Amazon Access Samples Analysis

Shortcomings of Recommender Systems and Alternative Approach

Problem Description

Predict access of a specific user based on all-user/all-access table

Sparse, highly unbalanced dataset (only 0,05% of values are one) with ~9000 features

```
[[0 0 0 ... 0 0 0]]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
```

 Preprocessing via cleaning (removal of outliers), transformation (differentiation no-access and no-data) and correlation analysis to reduce problems in model building

Recommender System

Using Jaccard and Cosine Similarity

 Similarity Metrics between single users yield a similarity matrix as basis for the prediction of the access status.

Alternative Approach

Association Rule Mining via Apriori Algorithm

- Frequent itemsets are calculated in order starting with frequent 1 sets
- Support value decides over minimum number of user in a combination of permission groups to be considered frequent

Results

Recommender System not suitable for highly unbalanced data, Association Rule Mining yields valuable results

 Recommender System predicts always zero for both Jaccard and Cosine Similarity, because of the sparsity and therefore imbalance in the input data

	Predicted no-access	Predicted access		
Actually no-access	780915	0		
Actually access	6900	0		

 Association Rule Mining identifies the following maximum frequent itemsets with a support of 3%, so a user with access 427 is highly likely to have accesses 830, 1102, 1159 and 1268 as well, etc.

427 830	427 855	427 904	805 814	830 904	855 899	855 904	855 913
1102	1102	1102	1102	1102	1102	1102	1102
1159	1159	1159	1159	1159	1159	1159	1159
1268	1268	1268	1268	1268	1268	1268	1268