Supervised Machine Learning: Regression Peer To Peer Assignment

Main objective: Car Price Prediction

We are required to model the price of cars with the available independent variables. It will be used by the management to understand how exactly the prices vary with the independent variables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels.

Brief description of the data set and a summary of its attributes

I have data set consisting of 205 data points and 26 columns representing features.

There are some features that are not important for target variable, I will simply drop them and there are also some categorical feature, that I will convert to numerical form by Encoding method.

car ID ID of every car

CarName Name of Car

fueltype Type of Fuel

doornumber Total number of door

carbody Body of Car weather Sedan or Hatchback etc

enginelocation Location of engine in car

wheelbase Distance between rear and front wheel

carlength Length of Car

carwidth Width of Car

carheight Height of Car

curbweight Weight of Car without any passenger or item

enginetype Type of engine

cylindernumber Total cylinder in Car

enginesize Size of Engine

boreratio Combustion Performance of Lean Burn Heavy-Duty Gaseous Engine

stroke A phase of the engine's cycle

horsepower Power of Car

peakrpm Revolution per minute

citympg City mileage per gallon

highwaympg Highway mileage per gallon

price Price of car

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df = pd.read_csv('E:\Machine Learning Course\Course2\week3\CarPrice.csv')

df.head()

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesize	fuelsystem	boreratio	S
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	

5 rows × 26 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64

df.isnull().sum()

car ID 0 symboling 0 0 CarName CarName 0
fueltype 0
aspiration 0
doornumber 0
carbody 0
drivewheel 0
enginelocation 0
wheelbase 0
carlength 0
carwidth 0 0 carwidth 0 carheight carheight 0
cordinatione 0 cylindernumber 0
enginesize 0
fuelsvstem 0 fuelsystem boreratio 0 stroke 0 compressionratio 0 horsepower 0 0 peakrpm 0 citympg highwaympg 0 0 price dtype: int64

small_df = df.loc[:,['wheelbase','carlength','carwidth','carheight','boreratio','stroke','compressionratio','price']]

sns.pairplot(small_df)

<seaborn.axisgrid.PairGrid at 0x23446494b80>

sns.histplot(df['compressionratio'],bins=25)

<AxesSubplot:xlabel='compressionratio', ylabel='Count'>

sns.histplot(df['wheelbase'],bins=25)

<AxesSubplot:xlabel='wheelbase', ylabel='Count'>


```
mask = df.dtypes == np.float
float_cols = df.columns[mask]
skew_limit = 0.75 # define a limit above which we will log transform
skew_vals = df[float_cols].skew()
skew_vals
<ipython-input-141-30ffafa34c1c>:1: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence th
is warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy sc
alar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
 mask = df.dtypes == np.float
wheelbase
                   1.050214
carlength
                   0.155954
carwidth
                   0.904003
carheight
                  0.063123
boreratio
                   0.020156
stroke
                   -0.689705
compressionratio 2.610862
price
                   1.777678
dtype: float64
skew_cols = (skew_vals.sort_values(ascending=False).to_frame().rename(columns={0:'Skew'}).query('abs(Skew) > {}'.format(skew_limi
skew_cols
```

Skew

```
        compressionratio
        2.610862

        price
        1.777678

        wheelbase
        1.050214

        carwidth
        0.904003
```

```
for col in skew_cols.index.values:
   if col == "price":
        continue
   df[col] = df[col].apply(np.log1p)
```

plt.figure(figsize=(40,40))
sns.heatmap(df.corr(method ='pearson'),cmap='PuBu',annot=True,linewidths=0.5)
plt.show()

			628	ur	e sa	16	10	9.29		4.80	det	654	er .
		***	***		10	10	wat.		SMS.	2.36	042	άΣ	108
8.79	154		228	sar	69		Not		234	4.8	786	< 88	
#1. 85P		LA.		**	5457		438		8.0	4.81	4349	411	120
977	560	car .	.,		18	16	417		178	639	470	**	
154		W.9	ese:	un		138	44	108	-211	4.8	440	4 M	w
8. 3.8F			927	3.00	.a		diction	actes	ar	4.00	at Nat	411	
9			g 244			sess	,	ett	9401	4.60	2307	204	
9.29		tie	128		WG	ONE	No		4.14	44	***	1.79	Assi
9.35	150	1.04	411	6/3	486	857	108	#12	٠	w	4.9	477	102
a 56	6 39	d 20	**	430	424	825	2100	817	415.		411	604	4 85
0.67	40	4.66	6.369	434	446	411	636	**	**	4st		547	a 60
434	47	410	8.81	ás.	-248	444	4166	7.0	4.0	***	997		42
	***	8.75	str		w	418	ECTY	439	238	4100	446	8.7	¥
wheeltee	u salayin	worth	NAME OF TAXABLE PARTY.	nutrainty14	rgrass	versit	date	segrationals	'en graar'	garine	strag	Inghavorray	pro

```
feature = df.dtypes == np.object

<ipython-input-132-3fa00075be2d>:1: DeprecationWarning: `np.object` is a deprecated at this warning, use `object` by itself. Doing this will not modify any behavior and is Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/refeature = df.dtypes == np.object

feature = df.dtypes[df.dtypes == np.object]
feature = feature.index.tolist()

<ipython-input-133-82993708c8bb>:1: DeprecationWarning: `np.object` is a deprecated at this warning, use `object` by itself. Doing this will not modify any behavior and is Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/refeature = df.dtypes[df.dtypes == np.object]

df_dum = pd.get_dummies(df,columns=feature,drop_first=True)

df = df.drop(df[feature],axis=1)

pd.concat([df,df_dum],axis=1)
```

Summary of data exploration and Actions taken for Data Cleaning and Feature Engineering

1) FINDINGS

After reading data by pandas read csv function, I applied

- a. **isnull()** to see is their any missing in the dataset. But I found their no missing value in my dataset.
- b. **Info()** function to see data type of different feature of my dataset and I found there are many feature that are important for my target variable and their data type is object.
- c. **Skew() and hist()** function to check shewness of data and their was some columns that are right or left skewed. e.g compressionratio and wheel etc.
- d. **Pairplot()** to see correlation and also to find is their any need to use **Polynomial feature** for higher degree. i.e 2,3,4 etc.
- e. **Heatmap()** to see correlation in more depth by printing their corresponding value of relation with each other.

2) ACTION:

- a. For column that are important for by target variable and their data type was Object, I applied **get_dummies()** function of pandas to convert them into numeric type.
- b. For removing skewness of different columns, I applied **log1p** transformation function.
- c. Although I found there are some columns are correlated with each other but when I applied **Variation Inflation Factor** technique to remove correlation among them, I found that it have negative impact on my r2_score because in this technique some columns are drop for eliminating correlation. So then I trained my model without removing correlation.
- d. Also their was some columns that are not important for our target, So I simply drop them.
- e. Similarly, I used **Standard Scaler** and **Polynomial feature** technique on dataset before giving it to model for training.

Summary of Three Different Linear Regression Model

1) Simple Linear Regression Model

```
X = df.drop('price',axis=1)
y = df['price']
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.model_selection import GridSearchCV, train_test_split, KFold
from sklearn.linear_model import LinearRegression,Lasso,Ridge
from sklearn.pipeline import Pipeline
from sklearn.metrics import r2_score
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=72018)
s = StandardScaler()
X_train_s = s.fit_transform(X_train)
X_test_s = s.transform(X_test)
lr = LinearRegression()
lr = lr.fit(X_train_s,y_train)
pred = lr.predict(X test s)
r2_score(pred,y_test)
0.6009998432027648
```

2) Ridge Regression Model

```
kf = KFold(shuffle=True,random_state=72018,n_splits=3)
estimator = Pipeline([
   ("Polynomail_feature", PolynomialFeatures()),
    ("scaler", StandardScaler()),
    ("ridge_regression", Ridge())
])
param = {
   'Polynomail_feature__degree':[1,2,3],
   'ridge_regression__alpha':np.geomspace(4,20,30)
grid = GridSearchCV(estimator,param,cv=kf)
grid.fit(X,y)
GridSearchCV(cv=KFold(n_splits=3, random_state=72018, shuffle=True),
            estimator=Pipeline(steps=[('Polynomail_feature',
                                      PolynomialFeatures()),
                                     ('scaler', StandardScaler()),
                                     ('ridge_regression', Ridge())]),
            param_grid={'Polynomail_feature__degree': [1, 2, 3],
                        'ridge_regression__alpha': array([ 4.
                                                                     4.22826702, 4.469560
       5.27924796, 5.58051751, 5.89897953, 6.23561514, 6.59146146,
       6.96761476, 7.36523392, 7.78554391, 8.22983963, 8.69948987,
       9.19594151, 9.72072404, 10.27545421, 10.86184103, 11.48169104,
      12.13691388, 12.82952815, 13.56166768, 14.33558803, 15.15367351,
      16.01844446, 16.93256509, 17.89885162, 18.92028098, 20.
pred_r = grid.predict(X)
r2_score(pred_r,y)
 0.8940782687472872
grid.best_score_, grid.best_params_
 (0.8229369717953522,
  {'Polynomail_feature__degree': 3,
    'ridge_regression__alpha': 12.82952815374728})
```

3) Lasso Regression Model

```
grid_1.fit(X,y)
```

- 1) As in first case I applied simple linear regression on model and it's r2_score was 0.60 which is not considered as good result.
- 2) In second case I applied Polynomial feature technique on dataset before giving it to Ridge regression. I also used GridSearchCV method and pipeline technique to make process fast and easy to find out best best parameters for our model to have good prediction.

So by doing this, I found that parameters i.e polynomial feature and alpha values 3 and 14 are best for our model to have r2 score of 0.89.

3) Similarly for case three I used Lasso Regression, GridSearchCV and pipeline technique and founded that value of 2 for degree and 10 for alpha is best for our model to have good r2 score of 0.89.

A paragraph explaining which of your regressions you recommend as a final model that best fits your needs in terms of accuracy and explainability.

For choosing model that best fir our data, Ridge and Lasso both are better than simple linear regression and both have same r2_score, So we can choose any one from both of them but if we want interpretability along with our main goal of prediction then Lasso will be choice.

Summary Key Findings and Insights, which walks your reader through the main drivers of your model and insights from your data derived from your linear regression model

Some of key point for this data and regression model is that as we know that correlation in data is not good for our model and it have impact on model accuracy but in our case when we used technique of VIF to eliminate correlation from data, I found that it does not have good impact on accuracy of model because in this technique we drop one of column that are correlated with each other, So by doing that we will end up with having less number of feature for our model to train on which is again problem. i.e Problem of underfitting.

Suggestions for next steps in analyzing this data, which may include suggesting revisiting this model adding specific data features to achieve a better explanation or a better prediction

So my next suggestion for analyzing this data will be to have more data because as we can see our data consist of only 205 row or observation that is not good enough to train model.