GPW Analizer – badania nad modelem wnioskującym

Spis treści

1.		Wstęp	3
	1.	Okres przewidywania	3
	2.	Dane statystyczne	3
	3.	Zasada dokonywania analiz	3
	4.	Algorytmy użyte do predykcji	4
	5.	Od czego zależny jest wynik? Co tak naprawdę chcemy ustalić?	4
	6.	Błąd modelu	4
	7.	Oczyszczenie danych	5
	8.	Ustalenie wag	5
2.		Badania nad modelem 360 dniowym	5
	1.	Ustalenie liczby dni przyjętych do modelu	5
	2.	Ustalenie wag dla algorytmów	5
3.		Badania nad modelem 180 dniowym	6
	1.	Ustalenie liczby dni przyjętych do modelu	6
	2.	Ustalenie wag dla algorytmu	8
4.		Badania nad modelem 90 dniowym	8
	1.	Ustalenie liczby dni przyjętych do modelu	8
	2.	Ustalenie wag dla algorytmu	9
5.		Badania nad modelem 60 dniowym	10
	1.	Ustalenie liczby dni	10
	2.	Ustalenie wag dla algorytmów	10
6.		Badania nad modelem 30 dniowym	11
	1.	Ustalenie liczby dni	11
	2.	Ustalenie wag dla algorytmów	12
7.		Interpretacja wyników	12
	1.	Model 30 dniowy	13
	2.	Model 60 dniowy	13
	3.	Model 90 dniowy	13
	4.	Ostateczny test – model 360 dniowy	13
Ω		Wnioski	1/

1. Wstęp

GPW Analizer jest systemem, który ma wspomagać decyzję inwestorów giełdowych. Po sparametryzowaniu przez użytkownika zapytania ma dać odpowiedź, czy dana inwestycja się zwróci. Przeznaczony jest dla inwestorów długoterminowych, tj. takich, którzy nastawiają się na mniejsze ryzyko, gdyż wpłacają pieniądze na dłuższe okresy czasu. Obsługiwanym rynkiem jest rynek regulowany Giełdy Papierów Wartościowych w Warszawie. Program wyliczający prognozy jest osobnym podprojektem o nazwie Stock Analyzer, został napisany w języku JAVA z użyciem pakietu WEKA. Niniejszy dokument jest sprawozdaniem z prac podjętych nad znalezieniem modelu, który jak najlepiej przewidzi przyszłe kursy spółek.

1. Okres przewidywania

GPW Analizer przewiduje wartości akcji spółek na następujące okresy:

- 30 dni
- 60 dni
- 90 dni
- 180 dni
- 360 dni

2. Dane statystyczne

Stock Analyzer jest programem, który dzięki danym statystycznym prognozuje przyszłe notowania. Do analiz zgromadziliśmy następujące dane:

- Giełdy zagraniczne wartości. Dane pochodzą ze strony http://finance.yahoo.com
 - Dow Jones Industrial Average
 - NASDAQ Composite
 - o Eurostoxx50
- Kursy walut wartości. Dane ze strony http://nbp.pl/.
 - o Dolar
 - o Euro
- Indeksy GPW kurs zamknięcia oraz wartość obrotu. Dane ze strony http://www.gpw.pl.
- Akcje Spółek kurs zamknięcia, wolumen obrotu, liczba transakcji, wartość obrotu. Dane ze strony http://www.gpw.pl.

W bazie danych posiadamy powyższe dane od 01.01.2007r.

3. Zasada dokonywania analiz

Akcje spółek są trudne do przewidzenia, gdyż zależą od wielu czynników. Pierwszym problemem była odpowiedź na pytanie, jak wnioskować wartości akcji. Można scalić ze sobą otrzymane dane i na ich podstawie wyliczyć ostateczną wartość akcji. W Stock Analyzer zdecydowaliśmy się przyjąć inny model wnioskujący, bowiem wnioskowanie odbywa się na następującej zasadzie:

- Przewidywanie wartości giełd zagranicznych.
- Na podstawie ww. przewidywań, oraz danych historycznych waluty.
- Na podstawie ww. przewidywań, oraz danych historycznych indeksy GPW.
- Na podstawie ww. przewidywań, oraz danych historycznych wartości akcji.

Przy czym do przewidzenia pierwszych trzech punktów używamy wszystkich wcześniejszych danych, natomiast do wartości akcji bierzemy pod uwagę jedynie dane historyczne i indeksy, do których dana spółka należy.

4. Algorytmy użyte do predykcji

Do predykcji wartości używamy następujących algorytmów zaimplementowanych w pakiecie WEKA:

- LinearRegression
- IBk
- AdditiveRegression
- Vote
- M5P
- REPTree

Docelowo ostateczny wynik ma być średnią ważoną wyników poszczególnych algorytmów.

5. Od czego zależny jest wynik? Co tak naprawdę chcemy ustalić?

Ostateczny wynik jest zależny przede wszystkim od wyników poszczególnych algorytmów. Jednak aby model był dokładniejszy postanowiliśmy każdemu z algorytmów nadać wagę i to właśnie ustalenie odpowiedniej wagi jest jednym z dwóch celów badań. Drugim jest ustalenie liczby dni, którą należy wziąć do poszczególnej analizy (30, 60, 90, 180, 360). Manipulując tymi parametrami spróbujemy ustalić model, który w przeszłości uzyskałby najlepsze wyniki.

6. Błąd modelu

Aby móc określić, który model jest lepszy, musimy ustalić, co przyjmiemy za jego błąd. Badanie dla określonych parametrów da nam wynik w postaci tablicy z składającej się z n elementów, w którym każdy oznacza pomyłkę algorytmu w stosunku do realnej wartości wyrażony w procentach. Następnie każdy element tej tablicy mnożymy przez współczynnik, który przewartościuje nam błędy. Współczynnik ten wyraża się wzorem:

$$z = \frac{w}{\max W}$$

gdzie:

- z nasz współczynnik
- w wartość wyliczona przez model
- maxW największa wartość spośród wszystkich wyliczonych

Na sam koniec wyliczamy statystykę, tj. funkcję elementów tablicy zdefiniowaną jako średnią arytmetyczną:

$$\bar{x} = \frac{1}{n} * (x_1 + x_2 + x_3 + \dots + x_n)$$

Tym samym otrzymujemy błąd naszego pomiaru.

7. Oczyszczenie danych

Spółki na giełdzie zmieniają się dynamicznie, co utrudnia nieco przetestowanie modeli na historycznych danych. Testowanie odbyło się na latach 2011 – 2013, jednak pod uwagę zostały wzięte wyłącznie spółki i indeksy, które znajdowały się na giełdzie 30.06.2011 r. W ten sposób unikamy sytuacji, w której algorytmy próbują przewidzieć notowanie dla indeksów/spółek bez danych historycznych. Takie założenie z pewnością wypacza poniekąd wyniki, jednak aplikacja jest ciągle w fazie rozwoju, przez co model powinien być uaktualniany na bieżąco. Z tak przygotowanego zestawu danych będą tworzone kolejne pliki arff.

8. Ustalenie wag

Jako, że korzystamy z 5 algorytmów postanowiliśmy, by suma ich wag wynosiła 30. Wagi do badań przydzielaliśmy w następujący sposób:

- algorytm dominujący 5 algorytmów z wagą 3, jeden z wagą 15.
- średnia arytmetyczna
- przydzielanie na podstawie odchylenia od oczekiwanego rezultatu, odbywa się na następującej zasadzie:

Dla każdego algorytmu przy średniej arytmetycznej liczony jest x, będący różnicą między jego wynikiem, a oczekiwanym rezultatem.

Sumujemy wszystkie x, co daje nam sumę różnic (sx), następnie liczymy trafność dla danego algorytmu ze wzoru:

$$t_n = \frac{x_n}{sx}$$

Następnie na podstawie trafności przydzielamy proporcjonalnie wagi.

2. Badania nad modelem 360 dniowym

1. Ustalenie liczby dni przyjętych do modelu

Okres 360 dniowy jest największym, jaki bierzemy pod uwagę w GPW Analizer, przez co założyliśmy, że do wnioskowania przyjmiemy wszystkie zgromadzone dane, a więc od 2007 roku.

2. Ustalenie wag dla algorytmów

Początkowo przeprowadzone analizę dla modelu ze średnią arytmetyczną, następnie na tej podstawie ustalono wagi dla modelu z odchyleniem od oczekiwanego rezultatu. Badania przeprowadzono na 3 datach:

- 01.01.2012 r.
- 25.05.2012 r.
- 01.10.2012 r.

Wagi od 1 do 6 to kolejne algorytmy dominujące, 7 to średnia, 8 to policzone odchylenie.

W tabeli przedstawiono wyniki badań:

Data	1.	2.	3.	4.	5.	6.	7.	8.
01.01.2012	8,172224478	8,570744265	8,366161368	8,865891084	8,579868946	8,658106296	8,577850694	8,577891397
25.05.2012	8,948640676	9,515484972	10,00231863	9,600358579	12,07859159	10,38403065	10,12127338	10,1220218
01.10.2012	10,3751265	10,75765007	11,90311779	10,40799546	13,02775716	12,31731947	11,42806404	11,42880502
Średnia	9,1653306	9,614626	10,09053	9,624748	11,22874	10,45315	10,0424	10,04291

Jak widać z danych oraz wykresu, w okresie 360 dniowym najlepiej sprawdził się algorytm, w którym dominujący był LinearRegression, zatem na takie rozłożenie wag zdecydowaliśmy się dla modelu 360 dniowego.

3. Badania nad modelem 180 dniowym

1. Ustalenie liczby dni przyjętych do modelu

Badania zostały przeprowadzone dla 4 różnych liczb dni przyjętych do modelu:

- 360 dni
- 240 dni
- 180 dni
- 120 dni

Badania przeprowadzono dla 3 różnych dat, a następnie wyciągnięto średnią, wyniki przedstawiono w tabeli:

Dni	Okres 1.	Okres 2.	Okres 3.	Średnia
360	8,28993	11,4237	18,96929	12,89431
240	8,161206	11,83765	19,50505	13,16797
180	8,150708	11,91225	19,95227	13,33841
120	8,157131	12,16221	18,55221	12,95719

Zarówno w tym, jak i w dalszych badaniach okresy nie zostały wybrane przypadkowo. Podczas pierwszego z nich giełda była stosunkowo stabilna. Podczas drugiego wartości zmieniały się bardziej nieprzewidywalnie, natomiast ostatni z nich zmieniał te wartości mocno.

Jak widać, wartości nie różnią się znacznie od siebie, jednak najlepsze rezultaty otrzymano dla 360 dni ciągu uczącego i to dla takiego modelu zostały ustalone wagi.

2. Ustalenie wag dla algorytmu

Testy nad wagami dla poszczególnych algorytmów zostały przeprowadzone identycznie, jak w przypadku modelu 360 dniowego, wyniki przedstawione w tabeli:

Data	1.	2.	3.	4.	5.	6.	7.	8.
Okres 1.	8,077885	8,421746	8,102299	8,688477	8,352888	8,126216	8,28993	8,283676
Okres 2.	11,99966	11,10589	11,20902	10,58854	11,68472	11,66675	11,4237	11,44647
Okres 3.	19,39451	17,76339	18,71891	16,46617	22,38119	19,09355	18,96929	19,0006
Średnia	13,15735	12,43034	12,67674	11,9144	14,1396	12,96217	12,89431	12,91025

Tutaj najlepsze rezultaty otrzymaliśmy, gdy algorytmem dominującym był Vote.

4. Badania nad modelem 90 dniowym

1. Ustalenie liczby dni przyjętych do modelu

Badania zostały przeprowadzone dla 4 różnych liczb dni przyjętych do modelu:

- 180 dni
- 120 dni
- 90 dni
- 60 dni

Badania przeprowadzono dla 3 różnych dat, a następnie wyciągnięto średnią, wyniki przedstawiono w tabeli:

Dni	Okres 1.	Okres 2.	Okres 3.	Średnia
180	7,833818	11,7271	16,84923	12,13672
120	7,886722	11,80735	17,06287	12,25231
90	7,971124	11,63461	18,32932	12,64502
60	7,874593	11,60261	17,08189	12,18636

Najlepsze rezultaty otrzymaliśmy dla 180 dni, i to one będą testowane dalej.

2. Ustalenie wag dla algorytmu

Testy nad wagami dla poszczególnych algorytmów zostały przeprowadzone identycznie, jak w przypadku modelu 360 dniowego, wyniki przedstawione w tabeli:

Data	1.	2.	3.	4.	5.	6.	7.	8.
Okres 1.	7,10644	8,235055	7,807168	8,155472	7,574808	7,856703	7,833818	7,744172
Okres 2.	12,56218	11,15549	11,72678	11,29039	11,25892	11,70873	11,7271	11,85652
Okres 3.	15,51602	17,54653	17,66461	16,51057	16,44502	18,37526	16,84923	16,65578
Średnia	11,72821	12,31236	12,39952	11,98548	11,75958	12,6469	12,13672	12,08549

Jak widać, najlepsze wyniki dla dominującego LinearRegression.

5. Badania nad modelem 60 dniowym

1. Ustalenie liczby dni

Badania zostały przeprowadzone dla 4 różnych liczb dni przyjętych do modelu:

- 120 dni
- 90 dni
- 60 dni
- 45 dni

Badania przeprowadzono dla 3 różnych dat, a następnie wyciągnięto średnią, wyniki przedstawiono w tabeli:

Dni	Okres 1.	Okres 2.	Okres 3.	Średnia
120	7,102607	10,23723	10,76133	9,367055
90	7,557578	9,408845	11,27754	9,414653
60	7,656716	10,41989	13,1254	10,40067
45	6,644687	11,80829	12,01726	10,15674

Okresem wziętym do dalszych badań było 120 dni.

2. Ustalenie wag dla algorytmów

Testy nad wagami dla poszczególnych algorytmów zostały przeprowadzone identycznie, jak w przypadku modelu 360 dniowego, wyniki przedstawione w tabeli:

Data	1.	2.	3.	4.	5.	6.	7.	8.
Okres 1.	10,30694	7,280716	7,279334	7,240577	6,99743	7,228019	7,102607	7,245311
Okres 2.	9,39126	10,71315	10,85679	10,59954	9,043774	10,90605	10,23723	10,08208
Okres 3.	6,085974	13,76551	14,11408	13,1429	9,043774	13,9706	10,76133	9,644304
Średnia	8,594725	10,58646	10,75007	10,32767	8,36166	10,70156	9,367055	8,990564

Tym razem najlepszy okazał się algorytm z dominującym M5P.

6. Badania nad modelem 30 dniowym

1. Ustalenie liczby dni

Badania zostały przeprowadzone dla 4 różnych liczb dni przyjętych do modelu:

- 60 dni
- 45 dni
- 30 dni
- 20 dni

Badania przeprowadzono dla 3 różnych dat, a następnie wyciągnięto średnią, wyniki przedstawiono w tabeli:

Dni	Okres 1.	Okres 2.	Okres 3.	Średnia
60	7,919874	11,54583	17,74245	12,40272
45	8,134545	11,83772	17,05664	12,34297
30	7,998841	11,41849	19,08233	12,83322
20	7,975387	11,44994	18,63919	12,68817

Różnice były niewielkie, jednak najtrafniejszym okresem okazało się 45 dni.

2. Ustalenie wag dla algorytmów

Data	1.	2.	3.	4.	5.	6.	7.	8.
Okres 1.	9,452527	8,005983	7,995217	7,996037	8,077044	7,956899	8,134545	8,17104
Okres 2.	11,92478	11,69933	11,82238	11,882	11,96807	11,80982	11,83772	11,84179
Okres 3.	13,04906	18,22092	17,99298	17,59038	13,77094	18,2287	17,05664	16,89286
Średnia	11,47546	12,64208	12,60353	12,48947	11,27202	12,66514	12,34297	12,3019

7. Interpretacja wyników

Znalezienie najlepszego modelu, a jego przetestowanie to dwie zupełnie różne rzeczy. Prawdziwą odpowiedź na pytanie, czy przewidywanie się sprawdza da nam przetestowanie aplikacji na danych historycznych. Spróbowaliśmy odpowiedzieć na pytanie:

Gdybyśmy mieli do dyspozycji 10000zł i chcieli zainwestować je w spółki, które nasz model uważa za korzystne, to ile byśmy zarobili/stracili? Pieniądze rozkładamy proporcjonalnie do aktualnych wartości akcji spółek.

1. Model 30 dniowy

Model ten przetestowano na kilku datach:

Data	Kapitał po inwestycji:	Zysk:	W procentach:
01.09.2011r.	10178,91235	178,9123	1,789123
01.01.2012r.	9956,995369	-43,0046	-0,43005
01.05.2012r.	10510,35166	510,3517	5,103517
15.08.2012r.	9858,495568	-141,504	-1,41504
01.10.2012r.	10281,75323	281,7532	2,817532
01.01.2013r.	10301,3577	301,3577	3,013577
01.03.2013r.	10270,55256	270,5526	2,705526
01.05.2013r.	9905,342303	-94,6577	-0,94658
01.09.2013r.	10671,43534	671,4353	6,714353
Śre	dnio:	215,0218	2,150218

2. Model 60 dniowy

Data	Kapitał po inwestycji:	Zysk:	W procentach:
01.01.2012r.	9699,86	-300,14	-3,0014
01.05.2012r.	10099,13	99,1319	0,991319
15.08.2012r.	9805,366	-194,634	-1,94634
01.10.2012r.	10607,05	607,0545	6,070545
01.01.2013r.	10021,55	21,5474	0,215474
01.03.2013r.	9579,901	-420,099	-4,20099
01.05.2013r.	10391,59	391,5885	3,915885
Średnio:		29,207	0,29207

3. Model 90 dniowy

Data	Kapitał po inwestycji:	Zysk:	W procentach:
01.01.2012r.	9998,486	-1,51449	-0,01514
01.05.2012r.	10030,59	30,58554	0,305855
15.08.2012r.	10235,77	235,7694	2,357694
01.10.2012r.	10008,21	8,211643	0,082116
01.01.2013r.	10310,31	310,3068	3,103068
01.03.2013r.	10310,57	310,5703	3,105703
01.05.2013r.	9747,303	-252,697	-2,52697
Średnio:		91,60455	0,916045

4. Ostateczny test - model 360 dniowy

Przed rozpoczęciem projektu zdecydowaliśmy, że o jego sukcesie zadecyduje odpowiedź na pytanie:

Ile nasz program zarobiłby w zeszłym roku?

Oto odpowiedź:

Gdyby podzielić 10000 na wszystkie spółki, które GPW Analizer uzna za dobrze rokujące, to inwestując według jego wskazówek, w 2012r. zarobilibyśmy 350zł.

8. Wnioski

W roku 2012 zarobilibyśmy 3.5%, to dużo, czy mało? Przecież wpłacając 10000zł chcielibyśmy w rok zarobić więcej, niż jedynie 350zł. Pod uwagę należy wziąć jednak kilka czynników:

- Podzieliliśmy pieniądze między wszystkie spółki, żaden inwestor by tak nie zrobił. W
 rzeczywistości odrzucilibyśmy na wstępie spółki mniejsze, by główny kapitał ulokować w tych
 pewniejszych, bo to one są stabilniejsze. A w inwestowaniu długoterminowym właśnie o to
 chodzi chcemy mniejszego ryzyka, większej stabilności.
- Bierzemy pod uwagę wyłącznie spółki, które wskazał nam program. Czyli jeżeli jego wskazania się nie potwierdzą, generujemy niespodziewane straty, a jeżeli potwierdzą, dostajemy spodziewane zyski. Brak tutaj niespodziewanych zysków – czyli tych wygenerowanych przez spółki, które teoretycznie miały przynieść straty.
- Badania nad modelem prowadzone byłby w warunkach domowych, a jednak otrzymaliśmy zadowalające rezultaty. Dysponując potężnymi komputerami i stosując dużo bardziej zaawansowane algorytmy można osiągnąć lepsze modele.
- Projekt jest bardzo młody, powstał w zaledwie 2 miesiące, a bazuje jedynie na danych historycznych. W dalszej części jego życia będzie rozwijany, do danych historycznych dojdą być może inne dane, dzięki czemu model powinien być dokładniejszy.

Jako studenci informatyki nie posiadamy takiej wiedzy ekonomicznej, która pozwoliłaby nam grać na giełdzie. Początkowo w ogóle brakowało nam wiedzy z tego zakresu, jednak konsultacje z bardziej obeznanymi znajomymi pozwoliły na rozpoczęcie projektu. Dzięki wielu godzinom pracy stworzyliśmy narzędzie, które przeszło nasze oczekiwania. Pewne jest, że giełda jest zbyt nieprzewidywalna, by ślepo ufać GPW Analizer, jednak aplikacja spełnia funkcję, którą sobie założyliśmy:

Narzędzie do wspomagania decyzji giełdowych.

Jednak jako twórcy nie dajemy żadnej gwarancji, jeśli chodzi o wyniki przez nią podane. Mamy jednak nadzieję, że będą one trafne.

Podziękowania dla:

Dr hab. inż. Lecha Madeyskiego

Dr inż. Jakuba Tomczaka

Pawła Krzosa