

Tutorium 1

Einführung

Dominik Muth - dominik.muth@student.kit.edu | 18. Oktober 2012

Outline/Gliederung

- 1 Über Mich
- GBI, was ist das?
- Organisatorisches
 - Allgemeines
 - Übungsblätter
- 4 Mengenlehre
- 6 Relationen

Dominik Muth - dominik.muth@student.kit.edu - Einführung

Über Mich

- Name: Dominik Muth
- Studiengang: Informatik
- E-Mail: dominik.muth@student.kit.edu

- Logik
- Sprachen/Grammatiken
- Relationen/Abbildunger
- Graphen
- Laufzeitabschätzung
- Automaten
- Turingmaschinen
- . . .

Mengenlehre

Organisatorisches

- Logik
- Sprachen/Grammatiken
- Relationen/Abbildunger
- Graphen
- Laufzeitabschätzung
- Automaten
- Turingmaschinen
-

Dominik Muth - dominik.muth@student.kit.edu - Einführung

- Logik
- Sprachen/Grammatiken
- Relationen/Abbildungen
- Graphen
- Laufzeitabschätzung
- Automaten
- Turingmaschinen
-

- Logik
- Sprachen/Grammatiken
- Relationen/Abbildungen
- Graphen

- Logik
- Sprachen/Grammatiken
- Relationen/Abbildungen
- Graphen
- Laufzeitabschätzung
- Automaten
- Turingmaschinen
- . . .

- Logik
- Sprachen/Grammatiken
- Relationen/Abbildungen
- Graphen
- Laufzeitabschätzung
- Automaten
- Turingmaschinen
- . . .

- Logik
- Sprachen/Grammatiken
- Relationen/Abbildungen
- Graphen
- Laufzeitabschätzung
- Automaten
- Turingmaschinen
- . . .

Termine

- Vorlesung: Mi. 11:30 Uhr im Audimax
- Übung: Fr. 9:45 Uhr im Audimax
- Klausur: in der Regel anfang März

Dominik Muth - dominik.muth@student.kit.edu - Einführung

Links

Vorlesung

- Website: http://gbi.ira.uka.de
- Dozentin: tanja.schultz@kit.edu

Fachschaft

- Website: http://www.fsmi.uni-karlsruhe.de/
- Forum: http://www.fsmi.uni-karlsruhe.de/forum/

Übungsblätter

- Abgabe: Freitag 12:30 Uhr im UG des Infobaus (gegenüber der Toiletten) (frühere Abgabe ist möglich)
- 50% der Punkte zum bestehen nötig

must have:

- Handgeschrieben
- Deckblatt
- keine Plagiate

Mengenlehre

Definition Menge

Eine Menge ist eine <u>beliebig</u> große Ansammlung an Elementen ⇒ es existieren Mengen ohne, endlich vielen und unendlich vielen Elementen.

Schreibweiße von Mengen

Sei *M* eine Menge bestehend aus den Elementen 0, 1, 2, dann schreiben wir:

$$M = \{0, 1, 2\}$$

Außerdem gilt: $0, 1, 2 \in M$

Mengenlehre - Besonderheiten

Die Reihenfolge der Elemente in einer Menge ist egal.

Da
$$x, y \in \{x, y\}$$
 aber auch $x, y \in \{y, x\}$
 $\Rightarrow \{x, y\} = \{y, x\}$

Mehrfaches Vorkommen von Elementen ist auch egal.

$$\Rightarrow \{a,b,b,3\} = \{a,b,3\}$$

Mengenlehre - Besonderheiten

Die Reihenfolge der Elemente in einer Menge ist egal.

Da
$$x, y \in \{x, y\}$$
 aber auch $x, y \in \{y, x\}$
 $\Rightarrow \{x, y\} = \{y, x\}$

Mehrfaches Vorkommen von Elementen ist auch egal.

$$\Rightarrow \{a,b,b,3\} = \{a,b,3\}$$

- Die Leere Menge: $\emptyset = \{\}$
- Die Natürlichen Zahlen ohne 0: $\mathbb{N}_+ = \{1, 2, 3, ...\}$
- Die Natürlichen Zahlen mit 0: $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen von 0 bis n-1: $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

Organisatorisches

GBI, was ist das?

Über Mich

- Die Leere Menge: $\emptyset = \{\}$
- Die Natürlichen Zahlen ohne 0: $\mathbb{N}_+ = \{1, 2, 3, ...\}$
- Die Natürlichen Zahlen mit 0: $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen von 0 bis n-1: $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

Organisatorisches

- Die Leere Menge: $\emptyset = \{\}$
- Die Natürlichen Zahlen ohne 0: $\mathbb{N}_+ = \{1, 2, 3, ...\}$
- Die Natürlichen Zahlen mit 0: $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen von 0 bis n-1: $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

- Die Leere Menge: $\emptyset = \{\}$
- Die Natürlichen Zahlen ohne 0: $\mathbb{N}_+ = \{1, 2, 3, ...\}$
- Die Natürlichen Zahlen mit 0: $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen von 0 bis n-1: $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

Mengenoperationen

Vereinigung von Mengen ∪

Sei $A = \{0, 1, 2\}$ und $B = \{a, b, c\}$

Dann ist die Vereinigung der Mengen A und B:

 $A \cup B = \{0, 1, 2\} \cup \{a, b, c\} = \{0, 1, 2, a, b, c\}$

Alle Elemente aus A und B liegen somit in $A \cup B$

Durchschnitt von Mengen ∩

Sei $A = \{0, 1, 2\}$ und $B = \{1, 2, 3, 4, a\}$

Dann ist der Durchschnitt der Mengen A und B:

 $A \cap B = \{0, 1, 2\} \cap \{1, 2, 3, 4, a\} = \{1, 2\}$

Im Durchschnitt liegen somit nur Elemente, die sowohl in *A* und in *B* liegen.

GBI, was ist das?

Über Mich

Mengenoperationen

Vereinigung von Mengen ∪

Sei $A = \{0, 1, 2\}$ und $B = \{a, b, c\}$

Dann ist die Vereinigung der Mengen A und B:

 $A \cup B = \{0, 1, 2\} \cup \{a, b, c\} = \{0, 1, 2, a, b, c\}$

Alle Elemente aus A und B liegen somit in $A \cup B$

Durchschnitt von Mengen ∩

Sei $A = \{0, 1, 2\}$ und $B = \{1, 2, 3, 4, a\}$

Dann ist der Durchschnitt der Mengen A und B:

 $A \cap B = \{0, 1, 2\} \cap \{1, 2, 3, 4, a\} = \{1, 2\}$

Im Durchschnitt liegen somit nur Elemente, die sowohl in *A* und in *B* liegen.

Gegeben seien die Mengen A, B, C und D, mit:

$$A = \{1, 3, 5, 9\}$$

$$B = \{1, 2, 4, 8\}$$

$$C = \{x, d, 1, 2, 3, 4, 9\}$$

$$D = \{a, c, d, x\}$$

Die Menge *M* sei definiert durch:

$$M = ((D \cap C) \cup ((C \cap B) \cup (A \cap C))) \setminus (A \cap B)$$

Welche Elemente enthält die Menge M?

Antwort:

Gegeben seien die Mengen A, B, C und D, mit:

$$A = \{1, 3, 5, 9\}$$

$$B = \{1, 2, 4, 8\}$$

$$C = \{x, d, 1, 2, 3, 4, 9\}$$

$$D = \{a, c, d, x\}$$

Die Menge *M* sei definiert durch:

$$M = ((D \cap C) \cup ((C \cap B) \cup (A \cap C))) \setminus (A \cap B)$$

Welche Elemente enthält die Menge M?

Antwort: $M = \{d, x, 2, 3, 4, 9\}$

4 D > 4 B > 4 E > 4 E > 9 Q C

GBI, was ist das?

Über Mich

Organisatorisches

Relationen

- Allgemein

Definition Kartesisches Produkt

Das Kartesisches Produkt $A \times B$ enthällt alle Kombinationen (a,b) mit $a \in A$ und $b \in B$.

Definition Relation

 $R \subseteq A \times B$

Eine Relation ist die Teilmenge eines Kartesischen Produktes.

Andere Schreibweise: xRy, mit $(x, y) \in F$

Relationen

- Allgemein

Definition Kartesisches Produkt

Das Kartesisches Produkt $A \times B$ enthällt alle Kombinationen (a,b) mit $a \in A$ und $b \in B$.

Definition Relation

 $R \subseteq A \times B$:

Eine Relation ist die Teilmenge eines Kartesischen Produktes.

Andere Schreibweise: xRy, mit $(x, y) \in R$

Linkstotal

Eine Relation ist linkstotal wenn gilt: für jedes a existiert mindestens ein b für welches gilt $(a, b) \in R$

Rechtseindeutic

Eine Relation ist rechtseindeutig wenn gilt: $\mathsf{f\"{u}r}$ kein a existiert mehr als ein b mit $(a,b) \in R$

Eine Relation, welche sowohl linkstotal als auch rechtseindeutig ist, nennt man auch Abbildung oder Funktion

Organisatorisches

Linkstotal

Eine Relation ist linkstotal wenn gilt: für jedes a existiert mindestens ein b für welches gilt $(a, b) \in R$

Rechtseindeutig

Eine Relation ist rechtseindeutig wenn gilt: für kein a existiert mehr als ein b mit $(a, b) \in R$

Eine Relation, welche sowohl linkstotal als auch rechtseindeutig ist, nennt man auch Abbildung oder Funktion

18. Oktober 2012

Über Mich

GBI, was ist das?

Linkstotal

Eine Relation ist linkstotal wenn gilt: für jedes a existiert mindestens ein b für welches gilt $(a, b) \in R$

Rechtseindeutig

Eine Relation ist rechtseindeutig wenn gilt: für kein a existiert mehr als ein b mit $(a,b) \in R$

Eine Relation, welche sowohl linkstotal als auch rechtseindeutig ist, nennt man auch Abbildung oder Funktion

Organisatorisches

Rechtstotal

Eine Relation ist rechtstotal wenn gilt:

für jedes b existiert mindestens ein a für welches gilt $(a, b) \in R$ rechtstotal = surjektiv

Linkseindeutig

Eine Relation ist linkseindeutig wenn gilt: für kein b existiert mehr als ein a mit $(a,b) \in R$ linkseindeutig = injektiv

Eine surjektive und injektive Relation nennt man bijektiv

Rechtstotal

Eine Relation ist rechtstotal wenn gilt:

für jedes b existiert mindestens ein a für welches gilt $(a,b) \in R$ rechtstotal = surjektiv

Linkseindeutig

Eine Relation ist linkseindeutig wenn gilt: für kein b existiert mehr als ein a mit $(a, b) \in R$ linkseindeutig = injektiv

Rechtstotal

Eine Relation ist rechtstotal wenn gilt:

für jedes b existiert mindestens ein a für welches gilt $(a,b) \in R$ rechtstotal = surjektiv

Linkseindeutig

Eine Relation ist linkseindeutig wenn gilt:

für kein b existiert mehr als ein a mit $(a, b) \in R$ linkseindeutig = injektiv

Eine surjektive und injektive Relation nennt man bijektiv

Vervollständige folgende Tabelle, wobei gilt: $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$

rechtstotal	linkseindeutig	Begriff	Abbildung
?	?	?	$f(x) = x^3 - x$
?	?	?	$f(x) = x^2$
?	?	?	$f(x) = x^5$
?	?	?	$f(x) = e^x$

Wie verändert sich die Tabelle, wenn $x \in \mathbb{N}$ und $f(x) \in \mathbb{N}$?

18. Oktober 2012

GBI, was ist das?

Über Mich

Vervollständige folgende Tabelle, wobei gilt: $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$

rechtstotal	linkseindeutig	Begriff	Abbildung
?	?	?	$f(x) = x^3 - x$
?	?	?	$f(x) = x^2$
?	?	?	$f(x) = x^5$
?	?	?	$f(x) = e^x$

Wie verändert sich die Tabelle, wenn $x \in \mathbb{N}$ und $f(x) \in \mathbb{N}$?

Gilt für alle Mengen M, dass jede injektive Abbildung $\mathfrak{f}:M\to M$ auch surjektiv ist?

Gilt für alle Mengen M, dass jede injektive Abbildung $\mathfrak{f}:M\to M$ auch surjektiv ist?

Nein:

Gegenbeispiel: $M = \mathbb{N}_0$

$$f: n \rightarrow n+1$$

EOF

source: http://imgs.xkcd.com/comics/decline.png

