

Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement Learning

Elizaveta Tennant, Stephen Hailes and Mirco Musolesi

TRUST _____

Leverhulme Doctoral Training Programme for the Ecological Study of the Brain

Research Questions

- 1. How do we develop morally robust & adaptable AI agents for the real world?
- 2. How can we represent different existing ethical frameworks for Al agents?

How can we develop morality in agents?

Top-down: Define specific **rules**, safety **constraints**, moral **principles** to follow.

- E.g. Asimov's Three Laws of Robotics; AI / RL Safety constraints.
- Hard/impossible to define all necessary rules for agents to follow without contradictions.

Bottom-up: Allow agents to **learn morality from interactions** with an environment / humans, without any predispositions.

- E.g. Reinforcement Learning, incl.
 RLHF.
- Risks of agents reward-hacking or learning inefficient norms early on.

How can we develop morality in agents?

Top-down: Define specific **rules**, safety **constraints**, moral **principles** to follow.

- E.g. Asimov's Three Laws of Robotics; AI / RL Safety constraints.
- Hard/impossible to define all necessary rules for agents to follow without contradictions.

Bottom-up: Allow agents to **learn morality from interactions** with an environment / humans, without any predispositions.

- E.g. Reinforcement Learning, incl. RLHF.
- Risks of agents reward-hacking or learning inefficient norms early on.

- \rightarrow **Hybrid**: Combine top-down moral objectives with a bottom-up learning approach.
 - > Reinforcement Learning via intrinsic rewards based on top-down definitions of moral preferences.

Formalising Moral Objectives - a philosopher's perspective

Consequentialist: choose actions which maximise some long-term

outcome in society.

• E.g. Utilitarianism

[Bentham (1996). An Introduction to the Principles of Morals and Legislation.]

Formalising Moral Objectives - a philosopher's perspective

Consequentialist:

choose actions which maximise some long-term outcome in society.

• E.g. Utilitarianism

[Bentham (1996). An Introduction to the Principles of Morals and Legislation.]

Norm-based:

choose actions which adhere to a moral norm here & now.

• E.g. Deontological ethics

[Kant (1981). Grounding for the metaphysics of morals.]

Formalising Moral Objectives - a philosopher's perspective

Consequentialist:

choose actions which maximise some long-term outcome in society.

• E.g. Utilitarianism

[Bentham (1996). An Introduction to the Principles of Morals and Legislation.]

Norm-based:

choose actions which adhere to a moral norm here & now.

• E.g. Deontological ethics

[Kant (1981). Grounding for the metaphysics of morals.]

Virtue Ethics:

act according to a set of virtues.

 May be consequentialist / norm-based / multiobjective

[Aristotle. The Nicomachean Ethics.]

Multi-Agent Systems & Learning Agents

Any society is a **multi-agent system**.

Learning agents affect one another's 'curriculum' → outcomes are not fully predictable.

General-Sum Games

Real-world multi-agent scenarios can be modeled using **general-sum games**:

- Both agents may benefit from the interaction (unlike Go/Chess);
- Agents may exploit or deceive each other to gain a greater payoff.

Two-player Social Dilemma games

Repeated dilemma games:

- short-term/individual gain vs. longterm cumulative outcomes
- → complex strategies can evolve (incl. reputation & punishment)

Iterated Prisoner's Dilemma

	С	D
С	3,3	1,4
D	4,1	2,2

Motivations to Defect:

Greed: 4 > 3 *Fear*: 2 > 1

Our contributions:

- We design (simplified) intrinsic moral rewards inspired by various philosophical theories.
- We evaluate our approach by modeling repeated dyadic interactions between morally diverse Reinforcement Learning agents.
- We systematically analyse the impact of different types of morality on the emergence of cooperation/defection/exploitation, and the corresponding social outcomes.

The Reinforcement Learning loop

M = moral agent

O = opponent

 s^t = state at time t (pair of moves from last iteration)

 a^t = action at time t (C or D)

R = intrinsic or extrinsic reward

The Reinforcement Learning loop

 A traditional, selfinterested (Selfish) agent learns to maximise the game payoff (extrinsic reward) over time.

The Reinforcement Learning loop

 A traditional, selfinterested (Selfish) agent learns to maximise the game payoff (extrinsic reward) over time.

 Moral agents instead learn to maximise an intrinsic reward according to a given moral framework.

[Chentanez, N. et al. (2004.) Intrinsically motivated reinforcement learning. NeurIPS'04.]

O = opponent

Moral Learning Agents

Agent M	Moral Reward (at time t)	
Utilitarian	M's payoff + O's payoff	
Deontological	Punished if <i>M</i> defects at time <i>t</i> & <i>O</i> cooperated at time <i>t</i> -1	
Virtue-equality	$1 - \frac{ M's payoff - O's payoff }{M's payoff + O's payoff}$	
Virtue-kindness	Rewarded for cooperating at time t	
Virtue-mixed	equality reward + normalized kindness reward	

Reinforcement Learning in Social Dilemmas

- Agents learn in pairs, against a fixed opponent, via tabular Q-Learning.
- They repeatedly play one of the dilemma games (10000 iterations) using an epsilon-greedy policy (with epsilon decay).
- Both agents learn to choose actions which maximise cumulative reward.

Evaluation Results

Presented here:

Actions chosen on final iteration.

Further results available:

- Social outcomes accumulated over training [see paper]
- Rewards & actions over time, etc. [see online Appendix]

M = moral agent

O = opponent

C 3,3 1,4 D 4,1 2,2

Actions - Iterated Prisoner's Dilemma

We evaluate **pairs of actions** chosen on the final iteration **by each pair of agents** (as % of times pairs **CC** - **mutual cooperation**, **DD** - **mutual defection**, **DC** - **exploitation**, **CD** were observed over 100 runs).

Selfish vs Selfish players learn to mutually Defect on 100% of the runs.

Note, the training was run until the convergence of the Selfish-Selfish pair to a stable policy (here: mutual defection). This occurred over 10000 iterations.

Selfish player achieves mutual defection against Virtue-equality, and learns to exploit all other moral players.

Most moral players (Utilitarian, Deontological, Virtue-kindness & Virtue-mixed) learn cooperative policies, achieving mutual cooperation against one another. However, they get exploited by Selfish and sometimes Virtue-equality opponents.

For the Virtue-equality player, some exploitative behavior emerges (before convergence).

For the *Virtue-mixed* player, the 'kindness' signal was stronger than 'equality' - hence this agent learnt the **fully cooperative** policy by the end.

Actions - all three games

Iterated Prisoner's Dilemma (greed & fear)

	С	D
С	3,3	1,4
D	4,1	2,2

Iterated Volunteer's Dilemma (greed)

	C	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

Iterated Prisoner's Dilemma (greed & fear)

Iterated Volunteer's Dilemma (greed)

	U	О
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

	C	О
С	5,5	1,4
D	4,1	2,2

Virtue-mix

Minimum Return Gmin

Minimum Return Gmin

Utilitarian

Virtue-eq.

Virtue-mix

Virtue-kind.

30000

25000

20000

15000

10000

40000

Summary

¹https://github.com/Liza-Tennant/moral_choice_dyadic

- It is possible to use top-down inspiration from moral philosophy to design simplified yet representative intrinsic rewards for learning agents, enabling a hybrid approach to developing morality.
- We believe that our approach can be easily generalized to other types of moral agents or games (code available online¹):
 - large population of agents;
 - agent learning against human opponents.

Next Steps

- Study the behavior of these agents in populations (rather than dyadic interactions).
 - Partner selection mechanism

 Develop further, perhaps nonconsequentialist metrics for evaluating moral behaviours & outcomes in societies.

Liza Tennant

I.karmannaya.16@ucl.ac.uk

https://liza-tennant.github.io/

Paper with Appendix:

https://arxiv.org/abs/2301.084 91

Code: https://github.com/Liza- Tennant/moral_choice_dyadic

Appendix

Social Dilemmas

	С	D
С	R, R	<i>S</i> , <i>T</i>
D	T, S	<i>P, P</i>

R>P: mutual cooperation is preferred to mutual defection R>S: mutual cooperation is preferred to the sucker's payoff 2R>T+S: mutual cooperation is preferred to one player exploiting the other (defecting when the other cooperates) T>R (greed): defection is more tempting than mutual cooperation and/or P>S (fear): mutual defection is preferred to the sucker's payoff

[Macy & Flache. (2002). Learning dynamics in social dilemmas. *PNAS* 99, suppl_3, 7229–7236.]

The Social Dilemma Environments

We compare three different dilemma game structures, with differing motivations to Defect:

Iterated Prisoner's Dilemma

	С	D
С	3,3	1,4
D	4,1	2,2

Greed: 4 > 3

Fear: 2 > 1

Iterated Volunteer's Dilemma

	C	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag
Hunt

	С	D
С	5,5	1,4
D	4,1	2,2

Greed: 5 > 4

Fear: 2 > 1

We define the following three outcome metrics:

Collective Return	M's payoff + O's payoff, summed over time
Gini Return	the 'equality' between M and O's payoffs, summed over time
Min Return	the min payoff for <i>M</i> or <i>O</i> , summed over time

Iterated Prisoner's Dilemma (greed &

Iterated Volunteer's Dilemma (greed)

	С	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

	С	D
С	5,5	1,4
D	4,1	2,2

Iterated Prisoner's Dilemma (greed &

Iterated Volunteer's Dilemma (greed)

	С	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

	С	D
С	5,5	1,4
D	4,1	2,2

Iterated Prisoner's Dilemma (greed &

Iterated Volunteer's Dilemma (greed)

	U	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

	С	D
С	5,5	1,4
D	4,1	2,2

Iterated Prisoner's Dilemma (greed &

Iterated Volunteer's Dilemma (greed)

	С	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

	С	D
С	5,5	1,4
D	4,1	2,2

Iterated Prisoner's Dilemma (greed &

Iterated Volunteer's Dilemma (greed)

	С	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

	С	D
С	5,5	1,4
D	4,1	2,2

Iterated Prisoner's Dilemma (greed &

Iterated Volunteer's Dilemma (greed)

	C	D
С	4,4	2,5
D	5,2	1,1

Iterated Stag Hunt (fear/lack of trust)

	С	D
С	5,5	1,4
D	4,1	2,2

Minimum Return Gmin

Minimum Return Gmin

Minimum Return Gmin

Utilitarian

Virtue-eq.

Virtue-mix

Utilitarian

Virtue-eq.

Virtue-kind.

Virtue-mix.

Selfish Utilitarian

Deontoloa.

Virtue-eq.

/irtue-kind

Virtue-mix.

Virtue-kind.

30000

25000

20000

15000

10000

40000

30000

20000

10000

30000

20000

10000