Joint, Marginal and Conditional Probability Distributions and Independence:

Problem 1: Consider two random variables X and Y. Determine the values of constants α and β so that the following functions are true joint probability distributions (PMFs):

(a)
$$f(x, y) = \alpha xy$$
, $x = 1, 2, 3$; $y = 1, 2, 3$

(b)
$$f(x, y) = \beta |x - y|$$
, $x = -2, 0, 2$; $y = -2, 3$

Solution:

(a)
$$\sum_{x=0}^{3} \sum_{y=0}^{3} p(x,y) = \sum_{x=0}^{3} \sum_{y=0}^{3} xy = 36\alpha = 1 \Rightarrow \alpha = \frac{1}{36}$$

(b) $\sum_{x=0}^{3} \sum_{y=0}^{3} p(x,y) = \beta \sum_{x} \sum_{y} |x-y| = 15\beta = 1 \Rightarrow \beta = \frac{1}{15}$

(b)
$$\sum_{x=0}^{3} \sum_{y=0}^{3} p(x,y) = \beta \sum_{x} \sum_{y} |x-y| = 15\beta = 1 \Rightarrow \beta = \frac{1}{15}$$

Problem 2: The joint probability distributions (PMFs) of two random variables X and Y is given by

$$p(x, y) = \frac{x+y}{30}, \quad x = 1, 2, 3; \quad y = 0, 1, 2$$

Find

(a) $P[X \le 2, Y = 1]$	(b) $P[X > 2, Y \le 1]$
(c) $P[X > Y]$	(d) $P[X+Y=4]$

Solution: First, we express the joint PMF of X and Y in table form

p(x, y)	x = 0	x = 1	x = 2	x = 3
y = 0	0	1/30	2/30	3/30
y = 1	1/30	2/30	3/30	4/30
y = 2	2/30	3/30	4/30	5/30

(a)
$$P[X \le 2, Y = 1] = p(0,1) + p(1,1) + p(2,1) = 1/30 + 2/30 + 3/30 = 1/5$$
.

(b)
$$P[X > 2, Y \le 1] = p(3,0) + p(3,1) = 3/30 + 4/30 = 7/30$$

(b)
$$P[X > 2, Y \le 1] = p(3,0) + p(3,1) = 3/30 + 4/30 = 7/30.$$

(c) $P[X > Y] = p(1,0) + p(2,0) + p(2,1) + p(3,0) + p(3,1) + p(3,2) = 3/30 + 2/30 + 3/30 + 3/30 + 4/30 + 5/30 = 3/5.$

(d)
$$P[X+Y=4] = p(2,2) + p(3,1) = 4/30 + 4/30 = 4/15$$

Problem 3: The lifetimes, measured in years, of two components in an electronic system are represented by two random variables X and Y, with their joint PDF given by

$$f(x,y) = \begin{cases} e^{-(x+y)} & x > 0; \ y > 0 \\ 0 & \text{otherwise} \end{cases}$$

Find the conditional probability $P \lceil 0 < X < 1 | Y = 2 \rceil$

Answer:

$$P \lceil 0 < X < 1 | Y = 2 \rceil = 0.6321.$$

Problem 4: An experiment is performed to determine the reaction time, in seconds to a certain stimulus and to also determine the temperature (in degrees Fahrenheit). Denote the reaction time by random variables X and reaction temperature by random variable Y. Their joint PDF is given by

$$f(x,y) = \begin{cases} 4xy, & 0 < x < 1, & 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find

(a)
$$P[0 \le X \le 0.5 \text{ and } 0.25 \le Y \le 0.5]$$
 (b) $P[X < Y]$

(b)
$$P[X < Y]$$

(c) Determine whether *X* and *Y* are independent or dependent.

Solution:

(a)
$$P[0 \le X < 0.5, 0.25 \le Y \le 0.5] = \frac{3}{64}$$
.

(b)
$$P[X < Y] = \frac{1}{2}$$

(b)
$$P[X < Y] = \frac{1}{2}$$
.
(c) $f_X(x) = 2x$, $0 < x < 1$. $f_Y(y) = 2y$, $0 < y < 1$.

From above, $f(x, y) = f_X(x) f_Y(y)$. Therefore, X and Y are they are independent.

Problem 5: The diameter of an electric cable is a random variable X and the diameter of the mold that makes the electric cable is a random variable Y. Both X and Y are scaled so that they range between 0 and 1. Their joint PDF is given by

$$f(x,y) = \begin{cases} \frac{1}{y}, & 0 < x < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find P[X + Y > 0.5]

Solution:

$$P[X+Y>0.5] = 1 - P[X+Y<0.5] = 1 - \int_0^{0.25} \int_x^{0.5-x} \frac{1}{y} dy dx$$
$$= 1 + 0.25 \ln(0.25) = 0.6534$$

Problem 6: The number of times a certain electronic device malfunctions is a random variable X and number of times a technician is called on an emergency basis is a random variable Y. Their joint PMF is given by by the table

p(x,y)	x = 1	x = 2	x = 3
y = 1	0.05	0.05	0.10
y = 2	0.05	0.10	0.35
y = 3	0.00	0.20	0.10

- (a) What is the marginal PMF of X?
- (c) Find P[Y = 3 | X = 2]

- (b) What is the marginal PMF of Y?
- (d) Determine whether *X* and *Y* are independent or dependent.

Solution:

(a)

	x = 1	x = 2	x = 3
$f_X(x)$	0.10	0.35	0.55

(b)

	y = 1	y = 2	y = 3
$f_{Y}(y)$	0.20	0.50	0.30

(c)

$$P[Y = 3 | X = 2] = 0.5714$$

Problem 7: Random variables X and Y, denote the life in hours of two electronic components of a missile system. For the success of the system the two components must work in harmony. Their joint PDF is given by

$$f(x,y) = \begin{cases} ye^{-y(1+x)}, & x > 0, y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Solution:

(a)
$$f_X(x) = \frac{1}{(1+x)^2}$$
, $x > 0$. $f_Y(y) = e^{-y}$, $y > 0$.

(b)
$$P[X \ge 2, Y \ge 2] = \frac{1}{3}e^{-6}$$

Problem 8: Random variables X and Y, have joint PDF is given by

$$f(x,y) = \begin{cases} \frac{3x - y}{9}, & 1 < x < 3, \ 1 < y < 2, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) What are the marginal density functions of X and Y?
- (b) Verify that *X* and *Y* whether are independent or not.

(c) Find P[X > 2]

Solution:

(a)
$$f_X(x) = \frac{x}{3} - \frac{1}{6}$$
, $1 < x < 3$, $f_Y(y) = \frac{4}{3} - \frac{2}{9}y$, $1 < y < 2$

(b) No, since $f_x(x) f_y(y) \neq f(x, y)$.

(c)
$$P[X > 2] = \int_{2}^{3} \left(\frac{x}{3} - \frac{1}{6}\right) dx = \left(\frac{x^{2}}{6} - \frac{x}{6}\right)\Big|_{2}^{3} = \frac{2}{3}.$$

Mathematical Expectations of Pairs of Random Variables - Covariance, Correlation Coefficient:

Problem 9: Tire experts A and B provide tire-quality ratings on a 3-point scale. Random variables X denotes rating provided by A and Y denotes rating provided by B. The two random variables have joint PMF is given by the table below.

p(x, y)	y = 1	y = 2	y = 3
x = 1	0.10	0.05	0.02
x = 2	0.10	0.35	0.05
x = 3	0.03	0.10	0.20

Find the mean values μ_{Y} and μ_{Y} of X and Y, respectively.

	x = 1	x = 2	x = 3
$f_X(x)$	0.17	0.50	0.33

$$\mu_{X} = \sum_{x=1}^{3x} x f_{X}(x) = 2.16, \quad \mu_{Y} = \sum_{x=1}^{3x} y f_{Y}(y) = 2.04$$

$$\mu_X = \sum_{x=1}^{3x} x f_X(x) = 2.16, \quad \mu_Y = \sum_{x=1}^{3x} y f_Y(y) = 2.04$$

Problem 10: The number of times a certain electronic device malfunctions is a random variable X and number of times a technician is called on an emergency basis is a random variable Y. Their joint PMF is given by the table

p(x, y)	x = 1	x = 2	x = 3
y = 1	0.05	0.05	0.10
y = 3	0.05	0.10	0.35
y = 5	0.00	0.20	0.10

Find the covariance of X and Y.

Solutions:

$$x=1$$
 $x=2$ $x=3$ $f_X(x)$ 0.10 0.35 0.55

$$\mu_{X} = \sum_{x=1}^{3} x f_{X}(x) = 2.45., \quad \mu_{Y} = \sum_{x=1}^{3} y f_{Y}(y) = 3.20.$$

$$\mu_X = \sum_{x=1}^{3} x f_X(x) = 2.45., \quad \mu_Y = \sum_{x=1} y f_Y(y) = 3.20.$$

$$E[XY] = 7.85$$

$$\sigma_{XY}^2 = 0.01$$

Problem 11: Random variables X and Y, have joint PDF is given by

$$f(x,y) = \begin{cases} \frac{16y}{x^3}, & x > 2, \ 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Determine the correlation coefficient of X and Y.

Solution:

$$f_X(x) = \frac{8}{x^3}, \quad x > 2 \Rightarrow \mu_X = 4, \quad f_Y(y) = 2y, \quad 0 < y < 1 \Rightarrow \mu_Y = \frac{2}{3}.$$

$$E[XY] = \frac{8}{3} \Rightarrow Cov[XY] = 0.$$

Problem 12:

Random variables *X* and *Y* have joint PMF given by

$$p_{XY}(x,y) = \begin{cases} cxy & x = 1, 2, 4; y = 1, 3, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the value of the constant c,
- (b) The marginal PMFs of X and Y,
- (c) The expected values of X and Y,
- (d) The standard deviations of X and Y.
- (a) c = 1/28

(b)
$$p_x(x) = \sum_{y=1,3} p(x,y) = \begin{cases} 4/28 & x=1\\ 8/28 & x=2; \\ 16/28 & x=4 \end{cases}$$
 $p_y(y) = \sum_{x=1,2,4} p(x,y) = \begin{cases} 7/28 & y=1\\ 21/27 & y=3 \end{cases}$

(c)
$$\mu_X = 3$$
; $\mu_Y = \frac{5}{2}$.

(d)
$$E[X^2] = \frac{73}{7}$$
; $E[Y^2] = 7$;

$$\sigma_X^2 = \frac{10}{7}; \quad \sigma_Y^2 = \frac{3}{4}$$