Обнаружение концептуального дрифта в Process mining

работу выполнил: Посевин М.Э.

Process mining - что это?

Process mining – сравнительно молодая область исследований, которая находится между направлениями исследований вычислительного интеллекта и глубинным анализом данных, с одной стороны, и моделированием и анализом процессов – с другой.

Process mining - что это?

Process mining - практики, методы и инструменты извлечения, мониторинга и улучшения существующих бизнес-процессов.

В основе process mining лежит извлечение новых знаний из журналов событий, которые массово доступны в современных информационных системах.

Журнал событий

Часто отправной точкой для интеллектуального анализа процессов являются данные из журналов событий. Их можно рассматривать как совокупности случаев, а отдельные случаи - как последовательности ссылающихся на них событий.

Выделим основные атрибуты событий:

patient	activity	timestamp	doctor	age	cost
5781	make X-ray	23-1-2014@10.30	Dr. Jones	45	70.00
5541	blood test	23-1-2014@10.18	Dr. Scott	61	40.00
5833	blood test	23-1-2014@10.27	Dr. Scott	24	40.00
5781	blood test	23-1-2014@10.49	Dr. Scott	45	40.00
5781	CT scan	23-1-2014@11.10	Dr. Fox	45	1200.00
5833	surgery	23-1-2014@12.34	Dr. Scott	24	2300.00
5781	handle payment	23-1-2014@12.41	Carol Hope	45	0.00
5541	radiation therapy	23-1-2014@13.57	Dr. Jones	61	140.00
5541	radiation therapy	23-1-2014@13.08	Dr. Jones	61	140.00
					
case id	activity name	timestamp	resource	0	ther data

Концептуальный дрифт

Концептуальный дрифт описывает ситуацию, при которой процесс видоизменяется по ходу анализа. Процессы могут видоизменяться в силу периодических/сезонных колебаний или по причине изменившихся условий.

Извлечение признаков

Журналы событий характеризуются взаимоотношениями между событиями. Зависимости между событиями могут быть выражены с помощью следует (или предшествует) отношений. Для любой пары событий можно определить, всегда, никогда или иногда одно из событий следует за другим.

$$\mathcal{L} = \{acaebfh, ahijebd, aeghijk\}$$

$$\mathcal{A} = \{a, b, c, d, e, f, g, h, i, j, k\}$$

В \mathscr{L} сохраняются следующие отношения: e всегда следует за a, e никогда не следует за b, и b иногда следует за a

Извлечение признаков

Window count (WC) - функция
$$f_{WC}^{l,t}: \mathscr{A} \times \mathscr{A} \to \mathbb{N}_0$$
, $f_{WC}^{l,t}(a,b) = |\mathscr{F}^{l,t}(a,b)|$, где $\mathscr{F}^{l,t}(a,b) = [s \in S^{l,t}(a) | \exists_{1 < k \le |s|} s(k) = b]$, $S^{l,t}(a) = [t(i,i+l-1) | t \in \mathscr{L}, t(i) = a]$

a c a e b f h a h i j e b d a e g h i j k
$$f_{\mathrm{WC}}^{4,\mathbf{t}}(\mathtt{a},\mathtt{b})=1 \qquad \qquad f_{\mathrm{WC}}^{4,\mathbf{t}}(\mathtt{a},\mathtt{b})=0 \qquad \qquad f_{\mathrm{WC}}^{4,\mathbf{t}}(\mathtt{a},\mathtt{b})=0$$

Извлечение признаков

J-measure - функция
$$f_J^{l,t}: \mathscr{A} \times \mathscr{A} \to \mathbb{R}^+,$$
 $f_J^{l,t}(a,b) = p^t(a)CE^{l,t}(a,b),$ где $CE^{l,t}(a,b) = p^{l,t}(a,b)log_2(\frac{p^{l,t}(a,b)}{p^t(b)}) + (1-p^{l,t}(a,b))log_2(\frac{1-p^{l,t}(a,b)}{1-p^t(b)})$ $p^{l,t}(a,b) = |\mathscr{F}^{l,t}(a,b)|/|S^{l,t}(a)|$

Пример: Пусть
$$t = acaebfh, l = 4$$

$$p^{4,t}(a,b) = \frac{1}{2}, p^t(a) = \frac{2}{7}, p^t(b) = \frac{1}{7} \Rightarrow f_J^{4,t}(a,b) = 0.147$$

Проверка статистических гипотез

Можно рассматривать журнал событий \mathscr{L} как временную последовательность экземпляров процесса. Разбив журнал на k поджурналов, мы можем преобразовать его в последовательность \mathscr{D} , где $\forall d_i \in \mathscr{D}$ соответствует значению выбранного признака для i-го поджурнала.

Предполагается, что должно быть характерное различие в значениях признаков поджурналов до и после точек изменения процесса, причем это различие должно быть более выраженным на границах.

Проверка статистических гипотез

Скользящее окно размера w используется для генерации выборок P_1 и P_2 . На каждой итерации проводится проверка статистической гипотезы о принадлежности P_1 и P_2 одному закону распределения (вычисляется p-value).

Для этой цели подходит двухвыборочный критерий однородности Колмогорова-Смирнова.

a. Model, M_1

Предложенные идеи будут проиллюстрированы на примере синтетического журнала событий.

Этот журнал содержит информацию о процессе рассмотрения заявлений о медицинском страховании в туристическом агенстве.

b. Model, M_2

c. Model, M_3

В журнале событий зафиксировано 5 вариантов этого процесса.

Пунктирные прямоугольники указывают на области, в которых были внесены изменения.

12

e. Model, M_5

Обозначим варианты процесса как М1, М2, М3, М4 и М5 (1200 экземпляров процесса для каждой модели)

Журнал событий \mathscr{L} состоит из 6000 экземпляров процесса, содержит 15 видов событий и 58953 событий всего.

- 1. Разделим журнал на 120 поджурналов по 50 экземпляров процесса.
- 2. Вычислим J-меру для каждой пары событий на каждой итерации, используя размер окна w=10.
- 3. Применим критерий однородности Колмогорова-Смирнова к J-мере каждой пары событий с использованием размера окна w=10.
- 4. Вычислим среднее p-value для каждой итерации.

Можно заметить, что на индексах 24, 48, 72 и 96, которые соответствуют фактическим точкам изменения, p-value принимает наименьшее значение.

Что говорит о том, что предложенный метод дает верный результат для данного примера.

<u>Источники</u>

- 1. R. P. J. C. Bose, W. M. P. van der Aalst, I. Zliobaite, and M. Pechenizkiy. "Dealing with concept drifts in process mining". 2014.
- 2. Online Course: "Process Mining: Data science in Action". Wil van der Aalst Eindhoven University of Technology, Department Methematics & Computer Science
- 3. IEEE CIS Task Force on Process Mining. "Process Mining Manifesto". 2011.