Формат

В экзамене будет 6 задач: четыре задачи по темам второго семестра и две — по темам первого. В демо версиях сделан акцент на темы второго семестра. Задачи имеют равный вес. Продолжительность работы 120 минут. Можно будет использовать в качестве разрешенной шпаргалки один лист A4 со всех шести его сторон.

Вариант «Лискевич»

- 1. Рассмотрим стандартный винеровский процесс (W_t) .
 - а) Найдите $\mathbb{E}(W_4 \mid W_5)$, $\mathbb{E}(W_5 \mid W_4)$, $\mathbb{V}ar(W_4 \mid W_5)$, $\mathbb{V}ar(W_5 \mid W_4)$.
 - б) При каком α процесс $\exp(6W_t + \alpha t)$ будет мартингалом?
- 2. Процессы (W_t) и (V_t) стандартные винеровский процессы, независимые между собой. Если возможно, найдите все такие α и β , чтобы процессы (X_t) и (Y_t) были стандартными винеровскими

$$X_t = \alpha W_t + (1 - \alpha)V_t, \quad Y_t = \cos(42)W_t + \sin(\beta)V_t.$$

- 3. На первом шаге мы случайно выбираем X по равномерному закону на отрезке [0;2]. На втором шаге мы случайно выбираем Y по Пуассону с интенсивностью $\lambda = X$.
 - а) Найдите $\mathbb{E}(Y)$ и \mathbb{V} ar(Y).
 - б) Найдите функцию плотности случайной величины $\mathbb{V}\mathrm{ar}(Y\mid X)$.
- 4. Илон Маск каждый день зарабатывает случайное количество DOGE-койнов Y_t , экспоненициально распределённое с интенсивностью $1/10^6$. Заработки за разные дни независимы.

Обозначим за τ тот день, когда его заработок впервые превысит 10^6 DOGE, а суммарный заработок — за $S=Y_1+Y_2+\cdots+Y_{\tau}$.

- а) Как распределена величина au? Найдите $\mathbb{E}(au)$.
- б) Найдите α , чтобы процесс $M_t = \sum_{k=1}^t Y_k \alpha t$ был мартингалом.
- в) Найдите $\mathbb{E}(S)$.
- 5. Неправильная монетка выпадает орлом с вероятностью p=0.3. При выпадении орла игрок зарабатывает $X_t=+1$, а при выпадении решки $X_t=-1$. Обозначим суммарный выигрыш игрока как $S_t=X_1+X_2+\cdots+X_t$ и τ первый момент времени, когда S_t достигнет 100 или -50.
 - а) Найдите α такое, что процесс $M_t = S_t \alpha t$ мартингал.
 - б) Найдите β такое, что процесс $Y_t = \exp(\beta S_t)$ мартингал.
 - в) Найдите $\mathbb{P}(S_{\tau} = 100)$.
 - г) Найдите $\mathbb{E}(au)$.

Подсказка: достаточно применить теорему Дуба к M_t и Y_t .

6.	В одной корзине лежат бильярдные шары с номерами от 3 до 9, во второй — с номерами от 1 до 7
	Мы выбираем случайно равновероятно один шар из первой корзины и один шар — из второй. Из
	полученных двух шаров мы равновероятно один называем X , а второй — Y .

- а) Найдите $\mathbb{E}(Y\mid X).$
- б) Найдите $\mathbb{V}\mathrm{ar}(Y\mid X).$

Вариант «Рафаэль»

Скоро открытие :)

1.