Crossings

Time limit: 3s

The scientists have performed experiments on tiny particles leaving N tracks on the experimental plate. Each track is a perfect half-circle whose center is at the bottom side of the plate. More specifically, track i is specified by its center location X_i and its radius R_i . A sample figure below shows 5 tracks on a plate.

To evaluate the successfulness of the experiments, the scientists have to count the number of pairs of tracks that cross each other. Two tracks cross each other if there is a point **inside** the plate that belongs to both tracks. Note that we do not consider two tracks that share a point at the boundary of the plate crossing. In the above example, the number of pairs of tracks that cross each other is 6.

Write a program that reads the track information and compute the number of pairs of tracks that cross each other.

Input

The first line contains an integer T (1 <= T <= 5), the number of test cases. Then T test cases follow.

- The first line of each test case contains an integer **N** ($1 \le N \le 100,000$), the number of tracks.
- Then the next **N** lines describe the tracks. That is, on line 1 + i, there will be two integers X_i and \mathbf{R}_i (0 <= X_i <= 1,000,000; 1 <= \mathbf{R}_i <= 10,000,000). There will be no two tracks that have the same center and radius.

Output

For each test case, your program should output a single integer, the number of pairs of tracks that cross each other.

Example

плитре	
Input	Output
2	2
3	6
10 10	
15 10	
20 10	
4	
10 100	
20 100	
30 100	
40 100	