National Institute of Technology Silchar

End Semester (UG) Examination, May 2022

Subject code: CS-307, Subject: Compiler Design

Semester: 6th, Department: Computer Science and Engineering

Duration: Two Hours. Total marks: 50

All questions are compulsory

Q.No. 1 a	Questions	Marks	CO
b	Explain briefly about Language Processing System.	4	CO1
	the definition and notation.	2	CO1
- <u>c</u>	Explain briefly about error recovery strategy.	4	CO1
	From the NFA of the regular expression $((\epsilon/a)(ab)^*)^*a$ construct the minimized DFA.	10	CO
3 a(i)	Construct the SLR parsing table from the given CFG:	7	CO3
	$E \rightarrow E + T \mid T$ $T \rightarrow T F \mid F$ $F \rightarrow F * \mid a \mid b$		
a(ii)	Given below are three SDD's.	3	CO ₃
	1. $A \rightarrow B C D$ $A.syn = B.inh + C.inh$ $D.inh = A.inh + B.syn$ $2. A \rightarrow B C D$ $A.syn = B.syn + D.syn$		
	3. A \rightarrow B C D $A.syn = D.inh$ $B.inh = A.syn + C.syn$		
	C.inh = B.syn		
	D.inh = B.inh + C.inh		
	For each SDD's check wether the rules are consistent with (i). an Sattributed definition, (ii). an L-attributed definition, or (iii). any evaluation and rate all		
	ation order at all. OR		
b	Construct the LALR parsing table from the given CFG. $S \to X$ a $Y \mid Y$	10	CO3
	$\begin{array}{c} X \to b \ Y \mid c \\ Y \to X \end{array}$		
4 a	For the given SDD and input int w, x, y, z construct the annotated parse tree and dependency graph $D \to T L$ $L.inh = T.type$	4	CO3
	$T \rightarrow \text{int}$ $T.type = integer$ $T \rightarrow \text{float}$ $T.type = float$		
	- · · · · · · · · · · · · · · · · · · ·		
	2.01616	i =	
	$egin{array}{lll} { m addType}(id.entry,\ L.inh) \ { m addType}(id.entry,\ L.inh) \end{array}$		
b	How three address code can be implemented. Provide example.	2	CO
С	Write a Lex Program to Identify and Count Positive and Negative Numbers.	4	CO
			PTC

Q.No.	Questions	Marks	CO
5 a	Construct the DAG for the following Basic Block	4	CO3
	1. t1 := 4 * i		
	2. t2 := a[t1]		
	3. t3 := 4 * i		
	4. t4 := b[t3]		
	5. t5 := t2 * t4		
	$6. \ t6 := prod + t5$		
	7. $\operatorname{prod} := \mathbf{t6}$		-
	8. $t7 := i + 1$		
	9. $i := t7$		
	10. if $i \leq 20 \text{ goto } (1)$		-
b	Explain briefly about loop optimization with the help of an example	6	CO ₃

Course Outcomes (CO):

- 1. Students will be aware of the major concepts in areas of language translation and compiler design.
- 2. Students will be able to develop a language translator or compiler covering a broad range of engineering and scientific applications.
- 3. Learn and apply the various concepts of context free grammars, compiler parsing techniques, construction of abstract syntax trees, symbol tables, actual code generation and code optimization techniques.