Started on	Wednesday, 30 April 2025, 2:24 PM	
State	Finished	
	Wednesday, 30 April 2025, 2:30 PM	
Time taken		
Marks		
Grade	93.33 out of 100.00	
Question 1		
Complete		
Mark 1.00 out of 1.00		
A + +	k :	
A tree is a graph that	. 15.	
a. Directed and	d cyclic	
☑ b. Undirected and acyclic		
c. Directed and	c. Directed and acyclic	
d. Undirected	and cyclic	
Question 2		
Complete		
Mark 1.00 out of 1.00		
In an undirected gra	ph with no self-loops, the degree of a vertex is defined as:	
a. The number	of edges connected to the vertex	
b. The number	of nodes in the graph	
c. The number	of edges in the graph	
d. The number	of times a node appears	
Question 3		
Complete		
Mark 1.00 out of 1.00		
What does the term	"connected graph" mean?	
a. There is no	edge between any two nodes	
b. All vertices h	nave the same degree	
c. The graph c	ontains no cycles	
d. All vertices a	are reachable from every other vertex	

Question 4
Complete
Mark 0.00 out of 1.00
In DFS, what is the main data structure used?
a. Priority Queue
□ b. Stack ☑ c. Queue
d. Bellman-Ford
u. Bellinan-i old
Question 5
Complete
Mark 1.00 out of 1.00
Which data structure is most suitable for representing a sparse graph?
a. Incidence matrix
☐ b. Adjacency matrix
☐ c. Linked list
☑ d. Adjacency list
Question 6
Complete Mark 1.00 out of 1.00
Wark 1.00 out of 1.00
AND THE CONTRACTOR
Which algorithm is better suited for dense graphs for finding MST?
a. Bellman-Ford
b. Prim's algorithm (with adjacency matrix)
□ c. DFS
d. Kruskal's algorithm
u. Nuskais algoritim

Question 7			
Complete			
Mark 1.00 o	ut of 1.00		
Which o	of the following is not a valid property of a Minimum Spanning Tree (MST)?		
a.	It has no cycles		
✓ b.			
_ c.	c. It connects all vertices		
d.	d. The total edge weight is minimized		
Question 8			
Mark 1.00 o	ut of 1.00		
Which o	of the following can be used to detect a cycle in an undirected graph?		
a.	DFS		
b.	All of the above		
_ c.	BFS		
□ d.	Union-Find		
Question 9 Complete			
Mark 1.00 o	ut of 1.00		
Which o	of the following algorithms is used to find the shortest path in a weighted graph without negative weights?		
a.	Kruskal's algorithm		
v b.	Dijkstra's algorithm		
_ c.	Prim's algorithm		
□ d.	Floyd-Warshall algorithm		

Question 1	0
Complete	
Mark 1.00 o	ut of 1.00
Which t	raversal algorithm uses a queue?
a .	Breadth-First Search
_ b.	Bellman-Ford
_ c.	Dijkstra's Algorithm
□ d.	Depth-First Search
Question 1	1
Complete	
Mark 1.00 o	ut of 1.00
A conne	ected graph with V vertices and V edges must contain:
✓ a.	One cycle
□ b.	Exactly two cycles
_ c.	Multiple components
□ d.	No cycles
Question 1	2
Complete	
Mark 1.00 o	ut of 1.00
What is	a bridge in a graph?
a.	A vertex connected to all other vertices
✓ b.	An edge whose removal increases the number of connected components
□ c.	A loop in a graph
□ d.	A node connecting two cycles

30/25, 2:30 PM	Quiz_30-04-2025: Attempt review
Question 13	
Complete	
Mark 1.00 out of 1.00	
What is a graph in data structures?	
S. Alive Miller	
a. A tree with loops	
b. A linear structure of data	
c. A collection of sorted arrays	
d. A collection of nodes connected by edges	
Question 14	
Complete	
Mark 1.00 out of 1.00	
In a simple undirected graph with in vertices, the maximum a. n(n−1)/2 b. n^2 c. n(n−1)	number of edges is.
☐ d. n(n+1)/2	
Question 15	
Complete	
Mark 1.00 out of 1.00	
What is the time complexity of BFS for a graph with V vertice	es and E edges using adjacency list?
☐ a. O(V^2)	
□ b. O(V log E)	
c. O(E log V)	
☑ d. O(V + E)	