Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №4.7.3

Поляризация

Студент Ришат ИСХАКОВ 513 группа

Преподаватель Александр Александрович Казимиров

Цель работы: Ознакомление с методами получения и анализа поляризованного света.

В работе используются: Оптическая скамья с осветителем, зеленый светофильтр, два поляроида, черное зеркало, полированная эбонитовая пластинка, стопа стеклянных пластинок, слюдяные пластинки разной толщины, пластинки в 1/4 и 1/2 длины волны, пластика в одну длины волны для зеленого цвета (пластинка чувствительного оттенка).

1. Теоретическая часть

1.1. Определение направления разрешенной плоскости колебаний поляроида

Определить направление разрешённых колебаний поляроида проще всего с помощью чёрного зеркала.

Вращая поляроид вокруг направления луча и чёрное зеркало вокруг оси, перпендикулярной лучу, методом последовательных приближений можно добиться минимальной яркости луча, отражённого от зеркала, и таким образом определить разрешённое направление поляроида.

1.2. Получение эллиптически поляризованного света

Эллиптически поляризованный свет можно получить из линейно поляризованного с помощью двоякопреломляющих кристаллических пластинок.

Двоякопреломляющая пластинка имеет два взаимно перпендикулярных главных направления, совпадающих с осями эллипсоида диэлектрической проницаемости. Волны, поляризованные вдоль главных направлений, распространяются в пластинке с разными скоростями, не изменяя характера своей поляризации. Эти волны называются главными.

Сдвиг фаз при проходе через такую пластинку определяется соотношением:

$$\Delta \varphi = \frac{2\pi}{m} = kd(n_x - n_y)$$

Рассмотрим три частных случая:

- Пластинка дает сдвиг фаз на 2π (пластинка в длину волны λ). Тогда на выходе будет линейно поляризованная волна с тем же направлением колебаний, что и в падающей волне.
- Пластинка дает сдвиг фаз π (пластинка в пол длины волны $\lambda/2$). На выходе образуется линейно поляризованная волна с направлением колебаний, зеркально отраженным относительно одного из главных направлений.

• Пластинка создает между колебаниями сдвиг фаз $\pi/2$ (пластинка в четверть длины волны $\lambda/4$). Образуется эллипс, главные оси которого совпадают с координатными осями x и y.

1.3. Анализ эллиптически поляризованного света

Анализ эллиптически поляризованного света сводится к нахождению главных осей эллипса поляризации и к определению направления вращения электрического вектора.

Главные оси эллипса поляризации определяются с помощью анализатора по максимуму и минимуму интенсивности проходящего света. Направление вращения электрического вектора может быть найдено с помощью пластинки в четверть длины волны, для которой известно, какая из главных волн, E_x или E_y , имеет большую скорость распространения (и соответственно меньшее значение показателя преломления).

1.4. Пластинка чувствительного оттенка

Так называют пластинку в λ для зеленой спектральной компоненты 560 нм.

Рис. 1: Пластинка чувствительного оттенка

Если пластинка чувствительного оттенка помещена между скрещенными поляроидами и главные направления пластинки не параллельны направлениям разрешённых колебаний поляроидов, то при освещении белым светом пластинка кажется окрашенной в лиловокрасный цвет.

Если между скрещенными поляроидами поместить еще пластинку в $\lambda/4$, чтобы их главные направления совпадали, цвет будет казаться зеленовато-голубым.

Если главные направления будут перпендикулярны, то цвет будет оранжево-желтым.

2. Схема установки

Рис. 2: Определение разрешенного на- Рис. 3: Исследование главных направлений правления поляроида стопы в пластинках

Рис. 4: Определение направлений больглавных направлений шей и меньшей в пластинках скорости

Характеристики установки:

3. План работы

1. Определение разрешенных направлений поляроидов

Добиваемся минимальной яркости отраженного от зеркала луча, добавляем второй поляроид и проделываем то же самое.

2. Определение угла Брюстера для эбонита

Заменяем чёрное зеркало эбонитовой пластинкой. Определяем угол Брюстера, откуда находим показатель преломления. Сравниваем интенсивность со светофильтром и без него.

3. Исследование стопы

Подбираем положение стопы, при котором свет падает на неё под углом Брюстера. Определяем характер поляризации: вектор Е в отражённом луче перпендикулярен плоскости преломления, в проходящем – параллелен, как и предполагала теория.

4. Определение главных плоскостей двоякопреломляющих пластин.

При совпадении главных осей пластинки со скрещенными разрешенными направлениями поляроидов интенсивность света минимальная.

5. Выделение пластин $\lambda/2$ и $\lambda/4$

4. Ход работы и обработка результатов

1. Определение разрешенных направлений поляроидов

$$\varphi_{\text{пол}1} = 2^{\circ} \pm 1^{\circ}$$
 $\varphi_{\text{пол}2} = 84^{\circ} \pm 1^{\circ}$

2. Определение угла Брюстера для эбонита (Как в предыдущем пункте, но с эбонитом вместо черного зеркала)

$$\theta = 58^{\circ} \pm 2^{\circ}$$

При добавленном светофильтре θ не изменилось.

3. Исследование стопы

 $n = \tan \theta = 1, 6 \pm 0, 1$

Отраженный луч поляризован, вектор E перпендикулярен плоскости преломления, преломленный частично поляризован.

4. Определение главных направлений двоякопреломляющих пластин

Для пластины 1 $min = 52^{\circ} \pm 1^{\circ}$ и $max = 0^{\circ} \pm 1^{\circ}$

Для пластины 2 $min = 345^{\circ} \pm 1^{\circ}$ и $max = 36 \circ \pm 1^{\circ}$

Для пластины 1 проходящий свет имел эллиптическую поляризацию, то есть пластина $1 - \lambda/4$. Для пластины 2 линейную, то есть пластина $2 - \lambda/2$.

5. Определение быстрой и медленной оси в пластинке $\lambda/4$

При вращении пластинки относительно пластинки чувствительного оттенка цвет стрелки менялся от голубого до желтого. В положении, когда цвет голубой, быстрые направления пластинок совпадают, когда желтый, они перпендикулярны.

6. Исследование интерференции поляризованных лучей.

При вращении мозаичной пластинки изменялась интенсивность, при вращении поляроида менялся цвет пластинок.

5. Вывод

Ознакомились с методами получения и анализа поляризованного света, измерили коэффициент преломления эбонита, исследовали двоякопреломляющие пластины.