Série 8

Exercice 1 Oscillateur harmonique (MiMo 13)

On considère un ressort de coefficient de raideur k, on accroche à son extrémité un solide S de masse m. Ce solide peut se déplacer sans frottement le long d'un axe horizontal Ox. A l'équilibre, le centre d'inertie G du solide coïncide avec l'origine O du repère.

- 1- Représenter les forces appliquées sur la masse m.
- 2- Utiliser le principe fondamental de la dynamique pour retrouver l'équation différentielle du mouvement donnée par : $x + \frac{k}{m}x = 0$.
- 3- Sachant que $x(t) = x_0 \cos(\omega t)$ est solution de cette équation différentielle, exprimer la pulsation ω et la période T de cet oscillateur. On donne m = 200g et k = $10 N.m^{-1}$, g = $10 m.s^{-1}$.
- 4- Retrouver l'équation différentielle de la question (2) en utilisant : $\frac{dE_m}{dt} = 0$.

Exercice 2 Oscillateur harmonique (MiMo 13)

On cherche à retrouver l'équation différentielle du mouvement de la masse d'un pendule simple qui oscille sans frottements, en utilisant la conservation de l'énergie mécanique E_m .

- 1- Exprimer l'énergie cinétique de la masse m, lorsque le fil fait un angle θ quelconque avec la verticale.
- 2- Exprimer l'énergie potentielle de la masse m à une altitude z, en fonction de m, de L et de θ .
- 3- En déduire l'énergie mécanique de la masse m
- 4- Retrouver l'équation différentielle du mouvement dans le cas des petites oscillations.
- 5- Indentifier la pulsation du pendule simple. En déduire sa période.

Exercice 3 Oscillateur amorti (MiMo 15)

Reprendre l'exercice 1 en considérant une force de frottement d'expression $\vec{f} = -\alpha.\vec{v}$, tels que la constante α représente le coefficient de frottement (positif) et \vec{v} le vecteur vitesse.

- 1- Représenter les forces qui s'exercent sur la masse m.
- 2- Utiliser le P.F.D pour en déduire l'équation différentielle du mouvement : $x + \frac{\alpha}{m}x + \frac{k}{m}x = 0$
- 3- Donner les trois régimes d'oscillation
- 4- Exprimer l'énergie mécanique E_m , en déduire $\frac{dE_m}{dt}$ en fonction de x. Commenter ce dernier résultat