Mathematics Compulsory Part Paper 1				
Solution	Marks	Remarks		
$k = \frac{3x - y}{}$				
у				
yk = 3x - y				
$y = \frac{3x}{k+1}$				
k+1				
$(m^4n^{-1})^3$				
$\frac{(m^4n^{-1})^3}{(m^{-2})^5}$				
$=\frac{m^{12}n^{-3}}{m^{-10}}$				
$=\frac{m^{22}}{n^3}$				
n				
(a) $x^2 - 4xy + 3y^2 = (x - 3y)(x - y)$				
(b) $x^2 - 4xy + 3y^2 + 11x - 33y$				
=(x-3y)(x-y)+11(x-3y)				
=(x-3y+11)(x-y)				
Let x , y be the number of regular tickets and concessionary tickets sold				
respectively $(x = 5y)$				
$\begin{cases} 126x + 78y = 50976 \end{cases}$				
· ·				
$126x + 78\left(\frac{x}{5}\right) = 50976$				
$\begin{cases} x = 360 \\ 72 \end{cases}$				
y = 72 The approximate of a decision distance and decision distance.				
The number of admission tickets sold that day = 432				
-132				
(a) $7(x-2) \le \frac{11x+8}{3}$ and $6-x < 5$				
3				
$21(x-2) \le 11x + 8$ and $x > 1$				
$x \le 5$ and $x > 1$ $\therefore 1 < x \le 5$				
(b) 2, 3, 4, 5 are the only integers satisfying (a)				
So, there are 4 integers satisfying both inequalities in (a)				

		Solution	Marks	Remarks
6.	(a)	The coordinates of $A' = (-4, -3)$		
		The coordinates of $B'=(9,9)$		
	(b)	Slope of AB		
		$=\frac{-9-4}{9-(-3)}$		
		$=-\frac{13}{12}$		
		Slope of A'B'		
		$=\frac{-3-9}{-4-9}$		
		$=\frac{12}{13}$		
		Slope of AB×Slope of A'B'		
		$=-\frac{13}{12}\times\frac{12}{13}$		
		=-1		
		$\therefore AB \perp A'B'$		
7.	(a)	x = 1		
		$\frac{x}{360^{\circ}} = \frac{1}{9}$		
		$x = 40^{\circ}$		
	(b)	Let <i>N</i> be the number of students in the school		
		$\frac{180}{100} = \frac{360^{\circ} - 90^{\circ} - 40^{\circ} - 158^{\circ}}{100}$		
		N 360°		
		N = 900 The number of students in the school		
		= 900		
8.	(a)	$y = \frac{k}{\sqrt{x}}$		
		When $y = 81$, $x = 144$		
		$81 = \frac{k}{\sqrt{144}}$		
		k = 972		
		972		
		$y = \frac{972}{\sqrt{x}}$		
	(b)	Change in value of y		
	` /			
		$=\frac{972}{\sqrt{324}}-\frac{972}{\sqrt{144}}$		
		= -27		

	Solution	Marks	Remarks
). (a) L	Let x mL be the actual capacity of a standard bottle		
	10 10		
2	$200 - \frac{10}{2} \le x < 200 + \frac{10}{2}$		
	$195 \le x < 205$		
	The least possible capacity is 195 mL		
	F		
, ,	$23400 \le 120x < 24600$		
	$23.4L \le 120x < 24.6L$		
	Least total capacity = $23.4 L$		
ľ	No, I don't agree the claim.		
10. (a) (OP = OR(given)		
, ,	PS = RS(given)		
	OS = OS(common)		
	$\therefore \triangle OPS \cong \triangle ORS(SSS)$		
•	. 2015 - 2015 (555)		
(b) ₂	$\angle POQ = 10^{\circ}$		
	$\angle POQ = \angle QOR = 10^{\circ}$		
	$\angle POR = 20^{\circ}$		
	Area of the sector OPQR		
=	$=\frac{20^{\circ}}{360^{\circ}}\times\pi\times6^{2}$		
=	$=2\pi \text{ cm}^2$		
11. (a) 8	$\frac{895 + 70 + a + 80 + b}{3} = 70$		
	$\frac{15}{15} = 70$		
ĺ	a+b=5		
8	80 + b - 61 = 22		
	b=3		
C	a=2		
	median = \$69		
_	standard deviation = \$7.330302404		
	≈ \$7.33 (corr to 3 sig fig)		
^	\$7.33 (COII to 3 sig lig)		

Solution Mar	rks Remarks
2. (a) Let $V_1 \text{ cm}^3$ and $V_2 \text{ cm}^3$ be the volume of smaller right pyramid	
and larger right pyramid respectively	
$rac{V_1}{V_2}$	
$=\left(\sqrt{\frac{4}{9}}\right)^3$	
$=$ $\left(\sqrt{\frac{9}{9}}\right)$	
$=\frac{8}{27}$	
$V_1 + V_2$	
=(84)(20)	
=1680	
V_2	
$=1680 \times \frac{27}{27+8}$	
=1296	
The volume of the larger pyramid	
$= 1296 \mathrm{cm}^3$	
(b) Volume of smaller pyramid = 384 cm ³	
Height of smaller pyramid	
$= \frac{2}{3} \times 12$	
=8	
$\frac{1}{3}$ (Base Area)(8) = 384	
Base Area = 144cm^2	
Length of square in base	
$=\sqrt{144}$	
=12	
Total surface area	
$= \frac{1}{2}(12)\sqrt{\left(\frac{12}{2}\right)^2 + 8^2} \times 4 + 144$	
$=384\mathrm{cm}^2$	

		Solution	Marks	Remarks
. (a)	Let to	he equation of C be $(x-4)^2 + (y+1)^2 = r$, where r is a real tant		
	Since	e C passes through $(-6,5)$,		
	So, where $r = 1$	we have $(-6-2)^2 + (5+1)^2 = r$		
		equation of $C: (x-4)^2 + (y+1)^2 = 100$		
(b)	Gl	us of $C = 10$ $(2 - (-3))^2 + (-1 - 11)^2$		
	=13 >10			
(c)	(i)	F, G, H are collinear		
	(ii)	The equation of straight line which passes through F and H :		
		$\frac{y-11}{x+3} = \frac{11-(-1)}{-3-2}$ $y = -\frac{12}{5}x + \frac{19}{5}$ $12x+5y-19=0$		

		Marks	Remarks	
4. (a)	$= 6x$ $\equiv 6x$	$(x+7)(2x^{2} + ax + 4) + bx + c$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (12+7a+b)x + 28 + c)$ $(x^{3} + (3a+14)x^{2} + (3a+14$		
(b)	(i)	Since $g(x)$ is a quadratic polynomial, degree of quotient when $g(x)$ is divided by $2x^2 + ax + 4$ is 0 $g(x) = A(2x^2 - 9x + 4) + bx + c$, where A is a constant $f(x) - g(x)$ $= (3x + 7)(2x^2 + ax + 4) + bx + c - (A(2x^2 - 9x + 4) + bx + c)$ $= (3x + 7 - A)(2x^2 + ax + 4)$ $\therefore f(x) - g(x)$ is divisible by $2x^2 + ax + 4$		
(b)	(ii)	$f(x) - g(x) = 0$ $(3x + 7 - A)(2x^2 - 9x + 4) = 0$ $x = \frac{A - 7}{3} \text{ or } x = 4 \text{ or } x = \frac{1}{2}$ Since $\frac{1}{2}$ is not an integer, I don't agree the claim		

		Solution	Marks	Remarks
15.	<u></u> 0=	$= a + \log_b 9$ $= a + \log_b 243$		
	3=	$= a + \log_b 243$		
	3 = 1	$\log_b 243 - \log_b 9$		
	3 = 1	$\log_b \frac{243}{9}$		
	$b^3 = b^3 = 1$			
	a = 1			
		$-2 + \log_3 x$		
		$2 = \log_3 x$		
	x = 3	3,		
16.	(a)	The total volume of water imported = $1.5 \times 10^7 + 0.9 \times 1.5 \times 10^7 + 0.9^2 \times 1.5 \times 10^7 + + 0.9^{19} \times 1.5 \times 10^7$ = $1.5 \times 10^7 \times (1 + 0.9 + 0.9^2 + + 0.9^{19})$ = $1.5 \times 10^7 \times \frac{1 - 0.9^{20}}{1 - 0.9}$ = 1.31763501×10^8 $\approx 1.32 \times 10^8$ m ³ (corr to 3 sig fig)		
	(b)	Since the water imported every year is positive, The total volume of water imported $<1.5 \times 10^{7} + 0.9 \times 1.5 \times 10^{7} + 0.9^{2} \times 1.5 \times 10^{7} +$ $=1.5 \times 10^{7} \times (1 + 0.9 + 0.9^{2} +)$ $=1.5 \times 10^{7} \times \frac{1}{1 - 0.9}$ $=1.5 \times 10^{8}$ $<1.6 \times 10^{8}$ No, I don't agree the claim. Suppose the total water imported can exceed 1.6×10^{8} m ³ at n^{th} year $1.5 \times 10^{7} + 0.9 \times 1.5 \times 10^{7} + 0.9^{2} \times 1.5 \times 10^{7} + + 0.9^{n-1} \times 1.5 \times 10^{7} > 1.6 \times 10^{8}$ $\frac{1 - 0.9^{n}}{1 - 0.9} > \frac{32}{3}$ $0.9^{n} < -\frac{1}{15}$ which is impossible No, I don't agree the claim.	5×10 ⁸	
		110, I don i agree me ciann.		
			l	1

	Solution	Marks	Remarks
17. (a)	Required probability		
	$C_4^4 C_1^{15}$		
	$=\frac{C_4^4 C_1^{15}}{C_5^{19}}$		
	$= \left(\frac{4}{19}\right) \left(\frac{3}{18}\right) \left(\frac{2}{17}\right) \left(\frac{1}{16}\right) \left(\frac{15}{15}\right) C_4^5$		
	5		r.t. 0.00129
	$=\frac{5}{3876}$		1.000129
(b)	Required probability		
	$=\frac{C_3^4 C_2^{15}}{C_5^{19}}$		
	$= \left(\frac{4}{19}\right) \left(\frac{3}{18}\right) \left(\frac{2}{17}\right) \left(\frac{15}{16}\right) \left(\frac{14}{15}\right) C_3^5$		
			r.t. 0.0361
	$=\frac{35}{969}$		
(c)	Required probability		
	$=1-\frac{5}{3876}-\frac{35}{969}$		
	$= \left(\frac{15}{19}\right) \left(\frac{14}{18}\right) \left(\frac{13}{17}\right) \left(\frac{12}{16}\right) \left(\frac{11}{15}\right) C_0^5 + \left(\frac{4}{19}\right) \left(\frac{15}{18}\right) \left(\frac{14}{17}\right) \left(\frac{13}{16}\right) \left(\frac{12}{15}\right) C_1^5$		
	$+\left(\frac{4}{19}\right)\left(\frac{3}{18}\right)\left(\frac{15}{17}\right)\left(\frac{14}{16}\right)\left(\frac{13}{15}\right)C_2^5$		
	$=\frac{3731}{3876}$		r.t. 0.963
	38/0		
		1	ı

18. (a) $\begin{cases} y = 19 \\ y = 2x^2 - 2kx + 2x - 3k + 8 \end{cases}$	
$\int_{0}^{2} d^{2} $	
$y = 2x^{2} - 2kx + 2x - 3k + 8$	
$19 = 2x^2 - 2kx + 2x - 3k + 8$	
$2x^2 - 2kx + 2x - 3k - 11 = 0$	
Δ	
$= (-2k+2)^2 - 4(2)(-3k-11)$	
$=4k^2+16k+92$	
$=4(k+2)^2+76$	
≥ 76 , for all real values of k	
$\therefore \Delta > 0$, for all real values of k	
L and Γ intersect at two distinct points.	
(b) (i) a, b are the roots of $2x^2 - 2kx + 2x - 3k - 11 = 0$	
ab	
$=\frac{-3k-11}{2}$	
$=-\frac{3k+11}{2}$	
2	
a+b	
$=-\frac{-2k+2}{2}$	
$\equiv -{2}$	
=k-1	
$(a-b)^2$	
$(a-b)$ $= a^2 + b^2 - 2ab$	
$= a + b - 2ab$ $= (a+b)^2 - 4ab$	
$=(k-1)^2-4(-\frac{3k+11}{2})$	
$=k^2-2k+1+6k+22$	
$=k^2+4k+23$	
(ii) AB	
$=\sqrt{(a-b)^2}$	
$=\sqrt{k^2+4k+23}$	
$=\sqrt{(k+2)^2+19}$	
$\geq \sqrt{19} = 4.358898944$, for all real values of <i>k</i>	
No, it is impossible.	
r	

				Solution		Marks	Remarks
9. (a	a)		AC	=			
			$30^{\circ} - 30^{\circ} - 42^{\circ}$				
			45.6507127				
				r to 3 sig fig)			
		The le	ngth of AC i	s 45.7 cm			
(t	o)	(i)	CF	2			
			$\frac{CF}{CF + AC} =$	10			
			$CF = \frac{1}{4}AC$				
			4				
			$CF = \frac{1}{4} \times 45$	5.65071278			
			CF = 11.41	26782			
			$CF \approx 11.4 \mathrm{c}$	m (corr to 3 sig fig)			
		(ii)	Area of ΛA	$BF = \frac{1}{2}(AB)(AF)\sin 30^{\circ}$			
				~			
				AC = 57.06339098	10		
				$+BC^2-2(AC)(BC)\cos 42$			
				$(5071278)^2 + 24^2 - 2(24)(4)$	-5.65071278) cos 42°		
			AB = 32.11				
			Area of Δ				
			$=\frac{1}{2}(32.118)$	26911)(57.06339098) sin 30)°		
			=458.1943				
				corr to 3 sig fig)			
			≈ 436 CIII (con to 3 sig rig)			

	Solution	Marks	Remarks
(iii)	BF ² = AF ² + AB ² - 2(AF)(AB) cos 30° BF ² = (57.06339098) ² + (32.11826911) ² - 2(57.06339098)(32.11826911) cos 30° BF = 33.36690449 Let h be the height of ΔABF with base BF $\frac{1}{2}(h)(BF) = \text{Area of } \Delta ABF$ $\frac{1}{2}(h)(BF) = 458.1943369$ $\frac{1}{2}(h)(33.36690449) = 458.1943369$ h = 27.46400026 Let the inclination of the thin metal sheet ABC to horizontal ground be θ sin θ = $\frac{10}{27.46400026}$ $\theta = 21.35300646^\circ$ The inclination of the thin metal sheet ABC to horizontal	TYMENS	
(iv)	ground = 21.4° BF = 33.36690449 $BD = \sqrt{AB^2 - 10^2}$ BD = 30.52184808 $DF = \sqrt{CF^2 - 10^2}$ DF = 56.18033989 Let $s = \frac{BF + BD + DF}{2} = 60.03454623$ Area of $\triangle BDF$ $= \sqrt{s(s - BF)(s - BD)(s - DF)}$ = 426.741482 < 460 No, I don't agree the claim.		

Paper 2

Question No.	Key	Question No.	Key
1.	A	26.	A
2.	D	27.	В
3.	A	28.	C
4.	D	29.	В
5.	D	30.	В
6.	A	31.	D
7.	В	32.	D
8.	A	33.	C
9.	C	34.	D
10.	C	35.	В
11.	В	36.	C
12.	C	37.	C
13.	В	38.	A
14.	В	39.	A
15.	C	40.	В
16.	D	41.	D
17.	D	42.	В
18.	A	43.	C
19.	D	44.	В
20.	D	45.	A
21.	C		
22.	D		
23.	A		
24.	A		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

25.

C