Lezione 38

Saverio Salzo*

2 dicembre 2022

1 Approssimazioni polinomiali e Formula di Taylor

Esempio 1.1 (di applicazione del test per punti critici estremali). Sia $f(x) = x \operatorname{sen} x - \cos 2x$. Allora $f'(x) = \operatorname{sen} x + x \cos x + 2 \operatorname{sen} 2x$. Quindi f'(0) = 0 e 0 punto critico per f. Per valutare la natura del punto critico dovremmo studiare il segno della derivata f'. Ma in questo caso, questo studio non è semplice. Proviamo allora a valutare la derivata seconda. Si ha $f''(x) = 2 \cos x - x \sin x + 4 \cos 2x$ e quindi f''(0) = 2 + 4 = 6 > 0. Perciò 0 è un punto di minimo locale proprio per f.

Vediamo adesso come si comportano i polinomi di Taylor con le operazioni di somma, prodotto e composizione di funzioni, cioè vogliamo rispondere a queste domande

$$P_n[f+g,x_0] =?, \quad P_n[f\cdot g,x_0] =?, \quad P_n[g\circ f,x_0] =?$$

Proposizione 1.2 (Proprietà). Siano $f, g: I \to \mathbb{R}$ funzioni n volte derivabili in x_0 . Allora valgono le seguenti

- (i) $P_n[f+g,x_0] = P_n[f,x_0] + P_n[g,x_0];$
- (ii) $P_n[\alpha f, x_0] = \alpha P_n[f, x_0];$
- (iii) Se $n \ge 2$, $(P_n[f, x_0])' = P_{n-1}[f', x_0]$.

Dimostrazione. Le prime due sono immediate e discendono dalla linearità dell'operazione di derivata k-esima. Proviamo l'ultima. Per definizione

$$P_n[f, x_0](x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

e quindi per la sua derivata si ha

$$(P_n[f, x_0])'(x) = \sum_{k=1}^n k \frac{f^{(k)}(x_0)}{k!} (x - x_0)^{k-1}$$

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

$$= \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{(k-1)!} (x - x_0)^{k-1}$$

$$= \sum_{k=0}^{n-1} \frac{f^{(k+1)}(x_0)}{k!} (x - x_0)^k$$

$$= \sum_{k=0}^{n-1} \frac{(f')^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= P_{n-1}[f', x_0].$$

Esempio 1.3.

(i) Ricordiamo la formula

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{1-x}.$$
 (1)

Da questa formula, sostituendo -x e x, si ottiene

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + \frac{(-1)^{n+1} x^{n+1}}{1+x}.$$
 (2)

e quindi

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n) \text{ per } x \to 0.$$
 (3)

(ii) Consideriamo la funzione $f(x) = \operatorname{arctg}(x)$, che è definita in \mathbb{R} . Sappiamo che

$$f'(x) = \frac{1}{1+x^2}.$$

Ora, dalla formula (2) sostituendo x^2 a x si ottiene

$$\frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + \frac{(-1)^{n+1} x^{2n+2}}{1-x}.$$

Perciò

$$f'(x) = \frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + o(x^{2n+1})$$

e quindi

$$P_{2n+1}[f',0] = \sum_{k=0}^{n} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \dots + (-1)^n x^{2n}.$$

Ma sappiamo che $(P_{2n+2}[f,0])' = P_{2n+1}[f',0]$, e allora

$$P_{2n+2}[f,0] = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1},$$

da cui segue

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \text{ per } x \to 0.$$

Nella Proposizione 1.2 si è visto come calcolare i polinomi di Taylor per la somma di due funzioni e per il prodotto di uno scalare per una funzione. Il risultato seguente mostra come calcolare il polinomio di Taylor per il prodotto di due funzioni.

Proposizione 1.4 (polinomio di Taylor di una funzione prodotto). Siano $f, g: I \to \mathbb{R}$ due funzioni derivabili rispettivamente n volte e m volte in $x_0 \in I$. Poniamo

$$P_n = P_n[f, x_0], \quad Q_m = P_m[f, x_0], \quad e \quad \mu = \min\{n, m\}.$$

Allora $P_{\mu}[f \cdot g, x_0]$ è il troncamento fino alla potenza μ -esima del polinomio $P_n(x)Q_m(x)$.

Dimostrazione. Dal teorema di Taylor sappiamo che

$$f(x) = P_n(x) + \omega_1(x)$$
 con $\omega_1(x) = o((x - x_0)^n)$
 $g(x) = Q_m(x) + \omega_2(x)$ con $\omega_2(x) = o((x - x_0)^m)$.

Allora

$$f(x)g(x) = \underbrace{P_n(x)Q_m(x)}_{(*)} + \underbrace{P_n(x)\omega_1(x) + Q_m(x)\omega_2(x) + \omega_1(x)\omega_2(x)}_{(**)}. \tag{4}$$

Ora notiamo che

$$(**) = o((x - x_0)^{\mu}),$$

perché, essendo $\mu \leq n$ e $\mu \leq n$, si ha

$$\frac{(**)}{(x-x_0)^{\mu}} = \underbrace{P_n(x)}_{P_n(x_0)} \underbrace{\frac{\omega_1(x)}{(x-x_0)^{\mu}}}_{0} + \underbrace{Q_m(x)}_{Q_m(x_0)} \underbrace{\frac{\omega_2(x)}{(x-x_0)^{\mu}}}_{0} + \underbrace{\frac{\omega_1(x)}{(x-x_0)^{\mu}}}_{0} \underbrace{\omega_2(x)}_{0}$$

Invece, riguardo il termine (*) notiamo che $P_n(x)Q_m(x)$ è un polinomio di grado al più n+m. Quindi si può scrivere

$$(*) = P_n(x)Q_m(x) = \sum_{k=0}^{\mu} c_k(x - x_0)^k + \sum_{k=\mu+1}^{n+m} c_k(x - x_0)^k$$

e per il secondo termine in questa somma vale

$$\sum_{k=\mu+1}^{n+m} c_k (x - x_0)^k = o((x - x_0)^{\mu}),$$

perché nella sommatoria compaiono solo potenze di $(x - x_0)$ di ordine $\geq \mu + 1$. In definitiva dalla (4) si ha

$$f(x)g(x) = \underbrace{\sum_{k=0}^{\mu} c_k (x - x_0)^k + o((x - x_0)^{\mu})}_{(*)} + \underbrace{o((x - x_0)^{\mu})}_{(**)}$$

$$= \underbrace{\sum_{k=0}^{\mu} c_k (x - x_0)^k + o((x - x_0)^{\mu})}_{(*)}$$

e $\sum_{k=0}^{\mu} c_k(x-x_0)^k$ è un polinomio di grado al più μ . Per l'unicità del polinomio di Taylor deve essere $P_{\mu}[fg,x_0]=\sum_{k=0}^{\mu} c_k(x-x_0)^k$.

Vediamo adesso la composizione.

Proposizione 1.5 (polinomio di Taylor di una funzione composta). Sia $f: I \to \mathbb{R}$ una funzione derivabile n volte in I e $g: J \to \mathbb{R}$ una funzione derivabile m volte in J con $f(I) \subset J$. Sia $x_0 \in I$ e poniamo

$$P_n = P_n[f, x_0], \quad Q_m = P_n[g, y_0], \text{ con } y_0 = f(x_0) \in J, \quad e \quad \mu = \min\{n, m\}.$$

Allora

- $Q_m(P_n(x))$ è un polinomio di grado al più nm
- Il polinomio di Taylor di ordine μ della funzione $g \circ f$, centrato in x_0 , è il troncamento fino alle potenza di ordine μ del polinomio $Q_m(P_n(x))$. In formule

se
$$Q_m(P_n(x)) = \sum_{k=0}^{nm} c_k(x-x_0)^k$$
, allora $P_{\mu}[g \circ f, x_0] = \sum_{k=0}^{\mu} c_k(x-x_0)^k$.

Dimostrazione. Sia

$$Q_m(y) = \sum_{k=0}^{m} b_k (y - y_0)^k.$$

Allora

$$Q_m(P_n(x)) = \sum_{k=0}^{m} b_k (P_n(x) - y_0)^k$$
(5)

e il termine $b_m(P_n(x)-y_0)^m$ ha grado mn se $b_m \neq 0$ e grad $P_n = n$. Quindi $Q_m \circ P_n$ ha grado al più mn. Ora dal teorema di Taylor si ha

$$\forall y \in J \colon g(y) = Q_m(y) + \omega_2(y) \text{ dove } \omega_2(y) = o((y - y_0)^m) \text{ per } y \to y_0.$$

Quindi

$$\forall x \in I : g(f(x)) = \underbrace{Q_m(f(x))}_{(*)} + \underbrace{\omega_2(f(x))}_{(**)}. \tag{6}$$

Studiamo separatamente i termini (*) e (**). Definiamo

$$\Phi \colon J \to \mathbb{R} \quad \Phi(y) = \begin{cases} \frac{\omega_2(y)}{(y - y_0)^m} & \text{se } y \neq y_0 = f(x_0) \\ 0 & \text{se } y = y_0. \end{cases}$$

Allora si verifica facilmente che

$$\forall x \in I_{x_0} : \quad \frac{\omega_2(f(x))}{(x - x_0)^m} = \Phi(f(x)) \left(\frac{f(x) - f(x_0)}{x - x_0}\right)^m. \tag{7}$$

Infatti l'identità è chiaramente vera se $f(x) \neq y_0$, mentre è vera per $f(x) = y_0$ perché in tal caso si ha 0 = 0. Adesso notiamo che Φ è continua in 0 perché per definizione di ω_2 si ha $\omega_2(x)/(x-x_0)^m \to 0$ per $x \to x_0$. Allora, dalla (7) e dal teorema sui limiti delle funzioni composte, si ottiene che

$$\lim_{x \to x_0} \frac{\omega_2(f(x))}{(x - x_0)^m} = \Phi(y_0)(f'(x_0))^m = 0.$$

Questo prova che $(**) = o((x - x_0)^m)$. Analizziamo ora il termine (*). Sempre dal teorema di Taylor sappiamo che

$$f(x) = P_n(x) + \omega_1(x)$$
 dove $\omega_1(x) = o((x - x_0)^n)$ per $x \to x_0$.

Allora

$$(*) = Q_m(f(x)) = Q_m(P_n(x) + \omega_1(x))$$

$$= \sum_{k=0}^m b_k (P_n(x) - y_0 + \omega_1(x))^k$$

$$= \sum_{k=0}^m b_k \left[\sum_{i=0}^k \binom{k}{i} (P_n(x) - y_0)^{k-i} \omega_1(x)^i \right]$$

$$= \sum_{k=0}^m b_k \left[(P_n(x) - y_0)^k + \sum_{i=1}^k \binom{k}{i} (P_n(x) - y_0)^{k-i} \omega_1(x)^i \right]$$

$$= \sum_{k=0}^{m} b_k (P_n(x) - y_0)^k + \sum_{k=0}^{m} b_k \underbrace{\left[\sum_{i=1}^{k} \binom{k}{i} (P_n(x) - y_0)^{k-i} \omega_1(x)^i\right]}_{(*_k)}$$

$$= Q_m (P_n(x)) + o(x - x_0)^n,$$

dove nell'ultima uguaglianza si è usata la (5) e il fatto che ciascuno dei termini $(*_k)$ contiene $\omega_1(x)^i$ con $i \geq 1$ e quindi se diviso per $(x - x_0)^n$ da' una funzione che tende a zero. In definitiva si ha

$$g(f(x)) = \underbrace{Q_m(P_n(x)) + o(x - x_0)^n}_{(*)} + \underbrace{o((x - x_0)^m)}_{(**)}$$

$$= Q_m(P_n(x)) + o((x - x_0)^\mu)$$

$$= \sum_{k=0}^{\mu} c_k (x - x_0)^k + \sum_{k=\mu+1}^{nm} c_k (x - x_0)^k + o((x - x_0)^\mu)$$

$$= \sum_{k=0}^{\mu} c_k (x - x_0)^k + o((x - x_0)^\mu),$$

dove nell'ultima uguaglianza si è usato il fatto che $\sum_{k=\mu+1}^{nm} c_k(x-x_0)^k = o((x-x_0)^\mu)$. Allora dalla relazione di sopra e dal teorema di Taylor segue che $\sum_{k=0}^{\mu} c_k(x-x_0)^k$ è il polinomio di Taylor di ordine μ della funzione g(f(x)), centrato in x_0 , che è quello che si voleva dimostrare.

Osservazione 1.6.

(i) Dalla proposizione precedente consegue che se abbiamo due polinomi di MacLaurin (centrati in 0) P_n e Q_m rispettivamente di f(x) e g(y), allora $Q_m \circ P_n$ è il polinomio di MacLaurin di g(f(x)) a patto che f(0) = 0, perché in questo caso $x_0 = 0$ e $y_0 = 0$, altrimenti il risultato in generale non è vero.

Esempio 1.7.

(i) Calcoliamo il polinomio di MacLaurin di ordine 4 di $\log(\cos x)$. Notiamo prima di tutto che

$$\log(\cos x) = \log(1 + \cos x - 1) = \log(1 + f(x)), \quad \text{con } f(x) = \cos x - 1.$$

Ricordiamo che

$$\log(1+y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4} + o(y^4) \text{ per } y \to 0$$
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^4) \text{ per } x \to 0$$

e quindi

$$\cos x - 1 = -\frac{x^2}{2} + \frac{x^4}{4!} + o(x^4) \text{ per } x \to 0$$

Allora, con le notazioni della Proposizione 1.5, risulta

$$Q_4(y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4}$$
 e $P_4(x) = -\frac{x^2}{2} + \frac{x^4}{4!}$.

Sappiamo che il polinomio di MacLaurin di ordine 4 di $\log(1 + f(x))$ è il troncamento fino alla potenza di ordine 4 del polinomio $Q_m(P_n(x))$. Perciò si ha

$$Q_m(P_n(x)) = \left(-\frac{x^2}{2} + \frac{x^4}{4!}\right) - \frac{1}{2}\left(-\frac{x^2}{2} + \frac{x^4}{4!}\right)^2 + \cdots$$

$$= -\frac{x^2}{2} + \frac{x^4}{4!} - \frac{1}{2}\left(\frac{x^4}{4} + \cdots\right) + \cdots$$

$$= -\frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^4}{8} + \cdots$$

$$= -\frac{x^2}{2} - \frac{x^4}{12} + \cdots$$

dove al posto dei puntini di sospensione ci monomi di ordine superiore a 4. Quindi si ha $P_n[\log(\cos x), 0] = -x^2/2 - x^4/12$ e

$$\log(\cos x) = -\frac{x^2}{2} - \frac{x^4}{12} + o(x^4).$$

2 Applicazioni degli sviluppi di Taylor al calcolo dei limiti

Richiamo alcune definizione che abbiamo già dato nelle lezioni precedenti.

Definizione 2.1. Siano $f, g: A \to \mathbb{R}$ $x_0 \in \overline{\mathbb{R}}$ un punto di accumulazione per A. Supponiamo che $g(x) \neq 0$ in un intorno di x_0 .

• Diciamo che f è asintotico a g per $x \to x_0$ e si scrive

$$f(x) \sim g(x) \text{ per } x \to x_0$$

se
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$
.

• Diciamo che f è un infinitesimo di ordine superiore a g per $x \to x_0$ e si scrive

$$f = o(g) \text{ per } x \to x_0$$

se
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$
.

Osservazione 2.2. Con un po' di abuso di notazione quando scriviamo o(g) per $x \to x_0$, indichiamo una qualunque funzione che sia un infinitesimo di ordine superiore a g per $x \to x_0$.

Proposizione 2.3 (Proprietà di o). Valgono le seguenti affermazioni

(i)
$$o((x-x_0)^n) + o((x-x_0)^m) = o((x-x_0)^k)$$
 per $x \to x_0$, dove $k = \min\{n, m\}$.

(ii)
$$\alpha o((x-x_0)^n) = o((x-x_0)^n)$$
 per $x \to x_0$, dove $\alpha \in \mathbb{R}^*$

(iii)
$$(x-x_0)^n o((x-x_0)^m) = o((x-x_0)^{n+m}) \text{ per } x \to x_0.$$

(iv)
$$o((x-x_0)^n)o((x-x_0)^m) = o((x-x_0)^{n+m}) per x \to x_0.$$

(v) Se
$$f(x) = o(g(x))$$
 e $g(x) \sim \alpha(x - x_0)^n$, con $\alpha \in \mathbb{R}^*$, allora $f = o((x - x_0)^n)$ per $x \to x_0$.

Osservazione 2.4. Supponiamo che $f(x) \neq 0$ e $g(x) \neq 0$ in un intorno di x_0 . Allora, se $f(x) \sim g(x)$ per $x \to x_0$, allora $\lim_{x \to x_0} f(x) = l \Leftrightarrow \lim_{x \to x_0} f(x) = l$

Proposizione 2.5 (Principio di sostituzione). Siano $f_1, g_1, f_2, g_2, f_3, g_3 \colon A \to \mathbb{R}$ funzioni reali e $x_0 \in \overline{\mathbb{R}}$ punto di accumulazione per A. Supponiamo che le funzioni siano tutte diverse da zero in un intorno di x_0 e che

$$f_1(x) \sim g_1(x), \quad f_2(x) \sim g_2(x) \quad e \quad f_3(x) \sim g_3(x) \quad per \ x \to x_0.$$

Allora se $l \in \overline{\mathbb{R}}$ risulta

$$\lim_{x \to x_0} \frac{f_1(x) f_2(x)}{f_3(x)} = l \iff \lim_{x \to x_0} \frac{g_1(x) g_2(x)}{g_3(x)} = l.$$

Dimostrazione. Basta provare una implicazione soltanto. Supponiamo quindi che sia vero il limite a sinistra. Allora per ogni x in un intorno di x_0 , risulta

$$\frac{g_1(x)g_2(x)}{g_3(x)} = \underbrace{\frac{g_1(x)}{f_1(x)}}_{\stackrel{\downarrow}{\downarrow}} \cdot \underbrace{\frac{g_2(x)}{f_2(x)}}_{\stackrel{\downarrow}{\downarrow}} \cdot \underbrace{\frac{f_3(x)}{g_3(x)}}_{\stackrel{\downarrow}{\downarrow}} \cdot \underbrace{\frac{f_1(x)f_2(x)}{f_3(x)}}_{f_3(x)} \to l \text{ per } x \to x_0.$$

Il teorema è dimostrato.

Osservazione 2.6. Il principio di sostituzione non vale per le somme, cioè in generale si ha

П

$$f_1 \sim g_1 \in f_2 \sim g_2 \implies f_1 + f_2 \sim g_1 + g_2.$$

Per esempio

 $x \sim x$ e sen $x \sim x$, ma non è vero che $x - \sin x \sim x - x$.

Veniamo adesso all'applicazione della formula di Taylor alla soluzione di limiti del tipo

$$\lim_{x \to x_0} \frac{f(x)}{g(x)},$$

dove $f, g: I \to \mathbb{R}$ sono funzioni infinitamente derivabili in $I \in x_0 \in I$. Chiaramente, essendo le funzioni continue, i limiti del numeratore e denominatore sono rispettivamente $f(x_0) \in g(x_0)$. Perciò si ha una forma indeterminata solo quando $f(x_0) = 0$ e $g(x_0) = 0$. La situazione è la seguente

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = ? \quad \text{con } f(x_0) = g(x_0) = 0.$$

L'idea è di usare la formula di Taylor per trovare due funzioni "semplici" \hat{f} e \hat{g} in modo che

$$\hat{f} \sim f$$
 e $\hat{g} \sim g$

e quindi di applicare il principio di sostituzione

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\hat{f}(x)}{\hat{g}(x)} = l,$$

dove il secondo limite è facile da calcolare. Il risultato seguente chiarisce come trovare \hat{f} e \hat{g} .

Proposizione 2.7. Sia $f: I \to \mathbb{R}$ funzione infinitamente derivabile in I e $x_0 \in I$. Evidentemente esistono le derivate

$$f(x_0), f^{(1)}(x_0), f^{(2)}(x_0), \dots, f^{(k)}(x_0), \dots,$$

Sia $n \in \mathbb{N}$ l'ordine della prima derivata non nulla, cioè tale che $f^{(n)}(x_0) \neq 0$ e per ogni $k \in \mathbb{N}$, k < n, $f^{(k)}(x_0) = 0$. Allora

$$f(x) \sim \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \text{ per } x \to x_0.$$

In altri termini la funzione f è asintotica, per $x \to x_0$, al primo termine del suo sviluppo di Taylor nel punto x_0 .

Dimostrazione. Dato che tutti i termini del polinomio di Taylor $P_n[f, x_0]$ sono nulli ad eccezione dell'ultimo, dal teorema di Taylor, risulta

$$f(x) = \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x) \quad \text{con } R_n(x) = o((x - x_0)^n).$$

Perciò

$$\frac{f(x)}{\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n} = 1 + \frac{R_n(x)}{\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n}$$

e l'ultimo termine tende a zero, da cui segue che il primo termine tende a 1.

Osservazione 2.8. Supponiamo di voler risolvere il limite

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \quad \text{con } f(x_0) = g(x_0) = 0.$$
 (8)

Allora, prendendo i primi termini dello sviluppo di Taylor di $f \in g$ in x_0 , si ha

$$f(x) \sim \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \text{ e } g(x) \sim \frac{g^{(m)}(x_0)}{m!} (x - x_0)^m \text{per } x \to x_0$$

e quindi per il principio di sostituzione

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = l \iff \lim_{x \to x_0} \frac{f^{(n)}(x_0)}{g^{(n)}(x_0)} \cdot \frac{m!}{n!} \cdot (x - x_0)^{n-m} = l$$

e quindi il limite (8) si riconduce ad uno immediatamente verificabile.

Esempio 2.9.

(i) Calcolare il limite

$$\lim_{x \to 0} \frac{\sin x - x}{x^2 \sin x}.$$

Ricordiamo che per $x \to 0$ vale

Allora

$$sen x - x = -\frac{x^3}{3!} + o(x^4) \text{ per } x \to 0.$$

e quindi

$$\sin x - x \sim -\frac{x^3}{3!} \text{ per } x \to 0.$$

Poi, moltiplicando la (9) per x^2 , si ha che per $x \to 0$ vale

$$x^{2} \operatorname{sen} x = x^{2} \left(x - \frac{x^{3}}{3!} + o(x^{4})\right) = x^{3} - \frac{x^{5}}{3!} + o(x^{6}).$$

Perciò

$$x^2 \operatorname{sen} x \sim x^3 \operatorname{per} x \to 0.$$

In definitiva per il principio di sostituzione si ha

$$\lim_{x \to 0} \frac{\sin x - x}{x^2 \sin x} = \lim_{x \to 0} \frac{-x^3/3!}{x^3} = -\frac{1}{6}.$$

(ii) Calcolare il limite

$$\lim_{x \to 0} \frac{\sin 2x - \log((1+x)^2)}{\cos(x/2) - 1}.$$

Ricordiamo che per $x \to 0$ vale

Allora si ha che per $x \to 0$

$$sen 2x = 2x + o((2x)^2) = 2x + o(x^2)
log(1+x)^2 = 2log(1+x) = 2x - x^2 + o(x^2)$$

e quindi

$$\operatorname{sen} 2x - \log((1+x)^2) = x^2 + o(x^2) + o(x^2) = x^2 + o(x^2).$$

Per il principio di sostituzione si ha

$$\lim_{x \to 0} \frac{\sec 2x - \log((1+x)^2)}{\cos(x/2) - 1} = \lim_{x \to 0} \frac{x^2}{\cos(x/2) - 1} = \lim_{x \to 0} \frac{(x/2)^2}{\cos(x/2) - 1} \cdot 4 = -8.$$

(iii) Calcolare il limite

$$\lim_{x \to 0} \frac{e^{x/2} - \sqrt{1 + \sin x}}{\log(\cos x)}$$

Abbiamo già visto che

$$\log(\cos x) = -\frac{x^2}{2} + \frac{x^4}{12} + o(x^4) \text{ per } x \to 0.$$

Perciò $\log(\cos x) \sim -x^2/2$ per $x \to 0$. Occupiamo
ci del numeratore. Ricordiamo che per $x \to 0$ vale

$$(1+y)^{1/2} = 1 + \frac{y}{2} - \frac{y^2}{8} + o(y^2)$$

sen $x = x + o(x^2)$.

Il polinomio di MacLaurin di ordine 2 della funzione composta $(1 + \operatorname{sen} x)^{1/2}$ si ottiene componendo i polinomi di MacLaurin di ordine 2 di $(1 + y)^{1/2}$ e di $\operatorname{sen} x$. Quindi

$$\sqrt{1+\sin x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)$$
 per $x \to 0$.

Poi risulta $e^x = 1 + x + x^2/2 + o(x^2)$, per $x \to 0$, e quindi

$$e^{x/2} = 1 + \frac{x}{2} + \frac{x^2}{8} + o(x^2)$$
 per $x \to 0$.

In definitiva, per il numeratore risulta

$$e^{x/2} - \sqrt{1 + \sin x} = \frac{x^2}{4} + o(x^2)$$
 per $x \to 0$.

e quindi $e^{x/2} - \sqrt{1 + \sin x} \sim x^2/4$ per $x \to 0$. Allora per il principio di sostituzione risulta

$$\lim_{x \to 0} \frac{e^{x/2} - \sqrt{1 + \sin x}}{\log(\cos x)} = \lim_{x \to 0} \frac{x^2/4}{-x^2/2} = -\frac{1}{2}$$

(iv) Calcolare il limite

$$\lim_{x \to 0} \frac{1 - \cos x + \log(\cos x)}{x^4 + x^5}$$

Abbiamo già calcolato i seguenti sviluppi

$$\log(\cos x) = -\frac{x^2}{2} + \frac{x^4}{12} + o(x^4) \text{ per } x \to 0$$
$$1 - \cos x = +\frac{x^2}{2} - \frac{x^4}{4!} + o(x^4) \text{ per } x \to 0.$$

Perciò si ha

$$1 - \cos x + \log(\cos x) = -\frac{x^4}{12} + o(x^4) \text{ per } x \to 0.$$

In definitiva per il principio di sostituzione si ha

$$\lim_{x \to 0} \frac{1 - \cos x + \log(\cos x)}{x^4 + x^5} = \lim_{x \to 0} \frac{-x^4/12}{x^4 + x^5} = -\frac{1}{12}.$$

(v) Calcolare il limite

$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{\operatorname{tg} x - x}$$

Non è necessario applicare subito lo sviluppo di MacLaurin del numeratore e denominatore. Possiamo infatti semplificare l'espressione del limite utilizzando dei limiti notevoli come segue

$$\frac{e^x - e^{\sin x}}{\operatorname{tg} x - x} = e^{\sin x} \cdot \frac{e^{x - \sin x} - 1}{\sin x - x \cos x} \cdot \cos x$$

$$= \underbrace{e^{\sin x}}_{1} \cdot \underbrace{\frac{e^{x - \sin x} - 1}{x - \sin x}}_{1} \cdot \underbrace{\frac{x - \sin x}{\sin x - x \cos x}}_{1} \cdot \underbrace{\cos x}_{1}$$

Perciò consideriamo soltanto il limite

$$\lim_{x \to 0} \frac{x - \sin x}{\sin x - x \cos x}$$

Ricordiamo gli sviluppi, per $x \to 0$,

$$sen x = x - \frac{x^3}{3!} + o(x^4)$$

$$cos x = 1 - \frac{x^2}{2} + o(x^3).$$

Quindi si ha, per $x \to 0$,

$$x - \sin x = +\frac{x^3}{3!} + o(x^4)$$

$$\sin x - x \cos x = \left(\frac{1}{2} - \frac{1}{6}\right)x^3 + o(x^4) = \frac{1}{3}x^3 + o(x^4).$$

Quindi, dal principio di sostituzione,

$$\lim_{x \to 0} \frac{x - \sin x}{\sin x - x \cos x} = \lim_{x \to 0} \frac{x^3/3!}{x^3/3} = \frac{1}{2}.$$