

Inter IIT Tech Meet 10.0

Team ID - 8

Bosch's Model Extraction

Attack for Video Classification

Table of Contents

- 1 Problem Statement
- Black Box Approach
- **3** Grey Box Approach
- 4 Scope for Improvement
- 5 References

Problem Statement

To develop an efficient strategy to extract the video-based models in the black-box and grey-box setting for:

- Video Swin-T Model for Action Classification on Kinetics-400 dataset
- MoViNet-A2-Base Model for Video Classification on Kinetics-600 dataset

The true method of knowledge is experiment.

William Blake

Black Box Approach

Black Box Approach

- 1 Extraction Strategies
- 2 Models Used
- 3 Results

1. Random Normal Sampling

2. Training Generator and Clone Together

2. Training Generator and Clone Together

- Build upon the approach presented in MAZE¹ and DFME²
- Add a generator to help make meaningful queries
- Generator is based on DVD-GAN architecture
- Generator weights updated using zeroth-order gradient estimates of the victim
- Clone is updated simultaneously

¹MAZE: Model Stealing Attack using Zeroth-Order Gradient Estimation

²DFME: Data-free Model Extraction

3. Training Generator and Clone Independently

3. Training Generator and Clone Independently

3. Training Generator and Clone Independently

- Generator is made **conditional** and is trained **independently** using teacher predictions
- Trained generator is then used in a manner like the previous approach
- The generator is still being trained along with the clone

4. Stacking Affine Transformed Images

4. Stacking Affine Transformed Images

Generator Model

DVD-GAN Generator

- SOTA results in video generation for higher resolutions with higher temporal coherence between the generated frames on Kinetics datasets.
- Conditional generator for video generation satisfied the necessary requirements for the second training paradigm of pretraining a generator

Clone Model

Clone Model

ResNet 3D

- Simple architecture with readily available code
- Less compute-intensive

ResNet (2+1)D

- Lightweight architecture compared to transformers
- Among Top-20 in Video classification related tasks

Experimental Results Obtained for Swin-T

Experimental technique	Clone Model	Top-5 Accuracy	Top-1 Accuracy
Random normal sampling	ResNet3D	1.26	0.27
Training generator along with clone	ResNet3D	2.69	0.41
Training conditional GAN independently	ResNet3D	4.85	0.84
Stacking affine-transformed images	R(2+1)D	1.22	0.30

Final Results Obtained for Black Box

Victim Model	Clone Model	Top-5 Accuracy	Number of Queries
Video Swin Transformer	R(2+1)D	4.85	~1M
MoViNet-A2-Base	R(2+1)D	4.13	~1M

Grey Box Approach

Grey Box Approach

- 1 Extraction Strategies
- 2 Models used
- 3 Results

1. Augmenting Kinetics

2. Concatenated Datasets

2. Concatenated Datasets

Extraction Strategies Models Used Results Obtained

3. Combining PRADA Approach

3. Combining PRADA Approach

- Extended the attack strategy proposed in **PRADA**¹ for videos
- Increased coverage of the input space by leveraging synthetic sample generation
- FGSM²-like attack through clone produced novel videos for training
- Random perturbations further improved the variety of queries to the victim

¹PRADA: <u>Pr</u>otecting <u>Against DNN Model Stealing <u>A</u>ttacks</u>

²FGSM: Fast Gradient-Sign Method

4. Combining KD Techniques

Clone Model

Clone Model

C3D

- One of the early architectures in video classification.
- Pretrained on Sports-1M

- ResNet (2+1)D
 - Pretrained on IG65M
 - Among Top-20 in Video Classification related tasks

Experimental Results Obtained for Swin-T

Experimental technique	Clone Model	Top-5 Accuracy	Top-1 Accuracy
Augmented Kinetics	C3D	27.5	8.4
Augmented Kinetics	R(2+1)D	42.5	19.1
Concatenated dataset	R(2+1)D	51.8	30.6
Combining PRADA approach	R(2+1)D	34.2	12.67
Combining KD techniques	R(2+1)D	54.8	31.4

Extraction Strategies Models Used Results Obtained

Final Results Obtained for Grey Box

Victim Model	Clone Model	Top-5 Accuracy	Number of Queries
Video Swin Transformer	R(2+1)D	54.8	~0.4M
MoViNet-A2-Base	R(2+1)D	50.4	~0.4M

Scope for Improvement

Black Box

- Increasing number of queries multifold
- Selecting a good prior data distribution
- Stabilizing the generator training

Grey Box

- Extended training duration and faster hardware
- Use generator to create synthetic data from existing distribution
- Use a transformer model as clone
- Use adversarial crafting in better way

References

- 1. Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, "Video swin transformer," arXiv preprint arXiv:2106.13230, 2021
- 2. Dan Kondratyuk, Liangzhe Yuan and B. Gong, "Movinets: Mobile video networks for efficient video recognition," arXiv preprint arXiv:2103.11511, 2021
- 3. M. Juuti, S. Szyller, S. Marchal, and N. Asokan, "Prada: Protecting against dnn model stealing attacks," in 2019 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2019.
- 4. D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, "A closer look at spatiotemporal convolutions for action recognition," in Pattern Recognition, pp. 6450–6459, 2018
- 5. S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(1):221–231, 2013.
- 6. S. Kariyappa, A. Prakash, and M. K. Qureshi, "Maze: Data-free model stealing attack using zeroth-order gradient estimation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021
- 7. J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, "Data-free model extraction," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021

Thank You!

Fig. 3: C3D architecture with eight convolution layers, five max pooling layers and two fully connected layers.

Figure 1: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T).

Video Swin-T

MoViNet

