Optimization algorithms Quiz, 10 questions

1 point	
	notation would you use to denote the 3rd layer's activations when the the 7th example from the 8th minibatch?
	$a^{[8]\{3\}(7)}$
	$a^{[3]\{8\}(7)}$
	$a^{[3]\{7\}(8)}$
	$a^{[8]\{7\}(3)}$
1 point	
2. Which with?	of these statements about mini-batch gradient descent do you agree
	Training one epoch (one pass through the training set) using minibatch gradient descent is faster than training one epoch using batch gradient descent.
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.

point

3.

Why is the best mini-batch size usually not 1 and not m, but instead something Optimizationealgorithms

Quiz, 10 question

If the mini-batch size is 1, you lose the benefits of vectorization across
examples in the mini-batch.

If the mini-batch size is 1, you end up having to process the entire
training set before making any progress.

If the mini-batch size is m, you end up with stochastic gradient
descent, which is usually slower than mini-batch gradient descen

1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

Optimization algorithms descent or mini-batch gradient descent or mini-batch gradient descent, something is wrong. Quiz, 10 questions

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

1 point

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $\theta_1=10^{o}C$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
 , $v_2^{corrected}=10$

$$ightarrow v_2 = 10$$
, $v_2^{corrected} = 7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

$$ightarrow v_2 = 7.5$$
, $v_2^{corrected} = 7.5$

point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

Optimization algorithms

Quiz, 10 questions

$$lpha=rac{1}{\sqrt{t}}lpha_0$$

$$lpha = e^t lpha_0$$

$$lpha = 0.95^t lpha_0$$

point

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing eta will shift the red line slightly to the right.
becreasing p will still the realine slightly to the right.

Increasing β will shift the red line slightly to the right.

Decreasing β will create more oscillation within the red line.

Increasing β will create more oscillations within the red line.

Optimization algorithms Quiz, 10 questions

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)

point

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

- Try better random initialization for the weights
- Try tuning the learning rate lpha

24/2017	Coursera Online Courses From Top Universities. Join for Free Coursera
Optimizat	Try mini-batch gradient descent ion algorithms
Quiz, 10 questions	
	Try using Adam
	1 point
	10. Which of the following statements about Adam is False?
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.
	Adam should be used with batch gradient computations, not with mini-batches.
	Adam combines the advantages of RMSProp and momentum
	Upgrade to submit

