Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1.
$$L_1 = \{0^m 1^n | m, n \ge 0\}$$

2.
$$L_2 = \{0^n 1^n \mid n \ge 0\}$$

3.
$$L_3 = L_1 \cup L_2$$

4.
$$L_4 = L_1 \cap L_2$$

CS/ECE-374: Lecture 6 - Non-regularity and closure

Instructor: Nickvash Kani

Febuary 02, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1.
$$L_1 = \{0^m 1^n | m, n \ge 0\}$$

$$PEA = \{0^n 1^n | n > 0\}$$
2. $L_2 = \{0^n 1^n | n > 0\}$

2.
$$L_2 = \{0^n 1^n \mid n \ge 0\}$$
* now-regular

4.
$$L_4 = L_1 \cap L_2 = L_2$$

we note that $L_4 = L_1 \cap L_2 = L_2$

where $L_4 = L_1 \cap L_2 = L_2$

Pre-lecture brain teaser

We have a language $L = \{0^n 1^n | n \ge 0\}$ Prove that L is non-regular.

Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.

Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| is finite.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| is finite.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L. $L = \{0^n l^n \mid n > 0\}$
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n+1 strings.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n+1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n+1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{i}1^{i}$ where $i \neq j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n+1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$.

This contradicts the fact that M accepts L. Thus, there is no DFA

When two states are equivalent?

States that cannot be combined?

We concluded that because each 0ⁱ prefix has a unique state. Are there states that aren't unique? Can states be combined?

Equivalence between states

Definition $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(p, w) \in A \iff \delta^*(q, w) \in A.$$

One can merge any two states that are equivalent into a single state.

$$W = 1$$

 $S(q_1, 1) = q_4 \in A$
 $S(q_3, 1) = q_4 \in A$

Distinguishing between states

Definition

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA.

Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

$$\delta^*(p, w) \in A$$
 and $\delta^*(q, w) \notin A$.

or

$$\delta^*(p, w) \notin A$$
 and $\delta^*(q, w) \in A$.

Distinguishable prefixes

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Distinguishable prefixes

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition (Direct restatement) Two prefixes $u, w \in \Sigma^*$ are distinguishable for a language L if

there exists a string x, such that

 $ux \in L$ and $wx \notin L$ (or $ux \notin L$ and

Distinguishable means different states

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$

Proof by a figure

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

$$\implies A \ni \nabla XW = \delta^*(S, XW) = \delta^*(\nabla X, W)$$

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$

$$=\delta^*(s,yw)=\nabla yw\notin A.$$

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$

$$=\delta^*(s,yw)=\nabla yw\notin A.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla XW = \delta^*(S, XW) = \delta^*(\nabla X, W) = \delta^*(\nabla Y, W)$$

$$=\delta^*(s,yw)=\nabla yw\notin A.$$

$$\implies$$
 $A \ni \nabla yw \notin A$. Impossible!

Assumption that $\nabla x = \nabla y$ is false.

Review questions...

• Prove for any $i \neq j$ then 0^j and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$. $F = \{0^n \mid n \geq 0\}$

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$.
- Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$.
- Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.
- Prove that $\{0^n1^n \mid n \ge 0\}$ is not regular.

Fooling sets: Proving non-regularity

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}$.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

L=0x F= 20,13

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language F= {1,11,111}

$$L = \{0^n 1^n \mid n \ge 0\}.$$

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

$$L = \{0' | i, j > 0\}$$
 $F = \{0' | i, j > 0\}$
 $R = 0$
 $R = 0$

Recall

Already proved the following lemma:

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let
$$q_i = \nabla w_i = \delta^*(s, x_i)$$
.

Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let
$$q_i = \nabla w_i = \delta^*(s, x_i)$$
.

By lemma $q_i \neq q_j$ for all $i \neq j$.

As such,
$$|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |A|$$
.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, ... \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let
$$F_i = \{w_1, ..., w_i\}$$
.

By theorem, # states of $M \ge |F_i| = i$, for all i.

As such, number of states in M is infinite.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, ... \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let
$$F_i = \{w_1, ..., w_i\}$$
.

By theorem, # states of $M \ge |F_i| = i$, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

$$L_{1} = \{0^{n}1^{n} \mid n \geq 0\} \quad F_{2} \geq 0^{i} \quad | i \geq 0 \}$$

$$L_{2} = \{\text{bitstrings with equal number of .0s and .1s}\} \quad F_{2} \geq 0^{i} \quad | i \geq 0 \} \quad \times = 1^{i} \quad \text{oili} \quad \in L \quad \text{for some oili} \quad \text{oili} \quad \text$$

 $L = \{\text{strings of properly matched open and closing parentheses}\}$

 $L = \{ \text{palindromes over the binary alphabet} \Sigma = \{0, 1\} \}$ A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

Closure properties: Proving non-regularity

 $H = \{ bitstrings with equal number of 0s and 1s \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that μ is non-regular. Can we show that μ is non-regular without using the fooling set argument from scratch?

 $H = \{ bitstrings with equal number of 0s and 1s \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$H'=H\cap L(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

 $H = \{ bitstrings with equal number of 0s and 1s \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$H'=H\cap L(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since L(0*1*) is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

General recipe:

$$L = \{0^k 1^k \mid k \ge 1\}$$

Careful with closure!

$$L' = \{0^k 1^k \mid k \ge 0\}$$

Complement of L (\overline{L}) is also not regular.

But $L \cup \overline{L} = (0 + 1)^*$ whihe is regular.

In general, always use closure in forward direction, (i.e *L* and *L'* are regular, therefore *L* OP *L'* is regular.)

In particular, regular languages are not closed under subset/superset relations.

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.