Case Study

Modelling the Steady State Temperature Distribution in a Ceramic Plate

Mathematical model

 The law of conservation of energy, along with Fourier's law of heat conduction, leads to the following partial differential equation:

$$\rho c \frac{\partial T}{\partial t} = k \nabla^2 T + g$$

For the steady state problem, we obtain the Poisson equation:

$$\nabla^2 T + \frac{g}{k} = 0$$

If the source is zero everywhere, we obtain the Laplace equation:

$$\nabla^2 T = 0$$

Two dimensions

Two-dimensional Laplacian

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Poisson equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{g}{k} = 0$$

Laplace equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

Boundary Conditions

Three types of boundaries in heat conduction problems:

Prescribed Temperature (Dirichlet condition):

$$T x, b = f x$$

Insulated (Neumann condition):

$$\nabla T \cdot \hat{\mathbf{n}} = 0$$

Convective (Robin condition):

$$k\nabla T \cdot \hat{\mathbf{n}} = h T_{\infty} - T$$

First example: Laplace equation

Ceramic plate with Dirichlet boundary conditions

Summary of the Mathematical Model

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0, \quad 0 < x < 1 \quad , \quad 0 < y < 1$$

subject to

$$at x = 0 : T = 0$$

$$at x = 1 : T = 100y$$

$$at y = 0 : T = 0$$

$$at y = 1 : T = 100x$$

Analytical Solution

$$T(x,y) = 100xy$$

Conversion to a Matrix Problem

Treatment of Boundary Nodes

Prescribed boundary:

Dirichlet condition gives required value for use in FDE

Prescribed Boundary

How does this process generate a matrix?

 Introduce a node numbering scheme and map (i,j) coordinates to these nodes:

$$4T_1 - T_2 - T_4 = 0$$

$$-T_1 + 4T_2 - T_3 - T_5 = 0$$

$$-T_2 + 4T_3 - T_6 = 25$$

$$-T_1 + 4T_4 - T_5 - T_7 = 0$$

$$-T_3 - T_5 + 4T_6 - T_9 = 50$$

$$-T_4 + 4T_7 - T_8 = 25$$

$$-T_6 - T_8 + 4T_9 = 150$$

Discrete Laplace equation: Ax = b

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{bmatrix}$$

Discrete Laplace equation: Ax = b

Banded structure

Discrete Laplace equation: Ax = b

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{bmatrix}$$

Block structure

Solution Strategy

- Coefficient matrix is:
 - large: for n x n mesh, $\mathbf{A} \in \mathbb{R}^{N \times N}, \ N = O(n^2)$
 - sparse: most elements are zero
 - structured: banded / block pattern
- How do we handle this matrix efficiently?
 - efficient storage
 - naïve implementation requires O(N²) storage
 - efficient algorithms
 - naïve implementation requires O(N³) flops
- Chapter 2!

18.75

37.50

Don't forget the boundary conditions!

For this problem, the numerical solution is <u>exact</u> (do you know why?)

Second example: Poisson equation

Ceramic plate with Dirichlet, Neumann and Robin boundary conditions

Second example: Poisson equation

Prescribed boundary:

$$f(x) = 200 - 150x^2$$

Insulated boundaries:

$$\nabla T \cdot \hat{\mathbf{n}} = 0$$

Convective boundary:

$$k\nabla T \cdot \hat{\mathbf{n}} = h \ T_{\infty} - T$$

Uniform heat source:

$$g(x,y) = g_0$$
(constant)

Summary of the Mathematical Model

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{g_0}{k} = 0, \quad 0 < x < a \quad 0 < y < b$$

subject to

$$at \ x = 0$$
 : $\frac{\partial T}{\partial x} = 0$

$$at \ x = a : k \frac{\partial T}{\partial x} + hT = hT_{\infty}$$

$$at y = 0 : \frac{\partial T}{\partial y} = 0$$

$$at y = b$$
 : $T x, b = f x$

Analytical Solution

(Not examinable! You'll learn about this in MXB322.)

$$T(x,y) = \varphi(x,y) + \frac{g_0}{2k} (a^2 - x^2) + \frac{g_0 a}{h} + T_{\infty}$$

$$\varphi \ x,y \ = 2 \sum_{m=1}^{\infty} \frac{\beta_{\scriptscriptstyle m}^{\scriptscriptstyle 2} + H^{\scriptscriptstyle 2}}{a \ \beta_{\scriptscriptstyle m}^{\scriptscriptstyle 2} + H^{\scriptscriptstyle 2} \ + H} \ \frac{\cosh \ \beta_{\scriptscriptstyle m} y}{\cosh \ \beta_{\scriptscriptstyle m} b} \ \cos \ \beta_{\scriptscriptstyle m} x \ \int\limits_0^a \tilde{\varphi} \ \xi \ \cos \ \beta_{\scriptscriptstyle m} \xi \ d\xi$$

where β_m are the roots of $\tan \beta_m a = H/\beta_m$

and
$$\tilde{\varphi} x = f x - \frac{g_0}{2k} a^2 - x^2 - \frac{g_0 a}{h} - T_{\infty}, \quad H = \frac{h}{k}$$

Conversion to a Matrix Problem

Treatment of Boundary Nodes

Insulated / Convection boundary:

Use Neumann / Robin condition to construct fictitious node

How does this process generate a matrix?

 Introduce a node numbering scheme and map (i,j) coordinates to these nodes:

$$-T_S - T_W + 4T_1 - T_2 - T_6 = \frac{\Delta x^2 g_0}{k}$$

Insulated

X

Node 2 (3,4 similar)

$$-T_S - T_1 + 4T_2 - T_3 - T_7 = \frac{\Delta x^2 g_0}{k}$$

Insulated

X

$$-T_S-T_4+4T_5-T_E-T_{10}=rac{\Delta x^2g_0}{k}$$

Node 6 (11 similar)

Node 7 (8,9,12,13,14 similar)

similar)

$$-T_2 - T_6 + 4T_7 - T_8 - T_{12} = \frac{\Delta x^2 g_0}{k}$$

Node 10 (15 similar)

$$-T_{5}-T_{9}+4T_{10}-T_{E}-T_{15}=rac{\Delta x^{2}g_{0}}{k}$$

$$-T_{11} - T_{W} + 4T_{16} - T_{17} = \frac{\Delta x^{2} g_{0}}{k} + 200$$

$$-T_{12}-T_{16}+4T_{17}-T_{18}=rac{\Delta x^2g_0}{k}+190.6^{rac{12}{k}}$$

$$-T_{13} - T_{17} + 4T_{18} - T_{19} = rac{\Delta x^2 g_0}{k} + 162.5^{ ext{Malatel}}$$

$$-T_{14}-T_{18}+4T_{19}-T_{20}=rac{\Delta x^2g_0}{k}+115.6^{18}$$

$$-T_{15} - T_{19} + 4T_{20} - T_{E} = \frac{\Delta x^{2} g_{0}}{k} + 50$$

Fictitious (or "ghost") Nodes

- Use second order central differences
 - Maintains second order local accuracy
 - Destroys symmetry of the matrix
- Use first order forward/backward differences
 - Maintains symmetry of the matrix
 - Only first order local accuracy (but globally still a second order method)
- •For this example, we'll use second order boundary FDEs

Summary of Finite Difference Equations (FDEs)

$$(0,0) : 4T_{0,0} - 2T_{1,0} - 2T_{0,1} = \frac{\Delta x^2 g_0}{k}$$

$$(i,0)$$
 : $-T_{i-1,0} + 4T_{i,0} - T_{i+1,0} - 2T_{i,1} = \frac{\Delta x^2 g_0}{k}$

$$_{(N,\,0)} \ :-2T_{N-1,0} + \left(4 + 2\Delta xH\right)T_{N,0} - 2T_{N,1} = \frac{\Delta x^2g_0}{k} + 2\Delta xHT_{\infty}$$

$$(0,j)$$
 : $-T_{0,j-1} + 4T_{0,j} - 2T_{1,j} - T_{0,j+1} = \frac{\Delta x^2 g_0}{k}$

$$(i, j)$$
 : $-T_{i,j-1} - T_{i-1,j} + 4T_{i,j} - T_{i+1,j} - T_{i,j+1} = \frac{\Delta x^2 g_0}{k}$

$$(N,j)$$
 : $-T_{N,j-1} - 2T_{N-1,j} + (4 + 2\Delta xH)T_{N,j} - T_{N,j+1} = \frac{\Delta x^2 g_0}{k} + 2\Delta xHT_{\infty}$

$$(0, N-1)$$
: $-T_{0,N-2} + 4T_{0,N-1} - 2T_{1,N-1} = \frac{\Delta x^2 g_0}{k} + f(0)$

$$(i, N-1)$$
: $-T_{i,N-2} - T_{i-1,N-1} + 4T_{i,N-1} - T_{i+1,N-1} = \frac{\Delta x^2 g_0}{k} + f(i\Delta x)$

$$(N,N-1): -T_{N,N-2} - 2T_{N-1,N-1} + \left(4 + 2\Delta xH\right)T_{N,N-1} = \frac{\Delta x^2 g_0}{k} + 2\Delta xHT_{\infty} + f(a)$$

$$H = \frac{h}{k}$$

Note: These finite difference equations (FDEs) have been generated using second order central differences for fictitious nodes. A different system would be generated if first order forward or backward differences were used.

Discrete Poisson equation: A

4.00	-2.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
-1.00	4.00	-1.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	-1.00	4.00	-1.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	-2.00	7.33	0.	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
-1.00	0.	0.	0.	0.	4.00	-2.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	-1.00	0.	0.	0.	-2.00	7.33	0.	0.	0.	0.	-1.00	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	-1.00	0.	0.	0.	0.	4.00	-2.00	0.	0.	0.	-1.00	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-2.00	7.33	0.	0.	0.	0.	-1.00
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	0.	4.00	-2.00	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-2.00	7.33

Discrete Poisson equation: A

Discrete Poisson equation: A

[4	4.00	-2.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
-	1.00	4.00	-1.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	0.	-1.00	4.00	-1.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	0.	0.	0.	-2.00	7.33	0.	0.	0.	0.	-2.00	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	1.00	0.	0.	0.	0.	4.00	-2.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.	0.	0.	0.
	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.	0.	0.
	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.	0.
	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.	0.	0.	0.
	0.	0.	0.	0.	-1.00	0.	0.	0.	-2.00	7.33	0.	0.	0.	0.	-1.00	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	0.	4.00	-2.00	0.	0.	0.	-1.00	0.	0.	0.	0.
	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.	0.
	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.	0.
	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.	0.	-1.00	0.
	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-2.00	7.33	0.	0.	0.	0.	-1.00
	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	0.	4.00	-2.00	0.	0.	0.
	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.	0.
	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00	0.
	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-1.00	4.00	-1.00
	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	-1.00	0.	0.	0.	-2.00	7.33

Discrete Poisson equation: b

```
0.4167
   0.4167
   0.4167
   0.4167
  83.7500
   0.4167
   0.4167
   0.4167
   0.4167
  83.7500
   0.4167
   0.4167
   0.4167
   0.4167
  83.7500
 200.4167
 191.0417
 162.9167
 116.0417
L 133.7500J
```


Analytical Solution

200.000	190.625	162.500	115.625	50.0000
158.149	150.619	128.493	93.6310	51.1706
131.081	124.983	107.293	79.9501	46.3005
115.982	110.743	95.6002	72.2595	43.3732
111.138	106.179	91.8575	69.7816	42.4199

Numerical Solution

200.000	190.625	162.500	115.625	50.00007
158.542	151.014	128.873	93.7785	50.0865
131.725	125.598	107.784	80.1128	45.9941
116.745	111.452	96.1339	72.4782	43.2283
111.934	106.915	92.4052	70.0212	42.3067

The physical parameters used for the computations are:

$$a = b = 1m, \ k = 3 \ W \, m^{-1} \, {}^{\circ}C^{-1}, \ h = 20 \, W \, m^{-2} \, {}^{\circ}C^{-1}, \ g_{_0} = 20 \ W \, m^{-3}, \ T_{_{\infty}} = 25 \, {}^{\circ}C, f \, (x) = 200 - 150 x^2$$

Analytical Solution

Numerical Solution

Higher accuracy could be obtained in the numerical solution by using a finer mesh (more nodes).

