CSE 5351 Homework 2

Due: Thursday, January 30, by class time

- 1. Consider Caesar's shift cipher with $M = \{a,b,c,d\}$ represented as $\{0,1,2,3\}$.
 - Key generation: $k \leftarrow_{u} \{0,...,25\}$.
 - Encryption: $Enc_k(m) = \begin{cases} (m+k) \mod 26 & \text{with probability } 1/2 \\ (m+k+5) \mod 26 & \text{with probability } 1/2 \end{cases}$
 - Assume Pr[M = m] = (m+1)/10.

Questions:

- (a) Compute $\Pr[Enc_{K}(m) = 10]$ for each $m \in M$. (K is random.)
- (b) Compute $Pr[Enc_{K}(M) = 10]$. (Both K and M are random.)
- 2. Let Π denote the Vigenere cipher where the message space consists of all 3-character strings (i.e., $M = \{a, ..., z\}^3$), and the key is generated by first choosing the period $t \leftarrow_u \{1, 2, 3\}$ and then letting the key be a uniform string of length t (i.e., $k \leftarrow_u \{a, ..., z\}^t$ or $\{0, ..., 25\}^t$). So, the key space is $K = \{a, ..., z\} \cup \{a, ..., z\}^2 \cup \{a, ..., z\}^3$.

Question: Compute Pr[K = k] for k = a, k = ab, and k = abc.

3. Consider the encryption scheme Π in Question 2 and the experiment $\operatorname{PrivK}_{A,\,\Pi}^{\operatorname{eav}}$, where adversary A is defined as follows: A outputs two messages $m_0 = \operatorname{aab}$ and $m_1 = \operatorname{abb}$. When given a challenge ciphertext c, A outputs 0 if the first two characters of c are the same, and outputs 1 otherwise.

Questions:

- (a) Suppose Bob chooses b = 0. For what keys k will A succeed (i.e., $A(m_0, m_1, Enc_k(m_0)) = 0$)?
- (b) Suppose Bob chooses b = 1. For what keys k will A succeed (i.e., $A(m_0, m_1, Enc_k(m_1)) = 1$)?

(One more question on page 2)

4. **Question:** Compute $\Pr\left[\operatorname{PrivK}_{A,\Pi}^{\operatorname{eav}}(m_0, m_1) = 1\right]$ for the scheme and adversary in Question 3.

$$\begin{aligned} \textbf{Hint:} \quad & \Pr \Big[\operatorname{PrivK}_{A,\,\Pi}^{\operatorname{eav}}(m_0,\,m_1) = 1 \Big] \\ & = \sum_{\substack{b \in \{0,1\}\\k \in K}} \operatorname{Pr}[\mathsf{b} = b] \cdot \operatorname{Pr}[\mathsf{K} = k] \cdot \operatorname{Pr}\Big[A\Big(m_0, m_1, Enc_k(m_b)\Big) = b \Big] \\ & = \frac{1}{2} \cdot \sum_{k \in K} \operatorname{Pr}[\mathsf{K} = k] \cdot \operatorname{Pr}\Big[A\Big(m_0, m_1, Enc_k(m_0)\Big) = 0 \Big] \\ & + \frac{1}{2} \cdot \sum_{k \in K} \operatorname{Pr}[\mathsf{K} = k] \cdot \operatorname{Pr}\Big[A\Big(m_0, m_1, Enc_k(m_1)\Big) = 1 \Big] \end{aligned}$$