M.Sioli's Thermodynamics

Pocket reference for 1st year course - BSc Physics, Unibo

2023

Contents

1	Fluidostatica e fluidodinamica	1
2	Sistemi termodinamici	1
3	Teoria Cinetica	2
4	Primo principio	3
5	Trasmissione del calore	6
6	II Principio	7
7	Entropia	7
	Costanti fisiche e proprietà termodinamiche 8 1 Costanti	8

1 Fluidostatica e fluidodinamica

Sforzo di Taglio $\vec{T} = \frac{\mathrm{d} \vec{F_t}}{\mathrm{d} S}$

Equazione della statica (1D) $\frac{\mathrm{d}p}{\mathrm{d}z} = -\rho(z)g$

Equazione generalizzata della statica $\nabla p=\rho \vec{H}=-\rho \nabla \Phi$ ove \vec{H} indica forza di volume (f. che agisce tramite il v. del corpo)

Legge di Stevino $p = p_0 + \rho g h$

Tensione superficiale $\tau=\frac{\mathrm{d}F}{\mathrm{d}l}=\frac{\mathrm{d}L}{\mathrm{d}S}$ (alternativamente indicata con γ)

Equazione di continuità $\rho Av = cost$

Resistenza del mezzo (per corpo sferico) $F=6\pi R\eta v$ a piccole velocità, $F=\frac{1}{2}\rho v^2\cdot S\cdot C$ a grandi v.

2 Sistemi termodinamici

Regola delle Fasi di Gibbs $\nu=C+2-F$ ove ν sono i d.o.f. termodinamici (var. intensive indipendenti), C le componenti e F le fasi

Scala Celsius
$$\, \theta(x) = 100 \frac{x-x_0}{x_{100}-x_0} \mathrm{C}$$

Coefficiente di dilatazione termica lineare $\alpha_L=rac{1}{l}igg(rac{\partial l}{\partial T}igg)_p$ indicato anche con lpha (per un filo è a au, tensione ai capi costante) $\Delta l pprox l \cdot (1+lpha_L\Delta T)$

Coefficiente di dilatazione termica volumetrico $\alpha=\frac{1}{V}\bigg(\frac{\partial V}{\partial T}\bigg)_p$ indicato anche con β

$$\Delta V \approx V \cdot (1 + \alpha \Delta T)$$

Per $\Delta T \rightarrow 0 \ \beta \approx 3\alpha_l$

Coefficiente di comprimibilità isoterma $\frac{1}{k} = -\frac{1}{V} \bigg(\frac{\partial V}{\partial p} \bigg)_T$

Potenziale di Lennard-Jones $U(r)=\varepsilon \left[\left(\frac{r_{min}}{r}\right)^{12}-2\left(\frac{r_{min}}{r}\right)^{6}\right]$

Termometro a GP $\theta(p)=273.16\frac{p}{p_3}$ ove $p_3=$ punto triplo

LEGGI DEI GAS PERFETTI

I Legge di Gay-Lussac a p cost $V = V_0 \beta \theta$ ($V \propto \theta$)

II Legge di Gay-Lussac a V cost $p=p_0\beta\theta$ $(p\propto\theta)$

Legge di Boyle a n, θ cost $V = \frac{cost}{p} \; (V \propto \frac{1}{p})$

Legge di Avogadro a p, θ cost $V = cost' \cdot n$ $(V \propto n)$

Equazione di stato dei GP $\boxed{pV=nR\theta}$

Dilatazione volumica e comprimibilità $\alpha = \frac{1}{\theta}$ — k = p

Dipendenza pressione dalla quota (θ cost) $p(z)=p_0\,e^{-z/h_0}$ con $h_0=\frac{R\theta}{g{
m M}}$ (massa molecolare media)

Sviluppo del viriale $z=\frac{pV}{nR\theta}$ fattore di compressione

$$z(p) \approx 1 + Ap + Bp^2 + Cp^3 + \dots$$

Equazione di stato di Van der Waals $\left[\left(p+a\frac{n^2}{V^2}\right)(V-bn)=nR\theta\right]$

oppure $(p + \frac{a}{v^2})(v - b) = R\theta$ con volume molare v

 $\text{Pressione per GR } p(\theta,V) = \frac{nR\theta}{V-bn} - \frac{an^2}{V^2} = \frac{R\theta}{{\rm v}-b} - \frac{a}{{\rm v}^2} = p(\theta,{\rm v})$

Temperatura e volume molare critici (flesso orizzontale isoterma piano pv) con coeff. compressione

$$v_C = 3b$$
 $\theta_C = \frac{8a}{27Rb}$ $z_C = \frac{p_C v_C}{R\theta_C} = \frac{3}{8} = 0.375$

Vapore saturo $\frac{n_L}{n_G} = \frac{\mathbf{v}_G - \mathbf{v}}{\mathbf{v} - \mathbf{v}_L}$

3 Teoria Cinetica

Pressione $p = \frac{1}{3}(p_x + p_y + p_z) = \frac{m}{3V} \sum_{i=1}^{N} (v_{ix}^2 + v_{iy}^2 + v_{iz}^2) = \frac{m}{3V} \sum_{i=1}^{N} v_i^2$

Energia cinetica media $\sqrt{\langle arepsilon
angle} = rac{3}{2} k_B heta$

Teorema di equipartizione dell'energia definizione Kelvin $\theta=\frac{2\langle \varepsilon \rangle}{k_B \nu}$ con $\nu=n\,d.o.f.$ e cost. di Boltzmann definita come valore esatto

2

Legge di Dalton (pressioni parziali) $(p_1 + p_2)V = (n_1 + n_2)R\theta$ ove p_1, p_2 sono pressioni esercitate in assenza dell'altro gas

Gas sulla bilancia
$$|\Delta v_{iy}| = rac{gL}{|ec{v}_{iy}|}$$
 da cui $\Delta p = rac{Mg}{S}$

Moda
$$\frac{\mathrm{d} \rho}{\mathrm{d} v} = 0 o \sqrt{\frac{2R\theta}{M}} = \sqrt{\frac{2k_B\theta}{m}}$$

Velocità media
$$\langle v \rangle = \int_0^{+\infty} v \, \rho(v) \mathrm{d}v = \sqrt{\frac{8R\theta}{\pi M}} = \sqrt{\frac{8k_B\theta}{\pi m}}$$

Velocità quadratica media
$$\langle v^2 \rangle = \int_0^{+\infty} v^2 \, \rho(v) \mathrm{d}v = \sqrt{\frac{3R\theta}{M}} = \sqrt{\frac{3k_B\theta}{m}}$$

Selettore di velocità
$$\Delta l(v) = \frac{2R^2\omega}{v}$$

Atmosfere planetarie raggio limite (posta
$$v_f=\sqrt{\langle v^2\rangle}$$
) $r=\sqrt{\frac{9R\theta}{8G\pi M\rho_{pianeta}}}$ a θ,ρ unif

Libero cammino medio - Mean free path $\lambda=\frac{k_B\theta}{\sigma p\sqrt{2}}$ con σ cross section particelle

4 Primo principio

Lavoro $L_{term} = \sum F_{GEN} \cdot \Delta S_{GEN}$ (tra sistema e ambiente, esterno)

pV per quasistatiche
$$\delta L = p \mathrm{d} V o L = \int_{V_i}^{V_f} p(V) \mathrm{d} V$$

Altri tipi di lavori termodinamici
$$L=\int_i^f p\mathrm{d}V+\int_i^f T\mathrm{d}l+\int_i^f \tau\mathrm{d}S+\int_i^f \varepsilon\mathrm{d}q+\int_i^f \mu_i\mathrm{d}n_i$$

LAVORO IN QUASISTATICHE

Isocora L=0

Isobara
$$L = p(V_f - V_i) = p\Delta V$$

$$\text{Isoterma} \ \ \text{per GP} \ L = nR\theta \ln \big(\frac{V_f}{V_i}\big) \ \ \text{per GR} \ L = nR\theta \ln \bigg(\frac{V_f - nb}{V_i - nb}\bigg) + an^2 \big(\frac{1}{V_f} - \frac{1}{V_i}\big)$$

 $\textbf{Per stati condensati con dilatazione termica trasc: quasistatica } L = \frac{V}{k}[p_i^2 - p_f^2] \text{ brusca } L = -\frac{V}{k}p_f(p_f - p_i)$

Bolla di sapone differenza di pressione int-est $\Delta p = \frac{4\tau}{r}$

ENERGIA INTERNA E CALORE

En. interna e adiabatiche $\Delta U_{A
ightarrow B} = L_{A
ightarrow B}^{(ad)}$

PRIMO PRINCIPIO integrale $Q = \Delta U + L$ locale $\delta Q = \mathrm{d} U + \delta L$ Convenzione segni:

Sistemi idrostatici semplici $\delta Q = p \mathrm{d} V + \mathrm{d} U$ non semplici $\delta Q = \sum p_i \mathrm{d} V_i + \mathrm{d} U$

Altre forme di energia sistema nella sua totalità non in quiete $+\Delta K$ e/o sottoposto a campo di forze, potenziale conservativo $+\Delta V$

Ciclo
$$\Delta U = 0 \implies Q = L$$

CAPACITÁ TERMICA

C.t. media
$$\overline{C} = \frac{Q}{\Delta T}$$

Locale
$$C(\theta) = \lim_{\theta_f \to \theta} \frac{Q}{\theta_f - \theta} = \frac{\delta Q}{\mathrm{d}\theta}$$

Calore specifico
$$c_m = \frac{C}{m} = \frac{1}{m} \frac{\delta Q}{\mathrm{d}\theta} \ [c_m] = \mathrm{J}\mathrm{K}^{-1}\mathrm{kg}^{-1}$$

Calore molare
$$c_n = c = \frac{C}{n} [c] = JK^{-1}mol^{-1}$$

A pressione costante
$$c_p=rac{1}{n}ig(rac{\delta Q}{\mathrm{d} heta}ig)_p$$
, a volume costante $c_V=rac{1}{n}ig(rac{\delta Q}{\mathrm{d} heta}ig)_V$

Calore latente locale $\lambda=\frac{\delta Q}{\mathrm{d}m}$, integrale $\lambda=\frac{Q}{m}$ con m massa che transisce di fase e Q assorbito o ceduto. Anche molare $\lambda_n=\frac{Q}{n}$

Lavoro in transizione e.g. liquido-vapore $L=p(\mathbf{v}_G-\mathbf{v}_L)$

Dulong-Petit e Debye
$$c \approx c_V(\theta) = 3R \big(\frac{\theta}{\theta_D}\big)^3 \int_0^{\theta_D/\theta} \frac{x^4 e^x}{(e^x-1)^2} dx$$
 per $\theta >> \theta_D$ $c \approx 3R$ cost per $\theta << \theta_D$ $c \propto \big(\frac{\theta}{\theta_D}\big)^3$

GP Monoatomici
$$c_V=\frac{3}{2}R$$
 — $c_p=\frac{5}{2}R$ — $\gamma=\frac{5}{3}$ Biatomici $c_V=\frac{5}{2}R$ — $c_p=\frac{7}{2}R$ — $\gamma=\frac{7}{5}$

 $\textbf{Calorimetro di Bunsen} \ \ c_m = \frac{\lambda_f}{m_c\Delta\theta}\frac{\Delta V}{\Delta V_{LS}} = \frac{\lambda_f m_G}{m_c\Delta\theta} \ \ \text{ove} \ \ \Delta V_{LS} \ \ \text{\`e} \ \ \text{la variazione di vol. per unit\'a di massa sciolta}$

Calorimetro delle mescolanze (di Regnault)
$$c = c_{H_2O} \frac{m_{H_2O}}{m} \left[\frac{\theta_e - \theta_{H_2O}}{\theta - \theta_e} \right]$$
con $m_{H_2O} = m_{H_2O}^0 + m_{H_2O}^{(eq)}$

Calori molari per sistemi idrostatici
$$c_V = \frac{1}{n} \left(\frac{\partial U}{\partial \theta} \right)_V \left| c_p = \frac{1}{n} \left[\left(\frac{\partial U}{\partial \theta} \right)_p + p \left(\frac{\partial V}{\partial \theta} \right)_p \right] = \frac{1}{n} \left(\frac{\partial H}{\partial \theta} \right)_p \text{ (vd. potenziali)}$$

Energia interna GP $dU = nc_V d\theta$ da cui assunto calore molare costante $U(\theta) = nc_V \theta + cost$

Seconda equazione dell'energia $\left(\frac{\partial U}{\partial V}\right)_{\alpha} = \theta \left(\frac{\partial p}{\partial \theta}\right)_{V} - p$

Energia interna GR $U(\theta, V) = nc_v\theta - \frac{an^2}{V} + cost$

TEOREMA DI EQUIPARTIZIONE (bis) $c_V = \frac{f}{2}R$ con f d.o.f.

Contributi cinetici (König) $\varepsilon=\varepsilon_{TRASL}+\varepsilon_{ROT}+\varepsilon_{VIBR}$ per quest'ultima 2 termini per ogni modo vibrazionale Biatomici f=3 trasl +2 rot (terzo asse principale d'inerzia trasc) +2 vib (attivi solo sopra elevata soglia quantica)

$$\begin{aligned} \textbf{Poliatomici} \ \ f &= 3 \ \text{trasl} + \overbrace{f_{ROT}^{ANG} = 3}^{ANG} \lor f_{ROT}^{LIN} = 2 + \overbrace{f_{VIB}^{ANG} = 2(3N-6)}^{ANG} \lor f_{VIB}^{LIN} = 2(3N-5) \end{aligned} \\ &\text{dunque } c_V^{ANG} = 3R(N-1) \ \bigg| \ c_V^{LIN} = \frac{6N-5}{2}R \end{aligned}$$

Relazione di Meyer (per GP) $c_p = c_V + R$

$$\gamma$$
 per poliatomici $\gamma_{LIN}=1+\frac{2}{6N-5}\left|\gamma_{ANG}=1+\frac{1}{3N-3}\right|$ (ma nel limite di N elevato correzioni quantistiche non trascurabi

Lavoro in QS per GP
$$L = \frac{p_i V_i - p_f V_f}{\gamma - 1} = \delta U$$

$$\textbf{Curve } \left(\frac{\partial p}{\partial V} \right)_T = -\frac{p}{V} > \left(\frac{\partial p}{\partial V} \right)_{ad} = -\gamma \frac{p}{V} \implies \left| \left(\frac{\partial p}{\partial V} \right)_T \right| < \left| \left(\frac{\partial p}{\partial V} \right)_{ad} \right| \text{ (adiabatica più 'ripida')}$$

Spiegazione meccanica per esp adiabatica
$$r \equiv \frac{m}{M}$$

$$V' = \frac{2mv + (M-m)V}{m+M} \xrightarrow[r\to 0]{} V \text{ (immutato)}$$

$$v' = \frac{2MV + (m-M)v}{m+M} \xrightarrow[r\to 0]{} 2V - v \text{ (varia modulo: si ha mediamente diminuzione } \varepsilon \text{ e dunque } \Delta U, \Delta \theta < 0)$$
Prima equazione di Friedmann - espansione adiabatica dell'universo $\dot{\rho} = -3(p+\rho)H \text{ con } H = \frac{\dot{a}}{r} - \text{costante di Hubble}$

Prima equazione di Friedmann - espansione adiabatica dell'universo $\dot{\rho}=-3(p+\rho)H$ con $H=\frac{\dot{a}}{a}$ costante di Hubble

Storia termica dell'universo

Dipendenza temperatura dalla quota $L\equiv \frac{\gamma-1}{\gamma}\frac{mg}{R}$ Lapse rate (gradiente adiabatico secco) $\frac{\mathrm{d}\theta}{\mathrm{d}z}=-L\implies$ $heta(z) = heta_0 - Lz$ (in realtà si usa lapse rate umido - o saturo)

Esperienza di Rüchardt $\,\gamma=\frac{4\pi^2 mV}{A^2p\tau}$ ove $\,\tau=$ periodo di oscillazione, A sezione tubo

$$\mbox{Velocità del suono} \ \ v = \sqrt{\frac{k_s}{\rho}} \ \mbox{con} \ \ k_S = \left[-\frac{1}{V} \bigg(\frac{\partial V}{\partial p} \bigg)_S \right]^{-1} \ \mbox{coeff. di comprimibilità adiabatico}$$
 si ottiene $\gamma = \frac{v^2 \rho}{p}$

5 Trasmissione del calore

Conduzione: Legge di Fourier

$$\boxed{\frac{\delta Q}{\mathrm{d}t} = -k \, \mathrm{d}A \left(\frac{\mathrm{d}\theta}{\mathrm{d}x}\right)}$$

ove l'ultimo termine indica il gradiente termico, $[k] = Wm^{-1}K^{-1}$ la conducibilità termica (segno negativo in quanto fluisce da più caldo a più freddo)

$$\underbrace{\vec{\Phi}_Q}_{\text{flusso di }Q} = -k\vec{\nabla}\theta$$

Trattazione generale: equazione del trasporto $\frac{\partial u}{\partial t} + \mathbf{b} \cdot \nabla u = f \text{ con } u : \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}, \ \mathbf{b} \ in \ \mathbb{R}^n$

Geometria planare $P = \frac{\delta Q}{dt} = k \cdot A \cdot \frac{\theta_1 - \theta_2}{d} = -AH\Delta\theta$ con conduttanza $H \equiv \frac{k}{d}$ s

Conduttanza di strati in serie $\frac{1}{H_{tot}} = \sum_{i} \frac{1}{H_{i}}$

Caso non stazionario: equazione del calore $\nabla^2\theta=\frac{\rho c}{k}\frac{\partial\theta}{\partial t}$ con $\alpha\equiv\frac{\rho c}{k}$ diffusività termica

Geometria cilindrica $\frac{\delta Q}{\mathrm{d}t} = 2\pi \cdot l \cdot k \frac{\theta_1 - \theta_2}{\ln \frac{r_2}{s}}$ con 1 int, 2 est

Geometria sferica $\frac{\delta Q}{\mathrm{d}t} = 4\pi k \left(\frac{r_2 r_1}{r_1 - r_2}\right) (\theta_1 - \theta_2)$

Convezione: legge del raffreddamento di Newton

$$\frac{\delta Q}{\mathrm{d}t} = h \, \mathrm{d}A \left(\theta_0 - \theta_\infty\right)$$

con h coefficiente di trasferimento termico (o di convezione)

Raffreddamento del tè $\theta(t)=(\theta_0-\theta_\infty)e^{\displaystyle{-\frac{hA}{C}t}}+\theta_\infty$

Irraggiamento: legge di Stefan-Boltzmann

$$\frac{\delta Q}{\mathrm{d}t} = \varepsilon \,\sigma \,A \,\theta^4$$

con $0<\varepsilon<1$ approssimabilità a corpo nero, σ cost. di S-B

Legge di Kirchhoff emittanza $\epsilon(\lambda) = \int a(\lambda)$ sull'angolo solido (tutta riemessa)

Radiazione elettromagnetica $\lambda \nu = c$ $E = h \nu \ {\rm con} \ h \ {\rm cost} \ {\rm di}$ **Planck**

Spettro di Corpo Nero: Legge di Planck (curva planckiana)

$$f_{CN}(\lambda; \theta) = \frac{c_1}{\lambda^5 \left(e^{\frac{c_2}{\lambda \theta}} - 1\right)}$$

 $\int_0^\infty f_{CN}(\lambda) \mathrm{d}\lambda = \sigma \theta^4$ (energia totale per unità di tempo e

Legge di Wien $\theta \lambda_{max} = cost = b$ costante dello spostamento di Wien (massimo si ottiene annullando derivata)

Emittanza monocromatica: $\epsilon^{(\lambda)} = \frac{f(\lambda)}{f_{CN}(\lambda)}$ (tra corpo in esame e CN). Parametro della legge si ottiene secondo:

$$\varepsilon = \frac{\int f(\lambda) \, \mathrm{d}\lambda}{\int f_{CN}(\lambda) \, \mathrm{d}\lambda}$$

6 II Principio

Kelvin-Planck per cicli monotermi $Q=L\leq 0$

 $\begin{array}{l} \textbf{Rendimento/efficienza macchina termica} \ \ \eta = \frac{L}{Q_{ass}} = 1 + \frac{Q_{ced}}{Q_{ass}} = 1 - \frac{|Q_{ced}|}{|Q_{ass}|} \ \text{ove} \ Q_{ass} \ \text{e} \ Q_{ced} \ \text{sono la somma} \\ \text{dei calori scambiati ed assorbiti coi vari serbatoi (anche più di 2)} \end{array}$

Ciclo di Stirling (combustione esterna)
$$\eta = \frac{R \ln \left(\frac{V_B}{V_A}\right) (\theta_1 - \theta_2)}{\theta_1 R \ln \left(\frac{V_B}{V_A}\right) + c_V(\theta_1 - \theta_2)}$$

Ciclo Otto (comb. interna)
$$\eta=1-\frac{1}{\left(\frac{V_1}{V_2}\right)^{\gamma-1}}=1-\left(\frac{V_2}{V_1}\right)^{\gamma-1}$$

$$\begin{array}{c|c}
 & T_c \\
\hline
Q_c^M & Q_c^F \\
\hline
L^M & Q_f^F \\
\hline
Q_f^F & T_f
\end{array}$$

Ciclo Diesel
$$\eta=1-\frac{c_V}{c_p}\frac{\theta_C-\theta_D}{\theta_B-\theta_A}$$

Coefficiente di prestazione (macchina frigorifera)
$$\varepsilon\left(\omega\right)=\frac{Q_f}{|L|}=|Q_f|$$

Teorema di Carnot $\eta_M \leq \eta_C$ per MdC operante con i medesimi serbatoi tra o con cui opera M. Uguaglianza se M di Carnot

Rendimento MdC
$$\boxed{\eta_C=1-rac{T_f}{T_c}}$$
 Coeff di prestazione frigo di Carnot $\boxed{\omega_C=rac{T_f}{T_c-T_f}}$

Temperatura termodinamica assoluta $T_x = T_3 \frac{|Q_x|}{|Q_3|}$ definita da rapporto calori scambiati da MdC che opera tra essa e il punto triplo.

7 Entropia

Teorema (o disuguaglianza) di Clausius caso discreto $\sum_{i=1}^n \frac{Q_i}{T_i} \leq 0$ al continuo $\oint \frac{\delta Q}{T} \leq 0$ ove T è la temperatura del termostato con cui avviene scambio infinitesimo.

Definizione entropia S: $\Delta S_{AB} = S(B) - S(A) = \int_R \frac{\delta Q}{T} \ \forall R$ trasf rev. tra i due stati: ΔS per irrev. si calcola da rev. tra medesimi stati. $\mathrm{d}S = \frac{\delta Q_R}{T}$ Estensiva e additiva

Processi irreversibili
$$\int_{I} \frac{\delta Q}{T} < \int_{R} \frac{\delta Q}{T} = \Delta S \Leftrightarrow \frac{\delta Q}{T} \leq \mathrm{d}S$$

Sistemi isolati: Principio di aumento dell'entropia $\delta Q=0 \implies \Delta S \geq 0$ per universo termodinamico (isolato per def) $\Delta S_U \geq 0$

Espansione libera (irr.) $\Delta S=nR\ln\frac{V_f}{V_i}$ per due gas con stesso volume iniziale (processi indipendenti sovrapposti) $\Delta S_U=\Delta S_A+\Delta S_B=(n_A+n_B)R\ln 2$

Scambio di calore
$$\Delta S_U=C_1\ln\frac{T_e}{T_1}+C_2\ln\frac{T_e}{T_2}$$

 Se $C_1=C_2$ $\Delta S_U=C\ln\left(1+\frac{(T_1-T_2)^2}{4T_1\,T_2}\right)$. Per $T_1-T_2=\mathrm{d}T$ $\Delta S_U\approx 0$ (q.s. = rev!)
 Se $C_1>>C_2$, ovvero $T\equiv\frac{C_2}{C_1}\to 0$ si ha $T_e\to T_1$ e:

Variazione entropia termostato $\Delta S_{term} = -\frac{|Q|}{T_{term}}$ ove Q è il calore scambiato con il termostato dal sistema (con segno opportuno).

8 Costanti fisiche e proprietà termodinamiche

8.1 Costanti

Costante di Boltzmann $k_B \equiv \frac{R}{N_A} \approx 1.380649 \times 10^{23} \mathrm{J/K}$

Costante di Planck $h \approx 6.67 \times 10^{-34} Js$

Costante di Stefan-Boltzmann $\sigma \approx 5.67 \times 10^{-8} Wm^{-2} K^{-4}$

Costante dello spostamento di Wien $b=2.9\times 10^{-3} \mathrm{mK}$