

离散数学 (2023) 作业 17

谢庆轩 221900325

2023年5月2日

1 Problem 1

- A. 不是
- B. 是
- C. 不是
- D. 不是

2 Problem 2

证明: $\forall x, y \in N(a)$, 有 xa = ax, ya = ay, 所以 (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy), 即 $\forall x, y \in N(a), xy \in N(a)$, 故 N(a) 是 G 的子群, 得证

3 Problem 3

证明: 因为 H 是 G 的子群,所以 $\forall a,b \in H,ab^{-1} \in H$,又 $xax^{-1},xb^{-1}x^{-1} \in xHx^{-1}$,可得 $xax^{-1}xb^{-1}x^{-1} = xaeb^{-1}x^{-1} = x(ab^{-1})x^{-1} \in xHx^{-1}$,故 xHx^{-1} 是 G 的子群,得证

4 Problem 4

证明: 假设 $H \cap K \neq \{e\}$, 则 $H \cap K$ 一定不为一阶子群,记其为 k(k > 1) 阶,则 $k \mid r, k \mid s$,那么 gcd(r,s) = k,与 r,s 互素矛盾,故 $H \cap K = \{e\}$,得证

5 Problem 5

证明: 记 a 为 G 中的二阶元,假设 $\exists x \in G, ax \neq xa$,则 $xax^{-1} \in G$ 且 $xax^{-1} \neq a$,有 $(xax^{-1})^2 = xax^{-1}xax^{-1} = xa^2x^{-1} = xx^{-1} = e$,与二阶元 唯一矛盾,故若 G 中只有一个二阶元,则这个二阶元一定与 G 中所有元素 可交换,得证

6 Problem 6

证明: 因为 gh=hg,所以 $(gh)^k=g^kh^k(k$ 为正整数),故 |gh| 应为 $lcm(|g|,|h|)=\frac{|g||h|}{gcd(|g||h|)}=|g||h|$,得证

7 Problem 7

证明: $\forall g \in G, \forall h \in H, gh \in gH$, 有 $ghg^{-1}g \in Hg$, 又 $ghg^{-1}g = gh$, 所以 $\forall g \in G, h \in H, gh \in gH$ 且 $gh \in Hg$, 即 $\forall g \in G, gH = Hg$, 得证

8 Problem 8

证明: $a ext{ } b ext{ } p ext{ } 的倍数时, \ a^p \equiv a \pmod p$ 显然成立; $a ext{ } \pi \text{ } b ext{ } p ext{ } 的倍数时,$ $\mathbb{Z}_p^* = \{1,2,...,p-1\}, |\mathbb{Z}_p^*| = p-1,$ 则其中任意元素 $a, \langle a \rangle = \{a^k | k \in \mathbb{Z}_{ord(a)}\}$ 为 \mathbb{Z}_p^* 的子群,阶数为 ord(a),所以 $ord(a) \mid (p-1)$,又因为 $a^{ord(a)} \equiv 1 \pmod p$,所以 $a^{p-1} \equiv a^{ord(a)} \equiv 1 \pmod p$,即 $a^p \equiv a \pmod p$,得证