

A Framework for Building Verified Partial Evaluators

Построение сертифицированных частичных вычислителей

Екатерина Вербицкая

Лаборатория языковых инструментов JetBrains

20.04.2020

Частичные вычисления (partial evaluation)

$$peval(p, s) = p'$$

$$\forall d : \llbracket p' \rrbracket(d) \equiv \llbracket p \rrbracket(s,d)$$

Пример: двоичное возведение в степень

Пример: префикс-суммы

$$sum(lst, I) = \sum_{i=0}^{I} (i * lst[i])$$

 $prefixSum(lst) = reverse\ lst',\$ где $lst'[i] \equiv sum(lst,i)$

Хочется, чтобы в результате специализации получалось следующее:

Зачем нужны частичные вычисления?

Для улучшения производительности реализаций

- Можно писать обобщенные библиотеки, потом специализировать под разные условия
- Улучшать в соответствии с правилами, верными в конкретном домене
- Не надо создавать свой компилятор, который знает про эти правила

Цели и контекст этой работы

- Улучшать существующие библиотеки, не адаптируя их
- Использование в сертифицированных системах
 - Библиотеки реализованы на функциональном подмножестве Соф
 - Частичные вычисления должны производиться быстро и генерировать *пруф-термы*, гарантирующие их корректность
 - Количество доверенных компонент не должно увеличиться (нельзя добавлять новые стратегии редукций в ядро Coq)

Вклад этой работы

- Фреймворк для создания сертифицированных частичных вычислителей
 - Без изменений в Соф
 - Высокая скорость частичных вычислений
 - Использование для частичных вычисления definitional equality и пользовательских теорем
 - Переиспользование общих подтермов
 - Извлечение частичных вычислителей
 - Поддержка правил переписывания с дополнительными условиями
- Эвалюация на Соф библиотеке для криптографии Fiat Cryptography

Поддерживаются:

- Функции высших порядков
- Индуктивные типы данных
- Арифметические законы

Пример про префикс-суммы

код

Про доверенный код

- Важно не добавлять в ядро кода, которому доверяем
- Новые стратегии редукций могут быть полезны для производительности
- Невозможно обосновывать каждый маленький шажок преобразований
- Coq не требует обосновывать то, что следует из definitional equality

Решение: максимально использовать встроенный механизм редукций Coq

Подходы к переписыванию термов: definitional equality

Основной механизм переписывания в Соф

- β-редукция
- Замена идентификаторов на их значения
- Сопоставление с шаблоном при известном значении сопоставляемого
- . . .

Свободные переменные быстро водят в тупик

Подходы к переписыванию термов: autorewrite

- Используется база квантифицированных равенств
- Каждое равенство порождает фрагменты пруф-термов
- В итоге получается много больших пруфтермов
 - Для обоснования $C[e_1] = C[e_2]$, при условии $e_1 = e_2$ необходимо скопировать весь контекст C

Подходы к переписыванию термов: Aehlig et al.

Комбинирование вычислений над λ -термами и использования обоснованных равенств

- На языке пруф-асистанта реализуется deep-embedded ML и его операционная семантика
- Для конкретного терма и правила переписывания порождается deep-embedded терм на ML, который будет порождать упрощенный терм (если завершается)
- Много нового кода, которому нельзя доверять
- Нет гарантии, что семантика реализованного ML совпадает с тем, на котором будет исполняться частичные вычисления

Подходы к переписыванию термов: эта работа

- Реализуем правила переписывания непосредственно на Coq, не на встроенном языке
- Используем ядро Сод для непосредственного осуществления редукций

13 / 29

Создадание частичного вычислителя по шагам

- Пользователь пишет леммы, которые будут использоваться для переписывания
- Порождаются индуктивные типы для всех примитивных типов и функций
- Порождаются вспомогательные определения и доказываются леммы, необходимые для работы с индуктивными определениями
- Реифицируются утверждения о правилах переписывания.
 Пользователь доказывает их полноту (soundness) и синтаксическую корректность (syntactic well-formedness)
- Все нужные утверждения передаются специальной тактике

Применение частичного вычислителя

- Цель превращается в логическую формулу
 - Если в ней есть свободные переменные, то она превращается в функцию на этих переменных
- Реифицируем часть, которую хотим упрощать
 - Потом она заменяется на денотацию реифицированной версии
- Используем теорему о том, что правило переписывания сохраняет денотацию термов, чтобы обосновать переписывание
 - Для применения правила переписывания применяется vm-compute
- Используем cbv для упрощения вызовов к денотации функции

Выбор правила переписывания из набора

$$?n + 0 \rightarrow n$$

App (App (Ident +) Wildcard) (Ident 0)

$$fst_{\mathbb{Z},\mathbb{Z}}(?x,?y) \rightarrow x$$

App (Ident fst) (App (App (Ident pair) Wildcard) Wildcard)

Normalization by Evaluation

$$t ::= t \rightarrow t \mid b$$
 $e ::= \lambda v.e \mid e \mid e \mid v \mid c$ $NbE_t(t_1 \rightarrow t_2) = NbE_t(t_1) \rightarrow NbE_t(t_2)$ $NbE_t(b) = expr(b)$ $reify_t : NbE_t(t) \rightarrow expr(t)$ $reify_{t_1 \rightarrow t_2}(f) = \lambda v.reify_{t_2}(f(reflect_{t_1}(v)))$ $reify_b(f) = f$ $reflect_t : expr(t) \rightarrow NbE_t(t)$ $reflect_{t_1 \rightarrow t_2} = \lambda x.reflect_{t_2}(e(reify_{t_1}(x)))$ $reflect_b(e) = e$

Normalization by Evaluation

$$reduce : expr(t) \rightarrow NbE_t(t)$$
 $reduce(\lambda v.e) = \lambda x.reduce([x/v]e)$
 $reduce(e_1 e_2) = (reduce(e_1))(reduce(e_2))$
 $reduce(x) = x$
 $reduce(c) = reflect(c)$
 $NbE : expr(t) \rightarrow expr(t)$
 $NbE(e) = reifv(reduce(e))$

Применение правила переписывания

$$reflect_t : expr(t) \rightarrow NbE_t(t)$$

 $reflect_{t_1 \rightarrow t_2} = \lambda x. reflect_{t_2}(e(reify_{t_1}(x)))$
 $reflect_b(e) = \not e rewriteHead(e)$

Реализация: переменные

Самое сложное — следить за переменными

Варианты представления термов с переменными:

- Представление переменных строками
- Индексы де Брауна
- Higher-order abstract syntax
- Parametric higher-order abstract syntax

Higher-order abstract syntax

```
term : Type
App : term \rightarrow term \rightarrow term
Abs : (term \rightarrow term) \rightarrow term
```

$$id = Abs(\lambda x.x)$$

 $diverge = App(Abs(\lambda x.App \times x))(Abs(\lambda x.App \times x))$

Parametric higher-order abstract syntax

```
term(V): Type
      Var: V \rightarrow term(V)
     App: term(V) \rightarrow term(V) \rightarrow term(V)
     Abs: (V \rightarrow term(V)) \rightarrow term(V)
              id = Abs(\lambda x. Var x)
          Term = \forall V : Type.term(V)
```

PHOAS: подсчет переменных

$$numVars: term(unit)
ightarrow (N) \ numVars(Var_) = 1 \ numVars(App~e_1~e_2) = numVars(e_1) + numVars(e_2) \ numVars(Abs~e) = numVars(e())$$

$$NumVars: Term \rightarrow (N)$$

 $NumVars(E) = numVars(E unit)$

23 / 29

PHOAS: допустимость η -редукции $(\lambda x.M \ x \to M)$

$$canEta'(Var\ b) = b$$
 $canEta'(App\ e_1\ e_2) = canEta'(e_1)\ \&\&\ canEta'(e_2)$
 $canEta'(Abs\ e) = canEta'(e\ true)$

$$canEta:\ term(bool) \to bool$$
 $canEta(Abse) = match\ e\ false\ with$
 $|\ App\ e_1(Var\ false) \Rightarrow canEta'(e_1)$
 $|\ _\ \Rightarrow false$
 $CanEta:\ Term \to bool$
 $CanEta(E) = canEta(E\ bool)$

canEta': $term(bool) \rightarrow bool$

PHOAS: capture-avoiding substitution

```
subst: \forall V: Type.term(term V) \rightarrow term(V)
     subst(Var\ e) = e
subst(App e_1 e_2) = App(subst(e_1))(subst(e_2))
    subst(Abs\ e) = Abs(\lambda x.subst(e(Var\ x)))
        Term1 = \forall V : Type. V \rightarrow term(V)
        Subst: Term1 \rightarrow Term \rightarrow Term
Subst E_1 E_2 = \forall V: Type. subst(E_1 (term(V) (E_2 V))
```

PHOAS: представление целевого языка

```
Inductive type := arrow (s d : type)
| base (b : base_type).
Infix "->" := arrow.
Inductive expr (var : type -> Type) : type -> Type :=
| Var {t} (v : var t) : expr var t
| Abs {s d} (f : var s -> expr var d) : expr var (s -> d)
| App {s d} (f : expr var (s -> d)) (x : expr var s) :
expr var d
| Const {t} (c : const t) : expr var t
Definition Expr (t : type) : Type :=
forall var, expr var t.
```

Дополнительные условия

$$n_1 + m - n_2 \rightarrow m, n_1 = n_2$$

- Условия вычислимые булевы функции на переменных, которые являются константами времени компиляции
- Реификация ожидает найти реализацию предиката среди гипотез
- Если в них используются переменные-не-константы, то применять правило переписывания нельзя
- Некоторые ограничения можно получать из абстрактной интерпретации

Эвалюация

Figure 3. Timing of different partial-evaluation implementations

Источники

- Jason Gross. A Framework for Building Verified Partial Evaluators
 - Библиотека
- Klaus Aehlig et al. A compiled implementation of normalization by evaluation
- Adam Chlipala. Parametric Higher-Order Abstract Syntax for Mechanized Semantics