07 - Interpolazione Numerica

Il problema

Sono dati n+1 punti assegnati:

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

e si vuole trovare un polinomio passante per questi punti, ovvero un polinomio P_n tale che:

$$P_n(x_i) = y_i, \forall i = 0, ..., n$$

Applicazioni

• Ho un numero finito di rilevazioni di una temperatura e voglio stimare la temperatura negli istanti di tempo in cui non c'è nessuna rilevazione

• Ho a disposizione una funzione f definita in un intervallo [a,b] e sappiamo che ha una descrizione molto complicata, quindi si vuole cercare di approssimmarla ad una funzione polinomiale in modo da rendere semplice la valutazione e il calcolo della derivata. Andrò quindi a campionare n punti e mi costruirò il polinomio P_n passanti per gli n punti che sarà il polinomio che approssimerà la mia funzione.

Interpolazione polinomiale

Sia P_n :

$$P_n(x) = \sum_{j=0}^n a_j x^j$$

un polinomio di grado n.

Determinare $a_0, a_1, ..., a_n$ affinchè il polinomio passi per i punti $(x_0, y_0), ..., (x_n, y_n)$, ovvero:

$$ullet P_n(x_0) = y_0
ightarrow a_0 x_0^0 + a_1 x_0^1 + ... + a_n x_0^n = y_0$$

$$ullet P_n(x_1) = y_1
ightarrow a_0 x_1^0 + a_1 x_1^1 + ... + a_n x_1^n = y_1$$

• ..

$$ullet P_n(x_n)=y_n
ightarrow a_0x_n^0+a_1x_n^1+...+a_nx_n^n=y_n$$

Dove quindi rifacendoci al generico sistema lineare:

$$Ax = b$$

abbiamo che:

$$x = egin{pmatrix} a_0 \ a_1 \ ... \ a_n \end{pmatrix}$$

$$b = egin{pmatrix} y_0 \ y_1 \ ... \ y_n \end{pmatrix}$$

mentre la matrice \boldsymbol{A} sarà la **matrice di Vandermonde**.

Nel quale:

• $det(A) \neq 0 \iff x_0, x_1, ..., x_n$ distinti

Teorema di esistenza e unicità del polinomio di interpolazione:

dati n+1 punti (x_i,y_i) con i=0,...,n e con $x_0,x_1,...,x_n$ distinti allora **esiste ed è unico** il polinomio interpolante $P_n(x)$ tale che $P_n(x_i)=y_i, \forall i=0,...,n$

Come costruire il polinomio di interpolazione?

Non si possono usare i metodi imparati sui sistemi lineari poichè la matrice di Vandermonde risulta essere un sistema lineare mal condizionato.

Dobbiamo quindi fornire una riformulazione in modo da ottenere un problema ben condizionato.

Strategia: anzichè scrivere P_n nella base dei monomi si cambia la base di rappresentazione, che algebricamente risulta essere equivalente ma che a livello di aritmetica di macchina risulta molto più conveniente.

Rappresentazione del polinomio nella base di Lagrange

$$P_n(x) = \sum_{j=0}^n y_j L_j(x)$$

con

$$L_J(x) = \prod_{i=0, i
eq j}^n (rac{x-x_i}{x_j-x_i})$$

Grado n:

invece che considerare $1, x, x^2, ..., x^n$ ovvero la base monomiale andiamo ad usare $L_0(x), L_1(x), ..., L_n(x)$ ovvero la base di Lagrange.

da cui segue (c_i sono i coefficenti):

$$P_n(x_i) = \sum_{j=0}^n c_j L_j(x_i) = c_i L_i(x_i) = c_i = y_i, orall i = 0,...,n$$

Costo computazionale

- · Calcolo dei coefficenti: 0
- Valutazione in 1 punto: $O(2n^2)$
- Valutazione in M punti: $O(2n^2M)$ quindi per costruire P_n e valutarlo in M punti:

$$O(2n^2M)$$

Errore di interpolazione polinomiale

- $ullet f:[a,b] o \mathbb{R}$
- $P_n:[a,b] o \mathbb{R}$ polinomio di interpolazione dei dati $(x_i,f(x_i))$ orall i=0,...,n e con $x_i\in[a,b]$ tutti distinti

Definiamo la funzione del resto o errore di interpolazione polinomiale:

$$r_{n+1}(x) = f(x) - P_n(x)$$

N.B. Non è sempre scontato che al crescrere del grado del polinomio migliori il risultato.

Teorema

Se
$$f \in C^\infty[a,b]$$
 e $\lim_{n o +\infty} ig(rac{(b-a)^n}{n!}ig)\mu_m = 0$ allora:

$$||r_{n+1}(x)||_{\infty}=max|r_{n+1}(x)|
ightarrow_{n
ightarrow+\infty}0$$

Possiamo indebolire le ipotesi su f, utilizzando come ascissa dei punti di interpolazione invece che dei punti equidistanziati i cosiddetti **nodi di Chebyshev**:

$$x_i = (rac{a+b}{2}) + (rac{b-a}{2}) imes cos(rac{(2i+1)\pi}{2(n+1)}) \ \ orall i = 0,...,n$$

Teorema:

se f è **Lipschitziana** in [a,b], ossia:

$$ullet$$
 $\exists\; L>0$ t. c. $|f(x)-f(y)|\leq L|x-y|), orall x,y\in [a,b]$

allora:

$$||r_{n+1}(x)||_{\infty}=max|r_{n+1}(x)|
ightarrow 0$$

Riassunto che non ci ho capito un cazzo:

- se sono rispettate le condizioni del teorema dell'errore allora possiamo usare come ascisse dei punti equidistanziati
- se la funzione è Lipshitziana allora come ascisse vanno usati i nodi di Chebyshev

Condizionamento del problema

La scelta dei nodi di Chebyshev è anche quello che garantisce un miglior condizionamento del problema.

Infatti il numero di condizionamento del problema di interpolazione polinomiale è data dalla **costante di Lebesgue**:

$$\lambda_n = max_{x \in [a,b]} \sum_{i=0}^n |L_i(x)|$$

che soddisfa:

$$(rac{||P_n^*(x)-P_n(x)||_\infty}{||P_n(x)||_\infty}) \leq \lambda_n imes (rac{||y^*-y||_\infty}{||y||_\infty})$$