n°1 Sens de variation

D Définition : fonction croissante

Une fonction f définie sur un intervalle I est croissante lorsque pour tous les réels a et b dans I : si a < b alors $f(a) \leqslant f(b)$ (l'ordre est respecté)

D Définition : fonction strictement croissante

Une fonction f définie sur un intervalle I est **strictement croissante** lorsque pour tous les réels a et b dans I : si a < b alors f(a) < f(b) (l'ordre est respecté)

D Définition : fonction décroissante

Une fonction f définie sur un intervalle I est **décroissante** lorsque pour tous les réels a et b dans I : si a < b alors $f(a) \geqslant f(b)$ (l'ordre n'est pas respecté)

D Définition : fonction strictement décroissante

Une fonction f définie sur un intervalle I est **strictement décroissante** lorsque pour tous les réels a et b dans I: si a < b alors f(a) > f(b) (l'ordre n'est pas respecté)

- $ilde{1}$ Soit $f_1(x)=3x-9$. Donner son ensemble de définition. Démontrer que f_1 est croissante sur $\mathbb R$.
- Soit $f_2(x) = -2x + 1$. Donner son ensemble de définition. Démontrer que f_2 est décroissante sur $\mathbb R$.
- Soit $f_3(x)=2x^2$. Démontrer que f_3 est croissante sur $[0;+\infty[$ et décroissante sur $]-\infty;0]$.
- Soit $f_4(x)=-4x^2$. Démontrer que f_4 est décroissante sur $[0;+\infty[$ et croissante sur $]-\infty;0]$.
- Soit $f_5(x)=2\sqrt{x}$. Démontrer que f_5 est croissante sur $[0;+\infty[$.
- $oxed{6}$ Soit $f_6(x)=rac{-3}{x}$. Démontrer que f_6 est croissante sur $]0;+\infty[$.

n°2 | Fonction carré

D P Définition et propriétés : fiche d'identité

- La fonction **carré** est la fonction définie sur $\mathbb R$ par : $x\mapsto x^2$
- La fonction **carré** est croissante sur $[0; +\infty[$
- ullet La fonction **carré** est décroissante sur $]-\infty;0]$
- Dans un repère orthogonal, la courbe représentative de la fonction carré est une parabole de sommet
 O(0;0) et d'axe de symétrie l'axe des ordonnées.

On considère la fonction f définie par $f(x)=(x+1)^2$ de courbe représentative \mathcal{C}_f .

- Donner son ensemble de définition.
- $ilde{z}$ Expliquer pourquoi pour tout $x\in\mathbb{R}$, $f(x)\geqslant 0$
- Pour quelle(s) valeur(s) de x, f(x) est minimal et donner ce minimum.
- 4 Déterminer les valeurs de x vérifiant f(x) = 4.
- Déterminer les valeurs de x vérifiant f(x) = 1.
- $oxed{6}$ Déterminer les valeurs de $oldsymbol{x}$ vérifiant $oldsymbol{f(x)=9}.$
- $\overline{m{7}}$ Construire le tableau de variation de $m{f}$.
- $m{8}$ Dans un repère orthonormé, tracer $m{\mathcal{C}_f}$.

n°3 | Fonction inverse

- D P Définition et propriétés : fiche d'identité
- ullet a fonction **inverse** est la fonction définie sur $\mathbb{R}\setminus\{0\}$ par : $x\mapsto rac{1}{x}$
- La fonction **inverse** est décroissante sur $]0; +\infty[$ et sur $]-\infty;0[$
- Dans un repère orthogonal, la courbe représentative de la fonction inverse est une **hyperbole** de centre de symétrie O(0;0).

On considère la fonction f définie par $f(x)=rac{1}{x-2}$

- $\fbox{1}$ Donner son ensemble de définition \mathcal{D}_f .
- $oxed{3}$ Déterminer la valeur de $oldsymbol{x}$ vérifiant $oldsymbol{f(x)=1}$.
- $oxedsymbol{5}$ Construire le tableau de variation de $oldsymbol{f}$.
- $oxed{2}$ Etudier le signe de f(x) sur \mathcal{D}_f
- Déterminer la valeur de x vérifiant f(x) = -1.
- Dans un repère orthonormé, tracer la courbe représentative de **f**.

n°4 | Fonction racine carrée

- D P Définition et propriétés : fiche d'identité
- La fonction **racine carrée** est la fonction définie sur $[0; +\infty[$ par : $x \mapsto \sqrt{x}$
- La fonction racine carrée a pour ensemble de définition $[0; +\infty[$
- La fonction **racine carrée** est croissante sur $[0; +\infty[$

On considère la fonction f définie par $f(x) = \sqrt{x+2}$

- $\overline{}$ Donner son ensemble de définition \mathcal{D}_f .
- $\boxed{3}$ Déterminer la valeur de $oldsymbol{x}$ vérifiant $oldsymbol{f(x)=5}$.
- $oldsymbol{5}$ Construire le tableau de variation de $oldsymbol{f}$.
- $oxed{2}$ Etudier le signe de f(x) sur \mathcal{D}_f
- Déterminer la valeur de $oldsymbol{x}$ vérifiant $oldsymbol{f(x)} = oldsymbol{0}$.
- Dans un repère orthonormé, tracer la courbe représentative de **f**.

n°5 Position relative de courbes

On considère les fonctions $f_1(x)=x^2$, $f_2(x)=x$ et $f_3(x)=\sqrt{x}$.

- Dans un même repère, tracer les courbes représentatives de f_1 , f_2 et f_3 respectivement en rouge, bleu et vert.
- Démontrer que pour tout $x \in [0,1]$ on a $x^2 \leqslant x \leqslant \sqrt{x}$. Que constate-t-ton sur les représentations graphiques ?
- Démontrer que pour tout $x \in [1, +\infty[$ on a $\sqrt{x} \leqslant x \leqslant x$. Que constateton sur les représentations graphiques ?

Valeur absolue d'un nombre réel

D Définition : valeur absolue

La **valeur absolue** d'un nombre réel x est le nombre |x| tel que :

- ullet |x|=x si $x\geqslant 0$
- ullet |x|=-x si $x\leqslant 0$

La valeur absolue |x| correspond à la distance à zéro de x.

P Propriétés

$$|x| = |-x|$$

$$(4) |x| = 0 \Leftrightarrow x = 0$$

P Propriétés : distance

Sur la droite des réels muni d'un repère d'origine $oldsymbol{O}$:

$$|\hspace{.06cm} \textcircled{1} \hspace{.05cm}$$
 si $oldsymbol{M}(oldsymbol{x})$ alors $oldsymbol{OM} = |oldsymbol{x}|$

② si
$$A(a)$$
 et $B(b)$ alors $AB = |a - b| = |b - a|$

Calculer les expressions suivantes :

1
$$A = |2+2 \times 5 - 9 + 1 - 5|$$

$$\boxed{ ^{3} \quad C = |-(6-8)\times(-2-3)-(15-5) \div (-7+2)| } \quad \boxed{ ^{4} \quad D = |-2\times(-2)\times(-3)-(18-3) \div 3| }$$

$$\boxed{4} \quad D = |-2 \times (-2) \times (-3) - (18 - 3) \div 3|$$

Résoudre dans \mathbb{R} les équations suivantes :

$$|5| |5x-9| = 8$$

$$\boxed{6} |2-x|=-1$$

$$\boxed{7} \sqrt{(7x-9)^2} = 3$$

$$\boxed{8} \sqrt{4x^2+9+12x}=2$$

$$9 \sqrt{-70x + 25x^2 + 49} = 10$$
 $10 |2x - 8| = |5x - 8|$

10
$$|2x-8| = |5x-8|$$

11
$$|x-7|=2|3x-1|$$

12
$$\sqrt{(8-9x)^2} = \sqrt{(4x-2)^2}$$
 $\frac{|x-2|}{|5-8x|} = 1$

$$\frac{13}{|5-8x|} = 1$$

$$\frac{14}{|2-x|} \frac{|5x-1|}{|2-x|} = 2$$

$$\frac{15}{\sqrt{(3x-2)^2}} = 3$$

$$\boxed{16} \sqrt{18x + x^2 + 81} = \sqrt{16 + 36x^2 - 48x}$$

17
$$\sqrt{18x + x^2 + 81} = \sqrt{16 + 36x^2 - 48x}$$

$n^{\circ}7$ Fonction valeur absolue

D P Définition et propriétés : fiche d'identité

- La fonction valeur absolue est la fonction définie sur \mathbb{R} par : $x\mapsto |x|=\sqrt{x^2}$
- Elle est croissante sur $[0; +\infty[$
- Elle est décroissante sur $]-\infty;0]$
- Sa courbe représentative est symétrique par rapport à l'axe des ordonnées.

On considère la fonction f définie par f(x) = |x-5| de courbe représentative \mathcal{C}_f .

- 1 Donner son ensemble de définition.
- |z| Expliquer pourquoi pour tout $x\in\mathbb{R},\ f(x)\geqslant 0$
- Pour quelle(s) valeur(s) de x, f(x) est minimal et donner ce minimum.
- 4 Déterminer les valeurs de x vérifiant f(x) = 5.
- Déterminer x tels que f(x) = -2.
- 6 Déterminer les variations de f puis tracer C_f .

 $n^{\circ}8$ Fonction u + k

Soit u une fonction définie sur D_u et k un nombre réel.

D Définition

La fonction $oldsymbol{u}+oldsymbol{k}$ est définie sur $oldsymbol{D_u}$ et par : $ig|(oldsymbol{u}+oldsymbol{k})(oldsymbol{u})=oldsymbol{u}(oldsymbol{x})+oldsymbol{k}$

P Propriété : courbe représentative

Dans un repère $(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j})$, si u a pour courbe représentative C_u alors la courbe représentative C_{u+k} de u+k est l'image de C_u par la translation de vecteur k j

P Propriété : variations

Si $m{u}$ est monotone (croissante ou décroissante) sur un intervalle $m{I}$ alors $m{u}+m{k}$ a le même sens de variation que $oldsymbol{u}$ sur $oldsymbol{I}$.

Dans des repères différents, tracer les courbes représentatives de :

$$\boxed{1} \quad f_1(x) = x^2 + 2$$

$$\boxed{2} \quad f_2(x) = |x| - 4$$

$$f_3(x)=\sqrt{x}-1$$

$$\boxed{1} \ \ f_1(x) = x^2 + 2 \qquad \boxed{2} \ \ f_2(x) = |x| - 4 \qquad \boxed{3} \ \ f_3(x) = \sqrt{x} - 1 \qquad \boxed{4} \ \ f_4(x) = rac{1}{x} - 5$$

Construire le tableau de variations de :

$$f_5(x)=x^2+9$$
 sur $]-\infty;0]$

$$f_6(x) = rac{4}{x} + 2 \; sur \;] - \infty; 0[$$

$$\boxed{7}$$
 $f_7(x)=\sqrt{x}-1$ sur $[0;+\infty[$

 $n^{\circ}9$ Fonction ku

Soit $oldsymbol{u}$ une fonction définie sur $oldsymbol{D_u}$ et $oldsymbol{k}$ un nombre réel.

D Définition

La fonction ku est définie sur D_u et par : |(ku)(x) = k imes u(x)|

P Propriété : variations

Si k>0 alors u et ku ont la même monotonie (croissante ou décroissante) sur un intervalle I .

Si k < 0 alors u et ku sont de monotonie contraire (croissante ou décroissante) sur un intervalle I.

Construire un tableau de variation des fonctions suivantes sur leur ensemble de définition :

$$\boxed{1} \quad f_1(x) = 3x^2$$

$$\boxed{2} \quad f_2(x) = |x| - 4$$

$$\int f_3(x) = \sqrt{x} - 1$$

 $n^{\circ}10$ Fonction \sqrt{u}

Soit u une fonction définie sur D_u telle pour tout $x \in D_u$; $u(x) \geqslant 0$.

D Définition

La fonction \sqrt{u} est définie sur D_u et par : $(\sqrt{u})(x) = \sqrt{u(x)}$

P Propriété : variations

| Si u est monotone sur un intervalle I et si pour tout $x\in I$, $u(x)\geqslant 0$ alors la fonction \sqrt{u} a le même sens \mid de variation que $oldsymbol{u}$ sur $oldsymbol{I}$.

Construire un tableau de variation des fonctions suivantes sur leur ensemble de définition :

$$\boxed{1} \quad f_1(x) = 3x^2$$

$$f_3(x)=\sqrt{x}-1$$

$$igg [2] \ f_2(x) = |x| - 4 \qquad igg [3] \ f_3(x) = \sqrt{x} - 1 \qquad igg [4] \ f_4(x) = rac{1}{x} - 5$$

Fonction $\frac{1}{n}$ $n^{\circ}11$

Soit u une fonction définie sur D_u telle pour tout $x \in D_u$; u(x)
eq 0.

D Définition

La fonction $rac{1}{u}$ est définie sur D_u et par : $(rac{1}{u})(x) = rac{1}{u(x)}$

P Propriété : variations

Si u est monotone sur un intervalle I et si pour tout $x \in I$, $u(x) \neq 0$ alors la fonction $\frac{1}{x}$ a le sens de variation contraire à celui de $oldsymbol{u}$ sur $oldsymbol{I}$.

Construire un tableau de variation des fonctions suivantes sur leur ensemble de définition :

$$\boxed{1} \quad f_1(x) = 3x^2$$

$$\boxed{2} \quad f_2(x) = |x| - 4$$

$$f_3(x) = \sqrt{x} - 1$$

 $n^{\circ}12$ Fonctions somme et produit

Soient f et g deux fonctions définies sur un intervalle I de $\mathbb R$. La fonction somme de f et g, notée f+g, est définie sur I et par : (f+g)(x)=f(x)+g(x) . La fonction produit de f et g, notée fg, est définie sur I et par : $(fg)(x) = f(x) \times g(x)$. Les affirmations suivantes sont-elles vraies ou fausses ? Justifier.

- 1 | Si f et g sont croissantes sur I alors f+g est croissante sur I.
- Si f et g sont croissantes sur I alors fg est croissante sur I.

 $n^{\circ}13$ Fonctions somme et produit

Soient f et g deux fonctions définies sur un intervalle I de $\mathbb R$. La fonction somme de f et g, notée f+g, est définie sur I et par : (f+g)(x)=f(x)+g(x) . La fonction produit de f et g, notée fg, est définie sur I et par : $(fg)(x) = f(x) \times g(x)$. Les affirmations suivantes sont-elles vraies ou fausses ? Justifier.

- 1 | Si f et g sont croissantes sur I alors f+g est croissante sur I.
- 2 | Si f et g sont croissantes sur I alors fg est croissante sur I.