HW4 第 9 题中心极限定理验证

王启骅 PB20020580

2022年10月19日

1 题目

考虑泊松分布、指数分布,并再自设若干个随机分布(它们有相同或不同的 μ,σ),通过 Monte Carlo 模拟,验证中心极限定理成立(N = 2、5、10)。

2 算法原理

泊松分布,首先产生满足泊松分布的随机数,根据泊松实验,对于一个 [0,1] 均匀随机数列 \mathbf{u} ,计算该数列依次相乘,当刚好乘积小于 $e^{-\lambda}$ 时,返回上一个所乘的次数 \mathbf{k} 即为满足泊松分布 $p(k) = \frac{\lambda^x}{x!}e^{-\lambda}$ 的随机数。对于该泊松分布 $\mu = \lambda$ 。 指数分布,对于一个 [0,1] 均匀随机数列 \mathbf{u} ,根据直接抽样法, $x = -\mu \ln(1-u)$,由于均匀分布 \mathbf{u} 等效于 $x = -\mu \ln(u)$,即为 $p(x) = \frac{1}{u} \exp(-\frac{x}{u})$ 的抽样。对于该指数分布 $\mu = \mu$ 。

均匀分布,在直接以 [0,1] 均匀随机数列 \mathbf{u} 作为分布计算。对于该均匀分布 $\mu=0.5$ 。

最后取高斯分布,根据 Box-Muller 法,对于 [0,1] 均匀随机数列 u,v, 抽样方法为 $x=\sqrt{-2\ln(u)}\cos(2\pi v)$ 。对于高斯分布 $\mu=0$ 。

3 结果

这里取总点数 $k=10^5$, 泊松分布 $\lambda=5$, 指数分布 $\mu=5$, 均匀分布位于 [0,1]。绘制出了 $\frac{\langle f \rangle - \mu}{\sigma_f/\sqrt{N}}$ 的分布函数图

4 结论

根据各个分布的误差统计图与标准正态分布图的对比得到,当 N=2 时,明显与标准正态有较大误差,而且对于泊松分布,由于是离散性分布,且 N 很小,产生的误差分布也较为离散。由于中心极限定理是在 $N\to\infty$ 时误差分布达到的极限为标准正态,可见在 N 从 2 到 5 到 10 增大时,误差分布曲线逐渐趋近于标准正态分布函数。

图 1: Poisson

图 2: 指数分布

图 3: 均匀分布

图 4: 高斯分布