4.2 JARDUERAREN EBAZPENA:

Izan bedi ondoko PO problema:

$$\max Z = 3x_1 + 5x_2$$

$$non x_1 + 5x_2 \le 11$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0 \text{ eta osoak}$$

Lortu problema honen soluzioa osoa Adartze- eta bornatze metodoa erabiliz.

1. Pausua: Hasieraketa

Problema osoaren erlaxazio lineala ebatzi:

P1:
$$\begin{cases} \max z = 3x_1 + 5x_2 \\ \text{non } x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1, x_2 \ge 0 \end{cases}$$

Simplex metodoa aplikatuz problema hau ebatziko dugu. Horretarako lehenengo eta behin problema era estandarrean idatziko dugu:

$$\max Z = 3x_1 + 5x_2$$

$$non x_1 + 5x_2 + x_3 = 11$$

$$x_1 - x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Hasierako oinarrizko soluzio bideragarria: $x_B = (x_3, x_4) = (11, 2)$ eta Simplex metodoaren taula eraiki:

			3	5	0	0
C_{oin}	A_{oin}	B⁻¹⋅b	X ₁	X ₂	X 3	X 4
0	X 3	11	1	5	1	0
0	X 4	2	1	-1	0	1
Z=	=0	Zj	0	0	0	0
		W_{j}	-3	-5	0	0

$$\exists W_j < 0 \Rightarrow \text{jarraitu}$$

Sartze-irizpidea: $W_j = \min\{z_k - c_k\} = -5 \implies x_2 \text{ sartu}$

Irtetze-irizpidea:
$$\frac{x_{B_i}}{y_{ij}} = \min \left\{ \frac{x_{B_k}}{y_{kj}} / y_{kj} > 0 \right\} = \frac{11}{5} \Rightarrow x_3 \text{ irten}$$

Simplex-en taula berria:
$$\begin{cases} e_1 \leftarrow e_1 \, / \, 5 \\ e_2 \leftarrow e_2 + e_1 \end{cases}$$

			3	5	0	0
Coin	Aoin	B⁻¹⋅b	X ₁	X 2	X 3	X 4
5	X 2	11/5	1/5	1	1/5	0
0	X 4	21/5	6/5	0	1/5	1
Z=	11	Zj	1	5	1	0
		Wj	-2	0	1	0

 $\exists W_i < 0 \Rightarrow \text{jarraitu}$

Sartze-irizpidea:
$$W_i = \min\{z_k - c_k\} = -2 \implies x_1 \text{ sartu}$$

$$\frac{\text{Irtetze-irizpidea:}}{y_{ij}} = \min \left\{ \frac{x_{B_k}}{y_{kj}} / y_{kj} > 0 \right\} = \min \left\{ \frac{11/5}{1/5}, \frac{21/5}{6/5} \right\} = \frac{21}{5} \Rightarrow \text{x4 irten}$$

Simplex-en taula berria:
$$\begin{cases} e_2 \leftarrow \frac{5}{6}e_2 \\ e_1 \leftarrow e_1 - \frac{1}{5}e_2 \end{cases}$$

			3	5	0	0
C_{oin}	A _{oin}	B⁻¹⋅b	X ₁	X ₂	X 3	X 4
5	X ₂	3/2	0	1	1/6	-1/6
3	X ₁	21/6	1	0	1/6	5/6
Z=	18	Zj	3	5	4/3	5/3
		W_{j}	0	0	4/3	5/3

$$W_j \ge 0 \quad \forall j \Rightarrow \text{amaitu}$$

Problema osoaren erlaxazio linealaren soluzio optimoa:
$$(x_1, x_2) = \left(\frac{21}{6}, \frac{3}{2}\right); z_1 = 18$$

da. Behe-bornea $\underline{z} = -\infty$

2. Pausua: Adarkatzea

$$x_1 = \frac{21}{6} \Rightarrow \left\lfloor \frac{21}{6} \right\rfloor = 3.5 \Rightarrow \begin{cases} P2: x_1 \le 3 \\ P3: x_1 \ge 4 \end{cases}$$

$$P2: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \le 3 \\ x_1, x_2 \ge 0 \end{cases} \qquad P3: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \ge 4 \\ x_1, x_2 \ge 0 \end{cases}$$

3. Pausua: Bornatzea

$$P2: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \le 3 \\ x_1, x_2 \ge 0 \end{cases} \Rightarrow P2: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 + x_3 = 11 \\ x_1 - x_2 + x_4 = 2 \\ x_1 + x_5 = 3 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

Murrizketa bat gehitu dugunez, sentikortasun-analisia erabiliz:

			3	5	0	0	0
Coin	A_{oin}	B ⁻¹ ⋅b	X ₁	X ₂	X 3	X 4	X 5
5	X 2	3/2	0	1	1/6	-1/6	0
3	X ₁	21/6	1	0	1/6	5/6	0
0	X 5	3	1	0	0	0	1
Z=	18	Zj	3	5	4/3	5/3	0
		W_{j}	0	0	4/3	5/3	0

Beharrezkoak diren eragiketak eginez: $e_3 \leftarrow e_3 - e_2$

			J	3 2			
			3	5	0	0	0
Coin	Aoin	B⁻¹⋅b	X ₁	X 2	X 3	X 4	X 5
5	X ₂	3/2	0	1	1/6	-1/6	0
3	X ₁	21/6	1	0	1/6	5/6	0
0	X 5	-1/2	0	0	-1/6	-5/6	1
Z=	18	Zj	3	5	4/3	5/3	0
		W_{j}	0	0	4/3	5/3	0

 $\exists X_{D_{\mathbb{K}}} < 0 \Longrightarrow \text{Bideragarritasuna galdu da} \Longrightarrow \text{Simplex dual metodoa erabiliz:}$

Irtetze-irizpidea:
$$\max\left\{\left|X_{D_{K}}\right|/X_{D_{K}}<0\right\}=\frac{1}{2} \Longrightarrow x_{5} \text{ irten}$$

$$\frac{\textbf{Sartze-irizpidea:}}{\min_{k,a_{ik}<0}} \min_{k,a_{ik}<0} \left\{ \frac{\left|z_{k}-c_{k}\right|}{\left|a_{ik}\right|} \right\} = \min\left\{ \frac{\frac{4}{3}}{\frac{1}{6}}, \frac{\frac{5}{3}}{\frac{5}{6}} \right\} = \min\left\{8,2\right\} = 2 \Longrightarrow \mathbf{x_{4} \ sartu}$$

Taula berria:
$$\begin{cases} e_3 \leftarrow e_3 \cdot \left(\frac{-6}{5} \right) \\ e_1 \leftarrow e_1 + \frac{1}{6} \cdot e_3 \\ e_2 \leftarrow e_2 - \frac{5}{6} \cdot e_3 \end{cases}$$

			3	5	0	0	0
Coin	A _{oin}	B ⁻¹ ⋅b	X ₁	X ₂	X 3	X 4	X 5
5	X ₂	8/5	0	1	1/5	0	-1/5
3	X ₁	3	1	0	0	0	1
0	X 4	3/5	0	0	1/5	1	-6/5
Z=	17	Zj	3	5	1	0	2
		W_{j}	0	0	1	0	2

 $X_{D_{K}} \geq 0$ \Longrightarrow Bideragarritasuna lortu da. Ondorioz, P2 problemaren soluzio optimoa lortu dugu:

$$z_2 = 17; x_1 = 3, x_2 = \frac{8}{5}$$

$$P3: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \ge 4 \\ x_1, x_2 \ge 0 \end{cases} \Rightarrow P3: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 + x_3 = 11 \\ x_1 - x_2 + x_4 = 2 \\ -x_1 + x_5 = -4 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

Murrizketa bat gehitu dugunez, sentikortasun-analisia erabiliz:

			3	5	0	0	0
Coin	A _{oin}	B⁻¹⋅b	X ₁	X 2	X 3	X 4	X 5
5	X ₂	3/2	0	1	1/6	-1/6	0
3	X ₁	21/6	1	0	1/6	5/6	0
0	X 5	-4	-1	0	0	0	1
Z=	18	Zj	3	5	4/3	5/3	0
		W_{j}	0	0	4/3	5/3	0

Beharrezkoak diren eragiketak eginez: $e_3 \leftarrow e_3 + e_2$

			3	5	0	0	0
Coin	A _{oin}	B⁻¹⋅b	X ₁	X ₂	X 3	X 4	X 5
5	X ₂	3/2	0	1	1/6	-1/6	0
3	X ₁	21/6	1	0	1/6	5/6	0
0	X 5	-1/2	0	0	1/6	5/6	1
Z=	18	Zj	3	5	4/3	5/3	0
		Wj	0	0	4/3	5/3	0

 $\exists X_{\scriptscriptstyle D_{\scriptscriptstyle K}} < 0 \Longrightarrow \text{Bideragarrita} \text{suna galdu da} \Longrightarrow \text{Simplex dual metodoa erabiliz:}$

$$\underline{\text{Irtetze-irizpidea:}} \, \max \left\{ \left| X_{D_{K}} \right| \, / \, X_{D_{K}} < 0 \right\} = \frac{1}{2} \Longrightarrow \, \mathsf{x_5} \, \text{irten}$$

Sartze-irizpidea:
$$\min_{k,a_{ik}<0} \left\{ \frac{\left|z_k-c_k\right|}{\left|a_{ik}\right|} \right\}, \ a_{3k}>0 \ \forall k=1,2,3,4 \Rightarrow$$
 Problema duala

bornatugabea da, ondorioz, problema primala bideraezina da.

4. pausua: Azkeneko problemak:

$$x_2 = \frac{8}{5}$$
 osoa ez denez \Rightarrow 2. pausura joan.

2. Pausua: Adarkatzea

$$x_2 = \frac{8}{5} \Rightarrow \left\lfloor \frac{8}{5} \right\rfloor = 1.6 \Rightarrow \begin{cases} P4: x_2 \le 1 \\ P5: x_2 \ge 2 \end{cases}$$

$$P4: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \le 3 \\ x_2 \le 1 \\ x_1, x_2 \ge 0 \end{cases} \qquad P5: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \le 3 \\ x_2 \ge 2 \\ x_1, x_2 \ge 0 \end{cases}$$

3. Pausua: Bornatzea

$$P4: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \le 3 \\ x_2 \le 1 \\ x_1, x_2 \ge 0 \end{cases} \Rightarrow P4: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 + x_3 = 11 \\ x_1 - x_2 + x_4 = 2 \\ x_1 + x_5 = 3 \\ x_2 + x_6 = 1 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

Murrizketa bat gehitu dugunez, sentikortasun-analisia erabiliz:

			3	5	0	0	0	0
Coin	A _{oin}	B⁻¹⋅b	X ₁	X ₂	X 3	X4	X 5	X 6
5	X 2	8/5	0	1	1/5	0	-1/5	0
3	X ₁	3	1	0	0	0	1	0
0	X 4	3/5	0	0	1/5	1	-6/5	0
0	X 6	1	0	1	0	0	0	1
Z=	17	Zj	3	5	1	0	2	0
		W_{j}	0	0	1	0	2	0

Beharrezkoak diren eragiketak eginez: $e_4 \leftarrow e_4 - e_1$

				т т	1			
			3	5	0	0	0	0
Coin	A _{oin}	B⁻¹⋅b	X ₁	X ₂	X 3	X 4	X 5	X 6
5	X ₂	8/5	0	1	1/5	0	-1/5	0
3	X ₁	3	1	0	0	0	1	0
0	X 4	3/5	0	0	1/5	1	-6/5	0
0	X 6	-3/5	0	0	-1/5	0	1/5	1
Z=	:17	Zj	3	5	1	0	2	0
		W_{j}	0	0	1	0	2	0

 $\exists X_{D_{\mathbb{K}}} < 0 \Longrightarrow \text{Bideragarritasuna galdu da} \Longrightarrow \text{Simplex dual metodoa erabiliz:}$

Irtetze-irizpidea: max
$$\{ |X_{D_K}| / X_{D_K} < 0 \} = \frac{3}{5} \Rightarrow x_6 \text{ irten}$$

Taula berria:
$$\begin{cases} e_4 \leftarrow e_4 \cdot \left(\frac{1}{-5}\right) \\ e_1 \leftarrow e_1 - \frac{1}{5} \cdot e_4 \\ e_2 \leftarrow e_2 \\ e_3 \leftarrow e_3 - \frac{1}{5} \cdot e_4 \end{cases}$$

			3	5	0	0	0	0
Coin	A _{oin}	B⁻¹⋅b	X 1	X ₂	X 3	X 4	X 5	X 6
5	X ₂	1	0	1	0	0	0	1
3	X ₁	3	1	0	0	0	1	0
0	X 4	0	0	0	0	1	-1	1
0	X 3	3	0	0	1	0	-1	-5
Z=	14	Zj	3	5	0	0	3	5
		W_{j}	0	0	0	0	3	5

 $X_{D_{\mathbb{K}}} \geq 0$ \Longrightarrow Bideragarritasuna lortu da. Ondorioz, P4 problemaren soluzio optimoa lortu dugu:

$$z_4 = 17$$
; $x_1 = 3$, $x_2 = 1$

$$P5: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 \le 11 \\ x_1 - x_2 \le 2 \\ x_1 \le 3 \\ x_2 \ge 2 \\ x_1, x_2 \ge 0 \end{cases} \qquad P5: \begin{cases} \max z = 3x_1 + 5x_2 \\ x_1 + 5x_2 + x_3 = 11 \\ x_1 - x_2 + x_4 = 2 \\ x_1 + x_5 = 3 \\ -x_2 + x_6 = -2 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

Murrizketa bat gehitu dugunez, sentikortasun-analisia erabiliz:

			3	5	0	0	0	0
Coin	A _{oin}	B⁻¹⋅b	X ₁	X ₂	X 3	X 4	X 5	X 6
5	X ₂	8/5	0	1	1/5	0	-1/5	0
3	X ₁	3	1	0	0	0	1	0
0	X 4	3/5	0	0	1/5	1	-6/5	0
0	X 6	-2	0	-1	0	0	0	1
Z=	17	Zj	3	5	1	0	2	0
		W_{j}	0	0	1	0	2	0

Beharrezkoak diren eragiketak eginez: $e_4 \leftarrow e_4 + e_1$

			3	5	0	0	0	0
C_{oin}	A _{oin}	B⁻¹⋅b	X ₁	X ₂	X 3	X 4	X 5	X 6
5	X 2	8/5	0	1	1/5	0	-1/5	0
3	X ₁	3	1	0	0	0	1	0
0	X 4	3/5	0	0	1/5	1	-6/5	0
0	X 6	-2/5	0	0	1/5	0	-1/5	1
Z=17		Zj	3	5	1	0	2	0
		W_{j}	0	0	1	0	2	0

 $\exists X_{D_{\mathbb{K}}} < 0 \Longrightarrow \text{Bideragarritasuna galdu da} \Longrightarrow \text{Simplex dual metodoa erabiliz:}$

$$\underline{\textbf{Irtetze-irizpidea:}} \ \max \left\{ \left| X_{D_K} \right| / X_{D_K} < 0 \right\} = \frac{2}{5} \Longrightarrow \mathsf{x_6} \ \mathsf{irten}$$

Sartze-irizpidea:
$$\min_{k, a_{ik} < 0} \left\{ \frac{\left| z_k - c_k \right|}{\left| a_{ik} \right|} \right\} = \min \left\{ \frac{2}{\frac{1}{5}} \right\} = 10 \Rightarrow x_5 \text{ sartu}$$

Taula berria:
$$\begin{cases} e_4 \leftarrow e_4 \cdot \left(\frac{1}{-5}\right) \\ e_1 \leftarrow e_1 + \frac{1}{5} \cdot e_4 \\ e_2 \leftarrow e_2 - e_4 \\ e_3 \leftarrow e_3 + \frac{6}{5} \cdot e_4 \end{cases}$$

			3	5	0	0	0	0
Coin	A _{oin}	B⁻¹⋅b	X 1	X ₂	X 3	X 4	X 5	X 6
5	X ₂	2	0	1	0	0	0	-1
3	X ₁	1	1	0	1	0	0	5
0	X 4	3	0	0	-1	1	0	-6
0	X 5	2	0	0	-1	0	1	-5
Z=13		Zj	3	5	3	0	0	10
		W_{j}	0	0	3	0	0	10

 $X_{D_K} \ge 0$ \Longrightarrow Bideragarritasuna lortu da. Ondorioz, P5 problemaren soluzio optimoa lortu dugu:

$$z_5 = 13$$
; $x_1 = 1$, $x_2 = 2$

4. pausua: Azkeneko problemak

P4: Azkeneko problema da.

Problemaren soluzioa osoa da eta $z_4=14>\underline{z}=-\infty \ \Rightarrow$ Behe-bornea $\underline{z}=z_4=14$

P5: Azkeneko problema da: $z_5 = 13 < \underline{z} = 14$

AZKENEKOA

Problema guztiak azkenekoak dira \Rightarrow Soluziogaia problema osoaren optimoa da, hau da, P4 problemaren soluzio optimoa problema osoaren soluzio optimoa da:

$$z = 14$$
; $x_1 = 3$, $x_2 = 1$