سوال یک- (۲ نمره) عوامل ارجاد تافات در مه

عوامل ایجاد تلفات در مواد فرومغناطیسی را نام ببرید. توضیح دهید این عوامل به چه پارامترهایی بستگی دارند و چگونه می توان این تلفات را کم کرد.

سوا ل دو – (۳ نمره) چرا در ترانسفورمر، تنظیم ولتاژ تابعی از ضریب توان بار است؟ نمودار تقریبی تنظیم ولتاژ یک ترانسفورمر را در بار نامی بـر حـسب ضـریب تـوان رسم نمایید.



سوال سه- (۴ نمره)

دو سیم پیچ روی یک هسته چنبره ای مطابق شکل زیر پیچیده شده است. هسته از ورق فولاد سیلیکنی با مشخصه زیر ساخته شده است و دارای سطح مقطع مربع شکل است. ( میتوانید این مشخصه را در فاصله بین نقاط : (0,0) تا (0,0) با یک خط راست تقریب بزنید) .



است : است  $i_2 = 0.56A$  و  $i_1 = 0.28A$  است - I

الف – چگالی شار در شعاع متوسط هسته را به دست آورید

ب - اندوکتانس خودی سیم پیچ ۱ را محاسبه نمایید.

یچ شماره یک توسط جریان :  $i_1 = I_{\max} \sin \omega t ~( \mathrm{f=50~Hz})$ : تحریک شود و سیم پیچ شماره ۲ مدار باز باشد

الف – با  $I_{\rm max}=1.5A$  منحنی تغییرات چگالی شار لحظه ای هسته را به صورت تقریبی رسم نمایید (پیک آن دقیق محاسبه شود) ب – با  $i_{\rm max}=0.2A$  ، منحنی تغییرات ولتاژ لحظه ای القایی در سیم پیچ شماره ۲ را در کنار جریان لحظه ای  $i_{\rm l}$  و شار لحظه ای هسته رسم و دامنه هریک را تعیین نمایید.

پ- با  $i_1$  سینوسی قسمت I ب، اگر سیم پیچ شماره ۲ به یک مقاومت وصل شود و در اثر واکنش جریان دو سیم پیچی، دامنه شــار گذرنــده از هسته به 0.002 mWb برسد، تابع جریان لحظه ای  $i_2$  و ولتاژ لحظه ای دو سر سیم پیچی ۲ را بنویسید.

| II-پ: ولتاژ لحظه ای | II-پ: جريان لحظه اي | I-ب | I⊣لف |
|---------------------|---------------------|-----|------|
|                     |                     |     |      |
|                     |                     |     |      |

سوال چهار – (۴ نمره)

مقادیر تلفات هسته و مسی یک ترانسفورمر تک فاز 400/240 10 400 به شرح زیر می باشد:

تلفات هسته در ولتاژ نامی: 100W

تلفات مسی در نصف جریان نامی: 60W

الف- بازده ترانسفورمر را وقتی ترانسفورمر دارای بار نامی با ضریب توان 0.9 پس فاز باشد محاسبه نمایید.

- در چه درصدی از بار نامی بازده ماکزیمم خواهد بود؟ اگر ضریب توان همچنان 0.9 پس فاز باشد بازده ماکزیمم چند درصد است؟ - بازده + ساعتی ترانسفورمر را در صورتی که چرخه بار + ساعته آن به شرح زیر باشد محاسبه نمایید.

6 ساعت: بي باري

10 ساعت: 70% بار نامی با ضریب توان 0.8 پس فاز

ا ساعت: 90% بارنامی با ضریب توان 9.9 پس فاز

| پ- | ب- بازده ماکزیمم | ب- درصد بار | الف- |
|----|------------------|-------------|------|
|    |                  |             |      |
|    |                  |             |      |

سه ترانسفورمر تکفاز را می سازند. هر ترانسفورمر دارای به ترانسفورمر سه فیاز را می سازند. هر ترانسفورمر دارای به ترانسفورمر تکفاز Y وصل شده و مستقیما به منبع سه فیاز Y وصل شده و مستقیما به منبع سه فیاز Y وصل شده و مستقیما به منبع سه فیاز Y وصل شده اند.

الف- نسبت تبدیل و توان نامی ترانسفورمر سه فاز را در دو حالت اتصال ثانویه y و اتصال ثانویه  $\Delta$  تعیین کنید.

yب اگر سیم پیچ های ثانویه به صورت Y وصل شده باشند وپایانه های های ثانویه به هم اتصال کوتاه شوند، اندازه مقدار موثر جریان اولیه و ثانویه را بر حسب آمپر به دست آورید.

 $\psi$ - اگر سیم پیچ های ثانویه به صورت  $\Delta$  به هم وصل شده و پایانه های سه فاز ثانویه به هم اتصال کوتاه شوند، اندازه جریان های پایانه ثانویه چند آمپر خواهد بود؟

| پ- جریان پایانه ثانویه | ب- جريان ثانويه | ب- جريان اوليه | $\Delta$ الف– اتصال ثانويه | الف- اتصال y |
|------------------------|-----------------|----------------|----------------------------|--------------|
|                        |                 |                |                            |              |

یک حلقه ساده با مشخصات زیر در میدان مغناطیسی یکنواخت با سرعت زاویه ای داده شده می چرخد.

$$1 = 0.6 \text{ m}$$
  $\omega_{\rm m} = 103 \text{ rad/s}$   $B = 0.7 \text{ T}$   $r = 0.12 \text{ n}$ 

با این فرض که موقعیت حلقه در t=0 به گونه ای است که محور میدان مغناطیسی حلقه عمود بر جهت میدان مغناطیسی یکنواخت است الف ولتاژ القایی کل  $(e_{tot}(\omega_m t))$  را محاسبه نمایید. (۱۰)

ب- در صورتیکه ترمینالهای حلقه به یک مقاومت 10 اهمی متصل باشد، توان لحظه ای  $(p(\omega_m t))$  را رسم و توان متوسط (P) تحویلی به مقاومت را محاسبه نمایید. (10)

پ- با محاسبه گشتاور ناشی از جریان در حلقه نشان دهید توان مکانیکی با توان الکتریکی مساوی می باشد.(۱۰)



| $e_{total}(\omega t)$ | • |     |   |      |    |                    |
|-----------------------|---|-----|---|------|----|--------------------|
| $p(\omega_{m}t)$      | • |     |   |      | (  | $\omega_{\rm m} t$ |
| •                     | 7 |     |   |      |    | <b>→</b>           |
|                       |   | π/2 | π | 3π/2 | 2π |                    |
|                       |   |     |   |      |    |                    |

| P-ب | الف- |
|-----|------|
|     |      |