Diskretna matematika II - 2018/19

7. vaje - 2. april, 2019

- 1. Pobiralec žogic mora po koncu teniškega dvoboja pobrati 12 žogic v 3 identične košarice. Na koliko načinov lahko to naredi, če
 - (a) vsaka košarica vsebuje vsaj eno žogico?
 - (b) je lahko kakšna od košaric tudi prazna?
- 2. Na koliko načinov lahko razvrstimo 9 prstanov na 4 prste desne roke (brez palca), če
 - (a) vrstni red prstanov na prstu ni pomemben, prsti so lahko tudi prazni?
 - (b) vrstni red prstanov na prstu ni pomemben, na vsakem prstu pa mora biti vsaj en prstan?
 - (c) vrstni red prstanov na prstu je pomemben, prsti so lahko tudi prazni?
 - (d) vrstni red prstanov na prstu je pomemben in na vsakem prstu mora biti vsaj en prstan?
- 3. Podajte kombinatorična dokaza, da je S(n,1)=1 in $S(n,2)=2^{n-1}-1$.
- 4. Pokažite, da velja enakost: $t^n = \sum_{k=1}^n S(n,k)(t)_k$, kjer je $(t)_k = t(t-1)(t-2)\dots(t-k+1)$.
- 5. Pokažite, da velja enakost: $\sum_{n\geq 0}\frac{S(k,n)t^n}{n!}=\frac{e^t-1}{k!}.$

PONAVLJANJE - DELNO

- 1. Dokažite naslednjo trditev: Če je množica X končna, potem je funkcija $f:X\to X$ injektivna natanko tedaj, ko je surjektivna.
- 2. V družini Novak je 12 otrok.
 - (a) Dokažite, da sta vsaj dva otroka rojena na isti dan v tednu.
 - (b) Dokažite, da sta vsaj dva družinska člana (vključno z mamo in očetom) rojena v istem mesecu.
- 3. Iz škatle, ki vsebuje kroglice oštevilčene od 1 do 122 izberemo 6 kroglic. Na koliko načinov lahko to storimo, če
 - (a) kroglice izbiramo eno po eno in jih vračamo v škatlo?
 - (b) kroglice izbiramo po dve naenkrat in jih ne vračamo v škatlo?
 - (c) izberemo vseh 6 kroglic naenkrat?
- 4. Koliko celoštevilskih rešitev ima enačba $x_1+x_2+x_3+x_4=12$, če je $x_1\geq 2,\ x_2\geq 2,\ x_3\geq 4,\ x_4\geq 0$?