Exercice 1

Soit f une fonction définie sur \mathbb{R} , 2π -périodique et continue par morceaux.

- 1. Donner la définition des coefficients de Fourier trigonométriques de f.
- 2. Donner la définition des coefficients de Fourier exponentiels de f.
- 3. Déterminer les relations entre les coefficients de Fourier trigonométriques de f et les coefficients de Fourier exponentiels de f.

Exercice 2

Soit f la fonction définie sur \mathbb{R} , 2π -périodique, paire telle que :

$$f(x) = \begin{cases} -x + 2 & \text{si } x \in [0, 1] \\ x & \text{si } x \in]1, \pi[\\ 0 & \text{si } x = \pi \end{cases}$$

- 1. Tracer le graphe de f sur $[-4\pi, 4\pi]$
- 2. Déterminer, pour $x \in [-2\pi, 2\pi]$, f(x) en fonction de x.

Evercice 3

- 1. Déterminer la série de Fourier trigonométrique de la fonction triangle.
- 2. En déduire $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}.$

Exercice 4

Soit f la fonction définie sur \mathbb{R} , paire, 2π -périodique, telle que :

$$\forall x \in [0, \pi], \ f(x) = \frac{x^2}{4} - \frac{\pi x}{2} + \frac{\pi^2}{6}.$$

- 1. Représenter graphiquement f sur l'intervalle $[-2\pi, 2\pi]$.
- 2. Déterminer les coefficients de Fourier trigonométriques de f.
- 3. Calculer $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.
- 4. Montrer que la somme $S(x) = \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2}$ est définie pour tout réel x.
- 5. Déterminer l'expression de S(x) en fonction de x pour $x \in]-\pi, 2\pi[$.
- 6. Calculer les sommes $A = \sum_{n=1}^{+\infty} \frac{1}{n^2}$ et $B = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$.

Exercice 5

Soit $\alpha \in \mathbb{R}^*$.

Soit f la fonction définie sur $\mathbb{R},\,2\pi\text{-périodique},$ telle que :

$$\forall t \in [0, 2\pi[, f(t) = e^{\alpha t}]$$

- 1. Représenter graphiquement f.
- 2. Déterminer la série de Fourier exponentielle de f.
- 3. En déduire la série de Fourier trigonométrique de f.
- 4. Étudier la convergence de cette série.
- 5. Calcular $\sum_{n=0}^{+\infty} \frac{1}{n^2 + 1}.$

Exercices supplémentaires

Exercice 6

Soit f la fonction définie sur \mathbb{R} , impaire et 2π -périodique telle que :

$$\forall t \in]0,\pi], \ f(t) = \frac{\pi - t}{2}$$

Soit g la fonction impaire et 2π -périodique définie par :

$$\forall t \in]0,1], g(t) = tf(1) \text{ et } \forall t \in]1,\pi], g(t) = f(t)$$

- 1. Représenter graphiquement f, puis g, sur l'intervalle $[-2\pi, 2\pi]$.
- 2. Déterminer la série de Fourier trigonométrique de f.
- 3. Exprimer simplement, pour tout $t \in]0, \pi[, (g-f)(t)]$ en fonction de t.
- 4. Montrer que, pour tout $n \in \mathbb{N}^*$: $b_n(g-f) = -\frac{1}{n} + \frac{\sin n}{n^2}$.
- 5. En déduire les coefficients de Fourier trigonométriques de g, puis écrire la série de Fourier trigonométrique de g.
- 6. Justifier que, pour tout $t \in \mathbb{R}$, $f(t) = \sum_{n=1}^{+\infty} \frac{\sin(nt)}{n}$.
- 7. Etudier la convergence de la série de Fourier de g.
- 8. Montrer que $\sum_{n=1}^{+\infty} \frac{\sin n}{n} = \sum_{n=1}^{+\infty} \frac{\sin^2 n}{n^2}$. Exprimer ces sommes à l'aide de π .
- 9. Calculer la somme $A = \sum_{n=1}^{+\infty} \frac{\sin^2 n}{n^4}$.

Exercice 7

Soit f la fonction définie sur \mathbb{R} , paire, 2π -périodique, telle que :

$$f(t) = \begin{cases} 1 & \text{si} \quad 0 \le t \le 1 \\ 0 & \text{si} \quad 3 < t < \pi \end{cases} \text{ et } f \text{ est affine sur l'intervalle } [1, 3]$$

- 1. Représenter graphiquement f.
- 2. Compléter: $\forall t \in [1, 3], f(t) = \dots$
- 3. Déterminer la série de Fourier trigonométrique de f.
- 4. Montrer que $\sum_{n=1}^{+\infty} \frac{\sin n \sin(2n)}{n^2} = \frac{\pi 2}{2}.$
- 5. Montrer que $\sum_{n=1}^{+\infty} \frac{\sin^2 n \sin^2(2n)}{n^4} = \frac{5\pi 12}{6}.$

Exercice 8

(test année 2014-2015)

On considère la fonction f définie sur \mathbb{R} , 2π -périodique, impaire telle que :

$$\forall x \in [0, \pi], \ f(x) = x(\pi - x).$$

- 1. Tracer le graphe de la fonction f sur $[-3\pi, 3\pi]$.
- 2. Montrer que la série de Fourier de f s'écrit : $\sum_{n\geq 0} \frac{\alpha}{(2n+1)^3} \sin((2n+1)x)$, où α est un réel à déterminer.
- 3. On note S la somme de la série de Fourier de f. Justifier que S est définie sur \mathbb{R} puis exprimer, pour tout $x \in [-\pi, 2\pi[, S(x)$ en fonction de x.
- 4. Calculer la somme $A = \sum_{n=1}^{+\infty} \frac{(-1)^n}{(2n+1)^3}$.
- 5. Poser le calcul permettant de calculer la somme $B = \sum_{n=1}^{+\infty} \frac{1}{(2n+1)^6}$.