VITAL MATHEMATICS

STATISTICS

Empirical Rule for Data with a Bell – Shaped Distribution

STEVIE CARPENTER

INTRODUCTION

The empirical rule for data with a bell – shaped distribution is used to identify 3 set of data using the mean and standard deviation. The 3 sets of data are:

- About 68% of all data values are within 1 standard deviation from the mean.
- About 95% of all data values are within 2 standard deviations from the mean.
- About 99.7% of all data values are within 3 standard deviations from the mean.

EMPIRICAL RULE FOR DATA WITH A BELL – SHAPED DISTRIBUTION EQUATION

• 65% of data values

$$\bar{x} - s$$
; $\bar{x} + s$

• 95% of data values

$$\bar{x} - 2s$$
; $\bar{x} + 2s$

• 99.7% of data values

$$\bar{x} - 3s$$
; $\bar{x} + 3s$

SOLVING EMPIRICAL RULE FOR DATA WITH A BELL – SHAPED DISTRIBUTION

$$\bar{x} - s$$
; $\bar{x} + s$

$$\bar{x} - 2s$$
; $\bar{x} + 2s$

$$\bar{x} - 3s$$
; $\bar{x} + 3s$

STEP I) Calculate the sample mean if it is not given.

$$\bar{x} = \frac{\Sigma x}{n}$$

STEP 2) Calculate the sample standard deviation if it is not given.

$$s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}}$$

STEP 3) Identify which percentage to calculate

STEP 4) Provide conclusion

EMPIRICAL RULE FOR DATA WITH A BELL – SHAPED DISTRIBUTION EXAMPLE

Example 1) What percentage of values are between 1 and 33, when the mean is 17 and standard deviation is 8?

Example 2) Find which values compose 68%, 95% and 99.7% of data, when $\bar{x} = 47$ and s = 3?

Concepts Concerning the EMPIRICAL RULE FOR DATA WITH A BELL – SHAPED DISTRIBUTION

When the data is not bell-shaped, this rule will not accurately report the data. For data that is not bell-shaped, use the Chebyshev's theorem in order to find what percentage of numbers are within a number of standard deviations from the mean. The Chebyshev's theorem has one restriction, $k \neq 1$; or standard deviation cannot be 1.

Chebyshev's Theorem: $1 - \frac{1}{k^2}$; $k \neq 1$ K is any positive number

VITAL MATHEMATICS

BY

STEVIE CARPENTER

INSTA: VITALMATHEMATICS

FB PAGE: VITAL MATHEMATICS

YOUTUBE: VIITAL MATHEMATICS