

# MATLAB을 이용한 고강도강 겹치기 레이저 용접부의 모델링

- 회귀 모델 (Regression model) -

## 1. 회귀 모델을 통해 얻을 수 있는 결과

회귀 모델을 사용하는 예: 어떠한 소재에 대해서 용접했을 때 원하는 강도를 가질 수 있는 지 판단하기 위함

| 측정 값       | 예측 값       |
|------------|------------|
| 15659.4667 | 13597.4391 |
| 16660.7333 | 15228.9722 |
| 18593.6333 | 17104.9873 |
| 18619.1    | 18858.7613 |
| 18859.8333 | 20612.5354 |
| 18765.0333 | 21755.1047 |
| 14681.7333 | 13660.5778 |
| 15620.3667 | 15292.1109 |
| 18561.8    | 17168.126  |
| 18555.9333 | 18146.0536 |
| 18899.8    | 19533.1048 |
| 18918.9    | 20920.156  |
| 16050.6333 | 14911.2022 |
| 17751.6667 | 16542.7353 |
| 18583.3333 | 18418.7503 |







## 2. 풀어야 할 문제

- 소재: 인장강도 590~1500 MPa급 자동차용 강판 (cf. 연강의 경우 인장강도 270~300 MPa)
- 용접방법: 레이저 겹치기 용접
- 용접부 시험방법: 인장-전단 강도 평가
- 품질판단 기준: 파단의 위치
- 모델링할 문제
  - \* 다양한 소재 조합 및 다양한 레이저 용접조건하에서
  - (1) 용접 후 용접 비드폭은 얼마인가? (회귀)
  - (2) 인장-전단 시험에서 강도는? (회귀)







인장-전단시험





용접 계면파단



HPF2.0G 용접부

# 3. 머신 러닝 모델 구축에 사용된 Input, Output parameter

#### - Input parameter

| No.       | 1~7                         | 8~14                        | 15            | 16       |
|-----------|-----------------------------|-----------------------------|---------------|----------|
| Input     | Chemical composition of the | Chemical composition of the | Wolding apood | Focal    |
| parameter | upper sheet                 | lower sheet                 | Welding speed | position |

#### - Output parameter

|           | Regressi              | on model      |
|-----------|-----------------------|---------------|
| Output    | Bead width            | Croature load |
| parameter | at the faying surface | Fracture load |

## - Chemical compositions

| Base materials (thickness) | С     | Si    | Mn    | P     | S     | Cr    | В     |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|
| 590 DP (1.2 mm)            | 0.078 | 0.363 | 1.808 | 0.011 | 0.001 | -     | -     |
| 780 DP (1.2 mm)            | 0.070 | 0.977 | 2.264 | 0.010 | 0.015 | -     | -     |
| 980 DP (1.2 mm)            | 0.170 | 1.340 | 2.000 | 0.016 | 0.001 | -     | -     |
| 1180 CP (1.2 mm)           | 0.110 | 0.110 | 2.790 | 0.019 | 0.004 | 1.040 | -     |
| 1500 HPF (1.1 mm)          | 0.216 | 0.240 | 1.255 | 0.002 | 0.002 | 0.001 | 0.003 |

## 3. 머신 러닝 모델 구축에 사용된 데이터

## - Input parameter

## - Output parameter

|       | Cł    | emical con | nposition o | f upper sh | eet |   |       | Ch    | nemical cor | nposition o | of lower she | eet |   |           |            |           |             |
|-------|-------|------------|-------------|------------|-----|---|-------|-------|-------------|-------------|--------------|-----|---|-----------|------------|-----------|-------------|
| С     | Si    | Mn         | Р           | S          | Cr  | В | С     | Si    | Mn          | Р           | S            | Cr  | В | Weldingsp | Focalposit | Bead widt | Fracture lo |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.078 | 0.363 | 1.808       | 0.011       | 0.001        | 0   | C | 70        | 0          | 0.82      | 15659.47    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.078 | 0.363 | 1.808       | 0.011       | 0.001        | 0   | C | 60        | -5         | 0.87      | 16660.73    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.078 | 0.363 | 1.808       | 0.011       | 0.001        | 0   | C | 48        | -10        | 1.02      | 18593.63    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.078 | 0.363 | 1.808       | 0.011       | 0.001        | 0   | C | 37        | -15        | 1.33      | 18619.1     |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.078 | 0.363 | 1.808       | 0.011       | 0.001        | 0   | C | 26        | -20        | 1.99      | 18859.83    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.078 | 0.363 | 1.808       | 0.011       | 0.001        | 0   | C | 20        | -25        | 2.02      | 18765.03    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.07  | 0.977 | 2.264       | 0.01        | 0.015        | 0   | C | 70        | 0          | 0.76      | 14681.73    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.07  | 0.977 | 2.264       | 0.01        | 0.015        | 0   | C | 60        | -5         | 0.81      | 15620.37    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.07  | 0.977 | 2.264       | 0.01        | 0.015        | 0   | C | 48        | -10        | 1.1       | 18561.8     |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.07  | 0.977 | 2.264       | 0.01        | 0.015        | 0   | C | 40        | -10        | 1.09      | 18555.93    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.07  | 0.977 | 2.264       | 0.01        | 0.015        | 0   | C | 32        | -15        | 1.41      | 18899.8     |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.07  | 0.977 | 2.264       | 0.01        | 0.015        | 0   | C | 24        | -20        | 2.01      | 18918.9     |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.17  | 1.34  | 2           | 0.016       | 0.001        | 0   | C | 70        | 0          | 0.74      | 16050.63    |
| 0.078 | 0.363 | 1.808      | 0.011       | 0.001      | 0   | 0 | 0.17  | 1.34  | 2           | 0.016       | 0.001        | 0   | C | 60        | -5         | 0.86      | 17751.67    |



## 4. 추출한 데이터를 통해 모델의 정확성 판단하기

- 회귀 모델의 데이터 분석 (표준 편차, 결정계수 및 잔차분석)







# MATLAB을 이용한 고강도강 겹치기 레이저 용접부의 모델링

- 분류 모델 (Classification model) -

## 1. 분류 모델을 통해 얻을 수 있는 결과

분류 모델을 사용하는 예: 어떠한 소재에 대해서 용접한 후 인장-전단 시험을 했을 때 파단이 발생하는 위치를 확인하기 위함

| 측정 값 | 예측 값 |
|------|------|
| 0    | 0    |
| 0    | 0    |
| 0    | 1    |
| 1    | 1    |
| 1    | 1    |
| 1    | 1    |
| 0    | 0    |
| 0    | 0    |
| 1    | 1    |
| 1    | 1    |
| 1    | 1    |
| 1    | 1    |
| 0    | 0    |
| 0    | 0    |
| 1    | 1    |







## 2. 풀어야 할 문제

- 소재: 인장강도 590~1500 MPa급 자동차용 강판 (cf. 연강의 경우 인장강도 270~300 MPa)
- 용접방법: 레이저 겹치기 용접
- 용접부 시험방법: 인장-전단 강도 평가
- 품질판단 기준: 파단의 위치
- 모델링할 문제
  - \* 다양한 소재 조합 및 다양한 레이저 용접조건하에서
  - (1) 인장-전단 시험에서 파단위치는? (분류)







인장-전단 시험





용접 계면파단



HPF2.0G 용접부

# 1. 머신 러닝 모델 구축에 사용된 Input, Output parameter

#### - Input parameter

| No.       | 1~7                         | 8~14                        | 15            | 16       |
|-----------|-----------------------------|-----------------------------|---------------|----------|
| Input     | Chemical composition of the | Chemical composition of the | Wolding apood | Focal    |
| parameter | upper sheet                 | lower sheet                 | Welding speed | position |

#### - Output parameter

|           | Classification model |
|-----------|----------------------|
| Output    | Fracture location    |
| parameter | r racture location   |

## - Chemical compositions

| Base materials (thickness) | C     | Si    | Mn    | P     | S     | Cr    | В     |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|
| 590 DP (1.2 mm)            | 0.078 | 0.363 | 1.808 | 0.011 | 0.001 | -     | -     |
| 780 DP (1.2 mm)            | 0.070 | 0.977 | 2.264 | 0.010 | 0.015 | -     | -     |
| 980 DP (1.2 mm)            | 0.170 | 1.340 | 2.000 | 0.016 | 0.001 | -     | -     |
| 1180 CP (1.2 mm)           | 0.110 | 0.110 | 2.790 | 0.019 | 0.004 | 1.040 | -     |
| 1500 HPF (1.1 mm)          | 0.216 | 0.240 | 1.255 | 0.002 | 0.002 | 0.001 | 0.003 |

## 1. 머신 러닝 모델 구축에 사용된 데이터

## - Input parameter

## - Output parameter

|          |            |           |   | Chemical composition of lower sheet |       |       |       |       |       |   | Chemical composition of upper sheet |       |       |       |       |       |  |
|----------|------------|-----------|---|-------------------------------------|-------|-------|-------|-------|-------|---|-------------------------------------|-------|-------|-------|-------|-------|--|
| Fracture | Focalposit | Weldingsp | В | Cr                                  | S     | P     | Mn    | Si    |       | C | Cr                                  | S     | Р     | Mn    | Si    | -     |  |
|          | 0          | 70        | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -5         | 60        | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -10        | 48        | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -15        | 37        | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -20        | 26        | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -25        | 20        | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | 0          | 70        | 0 | 0                                   | 0.015 | 0.01  | 2.264 | 0.977 | 0.07  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -5         | 60        | 0 | 0                                   | 0.015 | 0.01  | 2.264 | 0.977 | 0.07  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -10        | 48        | 0 | 0                                   | 0.015 | 0.01  | 2.264 | 0.977 | 0.07  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -10        | 40        | 0 | 0                                   | 0.015 | 0.01  | 2.264 | 0.977 | 0.07  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -15        | 32        | 0 | 0                                   | 0.015 | 0.01  | 2.264 | 0.977 | 0.07  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -20        | 24        | 0 | 0                                   | 0.015 | 0.01  | 2.264 | 0.977 | 0.07  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | 0          | 70        | 0 | 0                                   | 0.001 | 0.016 | 2     | 1.34  | 0.17  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |
|          | -5         | 60        | 0 | 0                                   | 0.001 | 0.016 | 2     | 1.34  | 0.17  | 0 | 0                                   | 0.001 | 0.011 | 1.808 | 0.363 | 0.078 |  |



## 4. 데이터 추출 및 모델의 정확성 판단하기

- 분류 모델의 데이터 분석 (오차율, 정확도)





