1. TEORETICKÝ ÚVOD

Tranzistorový zesilovač je obvod, jehož cílem je zesílit vstupní signál, optimálně s co nejmenším zkreslením. V tomto zapojení je obvod zapojený SE a v třídě A, jenž se vyznačuje neustálým odběrem proudu a také tím, že napětí U_{RC} je rovno polovině napětí U_{CC}. Tuto úlohu jsme si již ve 3. ročníku změřili, ale teď jsme se museli zaměřit na jiné parametry tohoto zapojení.

2. SCHÉMA ZAPOJENÍ

Schéma č. 1 - Zapojení tranzistorového zesilovače

3. TABULKA POUŽITÝCH PŘÍSTROJŮ

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámky
G	Generátor	Rigol DG1022Z		25 MHz, 2 ch
OSC	Osciloskop	OWON SDS5032EV		30MHZ, 2 ch
	Voltmetr	Mastech MY75	19-0046/08	$4^{1/2}$, MR=20V δ =±0,1%rdg+3dgt
Ucc	Stejnosměrný regulovatelný zdroj			0-30V, 0-4A

Т	Tranzistor	BC337-25 (NPN)		h _{21E} =322
Rc	Odporová dekáda	RLC-D1000	20-0066/01	1 až 999999Ω, tolerance 1%
R ₁	Odporová dekáda	RLC-D1000	20-0066/02	1 až 999999Ω, tolerance 1%

Tabulka č. 1 – Použité přístroje

4. POSTUP MĚŘENÍ

Měření č.1 – vlastnosti zesilovače

a) Nastavení součástek z měření úlohy 201-3R z třetího ročníku

- Napájecí napětí U_{CC} = 12 V
- Kolektorový proud I_C = 5 mA
- Úbytek napětí na R_E, U_{RE} = 0.2 V
- Rezistory R_C = 1,2 k Ω , R_E = 39 Ω , R₁ = 58.5 k Ω , R₂ = 4,7 k Ω
- Kondenzátory $C_{V1} = 470 \text{ nF}$, $C_{V2} = 470 \text{ nF}$, $C_E = 470 \text{ }\mu\text{F}$
- Tranzistor BC338 25 (NPN); h21E = 322

b) Měření mezních frekvencí

- Nakreslete schéma zapojení, kdy na vstupu zesilovače připojte generátor, na výstup osciloskop nebo nf voltmetr.
- Frekvenci generátoru nastavte na 1 kHz, vstupní napětí na cca 20 mV, aby výstup nebyl zkreslený.
- Ověřte, že zesilovač zesiluje změřením AU a porovnáním výsledky z 3. ročníku.
- Pomalu zvyšujte frekvenci vstupního napětí a sledujte pokles výstupního napětí (úrovně napětí).
- Při f_H (horní mezní kmitočet) poklesne výstupní napětí na 70% hodnoty napětí při cca 1 kHz (pokles úrovně odpovídá hodnotě 3 dB).
- Dolní mezní kmitočet zjistíte podobně, ale frekvenci snižujete.

- Nastavené hodnoty vstupu a výstupu při měření zaznamenejte.
- Odhadněte a na mm papír zakreslete frekvenční přenosovou charakteristiku zesilovače. Osa frekvence má logaritmické měřítko.

c) Měření amplitudového frekvenčního spektra

- Frekvenční spektrum je závislost amplitudy měřené veličiny na frekvenci,
 Z frekvenčního spektra jsou pak patrné ty frekvence harmonických kmitů,
 které mají na výsledný složený průběh největší vliv.
- Podstatou reprezentace signálu ve frekvenční oblasti je vyjádření signálu chápaného jako funkce času jako součet řady sinusových (kosinusových) periodických funkcí.
- Každý periodický signál lze složit z vln, jejichž frekvence je celočíselným násobkem základní (nejnižší) frekvence. Další složky s vyššími frekvencemi se nazývají vyšší harmonické.
- Osciloskop přepněte do režimu Math, režim FFT.
- V tomto nastavení osciloskop měří frekvenční spektrum na horizontální ose je již frekvence!!!
- Pomocí ovladačů CH1 VOLTS/DIV a HORIZ SEC/DIV lze nastavovat vhodné rozsahy napětí a frekvence na dílek.
- Na vstup CH1 osciloskopu přiveďte signál:
 - z generátoru a změřte a zakreslete průběh spektra,
 - z výstupu zesilovače a změřte a zakreslete průběh spektra,
 - oba výsledky porovnejte

d) Měření vstupního odporu

- Vstupní odpor budete měřit metodou poloviční výchylky, kdy je napětí z
 generátoru rozděleno děličem na vstupu RD (odporová dekáda) RVST na
 dvě stejné části.
- Na generátoru nastavte frekvenci 1 kHz, odporovou dekádu vyřaďte (nastavte na $0~\Omega$).
- Pomocí změny napětí na generátoru nastavte celistvou hodnotu napětí na výstupu zesilovače např. 3 V_{RMS} (plnou výchylku voltmetru – 100 %).
- Zvyšujte odpor na dekádě a sledujte pokles napětí na výstupu zesilovače.

- Jakmile bude napětí (výchylka voltmetru) na výstupu poloviční oproti původní hodnotě 50 %, odpor dekády je roven vstupnímu odporu zesilovače R_{VST} = R_D.
- Všechny nastavené a změřené hodnoty zaznamenejte.

Měření č.2 – reakce na obdélníkový signál

- Nastavte na generátoru obdélníkový signál.
- Frekvenci nastavte podle zadání (nízkou frekvenci, vysokou frekvenci)
- Na osciloskopu pozorujte výstupní signál, popište jeho tvar.
- Vysvětlete důvody změny tvaru

5. TABULKY ZMĚŘENÝCH A VYPOČÍTANÝCH HODNOT

Označení v zapojení	Hodnota
Ucc	12 V
Ic	5 mA
Ure	0,2V
Rc	1200 Ω
RE	39 Ω
R ₁	58,5 kΩ
R ₂	4,7 kΩ

Tabulka č. 2 - Vlastnosti zesilovače

Označení	Hodnota	
UPPvst	20 mV	
Uppvýst	4,4 V	
Au	220	
f	1 kHz	

Tabulka č. 3 - Nastavení zesilovače

Frekvence	Hodnota	
f _H	156 kHz	
f_D	9 Hz	

Tabulka č. 4 - Mezní frekvence

Označení	Hodnota	
Rvst	3500 Ω	
U	3 V	

Tabulka č. 5 – Měření vnitřního odporu

6. Vzor výpočtu

1. Výpočet Au

$$A_U = \frac{U_{V\acute{Y}ST}}{U_{VST}} = \frac{4,4}{0,02} = 220$$

2. Výpočet šířky pásma

$$f = f_h - f_d = 156000 - 9 = 155991 \, Hz$$

3. Výpočet poklesu o 3dB (0,707)

$$A_{II} = 220 * 0.707 = 155.54$$

7. GRAFY

Graf č. 1 – Frekvenční přenosová charakteristika

Graf č. 2 – Amplitudové frekvenční spektrum harmonického signálu

Graf č. 3 – Amplitudové frekvenční spektrum obdelníkového signálu

8. ZÁVĚR

a) Měření mezních frekvencí

• Využili jsme funkci osciloskopu "cursor", díky čemuž bylo měření tohoto parametru velice jednoduché.

b) Měření amplitudového frekvenčního spektra

- Tohle měření pro nás bylo znatelně těžší na pochopení, protože jsme před tím nikdy nepoužili funkci Math.
- Ze zesilovače bylo mnohem více frekvenčních složek, zatímco z generátoru bylo méně. Důvodem je, že zesilovač táhne některé frekvence nahoru, což ve výsledku způsobí ve výsledku více zobrazených frekvencí na displeji.

c) Měření vstupního odporu

- Pro měření vstupního odporu jsme využili metodu poloviční výchylky, jenž jsme se teoreticky naučili ve 3. ročníku.
- Specifickým zapojením a postupným navyšováním dekády jsme zjistili, že vstupní odpor zesilovače je 3500 Ω.

d) Reakce na obdélníkový signál

- Při 5Hz bylo vidět, že se kondenzátor velice rychle nabije a velice rychle vybije, a tak vypadá skoro jako pouhé špičky s mezerami.
- Při 200kHz bylo vidět, že kondenzátor nestíhá přenést tak rychlé signály, a tak vypadá jako pila.