

STOP THE CHURN!

Aaron McMoran

What is churn and why do we care?

"The churn rate is the percentage of subscribers to a service who discontinue their subscriptions to that service within a given time period. "-Investopedia

The Data

Imbalanced data!

State : object Account Length : int64 Area Code : int64 Phone : object Int'l Plan : object VMail Plan : object VMail Message : int64 Day Mins : float64 Day Calls : int64 Day Charge : float64 Eve Mins : float64 Eve Calls : int64 Eve Charge : float64 Night Mins : float64 Night Calls : int64 Night Charge : float64 Intl Mins : float64 Intl Calls : int64 Intl Charge: float64 CustServ Calls : int64 Churn? : object

4 Discrete features16 Continuous features

Data Cleaning

- Means of different magnitude indicate standardizing the data
- Drop unrelated features and turn categorical data to binary

```
#Converting binary data
clean_churn["Int'l Plan"] = np.where(clean_churn["Int'l Plan"]=="yes", 1.0, 0.0)
clean_churn["VMail Plan"] = np.where(clean_churn["VMail Plan"]=="yes", 1.0, 0.0)
clean_churn["Churn?"] = np.where(clean_churn["Churn?"]=="True.", 1.0, 0.0)
#Dropping noisy data
clean_churn = churn_data.drop(['Area Code', 'State', 'Phone'], axis = 1)
```

Correlation Matrix & Collinear Features

Models

Logistic Regression

> Random Forest

AdaBoost

Results - Confusion Matrix

Winner!

Logistic regression

Random Forest

AdaBoost

	Predicted Label	
True Label	552	17
	81	17

	Predicted Label	
True Label	560	9
	42	56

	Predicted Label	
True Label	541	28
	58	40

Results - Roc AUC Curve

Winner!

Logistic Regression

Random Forest

AdaBoost

	FPR @ max 10% FPR	TPR @ max 10% FPR	Mean Roc AUC	5- Kfold Variance
Logistic Regression	9.4%	42.9%	82%	2%%
Random Forrest	5.6%	73.5%	91%	3%%
AdaBoost	9.7%	62.2%	87%	2%%

Tuning Hyper-parameters for Random Forest

- Number of estimators
- Criterion
- Maximum Features
- Class weight
- Minimum Sample Split

Optimized Random Forest

	FPR @ max 10% FPR	TPR @ max 10% FPR	Mean ROC AUC	5 Kfold Variance
Tuned Random Forest	6.3%	80.6%	94%	3%

	Predicted Label		
True Label	557	12	
	25	73	

Which features do we care about?

THANKYOU!