

Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Sistemas Operacionais I

Aula 17: Gerenciamento de Memória P1

Prof. Diogo Branquinho Ramos

diogo.branquinho@fatec.sp.gov.br

São José dos Campos - SP

Roteiro

- Conceitos básicos de memória principal
- Gerenciamento de memória
- Hierarquia de armazenamento
- Espaços de endereços lógicos e físicos
- Unidade de Gerenciamento de Memória
 - Registradores de base e de limite
- Estratégias de alocação de memória
- O problema da fragmentação

Conceitos básicos de Memória Principal

- RAM Random Access Memory
- Última área de armazenamento (milhões a bilhões de bytes) que a CPU pode acessar diretamente.
 - Registrador, cache e RAM.
- A RAM é um conjunto de words de memória
 - Cada word possui seu próprio endereço.
- A interação com a CPU é obtida por meio de uma sequência de instruções para carregar ou armazenar bytes em endereços específicos.
 - LOAD, MOVE, SAVE...

Conceitos básicos de Memória Principal

John von Neumann: 1903-1957, húngaro-americano. Doutor em matemática, gênio, contribuiu para a ciência da computação, mecânica quântica, teoria dos jogos, etc. Inventou o Mergesort em 1945. Propõe que o EDVAC seja executado sem modificações no hardware, através da interrupção e retomada de um programa com dados e instruções na mesma memória através de uma CPU e de outras unidades de execução. É o pai do computador moderno.

Contador de programa

- Indica a próxima instrução a ser apanhada da memória
 - A rotina e o dado já foram carregados na memória previamente.

Velocidade

- Acesso a registrador: em um clock de CPU (ou menos).
- Acesso à RAM: pode tomar muitos ciclos.
- Ciclo típico de execução (von Neumann)
 - Apanha uma instrução e a coloca no registrador de instruções.
 - A instrução é decodificada, fazendo com que operandos sejam apanhados e armazenados em registradores internos.
 - Após a execução da instrução sobre os operandos, o resultado pode ser armazenado de volta na memória.

Execução de um processo

Perspectiva da memória

- O programa reside num disco como um arquivo executável binário (ou código relocável).
- Para ser executado precisa ser trazido para a memória e ser caracterizado como um processo
 - Lembre-se do fork () e exec().
 - Ao ser alocado na RAM, transforma-se num processo.
 - À medida que executa, acessa instruções e dados que estão na memória.
- Ao terminar, seu espaço na memória é declarado disponível.

Gerenciamento de memória

Provê melhor utilização do sistema

- Permite o carregamento de vários processos na memória
 - Agilidade no processamento.
- Proteção da memória
 - Garante a operação correta: cada processo acessa apenas seu intervalo de endereços válidos.

Atividades de gerenciamento de memória

- Alocar e desalocar espaço de memória conforme a necessidade;
- Acompanhar quais partes da memória estão sendo usadas atualmente e por quem (processo e usuário);
- Decidir quais processos (ou partes deles) e dados mover para dentro e fora da memória.

Ações para o gerenciamento

Buffering

 Armazenamento de dados temporariamente enquanto estão sendo transferidos.

Ações para o gerenciamento

Spooling

- A sobreposição da saída de um job com a entrada de outros jobs.
- Libera a aplicação do hardware.

Ações para o gerenciamento

Caching

- Minimiza o impacto da CPU protelar suas operações quando os dados ainda não estão disponíveis.
- Informação em uso copiada do armazenamento mais lento para o mais rápido temporariamente.
- Armazenamento mais rápido (cache) verificado primeiro para determinar se a informação está lá:
 - Se estiver, a informação é usada diretamente do cache (rápido);
 - Se não, é preciso ir à memória.
 - Isso pode ser pior do que ter cache!
- Está ligado a desempenho.
- Tem problemas de projeto similares aos da RAM
 - Gerenciamento, tamanho, política de substituição, etc.

Hierarquia de armazenamento

- Sistemas de armazenamento organizados em hierarquia.
 - Velocidade
 - Custo
 - Tamanho
 - Volatilidade

Hierarquia de armazenamento

Níveis na hierarquia de armazenamento

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 – 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

Espaço de endereços lógicos e físicos

- Endereço lógico (ou virtual)
 - Gerado pela CPU.
 - Endereço da aplicação na perspectiva da CPU.
- Endereço físico
 - Endereço da aplicação na perspectiva da unidade de memória.
- Metáfora
 - Obra de Machado de Assis na estante!
 - O conjunto de livros é a aplicação (endereços lógicos).
 - A estante é a memória (endereços físicos).

Espaço de endereços lógicos e físicos

Espaço de endereços lógicos

- Conjunto de todos os endereços lógicos gerados por um processo.
- Para o processo, sua RAM é o seu espaço de endereços lógicos.
 - O processo lida com endereços lógicos; ele nunca "vê" os endereços físicos reais.

Espaço de endereços físicos

 Conjuntos dos endereços físicos correspondentes a esses endereços lógicos.

Unidade de Gerenciamento de Memória (MMU)

Definição

 Dispositivo de hardware que mapeia endereço virtual para físico.

Principais elementos

 Usa um registrador de base (também chamado de registrador de relocação) e o registrador de limite.

Acesso à RAM

 O valor no registrador de relocação é somado a cada endereço gerado por um processo.

Registradores de base e limite

Garantindo espaço separado a cada processo

 Um par de registradores de base e limite definem o espaço de endereços lógicos no espaço de

endereços físicos.

Proteção de endereço de hardware

- Partições fixas (particionamento estático)
 - Grau de multiprogramação está limitado pelo número de partições.
 - Processos usam múltiplos das partições.
- Partições variáveis (particionamento dinâmico)
 - Uso mais livre da memória.
- SO mantém uma tabela indicando quais partes da memória estão disponíveis e ocupadas.
- Espaço: bloco de memória disponível.
 - Espaços de vários tamanhos estão espalhados pela memória.
 - Quando um processo chega, ele recebe memória de um espaço grande o suficiente para acomodá-lo.

Funcionamento

- A memória é alocada aos processos até os requisitos de memória do próximo processo da fila de entrada não puderem ser satisfeitos (não houver um espaço que o comporte).
- Se o espaço for suficiente, parte é alocada ao processo e a outra parte é devolvida ao conjunto de espaços.
- Se existem espaços vizinhos, eles são mesclados para formarem um espaço maior.

Problema

Como é feita a alocação de memória?

Estratégias

- Best-fit: Aloca o menor espaço com tamanho suficiente; deve procurar lista inteira, a menos que ordenado por tamanho.
 - Produz o menor espaço restante.
- Worst-fit: Aloca o maior espaço; também deve pesquisar lista inteira.
 - Produz o maior espaço restante. Pode ser mais útil.
- First-fit: Aloca o primeiro espaço com tamanho suficiente.

Alocação de armazenamento dinâmico

Alocação de armazenamento dinâmico

Alocação de armazenamento dinâmico

Fragmentação

- First-fit e best-fit geram fragmentação externa.
 - À medida que processos são carregados e removidos da memória, o espaço livre é repartido em pequenas partes.
 - Perde 50% da memória em média!
- Fragmentação externa
 - Existe espaço de memória total para satisfazer uma solicitação, mas não é contíguo.
- Fragmentação interna
 - Memória alocada pode ser ligeiramente maior que a memória requisitada. Espaço: 18.464 bytes; Processo: 18.462 bytes.
 - Essa diferença de tamanho é memória interna a uma partição, mas que não está sendo usada.

Fragmentação

Qual a solução?

Solução 1

- Reduza com a compactação ou relocação
 - Misture o conteúdo da memória para colocar toda a memória livre junta em um bloco grande.
 - A compactação só é possível se a relocação for dinâmica, e é feita em tempo de execução.
 - É dispendioso! Ideia ruim!

Fragmentação

Solução 2

- Permitir que o espaço de endereços lógicos de um processo seja não-contíguo.
 - O processo vai receber memória física onde estiver disponível.
 - → Paginação e Segmentação!

