MSA-0286

Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0286 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Features

- Cascadable 50 Ω Gain Block
- · 3 dB Bandwidth: DC to 2.5 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- · Lead-free Option Available

86 Plastic Package

Typical Biasing Configuration

MSA-0286 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	60 mA				
Power Dissipation ^[2,3]	325 mW				
RF Input Power	+13 dBm				
Junction Temperature	150°C				
Storage Temperature	−65 to 150°C				

Thermal Resistance ^[2] :	
$\theta_{jc}=105^{\circ}\text{C/W}$	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 9.5 mW/°C for $T_{\rm C} > 116 ^{\circ}{\rm C}.$

Electrical Specifications $^{[1]}$, $T_{A}=25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	$\operatorname{er Gain}(S_{21} ^2) \qquad \qquad f = 0.1 \text{ GHz}$				
		f = 1.0 GHz		10.0	12.0	
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 1.6 GHz	dB		±0.6	
f3 dB	3 dB Bandwidth		GHz		2.5	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.5:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.4:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		4.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		17.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		140	
Vd	Device Voltage		V	4.0	5.0	6.0
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0286-BLK	100	Bulk		
MSA-0286-BLKG	100	Bulk		
MSA-0286-TR1	1000	7" Reel		
MSA-0286-TR1G	1000	7" Reel		
MSA-0286-TR2	4000	13" Reel		
MSA-0286-TR2G	4000	13" Reel		

Note: Order part number with a "G" suffix if lead-free option is desired.

¹. The recommended operating current range for this device is 18 to 40 mA. Typical performance as a function of current is on the following page.

				- 0		^	u			
Freq.	S ₁₁		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.10	171	12.5	4.22	175	-18.5	.119	1	.16	-5
0.2	.10	161	12.5	4.20	170	-18.3	.121	3	.16	-11
0.4	.10	144	12.4	4.16	159	-18.2	.122	6	.15	-24
0.6	.09	129	12.2	4.09	149	-18.0	.126	6	.15	-36
0.8	.08	119	12.1	4.01	139	-18.0	.127	9	.14	-48
1.0	.08	108	11.9	3.91	129	-17.4	.135	8	.14	-62
1.5	.06	111	11.3	3.67	106	-16.5	.149	12	.11	-99
2.0	.08	141	10.5	3.35	84	-15.7	.164	11	.11	-141
2.5	.14	150	9.6	3.01	67	-14.8	.182	9	.12	-176
3.0	.21	142	8.6	2.68	48	-14.3	.194	5	.13	155
3.5	.29	132	7.5	2.37	30	-14.0	.200	1	.14	140
4.0	.36	121	6.4	2.09	15	-13.5	.211	-3	.16	134

-12

-13.3

.216

-12

MSA-0286 Typical Scattering Parameters (Z $_{\rm 0} = 50~\Omega$, T $_{\rm A} = 25^{\circ}$ C, I $_{\rm d} = 25~{\rm mA}$)

Typical Performance, $T_A = 25^{\circ}C$ (unless otherwise noted)

.50

101

4.1

1.61

5.0

Figure 1. Typical Power Gain vs. Frequency.

Figure 2. Device Current vs. Voltage.

.20

132

Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d = 25 \text{ mA}.$

Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

Figure 5. Noise Figure vs. Frequency.

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.

Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5965-9564E

