Ordinary abelian varieties having small embedding degree

Paula Cristina Valença

joined work with

Steven Galbraith and James McKee

P. Valenca@rhul.ac.uk

Royal Holloway University of London

Plan

- On the problem of using abelian varieties with small embedding degree
 - Introducing the MNT curves
- Extending MNT curves with co-factors
- The genus 2 case

Embedding degree

 \mathbb{F}_q finite field, J/\mathbb{F}_q Jacobian of a curve.

The *embedding degree* is the smallest positive integer k

$$r \mid q^k - 1$$

where r is the largest prime divisor of #J. In particular, $r \mid \Phi_k(q)$ (k-cyclotomic polynomial).

Embedding degree

 \mathbb{F}_q finite field, J/\mathbb{F}_q Jacobian of a curve.

The *embedding degree* is the smallest positive integer k

$$r \mid q^k - 1$$

where r is the largest prime divisor of #J. In particular, $r \mid \Phi_k(q)$ (k-cyclotomic polynomial).

<u>Motivation</u>: use of Weil and Tate pairings in cryptographic protocols - provide a mapping from $G \subset J$ to $\mathbb{F}_{q^k}^*$.

Cyclotomic Polynomials

n	$arphi(\mathbf{n})$	$\Phi_{\mathbf{n}}(\mathbf{q})$
1	1	q-1
2	1	q+1
3	2	$q^2 + q + 1$
4	2	$q^2 + 1$
5	4	$q^4 + q^3 + q^2 + q + 1$
6	2	$q^2 - q + 1$
7	6	$q^6 + q^5 + q^4 + q^3 + q^2 + q + 1$
8	4	$q^4 + 1$
9	6	$q^6 + q^3 + 1$
10	4	$q^4 - q^3 + q^2 - q + 1$
11	10	$q^{10} + q^9 + q^8 + q^7 + q^6 + q^5 + q^4 + q^3 + q^2 + q + 1$
12	4	$q^4 - q^2 + 1$

Suitable elliptic curves

- supersingular
- MNT curves (Miyaji, Nakabayashi, Takano)

Suitable elliptic curves

supersingular: for example,

$$q = 3^{2m}, n = 3^{2m} \pm 3^m + 1 \ (k = 3)$$

$$q = 3^{2m+1}, n = 3^{2m+1} \pm 3^{m+1} + 1 \ (k = 6)$$

MNT curves (Miyaji, Nakabayashi, Takano)

Suitable elliptic curves

- supersingular
- MNT curves (*Miyaji, Nakabayashi, Takano*): for $k \in \{3,4,6\}$ ($\varphi(k)=2$), find $q(l),t(l)\in \mathbb{Z}[l]$ s.t.

$$n(l) := q(l) - t(l) + 1 \mid \Phi_k(q(l))$$

k	\mathbf{q}	t	\mathbf{n}
3	$12l^2 - 1$	$-1 \pm 6l$	$12l^2 \pm 6l + 1$
4	$l^2 + l + 1$	-l, l+1	$l^2 + 2l + 2, l^2 + 1$
6	$4l^2 + 1$	$1 \pm 2l$	$4l^2 \pm 2l + 1$

Extending these methods

- Extending MNT curves with co-factors
- The genus 2 case

Extending these methods

- Extending MNT curves with co-factors
 - instead of $n \mid \Phi_k(q)$, have $r \mid \Phi_k(q)$ where n = hr (r is the largest such factor)
- The genus 2 case

co-factors: k=6

Write

$$\lambda r = \Phi_6(q) = q^2 - q + 1$$

co-factors: k = 6

Write

$$\lambda r = \Phi_6(q) = q^2 - q + 1$$

$$\Rightarrow \frac{n}{q} ((q+t+1) - \lambda/h) = 3 - \frac{t^2}{q}$$

co-factors: k=6

Write

$$\lambda r = \Phi_6(q) = q^2 - q + 1$$

$$\Rightarrow \frac{n}{a} ((q+t+1) - \lambda/h) = 3 - \frac{t^2}{a}$$

Writing $\lambda/h = \lfloor \lambda/h \rfloor + \epsilon$, $\epsilon > 0$ (gcd(λ, h) = 1) and using Hasse's bound

$$-4/3 + \epsilon < q + t + 1 - \lfloor \lambda/h \rfloor < 3 + \epsilon < 4$$

for
$$q > 64$$
, and so $v := q + t + 1 - \lfloor \lambda/h \rfloor \in \{-1, 0, 1, 2, 3\}$

co-factors (cont.)

Substituting v in

$$n(v - \epsilon) = 3q - t^2$$

leads to solving a quadratic in t whose discriminant must be a square.

Writing $\epsilon = u/h$, find x s.t.

$$x^2 = M + Nq$$

where $M, N \in \mathbb{Z}$, depending solely on u and h.

co-factors (cont.)

Substituting v in

$$n(v - \epsilon) = 3q - t^2$$

leads to solving a quadratic in t whose discriminant must be a square.

Writing $\epsilon = u/h$, find x s.t.

$$x^2 = M + Nq$$

where $M, N \in \mathbb{Z}$, depending solely on u and h. M must be a quadratic residue $\mod N$.

Valid pairs (q, t) for k = 6

h	q	t
1	$4l^2 + 1$	$\pm 2l + 1$
2	$8l^2 + 6l + 3$	2l+2
	$24l^2 + 6l + 1$	-6l
3	$12l^2 + 4l + 3$	-2l + 1
	$84l^2 + 16l + 1$	-14l - 1
	$84l^2 + 128l + 49$	14l + 11

Curves can be constructed by using Complex Multiplication, solving a Pell-type equation.

Extending these methods

- Extending MNT curves with co-factors
- The genus 2 case
 - Embedding degree $k \in \{5, 8, 10, 12\}$ ($\varphi(k) = 4$)
 - Heuristics suggest similar results (in frequency)
 - ... but the earlier method no longer applies

Extending these methods

- Extending MNT curves with co-factors
- The genus 2 case
 - Embedding degree $k \in \{5, 8, 10, 12\} \ (\varphi(k) = 4)$
 - Heuristics suggest similar results (in frequency)
 - ... but the earlier method no longer applies

Alternative approach: consider q = q(l) as a quadratic polynomial in $\mathbb{Z}[l]$ and note that we are looking to factorise

$$\Phi_k(q(l)) = n_1(l)n_2(l)$$

Factoring $\Phi_k(q(l))$

- 1. Let q(l) be a quadratic polynomial over $\mathbb{Q}[l]$. Then, one of two cases may occur:
 - (a) $\Phi_k(q(l))$ is irreducible over the rationals, with degree $2\varphi(k)$
 - (b) $\Phi_k(q(l)) = n_1(l)n_2(l)$, where $n_1(l), n_2(l)$ are irreducible over the rationals, degree $\varphi(k)$
- 2. A criterion for case (b) is $q(z) = \zeta_k$ having a solution in $\mathbb{Q}(\zeta_k)$, where ζ_k is a primitive complex k-th root of unity.

(Note: applies to both elliptic and hyperelliptic curves...)

Two approaches

Two equivalent approaches present themselves

- 1. expand $\Phi_k(q(l)) = n_1(l)n_2(l)$ and try to solve the Diophantine system of equations
- 2. solve $q(z) = \zeta_k$ over $\mathbb{Q}(\zeta_k)$

Retrieving the MNT curves

Here $k \in \{3, 4, 6\}$ and $[\mathbb{Q}(\zeta_k) : \mathbb{Q}] = 2$.

Example (k = 6): Completing the square and clearing denominators, we get

$$w^2 + b = c\zeta_6$$

where $b, c \in \mathbb{Z}$ and $w \in \mathbb{Z}(\zeta_6)$. Writing $w = A + B\zeta_6$, leads to solving

$$\begin{cases} B(2A+B) &= c \\ B^2 - A^2 &= b \end{cases}$$

and, by fixing b, retrieving the previous examples.

Hyperelliptic curves (genus 2)

Here $k \in \{5, 8, 10, 12\}$ and $[\mathbb{Q}(\zeta_k) : \mathbb{Q}] = 4$. As before, $w^2 + b = c\zeta_k$, but

$$w = A + B\zeta_k + C\zeta_k^2 + D\zeta_k^3$$

which now leads to four quadratics in integers A, B, C and D, two of which homogeneous that must vanish.

An example: k = 8

k=8:

$$\begin{cases} 2AD + 2BC = 0 \\ 2AC + B^2 - D^2 = 0 \end{cases}$$
$$\Rightarrow D^3 - B^2D + 2BC^2 = 0$$

An example: k = 8

k=8:

$$\begin{cases} 2AD + 2BC = 0 \\ 2AC + B^2 - D^2 = 0 \end{cases}$$
$$\Rightarrow D^3 - B^2D + 2BC^2 = 0$$

- latter corresponds to an elliptic curve with rank 0
- none of its four points leads to a solution to the system

An example: k = 8

k=8:

$$\begin{cases} 2AD + 2BC = 0 \\ 2AC + B^2 - D^2 = 0 \end{cases}$$
$$\Rightarrow D^3 - B^2D + 2BC^2 = 0$$

- latter corresponds to an elliptic curve with rank 0
- none of its four points leads to a solution to the system
- there exists no rational quadratic polynomial q(l) *s.t.* $\Phi_8(q(l))$ splits.

Some solutions

k	h	\mathbf{q}
5	1	l^2
	404	$1010l^2 + 525l + 69$
10	4	$10l^2 + 5l + 2$
	11	$11l^2 + 10l + 3$
	11	$55l^2 + 40l + 8$
12	1	2^{2m+1}

$$q=2l^2,6l^2$$
 ($k=12$) $q=5l^2$ ($k=5$)

Questions

P.Valenca@rhul.ac.uk