Operációs rendszerek BSc

3. Gyak.

2022. 04. 27.

Készítette:

Kiss Bence Bsc

Mérnökinformatika

BYO2P7

Miskolc, 2022

- **1. feladat -** Adott négy processz a rendszerbe, melynek beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész. Kezdetben mindegyik processz p_uspri = 60. Az A, B, C processz p_nice = 0, a D processz p_nice = 5. Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 201. óraütés-ig.
- a) Határozza meg az ütemezést RR nélkül és az ütemezést RR-nal külön-külön táblázatba
- b.) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.
- c.) Igazolja a számítással a tanultak alapján

RR nélkül:

	A Process		B Process		C Process		D Pro	cess	Reschedule		
Clock Tick	p-uspri	p-cpu	p-uspri	p-cpu	p-uspri	p-cpu	p-uspri	p-cpu	running before	running after	
	60	0	60	0	60	0	60	0		Α	
1		60									
	75	30	60	0	60	0	60	0	A	В	
2				60							
	67	15	75	30	60	0	60	0	В	С	
3						60					
	63	7	67	15	75	30	60	0	С	D	
4								60			
	61	3	63	7	67	15	80	40	D	A	
_											
5		63		_		7				_	
	75	31	61	3	63	7	70	20	D	В	
6		45	75	63	0.4		0.5	40			
	67	15	75	31	61	3	65	10	В	С	
7											
/	63	7	67	45	75	63	62	-	0	D	
	63	/	6/	15	/5	31	62	5	С	U	
8								65			
8								65			

RR-nal:

	A Pro	cess	B Pro	cess	C Pro	cess	D Pro	cess	Reschedule		
Clock Tick	n-uspri	n-cnu	n-uspri	n-cnu	p-uspri	n-cnu	n-uspri	D-CDU	running before	running after	
Starting Point	60	0	60	0	60	0	60	0		A	
1		1									
2		2									
										_	
10	60	10	60	0	60	0	60	0	A	В	
		4.0		40						С	
20	60	10	60	10	60	0	60	- 0	В	C	
30	60	10	60	10	60	10	60	0	С	D	
30	- 00	10	- 00	- 10	- 00		- 00			10	
40	60	10	60	10	60	10	60	10	D	Α	
			- "					- 10			
50	60	20	60	10	60	10	60	10	A	В	
60	60	20	60	20	60	10	60	10	В	С	
70	60	20	60	20	60	20	60	10	С	D	
									_		
80	60	20	60	20	60	20	60	20	D	A	
	60	30	60	20	60	20		20		В	
90 99	60	30	60	20 29	60	20 20	60 60	20		В	
100	66	25	66	25	64	17	74	17	D	С	
101	66	25	66	25	64	18	74	17			
110	66	25	66	25	64	27	74	17		A	
120	66	35	66	25	64	27	74	17	A	В	
130	66	35	66	35	64	27	74	17	В	D	
140	66	35	66	35	64	27	74	27	D	С	
									_		
150	66	35	66	35	64	37	74	27	С	A	
160	66	45	66	35	64	37	74	27	۸	В	
100	00	40	00	33	04	3/	/4	21	^	P	
170	66	45	66	45	64	37	74	27	В	D	
110	- 00	40	- 00	43		3/			Ĭ	ľ	
180	66	45	66	45	64	37	74	37	D	С	
			-								
190	66	45			64	47	74	37		A	
199	66	55	66	45	64	47	74	37			
200	78	47	76	39	74	39	91	31		В	
201	78	47	76	39	74	41	91	31		I	

- **2. feladat -** Készítse el a következő feladatot, melyben egy szignálkezelő több szignált is tud kezelni: a.) Készítsen egy szignál kezelőt (handleSignals), amely a SIGINT (CTRL + C) vagy SIGQUIT (CTRL + \) jelek fogására vagy kezelésére képes.
- b.) Ha a felhasználó SIGQUIT jelet generál (akár kill paranccsal, akár billentyűzetről a CTRL + \) a kezelő egyszerűen kiírja az üzenetet visszatérési értékét a konzolra.
- c.) Ha a felhasználó először generálja a SIGINT jelet (akár kill paranccsal, akár billentyűzetről a CTRL + C), akkor a jelet úgy módosítja, hogy a következő alkalommal alapértelmezett műveletet hajtson végre (a SIG_DFL) kiírás a konzolra.
- d.) Ha a felhasználó másodszor generálja a SIGINT jelet, akkor végrehajt egy alapértelmezett műveletet, amely a program befejezése kiírás a konzolra. Mentés: neptunkod_tobbszignal.c

#include<stdio.h>

#include<signal.h>

#include <stdlib.h>

int sigintCount = 0;

```
void handleSignals(int sig) {
  if (sig == 3) {
    printf("SIGQUIT\n");
     exit(0);
  } else if (sig == 2) {
    if (sigintCount == 0) {
       printf("SIGINT\n");
       sigintCount++;
       signal(SIGINT, SIG_DFL);
}
int main()
{
  signal(SIGINT, handleSignals);
  signal(SIGQUIT, handleSignals);
  while (1);
  return 0;
}
```

3. feladat - Készítsen C nyelvű programot, ahol egy szülő processz létrehoz egy csővezetéket, a gyerek processz beleír egy szöveget a csővezetékbe (A kiírt szöveg: XY neptunkod), a szülő processz ezt kiolvassa, és kiírja a standard kimenetre. Mentés: neptunkod_unnamed.c

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
  int pipe1[2];
  pid_t p;
  if (pipe(pipe1) == -1) {
     fprintf(stderr, "pipe1 hiba");
     return 1;
  }
  p = fork();
  if (p < 0) {
     fprintf(stderr, "fork hiba");
    return 1;
  }
  else if (p > 0) {
     char str[100];
```

```
printf("parent process vár\n");
    wait(NULL);
    printf("parent process olvas\n");
    read(pipe1[0], str, 100);
    printf("Pipeline-ról olvasva: %s\n", str);
    close(pipe1[0]);
  }
  else {
    printf("child process\n");
    char output_string[100];
    strcpy(output_string, "Kiss Bence");
    write(pipe1[1], output_string, strlen(output_string) + 1);
    close(pipe1[1]);
    exit(0);
  }
}
```

4. feladat - Készítsen C nyelvű programot, ahol egy szülő processz létrehoz egy nevesített csővezetéket (neve: neptunkod), a gyerek processz beleír egy szöveget a csővezetékbe (A hallgató neve:pl. Keserű Ottó), a szülő processz ezt kiolvassa, és kiírja a standard kimenetre. Mentés: neptunkod_named.c

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
```

```
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
{
  char* fifoname = "/tmp/BYO2P7";
  mkfifo(fifoname, 0666);
  int pipe;
  pid_t p;
  p = fork();
  if (p < 0) {
    fprintf(stderr, "fork hiba");
     return 1;
  \} else if (p > 0) {
    char str[80];
    printf("parent process vár\n");
     wait(NULL);
    printf("parent process olvas\n");
    pipe = open(fifoname, O_RDONLY);
    read(pipe, str, 80);
```

```
close(pipe);
    printf("%s piperól olvasva: %s\n", fifoname, str);
  }
  else {
    printf("child process\n");
    char output_string[80];
    strcpy(output_string, "Kiss Bence\n");
    pipe = open(fifoname, O_WRONLY);
    write(pipe, output_string, strlen(output_string));
    close(pipe);
    printf("child process end\n");
    exit(0);
  }
  return 0;
}
```

- **5. feladat -** Adott egy rendszerbe az összes osztály-erőforrások száma: R (R1: 10; R2: 9; R3: 12) A rendszerbe 4 processz van: P1, P2, P3, P4. Biztonságos-e holtpontmentesség szempontjából a rendszer a következő kiinduló állapot alapján?
- a) Határozza meg a folyamatok által igényelt erőforrások mátrixát?

2	2	2
0	2	1
6	6	4
1	6	8

b) Határozza meg pillanatnyilag szabad erőforrások számát?

Szabad erőforrások:	10	9	12	-	5	6	10	-	5	3	2
max_r		10		9		12					