Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm

MiniMax & Constraint Processing: MiniMax Algorithm

PROBLEM 1

Problem 1

• Perform the minimax algorithm on the figure below. First without, later with $\alpha\beta$ -pruning.

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX ALGORITHM

MiniMax Algorithm

- Restrictions
 - 2 players: Max = Computer & Min = Opponent
 - Deterministic, perfect information
- Depth-bound & Evaluation function
 - Construct tree (depth-bound)
 - Compute evaluation leaves
 - Propagate upwards (min/max)

$\alpha\beta$ -Pruning

- Generally applied optimization
 - Instead of generating, then propagating
 - Interleave generation and propagation
 - Obtain information on redundant parts
- Generate tree: depth-first & Left-to-right
 - Propagate values of nodes
 - Estimates for parent nodes

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX WITHOUT $\alpha\beta$ -PRUNING

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX WITH $\alpha\beta$ -PRUNING

• α -nodes: Temporary values at MIN-nodes

• β -nodes: Temporary values at MAX-nodes

• Prune: Parent β -node \geq Child α -node

• Prune: Parent α -node \leq Child β -node

• "Deep" cut-off: Ancestor β -node $\geq \alpha$ -node

• Prune: Parent β -node \geq Child α -node

17 static evaluations saved

MiniMax & Constraint Processing: MiniMax Algorithm

PROBLEM 2

Problem 2

• Can the nodes be ordered in such a way that $\alpha\beta$ -pruning can cut off more branches?

MiniMax & Constraint Processing: MiniMax Algorithm

OPTIMIZING $\alpha\beta$ -PRUNING

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX WITH $\alpha\beta$ -PRUNING

19 static evaluations saved

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm for 3 Players

MiniMax & Constraint Processing: MiniMax Algorithm for 3 Players

PROBLEM

Problem

Come up with a MiniMax algorithm for 3 players and apply on the figure below.

MiniMax & Constraint Processing: MiniMax Algorithm

MINIMAX FOR 3 PLAYERS

- All players are Max
- Evaluation function given by vector

- Each layer assigned to 1 player
- Turn: every 3 layers

Max third player: third position of vector

- MaxThirdPlayer([1,2,3],[4,2,1]) = [1,2,3]
- MaxThirdPlayer([6,1,2],[7,4,-1]) = [6,1,2]
- MaxThirdPlayer([5,-1,-1],[-1,5,2]) = [-1,5,2]
- MaxThirdPlayer([7,7,-1],[5,4,5]) = [5,4,5]

Second player's move

Max second player: second position of vector

- MaxSecondPlayer([1,2,3],[6,1,2]) = [1,2,3]
- MaxSecondPlayer([-1,5,2],[5,4,5]) = [-1,5,2]

First player's move

Max first player: first position of vector

• MaxFirstPlayer([1,2,3],[-1,5,4]) = [1,2,3]

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: The 4 Houses problem

MiniMax & Constraint Processing: The 4 Houses problem

PROBLEM

Problem

- Variant of the 4 houses problem
 - There are 4 Families: A, B, C & D
 - Living in 4 Houses: 1, 2, 3 & 4
 - C lives in a house with higher number than D
 - D lives next to A in a lower numbered house
 - There is at least one house between D and B
 - C does not live in 3
 - B does not live in 1

Problem

- Which family lives in which house?
 - Solve with backtracking
 - Solve with backjumping
 - Solve with backmarking
- Consider the following sets of assignments:
 - $\{A=1\}, \{A=2,B=2\}, \{A=2,B=3\}, \{A=2,B=3,C=1\}, \{A=2,B=4\}$
 - Which of these are no-goods?
 - You can use arc-consistency arguments to determine the no-goods and the not no-goods

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: PROBLEM REPRESENTATION

Constraint Processing

Problem representation:

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: BACKTRACKING

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: BACKJUMPING

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: BACKMARKING

B

c(A,B)

C

c(A,C)

c(B,C)

D

c(A,D)

c(B,D)

c(C,D)

	1	2	3	4	Backup
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	1	1	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	1	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	1
D	1	1	1	1	1

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	3

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	3

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	3

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: NO-GOODS

Constraint Processing: No-goods

- {A=1}: No-good
 - No value for D such that A = D + 1
- {A=2,B=2}: No-good
 - A and B should have different houses
- {A=2,B=3}: Not a no-good: {A=2,B=3,C=4,D=1}
- {A=2,B=3,C=1}: No-good
 - A = D + 1, thus D = 1, but C = 1
- {A=2,B=4}: No-good
 - -A = D + 1, thus D = 1, thus C = 3, but C cannot be 3

MiniMax & Constraint Processing: The 4 Houses problem

PROBLEM

Problem

- Intelligent backtracking:
 - Obtained No-goods:
 - {A=1},{A=2,B=2},{A=2,B=3,C=1},{A=2,B=4}
 - And the no-goods:
 - {A=3,B=2},{A=3,B=4},{A=4,B=2},{A=4,B=3},{A=4,C=2}
- Apply standard backtracking
 - Depth-first and left-to-right
 - Don't visit nodes containing no-goods

MiniMax & Constraint Processing: The 4 Houses problem

EFFICIENCY

Efficiency

All (One solution)	Opened Nodes	Checks
Standard Backtracking	28 (13)	142 (56)
Backjumping	21 (8)	93 (30)
Backmarking	28 (13)	79 (34)
Intelligent Backtracking	6 (4)	16 (9) + NG