Decision Transformer : Reinforcement Learning via Sequence Modeling

April 15, 2025

Indian Institute of Science, Bangalore

Team: Neural Knots

Ashwin K.M. (23882), Kuldeep Jatav (23684), Udit Shah (23475)

Al-ML April 15, 2025 1 / 12

Table of Contents

Project Overview

- Project Overview
- 2 Literature Review
- Separation Service
 Separation Service
- Project Pipeline
- Contributions

Research Problem

Project Overview

• Can reinforcement learning be reframed as a sequence modeling problem using transformers?

AI-ML April 15, 2025

Contributions

Research Problem

Project Overview

- Can reinforcement learning be reframed as a sequence modeling problem using transformers?
- Can we bypass value functions and policy gradients by predicting actions through conditional sequence modeling?

AI-ML April 15, 2025

Research Problem

Project Overview

- Can reinforcement learning be reframed as a sequence modeling problem using transformers?
- Can we bypass value functions and policy gradients by predicting actions through conditional sequence modeling?
- How effectively can this be applied to offline RL using fixed datasets?

Goal

 Adapt the Decision Transformer (DT) to work with Minari datasets and the Mu loCo control suit.

AI-ML April 15, 2025

Research Problem

- Can reinforcement learning be reframed as a sequence modeling problem using transformers?
- Can we bypass value functions and policy gradients by predicting actions through conditional sequence modeling?
- How effectively can this be applied to offline RL using fixed datasets?

Goal

- Adapt the Decision Transformer (DT) to work with Minari datasets and the Mu JoCo control suit.
- Evaluate DT performance across multiple control tasks and compare with Behavior Cloning (BC).

AI-ML April 15, 2025

Research Problem

- Can reinforcement learning be reframed as a sequence modeling problem using transformers?
- Can we bypass value functions and policy gradients by predicting actions through conditional sequence modeling?
- How effectively can this be applied to offline RL using fixed datasets?

Goal

- Adapt the Decision Transformer (DT) to work with Minari datasets and the Mu JoCo control suit.
- Evaluate DT performance across multiple control tasks and compare with Behavior Cloning (BC).
- Simulate benchmark environments to validate DT functionality.

AI-ML April 15, 2025 3 / 12

Why Decision Transformer?

Challenges in Offline RL

• **Distributional shift:** Policies may query out-of-distribution states not seen during training.

AI-ML April 15, 2025

Why Decision Transformer?

Challenges in Offline RL

- **Distributional shift:** Policies may query out-of-distribution states not seen during training.
- Compounding errors: Inaccurate actions snowball over time, destabilizing learning.

AI-ML April 15, 2025

4 / 12

Why Decision Transformer?

Challenges in Offline RL

- Distributional shift: Policies may query out-of-distribution states not seen during training.
- Compounding errors: Inaccurate actions snowball over time, destabilizing learning.
- Value overestimation: Learning value functions offline often leads to inflated estimates.

Advantages of Supervised Learning with Transformers

• Stable credit assignment: Self-attention layers can directly associate rewards with prior states.

> AI-ML April 15, 2025

Why Decision Transformer?

Challenges in Offline RL

- Distributional shift: Policies may query out-of-distribution states not seen during training.
- Compounding errors: Inaccurate actions snowball over time, destabilizing learning.
- Value overestimation: Learning value functions offline often leads to inflated estimates.

Advantages of Supervised Learning with Transformers

- Stable credit assignment: Self-attention layers can directly associate rewards with prior states.
- No bootstrapping or discounting: Avoids the instability from temporal difference learning.

AI-ML April 15, 2025

Why Decision Transformer?

Challenges in Offline RL

Project Overview

- Distributional shift: Policies may query out-of-distribution states not seen during training.
- Compounding errors: Inaccurate actions snowball over time, destabilizing learning.
- Value overestimation: Learning value functions offline often leads to inflated estimates

Advantages of Supervised Learning with Transformers

- Stable credit assignment: Self-attention layers can directly associate rewards with prior states.
- No bootstrapping or discounting: Avoids the instability from temporal difference learning.
- Scalability and generalization: Leverages large-scale pretraining techniques from language models.

Al-ML April 15, 2025 4 / 12

What is DT? – Sequence Modeling Perspective

Trajectory as a Sequence

• Instead of learning value functions or policies, DT models trajectories as sequences.

AI-ML April 15, 2025

What is DT? - Sequence Modeling Perspective

Trajectory as a Sequence

- Instead of learning value functions or policies, DT models trajectories as sequences.
- Inputs are organized as:

$$(\hat{R}_1, s_1, a_1, \hat{R}_2, s_2, a_2, \dots, \hat{R}_T, s_T, a_T)$$
 where $\hat{R}_t = \sum_{t'=t}^T r_{t'}$ is return-to-go.

AI-ML April 15, 2025

5 / 12

Trajectory as a Sequence

Project Overview

- Instead of learning value functions or policies, DT models trajectories as sequences.
- Inputs are organized as:

$$(\hat{R}_1, s_1, a_1, \hat{R}_2, s_2, a_2, \dots, \hat{R}_T, s_T, a_T)$$
 where $\hat{R}_t = \sum_{t'=t}^T r_{t'}$ is return-to-go.

 At test time, DT is conditioned on desired return and current state to generate actions autoregressively.

> AI-ML April 15, 2025

Architecture

Project Overview

• Input: Last K timesteps $\rightarrow 3K$ tokens (return, state, action).

AI-ML April 15, 2025

Architecture

- Input: Last K timesteps $\rightarrow 3K$ tokens (return, state, action).
- Each modality is projected via a separate linear layer; visual inputs use CNN encoders.

AI-ML April 15, 2025

Architecture

Project Overview

- Input: Last K timesteps \rightarrow 3K tokens (return, state, action).
- Each modality is projected via a separate linear layer; visual inputs use CNN encoders.
- Learned timestep embeddings added to each token (1 timestep = 3 tokens).

AI-ML April 15, 2025

Architecture

- Input: Last K timesteps $\rightarrow 3K$ tokens (return, state, action).
- Each modality is projected via a separate linear layer; visual inputs use CNN encoders.
- Learned timestep embeddings added to each token (1 timestep = 3 tokens).
- Uses a GPT-like transformer with causal attention to predict future actions.

Training

• Trained on offline trajectories using supervised learning.

AI-ML April 15, 2025

Architecture

Project Overview

- Input: Last K timesteps $\rightarrow 3K$ tokens (return, state, action).
- Each modality is projected via a separate linear layer; visual inputs use CNN encoders.
- Learned timestep embeddings added to each token (1 timestep = 3 tokens).
- Uses a GPT-like transformer with causal attention to predict future actions.

Training

- Trained on offline trajectories using supervised learning.
- Objective: predict a_t given (\hat{R}_t, s_t) using cross-entropy or MSE loss.

Al-ML April 15, 2025 6 / 12

Experiments Review

Project Overview

- Decision Transformer(DT)
- Behavioural Cloning (BC)

AI-ML April 15, 2025

Contributions

Experiments Review

Project Overview

- Decision Transformer(DT)
- Behavioural Cloning (BC)

for each DT and BC we have conducted 11 Experiments as follows

Environment	Simple	Medium	Expert
Half-Cheetah	√	✓	✓
Hopper	√	✓	✓
Walker-2D	✓	✓	✓
Reacher	-	✓	✓

Table: Experiments Table

* We didn't conducted reacher simple because dataset doesn't exist for it.

* We have recorded videos for each experiment.

AI-ML April 15, 2025

Comparison

Project Overview

Dataset	Environment	DT (Ours)	10% BC	25% BC	40% BC	100% BC
Simple	HalfCheetah	40.90	40.8	45.60	43.1	40.2
Simple	Hopper	75.23	72.57	71.2	70.8	66.9
Simple	Walker	82.21	84.10	80.9	78.8	77.3
Medium	HalfCheetah	44.01	45.31	46.1	45.1	44.09
Medium	Hopper	92.03	87.4	86.13	78.3	77.3
Medium	Walker	73.99	75.6	70.21	66.2	41.3
Medium	Reacher	31.7	35.0	36.9	37.2	44.2
Expert	HalfCheetah	97.02	101.3	97.0	97.5	98.0
Expert	Hopper	119.7	114.2	112.5	109.7	106.1
Expert	Walker	120.3	129.4	121.7	117.2	94.8
Expert	Reacher	65.0	66.0	67.0	68.0	69.0

Table 1: Score Table for Environments and Datasetsr

These scores represent the normalized score where 100 represents the score of expert policy.

AI-ML April 15, 2025

• Attempted to implement DT on Atari DQN Replay Buffer data.

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.
- But this data limited to only 10 trajectories per game.

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.
- But this data limited to only 10 trajectories per game.
- Results showed significant performance gap:

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.
- But this data limited to only 10 trajectories per game.
- Results showed significant performance gap:
 - Training loss decreased over epochs.

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.
- But this data limited to only 10 trajectories per game.
- Results showed significant performance gap:
 - Training loss decreased over epochs.
 - But rewards were extremely low compared to original dataset.

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.
- But this data limited to only 10 trajectories per game.
- Results showed significant performance gap:
 - Training loss decreased over epochs.
 - But rewards were extremely low compared to original dataset.
 - Original agent: 400 rewards per iteration.

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.
- But this data limited to only 10 trajectories per game.
- Results showed significant performance gap:
 - Training loss decreased over epochs.
 - But rewards were extremely low compared to original dataset.
 - Original agent: 400 rewards per iteration.
 - Our implementation: much lower rewards.

AI-ML April 15, 2025

- Attempted to implement DT on Atari DQN Replay Buffer data.
- Original dataset unavailable (deprecated/private on Google Cloud).
- Used alternative expert policy dataset from Minari.
- But this data limited to only 10 trajectories per game.
- Results showed significant performance gap:
 - Training loss decreased over epochs.
 - But rewards were extremely low compared to original dataset.
 - Original agent: 400 rewards per iteration.
 - Our implementation: much lower rewards.
- Conclusion: Decision Transformer performance is highly sensitive to the number of sampes in the initial dataset.

AI-ML April 15, 2025

Dataset Compatibility Challenges

• Adapted Decision Transformer to work with Minari datasets, which were trained using different agents.

AI-ML April 15, 2025

Dataset Compatibility Challenges

- Adapted Decision Transformer to work with Minari datasets, which were trained using different agents.
- Rewrote large portions of the codebase to handle updated data structures and API changes in Minari.

AI-ML April 15, 2025

Dataset Compatibility Challenges

- Adapted Decision Transformer to work with Minari datasets, which were trained using different agents.
- Rewrote large portions of the codebase to handle updated data structures and API changes in Minari.
- Dealt with deprecated environments like gym and d4rl, requiring major structural modifications.

Evaluation Framework

• Minari lacked standard benchmarks; we selected Behavior Cloning (BC) as a consistent baseline for comparison.

AI-ML April 15, 2025

Dataset Compatibility Challenges

- Adapted Decision Transformer to work with Minari datasets, which were trained using different agents.
- Rewrote large portions of the codebase to handle updated data structures and API changes in Minari.
- Dealt with deprecated environments like gym and d4rl, requiring major structural modifications.

Evaluation Framework

- Minari lacked standard benchmarks; we selected Behavior Cloning (BC) as a consistent baseline for comparison.
- In the absence of automated evaluation tools, we developed a custom rendering pipeline for MuJoCo environments.

AI-ML April 15, 2025

0 000

Project Overview

Dataset Compatibility Challenges

Progress Towards Our Goal

- Adapted Decision Transformer to work with Minari datasets, which were trained using different agents.
- Rewrote large portions of the codebase to handle updated data structures and API changes in Minari.
- Dealt with deprecated environments like gym and d4rl, requiring major structural modifications.

Evaluation Framework

- Minari lacked standard benchmarks; we selected Behavior Cloning (BC) as a consistent baseline for comparison.
- In the absence of automated evaluation tools, we developed a custom rendering pipeline for MuJoCo environments.
- This enabled validation of Decision Transformer's performance across tasks.

Al-ML April 15, 2025 10 / 12

Contribution

- Implemented the Decision Transformer architecture.
- Designed and developed the data preprocessing pipeline.
- Contributed to the report writing, result analysis and presentation.
- Conducted experiments on the Hopper, Walker-2D, Half-Cheetah for Simple, Medium, Expert datasets & Reacher for Medium and Expert.
- Created visualizations and prepared the video demonstration.
- Worked extensively on Atari Games.
- Extensive research on theory of Decision Transformers.

*Equal Contribution

AI-ML April 15, 2025

Thank You!

Questions or Discussions Welcome