

Source: Ichthyoplankton Information System, Alaska Fisheries Science Center

ENVIRONMENTAL RELATIONSHIPS OF FISHES

Laura Vary
Analytical Workflows
December 2, 2021

BRIEF REMINDER OF RESEARCH OBJECTIVES

How flexible is spawning geography and phenology?

Do water mass characteristics better explain larval biogeography?

INITIAL AND MID-TERM GOALS

- Create a repository with all analytical workflow processes
- Create a separate folder with data cleaning practices
- Create a style guide with a workflow map and figure conventions
- Add comments and introductions to all code files
- Create a streamlined figure creation workflow

ACCOMPLISHED GOALS: CLEAN REPOSITORY

Q	varyl97 Improved figure outputs	f33ad0f 3 days ago	50 commits
	Environmental Data	Improving code, rerunning GAMs	last month
	Figures	Added in a figure	last month
	GAM Models	Completed analyses for all species. Updating code files and working o	20 days ago
	Ichthyo Data	Completed analyses for all species. Updating code files and working o	20 days ago
	Organized Thesis Analyses (Code)	Improved figure outputs	3 days ago
	.gitignore	Initial commit	2 months ago
	README.md	Update README.md	last month

```
##Bering Sea Yellowfin Sole:
#the following code loads and cleans the yellowfin sole egg and larval data from ecoFOCI cruises.
#at the end of this script are finalized datasets to load in the future.
allctd<-read.csv(file="All_CTD_Data_8302021.csv")
names(allctd)
allctd<-allctd[c('Latitude','Longitude','Date','Time','Pressure','Depth',
                 'Temperature', 'Conductivity', 'Salinity', 'Sigma.T',
                'Flag', 'Cruise', 'Station', 'Haul', 'Grid', 'FOCI_HAUL_ID',
                'FOCI_file')
allctd$Year<-NA
allctd$Year<-str_sub(allctd$Date,start=-4) #to get easy year reference
allctd<-allctd[allctd$Temperature<14,] #these 2 lines remove anomalous temp/sal values
allctd<-allctd[allctd$Salinity>29&allctd$Salinity<36,] #this loads a compilation of all CTD data from ecoFOCI trawls
  #ultimately, these data will be matched with larval data for larval biogeography GAMs.
###loading data, subsetting and cleaning properly
yfeggraw<-read.csv(file='YFSole_Egg_Catch.csv',header=TRUE,check.names=TRUE)</pre>
yflarvraw<-read.csv(file='YFSole_Larvae_Catch.csv',header=TRUE,check.names=TRUE)
```

```
####Generalized Additive Analyses: Yellowfin Sole
#the following code creates generalized additive models for eggs and larvae of yellowfin sole.
#these analyses form the basis of my MS thesis.
#egg data uses an averaged sea surface temperature for the month of March in the Southeastern Bering Sea
#May index was chosen because it is two months before the peak of yellowfin sole CPUE, and thus May
#conditions are likely more relevant to spawning behavior than temperatures in later months.
#load egg and larval data:

yfsub<-read.csv(file='./Ichthyo Data/Cleaned_Cut_YfEggs.csv',header=TRUE,check.names=TRUE)

yflarv.ctd<-read.csv(file='./Ichthyo Data/Cleaned_Cut_YfLarv_wCTD.csv',header=TRUE,check.names=TRUE)

###EGGS: Spawning Behavior
##Load in local and regional temperature index for May (2 mos before peak in egg CPUE in July)</pre>
```

ACCOMPLISHED GOAL: COMMENTED CODE & CODE FOR CLEANING

ACCOMPLISHED* GOAL: CLEAN FIGURES, MODEL OUTPUT TABLE

Species	Life Stage	Best Model	ΔMSE	ΔΑΙС	Deviance Explained
Alaska Plaice	Egg	$(\text{Log}(\text{Catch per }10\text{m}^2)+1) = factor(\text{year}) + s(\text{doy}) + s(\text{bottom depth, k=5}) + g(\text{longitude, latitude, by = threshold regional SST}) + e_{\text{doy,year,(lon,lat)}}$	0.149	463.75	75%

GOALS IN PROGRESS

Generate a streamlined figure process (that saves figures too)

Write a style guide for figures and code