Cálculo diferencial e integral I Contenido Extra 01: Resultados útiles adicionales

En este texto se presentan algunos resultados adicionales a los estudiados en las sesiones y ayudantías anteriores, por lo cual se les invita a demostrarlos ya que ello les permitirá afinar los conceptos y herramientas que se han trabajado hasta ahora.

Lema 1. Sean $x, y \in \mathbb{R}$. Denotamos al mínimo de x y y por min(x,y) y al máximo de x y y por min(x,y). Se cumple que

$$\min(x, y) = \frac{x + y - |y - x|}{2},$$

 $\max(x, y) = \frac{x + y + |y - x|}{2}.$

Definición 2. Sea $n \in \mathbb{N}$ un número natural. Consideremos $k \in \mathbb{Z}$. Se define el coeficiente binomial $\binom{n}{k}$ como sigue:

- (I) Si k < 0, entonces $\binom{n}{k} = 0$.
- (II) Si k = 0, entonces $\binom{n}{0} = 1$.
- (III) Si 0 < k < n, entonces

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

- (IV) Si k = n, entonces $\binom{n}{n} = 1$.
- (v) Si k > n, entonces $\binom{n}{k} = 0$.

Es importante notar que si definimos 0! = 1 entonces las definiciones (II) y (IV) son un caso particular de la definición (III).

Lema 3. Si $n \in \mathbb{N}$ y $0 \le k \le n$, entonces:

$$(I) \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

- (II) Se cumple que $\binom{n}{k}$ siempre es un número natural.
- (III) [Teorema del binomio] Si $x, y \in \mathbb{R}$, entonces para toda $n \in \mathbb{N}$ se cumple que

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^j y^{n-j}.$$

1

Lema 4 (Desigualdad de Bernoulli). Si h > -1, entonces

$$(1+h)^n \ge 1 + hn$$

 $para\ cualquier\ n\'umero\ natural\ n.$

Lema 5 (Desigualdad de Cauchy-Schwarz). Sean $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$, entonces

$$\sum_{j=1}^{n} x_j y_j \le \sqrt{\sum_{j=1}^{n} x_j^2} \sqrt{\sum_{j=1}^{n} y_j^2}.$$

Definición 6. Sean $x_1, \ldots, x_n \in \mathbb{R}$ tales que $x_j > 0$ para toda $i \in \{1, \ldots, n\}$.

(I) La media armónica H_n se define como

$$H_n = \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}}.$$

(II) La media geométrica G_n está dada por

$$G_n = \sqrt[n]{x_1 \cdots x_n}.$$

(III) La media aritmética A_n está definida como

$$A_n = \frac{x_1 + \dots + x_n}{n}.$$

(IV) La media cuadrática Q_n es

$$Q_n = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}.$$

Lema 7. Para cualesquiera n números reales positivos $x_1, \ldots, x_n \in \mathbb{R}^+$ se cumple que

$$0 < H_n < G_n < A_n < Q_n$$

es decir,

$$0 \le \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}} \le \sqrt[n]{x_1 \dots x_n} \le \frac{x_1 + \dots + x_n}{n} \le \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}$$

y las igualdades se cumplen si y sólo si $x_1 = \cdots = x_n$.