Theoretical Computer Science Lab Session 5

Mar 1, 2023

nnoborie

Agenda

- ▶ Deterministic Pushdown Automaton (DPDA): Notion, formal definition, configuration, transition, and acceptance.
- Exercises on DPDAs.

Pushdown Automata (Introduction)

A Pushdown Automaton (PDA) is a way to implement a Context Free Grammar in a similar way we design Finite Automaton for Regular Grammar

- \rightarrow It is more powerful than FSA
- → FSA has a very limited memory but PDA has more memory
- \rightarrow *PDA* = Finite State Automaton + a Stack

A stack is a way we arrange elements one on top of another A stack does two basic operations:

PUSH: A new element is added at the Top of the stack **POP:** The Top element of the stack is read and removed

PDA-components

A Pushdown Automaton has 3 components:

- 1. An input tape
- 2. A Finite Control Unit
- 3. A Stack of infinite size

Acceptance criteria: Either reach final sate or stack is empty

PDA - Notion

- ▶ PDAs are similar to FSA with an auxiliary memory: a stack.
- Ex: Build a complete FSA that recognises the following language:

$$A_nB_n=\{a^nb^n\mid n\geq 0\}$$

It is not possible (you already know how to prove it!)

PDA - Notion

$$A_nB_n=\{a^nb^n\mid n\geq 0\}$$

- When a PDA reads an input symbol, it will be able to save it (or save other symbols) in its memory.
- ▶ For deciding if an input string is in the language A_nB_n , the PDA needs to remember the numbers of a's.
- ▶ Whenever the PDA reads the input symbol *b*, two things should happen:
 - 1. it should change states: from now on the only legal input symbols are b's.
 - 2. it should delete one a from its memory for every b it reads.

PDA – Notion (Moves)

A single move of a PDA will depend on:

- the current state,
- ightharpoonup the next input (it could be no symbol: ϵ symbol), and
- the symbol currently on top of the stack.

PDA will be assumed to begin operation with an initial start symbol \mathcal{Z}_0 on its stack

- $ightharpoonup Z_0$ is not essential, but useful to simplify definitions
- $ightharpoonup Z_0$ is on top means that the stack is effectively empty.

PDA – Formal Definition

A Pushdown Automaton

A PDA is a tuple $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$ where

- Q is a finite set of states.
- I and Γ are finite sets, the input and stack alphabets.
- ▶ δ, the transition function, is a partial function from $Q \times (I \cup \{\epsilon\}) \times \Gamma$ to the set of finite subsets of $Q \times \Gamma^*$.
- $ightharpoonup q_0 \in Q$, the initial state.
- $ightharpoonup Z_0 ∈ Γ$, the initial stack symbol.
- ▶ $F \subseteq Q$, the set of accepting states.

PDA – Formal Definition II

 δ takes as argument a triple $\delta(q,a,X)$ where

- ▶ (i) q is a state in Q
- ightharpoonup (ii) a is either an Input Symbol in I or $a=\epsilon$
- (iii) X is a Stack Symbol, that is a member of Γ

The output of δ is finite set of pairs (p, y) where: p is a new state y is a string of stack symbols that replaces X at the top of the stack

- If y = X then the stack is unchanged as we pop and then push the same symbol
- Otherwise X is replaced by the string y

A Deterministic PDA – Formal Definition (the one seen in the lecture)

A Deterministic Pushdown Automaton (DPDA)

A PDA $M = \langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$ is deterministic if it satisfies both of the following conditions.

- 1. For every $q \in Q$, every $x \in I \cup \{\epsilon\}$, and every $\gamma \in \Gamma$, the set $\delta(q, x, \gamma)$ has at most one element.
- 2. For every $q \in Q$, every $x \in I$, and every $\gamma \in \Gamma$, the two sets $\delta(q, x, \gamma)$ and $\delta(q, \epsilon, \gamma)$ cannot both be non-empty.

Configuration

A configuration is a generalization of the notion of state. It shows:

- the current state,
- ▶ the portion of the input string that has not yet been read, and
- the stack.

It is a snapshot of the PDA.

Configuration – Formal Definition

Configuration

A Configuration of the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$ is a triple

$$(q, x, \gamma)$$

where

- $ightharpoonup q \in Q$, is the current state of the control device,
- $x \in I^*$, is the unread portion of the input string, and
- $ightharpoonup \gamma \in \Gamma^*$, is the string of symbols in the stack.

Transition

Transitions between configurations (\vdash) depend on the transition function. It is the way to commute from a PDA snapshot to another.

There are 2 cases:

- 1. The transition function is defined for an input symbol.
- 2. The transition function is defined for an ϵ move.

Transition

If
$$(q', \alpha) \in \delta(q, i, A)$$
 then $(q, x, \gamma) \vdash (q', x', \gamma')$
If $(q', \alpha) \in \delta(q, \epsilon, A)$ then $(q, x, \gamma) \vdash (q', x'', \gamma')$
where (old snapshot)

- q is the current state
- $\rightarrow x = iy$
- γ = Aβ (for some β ∈ Γ*)

then (new snapshot)

- ightharpoonup q' is the new state
- $\rightarrow x' = y$
- $\rightarrow x'' = x$

Acceptance - Informally

A string x is accepted by a PDA if there is a path coherent with x on the PDA that goes from the initial state to the final state. The input string has to be read completely

Acceptance - Formal Definition

Reflexive transitive closure of ⊢

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, and $c_i = (q, x, \beta)$, $c_j = (q', x', \beta')$ be configurations of M:

$$c_i \vdash^* c_j$$

is the sequence of zero or more moves taking M from c_i to c_j

Acceptance by a PDA

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, and $x \in I^*$. The string x is accepted by M if

$$(q_0, x, Z_0) \vdash^* (q, \epsilon, \gamma)$$

for some $\gamma \in \Gamma^*$ and some $q \in F$.

Simple Solution

Problem: Construct a PDA that accepts $L = \{0^n 1^n \mid n \geqslant 0\}$ $0, A/AA \qquad 1, A/\epsilon$ $1, A/\epsilon \qquad q_0 \qquad 0, Z_0/AZ_0 \qquad q_1 \qquad 1, A/\epsilon \qquad q_2 \qquad \epsilon, Z_0/Z_0 \qquad q_3$

Exercises!

Exercises - Part 1

Build DPDAs that recognise the following languages:

- 1. $L = \{a^n b^{2n} \mid n \ge 1\}$
- 2. $P = \{xycy^Rx^R \mid x \in \{a,b\}^* \land y \in \{d,e\}^* \land |x| > 0\}$ (where x^R , y^R are the reversed strings x, y), the alphabet is $I = \{a,b,c,d,e\}$
- 3. The language of nested and balanced brackets and parentheses. E.g. a string in the language: (([])())(), a string that does not belong to the language: ([(]))()() the alphabet is $I = \{(,),[,]\}$

Exercises – Part 1 (1)

DPDA accepting
$$L = \{a^nb^{2n} \mid n \ge 1\}$$

$$a, A/AAA \\ a, Z_0/AAZ_0 \qquad b, A/\epsilon$$

$$start \longrightarrow q_0 \qquad b, A/\epsilon \qquad q_1 \qquad \epsilon, Z_0/Z_0 \qquad q_2$$

Exercises – Part 1 (2)

DPDA accepting

 $P = \{xycy^Rx^R \mid x \in \{a,b\}^* \land y \in \{d,e\}^* \land |x| > 0\}$ (where x^R , y^R are the reversed strings x, y), the alphabet is $I = \{a,b,c,d,e\}$

Exercises – Part 1 (3)

PDA accepting the language of nested and balanced brackets and parentheses.

Exercises – Part 2

Build DPDAs that recognise the following languages:

- 1. $L_1 = \{w \in \{a, b\}^* \mid \phi(w, a) = \phi(w, b)\}$ where $\phi(s, c)$ is the number of occurrences of the character c in the string s.
- 2. $L_2 = \{a^n b^m a^m b^n \mid n > 0 \land m > 0\}$
- 3. $L_3 = L_2^*$
- 4. $L_4 = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}a^{n_3}b^{n_3}\dots a^{n_k}b^{n_k} \mid k \geq 1 \land n_i \geq 1 \land 1 \leq i \leq k\}$

Exercises – Part 2 (1)

DPDA accepting $L_1 = \{w \in \{a,b\}^* \mid \phi(w,a) = \phi(w,b)\}$ where $\phi(s,c)$ is the number of occurrences of the character c in the string s

Exercises - Part 2 (2)

DPDA accepting $L_2 = \{a^n b^m a^m b^n \mid n > 0 \land m > 0\}$

Exercises - Part 2 (3)

DPDA accepting $L_3 = L_2^*$

Exercises - Part 2 (4)

DPDA accepting

$$L_4 = \bigcup_{k>1} \{ a^{n_1} b^{n_1} a^{n_2} b^{n_2} a^{n_3} b^{n_3} \dots a^{n_k} b^{n_k} \mid n_1, \dots, n_k \ge 1 \}$$

Exercises – Homework (1)

Define a DPDA that recognises this language:

$$L = \{a^n b^n \cup a^n b^{2n} \mid n \ge 0\}$$

Exercises – Homework (1)

Define a DPDA that recognises this language:

$$L = \{a^n b^n \cup a^n b^{2n} \mid n \ge 0\}$$

From today's lecture, you already know that it is not possible to define such DPDA. So, define a Turing Machine that recognises L.

Exercises – Homework (2)

Construct a DPDA that recognises the language of well-formed parentheses of the arithmetic expressions (binary operations). For simplicity, consider the alphabet $I = \{a, (,), +\}$ – a single symbol 'a' that represents terms 'a', 'b', 'c', ... and a single operator '+'.

Examples of strings belonging to the language are:

- ▶ (a + a)
- ((a) + (a + a))
- ► ((a + a))

Exercises – Homework (1)

Consider the language of well-formed parentheses of the arithmetic expressions (binary operations). Examples of strings belonging to the language are:

- ▶ (a + b)
- ► ((a) + (b * c))
- ► ((a + b))

Define a DPDA that recognises this language. For simplicity, consider the following alphabet $I = \{a, (,), +\}$ – a single symbol ('a') that represents terms 'a', 'b', 'c', And a single operator ('+').

Solution - rep1

```
Q = \{q_0, q_1, q_2, q_3, q_4\}
I = \{a, (,), +\}
\Gamma = \{Z_0, A, B\}
q_0 = q_0
Z_0 = Z_0
F = \{q_0, q_1\}
\delta = \{
(\{q_0, a, Z_0\}, \{q_1, Z_0\}), (\{q_0, (, Z_0\}, \{q_2, BZ_0\}),
(\{q_1, +, Z_0\}, \{q_2, Z_0\}), (\{q_2, (B\}, \{q_2, AB\}), \{q_2, AB\}),
(\{q_2, (A\}, \{q_2, AA\}), (\{q_2, a, A\}, \{q_3, A\}),
(\{q_2, a, B\}, \{q_3, B\}), (\{q_3, b\}, A\}, \{q_3, \epsilon\}),
(\{q_3,+,A\},\{q_2,A\}), (\{q_3,+,B\},\{q_2,B\}),
(\{q_3, \}, B\}, \{q_1, \epsilon\}),
                                   (\{q_4, a, Z_0\}, \{q_1, Z_0\}),
(\{q_4, (, Z_0\}, \{q_2, BZ_0\})\}
```

Solution – rep2

Exercises – Homework (2)

Consider the language described before. Now, suppose that in addition to regular parentheses '(' and ')', there is also available bracket ']', which has the effect of closing all open parentheses up to that point.

Examples of strings (not) belonging to the language are:

belongs to the language	does not belong to the language
(a + b]	(a + b)]
((a) + (b * c]	((a) + (b * (c)])
((((((((a + b)	(a]]
(a + b)	a + b]
((a) + (b * (c)]	(a + b

Define a DPDA that recognises this language. For simplicity, consider the following alphabet $I = \{a, (,),], +\}$.

Solution – rep1

```
Q = \{q_0, q_1, q_2, q_3, q_4, q_5\} I = \{a, (,), ], +\}
\Gamma = \{Z_0, A, B\}
                                          Z_0 = Z_0
                                          F = \{q_0, q_1\}
q_0 = q_0
\delta = \{
(\{q_0, a, Z_0\}, \{q_1, Z_0\}),
                                          (\{q_0, (, Z_0\}, \{q_2, BZ_0\}),
(\{q_1,+,Z_0\},\{q_2,Z_0\}),
                                          (\{q_2, (, B\}, \{q_2, AB\}),
(\{q_2, (, A\}, \{q_2, AA\}),
                                          (\{q_2, a, A\}, \{q_3, A\}),
                                          (\{q_3, \}, A\}, \{q_3, \epsilon\}),
(\{a_2, a, B\}, \{a_3, B\}),
(\{q_3,+,A\},\{q_2,A\}),
                                          (\{a_3,+,B\},\{a_2,B\}),
(\{a_3, \}, B\}, \{a_1, \epsilon\}),
                                          (\{a_3, ], B\}, \{a_1, \epsilon\}),
(\{q_3, ], A\}, \{q_5, \epsilon\}),
                                          (\{q_4, a, Z_0\}, \{q_1, Z_0\}),
                                          (\{q_5, \epsilon, A\}, \{q_5, \epsilon\}),
(\{q_4, (, Z_0\}, \{q_2, BZ_0\}))
(\{q_5, \epsilon, B\}, \{q_1, \epsilon\})\}
```

Solution – rep2

