MA1126: Set Theory Selected Problems 2

Anthony Gibbons, Daniel Devine

April 2021

Problem 1: 2018 Assignment 5

1. Use Zorn's Lemma to prove that for any sets A and B,

$$A < B, A \sim B \text{ or } B < A$$

Solution: We want a function $f: A \to B$ that is 1-to-1.

Suppose we have $f: C \to B$ where $c \subset A$, f 1-to-1.

Let X be the collection of these pairs (C,f)

i.e. $X = \{(C, f) \mid C \subset A, f : C \to B \ 1 - to - 1\}$

Given (C_1, f_1) and (C_2, f_2) , define

 $(C_1, f_1) \le (C_2, f_2)$ means

 $C_1 \subset C_2 \ and \ f_2 = f_1 \ on \ C_1$

so f_2 is an <u>extension</u> of f_1

Check that this is a partial order:

Suppose $\{C_{\alpha}, f_{\alpha}\}$ is a partially ordered subset. We want an upper bound in X

Let $C = \bigcup C_{\alpha}$ and $f(x) = f_{\alpha_0}(x)$ if $x \in C_{\alpha_0}$

This is well defined and 1-to-1 (check)

So by Zorn's Lemma (Every nonempty partially ordered set - in which each totally ordered subset has an upper bound- contains at least one max element) \exists a maximal element (D,g)

- (1) If D = A and q(D) = B, then $A \sim B$
- (2) If D = A and $g(D) \neq B$, then A < B
- (3) If $D \neq A$ and q(D) = B, then B < A

 $q: D \to B$ is 1-to-1 and onto so $q^{-1}: B \to D$ exists and is unique.

If $D \neq A$ and $g(D) \neq B$

Let $a \in A \backslash D$, $b \in B \backslash f(D)$

Let $h: D \cup \{a\} \rightarrow f(D) \cup \{b\}$

 $\forall d \in D, d \mapsto g(d), a \mapsto b$

then $(D \cup \{a\}, h) > (D, g)$ but (D, g) was maximal - contradiction

So any one of the top three statements is true.