Алгебра. Глава 7. Матрицы и определители

Д.В.Карпов

- Пусть K коммутативное кольцо, $m, n \in \mathbb{N}$. Обозначим через $M_{m,n}(K)$ множество матриц с m строками и nстолбцами, коэффициенты которых принадлежат кольцу K.
- ullet При m=n (для квадратных матриц $n \times n$) используют обозначение $M_n(K)$ вместо $M_{n,n}(K)$.
- ullet Матрица $A \in M_{m,n}(K)$ имеет вид $\{a_{i,j}\}_{i \in \{1,...,m\},\ j \in \{1,...,n\}}$, где все $a_{i,i} \in K$.

Сложение матриц. Для $A, B \in M_{m,n}(K)$ зададим матрицу $A + B \in M_{m,n}(K)$ формулой

$$\forall i \in \{1,\ldots,m\}, \ \forall j \in \{1,\ldots,n\} \quad (a+b)_{i,j} := a_{i,j} + b_{i,j}.$$

Умножение матриц. Для $A \in M_{m,n}(K)$ и $B \in M_{n,\ell}(K)$ зададим матрицу $A \cdot B \in M_{m,\ell}(K)$ формулой

$$\forall i \in \{1, \dots, m\}, \ \forall j \in \{1, \dots, \ell\} \quad (a \cdot b)_{i,j} := \sum_{s=1}^{n} a_{i,s} b_{s,j}.$$

- Очевидно, сложение матриц ассоциативно и коммутативно (так как сложение поэлементное, свойства наследуются из K).
- 0-матрица имеет все коэффициенты, равные 0.

Обратная по сложению матрица -A задается формулой $\forall i \in \{1,\ldots,m\}, \ \forall j \in \{1,\ldots,n\} \quad (-a)_{i \in j} := \#a_{i,j} \implies \implies \implies \implies 9 \land e$

Доказательство. \bullet Пусть $A \in M_{m,n}(K)$, $B \in M_{n,\ell}(K)$, $C \in M_{\ell,k}(K)$.

ullet Так как умножение в K ассоциативно, имеем:

$$\begin{aligned} ((ab)c)_{s,t} &= \sum_{j=1}^{\ell} (ab)_{s,j} c_{j,t} = \sum_{j=1}^{\ell} \left(\sum_{i=1}^{n} a_{s,i} b_{i,j} \right) \cdot c_{j,t} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{\ell} a_{s,i} b_{i,j} c_{j,t} = \sum_{i=1}^{n} a_{s,i} \cdot \left(\sum_{j=1}^{\ell} b_{i,j} \cdot c_{j,t} \right) = \\ &= \sum_{i=1}^{n} a_{s,i} \cdot (bc)_{i,t} = (a(bc))_{s,t}. \end{aligned}$$

• Таким образом, соответствующие коэффициенты матриц (AB)C и A(BC) одинаковы.

Определение

Пусть K — кольцо с 1. Определим матрицу $E_n \in M_n(K)$ формулами $a_{i,i}=1,\ a_{i,j}=0$ при $i \neq j$.

Свойство 2

Для любой матрицы $B\in M_{n,\ell}(K)$ выполнено $E_n\cdot B=B$. Для любой матрицы $A\in M_{m,n}(K)$ выполнено $A\cdot E_n=A$.

• Оба равенства легко проверяются.

Теорема 1

Пусть K — коммутативное кольцо, $n \in \mathbb{N}$. Тогда $M_n(K)$ — кольцо. Если K — кольцо с 1, то и $M_n(K)$ тоже.

Доказательство. • Сложение коммутативно и ассоциативно, нейтральный элемент (0-матрица) и обратный элемент по сложению определены.

- Умножение ассоциативно (Свойство 1).
- Если K кольцо с 1, то $E_n \in M_n(K)$ нейтральный элемент по умножению (Свойство 2).

• Осталось проверить дистрибутивность. Пусть $A, B, C \in M_n(K)$.

$$((a+b)c)_{s,t} = \sum_{i=1}^{n} (a+b)_{s,i} c_{i,t} = \sum_{i=1}^{n} (a_{s,i} c_{i,t} + b_{s,i} c_{i,t}) =$$
$$\sum_{i=1}^{n} a_{s,i} c_{i,t} + \sum_{i=1}^{n} b_{s,i} c_{i,t} = (ac)_{s,t} + (bc)_{s,t}.$$

- Таким образом, соответствующие коэффициенты матриц (A+B)C и AC+BC одинаковы, а значит, (A+B)C=AC+BC.
- Дистрибутивность C(A + B) = CA + CB проверяется аналогично.

Пусть K — коммутативное кольцо, $n \in \mathbb{N}$, $A \in M_n(K)$.

Тогда определитель матрицы A- это

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)} \dots a_{n,\sigma(n)},$$

где $\operatorname{sign}(\sigma) := (-1)^{I(\sigma)}$ — знак подстановки σ .

- ullet Строки матрицы $A \in M_{m,n}(K)$ обозначаются A_1,\dots,A_m , а столбцы $A^{(1)},\dots,A^{(n)}$.
- \bullet Столбцы и строки удобно рассматривать как вектора из линейных пространств K^n и K^m соответственно.
- Определитель квадратной матрицы $A \in M_n(K)$ удобно рассматривать как функцию от от n аргументов строк этой матрицы: $\det(A_1, \ldots, A_n)$.
- Можно рассматривать определитель и как функцию от столбцов матрицы: $\det(A^{(1)}, \ldots, A^{(n)})$.

Элементарные преобразования матриц

- (I) Поменять местами две строки.
- (II) К одной строке прибавить другую, умноженную на $\lambda \in K$.
- (III) Умножить строку на $\lambda \in K$, отличное от 0.
- Аналогичные элементарные преобразования можно выполнять и со столбцами матриц.

Лемма 1

Все три элементарных типа преобразования обратимы, то есть имеют обратные элементарные преобразования.

Доказательство. • Элементарное преобразование типа (I) само себе обратно.

- Рассмотрим элементарное преобразование типа (II), пусть мы к i-й строке прибавили j-ю, умноженную на λ .
- ullet Тогда обратное преобразование прибавить к i-й строке j-ю, умноженную на $-\lambda$.
- Наконец, обратное преобразование к умножению строки на $\lambda \neq 0$ умножить ее же на λ^{-1} .

Свойства определителя

Свойство 1

При элементарном преобразовании типа I определитель меняет знак.

Доказательство. • Пусть $A, A' \in M_n(K)$, причем A' получена из A перестановкой i и j строк $(A_i'=A_j,\,A_i'=A_i,\,$ остальные строки у матриц совпадают).

• Для $\sigma \in S_n$ положим $\sigma' := \sigma \cdot (ij)$. Понятно, что σ пробегает все значения из S_n , если и только если σ' пробегает все значения из S_n . По Лемме 6.8, $\mathrm{sign}(\sigma') = -\mathrm{sign}(\sigma)$. Тогда

$$\det(A') = \sum_{\sigma' \in S_n} \operatorname{sign}(\sigma') \cdot a'_{1,\sigma'(1)} \dots a'_{i,\sigma'(i)} \dots a'_{j,\sigma'(j)} \dots a'_{n,\sigma'(n)} =$$

$$\sum_{\sigma' \in S_n} \operatorname{sign}(\sigma') \cdot a_{1,\sigma'(1)} \dots a_{j,\sigma'(i)} \dots a_{i,\sigma'(j)} \dots a_{n,\sigma'(n)} =$$

$$\sum_{\sigma \in S_n} \operatorname{sign}(\sigma') \cdot a_{1,\sigma(1)} \dots a_{i,\sigma(i)} \dots a_{j,\sigma(j)} \dots a_{n,\sigma(n)} =$$

$$-\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)} \dots a_{i,\sigma(i)} \dots a_{j,\sigma(j)} \dots a_{n,\sigma(n)} = -\det(A). \quad \Box$$

Д. В. Карпов

Определитель матрицы с двумя одинаковыми строками равен 0.

Доказательство. Пусть $A_i = A_i$. Тогда перемена местами этих двух строк не меняет матрицу, но должна по Свойству 1менять знак определителя.

Свойство 3

Пусть $A, A' \in M_n(K)$, причем A' получена из A умножением iстроки на $\lambda \in K$ $(A'_i = \lambda A_i, octaльные строки у матриц$ совпадают). Тогда $\det(A') = \lambda \det(A)$.

Доказательство.

$$\begin{split} \det(A') &= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a'_{1,\sigma(1)} \dots a'_{i,\sigma(i)} \dots a'_{n,\sigma(n)} = \\ &\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)} \dots (\lambda \cdot a_{i,\sigma(i)}) \dots a_{n,\sigma(n)} = \lambda \det(A). \quad \Box \end{split}$$

Свойство 4

Определитель матрицы с нулевой строкой равен 0.

Свойство 5

(Разложение определителя по строке.) Пусть $A,A',A''\in M_n(K)$, причем эти матрицы совпадают во всех строках, кроме і-й, а $A_i=A_i'+A_i''$. Тогда $\det(A)=\det(A')+\det(A'')$.

Доказательство.

$$\begin{split} \det(A) &= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)} \dots a_{i,\sigma(i)} \dots a_{n,\sigma(n)} = \\ &= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)} \dots (a'_{i,\sigma(i)} + a''_{i,\sigma(i)}) \dots a_{n,\sigma(n)} = \\ &= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \big(a'_{1,\sigma(1)} \dots a'_{i,\sigma(i)} a'_{n,\sigma(n)} + a''_{1,\sigma(1)} \dots a''_{i,\sigma(i)} a''_{n,\sigma(n)} \big) = \\ &= \det(A') + \det(A'') \quad \Box \end{split}$$

При элементарном преобразовании типа II определитель сохраняется.

Доказательство. • Пусть $\lambda \in K$, $A, A' \in M_n(K)$, причем A' получена из A преобразованием i строки: $A'_i = A_i + \lambda A_j$ (остальные строки у матриц совпадают, $j \neq i$).

- ullet Пусть матрица A^* совпадает с A во всех строках, кроме i, а $A_i^* = \lambda A_j$.
- По Свойствам 3 и 2

$$\begin{split} \det(A^*) &= \det(A_1^*, \dots, A_i^*, \dots, A_j^*, \dots, A_n^*) = \\ &\det(A_1, \dots, \lambda A_j, \dots, A_j, \dots, A_n) = \\ &\lambda \det(A_1, \dots, A_j, \dots, A_j, \dots, A_n) = 0. \end{split}$$

• По Свойству 5

$$det(A') = det(A'_1, \dots, A'_i, \dots, A'_j, \dots, A'_n) = \\ det(A_1, \dots, A_i + \lambda A_j, \dots, A_j, \dots, A_n) = \\ det(A_1, \dots, A_i, \dots, A_j, \dots, A_n) + det(A_1, \dots, \lambda A_j, \dots, A_j, \dots, A_n) = \\ det(A) + det(A^*) = det(A). \quad \Box$$

Пусть $A \in M_{m,n}(K)$. Транспонированная матрица $A^T \in M_{n,m}(K)$ — это матрица с элементами $a_{i,j}^T := a_{j,i}$ (для всех $i \in \{1,\ldots,n\}$, $j \in \{1,\ldots,m\}$

Теорема 2

Пусть $A \in M_n(K)$. Тогда $\det(A^T) = \det(A)$.

Доказательство. • По определению

$$\begin{split} \det(A^T) &= \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{1,\sigma(1)}^T \dots a_{n,\sigma(n)}^T = \\ &\qquad \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot a_{\sigma(1),1} \dots a_{\sigma(n),n} \end{split} \tag{*}$$

- Чтобы посчитать $\det(A)$, нужно сложить те же произведения, что в (*), вот только с какими знаками?
- Нужно переупорядочить $a_{\sigma(1),1}\dots a_{\sigma(n),n}$ так, чтобы первые индексы шли в порядке $1,2,\dots,n$ (а не $\sigma(1),\sigma(2),\dots,\sigma(n)$).
- Это означает, что к первым индексам нужно применить подстановку σ^{-1} , она же применится ко вторым индексам, и мы получим $a_{1,\sigma^{-1}(1)} \dots a_{n,\sigma^{-1}(n)}$.

- Понятно, что σ пробегает все значения из S_n , если и только если σ^{-1} пробегает все значения из S_n .
- Так как по Теореме 6.3, $sign(\sigma^{-1}) = sign(\sigma)$, мы можем продолжить (*):

$$\det(A^{T}) = \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot a_{\sigma(1),1} \dots a_{\sigma(n),n} =$$

$$\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot a_{1,\sigma^{-1}(1)} \dots a_{n,\sigma^{-1}(n)} =$$

$$\sum_{\sigma^{-1} \in S_{n}} \operatorname{sign}(\sigma^{-1}) \cdot a_{1,\sigma^{-1}(1)} \dots a_{n,\sigma^{-1}(n)} = \det(A). \quad \Box$$

- Можно определить аналоги элементарных преобразований строк для столбцов.
- ullet По Теореме 2 понятно, что аналоги всех свойств 1-6 определителя верны и для столбцов вместо строк.

Определение

Пусть $A \in M_{m,n}(K)$ и $k \leq \min(m,n)$.

- ullet Выделим строки с номерами $i_1 < i_2 < \cdots < i_k$ и столбцы с номерами $j_1 < j_2 < \cdots < j_k$.
- На их пересечении находится k^2 элементов, составим из них матрицу, не меняя порядка строк и столбцов. Определитель этой матрицы Δ называется минором порядка k.

Определение

Пусть $A \in M_n(K)$, k < n, а Δ — минор со строками $i_1 < i_2 < \cdots < i_k$ и столбцами $j_1 < j_2 < \cdots < j_k$.

- Вычеркнем указанные строки и столбцы, после чего в остальных n-k строках и n-k столбцах аналогично определим минор Δ' порядка n-k это дополнительный минор для Δ .
- Алгебраическое дополнение минора Δ это $A_{\Delta}=(-1)^{i_1+\dots+i_k+j_1+\dots+j_k}\Delta'$.

Пусть $A \in M_n(K)$, k < n, $1 \le i_1 < i_2 < \dots < i_k \le n$. Тогда $\det(A)$ равен сумме $\Delta \cdot A_\Delta$ по всем минорам Δ в строках i_1, i_2, \dots, i_k (при всех возможных выборах k столбцов).

Доказательство.

Утверждение 1

Сумма $\Delta \cdot A_{\Delta}$ по всем минорам Δ в строках i_1, \ldots, i_k — это в точности сумма (с некоторыми знаками) произведений, входящих в $\det(A)$.

Доказательство. • Рассмотрим

 $\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1,\sigma(1)} \cdot \dots \cdot a_{n,\sigma(n)}$ и конкретное произведение $a_{1,\sigma(1)} \cdot \dots \cdot a_{n,\sigma(n)}$, входящее в определитель.

- ullet Для каждой из строк i_1, i_2, \ldots, i_k отметим столбец с номером $\sigma(i_1), \sigma(i_2), \ldots, \sigma(i_k)$ соответственно.
- Мы получили k столбцов, в которых расположены перемножаемые элементы, упорядочим их по возрастанию пусть получится $j_1 < j_2 < \cdots < j_k$.

- ullet Обозначим через Δ минор со строками i_1, i_2, \ldots, i_k и столбцами j_1, j_2, \ldots, j_k . Тогда произведение $a_{i_1, \sigma(i_1)} \cdot \cdots \cdot a_{i_k, \sigma(i_k)}$ входит в минор Δ (с некоторым знаком).
- Элементы вида $a_{s,\sigma(s)}$ при $1 \leq s \leq n, \ s \notin \{i_1,\dots,i_k\}$ попадут не в столбцы с номерами j_1,\dots,j_k , следовательно, произведение этих n-k элементов войдет в дополнительный минор Δ' , а значит, и в алгебраическое дополнение A_Δ (опять же, с некоторым знаком).
- Таким образом, $a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}$ входит в произведение $\Delta\cdot A_\Delta$ для столбцов j_1,j_2,\dots,j_k и не входит в другие аналогичные слагаемые.
- ullet Наоборот, рассмотрим минор Δ в столбцах j_1,\dots,j_k и любое произведение из $\Delta\cdot A_\Delta.$
- В этом произведении в каждой строке взято ровно по одному элементу матрицы (для строк i_1,\ldots,i_k в миноре Δ , для остальных строк в A_{Δ}), в каждом столбце взято тоже ровно по одному элементу матрицы (для столбцов j_1,\ldots,j_k в миноре Δ , для остальных столбцов в A_{Δ}).
- Значит, это произведение с некоторым знаком входит в det(A) и мы получаем обратное соответствие.

Утверждение 2

Для каждого минора Δ в строках i_1, \ldots, i_k все произведения из $\Delta \cdot A_\Delta$ имеют такой же знак, какой они имеют в $\det(A)$.

Доказательство. • Рассмотрим конкретный минор Δ в строках $i_1 < i_2 < \cdots < i_k$ и столбцах $j_1 < j_2 < \cdots < j_k$.

- ullet Для удобства мы переделаем элементарными преобразованиями матрицу A в матрицу B так, чтобы минор Δ попал в верхний левый угол, и при этом порядок строк и порядок столбцов из Δ не поменялся, а также порядок остальных строк и порядок остальных строк и порядок остальных столбцов не поменялся.
- ullet Сначала займемся строками: строка i_1 всплывает наверх (на место строки 1), меняясь местами последовательно со строками $i_1-1,\ldots,2,$ 1— всего i_1-1 обмен.
- Потом аналогично строка i_2 всплывает на 2 место, делая i_2-2 обмена, и так далее, строка i_k всплывает на k место за i_k-k обменов.
- Аналогично, столбцы j_1, \ldots, j_k двигаются налево, делая j_1-1, \ldots, j_k-k обменов.

 \bullet В итоге получилась матрица B, а каждое из выполненных элементарных преобразований меняло знак определителя, поэтому,

$$\det(B) = (-1)^{(i_1-1)+\cdots+(i_k-k)+(j_1-1)+\cdots+(j_k-k)} \det(A) = (-1)^{i_1+\cdots+i_k+j_1+\cdots+j_k} \det(A).$$

- В этой матрице минор Δ занимает левый верхний угол, а его дополнительный минор по построению, это по-прежнему Δ' в правом нижнем углу.
- ullet Поэтому, алгебраическое дополнение Δ в матрице B считается как

$$B_{\Delta} = (-1)^{1+\cdots+k+1+\cdots+k} \Delta' = \Delta' = (-1)^{i_1+\cdots+i_k+j_1+\cdots+j_k} A_{\Delta}.$$

- Итак, $\det B = (-1)^{i_1 + \dots + i_k + j_1 + \dots + j_k} \det(A)$ и $\Delta \cdot B_{\Delta} = (-1)^{i_1 + \dots + i_k + j_1 + \dots + j_k} \Delta \cdot A_{\Delta}$.
- Поэтому, нам достаточно доказать Утверждение 2 для матрицы B.

- ullet Итак, рассмотрим $\Delta \cdot B_\Delta = \Delta \cdot \Delta'$.
- ullet Как мы знаем, $\Delta = \sum_{ au \in \mathcal{S}_k} (-1)^{I(au)} b_{1, au(1)} \cdot \ldots \cdot b_{k, au(k)}.$
- ullet C учетом того, что строки и столбцы в Δ' имеют в B номера $k+1,\,\ldots,\,n=k+(n-k)$, этот определитель можно переписать как

$$\Delta' = \sum_{\tau' \in S_{n-k}} (-1)^{l(\tau')} b_{k+1,k+\tau'(1)} \cdot \ldots \cdot b_{k+(n-k),k+\tau'(n-k)}.$$

ullet Для конкретных au и au' произведение

$$b_{1, au(1)}\cdot\ldots\cdot b_{k, au(k)}b_{k+1,k+ au'(1)}\cdot\ldots\cdot b_{k+(n-k),k+ au'(n-k)}$$
 входит в $\det(B)$ со знаком $(-1)^{I(\sigma)}$, где σ — подстановка, переставляющая $1,\ldots,k$ как au и переставляющая $k+1,\ldots,n=k+(n-k)$ как $k+ au'$.

• Но инверсий между блоками из первых k чисел и последних n-k чисел в σ нет (первые k чисел не превосходят k, а все следующие больше k), поэтому, $I(\sigma) = I(\tau) + I(\tau')$, что нам и нужно:

$$\det(B) = \sum_{\sigma \in S_{-}} (-1)^{l(\sigma)} b_{1,\sigma(1)} \dots b_{k,\sigma(k)} b_{k+1,\sigma(k+1)} \dots b_{n,k+\sigma(n)}. \quad \Box$$

• Из Утверждения 1 и Утверждения 2 следует Теорема.

Пусть $A \in M_n(K)$. Для $i, j \in \{1, ..., n\}$ обозначим через $A_{i,j}$ алгебраическое дополнение элемента $a_{i,j}$ (как минора порядка 1). Это минор, поученный из A вычеркиванием i строки и iстолбца, умноженный на $(-1)^{i+j}$.

Следствие 1

Пусть $A \in M_n(K)$, $s, t \in \{1, \ldots, n\}$, $s \neq t$. Тогда

- 1) $\sum_{i=1}^{n} a_{s,i} A_{s,i} = \det(A);$
- $2) \quad \sum_{i=1}^{n} a_{t,i} A_{s,i} = 0.$

Доказательство. 1) Теорема 3 для разложения по s строке.

- 2) Пусть A' получена из A заменой s строки на t (то есть $A'_s = A_t$ и $A'_i = A_i$ при $j \neq s$).
- ullet Тогда $A'_{s,i} = A_{s,i}$ и $a'_{s,i} = a_{t,i}$ для всех $i \in \{1, \dots, n\}$.
- ullet Так как матрица A' имеет две одинаковые строки и по пункту 1 имеем

$$0 = \det(A') = \sum_{i=1}^{n} a'_{s,i} A'_{s,i} = \sum_{i=1}^{n} a_{t,i} A_{s,i}.$$

- Утверждения, аналогичные Теореме 3 и Следствию 1, верны и для столбцов вместо строк (транспонирование матрицы меняет местами строки и столбцы, но не меняет определитель).
- Таким образом, определитель можно раскладывать как по строкам, так и по столбцам.

Определение

Пусть A_1, \ldots, A_k — квадратные матрицы, $A_i \in M_{n_i}(K)$, $n = n_1 + \cdots + n_k$, $A \in M_n(K)$.

- Будем говорить, что $A \in M^+(A_1,\dots,A_k)$, если в матрице A по диагонали расположены квадратные блоки A_1,\dots,A_k , а все коэффициенты сверху от них равны 0.
- Будем говорить, что $A \in M^-(A_1,\ldots,A_k)$, если в матрице A по диагонали расположены квадратные блоки A_1,\ldots,A_k , а все коэффициенты снизу от них равны 0.
- ullet Матрицы из $M(A_1,\dots,A_k):=M^+(A_1,\dots,A_k)\cup M^-(A_1,\dots,A_k)$ называются ступечатыми.

Пусть $A \in M(A_1, \ldots, A_k)$. Тогда $\det(A) = \prod_{i=1}^k \det(A_i)$.

Доказательство. • Индукция по k. База для k=1 очевидна.

Переход $k-1 \to k$. Пусть $k \ge 2$, а матрица $B \in M(A_1, \dots, A_{k-1})$ — как на рис. справа. Тогда $A \in M(B, A_k)$.

- ullet Пусть $m=n_1+\dots+n_{k-1}.$ Тогда применим теорему Лапласа для разложения матрицы A по строкам $1,\dots,m.$
- Так как определитель матрицы с нулевым столбцом равен 0, в этих строках есть только один ненулевой минор порядка m это $\det(B)$.
- Тогда по Теореме 3 и индукционному предположению

$$\det(A) = \det(B) \det(A_k) = \left(\prod_{i=1}^{k-1} \det(A_i)\right) \cdot \det(A_k) = \prod_{i=1}^k \det(A_i).$$

A_1	0
A_2	
B A_{k-}	1
	A_k

Теорема 5

Пусть $A,B\in M_n(K)$. Тогда $\det(AB)=\det(A)\det(B)$.

Доказательство. • Рассмотрим ступенчатую матрицу $C = \begin{pmatrix} A & 0 \\ -E_n & B \end{pmatrix}$. (Здесь $-E_n$ — матрица с -1 по главной диагонали и остальными 0.)

- ullet Тогда $C\in M^+(A,B)$ и $\det(C)=\det(A)\det(B)$ по Теореме 4.
- Элементарными преобразованиями столбцов типа II мы переведем C в матрицу $D \in M_{2n}(K)$ так, чтобы в правой нижней четверти B заменилась на нулевую матрицу.
- ullet Для всех $k\in\{1,\ldots,n\}$ столбец $C^{(n+k)}$ имеет n нулей, а далее располагается столбец $B^{(k)}$.
- ullet Для всех $i\in\{1,\dots,n\}$ столбец $C^{(i)}$ сверху содержит $A^{(i)}$, а нижние n его элементов это -1 на позиции n+i и остальные 0.

- ullet Для всех $k\in\{1,\ldots,n\}$ проделаем следующие операции
- Прибавим $\sum_{i=1}^{n} b_{i,k} C^{(i)}$ к столбцу $C^{(n+k)}$ (каждое прибавление элементарное преобразование типа 2, не меняет определитель).
- В результате из $C^{(n+k)}$ получился столбец $D^{(n+k)}$, нижние k элементов которого нули. (элемент $c_{n+s,n+k}=b_{s,k}$ обнуляется при прибавлении $b_{s,k}C^{(s)}$ и не меняется при остальных преобразованиях.)
- ullet Верхние k элементов столбца $C^{(n+k)}$ были нулями. В результате преобразований для каждого $s \in \{1,\dots,n\}$ получилось

$$c_{s,n+k} = \sum_{i=1}^{n} a_{s,i} \cdot b_{i,k} = (ab)_{s,k}.$$

ullet Таким образом, $D=\left(egin{array}{cc}A&AB\\-E_n&0\end{array}
ight).$

- Применим к D n элементарных преобразований столбцов типа I: поменяем местами столбцы $D^{(k)}$ и $D^{(n+k)}$ для всех $k \in \{1, \ldots, n\}$.
- Получится матрица

$$D^* = \begin{pmatrix} AB & A \\ 0 & -E_n \end{pmatrix} \in M^-(AB, E_n).$$

• Так как каждое элементарное преобразование типа I меняет знак определителя и по Теореме 4 имеем:

$$\det(D^*) = \det(AB) \det(-E_n) = (-1)^n \det(AB) \quad \nu$$

$$\det(D^*) = (-1)^n \det(D) = (-1)^n \det(C) = (-1)^n \det(A) \det(B),$$
 откуда следует, что $\det(AB) = \det(A) \det(B).$

Пусть $A \in M_n(K)$. Взаимная матрица $A \in M_n(K)$ задается формулой $\tilde{a}_{i,j} := A_{i,j}$ для всех $i,j \in \{1,\ldots,n\}$.

 \bullet Для $\lambda \in K$ и $A \in M_n(K)$ через λA обозначается матрица, полученная из A умножением всех коэффициентов на λ .

Лемма 2

Для любой матрицы $A \in M_n(K)$ выполнено $A \cdot \tilde{A} = \tilde{A} \cdot A = \det(A) \cdot E_n$.

Доказательство.

$$(a \cdot \tilde{a})_{s,t} = \sum_{i=1}^n a_{s,i} \cdot \tilde{a}_{i,t} = \sum_{i=1}^n a_{s,i} \cdot A_{t,i} = \left\{ egin{array}{ll} \det(A), & \quad ext{при } s = t \ 0, & \quad ext{при } s
eq t \end{array}
ight.$$

по Следствию 1. Значит, $A \cdot \tilde{A} = \det(A) \cdot E_n$.

$$(ilde{a} \cdot a)_{s,t} = \sum_{i=1}^n ilde{a}_{s,i} \cdot a_{i,t} = \sum_{i=1}^n a_{i,t} \cdot A_{i,s} = \left\{egin{array}{ll} \det(A), & ext{при } s = t \ 0, & ext{при } s
eq t \end{array}
ight.$$

по аналогу Следствия 1 для столбцов. Значит, $\tilde{A} \cdot A = \det(A) \cdot E_n$.

4 D > 4 A > 4 B > 4 B > B + 4 Q Q

Определение

Пусть $A \in M_n(K)$.

- ullet Матрица A- обратимая справа, если существует такая $B\in M_n(K)$, что $AB=E_n$.
- ullet Матрица A- обратимая слева, если существует такая $C\in M_n(K)$, что $CA=E_n$.
- Обратимая и слева, и справа матрица называется обратимой, или невырожденной. Остальные матрицы необратимые, или вырожденной.
- ullet Если $B \in M_n(K)$ такова, что $AB = BA = E_n$, то B называется обратной к A и применяется обозначение $A^{-1} = B$.
- Если обратная матрица к *A* существует, то она единственна: мы знаем, что обратный элемент по умножению к обатимому элементу любого кольца ровно один.

Теорема 6

- 1) Обратимые матрицы это в точности матрицы, имеющие ненулевой определитель.
- 2) Обратимая слева (или справа) матрица обратима.

Доказательство. 1) • Пусть $A,B\in M_n(K)$, $AB=E_n$. Тогда по Теореме 5

$$\det(A)\det(B) = \det(AB) = \det(E_n) = 1 \quad \Rightarrow \quad \left\{ \begin{array}{l} \det(A) \neq 0, \\ \det(B) \neq 0. \end{array} \right.$$

- Таким образом, матрица с нулевым определителем не может быть обратимой ни слева, ни справа.
- ullet Наоборот, пусть $\det(A) \neq 0$, а $B = \det(A)^{-1} \cdot \tilde{A}$.
- ullet По Лемме 2 мы имеем $AB=BA=E_n$. Значит, A обратима.
- 2) Выше доказано, что обратимая слева или справа матрица имеет ненулевой определитель, а значит, она обратима.

Определение

Пусть $A \in M_{m,n}(K)$.

- Строчный ранг матрицы А это
- $r_s(A) := \dim(\operatorname{Lin}(A_1,\ldots,A_m)).$
- \bullet Столбцовый ранг матрицы A это $r^s(A) := \dim(\operatorname{Lin}(A^{(1)}, \dots, A^{(n)})).$
- Наша цель доказать, что $r_s(A) = r^s(A)$ для любой матрицы A. Это число называется рангом A и обозначается через $\mathrm{rk}(A)$.

Лемма 3

- 1) Строчный ранг сохраняется при элементарных преобразованиях строк.
- 2) Столбцовый ранг сохраняется при элементарных преобразованиях столбцов.

Доказательство. • Утверждения аналогичны, достаточно доказать первое.

- ullet Пусть $A,A'\in M_{n,m}$ получена из A элементарным преобразованием строк. Пусть $L=\mathrm{Lin}(A_1,\ldots,A_n)$ и $L'=\mathrm{Lin}(A_1',\ldots,A_n').$
- ullet Достаточно доказать, что L=L', тогда $r_s(A)=\dim(L)=\dim(L')=r_s(A').$
- ullet Если это преобразование типа I, то строки остаются теми же (просто в другом порядке), значит, L=L'.
- ullet Пусть это преобразование типа III, скажем, $A_i'=\lambda A_i$ для $\lambda\in \mathcal{K},\ \lambda\neq 0$ а остальные строки матриц совпадают.
- ullet Тогда $A_i' = \lambda A_i \in L$, значит, $L' \subset L$.
- ullet Так как элементарные преобразования обратимы, аналогично $L\subset L'$, а значит, L=L'.
- Пусть это преобразование типа II, скажем, $A_i' = A_i + \lambda A_j$ для $\lambda \in K$, а остальные строки матриц совпадают.
- ullet Тогда $A_i' = A_i + \lambda A_i \in L$, значит, $L' \subset L$.
- Так как элементарные преобразования обратимы, аналогично $L \subset L'$, а значит, L = L'.

 $A, B \in M_{m,n}(K)$, причем B получена из A элементарным преобразованием строк, $1 \le s_1 < \dots < s_k \le n, \ \lambda_1, \dots, \lambda_k \in K$. Тогда

$$\lambda_1 A^{(s_1)} + \cdots + \lambda_k A^{(s_k)} = 0 \iff \lambda_1 B^{(s_1)} + \cdots + \lambda_k B^{(s_k)} = 0.$$

Доказательство. • Положим $c_{i,j} := a_{i,s_j}$ и $d_{i,j} := b_{i,s_j}$ для всех $i \in \{1,\ldots,m\}, \ j \in \{1,\ldots,k\}.$ Рассмотрим ОСЛУ

$$\begin{cases} c_{1,1}y_1 + \dots + c_{1,k}y_k = 0 \\ \dots \\ c_{m,1}y_1 + \dots + c_{m,k}y_k = 0 \end{cases} (*) \quad \text{if} \quad \begin{cases} d_{1,1}y_1 + \dots + d_{1,k}y_k = 0 \\ \dots \\ d_{m,1}y_1 + \dots + d_{m,k}y_k = 0 \end{cases} (**).$$

- Так как B получена из A элементарным преобразованием строк, ОСЛУ (**) получена из (*) элементарным преобразованием.
- По Лемме 5.2, решения ОСЛУ (*) и (**) одни и те же.
- Для завершения доказательства достаточно отметить, что $\lambda_1 A^{(\mathbf{s}_1)} + \dots + \lambda_k A^{(\mathbf{s}_k)} = 0 \iff y_1 = \lambda_1, \dots, y_k = \lambda_k \mathbf{p}$ решение (*) и $\lambda_1 B^{(\mathbf{s}_1)} + \dots + \lambda_k B^{(\mathbf{s}_k)} = 0 \iff y_1 = \lambda_1, \dots, y_k = \lambda_k \mathbf{p}$ решение (**).

- 1) Столбцовый ранг сохраняется при элементарных преобразованиях строк.
- 2) Строчный ранг сохраняется при элементарных преобразованиях столбцов.

Доказательство. • Утверждения аналогичны, достаточно доказать первое.

- \bullet Пусть $A, B \in M_{m,n}(K)$, причем B получена из Aэлементарным преобразованием строк.
- Пусть $L = \operatorname{Lin}(A^{(1)}, \dots, A^{(n)})$ и $L' = \operatorname{Lin}(B^{(1)}, \dots, B^{(n)})$.
- По Теореме 5.1 из $A^{(1)}$ $A^{(n)}$ можно выбрать базис L — пусть это $A^{(s_1)}, \ldots, A^{(s_k)}$. Тогда $r^{(s)}(A) = k$.
- \bullet Тогда и $B^{(s_1)}, \ldots, B^{(s_k)}$ ЛНЗ (если $\lambda_1 B^{(s_1)} + \dots + \lambda_k B^{(s_k)} = 0$. то по Лемме 4 и $\lambda_1 A^{(s_1)} + \cdots + \lambda_k A^{(s_k)} = 0$, откуда $\lambda_1 = \cdots = \lambda_k = 0$).
- Значит, $r^{(s)}(B) > k = r^{(s)}(A)$.
- Так как элементарные преобразования обратимы, аналогично доказывается, что $r^{(s)}(A) \ge r^{(s)}(B)$.

Для $r \leq \min(m,n)$ пусть $E^r \in M_{m,n}(K)$ — матрица, в которой $e^r_{i,i}=1$ для всех $i\in\{1,\ldots,r\}$, а все остальные коэффициенты матрицы равны 0.

Лемма 6

Любую матрицу $A \in M_{m,n}(K)$ можно привести элементарными преобразованиями к матрице E^r для некоторого $r \leq \min(m,n)$.

Доказательство. • Мы будем менять матрицу, не переименовывая ее.

- Если все элементы матрицы равны 0, то $A = E^0$.
- Если в матрице есть ненулевой элемент, то можно считать, что $a_{1,1} \neq 0$ (иначе поменяем местами строки и столбцы так, чтобы ненулевой элемент оказался на этой позиции).
- ullet Далее поделим 1 строку на $a_{1,1}$, получим новую матрицу, в которой $a_{1,1}=1.$

- ullet Для всех $i\in\{2,\dots,m\}$ заменим строку A_i на $A_i-a_{i,1}A_1$. В результате этих элементарных преобразований в левом столбце все элементы, кроме $a_{1,1}=1$ будут равны 0.
- Теперь для всех $j \in \{2, \dots, n\}$ заменим столбец $A^{(j)}$ на $A^{(j)} a_{1,j}A^{(1)}$. В результате этих элементарных преобразований в первой строке все элементы, кроме $a_{1,1} = 1$ будут равны 0. Элементы левого столбца не изменятся.
- ullet Теперь рассмотрим подматрицу A', полученную удалением 1 строки и 1 столбца. Аналогичными действиями меньшую матрицу A' можно привести к виду $E^{r'}$.
- Выполним те же преобразования, что в матрице A', со столбцами 2-n и строками 2-m матрицы A. В результате 1 строка и 1 столбец не изменятся, и мы получим матрицу $E^{r'+1}$.

Теорема 7

Для любой матрицы $A \in M_{m,n}(K)$ выполнено $r_s(A) = r^s(A)$.

Доказательство. • По Лемме 6 для некоторого $r \leq \min(m,n)$ можно элементарными преобразованиями привести $A \ \kappa \ E^r$.

- \bullet Очевидно, $r_s(E^r) = r^s(E^r) = r$.
- По Леммам 3 и 5 мы имеем

$$r_s(A) = r_s(E^r) = r = r^s(E^r) = r^s(A).$$

- Теперь мы знаем, что ранг матрицы определен корректно, и его можно вычислять как размерность пространства строк этой матрицы, так и как размерность пространства ее столбцов.
- Если $A \in M_{m,n}(K)$, то $\operatorname{rk}(A) \leq m$ и $\operatorname{rk}(A) \leq n$.

Лемма 7

При элементарных преобразованиях наибольший порядок ненулевого минора матрицы не изменяется.

Доказательство. • Пусть $A, A' \in M_{m,n}(K)$, причем A' получена из A элементарным преобразованием.

• Можно считать, что это преобразование строк (иначе транспонируем матрицу, те же самые миноры останутся ненулевыми по Теореме 2, а строки поменяются местами со столбцами).

Утверждение

Если у матрицы A нет ненулевых миноров порядка k, то и у матрицы A' нет ненулевых миноров порядка k.

Доказательство. • Пусть Δ' — ненулевой минор порядка k матрицы A', а Δ — минор A в тех же строках и столбцах. По условию $\Delta=0$.

- ullet Тогда $\Delta'
 eq \Delta$ не является минором A, значит, содержит хотя бы одну из строк над которыми произведено элементарное преобразование.
- Рассмотрим три случая.

Случай 1: элементарное преобразование имеет тип III.

• Пусть строка матрицы A умножена на $\lambda \in K$. Тогда $\Delta' = \lambda \Delta = 0$ по Свойству 3 определителя, противоречие.

Случай 2: элементарное преобразование имеет тип І.

- ullet Пусть, скажем, $A_i'=A_j$ и $A_j'=A_i$.
- Если минор Δ' содержит части обеих строк A'_i и A'_j , то в миноре Δ они просто стоят в обратном порядке и $\Delta' = \Delta = 0$ по Свойству 1 определителя, противоречие.
- ullet Пусть Δ' содержит часть A_i' , но не содержит часть A_j' .
- Так как часть A_i' это аналогичная часть A_j , в этом случае матрица A также имеет минор Δ^* с точно такими же строками и столбцами (нужно вместо строки A_i взять A_j), возможно, расставленными в другом порядке.
- Тогда $\Delta' = \pm \Delta^* = 0$, противоречие. Случай 3: элементарное преобразование имеет тип II.
- ullet Пусть, скажем, $A_i' = A_i + \lambda A_j$.
- Пусть $\Delta' = \det(B')$, $\Delta = \det(B)$, где $B, B' \in M_k(K)$ соответствующие матрицы. Тогда эти матрицы содержат части строк A_i и A_i' соответственно.

- ullet Обозначим через B^* матрицу, полученную из B заменой части A_i на соответствующую часть A_j .
- ullet Разложим $\det(B)$ по строке A_i' (точнее, ее части). По Свойству 5 определителя

$$\Delta' = \det(B') = \det(B) + \lambda \det(B^*) = \lambda \det(B^*).$$

- Если B содержит части строки A_j , то B^* содержит две одинаковые строки, тогда по Свойству 2 определителя $\det(B^*)=0$, а значит, и $\Delta'=0$, противоречие.
- Пусть B не содержит части строки A_j . Тогда рассмотрим подматрицу B^{**} матрицы A, в которой выбраны все строки матрицы B, кроме A_i , и строка A_j , а столбцы те же, что в B.
- По условию, $det(B^{**}) = 0$.
- ullet Так как B^* получается из B^{**} перестановкой строк, $\det(B^*)=\pm\det(B^{**})=0$, откуда следует, что $\Delta'=0$, противоречие.
- Вернемся к доказательству Леммы 7.
- Так как обе матрицы A и A' получены друг из друга элементарным преобразованием, наибольший порядок ненулевого минора в них одинаковый.

Теорема 8

Для любой матрицы $A \in M_{m,n}(K)$ ее ранг равен наибольшему порядку ненулевого минора в A.

Доказательство. • По Лемме 6 матрицу A можно привести элементарными преобразованиями к матрице E^r для некоторого $r \leq \min(m,n)$.

- \bullet Тогда $\operatorname{rk}(A) = \operatorname{rk}(E^r) = r$.
- С другой стороны, наибольший порядок ненулевого минора в E^r это, очевидно, r. По Лемме 7, это верно и для A.

Следствие 2

Матрица $A \in M_n(K)$ обратимая, если и только если $\operatorname{rk}(A) = n$.

Доказательство. \Rightarrow . Если A — обратимая, то $\det(A) \neq 0$ по Теореме 6. Значит, максимальный порядок ненулевого минора равен n, тогда и $\mathrm{rk}(A) = n$ по Теореме 8.

 \Leftarrow . Если $\mathrm{rk}(A) = n$, то по Теореме 8 матрица $A \in M_n(K)$ имеет ненулевой минор порядка n. Значит, $\det(A) \neq 0$ и по Теореме 6 матрица A обратима.

- Пусть $A \in M_{m,n}(K)$.
- ullet Элементарные преобразования матрицы A можно представить в виде умножения A на матрицы специального вида.

Элементарное преобразование І типа

ullet Пусть $s,t\in\{1,\ldots,m\},\,s
eq t$. Рассмотрим матрицу $E_m^{s,t}\in M_m(K)$, полученную из E_m переменой позиций двух 1:

 $e^{s,t}(s,t)=e^{s,t}(t,s)=1$, $e^{s,t}(i,i)=1$ при $i\notin\{s,t\}$, остальные коэффициенты равны 0.

- Нетрудно проверить, что $E_m^{s,t} \cdot A$ это матрица, полученная из A перестановкой s и t строк.
- Наоборот, Пусть $s,t \in \{1,\ldots,n\}$, определим аналогично матрицу $E_n^{s,t} \in M_n(K)$.
- Тогда $A \cdot E_n^{s,t}$ это матрица, полученная из A перестановкой s и t столбцов.

Элементарное преобразование II типа

- Пусть $s,t\in\{1,\ldots,m\},\ s\neq t,\ \lambda\in K.$ Рассмотрим матрицу $E_m^{s,t,\lambda}\in M_m(K)$, полученную из E_m изменением одного 0 на λ :
- $e^{s,t,\lambda}(s,t)=\lambda$ (остальные коэффициенты как в единичной матрице E_m).
- Нетрудно проверить, что $A' = E_m^{s,t,\lambda} \cdot A$ это матрица, полученная из A преобразованием II типа $A_s' = A_s + \lambda A_t$ (остальные строки в матрицах A и A' совпадают).
- ullet Наоборот, Пусть $s,t\in\{1,\ldots,n\}$, определим аналогично матрицу $E_n^{s,t,\lambda}\in M_n(K).$
- Тогда $B = A \cdot E_n^{s,t,\lambda}$ это матрица, полученная из A преобразованием II типа $B^{(s)} = A^{(s)} + \lambda A^{(t)}$ (остальные строки в матрицах A и B совпадают).

Элементарное преобразование III типа

- Пусть $s \in \{1, \dots, m\}$, $\lambda \in K$, $\lambda \neq 0$. Рассмотрим матрицу $E_m^{s,\lambda} \in M_m(K)$, полученную из E_m изменением одной 0 на λ :
- $e^{s,\lambda}(s,s)=\lambda$ (остальные коэффициенты как в единичной матрице E_m).
- Нетрудно проверить, что $A'=E_m^{s,\lambda}\cdot A$ это матрица, полученная из A умножением s строки на λ .
- ullet Наоборот, Пусть $s\in\{1,\ldots,n\}$, определим аналогично матрицу $E_n^{s,\lambda}\in M_n(K)$.
- ullet Тогда $A'=A\cdot E_n^{s,\lambda}$ это матрица, полученная из A умножением s столбца на $\lambda.$

- ullet Если r < n, то ${
 m rk}(A) = r < n$ и матрица A по Следствию 2 необратима.
- Пусть r=n, произведены элементарные преобразования строк с матрицами P_1,\dots,P_k (в указанном порядке) и элементарные преобразования столбцов с матрицами Q_1,\dots,Q_ℓ (в указанном порядке). Тогда

$$P_k \dots P_1 \cdot A \cdot Q_1 \dots Q_\ell = E_n \Rightarrow$$

$$A = P_1^{-1} \dots P_k^{-1} \cdot E_n \cdot Q_\ell^{-1} \dots Q_1^{-1} \Rightarrow A^{-1} = Q_1 \dots Q_\ell \cdot P_k \dots P_1.$$

строки с номерами более k будут нулевыми. (Алгоритм для СЛУ из Леммы 5.3 легко применяется для матриц.)

 $a_{i,j} = 0$ при $j < s_i$, $a_{i,s_i} = 1$, далее произвольные

коэффициенты;

- ullet Если $A \in M_n(K)$ невырожденная матрица, то k = n и $s_i = i$ для любых $i \in \{1, \ldots, n\}$ (иначе A имеет нулевую строку, а значит, det(A) = 0, что не так).
- Значит, А приводится элементарными преобразованиями строк к верхне-треугольному виду: на главной диагонали 1, под ней 0.
- Теперь элементарными преобразованиями строк несложно обнулить верхний треугольник (все элементы над главной диагональю).
- Таким образом, мы приведем А к единичной матрице элементарными преобразованиями только строк, что бывает удобно.
- Соответственно, формула обратной матрицы будет иметь вид $A^{-1} = P_k \dots P_1$.

Матричная запись СЛУ

ullet Пусть K — поле, $a_{i,j} \in K$ (где $i \in \{1,\dots,n\}$, $j \in \{1,\dots,m\}$) Рассмотрим СЛУ с неизвестными x_1,\dots,x_m :

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_m = b_1, \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_m = b_2, \\ \dots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_m = b_n. \end{cases} (*)$$

Определение

- Матрица системы (*) это матрица $A \in M_{n,m}(K)$ с коэффициентами $a_{i,j}$. Положим $X = (x_1,\dots,x_m)^T$ столбец неизвестных, $B = (b_1,\dots,b_n)^T$.
- AX = B матричная запись системы (*).
- (A|B) Расширенная матрица системы (*) (справа добавлен столбец B).
- Система (*) называется совместной, если она имеет решение.
- ОСЛУ всегда совместна, так как имеет нулевое решение.

Теорема 9

 $\mathcal{C}\mathcal{N}\mathcal{Y}$ AX=B совместна, если и только если $\mathrm{rk}(A)=\mathrm{rk}(A|B).$

Доказательство. • AX = B совместна $\iff \exists X \in K^m : AX = B \iff$

$$\exists x_1, \dots, x_m \in K : x_1 A^{(1)} + x_2 A^{(2)} + \dots + x_m A^{(m)} = B$$

$$\iff B \in \operatorname{Lin}(A^{(1)}, \dots, A^{(m)}) \iff$$

$$\operatorname{Lin}(A^{(1)}, \dots, A^{(m)}) = \operatorname{Lin}(A^{(1)}, \dots, A^{(m)}, B) \iff$$

$$\operatorname{dim}(\operatorname{Lin}(A^{(1)}, \dots, A^{(m)})) = \operatorname{dim}(\operatorname{Lin}(A^{(1)}, \dots, A^{(m)}, B))$$

$$\iff \operatorname{rk}(A) = \operatorname{rk}(A|B).$$

• Равенство двух линейных оболочек эквивалентно равенству их размерностей (предпоследний переход), так как одна из них является линейным подпространством другой.

Пространство решений однородной системы линейных уравнений.

- Как нам известно из Леммы 5.3, любую ОСЛУ можно привести к ступенчатому виду, от этого множество решений не меняется.
- ullet Итак, мы имеем ОСЛУ в ступенчатом виде: пусть $1 \leq s_1 < s_2 \cdots < s_k \leq m$,

$$\begin{cases} x_{s_1} + a_{1,s_1+1}x_{s_1+1} + \dots + a_{1,m}x_m = 0, \\ x_{s_2} + a_{1,s_2+1}x_{s_2+1} + \dots + a_{1,m}x_m = 0, \\ \dots \\ x_{s_k} + a_{1,s_k+1}x_{s_k+1} + \dots + a_{1,m}x_m = 0. \end{cases} (*)$$

• Назовем главными все переменные, кроме x_{s_1}, \dots, x_{s_k} .

Лемма 8

Пусть A — матрица системы (*). Тогда $\operatorname{rk}(A) = k$.

Доказательство. • $\operatorname{rk}(A) = \dim(\operatorname{Lin}(A_1, \dots, A_k))$. Таким образом, нам нужно доказать, что все строки матрицы A ЛНЗ.

ullet Сделаем это индукцией по k. База k=1 очевидна. Докажем переход.

- ullet В столбце s_1 есть 1 в строчке A_1 , остальные коэффициенты равны 0. Значит, $\lambda_1=0$.
- Теперь $\lambda_2A_2+\cdots+\lambda_kA_k=0$ и по индукционному предположению имеем $\lambda_2=\lambda_k=0$, то есть, строки A ЛНЗ. \square

Лемма 9

Решения ОСЛУ $AX = 0 \ (*) \ c \ A \in M_{n,m}(K)$ образуют линейное подпространство K^m .

Доказательство. • Пусть $U \subset K^m$ — множество всех решений. Тогда $X \in U \iff AX = 0$.

- Пусть $X^1, X^2 \in U$, $\lambda \in K$.
- ullet Тогда $A(X^1+X^2)=A(X^1)+A(X^2)=0+0=0$, значит, $X^1+X^2\in U.$
- ullet Тогда $A(\lambda X^1)=\lambda A(X^1)=\lambda 0=0$, значит, $\lambda X^1\in U$.
- По Лемме 5.1 получаем, что U линейное подпространство \mathcal{K}^m .

Определение

U называется пространством решений системы (*).

• Напомним: пусть $1 \le s_1 < s_2 \dots < s_k \le m$,

$$\begin{cases} x_{s_1} + a_{1,s_1+1}x_2 + \dots + a_{1,m}x_m = 0, \\ x_{s_2} + a_{2,s_2+1}x_2 + \dots + a_{2,m}x_m = 0, \\ \dots \\ x_{s_k} + a_{k,s_k+1}x_2 + \dots + a_{k,m}x_m = 0. \end{cases}$$

• Главные переменные — все, кроме X_{s_1}, \dots, X_{s_k} .

Лемма 10

Для любого набора значений главных переменных существует единственное решение системы (*) с такими значениями.

Доказательство. • Из k уравнения однозначно вычисляется x_{s_k} (все переменные с большими номерами нам известны).

- ullet Потом из k-1 уравнения однозначно вычисляется x_{k-1} , и так далее, однозначно находятся значения всех неглавных переменных.
- Если в решении (*) все главные переменные равны 0, то и все остальные тоже равны 0 (это следует из Леммы 10, а кроме того, несложно проверить напрямую).

Пусть U — пространство решений ОСЛУ AX = 0 (*) с m неизвестными. Тогда $\dim(U) = m - \operatorname{rk}(A)$.

Доказательство. • Так как $\operatorname{rk}(A) = \dim(\operatorname{Lin}(A_1, \dots, A_k)) = k$, достаточно доказать, что $\dim(U)$ равняется количеству главных переменных.

- Пронумеруем главные переменные: $x_{i_1}, \ldots, x_{i_{m-k}}$.
- ullet Определим решение $r^s\in U$: Положим $r^s_{i_s}=1$ и $r^s_{i_j}=0$ при $j\in\{1,\ldots,m-k\},\,j
 eq s$. После чего по Лемме 10 однозначно определим значения неглавных переменных.
- Докажем, что r^1, \ldots, r^{m-k} базис U. Порождающая система. Пусть $x \in U$. Рассмотрим $x' = x_i, r^1 + \cdots + x_{i_{m-k}} r^{m-k}$.

• По Лемме 9, $x' \in U$.

 $s \in \{1, \ldots, m-k\}.$

- ullet Заметим, что $x_{i_s}' = \sum\limits_{j=1}^{m-k} x_{i_j} r_{i_s}^j = x_{i_s} r_{i_s}^s = x_{i_s}$ для всех
- Таким образом, $x, x' \in U$ два решения (*), в которых совпадают все значения главных переменных.
- По Лемме 10 тогда x=x'. Значит, $x \in \text{Lin}(r_1, x_1, r_{m-k})$

Вектора
$$r^1, ..., r^{m-k} - ЛН3$$
.

- Пусть $\alpha_1 r^1 + \cdots + \alpha_{m-k} r^{m-k} = 0.$
- ullet Тогда для любого $s \in \{1, \dots, m-k\}$ $lpha_1 r_{i_s}^1 + \dots + lpha_{m-k} r_{i_s}^{m-k} = 0.$
- ullet Так как $r_{i_s}^j=0$ при j
 eq s и $r_{i_s}^s=1$, отсюда следует, что $lpha_s=0.$
- Таким образом, r^1, \dots, r^{m-k} ЛНЗ, а следовательно базис пространства решений системы (*).
- ullet Следовательно, $\dim(U) = m k = m \operatorname{rk}(A)$.

Определение

Фундаментальная система решений ОСЛУ AX = 0 — это любой базис ее пространства решений.

• Как мы знаем, решения ОСЛУ (**) образуют линейное пространство — пространство решений $\it U$.

Лемма 11

Множество решений W системы (*) — аффинное подпространство K^m . Если U — пространство решений системы (**), а X^0 — решение (*), то $W = U + X^0$.

Доказательство. • Достаточно доказать второе утверждение.

- ullet Пусть $X' \in W$. Тогда $A(X'-X^0) = AX' AX^0 = B B = 0$, значит, $X'-X^0 \in U$.
- Наоборот, пусть $X' \in U + X^0$.
- ullet Тогда $X'-X^0\in U$, значит, $AX'=AX^0+A(X'-X^0)=B+0=B$, следовательно, $X'\in W$.
- Таким образом, $W = U + X^0$.

