

Análisis Numérico

Guía de ejercicios

Unidad 05: Interpolación y aproximación de funciones

1. Calcule el polinomio interpolante de Newton-Gregory para los siguientes datos:

Xi	0	1	2	3
F(Xi)	2	3	4	8
Xi	1	2	3	4
F(Xi)	10	15	30	15
	F(Xi)	XI 0 F(Xi) 2	Xi 0 1 F(Xi) 2 3	Xi 0 1 2 F(Xi) 2 3 4

C.	Xi	0	1	2	3
	F(Xi)	-3	0	-6	9

2. Calcule el polinomio interpolante de Lagrange para los siguientes datos:

a.	Xi	0	1	2	3
	F(Xi)	1	2	4	9
	, ,				

b.	Xi	-1.5	-0.5	1.0	-2
	F(Xi)	9	-2	5	3

c.	Xi	0	1.11	1.14	1.22
	F(Xi)	0	1.367	1.481	1.815

3. Analice si los siguientes datos pueden ser evaluados aplicando el Método de Newton-Gregory y en caso contrario justifique:

a.	Xi	0.00	0.24	0.48	0.72	0.96
	F(Xi)	3.000	3.057	3.336	4.000	1.262

_						
b.	Xi	1	1.2	1.25	1.50	1.60
Ì	F(Xi)	1.557	2.572	3.010	1.411	1.512

4. Dados los siguientes datos calculados:

Xi	1.00	1.20	1.25	1.50
F(Xi)	1.557	2.572	3.010	1.411

- a. Calcule el polinomio interpolante de Lagrange
- b. Interpolar para x = 1.235.
- 5. Dada la siguiente tabla:

Edad	10	20	30	40	50	60	70	80
Esperanza de vida	66	56	47	37	29	20	14	8

- a. Estimar la recta de máximo ajuste.
- b. Calcular el coeficiente de correlación de Pearson.
- c. Obtenga una conclusión.

6. Dada la siguiente tabla:

Χ	1.0	1.1	1.3	1.5	1.9	2.1
Υ	1.84	1.96	2.21	2.45	2.94	3.18

- a. Calcule e interprete el coeficiente de correlación de Pearson.
- b. Analice si considera una mejor aproximación cuadrática o logarítmica y justifique.
- c. Calcule la función que mejor aproxime.
- d. Grafique la función para el intervalo dado.
- e. Estime para x = 1.75.
- 7. Para conocer la relación entre la velocidad de caída de un paracaidista y la fuerza de fricción hacia arriba, se efectuaron las siguientes mediciones:

Velocidad [cm/seg]	1	2	3	4	5	6
Fuerza de fricción [dinas]	5.0	15.3	29.3	46.4	66.3	80.2

- a. Argumente que aproximación es la más adecuada: lineal o cuadrática.
- b. Calcule la función que mejor aproxime.
- c. Grafique la función en el intervalo dado.
- d. Interpole para velocidad = 2.56 cm/seg