VISA BAC

MATHEMATIQUES TERMINALE S2

Auteurs

- Oumar SAGNA, inspecteur de mathématiques de l'enseignement moyen secondaire.
- Moussa FAYE, conseiller pédagogique, formateur de mathématiques.

*
$$P(X \ge 2) = ?$$

 $(\overline{X} \le 1) = (X > 1) = (X \ge 2);$
 $d'où p\{(X \ge 2)\} = p\{(\overline{X} \le 1)\} = 1 - p\{(X \le 1)\}$
 $\cong 0.77.$

3. X suit la loi binomiale de paramètres 10 et $\frac{1}{4}$ donc

$$E(X) = 10(\frac{1}{4}) = 2.5.$$

E(X) = 2.5 signifie qu'un candidat qui répond au hasard à ce QCM, obtient en moyenne 2,5 réponses correctes sur 10.

Par conséquent on a pas intérêt à répondre au hasard à ce QCM.

Chapitre 8 : SERIE STATISTIQUE DOUBLE

Exercice 1

1. Nuage de points ?

2. Calcul de r?

 $r = \frac{cov(x,y)}{\sigma(x)\sigma(y)}$. Donc pour calculer le coefficient de corrélation r on commence par le calcul des moyennes de x et y, leur variance, leur écart-type et la covariance de x et y.

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i} = 3.$$
 $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_{i} = 35,64.$ $V(x) = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \bar{x}^{2} = 2.$

$$V(y) = \frac{1}{N} \sum y_i^2 - \bar{y}^2 \cong 24,39.$$
 $\sigma(x) = \sqrt{V(x)} \cong 1,41.$

$$\sigma(y) = \sqrt{V(y)} \cong 4.93.$$
 $cov(x; y) = \frac{1}{N} \sum x_i y_i - \bar{x}.\bar{y} \cong 6.32.$

d'où $r \cong 0.90$; |r| proche de 1, donc on a une bonne corrélation.

3. Droite de régression de y en x?

$$d_{y/x} : y - \overline{y} = a (x - \overline{x}) \text{ où}$$

$$a = \frac{cov(x; y)}{V(x)} \cong 3,16.$$

D'où
$$d_{y/x}$$
: y = 3,16x + 26, 16.

х	\bar{x}	0
у	\bar{y}	26,16

 $d_{y/x}$ passe par $G(\bar{x}; \bar{y})$, pour la tracer il suffit de déterminer un autre point de la droite de régression de y de x.

Pour x = 0 on a y = 26,16; d'où $d_{y/x}$ est la droite passant par les points G et A(0; 26,16), représentée sur la figure.

4. Taux de réussite en 2014 ?

En 2014 le rang de l'année x = 2014 - 2006 + 1 = 9.

Pour x = 9, le taux de réussite y = (3,16)(9) + 26,16 = 54,6.

Donc le taux de réussite au Bac de ce Lycée est estimé à 54,6 % en 2014.

Exercice 2

X	16	18	20	22	26	Totaux
у						
2,6	0	0	0	0	1	$1 = n_{1.}$
2,8	1	1	0	3	0	$5=n_{2.}$
3	0	2	0	2	2	$6=n_{3.}$
3,2	0	0	3	1	0	$4 = n_4$.
3,4	0	2	0	0	0	2= n _{5.}
3,6	0	0	1	0	1	$2 = n_{6.}$
Totaux	$1 = n_{.1}$	$5 = n_{.2}$	$4 = n_{.3}$	$6 = n_{.4}$	$4=n_{.5}$	20= N

1. Séries marginales ?

La première série marginale est $\{(y_i, n_i)\}_{1 \le i \le 6}$ définie par :

	y_i	2,6	2,8	3	3,2	3,4	3,6
1	n_i	1	5	6	4	2	2

La deuxième série marginale est $\{(x_j, n_{.j})\}_{1 \le j \le 5}$ définie par :

x_j	16	18	20	22	26
$n_{.j}$	1	5	4	6	4

2. Equation de $d_{y/x}$?

$$d_{y/x}$$
: y - $\bar{y} = a(x - \bar{x})$ où $a = \frac{cov(x;y)}{V(x)}$.

Calculons \bar{x} , \bar{y} , V(x) et cov(x; y).

$$\bar{x} = \frac{1}{9} \sum x_i = 80.$$
 $\bar{y} = \frac{1}{9} \sum y_i = 34,66.$

$$V(x) = \frac{1}{9} \sum_{i} x_{i}^{2} - \bar{x}^{2} = 666,66.$$

$$cov(x; y) = \frac{1}{9} \sum x_i y_i - \bar{x}.\bar{y} = 522,22.$$

D'où a = 0.78 et $d_{y/x}$: y = 0.78x - 28.

3. Coefficient de corrélation ?

$$r = \frac{cov(x;y)}{\sigma(x)\sigma(y)} \text{ or } cov(x;y) = \frac{1}{N} \sum x_i y_i - \bar{x} \cdot \bar{y} = 522,22;$$

$$\sigma(x) = \sqrt{V(x)} = 25,81; \qquad V(y) = \frac{1}{9} \sum y_i^2 - \bar{y}^2 = 418,66 \quad \text{et}$$

$$\sigma(y) = \sqrt{V(y)} = 20,46 \text{ donc } r = 0,98.$$

r proche de 1 donc on a une bonne corrélation.

4. a) L'automobiliste roulant à 150km/h, donc x = 150 et par conséquent la distance de freinage de son véhicule est y = (0.78)(150) - 28 = 89m;

l'obstacle étant à 85m, l'automobiliste va percuter l'obstacle.

b) Vitesse maximale?

Pour ne pas heurter l'obstacle, la distance de freinage y doit être inférieur 85m.

y < 85 ssi 0.78x - 28 < 85 ssi x < 144.87;

donc la vitesse maximale au moment du freinage est 144km/h à l'unité prés.

В.

	y_1	y_2	Totaux
\mathbf{X}_1	440	360	$n_{1} = 800$
X ₂	110	90	$n_2 = 200$
Totaux	$n_{.1} = 550$	$n_{.2} = 450$	N = 1000

1. Effectif total?

L'effectif total étant égal à la somme des effectifs n_{ij} ,

$$N = 440 + 360 + 110 + 90 = 1000.$$

2. Fréquences conditionnelles ?

•
$$f_{y_2/x_1} = \frac{n_{12}}{n_1} = \frac{360}{800}$$
; donc $f_{y_2/x_1} = \frac{9}{20} = 45 \%$

•
$$f_{x_2/y_2} = \frac{n_{22}}{n_2} = \frac{90}{450}$$
; donc $f_{x_2/y_2} = \frac{1}{5} = 20 \%$

3. Fréquences marginales ?

•
$$f_{.1} = \frac{n_{.1}}{N} = \frac{550}{1000}$$
; donc $f_{.1} = \frac{11}{20} = 55 \%$

•
$$f_{2} = \frac{n_2}{N} = \frac{200}{1000}$$
; donc $f_{2} = \frac{1}{5} = 20 \%$.