

IRLR6225PbF

HEXFET® Power MOSFET

V _{DS}	20	V
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	4.0	$\mathbf{m}\Omega$
R _{DS(on) max} (@V _{GS} = 2.5V)	5.2	$\mathbf{m}\Omega$
Q _{g (typical)}	48	nC
R _{G (typical)}	2.2	Ω
I _D	42 ©	Α

 $\stackrel{\text{results in}}{\Rightarrow}$

G	D	S
Gate	Drain	Source

Applications

• Battery Protection Switch

Features and Benefits

Features

Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification

Benefits

Multi-Vendor Co	
Easier Manufac	turing
Environmentally	Friendlier
Increased Relia	bility

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRLR6225PbF	D-PAK	Tube/Bulk	75	
IRLR6225TRPbF	D-PAK	Tape and Reel	2000	

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	20	V
V _{GS}	Gate-to-Source Voltage	±12	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	100©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	63©	Α
I _{DM}	Pulsed Drain Current ①	400	•
P _D @T _C = 25°C	Power Dissipation ©	63	14/
P _D @ T _C = 100°C	Power Dissipation ©	25	W
	Linear Derating Factor S	0.5	W/°C
T _J	Operating Junction and	-55 to + 150	00
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		6.6		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.2	4.0	mΩ	V _{GS} = 4.5V, I _D = 21A ③
			4.2	5.2	msz	V _{GS} = 2.5V, I _D = 17A ③
$V_{GS(th)}$	Gate Threshold Voltage	0.5	0.8	1.1	V	V - V I - 50uA
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-4.0		mV/°C	$V_{DS} = V_{GS}, I_D = 50\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 16V$, $V_{GS} = 0V$
				150	ĮμΑ	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	l na	V _{GS} = -12V
gfs	Forward Transconductance	205			S	$V_{DS} = 10V, I_{D} = 21A$
Q_g	Total Gate Charge		48	72		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		2.6			$V_{DS} = 10V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		3.6		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		19		l nc	I _D = 17A
Q_godr	Gate Charge Overdrive		23		Ī	See Fig.17 & 18
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		23		Ī	
Q _{oss}	Output Charge		21		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_{G}	Gate Resistance		2.2		Ω	
t _{d(on)}	Turn-On Delay Time		9.7			$V_{DD} = 10V, V_{GS} = 4.5V$
t _r	Rise Time		37]	I _D = 17A
t _{d(off)}	Turn-Off Delay Time		63		ns	$R_G=1.8\Omega$
t _f	Fall Time		52			See Fig.15
C _{iss}	Input Capacitance		3770			$V_{GS} = 0V$
C _{oss}	Output Capacitance		915		pF	V _{DS} = 10V
C _{rss}	Reverse Transfer Capacitance		650			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		170	mJ
I _{AR}	Avalanche Current ①		17	Α
E _{AR}	Repetitive Avalanche Energy ①		6.3	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			100®		MOSFET symbol		
	(Body Diode) ©			1000	١,	showing the		
I _{SM}	Pulsed Source Current			400	A	integral reverse		
	(Body Diode) ①				400	400		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 17A$, $V_{GS} = 0V$ ③		
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 25^{\circ}C$, $I_F = 17A$, $V_{DD} = 10V$		
Q _{rr}	Reverse Recovery Charge		57	86	nC	di/dt = 200A/µs ③		
t _{on}	Forward Turn-On Time	Time is	Time is dominated by parasitic Inductance					

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case @		2.0	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ®		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		110	

2 www.irf.com

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

IRLR6225PbF

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14a. Unclamped Inductive Test Circuit

Fig 14b. Unclamped Inductive Waveforms

Fig 15a. Switching Time Test Circuit

Fig 15b. Switching Time Waveforms

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17. Gate Charge Test Circuit

Fig 18. Gate Charge Waveform

6 www.irf.com

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- ⚠— DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- &- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M	DIMENSIONS				
В	MILLIM	ILLIMETERS INCHES		0 I	
0	MIN.	MAX.	MIN.	MAX,	T E S
Α	2.18	2.39	.086	.094	
A1	_	0.13	-	.005	
ь	0.64	0.89	.025	.035	
ь1	0.65	0.79	.025	.031	7
b2	0.76	1,14	.030	.045	
b3	4.95	5.46	.195	.215	4
С	0,46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	7
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
E	6.35	6.73	.250	.265	6
E1	4.32	-	.170	-	4
e	2.29	BSC	.090	BSC	
н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0,51	BSC	.020	BSC	
L3	0,89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1.14	1.52	.045	.060	3
ø	0-	10"	0.	10°	
ø1	0,	15'	0,	15*	
ø2	25'	35*	25*	35*	

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN

IGBT & CoPAK

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120 **PART NUMBER** WITH ASSEMBLY INTERNATIONAL LOT CODE 1234 DATE CODE RECTIFIER IRFR120 ASSEMBLED ON WW 16, 2001 YEAR 1 = 2001 LOGO **IØR** 116A IN THE ASSEMBLY LINE "A" 12 34 WEEK 16 LINE A Note: "P" in assembly line position indicates "Lead-Free" **ASSEMBLY** LOT CODE

"P" in assembly line position indicates
"Lead-Free" qualification to the consumer-level

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

IRLR6225PbF

International IOR Rectifier

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

1. OUTLINE CONFORMS TO EIA-481.

Qualification information[†]

Qualification level	Industrial ^{††} (per JEDEC JES D47F ^{†††} guidelines)		
Moisture Sensitivity Level	D-PAK	MSL1 (per JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- **†**† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- **†††** Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 1.2mH, $R_G = 50\Omega$, $I_{AS} = 17A$.
- 3 Pulse width \leq 400µs; duty cycle \leq 2%.
- 4 R₀ is measured at T_J of approximately 90°C.
- When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
- © Calculated continuouus current based on maximum allowable junction temperature. Package is limited to 42A by production test capability.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105