Graphical Representation of Causal Effects

November 10, 2016

Lord's Paradox: Observed Data

	Covariates (X)	June weight		
Students	Sex, Sept. weight	Y(0)	Y(1)	Impact
1	X_1	?	Y ₁ (1)	?
2	X_2	?	$Y_2(1)$?
3	<i>X</i> ₃	?	$Y_3(1)$?
:	:	÷		
N	X_N	?	$Y_N(1)$?

Units: Students; Covariates: Sex, September Weight;

Potential Outcomes: June Weight under Treatment and Control;

Treatment = University diet; Control = ??

Statistician 1: June weight under control = September weight

Statistician 2: June weight under control = a linear function of September weight, i.e.

$$E[Y(0)] = \beta_0 + \beta_1 Sex + \beta_2 Weight_{sep}$$

Wainer H and Brown L (2007). Three Statistical Paradoxes in the Interpretation of Group Differences: Illustrated with Medical School Admission and Licsencing Data. *Handbook of Statistics*.

Assignment Mechanism

- Determines which units receive treatment, which receive control
- P(T | X, Y(0), Y(1))
- Known for randomized trials; unknown for observational studies
- Model for assignment mechanism necessary (sometimes sufficient) Model of "science", $P(Y(0), Y(1) \mid X)$ not necessary if one knows the assignment mechanism, e.g., randomized trials
- So, what's wrong with the assignment mechanism in Lord's Paradox?

Key Property of Randomized Trials

- Treatment assignment is "unconfounded", also known as "conditional exchangeability"
 - $P(T \mid X, Y(0), Y(1)) = P(T \mid X)$
 - Assignment does not depend on potential outcomes
 - Removes confounding of all variables
 - Crucial for observational studies, but usually as an unverifiable assumption
- Positivity: each unit has a positive probability of receiving each treatment
 - 0 < P(T | X) < 1 for all X
 - Everyone in the study relevant for comparisons
- Study must be designed without the use of the knowledge of outcomes

Key Property of Randomized Trials

- Treatment assignment is "unconfounded", also known as "conditional exchangeability"
 - $P(T \mid X, Y(0), Y(1)) = P(T \mid X)$
 - Assignment does not depend on potential outcomes
 - Removes confounding of all variables
 - Crucial for observational studies, but usually as an unverifiable assumption
- Positivity: each unit has a positive probability of receiving each treatment
 - 0 < P(T | X) < 1 for all X
 - Everyone in the study relevant for comparisons
- Study must be designed without the use of the knowledge of outcomes

Randomization ensures balance of covariates.

Example: Truth vs Observation

TODIO DIA			0	
	A	Y	Y^0	$Y^{\scriptscriptstyle \perp}$
Rheia	0	0	0	?
Kronos	0	1	1	?
Demeter	0	0	0	?
Hades	0	0	0	?
Hestia	1	0	?	0
Poseidon	1	0	?	0
Hera	1	0	?	0
Zeus	1	1	?	1
Artemis	0	1	1	?
Apollo	0	1	1	?
Leto	0	0	0	?
Ares	1	1	?	1
Athena	1	1	?	1
Hephaestus	1	1	?	1
Aphrodite	1	1	?	1
Cyclope	1	1	?	1
Persephone	1	1	?	1
Hermes	1	0	?	0
Hebe	1	0	?	0
Dionysus	1	0	?	0

Causal Diagram

- Causal Directed Acyclic Graph
- Can represent both association and causation
- Absence of an arrow from A to Y means no individual in the population has that causal effect
- Presence of an arrow from A to Y means there is at least one individual in the population having the causal effect
- Common causes to the treatment and the outcome must be represented in the graph

Association vs Causation

Assignment Mechanism

Unconditional Randomization

Conditional Randomization

Exchangeability

Unconditional Exchangeability

Conditional Exchangeability

Causal Diagram for Structural Representation of Biases under the Null

Common causes for treatment A and outcome Y

Common effect for treatment A and outcome Y

Measurement error on the nodes

Causal Diagram for Effect Modification (with causal effect on outcome)

Causal Diagram for Effect Modification (without causal effect on outcome)

