$$(\alpha) \quad \gamma^{(i)} = \chi \beta + \mathcal{U}^{(i)}, \quad i=1,2$$

ols estimator $\hat{\beta} = (x'X)^{-1}X'Y^{(i)}$ i=1,2.

According to Guass-markon conditions:
$$E(\beta) = E((x'x)^{-1}x'y'') = (x'x)^{-1}x' E(y'')$$

=
$$(X'X)^{-1}X'X\beta = \beta$$

Least square estimator cof β is unbiased.

$$= (x'x)^{-1} x' \cdot (6^{2}I_{n}) \cdot x \cdot (x'x)^{-1}$$

$$= 6^{2} (x'x)^{-1} x' \cdot x (x'x)^{-1} = 6^{2} (x'x)^{-1}$$

$$E(\hat{\beta}^{(1)}) = E(\hat{\beta}^{(2)}) = \beta$$

(Z)
$$Y^{(1)} = X_1 \beta + u^{(1)}$$
 (1)
 $Y^{(2)} = X_2 \beta + u^{(2)}$ (2)

ols estimator of
$$\beta$$
 in model (1) is
$$\hat{\beta}^{(i)} = (X^{(i)}, X^{(i)})^{-1} X^{(i)}, Y^{(i)}$$

ols estimator of B in moder es is β (2) = (X (2) / X (2)) / X (2) / y (2)

Now.
$$E(\beta^{(i)}) = E[(X^{(i)}/X^{(i)})^{T}X^{(i)}/Y^{(i)}]$$

= $(X^{(i)}/X^{(i)})^{-1}X^{(i)} = Y^{(i)}$

$$= (X^{(1)}X^{(1)})^{-1}X^{(1)}X^{(1)}\beta$$

$$= (X^{(2)}X^{(2)})^{-1}X^{(2)}(X^{(2)})\beta$$

$$= E[(X^{(2)}X^{(2)})^{-1}X^{(2)}(X^{(2)})\beta$$

and
$$E(\beta^{(2)}) = E[(\chi^{(2)}\chi^{(2)})^{-1}\chi^{(2)'}(\chi^{(2)}\beta)] = \beta$$
.
Therefore, $\beta^{(1)}$ and $\beta^{(1)}$ are both unbiased estimator for β .

Var(\hat{\beta}^{(2)}) = 62 (X0) 'X(2))-1

Similarly, we get

$$= (x'''x'')^{-1}x'''x'')$$

$$= E[(x'^{2})'(x'^{2})''(x'^{2})']$$

$$= (X^{(1)}X^{(1)})^{-1}X^{(1)}X^{(1)}B$$
and $E(\beta^{(2)}) = E[(X^{(2)}X^{(2)})^{-1}X^{(2)}](X^{(2)})^{-1}$

 $= (\chi'''\chi')^{-1}\chi''\chi''\beta = \beta$

= (X "" X "") -1 X " E y ""

Var(\(\beta^{(1)} \) = Vor (\(\beta^{(1)} \beta^{(1)} \end{ar})^{\frac{1}{2}} \times^{(1)} \) = \(\beta^{(1)} \beta^{(1)} \) \(\beta^

(2b) Here we have seen that both estimators are

equal. Both estimator are unbiased estimator of B.

= 6, (X(1),X(1))-1