华东程工大学《物理化学》(上)单元测试卷(三)

多组分系统的热力学,逸度和活度

一、选择题(每小题 1 分,共 30 分)	
1. 系统中所有的状态函数均存在偏摩尔量,这一说法。	
A: 正确; B: 错误; C: 无法判断 2. 根据偏摩尔量的定义,下列正确的是。	
A: $\left(\partial G/\partial n_{i}\right)_{T,p,n_{i\neq i}}$; B: $\left(\partial G/\partial n_{i}\right)_{T,V,n_{i\neq i}}$; C: $\left(\partial G_{\text{m}}/\partial x_{i}\right)_{T,p,n_{i\neq i}}$	
that yes	
3. 在下列偏导数中,是偏摩尔量的为。 $A: \left(\partial G/\partial n_i\right)_{T,V,n_{idi}}; B: \left(\partial U/\partial n_i\right)_{S,V,n_{idi}}; C: \left(\partial S/\partial n_i\right)_{T,p,n_{idi}}$	
- Jr	
4. 在下列偏导数中,不是化学势的为。	
$A \colon \left(\partial U / \partial n_i \right)_{S,V,n_{j \neq i}} \; ; \; \; B \colon \; \left(\partial H / \partial n_i \right)_{T,p,n_{j \neq i}} \; ; \; \; C \colon \; \left(\partial G / \partial n_i \right)_{T,p,n_{j \neq i}}$	
5. 同一物质不同偏摩尔量间存在一定关系,以下错误的是。	
A: $H_i = U_i + pV_i$; B: $A_i = U_i - TS_i$, $G_i = H_i - TS_i$; C: $(\partial G_i / \partial T)_{p,n_j} = S_i$	
6. 在化学势与温度压力间的关系中,以下错误的是。	
A: $(\partial \mu_i / \partial T)_{p,n_j} = -S_i$; B: $(\partial \mu_i / \partial T)_{p,n_j} = S_i$; C: $(\partial \mu_i / \partial p)_{T,n_j} = V_i$	
7. 以下偏导数中,即是化学势也是偏摩尔量的是。	
A: $(\partial U/\partial n_i)_{S,V,n_{j\neq i}}$; B: $(\partial H/\partial n_i)_{S,p,n_{j\neq i}}$; C: $(\partial G/\partial n_i)_{T,p,n_{j\neq i}}$	
8. 由 A 和 B 组成的二元混合物,当 $x_B = 0.4$ 时, A 和 B 的偏摩尔体积分别为 25.0 cm ³ ·mol ⁻¹ 和	旬
30.0cm ³ ·mol ⁻¹ ,则混合物的摩尔体积=cm ³ mol ⁻¹ 。	
A: 27.0; B: 28.0; C: 29.0	
9. 由 A 和 B 组成的二元混合物,当 $x_B = 0.4$ 时,混合物的摩尔体积以及 A 的偏摩尔体积分别为	勺
31.0cm ³ ·mol ⁻¹ 和25.0cm ³ ·mol ⁻¹ ,则B的偏摩尔体积=cm ³ mol ⁻¹ 。	
A: 31.0; B: 40.0; C: 50.0	=.
10. 一定温度压力下,在 $n_A=5$ mol 的 A 中逐渐加入物质 B,混合物的体积 $V(\text{cm}^3)$ 与 B 的 \mathbb{R}	
$n_{\rm B}({ m mol})$ 可用 $V=k_0+k_1n_{\rm B}+k_2n_{\rm B}^2$ 描述,这里 k 均为常数,则物质 A 和 B 的偏摩尔体积正确的	Ŋ
表达式为。	
A: $V_{A} = 0.2(k_{0} + 2k_{2}n_{_{B}})$, $V_{B} = k_{1} + 2k_{2}n_{_{B}}$;	
B: $V_{A} = 0.2(k_0 + k_2 n_{_{\rm B}}^2)$, $V_{\rm B} = k_1 + 2k_2 n_{_{\rm B}}$;	
C: $V_{A} = 0.2(k_{0} - k_{2}n_{B}^{2})$, $V_{B} = k_{1} + 2k_{2}n_{B}$	
11. 如性质 X 随 T、p 变化很小,可以忽略,或者温度压力不变时,吉布斯-杜亥姆方程不正确的表达式为	E

	C: 引入逸度后,状态方程可写成 $fV = nRT$	
	长于逸度因子,以下说法错误的是	
	A: $f_A^{\alpha} = f_B^{\alpha}$; B: $f_A^{\alpha} = f_B^{\beta}$; C: $f_A^{\alpha} = f_A^{\beta}$	
H_2	$CH_4(g)$ 在 $H_2O(l)$ 和 $C_6H_6(l)$ 中的溶解度均可采用亨利定律描述。在一 $_2O(l)$ 中的亨利常数大于其在 $C_6H_6(l)$ 中的亨利常数,当气相中 CH_4 的 $_1$ $_2$ $_3$ $_4$ $_4$ $_5$ $_5$ $_5$ $_6$ $_6$ $_6$ $_6$ $_6$ $_7$ $_7$ $_8$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$ $_9$	I平衡分压 p 相同时,
26. 30	$00K$ 的理想混合物中,如规定物质 i 的摩尔分数为 0.5 时的化学势 μ_i	等于 100 J·mol ⁻¹ ,当
i fr	的摩尔分数为 0.8 时,化学势 μ_i =	$J \cdot mol^{-1} \; \circ$
	A:1272.35; B:1372.35; C:1472.35	
27. —	一定温度下,纯物质 ${f A}$ 的饱和蒸气压和化学势分别为 $p_{\scriptscriptstyle A}^*$ 和 $\mu_{\scriptscriptstyle A}^*$,加入	少量不挥发溶质形成
溶剂	液后变为 $p_{\scriptscriptstyle A}$ 和 $\mu_{\scriptscriptstyle A}$,则有。	
	A: $p_A^* < p_A, \mu_A^* < \mu_A$; B: $p_A^* > p_A, \mu_A^* > \mu_A$; C: $p_A^* < p_A$	$,\mu_{\rm A}^*>\mu_{\rm A}$
28. 接	按惯例 I 选择参考态时,关于活度因子不正确的说法是A: 理想混合物中,组分 i 的活度因子总是等于 1	°
	B: 对于实际混合物, 当 $x_i \rightarrow 1$ 时, $\gamma_i = 1$	
	C: 稀的理想溶液中, $\gamma_i \neq 1$	
29. 按	g 惯例 $oxdot{II}$ 选择参考态时,关于溶质 i 的活度因子,不正确的说法是 $oxdot{L}$	o
	A: 理想稀溶液中, $\gamma_{x,i}=1$;	
	B: 对于实际混合物, 当 $x_i \rightarrow 0$ 时, $\gamma_{x,i} = 1$;	
	C: 对于实际混合物,当 $x_i \rightarrow 1$ 时, $\gamma_{x,i} = 1$	
30. 理	里想溶液中组分 <i>i</i> 的化学势表示式为。	
	A: $\mu_i = \mu_i^*(g) + RT \ln x_i$; B: $\mu_i = \mu_i^* - RT \ln x_i$; C: $\mu_i = \mu_i^* + RT \ln x_i$; G: $\mu_i = \mu_i^* + RT \ln x_i$; D: $\mu_i = \mu$	
	$_{\rm B}$ 与液相组成 $x_{\rm B}$ 可用 $p_{\rm B}/{\rm kPa}=135.1x_{\rm B}-67.55x_{\rm B}^2+33.78x_{\rm B}^3$ 表示。分别证	
压	\mathbb{E} 和亨利系数并导出 $\gamma_{\scriptscriptstyle m B}$ 和 $\gamma_{\scriptscriptstyle m x,B}$ 的表达式。(假定气相为理想气体混合物	勿)

2. 25℃时,对A与B组成的溶液,实验测得 $y_{\rm B} = 0.4522 x_{\rm B}$, $p = 0.2p^{\circ}$ 。已知 $p_{\rm B}^* = 0.4p^{\circ}$,

 $K_{\text{Hyr}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 \gamma_{\text{R}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 \gamma_{\text{R}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 \gamma_{\text{R}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 \gamma_{\text{R}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 \gamma_{\text{R}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 \gamma_{\text{R}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 p^{\circ}$, 分别计算 $\gamma_{\text{R}} = 1.8 p^{\circ}$, $\gamma_{\text{R}} =$

三、(此题总分10分)

已知 CCl₄和 SnCl₄在 100℃时的饱和蒸气压分别为 193.317kPa 和 66.661kPa。CCl₄(1)与 SnCl₄(2)混合后可视为理想溶液。

- 1. 如将液态混合物在 100℃下减压,发现当压力为 101325 Pa 时,溶液开始沸腾并出现第一个气泡,计算液态混合物的组成;
- 2. 求开始沸腾时出现的第一个气泡的组成;
- 3. 若将溶液全部气化,求最后一滴溶液的组成及系统压力。

四、(此题总分10分)

57.20℃时,丙酮(1)和甲醇(2)的饱和蒸气压分别为 p_1^* = 104.791kPa 和 p_2^* = 73.460kPa 。

- 1. 如将丙酮(1)-甲醇(2)视为理想混合物,计算 57.20℃、 $x_1 = 0.400$ 时的气相组成和系统总压;
- 2. 在 57.20℃的条件下,实验测得平衡时气液两相的组成分别为 $y_1 = 0.516$ 和 $x_1 = 0.400$,系统总压为 101.325kPa。当参考状态为惯例 I 时,计算溶液中两个组分的活度因子和活度。

五、(此题总分10分)

25℃时,物质 A 和 B 的饱和蒸汽压分别是: $p_{A}^{*}=100~{\rm kPa}$, $p_{B}^{*}=200~{\rm kPa}$ 。试计算:

- 1. 如 A 和 B 组成的混合物可视为理想溶液,计算当液相组成 x_A =0.355 时,与之平衡的气相组成 y_A 和系统总压 p;
- 2. 如 $A \to B$ 组成的混合物可视为理想溶液,计算当气相中两物质的组成相等时,与之平衡的液相组成 x_A 和系统总压 p 。
- 3. 当 x_A =0.900 时,实际测得气相总压为 123 kPa,其中 B 的分压为 24 kPa。选取惯例 I,分别求出液态混合物中 A 和 B 的活度系数。

六、(此题总分10分)

由溶剂 A 和溶质 B 组成的理想稀溶液,25℃时, $p_A^* = 75.48$ kPa,且当 $x_A = 0.9045$ 时气相总压 p=82.93kPa。试回答以下问题:

- 1. 25℃时溶质 B 的亨利常数 *K*_{H,x,B};
- 2. 当液相组成 $x_A = 0.8545$ 时,气相组成 y_A 和系统总压 p。

七、(此题总分10分)

A 和 B 组成的二元混合物在 300K 时达气液平衡,平衡液相组成 $x_{\rm B}=0.150$,气相可视为理想气体。此温度下纯物质 A 和 B 的饱和蒸气压分别为 $p_{\rm A}^*=150$ kPa 和 $p_{\rm B}^*=250$ kPa。

- 1. 若二元混合物按理想溶液处理,试计算平衡气相组成 y_{B} 及平衡总压p;
- 2. 实验测得气相总压为 195kPa,气相组成 $y_B = 0.250$,如按惯例 I 选取活度参考状态,试分别求 A 和 B 的活度因子;
- 3. 该二元实际混合物是呈正偏差,还是呈负偏差?

八、(此题总分10分)

已知 20℃时纯苯的饱和蒸气压为 10010Pa 。20℃时, HCl 气体溶于苯中形成理想稀溶液。

- 1. 当达气液平衡时,若液相中 HCl 的摩尔分数为 0.0385,气相中苯的摩尔分数为 0.095。试求气相总压。
- 2. 当达气液平衡时, 若液相中 HCl 的摩尔分数为 0.0278。 试求气相中 HCl 气体的分压。