Név (tintával):

Neptunkód:

Dátum:

1. Hajlítószilárdság meghatározása

Vizsgált kőzet (szín, szerkezet, szövet, fő kőzetalkotók, kőzetnév)

Mérések	hossz (l') [mm]	szélesség (b) [mm]	vastagság (h) [mm]
1.			
2.			
3.			
4.			
Átlag			

Ultrahang áthaladási idő:

$$T=$$

$$M=$$

g

Testsűrűség:

szerint.

$$\rho_0 = \frac{M}{V}$$

$$\rho_0 = \frac{kg}{m}$$

Ultrahang terjedési sebesség: $c_0 = \frac{h}{T}$

$$c_0 = \frac{km}{s}$$

Támaszköz:

Hárompontos hajlítás törési határerő:

Hajlítószilárdság (MSZ EN 12372 szerint): $R_{tf} = \frac{3F \cdot l}{2hh^2}$

$$R_{tf} = \frac{N}{mm^2}$$

2. Kőlemez méretezése

Adja meg, hogy milyen vastagságú kőlemez szükséges az adott kőzetből az alábbi forgalmi terhelés és lemez méret mellett n=1,6 biztonsági tényező figyelembevételével a

$$t[mm] = \sqrt{\frac{1,6 \cdot 1500 \cdot L[mm] \cdot P[kN]}{R_{tf}[MPa] \cdot W[mm]}} \quad \text{összefüggés használatával az MSZ EN 1341 számú szabvány}$$

Szokásos felhasználás	Törőerő P [kN]
Gyalogos forg.	0,75
Kerékpár forg.	3,5
Alkalmi autó forg.	6
Alkalmi mentő forg.	9

W [cm]	L [cm]
40	60
50	80
60	110

Általános forgalom

P [kN]

Szükséges kőlemez vastagság

3. Roncsolásmentes kővizsgálatok

Kőzetnév: Schmidt kalapács			Kőzetnév:
		Duros	
Mérések	(\mathbf{x}_{i})	Mérések	(x _i) üde
1	` '	1	

1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

(x_i) károsodott

átlag

A Schmidt kalapáccsal végzett vizsgálat esetén adja meg az értékek

Szórását,
$$s = \sqrt{\frac{\sum (\bar{x} - x_i)^2}{n-1}}$$
 s=

Ln átlagát,
$$\bar{x}_{\ln} = \frac{\sum \ln x_i}{n}$$
 $\bar{x}_{\ln} = \frac{\sum \ln x_i}{n}$

Ln szórását, $s_{\ln} = \sqrt{\frac{\sum (\ln x_i - \bar{x}_{\ln})^2}{n-1}}$ $s_{\ln} = \frac{\sum \ln x_i}{n}$

n	k
3	3,15
4	2,68
5	2,46
6	2,34
7	2,25
8	2,19
9	2,14
10	2,10

A visszapattanási érték R_{SCH} várható értékét $R_{SCH} = e^{\bar{x}_{ln} - ks_{ln}}$ k=2,46 (5 mérés esetén)

$$R_{SCH} =$$

A regressziós összefüggés alapján adja meg a kőzet várható nyomószilárdságát: $\frac{N}{mm^2}$

A duroszkóppal végzett vizsgálat eredményei alapján λ változási tényező: $\lambda = \frac{R_{mállott}}{R_{\acute{e}n}}$ $\lambda =$

4. Csúszási ellenállás vizsgálata

Csúszási ellenállás mérése SRT ingával.

Mérések (vágott felületen, USRV érték) Mérések (csiszolt, polírozott felületen, SRT érték)

1. 1. 2. 2. 3.

 $\frac{3.}{SRT (USRV \text{ átlag})} = \frac{3.}{SRT (\text{átlag})} = \frac{3.}{SRT (\text{atlag})}$

A súrlódást jellemző érdesség mérőszám az USRV érték alapján: f=

Összefüggés az SRT érték és az érdességi mérőszám között

mm.