<u>Painel</u> / Meus cursos / <u>SC26EL</u> / <u>Avaliações Eletrônicas</u> / <u>Prova 2 CP</u>

Iniciado em	segunda, 17 mai 2021, 15:50
Estado	Finalizada
Concluída em	segunda, 17 mai 2021, 16:17
Tempo	26 minutos 55 segundos
empregado	
Notas	3,0/3,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1**Correto
Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Abaixo tem-se duas possíveis estruturas de controle.

Possíveis estruturas de Controle

Sem Integral do Erro

Com Integral do Erro

Deseja-se que a saída siga uma referência do tipo degrau com erro nulo e seja capaz de rejeitar perturbações aplicadas na entrada do sistema. Assim, projete o controlador adequado. Se for o controlador sem integral do erro de rastreamento da referência, utilize como autovalores desejados para o sistema em malha fechada os valores $s_1=s_2=-5$. Se for o controlador com integral do erro de rastreamento, utilize como autovalores desejados para o sistema em malha fechada os valores $s_1=s_2=-5$ e $s_3=-30$. Com base na sua escolha e projeto, preencha adequadamente as questões abaixo:

A estrutura de controle adequada para o problema é: Com integral do erro 🗢 🗸 .

O posto da matriz de controlabilidade é:

3

~

A soma dos elementos da matriz de controlabilidade é:

-1

✓.

O sistema é: Controlável 🗢 🗸

A soma dos coeficientes do polinômio característico desejado para o controlador é:

1116

✔ .

O vetor de ganhos do controlador é um vetor: Linha 💠 🗸

Se você escolheu a estrutura sem a integral do erro de rastreamento, preencha com os ganhos calculados. Caso contrário, preencha cada campo com zero (0): k_1 =

0

 \checkmark , $k_2 = 0$

✓ e k_r:

✓.

Se você escolheu a estrutura com a integral do erro de rastreamento, preencha com os ganhos calculados já considerando a troca de sinal para o ganho associado ao integrador. Caso contrário, preencha cada campo com zero (0): k_1 =

181

✓ , **k**₂=

✓ e k_I =

375

V

Questão ${f 2}$

Correto

Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

A função de transferência do sistema pode ser obtida através da expressão $G(s) = C(sI - A)^{-1}B$.

A soma dos coeficientes do numerador dos termos da matriz $(sI - A)^{-1}$ é:

4

~

Os numerador de G(s) é:

0

 s^2+

✓ s+

~

Os denominador de G(s) é:

1

 \checkmark s^2+

✓ s+

~ .

Questão **3**Correto
Atingiu 1,0 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Projete um observador de estados para o sistema acima utilizando a fórmula abaixo e considerando os autovalores do observador em $\mu_1=\mu_2=-15$.

$$K_e = \Phi(A) \begin{bmatrix} C \\ AC \\ \vdots \\ A^{n-1}C \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Com base no projeto, preencha adequadamente as questões abaixo:

O posto da matriz de observabilidade é:

2

~ .

A soma dos elementos da matriz de observabilidade é:

4

✓ .

O sistema é: Observável

Os coeficientes do polinômio característico do observador são:

1

✓ s²+

30

✓ s+

~

A soma dos elementos da matriz $\Phi(A)$ é:

392

~

Os elementos do vetor de ganhos K_e são: k_{e1} =

28

 \checkmark , $k_{e2} = 70$

~

◄ Questionário sobre Projeto de Controlador com Observador de Estados - Parte 1

Seguir para...

\$