- A Myhill-Nerode relation for a regular set $R = E^{\times}$ is an equivalence relation = satisfying the following.
- (P1) It is a right congruence: \x,y\ex, \to\ex

X=y => xa =ya.

- (PZ) It refines $R: \forall x, y \in \mathcal{E}^*$ $x = y \Rightarrow (x \in \mathbb{R} \text{ iff } y \in \mathbb{R})$
- (P3) if is of finite index: there are only finitely many equivalence classes.

Construction 1. MH=M.

M induces an equivalence relation = m on \mathcal{Z}^* defined by x = My iff $\hat{S}(b, x) = \hat{S}(b, y)$

Observation. = m is an equivalence relation.

Construction 2. = >> M=

Let R S E * and = be any Myhill-Nerode relation

for R. From = we can construct a DFA M= S-t L(M=)=R.

 $M = (Q, \Sigma, S, S, F)$ where

$$Q = \{[x] \mid x \in \mathbb{Z}^*\}; \ \mathcal{S} = [\epsilon]; \ F = \{[x] \mid x \in \mathbb{R}\}$$
$$\mathcal{S}([x], a) = [xa].$$

A relation \equiv_1 refines another relation \equiv_2 if $\equiv_{\mathtt{J}}\subseteq\equiv_{\mathtt{Z}}$. That is, tx, y if x = 1 y then x = 2y. For equivalence relation: $\forall x [x]_1 \subseteq [x]_2$ Example x=y mod6 on integers refines x=y mod 3 "Refinement" - relation between equivalence relations is - reflexive - transitive (if \equiv_1 refines \equiv_2 and \equiv_2 refines \equiv_3). Then \equiv_1 refines \equiv_3). - antisymmetric (if \equiv_1 refines \equiv_2 and \equiv_2 refines \equiv_1 then \equiv_1 & \equiv_2 are the same) if \equiv_1 refines \equiv_2 then \equiv_1 is the finer and == is the Coarser of the two relations. There is always a "finest" and "coarsest" equivalence rel. $\{(x,x)|x\in\mathcal{U}\}$ and $\{(x,y)|x,y\in\mathcal{U}\}$

(identity relation) (universal relation)

Let $R \subseteq \mathcal{Z}^*$ (not necessarily regular)

Define an equivalence relation \equiv_R on \mathcal{Z}^* as follows:

 $x \equiv_{R} y$ iff $\forall z \in \mathcal{E}^*$ ($xz \in R$ iff $yz \in R$)

Claim 1. For any $R \subseteq \Sigma^*$, $=_R$ satisfies (P1) and (P2) of Myhill-Nerode relation and is the coarsest such relation on Σ^* .

Claim 2. if R is regular Hen = R also satisfies (P3)

Corollary. If $R \subseteq \mathbb{Z}^+$ is regular then $=_R$ is the consest Myhill-Nerode relation for R. Then $M =_R$ corresponds to the unique minimal finite automaton for R.

$$x \equiv_{R} y$$
 iff $\forall z \in \mathcal{E}^*$ ($xz \in R$ iff $yz \in R$)

Lemma. Let $R \subseteq \mathcal{E}^*$ (R need not be regular) The relation \equiv_{R} is a right Congruence refining R and it is the coarsest such relation on \mathcal{E}^{*} .

Proof.

(1)
$$\equiv_{R}$$
 is a right Congruence

In the definition of
$$\equiv_R$$
, take $z = aw$, $a \in \mathcal{E}$, $w \in \mathcal{E}^*$

$$x \equiv_R y \implies \forall a \in \mathcal{E} \ \forall w \in \mathcal{E}^* \ (xaw \in R^- \text{iff } yaw \in R)$$

$$\implies \forall a \in \mathcal{E} \ (xa \equiv_R ya)$$

In the definition of
$$\equiv_R$$
 take $z = \epsilon$.

$$x =_{R} y \Rightarrow (x \in R \text{ iff } y \in R)$$

(3). Any other equivalence relation
$$\equiv$$
 that satisfies (P1) and (P2) refines \equiv R.

$$\Rightarrow$$
 $\forall z (xz \equiv yz) (using (P1) by induction on |z|)$

$$\Rightarrow x \equiv_{R} y$$
 (By define of \equiv_{R})

Myhill-Nerode Theorem. Let $R \subseteq \mathcal{Z}^{*}$. The following Statements are equivalent.

- 1. R is regular
- 2. Itere exists a Myhill-Nerode relation for R
- 3. He relation = R is of finite index.

Proof.

1 => 2. Given a DFA M S.+ L(M)=R, He Construction

M H = M produces a Myhill-Nevode relation for R.

2=3. Any Myhill-Nerode relation \equiv for R is a finite index. By Lemma, \equiv refines $\equiv_R \cdot S_0 \equiv_R has finite index.$

 $3 \Rightarrow 1$. if \equiv_R is of finite index then it is a

Myhill-Nerode relation for R.

The Construction $\equiv HM=$ generates a DFA st $\angle(M=)=R$.

Since \equiv_R is the unique coarsest Myhill-Nevode relation for R, $M \equiv_R$ has the fewest states among all DFAs for

Suppose M = (Q, Z, S, S, F) is a DFA where L(M) = R and $M = M/\approx$ (collapsed).

That is, $p \approx q$ iff $\forall x \in \mathcal{E}^* \left(\hat{S}(p, x) \in F \text{ iff } \hat{S}(q, x) \in F \right)$

is identity on Q and M has no inaccessible states.

Claim. \equiv_{M} the Myhill-Nevode relation corresponding to M is some as \equiv_{R} .

Prod.

$$x \equiv_{R} y \Leftrightarrow \forall z \in \mathcal{E}^* (xz \in R \text{ iff } yz \in R)$$

$$(Defn \in R.)$$

⇒ ∀ZE E* (Ŝ(8, XZ) EF iff Ŝ(8, yZ) EF)

(Defn of acceptance)

$$\iff \forall Z \in \mathcal{E}^* \left(\hat{S} \left(\hat{S} \left(\mathcal{S}, \mathcal{X} \right), Z \right) \in F \right)$$
 (Claim - Exercise)

$$\Leftrightarrow \hat{S}(8,x) \approx \hat{S}(8,y)$$
 (Defin of \approx)

$$\Leftrightarrow \hat{S}(s,x) = \hat{S}(s,y)$$
 (Since $M = M/\approx$)

A= {aⁿbⁿ | n≥0}

if k +m lken ak #A a , since ab EA and a b & A

Thus there is a \equiv_A -class corresponding to each α^k , $k \ge 0$.

Thus = A is not of finite index.

By Myhill-Nerode theorem, A is not regular.