

General information

Designation

C: pure, graphite

Typical uses

Brushes; electrodes; jigs; casting molds; thermal insulation; bearings; rocket nozzles; composites; refractory bricks; nuclear seals;

Composition overview

Compositional summary

100% C					
Material family	Cera	Ceramic (technical)			
Base material	C (C	C (Carbon)			
Composition detail (metals, ceramics an	d glasses)				
C (carbon)	100			%	
Price					
Price	* 11.2	-	17	USD/kg	
Physical properties					
Density	2.26	3 -	2.26e3	kg/m^3	
Porosity (closed)	0			%	
Porosity (open)	0			%	
Mechanical properties					
Young's modulus	10	-	25	GPa	
Yield strength (elastic limit)	* 10	-	110	MPa	
Tensile strength	10	-	110	MPa	
Elongation	* 0.04	-	1.1	% strain	
Compressive strength	* 43	-	350	MPa	
Flexural modulus	* 10	-	25	GPa	
Flexural strength (modulus of rupture)	* 5.2	-	42	MPa	
Shear modulus	* 3	-	9	GPa	
Bulk modulus	30	-	36	GPa	
Poisson's ratio	0.22	: -	0.3		
Shape factor	14.2				
Hardness - Vickers	4	-	50	HV	

Impact & fracture properties

Mechanical loss coefficient (tan delta)

Fatigue strength at 10^7 cycles

* 26.9 - 31.3

0.004

* 8e-4

MPa

i EDUPACK				
Fracture toughness	0.9 - 1.1 MPa.m^0.5			
Thermal properties				
Melting point	3.65e3 - 3.83e3 °C			
Maximum service temperature	1.3e3 - 1.7e3 °C			
Minimum service temperature	-273 °C			
Thermal conductivity	80 - 240 W/m.°C			
Specific heat capacity	700 - 720 J/kg.°C			
Thermal expansion coefficient	0.6 - 4.3 µstrain/°C			
Latent heat of fusion	* 1.61e3 - 1.81e3 kJ/kg			
Electrical properties				
Electrical resistivity	34.7 - 6.03e3 µohm.cm			
Galvanic potential	0.2 - 0.28 V			
Magnetic properties				
Magnetic type	Non-magnetic			
Optical properties				
Color	Black			
Transparency	Opaque			
Durability				
Water (fresh)	Excellent			
Water (salt)	Excellent			
Weak acids	Excellent			
Strong acids	Acceptable			
Weak alkalis	Excellent			
Strong alkalis	Unacceptable			
Organic solvents	Excellent			
Oxidation at 500C	Limited use			
UV radiation (sunlight)	Excellent			
Halogens	Acceptable			
Metals	Acceptable			
Flammability	Non-flammable			
Primary production energy, CO2 and water				
Embodied energy, primary production	209 - 230 MJ/kg			
Sources 198 MJ/kg (Jungbluth, 2008); 240 MJ/kg (Jungbluth, 2008)				
CO2 footprint, primary production	15.8 - 17.4 kg/kg			
Sources 14.8 kg/kg (Jungbluth, 2008); 18.3 kg/kg (Jungbluth,				

Water usage	* 291	-	322	l/kg
Processing energy, CO2 footprint & water	er			
Grinding energy (per unit wt removed)	* 10.9	-	12.1	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.82	-	0.906	kg/kg
Recycling and end of life				
Recycle	×			
Recycle Recycle fraction in current supply	4.73	-	5.22	%
•		-	5.22	%
Recycle fraction in current supply	4.73	-	5.22	%
Recycle fraction in current supply Downcycle	4.73 •	-	5.22	% MJ/kg
Recycle fraction in current supply Downcycle Combust for energy recovery	4.73 v	-	33.6	,

×

Notes

Other notes

Biodegrade

Price depends very strongly on form - lump, chip and flake graphite is 4-5x the price of amorphous graphite. Graphite has excellent thermal shock resistance and good abrasion resistance.

Links

ProcessUniverse		
Producers		
Reference		
Shape		