Devoir à remettre

Date de remise : 26/04/2023

Modalité : par mail à patrice.borda@univ-antille.fr

Exercice 1

On considère un modèle à générations imbriquées où les ménages ne vivent que deux périodes. Au cours de leur période d'activité, ils perçoivent un salaire w_t qu'ils affectent à la consommation c_t courante et à l'épargne s_t . Au cours de leur période de retraite, ils consacrent leur épargne à la consommation différée d_{t+1} . Leurs préférences intertemporelles sont représentées par la fonction d'utilité :

 $u_t(c_t, d_{t+1}) = \frac{1}{2}\log c_t + \frac{1}{2}\log d_{t+1}$

Dans cette économie, les impôts sont nuls (x = 0). Les individus nés en t sont en nombre L_t . Le taux de croissance du nombre de travailleurs d'une génération à l'autre est noté n = 1.

- a) Exprimer les consommations des jeunes et des vieux en fonction du saliare w_t .
- b) Déterminer l'épargne en fonction de w_t .

La technologie est représentée par la fonction de production :

$$Y_t = 10K_t^{\frac{1}{2}}L_t^{\frac{1}{2}}$$

avec K_t est le stock de capital et L_t , l'emploi.

- c) Supposant les marchés concurrentiels, exprimer le salaire et les taux d'intérêt en fonction du stock de capital par tête.
- d) Déterminer l'évolution du stock de capital par tête.
- e) Déterminer l'expression du capital par tête à l'équilibre. Cet équilibre est-il stable ? Justifier votre réponse.
- f) Quelle est la valeur du stock de capital de la $r\`egle~d'or$? Que constatezvous?

Exercice 2

Considérons un modèle à générations imbriquées où les ménages ne vivent que deux périodes. Durant la première période, ils perçoivent un salaire w_t , qu'ils affectent à la consommation courante c_t , et à l'épargne s_t , et au versement des cotisations de retraite, σw_t . σ , est le taux de cotisation à la retraite par répartition. Devenus vieux à la deuxième période, ils consacrent leur épargne et leur pension de retraite $\bar{\theta}\phi w_t$, à la consommation différée d_{t+1} .

 $\bar{\theta}$, est l'espérance de vie du retraité tandis que ϕ , est le taux de remplacement des retraites. Les préférences des ménages sont représentées par la fonction d'utilité :

$$u_t(c_t, d_{t+1}) = (1 - s) \log c_t + s \log d_{t+1}$$
 $0 < s < 1$

Nous notons N, l'effectif (constant) de la population active.

- a) Déterminer la contrainte budgétaire intertemporelle des ménages.
- b) Exprimer les consommations et l'épargne en fonction du salaire et du taux d'intérêt.

Nous supposons que le stock de capital se déprécie au taux $\delta=1$. La technologie des firmes individuelles est représentée par la fonction de production suivante :

$$Y_{it} = A_t K_{it}^{\alpha} L_{it}^{1-\alpha}$$
 $0 < \alpha < 1$ $i = \{1, 2, 3, ..., M\}$ avec $A_t = B K_t^{1-\alpha}$

 Y_{it} , K_{it} , L_{it} , représentent respectivement, la production, le stock de capital et l'emploi de la firme i. A_t est l'efficacité du travail tandis que K_t est assimilé au stock de capital total.

c) Montrer que dans une économie concurrentielle, le salaire et le taux d'intérêt sont donnés par :

$$w_t = (1 - \alpha) B N^{1-\alpha} k_t$$
 avec $k_t = \frac{K_t}{N}$
 $r_t = \alpha B N^{1-\alpha} - 1$

- d) Déterminer la dynamique du stock de capital par tête.
- e) Sous quelle condition le stock de capital par tête d'équilibre est-il localement stable ?
- f) En posant $(1+g_t) = \frac{k_{t+1}}{k_t}$ déterminer le taux de croissance de l'économie.
- g) Etudier analytiquement l'effet de l'allongement de l'espérance de vie des retraités sur la dynamique de l'économie. Commenter.