Machine Learning in Risk Modeling

History + Overview

Maroon Capital Board Presentation

Analyst: Matthew Li

Risk Management

[ˈrisk ˈma-nij-mənt]

The process of identification, analysis, and acceptance or mitigation of uncertainty in investment decisions.

Table of Contents

Brief History of Financial Risk Modeling

Introduction to Applicable ML Models

How ML has Improved Financial Risk Modeling

Further Applications

Previous Financial Risk Modeling Techniques

A mix of historical, probabilistic, and correlation analysis

Monte Carlo

- LysiengteristorMehelataitotlied padsalbitibuglistribuettens and risk correlations in past data
- and risk correlations in past data
 Basic principle is in ergodicity: the statistical
- La Machamine soft at representing upoint i cratem se of his see of his level is ly see since the contract of t
- 3 main assumptions: returns are normally distributed, expected returns are constant over time, all return parameters are known¹

Parametric Models

- Spatisific probability adjest the tiposes fole in inputs cial losses of a eight, a farsa et a grithinal ations of the second of
- Reduces chance of firm holding many highly correlated assets

^{1.} https://macabacus.com/blog/financial-risk-modeling-management-strategies

Machine Learning Techniques and Models

Machine Learning is a subset of statistics leading to revolutionary regressions and modeling

Important Techniques and Features

- Supervised learning using multiple input variables to model out an output and check back for accuracy to revise model parameters
- Unsupervised learning using data to predict and identify structures and patterns
- Better than linear regression since the models can point out non-linear relationships
- Linear methods include: partial least squares, principal component analysis
- Non-linear methods include: penalized regression, least absolute shrinkage and selection operator (LASSO), elastic nets
- Problem of overfitting for overly complex models

Neural Network Node Structure

K-Means Clustering Algorithm

Supervised Linear Regression

Principal Components, Ridge, Partial Least Squares, LASSO

Basic Idea

- One of the most popular types of algorithms due to wide range of use cases
- Similar to regular statistical linear regression models
- Used to simulate mathematical relationship between variables for continuous predictors
- Principal Components Analysis (PCA) used to represent a multivariate data table as a smaller set of variables to better observe trends
- Ridge Regression (L2) regression across highly correlated variables using ridge estimators instead of ordinary least squares, creating lower, biased variance
- Partial Least Squares similar to PCA, but instead of reducing dimensionality, it translates variables to a new space, making it a bilinear factor model

Partial Least Squares Example

Supervised Non-Linear + Linear Regression

Penalized Regression (LASSO, LARS, Elastic Nets), Neural Networks, Deep Learning

Key Components and Difference from Linear

- Key difference is that the equation can include polynomial terms, interaction effects, and variable transformations
- LASSO (L1), although traditionally linear, can be used with polynomial terms to become non-linear
- LARS can also be fitted with non-linear models, targeting highly correlated predictors in a set
- LASSO to regularize statistical models, also consider linear
- Neural Networks uses a structure of nodes to predict an outcome using various layer complexities
- Deep Learning is the more complex, higher-level version of neural networks

Neural Network Structure

Supervised Linear Classification

Support Vector Machines

Key Features and Differences from Regression

- Classification groups into buckets whereas regression looks for a specific output value
- Support Vector Machines (SVMs) is an algorithm that splits data into groups and classifies data
 - Can be considered for regression as well and excels specifically in binary classification settings
- Theoretically, any unsupervised algorithm has its supervised counterpart (although not always recommended
 - e.g., K-means can be implemented with SVM to create a supervised algorithm

Support Vector Machine Diagram

Supervised Non-Linear Classification

Decision Trees (Classification, Regression, Random Forest), Support Vector Machines, Deep Learning

Efficiencies with Non-Linear Classification

- Non-linear classification allows for more efficient, correct division of data
- Decision Trees are models that follow a tree like structure to determine various classifications
 - ID3: Iterative Dichotomiser 3 utilizes entropy
 - C4.5: v2 of ID3 uses information gain and gain ratios to evaluate split points within decision trees
 - CART: Classification and Regression Trees utilizes Gini impurity to identify the best attributes to split itself on
 - Random Forest utilizes a set of trees
- SVMs can be modified to become non-linear
- Deep Learning is typically non-linear since it can take into account multiple features and classify with weights

Random Forest Graph

Unsupervised Clustering

Clustering Methods (K-, X-means, hierarchical), PCA, Deep Learning

Key Points and Advantages

- Unsupervised utilizes unlabeled data, which is significantly more prevalent
- K-means partitions n data points into k clusters with areas known as Voronoi cells, minimizing intra-cluster variance – mean squared error (MSE)
- X-means is an improved version of K-means with an improved local decision maker
 - Bayes Information Criterion
 - Akaike Information Criterion
- Hierarchical Agglomerative Clustering (HAC) uses a tree, a dendrogram, for group objects with general strategies including single-linkage and complete-linkage clustering (SLINK and CLINK, respectively)

K-means Graph

Struggle with Complex Financial Instruments

Traditional Methods of Risk Analysis Fall Short on Capturing the True Essence of Instruments like Derivatives

Current Inefficiencies

- Data selection is slow and cross-correlation among explanatory variables is common
- Many key assumptions in models like Monte Carlo may not hold up in the real world
- Large portfolios have many cross-correlated assets and including these considerations is hard for non-Machine Learning algorithms
- Extremely complex results that can be hard to read, understand, and implement
- VaR often establishes a 99% confidence interval, leaving a 1% chance for a huge loss (inaccurate weighting)
- L GIGO
- Many financial crises since the inception of VaR, the most widely used financial risk model, despite advances in its implementation

Machine Learning Solution

- Manages garbage in a little more efficiently and can exclude certain useless data
 - · Void if the whole dataset is garbage
- Can perform more complex cross-correlation analyses through algorithm structure
 - Hidden layers in neural networks
 - Complex, adaptive categorization algorithms
 - Entropy-based decision making in tree structure
- b Does not rely on previous assumptions
- Creates easier-to-read solutions

Case Study: TD Bank

TD Bank's Machine Learning Implementation in Risk Forecasting

Key Findings

- S&P standard deviation is ~14%
- After volatility reduction model, SD is ~11%
- After additional ML reduction, SD is ~10%
- ML models face significant success in picking reduced volatility assets for low volatility funds
- Idiosyncratic risk is independent and uncorrelated with risk model factors, which can be identified by ML models
- Limitation is that it reduces the size of the universe of investible stocks
 - More problematic in already smaller equity universes

Confusion Matrix from Machine Learning Model

Predicted Volatility Group

Source: TDAM

Case Study: AIRMS

Artificial Intelligence Risk Management System (AIRMS)

Implementation and Findings

- Utilized artificial neural networks and decision trees on dynamic sliding windows in 5 major FOREX pairs to determine a breakout strategy from 2010-2016
 - Outperformed a SVM, genetic algorithm combination
 - Globally-optimal classification tree analysis (GO-CTA)
 - Limited at 20 features
- Applied to the enhanced equally weighted portfolio (EWP2) and enhanced Kelly criterion portfolio (KCP2), strategies that relate to SD
- Results showed a 50% increase in profit when using the suggestion from the machine learning models compared to regular strategies
- Further work could be done in other markets, implementing SVMs, more complex NNs (RNNs, LSTM, GRU)

Results

TOTAL RETURNS OF KELLY CRITERION PORTFOLIOS (%)

Questions?

