Package 'Irspline'

May 30, 2021

111dy 30, 2021				
Type Package				
Title Low-rank Approximation of Smoothing Splines for Massive Data				
Version 0.1.0				
Author Danqing Xu				
Maintainer Danqing Xu <elisexu0308@gmail.com></elisexu0308@gmail.com>				
Description Functions for approximating the smoothing spline estimates: (1) Lowrank Approximation via Eigensystem Truncation, (2) Nystrom Methods.				
License GPL-3				
Encoding UTF-8				
LazyData true				
Imports assist, mgcv RoxygenNote 7.1.1				
R topics documented: generate.eigen.cubic 1 hello				
Index 5				
generate.eigen.cubic Gridpoints and Eigendecomposition of Reproducing Kernal for Cubic Splines				

Description

Generates eigendecomposition from gridpoints from an interval.

Usage

```
generate.eigen.cubic(N = 1000, a = 0, b = 1)
```

2 lrspline.cubic

Arguments

N	The number of gridpoints. It should be an integer. The default value is 1000.
а	The lower limit of the interval used for gridpoints. The default value is 0.
b	The upper limit of the interval used for gridpoints. The default value is 1.

Value

It returns (and saves) a list of following components:

e A list of two elements of "values" and "vectors", which refer respectively, the eigenvalues and eigenfunctions of reproducing kernel for cubic splines at the

pre-selected gridpoints.

xg A vector of gridpoints.

Examples

```
## Not run:
eigen_res <- generate.eigen.cubic(N=1000,a=2,b=3)
## End(Not run)</pre>
```

hello

Hello, World!

Description

Prints 'Hello, world!'.

Usage

hello()

Examples

hello()

lrspline.cubic

Low-rank Approximation Based on Eigenspaces for Cubic Smoothing Spline Estimates

Description

Computes a low-rank approximation based on eigenspaces, where estimation utilizes functions for linear mixed effect model (LME).

Usage

```
lrspline.cubic(x, y, xg, e, K = 30, method = "REML", pstd = FALSE)
```

nystrom.cubic 3

Arguments

X	The values of independent variable. It should be a vector.
У	The values of dependent variable. It should be a vector.
xg	The gridpoints used for approximation of
е	A list of two elements of "values" and "vectors", which refer respectively, the eigenvalues and eigenfunctions of reproducing kernel for cubic splines at the pre-selected gridpoints (must agree with xg).
K	An integer value. The truncation parameter indicates the number of eigenvalues/eigenfunctions used in approximation. The default value is 30.
method	A character string. If "REML" the LME model is fit by maximizing the restricted log-likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".
pstd	An indicator of whether standard deviation is desired. The default value is FALSE.

Value

A vector(s) of following component(s):

fit The low-rank approximation of cubic smoothing spline estimate.

pstd The corrsponding posterior standard deviation.

Examples

```
## Not run:
data(eigenM)
x <- runif(1000)
y <- sin(32*pi*x)-8*(x-.5)^2 + rnorm(1000)
lrspline.cubic(x,y,xg,e,K,method="REML",pstd=FALSE)
## End(Not run)</pre>
```

nystrom.cubic

Nystrom Approximation for Cubic Smoothing Spline Estimates

Description

Computes a Nystrom approximation based on randomly selected columns of \$\Sigma\$ matrix, where estimation utilizes functions for linear mixed effect model (LME).

Usage

```
nystrom.cubic(x, y, p = 30, method = "REML", pstd = FALSE)
```

nystrom.cubic

Arguments

X	The values of independent variable. It should be a vector.
У	The values of dependent variable. It should be a vector.
p	An integer value. The selection parameter indicates the number of columns for random selection and approximation. The default value is 30.
method	A character string. If "REML" the LME model is fit by maximizing the restricted log-likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".
pstd	An indicator of whether standard deviation is desired. The default value is FALSE.
xg	The gridpoints used for approximation of
e	A list of two elements of "values" and "vectors", which refer respectively, the eigenvalues and eigenfunctions of reproducing kernel for cubic splines at the pre-selected gridpoints (must agree with xg).

Value

A vector(s) of following component(s):

fit The Nystrom approximation of cubic smoothing spline estimate.

pstd The corrsponding posterior standard deviation.

Examples

```
## Not run:
data(eigenM)
x <- runif(1000)
y <- sin(32*pi*x)-8*(x-.5)^2 + rnorm(1000)
nystrom.cubic(x,y,xg,e,K,method="REML",pstd=FALSE)
## End(Not run)</pre>
```

Index

```
generate.eigen.cubic, 1
hello, 2
lrspline.cubic, 2
nystrom.cubic, 3
```