

MODERN DATABASES AND NOSQL

Prof. Dr.-Ing. Michael Wiehl

Infos on the module

- 5 ECTS
- 4 SWS (2 + 2)

- Work load
 - Contact time: 60 h
 - Self study: 90 h = approx 5-6h per week

Evaluation of learning success

Project for design and implementation of a database management system of a selected application

Result: Project report (10 pages)

Moodle course

- Slides of the lectures
- References to online learning material
- Examples
- Videos

Learnings

- know the basics of relational database systems and can understand and compare them with other forms of data organization
- name examples of the use of relational database systems and list the possibilities of linking databases to application programs
- know the syntax of a common access language and can apply it
- learn about distributed data models as well as platforms and frameworks for distributed data, such as NoSQL databases

CPS 1 - Prof. M. Wiehl - WiSe 2022 07.10.2024

Learnings

- be able to independently design, create, and query databases
- Students refine their knowledge of modern databases, including distributed data models
- By designing and building complex infrastructures, students deepen their ability to abstract
- Students learn a confident approach to modern database applications and infrastructures.

Through independent learning, students will acquire time management skills.

Course structure

CPS 1 - Prof. M. Wiehl - WiSe 2022 07.10.2024 7

Literature

- "Advanced Data Management", Lena Wiese, De Gruyter Graduate, 2015
 - Chapter 1: Entity Relationship Model, UML
 - Chapter 2: Relational DBMS, Mapping ER, Normalization, Transactions

- "Getting Started with SQL and Databases", Mark Simon, apress, 2023
 - Querying and Working with SQL databases, joining tables, sorting

Your knowledge? - Stand up and sit down

- You know what a database?
- Working with databases?
- You queried a database?
- You have built a new database by your own?

- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Tapes provided only sequential access
 - Punched cards for input

Punched card reader (L) and writer ® | Image from A Brief History of Communication Technology.

Data in a file system

Make your own:

http://www.kloth.net/services/cardpunch.php

CPS 1 - Prof. M. Wiehl - WiSe 2022 07.10.2024 10

- Late 1960s and 1970s:
 - Hard disks allowed direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - IBM Research begins System R prototype
 - UC Berkeley (Michael Stonebraker) begins Ingres prototype
 - Oracle releases first commercial relational database
 - High-performance (for the era) transaction processing

PS 1 - Prof. M. Wiehl - WiSe 2022 07.10.2024 07.10.2024

- Late 1960s and 1970s:
 - Hard disks allowed direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - IBM Research begins System R prototype
 - UC Berkeley (Michael Stonebraker) begins Ingres prototype
 - Oracle releases first commercial relational database
 - High-performance (for the era) transaction processing
 - Advent of DBMS

Database Management Systems

- 1980s
 - Research relational prototypes evolve into commercial systems
 - SQL ("Structured Query Language") becomes industrial standard
 - Parallel and distributed database systems
 - Object-oriented database systems

- 1990S:
 - Large decision support and data-mining applications
 - Large multi-terabyte data warehouses
 - Emergence of Web commerce

CPS 1 - Prof. M. Wiehl - WiSe 2022 07.10,2

2000S

- Big data storage systems
- Google BigTable, Yahoo PNuts, Amazon,
- "NoSQL" systems.
- Big data analysis: beyond SQL

- 2010S
 - SQL reloaded
 - SQL front end to Map Reduce systems
 - Massively parallel database systems
 - Multi-core main-memory databases

CPS 1 - Prof. M. Wiehl - WiSe 2022

What is a ...

... database

... database management system (DBMS)?

Database Management System

- interacts with apps and users
- interacts with database itself

- organizes data and its storage
- handles user requests
- assures data integrity
- enables scalability

Types of DBMS

- Relational DBMS (RDBMS): These systems store data in table form and use relational models to manage the data relationships.
 - Examples include MySQL, PostgreSQL and Oracle.
- NoSQL DBMS: These systems are used when large amounts of unstructured data need to be managed, such as in big data applications.
 - Examples include MongoDB, Cassandra and Couchbase
- In-memory DBMS: These systems store data in the main memory instead of on hard disks, which enables very fast data access. They are often used in real-time applications, such as those required in the manufacturing industry for process monitoring.

Applications of DBMS

smart home

industry

healthcare

AI

Introducing of SQL Games

Präsentationstitel | Verfasser 7. Oktober 2024