster 0 / Customer Group 1 : 10.289 (17.78 %)
- 2. Cluster 1 / Customer Group 2 : 11.400 (19.70 %)
- 3. Cluster 2 / Customer Group 3 : 9.629 (16.64 %)
- Cluster 3 / Customer Group 4 : 12.465 (21.54 %)
- 5. Cluster 4 / Customer Group 5 : 11.359 (19.63 %) It can be said that this clustering has a fairly even distribution of the number of customers.



# ANALYZE USING RADAR CHART

#### There are five clusters:

- Cluster-0 is Customer Group 1
- Cluster-1 is Customer Group 2
- Cluster-2 is Customer Group 3
- Cluster-3 is Customer Group 4
- Cluster-4 is Customer Group 5

In general, these clusters are formed because there are differences in the value of the LRFMC indicator.



#### 1. Customer Group 1:

- This is a group of customers who actually fly frequently, have a high monetary value because of their high mileage and are customers who have been in the frequent flyer program for a long time. The average discount rate is moderate. And this customer has a good recency because they recently flew with this airline.
- Let's label this customer as The Champions

#### 2. Customer Group 2:

- This customer group is a new customer (recently joined the frequent flyer program) so it has an RFMC value that is not yet high but looks potential.
- Let's label this customer as Potential Loyalists New Customers

#### 3. Customer Group 3:

- This customer group is those who have been in the frequent flyer program for quite a
  while. However, this group actually does not use this airline very often, has a low
  monetary or mileage value and the average discount rate is also quite low. They also
  have not used this airline for a very long time.
- Let's label this customer as Hibernating Low Value Customers

#### 4. Customer Group 4:

- This customer group is a customer who has been in the frequent flyer program for a long time and has a moderate RFMC score. They don't fly very often just moderate, so the other values are also moderate but actually have potential.
- Let's label this customer as Potential Loyalists General Customers

#### 5. Customer Group 5:

- This customer group has been joining the frequent flyer program for a long time. They
  have not used this airline for a very long time and have high average discount rate.
   And this customer group rarely flies and has low monetary value or mileage.
- Let's label this customer as Hibernating Price Sensitive Customers

### CLUSTER LABEL

| No | Customer Group   | Dominant<br>Value | Moderate<br>Value | Minimum<br>Value |
|----|------------------|-------------------|-------------------|------------------|
| 1  | Customer Group 1 | FML               | С                 | R*               |
| 2  | Customer Group 2 |                   | R*FMC             | L                |
| 3  | Customer Group 3 | R*                | L                 | FMC              |
| 4  | Customer Group 4 | L                 | R*FMC             |                  |
| 5  | Customer Group 5 | R*C               | L                 | FM               |

<sup>(\*)</sup> a low R value means that the customer has recently flown with the airline. And a high R value means that the customer has not used this airline for a long time.

For the value of R we have to be careful because the meaning is the opposite. Low R is actually good from the airline (business) point of view.

### USE REAL DATA

To do a better analysis of the five customer groups, we will use real data. In this case we use the data before standardization. However, because the data is log-transformed data, we will return the actual value (antilog) with the exponential formula.

```
# display mean and median for each cluster to get the real value in average and median
display(df_cluster.groupby('clusters').agg(['mean','median']))
```

|      |       | L<br>mean median |           | R<br>mean median |       | F         |        | М            |         | С        |          |
|------|-------|------------------|-----------|------------------|-------|-----------|--------|--------------|---------|----------|----------|
|      |       |                  |           |                  |       | mean      | median | mean median  |         | mean     | median   |
| clus | sters |                  |           |                  |       |           |        |              |         |          |          |
|      | 0     | 65.503181        | 65.666667 | 26.598698        | 14.0  | 32.384100 | 27.0   | 44828.602682 | 37953.0 | 0.739606 | 0.733479 |
|      | 1     | 24.661076        | 23.400000 | 88.512982        | 58.0  | 12.467281 | 11.0   | 18672.256754 | 15867.0 | 0.706767 | 0.704405 |
|      | 2     | 36.423723        | 30.266667 | 274.542632       | 238.0 | 3.675460  | 3.0    | 5738.858033  | 4830.0  | 0.528545 | 0.534635 |
|      | 3     | 74.492911        | 74.433333 | 148.552908       | 112.0 | 8.613317  | 8.0    | 12876.017168 | 11127.0 | 0.706558 | 0.702362 |
|      | 4     | 39.087232        | 32.266667 | 323.745576       | 298.0 | 3.477771  | 3.0    | 4573.088740  | 3924.0  | 0.832252 | 0.820805 |

```
# we do antilog by creating new dataframe df_cluster

df_cluster = df_IQR_LRFMC.copy()

df_cluster['L'] = 10 ** df_IQR_LRFMC['L'] - 1

df_cluster['R'] = 10 ** df_IQR_LRFMC['R'] - 1

df_cluster['F'] = 10 ** df_IQR_LRFMC['F'] - 1

df_cluster['M'] = 10 ** df_IQR_LRFMC['M'] - 1

df_cluster['C'] = 10 ** df_IQR_LRFMC['C'] - 1

df_cluster
```

|       | L          | R     | F     | М        | С        | clusters |
|-------|------------|-------|-------|----------|----------|----------|
| 0     | 111.100000 | 34.0  | 24.0  | 189813.0 | 1.087220 | 0        |
| 1     | 20.866667  | 1.0   | 110.0 | 187588.0 | 1.015978 | 0        |
| 2     | 112.666667 | 15.0  | 55.0  | 153868.0 | 1.146001 | 0        |
| 3     | 46.366667  | 6.0   | 84.0  | 186821.0 | 0.938031 | 0        |
| 4     | 46.766667  | 8.0   | 30.0  | 164001.0 | 1.057257 | 0        |
|       |            |       |       |          |          |          |
| 55137 | 74.466667  | 228.0 | 2.0   | 564.0    | 0.690922 | 4        |
| 55138 | 52.466667  | 260.0 | 2.0   | 900.0    | 0.420000 | 2        |
| 55139 | 64.800000  | 209.0 | 2.0   | 904.0    | 0.415000 | 2        |
| 55140 | 46.866667  | 473.0 | 2.0   | 834.0    | 0.400000 | 2        |
| 55141 | 17.633333  | 498.0 | 2.0   | 760.0    | 0.400000 | 2        |

#### 1.Customer Group 1 (**The Champions**):

1. It turns out that this customer group has joined ffp for about 65 months, has traveled about 40 thousand km mileage, last flew with an airline about 20 months ago, has flown with an airline about 30 times with an average discount rate of 0.7.

#### 2. Customer Group 2 (Potential Loyalists - New Customers) :

2. This customer group is those who have just joined the airline for about 20 months, have only flown with the airline about 80 months before, with a frequency of 12 flights, have traveled 18 thousand km mileage with an average discount rate of 0.7.

#### 3. Customer Group 3 (Hibernating - Low Value Customers) :

3. This group is those who have joined ffp for 30 months or more, their last flight was very long about 250 months ago, with a flight frequency of about 3 times, with a total mileage of about 5 thousand km and an average discount rate of 0.5.

#### 4. Customer Group 4 (Potential Loyalists - General Customers) :

- 4. This group is similar to group 2, but this group has joined ffp longer, which is about 70 months ago.
- 5. Customer Group 5 (**Hibernating Price Sensitive Customers**):
  - 5. This group is similar to group 3, but this group has a high average discount rate, which is around 0.8.

### BUSINESS RECOMMENDATION

#### 1.The Champions - Customer Group 1

 Airline must really take care of this customer group, because this group contributes well to the business. They can become early adopters for new airline service or program, and will help promote it. One way to keep these customers is through a reward program for this type of customer group. The reward program can also be accompanied by a kind of referral program, with the aim of providing rewards but encouraging them to promote airline brands (or certain programs).

#### • Example:

- Special reward discount + post your flight experience for additional discount for the next flight
- More FFP points (x2/x3) for your flight + booked your flight with friends and get special discount/price
- Book 1 for 2 just for you and triples your point
- Travelling Chilling Healing Saving. Flying to our new route with xx% discount + triples your ffp point. Catch additional points!!! Get more when your friends booked this route with ur refferal code.
- My Poin Rewards Provides convenience and various point reedem options.
- o etc.

#### **2.Potential Loyalists - New Customers** - Customer Group 2

This customer has recently joined the ffp program at this airline. However, they have
potential as loyal customers in the future, as can be seen from the good RFMC value
as a new customer. By building a good relationship with onboarding support and
special offer programs, it may be possible to help increase their frequency and
mileage.

#### • Example:

- Flight Booking assistant
- Boost your tier by special flight discount rate with us double your mileage now
- Friday escape with firends to upgrade your tier
- o etc.

#### 3. Hibernating - Low Value Customers - Customer Group 3

- This customer has a fairly low value for the airline. There is a possibility that they are
  the type of customers who fly only because there are certain interests or events.
  Although the company is not obliged to focus on this type of customer, the company
  should still try to induce them otherwise they will be completely lost. Airline should
  make a program to wake them up from hibernation.
- Example:
  - I miss u or I don't wanna lose you program. Give special discount or flight rate.
  - Can't forget u / Let's do it again/ Can't move on Program. Awake them with good memory of their last flight by giving them voucher/ code discount rate with flight routes according to their last flight.
  - o etc.

### BUSINESS RECOMMENDATION

#### 4.Potential Loyalists - General Customers - Customer Group 4

- This customer group is similar to group 2, but they have been in the frequent flyer program for longer. This customer has a pretty good track record but needs to be improved because they have the potential to contribute more to the company's business. The programs or campaigns that can be offered are more towards increasing engagement by telling them that they are loyalists (even though they are not champions) and influencing them to continue with us and create more shared moments.
- Example:
- Let's be our part forever Give special rewards point for next booking
  - o Fly more get more doubles the points for this year (particular time period) booking
  - O Share your moment with us for additional points to boost your tier and discover the next treasure
  - o etc.

#### **5.Hibernating - Price Sensitive Customers** - Customer Group 5

- This customer is similar to group 3, only they seem to have a higher price sensitive. So the approach taken by the company must be more aggressive than group 3. Programs that can be provided to wake them up must be more thought-provoking with special prices or discounts and various benefits that are more attractive to them. The company can provide a typical special program with what they might have gotten before.
- Example:
  - I want to get back together with you This Deal is just for you
  - Don't you miss this Biggest Deal? Let's do it again!
  - o etc.



#### **REFERENCES**

The following are references in working on this project.

https://www.programmersought.com/article/63823799496/

https://www.kaggle.com/code/felixign/airline-clustering/notebook

https://www.kaggle.com/code/amarmaruf/homework-unsupervised-rakamin-ds8/notebook

https://clevertap.com/blog/rfm-analysis/

https://www.moengage.com/blog/rfm-analysis-using-rfm-segments/

# THANK YOU



