Authorization

UT LAW379M

FALL 2022

LECTURE NOTES

Authentication/Authorization

Validating Identity

Permissions
Assigned to a
Validated Identity

A Framework

Policy

Mechanism

Assurance

Incentives

Figure 1.1: Security Engineering Analysis Framework

What a Security Policy is NOT

- Generic platitude statements
- Butt-covering for legal/regulation
- Aspirational, motivational, etc

What a Security Policy *IS*

- Specific, testable properties
- A strategy for security
- Example:

"All checks over \$10,000 must be signed by two managers."

Policy vs Policy Model

- I prefer "policy" for each statement
- I prefer "policy model" for the combination
- Anderson uses them interchangeably
- Despite my preferences, I follow Anderson

Policy and Authorization

- Policy (model) is the security strategy
- Testable security statements
- Often an authorization model
- (Policy defines what is authorized)

Access Controls

The mechanism by which authorization permissions are managed

Within most information systems, the most common controls:

- (C)reate
- (R)ead
- (U)pdate
- (D)elete

Most other controls can be thought of as a form of one of these

Every-day Approaches

ACCESS CONTROL LISTS

CAPABILITIES

One View of ACL/Capabilities

User	Accounting		
	Data		
Sam	rw		
Alice	rw		
Bob	r		

Figure 4.4: Access control list (ACL)

User	Operating	Accounts	Accounting	Audit
	System	Program	Data	Trail
Bob	rx	r	r	r

Figure 4.5: A capability

Broader Concept

A *capability* is an enabling technology for access

An access control list is a filtering technology for access

Opponents of capabilities argue that you cannot change a file's status

They just don't understand capabilities

MAC vs DAC

Mandatory Access Controls – what is permitted is determined by policy

Discretionary Access Controls – what is permitted is determined by user

Multi-Level Security (MLS)

Users and data are assigned classifications

What users are permitted to do with data depends on both labels

Relationship to MAC:

- Some use it interchangeably
- Some define parts of such a system as MAC (see next slide)
- Anderson does not say the policy is MAC, but the controls that enforce it are
- I prefer Anderson's formulation

Bell Lapadula Model

Design emerged from military document classification

Three protection properties

- Simple Security Property: No Read Up (NRU)
- *-Property: No Write Down (NWD)
- Discretionary Access Controls within the label

No Read Up/No Write Down

The *-property was the big innovation of BLP. It *assumed* trojans and buggy code!

BLP as a Model Security Policy

- BLP is a well defined security policy
- So... is a system with BLP secure?
- BLP itself is relatively easy to understand and enforce, BUT:
 - Is it the <u>right</u> security policy?
 - Is it going to work at the edges?

BLP Edge #1: Declassifying Data

- What if we do want to write data down?
- Original BLP "gets around" this by having trusted subjects
- The NWD policy only applies to untrusted subjects
- But there is no definition for trusted/untrusted
- Trusted subjects introduce two risks:
 - Risks for any trusted subject
 - Risks that designers will make too many subjects trusted
- Other solutions: security officer, additional policy, etc.

BLP Edge #2: Creation of labels

- Model does not say how to create data, subjects, or labels
- Described by the creators of BLP, but not part of the model
- Common solutions are data created by subject at same level
- But how do subjects get their level?

Example of Additional Policy

- Strong tranquility: security labels never change during operation
 - Example: put system into offline state to make changes
- Weak tranquility: labels never change in a way that violates security policy
 - As subject accesses info that is higher, their level increases
 - At any given time, the NWD policy is enforced

BLP Edge #3: Data Doesn't Flow

- The model can "work too well."
- Data becomes compartmentalized
- Data flows upward, duplication, etc., etc., etc.
- In other words, sometimes even working "right" is "wrong"

Biba model

Upside-down BLP

- You can only read up and write down
- The goal is *integrity* not *confidentiality*

Partially used in Vista. Uses the NoWriteUp.

- Most files are "medium" or higher. IE is "low"
- So, things downloaded can read most files, but not write to them!

Why BLP or Biba?

- BLP primarily enforces confidentiality
- Biba primarily enforces integrity
- Obviously, picking the *right* model for a system is crucial
- Remember: many systems fail because the designers protect the wrong things or protect the right things but in the wrong way.

Domain and Type Enforcement

- DTE assigns a "type" to data objects (e.g., files)
- DTE assigns a "domain" to subjects (e.g., user processes)
- Rules for domain-to-domain and domain-to-type
- Used in SE-Linux and Android
- Powerful, but can be complicated/hard to use
- Perhaps not a real model, but a model framework

Role-Based Access Controls

- RBAC is widely used commercially
- Each user of the system has one or more roles
- Each role has various permissions (can be MAC or DAC)
- Each role's permissions should be specific/limited
- User may switch roles as needed
- Problems include role-creep, data rot, etc.

Attribute-Based Access Controls

- ABAC includes all of RBAC but adds additional information
- ABAC also includes attributes: time of day, device, etc.
- ABAC is seen as being exceptionally expressive
- Like DTE, can be very complicated and hard to get right

Access Control Principles

- Least privilege
- Separation of duties/concerns

Inference

Information sharing often involves some kind of "scrubbing"

In MLS, a report is redacted before moving down a security layer

In privacy-preserving systems, data is often anonymized

The problem, of course, is inference

- People can often be identified by their medical records even with names removed
- And, of course, we've seen this with AOL and Google

Inference Control

Characteristic formula – the query instructions to get some set

Query set – the set produced by a characteristic formula

Sensitive Statistics – stats that deanonymize information:

 For example, if the set is too small, than we've identified an individual by attributes

Query Size

You can limit how small a result is from a query

But you also have to worry about returning N-1!!

Also, you have to deal with using multiple queries to get a smaller than N intersection