目录

独创性声明	I
摘 要	II
Abstract	III
第1章 绪论	1
1.1 课题研究的背景与意义	1
1.2 水分测量技术简介	1
1.3 近红外水分检测的研究现状和发展方向	3
1.4 课题的研究内容与主要工作	4
第2章 近红外水分检测原理与方案	5
2.1 近红外水分测量理论	5
2.1.1 近红外光谱理论	5
2.1.2 水的近红外吸收光谱	5
2.1.3 朗伯比尔定律	7
2.1.4 三波长测量原理	8
2.2 光源和红外探测器的选型	9
2.2.1 光源的选型	9
2.2.2 红外探测器的选型	10
2.3 近红外水分测量系统整体方案	12
2.3.1 近红外水分测量系统方案	12
2.3.2 近红外水分仪光路分析	14
2.4 本章小结	15
第3章 数字锁相放大器的设计和仿真	17
3.1 微弱信号检测技术理论	17
3.1.1 微弱信号检测	17
3.1.2 信噪改善比	18

3.2 旬	赏相放大器
3.2.	1 模拟锁相放大器基本原理
3.2.	2 正交矢量型锁相放大器基本原理 2
3.2.	3 数字锁相放大器基本原理
3.2.	4 数字锁相放大器与模拟锁相放大器的比较 2
3.3 娄	女字锁相放大器仿真平台的设计与仿真 2
3.3.	1 Python 仿真平台的设计
3.3.	2 仿真结果与分析
3.4	 章小结
第4章	
4.1 页	更件系统总体设计 3
4.2 页	更件系统的基础性设计3
4.2.	1 系统电源设计 3
4.2.	2 DSP 最小系统设计
4.2.	3 串口通信设计 3
4.3 🗡	光源信号驱动电路设计
4.3.	1 激励信号发生器
4.3.	2 恒流源驱动电路
4.4 杉	莫拟信号处理电路设计4
4.4.	1 前置放大电路 4
4.4.	2 次级信号放大电路4
4.4.	3 窄带带通滤波电路4
4.5 杉	莫数转换电路设计4
4.5.	1 A/D 芯片选型 4
4.5.	2 A/D 前端调理电路设计 4
4.5.	3 A/D 与 DSP 接口电路设计4
4.6 滥	a.控电路设计4
4.6.	1 温度检测电路 4
4.6.	2 半导体制冷电路
17 7	大

第5章	水分测量系统的软件设计	51
5.1 软化	件系统总体设计	51
5.2 下位	立机软件设计	52
5.2.1	正弦信号发生程序的设计	52
5.2.2	数据采集程序的设计	52
5.2.3	数据通讯程序的设计	54
5.2.4	温度控制程序的设计	55
5.3 数等	字锁相放大器软件设计	56
5.3.1	参考信号的产生	56
5.3.2	相关运算的实现	57
5.3.3	数字滤波器的设计	59
5.4 工公	业串口屏软件设计	63
5.5 本立	章小结	65
第6章	烧结混合料水分测量实验	67
6.1 水分	分测量系统的标定	67
6.1.1	水分测量系统标定方法	67
6.1.2	标定数据曲线拟合	68
6.2 水分	分测量系统精度验证实验	71
6.3 水分	分测量系统重复性实验	73
6.4 水分	分测量系统误差分析	73
6.5 本主	章小结	74
第7章	总结和展望	75
7.1 总经	生 古	75
	望	
参考文献	献	77
致 谢		Ω1