Announcements for Monday, 23SEP2024

- Exam I is Tuesday, 01OCT2024, 7:45-9:05 PM (EDT)
 - Coverage: Chapters E-3.5; exam consists of 19 multiple-choice questions and openended questions; see "Other Resources" on Canvas for periodic table and formula sheet to be used on the exam
 - Exam Locations will be announced on Canvas this week
- Exam I Calculator Policy
 - Scientific calculators and *most* graphing calculators are allowed
 - TI-Nspire CX series & other calculators with QWERTY keyboards are NOT allowed
- Week 3 Homework Assignments available on eLearning
 - Graded and Timed Quiz 3 "Atoms" due tonight at 6:00 PM (EDT)
- Any TECHNICAL ISSUES associated with eLearning (quizzes, practice assignments, etc.) must be reported to eLearning Tech Support (https://techsupport.elearning.rutgers.edu)

ANY GENERAL QUESTIONS? Feel free to see me after class!

For Next Lecture: Write down the all the possible n, ℓ , and m_{ℓ} designations for the orbitals composing the **fourth principal energy level**. Answer given next lecture.

$$n = 4$$

$$\ell = 0$$
 $m_{\ell} = 0$ $\ell = 1$ $m_{\ell} = +1, 0, -1$ $\ell = 2$ $m_{\ell} = +2, +1, 0, -1, -2$ $\ell = 3$ $m_{\ell} = +3, +2, +1, 0, -1, -2, -3$

s-subshell

$$n = 4, \ \ell = 0, \ m_{\ell} = 0$$
 p -subshell
 $n = 4, \ \ell = 1, \ m_{\ell} = +1$
 $n = 4, \ \ell = 1, \ m_{\ell} = 0$
 $n = 4, \ \ell = 1, \ m_{\ell} = -1$

d-subshell

$$n = 4, \ell = 2, m_{\ell} = +2$$

 $n = 4, \ell = 2, m_{\ell} = +1$
 $n = 4, \ell = 2, m_{\ell} = 0$
 $n = 4, \ell = 2, m_{\ell} = -1$
 $n = 4, \ell = 2, m_{\ell} = -2$

f-subshell

$$n = 4, \ell = 3, m_{\ell} = +3$$

 $n = 4, \ell = 3, m_{\ell} = +2$
 $n = 4, \ell = 3, m_{\ell} = +1$
 $n = 4, \ell = 3, m_{\ell} = 0$
 $n = 4, \ell = 3, m_{\ell} = -1$
 $n = 4, \ell = 3, m_{\ell} = -2$
 $n = 4, \ell = 3, m_{\ell} = -3$

Chapter 3: Periodic Properties of the Elements

Some questions we'll try to answer

- How is the modern periodic table arranged and what information does it give us?
- How do electrons occupy orbitals in multi-electron atoms?
- How do we establish the electron configurations of atoms and ions?
- How does an atom's electron configuration impact such properties of an atom such as size, ionization energy, etc.?
- How are electrons specifically arranged in atom?
- How does the size of an ion relate to the size of its parent atom?
- What are the different periodic trends and how can they be explained?

The Periodic Table of Elements

- Compact way to summarize a large number of observations about the elements
 - information not only given by the explicit numbers
 - information based on an atom's position within the table (row and column) 2018 Pearson Education, Inc.
 - periodic properties of the elements = predictable properties based on an element's position
- historically there were several attempts to systematically group the elements
- (1869) Dmitri Mendeleev
 - the first successful version grouped the atoms horizontally by increasing atomic mass
 - rows were arranged so that elements with similar properties fell in the same vertical columns
 - predicted the existence and properties of elements not yet discovered
 - eventually changed to list the elements by increasing atomic number which led to even better correlation of properties

The Modern Periodic Table

- periods vs. groups (or families)
 - chemical similarities in groups
- metals vs. nonmetals vs. metalloids
- main group vs. transition vs. inner-transition
 - main group most predictable
 - A/B numbering
- A-numbering of maingroup elements will
 - give # valence e⁻s
 - allow determination of ionic charges

Main-group elements				Transition elements									Main-group elements					
	1A 1	Group number																8A 18
1	1 H	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He
Periods 2 4	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	- 8B -	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113	114 Fl	115	116 Lv	117	118

Why does grouping the atoms this way show similarities in their properties?

Because of the electron configurations!

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium

Inner transition elements

© 2018 Pearson Education, Inc.

Electron Configurations: How Electrons Occupy Orbitals

- Electrons occupy atomic orbitals in a specific order
 - generally the lowest energy orbitals available are occupied first
 - when an orbital gets filled with the maximum number of electrons, the next higher energy orbitals begin to fill until all the electrons in an atom find a home

ground state = all electrons are in the lowest energy orbitals
possible

excited state = some electron(s) are in higher energy orbitals example for hydrogen: $2s^1$ rather than $1s^1$

Orbital Energies: Hydrogen vs. Multi-electron Atoms

How do orbitals in a hydrogen atom differ from orbitals in multi-electron atoms?

- 1. in the hydrogen atom, the energy of an electron is simply given by the value of n (i.e., the principal energy level) and NOT the sublevel
 - Energy (n=1) < Energy (n=2) < Energy (n=3)...
 - But Energy (3s) = Energy (3p) = Energy (3d)
 - the sublevels are **degenerate** (i.e., of equal energy)

- 2. in a multi-electron atom, the energy of an electron depends on both the values of n and £ (i.e., the principal level and the sublevel)
 - Energy (n=1) < Energy (n=2) < Energy (n=3)...
 - But *for given value of n*: Energy (s) < Energy (p) < Energy (d) < Energy (f)

Energies of s-, p-, d-, and f-orbitals

Why do the orbital energies differ in a multi-electron atom?

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$

- Coulomb's Law gives the potential energy between two charged particles $(q_1 \& q_2)$
 - E(+) = repulsion (increases energy of a system...destabilizing effect)
 - E(-) = attraction (decreases energy of a system...stabilizing effect...energetically FAVORABLE)
- |E| is proportional to magnitude of charges and inversely proportional to distance (r) between the charged particles
- Important: we'll be coming back to Coulomb's law when we talk about ionic compounds/lattice energy

Two Orbital Effects that Impact Electron Energies

• in general, anything that helps to bring electrons closer to the nucleus and allows them to interact more with the positive charge will serve to *lower* the energy and lead to a *more stable* (i.e., happy) system

1. shielding

- electrons in energy levels with larger values of n do not "feel" the full effects of the nucleus because of charge shielding from inner electrons
- 2. orbital penetration = how close the e⁻s in an orbital gets to the nucleus
 - more penetration = electrons closer to nucleus
 - s-orbitals penetrate more than p-orbitals (which penetrate more than d-orbitals which penetrate more than f-orbitals)
 - orbital penetration for a given value of n:
 - ns > np > nd > nf...
 - the more the electrons penetrate, the closer to the nucleus, and the lower (i.e., more negative) the energy (see Coulomb's law)

Orbital Penetration: s vs. p vs. d

a **radial distribution function** for an atomic orbital shows the total probability of finding an electron within **a thin spherical shell** at a distance r from the **nucleus**

Distance from nucleus

WITHIN THE SAME ATOM we see some general trends

- the 3s electrons penetrate more deeply than the 3p or 3d electrons
- the 3s electrons are less shielded from the nucleus than the 3p or 3d electrons
- the 3s electrons experience a greater effective nuclear charge than the 3p or 3d electrons and are lower in energy than the 3p or 3d electrons
- orbital energies: 3s < 3p < 3d

Writing Orbital Diagrams and Electron Configurations

Orbital Diagrams

- individual atomic orbitals are represented as boxes with sublevels labelled
- electrons in orbitals are represented by up- or downarrows (half-arrows) to show electron spin ($m_s = + \frac{1}{2}$ or $-\frac{1}{2}$)
- electrons are filled into the orbitals following specific rules until all of the atom's electrons are housed in orbitals
 - Aufbau Principle: lowest energy orbitals are filled first
 - Hund's rule: When filling individual orbitals of a given sublevel, electrons fill them singly first with parallel spins
- two electrons sharing an orbital MUST have opposite spins
 - Pauli Exclusion Principle: No two electrons in an atom can have the same four quantum numbers

Electron Configurations

- only number of electrons in each sublevel are shown in order of increasing energy
- SPECIFIC (and unexpected) order of filling sublevels (next slide)

electron configuration

 $1s^1$

 $1s^2$ He

Z = 2

Z = 1

 $1s^2 2s^1$

Z = 3

Z = 6

 $1s^2 2s^2 2p^2$

1s

1s

2s

orbital diagram

1s

General Energy Ordering of Orbitals for Multi-electron Atoms

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

Try This On Your Own

- Give the full electron configuration for nickel (Z = 28)
- Give the orbital diagram of the last two sublevels
- Determine the number of unpaired electrons in a nickel atom