MOWNIT

Laboratorium 2b

Jakub Karbowski

2 kwietnia 2022

Cel ćwiczenia

Dla zadanej funkcji

$$f(x) = e^{-k \cdot \sin(mx)} + k \cdot \cos(mx)$$
$$x \in [-3\pi, 3\pi]$$
$$k = 2$$
$$m = 1$$

wyznaczyć wielomian interpolujący Hermite'a, mając daną jedną pochodną. Sprawdzić wpływ liczby węzłów oraz ich rozmieszczenia na dokładność interpolacji. Porównać z zagadnieniem Lagrange'a.

1

Parametry doświadczenia

Język programowania:

· Julia

Typ zmiennoprzecinkowy:

· Float64

Obliczany błąd:

• sum err² =
$$\sum [f(x_i) - g(x_i)]^2$$

Zagadnienie Lagrange'a:

· Wzór Newtona

Pochodna

Pochodna została policzona analitycznie:

$$f(x) = e^{-k \cdot \sin(mx)} + k \cdot \cos(mx)$$

$$f'(x) = km \left(\cos(mx) \left(-e^{-k\sin(mx)}\right) - \sin(mx)\right)$$

Zadana funkcja

Rysunek 1: Funkcja i jej pochodna

Rysunek 2: n = 7, Lagrange, równoodległe

Rysunek 3: n = 7, Hermite, równoodległe

Rysunek 4: n = 10, Lagrange, równoodległe

Rysunek 5: n = 10, Hermite, równoodległe

Wniosek

Interpolacja Hermite'a powoduje efekt Runge'go szybciej niż interpolacja Lagrange'a.

Następnie sprawdzone zostało zastosowanie węzłów Czebyszewa.

Rysunek 6: n = 10, Lagrange, Czebyszew

Rysunek 7: n = 10, Hermite, Czebyszew

Rysunek 8: n = 15, Lagrange, Czebyszew

Rysunek 9: n = 15, Hermite, Czebyszew

Rysunek 10: n = 19, Lagrange, Czebyszew

Rysunek 11: n = 19, Hermite, Czebyszew

Wniosek

Interpolacja Hermite'a lepiej przybliża funkcję dla tej samej liczby węzłów. Później zostaną sprawdzone wartości liczbowe błędu.

Rysunek 12: n= 21, Lagrange, Czebyszew

Rysunek 13: n = 21, Hermite, Czebyszew

Rysunek 14: n=23, Lagrange, Czebyszew

Rysunek 15: n = 23, Hermite, Czebyszew

Wniosek

Interpolacja Hermite'a powoduje wystąpienie błędów numerycznych wcześniej niż wzór Newtona dla zagadnienia Lagrange'a.

Wartości numeryczne

Tabela 1: Lagrange vs Hermite

n	Błąd Lagrange'a	Błąd Hermite'a
5	9318	7374
6	11051	6950
7	8600	4684
8	5904	4343
9	4855	1597
10	2883	599
11	2075	362
12	1846	341
13	1329	152
14	1307	60
15	1276	24
	·	<u> </u>

Wartości numeryczne

Tabela 2: Lagrange vs Hermite (c.d.)

n	Błąd Lagrange'a	Błąd Hermite'a
16	1157	17
17	610	15
18	532	8
19	244	3
20	209	4
21	136	41
22	124	156
23	114	35272
24	102	156128
25	93	6393471

Lagrange vs Hermite

Rysunek 16: Porównanie błędów interpolacji

Wniosek

Dla n=20 błąd Hermite'a zaczyna rosnąć.

Dla n=22 błąd Hermite'a zaczyna być większy niż Lagrange'a.

Wnioski

- 1. Mając informację o pochodnej jesteśmy w stanie lepiej interpolować funkcję dzięki metodzie Hermite'a.
- Jeśli mamy mało węzłów, metodą Hermite'a możemy osiągnąć lepszą interpolację niż metodą Lagrange'a.
- 3. W metodzie Hermite'a nie należy stosować węzłów równoodległych.
- 4. W metodzie Hermite'a nie należy stosować dużej liczby węzłów.
- Mając wystarczająco dużo węzłów należy zastosować metodę Lagrange'a.