

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

PROJECT P1 SVM CLASSIFIER

SUMMARY

- 2. BLOB EXPERIMENTATON
- 3. PYRAT EXPERIMENTATION

CHAPTER 1 HOW DOES IT WORK?

SVM = Support vector Machine

SVM Principe:

- Use Support Vector
- Find the optimal separation (hyperplan) of the datas by maximising the separation.

Problem: Data separation must be linear.

SVM : classifier = SVC(kernel='poly', degree=int, C=C)

First: linearisation of the datas

- → Choose the kernel (linear, polynomial, sigmoid, rbf, ...)
- → Choose the parameter (degree of the polynom, error range C, etc.)

Then: train the classifier as usual

CHAPTER 2 BLOB EXPERIMENTATION

K-Kneighbours : Score = 0.73 SVM_RBF : Score = 0.77

SVM_RBF influence of C

K-Kneighbours Matrix

Pre	di	cti	Lon	fo	r te		95					27
					pre	eci	510	n	F	ecall	fl-score	support
				Θ		(9.5	5		0.58	0.56	60
				1		(9.80	Θ		0.93	0.86	69
				2		(9.98	В		1.00	0.99	54
				1 2 3 4 5		(9.9	4		0.98	0.96	60
				4		(9.43	3		0.44	0.43	59
				5		(9.9	1		0.89	0.90	57
				6			1.00	Θ		0.94	0.97	67
				7		(9.74	4		0.76	0.75	55
				8		(9.3	1		0.27	0.29	55
				9		(9.6	5		0.56	0.61	73
micro avq						9.74	4		0.74	0.74	600	
macro avq				(9.73	3		0.74	0.73	600		
weighted avg				0.73			3		0.74	0.73	600	
[[3	15	Θ	Θ	0	9	Θ	Θ	15	1	Θ]		
]	Θ	56	Θ	Θ	Θ	2	Θ	Θ	Θ	2]		
]	Θ	Θ	54	Θ	Θ	Θ	Θ	Θ	Θ	Θ]		
]	Θ	Θ	1	59	Θ	Θ	Θ	Θ	Θ	Θ]		
[]	1	Θ	Θ	Θ	26	Θ	Θ	Θ	18	4]		
]	Θ	5	Θ	Θ	Θ	51	Θ	Θ	Θ	1]		
1	Θ	Θ	Θ	4	Θ	Θ	63	Θ	Θ	Θ]		
[]	3	Θ	Θ	Θ	Θ	Θ	Θ	42	Θ	0]		
	3	Θ	Θ	Θ	23	Θ	Θ	Θ		14]		
Γ	2	9	Θ	0	3	3	Θ	Θ	15	41]]		

SVM RBF Matrix

Test	Set	t:									
				pre	eci	sion	1	Le	ecall	fl-score	support
			Θ		(9.54	1		0.60	0.57	68
			1		(9.86)		0.95	0.87	68
			2		-	9.98	3		1.00	0.99	54
			2		(9.94	1		0.98	0.96	68
			4			9.50	9		0.42	0.46	59
			5		(9.89	9		0.89	0.89	57
			6			1.00	9		0.94	0.97	67
			7		(9.75	5		0.73	0.74	55
			8		(9.48	3		0.45	0.47	55
			9		(9.75	5		0.71	0.73	73
m	icro	o av	νq			9.77	7		0.77	0.77	608
m	асго	o av	νq			9.76			0.77	0.77	600
weig	hte	d av	٧g		(9.77	7		0.77	0.77	600
[[36	Θ	Θ	Θ	11	Θ	Θ	13	Θ	Θ]		
[0	57	Θ	Θ	Θ	3	Θ	Θ	Θ	0]		
[0	Θ	54	Θ	Θ	θ	Θ	Θ	Θ	0]		
[0	Θ	1	59	Θ	Θ	Θ	Θ	Θ	0]		
[10	Θ	Θ	Θ	25	Θ	Θ	Θ	21	3]		
[0	6	Θ	Θ	Θ	51	Θ	Θ	Θ	Θ]		
[0	Θ	Θ	4	Θ	θ	63	Θ	Θ	0]		
[14	Θ	Θ	Θ	1	Θ	Θ	40	Θ	Θ]		
[3	Θ	Θ	Θ	13	Θ	Θ	Θ	25	14]		
				Θ	3	Θ	Θ	6	52]]		

CHAPTER 3 PYRAT EXPERIMENTATION

Context:

- 11000 games set;
- Same number of draw, py win and rat win

Prediction fo	r test			
Score Test: 0	.5			
	precision	recall	f1-score	support
-1.0	0.53	0.51	0.52	98
0.0	0.00	0.00	0.00	13
1.0	0.49	0.56	0.52	89
micro avg	0.50	0.50	0.50	200
macro avg	0.34	0.36	0.35	200
weighted avg	0.48	0.50	0.49	200
[[50 3 45]				
[6 0 7]				
[39 0 50]]				

Without the same number of win, we had: Out[48]: Text(0, 0.5, 'Predict Class')

K-Kneighbours result

Prediction for Score Test: 0.3		66165		
	recision		fl-score	support
-1.0	0.37	0.46	0.41	266
0.0	0.29	0.12	0.17	266
1.0	0.36	0.48	0.41	266
micro avg	0.35	0.35	0.35	798
macro avg	0.34	0.35	0.33	798
weighted avg	0.34	0.35	0.33	798
[[123 44 99]				
[103 32 131]				
[103 36 127]]				

Out[78]: Text(0, 0.5, 'Predict Class')

SVM using RBF result

Score for rbf SVM : 0.39348370927318294

Predicti	JII 10	precision	recall	fl-score	support	
	-1.0	0.41	0.42	0.42	266	
	0.0	0.31	0.28	0.30	266	
	1.0	0.44	0.48	0.46	266	
micro	avg	0.39	0.39	0.39	798	
macro	avg	0.39	0.39	0.39	798	
weighted	avg	0.39	0.39	0.39	798	

[[111 92 63] [91 75 100] [66 72 128]]

Out[79]: Text(0, 0.5, 'Predict Class')

