ELECTRONICS TASK

Task 1: part a: MOSFET parameters

MOSFET have 3 operating regions:

-) triode region: normal operating region

-) saturation region: when drain current $I_{\mathcal{D}}$ becomes independent of gate to source voltage V_{GS}

-) cut-off region: $V_{GS} < V_{TH}$ (threshold voltage) (I_D = 0)

consider threshold voltage to be 0 volts:

MOSFET Type	VGS « 0	VGS = 0	VGS » 0
N-channel Enhancement	OFF	OFF	ON
N-channel Depletion	OFF	ON	ON
P-channel Enhancement	ON	OFF	OFF
P-channel Depletion	ON	ON	OFF

Key parameters:

- -) Load voltage
- -) load max power
- -) $I_D max$
- -) V_{DSS}
- -) Rds_{on} (NOTE: different values for Rds_{on} might be used depending on the load voltage)
- $-)R_{THIA}$

Step by step guideline to select a suitable MOSFET for a given load:

- -) check voltage rating and maximum power consumption for the given load
- -) calculate max current through the load $I_{max}^{\ \ 2}=(rac{P_{max}}{V})$
- -) use the formula $P_D = Rds_{on} * I_{max}^2$ (P_D : Thermal power dissipated)

 $Rds_{on} = internal\ drain\ to\ source\ resistance$

-)
$$T_{total} = (R_{THJA} * P_D) + T_A$$

 $T_A = ambient temperature of environment (25 - 35 °c)$

 $T_{total} = total \ temperature \ of \ MOSFET$

 $R_{THJA} = amount\ of\ heat\ created\ per\ watt\ of\ thermal\ power\ lost$

If total temperature exceeds rated maximum of MOSFET then load is not compatible and another MOSFET with a lower Rds_{on} should be considered

(NOTE: multiply the Rds_{on} value by 1.2-1.3 as a safety factor as in practice we can't provide a constant perfect signal to the MOSFET)

Example of datasheet: https://www.onsemi.com/pdf/datasheet/ntb5860nl-d.pdf