Phys 111: Lecture 27

Ross Miller

University of Idaho

December 03, 2019

The 27th Day: "Guitar of Waves"

Homework Wk #14 Due Thursday

Today's Topics

- 1. Periodic Waves
- 2. Speeds of Waves
- 3. Wave nature of Sound

Motivation 1

How will the wave affect the fisherman and his boat?

Figure: 27.1 Wave through water¹

¹CJ Figure 16.1

Waves Introduction

All waves have the following two properties:

- 1. A wave is a traveling disturbance.
- 2. A wave carries energy from place to place.

Simple Types

- 1. Transverse: Wave disturbance perpendicular to travel direction.
- 2. Longitudinal: Wave disturbance parallel to travel direction.

Some Examples

- sound
- ► light
- wind waves (ocean)
- seismic (earthquakes)

Transverse Waves Spring Example

Common transverse waves are radio, visible light, micro, and primary-seismic waves.

Figure: 27.2 Transverse wave through a slinky²

²CJ Figure 16.2

Longitudinal Waves Spring Example

Common longitudinal waves are sound, and secondary-seismic waves

Figure: 27.3 Longitudinal wave through a slinky³

³C&J Figure 16.3

Waves

In general, waves are a combination or linear superposition of longitudinal and transverse waves.

Figure: 27.4 Water waves are a combination of longitudinal and transverse waves⁴

7

⁴C&J Figure 16.4

Exercise # 1

How will the wave affect the fisherman and his boat?

Figure: 27.1 Wave through water¹

¹C&J Figure 16.1

Wave Basics Summary

A wave is a traveling disturbance that carries energy from place to place.

Simple Types

- 1. Transverse: Wave disturbance perpendicular to travel direction.
- 2. Longitudinal: Wave disturbance parallel to travel direction.

In general, any wave phenomena can be modeled as a complicated combination of many kinds and types of waves. See all of the types of seismic waves⁵

⁵https://en.wikipedia.org/wiki/Seismic_wave

Periodic Waves

Waves are called **periodic** if they consist of cycles or patterns that are produced over and over again by the source. Ideal data (minimal errors) would look like:

Figure: 27.5 Periodic wave graphs⁶

⁶C&J Figure 16.5

Parameters of Periodic Waves

Figure: 27.6 Periodic wave spatial graph⁶

Figure: 27.7 Periodic wave temporal graph⁸

Wave Speed

Velocity is the rate at which something is changing position.

The speed of a wave (v_w) is most easily calculated by measuring wavelength (λ) and the period (T):

$$v_w = \frac{\lambda}{T}$$

Recall the relationship for period and frequency (f)

$$f = \frac{1}{T}$$

Wave Speed cont'd

For all waves the net wave speed, \boldsymbol{v}_w is

$$v_w = f\lambda$$

Figure: 27.8 Wave speed of a string attached to a wall 9

⁹C&J Figure 16.7

Exercise #2

C&J 16.1 Light is an electromagnetic wave and travels at a speed of $3.00 \times 10^8~m/s$. The human eye is most sensitive to yellow-green light, which has a wavelength of $5.45 \times 10^{-7}~m$. What is the frequency of this light?

Exercise #2 Translation

C&J 16.1 Calculate the frequency of yellow-green light in vacuum that travels at the speed of light $c=3.00\times 10^8~m/s$ with a wavelength of $\lambda=5.45\times 10^{-7}~m$.

Need to know that wave speed is

$$v_w = f\lambda$$

Exercise #2 Answer

C&J 16.1
$$c = 3.00 \times 10^8 \ m/s$$
, $\lambda = 5.45 \times 10^{-7} \ m$

$$v_w = f\lambda$$

$$f = \frac{v_w}{\lambda}$$

$$f = \left(\frac{3.0 \times 10^8 \ m/s}{5.45 \times 10^{-7} \ m}\right)$$

$$f = 5.50 \times 10^5 \ GHz$$

Waves on Strings

For strings fixed at one or both ends, there are two parameters that you need to determine the wave speed.

- 1. tension force (F)
- 2. linear mass density (m/L)

$$v_w = \sqrt{\frac{F}{m/L}}$$

For waves on strings

$$f\lambda = \sqrt{\frac{F}{m/L}}$$

Exercise #3

C&J 16.13 The middle C string on a piano is under a tension of 944~N. The period and wavelength of a wave on this string are 3.82~ms and 1.26~m, respectively. Find the linear density of the string.

Exercise #3 Translation

C&J 16.13 Calculate m/L for a middle C string under a tension of F=944~N. For this string T=3.82~ms and $\lambda=1.26~m$.

$$v_{st} = \sqrt{\frac{F}{m/L}}$$

Remember that

$$v_w = f\lambda = \frac{\lambda}{T}$$

Exercise #3 Work

C&J 16.13 Calculate m/L for a middle C string under a tension of F=944~N. For this string T=3.82~ms and $\lambda=1.26~m$.

$$\frac{\lambda}{T} = \sqrt{\frac{F}{m/L}}$$

$$\left(\frac{\lambda}{T}\right)^2 = \frac{F}{m/L}$$

$$\frac{m/L}{F} = \left(\frac{T}{\lambda}\right)^2$$

$$m/L = F\left(\frac{T}{\lambda}\right)^2$$

Exercise 3 Answer

C&J 16.13 Calculate m/L for a middle C string under a tension of F=944~N. For this string T=3.82~ms and $\lambda=1.26~m$.

$$m/L = F \left(\frac{T}{\lambda}\right)^2$$

$$m/L = (944~N) \left(\frac{3.82 \times 10^{-3}~s}{1.26~m}\right)^2$$

$$m/L = 8.68~g/m$$

$$m/L = 8.68~kg/km$$

Sound

Sound is a longitudinal wave that is created by a vibrating object.

Sound can be created or transmitted only in a medium, such as a gas, liquid, or solid. Moreover, sound cannot be created in a vacuum.

Figure: 27.9 Wave speed of a string attached to a wall ¹⁰

¹⁰C&J Figure 16.13

Producing Sound with a Slinky

Figure: 27.10 Wave speed of a string attached to a wall ¹⁰

 $^{^{10}\}text{C\&J Figure }16.11$

Visualizing Sound Waves

If you look along any one line of sound in the previous image you can visualize the sound as below.

Figure: 27.10 Components of sound¹¹

¹¹C&J Figure 16.12

Pressure Analysis of Sound

Figure: 27.11 Pressure of sound¹²

¹²C&J Figure 16.17

Puretones and Telephones

Figure: 27.12 Application of frequency analysis for telephones¹³

¹³C&J Figure 16.14

Ultrasonic Rulers

Figure: 27.13 Application of wave speed¹⁴

¹⁴C&J Figure 16.18

Sound Basics Summary

Sound

- is a longitudinal wave $(v_w = f\lambda)$.
- can have transverse or longitudinal sources.
- can't travel in vacuum.
- travels faster in denser mediums.
- propagates through pressure differences.
- is used extensively throughout society.
- can be digitally stored¹⁵

 $^{^{15} \}mathtt{http://hyperphysics.phy-astr.gsu.edu/hbase/Audio/fourier.html}$