

Unit 2: Lecture 25

Dr. Shikha Tripathi

Department of Electronics & Communication Engineering

Unit 2: Image Transforms

Dr. Shikha Tripathi

Department of Electronics & Communication Engineering

PES UNIVERSITY

Last Session

- Walsh transforms
- Walsh Hadamard transforms
- Slant Transform

PES

Today's Session

PES UNIVERSITY

Classification of Image Transforms

- Discovered in 1910, the basis functions of the Haar transform were later recognized to be the oldest and simplest orthonormal wavelets (to be studied later)
- Here Haar transform is considered as another matrix-based transformation that employs a set of rectangular-shaped basis functions
- The Haar transform is based on Haar functions, $h_u(x)$, that are defined over the continuous, half-open interval $x \in [0, 1)$
- Variable u is an integer that can be decomposed uniquely as $u=2^p+q$ for u>0where p is the largest power of 2 contained in u and q is the remainder: that is, $q=2^p-u$

The Haar basis functions are given by

$$h_u(x) = \begin{cases} 1 & u = 0 \text{ and } 0 \le x < 1 \\ 2^{p/2} & u > 0 \text{ and } q/2^p \le x < (q+0.5)/2^p \\ -2^{p/2} & u > 0 \text{ and } (q+0.5)/2^p \le x < (q+1)/2^p \\ 0 & \text{otherwise} \end{cases}$$

When u is 0, $h_0(x) = 1$ for all x; the first Haar function is independent of continuous variable x.

• For all other values of u, $h_u(x) = 0$ except in the half-open intervals

$$[q/2^p, (q+0.5)/2^p)$$
 and $[(q+0.5)/2^p, (q+1)/2^p)$

where it is a rectangular wave of magnitude $2^{p/2}$ and $-2^{p/2}$, respectively.

- Parameter p determines the amplitude and width of both rectangular waves, while q determines their position along x.
- As u increases, the rectangular waves become narrower and the number of functions that can be represented as linear combinations of the Haar functions increases
- Haar transform is based on orthogonal matrices whose elements are either 1 or -1 or multiplied by powers of $\sqrt{2}$
 - Basis functions of Haar Transform are non sinusoidal functions.
- It is computationally efficient transform as the transform of N-point vector requires only 2(N-1) additions and N multiplications

$$h_u(x) = \begin{cases} 1 & u = 0 \text{ and } 0 \le x < 1 \\ 2^{p/2} & u > 0 \text{ and } q/2^p \le x < (q+0.5)/2^p \\ -2^{p/2} & u > 0 \text{ and } (q+0.5)/2^p \le x < (q+1)/2^p \\ 0 & \text{otherwise} \end{cases}$$

$$u = 2^p + q \text{ for } u > 0$$

PES

Haar Transform

When u is 0, $h_u(x)$ is independent of p and q. as $h_0(x) = 1$ for all x

for
$$u > 0$$
; $u = 2^p + q$

и	р	q
1	0	0
2	1	0
3	1	1

• The transformation matrix of the discrete Haar transform can be obtained by substituting the inverse transformation kernel

$$s(x, u) = \frac{1}{\sqrt{N}} h_u(x/N)$$
 for $x = 0, 1, ..., N-1$

for u = 0, 1, ..., N - 1, where $N = 2^n$

• The resulting transformation matrix, denoted A_H, can be written as a function of the N×N Haar matrix

$$\mathbf{H}_{N} = \begin{bmatrix} h_{0}(0/N) & h_{0}(1/N) & \dots & h_{0}(N-1/N) \\ h_{1}(0/N) & h_{1}(1/N) & & \vdots \\ \vdots & & \ddots & & \\ h_{N-1}(0/N) & \dots & h_{N-1}(N-1/N) \end{bmatrix} \qquad \mathbf{A}_{\mathrm{H}} = \frac{1}{\sqrt{N}} \mathbf{H}_{N}$$

$$\mathbf{A}_{\mathrm{H}} = rac{1}{\sqrt{N}}\,\mathbf{H}_{N}$$

PES

Haar Transform Matrix

Example 1: for N=2, determine the Haar transformation matrix A_H

Soln:

$$s(x,u) = \frac{1}{\sqrt{N}} h_u(x/N)$$
 for $x = 0, 1, ..., N-1$

for u = 0, 1, ..., N-1, where $N = 2^n$

Here u = 0,1 and x = 0,1.
$$H_2 = \begin{bmatrix} h_0(\frac{0}{N}) & h_0(\frac{1}{N}) \\ h_1(\frac{0}{N}) & h_1(\frac{1}{N}) \end{bmatrix}.$$

For
$$u=0$$
, $h_0(x) = 1$
 $u=2^p + q$.; $u>0$
 $u=1$, $p=0$, $q=0$ $h_1(0/2)=1$; $h_1(1/2)=-1$

$$\mathbf{A}_{\mathrm{H}} = \frac{1}{\sqrt{2}} \begin{bmatrix} h_0(0) & h_0(1/2) \\ h_1(0) & h_1(1/2) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$h_u(x) = \begin{cases} 1 & u = 0 \text{ and } 0 \le x < 1 \\ 2^{p/2} & u > 0 \text{ and } q/2^p \le x < (q+0.5)/2^p \\ -2^{p/2} & u > 0 \text{ and } (q+0.5)/2^p \le x < (q+1)/2^p \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{H}_N = \begin{bmatrix} h_0(0/N) & h_0(1/N) & \dots & h_0(N-1/N) \\ h_1(0/N) & h_1(1/N) & & \vdots \\ \vdots & & \ddots & \\ h_{N-1}(0/N) & \dots & & h_{N-1}(N-1/N) \end{bmatrix}$$

$$\mathbf{A}_{\mathrm{H}} = \frac{1}{\sqrt{N}} \, \mathbf{H}_{N}$$

Example 2: for N=4, determine the Haar transformation matrix A_H

Soln:

$$s(x,u) = \frac{1}{\sqrt{N}} h_u(x/N)$$
 for $x = 0, 1, ..., N-1$

for u = 0, 1, 2 ..., N-1, where $N = 2^n$

$$u = 2^p + q$$
.; $u > 0$

Here u = 0,1,2,3 and x = 0,1,2,3

$$H_{4} = \begin{bmatrix} h_{0}(\frac{0}{4}) & h_{0}(\frac{1}{4}) & h_{0}(\frac{2}{4}) & h_{0}(\frac{3}{4}) \\ h_{1}(\frac{0}{4}) & h_{1}(\frac{1}{4}) & h_{1}(\frac{2}{4}) & h_{1}(\frac{3}{4}) \\ h_{2}(\frac{0}{4}) & h_{2}(\frac{1}{4}) & h_{2}(\frac{2}{4}) & h_{2}(\frac{3}{4}) \\ h_{3}(\frac{0}{4}) & h_{3}(\frac{1}{4}) & h_{3}(\frac{2}{4}) & h_{3}(\frac{3}{4}). \end{bmatrix}$$

$$h_u(x) = \begin{cases} 1 & u = 0 \text{ and } 0 \le x < 1 \\ 2^{p/2} & u > 0 \text{ and } q/2^p \le x < (q+0.5)/2^p \\ -2^{p/2} & u > 0 \text{ and } (q+0.5)/2^p \le x < (q+1)/2^p \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{H}_N = \begin{bmatrix} h_0(0/N) & h_0(1/N) & \dots & h_0(N-1/N) \\ h_1(0/N) & h_1(1/N) & & \vdots \\ \vdots & & \ddots & \\ h_{N-1}(0/N) & \dots & & h_{N-1}(N-1/N) \end{bmatrix}$$

$$\mathbf{A}_{\mathrm{H}} = \frac{1}{\sqrt{N}} \mathbf{H}_{\mathrm{N}}$$

$$u = 2^p + q$$
.; $u > 0$

и	р	q
1	0	0
2	1	0
3	1	1

$$\mathbf{A}_{H} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{bmatrix}$$

A_H is real, orthogonal, and sequency ordered

PES

Haar Transform

Haar transform for N= 8.

The transformation matrix and basis images of the discrete Haar transform for N= 8.

- (a) Graphical representation of orthogonal transformation matrix H,
- (b) H rounded to two decimal places, and (c) basis images.

- An important property of the Haar transformation matrix is that it can be decomposed into products of matrices with fewer nonzero entries than the original matrix.
- This is true of all of the transforms we have discussed so far
 - They can be implemented in FFT-like alogrithms of complexity O(N log₂N).
- The Haar transformation matrix, however, has fewer nonzero entries before the decomposition process begins, making less complex algorithms on the order of O(N) possible.
- The basis images of the separable 2-D Haar transform for images of size 8×8 also have few nonzero entries.

PES

Next Session

- KL transform
- SVD

THANK YOU

Dr. Shikha Tripathi

Department of Electronics & Communication Engineering

shikha@pes.edu

+91 9482219115