A Statistician's Guide to the Galaxy (Fitting Zoo)

An Introduction to the Statistical Foundations of SED Fitting

Will Handley

<wh260@cam.ac.uk>

Royal Society University Research Fellow Institute of Astronomy, University of Cambridge Kavli Institute for Cosmology, Cambridge Gonville & Caius College willhandley.co.uk/talks

8 July 2025

The Goal: From Photons to Physics

Why SED fitting is a statistical inference problem

The Data D

We observe a galaxy's light (photometry or spectra) across different wavelengths. This is our dataset, D.

The Model $\theta | M$

We want to infer the underlying physical properties, our parameters, θ : Stellar Mass (M_*) , Star Formation History (SFH), Dust content (A_V) , Metallicity (Z), ...

The Challenge

The parameter space is often:

- ▶ High-dimensional: Many parameters to fit.
- Degenerate: Different combinations of parameters can produce similar SEDs.

The Language of Inference:

How we quantify what we learn from data

Prior

$$\pi(heta)$$

What we believe about the parameters *before* we see the data. Our physical assumptions.

Evidence

 $\mathcal{Z}(D)$

How we update our belief in the model using the data.

$$\underbrace{\mathcal{P}(\theta|D)}_{\text{Posterior}} = \underbrace{\frac{\mathcal{L}(D|\theta)}{\mathcal{L}(D|\theta)} \times \frac{\text{Prior}}{\pi(\theta)}}_{\text{Evidence}}$$

Likelihood

 $\mathcal{L}(D|\theta)$

How we update our belief in the parameters using the data.

Posterior

 $\mathcal{P}(\theta|D)$

What we know about the parameters *after* seeing the data. It's our updated state of knowledge.

How it Works: Hill Climbing

Imagine the parameter space is a landscape where lower χ^2 (or higher likelihood) is "downhill".

- Start somewhere.
- ▶ Follow the steepest gradient downhill.
- Stop when you reach the bottom of a valley.

- Fast and computationally cheap.
- Good for a quick first look.

How it Works: Hill Climbing

Imagine the parameter space is a landscape where lower χ^2 (or higher likelihood) is "downhill".

- Start somewhere.
- ▶ Follow the steepest gradient downhill.
- Stop when you reach the bottom of a valley.

- Fast and computationally cheap.
- Good for a quick first look.

How it Works: Hill Climbing

Imagine the parameter space is a landscape where lower χ^2 (or higher likelihood) is "downhill".

- Start somewhere.
- ▶ Follow the steepest gradient downhill.
- Stop when you reach the bottom of a valley.

- Fast and computationally cheap.
- Good for a quick first look.

How it Works: Hill Climbing

Imagine the parameter space is a landscape where lower χ^2 (or higher likelihood) is "downhill".

- Start somewhere.
- ▶ Follow the steepest gradient downhill.
- Stop when you reach the bottom of a valley.

- Fast and computationally cheap.
- Good for a quick first look.

How it Works: Hill Climbing

Imagine the parameter space is a landscape where lower χ^2 (or higher likelihood) is "downhill".

- Start somewhere.
- ▶ Follow the steepest gradient downhill.
- Stop when you reach the bottom of a valley.

- Fast and computationally cheap.
- Good for a quick first look.

How it Works: Hill Climbing

Imagine the parameter space is a landscape where lower χ^2 (or higher likelihood) is "downhill".

- Start somewhere.
- ▶ Follow the steepest gradient downhill.
- Stop when you reach the bottom of a valley.

- Fast and computationally cheap.
- Good for a quick first look.

Limitations

- Only gives a single point estimate (the "best fit").
- No uncertainty quantification! Where are the error bars?
- Can easily get stuck in a local minimum, missing the true global best fit.

Key Message

Limitations

- Only gives a single point estimate (the "best fit").
- No uncertainty quantification! Where are the error bars?
- Can easily get stuck in a local minimum, missing the true global best fit.

Key Message

Limitations

- Only gives a single point estimate (the "best fit").
- No uncertainty quantification! Where are the error bars?
- Can easily get stuck in a local minimum, missing the true global best fit.

Key Message

Limitations

- Only gives a single point estimate (the "best fit").
- No uncertainty quantification! Where are the error bars?
- Can easily get stuck in a local minimum, missing the true global best fit.

Key Message

Why do sampling?

- ► The cornerstone of numerical Bayesian inference is working with **samples**.
- ▶ Generate a set of representative parameters drawn in proportion to the posterior $\theta \sim \mathcal{P}$.
- ► The magic of marginalisation ⇒ perform usual analysis on each sample in turn.
- ► The golden rule is **stay in samples** until the last moment before computing summary statistics/triangle plots because

$$f(\langle X \rangle) \neq \langle f(X) \rangle$$

• Generally need $\sim \mathcal{O}(12)$ independent samples to compute a value and error bar.

How it Works (Metropolis-Hastings)

- 1. Take a random step to a new position.
- 2. If the new spot is "higher" (better likelihood), move there.
- 3. If it's "lower", maybe move there anyway (with probability proportional to how much lower it is).
- 4. Repeat millions of times. The path the walker takes traces the posterior distribution.

How it Works (Metropolis-Hastings)

- 1. Take a random step to a new position.
- 2. If the new spot is "higher" (better likelihood), move there.
- 3. If it's "lower", maybe move there anyway (with probability proportional to how much lower it is).
- 4. Repeat millions of times. The path the walker takes traces the posterior distribution.

How it Works (Metropolis-Hastings)

- 1. Take a random step to a new position.
- 2. If the new spot is "higher" (better likelihood), move there.
- 3. If it's "lower", maybe move there anyway (with probability proportional to how much lower it is).
- 4. Repeat millions of times. The path the walker takes traces the posterior distribution.

How it Works (Metropolis-Hastings)

- 1. Take a random step to a new position.
- 2. If the new spot is "higher" (better likelihood), move there.
- 3. If it's "lower", maybe move there anyway (with probability proportional to how much lower it is).
- 4. Repeat millions of times. The path the walker takes traces the posterior distribution.

How it Works (Metropolis-Hastings)

- 1. Take a random step to a new position.
- 2. If the new spot is "higher" (better likelihood), move there.
- 3. If it's "lower", maybe move there anyway (with probability proportional to how much lower it is).
- 4. Repeat millions of times. The path the walker takes traces the posterior distribution.

Advantages & Limitations

- Explores the full posterior and gives uncertainties.
- Limitation: The walker can be inefficient. It can get "stuck" in a local high-likelihood region and fail to find other, separate modes.
- Limitation: Can be slow to explore highly correlated ("banana-shaped") posteriors.

Key Message

Advantages & Limitations

- Explores the full posterior and gives uncertainties.
- Limitation: The walker can be inefficient. It can get "stuck" in a local high-likelihood region and fail to find other, separate modes.
- Limitation: Can be slow to explore highly correlated ("banana-shaped") posteriors.

Key Message

Advantages & Limitations

- Explores the full posterior and gives uncertainties.
- Limitation: The walker can be inefficient. It can get "stuck" in a local high-likelihood region and fail to find other, separate modes.
- Limitation: Can be slow to explore highly correlated ("banana-shaped") posteriors.

Key Message

Advantages & Limitations

- Explores the full posterior and gives uncertainties.
- Limitation: The walker can be inefficient. It can get "stuck" in a local high-likelihood region and fail to find other, separate modes.
- Limitation: Can be slow to explore highly correlated ("banana-shaped") posteriors.

Key Message

How it Works

- The walkers don't move completely randomly.
- ► They propose new steps based on the positions of *other* walkers in the ensemble.
- This allows the whole group to learn about the shape of the posterior (e.g., its correlations) and explore it more efficiently.

How it Works

- The walkers don't move completely randomly.
- ► They propose new steps based on the positions of *other* walkers in the ensemble.
- This allows the whole group to learn about the shape of the posterior (e.g., its correlations) and explore it more efficiently.

How it Works

- The walkers don't move completely randomly.
- ► They propose new steps based on the positions of *other* walkers in the ensemble.
- This allows the whole group to learn about the shape of the posterior (e.g., its correlations) and explore it more efficiently.

How it Works

- The walkers don't move completely randomly.
- ► They propose new steps based on the positions of *other* walkers in the ensemble.
- This allows the whole group to learn about the shape of the posterior (e.g., its correlations) and explore it more efficiently.

How it Works

- The walkers don't move completely randomly.
- ► They propose new steps based on the positions of *other* walkers in the ensemble.
- This allows the whole group to learn about the shape of the posterior (e.g., its correlations) and explore it more efficiently.

Advantages

- Much better at exploring correlated, "banana-shaped" parameter spaces.
- More efficient "mixing" than a single chain.
- Easy to parallelize (one walker per CPU).

Limitation

Ensemble can still get trapped in one mode if other modes are very far away.

Key Message

Advantages

- Much better at exploring correlated, "banana-shaped" parameter spaces.
- ▶ More efficient "mixing" than a single chain.
- Easy to parallelize (one walker per CPU).

Limitation

Ensemble can still get trapped in one mode if other modes are very far away.

Key Message

Advantages

- Much better at exploring correlated, "banana-shaped" parameter spaces.
- More efficient "mixing" than a single chain.
- ► Easy to parallelize (one walker per CPU).

Limitation

Ensemble can still get trapped in one mode if other modes are very far away.

Key Message

Advantages

- Much better at exploring correlated, "banana-shaped" parameter spaces.
- More efficient "mixing" than a single chain.
- ► Easy to parallelize (one walker per CPU).

Limitation

Ensemble can still get trapped in one mode if other modes are very far away.

Key Message

The Missing Piece: Why Evidence Calculation Matters

And why it's so hard to compute

Why Evidence is Important

▶ **Model Comparison**: Bayes model theorem:

$$\mathcal{P}(M|D) \propto \mathcal{Z}(D|M) \mathcal{P}(M)$$

For SED fitting: Which stellar population model best explains the galaxy photometry?

Occam's Razor: Automatic complexity penalty

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\!\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}(\mathcal{P}||\pi)$$

Bayesian Model Averaging: Weighted model combinations

Why Evidence is Hard

► The high-dimensional evidence integral:

$$\mathcal{Z} = \int \mathcal{L}(heta)\pi(heta)d heta$$

$$\left(\text{from Bayes theorem} : \mathcal{P}(\theta|D) = \frac{\mathcal{L}(\theta)\pi(\theta)}{\mathcal{Z}} \right)$$

The Missing Piece: Why Evidence Calculation Matters

And why it's so hard to compute

Why Evidence is Important

▶ **Model Comparison**: Bayes model theorem:

$$\mathcal{P}(M|D) \propto \mathcal{Z}(D|M) \mathcal{P}(M)$$

For SED fitting: Which stellar population model best explains the galaxy photometry?

Occam's Razor: Automatic complexity penalty

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}(\mathcal{P}||\pi)$$

Bayesian Model Averaging: Weighted model combinations

Why Evidence is Hard

► The high-dimensional evidence integral:

$$\mathcal{Z} = \int \mathcal{L}(heta)\pi(heta)d heta$$

$$\left(\text{from Bayes theorem}: \mathcal{P}(\theta|D) = \frac{\mathcal{L}(\theta)\pi(\theta)}{\mathcal{Z}}\right)$$

▶ The difficulty is **not** that most of parameter space has $\mathcal{L} \approx 0...$

The Missing Piece: Why Evidence Calculation Matters

And why it's so hard to compute

Why Evidence is Important

▶ **Model Comparison**: Bayes model theorem:

$$\mathcal{P}(M|D) \propto \mathcal{Z}(D|M) \mathcal{P}(M)$$

For SED fitting: Which stellar population model best explains the galaxy photometry?

Occam's Razor: Automatic complexity penalty

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}(\mathcal{P}||\pi)$$

Bayesian Model Averaging: Weighted model combinations

Why Evidence is Hard

► The high-dimensional evidence integral:

$$\mathcal{Z} = \int \mathcal{L}(heta) \pi(heta) d heta$$

$$\left(\text{from Bayes theorem}: \mathcal{P}(\theta|D) = \frac{\mathcal{L}(\theta)\pi(\theta)}{\mathcal{Z}}\right)$$

- ▶ The difficulty is **not** that most of parameter space has $\mathcal{L} \approx 0...$
- The difficulty is that we can't estimate **volume** $d\theta$ in high dimensions!

The State of the Art: Nested Sampling (e.g., dynesty)

A Radically Different Approach

Instead of random walking, nested sampling attacks the problem from the outside-in.

- 1. Start with a set of "live points" scattered across the entire **prior**.
- 2. At each step: find the point with the *worst* likelihood and discard it.
- Replace it with a new point drawn from the prior, but with a likelihood better than the point you just discarded.
- 4. This forces the set of live points to continuously "shrink" into regions of higher and higher likelihood.

A Radically Different Approach

Instead of random walking, nested sampling attacks the problem from the outside-in.

- 1. Start with a set of "live points" scattered across the entire **prior**.
- 2. At each step: find the point with the *worst* likelihood and discard it.
- Replace it with a new point drawn from the prior, but with a likelihood better than the point you just discarded.
- 4. This forces the set of live points to continuously "shrink" into regions of higher and higher likelihood.

A Radically Different Approach

Instead of random walking, nested sampling attacks the problem from the outside-in.

- 1. Start with a set of "live points" scattered across the entire **prior**.
- 2. At each step: find the point with the *worst* likelihood and discard it.
- 3. Replace it with a new point drawn from the prior, but with a likelihood *better* than the point you just discarded.
- This forces the set of live points to continuously "shrink" into regions of higher and higher likelihood.

A Radically Different Approach

Instead of random walking, nested sampling attacks the problem from the outside-in.

- 1. Start with a set of "live points" scattered across the entire **prior**.
- 2. At each step: find the point with the *worst* likelihood and discard it.
- 3. Replace it with a new point drawn from the prior, but with a likelihood *better* than the point you just discarded.
- This forces the set of live points to continuously "shrink" into regions of higher and higher likelihood.

Key Advantages

- Naturally handles multimodality. The shrinking cloud of points will find and explore all modes simultaneously.
- ▶ It calculates the **Bayesian Evidence** (**Z**) as a primary output. This is essential for model comparison!

Key Message

Nested sampling excels at exploring complex, multimodal posteriors and is the go-to method for Bayesian model comparison.

Key Advantages

- Naturally handles multimodality. The shrinking cloud of points will find and explore all modes simultaneously.
- ▶ It calculates the **Bayesian Evidence** (**Z**) as a primary output. This is essential for model comparison!

Key Message

Nested sampling excels at exploring complex, multimodal posteriors and is the go-to method for Bayesian model comparison.

Key Advantages

- Naturally handles multimodality. The shrinking cloud of points will find and explore all modes simultaneously.
- ▶ It calculates the **Bayesian Evidence** (**Z**) as a primary output. This is essential for model comparison!

Key Message

Nested sampling excels at exploring complex, multimodal posteriors and is the go-to method for Bayesian model comparison.

Key Advantages

- Naturally handles multimodality. The shrinking cloud of points will find and explore all modes simultaneously.
- ▶ It calculates the **Bayesian Evidence** (**Z**) as a primary output. This is essential for model comparison!

Key Message

Nested sampling excels at exploring complex, multimodal posteriors and is the go-to method for Bayesian model comparison.

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\mathsf{inside}}}{n_{\mathsf{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\text{inside}}}{n_{\text{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\text{inside}}}{n_{\text{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\text{inside}}}{n_{\text{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\mathsf{inside}}}{n_{\mathsf{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\mathsf{inside}}}{n_{\mathsf{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i imes rac{n_{\mathsf{inside}}}{n_{\mathsf{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\text{inside}}}{n_{\text{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Volume Contraction

At each step, the volume contracts predictably:

$$V_{i+1} = V_i \times \frac{n_{\text{inside}}}{n_{\text{total}}}$$

indep. of dimensionality, geometry or topology

Evidence

The evidence is computed as:

$$\mathcal{Z} = \sum \mathcal{L}_i \Delta V_i$$

Posterior

$$w_i = \mathcal{L}_i \times \Delta V_i$$

Practical Guidance: How to Use Nested Sampling

Understanding resolution and reliability parameters

Rejection Samplers

- ▶ e.g. MultiNest, UltraNest, nessai
- Construct bounding regions, reject invalid points
- Efficient in low dimensions $(d \lesssim 10)$
- Exponentially inefficient in high dimensions

Chain-based Samplers

- e.g. PolyChord, dynesty, blackjax
- Run Markov chains from live points
- ▶ Linear $\sim \mathcal{O}(d)$ scaling penalty
- Better for high-dimensional problems

Key Parameters

- ▶ **Resolution parameter** n_{live} : Improves results as $\sim \mathcal{O}(n_{\text{live}}^{-1/2})$
- ▶ Reliability parameters: Don't improve results if set arbitrarily high, but introduce systematic errors if set too low
 - ▶ MultiNest efficiency eff, PolyChord chain length n_repeats, dynesty slices

Choosing Your Tool: A Summary

No single best method, only the right tool for the job

Method	Speed	Uncertainties?	Handles Multimodality?	Evidence?
Optimization (χ^2)	Very Fast	No	No	No
MCMC (pymc etc)	Medium	Yes	Poorly	No
Ensemble (emcee)	Medium	Yes	Okay	No
Nested (dynesty)	Slower	Yes	Excellently	Yes!

Practical Guidance

- ▶ Quick exploration / Sanity check? → Use Optimization.
- ▶ Simple, well-behaved posterior? → emcee is a great choice.
- **Complex, possibly multimodal posterior?** → Use dynesty.
- ▶ Need to compare different physical models? → You must use Nested Sampling.

The Future: AI in Scientific Code Development

How these tools themselves are evolving

The Real Al Revolution: LLMs

The biggest impact of AI will not be in analyzing data, but in helping us write the code to do it.

Automated code translation: LLMs can help port legacy Fortran/C++ models to modern, GPU-friendly & differentiable frameworks like JAX or PyTorch.

The 80/20 Rule of Scientific Work

- ▶ 80% "boring" tasks: Writing code, debugging, drafting & reviewing papers, munging data, organising meetings...
- ▶ 20% "hard thinking": The actual scientific insight.

Al's biggest immediate impact is automating and accelerating the 80%, freeing up human time for the 20%.

Key Message

Al is not just a tool for analysis; it's about to fundamentally change how we develop, optimize, and deploy our science

Conclusions & What's Next

github.com/handley-lab/group

Key Takeaways

- ▶ SED fitting is a problem of **statistical inference**, not just optimization.
- ► The goal is the full **posterior distribution**, which gives us parameters *and* their uncertainties.
- Sampling methods are the tools we use to map out the posterior.
- ► The choice of sampler—from MCMC to Ensemble to Nested—depends on the complexity of your problem and whether you need to do **model comparison**.

Next Up: David Yallup on "GPU Accelerated Nested Sampling"

Now that we know why nested sampling is so powerful, we'll hear about how to make it fast!

How it Works

- 1. Treat parameters as "particles" with position and momentum.
- 2. Use gradient of log-likelihood as "force" to guide movement.
- 3. Propose coherent moves along gradient directions.
- 4. Accept/reject using Metropolis criterion.

How it Works

- 1. Treat parameters as "particles" with position and momentum.
- 2. Use gradient of log-likelihood as "force" to guide movement.
- 3. Propose coherent moves along gradient directions.
- 4. Accept/reject using Metropolis criterion.

How it Works

- 1. Treat parameters as "particles" with position and momentum.
- 2. Use gradient of log-likelihood as "force" to guide movement.
- 3. Propose coherent moves along gradient directions.
- 4. Accept/reject using Metropolis criterion.

How it Works

- 1. Treat parameters as "particles" with position and momentum.
- 2. Use gradient of log-likelihood as "force" to guide movement.
- 3. Propose coherent moves along gradient directions.
- 4. Accept/reject using Metropolis criterion.

How it Works

- 1. Treat parameters as "particles" with position and momentum.
- 2. Use gradient of log-likelihood as "force" to guide movement.
- 3. Propose coherent moves along gradient directions.
- 4. Accept/reject using Metropolis criterion.

Advantages & Requirements

- Much more efficient than random walk for smooth posteriors.
- Requires gradients of the likelihood function.
- Can traverse parameter space much faster.
- Less likely to get stuck in local regions.

Key Message

Advantages & Requirements

- Much more efficient than random walk for smooth posteriors.
- Requires gradients of the likelihood function.
- Can traverse parameter space much faster.
- Less likely to get stuck in local regions.

Key Message

Advantages & Requirements

- Much more efficient than random walk for smooth posteriors.
- Requires gradients of the likelihood function.
- Can traverse parameter space much faster.
- Less likely to get stuck in local regions.

Key Message

Advantages & Requirements

- Much more efficient than random walk for smooth posteriors.
- Requires gradients of the likelihood function.
- Can traverse parameter space much faster.
- Less likely to get stuck in local regions.

Key Message

