PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-174820

(43) Date of publication of application: 13.07.1993

(51)Int.CI.

H01M 4/58 H01M 4/02 H01M 10/40

(21)Application number : 03-338959

(71)Applicant : FUJI PHOTO FILM CO LTD

(22)Date of filing:

20.12.1991

(72)Inventor: YASUNAMI SHOICHIRO

KAGAWA OKIMASA MAEKAWA YUKIO

(54) ORGANIC ELECTROLYTIC SOLUTION SECONDARY BATTERY

(57) Abstract:

PURPOSE: To provide an organic electrolytic solution secondary battery with high charge and discharge capacities and with excellent charge and discharge characteristics.

CONSTITUTION: A secondary battery comprises at least a positive electrode consisting of Linicluded transition metal chalcogenide, a negative electrode and organic electrolyte. The negative electrode comprises a low graphitization carbon material which, in X-ray diffraction, has crystal thickness Lc of 8–150Å in C axis direction, face—to—face distance d002 of a 002 face of 3.42–3.65Å and true density ρ (g/cm3) of 1.60–2.20, and mixture of fine carbon grains and/or fine carbon fiber.

LEGAL STATUS

[Date of request for examination]

20.04.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3239302

[Date of registration]

12.10.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-174820

(43)公開日 平成5年(1993)7月13日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	FI	技術表示箇所
H 0 1 M 4/5	3			
4/0	2 D			
10/4	\mathbf{z}			

審査請求 未請求 請求項の数8(全12頁)

(21)出願番号	特願平3-338959	(71)出願人	
			富士写真フイルム株式会社
(22)出顧日	平成3年(1991)12月20日		神奈川県南足柄市中沼210番地
		(72)発明者	安波 昭一郎
			神奈川県南足柄市中沼210番地 富士写真
			フイルム株式会社内
		(72)発明者	香川 興勝
			神奈川県南足柄市中沼210番地 富士写真
			フイルム株式会社内
		(72)発明者	前川 幸雄
		(1-)/0/1	神奈川県南足柄市中沼210番地 富士写真
			フイルム株式会社内
			人 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(54) 【発明の名称 】 有機電解液二次電池

(57)【要約】

【目的】 充放電容量が高く、充放電サイクル特性に優れた有機電解液二次電池を得る。

【構成】 少なくともLi含有遷移金属カルコゲナイドからなる正極、負極、および有機電解質からなる二次電池であって、負極として、X線回折におけるC軸方向の結晶厚みLcが8~150Å、002面の面間隔 d_{002} が3. 42~3. 65Åでかつ真密度 ρ (g/c m³)の値が1. 60~2. 20である低黒鉛化炭素質物と微細カーボン粒子及び/または微細カーボン繊維とを混合して用いる事を特徴とする有機電解液二次電池。

【特許請求の範囲】

【請求項1】 少なくともLi含有遷移金属カルコゲナ イドからなる正極、負極、および有機電解質からなる二 次電池であって、負極として、X線回折におけるC軸方 向の結晶厚みLcが8~150Å、002面の面間隔 d ooz が3. 42~3. 65 Åでかつ真密度ρ(g/cm ")の値が1.60~2.20である低黒鉛化炭素質物 と微細カーボン粒子及び/または微細カーボン繊維とを 混合して用いる事を特徴とする有機電解液二次電池。

1

リル系焼成体であることを特徴とする請求項1に記載の 有機電解液二次電池。

【請求項3】 該低黒鉛化炭素質物が石炭系コークスで あることを特徴とする請求項1に記載の有機電解液二次 電池。

該低黒鉛化炭素質物がメソフェーズビッ 【請求項4】 チ焼成体であることを特徴とする請求項1に記載の有機 電解液二次電池。

【請求項5】 該微細カーボン粒子がカーボンブラック または微粒子黒鉛であることを特徴とする請求項1に記 20 載の有機電解液二次電池。

【請求項6】 該微細カーボン繊維が微細繊維状黒鉛で あることを特徴とする請求項1に記載の有機電解液二次 電池。

【請求項7】 該Li含有遷移金属カルコゲナイドがL i。Co、V。O。であることを特徴とする請求項1に 記載の有機電解液二次電池。(式中、a=0.1~1. 1, b = 0, $15 \sim 0$, 9, c = 1 - b, $d = 2 \sim 2$. 5)

i。Co, Ni。O。であることを特徴とする請求項1 に記載の有機電解液二次電池。(式中、e=0.1~ 1. 1, f = 0. 15 \sim 0. 9, g = 1 - f, $h = 2 \sim$ 2.5)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、充放電容量が高く、充 放電サイクル特性に優れた二次電池、特にリチウム二次 電池に関するものである。

[0002]

【従来の技術】リチウム二次電池は負極活物質としてリ チウム金属を用いると、充放電の繰り返しにより充電時 に活性の高い樹枝状のリチウム金属(デンドライト)や 苔状のリチウム金属(モス)が生成し、それが直接また はそれが脱落して間接的に正極活物質と接触して内部短 絡を起こすことがあり、サイクル特性が低いのみでな く、発火等取扱上きわめて大きな危険を有している。そ の対策として、リチウム合金(A1、A1-Mn(US -4,820,599)、Al-Mg(特開昭57-9 8977)、A1-Sn(特開昭63-6,742)、

Al-In、Al-Cd (特開平1-144, 57 3))を用いる方法が提案されているが、リチウム金属 を用いているので内部短絡防止に対する本質的な解決に なっていない。近年、リチウム金属を用いない方法とし て、リチウムイオンまたはリチウム金属を吸蔵・放出で きる炭素質化合物を用いる方法が提案されている。炭素 質材料は、非晶質部分と結晶性部分とをともに有する低 黒鉛化炭素と、種々の低黒鉛化炭素を2500℃以上の 高温で加熱処理することでほとんど非晶質部分を有さな 【請求項2】 該低黒鉛化炭素質物がポリアクリロニト 10 いようにした髙黒鉛化炭素とに大別できるが、この両者 は物性・性質等において大きく異なり、全く別の材料と して扱われている(稲垣道夫著、炭素材料工学、日刊工 業新聞社出版(1985年))。また、これらの炭素質 材料は天然に産するかあるいは種々の有機化合物を加熱 焼成処理して得られることもよく知られたことである。 【0003】高黒鉛化炭素は本来、充放電容量が高いと とが知られているが(フィジカルレビューB、42巻、 6424頁(1990))、負極活物質として用いた場 合、充電初期に充放電に必要なLiの量よりさらに多く の量の不可逆な容量損失、いわゆるエクスホリエーショ ンを示すことが知られており(ジャーナルオブエレクト ロケミカル ソサイエティ、137巻、2009頁(1 990))、この容量損失分、正極に過剰な容量を有さ せねばならず、高い充放電容量を得ることができないと いう問題がある。この容量損失を防止する方法として₩ ○90/13,924に、黒鉛化度の高い炭素質物と黒 鉛化度の低い炭素質物を混合して用いる方法が提案され ているが、黒鉛化度の高い炭素質物を用いることに何ら 変わりなく、上記の容量損失を本質的に解決しうるもの 【請求項8】 該Li含有遷移金属カルコゲナイドがL 30 ではない。一方、低黒鉛化炭素を負極に用いた提案が数 多くなされている(特開昭58-93, 176、同58 -209, 864、同61-214, 417、同62-88, 269、同62-90, 863、同62-12 2,066、同62-216,170、同63-13, 282、同63-24,555、同63-121,24 7、同63-121, 257、同63-155, 568、同63-276,873、同63-314,82 1、特開平1-204,361、同1-221,85 9、同2-82,466、同2-155,168、同2 40 -230, 660、同1-274, 360、同2-284,354、同3-122,974など)が、低黒鉛化 炭素は高黒鉛化炭素に見られる充電初期の容量損失は著 しく小さくなるものの、良好なサイクル特性を得ること が難しい。

> 【0004】以上のように、充放電容量損失低減、充放 電サイクル特性改善などリチウム二次電池用負極活物質 に要求される不可欠な性能をともに満足するための、さ らなる改良が望まれている。

[0005]

50 【発明が解決しようとする課題】本発明の第一の課題

もよい。

は、充放電容量損失が低減化された有機電解液二次電池 を得ることである。本発明の第二の課題は、充放電サイ クル特性に優れた有機電解液二次電池を得ることであ る。

[0006]

【課題を解決するための手段】発明者らは鋭意検討の結 果、本発明の課題が、少なくともLi含有遷移金属カル コゲナイドからなる正極、負極、および有機電解質から なる二次電池であって、負極として、X線回折における C軸方向の結晶厚みしcが8~150Å、002面の面 10 間隔d。, が3.42~3.65Åでかつ真密度ρ(g /cm³)の値が1.60~2.20である低黒鉛化炭 素質物と微細カーボン粒子及び/または微細カーボン繊 維とを混合して用いることにより達成することができる ことを見いだした。

【0007】本発明の二次電池の負極として用いる低黒 鉛化炭素は、充電初期の容量損失が小さい点で優れたも のであるが、この低黒鉛化炭素にさらに微細カーボン粒 子・微細カーボン繊維を混合して負極材料として用いる ことにより、驚くべきことに充放電サイクル特性を大幅 20 に改善できることを見いだした。

【0008】本発明の二次電池に使用される低黒鉛化炭 素としては、X線回折におけるC軸方向の結晶厚みLc が8~150Å、002面の面間隔d₀₀₂ が3.42~ 3.65Åでかつ真密度 ρ (g/cm³)の値が1.6 0~2.20である炭素材料を用いることができ、好ま しくは $Lc = 10 \sim 130 Å$ 、 $d_{eq} = 3.43 \sim 3$. 62Å、真密度 p (g/cm³) の値が1.62~2. 20であり、さらに好ましくは $Lc = 12 \sim 120 \, \text{Å}$ 、 $d_{002} = 3.44 \sim 3.60 Å、 真密度 \rho (g/c)$ m³)の値が1.65~2.10である。このような低 黒鉛化炭素は市販の石炭系ピッチや、あるいは石炭系ピ ッチ、メソフェーズビッチ、有機髙分子化合物、縮合多 環炭化水素化合物、多環複素環系化合物などをアルゴン 等の不活性ガス雰囲気下、または真空下で焼成すること で得ることができる。焼成温度は先に述べたLc、d 。。、 pの値の範囲内ならば特に限定されないが、好ま しくは400~2000°であり、さらに好ましくは5 00~1700℃である。本発明の二次電池に用いられ る低黒鉛化炭素として特に好ましくは単独重合体あるい 40 ~3mm、1~6デニールが好ましい。負極合剤はコイ は共重合体などのアクリロニトリル系ポリマーを焼成し た炭素であり、繊維状または樹脂状のものなどを用いる **とができる。繊維状の炭素を用いる場合には、直径** $0.2\sim2\mu$ m、長さ 100μ m ~1 mmのものが好ま しく、さらに好ましくは直径0.3~1μm、長さ10 0~500μmのものである。また、樹脂状の炭素質物 を用いる場合には、平均粒径として2~150μmの範 囲が好ましく、さらに好ましくは4~120µmの範囲 であり、特に好ましくは $6 \sim 100 \mu m$ の範囲である。

細カーボン繊維は、カーボンブラック、微粒子黒鉛、微 細繊維状黒鉛が好ましいが、さらに好ましくはカーボン プラックと微細繊維状黒鉛であり、ファーネスブラッ ク、ランプブラック、サーマルブラック、アセチレンブ ラック、チャンネルブラック、ローラーブラック、ディ スクブラック、ケッチェンブラック、気相系黒鉛繊維な どがあげられるが、特に好ましくはファーネスブラッ ク、アセチレンブラック、ケッチェンブラック、気相系 黒鉛繊維である。微細カーボン粒子の粒径としては、 0.005~0.15μmのものが好ましく、さらに好 ましくは $0.01\sim0.1\mu$ mのものである。微細カー ボン繊維の場合は、直径0.2μm以下、長さ100μ m以下のものが好ましく、さらに好ましくは直径0.1 μ m以下、長さ 50μ m以下のものである。また、本発 明の低黒鉛化炭素と微細カーボン粒子・微細カーボン繊 維との混合比(重量比)は99.5:0.5~80:2 0の範囲が好ましく、さらに好ましくは97:3~8 5:15である。両者の混合法は粉体のまま混合しても よいし、水または有機溶媒を用いて分散混合してもよ く、さらには本発明の低黒鉛化炭素に焼成する原料を溶 媒に溶解または分散させ、これに微細カーボン粒子・微 細カーボン繊維を混練した後に焼成する混合法を用いて

【0010】本発明の低黒鉛化炭素と微細カーボン粒子 ・微細カーボン繊維を混合した負極合剤には、通常用い る結着剤や補強剤などを添加することが出来る。結着剤 としては、天然多糖類、合成多糖類、合成ポリヒドロキ シ化合物、合成ポリアクリル酸化合物や含弗素化合物や 合成ゴムがおもに用いられる。それらの中でも澱粉、カ 30 ルボキシメチルセルロース、ジアセチルセルロース、ヒ ドロキシプロピルセルロース、エチレングリコール、ポ リアクリル酸、ポリテトラフルオロエチレンやポリ弗化 ビニリデン、エチレン・プロビレン・ジエン共重合体や アクリロニトリル・ブタジエン共重合体などが好まし い。補強剤としては、リチウムと反応しない繊維状物が 用いられる。例えば、ポリプロピレン繊維、ポリエチレ ン繊維、テフロン繊維などの合成ポリマーや炭素繊維が 好ましい。繊維の大きさとしては、長さが O. 1~4 m m、太さが 0. 1~5 0 デニールが好ましい。特に、1 ン型電池やボタン形電池では、加圧してペレットとして 用いたり、集電体の上に塗布した後圧延したり、該合剤 のプレスシートと集電体を重ねて圧延したりして、シー ト状電極を作成し、該シート状電極を巻取って円筒型電 池に用いることができる。

【0011】本発明に用いることのできるLi含有遷移 金属カルコゲナイドからなる正極としては、MnOz 、 $Mn_2 O_4$, $Mn_2 O_3$, CoO_2 , $Co_x Mn_{1-x} O$ $_{v}$, Ni $_{x}$ Co_{1-x} O $_{v}$, V $_{x}$ Mn_{1-x} O $_{v}$, Fe $_{x}$ M 【0009】本発明に用いられる微細カーボン粒子・微 50 n_{1-x} O_v、V_zO_s、V_gO_s V_gO_s V_gO

ı-x O, 、MoS, 、MoO, 、TiS, などのLi化 物が好ましい。特に好ましくはLi。Co。V。O $a = 0.1 \sim 1.1$, $b = 0.12 \sim 0.9$, $c = 0.12 \sim 0.9$ 1-b, $d=2\sim2.5$), $\pm kULi_e$ Cof Nig O_h (e = 0. 1~1. 1, f = 0. 12~0. 9, g = 1 - f 、h = 2 ~ 2 . 5) である。遷移金属カルコゲ ナイトのLi化物はリチウムを含む化合物と混合して焼 成する方法やイオン交換法が主に用いられる。還移金属 カルコゲナイドの合成法はよく知られた方法でよいが、 特に空気中やアルゴン、窒素などの不活性ガス雰囲気下 10

で200~1500℃で焼成することが好ましい。 【0012】電解質としては、プロピレンカーボネー ト、エチレンカーボネート、ジエチルカーボネート、*γ* ーブチロラクトン、1、2 ージメトキシエタン、テトラ ヒドロフラン、2-メチルテトラヒドロフラン、ジメチ ルスルフォキシド、1,3-ジオキソラン、ホルムアミ ド、ジメチルホルムアミド、ジオキソラン、アセトニト リル、ニトロメタン、エチルモノグライム、リン酸トリ エステル(特開昭60-23,973)、トリメトキシ 体(特開昭62-15,771、同62-22,37 2、同62-108, 474)、スルホラン(特開昭6 2-31, 959)、3-メチル-2-オキサゾリジノ ン(特開昭62-44,961)、プロピレンカーボネ - ト誘導体(特開昭62-290,069、同62-2 90、071)、テトラヒドロフラン誘導体(特開昭6 3-32, 872)、エチルエーテル(特開昭63-6 2, 166)、1, 3-プロパンサルトン(特開昭63 - 102, 173) などの非プロトン性有機溶媒の少な くとも一種以上を混合した溶媒とその溶媒に溶けるリチ 30 できる。 ウム塩、例えば、CIO, 「、BF, 「、PF。」、C F₃ SO₃ - CF₃ CO₂ - AsF₆ - SbF₆ - 、 (CF, SO,), N- 、B, Cl, 2- (特開昭5 7-74, 974)、(1, 2-)メトキシエタン)。 C10, (特開昭57-74, 977)、低級脂肪族 カルボン酸塩(特開昭60-41, 773)、A1C1 4 ~ 、C1~ 、Br~ 、I~ (特開昭60-247, 2 65)、クロロボラン化合物(特開昭61-165,9 57)、四フェニルホウ酸(特開昭61-214, 37 6)などの─種以上から構成されている。なかでも、ブ 40 ニトロベンゼン誘導体(特開昭58-214, 28 ロピレンカーボネートと1、2-ジメトキシエタンの混 合液にLiClO、あるいはLiBF、を含む電解液が 代表的である。

【0013】また、電解液の他に次の様な固体電解質も 用いることができる。固体電解質としては、無機固体電 解質と有機固体電解質に分けられる。無機固体電解質に は、Liの窒化物、ハロゲン化物、酸素酸塩などがよく 知られている。なかでも、Li,N、LiI、Li,N I, Li, N-LiI-LiOH, LiSiO, L

99), xLi, $PO_4 - (1-x)Li_4 SiO$ 4 (特開昭59-60, 866)、Li, SiS, (特 開昭60-501,731)、硫化リン化合物(特開昭 62-82,665) などが有効である。有機固体電解 質では、ポリエチレンオキサイド誘導体か該誘導体を含 むポリマー(特開昭63-135、447)、ポリプロ ピレンオキサイド誘導体か該誘導体を含むポリマー、イ オン解離基を含むボリマー(特開昭62-254,30 2、同62-254,303、同63-193,954)、イオン解離基を含むポリマーと上記非プロトン性 電解液の混合物(米国特許4、792、504、同4、 830, 939、特開昭62-22, 375、同62-22, 376、同63-22, 375、同63-22, 776、特開平1-95,117)、リン酸エステルポ リマー(特開昭61-256,573)、非プロトン性 極性溶媒を含有させた高分子マトリックス材料(米国特 許4,822,701、同4,830,939,特開昭 63-239,779、特願平2-30,318、同2 -78,531)が有効である。さらに、ポリアクリロ メタン(特開昭61-4,170)、ジオキソラン誘導 20 ニトリルを電解液に添加する方法もある(特開昭62-278,774)。また、無機と有機固体電解質を併用 する方法(特開昭60-1,768)も知られている。 【0014】セパレーターは、イオン透過度が大きく、 所定の機械的強度を持つ、絶縁性の薄膜である。耐有機 溶剤性と疎水性からポリプレビレンなどのオレフィン系 の不織布やガラス繊維などが用いられている。さらに、 ボリプロピレンやボリエチレンの表面に、側鎖にボリエ チレンオキシド基を有するアクリロイルモノマーをブラ ズマグラフト重合した修飾セパレーターを用いることも

【0015】また、放電や充放電特性を改良する目的 で、以下に示す化合物を電解質に添加することが知られ ている。例えば、ビリジン(特開昭49-108,52 5)、トリエチルフォスファイト(特開昭47-4,3 76)、トリエタノールアミン(特開昭52-72,4 25)、環状エーテル(特開昭57-152, 68 4)、エチレンジアミン(特開昭58-87,77 7)、n - グライム(特開昭58 - 87, 778)、へ キサリン酸トリアミド(特開昭58-87,779)、 1)、硫黄(特開昭59-8,280)、キノンイミン 染料(特開昭59-68, 184)、N-置換オキサゾ リジノンとN,N'-置換イミダリジノン(特開昭59 -154,778)、エチレングリコールジアルキルエ ーテル(特開昭59-205, 167)、四級アンモニ ウム塩(特開昭60-30、065)、ポリエチレング リコール(特開昭60-41,773)、ピロール(特 開昭60-79,677)、2-メトキシエタノール (特開昭60-89, 075)、A1C1』(特開昭6 iSiO, -LiI-LiOH (特開昭49-81, 8 50 1-88, 466)、導電性ポリマ-電極活物質のモノ

マー(特開昭61-161, 673)、トリエチレンホ スホルアミド(特開昭61-208,758)、トリア ルキルホスフィン(特開昭62-80、976)、モル フォリン(特開昭62-80、977)、カルボニル基 を持つアリール化合物(特開昭62-86,673)、 12ークラウンー4のようなクラウンエーテル類(フィ ジカル レビュー (Physical Review) B、42巻、6424頁(1990年))、ヘキサメチ ルホスホリックトリアミドと4-アルキルモルフォリン (特開昭62-217,575)、二環性の三級アミン 10 ボタン、シート、シリンダーなどいずれにも適用でき (特開昭62-217, 578)、オイル(特開昭62 - 2 8 7 , 5 8 0) 、四級ホスホニウム塩(特開昭 6 3 - 1 2 1 , 2 6 8) 、三級スルホニウム塩(特開昭 6 3 -121, 269) などが挙げられる。

7

【0016】また、電解液を不燃性にするために含ハロ ゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを 電解液に含ませることができる。(特開昭48-36, 632) また、高温保存に適性をもたせるために電解 液に炭酸ガスを含ませることができる。(特開昭59-134, 567)

【0017】また、正極活物質に電解液あるいは電解質 を含ませることができる。例えば、前記イオン導電性ポ リマーやニトロメタン(特開昭48-36,633)、 電解液の添加(特開昭57-124,870)が知られ ている。また、正極活物質の表面を改質することが出来 る。例えば、金属酸化物の表面をエステル化剤により処 理(特開昭55-163、779)したり、キレート化 剤で処理(特開昭55-163,780)、導電性髙分 子(特開昭58-163, 188、同59-14, 27 4)、ポリエチレンオキサイドなど(特開昭60-9 7,561)により処理することができる。また、負極 活物質の表面を改質することもできる。例えば、イオン 導電性ポリマーやポリアセチレン層を設ける(特開昭5 8-111, 276)、LiCl(特開昭58-14 2,771)、エチレンカーボネイト(特開昭59-3 1,573)などにより処理することができる。

【0018】電極活物質の担体として、正極には、通常 のステンレス鋼、ニッケル、アルミニウムの他に、導電 性高分子用には多孔質の発泡金属(特開昭59-18, スパンドメタル(特開昭61-264, 686)、パン チドメタル、負極には、通常のステンレス鋼、ニッケー ル、チタン、アルミニウムの他に、多孔質ニッケル(特 開昭58-18,883)、多孔質アルミニウム(特開 昭58-38, 466)、アルミニウム焼結体(特開昭 59-130,074)、アルミニウム繊維群の成形体 **(特開昭59−148,277)、ステンレス鋼の表面** を銀メッキ(特開昭60-41,761)、フェノール 樹脂焼成体などの焼成炭素質材料(特開昭60-11 2, 254)、A1-Cd合金(特開昭60-211,

779)、多孔質の発泡金属(特開昭61-74,26 8) などが用いられる。

【0019】集電体としては、構成された電池において 化学変化を起こさない電子伝導体であればよい。例え ば、通常用いられるステンレス鋼、タチンやニッケルの 他に、銅のニッケルメッキ体(特開昭48-36,62 7)、銅のチタンメッキ体、硫化物の正極活物質にはス テンレス鋼の上に銅処理したもの(特開昭60-17 5,373)などが用いられる。電池の形状はコイン、 る。

[0020]

【実施例】以下に具体例を挙げ、本発明をさらに詳しく 説明するが、発明の主旨を越えない限り、本発明は実施 例に限定されるものではない。

実施例1

ポリアクリロニトリル繊維(旭化成製、商品名カシミロ ン〉を、アルゴンガス雰囲気下、1000℃で1時間焼 成し炭素質物を得た。この炭素質物のX線回折における 20 Lcは14.5Å、d₀₀₂ は3.55Åであり、真密度 ρは1. 79g/cm³ であった。この炭素質物90重 量%と微細カーボン粒子として市販のアセチレンブラッ ク(電気化学工業製、商品名デンカブラック)10重量 %を粉体のまま2時間混合した。この混合された炭素質 物90重量%に結着剤としてポリテトラフルオロエチレ ン(和光純薬製)10重量%を含む合剤を圧縮成形させ たペレット(15mmΦ)を作成し、負極材料とした。 正極材料として、Lio.s Coo.s Vo.s Oz.s を84 重量%、アセチレンブラック(電気化学工業製、商品名 30 デンカブラック) 10重量%、結着剤としてボリテトラ フルオロエチレン(和光純薬製)6重量%の混合比で混 合した合剤を圧縮成形させたペレット(13mmΦ)を 用いた。正極と負極の理論容量比は1.5とした。な お、負極の理論容量はGIC理論に基づき、372mA H/gとした。電解質としては1MのLiBF。(プロ ピレンカーボネートと1、2-ジメトキシエタンの等量 混合液)を用い、さらにセパレーターとして微孔質のポ リプロピレン不織布を用いて、その電解液を不織布に含 浸させて用いた。そして、図1のようなコイン型リチウ 578)、チタン(特開昭59-68, 169)、エキ 40 ム電池を作成した(電池1)。さらに同様に表1に示し たアクリロニトリル系ポリマーを熱処理した炭素質負極 を作成し、同様の電池2~14を作成した。電池1~1 0についてはポリアクリロニトリル繊維を、電池11~ 13についてはポリアクリロニトリル樹脂を、電池14 についてはアクリロニトリルースチレン共重合体樹脂を 用いた。また、電池5と6については、結着剤としてボ リテトラフルオロエチレンの代わりにエチレン・プロビ レン・ジェン共重合体EPDM(住友化学工業製、商品 名ESPRENE)を用いた。これらのリチウム電池を 50 1.0mA/cm²の電流密度で、160mAH/gの

充電、放電は3.2 Vでカットの条件で充放電試験を行 い、10サイクル目の放電容量および50サイクル目の 放電容量を測定し、充放電サイクル特性の評価を行っ た。

【0021】実施例2

市販の石炭系コークス(新日鉄化学製、商品名LPCu, Lc = 41 Å, $d_{ooz} = 3.47 \text{ Å}$, $\rho = 2.09$ g/cm³)を84重量%、市販のアセチレンブラック (電気化学工業製、商品名デンカブラック)8重量%、 結着剤として上記のEPDM8重量%の混合比で混合し 10 行った。 た合剤を塗布(溶剤トルエン)・乾燥・圧縮成形させた 負極ペレット (15mmΦ) を作成し、負極材料とし た。そして実施例1と同様にしてコイン型リチウム電池 を作成した(電池15)。 さらに同様に表1に示した炭 素質負極を作成し、同様の電池16~18を作成した。 電池17については、結着剤としてEPDMの代わりに ポリフッ化ビニリデン(東京化成製)を用いた。また、 電池18については、負極として石炭系コークスに代わ りにメソフェーズピッチ焼成炭素質物を用いた。これら のリチウム電池について実施例1と同様にして充放電試 20 【0024】 験を行った。

【0022】実施例3

負極材料としては実施例電池1で述べたポリアクリロニ トリル繊維を焼成した炭素質物を用いた。セバレーター として多孔性のボリプロピレンフィルム(ダイセル化学 製、商品名ジュラガード2500)にポリオキシエチレ ンを側鎖に有するモノマー(新中村化学製、商品名M-40G)をプラズマグラフト重合(グラフト量、2.5 mg/cm')した薄膜を用いた。これ以外は実施例電 池1と同様な電池を作成し(電池19)、充放電試験を

10

【0023】実施例4

微細カーボン繊維として気相法黒鉛繊維(昭和電工製、 商品名VG-CF)を用いた以外は実施例電池1と同様 な電池を作成し(電池20)、充放電試験を行った。 実施例5

結着剤としてポリテトラフルオロエチレン(三井フルオ ロケミカル製、商品名テフロン6J)を用いた以外は実 施例電池1と同様な電池を作成し(電池21)、充放電 試験を行った。

【表1】

表1

No	焼成原料	メーカー名	焼成条件	Lc	d 002	P
_		及び商品名		(A)	(A)	(g/cm³)
A	利汀が加二トリル被維	旭化成 炒沙沙	1000°C/1hr (Ar)	14. 5	3. 55	1.79
B	•	¥	800°C/1hr (Ar)	12	3.61	1.76
Ċ	•	N	1300°C/1hr (Vac.)	17.5	3, 53	1. 79
D	B	東レードはソ	900°C/1.5hr (Ar)	11.5	3_ 63	1.77
E	*	東邦レーヨン イスロン	1100°C/O.5hr(Ar)	16	3. 55	1. 75
F		日本エクスラン エクスラン	1000℃/1hr(Vac.)	16	3. 58	1. 78
G	,	東レ T-300	(未焼成)	13	3. 68	1. 69
H	•	東レ 11-40	(-)	45	3. 46	1. 88
1	初7列二円川樹脂	昭和電工	1000°C/1hr (Ar)	14. 5	3. 56	1.71
J		, v	1450°C/1hr (Ar)	25	3. 52	1, 77
K	. *	住友化学	750°C/1hr (Ar)	11	3. 64	1. 75
L	7クリロニトリルーズレン 共重	(合成品)	1100°C/1hr (Ar)	16.5	3. 53	1, 75
	合樹脂 (7/3 wt 比)					
M	、石炭系3-73	新日鉄化学LPC-u	(未饶成)	41	3. 47	2.09
N		Ar .	1300°C/1hr (Ar)	42	3. 46	2.11
0	•	三菱化成二加二次		2 2	3, 54	1, 99
P	メソフェーズビッチ	三菱瓦斯化学	1100°C/1hr (Ar)	46	3, 47	2. 08

[0025]

【表2】

14

13 表 2 実施例の電池

電池	負極炭素		微細加松粒	子·	正極	電解質
No	材料No		カーボン繊維			
1	A	*1	アセチレンブラック	10%	Lio.sCoo.sVo.sOa.s	イ
2	A		n	16%	. "	٠ ٦
3	A		.#	2%	"	ィ
4	B		'A	10%	. "	
5	. с	*2	ケッチェンブラック	10%	. #	p
6	D		N	10%	Lie. 5Coo. 5Nio. 502. 5	<i>^</i>
7	E	*1	7セチレンプラ ック	8%	"	1
8	F		N	4%	Lio.sCoo.sVo.sO2.s	1
9	G		N	14%	P.F	. 1
1 0	H	*3	ファーネスプラック	9%	."	п
1 1	I		"	5%	i)	1
1 2	J	*1	7セチレンブラック	10%	"	1
1 3	K		H	10%	Lio.sCoo.sNio.sO2.s	1
1 4	L		u	10%	n	1
1 5	M		H	10%	H	p
1 6	N		W	3%	Lio.sCoo.sVo.sO2.s	1
1 7	0		"	8%	II .	х
1 8	P		A	10%	a a	1
1 9	A	*2	ケッチェンブラック	10%	u .	4
2 0	A	*4	黒鉛繊維	10%	₽)	1
2 1	A	*1	アセチレンブラック	10%	<i>II</i>	1

[0026]

40 【表3】

表 3 表 2 の続き (比較例の電池)

15

電池	負極炭素	微細カーポン粒子・	正極	電解質
No	材料No	カーボン繊維		
a	A	無添加	Lio. 5Coo. 5Vo. 502. 5	1
b	A	u .	LiCoO ₂	イ
С	I	. "	Lia, 6CO0. 5Vo. 502. 5	i
ď	M	u v	!!	1
е	P			1
f	* 5	"	Lio.sCoo.sNio.sOz.s	ㅁ
g	N	*1 アセチレンブラック 10%		Ħ
h	* 6	無添加	Lia.sCog.sVo.s02.s	Л
ì	R	*1 アセチレンブラック 10%	"	ハ
j	A	無添加	#	4

[0027]

表 4

* *【表4】 表2及び表3の脚注

記号	説明
* l	電気化学工業製 デンカプラック
* 2	ライオン・アクゾ製 ケッチェンプラックEC
* 3	コロンピアカーポン社製 ファーネスブラック RAVEN 5250
* 4	昭和電工製 VG-CF
* 5	比較例4のフラン樹脂焼成炭素
* 6	比較例 5 のノボラック樹脂焼成炭素
1	1M LiBF。 - プロピレンカーボネート / ラメトキシェタン (1/1 V/V)
	1M LiClO。 - エチレンカーボネート / ジメトキシェタン (1/1 V/V)
7 3	.1% LiCF。SO。 - プロピレンカーボネート / ジェチルカーボネート (1/1 V/V)

外は実施例電池1と同様のポリアクリロニトリル繊維焼 成炭素質物からなる負極を有する電池を作成し(電池 a、b)、実施例1と同様にして充放電試験を行った。 電池bについては正極としてLio.s Coo.s Vo.s O 2. s に代えて、LiCoOzを用いた。

【0029】比較例2

負極材料として、カーボンブラックを混合しなかった以 外は実施例 1 と同様のポリアクリロニトリル樹脂焼成炭 素質物からなる負極を有する電池を作成し(電池c)、 実施例1と同様にして充放電試験を行った。

【0030】比較例3

負極材料として、カーボンブラックを混合しなかった以 外は実施例2と同様の石炭系ピッチコークス、メソフェ ーズビッチ焼成炭素質物からなる負極を有する電池を作 成し(電池d、e)、実施例1と同様にして充放電試験 を行った。

【0031】比較例4

負極材料として特開平2-66,856記載のフラン樹 脂焼成炭素質物を用いた以外は実施例1、比較例1と同 様な電池を作成し(電池f、g)、充放電試験を行っ た。この炭素質物のLc、dooz、pはそれぞれ12 Å、3.68Å、1.65g/cm³ であった。電池f

18

はカーボンブラック無添加、電池gはカーボンブラック を添加した。

-【0032】比較例5

負極材料として特開昭62-122,066記載のノボ ラック樹脂焼成炭素質物を用いた以外は実施例1、比較 例1と同様な電池を作成し(電池h、i)、充放電試験 を行った。この炭素質物のLc、d。02、ρはそれぞれ 13Å、3.70Å、1.62g/cm³であった。電 池hはカーボンブラック無添加、電池iはカーボンブラ 10 ックを添加した。

比較例6

負極材料として、カーボンブラックを混合しなかった以 外は実施例電池21とと同様の電池を作成し(電池 j)、充放電試験を行った。実施例と比較例で作成した 負極炭素質材料の内容を表1に、電池の構成を表2~表 4に、充放電試験の結果を表5~表6にまとめて示し た。表5~表6から、本発明のリチウム二次電池は比較 例の電池に対し、放電容量、充放電サイクル特性におい て優れていることは明白である。

20 [0033]

【表5】

20

19 表 5 実施例電池の評価結果

No.	10サイクル目の放電容量	50サイクル目の放電容量	放電容量比
	x (mAH)	y (m A H)	х/у (%)
1	10.5	10.2	97.1
2	11.0	10.5	95.5
3	9. 5	7.9	8 3. 2
4	10.2	9.9	97.1
5	10.4	10.0	96.2
8	9. 9	9.6	97.0
7	10.2	9.9	97.1
8	1 0. 0	8.8	88.0
9	10.5	10.1	96.2
1 0	10. I	9.5	94.1
1 1	10.1	9.1	90.1
1 2	10.6	I 0. 2	96.2
1 3	10.3	10.0	97. 1
1 4	10.1	9. 5	94.1
1 5	10.3	9.9	96.1
1 6	10.0	8. 7	87.0
1 7	10.3	10.1	98.1
1 8	10.5	10.2	97.1
1 9	10.2	8.8	96.1
2 0	10.0	9.4	9 4. 0
2 1	10.0	9.7	97.0

[0034]

40 【表6】

21. 表5の続き(比較例電池の評価結果) 表 6

Na	1047加目の放雷容量	50サイケル目の放電容量	放電容量比
2, 0.		y (mAH)	
a	9. 0	5. 0	5 5 . 6
ь	9. 1	3.9	42.9
C	9. 2	5. 2	56.5
đ	8.8	4. 1	46.6
e	7.9	4. 0	50.6
f	7. 2	3.6	50.0
g	8.8	6.0	68.2
h	7.3	3.3	45.2
i	9. 0	5.9	65.6
į	9.5	6.8	71.6

[0035]

【発明の効果】本発明のように、負極として、X線回折 におけるC軸方向の結晶厚みLcが8~150A、00 2面の面間隔d.,, が3. 42~3. 65Åでかつ真密 度ρ(g/cm³)の値が1.60~2.20である低 30 2 負極合剤ペレット 黒鉛化炭素質物と微細カーボン粒子または微細カーボン 繊維とを混合して用いることにより、放電容量、充放電 サイクル特性の改良されたリチウム二次電池を得ること ができる。

【図面の簡単な説明】

*【図1】実施例に使用したコイン型電池の断面図を示し たものである。

【符号の説明】

- 1 負極封口板
- 3 セパレーター
- 4 正極合剤ペレット
- 5 集電体
- 6 正極ケース
- 7 ガスケット *

【図1】

