

#### Université Mohammed Premier Ecole Nationale des Sciences Appliquées d'Al-Hoceima Département de Mathématiques et d'Informatique



## Examen d'analyse 4

25 juin 2018, durée: 2h.

CP2, Semestre 4.

Année universitaire : 2017-2018.

N.B: il sera tenu compte de la rédaction et la clarté des réponses.

Fouzia, MORADI

#### Exercice 1.: (7 points)

Soit la fonction  $F: ]1, +\infty[ \rightarrow \mathbb{R}$  définie par :

$$F(x) = \int_{x}^{x^2} \frac{dt}{(lnt)^2}$$

1pt

Montrer que F est de classe C<sup>1</sup> sur ]1, +∞[.

2) Montrer que:

$$\forall x \in ]1, +\infty[: \quad F'(x) = \frac{x-2}{2(\ln x)^2}$$

1pt

1pt

0,5pt

1pt

1pt

Dresser le tableau de variations de F.

4) Déterminer  $\lim_{x\to+\infty} F(x)$ .

5) a) Montrer que:  $\forall x > 1$ :  $0 < \ln x \le x - 1$ 

b) Montrer que:  $\lim_{x\to 1^+} \underline{F(x)} = +\infty$ .

Etablir la relation :

$$F(x) = \frac{x(2-x)}{2lnx^2} + \int_{x}^{x^2} \frac{dt}{lnt}$$

7) En déduire la valeur de :

$$\int_{2}^{4} \frac{1}{lnt} \left( \frac{1}{lnt} - 1 \right) dt$$





# Ecole Nationale des Sciences Appliquées Al Hoceima



CP-II, Semestre 4

Examen d'Analyse 4

Année 2018/2019

11 يونيو 2019 11 juin

durée : 2h.

Prof: F.MORADI

N.B: il sera tenu compte de la Rédaction et de la Clarté de la Réponse "RCR".

|     | Exercice 1: (8,5 points)                                                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Considérons la fonction f définie pour $(x,t)\epsilon(]0,+\infty[)^2$ par : $f(x,t)=e^{-t}t^{x-1}$ .                                                                     |
| 1   | 1- Montrer que f est de classe $C^1$ sur $(]0, +\infty[)^2$ .                                                                                                            |
| 1,5 | 2- Calculer $\frac{\partial f}{\partial x}(x,t)$ et $\frac{\partial f}{\partial t}(x,t)$ .                                                                               |
| 1   | 3- Montrer que: $\forall x \in ]0,1]:  f(x,t)  \leq \frac{1}{t^{1-x}}$                                                                                                   |
|     | Et en déduire que : $t \mapsto f(x,t)$ est intégrable sur $]0,1]$ .<br>4- Montrer que: $\lim_{t\to+\infty} t^2 f(x,t) = 0$ Et en déduire que :                           |
| 1   | $t\mapsto f(x,t)$ est intégrable sur $[1,+\infty[$ .                                                                                                                     |
| 1   | 5- Soit pour $x \in ]0, +\infty[$ : $F(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$ .<br>a- Par une intégration par parties, établir l'égalité suivante : $F(x+1) = xF(x)$ . |
| 1,5 | b- Montrer que : $F\left(\frac{1}{2}\right) = 2 \int_0^{+\infty} e^{-t^2} dt$ et en déduire la valeur de $F\left(\frac{1}{2}\right)$ .                                   |
| 1,5 | 6- Soit $G(x) = \int_{x}^{x^2} e^{-t} t^{x-1} dt$ avec $x > 0$ .<br>Montrer que $G$ est de classe $C^1$ sur $\mathbb{R}^{+*}$ et calculer $G'(x)$ .                      |



#### Université Mohammed Premier Ecole Nationale des Sciences Appliquées d'Al-Hoceima Département de Mathématiques et d'Informatique



## Examen d'analyse 4

25 juin 2018, durée : 2h.

CP2, Semestre 4. Année universitaire : 2017-2018.

N.B: il sera tenu compte de la rédaction et la clarté des réponses. Fouzia. MORADI

### Exercice 1.: (7 points)

Soit la fonction  $F: ]1, +\infty[ \rightarrow \mathbb{R}$  définie par :

$$F(x) = \int_{x}^{x^2} \frac{dt}{(lnt)^2}$$

1pt

1pt

Montrer que F est de classe C¹ sur ]1, +∞[.

2) Montrer que:

$$\forall x \in ]1, +\infty[: \quad F'(x) = \frac{x-2}{2(\ln x)^2}$$

1pt 1pt Dresser le tableau de variations de F.
 Déterminer lim<sub>x→+∞</sub> F(x).

0,5pt 1pt 5) a) Montrer que:  $\forall x > 1$ :  $0 < \ln x \le x - 1$ b) Montrer que:  $\lim_{x \to 1^+} F(x) = +\infty$ .

1pt

6) Etablir la relation:  $F(x) = \frac{x(2-x)}{2lnx} + \int_{x}^{x^{2}} \frac{dt}{lnt}$ 

0,5pt

7) En déduire la valeur de :

$$\int_{2}^{4} \frac{1}{lnt} \left( \frac{1}{lnt} - 1 \right) dt$$

#### Exercice 2 (7 points):

Soit  $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}$  et  $g(x,y) = \frac{\sin(xy)}{x} e^{-x}$ 1) a) Calculer  $\lim_{x\to 0^+} g(x,y) = \frac{1}{2}$ 

- 0,5pt

- 0,5pt 0,5pt
- b) Montrer que :  $\forall x \geq 1$ : c) En déduire que la fonction :  $x \mapsto g(x,y)$  est intégrable sur
- € [0,+∞[.
  - Montrer que g est dérivable par rapport à y sur R<sup>\*</sup><sub>+</sub> × R et calculer  $\frac{\partial g}{\partial y}(x,y)$ .
- 1pt
- 3) Soit:  $I(y) = \int_0^{+\infty} g(x, y) dx$
- 1pt
- a) Montrer que l'est de classe C1 sur R.
- 1pt
- b) Déterminer l'(y). c) Par intégration par parties, montrer que :
- 1pt

 $I'(y) = \frac{1}{1+y^2}$ 

- 1pt
- d) En déduire que :  $\forall y \in \mathbb{R} : \int_0^{+\infty} \frac{\sin(xy)}{x} e^{-x} dx = Arctany$
- e) Calculer la valeur suivante :
- 0,5pt

 $A = \int_{0}^{+\infty} \frac{\sin x}{x} e^{-x} dx$ 

## Exercice 3: (6 points)

1) Considérons le champ vectoriel:

$$\vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y)$$

- 1pt
- a) Déterminer rotV
- $\chi$  b) En déduire que  $\vec{V}$  dérivé d'un potentiel et déterminer ses potentiels.
- 2pt
- c) Calculer la circulation de  $\vec{V}$  le long de l'hélice H paramétrée par:
- 1pt

 $\begin{cases} x(t) = cost \\ y(t) = sin t & avec t \in \left[0, \frac{\pi}{4}\right] \end{cases}$ 

2pt

- 2) Calculer le volume du domaine :
- $D = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 \le z^2 \text{ et } 0 \le z \le 1\}$

