Lógica y Matemática Computacional Licenciatura en Sistemas de Información

ARBOLES

Ing. JULIO C. ACOSTA

- Arboles con raíz.
- Arboles etiquetados.
- Arboles binarios.
- Búsquedas en árboles.
- Arboles no dirigidos.
- Arboles generadores o de expansión.
- Arbol de expansión mínima.
- Algoritmo de Prim.
- Algoritmo de Kruskal.
- Algoritmo de árboles de deducción de una fórmula de la lógica proposicional.

Sea un conjunto A y T una *relación* definida en A

- T es un árbol (T,v_0) en A, si existe un vértice v_0 en A con la propiedad que:
 - 1) Existe una única trayectoria en T de v_0 a cualquier otro vértice v en A
 - 2) No existe trayectoria de v_0 a v_0
 - 3) v_0 es único y es llamado *raíz del árbol T*
 - 4) Si escribimos (T, v_0) , designamos el árbol T con raíz v_0 sobre un conjunto A; un elemento v de A, es un $v\acute{e}rtice\ en\ T$.

Ancestros Nodos Altura

Descendiente Raíz

2019

Determine en cada caso si R definida en A es un árbol.

TEROREMA 1: Sea (T, v_0) un árbol con raíz. Entonces

- (a) No existen ciclos en T.
- (b) v_0 es la única raíz en T.
- (c) Cada vértice en T distinto de v_0 tiene grado interno 1, y v_0 tiene grado interno 0

<u>DEMOSTRACION</u>: TEROREMA 1: Sea (T, v_0) un

árbol con raíz. Entonces:

(a) No existen ciclos en T.

Suponga que existe un ciclo q en T que comienza y termina en vSabemos por definición que: $v \neq v_0$

Debe existir una trayectoria p de v_0 a v

Entonces:

 $q \circ p$ es una trayectoria de v_0 a v diferente de p

Lo que contradice la definición de árbol

Por tanto, NO existen ciclos en T

TEROREMA 1: Sea (T, v_0) un árbol con raíz.

Entonces:

(b) v_0 es la única raíz en T.

Si v_0 ' es otra raíz de T, existe una trayectoria \boldsymbol{p} que va de v_0 a v_0 ' y una trayectoria \boldsymbol{q} que va de v_0 ' a v_0

Entonces:

 $q \circ p$ es un ciclo que va de trayectoria de v_0 a v_0

Lo que contradice la definición de árbol

Por tanto, v_0 es raíz única

TEROREMA 1: Sea (T, v_0) un árbol con raíz.

(c) Cada vértice en T distinto de v_0 tiene grado interno 1, y v_0 tiene grado interno 0

Sea w_1 un vértice en T, distinto de v_0

Entonces existe una trayectoria $v_0,...,v_k,w_1$ en T. $(v_k,w_1)\in T$ w_1 tiene grado interno al menos 1.

Si w_1 tiene grado interno mayor que 1, deben existir vértices w_2 y w_3

$$(w_2, w_1) \in T$$
 $(w_3, w_1) \in T$
 $w_2 \neq v_0$ $w_3 \neq v_0$

Existen trayectorias p_2 de v_0 a w_2 p_3 de v_0 a w_3

$$(w_2, w_1) \circ p_2$$
 $(w_3, w_1) \circ p_3$

Son trayectorias diferentes de v_0 a w_1

Lo que contradice la definición de árbol con raíz en v_0

Por tanto en grado interno de w_1 es uno

Ejercicio: Argumente que v_0 tiene grado cero

TEOREMA2: Sea (T, v_0) un árbol con raíz sobre u conjunto A. Entonces

- (a)T es Arreflexiva
- (b)T es Asimétrica
- (c) T si (a T b) \land (b T c) entonces (a \ddagger c) Atransitiva

Ejemplo: Sean $A = \{ v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10} \}$

 $T = \{ (v_2, v_3); (v_2, v_1) (v_4, v_5) (v_4, v_6) (v_5, v_8) (v_6, v_7) (v_4, v_2) (v_7, v_9) (v_7, v_{10}) \}$

TEOREMA 3: Si (T, v_0) es un árbol con raíz y v pertenece a T, entonces:

- T(v) también es un árbol con raíz en v.
- T(v) es el subárbol que comienza en v

Ejemplo: El siguiente árbol tiene raíz en v_4 , con subárboles, por ejemplo, $T(v_6)$; $T(v_2)$ y $T(v_5)$

DEMOSTRACION: Si (T, v_0) es un árbol con raíz y v pertenece a T, entonces:

- T(v) también es un árbol con raíz en v.
- T(v) es el subárbol que comienza en v

Existe una trayectoria de v a cualquier otro vértice en T(v) (por definición)

Si existe un vértice w en T(v) tal que: existen dos trayectorias distintas q y q' de v a w y p es la trayectoria en T de v_0 a v

Entonces:

$$q \circ p$$
 $q' \circ p$

serían dos trayectorias distintas en T de v_0 a w .

Dos trayectorias distintas en T de v_0 a w es IMPOSIBLE

T es un árbol con raíz en v_0

Cada trayectoria desde v a w en T(v) debe ser única

Si q es un ciclo en v en T(v); q es un ciclo también en T

Esto contradice el Teorema 1 (a); por tanto q NO EXISTE

Esto implica que T(v) es un árbol con raíz en v

Arboles etiquetados

Componga la expresión que se corresponde con el árbol:

$$(3x(1-x))/((4+(7-(y+2)))x(7+(x/y)))$$

ARBOL BINARIO POSICIONAL

CODIGO ASCI II

codigo sessi 100 = di (Leire d minúscula)

codigo assili 101 = # (Letra e minuscula)

codigo ascii 102 = f (Laire f minúscule) codigo ascii 103 = g (Laire g minúscule)

codigo escil 33 × f (Signos de Ascternacion, signo de admiracion) codigo asci 104 = N (Lens ofe minipolite - lens n con tilite - ener.) Lista completa de caracteres, letras, signos y símbolos del código ASCII : codigo asci 34 = * (Corritos dobiso ; comitisa artes o implesas) codigo andi 165 = Ñ (Leira EÑE mayúscula - letra N con tida - ENE) codigo asci 186 + * (Ordinal fomenino, indicador de genero femeneno). codigo seci 35 = # (Signo numeral o atmohadilla) Caracteres de control ASCII no imprimibles : Caracteres ASCII extendidos imprimibles : cadigo exci 187 4 * (Ordinal mesculino, indicador de genero mesculno) codign secti 36 = \$ (Signo peace) codigo ascir 00 = NULL | Certiciter nulo | undigo asol 128 = C (Letra C cedita may/souls) codigo audi 165 = ¿ (Abre signs interrogacion) codigo sacii 37 = % (filigno de porcentaya - por ciento) nadigo ascii 01 × 80H (Inicio de secabezado) miligo ascil 129 - 6 (Letta u minúscula con diéresis) codico such 38 > & (Y - ampersand - et litting) codigo: esci: 169 × 8 (Sivibolo de Marca Registrata) codigo ascir (12 = STX (fracto de texto) undigo axid 130 = 4 (Latin is mindesula con atanto aguso). codigo asci 39 = 1 (Comitae simples, spisstrole) codigo exis: 170 = = (Signo de regectori) codigis audi CD = ETX (Fin de testo, palo conscin banque inglesse de poker) moSgo audi 131 = \$ (Laire a ministrate con acento circunfleys) codigo aucii 40 = ((Azre parèntesia) midge auti 171 = W / Un mests, miled, fraccion) cadigo ascii 04 = EOT (Fin de transmisión, pala diamentes berajas de poker) codigo ascil (32 + & (Letwis minúscula con dieresis) codigo sadi 41 =) (Cierra parensara) codigo asox 172 = % (Un ouerto, cuarta parte, fracción) codigo ascii 05 = EMQ (Consulta, paio Sebotos burgas inglesas de polar) codigo ascil 133 = à (Latra a minúsculo por acento grave) codign asci 42 = 1 | Asterisco | midigo axió 173 = ¿ (Abre signos de exclamacion, signo de admiracion) codigio asci (16 - ACK (Reconocimiento, palo picas certas de poker) usdigo asci 134 = \$ (Letro a mindscula con arello): cedigo ascii 43 ++ (Signo mes. suma, positivo) codign asid: 174 = a (Abre combine house, engulares, lethous o españoles) codigo sect U7 = BEL (Teribre) andigo ascil 135 + g (Latra o cedita miniscula) codigo accil 175 = x (Clema comities bajes, angulares, latimas o espeñolas) codigo saci-44 », (Coma) cadigo ascil (8 = 85 (Retroceso) codigo asci. (36 = 8 (Letra e minúscula por acento cincurfieix) codigo apol 179 = 11 (Bioque color tramado densidad bala, carácter práfico) codigo asci 45 ++{ Signo menos , resta , regelivo , gustin medio | codigo ascii 09 + MT (Tabulador horizontal). codigo ascii 137 = 6 (Letre e minúscute con diêresia) medigo and: 177 = || (Brugus color tramado densidad media, gráfico) codigo esci-att + (Punto) codigo ascil 10 = LF / Nueva linea - salto de linea) oxiligo ascit 138 = # (Letta e minúscula con acento grave) codigo sacii 47 + I (Sama inclinada, división, operador cociente). modigo audi 178 = 1 (Bloque color travacto dereidad alfa, carácter gráfico) codigo awai 11 × VT (Tabulador vertical) medigo parti 133 - 1 (Letra i minúscula con diáresos) codigo ascii 45 + 9 (Milmero cero) undigo asol 178 = [(Linea simple vertical de resuadro gráfico). codigo autil 12 + FF (Noeva págma - seño de págma) indigo auti 140 =1 (Latra i minúscula con acento circur\$ejo) codign audi 160 × ((Linea vertical con empélme de recuedro gráfico) codigo ancli 48 = 1 (Número una) cadigo ascil 13 = DR (ENTER - retorno de carro) undigo ascil 141 = I [Letta i nimiscuiz con acento grave] modigo and 181 - A (Lette a requirenza con scento aguato). codigo ascii 50. + 2 (Nomero dos). codigo ascil 14 = 80 (Despissamento hecia afuera). codigo asci 142 = A (Letra A mayoscula con diéresis) codigo sacii 51 + 3 (Norrero tres) oxidgo asoli 182 × Å (Letta A inayúscula con acento circunfejo) codigo anci: 15 - 86 / Degragamento hocia attentro.) matigo asidi 143 = A (Lette A mayoscute con anito) codigo asci-52 × 4 (Número quatro) codigo asci: 183 - A (Lebis A mayúscura con acento grave) codigo axes 10 + DLE (Escape de vivouro de diese) motigo audi 144 - É | Luite C maytaquia met acente agudo) codigo andi 184 » B (Simbolo Copyright, bass steventro de autor). codigo asol: 53 = 8 (Número cinos). codigo secti 17 = DC1 (Control dispositivo 1). codgo secii 145 + m (Otatongo latino se minúscula) undigo ascil 185 ~ ₫ (Doble lines vertical empaime loguleron, gráfico) andigo and: 54 + 6 (Nomero sets) codigo asoli 18 + DC2 (Control dispositive 2) codigo ascil 146 n Æ (Digtorigo letino AE mayúsoula) codigo andi 55 = 7 (Norvers sirie) codign asci: 186 × \$ (Lineas dobre vertical de requestro gráfico, verticales). rodigo ascs 19 = DC3 (Corerol dispositivo 3) codigo ascil 14T = 6 (Letta o minúscula con acento circumbeo) codigo asci-58 = 8 (Número ocho): undigo exci 187 = q (Linea doble seguina superior derecha de recuadro). codigo esci 20 - DC4 (Coreta Impositivo 4) nadign axis 148 + 6 (Lette is ministrate con delines). codigo asci: 57 > 8 (Número nueve) matigo saci: 188 × 8 (Unas doble sequiral inferior densitia de requestro) codigo axoli 21 = NAK (Confirmación regative) modigo escii 149 - 6 (Letra o minúscula con acento grave) codigo asci: 188 + 6 | Signo centavo, céntimo o centésimo) codigs suci 58 × : (Dos purtos) cadigo ascii 22 = BYN (Inactivided sinoronica:) codigo ascil 150 × 6 (Letra u mimiacula con acento circumfejo) codigo asci: 190 - ¥ (Signo manetario YEN japonès, YUAN chino) osdigo ascii 59 + ; (Punto y come.) cadigo ascii 23 + ETB (Fin del bioque de transmisión) codigo ascil 151 = 8 (Lette ii minúscula con acento grava) padigin ascil 60 × < (Menor que): codigo ascir 191 × 7 (Linea simple securita de recuedro grafico) codigo axcii 24 + CAN (Carceler) modigo asci 152 + ÿ (Catro y miniscule con dièresia.) codigo audi 192 × 4 (Lines simple esquina de recusioro grafico) codigo asoli 81 = # | Signo Igual, iguatiani, igual que) codigo assiti 25 + EM (Fiv del medio) codigit and 153 = 0 (Lette O PayGecula cor dates s) codigo apoli 193 = - (Linea horzontal con empaime da recuedro gráfico) codigo and: 52 = > (Mayor que) undgo asci 154 = Ü (Letts U mayusovia con dilirecis) codigo secti 26 ~ SUB (Sustación) codigo ascil 63 = 7 (Carra signo imerropación) codigo and 194 = + (Unes horzontal con empaires de recuedro gráfico) radigo asci 27 × ESC (Esc - escape) codigo ascir 155 = # (Letra o minúscula con barra inclinada) codgo sacri 64 = @ (Artista) codigo asci: 195 × 1-{ Lines vertical non evrystme de recusárs gráfico) codigo aoni 28 = F8 (Separador de archivos) codigo audi 156 = £ (Bigno Libra Estertina) codgo andi-SE = A (Letta A may/acula) codigo asci: 196 = - (Lines simple horizontal de recuadro gráfice) codigo autil 29 = QS (Separador de grupos) colligo acci 157 - # (Letre O maydecute con hame inchreda) codigo asci 66 = 8 (Letta B mayoscuta) uodigo audi 197 = - { Lineas arripes empartes de recuadro gráfico | codigo escil 30 = RS (Separador de registros). codigi: asid 158 + # (Signo de mutiplicación) codigo sedii 198 = 8 (Lerra a minúscula con tilde) codigo saci-RF = C (Letra C mayuscula) codigo ascii 31 = US | Seperador de uniquees) codigo ascil 159 = f (Simboto de función, florin neerlandes) codigo and-SS - D (Lette D mayGessia) codigo ascil 199 + A (Lette A mayúscula con tide) codigo ascil 127 = DEL (DEL - Suprivir, borrar, eliminar) codigo anol 160 = \$ (Letro a minúscula con scento águdo) codigo esci-69 - E (Letta E maybecura) codgo asci 200 -- A (Linea dotte seguina inferior isquieros de recuedro) andigo excit 161 = (Latre i remiarcire con ecento agusto) codigo ascii 70 + F (Latra F mayoscula) codigii audi 201 = p (Linea doble sequina superior lequiende de recussiro.) Caracteres ASCII alfanumericos imprimibles : molign and 162 + 6 (Letts a minimula con agent agent) costigo asci: 202 + A (Doble linea tonzontal empalme amba, recuadro) codigo audi P1 = G (Lette G mayossule) cedigo audi 32 = especio (Especio en bianco). codigo ascil 163 + 8 (Letre u minúscula con acento aquato) codigo ascii 72 - H (Letta H mayosoula) codigo asci 203 = g (Doble linea forzontal empalme abajo, recuebro) coogs may /x = m LL/mm is may/anum.) CORRESPONDED AND A THE LANGE WHEN THE PROPERTY OF THE SECOND PROPERTY I codgo asoli 73 × I (Letrs I mayoscula) codgo ascil 204 = § (Dobbs lines vertical ampalina derecto, recuedro). range was not vig t core if transcript CONTROL STATE AND THE STATE OF codigo speri 74 = J (Latra J mayiseura) codigo ascil 205 = = [Livees doble horizonizies de recuedro gráfico] codigo asci 256 = Ø (Letta U mayiscula con scento grava) codgo asoli 104 = N (Letta it minúscula) codigo ascii 206 + § (Lineaa dobles cruisi de l'neas de recuadro gráfico) codigo ascii 75 + K (Lebo K mapisoula) codigo asoli 236 × g (Letta y minúscula con acento agudo) rodigo asoli 105 « il (Latra i minúsoura). codigo escil 76 = L (Letta L mayoscula) codgo axià 207 + * (Signo monetario - divisa general) codge asti 237 + Y (Lana Y mayoscola con scento agudo) codgo asol 106 + j (Leirs) mirclanuls.) codigo ascii 77 + M (Letra M megiacute) codigo ascil 208 + 6 (Letra eth latina minusouta) codigo ancii 107 × k (Letra x minúscula) codigo ascil 236 = " (Macron (marcar lengs), superguitin, guitin alto) rodgo ascii 209 = 8 (Letto eth latna mevcenire) codigo secti 78 * N I Leira N may/acula (rodigo asoli 108 v l (Lerre i minuscule) modigin asci (239 = " (Acierto agudo) codes and 210 - £ (Laira fi mayong a con acento countino) codgo ascil 79 * O (Letts O mayliscula) rodigo asoli 109 + m (Letta m minúsoula) codgo seci 240 = 8 (Simbolo malemático de congruencia, equivalencia) modigo ascil 211 = € (Letts € may/scute con diéress) codigo assin 60 = P (Lette P mayoccuta) corligo audi 110 + m (Cetta n minuscuta) codigo saci 241 = ± (Signo mas menos) codigo espó B1 = Q (Letra Q maybecuta) codigo ascil 212 × € (certe E mayusous con acerto grave) rodigo ascii TT1 = e (Letra o minúscuta) codigo and 242 = _ (ASCI 242). codigo ascil 62 + R (Letta R meybecule) codeo axis 213 + i (Care minuscula I ain porto). codigo expli 243 = % | Tres cuartos, fracción | codigo autil 112 × p (Letta p minúscula). codigo ased 85 = 8 (Lerra 5 mayoscula) codigo ascil 214 = 1 (Lette i mayúscula cun acento agudo) rodige ascil TEX = q (Letta q ministrula) codigo escil 244 + ¶ (Fin de panafo - signo de carderon) codgo ascil 216 = 1 (Lens I mayoscuta con acento circurfielo) codigo seco 64 = T (Letro T may lecute) codigo sesti 245 = § (Signo de sección) rodgo ascii 114 = r (Letts r minosouta) codigo escil 85 = U / Lette 1/ may/souls 1 codigo ascil 216 ×1 (Lette i meybecute con diémese) codigo and (246 + +) Signo de división) codigo asoli 115 = a (Letra s minúscuta) modigo asoli 217 x-1 (Lives simple esquires de recusairo gráfico) codigo ascii 88 × V (Lette V maydecuta) codigo ascil 247 * _ (GedRis , wrgulito beja) codgo audi 116 = 1 (Lana (minosoure) codigo ascil 218 = p (Linea skripte esquiva de recusero grafico) codigo ascil 67 + W (Latra W mayoscuta) codge saut 248 = * (Signo de grado, anito) modigo-ascil 117 = u (Letra ii minúscula) codgo auci 215 - 2 (Boque color plane solido, carácter práfico) codigo asoli 56 + X (Letts X mayūscula) codigo ascii T18 + v (Lette v minoscula) nodigo asci 249 «" (Dieresis) codgo asci 220 = (Medio bioque regro, mitat inferior, carácter gráfico) codigo asell 69 4 Y Letra Y mavoscula 3 codigo ascii 119 - w (Letre w minúscula) cordign each 250 = - (. Punto centratro, punto medio, come georgiene.) codgo ascii 221 = ; (Barra vertical pertida) codgo asci 90 = Z (Letra Z maybanula). codigo ascil 261 +1 (Superindice uno) rodgo ascii 120 - x (Latra x minúacula) codigo ascii 222 + I (Letre I mayoscute con apento grave) codigo está 91 + [(Abre corchetes) codigo ascii 252 = 1 (Superindica tres , potencia tres , al nubo) . rodgo ascii 121 + y (Letra y minúscula) codigo ascii 92 v \ (Barra invertida , contrabama ; barra inversa) codigo ascil 223 + 4 (Medio bioqua regro, mitad superior, carácter gráfico) codigo asol 253 = * (Superindice doe , al quadrado) redige andii 122 = a (Lette z mindecula) codigo asoli 224 × 0 (Letra e maytiscula con acerto agudo) codigo ascii 93 +1 (Clema soveretes) codigo asoli 123 + (| Alore fave curve - faves curves) codigo asci 254 = e (Cuadreco negro, carectar gráfico) codgo secti S4 + * (Intercalación - adento circunfieja) codgo ascil Z25 + & (Letra wemana eszet o ese-299a) codigo audi 255 = strep (Especio sin separación - non breaking space) rodgo anni 124 » (Barra vertical, pieca , irrea vertical) codigo assil 96 = _ (Guidn bajo , subrayastir , subquitir) codigo ascil 225 × 0 (Letta C maycecula con acento circumfejo) rodgo audi 125 =) (Clerra lleve - lleves ouves) codigo asci 96 = " (Acento grave) codigo ascii 227 × 0 (Lette O mayúscula con acento grave) codigo asoli 128 = - (Bigno de equivalencia , tildo o virguilita de la fi) codigo ascii 228 - 8 (Letre o minúscula con tide) codigo ascil 97 × a (Latra a minúscula) costigo aucil 229 × 0 (Lette O may/assub-con tide) codigo ascii 98 + ti (Latta ti mindecula) codas sasi 50 + e / Latta e minascula I (odigo asol 200 × y / Signo micro)

codigo ascil 231 + p (Letre letine from mindeaux)

codigo audi 232 - P (Lette latina from mayusous)

codigo asci 233 × 0 (Letts U mayciscula con acento agudo)

codigo asoli 234 + Ø (Letta U mayoscuta con atiento cimunfisio)

CODIGO DE HUFMAN

Carácter		
А	100	0001
В	100	0010
С	100	0011
1	011	0001
2	011	0010
ļ.	010	0001
*	010	1010

RAT 01010111 RATO 0101011100

BUSQUEDA EN ARBOLES

Algoritmo PREORDEN

- PASO 1: Visite v
- PASO 2: Si existe v_L , entonces aplique este algoritmo a $(T(v_L), v_L)$
- PASO 3: Si existe v_R , entonces aplique este algoritmo a $(T(v_R), v_R)$

Fin del algoritmo

- 1. Visite la raíz.
- 2. Busque en el sub árbol izquierdo, si existe
- 3. Busque en el sub árbol derecho, si existe

Algoritmo PREORDEN Н K E 6 10 8

ALGORITMO PREORDEN

$$a = 6$$

$$x - a b + c / d e$$

$$c = 5$$

$$d = 2$$

$$x - 6 + 5 / 2 = 2$$

$$e = 2$$

$$x - 6 + 5 = 1$$

Algoritmo ENTREORDEN

PASO 1: Si existe v_L , entonces aplique este algoritmo a $(T(v_L), v_L)$

PASO 2: Visite v

PASO 3: Si existe v_R , entonces aplique este algoritmo a $(T(v_R), v_R)$

Fin del algoritmo

- 1. Busque en el sub árbol izquierdo, si existe
- 2. Visite la raíz.
- 3. Busque en el sub árbol derecho, si existe

Algoritmo ENTREORDEN A

X **ALGORITMO** (a-b)x(c+(d/e))**ENTREORDEN** 3 6 8

$$a - b \times c + d \neq e$$

ALGORITMO ENTREORDEN

$$b = 4$$

$$a-b \times c + d/e$$

$$d = 2$$

29

$$e = 2$$

$$6 - 4 \times 5 + 2 / 2$$

$$6 - 4 \times 5 + 2 / 2$$

$$2 \times 5 + 1$$

- 13

12

ambiguo

Algoritmo POSORDEN

- PASO 1: Si existe v_L , entonces aplique este algoritmo a $(T(v_L), v_L)$
- PASO 2: Si existe v_R , entonces aplique este algoritmo a $(T(v_R), v_R)$

PASO 3: Visite v

Fin del algoritmo

- 1. Busque en el sub árbol izquierdo, si existe
- 2. Busque en el sub árbol derecho, si existe
- 3. Visite la raíz.

Algoritmo POSORDEN A

Algoritmo POSORDEN

$$a = 6$$

$$c = 5$$

$$d = 2$$

$$e = 2$$

X

Ejercicios: Construya un árbol para la siguiente operación lógica e implemente su recorrido en los tres sentidos

$$(\neg(p \land q)) \leftrightarrow (\neg p \lor \neg q)$$

Ejercicios:

Efectúe búsqueda PREORDEN, ENTREORDEN Y POSORDEN en el árbol presentado

$$\longleftrightarrow \neg \wedge p \neq \vee \neg p \neg q$$
 PREORDEN

 $p \neq \wedge \neg p \neg q \neg \vee \longleftrightarrow$ POSORDEN

 $\neg p \wedge q \longleftrightarrow \neg p \vee \neg q$ ENTREORDEN (ambigua)

PREORDEN

POSORDEN

ARBOLES NO DIRIGIDOS

TEOREMA 1: Sea R una relación simétrica en un conjunto A. Entonces las siguientes proposiciones son equivalentes:

- (a)R es un árbol no dirigido
- (b)R es conexo y acíclico

ARBOLES DE EXPANSION DE RELACIONES CONEXAS

Si R es una relación simétrica conexa sobre un conjunto A, un árbol T en A es un árbol de expansión para R si T es un árbol con exactamente los mismos vértices que R y se puede obtener T eliminando algunas aristas de R

ARBOLES DE EXPANSION MINIMA

Sea el grafo G=(V,E)

- Ponderado
- No dirigido
- Conexo
- Sin lazos

ALGORITMO DE PRIM

PASO 1

Hacemos el contador i=1Colocamos un vértice arbitrario $v_1 \in V$ en el conjunto P. Definimos $N=V-\{v_1\}$ y $T=\emptyset$

PASO 2

Para $1 \le i \le n-1$, donde |V|=n, sean $P=\{v_1,v_2,...,v_i\}$ $T=\{e_1,e_2,...,e_{i-1}\}$ y N=V-P. Añadimos a T la arista mas corta (la de peso mínimo) de G que conecta un vértice x en P con un vértice y ($=v_{i+1}$) en N. Colocamos y en P y lo eliminamos de N

PASO 3

Hacemos i = i + 1

Si i = n, el subgrafo de G dado por las aristas $e_1, e_2, ..., e_{n-1}$ es conexo, con n vértices, n-1 aristas y es un árbol óptimo para G.

Si i < n, regresamos al paso 2.2019

ALGORITMO DE PRIM

Inicialización: $i = 1; P = \{a\}; N = \{b, c, d, e, f, g\}; T = \emptyset$

Primera iteración: $T = \{\{a,b\}\}; P = \{a,b\}; N = \{c,d,e,f,g\}; i = 2$

Segunda iteración: $T = \{\{a, b\}, \{b, e\}\}; P = \{a, b, e\}; N = \{c, d, f, g\}$ i = 3

Tercera iteración: $T = \{\{a, b\}, \{b, e\}, \{e, g\}\}; P = \{a, b, e, g\}$ $N = \{c, d, f\}; i = 4$

Cuarta iteración: $T = \{\{a,b\}, \{b,e\}, \{e,g\}, \{d,e\}\}\}$ $P = \{a,b,e,g,d\}; N = \{c,f\}; i = 5$

Quinta iteración: $T = \{\{a,b\}, \{b,e\}, \{e,g\}, \{d,e\}, \{f,g\}\}\}$ $P = \{a,b,e,g,d,f\}; N = \{c\}; i = 6$

Sexta iteración: $T = \{\{a,b\},\{b,e\},\{e,g\},\{d,e\},\{f,g\},\{c,g\}\}\}$ $P = \{a,b,e,g,d,f,c\} = V; N = \emptyset; i = 7 = |V|^{43}$ Inicialización:

$$i = 1; P = \{a\}; N = \{b, c, d, e, f, g\}; T = \emptyset$$

Primera iteración: $T = \{\{a,b\}\}; P = \{a,b\}; N = \{c,d,e,f,g\}; i = 2$

Segunda iteración: $T = \{\{a, b\}, \{b, e\}\}; P = \{a, b, e\}; N = \{c, d, f, g\}$ i = 3

Tercera iteración: $T = \{\{a,b\}, \{b,e\}, \{e,g\}\}; P = \{a,b,e,g\}$ $N = \{c,d,f\}; i = 4$

Cuarta iteración: $T = \{\{a,b\}, \{b,e\}, \{e,g\}, \{d,e\}\}\}$ $P = \{a,b,e,g,d\}; N = \{c,f\}; i = 5$

Quinta iteración: $T = \{\{a,b\}, \{b,e\}, \{e,g\}, \{d,e\}, \{f,g\}\}\}$ $P = \{a,b,e,g,d,f\}; \ N = \{c\}; \ i = 6$

Sexta iteración: $T = \{\{a, b\}, \{b, e\}, \{e, g\}, \{d, e\}, \{f, g\}, \{c, g\}\}\}$ $P = \{a, b, e, g, d, f, c\} = V; N = \emptyset; i = 7 = |V|$

T es un árbol de expansión mínimo de peso 17 para G

ALGORITMO DE KRUSKAL

PASO 1. Hacemos el contador i = 1Seleccionamos una arista e_1 en G, tal que $p(e_1)$ séalo mas pequeño posible.

PASO 2. Para $1 \le i \le n-2$, si hemos seleccionado las aristas $e_1, e_2, ..., e_i$, entonces seleccionamos la arista e_{i+1} de las aristas restantes de G, de modo que:

- a) $p(e_{i+1})$ sea lo mas pequeño posible.
- b) El subgrafo de G determinado por las aristas $e_1, e_2, ..., e_i, e_{i+1}$ (y los vértices incidentes) no contenga ciclos.

PASO 3. Hacemos i = i + 1.

Si i=n-1, el subgrafo de G determinado por las aristas e_1,e_2,\ldots,e_{n-1} es conexo, con n vértices y n-1 aristas, yes un árbol de expansión mínimo para G.

Si i < n - 1, regresamos al paso 2.

INICIALIZACION: i=1Seleccionamos la arista de menor peso $\{e,g\}$

PRIMERA ITERACION:

Entre las aristas restantes tres tienen peso 2, seleccionamos $\{d, f\}$ $T = \{\{e, g\}, \{d, f\}\}$ Hacemos i = i + 1 = 2 i = 2 < 6 volvemos al paso 2.

SEGUNDA ITERACION:

Dos de las aristas restantes tienen peso 2. Seleccionamos $\{d, e\}$ $T = \{\{e, g\}, \{d, f\}, \{d, e\}\}$ Hacemos i = i + 1 = 3 i = 3 < 6 volvemos al paso 2.

TERCERA ITERACION:

De las aristas restantes $\{f,g\}$ tiene el peso mínimo, pero produce un ciclo, en consecuencia es descartada y se elige $\{c,e\}$.

 $T = \{\{e, g\}, \{d, f\}, \{d, e\}, \{c, e\}\}$ Hacemos i = i + 1 = 4 i = 4 < 6 volvemos al paso 2.

CUARTA ITERACION:

Se elige $\{b, e\}$.

 $T = \{\{e, g\}, \{d, f\}, \{d, e\}, \{c, e\}, \{b, e\}\}\}$ Hacemos i = i + 1 = 5 i = 5 < 6 volvemos al paso 2.

QUINTA ITERACION:

Se elige $\{a, b\}$.

 $T = \{\{e,g\}, \{d,f\}, \{d,e\}, \{c,e\}, \{b,e\}, \{a,b\}\}$

Hacemos i = i + 1 = 6

i = 6 = 6

FIN

T es un árbol de expansión mínimo de peso 17 para G

