Priv.-Doz. Dr. Gerd Herzog M.Sc. Kevin Drescher

7. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2020/21

18. Dezember 2020

Abgabe bis 8. Januar 2021, 12:00 Uhr

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 70 des Vorlesungsskripts behandelt.

Aufgabe 25 (K):

(i) Bestimmen Sie alle $x \in \mathbb{R}$, in denen die folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ stetig sind.

(a)
$$f(x) := \begin{cases} \frac{x^3 - 3x^2}{x^2 - 9}, & x \in \mathbb{R} \setminus \{-3, 3\}, \\ \frac{5}{2}, & x = -3, \\ \frac{3}{2}, & x = 3. \end{cases}$$
 (b) $f(x) := \begin{cases} \frac{x^2 - x}{x^2 - 5x + 4}, & x \in \mathbb{R} \setminus \mathbb{N}, \\ \frac{3x - 10}{x + 2}, & x \in \mathbb{N}. \end{cases}$

(ii) Es seien $f,g:\mathbb{R}\to\mathbb{R}$ stetige Funktionen mit f(x)=g(x) für alle $x\in\mathbb{Q}$. Zeigen Sie, dass dann bereits f(x) = g(x) für alle $x \in \mathbb{R}$ erfüllt ist.

(i) Wie müssen $\alpha, \beta \in \mathbb{R}$ gewählt werden, damit die Funktion $f: (0, \infty) \to \mathbb{R}$,

$$f(x) := \begin{cases} \frac{\sqrt{\frac{1}{x} + 1} - \sqrt{x + 1}}{x - 1}, & \text{für } x > 1, \\ \beta, & \text{für } x = 1, \\ \alpha \frac{x^3 - x^2 + 2x - 2}{x - 1}, & \text{für } 0 < x < 1, \end{cases}$$

auf $(0, \infty)$ stetig ist?

(ii) Es sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit f(0) = 1 und $f(x+y) \leq f(x)f(y)$ für alle $x, y \in \mathbb{R}$. Beweisen Sie die Äquivalenz

f ist stetig \Leftrightarrow f ist stetig in 0.

Aufgabe 27 (K):

(i) Zeigen Sie mithilfe des Zwischenwertsatzes, dass die folgenden Gleichungen eine Lösung x > 0

(a)
$$e^{\cos(x)} - x^7 = \sin(x^3)$$
,

(b)
$$x - \log(1 + x^2) = 100$$
.

(ii) Es sei a>0. Bestimmen Sie die folgenden Grenzwerte. (a) $\lim_{x\to\infty}\frac{\log(x)}{x^a}$, (b) $\lim_{x\to0}\frac{a^x-1}{x}$.

(a)
$$\lim_{x \to \infty} \frac{\log(x)}{x^a},$$

(b)
$$\lim_{x \to 0} \frac{a^x - 1}{x}$$

Aufgabe 28:

(i) Es seien $f: \mathbb{R} \to \mathbb{R}$ stetig und $A, B \subseteq \mathbb{R}$. Beweisen Sie oder widerlegen Sie die folgenden Aussagen:

- (a) A abgeschlossen $\Rightarrow f(A)$ abgeschlossen.
- (b) B abgeschlossen $\Rightarrow f^{-1}(B)$ abgeschlossen.
- (c) A beschränkt $\Rightarrow f(A)$ beschränkt.
- (d) B beschränkt $\Rightarrow f^{-1}(B)$ beschränkt.
- (ii) Es sei $D \subseteq \mathbb{R}$ eine nichtleere Menge. Zeigen Sie, dass D genau dann kompakt ist, wenn jede stetige Funktion auf *D* beschränkt ist.

Information

Aufgrund der aktuellen Situation wird dieses Modul teilweise in digitaler Form angeboten. Die gesamte Abwicklung wird über das System ILIAS stattfinden. Melden Sie sich dafür mit Ihrem KIT-Account an und treten Sie dem Kurs Höhere Mathematik I (Analysis) für die Fachrichtung Informatik bei. Sie können diesem Kurs direkt über folgenden Link beitreten:

 $\verb|https://ilias.studium.kit.edu/goto.php?target=crs_1253943_rcodeHa6wkYEysN&client_id=produktiv|$

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung.

Zum Bearbeiten der Übungsblätter sollten Sie pro Woche etwa 9-10 Seiten des Skripts mithilfe der angebotenen Vorlesungsvideos durcharbeiten. Das kommende Übungsblatt wird den Vorlesungsstoff bis einschließlich Seite 82 beinhalten.

Übungsschein

Jede (K)-Aufgabe wird mit maximal 8 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-6 und 7-13 **jeweils** mindestens 48 bwz. 56 Punkte (50%) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal. Bitte beachten Sie den **Anmeldeschluss** am **21.02.2021**.

Wir wünschen Ihnen frohe Weihnachten und einen guten Rutsch ins neue Jahr!