МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Введение в анализ данных.

Студент гр. 3341	 Рябов М. Л.
Преподаватель	 Иванов Д. В.

Санкт-Петербург

2024

Цель работы

Изучение основ анализа данных с применением языка Python и использованием библиотеки sklearn. Создание классификатора, его обучение и применение для классификации данных.

Задание

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Peaлизуйте функцию load data(), принимающей на вход аргумент train size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train size, следующим образом: из данного набора запишите train size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в у train. В переменную X test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в y_test — оставшиеся данные функция поля target, train test split ЭТОМ вам поможет модуля sklearn.model selection (B качестве состояния рандомизатора функции train_test_split необходимо указать 42.).

В качестве результата верните X_train, X_test, y_train, y_test.

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}), которая выполняет классификацию данных из X_{test} .

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации и истинные метки тестовых данных (y_test), которая считает отношение предсказанных результатов, совпавших с «правильными» в y_test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

Выполнение работы

Описание функций:

- 1. load_data(train_size=0.8) функция загружает данные о вине из набора данных библиотеки sklearn. Затем данные разбиваются на обучающую и тестовую выборки. Размер обучающей выборки составляет 80%, также разбиение происходит с установленным параметром рандомизации.
- 2. $train_model(X_train, y_train, n_neighbors=15, weights='uniform')$ функция создает экземпляр классификатора k ближайших соседей (значение k равно 15), который обучается на данных $X_train, y_train,$ полученных k результате работы предыдущей функции.
- 3. $predict(classifier, X_test)$ функция принимает обученный в предыдущей функции классификатор (classifier), после чего делает предсказание классов для тестовых данных (X test) и возвращает его.
- 4. estimate(predicitions, y_test) функция оценивает точность предсказаний классификатора, полученных на предыдущем шаге, сравнивая их с фактическими метками тестовых данных. Возвращает отношение верных предсказаний к их общему числу, округленное до тысячных.
- 5. scale(X, mode='standard') функция принимает данные и режим масштабирования (по умолчанию Standard), после чего происходит масштабирование данных в соответствии с указанным режимом. Полученные данные возвращаются из функции.

Исследование работы классификатора, обученного на данных разного размера.

train_size	Точность
0.1	0.528
0.3	0.722
0.5	0.611
0.7	0.667
0.9	0.611

Точность классификатора зависит от размера обучающей выборки. При слишком маленьком размере обучающей выборки модель может не получить достаточное количество информации для выявления закономерностей в данных. С другой стороны, при слишком большом размере обучающей выборки модель может начать избыточно подстраиваться под тренировочные данные и терять способность к обобщению на новых данных.

Исследование работы классификатора, обученного с различными значениями n_neighbors

n_neighbors	Точность
3	0.722
5	0.778
9	0.778
15	0.722
25	0.611

Точность классификатора зависит от количества соседей, используемых для классификации. Общий тренд показывает, что для данного набора данных оптимальными значениями n_neighbors являются 5 и 9. Слишком маленькое значение n_neighbors может привести к недостаточному обучению модели, в результате она будет чрезмерно чувствительна к шуму или выбросам, тогда как слишком большое значение n_neighbors может привести к упрощению модели и потере способности к выявлению сложных закономерностей в данных.

Исследование работы классификатора с предобработанными данными

Scaler Точность

StandardScaler 0.778

MinMaxScaler 0.833

MaxAbsScaler 0.889

Предобработка данных с использованием различных скейлеров позволяет улучшить качество работы классификатора. В данном случае наилучшим скейлером оказался MaxAbsScaler, масштабирующий признак по максимальному по модулю значению, сохраняя при этом знак. Это позволяет эффективно учитывать различия в масштабах признаков и повышает качество классификации.

Разработанный код см. в приложении А.

Выводы

Были изучены основы анализа данных на языке *Python* с применением библиотеки *sklearn*. Разработаны функции для разделения данных для обучения и тестирования, обучения модели, вычисления предсказаний на основе данных и оценки качества полученных результатов классификации.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: main.py
     from sklearn.datasets import load_wine
     from sklearn.model_selection import train_test_split
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import accuracy_score
     from sklearn.preprocessing import StandardScaler,
                                                            MinMaxScaler,
MaxAbsScaler
     def load_data(train_size = 0.8):
         wine = load_wine()
           trainX, testX, trainY, testY = train_test_split(wine.data[:,
0:2], wine.target, train_size=train_size,
                                                                 test_siz
e=0.2, random_state=42)
         return trainX, testX, trainY, testY
               train_model(X_train,
                                           y_train,
                                                          n_neighbors=15,
     def
weights='uniform'):
             classifier = KNeighborsClassifier(n_neighbors=n_neighbors,
weights=weights)
         classifier.fit(X_train, y_train)
         return classifier
     def predict(classifier, X_test):
         perdictions = classifier.predict(X_test)
         return perdictions
     def scale(data, mode='standard'):
         if mode == 'standard':
             scaler = StandardScaler()
         elif mode == 'minmax':
             scaler = MinMaxScaler()
         elif mode == 'maxabs':
             scaler = MaxAbsScaler()
         else:
             return None
         scaled_data = scaler.fit_transform(data)
         return scaled data
     def estimate(predicitions, y_test):
         accuracy = accuracy_score(y_test, predicitions)
         accuracy = round(accuracy, 3)
         return accuracy
```