Application Serial No.: 10/505,459

Reply to Office Action dated March 21, 2006

ABSTRACT OF THE DISCLOSURE

A method and device for regeneration of a particulate filter situated on an exhaust line

of an engine. The method determines a soot burden on the filter based on knowledge of a

differential pressure ΔP at ends of the filter and triggers combustion of the soot when the

burden reaches a predetermined level. A pressure Pdownstream downstream from the filter is

modeled without use of a pressure sensor and Pupstream is determined without use of a

pressure sensor using the relationship Pupstream = ΔP + Pdownstream. The burden is

determined by the relationship $\Delta P = f(Qvol, mass of soot)$, with $Qvol = K \times (Qair + \rho fuel \times Qair + \rho fuel$

Qcarb) x N x Tupstream / Pupstream, where K is a constant, Qair denotes a mass flow of air,

ofuel denotes a density of the fuel, Qcarb denotes a volumetric quantity of fuel, N denotes an

rpm of the engine, and Tupstream denotes an absolute temperature measured upstream from

the filter.

3