

Modelos de Clasificación

Que son los Modelos de Clasificación?

Los modelos de Clasificación supervisada, permiten asignar a cada registro de datos (observaciones) una clase pre establecida(categoría o estado).

2 categorías:

- Azul (No Moroso)
- Rojo (Moroso)

Arboles de Clasificación

Arboles de Clasificación

Es un conjunto de Reglas organizadas en una estructura jerárquica.

Panorama -	Temperatura 💌	Humedad	▼ Ventoso ▼
lluvioso	caliente	alta	false
lluvioso	caliente	alta	true
nublado	caliente	alta	false
soleado	templado	alta	false
soleado	frio	normal	false
soleado	frio	normal	true
nublado	frio	normal	true
lluvioso	templado	alta	false
lluvioso	frio	normal	false
soleado	templado	normal	false
lluvioso	templado	normal	true
nublado	templado	alta	true
nublado	caliente	normal	false
soleado	templado	alta	true

Predictores

Arboles de Clasificación – Fundamento Cualitativo

Se busca determinar cortes en las variables que permitan maximizar la proporción de clasificados de un solo tipo.

Arboles de Clasificación – Fundamento Cualitativo

El conjunto de cortes en un orden especifico determinan el patrón para nuevos casos

Arboles de Clasificación - Fundamento Cuantitativo

Orden de las variables a evaluar.

- Se debe escoger la variable que permite clasificar en forma mas certera las observaciones, es decir genera ramas mas homogéneas (no tenemos dudas cual es la clasificación).
- El nivel de certeza la medimos matemáticamente a través un indicador llamado Ganancia de Información, debemos escoger la variable con mayor ganancia como nodo de decisión.
- **La Ganancia de Información** consiste en el decremento de la incertidumbre. La incertidumbre se mide matemáticamente a través de la **Entropia**.

Condición de parada

- Se da cuando se tiene la certeza total, es decir cuando la Entropía es cero.
- Una rama con entropía cero se convierte en una hoja (nodo-respuesta), ya que representa una muestra completamente homogénea, en la que todos los ejemplos tienen la misma clasificación. Si no es así, la rama debe seguir subdividiéndose con el fin de clasificar mejor sus nodos

Arboles de Clasificación - Fundamento Cuantitativo

Entropía de Shannon:

- Sea S un conjunto de valores de la variable X, que se puede dividir en C clases, donde S_i es el sub conjunto de valores de la clase C_i .
- La Entropía del conjunto S, esta en función de la proporción de los distintos valores que puede tomar X: $E(S) = f(p_i)$
- p_i es la proporción de ocurrencias en la clase Ci del conjunto $S: p_i = \frac{|S_i|}{|S|}$
- Finalmente la entropía de la variable S es:

$$E(S) = \sum_{i \in C} (-p_i \log_2 p_i)$$

Arboles de Clasificación – Hands On


```
#traninig and test sets
library(caTools)
set.seed(123)
split<-sample.split(ds$Purchased,SplitRatio=0.7)
training set<-subset(ds,split==TRUE)
test set<-subset(ds,split==FALSE)
#modelar
library(rpart)
arbol <- rpart (formula = Purchased ~ .,
             data = training set,
             method = "class")
summary(arbol) # Variable importance Age (62%) EstimatedSalary (38%)
print(arbol)
#mostrando el arbol
library(rpart.plot)
rpart.plot(arbol)
#Evaluando el modelo (y pred vs test set$Purchased)
y pred<-predict(arbol,newdata = test_set,type = "class")</pre>
cm<-table(y pred, test set$Purchased)</pre>
```

Evaluación de Desempeño

Matriz de Confusión

A1	A2	A3	clase	predicción
19	15	2	SI	SI
13	7	21	NO	SI
20	24	24	NO	SI
13	9	7	NO	NO
5	3	8	NO	SI
5	20	21	NO	NO
13	4	18	NO	NO
20	23	13	NO	SI
18	8	10	NO	SI
10	8	14	NO	SI
4	15	6	NO	NO
19	11	12	NO	NO
17	15	15	NO	SI
15	3	2	SI	NO
23	13	18	NO	NO
3	21	1	NO	NO
1	16	1	NO	SI
15	22	16	NO	NO
6	14	1	NO	NO
19	6	11	SI	SI
10	11	14	SI	NO
3	15	23	NO	SI
20	7	14	NO	SI
22	20	14	NO	SI
9	6	16	NO	SI

$$error = \frac{FP + FN}{total}$$

$$exito = \frac{VP + VN}{total}$$

$$sensibilid ad = \frac{VP}{VP + FN}$$

$$especifici dad = \frac{VN}{VN + FP}$$

Caso mal clasificados

Caso bien clasificados

Probabilidad de clasificar correctamente a un individuo con el valor de interés (+)

Probabilidad de clasificar correctamente a un individuo sin el valor de interés (-)

FP = error de tipo I (α) FN = error de tipo II (β)
Muy costoso
$$\beta$$
 <5%, 20%>

We know this:

Salary (\$) $y = b_0 + b_1 x$ Experience

This is new:

09/11/2019

