VE281

Data Structures and Algorithms

Quick Sort; Comparison Sort Summary;

Non-comparison Sort

Outline

- Quick Sort
- Comparison Sort Summary
- Non-comparison Sort
 - Counting Sort

Review

- Quick sort: In-place partitioning
- Quick sort time complexity
 - Worst case: $O(N^2)$
 - Best case: $O(N \log N)$

Average Case Time Complexity

- Average case time complexity of quick sort can be proved to be $O(N \log N)$.
 - Assume **randomly** pick an element from the array as pivot.
 - <u>Note</u>: average is over random choice of pivots made by the algorithm, **not** on the input.
 - The claim holds for any input.

- Fix input array A of length N
- Sample space Ω : all possible pivot sequences that quick sort may choose
- Given random choice $\sigma \in \Omega$, define $C(\sigma)$ = total number of comparisons made by quicksort
 - $C(\sigma)$ is a random variable
- Lemma: running time of quicksort is dominated by # of comparisons
 - I.e., there exists a constant c so that for all $\sigma \in \Omega$, $RunTime(\sigma) \leq c \cdot C(\sigma)$
- Remaining goal: $E[C] = O(N \log N)$

• Define $z_i = i$ -th smallest element of A

- For each $\sigma \in \Omega$ and indices i < j, $X_{ij}(\sigma) = \#$ of times Z_i, Z_j get compared in quick sort with pivot sequence σ
- **Question**: what is the possible value of $X_{ij}(\sigma)$?
 - 0 or 1
 - **Reason**: two elements are compared only when one is the pivot. After that, they will not be compared any more

• Important relation:

$$C(\sigma) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} X_{ij}(\sigma)$$

• By linearity of expectation:

$$E[C(\sigma)] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} E[X_{ij}(\sigma)]$$
0-1 random variable

• $E[X_{ij}(\sigma)] = \Pr(X_{ij} = 1)$

• Thus, $E[C(\sigma)] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \Pr(z_i, z_j \ get \ compared)$

• Key claim: for all i < j,

$$\Pr(z_i, z_j \ get \ compared) = \frac{2}{j-i+1}$$

- Proof of the key claim:
 - Fix Z_i, Z_j , consider the sequence $Z_i, Z_{i+1}, \dots, Z_{j-1}, Z_j$
 - As long as none of these are chosen as a pivot, all are passed to the same recursive call
 - Consider the first among z_i , ..., z_j that gets chosen as a pivot.
 - 1. If z_i or z_j gets chosen first, then z_i and z_j are compared
 - 2. If one of $Z_{i+1}, ..., Z_{j-1}$ gets chosen first, then Z_i and Z_j are never compared: they are put into different recursive calls

• Key claim: for all i < j,

$$\Pr(z_i, z_j \ get \ compared) = \frac{2}{j-i+1}$$

- Proof of the key claim:
 - 1. If Z_i or Z_j gets chosen first, then Z_i and Z_j are compared
 - 2. If one of Z_{i+1}, \ldots, Z_{j-1} gets chosen first, then Z_i and Z_j are never compared
 - Since pivot sequence is chosen uniformly at random, each of $Z_i, Z_{i+1}, \dots, Z_{j-1}, Z_j$ is equally likely to be the first
 - Thus, $Pr(z_i, z_j \ get \ compared) = \frac{2}{j-i+1}$

2: # choices lead to case 1

j-i+1: total # of choices

- What we have so far: $E[C] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{2}{j-i+1}$
- Our target: $E[C] = O(N \log N)$
- Note: for each fixed $i \geq 1$,

$$\sum_{j=i+1}^{N} \frac{1}{j-i+1} \le \sum_{j=i+1}^{N+i-1} \frac{1}{j-i+1} = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

- Claim: $\sum_{k=2}^{N} \frac{1}{k} < \ln N$
- Once we prove the above claim, we get $E[C] < 2N \ln N$

Proof of the Claim

• Claim: $\sum_{k=2}^{N} \frac{1}{k} < \ln N$

Average Case Time Complexity

- Average case time complexity of quick sort is $O(N \log N)$.
 - Assume randomly pick an element from the array as pivot.
 - <u>Note</u>: average is over random choice of pivots made by the algorithm, **not** on the input.
 - The claim holds for any input.

Other Characteristics

- In-place?
 - In-place partitioning.
 - Worst case needs O(N) stack space.
 - Average case needs $O(\log N)$ stack space.
 - "Weekly" in-place.
- Not stable.

Summary

- Like merge sort, quick sort is a divide-and-conquer algorithm.
- Merge sort: easy division, complex combination.
- Quick sort: complex division (partition with pivot step), easy combination.

- Insertion sort is faster than quick sort for small arrays.
 - Terminate quick sort when array size is below a threshold. Do insertion sort on subarrays.

Outline

- Quick Sort
- Comparison Sort Summary
- Non-comparison Sort
 - Counting Sort

Comparison Sorts Summary

	Worst Case Average Time Case Time		In Place	Stable
Insertion	$O(N^2)$	$O(N^2)$	Yes	Yes
Selection	$O(N^2)$	$O(N^2)$	Yes	No
Bubble	$O(N^2)$	$O(N^2)$	Yes	Yes
Merge Sort	$O(N \log N)$	$O(N \log N)$	No	Yes
Quick Sort	$O(N^2)$	$O(N \log N)$	Weakly	No

Comparison Sorts

Worst Case Time Complexity

• For comparison sort, is $O(N \log N)$ the best we can do in the worst case?

• Theorem: A sorting algorithm that is based on pairwise comparisons must use $\Omega(N \log N)$ operations to sort in the worst case.

• Proof: Consider the decision tree.

Decision Tree for 3 Items

• Input: an unsorted array of 3 items a, b, c.

Decision Tree and Theoretic Lower Bound

- Each sorting algorithm has a corresponding decision tree.
 - Decision tree is a binary tree.
- The sorting result is at one of the leaves following the results of a sequence of pairwise comparisons.
- The number of pairwise comparisons in the worst case corresponds to the deepest leaf in the decision tree, or the height of the tree.
- The number of leaves in a decision tree for sorting N items is N!, i.e., the number of permutations on N items.
- Note: a binary tree of height h has at most 2^h leaves. The height of the decision tree is at least $\lceil \log_2 N! \rceil$.

Theoretic Lower Bound

$$\log(N!) = \log N + \log(N - 1) + \dots + \log 1$$

$$\geq \log N + \log(N - 1) + \dots + \log(N/2)$$

$$\geq \frac{N}{2} \log(N/2)$$

$$= \Omega(N \log N)$$

- Thus, the worst case time complexity for comparison sorts is $\Omega(N \log N)$.
- Any way to beat the theoretic lower bound?
 - Do not compare keys: Non-comparison sort.

Outline

- Quick Sort
- Comparison Sort Summary
- Non-comparison Sort
 - Counting Sort

A Simple Version

- Sort an array A of **integers** in the range [0, k], where k is known.
- 1. Allocate an array count[k+1].
- 2. Scan array A. For i=1 to N, increment count[A[i]].
- 3. Scan array **count**. For i=0 to **k**, print **i** for **count[i]** times.
- Time complexity: O(N + k).
- The algorithm can be converted to sort integers in some other known range [a, b].
 - Minus each number by a, converting the range to [0, b-a].

A General Version

- In the previous version, we print i for count[i] times.
 - Simple but only works when sorting integer keys alone.
 - How to sort items when there is "additional" information with each key?
- A general version:
- 1. Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
 - C[i] now contains number of items less than or equal to i.
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- 1. Allocate an array **C[k+1]**.
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

	k=5	5						
	_1	2	3	4	5	6	7	8
1	2	5	3	0	2	3	0	3

	0	1	2	3	4	_5_
C	2	0	2	3	0	1

	0		2		4	5
C	2	2	4	7	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

 1	2	3	4	5	6	7	8
						3	

	0	1	2	3	4	5
C	2	2	4	6	7	8

- 1. Allocate an array **C[k+1]**.
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

 1	2	3	4	5	6	7	8
	0					3	

	0	1	2	3	4	_5_
C	1	2	4	6	7	8

- 1. Allocate an array **C[k+1]**.
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

- 1. Allocate an array **C[k+1]**.
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

 1	2	3	4	5	6	7	8
	0		2		3	3	

	0	1	2	3	4	_5_
C	1	2	3	5	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

_	1	2	3	4	5	6	7	8
	0	0		2		3	3	

	0	1	2	3	4	5
C	0	2	3	5	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

_1	2	3	4	5	6	7	8
0	0		2	3	3	3	

	0	1	2	3	4	5
C	0	2	3	4	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

1	2	3	4	5	6	7	8
0	0		2	3	3	3	5

	0	1	2	3	4	5
C	0	2	3	4	7	7

Example

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For **i=N** downto **1**, put **A**[i] in new position **C**[A[i]] and decrement **C**[A[i]].

Done!

Is counting sort stable?

Yes!