Aonde você quer chegar? Vai com a

Disciplina: Análise e Projeto OO Prof. Maurício P. de Freitas MSc.

Aula 07 – 04/04/2024 Diagramas Complementares

Referência:

GUEDES, Gilleanes TA. **UML 2-Uma abordagem prática**. Novatec Editora, 2018.

Diagrama de Colaboração ou Comunicação.

GUEDES, Gilleanes TA. **UML 2-Uma abordagem prática**. Novatec Editora, 2018.

Diagrama de Comunicação:

Diagrama de Sequência:

Diagrama de Comunicação

- Até UML 1.5 chamado de Diagrama de Colaboração, a partir da versão UML 2.0 foi modificado para Diagrama de Comunicação.
- Diretamente ligado ao Diagrama de Sequência, ambos são complementares.
- Não se preocupa com a temporalidade do processo, concentrando-se em como os elementos do diagrama estão vinculados e quais mensagens trocam entre si durante um processo.

Diagrama de Comunicação

- O diagrama de comunicação utiliza muitos de seus componentes, como atores e objetos, incluindo seus estereótipos de fronteira e controle;
- Não suporta ocorrências de interação ou fragmentos combinados;
- Utilizado para modelagem de processos mais simples ou com menos detalhamentos;

Elementos: Lifeline

- Mesma ideia do diagrama de sequência,
 representando a interação em dois objetos de uma classe;
- Diferentemente do diagrama de sequência, não possui linha de vida nem foco de controle (tempo de interação);
- Utiliza a mesma nomenclatura em relação ao diagrama de sequência.

Diagrama de Sequência

Diagrama de Comunicação

Elementos: Vínculos

- Identifica uma ligação entre duas lifelines envolvidas em um processo;
- A existência de um vínculo é caracterizada sempre que dois objetos (lifelines) colaboram entre si dentro de um processo, seja pelo envio ou recebimento de uma mensagem;
- Este vínculo é representado por uma linha unindo as duas lifelines;

Elementos: Mensagens

- As mensagens identificadas neste diagrama, são as mesmas definidas no diagrama de sequência, e de um modo geral, representam chamadas de métodos;
- Não há preocupação com a temporalidade, ou seja, a ordem em que elas são chamadas não é relevante, o que importa é que são disparadas entre os elementos envolvidos no processo;

Elementos: Mensagens

- A única noção temporal passada por esse diagrama é a numeração das mensagens, indicando a ordem em que ocorrem;
- Uma mensagem é representada por uma seta indicativa da direção para onde a mensagem foi enviada;
- É necessário, primeiro, existir um vínculo entre as lifelines para que as mensagens possam ser inseridas.

Elementos: Atores

- São exatamente os mesmos utilizados no diagrama de sequência, ou seja, são instâncias dos atores representados no diagrama de casos de uso;
- Esses atores representam as entidades externas que interagem com o sistema de alguma forma;
- Os atores desse diagrama não têm linha de vida nem foco de controle como no diagrama de sequência;

Elementos: Autochamada

Uma lifeline pode disparar uma mensagem em si própria, o que é conhecido como autochamada, em que a mensagem parte da lifeline e retorna à própria lifeline;

Diagrama de Comunicação:

Diagrama de Sequência:

Diagrama de Objeto

GUEDES, Gilleanes TA. **UML 2-Uma abordagem prática**. Novatec Editora, 2018.

Diagrama de Objetos

Diagrama de Classe

Diagrama de Objeto

- Tem como objetivo fornecer uma "visão" dos valores armazenados pelos objetos das classes, definidas no diagrama de classes, em um determinado momento do sistema;
- Podem ser criados diagramas de objetos, onde as possíveis situações pelas quais os objetos das classes passarão podem ser simuladas;

Diagrama de Objeto:

pesfis1: PessoaFisica

nomePessoa = "José da Silva" enderecoPessoa = "Av. Brasil, 2017" cepPessoa = 90860-510 telefonePessoa = "(55) 3527-7263" rendaPessoa = 5000,00 situacaoPessoa = 1 cpfPessoa = 71689347095 rgPessoa = 1096453125 idadePessoa = 27

Formas de representação:

- O nome do objeto, com todas as letras minúsculas, seguido do símbolo de dois pontos (:) e o nome da classe à qual o objeto pertence, com as letras iniciais maiúsculas.
- O nome do objeto pode ser omitido, mas mantendo o símbolo de doispontos e o nome da classe;
- Somente o nome do objeto, sem doispontos.

Diagrama de Classe

Diagrama de Objeto:

Vínculos:

- Os objetos de um diagrama de objetos apresentam vínculos entre si (links);
- São instâncias das associações entre as classes representadas no diagrama de classes;
- Multiplicidades não são representadas;
- Um vínculo em um diagrama de objetos liga apenas um único objeto em cada extremidade.

Diagrama de Objetos

Diagrama de Classe

Diagrama de Máquina de Estados (Estados)

GUEDES, Gilleanes TA. **UML 2-Uma abordagem prática**. Novatec Editora, 2018.

Diagrama de Estados

Diagrama de Estados:

- Tem por objetivo demonstrar o comportamento de um elemento por meio de um conjunto finito de transições de estado;
- Utilizado para expressar o
 comportamento de uma parte do
 sistema, quando é chamado de
 máquina de estado comportamental;

Diagrama de Estados:

- Uma máquina de estados
 comportamental pode ser usada para
 especificar o comportamento de vários
 elementos do modelo. O elemento
 modelado muitas vezes é uma
 instância de uma classe;
- Pode-se usar esse diagrama para modelar o comportamento de um caso de uso.

Estado:

- Um estado representa a situação em que um elemento se encontra em determinado momento, durante o período em que participa de um processo;
- Um objeto pode passar por diversos estados dentro de um mesmo processo;
- Um estado pode demonstrar:
 - a espera pela ocorrência de um evento;
 - a reação a um estímulo;
 - a execução de alguma atividade;
 - a satisfação de alguma condição.

Estado Simples:

 Um estado simples não tem subestados, ou seja, não pode ser subdividido em estados internos; ContaAtiva

Transições:

- Uma transição representa um evento que causa uma mudança no estado de um objeto, gerando um novo estado;
- Uma transição pode ou não conter uma descrição (recomenda-se que tenha, para facilitar sua compreensão);
- A descrição de um evento pode tanto conter uma ordem para realizar alguma tarefa como ser simplesmente uma informação avisando a ocorrência do evento.

Estados Inicial e Final:

- O estado inicial tem como função somente determinar o início da modelagem dos estados de um elemento.
- O estado final tem a função apenas de indicar o final dos estados modelados.

Diagrama de Estados

UML - Ferramentas CASE

UML - Ferramentas CASE

UML - Ferramentas CASE

🚹 draw.io

