Use of Explainable AI using SHAP on Crop Yield Prediction in India

Student Name: Udit Jain **Roll No:** 24CSM1R23

Guide Name: Dr. Manjubala Bisi

Scope of the Project

Project Focus

This project focuses on using **SHAP** to make crop yield prediction models not just accurate, but also **understandable**.

The goal is to ensure farmers and policymakers can **trust** and **interpret** the model's decisions—not just see the output.

Expected Outcomes

- A clearer view of which **factors actually drive yield** outcomes.
- Tools that **support smarter**, **data-backed planning** for those working on the ground.
- Ultimately, this work aims to **bridge the gap** between advanced AI models and real-world agricultural needs.

Importance of Crop Yield Prediction

Economic Impact:

- Accurate predictions can enhance farmers' income and national economic stability.
- **Food Security:** Predicting yields aids in planning for food supply, addressing hunger issues.
- **Resource Management:** Helps optimize the use of water, fertilizers, and land, promoting sustainable practices.

Crop yield prediction is vital for India's agricultural landscape!

Introduction to Explainable AI

Explainable AI (XAI) refers to methods and techniques that make the output of AI systems understandable to humans.

- **Importance:** Enhances trust and transparency in AI decisions.
- Relevance in Agriculture: Critical for decision-making in crop yield prediction, ensuring farmers and stakeholders understand model outputs.

Understanding AI is essential for effective agricultural analytics!

SHAP Methodology Overview

SHAP stands for **SHapley Additive exPlanations**.

Core Principle: Each feature's impact is calculated by comparing what the model predicts with and without that feature.

Working:

- 1. Start with a **model prediction** for a specific data instance.
- Identify the **baseline output** (average prediction with no features).
- 3. Add **each feature** one at a time to observe its impact.
- Compute **SHAP values** as the average marginal contribution of each feature.
- 5. Ensure additivity: all **SHAP values sum up** to the final prediction.
- Visualize results using SHAP plots to explain feature influence.

Key Studies and Findings

Significant Research

- Recent studies show how AI is transforming agriculture by improving forecasting and planning.
- However, researchers emphasize that without explainability, the practical value of these models remains limited—especially for non-technical users.

Focus on Explainability

- Research highlights that understanding AI decisions boosts both performance and adoption.
- Methods like SHAP make models more transparent, helping users trust and act on predictions.
- These findings form the foundation of our approach, aiming to build models that are both **accurate** and **interpretable**.

Problem Statement

Challenges:

- **Traditional AI methods** often lack transparency in predictions.
- **Difficulty** in understanding how various factors influence yield predictions.
- Variability in environmental conditions.
- Limited access to reliable data sources.

Understanding these challenges is crucial for effective solutions!

Significance of the Problem

Consequences of Inaccurate Predictions

- Poor yield forecasting can cause **financial setbacks** for farmers due to inefficient planning.
- Leads to imbalanced supply chains, triggering **food shortages** and market instability.
- Results in wastage of resources like water, fertilizers, and labor.
- Reduces **farmer confidence in AI tools**, slowing adoption of smart agriculture technologies.

Literature Survey

- Most AI models in agriculture focus on **accuracy**, with limited attention to **explainability**.
- Traditional models do not effectively cover the data, model, outcome, and end-user dimensions of explainability

Title of the Paper	Published In	Significance	Limitation
Advanced ML for Regional Potato Yield Prediction	npj Sustainable Agriculture (2025)	Identifies key environmental drivers using SHAP;	Focused on one crop (potato) and region-specific
Explainable Model for Crop Yield in Indian Conditions	IJEC (2025)	Applies SHAP for better feature insight and model trust	Limited dataset and only local interpretability
Explainable ML for Corn Yield Using UAV Data	Computers and Electronics in Agriculture (2025)	Uses multispectral UAV data and SHAP for field-level yield estimation	High hardware cost; domain-limited to UAV-based data

Gaps in Current Research

Identifying Gaps:

- Lack of **interpreted models** in crop yield prediction.
- Need for more research integrating explainability into agricultural AI.

Importance of Addressing Gaps:

- Enhancing the reliability of predictions.
- Supporting farmers with **actionable insights**. Filling these gaps is crucial for advancing agricultural analytics!

Proposed Solution Overview

Integrating SHAP:

- Utilizing **SHAP** to enhance crop yield prediction models.
- Aiming for improved **interpretability** and **accuracy**.

Expected Benefits:

- **Better insights** into the factors influencing crop yields.
- **Increased trust** in AI-driven predictions among stakeholders. Our solution aims to revolutionize crop yield prediction!

Model Development Process

Stages of Development

- Developed a pipeline for crop yield prediction using **agricultural data**.
- Ensured model interpretability by planning **SHAP integration** early in the pipeline.

Algorithm Selection

- Explored ML and DL models: Decision Tree, Random Forest, XGBoost, RNN, and LSTM.
- Selection was based on **performance** and compatibility with SHAP explainability tools.
- Final model (**Random Forest**) was chosen for its high accuracy (98.96%) and suitability for SHAP-based interpretation.

Implementation of SHAP

Workflow Steps:

- **1. Preprocessed** the crop yield dataset (cleaning, encoding, and normalization).
- **2. Trained ML and DL models** including Random Forest, Decision Tree, and XGBoost, RNN.
- **5. Evaluated models** using metrics: Accuracy, MAE, RMSE, and SD.
- **4. Applied SHAP** to the best-performing model (Random Forest) for explanation.
- **5. Analyzed SHAP values** to identify key features.
- **6. Visualized feature impact** using summary, waterfall, and decision plots for interpretation.

Data Collection and Methodology

Data Sources

Utilization of **agricultural datasets** from government and research institutions, incorporating **environmental**, **economic**, and **historical data**.

The dataset includes data on multiple states and districts across India, capturing **seasonal crop yield information** with parameters such as:

- State Name and District Name
- Crop Year and Season
- Crop Type, Area, Production, and Yield

Methodology

Employing machine learning and deep learning algorithms alongside SHAP for analysis, ensuring robust validation of models through cross-validation techniques.

Dataset

Performance Metrics

Evaluation Criteria

- Accuracy, MAE, and RMSE were used to evaluate model performance.
- SHAP values were used to interpret model predictions and analyze feature importance.
- **SHAP Summary Plot** highlighted key features
- SHAP Waterfall Plot visualized the contribution of individual features to a single prediction
- SHAP Decision Plot illustrated feature influence across multiple predictions

This approach ensured that models were not only accurate but also explainable, supporting informed decision-making in crop yield prediction.

Results Overview

Key Results Achieved:

- Achieved 98.96% accuracy using Random Forest with MAE:
 1.97, RMSE: 2.45.
- **SHAP** identified key features: Crop_Coconut, Area, Season_Kharif, Crop_Rice.
- Waterfall plot showed District_TIRUNELVELI and Crop_Urad as strong positive contributors.
- Decision plot illustrated consistent positive impact of Area, with variable effect from Crop Rice.

SHAP improved model interpretability and trust, enabling informed agricultural decisions.

TABLE 1. Simulating model performance with area and production as inputs.

Model	Accuracy	Mean	Root Mean	Standard
		Absolute	Square Error	Deviation
		Error (MAE)	(RMSE)	(SD)
Random	98.96	1.97	2.45	1.23
Forest				
Decision	89.78	4.58	5.86	2.75
Tree				
XGBoost	86.46	6.31	7.89	3.54

Force Plot

Interpretation of Results

In-Depth Analysis

SHAP plots provided clear interpretability by showing:

- Summary plot revealed Area had the strongest positive influence on yield.
- Waterfall plot highlighted District_Name_TIRUNELVELI, and Season_Kharif as key contributors to specific predictions.

Implications of Findings

- Supports data-driven decisions for optimizing crop planning and resource allocation.
- Insights can guide region-specific policies by identifying high-impact crops and conditions.

Visualizing SHAP Values

SHAP Value Representations

- Waterfall plot breaks down individual predictions feature by feature.
- District_Name_TIRUNELVELI, and Area had strong positive contributions.
- Features like Season_Kharif and Crop_Urad showed negative influence.

- Decision plot shows cumulative effect of features over multiple samples.
- Crop_Rice and District_Name_KASARAGOD consistently increased predicted yields.

Waterfall Plot

Decision Plot

Comparison with Traditional Models

Performance Comparison

Random Forest + SHAP achieved 98.96% accuracy

Outperformed:

Decision Tree: 89.78%

• XGBoost: 86.46%

Lowest MAE (1.97) and RMSE (2.45) among all models

Evaluating **SHAP-enhanced models** against traditional predictive models highlights improvements in **interpretability**.

Key Takeaways

- SHAP provide **clear interpretability** through feature contribution visualization
- Enable **greater user trust** and informed decision-making in agriculture

Conclusion and Insights

Project Summary

- Demonstrated how integrating Explainable AI with SHAP enhances both **prediction quality** and **understanding**.
- Enabled stakeholders to not just see predictions, but also understand the **why** behind them.
- Combined high **model accuracy** with **interpretability**, bridging the gap between AI performance and usability in agriculture.

Future Implications

- Opens new directions for decision-support systems tailored to farmers and policymakers.
- Lays the groundwork for **scalable AI frameworks** that can adapt across **crops and regions**.
- Reinforces the importance of trustworthy AI in critical domains like food security and sustainability.

Thank You