Primo parziale 2024

Esercizio 1

Sia $s \in \mathbb{R}$. Considerare la serie di Fourier:

$$\sum_{n\in\mathbb{Z}\backslash\{0\}}\frac{n^{s/2}}{n^{2s}+\frac{1}{n^{4s}}}e^{inx}$$

- 1. Per quali $s \in \mathbb{R}$ la serie converge?
- 2. Se la serie converge, quale regolarità ha il limite?

Soluzione

1. Convergenza della Serie

Passo 1: Semplificare l'espressione $\frac{n^{s/2}}{n^{2s}+n^{-4s}}$

Abbiamo:

$$n^{2s} + \frac{1}{n^{4s}} = n^{2s} + n^{-4s}$$

Quindi,

$$\frac{n^{s/2}}{n^{2s} + \frac{1}{n^{4s}}} = n^{-3s/2} \cdot \frac{1}{1 + n^{-6s}}$$

Passo 2: Analizzare il comportamento asintotico

Consideriamo il comportamento dei termini quando $|n| \to \infty$.

Caso 1: s > 0

- Quando $n \to \infty$, $n^{-6s} \to 0$.
- Il denominatore $1 + n^{-6s}$ tende a 1: $1 + n^{-6s} \approx 1$.
- Il termine $\frac{n^{s/2}}{n^{2s} + \frac{1}{n^{4s}}}$ si comporta come $n^{-3s/2}$.

Notare che e^{inx} è una funzione esponenziale complessa. Per ogni x reale e intero n, il modulo è:

$$|e^{inx}| = 1.$$

Pertanto, il modulo di ogni termine nella serie è:

$$\sum_{n\in\mathbb{Z}\backslash\{0\}}\left|\frac{n^{s/2}}{n^{2s}+\frac{1}{n^{4s}}}e^{inx}\right|\approx\sum_{n\in\mathbb{Z}\backslash\{0\}}\frac{1}{|n|^{3s/2}}$$

Affinché la serie converga, l'esponente deve soddisfare:

$$\frac{3s}{2} > 1 \implies s > \frac{2}{3}$$

Caso 2: s < 0

- Quando $n \to \infty$, $n^{-6s} = n^{6|s|} \to \infty$.
- Il denominatore si comporta come $n^{6|s|}$.
- Il termine semplifica a:

$$n^{-3s/2} \cdot \frac{1}{n^{6|s|}} = n^{-3s/2 - 6|s|} = n^{(9s/2)}$$

Poiché $s<0,\,\frac{9s}{2}<0,$ quindi i termini decrescono come $n^{9s/2}.$

• Per la convergenza, l'esponente deve soddisfare:

$$\frac{9s}{2} < -1 \implies s < -\frac{2}{9}$$

Caso 3: s = 0

Il termine diventa:

$$\frac{1}{1+1} = \frac{1}{2},$$

che è costante.

La serie:

$$\sum_{n \in \mathbb{Z} \setminus \{0\}} e^{inx}$$

non converge.

Passo 3: Determinare la convergenza

Dai passi precedenti, concludiamo che la serie converge per tutti i numeri reali s tali che:

$$s < -\frac{2}{9}$$
 o $s > \frac{2}{3}$.

2. Regolarità della funzione limite

La regolarità di una funzione può essere dedotta dal tasso di decadimento dei suoi coefficienti di Fourier:

Principio Generale: Se $|c_n| = O(|n|^{-p})$ per qualche p > 1, la funzione ha k derivate continue, dove k è il massimo intero minore di p - 1.

Esaminiamo come i coefficienti c_n si comportano quando $|n| \to \infty$ per i valori di s in cui la serie converge:

$$s > \frac{2}{3}$$
 o $s < -\frac{2}{9}$.

Calcoliamo il valore di p in ciascun caso:

Caso 1: $s > \frac{2}{3}$

- Tasso di decadimento: $|c_n| \approx n^{-3s/2}$.
- Esponente $p = \frac{3s}{2}$.
- Numero di derivate continue:

k è il massimo intero minore di $\frac{3s}{2} - 1$.

Caso 2: $s < -\frac{2}{9}$

- Tasso di decadimento: $|c_n| \approx n^{9s/2}$.
- Esponente $p = -\frac{9s}{2}$.
- Numero di derivate continue:

k è il massimo intero minore di $-\frac{9s}{2}-1$.

Concludere la regolarità della funzione limite

- Per $s > \frac{2}{3}$:
 - La funzione è continua.
 - Il numero di derivate continue k aumenta al crescere di s.
 - La regolarità esatta dipende dal valore di s secondo k che è il massimo intero minore di $\frac{3s}{2}-1$.
- Per $s < -\frac{2}{9}$:
 - La funzione è liscia con multiple derivate continue.
 - Il numero di derivate continue kaumenta al diminuire di s.
 - La regolarità esatta dipende dal valore di ssecondo kche è il massimo intero minore di $-\frac{9s}{2}-1.$

Esercizio 2

Dimostrare il lemma di Riemann-Lebesgue per le funzioni in $L^2_{\mathbb{C}}(T)$ utilizzando la disuguaglianza di Bessel.

Soluzione

Il lemma di Riemann-Lebesgue afferma che:

Sia $f \in L^2_{\mathbb{C}}(T)$, e siano c_n i coefficienti di Fourier di f. Allora, quando $|n| \to \infty$, i coefficienti di Fourier \boldsymbol{c}_n tendono a zero:

$$c_n \xrightarrow{|n| \to \infty} 0.$$

Passo 1: Definire i coefficienti di Fourier e la base ortonormale

Per una funzione $f \in L^2_{\mathbb{C}}([-T/2, T/2])$, i coefficienti di Fourier c_n sono definiti

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-in\omega_0 x} dx$$
, per $n \in \mathbb{Z}$,

dove $\omega_0=\frac{2\pi}{T}$ è la frequenza angolare fondamentale. Consideriamo l'insieme di funzioni:

$$\phi_n(x) = \frac{1}{\sqrt{T}} e^{in\omega_0 x}, \quad n \in \mathbb{Z}.$$

Queste funzioni formano una base ortonormale per $L^2([-T/2,T/2])$ rispetto al prodotto interno:

$$\langle f, g \rangle = \int_{-T/2}^{T/2} f(x) \overline{g(x)} \, dx.$$

Per $m, n \in \mathbb{Z}$:

$$\langle \phi_m, \phi_n \rangle = \int_{-T/2}^{T/2} \frac{1}{\sqrt{T}} e^{im\omega_0 x} \cdot \frac{1}{\sqrt{T}} e^{-in\omega_0 x} dx = \frac{1}{T} \int_{-T/2}^{T/2} e^{i(m-n)\omega_0 x} dx.$$

• Se m = n:

$$\langle \phi_n, \phi_n \rangle = \frac{1}{T} \int_{-T/2}^{T/2} dx = 1.$$

• Se $m \neq n$:

$$\langle \phi_m, \phi_n \rangle = \frac{1}{T} \left[\frac{e^{i(m-n)\omega_0 x}}{i(m-n)\omega_0} \right]_{-T/2}^{T/2} = 0.$$

Passo 2: Esprimere i coefficienti di Fourier come prodotti interni

I coefficienti di Fourier c_n possono essere espressi come prodotti interni con le funzioni base:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-in\omega_0 x} dx = \frac{1}{\sqrt{T}} \int_{-T/2}^{T/2} f(x) \overline{\phi_n(x)} dx = \langle f, \phi_n \rangle.$$

Passo 3: Applicare la disuguaglianza di Bessel

La disuguaglianza di Bessel afferma che per ogni $f \in L^2$ e ogni insieme ortonormale $\{\phi_n\}$:

$$\sum_{n=-\infty}^{\infty} |\langle f, \phi_n \rangle|^2 \le ||f||_{L^2}^2,$$

dove:

$$||f||_{L^2}^2 = \int_{-T/2}^{T/2} |f(x)|^2 dx.$$

Applicando questa disuguaglianza:

$$\sum_{n=-\infty}^{\infty} |c_n|^2 \le ||f||_{L^2}^2 < \infty.$$

Passo 4: Concludere che $c_n \to 0$ quando $|n| \to \infty$

Poiché la serie $\sum_{n=-\infty}^{\infty} |c_n|^2$ converge, ne consegue che:

$$\lim_{|n| \to \infty} |c_n|^2 = 0.$$

Pertanto:

$$\lim_{|n| \to \infty} c_n = 0.$$

Questo completa la dimostrazione del lemma di Riemann-Lebesgue per funzioni in ${\cal L}^2.$

Esercizio 3

Sia $\alpha>0,$ e consideriamo la $2\pi\text{-periodizzazione}$ della funzione $x\mapsto e^{-\alpha|x|}$ data da:

$$f(x) = \sum_{j \in \mathbb{Z}} e^{-\alpha|x - 2\pi j|} = \sum_{j \in \mathbb{Z}} f_j(x).$$

Dimostrare che:

- 1. $f \in L^1_{\mathbb{R}}(2\pi)$.
- 2. Fissato $J \in \mathbb{N}$. Per la troncatura $T_J(x) = \sum_{|j| \leq J} f_j(x)$, mostrare che $T_J \to f$ uniformemente su $[-\pi, \pi]$ quando $J \to \infty$. È vero che $T_J \to f$ uniformemente su \mathbb{R} quando $J \to \infty$?

Soluzione

1. $f \in L^1_{\mathbb{R}}(2\pi)$

Per dimostrare che la funzione $f(x) = \sum_{j \in \mathbb{Z}} e^{-\alpha|x-2\pi j|}$ appartiene a $L^1_{\mathbb{R}}(2\pi)$, dobbiamo mostrare che l'integrale di |f(x)| sull'intervallo $[0,2\pi]$ è finito. Poiché $f(x) \geq 0$, possiamo concentrarci sul calcolo di $\int_0^{2\pi} f(x) \, dx$ e dimostrare che è finito.

Dobbiamo calcolare l'integrale su un periodo:

$$\int_0^{2\pi} f(x) \, dx = \int_0^{2\pi} \sum_{j \in \mathbb{Z}} e^{-\alpha |x - 2\pi j|} \, dx.$$

Poiché $e^{-\alpha|x-2\pi j|} \ge 0$ per ogni x e j, e la somma converge per ogni x, possiamo scambiare la somma e l'integrale (per il teorema di Fubini):

$$\int_0^{2\pi} f(x) \, dx = \sum_{j \in \mathbb{Z}} \int_0^{2\pi} e^{-\alpha |x - 2\pi j|} \, dx.$$

Calcolo di ciascun integrale I_i

Calcoleremo $I_j = \int_0^{2\pi} e^{-\alpha|x-2\pi j|} dx$ per ogni $j \in \mathbb{Z}$.

Caso 1: j = 0

Per j=0: Poiché $x\in[0,2\pi]$ e |x-0|=x, abbiamo:

$$I_0 = \int_0^{2\pi} e^{-\alpha x} dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^{2\pi} = \frac{1 - e^{-2\pi\alpha}}{\alpha}.$$

Caso 2: i > 0

Per $j \ge 1$: Su $x \in [0, 2\pi]$, $x - 2\pi j \le 0$, quindi $|x - 2\pi j| = -(x - 2\pi j) = 2\pi j - x$. Calcoliamo:

$$I_{j} = \int_{0}^{2\pi} e^{-\alpha(2\pi j - x)} dx = e^{-2\pi\alpha j} \int_{0}^{2\pi} e^{\alpha x} dx = e^{-2\pi\alpha j} \left[\frac{e^{\alpha x}}{\alpha} \right]_{0}^{2\pi} = \frac{(e^{2\pi\alpha} - 1)e^{-2\pi\alpha j}}{\alpha}.$$

Caso 3: j < 0

Per $j \le -1$: Su $x \in [0, 2\pi], x - 2\pi j \ge 0$, quindi $|x - 2\pi j| = x - 2\pi j$. Calcoliamo:

$$I_{j} = \int_{0}^{2\pi} e^{-\alpha(x-2\pi j)} dx = e^{2\pi\alpha j} \int_{0}^{2\pi} e^{-\alpha x} dx = e^{2\pi\alpha j} \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_{0}^{2\pi} = \frac{(1 - e^{-2\pi\alpha}) e^{2\pi\alpha j}}{\alpha}.$$

Somma degli integrali

Calcoliamo l'integrale totale:

$$\int_0^{2\pi} f(x) dx = I_0 + \sum_{j=1}^{\infty} (I_j + I_{-j}).$$

Sostituiamo le espressioni per I_j e I_{-j} :

Per $j \geq 1$:

$$I_j = \frac{(e^{2\pi\alpha} - 1)e^{-2\pi\alpha j}}{\alpha}, \quad I_{-j} = \frac{(1 - e^{-2\pi\alpha})e^{-2\pi\alpha j}}{\alpha}.$$

Sommiamo I_j e I_{-j} :

$$I_j+I_{-j}=\frac{[e^{2\pi\alpha}-1+1-e^{-2\pi\alpha}]e^{-2\pi\alpha j}}{\alpha}=\frac{(e^{2\pi\alpha}-e^{-2\pi\alpha})e^{-2\pi\alpha j}}{\alpha}.$$

Sappiamo che $e^{2\pi\alpha} - e^{-2\pi\alpha} = 2\sinh(2\pi\alpha)$:

$$I_j + I_{-j} = \frac{2\sinh(2\pi\alpha)e^{-2\pi\alpha j}}{\alpha}.$$

Sommiamo per $j \geq 1$:

$$\sum_{j=1}^{\infty} (I_j + I_{-j}) = \frac{2\sinh(2\pi\alpha)}{\alpha} \sum_{j=1}^{\infty} e^{-2\pi\alpha j}.$$

Calcoliamo la somma:

$$\sum_{j=1}^{\infty} e^{-2\pi\alpha j} = \frac{e^{-2\pi\alpha}}{1 - e^{-2\pi\alpha}}.$$

Sostituiamo:

$$\sum_{j=1}^{\infty} (I_j + I_{-j}) = \frac{2\sinh(2\pi\alpha)}{\alpha} \cdot \frac{e^{-2\pi\alpha}}{1 - e^{-2\pi\alpha}}.$$

Calcolo dell'integrale totale

Aggiungiamo I_0 e la somma:

$$\int_{0}^{2\pi} f(x) \, dx = \frac{1 - e^{-2\pi\alpha}}{\alpha} + \frac{1 + e^{-2\pi\alpha}}{\alpha} = \frac{2}{\alpha}.$$

Conclusione

Poiché $\int_0^{2\pi} f(x) dx = \frac{2}{\alpha}$ è finito per $\alpha > 0$, la funzione f(x) è integrabile su $[0, 2\pi]$. Pertanto, $f \in L^1_{\mathbb{R}}(2\pi)$.

2.a) Mostrare che $T_J(x) \to f(x)$ uniformemente su $[-\pi,\pi]$ quando $J \to \infty$

Dobbiamo stimare la differenza tra f(x) e $T_J(x)$:

$$|f(x) - T_J(x)| = \left| \sum_{j \in \mathbb{Z}} f_j(x) - \sum_{|j| \le J} f_j(x) \right| = \sum_{|j| > J} f_j(x).$$

Il nostro compito si riduce a mostrare che la somma di coda $\sum_{|j|>J} f_j(x)$ può essere resa arbitrariamente piccola uniformemente su $x\in [-\pi,\pi]$ scegliendo J sufficientemente grande.

Stima di $f_i(x)$ per $x \in [-\pi, \pi]$ e |j| > J

Per $x \in [-\pi, \pi]$ e $j \in \mathbb{Z}$, $|x - 2\pi j| \ge 2\pi |j| - \pi$.

$$f_j(x) = e^{-\alpha|x-2\pi j|} \le e^{-\alpha(2\pi|j|-\pi)} = e^{\alpha\pi}e^{-2\pi\alpha|j|}.$$

Sia $C=e^{\alpha\pi}$ (una costante positiva) e $q=e^{-2\pi\alpha}$ (poiché $\alpha>0,\ 0< q<1$). Quindi:

$$f_j(x) \le Cq^{|j|}$$
.

Sommiamo su |j| > J:

$$\sum_{|j|>J} f_j(x) \le C \sum_{|j|>J} q^{|j|} = C \left(\sum_{j=J+1}^{\infty} q^j + \sum_{j=J+1}^{\infty} q^j \right) = 2C \sum_{j=J+1}^{\infty} q^j.$$

Calcoliamo la serie geometrica:

$$\sum_{j=J+1}^{\infty} q^{j} = \frac{q^{J+1}}{1-q}.$$

Quindi otteniamo:

$$\sum_{|j|>J} f_j(x) \le \frac{2Cq^{J+1}}{1-q}.$$

Si può vedere che il limite è indipendente da $x \in [-\pi, \pi]$. Dato $\epsilon > 0$, scegliamo J tale che:

$$\frac{2Cq^{J+1}}{1-q} < \epsilon.$$

Poiché $q\in(0,1),\ q^{J+1}\to 0$ quando $J\to\infty$. Quindi, per J sufficientemente grande, l'ineguaglianza è soddisfatta.

Conclusione

Per tutti $x \in [-\pi, \pi]$ e J sufficientemente grande:

$$|f(x) - T_J(x)| = \sum_{|j| > J} f_j(x) \le \frac{2Cq^{J+1}}{1 - q} < \epsilon.$$

Pertanto, $T_J(x) \to f(x)$ uniformemente su $[-\pi, \pi]$ quando $J \to \infty$.

Se hai bisogno di spiegazioni sul perché vale la seguente equivalenza:

$$\sum_{|j|>J} q^{|j|} = \left(\sum_{j=J+1}^{\infty} q^j + \sum_{j=J+1}^{\infty} q^j\right),\,$$

dove $q \in (0,1)$ e J è un intero non negativo.

La somma sul lato sinistro, cioè $\sum_{|j|>J} q^{|j|}$, significa che stiamo sommando $q^{|j|}$ su tutti gli interi j tali che il valore assoluto di j supera J. Quindi gli indici j includono:

- Tutti gli interi positivi maggiori di J: $j = J+1, J+2, J+3, \dots$
- Tutti gli interi negativi minori di -J: j = -J 1, -J 2, -J 3, ...

Possiamo dividere la somma su |j| > J in due somme separate:

1. Indici positivi j > J:

$$S_1 = \sum_{j=J+1}^{\infty} q^{|j|} = \sum_{j=J+1}^{\infty} q^j.$$

Poiché j è positivo, |j| = j.

2. Indici negativi j < -J:

$$S_2 = \sum_{j = -\infty}^{-J - 1} q^{|j|}.$$

Per j negativo, |j| = -j.

Riscrivere la somma sugli indici negativi

Dobbiamo esprimere S_2 in termini di indici positivi per abbinarla alla somma in S_1 . Sia k=-j. Quindi, quando j decresce da -J-1 a $-\infty$, k aumenta da J+1 a ∞ . Possiamo quindi riscrivere S_2 come:

$$S_2 = \sum_{j=-\infty}^{-J-1} q^{|j|} = \sum_{k=J+1}^{\infty} q^k.$$

(Qui, k = -j, quindi j = -k.)

Combinando le due somme, abbiamo:

$$\sum_{|j|>J} q^{|j|} = S_1 + S_2 = \sum_{j=J+1}^{\infty} q^j + \sum_{k=J+1}^{\infty} q^k.$$

Poiché j e k sono indici dummy che rappresentano lo stesso insieme di interi, possiamo combinarli:

$$\sum_{|j|>J} q^{|j|} = \sum_{j=J+1}^{\infty} q^j + \sum_{j=J+1}^{\infty} q^j.$$

Combinando le somme, otteniamo:

$$\sum_{|j|>J} q^{|j|} = \left(\sum_{j=J+1}^{\infty} q^j + \sum_{j=J+1}^{\infty} q^j\right) = 2\sum_{j=J+1}^{\infty} q^j.$$

2.b) È vero che $T_J \to f$ uniformemente su $\mathbb R$ quando $J \to \infty$?

Per determinare se la somma troncata $T_J(x) = \sum_{|j| \leq J} e^{-\alpha|x-2\pi j|}$ converge uniformemente a $f(x) = \sum_{j \in \mathbb{Z}} e^{-\alpha|x-2\pi j|}$ sull'intera retta reale \mathbb{R} , dobbiamo esaminare se la differenza $|f(x) - T_J(x)|$ può essere resa arbitrariamente piccola uniformemente per tutti $x \in \mathbb{R}$ scegliendo J sufficientemente grande.

Mostreremo che T_J non converge uniformemente a f su \mathbb{R} . Abbiamo:

$$|f(x) - T_J(x)| = \sum_{|j| > J} f_j(x).$$

Per dimostrare la non convergenza uniforme, dobbiamo trovare $\epsilon > 0$ tale che per ogni J, esista $x \in \mathbb{R}$ con $|f(x) - T_J(x)| \ge \epsilon$.

Scegliere uno specifico x dipendente da J

Sia $J \in \mathbb{N}$ e scegliamo $x = 2\pi(J + \delta)$, dove $\delta \in \left[0, \frac{1}{2}\right]$. Quindi:

$$x = 2\pi J + 2\pi \delta$$
.

Calcolare $f_{J+1}(x)$ e mostrare che è limitato inferiormente

$$f_{J+1}(x) = e^{-\alpha|x - 2\pi(J+1)|} = e^{-\alpha|2\pi(J+\delta) - 2\pi(J+1)|} = e^{-\alpha|2\pi(\delta - 1)|}.$$
 Poiché $\delta \in \left[0, \frac{1}{2}\right], \ \delta - 1 \in \left[-1, -\frac{1}{2}\right], \ \text{quindi} \ |\delta - 1| \in \left[\frac{1}{2}, 1\right].$ Pertanto,
$$f_{J+1}(x) = e^{-\alpha|2\pi(\delta - 1)|} > e^{-2\pi\alpha}.$$

Mostrare che la differenza non può essere resa arbitrariamente piccola

Poiché $f_{J+1}(x) \ge e^{-2\pi\alpha} > 0$ e $f_{J+1}(x)$ non è incluso in $T_J(x)$, abbiamo:

$$|f(x) - T_J(x)| \ge f_{J+1}(x) \ge e^{-2\pi\alpha}$$
.

Questo limite inferiore è indipendente da J. Pertanto, non importa quanto grande sia J, esiste $x \in \mathbb{R}$ tale che $|f(x) - T_J(x)|$ rimane maggiore di $e^{-2\pi\alpha}$.

Concludere la non convergenza uniforme

Poiché non possiamo rendere $|f(x) - T_J(x)|$ arbitrariamente piccolo uniformemente per tutti $x \in \mathbb{R}$, la convergenza $T_J(x) \to f(x)$ non è uniforme su \mathbb{R} .