

实验 - 配置基于 802.1Q 中继的 VLAN 间路由

拓扑

地址分配表

设备	接口	IP 地址	子网掩码	默认网关
R1	G0/1.1	192.168.1.1	255.255.255.0	不适用
	G0/1.10	192.168.10.1	255.255.255.0	不适用
	G0/1.20	192.168.20.1	255.255.255.0	不适用
	Lo0	209.165.200.225	255.255.255.224	不适用
S1	VLAN 1	192.168.1.11	255.255.255.0	192.168.1.1
S2	VLAN 1	192.168.1.12	255.255.255.0	192.168.1.1
PC-A	NIC	192.168.10.3	255.255.255.0	192.168.10.1
PC-B	NIC	192.168.20.3	255.255.255.0	192.168.20.1

交换机端口分配规范

端口	分配	网络
S1 F0/1	802.1Q 中继	不适用
S2 F0/1	802.1Q 中继	不适用
S1 F0/5	802.1Q 中继	不适用
S1 F0/6	VLAN 10 - Students	192.168.10.0/24
S2 F0/18	VLAN 20 - Faculty	192.168.20.0/24

目标

第 1 部分: 建立网络并配置设备的基本设置

第 2 部分: 为交换机配置 VLAN 和中继

第3部分: 配置基于中继的 VLAN 间路由

背景/场景

通过在一个或多个交换机与一个路由器接口之间使用 802.1Q 中继是为多个 VLAN 提供路由和连接的另一种方法。此方法也称为单臂路由器 VLAN 间路由。在此方法中,物理路由器接口划分为多个子接口,为连接的所有 VLAN 提供逻辑通道。

在本实验中,您将配置基于中继的 VLAN 间路由,验证在不同 VLAN 上与主机的连接,以及在路由器上配置 环回。

注:本实验将提供与配置基于中继的 VLAN 间路由所必须执行的实际命令有关的最小帮助。但是,在本实验的 附录 A 中提供了所需的配置命令。不要参考附录,通过尝试配置设备来测试您掌握的知识。

注: CCNA 动手实验使用的路由器为安装了思科 IOS 版本 15.2(4)M3(universalk9 映像)软件的思科 1941 集成多业务路由器。使用的交换机为安装了思科 IOS 版本 15.0(2)(lanbasek9 映像)软件的思科 Catalyst 2960。也可使用其他路由器、交换机以及思科 IOS 版本。根据型号以及思科 IOS 版本的不同,可用命令和产生的输出可能与实验显示的不一样。请参阅本实验末尾的"路由器接口汇总表"了解正确的接口标识符。

注: 确保路由器和交换机的启动配置已经清除。如果不确定,请联系教师。

所需资源

- 1 台路由器(安装了思科 IOS 版本 15.2(4)M3 通用映像或同等映像的思科 1941 路由器)
- 2 台交换机(安装了思科 IOS 版本 15.0(2) lanbasek9 映像或同等映像的思科 2960 交换机)
- 2台 PC(采用 Windows 7、Vista 或 XP 且支持终端模拟程序,比如 Tera Term)
- 用于通过控制台端口配置思科 IOS 设备的控制台电缆
- 如拓扑图所示的以太网电缆

第 1 部分: 建立网络并配置设备的基本设置

在第 1 部分, 您将设置网络拓扑, 在 PC 主机、交换机和路由器上配置基本设置。

步骤 1: 建立如拓扑图所示的网络。

步骤 2: 配置 PC 主机。

步骤 3: 根据需要初始化路由器和交换机并重新加载。

步骤 4: 配置每台交换机的基本设置。

- a. 通过控制台连接到交换机, 然后进入全局配置模式。
- b. 复制以下基本配置并将其粘贴到交换机上的运行配置中。

no ip domain-lookup
service password-encryption
enable secret class
banner motd #
Unauthorized access is strictly prohibited.#
line con 0
password cisco
login
logging synchronous
line vty 0 15
password cisco
login
exit

- c. 如拓扑所示配置设备名称。
- d. 为交换机上的 VLAN 1 配置地址分配表中列出的 IP 地址。
- e. 配置交换机的默认网关。

- f. 管理性禁用交换机上的所有未使用端口。
- q. 将运行配置复制到启动配置中。

步骤 5: 配置路由器的基本设置。

- a 通过控制台连接到路由器,然后进入全局配置模式。
- b 复制以下基本配置并将其粘贴到路由器上的运行配置中。

no ip domain-lookup
hostname R1
service password-encryption
enable secret class
banner motd #
Unauthorized access is strictly prohibited.#
Line con 0
password cisco
login
logging synchronous
line vty 0 4
password cisco
login

- c 配置地址表中所示的 Lo0 IP 地址。此时不要配置子接口。它们将在第 3 部分中配置。
- d 将运行配置复制到启动配置中。

第2部分: 为交换机配置 VLAN 和中继

在第2部分,您将为交换机配置 VLAN 和中继。

注: 在附录 A 中提供了第 2 部分所需的命令。通过在不参考附录的情况下尝试配置 S1 和 S2,测试您掌握的知识。

步骤 1: 在 S1 上配置 VLAN。

а	在 S1 上, 的命令。	配置在	"交换	机端口分	}配规范"	表中列出	出的 VLAN	和名称。	在所提供的	的空白处	,写下您	所使用
b	在 S1 上, 写下您所信			的接口配	配置为中约	迷。此外,	,将连接到	J S2 的排	要口也配置 <i>注</i>	 为中继。	在所提供	———— 的空白处

С	在 S1 上,	将 PC-A 的接》	入端口分配给 VLAN	10。在所提供的空	白处,写下您所使用的命令	•

步骤 2: 在交换机 2 上配置 VLAN。

- a 在 S2 上,配置在"交换机端口分配规范"表中列出的 VLAN 和名称。
- b 在 S2 上,验证 VLAN 名称和编号与 S1 上的相应名称和编号是否匹配。在所提供的空白处,写下您所使用的命令。
- c 在 S2 上,将 PC-B 的接入端口分配给 VLAN 20。
- d 在 S2 上,将连接到 S1 的接口配置为中继。

第3部分: 配置基于中继的 VLAN 间路由

在第3部分,您将通过为每个VLAN创建子接口,配置R1路由到多个VLAN。这种VLAN间路由方法称为单臂路由器。

注: 在附录 A 中提供了第 3 部分所需的命令。通过在不参考附录的情况下尝试配置基于中继的或单臂路由器 VLAN 间路由,测试您掌握的知识。

步骤 1: 为 VLAN 1 配置子接口。

- a 使用 1 作为子接口 ID, 在 R1 G0/1 上为 VLAN 1 创建子接口。在所提供的空白处,写下您所使用的命令。
- b 将该子接口配置为在 VLAN 1 上运行。在所提供的空白处,写下您所使用的命令。
- c 为子接口配置地址表中的 IP 地址。在所提供的空白处,写下您所使用的命令。

步骤 2: 为 VLAN 10 配置子接口。

- a 使用 1 作为子接口 ID, 在 R1 G0/10 上为 VLAN 10 创建子接口。
- b 将该子接口配置为在 VLAN 10 上运行。
- c 为子接口配置地址表中的地址。

步骤 3: 为 VLAN 20 配置子接口。

- a 使用 1 作为子接口 ID, 在 R1 G0/20 上为 VLAN 20 创建子接口。
- b 将该子接口配置为在 VLAN 20 上运行。
- c 为子接口配置地址表中的地址。

步骤	聚 4: 启用 G0/1 接口。
	启用 G0/1 接口。在所提供的空白处,写下您所使用的命令。
步骤	聚5: 验证连接。
	在 R1 上输入查看路由表的命令。列出了哪些网络?
	是否可以从 PC-A ping PC-B?
	从 PC-A,是否能 ping 到 Lo0?
	从 PC-A,是否能 ping 到 S2?
	如果有任何问题的答案是 否 ,请对配置进行排除故障并纠正错误。
思考	
	基于中继的或单臂路由器 VLAN 间路由有哪些优势?

路由器接口汇总表

路由器接口汇总						
路由器型号	以太网接口 1	以太网接口 2	串行接口 1	串行接口 2		
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)		
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		

注:若要了解如何配置路由器,请查看接口来确定路由器类型以及路由器拥有的接口数量。我们无法为每类路由器列出所有的配置组合。下表列出了设备中以太网和串行接口组合的标识符。此表中未包含任何其他类型的接口,但实际的路由器可能会含有其他接口。例如 ISDN BRI 接口。括号中的字符串是约定缩写,可在思科 IOS 命令中用来代表接口。

附录 A - 配置命令

交换机 S1

```
S1(config) # vlan 10
S1(config-vlan) # name Students
S1(config-vlan) # vlan 20
S1(config-vlan) # name Faculty
S1(config-vlan) # exit
S1(config) # interface f0/1
S1(config-if) # switchport mode trunk
S1(config-if) # interface f0/5
S1(config-if) # switchport mode trunk
S1(config-if) # interface f0/6
S1(config-if) # interface f0/6
S1(config-if) # switchport mode access
S1(config-if) # switchport access vlan 10
```

交换机 S2

```
S2(config) # vlan 10
S2(config-vlan) # name Students
S2(config-vlan) # vlan 20
S2(config-vlan) # name Faculty
S2(config) # interface f0/1
S2(config-if) # switchport mode trunk
```

```
S2(config-if) # interface f0/18
S2(config-if) # switchport mode access
S2(config-if) # switchport access vlan 20
```

路由器 R1

```
R1(config) # interface g0/1.1
R1(config-subif) # encapsulation dot1Q 1
R1(config-subif) # ip address 192.168.1.1 255.255.255.0
R1(config-subif) # interface g0/1.10
R1(config-subif) # encapsulation dot1Q 10
R1(config-subif) # ip address 192.168.10.1 255.255.255.0
R1(config-subif) # interface g0/1.20
R1(config-subif) # encapsulation dot1Q 20
R1(config-subif) # encapsulation dot1Q 20
R1(config-subif) # ip address 192.168.20.1 255.255.255.0
R1(config-subif) # exit
R1(config) # interface g0/1
R1(config-if) # no shutdown
```