LL elemzések

LL elemzések

Fordítóprogramok előadás (A,C,T szakirány)

• felülről lefelé elemzés

- ullet alapötlet: k terminális szimbólum előreolvasásával döntünk az alkalmazandó szabályról
- név: Left to right, using a Leftmost derivation (balról jobbra, legbal levezetéssel)

Fordítóprogramok előadás (A,C,T szakirány) LL elemzések

Ellenpélda

Nem minden grammatika esetén alkalmazható!

Nem elemezhető LL módszerrel

$$S \rightarrow A \mid B$$

$$A \rightarrow a \mid aA$$

$$B \rightarrow ab \mid aBb$$

Ellenpélda

Nem minden grammatika esetén alkalmazható!

Nem elemezhető LL módszerrel

$$S \rightarrow A \mid B$$

$$A \rightarrow a \mid aA$$

$$B \to ab \ | \ aBb$$

Akárhogy rögzítjük az előreolvasandó szimbólumok számát (k), a

inputra nem tudjuk eldönteni, hogy $S \to A$ vagy $S \to B$ a jó választás.

Fordítóprogramok előadás (A,C,T szakirány) LL elemzése

FIRST halmazok

 $FIRST_k(\alpha)$: az α mondatformából levezethető terminális sorozatok k hosszúságú kezdőszeletei

(ha a sorozat hossza kisebb mint k, akkor az egész sorozat eleme $\mathit{FIRST}_k(\alpha)$ -nak, akár $\epsilon \in \mathit{FIRST}_k(\alpha)$ is előfordulhat)

FIRST halmazok

 $FIRST_k(\alpha)$: az α mondatformából levezethető terminális sorozatok k hosszúságú kezdőszeletei

(ha a sorozat hossza kisebb mint k, akkor az egész sorozat eleme $\mathit{FIRST}_k(\alpha)$ -nak, akár $\epsilon \in \mathit{FIRST}_k(\alpha)$ is előfordulhat)

Definíció: $FIRST_k(\alpha)$

$$FIRST_k(\alpha) = \{x \mid \alpha \Rightarrow^* x\beta \land |x| = k\} \cup \{x \mid \alpha \Rightarrow^* x \land |x| < k\}$$

LL(k) grammatikák

LL(k) grammatikás

LL(k) grammatikás

LL(k) grammatikás

LL(k) grammatikás

LL(k) grammatikás

LL(k) grammatikás

LL(k) grammatikás: a levezetés tetszőleges pontján a szöveg következő k terminálisa meghatározza az alkalmazandó levezetési szabályt

Definíció: LL(k) grammatika:

Tetszőleges $S \Rightarrow^* wA\beta \Rightarrow w\alpha_1\beta \Rightarrow^* wx$ $S \Rightarrow^* wA\beta \Rightarrow w\alpha_2\beta \Rightarrow^* wy$ levezetéspárra $FIRST_k(x) = FIRST_k(y)$ esetén $\alpha_1 = \alpha_2$.

dítóprogramok előadás (A,C,T szakirány) LL elemzések

Fordítóprogramok előadás (A,C,T szakirány) LL elemzések

Fordítóprogramok előadás (A,C,T szakirány) LL elemzésel

LL elemzések

Definíció: Egyszerű LL(1) nyelvtan

Definíció: Egyszerű LL(1)
Olyan LL(1) grammatika, amelyben a szabályok jobboldala terminális szimbólummal kezdődik (ezért ε-mentes is).
(Az összes szabály A → aα alakú.)

egyszerű LL(1)
egyszerű LL(1)
e pszilonmentes LL(1)
e általános

• ha a verem tetején terminális szimbólum van:

• ha egyezik a szöveg következő karakterével:
pop és lépés a szövegben
• különben: hiba

 ϵ -mentes LL(1) elemzés

- ϵ -mentes LL(1) elemzés

- ha a verem tetején terminális szimbólum van:
 - ha egyezik a szöveg következő karakterével: pop és lépés a szövegben
 - különben: hiba
- ha a verem tetején nemterminális szimbólum (A) van (és a szövegben a következik):
 - ha van $A \to \alpha$ szabály, amelyre $a \in FIRST_1(\alpha)$: A helyére α és bejegyzés a szintaxisfába
 - különben: hiba

• ha a verem tetején nemterminális szimbólum (A) van (és a szövegben a következik):

• ha a verem tetején terminális szimbólum van:

pop és lépés a szövegben

• ha egyezik a szöveg következő karakterével:

- ha van $A \to \alpha$ szabály, amelyre $a \in FIRST_1(\alpha)$: A helyére α és bejegyzés a szintaxisfába
- különben: hiba

• különben: hiba

- ha a verem üres:
 - ha a szöveg végére értünk: OK
 - különben hiba

Fordítóprogramok előadás (A,C,T szakirány) LL elemzése

nok előadás (A,C,T szakirány) LL elemzések

 ϵ -mentes LL(1) elemző táblázat

 ugyanolyan szerkezetű, mint az egyszerű LL(1)-es

ullet az A
ightarrow lpha szabályt az Asorába és a $FIRST_1(\alpha)$ elemeinek oszlopaiba kell beírni

Példa nyelvtan és a FIRST halmazok

$$S \rightarrow aS \mid A$$

 $A \rightarrow bAc \mid d$

$$FIRST_1(aS) = \{a\}$$
 $FIRST_1(A) = \{b, d\}$
 $FIRST_1(bAc) = \{b\}$ $FIRST_1(d) = \{d\}$

	a	b	С	d	#
S	$S ightharpoonup^{(1)}$ a S	$S \rightarrow^{(2)} A$		$S \rightarrow^{(2)} A$	
Α		$A \rightarrow^{(3)} bAc$		$A \rightarrow ^{(4)} d$	
а	рор				
b		рор			
С			pop		
d				рор	
#					OK

Fordítóprogramok előadás (A.C.T szakirány) LL elemzések

LL(1)

Definíció: *LL*(1) grammatika

Tetszőleges

$$S \Rightarrow^* wA\beta \Rightarrow w\alpha_1\beta \Rightarrow^* wx$$

$$S \Rightarrow^* wA\beta \Rightarrow w\alpha_2\beta \Rightarrow^* wy$$

levezetéspárra $FIRST_1(x) = FIRST_1(y)$ esetén $\alpha_1 = \alpha_2$.

LL(1)

Definíció: LL(1) grammatika

Tetszőleges

$$S \Rightarrow^* wA\beta \Rightarrow w\alpha_1\beta \Rightarrow^* wx$$

$$S \Rightarrow^* wA\beta \Rightarrow w\alpha_2\beta \Rightarrow^* wy$$

levezetéspárra $FIRST_1(x) = FIRST_1(y)$ esetén $\alpha_1 = \alpha_2$.

Probléma:

 ${\it A}
ightarrow lpha_1 \mid ... \mid \, lpha_n$ szabályban előfordulhat, hogy $lpha_i \Rightarrow^* \epsilon$ valamelyik α_i -re.

Ezért az előreolvasott szimbólum a $S \Rightarrow^* wA\beta$ levezetésesetén a β-ból származhat.

Meg kell tehát vizsgálni azt is, hogy milyen terminálisok követhetik az A-t!

FOLLOW halmazok

 $FOLLOW_k(\alpha)$: a levezetésekben az α után előforduló k hosszúságú terminális sorozatok

Általános LL(1) Definíció és tétel

(ha a sorozat hossza kisebb mint k, akkor az egész sorozat eleme $FOLLOW_k(\alpha)$ -nak,

ha α után vége lehet a szövegnek, akkor $\# \in FOLLOW_k(\alpha)$)

LL(1) elemzést megalapozó tétel

FOLLOW halmazok

 $FOLLOW_k(\alpha)$: a levezetésekben az α után előforduló k hosszúságú terminális sorozatok

(ha a sorozat hossza kisebb mint k, akkor az egész sorozat eleme $FOLLOW_k(\alpha)$ -nak,

ha α után vége lehet a szövegnek, akkor $\# \in FOLLOW_k(\alpha)$)

Definíció: $FOLLOW_k(\alpha)$

$$FOLLOW_k(\alpha) = \{x \mid S \Rightarrow^* \beta \alpha \gamma \land x \in FIRST_k(\gamma) \setminus \{\epsilon\}\} \cup \{\# \mid S \Rightarrow^* \beta \alpha\}$$

Fordítóprogramok előadás (A,C,T szakirány) LL elemzése

Tétel

Egy grammatika pontosan akkor LL(1) grammatika, ha bármely $A \rightarrow \alpha_1$ és $A \rightarrow \alpha_2$ különböző szabályok esetén $FIRST_1(\alpha_1FOLLOW_1(A)) \cap FIRST_1(\alpha_2FOLLOW_1(A)) = \emptyset.$

Általános LL(1) Definíció és tétel

 $FIRST_1(\alpha FOLLOW_1(A))$ jelentése: α -hoz egyenként konkatenáljuk FOLLOW₁(A) elemeit és az így kapott halmaz minden elemére alkalmazzuk a FIRST₁ függvényt.

rdítóprogramok előadás (A,C,T szakirány) LL elemzések

Általános LL(1) Definíció és téte Példa Példa nyelvtan és a FIRST, FOLLOW halmazok $S \rightarrow aS \mid A$ $A \rightarrow bAc \mid d \mid \epsilon$ $FOLLOW_1(S) = \{\#\}$ $FOLLOW_1(A) = \{c, \#\}$ $FIRST_1(aS\ FOLLOW_1(S)) = \{a\}$ $FIRST_1(A FOLLOW_1(S)) = \{b, d, \#\}$ $FIRST_1(bAc\ FOLLOW_1(A)) = \{b\}$ $FIRST_1(d\ FOLLOW_1(A)) = \{d\}$ $FIRST_1(\epsilon FOLLOW_1(A)) = \{c, \#\}$

Általános LL(1) Elemzés LL(1) elemző táblázat

Mint az egyszerű és az ϵ -mentes LL(1) esetén. Az $A \rightarrow \alpha$ szabályt az A sorába és a $FIRST_1(\alpha FOLLOW_1(A))$ halmaz oszlopaiba kell

	a	b	С	d	#
S	$S \rightarrow^{(1)} aS$	$S \rightarrow^{(2)} A$		$S \rightarrow (2) A$	$S \rightarrow^{(2)} A$
Α		$A \rightarrow^{(3)} bAc$	$A \rightarrow^{(5)} \epsilon$	$A \rightarrow$ (4) d	$A \rightarrow^{(5)} \epsilon$
а	рор				
b		рор			
С			pop		
d				рор	
#					OK

LL(1) elemzés

• ha a verem tetején terminális szimbólum van:

Általános LL(1) Elemz

Fordítóprogramok előadás (A.C.T szakirány) LL ele

- ha egyezik a szöveg következő karakterével: pop és lépés a szövegben
- különben: hiba

LL(1) elemzés

- ha a verem tetején terminális szimbólum van:
 - ha egyezik a szöveg következő karakterével: pop és lépés a szövegben
 - különben: hiba
- ha a verem tetején nemterminális szimbólum (A) van (és a szövegben a következik):

Általános LL(1) Elemzés

- ha van $A \to \alpha$ szabály, amelyre $a \in FIRST_1(\alpha FOLLOW_1(A))$: A helyére α és bejegyzés a szintaxisfába
- különben: hiba

Altalános LL(1) elemzés

• ha a verem tetején terminális szimbólum van:
• ha egyezik a szöveg következő karakterével: pop és lépés a szövegben
• különben: hiba

• ha a verem tetején nemterminális szimbólum (A) van (és a szövegben a következik):
• ha van A → α szabály, amelyre a ∈ FIRST₁(αFOLLOW₁(A)):
A helyére α és bejegyzés a szintaxisfába
• különben: hiba

• ha a verem üres:
• ha a szöveg végére értünk: OK
• különben hiba

- az (általános) LL(1) elemzés egy másik implementációja
- minden nemterminálishoz egy eljárást készítünk
- az eljáráshívásokon keresztül a futási idejű verem valósítja meg az elemzés vermét

ordítóprogramok előadás (A,C,T szakirán

Rekurzív leszállás

L elemzések

Az elfogad eljárás

A terminális szimbólumok ellenőrzéséhez:

void elfogad(terminalis t)
{
 if(aktualis_szimbolum == t)

```
void elfogad( terminalis t )
{
    if( aktualis_szimbolum == t )
        aktualis_szimbolum = lexikalis_elemzo.kovetkezo();
    else
        hiba(...);
}
(A lexikális elemző kovetkezo függvénye visszaadja a soron
következő lexikális elemet.)
```

 $\begin{array}{c|c|c} A \rightarrow \alpha_1 & \alpha_2 & \dots & \alpha_n \text{ programja} \\ \\ \text{void A()} & \{ \\ & \text{if(aktualis_szimbolum} \in \textit{FIRST}_1(\alpha_1 \textit{FOLLOW}_1(A)))) \\ & \{ \\ & \text{// alfa_1 programja} \\ \} & \dots \\ & \text{else if(aktualis_szimbolum} \in \textit{FIRST}_1(\alpha_n \textit{FOLLOW}_1(A)))) \\ & \{ \\ & \text{// alfa_n programja} \\ \} & \text{else} \\ & \{ \\ & \text{hiba}(\dots); \\ \} \\ \} \end{array}$

Altalános LL(1) Elemzés rekurzív leszállással A szabályalternatívák programja

Az $\alpha = \epsilon$ alternatíva programja a "skip".

Fordítóprogramok előadás (A.C.T szakirány) LL ele

Az $\alpha=X_1X_2...X_n$ alternatíva programja az $X_1,~X_2,...,X_n$ szimbólumokhoz tartozó utasítások szekvenciája.

- ha $X_i = a$ (terminális), akkor az X_i -hez tartozó utasítás elfogad(a);
- ha $X_i = B$ (nemterminális), akkor B();

.

Hibakezelés

- hiba detektálása esetén:
 - segítő hibajelzést kell adni
 - meg kell próbálni folytatni az elemzést (az elemzőt szinkronizálni kell a bemenettel)
- a szinkronizáció szimbólumok kihagyását jelenti egy olyan szimbólumig, ahonnan folytatni lehet az elemzést
 - "pánik módszer": az elemző pánikszerűen menekül a hiba helyétől
- például: a rekurzív leszállás eljárásai elején megvizsgálhatjuk, hogy megfelelő-e az aktualis_szimbolum, és szükség esetén addig ugorjuk át a szimbólumokat a bemeneten, amíg megfelelő nem lesz

ordítánrogramok előadás (A C T szakirány)

L elemzések

Fordítóprogramok előadás (A,C,T szakirái

LL elemzések