МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №3.4.5

Петля гистерезиса (динамический метод)

Пилюгин Л.С. Б02-212 Победин Н.К. Б02-212 28 ноября 2023 г.

1 Аннотация

Цель работы: изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.

Оборудование: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

2 Теоритические сведения

Ферромагнитные материалы часто применяются в трансформаторах, дросселях, машинах переменного тока, то есть в устройствах, где они подвергаются периодическому перемагничиванию, — поэтому изучение магнитных характеристик ферромагнетиков в переменных полях представляет большой практический интерес. Основные характеристики ферромагнетиков — их коэрцитивное поле H_C , магнитная проницаемость μ , рассеиваемая в виде тепла при перемагничивании мощность — зависят от частоты перемагничивающего поля. В данной работе кривые гистерезиса ферромагнитных материалов изучаются в поле частоты $\nu_0 = 50$ Γ ц с помощью электронного осциллографа.

Магнитная индукция B и напряжённость поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между B и H типичного ферромагнетика иллюстрирует рисунок.

Если к ферромагнитному образцу прикладывать переменное внешнее магнитное поле, то его состояние на плоскости HB будет изменяться по замкнутой кривой — петле гистерезиса. Размер петли определяется максимальным значением напряжённости H в цикле. Если амплитуда напряжённости достаточно велика, то образец будет периодически достигать насыщения, что на рисунке соответствует кривой СЕГС'Е'F'С (предельная петля гистерезиса). Пересечение предельной петли с вертикальной осью соответствует остаточной индукции B_r , пересечение с горизонтальной осью — коэрцитивному полю H_C . Крайние точки петель, соответствующие амплитудным значениям H.

Магнитную индукцию B удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Φ в катушке, намотанной на образец. Пусть катушка с N

витками плотно охватывает образец сечением S, и индукция B в образце однородна.

$$|B| = \frac{1}{SN} \int \mathcal{E}dt$$

Таким образом, для определения B нужно проинтегрировать сигнал, наведённый меняющимся магнитным полем в измерительной катушке, намотанной на образец.

Для интегрирования в работе используется интегрирующая RC-цепочка.

$$U_{\scriptscriptstyle
m BMX} = rac{q}{C} = rac{1}{C} \int I dt pprox rac{1}{ au} \int U_{\scriptscriptstyle
m BX} dt$$

 $\tau = RC$.

$$\frac{U_{\text{вых}}}{U_{\text{вх}}} \approx \frac{1}{\omega_0 t}$$

$$\tau = RC \gg \frac{1}{\omega_0}$$

3 Оборудование

Спомощью трансформаторного блока T, состоящего из регулировочного автотрансформатора и разделительного понижающего трансформатора, подаётся на намагничивающую обмотку N_0 исследуемого образца.

В цепь намагничивающей катушки, на которую подаётся некоторое напряжение U_0 , последовательно включено сопротивление R_0 . Напряжение на R_0 , равное $U_R = R_0 I_0$, I_0 — ток в намагничивающей обмотке N_0 , подаётся на канал X осциллографа. Связь напряжённости H в образце и тока I_0 рассчитывается по теореме о циркуляции. Действующее значение переменного тока в обмотке N_0 измеряется амперметром A.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm u}$ на вход RCцепочки подаётся напряжение $U_{\rm u}$, пропорциональное dB/dt. С интегрирующей ёмкости C снимается напряжение U_C , пропорциональное величине B и подаётся на вход Y осциллографа. Значение индукции поля B рассчитывается по формуле.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный

смысл, необходимо установить масштабы изображения, т. е. провести калибровку каналов Х и У осциллографа.

Калибровка канала X осциллографапроизводится с помощью амперметра А. Предварительно необходимо закоротить обмотку N_0 . При закороченной обмотке N_0 показания эффективного тока, умноженные на $2\sqrt{2}$ дадут значение удвоенной амплитуды тока, подаваемого на ось X, соответствующего ширине горизонтальной развёртки на экране.

Калибровка вертикальной оси У, как правило, не нужна (переключатель масштабов осциллографа откалиброван при изготовлении — при условии, что ручка плавной регулировки находится в положении калибровки). Тем не менее, она может проводиться с помощью сигнала, сни маемого через делитель напряжения со второй катушки понижающеготрансформатора.

Результаты измерений

$$R = 20 \text{ KOm}$$
 $C = 20 \text{ мк}\Phi$

	феррит	Fe-Si	Fe-Ni
N_0	42	25	20
$N_{\scriptscriptstyle m M}$	400	250	300
S, cm ²	3	2	0,76
L, cm	25	11	13,3
$k_H, A/M/B$	764	1033	684
k_B , Тл/м	3,3	8,0	17,5
B_r , Тл, $\pm 5\%$	0,077	0,176	1,42
$B_s, \text{ Тл}, \pm 5\%$	0,21	0,32	1,42
$H_c, A/M, \pm 5\%$	19,1	34,1	21,9
$H_{max}, A/M, \pm 5\%$	121	83	23
$2x_s, \text{ MB}, \pm 5\%$	317,5	162	68
$2y_s, \text{ мB}, \pm 5\%$	124	80	162
$2x_c, \text{ MB}, \pm 5\%$	50	66	64
$2y_r$, мВ, $\pm 5\%$	46	44	162
$\mu_0, \text{ Тл} \cdot \text{м/A}, \pm 5\%$	0,0035	0,0052	0,125
μ_{max} , Тл·м/A, $\pm 5\%$	0,0035	0,0077	0,1

$$k_H = rac{N_0}{R_0 L}$$
 $k_B = rac{RC}{SN_{\scriptscriptstyle
m H}}$

$$k_B = \frac{RC}{SN_{\nu}}$$

5 Вывод

Было исследовано явление электромагнитного гистерезиса.

