

Prediction of Tesla's Stock Price Using R

VE406

Cao Kaiyan Fu Tianchi Zhang Junjie

2019.12.6

Stock prediction is important

 Many big companies spend millions of dollars to hire expert analysts just for stock prediction!

- It helps investors understand the stock market trend,
- make better decisions and EARN MONEY!

Tesla's Stock Price at Close

- ARIMA model (A.K.A. Box-Jenkins model) is one of the most used and popular model in forecasting financial time series over short time periods.
- It is in the form ARIMA(p,d,q) where p is the order of autoregressive terms, d is the order of differences needed for stationarity, and q is the order of moving average terms.

Tesla's Close Price from 2016.11.27-2019.11.25

 We will use the data from 2019.11.26 to 2019.12.3 (altogether 5 days) as our test set

Training Set

 But this time series seems obviously NOT stationary!

Augmented Dickey-Fuller Test

data: close.ts
Dickey-Fuller = -3.1644, Lag order = 9, p-value = alternative hypothesis: stationary

Differentiate the data

 We take the first order difference and it looks much better.

- First order difference is enough to make our data stationary.
 - d=1

Augmented Dickey-Fuller Test

data: diff_close.ts

Dickey-Fuller = -9.2007, Lag order = 9, p-value = 0.01

alternative hypothesis: stationary

Parameter p and q

We can tell q=0

We can tell p=0

Final ARIMA model

 Now that we have the model ARIMA (0,1,0), let us check using auto.arima

```
Series: close.ts
ARIMA(0,1,0)

sigma^2 estimated as 81.63: log likelihood=-2722.25
AIC=5446.51 AICc=5446.51 BIC=5451.13
```

Now we can proceed to plot the data!

Final ARIMA model

- Bad result
 - It is just a straight line!
 - It is not surprising...

ARIMA model prediction values vs. actual values

- How to add some trend into our prediction instead of having a straight line?
- Is there a better model?

Motivation of Seasonality

- Look at the differenced data from 2016.11.27-2019.11.25
 - Is there seasonality?
 - Can T possibly be 100?

 Use seasonal dummy test to verify

```
> isSeasonal(diff_close.ts, freq = 100, test = 'seasdum')
[1] TRUE
```

ARIMA to SARIMA

- SARIMA or Seasonal ARIMA, is an extension of ARIMA that takes seasonality into account.
- It takes the form SARIMA $(p,d,q)(P,D,Q)_m$, with P, Seasonal autoregressive order; D, Seasonal difference order; Q, Seasonal moving average order and m, the number of time steps for a single seasonal period.

SARIMA

Taking another difference with lag 100

We can tell

$$Q=1$$

$$D=1$$

The result of taking difference with lag 100

• Now we have the model $SARIMA(0,1,0)(2,1,1)_{100}$

SARIMA Prediction

- Result
 - Error: 0.02302

SARIMA model prediction values vs. actual values

- In terms of trend, it seems better than ARIMA model
- But we have to check the diagnostic tests first!

Diagnostic

It seems fine.

Autocorrelation Problem

Ljung-Box test for residuals

P-Value

0.2874

0.4209

0.5394

0.7024

0.7816

0.7965

for residuals

Ljung-Box test

squared

P-Value 0.0001 0.0005 0.0003 0.0010 0.00175 0.0033

There can possibly be autocorrelations between the residuals!

Search method

- Use Rugarch Package in R
 - No straight-forward method for Sarima-Garch

Go back to Arima model

Abandon Original Arima

Lack explanation of information

- Find New Arima with the largest AIC
 - Get Parameter (4,1,5)

- Use the Protmanteau Test
 - Check the Arch Effect

P_1	Va	h	
_ \	V CI		

0.0001402

0.0006291

3.665e-05

0.000108

0.0002091

0.0004744

Choose the Garch specification

- Variance Order
 - Check ACF and PACF plot of the squared residuals

Diagnostic

- Explanation
 - Conditional SD
 - Original Standardized
 Residual

Normality

Validation

- Plot
 - Prediction and Actual Value

- Error
 - 0.01258502

ARIMA-GARCH model prediction values vs. actual values

Motivation of Fractional Integrated Model

- Stock price is series that long-term trend is important
- Integer difference may not be the best
- fractional difference (d<0.5) can obtain long term memories

Have a try!

Differ by 0.4995839 (given by program under p=q=0)

ADF test

```
Warning message:
In adf.test(close.res.fd) : p-value smaller than printed p-value
```

Move further

- Parameter of SARIMA as the starting point
- Get the optimal solution with numerical method provided in R
- Result
 - Error 0.005709598

Coefficient

```
phi.100(1) phi.100(2) theta.100(1) d.f d.f.100 Fitted mean 0.6327175 -0.1922292 0.7491553 -0.03524325 -0.9991771 -0.0820306
```


SARFIMA model prediction values vs. actual values

Validation

Ljung-Box test of squared term

P-Value

0.001809

0.007654

0.011

0.02252

0.04295

0.04361

Diagnostic Plot

Conclusion

- Final model is SAFIMA. why?
 - best error performance
 - best trend
 - relative fine arch effect
- Can we do better? may be SAFIMA-GARCH
- Issue regarding massive data set
 - may suffer from overfit (flexibility of our model)
 - computational efficiency
 - do not contains other regressor

Thanks