## y computación

# **Estudio** comparativo de simulaciones físicas en GPU y FPGA TRIBUNAL



### y computación

# Estudio comparativo de simulaciones de EMPLEADOS en el comercio



**INVITADOS** 

# Conceptos

<u>CPU</u> + <u>Paralelismo</u> + <u>FPGA + GPU + Híbrido</u>

Dueño Concepto de trabajo

Tipos de empleado (blanco)

## **CPU**

Unidad Central de Procesamiento, es el hardware dentro de un ordenador u otros dispositivos programables, que interpreta las instrucciones de un programa informático mediante la realización de las operaciones básicas aritméticas, lógicas y de entrada/salida del sistema.

## **Carlos Pascual Uriol**

Llamaremos por su siglas al <u>DUEÑO</u> del local **CPU...** 



#### **PARALELISMO**

El paralelismo es una forma de computación en la cual varios cálculos pueden realizarse simultáneamente, basado en el principio de dividir las grandes tareas para obtener varias tareas pequeñas

#### Como atender el NEGOCIO - CONCEPTO



Sr. CPU puede atender el NEGOCIO el mismo





















Carlitos CPU, puede ayudarse de otras PERSONAS para un mejor **NEGOCIO** 

**DIVISIÓN DE TAREAS CON LA** AYUDA DE OTRAS PERSONAS

#### **GPU**

Unidad de procesamiento gráfico o GPU (Graphics Processing Unit) es un coprocesador dedicado al procesamiento de gráficos u operaciones de coma flotante, para aligerar la carga de trabajo del procesador central en aplicaciones

# Grupo de Personas hUmanas = GPU

Mientras el CPU se ocupa de hacer nuevos convenios el GPU se ocupa del local (limpieza, cobro, etc.)



#### **ROBOT**

#### **FPGA**

FPGA o matriz de puertas programables (del inglés field-programmable gate array) es un dispositivo programable que contiene bloques de lógica cuya interconexión y funcionalidad puede ser configurada en el momento mediante un lenguaje de descripción especializado.

#### **FPGA**



INDUSTRIA S.A. - Creamos la herramienta a la medida del NEGOCIO

La máquina de hacer HAMBURGUESAS, el robot que limpia, el robot que da vuelto, lo que necesite... La versión robótica lo espera

#### **E**3

## Hibrido

Implementación en FPGA a partir de código OpenCL.

#### **TERMINATOR**

**ROBOT HIBRIDO** 



Creamos la herramienta a la medida de su NEGOCIO, pero con más HUMANIDAD que nunca

El terminator de hacer HAMBURGUESAS, el robocop de la seguridad, C-3PO star wars de venta... Su versión robohumanidad lo espera

# **Comparativas => ELECCIÓN DE UN PROBLEMA**

Comparativa de las diferentes arquitecturas bajo una simulación física... ¿Cúal?

#### EMPLEADO 1 VS EMPLEADO 2 VS EMPLEADO 3

Comparativa de los diferentes empleados bajo una simulación comercial... ¿Cúal?

#### **PROBLEMA**

Para comparar necesitamos un resolver un problema y comparar los resultados

- → Implementación de un problema de aplicación real en diferentes arquitecturas: GPU, FPGA y HÍBRIDA.
- → Las arquitecturas tienen en común la resolución de problemas altamente paralelizables
- → Involucrar operaciones con valores de punto fijo

#### ¿A quién contrato para hacer cierta tarea?



Son muchos los problemas que se presentan. Comparar todas las posibilidades requiere mucho tiempo => SELECCIONAMOS UN PROBLEMA

#### DISTRIBUCIÓN DE CALOR

#### PREPARACIÓN DE HAMBURGUESAS



## **iMPLEMEntación**

¿ Cómo se implementó en cada arquitectura?

iNVITADos => sigan solos!



**TOP** 







PLACA DISPONIBLE XILINX ARTIX 7







PLACA DISPONIBLE DE1-SoC CON ARM INCLUIDO (sin pci)

## **Mediciones obtenidas**

- → Tiempo en ms
- → Se tomaron diferentes iteraciones: 10...10.000
- → Diferentes dimensiones de la matriz: 8x8, 16x16x,32x32, 44x44
- → Valores en punto fijo
- → Para la comparativa NO se contemplaron los tiempo de L/E





| Dimensión | Potencia (W) |
|-----------|--------------|
| 8         | 0.099        |
| 16        | 0.11         |
| 24        | 0.364        |
| 32        | 0.564        |

El consumo de potencia se ve afectado por el tamaño

Tiempo de cómputo no es muy afectando por la dimensión pero si por la cantidad de iteraciones



PLACA DISPONIBLE XILINX ARTIX 7 + ARTIX 7 > gama



| Matriz | Potencia (W) |
|--------|--------------|
| 32     | 62.02        |
| 24     | 59.9         |
| 16     | 57.87        |
| 8      | 57.26        |

El consumo de potencia aumenta un 8 % entre la matriz de 8x8 y 32x32 celdas.

Tiempo de cómputo incrementa de forma no proporcional

Tiempo L/E depende levemente del tamaño de la matriz







PLACA DISPONIBLE GEFORCE GTX 980

Requiere mayor comprensión del flujo del diseño



| Matriz | Potencia (W) |
|--------|--------------|
| 44     | 1.03         |
| 32     | 1.06         |
| 24     | 1.05         |
| 16     | 0.8          |
| 8      | 0.74         |
|        |              |

El consumo de potencia aumenta un 40 % entre la matriz de 8x8 y 32x32 celdas.

Tiempo de cómputo dependiente de la dimensión de la matriz

Tiempo L/E depende levemente del tamaño de la matriz



Tiempo de cómputo [ms]

PLACA DISPONIBLE DE1-SoC CON ARM INCLUIDO

# Comparativas



## Conclusión



En crecimiento y mejorando



Mejor performance (tiempo de ejecución y potencia)





Menor tiempo de implementación

# Opinión del Tesista

# Me pareció...

#### → EXCELENTE EXPERIENCIA







Constraints + Optimización del sintetizador y el implementador (P&R) para obtener un diseño óptimo + Diseño de arquitectura a nivel electrónica + Simulaciones a varios niveles + Calculo de potencia

Tiempo de síntesis e implementación + Tiempo de diseño





Carlos CPU trabajarán conjuntamente



Cálculo de proposito general



Futuro

OpenCL

## **GRACIAS**