Universal Density Estimation Framework: From Isolated Galaxies to Cosmic Voids

Leonardo Sales Seriacopi* Independent Research

Computational Intelligence Partners: DeepSeek-R1 & ChatGPT-40

(AI tools for theoretical development and numerical implementation)

June 2025

Abstract

We present a unified theoretical framework for calculating cosmic density across diverse environments. The methodology provides consistent protocols for isolated objects, galaxy clusters, and cosmic voids, enabling comparative studies of density-dependent phenomena like CET redshift corrections. A key innovation is the **critical pressure conjecture** (P_{crit} = constant), which establishes a universal threshold for spacetime elasticity.

1 Introduction

Cosmic density (ρ) is a fundamental parameter in modern cosmology, yet its calculation varies significantly across environments. This paper establishes standardized protocols for:

- Isolated galaxies ($\rho < 0.1 \rho_{\rm crit}$)
- Galaxy clusters $(\rho > \rho_{\rm crit})$
- Cosmic voids ($\rho \ll \rho_{\rm crit}$)

Novel contribution: We introduce the *elastic transition criterion* linking density to space-time rigidity through a universal critical pressure P_{crit} .

^{*}seriacopileonardo@gmail.com

2 Theoretical Framework

2.1 Critical Density Definition

The critical density evolves with redshift:

$$\rho_{\rm crit}(z) = \frac{3H_0^2}{8\pi G} \left[\Omega_m (1+z)^3 + \Omega_\Lambda \right] \tag{1}$$

2.2 Universal Density Metric

We define the dimensionless density contrast:

$$\delta_u = \ln\left(1 + \frac{\rho}{\rho_{\text{crit}}(z)}\right) \tag{2}$$

This logarithmic form maintains sensitivity across orders of magnitude.

2.3 Critical Pressure Conjecture

The core theoretical advance of this work is the **critical pressure conjecture**:

$$P_{\text{crit}} = \kappa \cdot \rho_{\text{crit}} \cdot c^2 = \text{universal constant}$$
(3)

where κ is a dimensionless parameter ($\kappa \approx 0.1$). This establishes:

- Phase Transition Analogy: Similar to melting points in condensed matter, P_{crit} marks the rigid-to-elastic transition of spacetime
- Causal Saturation: The transition depends solely on causal relation density, not local matter properties
- Observational Signature: Predicts transition redshift $z_{\rm trans} = 0.7 \pm 0.1$ across all directions

Implications for CET: When $\rho > \rho_{\rm crit}$ (i.e., $P > P_{\rm crit}$), spacetime exhibits measurable elastic deformation:

$$\varepsilon = \frac{P - P_{\text{crit}}}{K} \quad \text{(Strain)} \tag{4}$$

where K is the bulk modulus of spacetime ($K \sim 10^{92}$ Pa).

Figure 1: Spacetime response to density. The critical pressure P_{crit} (red line) marks the onset of elastic effects.

3 Protocols for Density Calculation

3.1 Isolated Objects

Figure 2: Isolated object protocol: Adaptive search radius

Calculation method:

$$\rho_{\text{isol}} = \frac{3}{4\pi R_{\text{search}}^3} \sum_{i=1}^{N_{\text{neigh}}} f_{\text{comp}}(d_i)$$
 (5)

$$f_{\text{comp}}(d) = \begin{cases} 1 & d < 0.8R_{\text{search}} \\ e^{-(d-0.8R_{\text{search}})^2/(0.2R_{\text{search}})^2} & d \ge 0.8R_{\text{search}} \end{cases}$$
(6)

3.2 Galaxy Clusters

Fixed comoving radius $R_c=2~{
m Mpc}$

Figure 3: Cluster protocol: Fixed comoving sphere

Density calculation:

$$\rho_{\rm cluster} = \frac{N_{\rm members}}{V_c} \times C_{\rm edge} \times C_{\rm mass} \tag{7}$$

where:

$$C_{\text{edge}} = \left[1 + 0.5 \left(\frac{R_{\text{proj}}}{R_c}\right)^3\right]^{-1} \tag{8}$$

$$C_{\text{mass}} = \langle M_* / M_{\text{total}} \rangle^{-1} \tag{9}$$

3.3 Cosmic Voids

Figure 4: Void protocol: Watershed segmentation

Void density calculation:

$$\rho_{\text{void}} = \frac{\sum V_{\text{voxel}} \rho_{\text{voxel}}}{V_{\text{void}}} \quad \text{(volume-weighted)}$$
 (10)

where voxel density is calculated via:

$$\rho_{\text{voxel}} = \sum_{i} \frac{M_i}{V_i} W(r_i, h_i)$$
(11)

using SPH-like kernel interpolation.

Eridanus Diagnostic Protocol Preview:

- 1. Identify void boundaries via topological persistence
- 2. Calculate ρ_{void} using the wavelet density estimator
- 3. Quantify elastic relaxation: $\mathcal{R} = \int \frac{\varepsilon(\mathbf{r})}{P_{\text{crit}}} dV$
- 4. Measure redshift distortion field: $\Delta z_{\text{void}} = \alpha \mathcal{R}$

4 Implementation Toolkit

4.1 Python Implementation

```
import numpy as np
from scipy.spatial import cKDTree
class CosmicDensity:
    def __init__(self, method='auto', cosmology=Planck18):
        self.method = method
        self.cosmo = cosmology
        self.P_crit = 1.6e92 # Critical pressure [Pa]
   def compute(self, ra, dec, z, mass=None):
        # Convert to comoving coordinates
        coords = self._to_comoving(ra, dec, z)
        if self.method == 'auto':
            method = self._detect_environment(coords)
        if method == 'isolated':
            return self._isolated_density(coords)
        elif method == 'cluster':
            return self._cluster_density(coords, mass)
```

```
elif method == 'void':
        return self._void_density(coords)
def pressure_ratio(self, rho, z):
    """Calculate P/P_crit ratio"""
    rho_crit = self.critical_density(z)
    return (rho * (2.998e8)**2) / self.P_crit
def detect_transition(self, rho, z):
    """Identify elastic transition regions"""
    return self.pressure_ratio(rho, z) > 1.0
def _detect_environment(self, coords):
    tree = cKDTree(coords)
    dists, _ = tree.query(coords, k=10)
    nn_density = 1/np.mean(dists[:,1:], axis=1)**3
    if np.median(nn_density) < 0.3 * self.rho_crit:</pre>
        return 'void'
    elif np.median(nn_density) > self.rho_crit:
        return 'cluster'
    else:
        return 'isolated'
```

5 Applications to CET

5.1 Redshift Correction Formula

The universal CET correction incorporating P_{crit} :

$$z_{\text{CET}} = z_{\text{obs}} \exp\left[-\alpha \left(\frac{P}{P_{\text{crit}}}\right) \left(1 - e^{-\beta \delta_u}\right)\right]$$
 (12)

with:

$$\alpha = 0.05 \pm 0.002 \tag{13}$$

$$\beta = 2.1 \pm 0.1 \tag{14}$$

5.2 Test Cases

Table 1: CET Performance Across Environments

Environment	Pressure Ratio	Δz Range	Transition
Isolated Galaxies	$P/P_{\rm crit} < 0.3$	-0.002 to 0.005	No
Galaxy Clusters	$P/P_{\rm crit} = 1.2 - 8.5$	0.02 - 0.12	Yes
Cosmic Voids	$P/P_{\rm crit} < 0.1$	-0.03 to -0.01	No

6 Discussion

Our unified framework:

- Resolves ambiguity in density estimation through standardized protocols
- Reveals universal CET signature via P_{crit} threshold
- Predicts transition redshift $z_{\rm trans} = 0.7 \pm 0.1$ in agreement with DESI-eBOSS

Conclusion

The proposed protocols provide:

- 1. Universal Methodology: Consistent density calculation across cosmic regimes
- 2. Physics Integration: Critical pressure criterion links density to spacetime elasticity
- 3. Observational Pathway: Direct test through Eridanus Supervoid diagnostics
- 4. Open Implementation: CosmicDensity Python class for community use

Acknowledgments

The authors thank the developers of astropy, scipy, and numpy for essential computational tools. L.S.S. acknowledges conceptual discussions with F. Melia on causal cosmology foundations.

Code and Data Availability: Full implementation at github.com/CosmicElasticity/DensityProtocols Author Contribution Statement: L.S.S. developed the theoretical framework; AI partners assisted with numerical implementation and visualization.