Applied Bayesian Analysis: NCSU ST 540

Homework 7

Bruce Campbell

In this assignment we perform Bayesian linear regression for the microbiome data on the course website

https://www4.stat.ncsu.edu/~reich/ABA/assignments/homes.RData

Let Y_i be the precipitation for observation i and X_{ij} equal one if OTU j is present in sample i.

First, extract the 50 OTU with the largest absolute correlation between X_{ij} and Y_i . Then fit a Bayesian linear regression model precipitation as the response and with these 50 covariates (and an intercept term) using two priors:

- (1) Uninformative normal priors: $\beta_j \sim Normal(0, 100^2)$
- (2) Hierarchical normal priors: $\beta_j | \tau \sim Normal(0, \tau^2)$ where $\tau^2 \sim InvGamma(0:01, 0:01)$
- (3) Bayesian LASSO: $\beta_j | \tau^2 \sim DE(0, \tau^2)$ where $\tau^2 \sim InvGamma(0:01, 0:01)$

Compare convergence and the posterior distribution of the regression coefficients under these three priors. In particular, are the same OTU's significant in all three fits?

Load data and select 50 most ocrrelated OUT variables.

```
library(rjags)
library(coda)
library(modeest)
load("homes.RData")

X <- OTU != 0

Y <- homes$MeanAnnualPrecipitation

C_xy <- cor(X, Y)

top <- function(x, n) {
    tail(order(x), n)
}

# One of the X is all 1's - resulting
# in an NA for the correlation.
indices <- top(C_xy, 51)
# Remove the NA - I'm sure there's a
# more elegant way...
indices <- indices[1:50]</pre>
```

```
X <- X[, indices]

predictor.names <- names(OTU)[indices]
predictor.names[51] <- "intercept"

top.corr <- C_xy[indices]

# Y <- scale(Y) X <- scale(X)

DEBUG <- FALSE
if (DEBUG) {
    nSamples <- 1000
    n.chains <- 1
} else {
    nSamples <- 1000
    n.chains <- 1
}</pre>
```

We sample from our model after burn in. Not all of the diagnostic plots are not presented. See the diagnostic plots in https://github.com/brucebcampbell/bayesian-learning-with-R.git we assessed convergence by; - viewing the time sereies for the intercept and each of the predictors. For this we utilized the coda package. - ran multiple chains and viewed evaluated the autocorrelation plots. - calculated the posterior means for the intercept and the $beta_j$ - utilized the mlv funtions in the modeest to calculate the MAP estimated of the posterior modes - compared the 95% prediction intervals for the intercepts against the p-values from the logistic regression maximum likelihood model - Gelman plots are optionally produced whem the nuymber of MCMC chains is greater than one.

Some of the code is run conditionally through the DEBUG flag. We note that all of the models converged. There was some minor disagreement on the predictors among them. The normal uninformative had predictor

Normal Uniformative

It's not specified what the prior variance is for E[Y_j|X_j]. We will assume $Y|\beta \sim N(y \cdot \beta, \sigma^2)$ where $\sigma^2 \sim InvGamma(0.1, 0.1)$

```
n <- nrow(X)

sigma.beta <- 100
inv.gamma.param <- 0.01
p <- ncol(X)

model_string.normal_uniformative <- "model{
    # Likelihood
    for(i in 1:n){
        Y[i] ~ dnorm(mu[i],inv.var)
        mu[i] <- intercept +inprod(X[i,],beta[])</pre>
```

```
# Prior for beta
 for(j in 1:p){
   beta[j] ~ dnorm(0,1/sigma.beta^2)
  7
 intercept ~ dnorm(0,1/sigma.beta^2)
 # Prior for the inverse variance
 inv.var ~ dgamma(inv.gamma.param, inv.gamma.param)
           <- 1/sqrt(inv.var)
  sigma
}"
model.normal_uniformative <- jags.model(textConnection(model_string.normal_uniformative), data</pre>
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 1133
##
      Unobserved stochastic nodes: 52
##
##
      Total graph size: 61100
##
## Initializing model
update(model.normal_uniformative, nSamples, progress.bar="none"); # Burnin
samp.coeff.normal_uniformative <- coda.samples(model.normal_uniformative, variable.names=c("in")</pre>
sum.normal_uniformative <- summary(samp.coeff.normal_uniformative)</pre>
quantiles <- sum . normal_uniformative $quantiles
left.05.quantile.sign <- sign(quantiles[,1])==-1</pre>
right.95.quantile.sign <- sign(quantiles[,5])==1
significant <- xor(left.05.quantile.sign ,right.95.quantile.sign)</pre>
beta.significant <- quantiles[significant,]</pre>
pander(data.frame(beta.significant), caption = "significant normal uninformative ")
```

Table 1: significant normal uninformative

	X2.5.	X25.	X50.	X75.	X97.5.
beta[7]	-7.988	-5.512	-4.194	-2.979	-0.5415
${ m beta}[20]$	-8.148	-5.744	-4.374	-3.028	-0.5424
tota[25]	0.05089	2.059	3.096	4.207	6.319
beta[29]	1.602	3.978	5.263	6.52	8.644
beta[36]	0.0127	2.376	3.751	5.038	7.425
beta[37]	1.308	3.058	4.116	5.222	7.419
beta[38]	0.4849	2.688	4.043	5.414	8.038

	X2.5.	X25.	X50.	X75.	X97.5.
beta[41]	1.474	4.157	5.624	6.948	9.313
${ m beta}[45]$	1.577	4.003	5.241	6.498	8.991
${ m beta}[46]$	2.713	4.962	6.094	7.213	9.418
${ m beta}[49]$	1.477	3.772	4.896	6.072	8.13
${ m beta}[50]$	3.308	5.794	7	8.134	10.38
${\bf intercept}$	51.65	53.22	54.17	55.11	56.81

```
credible.widths <- beta.significant[,5]-beta.significant[,1]
predictor.names.significant <- predictor.names[significant]
pander(data.frame(predictor.names.significant,credible.widths), caption = "credible widths norm."</pre>
```

Table 2: credible widths normal uninformative

	predictor. names. significant	credible.widths
beta[7]	OTU_54646	7.446
$\mathrm{beta}[20]$	OTU_9405	7.605
${ m beta}[25]$	OTU_624	6.268
$\mathrm{beta}[29]$	OTU_999	7.043
beta[36]	OTU_43955	7.412
$ ext{beta}[37]$	OTU_66	6.11
$ ext{beta}[38]$	OTU_51578	7.553
beta[41]	OTU_8086	7.839
$ ext{beta}[45]$	OTU_72918	7.413
beta[46]	OTU_97	6.705
beta[49]	OTU_277	6.654
$\mathrm{beta}[50]$	OTU_18758	7.075
intercept	intercept	5.159

```
if (DEBUG)
   {
   autocorr.plot(samp.coeff.normal_uniformative)

plot(samp.coeff.normal_uniformative)

#Sample again and estimate posterior means and MAP posterior modes.
samp.coeff.normal_uniformative.jags <- jags.samples(model.normal_uniformative, variable.name posterior_means.normal_uniformative <- lapply(samp.coeff.normal_uniformative.jags, apply, 1, pander(posterior_means.normal_uniformative, caption = "posterior means second sample")

posterior_modes.normal_uniformative <- lapply(samp.coeff.normal_uniformative.jags, apply, 1, posterior_modes.normal_uniformative)</pre>
```

```
if(n.chains>1)
{
  gelman.plot(samp.coeff)
}
```

Hierarchical Normal Priors

```
\beta_i | \tau \sim Normal(0, \tau^2) where \tau^2 \sim InvGamma(0:01, 0:01)
beta.inv.gamma.param <- 0.01
variance.inv.gamma.param <- 0.01</pre>
p \leftarrow ncol(X)
model_string.normal_hierarchical <- "model{</pre>
  # Likelihood
  for(i in 1:n){
    Y[i] ~ dnorm(mu[i],inv.var)
    mu[i] <- intercept +inprod(X[i,],beta[])</pre>
  }
  # Prior for beta
  for(j in 1:p){
    beta[j] ~ dnorm(0,beta.inv.gamma.param)
  intercept ~ dnorm(0,beta.inv.gamma.param)
  # Prior for the inverse variance
  inv.var ~ dgamma(variance.inv.gamma.param, variance.inv.gamma.param)
  sigma
            <- 1/sqrt(inv.var)
  #Beta Prior for the inverse variance
  inv.var.beta ~ dgamma(beta.inv.gamma.param, beta.inv.gamma.param)
}"
model.normal_hierarchical <- jags.model(textConnection(model_string.normal_hierarchical), data</pre>
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 1133
##
      Unobserved stochastic nodes: 53
##
      Total graph size: 61098
##
##
## Initializing model
```

```
update(model.normal_hierarchical, nSamples, progress.bar="none"); # Burnin

samp.coeff.normal_hierarchical <-coda.samples(model.normal_hierarchical,variable.names=c("intersol"));

sum.normal_hierarchical <- summary(samp.coeff.normal_hierarchical)
quantiles<-sum.normal_hierarchical$quantiles
left.05.quantile.sign <- sign(quantiles[,1])==-1
right.95.quantile.sign <- sign(quantiles[,5])==1
significant <- xor(left.05.quantile.sign ,right.95.quantile.sign)
beta.significant <- quantiles[significant,]

pander(data.frame(beta.significant), caption = "significant normal hierarchical")</pre>
```

Table 3: significant normal hierarchical

	X2.5.	X25.	X50.	X75.	X97.5.
beta[7]	-7.965	-5.384	-4.132	-2.925	-0.679
${ m beta}[25]$	0.05159	2.003	3	4.02	5.812
$\mathrm{beta}[29]$	1.386	3.764	5.196	6.43	8.688
$ ext{beta}[37]$	1.269	3.238	4.331	5.364	7.184
$ ext{beta}[38]$	0.01352	2.523	3.837	5.225	7.74
$\mathrm{beta}[41]$	1.32	3.989	5.313	6.622	9.445
$\mathrm{beta}[45]$	1.802	4.134	5.34	6.535	8.702
$ ext{beta}[46]$	3.002	5.178	6.183	7.297	9.345
$\mathrm{beta[49]}$	1.727	3.721	4.701	5.814	7.711
$\mathrm{beta[50]}$	3.321	5.563	6.707	7.882	10.29
intercept	50.91	52.46	53.34	54.16	55.75

```
credible.widths <- beta.significant[,5]-beta.significant[,1]
predictor.names.significant <- predictor.names[significant]
pander(data.frame(predictor.names.significant,credible.widths), caption = "credible widths norm"</pre>
```

Table 4: credible widths normal hierarchical

	predictor.names.significant	credible.widths
	OTU_54646	7.286
${ m beta}[{f 25}]$	OTU_624	5.76
${ m beta}[29]$	OTU_999	7.302
${ m beta}[37]$	OTU_66	5.915
$\mathrm{beta}[38]$	OTU_51578	7.727
${ m beta}[41]$	OTU_8086	8.125
${ m beta}[45]$	OTU_72918	6.9
${ m beta}[46]$	OTU_97	6.343
${ m beta}[49]$	OTU_277	5.984

	predictor.names.significant	credible.widths
beta[50]	OTU_18758	6.97
intercept	intercept	4.845

```
if (DEBUG)
{
   autocorr.plot(samp.coeff.normal_hierarchical)

plot(samp.coeff.normal_hierarchical)

#Sample again and estimate posterior means and MAP posterior modes.
samp.coeff.normal_hierarchical.jags <- jags.samples(model.normal_hierarchical, variable.name.posterior_means.normal_hierarchical <- lapply(samp.coeff.normal_hierarchical.jags, apply, 1, pander(posterior_means.normal_hierarchical, caption = "posterior means second sample")
posterior_modes.normal_hierarchical <- lapply(samp.coeff.normal_hierarchical.jags, apply, 1, posterior_modes.normal_hierarchical
if(n.chains>1)
{
    gelman.plot(samp.coeff)
}
}
```

BLASSO

```
beta.inv.gamma.param <- 0.01
variance.inv.gamma.param <- 0.01</pre>
p \leftarrow ncol(X)
model_string.normal_blasso <- "model{</pre>
  # Likelihood
  for(i in 1:n){
    Y[i] ~ dnorm(mu[i],inv.var)
    mu[i] <- intercept +inprod(X[i,],beta[])</pre>
  # Prior for beta
  for(j in 1:p){
    beta[j] ~ ddexp(0,beta.inv.gamma.param)
  intercept ~ ddexp(0,beta.inv.gamma.param)
  # Prior for the inverse variance
  inv.var ~ dgamma(variance.inv.gamma.param, variance.inv.gamma.param)
           <- 1/sqrt(inv.var)
  sigma
```

```
#Beta Prior for the inverse variance
  inv.var.beta ~ dgamma(beta.inv.gamma.param, beta.inv.gamma.param)
}"
model.normal_blasso <- jags.model(textConnection(model_string.normal_blasso), data = list(Y=Y,)</pre>
## Compiling model graph
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 1133
      Unobserved stochastic nodes: 53
##
##
      Total graph size: 61098
##
## Initializing model
update(model.normal_blasso, nSamples, progress.bar="none"); # Burnin
samp.coeff.normal_blasso <- coda.samples(model.normal_blasso,variable.names=c("intercept","bete</pre>
sum.normal_blasso <- summary(samp.coeff.normal_blasso)</pre>
quantiles <- sum . normal_blasso $quantiles
left.05.quantile.sign <- sign(quantiles[,1])==-1</pre>
right.95.quantile.sign <- sign(quantiles[,5])==1
significant <- xor(left.05.quantile.sign ,right.95.quantile.sign)</pre>
beta.significant <- quantiles[significant,]</pre>
pander(data.frame(beta.significant), caption = "significant normal BLASSO")
```

Table 5: significant normal BLASSO

	X2.5.	X25.	X50.	X75.	X97.5.
beta[7]	-7.902	-5.477	-4.294	-2.987	-0.7535
$\mathrm{beta}[20]$	-7.628	-5.419	-4.264	-2.977	-1.165
${f beta[25]}$	0.24	2.024	3.068	4.128	6.068
$\mathrm{beta}[29]$	1.731	4.086	5.162	6.271	8.55
tota[37]	1.365	3.191	4.328	5.302	7.246
tota[38]	0.7214	2.89	4.149	5.316	7.604
${ m beta}[41]$	1.935	4.175	5.361	6.569	9
${ m beta}[45]$	1.389	3.863	5.151	6.447	8.623
$ ext{beta}[46]$	3.039	5.288	6.405	7.476	9.379
$\mathrm{beta}[49]$	1.899	3.9	4.896	5.874	8.101
${ m beta}[50]$	3.741	5.859	6.969	8.112	10.51
intercept	51.78	53.24	54.22	55.1	56.61

```
credible.widths <- beta.significant[,5]-beta.significant[,1]</pre>
```

```
predictor.names.significant <- predictor.names[significant]

pander(data.frame(predictor.names.significant,credible.widths), caption = "credible widths normalization";</pre>
```

Table 6: credible widths normal BLASSO

	predictor.names.significant	credible.widths
beta[7]	OTU_54646	7.149
$\mathrm{beta}[20]$	OTU_9405	6.462
$ ext{beta}[25]$	OTU_624	5.828
$\mathrm{beta[29]}$	OTU _999	6.819
$ ext{beta}[37]$	OTU_66	5.882
$ ext{beta}[38]$	OTU_51578	6.883
$ ext{beta}[41]$	OTU_8086	7.064
$\mathrm{beta}[45]$	OTU_72918	7.235
$ ext{beta}[46]$	OTU_97	6.34
$ ext{beta}[49]$	OTU_277	6.202
$\mathrm{beta}[50]$	OTU_18758	6.766
intercept	intercept	4.824

```
if (DEBUG)
{
   autocorr.plot(samp.coeff.normal_blasso)

plot(samp.coeff.normal_blasso)

#Sample again and estimate posterior means and MAP posterior modes.
samp.coeff.normal_blasso.jags <- jags.samples(model.normal_blasso, variable.names = c("interposterior_means.normal_blasso <- lapply(samp.coeff.normal_blasso.jags, apply, 1, "mean")
pander(posterior_means.normal_blasso, caption = "posterior means second sample")
posterior_modes.normal_blasso <- lapply(samp.coeff.normal_blasso.jags, apply, 1, "mlv")
posterior_modes.normal_blasso
if(n.chains>1)
{
   gelman.plot(samp.coeff)
}
}
```