填空题(100多小题)

题目	参考答案
控制系统线性化过程中,变量的偏移越小,则线性化的精度()。	越高
某典型环节的传递函数是 $G(s) = \frac{1}{s+2}$,则系统的时间常数是()。	0.5
延迟环节不改变系统的幅频特性,仅使()特性发生变化。	相频
若要全面地评价系统的相对稳定性,需要同时根据相位裕量和() 裕量来做	幅值
出判断。	
一般讲系统的加速度误差指输入是() 所引起的输出位置上的误差。	匀加速度
输入相同时,系统型次越高,稳态误差越()。	小
闭环控制系统又称为() 控制 系统。	反馈
.一线性系统, 当输入是单位脉冲函数时, 其输出象函数与()相同。	传递函数
一阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为()。	.时间常数 T
	(或常量)
.控制系统线性化过程中,线性化的精度和系统变量的()程度有关。	偏移
.对于最小相位系统一般只要知道系统的开环()特性就可以判断其稳定性。	幅频
一般讲系统的位置误差指输入是() 信号所引起的输出位置上的误差。	阶跃
超前校正是由于正相移的作用,使截止频率附近的()明显上升,从而具有较	相位
大的稳定裕度。	
二阶系统当共轭复数极点位于()线上时,对应的阻尼比为 0.707。	±45°
PID 调节中的 "P" 指的是()控制器。	比例
若要求系统的快速性好,则闭环极点应距虚轴越()越好。	远
"经典控制理论"的内容是以() 函数为基础的。	传递
系统主反馈回路中最常见的校正形式是()校正和反馈校正	串联
已知超前校正装置的传递函数为 $G_c(s) = \frac{2s+1}{0.32s+1}$, 其最大超前角所对应的频率 $\omega_m =$	1.25
() 。	
已知超前校正装置的传递函数为 $G_c(s) = \frac{2s+1}{0.32s+1}$, 其最大超前角所对应的频率 $\omega_m =$	1.25
()。	
在扰动作用点与偏差信号之间加上()环节能使静态误差降为0。	积分
超前校正主要是用于改善稳定性和()。	快速性
根据采用的信号处理技术的不同,控制系统分为模拟控制系统和())控制系统。	数字
闭环控制系统中,真正对输出信号起控制作用的是()信号。	偏差
控制系统线性化过程中,线性化的精度和系统变量的偏移()有关。	程度

世录系统的微分主程为 $d^2x_0(t)$ 2 $dx_0(t)$ 2 () 则畅家特州 $G(i\alpha)$ —	1
描述系统的微分方程为 $\frac{d^2x_0(t)}{dt^2} + 3\frac{dx_0(t)}{dt} + 2x(t) = x_i(t)$, 则 频 率 特性 $G(j\omega)$ =	$\frac{1}{2-\omega^2+3j\omega}$
().	$ 2-\omega +3j\omega$
	4
一般开环频率特性的低频段表征了闭环系统的() 性能。	稳态
二阶系统的传递函数 $G(s)=4/(s^2+2s+4)$,其固有频率 $\omega_n=($)。	2
30.若系统的传递函数在右半 S 平面上没有(),则该系统称作最小相位系统。	零点和极点
对控制系统的首要要求是系统具有()。	稳定性
在驱动力矩一定的条件下,机电系统的转动惯量越小,其()性能越好。	加速
某典型环节的传递函数是 $G(s) = \frac{1}{s+2}$,则系统的时间常数是()。	0.5
()环节不改变系统的幅频特性,仅使相频特性发生变化。	延迟
二阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为()。	2ζ/ω _n (或常
了海葵树区和日秋湖位去来/ / / / / / / / / / / / / / / / / / /	量)
反馈控制原理是检测偏差并()偏差的原理。	纠正
.对单位反馈系统来讲,偏差信号和误差信号()。	相同
PID 调节中的"P"指的是()控制器。	比例
二阶系统的传递函数 $G(s)=4/(s^2+2s+4)$,其固有频率 $\omega_n=($)。	2
用频率法研究控制系统时,采用的图示法分为极坐标图示法和()坐标图示	对数
法。	
描述系统的微分方程为 $\frac{d^2x_0(t)}{dt^2} + 3\frac{dx_0(t)}{dt} + 2x(t) = x_i(t)$,则传递函数 $G(s) =$	1
$\frac{dt^2}{dt} + 3 \frac{dt}{dt} + 2x(t) = x_i(t), \forall t \in \mathbb{Z} \text{ if } \mathcal{Y} \text{ if } Y$	$\boxed{2s^2 + 3s + 2}$
	V) E
乃氏图中当 $ω$ 等于剪切频率时,相频特性距 $-\pi$ 线的相位差叫相位()。	裕量
() 反馈系统的稳态误差和稳态偏差相同。	单位
滞后校正是利用校正后的()值衰减作用使系统稳定的。	幅
二阶系统当共轭复数极点位于±45°线上时,对应的阻尼比为()。	
	0.707
远离虚轴的闭环极点对()响应的影响很小。	瞬态
自动控制系统最基本的控制方式是()控制。	瞬态 反馈
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。	瞬态 反馈 越高
自动控制系统最基本的控制方式是()控制。	瞬态 反馈
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。	瞬态 反馈 越高 输入量(或
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。 传递函数反映了系统内在的固有特性,与()无关。 实用系统的开环频率特性具有()通滤波的性质。	瞬态 反馈 越高 输入量(或驱动函数) 低
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。 传递函数反映了系统内在的固有特性,与()无关。	瞬态反馈越高输入量(或驱动函数)
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。 传递函数反映了系统内在的固有特性,与()无关。 实用系统的开环频率特性具有()通滤波的性质。	瞬态 反馈 越高 输入量(或 驱动函数) 低
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。 传递函数反映了系统内在的固有特性,与()无关。 实用系统的开环频率特性具有()通滤波的性质。 描述系统的微分方程为 $T\frac{dx_0(t)}{dt}+x(t)=x_i(t)$,则其频率特性 $G(j\omega)=$ ()。	瞬态 反馈 越高 输入量(或 驱动函数) 低 1 1+ jωT
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。 传递函数反映了系统内在的固有特性,与()无关。 实用系统的开环频率特性具有()通滤波的性质。 描述系统的微分方程为 $T\frac{dx_0(t)}{dt}+x(t)=x_i(t)$,则其频率特性 $G(j\omega)=$ ()。 一二阶系统当共轭复数极点位于 $\pm 45^\circ$ 线上时,对应的阻尼比为()。	瞬态 反馈 越高 输入量(或 驱动函数) 低 1 1+ jωT
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。 传递函数反映了系统内在的固有特性,与()无关。 实用系统的开环频率特性具有()通滤波的性质。 描述系统的微分方程为 $T\frac{dx_0(t)}{dt}+x(t)=x_i(t)$,则其频率特性 $G(j\omega)=$ ()。 一二阶系统当共轭复数极点位于 $\pm 45^\circ$ 线上时,对应的阻尼比为()。	瞬态 反馈 越高 输入量(或 驱动函数) 低
自动控制系统最基本的控制方式是()控制。 控制系统线性化过程中,变量的偏移越小,则线性化的精度()。 传递函数反映了系统内在的固有特性,与()无关。 实用系统的开环频率特性具有()通滤波的性质。 描述系统的微分方程为 $T\frac{dx_0(t)}{dt}+x(t)=x_i(t)$,则其频率特性 $G(j\omega)=$ ()。 一二阶系统当共轭复数极点位于 $\pm 45^\circ$ 线上时,对应的阻尼比为()。	瞬态 反馈 越高 输入量(或 驱动函数) 低

输入相同时,系统型次越高,稳态误差越()。	小
系统闭环极点之和为()。	常数
根轨迹在平面上的分支数等于闭环特征方程的()。	阶数
为满足机电系统的高动态特性,机械传动的各个分系统的()频率应远高于机	谐振
电系统的设计截止频率。	
若系统的传递函数在右半 S 平面上没有(),则该系统称作最小相位系统。	零点和极
	点
一线性系统, 当输入是单位脉冲函数时, 其输出象函数与()相同。	传递函数
输入信号和反馈信号之间的比较结果称为()。	偏差
对于最小相位系统一般只要知道系统的()特性就可以判断其稳定性。	开环幅频
设一阶系统的传递 $G(s)=7/(s+2)$,其阶跃响应曲线在 $t=0$ 处的切线斜率为()。	2
.对控制系统的首要要求是系统具有()。	稳定性
利用终值定理可在复频域中得到系统在时间域中的()。	稳态值
传递函数反映了系统内在的固有特性,与()无关。	输入量(或
	驱动函数)
若减少二阶欠阻尼系统超调量,可采取的措施是()阻尼比。	增大
2s+1	1.25
已知超前校正装置的传递函数为 $G_c(s) = \frac{2s+1}{0.32s+1}$,其最大超前角所对应的频率 $\omega_m =$	
() .	
延迟环节不改变系统的幅频特性,仅使()发生变化	相频特性
+ + rury + 4 4 4 7 4 5 B 6 () 1 Bu 7 4 4 B 1 7 4 4 B 1 7	0.5
某典型环节的传递函数是 $G(s) = \frac{1}{s+2}$,则系统的时间常数是()。	
在扰动作用点与偏差信号之间加上()环节能使静态误差降为0。	积分
微分控制器是针对被调量的()来进行调节。	变化速率
超前校正主要是用于改善稳定性和()。	快速性
传递函数分母多项式的根,称为系统的().	极点
微分环节的传递函数为().	S
并联方框图的等效传递函数等于各并联传递函数之().	和
单位冲击函数信号的拉氏变换式().	1
系统开环传递函数中有一个积分环节则该系统为()型系统。	Ι
当输入为正弦函数时,频率特性 $G(j\omega)$ 与传递函数 $G(s)$ 的关系为()。	$s=j\omega$
机械结构动柔度的倒数称为()。	动刚度
当乃氏图逆时针从第二象限越过负实轴到第三象限去时称为()。	正穿越
二阶系统对加速度信号响应的稳态误差为()。即不能跟踪加速度信号。	1/K
根轨迹法是通过开环()直接寻找闭环根轨迹。	传递函数
若要求系统的快速性好,则闭环极点应距虚轴越()越好。	远
比例环节的频率特性为()。	k
微分环节的相角为()。	90°
二阶系统的谐振峰值与() 比有关。	阻尼
高阶系统的超调量跟相角()有关。	裕量
()系统在零初始条件下输出量与输入量的拉氏变换之比,称该系统的传递函	线性
数。	
当扰动信号进入系统破坏系统平衡时,有重新恢复平衡的能力则该系统具有	稳定性
().	

控制方式由改变输入直接控制输出,而输出对系统的控制过程没有直接影响,叫 ()控制。	开环
线性系统在零初始条件下输出量与输入量的()变换之比,称该系统的传递函数。	拉氏
积分环节的传递函数为()。	1/s
.单位斜坡函数信号的拉氏变换式()。	1/s ²
系统速度误差系数 \mathbf{K}_{v} =()。	$\lim_{s\to 0} sG(s)$
系统输出由零上升到第一次穿过稳态值所需要的时间为()时间。	上升
二阶欠阻尼振荡系统的峰值时间为()。	$\frac{\pi}{\omega_n \sqrt{1-\xi^2}}$
二阶振荡环节的频率特性为()。	$\frac{1}{-T^2\omega^2+j}$
拉氏变换中初值定理为()。	$\lim_{t\to 0} f(t) = \lim_{s\to 0} f(s)$
线性系统在()条件下输出量与输入量的拉氏变换之比,称该系统的传递函数。	零初始
系统的传递函数,完全由系统的()决定,而与外界作用信号的形式无关。	结构及参数
系统特征方程的根具有一个正根或复根有正实部时,该系统为()系统。	不稳定
系统输出超过稳态值达到第一个峰值所需的时间为()时间。	峰值
由传递函数得到系统的频率特性可将传递函数中的 s 变为()。	jω
积分环节的频率特性为()。	$\frac{1}{j\omega}$
纯迟延环节的频率特性为()。	$e^{-jT\omega}$
G(s)=1+Ts 的幅频特性为()。	$\sqrt{1+\omega^2T^2}$
高阶系统的调节时间跟相角裕量和()频率有关。	剪切
幅频特性最大值与零频幅值之比为()。	谐振峰值
高阶系统的调节时间跟()和剪切频率有关。	相角裕量
一阶微分环节的传递函数为()	Ts+1
系统开环传递函数中有两个积分环节则该系统为()型系统。	II
二阶欠阻尼振荡系统的最大超调量为()。	$e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}$

频率特性包括幅频特性和()特性。	相频
对数幅频特性 $L(\omega) = ($)。	20lgA(ω)
高阶系统的谐振峰值与()有关。	相角裕量
单位阶跃信号的 z 变换为()。	z/(z-1)
分支点逆着信号流向移到 G(s)前,为了保证移动后的分支信号不变,移动的分支应串入	相同的传
	递函数 G
	(s)
高阶系统中离虚轴最近的极点,其实部小于其他极点的实部的 1/5,并且附近不存在零点,	主导
则该极点称为系统的()极点。	
线性系统在零初始条件下()与输入量的拉氏变换之比,称该系统的传递函	输出量
数。	