

Praktikum Autonome Systeme

Applications II

Prof. Dr. Claudia Linnhoff-Popien Thomy Phan, Andreas Sedlmeier, Fabian Ritz http://www.mobile.ifi.lmu.de

→ Recap

Recap: AlphaGo (2016)

combines

- Fast Rollout Policy (rollouts)
- Deep Reinforcement Learning (Value network)
- Deep SupervisedLearning (Policy network)
- MCTS (combines above)

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf

Recap: AlphaGo (2016)

https://www.nature.com/articles/nature16961

Recap: AlphaGo Zero (2017)

https://deepmind.com/documents/119/agz_unformatted_nature.pdf

Recap: AlphaGo Zero (2017)

differences with AlphaGo

- only stones from the Go board as input
- only one neural network with two heads (no rollouts)
- only Self-Play Reinforcement Learning
- MCTS during RL Self-Play (training)

https://deepmind.com/blog/article/alphago-zero-starting-scratch

→ Alpha Zero

Shedding new light on the grand games of chess, shogi and Go

https://www.doi.org/10.1126/science.aar6404

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

AlphaZero – Shedding new light... (2018)

https://www.youtube.com/watch?v=7L2sUGcOgh0

AlphaZero (2018)

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

AlphaZero (2018)

further differences to AlphaGo Zero:

- estimates and optimizes the expected outcome (instead of the probability of winning)
- no augmentation of training data
 (instead of transforming the board position during MCTS)
- neural network is updated continually (instead of waiting for an iteration to complete)
- self-play games always generated by the latest parameters for the neural network

AlphaZero (2018)

training time to beat the State of the Art:

take-away: MCTS and RL go well together

https://science.sciencemag.org/content/362/6419/1140

Game Theory: Chess, Shogi and Go are

- finite
- two-player zero-sum games with
- perfect information and
- no stochasticy
- → How about other problems games?

→ FTW: the emergence of complex cooperative agents

Human-level performance in first-person multiplayer games with population-based deep reinforcement learning

https://www.doi.org/10.1126/science.aau6249 https://deepmind.com/blog/article/capture-the-flag-science

Human-level performance in first-person... (2018)

agents must learn how to

- the environment provides a single reward signal per match
 - whether a team won or not

Agents? Cooperation? Teams? We've only talked about single-agent scenarios so far!

Exkursion: Multi Agent Scenarios

many open questions

- uncertainty w.r.t. other agents
- non-stationarity

WiSe 2020/21, Applications II

- partial observability
- credit assignment problem

exploding state-/action space

FTW agent(s)

- population based approach
- trained by self-play
- internal (dense) and external (sparse) rewards

two-tier process

- learn RL policies on individual, internal rewards
- optimize internal rewards w.r.t. the global goal (winning)
- two-tier timescale (combination of a fast and a slow RNN)
 - improves the memory usage
 - generates consistent action sequences

FTW Agent Architecture

https://deepmind.com/blog/article/capture-the-flag-science

situational awareness

- the agent's room
- status of the flags
- visible teammates and opponents

advanced strategies

- home base defence
- opponent base camping
- teammate following

https://deepmind.com/blog/article/capture-the-flag-science

267ms response-delayed agent results

Human Game Type	Human Win Rate
Exploitability Trail Games Tester	30%
Strong Human Tournament Participant	21%
Intermediate Human Tournament Participar	nt 12%

Average number of game events by player type

https://deepmind.com/blog/article/capture-the-flag-science

- human comparable performance
 - super-human response time
 - super-human accuracy
 - more collaborative than humans

take-away: individual shaped rewards may boost training

> Excursion: Reward Shaping

Policy invariance under reward transformations: Theory and application to reward shaping

https://people.eecs.berkeley.edu/~russell/papers/icml99-shaping.pdf

- In RL, reward is delayed and sparse
 - may be problematic during exploration
 - definitely is a problem during exploitation

We need to provide additional information without* altering the underlying MDP!

$$f(s_t, s_{t+1}) = \gamma \Phi(s_{t+1}) - \Phi(s_t)$$
 from state s_t to s_{t+1} from state s_t to s_{t+1}

 $f(s_t, s_{t+1})$: reward for moving from state s_t to s_{t+1} $\Phi(s)$: potential of state s v: discount factor

http://anna.harutyunyan.net/wp-content/uploads/2017/08/inria-march-17.pdf

- Shaped rewards are additional rewards
- For the theoretic guarentees* to hold,
 there needs to be a shaping compensation
 - always when moving to a final state
 - typically when ending a training episode

- Don't: Compare agents with shaped rewards
 - Better: use the raw / true* reward function
 - Much better: keep track of (and plot) meaningfull events
- Don't: Put (too) much attention to the loss
 - Just because the loss got smaller, your agent(s) must not necessarily have learnt useful behavior
 - And even if it does not, your agent(s) may still improve

Personal, painful experience

https://imgflip.com/s/meme/One-Does-Not-Simply.jpg

→ AlphaStar

Grandmaster level in StarCraft II using multi-agent reinforcement learning

https://doi.org/10.1038/s41586-019-1724-z

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

AlphaStar – The inside story (2019)

https://www.youtube.com/watch?v=UuhECwm31dM

key challenges

- game theory: no single best strategy
- imperfect information
- long term planning
- real time
- large action space

initial conditions

- single map
- single race
- global view
- unlimited APM

Click where?
Build/train what?
Estimated reward?

AlphaStar (League) agents

- initially trained with SL (human game replays)
- further trained with RL (IMPALA, off-policy actor-critic)
- population based approach (FTW+)
 - original agents are kept when new agents branch
 - matchmaking probabilities and hyperparameters determine branched agent's learning objective
 - difficulty increases iteratively while diversity is preserved
- agents for a specific target (FTW++)
 - sampled from the total Nash distribution of the league

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-iiulical-time-starcraft-iiulical

- training a league of agents (in early 2019)
 - took 3 (SL) + 14 (RL) days
 - each agent played ~200 years real time (-> IMPALA)
 - each agent utilizes ~50 GPUs for training

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-iii.

- model architecture (in early 2019)
 - transformer (self-attention)
 - relational deep RL (relations between objetcs)
 - deep LSTM core (combinated attention layers)
 - auto-regressive policy head (multi-dim action predictions)
 - pointer network (variable input and output lengths)
 - centralised value baseline (COMA)

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

- early 2019: human professional performance, but...
 - one race on a single map
 - bursts of super-human APM
 - superior macro- and micro-management
 - raw interface (whole map): 10 wins, 0 losses
 - human "camera-like" interface: 0 wins, 1 loss

Micro AI – Dodging Splash Damage (2015)

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-iii.

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Rock, paper, scissors

StarCraft II players can create a variety of 'units', which have balanced strengths and weaknesses, similar to the game rock, paper, scissors

https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

- late 2019: "grandmaster" performance
 - better than 99.8% of all players with all races on all maps
 - human "camera-like" interface
 - APM limited to human level
 - human-like delay (30-300 ms)

take-away: pool of human-bootstrapped, diverse agents

Thank you!

