Witten and Morse Theory

Kate Mekechuk

Columbia Undergraduate Mathematics Society

October 2, 2024

Topological Invariants

Definition (Homology groups)

For a given manifold M, the n-th $Homology\ group$ is defined:

$$H_n(M) = \frac{n\text{-}dim\ submanifolds\ without\ boundary}}{n\text{-}dim\ boundaries\ to\ (n+1)\text{-}dim\ submanifolds}}$$

Topological Invariants

Definition (Homology groups)

For a given manifold M, the n-th $Homology\ group$ is defined:

$$H_n(M) = \frac{n\text{-}dim\ submanifolds\ without\ boundary}}{n\text{-}dim\ boundaries\ to\ (n+1)\text{-}dim\ submanifolds}}$$

Definition (Betti numbers)

For a given manifold M, the n-th $Betti\ number$, denoted b_n , is the rank of the n-th $Homology\ group$.

Topological Invariants

Definition (Homology groups)

For a given manifold M, the n-th $Homology\ group$ is defined:

$$H_n(M) = \frac{n\text{-}dim\ submanifolds\ without\ boundary}}{n\text{-}dim\ boundaries\ to\ (n+1)\text{-}dim\ submanifolds}}$$

Definition (Betti numbers)

For a given manifold M, the n-th Betti number, denoted b_n , is the rank of the n-th Homology group.

Definition (Euler characteristic)

The Euler characteristic for a manifold M is

$$\chi(M) = \sum_{i=0}^{n} (-1)^i b_i$$

$$H_n(M) = \frac{n\text{-}dim\ submanifolds\ without\ boundary}}{n\text{-}dim\ boundaries\ to\ (n+1)\text{-}dim\ submanifolds}}$$

DIM	SUBMFLD	BOUNDARY
0	•	Ø
1		• - •
1	Ŏ	Ø
2		
2		0-0
2	0	Ø

$$H_n(M) = \frac{n\text{-}dim\ submanifolds\ without\ boundary}}{n\text{-}dim\ boundaries\ to\ (n+1)\text{-}dim\ submanifolds}}$$

DIM	SUBMFLD	BOUNDARY
0	•	Ø
1		• - •
1	O	Ø
2		\bigcirc
2	(COL)	0-0
2	0	Ø

$$H_0(T)=\mathbb{Z} \qquad H_1(T)=\mathbb{Z}^2 \qquad H_2(T)=\mathbb{Z}$$

$$H_n(M) = \frac{n\text{-}dim\ submanifolds\ without\ boundary}}{n\text{-}dim\ boundaries\ to\ (n+1)\text{-}dim\ submanifolds}}$$

DIM	SUBMFLD	BOUNDARY
0	•	Ø
1		• - •
1	O	Ø
2		\bigcirc
2	(COL)	0-0
2	0	Ø

$$H_0(T) = \mathbb{Z}$$
 $H_1(T) = \mathbb{Z}^2$ $H_2(T) = \mathbb{Z}$ $b_0 = 1$ $b_1 = 2$ $b_2 = 1$

$$H_n(M) = \frac{n\text{-}dim\ submanifolds\ without\ boundary}}{n\text{-}dim\ boundaries\ to\ (n+1)\text{-}dim\ submanifolds}}$$

DIM	SUBMFLD	BOUNDARY
0	•	Ø
1		• - •
1	\bigcirc	Ø
2		
2	(Z)	0-0
2	0	Ø

$$H_0(T) = \mathbb{Z}$$
 $H_1(T) = \mathbb{Z}^2$ $H_2(T) = \mathbb{Z}$
$$b_0 = 1$$
 $b_1 = 2$ $b_2 = 1$
$$\chi(T) = 1 - 2 + 1 = 0$$

Morse Theory

Goal: Understand the manifold's global structure by studying the local data from the critical points which inform us about the homology.

Morse Theory

Goal: Understand the manifold's global structure by studying the local data from the critical points which inform us about the homology.

Definition (Morse function)

Let $f: M \to \mathbb{R}$. We call a smooth real valued function f a Morse function if every critical point of f is non-degenerate (has a non-singular Hessian matrix).

$$\begin{array}{l} \textit{determinant of} \\ \textit{Hessian matrix} = \det(\textit{H}_f) = \det\left[\ \frac{\partial^2 f}{\partial x_i \ \partial x_j} \ \right] \neq 0 \end{array}$$

Morse Theory

Goal: Understand the manifold's global structure by studying the local data from the critical points which inform us about the homology.

Definition (Morse function)

Let $f: M \to \mathbb{R}$. We call a smooth real valued function f a Morse function if every critical point of f is non-degenerate (has a non-singular Hessian matrix).

$$\begin{array}{l} \textit{determinant of} \\ \textit{Hessian matrix} = \det(\textit{H}_f) = \det\left[\ \frac{\partial^2 f}{\partial x_i \ \partial x_j} \ \right] \neq 0 \end{array}$$

Definition (index)

The (Morse) index of a Morse function f is the maximal dimension of the subspace where H_f is negative definite (the number of negative eigenvalues of H_f).

Morse Theory and CW Complexes

Theorem

A Morse function on M admits a CW complex such that each critical point of index λ is a λ cell in the complex.

Morse Theory and CW Complexes

Theorem

A Morse function on M admits a CW complex such that each critical point of index λ is a λ cell in the complex.

$$\lambda(p) = 0$$
 $\lambda(q) = \lambda(r) = 1$ $\lambda(s) = 2$

Morse Inequalities

Theorem (Morse Inequalities)

Let c_{λ} denote the number of critical points of index λ in M. Then,

$$b_{\lambda} \leq c_{\lambda}$$

$$\sum_{\lambda=0}^{n} (-1)^{\lambda} c_{\lambda} = \chi(M)$$

Morse Inequalities

Theorem (Morse Inequalities)

Let c_{λ} denote the number of critical points of index λ in M. Then,

$$b_{\lambda} \le c_{\lambda}$$

$$\sum_{\lambda=0}^{n} (-1)^{\lambda} c_{\lambda} = \chi(M)$$

Torus:
$$c_0=1$$
 $c_1=2$ $c_2=1$ $\chi(T)=1-2+1=0$

Differential Forms

Let $N = \{1, ..., n\}$ be a set of numbers. We define $I = (i_1 < ... < i_p)$ to be a strictly ascending multi-index where $p \le n$. We denote

$$\mathcal{J}_{p,n} = \{I = (i_1, \dots, i_p) \mid 1 \leq i_1 < \dots < i_p \leq n\}$$

Differential Forms

Let $N = \{1, ..., n\}$ be a set of numbers. We define $I = (i_1 < ... < i_p)$ to be a strictly ascending multi-index where $p \le n$. We denote

$$\mathcal{J}_{p,n} = \{I = (i_1, \dots, i_p) \mid 1 \le i_1 < \dots < i_p \le n\}$$

Definition (Differential p-forms)

A differential p-form $\omega \in \Omega^p(M)$ is a linear combination

$$\omega = \sum_{I \in \mathcal{J}_{p,n}} a_I dx^I$$

Differential Forms

Let $N = \{1, ..., n\}$ be a set of numbers. We define $I = (i_1 < ... < i_p)$ to be a strictly ascending multi-index where $p \le n$. We denote

$$\mathcal{J}_{p,n} = \{ I = (i_1, \dots, i_p) \mid 1 \le i_1 < \dots < i_p \le n \}$$

Definition (Differential p-forms)

A differential p-form $\omega \in \Omega^p(M)$ is a linear combination

$$\omega = \sum_{I \in \mathcal{J}_{p,n}} a_I dx^I$$

Example

$$f = (3x + 2y^2)dx \wedge dy + (7z^2 + 4)dx \wedge dz + (e^x + \sqrt{z})dy \wedge dz$$

Definition (Exterior Derivative)

The exterior derivative is a unique map $d: \Omega^p(M) \to \Omega^{p+1}(M)$ of deg 1 such that $d^2=0$ and $d|_{\Omega^0(M)}=d|_{c^\infty(M)}$ is the usual differential.

Definition (Exterior Derivative)

The exterior derivative is a unique map $d: \Omega^p(M) \to \Omega^{p+1}(M)$ of deg 1 such that $d^2 = 0$ and $d|_{\Omega^0(M)} = d|_{c^{\infty}(M)}$ is the usual differential.

Definition (Hodge Star)

The *Hodge star* is a linear op $\star: \Omega^p(M) \to \Omega^{n-p}(M)$ with $\star(1) = \mathsf{dvol}$

Definition (Exterior Derivative)

The exterior derivative is a unique map $d: \Omega^p(M) \to \Omega^{p+1}(M)$ of deg 1 such that $d^2=0$ and $d|_{\Omega^0(M)}=d|_{c^\infty(M)}$ is the usual differential.

Definition (Hodge Star)

The *Hodge star* is a linear op $\star:\Omega^p(M)\to\Omega^{n-p}(M)$ with $\star(1)=\mathsf{dvol}$

Definition (Codifferential)

The adjoint to the exterior derivative is the codifferential and is defined

$$\delta = (-1)^{np+1} \star d \star : \Omega^{p+1} \to \Omega^p$$

Definition (Exterior Derivative)

The exterior derivative is a unique map $d: \Omega^p(M) \to \Omega^{p+1}(M)$ of deg 1 such that $d^2=0$ and $d|_{\Omega^0(M)}=d|_{c^\infty(M)}$ is the usual differential.

Definition (Hodge Star)

The *Hodge star* is a linear op $\star:\Omega^p(M)\to\Omega^{n-p}(M)$ with $\star(1)=\mathsf{dvol}$

Definition (Codifferential)

The adjoint to the exterior derivative is the *codifferential* and is defined

$$\delta = (-1)^{np+1} \star d \star : \Omega^{p+1} \to \Omega^p$$

Definition (Laplacian Operator)

The *(Hodge) Laplacian operator* is a map $\Delta:\Omega^p(M)\to\Omega^p(M)$ such that

$$\Delta = d\delta + \delta d$$

Any form is decomposed into $\omega = d\alpha + \delta\beta + \gamma$ where $\Delta\gamma = 0$

- 2 exact forms $(\omega = d\alpha)$
- $oldsymbol{3}$ harmonic forms $oldsymbol{(}\Delta\omega=0oldsymbol{)}$

Any form is decomposed into $\omega = d\alpha + \delta\beta + \gamma$ where $\Delta\gamma = 0$

- lacktriangledown closed forms $(d\omega=0)$
- 2 exact forms $(\omega = d\alpha)$
- **3** harmonic forms $(\Delta \omega = 0)$

Definition (De Rham Cohomology Classes)

For a given manifold M, the n-th de Rham cohomology class is defined:

$$H^n(M) = \frac{closed\ n\text{-}forms}{exact\ n\text{-}forms} = [harmonic\ forms]$$

Any form is decomposed into $\omega=d\alpha+\delta\beta+\gamma$ where $\Delta\gamma=0$

- $\textbf{@} \ \text{exact forms} \qquad \qquad (\omega = d\alpha)$
- **3** harmonic forms $(\Delta \omega = 0)$

Definition (De Rham Cohomology Classes)

For a given manifold M, the n-th de Rham cohomology class is defined:

$$H^n(M) = \frac{closed\ n\text{-}forms}{exact\ n\text{-}forms} = [harmonic\ forms]$$

Theorem (De Rham Theorem)

$$\dim H^p(M) = rank H_p(M) = b_n$$

Any form is decomposed into $\omega = d\alpha + \delta\beta + \gamma$ where $\Delta\gamma = 0$

- closed forms $(d\omega = 0)$
- 2 exact forms $(\omega = d\alpha)$
- **3** harmonic forms $(\Delta \omega = 0)$

Definition (De Rham Cohomology Classes)

For a given manifold M, the n-th de Rham cohomology class is defined:

$$H^n(M) = \frac{closed\ n\text{-}forms}{exact\ n\text{-}forms} = [harmonic\ forms]$$

Theorem (De Rham Theorem)

$$\dim H^p(M) = rank H_p(M) = b_n$$

We conclude that the space of harmonic forms as a vector space is isomorphic to the space of the cohomology class.

$$H^0(T) = \frac{closed \ 0-forms}{exact \ 0-forms}$$

$$H^0(T) = \frac{closed \ 0-forms}{exact \ 0-forms}$$

Let $f \in \Omega^0(T)$

- ② f is exact \iff there is an α such that $d\alpha = f$ But $d: \Omega^n(T) \to \Omega^{n+1}(T)$ and there is no $\Omega^{-1}(T)$ \implies no 0-form is exact

$$H^0(T) = \frac{closed \ 0-forms}{exact \ 0-forms}$$

Let $f \in \Omega^0(T)$

- ② f is exact \iff there is an α such that $d\alpha = f$ But $d: \Omega^n(T) \to \Omega^{n+1}(T)$ and there is no $\Omega^{-1}(T)$ \implies no 0-form is exact

$$H^0(T) = \mathbb{R}/0 = \mathbb{R}$$

$$H^0(T) = \frac{closed \ 0-forms}{exact \ 0-forms}$$

Let $f \in \Omega^0(T)$

- ② f is exact \iff there is an α such that $d\alpha = f$ But $d: \Omega^n(T) \to \Omega^{n+1}(T)$ and there is no $\Omega^{-1}(T)$ \implies no 0-form is exact

$$H^0(T) = \mathbb{R}/0 = \mathbb{R}$$

$$\mathsf{dim}(\mathbb{R}) = \mathit{rank}\ (\mathbb{Z}) = b_0 = 1$$

Supersymmetric Theory

A supersymmetric quantum theory has a decomposition of the Hilbert Space $\mathcal{H}=\mathcal{H}^+\oplus\mathcal{H}^-$ where \mathcal{H}^+ is the space of bosonic states and \mathcal{H}^- is the space of fermionic states.

Definition (Supersymmetric Theory)

A supersymmetric theory is one which there are (Hermitian) symmetry operators $Q_i: \mathcal{H}^+ \to \mathcal{H}^-$ and vise versa for i = 1, ..., n

Supersymmetric Theory

A supersymmetric quantum theory has a decomposition of the Hilbert Space $\mathcal{H}=\mathcal{H}^+\oplus\mathcal{H}^-$ where \mathcal{H}^+ is the space of bosonic states and \mathcal{H}^- is the space of fermionic states.

Definition (Supersymmetric Theory)

A supersymmetric theory is one which there are (Hermitian) symmetry operators $Q_i:\mathcal{H}^+\to\mathcal{H}^-$ and vise versa for $i=1,\ldots,n$

Let $h: M \to \mathbb{R}$ be a Morse function and $t \in \mathbb{R}$.

$$d_t = e^{-ht} d e^{ht}$$
 $\delta_t = e^{ht} \delta e^{-ht}$ $\Omega^0, \Omega^2, \ldots, \Omega^n$ $\Omega^1, \Omega^3, \ldots, \Omega^{n-1}$ fermionic states

Supersymmetric Theory

A supersymmetric quantum theory has a decomposition of the Hilbert Space $\mathcal{H}=\mathcal{H}^+\oplus\mathcal{H}^-$ where \mathcal{H}^+ is the space of bosonic states and \mathcal{H}^- is the space of fermionic states.

Definition (Supersymmetric Theory)

A supersymmetric theory is one which there are (Hermitian) symmetry operators $Q_i: \mathcal{H}^+ \to \mathcal{H}^-$ and vise versa for $i=1,\ldots,n$

Let $h: M \to \mathbb{R}$ be a Morse function and $t \in \mathbb{R}$.

$$d_t = e^{-ht} d e^{ht}$$
 $\delta_t = e^{ht} \delta e^{-ht}$ $\Omega^0, \Omega^2, \ldots, \Omega^n$ $\Omega^1, \Omega^3, \ldots, \Omega^{n-1}$ fermionic states

Witten defined the following supersymmetric operators on p-forms

$$Q_{1t} = d_t + \delta_t$$
 $Q_{2t} = i(d_t - \delta_t)$ $H_t = d_t \delta_t + \delta_t d_t = \Delta_t$

ullet is invertible \Longrightarrow statements hold for all $t \in \mathbb{R}$

- **1** e^{ht} is invertible \Longrightarrow statements hold for all $t \in \mathbb{R}$
- ② number of zero eigenvalues of H_t acting on $\Omega^p = b_p(0) = b_p$

- **1** e^{ht} is invertible \Longrightarrow statements hold for all $t \in \mathbb{R}$
- **②** number of zero eigenvalues of H_t acting on $\Omega^p = b_p(0) = b_p$
- **3** as $t \to \infty$ the potential energy is $V(\psi) = t^2(dh)^2$ blows up except at the critical points where dh = 0 \Longrightarrow eigenvalues of H_t can be calculated in terms of the local data at critical points

- **1** e^{ht} is invertible \Longrightarrow statements hold for all $t \in \mathbb{R}$
- ② number of zero eigenvalues of H_t acting on $\Omega^p = b_p(0) = b_p$
- ⓐ as $t \to \infty$ the potential energy is $V(\psi) = t^2(dh)^2$ blows up except at the critical points where dh = 0 ⇒ eigenvalues of H_t can be calculated in terms of the local data at critical points
- **3** around A (critical point of index p), H_t has **one** zero eigenvalue which is a p-form, denoted $|a\rangle$

- **1** e^{ht} is invertible \Longrightarrow statements hold for all $t \in \mathbb{R}$
- ② number of zero eigenvalues of H_t acting on $\Omega^p = b_p(0) = b_p$
- **3** as $t \to \infty$ the potential energy is $V(\psi) = t^2(dh)^2$ blows up except at the critical points where dh = 0 \Longrightarrow eigenvalues of H_t can be calculated in terms of the local data at
- critical points
- **o** around A (critical point of index p), H_t has **one** zero eigenvalue which is a p-form, denoted $|a\rangle$

 \implies at most the number of zero energy p-forms equals the number of critical points with index $p \implies b_p \le c_p$ \square

(goal: define a coboundary operator using critical points)

• The potential energy $V(\psi) = t^2(dh)^2$ has minimum at each critical point \implies have tunneling from one critical point A to another B

- The potential energy $V(\psi) = t^2(dh)^2$ has minimum at each critical point \implies have tunneling from one critical point A to another B
- ② tunneling paths $\Lambda: A \to B$ and $\Gamma: B \to A$ are of steepest descent $\implies A$ and B have index difference of 1

- The potential energy $V(\psi) = t^2(dh)^2$ has minimum at each critical point \implies have tunneling from one critical point A to another B
- ② tunneling paths $\Lambda:A\to B$ and $\Gamma:B\to A$ are of steepest descent $\implies A$ and B have index difference of 1
- **3** paths induce orientation \Longrightarrow if Γ and Λ agree then $n_{\Gamma}=+1$, and if not then $n_{\Gamma}=-1\Longrightarrow$ define $n(a,b)=\sum_{\Gamma}n_{\Gamma}$

- The potential energy $V(\psi)=t^2(dh)^2$ has minimum at each critical point \Longrightarrow have tunneling from one critical point A to another B
- ② tunneling paths $\Lambda:A\to B$ and $\Gamma:B\to A$ are of steepest descent $\implies A$ and B have index difference of 1
- **3** paths induce orientation \Longrightarrow if Γ and Λ agree then $n_{\Gamma}=+1$, and if not then $n_{\Gamma}=-1\Longrightarrow$ define $n(a,b)=\sum_{\Gamma}n_{\Gamma}$
- ⇒ define a coboundary operator such that:

$$\partial \ket{a} = \sum_{b} n(a,b) \ket{b}$$

(goal: define a coboundary operator using critical points)

- The potential energy $V(\psi) = t^2(dh)^2$ has minimum at each critical point \implies have tunneling from one critical point A to another B
- ② tunneling paths $\Lambda:A\to B$ and $\Gamma:B\to A$ are of steepest descent $\implies A$ and B have index difference of 1
- **3** paths induce orientation \Longrightarrow if Γ and Λ agree then $n_{\Gamma}=+1$, and if not then $n_{\Gamma}=-1\Longrightarrow$ define $n(a,b)=\sum_{\Gamma}n_{\Gamma}$
- ⇒ define a coboundary operator such that:

$$\partial |a\rangle = \sum_{b} n(a,b) |b\rangle$$

 \implies Betti numbers of ∂ are the same Betti numbers of M