1

Chapitre 25

Espaces Vectoriels et Applications Linéaires.

Sommaire.

1 Exercices.

Les propositions marquées de \star sont au programme de colles.

1 Exercices.

Exercice 1: $\Diamond \Diamond \Diamond$

Soit F l'ensemble des suites bornées et G l'ensemble des suites qui tendent vers 0.

- 1. Démontrer que G est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- 2. Démontrer que F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- 3. Pourquoi peut-on dire que G est un sous-espace vectoriel de F?

Solution:

1. La suite nulle tend vers 0 donc $0_{\mathbb{R}^{\mathbb{N}}} \in G$.

Soient $\lambda, \mu \in \mathbb{R}$ et $u, v \in G$, c'est-à-dire $u \to 0$ et $v \to 0$.

On a $\lambda u + \mu v \to 0$ par produit et somme de limites donc $\lambda u + \mu v \in G$.

Ainsi, G est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

2. La suite nulle est bornée donc $0_{\mathbb{R}^{\mathbb{N}}} \in F$.

Soient $\lambda, \mu \in \mathbb{R}$ et $u, v \in F$, c'est-à-dire u et v sont bornées.

Alors $\exists M_u, M_v \in \mathbb{R} \mid \forall n \in \mathbb{N}, |u_n| \leq M_u \land |v_n| \leq M_v$.

Ainsi, $\forall n \in \mathbb{N}$, $\lambda u_n + \mu v_n \leq \lambda M_u + \mu M_v$ donc $\lambda u + \mu v$ est bornée et appartient à F.

Ainsi, F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

3. G est un sous-espace vectoriel de F car $G \subset F$ et G est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Exercice 2: $\Diamond \Diamond \Diamond$

Dans chacun des cas suivants, justifier que F_i est un s.e.v. de E_i .

- 1. $E_1 = \mathbb{R}^3$ et $F_1 = \{(x, y, x + y), x, y \in \mathbb{R}\}.$
- 2. $E_2 = M_n(\mathbb{R})$ et $F_2 = \{M \in E_2 : \text{Tr}(M) = 0\}.$
- 3. $E_3 = M_n(\mathbb{R})$ et $F_3 = \{M \in M_n(\mathbb{R}) : AM = MA\}$ pour $A \in M_n(\mathbb{R})$ fixée.

Solution:

- 1. On a $F_1 = \{x(1,0,1) + y(0,1,1) \mid x,y \in \mathbb{R}\} = \text{Vect}((1,0,1),(0,1,1))$ c'est bien un s.e.v. de \mathbb{R}^3 .
- 2. On a $F_2 = \text{Ker}(\text{Tr})$, or Tr est linéaire donc F_2 est un s.e.v. de E_2 .
- 3. La matrice nulle commute avec toutes les matrices donc $0_{M_n(\mathbb{R})} \in F_3$.

Soient $\lambda, \mu \in \mathbb{R}$ et $M, N \in F_3$, c'est-à-dire AM = MA et AN = NA.

On a $A(\lambda M + \mu N) = \lambda AM + \mu AN = \lambda MA + \mu NA = (\lambda M + \mu N)A$ donc $\lambda M + \mu N \in F_3$.

Ainsi, F_3 est un s.e.v. de E_3 .

Exercice 3: $\Diamond \Diamond \Diamond$

Soit U l'ensemble des fonctions croissantes sur I.

Soit $V = \{f - g \mid f, g \in U\}$. Montrer que V est un s.e.v. de $\mathcal{F}(I, \mathbb{R})$.

Solution:

La fonction nulle, notée 0 est croissante sur I et 0 = 0 - 0 donc $0 \in V$.

Soient $\lambda, \mu \in \mathbb{R}$ et $\varphi, \psi \in V : \exists f_{\varphi}, g_{\varphi} \in U \mid \varphi = f_{\varphi} - g_{\varphi}$ et $\exists f_{\psi}, g_{\psi} \in U \mid \psi = f_{\psi} - g_{\psi}$.

Alors $\lambda \varphi + \mu \psi = \lambda (f_{\varphi} - g_{\varphi}) + \mu (f_{\psi} - g_{\psi}) = (\lambda f_{\varphi} + \mu f_{\psi}) - (\lambda g_{\varphi} + \mu g_{\psi}).$

Or $\lambda f_{\varphi} + \mu f_{\psi}$ et $\lambda g_{\varphi} + \mu g_{\psi}$ sont croissantes car sommes de fonctions croissantes donc $\lambda \varphi + \mu \psi \in V$.

Ainsi, V est un s.e.v. de $\mathcal{F}(I,\mathbb{R})$.

Exercice 4: ♦♦◊

Soit $j = e^{\frac{2i\pi}{3}}$, $u = (1, j, j^2)$, $v = (1, j^2, j)$ et $w = (j, j^2, 1)$. Montrer que $\text{Vect}(u, v, w) = \{(x, y, z) \in \mathbb{C}^3 \mid x + y + z = 0\}$.

Solution:

$$Vect(u, v, w) = \{x(1, j, j^2) + y(1, j^2, j) + z(j, j^2, 1) \mid x, y, z \in \mathbb{C} \}$$

$$= \{(x + y + zj, xj + yj^2 + zj^2, xj^2 + yj + z) \mid x, y, z \in \mathbb{C} \}$$

$$= \{(x, y, z) \in \mathbb{C}^3 \mid x + y + z = 0 \}$$

En effet, $\forall x, y, z \in \mathbb{C}, x + y + zj + xj + yj^2 + zj^2 + xj^2 + yj + z = (x + y + z)(1 + j + j^2) = 0.$

Exercice 5: ♦♦♦

Soit E un \mathbb{K} -ev et F, G deux s.e.v. de E. Montrer :

 $F \cup G$ est un s.e.v. de $E \iff F \subset G$ ou $G \subset F$

Solution:

 \implies Supposons que $F \cup G$ est un s.e.v. de E.

Par l'absurde, supposons que $F \not\subset G$ et $G \not\subset F$.

Soient $x \in F \setminus G$ et $y \in G \setminus F$. On a $x + y \in F \cup G$, puisque c'est un s.e.v.

Ainsi, $x + y \in F$, ce qui est absurde car $y \notin F$, ou $x + y \in G$, ce qui est absurde car $x \notin G$.

Donc $F \subset G$ ou $G \subset F$.

 \leftarrow Supposons que $F \subset G$ SPDG.

Alors $F \cup G = G$, qui est un s.e.v. de E.

Exercice 6: ♦♦◊

Soit P l'ensemble des fonctions paires sur $\mathbb R$ et I l'ensemble des fonctions impaires sur $\mathbb R$.

- 1. Justifier que P et I sont deux sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$.
- 2. Démontrer que $\mathbb{R}^{\mathbb{R}} = P \oplus I$.

Solution:

1. La fonction nulle est paire et impaire donc $0_{\mathbb{R}^{\mathbb{R}}} \in P \cap I$.

Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in P$, c'est-à-dire f(-x) = f(x) et g(-x) = g(x). On prend $x \in \mathbb{R}$.

Alors $(\lambda f + \mu g)(-x) = \lambda f(-x) + \mu g(-x) = \lambda f(x) + \mu g(x) = (\lambda f + \mu g)(x)$.

Ainsi, $\lambda f + \mu g \in P$. Même raisonnement pour I.

Ainsi, P et I sont des s.e.v. de $\mathbb{R}^{\mathbb{R}}$.

2. On a $P \cap I = \{0_{\mathbb{R}^{\mathbb{R}}}\}$ car $\forall x \in \mathbb{R}$, $f(-x) = -f(x) \Rightarrow f(x) = 0$.

 $\overline{\text{Soit}} \ f \in \mathbb{R}^{\mathbb{R}} \ \text{et} \ x \in \mathbb{R}.$

Analyse. Supposons qu'il existe $g \in P$ et $h \in I$ tels que f = g + h.

Alors f(x) = g(x) + h(x) et f(-x) = g(x) - h(x).

En sommant, on a 2g(x) = f(x) + f(-x) et 2h(x) = f(x) - f(-x).

Ainsi, $g(x) = \frac{f(x) + f(-x)}{2}$ et $h(x) = \frac{f(x) - f(-x)}{2}$.

Synthèse. On pose $g: x \mapsto \frac{f(x) + f(-x)}{2}$ et $h: x \mapsto \frac{f(x) - f(-x)}{2}$.

On a bien que f = g + h, $g \in P$ et $h \in I$.

Ainsi, $\mathbb{R}^{\mathbb{R}} = P \oplus I$.

Exercice 7: ♦♦◊

Soit E l'ensemble des suites réelles convergentes et F l'ensemble des suites réelles de limite nulle.

- 1. Démontrer que E est un s.e.v. de $\mathbb{R}^{\mathbb{N}}$. On admettra que F l'est aussi.
- 2. Soit c la suite constante égale à 1. Montrer que $E = F \oplus \text{Vect}(c)$.

Solution:

1. La suite nulle converge et $0_{\mathbb{R}^{\mathbb{N}}} \in E$.

Soient $\lambda, \mu \in \mathbb{R}$ et $u, v \in E$, c'est-à-dire u et v convergent.

Alors $\lambda u + \mu v$ converge par produit et somme de limites donc $\lambda u + \mu v \in E$.

Ainsi, E est un s.e.v. de $\mathbb{R}^{\mathbb{N}}$.

2. On a $F \cap \text{Vect}(c) = \{0_{\mathbb{R}^{\mathbb{N}}}\}$ car les suites constantes, sauf $0_{\mathbb{R}^{\mathbb{N}}}$, n'ont pas de limite nulle.

Soit $u \in E$, alors $\exists l \in \mathbb{R} \mid u_n \to l$.

Soit $v \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ v_n = u_n - l$.

Alors $\forall n \in \mathbb{N}, \ u_n = v_n + l \cdot c_n$. Or $v \in F$ et $l \cdot c \in \text{Vect}(c)$.

Ainsi, $E = F \oplus \text{Vect}(c)$.

Exercice 8: $\Diamond \Diamond \Diamond$

Soit $P \in \mathbb{K}[X]$ de degré $n \in \mathbb{N}$. On note $P\mathbb{K}[X]$ l'ensemble des poynômes de $\mathbb{K}[X]$ divisibles par P.

- 1. Justifier que $P\mathbb{K}[X]$ est un s.e.v. de E.
- 2. Démontrer que $\mathbb{K}[X] = \mathbb{K}_{n-1}[X] \oplus P\mathbb{K}[X]$.

Solution:

1. Le polynôme nul est divisible par tout polynôme donc $0_{\mathbb{K}[X]} \in P\mathbb{K}[X]$.

Soient $\lambda, \mu \in \mathbb{K}$ et $Q, R \in P\mathbb{K}[X]$.

Alors P divise $\lambda Q + \mu R$ car P divise λQ et μR .

Ainsi, $\lambda Q + \mu R \in P\mathbb{K}[X]$ donc $P\mathbb{K}[X]$ est un s.e.v. de E.

[2.] On a $P\mathbb{K}[X] \cap \mathbb{K}_{n-1}[X] = \{0_{\mathbb{K}[X]}\}$ car si $A \in P\mathbb{K}[X] \cap \mathbb{K}_{n-1}[X]$, alors P divise A et A est de degré strictement inférieur à n, ce qui n'est possible que pour $0_{\mathbb{K}[X]}$.

Soit $A \in \mathbb{K}[X]$, alors $\exists ! (Q, R) \in \mathbb{K}_{n-1}[X] \times P\mathbb{K}[X] \mid A = PQ + R$.

Or $\deg(R) < \deg(P) = n \text{ donc } R \in \mathbb{K}_{n-1}[X] \text{ et } PQ \in P\mathbb{K}[X].$

Ainsi, $\mathbb{K}[X] = \mathbb{K}_{n-1}[X] \oplus P\mathbb{K}[X]$.

Exercice 9: ♦♦♦

Soit E un \mathbb{K} -ev et F, G, H trois s.e.v. de E tels que :

$$\begin{cases} F + G = F + H = F + (G \cap H) \\ F \cap G = F \cap H \end{cases}$$

Montrer que G = H.

Solution:

 \subset Soit $x \in G$.

Alors $\exists (x_F, x_{G \cap H}) \in F \times G \cap H \mid x = x_F + x_{G \cap H}.$

Ainsi, $x_F = x - x_{G \cap H} \in G$ comme somme d'éléments de G.

On obtient $x_F \in F \cap G = F \cap H$.

Ainsi, $x_F \in H$ et $x = x_F + x_{G \cap H} \in H$ comme somme d'éléments de H.

Donc $G \subset H$.

 \supset Raisonnement identique, $H \subset G$.

Ainsi, G = H par double inclusion.

Exercice 10: $\Diamond \Diamond \Diamond$

Montrer que les vecteurs (1,0,1,0), (0,1,0,1) et (1,2,3,4) forment une famille libre de \mathbb{R}^4 .

Solution:

Soient $\lambda, \mu, \nu \in \mathbb{R}$ tels que $\lambda(1,0,1,0) + \mu(0,1,0,1) + \nu(1,2,3,4) = (0,0,0,0)$.

Système trivial, on trouve $\lambda = \mu = \nu = 0$.

Ainsi, la famille est libre.

Exercice 11: $\Diamond \Diamond \Diamond$

Montrer que les suites $u=(1)_{n\in\mathbb{N}}, v=(n)_{n\in\mathbb{N}}$ et $w=(2^n)_{n\in\mathbb{N}}$ forment une famille libre de $\mathbb{R}^{\mathbb{N}}$.

Soient $\lambda, \mu, \nu \in \mathbb{R}$ tels que $\lambda(1)_{n \in \mathbb{N}} + \mu(n)_{n \in \mathbb{N}} + \nu(2^n)_{n \in \mathbb{N}} = (0)_{n \in \mathbb{N}}$.

On a $\lambda + \mu n + \nu 2^n = 0$ pour tout $n \in \mathbb{N}$.

En particulier, pour n = 0, on a $\lambda + \nu = 0$.

Pour n=1, on a $\lambda + \mu + 2\nu = \mu + \nu = 0$ en simplifiant les $\lambda + \nu$.

Pour n=2, on a $\lambda+2\mu+4\nu=\nu=0$ en simplifiant les $\lambda+\nu$ et $\mu+\nu$.

Ainsi, $\lambda = \mu = \nu = 0$ et la famille est libre.

Exercice 12: $\Diamond \Diamond \Diamond$

Soit $p \in \mathbb{N}^*$ et $q_1 < q_2 < ... < q_p$ p réels strictement positifs.

Pour $k \in [1, p]$, on note $a^{(k)}$ la suite géométrique de raison q_k et de premier terme 1.

Montrer que $(a^{(1)}, ..., a^{(p)})$ est libre.

Solution:

Par récurrence sur p:

Initialisation. Pour p = 1, la famille est réduite à un seul vecteur donc elle est libre.

Hérédité. Supposons que la famille est libre pour $p-1 \in \mathbb{N}$.

Soient $\lambda_1, ..., \lambda_p \in \mathbb{R}$ tels que pour $n \in \mathbb{N}$ $\lambda_1 q_1^n + ... + \lambda_p q_p^n = 0$.

Alors $\lambda_1 \left(\frac{q_1}{q_p}\right)^n + \ldots + \lambda_p = 0$, on fait tendre vers l'infini : $\lambda_p = 0$. On obtient $\lambda_1 q_1^n + \ldots + \lambda_{p-1} q_{p-1}^n = 0$ pour tout $n \in \mathbb{N}$.

Par hypothèse de récurrence, on a $\lambda_1 = ... = \lambda_{p-1} = 0$.

Conclusions. Par principe de récurrence, la famille est libre pour tout $p \in \mathbb{N}^*$.

Exercice 13: $\Diamond \Diamond \Diamond$

Pour tout $k \in [0, n]$, on pose $P_k = X^k (1 - X)^{n-k}$.

Démontrer que $(P_0, ..., P_n)$ est une famille libre de $\mathbb{K}_n[X]$.

Solution:

Soient $\lambda_0, ..., \lambda_n \in \mathbb{K}$ tels que $\lambda_0 P_0 + ... + \lambda_n P_n = 0$.

Alors $\lambda_0(1-X)^n + \dots + \lambda_n X^n = 0$.

Pour X = 1, on a $\lambda_n = 0$.

On obtient $\lambda_0(1-X)^n + ... + \lambda_{n-1}X^{n-1}(1-X) = 0$.

Donc $(1-X)(\lambda_0(1-X)^{n-1}+...+\lambda_{n-1}X^{n-1})=0.$

Donc $\lambda_0(1-X)^{n-1} + \dots + \lambda_{n-1}X^{n-1} = 0$ car $1-X \neq 0$.

On itère le raisonnement pour obtenir $\lambda_0 = ... = \lambda_n = 0$. Ainsi, la famille est libre.

Exercice 14: ♦♦♦

Déterminer les fonctions $f \in \mathbb{R}^{\mathbb{R}}$ telles que :

- 1. f est dérivable et (f, f') est une famille liée.
- 2. f est deux fois dérivable et (f, f', f'') est une famille liée.

Solution:

1. Soit $f \in \mathbb{R}^{\mathbb{R}}$ dérivable telle que (f, f') est liée.

Puisque (f, f') est liée, $\exists \lambda \in \mathbb{R} \mid f' = \lambda f$.

Alors $f' = \lambda f$, une EDL1.

Ainsi, $f \in \{x \mapsto \alpha e^{\lambda x} \mid \alpha, \lambda \in \mathbb{R}\}.$

2. Soit $f \in \mathbb{R}^{\mathbb{R}}$ deux fois dérivable telle que (f, f', f'') est liée.

 $\overline{\text{Puisque}}(f, f', f'') \text{ est liée, } \exists (\lambda, \mu) \in \mathbb{R}^2 \mid f'' = \lambda f + \mu f'.$

Alors $f'' = \lambda f + \mu f'$, une EDL2.

Les fonctions sont donc les solutions de cette EDL2.

Exercice 15: ♦♦◊

Soit $u: E \to F$ linéaire et $(e_i)_{i \in I} \in E^I$.

- 1. Montrer que si u est injective et si $(e_i)_{i\in I}$ est libre, alors $(u(e_i))_{i\in I}$ est libre.
- 2. Montrer que si u est surjective et si $(e_i)_{i\in I}$ engendre E, alors $(u(e_i))_{i\in I}$ engendre F.

Solution:

1. Supposons u injective et $(e_i)_{i \in I}$ libre.

Soit J une partie finie de I et $(\lambda_j)_{j\in J}$ telle que $\sum_{j\in J}\lambda_j u(e_j)=0$.

Alors $u\left(\sum_{j\in J}\lambda_j e_j\right)=0$ par linéarité de u puis $\sum_{j\in J}\lambda_j e_j=0$ par linéarité et injectivité de u.

Or $(e_i)_{i \in I}$ est libre donc $\lambda_j = 0$ pour tout $j \in J$.

Ainsi, $(u(e_i))_{i \in I}$ est libre.

2. Supposons u surjective et $(e_i)_{i \in I}$ génératrice de E.

Soit $y \in F$, alors $\exists x \in E \mid y = u(x)$ par surjectivité de u.

Puisque $(e_i)_{i \in I}$ engendre E, $\exists (\lambda_i)_{i \in I} \mid x = \sum_{i \in I} \lambda_i e_i$.

Ainsi, $y = u\left(\sum_{i \in I} \lambda_i e_i\right) = \sum_{i \in I} \lambda_i u(e_i)$ par linéarité de u.

Ainsi, $y = u \left(\sum_{i \in I} \lambda_i e_i \right) - \sum_{i \in I} \lambda_i u(e_i)$ par intearite de Ainsi, $(u(e_i))_{i \in I}$ engendre F.

Exercice 16: ♦◊◊

Pour chacun de ces ensembles, prouver qu'il s'agit d'un espace vectoriel et en donner une base.

- 1. $F = {\alpha X^3 + \beta X + \alpha + \beta, (\alpha, \beta) \in \mathbb{R}^2}.$
- 2. $G = \{(x, y, z, t) \in \mathbb{R}^4 : x + 2y + z t = 0 \text{ et } 2x + 4y + z + 3t = 0\}.$

Solution:

1. Montrons que F est un s.e.v. de $\mathbb{R}_3[X]$.

 $\overline{\mathrm{On}} \text{ a } 0_{\mathbb{R}_3[X]} \in F.$

Soient $\lambda, \mu \in \mathbb{R}$ et $P, Q \in F$. Alors $\exists (\alpha, \beta), (\gamma, \delta) \in \mathbb{R}^2 \mid P = \alpha X^3 + \beta X + \alpha + \beta$ et $Q = \gamma X^3 + \delta X + \gamma + \delta$.

Ainsi, $\lambda P + \mu Q = (\lambda \alpha + \mu \gamma) X^3 + (\lambda \beta + \mu \delta) X + (\lambda \alpha + \mu \gamma) + (\lambda \beta + \mu \delta) \in F$.

Ainsi, F est un s.e.v. de $\mathbb{R}_3[X]$.

La famille $(X^3, X, 1)$ est une base de F.

2. On a $G = \{(x, \frac{t-x}{2} - 1, 4 - 5t, t) \mid x, t \in \mathbb{R}\} = \text{Vect}((1, -\frac{1}{2}, 4, 0), (0, \frac{1}{2}, -5, 1)).$

La famille $(1, -\frac{1}{2}, 4, 0), (0, \frac{1}{2}, -5, 1)$ est une base de G.

Exercice 17: ♦◊◊

Soit $n \in \mathbb{N}$. On définit pour tout $k \in [0, n], P_k = \sum_{i=0}^k X^i$.

Démontrer que $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Quelles sont les coordonnées de $1_{\mathbb{R}[X]}$ dans cette base ? et celles de X^n ?

Solution:

On sait que $(P_k)_{0 \le k \le n}$ est libre comme famille de polynomes de degrés deux-à-deux distincts.

Montrons que c'est une famille génératrice de $\mathbb{R}_n[X]$.

Soit $P \in \mathbb{R}_n[X]$, alors $\exists (a_0, ..., a_n) \in \mathbb{R}^{n+1} \mid P = \sum_{k=0}^n a_k X^k$.

Alors $P = a_n P_n + (a_{n-1} - a_n) P_{n-1} + ... + (a_0 - ... - a_n) P_0$. Donc $(P_k)_{0 \le k \le n}$ est génératrice.

Ainsi, $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Les coordonnées de $1_{\mathbb{R}[X]}$ dans cette base sont (1,0,...,0) et celles de X^n sont (0,...,-1,1).

Exercice 18: $\Diamond \Diamond \Diamond$

Soit $(x_1,...,x_n)$ un n-uplet de réels deux-à-deux distincts et $(L_1,...L_n)$ leurs polynômes de Lagrange.

Montrer que $(L_1, ..., L_n)$ est une base de $\mathbb{R}_{n-1}[X]$.

Donner les coordonnées d'un polynôme P dans cette base.

Solution :

Soient $\lambda_1, ..., \lambda_n \in \mathbb{R}$ tels que $\sum_{k=1}^n \lambda_k L_k = 0$.

Alors $\forall k \in [1, n], \sum_{i=1}^{n} \lambda_i L_i(x_k) = \lambda_k = 0.$

Ainsi, $(L_1, ..., L_n)$ est libre.

C'est une famille libre de n vecteurs donc c'est une base de $\mathbb{R}_{n-1}[X]$.