

图 3-7 三重 DES 的加密

图 3-10 三重 DES (DES-EDE3)的解密

图 3-11 Rijndael 加密中的一轮

ECB模式的解密

CBC模式的加密

CBC模式的解密

CFB模式的加密

CFB模式的解密

OFB模式的加密

OFB模式的解密

CTR模式的加密

CTR模式的解密

表 4-1 分组密码模式比较表

模式	名称	优点	缺点	备注
ECB	Electronic	● 简单	• 明文中的重复排列会反映在密文中	不应使用
模式	CodeBook	快速	 通过删除、替换密文分组可以对明文进行操作 	
	电子密码本	• 支持并行计算(加密、解密)	• 对包含某些比特错误的密文进行解密时,对应]
	模式		的分组会出错	
			● 不能抵御重放攻击	
CBC	Cipher Block	• 明文的重复排列不会反映在密	• 对包含某些错误比特的密文进行解密时,第一	推荐使用
模式	Chaining	文中	个分组的全部比特以及后一个分组的相应比特会	
	密文分组链	• 支持并行计算(仅解密)	出错	
	接模式	• 能够解密任意密文分组	• 加密不支持并行计算	
CFB	Cipher-	◆ 不需要填充 (padding)	• 加密不支持并行计算	• 现在已不使
模式	FeedBack	◆ 支持并行计算(仅解密)	• 对包含某些错误比特的密文进行解密时,第一个	用
	密文反馈模	• 能够解密任意密文分组	分组的全部比特以及后一个分组的相应比特会出错	●推荐用 CTR
	式		● 不能抵御重放攻击	模式代替
OFB	Output-	• 不需要填充 (padding)	• 不支持并行计算	推荐用 CTR
模式	FeedBack	• 可事先进行加密、解密的准备	• 主动攻击者反转密文分组中的某些比特时,明	模式代替
	输出反馈模	• 加密、解密使用相同结构	文分组中相对应的比特也会被反转	
	式	• 对包含某些错误比特的密文		
		进行解密时,只有明文中相		
		对应的比特会出错		
CTR	CounTeR	 不需要填充(padding) 	主动攻击者反转密文分组中的某些比特时,明文	推荐使用
模式	计数器模式	• 可事先进行加密、解密的准备	分组中相对应的比特也会被反转	
		• 加密、解密使用相同结构		
		• 对包含某些错误比特的密文		
		进行解密时,只有明文中相		
		对应的比特会出错		
		• 支持并行计算(加密、解密)		

图 5-2 使用公钥密码, Alice 向 Bob 发送消息

表 5-2 RSA 的加密和解密

密钥对	公钥	数E和数N	
	私钥	数 D 和数 N	
加密		密文 = 明文 E mod N	(明文的 E 次方除以 N 的余数)
解密		明文 = 密文 D mod N	(密文的 D 次方除以 N 的余数)

表 5-3 RSA 中密钥对的生成

(1) 求 N	(3) 求 E1 < E < L
用伪随机数生成器求p和q,p和q都是质数	gcd(E, L) = 1; E和 L 的最大公约数为 1 (E和 L 互质)
$N = p \times q$	
(2) 求 L	(4) 求 D
L = lcm(p - 1, q - 1); L 是 p - 1 和 q - 1 的最小公倍数	1 < D < L
	$E \times D \mod L = 1$

PRNG = 伪随机数生成器

L = lcm (p - 1, q - 1) gcd (E, L) = 1

1 < E < L

1 < D < L

图 5-6 Mallory 进行中间人攻击

表 5-4 具备同等抵御暴力破解强度的密钥长度比较

对称密码的密钥长度	公钥密码的密钥长度
128 比特	2304 比特
112 比特	1792 比特
80 比特	768 比特
64 比特	512 比特
56 比特	384 比特

图 6-2 混合密码系统的加密

图 6-3 混合密码系统的解密

图 7-9 使用单向散列函数检测软件是否被篡改

ೄ≅7.4 单向散列函数的具体例子

下面我们来具体介绍几种单向散列函数。

🖁 7.4.1 MD4、MD5

MD4 是由 Rivest 于 1990 年设计的单向散列函数,能够产生 128 比特的散列值(RFC1186,修订版 RFC1320)。不过,随着 Dobbertin 提出寻找 MD4 散列碰撞的方法,因此现在它已经不安全了。

MD5 是由 Rivest 于 1991 年设计的单项散列函数,能够产生 128 比特的散列值(RFC1321)。 MD5 的强抗碰撞性已经被攻破,也就是说,现在已经能够产生具备相同散列值的两条不同 的消息,因此它也已经不安全了。

MD4 和 MD5 中的 MD 是消息摘要 (Message Digest)的缩写。

🖁 7.4.2 SHA-1、SHA-256、SHA-384、SHA-512

SHA-1 是由 NIST (National Institute of Standards and Technology, 美国国家标准技术研究 所)设计的一种能够产生 160 比特的散列值的单向散列函数。1993 年被作为美国联邦信息处理标准规格 (FIPS PUB 180)发布的是 SHA, 1995 年发布的修订版 FIPS PUB 180-1 称为 SHA-1。SHA-1 的消息长度存在上限,但这个值接近于 264 比特,是个非常巨大的数值,因此在实际应用中没有问题。关于 SHA-1 的具体算法我们会在后面介绍。

SHA-256、SHA-384 和 SHA512 都是由 NIST 设计的单向散列函数,它们的散列值长度分别为 256 比特、384 比特和 512 比特。这些单向散列函数合起来统称 SHA-2,它们的消息长度也存在上限(SHA-256 的上限接近于 2⁶⁴ 比特,SHA-384 和 SHA-512 的上限接近于 2¹²⁸ 比特)。这些单向散列函数是于 2002 年和 SHA-1 一起作为 FIPS PUB 180-2 发布的。

SHA-1 的强抗碰撞性已于 2005 年被攻破 $^{\odot}$, 也就是说, 现在已经能够产生具备相同散列值的两条不同的消息。不过, SHA-2 还尚未被攻破。

7.4.3 RIPEMD-160

RIPEMD-160 是于 1996 年由 Hans Dobbertin、Antoon Bosselaers 和 Bart Preneel 设计的一种

图 7-10 单向散列函数 SHA-1 的概要

图 8-2 消息认证码的使用步骤

- (1) 发送者 Alice 与接收者 Bob 事先共享密钥。
- (2) 发送者 Alice 根据汇款请求消息计算 MAC 值 (使用共享密钥)。
- (3) 发送者 Alice 将汇款请求消息和 MAC 值两者发送给接收者 Bob。
- (4) 接收者 Bob 根据接收到的汇款请求消息计算 MAC 值(使用共享密钥)。
- (5) 接收者 Bob 将自己计算的 MAC 值与从 Alice 处收到的 MAC 值进行对比。
- (6) 如果两个 MAC 值一致,则接收者 Bob 就可以断定汇款请求的确来自 Alice (认证成功);如果不一致,则可以断定消息不是来自 Alice (认证失败)。

图 8-3 使用单向散列函数实现消息认证码的例子(HMAC)

用私钥加密所得到的密文只有 田与さな広め公知才能で確解率

图 9-2 用私钥进行加密(数字签名)

图 9-5 Alice 对消息签名, Bob 验证签名

图 9-6 Alice 对消息的散列值签名, Bob 验证签名

图 9-7 Alice 对消息的散列值签名, Bob 验证签名(按时间顺序)

表 9-2 RSA 的签名生成和验证

密钥对 公钥		数E和数N
私钥数D和数N		数 D 和数 N
生成签名		签名 = 消息 ^D mod N (消息的 D 次方除以 N 的余数)
验证签名		由签名求得的消息 = 签名 E mod N (签名的 E 次方除以 N 的余数), 将 "由签名求得的消息"
		与 "消息" 进行对比

表 9-3 对称密码与公钥密码的对比,以及消息认证码与数字签名的对比

	对称密码	公钥密码	
发送者	用共享密钥加密	用公钥加密	
接收者	用共享密钥解密	用私钥解密	
密钥配送问题	存在	不存在,但公钥需要另外认证	
机密性	0 ,	0	

	消息认证码	数字签名	
发送者 用共享密钥计算 MAC 值 用私钥生成签名		用私钥生成签名	
接收者 用共享密钥计算 MAC 值 用公钥验证签名		用公钥验证签名	
密钥配送问题 存在		不存在,但公钥需要另外认证	
完整性	0	0	
认证 ○(仅限通信对象双方) ○(可适用于任何第三方)		〇(可适用于任何第三方)	
防止否认 × 〇		0	

图 10-8 PKI 的组成要素

【注册公钥的用户所进行的操作】

- 生成密钥对(也可以由认证机构生成)
- 在认证机构注册公钥
- 向认证机构申请证书
- 根据需要申请作废已注册的公钥
- 解密接收到的密文
- 对消息进行数字签名

【使用已注册公钥的用户所进行的操作】

- 将消息加密后发送给接收者
- 验证数字签名

图 11-7 Diffie-Hellman 密钥交换

图 11-8 PBE 加密

图 11-9 PBE 解密

随机数作用:

N= V =		
生成密钥	用于对称密码和消息认证码	
生成密钥对	用于公钥密钥和数字签名	
生成初始化向量Ⅳ	用于分组密码 CBC、CFB、OFB	
生成 nonce	用于防御重放攻击以及分组密钥的 CTR 模式	
生成盐值	用于基于口令的密码(PBE)	

随机数性质:

随机性:不存在统计学偏差,完全杂乱的数列

不可预测性:不能从过去的数列推测出下一个出现的数

不可重现性:除非将数列本身保存下来,否则不能重现相同的数

表 12-1 随机数的分类

	随机性	不可預測性	不可重现性	
弱伪随机数	0	×	×	只具备随机性
强伪随机数	0	0	×	具备不可预测性
真随机数	0	0	0	具备不可重现性

↑不可用于密码技术 可用于密码技术

图 12-1 随机数的性质

图 12-8 用 ANSI X9.17 方法实现伪随机数生成器

图 13-4 用 PGP 加密

图 13-5 用 PGP 解密(各步骤的说明参见上文)

图 13-7 用 PGP 生成数字签名

图 13-8 用 PGP 验证数字签名

图 13-10 用 PGP 生成数字签名并加密

图 13-11 用 PGP 解密并验证数字签名

图 15-1 密码学家的工具箱

对称密码	DES	差分分析、线性分析
	ECB 模式	交换分组密文
	CBC 模式	1. 缺失某一密文分组导致
		之后的密文分组都受影响
		2. 初始化向量比特反转
		3. 填充式攻击
		4. 攻击初始化 Ⅳ
	CFB 模式	重放攻击
公钥密码	RSA	1. 通过密文来求明文
		2. 暴力破解求 D
		3. 通过 E、N 求 D
		4. 中间人攻击
		5. 选择密文攻击
	ElGamal	
	Rabin	

	椭圆曲线		
单项散列函数		暴力破解、冲突攻击	
消息认证码		重放攻击	增加序号、时间戳等
		密钥推测攻击	
数字签名		1. 中间人攻击	
		2. 攻击单项散列函数	
		3. 利用数字签名攻击公钥	
		密码	
证书		攻击者伪装成认证机构攻	
		击	
		钻 CRL 空子攻击 (利用 CRL	
		发布时间差来攻击)	
伪随机数生成器		攻击种子	
		攻击随机数池	