6SENG001W Reasoning about Programs

Lecture 2

Sets, Types & Constants in B

Overview of Lecture 2: B Sets & Types

The aim of this lecture is to:

- ▶ Outline the *mathematical concepts* used in the B-Method.
- ► Introduce & review basic Set Theory:
 - ▶ *Number sets* types, number operators & relations.
 - ► General sets types, set operators & relations.
- Abstract Machine Notation (AMN) for numbers & sets.
- ▶ Using Sets, Constants & Variables in a B machine:
 - types of sets that can be used;
 - declaring & using sets, constants & variables in a B machine;
 - ► B machine "clauses" SETS, CONSTANTS PROPERTIES, VARIABLES, INVARIANT & INITIALISATION.
- Example Machine using: sets, constants & variables.

Lecture 2

PART I

Mathematical Concepts used in the B-Method

B-Method Describing Systems: Precisely, Unambiguously & Concisely

Recall that one of the main aims of the B-Method is to enable developers to "describe a system's requirements":

- ▶ in a structured way,
- ► succinctly,
- precisely,
- ► unambiguously,
- ignore system details by using abstraction,
- ► check for *consistency* &
- prove essential & desirable properties about the system.
- design & construct code that satisfies the system's requirements.

Conclusion

The **ONLY** way all of these aims can be achieved is by the use of a specification language that includes the features that allows & supports them.

Mathematical Concepts used in the B-Method

For the reasons just outlined, the B-Method's specification language *AMN* is a "wide-spectrum" specification language.

This means that the *AMN* language includes:

- mathematical concepts & notation,
- programming language constructs, &
- structuring mechanisms.

The mathematical concepts included in AMN are:

- set theory,
- predicate logic,
- relations,
- functions &
- sequences.

Remark: we shall cover AMN's *programming constructs* & *structuring mechanisms* in subsequent lectures.

Lecture 2

PART II Set Theory

What is a Set?

Definition: Set

A set is a collection of values called elements or members & all the members of a set must be of the same type.

Where in the above definition the "same type" means the "same kind of thing".

For example, you can define *sets* of basically anything by listing the *elements* between set brackets – "{" & "}" separated by commas – "," as follows:

- ▶ "numbers" { 0, 3, 45, 999, ... }
- ▶ "people" { Bill, Sue, Joe, Mary, Ian, Jim, ... }
- ▶ "students" { JimJones, MarySmith, ... }
- ▶ "BEng Level 6 modules" { 6SENG001W, 6SENG002W, ... }
- ▶ "colours" { red, blue, green, purple, orange, black, ... }
- ▶ "days of the week" { Monday, Tuesday, Sunday, ... }

No Duplicate Values in a Set

One of the most important properties of a set is that it **only** records:

if an individual element is **in** the set or is **not in** the set,

it does not record:

how many times an element occurs in a set.

So sets do not include duplicate values.

So when we write out a set we do **not include duplicate values**, in other words the following sets are all equal:

```
\{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5\}
= \{1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5\}
= \{1, 2, 3, 4, 4, 5, 5, 5\}
= \{1, 2, 3, 4, 5, 5\}
= \{1, 2, 3, 4, 5, 5\}
```

In practice we only use the last version of these sets.

Order of Elements Listed in a Set Does Not Matter

Another important property of a set is that the *order* in which the elements in a set are listed does not matter.

So when we write out a set it does not matter what order we write them in.

Hence the following sets are all equal:

By convention we usually only use the last version of these sets.

What is **NOT** a Set?

The elements in a B set "must all be the same kind of thing".

Therefore, we would **not** consider a set to be "well defined" if its elements were different types of things.

To ensure this holds, B uses the notion of "types", i.e. where a type is a set.

All the *elements* in a set are of the *same type* & every *set* is a *subset or equal to* its type.

So the following "sets" are **not** "well defined", i.e. not valid sets:

- ► "numbers & colours" { 3, red, 45, blue, 999, orange, ... }
- ▶ "people & days of the week { Monday, Sue, Joe, Sunday, ... }
- ▶ "students & BEng Level 6 modules" { JimJones, 6SENG001W, ... }
- ▶ "numbers, colours & animals" { 42, dog, green, 99, penguin, ... }

Because they contain *elements of different types*.

B's Built in Sets — Number Sets

B has three "built in" sets of numbers, that can be used in any B machine.

These sets are: Integers & two sets of Natural numbers.

Integers: are the negative & positive whole numbers & are defined as:

$$\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}$$

Naturals: are the positive whole numbers & are considered to be a subset of the integers.

B supports two basic sets of natural numbers, one starting from 0 & one starting from 1 that are defined as follows:

$$\mathbb{N} = \{ 0, 1, 2, 3, \dots \}$$

$$\mathbb{N}_1 = \{ 1, 2, 3, \dots \}$$

Arithmetic Operators

The standard arithmetic operations are available.

Symbol	Description	
x+y	x plus y	
x-y	x minus y	
$x \times y$	x multiply y	
$x \div y$	x divided by y (integer division)	
$x \bmod y$	<i>remainder</i> after x divided by y (integer division)	
$x^{}y$	x to the <i>power</i> y , x^y	
$\operatorname{succ}(x)$	successor of x (increment x)	
pred(x)	predecessor of x (decrement x)	

$$47 \div 5 = 9$$
 $47 \mod 5 = 2$ $3 \, {}^{3} = 3 * 3 * 3 = 27$ $\operatorname{pred}(12) = 11$ $\operatorname{pred}(0) = -1$ $\operatorname{succ}(34) = 35$ $\operatorname{succ}(0) = 1$

Number Relations

The following standard relationships between numbers are available.

Symbol	Description		
x = y	x equal to y		
$x \neq y$	x not equal to y		
x < y	x less than y		
$x \leq y$	\boldsymbol{x} less than or equal to \boldsymbol{y}		
x > y	x greater than y		
$x \ge y$	\boldsymbol{x} greater than or equal to \boldsymbol{y}		

11 = 11	$23 \neq 42$
	,
78 < 99	$42 \le 42$
47 > 25	99 > 17

Miscellaneous Number Operations

The following number operators are also available.

Symbol	Description	
$\min(A)$	$\min(A)$ evaluates to the <i>minimum</i> number in set A	
$\max(A)$	$\max(A)$ evaluates to the $\emph{maximum}$ number in set A	
x y	range of numbers from x up to y inclusive, i.e. set of numbers	

Examples

Given the set of numbers:

```
A = \{ 2, 5, 9, 23, 45, 89, 101 \}
\min(A) = 2
\max(A) = 101
3 .. 7 = \{ 3, 4, 5, 6, 7 \}
-2 .. 2 = \{ -2, 1-, 0, 1, 2 \}
\min(4 .. 6) = 4
\max(39 .. 99) = 99
```

General Set Definitions

The following general standard set definition operators are available.

Symbol	Description	
$x \in A$	membership - x is an $element$ (or $member$) of A	
$x \notin A$	non-membership - x is not an element (member) of A	
Ø, { }	Empty set	
{ 1 }	Singleton set (1 element)	
{ 1, 2, 3 }	Set of elements: 1, 2, 3	
card(A)	cardinality – number of elements in set A	

Examples

$$A = \{ a, b, c, d, e, f, g, h \}$$

$$B = \{ a, e, i, o, u \}$$

$$C = \{ x, y, z \}$$

$$D = \{ f, o, r, m, a, l, e, t, h, d, s \}$$

We have:

Set Operators

New sets can be constructed by using the following set operators to combine existing sets.

Symbol	Description	
$A \cup B$	set <i>union</i> of A & B	
$A \cap B$	set intersection of A & B	
A - B	Set <i>subtraction</i> (difference) of A & B	

Examples

Using the previous sets A, B, C, D we have:

$$A \cup B = \{ a, b, c, d, e, f, g, h, i, o, u \}$$

$$A \cap B = \{ a, e \}$$

$$D - B = \{ f, r, m, l, t, h, d, s \}$$

$$\{ 2, 4 \} \cup \{ 1, 3, 5 \} = \{ 1, 2, 3, 4, 5 \} = 1 ...5$$

$$\{ 2, 4 \} \cap \{ 1, 2, 3 \} = \{ 2 \}$$

$$\{ 1, 2, 3, 4, 5 \} - \{ 4, 5, 99 \} = \{ 1, 2, 3 \} = 1 ...3$$

Set Operators Venn Diagram

Using $A = \{ a, b, c, d, e, f, g, h \} \& B = \{ a, e, i, o, u \}.$

$$A \cup B = \{ a, b, c, d, e, f, g, h, i, o, u \}$$

$$A \cap B = \{ a, e \}$$

$$A - B = \{ b, c, d, f, g, h \}$$

$$B - A = \{ i, o, u \}$$

Set Relations

The following *relations* allow sets to be compared, provided they are the same type.

Symbol	Description	
A = B	equality – A is equal to B	
$A \neq B$	non-equality – A is not equal to B	
$A \subseteq B$	subset - A is a subset of or equal to B	
$A \subset B$	$strict\ subset - A$ is a subset of, but not equal to B	

Examples: Where *X* is any set we have:

$$\left\{ \begin{array}{l} \{\,1,\,2\,,3\,\} \,=\, 1\,..\,3 \,=\, \left\{\,3,\,2,\,1\,\right\} \\ \{\,77,\,88,\,99\,\} \,\neq\, \left\{\,33,\,66,\,99\,\right\} \\ \{\,77,\,88,\,99\,\} \,\subseteq\, \left\{\,77,\,88,\,99\,\right\} \\ \left\{\,3,\,4\,,5\,\right\} \,\subseteq\, \left\{\,1,\,2,\,3,\,4\,,5\,\right\} \\ \left\{\,2,\,4\,\right\} \,\subset\, \left\{\,2,\,4\,,6\,\right\} \\ X \,\subseteq\, X \\ \left\{\,\right\} \,\subset\, X \\ \end{array}$$

Definition: the Power Set of a Set

One of the most common things we need to do in B is use *variables* that contain sets of a particular type.

To be able to do this we need to be able to form the "power set" of a set.

Definition: Power Set – $\mathbb{P}(X)$

The "power set" of a set X denoted by:

 $\mathbb{P}(X)$

is the set containing all of the subsets of X, i.e. a set of sets.

Note: the *power set* of a set $X - \mathbb{P}(X)$ always includes:

- ▶ the *empty set* "{ }", and
- ▶ the set X itself.

because both are subsets of any set.

The cardinality (size) of a power set formed from an arbitrary set X, i.e. the number of sets $\mathbb{P}(X)$ contains, are given by the following formula:

$$\operatorname{card}(\ \mathbb{P}(X)\)\ =\ 2^{\operatorname{card}(X)}$$

Examples: Power Sets

The following standard operators are available:

Symbol	Description
$\mathbb{P}(A)$	Power set of A

Example

$$\begin{array}{l} A \; = \; \{\; x,\; y,\; z\; \} \\ & \mathrm{card}(A) \; = \; 3 \\ & \mathbb{P}(A) \; = \; \{\; \{\},\; \{x\},\; \{y\},\; \{z\},\; \{x,y\},\; \{x,z\},\; \{y,z\},\; \{x,y,z\}\; \} \\ & \mathrm{card}(\; \mathbb{P}(A)\;) \; = \; 2^{\mathrm{card}(A)} \; = \; 2^3 \; = \; 8 \end{array}$$

All of the sets that are included in the power set of A, i.e. $\mathbb{P}(A)$, are there because they are all a *subset or equal to* A, in particular all of the following are true:

$$\left\{ \begin{array}{l} \{ \ \} \subseteq A \\ \{ \ x \ \} \subseteq A \\ \{ \ x, \ y \ \} \subseteq A \\ \{ \ x, \ y \ \} \subseteq A \\ \end{array} \right. \quad \left\{ \begin{array}{l} \{ \ y \ \} \subseteq A \\ \{ \ x, \ z \ \} \subseteq A \\ \end{array} \right. \quad \left\{ \begin{array}{l} \{ \ z \ \} \subseteq A \\ \{ \ y, \ z \ \} \subseteq A \\ \end{array} \right.$$

Set Comprehension

A set can be constructed by giving a *condition* that must hold for all the members of the set.

(Technically, this condition is known as a "predicate".)

A set comprehension has the general form:

```
\{ variable \mid variable \in TYPESET \land variableCondition \}
```

Where:

- ► The variable is declared.
 This variable represents an arbitrary element of the set being defined.
- variable ∈ TYPESET defines the type of the variable, i.e. the set the values of variable are in.
- The variableCondition is the condition that elements of TYPESET must satisfy to be included in the set being defined.

Examples: Set Comprehension

For example, the set of numbers 0 to 10:

```
\{ \ x \mid x \in \mathbb{N} \ \land \ x \le 10 \ \} \ = \ \{ \ 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ 10 \ \}
```

Where:

- ▶ "x" is the *variable* part.
- " $x \in \mathbb{N}$ " is the $variable \in TYPESET$ part & \mathbb{N} is the TYPESET.
- " $x \le 10$ " is the variableCondition part.

The *elements of the set* are the *natural numbers* ($x \in \mathbb{N}$) that satisfy the condition ($x \le 10$).

Using the remainder operator "mod" we can define number sets of even, odd & multiples of fives:

```
 \left\{ \begin{array}{l} x \mid x \in \mathbb{N} \ \wedge \ x \bmod 2 = 0 \ \right\} \ = \ \left\{ \begin{array}{l} 0, \ 2, \ 4, \ 6, \ 8, \ 10, \ \dots \ \right\} \\ \left\{ \begin{array}{l} y \mid y \in \mathbb{N} \ \wedge \ y \bmod 2 = 1 \ \right\} \ = \ \left\{ \begin{array}{l} 1, \ 3, \ 5, \ 7, \ 9, \ 11, \ \dots \ \right\} \\ \left\{ \begin{array}{l} z \mid z \in \mathbb{N} \ \wedge \ z \bmod 5 = 0 \ \right\} \ = \ \left\{ \begin{array}{l} 0, \ 5, \ 10, \ 15, \ 20, \ 25, \ 30, \ 35, \ \dots \ \right\} \end{array} \right. \end{array}
```

Generalised Set Union & Intersection

There are "generalised" versions of the set union & intersection operators that apply to "sets of sets".

Symbol	Description	
$\bigcup AA$	Generalised union of the set of sets AA	
$\bigcap AA$	Generalised intersection of the set of sets AA	

$$\bigcup \ \{ \ \{ \}, B, C \ \} = (\{ \} \cup \{ \ a, e, i, o, u \ \}) \cup \{ \ x, y, z \ \}$$

$$= \{ \ a, e, i, o, u, x, y, z \ \}$$

$$\bigcap \ \{ \ \{ \ p, a, u, l \ \}, B, D \ \}$$

$$= (\{ \ p, a, u, l \ \} \cap \{ \ a, e, i, o, u \ \}) \cap \{ \ f, o, r, m, a, l, e, t, h, d, s \ \}$$

$$= (\{ \ a, u \ \}) \cap \{ \ f, o, r, m, a, l, e, t, h, d, s \ \}$$

$$= \{ \ a \ \}$$

$$\bigcup \ (\ \mathbb{P}(X) \) = X \qquad \bigcap \ (\ \mathbb{P}(X) \) = \{ \ \}$$

In Class Set Exercises

Given the following sets:

$$A = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$
 $B = \{ 1, 4, 7, 9, 10 \}$ $C = \{ 2, 4, 6 \}$ $D = 1 ... 12$

(1) Evaluate the following set expressions:

$$\operatorname{card}(B) = B \cup C =$$

$$C \cap 1 ... 5 = A - B =$$

$$\mathbb{P}(C) = \bigcup \left\{ C, \left\{ 1, 3, 5 \right\}, \left\{ 99 \right\} \right\} =$$

- (2) Using set comprehension define the set of even numbers less than 20.
- (3) Determine which of the following are true & which false:

$$\begin{array}{ll} 5 \in D & 4 \notin B \\ A \subseteq D & B \subseteq A \\ C \subset B & \{\ 2,4\ \} \in \mathbb{P}(C) \end{array}$$

PART III Abstract Machine Notation (AMN) for Numbers & Sets

Machine Readability AMN: Numbers & Sets

The various B tools that we will use (as well as the ones we will not), require ASCII versions of specifications & symbols.

As we proceed through the module we will introduce the various B symbols & notation.

We will present this in two versions: a "pretty printed" version & an ASCII version that is readable by the B tools.

We begin by introducing the B symbols & ASCII versions of the *Abstract Machine Notation* (AMN) for numbers & sets:

- Numbers: types, operators & relations.
- Sets: types, operators & relations.

Machine Readability AMN: Number Types & Operators

Symbol	ASCII	Description
N	NAT, NATURAL	Set of natural numbers from 0
\mathbb{N}_1	NAT1, NATURAL1	Set of natural numbers from 1
\mathbb{Z}	INT, INTEGER	Set of integers
x+y	х + у	x plus y
x-y	х - у	x minus y
$x \times y$	х * у	x multiply y
$x \div y$	х / у	x divided by y
$x \bmod y$	x mod y	remainder after x divided by y
x^y	х ** у	x to the power y , x^y
pred(x)	pred(x)	predecessor of x
$\operatorname{succ}(x)$	succ(x)	successor of x

$$47 \div 5 = 47 / 5$$

 $3^3 = 3 * * 3$

Machine Readability AMN: Number Operators & Relations

Symbol	ASCII	Description
$\min(A)$	min(A)	minimum number in set $\cal A$
$\max(A)$	max(A)	maximum number in set A
$x \dots y$	х у	numbers from \boldsymbol{x} to \boldsymbol{y} inclusive
x = y	х = А	x equal to y
$x \neq y$	х /= у	\boldsymbol{x} not equal to \boldsymbol{y}
x < y	х < у	x less than y
$x \leq y$	х <= у	\boldsymbol{x} less than or equal to \boldsymbol{y}
x > y	х > у	x greater than y
$x \ge y$	х >= у	\boldsymbol{x} greater than or equal to \boldsymbol{y}

```
min({ 1, 2, 3 }) = 1 23 .. 25
88 /= 100 78 <= 99
47 >= 25
```

Machine Readability AMN: Set Definitions

Symbol	ASCII	Description
$x \in A$	x : A	x is an element of A
$x \notin A$	x /: A	\boldsymbol{x} is not an element of \boldsymbol{A}
Ø, { }	{ }	Empty set
{ 1 }	{ 1 }	Singleton set (1 element)
$\{1,2,3\}$	{ 1, 2, 3 }	Set of elements
$x \dots y$	х у	Range of integers from x to y inclusive
$\mathbb{P}(A)$	POW(A)	Power set of A
card(A)	card(A)	Number of elements in set A

```
3: { 1, 2, 3 } 8 /: { 1, 2, 3 } 99 /: {} { 42 } { 2017, 2018 } { 1, 4, 9 } 
7 .. 10 2000 .. 2099
POW( { 1, 2, 3 } ) card( { 1, 2, 3 } )
```

Machine Readability AMN: Set Operators & Relations

Symbol	ASCII	Description	
$A \cup B$	A \/ B	Union of A and B	
$A \cap B$	A /\ B	Intersection of A and B	
A - B	A - B	Set difference of A and B	
A = B	A = B	A is equal to B	
$A \neq B$	A /= B	A is not equal to B	
$A \subseteq B$	A <: B	A is a subset of or equal to B	
$A \subset B$	A <<: B	A is a strict subset of B	

```
{ 1, 2, 3 } \/ { 1, 4, 5 } = { 1, 2, 3, 4, 5 } 
 { 1, 2, 5 } /\ { 1, 4, 5 } = { 1, 5 } 
 { 1, 2, 3 } - { 1, 2 } = { 3 } 
 { 1, 2, 3 } <= { 1, 2, 3, 99, 100 } 
 { 1, 2, 3 } <= { 1, 2, 3, 99, 100 } 
 { 1, 2 } <= { 1, 2, 3 }
```

Machine Readability AMN: Set Operators II

Symbol	ASCII	Description
$\bigcup AA$	union(AA)	Generalised union of \overline{AA}
$\bigcap AA$	inter(AA)	Generalised intersection of AA
$x x \in TS \wedge C\}$	{ x x : TS & C }	Set comprehension

Examples

```
union( { \{1, 2\}, \{3, 4\}, \{5\} \} ) = { 1, 2, 3, 4, 5 } inter( { \{1, 2\}, \{1, 3, 4\} \} ) = { 1 }
```

Set comprehension – numbers 0 to 10:

```
Symbols: \{x \mid x \in \mathbb{N} \land x \leq 10\}
```

ASCII: $\{ x \mid x : NAT \& x <= 10 \}$

Converting B Symbols to Machine Readable ASCII

Using the ASCII machine readable form of AMN we can convert the PaperRound machine into a machine readable version PaperRound.

B Symbols: $houseset \subseteq \mathbb{N}_1$

ASCII: houseset <: NAT1

Meaning: houseset is a set variable, e.g. $houseset = \{ 21, 42 \}.$

B Symbols: $new \in \mathbb{N}_1 \land new \notin houseset$

ASCII: new : NAT1 & new /: houseset

i.e. not delivered to. E.g. new = 84 and $84 \notin houseset$.

B Symbols: $houseset := houseset \cup \{ new \}$

ASCII: houseset := houseset \/ { new }

Meaning: add a new house number to delivered to houses,

e.g. $houseset := houseset \cup \{ 84 \}.$

 $\begin{array}{ll} \textbf{B Symbols:} & ans \leftarrow number \\ \textbf{ASCII:} & ans <-- \text{ number} \end{array}$

Meaning: ans is output by the number operation.

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

```
1. houseset <: NAT
```

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

- 1. houseset <: NAT
- 2. houseset : POW(NAT1)

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

- 1. houseset <: NAT
- 2. houseset : POW(NAT1)
- 3. houseset <: 1..163

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

- 1. houseset <: NAT
- 2. houseset : POW(NAT1)
- 3. houseset <: 1..163
- **4.** houseset /= {}

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

- 1. houseset <: NAT
- 2. houseset : POW(NAT1)
- 3. houseset <: 1..163
- **4.** houseset /= {}
- 5. 139 /: houseset

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

- 1. houseset <: NAT
- 2. houseset : POW(NAT1)
- 3. houseset <: 1..163
- **4.** houseset /= {}
- 5. 139 /: houseset
- 6. hh : houseset

Consider statements about the paper round manager example using the *houseset* variable that keeps track of houses that receive paper deliveries.

For each of the following: explain what it means & convert it to ASCII:

- 1. $houseset \subseteq \mathbb{N}$
- 2. $houseset \in \mathbb{P}(\mathbb{N}_1)$
- 3. $houseset \subseteq 1...163$
- 4. $houseset \neq \{\}$
- 5. $139 \notin houseset$
- 6. $hh \in houseset$
- 7. $houseset \{ hh1, hh2 \} = \{ \}$

- 1. houseset <: NAT
- 2. houseset : POW(NAT1)
- 3. houseset <: 1..163
- **4.** houseset /= {}
- 5. 139 /: houseset
- 6. hh : houseset
- 7. houseset { hh1, hh2 } = {}

PART IV Using Sets, Constants & Variables in a B Machine

What Sets are used for in the B-Method

Recall that the initial stage of the B-method is to *formalise* the *system* requirements by constructing a *B model* (abstract machine).

This initial abstract machine describes:

- ► The main *state variables* of the system & their *types*.
- The "state invariants" properties which these state variables must satisfy at all times.
- ▶ The *operations* that transform & update these variables.

This initial abstract machine is a *formalisation* (i.e. specification) of the system requirements; that ignores as much *implementation detail* as possible using *abstraction*.

Sets are ideally suited to achieving these two goals of: formalisation & abstraction.

For this reason sets are extensively used when defining an abstract machine.

Different Categories of Sets Used in an Abstract Machine

In this part of the lecture we shall show how *sets* can be used within the B-method to define an *abstract machine*.

There are 3 different categories of sets that can be used to define an abstract machine:

- ▶ "Built in" Sets: \mathbb{N} , \mathbb{N}_1 & \mathbb{Z} . (We have already covered these.)
- "Enumerated" Sets completely defined.
- ▶ "Deferred" Sets incomplete & delayed definition.

We have already seen examples of the *number sets*, so will focus on the last two.

Enumerated Sets

Enumerated sets can be used to define types similar to the enumerated types used in many programming languages, e.g. Java.

The syntax of an enumerated set is:

```
ENUMERATED\_SET = \{ element_1, element_2, ..., element_n \}
```

The elements of *ENUMERATED_SET* are the individual elements:

```
element_1, \ldots, element_n
```

Note: that all of the above individual elements are distinct/unique.

The B convention is that the name of the set is all in *UPPER CASE*.

"Abstraction Rating"

The use of enumerated sets allows for a certain amount of *abstraction*, since we are able to use words as the elements of the set & we do not have to further define these elements.

Examples: "Enumerated" Sets

$$ANSWER = \{ yes, no \}$$

- set of possible question answers.

$$CURSOR_KEY = \{Up_Key, Down_Key, Left_Key, Right_Key\}$$

set of possible cursor key presses & movements.

$$DIRECTION = \{ North, South, East, West \}$$

set of points of the compass & directions of movement.

$$\begin{split} MESSAGE = \{ & \textit{Success}, \\ & \textit{Are_You_Using_Your_Own_Bag}, \\ & \textit{Have_You_Swiped_Your_Nectar_Card}, \\ & \textit{Error_Unknown_Item_In_Bagging_Area}, \\ & \textit{Thats_The_Third_Bottle_Of_Wine_This_Week_V_Bad} \ \} \end{split}$$

set of messages output (spoken) by a self service till in a supermarket.

"Deferred" Sets

When a "deferred" set is declared the actual elements of the set are **not** specified.

This allows the specifier to abstract away from the detail of:

- what the actual elements of the set are: &
- how they are represented.

This is an important & useful feature of B machines.

"Abstraction Rating"

"Deferred" sets allow for a high degree of abstraction, since we only need to give the set's name, not its elements.

However, the "deferred & missing information" about its elements **MUST** be supplied by the developer at some point in the "refinement" phase, otherwise no program code can be generated.

Examples: "Deferred" Sets

CAR_REGISTRATION

- set of all possible car registrations.

DRIVERS

set of all legal? car drivers.

PEOPLE

- set of all uniquely identifiable people.

UOW STUDENTS

- set of all University of Westminster students.

NOTE: The majority of the *non-number* sets used in a B specification are often initially declared as deferred sets.

Declaring a "Set" in a B Machine

When any *set* is declared in a B machine we must supply a *name* & if it is not a *deferred* set then the list of its elements.

Set declarations are listed in the "SETS" clause of a machine, they are separated by semi-colons ";".

For example, using the sets we have previously defined, we can introduce 3 *enumerated* sets & a *deferred* set as follows in our Sets machine:

```
MACHINE Sets

SETS
ANSWER = { yes, no } ;

CURSOR_KEY = { Up_Key, Down_Key, Left_Key, Right_Key } ;

DIRECTION = { North, South, East, West } ;

PEOPLE
```

Using Sets to Define "Type" Information

We now know how to define sets in a B machine.

This is essential since all constants & variables declared in a B machine must have a type.

This is achieved by stating that each *constant* & *variable* is either a *member* of a set or a *subset* of a set.

That is achieved by using one of the following:

► "member of" — if it is a single valued (non-set) variable or constant then:

```
var \in TYPESET var : TYPESET.
```

▶ "subset of" — if it is a set valued variable or constant then:

```
setvar \subseteq TYPESET
setvar <: TYPESET.
```

An alternative for set valued variables is to state that it is "an element of a power set", i.e. a set, then use:

```
setvar \in \mathbb{P}(TYPESET),
setvar : POW( TYPESET ).
```

Declaring a "Constant" in a B Machine

When a *constant* is declared in a B machine we must supply a:

- ▶ name.
- ▶ its type &
- optionally any properties its value must satisfy.

For each constant its:

- declaration (the constant's name), is listed in the "CONSTANTS" clause. Declarations are separated by commas -",".
- type information for each constant is listed in the "PROPERTIES" clause. The types must be either standard types or sets that have been introduced.
 - Additional *properties* about its value may optionally be included here as well.
 - Since the *type* & *properties* information are *logical statements* these are combined by *"logical and"* using B symbol: "^" or ASCII: "&".

Example: Declaring a "Constant" in a Machine

Using the previously defined sets, we can introduce 2 people constants as follows:

```
MACHINE Sets

SETS
PEOPLE

CONSTANTS
Jim, Sue

PROPERTIES
Jim: PEOPLE & Sue: PEOPLE & Jim /= Sue
```

Note:

As well as the type information about the 2 constants, we have also included the predicate: "Jim /= Sue" (or $Jim \neq Sue$).

This is almost always necessary, since we want Jim & Sue to represent two different people & so we MUST explicitly state that they are not equal.

Declaring a "Variable" in a Machine

When a *variable* is declared in a B machine we must supply a:

- name.
- its type & any additional properties that it must satisfy,
- its initial value.

For each *variable* its:

- ▶ declaration (the variable's name), is listed in the "VARIABLES" clause of the machine.
 - Declarations are separated by *commas* –",".
- type & properties information of each variable is listed in the "INVARIANT" clause. Since the *type* information is a *logical statement* these are combined by
 - "logical and" "∧" or "&".
- ▶ *initialisation* of the variable is done in the "INITIALISATION" clause. using assignment - ":=".

Example: Declaring a "Variable" in a Machine

Using the previously defined sets, we can introduce 3 variables as follows:

```
Variables in Machine

VARIABLES
dirs , keys , pointing

INVARIANT
dirs <: DIRECTION &
keys <: CURSOR_KEY &
pointing : dirs

INITIALISATION
dirs, keys, pointing
:=
{ North, South }, { Up_Key, Down_Key }, North
```

Note: we are using "multiple" assignment to simultaneously initialise the 3 variables. Multiple assignment has the form:

```
var_1, var_2, ..., var_n := val_1, val_2, ..., val_n
```

With val_1 being assigned to variable var_1 , etc.

```
MACHINE Sets
 SETS
   PEOPLE :
   ANSWER = \{ ves, no \} ;
   CURSOR KEY = { Up Key, Down Key, Left Key, Right Key } ;
   DIRECTION = { North, South, East, West }
 CONSTANTS
    Jim, Sue
 PROPERTIES
    Jim : PEOPLE & Sue : PEOPLE & Jim /= Sue
 VARIABLES
    dirs , kevs , pointing
  TNVARTANT
    dirs <: DIRECTION & keys <: CURSOR KEY & pointing : dirs
  INITIALISATION
    dirs, keys, pointing
          := { North, South }, { Up Key, Down Key }, North
 OPERATIONS
    . . .
END
```