X-Method for CPMC

icf

December 2017

1 X-Method for CPMC

The problem will be solved in four steps:

- 1) Pre-analysis
- 2) Matlab Program Modification
- 3) Input/Output
- 4) Discussion

```
Notice:
```

Calculation used these parameters below if no special mention:

Lx=4;

Ly=4;

Lz=1;

 $N_{-}up=7;$

 $N_dn=7$;

kx=0;

ky=0;

kz=0;

U=8;

tx=1;

ty=1;

tz=1;

deltau=0.01;

 $N_{\text{wlk}}=[100:1:107];$

 $N_blksteps=100;$

 $N_{eqblk=5}$;

 $N_blk=10;$

 $itv_{modsvd}=5;$

 $itv_pc=10;$

 $itv_Em=20;$

 $N_{-}y=1;$

1.1 Pre-analysis

Using X-Method to simulate all the Green Functions of CPMC_Groundstate with one (N_y=1) or more walkers and doing CPMC again with these new Phi_T (walkers).

Model:

$$|\varphi\rangle = \sum_{\overrightarrow{y}} W * \overrightarrow{y} * (e^{\sum_{i,j,k} y_i * a_{i,j,k} * C_j^{\dagger} C_k} |\phi_{up}\rangle) \bigotimes (e^{\sum_{i,j,k} - y_i * a_{i,j,k} * C_j^{\dagger} C_k} |\phi_{dn}\rangle)$$

where $|\phi_*\rangle$ is Slater determinant, C^{\dagger} , C is particles creation and annihilation operators and a, w are variational parameters and the number of variational parameters is linear to $N_sites^2 * N_y$. (the size of lattice: N_sites , the number of walkers N_v .)

Many symmetry can be used in the calculation to accelerate this algorithm. In this report, "half-filled" is used.

 N_y is the number of walkers and here $N_y=1$, since it's easier to replace Phi_T in CPMC.

1.2 Matlab Program Modification

batchsample_X_G.m;

CPMC_Lab_G.m;

CPMC_Lab_BP_X.m;

halfK_X.m;

initialization_X.m;

initialization_BP_X.m;

measure_BP_G.m;

stepwlk_AP_G.m;

X_Pickup_G.m;

X_RBM_Energy_X_RBM_G.m;

 $X_RBM_G_dif.m;$

X_RBM_Initialization_Pickup.m;

X_RBM_update_Pickup_G.m;

X_Return_G.m;

1.3 Input/Output

1.fig;

1.4 Discussion

- 1. This method is iterative and related to renormalization group transformation.
- 2. Effective variational methods can be applied to improve the efficiency.

Figure 1: 1.fig; This is 7 times independent calculations of CPMC in 4 different methods; $Lx=4,Ly=4,N_up=7,N_dn=7,U=8$; E_CPMC are the results of normal CPMC, E_CPMC_BP are the results of CPMC with back propagation, E_CPMC_X are the results of CPMC with one-iteration X-Method, E_CPMC_BP_X are the results of CPMC with one-iteration X-Method and back propagation.