Solution	Marks	Remarks
1. $f(1+h) - f(1)$ $= \frac{10(1+h)}{7+3(1+h)^2} - \frac{10}{7+3}$ $= \frac{10+10h}{10+6h+3h^2} - 1$ $= \frac{10+10h-10-6h-3h^2}{10+6h+3h^2}$		
$=\frac{10+6h+3h^2}{4h-3h^2}$ $=\frac{4h-3h^2}{10+6h+3h^2}$	1	
$f'(1)$ = $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ = $\lim_{h \to 0} \frac{1}{h} \left(\frac{4h - 3h^2}{10 + 6h + 3h^2} \right)$	1M	
$= \lim_{h \to 0} \frac{4 - 3h}{10 + 6h + 3h^2}$ $= \frac{4 - 3(0)}{10 + 6(0) + 3(0)^2}$	1M	withhold 1M if the step is skipped
$=\frac{2}{5}$	1A	0.4
2. (a) $P(x) = (x+\lambda)(x+\lambda)^{2}(x+\lambda)^{3} - (3)(5)(x+\lambda) + (1)(3)(4) - (2)(4)(x+\lambda)^{2}$ $= (x+\lambda)^{6} - 8(x+\lambda)^{2} - 15(x+\lambda) + 12$	1M	
Note that the coefficient of x^3 in the expansion of $P(x)$ is 160. So, we have $C_3^6 \lambda^3 = 160$. Thus, we have $\lambda = 2$.	1M 1A	for $C_3^6 \lambda^3$
(b) Note that P'(0) is the coefficient of x in the expansion of P(x). Also note that the coefficient of x is $6\lambda^5 - 16\lambda - 15$. By (a), we have P'(0) = 145.	1M 1A (5)	can be absorbed
		·
2019-DSE-MATH-EP(M2)–3		

	Solution	Marks	Remarks
3. (a)	$V = \int -2t dt$	1M	
	$=-t^2+C$, where C is a constant Since $V = 580$ when $t = 0$, we have $C = 580$.	1M	
	So, we have $V = 580 - t^2$. When $t = 24$, we have $V = 4 > 0$. Thus, the claim is correct.	1A	f.t.
(b)	Let p cm be the depth of liquid X in the vessel when $t = 18$. Since $V\big _{t=18} = 580 - 18^2 = 256$, we have $p^2 + 24p = 256$.	1M	
	So, we have $p^2 + 24p - 256 = 0$. Solving, we have $p = 8$ or $p = -32$ (rejected). Note that $\frac{dV}{dt} = (2h + 24) \frac{dh}{dt}$. Since $\frac{dV}{dt}\Big _{t=18} = -36$, we have $-36 = (2(8) + 24) \frac{dh}{dt}\Big _{t=18}$.	1M	
	Thus, we have $\frac{dh}{dt}\Big _{t=18} = \frac{-9}{10}$.	1A	-0.9
		(0)	
4. (a)	g'(x)		
	$=\frac{\sqrt{x}\left(\frac{1}{x}\right)-(\ln x)\left(\frac{1}{2\sqrt{x}}\right)}{x}$	1M	for quotient rule
	$=\frac{2-\ln x}{2\sqrt{x^3}}$		•
	So, we have $g'(x) = 0 \iff x = e^2$.		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1M	
	Therefore, G attains its maximum value only at $x = e^2$. Thus, G has only one maximum point.	1	
(b)	Note that $g(x) < 0$ for all $x \in (0,1)$ and $g(x) > 0$ for all $x \in (1,99)$ So, we have $g(x) = 0 \iff x = 1$. The required volume	•	
	$= \int_{1}^{e^2} \pi \left(\frac{\ln x}{\sqrt{x}}\right)^2 dx$	1M	
	$= \pi \int_0^2 u^2 \mathrm{d}u \qquad \qquad \text{(by letting } u = \ln x \text{)}$	1M	
	$=\pi\left[\frac{u^3}{3}\right]_0^2$		
	$=\frac{8\pi}{3}$	1A	
2019-DSI	E-MATH-EP(M2)–4		

	Solution	Marks	Remarks
5. (a)	Note that $\frac{1}{(1)(2)} + \frac{1}{(2)(3)} = \frac{2}{3} = \frac{1+1}{(1)(2+1)}$. So, the statement is true for $n = 1$.	1	
	Assume that $\sum_{k=m}^{2m} \frac{1}{k(k+1)} = \frac{m+1}{m(2m+1)}$, where m is a positive integer.	1M	
	$\sum_{k=m+1}^{2m+2} \frac{1}{k(k+1)}$		
	$= \sum_{k=m}^{2m} \frac{1}{k(k+1)} - \frac{1}{m(m+1)} + \frac{1}{(2m+1)(2m+2)} + \frac{1}{(2m+2)(2m+3)}$	1M	can be absorbed
	$=\frac{m+1}{m(2m+1)}-\frac{1}{m(m+1)}+\frac{1}{(2m+1)(2m+2)}+\frac{1}{(2m+2)(2m+3)}$	1M	for using induction assumption
	$=\frac{(m+1)^2-(2m+1)}{m(m+1)(2m+1)}+\frac{(2m+3)+(2m+1)}{(2m+1)(2m+2)(2m+3)}$		
	$= \frac{m}{(m+1)(2m+1)} + \frac{2}{(2m+1)(2m+3)}$ $= \frac{(2m+1)(m+2)}{(2m+1)(m+2)}$		
	$= \frac{(2m+1)(m+2)}{(m+1)(2m+1)(2m+3)}$ $= \frac{m+2}{(m+1)(2m+3)}$		
	(m+1)(2m+3) So, the statement is true for $n=m+1$ if it is true for $n=m$. By mathematical induction, the statement is true for all positive integers n .	1	
(b)	Putting $n = 50$ in (a), we have $\sum_{k=50}^{100} \frac{1}{k(k+1)} = \frac{51}{(50)(101)} = \frac{51}{5050}$.	1M	
	Putting $n = 100$ in (a), we have $\sum_{k=100}^{200} \frac{1}{k(k+1)} = \frac{101}{(100)(201)} = \frac{101}{20100}.$		either one
	So, we have $\sum_{k=50}^{200} \frac{1}{k(k+1)} = \frac{51}{5050} + \frac{101}{20100} - \frac{1}{(100)(101)}$		
	Thus, we have $\sum_{k=50}^{200} \frac{1}{k(k+1)} = \frac{151}{10050}.$	1A	
		(/)	
110-T)SE	S-MATH-EP(M2)–5		

(a) (i) Note that $\begin{vmatrix} 1 & -2 & -2 \\ 5 & \alpha & \alpha \\ 7 & \alpha - 3 & 2\alpha + 1 \end{vmatrix} = (\alpha)(2\alpha + 1) + (-2)(\alpha)(7) + (-2)(5)(\alpha - 3) - (\alpha)(\alpha - 3) - (-2)(5)(2\alpha + 1) - (-2)(\alpha)(7) \\ = (\alpha + 4)(\alpha + 10)$ $Since (E) \text{ has a unique solution, we have } \begin{vmatrix} 1 & -2 & -2 \\ 5 & \alpha & \alpha \\ 7 & \alpha - 3 & 2\alpha + 1 \end{vmatrix} \neq 0.$ Hence, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$. The augmented matrix of (E) is $\begin{pmatrix} 1 & -2 & -2 & \beta \\ 5 & \alpha & \alpha & 5\beta \\ 7 & \alpha - 3 & 2\alpha + 1 & 8\beta \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & \alpha + 10 & \alpha + 10 & 0 \\ 0 & \alpha + 11 & 2\alpha + 15 & \beta \end{pmatrix}$ $\begin{pmatrix} 1 & -2 & -2 & \beta \\ 7 & \alpha - 3 & 2\alpha + 1 & 8\beta \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & \alpha + 10 & \alpha + 10 & 0 \\ 0 & \alpha + 11 & 2\alpha + 15 & \beta \end{pmatrix}$ Since (E) has a unique solution, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$. (ii) Since (E) has a unique solution, we have y $\begin{vmatrix} 1 & \beta & -2 \\ 5 & 5\beta & \alpha \end{vmatrix}$	1A 1M 1A 1A	
Since (E) has a unique solution, we have $\begin{vmatrix} 1 & -2 & -2 \\ 5 & \alpha & \alpha \\ 7 & \alpha - 3 & 2\alpha + 1 \end{vmatrix} \neq 0$. Hence, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$. The augmented matrix of (E) is $ \begin{pmatrix} 1 & -2 & -2 & \beta \\ 5 & \alpha & \alpha & 5\beta \\ 7 & \alpha - 3 & 2\alpha + 1 & 8\beta \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & \alpha + 10 & \alpha + 10 & 0 \\ 0 & \alpha + 11 & 2\alpha + 15 & \beta \end{pmatrix} $ $ \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & 1 & \alpha + 5 & \beta \\ 0 & 0 & (\alpha + 4)(\alpha + 10) & (\alpha + 10)\beta \end{pmatrix} $ Since (E) has a unique solution, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$.	1M 1A 1M	
Hence, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$. The augmented matrix of (E) is $ \begin{pmatrix} 1 & -2 & -2 & \beta \\ 5 & \alpha & \alpha & 5\beta \\ 7 & \alpha - 3 & 2\alpha + 1 & 8\beta \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & \alpha + 10 & \alpha + 10 & 0 \\ 0 & \alpha + 11 & 2\alpha + 15 & \beta \end{pmatrix} $ $ \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & 1 & \alpha + 5 & \beta \\ 0 & 0 & (\alpha + 4)(\alpha + 10) & (\alpha + 10)\beta \end{pmatrix} $ Since (E) has a unique solution, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$.	1M	
$\begin{pmatrix} 1 & -2 & -2 & \beta \\ 5 & \alpha & \alpha & 5\beta \\ 7 & \alpha - 3 & 2\alpha + 1 & 8\beta \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & \alpha + 10 & \alpha + 10 & 0 \\ 0 & \alpha + 11 & 2\alpha + 15 & \beta \end{pmatrix}$ $\sim \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & 1 & \alpha + 5 & \beta \\ 0 & 0 & (\alpha + 4)(\alpha + 10) & (\alpha + 10)\beta \end{pmatrix}$ Since (E) has a unique solution, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$. (ii) Since (E) has a unique solution, we have	1A	
Since (E) has a unique solution, we have $(\alpha + 4)(\alpha + 10) \neq 0$. So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$. (ii) Since (E) has a unique solution, we have		
So, we have $\alpha \neq -4$ and $\alpha \neq -10$. Thus, we have $\alpha < -10$, $-10 < \alpha < -4$ or $\alpha > -4$. (ii) Since (E) has a unique solution, we have	1A	
y		
$=\frac{\begin{vmatrix} 7 & 8\beta & 2\alpha+1 \end{vmatrix}}{(\alpha+4)(\alpha+10)}$	1M	for Cramer's Rule
$=\frac{-\beta}{\alpha+4}$	1A	
(b) When $\alpha = -4$, the augmented matrix of (E) is $ \begin{pmatrix} 1 & -2 & -2 & \beta \\ 5 & -4 & -4 & 5\beta \\ 7 & -7 & -7 & 8\beta \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -2 & \beta \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix} $	1M	
Since (E) is inconsistent, we have $\beta \neq 0$. Thus, we have $\beta < 0$ or $\beta > 0$.	1A (7)	

Solution	Marks	Remarks
7. (a) $\int e^x \sin \pi x dx$		
$= \int \sin \pi x \mathrm{d}e^x$		
$= e^x \sin \pi x - \pi \int e^x \cos \pi x dx$	1M	
$= e^x \sin \pi x - \pi \int \cos \pi x de^x$		
$= e^{x} \sin \pi x - \pi \left(e^{x} \cos \pi x - \pi \int -e^{x} \sin \pi x dx \right)$	1M	
$\int e^{x} \sin \pi x dx = e^{x} \sin \pi x - \pi e^{x} \cos \pi x - \pi^{2} \int e^{x} \sin \pi x dx$		
$\int_{\pi^2} \int e^x \sin \pi x dx + \int e^x \sin \pi x dx = e^x \sin \pi x - \pi e^x \cos \pi x + \text{constant}$	1M	
$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{x} \sin \pi x dx = e^{x} (\sin \pi x - \pi \cos \pi x) + \text{constant}$		
$\int e^x \sin \pi x dx = \frac{1}{\pi^2 + 1} (e^x (\sin \pi x - \pi \cos \pi x)) + \text{constant}$	1A	
(b) $\int_0^3 e^{3-x} \sin \pi x dx$		
$= \int_3^0 -e^u \sin \pi (3-u) du \qquad (by letting u = 3-x)$	1M	
$= \int_0^3 e^u \sin \pi u du$		
$= \int_0^3 e^x \sin \pi x \mathrm{d}x$		
$= \frac{1}{\pi^2 + 1} \left[e^x (\sin \pi x - \pi \cos \pi x) \right]_0^3 $ (by (a))	1M	for using the result of (a)
$=\frac{\pi(e^3+1)}{-2+1}$	1A	
n + 1	(7)	
2019-DSE-MATH-EP(M2)–7		

Solution		Marks	Remarks
3. (a) For all $x > 0$,			
h'(x)			
$= \frac{2}{x} \left(\left(x^2 - \frac{7}{2}x + \left(\frac{7}{4} \right)^2 - \left(\frac{7}{4} \right)^2 \right) + 4 \right)$		1M	
$=\frac{2}{x}\left(\left(x-\frac{7}{4}\right)^2+\frac{15}{16}\right)$			
> 0 Thus, $h(x)$ is an increasing function.		1A	f.t.
(b) (i) <i>y</i>			
		12.6	
$= \int \left(2x - 7 + \frac{8}{x}\right) \mathrm{d}x$		1M	
$= x^2 - 7x + 8 \ln x + C \text{, where } C$	is a constant		
Note that $y = 3$ when $x = 1$. So, we have $1^2 - 7(1) + 8 \ln 1 + C =$: 3	1M	
Therefore, we have $C = 9$.		1141	
Thus, the equation of H is $y = x$	$^2 - 7x + 8 \ln x + 9$.	1A	
(ii) $h''(x)$			
$=\frac{x(4x-7)-(2x^2-7x+8)}{x^2}$		1M	
•			
$=\frac{2x^2-8}{x^2}$			
$=\frac{2(x-2)(x+2)}{x^2}$			
Since $x > 0$, we have $h''(x) = 0$	$\Leftrightarrow x=2$.		
(0.0)			
$x \qquad (0,2)$	2 (2,∞)	1M	
h"(x)	0 +		
Thus, the point of inflexion of H	is $(2, 8 \ln 2 - 1)$.	1A	
		(8)	

2019-DSE-MATH-EP(M2)-8

		Solution	Marks	Remarks
9.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x}$		
		$= \left(\frac{1}{3}\right) \left(\frac{1}{2}\right) (12 - x^2)^{\frac{-1}{2}} (-2x)$	1M	for chain rule
		(5)(5)	1141	Tor chair raic
		$=\frac{-x}{3\sqrt{12-x^2}}$		
		So, we have $\frac{dy}{dx}\Big _{x=3} = \frac{-1}{\sqrt{3}}$.		
		The equation of L is $\sqrt{2}$		
		$y - \frac{\sqrt{3}}{3} = \frac{-1}{\sqrt{3}}(x - 3)$	1M	
		$x + \sqrt{3}y - 4 = 0$	1A	
			(3)	
	(b)	(i) Putting $y = \frac{1}{\sqrt{3}}(4-x)$ in $y = \sqrt{4-x^2}$, we have	1M	
		$\frac{1}{\sqrt{3}}(4-x) = \sqrt{4-x^2}$		
		$x^2 - 2x + 1 = 0$		
		So, we have $x = 1$ and $y = \sqrt{3}$.		
		Thus, the point of contact of L and C is $(1, \sqrt{3})$.	1A	
		(ii) When $\sqrt{4-x^2} = \frac{1}{3}\sqrt{12-x^2}$, we have $36-9x^2 = 12-x^2$.	1M	
		So, we have $8x^2 - 24 = 0$.		
		Since $0 < x < 2$, we have $x = \sqrt{3}$.		
		Thus, the point of intersection of C and Γ is $(\sqrt{3}, 1)$.	1A	
		(iii) The required area		
		$= \int_{1}^{\sqrt{3}} \left(\frac{1}{\sqrt{3}} (4 - x) - \sqrt{4 - x^2} \right) dx + \int_{\sqrt{3}}^{3} \left(\frac{1}{\sqrt{3}} (4 - x) - \frac{1}{3} \sqrt{12 - x^2} \right) dx$	1M+1A	1M for either integral
		$= \int_{1}^{3} \frac{1}{\sqrt{3}} (4-x) dx - \int_{1}^{\sqrt{3}} \sqrt{4-u^{2}} du - \int_{\sqrt{3}}^{3} \frac{1}{3} \sqrt{12-v^{2}} dv$		
		$= \frac{4\sqrt{3}}{3} - \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 4\cos^2\alpha d\alpha - \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{12\cos^2\beta}{3} d\beta \qquad \text{(by letting } u = 2\sin\alpha \text{ and } v = \sqrt{12}\sin\beta \text{)}$	1M	for either substitution
		$=\frac{4\sqrt{3}}{3}-8\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\cos 2\theta+1}{2}\mathrm{d}\theta$	1M	
		$=\frac{4\sqrt{3}}{3}-8\left[\frac{\sin 2\theta}{4}+\frac{\theta}{2}\right]\frac{\pi}{3}$		
		$=\frac{4\sqrt{3}}{3}-\frac{2\pi}{3}$	1A	
			(9) 	
2019	9-DSF	-MATH-EP(M2)–9		
		· \		

	Solution	Marks	Remarks
10. (a)	$= \frac{\frac{1}{2 + \cos 2x}}{\frac{1}{2 + 2\cos^2 x - 1}}$		
	$= \frac{1}{2\cos^2 x + 1}$ $= \frac{\sec^2 x}{2 + \sec^2 x}$	1	
(b)	$\int_0^{\frac{\pi}{4}} \frac{1}{2 + \cos 2x} dx$	(1)	
	$= \int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{2 + \sec^2 x} dx \qquad \text{(by (a))}$	1M	for using (a)
	$= \int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} dx$ $= \int_0^1 \frac{1}{3 + t^2} dt \qquad \text{(by letting } t = \tan x \text{)}$	1M	
	$= \left[\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{t}{\sqrt{3}} \right) \right]_0^1$		
	$=\frac{\sqrt{3}\pi}{18}$	1A (3)	
(c)	By letting $u = -x$, we have $\int_{-a}^{0} f(x) \ln(1 + e^{x}) dx = \int_{a}^{0} -f(-u) \ln(1 + e^{-u}) du$	1M	
	So, we have $\int_{-a}^{0} f(x) \ln(1 + e^{x}) dx = \int_{0}^{a} f(-x) \ln(1 + e^{-x}) dx$. $\int_{-a}^{a} f(x) \ln(1 + e^{x}) dx$		
	$= \int_{-a}^{0} f(x) \ln(1+e^{x}) dx + \int_{0}^{a} f(x) \ln(1+e^{x}) dx$	1M	
	$= \int_0^a f(-x) \ln(1 + e^{-x}) dx + \int_0^a f(x) \ln(1 + e^x) dx$ $= -\int_0^a f(x) \ln(1 + e^{-x}) dx + \int_0^a f(x) \ln(1 + e^x) dx$	1M	
	$= -\int_0^a f(x) \ln \left(\frac{e^x + 1}{e^x}\right) dx + \int_0^a f(x) \ln(1 + e^x) dx$		
	$= -\int_0^a f(x) \ln(e^x + 1) dx + \int_0^a x f(x) dx + \int_0^a f(x) \ln(1 + e^x) dx$ $= \int_0^a x f(x) dx$	1	
2019-DSE	J ₀ -MATH-EP(M2)-10	(4)	

CONFIDENTIAL (FOR MARKER'S USE ONLY)		
Solution	Marks	Remarks
(d) Note that $\frac{\sin 2(-x)}{(2 + \cos 2(-x))^2} = \frac{-\sin 2x}{(2 + \cos 2x)^2}$ for all $x \in \mathbb{R}$.	1M	withhold 1M if checking is omitte
By (c), we have $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin 2x}{(2 + \cos 2x)^2} \ln(1 + e^x) dx = \int_{0}^{\frac{\pi}{4}} \frac{x \sin 2x}{(2 + \cos 2x)^2} dx$	1M	for using (c)
Also note that $\frac{d}{dx} \left(\frac{1}{2(2 + \cos 2x)} \right) = \frac{\sin 2x}{(2 + \cos 2x)^2}.$		
$\int_0^{\frac{\pi}{4}} \frac{x \sin 2x}{\left(2 + \cos 2x\right)^2} \mathrm{d}x$		
$= \left[\frac{x}{2(2+\cos 2x)}\right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \frac{1}{2(2+\cos 2x)} dx$	1M	
$= \frac{1}{2} \left(\frac{\pi}{4} \right) \left(\frac{1}{2+0} \right) - \frac{1}{2} \left(\frac{\sqrt{3}\pi}{18} \right) $ (by (b))	1M	for using the result of (b)
$=\frac{(9-4\sqrt{3})\pi}{144}$		
Thus, we have $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin 2x}{(2 + \cos 2x)^2} \ln(1 + e^x) dx = \frac{(9 - 4\sqrt{3})\pi}{144}.$	1A	
	(5)	

2019-DSE-MATH-EP(M2)-11

	Solution	Marks	Remarks
		1M	
	$M^{2} = aM + bI$ $\begin{pmatrix} -3 & -28 \\ 4 & 29 \end{pmatrix} = \begin{pmatrix} 2a & 7a \\ -a & -6a \end{pmatrix} + \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix}$ $\begin{pmatrix} -3 = 2a + b \end{pmatrix}$		
<	-28 = 7a $4 = -a$ $29 = -6a + b$	1M	
7	Thus, we have $a = -4$ and $b = 5$.	1A (3)	for both correct
S	Note that $(1-(-5))M+(5+(-5))I=6M$. So, the statement is true for $n=1$. Assume that $6M^k=(1-(-5)^k)M+(5+(-5)^k)I$, where k is a positive integer. $6M^{k+1}=M(6M^k)$	1M	
:	$= M((1 - (-5)^k)M + (5 + (-5)^k)I)$ $= (1 - (-5)^k)M^2 + (5 + (-5)^k)M$	1M	
:	$= (1 - (-5)^k)((1 + (-5))M + 5I) + (5 + (-5)^k)M$ $= (1 + (-5) - (-5)^k - (-5)^{k+1})M + (5 + (-5)^{k+1})I + (5 + (-5)^k)M$ $= (1 - (-5)^{k+1})M + (5 + (-5)^{k+1})I$ So, the statement is true for $n = k + 1$ if it is true for $n = k$.	1M	for using the result of (a)
I	By mathematical induction, we have $6M^n = (1 - (-5)^n)M + (5 + (-5)^n)I$.	1	
	$6M$ = $(1 - (-5))M + (5 + (-5))I$ $6M^{2}$	1M	
	$= (1 - (-5))M^{2}$ $= (1 - (-5))((1 + (-5))M + 5I)$ $= (1 - (-5)^{2})M + (5 + (-5)^{2})I$ $6M^{3}$	1M	for using the result of (a)
	$= M(6M^{2})$ $= M((1 - (-5)^{2})M + (5 + (-5)^{2})I)$ $= (1 - (-5)^{2})M^{2} + (5 + (-5)^{2})M$ $= (1 - (-5)^{2})((1 + (-5))M + 5I) + (5 + (-5)^{2})M$	1M	
	$= (1 + (-5) - (-5)^{2} - (-5)^{3})M + (5 + (-5)^{3})I + (5 + (-5)^{2})M$ $= (1 - (-5)^{3})M + (5 + (-5)^{3})I$ Thus, we have $6M^{n} = (1 - (-5)^{n})M + (5 + (-5)^{n})I$.	1	

Solution	Marks	Remarks
By (b), we have $6M^n = (1 - (-5)^n)M + (5 + (-5)^n)I$ and		
$6M^{n+1} = (1 - (-5)^{n+1})M + (5 + (-5)^{n+1})I.$	1M	
$6(1-(-5)^n)M^{n+1}-6(1-(-5)^{n+1})M^n=((1-(-5)^n)(5+(-5)^{n+1})-(1-(-5)^{n+1})(5+(-5)^n))I$	1M	
$M^{n} \left(\frac{(1 - (-5)^{n})M - (1 - (-5)^{n+1})I}{-6(-5)^{n}} \right) = \left(\frac{(1 - (-5)^{n})M - (1 - (-5)^{n+1})I}{-6(-5)^{n}} \right) M^{n} = I$		
So, we have $(M^n)^{-1} = \frac{(1 - (-5)^n)M - (1 - (-5)^{n+1})I}{-6(-5)^n}$.	1M	
$(M^n)^{-1}$		
$=\frac{(-5)^n-1}{6(-5)^n}M+\frac{-(-5)^{n+1}+1}{6(-5)^n}I$		
$= \left(\frac{1}{6}M + \frac{5}{6}I\right) + \frac{1}{(-5)^n} \left(\frac{-1}{6}M + \frac{1}{6}I\right)$	1M	
Letting $A = \frac{1}{6}M + \frac{5}{6}I = \frac{1}{6}\begin{pmatrix} 7 & 7 \\ -1 & -1 \end{pmatrix}$ and $B = \frac{-1}{6}M + \frac{1}{6}I = \frac{1}{6}\begin{pmatrix} -1 & -7 \\ 1 & 7 \end{pmatrix}$,		·
we have $(M^n)^{-1} = A + \frac{1}{(-5)^n}B$.		
Thus, there exists a pair of 2×2 real matrices A and B such that		
$(M^n)^{-1} = A + \frac{1}{(-5)^n} B$ for all positive integers n .	1A	f.t.
$6M^{n} = (1 - (-5)^{n})M + (5 + (-5)^{n})I $ (by (b))		
$M^{n} = \frac{1}{6} (1 - (-5)^{n}) \begin{pmatrix} 2 & 7 \\ -1 & -6 \end{pmatrix} + \frac{1}{6} (5 + (-5)^{n}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		
$= \begin{pmatrix} \frac{-(-5)^n + 7}{6} & \frac{-7(-5)^n + 7}{6} \\ \frac{(-5)^n - 1}{6} & \frac{7(-5)^n - 1}{6} \end{pmatrix}$	1M	
$\det(M^n) = \left(\frac{-(-5)^n + 7}{6}\right) \left(\frac{7(-5)^n - 1}{6}\right) - \left(\frac{-7(-5)^n + 7}{6}\right) \left(\frac{(-5)^n - 1}{6}\right)$	1M	
$= (-5)^n $ (7(-5) ⁿ - 1 - 7(-5) ⁿ - 7)		
$(M^n)^{-1} = \frac{1}{\det(M^n)} \begin{pmatrix} \frac{7(-5)^n - 1}{6} & \frac{7(-5)^n - 7}{6} \\ \frac{-(-5)^n + 1}{6} & \frac{-(-5)^n + 7}{6} \end{pmatrix}$	1M	
$= \left(\frac{\frac{7}{6}}{\frac{-1}{6}} - \frac{\frac{7}{6}}{\frac{-1}{6}}\right) + \frac{1}{(-5)^n} \left(\frac{-1}{\frac{6}{6}} - \frac{\frac{7}{6}}{\frac{7}{6}}\right)$	1M	
Letting $A = \begin{pmatrix} \frac{7}{6} & \frac{7}{6} \\ \frac{-1}{6} & \frac{-1}{6} \end{pmatrix}$ and $B = \begin{pmatrix} \frac{-1}{6} & \frac{-7}{6} \\ \frac{1}{6} & \frac{7}{6} \end{pmatrix}$, we have $(M^n)^{-1} = A + \frac{1}{(-5)^n}B$.		
Thus, there exists a pair of 2×2 real matrices A and B such that $(M^n)^{-1} - A + \frac{1}{1 + 1} B$ for all positive integers B	1.4	£4
$(M^n)^{-1} = A + \frac{1}{(-5)^n} B$ for all positive integers n .	1A	f.t.
	(5)	
	(5)	

2019-DSE-MATH-EP(M2)-13

Solution	Marks	Remarks
2. (a) $\left \overrightarrow{AC} \right = \left \overrightarrow{BC} \right $		·
$\left \overrightarrow{OC} - \overrightarrow{OA} \right = \left \overrightarrow{OC} - \overrightarrow{OB} \right $	1M	
$\left -6\mathbf{i}-8\mathbf{j}+(t-2)\mathbf{k}\right = \left -8\mathbf{j}+(t-8)\mathbf{k}\right $		
$\sqrt{(-6)^2 + (-8)^2 + (t-2)^2} = \sqrt{(-8)^2 + (t-8)^2}$	1M	
$t^2 - 4t + 104 = t^2 - 16t + 128$		
12t = 24	1.4	
t = 2	1A (3)	
(b) $\overrightarrow{AB} \times \overrightarrow{AC}$		
$= (-6\mathbf{i} + 6\mathbf{k}) \times (-6\mathbf{i} - 8\mathbf{j})$		
$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -6 & 0 & 6 \end{vmatrix}$		
$= \begin{vmatrix} -6 & 0 & 6 \\ -6 & -8 & 0 \end{vmatrix}$		
-6 - 8	1M	
$= 48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}$	1A	
	(2)	
(c) The volume of the pyramid $OABC$		
$= \frac{1}{6} \left \overrightarrow{OA} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) \right $	1M	
$=\frac{1}{6}\left \left(\mathbf{i}-4\mathbf{j}+2\mathbf{k}\right)\cdot\left(48\mathbf{i}-36\mathbf{j}+48\mathbf{k}\right)\right $		
$= \frac{1}{6} \left (1)(48) + (-4)(-36) + (2)(48) \right $		
= 48	1A	
The volume of the pyramid OABC		
$= \frac{1}{6} \left \overrightarrow{OA} \cdot (\overrightarrow{OB} \times \overrightarrow{OC}) \right $	1M	
$ \begin{vmatrix} =\frac{1}{6} \begin{vmatrix} 1 & -4 & 2 \\ -5 & -4 & 8 \\ -5 & -12 & 2 \end{vmatrix} $		
$ = \frac{1}{6} \left (1)(-4)(2) + (-4)(8)(-5) + (2)(-5)(-12) - (1)(8)(-12) - (-4)(-5)(2) - (2)(-4)(-5) \right $		
= 48	1A	
	(2)	
(d) (i) By (c), the volume of the pyramid $OABC$ is not equal to 0. So, O does not lie on Π .		
Therefore, \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} are non-zero vectors.		
Hence, we have $p \neq 0$, $q \neq 0$ and $r \neq 0$. Thus, we have $pqr \neq 0$.	1	
,	-	
019-DSE-MATH-EP(M2)–14		

Solution	Marks	Remarks
(ii) \overrightarrow{OD} $= \overrightarrow{OA} \cdot \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{\left \overrightarrow{AB} \times \overrightarrow{AC} \right ^{2}} (\overrightarrow{AB} \times \overrightarrow{AC})$ $= \frac{(6)(48)}{48^{2} + (-36)^{2} + 48^{2}} (48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k})$	1M	
$= \frac{288}{5904} (48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k})$ $= \frac{96}{41}\mathbf{i} - \frac{72}{41}\mathbf{j} + \frac{96}{41}\mathbf{k}$	1A	
(iii) $\overrightarrow{AP} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = 0$ $((p-1)\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}) \cdot (48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}) = 0$ $48p - 48 - 144 - 96 = 0$	1M	
$p = 6$ $\overrightarrow{AQ} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = 0$ $(-\mathbf{i} + (q+4)\mathbf{j} - 2\mathbf{k}) \cdot (48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}) = 0$ $-48 - 36q - 144 - 96 = 0$		any one
$q = -8$ $\overrightarrow{AR} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = 0$ $(-\mathbf{i} + 4\mathbf{j} + (r - 2)\mathbf{k}) \cdot (48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}) = 0$ $-48 - 144 + 48r - 96 = 0$		for all
r = 6 So, we have $\overrightarrow{OE} = \frac{1}{6}\mathbf{i} - \frac{1}{8}\mathbf{j} + \frac{1}{6}\mathbf{k}$.	1 A	
By (b)(ii), we have $\overrightarrow{OE} = \frac{41}{576} \overrightarrow{OD}$. Thus, D , E and O are collinear.	1A (6)	f.t.
2019-DSE-MATH-EP(M2)–15		