EXCEPTIONAL SURVIVAL MODEL MINING

Juliana B. Mattos¹, Eraylson G. Silva¹, Paulo S. G. de Mattos Neto¹, and Renato Vimieiro²

¹ Centro de Informática, Universidade Federal de Pernambuco, Recife-PE, Brasil {jbm4,egs,psgmn}@cin.ufpe.br

² Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brasil rvimieiro@dcc.ufmg.br

Context & Problem

Image source: https://blog.crownbio.com/pdx-personalized-medicine# (access: September 11th, 2020)

- >> Large-scale biologic databases
- → Methods for characterizing patients
- → Strong computational tools

WHICH
CHARACTERISTICS
DELINEATE GROUPS OF
PATIENTS WITH
DISTINCT SURVIVAL
COEXPERIENCE?

WHICH <u>FACTORS</u> ARE ASSOCIATED WITH **DIFFERENT PROGNOSTICS**?

The Problem in the Literature

Breast cancer is a heterogeneous disease comprising several biologically different types, [...] precise identification of breast cancer subtypes, especially within the largest and highly variable luminal-A class, remains a challenge.

Netanely, D., Avraham, A., Ben-Baruch, A., Evron, E., & Shamir, R. (2016). Expression and methylation patterns partition luminal-a breast tumors into distinct prognostic subgroups. Breast Cancer Research, 18(1):74.

Basal-like constitutes an important molecular subtype of breast cancer characterised by an aggressive behaviour and a limited therapy response.

The outcome of patients within this subtype is, however, divergent. Some individuals show an increased risk of dying in the first five years, and others a long-term survival of over ten years after the diagnosis.

Milioli, H. H., Tishchenko, I., Riveros, C., Berretta, R., & Moscato, P. (2017). Basal-like breast cancer: molecular profiles, clinical features and survival outcomes. BMC medical genomics, 10(1):19.

Shivakumar, M., Lee, Y., Bang, L., Garg, T., Sohn, K.A. and Kim, D., 2017. Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer. *BMC medical genomics*, *10*(1), p.30.

Pepke, S. and Ver Steeg, G., 2017. Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer. *BMC medical genomics*, 10(1), pp.1-18.

Smith, M.K., Stein, G., Cheng, W., Miller, W.C. and Tucker, J.D., 2019. Identifying high risk subgroups of MSM: a latent class analysis using two samples. *BMC infectious diseases*, 19(1), p.213.

Lu, T.P. and Chen, J.J., 2015. Subgroup identification for treatment selection in biomarker adaptive design. *BMC medical research methodology*, *15*(1), p.105

Survival Analysis

Collection of <u>methods and techniques</u> designed to analyse data in which the target variable is the **time until a given event** occurs.

GOAL

To **estimate** the time to the event for a <u>new instance</u>, based on feature predictors.

SURVIVAL DATA:

- Set of descriptive attributes
- Event Information:

T: survival/censor times

 δ : event status

Survival Analysis Methods

STATISTICAL METHODS

- Non-Parametric
- Semi-Parametric
- Parametric

distributional and restrictive assumptions

MACHINE LEARNING METHODS

- Survival trees
- Bayesian methods
- Neural Network
- Support Vector Machine
- Ensemble
- Active/Transfer/Multi-task learning
- modelling non-linear relationships
- → high quality results

RULE-BASED METHODS

- Rough sets
- Bump hunting
- Logical Analysis of Data (LAD)
- Survival tree
- Sequential covering
- ...

Simple and understandable results

Survival Analysis Methods

STATISTICAL METHODS

MACHINE LEARNING METHODS

RULE-BASED METHODS

Prediction of T :: Output: scores or probabilities

Classification of new instances — Output: partitions of the data

Discretization or **stratification** of the time variable

<u>Covariates</u>' **split criterion** and **stratifications** to fit **pre-defined**classes

Research Opportunity

Characteristics for distinct survival experience?

Factors associated with different prognostics?

GLOBAL MODELS

LOCAL PATTERNS

EXISTENT APPROACHES

- previously known variable's interactions
- lack the ability to shed light into new interactions

GOAL

Discover and describe multiple (and potentially overlapping) interesting subgroups with relation to the survival response

Exceptional Model Mining (EMM)

DATA MINING PERPECTIVES

SUPERVISED DESCRIPTIVE PATTERN MINING
Understand the underlying phenomena
- according to a property of interest (target).

PROBLEM STATEMENT

The task of EMM is:

To discover the <u>subgroups</u> of the population that are statistically "**most interesting**", i.e. are <u>as large as possible</u> and have the most <u>unusual statistical characteristics</u> with respect to the model of interest.

EMM & Survival Analysis

No works striving to uncover subgroups with unusual survival models

SUBGROUP DISCOVERY FRAMEWORK
Tree-based rule induction approach
Target: mean survival time

Exceptional Survival Model Ant Miner – ESM-AM

EMM FRAMEWORK:

Search for subgroups with exceptional survival functions

Model:

KAPLAN MEIER (KM) ESTIMATES

Interestingness measure:

LOGRANK STATISTICAL TEST

Search strategy:

ANT-COLONY OPTIMIZATION

Output: SET OF RULES

EXCEPTIONAL SUBGROUP SUBGROUP'S CHARACTERISATION SURVIVAL MODEL

Exceptional Survival Model Ant Miner – ESM-AM

Adaptation of the **Ant-Miner** algorithm to discover subgroups with exceptional survival functions

Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332 (2002)

Exceptionality: Subgroup versus Complement

Non-significant rules are discarded at a level of significance of α

If no significant rules are discovered, the algorithm is finalized

14 real-world survival data sets

Removal of observations containing missing values

→ Feature selection

Discretization with K-Means into five interval categories

Rule-models' evaluation metrics

> Number of rules

→ Rule length

→ Rule coverage

→ Ruleset coverage

→ Integrated Brier Score (IBS)

#rules & rule length

Compact models

Rule coverage

Neither cover most cases nor very small groups

IBS

Homogeneous subgroups

Ruleset coverage

Variability

Discovery of exceptional survival behaviour

Discovery of significant subgroups and identification of data characteristics that interfere in survival experience

PTC: Papillary thyroid carcinoma

Event: recurrence/progression

Whas500: Worcester Heart Attack

Event: death

Local patterns with significant distinct survival response

ACTG320 DATA SET HIV infected patients

Strat2 = {0,1} (low/high) counting of cells with CD4 protein expression

Discovered sugbroups for actg320 dataset

R7: IF **strat2 = 0** THEN average survival = 226.94

R8: IF **strat2 = 1** THEN average survival = 232.19

LUNG DATA SETEarly lung cancer

stage1 = {1,2,3} (1 < 3)
general stage of lung cancer</pre>

Discovered sugbroups for *lung* dataset

R2: IF **stage-1 = 3** THEN average survival = 835.80

R6: IF **stage-1 = 1** THEN average survival = 1523.17

WHAS500 DATA SET
Worcester Heart Attack

Chf = {True, False}
congestive heart complications

Discovered sugbroups for whas 500 dataset

R1: IF **chf = True** THEN average survival = 593.59

R2: IF **chf = False** THEN average survival = 1012.21

VETERAN DATA SET

Lung cancer

Induced rules for *veteran* dataset

R4: IF **cell-type** = **small** THEN average survival = 71.67

R7: IF **cell-type** = **adeno** THEN average survival = 64.11

R9: IF **cell-type** = **aquamous** THEN average survival = 200.20

Cell-type:

small, adeno, aquamous

VETERAN DATA SET

Lung cancer

Induced rules for veteran dataset

R4: IF cell-type = **small** THEN average survival = **71.67**

R6: IF cell-type = small AND treat = test THEN average survival = 47.17

R8: IF cell-type = aquamous AND <u>treat = test</u> THEN average survival = 260.30

R9: IF cell-type = aquamous THEN average survival = 200.20

Future work

1

Cope with **numerical attributes**

2

Other quality measures: consider exceptionality and coverage

3

Tackle problems: pattern's redundancy, high-dimensionality and false statistical discoveries

 $\left(4\right)$

Investigate new heuristic functions and new pheromone updating procedure

5

Expand the results' analysis:
further experimental statistical
procedures and more detailed
exploratory data analysis

