Notation

- Ω , espace of different scenarios.
- $X: \Omega \to \mathbb{R}$, value of portfolio.
- $\mathcal{X} = \{X : \Omega \to \mathbb{R} : \sup_{\omega \in \Omega} |X(\omega)| < \infty\}$., All the bounded portfolio.
- $(\Omega, \mathcal{F}, \mathbb{P})$, espace proba, $\mathcal{X} = L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$.

1 Ch1 Monetary Risk Measure

Definition 1.1 (measure of monetary risk).

```
1
2
3 1.
4
5 2.
6
7 3.
```

Proposition 1.2 (Property of Lipschitz).

```
1 %
2 %
```

Definition 1.3 (axiomatisation of measure of risk).

```
1 1. convex:
2
3
4 2. positively homogeneous:
5
6
7 3. consistent:
```

Remark 1.4. convex shows the benefits of risk diversity. if ρ is convex, then $\forall X \in \mathcal{X}, u \in \mathbb{R} \to \rho(uX)$ is convex.

Question 1.5. Justify the following two measures of risk:

```
1. \rho(X) = \mathbb{E}[-X]
```

2.
$$\alpha > 0, \rho(X) = \mathbb{E}[-X] + \alpha \sqrt{\operatorname{Var}(X)}$$

Definition 1.6 (value at Risk (VaR)). A reasonable suggestion of ρ :

Question 1.7. Justify the property/axiom of VaR.

- 1. VaR is monotone
- 2. VaR is inv cash
- 3. VaR is positively homogeneous
- 4. VaR isn't convex

Example 1.8. \mathcal{L} : set of proba measures over (Ω, \mathcal{F}) , let $\gamma : \mathcal{L} \to \mathbb{R}$, s.t. $\sup_{Q \in \mathcal{L}} \gamma(Q) = 0$, define $\rho(X) = \sup_{Q \in \mathcal{L}} \mathbb{E}_Q[-X] + \gamma(Q)$.

Question 1.9. Justify the example is a convex measure of monetary risk.

Definition 1.10 (acceptable set of financial positions). $A \subseteq \mathcal{X}$ is the acceptable set of financial positions if:

```
1 1.
2 3 2.
```

Proposition 1.11. (ρ and \mathcal{A}_{ρ})

- 1. if ρ is a measure of monetary risk, then, $\mathcal{A}_{\rho} = \{X \in \mathcal{X}, \rho(X) \leq 0\}$ is the acceptable set of financial positions.
- 2. if \mathcal{A} is a.s.f.p. define $\rho_{\mathcal{A}} = \inf\{m \in \mathbb{R}, m + X \in \mathcal{A}\}$, then $\rho_{\mathcal{A}}$ is the mesure of monetary risk.
 - 3. $\rho = \rho_{\mathcal{A}_{\rho}}$.
 - 4. $\rho_1 = \rho_2 \iff \mathcal{A}_{\rho_1} = \mathcal{A}_{\rho_2}$
 - 5. ρ is convexe $\iff \mathcal{A}_{\rho}$ is convex.
 - 6. ρ is positively homogeneous $\iff \mathcal{A}_{\rho}$ is cone.

Definition 1.12. (Quantiles)

- 1. $q_X^-(\lambda) =$
- 2. $q_X^+(\lambda) =$

Definition 1.13. (AVaR)

```
1 % 2 %
```

Question 1.14. Justify the AVaR has another name CVaR.

Proposition 1.15. if X is integrable, $\lambda \in (0,1)$ et q quantile of order λ of X. Then,

$$AVaR_{\lambda}(X) = \frac{1}{\lambda} \mathbb{E}[(q - X)^{+}] - q$$

.

Theorem 1.16. let $\lambda \in (0,1]$, AVaR is a consistent monetary rik measure that admits the following representation: $\text{AVaR}_{\lambda}(X) = \max_{\mathbb{Q} \in \mathcal{L}_{\lambda}} \mathbb{E}_{\mathbb{Q}}[-X]$.

2 Ch2 Convex Optimisation

2.1 Topology

Definition 2.1 (Topology). Soit \mathcal{X} a set, $\mathcal{C} \subseteq \mathcal{P}(\mathcal{X})$ is a topology over \mathcal{X} if:

```
1 1.
2
3 2.
4
5 3.
```

Remark 2.2. (some definitions)

- Weak topology:
- Generated by a family:
- Haustoff espace:
- Basis of a topology:
- Local convex:

Definition 2.3. (some definitions related to functions)

- Compact:
- Neighbor:
- Converge:
- Continous application:

Definition 2.4. (Hahn-Banach Theorem)

Definition 2.5. (Lower Semicontinuity/s.c.i in french)

```
1 %
2 %
3 %
4 %
5 %
```

Proposition 2.6. • $f: \mathcal{X} \to \mathbb{R}$ s.c.i. $x_n \to x$, then, $f(x) \leq \liminf_{n \to \infty} f(x_n)$.

• if f is s.c.i. then, $\sup_{\theta \in \Theta} f_{\theta}$ is s.c.i.

2.2 Convex

Definition 2.7.

```
    1. Epigraph, Epi(f):
    2
    3. Effective domain, dom(f):
    4
    5. 3. Proper convex function
```

Lemma 2.8. if $f: \mathcal{X} \to \mathbb{R}$ is s.c.i. then Epi(f) is closed.

Theorem 2.9. $f: \mathcal{X} \to (-\infty, +\infty]$ is proper convex s.c.i. function, then

$$f(x) = \sup_{x' \in \mathcal{X}, \alpha \in \mathbb{R} \text{ s.t.} f(\tilde{x}) \ge <\tilde{x}, x > -\alpha, \forall \tilde{x} \in \mathcal{X}} < x, x' > -\alpha$$

Definition 2.10 (Transform of Fenchel Legendre).

Theorem 2.11. if $f: \mathcal{X} \to (-\infty, +\infty]$ is proper convex s.c.i. function, $f^{**} = f$.

Example 2.12. $\mathcal{X} = \mathcal{X}' = \mathbb{R}, \langle x, x' \rangle = xx', \text{ find } f^* \text{ for } f(x) = \frac{x^2}{2}, f(x) = ax.$

2.3 Espace dual $\mathcal{X}, \mathcal{X}'$

Example 2.13 (Espace L^q, L^p).

```
1 %
2 %
3 %
4 %
5 %
```

Theorem 2.14 (Riesz theorem for L^q, L^p).

```
1 %
2 %
3 %
4 %
5 %
```

→ 可以定义内积 → 满足 Fenchel-Legnedre 变换的假设 (写出来)

```
1 %
2 %
3 %
4 %
```

Example 2.15 (Espace L^{∞}, L^1).

What's the problem?

Definition 2.16 (weak topology).

 \rightarrow consequence?

2.4 Duality

To be continued studying...(video)

3 Representation of risk measures