Advanced Algebra II

Homework 10

ALECK ZHAO

April 24, 2017

1. Let E/F be a finite field extension, and let L/F be any field extension. Mimic the proof of § 10.2 Theorem 1 to show that

 $\# \{F\text{-embeddings } E \to L\} \leq [E:F].$

Section 10.1: Galois Groups and Separability

- 30. Le $E \supseteq F$ be a finite extension, where char F = p.
 - (a) If $u \in E$ has a separable minimal polynomial q over F, show that $u \in F(u^p)$. [Hint: If m is the minimal polynomial of u over $F(u^p)$, show $m \mid q$ and $m \mid (x-u)^p$.]

Proof. Let m be the minimal polynomial of u over $F(u^p)$. Then since $q \in F(u^p)[x]$ and q(u) = 0, we must have $m \mid q$ since it is the minimal polynomial. Since q is separable, it must have distinct roots in $F(u^p)$, and since $m \mid q$, it too must have distinct roots.

Suppose $f = x^p - u^p \in F(u^p)[x]$, but since char F = p, this is $(x - u)^p$. Since f(u) = 0, we must have $m \mid (x - u)^p$. But since m must have distinct roots, we must have m = x - u, so since $m \in F(u^p)[x]$, we have $u \in F(u^p)$, as desired.

(b) Define $F(E^p) = \{ a_1 u_1^p + \dots + a_n u_n^p \mid a_i \in F, u_i \in E, n \ge 1 \}$. Show that $F(E^p)$ is a subfield of E.

Proof. Clearly $1_E \in F(E^p)$. Then if

$$a_1 u_1^p + \dots + a_n u_n^p \in F(E^p)$$

$$b_1 v_1^p + \dots + b_m v_m^p \in F(E^p)$$

where WLOG $n \leq m$ and $a_i, b_j \in F$ and $u_i, v_j \in E$ for all i, j, then

$$(a_{1}u_{1}^{p} + \dots + a_{n}u_{n}^{p}) - (b_{1}v_{1}^{p} + \dots + b_{m}v_{m}^{p})$$

$$= (a_{1}u_{1}^{p} - b_{1}v_{1}^{p}) + \dots + (a_{n}u_{n}^{p} - b_{n}v_{n}^{p}) + b_{n+1}v_{n+1}^{p} + \dots + b_{m}v_{m}^{p}$$

$$= [a_{1}u_{1}^{p} - a_{1}v_{1}^{p} - (b_{1} - a_{1})v_{1}^{p}] + \dots + [a_{n}u_{n}^{p} - a_{n}v_{n}^{p} - (b_{n} - a_{n})v_{n}^{p}] + \sum_{k=n+1}^{m} b_{k}v_{k}^{p}$$

$$= a_{1}(u_{1}^{p} - v_{1}^{p}) + \dots + a_{n}(u_{n}^{p} - v_{n}^{p}) + \sum_{j=1}^{n} (b_{j} - a_{j})v_{j}^{p} + \sum_{k=n+1}^{m} b_{k}v_{k}^{p}$$

$$= \sum_{i=1}^{n} a_{i}(u_{i} - v_{i})^{p} + \sum_{j=1}^{n} (b_{j} - a_{j})v_{j}^{p} + \sum_{k=n+1}^{m} b_{k}v_{k}^{p}$$

$$\in F(E^{p})$$

(c) If $E = F(E^p)$ and $\{w_1, \dots, w_k\} \subseteq E$ is F-independent, show that $\{w_1^p, \dots, w_k^p\}$ is F-independent. [Hint: Extend to a basis $\{w_1, \dots, w_k, \dots, w_n\}$ of E, show that $\{w_1^p, \dots, w_k^p, \dots, w_n^p\}$ span E, and apply Theorem 7 §6.1.]

Proof. Extend $\{w_1, \dots w_k\}$ to an F-basis $\{w_1, \dots, w_k, \dots, w_n\}$ of E. Now if $v \in E = F(E^p)$, then suppose

$$v = \sum_{i=1}^{m} a_i u_i^p$$

where $a_i \in F$ and $u_i \in E$ for all i. Then since $\{w_1, \dots, w_k, \dots, w_n\}$ is a basis, there is a unique representation for u_i in terms of these basis elements:

$$v = \sum_{i=1}^{m} a_i u_i^p = \sum_{i=1}^{m} a_i \left(\sum_{j=1}^{n} b_{ij} w_j \right)^p = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_{ij}^p w_j^p$$

Thus, the set $\{w_1^p, \cdots, w_k^p, \cdots, w_n^p\}$ spans E. Since $\{w_1, \cdots, w_k, \cdots, w_n\}$ was a basis, dim E = n so $\{w_1^p, \cdots, w_k^p, \cdots, w_n^p\}$ is F-independent.

- 31. Let $E \supseteq K \supseteq F$ be fields with [E : F] finite. Show that $E \supseteq F$ is separable if and only if both $E \supseteq K$ and $K \supseteq F$ are separable.
- 32. If $E \supseteq F$ is a finite extension, then $u \in E$ is called a separable element over F if its minimal polynomial in F[x] is separable.
 - (a) If $u \in E$ is separable over F and $E \supseteq K \supseteq F$, where K is a field, show that u is separable over K. [Hint: Exercise 30(d)]

Proof. If $p \in F[x]$ and $q \in K[x]$ are the minimal polynomials of u over F and K, respectively, then since $p \in K[x]$, we must have $q \mid p$. Since u is separable over F, that means p is separable so it has distinct roots, and thus q must also have distinct roots, so it is separable. Thus u is separable over K.

- (b) Show that $u \in E$ is separable over F if and only if $F(u) \supseteq F$ is a separable extension.
- (c) Define $S = \{u \in E \mid u \text{ is separable over } F\}$. Show that S is a subfield of E, that $S \supseteq F$ is separable, and that $E \supseteq K \supseteq F$, with $K \supseteq F$ separable, implies that $S \supseteq K$. [Hint: If $u, v \in S$, show that $F(u, v) \supseteq F$ is separable by (a) and Exercise 31.]

Proof. Subfield: Clearly $1_E \in S$ since $1_E \in F$ and x-1 is separable. If $u \in E$, then from (b), we have $F(u) \supseteq F$ is separable. Then if $v \in E$, since F(u,v) = F(u)(v) is separable over F(u), it follows that $F(u,v) \supseteq F$ is separable from Exercise 31. Thus, since u+v and uv are in F(u,v), they are both separable, and thus in S. Similarly, $u^{-1} \in F(u,v)$ so u^{-1} is also separable, so S is a subfield, as desired.

 $S\supseteq F$ is separable by its definition, since everything inside is separable over F. If $E\supseteq K\supseteq F$ and $K\supseteq F$ is separable, then if $u\in K$ is separable over F, since $E\supseteq K$, that means $u\in S$, so $S\supseteq K$.

Section 10.2: The Main Theorem of Galois Theory

- 5. Let E = F(t) be the field of rational forms over a field. In each case, compute $K = E_G$ and find the minimal polynomial $m \in K[x]$ of t over K.
 - (a) $G = \langle \sigma \rangle$, where σ is that F-automorphism of E given by $\sigma(t) = -t$.

Solution. We have $\sigma^2(t) = t$, so it suffices to consider σ . Let $K \ni f = \frac{p(t)}{q(t)}$ for $p, q \in F[t]$. Then

$$\sigma(f) = f \iff \sigma\left(\frac{p(t)}{q(t)}\right) = \frac{p(-t)}{q(-t)} = \frac{p(t)}{q(t)} \iff p(t)q(-t) = p(-t)q(t)$$

If char F=2, then K=E because $a=-a \implies at^n=-at^n$ for all $a\in F$. Then the minimal polynomial is x-t.

Otherwise, let g(t) = p(t)q(-t), so g(-t) = p(-t)q(t) = p(t)q(-t) = g(t), so $g(t) = h(t^2)$ for some $h \in F[t]$. Now, $f = \frac{p(t)}{q(t)} = \frac{h(t^2)}{q(t)q(-t)}$ and similarly, $q(t)q(-t) = k(t^2)$ for some $k \in F[t]$, so $f = \frac{h(t^2)}{k(t^2)}$, so $K = F(t^2)$. Then the minimal polynomial is $x^2 - t^2$.

(b) $G = \langle \sigma \rangle$, where σ is that F-automorphism of E given by $\sigma(t) = 1 - t$.

Solution. We have $\sigma^2(t) = t$, so it suffices to consider σ . Let $K \ni f = \frac{p(t)}{q(t)}$ for $p, q \in F[t]$. Let

$$p(t) = \sum_{i=0}^{m} a_i t^i \implies p(1-t) = \sum_{i=0}^{m} a_i (1-t)^i$$

$$q(t) = \sum_{j=0}^{n} b_j t^j \implies q(1-t) = \sum_{j=0}^{n} b_j (1-t)^j$$

10. Let $E \supseteq F$ be fields with $G = \operatorname{Gal}(E/F)$. If $H \subseteq G$ is a subgroup and H° is finite, show that H is closed.

11. If $E \supseteq K \supseteq F$ are fields, show that $E \supseteq K$ is Galois if and only if K is closed as an intermediate field of $E \supseteq F$.