Math 327, Homework 2

- 1. Prove the following.
 - (a) For any a, b real numbers, $|a| |b| \le |a + b|$.
 - (b) For any a, b real numbers, $||a| |b|| \le |a + b|$.
 - (c) For any a, b real numbers, $||a| |b|| \le |a b|$.

Note: (a) implies (b) and (b) implies (c) so if you do them in order, each will be a short proof.

2. Prove Bernoulli's Inequality

$$(1+b)^n > 1 + nb$$

in two different ways:

- (a) For any $b \ge 0$, using the binomial formula .
- (b) For any b > -1, using mathematical induction.
- 3. Decide if the following are true or false. If true, give a short proof. If false, find a counter example.
 - (a) If the sequence $|a_n|$ converges, then so does (a_n) .
 - (b) If the sequence $(a_n + b_n)$ converges, then so do the sequences (a_n) and (b_n) .
 - (c) If the sequences $(a_n + b_n)$ and (a_n) converge, then so does the sequence (b_n) .
- 4. Use the definition of convergence to show the following limits.
 - (a) $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$
 - (b) $\lim_{n \to \infty} \frac{n^2}{n^2 + n} = 1.$
- 5. Discuss the convergence of the sequence $(\sqrt{n+1} \sqrt{n})_{n \in \mathbb{N}}$.
- 6. Let $a_1 = 1$ and for $n \ge 1$,

$$a_{n+1} = \begin{cases} a_n + \frac{1}{n} & \text{if } a_n^2 \le 2\\ a_n - \frac{1}{n} & \text{if } a_n^2 > 2. \end{cases}$$

Show that for every n, $|a_n - \sqrt{2}| < 2/n$ and prove that the sequence converges to $\sqrt{2}$.

7. For a sequence (a_n) of positive numbers, prove that

$$a_n \to \infty$$
 if and only if $\frac{1}{a_n} \to 0$.

Recall that and if and only if proof has two parts. You have to prove one side implies the other and vice versa.

1