CS243: Introduction to Algorithmic Game Theory

Cake Cutting (Dengji ZHAO)

SIST, ShanghaiTech University, China

Cake Cutting

Cake Cutting

Cardinal Preferences

- A divisible resource C, say a cake.
- A set of *n* players to share/divide.
- Each player has valuation function v_i , which gives a value for each subset of C. We assume v_i is additive.

Question

How to divide the resource fairly?

Fairness

Proportionality Each player receives a piece that he values as at least 1/n of the value of the entire cake.

Envy-freeness Each player receives a piece that he values at least as much as every other piece.

Question: Does envy-freeness implies proportionality?

A Cake Cutting Procedure: Divide and Choose

- Two people share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

A Cake Cutting Procedure: Divide and Choose

- Two people share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

Question

What is the best strategy for the cutter?

A Cake Cutting Procedure: Divide and Choose

- Two people share one cake.
- One person (the cutter) cuts the cake into two pieces.
- The other person chooses one (the chooser).

Question

What is the best strategy for the cutter?

Does it satisfy proportionality?

Does it satisfy envy-freeness?

Question

How to extend Divide and Choose to more than two person settings?

- The players being ranged A, B, C, ... N.
- A cuts from the cake an arbitrary part.
- B has now the right, but is not obliged, to diminish the slice cut off.
- Whatever B does, C has the right (without obligation) to diminish still the already diminished (or not diminished) slice, and so on up to N.
- The rule obliges the "last diminisher" to take as his part the slice he was the last to touch.

Question

- Does Last Diminisher satisfy proportionality?
- Does Last Diminisher satisfy envy-freeness?
- Is there a way to allocate the cake without having to pre-determine the order of all the individuals involved?

(Proposed by Lester Dubins and Edwin Spanier in 1961.)

- The cake: interval [0,1].
- n players 1, 2, ..., n and a refree.

Moving-knife Protocol:

- Referee starts a knife at 0 and moves the knife to the right.
- Repeat: When the piece to the left of the knife is worth 1/n to a player, the player shouts "stop", receives the piece, and exits.
- When only one player remains, she gets the remaining piece.

Complexity of moving-knife protocol: $\Theta(n^2)$

Question

- Does Moving-knife protocol satisfy proportionality?
- Does Moving-knife protocol satisfy envy-freeness?

Question

- Are the allocation outcomes identical between Last Diminisher and Moving-knife protocol?
- What is the relationship between the two mechanisms?

Proportional Cake Cutting: Even Paz

(Proposed by S. Even and A. Paz, in 1963.) Input:

- A piece of cake [x, y].
- n agents. (Assume $n = 2^k$ for simplicity)

Recursive procedure:

- If n = 1, give [x, y] to the single agent.
- Otherwise:
 - Each agent mark a point z such that v([x, z]) = v([z, y]).
 - Let z^* be the (n/2)-th mark from the left.
 - Recurse on $[x, z^*]$ with the left n/2 agents, and on $[z^*, y]$ with the right n/2 agents.

Proportional Cake Cutting: Even Paz

 Even Paz protocol uses a divide-and-conquer strategy, it is possible to achieve a division in time O(n log n).

Theorem

The Even Paz protocol produces a proportional allocation.

Theorem

Any protocol returning a proportional allocation needs $\Omega(n \log n)$ queries. [Edmonds and Pruhs, 2006]

Envy-free Cake Cutting

A query: either asks an agent her value of some piece, or asks her to cut a piece that her valuation is some value.

- n = 2 agents: 2 queries (Divide and Choose).
- n = 3 agents: 14 queries (Selfridge and Conway, 1960).
- n = 4 agents: 171 queries (Amanatidis et al., 2018).

Theorem

Any protocol for finding an envy-free allocation requires $\Omega(n^2)$ queries.

Advanced Reading

- AGT Chapter 10.2
- Computational Social Choice by F. Brandt, V. Conitzer and U. Endriss