

算法设计与分析

作业(十)

姓	名	熊恪峥
学	号	22920202204622
日	期	2022年5月25日
学	院	信息学院
课程名称		算法设计与分析

作业(十)

$\overline{}$	_
	
П	>K

1	题11.2	1
2	题11.3	1
3	. 题11. <i>4</i>	1

1 题11.2

Proof. 先证充分性。

若LongestPathLength为多项式时间可解的问题,设时间复杂度为 $\mathcal{O}(P(n))$,则解决LongestPath问题可等价于判定

 $LongestPathLength(G, u, v) \neq \infty$

这个方法的时间复杂度就是 $\mathcal{O}(P(n)+1) = \mathcal{O}(P(n))$,因此LongestPath问题多项式时间可解。

再证必要性。

若LongestPath为多项式时间可解的问题,设时间复杂度为 $\mathcal{O}(P(n))$,则算法1 可以解决LongestPathLength问题。

算法 1 解决LongestPathLength

- 1: **procedure** LongestPathLength(p, k, n)
- 2: **for** $i = 1 \rightarrow |\mathcal{V}|$ **do**
- 3: **if** not LongestPath(G,u,v,i) **then**
- 4: return i-1

LongestPathLength的内层循环次数不超过 $|\mathcal{V}|$,它的时间复杂度是 $\mathcal{O}(|\mathcal{V}|P(n))$,因此是多项式时间可解的。

2 题11.3

假设TSP问题是多项式时间可解的,求出回路的权值只需要在算法给出的顶点序列中累加对应边的权值。如算法2。

算法 2 解决TSPLength

- 1: **procedure** TSPLENGTH(G)
- 2: $\mathcal{V} = TSP(G)$
- 3: $len \leftarrow 0$
- 4: for $i = 1 \rightarrow |\mathcal{V}|$ do
- 5: $len \leftarrow len + w[\mathcal{V}[i], \mathcal{V}[i-1]]$
- 6: $len \leftarrow len + w[\mathcal{V}[|\mathcal{V}| 1], 0]$
- 7: **return** len

3 题11.4

优化问题:找出一条从u到u的简单回路,使得这条回路的权值和w最大。

判定问题:是否存在一条从u到u的简单回路,这条回路的权值和至少为w。

它的语言如(1)。

 $LongestPath = \{ \langle G, u, w \rangle : G(V, E)$ 是无向图, $u \in V$, 存在从u开始的回路, 它的权值和不少于 $w \}$ (1)