## Kosmologie: Dunkle Energie, die Form des Universums und die Hubble-Spannung

### Recap: Dunkle Materie

Dunkle Materie lässt sich nur durch Wechselwirkungen mit \_\_\_\_\_\_ «beobachten». Experimentelle Nachweise gibt es viele, aber die Natur der dunklen Materie ist immer noch unbekannt. Die wichtigste Theorie ist die der \_\_\_\_\_\_ (Cold Dark Matter), wobei die Materie aus sogenannten \_\_\_\_\_ (Weakly Interacting Massive Particles) besteht.



# Recap: Dunkle Energie

Als Dunkle Energie wird diejenige «Kraft» bezeichnet, die dafür verantwortlich ist, dass sich das Universum \_\_\_\_\_ ausdehnt. Die dunkle Energie nachzuweisen wird noch deutlich schwieriger sein als bei der dunklen Materie. Die wichtigste Theorie ist die der «Kosmologischen Konstante»  $\Lambda$  (gr. \_\_\_\_\_). Zusammen mit der \_\_\_\_\_-Theorie der dunklen Materie erhalten wir das heute akzeptierte kosmologische Standardmodell:  $\Lambda$ CDM.





### 1 Universums-Geometrie

Eine allgemein bekannte Regel besagt: Die Innenwinkelsumme in einem Dreieck ist immer \_\_\_\_\_°. Das gilt aber nur solange das Dreieck flach ist. Sobald die Seiten des Dreiecks keine Geraden mehr sind, gelten andere Gesetze:

- Flaches Dreieck:  $\alpha + \beta + \gamma = \underline{\hspace{1cm}}^{\circ}$
- Dreieck auf einem «geschlossenen» Raum:  $\alpha + \beta + \gamma$  \_\_\_ \_ \_ \_ \_ °
- Dreieck auf einem «offenen» Raum:  $\alpha + \beta + \gamma$  \_\_\_\_

Wenn wir jetzt im Universum sehr grosse Dreiecke messen, kommen wir mit dieser Methode der Innenwinkelsumme darauf, dass unser Universum \_\_\_\_\_ ist. Dabei gibt es jedoch eine relativ grosse Ungenauigkeit von 2%, welche tatsächlich wichtig sein könnte: Im  $\Lambda$ CDM-Modell ist die



Annahme, dass unser Universum exakt \_\_\_\_\_ ist, und wir deshalb von einer kosmologischen «Konstante» ( $\Lambda$ ) sprechen können. Wenn unser Universum aber nicht ganz \_\_\_\_ ist, dann ist es möglich, dass sich die «Konstante» verändert und dann eben nicht mehr konstant ist.



Eine andere interessante Folge der Krümmung des Universums ist seine Grösse: Wenn unser Universum flach ist, dann muss es zwingendermassen auch \_\_\_\_\_\_ gross sein. Wenn es aber tatsächlich gekrümmt sein sollte, dann ist es mathematisch auch möglich, dass es nicht \_\_\_\_\_\_ gross, sondern einfach nur \_\_\_\_\_ gross ist; nämlich mindestens \_\_\_\_\_\_ Durchmesser.

Ganz überspitzt dargestellt ist das mit geschlossener oder «positiver» Krümmung links im Bild. Da unser Universum also eine Mindestgrösse hat und aber nur \_\_\_\_\_ Jahre alt ist, heisst das, dass wir ohne physikalische Revolution nie herausfinden werden, wie gross

unser Universum wirklich ist: Entweder müssen wir deutlich genauer messen können, ganz andere Methoden zur Bestimmung der Raumkrümmung entwickeln oder endlich mal den WARP-Antrieb erfinden.

### 2 Hubble-Spannung

Der Wert der Ausdehnung des Universums heutzutage wurde vor der dunklen Energie entdeckt und auch benannt. Deshalb heisst dieser Wert auch heute noch Hubble-«Konstante», obwohl er nicht konstant ist, sondern in den letzten Milliarden Jahren dank der dunklen Energie \_\_\_\_\_\_ geworden ist.

Um die Hubble-Konstante zu messen, gibt es mehrere Methoden, die unterschiedliche Dinge ausnutzen:

- Cepheiden: Standard-Kerzen-Perioden
- «Spätes Universum»: Distanzleitermessungen
- «Frühes Universum»: Mikrowellenhintergrund

Diese verschiedenen Methoden führen aber aus irgend einem Grund zu unterschiedlichen Messwerten: Die Cepheiden-Methode wurde vor allem Anfang des 20. Jahrhunderts verwendet und hat einen Wert von ca. \_\_\_\_\_\_ geliefert. Man misst die \_\_\_\_\_\_ der Cepheiden, die als Standardkerzen gelten. Daraus kann man direkt die \_\_\_\_\_\_ berechnen, welche mit der \_\_\_\_\_\_ zusammenhängt. Dadurch erhält man die \_\_\_\_\_\_, wovon man die Geschwindigkeit des Cepheiden relativ zu uns berechnen kann. Die Methode wurde aber als zu ungenau empfunden und wird heute nicht mehr so verwendet.

Stattdessen misst man heute viele verschiedene Objekte anhand der Distanzleiter mit denselben Berechnungen und erhält da einen genaueren Wert von \_\_\_\_\_\_. Eine andere moderne Methode misst die Mikrowellen-Hintergrundstrahlung, woraus ein Wert von \_\_\_\_\_\_ berechnet wird.

Dass diese Werte nicht übereinstimmen, ist weit bekannt und auch mehrfach belegt. Eine Begründung dazu gibt es nicht, auch ein allgemein akzeptierter Erklärungsversuch existiert noch nicht.



