

FIG. 1

FIG. 2

(ENVIRO-MATIC)	FUNCTIONS	BENEFITS
MODULES		. ,
Aggregates Reclaiming Module	Separates aggregates from slurry, washes, dewaters aggregates. Choice of models and capacities.	High quality construction by Stephens Mfg. produces long life, trouble-free performance.
Shaker Screen Module (optional)	Separates coarse and fine aggregates.	Reduces material handling costs.
Hydrocyclone Module (optional)	Strips sand fines (100+) from slurry on demand. Centrifugal flow device has no moving parts.	Maximizes recovery of fines. Reduces slurry density for better recycling or dewatering.
Slurry Vessel Module	Stores slurry for later recycling, dewatering or disposal.	Underground location saves space, permits dilution to control density. Agitators run on demand, use minimal power.
Density Cell Module	Measures specific gravity of slurry.	Ensures total quality control of concrete made with recycled slurry.

FIG. 4

,		
Solids Correction Programming Instruction Module	Powerful, proprietary software interfaces with batch plant control system, maintains yield, water/cement ratio and mix proportions regardless of slurry density	Protects quality of your product. Permits total recycling of slurry with no compromise in mix design. Works with all major computerized plant controls. Only the Enviro-Matic System has this vital quality control capability.
Cyclic Plate Filter Press Module (optional) Continuous Belt Filter Press Module (optional)	Simple, economical method of dewatering slurry when it cannot be recycled into new concrete. Range of sizes and capacities. Minimizes or eliminates need for extensive settling ponds.	Completely eliminates any slurry problem. Supports extreme demands up to 150 cu. yd. per day of returned concrete. Solids are compressed into stable, solid cake byproduct easy to load, haul and dump as fill material. Filtrate water is clarified and reusable.
Drainage Containment Interface Module (optional)	All plant site storm drainage, fugitive water, filtrate, and make-up water can be prioritized by Enviro-Matic control.	Aids in compliance with regulations even with maximum production, adverse job conditions, high volumes of returned concrete and severe weather.

FIG. 5

FILTER PRESS DILLITION

	ないという		5												1000	
TUDOUTT	140	00	r	DDECC	٥	IIMP		C	MP	_	CYCLE TIN	AE-MIN	NUMBER	<u>-</u>	FOB COST	
VESSEL GAL.	GAL.	5.6	٠.	LUCTU	-	TI O					Sult.		00.10	000	a u iu	
	CAP	CAP START STOP	STOP	SIZE	GPM	H	PSI	CFM	田田	SI 1	TSY TAST	TOT.	GPM HP PSI CFM HP PSI 131 LAST TOT. CYCLES PRESS FUMP COMP	PRESS	PUMF	COMP
		CITALL	1010				+									-
EM20	5,000 1.25		1.03	•	•	•	•	•	•	•	•	•	•	•	•	•
							+	1	+	-						
EM40	10,000 1.25	1.25	1.03	•	•	•	•	•	•	•	•	•	•	•	•	•
				_	_											

FIG. 9A

FILTER PRESS FILTRATE

		OM/O	- JIMIC		i	•		•	
Lo	121	7	ز 		_				
5	280	DI IN				•		•	
	FUB CUSI	מממממ	PKESS			•		•	
, ,	TOTAL	E CL	IIME	MIN		•		•	
	NO.	OT TOTAL	CYCLES	-		•		•	-
	CYCLE			ZIX		•		•	
			PSI			•		•	
	COMP		HP			•		•	
	_		GPM HP PSI CFM HP PSI			•	ŀ	•	
			PSI			•		•	
	PI IMP		H			•		•	
						•		•	
	DDECC		SIZE			•		•	
711	20	9				1.25		1.25	
77777	DAD	CAF.	STOP	1		5,000 500 1.25		1,000	
LILILIA INCOLITATIONI	CALLON	GALLO	START STOP SIZE	131112		2,000		10,000 1,000 1.25	
	זיוטטרוז	VESSEL				EM20		EM40	

FIG. 9B

BELT PRESS FILTRATE

COST/DAY	POLYMER			•	•	•
FOB	COST	BELT	PRESS	•	•	•
90% EMPTY	TO E-M CY VESSEL-MIN			135	06	89
3 %06	VESSE		EM20	64	43	32
FEED	-M CY		EM40	26	126	155
3 HR	TO E-		EM20	11	106	135
FEED	TO E-	M	CY/HR	19.2	28.8	38.4
INTER-	MITTENT FEED	TO E-M		1	1	1
AVG.	FEED	TO E-M	CY/MIN	0.32	0.48	0.64
SLURRY SLUDGE	FEED		LB/HR SG GPM LB/CY	620	620	620
JRRY	FEED		GPM	70	105	140
SLL	丑		SG	1.22	1.22	1.22
WIDTH CAP.			LB/HR	12,000 1.22	18,000 1.22	24,000 1.22 140
WIDTH	METERS			1.2	1.7	2.2

FIG. 10

CLOSED CIRCUIT MATERIAL UTILIZATION CHART FOR RETURNED CONCRETE

WATER	CODE	CONCRETE	PLANT	BELT	FILTER	POND	HYDRO	DENSITY
SOURCE)	RECYCLE	BATCH	PRESS	PRESS		CYCLONE	CELL
		MACHINE	WATER					
FRESH	ш	X	X	X				X
CLARIFIED SLURRY	SO	X						
CLARIFIED POND	CP	X	×					
SLURRY	S		X	X	X		X	×
DRAINAGE	Q					×		
FILTRATE	FT					×		
RETURN	RC	X						
CONCRETE								

FIG. 11