CC1004 - Modelos de Computação Teóricas 16 e 17

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Maio 2021

Noção de Gramática Independente de Contexto

Uma gramática independente de contexto é um quarteto

$$\mathcal{G} = (V, \Sigma, P, S)$$

em que V e Σ são conjuntos de símbolos, ambos finitos e não vazios, e tais que $V \cap \Sigma = \emptyset$, $S \in V$, e P é uma relação binária finita de V em $(V \cup \Sigma)^*$.

- V é o conjunto das variáveis (ou não terminais)
- ullet diz-se **símbolo inicial** de ${\mathcal G}$
- Σ é o alfabeto (conjunto dos símbolos terminais)
- P é um conjunto finito constituído pelas **produções** ou **regras**. Usualmente escreve-se $X \to w$ se $(X, w) \in P$.

A linguagem gerada por \mathcal{G} , que se denota por $\mathcal{L}(\mathcal{G})$, é constituída pelas palavras que se podem derivar a partir do seu símbolo inicial.

Gramática Independente de Contexto

As GICs são *independentes de contexto* porque as regras que definem os não terminais (i.e., as *categorias gramaticais*) são aplicadas sem estarem sujeitas a restrições introduzidas por algum contexto. Nas GICs, a parte esquerda de cada regra é um não terminal.

A forma das regras de produção determina a expressividade da gramática. Nas **gramáticas mais gerais** (ditas, de Tipo 0) as regras têm a forma:

$$\alpha \to \beta$$
 com $\alpha, \beta \in (V \cup \Sigma)^*, \alpha \neq \varepsilon$

Não iremos estudar gramáticas desse tipo, que definem o topo da hierarquia.

As **gramáticas regulares**, que geram linguagens regulares, são de Tipo 3. As **gramáticas independentes de contexto** são de Tipo 2.

Seja $\mathcal{G} = (V, \Sigma, P, S)$ uma gramática independente de contexto. Diz-se que

x deriva imediatamente y

e escreve-se

$$x \Rightarrow_{\mathcal{G}} y$$
 ou simplesmente $x \Rightarrow y$

sse
$$x = x_1 X x_2$$
, $y = x_1 w x_2$, e $(X \to w) \in P$, com $x_1, x_2, w \in (V \cup \Sigma)^*$ e $X \in V$.

Note que $X \to w$ é a regra que se aplica para de x se derivar y, sendo X a variável que é substituída em x por w.

Como por vezes usamos \Rightarrow como uma das conectivas lógicas (abreviatura de "se...então"), nas expressões lógicas, mesmo que haja uma única gramática envolvida, é preferível não abreviar \Rightarrow_G por \Rightarrow para evitar confusão.

Formalmente, $\Rightarrow_{\mathcal{G}}$ é uma relação binária em $(V \cup \Sigma)^*$, a que podemos chamar relação de derivação imediata.

Esta relação determina ainda outras relações binárias em $(V \cup \Sigma)^*$:

- $\bullet \Rightarrow_{G}^{n}$: derivação em exatamente n passos, com $n \in \mathbb{N}$, fixo.
- ⇒_G*: derivação em zero ou mais passos (em número finito). Esta relação é o fecho transitivo e reflexivo da relação de derivação imediata.
- $\Rightarrow^1_{\mathcal{G}}$ é a derivação imediata $\Rightarrow_{\mathcal{G}}$
- $\Rightarrow_{\mathcal{G}}^2$ é a derivação em dois passos
- $\Rightarrow^0_{\mathcal{G}}$ é, por convenção, a relação identidade em $(V \cup \Sigma)^*$.

Formalmente, $\Rightarrow_{\mathcal{G}}$ é uma relação binária em $(V \cup \Sigma)^*$, a que podemos chamar relação de derivação imediata.

Esta relação determina ainda outras relações binárias em $(V \cup \Sigma)^*$:

- $\bullet \Rightarrow_{G}^{n}$: derivação em exatamente n passos, com $n \in \mathbb{N}$, fixo.
- ⇒_G*: derivação em zero ou mais passos (em número finito). Esta relação é o fecho transitivo e reflexivo da relação de derivação imediata.
- $\Rightarrow^1_{\mathcal{G}}$ é a derivação imediata $\Rightarrow_{\mathcal{G}}$
- $\Rightarrow_{\mathcal{G}}^2$ é a derivação em dois passos.
- $\Rightarrow^0_{\mathcal{G}}$ é, por convenção, a relação identidade em $(V \cup \Sigma)^\star$.

Podemos definir recursivamente \Rightarrow_G^n , para $n \ge 1$, do modo seguinte:

$$\begin{array}{lcl} \Rightarrow^1_{\mathcal{G}} & = & \Rightarrow_{\mathcal{G}} \\ \Rightarrow^{k+1}_{\mathcal{G}} & = & \{(x,y) \mid \exists z \in (V \cup \Sigma)^* \ (x \Rightarrow^k_{\mathcal{G}} z \ \land \ z \Rightarrow_{\mathcal{G}} y)\}, \ \mathsf{com} \ k \geq 1 \end{array}$$

Ou seja, tem-se

$$x \Rightarrow_{\mathcal{G}}^{k+1} y$$
 se e só se $\exists z \in (V \cup \Sigma)^* (x \Rightarrow_{\mathcal{G}}^k z \land z \Rightarrow_{\mathcal{G}} y)$

Pode-se **mostrar que**, quaisquer que sejam $x,y\in (V\cup\Sigma)^*$ e $k\geq 0$

$$x\Rightarrow_{\mathcal{G}}^k y$$
 se e só se $\exists i\in\mathbb{N}\,\exists z\in(V\cup\Sigma)^\star$ $(i\leq k\ \land\ x\Rightarrow_{\mathcal{G}}^i z\ \land\ z\Rightarrow_{\mathcal{G}}^{k-i}y)$

o que traduz o facto de a derivação em k passos poder ser vista como uma composição duma derivação em i passos com uma derivação em k-i passos

Podemos definir recursivamente \Rightarrow_G^n , para $n \ge 1$, do modo seguinte:

$$\begin{array}{lcl} \Rightarrow^1_{\mathcal{G}} & = & \Rightarrow_{\mathcal{G}} \\ \Rightarrow^{k+1}_{\mathcal{G}} & = & \{(x,y) \mid \exists z \in (V \cup \Sigma)^* \ (x \Rightarrow^k_{\mathcal{G}} z \ \land \ z \Rightarrow_{\mathcal{G}} y)\}, \ \mathsf{com} \ k \geq 1 \end{array}$$

Ou seja, tem-se

$$x \Rightarrow_{\mathcal{G}}^{k+1} y$$
 se e só se $\exists z \in (V \cup \Sigma)^* (x \Rightarrow_{\mathcal{G}}^k z \land z \Rightarrow_{\mathcal{G}} y)$

Pode-se **mostrar que**, quaisquer que sejam $x, y \in (V \cup \Sigma)^*$ e $k \ge 0$

$$x\Rightarrow_{\mathcal{G}}^k y$$
 se e só se $\exists i\in\mathbb{N}\,\exists z\in(V\cup\Sigma)^\star$ $(i\leq k\ \land\ x\Rightarrow_{\mathcal{G}}^i z\ \land\ z\Rightarrow_{\mathcal{G}}^{k-i}y)$

o que traduz o facto de a derivação em k passos poder ser vista como uma composição duma derivação em i passos com uma derivação em k-i passos

Podemos definir recursivamente \Rightarrow_G^n , para $n \ge 1$, do modo seguinte:

$$\begin{array}{lcl} \Rightarrow^1_{\mathcal{G}} & = & \Rightarrow_{\mathcal{G}} \\ \Rightarrow^{k+1}_{\mathcal{G}} & = & \{(x,y) \mid \exists z \in (V \cup \Sigma)^* \ (x \Rightarrow^k_{\mathcal{G}} z \ \land \ z \Rightarrow_{\mathcal{G}} y)\}, \ \mathsf{com} \ k \geq 1 \end{array}$$

Ou seja, tem-se

$$x \Rightarrow_{\mathcal{G}}^{k+1} y$$
 se e só se $\exists z \in (V \cup \Sigma)^* (x \Rightarrow_{\mathcal{G}}^k z \land z \Rightarrow_{\mathcal{G}} y)$

Pode-se **mostrar que**, quaisquer que sejam $x,y\in (V\cup\Sigma)^*$ e $k\geq 0$

$$x \Rightarrow_{\mathcal{G}}^k y \quad \text{se e s\'o se} \quad \exists i \in \mathbb{N} \, \exists z \in (V \cup \Sigma)^\star \ \left(i \leq k \ \land \ x \Rightarrow_{\mathcal{G}}^i z \ \land \ z \Rightarrow_{\mathcal{G}}^{k-i} y\right)$$

o que traduz o facto de a derivação em k passos poder ser vista como uma composição duma derivação em i passos com uma derivação em k-i passos.

Noção de linguagem gerada por GIC

A linguagem gerada pela gramática $\mathcal{G} = (V, \Sigma, P, S)$, denotada por $\mathcal{L}(\mathcal{G})$, é dada por

$$\mathcal{L}(\mathcal{G}) = \{ x \in \Sigma^* \mid S \Rightarrow_G^* x \}$$

ou seja, é o conjunto das palavras de Σ^{\star} que se podem derivar a partir do símbolo inicial da gramática.

Uma **linguagem independente de contexto** é uma linguagem que é gerada por alguma gramática independente de contexto.

Noção de árvore de derivação

A definição de **árvore de derivação** (ou **sintática**) usa a noção de **árvore ordenada**.

Árvore ordenada

Uma árvore ordenada é um grafo dirigido (V, E) tal que #E = #V - 1, existe um nó (raíz) do qual todos os outros nós são acessíveis e os ramos com origem em cada nó (filhos) desse nó) estão ordenados por uma relação de ordem total.

Os nós que não são origem de qualquer ramo chamam-se *folhas*. Os restantes chamam-se *nós internos*.

Noção de árvore de derivação

Dada $x \in \mathcal{L}(\mathcal{G})$, uma **árvore de derivação** de x "dá uma estrutura a x".

A árvore de derivação de x é uma árvore ordenada tal que

- a raíz é o símbolo inicial S
- ullet o símbolo numa folha é um terminal ou arepsilon
- x é concatenação dos símbolos nas folhas
- o símbolo num nó interno é uma variável
- usou-se a regra $X \to s_1 \dots s_n$ sse X é nó e tem filhos $s_1 \dots s_n$.

$$\begin{array}{c} \bullet \;\; \mathcal{G}_1 = \big(\{\,T\}, \{0,1\}, \{\,T \to 0\,T, \;\; T \to 1\,T, \;\; T \to \varepsilon\}, \,T \big) \\ \\ \mathcal{L}(\mathcal{G}_1) = \{0,1\}^\star \end{array}$$

•
$$G_2 = (\{U\}, \{0, 1\}, \{U \to 10U, U \to \varepsilon\}, U)$$

 $\mathcal{L}(G_2) = \{10\}$

•
$$\mathcal{G}_3 = (\{U, Z\}, \{0, 1\}, \{Z \to 0U, U \to 10U, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_3) = \{0\}\{10\}^*$$

•
$$\mathcal{G}_4 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_4) = \{0\}\{10\}^* = \mathcal{L}(\mathcal{G}_3)$$

$$\bullet \ \mathcal{G}_5 = \big(\{Z,U\},\{0,1\},\{Z\rightarrow 0U,\ U\rightarrow 1Z,\ U\rightarrow \varepsilon\},U\big)$$

$$\mathcal{L}(\mathcal{G}_5) = \{10\}^* = \mathcal{L}(\mathcal{G}_2)$$

•
$$\mathcal{G}_1 = (\{T\}, \{0, 1\}, \{T \to 0T, \ T \to 1T, \ T \to \varepsilon\}, T)$$

$$\mathcal{L}(\mathcal{G}_1) = \{0, 1\}^*$$

•
$$G_2 = (\{U\}, \{0,1\}, \{U \to 10U, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_2) = \{10\}^\star$$

•
$$\mathcal{G}_3 = (\{U, Z\}, \{0, 1\}, \{Z \to 0U, U \to 10U, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_3) = \{0\}\{10\}^*$$

•
$$\mathcal{G}_4 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_4) = \{0\}\{10\}^* = \mathcal{L}(\mathcal{G}_3)$$

•
$$\mathcal{G}_5 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_5) = \{10\}^* = \mathcal{L}(\mathcal{G}_2)$$

$$\begin{array}{c} \bullet \;\; \mathcal{G}_1 = (\{T\},\{0,1\},\{T \rightarrow \mathtt{0}T,\; T \rightarrow \mathtt{1}T,\; T \rightarrow \varepsilon\},T) \\ \\ \mathcal{L}(\mathcal{G}_1) = \{\mathtt{0},\mathtt{1}\}^\star \end{array}$$

•
$$G_2 = (\{U\}, \{0,1\}, \{U \to 10U, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_2) = \{10\}^\star$$

•
$$\mathcal{G}_3 = (\{U, Z\}, \{0, 1\}, \{Z \to 0U, U \to 10U, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_3) = \{0\}\{10\}^*$$

•
$$\mathcal{G}_4 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_4) = \{0\}\{10\}^* = \mathcal{L}(\mathcal{G}_3)$$

•
$$\mathcal{G}_5 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_5) = \{10\}^* = \mathcal{L}(\mathcal{G}_2)$$

$$\begin{array}{c} \bullet \;\; \mathcal{G}_1 = \big(\{\,T\}, \{0,1\}, \{\,T \to 0\,T, \;\; T \to 1\,T, \;\; T \to \varepsilon\}, \,T \big) \\ \\ \mathcal{L}(\mathcal{G}_1) = \{0,1\}^\star \end{array}$$

•
$$G_2 = (\{U\}, \{0,1\}, \{U \to 10U, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_2) = \{10\}^\star$$

•
$$G_3 = (\{U, Z\}, \{0, 1\}, \{Z \to 0U, U \to 10U, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_3) = \{0\}\{10\}^\star$$

•
$$\mathcal{G}_4 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_4) = \{0\}\{10\}^* = \mathcal{L}(\mathcal{G}_3)$$

•
$$\mathcal{G}_5 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_5) = \{10\}^* = \mathcal{L}(\mathcal{G}_2)$$

$$\begin{array}{c} \bullet \;\; \mathcal{G}_1 = \big(\{\,T\}, \{0,1\}, \{\,T \to 0\,T, \;\; T \to 1\,T, \;\; T \to \varepsilon\}, \,T \big) \\ \\ \mathcal{L}(\mathcal{G}_1) = \{0,1\}^\star \end{array}$$

•
$$G_2 = (\{U\}, \{0,1\}, \{U \to 10U, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_2) = \{10\}^\star$$

•
$$G_3 = (\{U, Z\}, \{0, 1\}, \{Z \to 0U, U \to 10U, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_3) = \{0\}\{10\}^*$$

•
$$\mathcal{G}_4 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, Z)$$

$$\mathcal{L}(\mathcal{G}_4) = \{0\}\{10\}^* = \mathcal{L}(\mathcal{G}_3)$$

•
$$\mathcal{G}_5 = (\{Z, U\}, \{0, 1\}, \{Z \to 0U, U \to 1Z, U \to \varepsilon\}, U)$$

$$\mathcal{L}(\mathcal{G}_5) = \{10\}^{\star} = \mathcal{L}(\mathcal{G}_2)$$

 $\bullet \ \mathcal{G}_{6} = (\{S\}, \{\mathtt{a},\mathtt{b}\}, \{S \rightarrow \mathtt{aaa}, \ S \rightarrow \mathtt{aaabb}S\}, S)$

$$\mathcal{L}(\mathcal{G}_6) = \{\mathtt{aaabb}\}^\star \{\mathtt{aaa}\}$$

pois

$$S\Rightarrow^n w$$
 sse $w=ig(ext{aaabb}ig)^n S$ ou $w=ig(ext{aaabb}ig)^{n-1}$ aaa, com $n\geq 1$.

Portanto,

$$S \Rightarrow^* x$$
, com $x \in \{a, b\}^*$, sse $x = (aaabb)^n$ aaa, com $n \ge 0$.

• $G_6 = (\{S\}, \{a,b\}, \{S \rightarrow aaa, S \rightarrow aaabbS\}, S)$

$$\mathcal{L}(\mathcal{G}_6) = \{\mathtt{aaabb}\}^{\star}\{\mathtt{aaa}\}$$

pois:

$$S \Rightarrow^n w$$
 sse $w = (aaabb)^n S$ ou $w = (aaabb)^{n-1}$ aaa, com $n \ge 1$.

Portanto,

$$S \Rightarrow^{\star} x$$
, com $x \in \{a, b\}^{\star}$, sse $x = (aaabb)^n$ aaa, com $n \ge 0$.

 $\bullet \ \mathcal{G}_7 = \big(\{S,C\}, \{\mathtt{a},\mathtt{b}\}, \{S \to \mathtt{a}S\mathtt{b}, \ S \to C, \ C \to \mathtt{b}C\mathtt{a}, \ C \to \mathtt{b}\}, S \big)$

$$\mathcal{L}(\mathcal{G}_7) = \{ \mathbf{a}^n \mathbf{b}^{m+1} \mathbf{a}^m \mathbf{b}^n \ | \ m \in \mathbb{N}, n \in \mathbb{N} \}$$

pois

- $\mathcal{L}(C) = \{b^{m+1}a^m \mid m \ge 0\}$, porque $C \Rightarrow^k w$ sse $w = b^k Ca^k$ ou $w = b^k a^{k-1}$.
- $S \Rightarrow^p w$ sem usar regras para C sse $w = a^p S b^p$ ou $w = a^{p-1} C b^{p-1}$.
- Portanto, $S \Rightarrow^p w$ sse $w = a^p S b^p$ ou $w = a^q b^k C a^k b^q$ com q + k + 1 = p e $q, k \in \mathbb{N}$, ou $w = a^q b^{k+1} a^k b^q$, q + k + 2 = p e $q, k \in \mathbb{N}$. Logo, $\mathcal{L}(S) = \mathcal{L}(\mathcal{G}_7)$ é a linguagem indicada.

Em alternativa, podemos observar notar que $S \Rightarrow^* x$, com $x \in \{a,b\}^*$, sse $x = a^n y b^n$, para algum $n \in \mathbb{N}$, e $S \Rightarrow^n a^n S b^n \Rightarrow a^n C b^n \Rightarrow^* a^n y b^n = x$, para $y \in \mathcal{L}(C)$.

 $\begin{aligned} \bullet \ \ \mathcal{G}_7 &= (\{S,C\},\{\mathtt{a},\mathtt{b}\},\{S\to\mathtt{a}S\mathtt{b},\ S\to C,\ C\to\mathtt{b}C\mathtt{a},\ C\to\mathtt{b}\},S) \\ \\ \mathcal{L}(\mathcal{G}_7) &= \{\mathtt{a}^n\mathtt{b}^{m+1}\mathtt{a}^m\mathtt{b}^n \ \mid \ m\in\mathbb{N}, n\in\mathbb{N}\} \end{aligned}$

pois:

- $\mathcal{L}(C) = \{b^{m+1}a^m \mid m \ge 0\}$, porque $C \Rightarrow^k w$ sse $w = b^k Ca^k$ ou $w = b^k a^{k-1}$.
- $S \Rightarrow^p w$ sem usar regras para C sse $w = a^p S b^p$ ou $w = a^{p-1} C b^{p-1}$.
- Portanto, $S \Rightarrow^p w$ sse $w = a^p S b^p$ ou $w = a^q b^k C a^k b^q$ com q + k + 1 = p e $q, k \in \mathbb{N}$, ou $w = a^q b^{k+1} a^k b^q$, q + k + 2 = p e $q, k \in \mathbb{N}$. Logo, $\mathcal{L}(S) = \mathcal{L}(\mathcal{G}_7)$ é a linguagem indicada.

Em alternativa, podemos observar notar que $S \Rightarrow^* x$, com $x \in \{a, b\}^*$, sse $x = a^n y b^n$, para algum $n \in \mathbb{N}$, e $S \Rightarrow^n a^n S b^n \Rightarrow a^n C b^n \Rightarrow^* a^n y b^n = x$, para $y \in \mathcal{L}(C)$.

 $\mathcal{G}_7 = (\{S,C\}, \{\mathtt{a},\mathtt{b}\}, \{S \to \mathtt{a}S\mathtt{b}, \, S \to C, \, C \to \mathtt{b}C\mathtt{a}, \, C \to \mathtt{b}\}, S)$ $\mathcal{L}(\mathcal{G}_7) = \{\mathtt{a}^n\mathtt{b}^{m+1}\mathtt{a}^m\mathtt{b}^n \mid \, m \in \mathbb{N}, \, n \in \mathbb{N}\}$

pois:

- $\mathcal{L}(C) = \{b^{m+1}a^m \mid m \ge 0\}$, porque $C \Rightarrow^k w$ sse $w = b^k Ca^k$ ou $w = b^k a^{k-1}$.
- $S \Rightarrow^p w$ sem usar regras para C sse $w = a^p S b^p$ ou $w = a^{p-1} C b^{p-1}$.
- Portanto, $S \Rightarrow^p w$ sse $w = a^p S b^p$ ou $w = a^q b^k C a^k b^q$ com q + k + 1 = p e $q, k \in \mathbb{N}$, ou $w = a^q b^{k+1} a^k b^q$, q + k + 2 = p e $q, k \in \mathbb{N}$. Logo, $\mathcal{L}(S) = \mathcal{L}(\mathcal{G}_7)$ é a linguagem indicada.

Em alternativa, podemos observar notar que $S \Rightarrow^* x$, com $x \in \{a, b\}^*$, sse $x = a^n y b^n$, para algum $n \in \mathbb{N}$, e $S \Rightarrow^n a^n S b^n \Rightarrow a^n C b^n \Rightarrow^* a^n y b^n = x$, para $y \in \mathcal{L}(C)$.

 $\bullet \ \mathcal{G}_7 = (\{S,C\}, \{\mathtt{a},\mathtt{b}\}, \{S \to \mathtt{a}S\mathtt{b}, \ S \to C, \ C \to \mathtt{b}C\mathtt{a}, \ C \to \mathtt{b}\}, S)$

$$\mathcal{L}(\mathcal{G}_7) = \{ \mathbf{a}^n \mathbf{b}^{m+1} \mathbf{a}^m \mathbf{b}^n \mid m \in \mathbb{N}, n \in \mathbb{N} \}$$

pois:

- $\mathcal{L}(C) = \{b^{m+1}a^m \mid m \ge 0\}$, porque $C \Rightarrow^k w$ sse $w = b^k Ca^k$ ou $w = b^k a^{k-1}$.
- $S \Rightarrow^p w$ sem usar regras para C sse $w = a^p S b^p$ ou $w = a^{p-1} C b^{p-1}$.
- Portanto, $S \Rightarrow^p w$ sse $w = a^p S b^p$ ou $w = a^q b^k C a^k b^q$ com q + k + 1 = p e $q, k \in \mathbb{N}$, ou $w = a^q b^{k+1} a^k b^q$, q + k + 2 = p e $q, k \in \mathbb{N}$. Logo, $\mathcal{L}(S) = \mathcal{L}(\mathcal{G}_7)$ é a linguagem indicada.

Em alternativa, podemos observar notar que $S \Rightarrow^* x$, com $x \in \{a,b\}^*$, sse $x = a^n y b^n$, para algum $n \in \mathbb{N}$, e $S \Rightarrow^n a^n S b^n \Rightarrow a^n C b^n \Rightarrow^* a^n y b^n = x$, para $y \in \mathcal{L}(C)$.

Exemplo

Seja $\mathcal G$ a gramática ($\{A,B\},\{\mathtt{a},\mathtt{b}\},\{A o B\mathtt{a}\mathtt{a}B,\ B o\mathtt{a}B,\ B o\mathtt{b}B,\ B o\varepsilon\},A$)

Duas derivações pela esquerda para aaa:

$$A\Rightarrow BaaB\Rightarrow \varepsilon aaB\Rightarrow aaaB\Rightarrow aaa\varepsilon = aaa$$

 $A\Rightarrow BaaB\Rightarrow aBaaB\Rightarrow a\varepsilon = aaa$

Derivação pela esquerda: substitui-se sempre a variável mais à esquerda. Derivação pela direita: substitui-se sempre a variável mais à direita.

A gramática \mathcal{G} é ambígua: alguma palavra de $\mathcal{L}(G)$ admite duas derivações pela esquerda e, consequentemente, duas árvores de derivação distintas.

$$\mathcal{G} = (\{A,B\}, \{a,b\}, \{A
ightarrow BaaB, \ B
ightarrow aB, \ B
ightarrow bB, \ B
ightarrow \epsilon\}, A)$$

• Qual é a linguagem gerada a partir de B?

$$\mathcal{L}(B) = \{a, b\}^*$$

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{\mathtt{a},\mathtt{b}\}^*\{\mathtt{aa}\}\{\mathtt{a},\mathtt{b}\}^*$$

$$\mathcal{G} = (\{A,B\}, \{\mathtt{a},\mathtt{b}\}, \{A \to B\mathtt{a}\mathtt{a}B, \; B \to \mathtt{a}B, \; B \to \mathtt{b}B, \; B \to \varepsilon\}, A)$$

• Qual é a linguagem gerada a partir de B?

$$\mathcal{L}(B) = \{a, b\}^*$$

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{\mathtt{a},\mathtt{b}\}^* \{\mathtt{aa}\} \{\mathtt{a},\mathtt{b}\}^*$$

$$\mathcal{G} = (\{A,B\}, \{\mathtt{a},\mathtt{b}\}, \{A \to B\mathtt{a}\mathtt{a}B, \; B \to \mathtt{a}B, \; B \to \mathtt{b}B, \; B \to \varepsilon\}, A)$$

• Qual é a linguagem gerada a partir de *B*?

$$\mathcal{L}(B) = \{a, b\}^*$$

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{a, b\}^* \{aa\} \{a, b\}^*$$

$$\mathcal{G} = (\{A,B\}, \{a,b\}, \{A
ightarrow BaaB, \ B
ightarrow aB, \ B
ightarrow bB, \ B
ightarrow \epsilon\}, A)$$

• Qual é a linguagem gerada a partir de B?

$$\mathcal{L}(B) = \{a, b\}^*$$

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{a, b\}^* \{aa\} \{a, b\}^*$$

$$\begin{array}{ccc} B & \rightarrow & aB \\ B & \rightarrow & bB \\ B & \rightarrow & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $x \in \{a, b\}^{n-1}$

Prova por indução sobre n:

- <u>Caso de base</u>: Para n = 1, tem-se $B \Rightarrow^1 x$ se e só se $x = \varepsilon \lor x = wB$, com w = a ou w = b. Portanto, para n = 1, a condição verifica-se, pois $\varepsilon \in \{a, b\}^0$ e $w \in \{a, b\}^1$.
- Hereditariedade: . . .

$$\begin{array}{ccc} B & \rightarrow & aB \\ B & \rightarrow & bB \\ B & \rightarrow & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $\bullet \ x \in \{\mathtt{a},\mathtt{b}\}^{n-1}$

Prova por indução sobre n:

- <u>Caso de base</u>: Para n = 1, tem-se $B \Rightarrow^1 x$ se e só se $x = \varepsilon \lor x = wB$, com w = a ou w = b. Portanto, para n = 1, a condição verifica-se, pois $\varepsilon \in \{a, b\}^0$ e $w \in \{a, b\}^1$.
- Hereditariedade: . . .

Prova por indução sobre n:

$$\begin{array}{ccc} B & \rightarrow & aB \\ B & \rightarrow & bB \\ B & \rightarrow & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $x \in \{a, b\}^{n-1}$

• <u>Hereditariedade</u>: Queremos mostrar que: *qualquer que* $seja \ k \geq 1 \ (fixo)$, se $para \ todo \ x \in \{B, a, b\}^* \ se \ tem$ $B \Rightarrow^k x \ sse \ x = wB$, $com \ w \in \{a, b\}^k$, ou $x \in \{a, b\}^{k-1}$ então $para \ todo \ y \in \{B, a, b\}^* \ tem-se$ $B \Rightarrow^{k+1} y \ sse \ y = zB$, $com \ z \in \{a, b\}^{k+1}$, ou $y \in \{a, b\}^k$.

Por definição de \Rightarrow^{k+1} , tem-se $B \Rightarrow^{k+1} y$ sse $B \Rightarrow s \Rightarrow^k y$, para algum $s \in \{B, a, b\}^*$ tal que B ocorre em s. Então, $s = aB \land y = ay' \land B \Rightarrow^k y'$ ou $s = bB \land y = by' \land B \Rightarrow^k y'$.

Pela hipótese de indução, y' = w'B com $w' \in \{a, b\}^k$, ou $y' \in \{a, b\}^{k-1}$.

Prova por indução sobre n:

$$\begin{array}{ccc} B & \to & aB \\ B & \to & bB \\ B & \to & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $x \in \{a, b\}^{n-1}$

• <u>Hereditariedade</u>: Queremos mostrar que: *qualquer que* $seja \ k \geq 1 \ (fixo)$, se $para \ todo \ x \in \{B, a, b\}^* \ se \ tem$ $B \Rightarrow^k x \ sse \ x = wB$, $com \ w \in \{a, b\}^k$, ou $x \in \{a, b\}^{k-1}$ então $para \ todo \ y \in \{B, a, b\}^* \ tem-se$ $B \Rightarrow^{k+1} y \ sse \ y = zB$, $com \ z \in \{a, b\}^{k+1}$, ou $y \in \{a, b\}^k$.

Por definição de \Rightarrow^{k+1} , tem-se $B \Rightarrow^{k+1} y$ sse $B \Rightarrow s \Rightarrow^k y$, para algum $s \in \{B, a, b\}^*$ tal que B ocorre em s. Então, $s = aB \land y = ay' \land B \Rightarrow^k y'$ ou $s = bB \land y = by' \land B \Rightarrow^k y'$.

Pela hipótese de indução, $y' = w'B \text{ com } w' \in \{a, b\}^k$, ou $y' \in \{a, b\}^{k-1}$.

Prova por indução sobre n:

$$\begin{array}{ccc} B & \rightarrow & aB \\ B & \rightarrow & bB \\ B & \rightarrow & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $x \in \{a, b\}^{n-1}$

• <u>Hereditariedade</u>: Queremos mostrar que: *qualquer que* $seja \ k \geq 1 \ (fixo)$, se $para \ todo \ x \in \{B, a, b\}^* \ se \ tem$ $B \Rightarrow^k x \ sse \ x = wB$, $com \ w \in \{a, b\}^k$, ou $x \in \{a, b\}^{k-1}$ então $para \ todo \ y \in \{B, a, b\}^* \ tem-se$ $B \Rightarrow^{k+1} y \ sse \ y = zB$, $com \ z \in \{a, b\}^{k+1}$, ou $y \in \{a, b\}^k$.

Por definição de \Rightarrow^{k+1} , tem-se $B \Rightarrow^{k+1} y$ sse $B \Rightarrow s \Rightarrow^k y$, para algum $s \in \{B, a, b\}^*$ tal que B ocorre em s. Então, $s = aB \land y = ay' \land B \Rightarrow^k y'$ ou $s = bB \land y = by' \land B \Rightarrow^k y'$.

Pela hipótese de indução, y' = w'B com $w' \in \{a, b\}^k$, ou $y' \in \{a, b\}^{k-1}$.

Prova por indução sobre n:

$$\begin{array}{ccc} B & \rightarrow & aB \\ B & \rightarrow & bB \\ B & \rightarrow & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $x \in \{a, b\}^{n-1}$

• <u>Hereditariedade</u>: Queremos mostrar que: *qualquer que* $seja \ k \geq 1 \ (fixo)$, se $para \ todo \ x \in \{B, a, b\}^* \ se \ tem$ $B \Rightarrow^k x \ sse \ x = wB$, $com \ w \in \{a, b\}^k$, ou $x \in \{a, b\}^{k-1}$ então $para \ todo \ y \in \{B, a, b\}^* \ tem-se$ $B \Rightarrow^{k+1} y \ sse \ y = zB$, $com \ z \in \{a, b\}^{k+1}$, ou $y \in \{a, b\}^k$.

Por definição de \Rightarrow^{k+1} , tem-se $B \Rightarrow^{k+1} y$ sse $B \Rightarrow s \Rightarrow^k y$, para algum $s \in \{B, a, b\}^*$ tal que B ocorre em s. Então, $s = aB \land y = ay' \land B \Rightarrow^k y'$ ou $s = bB \land y = by' \land B \Rightarrow^k y'$.

Pela hipótese de indução, y' = w'B com $w' \in \{a, b\}^k$, ou $y' \in \{a, b\}^{k-1}$.

$$\begin{array}{ccc} B & \to & aB \\ B & \to & bB \\ B & \to & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $x \in \{a, b\}^{n-1}$

Prova por indução sobre n:

Mostrámos que a condição:

- verifica-se para n = 1, e
- se se verificar para k então verifica-se para k+1, qualquer que seja $k \ge 1$

Logo, pelo Princípio de Indução Matemática, conclui-se que a condição verifica-se para todo $n \ge 1$.

Conclusão:

Da demonstração resulta que: para todo $n \ge 1$ e todo $x \in \{a,b\}^*$, tem-se $B \Rightarrow^n x$ sse $x \in \{a,b\}^{n-1}$.

Ou seja, $\mathcal{L}(B) = \{a, b\}^*$.

$$\begin{array}{ccc} B & \to & aB \\ B & \to & bB \\ B & \to & \varepsilon \end{array}$$

Para todo $n \ge 1$ e todo $x \in \{B, a, b\}^*$, tem-se $B \Rightarrow^n x$ se e só se

- x = wB, com $w \in \{a, b\}^n$ ou
- $x \in \{a, b\}^{n-1}$

Prova por indução sobre n:

Mostrámos que a condição:

- verifica-se para n = 1, e
- se se verificar para k então verifica-se para k+1, qualquer que seja $k \ge 1$

Logo, pelo Princípio de Indução Matemática, conclui-se que a condição verifica-se para todo $n \ge 1$.

Conclusão:

Da demonstração resulta que: para todo $n \ge 1$ e todo $x \in \{a,b\}^*$, tem-se $B \Rightarrow^n x$ sse $x \in \{a,b\}^{n-1}$.

Ou seja,
$$\mathcal{L}(B) = \{a, b\}^*$$
.

$$\mathcal{G} = (\{A,B\},\{\mathtt{a},\mathtt{b}\},\{A o B\mathtt{a}\mathtt{a}B,\; B o \mathtt{a}B,\; B o \mathtt{b}B,\; B o \varepsilon\},A)$$

• Qual é a linguagem gerada a partir de B?

$$\mathcal{L}(B) = \{a, b\}^*$$

• E, a partir de A?

Para $w \in \{a, b\}^*$, tem-se $A \Rightarrow^* w$ sse $A \Rightarrow BaB \Rightarrow^* w$, pelo que w = xaay, com $x, y \in \{a, b\}^*$.

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{\mathtt{a},\mathtt{b}\}^*\{\mathtt{aa}\}\{\mathtt{a},\mathtt{b}\}^*$$

$$\mathcal{G} = (\{A,B\}, \{\mathtt{a},\mathtt{b}\}, \{A \to B\mathtt{a}\mathtt{a}B, \ B \to \mathtt{a}B, \ B \to \mathtt{b}B, \ B \to \varepsilon\}, A)$$

• Qual é a linguagem gerada a partir de B?

$$\mathcal{L}(B) = \{a, b\}^*$$

• E, a partir de A?

Para $w \in \{a, b\}^*$, tem-se $A \Rightarrow^* w$ sse $A \Rightarrow BaB \Rightarrow^* w$, pelo que w = xaay, com $x, y \in \{a, b\}^*$.

Portanto

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{\mathtt{a},\mathtt{b}\}^*\{\mathtt{aa}\}\{\mathtt{a},\mathtt{b}\}^*$$

$$\mathcal{G} = \big(\{A,B\}, \{\mathtt{a},\mathtt{b}\}, \{A \to B\mathtt{a}\mathtt{a}B, \; B \to \mathtt{a}B, \; B \to \mathtt{b}B, \; B \to \varepsilon\}, A \big)$$

• Qual é a linguagem gerada a partir de B?

$$\mathcal{L}(B) = \{a, b\}^*$$

• E, a partir de A?

Para $w \in \{a,b\}^*$, tem-se $A \Rightarrow^* w$ sse $A \Rightarrow BaB \Rightarrow^* w$, pelo que w = xaay, com $x, y \in \{a,b\}^*$.

Portanto

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{\mathtt{a},\mathtt{b}\}^*\{\mathtt{aa}\}\{\mathtt{a},\mathtt{b}\}^*$$

$$\mathcal{G} = (\{A,B\}, \{\mathtt{a},\mathtt{b}\}, \{A \to B\mathtt{a}\mathtt{a}B, \ B \to \mathtt{a}B, \ B \to \mathtt{b}B, \ B \to \varepsilon\}, A)$$

• Qual é a linguagem gerada a partir de B?

$$\mathcal{L}(B) = \{\mathtt{a},\mathtt{b}\}^{\star}$$

E, a partir de A?

Para $w \in \{a, b\}^*$, tem-se $A \Rightarrow^* w$ sse $A \Rightarrow BaB \Rightarrow^* w$, pelo que w = xaay, com $x, y \in \{a, b\}^*$.

Portanto,

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(A) = \{\mathtt{a},\mathtt{b}\}^{\star} \{\mathtt{aa}\} \{\mathtt{a},\mathtt{b}\}^{\star}$$

Exemplo 2

Vamos mostrar formalmente que a linguagem

$$L = \{ aaa x a y \mid |x| \le 2|y|, x, y \in \{0, 1, b\}^* \}$$

é gerada pela GIC $\mathcal{G} = (\{S, R, A\}, \{0, 1, a, b\}, P, S)$ com regras

Para tal, vamos provar, por indução sobre o número de regras aplicadas, que: $\forall n \geq 1 \ \forall x \in (V \cup \Sigma)^*$, se $R \Rightarrow^n x$ sem substituir A então

$$x = A^k a A^{n-1}$$
 $e \quad 0 \le k \le 2(n-1)$
ou
 $x = A^k R A^n$ $e \quad 0 \le k \le 2n$

Exemplo 2

Vamos mostrar formalmente que a linguagem

$$L = \{ aaa x a y \mid |x| \le 2|y|, x, y \in \{0, 1, b\}^* \}$$

é gerada pela GIC $\mathcal{G} = (\{S, R, A\}, \{0, 1, a, b\}, P, S)$ com regras

Para tal, vamos provar, por indução sobre o número de regras aplicadas, que: $\forall n \geq 1 \ \forall x \in (V \cup \Sigma)^*$, se $R \Rightarrow^n x$ sem substituir A então

$$x = A^k a A^{n-1} \quad e \quad 0 \le k \le 2(n-1)$$
ou
$$x = A^k R A^n \quad e \quad 0 \le k \le 2n$$

• Caso n = 1.

Se $R \Rightarrow^1 x$ então $x = A^0$ a A^0 ou $x = A^k R A$, com $0 \le k \le 2$, pois

$$\begin{array}{ccc} R \Rightarrow A^k R A \\ 0 \leq k \leq 2 \end{array} \quad \text{por} \; \left\{ \begin{array}{ccc} R & \rightarrow & A A R A \\ R & \rightarrow & A R A \\ R & \rightarrow & R A \end{array} \right.$$

ou

$$egin{aligned} R &\Rightarrow A^k \, \mathrm{a} \, A^0 \ 0 &\leq k &\leq 0 \end{aligned} \qquad \mathrm{por} \ R &\rightarrow \mathrm{a} \end{aligned}$$

Hereditariedade

- Para a hereditariedade, comecemos por notar que: se n ≥ 1 então, por definição de ⇒ⁿ⁺¹, tem-se
 R ⇒ⁿ⁺¹ x sse ∃x' ∈ (V ∪ Σ)* (R ⇒ⁿ x' e x' ⇒ x). Para R ⇒ⁿ⁺¹ x sem substituir A's, na derivação de x' não se substituiu qualquer A.
- Supomos, como hipótese de indução, que: para todo $w \in (V \cup \Sigma)^*$, se $R \Rightarrow^n w$ sem substituir A, então $w = A^k R A^n$, com $0 \le k \le 2n$, ou $w = A^k a A^{n-1}$, com $0 \le k \le 2(n-1)$.

Hereditariedade

- Para a hereditariedade, comecemos por notar que: se n ≥ 1 então, por definição de ⇒ⁿ⁺¹, tem-se
 R ⇒ⁿ⁺¹ x sse ∃x' ∈ (V ∪ Σ)* (R ⇒ⁿ x' e x' ⇒ x). Para R ⇒ⁿ⁺¹ x sem substituir A's, na derivação de x' não se substituiu qualquer A.
- Supomos, como hipótese de indução, que: para todo $w \in (V \cup \Sigma)^*$, se $R \Rightarrow^n w$ sem substituir A, então $w = A^k R A^n$, com $0 \le k \le 2n$, ou $w = A^k a A^{n-1}$, com $0 \le k \le 2(n-1)$.

Hereditariedade

- Para a hereditariedade, comecemos por notar que: se n ≥ 1 então, por definição de ⇒ⁿ⁺¹, tem-se
 R ⇒ⁿ⁺¹ x sse ∃x' ∈ (V ∪ Σ)* (R ⇒ⁿ x' e x' ⇒ x). Para R ⇒ⁿ⁺¹ x sem substituir A's, na derivação de x' não se substituiu qualquer A.
- Supomos, como hipótese de indução, que: para todo $w \in (V \cup \Sigma)^*$, se $R \Rightarrow^n w$ sem substituir A, então $w = A^k R A^n$, com $0 \le k \le 2n$, ou $w = A^k a A^{n-1}$, com $0 \le k \le 2(n-1)$.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x' = A^k R A^n$ por aplicação de uma regra , isto é, $x' \Rightarrow x$, então x é da forma esperada: $x = A^q$ a A^n , com $0 \le q \le 2n$, ou $x = A^q R A^{n+1}$, com $0 \le q \le 2n + 2$.

De facto,

$$x = A^{k+2}RA^{n+1}$$
 por $A^kRA^n \Rightarrow A^kAARA^{n+1}$, ou $x = A^{k+1}RA^{n+1}$ por $A^kRA^n \Rightarrow A^kARA^{n+1}$, ou $x = A^kRA^{n+1}$ por $A^kRA^n \Rightarrow A^kRA^{n+1}$, ou $x = A^kaA^n$ por $A^kRA^n \Rightarrow A^kaA^n$,

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q$ a A^n , com $0 < q \le 2n$.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x'=A^kRA^n$ por aplicação de uma regra , isto é, $x'\Rightarrow x$, então x é da forma esperada: $x=A^q$ a A^n , com $0\leq q\leq 2n$, **ou** $x=A^qRA^{n+1}$, com $0\leq q\leq 2n+2$.

De facto,

```
x = A^{k+2}RA^{n+1} por A^kRA^n \Rightarrow A^kAARA^{n+1}, ou x = A^{k+1}RA^{n+1} por A^kRA^n \Rightarrow A^kARA^{n+1}, ou x = A^kRA^{n+1} por A^kRA^n \Rightarrow A^kRA^{n+1}, ou x = A^kaA^n por A^kRA^n \Rightarrow A^kaA^n,
```

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q$ a A^n , com $0 < q \le 2n$.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x'=A^kRA^n$ por aplicação de uma regra , isto é, $x'\Rightarrow x$, então x é da forma esperada: $x=A^q$ a A^n , com $0\leq q\leq 2n$, **ou** $x=A^qRA^{n+1}$, com $0\leq q\leq 2n+2$.

De facto,

```
x = A^{k+2}RA^{n+1} por A^kRA^n \Rightarrow A^kAARA^{n+1}, ou x = A^{k+1}RA^{n+1} por A^kRA^n \Rightarrow A^kARA^{n+1}, ou x = A^kRA^{n+1} por A^kRA^n \Rightarrow A^kRA^{n+1}, ou x = A^kaA^n por A^kRA^n \Rightarrow A^kaA^n,
```

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q a A^n$, com 0 < q < 2n.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x'=A^kRA^n$ por aplicação de uma regra , isto é, $x'\Rightarrow x$, então x é da forma esperada: $x=A^q$ a A^n , com $0\leq q\leq 2n$, **ou** $x=A^qRA^{n+1}$, com $0\leq q\leq 2n+2$.

De facto,

$$x = A^{k+2}RA^{n+1}$$
 por $A^kRA^n \Rightarrow A^kAARA^{n+1}$, ou $x = A^{k+1}RA^{n+1}$ por $A^kRA^n \Rightarrow A^kARA^{n+1}$, ou $x = A^kRA^{n+1}$ por $A^kRA^n \Rightarrow A^kRA^{n+1}$, ou $x = A^kaA^n$ por $A^kRA^n \Rightarrow A^kaA^n$,

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q$ a A^n , com $0 < q \le 2n$.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x'=A^kRA^n$ por aplicação de uma regra , isto é, $x'\Rightarrow x$, então x é da forma esperada: $x=A^q$ a A^n , com $0\leq q\leq 2n$, **ou** $x=A^qRA^{n+1}$, com $0\leq q\leq 2n+2$.

De facto,

$$x = A^{k+2}RA^{n+1}$$
 por $A^kRA^n \Rightarrow A^kAARA^{n+1}$, ou $x = A^{k+1}RA^{n+1}$ por $A^kRA^n \Rightarrow A^kARA^{n+1}$, ou $x = A^kRA^{n+1}$ por $A^kRA^n \Rightarrow A^kRA^{n+1}$, ou $x = A^kaA^n$ por $A^kRA^n \Rightarrow A^kaA^n$,

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q$ a A^n , com $0 \le q \le 2n$.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x'=A^kRA^n$ por aplicação de uma regra , isto é, $x'\Rightarrow x$, então x é da forma esperada: $x=A^q$ a A^n , com $0\leq q\leq 2n$, **ou** $x=A^qRA^{n+1}$, com $0\leq q\leq 2n+2$.

De facto,

$$x = A^{k+2}RA^{n+1}$$
 por $A^kRA^n \Rightarrow A^kAARA^{n+1}$, ou $x = A^{k+1}RA^{n+1}$ por $A^kRA^n \Rightarrow A^kARA^{n+1}$, ou $x = A^kRA^{n+1}$ por $A^kRA^n \Rightarrow A^kRA^{n+1}$, ou $x = A^kA^n$ por $A^kRA^n \Rightarrow A^kA^n$, ou

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q a A^n$, com 0 < q < 2n.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x'=A^kRA^n$ por aplicação de uma regra , isto é, $x'\Rightarrow x$, então x é da forma esperada: $x=A^q$ a A^n , com $0\leq q\leq 2n$, **ou** $x=A^qRA^{n+1}$, com $0\leq q\leq 2n+2$.

De facto,

$$x = A^{k+2}RA^{n+1}$$
 por $A^kRA^n \Rightarrow A^kAARA^{n+1}$, ou $x = A^{k+1}RA^{n+1}$ por $A^kRA^n \Rightarrow A^kARA^{n+1}$, ou $x = A^kRA^{n+1}$ por $A^kRA^n \Rightarrow A^kRA^{n+1}$, ou $x = A^kaA^n$ por $A^kRA^n \Rightarrow A^kaA^n$,

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q A^n$, com 0 < q < 2n.

• Usando a hipótese de indução, deduzimos que:

se
$$R \Rightarrow^n x'$$
 então $x' = A^k R A^n$, para algum k tal que $0 \le k \le 2n$

Como x resulta de $x'=A^kRA^n$ por aplicação de uma regra , isto é, $x'\Rightarrow x$, então x é da forma esperada: $x=A^q$ a A^n , com $0\leq q\leq 2n$, **ou** $x=A^qRA^{n+1}$, com $0\leq q\leq 2n+2$.

De facto,

$$x = A^{k+2}RA^{n+1}$$
 por $A^kRA^n \Rightarrow A^kAARA^{n+1}$, ou $x = A^{k+1}RA^{n+1}$ por $A^kRA^n \Rightarrow A^kARA^{n+1}$, ou $x = A^kRA^{n+1}$ por $A^kRA^n \Rightarrow A^kRA^{n+1}$, ou $x = A^kaA^n$ por $A^kRA^n \Rightarrow A^kaA^n$,

Como $0 \le k \le 2n$ então $x = A^q R A^{n+1}$, com $0 \le q \le k+2 \le 2(n+1)$ ou $x = A^q$ a A^n , com $0 \le q \le 2n$.

イロト (個) (意) (意) (意) (9)(で

Mostrámos que a condição:

- verifica-se para n=1, e
- **se** se verificar para n **então** verifica-se para n+1, qualquer que seja $n \ge 1$

Logo, pelo **Princípio de Indução Matemática**, conclui-se que a condição verifica-se para todo $n \ge 1$, isto é $\forall n \ge 1 \ \forall x \in (V \cup \Sigma)^*$ se $R \Rightarrow^n x$ sem substituir A então $x = A^k$ a A^{n-1} , com $0 \le k \le 2(n-1)$, **ou** $x = A^k$ R A^n , com $0 \le k \le 2n$.

O que podemos concluir sobre $\mathcal{L}(G)$?

Para derivarmos palavras de $\mathcal{L}(G)$, podemos substituir todos os A's no fim, uma vez que cada A se re-escreve num terminal.

Logo, $\mathcal{L}(G) \subseteq \{ aaa \times ay \mid |x| \le 2|y|, x, y \in \{0, 1, b\}^* \}$ pois as palavras de Σ^* geradas a partir de R são da forma xay, com $|x| \le 2|y|, x, y \in \{0, 1, b\}^*$.

4□ > 4個 > 4 種 > 4 種 > ■ 9 への

23 / 25

Mostrámos que a condição:

- verifica-se para n=1, e
- **se** se verificar para n **então** verifica-se para n+1, qualquer que seja $n \ge 1$

Logo, pelo **Princípio de Indução Matemática**, conclui-se que a condição verifica-se para todo $n \ge 1$, isto é $\forall n \ge 1 \ \forall x \in (V \cup \Sigma)^*$ se $R \Rightarrow^n x$ sem substituir A então $x = A^k$ a A^{n-1} , com $0 \le k \le 2(n-1)$, **ou** $x = A^k$ R A^n , com $0 \le k \le 2n$.

O que podemos concluir sobre $\mathcal{L}(G)$?

Para derivarmos palavras de $\mathcal{L}(G)$, podemos substituir todos os A's no fim, uma vez que cada A se re-escreve num terminal.

Logo, $\mathcal{L}(G) \subseteq \{ aaa \times ay \mid |x| \le 2|y|, \ x,y \in \{0,1,b\}^* \}$ pois as palavras de Σ^* geradas a partir de R são da forma xay, com $|x| \le 2|y|$, $x,y \in \{0,1,b\}^*$.

Resta mostrar que $\mathcal{L}(G) \supseteq \{aaa \ x \ ay \ | \ |x| \le 2|y|, \ x,y \in \{0,1,b\}^*\}$. Para isso, vamos provar que qualquer palavra da forma xay, com $|x| \le 2|y|$ e $x,y \in \{0,1,b\}^*$ pode ser derivada a partir de R.

Basta indicar a derivação para xay, considerando os casos possíveis...

• Se |x| > |y| aplicar |x| - |y| vezes $R \to A A R A$, depois 2|y| - |x| vezes $R \to A R A$ para obter $A^{|x|} R A^{|y|}$, depois $R \to a$, e finalmente |x| + |y| vezes regras para A para derivar x e y. Ou seja, se k = |x| e n = |y|

$$R \Rightarrow^{k-n} A^{2(k-n)} R A^{k-n} \Rightarrow^{2n-k} A^k R A^n$$

• Se |x| < |y|, aplicar |x| vezes $R \to A R A$ e |y| - |x| vezes $R \to R A$, e depois $R \to a$, e finalmente |x| + |y| vezes regras para A para derivar x e y.

$$R \Rightarrow^k A^k R A^k \Rightarrow^{n-k} A^k R A^r$$

• Se |x| = |y|, aplicar |x| vezes $R \to ARA$ e depois $R \to a$, e finalmente |x| + |y| vezes regras para A para derivar $x \in y$.

Resta mostrar que $\mathcal{L}(G) \supseteq \{aaa \ x \ ay \ | \ |x| \le 2|y|, \ x,y \in \{0,1,b\}^*\}$. Para isso, vamos provar que qualquer palavra da forma xay, com $|x| \le 2|y|$ e $x,y \in \{0,1,b\}^*$ pode ser derivada a partir de R.

Basta indicar a derivação para xay, considerando os casos possíveis...

• Se |x| > |y| aplicar |x| - |y| vezes $R \to AARA$, depois 2|y| - |x| vezes $R \to ARA$ para obter $A^{|x|}RA^{|y|}$, depois $R \to$ a, e finalmente |x| + |y| vezes regras para A para derivar x e y. Ou seja, se k = |x| e n = |y|

$$R \Rightarrow^{k-n} A^{2(k-n)} R A^{k-n} \Rightarrow^{2n-k} A^k R A^n$$

• Se |x| < |y|, aplicar |x| vezes $R \to ARA$ e |y| - |x| vezes $R \to RA$, e depois $R \to a$, e finalmente |x| + |y| vezes regras para A para derivar x e y.

$$R \Rightarrow^k A^k R A^k \Rightarrow^{n-k} A^k R A^n$$

• Se |x| = |y|, aplicar |x| vezes $R \to A R A$ e depois $R \to a$, e finalmente |x| + |y| vezes regras para A para derivar $x \in y$.