

TEST REPORT No.: 2-20785798c/10

According to:
FCC Regulations
FCC Part 22/24
FCC Part 15.209C
&
IC Regulations
RSS-132, Issue 2
RSS-133, Issue 5
RSS-Gen, Issue 2

for

Cinterion Wireless Modules GmbH

Quad-Band GSM/GPRS Module BG2-W FCC-ID: QIPBG2 IC: 7830A-BG2

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. TESTS OVERVIEW FCC Part 15/22/24 and Kanada IC Standards (RSS)	3
2. ADMINISTRATIVE DATA	5
2.1. Identification of the testing laboratory 2.2. Test location	5 5 5
3. EQUIPMENT UNDER TEST (EUT)	6
3.1. Additional declaration and description of main EUT 3.2. Configuration of cables used for testing 3.3. EUT: Type, S/N etc. and short descriptions used in this test report 3.4. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions 3.5. EUT set-ups 3.6. EUT operating modes	6 7 7 8
3.7. Parameter Settings on mobile phone and base station CMU200	
4. DESCRIPTION OF TEST SET-UP'S	
4.1. Test Set-up for conducted measurements	
5. MEASUREMENTS	12
5.1. RF power output (Conducted and Radiated)	16 18 20
6. CALIBRATION METHOD OF ANECHOIC CHAMBER	33
7. MEASUREMENT UNCERTAINTIES	
8. USED EQUIPMENT "CTC"	35
9. CORRECTION FACTORS DUE TO REDUCED MEAS. DISTANCE (F< 30 MHZ)	39
Table of annex	Total pages
SEPARATE DOCUMENT 2_20785798C_10_A1.PDF: DIAGRAMS OF TESTING	90
SEPARATE DOCUMENT 2_20785798C_10_A2.PDF: PHOTOS OF EUT	7
SEPARATE DOCUMENT 2 20785798C 10 A3 PDE: PHOTOS OF SET-UP	4

1. Summary of test results

The presented GSM 850/900/1800/1900 Module can be build inside host applications and extends their capability by wireless GSM technology. Data transmissions or voice applications are possible field applications.

In order to verify the compliance with applicable rules, a representative configuration consisting of representative auxiliary equipment was chosen. Embedded in this configuration, the GSM Module can be tested. Pls. refer to set-up description and photos for more details.

Following tests have been performed to show compliance with applicable FCC Part 2, Part 22, Subpart H and Part 24, Subpart E (Broadband PCS) of the FCC CFR 47 Rules and RSS-132, RSS-133 and RSS-Gen.

ATTESTATION:

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in above table are met in accordance with enumerated standards.

1.1. TESTS OVERVIEW FCC Part 15/22/24 and Kanada IC Standards (RSS)

TEST CASES	PORT	REFI	ERENCES & LIN	MITS	EUT set-up	EUT opera-	Result
		FCC Standard	RSS Section	TEST LIMIT	•	ting mode	
	Ι.	T	TX-Mode				
RF POWER (conducted)	Antenna terminal (conducted)	§2.1046		N/A	3	1+2	Passed
RF-POWER radiated (ERP/EIRP)	Cabinet	\$2.1046 \$22.913(a)(2)	RSS-132: 4.4 SRSP-503: 5.1.3	< 7 Watt (ERP)	1+2	1+2	Passed
		§24.232(c)	RSS-133:4.1/6.4 SRSP-510: 5.1.2	< 2 Watt (EIRP)		1.2	1 40000
SPURIOUS EMISSIONS (conducted)	Antenna terminal (conducted)	\$2.1051 \$22.917(a)(b) \$24.238(a)(b)	RSS-132: 4.5.1 RSS-133: 6.5.1	43+10log(P) dBc	3	1+2	Passed
99% OCCUPIED BANDWIDTH	Antenna terminal (conducted)	\$2.202 \$2.1049 \$22.917(a) \$24.238(a)	RSS Gen:4.4.1	99% Power	3	1+2	Passed
SPURIOUS EMISSIONS (radiated)	Cabinet + Intercon necting cables	§15.209(a)	RSS-Gen: 4.11 RSS-210: Table 3 RSS-310: Table 4	$\begin{array}{c} 2400/F(kHz) \\ \mu V/m \\ 24000/F(kHz) \\ \mu V/m \\ 30 \; \mu V/m \end{array}$	2	1	Passed
	(radiated)	\$2.1053(a) \$22.917(a)(b) \$24.238(a)(b)	RSS-132: 4.5.1 RSS-133: 6.5.1	43+10log(P) dBc	1+2	1+2	Passed
FREQUENCY STABILITY	Antenna terminal (conducted)	\$22.355, table C-1 \$24.235 \$2.1055	RSS-132: 4.3 RSS-133: 6.3	< 2.5ppm <0.1 ppm	3	1+2	Passed

			RX Mode		Autobalia		
AC-Power Lines Conducted Emissions	AC- Power lines	§15.107 §15.207	RSS-Gen, Issue 2: Chapter 7.2.2	FCC §15.107 class B limits §15.207 limits IC: Table 2, Chapter 7.2.2			Not performed, remark 1
RECEIVER Radiated emissions	Cabinet + Intercon necting cables (radiated)	§15.109 §15.33 §15.35	RSS-132, Issue 2: 4.6 RSS-Gen, Issue 2: 6(a) RSS 133, Issue 5: 6.6	FCC 15.109 class B limits IC-limits: Table 1, Chapter 6	2	3+4	Passed Remark 2
RECEIVER Conducted emissions	Antenna terminal (conducted)	§2.1051 §15.111	RSS-Gen: 6(b) RSS132: 4.6 RSS133: 6.7(b)	43+10log(P) dBc IC: < 2 nW/4kHz (30 <f<1000mhz) < 5nW/4kHz (f> 1GHz)</f<1000mhz) 	3	3+4	Passed

Remark:

- 1.) will be tested in final customer application, the set-up for tests has no AC-mains connection
- 2.) See separate test report 2_20785798d/10 and corresponding annexes for measurements according Part 15, Subpart B.

The test results apply exclusively to the test samples as presented in chapter 3.1. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests.

Dipl.-Ing. W. Richter Responsible for testsection GmbH Im Teelbruch 116 45219 Essen Tel.: + 49 (0) 20 54 / 95 19 - 0 Fax: + 49 (0) 20 54 / 95 19 - 997

Dipl.-Ing. C. Lorenz Responsible for test report

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: CETECOM GmbH

Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Laboratory accreditations/Listings: DAR-Registration No. DAT-P176/94-02

FCC-Registration No. 99538, MRA US-EU 0003

IC-Registration No. 3462D-1, 3462D-2

VCCI Registration No. R-2665, R-2666, C-2914, T-339

Responsible for testing laboratory: Dipl.-Ing. W. Richter

Deputies: Dipl.-Ing. J.Schmitt

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Order No.: 20785798

Responsible for test report and

project leader: Dipl.-Ing. C. Lorenz

Receipt of EUT: 2010-05-02

Date(s) of test: 2010-05-04, 2010-05-17

Date of report: 2010-05-18

Version of template: 09.06 _All.Dotm

2.4. Applicant's details

Applicant's name: Cinterion Wireless Modules GmbH

Address: Research&Innovation

Siemensdamm 50 13629 Berlin Germany

Contact person: Mr. Thorsten Liebig

2.5. Manufacturer's details

Manufacturer's name: please see Applicant's details

Address: please see Applicant's details

3. Equipment under test (EUT)

3.1. Additional declaration and description of main EUT

5.1. Additional declar	auon ana c	iescription of main E	UI				
Main function		GSM/GPRS Quad-Band	Module				
Type	Type BG2-V			3G2-W			
GSM Frequency range		GSM 850: 824 – 849MHZ (Uplink), 869-894MHz (Downlink)					
(USA/Canada bands)		GSM1900: 1850-1910MHz (Uplink), 1930-1990MHz (Downlink)			MHz (Downlink)		
Type of modulation		GMSK					
Number of channels		GSM 850: 128 – 251, 12:	5 channels				
(USA/Canada bands)		GSM1900: 512 – 810, 30	00 channels				
EMISSION DESIGNATOR	R(S)	300KGXW (GSM)					
Antenna Type: External ma	gnet mount	□ Integrated		Frequency	range:		
antenna for vehicular use		☐ External, no RF- conn	ector	GSM 850:	824 – 894 MHz		
		External, separate RF-	connector	GSM 1900:	: 1850-1990 MHz		
Antenna Gain		☑ radiated: Max. 2 dBi gain at GSM1900					
MAX PEAK Output Power	•						
Radiated ERP	GSM850	26.6 dBm (PK)					
Radiated EIRP	GSM1900	27.84 dBm (PK)					
MAX PEAK Output Power							
Conducted	GSM 850	32.43 dBm (PK)					
Conducted	GSM1900	29.96 dBm (PK)					
FCC-ID		QIPBG2					
IC		7830A-BG2					
Installed option		☑ GSM900 and GSM18	00 Bands				
Special EMI components							
Power supply Internally supplied and controller by the DSB75 Board for			Board for tests:				
		V_{MIN} =3.3V to V_{MAX} =4.5V					
		DSB75 Box was DC supplied with 9V external power supply					
EUT sample type		☐ Production	➤ Pre-Proc	duction	☐ Engineering		

3.2. Configuration of cables used for testing

Cable number	Item	Туре	S/N serial number	HW hardware status	Cable length
Cable 1	RS232	unshielded	CTC		1.8m
Cable 2	USB cable	shielded	CTC		1.5m

3.3. EUT: Type, S/N etc. and short descriptions used in this test report

Short description*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	Quad-Band GSM/GPRS Module	BG2-W	IMEI: 004401080403 377 (WMC0004AB 0h)	B2.1	00.580
EUT B	Quad-Band GSM/GPRS Module	BG2-W	IMEI: 004401080403 401 (WMC0004AB 0f)	B2.1	00.656
EUT C	Magnetic Mount antenna	MAR-C3G-2F	CTC#1	2dBi Gain	
EUT D	Handset Votronic	For M20T, MC35T, TC35T, DSB35	401795321130 4	HH-SI- 30.3/V2.0/0	
EUT E	Adapter Board	Type 1	#1		
EUT F	DSB Board + BG2_PH8_Ada_0195	DSB75	0911009 ICM-100012- 03	B1.1	

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.4. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short descrip- tion *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	Notebook	Dell D610D	CTC PC3		Windows XP + Terminal programm

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.5.EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
Set. 1	EUT A + EUT C + EUT D + EUT E + EUT F + (AE1)	First set-up used for tests: radiated
Set. 2	EUT B + EUT C + EUT D + EUT E + EUT F + (AE1)	Second set-up used for tests: radiated
Set. 3	EUT B + EUT D + EUT E + EUT F + (AE1)	Second set-up used for tests: conducted

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.6. EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
op. 1	GSM 850 TCH mode TCH=128/192/251	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 33 dBm (power class 4; power control level 5). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link.
op. 2	GSM 1900 TCH mode TCH=512/661/810	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 30 dBm (power class 1; power control level 0). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link
op. 3	GSM 850 Idle mode BCCH 50	The mobile station is synchronized to the Broadcast Control Channel (BCCH) and listening to the Common Control Channel (CCCH). Periodic location update is disabled.
op. 4	GSM 1900 Idle mode BCCH 651	The mobile station is synchronized to the Broadcast Control Channel (BCCH) and listening to the Common Control Channel (CCCH). Periodic location update is disabled.

^{*)} EUT operating mode no. is used to simplify the test report.

3.7. Parameter Settings on mobile phone and base station CMU200

Following settings apply to the MS during the measurements in **GSM/(E)GPRS**-Mode only:

Parameter	Traffic Mode	Idle Mode
Traffic Channels mobile station (EUT)	GSM 850 TCH _{MS} = 128/ 192 /251	
	$GSM 1900 TCH_{MS} = 512 / 681 / 810$	
maximum power level (PCL)	GSM 850: PCL = 5 (2 Watt)	
	GSM 1900: PCL = 0 (1 Watt)	
Modulation	GSM: GMSK-Modulation Scheme	
Destr	EDGE: 8-PSK Modulation Scheme	
DTX	off	
Bitstream	PRBS 2E9-1 (pseudo-random-	
m: 1	sequence) – CCITT 0.153	
Timeslot	3	
Hopping	off	
Timeslot (slot mode)	GSM-Mode: single	
	GPRS-Mode: maximum allowed	
2.63	uplink slots no. according MS class	
MS slot class	Class 10	
Maximum data transmission rate, single	GSM: 17,6 kBit/s Slot	
time slot	EDGE: 59,2 kBit/s Slot	
Speech transcoding (Traffic Mode)	Full rate Version 1	
Mode	BCCH and TCH	
BCCH – base station (CMU,CMD)	GSM 850: GSM 1900:	
TCH – base station (CMD, CMU)	auto	
Power level TCH – base station (used	- 70 dBm	
timeslot level)	, o dBiii	
Power level BCCH – base station	- 80 dBm	
(control channel level)		
External attenuation RF/AF-	Accord. calibration prior to	
Input/Output	measurements	
Mobile Country Code	310	310
BS_AG_BLKS_RES		0
Paging reorganisation		Off (0)
Signalling channel	Not applicable	SDCCH
Location Update		Auto
Cell access		Disabled (barred)

Settings for CMU (general)

bettings for Civic (general)	ettings for Civic (general)				
Repetition	Continuous				
Stop condition	None				
Display mode	Max./Min				
Statistic Count	1000 Bursts				
Decoder	Standard				

Additional settings on the base stations CMU200 for frequency stability measurements

4. DESCRIPTION OF TEST SET-UP's

4.1. Test Set-up for conducted measurements

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first 10 dB attenuated (2) before it is 0° divided by a power divider (3). One of the signal path is connected to the communication base station (4), other branch is connected to the spectrum – analyzer (5). The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting the measurement readings on the spectrum-analyzer.

Schematic: Test set-up conducted

Following modified test set-up schematic apply for tests performed inside the climatic chamber: (Frequency stability)

In case an external connector is available (test fixture), following set-up is used for measurements.

Schematic: Test set-up conducted within climatic chamber

4.2. Test set-up for radiated measurements

The radiated emissions from the test device are measured first as exploratory measurement in a FCC recognized semi anechoic chamber (registration no. 99538) or fully anechoic chamber with the dimensions of 8.05m x 6.85m x 5.48m. Very critical frequencies within a defined range, can be re-checked on CETECOM's Open Area Test side, recognized by the FCC to be compliant with ANSI 63.4: 2001 according registration no. 99538

The EUT and accessories are placed on a non-conducting tipping table of 0.8 meter height (semi-anechoic chamber) or 1.55m height (fully-anechoic chamber) which is situated in the middle of the turntable. The turntable can rotate the device under test 360 degree, the tipping table can rotate the device from laid to standing position. This way the device under test can be rotated in all three orthogonal planes in order to maximize the detected emissions. The turn- and tipping table are controlled by a controller unit. All positions manipulations are software controlled from a operator PC.

The measurements are performed for both receiving antenna polarisations: vertical and horizontal.

Up to 18GHz a measurement distance of 3 meters is used, above 18GHz the distance is 1meter. A biconical-logarithmic antenna up to 1 GHz and a horn antenna for frequencies above 1 GHz used. (see equipment list)

The EUT is powered either by a external DC-supply with nominal voltage or a AC/DC power supply as accessory. The communication signalling is performed from outside the chamber with a communication test simulator (CMU200 from Rohde&Schwarz) by airlink.

Schematic: radiated measurements test set-up

5. Measurements

5.1. RF power output (Conducted and Radiated)

REFERENCES

FCC: §2.1046 (conducted), §22.913(a)(2), § 24.232(c)
IC: RSS-132:4.4 + SRSP 503:5.1.3 for GSM 850; RSS-133:6.4 + SRSP-510:5.1.2 for GSM 1900

 Maximum Power Output of the mobile phone should be determined while measured conducted and radiated way.

TEST SET-UP (CONDUCTED)

- see conducted measurement set-up, description in chapter 4.1
- a suitable artificial antenna or RF-connector is provided by the applicant in order to perform the conducted measurements. Any data provided with the artificial antenna or connector, have been taken in account in order to correct the measurement data.

MOBILE PHONE SETTINGS

according 3.7

BASE STATION SETTING

according 3.7

TEST METHOD

- 1.) The measurements were made at the upper, middle and lower carrier traffic frequencies of the operating band. Choosing three TX-carrier frequencies of the mobile phone within each operable GSM band, should be sufficient to demonstrate compliance.
- 2.) The measurements were performed with the integrated power measurement function of the "radio communication tester *CMU* from *Rohde&Schwarz* company. In this way spectrum-analyzers instrument limitations can be avoided or minimized. Instead, *CMU* manufacturers declared measurement error can be considered for this measurement.
- 3.) The attenuation (insertion loss) at the RF Inputs/Outputs of *CMU* were set according the path loss of the test set-up, determined in a step before starting the measurements.
- 4.) PK and Average values have been recorded for each channel and band.

RESULTS (CONDUCTED)

Op. Mode 1, Set-up 3

Channel/ Frequency (MHz)		Peak Output Power	Average Output Power
		(dBm)	(dBm)
	Channel 128/824.2 MHz	32.12	32.00
GSM 850	Channel 192/837 MHz	32.32	32.10
	Channel 251/848.8 MHz	32.43	32.30

Op. Mode 2, Set-up 3

1 2 \ /		Peak Output Power (dBm)	Average Output Power (dBm)
GG) (Channel 512/ 1850.2 MHz	29.55	29.40
GSM 1900	Channel 661/ 1880.0 MHz	29.66	29.60
1900	Channel 810/ 1909.8 MHz	29.96	29.80

PAR factor for GSM Modulation is approx 0.1dB to max. 0.2dB far away from the limit of 13dB as stated in the rules.

VERDICT: passed

AMBIENT ENVIRONMENTAL CONDITIONS

Temperature	25 °C
Relative Humidity	30 %
Air pressure	1005 hPa

TEST EQUIPMENT

Used equipment (see reference in the annex)
298, 529, 530, 489, 517 (RF-Relay Unit Keithley)

5.1.1. Radiated RF-Power

TEST METHOD

The measurements were made at the upper, center, and lower carrier traffic frequencies of each of the supported operating band. Choosing three TX-carrier frequencies of the mobile phone, should be sufficient to demonstrate compliance.

The measurements were performed by using the **substitution method** (ANSI/TIA/EIA 603) with a spectrum-analyzer. This method can be described like follows:

1.) choosing of suitable spectrum-analyzer settings for performing the measurements. This settings of the spectrum analyzer must be maintained for both stages of the measurements: EUT emission measurements and also for measurements of the substituted level.

Parameter	Setting for GSM	Settings for UTRA/FDD	
	measurements	measurements	
RBW	1 MHz	10 MHz	
VBW	10 MHz	10 MHz	
Span	8 MHz	8 MHz	
Detector Mode	Positive max-hold	Positive max-hold	
Average	off	off	
Sweep Time	coupled	coupled	

- 2.) The maximum level of the peak power was recorded, while the emissions were maximized by rotating the EUT in three orthogonal axes, which was situated on a non-conductive turntable of 1.55 m height $(P_{MEAS,1})$. This was performed for both measuring antenna polarisations (vertical/horizontal), the maximum of both values is used for further measurements and final substitution $(P_{MEAS,1,MAX})$.
- 3.) As the maximum emission is recorded, the EUT is replaced by a frequency dependant suitable antenna, which is connected to a RF-signal generator, which is transmitting on the determined worst-case frequency as determined in step 2.
- 4.) The RF-signal level of the signal generator is adjusted as long the same worst-case level determined first step is measured at the spectrum analyzer ($P_{SMHU}=P_{MEAS,1,MAX}$)
- 5.) Than the RF-signal cable is disconnected from the antenna and connected to a power-level meter. The level is determined ($P_{MEAS,2}$).
- **6.)** The final result is calculated by adding the ERP/EIRP gain of the antenna which substitutes the EUT. $P_{EUT,SUBST} = P_{MEAS,2} + G_{Antenna}$

GSM RESULTS (RADIATED)

Channel/ Frequency (MHz)		Peak Output Power (dBm)		Antenna Polarisation for maximum	Verdict	
		PK	AV		Power	
	Channel 128/ 824.2 MHz	26.60	1.)	ERP-		
GSM 850	Channel 192/ 837.0 MHz	25.38		Value	V/H	Passed
	Channel 251/ 848.8 MHz	24.07				
ECDDC	Channel 128/ 824.2 MHz	Not		ERP-		
EGPRS 850	Channel 192/ 837.0 MHz	supported mode		Value	V/H	Passed
630	Channel 251/ 848.8 MHz	mode				

Remark: 1.) PAR Value can be used from conducted measurement and subtracted from radiated ERP PK-value.

Channel/ Frequency (MHz)		Peak Output Power (dBm)		Antenna Polarisation for maximum	Verdict	
		PK	AV		Power	
CCM	Channel 512/ 1850.2 MHz	28.63	1.)	EIRP-		
GSM 1900	Channel 661/ 1880.0 MHz	25.47		Value	V/H	Passed
1900	Channel 810/ 1909.8 MHz	26.85				
ECDDC	Channel 512/ 1850.2 MHz	Not		EIRP-		
EGPRS 1900	Channel 661/ 1880.0 MHz	supported mode		Value	V/H	Passed
1900	Channel 810/ 1909.8 MHz	mode				

Remark: 1.) PAR Value can be used from conducted measurement and subtracted from radiated EIRP PK-value.

AMBIENT ENVIRONMENTAL CONDITIONS

Temperature	23.3 °C
Relative Humidity	33.5 %
Air pressure	1011 hPa

TEST EQUIPMENT

Used equipment (see reference in the annex)
016, 133, 262, 439, 264, 460, 443

5.2. Occupied bandwidth

REFERENCES

FCC: §2.1049; §22.917(a), §24.238(a)

IC:RSS-Gen:4.6.1

"the **occupied bandwidth** is the frequency bandwidth, such that, below it lower and above it upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated.

TEST SET-UP

• see conducted measurement set-up described in 4.1

MOBILE PHONE SETTINGS

- Provisions with the requirements is based on the fact, that GSM modulation scheme is GMSK Modulation for GSM equipment with a maximum data transmission rate of 17,6 kBit/s per Slot.
- Provisions with the requirements is based on the fact, that EDGE modulation scheme is 8-PSK Modulation for EDGE equipment with a maximum data transmission rate of 69,2 kBit/s per Slot.
- according settings described in chapter 3.7 a call was established

SETTINGS OF THE SPECTRUM-ANALYSER

Frequency range	RBW (resolution bandwidth)	VBW (video bandwidth)
1 MHz around carrier frequency	1% from applicants stated/measured emission bandwidth	310 times the RBW

TEST METHOD

The measurements were made at the upper, middle and lower carrier traffic frequencies of the operating band. Choosing three TX-carrier frequencies of the mobile phone within each operable GSM band, should be sufficient to demonstrate compliance

Additionally the emission bandwidth (-26 dBc bandwidth) was recorded for all three channels. The results were taken in order to determine according the §24.238 the measurement resolution bandwidth, which should be approximately 1% of the emission bandwidth.

RESULTS

Set-up 3, Op-Mode 1

Channel/ Frequency (MHz)		Occupied 99% bandwidth [kHz]	Emission bandwidth
	Channel 128/ 824.2 MHz	246.79	314.10
GSM 850	Channel 192/ 837.0 MHz	245.19	315.70
	Channel 251/ 848.8 MHz	243.58	314.10

Remarks: see annex A1 for plots

Set-up 3, Op-Mode 1

Channel/ Frequency (MHz)		Occupied 99% bandwidth	Emission bandwidth
	• • • •	[kHz]	[kHz]
	Channel 512/ 1850.2 MHz	246.79	310.89
GSM 1900	Channel 661/ 1880.0 MHz	246.79	310.89
	Channel 810/ 1909.8 MHz	245.19	314.10

Remarks: see annex A1 for plots

AMBIENT ENVIRONMENTAL CONDITIONS

Temperature	24.4 °C
Relative Humidity	32 %
Air pressure	1008 hPa

TEST EQUIPMENT

Used equipment (see reference in the annex)
298, 489, 529, 530, 517 (RF-Relay Unit Keithley)

5.3. Radiated emissions, below 30 MHz, §15.205 and §15.209C, RSS210, RSS310, RSS-gen

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test location	☑ CETECOM Esser	(Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapter. 2.2.3		
test site		□ 487 SAR NSA	□ 337 OATS	☐ 347 Radio.lab.			
receiver	□ 377 ESCS30	■ 001 ESS					
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK				
antenna	□ 048 EMCO3143	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	■ 030 HFH-Z2	□ 477 GPS	
signaling	□ 298 CMU	□ 460 CMU	□ 295 RACAL	■ 392 MT8820A			
power supply	■ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40	
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	☐ 482 Filter Matrix			

STANDARDS AND LIMITS: CFR 47, PART 15, SUBPART B, \$15,205, \$15,209, ANSI C63,4

Frequency	Field	d strength	Measurement	Remarks
[MHz]	$[\mu V/m]$	[dBuV/m]	distance [meters]	
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3m
0.490 – 1.705	24000/f (kHz)	87.6 – 20 Log(f) (kHz)	30	Correction factor used due to measurement distance of 3m
1.705 – 30	30	29.54	30	Correction factor used due to measurement distance of 3m
Remark: * decreases w	ith the logarithm of th	e frequency		

TEST CONDITION AND MEASUREMENT TEST SET-UP

link to test system (if used):	air link □ cable connection					
EUT-grounding	■ none □ with power supply	□ additional connection				
Equipment set up	⊠ table top	☐ floor standing				
Climatic conditions	Temperature: (24°C)	Rel. humidity: (30)%				
EMI-Receiver (Analyzer) Settings	Span/Range: 9kHz to 150kHz; 150	kHz to 30 MHz				
	RBW/VBW: 200Hz/auto; 10 kHz/ a	uto (CISPR#16)				
	Detector/ Mode: PEAK, TRACE max-hold mode, repetitive scan for exploratory measurements					
	Quasi-Peak, for final measurement on critical frequencies (fy<1GHz)					

GENERAL MEASUREMENT PROCEDURES:

The measurement test set-up and test procedure are in accordance with the provisions described in ANSI 63.4: 2003

The **Equipment under Test** (EUT) was set-up to defined operating mode and installed (connected) to accessory equipment according the general description of use given by the applicant.

The measurement loop antenna was situated in 3m distance to the EUT. Radiated magnetic emission measurements were made with the antenna situated in 1 meter height. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions, the EUT itself either over 3-orthogonal axes (no defined usage position) or 2-orthogonal axis (defined usage position) by the position manipulator.

According the standard the compliance should be checked in 30m and 300m measurement distance. Therefore a additional extrapolation factor was used in order to normalize the measurement data. The frequency dependent extrapolation factor used for this reduced measurement distance, can be found in the chapter annexes.

MEASUREMENT RESULTS

Channel 128

Set-up No.		2								
Operating Mode 1										
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m)
								(C_F)	(M)	(L_T)
3.01	16.955	21.81	1000	10.00	100.00		0360°	Chapter 9	7.73	29.54

Remark: see also plots enclosed in annex 1

Channel 192

Chamici 172										
Set-up No.		2								
Operating l	Operating Mode 1									
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit $(dB\mu V/m)$ (L_T)
3.02	16.91	17.7	1000	10.00	100.00		0360°	Chapter 9	11.84	29.54

Remark: see also plots enclosed in annex 1

Channel 251

Chamici 25	Chamier 251									
Set-up No.		2								
Operating 1	Mode 1									
Diagram	Frequency	MaxPeak	Meas	Bandwidth	Antenna	Polarity	Turntable	Corr.	Margin	Limit
no.	(MHz)	$(dB\mu V/m)$		(kHz)	height		position	(dB)	(dB)	(dBµ
			Time		(cm)		(deg)			V/m)
			(ms)							
								(C_F)	(M)	(L_T)
2.02	6.13	2.615	1000	10.00	100.00		0360°	Chapter 0	23.41	20.54
3.03	16.91	21.06	1000	10.00	100.00		0300	Chapter 9	8.48	29.54

Remark: see also plots enclosed in annex 1

Margin to Limit:

$$\begin{split} M &= L_T - R_R + C_F + D_F \\ &= L_T - R_R + \left(AF_{ANTENNA} + Cable_{LOSS}\right) + D_F \end{split}$$

Remark: positive margin means passed result

Abbreviations used:

- R_R: Receiver readings in dBμV/m
- C_F: Transducer in dB = AF (antenna factor) + CL (cable loss)
- D_F: distance correction factor (if different measurement distance used than specified in the standard
- $\bullet \qquad L_T: Limit \ in \ dB \mu V/m$

VERDICT

Radiated frequencies below 30 MHz: Passed

5.4. Emission limits (Spurious emission conducted/radiated) f> 30 MHz

REFERENCES

FCC: §2.1051-conducted,§15.111-conducted antenna terminal, §2.1053(a)-radiated, §22.917(a)(b); §24.238(a)(b),§2.1057(1)

IC: RSS-132:4.5.1, RSS-133:6.5.1 - TX-mode RSS-132:4.6, RSS-133: 6.7(b) - RX-mode

,, the power of emissions shall be attenuated below the transmitter output power (p) by at least least 43+10 Log(P) dB"

FREQUENCY RANGE

TX: The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The detector used was Peak.

RX: The spectrum was scanned from 30 MHz to the 5GHz according §15.33(b)(1). The detector used was Peak.

Limit TX: The specification that all emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range of the mobile phone (1 to 0.001 W) to a constant limit of -13 dBm.

Limit RX: 2nW according §15.111

DESCRIPTION OF SET-UP

- see conducted set-up in chapter 4.1
- see radiated set-up in chapter 4.2

SETTINGS ON MOBILE PHONE

- The measurements in TX-mode were made at the upper, middle, and lower carrier frequencies of the operating band. Choosing three representative TX-carrier frequencies of the mobile phone within each operable GSM band, should be sufficient to demonstrate compliance with the emissions limits outside and adjacent to the frequency blocks.
- The measurements in RX-Mode were made at the middle tuning range of the receiver.
- The individual settings on base station and mobile phone were made according chapter 3.7

TEST METHOD RADIATED:

By rotating the EUT in three orthogonal planes, the emissions were recorded with Peak-Detector and Hold-Max function of the spectrum-analyzer. If the harmonic could not be detected above the noise floor, the ambient level was recorded. Measurement distance is 3m for frequencies up to 18GHz and 1m for frequencies greater then 18GHz. The readings on the spectrum analyzer are corrected with annually performed chamber path calibration values (see chapter 7), so the readings shown are equivalent to ERP/EIRP values. Critical measurements near the limit, are re-measured with a substitution method accord. ANSI/TIA/EIA 603.

SETTINGS OF SPECTRUM-ANALYSER

Frequency range	RBW (resolution bandwidth)	VBW (video bandwidth)			
BAND-EDGE compliance: 1MHz immediately adjacent to the frequency blocks	1% from applicants stated/measured emission bandwidth	310 times the RBW			
More than 1 MHz outside and adjacent the frequency blocks	1 MHz	310 MHz			

RESULTS (CONDUCTED)

5.4.0.1. GSM TCH 850: Op. Mode 1, Set-up 3

Lowest channel: 128

Transmittin	Transmitting channel/ frequency: TX = 824.2 MHz									
Sweep frequency	Diagram	Frequency of emission	Worst-Level	Transducer factor	Result	Limit	Verdict			
range: [MHz]	number	[MHz]	Polarisation	[dB]	[dBm]	[dBm]	Volume			
Sweep 1	14.12	699.05			-34.78		Passed			
Sweep 2 ^{4.)}	14.15				<-38.0	-13	Passed ^{5.)}			
Sweep 3	14.18	12411.0			-25.09	-13	Passed			
Sweep 4	14.21a	823.99			-25.97		Passed			

Remark: see diagrams in annex 1 for more details

- 4.) Band-Block Edge compliance
- 5.) BCCH and Downlink TCH carrier on diagram

$Middle\ channel = 192$

Transmittin	Transmitting channel/ frequency: TX = 837 MHz									
Sweep frequency range: [MHz]	Diagram number	Frequency of emission [MHz]	Worst-Level Polarisation	Transducer factor [dB]	Result [dBm]	Limit [dBm]	Verdict			
Sweep 1	14.13	705.67		==	-34.79		Passed			
Sweep 2	14.16			==	<-38.0	-13	Passed 5.)			
Sweep 3	14.19a	8795.3			-27.49		Passed			

Remark: see diagrams in annex 1 for more details

5.) BCCH and Downlink TCH carrier on diagram

Highest channel: 251

Transmitting channel/ frequency: TX = 848.8 MHz									
Sweep frequency	Diagram	Frequency of	Worst-Level	Transducer factor	Result	Limit			
range: [MHz]	number	emission	Polarisation	[dB]	[dBm]	[dBm]	Verdict		
Sweep 1	14.14	706.97			-34.42		Passed		
Sweep 2	14.17				<-38.00	12	Passed 5.)		
Sweep 3	14.20	12392			-24.54	-13	Passed		
Sweep 5	14.22a	849.02			-25.66		Passed ^{4.)}		

Remark: see diagrams in annex 1 for more details

- 4.) Band-Block Edge compliance
- 5.) BCCH and Downlink TCH carrier on diagram

5.4.0.1.1. FCC requirement 15.111 (conducted antenna measurement in RX-mode)

Middle RX channel = 192 (Set-up 3, Op. Mode 3)

Transmitting l	Transmitting BCCH channel = 182									
Sweep frequency range: [MHz]	Diagram number	Frequency of emission [MHz]	Transducer factor [dB]	Correction factor if any used:	Result [dBm]	Limit [dBm]	Verdict			
Sweep 1 301000MHz	14.35				< -63.0 (PK)		Passed ^{2.)}			
Sweep 2 1 5 GHz	14.36a	1866.0 ^{3.)}			-67.33 (PK)		Passed 3.)			
	14.36b	3519 2			-69.64 (PK)	-57	Passed			
	14.36c	Noise Level			<-62.0 (PK)		Passed			
	14.36d				Noise Level without EUT		For comparison with 14.36c			

Remark: see diagrams in annex 1 for more details

- 2.) Peak from measurement set-up, BCCH carrier of base station
- 3.) External interferer at 1886MHz

5.4.0.1.2. Canada requirement: RSS-132-Issue 2, Chapter 4.6 (conducted measurements in RX-Mode)

Middle RX channel = 192 (Set-up 3, Op. Mode 3)

Whate RX channel = 172 (Set-up 3, Op. Wode 3)										
Transmitting BCCH channel = 182										
Sweep frequency range: [MHz]	Diagram number	Frequency of emission [MHz]	Transducer factor [dB]	Correction factor (RBW:3kHz-> 4kHz)	Result [dBm]	Limit [dBm]	Verdict			
Sweep 1 301000MHz	14.32			+ 1.25 dB *	< -78.75	-57	Passed ^{2.)}			
Sweep 2 1 19.5 GHz	14.33	1592.94		+ 1.23 db	-73.41	-54	Passed			

Remark: see diagrams in annex 1 for more details

^{2.)} Peak from measurement set-up, BCCH carrier of base station

5.4.0.2. GSM 1900 Mode: Set-up 3 Op. Mode 2

Lowest channel: 512

Transmitting channel/ frequency: TX = 1850,2 MHz								
Sweep frequency	Diagram number	Frequency of emission	Worst-Level	Transducer factor	Result	Limit	Verdict	
range: [MHz]	(H/V)	[MHz]	Polarisation	[dB]	[dBm]	[dBm]	Verdict	
Sweep 1	14.01	669.87			-37.65		Passed	
Sweep 2	14.04				< -35	12	Passed 5.)	
Sweep 3	14.07	5551.1			-38.24	-13	Passed	
Sweep 4	14.10	1849.996			-16.30		Passed 4.)	

Remark: see diagrams in Annex 1 for more details

4.) Band-Block Edge compliance

5.) BCCH and Downlink TCH carrier on diagram

Middle channel: 661

Transmitting channel/ frequency: TX = 1880,0 MHz								
Sweep frequency range: [MHz]	Diagram number (H/V)	Frequency of emission [MHz]	Worst-Level Polarisation	Transducer factor [dB]	Result [dBm]	Limit [dBm]	Verdict	
Sweep 1	14.02	897.43		==	-38.84		Passed	
Sweep 2	14.05			==	< -35	-13	Passed 5.)	
Sweep 3	14.08	5633.0			-36.21		Passed	

Remark: see diagrams in Annex 1 for more details

5.) BCCH and Downlink TCH carrier on diagram

Highest channel: 810

Transmitting channel/ frequency: TX = 1908,8 MHz								
Sweep frequency	Diagram number	Frequency of emission	Worst-Level	Transducer factor	Result	Limit	Verdict	
range: [MHz]	(H/V)	[MHz]	Polarisation	[dB]	[dBm]	[dBm]	Verdict	
Sweep 1	14.03	668.21			-39.73		Passed	
Sweep 2	14.06				<-35	-13	Passed 5.)	
Sweep 3	14.09	5714.7			-35.97		Passed	
Sweep 5	14.11	1910.0176			-16.62		Passed ^{4.)}	

Remark: see diagrams in Annex 1 for more details

4.) Band-Block Edge compliance

5.) BCCH and Downlink TCH carrier on diagram

5.4.0.2.1. Canada requirement: RSS-133-Issue 3, Chapter 6.7(b) (conducted measurements in RX-Mode)

Middle TCH channel = 661 (Set-up 3, Op. Mode 4)

Transmitting BCCH channel = 651									
Sweep frequency range: [MHz]	Diagram number	Frequency of emission [MHz]	Transducer factor [dB]	Correction factor (RBW:3kHz-> 4kHz)	Result [dBm]	Limit [dBm]	Verdict		
Sweep 1 301000MHz	14.30	Noise level			< -77.62	-57	Passed		
Sweep 2 1 19.5 GHz	14.31	1592.9 14875.0 19351.0		+ 1.25 dB	-72.2 -68.33 -66.74	-54	Passed		

Remark: see diagrams in annex 1 for more details

AMBIENT ENVIRONMENTAL CONDITIONS

Temperature	23.4 °C
Relative Humidity	34.5 %
Air pressure	1015 hPa

TEST EQUIPMENT

Used equipment (see reference in the annex)
298, 354, 529, 530, 489, 517 (RF-Relay Unit Keithley)

RESULTS (RADIATED)

5.4.0.2.2. GSM 850 Mode: Set-up 2, Op. Mode 1

Lowest channel: 128

DO II DAY WARMAN AND									
Transmitting channel/ frequency: TX = 824.2 MHz									
Sweep frequency	Diagram number	Frequency of emission	Worst-Level		Result	Limit	Verdict		
range: [MHz]	(H/V)	[MHz]	Polarisation	[dB]	[dBm]	[dBm]			
Sweep 1	8.01 8.02		H V		<-28.66		Passed 1.)+2.)		
Sweep 2 4.)	8.07 8.08	824.0	V		-20.09	13	Passed ^{4.)}		
Sweep 4	8.11 8.12	2612.4	V		-23.55		Passed		
Sweep 5	8.17/8.18	11926.0	H/V		-34.42		Passed		

Remarks: see diagrams enclosed in annex A1, only worst-case polarisation mentioned

- 1.) only results near 20dB to the limit are referenced or noise level
- 2.) TX-carrier on the diagram
- 4.) Band-Block Edge compliance

Middle channel: 192

Tritute Chamici. 1/2									
Transmitting channel/ frequency: TX = 837 MHz									
Sweep frequency	Diagram number	Frequency of emission	Worst-Level	Transducer factor	Result	Limit	Verdict		
range: [MHz]	(H/V)	[MHz]	Polarisation	[dB]	[dBm]	[dBm]	Vertilet		
Sweep 1 ^{2.)}	8.03/ 8.04	982.51	Н		-29.02		Passed ^{2.)}		
Sweep 4	8.13/8.14	2655.7	Н		-23.43	10	Passed		
Sweep 5	8.19/ 8.20		H/V		<-35	-13	Passed		

Remarks: see diagrams enclosed in annex A1, only worst-case polarisation mentioned

- 1.) only results near 20dB to the limit are referenced or noise level
- 2.) TX-carrier on the diagram

Highest channel: 251

Transmitting channel/ frequency: TX = 849.8 MHz									
Sweep frequency range: [MHz]	Diagram number (H/V)	Frequency of emission [MHz]	Worst-Level Polarisation	Transducer factor [dB]	Result [dBm]	Limit [dBm]	Verdict		
Sweep 1 ^{2.)}	8.05	951.35	Н		-29.12		Passed ^{2.)}		
Sweep 1	8.06	931.33	П		-27.12				
Sweep 3 4.)	8.09 8.10	849.0	Н		-18.74	12	Passed ^{4.)}		
Sweep 4	8.15 8.16	2659.3	V		-23.29	-13	Passed		
Sweep 5	8.21/8.22	11631.0	H/V		-34.53		Passed		

Remarks: see diagrams enclosed in annex A1, only worst-case polarisation mentioned

- 1.) only results near 20dB to the limit are referenced or noise level
- 2.) TX-carrier on the diagram
- 4.) Band-Block Edge compliance

5.4.0.3. GSM 1900 Mode: Set-up 2, Op. Mode 2

Lowest channel: 512

Transmitting channel/ frequency: TX = 1850,2 MHz									
Sweep frequency range:	Diagram number	Frequency of emission	Worst-Level Polarisation	Transducer factor [dB]	Result	Limit	Verdict		
[MHz]	(H/V)	[MHz]			[dBm]	[dBm]			
Sweep 1	8.23/8.24	547.66	V		-28.40		Passed		
Sweep 2 2.)	8.25/8.26	2168.7	V		-23.00		Passed ^{2.)}		
Sweep 3 4.)	8.27/8.28	1850.0	V		-31.60		Passed 4.)		
Sweep 5	8.29	7409.1	Н		-37.05	-13	Passed		
	8.30	7408.9	V		-35.14				
Sweep 6	8.31/8.32	14.994	Н		-30.80		Passed		
Sweep 7 ^{5.)}	8.51						Passed 5.)		

Remark: see diagrams in annex 1 for more details, only worst-case polarisation mentioned

- 2.) TX-carrier on diagram
- 4.) Band-Block Edge compliance
- 5.) overview measurement only

Middle channel: 661

Transmitting channel/ frequency: TX = 1880,0 MHz									
Sweep frequency range: [MHz]	Diagram number (H/V)	Frequency of emission [MHz]	Worst-Level Polarisation	Transducer factor [dB]	Result [dBm]	Limit [dBm]	Verdict		
Sweep 1	8.33/8.34	725.8	Н		-32.67		Passed		
Sweep 2 ^{2.)}	8.35/8.36	2482.5 2536.6	H V		-22.21 -22.01		Passed ^{2.)}		
Sweep 5	8.37	7519.8	Н		-38.29	-13	Passed		
	8.38	7519.7	V		-35.97				
Sweep 6	8.39/8.40	17.699	V		-26.00		Passed		
Sweep 7 ^{5.)}	8.52						Passed 5.)		

Remark: see diagrams in annex 1 for more details, only worst-case polarisation mentioned

- 2.) TX-carrier on diagram
- 3.) Worst Case search because critical frequency
- 5.) overview measurement only

Highest channel: 810

inglest chainer, 010										
Transmitting channel/ frequency: TX = 1908,8 MHz										
Sweep frequency range: [MHz]	Diagram number (H/V)	Frequency of emission [MHz]	Worst-Level Polarisation	Transducer factor [dB]	Result [dBm]	Limit [dBm]	Verdict			
Sweep 1	8.41/8.42		H/V		< -30		Passed			
Sweep 2 2.)	8.43/8.44	2255.3	Н		-23.50		Passed ^{2.)}			
Sweep 4 4.)	8.45/8.46	1910.0	V		-32.27		Passed 4.)			
Sweep 5	8.47	7648.9	Н		-38.62	-13	Passed			
	8.48	7648.6			-37.54					
Sweep 6	8.49/8.50		H/V		< -25		Passed			
Sweep 7 5.)	8.53						Passed ^{5.)}			

Remark: see diagrams in annex 1 for more details, only worst-case polarisation mentioned

- 2.) TX-carrier on diagram
- 3.) Worst Case search because critical frequency
- 4.) Band-Block Edge compliance
- 5.) overview measurement only

AMBIENT ENVIRONMENTAL CONDITIONS

Temperature	25 °C
Relative Humidity	31 %
Air pressure	1001 hPa

TEST EQUIPMENT

Used equipment (see reference in the annex)	
133, 262, 302, 264, 439, 443, 460	

5.5. Frequency stability on temperature and voltage variations

REFERENCES

FCC: §2.1055, §22.355, §24.235

IC: RSS-Gen:4.7, RSS-132:4.3, RSS-133:4.2+6.3

§22.355 Table C-1; § 24.235

"The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block"

§ 2.1055

- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

TEST SET-UP

In order to maintain the voltage constant over the time period of the tests, a dummy battery was connected to a laboratory power supply. The power supply voltage was controlled on the input of the power supply terminals of the EUT.

Compare with the conducted measurement test set-up described in chapter 4.1

MOBILE PHONE SETTINGS

- The measurements were made at the upper, middle, and lower carrier frequencies of the operating band. Choosing three representative TX-carrier frequencies of the mobile phone within each operable GSM band, should be sufficient to demonstrate compliance.
- Settings on base station and mobile phone ere made according chapter 3.7

TEST METHOD

The RF Channel spacing is 200kHz, with a guard band of 200kHz of each band of the sub-bands. The aim of the EUT is to function under all extreme conditions within authorized sub-bands in regard to temperature and voltage variations. The frequency deviation was recorded with base station's build in capability. (CMU) As the standard requires that the fundamental emissions stays within the authorized band, a limit of 0.1ppm is considered low enough to ensure this.

Frequency shift of carrier against a voltage range at constant nominal temperature of 20° Celsius

- 1.) determine the carrier frequency for the lowest and highest channel at room temperature and nominal voltage $[20^{\circ}C]$
- 2.) The voltage was reduced in 0.1V steps to the lower end point, where the mobile phone stops working. (this shall be specified by the manufacturer) Record the carrier frequency shift within 2 minutes after powering on the mobile phone, to prevent for self heating effects.
- 3.) The voltage was increased in 0.1V steps to the upper declared voltage of the battery. Record the carrier frequency shift within 2 minutes after powering on the mobile phone, to prevent for self heating effects.

RESULTS

5.5.0.1. GSM 850 Mode: Op. Mode 1, set-up 3

Voltage	Ch 128	Ch 192	Ch 251	Ch 128	Ch 192	Ch 251		
	[Hz]			ppm				
3,3=Minimum	-21	-19	-21	-0,025	-0,023	-0,025		
3,4	-20	-21	-18	-0,024	-0,025	-0,021		
3,5	-21	-25	-22	-0,025	-0,030	-0,026		
3,6	-22	-23	-24	-0,027	-0,027	-0,028		
3,7	-23	-21	-22	-0,028	-0,025	-0,026		
3,8	-23	-23	-24	-0,028	-0,027	-0,028		
3,9	-20	-20	-21	-0,024	-0,024	-0,025		
4,0	-23	-23	-23	-0,028	-0,027	-0,027		
4,1	-27	-26	-22	-0,033	-0,031	-0,026		
4,2	-26	-17	-24	-0,032	-0,020	-0,028		
4,3	-26	-23	-24	-0,032	-0,027	-0,028		
4,4	-25	-29	-25	-0,030	-0,035	-0,029		
4,5=Maximum	-25	-27	-25	-0,030	-0,032	-0,029		

5.5.0.2. GSM 1900 Mode: Op. Mode 2, Set-up 3

Voltage	Ch 512	Ch 661	Ch 810	Ch 512	Ch 661	Ch 810		
		[Hz]		[ppm]				
3,3=Minimum	-39	48	41	-0,021	0,026	0,021		
3,4	-43	34	41	-0,023	0,018	0,021		
3,5	-41	42	-38	-0,022	0,022	-0,020		
3,6	-40	35	39	-0,022	0,019	0,020		
3,7	-40	37	42	-0,022	0,020	0,022		
3,8	-36	-36	-37	-0,019	-0,019	-0,019		
3,9	-39	39	40	-0,021	0,021	0,021		
4,0	-38	40	-40	-0,021	0,021	-0,021		
4,1	-38	38	38	-0,021	0,020	0,020		
4,2	-41	-37	36	-0,022	-0,020	0,019		
4,3	-42	37	-37	-0,023	0,020	-0,019		
4,4	-42	-36	37	-0,023	-0,019	0,019		
4,5=Maximum	-35	38	-33	-0,019	0,020	-0,017		

Frequency shift of carrier against temperature at constant power supply voltage

- 1.) determine the carrier frequency for the lowest, middle and highest channel at room temperature and nominal voltage $[20^{\circ}C]$
- 2.) expose the mobile station to -30° C, wait sufficient time to have constant temperature.
- 3.) Perform the carrier frequencies measurements in 10°C increments from -30°C to +60°C. For about half hour at the specified temperature the mobile was powered-off. After powering-on, the measurements were made within 2 minute for the channel lower channel, in order to prevent self-warming of the mobile.

RESULTS

5.5.0.3. GSM850 Mode: Op. Mode 1, set-up 3

Temperature	Ch 128	Ch192	Ch 251	Ch 128	Ch 192	Ch 251			
		[Hz]			[ppm]				
-30	-26	51	-24	-0,032	0,061	-0,028			
-20	-25	36	-23	-0,030	0,043	-0,027			
-10	-25	-31	-19	-0,030	-0,037	-0,022			
0	-26	-23	-27	-0,032	-0,027	-0,032			
10	-26	-28	-27	-0,032	-0,033	-0,032			
20	-25	-27	-25	-0,030	-0,032	-0,029			
30	-28	-25	-25	-0,034	-0,030	-0,029			
40	-26	-28	-26	-0,032	-0,033	-0,031			
50	-26	-25	-24	-0,032	-0,030	-0,028			

5.5.0.4. GSM 1900 Mode: Op. Mode 2, set-up 3

Temperature	Ch 512	Ch 661	Ch 810	Ch 512	Ch 661	Ch 810			
		[Hz]			[ppm]				
-30	-40	45	46	-0,022	0,024	0,024			
-20	42	90	44	0,023	0,048	0,023			
-10	-40	56	43	-0,022	0,030	0,023			
0	-41	40	42	-0,022	0,021	0,022			
10	-40	34	40	-0,022	0,018	0,021			
20	-35	38	-33	-0,019	0,020	-0,017			
30	37	42	37	0,020	0,022	0,019			
40	-41	-42	-42	-0,022	-0,022	-0,022			
50	-43	41	43	-0,023	0,022	0,023			

TEST EQUIPMENT

Used equipment (see reference in the annex)
298, 331, 354
517 (RF-Relay Unit Keithley)
529 (6dB RF-Splitter)
530 (10dB Attenuator)

6. Calibration method of anechoic chamber

For non-critical frequencies a pre-calibration method was used for determining the relevant radiated field-strength of radiated spurious in the anechoic chamber.

Generally the measured value is influenced by the characteristics of the used cables, filters, antenna, but also by the characteristic of the anechoic chamber.

By defining a *transducer* value, which include all characteristics of the signal propagation path (used equipment, cables, properties of anechoic chamber, etc..) from the source of radiation to the final reading equipment (spectrum-analyzer), the measured value can be corrected in order to get the real value of the device under test.

The method resumes as follows:

- 1.) determination of the path-loss of all cables used on the TX- and RX-side, which are used for the radiated measurement in the specific set-up for 1 meter and 3 meter distance.
- 2.) connection of the cables to the relevant antennas used for calibration.
- 3.) determination of the *space attenuation loss* (*G*) in the anechoic-chamber for both horizontal and vertical antenna polarisations:

A signal generator connected to the TX-antenna sweeps the frequency range of interest (30 MHz to 19.5 GHz) with a level of –30dBm - the readings on the RX-side on the spectrum analyzer gives the *space attenuation loss*. The distance between RX- and TX-antenna is 3 meter for frequencies below 18 GHz, and 1 meter for frequencies above 18 GHz.

4.) Mathematical determination of the frequency dependant transducer values (TD $_{\rm H/V}$):

$$TD_{H/V} = G_{H/V} + B_{H/V} - 10 \cdot \log_{10}(1,64) + D + E - F$$

Abreviations:

TD $_{H/V} = \lambda/2$ transducer values for horizontal /vertical antenna polarisations

 $G_{H/V}$ = space attenuation loss horizontal/vertical

 $B_{H/V} = Gain of TX$ -antenna

$10*Log_{10}(1.64)$ = Gain in dB of $\lambda/2$ Dipole relative to isotropic radiator

- D = insertion losses of RX cable
- E = Loss of filters in signal path (not used for FCC measurements)
- F = Gain of pre-amplifiers in signal path
- 5.) The transducer values are recorded for horizontal and vertical polarisations in two reference distances to the measurement antenna (1 meter and 3 meter). EIRP can be calculated from ERP by adding the gain of the lambda/2 dipole EIRP = ERP + 2.14 dBi
- 6.) The specific transducer tables are loaded in the spectrum analyzer after each measurement. The readings on the spectrum-analyzer are automatically corrected by this values and can directly be compared with the limits as given in the relevant standards. The loaded values are displayed in each diagram and can be compared to internal calibration documents annually performed.

Used equiment for calibration (3 meter distance)

Used equipment (see reference)
264, 133, 020, 140, 484, 490

Used equiment for calibration (1 meter distance)

Used equipment (see reference) 302, 303, 140, 264

7. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

Measurement	Frequency range	Calculated uncertainty based on a confidence level of 95%	Remarks:
RF-Power Output conducted	9 kHz 20 GHz	1.0 dB	
RF-Power Output radiated	30 MHz 4 GHz	3.17 dB	Substitution method
Conducted RF-emissions on antenna ports	9 kHz 20 GHz	1.0 dB	
	150 kHz 30 MHz	5.0 dB	Magnetic field
Radiated RF-emissions	30 MHz 1 GHz	4.2 dB	E-Field
enclosure	1 GHz 18GHz	4.8 dB	E-Field
	1 GHz 20 GHz	3.17 dB	Substitution method
Occupied bandwidth	9 kHz 4 GHz	0.1272 ppm (Delta Marker method)	Frequency error
		1 dB	Power
Emission bandwidth	9 kHz 4 GHz	0.1272 ppm (Delta Marker method)	Frequency error
		1 dB	Power
Frequency stability	9 kHz 20 GHz	0.0636 ppm	
Conducted emissions	9 kHz 150 kHz	4.0 dB	
on AC-mains port (U _{CISPR})	150 kHz 30 MHz	3.6 dB	

Table: measurement uncertainties, valid for conducted/radiated measurements

8. Used equipment "CTC"

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

8.0.1. Test software and firmware of equipment

RefNo.	Equipment	Туре	Serial-No.	Version of Firmware or Software during the test
001	emi test receiver	ESS	825132/017	Firm.= 1.21, OTP=2.0, GRA=2.0
012	signal generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	power meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Communication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT Firmware D2.87
053	audio analyzer	UPA3	860612/022	Firm. V 4.3
119	RT harmonics analyser/dig. flickermeter	B10	G60547	Firm.= V 3.1DHG
140	signal generator	SMHU	831314/006	Firm.= 3.21
261	thermal power sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	power meter	NRV-S	825770/0010	Firm.= 2.6
263	signal generator	SMP 04	826190/0007	Firm.=3.21
264	spectrum analyzer	FSEK 30	826939/005	Bios=2.1, Analyzer= 3.20
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04,
298	Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53/3.54 (current Testsoftw. f.
323	Communication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
331	climatic test chamber -40/+80 Grad	HC 4055	43146	TSI 1.53
335	System-CTC-EMS-Conducted	System EMS Conducted	-	EMS-K1 Immunity Test-Software 1.20SR10
340	Communication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	power meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V4.6.1 + SW-Option K55
377	emi test receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	broadband RF field monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
383	signal generator	SME 03	842 828 /034	Firm.= 4.61
389	digital multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001,
441	System CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.10,10
442	System CTC-SAR-EMS	System EMS field (SAR)	-	EMS-K1 Immunity-Software 1.20SR10
443	System CTC-FAR-EMI-Spuri	System CTC-FAR-EMI-	-	Spuri 7.2.5
444	System CTC_FAR-EMS	System EMS-Field (FAR)	-	EMS-K1 Immunity-Software 1.20SR10
460	Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=5.14/Messsoftware=
489	emi test receiver	ESU40	1000-30	Firmware=4.33, Bios=V5.1-16-3, Specification=01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01

8.0.2. Single instruments and test systems

No.	Equipment	Tuna	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal
RefNo.	Equipment	Туре	Senai-No.	Manufacturer	erva Ibrat	Rem	due
22					Inte	F	duc
001	emi test receiver	ESS 75	825132/017 861741/005	Rohde & Schwarz	12 M	-	31.03.2011
005	AC - LISN (50 Ohm/50μH, test site 1) DC - LISN (50 Ohm/5μH)	ESH2-Z5 ESH3-Z6	892563/002	Rohde & Schwarz Rohde & Schwarz	12 M 12 M	-	31.03.2011 31.03.2011
009	power meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	12 M	-	31.03.2011
012	signal generator (EMS-cond.)	SMY 01	839069/027	Rohde & Schwarz	36/12 M	-	31.03.2011
013	power meter (EMS cond.)	NRVD	839111/003	Rohde & Schwarz	24 M	-	31.03.2011
014	insertion unit (EMS cond.) insertion unit (EMS cond.)	URV5-Z2 URV5-Z4	838519/029 838570/024	Rohde & Schwarz Rohde & Schwarz	24 M 24 M	-	31.03.2011 31.03.2011
016	line impedance simulating network	Op. 24-D	B6366	Spitzenberger+Spies	36 M	-	31.03.2013
017	Communication Tester	CMD 60 M	844365/014	Rohde & Schwarz	12 M	-	31.03.2011
021	loop antenna (H-Field)	6502	9206-2770	EMCO	36 M	-	31.03.2013
022	audio measurement amplifier loop antenna (H-field)	2636C HFH-Z2	1537643 879604/026	Brüel & Kjaer Rohde & Schwarz	12 M 36 M	-	31.03.2011 31.03.2012
031	absorbing clamp	MDS-21	863325/015	Rohde & Schwarz	24 M	-	31.03.2011
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	24 M	-	31.03.2011
048	bicon log. antenna (SAR)	3143	1108	EMCO	36/12 M	-	30.04.2011
049	current clamp (injection) 3-ph coupling-decoupling-netw. (Burst)	F-120-2 CDN 300	48 176	FCC Schaffner	12 M 12 M	-	31.03.2011 31.03.2011
050	VHF-current probe 20-300 MHz	ESV-Z1	872421	Rohde & Schwarz	36 M	-	31.03.2011
052	notch filter DECT	WRCB 1887,82/1889,55SS	12	Wainwright Industries	pre-m	-	
053	audio analyzer	UPA3	860612/022	Rohde & Schwarz	36 M	-	31.03.2011
057 058	relay-switch-unit (EMS system)	RSU IP 4	494440/002 99	Rohde & Schwarz Hafely	-	1a 4	30.05.2011
060	capacitive clamp (Burst) power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	_	3	
063	logper. antenna (Subst 1)	3146	860941/007	EMCO	36/12 M	-	31.10.2010
067	coupling decoupling-network	CDN801-M2/M3	272	Lüthi	12 M	-	31.03.2011
068	coupling decoupling-network	CDN 801-M5	95226	Lüthi	12 M	1	31.03.2011
069 071	EM - clamp biconical antenna (Subst 1)	EM101 HUF-Z2	9535159 863.029/010	Lüthi Rohde & Schwarz	36 M 36/12 M	-	31.03.2013 31.10.2010
071	coupling decoupling-network	CDN801-M2/M3	276	Lüthi	12 M	-	31.03.2011
083	AC - power supply, 0-10 A	EAC/MT 27010	910502096	EURO TEST	pre-m	2	51.05.2011
084	AC - power supply, 0-5 A	ELABO-8-34214	-	ELABO	pre-m	2	
085	AC - power supply, 0-10 A	R250	-	Schunterm.&Benningh.	pre-m	2	
086 087	DC - power supply, 0 -10 A DC - power supply, 0 -5 A	LNG 50-10 EA-3013 S	-	Heinzinger Electronic Elektro Automatik	pre-m pre-m	2	
090	Helmholtz coil: 2x10 coils in series	-	-	RWTÜV	pre-m	4	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
094	artificial head (No.1)	4905	1566990	Brüel & Kjaer	pre-m	2	
099 100	passive voltage probe	ESH2-Z3 Probe TK 9416	299.7810.52 without	Rohde & Schwarz Schwarzbeck	36 M 36 M	-	31.03.2012 31.03.2012
110	USB-LWL-Converter	OLS-1	-	Extreme USB	- 30 IVI	4	31.03.2012
119	RT harmonics analyser/dig. flickermeter	B10	G60547	BOCONSULT	36 M	-	31.03.2013
123	biconical antenna (Subst 2)	HUF-Z2,	860941/007	Rohde & Schwarz	36/12 M	-	30.09.2010
131	RF-Current Probe	F-52 HUF-Z3	19	FCC Rohde & Schwarz	12 M	-	31.03.2011
132	logper. antenna (Subst 2) horn antenna 18 GHz (Meas 1)	3115	860862/014 9012-3629	EMCO	36/12 M 36/12 M	-	31.10.2010 31.03.2010
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	12 M	-	31.03.2011
136	adjustable dipole antenna (Dipole 1)	3121C-DB4	9105-0697	EMCO	12 M	-	31.03.2012
140 248	signal generator	SMHU SMA 6dB 2W	831314/006	Rohde & Schwarz	24 M	-	31.03.2012
249	attenuator attenuator	SMA 10dB 10W	-	Radiall Radiall	pre-m pre-m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre-m	2	
256	attenuator	SMA 3dB 2W	-	Radiall	pre-m	2	
257	hybrid	4031C	04491	Narda	pre-m	2	
260 261	hybrid coupler thermal power sensor	4032C NRV-Z55	11342 825083/0008	Narda Rohde & Schwarz	pre-m 24/12 M	2	31.03.2012
262	power meter	NRV-S	825770/0010	Rohde & Schwarz	24/12 M	-	31.03.2012
263	signal generator	SMP 04	826190/0007	Rohde & Schwarz	36 M	-	31.03.2013
264	spectrum analyzer	FSEK 30	826939/005	Rohde & Schwarz	12 M		31.03.2011
265 266	peak power sensor peak power sensor	NRV-Z33, Model 04 NRV-Z31, Model 04	840414/009 843383/016	Rohde & Schwarz Rohde & Schwarz	24 M 24 M	-	31.03.2012 31.03.2012
268	AC/DC power supply	EA 3050-A	9823636	- KOHUE & SCHWAIZ	pre-m	2	31.03.2012
270	termination	1418 N	BB6935	Weinschel	pre-m	2	
271	termination	1418 N	BE6384	Weinschel	pre-m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre-m	2	
273 274	attenuator, (10 dB) 100 W attenuator (10 dB) 50 W	Model 48 Model 47 (10 dB) 50 W	BF9229 BG0321	Weinschel Weinschel	pre-m pre-m	2	
275	DC-Block	Model 47 (10 dB) 30 W Model 7003 (N)	C5129	Weinschel	pre-m	2	
276	DC-Block	Model 7006 (SMA)	C7061	Weinschel	pre-m	2	
279	power divider	1515 (SMA)	LH855	Weinschel	pre-m	2	21.02.22
284	coupling decoupling network	CDN 801-M1	1661	Lüthi	12 M	-	31.03.2011
285 287	coupling decoupling network pre-amplifier 25MHz - 4GHz	CDN 801-S1 AMF-2D-100M4G-35-10P	1642 379418	Lüthi Miteq	12 M 12 M	-	31.03.2011 31.03.2010
289	bicon log. antenna (OATS)	CBL 6141	4107	Schaffner Chase	36/12 M	_	31.10.2010
291	high pass filter GSM 850/900	WHJ 2200-4EE	14	Wainwright GmbH	12 M	-	31.03.2010
295	Racal Digital Radio Test Set	6103	1572	Racal	24 M	3	30.11.2010
296 298	audio measurement amplifier Radio Communication Tester	2636C CMU 200	R=316568/004 832221/091	Brüel & Kjaer Rohde & Schwarz	18 M 12 M	-	31.03.2011 31.03.2011
299	audio microphone	134	-	Brüel & Kjaer	pre-m	2	51.05.2011
		•					

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
	ACLION (50 OL (50 H. L. L.)	E0112 75	002 220 /020	D 1 1 0 C 1	Cal		
300	AC LISN (50 Ohm/50µH, 1-phase) attenuator (20 dB) 50W, 18GHz	ESH3-Z5 47-20-33	892 239/020 AW0272	Rohde & Schwarz Lucas Weinschel	12 M pre-m	2	31.03.2011
302	horn antenna 40 GHz (Meas 1)	BBHA9170	155	Schwarzbeck	36 M	-	31.03.2011
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	36 M	-	31.03.2011
304	fix dipole antenna 1,6 GHz	EMCO 3125-307	9907-1001	ETS	24/12 M	-	31.03.2011
305	fix dipole antenna 1,8-2,0 GHz	EMCO 3125-306	9907-1001	ETS	24/12 M	-	31.03.2011
306 307	fix dipole antenna 2,45 GHz fix dipole antenna 3 GHz	EMCO 3125-308 EMCO 3125-309	9907-1001 9907-1001	ETS ETS	24/12 M 24/12 M	-	31.03.2011 31.03.2011
317	1000 Hz calibrator 94 dB SPL	4230 94dB	1542286	Brüel & Kjaer	12 M	-	31.03.2011
323	Communication Tester	CMD 55	825878/0034	Rohde & Schwarz	12 M	-	31.03.2011
331	climatic test chamber -40/+80 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	31.10.2010
335	System-CTC-EMS-Conducted	System EMS Conducted	-	Rohde & Schwarz	12 M	5	30.05.2010
340	Communication Tester	CMD 55	849709/037	Rohde & Schwarz	12 M	-	31.03.2011
341 342	digital multimeter digital multimeter	Fluke 112 Voltcraft M-4660A	81650455 IB 255466	Fluke Voltcraft	24 M 24 M	-	31.03.2012 31.03.2011
344	adaptor 150/50 Ohm	150/50	- LD 233400	Krohne	12 M	-	31.03.2011
345	adaptor 150/50 Ohm	150/50	-	Krohne	12 M	-	31.03.2011
347	laboratory site	radio lab.	-	-	-	3	
348	laboratory site	EMI conducted	-	-	-	3	
349	car battery 12 V	car battery 12 V	without	-	-	3	ļ
350	car battery 12 V	car battery 12 V	without	D-1-1- 0 C-1	-	3	
354 355	DC - power supply 40A power meter	NGPE 40/40 URV 5	448 891310/027	Rohde & Schwarz Rohde & Schwarz	pre-m 12 M	-	31.03.2011
356	power meter power sensor	NRV-Z1	882322/014	Rohde & Schwarz	24 M	-	31.03.2011
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24 M	-	31.03.2011
	Power Amplifier 10 kHz-220MHz	AR75A220M1	15860	Amplifier Research	12 M	1b	30.04.2011
362	TOSM Calibration Kit 50 Ohm	ZV-Z21/ZV-Z11	without	Rohde&Schwarz	12 M	-	31.03.2011
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Rohde & Schwarz	24 M		31.03.2012
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	EM-Test	12 M	-	31.03.2011
367 369	audio measurement amplifier	2636 URV5-Z2	316832/001 100301	Brüel & Kjaer	12 M 24 M	-	31.03.2011
370	insertion unit (SAR-EMS, Ch. A) insertion unit (SAR-EMS, Ch. B)	URV5-Z2	100301	Rohde & Schwarz Rohde & Schwarz	24 M	-	31.03.2011 31.03.2011
371	Bluetooth Tester	CBT32	100302	R&S	12 M	-	31.03.2011
373	V-Network 5µH/50 Ohm	ESH3-Z6	100535	Rohde & Schwarz	12 M	-	31.03.2011
374	power amplifier 0,8-3 GHz	60S1G3	306528	Amplifier Research	-	1a	30.05.2011
375	directional coupler	DC7144M1	306498	Amplifier Research	-	1a	30.05.2011
376	horn antenna 6 GHz	BBHA9120 E	BBHA 9120 E 179	Schwarzbeck	12 M	-	31.03.2011
377	emi test receiver	ESCS 30	100160	Rohde & Schwarz	12 M	-	31.03.2011
378	broadband RF field monitor	RadiSense III SME 03	03D00013SNO-08 842 828 /034	DARE B.V.	12 M 36 M	-	31.03.2011
383 386	signal generator coupling decoupling network	CDN USB/p	19397	Rohde & Schwarz Schaffner	12 M	-	31.03.2013 31.03.2011
387	coupling decoupling network	CDN USB/p CDN L-801 M2	2051	Lüthi	12 M	-	31.03.2011
388	coupling decoupling network	CDN L-801 T2	1929	Lüthi	12 M	-	31.03.2011
389	digital multimeter	Keithley 2000	0583926	Keithley	24 M	-	31.03.2011
390	Industry Acoustic System	MO 2000 Set	2127100123	Sennheiser	-	4	
392	Radio Communication Tester	MT8820A	6K00000788	Anritsu	12 M	-	31.03.2011
394	power amplifier 80-1000 MHz	BLWA 0810-250/200	045610	Bonn-Elektronik	- 10.14	1a	30.05.2011
399 400	Sound Calibrator ferrite tube (>15 dB, EN 55022)	Sound Calibrator 4231 FTC 40 X 15 E	2665101 5559	Bruel & Kjaer Lüthi	12 M 36 M	-	31.03.2011 31.03.2012
401	ferrite tube (>15 dB, EN 55022)	FTC 40 X 15 E	5560	Lüthi	36 M	-	31.03.2012
	Model 7405	Near-Field Probe Set	9305-2457	EMCO	-	4	31.03.2012
	UltraLog-Antenna	HL 562	100248	Rohde + Schwarz	12 M	-	30.04.2011
440	CDN for Datacable	CDN-UTP	CDN-UTP 029	EMC Partner AG,	24 M	-	31.03.2012
441	System CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	ETS	12 M	5	31.08.2010
	System CTC-SAR-EMS	System EMS field (SAR)	-	ETS-Lindgren/Cetecom	12 M	5	30.04.2010
	System CTC-FAR-EMI-Spuri System CTC_FAR-EMS	System CTC-FAR-EMI- System EMS-Field (FAR)	-	ETS-Lindgren/Cetecom ETS Lindgren/Cetecom	12 M 12 M	5	30.03.2010 30.05.2011
	Oscilloscope	HM 205-3	9210 P 29661	Hameg	1 2 IVI	4	50.05.2011
	Oscilloscope	HP 54602B	US 350 336 45	Hawlett Packard	-	4	
456	DC-Power supply 0-5A	EA 3013 S	207810	Elektro Automatik	pre-m	2	
	DC -power supply 0-5 A, 0-32 V	EA-PS 2032-50	910722	Elektro Automatik	pre-m	2	
	Radio Communication Tester	CMU 200	108901	Rohde & Schwarz	12 M	-	31.03.2011
462	AF-Generator	MX-2020	- 2021 4 02 472	Conrad	-	4	
	Universal source	HP3245A	2831A03472 89210157	Agilent	24 M	4	21.02.2012
466 467	digital multimeter digital multimeter	Fluke 112 Fluke 112	89210157 89680306	Fluke USA Fluke USA	24 M	-	31.03.2012 31.03.2012
468	digital multimeter	Fluke 112	90090455	Fluke USA	24 M	-	31.03.2012
477	ReRadiating GPS-System	AS-47	-	Automotive Cons. Fink	-	3	
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	31	
482	filtermatrix	FilterMatrix SAR 1	-	CETECOM (Brl)	-	1d	
487	System CTC NSA-Verification SAR-EMI	System EMI field (SAR)	1000.20	ETS	12 M	-	31.10.2010
489	emi test receiver	ESU40	1000-30 dita207022	Rohde & Schwarz	12 M	-	31.03.2011
491 498	ESD Simulator dito Power Supply	ESD dito NGPE 40/40	dito307022 402	EM-Test Rohde & Schwarz	24 M	2	31.03.2011
500	industry Acoustic System	MO 2000 Set	100048	Sennheiser	-	4	
502	band reject filter	WRCG 1709/1786-	SN 9	Wainwright	-	2	
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	-	2	
517	relais switc matrix	HF Relais Box Keithley	SE 04	-	2		
523	Digitalmultimeter	L4411A	MY46000154	Agilent	24 M	-	31.03.2011
524	Voltage Drop Simulator	VDS 200	0196-16	EM Test	24 M	-	31.03.2011
	Koppelnetzwerk	CNA 200	1196-01	EM Test	24 M	-	31.03.2011
526 527	Burst Generator Micro Pulse Generator	EFT 200 A MPG 200 B	0496-06 0496-05	EM Test EM Test	24 M 24 M	-	31.03.2011 31.03.2011
	Load Dump Simulator	LD 200B	0496-05	EM Test	24 M	-	31.03.2011
	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	- 171	2	21.03.2011
	po not arriadi						

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre-m	2	
531	H-field system	Lackman System	without	Lackmann	-	2	
533	Impedance Stabilization Network	ISN T200A	25706	Teseq	12 M	-	31.03.2011
534	Impedance Stabilization Network	ISN T400A	24881	Teseq	12 M	-	31.03.2011
535	Impedance Stabilization Network	ISN T800	26321	Teseq	12 M	-	31.03.2011
536	Impedance Stabilization Network	ISN ST08	25867	Teseq	12 M	-	31.03.2011
541	Impedance Stabilization Network	ISN T8-Cat6	26373	Teseq Berlin	12 M	-	31.03.2011
558	System CTC FAR S-VSWR	System CTC FAR S-	-	12 M	-	_	31.08.2010
							i

8.0.3. Legend

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-spurious emission (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose,
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
	24/12 M	Calibration every 24 months, between this every 12 months internal validation
	36/12 M	Calibration every 36 months, between this every 12 months internal validation
	Pre-m	Check before starting the measurement
_	-	Without calibration

9. Correction factors due to reduced meas. distance (f< 30 MHz)

The used correction factors when the measurement distance is reduced, are taken from IEEC Transaction EMC, Vol 47, No.3, Aug. 2005, Journal Paper "EXTRAPOLATING NEAR-FIELD EMISSIONS OF LOW-FREQUENCY LOOP TRANSMITTERS".

kHz dE 9,0 10,6 12,6 14,8 17,5 20,7 24,4 24,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	2 na factor 3 µV/m 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,	3 Corectior 300m to 3m dB -116,7 -116,7 -116,7 -116,6 -116,6 -116,6 -116,6 -116,3 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1 -99,1		4	=2+3+4+5 Transducer factor dB μV/m -96,7 -96,7 -96,7 -96,6 -96,6 -96,6 -96,5 -96,2 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
kHz dE 9,0 10,6 12,6 14,8 17,5 20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	3 μV/m 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,	300m to 3m dB -116,7 -116,7 -116,7 -116,6 -116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1	30m to 3m	dB	dB μV/m -96,7 -96,7 -96,7 -96,6 -96,6 -96,6 -96,5 -96,4 -96,2 -96,0 -95,8 -95,4 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
kHz dE 9,0 10,6 12,6 14,8 17,5 20,7 24,4 24,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	3 μV/m 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,	300m to 3m dB -116,7 -116,7 -116,7 -116,6 -116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1	30m to 3m	dB	dB μV/m -96,7 -96,7 -96,7 -96,6 -96,6 -96,6 -96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
9,0 10,6 12,6 14,8 17,5 20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	dB -116,7 -116,7 -116,7 -116,7 -116,6 -116,6 -116,6 -116,6 -116,3 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,7 -96,7 -96,7 -96,7 -96,6 -96,6 -96,6 -96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
9,0 10,6 12,6 14,8 14,8 14,5 20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,7 -116,7 -116,7 -116,7 -116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,4 -115,0 -114,9 -115,4 -115,0 -114,5 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1	dB	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,7 -96,7 -96,7 -96,7 -96,6 -96,6 -96,6 -96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
10,6 12,6 14,8 17,5 20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,7 -116,7 -116,6 -116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,7 -96,7 -96,7 -96,6 -96,6 -96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
12,6 14,8 17,5 20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,7 -116,6 -116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,7 -96,7 -96,6 -96,6 -96,6 -96,5 -96,4 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
14,8 17,5 20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,7 -116,6 -116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,7 -96,6 -96,6 -96,6 -96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
17,5 20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,6 -116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -105,2		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,6 -96,6 -96,6 -96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
20,7 24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,6 -116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,6 -96,6 -96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
24,4 28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,6 -116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
28,9 34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,6 -116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,6 -96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
34,1 40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,5 -116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,5 -96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
40,3 47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,4 -116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,4 -96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
47,6 56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0	-116,3 -116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,3 -96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
56,2 66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-116,2 -116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,2 -96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
66,4 78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-116,0 -115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-96,0 -95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
78,4 92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-115,8 -115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-95,8 -95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
92,7 109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-115,4 -115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-95,4 -95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
109,4 129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-115,0 -114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0 0,0	-95,0 -94,5 -93,9 -93,1 -92,2 -91,3 -88,3
129,3 152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-114,5 -113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0 0,0	-94,5 -93,9 -93,1 -92,2 -91,3 -88,3
152,7 180,4 213,1 251,7 297,3 351,2 414,8 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-113,9 -113,1 -112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0 0,0 0,0	-93,9 -93,1 -92,2 -91,3 -88,3
213,1 251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0	-112,2 -111,3 -108,3 -105,2 -102,1		0,0 0,0 0,0	-92,2 -91,3 -88,3
251,7 297,3 351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0 20,0	-111,3 -108,3 -105,2 -102,1		0,0	-91,3 -88,3
297,3 351,2 414,8 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0 20,0 20,0	-108,3 -105,2 -102,1		0,0	-88,3
351,2 414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0 20,0	-105,2 -102,1			
414,8 490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0 20,0	-102,1		0.0	
490,0 490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0 20,0				-85,2
490,0 582,0 690,0 820,0 973,0 1.155,0 1.371,0	20,0	-99,1		0,0	-82,1
582,0 690,0 820,0 973,0 1.155,0 1.371,0				0,0	-79,1
690,0 820,0 973,0 1.155,0 1.371,0	20,0		-56,4	0,1	-36,3
820,0 973,0 1.155,0 1.371,0			-56,2	0,1	-36,1
973,0 1.155,0 1.371,0	20,0		-56,0	0,2	-35,8
1.155,0 1.371,0	20,0		-55,7	0,2	-35,5
1.371,0	20,0		-55,4	0,2	-35,2
	20,0		-54,9	0,3	-34,6
1.627.0	20,0		-54,4	0,3	-34,1
	20,0		-53,7	0,3	-33,4
	20,0		-52,9 -52,0	0,4	-32,5 -31,6
	20,0		-49,8	0,4	-29,3
	20,0		-46,6	0,5	-26,1
	20,0		-43,3	0,6	-20,1
	20,0		-40,1	0,6	-19,5
	20,0		-36,8	0,0	-16,1
	20,0		-33,5	0,7	-12,8
	20,0		-30,3	0,8	-9,5
	20,0		-27,0	0,8	-6,2
	20,0		-23,9	0,9	-3,0
	20,0		-21,2	0,9	-0,3
	20,0		-19,3	1,0	1,7
17.937,0	20,0		-18,4	1,0	2,6
21.292,0	20,0		-18,2	1,1	2,9
	20,0		-18,3	1,1	2,8
30.000,0	20,0		-18,4	1,2	2,8