第2节 同角三角函数基本关系(★★)

强化训练

1. $(2022 \cdot 海口模拟 \cdot ★) 已知 \cos\alpha = -\frac{4}{5}$,且 $\sin\alpha < 0$,则 $\tan\alpha = ($)

(A) $\frac{3}{4}$ (B) $-\frac{3}{4}$ (C) $\frac{4}{3}$ (D) $-\frac{4}{3}$

答案: A

解析: 因为 $\cos \alpha = -\frac{4}{5}$,且 $\sin \alpha < 0$,所以 $\sin \alpha = -\sqrt{1 - \cos^2 \alpha} = -\frac{3}{5}$,故 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3}{4}$.

2. (2022•南昌三模•★★) 若角 α 的终边不在坐标轴上,且 $\sin \alpha + 2\cos \alpha = 2$,则 $\tan \alpha = ($)

(A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$

答案: A

解法 1: 可将已知的等式与 $\sin^2 \alpha + \cos^2 \alpha = 1$ 联立,求出 $\sin \alpha$ 和 $\cos \alpha$,再求 $\tan \alpha$,

联立 $\begin{cases} \sin \alpha + 2\cos \alpha = 2\\ \sin^2 \alpha + \cos^2 \alpha = 1 \end{cases}$ 可解得: $\begin{cases} \sin \alpha = \frac{4}{5}\\ \cos \alpha = \frac{3}{5} \end{cases}$ $\begin{cases} \sin \alpha = 0\\ \cos \alpha = \frac{3}{5} \end{cases}$

因为角 α 的终边不在坐标轴上,所以 $\begin{cases} \sin \alpha = \frac{4}{5} \\ \cos \alpha = \frac{3}{5} \end{cases}$,故 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{4}{3}$.

解法 2: 将已知的式子平方,左侧可化为关于 $\sin \alpha$ 和 $\cos \alpha$ 的二次齐次式,这种式子可直接化正切,

因为 $\sin \alpha + 2\cos \alpha = 2$, 所以 $(\sin \alpha + 2\cos \alpha)^2 = \sin^2 \alpha + 4\sin \alpha \cos \alpha + 4\cos^2 \alpha = 4$,

所以 $\frac{\tan^2\alpha + 4\tan\alpha + 4}{\tan^2\alpha + 1} = 4$,解得: $\tan\alpha = \frac{4}{3}$ 或 0,因为 α 的终边不在坐标轴上,所以 $\tan\alpha = \frac{4}{3}$.

3. (2022 • 湖北模拟 • ★★) 己知 2 sin α tan α = 3 ,则 cos α = ____.

答案: ¹

解析: 先将已知的等式切化弦, 由题意, $2\sin\alpha\tan\alpha = \frac{2\sin^2\alpha}{1} = 3$,

要求 $\cos \alpha$,可将分子的 $\sin^2 \alpha$ 换成 $1-\cos^2 \alpha$,将函数名统一成余弦,解出 $\cos \alpha$,

所以 $\frac{2-2\cos^2\alpha}{\cos^2\alpha} = 3$,故 $2\cos^2\alpha + 3\cos\alpha - 2 = 0$,解得: $\cos\alpha = \frac{1}{2}$ 或 -2 (舍去).

4. $(2022 \cdot 上海模拟 \cdot ★★)若 sin \theta = k cos \theta$,则 sin θ cos θ = . (用 k 表示)

答案: $\frac{k}{k^2+1}$

解析: $\sin \theta = k \cos \theta \Rightarrow \tan \theta = k$, 所以 $\sin \theta \cos \theta = \frac{\sin \theta \cos \theta}{\sin^2 \theta + \cos^2 \theta} = \frac{\tan \theta}{\tan^2 \theta + 1} = \frac{k}{k^2 + 1}$.

5. $(2022 \cdot 湖南模拟 \cdot \star \star)$ 已知 $\sin \alpha + 2\cos \alpha = 0$,则 $\frac{\cos 2\alpha}{1-\sin 2\alpha} =$ ____.

答案: $-\frac{1}{3}$

解析: 因为 $\sin \alpha + 2\cos \alpha = 0$,所以 $\tan \alpha = \frac{\sin \alpha}{\alpha} = -2$,

 $\frac{\cos 2\alpha}{2}$ 这个式子怎么化? 已知的是 $\tan \alpha$,所以考虑化单倍角,分母可化为 $(\cos \alpha - \sin \alpha)^2$,故分子也就

选择公式 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ 了,分解因式后恰好可以和分母约分,

$$\frac{\cos 2\alpha}{1-\sin 2\alpha} = \frac{\cos^2 \alpha - \sin^2 \alpha}{(\cos \alpha - \sin \alpha)^2} = \frac{(\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)}{(\cos \alpha - \sin \alpha)^2} = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha} = \frac{1+\tan \alpha}{1-\tan \alpha} = -\frac{1}{3}.$$

6. $(2022 \cdot 四川模拟 \cdot \star \star)$ 已知 $\sin\theta = 2\cos\theta$,则 $\frac{\sin\theta + \cos\theta}{\sin\theta} + \sin^2\theta = ($)

(A)
$$\frac{19}{5}$$
 (B) $\frac{16}{5}$ (C) $\frac{23}{10}$ (D) $\frac{17}{10}$

答案: C

解析: $\sin \theta = 2\cos \theta \Rightarrow \tan \theta = 2$,可分别将 $\frac{\sin \theta + \cos \theta}{\sin \theta}$ 和 $\sin^2 \theta$ 化正切计算,

所以
$$\frac{\sin\theta + \cos\theta}{\sin\theta} = \frac{\tan\theta + 1}{\tan\theta} = \frac{3}{2}$$
, $\sin^2\theta = \frac{\sin^2\theta}{\sin^2\theta + \cos^2\theta} = \frac{\tan^2\theta}{\tan^2\theta + 1} = \frac{4}{5}$, 故 $\frac{\sin\theta + \cos\theta}{\sin\theta} + \sin^2\theta = \frac{3}{2} + \frac{4}{5} = \frac{23}{10}$.

7. $(2018 \cdot 新课标 II 卷 \cdot \star \star \star \star)$ 已知 $\sin \alpha + \cos \beta = 1$, $\cos \alpha + \sin \beta = 0$, 则 $\sin(\alpha + \beta) =$ _____.

答案: $-\frac{1}{2}$

解析: $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$, 怎样产生右边的两项?观察发现将所给等式平方即可,

$$\begin{cases} \sin \alpha + \cos \beta = 1 \\ \cos \alpha + \sin \beta = 0 \end{cases} \Rightarrow \begin{cases} \sin^2 \alpha + \cos^2 \beta + 2\sin \alpha \cos \beta = 1 \\ \cos^2 \alpha + \sin^2 \beta + 2\cos \alpha \sin \beta = 0 \end{cases},$$
 两式相加得: $2 + 2\sin(\alpha + \beta) = 1$, 所以 $\sin(\alpha + \beta) = -\frac{1}{2}$.

8. (★★★) (多选) 已知 $\alpha \in (0,\pi)$, $\sin \alpha + \cos \alpha = \frac{1}{5}$, 以下选项正确的是 ()

(A)
$$\sin 2\alpha = \frac{24}{25}$$
 (B) $\sin \alpha - \cos \alpha = \frac{7}{5}$ (C) $\cos 2\alpha = -\frac{7}{25}$ (D) $\sin^4 \alpha - \cos^4 \alpha = -\frac{7}{25}$

答案: BC

解析: A 项,
$$\sin \alpha + \cos \alpha = \frac{1}{5} \Rightarrow (\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha = 1 + \sin 2\alpha = \frac{1}{25}$$
,

所以 $\sin 2\alpha = -\frac{24}{25}$,故 A 项错误;

B 项,将 $\sin \alpha - \cos \alpha$ 平方,可与 $\sin 2\alpha$ 联系起来,

 $(\sin \alpha - \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha - 2\sin \alpha \cos \alpha = 1 - \sin 2\alpha = 1 - (-\frac{24}{25}) = \frac{49}{25}$

开根号取正还是取负?可通过 $\sin 2\alpha$ 的符号结合 α 范围来看,由 A 项的分析过程知 $\sin \alpha \cos \alpha = -\frac{12}{25} < 0$,

结合 $\alpha \in (0,\pi)$ 可得 $\sin \alpha > 0$,所以 $\cos \alpha < 0$,从而 $\sin \alpha - \cos \alpha = \frac{7}{5}$,故 B 项正确;

C 项, $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha) = \frac{1}{5} \times (-\frac{7}{5}) = -\frac{7}{25}$,故 C 项正确;

D 项, $\sin^4 \alpha - \cos^4 \alpha = (\sin^2 \alpha + \cos^2 \alpha)(\sin^2 \alpha - \cos^2 \alpha) = \sin^2 \alpha - \cos^2 \alpha = -\cos 2\alpha = \frac{7}{25}$, 故 D 项错误.

9. $(2022 \cdot 湖北四校联考 \cdot ★★★) 若 <math>a(\sin x + \cos x) \le 2 + \sin x \cos x$ 对任意的 $x \in (0, \frac{\pi}{2})$ 恒成立,则实数 a 的最大值为_____.

答案: $\frac{5\sqrt{2}}{4}$

解析:将 $\sin x + \cos x$ 换元成t,并将其平方,则 $\sin x \cos x$ 也能用t表示,

设 $t = \sin x + \cos x$, 则 $t = \sqrt{2}\sin(x + \frac{\pi}{4})$, 当 $x \in (0, \frac{\pi}{2})$ 时, $x + \frac{\pi}{4} \in (\frac{\pi}{4}, \frac{3\pi}{4})$, 所以 $1 < t = \sqrt{2}\sin(x + \frac{\pi}{4}) \le \sqrt{2}$,

又 $t^2 = (\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2\sin x \cos x = 1 + 2\sin x \cos x$,所以 $\sin x \cos x = \frac{t^2 - 1}{2}$,

从而 $a(\sin x + \cos x) \le 2 + \sin x \cos x$ 即为 $at \le 2 + \frac{t^2 - 1}{2}$,也即 $a \le \frac{1}{2}(t + \frac{3}{t})$,

如图,函数 $f(t) = \frac{1}{2}(t + \frac{3}{t})$ 在 $(1,\sqrt{2}]$ 上〉,所以 $f(t)_{min} = f(\sqrt{2}) = \frac{5\sqrt{2}}{4}$,

因为 $a \le f(t)$ 恒成立,所以 $a \le \frac{5\sqrt{2}}{4}$,故a的最大值为 $\frac{5\sqrt{2}}{4}$.

