POLIMI GRADUATE MANAGEMENT

EXPLORATORY DATA ANALYSIS

PERCORSO EXECUTIVE DATA SCIENCE AND BUSINESS ANALYTICS

Mauricio Soto - mauricioabel.soto@polimi.it

GRAPHICAL ANALYSIS CATEGORICAL ATTRIBUTE

$$f_h = \frac{e_h}{m} = \frac{card\{i \in \mathcal{M} : x_i = cat_h\}}{m}$$

for large samples

$$f_h \approx P(x = cat_h)$$

GRAPHICAL ANALYSIS NUMERICAL ATTRIBUTE

POLIMI SRADUATE MANAGEMENT

CENTRAL TENDENCY

Mean:

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

Median:

$$x^{\text{med}} = x_{(m+1)/2}, \qquad x^{\text{med}} = (x_{m/2} + x_{m/2+1})/2$$

- Mode
- Midrange:

$$x^{\mathsf{midr}} = (x_{\mathsf{max}} + x_{\mathsf{min}})/2$$

▶ Geometric mean:

$$\bar{\mu}_{\mathsf{geom}} = \sqrt[m]{\prod_i^m x_i}$$

MEASURE OF DISPERSION - NUMERICAL

Range:

$$x_{\mathsf{max}} - x_{\mathsf{min}}$$

Mean absolute deviation :

$$MAD = \frac{1}{m} \sum_{i=1}^{m} |x_i - \bar{\mu}|$$

Sample variance:

$$\bar{\sigma}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \bar{\mu})^2$$

Sample standard deviation :

$$\bar{\sigma} = \sqrt{\bar{\sigma}^2}$$

Coefficient of Variation:

$$CV = 100 \frac{\bar{\sigma}}{\mu}$$

MEASURE OF DISPERSION - CATEGORICAL

Gini index:

$$Gini = 1 - \sum_{h=1}^{H} f_h^2 \qquad \in [0, (H-1)/H]$$

Entropy index:

$$Entropy = -\sum_{h=1}^{H} f_h \log_2 f_h \qquad \in [0, \log_2 H]$$

BOX-PLOT

- Interquartile range $D_q = q_U q_L = q_{0.75} q_{0.25}$
- ightharpoonup internal lower edge= $q_L-1.5\,D_q$
- ightharpoonup external lower edge= $q_L 3 D_q$

MEASURE RELATIVE LOCATION

- **Mead-Mean**: Mean of values between q_L and q_U
- **Trimmed-Mean**: Mean of values between q_p and $q_{(1-p)}$
- ▶ Winsorized-Mean: Map values smaller (bigger) than $q_p(q_{(1-p)})$ to $q_p(q_{(1-p)})$ and then compute the mean

ASYMMFTRY

$$\bar{\mu}_3 = \frac{1}{m} \sum_{i=1}^m (x_i - \bar{\mu})^3, \qquad \text{Skewness} = I_{as} = \frac{\bar{\mu}_3}{\bar{\sigma}^3}$$

Skewness =
$$I_{as} = \frac{\bar{\mu}_3}{\bar{\sigma}^3}$$

- $ightharpoonup I_{as} > 0$ right asymmetry
- $ightharpoonup I_{as} < 0$ left asymmetry
- $ightharpoonup I_{as} = 0$ symmetric

EMPIRICAL DENSITY

$$\bar{\mu}_4 = \frac{1}{m} \sum_{i=1}^m (x_i - \bar{\mu})^4, \qquad \mathsf{Kurtosis} = I_{kurt} = \frac{\bar{\mu}_4}{\bar{\sigma}^4} - 3$$

Kurtosis =
$$I_{kurt} = \frac{ar{\mu}_4}{ar{\sigma}^4} - 3$$

- $ightharpoonup I_{kurt} > 0$ Hypernormal
- $ightharpoonup I_{kurt} < 0$ Hyponormal
- $ightharpoonup I_{kurt} = 0 \, \text{Normal}$

COMPARING DISTRIBUTIONS - QQ-PLOTS

MEASURE OF CORRELATION

Sample covariance:

$$cov(a_j, a_k) = \frac{1}{m-2} \sum_{i=1}^{m} (x_{ij} - \bar{\mu}_j)(x_{ik} - \bar{\mu}_k)$$

Sample LINEAR correlation:

$$r_{jk} = \frac{cov(a_j, a_k)}{\bar{\sigma}_i \bar{\sigma}_i} \in [-1, 1]$$

LINEAR CORRELATION

CORRELATION ON CATEGORICAL ATTRIBUTES

			family		
2 4 2 6 3 2 5 7 4 3 3 6	area		0	1	totale
2 4 2 6 3 2 5 7 4 3 3 6	1		2	4	6 (<i>f</i>
	2		4	2	
	3		2	5	7
totale 11 (g_1) 14 (g_2) 25	4		3	3	6
		totale	11 (g1)	14 (82)	25

Two attributes are independent if

$$\frac{t_{r1}}{g_1} = \frac{t_{r2}}{g_2} \qquad r = 1, 2, \dots, J$$

Contingency tables

PCA: PRINCIPAL COMPONENT ANALYSIS

PCA-INTUITION

Compute projections that better capture the variance

PCA: PRINCIPAL COMPONENT ANALYSIS

- ► Covariance data matrix V = X'X
- New components p_j obtained as a linear transformation of original data $p_j = X \, w_j$
- $lackbox{ Variance of } p_j = w_j' \, X' X \, w_j = w_j' V w_j$
- Maximizing the variance:

$$\max_{w_1} w_1' V w_1$$

s.t. $w_1' w_1 = 1$

 $ightharpoonup w_j$ is the j-th eigenvector of V, which explains a variance λ_j which is the j-th eigenvector

NONLINEAR REDUCTION

T-SNE: T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING

We aim to project observations preserving observation distance.

High-Dimensional Space

Distance as Normal Distribution

$$p_{ij} = \frac{\exp\left(-\left\|x_i - x_j\right\|^2/2\sigma_i^2\right)}{\sum_{k \neq l} \exp\left(-\left\|x_k - x_l\right\|^2/2\sigma_i^2\right)}$$

Low-Dimensional Space

Distance as t-Students Distribution

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

We try to minimize the divergence between the distributions

$$KL(P\|Q) = \sum_i \sum_{j \neq i} p_{ij} \log \left(rac{p_{ij}}{q_{ij}}
ight)$$
 (Kullback-Leibler)

EJEMPLO B - MNIST DATASET

https://adamharley.com/nn_vis

POLIMI GRADUATE MANAGEMENT

EJEMPLO C - MNIST FASHION (ZALANDO)

THANK YOU