ChemicalX

Deep Learning For Drug Pair Scoring

EN104 - Advanced Deep Learning 2024

Edwin Tembo

Professor Zoran B. Djordjevic

Harvard Extension School

The Team

Vanderbilt University

The Problem: Drug Pair Scoring

+ Status Quo:

Weeks/Months/Years

+ Goal:

Minutes/Hours/Days

Drug Pair Scoring

Drug-Drug Interaction

- Polypharmacy
- Drug Synergy

Model Architecture

Probability Of:

Main Requirements:

Datasets

Dataset	Task	
TWOSIDES [44]	Polypharmacy	
Drugbank DDI [41]	Interaction	
DrugComb [51, 52]	Synergy	
DrugCombDB [28]	Synergy	
OncolyPharm [21]	Synergy	

Image Source: ChemicalX Paper

Preprocessed Data Structure

FeatureSet:

- 256 dimensional hashed Morgan fingerprints for each drug from SMILES.
- TorchDrug Molecular Graph

ContextSet:

- An encoded context, either a biological aspect such as a cancer cell or another chemical compound.

Labeled Tripple:

- Identifiers for each drug in separate columns, with a classification label in 3rd column.

Models

Model	Year	Domain	Encoder
DeepDDI [41]	2018	Interaction	Feedforward
DeepSynergy [37]	2018	Synergy	Feedforward
MHCADDI [9]	2019	Polypharmacy	GAT
MR-GNN [50]	2019	Interaction	GCN
CASTER [22]	2019	Interaction	Feedforward
SSI-DDI [34]	2020	Interaction	GAT
EPGCN-DS [43]	2020	Interaction	GCN
DeepDrug [4]	2020	Interaction	GCN
GCN-BMP [7]	2020	Interaction	GCN
DeepDDS [47]	2021	Synergy	GCN or GAT
MatchMaker [3]	2021	Synergy	Feedforward

Utilities

Abstractions provided include:

Dataloader

BatchGenerator

Model Pipeline for Training/Inference

Sample Code: Batch Generator

```
1 from chemicalx.data import DrugCombDB, BatchGenerator
2
3 loader = DrugCombDB()
5 context_set = loader.get_context_features()
6 drug_set = loader.get_drug_features()
7 triples = loader.get_labeled_triples()
9 train, test = triples.train_test_split(train_size=0.5)
10
11 generator = BatchGenerator(batch_size=1024,
                              context_features=True,
12
                              drug_features=True,
13
                              drug_molecules=False,
14
                              context_feature_set=context_set,
15
                              drug_feature_set=drug_set,
16
                              labeled_triples=train)
17
```

Sample Code: Regular Training

```
2 import torch
3 from chemicalx.models import DeepSynergy
5 model = DeepSynergy(context_channels=112,
                      drug_channels=256)
s optimizer = torch.optim.Adam(model.parameters())
9 model.train()
10 loss = torch.nn.BCELoss()
11
12 for batch in generator:
      optimizer.zero_grad()
      prediction = model(batch.context_features,
                         batch.drug_features_left,
15
                         batch.drug_features_right)
16
      loss_value = loss(prediction, batch.labels)
17
      loss_value.backward()
      optimizer.step()
```

Sample Code: Pipeline Training

```
from chemicalx import pipeline
from chemicalx.models import DeepSynergy
from chemicalx.data import DrugCombDB
model = DeepSynergy(context channels=112, drug channels=256)
dataset = DrugCombDB()
results = pipeline(
    dataset=dataset,
    model=model,
    # Data arguments
    batch size=5120,
    context features=True,
    drug features=True,
    drug molecules=False,
    # Training arguments
    epochs=100,
# Outputs information about the AUC-ROC, etc. to the console.
results.summarize()
# Save the model, losses, evaluation, and other metadata.
results.save("/content/test results/")
```

Sample Code: Inference

```
1 import pandas as pd
3 model.eval()
4 generator.labeled_triples = test
6 predictions = []
7 for batch in generator:
      prediction = model(batch.context_features,
                         batch.drug_features_left,
                         batch.drug_features_right)
10
      prediction = prediction.detach().cpu().numpy()
11
      identifiers = batch.identifiers
      identifiers["prediction"] = prediction
      predictions.append(identifiers)
15 predictions = pd.concat(predictions)
```

Image Source: ChemicalX Paper