Práctica 2

Recuerde: Dadas $f: X \to Y, g: Y \to Z$ y dados $A, B \subseteq X$ y $C, D \subseteq Y$, se tiene

- (a) $f(A \cup B) = f(A) \cup f(B)$.
- (b) $f(A \cap B) \subseteq f(A) \cap f(B)$.
- (c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- (d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- (e) $A \subseteq f^{-1}(f(A))$. Si f es inyectiva vale la igualdad.
- (f) $f(f^{-1}(C)) \subseteq C$. Si f es sobreyectiva vale la igualdad.
- (g) $X \setminus f^{-1}(D) = f^{-1}(Y \setminus D)$.
- (h) Si f y g son invectivas (respectivamente: sobrevectivas, biyectivas), entonces $g \circ f$ es invectiva (respectivamente: sobrevectiva, biyectiva).
- 1. Halle el cardinal de los siguientes conjuntos:
 - (a) $\mathbb{Z}_{<-3}$
- (b) 5ℤ
- (c) $\mathbb{Z} \times \mathbb{N}$
- (d) $(-1,1) \cap \mathbb{Q}$
- **2.** Sea A y B conjuntos contables. Pruebe que $A \cup B$ es contable.
- **3.** Sean $A \subseteq B$ conjuntos tales que A es contable y $B \setminus A$ es infinito.
 - (a) Pruebe que existe $C \subseteq B \setminus A$ tal que $C \sim C \cup A$.
 - (b) Deduzca que $B \setminus A \sim B$.
- 4. Halle el cardinal del conjunto de los números irracionales.
- **5.** Sea $(A_n)_{n\in\mathbb{N}}$ una sucesión de conjuntos y sea $A=\bigcup_{n\in\mathbb{N}}A_n$.
 - (a) Encuentre una sucesión $(B_n)_{n\in\mathbb{N}}$ de conjuntos disjuntos dos a dos tales que:
 - $B_n \subseteq A_n$ para todo $n \in \mathbb{N}$, y
 - $\bigcup_{n \le m} B_n = \bigcup_{n \le m} A_n$ para todo $m \in \mathbb{N}$.
 - (b) Pruebe que para toda sucesión $(B_n)_{n\in\mathbb{N}}$ como arriba se tiene que $A=\bigcup_{n\in\mathbb{N}}B_n$.
- **6.** (a) Sea $\{A_n\}_{n\in\mathbb{N}}$ una familia de conjuntos contables. Pruebe que $\bigcup_{n\in\mathbb{N}} A_n$ es contable.

- (b) Sea A un conjunto finito y no vacío y $S = \bigcup_{m \in \mathbb{N}} A^m$. Pruebe que $\#S = \aleph_0$. Deduzca que, dado un alfabeto (esto es, un conjunto de símbolos) finito, hay más números reales que palabras (esto es, sucesiones finitas de símbolos) definibles
- 7. Sea c el cardinal de \mathbb{R} . Pruebe las siguientes afirmaciones:
 - (a) Si #A = c y #B = c, entonces $\#(A \cup B) = c$.

con ese alfabeto para nombrarlos.

- (b) Si $\#A_n = c \ \forall n \in \mathbb{N}$, entonces $\#(\bigcup_{n \in \mathbb{N}} A_n) = c$.
- 8. Sea A un conjunto.
 - (a) Pruebe que $\mathcal{P}(A) \sim \{0, 1\}^A$.
 - (b) Concluya que si #A = n entonces $\#\mathcal{P}(A) = 2^n$.
- 9. Sean A y B conjuntos. Pruebe que:
 - (a) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
 - (b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - (c) $A \sim B \Longrightarrow \mathcal{P}(A) \sim \mathcal{P}(B)$.
- 10. (a) Pruebe que $[0,1) \sim \{0,1\}^{\mathbb{N}}$. Sugerencia: considere el desarrollo binario de los números del intervalo [0,1). ¡Ojo!, dicho desarrollo no es único.
 - (b) Concluya que $\#\mathcal{P}(\mathbb{N}) = c$.
- 11. Pruebe que si A es numerable entonces $\mathcal{P}_f(A) = \{B \subseteq A : B \text{ es finito}\}\$ es numerable.
- 12. (a) Pruebe que el conjunto de números primos es numerable.
 - (b) Escriba a $\mathbb N$ como unión numerable de conjuntos numerables disjuntos dos a dos.
- **13.** Calcule el cardinal del conjunto $\{B \subseteq \mathbb{N} : \#B = \#(\mathbb{N} \setminus B) = \aleph_0\}.$
- **14.** (a) Calcule el cardinal de $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$.
 - (b) Calcule el cardinal de $[0,1) \times [0,1)$.
 - (c) Calcule el cardinal de \mathbb{R}^k para cada $k \in \mathbb{N}$.
- 15. Calcule el cardinal de $\mathbb{R}[X]$, esto es, el conjunto formado por todos los polinomios con coeficientes reales.
- 16. Calcule el cardinal de los siguientes conjuntos:
 - (a) $\{(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Z}:(a_n)_{n\in\mathbb{N}}\text{ converge}\}.$
 - (b) $\{(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}:(a_n)_{n\in\mathbb{N}}\text{ es periódica}\}.$
- 17. (a) Sea I un conjunto (de índices). Supongamos que existe una familia de intervalos $\{A_i\}_{i\in I}$ indexada por I tal que

- $\#A_i > 1$ para todo $i \in I$.
- $A_i \cap A_j = \emptyset$ si $i \neq j$.

Pruebe que I es contable.

(b) Sea $f:\mathbb{R}\to\mathbb{R}$ una función monótona. Pruebe que el conjunto de sus discontinuidades es contable.