Statistical Methodology for Software Engineering

Hadas Lapid, PhD

Contents

- Pairwise Comparison of Means
- Correlation

References:

https://en.wikipedia.org/wiki/Tukey%27s_range_test https://en.wikipedia.org/wiki/Studentized_range_distribution

On Lyman & Longnecker: Section 9.2, P 454. Section 9.5, P. 468-471

https://en.wikipedia.org/wiki/Correlation_and_dependence https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Pairwise Comparison of Means

Tested Hypothesis:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

H_A: otherwise

- If H_0 is retained, we're done.
- Otherwise, we wish to perform pairwise comparisons to find which of the pairs is different:

$$H_0: \mu_i = \mu_j$$

 $H_A: \mu_i \neq \mu_j$
 $(i, j) \in \{1, ..., k\}$

→ Multiple hypothesis testing problem arises

Contrast t-test

Hypothesis Testing Assumptions

- (i, j) are two independent samples
- $\sigma_i = \sigma_j$
- Mutual variance can be estimated from the overall ANOVA variance, MSE
- MSE has n-k degrees of freedom
- The statistical estimate:

$$t_{i,j} = \frac{\overline{Y_i} - \overline{Y_j}}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

Decide to reject/retain H_0 based on $t_{(n-k)}$ distribution

Numerical Example of Contrast t-test

$$H_0$$
: $\mu_B = \mu_C$
 H_A : $\mu_B \neq \mu_C$

Treatment	Sample Mean	Sample Size
В	168.1	8
С	193.8	8

$$MSE = \frac{6*657.14+7*592.41+7*426.79}{6+7+7} = 553.86$$

$$df_{E} = 23-3 = 20, \quad t_{(20,0.975)} = 2.085$$

$$\mathbf{t_{C,B}} = \frac{193.8 - 168.1}{\sqrt{553.86 \cdot \left(\frac{1}{8} + \frac{1}{8}\right)}} = 2.184$$

equation's reminder:

$$MSE = \frac{\sum_{i=1}^{k} (n_i - 1) \cdot S_i^2}{\sum_{i=1}^{k} (n_i - 1)}$$

$$t_{i,j} = \frac{\overline{Y_i} - \overline{Y_j}}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

$$|\mathbf{t}_{\mathbf{C},\mathbf{B}}| > t_{(20,0.975)}$$

Reject H₀ at 95% confidence B and C treatments are significantly different

Multiple Comparison tests Controlling the FWER

- Bonferroni & Holmes-applicable but conservative
- Tukey HSD Honestly Significant Difference test (Tukey-Kramer, Tukey-HSD) is less conservative but reliable method to control the FWER at significance level α
- Critical values reflect the distribution of maximal difference between pairwise means in k groups
- Also called the Tukey Distribution

Multiple Comparison Studentized (Tukey) distribution test

Suppose N samples from k populations

$$Y_i \sim N(\mu i, \sigma^2)$$

 \bar{Y}_{min} - smallest population mean

 \overline{Y}_{max} - largest population mean

 σ^2 is the pooled sample variance (the MSE)

→ q follows studentized range distribution

$$q_{i,j} = \frac{\overline{Y}_i - \overline{Y}_j}{\sqrt{\frac{1}{2} \cdot \text{MSE} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \qquad \qquad q^* = \frac{\overline{Y}_{max} - \overline{Y}_{min}}{\sigma / \sqrt{n}}$$

Multiple contrast t-tests

Studentized range distribution

The Tukey Correction

Calculation of studentized critical value in R:

$$q^*_{(3,20,0.05)} = qtukey(k,n-k,\alpha) = 2.53$$

$$q_{C,B} = \frac{193.8 - 168.1}{\sqrt{\frac{1}{2} \cdot 553.86 \cdot \left(\frac{1}{8} + \frac{1}{8}\right)}} = 3.089$$

Decide to reject H_0 if $|q_{ij}| > q^*$ 3.089 > 2.53 \rightarrow reject H_0

Studentized Range q Tables

q tables can be found here:

http://www.real-statistics.com/statistics-tables/studentized-range-q-table/

Multiple contrast t-tests R output

Given k groups and n samples
Provides **Adjusted P**_{values} to a given set of pairwise comparisons in ANOVA output model

TukeyHSD(aov(vals~ind,data=y))

_	diff [‡]	lwr [‡]	upr [‡]	p adj 🗦
В-А	10.26786	-20.547673	41.08339	0.68131716
C-A	35.89286	5.077327	66.70839	0.02082549
С-В	25.62500	-4.145631	55.39563	0.09970565

Multiple Hypothesis Testing Summary

- Y is normally distributed in each sub-population.
- Equality of Variances: $\sigma_i = \sigma_i \forall i, j \in \{1...k\}$ (homoscedasticity)
- If variances are not equal:
- Discard small samples which has deviated variances
- Use Kruskal-Wallis non-parametric test (extension of Wilcoxon Rank-Sum test)
- Transform Y (e.g., use log(Y))

Correlation

Definition:

the strength of association between two random variables

Statistics for Software Engineers

Correlation

Positive Correlation Coefficient:

%[High X, High Y] |[Low X, Low Y]

Negative Correlation Coefficient:

%[Low X, High Y] |[High X, Low Y]

Mean: 61.89

Std: 14.42

Calculation of Correlation Coefficient

$$\mathbf{z}_{xi} = \frac{(\mathbf{x}_i - \overline{\mathbf{x}})}{\mathbf{s}_{\mathbf{x}}}$$

$$\mathbf{r_i} = \mathbf{z_{xi}} \cdot \mathbf{z_{yi}}$$

*	Humidity [‡]	Temperature +	Z_humidity [‡]	Z_Temperature [‡]	R_Humid_Temp
3	28	40	-1.55103502	-1.518813032	2.355732208
4	37	45	-1.09414662	-1.172047529	1.282391847
5	51	54	-0.38343133	-0.547869623	0.210070381
6	69	35	0.53034547	-1.865578536	-0.989401117
7	19	45	-2.00792342	-1.172047529	2.353381688
8	25	55	-1.70333116	-0.478516523	0.815072102
9	73	41	0.73340698	-1.449459932	-1.063044026
10	59	44	0.02269169	-1.241400630	-0.028169475

Properties of Correlation Coefficient r

- In the range of r is [-1,1]
 (Negative and Positive Association)
- Values of exactly ±1 are highly suspicious (indicates synthetic correlation)
- Correlation is constant with measurement scale
- r measures only monotonous association

The Significance of Correlation Coefficient

- Sample correlation coefficient, r, is an estimate of population coefficient, ρ
- Test the Hypothesis:

$$H_0: \rho = 0$$

 H_1 : $\rho \neq 0$

Define the Fisher Transform of r, F(r) = r*:

$$r^* \sim N\left(\mu = \frac{1}{2}\ln\left(\frac{1+\rho}{1-\rho}\right), \sigma^2 = \frac{1}{n-3}\right)$$

To test H₀, calculate the statistical estimate Z such that:

$$z = r^* \cdot \sqrt{n-3} = r^*/\sigma$$

• Reject H_0 if $|z| > z_{0.975} = 1.96$ (for 2-sided hypothesis)

Alternative calculation for The Significance of Correlation Coefficient

- Sample correlation coefficient, r, is an estimate of population coefficient, ρ
- Test the Hypothesis:

$$H_0$$
: $\rho = 0$
 H_1 : $\rho \neq 0$

- Use **bivariate normal distribution** with unknown σ and df = n-2
- Define t-Statistic that is normally distributed around 0:

$$t = \frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^2}}$$

• Reject H_0 if $|t| > t_{0.975,n-2}$ (2-sided hypothesis)

The Significance of Correlation Coefficient

Numerical Example

•
$$r^* = \frac{1}{2} ln \left(\frac{1+r}{1-r} \right) = 0.5 \cdot ln \left(\frac{1.349}{0.651} \right) = 0.3645$$

•
$$z = r^* \cdot \sqrt{n-3} = 0.3645 \cdot \sqrt{17} = 6.780$$

- $Z>Z_{0.975}$: 6.78>1.96 \rightarrow reject H_0
- Conclusion:

The association between Humidity and Temperature of 0.349 is statistically significant at 95% confidence