Ever element of A is mapped to exactly one element of B.

The range of f is the set of elements actually mapped to

$$f: Z \rightarrow Z$$

$$f(x) = x^2$$

Domain = Z = \(\frac{1}{2} \ldots - 2, -1, 0, 1, 2, \ldots \)

Codomain = Z

Range = 20, 1, 4, 9, 16, ... \$

Note: When the elements of a function's domain can be listed, the function is "discrete"

In cryptography, all functions will be discrete functions with discrete domains.

Properties:

A function is onto (surjective) iff every codomain element is mapped to ≥ 1

onto b/c > 1 arrow head

Note: This is not an invertible function

One-to-One (injective) iff every codomain element is mapped to <1

one-to-one b/c < 1 arrowhead

Note: I his is not an invertible function

Invertible (bijective) iff every codomain element is mapped to = 1

A function is invertible iff it is onto and one-to-one

The domain and codomain must be the same size in an invertible function.

Table - based Mappings

def: = \ 20, 1, 2, ..., n-13

f: Z_y → Z

_	×	f(x)
	0	0
domain		
in-order	1	1 /
ea. once	5	S Range
	2	н
	3	9 /
		Peach from codomain

Onto if flx) columns list each codomain element > 1

One-to-One if flx) column lists each codomain element & I

Invertible iff every codomain element is listed = 1 in the f(x) codomain

* Not invertible Missing elements 2,3,5,6,7,8

Random Function:

f: Z, > \ 0,13	×	f(x)
7	0	0
fill each f(x)	1	1
with uniform	2	О
value from	3	0
codomain		

Note: Randomness is only when the function is defined.

Fill each f(x) with uniform value from codomain.

Random invertible function:

X	f(x)
0	::
1	•
2	: :
3	∵ :
4	
5	
	0 1 2 3 4

A function is a permutation if it is invertible and the domain and codomain are equal

$f: Z_{\mu} \rightarrow Z_{\mu}$	×	f(x)
н ч	0	1
	1	3
	2	0
	3	2

permutation of each other

Reasoning with Tables:

Let $f: Z_{10} \rightarrow Z_{20}$ be a random function

P: Z -> Z be a random permutation

Pr[f(0) = 0] = 1/20 _	×	f(x)	×	P(x)
	0		0	
Pr[P(0)=0] = 1/10	1		1	
	2		2	
$\Pr\left[f(1)=1 \mid f(0)=0\right] = \frac{1}{2}0$	3		3	
PrEAIBI	H		ч	
* Each now is independent of each	5		5	
other	6		6	
	ד		ד	
Pr[P(1)=1 P(0)=0] = 1/9	8		8	
* In a permutation, each element	9		9	
must occur only 1 time				

In a permutation, no repeats