01. Conceptos básicos

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica Tensorial

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

- 1 1.1. ¿ Qué es la mecánica de sólidos?
- 2 1.2. ¿Qué es un sólido?
- 3 1.3. Diferenciales de primer, segundo y tercer orden
- 4 1.4. Fuerzas que actúan sobre un sólido
- 6 Referencias

- 1 1.1. ¿ Qué es la mecánica de sólidos?
- 2 1.2. ¿Qué es un sólido?
- 3 1.3. Diferenciales de primer, segundo y tercer orden
- 4 1.4. Fuerzas que actúan sobre un sólido
- 6 Referencias

- Fuerzas superficiales
- Cambios de temperatura
- Desplazamientos aplicados

- Fuerzas superficiales
- Cambios de temperatura
- Desplazamientos aplicados

- Fuerzas superficiales
- Cambios de temperatura
- Desplazamientos aplicados

- Fuerzas superficiales
- Cambios de temperatura
- Desplazamientos aplicados

Taxonomía de la mecánica clásica

- cinemática
- dinámicaestática
- mecánica celeste

mecánica clásica

· mecánica relativista · mecánica estadística

mecánica del medio continuo
 medio continuo
 mecánica de fluidos
 mecánica de la elasticidad
 teoría de la plasticidad
 teoría de la plasticidad
 resistencia de materiales

- 1.1. ¿Qué es la mecánica de sólidos?
- 2 1.2. ¿Qué es un sólido?
- 3 1.3. Diferenciales de primer, segundo y tercer orden
- 4 1.4. Fuerzas que actúan sobre un sólido
- 6 Referencias

¿Qué es un sólido?

Un sólido se caracteriza por:

- Oponer resistencia a la deformación (cambios de forma y de volumen).
- Valores altos del módulo de elasticidad (E) y de cortante (G).

¿Qué es un sólido?

Un sólido se caracteriza por:

- Oponer resistencia a la deformación (cambios de forma y de volumen).
- Valores altos del módulo de elasticidad (E) y de cortante (G)

¿Qué es un sólido?

Un sólido se caracteriza por:

- Oponer resistencia a la deformación (cambios de forma y de volumen).
- Valores altos del módulo de elasticidad (E) y de cortante (G).

Caracterización

Sólidos en función de su respuesta al esfuerzo aplicado

• Sólido elástico

• Sólido visco-elástico

• Sólido plástico

Isotropía

Propiedades físicas del material son las mismas en todas las direcciones. Anisotropía

Continuidad

No existen discontinuidades intersticiales.

Discontinuidad

Homogeneidad

Cualquier muestra del sólido posee las mismas propiedades físicas.

Isotropía

Propiedades físicas del material son las mismas en todas las direcciones. Anisotropía

Continuidad

No existen discontinuidades intersticiales.

Discontinuidad

Homogeneidad

Cualquier muestra del sólido posee las mismas propiedades físicas.

Isotropía

Propiedades físicas del material son las mismas en todas las direcciones. Anisotropía

Continuidad

No existen discontinuidades intersticiales.

Discontinuidad

Homogeneidad

Cualquier muestra del sólido posee las mismas propiedades físicas.

Isotropía

Propiedades físicas del material son las mismas en todas las direcciones.

Anisotropía

Continuidad

No existen discontinuidades intersticiales.

Discontinuidad

Homogeneidad

Cualquier muestra del sólido posee las mismas propiedades físicas.

- 1.1. ¿Qué es la mecánica de sólidos?
- 2 1.2. ¿Qué es un sólido?
- 3 1.3. Diferenciales de primer, segundo y tercer orden
- 4 1.4. Fuerzas que actúan sobre un sólido
- 6 Referencias

Diferenciales de primer, segundo y tercer orden

Tasa de crecimiento

- 1.1. ¿Qué es la mecánica de sólidos?
- 2 1.2. ¿Qué es un sólido?
- 3 1.3. Diferenciales de primer, segundo y tercer orden
- 4 1.4. Fuerzas que actúan sobre un sólido
- 6 Referencias

Fuerzas que actúan sobre un sólido

Fuerzas másicas

(body forces)

Están distribuidas en todo el sólido, de modo que estas actúan directamente en todas las partículas del cuerpo.

$$\boldsymbol{b}(x,y,z) \coloneqq [X(x,y,z),Y(x,y,z),Z(x,y,z)]^T$$

Fuerzas superficiales

(surface forces

Están presentes únicamente en el contorno del sólido, y se producen por el contacto con otro sólido o fluido.

$$f(x, y, z) := [\bar{X}(x, y, z), \bar{Y}(x, y, z), \bar{Z}(x, y, z)]^T$$

Fuerzas que actúan sobre un sólido

Fuerzas másicas

(body forces)

Están distribuidas en todo el sólido, de modo que estas actúan directamente en todas las partículas del cuerpo.

$$\boldsymbol{b}(x,y,z) \coloneqq [X(x,y,z),Y(x,y,z),Z(x,y,z)]^T$$

Fuerzas superficiales

(surface forces

Están presentes únicamente en el contorno del sólido, y se producen por el contacto con otro sólido o fluido.

$$f(x, y, z) := [\bar{X}(x, y, z), \bar{Y}(x, y, z), \bar{Z}(x, y, z)]^T$$

Fuerzas que actúan sobre un sólido

Fuerzas másicas

(body forces)

Están distribuidas en todo el sólido, de modo que estas actúan directamente en todas las partículas del cuerpo.

$$\boldsymbol{b}(x,y,z) \coloneqq [X(x,y,z),Y(x,y,z),Z(x,y,z)]^T$$

Fuerzas superficiales

(surface forces)

Están presentes únicamente en el contorno del sólido, y se producen por el contacto con otro sólido o fluido.

$$f(x, y, z) := [\bar{X}(x, y, z), \bar{Y}(x, y, z), \bar{Z}(x, y, z)]^T$$

- 1.1. ¿Qué es la mecánica de sólidos?
- 2 1.2. ; Qué es un sólido?
- 3 1.3. Diferenciales de primer, segundo y tercer orden
- 4 1.4. Fuerzas que actúan sobre un sólido
- 6 Referencias

Referencias I

Álvarez, D. A. (2022). *Teoría de la elasticidad*. Universidad Nacional de Colombia.

Links

- Lista de resproducción: 01 Conceptos básicos
- Repositorio del curso: github/medio_continuo