실시간 추론 시스템 UML 다이어그램

개요

본 문서는 Violence Detection 실시간 추론 시스템의 UML 다이어그램을 제공한다. 클래스 다이어그램, 컴포넌트 다이어그램, 패키지 다이어그램을 통해 시스템의 구조적 관계를 시각화한다.

목차

- 실시간 추론 시스템 UML 다이어그램
 - 개요
 - 목차
 - 전체 시스템 클래스 다이어그램
 - 파이프라인 클래스 다이어그램
 - 이벤트 관리 클래스 다이어그램
 - 데이터 구조 클래스 다이어그램
 - 컴포넌트 다이어그램
 - 패키지 다이어그램
 - 상속 계층 다이어그램
 - 인터페이스 다이어그램
 - 메서드 호출 관계 다이어그램
 - 데이터 플로우 클래스 다이어그램
 - UML 다이어그램 요약
 - * 주요 설계 패턴
 - * 핵심 아키텍처 특징
 - * 확장 포인트

전체 시스템 클래스 다이어그램

파이프라인 클래스 다이어그램

이벤트 관리 클래스 다이어그램

데이터 구조 클래스 다이어그램

컴포넌트 다이어그램

패키지 다이어그램

상속 계층 다이어그램

인터페이스 다이어그램

메서드 호출 관계 다이어그램

데이터 플로우 클래스 다이어그램

UML 다이어그램 요약

주요 설계 패턴

- 1. Strategy Pattern: 각 모듈(포즈 추정, 추적, 분류)은 교체 가능한 전략으로 구현
- 2. Factory Pattern: ModuleFactory를 통한 모듈 생성 및 관리
- 3. Observer Pattern: EventManager의 콜백 시스템
- 4. **Template Method**: BasePipeline의 추상 메서드 구조
- 5. Singleton Pattern: ModuleFactory의 전역 인스턴스 관리

핵심 아키텍처 특징

- 1. 계층화된 구조: 입력, 처리, 이벤트 관리, 시각화 계층 분리
- 2. 플러그인 아키텍처: 각 모듈은 독립적으로 교체 가능
- 3. 비동기 처리: 분류 작업의 별도 스레드 처리
- 4. 이벤트 기반: 결과 처리를 위한 이벤트 시스템
- 5. 데이터 중심: 명확한 데이터 구조와 변환 흐름

확장 포인트

- 1. **새로운 포즈 추정기**: BasePoseEstimator 상속
- 2. **새로운 분류기**: BaseActionClassifier 상속
- 3. **새로운 이벤트 타입**: EventType 열거형 확장
- 4. 새로운 시각화: IVisualizer 인터페이스 구현
- 5. **새로운 로거**: ILogger 인터페이스 구현