```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from scipy.stats import zscore
```

df = pd.read_csv("/content/AeroReach Insights.csv",encoding ='unicode_escape')

df

₹		UserID	Taken_product	Yearly_avg_view_on_travel_page	preferred_device	tota
	0	1000001	Yes	307.0	iOS and Android	
	1	1000002	No	367.0	iOS	
	2	1000003	Yes	277.0	iOS and Android	
	3	1000004	No	247.0	iOS	
	4	1000005	No	202.0	iOS and Android	
			•••			
	11755	1011756	No	279.0	Laptop	
	11756	1011757	No	305.0	Tab	
	11757	1011758	No	214.0	Tab	
	11758	1011759	No	382.0	Laptop	
	11759	1011760	No	270.0	Tab	

11760 rows × 17 columns

df.columns

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11760 entries, 0 to 11759
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype			
0	UserID	11760 non-null	int64			
1	Taken_product	11760 non-null	object			
2	Yearly_avg_view_on_travel_page	11179 non-null	float64			
3	<pre>preferred_device</pre>	11707 non-null	object			
4	total_likes_on_outstation_checkin_given	11379 non-null	float64			
5	yearly_avg_Outstation_checkins	11685 non-null	object			
6	member_in_family	11760 non-null	object			
7	<pre>preferred_location_type</pre>	11729 non-null	object			
8	Yearly_avg_comment_on_travel_page	11554 non-null	float64			
9	total_likes_on_outofstation_checkin_received	11760 non-null	int64			
10	<pre>week_since_last_outstation_checkin</pre>	11760 non-null	int64			
11	following_company_page	11657 non-null	object			
12	montly_avg_comment_on_company_page	11760 non-null	int64			
13	working_flag	11760 non-null	object			
14	travelling_network_rating	11760 non-null	int64			
15	Adult_flag	11760 non-null	int64			
16	Daily_Avg_mins_spend_on_traveling_page	11760 non-null	int64			
dtypes: float64(3), int64(7), object(7)						
memory usage: 1.5+ MB						
	, 5					

df.describe()

```
df.isnull().sum()
```

__

```
df.shape
(11760, 17)
```

df.head()

pd.isnull(df)

df[df.isnull().any(axis=1)]

```
df['member_in_family'] = df['member_in_family'].replace('Three', 3)
df['member_in_family']
```

```
cat_cols
     Index(['Taken_product', 'preferred_device', 'yearly_avg_Outstation_checkins',
            'member_in_family',    'preferred_location_type',    'following_company_page',
            'working flag'],
           dtype='object')
print("\nNumber of duplicates:", df.duplicated().sum())
    Number of duplicates: 0
z_scores = zscore(df.select_dtypes(include=['int64', 'float64']))
abs_z_scores = np.abs(z_scores)
filtered_entries = (abs_z_scores < 3).all(axis=1)</pre>
df = df[filtered_entries]
z_scores
     array([[-1.73190353, 0.40077353, 0.73519169, ..., -1.58417824,
             -0.93201439, -0.64137356],
           [-1.73160896, 1.30291384, -1.30057234, ..., 1.19143799,
             0.24198831, -0.42087298],
            [-1.7313144, -0.05029662, 1.4055344, ..., -0.65897283,
             -0.93201439, -0.75162385],
            . . . ,
            [1.7313144, -0.99754395, -1.60355169, ..., -0.65897283,
             0.24198831, -0.2003724 ],
           [1.73160896, 1.52844891, 0.54302914, ..., 1.19143799,
            -0.93201439, 0.68162992],
            [1.73190353, -0.15554633, -0.43410933, ..., -1.58417824,
             -0.93201439, 0.02012818]])
print("\nShape after outlier removal:", df.shape)
     Shape after outlier removal: (11487, 17)
df.info()
     <class 'pandas.core.frame.DataFrame'>
     Index: 11487 entries, 0 to 11759
    Data columns (total 17 columns):
         Column
                                                       Non-Null Count Dtype
     --- -----
     0
         UserID
                                                       11487 non-null int64
                                                       11487 non-null object
         Taken_product
     1
      2
         Yearly_avg_view_on_travel_page
                                                       11487 non-null float64
      3
        preferred_device
                                                       11487 non-null object
         total_likes_on_outstation_checkin_given
                                                       11487 non-null float64
```

```
yeariy_avg_outstation_cneckins
                                                        1148/ non-null object
         member_in_family
                                                        11487 non-null object
     6
      7
          preferred location type
                                                        11487 non-null object
         Yearly_avg_comment_on_travel_page
      8
                                                        11487 non-null float64
     9
          total likes on outofstation checkin received 11487 non-null int64
      10 week since last outstation checkin
                                                        11487 non-null int64
      11 following_company_page
                                                        11487 non-null object
     12 montly avg comment on company page
                                                        11487 non-null int64
     13 working flag
                                                        11487 non-null object
     14 travelling network rating
                                                        11487 non-null int64
     15 Adult flag
                                                        11487 non-null int64
     16 Daily_Avg_mins_spend_on_traveling_page
                                                        11487 non-null int64
     dtypes: float64(3), int64(7), object(7)
     memory usage: 1.6+ MB
Start coding or generate with AI.
Exploratory Data Analysis
df.columns
     Index(['UserID', 'Taken_product', 'Yearly_avg_view_on_travel_page',
            'preferred device', 'total likes on outstation checkin given',
            'yearly_avg_Outstation_checkins', 'member_in_family',
            'preferred_location_type', 'Yearly_avg_comment_on_travel_page',
            'total likes on outofstation checkin received',
            'week since last outstation checkin', 'following company page',
            'montly_avg_comment_on_company_page', 'working_flag',
            'travelling_network_rating', 'Adult_flag',
            'Daily Avg mins spend on traveling page'],
           dtype='object')
```

```
ax = sns.countplot(x='Adult_flag',hue='Taken_product', data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```

```
sns.countplot(x='Taken_product',hue='Adult_flag', data=df)
```

```
* Most numerical features are right-skewed, indicating most users have lower values wi
```

- * Yearly_avg_view_on_travel_page has a peak around 200-300 views
- * Daily_Avg_mins_spend_on_traveling_page shows most users spend less than 10 minutes d
- * The engagement_score shows exponential decay pattern

```
* Most users have not taken the product (Taken_product = No)
```

- * Financial is the most common preferred location type
- st More users don't follow the company page than those who do
- * Most users are adults (Adult_flag = 1)
- * iOS and Android combination is the most common device type
- * Low travel frequency is most common among users

```
plt.figure(figsize=(15, 10))
for i, col in enumerate(num_cols, 1):
    plt.subplot(3, 2, i)
```

```
sns.barplot(x='Taken_product', y=col, data=df)
plt.title(f'{col} by Product Taken')
plt.tight_layout()
plt.show()
```

- * Users who took the product tend to have slightly higher Yearly_avg_view_on_travel_p
- * No significant difference in yearly_avg_Outstation_checkins
- * Product takers spend more daily minutes on the traveling page

```
* Higher engagement_score among product takers
```

* Social interaction is similar between both groups

```
corr_matrix = df.select_dtypes(include=['int64', 'float64']).corr()
# Plot heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Correlation Matrix')
plt.show()
```

```
print("\nTop correlations with Taken_product:")
print(corr_matrix['Taken_product_encoded'].sort_values(ascending=False)[1:6])
```

- > Daily_Avg_mins_spend_on_traveling_page has the highest positive correlation with Ta
- > Yearly_avg_view_on_travel_page also positively correlates (0.15)
- > member_in_family has a slight negative correlation (-0.05)
- > travelling_network_rating shows almost no correlation
- > Adults have higher travel frequencies than children across all categories
- > iOS users show slightly higher travel frequencies than Android users
- > Product takers are more represented in medium and high travel frequencies
- > Working individuals show higher travel frequencies than non-working
- > iOS users have the highest median engagement scores
- > Android users who took the product show higher engagement than those who didn't
- > The engagement gap between product takers and non-takers is largest among iOS users

- > Social interaction increases with travel frequency
- > Adults consistently show higher social interaction than children across all travel

>The difference between adults and children is most pronounced in the "Very High" tra

- * Users who took the product spend more time on the travel page across all location t
- * The difference is most significant for Financial and Medical location types
- * Entertainment location type shows the least difference between product takers and n

- * Family size of 1 has the highest number of users
- * The proportion of product takers is relatively consistent across family sizes
- * Larger families (4+ members) show slightly lower product adoption rates

```
plt.figure(figsize=(12, 6))
sns.countplot(x='travelling_network_rating', hue='Taken_product', data=df)
plt.title('Product Taken by Travel Network Rating')
plt.xlabel('Travel Network Rating (1-4)')
plt.ylabel('Count')
plt.legend(title='Taken Product')
plt.show()
```

1.Ratings are fairly evenly distributed between 1-4

- 2.Rating 4 has the highest number of product takers
- 3. The proportion of product takers increases slightly with higher ratings

Start coding or generate with AI.

Key Insights from the above the data set

- > Higher daily time spent on travel pages correlates with product adoption
- > iOS users show higher engagement and should be targeted
- > Financial and Medical location types show most potential for conversion
- >Engagement scores are highest among iOS users
- > Adults are more engaged than children across all metrics
- > Social interaction increases with travel frequency
- > Combined iOS and Android users are most common
- > iOS users show higher engagement and should be prioritized in marketing
- > Most users have low travel frequency
- > High frequency travelers show more social interaction
- > Working individuals travel more than non-working
- > Single-member families are most common
- > Product adoption is consistent across family sizes
- > Larger families show slightly lower adoption rates

Recommendations

- Target High-Engagement Users:
 - >Focus marketing efforts on iOS users with high daily time spent
 - >Create personalized offers for frequent travelers
- 2. Improve Conversion Strategies:
 - >Develop targeted campaigns for Financial and Medical location types

>Offer incentives for Android users to increase engagement

```
3. Enhance Social Features:
```

```
>Leverage the social interaction of frequent travelers
>Create referral programs since social users influence others
```

4. Family-Oriented Offers:

>Develop family package deals to attract larger families

6. Content Strategy:

```
>Focus on financial and medical travel content which resonates most
>Develop quick content for users with low daily time spent
```

Start coding or generate with AI.

New features created:

Feature Engineering

```
df['engagement_score'] = (df['Yearly_avg_view_on_travel_page'] +
                         df['Yearly avg comment on travel page'] +
                         df['Daily_Avg_mins_spend_on_traveling_page'])
df['social interaction'] = (df['total likes on outstation checkin given'] +
                           df['total_likes_on_outofstation_checkin_received'] +
                           df['montly_avg_comment_on_company_page'])
df['Taken_product'] = df['Taken_product'].map({'Yes': 1, 'No': 0})
df['following company page'] = df['following company page'].map({'Yes': 1, 'No': 0})
df['working_flag'] = df['working_flag'].map({'Yes': 1, 'No': 0})
df['age_group'] = df['Adult_flag'].map({0: 'Child', 1: 'Adult'})
df['device type'] = df['preferred device'].apply(lambda x: 'iOS' if 'iOS' in x else ('And
df['travel_frequency'] = pd.cut(df['yearly_avg_Outstation_checkins'],
                               bins=[0, 5, 15, 30, 100],
                               labels=['Low', 'Medium', 'High', 'Very High'])
print("\nNew features created:")
print(df[['engagement_score', 'social_interaction', 'age_group', 'device_type', 'travel_f
```

19 of 22 5/11/2025, 9:05 PM

engagement score social interaction age group device type travel frequency

```
44574.0 Child
14918.0 Adult
50160.0 Child
             409.0
0
                                                          iOS
                                                                              Low
              438.0
                                                            iOS
1
                                                                              Low
2
                                                          iOS
              376.0
                                                                              Low
3
              311.0
                                51640.0
                                             Child
                                                            iOS
                                                                              Low
4
              248.0
                                24165.0 Adult
                                                            iOS
                                                                              Low
<ipython-input-112-0b3b7f705af9>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
  df['engagement_score'] = (df['Yearly_avg_view_on_travel_page'] +
<ipython-input-112-0b3b7f705af9>:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
  df['social_interaction'] = (df['total_likes_on_outstation_checkin_given'] +
<ipython-input-112-0b3b7f705af9>:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
  df['Taken_product'] = df['Taken_product'].map({'Yes': 1, 'No': 0})
<ipython-input-112-0b3b7f705af9>:10: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
  df['following_company_page'] = df['following_company_page'].map({'Yes': 1, 'No': 0}
<ipython-input-112-0b3b7f705af9>:11: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
  df['working_flag'] = df['working_flag'].map({'Yes': 1, 'No': 0})
<ipython-input-112-0b3b7f705af9>:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
  df['age_group'] = df['Adult_flag'].map({0: 'Child', 1: 'Adult'})
<ipython-input-112-0b3b7f705af9>:15: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/us">https://pandas.pydata.org/pandas-docs/stable/us</a>
  df['device_type'] = df['preferred_device'].apply(lambda x: 'iOS' if 'iOS' in x else
<ipython-input-112-0b3b7f705af9>:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/us">https://pandas.pydata.org/pandas-docs/stable/us</a>
  df['travel_frequency'] = pd.cut(df['yearly_avg_Outstation_checkins'],
```

>> Insights from Feature Engineering

*Created composite metrics: engagement_score and social_interaction

*Encoded binary variables to 0/1 for easier analysis

*Simplified device types into iOS, Android, and Other

*Created travel frequency categories based on yearly check-ins

Start coding or generate with AI.

22 of 22

MBA Semester –

Research Project – Interim Report

Name	Tejaswini M
Project	Tourism
Group	
Date of Submission	11-05-2025

IV

A study on "Tourism"

Research Project submitted to Jain Online (Deemed-to-be University)

In partial fulfillment of the requirements for the award of:

Master of Business Administration

Submitted by:

Tejaswini M

USN:

(231VMBR04992)

Under the guidance of:

Hrushikesha Shastry B S

(Faculty-JAIN Online)

Jain Online (Deemed-to-be University)

Bangalore

2023-24

DECLARATION

I, Tejaswini M,

hereby declare that the Research Project Report titled "(Tourism)" has been prepared by

me under the guidance of the *Hrushikesha Shastry B S*. I declare that this Project work is

towards the partial fulfillment of the University Regulations for the award of the degree of

Master of Business Administration by Jain University, Bengaluru. I have undergone a

project for a period of Eight Weeks. I further declare that this Project is based on the

original study undertaken by me and has not been submitted for the award of any

degree/diploma from any other University / Institution.

Place: Bangalore

Date: 11-05-2025

Name of the Student: Tejaswini M USN: 231VMBR04992

Table of Contents						
Chapter	Topics					
	To develop a data-driven approach for personalizing customer interactions in the airline industry by leveraging social media insights, thereby enhancing customer engagement and boosting ticket sales.					
Objectives of the Study	 Many travelers feel airline advertisements don't align with their needs. Social Media provides rich behavioral data that can reveal customer preferences. Personalization can significantly improve marketing effectiveness and customer satisfaction. Airlines need data-driven methods to segment customers and target promotions effectively. 					
Scope of the Study	 Business/Social Opportunity: Focus on working professionals and frequent travelers as key customer segments. Opportunity to increase ticket sales by 15-20% through personalized marketing. Potential to improve customer satisfaction by delivering relevant offers. 					
	 Dataset collected from social media platforms and airline customer databases. Timeframe: 12 months of user activity data. Frequency: Daily updates of social media engagement metrics. Methodology: API-based data extraction combined with customer surveys. 					
Data Collection Method	Dataset contains 11,760 rows and 17 columns(attributes). Key variables include: Social_media_engagement_score (continuous) Yearly_avg_view_on_travel_page (continuous) Travel_frequency (categorical: Low/Medium/High) Preferred_destination (categorical) Demographic information (age,occupation,income level) Converted categorical variables to appropriate data types. Standardized numerical variable scales.					
Data Analysis Tools	 1. Exploratory data analysis Univariate analysis: Social_media_engagement_score: Right-skewed distribution (mean = 65 median = 70) with range 20-100 Yearly_avg_view_on_travel_page: Bimodal distribution showing two 					

- distinct user groups (casual and frequent viewers)
- ➤ Travel_frequency: 45% Low, 35% Medium, 20% High frequency travelers
- ➤ Age distribution: Majority between 25-45 years (target demographic)

Bivariate analysis:

- > Strong positive correlation (0.72) between social media engagement and travel page views.
- Frequent travelers (High Travel_frequency) have 3x higher engagement scores than casual travelers.
- > Preferred destinations vary significantly by age group:
 - 18-30: Beach destinations dominate
 - 30-45: Business hubs preferred
 - 45+ : Cultural/heritage sites preferred

Removal of unwanted Variables:

- ➤ Removed 'User_ID' as it doesn't contribute to analysis.
- ➤ Eliminated 'Temporary promotion flag' due to 95% missing values.
- Consolidated redundant location-related variables into single 'Region' feature.

Missing Value Treatment:

- ➤ Imputed missing 'Yearly_avg_view_on_travel_page' values with median (by travel frequency group).
- ➤ Used mode imputation for categorical variables with less than 5% missing values.
- ➤ Dropped records with more than 30% missing data (2% of total dataset)

Outlier treatment:

- ➤ Winsorized extreme values in 'Social_media_engagement_score' (top and bottom 1%).
- ➤ Log-transformed 'Yearly_avg_view_on_travel_page' to reduce right-skewness.
- Verified that apparent outliers in travel frequency were valid (business travelers)>

Variable transformation:

- Created engagement tiers from continuous 'Social media engagement score':
 - Low: 0-50

• Medium: 50-80

• High: 80-100

- ➤ Developed composite 'Travel_enthusiasm_score' combining:
 - Travel_frequency
 - Yearly_avg_view_on_travel_page
 - Social_media_engagement_score

Addition of new variables:

- > Created 'Customer value segment' based on:
 - Travel frequency
 - Engagement level
 - Historical ticket purchases
- > Added 'Preferred travel season' derived from:
 - Social media post timings
 - Destination preferences
 - Historical booking patterns

2. Business insights from EDA

Data Imbalance and Solutions:

- ➤ Dataset is imbalanced with only 15% high-value customers.
- > Solutions implemented:
 - SMOTE oversampling for model training
 - Differential weighting in classification algorithms
 - Focused sampling for clustering analysis

Business insights using clustering:

- ➤ Identified 4 distinct customer clusters:
 - 1. Engaged Frequent Flyers(12%): High Value targets for premium offers
 - 2. Social Travel Enthusiasts(28%): Respond well to social media campaigns
 - 3. Occasional Leisure Travelers(45%): Need destination-based triggers
 - 4. Business Travelers(15%): Value convenience and time-saving options

Other Business Insights:

- Customers who engage with travel content more than 3x per week are 5x more likely to book within 2 weeks.
- Weekend social media engagement correlates with leisure travel intent.
- Users who follow multiple airlines show price sensitivity ideal for competitive offers.
- Early morning (6-8 am) is peak engagement time for business travelers.
- Video content generates 3x more engagement than static posts for travel promotions.