	_					
_	T 🖊	T /	/T1	D)	D)	
- 11		۱(Л	B.	R.	н.•

PROGRAMACIÓN DECLARATIVA CURSO 2016-17 PARCIALILLO 2 12-1-2017

Cada	pregunta tiene	(espero)	una y solo	una	respuesta	correcta.	Marcad	con t	ın asp	a la	opción	elegid	a
α 1							,		i	1.		1	

• Cada respuesta correcta suma un punto; cada respuesta incorrecta resta medio punto; las respuestas en bla	anco
ni suman ni restan. Estad ojo avizor y suerte. Está prohibidísimo copiar.	

1. Considérense las expresiones [[1,2]] ([1]:[[2]]):[] (1:[2]):[] [1,2]:[] [1]:[2]:[] ¿Cuál de las siguientes afirmaciones es cierta? ② La primera, la tercera y al menos otra más son sintácticamente equivalentes entre sí ① La segunda, la cuarta y al menos otra más son sintácticamente equivalentes entre sí ① Las dos anteriores son falsas.
2. Considérense las expresiones de tipo (que solo difieren en los paréntesis): $\tau_1 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow (a \rightarrow a)$ $\tau_2 = (a \rightarrow a) \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a$ $\tau_3 = (a \rightarrow a) \rightarrow ((a \rightarrow a) \rightarrow (a \rightarrow a))$
$\bigcirc \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1 \qquad \qquad \bigcirc \tau_1 \equiv \tau_3 \not\equiv \tau_2 \qquad \qquad \bigotimes \tau_1 \equiv \tau_2 \equiv \tau_3$
3. Considérense las expresiones (que solo difieren en los paréntesis): $e_1 = f x + g z 4$ $e_2 = f x ((+) g (z 4))$ $e_3 = (+) (f x (g z 4))$
4. La evaluación de la expresión foldr (\x y -> not x y) False [False,True,undefined] da como resultado ⊗ True ⊝ False ⊝ Un error en tiempo de ejecución
5. La evaluación de la expresión foldl (\x y -> not x y) False [False,True,undefined] da como resultado True
6. Sea $l = [(x,y) x \leftarrow [2,4], y \leftarrow [1x], b]$, donde b es una cierta expresión booleana , y sea $n = length \ l$. Cuántas de la siguientes situaciones: $n = 1$ $n = 5$ $n = 7$ pueden darse? Solo una de ellas Solo dos de ellas Cas tres son posibles
7. La reducción de la expresión (\x y -> y (y x)) 1 (\x -> x+2) producirá el resultado 3 \ointimes 5 7
8. Sea f definida por f x y = y (y x). El tipo de f es: (a -> a) -> a (a -> a) -> a -> a f está mal tipada
9. Considérense las siguientes expresiones: take 30 (reverse [110^30]) reverse (take 30 [110^30]) last (takeWhile (< 1000) (iterate (+ 2) 1)) ¿Cuántas de ellas nos llevará toda la vida evaluarlas? Exactamente una de ellas Exactamente dos de ellas Las tres

10. Sea f definida por las siguientes ecuaciones: f x False = x ¿Cuál de las siguientes afirmaciones es cierta?
<pre>11. ¿Cuál de los siguientes tipos para la expresión e hace que la expresión</pre>
12. La evaluación de (head.(!! 1)) (map (zip [03]) [[14],[25]]) produce como resultado ○ 1 ○ (1,2) ⊗ (0,2)
13. Considérense las expresiones siguientes: $e_1 \equiv \langle x \rangle ((\langle y \rangle x) x)$ $e_3 \equiv \text{let y=[1,2,3] in let } x=y!!1 \text{ in } x+\text{head } y$ $e_5 \equiv [i+j \mid i<-[1100],j<-[0i],\text{mod } j \text{ i} == 0]$ ¿Cuántas de ellas son sintácticamente erróneas por problemas de ámbito de variables? \bigcirc Exactamente una de ellas \bigcirc Tres o más de ellas \bigcirc Las dos anteriores son falsas.
14. La evaluación de la expresión let x= 1:3:map (+ 1) x in last (take 3 x) produce como resultado: ⊗ 2 ⊙ Un error en ejecución ⊙ Un error sintáctico o de tipos
15. ¿Cuántas de las siguientes definiciones de tipos (independientes unas de otras) son correctas? data Tip = A C Int Tip A (Int,Int,Tip) data Tap = A C Int Tap (Int,Int,Tap) data Top a = A C a D a b ○ Una de las tres ○ Dos de las tres ○ Ninguna de las tres
16. ¿Cuáles de las dos siguientes expresiones representa correctamente una acción de I/0? do x <- getChar
<pre>17. El tipo que inferirá Haskell, teniendo en cuenta clases de tipos, para una función f definida por f x y z = if x <= y+1 then z else z+1 será: Será:</pre>
18. Considérense la declaraciones de clase e instancia class C a where f, g:: a → Int instance C Bool where f x = if x then 0 else 1 instance C Int where g x = x f x = g x + 1 instance C Int where g x = x Qué afirmación es correcta? Nota: Se dan dos soluciones como correctas: la primera es acorde a lo visto directamente en clase; la segunda es acorde a alguna respuesta marcada como correcta en la colección de test previos, y corresponde a versiones anteriores de Hasjell. Se f 0 + g 0 se evalúa a 1 y f True se evalúa a 0 True se evalúa a 2 Las dos anteriores son falsas.