Formulas associated with some common one-sample and two-sample inference problems:

Inference for	Sample Size	Assumptions	Interval	Hypothesis Test	Note
μ (one mean)	large n		$\bar{x} \pm z \frac{s}{\sqrt{n}}$	$H_0: \mu = \#$	use σ instead
			V	$Z = \frac{\bar{x} - \#}{\frac{s}{\sqrt{s}}}$	of s if known
				\dots is std Normal	
				(under H_0)	
	small n	Observations	$\bar{x} \pm t \frac{s}{\sqrt{n}}$	$H_0: \mu = \#$	If σ known,
		Normal and	•	$T = \frac{\bar{x} - \#}{\frac{s}{\sqrt{\alpha}}}$ is t with	std normal
		σ unknown		$df \ \nu = n - 1$	will be used
				(under H_0)	
x_{n+1} (a single		Observations	$\bar{x} \pm ts\sqrt{1+\frac{1}{n}}$		t as
additional observation)		Normal	V		above
$\mu_1 - \mu_2$ (difference	large n_1, n_2	Independent	$\bar{x_1} - \bar{x_2}$	$H_0: \mu_1 - \mu_2 = \#$	use σ 's instead
between 2 means)		Samples	$\pm z\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$Z = \frac{\bar{x_1} - \bar{x_2} - \#}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	of s 's if known
				is std Normal	
				(under H_0)	
	small n_1 or n_2	Independent	$\bar{x_1} - \bar{x_2}$	$H_0: \mu_1 - \mu_2 = \#$	
		Samples and	$\pm t s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$T = \frac{\bar{x_1} - \bar{x_2} - \#}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	
		Normal Obs.		\dots is t with	
		and $\sigma_1 = \sigma_2$	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$df \nu = n_1 + n_2 - 2$	
		(unknown)		$(\text{under } H_0)$ $H_0: \mu_d = \#$	
$\mu_1 - \mu_2$ (difference	large n	Dependent			
between 2 means)	$ (n = n_1 = n_2) $	(paired)	$\bar{d} \pm z \frac{s_d}{\sqrt{n}}$	$Z = \frac{\bar{d} - \#}{\frac{s_d}{\sqrt{n}}}$	
		Samples	$d = x_1 - x_2 \text{ is}$	is std Normal	Formulas
$\mu_d = \mu_1 - \mu_2$	11	D 1	difference data	$(\text{under } H_0)$	match
	small n	Dependent	<u></u>	$H_0: \mu_d = \#$	one mean
	$ (n = n_1 = n_2) $	(paired)	$\bar{d} \pm t \frac{s_d}{\sqrt{n}}$	$T = \frac{\bar{d} - \#}{\frac{s_d}{\sqrt{n}}}$	case - but
		Samples and		\dots is t with	in terms of
		differences		$df \nu = n - 1$	difference
		Normal		$(\text{under } H_0)$	data(d)