

GGCGCGGCGCCCGAGGCAGGGAGCAAGAGGCAGCCGGAGCCGAGGGATCCACC  
GCCGCCGCGCGGCCATGGAGCCCAGTGAGCGCGCGCTCCGGCCGCCGCG  
GACGACATGGAAACGGCGCCGACCCGGGCCCCCTCCGCCGCCGCCGCCGCT  
GCTGCTGCTGGTGTACTGCAGCTTGGTCCCCGCCGCCCTCACCGCTCC  
TGTTGTTGCCAACCGCCGGATGTGCGGCTAGTGGATGCCGGGGAGTGAAG  
CTGGAGTCCACCATTGTGGCCAGTGGCCTGGAGGATGCAGCTGCTGTAGACTT  
CCAGTTCTCCAAGGGTGTGTACTGGACAGATGTGAGCGAGGGAGGCCATCA  
AACAGACCTACCTGAACCAGACTGGAGCTGCTGCACAGAACATTGTCATCTCG  
GGCCTCGTGTACCTGATGGCCTGGCCTGTGACTGGGTTGGCAAGAAGCTGTA  
CTGGACGGACTCCGAGAACCAACCGCATTGAGGTTGCCAACCTCAATGGGACGT  
CCCGTAAGGTTCTCTTCTGGCAGGACCTGGACCAGCCAAGGGCCATTGCCCTG  
GATCCTGCACATGGGTACATGTACTGGACTGACTGGGGGAAGCACCCCCGGAT  
CGAGCAGGGCAGGGATGGATGGCAGTACCCGAAGATCATTGTAGACTCCGACA  
TTTACTGGCCAATGGGCTGACCACCGACCTGGAGGAACAGAACAGCTGTACTGG  
GCCGATGCCAAGCTCAGCTTCATCCACCGTCCAACCTGGACGGCTCCTCCG  
GCAGAAGGTGGTGGAGGGCAGCCTCACTCACCCCTTGCCCTGACACTCTG  
GGGACACACTCTACTGGACAGACTGGCAGACCCGCTCCATCCACGCCCTGCAAC  
AAAGTGGACAGGGGAGCAGAGGAAGGAGATCCTTAGTGCTCTGTACTCACCAT  
GGACATCCAAGTGCTGAGCCAGGAGCAGCCTCCACACACCATGCG  
AGGAGGACAACGGTGGCTGTTCCCACCTGTGCCTGCTGCCCCGAGGGAGCCT  
TTCTACTCCTGTGCCTGCCCACTGGTGTGCAGTTGCAGGACAATGGCAAGAC  
GTGCAAGACAGGGGCTGAGGAAGTGCTGCTGGCTCGAGGACAGACCTGA  
GGAGGATCTCTGGACACCCCTGACTTCACAGACATAGTGCTGCAGGTGGC  
GACATCCGGCATGCCATTGCCATTGACTACGATCCCTGGAGGGCTACGTGTA  
CTGGACCGATGATGAGGTGCGGGCTATCCGAGGGCGTACCTAGATGGCTCAG  
GTGCGCAGACACTTGTGAACACTGAGATCAATGACCCGATGGCATTGCTGTG  
GAUTGGTCGCCCGAACCTCTACTGGACAGATAACAGGCACTGACAGAACATTGA  
GGTGAUTCGCCTCAACGGCACCTCCGAAAGATCCTGGTATCTGAGGACCTGG  
ACGAACCGCGAGCCATTGTGTTGCACCCCTGTGATGGCCTCATGTACTGGACA  
GAUTGGGGGAGAACCCAAAATCGAATGCGCCAACCTAGATGGAGAGATCG  
GCATGTCTGGTAACACCTCCCTGGTGGCCAATGGACTGGCCCTGGACC  
TGCAGGAGGGCAAGCTGTACTGGGGGATGCCAAACTGATAAAATCGAGGTG  
ATCAACATAGACGGACAAAGCGGAAGACCCCTGCTGAGGACAAGCTCCCACA  
CATTGGTTCACACTGCTGGGGACTTCATCTACTGGACCGACTGGCAGA  
GACGCAGTATTGAAAGGGTCCACAAGGTCAAGGCCAGCCGGATGTCATCATT  
GATCAACTCCCCGACCTGATGGACTCAAAGCCGTGAATGTGGCCAAGGTTGT  
CGGAACCAACCCATGTGCGGATGGAATGGAGGGTGCAGCCATCTGTGCTTCT  
TCACCCACGTGCCACCAAGTGTGGCTGCCCATGGCCTGGAGCTTGAGT  
GACATGAAGACCTGCATAATCCCCGAGGCCTTGGTATTCAACAGCAGAGC  
CACCATCCACAGGATCTCCCTGGAGACTAACAAACAGATGTGGCTATCCCAC  
TCACGGGTGTCAAAGAGGCCTGCACTGGACTTGTGATGTCCAACAATCAC

FIGURE 1A

ATCTACTGGACTGATGTTAGCCTCAAGACGATCAGCCGAGCCTCATGAATGG  
 GAGCTCAGTGGAGCACGTGATTGAGTTGGCCTCGACTACCCTGAAGGAATGG  
 CTGTGGACTGGATGGGCAAGAACCTCTATTGGCGGACACAGGGACCAACAGG  
 ATTGAGGTGGCCCGGCTGGATGGGAGTCCTGGCAGGTGCTTGTGGAGAGA  
 CCTTGACAACCCCAGGTCTCTGGCTCTGGATCCTACTAAAGGCTACATCTACT  
 GGACTGAGTGGGGTGGCAAGCCAAGGATTGTGCGGGCCTCATGGATGGGACC  
 AATTGTATGACACTGGTAGACAAGGTGGCCGGCAACGACCTCACCATTGA  
 TTATGCCGACCAGCGACTGTACTGGACTGACCTGGACACCAACATGATTGAGT  
 CTTCCAACATGCTGGTCAGGAGCGATGGTGTAGCTGACGATCTGCCCTAC  
 CCGTTGGCCTGACTCAATATAGCGATTACATCTACTGGACTGACTGGAACCT  
 GCATAGCATTGAACGGCGGACAAGACCAAGTGGCGGAACCGCACCCCTCATCC  
 AGGGTCACCTGGACTTCGTCATGGACATCCTGGTGTCCACTCCTCCGTCAAG  
 GATGGCCTCAACGACTGCGTGCACAGCAATGGCCAGTGTGGCAGCTGTGCCT  
 CGCCATCCCCGGAGGCCACCGCTGTGGCTGTGCTTCACACTACACGCTGGACC  
 CCAGCAGCCGCAACTGCAGCCGCCCTCCACCTTCTGCTGTCAGCCAGAAA  
 TTTGCCATCAGCCGGATGATCCCCGATGACCAGCTCAGCCGGACCTTGTCCCT  
 ACCCCTCATGGGCTGAGGAACGTCAAAGCCATCAAATGACCCGCTGGACA  
 AGTTCATCTACTGGGTGGACGGGCCAGAACATCAAGAGGGCAAGGACGAC  
 GGTACCCAGCCCTCCATGCTGACCTCTCCAGCCAAAGCCTGAGCCCAGACAG  
 ACAGCCACACGACCTCAGCATTGACATCTACAGCCGGACACTGTTCTGGACCT  
 GTGAGGCCACCAACACTATCAATGTCCACCGGCTGGATGGGATGCCATGGGA  
 GTGGTGCCTCGAGGGGACCGTGACAAGCCAAGGGCATTGCTGTCAATGCTGA  
 GCGAGGGTACATGTACTTACCAACATGCAGGACCATGCTGCCAAGATCGAGC  
 GAGCCTCCCTGGATGGCACAGAGCGGGAGGTCTCTTCACCACAGGCCTCATC  
 CGTCCCGTGGCCCTTGTGGTGGACAATGCTCTGGCAAGCTCTGGTGG  
 TGCCGACCTAAAGCGAATCGAAAGCTGTGACCTCTGGGCCAACCGCCTGA  
 CCCTGGAAGATGCCAACATCGTACAGCCAGTAGGTCTGACAGTGCTGGCAGG  
 CACCTCTACTGGATCGACCGCCAGCAGCAGATGATCGAGCGCGTGGAGAAGAC  
 CACTGGGACAAGCGGACTAGGGTTAGGGCCGTGTCACCCACCTGACAGGCA  
 TCCATGCCGTGGAGGAAGTCAGCCTGGAGGAGTTCTCAGCCCCTTGCGCC  
 CGAGACAATGGCGGCTGCTCCACATCTGTATGCCAAGGGTATGGAACACC  
 GCGCTGCTCGTGGCCCTGTCCACCTGGTGTGCTCCTGCGAGAACCTGCTGACTTG  
 GTGAGCCTCCTACCTGCTCCCTGATCAGTTGCATGTACCAACTGGTGAGATC  
 GACTGCATCCCCGGAGCCTGGCGTGTGACGGCTCCCTGAGTGTGCTGACCA  
 GAGTGATGAAGAAGGCTGCCAGTGTGCTCCGCTCTCAGTTCCCTGCGCTC  
 GAGGCCAGTGTGGACCTGCGGTTACGCTGCGACGGTGAGGCCACTGCCAG  
 GATCGCTCTGATGAAGCTAACCTGCGATGCTGTCTGTCTGCCAATCAGTTCCG  
 GTGCACCAGCGGCCAGTGTGCTCATCAAGCAACAGTGTGACTCCTCCCCG  
 ACTGTGCTGATGGGTCTGATGAGCTCATGTGTGAAATCAACAAAGCCACCCCT  
 GATGACATCCCAGCCCACAGCAGTGCCATTGGGCCGTCAATTGGTATCATCCT  
 CTCCCTCTCGTCATGGCGGGGTCTACTTGTCTGCCAGCGTGTGATGTGCC

FIGURE 1B

3/9

AGCGCTACACAGGGGCCAGTGGGCCCTTCCCCACGAGTATGTTGGTGGAGCC  
CCTCATGTGCCTCTCAACTCATAGCCCCAGGTGGCTCACAGCACGGTCCCTT  
CCCAGGCATCCCGTGCAGCAAGTCCGTGATGAGCTCCATGAGCCTGGTGGGG  
GGCGCGGCAGCGTGCCCCCTCTATGACCGGAATCACGTCACTGGGCCTCATCC  
AGCAGCTCGTCCAGCACAAAGGCCACACTATATCCGCCATCCTGAACCCACC  
CCCGTCCCCGGCCACAGACCCCTCTCTACAACGTGGACGTGTTTATTCTT  
CAGGCATCCCGGCCACCGCTAGACCATAACAGGCCCTACGTCATTGAGGTATG  
GCACCCCCAACAAACACCGTGCAGCACAGATGTGTGTGACAGTGAACAGC  
CAGTCGCTGGAAGAGCAGCAAATACTACACTGGACTTGAATTGGACTCAGACC  
CCTACCCCCCCCCGCCACCCCCCACAGCCAGTACCTATCTGCAGAGGACAGC  
TGCCCACCCCTCACCAGGCACTGAGAGGAGTTACTGCCACCTCTTCCGCC  
ACCGTCCCCCTGCACGGACTCGTCCTGACCTCGGCCGTCCACCCGGCCCTGCT  
GCCTCCCTGTAAATATTAAATATGAACAAAGGAAAATATATTGAT  
TTAAAAAAATAAATATAATTGGGTTTAAACAAGTGAGAAATGTGAGCGGTGA  
AGGGGTGGGCAGGGCTGGGAAACTTTCTAG (SEQ ID NO: 3)

FIGURE 1C

49

METAPTRAPPPPPPPLLLVLYCSLPAAASPLLFANRRDVRLVDAGGVKLE  
STIVASGLEAAAVDFQFSKGAVYWTDVSEEAIKQTYLNQTGAAQNIVISGL  
VSPDGLACDWVGKKLYWTDSETNRIEVANLNGTSRKVLFWQDLDQPRAIALDP  
AHGYMYWTDWGEAPRIERAGMDGSTRKIIVDSDIYWPNGLTIDLEEQKLYWAD  
AKLSFIHRANLDGSFRQKVVEGSLTHPFALTSGDTLYWTDWQTRSIHACNKW  
TGEQRKEILSALYSQMDIQVLSQERQPFHTPCEEDNGGCSHLCLLSPREPFY  
SCACPTGVQLQDNGKTCKTGAEVLLARRTDLRRISLDTPDFTDIVLQVGDI  
RHAIAIIDYDPLEGYVYWTDEVRAIRRAYLDGSGAQTLVNTEINDPDGIAVDW  
VARNLYWTDGTDRIEVTRLNGTSRKILVSEDLDEPRAIVLHPVMGLMYWTDW  
GENPKIECANLDGRDRHVLVNTSLGPNGLALDLQEGKLYWGDAKTDKIEVIN  
IDGTKRKTLLLEDKLPHIFGFTLLGDFIYWTDWQRRSIERVHKVKASRDVIIDQ  
LPDLMGLKAVNVAKVVGTNPCADGNGGCSHLCFFTPRATKCGCPIGLELLSDM  
KTCIIPPEAFLVFTSRATIHRISLETNNNDVAIPLTGVKEASALDFDVSNNHIY  
WTDVSLKTISRASFNGSVEHVIEFGLDYPEGMAVDWMGKNLYWADTGTNRIE  
VARLDGQFRQVLVWRDLDNPRSLALDPTKGYIYWTEGGKPRIVRAFMGTNC  
MTLVVDKVGRANDLTIDYADQRLYWTDLTNMIESSNMLGQERMVIADDLPYPF  
GLTQYSDYIYWTDWNLHSIERADKTSGRNRTLIQGHLDVMDILVFHSSRQDG  
LNDCVHSNGQCGQLCLAIPGGHRCGCASHYTLDPSSRNCSPPSTFLLFSQKFA  
ISRMIPDDQLSPDLVLPLHGLRVKAINYDPLDKFIYWVDGRQNIKRAKDDGT  
QPSMLTSPSQSLSPDRQPHDLSIDIYSRTLFWTCEATNTINVHRLGDAMGVV  
LRGDRDKPRAIAVNAERGYMYFTNMQDHAAKIERASLDGTEREVLFTTGLIRP  
VALVVDNALGKLFWVDADLKRIESCDLSGANRLTLEDANIVQPVGLTVLGRHL  
YWIDRQQQMIEERVEKTTGDKRTRVQGRVTHTGIHAVEEVSEEFSAHPCARD  
NGGCSHICIAKGDTPRCSCPVHLVLLQNLTCGEPPCTSPDQFACTTGEIDC  
IPGAWRCDGFPECADQSDEEGCPVCSASQFPCARGQCVDLRLRCDGEADCQDR  
SDEANCAVCLPNQFRCTSGQCVLIKQQCDSFPDCADGSDELMCEINKPPSDD  
IPAHSSTAIGPVIGIILSLFVMGGVYFVCQRVMCQRYTGASGPFPHEYVGGAPH  
VPLNFIAPGGSQHGPFPGIPCSKSVMSMSLVGGRGSPVLYDRNHVTGASSSS  
SSSTKATLYPPILNPPPSPATDPSLYNVDVFYSSGIPATARPYRPYVIRGMAP  
PTTPCSTDVCDSDYSISRWKSSKYLDLNSDSDPYPPPPTPHSQYLSAEDSCP  
PSPGTERSCHLFPFFFFPCTDSS (SEQ ID NO: 2)

FIGURE 2

# Construct

**Gene:** 193

**GI Number(s):** 6678715

**Gene Family:** EGF domain protein

**Gene**  
**Subfamily:** Low-density lipoprotein receptor

**Gene Sequence:** full-length cDNA, Mouse

**underlined** = deleted in targeting construct

[ ] = sequence flanking Neo insert in targeting construct

```

GCCGCGGGCGCCCGAGGGCGGGAGCAAGAGGC CGCGGGAGCCCGCGAGGATCCACCGCCGCC
CGCGCGCCATGGAGCCCGAGTGAGCGCGCGCGCTCCCGCCGCCGACATGGAAAC
GGCGCCGACCCGGGCCCTCCGCCGCCGCCGCCGCTGCTGCTGCTGGTGTACTG
CAGCTGGTCCCCGCCGCCCTCACCGCTCCTGTTGAGCTGGAGTCCACCATTGTGGCCAGTGGCCTGGAGGA
GCTAGCTGCTGTAGACTTCAAGGGTGTGTACTGGACAGATGTGAGCAG
GGAGGCCATCAAACAGACCTACCTAACCGAGACTGGAGCTGCTGCACAGAACATIGTCAT
CTCGGGCCTCGTGTACCTGATGGCCTGGCCTGTGACTGGGTTGCAAGAAGCTGTACTG
GACGGACTCCGAGACCAACCGCATGGAGTTGCCAACCTCAATGGACGTCCCGTAAGGT
TCTCTTCTGGCAGGACCTGGACCAGCCAAGGGCATTGCCCTGGATCTGCACATGGTA
CATGTA CTGGACTGACTGGGGGAAGCACCCCGGATCGAGCGGGCAGGGATGGATGGCAG
TACCCGGAAGATCATTGAGACTCGCACATTACTGCCCAATGGGCTGACCACGACCT
GGAGGAACAGAACAGCTGACTGGGCCGATGCCAACGCTCAGCTICATCCACCGTGCCAACCT
GGACGGCTCTCCGGCAGAAGGGTGGAGGGCAGCCTCACTCACCCCTTGCCCTGAC
ACTCTCTGGGGACACACTCTACTGGACAGACTGGCAGACCCGCTCCATCCACGCCCTGCAA
CAAGTGGACAGGGGAGCAGAGGAAGGGAGATCCTTAGTGCTGTACTACCCATGGACAT
CCAAGTGTGAGCCAGGGAGCGGCAGCCTCCCTCCACACACCATGCGAGGAGGACACGG
TGGCTTCCCACCTGTGCCTGCTGTCCTGGAGGGAGCCTTCTACTCCCTGTGCCCTGCC
CACTGGTGTGCAGTGCAAGGACAATGGCAAGACGTGCAAGACAGGGCTGAGGAAGTGT
GCTGCTGGCTCGGAGGACAGACCTGAGGAGGATCTCTGGAACACCCCTGACTCACAGA
CATAGTGTGAGCCAGGTGGCGACATCCGCATGCCATTGCAATTGACTACGATCCCTGG
GGGACTGGTGTACTGGGAGGATGAGGTGGGGCTATCCGCAGGGCTACCTAGATGG
CTCAGGTGCGCAGAACACTTGTGAAACTGAGATCAATGACCCCGATGGCATTGCTGTGGA
CTGGGTGCCCCGGAACCTCTACTGGACAGATAACAGGCACTGACAGAAATTGAGGTGACTCG
CCTCAACGGCACCTCCCCAAAGATCCTGGTATCTGAGGACCTGGACAGACCCATGGCAGGCCAT
TGTGTTGCACCCCTGTGATGGCCTCATGTA CTGGACAGACTGGGGAGAACCCCCAAAAT
CGAATGCGCCAACCTAGATGGGAGAGATCGGCATGTCTGGTGAACACCTCCCTGGGTG
GCCCAATGGACTGGCCCTGGACCTGCAAGGAGGGCAAGCTGTACTGGGGGATGCCAAAAC
TGATAAAATCGAGGTGATCAACATAGACGGGACAAGCGGAAGACCCCTGTTGAGGACAA
GCTCCCACACATTGGGTTACACTGCTGGGGACTTCATCTACTGGACCGACTGGCA
GAGACCGAGTATTGAAAGGGTCCACAAGGTCAGGGCAGCGGGATGTCATATTGATCA
ACTCCCCGACCTGTGATGGGACTCAAAGGCTGAGTGTGGCCAAGGGTGTGCGAACCAACCC
ATGTGCGGATGGAAATGGAGGGTGAGCCATCTGTGCTTCTCCACGTGCCACCAA
GTGTGGCTGCCCTGGTATTCAACCAGCAGAGCCACCATCCACAGGATCTCCCTGGAGACTAACAA
CAACGATGTGGCTATCCCACTCACGGGTGTCAGGACCTCTGCACTGGACTTTGATGT
GTCCAACAATCACATCTACTGGACTGATGTTAGCCTCAAGACGATCAGCCGAGCCTTCAT
GAATGGGAGGCTCAGTGGAGCACGTGATTGAGTTGGCCTGACTACCTGAAGGAATGGC
TGTGGACTGGATGGCAAGAACCTCTATTGGCGGACACAGGGACCAACAGGATTGAGGT
GGCCCGGGCTGGATGGGAGGGCAGTCCGGCAGGTCCTTGAGGGAGAGACCTTGACAACCCAG
GTCTGGCTCTGGATCTACTAAAGGCTACATCTACTGGGACTGAGTGGGCTGGCAAGCC
AAGGATTGTCGGGCCTCATGGATGGGACCAATTGTATGACACTGGTAGACAAGGTGGG
CGGGGCCAACGACCTCACCATGGTATTGACCGACAGCAGCTGACTGGACTGACCTGG
CACCAACATGATTTGAGTGTGTTGCAACATGCTGGCTAGGAGCAGCAGTGGTGA TAGCTGACCA

```

**FIGURE 3A**

TCTGCCCTACCGTTGGCCTGACTCAATATAGCGATTACATCTACTGGACTGACTGGAA  
 CCTGCATAGCATTGAACGGGGCGGACAAGACCAGTGGGCGAACCGCACCCCATCCAGGG  
 TCACCTGGACTTCGTCATGGACATCCTGGTGTTCACTCCTCCCGTCAGGATGGCCTCAA  
 CGACTGCGTGCACAGCAATGGCCAGTGTGGCAGCTGTGGCCTCGCCATCCCCGGAGGCCA  
 CGCTGTGGCTGTGCTTCACACTACAGCCTGACCCCAGCAGCCGCAACTGCAGCCGCC  
 CTCCACCTTCTGCTGGTCAAGAAATTGCCATCAGCCGGATGATCCCCGATGACCA  
 GCTCAGCCCCGACCTTGTCTACCCCTTCATGGGCTGAGGAACGTCAAAGCCATCAACTA  
 TGACCCGCTGGACAAGTTCTACTCTGAGCTGGGCGGCCAGAACATCAAGAGGGCCAA  
 GGACGACGGTACCCAGCCCTCATGCTGACCTCTCCCAGCCAAGGCTGAGCCCAGACAG  
 ACAGCCACACGACCTCAGCATTGACATCTACAGCCGGACACTGTTCTGGACCTGTGAGGC  
 CACCAACACTATCAATGTCCACCGCTGGATGGGATGCCATGGGAGTGGTGTGCTCGAGG  
 GGACCGTGACAAGCCAAGGGCATTGCTGTCAATGCTGAGCAGGGTACATGTAACCTTAC  
 CAACATGCAGGACCATGCTGCCAAGATCGAGCGAGCCTCCCTGGATGGCACAGAGCGGG  
 GGTCTCTTACACAGGCCATCCGTCCCGTGGCCCTTGTGGTGGACAATGCTCTGGG  
 CAAGCTCTTCTGGGTGATGCCACCTAAAGCAATCGAAAGCTGTGACCTCTCTG [GGG  
 CCAACCGCTGACCTGGAAAGATGCCAACATCGTACAGCCAGTAGGCTGTGACAGTGCTGG  
 GCAGGCACCTACTGGATCGACGCCAGCAGCAGCAGATGATCGAGCGCGTGGAGAACACC]  
 ACTGGGACAAGCGGACTAGGGTCAAGGGCGTGTACCCACC [TGACAGGCATCCATGC  
 CGTGGAGGAAGTCAGCTGGAGGGTCT] CAGCCCACATCTGTGCCCCAGAACATGGCG  
 GCTGCTCCCACATCTGTATGCCAAGGGTGTGGAAACACCGCGCTGCTCGTGGCCCTGTCC  
 ACCTGGTGTCTGCAGAACCTGCTGACTTGTGGTGAGCCTCTACCTGCTCCCCGTGATC  
 AGTTTGATGTACCAACTGGTGGAGATCGACTGCAATCCCCGGAGCCTGGCGCTGTGACGGCT  
 TCCCTGAGTGTGCTGACCGAGGTGATGAAGAAGGCTGCCCCAGTGTGTGCTCCGGCTCTCAGT  
 TCCCTGCGCTCGAGGGCAGTGTGTGGACCTGCGGTTACCGCTGCGACGGTGAGGCCGACT  
 GCCAGGATCGCTCTGATGAAGCTAACAGCCTGCTGCTGCCCCAATCAGTCCGGT  
 GCACCAAGCGGCCAGTGTGTCTCATCAAGCAACAGTGTGACTCCTCCCCGACTGTGCTG  
 ATGGGTCTGATGAGCTCATGTGTGAAATCAACAGCCACCCCTCTGATGACATCCCAGCCC  
 ACAGCAGTGCCATTGGGCCGTATTGGTATCATCCTCTCCCTTGTGATGGGGGGGG  
 TCTACTTTGTCTGCCAGCGTGTGATGTGCCAGCGTACACAGGGCCAGTGGGCCCTTTC  
 CCCACGAGTATGGTGGAGGCCCTCATGTGCCCTCTCAACTTCATAGCCCCAGGTGGCT  
 CACAGCACGGTCCCTTCCCAGGCATCCCCTGCAGCAAGTCCGTGATGAGCTCCATGAGCC  
 TGGTGGGGGGCGCGGGCAGCGTGTGCCCTATGACCGGAATCACGTCACTGGGCCCTCAT  
 CCAGCAGCTGCTCCAGCACAAAGGCCACACTATATCCGCCATCCTGAACCCACCCCGT  
 CCCCGGCCACAGACCCCTCTCTCATCACACAGTGGACGTGTTTATCTCTCAGGCATCCC  
 CCACCGCTAGACCATACAGGCCCTACGTCTTGTGAGGTATGGCACCCCCAACACACCGT  
 GCAGCACAGATGTGTGACAGTGTGACTACAGCATCAGTCGCTGGAAAGGCAGCAAAACT  
 ACCTGGACTGAAATTGGACTCAGACCCCTACCCCCCCCCCGCCACCCCCCACAGCCAGT  
 ACCTATCTGCAGAGGACAGCTGCCACCCCTCACCAGGCACTGAGAGGAGTTACTGCCACC  
 TCTTCCGCCCTTACCGTCCCCCTGCACGGACTCGTCTGACCTCGCCGTCCACCGGC  
 CCTGCTGCCCTCCCTGTAATAATTAAATGAAACAAAGAAAAATATATTATGATT  
 TAAAAAATAAATATAATTGGGTTTAACAAGTGAGAAATGTGAGCGGTGAAGGGGTGG  
 GCAGGGCTGGGAAACTTTCTAG

|                                          |                                                                                      |                         |         |
|------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|---------|
| <b>Gene Sequence</b>                     | 3659 bp                                                                              | <b>Sequence Deleted</b> | 3701 bp |
| <b>Structure *</b>                       |  |                         |         |
| <b>Size of full-length cDNA:</b> 5119 bp |  |                         |         |

FIGURE 3B

7/9

Targeting Vector\* (genomic sequence)

Construct Number: 992

Arm Length:

5': 1.5 kb

3': 2.9 kb



— Targeting Vector

- - - Endogenous Locus

\* Not drawn to scale

|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5' >AAAATATGCATTATCCCTGAGCA<br>CAGTGGGTCTGGCCCTTCACTTGG<br>CTGCCACTCATGGAGCCTTTATGC<br>TAACCACAGGGGCAACCGCCTGA<br>CCCTGGAAGATGCCAACATCGTAC<br>AGCCAGTAGGTCTGACAGTGCTGG<br>GCAGGCACCTCTACTGGATCGACC<br>GCCAGCAGCAGATGATCGAGCGTG<br>TGGAGAAGACC<3'<br>(SEQ ID NO: 9)<br><i>b3</i> | 5' >TCACTGGCATCCATGCAGTG:<br>AGGAAGTCAGCCTGGAGGAGTTCT<br>GTACGTGAGAGGGGACAGTCTTG<br>TGGTGGGTCTCCTGGGGAAAGGT<br>GAATCAGCCCTACTGGCATCAGAT<br>GGGCTGCTGGTGCAGAGCAGTGT<br>GCCTGAGGAGCTCATGGGCTCAGC<br>ACCGAAGGCCAGTGCATGTCCAGA<br>TGTCTGCCTCT<3'<br>(SEQ ID NO: 10)<br><i>b4</i> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

FIGURE 3C

## Phenotypic Data Summary - Open Field



Gene

193

FIGURE 4

## Phenotypic Data Summary - Open Field



Gene

193

FIGURE 5