CLUSTERING

INTRODUCTION TO UNSUPERVISED LEARNING

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

K-MEANS ALGORITHM

K-means algorithm

Input:

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

K-means algorithm

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n
Repeat {
         for i = 1 to m
            c^{(i)}:=\operatorname{index} (from 1 to K ) of cluster centroid
                     closest to x^{(i)}
         for k = 1 to K
             \mu_k := average (mean) of points assigned to cluster k
```

Flowchart of K-means algorithm

K-means for non-separated clusters

K-MEANS (OPTIMIZATION OBJECTIVE)

K-means optimization objective

 $c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

 μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^m ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)},\ldots,c^{(m)},\\\mu_1,\ldots,\mu_K}} J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
       for i = 1 to m
           c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                  closest to x^{(i)}
       for k = 1 to K
           \mu_k := average (mean) of points assigned to cluster k
```

K-MEANS (RANDOM INITIALIZATION)

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
       for i = 1 to m
           c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                  closest to x^{(i)}
       for k = 1 to K
           \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \ldots, μ_K equal to these K examples.

Local optima

Random initialization

```
For i = 1 to 100 {
```

```
Randomly initialize K-means. Run K-means. Get c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K. Compute cost function (distortion) J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K) }
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

EXAMPLE OF IMPLEMENTATION OF K-MEANS WHEN K=2

Step I:	Individual	Variable 1	Variable 2
	1	1.0	1.0
Initialization:Randomly we choose following	2	1.5	2.0
two centroids (k=2) for two	3	3.0	4.0
clusters.	4	5.0	7.0
	5	3.5	5.0

4.5

5.0

4.5

	1	5.5
	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

In this case the 2 centroid are:

m1=(1.0,1.0) and m2=(5.0,7.0).

Step 2:

- Thus, we obtain two clusters containing: {1,2,3} and {4,5,6,7}.
- Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$

$$=(4.12,5.38)$$

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Individual	Centroid 1	Centroid 2
1	0	7.21
2	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

$$d(m_1, 2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

Step 3:

- Now using these centroids, we compute the Euclidean distance of each object, as shown in the table.
- Therefore, the new clusters are: {1,2} and {3,4,5,6,7}.
- Next centroids are: mI = (1.25, 1.5)and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2
1	1.57	7.21
2	0.47	6.10
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

Step 4:

- The clusters obtained are: {1,2} and {3,4,5,6,7}.
- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and the final result consists of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.58	5.02
2	0.58	3.92
3	3.05	1.42
4	6.66	2.20
5	4.18	0.41
6	4.78	0.61
7	3.75	0.72

<u>Plot</u>

When k=3

Individual	m ₁ = 1	m ₂ = 2	m ₃ = 3	cluster	
1	0	1.11	3.61	1	
2	1.12	0	2.5	2	
3	3.61	2.5	0	3	
4	7.21	6.10	3.61	3	
5	4.72	3.61	1.12	3	
6	5.31	4.24	1.80	3	
7	4.30	3.20	0.71	3	

Individual	m ₁ (1.0, 1.0)	m ₂ (1.5, 2.0)	m ₃ (3.9,5.1)	cluster
1	0	1.11	5.02	1
2	1.12	0	3.92	2
3	3.61	2.5	1.42	3
4	7.21	6.10	2.20	3
5	4.72	3.61	0.41	3
6	5.31	4.24	0.61	3
7	4.30	3.20	0.72	3

clustering with initial centroids (1, 2, 3)

Step 1

Step 2

Plot when k=3

For more examples: https://codinginfinite.com/k-means-clustering-explained-with-numerical-example/

CHOOSING THE NUMBER OF CLUSTERS

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

