DL 3 - Minimum de deux variables géométriques

On considère dans tout ce sujet

- $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé sur lequel toutes les variables aléatoires seront définies.
- ▶ p un réel de]0;1[; on note q = 1 p.
- \rightarrow X et Y deux variables aléatoires de même loi géométrique $\mathcal{G}(p)$ et **indépendantes**.
- **1. a)** Rappeler l'ensemble des valeurs $X(\Omega)$ et pour $k \ge 1$, l'expression de $\mathbb{P}(X = k)$.

Soit $X \hookrightarrow \mathcal{G}(p)$. On a $X(\Omega) = \mathbb{N} \setminus \{0\}$.

Les probabilités sont : $\forall k \ge 1$, $\mathbb{P}(X = k) = p \cdot (1 - p)^{k-1} = p \cdot q^{k-1}$.

b) Calculer la fonction de répartition $\mathbb{P}(X \le n)$ ainsi que $\mathbb{P}(X > n)$, pour $n \in \mathbb{N}$.

Soit $n \ge 1$. On a: $\mathbb{P}(X \le n) = \sum_{k=1}^{n} \mathbb{P}(X = k) = \sum_{k=1}^{n} pq^{k-1}$.

C'est une somme géométrique et il vient donc : $\mathbb{P}(X \le n) = p \cdot \frac{1-q^n}{1-q} = 1 - q^n$.

On trouve ainsi également : $\mathbb{P}(X < n) = 1 - \mathbb{P}(X \le n) = q^n$.

- **2.** On définit la variable aléatoire : $Z = \min(X, Y)$.
 - **a)** Justifier, pour $k \in \mathbb{N}$, l'égalité d'événements : $[Z > k] = [X > k] \cap [Y > k]$.

Dire que le plus petit de deux nombres est strictement supérieur à k, c'est dire que ces nombres sont tous deux strictement supérieurs à k.

Cette phrase se traduit en l'égalité des événements : $[Z > k] = [X > k] \cap [Y > k]$.

b) En déduire, pour $k \ge 1$, la probabilité : $\mathbb{P}(Z > k)$.

Pour $k \ge 1$, on a donc : $\mathbb{P}(Z > k) = \mathbb{P}([X > k] \cap [Y > k])$.

Les variables aléatoires X, Y sont indépendantes.

Il vient donc : $\mathbb{P}(Z > k) = \mathbb{P}(X > k) \cdot \mathbb{P}(Y > k) = q^k \cdot q^k = q^{2k} = (q^2)^k$.

c) Établir que, pour tout entier $k \ge 1$, on $a : \mathbb{P}(Z = k) = \mathbb{P}(Z > k - 1) - \mathbb{P}(Z > k)$

On a l'égalité d'événements : $[Z=k] = [Z>k-1] \setminus [Z>k]$

On trouve la relation connue en passant aux probabilités.

Ainsi : $\mathbb{P}(Z=k) = \mathbb{P}(Z > k-1) - \mathbb{P}(Z > k)$

d) En déduire que Z suit la loi géométrique $\mathcal{G}(1-q^2)$.

Pour $k \ge 1$, on calcule: $\mathbb{P}(Z = k) = \mathbb{P}(Z > k - 1) - \mathbb{P}(Z > k)$

$$= (q^2)^{k-1} - (q^2)^k$$

= $(q^2)^{k-1} \cdot (1 - q^2)$.

On reconnaît la loi géométrique, soit : $Z \hookrightarrow \mathcal{G}(1-q^2)$.

- **3.** On définit une variable aléatoire T par : $T = \begin{cases} \frac{X}{2} & \text{si } X \text{ prend une valeur paire,} \\ \frac{X+1}{2} & \text{si } X \text{ prend une valeur impaire.} \end{cases}$
 - **a)** En écrivant $\begin{cases} X = 2n & \text{si } X \text{ prend une valeur paire} \\ X = 2n 1 & \text{si } X \text{ prend une valeur impaire} \end{cases}$ vérifier que $T = \lfloor \frac{X+1}{2} \rfloor$. En déduire que $T(\Omega) = \mathbb{N}^*$.

Lit accurre que 1 (22) = 13

- ► **Cas** *X* **pair** On a bien : $[X=2n] = [X=2n, T=n] = [X=2n, T=\lfloor \frac{X+1}{2} \rfloor]$
- ► **Cas** *X* **impair** De même : $[X=2n-1] = [X=2n-1, T=n] = \left[X=2n-1, T=\left\lfloor \frac{X+1}{2} \right\rfloor\right]$

La formule $T = \lfloor \frac{X+1}{2} \rfloor$ est donc vraie dans tous les cas.

Comme $X(\Omega) = \mathbb{N}^*$, on a aussi : $T(\Omega) = \mathbb{N}^*$.

b) Pour $k \ge 1$, quelles valeurs de X conduisent à l'événement [T = k]?

On décompose selon la parité de X.

Il vient :
$$[T = k] = ([T = k] \cap [X \text{ pair}]) \sqcup ([T = k] \cap [X \text{ impair}])$$

= $([T = k] \cap [X = 2k]) \sqcup ([T = k] \cap [X = 2k - 1]) = [X = 2k] \sqcup [X = 2k - 1]$

Les deux valeurs recherchées pour X sont donc : 2k et 2k-1.

c) En déduire, pour $k \ge 1$, la probabilité $\mathbb{P}(T = k)$.

Vérifier que T suit la même loi que Z.

(soit:
$$T \hookrightarrow \mathcal{G}(1-q^2)$$
.)

On a:
$$\mathbb{P}(T=k) = \mathbb{P}(X=2k-1) + \mathbb{P}(X=2k)$$

= $p \cdot q^{2k-2} + p \cdot q^{2k-1} = p \cdot (1+q) \cdot (q^2)^{k-1}$.

lancer = rand() // aléa dans [0;1]

La variable *T* suit donc bien la loi géométrique $\mathcal{G}(1-q^2)$.

// initialisation

4. On veut simuler les variables *X* et *Y*.

g function x = simulerX(p)

while (lancer>p)

x = x+1

lancer = 1

x = 0

end

endfunction

On donne les programmes incomplets suivants :

- a) On lance une pièce donnant « Pile » avec proba p. On prend $X = \text{le rang du premier} \times \text{Pile} \times \text{obtenu}$.
 - Compléter le programme :

```
b) Compléter pour simuler T.
```

```
13 function t = simulerT(p)
                            x = simulerX(p)
                            if (modulo(x,2) == 0) then
                                 // Si x est pair
                                 t = x/2
// tant que "échec"
                             else
                                 t = (x+1)/2
                             end
                      21 endfunction
```

(simulation de G(p) comme temps d'attente)

(Variante possible: t = floor((x+1)/2))