

ECOSYSTEM SERVICE VALUATION WITH INVEST

CONCEPTS, METHODS AND APPLICATIONS

March 27, 2014

Rob Griffin, Shan Ma, and Justin Johnson

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

VALUE ECOSYSTEM SERVICES

Material Needs

Safety

Value depends on human well-being

social Relations

Monetary and non-monetary valuation

Spiritual Satisfaction

ECOSYSTEM SERVICES

BENEFITS PEOPLE OBTAIN FROM ECOSYSTEMS

Provisioning Services

- Food
- Fresh water
- Wood and fiber
- Fuel
- ...

Regulating Services

- Climate regulation
- Flood regulation
- Disease regulation
- Water regulation
- ...

Cultural Services

- Aesthetic
- Spiritual
- Educational
- Recreational
- ...

Supporting Services

- -Nutrient cycling-Water cycling
- Soil formation Primary productionProvision of habitat

Millennium Ecosystem Assessment

Pagiola et al, 2004

VALUATION THEORY

SUPPLY AND DEMAND SET VALUE

Coastal Vulnerability With habitat nature climate change PARTICULAR CONTRACTOR STATEMENT STATEMENT OF THE PARTICULAR CONTRACTOR OF Coastal habitats shield people and property from sea-level rise and storms Katie K. Arkema^{1*}, Greg Guannel², Gregory Verutes³, Spencer A. Wood³, Anne Guerry², Mary Ruckelshaus², Peter Kareiva⁴, Martin Lacayo² and Jessica M. Silver² Language Au Coastal Hazard Highest Intermediate Lowest

VALUATION THEORY

SUPPLY AND DEMAND SET VALUE

Coastal Vulnerability

Where are habitats important for reducing the numbers of people most exposed to coastal hazards?

MARGINAL VALUE

Coastal Ecosystem–Based Management with Nonlinear Ecological Functions and Values

Edward B. Barbier, ^{1,9} Evamaria W. Koch, ² Brian R. Silliman, ³ Sally D. Hacker, ⁴ Eric Wolanski, ⁵ Jurgenne Primavera, ⁶ Elise F. Granek, ⁷ Stephen Polasky, ⁸ Shankar Aswani, ⁹ Lori A. Cramer, ¹⁰ David M. Stoms, ¹¹ Chris J. Kennedy, ¹ David Bael, ⁸ Carrie V. Kappel, ¹² Gerardo M. E. Perillo, ¹³ Denise J. Reed¹⁴

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

RESEARCH QUESTION

DETERMINE THE TOTAL FLOW OF BENEFITS FROM

ECOSYSTEMS

Commonly Measured Grazing

Timber and fuelwood

Non-market and other values

RESEARCH QUESTION

COST BENEFIT ANALYSIS

Fuller accounting of costs and benefits

Recreation

Non-timber forest product

Watershed protection

Carbon Sequestration

Development Cost

Grazing

Timber and fuel wood

RESEARCH QUESTION

FINANCE ECOSYSTEM CONSERVATION

Erosion control Climate regulation

Farmers and Foresters

Upstream Watershed Conservation

Water purification Flood control Sediment mitigation

Water utility
Hydropower industry
Beverage company
Municipalities

Pagiola, von Ritter & Bishop 2004

natural capital

RESEARCH QUESTION

OPTIMAL SITING DECISIONS

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

PROCESS BASED MODELS

COASTAL PROTECTION

NON-MONETARY VALUE

INTENSITY OF USE

Overlap Analysis tool

Which areas are used most intensively?

NON-MONETARY VALUE

AFFECTED PEOPLE

MONETARY VALUATION

MONETARY VALUATION

Benefit

Transfer

MARKET PRICE

PROJECT

natural capital

EXAMPLES FROM INVEST

OFFSHORE WIND ENERGY

TIMBER

RECREATION (EXPENDITURES)

NON-TIMBER FOREST PRODUCTS

AVOIDED DAMAGES/REPLACEMENT COST

natural capital

EXAMPLES FROM INVEST

SEDIMENT RETENTION

CARBON
SEQUESTRATION
(SOCIAL COST)

COASTAL PROTECTION

COST-BENEFIT ANALYSIS

COASTAL PROTECTION FOR DOW CHEMICAL FACILITIES

Historical Hurricane Tracks 1913 - 2013 (n = 23), 50 mile radius from Freeport, TX

COST-BENEFIT ANALYSIS

COASTAL PROTECTION FOR DOW CHEMICAL FACILITIES

natural capital

COST-BENEFIT ANALYSIS

BELIZE EXAMPLE

SCENARIOS AND OPTIMIZATION

Scenario-based analysis and optimization using Python

Optimal conservation for watershed ecosystem services under a budget

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

HEDONIC PRICING

LAND/PROPERTY PRICE= F (ATTRIBUTE1, ATTRIBUTE2,...)

STATED PREFERENCE

CONTINGENT VALUATION AND CHOICE MODELLING

Contingent valuation

Ask respondents to express their willingness to pay (WTP) or willingness to accept (WTA) for changes in ecosystem services

Choice modeling

Ask respondents to rank/rate/choose alternative choice sets which have different combination of price attribute and ecosystem attributes

BENEFIT TRANSFER

CONCEPTS

Benefit transfer uses values from existing studies to estimate value elsewhere

Value transfer → \$/unit

Function transfer → f(\$, site or study attributes)

BENEFIT TRANSFER

Based

EXAMPLE

FEMA (Federal Emergency Management Agency)
Mitigation Policy FP-108-024-01
2013

Service

Notes

- 1. Service based (not bundled by land cover type)
- 2. Constant \$ per acre
- 3. Similarity of a. Service b. Context

Constant

natural capital

\$ Benefits per acre per year

		GREEN OPEN SPACE	RIPARIAN
	Aesthetic Value	\$1,623	\$582
	Air Quality	\$204	\$215
	Biological Control	-	\$164
	Climate Regulation	\$13	\$204
	Erosion Control	\$65	\$11,447
	Flood Reduction		\$4,007
	Food Provisioning	- OF	\$609
	Habitat	- No.	\$835
	Pollination	\$290	
	Recreation	\$5,365	\$15,178
	Storm Water Retention	\$293	
	Water Filtration		\$4,252

natural capital

BENEFIT TRANSFER

RESOURCES

Recreation Use Values Database

Envalue

New South Wales Australia

ecosystem valuation toolkit

NON-MONETARY VALUE

- Jobs/employment
- Poverty
- Food security
- Vulnerability
- Health/nutrition
- Cultural importance
- Happiness
- Biophysical measures of services

THANKS!

MODEL SUMMARY

Method	ES type	InVEST model
Market price	Provisioning Service	Fish Aquaculture Managed Timber Production Wave Energy Hydropower Production Wind energy Recreation (expenditures) Agricultural Production Non-timber Forest Product Production Fisheries
	Regulating Service	Carbon Sequestration (Marine, Terrestrial) Water for Irrigation
Avoided damages/ replacement cost	Regulating Service	Nutrient Retention Sediment Retention Carbon Sequestration Coastal Protection Storm Peak Mitigation
Non \$ Values	All	Overlap Analysis Scenic Quality Coastal Vulnerability Pollination
NA	Cultural/Supporting /Regulating Services	Biodiversity/Habitat quality and rarity Habitat risk assessment

