

Fluxogramas

Leonardo Gresta Paulino Murta leomurta@ic.uff.br

Antes de vermos Fluxogramas...

...vamos conhecer um pouco sobre a evolução das linguagens de programação

Paradigmas de Programação

- Definem regras básicas que linguagens pertencentes a esse paradigma devem seguir
- Exemplos (dentre outros):

Não estruturado
 Não é mais usado

EstruturadoVeremos nesta aula

Procedimental
 Veremos mais para frente no curso

Orientado a Objetos Não veremos neste curso

Paradigma não estruturado

- Anos 50
- Linhas de código sequenciais em um mesmo arquivo
- Sequência de execução alterada com uso do GOTO
- Código macarrônico (ilegível para sistemas grandes)
- Exemplos: primeiras versões de BASIC e COBOL

Imaginem isso para de linhas de código!

Paradigma estruturado

- Anos 60
- Artigo "Go To Statement Considered Harmful" de Edsger Dijkstra
- Eliminação de GOTO e adoção de três estruturas básicas:
 - Sequência (de cima para baixo)
 - Decisão (se...então...senão)
 - Repetição (loops)

Foco da 1ª metade do

Paradigma estruturado

- Qualquer função computável pode ser descrita usando sequência, decisão e repetição.
- Cada um desses elementos pode ser representado graficamente
 - Representação gráfica denominada Fluxograma (Flowchart)
 - Facilita o projeto e o entendimento de programas

Fluxograma (sequência)

 Elementos básicos para representar sequência em fluxogramas:

Problema puramente sequencial

- Calcule o volume e o peso de uma esfera oca, onde o diâmetro, a espessura da parede e a densidade são informados
- Em português estruturado:

```
Leia o diâmetro, a espessura e a densidade
Calcule o raio externo
Calcule o raio interno
Calcule o volume
Calcule o peso
Escreva o volume e o peso
```


Problema puramente sequencial

Em pseudocódigo:

```
Leia diametro, espessura, densidade raioExterno ← diametro / 2 raioInterno ← diametro / 2 - espessura volume ← 4 * Π * (raioExterno³ - raioInterno³) / 3 peso ← densidade * volume Escreva volume, peso
```


Problema puramente sequencial

• Em fluxograma:

Características observáveis

- Português estruturado
 - Baixo grau de formalismo
 - Fácil de fazer
 - Alto grau de ambiguidade
- Pseudocódigo
 - Nível um pouco maior de formalismo
 - Notação textual
- Fluxograma
 - Definição clara dos tipos de ação
 - Notação gráfica
- Quando existem símbolos de dados ou de processamento contíguos no fluxograma, um único símbolo pode ser utilizado com os comandos em diferentes linhas

Fluxograma (decisão)

 Elemento básico para representar decisão em fluxogramas:

Problema com decisão

- Informe o maior número entre dois números N1 e N2 informados
- Em pseudocódigo:

```
Leia n1, n2
Se n1 > n2 então
   Escreva "O primeiro é maior"
Senão se n1 < n2 então
   Escreva "O segundo é maior"
Senão
   Escreva "São iguais"</pre>
```


Problema com decisão

Fluxograma (repetição contável)

 Elemento básico para representar repetição contável em fluxogramas:

Problema com repetição contável

- Liste todos os números de 1 a 100
- Em pseudocódigo:

```
Para i variando de 1 a 100
Escreva i
```


Problema com repetição contável

• Em fluxograma:

Características observáveis

- Só é possível utilizar repetição contável se conseguirmos determinar de antemão quantas repetições são necessárias
- O computador controlará as repetições
 - Total de (fim início) + 1 repetições
- Normalmente se deseja acessar o valor da repetição a cada iteração

Fluxograma (repetição condicional)

Elementos básicos para representar repetição

condicional em fluxogramas:

Tipo enquanto...faça

Tipo repita...até que

Problema com repetição condicional

 Some todos os números informados até que o número zero seja informado

```
soma ← 0
Leia n
Enquanto n ≠ 0 faça
  soma ← soma + n
  Leia n
Escreva soma
```


Problema com repetição condicional

• Em fluxograma:

Características observáveis

- A condição de controle do loop deve alternar para falso (ou verdadeiro no caso de repita...até que) em algum momento
 - Sem isso, o programa entrará em loop infinito
- Antes de dar como terminado o algoritmo, é importante testar!
 - Faça uso do Método Chinês
 - Atenção especial para os extremos (início e término do loop)

Método Chinês

- Ler o algoritmo do início ao fim, obedecendo cada uma das instruções
- Anotar os valores de cada variável para cada passo do algoritmo
- Ao final, será possível identificar se alguma instrução está se comportando de forma inapropriada

- Construa um algoritmo (pseudocódigo e fluxograma) para dizer se um número inteiro informado pelo usuário é par ou impar
- Utilize o Método Chinês para verificar se o algoritmo está correto

- Construa um algoritmo (pseudocódigo e fluxograma) para montar a tabela de multiplicação de números de 1 a 10 (ex.: 1 x 1 = 1, 1 x 2 = 2, etc.)
- Utilize o Método Chinês para verificar se o algoritmo está correto

- Construa um algoritmo (pseudocódigo e fluxograma) para determinar o número de dígitos de um número informado
- Utilize o Método Chinês para verificar se o algoritmo está correto

- Construa um algoritmo (pseudocódigo e fluxograma) para listar todos os divisores de um número ou dizer que o número é primo caso não existam divisores
- Ao final, verifique se o usuário deseja analisar outro número

 Utilize o Método Chinês para verificar se o algoritmo está correto

- Construa um algoritmo (pseudocódigo e fluxograma) para determinar as raízes de uma equação de 2° grau: $ax^2 + bx + c = 0$ (recordar que o discriminante $\Delta = b^2 4ac$, e que a raiz $r = (-b \pm \sqrt{\Delta})/2a$)
- Utilize o Método Chinês para verificar se o algoritmo está correto

- Construa um algoritmo (pseudocódigo e fluxograma) para calcular a série de Fibonacci para um número informado pelo usuário, sendo F(0) = 0, F(1) = 1 e F(n)= F(n-1)+F(n-2)
 - Por exemplo, caso o usuário informe o número 9, o resultado seria: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34.
- Utilize o Método Chinês para verificar se o algoritmo está correto

- Construa um algoritmo (pseudocódigo e fluxograma) para indicar, a partir de um valor informado em centavos, a menor quantidade de moedas que representa esse valor.
- Considere moedas de 1, 5, 10, 25 e 50 centavos, e 1 real. Exemplo: para o valor 290 centavos, a menor quantidade de moedas é 2 moedas de 1 real, 1 moeda de 50 centavos, 1 moeda de 25 centavos, 1 moeda de 10 centavos e 1 moeda de 5 centavos
- Utilize o Método Chinês para verificar se o algoritmo está correto

Referências

- Slides baseados no curso de C da Prof. Vanessa Braganholo
- Alguns exercícios extraídos do livro Furlan, M., Gomes, M., Soares, M., Concilio, R., 2005, "Algoritmos e Lógica de Programação", Editora Thomson.

Fluxogramas

Leonardo Gresta Paulino Murta leomurta@ic.uff.br