Notes on Inference Devices

Santa Fe Institute

Edward G. Huang

Summer 2018

1 Notation and Definitions

This manuscript utilizes standard notation taken from set theory and vector algebra. We clarify notation specific to Turing Machine theory and inference devices.

1.1 Turing Machines

- \mathbb{B}^* The space of all finite bit strings.
- Λ Symbol alphabet of a Turing Machine.
- σ A symbol on a Turing Machine tape.
- Q Set of finite states of a Turing Machine.
- Δ Transition function of a Turing Machine.
- k Number of tapes of a Turing Machine. The first tape is assumed to be read-only.
- η Non-halting state of a Turing Machine.

1.2 Inference Devices

- U Set of possible histories of the universe.
- u A history of the universe in U.
- X Setup function of an ID that maps $U \to X(U)$. A binary question concerning $\Gamma(u)$.
- x A binary question and a member of image X(U).
- Y Single-valued conclusion function of an ID that maps $U \to \{-1, 1\}$. A binary answer of an ID for X(u) = x.
- y A single-valued answer, and member of image $Y(U) = \{0, 1\}$.
- Γ A function of the actual values of a physical variable over U, equivalent to $\Gamma(u) = S(t_i)(u)$.
- γ Possible value of a physical variable, a member of the image $\Gamma(U)$.

 δ Probe of any variable V parameterized by $v \in V$ such that:

$$\delta_v(v') = \begin{cases} 1 & \text{if } v = v' \\ -1 & \text{otherwise} \end{cases}$$

- \wp Set of probes over $\Gamma(U)$.
- $\mathcal{D} = (X, Y)$ An inference device, consisting of functions X and Y.
- \bar{F} Inverse. Given a function F over $U, F^{-1} = \bar{F} \equiv \{\{u : F(u) = f\} : f \in F(U)\}.$
- > Weak inference: a device \mathcal{D} weakly infers Γ iff $\forall \gamma \in \Gamma(U), \exists x \in X(U) \text{ s.t. } \forall u \in U,$ $X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u)).$
- \gg Strong inference: a device (X,Y) strongly infers a functions (S,T) over U iff $\forall \delta \in \wp(T)$ and all $s \in S(U)$, $\exists x$ such that $X(u) = x \implies S(u) = s, Y(u) = \delta(T(u))$.

2 Turing Machines

2.1 Deterministic Turing Machines

Arora and Barak denote a Turing Machine (TM) as $T = (\Lambda, Q, \Delta)$ containing:

- 1. An alphabet Λ of a finite set of symbols that T's tapes can contain. We assume that Λ contains a special blank symbol B, start symbol S, and the symbols 0 and 1.
- 2. A finite set Q of possible states that T's register can be in. We assume that Q contains a special start state q_s and a special halt state q_h .
- 3. A transition function $\Delta: Q \times \Lambda^k \to Q \times \Lambda^{k-1} \times \{L, \mathcal{S}, R\}^k$, where $k \geq 2$, describing the rules T use in performing each step. The set $\{L, \mathcal{S}, R\}$ denote the actions Left, Stay, and Right, respectively.

Suppose T is in state $q \in Q$ and $(\sigma_1, \sigma_2, \ldots, \sigma_k)$ are the symbols on the k tapes. Then $\Delta(q, (\sigma_1, \ldots, \sigma_k)) = (q', (\sigma'_2, \ldots, \sigma'_k), z)$ where $z \in \{L, \mathcal{S}, R\}^k$ and at the next step the σ symbols in the last k-1 tapes will be replaced by the σ' symbols, the machine will be in state q, and the k heads will move Left, Right or Stay. This is illustrated in Figure 2.1.

Figure 2.1. The transition function Δ for a k-tape Turing Machine

	$(q,(\sigma_1,\ldots,\sigma_n))$	(k)			(q', (c'))	$\sigma_2^{'},\ldots,\sigma_k^{'}),z)$		
Input symbol	Work/output symbol read		Current	New work/output tape symbol		Move work/output tape		New state
:	:	٠	÷	:	٠	:	٠	÷
σ_1	σ_i	٠	q	$\sigma_i^{'}$	٠	z_i	٠	$q^{'}$
:	:	٠.,	:	:	٠.,	:	٠.,	:

Remark: A can be reduced to $\mathbb{B} = \{0,1\}$ and k can be reduced to 1 without loss of computational power. Then, any Turing Machine can be expressed as a partial recursive function mapping $\mathbb{B}^* \to \mathbb{B}^* \cup \eta$, where η is the undefined non-halting output. Since $|\mathbb{B}^* \times \mathbb{B}^* \cup \eta| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, the set of all Turing Machines is countably infinite.

2.2 Non-deterministic Turing Machines

Non-deterministic Turing Machines (NDTM) differ from deterministic Turing Machines by having two transition functions Δ_0, Δ_1 and a special state q_{accept} . From Arora and Barak:

When a NDTM M computes a function, we envision that at each computational step M makes an arbitrary choice as to which of its two transition functions to apply. For every input x, we say that M(x) = 1 if there exists some sequence of these choices (which we call nondeterministic choices of M) that would make M reach q_{accept} on input x. Otherwise - if every sequence of choices makes M halt without reaching q_{accept} - then we say that M(x) = 0.

If M(x) = 1, we say that M accepts the input x. There are two ways to interpret the choice of update function to use in a NDTM. We can either assume that the NDTM chooses updates that will lead to an accepting state, or we can assume that the machine branches out into its choices such that it has a "computation tree" and if any of the branches reaches the accepting state then the machine accepts the input. From this second interpretation, the computational power of DTMs to NDTMs is analogous to the computational complexity of P to NP.

3 Strong Inference

In the next three examples we examine strong inference of integer-valued functions.

Example 3.1 Let $T(U) = \{0,1\}$ and $S(U) = \{0,1,2\}$. We construct (X,Y) in the table at the left such that it strongly infers (S,T). The right table indicates x for each s, δ such that the definition of strong inference is satisfied:

u	X(u)	Y(u)	S(u)	T(u)
1	1	1	0	0
2	2	-1	0	0
3	3	1	1	0
4	4	-1	1	0
5	5	1	2	1
6	6	-1	2	1

$s\setminus\delta$	δ_0	δ_1
0	1	2
1	3	4
2	6	5

Example 3.2 Let $T(U) = \{1, 2, 3\}$ and $S(U) = \{1, 2, 3, 4, 5\}$. Again, we construct (X, Y) in the table at the left such that it strongly infers (S, T). The right table indicates x for each s, δ such that the definition of strong inference is satisfied:

u	X(u)	Y(u)	S(u)	T(u)
1	1	1	1	1
2	2	-1	1	1
3	3	1	2	1
4	4	-1	2	1
5	5	1	3	2
6	6	-1	3	2
7	7	1	4	2
8	8	-1	4	2
9	9	1	5	3
10	10	-1	5	3

$s\setminus\delta$	δ_1	δ_2	δ_3
1	1	2	2
2	3	4	4
3	6	5	6
4	8	7	8
5	10	10	9

Example 3.3 Let $T(U) = \{1, 2, 3\}$ and $S(U) = \{1, 2\}$. In this example, the inferred function $f: S \to T, f(s) = T(S^{-1}(s))$ is not single-valued.

u	X(u)	Y(u)	S(u)	T(u)
1	1	-1	1	1
2	2	-1	1	2
3	3	-1	1	3
4	4	-1	2	1
5	5	-1	2	2

$s \setminus \delta$	δ_1	δ_2	δ_3
1	2	1	1
2	5	4	4

4 Inference of Turing Machines

Theorem A deterministic Turing Machine (Λ, Q, Δ) can be strongly inferred by a device if

$$\forall s \in S(U), |S^{-1}(s)| \ge 2.$$

This holds for both the representation of a Turing Machine as a partial recursive function and the representation as an update function.

Proof We first examine the partial function case. Let f be the partial recursive function that describes the given Turing Machine tuple. Let $U := \mathbb{N}$. Choose any convenient single valued surjective function $S: U \to \mathbb{B}^*$ and define $T: U \to \mathbb{B}^* \cup \eta$ by T(u) = f(S(u)) as the single-valued function mapping U to the halting and non-halting outputs of f. Then f can be written as the single-valued mapping $S \to T$ by $f(s) = T(S^{-1}(s))$.

Enumerate the elements of S(U) as 1, 2, ..., s, ... Let $V^s = \{u : S^{-1}(s) = u\}$ for $s \in S(U)$. Similarly enumerate the elements of V^s as $s_1, s_2, ..., s_{|V^s|}$. Then define X and Y as follows:

$$X(s_i) = \begin{cases} a_s & \text{if } i = 1 \\ b_s & \text{otherwise} \end{cases}$$
 $Y(s_i) = \begin{cases} 1 & \text{if } i = 1 \\ -1 & \text{otherwise} \end{cases}$

Note that the condition $|S^{-1}(s)| \geq 2$ is required to guarantee $Y(V^s) = \{1, -1\}$. For each pair $(s, \delta_{t \in T(U)})$, to force S(u) = s and $Y(u) = \delta_t(T(u))$, choose $x = a_s$ if $t = T(s_1)$ or otherwise choose $x = b_s$. Since the choices of s and t were arbitrary, this holds for all (s, δ_t) pairs.

Now consider the update function that describes the given Turing Machine. Recall that the update function is written as $\Delta: Q \times \Lambda^k \to Q \times \Lambda^{k-1} \times \{L, \mathcal{S}, R\}^k$, $k \geq 2$. Consider a convenient single-valued surjective function $S: U \to Q \times \Lambda^k$ representing the possible inputs for a Turing Machine and a corresponding single-valued $T: U \to Q \times \Lambda^{k-1} \times \{L, \mathcal{S}, R\}^k$ as $T(u) = \Delta(S(u))$. Then Δ can be written as the single-valued function $\Delta(s) = T(S^{-1}(s))$.

We proceed analogously to the partial function portion of the proof. Define V^s , X, and Y as described in the preceding paragraphs. For each pair $(s, \delta_{t \in T(U)})$, to force S(u) = s and $Y(u) = \delta_t(T(u))$, choose $x = a_s$ if $t = T(s_1)$ or otherwise choose $x = b_s$. Since the choices of s and t were arbitrary, this holds for all (s, δ_t) pairs.

Remark: As a point of convention, all functions over U must have a range of at least two elements. This implies that Turing machines that never halt cannot be strongly inferred.

5 Inference Complexity

Definition Let \mathcal{D} be an inference device and Γ be a function over U where X(U) and $\Gamma(U)$ are countable and $\mathcal{D} > \Gamma$. Let the **size** of $\gamma \in \Gamma(U)$ be written as $\mathcal{M}_{\mu:\Gamma(\gamma)} = -\ln[\int_{\Gamma^{-1}(\gamma)} d\mu(u)1]$ such that $d\mu$ denotes a measure over U. Then the **inference complexity** of Γ with respect to \mathcal{D} and measure μ is defined as:

$$C_{\mu}(\Gamma; \mathcal{D}) \triangleq \sum_{\delta \in \wp(\Gamma)} \min_{x:X=x \implies Y=\delta(\Gamma)} [\mathcal{M}_{\mu,X}(x)]$$

Remark: This is only a working definition and may be revised depending on its behavior.

Incompressibility Theorem Let c be a positive integer. For each fixed y, every finite set A of cardinality m has at least $m(1-26^{-c})+1$ elements x with $C(x|y) \ge \log m - c$.

Proof The number of programs of length less than $\log m - c$ is

$$\sum_{i=0}^{\log m - c - 1} 2^i = 2^{\log m - c} - 1.$$

Hence, there are at least $m - m2^{-c} + 1$ elements in A which have no program of length less than $\log m - c$.

Theorem Let c be a positive integer. Every finite set A of cardinality m has at least $m(1 - 26^{-c}) + 1$ elements x such that $C_{\mathcal{D}}(x) \ge \log m - c$.

Proof Let $U := \mathbb{B}^*$ and take $d\mu(u) = l(u)$ where l(b) is the length of a bit string b. Since A is finite, we can map its elements to a set of finite bit strings. The number of u with inference complexity of less than $\log m - c$ is

$$\sum_{i=0}^{\log m - c} 2^i = ^{\log m - c} -1.$$

Note that each u can infer at most one unique element of A. Hence, there are at least $m - m2^{-c} + 1$ elements in A that cannot be inferred by a u of length less than $\log m - c$.