What is claimed is:

1. A component of a vacuum/deposition apparatus,
comprising:

a component body; and

a spray deposit coated on a surface of the component body and having surface roughness in which a mean spacing S of tops of local peak of profile, and distances from a mean line to a bottom of profile valley line Rv and to a top of profile peak line Rp, all of which are stipulated by JIS B 0601-1994, are in the ranges from 50 to 150 μ m, from 20 to 70 μ m, and from 20 to 70 μ m, respectively.

2. The component as set forth in claim 1:

wherein the spray deposit comprises a coat comprising metal of which thermal expansion coefficient is different by 15 x 10^{-6} /K or less from that of a material deposited by the vacuum deposition apparatus.

3. The component as set forth in claim 1:

wherein the spray deposit comprises a coat comprising metal

of which thermal expansion coefficient is different by 20 x 10⁻⁶/K

or less from that of the component body.

4. The component as set forth in claim 1:
wherein the spray deposit comprises a coat of two or more
layers of different materials.

5. The component as set forth in claim 4:

wherein the spray deposit comprises a stress relief layer formed on the component body and comprising soft metal, and a thermal expansion relief layer formed on the stress relief layer and comprising metal of which thermal expansion coefficient is

25

different by 10 x 10⁻⁶/K or less from that of a material deposited by the vacuum deposition apparatus.

6. The component as set forth in claim 1:

wherein the spray deposit comprises at least one coat selected from an Al base spray deposit of Vickers hardness of Hv 30 or less, a Cu base spray deposit of Vickers hardness of Hv 100 or less, a Ni base spray deposit of Vickers hardness of Hv 200 or less, a Ti base spray deposit of Vickers hardness of Hv 300 or less, a Mo base spray deposit of Vickers hardness of Hv 300 or less, and a W base spray deposit of Vickers hardness of Hv 500 or less.

7. The component as set forth in claim 1:
wherein the spray deposit has a thickness in the range from
50 to 500 µm.

8. A component of a vacuum deposition apparatus, comprising:

a component body; and

5

20

25

a spray deposit coated on a surface of the component body and having at least one low hardness coat selected from an Al base spray deposit of Vickers hardness of Hv 30 or less, a Cu base spray deposit of Vickers hardness of Hv 100 or less, a Ni base spray deposit of Vickers hardness of Hv 200 or less, a Ti base spray deposit of Vickers hardness of Hv 300 or less, a Mo base spray deposit of Vickers hardness of Hv 300 or less, and a W base spray deposit of Vickers hardness of Hv 300 or less, and a W base spray deposit of Vickers hardness of Hv 300 or less, and a W base spray deposit of Vickers hardness of Hv 500 or less.

9. The component as set forth in claim 8:

wherein the spray deposit comprises a thermal expansion relief layer comprising metal of which thermal expansion

OUDDO 10 OUDDO 15 OUDDO 15

20

25

5

coefficient is different by 18 x 10⁻⁶/K or less from that of a material deposited by the vacuum deposition apparatus, the thermal expansion relief layer being formed of the low hardness coat.

10. The component as set forth in claim 9:

wherein the thermal expansion relief layer comprises the metal of which thermal expansion coefficient is different by 20 x $10^{-6}/K$ or less from that of the component body.

11. The component as set forth in claim 8:

wherein the spray deposit comprises a coat of two or more layers of different materials, at least one layer thereof comprising the low hardness coat.

12. The component as set forth in claim 8:

wherein the spray deposit comprises a stress relief layer formed on the component body and comprising soft metal, and a thermal expansion relief layer formed on the stress relief layer and comprising metal of which thermal expansion coefficient is different by 15 x 10⁶/K or less from that of a material deposited by the vacuum deposition apparatus, at least one of the stress relief layer and the thermal expansion relief layer comprising the low hardness coat.

13. The component as set forth in claim 12:

wherein all of the stress relief layer and the thermal expansion relief layer compresses the low hardness coat.

14. The component as set forth in claim 8:
wherein the spray deposit has a thickness in the range from
50 to 500 μm.

15. The component as set forth in claim 12:

wherein the stress relief layer has a thickness in the range from 100 to 300 μm , and the thermal expansion relief layer has a thickness in the range from 50 to 150 μm .

16. The component as set forth in claim 8:

wherein surface roughness of the outermost surface of the spray deposit is in the range from 5 to 15 μ m in terms of an arithmetical mean roughness Ra provided by JIS B 0601-1994.

17. The component as set forth in claim 8:

wherein Vickers hardness of the low hardness coat denotes an average value of five measurements of Vickers hardness that, after polishing the surface of the low hardness coat to make flat, are measured by forcing a diamond pyramid indenter on the flattened surface under a weight of 200 g for 30 sec.

- 18. A vacuum deposition apparatus, comprising:
- a vacuum chamber;
- a sample holder holding a sample to be deposited and disposed in the vacuum chamber;
- a deposition material source disposed in the vacuum chamber facing to the sample holder;
- a source holder holding the deposition material source; and a preventive component disposed in the surroundings of the sample holder or the source holder;

wherein at least one selected from the sample holder, the source holder and the preventive component comprises the component for a vacuum deposition apparatus set forth in claim 1.

19. The vacuum deposition apparatus as set forth in claim
18:

25

wherein the spray deposit formed on the surface of the component for a vacuum deposition apparatus comprises a coat containing at least one of metal forming the deposition material source.

20. The vacuum deposition apparatus as set forth in claim
18:

wherein the deposition apparatus is a sputtering apparatus.

21. A vacuum deposition apparatus, comprising.

a vacuum chamber;

a sample holder holding a sample to be deposited and disposed in the vacuum chamber;

a deposition material source disposed in the vacuum chamber facing to the sample holder;

a source holder holding the deposition material source; and a preventive component disposed in the surroundings of the sample holder or the source holder;

wherein at least one selected from the sample holder, the source holder and the preventive component comprises the component for a vacuum deposition apparatus set forth in claim 8.

22. The vacuum deposition apparatus as set forth in claim

wherein the spray/deposit that the component for a vacuum deposition apparatus has comprises a coat containing at least one of metal forming the deposition material source.

23. The vacuum deposition apparatus as set forth in claim 21:

wherein the deposition apparatus is a sputtering apparatus.

25

5

a target body; and

a spray deposit coated on a non-erosion area of the target body and having surface roughness in which a mean spacing S of tops of local peak of profile, distances to a bottom of profile valley line Rv and to a top of profile peak line Rp, all of which are provided by JIS B 0601-1994, are in the ranges from 50 to 150 μ m, from 20 to 70 μ m and from 20 to 70 μ m, respectively.

25. A target apparatus, comprising:

a target; and

a backing plate comprising a backing plate body holding the target, and a spray deposit coated on a surface of the backing plate body and having surface roughness in which a mean spacing S of tops of local peak of profile, and distances to a bottom of profile valley line Rv and to a top of profile peak line Rp, all of which are provided by JIS B 0601-1994, are in the ranges from 50 to 150 μ m, from 20 to 70 μ m and from 20 to 70 μ m, respectively.

26. A target apparatus, comprising:

a target body; and

a spray deposit coated on a non-erosion area of the target body and having at least one low hardness coat selected from an Al base spray deposit of Vickers hardness of Hv 30 or less, a Cu base spray deposit of Vickers hardness of Hv 100 or less, a Ni base spray deposit of Vickers hardness of Hv 200 or less, a Ti base spray deposit of Vickers hardness of Hv 300 or less, a Mo base spray deposit of Vickers hardness of Hv 300 or less and a W base spray deposit of Vickers hardness of Hv 500 or less.

27. A target apparatus, comprising:

a target; and

a backing plate comprising a backing plate body holding the target, and a spray deposit coated on a surface of the backing plate body and having at least one low hardness coat selected from an Al base spray deposit of Vickers hardness of Hv 30 or less, a Cu base spray deposit of Vickers hardness of Hv 100 or less, a Ni base spray deposit of Vickers hardness of Hv 200 or less, a Ti base spray deposit of Vickers hardness of Hv 300 or less, a Mo base spray deposit of Vickers hardness of Hv 300 or less and a W base spray deposit of Vickers hardness of Hv 300 or less.