USN: 1 R N

RNS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATHEMATICS

III Semester – II Test – Nov-Dec 2020 (Common to all branches) Transform Calculus, Fourier Series and Numerical Techniques (18MAT31)

Max Marks: 50

Time: 8.30-10:10 AM

Date: 30/11/2020

NOTE: Answer Five full questions.

	m						er Five 1	un qu	CSHO	115.		Mark	BCL	CO
Qn. No.		Questions											BCL	CO
1		/\ 2										S	 	
1	a)	Obtain the Fourier series of the function $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in $[0,2\pi]$ and hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$						5	L1, L3	CO2				
		6 12 22 32												
	b)	Obtain the half range Fourier Sine series for the function $f(x) = x \sin x$ in $[0, \pi]$							5	L1, L3	CO2			
		F-7 - 3					OR							
2	a)													
		$\int_{-\pi}^{\pi} f(x) = x$ $0 < x < \pi$								5	L1, L3	CO2		
		$f(x) = \begin{cases} x & 0 < x < \pi \\ 2\pi - x & \pi < x < 2\pi \end{cases}$												
		hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{5^2} + \cdots$												
				8 12	32 5	,-								
	b)	Obtain th			er Cosir	ne serie	es for the	function	on			5	1112	
		f(x) = ($(x-1)^2$ is	n [0,1]								3	L1, L3	CO2
	1 .		_									1	1	
3	a)	Expand $f(x) = \sqrt{1 - \cos x}$ in a Fourier series over the interval $[-\pi, \pi]$							5	L1, L3	CO2			
	b)	Find the Fourier series expansion of the function $f(x) = x$ in the interval				al	_							
		-l < x < l								5	L1, L3	CO2		
	1						OR						JI.	
4	a)	Obtain the Fourier series for the function $f(x) = x \cos x$ in the interval $[-\pi, \pi]$						5	L1, L3	CO2				
	b)						5	L1, L3	GOA					
							x	- 6	4	< x < 8		3	21, 23	CO2
5	a)	A function $f(x)$ of period 2π is specified by the following table												
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				_	$\frac{4\pi}{4\pi}$			2π]			
		f(x)	7.9	7.2	3.6	0.5			/ <u>3</u> 5.8	7.9		5	L1, L3	CO2
).O	7.5]			
	b)	Obtain the Fourier series up to first harmonic Find the co efficients $a_1 = a_2$ in the half range Fourier Cosine series for the												
		Find the co efficients a_0 , a_1 , a_2 in the half range Fourier Cosine series for the function given below								or the				
		x 0 1 2 3 4 5 6							5	L1, L3	CO2			
		f(x)	4	8		15	7	6		2	4			
	1	7 (**)				-						1	1	1
							OR							

6	a)	For the function $f(x)$ specified by the following table, find the Fourier coefficients a_0 , a_1 , b_1		1112	
		x 0 1 2 3 4 5 6	5	L1, L3	CO2
		f(x) 9 18 24 28 26 20 9			
	b)	In the following table the values of the turning moment T for the set of values of crank angle θ are given. Obtain the first two terms in the half range sine series that represents T $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	L1, L3	CO2
7	a)	Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, $y(0) = 1$. Compute $y(0.2)$ by taking $h = 0.2$ using Runge-Kutta method of fourth order.	5	L1, L3	CO4
	b)	Using Modified Euler's method find $y(0.2)$ correct to four decimal places solving the equation $\frac{dy}{dx} = x - y^2$, $y(0) = 1$, $h = 0.1$	5	L1, L3	CO4
	1	OR			
8	a)	Using Runge – Kutta method to solve $\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ at $x = 0.1$ by taking the step length as 0.1	5	L1, L3	CO4
	b)	Using the Taylor's series method solve $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$ at the point $x = 0.1, 0.2$	5	L1, L3	CO4
0				1	
9	a)	Using Milne's predictor – corrector method find y when $x = 1.4$ given that $\frac{dy}{dx} = x^2 + \frac{y}{2}$, $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$, $y(1.3) = 2.7514$. Apply the corrector formula twice.	5	L1, L3	CO4
	b)	Find the value of y at $x = 4.4$ by Adams Bashforth method given that $5x \frac{dy}{dx} + y^2 - 2 = 0$, $y(4) = 1$, $y(4.1) = 1.0049$, $y(4.2) = 1.0097$, $y(4.3) = 1.0142$	5	L1, L3	CO4
		OR			
10	a)	If $\frac{dy}{dx} = 2e^x - y$, $y(0) = 2$, $y(0.1) = 2.01$, $y(0.2) = 2.04$, $y(0.3) = 2.09$ find $y(0.4)$ correct to four decimal places using Adams Bashforth method.	5	L1, L3	CO4
	b)	Solve by Milne's method the differential equation $\frac{dy}{dx} + xy^2 = 0$ to compute $y(0.8)$ using the following table	5		
		x 0 0.2 0.4 0.6 y 2 1.9231 1.7241 1.4706		L1, L3	CO4

QUIZ

1.	Fourier expansion of an odd function has only terms. a) Cosine b) Sine c) Both cosine and sine d) None
2.	If $f(x)$ an odd function in $(-\pi, \pi)$, then the graph of $f(x)$ is symmetric about the a) x-axis b) y-axis c) origin d) none
3.	The mean value of f(x)=cosnx in $(0,2 \pi)$ is a) $\frac{a_n}{2}$ b) $\frac{b_n}{2}$ c) $\frac{a_0}{2}$ d) none
4.	The period of a constant function is a) 2π b) 21 c) not defined d) none
5.	A function $f(x)$ defined for $0 < x < 1$ can be extended to an odd periodic function in $(-1, 1)$ if a) $f(-x) = -f(x)$ b) $f(-x) = f(x)$ c) $f(-x) \neq -f(x) \neq f(x)$ d) none
6.	The term $a_1 cos x + b_1 sin x$ In the Fourier series is called a) constant term b) first harmonic c) second harmonic d) none
7.	The value of b_n in the Fourier series of $f(x)= x $ in $-\pi < x < \pi$, a) 0 b) $\pi/2$ c) π d) non
8.	Which of the following method gives a polynomial series expression to find the solution of IVP a) Runge Kutta method b) Milne's method c) Taylor's method d) none of these
9.	Which of the following is the predictor – corrector method a) Euler's method b) Taylor's method c) Piccard's method d) Adams - Bashforth method
10.	If $\frac{dy}{dx} = xy$, $y(0) = 1$. To find $y(0.2)$ in one stage we need to take $h = \cdots$ a) 0.1 b) 0.2 c) 0.3 d) 0.05