

"电工电子学实践教程"之

集成运算放大器应用 (二)

5.17 基础实验17

一、实验目的

- 掌握幅值比较器的电路组成及工作原理。
- 掌握用集成运放构成的方波、三角波发生器的工作原理和性能。
- 了解压控脉宽调制电路的组成和工作原理。

二、实验设备

- 模拟电子技术实验箱
- 双踪数字示波器
- 函数信号发生器
- 直流电源
- 数字式万用表

集成运放的外引线排列和芯片的检查

注意: 检测芯片好坏

1. 同相输入电压比较器

运放工作在开环状态,输出为正、负饱和电平。

三、实验 原理

当输入为一定幅度的正弦波时, 比较器将输入正弦波变换为输出矩形波。

2. 由集成运放构成的方波、三角波发生电路和压控脉宽调制电路

(1) 由集成运放构成的方波、

三角波发生电路

 u_{01} 输出方波, u_{02} 输出三角波

分析见P171

周期: $T = 4R_{\rm f}C_{\rm f}\frac{R_{\rm l}}{R_{\rm 2}}$

频率:

$$f = \frac{1}{T} = \frac{R_2}{R_1} \frac{1}{4R_f C_f}$$

(2) 压控脉宽调制电路

电路中A3构成压控脉 宽调制电路。

- 1. 按右图电路接线
- (1) U_R 接直流电压1V。 输入 u_i 分别加直流电压 0.5V和1.5V,用万用表 测量相对应的输出电压 u_o ,并记录 u_i , u_o 值。

同相输入电压比较器, 传输特性曲线及转换波形图

(2) 观测波形变换。

 U_R 不变(接直流电压2V), 输入 u_i 加入正弦信号 $(U_{\rm pp} = 10 \, \text{V}, f =$ 100Hz),用示波器双 踪同时显示 u_i , u_0 波形, 记录波形和参数(幅值. 周期,特别标注4.高低 电平转换时 u_i 的大小位 置)

同相输入电压比较器, 传输特性曲线及转换波形图

(3) 观测传输特性曲线。

对(1)的输入条件不变, 将示波器设置成XY方式, 显示电压传输特性曲线, 记录曲线和输入转折门限 电压,输出高、低电平值。

同相输入电压比较器, 传输特性曲线及转换波形图

- 2 按右图电路接线
- (1) 先连接A1、A2两级电 路,A3级电路暂时不连。 调节电位器 R_{p1} 滑动头,使 得 $R_{p1} = 0$,用示波器同时 观察 u_{01} 和 u_{02} 波形,记录两 波形,测量记录 u_{01} 和 u_{02} 的 频率和幅值。

由集成运放构成的方波、三角波发生电路

(2) 保持R₁=R₂=100KΩ, 调节 电位器R_{P1}, 观察并记录*u*₀₁和*u*₀₂ 的波形和参数, 包括频率和幅 值等参数变化情况。

并根据波形参数计算出的R_{P1}值。

$$f = \frac{1}{T} = \frac{R_2}{R_1} \frac{1}{4R_f C_f}$$

由集成运放构成的方波、三角波发生电路

• 3. 按右图电路接线,调试测量脉宽调制电路。

保持保持 R_1 = R_2 =100K Ω , R_{P1} =0。连接好A3级电路。把 u_{o2} 作为脉宽调制电路的输入电压,根据表5.17-1(**P173**)改变参考电压 U_R 值完成各项内容的测试。

压控脉宽调制电路

同时记录 $u_{
m o2}$ 波形

表5.17-1

参考电压	$U_{R\max}$ 值	1	0	-1	U _{Rmin} 值
$U_{\rm R}/V$					
u _{o3} 波形					
u ₀₃ 占空比					
$t_{\rm W}/T$					
u _{o3} 平均值 U _{o3} /V					
U_{o3}/V					

学会使用示波 器的measure 功能

思考题:

• 参考书本

六、实验总结

第一部分:

P172 四 2 3 4

第二部分:

- 整理实验数据,分析实验结果,总结电路的特点。
- 画出实验中所记录的波形和传输特性曲线。
- 将波形发生电路中的实测值与理论估算值相比较并讨论结果。
- 综合自身的实验情况,总结本实验的体会和解决实验中出现问题的方法。