What is Rationality in DM?

Erfan Mirzaei

Dr. Kebriaei

Game Theory Course

19 April 2022

- References and Acknowledges
- Game Theory
 - Definition
 - Decision Making Modeling
 - Assumptions and Challenges
- Decision Theory
 - Mathematical Formulation of Rationality
 - Utility Function
 - Expected Utility Theorem
- Prospect Theory
 - Loss Aversion
 - Risk Attitudes

References and Acknowledges

Game Theory

Game Theory and Game Definition

Game: The multi agent/player decision making problem under different settings like cooperation, competition, bargaining and coalition formation.

Game Theory: Modeling and analysis of situations which multi rational agent\player with different goals make decisions, and decision of each person effect the final result.

Our Expectation from Game Theory

Major Models of Decision-making

Normative models

- Revolve around the concept of <u>utility</u>, or the overall value of a choice to the decision-maker.
- Prescriptive -- they specify what people ideally should do.
- Do <u>not</u> describe how people actually perform decision making tasks.

–Descriptive models

Predicting agents behavior

Attempt to describe and model actual human decision-making.

Assumptions and Challenges

- Rationality
- DM under Strategic Uncertainty vs. DM under Uncertainty

Decision Theory

Utility/Decision Theory

Von Neumann–Morgenstern utility theory

Mathematical Formulation

Preference Relation

$$x \succcurlyeq y$$

$$x \succ y \Leftrightarrow x \succcurlyeq y \text{ but not } y \succcurlyeq x$$

 $x \sim y \Leftrightarrow x \succcurlyeq y \text{ and } y \succcurlyeq x$

What is rationality?

Rationality

• Transitivity axiom

for all
$$x, y, z$$
 $x \succcurlyeq y$ and $y \succcurlyeq z \implies x \succcurlyeq z$

Completeness axiom

for all
$$x, y$$
 $x \succcurlyeq y$ or $y \succcurlyeq x$

Utility Function

u: Action set ----> R

$$x \succcurlyeq y \text{ iff } u(x) \ge u(y)$$

• Is always exists?

Is Unique?

• Which utility function is more utilizing?

Stochastic Decision Making

Why Stochasticity?

- Unpredictability of other agents
- Uncertainty of the our world model

Expected utility maximization does not seem trivial.

Expected Utility Theorem

Independence(Substitution) axiom

$$L \succcurlyeq L'$$
iff
$$\alpha L + (1 - \alpha)L'' \succcurlyeq \alpha L' + (1 - \alpha)L''$$

Continuity axiom

Expected Utility Theorem

رسیکی اگر رابطهی ترجیح معقول در اصل استقلال صدق کند نمایشی بر حسب یک تابع مطلوبیت خطی دارد!

اصل كمال + اصل تراگذرى =: معقول بودن

تابع مطلوبیت خطی در حد آفین یکتاست!

Expected Utility Theorem

Prospect Theory

What is utility function?

Loss Aversion

Reference Point - Concavity

Allais Paradox

Decision 1: Choose between (A) an 80% chance of \$4000; (B) \$3000 for sure.

Decision 2: Choose between (C) a 20% chance of \$4000; (D) a 25% chance of \$3000.

• Independence(Substitution) axiom

$$C = \frac{1}{4}A$$
 and $D = \frac{1}{4}B$

$$L \succcurlyeq L'$$

iff

$$\alpha L + (1 - \alpha)L'' \succcurlyeq \alpha L' + (1 - \alpha)L''$$

Risk Attitudes

Risk Attitudes

TABLE A.2A The Fourfold Pattern of Risk Attitudes

	Gains	Losses
Low probability	c(\$100, .05) = \$14	c(-\$100, .05) = -\$8
	Risk seeking	Risk aversion
High probability	c(\$100, .95) = \$78	c(-\$100, .95) = -\$84
	Risk aversion	Risk seeking

Prospect Theory

3 main Contributions:

- Subjective probability
- Utility (Endowment effect → NeuroMarketing)
- Dynamic reference point (Framing effect)

Utility function

$$v(x) = \begin{cases} x^{\alpha} & x \ge 0 \\ -\lambda (-x)^{\beta} & x < 0 \end{cases}$$

Probability weighting function

$$w(p) = \frac{\delta p^{\gamma}}{\delta p^{\gamma} + (1-p)^{\gamma}}$$

$$w(p) = \exp[-\delta(-\ln p)^{\gamma}],$$

Apr 2022

Ellsberg paradox

Situation A

Situation B

Most bet

Social Rationality

Consensus

- Almost doesn't exists.
- Majority vote

Bargaining

