Übungen zum Kapitel 6

Daten laden, speichern und Dateiformate

Erstellt und überarbeitet: armin.baenziger@zhaw.ch, 20. Januar 2020

```
In [1]: %autosave 0

Autosave disabled
```

(A.1) Laden Sie NumPy und Pandas mit den üblichen Abkürzungen.

```
In [2]: import numpy as np import pandas as pd
```

(A.2) Laden Sie die Daten der Datei drinksbycountry.csv in das DataFrame drinks . Die Datei befindet sich im Ordner "weitere_Daten". Lesen Sie danach die ersten 5 Zeilen des DataFrames drinks aus.

```
In [3]: drinks = pd.read_csv('../weitere_Daten/drinksbycountry.csv')
    drinks.head()
```

Out[3]:

	country	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol	continent
0	Afghanistan	0	0	0	0.0	Asia
1	Albania	89	132	54	4.9	Europe
2	Algeria	25	0	14	0.7	Africa
3	Andorra	245	138	312	12.4	Europe
4	Angola	217	57	45	5.9	Africa

(A.3) Wiederholen Sie (A.2), wobei Sie nun beim Einlesen die Spalte/Varibale country als Index festlegen. Dies geschieht mit dem zusätzlichen Funktionsargument index_col='country'.

Out[4]:

	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol	continent
country					
Afghanistan	0	0	0	0.0	Asia
Albania	89	132	54	4.9	Europe
Algeria	25	0	14	0.7	Africa
Andorra	245	138	312	12.4	Europe
Angola	217	57	45	5.9	Africa

(A.4) Löschen Sie die Spalten/Variablen beer_servings , spirit_servings und wine_servings aus dem DataFrame drinks.

```
In [5]: ## Es gibt verschiedene Lösungsmöglichkeiten:
    # drinks.drop(['beer_servings', 'spirit_servings', 'wine_servings'],
    # axis=1, inplace=True)
    ## Oder mit:
    # del drinks['beer_servings'] # usw.
    ## Oder aber durch umkopieren:
    drinks = drinks.loc[:, ['total_litres_of_pure_alcohol', 'continent']]
    drinks.head()
    ## Schliesslich hätte man die Datei auch nochmals mit dem Argment
    # "usecols" einlesen können.
```

Out[5]:

total_litres_of_pure_alcohol continent

country		
Afghanistan	0.0	Asia
Albania	4.9	Europe
Algeria	0.7	Africa
Andorra	12.4	Europe
Angola	5.9	Africa

Zur Vereinfachung wählen wir kürzere Variablennamen:

Out[6]:

country		
Afghanistan	0.0	Asia
Albania	4.9	Europe
Algeria	0.7	Africa
Andorra	12.4	Europe
Angola	5.9	Africa

alcohol continent

(A.5) Wie hoch ist der höchste Konsum an Alkohol (Liter pro Jahr)?

```
In [7]: drinks.alcohol.max()
Out[7]: 14.4
```

(A.6) Sortieren Sie das DataFrame drinks nach Alkoholkunsum in absteigender Reihenfolge. Tipp: Methode sort values.

Lesen Sie dann die 5 Länder mit dem grössten Alkoholkonsum aus.

country		
Belarus	14.4	Europe
Lithuania	12.9	Europe
Andorra	12.4	Europe
Grenada	11.9	North America
Czech Republic	11.8	Europe

A.7) Wie viele Länder gibt es pro Kontinent (im Datensatz)?

(A.8) Speichern Sie die Daten des DataFrames drinks in einer CSV-Datei mit Name temp.csv auf Ihren Datenträger.

```
In [10]: drinks.to_csv('temp.csv')
```

(A.9) Speichern Sie die ersten 5 Zeilen von drinks in einer csv -Datei mit Semikolon (statt Komma) als Trennzeichen. (Dateiname wiederum temp.csv)

```
In [11]: drinks.head().to_csv('temp.csv', sep=';')
```

(A.10) Prüfen Sie mit dem Magic-Command \$load, ob der letzte Task funktioniert hat, also mit \$load temp.csv. Alternativ können Sie folgende Anweisung versuchen:

```
• auf Linux-/Mac-Systemen: !cat temp.csv
```

• auf Windows-Systemen: !type temp.csv

```
In [12]: !type temp.csv

country;alcohol;continent
Afghanistan;0.0;Asia
Albania;4.9;Europe
Algeria;0.7;Africa
Andorra;12.4;Europe
Angola;5.9;Africa
```

(A.11) Importieren Sie die Bibliothek os und löschen Sie dann die Datei temp.csv wieder vom Datenträger mit der Anweisung os.remove('temp.csv') . (Alternativ können Sie die Datei manuell im Verzeichnis löschen.)

```
In [13]: import os
    os.remove('temp.csv')
```

(B.1) Betrachten Sie den Inhalt der Datei Auto.csv im Ordner weitere_Daten in einem Texteditor. Laden Sie dann die Daten mit dem korrekten sep -Argument ins DataFrame Auto.

```
In [14]: Auto = pd.read csv('../weitere Daten/Auto.csv', sep=';')
           Auto.head()
Out[14]:
                    cylinders displacement horsepower weight acceleration year origin
                                                                                                        name
            0 18.0
                                      307.0
                                                          3504
                                                                                      1 chevrolet chevelle malibu
                            8
                                                   130
                                                                       12.0
                                                                              70
                                      350.0
                                                          3693
                                                                              70
            1 15.0
                            8
                                                   165
                                                                       11.5
                                                                                               buick skylark 320
                                                                                      1
                                      318.0
                                                          3436
                                                                              70
            2 18.0
                           8
                                                   150
                                                                       11.0
                                                                                      1
                                                                                               plymouth satellite
            3 16.0
                            8
                                      304.0
                                                          3433
                                                                       12.0
                                                                              70
                                                                                                  amc rebel sst
                                                   150
                                                                                      1
```

3449

10.5

70

1

ford torino

(B.2) Berechnen Sie die Korrelation (nach Bravais-Pearson) zwischen dem Gewicht von Autos (weight) und der Treibstoffeffizienz (mpg).

140

4 17.0

8

302.0

```
In [15]: Auto.weight.corr(Auto.mpg)
Out[15]: -0.8322442148315754
```

(B.3) Erstellen Sie eine absolute Häufigkeitsverteilung der Variable origin . (1 steht für USA, 2 für Europa und 3 für Japan.)

(B.4) Erstellen Sie eine *relative* Häufigkeitsverteilung der Anzahl Zylinder im Datensatz. Tipp: Argument normalize=True verwenden.

Versuchen Sie, die Tabelle nach der Anzahl Zylinder (und nicht der Häufigkeit) zu sortieren.

```
In [17]: Auto.cylinders.value_counts(normalize=True, sort=False)
Out[17]: 3      0.010204
      4      0.507653
      5      0.007653
      6      0.211735
      8      0.262755
      Name: cylinders, dtype: float64
```

Bevor wir weiterfahren erstellen wir ein DataFrame mit simulierten Daten:

w.BA.XX.2DAPyt.XX: Datenanalyse mit Python

Out[18]:

	Person	Lohn	Geschlecht	Alter	Zivilstand
0	1	4107	m	40	g
1	2	5454	m	47	vw
2	3	3719	m	41	g
3	4	6194	m	18	V
4	5	6161	m	27	V

(C.1) Setzten Sie die Spalte Person als Index fest. Verwenden Sie hierzu die Anweisung dflohn.set_index('Person', inplace=True) .

```
In [19]: dflohn.set_index('Person', inplace=True)
    dflohn.head()
```

Out[19]:

Lohn Geschlecht Alter Zivilstand

Person						
1	4107	m	40	g		
2	5454	m	47	vw		
3	3719	m	41	g		
4	6194	m	18	V		
5	6161	m	27	V		

(C.2) Ersetzen Sie den Lohn von Person 5 mit dem Fehlwert NaN (None, oder np.nan).

```
In [20]: dflohn.loc[5, 'Lohn'] = None
    dflohn.head()
```

Out[20]:

Lohn Geschlecht Alter Zivilstand

Person								
1	4107.0	m	40	g				
2	5454.0	m	47	vw				
3	3719.0	m	41	g				
4	6194.0	m	18	V				
5	NaN	m	27	V				

(C.3) Speichern Sie die Daten des DataFrames dflohn in einer Datei im "Pickle-Format" mit Name dflohn.pkl im Verzeichnis weitere_Daten auf Ihrem Datenträger. Wir werden diesen simulierten Datensatz später im Kurs nutzen!

```
In [21]: dflohn.to_pickle('../weitere_Daten/dflohn.pkl')
```

(D.1) Mit Pandas können auch Daten von (anderen) wichtigen Statistikpakten, wie R oder Stata, gelesen werden. Im Verzeichnis weitere_Daten befindet sich die Stata-Datei Chang.dta, welche Daten aus einer Veröffentlichung aus dem Jahre 2018 enthält. Laden Sie die Daten in ein DataFrame mit Name chang. Die Funktion dafür lautet pd.read_stata().

Chang, Y., Hong, J.H. und Karabarbounis, M. (2018). *Labor Market Uncertainty and Portfolio Choice Puzzles*. American Economic Journal: Macroeconomics, 10(2), S. 222–262.

Out[22]:

	year	wgt	wage_risk	age	educ	income	children	marital	credit_cards_debt	other_consur
0	1998.0	165.988480	0.0529	65.0	2.0	710000.0	4.0	1.0	0.0	
1	1998.0	1663.196899	0.0529	65.0	2.0	467000.0	4.0	1.0	0.0	
2	1998.0	1748.509155	0.0529	65.0	2.0	751000.0	4.0	1.0	0.0	
3	1998.0	1713.679321	0.0529	65.0	2.0	333000.0	4.0	1.0	0.0	
4	1998.0	1847.267334	0.0529	65.0	2.0	393000.0	4.0	1.0	0.0	

5 rows × 27 columns

Die nächste Zelle ändert den Datentyp der Variable children zu int (Ganzzahl).

Out[23]:

	year	wgt	wage_risk	age	educ	income	children	marital	credit_cards_debt	other_consur
0	1998.0	165.988480	0.0529	65.0	2.0	710000.0	4	1.0	0.0	_
1	1998.0	1663.196899	0.0529	65.0	2.0	467000.0	4	1.0	0.0	
2	1998.0	1748.509155	0.0529	65.0	2.0	751000.0	4	1.0	0.0	
3	1998.0	1713.679321	0.0529	65.0	2.0	333000.0	4	1.0	0.0	
4	1998.0	1847.267334	0.0529	65.0	2.0	393000.0	4	1.0	0.0	

5 rows × 27 columns

(D.2) Erstellen Sie eine (absolute) Häufigkeitstabelle der Variable children .

w.BA.XX.2DAPyt.XX: Datenanalyse mit Python

```
In [24]: chang.children.value_counts()
Out[24]: 0
               37431
               16748
         2
               11953
         1
              10783
         3
         4
                5713
         5
                2824
         6
                1402
         7
                 691
         8
                 345
         10
                 300
         9
                 225
         Name: children, dtype: int64
```

(D.3) Erstellen Sie eine relative Häufigkeitstabelle der Variable children .

```
In [25]: chang.children.value_counts(normalize=True)
Out[25]: 0
              0.423356
         2
              0.189425
         1
              0.135192
         3
              0.121959
         4
              0.064616
         5
              0.031940
         6
              0.015857
              0.007815
         7
         8
              0.003902
              0.003393
         10
               0.002545
         9
         Name: children, dtype: float64
```

(D.3) Erstellen Sie nochmals eine *relative* Häufigkeitstabelle der Variable children . Sortieren Sie aber nach der Anzahl Kinder (und nicht der Häufigkeit). Speichern Sie das Ergebnis im Objekt tabelle .

```
In [26]: | tabelle = chang.children.value_counts(normalize=True).sort_index()
         tabelle
Out[26]: 0
             0.423356
        1
             0.135192
        2
              0.189425
        3
              0.121959
         4
             0.064616
         5
             0.031940
         6
              0.015857
         7
              0.007815
              0.003902
         8
         9
              0.002545
        10
             0.003393
        Name: children, dtype: float64
```

Hinweis: Wenn es die Zeit erlaubt, werden wir die Daten von Chang et al. später genauer untersuchen.

Ende der Übung