Discrete Math (Honor) 2022-Fall Homework-7

Instructor: Xiang YIN

Problem 1. (8 Points)

Let $R = \{ \langle \emptyset, \{\emptyset, \{\emptyset\}\} \rangle, \langle \{\emptyset\}, \emptyset \rangle \}$ be a relation. Determine each of the followings.

1. $R \circ R$ 2. R^{-1} 3. $R \upharpoonright \emptyset$ 4. $R \upharpoonright \{\emptyset\}$ 5. $R \upharpoonright \{\emptyset, \{\emptyset\}\}\}$ 6. $R [\emptyset]$ 7. $R [\{\emptyset\}]$ 8. $R [\{\emptyset, \{\emptyset\}\}]$

Answer:

- 1. = $\{\langle \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \rangle\}$
- $2. = \{\langle \{\emptyset, \{\emptyset\}\}, \emptyset\rangle, \langle\emptyset, \{\emptyset\}\rangle\}$
- $3. = \emptyset$
- $4. = \{ \langle \emptyset, \{\emptyset, \{\emptyset\}\} \rangle \}$
- 5. = R, { $\langle \emptyset, \{\emptyset, \{\emptyset\}\} \rangle$, $\langle \{\emptyset\}, \emptyset \rangle$ }
- $6. = \emptyset$
- $7. = \{ \{ \emptyset, \{ \emptyset \} \} \}$
- $8. = \{ \{\emptyset, \{\emptyset\}\}, \emptyset \}$

Problem 2. (8 Points)

Let $A = \{a, b, c, d\}$, $R_1 = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, d \rangle\} \subseteq A \times A$ and $R_2 = \{\langle a, d \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle c, b \rangle\} \subseteq A \times A$. Draw the relation graph for each of the following relations.

 $1.R_1 \circ R_2$

- $2.R_2 \circ R_1 \qquad 3.R_1 \circ R_1 \qquad 4.R_2 \circ R_2$

Answer:

- $1. = \{\langle c, d \rangle\}$
- $2. \, = \{\langle a,d\rangle, \langle a,c\rangle\}$
- 3. = $\{\langle a, a \rangle, \langle a, b \rangle, \langle a, d \rangle\}$
- $4. = \{\langle b, b \rangle, \langle c, c \rangle, \langle c, d \rangle\}$

Problem 3. (8 Points)

Let $A = \{a, b, c\}$ be a set.

- 1. Provide a relation $R \subseteq A \times A$ that is symmetric, anti-symmetric and transitive.
- 2. Provide a relation $R \subseteq A \times A$ that is not symmetric, not anti-symmetric and transitive.

Answer:

- 1. $R = \{\langle a, a \rangle\}$
- 2. R = { $\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle a, c \rangle$ }

Problem 4. (12 Points)

Let $A = \{1, 2, \dots, 10\}$ be a set. Determine if each of the following relations is reflexive, inreflexive, symmetric, anti-symmetric or transitive. (You do not need to write down each relation explicitly)

- 1. $R_1 = \{\langle x, y \rangle : x + y = 10\}$
- 2. $R_2 = \{ \langle x, y \rangle : x + y \text{ is odd} \}$
- 3. $R_3 = \{ \langle x, y \rangle : x + y \text{ is even} \}$

Answer:

- 1. not reflexive, not in-reflexive, symmetric, not anti-symmetric, not transitive
- 2. not reflexive, in-reflexive, symmetric, not anti-symmetric, not transitive
- 3. reflexive, not in-reflexive, symmetric, not anti-symmetric, transitive

Problem 5. (15 Points)

For any relation $R \subseteq A \times A$, $R^n \subseteq A \times A$ is a new relation on A defined inductively by

$$R^0 := I_A$$
, and for any $k \ge 0$, we have $R^{k+1} := R^k \circ R$

Then answer the following questions:

- 1. Let $A=\{a,b,c,d\}$ and $R=\{\langle a,b\rangle,\langle b,c\rangle,\langle c,b\rangle,\langle c,d\rangle\}\subseteq A\times A$. Compute R^2,R^3 and R^4 . (You can show your result by relation graph)
- 2. Prove that $R^m \circ R^n = R^{m+n}$ for any n and m.
- 3. Prove that, if R is symmetric, then \mathbb{R}^n is also symmetric for any n.

Answer:

```
1.
R^2 = \{ \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle, \langle c, c \rangle \}
R^{3} = \{\langle a, b \rangle, \langle a, d \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle c, d \rangle\}
R^{4} = \{\langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle, \langle c, c \rangle\}
```

You should use mathematical induction Induction on n:

i. Base Step(n=0):

$$R^m \circ R^0 = R^m$$
 (details omitted)

ii. Induction Step (suppose it was found when
$$n = k$$
, consider $n = k+1$): $R^m \circ R^{k+1} = R^m \circ (R^k \circ R^1) = (R^m \circ R^k) \circ R^1 = (R^{m+k}) \circ R^1 = R^{m+k+1}$

You should use mathematical induction Induction on n:

i. Base Step (n=0):

 R^0 is symmetric (obviously) ii. Induction Step (n=k+1):

For any $\langle x, y \rangle \in R^{k+1} = R^k \circ R$,

$$\exists z, \langle x, z \rangle \in R^k \land \langle z, y \rangle \in R$$

Then
$$\exists z, \langle z, x \rangle \in R^k \land \langle y, z \rangle \in R$$

Then
$$\exists z, \langle z, x \rangle \in R^k \land \langle y, z \rangle \in R$$

Then $\langle y, x \rangle \in R \circ R^k = R^{1+k} = R^{k+1}$

Problem 6. (15 Points)

Let $R = A \times A$ be a relation on A. Prove the followings formally:

- 1. R is reflexive if and only if $I_A \subseteq R$.
- 2. R is inreflexive if and only if $I_A \cap R = \emptyset$.
- 3. R is transitive if and only if $R \circ R \subseteq R$.

Answer:

- 1. if R is reflexive, then for any $\langle x, x \rangle \in I_A, \langle x, x \rangle \in R$; if $I_A \subseteq R$, then for any $x \in A, \langle x, x \rangle \in I_A$, so $\langle x, x \rangle \in R$
- 2. if R is in-reflexive, then suppose any $\langle x, x \rangle \in I_A \cap R$, then $\langle x, x \rangle \in R$, which is impossible; if $I_A \cap R = \emptyset$, then suppose $\langle x, x \rangle \in R$, since $\langle x, x \rangle \in I_A$, $\langle x, x \rangle \in I_A \cap R$, which is impossible;
- 3. if R is transitive, then for any $\langle x,y\rangle \in R \circ R, \exists z, \langle x,z\rangle \in R \land \langle z,y\rangle \in R$ Then $\langle x, y \rangle \in R$;

if
$$R \circ R \subseteq R$$
, then for any $\langle x, y \rangle, \langle y, z \rangle \in R$, $\langle x, z \rangle \in R \circ R$. Therefore, $\langle x, z \rangle \in R$