被覆空間への連続曲線のリフト

1

命題 1.1. (自明な被覆空間への連続曲線のリフト). 第 2 成分への射影によりつくられる被覆空間 $\pi: \mathbb{N} \times B \to B$ は、任意の連続曲線 $c:[0,1] \to B$ と、任意の $\tilde{p} \in \pi^{-1}c_0$ に対して、連続曲線 $\tilde{c}:[0,1] \to \mathbb{N} \times B$ で、 $\tilde{c}_0 = \tilde{p}$ かつ、 $\pi \circ \tilde{c} = c$ を満たす連続曲線が存在する.

証明. $\tilde{p} \in \{n\} \times B$ とする. $\pi|_{\{n\} \times B}$ は同相写像なので、逆写像 $\pi|_{\{n\} \times B}^{-1}$ をもつ.

$$\tilde{c} \coloneqq \pi|_{\{n\} \times B}^{-1} \circ c$$

と連続曲線を定めると, $\tilde{c}_0 = \tilde{p}$ であり,

 $\pi\circ\tilde{c}=c$

となるので、これが求める連続曲線である.

注意 1.2. 大域的に自明な構造をもっていれば、リフトは簡単に構成できた. 一般の被覆空間の場合でも、局所的に自明な構造をもっているので、部分的にリフトを構成して、有限回張り合わせていけばよい.

命題 1.3. [a,b] の任意の開被覆 $\{U_i\}$ に対して、

$$a = s_0 < s_1 < \dots < s_N < b, \quad a < t_0 < t_1, \dots < t_N = b$$

で, $s_i < t_{i-1} < s_{i+1} < t_i$ を満たし,

$$[s_0,t_0)\subset^{\exists}U_{i(0)},(s_1,t_1)\subset^{\exists}U_{i(1)},\ldots,(s_N,t_N]\subset^{\exists}U_{i(N)}$$

となる s_n, t_n が存在する.

証明. □

命題 1.4. (リフトの存在). $\pi: E \to B$ を被覆空間とする. 任意の連続曲線 $c: [a,b] \to B$ に対して, 任意の $\tilde{p} \in \pi^{-1}(c_a)$ に対して $\tilde{c}: [a,b] \to E$ で, $\tilde{c}_a = \tilde{p}$ かつ, $\pi \circ \tilde{c} = c$ を満たす連続曲線が存在する.

証明.