COMP/EECE 7/8740 Neural Networks

Topics:

- Neural Networks (NNs)
- Gradient descent with momentum
- Backpropagation Algorithm
- Batch learning and
- DL ecosystem

Md Zahangir Alom Department of Computer Science University of Memphis, TN

- Artificial neural network (ANN) is a machine learning approach that models human brain and consists of a number of artificial neurons.
- Neuron in ANNs tend to have fewer connections than biological neurons.
- An activation function is applied to these inputs which results in activation level of neuron (output value of the neuron).
- Knowledge about the learning task is given in the form of examples called training examples.

History of Neural Networks to Deep Learning

The Neuron Diagram

Mathematical model of a neuron

- The neuron is the basic information processing unit of a NN.
- It consists of:
 - 1 A set of links, describing the neuron inputs, with weights $W_1, W_2, ..., W_m$
 - 2 An adder function (linear combiner) for computing the weighted sum of the inputs: (real numbers)

$$u = \sum_{j=1}^{m} W_j x_j$$

3 Activation function φ for limiting the amplitude of the neuron output. Here 'b' denotes bias.

$$y = \varphi(u + b)$$

Bias of a Neuron

The bias (adjuster) b has the effect of applying a transformation to the weighted sum u

$$V = U + b$$

- The bias is an external parameter of the neuron. It can be modeled by adding an extra input.
- v is called induced field of the neuron

$$u = \sum_{j=0}^{m} W_j x_j$$

$$W_0 = b$$

Neuron Models

• The choice of activation function φ determines the neuron model.

Examples:

- Step function: $\varphi(v) = \begin{cases} a & \text{if } v < c \\ b & \text{if } v > c \end{cases}$
- Ramp function: $\varphi(v) = \begin{cases} a & \text{if } v < c \\ b & \text{if } v > d \\ a + ((v-c)(b-a)/(d-c)) & \text{otherwise} \end{cases}$
- Sigmoid function with z, x, y parameters

$$\varphi(v) = z + \frac{1}{1 + \exp(-xv + y)}$$

■ Gaussian function:
$$\varphi(v) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{v-\mu}{\sigma}\right)^2\right)$$

The Neuron Diagram with activation

The Neuron Diagram with activation

Perceptron: Neuron Model

(Special form of single layer feed forward)

- The perceptron was first proposed by Rosenblatt (1958) is a simple neuron that is used to classify its input into one of two categories.
- A perceptron uses a step function that returns +1 if weighted sum of its input ≥ 0 and -1 otherwise

$$\varphi(v) = \begin{cases} +1 & \text{if } v \ge 0 \\ -1 & \text{if } v < 0 \end{cases}$$

Multi Layer Perceptron (MLP)

- Feedforward Neural Network (FFNN) is a more general network architecture, where there are hidden layers between input and output layers.
- Hidden nodes do not directly receive inputs nor send outputs to the external environment.
- FFNNs overcome the limitation of single-layer NN.
- Can handle non-linearly separable learning tasks.

layers

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Goal: split data

Split data with 0 errors HOT !!!

Non-linear regions

In case of two inputs

Neural Network with more hidden layers

In case of three inputs

Complex examples

How to set network weights (parameters)

Weight settings determine the behaviour of a network

$$\theta = \{W^1, b^1, W^2, b^2, \dots W^L, b^L\}$$

Training Data

Preparing training data: images and their labels

Using the training data to find the network parameters.

Cost

Given a set of network parameters θ , each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data

Total Cost:
$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Gradient Descent

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0 Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Mathematical model

Neural network: input / output transformation

$$z = F(x, W)$$

W is the matrix of all weight vectors, and d is the targets:

$$d = G(x)$$

Performance function:

$$P = -\frac{1}{2} \|d - z\|^2$$

Gradient descent

Simplest MLP

Simplest MLP

Gradient ascent (Hill Climbing Approach)

$$\Delta w = \eta \left(\frac{\partial P}{\partial x} i + \frac{\partial P}{\partial y} j \right) = \eta \left(\frac{\partial P}{\partial w_1} + \frac{\partial P}{\partial w_2} \right)$$

$$\frac{\partial P}{\partial w_2} = \frac{\partial P}{\partial z} \frac{\partial z}{\partial w_2} = (d - z) \frac{\partial z}{\partial w_2}$$
$$= (d - z) \frac{\partial z}{\partial p_2} \frac{\partial p_2}{\partial w_2} = (d - z) \frac{\partial z}{\partial p_2} y$$

$$\frac{\partial P}{\partial w_1} = \frac{\partial P}{\partial z} \frac{\partial z}{\partial w_1} = (d - z) \frac{\partial z}{\partial w_1}$$

$$= (d-z)\frac{\partial z}{\partial p_2}\frac{\partial p_2}{\partial w_1} = (d-z)\frac{\partial z}{\partial p_2}\frac{\partial p_2}{\partial y}\frac{\partial p_2}{\partial w_1}$$

$$= (d-z)\frac{\partial z}{\partial p_2} w_2 \frac{\partial y}{\partial p_1} \frac{\partial p_1}{\partial w_1} = (d-z)\frac{\partial z}{\partial p_2} w_2 \frac{\partial y}{\partial p_1} x$$

$$\beta = \frac{1}{1 + e^{-\alpha}} = \left(1 + e^{-\alpha}\right)^{-1}$$

$$\frac{\partial \beta}{\partial \alpha} = \frac{e^{-\alpha}}{\left(1 + e^{-\alpha}\right)^2} = \frac{1 + e^{-\alpha} - 1}{\left(1 + e^{-\alpha}\right)^2}$$

$$=\frac{1}{\left(1+e^{-\alpha}\right)}\left[\frac{\left(1+e^{-\alpha}\right)}{\left(1+e^{-\alpha}\right)}-\frac{1}{\left(1+e^{-\alpha}\right)}\right]=\beta\left(1-\beta\right)$$

$$\frac{\partial z}{\partial p_2} = z(1-z)$$

$$\left| \frac{\partial z}{\partial p_2} = z(1-z) \right| \quad \frac{\partial y}{\partial p_1} = y(1-y)$$

$$\frac{\partial P}{\partial w_2} = (d-z)\frac{\partial z}{\partial p_2} y = (d-z)z(1-z)y$$

$$\frac{\partial P}{\partial w_1} = (d - z) \frac{\partial z}{\partial p_2} w_2 \frac{\partial y}{\partial p_1} x$$

$$= (d-z)z(1-z)w_2y(1-y)x$$

$$\frac{\partial P}{\partial w_2} = (d-z)\frac{\partial z}{\partial p_2} y = (d-z)z(1-z)y$$

$$\frac{\partial P}{\partial w_1} = (d-z)\frac{\partial z}{\partial p_2} w_2 \frac{\partial y}{\partial p_1} x$$

$$= (d-z)z(1-z)w_2y(1-y)x$$

Finally, the Δw is

$$\Delta w = \eta \left(\frac{\partial P}{\partial x} i + \frac{\partial P}{\partial y} j \right) = \eta \left(\frac{\partial P}{\partial w_1} + \frac{\partial P}{\partial w_2} \right)$$

$$\Delta W = \eta ((d-z)z(1-z)w_2y(1-y)x) + (d-z)z(1-z)$$

Then updates the weight with Δw

Gradient Descent

Gradient descent is an optimization algorithm for minimizing the loss of a predictive model with regard to a training dataset

Training Algorithm: Backpropagation

- Back-propagation algorithm learns in the same way as single perceptron.
- Back propagation adjusts the weights of the NN in order to minimize the network total errors.

Gradient decent with Back-prop algorithm

- 1. Initialize all weights to small random values
- 2. REPEAT until done:
 - a) For each with w_{ij} set $\Delta w_{ij} = 0$
 - b) For each data point point $(\mathbf{x}, \mathbf{t})^p$
 - 1. set input units to x
 - 2. compute value of output units
 - 3. For each weight w_{ij} set $\Delta w_{ij} := \Delta w_{ij} + (t_i y_i)y_j$
 - c) For each weight w_{ij} set $w_{ij} := w_{ij} + \Delta w_{ij}$ or $w_{ji}(t+1) = w_{ji}(t) + \alpha \Delta w_{ji}(t)$
- 3. The algorithm terminates once we are at, or sufficiently near to, the minimum of the error function, where G = 0.
- 4. We say then that the **network has converged.**

Local Minima

Gradient descent never guarantee global minima

Besides local minima

In physical world

The momentum method by (Polyak, 1964)

Momentum

Still not guarantee reaching global minima, but give Movement = some hope **Negative of Gradient** cost + Momentum Negative of Gradient Momentum Real Movement

Gradient = 0

Why Momentum?

- Accelerate the training process
- Prevent to stuck in local minima
- Momentum values: γ∈(0,1]
 - Generally, γ is set to 0.5 until the initial learning stabilizes and then is increased to 0.9 or higher

NN learning approach: sample by sample

- Problem with individual sample learning
 - Learning with individual sample over the training sets converge very well to local optima (minima).
 - In practice computing cost and gradient computation for the entire training set is very slow.
 - Not suitable for a single machine if the dataset is too big to fit to the memory
- Solution: Batch learning

Batch learning

- Stochastic Gradient Descent (SGD) can overcome computational cost and still lead to fast convergence.
- Instead of learning whole training dataset at a time by sample, take a batch of images for one iteration.

number of batch= Total training samples / Number of samples per batch

- We define batch-size during the model training
- Batch learning user for data parallelism

Mini-batch

- Randomly initialize θ^0
 - Pick the 1st batch

$$C = L^1 + L^{31} + \cdots$$

$$\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$$

➤ Pick the 2nd batch

$$C = L^2 + L^{16} + \cdots$$

$$\begin{array}{l} \theta^2 \leftarrow \theta^1 - \eta \nabla C(\theta^1) \\ \vdots \end{array}$$

C is different each time when we update parameters!

Mini-batch

Faster

Better!

NN

Randomly initialize

Pick the 1st batch

$$C = C^{1} + C^{31} + \cdots$$
$$\theta^{1} \leftarrow \theta^{0} - \eta \nabla C(\theta^{0})$$

Pick the 2nd batch

$$C = C^{2} + C^{16} + \cdots$$

$$\theta^{2} \leftarrow \theta^{1} - \eta \nabla C(\theta^{1})$$

$$\vdots$$

Until all minibatches have been picked

one epoch

Repeat the above process

Mini-batch

Original Gradient Descent

With Mini-batch: Stochastic Gradient Descent (SGD)

The colors represent the total C on all training data.

Learning rate for mini-batch

- All the neurons in the MLP should learn ideally of the same rate
- Last layers gradient is larger than the layers in the front end of the network
- η should be assign with smaller value in the last layers than in the front layers
- Neurons with more inputs should have smaller learning rate compare to few inputs
- LeCunn (1993) : $\eta \infty \frac{1}{\sqrt{\text{\# syp.connections to a neuron}}}$

Stopping criterions

- Total mean squared error change or loss:
 - Back-prop is considered to have converged when the absolute rate of change in the average squared error per epoch is sufficiently small (in the range [0.1, 0.01]).
 - Maximum number of iterations or epochs (N)
- Generalization based criterion:
 - After each epoch, the NN is tested for generalization.
 - If the generalization performance is adequate then stop.
 - If this stopping criterion is used, the part of the training set used for testing the network generalization will not used for updating the weights.

Computational parameters for DNN

 Every connection that is learned in a feedforward neural network is called parameter.

Without bias: (3*4)+(4*2)=20

With bias: (4*4)+(5*2)=26

If network is not fully connected you can count the connections.

Powering the Deep Learning Ecosystem

NVIDIA SDK Accelerates Every Major Framework

DEEP LEARNING FRAMEWORKS

Multi-Layer Networks Demo

Summary

- We have learned Neural Networks(NN) and backpropagation (BP) algorithms
- Visualized the impact of inputs (features) and hidden layers for NN model
- Mathematical model and BP approach for a NN
- Momentum, batch learning method, and network parameters for training NN
- Deep Learning (DL) ecosystem
- What's next:
 - Computational graph
 - Efficient gradient calculation methods
 - Examples