

Genes vs. Environment: 49 How much do each contribute?

Today's lecture Genes vs. Environment

- How do we infer whether each is contributing?
 - Very often both contribute
- How do we infer their relative contributions?
 - "Heritability"

"Mean" and "Variance"

- Most traits are variable
- If trait is continuously variable (ie, measurable using a continuous scale), we can calculate a "mean" and a "variance" (spread)

"Mean" and "Variance"

- Most traits are variable
- If trait is continuously variable (ie, measurable using a continuous scale), we can calculate a "mean" and a "variance" (spread)

Height in 2 classrooms:

- 1) What is the mean?
- 2) Which has more "variance"?

"Mean" and "Variance"

- Mean = "average"
- Variance = how "spread out" individual measures are from the mean
 - Calculated as $\frac{\sum (X \mu)^2}{N}$ where X is an individual measure, μ is the mean, and N is the number of measures

If you had 10 individuals <u>all</u> with a height of 69 inches, what is the mean and what is the variance?

Example

• $\frac{\sum (X-\mu)^2}{N}$ = Variance

where X is an individual measure, μ is the mean, and N is the number of measures

1. Heights in inches: 63, 65, 67, 67, 69, 71

2. Heights in inches: 65, 66, 67, 67, 68, 69

Which has greater variance: 1 or 2 or equal?

Try it with and without the math...

Example: answer

- 1. Heights in inches: 63, 65, 67, 67, 69, 71 Mean = (63+65+67+67+69+71)/6 = 402/6 = 67Variance = $((63-67)^2 + (65-67)^2 ...)/6 = 6.66$ $\frac{\sum (X-\mu)^2}{N}$
- Heights in inches: 65, 66, 67, 67, 68, 69
 Mean = (65+66+67+67+68+69)/6 = 402/6 = 67
 Variance = ((65-67)² + (66-67)²...)/6 = 1.66

- You see the variance in the phenotype
- Some of the variance is genetic
- Some of the variance is environmental

2 alleles at a single gene control height, and **no** effect of environment

- You see the variance in the phenotype
- Some of the variance is genetic
- Some of the variance is environmental

2 alleles at a single gene control height, and no effect of environme

2 alleles at a single gene control height, and no effect of environme

More genetic variance

- You see the variance in the phenotype
- Some of the variance is genetic
- Some of the variance is environmental

2 alleles at a single gene control height, and **no** effect of environme

Phenotype (height)

2 alleles at a single gene control height, and **sor** effect of environment:

Added environmental variance

- You see the variance in the phenotype
- Some of the variance is **genetic**
- Some of the variance is **environmental**

Simple formula: $V_P = V_G + V_E$

 V_p = phenotypic variance

 V_G = genetic variance

V_E = environmental variance

- You see the variance in the phenotype
- Some of the variance is genetic
- Some of the variance is environmental

Simple formula: $V_P = V_G + V_E$

 V_p = phenotypic variance

 V_G = genetic variance

V_E = environmental variance

But how to calculate???

- Start with AA BB CC DD EE FF (6' tall people) having kids with aa bb cc dd ee ff (5' tall people)
- Offspring all heterozygous (5' 6" tall): Aa Bb Cc Dd Ee Ff
- What happens in F2?
 - Aa Bb Cc Dd Ee Ff x Aa Bb Cc Dd Ee Ff :
 - If unlinked, MANY possibilities

SLIDE USED EARLIER...

F2: $V_{p} = V_{G} + V_{E}$ LOTS OF GENETIC VARIANCE IN F_{2} $V_{5'0''}$ $V_{5'0''}$ $V_{5'0''}$

$$V_P = V_G + V_E$$

$$V_P = V_G + V_E$$

Variance components

$$V_P = V_G + V_E$$

- We want to know "how much" genetics and environment contribute to phenotypic variance
- Fraction of total phenotypic variance that's genetic is called "Heritability"

$$(V_G/V_P)$$
 or $(V_G/(V_G+V_E))$

Ranges 0 (no genetic) to 1 (all genetic)

F₂ example to try

$$V_P = V_G + V_E$$

Heritability = $V_G/(V_G + V_F)$

EXAMPLE:

Manually calculate variance for F1s to be: 5

Manually calculate variance for F2s to be: 25

What is heritability???

