Quantitative Risk Management Assignment 6 Solutions

November 12, 2019

Question 1: Part 1) We have $Y_t = \phi Y_{t-1} + \epsilon_t$ with $|\phi| < 1$ and $(\epsilon_t)_{t \in \mathbb{Z}}$ being white noise. The variance of Y_t is:

$$\mathbb{E}[Y_t^2] = \mathbb{E}[\phi^2 Y_{t-1}^2 + 2Y_{t-1}\epsilon_t + \epsilon_t^2]$$

$$\mathbb{E}[Y_t^2] = \phi^2 \mathbb{E}[Y_t^2] + 1$$

$$\mathbb{E}[Y_t^2] = \frac{1}{1 - \phi^2}$$

Next, we compute the covariance of Y_t and Y_{t+h} . Assume h > 0 so that:

$$Y_{t+h} = \phi^{h} Y_{t} + \sum_{i=1}^{h} \phi^{i-1} \epsilon_{t-i}$$

$$Y_{t+h} Y_{t} = \phi^{h} Y_{t}^{2} + \sum_{i=1}^{h} \phi^{i-1} \epsilon_{t-i} Y_{t}$$

$$\mathbb{E}[Y_{t+h} Y_{t}] = \frac{\phi^{h}}{1 - \phi^{2}} + \sum_{i=1}^{h} \phi^{i-1} \mathbb{E}[\epsilon_{t-i} Y_{t}]$$

$$\mathbb{E}[Y_{t+h} Y_{t}] = \frac{\phi^{h}}{1 - \phi^{2}}$$

and so the autocorrelation is ϕ^h . Repeating the calculation for h < 0 gives a similar result to show that we can write $\rho(h) = \phi^{|h|}$.

Part 2) We start with the identity $X_t^2 = \sigma_t^2 + \sigma_t^2(Z_t^2 - 1)$ and show that $\sigma_t^2(Z_t^2 - 1)$ is a martingale difference sequence. Since we are assuming that $\mathbb{E}[X_t^4] < \infty$, we also have $\mathbb{E}[X_t^2] < \infty$ which implies $\mathbb{E}[\sigma_t^2] < \infty$. Since Z_t is independent of σ_t , we have:

$$\begin{split} \mathbb{E}\Big[|\sigma_t^2(Z_t^2-1)|\Big] &\leq \mathbb{E}[\sigma_t^2]\mathbb{E}[Z_t^2+1] \\ &= 2\mathbb{E}[\sigma_t^2] \\ &< \infty \end{split}$$

Also:

$$\mathbb{E}[\sigma_t^2(Z_t^2 - 1)|\mathcal{F}_{t-1}] = \sigma_t^2 \mathbb{E}[Z_t^2 - 1|\mathcal{F}_{t-1}]$$
$$= \sigma_t^2 \mathbb{E}[Z_t^2 - 1]$$
$$= 0$$

And so $\sigma_t^2(Z_t^2-1)$ is a martingale difference sequence. Next, we verify that $\sigma_t^2(Z_t^2-1)$ has finite variance:

$$\begin{split} \mathbb{E}[\sigma_t^4(Z_t^2-1)^2] &= \mathbb{E}[\sigma_t^4 Z_t^4 - 2\sigma_t^4 Z_t^2 + \sigma_t^4] \\ &= \mathbb{E}[X_t^4 - 2X_t^2 \sigma_t^2 + \sigma_t^4] \\ &= \mathbb{E}[X_t^4 - 2X_t^2 (\alpha_0 + \alpha_1 X_{t-1}^2) + \alpha_0^2 + 2\alpha_0 \alpha_1 X_{t-1}^2 + \alpha_1^2 X_{t-1}^4] \\ &= \mathbb{E}[X_t^4 - 2\alpha_0 X_t^2 + 2\alpha_1 X_t^2 X_{t-1}^2 + \alpha_0^2 + 2\alpha_0 \alpha_1 X_{t-1}^2 + \alpha_1^2 X_{t-1}^4] \end{split}$$

This expression is finite because we assume $\mathbb{E}[X_t^4] < \infty$, and it is constant because $(X_t)_{t \in \mathbb{Z}}$ is strictly stationary. Since $\sigma_t^2(Z_t^2-1)$ is a martingale difference sequence with finite constant variance, it is white noise which we will denote ϵ_t . The equation for X_t^2 is then:

$$\begin{split} X_t^2 &= \sigma_t^2 + \sigma_t^2 (Z_t^2 - 1) \\ X_t^2 &= \alpha_0 + \alpha_1 X_{t-1}^2 + \epsilon_t \end{split}$$

The desired expression is:

$$X_t^2 - c = \phi(X_{t-1}^2 - c) + \epsilon_t$$

Clearly we must choose $\phi = \alpha_1$ and $c = \frac{\alpha_0}{1-\alpha_1}$ for $X_t^2 - c$ to be AR(1).

Part 3) We have immediately from Part 1) that the autocorrelation function for $(X_t^2 - c)_{t \in \mathbb{Z}}$ is $\rho(h) = \alpha_1^{|h|}$.

Question 2: The conditional maximum likelihood estimation is performed as outlined in lecture. A two year moving window is used to estimate model parameters each day for three years. In the case of normally distributed innovations, the function which is maximized with respect to $(\alpha_0, \alpha_1, \beta_1)$ is:

$$\sum_{k=1}^{n} \log \left(\frac{1}{\sigma_k} \phi(\frac{x_k}{\sigma_k}) \right)$$

where ϕ is the pdf of a standard normal and:

$$\sigma_k^2 = \alpha_0 + \alpha_1 x_{k-1}^2 + \beta_1 \sigma_{k-1}^2 \,, \tag{1}$$

$$\sigma_0 = \hat{S}_X \,. \tag{2}$$

In the case of the t-distributed innovations, the function to be maximized with respect to $(\alpha_0, \alpha_1, \beta_1, \nu)$ is:

$$\sum_{k=1}^{n} \log \left(\frac{c}{\sigma_k} g_{\nu} \left(\frac{cx_k}{\sigma_k} \right) \right)$$

where $c = \sqrt{\frac{\nu}{\nu - 2}}$ and g_{ν} is the pdf of the standard t variable with ν degrees of freedom.

Suppose at time t the parameters have been estimated using the previous two years of returns. We then compute σ_{t+1} using equations (1) and (2), and we make the VaR_{α} estimate as:

$$VaR_{\alpha} = \sigma_{t+1}q_{\alpha}(Z) - \hat{\mu}. \tag{3}$$

where $\hat{\mu}$ is the sample mean of the two year window of returns. Figure 1 shows the daily VaR_{α} estimates for both estimated models, as well as the observed return on that day. Breaches are indicated with coloured dots.

Figure 1: VaR_{α} estimates for normal and student-t innovations. When using normal innovations, the number of VaR_{α} breaches is equal to 27 for $\alpha=0.95$ and 14 for $\alpha=0.99$. With student-t innovations, the number of breaches is equal to 38 for $\alpha=0.95$ and 10 for $\alpha=0.99$.

In all estimated models, the conditions of covariance stationarity are satisfied by the parameters: $\alpha_1 + \beta_1 < 1$. This allows us to compute the variance of X_t implied by the parameters in each case. Figure 2 shows for each day the empirical variance of the two year moving window of returns, as well as the theoretical variance given by the estimated model in both cases.

Figure 2: Daily two year window empirical variance and theoretical variance given by estimated model.