Memories

It's the Happy New Year.

You are browsing through all your pictures from last year. You have chosen some of your favorites from all your images. Now you want to make a collage out of them. But you are worried about how and where to fit the images on the screen.

You can think of your screen as a $n \times n$ grid where each cell denotes a pixel on the screen. The rows and columns are numbered from 1 to n. Rows are numbered from top to bottom and columns are numbered from left to right. You have k images to collage on the screen. To do that, you have to fill the grid with k rectangles such that the following restrictions are fulfilled:

- Each cell of the grid is covered by one and only one rectangle.
- Both sides of each rectangle covers at least 5 cells.
- The ratio of the maximum area of a rectangle to the minimum area of a rectangle is at most r. Here r is a ratio fixed for each subtask (see "Scoring" and "Examples" section for details).

Input

Read the input from the standard input in the following format:

- line 1: t r
- line 1+i ($1 \leq i \leq t$): n[i] k[i]

Here, t is the number of testcases and n[i], k[i] are the parameters for testcase i ($1 \le i \le t$).

Output

Write the output to the standard output in the following format:

For testcase i ($1 \leq i \leq t$), print k[i] lines each containing four integers: $x_1 \ y_1 \ x_2 \ y_2$ Here, (x_1,y_1) and (x_2,y_2) are the upper-left and lower-right cells of the rectangle respectively, and must also satisfy $1 \leq x_1 \leq x_2 \leq n[i]$, $1 \leq y_1 \leq y_2 \leq n[i]$.

Constraints

• $1 \le t \le 100$

Subtasks

- 1. (9 points) $n=500, 1 \le k \le 100, r=10^9$
- 2. (11 points) $n=499, 1 \leq k \leq 2500, r=10^9$
- 3. (40 points) $450 \le n \le 499, 1 \le k \le 2500, r = 2.2$
- 4. (40 points) $n=499, 1 \leq k \leq 8000, r=1.4$

Scoring

In subtask 4, even if your solution doesn't meet the required ratio constraint, you may get a partial score determined by the following algorithm:

- 1. We calculate the ratio of the maximum area of a rectangle to the minimum area of a rectangle for each testcase that are part of the subtask.
- 2. Let X be the maximum of the calculated ratios.
- 3. Depending on X, we assign the score as follows:

Range of X	Score
X < 1.4	40
$1.4 \leq X \leq 2.1$	$40 imes e^{5(1.4-X)}$
X>2.1	0

Examples

Example 1

1 2.2 12 4

One acceptable output is:

1 1 6 5 8 6 12 12 7 1 12 5 1 6 7 12

This example is illustrated bellow:

Here the maximum area of a rectangle is 49 and minimum area of a rectangle is 30. The ratio comes out to be $\frac{49}{30}\approx 1.63$, which is less than 2.2. above.

Example 2

2 100000000 12 1 12 2

One acceptable output is:

1 1 12 12 1 1 12 5 1 6 12 12

Note that, these two examples are not part of any subtask. These are shown here only for illustration.