Devoir à la maison n° 1

À rendre le 15 septembre

Soit $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 2 muni de sa structure d'espace vectoriel et soit J la matrice :

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

On considère l'application S de $\mathcal{M}_2(\mathbb{R})$ dans lui-même qui associe à tout élément M de $\mathcal{M}_2(\mathbb{R})$ l'élément S(M) = JMJ.

- 1) a) Montrer que l'application S ainsi définie est un automorphisme de l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$. Quel est l'automorphisme réciproque de S?
 - b) Montrer que si M et N sont deux éléments quelconques de $\mathcal{M}_2(\mathbb{R})$, on a S(MN) = S(M)S(N).
- 2) On considère les éléments :

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad L = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Montrer que (I, J, K, L) forme une base de l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$.

- 3) Déterminer la matrice représentant l'automorphisme S dans la base (I, J, K, L).
- 4) Soit \mathscr{F} l'ensemble des éléments M de $\mathscr{M}_2(\mathbb{R})$ vérifiant S(M)=M et soit \mathscr{G} l'ensemble des éléments M de $\mathscr{M}_2(\mathbb{R})$ vérifiant S(M)=-M.
 - a) Montrer par deux méthodes que \mathscr{F} et \mathscr{G} sont des sous-espaces vectoriels de $\mathscr{M}_2(\mathbb{R})$.
 - b) Montrer que tout élément M de $\mathcal{M}_2(\mathbb{R})$ peut s'écrire de manière unique sous la forme $M = M_+ + M_-$ avec $M_+ \in \mathcal{F}$ et $M_- \in \mathcal{G}$. Interpréter ce résultat pour les sous-espaces \mathcal{F} et \mathcal{G} .
 - c) À titre d'exemple, déterminer les matrices A_+ et A_- lorsque $A = \begin{pmatrix} 3 & -1 \\ 1 & -2 \end{pmatrix}$.
 - d) Déterminer une base de \mathcal{F} et une base de \mathcal{G} .
- 5) a) Montrer que le produit de deux matrices appartenant à \mathcal{F} appartient aussi à \mathcal{F} . Que peut-on dire du produit de deux éléments de \mathcal{G} ?
 - **b)** Plus précisément, pour deux matrices M et N de $\mathcal{M}_2(\mathbb{R})$, exprimer $(MN)_+$ et $(MN)_-$ en fonction de M_+ , M_- , N_+ , N_- .

— FIN —