CS294-248 Special Topics in Database Theory Unit 5 (Part 2): Database Constraints

Dan Suciu

University of Washington

Outline

• Classical constraints: FDs, MVDs, Cls

• The basics, and a modern approach

Functional Dependencies

Functional Dependencies

Fix a relation schema $R(\mathbf{X})$.

A Functional Dependency, FD, is an expression $U \rightarrow V$ for $U, V \subseteq X$.

We say that an instance R^D satisfies the FD σ , and write $R^D \models \sigma$, if:

$$\forall t, t' \in R^D : t. \mathbf{U} = t' \mathbf{U} \Rightarrow t. \mathbf{V} = t'. \mathbf{V}$$

If Σ is a set of FDs, then we write $R^D \models \Sigma$ if $R^D \models \sigma$ for all $\sigma \in \Sigma$.

0000000000000000

FDs

X	Y	Z
123	12	23
321	32	21
125	12	25
323	32	23
637	63	37
283	28	83

Then:

$$R^{D} \models X \rightarrow Y,$$

 $X \rightarrow Z,$
 $X \rightarrow YZ,$
 $YZ \rightarrow X$

But:

$$R^D\not\models Y\to X$$

0000000000000000

We say that a set of FDs Σ implies and FD σ if $\forall R^D$, $R^D \models \Sigma$ implies $R^D \models \sigma$.

$$\Sigma \models \sigma$$

The Implication Problem

We say that a set of FDs Σ implies and FD σ if $\forall R^D$, $R^D \models \Sigma$ implies $R^D \models \sigma$.

$$\Sigma \models \sigma$$

Example: $AB \rightarrow C$, $CD \rightarrow E \models AD \rightarrow E$.

The Implication Problem

We say that a set of FDs Σ implies and FD σ if $\forall R^D$, $R^D \models \Sigma$ implies $R^D \models \sigma$.

$$\Sigma \models \sigma$$

Example: $AB \rightarrow C$, $CD \rightarrow E \models AD \rightarrow E$.

Armstrong's Axioms

Many minor variations. My favorite:

Trivial: $\models UV \rightarrow U$

Transitivity: $\boldsymbol{U} \rightarrow \boldsymbol{V}, \boldsymbol{V} \rightarrow \boldsymbol{W} \models \boldsymbol{U} \rightarrow \boldsymbol{W}$

Splitting/combining: $U \rightarrow VW$ iff $U \models V, U \models W$

However, cumbersome to use: Can we check $\Sigma \models \sigma$ in PTIME?

Fix
$$\Sigma$$
. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^+ \stackrel{\mathsf{def}}{=} \{ Z \mid \Sigma \models \boldsymbol{U} \to Z \}$

Note that Σ is implicit in defining U^+ .

Databases 101 (to discuss in class):

- Given \boldsymbol{U} , one can compute the closure \boldsymbol{U}^+ in PTIME
- $\Sigma \models U \rightarrow V$ iff $V \subseteq U^+$.
- Example: $\Sigma = \{AB \rightarrow C, CD \rightarrow E\};$ $AD^{+} = ?$

Fix
$$\Sigma$$
. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^+ \stackrel{\mathsf{def}}{=} \{ Z \mid \Sigma \models \boldsymbol{U} \to Z \}$

Note that Σ is implicit in defining U^+ .

Databases 101 (to discuss in class):

- Given \boldsymbol{U} , one can compute the closure \boldsymbol{U}^+ in PTIME
- $\Sigma \models U \rightarrow V$ iff $V \subseteq U^+$.
- Example: $\Sigma = \{AB \rightarrow C, CD \rightarrow E\};$ $AD^{+}=?AD$

Fix
$$\Sigma$$
. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^+ \stackrel{\mathsf{def}}{=} \{ Z \mid \Sigma \models \boldsymbol{U} \to Z \}$

Note that Σ is implicit in defining U^+ .

Databases 101 (to discuss in class):

- Given \boldsymbol{U} , one can compute the closure \boldsymbol{U}^+ in PTIME
- $\Sigma \models U \rightarrow V$ iff $V \subseteq U^+$.
- Example: $\Sigma = \{AB \rightarrow C, CD \rightarrow E\};$ $AD^{+}=?AD$

 $ABD^{+}=?$

Fix
$$\Sigma$$
. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^+ \stackrel{\mathsf{def}}{=} \{ Z \mid \Sigma \models \boldsymbol{U} \to Z \}$

Note that Σ is implicit in defining U^+ .

Databases 101 (to discuss in class):

- Given \boldsymbol{U} , one can compute the closure \boldsymbol{U}^+ in PTIME
- $\Sigma \models U \rightarrow V$ iff $V \subseteq U^+$.
- Example: $\Sigma = \{AB \rightarrow C, CD \rightarrow E\};$ $AD^{+}=?AD$

 $ABD^{+} = ?ABCD$

2-Tuple Relation

Fact

If $\Sigma \not\models \sigma$ then there exists a 2-tuple relation R s.t. $R \models \Sigma$ and $R \not\models \sigma$.

Example: $AB \rightarrow C$, $CD \rightarrow E \not\models CD \rightarrow A$.

Find a counterexample with 2 tuples (use values 0, 1):

2-Tuple Relation

Fact

If $\Sigma \not\models \sigma$ then there exists a 2-tuple relation R s.t. $R \models \Sigma$ and $R \not\models \sigma$.

Example: $AB \rightarrow C$, $CD \rightarrow E \not\models CD \rightarrow A$.

Find a counterexample with 2 tuples (use values 0, 1): $CD^+ = CDE$

2-Tuple Relation

Fact

If $\Sigma \not\models \sigma$ then there exists a 2-tuple relation R s.t. $R \models \Sigma$ and $R \not\models \sigma$.

Example: $AB \rightarrow C$, $CD \rightarrow E \not\models CD \rightarrow A$.

Find a counterexample with 2 tuples (use values 0, 1): $CD^+ = CDE$

$$R = \begin{array}{|c|c|c|c|c|c|c|c|} \hline A & B & C & D & E \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ \hline \end{array}$$

To refute $\boldsymbol{U} \rightarrow \boldsymbol{V}$: Tuple 1: $(0,0,\ldots,0)$, Tuple 2: $\boldsymbol{U}^+ := 0$, rest := 1.

• We can refute a single implication $\Sigma \models \sigma$ using a 2-tuple relation.

• Armstrong relation for Σ is a relation R_{Σ} that refutes all FDs not implied by Σ .

• Equivalently, $\Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

• The construction of R_{Σ} is more interesting that the application. Next.

The Direct Product

[Fagin, 1982]

The direct product¹ of two tuples $t = (a_1, \ldots, a_n)$ and $t' = (b_1, \ldots, b_n)$ is:

$$t\otimes t'\stackrel{\mathsf{def}}{=} ((a_1,b_1),\ldots,(a_n,b_n))$$

¹A.k.a. domain product.

The Direct Product

[Fagin, 1982]

The direct product¹ of two tuples $t = (a_1, \ldots, a_n)$ and $t' = (b_1, \ldots, b_n)$ is:

$$t\otimes t'\stackrel{\mathsf{def}}{=} ((a_1,b_1),\ldots,(a_n,b_n))$$

Notice: the domain of $t \otimes t'$ is the cartesian product of domains of t and t'.

¹A.k.a. domain product.

The Direct Product

[Fagin, 1982]

The direct product¹ of two tuples $t = (a_1, \ldots, a_n)$ and $t' = (b_1, \ldots, b_n)$ is:

$$t\otimes t'\stackrel{\mathsf{def}}{=} ((a_1,b_1),\ldots,(a_n,b_n))$$

Notice: the domain of $t \otimes t'$ is the cartesian product of domains of t and t'.

The direct product of two relations R(X), R'(X) (same attributes!) is $R \otimes R' \stackrel{\mathsf{def}}{=} \{ t \otimes t' \mid t \in R, t' \in R' \}$

¹A.k.a. domain product.

$$T = \begin{bmatrix} A & B \\ 1 & 5 \\ 1 & 6 \end{bmatrix}$$

00000000000000000

FDs

$$S = \begin{bmatrix} X & Y & Z \\ a & b & c \\ f & b & d \\ a & e & d \end{bmatrix}$$

$$T = \begin{bmatrix} A & B \\ 1 & 5 \\ 1 & 6 \end{bmatrix}$$

$$S = \begin{array}{|c|c|c|} \hline X & Y & Z \\ \hline a & b & c \\ f & b & d \\ a & e & d \\ \hline \end{array}$$

$$T \times S = \begin{vmatrix} A & B & X & Y & Z \\ 1 & 5 & a & b & c \\ 1 & 6 & a & b & c \\ 1 & 5 & f & b & d \end{vmatrix}$$
...

$$T = \begin{bmatrix} A & B \\ 1 & 5 \\ 1 & 6 \end{bmatrix}$$

$$S = \begin{vmatrix} X & Y & Z \\ a & b & c \\ f & b & d \\ a & e & d \end{vmatrix}$$

$$T \times S = \begin{vmatrix} A & B & X & Y & Z \\ 1 & 5 & a & b & c \\ 1 & 6 & a & b & c \\ 1 & 5 & f & b & d \end{vmatrix}$$

$$R = \begin{array}{|c|c|c|} X & Y & Z \\ \hline 1 & 5 & m \\ 1 & 6 & m \end{array}$$

$$T = \begin{bmatrix} A & B \\ 1 & 5 \\ 1 & 6 \end{bmatrix} \qquad S = \begin{bmatrix} A & B \\ 1 & 6 \end{bmatrix}$$

$$S = \begin{vmatrix} X & Y & Z \\ a & b & c \\ f & b & d \\ a & e & d \end{vmatrix}$$

$$R = \begin{array}{|c|c|c|} \hline X & Y & Z \\ \hline 1 & 5 & m \\ 1 & 6 & m \\ \hline \end{array}$$

$$R \otimes S = \begin{vmatrix} X & Y & Z \\ 1a & 5b & mc \\ 1a & 6b & mc \\ 2a & 6b & nc \\ 1f & 5b & md \end{vmatrix}$$

$$T = \begin{bmatrix} A & B \\ 1 & 5 \\ 1 & 6 \end{bmatrix}$$

$$S = \begin{vmatrix} X & Y & Z \\ a & b & c \\ f & b & d \\ a & e & d \end{vmatrix}$$

$$T = \begin{bmatrix} A & B \\ 1 & 5 \\ 1 & 6 \end{bmatrix} \qquad S = \begin{bmatrix} X & Y & Z \\ a & b & c \\ f & b & d \\ a & e & d \end{bmatrix} \qquad T \times S = \begin{bmatrix} A & B & X & Y & Z \\ 1 & 5 & a & b & c \\ 1 & 6 & a & b & c \\ 1 & 5 & f & b & d \end{bmatrix}$$
...

$$R = \begin{array}{|c|c|c|} \hline X & Y & Z \\ \hline 1 & 5 & m \\ 1 & 6 & m \\ \hline \end{array}$$

$$R \otimes S = \begin{vmatrix} 1a & 5b & mc \\ 1a & 6b & mc \\ 2a & 6b & nc \\ 1f & 5b & md \end{vmatrix}$$

Given prob. distributions with entropies h_R , h_S , h_T , what are $h_{T\times S}$, $h_{R\otimes S}$? In class.

$$T = \begin{bmatrix} A & B \\ 1 & 5 \\ 1 & 6 \end{bmatrix}$$

$$S = \begin{vmatrix} X & Y & Z \\ a & b & c \\ f & b & d \\ a & e & d \end{vmatrix}$$

$$R = \begin{array}{|c|c|c|} \hline X & Y & Z \\ \hline 1 & 5 & m \\ 1 & 6 & m \\ \hline \end{array}$$

$$R \otimes S = \begin{vmatrix} 1a & 5b & mc \\ 1a & 6b & mc \\ 2a & 6b & nc \\ 1f & 5b & md \end{vmatrix}$$

Given prob. distributions with entropies h_R , h_S , h_T , what are $h_{T\times S}$, $h_{R\otimes S}$? In class. $h_T + h_S$ and $h_R + h_S$

Lemma

For any FD σ , $R \otimes R' \models \sigma$ iff $R \models \sigma$ and $R' \models \sigma$.

Proof in class (it's straightforward).

Lemma

For any FD σ , $R \otimes R' \models \sigma$ iff $R \models \sigma$ and $R' \models \sigma$.

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)

For any set of FDs Σ there exists R_{Σ} s.t., for any FD σ , $\Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Lemma

For any FD σ , $R \otimes R' \models \sigma$ iff $R \models \sigma$ and $R' \models \sigma$.

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)

For any set of FDs Σ there exists R_{Σ} s.t., for any FD σ , $\Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Proof Let σ_i , i = 1, n be all FDs not implied by Σ .

Since $\Sigma \not\models \sigma_i$, there exists a 2-tuple R_i such that $R_i \models \Sigma$ and $R_i \not\models \sigma$.

Lemma

For any FD σ , $R \otimes R' \models \sigma$ iff $R \models \sigma$ and $R' \models \sigma$.

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)

For any set of FDs Σ there exists R_{Σ} s.t., for any FD σ , $\Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Proof Let σ_i , i = 1, n be all FDs not implied by Σ .

Since $\Sigma \not\models \sigma_i$, there exists a 2-tuple R_i such that $R_i \models \Sigma$ and $R_i \not\models \sigma$.

Then $R_{\Sigma} \stackrel{\text{def}}{=} R_1 \otimes \cdots \otimes R_n$ satisfies the theorem.

Whv?

Lemma

For any FD σ , $R \otimes R' \models \sigma$ iff $R \models \sigma$ and $R' \models \sigma$.

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)

For any set of FDs Σ there exists R_{Σ} s.t., for any FD σ , $\Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Proof Let σ_i , i = 1, n be all FDs not implied by Σ .

Since $\Sigma \not\models \sigma_i$, there exists a 2-tuple R_i such that $R_i \models \Sigma$ and $R_i \not\models \sigma$.

Then $R_{\Sigma} \stackrel{\text{def}}{=} R_1 \otimes \cdots \otimes R_n$ satisfies the theorem.

Why?

How large is R_{Σ} ?

Discussion

Next:

• Defining the FDs is equivalent to defining the closure operator U^+ .

• In turn, this is equivalent to defining the *closed* sets, i.e. those that satisfy $\boldsymbol{U} = \boldsymbol{U}^+$.

And this is equivalent to defining the lattice of closed elements.

Monotone: If
$$U \subseteq V$$
, then $U^+ \subseteq V^+$.

Why??

Expansive:
$$U \subseteq U^+$$

Idempotent:
$$(\boldsymbol{U}^+)^+ = \boldsymbol{U}^+$$

Wikipedia calls these properties increasing, extensive, idempotent.

Discussion

The closure operator, and its associated closure system occur in many areas of math and CS.

- For any subset $S \subseteq \mathbb{R}^d$, its linear span, span(S), is the smallest vector space containing S; span is a closure operator.
- For any subset $S \subseteq \mathbb{R}^d$, let $convex(S) \subseteq \mathbb{R}^d$ be its convex closure; convex is a closure operator.
- The topological closure of a subset $S \subseteq \mathbb{R}^d$ is the set \bar{S} consisting of all limits $\lim_{n} x_n$, where the sequence x_n is in S.
- Fix an algebra A. The algebra generated by a subset S is the smallest sub-algebra containing S.

Detour: Closure Operators

Fix a set Ω .

Detour: Closure Operators

Fix a set Ω .

Definition (Closure Operator)

A closure operator is $cl : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- expansive $A \subset cl(A)$
- idempotent cl(cl(A)) = cl(A)

Fix a set Ω .

Definition (Closure Operator)

A closure operator is $cl: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- expansive $A \subset cl(A)$
- idempotent cl(cl(A)) = cl(A)

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

• for any $S \subseteq C$, $\bigcap S \in C$.

Fix a set Ω .

Definition (Closure Operator)

A closure operator is $cl : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- expansive $A \subset cl(A)$
- idempotent cl(cl(A)) = cl(A)

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

• for any $S \subseteq C$, $\bigcap S \in C$.

Equivalence

• Given \mathcal{C} , $cl(A) \stackrel{\text{def}}{=} \bigcap \{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.

Fix a set Ω .

Definition (Closure Operator)

A closure operator is $cl: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- expansive $A \subset cl(A)$
- idempotent cl(cl(A)) = cl(A)

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

• for any $S \subseteq C$, $\bigcap S \in C$.

Equivalence

- Given \mathcal{C} , $cl(A) \stackrel{\text{def}}{=} \bigcap \{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given cl. $\mathcal{C} \stackrel{\text{def}}{=} \{X \mid cl(X) = X\}$ is a closure system.

Fix a set Ω .

Definition (Closure Operator)

A closure operator is $cl: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- expansive $A \subset cl(A)$
- idempotent cl(cl(A)) = cl(A)

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

• for any $S \subseteq C$, $\bigcap S \in C$.

Equivalence

- Given \mathcal{C} , $cl(A) \stackrel{\text{def}}{=} \bigcap \{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given cl, $\mathcal{C} \stackrel{\text{def}}{=} \{X \mid cl(X) = X\}$ is a closure system.

Proof: We check that $A \stackrel{\text{def}}{=} \cap \mathcal{S}$ is in \mathcal{C} , for any set $\mathcal{S} \subseteq \mathcal{C}$:

Fix a set Ω .

Definition (Closure Operator)

A closure operator is $cl : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- expansive $A \subset cl(A)$
- idempotent cl(cl(A)) = cl(A)

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

• for any $S \subseteq C$, $\bigcap S \in C$.

Equivalence

- Given \mathcal{C} , $cl(A) \stackrel{\text{def}}{=} \bigcap \{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given cl, $\mathcal{C} \stackrel{\text{def}}{=} \{X \mid cl(X) = X\}$ is a closure system. **Proof:** We check that $A \stackrel{\mathsf{def}}{=} \cap \mathcal{S}$ is in \mathcal{C} , for any set $\mathcal{S} \subset \mathcal{C}$: $cl(A) = cl(\bigcap \{X \mid X \in \mathcal{S}\}) \subset cl(X)$ for all $X \in \mathcal{S}$.

Fix a set Ω .

Definition (Closure Operator)

A closure operator is $cl : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- expansive $A \subset cl(A)$
- idempotent cl(cl(A)) = cl(A)

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

• for any $S \subseteq C$, $\bigcap S \in C$.

Equivalence

- Given \mathcal{C} , $cl(A) \stackrel{\text{def}}{=} \bigcap \{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given cl, $\mathcal{C} \stackrel{\text{def}}{=} \{X \mid cl(X) = X\}$ is a closure system.

Proof: We check that $A \stackrel{\text{def}}{=} \cap S$ is in C, for any set $S \subseteq C$: $cl(A) = cl(\bigcap \{X \mid X \in \mathcal{S}\}) \subset cl(X)$ for all $X \in \mathcal{S}$. Therefore $cl(A) \subseteq \bigcap \{X \mid X \in \mathcal{S}\} = A$.

From FDs to the Lattice of Closed Sets

A set of FDs for R(X) is equivalent to as closure system on X.

Moreover, a closure system \mathcal{C} forms a lattice, $(\mathcal{C}, \wedge, \vee)$:

$$X \wedge Y \stackrel{\mathsf{def}}{=} X \cap Y$$

$$X \vee Y \stackrel{\mathsf{def}}{=} (X \cup Y)^+$$

From FDs to the Lattice of Closed Sets

A set of FDs for R(X) is equivalent to as closure system on X.

Moreover, a closure system \mathcal{C} forms a lattice, $(\mathcal{C}, \wedge, \vee)$:

$$X \wedge Y \stackrel{\mathsf{def}}{=} X \cap Y$$

$$X \vee Y \stackrel{\mathsf{def}}{=} (X \cup Y)^+$$

Example: $YU \rightarrow X, XZ \rightarrow U$

Discussion

Functional dependencies are a key concept in CS, beyond databases.

- In databases, the have two traditional applications:
 - Database normalization: BCNF. 3NF
 - Keys/foreign keys; "semantic pointers"

 More recent applications: discover FDs from data, approximate FDs, repairing for FDs (data imputation).

Take a relation R, partition its variables into U, V, W.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$R_1(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{U}\boldsymbol{W}}(R), R_2(\boldsymbol{V}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{V}\boldsymbol{W}}(R)$$

Can we always recover R from $R_1 \bowtie R_2$?

Take a relation R, partition its variables into U, V, W.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$R_1(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{U}\boldsymbol{W}}(R), R_2(\boldsymbol{V}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{V}\boldsymbol{W}}(R)$$

Can we always recover R from $R_1 \bowtie R_2$? NO! In general $R \subseteq R_1 \bowtie R_2$.

Take a relation R, partition its variables into U, V, W.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$R_1(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{U}\boldsymbol{W}}(R), R_2(\boldsymbol{V}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{V}\boldsymbol{W}}(R)$$

Can we always recover R from $R_1 \bowtie R_2$? NO! In general $R \subseteq R_1 \bowtie R_2$.

Lossless decomposition: when $R = R_1 \bowtie R_2$.

Take a relation R, partition its variables into U, V, W.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$R_1(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{U}\boldsymbol{W}}(R), R_2(\boldsymbol{V}, \boldsymbol{W}) \stackrel{\text{def}}{=} \Pi_{\boldsymbol{V}\boldsymbol{W}}(R)$$

Can we always recover R from $R_1 \bowtie R_2$? NO! In general $R \subseteq R_1 \bowtie R_2$.

Lossless decomposition: when $R = R_1 \bowtie R_2$.

Fact If $U \to V$ holds then the decomposition is lossless. This is the basis of database normalization (BCNF, 3NF).

A multivalued dependency is $U \rightarrow V$.

A multivalued dependency is $U \rightarrow V$.

A relation
$$R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$$
 satisfies the MVD, if:
 $R = \Pi_{\boldsymbol{U}\boldsymbol{V}}(R) \bowtie \Pi_{\boldsymbol{U}\boldsymbol{W}}(R)$

A multivalued dependency is $U \rightarrow V$.

A relation
$$R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$$
 satisfies the MVD, if:
 $R = \Pi_{\boldsymbol{U}\boldsymbol{V}}(R) \bowtie \Pi_{\boldsymbol{U}\boldsymbol{W}}(R)$

We will always denote the MVD by $\boldsymbol{U} \twoheadrightarrow \boldsymbol{V}$; \boldsymbol{W} ($\boldsymbol{W} \stackrel{\text{def}}{=}$ the rest of attrs).

A multivalued dependency is $U \rightarrow V$.

A relation
$$R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$$
 satisfies the MVD, if:
 $R = \Pi_{\boldsymbol{U}\boldsymbol{V}}(R) \bowtie \Pi_{\boldsymbol{U}\boldsymbol{W}}(R)$

We will always denote the MVD by $\boldsymbol{U} \twoheadrightarrow \boldsymbol{V}$; \boldsymbol{W} ($\boldsymbol{W} \stackrel{\text{def}}{=}$ the rest of attrs).

Equivalently: if $(u, v_1, w_2), (u, v_2, w_2) \in R$ then $(u, v_1, w_2) \in R$ (and, by symmetry, $(u, v_2, w_1) \in R$).

1. Fix
$$R(X, Y, Z)$$
. If $Z \to X$, then $X \twoheadrightarrow (X; Y)$. Why?

1. Fix R(X, Y, Z). If $Z \to X$, then $X \to (X; Y)$. Why? Because $R = R_1(X, Z) \bowtie R_2(Y, Z)$ is lossless.

- 1. Fix R(X, Y, Z). If $Z \to X$, then $X \twoheadrightarrow (X; Y)$. Why? Because $R = R_1(X, Z) \bowtie R_2(Y, Z)$ is lossless.
- 2. If $R(X, Y) = R_1(X) \times R_2(Y)$, then $R \models \emptyset \twoheadrightarrow (X; Y)$.

Examples

1. Fix R(X, Y, Z). If $Z \to X$, then $X \twoheadrightarrow (X; Y)$. Why? Because $R = R_1(X, Z) \bowtie R_2(Y, Z)$ is lossless.

2. If
$$R(X, Y) = R_1(X) \times R_2(Y)$$
, then $R \models \emptyset \rightarrow (X; Y)$.

3.
$$R = \begin{vmatrix} a & x & m \\ a & y & m \\ b & x & m \\ b & y & m \\ a & x & n \end{vmatrix}$$

Then
$$R \models Z \rightarrow (X; Y)$$

 $R_1(X, Z) = R_2(Y, Z) = X$
 $X \mid Z \mid X \mid X \mid M$
 $X \mid M \mid X \mid M$
 $X \mid M \mid X \mid M$
 $X \mid M \mid X \mid M$

Axiomatization

[Beeri et al., 1977] gave a sound and complete axiomatization for MVDs and FDs (together).

```
\begin{array}{lll} \mbox{MVD1 (Reflexivity):} & \mbox{If Y $\underline{C}$ X} & \mbox{then $X \!\!\! \to \!\!\! \to \!\!\! Y$}. \\ \mbox{MVD2 (Augmentation):} & \mbox{If $Z$ $\underline{C}$ $W$ and} & \mbox{$X \!\!\! \to \!\!\! \to \!\!\! \to \!\!\! Y$} \\ \mbox{MVD3 (Transitivity):} & \mbox{If $X \!\!\! \to \!\!\! \to \!\!\! Y$} & \mbox{and} & \mbox{$Y \!\!\! \to \!\!\! \to \!\!\! \to \!\!\! Y$}. \\ \mbox{MVD4 (Pseudo-transitivity):} & \mbox{If $X \!\!\! \to \!\!\! \to \!\!\! Y$} & \mbox{and $Y \!\!\! \to \!\!\! \to \!\!\! Z$} \\ \mbox{then $X \!\!\! \to \!\!\! \to \!\!\! Y$} & \mbox{and $Y \!\!\! \to \!\!\! \to \!\!\! Z$} \\ \mbox{then $X \!\!\! \to \!\!\! \to \!\!\! Z \!\!\! \to \!\!\! YW.} \end{array}
```

```
\begin{array}{ll} \text{MVD5 (Union):} & \text{If } X {\Rightarrow} {\Rightarrow} Y_1 \text{ and } X {\Rightarrow} {\Rightarrow} Y_2 \\ & \text{then } X {\Rightarrow} {\Rightarrow} Y_1 Y_2. \\ \\ \text{MVD6 (Decomposition):} & \text{If } X {\Rightarrow} {\Rightarrow} Y_1 \text{ and } \\ & X {\Rightarrow} {\Rightarrow} Y_2 \\ & \text{then } X {\Rightarrow} {\Rightarrow} Y_1 {\cap} Y_2, \\ & X {\Rightarrow} {\Rightarrow} Y_1 {\cap} Y_2 \text{ and } \\ & X {\Rightarrow} {\Rightarrow} Y_2 {\cap} Y_1, \end{array}
```

No need to read: we will see a simpler approach to MVDs

Embedded MVD

Recall that an MVD $\sigma = \boldsymbol{U} \rightarrow (\boldsymbol{V}; \boldsymbol{W})$ includes all variables

When σ does not include all the variables then it is called an Embedded MVD, or EMVD.

A major breakthrough:

Theorem

[Herrmann, 1995] The implication problem of EMVDs is undecidable.

Discussion

MVDs used to define the 4th Normal Form.

MVDs are more complex and less intuitive than FDs

• FDs equivalent to a closure system, equivalent to a lattice. No such thing for MVDs.

Conditional Independence

Fix a joint probability distribution p over variables X.

 $\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:

$$p(\boldsymbol{U}=\boldsymbol{u},\boldsymbol{V}=\boldsymbol{v})p(\boldsymbol{U}=\boldsymbol{u},\boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u})p(\boldsymbol{U}=\boldsymbol{u},\boldsymbol{V}=\boldsymbol{v},\boldsymbol{W}=\boldsymbol{w})$$

Conditional Independence

Fix a joint probability distribution p over variables X.

 $m{V}$, $m{W}$ are independent conditioned on $m{U}$ if $\forall u, v, w$: $p(m{U} = m{u}, m{V} = m{v})p(m{U} = m{u}, m{W} = m{w}) = p(m{U} = m{u})p(m{U} = m{u}, m{V} = m{v}, m{W} = m{w})$ $m{V} \perp m{W} | m{U} | \text{ if } p(m{V}, m{W} | m{U}) = p(m{V} | m{U}) \cdot p(m{W} | m{U})$

Fix a joint probability distribution p over variables X.

V, W are independent conditioned on U if $\forall u, v, w$: p(U = u, V = v)p(U = u, W = w) = p(U = u)p(U = u, V = v, W = w)

Conditional Independence

$$\boxed{m{V} \perp m{W} | m{U}}$$
 if $\boxed{p(m{V}, m{W} | m{U}) = p(m{V} | m{U}) \cdot p(m{W} | m{U})}$

X	Y	p	
0	0	1/6	
0	1	1/6 1/6 1/3	$X \perp Y$?:
1	0	1/3	
1	1	1/3	

Fix a joint probability distribution p over variables X.

V, W are independent conditioned on U if $\forall u, v, w$: p(U = u, V = v)p(U = u, W = w) = p(U = u)p(U = u, V = v, W = w)

$$oxed{oldsymbol{V}\perpoldsymbol{W}|oldsymbol{U}} ext{ if } egin{bmatrix}
ho(oldsymbol{V},oldsymbol{W}|oldsymbol{U}) =
ho(oldsymbol{V}|oldsymbol{U}) \cdot
ho(oldsymbol{W}|oldsymbol{U}) \ \end{pmatrix}$$

Χ	Y	р	<i>X</i> ⊥ <i>Y</i> ?:						
0	0	1/6			X	p		Y	р
0	1	1/6	$X \perp Y$?:	Yes	0	1/3	×	0	1/2
1	0	1/3			1	2/3		1	1/2
1	1	1/3				, ,			,

Fix a joint probability distribution p over variables X.

V, W are independent conditioned on U if $\forall u, v, w$: p(U = u, V = v)p(U = u, W = w) = p(U = u)p(U = u, V = v, W = w)

$$\boxed{m{V} \perp m{W} | m{U}}$$
 if $\boxed{p(m{V}, m{W} | m{U}) = p(m{V} | m{U}) \cdot p(m{W} | m{U})}$

Conditional Independence

X	Y	p									V	V	
0	0	1/6	<i>X</i> ⊥ <i>Y</i> ?:		\overline{X}	ם	- 1	Y	ם		$\stackrel{\wedge}{\vdash}$,	P
٥	1	1/6	Y V2	Voc	_	1/2		Λ	1/2	$Y \perp V$?	0	0	1/2
0	1	1/0	Λ ± Γ :.	res	0	1/3	^	0	1/2	Λ ± 1:	0	1	1/3
1	0	1/3			1	2/3	- 1	1	1/2		1	0	1/6
1	1	1/3				•	,		•			U	1/0

Fix a joint probability distribution p over variables X.

V, W are independent conditioned on U if $\forall u, v, w$:

$$p(\boldsymbol{U}=\boldsymbol{u},\boldsymbol{V}=\boldsymbol{v})p(\boldsymbol{U}=\boldsymbol{u},\boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u})p(\boldsymbol{U}=\boldsymbol{u},\boldsymbol{V}=\boldsymbol{v},\boldsymbol{W}=\boldsymbol{w})$$

Conditional Independence

$$m{V} \perp m{W} | m{U}$$
 if $p(m{V}, m{W} | m{U}) = p(m{V} | m{U}) \cdot p(m{W} | m{U})$

Χ	Y	р	<i>X</i> ⊥ <i>Y</i> ?:							1	V	V	۱	
0	0	1/6			X	р		Y	p		^	^	<i>μ</i> 1/2	
0	1	1/6	$X \perp Y$?:	Yes	0	1/3	×	0	1/2	$X \perp Y$?	0	1	1/2	NO
1	0	1/3			1	2/3		1	1/2		1	U	1/5	
1	1	1/3					_				1	U	1/0	

Fix a joint probability distribution p over variables X.

V, W are independent conditioned on U if $\forall u, v, w$: p(U = u, V = v)p(U = u, W = w) = p(U = u)p(U = u, V = v, W = w)

$$V \perp W|U$$
 if $p(V, W|U) = p(V|U) \cdot p(W|U)$

but be careful when $p(\boldsymbol{U} = \boldsymbol{u}) = 0$.

X	Y	p								i	V	V		
0	0	1/6		Γ	X	ם	Γ	Y	D		^	Y	Р	
0	1	1/6	V V2	Voc		1/2	v.F	^	1/2	V V2	0	0	1/2	NO
0	1	1/0	∧ ⊥ <i>I</i> :.	res	U	1/3	^	U	1/2	Λ ± 1:	0	1	1/3	NO
1	0	1/3			1	2/3		1	1/2		1	Λ	1/6	
1	1	1/3	<i>X</i> ⊥ <i>Y</i> ?:	-		•	_		•		1	U	1/0	

Observation: if $\mathbf{V} \perp \mathbf{W} | \mathbf{U}$ holds then $\mathbf{U} \twoheadrightarrow (\mathbf{V}; \mathbf{W})$.

The Conditional Independence Implication Problem

Introduced by Pearl in the early 80s. Given a set of CIs Σ and a CI σ , does $\Sigma \models \sigma$ hold?

[Geiger and Pearl, 1993] complete axiomatization for "saturated" Cls (meaning: each Cl includes all variables).

Is the CI implication problem decidable?

Open problem for decades. There were two independent claims of proofs last year (I don't know their status).

Discussion

There is an uneasy connection between MVDs and CIs:

 MVDs correspond only to saturated Cls, i.e. all variables. The implication problem is the same.

 EMVDs appear to correspond to general CIs, but their implication problem is different.

Connection to Entropy

Fix a relation instance R. [Lee, 1987] observed the following: Let p be any probability distribution with support R, and h be its entropic vector.

For any p, $R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V}|\boldsymbol{U}) = 0$

Fix a relation instance R. [Lee, 1987] observed the following: Let p be any probability distribution with support R, and h be its entropic vector.

For any
$$p$$
, $R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V}|\boldsymbol{U}) = 0$

If p is uniform, then $R \models \boldsymbol{U} \twoheadrightarrow (\boldsymbol{V}; \boldsymbol{W})$ iff $\boldsymbol{V} \perp \boldsymbol{W} | \boldsymbol{U}$ iff $I_h(\boldsymbol{V}; \boldsymbol{W} | \boldsymbol{U}) = 0$.

Fix a relation instance R. [Lee, 1987] observed the following: Let p be any probability distribution with support R, and h be its entropic vector.

For any
$$p$$
, $R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V}|\boldsymbol{U}) = 0$

If
$$p$$
 is uniform, then $R \models \boldsymbol{U} \twoheadrightarrow (\boldsymbol{V}; \boldsymbol{W})$ iff $\boldsymbol{V} \perp \boldsymbol{W} | \boldsymbol{U}$ iff $I_h(\boldsymbol{V}; \boldsymbol{W} | \boldsymbol{U}) = 0$.

X	Y	р
0	0	1/4
0	1	1/4
1	0	1/4
1	1	1/4

then $Z \rightarrow (X; Y)$ $X \perp Y|Z$.

Fix a relation instance R. [Lee, 1987] observed the following: Let p be any probability distribution with support R, and h be its entropic vector.

For any
$$p$$
, $R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V}|\boldsymbol{U}) = 0$

If
$$p$$
 is uniform, then $R \models \boldsymbol{U} \twoheadrightarrow (\boldsymbol{V}; \boldsymbol{W})$ iff $\boldsymbol{V} \perp \boldsymbol{W} | \boldsymbol{U}$ iff $I_h(\boldsymbol{V}; \boldsymbol{W} | \boldsymbol{U}) = 0$.

Χ	Y	p 1/4 1/4 1/4 1/4		
0	0	1/4		$Z \rightarrow (X; Y)$
0	1	1/4	then	` ,
1	0	1/4		$X \perp Y Z$.
1	1	1/4		

But, if probabilities are other than 1/4, then

$$Z \rightarrow (X; Y)$$

 $\neg (X \perp Y|Z).$

The FD/MVD implication problem can be solved with entropic inequalities!

Example: Union Axiom MVD5: $X \rightarrow Y_1, X \rightarrow Y_2 \models X \rightarrow Y_1 Y_2$

Example: Union Axiom MVD5: $X woheadrightarrow Y_1, X woheadrightarrow Y_2 \models X woheadrightarrow Y_1 Y_2$ Let Z be the other variables, then:

$$(X \twoheadrightarrow Y_1; Y_2Z), (X \twoheadrightarrow Y_2; Y_1Z) \models (X \twoheadrightarrow Y_1Y_2|Z).$$

Example: Union Axiom MVD5: $X \twoheadrightarrow Y_1, X \twoheadrightarrow Y_2 \models X \twoheadrightarrow Y_1Y_2$

Let Z be the other variables, then:

$$(X \twoheadrightarrow Y_1; Y_2Z), (X \twoheadrightarrow Y_2; Y_1Z) \models (X \twoheadrightarrow Y_1Y_2|Z).$$

We show:
$$I_h(Y_1; Y_2Z|X) = I_h(Y_2; Y_1Z|X) = 0 \Rightarrow I_h(Y_1Y_2; Z|X) = 0$$

Example: Union Axiom MVD5: $X woheadrightarrow Y_1, X woheadrightarrow Y_2 \models X woheadrightarrow Y_1 Y_2$

Let Z be the other variables, then:

$$(X \twoheadrightarrow Y_1; Y_2Z), (X \twoheadrightarrow Y_2; Y_1Z) \models (X \twoheadrightarrow Y_1Y_2|Z).$$

We show:
$$I_h(Y_1; Y_2Z|X) = I_h(Y_2; Y_1Z|X) = 0 \Rightarrow I_h(Y_1Y_2; Z|X) = 0$$

Suffices to show: $I_h(Y_1; Y_2Z|X) + I_h(Y_2; Y_1Z|X) \ge I_h(Y_1Y_2; Z|X)$ Why??

Example: Union Axiom MVD5: $X \twoheadrightarrow Y_1, X \twoheadrightarrow Y_2 \models X \twoheadrightarrow Y_1Y_2$

Let
$$Z$$
 be the other variables, then:

$$(X \twoheadrightarrow Y_1; \underline{Y_2Z}), (X \twoheadrightarrow Y_2; Y_1Z) \models (X \twoheadrightarrow Y_1Y_2|Z).$$

We show:
$$I_h(Y_1; Y_2Z|X) = I_h(Y_2; Y_1Z|X) = 0 \Rightarrow I_h(Y_1Y_2; Z|X) = 0$$

Suffices to show:
$$I_h(Y_1; Y_2Z|X) + I_h(Y_2; Y_1Z|X) \ge I_h(Y_1Y_2; Z|X)$$
 Why??

$$I_h(Y_1; Y_2Z|X) + I_h(Y_2; Y_1Z|X) = h(XY_1) + h(XY_2Z) - h(XY_1Y_2Z) - h(X) + h(XY_2) + h(XY_1Z) - h(XY_1Y_2Z) - h(X)$$

$$I_h(Y_1Y_2; Z|X) = h(XY_1Y_2) + h(XZ) - h(XY_1Y_2Z) - h(X)$$

Example: Union Axiom MVD5: $X \rightarrow Y_1, X \rightarrow Y_2 \models X \rightarrow Y_1Y_2$ Let Z be the other variables, then:

$$(X \twoheadrightarrow Y_1; Y_2Z), (X \twoheadrightarrow Y_2; Y_1Z) \models (X \twoheadrightarrow Y_1Y_2|Z).$$

We show:
$$I_h(Y_1; Y_2Z|X) = I_h(Y_2; Y_1Z|X) = 0 \Rightarrow I_h(Y_1Y_2; Z|X) = 0$$

Suffices to show: $I_h(Y_1; Y_2Z|X) + I_h(Y_2; Y_1Z|X) \ge I_h(Y_1Y_2; Z|X)$ Why??

$$I_h(Y_1; Y_2Z|X) + I_h(Y_2; Y_1Z|X) = h(XY_1) + h(XY_2Z) - h(XY_1Y_2Z) - h(X) + h(XY_2) + h(XY_1Z) - h(XY_1Y_2Z) - h(X) I_h(Y_1Y_2; Z|X) = h(XY_1Y_2) + h(XZ) - h(XY_1Y_2Z) - h(X)$$

Need to show:

$$h(XY_1) + h(XY_2Z) + h(XY_2) + h(XY_1Z) > h(XY_1Y_2Z) + h(X)$$

Example: Union Axiom MVD5: $X \rightarrow Y_1, X \rightarrow Y_2 \models X \rightarrow Y_1Y_2$

Let Z be the other variables, then:

$$(X \twoheadrightarrow Y_1; \underline{Y_2Z}), (X \twoheadrightarrow Y_2; Y_1Z) \models (X \twoheadrightarrow Y_1Y_2|Z).$$

We show:
$$I_h(Y_1; Y_2Z|X) = I_h(Y_2; Y_1Z|X) = 0 \Rightarrow I_h(Y_1Y_2; Z|X) = 0$$

Suffices to show: $I_h(Y_1; Y_2Z|X) + I_h(Y_2; Y_1Z|X) \ge I_h(Y_1Y_2; Z|X)$ Why??

$$I_h(Y_1; Y_2Z|X) + I_h(Y_2; Y_1Z|X) = h(XY_1) + h(XY_2Z) - h(XY_1Y_2Z) - h(X) + h(XY_2) + h(XY_1Z) - h(XY_1Y_2Z) - h(X) I_h(Y_1Y_2; Z|X) = h(XY_1Y_2) + h(XZ) - h(XY_1Y_2Z) - h(X)$$

Need to show:

$$h(XY_1) + h(XY_2Z) + h(XY_2) + h(XY_1Z) \ge h(XY_1Y_2Z) + h(X)$$

Follows from $h(XY_1) + h(XY_2) \ge h(X)$ and $h(XY_2Z) + h(XY_1Z) \ge h(XY_1Y_2Z)$, which hold by modularity and non-negativity

Discussion

- Every FD/MVD implication can be derived from a Shannon inequality, where all terms are of the form $h(\boldsymbol{V}|\boldsymbol{U})$ or $I_h(\boldsymbol{V};\boldsymbol{W}|\boldsymbol{U})$ [Kenig and Suciu, 2022].
- What about general CIs? Surprisingly, there exists CIs where the conditional implication holds $I_h(\cdots) = 0 \Rightarrow I_h(\cdots) = 0$, but the corresponding inequality fails [Kaced and Romashchenko, 2013].
- Limitations of the entropic method: restricted to FD/MVDs. Next week: more general constraints, incomplete databases, probabilistic databases.

Beeri, C., Fagin, R., and Howard, J. H. (1977).

A complete axiomatization for functional and multivalued dependencies in database relations.

In Proceedings of the 1977 ACM SIGMOD International Conference on Management of Data, Toronto, Canada, August 3-5, 1977., pages 47-61.

Fagin, R. (1982).

Horn clauses and database dependencies. J. ACM, 29(4):952-985.

Geiger, D. and Pearl, J. (1993).

Logical and algorithmic properties of conditional independence and graphical models. The Annals of Statistics, 21(4):2001–2021.

Herrmann, C. (1995).

On the undecidability of implications between embedded multivalued database dependencies. Inf. Comput., 122(2):221-235.

Kaced, T. and Romashchenko, A. E. (2013).

Conditional information inequalities for entropic and almost entropic points. IEEE Trans. Inf. Theory, 59(11):7149-7167.

Kenig, B. and Suciu, D. (2022).

Integrity constraints revisited: From exact to approximate implication.

Log. Methods Comput. Sci., 18(1).

Lee, T. T. (1987).

An information-theoretic analysis of relational databases - part I; data dependencies and information metric. IEEE Trans. Software Eng., 13(10):1049-1061.