We claim:

1. A compound represented by A:

$$R_1$$
 R_2
 $(CH_2)_n$
 R_4R_3C
 R_5
 R

wherein

R represents H, alkyl, aralkyl, cycloalkyl, alkenyl, aryl, heteroaryl, acyl, or sulfonyl;

R₁ represents aryl, or heteroaryl;

R₂ represents RO-alkyl, (R)₂N-alkyl, RS-alkyl, RO-cycloalkyl, (R)₂N-cycloalkyl, or RS-cycloalkyl;

R₃ represents H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

R₄ represents H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

R₅ represents an aryl or heteroaryl group;

R₃ and R₄ may be connected through a covalent bond;

n is 0, 1, or 2; and

the stereochemical configuration at any stereocenter of a compound represented by A is R, S, or a mixture of these configurations.

- 2. The compound of claim 1, wherein R_5 represents phenyl.
- 3. The compound of claim 1, wherein R_1 represents aryl.
- 4. The compound of claim 1, wherein R₂ represents RO-alkyl.
- 5. The compound of claim 1, wherein n is 1; and R₃ represents H, alkyl, or F.

- 6. The compound of claim 1, wherein n is 1; and R₄ represents H, alkyl, or F.
- 7. The compound of claim 1, wherein R_5 represents phenyl; and R_1 represents aryl.
- 8. The compound of claim 1, wherein R₅ represents phenyl; R₁ represents aryl; and R₂ represents RO-alkyl.
- 9. The compound of claim 1, wherein n is 1; R₅ represents phenyl; R₁ represents aryl; R₂ represents RO-alkyl; and R₃ represents H, alkyl, or F.
- 10. The compound of claim 1, wherein n is 1; R₅ represents phenyl; R₁ represents aryl; R₂ represents RO-alkyl; R₃ represents H, alkyl, or F; and R₄ represents H, alkyl, or F.
- 11. The compound of claim 1, wherein n is 0; and R_5 represents phenyl.
- 12. The compound of claim 1, wherein n is 0; and R₅ represents thiophene.
- 13. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents HO-alkyl; n is 0; and R₅ represents chlorophenyl.
- 14. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents HO-alkyl; n is 0; and R₅ represents thiophene.
- 15. The compound of claim 1, wherein R_1 represents phenyl; R_2 represents HO-alkyl; n is 0; and R_5 represents methoxyphenyl.
- 16. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents HO-alkyl; n is 1; R₃ and R₄ are joined through a covalent bond to form a cyclobutyl ring; and R₅ represents chlorophenyl.
- 17. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents (R)₂N-alkyl; n is 1; R₃ and R₄ are joined through a covalent bond to form a cyclopropyl ring; and R₅ represents methoxyphenyl.
- 18. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents HO-alkyl; n is 1; R₃ and R₄ are joined through a covalent bond to form a cyclopentyl ring; and R₅ represents fluorophenyl.

- 19. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents HO-alkyl; n is 1; R₃ and R₄ are joined through a covalent bond to form a cyclopentyl ring; and R₅ represents methoxyphenyl.
- 20. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents (R)₂N-alkyl; n is 1; R₃ and R₄ are joined through a covalent bond to form a cyclobutyl ring; and R₅ represents chlorophenyl.
- 21. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents CH₃O-alkyl; n is 1; R₃ and R₄ are joined through a covalent bond to form a cyclobutyl ring; and R₅ represents chlorophenyl.
- 22. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents HO-alkyl; n is 1; R₃ represents methyl; R₄ represents methyl; and R₅ represents chlorophenyl.
- 23. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents HO-alkyl; n is 1; R₃ represents H; R₄ represents OH; and R₅ represents chlorophenyl.
- 24. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents CH₃C(O)O-alkyl; n is 1; R₃ represents H; R₄ represents CH₃C(O)O-; and R₅ represents chlorophenyl.
- 25. The compound of claim 1, wherein R₁ represents phenyl; R₂ represents CH₃C(O)O-alkyl; n is 2; one set of geminal R₃ and R₄ are joined through a covalent bond to form a cyclobutyl ring; the other R₃ represents H; the other R₄ represents CH₃C(O)O-; and R₅ represents chlorophenyl.
- 26. The compound of claim 13, 14, 15, 16, 18, 19, 22, or 23, wherein HO-alkyl is HOCH₂.
- 27. The compound of claim 17, wherein (R)₂N-alkyl is PhCH₂CH₂NHCH₂-.
- 28. The compound of claim 20, wherein (R)₂N-alkyl is PhCH₂CH₂NHCH₂-.
- 29. The compound of claim 20, wherein $(R)_2N$ -alkyl is $(CH_3)_2NCH_2$ -.
- 30. The compound of claim 21, wherein CH₃O-alkyl is CH₃OCH₂-.
- 31. The compound of claim 24 or 25, wherein CH₃C(O)O-alkyl is CH₃C(O)OCH₂-.
- 32. The compound of claim 1, wherein said compound has an IC₅₀ less than 1 μM in an assay based on a mammalian dopamine, serotonin, or norepinephrine receptor or transporter.

- 33. The compound of claim 1, wherein said compound has an EC₅₀ less than 1 μM in an assay based on a mammalian dopamine, serotonin, or norepinephrine receptor or transporter.
- 34. The compound of claim 1, wherein said compound has an IC₅₀ less than 100 nM in an assay based on a mammalian dopamine, serotonin, or norepinephrine receptor or transporter.
- 35. The compound of claim 1, wherein said compound has an EC₅₀ less than 100 nM in an assay based on a mammalian dopamine, serotonin, or norepinephrine receptor or transporter.
- 36. The compound of claim 1, wherein said compound has an IC₅₀ less than 10 nM in an assay based on a mammalian dopamine, serotonin, or norepinephrine receptor or transporter.
- 37. The compound of claim 1, wherein said compound has an EC₅₀ less than 10 nM in an assay based on a mammalian dopamine, serotonin, or norepinephrine receptor or transporter.
- 38. The compound of claim 1, wherein said compound has an IC₅₀ less than 1 μM in an assay based on a mammalian dopamine receptor or transporter.
- 39. The compound of claim 1, wherein said compound has an EC₅₀ less than 1 μ M in an assay based on a mammalian dopamine receptor or transporter.
- 40. The compound of claim 1, wherein said compound has an IC₅₀ less than 100 nM in an assay based on a mammalian dopamine receptor or transporter.
- 41. The compound of claim 1, wherein said compound has an EC₅₀ less than 100 nM in an assay based on a mammalian dopamine receptor or transporter.
- 42. The compound of claim 1, wherein said compound has an IC₅₀ less than 10 nM in an assay based on a mammalian dopamine receptor or transporter.
- 43. The compound of claim 1, wherein said compound has an EC₅₀ less than 10 nM in an assay based on a mammalian dopamine receptor or transporter.
- 44. The compound of claim 1, wherein said compound is a single stereoisomer.

- 45. A formulation, comprising a compound of claim 1; and a pharmaceutically acceptable excipient.
- 46. The formulation of claim 45, wherein said pharmaceutically acceptable excipient is selected from the group consisting of cyclodextrins, celluloses, liposomes, micelle forming agents, and polymeric carriers.
- 47. A method of modulating the activity of a dopamine, serotonin, or norepinephrine receptor or transporter in a mammal, comprising the step of administering to said mammal a therapeutically effective amount of a compound represented by A:

$$R_1$$
 R_2
 N
 $(CR_4R_5)_n$
 R

A

wherein

R represents H, alkyl, aralkyl, cycloalkyl, alkenyl, aryl, heteroaryl, acyl, or sulfonyl;

R₁ represents aryl, heteroaryl, aralkyl, or heteroaralkyl;

R₂ represents alkyl, RO-alkyl, (R)₂N-alkyl, RS-alkyl, cycloalkyl, RO-cycloalkyl, (R)₂N-cycloalkyl, RS-cycloalkyl, alkenyl, aryl, or heteroaryl;

R₄ represents independently for each occurrence H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

R₅ represents independently for each occurrence H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

any geminal or vicinal pairs of R_4 and R_5 may be connected through a covalent bond; n is independently for each occurrence 0, 1, 2, 3, or 4; and

the stereochemical configuration at any stereocenter of a compound represented by A is R, S, or a mixture of these configurations.

- 48. The method of claim 47, wherein said mammal is a primate, equine, canine or feline.
- 49. The method of claim 47, wherein said mammal is a human.
- 50. The method of claim 47, wherein said compound is administered orally.
- 51. The method of claim 47, wherein said compound is administered intravenously.
- 52. The method of claim 47, wherein said compound is administered sublingually.
- 53. The method of claim 47, wherein said compound is administered ocularly.
- 54. The method of claim 47, wherein said compound is administered transdermally.
- 55. The method of claim 47, wherein said compound is administered rectally.
- 56. The method of claim 47, wherein said compound is administered vaginally.
- 57. The method of claim 47, wherein said compound is administered topically.
- 58. The method of claim 47, wherein said compound is administered intramuscularly.
- 59. The method of claim 47, wherein said compound is administered subcutaneously.
- 60. The method of claim 47, wherein said compound is administered bucally.
- 61. The method of claim 47, wherein said compound is administered nasally.
- 62. A method of modulating the activity of a dopamine receptor or transporter in a mammal, comprising the step of administering to said mammal a therapeutically effective amount of a compound represented by A:

$$R_1$$
 R_2
 N
 $(CR_4R_5)_n$
 R

Α

wherein

R represents H, alkyl, aralkyl, cycloalkyl, alkenyl, aryl, heteroaryl, acyl, or sulfonyl;

R₁ represents aryl, heteroaryl, aralkyl, or heteroaralkyl;

 R_2 represents alkyl, RO-alkyl, (R)₂N-alkyl, RS-alkyl, cycloalkyl, RO-cycloalkyl, (R)₂N-cycloalkyl, RS-cycloalkyl, alkenyl, aryl, or heteroaryl;

R₄ represents independently for each occurrence H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

R₅ represents independently for each occurrence H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

any geminal or vicinal pairs of R₄ and R₅ may be connected through a covalent bond; n is independently for each occurrence 0, 1, 2, 3, or 4; and

the stereochemical configuration at any stereocenter of a compound represented by A is R, S, or a mixture of these configurations.

- 63. The method of claim 62, wherein said mammal is a primate, equine, canine or feline.
- 64. The method of claim 62, wherein said mammal is a human.
- 65. The method of claim 62, wherein said compound is administered orally.
- 66. The method of claim 62, wherein said compound is administered intravenously.
- 67. The method of claim 62, wherein said compound is administered sublingually.
- 68. The method of claim 62, wherein said compound is administered ocularly.
- 69. The method of claim 62, wherein said compound is administered transdermally.
- 70. The method of claim 62, wherein said compound is administered rectally.
- 71. The method of claim 62, wherein said compound is administered vaginally.
- 72. The method of claim 62, wherein said compound is administered topically.
- 73. The method of claim 62, wherein said compound is administered intramuscularly.
- 74. The method of claim 62, wherein said compound is administered subcutaneously.
- 75. The method of claim 62, wherein said compound is administered buccally.
- 76. The method of claim 62, wherein said compound is administered nasally.

77. A method of treating a mammal suffering from addiction, anxiety, depression, sexual dysfunction, hypertension, migraine, Alzheimer's disease, obesity, emesis, psychosis, analgesia, schizophrenia, Parkinson's disease, restless leg syndrome, sleeping disorders, attention deficit hyperactivity disorder, irritable bowel syndrome, premature ejaculation, menstrual dysphoria syndrome, urinary incontinence, inflammatory pain, neuropathic pain, Lesche-Nyhane disease, Wilson's disease, or Tourette's syndrome, comprising the step of administering to said mammal a therapeutically effective amount of a compound represented by A:

$$R_1$$
 R_2
 N
 $(CR_4R_5)_n$
 R

Α

wherein

R represents H, alkyl, aralkyl, cycloalkyl, alkenyl, aryl, heteroaryl, acyl, or sulfonyl; R₁ represents aryl, heteroaryl, aralkyl, or heteroaralkyl;

R₂ represents alkyl, RO-alkyl, (R)₂N-alkyl, RS-alkyl, cycloalkyl, RO-cycloalkyl, (R)₂N-cycloalkyl, RS-cycloalkyl, alkenyl, aryl, or heteroaryl;

R₄ represents independently for each occurrence H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

R₅ represents independently for each occurrence H, alkyl, cycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, -OR, or F;

any geminal or vicinal pairs of R_4 and R_5 may be connected through a covalent bond; n is independently for each occurrence 0, 1, 2, 3, or 4; and

the stereochemical configuration at any stereocenter of a compound represented by A is R, S, or a mixture of these configurations.

78. The method of claim 77, wherein said mammal is a primate, equine, canine or feline.

- 79. The method of claim 77, wherein said mammal is a human.
- 80. The method of claim 77, wherein said compound is administered orally.
- 81. The method of claim 77, wherein said compound is administered intravenously.
- 82. The method of claim 77, wherein said compound is administered sublingually.
- 83. The method of claim 77, wherein said compound is administered ocularly.
- 84. The method of claim 77, wherein said compound is administered transdermally.
- 85. The method of claim 77, wherein said compound is administered rectally.
- 86. The method of claim 77, wherein said compound is administered vaginally.
- 87. The method of claim 77, wherein said compound is administered topically.
- 88. The method of claim 77, wherein said compound is administered intramuscularly.
- 89. The method of claim 77, wherein said compound is administered subcutaneously.
- 90. The method of claim 77, wherein said compound is administered buccally.
- 91. The method of claim 77, wherein said compound is administered nasally.