Промышленность

Чтобы оптимизировать производственные расходы, металлургический комбинат решил уменьшить потребление электроэнергии на этапе обработки стали.

Цель исследования - построить модель, которая предскажет температуру стали.

Описание этапа обработки

Сталь обрабатывают в металлическом ковше вместимостью около 100 тонн. Чтобы ковш выдерживал высокие температуры, изнутри его облицовывают огнеупорным кирпичом. Расплавленную сталь заливают в ковш и подогревают до нужной температуры графитовыми электродами. Они установлены в крышке ковша.

Из сплава выводится сера (десульфурация), добавлением примесей корректируется химический состав и отбираются пробы. Сталь легируют — изменяют её состав — подавая куски сплава из бункера для сыпучих материалов или проволоку через специальный трайб-аппарат (англ. tribe, «масса»).

Перед тем как первый раз ввести легирующие добавки, измеряют температуру стали и производят её химический анализ. Потом температуру на несколько минут повышают, добавляют легирующие материалы и продувают сплав инертным газом. Затем его перемешивают и снова проводят измерения. Такой цикл повторяется до достижения целевого химического состава и оптимальной температуры плавки. Тогда расплавленная сталь отправляется на доводку металла или поступает в машину непрерывной разливки. Оттуда готовый продукт выходит в виде заготовок-слябов (англ. slab, «плита»).

Описание данных

Данные состоят из файлов, полученных из разных источников:

- data_arc_new.csv данные об электродах;
- data bulk new.csv данные о подаче сыпучих материалов (объём);
- data_bulk_time_new.csv данные о подаче сыпучих материалов (время);
- data_gas_new.csv данные о продувке сплава газом;
- data_temp_new.csv результаты измерения температуры;
- data_wire_new.csv данные о проволочных материалах (объём);
- data_wire_time_new.csv данные о проволочных материалах (время).

Во всех файлах столбец key содержит номер партии. В файлах может быть несколько строк с одинаковым значением key: они соответствуют разным итерациям обработки.

План исследования

Исследование пройдёт в несколько этапов:

- Подготовка данных:
 - Загрузка данных
 - Изучение и анализ данных
- Предобработка и подготовка данных для обучения:
 - Проверка типов данных
 - Обработка пропусков
 - Создание единой таблицы
 - Проверка корреляции признаков
 - Удаление признаков, не влияющих на целевой признак
 - Создание целевого и вспомогательных признаков
 - Создание обучающей и тестовой выборки (тестовая выборка = 25%)
- Обучение моделей
 - 2-3 простых моделей
 - 2-3 модели градиентного бустинга
 - Анализ обученых моделей и выбор лучшей
 - Тестирование лучшей модели на тестовой выборке
 - Проверка модели на адекватность

- Анализ значимости признаков
- Общий вывод

Подготовка данных

Загрузка данных

```
In [1]: # Импорт необходимых библиотек
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import time
        from sklearn.pipeline import make pipeline
        from sklearn.metrics import mean_absolute_error as mae
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.preprocessing import StandardScaler, RobustScaler, PolynomialFeatures
        from sklearn.linear model import LinearRegression
        from sklearn.ensemble import RandomForestRegressor
        from catboost import CatBoostRegressor
        from lightgbm import LGBMRegressor
        from sklearn.dummy import DummyRegressor
In [2]: # Константы
        r state = 26923
        \overline{figsize} = (15,7)
In [3]: # Функции и классы
        # Функция для получения общих сведений о данных
        def data_info(title, data):
            print('Общие сведения "{}":'.format(title))
            print()
            data.info()
            print()
            print()
            print('Пример данных (случайные 5 строк):')
            display(data.sample(5, random_state=r_state))
            print()
            print()
            print('Статистика данных:')
            display(data.describe(datetime_is_numeric=True))
            print()
            print()
            print('Количество пропусков по столбцам:')
            print()
            for col in data.columns:
                nmv = data[col].isna().sum()
                pmv = nmv/len(data)
                if pmv == 0:
                    print('\033[0m{} - {} ωτ. - {:.2%}'.format(col, nmv, pmv))
                elif pmv <= 0.1:
                    print('\033[0m{} - \033[43m{} ωτ.\033[0m - \033[43m{:.2%}'.format(col, nmv, pmv))
                else:
                    print('\033[0m{} - \033[41m{} \upsilon \033[41m{:.2%}'.format(col, nmv, pmv))
                print('\033[0m')
            print()
            print('Количество уникальных значений в столбцах:')
            print()
            for col in data.columns:
                print('{} - {}'.format(col, data[col].nunique()))
            print()
```

```
print()
    print('Количество явных дубликатов: {} шт.'.format(data.duplicated().sum()))
# ФУНКЦИЯ ДЛЯ ПРОВЕРКИ ЦЕЛОЧИСЛЕННЫХ ЗНАЧЕНИЙ В КОЛОНКЕ
def isint(data, col):
    if (data[col].fillna(-9999) % 1 == 0).all() == True:
        print('Все числа целые')
    else:
        print('Присутствуют дробные числа')
# Функция для проверки "нулевых" колонок
def iszero(data, col, z_list):
    if data[col].sum() == 0:
        z list.append(col)
    return z list
# Функция для корреляции признаков
def corr info(data, col del, target):
    print('Корреляция признаков:')
    print()
    corr_matrix = data.drop(columns=col_del).corr()
    target_corr = corr_matrix.loc[[target],:]
    sns.set(font_scale=1.15)
    plt.figure(figsize=figsize)
    sns.heatmap(
                target corr,
                square=True,
                cmap='RdBu r'
                annot=True,
                vmin=-1, vmax=1,
                fmt='.1g',
                cbar_kws= dict(use_gridspec=False, location="top"));
    plt.yticks(rotation=0)
    #plt.xticks(rotation=45)
    plt.show()
    print()
    for i in range(len(target_corr.columns)):
        if target_corr.columns[i] != target:
            cor = target_corr.loc[target, target_corr.columns[i]]
            print('Корреляция между {} и {}:'.format(target, target_corr.columns[i]))
            if cor == 0:
                print(f'Коэффициент корреляции: {cor:.6f} \n Свзяь отсутствует')
            elif 0 < cor <= 0.3:
                print(f'Коэффициент корреляции: {cor:.6f} \n Слабая прямая связь')
            elif -0.3 <= cor < 0:
                print(f'Коэффициент корреляции: {cor:.6f} \n Слабая обратная связь')
            elif 0.3 < cor <= 0.7:
                print(f'Коэффициент корреляции: {cor:.6f} \n Средняя прямая связь')
            elif -0.7 <= cor < -0.3:
                print(f'Коэффициент корреляции: {cor:.6f} \n Средняя обратная связь')
            elif 0.7 < cor < 1:
                print(f'Коэффициент корреляции: {cor:.6f} \n Сильная прямая связь')
            elif -1 < cor < -0.7:
                print(f'Коэффициент корреляции: {cor:.6f} \n Сильная обратная связь')
            elif cor == 1:
                print(f'Коэффициент корреляции: {cor:.6f} \n Полная прямая связь')
            elif cor == -1:
               print(f'Коэффициент корреляции: {cor:.6f} \n Полная обратная связь')
            else:
                print('Введен неверный коэффициент')
            print()
    print()
    print('Тор-5 прямой связи:\n')
    print(data.corr()[target].sort values(ascending=False)[1:].head().to string())
    print()
    print('Top-5 обратной связи:\n')
    print(data.corr()[target].sort\_values(ascending=\textbf{True})[0:].head().to\_string())
# Функция для отделения целевого признака
def split target(data, target):
    features = data.drop([target] , axis=1)
    target = data[target]
    return features, target
# Функция разбивки данных для обучения
def split data(features, target, valid size, test size):
    if valid size == 0:
        features train, features test, target train, target test = train test split(
```

```
features, target, test_size=test_size, random_state=r_state)
                  features list = {'features train' : features train, 'features test' : features test}
                  targets list = {'target train' : target train, 'target test' : target test}
                  print('Вспомогательные признаки:')
                  print()
                  for i in features list:
                      sh = features list[i].shape
                      psh = sh[0]/len(data)
                      print('{} - Объектов: {} шт., признаков: {} шт. - {:.2%}'.format(i, sh[0], sh[1], psh))
                  print()
                  print('Целевые признаки:')
                  print()
                  for i in targets list:
                      sh = targets list[i].shape
                      psh = sh[0]/\overline{l}en(data)
                      print('{} - Объектов: {} шт. - {:.2%}'.format(i, sh[0], psh))
                  return features train, features test, target train, target test
             else:
                  valid test size = valid size + test size
                  t_size = test_size / valid_test_size
                  features_train, features_valid, target_train, target_valid = train_test_split(
                  features, target, test size=valid test size, random state=r state)
                  features_valid, features_test, target_valid, target_test = train_test_split(
features_valid, target_valid, test_size=t_size, random_state=r_state)
                  features_list = {'features_train' : features_train,
                                      features valid' : features valid,
                                     'features test' : features test}
                  'target test' : target test}
                  print('Вспомогательные признаки:')
                  print()
                  for i in features_list:
                      sh = features_list[i].shape
                      psh = sh[0]/len(data)
                      print('{} - Объектов: {} шт., признаков: {} шт. - {:.2%}'.format(i, sh[0], sh[1], psh))
                  print()
                  print('Целевые признаки:')
                  print()
                  for i in targets_list:
                      sh = targets list[i].shape
                      psh = sh[0]/len(data)
                      print('{} - Объектов: {} шт. - {:.2%}'.format(i, sh[0], psh))
                  return features train, features valid, features test, target train, target valid, target test
         data_arc = pd.read_csv('/datasets/data_arc_new.csv', parse_dates=[1, 2])
data_bulk = pd.read_csv('/datasets/data_bulk_new.csv')
In [4]:
         data bulk time = pd.read csv('/datasets/data bulk time new.csv', parse dates=list(range(1,16)))
         data_gas = pd.read_csv('/datasets/data_gas_new.csv')
data_temp = pd.read_csv('/datasets/data_temp_new.csv', parse_dates=[1])
data_wire = pd.read_csv('/datasets/data_wire_new.csv')
         data wire time = pd.read csv('/datasets/data wire time new.csv', parse dates=list(range(1,10)))
```

Изучение и анализ данных

"data_arc" - данные об электродах

```
In [5]: data_info('data_arc', data_arc)
```

```
Общие сведения "data_arc":
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 14876 entries, 0 to 14875 Data columns (total 5 columns):

Column Non-Null Count Dtype

0 key 14876 non-null int64

1 Начало нагрева дугой 14876 non-null datetime64[ns]

1 Начало нагрева дугой 14876 non-null datetime64[ns]
2 Конец нагрева дугой 14876 non-null datetime64[ns]
3 Активная мощность 14876 non-null float64
4 Реактивная мощность 14876 non-null float64
dtypes: datetime64[ns](2), float64(2), int64(1)

memory usage: 581.2 KB

Пример данных (случайные 5 строк):

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность
6621	1440	2019-06-26 13:03:37	2019-06-26 13:05:39	0.403639	0.356690
10406	2262	2019-08-01 21:28:20	2019-08-01 21:31:40	1.276612	0.890543
3336	723	2019-05-31 16:16:09	2019-05-31 16:19:03	0.819628	0.586569
4872	1051	2019-06-12 22:30:57	2019-06-12 22:34:56	0.521390	0.440412
11272	2456	2019-08-08 23:56:59	2019-08-09 00:02:37	0.759809	0.577640

Статистика данных:

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность
count	14876.000000	14876	14876	14876.000000	14876.000000
mean	1615.220422	2019-07-05 12:25:51.921081088	2019-07-05 12:28:43.592027392	0.662752	0.438986
min	1.000000	2019-05-03 11:02:14	2019-05-03 11:06:02	0.223120	-715.479924
25%	806.000000	2019-06-03 23:18:23.249999872	2019-06-03 23:21:35	0.467115	0.337175
50%	1617.000000	2019-07-03 01:31:26.500000	2019-07-03 01:35:13	0.599587	0.441639
75%	2429.000000	2019-08-07 22:52:20.750000128	2019-08-07 22:56:47	0.830070	0.608201
max	3241.000000	2019-09-06 17:24:54	2019-09-06 17:26:15	1.463773	1.270284
std	934.571502	NaN	NaN	0.258885	5.873485

Количество пропусков по столбцам:

key - 0 шт. - 0.00%

Начало нагрева дугой - 0 шт. - 0.00%

Конец нагрева дугой - 0 шт. - 0.00%

Активная мощность - 0 шт. - 0.00%

Реактивная мощность - 0 шт. - 0.00%

Количество уникальных значений в столбцах:

key - 3214

Начало нагрева дугой - 14876 Конец нагрева дугой - 14876 Активная мощность - 13846 Реактивная мощность - 14707

Количество явных дубликатов: 0 шт.

Проверим количество уникальных ключей и измерений по ним

```
In [6]: data_arc['key'].value_counts()
        2108
Out[6]:
        1689
                15
        1513
                15
        2567
                14
        46
                 13
        977
                 1
        247
        2582
                 1
        248
                 1
        530
        Name: key, Length: 3214, dtype: int64
```

Посмотрим данные одной партии с максимальным количеством итераций

кеу Начало нагрева дугой Конец нагрева дугой Активная мощность Реактивная мощность 9734 2108 2019-07-27 10:41:13 2019-07-27 10:43:28 0.536962 0.682359 9735 2108 2019-07-27 11:07:24 2019-07-27 11:08:51 0.786992 0.582873 9736 2108 2019-07-27 11:13:37 2019-07-27 11:14:32 0.525551 0.329251 9737 2108 2019-07-27 11:15:45 2019-07-27 11:16:45 1.175194 0.789164 0.508570 9738 2108 2019-07-27 11:19:26 2019-07-27 11:21:24 0.671852 9739 2108 2019-07-27 11:23:12 2019-07-27 11:26:07 0.325151 0.217883 9740 2108 2019-07-27 13:39:32 2019-07-27 13:43:14 0.412624 0.278039 0.616971 9741 2108 2019-07-27 13:45:19 2019-07-27 13:48:19 0.798390 9742 2108 2019-07-27 13:49:36 2019-07-27 13:57:40 0.327366 0.239850 **9743** 2108 2019-07-27 14:01:23 2019-07-27 14:05:24 1.233412 0.855522 9744 2108 2019-07-27 15:10:50 2019-07-27 15:14:51 0.331771 0.214661 **9745** 2108 2019-07-27 15:17:59 2019-07-27 15:19:24 0.607615 0.510261 9746 2108 2019-07-27 15:21:49 2019-07-27 15:28:54 0.943825 0.598308 9747 2108 2019-07-27 15:32:35 2019-07-27 15:33:09 0.439228 0.681336 **9748** 2108 2019-07-27 16:22:54 2019-07-27 16:24:30 0.548174 0.360647 9749 2108 2019-07-27 16:32:17 2019-07-27 16:33:58 0.655192 0.511299

In [8]: data_arc[data_arc['key']==2108].describe(datetime_is_numeric=True)

In [7]: data_arc[data_arc['key']==2108]

Out[7]:

Out[8]:

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность
count	16.0	16	16	16.000000	16.000000
mean	2108.0	2019-07-27 13:32:10.687500032	2019-07-27 13:35:01.874999808	0.669175	0.474343
min	2108.0	2019-07-27 10:41:13	2019-07-27 10:43:28	0.325151	0.214661
25%	2108.0	2019-07-27 11:18:30.750000128	2019-07-27 11:20:14.249999872	0.497319	0.316448
50%	2108.0	2019-07-27 13:47:27.500000	2019-07-27 13:52:59.500000	0.663522	0.509416
75%	2108.0	2019-07-27 15:18:56.500000	2019-07-27 15:21:46.500000	0.789842	0.586732
max	2108.0	2019-07-27 16:32:17	2019-07-27 16:33:58	1.233412	0.855522
std	0.0	NaN	NaN	0.275058	0.193492

Построим график для оценки распределения активной мощности

Name: Активная мощность, dtype: float64

- Данные имеют нормальное расспределение
- Среднее значение 0.662752
- Стандартное отклонение 0.258885

Построим график для оценки распределения реактивной мощности, без учета аномалии

mean 0.487115 Out[12]: std 0.197612

Name: Реактивная мощность, dtype: float64

- Данные имеют нормальное расспределение
- Среднее значение 0.487115
- Стандартное отклонение 0.197612

Описание данных "data_arc":

- Данные состоят из 14876 объектов
- Имееют 5 признаков:
 - key номер партии
 - Начало нагрева дугой
 - Конец нагрева дугой
 - Активная мощность
 - Реактивная мощность
- Пропуски отсутствуют
- Явные дубликаты отсутствуют
- Форматы данных соответствуют данным
- Присутствует аномалия в признаке "Реактивная мощность" = -715.479924
- Количество уникальных номеров партии = 3214 шт.
- Присутствуют строки с одинаковым значением кеу: они соответствуют разным итерациям обработки
- Максимальное количесвто итераций обработки = 16

"data_bulk" - данные о подаче сыпучих материалов (объём)

In [13]: data_info('data_bulk', data_bulk)

Общие сведения "data bulk":

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3129 entries, 0 to 3128 Data columns (total 16 columns): Column Non-Null Count Dtype # 0 3129 non-null int64 key 252 non-null Bulk 1 float64 1 2 Bulk 2 22 non-null float64 3 Bulk 3 1298 non-null float64 1014 non-null float64 4 Bulk 4 5 Bulk 5 77 non-null float64 6 Bulk 6 576 non-null float64 Bulk 7 25 non-null float64 Bulk 8 8 1 non-null float64 Bulk 9 19 non-null float64 10 Bulk 10 176 non-null float64 11 Bulk 11 12 Bulk 12 float64 177 non-null Bulk 12 2450 non-null float64 13 Bulk 13 18 non-null float64 14 Bulk 14 2806 non-null 15 Bulk 15 2248 non-null float64 float64 dtypes: float64(15), int64(1)

memory usage: 391.2 KB

Пример данных (случайные 5 строк):

	key	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	Bulk 7	Bulk 8	Bulk 9	Bulk 10	Bulk 11	Bulk 12	Bulk 13	Bulk 14	Bulk 15
2522	2618	NaN	NaN	NaN	88.0	NaN	NaN	NaN	NaN	NaN	72.0	NaN	266.0	NaN	298.0	158.0
574	603	NaN	NaN	37.0	NaN	NaN	NaN	NaN	202.0	NaN						
2282	2364	NaN	NaN	NaN	NaN	NaN	43.0	NaN	NaN	NaN	NaN	NaN	124.0	NaN	216.0	104.0
2173	2252	NaN	NaN	NaN	110.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	106.0	NaN	135.0	105.0
1667	1727	27.0	NaN	NaN	81.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	511.0	NaN	218.0	NaN

Статистика данных:

	key	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	Bulk 7	Bulk 8	Bulk 9	Bulk 10	
count	3129.000000	252.000000	22.000000	1298.000000	1014.000000	77.000000	576.000000	25.000000	1.0	19.000000	176.000000	17
mean	1624.383509	39.242063	253.045455	113.879045	104.394477	107.025974	118.925347	305.600000	49.0	76.315789	83.284091	7
std	933.337642	18.277654	21.180578	75.483494	48.184126	81.790646	72.057776	191.022904	NaN	21.720581	26.060347	5
min	1.000000	10.000000	228.000000	6.000000	12.000000	11.000000	17.000000	47.000000	49.0	63.000000	24.000000	
25%	816.000000	27.000000	242.000000	58.000000	72.000000	70.000000	69.750000	155.000000	49.0	66.000000	64.000000	2
50%	1622.000000	31.000000	251.500000	97.500000	102.000000	86.000000	100.000000	298.000000	49.0	68.000000	86.500000	6
75%	2431.000000	46.000000	257.750000	152.000000	133.000000	132.000000	157.000000	406.000000	49.0	70.500000	102.000000	10
max	3241.000000	185.000000	325.000000	454.000000	281.000000	603.000000	503.000000	772.000000	49.0	147.000000	159.000000	31

Количество пропусков по столбцам:

```
key - 0 шт. - 0.00%
```

Bulk 1 - 2877 шт. - 91.95%

Bulk 2 - <mark>3107 шт.</mark> - 99.30%

Bulk 3 - <mark>1831 шт. - 58.52</mark>%

Bulk 4 - 2115 шт. - 67.59%

Bulk 5 - <mark>3052 шт. - 97.54</mark>%

Bulk 6 - 2553 шт. - 81.59%

Bulk 7 - <mark>3104 шт.</mark> - 99.20%

Bulk 8 - <mark>3128 шт. - 99.97</mark>%

Bulk 9 - <mark>3110 шт.</mark> - <mark>99.39</mark>%

Bulk 10 - <mark>2953 шт. - 94.38</mark>%

Bulk 11 - 2952 шт. - 94.34%

Bulk 12 - <mark>679 шт. - 21.70</mark>%

Bulk 13 - <mark>3111 шт. - 99.42</mark>%

Bulk 14 - <mark>323 шт. - 10.32</mark>%

Bulk 15 - <mark>881 шт. - 28.16</mark>%

Количество уникальных значений в столбцах:

key - 3129

Bulk 1 - 47 Bulk 2 - 15

Bulk 3 - 278

Bulk 4 - 206 Bulk 5 - 55

Bulk 6 - 205 Bulk 7 - 25 Bulk 8 - 1

Bulk 9 - 10

Bulk 10 - 77

Bulk 11 - 101

Bulk 12 - 331

Bulk 13 - 14

Bulk 14 - 284

Bulk 15 - 156

Количество явных дубликатов: 0 шт.

Проверим количество уникальных ключей и измерений по ним

In [14]: data bulk['key'].value counts()

```
2049
                   1
Out[14]:
          2612
                   1
          2588
                   1
          541
                   1
          2590
                   1
          1090
          3139
                   1
          1092
                   1
          3141
                   1
          2047
          Name: key, Length: 3129, dtype: int64
```

Описание данных "data_bulk":

- Данные состоят из 3129 объектов
- Имееют 16 признаков:
 - key номер партии
 - 15 признаков "Bulk" о подаче сыпучих материалов (объём)
- Пропуски присутствуют во всех признаках "Bulk"
- Явные дубликаты отсутствуют
- Форматы данных соответствуют данным
- Количество уникальных номеров партии = 3129 шт.
- Все строки с уникальными значениями кеу
- С учетом уникальности всех строк по номерам партии, можно предположить что каждый из 15 признаков "Bulk" это уникальный сыпучий материал, который добавляется при необходимости. Соответственно пропуски в данных признаках просто означают отсутствие добавки и их можно заменить на 0

"data bulk time" - данные о подаче сыпучих материалов (время)

```
In [15]: data_info('data_bulk_time', data_bulk_time)
```

Общие сведения "data bulk time":

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3129 entries, 0 to 3128
Data columns (total 16 columns):
#
              Non-Null Count Dtype
     Column
- - -
0
              3129 non-null
                               int64
     kev
                               datetime64[ns]
 1
     Bulk 1
              252 non-null
 2
     Bulk 2
              22 non-null
                               datetime64[ns]
 3
     Bulk 3
              1298 non-null
                               datetime64[ns]
 4
     Bulk 4
              1014 non-null
                               datetime64[ns]
 5
     Bulk 5
              77 non-null
                               datetime64[ns]
                               datetime64[ns]
 6
     Bulk 6
              576 non-null
 7
     Bulk 7
              25 non-null
                               datetime64[ns]
 8
     Bulk 8
              1 non-null
                               datetime64[ns]
 9
     Bulk 9
              19 non-null
                               datetime64[ns]
 10
     Bulk 10
              176 non-null
                               datetime64[ns]
 11
     Bulk 11
              177 non-null
                               datetime64[ns]
 12
     Bulk 12
              2450 non-null
                               datetime64[ns]
 13
     Bulk 13
              18 non-null
                               datetime64[ns]
 14
     Bulk 14
              2806 non-null
                               datetime64[ns]
 15
     Bulk 15
              2248 non-null
                               datetime64[ns]
dtypes: datetime64[ns](15), int64(1)
memory usage: 391.2 KB
```

Пример данных (случайные 5 строк):

Bulk Bulk Bulk Bulk Bulk 1 Bulk 3 Bulk 4 Bulk 6 Bulk 10 Bulk 12 Bulk 14 Bulk 15 kev 8 13 2019-08-2019-08-2019-2019-2019-**2522** 2618 NaT NaT NaT 15 NaT NaT 15 08-15 NaT 08-15 08-15 NaT NaT NaT NaT 01:14:33 01:09:17 00:57:23 00:52:46 00:44:58 2019-05-2019-603 574 NaT NaT NaT NaT NaT 05-26 NaT NaT NaT 26 NaT NaT NaT NaT NaT 08:04:19 07:52:40 2019-08-2019-2019-2019-2282 2364 NaT NaT NaT NaT NaT NaT 08-05 NaT 05 NaT NaT NaT NaT 08-05 08-05 11:01:20 11:06:52 11:01:20 10:52:25 2019-2019-2019-2019-08-2173 2252 NaT NaT NaT NaT 01 NaT NaT NaT NaT NaT NaT 08-01 NaT 08-01 08-01 14:30:05 14:39:19 14:34:51 14:30:05 2019-07-2019-07-2019-2019-NaT **1667** 1727 06 NaT NaT 06 NaT NaT NaT NaT NaT NaT 07-06 07-06 NaT 17:17:20 17:17:20 17:10:05 16:55:34

Статистика данных:

	key	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	
count	3129.000000	252	22	1298	1014	77	576	
mean	1624.383509	2019-06-29 23:24:44.769841152	2019-07-12 07:57:13.045454592	2019-07-08 13:50:14.630970624	2019-07-03 11:17:28.834319616	2019-07-13 17:18:29.090908928	2019-07-06 13:50:06.345486080	18
min	1.000000	2019-05-03 17:42:46	2019-05-07 15:39:35	2019-05-03 20:40:25	2019-05-03 11:28:48	2019-05-07 15:19:17	2019-05-03 19:09:15	
25%	816.000000	2019-05-29 14:48:48.500000	2019-05-28 02:29:31.500000	2019-06-08 03:50:23.500000	2019-05-30 21:36:11.249999872	2019-06-19 23:32:44	2019-06-06 22:46:10.500000	
50%	1622.000000	2019-06-25 11:09:13	2019-07-27 17:18:38.500000	2019-07-04 09:31:42	2019-06-28 03:44:42.500000	2019-07-25 17:59:41	2019-07-09 03:34:57.500000	
75%	2431.000000	2019-07-31 05:58:18.249999872	2019-08-13 02:20:08	2019-08-11 01:00:36.750000128	2019-08-04 04:15:46.500000	2019-08-13 04:23:23	2019-08-07 18:55:01.249999872	
max	3241.000000	2019-09-05 09:11:32	2019-08-13 11:47:39	2019-09-06 12:26:52	2019-09-05 03:35:21	2019-09-02 18:16:52	2019-09-06 16:24:28	
std	933.337642	NaN	NaN	NaN	NaN	NaN	NaN	

Количество пропусков по столбцам:

```
key - 0 шт. - 0.00%
```

Bulk 1 - 2877 шт. - 91.95%

Bulk 2 - 3107 шт. - 99.30%

Bulk 3 - 1831 шт. - 58.52%

Bulk 4 - 2115 шт. - 67.59%

Bulk 5 - 3052 шт. - 97.54%

Bulk 6 - 2553 шт. - 81.59%

Bulk 7 - <mark>3104 шт. - 99.20</mark>%

Bulk 8 - <mark>3128 шт.</mark> - **99.97**%

Bulk 9 - <mark>3110 шт.</mark> - <mark>99.39</mark>%

Bulk 10 - <mark>2953 шт.</mark> - <mark>94.38</mark>%

Bulk 11 - 2952 шт. - 94.34%

Bulk 12 - <mark>679 шт. - 21.70</mark>%

Bulk 13 - 3111 шт. - 99.42%

Bulk 14 - <mark>323 шт. - 10.32</mark>%

Bulk 15 - <mark>881 шт. - 28.16</mark>%

Количество уникальных значений в столбцах:

key - 3129

Bulk 1 - 252 Bulk 2 - 22

Bulk 3 - 1298 Bulk 4 - 1014

Bulk 5 - 77

Bulk 6 - 576 Bulk 7 - 25

Bulk 8 - 1

Bulk 9 - 19 Bulk 10 - 176

Bulk 11 - 177

Bulk 12 - 2450

Bulk 13 - 18

Bulk 14 - 2806

Bulk 15 - 2248

Количество явных дубликатов: 0 шт.

Проверим количество уникальных ключей и измерений по ним

```
2049
Out[16]:
         2612
                  1
         2588
                  1
         541
         2590
         1090
         3139
                  1
         1092
                  1
         3141
                  1
         2047
         Name: key, Length: 3129, dtype: int64
```

Описание данных "data_bulk_time":

- Данные состоят из 3129 объектов
- Имееют 16 признаков:
 - key номер партии
 - 15 признаков "Bulk" о подаче сыпучих материалов (время)
- Пропуски присутствуют во всех признаках "Bulk"
- Явные дубликаты отсутствуют
- Форматы данных соответствуют данным
- Количество уникальных номеров партии = 3129 шт.
- Все строки с уникальными значениями кеу
- С учетом уникальности всех строк по номерам партии, можно предположить что каждый из 15 признаков "Bulk" это уникалыный сыпучий материал, который добавляется при необходимости. Соответственно пропуски в данных признаках просто означают отсутствие добавки и их можно заменить на 0

```
"data_gas" - данные о продувке сплава газом
In [17]: data_info('data_gas', data_gas)
         Общие сведения "data gas":
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3239 entries, \theta to 3238
         Data columns (total 2 columns):
          # Column Non-Null Count Dtype
         - - -
          0 key 3239 non-null
1 Γa3 1 3239 non-null
                      3239 non-null int64
                                      float64
         dtypes: float64(1), int64(1)
         memory usage: 50.7 KB
         Пример данных (случайные 5 строк):
               kev
                    Газ 1
```

	кеу	1 a3 1
2618	2621	6.504235
1484	1487	1.979604
578	581	26.295454
1122	1125	5.810964
865	868	6.461385

Статистика данных:

	key	Газ 1
count	3239.000000	3239.000000
mean	1621.861377	11.002062
std	935.386334	6.220327
min	1.000000	0.008399
25%	812.500000	7.043089
50%	1622.000000	9.836267
75%	2431.500000	13.769915
max	3241.000000	77.995040

```
Количество пропусков по столбцам:
         key - 0 шт. - 0.00%
         Газ 1 - 0 шт. - 0.00%
         Количество уникальных значений в столбцах:
         key - 3239
         Газ 1 - 3239
         Количество явных дубликатов: 0 шт.
         Проверим количество уникальных ключей и измерений по ним
In [18]: data_gas['key'].value_counts()
                 1
Out[18]:
         3135
                 1
         3115
                 1
         1070
                 1
         3119
                 1
         2596
                 1
         549
                 1
         2600
                 1
         553
                 1
         2047
         Name: key, Length: 3239, dtype: int64
         Построим график для оценки распределения газа
In [19]: x = data_gas['Γα3 1']
         fig, axs = plt.subplots(nrows=2,
                                  ncols=1,
                                  figsize=figsize,
                                  sharex=True,
                                  gridspec_kw=dict(height_ratios=[13,2]))
         h = sns.histplot(x, label="Γa3", kde=True, ax=axs[0]);
         h.legend();
         h.set_title(label='Распределение газа', fontsize=20)
         h.set_xlabel('\(\Gas\)')
         h.set_ylabel(' ')
         b= sns.boxplot(data=x, orient='h', ax=axs[1])
         b.set title('Ящик с усами')
         plt.show();
                                                      Распределение газа
                                                                                                                   ПГаз
            250
            200
           150
           100
            50
                                                               Ящик с усами
                                                           ***
In [20]: x.describe(datetime is numeric=True).loc[['mean', 'std']]
```

• Данные имеют нормальное расспределение

11.002062

6.220327 Name: Γas 1, dtype: float64

mean

std

Out[20]:

- Мен...-. benon-bellen-e-...
- Среднее значение 11.002062
- Стандартное отклонение 6.220327

Описание данных "data_gas":

- Данные состоят из 3239 объектов
- Имееют 2 признаков:
 - key номер партии
 - Газ 1 продувка газом
- Пропуски отсутствуют
- Явные дубликаты отсутствуют
- Форматы данных соответствуют данным
- Количество уникальных номеров партии = 3239 шт.
- Все строки с уникальными значениями кеу

"data_temp" - результаты измерения температуры

```
In [21]: data_info('data_temp', data_temp)
```

Общие сведения "data_temp":

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18092 entries, 0 to 18091
Data columns (total 3 columns):
Column Non-Null Count Dty

Column Non-Null Count Dtype
0 key 18092 non-null int64

1 Время замера 18092 non-null datetime64[ns]
2 Температура 14665 non-null float64
dtypes: datetime64[ns](1), float64(1), int64(1)

memory usage: 424.2 KB

Пример данных (случайные 5 строк):

	key	Время замера	Температура
5557	989	2019-06-10 16:47:01	1584.0
1518	274	2019-05-14 04:38:43	1591.0
15496	2770	2019-08-20 19:07:45	1585.0
2825	500	2019-05-22 16:08:23	1579.0
5675	1010	2019-06-11 10:28:13	1573.0

Статистика данных:

	key	Время замера	Температура
count	18092.000000	18092	14665.000000
mean	1616.460977	2019-07-05 13:36:58.791620608	1590.722741
min	1.000000	2019-05-03 11:02:04	1191.000000
25%	807.750000	2019-06-04 00:35:01.249999872	1580.000000
50%	1618.000000	2019-07-03 02:11:48	1590.000000
75%	2429.000000	2019-08-07 23:10:05.249999872	1599.000000
max	3241.000000	2019-09-06 17:30:05	1705.000000
std	934.641385	NaN	20.394381

Количество пропусков по столбцам:

key - 0 шт. - 0.00%

Время замера - 0 шт. - 0.00%

Температура - <mark>3427 шт. - 18.94</mark>%

Количество уникальных значений в столбцах:

key - 3216

Время замера - 18092 Температура - 172

Количество явных дубликатов: 0 шт.

Проверим количество уникальных ключей и измерений по ним

```
In [22]: data_temp['key'].value_counts()
          2108
Out[22]:
          1513
                   16
          1689
                   16
          2567
                   15
          322
                   14
                   . .
          556
                    2
          1169
                    2
          732
          195
                    1
          279
                    1
          Name: key, Length: 3216, dtype: int64
          Посмотрим данные без замера температур
In [23]:
          data_temp[data_temp['Температура'].isnull()]
                          Время замера Температура
                  key
Out[23]:
          13927 2500 2019-08-10 14:13:11
                                                NaN
          13928 2500 2019-08-10 14:18:12
                                               NaN
          13929 2500 2019-08-10 14:25:53
                                                NaN
          13930 2500 2019-08-10 14:29:39
                                                NaN
          13932 2501 2019-08-10 14:49:15
                                               NaN
          18087 3241 2019-09-06 16:55:01
                                                NaN
                                                NaN
          18088 3241 2019-09-06 17:06:38
          18089 3241 2019-09-06 17:21:48
                                                NaN
          18090 3241 2019-09-06 17:24:44
                                                NaN
          18091 3241 2019-09-06 17:30:05
                                                NaN
          3427 rows × 3 columns
          Проверим данные по ключу (с количеством итераций больше 1) без замера температур
In [24]: data_temp[data_temp['key']==2500]
Out[24]:
                  key
                          Время замера Температура
          13926 2500 2019-08-10 14:04:39
                                              1539.0
          13927 2500 2019-08-10 14:13:11
                                               NaN
          13928 2500 2019-08-10 14:18:12
                                                NaN
          13929 2500 2019-08-10 14:25:53
                                                NaN
          13930 2500 2019-08-10 14:29:39
                                                NaN
          Проверим данные по ключу (с максимальным количеством итераций)
```

In [25]: data temp[data temp['key']==2108]

```
Время замера Температура
        key
11825 2108 2019-07-27 10:41:03
                                        1639.0
11826 2108
            2019-07-27 11:07:14
                                        1626.0
             2019-07-27 11:13:27
                                        1604.0
11827 2108
11828 2108
             2019-07-27 11:15:35
                                        1612.0
11829 2108
             2019-07-27 11:19:16
                                        1621.0
             2019-07-27 11:23:02
                                        1535.0
11830 2108
11831 2108
             2019-07-27 13:39:22
                                        1577.0
11832 2108
             2019-07-27 13:45:09
                                        1585.0
11833 2108
             2019-07-27 13:49:26
                                        1559.0
11834 2108
             2019-07-27 14:01:13
                                        1562.0
11835 2108
             2019-07-27 15:10:40
                                        1587.0
11836 2108
             2019-07-27 15:17:49
                                        1582.0
11837 2108
             2019-07-27 15:21:39
                                        1544.0
             2019-07-27 15:32:25
                                        1537.0
11838 2108
             2019-07-27 16:22:44
11839 2108
                                        1582.0
11840 2108
             2019-07-27 16:32:07
                                        1578.0
11841 2108 2019-07-27 16:36:34
                                        1541.0
```

Out[26]:

```
In [26]: print('Количество аномалий температуры (меньше 1500 градусов):') data_temp[data_temp['Температура']<1500]['key'].count()

Количество аномалий температуры (меньше 1500 градусов):
```

Построим график для оценки распределения температуры, без учета аномалии

Out[28]: mean 1590.852729 std 19.143141

Name: Температура, dtype: float64

- Данные имеют нормальное расспределение
- Среднее значение 1590.852729
- Стандартное отклонение 19.143141

Описание данных "data_temp":

- Данные состоят из 18092 объектов
- Имееют 3 признака:
 - кеу номер партии
 - Время замера
 - Температура
- Присутствуют пропуски в признаке "Температура". Вероятно, в некоторых партиях повторные замеры на новых итерациях обработки не проводились, можно заменить на 0
- Явные дубликаты отсутствуют
- Формат признака "Температура" возможно стоит перевести в целое
- Остальные форматы данных соответствуют данным
- Количество уникальных номеров партии = 3214 шт.
- Присутствуют строки с одинаковым значением кеу: они соответствуют разным итерациям обработки
- Максимальное количесвто итераций обработки = 16
- По информации от заказчика температура плавления нашего металла 1500 градусов, все что ниже аномалии, т.е. данные где температуры ниже 1500 градусов удалим (таких данных 5 строк)

"data wire" - данные о проволочных материалах (объём)

```
In [29]: data_info('data_wire', data_wire)
```

Общие сведения "data wire":

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3081 entries, 0 to 3080 Data columns (total 10 columns): # Column Non-Null Count Dtype key 3081 non-null int64 Wire 1 3055 non-null float64 Wire 2 1079 non-null float64 0 2 Wire 3 63 non-null Wire 4 14 non-null float64 3 4 float64 Wire 5 1 non-null float64 Wire 6 73 non-null Wire 7 11 non-null float64 6 float64 Wire 8 19 non-null float64 Wire 9 29 non-null float64

dtypes: float64(9), int64(1)
memory usage: 240.8 KB

Пример данных (случайные 5 строк):

	key	Wire 1	Wire 2	Wire 3	Wire 4	Wire 5	Wire 6	Wire 7	Wire 8	Wire 9
1048	1114	65.005203	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
189	207	107.059677	15.142401	NaN						
164	180	56.259841	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
872	926	77.547600	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1369	1441	130.103988	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Статистика данных:

	key	Wire 1	Wire 2	Wire 3	Wire 4	Wire 5	Wire 6	Wire 7	Wire 8	Wire 9
count	3081.000000	3055.000000	1079.000000	63.000000	14.000000	1.000	73.000000	11.000000	19.000000	29.000000
mean	1623.426485	100.895853	50.577323	189.482681	57.442841	15.132	48.016974	10.039007	53.625193	34.155752
std	932.996726	42.012518	39.320216	99.513444	28.824667	NaN	33.919845	8.610584	16.881728	19.931616
min	1.000000	1.918800	0.030160	0.144144	24.148801	15.132	0.034320	0.234208	45.076721	4.622800
25%	823.000000	72.115684	20.193680	95.135044	40.807002	15.132	25.053600	6.762756	46.094879	22.058401
50%	1619.000000	100.158234	40.142956	235.194977	45.234282	15.132	42.076324	9.017009	46.279999	30.066399
75%	2434.000000	126.060483	70.227558	276.252014	76.124619	15.132	64.212723	11.886057	48.089603	43.862003
max	3241.000000	330.314424	282.780152	385.008668	113.231044	15.132	180.454575	32.847674	102.762401	90.053604

```
key - 0 шт. - 0.00%

Wire 1 - 26 шт. - 0.84%

Wire 2 - 2002 шт. - 64.98%

Wire 3 - 3018 шт. - 97.96%

Wire 4 - 3067 шт. - 99.55%

Wire 5 - 3080 шт. - 99.97%

Wire 6 - 3008 шт. - 97.63%

Wire 7 - 3070 шт. - 99.64%

Wire 8 - 3062 шт. - 99.38%

Wire 9 - 3052 шт. - 99.06%
```

Количество пропусков по столбцам:

Количество уникальных значений в столбцах:

```
key - 3081
Wire 1 - 2251
Wire 2 - 713
Wire 3 - 56
Wire 4 - 14
Wire 5 - 1
Wire 6 - 69
Wire 7 - 10
Wire 8 - 13
Wire 9 - 25
```

Количество явных дубликатов: 0 шт.

Проверим количество уникальных ключей и измерений по ним

```
In [30]: data wire['key'].value counts()
         2049
                  1
Out[30]:
         2664
                  1
         2590
                  1
         543
                  1
         2592
                  1
         1090
         3139
                  1
         1092
                  1
         3141
                  1
         2047
         Name: key, Length: 3081, dtype: int64
```

Описание данных "data_wire":

- Данные состоят из 3081 объекта
- Имееют 10 признаков:
 - кеу номер партии
 - 9 признаков "Wire" о проволочных материалах (объём)
- Пропуски присутствуют во всех признаках "Wire"
- Явные дубликаты отсутствуют
- Форматы данных соответствуют данным
- Количество уникальных номеров партии = 3081 шт.
- Все строки с уникальными значениями кеу
- С учетом уникальности всех строк по номерам партии, можно предположить что каждый из 10 признаков "Wire" это уникальный проволочный материал, который добавляется при необходимости. Соответственно пропуски в данных признаках просто означают отсутствие добавки, можно заменить на 0

"data_wire_time" - данные о проволочных материалах (время)

```
In [31]: data_info('data_wire_time', data_wire_time)
```

Общие сведения "data_wire_time":

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3081 entries, 0 to 3080 Data columns (total 10 columns):
Column Non-Null Count Dtype key 3081 non-null int64
Wire 1 3055 non-null datetime64[ns]
Wire 2 1079 non-null datetime64[ns]
Wire 3 63 non-null datetime64[ns]
Wire 4 14 non-null datetime64[ns] 0 1 2 3 4 Wire 5 1 non-null datetime64[ns]
Wire 6 73 non-null datetime64[ns]
Wire 7 11 non-null datetime64[ns] 5 6 7 8 Wire 8 19 non-null 9 Wire 9 29 non-null datetime64[ns] datetime64[ns]

dtypes: datetime64[ns](9), int64(1)

memory usage: 240.8 KB

Пример данных (случайные 5 строк):

	key	Wire 1	Wire 2	Wire 3	Wire 4	Wire 5	Wire 6	Wire 7	Wire 8	Wire 9
1048	1114	2019-06-14 23:55:01	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
189	207	2019-05-11 09:58:13	2019-05-11 09:53:42	NaT						
164	180	2019-05-10 13:00:19	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
872	926	2019-06-08 07:12:11	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
1369	1441	2019-06-26 13:26:36	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT

Статистика данных:

	Wire 6	Wire 5	Wire 4	Wire 3	Wire 2	Wire 1	key	
	73	1	14	63	1079	3055	3081.000000	count
2019 01:16:08.0909	2019-07-07 11:51:15.095890432	2019- 08-13 06:14:30	2019-07-11 13:44:37	2019-07-10 15:09:58.650793472	2019-07-07 01:07:08.735866624	2019-07-05 23:22:34.279541760	1623.426485	mean
2019 0ŧ	2019-05-07 14:46:05	2019- 08-13 06:14:30	2019-05-07 15:19:17	2019-05-04 04:34:27	2019-05-03 13:15:34	2019-05-03 11:06:19	1.000000	min
2019 16	2019-05-08 21:47:30	2019- 08-13 06:14:30	2019-07-20 17:58:53.750000128	2019-06-11 14:17:38.500000	2019-06-05 14:50:26.500000	2019-06-04 19:30:11.500000	823.000000	25%
2019 21	2019-07-28 05:00:32	2019- 08-13 06:14:30	2019-07-27 05:45:26.500000	2019-07-21 10:04:47	2019-07-04 23:13:39	2019-07-03 06:36:23	1619.000000	50%
2019 02:02:55.£	2019-08-13 13:33:02	2019- 08-13 06:14:30	2019-07-27 16:20:04.750000128	2019-08-12 22:54:46	2019-08-08 23:15:17	2019-08-08 08:56:06.500000	2434.000000	75%
2019 10	2019-08-18 19:10:56	2019- 08-13 06:14:30	2019-08-13 03:16:45	2019-09-02 07:14:44	2019-09-06 07:35:40	2019-09-06 17:10:06	3241.000000	max
	NaN	NaN	NaN	NaN	NaN	NaN	932.996726	std

```
key - 0 шт. - 0.00%

Wire 1 - 26 шт. - 0.84%

Wire 2 - 2002 шт. - 64.98%

Wire 3 - 3018 шт. - 97.96%

Wire 4 - 3067 шт. - 99.55%

Wire 5 - 3080 шт. - 99.97%

Wire 6 - 3008 шт. - 97.63%

Wire 7 - 3070 шт. - 99.38%
```

Wire 9 - 3052 шт. - 99.06%

Количество пропусков по столбцам:

Количество уникальных значений в столбцах:

```
key - 3081
Wire 1 - 3055
Wire 2 - 1079
Wire 3 - 63
Wire 4 - 14
Wire 5 - 1
Wire 6 - 73
Wire 7 - 11
Wire 8 - 19
Wire 9 - 29
```

Количество явных дубликатов: 0 шт.

Проверим количество уникальных ключей и измерений по ним

```
In [32]: data_wire_time['key'].value_counts()
         2049
                 1
         2664
                 1
         2590
                  1
         543
                 1
         2592
                 1
         1090
         3139
                 1
         1092
                 1
         3141
         2047
         Name: key, Length: 3081, dtype: int64
```

Описание данных "data_wire_time":

- Данные состоят из 3081 объектов
- Имееют 10 признаков:
 - key номер партии
 - 9 признаков "Wire" о проволочных материалах (время)
- Пропуски присутствуют во всех признаках "Wire"
- Явные дубликаты отсутствуют
- Форматы данных соответствуют данным
- Количество уникальных номеров партии = 3129 шт.
- Все строки с уникальными значениями кеу
- С учетом уникальности всех строк по номерам партии, можно предположить что каждый из 9 признаков "Wire" это уникальный проволочный материал, который добавляется при необходимости. Соответственно пропуски в данных признаках просто означают отсутствие добавки, можно заменить на 0

Вывод по разделу "Изучение и анализ данных"

- Все нужные признаки необходимо объеденить в одну **итоговую таблицу** для обучения
- Названия признаков в разных таблицах имеют разный стиль и язык. В итоговой таблице можно все признаки привести к единому стилю, но возможно заказчику удобнее воспринимать в том виде, в котором были предоставлены данные. (В текущем проекте оставим как есть, в реальной жизни нужно было бы уточнить этот момент у заказчика)
- Количество уникальных ключей "key" во всех данных разное, значит в итоговой таблице для обучения оставим максимум

3081 наблюдение

- · data arc:
 - Можно создать признак "время нагрева дугой" (длительность)
 - Можно создать признак "полная мощность" и удалить активную и реактивную мощности. Полная мощность рассчитывается по формуле: \$S=\sqrt{P^2+Q^2}\$, где \$S\$ Полная мощность, \$P\$ Активная мощность, \$Q\$ Реактивная мошность
 - В данных, где по одному ключу больше одного измерения агрегируем по среднему значению
- data_bulk и data_wire:
 - Пропуски в данных заменим на значение 0
- data_bulk_time и data_wire_time не будем использовать при обучении
- data_gas оставляем как есть
- · data_temp:
 - Содержит целевой признак финальную температуру
 - Не будем использовать для обучения промежуточные измерения температуры
 - Начальную температуру оставим для обучения в качестве отдельного признака
 - Можно создать признак "Длительность замеров"

Предобработка и подготовка данных для обучения

Обработка пропусков и аномалий

Аномалии присутствуют в признаках:

- "Реактивная мощность" таблицы data_arc (значения меньше 0)
- "Температура" таблицы data_temp (значения меньше 1500)
- Удалим все замеры партии с аномалями

Пропуски присутствуют в признаках:

- "Bulk 1-15" таблицы data bulk (заменим на 0)
- "Bulk 1-15" таблицы data_bulk_time (данные не будут использоваться для обучения, оставим как есть)
- "Температура" таблицы data_temp (партии с одним измерением не будут использоваться для обучения, в нашем случае пропуски означают отсутствие измерений, удалим все пропуски)
- "Wire 1-9" таблицы data_wire (заменим на 0)
- "Wire 1-9" таблицы data_wire_time (данные не будут использоваться для обучения, оставим как есть)

Удалим все замеры партии с аномалями

```
In [33]: key_zero = data_arc[data_arc['Peakтивная мощность']<=0]['key'].unique()
    data_arc = data_arc[~data_arc['key'].isin(key_zero)]

In [34]: key_zero = data_temp[data_temp['Temneparypa']<=1500]['key'].unique()
    data_temp = data_temp[~data_temp['key'].isin(key_zero)]</pre>
```

Избавимся от пропусков

```
In [37]: data_bulk = data_bulk.fillna(0)
    data_wire = data_wire.fillna(0)
    data_temp = data_temp.fillna(0)
```

Проверка типов данных

- При загрузке данных мы сразу изменили тип данных на data, где это было необходимо
- Нужно проверить и при необходимости заменить на целочисленный тип данных признак "Температура" в таблице *data_temp* и признаки "Bulk 1-15" в таблице *data_bulk*
- Остальные типы данных соответствуют значениям

Проверим столбец "Температура":

```
In [38]: isint(data_temp, 'Температура')
```

Все числа целые

Проверим столбцы "Bulk":

```
In [39]: for i in range(1, len(data_bulk.axes[1])):
    print('Bulk ' + str(i))
    isint(data_bulk, 'Bulk '+ str(i))
```

Bulk 1 Все числа целые Bulk 2 Все числа целые Bulk 3 Все числа целые Bulk 4 Все числа целые Bulk 5 Все числа целые Bulk 6 Все числа целые Bulk 7 Все числа целые Bulk 8 Все числа целые Bulk 9 Все числа целые Bulk 10 Все числа целые Bulk 11 Все числа целые Bulk 12 Все числа целые Bulk 13 Все числа целые Bulk 14 Все числа целые Bulk 15 Все числа целые

Все значения в признаках являются int (целочисленными), хотя формат установлен float (дробные, с плавающей точкой). Изменим тип данных на более подходящий

```
In [40]: data_temp['Temneparypa'] = data_temp['Temneparypa'].astype(int)
In [41]: for i in range(1, len(data_bulk.axes[1])):
    data_bulk['Bulk ' + str(i)] = data_bulk['Bulk ' + str(i)].astype(int)
```

Создание единой таблицы

Создадим новые признаки

```
Out[42]:
                  key Время нагрева Полная мощность
               0
                                219.60
                                                 0.743747
                     2
                                202.75
                                                0.647087
               2
                     3
                                131.00
                                                 1.003845
               3
                     4
                                185.25
                                                 0.850010
                                217.25
               4
                     5
                                                 0.704245
           3208 3237
                                181.80
                                                 0.650131
           3209 3238
                                182.00
                                                 0.574646
           3210 3239
                                152.00
                                                0.751810
           3211 3240
                                                 0.816584
                                167.80
           3212 3241
                                131.80
                                                0.744576
```

3213 rows × 3 columns

```
.reset_index())

data_temp.columns = data_temp.columns.droplevel()
data_temp.columns = ['key', 'Начальная температура', 'Финальная температура', 'Длительность измерений']
data_temp
data_temp
```

кеу Начальная температура Финальная температура Длительность измерений Out[43]: 3237 3238 3239

3209 rows × 4 columns

3240

3241

Out[44]

```
In [44]: key_zero = data_temp[(data_temp['Начальная температура']==0) | (data_temp['Финальная температура']==0)]['key'].
data_temp = data_temp[~data_temp['key'].isin(key_zero)]
data_temp
```

:		key	Начальная температура	Финальная температура	Длительность измерений
	0	1	1571	1613	1714
	1	2	1581	1602	1265
	2	3	1596	1599	1753
	3	4	1601	1625	1220
	4	5	1576	1602	1536
	2466	2495	1570	1591	1380
	2467	2496	1554	1591	1705
	2468	2497	1571	1589	962
	2469	2498	1591	1594	1520
	2470	2499	1569	1603	1537

2471 rows × 4 columns

Создадим единую таблицу

ut[45]:		key	Время нагрева	Полная мощность	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	Bulk 7	 Wire 4	Wire 5	Wire 6	Wire 7	Wire 8	Wire 9	Газ 1	Начальн температу
	0	1	219.600000	0.743747	0	0	0	43	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	29.749986	15
	1	2	202.750000	0.647087	0	0	0	73	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	12.555561	15
	2	3	131.000000	1.003845	0	0	0	34	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	28.554793	15
	3	4	185.250000	0.850010	0	0	0	81	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	18.841219	16
	4	5	217.250000	0.704245	0	0	0	78	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	5.413692	15
	2319	2495	180.750000	0.967180	0	0	21	0	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	7.125735	15
	2320	2496	156.666667	0.845053	0	0	0	63	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	9.412616	15
	2321	2497	189.666667	1.453639	0	0	0	85	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	6.271699	15
	2322	2498	150.000000	0.781983	0	0	90	0	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	14.953657	15
	2323	2499	220.750000	0.542313	0	0	47	0	0	0	0	 0.0	0.0	0.0	0.0	0.0	0.0	11.336151	15
	2324 r	ows ×	31 columns																

Переименуем все признаки в единый стиль

```
In [46]:
                                  'Bulk 1' : 'bulk_1',
                                  'Bulk 2' : 'bulk_2',
'Bulk 3' : 'bulk_3',
                                  'Bulk 4' : 'bulk_4',
                                  'Bulk 5' : 'bulk 5',
                                  'Bulk 6' : 'bulk_6',
                                  'Bulk 7' : 'bulk_7',
                                  'Bulk 8' : 'bulk 8',
                                  'Bulk 9' : 'bulk_9'
                                  'Bulk 10' : 'bulk_10',
'Bulk 11' : 'bulk_11',
                                  'Bulk 12' : 'bulk 12',
                                  'Bulk 13' : 'bulk_13',
                                  'Bulk 14' : 'bulk 14',
                                  'Bulk 15' : 'bulk_15',
                                  'Wire 1' : 'wire\overline{1}',
                                  'Wire 2' : 'wire_2',
                                  'Wire 3' : 'wire_3',
                                  'Wire 4' : 'wire_4',
                                  'Wire 5' : 'wire_5',
                                  'Wire 6' : 'wire_6',
                                  'Wire 7' : 'wire_7',
                                  'Wire 8' : 'wire 8',
                                  'Wire 9' : 'wire_9',
'Fas 1' : 'gas',
                                  'Начальная температура' : 'start_temp',
                                  'Финальная температура' : 'final_temp',
'Длительность измерений' : 'measur_duration'},
                        inplace=True)
```

После объединения данных признак "key" нам больше не потребуется. Удалим его

```
In [47]: data = data.drop('key', axis=1)
```

Проверим все признаки на наличие "нулевых"

```
In [48]: zero_list = []
for col in data:
    zero_list = iszero(data, col, zero_list)
print('Список нулевых столбцов:', zero_list)

Список нулевых столбцов: ['wire_5']
Удалим "нулевой" признак
```

```
In [49]: data = data.drop(zero_list, axis=1)
```

Корреляция данных

Оценим корреляцию признаков

```
In [50]: plt.figure(figsize=(25, 25))
matrix = np.triu(data.corr())
```

```
heatmap = sns.heatmap(data.corr(),
                       annot=True,
                       mask=matrix,
                       square=True,
                       cmap='RdBu r',
                       cbar=False,
                       vmin=-1, vmax=1,
                       fmt='.1g');
```


Оценим корреляцию целевого признака

```
In [51]:
              col_del = []
               corr_info(data, col_del, 'final_temp')
              Корреляция признаков:
                          -1.00
                                              -0.75
                                                                  -0.50
                                                                                      -0.25
                                                                                                          0.00
                                                                                                                              0.25
                                                                                                                                                  0.50
                                                                                                                                                                      0.75
                                                                                                                                                                                          1.00
                            0.2 0.040.080.080.04<mark>0.2</mark>-0.03-0.2 -0.1-0.030.020.06-0.1 <mark>0.3 -</mark>0.010.1 <mark>0.3 0.3 -</mark>0.2-0.05-0.2-0.08-0.1-0.010.030.06 <u>0.3</u>
                                                                                                           bulk_13
                                                                     bulk_6
                                                                                bulk_8
                                                                                     bulk_9
                                                                                           bulk_10
                                                                                                      bulk_12
                                                                                                                 bulk_14
                                                                                                                       bulk_15
                                                                                               bulk_11
                                                                                                                                                                                   final_temp
                                                                bulk 5
                                                     bulk
                                                                           bulk
```

Коэффициент корреляции: 0.193524 Слабая прямая связь

Корреляция между final_temp и full_power: Коэффициент корреляции: 0.037525

Слабая прямая связь

Корреляция между final temp и bulk 1: Коэффициент корреляции: -0.075428

Слабая обратная связь

Корреляция между final temp и bulk 2: Коэффициент корреляции: -0.082543 Слабая обратная связь

Koppeляция между final_temp и bulk_3: Коэффициент корреляции: -0.037156 Слабая обратная связь

Koppeляция между final_temp и bulk_4: Коэффициент корреляции: 0.187817 Слабая прямая связь

Корреляция между final temp и bulk 5: Коэффициент корреляции: -0.028446 Слабая обратная связь

Корреляция между final temp и bulk 6: Коэффициент корреляции: -0.180906 Слабая обратная связь

Корреляция между final temp и bulk 7: Коэффициент корреляции: -0.107371 Слабая обратная связь

Корреляция между final temp и bulk 8: Коэффициент корреляции: -0.026613 Слабая обратная связь

Корреляция между final temp и bulk 9: Коэффициент корреляции: -0.016130 Слабая обратная связь

Koppeляция между final_temp и bulk_10: Коэффициент корреляции: 0.061227 Слабая прямая связь

Корреляция между final temp и bulk 11: Коэффициент корреляции: -0.114936 Слабая обратная связь

Koppeляция между final_temp и bulk_12: Коэффициент корреляции: 0.266805 Слабая прямая связь

Корреляция между final temp и bulk 13: Коэффициент корреляции: -0.010974 Слабая обратная связь

Корреляция между final temp и bulk 14: Коэффициент корреляции: 0.114893 Слабая прямая связь

Корреляция между final temp и bulk 15: Коэффициент корреляции: 0.265772 Слабая прямая связь

Корреляция между final temp и wire 1: Коэффициент корреляции: 0.317488 Средняя прямая связь

Корреляция между final temp и wire 2: Коэффициент корреляции: -0.207242 Слабая обратная связь

Koppeляция между final_temp и wire_3: Коэффициент корреляции: -0.047636 Слабая обратная связь

Koppeляция между final_temp и wire_4: Коэффициент корреляции: -0.159839 Слабая обратная связь

Koppeляция между final_temp и wire_6: Коэффициент корреляции: -0.084149 Слабая обратная связь

Корреляция между final temp и wire 7: Коэффициент корреляции: -0.137349

```
Слабая обратная связь
         Корреляция между final temp и wire 8:
         Коэффициент корреляции: -0.010818
          Слабая обратная связь
         Корреляция между final temp и wire 9:
         Коэффициент корреляции: -0.027561
          Слабая обратная связь
         Корреляция между final_temp и gas:
         Коэффициент корреляции: 0.059079
          Слабая прямая связь
         Корреляция между final temp и start temp:
         Коэффициент корреляции: 0.301882
          Средняя прямая связь
         Корреляция между final temp и measur duration:
         Коэффициент корреляции: 0.096126
          Слабая прямая связь
         Тор-5 прямой связи:
         wire 1
                      0.317488
         start_temp 0.301882
         bulk 12
                      0.266805
                     0.265772
         bulk 15
         heat time 0.193524
         Тор-5 обратной связи:
         wire 2
                   -0.207242
         bulk 6
                   -0.180906
                  -0.159839
         wire 4
         wire 7
                   -0.137349
         bulk 11 -0.114936
         Удалим один из сильнокоррелирующих признаков
In [52]: data = data[data['wire_8']==0]
```

Создание целевого и вспомогательных признаков

```
In [53]: features, target = split_target(data, 'final_temp')
```

Создание обучающей и тестовой выборки

```
In [54]: features_train, features_test, target_train, target_test = split_data(features, target, 0, 0.25)

Вспомогательные признаки:

features_train - Объектов: 1733 шт., признаков: 28 шт. - 74.99%
features_test - Объектов: 578 шт., признаков: 28 шт. - 25.01%

Целевые признаки:

target_train - Объектов: 1733 шт. - 74.99%
target_test - Объектов: 578 шт. - 25.01%
```

Вывод по разделу "Предобработка и подготовка данных для обучения"

- Создали единую таблицу для обучения
 - Данные состоят из 2329 объектов
 - Имеют 1 целевой и 27 вспомогательных признаков
- Создали новые признаки:
 - Время нагрева дугой
 - Полная мощность
 - Начальная температура
 - Финальная температура (целевой признак)
 - Длительность измерений температуры
- Удалили нулевой признак "wire_5"
- Удалили номер партии "key"
- Оценили корреляцию всех признаков:
 - Полная прямая связь между "wire_8" и "bulk_9", вероятно эти добавки применяются одновременно
 - Удалили один из сильнокоррелирующих признаков "wire_8"
 - Сильная прямая связь между "wire_4", "bulk_2" и "bulk_7", вероятно эти добавки применяются одновременно в

большинстве случаев

- Оценили корреляцию целевого признака:
 - Наибольшая прямая связь с wire_1 start_temp и bulk_12
 - Наибольшая обратная связь с wire_2 bulk_6 и wire_4
- Создали целевой и вспомогательные признаки
- Создали обучающую и тестовую выборки
 - Тестовая выборка = 25%

Обучение моделей

Создадим переменную для хранения статистики

```
In [55]: stat =[]
```

LinearRegression()

```
In [56]:
         %time
         lr = make_pipeline(RobustScaler(), LinearRegression())
         lr_params = {'linearregression_normalize':[True, False],
                       'linearregression__fit_intercept':[True, False]}
         grid_lr = GridSearchCV(lr, param_grid=lr_params, scoring='neg_mean_absolute_error', verbose=1)
         grid_lr.fit(features_train, target_train)
         mae lr = abs(grid lr.best score )
         stat.append(['LinearRegression', round(mae_lr, 5)])
         print('Лучшие параметры модели:')
         print(grid lr.best params )
         print()
print('MAE:', mae_lr)
         print()
         Fitting 5 folds for each of 4 candidates, totalling 20 fits
         Лучшие параметры модели:
         {'linearregression fit intercept': True, 'linearregression normalize': False}
         MAE: 6.818117270245554
         CPU times: user 1.85 s, sys: 2.44 s, total: 4.29 s
         Wall time: 4.22 s
```

RandomForestRegressor()

```
In [57]: %time
         forest = RandomForestRegressor(random_state=r_state)
         forest_params = {'n_estimators': [120, 200, 300, 500],
                           'max_depth': [8, 15, 30],
                           'min_samples_leaf': [2, 6, 10]
                           'min_samples_split': [2, 5, 15]}
         grid forest = GridSearchCV(forest, forest params, scoring='neg mean absolute error', cv=5, verbose=1)
         grid_forest.fit(features_train, target_train)
         mae forest = abs(grid forest.best score_)
         stat.append(['RandomForestRegressor', round(mae_forest, 5)])
         print('Лучшие параметры модели:')
         print(grid_forest.best_params_)
         print()
         print('MAE:', mae_forest)
         print()
         Fitting 5 folds for each of 108 candidates, totalling 540 fits
         Лучшие параметры модели:
         {'max_depth': 15, 'min_samples_leaf': 2, 'min_samples_split': 5, 'n_estimators': 300}
         MAE: 6.623978032245641
         CPU times: user 14min 24s, sys: 2.12 s, total: 14min 26s
         Wall time: 14min 27s
```

LGBMRegressor()

```
gbm = make_pipeline(RobustScaler(), LGBMRegressor(boosting_type='gbdt', seed=r_state))
gbm_params = {'lgbmregressor_learning_rate':[0.01, 0.05, 0.2],
               'lgbmregressor_n_estimators': [200, 400],
'lgbmregressor_objective' : ['regression',
'lgbmregressor_max_depth' : [10, 55, 100]}
                                                               'regression l1', 'mape'],
grid gbm = GridSearchCV(gbm, gbm params, cv=5, scoring='neg mean absolute error', verbose=1)
grid gbm.fit(features train, target train)
mae_gbm = abs(grid_gbm.best_score_)
stat.append(['LGBMRegressor', round(mae gbm, 5)])
print('Лучшие параметры модели:')
print(grid gbm.best params )
print()
print('MAE:', mae_gbm)
print()
Fitting 5 folds for each of 54 candidates, totalling 270 fits
Лучшие параметры модели:
{'lgbmregressor_learning_rate': 0.05, 'lgbmregressor_max_depth': 10, 'lgbmregressor_n_estimators': 400, 'lgb
mregressor__objective': 'mape'}
MAE: 6.521798343130875
```

CatBoostRegressor()

Wall time: 22min 57s

Fitting 5 folds for each of 27 candidates, totalling 135 fits

CPU times: user 22min 34s, sys: 13.3 s, total: 22min 47s

Анализ моделей

```
In [ ]: stat_df = pd.DataFrame(stat, columns =['Модель', 'МАЕ'])
    stat_df['Выполнение задачи'] = stat_df['MAE'] < 6.8
    stat_df.sort_values(by='MAE')</pre>
```

Лучшая модель согласно нашему рейтингу - CatBoostRegressor

Проверим ее на тестовой выборке

```
In []: stat_final = []
In []: target_predict_cbr = grid_cbr.best_estimator_.predict(features_test)
    mae_test_cbr = mae(target_test, target_predict_cbr)
In []: stat_final.append(['CatBoostRegressor на тестовой выборке', round(mae_test_cbr, 5)])
    stat_final.append(['CatBoostRegressor на кросс-валидации', round(mae_cbr, 5)])
```

Проверка модели на адекватность

```
In [ ]: for strategy in ['mean', 'median']:
    dummy = DummyRegressor(strategy=strategy)
    dummy.fit(features_train, target_train)
    predict = dummy.predict(features_test)
    mae_dummy = mae(target_test, predict)
```

```
stat_final.append([('DummyRegressor ' + str(strategy)), round(mae_dummy, 5)])

In []: stat_df_final = pd.DataFrame(stat_final, columns =['Модель', 'МАЕ'])
stat_df_final['Выполнение задачи'] = stat_df_final['MAE'] < 6.8
stat_df_final
```

Вывод по разделу "Обучение моделей"

- Обучили 4 модели:
 - LinearRegression
 - RandomForestRegressor
 - LGBMRegressor'
 - CatBoostRegressor
- Лучший результат показала модель CatBoostRegressor
 - МАЕ на кросс-валидации: 6.47562
- Протестировали лучшую модель
 - МАЕ на тестовой выборке: 6.62520
 - Приемлемый результат (критерий MAE < 6.8)
 - Для улучшения результата необходимо подробнее изучить начальные данные и выбросы в них, так же протестировать другие значения параметров выбранных нами моделей, либо попробовать другие модели обучения
- Сравнили нашу модель с "константной" для проверки на адекватность
 - МАЕ "константной" модели со стратегией "среднее": 8.73724
 - МАЕ "константной" модели со стратегией "медианое": 8.83737
 - У нашей модели значение МАЕ значительно лучше, наша модель адекватна

Анализ значимости признаков

Анализ

Вывод по разделу "Анализ значимости признаков"

- Количество значимых признаков для нашей лучшей модели: 24 из 27
 - 3 признака имеют нулевую оценку значимости
- Наиболее значимые признаки:
 - start_temp
 - heat_time
 - measur duration
 - wire_1
 - bulk 14

Общий вывод

Проведено исследование с целью построить модель, которая предскажет температуру стали.

Основной критерий:

• Значение метрики МАЕ на тестовой выборке не должно превышать 6.8

Данные состояли из файлов, полученных из разных источников:

- data_arc_new.csv данные об электродах;
- data_bulk_new.csv данные о подаче сыпучих материалов (объём);
- data_bulk_time_new.csv данные о подаче сыпучих материалов (время);
- data_gas_new.csv данные о продувке сплава газом;

- data_temp_new.csv результаты измерения температуры;
- data wire new.csv данные о проволочных материалах (объём);
- data wire time new.csv данные о проволочных материалах (время).

Исследование проходило в четыре этапа:

- 1. Подготовка данных:
 - Загрузка данных
 - Изучение и анализ данных
 - Принятые решения по итогам этапа:
 - Все нужные признаки необходимо объеденить в одну итоговую таблицу для обучения
 - **Названия признаков** в разных таблицах имеют разный стиль и язык. В итоговой таблице нужно все признаки привести к единому стилю
 - Количество уникальных ключей "key" во всех данных разное, они соответствуют разным итерациям обработки
 - data_arc:
 - Создадим признак "время нагрева дугой" (длительность)
 - Создадим признак "полная мощность" и удалим активную и реактивную мощности. Полная мощность
 рассчитывается по формуле: \$S=\sqrt{P^2+Q^2}\$, где \$S\$ Полная мощность, \$P\$ Активная мощность, \$Q\$ Реактивная мощность
 - В данных, где по одному ключу больше одного измерения агрегируем по среднему значению
 - data_bulk и data_wire:
 - Пропуски в данных заменим на значение 0
 - data_bulk_time и data_wire_time не будем использовать при обучении
 - data_gas оставляем как есть
 - data_temp:
 - Содержит целевой признак финальную температуру
 - Не будем использовать для обучения промежуточные измерения температуры
 - Начальную температуру оставим для обучения в качестве отдельного признака
 - Создадим признак "Длительность замеров"
- 1. Предобработка и подготовка данных для обучения:
 - Проверка типов данных
 - Обработка пропусков
 - Создание единой таблицы
 - Проверка корреляции признаков
 - Удаление признаков, не влияющих на целевой признак
 - Создание целевого и вспомогательных признаков
 - Создание обучающей и тестовой выборки (тестовая выборка = 25%)
 - Итог этапа:
 - Создали единую таблицу для обучения
 - Данные состоят из 2329 объектов
 - Имеют 1 целевой и 27 вспомогательных признаков
 - Создали новые признаки:
 - Время нагрева дугой
 - Полная мощность
 - Начальная температура
 - Финальная температура (целевой признак)
 - Длительность измерений температуры
 - Удалили нулевой признак "wire_5"
 - Удалили номер партии "key"
 - Оценили корреляцию всех признаков:
 - Полная прямая связь между "wire 8" и "bulk 9", вероятно эти добавки применяются одновременно
 - Удалили один из сильнокоррелирующих признаков "wire_8"
 - Сильная прямая связь между "wire_4", "bulk_2" и "bulk_7", вероятно эти добавки применяются одновременно в большинстве случаев
 - Оценили корреляцию целевого признака:
 - Наибольшая прямая связь с wire 1 start_temp и bulk 12
 - Наибольшая обратная связь с wire 2 bulk 6 и wire 4
 - Создали целевой и вспомогательные признаки
 - Создали обучающую и тестовую выборки
 - Тестовая выборка = 25%
- 1. Обучение моделей
 - 2-3 простых моделей

- 2-3 модели градиентного бустинга
- Анализ обученых моделей и выбор лучшей
- Тестирование лучшей модели на тестовой выборке
- Проверка модели на адекватность
- Итоги этапа:
 - Обучили 4 модели:
 - LinearRegression
 - RandomForestRegressor
 - · LGBMRegressor'
 - CatBoostRegressor
 - Лучший результат показала модель CatBoostRegressor
 - МАЕ на кросс-валидации: 6.47562
 - Протестировали лучшую модель
 - МАЕ на тестовой выборке: 6.62520
 - Приемлемый результат (критерий МАЕ < 6.8)
 - Для улучшения результата необходимо подробнее изучить начальные данные и выбросы в них, так же
 протестировать другие значения параметров выбранных нами моделей, либо попробовать другие модели обучения
 - Сравнили нашу модель с "константной" для проверки на адекватность
 - МАЕ "константной" модели со стратегией "среднее": 8.73724
 - МАЕ "константной" модели со стратегией "медианое": 8.83737
 - У нашей модели значение МАЕ значительно лучше, наша модель адекватна
- 1. Анализ значимости признаков
 - Итоги этапа:
 - Количество значимых признаков для нашей лучшей модели: 24 из 27
 - 3 признака имеют нулевую оценку значимости
 - Наиболее значимые признаки:
 - start temp
 - heat_time
 - measur duration
 - wire 1
 - o bulk 14

Loading [MathJax]/extensions/Safe.js