Mathematics 227

Bases

A set of vectors in \mathbb{R}^n that spans \mathbb{R}^n and is linearly independent is called a *basis* of \mathbb{R}^n .

1. Explain why the vectors $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ form a basis for \mathbb{R}^2 .

Explain why the vectors e_1 , e_2 , and e_3 form a basis for \mathbb{R}^3 .

How many vectors will be in a basis for \mathbb{R}^{12} ? Explain your thinking.

Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is a basis for \mathbb{R}^n . Explain why every vector \mathbf{b} in \mathbb{R}^n can be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in exactly one way.

2. Suppose that $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The basis of \mathbb{R}^2 formed by \mathbf{v}_1 and \mathbf{v}_2 will be denoted by $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. We now know that every vector in \mathbb{R}^2 can be expressed in two different ways: in its usual form as a column vector and as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . We are going to use this to define a new coordinate system for \mathbb{R}^2 .

Express the vector $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$ as linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Express the vector $2\mathbf{v}_1 - \mathbf{v}_2$ in standard form.

If we have a vector \mathbf{x} in \mathbb{R}^2 , we can write $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$. We will use c_1 and c_2 as new coordinates for \mathbf{x} . For instance, $\begin{bmatrix} -3 \\ 0 \end{bmatrix} = -2\mathbf{v}_1 + \mathbf{v}_2$. In the coordinate system defined by \mathbf{v}_1 and \mathbf{v}_2 , this vector has coordinates -2 and 1. We will write this as

$$\left\{ \left[\begin{array}{c} -3\\0 \end{array} \right] \right\}_{\mathcal{B}} = \left[\begin{array}{c} -2\\1 \end{array} \right].$$

In general, if $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$, then

$$\{\mathbf{x}\}_{\mathcal{B}} = \left[egin{array}{c} c_1 \\ c_2 \end{array}
ight].$$

Express $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$ as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 to find the coordinates $\left\{ \begin{bmatrix} -4 \\ 1 \end{bmatrix} \right\}_{\mathcal{B}}$.

Find the vector
$$\mathbf{x}$$
 so that $\{\mathbf{x}\}_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

3. Explain why the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

form a basis \mathcal{B} for \mathbb{R}^3 .

Find the vector \mathbf{x} such that $\{\mathbf{x}\}_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}$.

Find the coordinates $\left\{ \begin{bmatrix} -2\\1\\-8 \end{bmatrix} \right\}_{\mathcal{B}}$.

4. Suppose that \mathcal{B} is the basis for \mathbb{R}^2 consisting of the vectors $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Let's form the matrix

$$A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Explain why $A\left\{\mathbf{x}\right\}_{\mathcal{B}} = \mathbf{x}$.

Find a matrix B such that $B\mathbf{x} = \{\mathbf{x}\}_{\mathcal{B}}$.