CS 3.307: Intro to Stochastic Processes

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Recap

Recap

- Stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a collection of random variables defined such that for every $t \in T$ we have $X(t) : \Omega \to \mathcal{S}$.
- ightharpoonup T is the parameter space (often resembles time) and $\mathcal S$ is the state space.
- ▶ Random variable X(t) is often denoted by $X(\omega, t)$.
- When t is fixed and ω is the only variable, we have a random variable $X(\cdot,t)$. When ω is fixed and t is the variable, we have a $X(\omega,\cdot)$ as a function of time. This is also called as a realization or sampe path of a stochastic process.

- \triangleright When T is countable, we have a discrete time process.
- ▶ If *T* is a subset of real line, we have a continuous time process.
- State space could be integers or real numbers
- ightharpoonup State space could be \mathbb{R}^n or \mathbb{Z}^n valued

Elementary Examples

- ► The process of rolling a dice 6 times.
- You bank balance over a week.
- ► Temperature fluctuations in a 1hr window.
- Number of customers in IKEA every day.

A c.t.s.p. is called an *independent increment process* if for any choice of parameters $t_0 < t_1 < \ldots < t_n$, the *n* increment random variables $X(t_1) - X(t_0), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1})$ are independent.

The c.t.m.p. is said to have stationary increments if in addition $X(t_2 + s) - X(t_1 + s)$ has the same distribution as $X(t_2) - X(t_1)$ for all $t_1, t_2 \in T$ and any s > 0.

Examples

- Sequence of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.
- ightharpoonup Weiner process: $\{X(t), t \geq 0\}$ is a Weiner process if
 - 1. X(0) = 0
 - 2. $\{X(t), t \ge 0\}$ has stationary and independent increments
 - 3. for every t > 0, X(t) is normally distributed with mean 0 and variance t.
- ▶ $\{X(t), t \ge 0\}$ is a Markov process if for $t_1 < t_2 < \dots t_n < t$ we have

$$P(X(t) \le x | X(t_1) = x_1, \dots, X(t_n) = x_n) = P(X(t) \le x | X(t_n) = x_n)$$

Random walk and Weiner process are examples of Markov processes.

Bernoulli/Binomial process

- Bernoulli(p) random variable
- Pernoulli process is a sequence of independent r.v.'s $\{X_i, i = 1, 2, ...\}$ where each X_i is a Bernoulli(p) random variable.
- ▶ Binomial random variable S_n counts the sum of n independent Bernoulli(p) variables
- let X_i denote the associated Bernoulli variable for toss i, $i=1,\ldots,n$. Then $S_n=\sum_{i=1}^n X_i$ denotes the number of heads/event and $P(S_n=k)=\binom{n}{k}p^k(1-p)^{n-k}$.
- $ightharpoonup E[S_n]$? $Var(S_n)$?

Bernoulli/Binomial process

- ▶ ${S_n = \sum_{i=1}^n X_i, n = 1, 2, ...}$ is called as a Binomial process.
- $\blacktriangleright \text{ Let } T := \{\text{smallest } n : S_n > 0.\}.$
- T is a geometric random variable with parameter p, i.e., $P(T = n_1) = p(1 p)^{(n_1 1)}$.
- ► Memoryless property: P(T > m + n/T > n) = P(T > m).

Counting process

Stochastic process $\{N(t), t \geq 0\}$ is a counting process if it represents the total number of events upto time t.

It satisfies the following

- $ightharpoonup N(t) \geq 0$ and is integer valued
- For $s \le t$, we have $N(s) \le N(t)$. N(t) N(s) denotes the number of events in the interval (t, s)
- \triangleright N(t) can have independent increments
- \triangleright N(t) can have stationary increments

Poisson process

A Poisson process with rate $\lambda, \lambda \geq 0$ is a counting process $\{N(t), t \geq 0\}$ with the following properties

- N(0) = 0
- \triangleright N(t) has independent and stationary increments
- Number of events in an interval of length t is a Poisson distribution with mean λt . (Hence stationary increments)
- $ightharpoonup E[N(t+s)-N(t)]=\lambda s$

Condition 3 is difficult to verify! Hence ...

Poisson process - Alternative definition

A function f is said to be o(h) if $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

A Poisson process with rate $\lambda, \lambda \geq 0$ is a counting process $\{N(t), t \geq 0\}$ with the following properties

- ightharpoonup N(0) = 0
- \triangleright N(t) has independent and stationary increments
- ► $P{N(h) = 1} = \lambda h + o(h)$
- ► $P{N(h) \ge 2} = o(h)$

Poisson process

Lemma

Definition $1 \implies Definition 2$

Proof on board.

Lemma

Definition $2 \implies Definition 1$

Self Study: Refer Sheldon Ross, Stochastic processes, Theorem 2.1.1

Poisson Processes Definition 3

A ctsp $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda > 0$ if

- ightharpoonup N(0) = 0
- \triangleright N(t) is a counting process with stationary and independent increments
- \triangleright X_i , the time interval between i-1th and ith event is exponentially distributed with parameter λ .

Lemma

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

$$P(X_1 > t) = P(N(0, t) = 0) = e^{-\lambda t}$$

- This implies $F_{X_1}(t) = P(X_1 \le t) = 1 e^{-\lambda t}$ and hence X_1 has exponential distribution.
- What is $P(X_2 > t | X_1 = s)$?

$$P(X_2 > t | X_1 = s) = P(N(s, t + s] = 0 | X_1 = s)$$

= $P(N(s, t + s] = 0)$ (indep. increments)
= $e^{-\lambda t}$ (stat. increments)

ightharpoonup This implies X_2 is exponential. Repeating the arguments yields the lemma.

Definition $3 \implies Definition 1$

Lemma

i.i.d exponential interarrival time implies N(0, t) has Poisson distribution with rate λt .

- ▶ Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$
- ▶ If $S_n = t$, we say that the nth renewal happened at time t.

$$F_{S_n}(t) = \lambda \left[\frac{(\lambda t)^{n-1} e^{-\lambda t}}{n-1!} \right] \text{ and } F_{S_n}(t) = \int_{x=0}^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$$

More on $F_{S_n}(t)$

- $F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$
- ▶ Integration by parts $(u(x) = e^{-\lambda x}, v'(x) = \lambda \left\lceil \frac{(\lambda x)^{n-1}}{n-1!} \right\rceil)$

$$\int_a^b u(x)v'(x)dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)dx$$

- $F_{S_n}(t) = \left[\frac{(\lambda x)^n e^{-\lambda x}}{n!} \right]_0^t \int_0^t \left[\frac{-\lambda e^{-\lambda x} (\lambda x)^n}{n!} \right] dx$
- $F_{S_n}(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} + F_{S_{n+1}}(t)$

$$F_{S_n}(t) - F_{S_{n+1}}(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

Relation between S_n and N(t)

$$N(t) = \sup\{n : S_n \leq t\}$$

$$N(t) \geq n \Leftrightarrow S_n \leq t$$

- ► $P{N(t) \ge n} = P{S_n \le t}$
- ► $P{N(t) = n} = P{N(t) \ge n} P{N(t) \ge n + 1}.$
- ► $P{N(t) = n} = P{S_n \le t} P{S_{n+1} \le t}.$
- $P\{N(t) = n\} = Poisson(\lambda t).$

Lemma

Exponential interarrival times imply N(t) has Poisson distribution with rate λt

Properties of Poisson Process (Self Study)

Merging: Merging two independent Poisson processes with rate λ_1 and λ_2 leads to a Poisson process with rate $\lambda_1 + \lambda_2$.

Splitting: If you label each event point of a Poisson(λ) process as type A or type B with probability p or 1-p respectively, then Events of type A form a Poisson $(p\lambda)$ process. Similarly Events of type B form a Poisson $((1-p)\lambda)$ process.

Conditional distribution of Arrival times

Lemma

Given that 1 event of $P.P.(\lambda)$ has happened by time t, it is equally likely to have happened anywhere in [0,t] i.e.,

$$P\{X_1 < s | N(t) = 1\} = \frac{s}{t}.$$

Proof.

$$P\{X_{1} < s | N(t) = 1\} = \frac{P\{X_{1} < s, N(t) = 1\}}{P(N(t) = 1)}$$

$$= \frac{P\{N[0, s) = 1, N[s, t] = 0\}}{P(N(t) = 1)}$$

$$= \frac{P\{N[0, s) = 1\}P\{N[s, t] = 0\}}{P(N(t) = 1)}$$

$$= \frac{\lambda s e^{-\lambda s} e^{-\lambda(t-s)}}{\lambda t e^{-\lambda t}} = \frac{s}{t}$$

First Queueing Example: Infinite server Queues

- Imagine a system with infinite servers and jobs arrive to this system according to $PP(\lambda)$.
- ► Every arriving job has a independent service requirement with distribution *G* and is immediately assigned a server for service.
- ▶ When the job receives service, he leaves the system.
- ightharpoonup Let N(t) denote the number of arrivals till time t.
- Let X(t) denote the number of customers present in this system at time t.
- Example of such systems: Malls, Tourist spots, Gardens, number of active phone calls, etc

First Queueing Example: Infinite server Queues

- ▶ What is the pmf of X(t), i.e., P(X(t) = k)?
- ▶ First condition on N(t). What is P(X(t) = k | N(t) = n) ?
- Of the n jobs that arrived (uniformly placed in the interval [0, t]), k are yet to complete service.
- Let *p* denote the probability that an arbitrary of these customers is still receiving service at time *t*.
- ► Then $P(X(t) = k | N(t) = n) = \binom{n}{k} p^k (1-p)^{n-k}$.
- Now unconditioning on N(t), we get

$$P(X(t) = k) = \sum_{n=k}^{\infty} P(X(t) = k | N(t) = n) P(N(t) = n)$$
$$= e^{-\lambda t p} \frac{(\lambda t p)^{j}}{j!}$$

where
$$p = \int_0^t (1 - G(t - x)) \frac{dx}{t}$$
.