1 The RSA Cryptosystem

1.1 Mechanism

Goal: Alice wants to send Bob an encrypted message through an insecure channel.

- Bob chooses his public key $(n,e) \in \mathbb{N}^2$ and private key $d \in \mathbb{N}$. Bob publishes his public key.
 - $-n \in \mathbb{N}$ is called the modulus, with n = pq, where p and q are large distinct prime numbers. Note that Bob publishes p but keeps p and q secret.
 - $-e \in \mathbb{N}$ is the called encryption exponent, and satisfies $\gcd(e,(p-1)(q-1))=1$.
 - $-d \in \mathbb{N}$ is the called decryption exponent, and is determined by e and n = pq via $d = e^{-1} \in \mathbb{Z}_{(p-1)(q-1)}$. Note that $e^{-1} \in \mathbb{Z}_{(p-1)(q-1)}$ exists since $\gcd(e, (p-1)(q-1)) = 1$.
- Alice
 - chooses plaintext $m \in \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.
 - encrypts her plaintext m using Bob's public key (n, e) by raising $m \in \mathbb{Z}_n$ to the e^{th} power. In other words, Alice computes her ciphertext $c = m^e \in \mathbb{Z}_n$.
 - sends to Bob through the insecure channel the ciphertext $c \in \mathbb{Z}_n$.
- Bob decrypts the ciphertext $c \in \mathbb{Z}_n$ from Alice by taking the e^{th} root of c in \mathbb{Z}_n using his private key $d \in \mathbb{N}$ as follows:

$$c^d = (m^e)^d = m^{ed} = m^{1+k(p-1)(q-1)} = m \cdot (m^{(p-1)(q-1)})^k = m \cdot (1)^k = m \in \mathbb{Z}_n$$

- The second last equality follows from $m^{(p-1)(q-1)} \equiv 1 \mod n$, which follows immediately from Euler's Theorem. It can also be justified with Fermat's Little Theorem as follows:

Fermat's Little Theorem
$$\implies \begin{cases} m^{(p-1)(q-1)} = (m^{p-1})^{q-1} \equiv 1 \mod p, \text{ and } \\ m^{(p-1)(q-1)} = (m^{q-1})^{p-1} \equiv 1 \mod q. \end{cases}$$

Hence, $m^{(p-1)(q-1)} - 1$ is divisble by both p and q, and hence also by pq = n (since p and q are distinct primes). Thus, $m^{(p-1)(q-1)} \equiv 1 \mod n = pq$.

1.2 Comments

- One-way function (easy): Exponentiation in \mathbb{Z}_n .
 - Repeating Squaring Algorithm
- (Difficult) inverse function: Taking roots in \mathbb{Z}_n , for n = pq, where p and q are large distinct prime numbers.
- Trapdoor: If the factorization of n = pq is known, then we can convert the inverse function (taking roots in \mathbb{Z}_n , which is slow) to an exponentiation in \mathbb{Z}_n , which is fast.

Mathematical Cryptography

Kenneth Chu Study Notes September 8, 2013

1.3 How to find large prime numbers?

- Generate random numbers x with $2^{1023} < x < 2^{1024}$.
- The Prime Number Theorem (from Analytic Number Theory) implies that, for large values of N, the probability that a randomly selected integer $x \in (2^{N-1}, 2^N)$ is prime is approximately

$$\frac{1}{\ln(2^N)}$$

 \bullet Test for the compositeness or "probable primality" of x using the Miller-Rabin primality test.

A Gibbs' Inequality & Jensen's Inequality

Theorem A.1 (Jensen's Inequality)

Suppose

- $(\Omega, \mathcal{A}, \mu)$ is a probability space (i.e. measure space with $\mu(\Omega) = 1$).
- $\varphi:(a,b)\longrightarrow \mathbb{R}$ is a convex function, i.e.

$$\varphi(t x_1 + (1 - t)x_2) \le t \varphi(x_1) + (1 - t) \varphi(x_2), \text{ for any } t \in [0, 1], x_1, x_2 \in (a, b),$$

where $-\infty \le a < b \le \infty$.

• $g: \Omega \longrightarrow (a,b)$ is a μ -integrable function.

Then, the following inequality holds:

$$\varphi\left(\int_{\Omega} g \,\mathrm{d}\mu\right) \leq \int_{\Omega} \varphi \circ g \,\mathrm{d}\mu$$

Corollary A.2 (Jensen's Inequality (Expectation Form))

Suppose

- $X: (\Omega, \mathcal{A}, \mu) \longrightarrow (a, b)$ is a \mathbb{R} -valued random variable defined on the probability space $(\Omega, \mathcal{A}, \mu)$ with range contained in the open interval (a, b), where $-\infty \leq a < b \leq \infty$.
- $\varphi:(a,b)\longrightarrow \mathbb{R}$ is a convex function.

Then, the following inequality holds:

$$\varphi(E[X]) \leq E[\varphi(X)]$$

Theorem A.3 (Gibbs' Inequality)

Suppose

- (Ω, A) is a measurable space.
- $f,g:\Omega \longrightarrow [0,\infty)$ are two nowhere-vanishing probability density functions defined on (Ω,\mathcal{A}) .

Then, the following inequality holds:

$$-\int_{\Omega} (\log f) f \, \mathrm{d}x \leq -\int_{\Omega} (\log g) f \, \mathrm{d}x$$

PROOF First, note that $\varphi := -\log : (0, \infty) \longrightarrow \mathbb{R}$ is a convex function defined on the open unit interval (0,1), and that the domain of φ contains the range of f and g. Hence, by Jensen's Inequality, we have:

$$\int_{\Omega} \left[-\log \left(\frac{g(x)}{f(x)} \right) \right] \cdot f(x) \, \mathrm{d}x \ \geq \ -\log \left(\int_{\Omega} \frac{g(x)}{f(x)} \cdot f(x) \, \mathrm{d}x \right) = -\log \left(\int_{\Omega} g(x) \, \mathrm{d}x \right) = -\log \left(1 \right) = 0$$

The above inequality immediately implies:

$$-\int_{\Omega} (\log g(x)) \cdot f(x) dx \ge -\int_{\Omega} (\log f(x)) \cdot f(x) dx,$$

which completes the proof of Gibbs' Inequality.