STATS 214 Autumn 2021 Homework 1

SUNet ID: 06009508

> Brandon McKinzie Name:

Collaborators: N/A

By turning in this assignment, I agree by the Stanford honor code and declare that all of this is my own work.

Problem 1 (a) Sharp bounds on sub-Gaussianity of bounded variables

Suppose a random variable X is between [a,b] almost surely. Prove that X is a sub-Gaussian random variable with variance proxy $\frac{(a-b)^2}{4}$.

1. Let $\psi(\lambda) = \log \mathbb{E}\left[e^{\lambda X}\right]$. We'll evaluate $\psi(0)$ its derivative $\psi'(0)$.

$$\psi(0) = \log \mathbb{E}\left[e^0\right] = \log 1 = 0 \tag{1}$$

$$\psi'(0) = \frac{\partial}{\partial \lambda} \log \mathbb{E} \left[e^{\lambda X} \right] \Big|_{\lambda = 0} \tag{2}$$

$$= \frac{1}{\mathbb{E}\left[e^{\lambda X}\right]} \int dx \frac{\partial}{\partial \lambda} p(X=x) e^{\lambda x} \Big|_{\lambda=0}$$
 (3)

$$= \frac{1}{\mathbb{E}\left[e^{\lambda X}\right]} \int \mathrm{d}x p(X=x) x e^{\lambda x} \bigg|_{\lambda=0}$$
 (4)

$$= \frac{1}{\mathbb{E}\left[e^{0}\right]} \int \mathrm{d}x p(X=x) x e^{0} \tag{5}$$

$$= \mathbb{E}\left[X\right] \tag{6}$$

2. Let $\mathbb{E}_{\lambda}[f(X)] := \mathbb{E}\left[f(X)e^{\lambda X}\right]/\mathbb{E}\left[e^{\lambda X}\right]$. First, we will show that $\psi''(\lambda) = \mathbb{E}_{\lambda}[X^2]$ $\mathbb{E}_{\lambda}[X]^2$.

$$\psi''(\lambda) = \frac{\partial}{\partial \lambda} \left[\frac{1}{\mathbb{E}\left[e^{\lambda X}\right]} \int \mathrm{d}x p(x) x e^{\lambda x} \right]$$
 (7)

$$= \frac{\partial}{\partial \lambda} \left[\frac{1}{\mathbb{E}\left[e^{\lambda X}\right]} \mathbb{E}\left[X e^{\lambda X}\right] \right] \tag{8}$$

$$= \frac{\mathbb{E}\left[e^{\lambda X}\right] \mathbb{E}\left[X^2 e^{\lambda X}\right] - \mathbb{E}\left[X e^{\lambda X}\right]^2}{\mathbb{E}\left[e^{\lambda X}\right]^2}$$
(9)

$$= \frac{\mathbb{E}\left[e^{\lambda X}\right] \mathbb{E}\left[X^{2}e^{\lambda X}\right] - \mathbb{E}\left[Xe^{\lambda X}\right]^{2}}{\mathbb{E}\left[e^{\lambda X}\right]^{2}}$$

$$= \frac{\mathbb{E}\left[X^{2}e^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]} - \frac{\mathbb{E}\left[Xe^{\lambda X}\right]^{2}}{\mathbb{E}\left[e^{\lambda X}\right]^{2}}$$
(10)

$$= \mathbb{E}_{\lambda} \left[X^2 \right] - \mathbb{E}_{\lambda} \left[X \right]^2 \tag{11}$$

Next, we'll derive a bound for $|\psi''(\lambda)|$ by exploiting some basic facts about Var[X] for any random variable X, along with some basic inequalities exploiting the fact that X in this problem is bounded between [a, b] almost surely. Our goal is to show that

$$\sup_{\lambda \in \mathbb{R}} |\psi''(\lambda)| \le \frac{(a-b)^2}{4} \tag{12}$$

First, note that $\psi''(\lambda)$ looks early like a variance of some kind. Informally, it is the variance of X if the probability distribution p(x) was scaled by $\exp \lambda x$ at each point, then normalized by dividing $\mathbb{E}\left[e^{\lambda x}\right]$. We can show that, for a bounded random variable X that takes on values within [a,b], the value of c that minimizes $\mathbb{E}\left[(X-c)^2\right]$ is $\mathbb{E}\left[X\right]$:

$$\frac{d}{dc}\mathbb{E}\left[(X-c)^2\right] = -2\mathbb{E}\left[X-c\right] = 0 \quad \to \quad c = \mathbb{E}\left[X\right]$$
(13)

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$
(14)

$$\leq \mathbb{E}\left[(X - c)^2 \right] \qquad \text{for } (a \leq c \leq b)$$
 (15)

If we take c = (a + b)/2, then this yields

$$\operatorname{Var}(X) \le \mathbb{E}\left[\left(\frac{1}{2}\left(2X - a - b\right)\right)^{2}\right] \tag{16}$$

$$= \frac{1}{4}\mathbb{E}\left[((X - a) + (X - b))^2 \right]$$
 (17)

$$\leq \frac{1}{4}\mathbb{E}\left[\left((X-a)-(X-b)\right)^2\right] \quad \text{since } X \in [a,b] \text{ a.s.}$$
 (18)

$$=\frac{1}{4}\mathbb{E}\left[(b-a)^2\right] \tag{19}$$

$$=\frac{(b-a)^2}{4}\tag{20}$$

Note that this did not rely on a particular value of λ . The value of λ only influences the weights in the aforementioned re-weighted probability distribution. Therefore, this holds for all $\lambda \in \mathbb{R}$ and we get the desired result.

3. Finally, we want to show that

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le e^{\frac{1}{2}\sigma^2\lambda^2} \quad (\forall \lambda \in \mathbb{R})$$
 (21)

with $\sigma^2 = (a-b)^2/4$. So far, we currently have a bound on the variance of X under the reweighted distribution parameterized by λ :

$$\psi''(\lambda) \le \frac{(a-b)^2}{4} \tag{22}$$

and need to massage this to look more like 21. Our approach will be to twice integrate

both sides and exponentiate, which will reveal the desired result. Notice that

$$\int_0^{\lambda} d\lambda' \psi''(\lambda') = \psi'(\lambda) - \psi'(0) \tag{23}$$

$$=\psi'(\lambda)-\mu\tag{24}$$

$$\int_0^{\lambda} d\lambda' \psi''(\lambda') = \psi'(\lambda) - \psi'(0)$$

$$= \psi'(\lambda) - \mu$$

$$\int_0^{\lambda} d\lambda' (\psi'(\lambda') - \mu) = (\psi(\lambda) - \mu\lambda) - (\psi(0) - \mu \cdot 0)$$
(23)
$$(24)$$

$$(25)$$

$$=\psi(\lambda) - \lambda\mu\tag{26}$$

In other words, we can twice integrate the LHS of 22 and exponentiate to get

$$\exp\left(\psi(\lambda) - \lambda\mu\right) = \mathbb{E}\left[\exp\left(\lambda\left(X - \mu\right)\right)\right] \tag{27}$$

All that remains is to apply the same (twice integration and exponentiation) to the RHS of 22 to obtain the desired result:

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le \exp\left(\int_0^\lambda d^2\lambda \frac{(b-a)^2}{4}\right) \tag{28}$$

$$=\exp\left(\lambda^2 \frac{(b-a)^2}{8}\right) \tag{29}$$

and thus X is sub-Gaussian with variance proxy $(a - b)^2/4$.

PROBLEM 1 (B) SUB-EXPONENTIAL RANDOM VARIABLES

Show the following is true for sub-exponential random variable X:

$$Pr[X \ge \mu + t] \le \begin{cases} e^{-\frac{t^2}{2\nu^2}} & 0 \le t < \nu^2/b \\ e^{-\frac{t}{2b}} & t \ge \nu^2/b \end{cases}$$
 (30)

We can proceed largely the same as we did for the analogous proof with sub-Gaussian variables. First, we apply Markov's inequality on the tail bound, then utilize the definition of sub-exponential random variables. The main difference is that, when finding the optimal value of λ , we need to obey the constraint that $|\lambda| < \frac{1}{h}$. NB: in all equations below, $|\lambda| < \frac{1}{h}$.

$$\Pr\left[X - \mu \ge t\right] = \Pr\left[e^{\lambda(X - \mu)} \ge e^{\lambda t}\right] \tag{31}$$

$$\leq e^{-\lambda t} \mathbb{E}\left[e^{\lambda(X-\mu)}\right]$$
 [Markov's ineq] (32)

$$\leq e^{\nu^2 \lambda^2 / 2 - \lambda t} \tag{33}$$

In the next step, we just need to be explicit when finding the minimum with respect to λ , that we must satisfy the constraint that $|\lambda| < \frac{1}{\hbar}$:

$$\frac{d}{d\lambda} \left(\frac{1}{2} \nu^2 \lambda^2 - \lambda t \right) = \nu^2 \lambda - t = 0 \tag{34}$$

$$\lambda = \max\left(-\frac{1}{b}, \min\left(\frac{1}{b}, \frac{t}{\nu^2}\right)\right) \tag{35}$$

We can see that when $|t/\nu^2| < \frac{1}{b}$, this leads to the tail bound for sub-Gaussian random variables, which gives us the top half of the desired result (the case where $0 \le t < \nu^2/b$). However, for $t \ge \nu^2/b$, i.e. for $t = C\nu^2/b$ for $C \ge 1$, this yields

$$\lambda = \max\left(-\frac{1}{b}, \min\left(\frac{1}{b}, \frac{C}{b}\right)\right) = \frac{1}{b} \tag{36}$$

$$e^{\nu^2 \lambda^2 / 2 - \lambda t} = e^{\frac{1}{2} \frac{\nu^2}{b^2} - \frac{t}{b}} \tag{37}$$

$$\leq e^{\frac{1}{2}\frac{t}{b} - \frac{t}{b}} \tag{38}$$

$$=e^{-\frac{t}{2b}}\tag{39}$$

and we have the desired result.

PROBLEM 1 (C) CASE STUDY

Suppose Z is a mean-zero random variable between [-1,1] and $var(Z) = \gamma^2 \ll 1$.

1. From part (a), we know that, since Z is bounded, Z is sub-Gaussian. Substituting a = -1 and b = 1, we have the desired result:

$$\sigma^2 = \frac{((-1) - (1))^2}{4} = 1 \tag{40}$$

2. First, as we showed in part (a), we can use the fact that

$$\mathbb{E}_{\lambda} \left[(Z - \mathbb{E}_{\lambda} [Z])^{2} \right] \leq \mathbb{E}_{\lambda} \left[Z^{2} \right]$$
(41)

and focus on upper-bounding $\mathbb{E}_{\lambda}[Z^2]$. Utilizing the provided hint regarding $F_Z(u) = \Pr[Z \leq u]$, we can write

$$\mathbb{E}_{\lambda}\left[Z^{2}\right] = \int_{-1}^{1} u^{2} \frac{e^{\lambda u}}{\mathbb{E}\left[e^{\lambda Z}\right]} dF_{Z}(u) \tag{42}$$

Since the integral is over $-1 \le u \le 1$, we can assert the following about the fraction in the integrand (noting also that $|\lambda| \le 1$):

$$\mathbb{E}\left[e^{\lambda Z}\right] = \int_{-1}^{1} e^{\lambda u} dF_Z(u) \ge e^{-1} \int_{-1}^{1} dF_Z(u) = e^{-1}$$
(43)

$$\frac{e^{\lambda u}}{\mathbb{E}\left[e^{\lambda Z}\right]} \le \frac{e^1}{e^{-1}} = e^2 \tag{44}$$

Therefore, we can upper-bound $\mathbb{E}_{\lambda}[Z^2]$ as

$$\mathbb{E}_{\lambda}\left[Z^{2}\right] \leq e^{2} \int_{-1}^{1} u^{2} \mathrm{d}F_{Z}(u) = e^{2} \gamma^{2} = O(\gamma^{2}) \tag{45}$$

We can then apply the same logic of problem 1(a) part (3) to get a bound on $\mathbb{E}\left[e^{\lambda Z}\right]$:

$$\mathbb{E}\left[e^{\lambda Z}\right] \le \exp\left(\int_0^{\lambda} d^2 \lambda' e^2 \gamma^2\right) = \exp\left(\frac{1}{2}\lambda^2 e^2 \gamma^2\right) \quad (\forall |\lambda| \le 1)$$
 (46)

Therefore, Z is sub-exponential with parameter $(O(\gamma), 1)$.

3. The sub-Gaussian and sub-exponential tail bounds for Z are as follows:

[sub-Gaussian]
$$\Pr[Z \ge t] \le e^{-\frac{t^2}{2}} \quad (\forall t \in \mathbb{R})$$
 (47)

[sub-exponential]
$$\Pr\left[Z \ge t\right] \le \begin{cases} e^{-\frac{t^2}{2O(\gamma^2)}} & 0 \le t < O(\gamma^2) \\ e^{-\frac{t}{2}} & t > O(\gamma^2) \end{cases}$$
(48)

Since $\gamma^2 << 1$, the sub-exponential bound only decays like $O(e^{-t^2})$ for a very small range of t, whereas the sub-Gaussian bound applies for all $t \in \mathbb{R}$. Also, since the tighter bound for the sub-exponential only holds for $0 \le t \le O(\gamma^2)$, we won't get better than $e^{-O(\gamma^2)}$ in that regime. Therefore, the sub-Gaussian bound is significantly stronger than the sub-exponential bound.

PROBLEM 1 (D) SUB-EXPONENTIAL CONCENTRATION

We can plug in the form of X^* into the MGF

$$\mathbb{E}\left[e^{\lambda(X^*-\mathbb{E}[X^*])}\right] = \mathbb{E}\left[e^{\lambda\left(\sum_{k=1}^n X_k - \sum_{k=1}^n \mu_k\right)}\right]$$
(49)

$$= \mathbb{E}\left[e^{\left(\sum_{k=1}^{n} \lambda(X_k - \mu_k)\right)}\right] \tag{50}$$

$$= \prod_{k=1}^{n} \mathbb{E}\left[e^{\lambda(X_k - \mu_k)}\right] \qquad \text{[by independence]} \tag{51}$$

$$\leq \prod_{k=1}^{n} e^{\nu_k^2 \lambda^2 / 2} \qquad (\forall |\lambda| < \min_k \frac{1}{b_k}) \tag{52}$$

So, assuming all $b_k > 0^1$ we have that $b^* = \max_k b_k$. Finally, this gives us the bound

$$\prod_{k=1}^{n} e^{\nu_k^2 \lambda^2 / 2} = e^{\frac{\lambda^2}{2} \sum_{k=1}^{n} \nu_k^2} \qquad (\forall |\lambda| < \frac{1}{b^*})$$
 (53)

and thus X^* is sub-exponential with $\nu^* = \sqrt{\sum_{k=1}^n \nu_k^2}$. and $b^* = \max_k b_k$.

 $^{^1{\}rm Which}$ appears to be true from other definitions, e.g. see http://www.stat.cmu.edu/ arinaldo/Teaching/36709/S19/Scribed_Lectures/Feb5_Aleksandr.pdf

Problem 1 (e) Bernstein inequality variant

Prove the following tail bound by applying part (b)

$$Pr\left[\frac{1}{n}\left(X^* - \mu^*\right) \ge t\right] \le \begin{cases} e^{-\frac{n^2t^2}{2(\nu^*)^2}} & 0 \le t < \frac{(\nu^*)^2}{nb^*} \\ e^{-\frac{nt}{2b^*}} & t \ge \frac{(\nu^*)^2}{nb^*} \end{cases}$$
(54)

If we simply plug in the result from part (b) for sub-exponential variables for the case of X^* , which we've already shown is sub-exponential, we get

$$\Pr\left[X^* \ge \mu^* + t\right] \le \begin{cases} e^{-\frac{t^2}{2(\nu^*)^2}} & 0 \le t < (\nu^*)^2/b^* \\ e^{-\frac{t}{2b^*}} & t \ge (\nu^*)^2/(b^*) \end{cases}$$
(55)

Therefore, the problem is essentially asking us to show how scaling a sub-exponential random variable by $\frac{1}{n}$ affects its tail bound. We can apply some simple arithmetic operations to see that the problem is asking us to find the tail bound for

$$\Pr\left[X^* \ge nt + \mu^*\right] \tag{56}$$

In other words, we can just replace t from part (b) with nt, immediately yielding the desired result:

$$\Pr\left[\frac{1}{n}\left(X^* - \mu^*\right) \ge t\right] \le \begin{cases} e^{-\frac{n^2 t^2}{2(\nu^*)^2}} & 0 \le t < \frac{(\nu^*)^2}{nb^*} \\ e^{-\frac{nt}{2b^*}} & t \ge \frac{(\nu^*)^2}{nb^*} \end{cases}$$
(57)

PROBLEM 1 (F) CASE STUDY II

Consider the cases where X_1, \ldots, X_n are all independent distributed as the random variable Z in part (c). Derive the tail bound for X^* in two ways.

First, notice that since $\mathbb{E}[Z] = 0$, we have $\mathbb{E}[X^*] = \sum_{i=1}^n \mathbb{E}[X_i] = \mu^* = 0$.

1. Only using the fact that X_i 's are sub-Gaussian with variance proxy 1. We know that the sum of independent sub-Gaussian random variables is itself sub-Gaussian with, for this case,

$$\Pr\left[\frac{1}{n}X^* \ge t\right] \le \exp\left(-\frac{n^2t^2}{2\sum_{i=1}^n \sigma_i^2}\right) = \exp\left(-\frac{nt^2}{2}\right) \quad (\forall t \in \mathbb{R})$$
 (58)

2. Using the fact that X_i are sub-exponential with parameter (ν_i, b_i) where $\nu_i = O(\gamma)$, $b_i = 1$. In this case, we know that the sum X^* is also sub-exponential with parameters (ν^*, b^*) of the form derived in part (d), with associated tail bound

$$\Pr\left[\frac{1}{n}X^* \ge t\right] \le \begin{cases} e^{-\frac{n^2t^2}{2(\nu^*)^2}} & 0 \le t < \frac{(\nu^*)^2}{nb^*} \\ e^{-\frac{nt}{2b^*}} & t \ge \frac{(\nu^*)^2}{nb^*} \end{cases}$$
(59)

Since $b^* = \max_k b_k$, and we are given that all $b_k = 1$, $b^* = 1$ as well. For ν^* , we have

$$\nu^* = \sqrt{\sum_{k=1}^n O(\gamma)^2} = \sqrt{nO(\gamma^2)}$$
(60)

$$\Pr\left[\frac{1}{n}X^* \ge t\right] \le \begin{cases} e^{-\frac{nt^2}{2O(\gamma^2)}} & 0 \le t < O(\gamma^2) \\ e^{-\frac{nt}{2}} & t \ge O(\gamma^2) \end{cases}$$
(61)

Compare the two tail bounds for X^*/n and discuss which one is stronger. Intuitively discuss why one bound is stronger than the other when n is sufficiently big (as γ is fixed.)

First, notice that the only difference between these two tail bounds and those derived in part (c) are the factor of n in the numerator of the fraction in the exponential. Notably, the sub-exponential bound still applies for the same ranges of t as in part (c). Since $X^*/n \stackrel{p}{\to} 0$, the region of "interest" for t, so to speak, also decreases as n increases. That means that, for large n, the fast regime in $0 \le t < O(\gamma^2)$ becomes more relevant with large n. Since $\gamma^2 \ll 1$, the sub-exponential bound in the fast regime is stronger than the sub-Gaussian bound.

PROBLEM 2(A)

Let m be the median of P, i.e. m that satisfies $P(X \leq m) = \frac{1}{2}$. Let $\hat{m}_n = med(X_1, \dots, X_n)$ be the sample median, defined as

$$med(X_1, ..., X_n) \triangleq \frac{1}{2} \left(X_{(n/2)} + X_{(n/2+1)} \right)$$
 where $X_{(1)} \leq ... \leq X_{(n)}$ are the sorted version of $X_1, ..., X_n$ (62)

For any t > 0, show that conditioned on the event $\hat{m}_n < m - t$, the following event happens with probability

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ X_i < m - t \} \ge \frac{1}{2}$$
 (63)

If $\hat{m}_n < m-t$, then we know that $X_i < m-t$ for all $i \ge \frac{n}{2}$ by definition of \hat{m}_n . Therefore,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ X_i < m - t \} \ge \frac{1}{n} \sum_{i=1}^{n/2} \mathbf{1} \{ X_i < m - t \} = \frac{1}{n} \frac{n}{2} = \frac{1}{2}$$
 (64)

Let $Y_i = \mathbf{1}\{X_i < m - t\}$, with $\mathbb{E}[Y_i] = P(X_i < m - t)$. Since $Y_i \in \{0, 1\}$, we know that Y_i is sub-Gaussian with parameter $\sigma^2 = \frac{1}{4}$. Therefore, $Z = \sum_i Y_i$ is also sub-Gaussian, and has parameter $\sigma^2 = \sum_{i=1}^n \frac{1}{4} = \frac{n}{4}$. This gives us the following tail bounds:

$$\Pr\left[|Y_i - \mu_{Y_i}| \ge t\right] \le 2\exp\left(-2t^2\right) \tag{65}$$

$$\Pr\left[|Z - \mu_Z| \ge t\right] \le 2\exp\left(-2\frac{t^2}{n}\right) \tag{66}$$

Furthermore we can also show that the event $\{\frac{1}{n}Z \geq \frac{1}{2}\}$ can be expressed as an event containing an integral over the density p(x), which we can then use to get a bound in terms of p(m).

$$\Pr\left[\frac{1}{n}Z \ge \frac{1}{2}\right] = \Pr\left[Z \ge n/2\right] \tag{67}$$

$$= \Pr\left[Z - \mu_z \ge n/2 - \mu_z\right] \tag{68}$$

$$\frac{n}{2} - \mu_z = \frac{n}{2} - n \Pr\left[X < m - t\right]$$
 (69)

$$= n \left[\frac{1}{2} - \Pr\left[X < m - t \right] \right] \tag{70}$$

$$\frac{1}{2} - \Pr[X < m - t] = \Pr[X \le m] - \Pr[X < m - t]$$
(71)

$$= \int_{m-t}^{m} p(x) \mathrm{d}x \tag{72}$$

We'll now use the integral in 72 to get a bound in terms of p(m). We first note that $\forall \epsilon > 0$, $\exists t_0 > 0$ such that $\forall t' \in (0, t_0)$,

$$|p(m) - p(m - t')| \le \epsilon \tag{73}$$

Therefore, $\forall \epsilon > 0$, $\exists t_0 > 0$ such that $\forall t' \in (0, t_0)$:

$$\int_{m-t}^{m} p(x) dx \ge \int_{m-t}^{m} p(m) dx - \int_{m-t}^{m} |p(m-t') - p(m)| dx$$
 (74)

$$\geq tp(m) - \epsilon t \tag{75}$$

If $\epsilon < \frac{1}{2}p(m)$, this yields $tp(m) - \epsilon t \ge \frac{1}{2}tp(m)$. We can plug this back in to obtain the desired result:

$$\Pr\left[\frac{1}{n}Z \ge \frac{1}{2}\right] \le \exp\left(-2n\left(\int_{m-t}^{m} p(x)dx\right)^{2}\right) \tag{76}$$

$$\leq \exp\left(-2n\left(\frac{1}{2}tp(m)\right)^2\right)$$
(77)

$$=\exp\left(-\frac{1}{2}np(m)^2t^2\right) \tag{78}$$

Show $\exists n_0 \text{ s.t. } \forall n \geq n_0 \text{ w.p. at least 1 - } \delta$, we have

$$|\hat{m}_n - m| \le \frac{1}{p(m)} \sqrt{\frac{2\log(2/\delta)}{n}} \tag{79}$$

From part(a), we know that the following two events occur with equal probability:

$$\hat{m}_n < m - t$$
 and $\frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ X_i < m - t \} \ge \frac{1}{2}$ (80)

Note that this is true because, if we let $A := \{\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i < m-t\} \geq \frac{1}{2}\}$ and $B := \{\hat{m}_n < m-t\}$, we can see that

$$\Pr\left[A\right] = P(A, B) + P(A, \neg B) \tag{81}$$

$$= P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B) \tag{82}$$

$$= P(B) + P(A \mid \neg B)P(\neg B) \quad [part (a)] \tag{83}$$

$$=P(B) \tag{84}$$

since $\Pr[A \mid \neg B] = 0$. From part (b) we know that

$$\Pr\left[\hat{m}_n < m - t\right] \le \exp\left(-\frac{1}{2}np(m)^2t^2\right) \tag{85}$$

In other words

$$\Pr[|\hat{m}_n - m| \le t] \ge 1 - 2\exp\left(-\frac{1}{2}np(m)^2t^2\right)$$
(86)

Let $t = \frac{1}{p(m)} \sqrt{2 \log(2/\delta)/n}$. Then

$$2\exp\left(-\frac{1}{2}np(m)^2t^2\right) = \delta \tag{87}$$

which means the following event occurs with probability at least $1-\delta$

$$|\hat{m}_n - m| \le \frac{1}{p(m)} \sqrt{\frac{2\log(2/\delta)}{n}} \tag{88}$$

Show that

$$Y_{(\lfloor n/2 - \epsilon n \rfloor)} \le \hat{m}_n \le Y_{(\lceil n/1 + 1 \rceil)} \tag{89}$$

We can show this by bounding the number of Y_i 's that are larger/smaller than \hat{m}_n . Let $N(x) := |\{Y_i : Y_i \ge \hat{x}\}|$ denote the number of Y_i 's greater than or equal to x. By definition, we know that there are at least n/2 variables in $\{X_1, \ldots, X_n\}$ greater than or equal to the median. Since we are told that $\epsilon > 1/2$, we also know that $(1 - \epsilon)n = n - k > n/2$ (we also know that n is even). Therefore, we can assert

$$N(\hat{m}_n) \ge \frac{n}{2} - k \tag{90}$$

If there are at least $\frac{n}{2} - k$ number of Y_i 's greater than or equal to \hat{m}_n , then necessarily there must be at most $(n-k) - (\frac{n}{2} - k) = \frac{n}{2}$ number of Y_i 's strictly less than \hat{m}_n . Therefore, $\hat{m}_n \leq Y_{(\lceil n/2+1 \rceil)}$.

We can apply the same kind of logic to obtain the other side of the desired inequality. Namely, since at most n/2 number of Y_i 's are strictly greater than \hat{m}_n , we have that at least $(n-k)-\frac{n}{2}=\frac{n}{2}-k=\frac{n}{2}-\epsilon n$ are less than or equal to \hat{m}_n . Combining these two results yields

$$Y_{(\lfloor n/2 - \epsilon n \rfloor)} \le \hat{m}_n \le Y_{(\lceil n/1 + 1 \rceil)} \tag{91}$$

Show $\exists n_0 \text{ and } \exists \epsilon_0 \text{ s.t. } \forall n \geq n_0 \text{ and } \forall \epsilon \leq \epsilon_0, \text{ w.p. at least } 1 - \delta$

$$|\hat{m}_n - \mu| \le C \left(\epsilon + \sqrt{\log(2/\delta)/n} \right) \tag{92}$$

As suggested by the hint, proceed by proving the concentration of the quantiles. Let

$$\alpha_{-} = \frac{1 - 2\epsilon}{2(1 - \epsilon)} \tag{93}$$

$$\alpha_{+} = \frac{\frac{n}{2} + 1}{(1 - \epsilon)n} \tag{94}$$

Similarly, let $q_{\alpha_{-}}$ and $q_{\alpha_{+}}$ denote the corresponding quantiles of $\mathcal{N}(\mu, 1)$ (the distribution of the Y_i 's). We can then apply the result from part (b)

$$\Pr\left[Y_{(\lceil n/2+1\rceil)} - q_{\alpha_{+}} \ge t\right] \le \exp\left(-\frac{1}{2}(1-\epsilon)np(q_{\alpha_{+}})^{2}t^{2}\right)$$
(95)

$$<\exp\left(-\frac{1}{4}np(q_{\alpha_{+}})^{2}t^{2}\right) \tag{96}$$

where the last inequality follows from the fact that $\epsilon < \frac{1}{2}$. Then we can apply part (c) to assert that there exists n_0 such that for any even integer $n \ge n_0$, with probability at least $1 - \delta$, we have

$$Y_{(\lceil n/2+1\rceil)} \le q_{\alpha_+} + \frac{1}{p(q_{\alpha_+})} \sqrt{\frac{4\log(2/\delta)}{n}} \tag{97}$$

We can repeat the previous steps for $Y_{(n/2-\epsilon n)}$ and α_- as follows:

$$\Pr\left[Y_{(\lfloor n/2 - \epsilon n \rfloor)} - q_{\alpha_{-}} \ge t\right] \le \exp\left(-\frac{1}{4}np(q_{\alpha_{-}})^{2}t^{2}\right)$$
(98)

$$Y_{(\lfloor n/2 - \epsilon n \rfloor)} \ge q_{\alpha_{-}} + \frac{1}{p(q_{\alpha_{-}})} \sqrt{\frac{4 \log(2/\delta)}{n}}$$
(99)

So with probability at least $1 - \delta$, and using the result from part (d):

$$q_{\alpha_{-}} + \frac{1}{p(q_{\alpha_{-}})} \sqrt{\frac{4\log(2/\delta)}{n}} \le Y_{(\lfloor n/2 - \epsilon n \rfloor)} \le \hat{m}_{n} \le Y_{(\lceil n/2 + 1 \rceil)} \le q_{\alpha_{+}} + \frac{1}{p(q_{\alpha_{+}})} \sqrt{\frac{4\log(2/\delta)}{n}}$$

$$\tag{100}$$

Therefore if we can show, for $n \ge n_0$ and $\epsilon \le \epsilon_0$, that q_{α_-} and q_{α_+} can be bounded in the form of

$$q_{\alpha_{-}} \ge \mu - C\epsilon \tag{101}$$

$$q_{\alpha_{+}} \le \mu + C\epsilon \tag{102}$$

we'll have the desired result. Note that q_x , which here is the xth quantile of the normal distribution, is continuous and differentiable², with derivative being the PDF of the normal distribution. Note that $q_{\frac{1}{2}} = \mu$. We can then do a taylor expansion centered on $q_{\frac{1}{2}}$, with a temporary abuse of notation (the δ below is unrelated to the δ in this problem):

$$q_{\frac{1}{3}-\delta} \ge \mu - C\delta \tag{104}$$

$$q_{\frac{1}{2}+\delta} \le \mu + C\delta \tag{105}$$

Since $\alpha_+ = \frac{1}{2} + \frac{1}{1-\epsilon} \left(\frac{1}{2}\epsilon + n \right)$,

$$q_{\alpha_{+}} \le \mu + C \frac{1}{1 - \epsilon} \left(\frac{1}{2} \epsilon + n \right) \tag{106}$$

$$q_{\alpha_{+}} + \frac{1}{p(q_{\alpha_{+}})} \sqrt{\frac{4\log(2/\delta)}{n}} \le \mu + C\epsilon + \frac{1}{p(q_{\alpha_{+}})} \sqrt{\frac{4\log(2/\delta)}{n}}$$

$$\tag{107}$$

$$\leq \mu + C \left(\epsilon + \sqrt{\frac{\log(2/\delta)}{n}} \right)$$
(108)

for $C > \frac{2}{p(q_{\alpha_+})}$.

Similarly, $\alpha_{-} = \frac{1}{2} - \frac{1}{1-\epsilon} \left(\frac{1}{2}\epsilon\right)$, which results in

$$q_{\alpha_{-}} + \frac{1}{p(q_{\alpha_{-}})} \sqrt{\frac{4\log(2/\delta)}{n}} \ge \mu - C\left(\epsilon + \sqrt{\frac{\log(2/\delta)}{n}}\right)$$

$$\tag{109}$$

for $C > \frac{2}{p(q_{\alpha})}$.

Combining these two results, we require $C > \frac{2}{\min\{p(q_{\alpha_+}), p(q_{\alpha_-})\}}$. Therefore

$$\mu - C\left(\epsilon + \sqrt{\frac{\log(2/\delta)}{n}}\right) \le \hat{m}_n \le \mu + C\left(\epsilon + \sqrt{\frac{\log(2/\delta)}{n}}\right)$$
 (110)

and we have the desired result.

$$\frac{d}{dx}F_X^{-1}(x) = \frac{1}{p(F_X^{-1}(x))} = \frac{1}{p(q_x)}$$
(103)

where p(x) is the density function.

²Specifically, for the normal distribution, the quantile function $q_x = F_X^{-1}(x)$ is the inverse CDF. The derivative of q_x is thus the derivative of the inverse CDF of the normal distribution, which is