

Michał Binda, Karolina Mączka, Bogumiła Okrojek, Adrian Zaręba

Cel projektu

Naszym zadaniem było odtworzenie artykułu "Learning Spatial Relations with a Standard Convolutional Neural Network", czyli stworzenie konwolucyjnych sieci neuronowych (CNN) do nauki rozpoznawania przestrzennych relacji między obiektami na obrazach bez użycia rekurencyjnych połączeń sieciowych w dwóch eksperymentach.

CNN a rozumowanie przestrzenne

Konwolucyjne sieci neuronowe (CNN) odniosły wielki sukces w zadaniach związanych z Computer Vision. Artykuł pokazuje, że CNN, bez rekurencyjnych połączeń, mogą uczyć się i uogólniać relacje przestrzenne między obiektami I identyfikować ich względnych pozycji na obrazach.

Fashion MNIST DATASET

Eksperyment pierwszy dwa obiekty

Pierwszy eksperyment polegał na wytrenowaniu CNN w rozpoznawaniu relacji przestrzennych między dwoma obiektami. Model osiągnął ponad 80% dokładności na danych testowych, udowadniając, że może uogólniać koncepcje przestrzenne, takie jak "powyżej" lub "poniżej", na niewidoczne kombinacje obiektów.

Eksperyment 1 - architektura modelu

Porównanie wyników Eksperyment 1

Accuracy	Train dataset	Test dataset
Article	0.93	0.83
Our model	0.68	0.68

Eksperyment drugi trzy obiekty

Drugi eksperyment zwiększył złożoność problemu, wprowadzając trzeci obiekt i skupiając się na pytaniach relacyjnych. Model z powodzeniem uogólnił się na nowe kombinacje przestrzenne, pokazując zdolność CNN do zrozumienia złożonych relacji przestrzennych.

Eksperyment 2 – architektura modelu

Porównanie wyników Eksperyment 2

Accuracy	Train dataset	Test dataset
Article	0.94	0.86
Our model	0.63	0.65

Co dalej?

- Poprawić dokładność naszych modeli
- Znaleźć inne modele, które będą dobrze radziły sobie z wykrywaniem relacji przestrzennych
- Sprawdzić jak modele radzą sobie ze zmodyfikowanymi danymi (szumy, skalowanie)

Bibliografia

- Swingler, K., & Bath, M. (2020). Learning spatial relations with a standard convolutional neural network. In 12th International Conference on Neural Computation Theory and Applications (pp. 464-470). SCITEPRESS-Science and Technology Publications.
- Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion MNIST: a novel image dataset for benchmark ing machine learning algorithms. arXiv preprint arXiv:1708.07747.