Question	Scheme	Marks
7(a)	$\left(\cos 3\theta + \sqrt{3}\sin 3\theta\right)^{\frac{1}{2}} = 0 \Rightarrow \cos 3\theta = -\sqrt{3}\sin 3\theta \Rightarrow \tan 3\theta = -\frac{1}{\sqrt{3}}$	M1
	$\Rightarrow 3\theta = -\frac{\pi}{6} \text{ or } \frac{5\pi}{6}$	A1
	$\Rightarrow m = -\frac{\pi}{18} n = \frac{5\pi}{18}$	A1 [3]
(b)	$V = \pi \int_{-\frac{\pi}{18}}^{\frac{5\pi}{18}} \left(\cos 3\theta + \sqrt{3}\sin 3\theta\right) d\theta$	M1
	$V = \pi \left[\frac{\sin 3\theta}{3} - \frac{\sqrt{3}\cos 3\theta}{3} \right]_{\frac{\pi}{18}}^{\frac{5\pi}{18}}$	M1
	$V = \pi \left[\left(\frac{\sin 3 \left(\frac{5\pi}{18} \right)}{3} - \frac{\sqrt{3} \cos 3 \left(\frac{5\pi}{18} \right)}{3} \right) - \left(\frac{\sin 3 \left(-\frac{\pi}{18} \right)}{3} - \frac{\sqrt{3} \cos 3 \left(-\frac{\pi}{18} \right)}{3} \right) \right]$	M1
	$V = \frac{4\pi}{3}$	A1 [4]
Total 7 marks		

Part	Mark	Notes
(a)	M1	Sets the equation = 0 and obtains $\tan 3\theta = k$
	A1	Finds at least one correct value of 3θ
		$3\theta = -\frac{\pi}{6} \text{or} \frac{5\pi}{6}$
		Works in degrees
		Accept -30° or 150° for this mark.
		This mark is also implied by one correct solution for m or n in degrees or
		radians.
		NB This is an M mark in Epen
	A1	For $m = -\frac{\pi}{18}$ $n = \frac{5\pi}{18}$ which must be in radians.
		Accept embedded in coordinates.
		M and n do not need to be identified.

(b)	Worki	Working in degrees.		
		llow working in degrees up to the last M mark.		
	M1	For a correct statement for the volume of revolution with π and their limits.		
		Allow		
		$V = \pi \int_{-\frac{\pi}{18}}^{\frac{5\pi}{18}} \left[\cos 3\theta + \sqrt{3} \sin 3\theta \right]^{\frac{1}{2}} d\theta \text{ or } V = \pi \int_{-\frac{\pi}{18}}^{\frac{5\pi}{18}} \left(\cos 3\theta + \sqrt{3} \sin 3\theta \right) d\theta$		
		Allow also:		
		$V = \pi \int_{\frac{\pi}{18}}^{\frac{5\pi}{18}} \left(\cos 3\theta + \sqrt{3}\sin 3\theta\right) dx \text{ or even } V = \pi \int_{\frac{\pi}{18}}^{\frac{5\pi}{18}} \left(\cos 3\theta + \sqrt{3}\sin 3\theta\right)$		
		This mark can be implied by correct further working		
		Working in degrees		
		$V = \pi \int_{-10^{\circ}}^{50^{\circ}} \left(\cos 3\theta + \sqrt{3}\sin 3\theta\right) d\theta$		
	M1	For an acceptable attempt at integration. Minimally acceptable integration is as follows.		
		$\cos 3\theta \Rightarrow \pm \frac{\sin 3\theta}{3}, \sin 3\theta \Rightarrow \pm \frac{\cos 3\theta}{3}$		
		Ignore absence or incorrect limits and the absence of π for this mark.		
	M1	For substitution of the correct limits into their integrated expression the correct way around. This must be a changed expression from the one given. If the integrated expression is correct with correct limits, allow a final volume		
		of $\frac{4\pi}{3}$ seen without explicit substitution. If the final volume is incorrect		
		without evidence of explicit substitution award M0.		
		If the integrated expression is incorrect or the limits are incorrect, explicit		
		substitution must be seen for the award of this mark.		
		Do not allow use of degrees at this stage.		
		Ignore absence of π for this mark.		
	A1	For the correct volume $(V) = \frac{4\pi}{3}$		