Mathias Chouilly, Lefty

February 24, 2016

Goal

Constraints

How to start?

Product Quantization

Original Version (Jégou 2011)

Multi-Index (Yandex 2012)

Optimized Product Quantization (Microsoft 2013)

Fast Bilayer Product Quantization (Yandex 2014)

Implementation details

Lefty Product Quantization

Libraries

Machines and Servers

Conclusion

Goal

• Given an image, find similar image in our dataset

- Given an image, find similar image in our dataset
- Mathy version: given a vector, find its nearest neighbors

- Handle very big dataset (possibly 1B elements)
- Fast (Ideally < 1s)
- Precise (Image should be similar to query)

Image to Vector: we already use GoogLeNet features (1024 floats) for image classification

- Image to Vector: we already use GoogLeNet features (1024 floats) for image classification
- GoogLeNet is a Deep Neural Network that achieved state-of-the-art on ImageNet 2014 competition

- Image to Vector: we already use GoogLeNet features (1024 floats) for image classification
- GoogLeNet is a Deep Neural Network that achieved state-of-the-art on ImageNet 2014 competition
- It is very fast to compute compared to similar performing models

- Image to Vector: we already use GoogLeNet features (1024 floats) for image classification
- GoogLeNet is a Deep Neural Network that achieved state-of-the-art on ImageNet 2014 competition
- It is very fast to compute compared to similar performing models
- · Let's use that

Original Version (Jégou 2011)

- Decompose the space into a Cartesian product of low dimensional subspaces
- Quantize each subspace separately
- A vector is represented by a short code composed of its subspace quantization indices.

- Decompose the space into a Cartesian product of low dimensional subspaces
- Quantize each subspace separately
- A vector is represented by a short code composed of its subspace quantization indices.
- The euclidean distance between two vectors can be efficiently estimated from their codes.
- An asymmetric distance calculation scheme increases the precision by computing the approximate distance between a vector and a code.

Practical use

• Use a coarse quantizer (k-means) q_c to build an inverted index in original space

- Use a coarse quantizer (k-means) q_c to build an inverted index in original space
- Each vector y is associated to its closest centroid $q_c(y)$, and we denote the residual vector: $r(y) = y q_c(y)$

- Use a coarse quantizer (k-means) q_c to build an inverted index in original space
- Each vector y is associated to its closest centroid $q_c(y)$, and we denote the residual vector: $r(y) = y q_c(y)$
- Residual vectors are product quantized by q_p , such that each vector is approximated by $y \approx q_c(y) + q_p(r(y))$

• Use a coarse quantizer (k-means) q_c to build an inverted

- index in original space
 Each vector y is associated to its closest centroid q_c(y), and we denote the residual vector: r(y) = y q_c(y)
- Residual vectors are product quantized by q_p , such that each vector is approximated by $y \approx q_c(y) + q_p(r(y))$
- Given a query vector x, find its nearest coarse centroids, compute residuals to each of these coarse centroids

Practical use

- Use a coarse quantizer (k-means) q_c to build an inverted index in original space
- Each vector y is associated to its closest centroid $q_c(y)$, and we denote the residual vector: $r(y) = y q_c(y)$
- Residual vectors are product quantized by q_p , such that each vector is approximated by $y \approx q_c(y) + q_p(r(y))$
- Given a query vector x, find its nearest coarse centroids, compute residuals to each of these coarse centroids
- Use the quantization codes to compute distances and find the smallests

Practical use

Multi-Index (Yandex 2012)

- Build on Jégou work
- Replace the coarse quantizer by a product quantizer
- Use multi-sequence algorithm to sort coarse centroids
- Space can be divided into K^2 cells, just using 2K centroids
- The finer division of the space implies a higher retrieval accuracy, for the same list length as in the simple index case

- Replace Product Quantization by Optimized Product Quantization
- Find an optimal space decomposition when choosing low dimensional subspaces

Optimized Product Quantization (Microsoft 2013)

- Replace Product Quantization by Optimized Product Quantization
- Find an optimal space decomposition when choosing low dimensional subspaces
- Compute covariance matrix of the data
- Use eigen value allocation algorithm to build a rotation matrix
- Do Product Quantization on the rotated data

- Use the assumption that all residuals are compressed in the same space
- Precompute the norms at launch
- Precompute scalar products at each query
- Use precomputed tables to compute distances very fast

Time (ms)

search time median, search time 0.9, and search time 0.99, vs Distorsion

- Use Optimized Product Quantization as an indexing-level quantizer with 16k centroids in each subspace of 512 dimensions. That is 256M possible centroids.
- Use Optimized Product Quantization as a compressing-level quantizer with 256 centroids in each subspace of 32 dimensions. That is 10⁷⁷ possible centroids.
- Thus each vector is associated with its indexing ids (2 int) and its compressing ids (32 bytes)

Lefty Product Quantization

- Use Optimized Product Quantization as an indexing-level quantizer with 16k centroids in each subspace of 512 dimensions. That is 256M possible centroids.
- Use Optimized Product Quantization as a compressing-level quantizer with 256 centroids in each subspace of 32 dimensions. That is 10⁷⁷ possible centroids.
- Thus each vector is associated with its indexing ids (2 int) and its compressing ids (32 bytes)
- Precompute the norms and scalar products to speed up distances calculations (from 1024 multiplications and 1023 additions to 96 additions, for each candidate)

Indexing process

 Rotate features, and quantize them with indexing-level quantizer -> 2 indexing ids

- Rotate features, and quantize them with indexing-level quantizer -> 2 indexing ids
- Compute residuals, rotate them, and quantize them with compressing-level quantizer -> 32 compressing ids

- Rotate features, and quantize them with indexing-level quantizer -> 2 indexing ids
- Compute residuals, rotate them, and quantize them with compressing-level quantizer -> 32 compressing ids
- Add the vector to inverted multi index database, with indexing ids as key, and list of compressed residuals as value.

Rotate features, and quantize them with indexing-level quantizer -> 2 indexing ids

- Compute residuals, rotate them, and quantize them with compressing-level quantizer -> 32 compressing ids
- Add the vector to inverted multi index database, with indexing ids as key, and list of compressed residuals as value.
- This takes around 10ms per vector

Rotate features, find nearest centroids with multi-sequence algorithm

- Rotate features, find nearest centroids with multi-sequence algorithm
- Get compressed residuals from database, to build a list of candidates

- Rotate features, find nearest centroids with multi-sequence algorithm
- Get compressed residuals from database, to build a list of candidates
- Rotate features again, build a look-up table for fast distance computation

- Rotate features, find nearest centroids with multi-sequence algorithm
- Get compressed residuals from database, to build a list of candidates
- Rotate features again, build a look-up table for fast distance computation
- Rerank the list of candidates by increasing distance to query vector

- Rotate features, find nearest centroids with multi-sequence algorithm
- Get compressed residuals from database, to build a list of candidates
- Rotate features again, build a look-up table for fast distance computation
- Rerank the list of candidates by increasing distance to query vector
- This takes around 500ms-1s per query*

Libraries used

- RocksDB (Facebook): embeddable persistent key-value store for fast storage. It stores the inverted multi index data.
- FlatBuffers (Google): serialization lib that provides access to data without parsing. Used as values in RocksDB.
- Eigen for matrix computation
- gRPC & Protocol Buffers as always

Machines and Servers

- 1 similia-indexer machine (2 vCPUs, 1.8 GB RAM) with 3 similia indexer processor
- 2 similia-server machines (4 vCPUs, 15 GB RAM, local SSD)
- Each similia-server machine has an inverted multi index server and a similia server
- Librarian GetSimilarImages RPC wraps the call to similia_server with features retrieval/computation/storage

- One can find similar images on instagram by providing to our API an url of a .jpg
- Currently 120M+ images indexed
- Fast (<1s) *
- Precise *
- *Mileage may vary

Thanks (everyone, with special thanks to Christian, Jean, and Mathieu)