

计算理论 Theory of Computation

https://courses.zju.edu.cn/course/join/8P7F9K7S0KL

第2章 正则语言和有限自动机 Regular Language and Finite Automata

该群属于"浙江大学"内部群,仅组织内部成员 可以加入,如果组织外部人员收到此分享,需要 先申请加入该组织。 杨莹春

yyc@zju.edu.cn

浙江大学曹光彪西楼-201 2021年9月30日

钉群 34658556

内容安排

- 3 classes (9/16,9/23,9/26) Sets, Relations and Language (CH1)
- 3 classes(9/30,10/14,10/21)
 Regular Language and Finite Automata (CH2)
- 3 classes(10/28,11/4, 11/11) Context-free Languages (CH3)
- 3 classes (11/18,11/25,12/2) Turing machine (CH4)
- 2 classes(12/9,12/16)Undecidability (CH5)
- 2 classes(12/23,12/30) Review

Exam:2022/1

计算理论

第2章 正则语言和有限自动机

Ch2. Regular Language and Finite Automata

Keywords II

•Ch2. Regular Language and Finite Automata

Finite automata and Nondeterministic finite automata, Equivalence of finite automata and regular expressions, Languages that are and are not regular

Elements Of The Theory Of Computation Zhejiang University/CS/Course/Xiaogang Jin E-Mail: xiaogangj@cise.zju.edu.cn

Homework 2:	
P60	2.1.1
	2.1.2 (c)(d)
	2.1.3 (c)(e)
P74	2.2.2 (a)(b)
	2.2.6 (a)(b)
	2.2.10
P83	2.3.4 (b)
	2.3.7 (a)(b)(c)(d)
P90	2.3.5 (a)
	2.4.8

Goal:

- to define increasingly powerful models of computation, more and more sophisticated devices for
 - accepting languages
 - generating languages

The Chomsky hierarchy

	-
Language type	Automata type
regular	finite
context-free	pushdown
context-sensitive	linear bounded
unrestricted	Turing Machine

2.1 Deterministic Finite Automata

☐ Introduction to **DFA**

Finite-state control changes state depending on:

- current state
- next symbol

Definition: A deterministic finite automata(DFA) is

- a quintuple (K, \sum, δ, s, F) , where
 - -K is a finite set of states
 - $-\sum$ is an alphabet
 - $-s \in K$ is the initial state
 - $F \subseteq K$ is the set of final states
 - $-\delta$: transition function, $K \times \sum \to K$.

Remarks:

Transition function will determine **unique** next state based on current input and state.

Remark:

1) A **configuration** of a DFA (K, \sum, δ, s, F) is any element of $K \times \sum^*$.

2) The binary relation \vdash_M between two configurations of M:

$$(q,w) \vdash_M (q',w') \Leftrightarrow \exists a \in \Sigma, w = aw'$$
, and $\delta(q,a) = q'$.
— say (q,w) yields (q',w') in one step.

3) The reflexive, transitive closure of $\vdash_M:\vdash_M^*$ $(q,w)\vdash_M^*(q',w')\Leftrightarrow (q,w)$ yields (q',w') after some number, possibly zero, of steps.

4) A string $w \in \Sigma^*$ is said to be accepted by M iff there is a state $q \in F$ such that $(s, w) \vdash_M^* (q, e)$.

The language accepted by M, L(M) is the set of all strings accepted by M.

Elements Of The Theory Of Computation Zhejiang University/CS/Course/Xiaogang Jin E-Mail: xiaogangj@cise.zju.edu.cn

Example:
$$\Sigma = \{a, b\}$$

$$K = \{q_0, q_1\}$$

$$s = q_0$$

$$F = \{q_0\}$$
Transition function

q	σ	$\delta(q,\sigma)$
q_0	a	q_0
q_{O}	b	q_1
q_{1}	a	q_1
q_{1}	b	q_0

Consider the string aabba:

$$q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0$$

— q_0 is final, aabba is accepted.

☐ Graphical representation

— State Diagram

State

 \bigcirc

Initial state X

Final state ©

Transition function:

$$\delta(q, a) = p$$

The DFA in example can be represented:

q	σ	$\delta(q,\sigma)$
q_0	a	q_{O}
q_0	b	q_1
q_1	a	q_1
q_1	b	q_0

 $\delta(q, \sigma)$

 q_0

 q_1

 q_0

 q_2

 q_0

 q_3

 q_0

 q_0

 $q_1 - a$

 q_1 b

 $q_2 = a$

Example:

Let us design a DFA M that accepts the language $L_1 = \{w \in \{a,b\}^* : w \text{ does not contain three consecutive } b's\}.$

Solution: Let DFA $M = (K, \Sigma, \delta, s, F)$ where

$$K = \{q_0, q_1, q_2, q_3\}$$

 $\Sigma = \{a, b\}$
 $s = q_0$
 $F = \{q_0, q_1, q_2\}$

The state diagram is shown as following:

			q_3 a	a.		
a	b				q_3 b	q_3
			—	$b \longrightarrow \bigcirc$	a, b	
q_{0}	a	q_{1}	q_2	q_{3}		

Question:

 $L_2 = \{w \in \{a, b\}^* : w \text{ contains three consecutive } b's\}.$ The DFA that accept language L_2 ?

Note: $L_2 = \sum^* -L_1$.

2.2 Nondeterministic Finite Automata

Generalization of determinism:

- Many "next-states"
- Computation is a "tree"
- Acceptance: ∃ a path to accepting leaf

Example: Consider the language $L = (ab \cup aba)^*$ which is accepted by the DFA:

Note:

- No DFA with fewer than five states can accept this language.
- It is not easy to ascertain that a DFA is shown.
- *L* is accepted by the simple Nondeterministic Finite Automata:

$$M = (K, \sum, \delta, s, F)$$
, where $K = \{q_0, q_1, q_2\}$, $S = \{a, b\}$, $s = q_0$, $F = \{q_0\}$

Elements Of The Theory Of Computation Zhejiang University/CS/Course/Xiaogang Jin E-Mail: xiaogangj@cise.zju.edu.cn

Figure 2-6

- Consider input aba
- In state diagram of a NFA arrows that are labeled by the empty string e.

Definition: A nondeterministic finite automata(NFA)

is a quintuple (K, \sum, Δ, s, F) , where

- -K is a finite set of states
- $-\sum$ is an alphabet
- $-s \in K$ is the initial state
- $F \subseteq K$ is the set of final states
- $-\Delta$, transition relation, is a subset of $K \times (\sum \cup \{e\}) \times K$.

Definition 2.1.1: A deterministic finite automaton is a quintuple $M = (K, \Sigma, \delta, s, F)$ where

K is a finite set of **states**, Σ is an alphabet, $s \in K$ is the **initial state**, $F \subseteq K$ is the set of **final states**, and

 δ , the **transition function**, is a function from $K \times \Sigma$ to K.

Remark:

For DFA, the transition function δ is a function, but for NFA, Δ only a relation.

• triple $(q, u, p) \in \Delta$ — transition of M:

$$u \neq e$$

u=e: no input symbol

- configuration an element of $K \times \Sigma^*$.
- binary relation \vdash_M and its reflexive transitive closure \vdash_M^* .
- A string $w \in \Sigma^*$ is accepted by M iff there is a state $q \in F$ such that $(s, w) \vdash_M^* (q, e)$.

The **language accepted by** M, L(M) is the set of all strings accepted by M.

Example:

 $L = \{w \in \{a,b\}^* : w \text{ contains the pattern } bb \text{ or } bab\}.$

• Consider the string $bababab \in L$?

Elements Of The Theory Of Computation Zhejiang University/CS/Course/Xiaogang Jin E-Mail: xiaogangj@cise.zju.edu.cn

Example:

 $\Sigma = \{a_1, \dots, a_n\}$, where $n \ge 2$. $L = \{w \in \Sigma^* : \exists a_i \text{ not appearing in } w\}$.

Elements Of The Theory Of Computation Zhejiang University/CS/Course/Xiaogang Jin E-Mail: xiaogangj@cise.zju.edu.cn

Example:

 $L = \{w \in \{a, b\}^* : w \ 6^{th} \text{ symbol from end is an "a"} \}.$

□ Expressive power of NFAs vs. DFAs

- Every DFA is an NFA
- NFAs allow more transitions

Is the language more expressive?

- Is there a language L = L(M) for some NFA M, where L = L(M') for some DFA M'?

Michael Oser Rabin (1931-)

Dana Stewart Scott (1932-)

Turing Award Citation (1976): For their joint paper "Finite Automata and Their Decision Problem," which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. Their (Scott & Rabin) classic paper has been a continuous source of inspiration for subsequent work in this field.

□ NFA/DFA Equivalence

Definition: Two FA M_1 and M_2 (deterministic or non deterministic) are **equivalent** iff $L(M_1) = L(M_2)$.

 To prove equivalence of DFAs and NFAs we must do two things:

I: For each DFA, produce an NFA that accepts the same language

II: For each NFA, produce a DFA that accepts the same language

We'll do part II; part I is immediate.

Theorem: For each NFA, there is an equivalent DFA.

Proof:

Key idea: Every subset of K becomes a single state in our new machine!

For Example:

NFA M, $K=\{q_0,q_1,q_2,q_3,q_4\}$, after reading a certain input string, M could be in $\{q_0,q_2,q_3\}$, not in $\{q_1,q_4\}$, then DFA M' is in state $\{q_0,q_2,q_3\}$.

Elements Of The Theory Of Computation Zhejiang University/CS/Course/Xiaogang Jin E-Mail: xiaogangj@cise.zju.edu.cn

$$w = abb$$

\square NFA \Rightarrow DFA construction

Consider an arbitrary NFA $M = (K, \Sigma, \Delta, s, F)$. To construct an equivalent DFA $M' = (K', \Sigma, \delta, s', F')$.

Definition:

$$E(q) = \{ p \in K : (q, e) \vdash_{M}^{*} (p, e) \}$$

Remark:

E(q)— the set of all states of M that are reachable from state q without reading any input.

Example:

$$E(q_0) = \{q_0, q_1, q_2, q_3\}$$

$$E(q_1) = \{q_1, q_2, q_3\}$$

$$E(q_2) = \{q_2\}$$

$$E(q_3) = \{q_3\}$$

$$E(q_4) = \{q_3, q_4\}$$

I. Formal Definition of DFA

NFA $M = (K, \Sigma, \Delta, s, F)$.

To construct an equivalent DFA $M' = (K', \Sigma, \delta, s', F')$.

- Let $K' = 2^K$
- Let s' = E(s)
- Let $F' = \{Q \mid Q \subseteq K, Q \cap F \neq \emptyset\}$
- For each $Q\subseteq K$ and $\forall a\in \Sigma$, Let $\delta(Q,a)=\cup\{E(p)\mid p\in K \text{ and } (q,a,p)\in \Delta \text{ for some } q\in Q\}$

Example: (continued)

$$s' = E(q_0) = \{q_0, q_1, q_2, q_3\}$$

$$E(q_0) = \{q_0, q_1, q_2, q_3\}$$

$$E(q_1) = \{q_1, q_2, q_3\}$$

$$E(q_2) = \{q_2\}$$

$$E(q_3) = \{q_3\}$$

$$E(q_4) = \{q_3, q_4\},$$

since
$$(q_1, a, q_4), (q_1, a, q_0) \in \Delta$$

$$\delta(\{q_1\}, a) = E(q_0) \cup E(q_4) = \{q_0, q_1, q_2, q_3, q_4\}$$

II. NFA ⇒ DFA construction: verification

We next show:

- M' is deterministic
- M' is equivalent to M.

• M' is deterministic:

 \square δ is a single-valued and well defined on all $Q \in K'$ and $a \in \Sigma$ by the way it is constructed.

- For each $Q\subseteq K$ and $\forall a\in \Sigma$, Let $\delta(Q,a)=\cup\{E(p)\mid p\in K \text{ and } (q,a,p)\in \Delta \text{ for some } q\in Q\}$

 \square For some $Q \in K'$ and $a \in \Sigma$, $\delta(Q, a) = \emptyset$ does not mean δ is not well defined; \emptyset is a member of K'.

• M' is equivalent to M.

Claim: For any string $w \in \Sigma^*$ and any states $p, q \in K$, $(q, w) \vdash_M^* (p, e) \Leftrightarrow (E(q), w) \vdash_{M'}^* (P, e)$ for some set P containing p.

Consider any string $w \in \Sigma^*$.

 $\frac{|\mathsf{definition}|}{\in F}$

$$w \in L(M) \Leftrightarrow (s,w) \vdash_{M}^{*} (f,e) \text{ for some } f \in F$$
 claim $\Leftrightarrow (E(s),w) \vdash_{M'}^{*} (Q,e) \text{ for some } f \in Q$ $\Leftrightarrow (s',w) \vdash_{M'}^{*} (Q,e) \text{ with } Q \in F'$ $\Leftrightarrow w \in L(M')$

From the claim, M' is equivalent to M.

• Proof of Claim:

Basis step:

For
$$|w|=0$$
, i.e. $w=e$, we must show that $(q,e)\vdash_M^*(p,e)\Leftrightarrow (E(q),e)\vdash_{M'}^*(P,e)$ for some set P containing p .

- For each $Q\subseteq K$ and $\forall a\in \Sigma$, Let $\delta(Q,a)=\cup\{E(p)\mid p\in K \text{ and } (q,a,p)\in \Delta \text{ for some } q\in Q\}$

$$(q,e)\vdash_M^* (p,e) \Leftrightarrow p \in E(q)$$

$$M'$$
 is deterministic $(E(q), e) \vdash_{M'}^* (P, e) \Leftrightarrow P = E(q)$

$$\Leftrightarrow P = E(q) \mid p \in P \Rightarrow p \in E(q)$$

Induction hypothesis:

Suppose the claim is true for all string w of length k or less for some k > 0.

Induction step:

Let |w| = k + 1. w = va, where $a \in \Sigma, v \in \Sigma^*$.

$$\Rightarrow$$

$$(q,w)\vdash_{M}^{*}(p,e)\Leftrightarrow (E(q),w)\vdash_{M'}^{*}(P,e)$$

$$(q,w) \vdash_M^* (p,e) \Leftrightarrow \exists$$
 states r_1 and r_2 such that
$$(q,va) \vdash_M^* (r_1,a) \vdash_M (r_2,e) \vdash_M^* (p,e)$$

I
$$(q, va) \vdash_{M}^{*} (r_{1}, a) \Leftrightarrow (q, v) \vdash_{M}^{*} (r_{1}, e)$$

$$\Leftrightarrow (E(q), v) \vdash_{M'}^{*} (R_{1}, e) \text{ for some } R_{1}, r_{1} \in R_{1}$$

Induction hypothesis

II
$$(r_1, a) \vdash_M (r_2, e) \Leftrightarrow (r_1, a, r_2) \in \Delta$$

 $\Rightarrow E(r_2) \subseteq \delta(R_1, a)$

Definition of $\delta(R_1, a)$

- For each $Q\subseteq K$ and $\forall a\in \Sigma$, Let $\delta(Q,a)=\cup\{E(p)\mid p\in K \text{ and } (q,a,p)\in \Delta \text{ for some } q\in Q\}$

III
$$(r_2, e) \vdash_M^* (p, e) \Rightarrow p \in \mathring{E}(r_2)$$
$$\Rightarrow (E(q), va) \vdash_{M'}^* (R_1, a) \vdash_{M'}^* (P, e).$$

$$P = \delta(R_1, a)$$

 \leftarrow

•
$$(E(q), va) \vdash_{M'}^* (R_1, e) \vdash_{M'}^* (P, e)$$
 for some $p \in P$

$$\bullet \qquad (R_1, a) \vdash_{M'}^* (P, e) \Rightarrow P = \delta(R_1, a)$$

$$ullet$$
 $\delta(R_1,a)=\cup\{E(r_2):\exists r_2\in K \ ext{and} \ (r_1,a,r_2)\in \Delta$ for some $r_1\in R_1\}$

$$p \in P \Rightarrow \exists r_2 \text{ such that } p \in E(r_2) \text{ and for smoe}$$
 $r_1 \in R_1, (r_1, a, r_2) \in \Delta$

 $(r_2,e)\vdash_M^{\bullet}(p,e)$ by the definition of $E(r_2)$

$$\bullet$$
 By IH, $(q,va)\vdash_M^* (r_1,a)$

Therefore,
$$(q, va) \vdash_{M}^{*} (r_{1}, a) \vdash_{M}^{*} (r_{2}, e) \vdash_{M}^{*} (p, e).$$

Remark:

- 1) Size of new DFA can be exponential in size of old NFA!
- 2) The proof of theorem provides an actual algorithm for constructing an equivalent DFA from any NFA.

Example:

Convert the NFA in example(this section) to a DFA.

$$|K| = 5 \Rightarrow |K'| = 2^5 = 32.$$

— Only a few of these states will be relevant to the operation of M.

all the transitions for some
$$q \in s'$$
.

$$s' = E(q_0) = \{q_0, \mathring{q}_1, q_2, q_3\}$$

$$\delta(s', a) = E(q_0) \cup E(q_4) = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\delta(s, b) = E(q_2) \cup E(q_4) = \{q_2, q_3, q_4\}$$

$$\delta(\{q_0, q_1, q_2, q_3, q_4\}, a) = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\delta(\{q_0, q_1, q_2, q_3, q_4\}, b) = \{q_2, q_3, q_4\}$$

$$\delta(\{q_2, q_3, q_4\}, a) = \{q_3, q_4\}$$

$$\delta(\{q_2, q_3, q_4\}, b) = \{q_3, q_4\}$$

$$\delta(\{q_3, q_4\}, a) = \{q_3, q_4\}, \delta(\{q_3, q_4\}, b) = \emptyset$$

$$\delta(\emptyset, a) = \delta(\emptyset, b) = \emptyset$$

Homework 2:	
P60	2.1.1
	2.1.2 (c)(d)
	2.1.3 (c)(e)
P74	2.2.2 (a)(b)
	2.2.6 (a)(b)
	2.2.10
P83	2.3.4 (b)
	2.3.7 (a)(b)(c)(d)
P90	2.3.5 (a)
	2.4.8

2.3 Finite Automata & Regular Expressions

□ Closure Properties of Regular Languages

Theorem: The class of languages accepted by FA is closed under

- (a) Union
- (b) Concatenation
- (c) Kleene star
- (d) Complementation
- (e) Intersection

Proof:

Main idea To construct an FA that accept the appropriate language in each case.

(a) Union:

Let
$$M_i = (K_i, \Sigma, \Delta_i, s_i, F_i)$$
 $(i = 1, 2)$ be two NFA.

 \Rightarrow construct a NFA $M = (K, \Sigma, \Delta, s, F)$, such that

$$L(M) = L(M_1) \cup L(M_2).$$

Where

$$-K = K_1 \cup K_2 \cup \{s\}$$

$$-F = F_1 \cup F_2$$

$$- \Delta = \Delta_1 \cup \Delta_2 \cup \{(s, e, s_1), (s, e, s_2)\}$$

Note: Any finite union of regular sets is regular. Inifinite unions may not be regular.

(b) Concatenation:

Let $M_1 = (K_1, \sum, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \sum, \Delta_2, s_2, F_2)$ be two NFA.

 \Rightarrow construct a NFA $M = (K, \Sigma, \Delta, s, F)$, such that

$$L(M) = L(M_1) \circ L(M_2).$$

Where

$$-K = K_1 \cup K_2$$

$$- F = F_{2}$$

$$-\Delta = \Delta_1 \cup \Delta_2 \cup \{(q_i, e, s_2) : q_i \in F_1\}$$

(c) Kleene star:

Let $M_1 = (K_1, \sum, \Delta_1, s_1, F_1)$ be a NFA.

 \Rightarrow construct a NFA $M = (K, \Sigma, \Delta, s, F)$, such that

$$L(M) = L(M_1)^*.$$

Where

$$-K = K_1 \cup \{s_1'\}$$

$$- F = F_1 \cup \{s_1'\}$$

$$- \Delta = \Delta_1 \cup \{(q_i, e, s_1) : q_i \in F_1\} \cup \{(s'_1, e, s_1)\}$$

(d) Complementation:

Let $M_1 = (K_1, \Sigma, \delta_1, s_1, F_1)$ be a DFA. \Rightarrow construct a DFA $M = (K, \Sigma, \delta, s, F)$, such that $L(M) = \overline{L(M_1)} = \Sigma^* - L(M_1)$.

Where

$$-K = K_1$$

$$- s = s_1$$

$$-F = K - F_1$$

$$-\delta = \delta_1$$

(e) Intersection:

$$L(M_1) \cap L(M_2) = \sum^* -(\sum^* -L(M_1)) \cup (\sum^* -L(M_2))$$

Let
$$M_i = (K_i, \sum, \delta_i, s_i, F_i)$$
 $(i = 1, 2)$ be two DFA.
 \Rightarrow construct a DFA $M = (K, \sum, \delta, s, F)$, such that $L(M) = L(M_1) \cap L(M_2)$.

Where

$$-K = K_1 \times K_2$$

$$-s = (s_1, s_2)$$

$$-F = F_1 \times F_2$$

$$-\delta: K \times \sum \to K$$

 $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$

"parallel" simulation!

How about

Example:

Consider the regular expression $(ab \cup aab)^*$. A NFA accepting the language denoted by this regular expression can be shown as following:

☐ FA and Regular Express are equivalent

Theorem: A language is regular iff it is accepted by a FA.

Proof: \Rightarrow

The class of regular languages is the smallest class of languages containing \emptyset and the singletons $\{a|a\in\Sigma\}$, and closed under **union**, **concatenation**, and **Kleene star**.

 \emptyset and the singletons $\{a|a\in\Sigma\}$ are accepted by FA.

 \Rightarrow every regular language is accepted by some FA.

 \Leftarrow

Let
$$M = (K, \Sigma, \Delta, s, F)$$
 be a FA.

To construct a regular expression R, s. t. L(M) = L(R).

Let
$$K = \{q_1, \dots, q_n\}$$
 and $s = q_1$.

We'll do induction over k for executions that use only states in $\{q_1, \dots, q_k\}$

Definition: For $i, j = 1, \dots, n$ and $k = 0, \dots, n$, define $R(i, j, k) = \{w \mid w \in \Sigma^*, \delta(q_i, w) = q_j \text{ and for any prefix } x \text{ of } w, x \neq e, \ \delta(q_i, x) = q_l \land (l \leq k)\}$

$$R(i, j, 0) = \begin{cases} \{a | \delta(q_i, a) = q_j\} & \text{if } i \neq j \\ \{a | \delta(q_i, a) = q_j\} \cup \{e\} & \text{if } i = j \end{cases}$$

Note:

$$R(i,j,n) = \{ w | w \in \Sigma^*, (q_i, w) \vdash_M^* (q_j, e) \}$$

$$L(M) = \bigcup \{ R(1,j,n) | q_j \in F \}$$

Theorem: R(i,j,k) are regular languages.

Proof: By induction on k.

Basis step: k = 0

$$R(i, j, 0) = \begin{cases} \{a | \delta(q_i, a) = q_j\} & \text{if } i \neq j \\ \{a | \delta(q_i, a) = q_j\} \cup \{e\} & \text{if } i = j \end{cases}$$

Induction step:

$$R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1)R(k,k,k-1)^*$$

 $R(k,j,k-1)$

 $\Rightarrow R(i,j,k)$ is regular for all i,j,k.

Example: Construct a regular expression for the language

 $L = \{w \in \{a,b\}^* : w \text{ has } 3k+1 \text{ } b'\text{s for some } k \in \mathbb{N}\}$ accepted by the following DFA.

Assume that the DFA M has two simple properties:

- 1) It has a single final state, $F = \{f\}$.
- 2) If $(q, u, p) \in \Delta$, then $q \neq f_{\circ}$ and $p \neq s$.

Any DFA \Rightarrow An equivalent FA with properties 1)2).

Let
$$K = \{q_1, q_2, \dots, q_n\}$$
, so that $s = q_{n-1}, f = q_n$.

 \Rightarrow The regular expression R(n-1,n,n)=L(M).

We compute

$$R(i,j,0) \rightarrow R(i,j,1) \rightarrow \cdots \rightarrow R(i,j,n)$$

Remark:

In general, for each pair of states $q_i \neq q$ and $q_j \neq q$, eliminate state q as following:

2.4 Languages that are and are not Regular

Example: Let $\Sigma = \{0, 1, \dots, 9\}$.

 $L = \{w : w \in \Sigma^* \text{ be the decimal representation for non-negative integers(without redundant leading 0's) divisible by 2 and 3<math>\}$. Then L is regular.

Solution:

 \bullet Let L_1 be the set of decimal representation of nonnegative integers.

$$L_1 = 0 \cup \{1, 2, \cdots, 9\} \sum^*$$
.

• Let L_2 be the set of decimal representation of nonnegative integers divisible by 2.

$$L_2 = L_1 \cap \sum^* \{0, 2, 4, 6, 8\}.$$

• Let L_3 be the set of decimal representation of nonnegative integers divisible by 3. L_3 can be accepted by the following FA.

$$L = L_2 \cap L_3$$

-L is regualar.

☐ What languages are not regular?

Intuition:

Since a FA has only finite state, it can "remember" only a finite number of things

- Some things we would expect are not regular
 - Balanced parentheses (have to remember an arbitrary nesting depth)
 - $\{a^n b^n : n \ge 0\}$

If a FA accepts a string that is "long enough", it must repeat a state

 $- \{a^n : n \ge 1 \text{ is a prime}\} \text{ is not regular.}$

Theorem: (Pumping Theorem) Let L be a regular language. \exists an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be written as w = xyz such that

- $-y \neq e$
- $-|xy| \le n$
- for each $i \ge 0$ $xy^iz \in L$

Proof:

Let L be a regular language, accepted by a DFA M with n states, and string w, $|w| \ge n$.

Consider the first n steps of computation of M:

$$(q_0, a_1 \cdots a_n) \vdash_M (q_1, a_2 \cdots a_n) \vdash_M \cdots \vdash_M (q_n, e)$$

Pigeonhole Principle

$$\Rightarrow \exists i, j, 0 \leq i < j \leq n$$
, such that $q_i = q_j$

Let
$$y = a_i \cdots a_j, x = a_1 \cdots a_{i-1}, z = a_{j+1} \cdots a_m$$
.

Example: Show $L = \{a^i b^i | i \ge 0\}$ is not regular.

Proof:

Assume L regular. By Pumping Theorem, \exists integer n.

Consider the string $w = a^n b^n \in L$.

It can be written as w = xyz such that

$$-|xy| \le n$$

$$-y \neq e$$

$$\Rightarrow y = a^i$$
 for some $i > 0$

But
$$xz = a^{n-i}b^n \notin L$$

contradiction!!

Remark: Proving that a language is not regular:

- ullet Let L be the proposed regular language
- \bullet There is some n, by the pumping lemma
- ullet Choose a string s, longer than n symbols, in the language L
- ullet Using the pumping lemma, construct a new string s' that is not in the language

Example: Show $L = \{a^n | n \text{ is prime } \}$ is not regular.

Proof:

Assume L regular. $\exists w = xyz$, and $x = a^p$, $y = a^q$ and $z = a^r$, where $p, r \ge 0$ and q > 0.

By Pumping theorem, $xy^nz \in L$ for each $n \ge 0$; that is, p + nq + r is prime for each $n \ge 0$.

But it is impossible; for let n = p + 2q + r + 2; then $p + nq + r = (q + 1) \cdot (p + 2q + r)$.

contradiction!!

Example: Show

 $L = \{w \in \{a,b\}^* : w \text{ has an equal number of } a \text{'s and } b \text{'s} \}$ is not regular.

Proof:

If L is regular, then so would be $L \cap a^*b^*$.

Closure under intersection of regular language

But
$$L \cap a^*b^* = \{a^nb^n : n \ge 0\}$$

— not regular language.

L is not regular.

☐ Reprise on FA and Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- A union of a countable number of regular languages
- An intersection of a countable number of regular languages
- $\{x: x \in L_1 \text{ and } x \not\in L_2\}$, L_1 and L_2 are both regular
- A subset of a regular language

$$\bigcup_{i=0}^{\infty} L_i = \bigcap_{i=0}^{\infty} \overline{L_i}$$

Homework 2:	
P60	2.1.1
	2.1.2 (c)(d)
	2.1.3 (c)(e)
P74	2.2.2 (a)(b)
	2.2.6 (a)(b)
	2.2.10
P83	2.3.4 (b)
	2.3.7 (a)(b)(c)(d)
P90	2.3.5 (a)
	2.4.8