

P&R Best Practice Sharing Award

"The S-Burner"
Combustion Simulation synchronize with Burner
Design Technology

ชื่อโครงการ <u>การประสานการจำลองการเผาใหม้กับ</u> <u>เทคโนโลยีการออกแบบ Burner</u> บริษัท ปตท. จำกัด (มหาชน) โรงแยกก๊าซ

ธรรมชาติ จ.ระยอง

คณะทำงาน

- 1.ชื่อ<u>นายณัฏฐะวุฒิ เครือประดับ</u>
- 2.ชื่อ<u>นายสรรวริศ อุ่ยวัฒนา</u>
- 3.ชื่อ<u>นายสมหมาย เอี่ยมสกุล</u>
- 4.ชื่อ<u>นายอินทรัตถ์ ทั่วทิพย์</u>
- 5.ชื่อ<u>นายคนึง อิ่มสมบูรณ์</u>
- 6.ชื่อ<u>นายอำนาจ สุขสุเมฆ</u>
- 7.ชื่อ<u>นายชัยพร พูลดี</u>
- 8.ชื่อ<u>นายสุทธิกิจ ตันสุคตานนท</u>์
- 9.ชื่อ<u>นายปิยะชัย มั่งคั่ง</u>

10.

วันที่.29 เดือน.สิงหาคม .ปี.2555 " The S-Burner " Combustion Simulation synchronize with Burner Design Technology

1. Key Word

			Туре		
□ Energy	■ Mainten	ance	□ Operati	ona	l □ Personnel
			Improv.	•	
□ Other (โปรก	าระบุ)	••••			
		Р	rocess		
☐ Aromatics					
□ <u>Lube</u>					
□ Solve	ent Deasphalti	n₫□	Solvent Extraction		Propane Dewaxing
□Lube	Hydrotreating	g 🗆	Solvent Dewaxing		
□ Asph	ialt and Bitume	en Ma	anufacturing		Other (โปรด
_					ระบุ)
□ <u>Refinery</u>					
□ Distillatio	on				
	ospheric Crude stillation	9 🗆	CO2 Liquefaction		Desalinization
□Vacu	ıum Crude		Fractionation		Other (โปรด
Di	stillation				ระบุ)
□ Conversion	on				
□Coke	e Calciner		Deep Catalytic		•
			Cracking		Cracking
•	ocracking		Hydro dealkylation		Visbreaking
	king Feed or V	acuur	m Gas Oil		Other (โปรด
	esulfurization				ระบุ)
Treating	D		11 1	_	100
LAmir	ne Regeneratio	n∟	Hydrogen Purification		LPG sweetening
□Napł	ntha Hydrotrea	at⊏g	Residual		Selective
			Desulfurization		Hydrotreating
□Sour	water strippin	g	Distillate/Light Gas and Treating	s Oil	Desulfurization
□Sulfu	ır Recovery		Kerosene Desulfur	izati	on and Treating
□Tail (Gas Recovery		Naphtha/Gasoline Treating	Des	ulfurization and
⊏Vacu	ıum Gas Oil		U18 - Isosiv (mole	siev	e for C5/C6

	•	drotreating / (โปรดระบุ)		Ison	nerization)			
	Reforming	•	••					
	_	l Sisomerization		Catalyt	tic Reforming	1 🗆	Cumene	
		gen Generatio		-	rization		_	lsa
	Ellyale	gen deneration		13011101	124(1011		ระบุ)	
	<u>Olefins</u>						۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	•••••
	□Upstream							
	⊏Ethyle	uno l		Propy	lono		Other (โเ	lso
	Littyle	ille		ПОРУ	ierie		ระบุ)	
	□Intermedia	ato					ง∾ ี่นุ)	••••••
	_	ະບຸ						
	□ 8D 191 30	- Ц						
п.	Dalumaana							
_	Polymers			LIDDE		_	DD	
	□ ABS			HDPE	/ī. i		PP	
	□PS			•	•			
_				ระบุ)	•••••			
	EO Based	0 1 1 7 5 1			(50 (50) =		.	
		ne Oxide/ Ethy		-	_		Ethanola	mines
	□ Ethox	ylate		Other	•			
_				ระบุ)	•••••			
<u> </u>	<u>Supporting</u>		_	_		_	a .	
	□ Logist			Power			Steam	
	□ Storaç	ge			urbine		Other (โเ	
				Cog	eneration		ระบุ)เ	Hot Oil
			Eqι	ıipme	ent			
	Lugging	Boller			□ Blower		□Ch	iller
	machine							
	Columns	□ Compresso	ors		Control 8	L	□ De	-aerator
		•			Monitor			
	Electrical	□ Extruder			Fan		□ Fla	ire
	Apparatus							
	- Furnaces	HeŪ: Excha	nge	er	□ Instrume	nt	□Me	eter
	□isc. &	McJor	_		□ Piping		□Pu	mp
					_			

	Other				
	Reactor	□ Regenerator		Safety Equip.	□ Silo
				& Sys.	
	□ank	Te⊡communic	ation	□ Tower	□ Turbine
	Valves	□ Vessel		Wires &	
				Cables	
Γ	ี Other (โปรดระบ	ı)			

2.รายละเอียดโครงการ

1. ชื่อโครงการ (ไทย) การประสานการจำลองการเผาไหม้กับเทคโนโลยีการ ออกแบบ Burner

(อังกฤษ) **" The S-Burner "** Combustion Simulation synchronize with Burner Design Technology

- 2. ลักษณะโครงการ เพื่อแก้ไขปัญหาการใช้งานอุปกรณ์ Waste Heat Recovery Unit (WHRU) ได้ไม่เต็มประสิทธิภาพเนื่องจาก Burner Diffuser ที่ทำหน้าที่ในการควบคุม Flame เกิดความเสียหาย
- 3. ผู้นำเสนอโครงการ นายนายวริทธิ์ธร นาทธราดล หน่วยงาน บง.วบก. สังกัด ผยก. เบอร์โทรศัพท์ 084-434-4340 e-mail waritthorn.n@pttplc.com สถานที่ติดต่อ โรงแยกก๊าซธรรมชาติ จ.ระยอง
- 4. รายชื่อคณะทำงาน/ โทรศัพท์/e-mail

1.	ชื่อนายณัฏฐะวุฒิ เครือประดับ	โทร 038-676280 Email:
	nattawoot.k@pttplc.com	

2. ชื่อนายสรรวริศ อุ่ยวัฒนา	โทร 038-676410 Email:
sunvaris.u@pttplc.com	

 7. ชื่อนายชัยพร พูลดี
 โทร 038-676925 Email:

 chaiyaporn.p@pttplc.com

8. ชื่อนายสุทธิกิจ ตันสุคตานนท์ โทร 038-676411 Email: suttikit.t@pttplc.com

9. ชื่อนายปิยะชัย มั่งคั่ง โทร 038-676415 Email:

10.ชื่อนายวริทธิ์ธร นาทธราดล โทร 038-676411 Email: waritthorn.n@pttplc.com

- 5. งบประมาณที่ใช้ 9,000,000 บาท
- 6. ระยะเวลาดำเนินการ 19 เดือน
- 7. อายุโครงการ 20 ปี

- 8. Benefit value สามารถลดผลกระทบจากการสูญเสียโอกาสในการผลิต ของโรงแยกก๊าซหน่วยที่ 6 ลง 664.32 ล้านบาท อันเนื่องมาจากต้องทำ การซ่อมบำรุงอุปกรณ์ WHRU มีหน้าที่หลักในการให้พลังงานความร้อน ทั้งหมดกับกระบวนการผลิตของโรงแยกก๊าซ และสามารถประหยัด ค่าใช้จ่ายในการซ่อมแก้ไขอุปกรณ์ 12.5 ล้านบาท โดยรวมมูลค่า Benefit ที่ได้ทั้งหมด 675.02 ล้านบาท
- 9. ทฤษฎี ความรู้ หลักการและเหตุผลในการทำโครงการ
 - 1. พลังงานความร้อนที่เพิ่มขึ้นจากอุปกรณ์ WHRU อาศัยหลักการ Combustion ระหว่าง Fuel กับ Flue Gas ของเครื่องยนต์กังหัน ก๊าซ (Gas Turbine) โดยมี Burner Diffuser เป็นชิ้นส่วนภายในที่ ทำหน้าที่ควบคุมและปรับทิศทางของ Flame ให้เกิดการเผาใหม้ที่ สมบูรณ์เกิดขึ้นได้
 - 2. ความรู้ทางด้าน Metallurgy ของโลหะวิทยาในเนื้อวัสดุที่ใช้งาน ภายใต้อุณหภูมิที่สูง

ทำการตรวจสอบคุณสมบัติของ Material ที่นำมาใช้ทำ Burner Diffuser ซึ่งในช่วงเริ่มแรกใช้งานเป็น Stainless Grade 309 ซึ่งสามารถใช้ได้ที่อุณหภูมิไม่เกิน 1035 C แต่พบความ เสียหายของเนื้อโลหะ จึงทำการปรับปรุงและเพิ่มคุณสมบัติของ Material เป็น Stainless Grade 310 ที่ใช้งานได้ที่อุณหภูมิไม่เกิน 1150 C

3. กระบวนการวิเคราะห์ Simulation: Computational Fluid Dynamics (CFD)

ทำการตรวจสอบและวิเคราะห์ Combustion ด้วย
Technology CFD จากทีมงาน Simulation GSP โดยผลลัพธ์
Result ที่ได้มีความเสียหายเกิดขึ้นใกล้เคียงกับสภาพชิ้นงานจริง จึง
ได้เริ่มศึกษา Flow Distribution หรือแนวทางการไหลของก๊าซที่
Burner Diffuser ซึ่งต่อมาพบว่ามีบางจุดบริเวณเนื้อโลหะบริเวณ
Bend ของ Burner Diffuser เกิด Turbulent Premixed ที่ทำให้
เกิด Flame ที่บริเวณดังกล่าว เป็นผลกระทบทำให้เกิดการเผาไหม้
ใกล้กับเนื้อโลหะ จึงเกิดความเสียหายที่ Burner Diffuser และ
ชิ้นส่วนภายในอุปกรณ์ WHRU (Tube Sheet Support, Runner
Pipe, Refractory, Casing) ตามลำดับ

จึงได้ทำการปรับปรุงและพัฒนาโดยแก้ไขจุดที่พบปัญหาด้วย การเพิ่ม Flow Distribution ของจุดที่เสียหาย ด้วย CFD อีกครั้ง พบ จุดที่เกิด Turbulent Premixed ลดลง และได้นำแนวทาง ดังกล่าว ส่งไปยังผู้ผลิต เพื่อตรวจสอบและหาวิธีการออกแบบ Burner Diffuser ใหม่

โดย Burner Diffuser แบบที่ได้รับการพัฒนาได้มีการ ตรวจสอบด้วย CFD ซึ่งผลที่ได้ จุดที่อุณหภูมิสูงของเนื้อโลหะมีค่า ลดลง จนอยู่ในช่วงที่เนื้อโลหะสามารถใช้งานได้อย่างปลอดภัย

- 4. ประสบการณ์การปรับปรุงแก้ไขปัญหาความเสียหายที่เกิดขึ้นกับ อุปกรณ์ Waste Heat Recover Unit ที่โรงแยกก๊าซหน่วยอื่น ๆ รวมทั้งความรู้และ Technology จากผู้ผลิตอุปกรณ์
- 5. เหตุผลในการดำเนินโครงการนี้: เพื่อให้อุปกรณ์ WHRU สามารถ ใช้งานได้อย่างมีประสิทธิภาพและมีอายุในการใช้งานที่เพิ่มขึ้น โดย อาศัยหลักการวิเคราะห์ทางด้าน CFD และความรู้ทางด้านวิศวกรรม เป็นพื้นฐาน ซึ่งจะทำให้ลดการสูญเสียโอกาสในการผลิตของโรง แยกก๊าซหน่วยที่ 6 ที่มีกำลังผลิต Product ตั้งต้นที่สำคัญ สำหรับ ใช้ในการผลิตกระแสไฟฟ้าและอุตสาหกรรมปิโตรเคมี ของประเทศ ขั้นตอนการดำเนินงาน (ระบุเป็นลำดับขั้นการดำเนินการ)
- 1. พบปัญหาการเสียหายจากการเผาใหม้กับชิ้นส่วนภายใน Internal Part (Tube Sheet , Runner Pipe , Burner Diffuser , Refractory, Casing) ของ WHRU
- 2. เก็บข้อมูลเพื่อนำมาวิเคราะห์หาสาเหตุของปัญหา
- 3. แก้ไขปัญหาเบื้องต้นเพื่อให้อุปกรณ์ WHRU สามารถกลับมาใช้งาน ได้ในระยะเวลาสั้นที่สุด
- 4. วิเคราะห์ข้อมูล Root Clause ของปัญหาด้วย Technology CFD
- 5. ตรวจสอบ Result จาก CFD และทำการปรับปรุงตามหลักวิศวกรรม ในการออกแบบ Burner Diffuser ใหม่
- 6. ทำการผลิต Burner Diffuser ที่ได้ทำการออกแบบใหม่
- 7. ดำเนินการเปลี่ยน Burner Diffuser
- 8. ติดตามผลการแก้ไขอย่างต่อเนื่อง
- 9. วัดผลการดำเนินงาน

10.

11. ปัญหา/อุปสรรค (จากการทำโครงการ-ถ้ามี) ไม่มี

12.	แนวทางการแก้ไข
13.	การประยุกต์ใช้งาน
•••••	
 14.	โครงการที่นำมาเป็นต้นแบบ
•••••	
โครง	ลงชื่อนายวริทธิ์ธร นาทธราดลผู้นำเสนอ การ
Best	ลงชื่อนายโชคชัย ธนเมธีกรรมการ P&R t Practice Shari

3.เอกสารสนับสนุนต่างๆ

Benefit Calculation

- Loss Product for GSP6 (stop WHRU 1 unit)
 0.505 MillionTHB / hour
- Total Maintenance Time in 2011 1316 hours
- Total Product Loss in 2011 664.32 MillionTHB
- Spare Part + Maintenance Cost in 2011 12.5
 MillionTHB
- งบประมาณในการลงทุน 9 MillionTHB / 20 Year

1.80

MillionTHB / 1

Year

• Total Cost Saving: (664,320,000 + 12,500,000 - 1,800,000)

675,020,000

THB/YEAR

รายละเอียดตามเอกสารแนบ <u>Benefit Calculation</u>

Benefit Calculation

• ร้อยละรายได้จากการผลิตของโรงแยกก๊าซ

Benefit Calculation

 ในช่วงกลางปี 2010 - 2011 ตรวจพบเสียหายจากความร้อนของการเผาไหม้ ที่จะทำให้เกิด อันตรายต่อการใช้งาน จึงทำให้ต้องหยุดเดินเครื่องอุปกรณ์ เพื่อทำการ Maintenance ซึ่งพบว่า ระยะเวลาหลังจากใช้งานแล้วต้องทำการหยุดเดินเครื่องอุปกรณ์เพื่อทำการ Maintenance อีกครั้ง เป็นช่วงเวลา 6 เดือน ดังแสดงช่วงที่ทำการ Maintenance ปี 2011 ในตาราง

		2011												
		Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	Summary
	Feed Gas GSP6 (mmscfd)		440						389					
	Maintenance Time (hrs)		264						191					
3608-F-01	Production Loss (THB)		133,056,000						110,077,348					243,133,348
	**		2 500 000						2 000 000					L = = = = = = = = = = = = = = = = = = =

Benefit Calculation

 โดยภายหลังจากที่ได้ทำการปรับปรุง Design Burner Dittuser ใหม่ จะทำให้เพิ่ม Reliability จาก การใช้งานและ Life Time ของอุปกรณ์

	Million Baht
Production Loss	664.32
Maintenance Cost	12.5
Benefit / Year	676.82

คำเนินการพิคตั้ง Modern Burner ใหม่ เมื่อเดือน กุมภาพันธ์ 2555 โดยภายหลังจากการเปลี่ยน
 ยังไม่พบความเสียหายที่เกิดขึ้น ซึ่งมีคำใช้จ่ายประมาณ 9 ล้านบาท โดย Life Time อายุการใช้
 งานของอุปกรณ์ตามการขอกแบบ 20 ปี เป็นจำนวนเงิน 0.45 ล้านบาทต่อปี

	Million Baht
Benefit / Year	676.82
เงินลงทุนที่ใช้ในการคำเนินงาน / Year	1.80
Total Benefit / Year	675.02