

Rozdział 8: Adresowanie IP

Wprowadzenie do sieci

Cisco Networking Academy® Mind Wide Open®

- 8.0 Wprowadzenie
- 8.1 Adresy sieciowe IPv4
- 8.2 Adresy sieciowe IPv6
- 8.3 Weryfikacja połączeń
- 8.4 Podsumowanie

Rozdział 8: Cele

Po zakończeniu tego rozdziału będziesz potrafił:

- Opisać budowę adresu IPv4.
- Opisać cel stosowania maski podsieci.
- Porównać cechy i wskazać miejsce użycia adresów IPv4 komunikacji jednostkowej (ang. unicast), rozgłoszeniowej (ang. broadcast) i grupowej (ang. multicast).
- Porównać użycie publicznej i prywatnej przestrzeni adresowej.
- Wyjaśnić potrzebę stosowania adresacji IPv6.
- Wyjaśnić sposób zapisu adresu IPv6.
- Opisać rodzaje adresów sieciowych IPv6.
- Skonfigurować globalny adres komunikacji jednostkowej (ang. global unicast address).
- Scharakteryzować adres komunikacji grupowej (ang. multicast).
- Opisać rolę ICMP w sieci IP (włączając w to IPv4 oraz IPv6).
- Stosować komendy ping i traceroute do testowania łączności w sieci.

8.1 Adresy sieciowe IPv4

Cisco | Networking Academy® | Mind Wide Open®

Prezentacja adresów IPv4 W systemie binarnym

- System binarny wykorzystywany jest przez komputery, komunikują się one za pomocą 0 i 1.
- Zapis pozycyjny przeliczanie liczb z
 systemu binarnego
 (dwójkowego) na
 decymalny (dziesiętny)
 wymaga zrozumienia
 matematycznych
 podstaw dotyczących
 systemów liczbowych
 nazywanych
 pozycyjnymi.

System pozycyjny

192

	Setki	Dziesiątki	Jedności
Podstawa systemu liczbowego	10	10	10
Wykładnik	2	1	0
Wartość pozycji	100	10	1
Identyfikator numeryczny	1	9	2
Wartość liczbowa	1*100=100	9*10=90	2*1=2

100+90+2

Adres 192.168.10.10 jest przypisany do komputera.

Składa się on z czterech oktetów.

Komputer zapisuje adres w postaci 32 bitów, zapisanych binarnie.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Konwersja adresu z postaci binarnej na dziesiętną

Ćwiczenia

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	0	1	1	0	0	0	0

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

Konwersja adresu z postaci binarnej na dziesiętną

Ćwiczenia

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
128	64	32	16	8	4	2	1
1	0	1	1	0	0	0	0

Odpowied $\dot{z} = 176$

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

Odpowied $\dot{z} = 255$

Konwersja adresu z postaci binarnej na dziesiętną

Konwersja z postaci dziesiętnej na binarną

Konwersja z postaci dziesiętnej na binarną (cd.)

Przekształć postać dziesiętną na binarną

Adres IPv4 w postaci binarnej

Części identyfikujące sieć i hosta w adresie IPv4

- W celu zdefiniowania części sieciowej oraz hosta w adresie, urządzenia używają oddzielnego 32-bitowego wzorca nazywanego maską podsieci.
- Maska podsieci nie zawiera wartości z części sieciowej czy hosta adresu IPv4, ona mówi gdzie szukać tych części w danym adresie IPv4.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Części identyfikujące sieć i hosta w adresie IPv4 (cd.)

Właściwe maski podsieci

Podsieć
255
254
252
248
240
224
192
128
0

Wart	Wartość bitowa						
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0
1	1	1	1	1	1	0	0
1	1	1	1	1	0	0	0
1	1	1	1	0	0	0	0
1	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Badanie długości prefiksu

	Postać dziesiętna oddzielona kropkami	Znaczące bity zapisane binarnie			
Adres sieci	10.1.1.0/24	10.1.1.00000000			
Adres pierwszego hosta	10.1.1.1	10.1.1.00000001			
Adres ostatniego hosta	10.1.1.254	10.1.1.11111110			
Adres rozgłoszeniowy	10.1.1.255	10.1.1.11111111			
Liczba hostów: 2 ⁸ – 2 = 254					

Adres sieci	10.1.1.0/25	10.1.1.00000000		
Adres pierwszego hosta	10.1.1 <mark>.1</mark>	10.1.1.00000001		
Adres ostatniego hosta	10.1.1 .126	10.1.1.01111110		
Adres rozgłoszeniowy	10.1.1 .127	10.1.1.01111111		
Liczba hostów: 2^7 – 2 = 126				

Adres sieci	10.1.1.0/26	10.1.1.00000000			
Adres pierwszego hosta	10.1.1 <mark>.1</mark>	10.1.1.00000001			
Adres ostatniego hosta	10.1.1 <mark>.62</mark>	10.1.1.00111110			
Adres rozgłoszeniowy	10.1.1.63	10.1.1.00111111			
Liczba hostów: 2 ⁶ – 2 = 62					

Badanie długości prefiksu (cd.)

	Postać dziesiętna oddzielona kropkami	Znaczące bity zapisane binarnie			
Adres sieci	10.1.1.0/27	10.1.1.000 00000			
Adres pierwszego hosta	10.1.1 <mark>.1</mark>	10.1.1.00000001			
Adres ostatniego hosta	10.1.1 <mark>.30</mark>	10.1.1.00011110			
Adres rozgłoszeniowy	10.1.1 <mark>.31</mark>	10.1.1.00011111			
Liczba hostów: 2^5 – 2 = 30					

Adres sieci	10.1.1.0/28	10.1.1.00000000				
Adres pierwszego hosta	10.1.1 <mark>.1</mark>	10.1.1.00000001				
Adres ostatniego hosta	10.1.1 <mark>.14</mark>	10.1.1.00001110				
Adres rozgłoszeniowy	10.1.1 <mark>.15</mark>	10.1.1.00001111				
Liczba hostów: 2^4 – 2 = 14	Liczba hostów: 2 ⁴ – 2 = 14					

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Adresy IPv4: sieci, hosta i rozgłoszeniowy

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Adres hosta

Adres rozgłoszeniowy

Bitowa operacja AND

1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0

Adres IPv4

11000000 10101000 00001010

00001010

Maska podsieci

11111111 11111111 11111111

0 0 0 0 0 0 0 0

Adres sieci

11000000 10101000 00001010

 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$

Statyczne przydzielanie adresu IPv4 hosta

Właściwości interfejsu LAN

Konfiguracja statycznego adresu

DHCP jest przeważnie preferowaną metodą przydzielania adresów IPv4 hostom w większych sieciach ponieważ zmniejsza obciążenie personelu zajmującego się siecią i eliminuje możliwość popełnienia błędów przy konfiguracji ręcznej.

Transmisja jednostkowa (ang. Unicast)

W sieci IPv4 hosty mogą komunikować się ze sobą na trzy różne sposoby: **jednostkowy,** rozgłoszeniowy, grupowy

Transmisja rozgłoszeniowa (ang. Broadcast)

W sieci IPv4 hosty mogą komunikować się ze sobą na trzy różne sposoby: jednostkowy, **rozgłoszeniowy**, grupowy

#2 Transmisja rozłoszeniowa (ang. Broadcast) – proces polegający na wysłaniu pakietu z jednego hosta do wszystkich hostów w sieci.

UWAGA: Routery nie przekazują pakietów rozgłoszeniowych.

Rozgłoszenie skierowane

- Adres docelowy 172.16.4.255
- Wszystkie hosty w obrębie sieci 172.16.4.0/24

Źródło: 172.16.4.1

Transmisja grupowa (ang. Multicast)

W sieci IPv4 hosty mogą komunikować się ze sobą na trzy różne sposoby: jednostkowy, rozgłoszeniowy, **grupowy**

#3 Transmisja grupowa (ang. multicast)— proces polegający na wysłaniu pakietu z jednego hosta do określonej grupy hostów w sieci.

- Redukuje ruch
- Zarezerwowane adresy grupowe 224.0.0.0 do 239.255.255.255
- Adres lokalny 224.0.0.0 do 224.0.0.255
- Adresy o zasięgu globalnym 224.0.1.0 do 238.255.255.255
 (Przykład: adres 224.0.1.1 został zarezerwowany dla protokołu NTP)

Rodzaje adresów IPv4

Publiczne i prywatne adresy IPv4

Zakresy adresów prywatnych:

- Hosty, które nie potrzebują dostępu do sieci Internet mogą ich używać
 - od 10.0.0.0 do 10.255.255.255 (10.0.0.0/8)
 - od 172.16.0.0 do 172.31.255.255 (172.16.0.0/12)
 - od 192.168.0.0 do 192.168.255.255 (192.168.0.0/16)

Współdzielone zakresy adresów:

- Nie są routowalne w Internecie
- Przeznaczone wyłącznie do stosowania przez dostawców internetowych
- Blok adresowy 100.64.0.0/10

Rodzaje adresów IPv4

Specjalne adresy IPv4

- Adres sieci i rozgłoszeniowy- w żadnej sieci hostom nie można przydzielić pierwszego i ostatniego adresu
- Adres pętli zwrotnej 127.0.0.1 specjalny adres używany przez hosty do komunikacji z samym sobą, pula tych adresów to: 127.0.0.0 to 127.255.255.255
- Adresy lokalne łącza 169.254.0.0 do 169.254.255.255 (169.254.0.0/16) adresy te mogą zostać przypisane hostom automatycznie
- Adresy TEST-NET 192.0.2.0 do 192.0.2.255 (192.0.2.0/24) adresy te przeznaczone są do celów edukacyjnych, w przykładach i dokumentacji
- Adresy eksperymentalne 240.0.0.0 do 255.255.255.254

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Pierwotna adresacja klasowa

Klasa adresu	Zakres pierwszego oktetu (dziesiętnie)	Bity pierwszego oktetu (zielone bity są niezmienne)	Część adresu reprezentująca sieć (N) i hosta (H)	Domyślna maska podsieci (dziesiętnie i binarnie)	Liczba możliwych sieci oraz hostów w każdej podsieci
A	1-127**	0 0000000- 0 1111111	N.H.H.H	255.0.0.0	128 podsieci (2^7) 16777214 hostów w każdej podsieci (2^24-2)
В	128-191	10 000000- 10 111111	N.N.H.H	255.255.0.0	16,384 podsieci (2^14) 65534 hostów w każdej podsieci (2^16-2)
С	192-223	110 00000- 110 11111	N.N.N.H	255.255.255.0	2097150 podsieci (2^21) 254 hostów w każdej podsieci (2^8-2)
D	224-239	1110 0000- 1110 1111	Nie dotyczy (adresy grupowe)		
Е	240-255	11110000-11111111	Nie dotyczy (adresy eksperymentalne)		

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Pierwotna adresacja klasowa (cd.)

Adresacja bezklasowa

- Formalna nazwa to bezklasowy routing międzydomenowy (ang. Classless Inter-Domain Routing, CIDR).
- Stworzono nowy zestaw standardów, które pozwoliły usługodawcom Internetowym na przydzielanie adresów IPv4 w formie prefiksów o dowolnej długości, zamiast na podstawie adresów klas A, B lub C.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Rodzaje adresów IPv4

Przydzielanie adresów IP

Przydzielanie adresów IP

Przydzielanie adresów IP (cd.)

8.2 Adresy sieciowe IPv6

Cisco Networking Academy® Mind Wide Open®

Potrzeba IPv6

- Protokół IPv6 został zaprojektowany jako następca protokołu IPv4.
- Wyczerpywanie adresów IPv4 było głównym czynnikiem opracowania IPv6.
- Różne prognozy pokazują, że wszystkie 5 organizacji RIR wyczerpią swoje pule adresowe IPv4 w latach między 2015 a 2020.
- Wraz z rosnącą populacją internetową, ograniczoną przestrzenią adresową IPv4, problemami z NAT i Internetem rzeczy, nadszedł czas przejścia na IPv6.
- IPv4 teoretycznie zapewnia 4,3 miliarda adresów oraz kombinację adresów prywatnych w powiązaniu z NAT.
- IPv6 ma większą, 128-bitową przestrzeń adresową, zapewniającą 340 sekstylionów adresów.
- IPv6 eliminuje ograniczenia IPv4 oraz wprowadza dodatkowe udoskonalenia, takie jak ICMPv6.

Współistnienie IPv4 i IPv6

Techniki migracji mogą być podzielone na trzy kategorie: Podwójny stos, Tunelowanie oraz Translację

Podwójny stos

Podwójny stos pozwala na współistnienie protokołów IPv4 oraz IPv6 w tej samej sieci. Urządzenia z podwójnym stosem obsługują równocześnie protokół IPv4 i IPv6.

Współistnienie IPv4 i IPv6 (cd.)

Tunelowanie

Tunelowanie: metoda transportowania pakietów IPv6 przez sieć IPv4. Pakiet IPv6 jest enkapsulowany w pakiecie IPv4.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Współistnienie IPv4 i IPv6 (cd.)

Translacja

Translacja: Network Address Translation 64 (NAT64) umożliwia urządzeniom wykorzystujących adresację IPv6 komunikację z urządzeniami z adresacją IPv4 za pomocą techniki podobnej do NAT dla IPv4. Pakiet IPv6 jest przekształcany na pakiet IPv4 i odwrotnie.

Szesnastkowy system liczbowy

- Podstawą systemu szesnastkowego jest liczba 16
- System szesnastkowy używa cyfr od 0 do 9 oraz liter alfabetu od A do F.
- Każde 4 bity (pół bajta) reprezentowane są przez jedną cyfrę szesnastkową,

Reprezentacja wartości szesnastkowych				
Szesnastkowo	Dziesiętnie	Binarnie		
0	0	0000		
1	1	0001		
2	2	0010		
3	3	0011		
4	4	0100		
5	5	0101		
6	6	0110		
7	7	0111		
8	8	1000		
9	9	1001		
Α	10	1010		
В	11	1011		
С	12	1100		
D	13	1101		
E	14	1110		
F	15	1111		

Szesnastkowy system liczbowy (cd.)

Spójrz na binarne wzorce bitów, pasujące do wartości dziesiętnej i

szesnastkowej.

Konwersja z kodu szesnastkowego na binarny		
Szesnastkowo	Dziesiętnie	Binarnie
00	0	0000 0000
01	1	0000 0001
02	2	0000 0010
03	3	0000 0011
04	4	0000 0100
05	5	0000 0101
06	6	0000 0110
07	7	0000 0111
08	8	0000 1000
0A	10	0000 1010
0F	15	0000 1111
10	16	0001 0000
20	32	0010 0000
40	64	0100 0000
80	128	1000 0000
C0	192	1100 0000
CA	202	1100 1010
F0	240	1111 0000
FF	255	1111 1111

Adresacja IPv6

Zapis adresów IPv6

- 128 bitów, zapisanych w postaci łańcucha wartości szesnastkowych.
- W IPv6 każde 4 bity reprezentują jedną cyfrę szesnastkową, 32 cyfry szesnastkowe tworzą adres IPv6

2001:0DB8:0000:1111:0000:0000:0000:0200

FE80:0000:0000:0000:0123:4567:89AB:CDEF

- Hextet to określenie dla grupy czterech cyfr szesnastkowych (czyli 16 bitów w zapisie binarnym).
- Wielkość liter w zapisie adresu IPv6 nie jest istotna

Adresacja IPv6

Zapis adresów IPv6 (cd.)

Hextety

Reguła 1 - Pomijanie zer wiodących

- Pierwszą regułą pomagającą uprościć zapis adresu IPv6 jest taka, że wszystkie zera wiodące w każdej grupie (pomiędzy dwukropkami) czyli w hextecie można pominąć.
- 01AB może być zapisane jako 1AB.
- 09F0 może być zapisane jako 9F0.
- 0A00 może być zapisane jako A00.
- 00AB może być zapisane jako AB.

Preferowane	2001:0DB8:000A:1000:0000:0000:0000:0100
Brak poprzedzających "0"	2001: DB8: A:1000: 0: 0: 100

Adresacja IPv6 Reguła 2 - Pomijanie hextetów złożonych z samych zer

- Podwójny dwukropek (::) może zastąpić, ciąg zer składający się z jednego lub kilku 16-bitowych segmentów (hextetów).
- Podwójny dwukropek (::) może być użyty tylko jednokrotnie w danym adresie, w przeciwnym przypadku adres byłby niejednoznaczny.
- Taki zapis znany jest pod nazwą "format skompresowany".
- Niepoprawny zapis adresu: 2001:0DB8::ABCD::1234.

Długość prefiksu IPv6

- IPv6 nie używa zapisu kropkowo-dziesiętnej maski
- Długość prefiksu wskazuje część sieciową adresu IPv6 w zapisie o następującej postaci:
 - Adres IPv6/długość prefiksu
 - Długość prefiksu może przyjmować wartości od 0 do 128.
 - /64 to typowa długość prefiksu

/64 Prefiks 64 bity 64 bity Prefiks ID interfejsu Przykład: 2001:0DB8:000A::/64 2001:0DB8:000A:0000 0000:0000:0000:00000

Wyróżniamy trzy rodzaje adresów IPv6:

- Unicast
- Multicast
- Anycast.

Uwaga: IPv6 nie posiada adresów rozgłoszeniowych

Adres IPv6 typu unicast

Unicast

- W sposób unikatowy identyfikuje interfejs urządzenia obsługującego IPv6.
- Pakiet wysłany do adresu unicast odbierany jest przez interfejs, który ma przypisany ten adres.

Jednostkowa komunikacja w IPv6

Adres IPv6 typu unicast (cd.)

Adres IPv6 typu unicast (cd.)

Globalny Unicast

- Podobny do publicznego adresu IPv4.
- Globalnie unikatowy
- Adresy routowalne w Internecie
- Mogą być konfigurowane statycznie bądź dynamicznie

Link-local

- Używany do komunikacji z innymi urządzeniami w tej samej sieci lokalnej
- Ograniczony do pojedynczego łącza i nie jest routowalny poza nim.

Adres IPv6 typu unicast (cd.)

Pętla zwrotna (ang. loopback)

- Używany jest przez host w celu wysłania pakietu do samego siebie i nie może być przypisany do interfejsu fizycznego.
- Użyj komendy ping z adresem pętli zwrotnej, aby przetestować konfigurację TCP/IP na lokalnym hoście.
- Sklada się z samych zer, z wyjątkiem ostatniego bitu, zapisywany jest jako ::1/128 lub ::1

Adres nieokreślony

- Wszystkie bity w adresie są zerami, zapisywany jako ::/128 lub ::
- Nie może on być przypisany do żadnego interfejsu i używany jest tylko jako adres źródłowy.
- Adres nieokreślony używany jest jako adres źródłowy kiedy urządzenie nie ma jeszcze stałego adresu IPv6 lub kiedy źródło pakietu nie jest istotne dla przeznaczenia.

Adres IPv6 typu unicast (cd.)

Unikalny adres lokalny (unique local address)

- Podobny do adresów prywatnych IPv4
- Używany jest do adresacji w ramach pojedynczej sieci lub ograniczonej liczby sieci.
- Mieści się w zakresie FC00::/7 do FDFF::/7.

Adresy wbudowane IPv4 (nie wchodzą w zakres tego kursu)

Używane w celu ułatwienia przejścia z IPv4 na IPv6.

Adresy IPv6 link-local typu unicast

- Wszystkie interfejsy z włączonym protokołem IPv6 muszą mieć skonfigurowany adres IPv6 łącza lokalnego.
- Umożliwia urządzeniu komunikację z innymi urządzeniami z IPv6 w ramach tylko jednej konkretnej podsieci.
- Zakres adresów: FE80::/10 , pierwsze 10 bitów to 1111 1110 10xx xxxx
- 1111 1110 1000 0000 (FE80) 1111 1110 1011 1111 (FEBF)

Adresy IPv6 link-local typu unicast (cd.)

Komunikacja IPv6 połączenia lokalnego

Pakiet IPv6

Źródłowy adres IPv6 FE80::AAAA Docelowy adres IPv6 FE80::DDDD

Pakiety ze źródłowym lub docelowym adresem linklocal (łącza lokalnego) nie mogą być przesyłane przez routery poza podsieć, z której pochodzą.

- Adresy globalne IPv6 typu unicast są unikalne w skali całego Internetu i są to adresy routowalne w Internecie
- Odpowiadają one publicznym adresom IPv4
- ICANN rozdysponowuje bloki adresów IPv6 do 5 rejestrów RIR

Budowa globalnego adresu IPv6 typu unicast (cd.)

Obecnie przekazano tylko jeden zakres adresów globalnych typu unicast, z pierwszymi bitami równymi 001 (2000::/3)

Budowa globalnego adresu IPv6 typu unicast (cd.)

Globalny adres typu unicast składa się z trzech części: globalnego prefiksu routingu, identyfikatora podsieci i identyfikatora interfejsu.

- Globalny prefiks to prefiks lub część adresu przydzielana przez dostawcę usług, np. przez ISP, klientowi albo lokalizacji. Obecnie rejestry RIR przydzielają klientom prefiksy o długości /48
- Adres 2001:0DB8:ACAD::/48 posiada prefiks mówiący o tym, że pierwsze 48 bitów (2001:0DB8:ACAD) to prefiks lub część sieciowa.

IPv6 /48 Globalny prefiks

Prefiks /48 + 16 bittów ID podsieci = prefiks /64.

Budowa globalnego adresu IPv6 typu unicast (cd.)

- Identyfikator podsieci używany jest przez klienta do rozróżnienia podsieci w swojej lokalizacji.
- ID interfejsu
 - Odpowiednik części identyfikującej hosta w adresie IPv4.
 - Używany, gdyż pojedynczy host może mieć wiele interfejsów, a na każdym z nich skonfigurowany jeden lub więcej adresów IPv6.

Statyczna konfiguracja globalnego adresu unicast


```
R1 (config) #interface gigabitethernet 0/0
R1 (config-if) #ipv6 address 2001:db8:acad:1::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config) #interface gigabitethernet 0/1
R1 (config-if) #ipv6 address 2001:db8:acad:2::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config-if) #exit
R1 (config-if) #ipv6 address 2001:db8:acad:3::1/64
R1 (config-if) #ipv6 address 2001:db8:acad:3::1/64
R1 (config-if) #clock rate 56000
R1 (config-if) #no shutdown
```


Statyczna konfiguracja globalnego IPv6 adresu unicast (cd.)

Konfiguracja IPv6 w systemie Windows

Dynamiczna konfiguracja globalnego adresu unicast z wykorzystaniem SLAAC

Bezstanowa automatyczna konfiguracja adresu (SLAAC)

- Metoda pozwalająca urządzeniu uzyskać prefiks, długość prefiksu i bramę domyślną IPv6 od routera
- Brak potrzeby serwera DHCPv6
- Wykorzystuje komunikaty ICMPv6 Router Advertisement (RA)

Routery IPv6

- Przekazują pakiety IPv6 pomiędzy sieciami
- Mogą mieć skonfigurowane trasy statycznie lub dynamicznie wykorzystując protokoły routingu dynamicznego IPv6,
- Wysyłają pakiety RA ICMPv6

Dynamiczna konfiguracja globalnego adresu unicast z wykorzystaniem SLAAC (cd.)

- Polecenie ipv6 unicast-routing włącza routing IPv6
- Komunikaty RA mogą zawierać jedną z trzech opcji:
 - tylko SLAAC wykorzystanie wyłącznie informacji zawartych w komunikacje RA.
 - SLAAC i DHCPv6 wykorzystanie informacji zawartych w komunikacie RA oraz skontaktowanie się z serwerem DHCPv6 po dodatkowe informacje, tzw. stateless DHCPv6 (np. celem ustalenia adresu serwera DNS)
 - tylko DHCPv6 urządzenie nie powinno wykorzystać informacji zawartych w komunikacie RA, tzw. stateful DHCPv6.
- Routery wysyłają komunikaty ICMPv6 RA używając adresu link-local jako adresu źródłowego

Dynamiczna konfiguracja globalnego adresu unicast z wykorzystaniem SLAAC (cd.)

Komunikaty Router Solicitation i Router Advertisement

Opcje ogłoszeń wysyłanych przez router

Opcja 1 (tylko SLAAC) – "Mam wszystko, co potrzebujesz (Prefiks, długość prefiksu, adres bramy domyślnej)"

Opcja 2 (SLAAC i DHCPv6) – "Oto informację ode mnie, ale resztę z nich (np. adres DNS z serwera DHCPv6) musisz pozyskać gdzie indziej".

Opcja 3 (tylko DHCPv6) – "Nie potrafię Ci pomóc. Zapytaj serwer o informacje DHCPv6".

Konfiguracja globalnego adresu unicast z wykorzystaniem DHCPv6

Dynamic Host Configuration Protocol dla IPv6 (DHCPv6).

- Podobny jak w IPv4
- Stosując usługę serwera DHCPv6, urządzenie automatycznie otrzymuje informacje o adresacji na temat: globalnego adresu unicast, długości prefiksu, adresu bramy domyślnej oraz adresów serwerów DNS.
- Urządzenie może uzyskać wszystkie lub część danych konfiguracyjnych IPv6 od serwera DHCPv6 w zależności od tego, czy w komunikacie ICMPv6 RA włączona zostanie opcja 2 (SLAAC z DHCPv6), czy opcja 3 (tylko DHCPv6).
- Urządzenie może zignorować komunikat RA routera i pozyskać adres IPv6 i inne informacje konfiguracyjne bezpośrednio z serwera DHCPv6.

Konfiguracja globalnego adresu unicast z wykorzystaniem DHCPv6 (cd.)

Komunikaty Router Solicitation i Router Advertisement

Uwaga: Ogłoszenie routerów w opcji 3 (tylko DHCPv6) będą wymagać istnienia klienta, aby otrzymać wszystkie informacje z serwera DHCPv6.

Adresy IPv6 typu unicast Proces EUI-64

Proces EUI-64

- Proces ten używa 48 bitowego Ethernetowego adresu MAC i wprowadza do jego środka 16 dodatkowych bitów w celu uzyskania 64 bitowego identyfikatora interfejsu.
- Zaletą stosowania tego procesu jest to, że adres MAC może być użyty do określenia identyfikatora interfejsu, oraz to że jest łatwy do prześledzenia.

Identyfikator interfejsu EUI-64 zapisywany jest binarnie i składa się z trzech części:

- 24 bitowego OUI z adresu MAC, ale z odwróconym siódmym bitem (U/L) - zero zamienia się w jedynkę.
- Dodanej 16-bitowej wartości FFFE
- 24-bitowego identyfikatora urządzenia uzyskanego wprost z adresu MAC.

Adresy IPv6 typu unicast Proces EUI-64 (cd.)

Proces EUI-64

Adresy IPv6 typu unicast Proces EUI-64 (cd.)

```
R1#show interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is fc99.4775.c3e0
(bia fc99.4775.c3e0)
<Output Omitted>
R1#show ipv6 interface brief
GigabitEthernet0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:1::1
GigabitEthernet0/1____
                        [up/up]
                                         Link-local addresses using
    FE80::FE99:47FF:FE75:C3E1
                                         EUI-64
    2001:DB8:ACAD:2::1
Serial0/0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:3::1
serial0/0/1
                        [administratively down/down]
    unassigned
R1#
```


Losowo generowane identyfikatory interfejsów

- W zależności od systemu operacyjnego, urządzenie może używać identyfikatorów interfejsów generowanych losowo zamiast korzystać z adresu MAC i procesu EUI-64.
- Począwszy od systemu Windows Vista, systemy Windows używają identyfikatorów generowanych losowo, zamiast tych utworzonych za pomocą procesu EUI-64.
- Windows XP i wcześniejsze wersje systemu Windows używają procesu EUI-64.

Dynamiczne adresy link-local

Adres typu link-local

- Po przypisaniu globalnego adresu unicast do interfejsu, urządzenie obsługujące IPv6 wygeneruje automatycznie adres typu link-local.
- Adres link-local IPv6 umożliwia urządzeniom komunikowanie się wzajemnie w tej samej podsieci.
- Host używa adresu link-local routera jako adresu swojej bramy domyślnej.
- Routery wymieniają wiadomości protokołów routingu dynamicznego używając adresów link-local.
- W tablicach routingu adresy link-local używane są jako adresy następnego przeskoku dla przesyłania pakietów IPv6.

Dynamiczny adres link-local (cd.)

Konfiguracja dynamiczna

Adres link-local tworzony jest dynamicznie przy użyciu prefiksu FE80::/10 w połączeniu z identyfikatorem interfejsu.

Adres IPv6 połączenia lokalnego

Statyczne adresy link-local

Konfiguracja adresów link-local

```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ipv6 address fe80::1 ?
link-local Use link-local address

R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config-if) #exit
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #
```

Statyczne adresy link-local (cd.)

Konfiguracja adresów link-local

```
R1#show ipv6 interface brief
GigabitEthernet0/0
                         [up/up]
    FE80::1
    2001:DB8:ACAD:1::1
GigabitEthernet0/1
                         [up/up]
                                           Statically configured link-
    FE80::1
                                           local addresses
    2001:DB8:ACAD:2::1
Serial0/0/0
                          [up/up]
    FE80::1
    2001:DB8:ACAD:3::1
Serial0/0/1
                          [administratively down/down]
    unassigned
R1#
```


Weryfikacja konfiguracji adresu IPv6

Każdy interfejs ma przypisane dwa adresy IPv6 -

- Globalny adres typu unicast, uprzednio skonfigurowany
- 2. ten zaczynający się prefiksem FE80 jest dodawany automatycznie jako adres link-local typu unicast


```
R1#show ipv6 interface brief
GigabitEthernet0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:1::1
GigabitEthernet0/1
                        [up/up]
    FE80::FE99:47FF:FE75:C3E1
    2001:DB8:ACAD:2::1
Serial0/0/0
                        [qp/qp]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:3::1
Serial0/0/1
                        [administratively down/down]
    unassigned
R1#
```

Globalne adresy IPv6 typu unicast

Weryfikacja konfiguracji adresu IPv6 (cd.)

```
R1#show ipv6 route
IPv6 Routing Table - default - 7 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user
Static
<output omitted>
   2001:DB8:ACAD:1::/64 [0/0]
    via GigabitEthernet0/0, directly connected
   2001:DB8:ACAD:1::1/128 [0/0]
    via GigabitEthernet0/0, receive
   2001:DB8:ACAD:2::/64 [0/0]
    via GigabitEthernet0/1, directly connected
   2001:DB8:ACAD:2::1/128 [0/0]
    via GigabitEthernet0/1, receive
   2001:DB8:ACAD:3::/64 [0/0]
    via Serial0/0/0, directly connected
   2001:DB8:ACAD:3::1/128 [0/0]
    via Serial0/0/0, receive
   FF00::/8 [0/0]
    via Nullo, receive
R1#
```

Adresy IPv6 typu multicast Konfiguracja adresów komunikacji grupowej IPv6

- Adresy komunikacji grupowej IPv6 mają prefiks FF00::/8.
- Wyróżniamy dwa rodzaje adresów komunikacji grupowej IPv6:
 - Przypisany adres komunikacji grupowej
 - Adres solicited node multicast

Adresy IPv6 typu multicast Konfiguracja adresów komunikacji grupowej IPv6 (cd.)

Dwie podstawowe grupy multicastowe IPv6 to:

- FF02::1 Grupa multicastowa wszystkich węzłów -
 - Wszystkie urządzenia z włączoną obsługą IPv6
 - Uzyskuje się efekt taki sam jak w przypadku adresu rozgłoszeniowego IPv4
- FF02::2 grupa multicast wszystkich routerów
 - W jej skład wchodzą wszystkie routery IPv6
 - Router staje się członkiem tej grupy po wydaniu komendy ipv6 unicast-routing, w trybie konfiguracji globalnej.
 - Pakiet wysłany do tej grupy multicastowej jest obierany i przetwarzany przez wszystkie routery IPv6 na danym łączu lub w danej sieci.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Adresy IPv6 typu multicast Konfiguracja adresów komunikacji grupowej IPv6 (cd.)

Multicastowa komunikacja do wszystkich węzłów IPv6

Adresy IPv6 typu multicast

Adres multicastowy Solicited-Node IPv6

- Można przyrównać go do adresu multicastowego wszystkich węzłów.
 Porównywane są tylko ostatnie 24 bity globalnego adresu typu unicast.
- Tworzony automatycznie w momencie skonfigurowania globalnego adresu unicast lub adresu link-local.
- Składa się ze specjalnego prefiksu FF02:0:0:0:0:0:FF00::/104 oraz 24 najmłodszych bitów adresu unicast

Globalny adres unicastowy IPv6: 2001:0DB8:ACAD:0001:0000:0000:0000:0010

Adres grupowy Solicited Node IPv6: FF02:0:0:0:0:1:FF00:0010

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 7

8.3 Weryfikacja łączności

Cisco Networking Academy® Mind Wide Open®

Komunikaty ICMPv4 i ICMPv6

- Komunikaty ICMP wspólne dla ICMPv4 oraz ICMPv6 to:
 - Potwierdzenie dostępności hosta
 - Przeznaczenie lub usługa niedostępna
 - Przekroczony czas
 - Przekierowanie trasy
- Ponieważ protokół IP nie jest niezawodny, stos protokołów TCP/IP zapewnia wysłanie wiadomości za pomocą usługi ICMP, pomimo pojawiających się błędów.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Komunikaty ICMPv6: Router Solicitation oraz Router Advertisement

- ICMPv6 zawiera cztery nowe komunikaty wchodzące w skład protokołu Neighbor Discovery
 - Komunikat Router Solicitation
 - Komunikat Router Advertisement
 - Komunikat Neighbor Solicitation
 - Komunikat Neighbor Advertisement
- Komunikaty Router Solicitation i Router Advertisement są przesyłane pomiędzy hostami i routerami.
- Komunikaty Router Solicitation są rozgłaszane do wszystkich routerów jako wiadomości multicast.
- Komunikaty Router Advertisement są wysyłane przez routery celem dostarczenia informacji o adresacji.

Komunikaty ICMPv6: Router Solicitation oraz Router Advertisement (cd.)

Komunikaty ICMPv6: Neighbor Solicitation oraz Neighbor Advertisement

- Dwa dodatkowe rodzaje komunikatów:
 - Neighbor Solicitation (NS)
 - Neighbor Advertisement (NA)
- Używane celem odwzorowania adresów: w przypadku gdy urządzenie w sieci LAN zna adres unicast IPv6 urządzenia docelowego, ale nie zna jego adresu MAC.
- Używane także celem wykrycia konfilktów adresów IP
 - Celem sprawdzenia unikalności, wysyłane na odpowiedni adres
 - Urządzenie wyśle komunikat NS zawierający swój własny adres IPv6 jako adres docelowy.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Komunikaty ICMPv6: Neighbor Solicitation oraz Neighbor Advertisement (cd.)

Testowanie i weryfikacja

Ping – sprawdzanie lokalnego stosu

Ping - testowanie połączeń w sieci lokalnej

Testowanie i weryfikacja

Ping - testowanie połączeń zdalnych

Testowanie połączenia z odległą siecią LAN lub zdalnym hostem przy użyciu komendy ping

Testowanie i weryfikacja

Traceroute - testowanie ścieżki

Traceroute

- Wyświetla listę skoków znajdujących się na drodze przesyłanego pakietu.
- Dostarcza wiele ważnych informacji diagnostycznych.
- Jeśli pakiet dotrze do celu, to lista będzie zawierać informację o interfejsie każdego routera na ścieżce między hostami.
- Jeśli dane zatrzymają się na jakimś urządzeniu, adres ostatniego routera, który odpowiedział na komendę trasowania, może wskazać miejsce, gdzie znajduje się problem albo ograniczenia związane z bezpieczeństwem.
- Pozwala na zbadanie czasu obiegu danych RTT dla każdego urządzenia leżącego na ścieżce prowadzącej do adresata.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Podsumowanie

- Adres IP jest zbudowany hierarchicznie, składa się z część sieci, podsieci i hosta.
- Adres IP może przedstawiać adres sieci, konkretnego hosta lub adres rozgłoszeniowy całej sieci.
- Maska podsieci lub prefiks są używane do określenia części sieciowej adresu IP. Po utworzeniu sieci IP należy przeprowadzić liczne testy w celu sprawdzenia jej funkcjonalności oraz jakości realizowanych usług.
- Protokół DHCP umożliwia automatyczne przyporządkowanie hostowi informacji takich jak adres IP, maska podsieci, domyślna brama oraz innych danych związanych z jego konfiguracją.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 86

Adresowanie IP

Podsumowanie (cd.)

- Hosty z IPv4 mogą się komunikować na trzy różne sposoby: komunikacją pojedynczą (ang. unicast), rozgłoszeniową (ang. broadcast) i grupową (ang. multicast).
- Prywatnymi adresami IPv4 są następujące bloki: 10.0.0.0/8, 172.16.0.0/12 oraz 192.168.0.0/16.
- Wyczerpywanie się adresów IPv4 to czynnik motywujący do przejścia na adresację IPv6.
- Każdy adres IPv6 ma 128 bitów, w odróżnieniu od 32-bitowego adresu IPv4.
- Długość prefiksu używana jest do wskazania części sieciowej adresu IPv6, zapisujemy to w postaci: adres IPv6/długość prefiksu.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 87

Adresowanie IP

Podsumowanie (cd.)

- Są trzy rodzaje adresów IPv6: komunikacji jednostkowej (unicast), grupowej (multicast) i anycast.
- Adres IPv6 link-local (łącza lokalnego) umożliwia urządzeniu komunikację z innymi urządzeniami z adresem IPv6 w ramach jednej podsieci i tylko tej podsieci.
- Pakiety ze źródłowym lub docelowym adresem link-local nie mogą być przesyłane przez routery poza podsieć, z której pochodzą.
- Adres IPv6 link-local posiada prefiks FE80::/10.
- Protokół ICMP jest dostępny dla obu protokołów IPv4 oraz IPv6.

sentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 88

Cisco | Networking Academy® | Mind Wide Open™