```
In [7]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import statsmodels.api as sm
   from statsmodels.tsa.seasonal import seasonal_decompose
   from statsmodels.tsa.holtwinters import SimpleExpSmoothing # SES
   from statsmodels.tsa.holtwinters import Holt # Holts Exponential Smoothing
   from statsmodels.tsa.holtwinters import ExponentialSmoothing #
   import statsmodels.graphics.tsaplots as tsa_plots
   import statsmodels.tsa.statespace as tm_models
   from datetime import datetime,time
   #from sm.tsa.statespace import sa
```

In [9]: #Import the dataset Cocacola=pd.read_excel("C:\\Users\\nishi\\Desktop\\Assignments\\Forecasting\\Coca

Out[10]:			
		Quarter	Sales
	0	Q1_86	1734.827000
	1	Q2_86	2244.960999
	2	Q3_86	2533.804993
	3	Q4_86	2154.962997
	4	Q1_87	1547.818996
	5	Q2_87	2104.411995
	6	Q3_87	2014.362999
	7	Q4_87	1991.746998
	8	Q1_88	1869.049999
	9	Q2_88	2313.631996
	10	Q3_88	2128.320000
	11	Q4_88	2026.828999
	12	Q1_89	1910.603996
	13	Q2_89	2331.164993
	14	Q3_89	2206.549995
	15	Q4_89	2173.967995
	16	Q1_90	2148.278000
	17	Q2_90	2739.307999
	18	Q3_90	2792.753998
	19	Q4_90	2556.009995
	20	Q1_91	2480.973999
	21	Q2_91	3039.522995
	22	Q3_91	3172.115997
	23	Q4_91	2879.000999
	24	Q1_92	2772.000000
	25	Q2_92	3550.000000
	26	Q3_92	3508.000000
	27	Q4_92	3243.859993
	28	Q1_93	3056.000000
	29	Q2_93	3899.000000
	30	Q3_93	3629.000000
	31	Q4_93	3373.000000
	32	Q1_94	3352.000000
	33	Q2_94	4342.000000

	Quarter	Sales
34	Q3_94	4461.000000
35	Q4_94	4017.000000
36	Q1_95	3854.000000
37	Q2_95	4936.000000
38	Q3_95	4895.000000
39	Q4_95	4333.000000
40	Q1_96	4194.000000
41	Q2_96	5253.000000

In [11]: from statsmodels.tsa.seasonal import seasonal_decompose

In [12]: # Boxplot for ever sns.boxplot("Sales",data=Cocacola)

C:\Users\nishi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[12]: <AxesSubplot:xlabel='Sales'>

In [13]: sns.factorplot("Quarter", "Sales", data=Cocacola, kind="box")

C:\Users\nishi\anaconda3\lib\site-packages\seaborn\categorical.py:3714: UserWar
ning: The `factorplot` function has been renamed to `catplot`. The original nam
e will be removed in a future release. Please update your code. Note that the d
efault `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.
 warnings.warn(msg)

C:\Users\nishi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWar ning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[13]: <seaborn.axisgrid.FacetGrid at 0x1e72744a850>

Out[15]: <matplotlib.legend.Legend at 0x1e727d488b0>

In [16]: # Time series decomposition plot
 decompose_ts_add = seasonal_decompose(Cocacola.Sales,model="additive",period=10)
 decompose_ts_add.plot()
 decompose_ts_mul = seasonal_decompose(Cocacola.Sales,model="multiplicative",periodecompose_ts_mul.plot()


```
In [20]: # Amtrak.index.freq = "MS"
         # splitting the data into Train and Test data and considering the last 12 months
         # Test data and left over data as train data
         Train = Cocacola.head(48)
         Test =Cocacola.tail(12)
In [21]: # to change the index value in pandas data frame
         # Test.set_index(np.arange(1,13),inplace=True)
         # Creating a function to calculate the MAPE value for test data
         def MAPE(pred,org):
             temp = np.abs((pred-org))*100/org
             return np.mean(temp)
In [22]: # Simple Exponential Method
         ses model = SimpleExpSmoothing(Train["Sales"]).fit()
         pred_ses = ses_model.predict(start = Test.index[0],end = Test.index[-1])
         MAPE(pred ses, Test. Sales) # 9.76
         C:\Users\nishi\anaconda3\lib\site-packages\statsmodels\tsa\holtwinters\model.p
         y:427: FutureWarning: After 0.13 initialization must be handled at model creati
         on
           warnings.warn(
Out[22]: 9.68200492651463
In [23]: # Holt method
         hw_model = Holt(Train["Sales"]).fit()
         pred_hw = hw_model.predict(start = Test.index[0],end = Test.index[-1])
         MAPE(pred hw, Test. Sales) # 9.82
Out[23]: 11.025182440957998
In [24]: # Holts winter exponential smoothing with additive seasonality and additive trend
         hwe_model_add_add = ExponentialSmoothing(Train["Sales"],seasonal="add",trend="add
         pred_hwe_add_add = hwe_model_add_add.predict(start = Test.index[0],end = Test.ind
         MAPE(pred hwe add add, Test. Sales)# 3.10
         <ipython-input-24-383dbf709136>:2: FutureWarning: the 'damped'' keyword is depr
         ecated, use 'damped trend' instead
           hwe model add add = ExponentialSmoothing(Train["Sales"],seasonal="add",trend
         ="add", seasonal periods=4, damped=True).fit()
Out[24]: 3.245837019668915
```

In [25]: # Holts winter exponential smoothing with multiplicative seasonality and additive
hwe_model_mul_add = ExponentialSmoothing(Train["Sales"],seasonal="mul",trend="add
pred_hwe_mul_add = hwe_model_mul_add.predict(start = Test.index[0],end = Test.ind
MAPE(pred_hwe_mul_add,Test.Sales) # 2.35

Out[25]: 2.8845556504947196

In [26]: # Visualization of Forecasted values for Test data set using different methods
 plt.plot(Train.index, Train["Sales"], label='Train',color="black")
 plt.plot(Test.index, Test["Sales"], label='Test',color="blue")
 plt.plot(pred_ses.index, pred_ses, label='SimpleExponential',color="green")
 plt.plot(pred_hw.index, pred_hw, label='Holts_winter',color="red")
 plt.plot(pred_hwe_add_add.index,pred_hwe_add_add,label="HoltsWinterExponential_1"
 plt.plot(pred_hwe_mul_add.index,pred_hwe_mul_add,label="HoltsWinterExponential_2"
 plt.legend(loc='best')

Out[26]: <matplotlib.legend.Legend at 0x1e729866f40>

In [33]: # AIRLINES DATA Air = pd.read_excel("C:\\Users\\nishi\\Desktop\\Assignments\\Forecasting\\Airline from statsmodels.tsa.seasonal import seasonal_decompose #decomposition = seasonal_decompose(indexedDataset_logScale) Air

Out[33]:

	Month	Passengers
0	1995-01-01	112
1	1995-02-01	118
2	1995-03-01	132
3	1995-04-01	129
4	1995-05-01	121
91	2002-08-01	405
92	2002-09-01	355
93	2002-10-01	306
94	2002-11-01	271
95	2002-12-01	306

96 rows × 2 columns

In [34]: # Boxplot for the dataset sns.boxplot("Passengers",data=Air)

C:\Users\nishi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[34]: <AxesSubplot:xlabel='Passengers'>

In [36]: #sns.factorplot("Quarter", "Sales", data=cocola, kind="box") # moving average for the time series to understand better about the trend charact Air.Passengers.plot(label="org") for i in range(2,10,2): Air["Passengers"].rolling(i).mean().plot(label=str(i)) plt.legend(loc=3)

Out[36]: <matplotlib.legend.Legend at 0x1e727e1da00>

In [38]: decompose_ts_add = seasonal_decompose(Air.Passengers,model="additive",period=10)
 decompose_ts_add.plot()
 decompose_ts_mul = seasonal_decompose(Air.Passengers,model="multiplicative",period=10)
 decompose_ts_mul.plot()

In [39]: tsa_plots.plot_acf(Air.Passengers,lags=10)

Out[39]:

Out[41]:


```
In [42]: Train = Air.head(48)
         Test =Air.tail(12)
In [43]: def MAPE(pred, org):
             temp = np.abs((pred-org))*100/org
             return np.mean(temp)
         # Simple Exponential Method
         ses_model = SimpleExpSmoothing(Train["Passengers"]).fit()
         pred ses = ses model.predict(start = Test.index[0],end = Test.index[-1])
         MAPE(pred ses,Test.Passengers)
         C:\Users\nishi\anaconda3\lib\site-packages\statsmodels\tsa\holtwinters\model.p
         y:427: FutureWarning: After 0.13 initialization must be handled at model creati
           warnings.warn(
Out[43]: 39.807494673483454
In [44]: hw model = Holt(Train["Passengers"]).fit()
         pred_hw = hw_model.predict(start = Test.index[0],end = Test.index[-1])
         MAPE(pred_hw,Test.Passengers)
Out[44]: 17.147769574198275
In [45]: hwe_model_add_add = ExponentialSmoothing(Train["Passengers"],seasonal="add",trend
         pred hwe add add = hwe model add add.predict(start = Test.index[0],end = Test.ind
         MAPE(pred hwe add add, Test. Passengers)
         <ipython-input-45-caa01d2aede1>:1: FutureWarning: the 'damped'' keyword is depr
         ecated, use 'damped trend' instead
           hwe_model_add_add = ExponentialSmoothing(Train["Passengers"],seasonal="add",t
         rend="add",seasonal periods=4,damped=True).fit()
Out[45]: 30.910936406693008
In [46]: # Holts winter exponential smoothing with multiplicative seasonality and additive
         hwe_model_mul_add = ExponentialSmoothing(Train["Passengers"], seasonal="mul", trend
         pred hwe mul add = hwe model mul add.predict(start = Test.index[0],end = Test.ind
         MAPE(pred hwe mul add, Test.Passengers)
Out[46]: 20.952935957124662
```

In [47]: # Visualization of Forecasted values for Test data set using different methods plt.plot(Train.index, Train["Passengers"], label='Train',color="black") plt.plot(Test.index, Test["Passengers"], label='Test',color="blue") plt.plot(pred_ses.index, pred_ses, label='SimpleExponential',color="green") plt.plot(pred_hw.index, pred_hw, label='Holts_winter',color="red") plt.plot(pred_hwe_add_add.index,pred_hwe_add_add,label="HoltsWinterExponential_1' plt.plot(pred_hwe_mul_add.index,pred_hwe_mul_add,label="HoltsWinterExponential_2' plt.legend(loc='best')

Out[47]: <matplotlib.legend.Legend at 0x1e729e47f70>


```
In [ ]:
```