EXAMEN SEGUNDO PARCIAL Unidades Didácticas 7 a 9 - Prácticas 4 y 5

Concurrencia y Sistemas Distribuidos Fecha: 27 de Mayo de 2019

Este examen tiene una duración total de 90 minutos.

Este examen tiene una puntuación máxima de **10 puntos**, que equivalen a **3.5** puntos de la nota final de la asignatura. Consta tanto de preguntas de las unidades didácticas como de las prácticas. Indique, para cada una de las siguientes **60 afirmaciones**, si éstas son verdaderas **(V)** o falsas **(F)**.

Cada respuesta vale: correcta= 10/60, errónea= -10/60, vacía=0.

Sobre los sistemas distribuidos:

1.	Un sistema distribuido es un conjunto de ordenadores independientes que ofrecen a	V
	sus usuarios la imagen de un sistema coherente único.	
2.	De forma general, los fallos compuestos se tratan de igual forma a la aparición de	V
	varios fallos simples de forma consecutiva.	
3.	En un sistema distribuido, a nivel hardware las máquinas comparten entre sí los	F
	recursos (memoria, reloj, disco, etc).	
4.	Los fallos, las tareas de mantenimiento y los ataques maliciosos son tres factores	F
	que afectan a la escalabilidad del sistema.	
5.	Para lograr transparencia de ubicación, los recursos requieren estar identificados	V
	con nombres simbólicos únicos.	

Sobre la escalabilidad y disponibilidad de los sistemas distribuidos:

6.	En general, la técnica de replicación permite aumentar tanto la escalabilidad del	V
	sistema como su disponibilidad.	
7.	La técnica de caching es un caso particular de la replicación donde el cliente	F
	mantiene una réplica exacta, con consistencia fuerte, de los datos que mantiene el	
	servidor.	
8.	La distribución del procesamiento entre diferentes nodos y el particionado de los	V
	datos permite aumentar la escalabilidad del sistema.	
9.	El teorema CAP nos indica que, en un sistema a gran escala, donde las particiones	V
	ocurren, se debe sacrificar disponibilidad del sistema, o bien su consistencia.	
10.	En la replicación activa, en caso de fallo de una réplica, el trabajo de reconfiguración	F
	consiste en que la réplica primaria enviará un mensaje menos de checkpoint.	

Sobre los mecanismos de comunicación ROI y Java RMI:

_ sobre to sine can sino sac comain cacion not y java non.	
11. Se considera que una invocación a un objeto es una invocación local cuando los	F
objetos invocador e invocado residen en procesos diferentes del mismo nodo.	
12. En ROI, para el paso de objetos como argumentos por valor, se utiliza la técnica de	V
serialización de objetos para así transmitirlos al nodo destino de la invocación.	
13. En Java RMI, un objeto invocable de forma remota debe implementar la interfaz	V
java.rmi.Remote.	
14. Java RMI es un middleware de comunicación que proporciona comunicación	F
asincrónica.	
15. Java RMI proporciona la interfaz Registry para que tanto el cliente como el	V
servidor interaccionen con un servidor de nombres usando métodos como lookup,	
bind, rebind	
16. El servidor de nombres de Java RMI almacena para cada objeto registrado, su proxy	F
y su esqueleto.	

Sobre la escalabilidad y disponibilidad de los sistemas distribuidos:

F
V
V
V
V
F
7

Sobre los mecanismos de comunicación en los sistemas distribuidos:

bobi e los inicambinos de comanicación en los sistemas distribuldos.	
23. Por comunicación directa se entiende que un proceso se envía un mensaje a sí	F
mismo directamente, y por comunicación indirecta que se lo envía a otro proceso	
diferente.	
24. En el envío de un mensaje en un sistema con comunicación sincrónica en la	V
respuesta, el emisor esperará hasta que el receptor haya procesado el mensaje y	
devuelva la respuesta.	

Respecto a Java Message Service:

Trespecte a java Pressage service.	
25. Java JMS es una API Java que permite a las aplicaciones invocar a objetos remotos	F
mediante el envío y recepción de mensajes.	
26. Los componentes de JMS son los proveedores, los clientes, los mensajes y los objetos	V
administrados.	
27. Cuando se quiere que los componentes de una aplicación distribuida no dependan	F
de conocer las interfaces de otros componentes es preferible usar Java RMI frente a	
JMS.	
28. En JMS un mismo mensaje puede ser entregado a varios clientes.	V
29. En JMS, en general, para que un cliente A pueda enviar un mensaje a otro cliente B,	F
el cliente B debe estar activo.	

Sobre los algoritmos de consenso:

30. El algoritmo de consenso tolerante a fallos no soporta fallos bizantinos.	V
31. En el algoritmo de consenso en ausencia de fallos, el valor que deciden los nodos como decisión final es el promedio de los valores propuestos por los distintos nodos.	F
32. El algoritmo de consenso tolerante a fallos con N nodos requiere un total de N rondas.	F
33. En cada ronda del algoritmo de consenso tolerante a fallos deben ajustarse los <i>timeouts</i> para reducir la cantidad de situaciones detectadas como fallo cuando en realidad no lo son.	V

Sobre los algoritmos de sincronización de relojes físicos:

34. En el algoritmo de Cristian, para fijar la hora del cliente se calcula el promedio entre	F
el reloj del cliente y el del servidor.	
35. En el algoritmo de Berkeley cada cliente puede sincronizar su reloj con	F
independencia del resto de clientes.	
36. El reloj de un nodo nunca debe adelantarse.	F

Sobre los relojes lógicos de Lamport y los relojes vectoriales:

37. Asumiendo relojes lógicos de Lamport, si a->b implica que C(a) <c(b), c(x)<="" donde="" td=""><td>V</td></c(b),>	V
representa el valor de contador asociado con el evento x.	
38. Con relojes lógicos vectoriales, si V(a)=[0,0,1] y V(b)=[2,2,0], entonces a b	V
39. Con relojes lógicos vectoriales, V(a) <v(b) a-="" implica="" que="">b</v(b)>	V
40. En el algoritmo vectorial, para cualquier par de vectores distintos V(a) V(b), se	F
cumple que V(a) <v(b) o="" td="" v(b)<v(a)<=""><td></td></v(b)>	
41. Con relojes lógicos de Lamport se garantiza que dos eventos correspondientes a	F
nodos distintos no pueden tener asociado el mismo valor lógico.	

Sobre los algoritmos de elección de líder vistos en clase:

42. En el algoritmo de elección de líder con topología en anillo, el líder es aquel nodo	F	
que posee el token.		
43. En el algoritmo de Bully, todo nodo que recibe OK sabe que no será elegido como	V	
líder.		

Sobre el algoritmo de Chandy-Lamport:

44. Chandy-Lamport sólo funciona si hay conectividad total y todos los canales son	V
Fiables y FIFO.	
45. El algoritmo de Chandy-Lamport garantiza que la instantánea que se obtiene es	V
consistente.	
46. Chandy-Lamport falla si más de un proceso inicia el algoritmo de forma quasi-	F
simultánea (o sea, antes de recibir el mensaje marca del otro iniciador).	

Sobre los algoritmos de exclusión mutua:

bobi e los digoriemos de exclusión macad.	
47. En el algoritmo centralizado, el coordinador debe mantener una lista de respuestas	V
pendientes (nodos que han solicitado acceso al recurso, pero a los que todavía no se	
les ha contestado).	
48. En el algoritmo centralizado, en caso de que falle el coordinador, podemos aplicar el	V
algoritmo de Bully para elegir a otro.	
49. En el algoritmo de exclusión mutua distribuido, ningún nodo necesita mantener una	F
lista de respuestas pendientes (nodos que han solicitado acceso al recurso, pero a	
los que todavía no se les ha contestado).	
50. En el algoritmo de exclusión mutua distribuido, el protocolo de salida consiste en	F
difundir ok a todos los nodos.	
51. En el algoritmo de exclusión mutua en anillo, sólo puede acceder a la SC el nodo que	V
tiene el token.	
52. En el algoritmo de exclusión mutua en anillo, si un nodo que no desea entrar a la SC	V
crítica recibe el token, se limita a pasarlo al siguiente.	

Sobre la práctica 4 (Chat distribuido orientado a objetos basado en RMI):

53. El proceso ChatRobot, al no necesitar la interfaz gráfica, no requiere de un método	F
main para lanzar el propio proceso.	
54. Los mensajes recibidos por el usuario se almacenan en dos colas diferentes, la cola	F
de mensajes privados y la cola de mensajes del canal.	
55. Respecto a la interfaz MessageListener y su método messageArrived(),	V
ChatClient recibe los mensajes debido a que implementa dicha interfaz, y el	
tratamiento de los mensajes se realiza en dicho método.	
56. Los procesos ChatClient reciben notificaciones de los mensajes que se envían, de	F
esta forma pueden realizar las peticiones necesarias al servidor de nombres para	
obtener su contenido, destinatario y origen.	

Sobre la práctica 5 (Java Message Service):

57. Para enviar un mensaje privado, un usuario usa la cola JMS asociada al usuario del	V
destinatario.	
58. CsdMessengerServer devuelve en la cola temporal una lista con los usuarios y	F
sus colas asignadas ante la conexión de un nuevo usuario.	
59. La recepción de mensajes de cada usuario en la cola que tiene asignada "users-	V
nombreusuario" implica la creación de un nuevo contexto JMS, dado que se realiza	
en un hilo distinto.	
60. NewChatMessage es un objeto de la clase definida en el API de JMS que se usa para	F
transmitir mensajes entre usuarios.	