Intro to (Practical) Reinforcement Learning

Dec 2019 Second Nepal Winter School in Al

Course Format

- 4 x 45min with 3min breaks in between
- Afterwards 1h lab session with quiz + python fun
- Ask questions anytime, interrupt me!

Goal

- Understand basic concepts around RL (S, A, T, R, γ)
- Understand basic algorithms (policy iteration, SARSA, etc.)
- Be able to use DRL at a grad student level*
- NOT: understand SotA algorithms / create new SotA

^{*} i.e. be able to download somebody else's algorithm and run it on your task

Outline

Part 1 - Intro & MDPs

(Examples, Markov stuff)

Part 2 - RL for Evaluation

(Policy Evaluation, TD(0))

Part 3 - Model-Free RL for Control

(Q learning / SARSA)

Part 4 - Practical RL

(OpenAl Gym, SotA algorithms, etc.)

Part 1 - Introduction + MDP

Why RL tho?

Task (e.g. is this image a cat?)

Why RL tho?

Task (e.g. make this robot stand up & walk)

RL Loopdy Loop

What else can RL do?

Resources

- Youtube, "RL Course by David Silver", 11 lectures x 1h30:
 https://www.youtube.com/playlist?list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-
- Youtube, Abbeel & Klein, http://ai.berkeley.edu/lecture_videos.html
- Sutton & Barto "Reinforcement Learning: An Introduction":
 http://incompleteideas.net/book/bookdraft2017nov5.pdf
- Spinning Up in DRL: https://spinningup.openai.com/en/latest/

Some slides/formulas were copied from the above

Finite State Machine

Markov Chain

Markov Reward Process

• States (S)

- States (S)
- Actions (A)

- States (S)
- Actions (A)
- TransitionProbabilities (T/P)

- States (S)
- Actions (A)
- TransitionProbabilities (T/P)
- Rewards (R)

- States (S)
- Actions (A)
- Transition

Probabilities (T/P)

- Rewards (R)
- Discount Factor(γ)

$$(S, A, T, R, \gamma)$$

- States (S)
- Actions (A)
- TransitionProbabilities (T/P)
- Rewards (R)
- Discount Factor (γ)

$$(S, A, T, R, \gamma)$$

- States (S)
- Actions (A)
- TransitionProbabilities (T/P)
- Rewards (R)
- Discount Factor(γ)

$$(S, A, T, R, \gamma)$$

 $\pi(s) \rightarrow a$

Deterministic or stochastic environment?

$$G_t = r_{t+1} + \gamma r_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

If
$$\gamma = 1$$
: $G = 1^*1 + 1^*0 = 1$

$$G_t = r_{t+1} + \gamma r_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

If
$$\gamma$$
=0: G = ???

If
$$\gamma$$
=0: G = ???

$$G_t = r_{t+1} + \gamma r_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots |s_t = s]$$

"How good is a state?"

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots |s_t = s]$$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots |s_t = s]$$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots |s_t = s]$$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots |s_t = s]$$

Bellman Equation

from s under π

Part 2 - Model-based RL

Model-based RL Idea

- 1. Build (or have) a model of the environment dynamics: transitions (T), rewards (R)
- 2. "Solve" the environment: via planning or value estimation
- 3. ...
- 4. Profit

Learning the Model

T & R can be learned by averaging observations from trajectories.

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s, a, s')$$
T(B, east, C) = ____
T(C, east, D) = ____
T(C, east, A) = ____

$$\hat{R}(s, a, s')$$

(Goal: get value function everywhere)

- 1. Initialize VF everywhere at 0
- 2. Iterate over all states; update their value with the reward from all reachable states + their current value function
- 3. GOTO 2

	0	
0	0	0
	0	

Assume $T(\bullet) = 1$, $\gamma = 1$, uniform random policy

	-10	
-1	-1	+10
	-1	

Assume $T(\bullet) = 1$, $\gamma = 1$, uniform random policy

Assume $T(\bullet) = 1$, $\gamma = 1$, uniform random policy

	-10	
-1+(-1)	½ (-1-10)+½ (-1+10) = -1	+10
	-1+(-1)	

	-10	
-2	-1	+10
	-2	

Assume $T(\bullet) = 1$, $\gamma = 1$, uniform random policy

And another one

r = -1 on all transitions

- Undiscounted episodic MDP $(\gamma = 1)$
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Greedy Policy w.r.t.
$$v_k$$

$$k = 0$$

random policy

$$k = 1$$

Chance of going there under current policy * k=2 (Reward of transition + V(s'))

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	←		\longleftrightarrow
1	7	\Rightarrow	↓
†	\leftrightarrow	₽	ļ
$ \Longleftrightarrow $	\rightarrow	\rightarrow	

v_k for the Random Policy

0.0 | 0.0 | 0.0 | 0.0

Greedy Policy w.r.t. v_k

$$k = 1$$

$$\begin{vmatrix}
0.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & 0.0
\end{vmatrix}$$

	←	\longleftrightarrow	\longleftrightarrow
†	\Leftrightarrow	\leftrightarrow	\longleftrightarrow
\Leftrightarrow	\Leftrightarrow	\leftrightarrow	ţ
\leftrightarrow	\leftrightarrow	\rightarrow	

$$k = 2$$

$$\begin{vmatrix}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0
\end{vmatrix}$$

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Problems:

- Costly (synchronous update of all states + every state vs. every accessible state)
- Need transition function

 \rightarrow how about asynchronous updates as we go? (MC/TD(0))

Part 2 - Model-free RL

Monte-Carlo Policy Evaluation

Idea:

- When an episode is over, store actual mean return (G) for each state
- Update value function to approximate this G for each state

Learning Rate

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Incremental Updates

New value = old value + learning rate * (measurement - old value)

If measurement == old value, then no change, otherwise small increase/decrease

MCPE

	0	
0	0	0
	0	

Assume γ = 1, α = 0.1

MCPE

 \bigcirc A

 $\left(\mathsf{B} \right)$

 $\left(\mathsf{D} \right)$

E

	0	
0	0	0
	0	

Trajectory 1

 $B\rightarrow C$, -1 $C\rightarrow D$, -1

 $D\rightarrow x,+10$

G(B): +8

G(C): +9

G(D): +10

Assume $\gamma = 1$, $\alpha = 0.1$

MCPE

A

 $\left(\mathsf{B}\right)$

 $\left(\mathsf{D}\right)$

E

	0	
0+0.1*8 =.8	0+0.1*9 =.9	0+0.1*10 =1
	0	

Trajectory 1

 $B \rightarrow C$, -1 $C \rightarrow D$, -1

 $D\rightarrow x,+10$

G(B): +8

G(C): +9

G(D): +10

Assume $\gamma = 1$, $\alpha = 0.1$

MCPE

A

 $\left(\mathsf{\,B\,} \right)$

 $\left(\mathsf{D} \right)$

E

	0	
.8	.9	1
	0	

Trajectory 1 Trajectory 2

$$B\rightarrow C, -1$$
 $B\rightarrow C, -1$
 $C\rightarrow D, -1$ $C\rightarrow A, -1$
 $D\rightarrow x, +10$ $A\rightarrow x, -10$

Assume $\gamma = 1$, $\alpha = 0.1$

MCPE

A

 $\left(\mathsf{\,B\,} \right)$

 $\left(\mathsf{D}\right)$

 $\left(\mathsf{E}\right)$

	0+.1*-10 =1	
.8+.1* (-128) = -0.48	.9+.1* (-119) = -0.29	1
	0	

Trajectory 1 Trajectory 2

$$B\rightarrow C, -1$$
 $B\rightarrow C, -1$
 $C\rightarrow D, -1$ $C\rightarrow A, -1$
 $D\rightarrow x, +10$ $A\rightarrow x, -10$

Assume $\gamma = 1$, $\alpha = 0.1$

Temporal Difference Learning

Idea:

- Same thing but we don't wait for the episode's end
- Use single step (reward+V(s') to update \rightarrow single step = TD(0)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

$$\downarrow$$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$
Source: David Silver reinforcement learning lecture series,

Part 3 - RL for Control

Summary so far

- Learned about MDP/(S,A,T,R, γ)
- Policy Eval learns value func. (given T,R,π)
- Monte-Carlo Policy Eval learns value func (given π)
- Temporal Difference Learning learns value func (given π)
- Can use greedy π if we have T, but what if we don't?
 - \rightarrow Q function to the rescue

Q Learning

Similar to value function, but also taking actions into consideration:

Definition

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s, A_t = a\right]$$

Q Learning Policy

$$\pi'(s) = \operatorname*{argmax} q_{\pi}(s, a)$$
 $a \in \mathcal{A}$

At each state, check the Q value of all the actions; Pick action with highest Q

How to learn Q?

- Use Monte-Carlo algorithm ("Monte-Carlo Q Learning")
- Use Temporal Difference algorithm ("Sarsa") same as TD(0) but with Q
 function instead of value function

Monte-Carlo Q Learning

■ For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$
Simple counter (start at 0) $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + rac{1}{N(S_t, A_t)} \left(G_t - Q(S_t, A_t)\right)$

Sarsa - State-action-reward-state-action

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

BUT: exploration

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

- There are two doors in front of you.
- You open the left door and get reward 0 V(left) = 0
- You open the right door and get reward +1V(right) = +1
- You open the right door and get reward +3V(right) = +2
- You open the right door and get reward +2V(right) = +2

•

Are you sure you've chosen the best door?

€-Greedy Exploration

- lacksquare With probability $1-\epsilon$ choose the greedy action
- lacktriangle With probability ϵ choose an action at random

You can decrease ϵ slowly as you go

How to Neural-network this?

- Q function: a neural network, in: observation, action, out: scalar float
- π: testing each action + picking highest Q value
- "Actor-Critic" = Q network + policy network

Continuous actions:

• $Q(s,a) = Q(s, \pi(s)) \rightarrow backprop through Q into both nets$

Part 4 - Practical RL

OpenAl gym

- De-facto standard RL environment(s)
- Contains variety of tasks (text adventures, Atari games, robotic tasks...)
- → Show https://gym.openai.com/envs/#classic_control
 - Only tasks, no learning algorithms
 - Homogenous API

```
import gym
env = gym.make("Pendulum-v0")
obs = env.reset()
env.render()
done = False
while not done:
    action = env.action_space.sample()
    obs, rew, done, misc = env.step(action)
    env.render()
```

obs, rew, done, misc = env.step(action)

```
Observation as
                             Scalar float
                                                              Dictionary
                                              Bool
List, Tuple, Numpy array
                                                              Ex: { }
                             Ex: +10
                                              Ex: True
Ex: img,
                             Ex: -0.001
                                              Ex: False
np.array((128,128,3),
                                                              Ex:
dtype=np.uint8)
                                                              {"success": True,
                                                              "steps": 420}
Ex: robot joints + velocities
list(0.4, 1.0, -0.3, 0.0)
                                                              Ex:
                                                              {"reward pos": 69,
                                                              "reward vel": 1,
                                                              "reward rules": -10.4}
```

```
import gym
env = gym.make("Pendulum-v0")
policy = Policy() # <-- not part of Gym</pre>
replay_buf = ReplayBuffer() # <-- also not part of Gym</pre>
while True:
    obs = env.reset()
    done = False
    while not done:
        action = policy.select_action(obs)
        new_obs, rew, done, misc = env.step(action)
        replay_buf.add((obs, action, new_obs, rew, done))
    replay_batch = replay_buf.sample()
    policy.train(replay_batch)
```

Find

the

error!

• Normalize observations & actions to be in [-1,1] or [0,1]:

```
np.array(-100, 5, 30) \rightarrow np.array(-1, 0.05, .3)
```

(normalize by max/range or by mean/std)

• Normalize observations & actions to be in [-1,1] or [0,1]:

```
np.array(-100, 5, 30) \rightarrow np.array(-1, 0.05, .3)
```

(normalize by max/range or by mean/std)

Limit/scale rewards

-100 on failure, +1 on success, -0.00001 per step \rightarrow -5, +1, -0.01

• Normalize observations & actions to be in [-1,1] or [0,1]:

```
np.array(-100, 5, 30) \rightarrow np.array(-1, 0.05, .3) (normalize by max/range or by mean/std)
```

Limit/scale rewards

-100 on failure, +1 on success, -0.00001 per step \rightarrow -5, +1, -0.01

• Make sure environment is markovian

• Normalize observations & actions to be in [-1,1] or [0,1]:

np.array(-100, 5, 30)
$$\rightarrow$$
 np.array(-1, 0.05, .3) (normalize by max/range or by mean/std)

And LOTS OF SEEDS

Limit/scale rewards

-100 on failure, +1 on success, -0.00001 per step \rightarrow -5, +1, -0.01

• Make sure environment is markovian

Reproducibility

Example:

Flying a helicopter

Observation:
 (position_xyz, velocity_xyz)

Example:

Flying a helicopter

```
Observation:
  (position_xyz, velocity_xyz)
```

Better:
 (position_xyz, velocity_xyz,
 rotation_quat, goal_xyz)

Example:

Flying a helicopter

Observation:

(position_xyz, velocity_xyz)

Better:

(position_xyz, velocity_xyz,
rotation_quat, goal_xyz)

Example:

Driving a car

Observation:

Image, (256, 256, 3)

Example:

Flying a helicopter

Observation:

(position_xyz, velocity_xyz)

Better:

(position_xyz, velocity_xyz,
rotation_quat, goal_xyz)

Example:

Driving a car

Observation:

Image, (256, 256, 3)

Better:

Image stack (last 4 images) + depth images (4, 256, 256, 3) + (4, 256, 256, 1)

State-of-the-Art DRL algos

How to pick?

9/10 times: PPO works (discrete or continuous actions)

+ few HP adjustments (episodes, stacked frames, hidden rep size)

Otherwise, try SAC (slow but stable) or TD3 (fast, easy, sensitive to seed)

X axis: steps in the environment (every time the "env.step()" function is called)

X axis: compute time in seconds

Bonus: Modern Planning via PlaNet

Bonus: Imitation Learning

Naive: behavior cloning

- Can be used as initialization for RL policy
- But overfits to training data

Better: DAgger / Deeply AggreVaTeD, see http://videolectures.net/DLRLsummerschool2018_daume_imitation_learning/

Thanks, questions?