Limits

Paolo Bettelini

Contents

1	Definition	2
2	Properties	3
3	Continuity	3
4	Intermediate value theorem	3
5	Bolzano's Theorem	3
6	Squeeze Theorem	3

1 Definition

A limit is usually used to describe the behavior of a function as its argument approaches a given value. The limit towards a certain value c within a function can be be approached both from the right and from the left. The limit in a general sense exists if the value approached from both sides is the same and well-defined. We define the limit of x approaching c from the left within the function f(x) as

$$\lim_{x \to c^{-}} f(x)$$

We define the limit of x approaching c from the right within function f(x) as

$$\lim_{x \to c^+} f(x)$$

We define the limit of x approaching c within function f(x) as

$$\lim_{x \to c} f(x)$$

Formally, given a function $f: D \to \mathbb{R}$ the limit $L = \lim_{x \to c} f(x)$ exists if given an arbitrary small $\epsilon > 0$ there is another number $\delta > 0$ such that

$$|f(x) - L| < \epsilon \text{ when } 0 < |x - c| < \delta$$

This means that for any x in the red region $0 < |x - c| < \delta$ or $|x - c| \in (0; \delta)$, the function at that point will lie in the yellow region. This value is closer to L than either $L + \epsilon$ or $L - \epsilon$

$$|f(x) - L| < \epsilon$$

Notice that this defintion does not require f to be defined at c, but rather just around c.

We can also use this definition for limits from the right and from the left.

The right-hand limit $L = \lim_{x \to c^+} f(x)$ exists if for any arbitrary small $\epsilon > 0$ there is some $\delta > 0$ such that

$$|f(x) - L| < \epsilon \text{ when } 0 < x - c < \delta$$

The left-hand limit $L = \lim_{x \to c^-} f(x)$ exists if for any arbitrary small $\epsilon > 0$ there is some $\delta > 0$ such that

$$|f(x) - L| < \epsilon \text{ when } -\delta < x - c < 0$$

2 Properties

If the limit exists

$$\lim_{x\to c} f(g(x)) = f(\lim_{x\to c} g(x))$$

3 Continuity

A function f is continuous at a point c iff

$$\lim_{c_0 \to c^+} f(c_0) = \lim_{c_0 \to c^-} f(c_0) = f(c)$$

A function f is continuous on an interval [a; b] iff it is continuous at each point $c \in [a; b]$

$$\forall c \in [a; b], \lim_{c_0 \to c^+} f(c_0) = \lim_{c_0 \to c^-} f(c_0) = f(c)$$

4 Intermediate value theorem

A function f continuous on an interval [a; b] will take every value in the interval [f(a); f(b)].

5 Bolzano's Theorem

If f(x) is continuous on [a; b] and f(a) < f(b) then there is a root.

$$f(a) < f(b) \implies \exists c \in [a; b] \mid f(c) = 0$$

6 Squeeze Theorem

Let h(x), f(x) and g(x) be three functions such that $h(x) \leq f(x) \leq g(x)$. If

$$\lim_{x \to x_0} g(x) = f(x) = L$$

then

$$\lim_{x \to x_0} f(x) = L$$