Instructions:

- This test is closed note and closed book.
- All proofs should be formal.
- Raise your hand if you have a question.

PART I (Computational): For problems in this section, simple answers are sufficient.

(1) (10 points) Draw a lattice diagram for the abelian group $\mathbb{Z}/18\mathbb{Z}$.

- (2) (10 points) Consider the symmetric group S_4 .
 - (a) List all conjugates of $\sigma = (123)$.

(b) Find $C_{S_4}(\sigma)$, the centralizer of σ in S_4 .

(3) (15 points) List up to isomorphism all abelian groups of order 72.

- (4) (15 points) Let $Z_{450} = \langle x \rangle$ denote the cyclic group of order $450 = 2 \cdot 3^2 \cdot 5^2$. (a) Compute the number of generators of Z_{450} .

(b) List all elements of \mathbb{Z}_{450} of order 9.

(c) List all group homomorphisms from \mathbb{Z}_{450} to $\mathbb{Z}/21\mathbb{Z}$.

Math 631 MIDTERM Fall 2016

Part II (Long Answer): For problems in this section, formal proofs are required. Each problem is worth $10~{\rm points}$

(1) Prove that a group G of order $56 = 2^3 \cdot 7$ is not simple.

(2) Let G be a finite group. Let H be a subgroup of G and let N be a normal subgroup of G. Prove that if $\gcd(|H|,|G:N|)=1$, then $H\leq N$.

(3) Let G be a nonabelian group of order p^3 , where p is a prime number. Prove that the center of G is of order p.

- (4) (a) State formally what it means for the subgroup H to be characteristic in G.
 - (b) State formally the definition of the commutator subgroup G' of the group G.
 - (c) Prove that if $K \subseteq G$, then $K' \subseteq G$.

Math 631 MIDTERM Fall 2016

(5) Let G be a finite group and A a set. Suppose G acts on A and let $a \in A$. Prove that the size of the orbit of a under this action is equal to the index of the stabilizer G_a in G under this action. (That is, prove $|\mathcal{O}_a| = |G: G_a|$. Note that this is one part of a proposition we proved in class. Referencing that proposition is not acceptable. You should prove this using first principles.)