ÁLGEBRA LINEAL - Clase 16/06

Para hacer en clase

Ejercicio 1. (de parcial) Sea \mathcal{B} una base de \mathbb{R}^4 y sea $\mathcal{B}^* = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ su base dual. Sean $v_1, v_2, v_3, v_4 \in \mathbb{R}^4$ tales que $[v_1]_{\mathcal{B}} = (1, 1, 0, 0), [v_2]_{\mathcal{B}} = (1, 0, -1, -1)$ y, además, $\langle v_3, v_4 \rangle^{\circ} = \langle \varphi_1 + \varphi_2 - 3\varphi_3, \varphi_1 - \varphi_4 \rangle$. Calcular dim $\langle v_1, v_2, v_3, v_4 \rangle$.

Ejercicio 2. (de parcial) Sea V de dimensión finita, $f \in \text{End}(V)$ y $v \in V$ no nulo tales que f(v) = v. Probar que existe $\varphi \in V^*$ no nulo tal que $f^t(\varphi) = \varphi$.

Ejercicio 3. Ejercicio 15 de la Práctica 4: Sea $\varphi \in (K^{n \times n})^*$ tal que $\varphi(A.B) = \varphi(B.A)$ para todas $A, B \in K^{n \times n}$. Probar que existe $\alpha \in K$ tal que $\varphi = \alpha$.tr. Deducir que si $\varphi(A.B) = \varphi(B.A)$ para todas $A, B \in K^{n \times n}$ y $\varphi(I_n) = n$, entonces $\varphi = \text{tr}$.