Experimento 6. Circuitos sequenciais em VHDL

OBJETIVOS:

• Implementar circuitos sequenciais (um flip-flop e um registrador de deslocamento bidirecional) em FPGA usando a estrutura "process" da linguagem VHDL.

PRÉ-RELATÓRIO:

- Apresente o código VHDL da entidade e da arquitetura dos vistos 1 e 2.
- Apresente os arquivos UCF para os vistos 1 e 2.
- Lembre-se: seu pré-relatório deve ser entregue como um único arquivo PDF. Não anexe arquivos .vhdl nem arquivos .ucf!

VISTOS:

- 1. Usando a estrutura "process", escrever em VHDL e implementar em FPGA um flip-flop JK gatilhado pela borda de subida, com funcionamento descrito pela tabela verdade abaixo. Associe cada um dos bits de entrada a diferentes chaves (ex: SW0 a SW4) e o de saída um dos LEDs (ex: LD0).
- 2. Usando a estrutura "process", escrever em VHDL e implementar em FPGA um registrador de deslocamento bidirecional de 4 bits, com funcionamento descrito pela tabela verdade abaixo. Associe os bits RST e LOAD a diferentes botões (ex: BTN0 e BTN1), cada um dos demais bits de entrada a diferentes chaves (SW0 a SW7) e os bits de saída a diferentes LEDs (ex: LD0 a LD3). Respeite a ordem de significância dos bits dos vetores D e Q, de modo que os bits menos significativos (D0 e Q0) fiquem em chaves e LEDs à direita dos mais significativos.

Tabela verdade do flip-flop JK (visto 1)

Tabela verdade de hip hop dix (visto 1)										
	saída									
PR	CLR	CLK	J	K	Q					
1	Х	Х	Х	Х	1					
0	1	Х	Х	Х	0					
0	0	Ŧ	0	0	mantém					
0	0	Ŧ	0	1	0					
0	0	Ŧ	1	0	1					
0	0	Ŧ	1	1	inverte					
0	0	outros	Х	Х	mantém					

Tabela verdade do registrador de deslocamento (visto 2)

rasola roladas de registrador de deciseamente (rieto 2)											
entradas											
CLK	RST	LOAD	D	DIR	L	R	Q				
Ŧ	1	Х	XXXX	Х	Х	Х	0000				
Ŧ	0	1	$D_3D_2D_1D_0$	Х	Х	Х	$D_3D_2D_1D_0$				
Ŧ	0	0	XXXX	0	0	Х	$Q_2Q_1Q_00$				
<u> </u>	0	0	XXXX	0	1	Х	$Q_2Q_1Q_0$ 1				
Ŧ	0	0	XXXX	1	Х	0	$0 Q_3 Q_2 Q_1$				
Ŧ	0	0	XXXX	1	Х	1	$1 Q_3 Q_2 Q_1$				
outros	Х	Х	XXXX	Х	Х	Х	$Q_3Q_2Q_1Q_0$				