处理器体系结构

P224-227

综述

本章主要介绍处理器硬件的设计。能帮助理解整个计算机如何工作。

Y86-64 指令集体系结构

定义一个指令集体系结构包括定义各种状态单元、指令集和他们的编码、一组变成范式和异常事件处理。

- 程序员可见的状态
 - Y86-64 类似 x86-64,有 15 个寄存器。每个寄存器存储 64 位的字。其中寄存器%rsp 被用来入栈、出栈、调用和返回指令作为栈指针。

RF:程序寄存器

%rax	%rsp	%r8	%r12			
%rcx	%rbp	%r9	%r13			
%rdx	%rsi	%r10	%r14			
%rbx	%rdi	%r11				

CC: 条件码

ZF SF OF

PC

Stat: 程序状态

DMEM: 内存

图 4-1 Y86-64 程序员可见状态。同 x86-64 一样, Y86-64 的程序可以访问和修改程序寄存器、条件码、程序计数器 (PC)和内存。状态码指明程序是否运行正常,或者发生了某个特殊事件

指令集

字节	0 1	2	3	4	5	6	7	8	9
halt	0 0								
nop	1 0								
rrmovq rA, rB	2 0 rA rB								
irmovq V, rB	3 0 F rB					V			
rmmovq rA, D(rB)	4 0 rA rB					D			
mrmovq D(rB), rA	5 0 rA rB					D			
OPq rA, rB	6 fn rA rB								- 4
jXX Dest	7 fn				Dest				
cmovXX rA, rB	2 fn rA rB								
call Dest	8 0				Dest				
ret	9 0								
pushq rA	A 0 rA F								
popq rA	B O rA F								

图 4-2 Y86-64 指令集。指令编码长度从 1 个字节到 10 个字节不等。一条指令含有一个单字节的指令指示符,可能含有一个单字节的寄存器指示符,还可能含有一个 8 字节的常数字。字段 fn 指明是某个整数操作(OPq)、数据传送条件(cmovXX)或是分支条件(jxx)。所有的数值都用十六进制表示

可以看到:

- o movq 在 Y86-64 上的对照,增加了首部两个参数,表示源类型和目的类型。
- 4个证书操作指令
- 7个跳转指令
- 6 个条件传送指令