National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Statistical and Mathematical methods for data science	Course Code:	DS 501
Program:	MS Data Science	Semester:	Fall 2018
Duration:	60 Minutes	Total Marks:	25
Paper Date:	October 02, 2018	Weight	17.5
Section:	N/A	Page(s):	4
Exam Type:	Midterm Exam 1		

Student: Name: _____ Section: ____ Section:

Instruction/Notes:

- 1. One A4 cheat sheet is allowed in the exam
- 2. Show working for all questions
- 3. Using mobile phones or laptops as calculators is NOT allowed
- 4. Use of calculators is allowed
- 5. Extra sheets are NOT allowed

QUESTION 1 (Marks: 5)

Suppose the age of patients, with diabetes, seen by a doctor has expectation μ =60 and a standard deviation σ = 5. What can you say about the probability of the age of a patient being more than 70, if you are to use Chebysehv's inequality. Show all working.

QUESTION 2 (Marks: 4+1)

- a. Compute the covariance matrix for this data. Show all working.
- b. What would be the shape of the Gaussian distribution if it is fitted to this data and why? Draw the contours of this distribution.

X1	X2
1	0
0	0
-1	2
-1	-2

QUESTION 3 (Marks: 5) Given the data below:

X1	X2	Х3	Label
1	1	1	1
0	0	0	1
0	0	0	1
0	1	1	1
0	0	1	2
1	1	1	2
1	0	1	2
1	1	0	2
1	1	1	2
0	0	0	2

Using naive Bayes' assumption determine $P(Label=2|\mathbf{x}=(0,0,0))$. Show all working.

Suppose the table of question 1 has only two columns, x_1 and x_2 (so ignore the x_3 and label column). Determine $P(x_1=0,x_2=1)$ if independence assumption is **not** applied. Show all working.

QUESTION 5 (Marks: 5)

Suppose the probability of getting a job after doing data science is 90%. The probability of getting a job if data science is not studied is 60%. There are overall 20% students enrolling in data science. What is the probability/chances of finding a job according to this data? Write down the stated facts, the formula you will use, and your working clearly.