ГОМОЛОГИЧЕСКАЯ АЛГЕБРА

Андрей Вячеславович Семёнов

КОНСПЕКТ ЗА АВТОРСТВОМ ПАВЛА ЦЫГАНЕНКО И ЛЬВА МУКОСЕЕВА

Содержание

1.	Кольца и модули	1
	1.1. Групповые алгебры	
	1.2. Радикал алгебры	
	1.3. Радикал модуля	
2.	Проективные модули	5
	2.1. Свойства	5
	2.2. Проективные накрытия	7
	2.3. Инъективные модули	
	2.4. Двойственность	

1. Кольца и модули

1.1. Групповые алгебры

Определение 1: Групповая алгебра группы G над полем k:

$$kG = \langle \left\{ e_g \mid g \in G \right\} \rangle_k$$

То есть её элементы – формальные комбинации вида $\sum_{g\in G} \alpha_g g$, где ненулевых α конечное число.

Сложение и умножение задаются следующим образом:

$$\sum_{g \in G} \alpha_g g + \sum_{g \in G} \beta_g g = \sum_{g \in G} \bigl(\alpha_g + \beta_g\bigr) g,$$

$$\left(\sum_{g \in G} \alpha_g g\right) \cdot \left(\sum_{g \in G} \beta_g g\right) = \sum_{g \in G} \left(\sum_{xy = g} \alpha_x \beta_y\right) g.$$

Определение 2: Модуль M_R называется простым, если он не содержит нетривиальных собственных подмодулей.

Определение 3: Модуль M_R называется полупростым, если любой его подмодуль выделяется прямым слагаемым.

To есть $\forall N \leqslant M : \exists P \leqslant M : M = M \oplus N$.

Замечание:

- 1. M полупрост $\Longleftrightarrow M = \bigoplus_{i \in I} M_i$, где все M_i простые.
- 2. Кольцо называется полупростым, если оно полупросто как левый модуль над собой. Без доказательства скажем, что это эквивалентно тому, что любой R-модуль полупрост.

Следующую теорему вам должны были доказать в школьном курсе по некоммутативным кольцам.

Теорема 1 (Веддерберна — Артина): Если R артиново, то

$$R$$
 – полупростое $\Longleftrightarrow R = \prod_{j \in I} M_{n_j} ig(D_j ig), \quad D_j$ – тела.

То есть полупростое артиново кольцо разлагается в прямое произведение матричных колец над телами, и в предположении артиновости обратное тоже верно.

Теорема 2 (Машке): Пусть k – поле, $|G| < \infty$, char k = 0 или char $k \nmid |G|$. Тогда kG – полупростая алгебра.

Доказательство: Покажем, что произвольный модуль M над kG полупрост. Рассмотрим $N\leqslant M$ и стандартные отображения

$$N \rightarrowtail M \stackrel{\tilde{\pi}}{\twoheadrightarrow} N.$$

Определим усреднение $\tilde{\pi}$:

$$\pi(x) = \frac{1}{|G|} \sum_{g \in G} g \tilde{\pi} (g^{-1}x).$$

• π – kG-линейный гомоморфизм. Действительно, для $h \in G$ проверим, что $\pi(hx)h\pi(x)$, а остальное и так понятно.

Обозначим $t = h^{-1}g$, тогда

$$\pi(hx) = \frac{1}{|G|}\sum_{g\in G}g\tilde{\pi}\big(g^{-1}hx\big) = \frac{1}{|G|}\sum_{t\in G}ht\tilde{\pi}\big(t^{-1}x\big) = h\pi(x).$$

• N неподвижен под действием π . Действительно, если $x\in N$, то $g^{-1}x\in N$ и $\tilde{\pi}(g^{-1}x)=g^{-1}x$, так что теперь всё ясно.

Тем самым, $M = N \oplus \operatorname{Ker} \pi$.

2

1.2. Радикал алгебры

Далее под A подразумевается конечномерная алгебра над полем k.

Определение 4: $Padukanom\ J(A)$ называется сумма всех двухсторонних нильпотентных идеалов.

Теорема 3:

- 1. J(A) нильпотентный идеал в A.
- 2. Любой нильпотентный идеал лежит в J(A).
- 3. J(A/J(A)) = 0

Доказательство:

1. Во-первых, сумма двух нильпотентных двухсторонних идеалов тоже нильпотентный двухсторонний идеал. Действительно, если $I_1^{n_1}=0$ и $I_2^{n_2}=0$, то $(I_1+I_2)^{n_1+n_2}$ порождается всеми произведениями длины n_1+n_2 элементов из I_1+I_2 , но раскрывая скобки получится либо не менее n_1 множителей из I_1 , либо не менее n_2 из I_1 , а значит $(I_1+I_2)^{n_1+n_2}=0$.

Понятно, что вместо $n_1 + n_2$ можно было взять $\max(n_1, n_2)$.

Во-вторых, можно считать, что в сумме из определения J(A) конечное число идеалов, потому что алгебра конечномерна.

2. Если идеал двухсторонний, то всё ясно. Допустим I – левый идеал и $I^k=0$. Тогда IA – двухсторонний. Покажем, что $IA\subseteq J(A)$ и так как алгебра с единицей, из этого будет следовать искомое.

$$(IA)^k = I\underbrace{(AI)...(AI)}_{k-1}A \subseteq I^kA = 0.$$

1. Рассмотрим двухсторонний нильпотентный идеал \overline{I} в A/J(A). Пусть $\overline{I}^k=0$. Тогда $I^k\subseteq J(A)$. По первому пункту теоремы J(A) нильпотентен, скажем, $J^n(A)=0$.

$$I^{kn} \subseteq J^n(A) = 0 \implies I^{kn} = 0.$$

По второму пункту I лежит в J(A), а значит $\overline{I}=0$.

 Φ акт: A полупроста $\iff J(A) = 0$.

1.3. Радикал модуля

Сейчас мы будем работать с модулями над конечномерной алгеброй над полем.

Определение 5: Paдикалом модуля M называется пересечение всех его максимальных подмодулей и обозначается как $\mathrm{Rad}\,M$.

Лемма 1: M полупрост $\Longrightarrow \operatorname{Rad} M = 0$.

Доказательство: Допустим существует $x\in \mathrm{Rad}\, M\setminus \{0\}$. Как и всякий подмодуль, Ax можно выделить в прямую сумму: $M=A\oplus U$. Если рассмотреть стандартный эпиморфизм $A\to Ax: 1\mapsto x$, то станет очевидно, что $Ax\cong A/\mathrm{Ann}\, x$. Вложение $\mathrm{Ann}\, x$ в максимальный идеал I, его содержащий, индуцирует эпиморфизм $A/\mathrm{Ann}\, x \twoheadrightarrow A/I$, причём S:=A/I – простая алгебра. Имеем

$$M \stackrel{\pi}{\twoheadrightarrow} M/U \cong Ax \cong A/\operatorname{Ann} x \stackrel{f}{\twoheadrightarrow} S,$$

так что будем считать, что $f\pi:M\to S$. Положим $N:=\mathrm{Ker}\, f\pi$, тогда так как $M/N\cong S$, то N- максимальный подмодуль. $U\subseteq N$ по построению и $x\in N$ по определению радикала. Тогда $M=Ax+U\subseteq N$. Противоречие.

<u>Замечание</u>: Мы не пользовались конечномерностью, так что на самом деле это верно для модулей над любым ассоциативным кольцом с единицей.

Перед тем как доказать следующую теорему, упомянем факт, который на лекции был дан как упражнение.

Предложение 1:
$$X \leqslant \operatorname{Rad} M \Longrightarrow \operatorname{Rad} \frac{M}{X} = \frac{\operatorname{Rad} M}{X}.$$

Доказательство: Просто факт о том, что максимальные подмодули фактора $\overline{\mathfrak{M}}\leqslant \frac{M}{X}$ соответствуют максимальным подмодулям $X\subseteq \mathfrak{M}\leqslant M$.

Доказательство: Допустим, что включение ${\rm Rad}\ M\supseteq J(A)M$ уже доказано. Обозначим за $\overline{A}:=A/J(A)$. Теорема 3 утверждает, что алгебра \overline{A} полупроста. Рассмотрим $\overline{M}:=M/J(A)M$, который в силу ${\rm Ann}\ M\supseteq J(A)$ является \overline{A} - модулем. По замечанию о полупростоте кольца, M является полупростым модулем, из чего по предложению 1 следует, что ${\rm Rad}\ M\subseteq J(A)M$.

Докажем включение в обратную сторону.

↑ SCAM ALERT ↑

В этом месте Семенов решил заскамить аудиторию! Ведуться работы по устранению скама, сохраняйте спокойствие!

Следствие: Rad ${}_AA={}_AJ(A), {\rm Rad}\, A_A=J(A)_A$ и Rad A=J(A) (в коммутативном случае).

Ниже под R понимается ассоциативное кольцо с единицей.

Определение 6: Подмодуль X модуля M_R называется малым, если для всякого $K \leqslant M$ из X + K = M следует K = M.

Лемма 2: Пусть A – конечномерная алгебра, M_R – правый A-модуль. Тогда

- 1. Любой малый подмодуль M лежит в ${\rm Rad}\ M$.
- $2. \operatorname{Rad} M$ есть сумма малых модулей.

Доказательство:

- 1. Пусть имеется малый подмодуль $N \nsubseteq \mathrm{Rad}\, M$. Тогда существует максимальный подмодуль U, не содержащий N. Из максимальности U следует N+U=M, а значит U=M. Противоречие с максимальностью U.
- 2. Rad $M = \sum_{x \in \operatorname{Rad} M} Ax$. Покажем, что каждый Ax мал. «Дело за малым» А. В. Семёнов.

Пусть Ax + K = M, проверим, что K = M.

$$M \overset{\pi_1}{\twoheadrightarrow} \frac{M}{K} = \frac{Ax}{Ax \cap K} =: D_A \overset{\pi_2}{\cong} \frac{A}{\operatorname{Ker}\left(A \underset{1 \mapsto x}{\longrightarrow} M\right)} \overset{\pi_3}{\twoheadrightarrow} \frac{A}{I} = S.$$

Первое равенство получено по второй теореме об изоморфизме. D_A – циклический модуль. I – некоторый максимальный подмодуль, в который вложено ядро. S – простой модуль.

Положим $f=\pi_3\pi_2\pi_1: M\to S$ – эпиморфизм в простой модуль. Значит $\operatorname{Ker} f$ – максимальный подмодуль M, тогда $x\in \operatorname{Ker} f$ так как он изначально брался из радикала.

 $K\subseteq \operatorname{Ker} f$ так как $K\subseteq \operatorname{Ker} \pi_1$. Получаем, что $\operatorname{Ker} f=M$. Противоречие.

Доказательство:

1. Пусть M конечнопорождён. Тогда $\mathrm{Rad}\,M$ конечнопорождён по $\mathrm{У}$ МЕНЯ НАПИСАНО НЁТЕРОВОСТИ, НО НАДО ПРОВЕРИТЬ. Тогда можно считать, что радикал представляется конечной суммой малых модулей. Остаётся показать, что сумма двух малых мала. Действительно, $(N_1+N_2)+K=M\Longrightarrow N_2+K=M\Longrightarrow K=M$.

2.

▲ SCAM ALERT

 $M=\lim_{\stackrel{n}{\to}}M_n$, где M_n конечнопорождённые. Rad $M=\lim_{\stackrel{n}{\to}}\mathrm{Rad}\,M_n$ так как радикал сохраняется при гомоморфизмах. Тогда $\mathrm{Rad}\,M$ мал так как

$$|\mathrm{Rad}\, M - \mathrm{Rad}\, M_n| < \varepsilon \Rightarrow \mathrm{Rad}\, M + K = M.$$

2. Проективные модули

2.1. Свойства

Определение 7: Модуль P_R называется проективным, если

$$\forall f:P\to N \quad \forall \sigma:M \twoheadrightarrow N \quad \exists g:P\to M:f=\sigma g.$$

Лемма 3: Любой свободный модуль проективен.

Доказательство: Рассмотрим свободный модуль F и зафиксируем диаграмму

$$M \xrightarrow{\quad \sigma \quad \quad } N \xleftarrow{\quad f \quad \quad } F$$

Пусть $\left\{w_j\right\}_{j\in I}$ – базис F, $f\left(w_j\right)=y_j$. Так как σ сюръективно, $\forall j\in I:\exists x_j\in M:\sigma(x_j)=y_j$. Положив $g\left(w_j\right)=x_j$, замкнём диаграмму до коммутативной:

Теорема 6: P – проективный $\iff \forall \sigma: M \twoheadrightarrow P \quad \exists i: P \to M: \sigma i = \mathrm{id}_P.$

Доказательство: \Rightarrow : Фиксируем $\sigma: M \twoheadrightarrow P$. Взяв в определении проективного модуля N=P и $f=\mathrm{id}_N$ получаем требуемое i.

Из эпиморфности σ следует эпиморфность π_1 , значит по условию $\exists i:P \to U: \pi_1 i=\mathrm{id}_P.$ Тогда $g=\pi_2 j$ замыкает диаграмму, так как $\forall x \in P$

$$\sigma g(x) = \sigma \pi_2 j(x) = \sigma(\pi_2(x, m)) = \sigma(m) = f(x).$$

Лемма 4: Если $P = \bigoplus_{k \in I} P_k$, то P – проективен \Longleftrightarrow все P_k проективны.

Доказательство: \Rightarrow : Рассмотрим произвольный P_k и покажем, что он проективен.

Из проективности P следует существование $g:P \to M:f\pi_k=\sigma g$. Тогда нам подходит $g_k=gi_k$:

$$f = f\pi_k i_k = \sigma g i_k = g i_k.$$

 \Leftarrow : Из проективности P_k следует существование $g_k:P_k\to M:\sigma g_k=fi_k.$ Положим $g=\bigoplus_{k\in I}g_k\pi_k$, тогда

$$\sigma g = \bigoplus_{k \in I} \sigma g_k \pi_k = \bigoplus_{k \in I} f i_k \pi_k = f \circ \bigoplus_{k \in I} i_k \pi_k = f.$$

 $\mathit{Следствие} : P$ – проективен $\iff P$ – прямое слагаемое свободного.

Доказательство:

 \Rightarrow : Для любого проективного модуля P существует свободный модуль F и эпиморфизм $F \twoheadrightarrow P$ (можно взять свободный модуль на образующих P). Из проективности P следует существование $i:P \to F: \pi i = \mathrm{id}_P$. Тогда $\exists X \leqslant F: F = X \oplus i(P) \cong X \oplus P$. можно добавить в первую лекцию теорему о диаграмме прямой суммы и сослаться на неё

⇐: Очевидно следует из лемм 3 и 4. потом можно ссылки добавить, мне впадлу

2.2. Проективные накрытия

Пусть A – конечномерная алгебра над полем K.

Определение 8: Можно представить A_A как $A_A = \bigoplus_{j=1}^n P_j$, где все P_j неприводимые. Они называются главными неразложимыми модулями.

Все P_j проективны так как A свободна как модуль над собой.

Определение 9: Кольцо R называется локальным, если у него всего один максимальный идеал.

Свойства:

- 1. Этот максимальный идеал состоит из всех необратимых элементов. Действительно, если бы существовал другой необратимый элемент, то он бы содержался в некотором другом максимальном идеале.
- 2. $R/\operatorname{Rad} R$ тело. На самом деле это критерий локальности. Надо либо добавить объяснение, либо удостовериться у Семёнова, что это идёт без доказательства
- 3. 1-x необратим $\iff x$ обратим. Следует из известного факта про описание радикала Джекобсона, в нашем случае он совпадает с единственным максимальным идеалом.

Определение 10: $(P_A,\pi:P \twoheadrightarrow M_A)$ – проективное накрытие модуля $M \Longleftrightarrow \operatorname{Ker} \pi$ мало.

Теорема 7: Если проективное накрытие существует, то оно единственно.

Доказательство: Пусть существуют проективные накрытия $(P_1,\pi:P_1 \twoheadrightarrow M)$ и $(P_2,\pi:P_2 \twoheadrightarrow M)$. Из проективности P_1 следует существование $f:P_1 \to P_2:\pi_2 f=\pi_1$. Проверим, что это изоморфизм.

- Эпиморфность. Im $f+{\rm Ker}\,\pi_2=P_2$. вроде это очев, но я уже совсем мясо чтобы думать. Так как ${\rm Ker}\,\pi_2$ мало, то ${\rm Im}\,f=P_2$, то есть сюръективность доказана.
- Мономорфность. По только что доказаной эпиморфности f расщепляется, то есть $\exists i: P_1 \to M:$ $fi = \operatorname{id}_{P_1}$. добавить ссылк на теорему 6, а в ней добавить слово расщепимость. Значит $\exists X \leqslant P_1: \operatorname{Ker} f \oplus X = P_1$. Ядро f тоже мало, так как $\operatorname{Ker} f \subseteq \operatorname{Ker} \pi_1$ и подмодуль малого модуля мал. Получаем, что $\operatorname{Ker} f = 0$.

в следующую теорему не вдумывался, но вроде норм

Теорема 8: S_A – просто $\implies \exists (P,\pi:P \twoheadrightarrow S)$ – проективное накрытие.

Доказательство: $\exists \pi: A_A \twoheadrightarrow S$. Представим A как $A = \bigoplus_{j=1}^n P_j$.

$$S = \operatorname{Im} \pi = \sum_{j=1}^n \underbrace{\pi \big(P_j \big)}_{\leqslant S} \quad \Longrightarrow \quad \pi(P_k) = S.$$

Предположим, что $\operatorname{Ker} \pi + X = P$, но $X \neq P$. Тогда $\pi(X) = \pi(\operatorname{Ker} \pi + X) = \pi(P) = S$. Пусть $\pi_1 = \pi|_X : X \twoheadrightarrow S$. По проективности P существует $f: P \to X : \pi = \pi_1 f = \pi j f$.

Примем без доказательства, что $\operatorname{End}(P_A)$ – лоакльное кольцо. Лев написал почему так, но оказывается у меня в конспекте б/д относится к словам «главный неразложимый», короче потом надо чекнуть. Так как $\pi(1-jf)=0$, то 1-jf необратим и jf обратим. Значит j эпиморфизм и X=P.

 $\mathit{Следствиe}\colon \mathsf{Eсли}$ модуль S над конечномерной алгеброй прост, то существует главный неразложимый модуль P такой, что $S\cong \frac{P}{J(A)P}.$

Следствие: Если алгебра A полупроста, то любой модуль M_A можно представить как $\bigoplus_{i\in I} \frac{P_i}{J(A)P_i}.$

Теорема 9: ТУТ ТЕОРЕМА ПРО СУЩЕСТВОВАНИЕ ПРОЕКТИВНОГО НАКРЫТИЯ

Следствие: ТУТ СЛЕДСТВИЕ ПРО ГЛАВНЫЕ НЕРАЗЛОЖИМЫЕ

2.3. Инъективные модули

Определение 11: Модуль Q_R называется проективным, если

$$\forall f: X \rightarrowtail Y \quad \forall g: X \to Q \quad \exists h: Y \to Q: g = hf.$$

Лемма 5:

1. Q инъективен \Longleftrightarrow Любой мономорфизм из Q расщепим, то есть $\forall Q \stackrel{i}{\rightarrowtail} X \quad \exists h: X \to Q:$ ЫЫЫЫЫ ДА ЫЫЫЫЫ

Тут какая-то дыра в конспекте как будто.

Определение 12: Модуль M_R над ассоциативном кольцом с единицей называется делимым, если для всех $r \in R$ уравнение rx = y разрешимо относительно x и y, то есть

$$\forall r \in R \quad \forall y \in M \quad \exists x \in M : rx = y.$$

3амечание: Это условие эквивалентно тому, что $\forall r \in R : rM = M$.

Лев, во-первых разберись пж почему замечание съехало, во-вторых проверь определение и замечание, а то у меня в конспекте какие-то x=y/r, это просто условность?

Следующее утверждение на лекции было дано без доказательства, но для полноты изложения мы его привели.

Предложение 2 (Критерий Бэра): Если R нётерово, то инъективность M равносильна тому, что любой гомоморфизм (R-модулей) из идеала $I \subseteq R$ в M продолжается до гомоморфизма на всём R.

Доказательство: ⇒: Следует из определения.

 \Leftarrow : Рассмотрим мономорфизм $X \rightarrowtail Y$. Будем мыслить X как подмодуль Y. Пусть $f: X \to M$.

$$W = \{(Z,h) \mid h: Z \to M, \ X \subseteq Z \subseteq Y, \ h|_X = f\}.$$

Понятно, что $W \neq \varnothing$. Пусть $(Z_1,h_1) \preccurlyeq (Z_2,h_2) \Longleftrightarrow Z_1 \subseteq Z_2$ и $h_2|_{Z_1} = h_1$. Если $\mathcal C$ – цепь в W, то $\left(\bigcup_{(Z,h)\in\mathcal C} Z,H\right)$, где H продолжает все h, является её верхней гранью. Тогда по лемме Цорна существует максимальный элемент (T,g). Предположим, что $T \neq Y$, пусть $t \in Y \setminus T$. Определим $J = \{r \in R \mid rb \in T\}$ и $s:J \to M$ как s(r) = g(rb). По предположению s продолжается до отображения $k:R \to M$. Пусть $N=T+Rb \supsetneq T,N \subseteq Y$. Положим $q:N \to M$ как q(t)=g(t) для всех $t \in T$ и q(rb)=k(r) для $r \in R$. Так как $T \cap Rb = Jb$ и для всех $r \in J$ имеем g(rb)=s(r)=k(r), то q корректно определён. Получили $(T,g) \preccurlyeq (N,q)$, что противоречит максимальности.

23

Лемма 6: Пусть R – кольцо главных идеалов. Тогда M делимый $\Longleftrightarrow M$ инъективный.

Доказательство: \Rightarrow : Воспользуемся критерием Бэра, продолжим отображение $f:I\to M$ на всё R. Пусть $I=\langle r\rangle$. По делимости $\exists x\in M: rx=f(r)$. Тогда отображение $g:R\to M, 1\mapsto x$ продолжает f так как g(r)=rx=f(r).

 \Leftarrow : Выберем $r\in R$ и $y\in M$. Отображение $f:rR\to M, r\mapsto y$ продолжимо до $g:R\to M$. Тогда
 y=f(r)=g(r)=rg(1).

Теорема 10: Пусть R нётерово слева. Тогда $\bigoplus_{i \in I} M_i$ инъективен $\Longleftrightarrow \forall i \in I: M_i$ инъективен.

Доказательство: ДОБАВЛЮ ПОЗЖЕ

2.4. Двойственность

Скам, который в итоге вроде не скам.