DCS

Files: The accompanying files for this assignment are assignment4_1.html and assignment4_2.html.

Delivery: upload the modified HTML files and any other necessary files to the Racó. All explanations and/or answers to the problems should be included in the HTML file, or in a separate PDF document.

Problem 1. Write a program to draw a cubic Hermite polynomial that interpolates two points P_0, P_1 , allowing the user to see and control the two points and the two tangent vectors at P_0 and P_1 .

Problem 2. Consider the particular case $P_0 = (200, 200)$, $P_1 = (400, 300)$, and tangent vectors $\vec{v_0} = (100, 100)$ and $\vec{v_1} = (100, 0)$.

- (a) Compute the position of the curve at t=1/2. How should the tangent vectors be modified in order to: keep the same directions at P_0 and P_1 , and at the same time go through (300, 300) at t = 1/2? Solve the problem first, and then illustrate your result.
- (b) What happens as you enlarge the tangent vectors?
- (c) What happens if you invert the direction of the tangent vectors.

Problem 3. With the help of your program, describe what happens in the following special cases:

- 1. The two points coincide (i.e., $P_0 = P_1$).
- 2. The two points coincide and the two tangent vectors are (0,0).
- 3. The two tangent vectors are equal to the vector $P_1 P_0$.

Problem 4. Write a program to draw a cubic spline that interpolates four points P_0, P_1, P_2, P_3 . Implement the following two variants: clamped (allowing the user to see and control the four points and the two tangent vectors at P_0 and P_3) and relaxed. Compare the result of the two, commenting and justifying the differences.

Show the result for the particular case $P_0 = (300, 200), P_1 = (500, 200), P_2 =$ $(500, 400), P_3 = (300, 400), \text{ and for the tangent vectors } \vec{v_0} = (200, -200) \text{ and } \vec{v_3} =$ (-200, -200).