Karnaugh maps = (truth tuble + Venn diagram)

Two input K-maps 8.1

Three input K-maps 8.2

Four input K-maps 8.3

8.4 Five input K-maps

A = 0

DE

$$00 \quad 01 \quad 11 \quad 10$$
 $00 \quad m_0 \quad m_4 \quad m_{12} \quad m_8$
 $01 \quad m_1 \quad m_5 \quad m_{13} \quad m_9$
 $11 \quad m_3 \quad m_7 \quad m_{15} \quad m_{11}$
 $10 \quad m_2 \quad m_6 \quad m_{14} \quad m_{10}$

A = 1					
	DE	C ₀₀	01	11	10
	00	m_{16}	m_{20}	m_{28}	m_{24}
	01	m_{17}	m_{21}	m_{29}	m_{25}
	11	m_{19}	m_{23}	m_{31}	m_{27}
	10	m_{18}	m_{22}	m_{30}	m_{26}

XOR gale 7, 22 f 0 0 0	The Shu
0 1 1 0 71	$\begin{array}{c c} \overline{\chi}_{1} & \chi_{2} \\ \hline 0 & 1 \end{array}$
7(₁)	0 1
B	
3 7	3

9 More Gates and notations summary

Name	C/Verilog	Boolean expr.	Truth Table	(ANSI) symbol	K-map
NAND Gate	Q = ~(x1 & x2)	$Q = \overline{x_1 \cdot x_2} = \overline{x_1 x_2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
NOR Gate	Q = ~(x1 x2)	$Q = \overline{x_1 + x_2}$	$\begin{array}{c ccccc} x_1 & x_2 & \overline{x_1 + x_2} \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$	\bigcap_{B}^{A}	$\begin{bmatrix} \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} $
XOR Gate	Q = x1 ^ x2	$Q=x_1\oplus x_2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\bigcup_{B}^{A}	$\begin{bmatrix} A & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $
XNOR Gate	Q = ~(x1 ^ x2)	$Q = \overline{x_1 \oplus x_2}$	$ \begin{array}{c c c} x_1 & x_2 & \overline{x_1 \oplus x_2} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array} $	A D Out	B 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Example 10. Convert the following Boolean expression into a K-map. $f = \overline{AB} + CD$

Problem 10. Convert the following logic circuit into a K-map.

10 Boolean Algebra

10.1 Axioms of Boolean algebra

1.
$$0 \cdot 0 = 0$$

2.
$$1+1=1$$

- 3. $1 \cdot 1 = 1$
- 4. 0+0=0
- 5. $0 \cdot 1 = 1 \cdot 0 = 0$
- 6. $\bar{0} = 1$
- 7. $\bar{1} = 0$
- 8. $x = 0 \text{ if } x \neq 1$
- 9. $x = 1 \text{ if } x \neq 0$

10.2 Single variable theorems (Prove by drawing K-maps)

- 1. $x \cdot 0 = 0$
- 2. x + 1 = 1
- 3. $x \cdot 1 = x$
- 4. x + 0 = x
- 5. $x \cdot x = x$
- 6. x + x = x
- 7. $x \cdot \bar{x} = 0$

- 8. $x + \bar{x} = 1$
- 9. $\bar{\bar{x}} = x$

Remark 2 (Duality). $Swap + with \cdot and 0$ with 1 to get another theorem

10.3 Two and three variable properties (Prove by K-maps)

1. Commutative: $x \cdot y = y \cdot x$, x + y = y + x

2. Associative: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, x + (y + z) = (x + y) + z

3. Distributive: $x \cdot (y+z) = x \cdot y + x \cdot z$, $x+y \cdot z = (x+y) \cdot (y+z)$

4. Absorption: $x + x \cdot y = x$, $x \cdot (x + y) = x$

5. Combining: $x \cdot y + x \cdot \bar{y}$, $(x + y) \cdot (x + \bar{y}) = x$

6. DeMorgan's theorem: $\overline{x \cdot y} = \overline{x} + \overline{y}$, $\overline{x + y} = \overline{x} \cdot \overline{y}$.

7. Concensus:

(a)
$$x + \bar{x} \cdot y = x + y$$

(b)
$$x \cdot (\bar{x} + y) = x \cdot y$$

(c)
$$x \cdot y + y \cdot z + \bar{x} \cdot z = x \cdot y + \bar{x} \cdot z$$

(d)
$$(x+y) \cdot (y+z) \cdot (\bar{x}+z) = (x+y) \cdot (\bar{x}+z)$$

Example 11 (Multiplexer). Multiplexer is a circuit used to select one of the input lines x_1 and x_2 based only select input s. When s=0, x_1 is selected, x_2 is selected otherwise. Find a boolean expression and a circuit for multiplexer

Example 13. Simplify $f = \bar{A}\bar{A}\bar{C} + \bar{A}\bar{B}C$ using K-maps.

