冲刺 NOIP2022 模拟试题

时间: 8:00-12:00

(请选手务必仔细阅读本页内容)

题目名称	哼串计数	金银变换	枝江旧事	膜皮圣经
题目类型	传统型	传统型	传统型	传统型
目录	heng	yinrier	zjiang	pmyl
可执行文件名	heng	yinrier	zjiang	pmyl
输入文件名	heng.in	yinrier.in	zjiang.in	pmyl.in
输出文件名	heng.out	yinrier.out	zjiang.out	pmyl.out
每个测试点时限	2.0 秒	1.0 秒	1.0 秒	2.0 秒
内存限制	1 GB	512 MB	512 MB	1024 MB
测试点数目	20	25	20	20
测试点是否等分	是	是	是	是
提交源程序文件名	heng.cpp	yinrier.cpp	zjiang.cpp	pmyl.cpp

编译选项: -1m -O2 -std=c++14

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int ,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 4. 若无特殊说明,输入文件与输出文件中同一行的相邻整数均使用一个空格分隔。
- 5. 部分题目的【题目描述】末尾有简要题意。
- 6. 部分题目的输入输出量较大,建议使用较快的输入输出方式。
- 7. 题面经过删改, 若有不通顺实属正常。一切请以简要题意为准。
- 8. 题目较为简单, AK 后请不要大声喧哗, 闷声大發财。

哼串计数 (heng)

【题目描述】

这是一个发生在元冶和李天硕认识伊始的故事。

最近,元冶发现李天硕总是发出一些意义不明的声音。为了了解自己的同伴,元冶尝试录下了他的声音,经过银里叶变换(迫真)后,得到了一个字符串。字符串里只有大小写字母和数字,即 a \sim z、A \sim Z 以及 0 \sim 9,没有恶臭的不可见字符。

可惜银里叶变换是迫真变换,并不能很好地去除周围环境的杂音。但所幸,现在元冶已经发现这段音频的录制时间是李天硕被一转攻势的时候。现在的李天硕只能在这个时段发出"哼,哼,啊啊啊啊啊嗷"的声音,而这段声音经过银里叶变换后恰好就是 hghgau,不妨称之为哼哼串。不幸的是,银里叶变换会导致音调的丢失,所以 h 可能不是 h,g 也可能不是 h。但唯一确定的是,变换后不同的字符一定是不同的,相同的字符一定是相同的。

现在元冶想要知道,有多少给定字符串的子序列可能是哼哼串?

简要题意:

规定本题中出现的一切字符串下标皆为从 0 开始。

定义一个字符串 C 为哼哼串,当且仅当其同时满足如下条件:

1. |C| = 6.

2. 对于任意 $0 \le i < j < 6$, $C_i = C_j$ 当且仅当 $H_i = H_j$,其中 H =hghgau。

给定一个字符串 S, 求其所有子序列中, 有多少子序列可能是哼哼串。

由于答案可能很大,你只需要输出其对998244353 取模后的结果。

 $(A \ \,) \ \, B$ 的子序列,当且仅当从 B 中删除若干字符,并保持剩余字符的相对顺序不变,可以得到 A)

【输入格式】

本题单测试点包含多组数据。

第一行一个整数T,表示数据组数。

对于每组数据,输入一行共一个字符串,表示题目给定串S。

【输出格式】

输出共T行,第i行包含一个整数,表示第i组数据的答案对998244353取模后的结果。

【样例输入1】

191980

【样例输出 1】

1

【样例解释 1】

191980 是一个哼哼串, 其中 1 对应 hghgau 中的 h, 9 对应 g, 8 对应 a, 0 对应 u。

【样例输入2】

1 lylylys

【样例输出 2】

0

【样例解释 2】

lylylys 共有 7 个长度为 6 的子序列: lylyly, lylyls, lylyys, lyllys, lyylys, llylys, ylylys, 它们都不是哼哼串。

以 C= lylyls 为例,h $=H_0 \neq H_4=$ a (H= hghgau) 而 $C_0=C_4=$ 1,因此它不是哼哼串。

【样例输入3】

2
guanzhujiaranOdundunjiechan
JiaRanJinTianChiShenMe

【样例输出3】

1065773

【数据范围与约定】

对于 100% 的数据, $1 \leq T \leq 10^3$, $1 \leq |S|, \sum |S| \leq 10^6$;S 中只含有大写字母、小写字母和数字共 62 种字符。

本题共 20 个测试点,各测试点的具体限制如下: (记 L=|S|)

测试点编号	L	$\sum L$	特殊性质
1	= 6	$\leq 6 imes 10^3$	无
$2\sim 4$	≤ 30	$\leq 6 imes 10^3$	无
$5\sim 8$	$\leq 6 imes 10^3$	$\leq 6 imes 10^3$	无
$9\sim11$	$\leq 3 imes 10^4$	$\leq 3 imes 10^4$	А
$12\sim15$	$\leq 3 imes 10^5$	$\leq 3 imes 10^5$	无
16	$\leq 10^6$	$\leq 10^6$	В
$17\sim 20$	$\leq 10^6$	$\leq 10^6$	无

特殊性质 A:保证 S 中只含有 1、4、5、9、8、0 共六种字符。

特殊性质 B:对于任意 $0 \leq i < j < |S|$,若 $S_i = S_j$ 且 $\forall i < k < j, S_k \neq S_i$,则 j = i + 1。

金银变换 (yinrier)

【题目背景】

书接上回。

在对伴侣的了解过程中,因为使用的银里叶变换太过迫真,元冶吃了不少亏。于是,他撅腚认真钻 ②研这一奇妙的变换。

最终,在对着示波器调试了 114 个小时后,元冶发现了银里叶变换迫真的秘密:蝶形变换做戳啦! 先不说是否完成了 rev,后面的某一步甚至被应用到了所有的 k 上!

这点小问题当然难不倒元冶。在原变换的基础上,他稍加修改,就得到了新的变换方式——金里叶变换。可要命的是,他又记错了关键步骤,导致明明是加减的蝶形运算处变成了交换。但好在,他只想判断两个串能否用金里叶变换互相转化而已。由于金里叶变换的形式已经足够简单,元冶请你来帮他解决这个问题。

【题目描述】

给定两个整数序列 A 和 B,以及一个整数 k,判断能否对 A 进行有限次如下操作,使得 A 和 B 相等。

交换 A 的两个相邻且长度均为 k 的子串。形式化地说,选定整数 i $(1 \le i \le n-2k+1)$ (其中 n 为 A 的长度) ,对于 $0 \le j < k$ 中的每个 j ,交换 A_{i+j} 和 A_{i+k+j} 。

【输入格式】

本题单测试点包含多组数据。

第一行一个整数T,表示数据组数。

对于每组数据,输入包含三行,具体内容如下:

第一行共 n+1 个整数,第一个整数为 n,表示 A 的长度,接下来依次为 A_1,A_2,\cdots,A_n 。 第二行共 m+1 个整数,第一个整数为 m,表示 B 的长度,接下来依次为 B_1,B_2,\cdots,B_m 。 第三行一个整数 k,具体含义参见题目描述。

【输出格式】

输出共T行,第i行包含第i组数据的答案。

若能使 A 和 B 相等,输出 YES,否则输出 NO。

【样例输入】

```
3
5 1 2 3 4 5
5 3 2 5 4 1
2
5 1 2 3 4 5
5 3 2 1 4 5
2
5 1 2 3 4 5
5 5 4 3 2 1
2
```

【样例输出】

YES NO YES

【样例解释】

对于第一组数据,可以通过如下操作使得 A=B:

1. 选择 i=1: A=(1,2,3,4,5) o A=(3,4,1,2,5)。

2. 选择 i=2: $A=(3,4,1,2,5) \rightarrow A=(3,2,5,4,1)$ 。

对于第二组数据,容易发现无论如何操作,都无法使 A=B。

对于第三组数据,一种可行的操作方式如下:

1. 选择 i=2: A=(1,2,3,4,5) o A=(1,4,5,2,3)。

2. 选择 i=1: A=(1,4,5,2,3) o A=(5,2,1,4,3)。

3. 选择 i=2: $A=(5,2,1,4,3) \rightarrow A=(5,4,3,2,1)$ 。

【数据范围与约定】

对于 100% 的数据, $1\leq T\leq 10^3$, $1\leq k\leq 5 imes 10^4$, $1\leq n,m\leq 10^5$, $\sum n,\sum m\leq 10^6$, $0\leq A_i,B_i\leq 10^9$ 。

本题共 25 个测试点, 各测试点的具体限制如下:

测试点编号	T	n, m	k	附加限制
$1\sim 3$	≤ 100	≤ 10	≤ 5	无
$4\sim 8$	≤ 100	$\leq 10^3$	≤ 500	A 中元素互不相同
9	$\leq 10^3$	$\leq 10^5$	= 1	无
$10\sim11$	$\leq 10^3$	$\leq 10^5$	≤ 5	无
12	$\leq 10^3$	$\leq 10^5$	$\leq 5 imes 10^4$	$2k \geq n$
$13\sim14$	$\leq 10^3$	$\leq 10^5$	$\leq 5 imes 10^4$	$A_i \le 10$
$15\sim 20$	$\leq 10^3$	$\leq 10^5$	$\leq 5 imes 10^4$	A 中元素互不相同
$21\sim25$	$\leq 10^3$	$\leq 10^5$	$\leq 5 imes 10^4$	无

枝江旧事 (zjiang)

【题目背景】

嘉门。

【题目描述】

枝江历 921 年,坐拥 1.6 万余舰的嘉然不满枝江各地各自为政、分裂割据的状况,于 3 月 7 日白袍加身,受封为"圣嘉然"(St. Diana),决定派兵拯救苍生,造福百姓。

经过审慎的考虑,圣嘉然将所有的嘉心糖整编为三只队伍,命名为"枝江新军",希望藉此机会,用自己的受难,赦免所有人们的罪,进而以神秘的力量净化枝江。

三只队伍的作用各有不同,但其目的都是一样的:与圣嘉然一起受难,同时展开神秘的法术,以此净化一部分人们。具体的说,三只队伍的法术如下所述:

- 1. 向圣嘉然占卜,得到一个特定的数字 w,并将可净化的人数提升到原来的 w 倍。
- 2. 向圣嘉然占卜,得到一个特定的数字 w,并将可净化的人数改变为 w。
- 3. 向圣嘉然祈祷,在可净化的人数大于等于一个特定素数值 p 的情况下,净化其中的 p 人,i.e. 将可净化的人数减少 p。

其中队伍1和队伍2的占卜数字由两个占卜数列分别指定。最初,只有圣嘉然是可净化的。

可以发现的是,上述过程有可能会增加可净化的人数,也有可能会减少可净化的人数。但这都是神的旨意,因为所有队伍的行动顺序也是由占卜得来的。但可以保证的是,队伍 1 和队伍 2 所对应的占卜数字都是有限的;同时,在占卜数字出现完后,队伍 1 和 2 不会再出现在行动里。

圣嘉然会占卜足够多次,直到可净化的人数稳定于一个值。这个值被称为行动的遗憾值。

这似乎是一次完美的行动。可不幸的是,圣嘉然只是一只伪神(idol),其本质还是草莓。作为枝江唯一的真神,你非常清楚这一点。真神和伪神的一大区别就在于你可以操纵占卜的序列,从而控制所有队伍的行动以及数字 w 出现的顺序。可固定的事物总是让人厌倦,无论是排布的顺序还是最终的遗憾值。因此你想知道,有多少遗憾值是无论怎样变换序列的顺序都无法达成的。由于早已不屑于玩这种小孩子过家家的游戏,你想要尽快得出答案。

附注:如此对待万物苍生自然是大不敬的行为,但圣嘉然会宽恕你的罪过。嘉门。

简要题意:

给定素数 p 以及 n 个操作,操作有如下两种类型:

1. 0 x: 将w 赋值为x, 即令 $w \leftarrow x$ 。

2. $1 \times :$ 将 w 乘上 x 并模 p, 即令 $w \leftarrow (w \times x) \mod p$ 。

其中w是一个变量,初始值为1。

考虑以所有的 n! 种顺序执行这 n 个操作,并在纸上记录下每种顺序最终所得的 w,求 $0,1,\cdots,p-1$ 中有多少个数没有出现在纸上。

注意,每种顺序的操作的执行是独立的,即每次都会将w初始化为1后再执行n个操作。

【输入格式】

本题单测试点包含多组数据。

第一行一个整数T,表示数据组数。

接下来描述 T 组数据,每组数据的格式如下:

第一行两个整数 p 和 n, 分别表示模数和操作数量。

第二行至第n+1行,每行描述一个操作,具体格式见题目描述。

【输出格式】

输出共T行,第i行包含一个整数,表示第i组数据的答案。

【样例输入1】

1

19 3

0 5

1 7

1 17

【样例输出 1】

15

【样例解释 1】

将纸上的数从小到大排序后的结果为: 5,5,6,6,9,16, 故答案为 19-4=15。

【样例 2】

见附件中的 zjiang/zjiang2.in 与 zjiang/zjiang2.out , 其满足测试点 $7\sim 10$ 的限制。

【数据范围与约定】

对于 100% 的数据, $1 \le T \le 2$, $1 \le n \le 10^6$, $0 \le x < p$ 且 x 为整数, $2 \le p \le 10^6$ 且 p 为素数。

本题共 20 个测试点,各测试点的具体限制如下: (记形如 1×0 的操作个数为 m)

测试点编号	n	p	附加限制
$1\sim 2$	≤ 10	$\leq 10^6$	无
$3\sim 4$	$\leq 10^4$	$\leq 10^6$	$m \leq 12$
$5\sim 6$	$\leq 10^3$	$\leq 10^4$	无
$7\sim 10$	$\leq 10^5$	$\leq 10^5$	无
$11\sim 20$	$\leq 10^6$	$\leq 10^6$	无

【提示】

请注意程序的理论时间复杂度和实际运行效率的差异。

膜皮圣经 (pmyl)

【题目背景】

膜拜国际特级大师 Prean 大佬,今天在 CF 首页称您为大夏尊贵的大名,一股 敬佩之油生然而,您在 CF 为国争光,扬我华威名。向您献上最真挚的膜拜

——《膜皮圣经》

【题目描述】

在岜怷中学左侧,一条笔直的公路——"hyber 路"旁,居住着 n 户人家。每户人家都有一个生计平衡值,其中第 i 户人家的生计平衡值为 c_i 。保证所有的生计平衡值 c 构成一个 $1\sim n$ 的排列。

n 户人家之间的位置关系由一个长为 n-1 的序列 d 给出。其中,第 i 户人家和第 i+1 户人家之间的距离是 d_i (i< n) 。

你是岜怷省的首席传令官(Chief Telecommunication Officer, CTO)。你的上司是皮,岜怷省的省委书记。

某天,皮书记有重要指示需要传达。作为全省的 CTO, 统筹全局的重任自然落在了你身上。

可这也不是什么简单的工作,因为据你所知,就是岜芯中学旁边的那条街就长达 5e10 米,指令的准确传达很成问题。

于是你根据皮书记的指示,以《膜皮圣经》为蓝本,制定了以下通讯法则:

每次通讯包含两个参数 l, r 和四个步骤:

- 1. 称您大名: 皮书记指定一个区间 [l,r] 上的所有人家。
- 2. 油生然而:选择 $p \in [l,r]$ 使得 $\forall i \in [l,r], c_p \leq c_i$ 。简言之,选择生计平衡值最小的人家。
- 3. 扬我威名:第 p 户人从其位置开始,选择一个行走方案,向所有 [l,r] 中的人宣布指令(即覆盖所有 [l,r] 中的点至少一次),并保证行走距离最短,记这个距离为 w。注意 p 并不需要最终回到起点。
 - 4. 献上膜拜:你向第 p 户人家支付 $c_p \times w$ 的费用。

现在皮书记会问您一些问题,每次问题形如一个二元组 (L,R)。你需要对于所有的满足 $L \le l \le r \le R$ 的 l,r,求出若以其作为通讯参数,支付费用的最大值。

简要题意:

给定长度为 n 的排列 c 和长度为 n-1 的正整数序列 d (下标从 1 开始)。

对于区间 $[l,r](1\leq l\leq r\leq n)$,设 $\min\{c_l,c_{l+1},\cdots,c_r\}=c_k(l\leq k\leq r)$,定义其权值为:

$$c_k imes (\sum_{i=l}^{r-1} d_i + \min\{\sum_{i=l}^{k-1} d_i, \sum_{i=k}^{r-1} d_i\})$$

q 次询问,每次给定 L,R,求满足 $L\leq l\leq r\leq R$ 的所有区间 [l,r] 的权值最大值。

【输入格式】

```
输入共q+4行。
```

第一行一个整数 n,表示人家的数量。

第二行 n 个整数,表示排列 c。

第三行 n-1 个整数,表示序列 d。

第四行一个整数 q,表示询问的数量。

第五行至第q+4行,每行两个整数L,R,表示一次询问。

【输出格式】

输出共 q 行,每行一个整数,表示每组询问的答案。

【样例输入1】

```
5
4 1 5 2 3
2 8 4 2
4
3 5
1 2
2 4
1 3
```

【样例输出 1】

```
16
2
12
12
```

【样例 2】

见附件中的 pmy1/pmy12.in 与 pmy1/pmy12.out , 其满足测试点 $7\sim12$ 的限制。

【数据范围与约定】

对于 100% 的数据, $1\leq n\leq 5 imes 10^5$, $1\leq c_i\leq n$ 且 c_i 互不相同, $1\leq d_i\leq 10^5$, $1\leq q\leq 10^6$, $1\leq L\leq R\leq n$ 。

本题共20个测试点,各测试点的具体限制如下:

测试点编号	n	q	特殊性质
$1\sim 2$	≤ 500	≤ 500	×
$3\sim 4$	$\leq 5 imes 10^3$	$\leq 10^6$	×
$5\sim 6$	$\leq 5 imes 10^5$	≤ 100	×
$7\sim12$	$\leq 10^5$	$\leq 10^5$	✓
$13\sim 20$	$\leq 5 imes 10^5$	$\leq 10^6$	X

特殊性质: 保证对于 $orall i \in [1,n]$, $c_i=i$ 。