<u>6.857 Computer and Network Security</u> Lecture 18

Admin:

- Quiz in-class Lecture 19
- Open notes
- Closed texts, phones, laptops
- Coverage through today's lecture

Today: ZK Proofs

- Quality control
- Sudoku
- 3-colorability
- isomorphism of graphs
- Hamiltonian path
- Discrete log

TOPIC:	DATE:
FILE UNDER:	PAGE: L18.2
(A) (B)	Quality control Suppose a widget-making machine either - works perfectly - makes I out of k widgets defective (randomly) k known on a given day. You can test widgets. Can you tell which is case? Co O D D O O O O O O O O O O O O O O O O
	for sufficiently large t (e.g. t = 20) this is 20, So you can conclude A holds. (Proper analysis needs Bayes Rule & privis on A & B)

OPIC:	DATE:
ILE UNDER:	PAGE: L18,3
Sudoku	
	34
How can I	1 98 5
Convinze you	
I know soln.	8 9 5 4
without	5 7 4 1
without telling you anything about soln?	9 45 2
2(14) 1112 25041 5011 1	82
(1200)	
Ecro-unsuledge proof st	convoledge" (retnext page)
Using cards	
using commitments	A B C D E F G H I 9 2 8 1 6 3 7 4 5
- Commit to letter for	7
each position	
- pick two in sque row (co	lumn, or bluck) & test
or test table	
or test known square	
3	

Triterative Proof: (of proposition \$ x) Properties: Paperties: Completeness: if x true, V accept V=verifier P \(\text{V} \) Soundness: if x false, V rejects with prob > construction E Things \(\text{True} \) For false x, prover succeeds (verifier accepts) with probability \(\text{S} \) (1-E)t Proof of knowledge: Verifier becomes convinced that P actually knows solution	PIC:	DATE:
Proof of knowledge: Verifier becomes convinced that	UNDER:	PAGE: 18,4
Properties: Properties: Completeness: if x true, V accepts V=verifier P > Soundness: if x take, V rejects with prob & constant Pero-knowledge: verifier tearns nothing else except whattan x is true May iterate protocol to reduce soundness error t times => for false x, prover succeeds (verifier accepts) with probability = (1-E)t Proof of knowledge: Verifier becomes convinced that		Interactive Prost: (of proposition 8x)
P=prover V=verifier Soundness: if x true, V accepts P Soundness: if x true, V rejects with prob > constant E Rero-knowledge: verifier tearns nothing else except whatten x 13 true May iterate protocol to reduce soundness error thimes => for false x, prover succeeds (verifier accepts) with probability = (1-E)t Proof of knowledge: Verifier becomes convinced that		rela. "puzzk his sola"
V=verifier P Soundness: if x false, V rejects with prob > constant E Zero-knowledge: verifier tearns nothing else except whather x is true May iterate protocol to reduce coundras error thims => for false x, prover succeeds (verifier accepts) with probability == (1-E)t Proof of knowledge: Verifier becomes convinced that	0	Topernes:
Pero-knowledge: verifier tearns nothing else except whaten x is true May iterate protocol to reduce soundness error thims => for false x, prover succeeds (verifier accepts) with probability = (1-E)t Proof at knowledge: Verifier becomes convinced that	12 prova	Completeness: if x true, V accepts
Zero-knowledge: verifier teams nothing else except whather x 13 true May iterate protocol to reduce soundness error thimes => for false x, prover succeeds (verifier accepts) with probability = (1-E) t Proof of knowledge: Verifier becomes convinced that	A - Advition	
May iterate protocol to reduce soundness error Times => for false x, prover succeeds (verifier arcept) with probability = (1-E) t Proof of knowledge: Verifier becomes convinced that	P←→V	Soundness: if x talse, V rejects with prob 2 constant
May iterate protocol to reduce soundings error things => for false x, prover succeeds (verifier accepts) with probability = (1-E)t Proof of knowledge: Verifier becomes convinced that		Zero-knowledge: verifier teams nothing else
t times => for false x, prover succeeds (verific accepts) with probability \leq (1-\varepsilon) t Proof of knowledge: Verifier becomes convinced that	-	except whether x 13 true
t times => for false x, prover succeeds (verific accepts) with probability \(\left(\left(\left) \) Proof of knowledge: Verifier becomes convinced that		May iterate protocol to reduce soundness error
Proof of knowledge: Veritier becomes convinced that		
Proof of knowledge: Verifier becomes convinced that		
		with probability = (1-E)
		Proof of knowledge: Verifier becomes convinced that

TOPIC:		DATE:
FILE UNDER:		PAGE: L18,6
	Graph isomorphism	
	6	Н
	300	
	How can I prove to you that Gd H without revealing isomorphism?	are isomorphic,
	without revesting isomorphism?	
	6	

TOPIC:			DATE:
FILE UNDER:			PAGE: L18.7
	Hamiltonian grap	h	
		O D	
			Hamiltonian path
		7	

TOPIC:	
PAGE: L18,9	
Discrete logarithm POK (Schnorr) (Zk) p= large prime g divides p-1, g prime g generates subgroup Gg = <g) "challenge"="" "hallenge"="" &="" (if="" =="" a="" alice="" bob="" c="cx+k" can="" capts.)<="" complete.="" e="" g="" gg="" how="" in="" is="" kerzg="" knows="" of="" order="" pk="" protocol="" prove="" q="gk" show="" shows="" t="" th="" thm:="" to="" x="SK" x,="" x?="" y="" zg="" zk?="" ×=""><th>)</th></g)>)

	DATE:
DER:	PAGE: L18, 10
	Thm. (Soundness & POK)
	Alice can play game Tor Alice doesn't know x
	Alice can play game of Alice doesn't know x =) Alice 'knows' x =) Alice con't play game
	Pf: Alice can play game = for any a & almost all c
	Pf: Alice can play game = for any a & almost all c she can produce r
	$Fix a = g^k$
	Suppose Alice can sucreed for c & for c' = c
	r=cx+k r'=c'x+k
	r-r'= (c-c').×
	X = (r-r')/(c-c') :. Alice "knows" x
	(Note: Schnor protocol can be turned into
	Signature scheme by Letting c=hash (a, M)
	mesage

	DATE:
UNDER:	PAGE: L18,11
Tho	
	Bob can generate such samples on his own! With correct distribution! (assyming honest verifier)
	$C \leftarrow \frac{R}{Z_g} \qquad (assuming honest verifier)$ $\Gamma \leftarrow \frac{R}{Z_g} \qquad (\Gamma \text{ uniform in } Z_g \text{ sine } k \text{ is })$ $\alpha = \frac{\sigma}{2} / y^c$
→	(a, c, r) has exactly some distribution as in protocol.
	portocol is ZLK. Will

OPIC:	DATE:
E UNDER:	PAGE: L18,12
	Thm: Any problem in NP has a $\mathbb{Z}K$ proof. (GMW) NP problems have from: $f(x) \equiv (\mathbb{Z}w) P(x, w)$ truc/felse input witness poly-time predicate instance
	I can convince you that $f(x) = True$ without showing w! = Proof of knowledge of w Pf: Use 3-colorability, which is NP-complete.

More examples: • My modulus has exactly two prime to	AGE: L 18,13
The plaintext for this mossage contributed on the plaintext for this mossage contributed on the by Born X = E (PK, (M,OB (M)) I know w sit. X = hash (w) Extensions: Non-interactive ZK, (NIZK) Fiat-Shamir heuristic: challenge = hash (commitment s so Prover can derive challenge & write	me message. (pre-image) takenet to be proved)

MIT OpenCourseWare http://ocw.mit.edu

Î Î Î Î
$$| \dot{a} \rangle_c$$
 [|\ $\dot{a} \dot{a} \dot{a} \dot{b}$] {] $\dot{a} \dot{a} \dot{b}$ Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.