Calcul Intégral I

STEP, MINES ParisTech

5 mars 2021 (#72befad)

Question 1 La somme de Riemann $S(f, \mathcal{D})$ associée à la fonction $f: x \in [0,1] \mapsto x^2$ et la subdivision pointée $\mathcal{D} = \{(0,[0,1/4]),(1/2,[1/4,3/4]),(1,[3/4,1])\}$ de $[0,1]$ vaut :
□ A: $3 / 8$, □ B: $7 / 32$, □ C: $1 / 3$.
Question 2 Est-ce que presque tous les nombres réels x vérifient $ x \ge 1$?
□ A: oui,□ B: non.
Question 3 La fonction $f:[0,1] \mapsto \mathbb{R}$ définie par
$f(x) = \begin{vmatrix} n & \text{si } n \in \mathbb{N} \text{ et } x = 2^{-n}, \\ 1 & \text{sinon.} \end{vmatrix}$
\square A : est intégrable au sens de Riemann, \square B : est intégrable au sens de Lebesgue, \square C : ni l'un ni l'autre.
Question 4 Calculer $\int_{1}^{e} \ln x \frac{dx}{x}.$

- \square A : le prolongement \bar{f} de f à $[0,+\infty]$ tel que $\bar{f}(+\infty)=0$ est intégrable,
- \Box B : f est bornée et f(x) tend vers 0 quand x tend vers $+\infty,$

Question 5 (réponse multiple) Si $f:[0,+\infty[\to \mathbb{R} \text{ est intégrable},$

 \square C : f est intégrable sur tout intervalle $[r, +\infty[$ de $\mathbb R$ et

$$\int_r^{+\infty} f(x) \, dx \to 0 \text{ quand } r \to +\infty.$$