Customer Churn Prediction Report

Description

At Sunbase, we prioritize understanding our customers and ensuring their satisfaction. To achieve this, we want to develop a machine learning model that predicts customer churn.

Objective

Develop a machine learning model to predict customer churn based on historical customer data. Using typical multiple machine learning models, project pipelines, from data preprocessing to model deployment.

Approach

Data Ingestion:-

We'll use **Pandas** library to read and ingest the data and in this process we will also drop the columns that are unnecessary.

EDA:-

We'll perform the EDA over the data using **Pandas-Profilling** library which gives comprehensive report about the data for example:- missing values, correlation and much more.

Categorical and Numerical:-

In this step we'll divide the data according to there data type, if data contains object data type we'll put it in a variable name categorical columns and data other than object type will be put in numerical columns variable. We are dividing data to scale and encode it accordingly.

Pipeline:-

In pipeline we'll use **simple imputer** for imputing the missing values and we'll scale the numerical columns. The categorical columns will be imputed using **simple imputer** and encoded by using **OneHotEncoder**, also **column transformer** will be used to transform the columns.

Train/Test Split:-

After that we'll simply use **train_test_split** available in **Sklearn** for dividing the data in X_train, X_test, y_train, y_test

Model Training:-

Output column churn only contains 0 and 1, In order to predict it we have to use the **Binary Class Classifiers**.

List of the Classifiers We'll train

Logistic Regression
Random Forest Classifier
XGBoost Classifier
CatBoost Classifier
Support Vector Machine (SVM)
Naive Bayes

Model Evaluation:-

For evaluating the model performance over the data we'll use **Accuracy Score** available in Sklearn also to check how well the model is trained we'll use **model.score**.

EDA Observations

1. Here is the sample of given dataset -

2. Data has 1 Lakh entries, no missing values, no duplicated entries and It has 9 columns, In which 5 columns are numeric and 4 columns are categorical data types.

3. No missing values in any column here is a count plot

4. Here is the observation of every column

$\begin{array}{l} \text{Age} \\ \text{Real number } (\mathbb{R}) \end{array}$ 53 Distinct Distinct (%) 0.1% Missing 0 0.0% Missing (%) Infinite 0 0.0% Infinite (%) Mean 44.02702

Minimum	18
Maximum	70
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	781.4 KiB

Gender Categorical

Distinct	2
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	781.4 KiB

Female	50216
Male	49784

More details

Location Categorical

Distinct	5
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	781.4 KiB

Houston	20157
Los Angeles	20041
Miami	20031
Chicago	19958
New York	19813

More details

$Subscription_Length_Months \\ \textit{Real number } (\mathbb{R})$

Distinct	24
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	12.4901

Minimum	1
Maximum	24
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	781.4 KiB

Total_Usage_GB

Real number (R)

Distinct	451
Distinct (%)	0.5%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	274.39365

Minimum	50
Maximum	500
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	781.4 KiB

Churn Categorical				
Distinct	2	0	50221	
Distinct (%)	< 0.1%	1	49779	
Missing	0			
Missing (%)	0.0%			
Memory size	781.4 KiB			

5. Correlation with Heatmap shows that there is correlation but very minute, here's the table and visualisation

This table quantifies the correlation

	CustomerID	Age	Subscription_Length_Months	Monthly_Bill	Total_Usage_GB	Gender	Location	Churn	
CustomerID	1.000	-0.001	0.005	0.001	-0.004	0.000	0.007	0.004	
Age	-0.001	1.000	0.003	0.001	0.002	0.000	0.000	0.000	
Subscription_Length_Months	0.005	0.003	1.000	-0.005	-0.002	0.000	0.000	0.000	
Monthly_Bill	0.001	0.001	-0.005	1.000	0.003	0.000	0.002	0.006	
Total_Usage_GB	-0.004	0.002	-0.002	0.003	1.000	0.000	0.000	0.006	
Gender	0.000	0.000	0.000	0.000	0.000	1.000	0.001	0.000	
Location	0.007	0.000	0.000	0.002	0.000	0.001	1.000	0.008	
Churn	0.004	0.000	0.000	0.006	0.006	0.000	0.008	1.000	

Model Training observation

We have trained all the above mentioned models and there accuracy was somewhat similar to each other but **RandomForestClassifier** gave a better accuracy score and training score, so we are training random forest which is an ensemble technique in Machine Learning.

Observations during model training are:-

- 1. Models were unable to read the pattern in the data.
- 2. Accuracy Score is quite low so model with the best accuracy score(RandomForest) is trained.

Hyperparameter Tuning & Cross Validdation

As we all know parameter tuning is an iterative process after alot of tuning we came up with these parameters which were giving us the best accuracy and training score, also we used **GridsearchCv** For cross validation of model and get the best parameters and accuracy score. Here are the parameters we used-

n_estimators=1000, # number of trees in forest criterion='gini', # criterion method ccp_alpha=0.3, # cost complexity pruning max_depth=100, # maximum depth min_samples_split=5, # minimum number of samples min_samples_leaf=2, # number of leaf max_features="sqrt", # maximum features random_state=42

Model Evaluation

We used accuracy score which is available in the sk-learn library, which is a very popular open source library for training score check we used model.score method which returns the accuracy of the trained model on the training data by comparing the predicted labels of the model with actual label.

By Nilay Kumar Sahu