Econometrics October 29, 2023

# Topic 5: Two-Way Cluster-Robust (TWCR) Standard Errors

by Sai Zhang

Key points: The validity of Two-Way Cluster-Robust (TWCR) standard errors

**Disclaimer**: This note is compiled by Sai Zhang.

# 5.1 One-Way Clustering

First, consider the case of one-way clustering. The linear model with one-way clustering

$$y_{ig} = \mathbf{x}_{ig}\boldsymbol{\beta} + u_{ig}$$

where i denotes the ith of the N individuals in the sample, j denotes the gth of the G clusters, assume that

- $\mathbb{E}\left[u_{ig} \mid \mathbf{x}_{ig}\right] = 0$
- error independence across clusters: for  $i \neq j$

$$\mathbb{E}\left[u_{ig}u_{jg'}\mid\mathbf{x}_{ig},\mathbf{x}_{jg'}\right]=0\tag{5.1}$$

unless g = g', that is, errors for individuals within the same cluster may be correlated.

Grouping observations by cluster, get

$$\mathbf{y}_{g} = \mathbf{X}_{g}\boldsymbol{\beta} + \mathbf{u}$$

where  $\mathbf{X}_g$  has dimension  $N_g \times K$  and  $\mathbf{y}_g$  has dimension  $N_g \times 1$ , with  $N_g$  observations in cluster g. Stacking over cluster, get the matrix form of the model

$$\mathbf{v} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$$

with  $\mathbf{y}$ ,  $\mathbf{u}$  being  $N \times 1$  vectors,  $\mathbf{X}$  being an  $N \times K$  matrix. OLS estimator gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \left(\sum_{g=1}^{G} \mathbf{X}'_{g}\mathbf{X}_{g}\right)^{-1} \sum_{g=1}^{G} \mathbf{X}'_{g}\mathbf{y}_{g}$$
 (5.2)

then, by CLT, we have that  $\sqrt{G}(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, \Sigma)$  where the variance matrix of the limit normal distribution  $\Sigma$  is

$$\left(\lim_{G\to\infty}\frac{1}{G}\sum_{g=1}^{G}\mathbf{E}\left[\mathbf{X}_{g}'\mathbf{X}_{g}\right]\right)^{-1}\left(\lim_{G\to\infty}\frac{1}{G}\sum_{g=1}^{G}\mathbf{E}\left[\mathbf{X}_{g}'\mathbf{u}_{g}'\mathbf{u}_{g}\mathbf{X}_{g}\right]\right)\times\left(\lim_{G\to\infty}\frac{1}{G}\sum_{g=1}^{G}\mathbf{E}\left[\mathbf{X}_{g}'\mathbf{X}_{g}\right]\right)^{-1}$$
(5.3)

If the primary source of clustering is due to group-level common shocks, a useful approximation is that for the jth regressor, the default OLS variance estimate based on  $s^2 (\mathbf{X}'\mathbf{X})^{-1}$  should be inflated by  $\tau_j \simeq 1 + \rho_{x_j} \rho_u \left(\overline{N}_g - 1\right)$ , where

• *s* is the estimated standard deviation of the error

- $\rho_{x_i}$  is a measure of within-cluster correlation of  $x_j$
- $\rho_u$  is the within-cluster error correlation
- $\overline{N}_g$  is the average cluster size

It's easy to see the  $\tau_j$  can be large even with small  $\rho_u$  (Kloek, 1981; Scott and Holt, 1982; Moulton, 1990). If assume the model for the cluster error variance matrices  $\Omega_g = \mathbb{V}\left[\mathbf{u}_g \mid \mathbf{X}_g\right] = \mathbb{E}\left[\mathbf{u}_g\mathbf{u}_g' \mid \mathbf{X}_g\right]$ , and there is a consistent estimate  $\hat{\Omega}_g$  of  $\Omega_g$ , we can estimate  $\mathbb{E}\left[\mathbf{X}_g'\mathbf{u}_g\mathbf{u}_g'\mathbf{X}_g\right] = \mathbb{E}\left[\mathbf{X}_g'\Omega_g\mathbf{X}_g\right]$  via GLS.

#### Cluster-robust variance matrix estimate consider

$$\hat{\mathbb{V}}\left[\hat{\boldsymbol{\beta}}\right] = (\mathbf{X}'\mathbf{X})^{-1} \left(\sum_{g=1}^{G} \mathbf{X}'_{g} \hat{\mathbf{u}}_{g} \hat{\mathbf{u}}'_{g} \mathbf{X}_{g}\right) (\mathbf{X}'\mathbf{X})^{-1}$$
(5.4)

where  $\hat{\mathbf{u}}_g = \mathbf{y}_g - \mathbf{X}_g \hat{\boldsymbol{\beta}}$ . This estimate is consistent if

$$G^{-1} \sum_{g=1}^{G} \mathbf{X}_{g}' \hat{\mathbf{u}}_{g} \hat{\mathbf{u}}_{g}' \mathbf{X}_{g} - G^{-1} \sum_{g=1}^{G} \mathbb{E} \left[ \mathbf{X}_{g}' \mathbf{u}_{g} \mathbf{u}_{g}' \mathbf{X}_{g} \right] \xrightarrow{p} \mathbf{0}$$

as  $G \to \infty$ . An informal presentation of Eq.(5.4) is to rewrite the central matrix as

$$\hat{\mathbf{B}} = \sum_{g=1}^{G} \mathbf{X}_{g}' \hat{\mathbf{u}}_{g} \hat{\mathbf{u}}_{g}' \mathbf{X}_{g} = \mathbf{X}' \begin{bmatrix} \hat{\mathbf{u}}_{1} \hat{\mathbf{u}}_{1}' & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \hat{\mathbf{u}}_{2} \hat{\mathbf{u}}_{2}' & & \vdots \\ \vdots & & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & & \hat{\mathbf{u}}_{G} \hat{\mathbf{u}}_{G}' \end{bmatrix} \mathbf{X} = \mathbf{X}' \left( \hat{\mathbf{u}} \hat{\mathbf{u}}' \otimes \mathbf{S}^{G} \right) \mathbf{X}$$
(5.5)

where  $\otimes$  denotes element-wise multiplication. The (p,q)th element of this matrix is

$$\sum_{i=1}^{N} \sum_{j=1}^{N} x_{ia} x_{jb} \hat{u}_{i} \hat{u}_{j} \cdot \mathbf{1} (i, j \text{ in the same cluster})$$

with  $\hat{u}_i = y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}$ .

 $\mathbf{S}^G$  is an  $N \times N$  indicator matrix with  $\mathbf{S}^G_{ij} = 1$  only if the ith and jth observation belong to the same cluster: it zeros out a large amount of  $\hat{\mathbf{u}}\hat{\mathbf{u}}'$  (asymptotically equivalently,  $\mathbf{u}\mathbf{u}'$ ), specifically, only  $\sum_{g=1}^G N_g^2$  out of  $N^2 = \left(\sum_{g=1}^G N_g\right)^2$  terms are not zero (sub-matrices on the diagonal). Asymptotically

- for fixed  $N_g$ ,  $\frac{1}{N^2} \sum_{g=1}^G N_g^2 \xrightarrow{G \to \infty} 0$
- for balanced clusters  $N_g = N/G$ ,  $\frac{1}{N^2} \sum_{g=1}^G N_g^2 = \frac{1}{G} \xrightarrow{G \to \infty} 0$

A strand of literature popularizes this method:

- Liang and Zeger (1986): in a generalized estimatin equations setting
- Arellano (1987): fixed effects estimator in linear panel models
- Hansen (2007): asymptotic theory for panel data where  $T \to \infty$  in addition to  $N \to \infty$  (or  $N_g \to \infty$  in addition to  $G \to \infty$  in the notation above).

### 5.2 Two-Way Clustering

Now, consider the case of two-way clustering,

$$y_{i,gh} = \mathbf{x}'_{i,gh} \boldsymbol{\beta} + u$$

where each observation may belong to **two** dimension of groups: group  $g \in \{1, \dots, G\}$  and  $h \in \{1, \dots, H\}$ , and for  $i \neq j$ 

$$\mathbb{E}\left[u_{i,gh}u_{i,g'h'}\mid\mathbf{x}_{i,gh},\mathbf{j},\mathbf{g'h'}\right]=0\tag{5.6}$$

unless g = g' or h = h', that is, errors for individuals within the same group (along either g or h) may be correlated.

**Cluster-robust variance matrix estimate** extending the one-way clustering case, keep elements of  $\hat{\mathbf{u}}\hat{\mathbf{u}}'$  where the *i*th and *j*th observations share a cluster in **any** dimension, then similar to Eq.(5.5)

$$\hat{\mathbf{B}} = \mathbf{X}' \left( \hat{\mathbf{u}} \hat{\mathbf{u}}' \otimes \mathbf{S}^{GH} \right) \mathbf{X} \tag{5.7}$$

here  $\mathbf{S}^{GH}$  is an  $N \times N$  indicator matrix with  $\mathbf{S}_{ij}^{GH} = 1$  only if the ith and jth observation share any cluster, the (p,q)th element of this matrix is

$$\sum_{i=1}^{N} \sum_{i=1}^{N} x_{ia} x_{jb} \hat{u}_{i} \hat{u}_{j} \cdot \mathbf{1} (i, j \text{ share any cluster})$$

 $\hat{\mathbf{B}}$  can also be presented in one-way cluster-robust fashion:

$$\hat{\mathbf{B}} = \mathbf{X}' \left( \hat{\mathbf{u}} \hat{\mathbf{u}}' \otimes \mathbf{S}^{GH} \right) \mathbf{X} = \mathbf{X}' \left( \hat{\mathbf{u}} \hat{\mathbf{u}}' \otimes \mathbf{S}^{G} \right) \mathbf{X} + \mathbf{X}' \left( \hat{\mathbf{u}} \hat{\mathbf{u}}' \otimes \mathbf{S}^{H} \right) \mathbf{X} - \mathbf{X}' \left( \hat{\mathbf{u}} \hat{\mathbf{u}}' \otimes \mathbf{S}^{G \cap H} \right) \mathbf{X}$$
(5.8)

where  $\mathbf{G}^{GH} = \mathbf{G}^G + \mathbf{G}^H - \mathbf{G}^{G \cap H}$ , with

- $\mathbf{G}^G$ :  $\mathbf{G}_{ij}^G = 1$  only if the *i*th and *j*th observation belong to the same cluster  $g \in \{1, 2, \dots, G\}$
- $\mathbf{G}^H$ :  $\mathbf{G}_{ij}^H = 1$  only if the *i*th and *j*th observation belong to the same cluster  $h \in \{1, 2, \dots, H\}$
- $\mathbf{G}^{G \cap H}$ :  $\mathbf{G}^{G \cap H}$  = 1 only if the ith and jth observation belong to **both** the same cluster  $g \in \{1, 2, \dots, G\}$  and the same cluster  $h \in \{1, 2, \dots, H\}$

then, similar to one-way clustering case,

$$\hat{\mathbb{V}}\left[\hat{\boldsymbol{\beta}}\right] = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \left(\hat{\mathbf{u}}\hat{\mathbf{u}}' \otimes \mathbf{S}^{G}\right) \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$

$$+ (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \left(\hat{\mathbf{u}}\hat{\mathbf{u}}' \otimes \mathbf{S}^{H}\right) \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$

$$- (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \left(\hat{\mathbf{u}}\hat{\mathbf{u}}' \otimes \mathbf{S}^{G \cap H}\right) \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$
(5.9)

that is,

$$\hat{\mathbb{V}}\left[\hat{\boldsymbol{\beta}}\right] = \hat{\mathbb{V}}^{G}\left[\hat{\boldsymbol{\beta}}\right] + \hat{\mathbb{V}}^{H}\left[\hat{\boldsymbol{\beta}}\right] - \hat{\mathbb{V}}^{G\cap H}\left[\hat{\boldsymbol{\beta}}\right] \tag{5.10}$$

each of Eq.(5.10) can be separately computed by OLS of  $\mathbf{y}$  on  $\mathbf{X}$ , with variance matrix estimates  $\hat{\mathbb{V}}$  based on

- i clustering on  $g \in \{1, 2, \dots, G\}$
- ii clustering on  $h \in \{1, 2, \dots, H\}$
- iii clustering on  $(g, h) \in \{(1, 1), \dots, (G, H)\}$

**Practical considerations** It is required to know what *ways* will be potentially important for clustering, which can be tested via checking the dimension of correlations in the errors. There are several ways to test

- estimate sample covariances of  $X'\hat{u}$  within dimensions, test the null that the **average** of such covariances is 0: rejecting this null is sufficient (not necessary) to reject the null of no clustering (White, 1980)
- for **small samples**, Eq. (5.4) is baised downwards. This is corrected (in Stata) by replacing  $\hat{\mathbf{u}}_g$  with  $\sqrt{c}\hat{\mathbf{u}}_g$ , where  $c = \frac{G}{G-1}\frac{N-1}{N-K} \simeq \frac{G}{G-1}$ . For two-way clustering (Eq. 5.8), there are 2 ways of correction:
  - choose correction terms for each of the 3 components:

$$c_1 = \frac{G}{G-1} \frac{N-1}{N-K}, c_2 = \frac{H}{H-1} \frac{N-1}{N-K}, c_3 = \frac{I}{I-1} \frac{N-1}{N-K}$$

with *I* being the number of unique clusters determined by  $G \cap H$ 

- choose a constant terms for all components:

$$c = \frac{J}{J-1} \frac{N-1}{N-K}$$

with  $J = \min(G, H)$ 

• Var-cov matrix not positive-semidefinite:  $\hat{\mathbb{V}}\left[\hat{\boldsymbol{\beta}}\right]$  might have negative elements on the diagonal (Eq. 5.10), informly, this is more likely to arise when clustering is done over the same groups as the fixed effects. One way to address this issue is using *eigendecomposition* technique:

$$\hat{\mathbb{V}}\left[\hat{\boldsymbol{\beta}}\right] = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}'$$

where

- U containing the eigenvectors of  $\hat{\mathbf{V}}$
- $\Lambda$  = diag [ $\lambda_1, \dots, \lambda_d$ ] contains the eigenvalues of  $\hat{\mathbf{V}}$

then create  $\Lambda^+ = \operatorname{diag}\left[\lambda_1^+, \cdots, \lambda_d^+\right]$  with  $\lambda_j^+ = \max\left(0, \lambda_j\right)$  and use  $\hat{\mathbf{V}}^+\left[\hat{\boldsymbol{\beta}}\right] = \mathbf{U}\Lambda^+\mathbf{U}'$  as the estimate

# 5.3 Multiway Clustering

Cameron et al. (2011) extended the framework to allow clustering in D dimensions, then we can do the following reframing

- $G_d$ : the number of clusters in dimension  $d \in \{1, 2, \dots, D\}$
- *D*-vector  $\delta_i = \delta(i)$ , with function  $\delta : \{1, 2, \dots, N\} \rightarrow \times_{d=1}^{D} \{1, 2, \dots, G_d\}$

#### References

- Manuel Arellano. Computing robust standard errors for within-groups estimators. *Oxford bulletin of Economics and Statistics*, 49(4):431–434, 1987.
- A Colin Cameron, Jonah B Gelbach, and Douglas L Miller. Robust inference with multiway clustering. *Journal of Business & Economic Statistics*, 29(2):238–249, 2011.
- Christian B Hansen. Asymptotic properties of a robust variance matrix estimator for panel data when t is large. *Journal of Econometrics*, 141(2):597–620, 2007.
- Teunis Kloek. Ols estimation in a model where a microvariable is explained by aggregates and contemporaneous disturbances are equicorrelated. *Econometrica: Journal of the Econometric Society*, pages 205–207, 1981.
- Kung-Yee Liang and Scott L Zeger. Longitudinal data analysis using generalized linear models. *Biometrika*, 73(1):13–22, 1986.
- Brent R Moulton. An illustration of a pitfall in estimating the effects of aggregate variables on micro units. *The review of Economics and Statistics*, pages 334–338, 1990.
- Andrew J Scott and D Holt. The effect of two-stage sampling on ordinary least squares methods. *Journal of the American statistical Association*, 77(380):848–854, 1982.
- Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. *Econometrica: journal of the Econometric Society*, pages 817–838, 1980.