

variant of Cauchy integral formula

Canonical name VariantOfCauchyIntegralFormula

Date of creation 2013-03-22 18:54:15 Last modified on 2013-03-22 18:54:15

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872) Entry type Theorem Classification msc 30E20

Synonym Cauchy integral formula Related topic CauchyIntegralFormula

Related topic CorollaryOfCauchyIntegralTheorem

Related topic ExampleOfFindingTheGeneratingFunction
Related topic GeneratingFunctionOfLaguerrePolynomials
Related topic GeneratingFunctionOfHermitePolynomials

Theorem. Let f(z) be holomorphic in a domain A of \mathbb{C} . If C is a closed contour not intersecting itself which with its domain is contained in A and if z is an arbitrary point inside C, then

$$f(z) = \frac{1}{2i\pi} \oint_C \frac{f(t)}{t-z} dt. \tag{1}$$

Proof. Let ε be any positive number. Denote by C_r the circles with radius r and centered in z. We have

$$\oint_C \frac{f(t)}{t-z} dt = \oint_C \frac{f(z) + (f(t) - f(z))}{t-z} dt = \underbrace{\oint_C \frac{f(z)}{t-z} dt}_I + \underbrace{\oint_C \frac{f(t) - f(z)}{t-z} dt}_I.$$

According to the corollary of Cauchy integral theorem and its example, we may write

$$I = f(z) \oint_C \frac{dt}{t-z} = 2i\pi f(z).$$

If $0 < r < \text{ some } r_0$, we have

$$J = \oint_{C_r} \frac{f(t) - f(z)}{t - z} dt.$$

The continuity of f in the point z implies, that

$$|f(t) - f(z)| < \varepsilon$$

when $0 < |t-z| < \text{ some } \delta_{\varepsilon}$ i.e. when

$$t \in C_r \text{ and } 0 < r < \text{ some } r_1.$$
 (2)

If (2) is in, we obtain first

$$\left|\frac{f(t)-f(z)}{t-z}\right| \; = \; \frac{|f(t)-f(z)|}{|t-z|} \; = \; \frac{|f(t)-f(z)|}{r} \; < \; \frac{\varepsilon}{r},$$

whence, by the estimation theorem of integral,

$$|J| \le \frac{\varepsilon}{r} \cdot 2\pi r = 2\pi\varepsilon \text{ for } 0 < r < \min\{r_0, r_1\},$$

and lastly

$$\left| \frac{1}{2i\pi} \oint_C \frac{f(t)}{t-z} dt - f(z) \right| = \left| \frac{1}{2i\pi} J \right| \le \frac{1}{2\pi} \cdot 2\pi\varepsilon = \varepsilon \quad \text{when } 0 < r < \min\{r_0, r_1\}.$$
(3)

This result implies (1).