www.vishay.com Vishay Siliconix

N-Channel 30 V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	30			
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.0031			
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.0050			
Q _g typ. (nC)	11			
I _D (A)	96 ^a			
Configuration	Single			

FEATURES

- TrenchFET® Gen IV power MOSFET
- 100 % R_g and UIS tested
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

- High power density DC/DC
- Synchronous rectification
- VRMs and embedded DC/DC

N-Channel MOSFET

ORDERING INFORMATION	
Package	PowerPAK SO-8
Lead (Pb)-free and halogen-free	SiRA10DDP-T1-GE3

PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-source voltage		V _{DS}	30	V	
Gate-source voltage		V _{GS}	+20, -16	v	
Continuous drain current (T _J = 150 °C)	T _C = 25 °C		96		
	T _C = 70 °C		77		
	T _A = 25 °C	I _D	33 b, c		
	T _A = 70 °C		26 b, c		
Pulsed drain current (t = 100 μs)		I _{DM}	150	A	
Continuous source-drain diode current	T _C = 25 °C		39		
	T _A = 25 °C	I _S	4.6 b, c		
Single pulse avalanche current	l 0.1 mll	I _{AS}	20		
Single pulse avalanche energy	L = 0.1 mH	E _{AS}	20	mJ	
Maximum power dissipation	T _C = 25 °C		43		
	T _C = 70 °C		28	W	
	T _A = 25 °C	P _D	5 b, c	VV	
	T _A = 70 °C		3.2 b, c		
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150		
Soldering recommendations (peak temperature) d, e			260	°C	

THERMAL RESISTANCE RATINGS						
PARAMETER		SMYBOL	TYPICAL	MAXIMUM	UNIT	
Maximum junction-to-ambient b, f	t ≤ 10 s	R_{thJA}	20	25	°C/W	
Maximum junction-to-case (drain)	Steady state	R_{thJC}	2.3	2.9	C/VV	

Notes

- a. Based on T_C = 25 °C
- b. Surface mounted on 1" x 1" FR4 board
- c. t = 10 s
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- f. Maximum under steady state conditions is 70 °C/W

www.vishay.com Vishay Siliconix

Drain-source breakdown voltage V _{DS} V _{GS} = 0 V, I _D = 250 μA 30 - - V _D V _{CS} = 0 V, I _{DP end} = 70 A, I _{T rensolient} S D S V _{DS} = 0 V, I _{DP end} = 70 A, I _{T rensolient} S D S S S V _{DS} = 0 V, I _{DP end} = 70 A, I _{T rensolient} S D S S S V _{DS} = 0 V, I _{DP end} = 70 A, I _{T rensolient} S D S S S D S S S D S S S	SPECIFICATIONS (T _J = 25 °C, t		,		T) (D	BAAN/	
Drain-source breakdown voltage VDS VGS = 0 V, ID = 250 μA 30 - - V V V V V V V V		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Drain-source breakdown voltage (c) (transient), Vost		T		<u> </u>	I	1	<u> </u>
Variable	<u>-</u>	V _{DS}		30	-	-	
Vosion temperature coefficient ΔV _{GS(H)} V _T J Ib = 250 μA 4.1 - MV ^N Gate-source threshold voltage V _{GS(H)} V _{GS(H)} V _{DS(H)} S _{GS(H)} = 250 μA 1.2 - 2.4 V Gate-source threshold voltage I _{GSS} V _{DS} = 0 V, V _{GS} = +20, -16 V ± 100 nA Zero gate voltage drain current I _{DSS} V _{DS} = 30 V, V _{GS} = 0 V, T _J = 55 °C 10 η _D Drain-source on-state resistance a R _{DS(s(n)} V _{GS} = 10 V, I _D = 10 A - 0.0024 0.0031 Ω _D Forward transconductance a g _R V _{DS} = 10 V, I _D = 10 A - 0.0024 0.0031 Ω _D Forward transconductance a g _R V _{DS} = 10 V, I _D = 20 A - 68 - 8 S Dynamic b Input capacitance C _{Csss} V _{DS} = 15 V, V _{QS} = 0 V, f = 1 MHz - 680 - 8 Reverse transfer capacitance C _{Crss} V _{DS} = 15 V, V _{QS} = 0 V, I _D = 10 A - 22.1 36.2 Total gate charge Q _g V _{DS} = 15 V, V _{QS} = 0 V, I _D = 10 A - 22.1 36.2 Gate-drain charge Q _g V _{DS} = 15 V, V _{QS} = 0 V, I _D = 10 A		V _{DSt}			=	-	V
Vasagh temperature coefficient ΔVGS(MI) Ib = 250 μA - -4.1 - Gate-source threshold voltage VGS(MI) VDS = VGS, Ib = 250 μA 1.2 - 2.4 V Gate-source leakage IGSS VDS = 0V, VGS = 20.7 if 0 - - ± ±100 nA Zero gate voltage drain current IGSS VDS = 30 V, VGS = 0 V - - 1 μA Drain-source on-state resistance a RGS(In) VDS = 30 V, VGS = 0 V - - 10 μA Drain-source on-state resistance a RGS(In) VDS = 10 V, Ib = 10 A - 0.0024 0.0031 Q 0.0024 0.0031 Q 0.0026 0.0031 Q D S D D D 0.0026 0.0031 Q S D D 0.0026 Q S D S D T 170 - 0.0026 Q S D P PF F P P P P F T T T<	V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	$I_D = 10 \text{ mA}$	-	16	-	mV/°C
Case Source leakage Source Sou	V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	$I_D = 250 \ \mu A$	-	-4.1	-	
Case Source leakage Source Sou	Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.2	-	2.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-source leakage		V _{DS} = 0 V, V _{GS} = +20, -16 V	-	-	± 100	nA
Drain-source on-state resistance a Pos(on) Vos = 10 V, I _D = 10 A 0.0024 0.0031 Ω Vos = 10 V, I _D = 10 A 0.0024 0.0035 0.0050 Ω Vos = 10 V, I _D = 10 A 0.0024 0.0035 0.0050 Ω Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 15 V, Vos = 10 V, I _D = 20 A 0.0035 0.0050 Ω Vos = 15 V, Vos = 10 V, I _D = 10 A 0.0024 0.0052 Ω Vos = 15 V, Vos = 10 V, I _D = 10 A 0.0026 0.052 Ω Vos = 15 V, Vos = 10 V, I _D = 10 A 0.0026 0.052 Ω Vos = 15 V, Vos = 10 V, I _D = 10 A 0.0026 0.052 Ω Vos = 15 V, Vos = 10 V, I _D = 10 A 0.0026 0.052 Ω Ω Ω Ω Ω Ω Ω Ω Ω	Zava mata valtama drain avyvant		V _{DS} = 30 V, V _{GS} = 0 V	-	-	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero gate voltage drain current	IDSS	V _{DS} = 30 V, V _{GS} = 0 V, T _J = 55 °C	-	-	10	μΑ
No.	During and a state of the second	Б	V _{GS} = 10 V, I _D = 10 A	-	0.0024	0.0031	
Dynamic b C C C C C C C C C	Drain-source on-state resistance ^a	H _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 7 \text{ A}$	-	0.0035	0.0050	Ω
$ \begin{array}{ c c c c c c } \hline \text{Input capacitance} & C_{\text{iss}} \\ \hline \text{Output capacitance} & C_{\text{OSS}} \\ \hline \text{Reverse transfer capacitance} & C_{\text{rss}} \\ \hline \text{Crss/C}_{\text{iss}} \text{ ratio} \\ \hline \hline \text{Crss/C}_{\text{iss}} \text{ ratio} \\ \hline \hline \text{Total gate charge} & Q_g \\ \hline \hline \text{Total gate charge} & Q_{gs} \\ \hline \text{Cate-drain charge} & Q_{gs} \\ \hline \text{Output charge} $	Forward transconductance a	9 _{fs}	$V_{DS} = 10 \text{ V}, I_{D} = 20 \text{ A}$	-	68	-	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic ^b			1		•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input capacitance	C _{iss}		-	1710	-	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output capacitance		V 45VV 6V (4 M)	-	690	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse transfer capacitance		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, t = 1 \text{ MHz}$	-	45	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{rss} /C _{iss} ratio			-	0.026	0.052	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 10 A	-	24.1	36.2	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total gate charge	Qg		-	11.7	17.6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-source charge	Q _{as}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A}$	-	5.5	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	_		-	2.2	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output charge	†	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$	-	18	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.3	1.3	2.6	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on delay time	' ' 		-	10	20	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise time	1	$V_{DD} = 15 \text{ V } \text{ R}_1 = 15 \text{ O}$	-	5	10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-off delay time	+		-	21	40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	5	10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on delay time	+		-	17	35	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	+	Von = 15 V R ₁ = 1.5 O			100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-off delay time			-	21	40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>		1			
Pulse diode forward current a I_{SM} $ 150$ Body diode voltage V_{SD} $I_S = 10 \text{ A}$ $ 0.80$ 1.1 V Body diode reverse recovery time t_{rr} $ 27$ 54 ns Body diode reverse recovery charge Q_{rr} $I_F = 10 \text{ A}$, di/dt $= 100 \text{ A/µs}$, $ 14$ 30 nC Reverse recovery fall time t_a $T_J = 25 ^{\circ}C$ $ 13$ $ ns$			T _C = 25 °C	-	-	39	
Body diode voltage V_{SD} $I_S = 10 \text{ A}$ - 0.80 1.1 V Body diode reverse recovery time t_{rr} $-$ 27 54 ns Body diode reverse recovery charge Q_{rr} $I_F = 10 \text{ A}$, di/dt = 100 A/ μ s, $T_J = 25 ^{\circ}\text{C}$ - 13 - ns		1	<u> </u>	-	-		Α
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+ +	I _S = 10 A	 -			V
Body diode reverse recovery charge Q_{rr} $I_F = 10 \text{ A}$, $di/dt = 100 \text{ A/µs}$, $-$ 14 30 nC Reverse recovery fall time t_a $T_J = 25 ^{\circ}\text{C}$ $-$ 13 $-$ ns		+ +	-3	-			
Reverse recovery fall time t _a T _J = 25 °C - 13 - ns			I 10 A di/dt - 100 A/us	_			1
ns ns						-	
Develoe recovery use time 1 1/4 1 - 1/	Reverse recovery rise time	t _b	Č	_	14	_	

Notes

- a. Pulse test: pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$
- b. Guaranteed by design, not subject to production testing
- c. Based on characterization, not subject to production testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

On-Resistance vs. Drain Current

Transfer Characteristics

Capacitance

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

Single Pulse Power, Junction-to-Ambient

Power, Junction-to-Case

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62130.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.