# CS401 Computer Architectures 2022-2023 Spring

Term Project
Phase II

Ege Zorlutuna

Muhammed Orhun Gale

# 3.1 Round Operations:

In this part of the project, a round operation function "roundOperation" has been created. This function takes the addresses of rkey and s value and updates t value on the data segment of the MIPS implementation.

With the given test vectors to check the correctness of the program, roundOperation function updates the t value as intended output. Given test vectors, the expected output and the output of the roundOperation function can be seen below.

### 3.1.1 Test Vector:

Given test vectors:

s: .word 0xd82c07cd, 0xc2094cbd, 0x6baa9441, 0x42485e3f

rkey: .word 0x82e2e670, 0x67a9c37d, 0xc8a7063b, 0x4da5e71f

Expected t state:

t = [0x2892750e, 0x949a0d1f, 0x70523edc, 0xc6933381]

Output of the roundOperation in the MIPS implementation:

| <ul><li>Data Segment</li></ul> |            |            |            |            |             |             |             |             |
|--------------------------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|
| Address                        | Value (+0) | Value (+4) | Value (+8) | Value (+c) | Value (+10) | Value (+14) | Value (+18) | Value (+1c) |
| 0×10010000                     | 0×10040000 | 0×10040400 | 0×10040800 | 0x10040c00 | 0x6573552f  | 0x6d2f7372  | 0x7568726f  | 0x6f442f6e  |
| 0×10010020                     | 0x6f6c6e77 | 0x2f736461 | 0×30345343 | 0x72505f31 | 0x63656a6f  | 0x61742f74  | 0x73656c62  | 0x7461642e  |
| 0×10010040                     | 0×00000000 | 0x2892750e | 0x949a0d1f | 0x70523edc | 0xc6933381  | 0xd82c07cd  | 0xc2094cbd  | 0x6baa9441  |
| 0×10010060                     | 0x42485e3f | 0x82e2e670 | 0x67a9c37d | 0xc8a/063b | 0x4da5e/1†  | 0x36637830  | 0x33363336  | 0x202c3561  |
| 0×10010080                     | 0x38667830 | 0x63376337 | 0x202c3438 | 0x65657830 | 0x37373737  | 0x202c3939  | 0x36667830  | 0x62376237  |
| 0x100100a0                     | 0x202c6438 | 0x66667830 | 0x32663266 | 0x202c6430 | 0x36647830  | 0x62366236  | 0x202c6462  | 0x65647830  |
| 0x100100c0                     | 0x66366636 | 0x202c3162 | 0x31397830 | 0x35633563 | 0x202c3435  | 0x30367830  | 0x30333033  | 0x202c3035  |

#### 3.1.2 Cache Performance:

In order to test the cache performance and increase the lookup table access performance by increasing the hit rate, the MIPS implementation of phase 1 and the roundOperation was put on "roundOperationTest.asm" file. The program ran on MARS with the required cache configurations given on Table 1 and answers to the following questions were found.

| Block Size | No. of Blocks | Cache Size | Hit Rate |
|------------|---------------|------------|----------|
| 4 B        | 512           | 2048 B     | ?        |
| 8 B        | 128           | 1024 B     | ?        |
| 16 B       | 32            | 512 B      | ?        |
| 32 B       | 16            | 512 B      | ?        |
| 64 B       | 8             | 512 B      | ?        |

Table 1: Cache Configuration

# 1) Find the hit rates for each cache configuration.

Results of the experiments and hit rates found:

1- Block Size: 4B (1 word), No. of Blocks: 512, Cache Size: 2048B, Hit Rate: 68%



2- Block Size: 8B (2 words), No. of Blocks: 128, Cache Size: 1024B, Hit Rate: 84%

| 000                       | Data Cache                     | Simula  | tion Tool, Version 1.2                                 |                          |           |  |
|---------------------------|--------------------------------|---------|--------------------------------------------------------|--------------------------|-----------|--|
| Simulate                  | and illus                      | trate   | data cache perform                                     | ance                     |           |  |
|                           | Ca                             | ache Oi | ganization                                             |                          |           |  |
| Placement Policy Direct M | lapping                        | \$      | Number of blocks                                       |                          | 128 🗘     |  |
| Block Replacement Policy  | Block Replacement Policy LRU 🗢 |         |                                                        | Cache block size (words) |           |  |
| Set size (blocks)         |                                | 1 0     | Cache size (bytes)                                     |                          | 1024      |  |
|                           | С.                             | ache Pe | erformance                                             |                          |           |  |
| Memory Access Count       | 2                              | 27373   | Cache Block Table                                      |                          |           |  |
| Cache Hit Count           | •                              |         |                                                        |                          |           |  |
| Cache Miss Count          |                                | 36292   | □ = empty     □ = hit                                  |                          |           |  |
| Cache Hit Rate            | 84%                            | _       | = miss                                                 |                          |           |  |
|                           |                                | Runti   | me Log                                                 |                          |           |  |
| MISS du                   | ie to FULL SE                  | T(2273  | 4014c OCCUPIED<br>73) address: 0x10010050<br>40040 HIT | (tag 0x                  | 00040040) |  |
|                           |                                | Tool    | Control                                                |                          |           |  |
| Disconnect from MIPS      |                                |         | Reset                                                  |                          | Close     |  |

3- Block Size: 16B (4 words), No. of Blocks: 32, Cache Size: 512B, Hit Rate: 92%

|                   |          | Data Cache S | imula  | tion Tool, Version 1.2                                        |             |
|-------------------|----------|--------------|--------|---------------------------------------------------------------|-------------|
| 9                 | Simulate | and illust   | rate   | data cache performance                                        | 1           |
|                   |          | Cae          | che O  | rganization                                                   |             |
| Placement Policy  | Direct M | apping       | \$     | Number of blocks                                              | 32 \$       |
| Block Replacemen  | t Policy | LRU          | \$     | Cache block size (words)                                      | 4 \$        |
| Set size (blocks) |          | 1            | •      | Cache size (bytes)                                            | 512         |
|                   |          | Ca           | che Pe | erformance                                                    |             |
| Memory Access Co  | ount     | 22           | 7373   | Cache Block Table                                             |             |
| Cache Hit Count   |          | 20           | 8104   | (block 0 at top)                                              |             |
|                   |          | 20           | 0104   | ☐ = empty                                                     |             |
| Cache Miss Count  |          | 1            | 9269   | = hit                                                         |             |
| Cache Hit Rate    | _        | 92%          |        | = miss                                                        |             |
|                   |          |              | Runti  | me Log                                                        |             |
| <b>✓</b> Enabled  | MISS du  |              | (2273  | 0201 OCCUPIED<br>173) address: 0x10010050 (tag 0<br>10080 HIT | 0×00080080) |
|                   |          |              | Tool   | Control                                                       |             |
| Disconnect from   | m MIPS   |              |        | Reset                                                         | Close       |

4- Block Size: 32B (8 words), No. of Blocks: 16, Cache Size: 512B, Hit Rate: 95%

| • • •                     | Data Cache Simula                                              | tion Tool, Version 1.2   |              |  |  |  |
|---------------------------|----------------------------------------------------------------|--------------------------|--------------|--|--|--|
| Simulate                  |                                                                | data cache perforn       | nance        |  |  |  |
| Placement Policy Direct M |                                                                | Number of blocks         | 16           |  |  |  |
| Block Replacement Policy  | LRU 📀                                                          | Cache block size (words) |              |  |  |  |
| Set size (blocks)         | 1 😌                                                            | Cache size (bytes)       | 512          |  |  |  |
|                           | Cache Pe                                                       | erformance               |              |  |  |  |
| Memory Access Count       | 227373                                                         | Cache Block Table        |              |  |  |  |
| Cache Hit Count           | 215809                                                         | (block 0 at top)         |              |  |  |  |
| Cache Miss Count          | 11564                                                          | = empty = hit            |              |  |  |  |
| Cache Hit Rate            | 95%                                                            | = miss                   |              |  |  |  |
|                           | Runti                                                          | ime Log                  |              |  |  |  |
| (227373) a                | block 3 tag 0x0008<br>ddress: 0x10010050<br>block 2 tag 0x0008 | (tag 0x00080080) bloc    | k range: 2-2 |  |  |  |
|                           | Tool                                                           | Control                  |              |  |  |  |
| Disconnect from MIPS      |                                                                | Reset                    | Close        |  |  |  |

5- Block Size: 64B (16 words), No. of Blocks: 8, Cache Size: 512B, Hit Rate: 96%

|                           | Data Cache Simula                                              | ation Tool, Version 1.2      |          |
|---------------------------|----------------------------------------------------------------|------------------------------|----------|
| Simulate                  | and illustrate                                                 | data cache performane        | ce       |
|                           | Cache O                                                        | rganization                  |          |
| Placement Policy Direct M | lapping \$                                                     | Number of blocks             | 8 \$     |
| Block Replacement Policy  | LRU \$                                                         | Cache block size (words)     | 16 \$    |
| Set size (blocks)         | 1 \$                                                           | Cache size (bytes)           | 512      |
|                           | Cache P                                                        | erformance                   |          |
| Memory Access Count       | 454746                                                         | Cache Block Table            |          |
| Cache Hit Count           | 435604                                                         |                              |          |
| Cache Miss Count          | 19142                                                          | = empty = hit                |          |
| Cache Hit Rate            | 96%                                                            | = miss                       |          |
|                           | Runt                                                           | ime Log                      |          |
| (454746) a                | block 1 tag 0x0008<br>ddress: 0x10010056<br>block 1 tag 0x0008 | 0 (tag 0x00080080) block ran | nge: 1–1 |
|                           | Tool                                                           | Control                      |          |
| Disconnect from MIPS      |                                                                | Reset                        | Close    |

## 2) Which cache configuration yields the best performance?

Block Size: 64B (16 words), No. of Blocks: 8, Cache Size: 512B, Hit Rate: 96%

#### 3) Does the largest cache always give the best result? Why or why not?

No, even though increasing the cache size can improve performance up to a point, the largest cache size does not always yield in the best result in performance. Furthermore, a too large cache can affect performance contribution of the cache adversely. Having a larger cache can result on increased hit and miss latencies since they store more data to search among the one that would be used on the run. In addition, a large cache with too small block size cannot exploit spatial locality well enough and lowers the performance contribution, which can be also observed on the conducted experiment. As a result, it can be stated that the cache characteristics for the best performance depends on several factors such as cache size, block size, replacement policy, latency, etc.

## 3.2 Key Schedule:

In this part of the project, "updaterkey" and "keyschedule" functions have been implemented and can be found on "cs401\_TPphase2\_morhun\_egezorlutuna.asm" together with the "roundOperation" function. updaterkey function takes the addresses of the rkey (should be initialized with the value of silent key on the data segment of MIPS implementation) and the address of the proper rcon value. As a result, this function updates the given rkey properly. keychedule function executes updatekey function 8 times and after each execution of updatekey function, rkey value updated properly. (For this phase, only the execution of updaterkey function and finding proper rkey values was enough, but roundOperation function was also called additionally. After each key is generated, roundOperation called with updated key and remaining state and returns updated state after each call.)

With the given silent key to check the correctness of the program, keyschedule function updates the rkey value 8 times, and finds the intended rkey values on each update. Given secret key, the expected result of rkey after 8 iterations and the resulting rkey from implemented keyschedule function can be seen below (resulting rkey from keyschedule function will be the 8<sup>th</sup> rkey since it updates rkey value 8 times properly).

Given secret key:

key = [0x6920e299, 0xa5202a6d, 0x656e6368, 0x69746f2a]

Expected value of rkey after 8th update:

round key 8 = [0xc0194bc5, 0xd005973f, 0x39cfc711, 0xbf9c0a7c]

Result of rkey after 8 updates using updatekey and keyschedue functions on the MIPS implementation provided:

| Data Segment |            |             |             |             |             |             |             |             |
|--------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Address      | Value (+0) | Value (+4)  | Value (+8)  | Value (+c)  | Value (+10) | Value (+14) | Value (+18) | Value (+1c) |
| 0×10010000   | 0×10040000 | 0×10040400  | 0×10040800  | 0x10040c00  | 0x6573552f  | 0x6d2f7372  | 0x7568726f  | 0x6f442f6e  |
| 0×10010020   | 0x6f6c6e77 | 0x2f736461  | 0x30345343  | 0x72505f31  | 0x63656a6f  | 0x61742f74  | 0x73656c62  | 0x7461642e  |
| 0×10010040   | 0×00000000 | Av45d91dcf  | 0v22c7//5h  | WAS201038WY | 0vo1f270c8  | 0xd82c07cd  | 0xc2094cbd  | 0x6baa9441  |
| 0×10010060   | 0x42485e3f | 0xc0194bc5  | 0xd005973f  | 0x39cfc711  | 0xbf9c0a7c  | 0×00000080  | 0×00000040  | 0×00000020  |
| 0×10010080   | 0x00000010 | 0×000000008 | 0×000000004 | 0×000000002 | 0×000000001 | 0x36637830  | 0x33363336  | 0x202c3561  |
| 0x100100a0   | 0x38667830 | 0x63376337  | 0x202c3438  | 0x65657830  | 0x37373737  | 0x202c3939  | 0x36667830  | 0x62376237  |
| 0x100100c0   | 0x202c6438 | 0x66667830  | 0x32663266  | 0x202c6430  | 0x36647830  | 0x62366236  | 0x202c6462  | 0x65647830  |