CSE160: Computer Networks

Lecture #06 – Wireless and Contention Free Protocols

2020-09-15

Professor Alberto E. Cerpa

Last time...

- The Medium Access Control (MAC) portion of the Link Layer
- Static Partitioning:
 - 1. TDM
 - 2. FDM
- Randomized access protocols:
 - 1. Aloha
 - 2. CSMA variants
 - 3. Classic Ethernet

Application
Presentation
Session
Transport
Network
Data Link
Physical

This Lecture

More on multiple-access schemes:

- 1. Wireless schemes
- 2. Contention-free protocols

Application						
Presentation						
Session						
Transport						
Network						
Data Link						
Physical						

1. Wireless Communication

- How do wireless nodes share a single link? (Yes, this is WiFi!)
 - Build on our simple, wired model

Wireless Complications

- Wireless is more complicated than the wired case (Surprise!)
 - Nodes have different areas of coverage doesn't fit Carrier Sense
 - Asymmetries lead to hidden/exposed terminal problems
 - Nodes can't hear while sending can't Collision Detect
 - Transmitter swamps co-located receiver

Wireless Propagation

- Difficult due to random, time-varying phenomena
 - The result of signal reflections, diffractions and scattering (multi-path), relative motion (mobile), and shadowing.
- Main Components:
 - Path Loss: attenuation due to distance
 - Shadowing (slow fading): long-term variation of signal caused by obstructions (hills, buildings, mountains, foliage, and for indoor wireless, walls, furniture)
 - Multipath (fast fading): short-term signal variations due to multiple reflections from buildings, walls, and ground.

Wireless Signal

Different Coverage Areas

 Wireless signal is broadcast and received nearby, where there is sufficient SNR

Hidden Terminals

- Nodes A and C are <u>hidden terminals</u> when sending to B
 - Can't hear each other (to coordinate) yet collide at B
 - We want to avoid the inefficiency of collisions
- CSMA will be ineffective want to sense at receiver

Hidden Terminals (2)

Exposed Terminals

- B and C are <u>exposed terminals</u> when sending to A and D
 - Can hear each other yet don't collide at receivers A and D
 - We want to send concurrently to increase performance

Compare to spatial reuse in cell phones:

Nodes Can't Hear While Sending

- With wires, detecting collisions (and aborting) lowers their cost
- More wasted time with wireless

CSMA with Collision Avoidance (CA)

- Since we can't detect collisions, we avoid them
 - CSMA/CA as opposed to CSMA/CD
 - Not greedy like Ethernet
- CD: listen before transmitting
 - When medium busy, choose random backoff interval
 - Wait for that many idle timeslots to pass before sending
- CA: transmit short "jamming" signal before sending frame
 - essentially reserves medium, let's others know your intent to transmit
- Collisions can be inferred
 - Use CRC and ACK from receiver to infer "no collision"
 - on collision, binary exponential backoff like Ethernet

RTS / CTS Protocols (MACA)

- MACA uses a short handshake instead of CSMA (Karn, 1990)
 - 802.11 uses a refinement of MACA (later)
- Protocol rules:
 - 1. A sender node transmit a RTS (Request-To-Send, with frame length)
 - 2. The receiver replies with a CTS (Clear-To-Send, with frame length)
 - 3. Sender transmits the frame while nodes hearing the RTS or CTS stay silent
 - Collisions on RTS/CTS are still possible, but less likely; RTS/CTS <u>ameliorates</u> hidden terminal problems

MACA – Hidden Terminals

- A → B with hidden terminal C
 - 1. A sends RTS, to B

MACA – Hidden Terminals (2)

- A → B with hidden terminal C
 - 2. B sends CTS to A, and C too

MACA – Hidden Terminals (3)

- A → B with hidden terminal C
 - 3. A sends frame while C defers

MACA – Exposed Terminals

- B → A, C → D as exposed terminals
 - B and C send RTS to A and D

MACA – Exposed Terminals (2)

- B \rightarrow A, C \rightarrow D as exposed terminals
 - 2. A and D send CTS to B and C

MACA – Exposed Terminals (3)

- B \rightarrow A, C \rightarrow D as exposed terminals
 - 3. B and C send frames to A and D

What is the main assumption? May it break?

802.11, or WiFi

- Very popular wireless
 LAN started in the 1990s
- Clients get connectivity from a (wired) AP (Access Point)
- It's a multi-access problem ©
- Various flavors have been developed over time
 - Faster, more features

802.11 Physical Layer

- Uses 20/40 MHz channels on ISM bands
 - 802.11 b/g/n on 2.4 GHz
 - 802.11 a/n on 5 GHz

- OFDM modulation (except legacy 802.11b)
 - Different symbols use different amplitude/phases for varying SNRs
 - Rates from 6 to 54 Mbps plus error correction (FEC)
 - 802.11n uses multiple antennas; See "802.11 with Multiple Antennas for Dummies" by Halperin et. al.

802.11 Link Layer

- Multiple access uses CSMA/CA (next); RTS/CTS optional
- Frames are ACKed and retransmitted with ARQ
- Funky addressing (three addresses!) due to AP
- Errors are detected with a 32-bit CRC
- Many, many features (e.g., encryption, power save)

Packet from Network layer (IP)

	Frame control	Duration	Address 1 (recipient)	Address 2 (transmitter)	Address 3	Sequence	Data	Check sequence
Bytes	2	2	6	6	6	2	0-2312	4

802.11 CSMA/CA for Multiple Access

- Sender avoids collisions by inserting small random gaps (p-persistence)
 - E.g. when both B and C send, C picks a smaller gap, goes first

The Future of 802.11 (Guess)

- Likely more ubiquitous for Internet connectivity
 - Greater diversity, from low- to high-end devices

- Innovation in physical layer drives speed
 - And power-efficient operation too

- More seamless integration of connectivity
 - Too manual now, and limited (e.g., device-to-device)

Issues with Random Multiple Access

- CSMA is good under low load:
 - Grants immediate access
 - Little overhead (few collisions)

- But not so good under high load:
 - High overhead (expect collisions)
 - Access time varies (luck/unlucky)
- We want to do better under load!

2. Contention-free Protocols

- Collisions are the main difficulty with random schemes
 - Inefficiency, limit to scalability
- Q: Can we avoid collisions?
- A: Yes. By taking turns or with reservations
 - They define an order in which nodes get a chance to send
 - Or pass, if no traffic at present
 - We just need some ordering ...
 - E.g., Token Ring / FDDI, DQDB
 - E.g., node addresses (from lowest to highest)
- More generally, what else might we want?
 - Deterministic service, priorities/QOS, reliability

Token Ring (802.5)

- Arrange nodes in a ring
- Token rotates "permission to send" to each node in turn
- Sender injects packet into ring and removes later
 - Maximum token holding time (THT) bounds access time
 - Early or delayed token release
 - Round robin service, acknowledgments and priorities
- Monitor nodes ensure health of ring

FDDI (Fiber Distributed Data Interface, 802.4)

- Roughly a large, fast token ring
 - At the time (circa 80's-90's),100 Mbps and 200km vs
 4/16 Mbps and local (802.5)
 - Dual counter-rotating rings for redundancy
 - Complex token holding policies for voice and video traffic
 - It is really a token bus, i.e. a virtual token ring
 - implies knowledge of neighbors and addressing scheme

DQDB (Distributed Queue Dual Bus, 802.6)

- Two unidirectional buses that carry fixed size cells
 - Cells are marked busy/free and can signal a request too
- Nodes maintain a distributed FIFO queue
 - By sending requests they are reserving future access

DQDB Algorithm

- Two counters per direction (UP, DN)
 - RC (request count), CD (countdown)
- Consider sending downstream (DN):
 - Always have RC count UP requests, minus free DN cells if larger than zero
 - This is a measure of how many others are waiting to send
 - To send, copy RC to CD and set RC to zero, then decrement CD for each free DN cell, send when zero
 - This waits for earlier requests to be satisfied before sending
- Highly scalable, efficient, but not perfectly fair. Why?

Turn-Taking Advantages

- Fixed overhead with no collisions
 - More efficient under load

- Regular chance to send with no unlucky nodes
 - Predictable service, easily extended to guaranteed quality of service
 - Priorities and reservations

Turn-Taking Disadvantages

- Complexity
 - More things that can go wrong than random access protocols!
 - E.g., what if the token is lost?
 - Higher overhead at low load

Turn-Taking in Practice

- Regularly tried as an improvement offering better service
 - E.g., qualities of service
- But random multiple access is hard to beat
 - Simple, and usually good enough
 - Scales from few to many nodes

Key Concepts

- Wireless communication is relatively complex
 - No collision detection, hidden and exposed terminals
- There are contention-free MAC protocols
 - Based on turn taking and reservations, not randomization

