ECE 598NSG/498NSU Deep Learning in Hardware Fall 2020

Low-complexity DNNs

Naresh Shanbhag

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

http://shanbhag.ece.uiuc.edu

COLLEGE OF ENGINEERING

Today

- Motivation
- Low-complexity network MobileNet
- Low-complexity network SqueezeNet
- Low-complexity network ShuffleNet
- Low-complexity network ThunderNet

Motivation

- faster training
- easier 'over the air' updates to Edge devices
- fewer off-chip accesses during inference lower latency and energy costs of inference
 - e.g., FPGA on-chip memory < 10 MB</p>

Memory Access Energy in DNNs

- Require large no. of parameters → don't fit within on-chip SRAM
- off-chip DRAM accesses are 100x more energy expensive

Low-Complexity DNNs

- Two approaches
- 1: design a low-complexity network from scratch
 - based on design intuitions (MobileNet, SqueezeNet)
- 2: reduce the complexity of a large network
 - model compression
 - factorization
 - distillation
 - binarization/ternarization
- need to address complexity vs. accuracy trade-off

Three Low-Complexity Networks

- MobileNet
- SqueezeNet
- ShuffleNet

MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard Weijun Wang

Menglong Zhu Tobias Weyand Bo Chen Marco Andreetto

Dmitry Kalenichenko Hartwig Adam

Google Inc.

intrinsically a low-complexity network \rightarrow embedded vision apps.

	# of Layers	# of parameters CONV	# of parameters FC	# of MACs CONV	# of MACs FC	Top-1 error %	Top-5 error %
AlexNet	5C – 3F	3.7M	58.6M	1,077M	58.6M	42.9	15.3
VGGNet	13/16/19C – 3F	14.7M	123.6M	15,360M	123.6M	28.07	9.33
ResNet	18/34/50/101/152C - 1F	21M	512K	3,643M	512K	21.53	5.6
DenseNet	120/160/168/200C – 1F	~ 52M	1.152M	> 7B	1.152M	20.85	5.3
MobileNet	27C – 1F	3.1M	1M	532M	1M	29.4	11.022

[source: Dbouk]

- Objective: to design small, low-latency models for embedded platforms
- 5X smaller model complexity than ResNet but higher error rates

- optimizes size and latency
- parametrized network -> can design many versions
- two parameters: width and resolution multipliers
- built from

depth-wise separable convolutions →
standard convolution = depth-wise separable x point-wise
convolutions

- depth-wise separable convolutions first proposed in (Sifre, Ph.D. thesis, 2014) –
 use pointwise convolutions to reduce input dimension of larger filters
- Used by Inception modules in GoogleNet

total #MACs = 5.3M

- depth-wise separable convolutions first proposed in (Sifre, Ph.D. thesis, 2014) →
 factorize convolutions to save complexity
- better than reducing size of filters for accuracy
- Used by Inception modules in GoogleNet

standard convolution

5×5 48 14×14×480 14×14×48

total #MACs = 112.9M

factorized convolution

total #MACs = 5.3M

input and output FM sizes in both are the same → reduces impact on accuracy

Standard Convolution

Standard Convolution Filters

- Kernel size: $D_K^2 \times M \times N$
- Computational cost: $D_K^2 \times M \times N \times D_F^2$

Depth-wise Separable Convolutions

- breaks the relationship between N and kernel size
- depth-wise separable convolution = depth-wise convolution \times point-wise convolution

standard

depth-wise (in-plane conv)

point-wise (cross-plane conv)

Computational Cost

- Standard: $D_K^2 \times M \times N \times D_F^2$
- Depth-wise separable: $D_K^2 \times M \times D_F^2 + N \times M \times D_F^2$
- second term usually dominates
- Savings:

$$\frac{D_K^2 \times M \times D_F^2 + N \times M \times D_F^2}{D_K^2 \times M \times N \times D_F^2} = \frac{1}{N} + \frac{1}{D_K^2}$$

• MobileNet: $D_K = 3 \rightarrow 8 \times \text{-to-} 9 \times \text{savings in complexity}$

Network Architecture

Standard CONV layer

MobileNet CONV layer

MobileNet Layer 1 is standard CONV

MobileNet Architecture – 28 Layers

Table 1. MobileNet Body Architecture

	Table 1. Modifier of Body Ariemice tale								
Filter Shape	Input Size								
$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$								
$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$								
$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$								
$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$								
$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$								
$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$								
$1\times1\times128\times128$	$56 \times 56 \times 128$								
$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$								
$1\times1\times128\times256$	$28 \times 28 \times 128$								
$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$								
$1\times1\times256\times256$	$28 \times 28 \times 256$								
$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$								
$1\times1\times256\times512$	$14 \times 14 \times 256$								
$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$								
$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$								
$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$								
$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$								
$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$								
$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$								
Pool 7×7	$7 \times 7 \times 1024$								
1024×1000	$1 \times 1 \times 1024$								
Classifier	$1 \times 1 \times 1000$								
	$3 \times 3 \times 3 \times 32$ $3 \times 3 \times 32$ dw $1 \times 1 \times 32 \times 64$ $3 \times 3 \times 64$ dw $1 \times 1 \times 64 \times 128$ $3 \times 3 \times 128$ dw $1 \times 1 \times 128 \times 128$ $3 \times 3 \times 128$ dw $1 \times 1 \times 128 \times 256$ $3 \times 3 \times 256$ dw $1 \times 1 \times 256 \times 256$ $3 \times 3 \times 256$ dw $1 \times 1 \times 256 \times 512$ $3 \times 3 \times 512$ dw $1 \times 1 \times 512 \times 512$ $3 \times 3 \times 512$ dw $1 \times 1 \times 512 \times 1024$ $3 \times 3 \times 1024$ dw $1 \times 1 \times 1024 \times 1024$ Pool 7×7 1024×1000								

Computational Costs by Layer Type

Table 2. Resource Per Layer Type

Type	Mult-Adds	Parameters
Conv 1×1	94.86%	74.59%
Conv DW 3×3	3.06%	1.06%
Conv 3×3	1.19%	0.02%
Fully Connected	0.18%	24.33%

- most of the cost in point-wise convolutions \rightarrow 95% time and 75% of storage in point
- point-wise convolutions = dot-products

Parameterizing MobileNet

 how to generate MobileNets with different size, accuracy, latency tradeoffs?

- parameterize the network with:
 - width multiplier scales the number of channels
 - resolution multiplier scales the 2D size of the FMs

Width Multiplier

• width multiplier ($\alpha \in (0,1]$): $N \to \alpha N$; $M \to \alpha M$ ($\alpha = 1$: baseline)

depth-wise

• computational cost reduced roughly by α^2

$$D_K^2 \times M \times D_F^2 + N \times M \times D_F^2 \to D_K^2 \times \alpha M \times D_F^2 + \alpha N \times \alpha M \times D_F^2$$

Resolution Multiplier

• resolution multiplier ($\rho \in (0,1]$): $D_F \to \rho D_F$; ($\rho = 1$: baseline) – implicitly set via assigning input resolution

• computational cost: reduced roughly by ho^2

$$D_K^2 \times M \times D_F^2 + N \times M \times D_F^2 \rightarrow D_K^2 \times M \times \rho^2 D_F^2 + N \times M \times \rho^2 D_F^2$$

Total Cost with Both Multipliers

Table 3. Resource usage for modifications to standard convolution. Note that each row is a cumulative effect adding on top of the previous row. This example is for an internal MobileNet layer with $D_K = 3$, M = 512, N = 512, $D_F = 14$.

Layer/Modification	Million	Million
	Mult-Adds	Parameters
Convolution	462	2.36
Depthwise Separable Conv	52.3	0.27
$\alpha = 0.75$	29.6	0.15
$\rho = 0.714$	15.1	0.15

- Baseline: $D_K^2 \times M \times D_F^2 + N \times M \times D_F^2$
- Reduced: $D_K^2 \times \alpha M \times \rho^2 D_F^2 + \alpha N \times \alpha M \times \rho^2 D_F^2$
- overall: computational cost reduced by $(\alpha \rho)^2$

Accuracy vs. Size

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
Conv MobileNet	71.7%	4866	29.3	
MobileNet	70.6%	569	4.2	

Table 5. Narrow vs Shallow MobileNet

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
0.75 MobileNet	68.4%	325	2.6	
Shallow MobileNet	65.3%	307	2.9	

- Shallow MobileNet remove 5 layers with $14 \times 14 \times 512$ FMs
- narrow network preserves depth → good for accuracy

Accuracy vs. Size

Table 6. MobileNet Width Multiplier

Width Multi	plier	ImageNet	Million	Million
		Accuracy	Mult-Adds	Parameters
1.0 MobileNe	et-224	70.6%	569	4.2
0.75 MobileNo	et-224	68.4%	325	2.6
0.5 MobileNe	et-224	63.7%	149	1.3
0.25 MobileNo	et-224	50.6%	41	0.5

Table 7. MobileNet Resolution

	Tuote	_				
	Resolution	ImageNet	Million	Million	_	
		Accuracy	Mult-Adds	Parameters		
1.0	0 MobileNet-224	70.6%	569	4.2	_	
1.0	0 MobileNet-192	69.1%	418	4.2		
1.0	0 MobileNet-160	67.2%	290	4.2		smooth roll-
1.0	0 MobileNet-128	64.4%	186	4.2		

Accuracy vs. Storage/Complexity Trade-off

| So | 224 | 192 | 160 | 128 | 160 | 128 | 160 |

log-linear dependence

log-linear dependence

Million Parameters

Networks generated as a cross-product:

$$\alpha \in \{1, 0.75, 0.5, 0.25\} \times \rho \in \{224, 192, 160, 128\}$$

SqueezeNet

SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND < 0.5MB MODEL SIZE

Forrest N. Iandola¹, Song Han², Matthew W. Moskewicz¹, Khalid Ashraf¹, William J. Dally², Kurt Keutzer¹

¹DeepScale* & UC Berkeley

²Stanford University

- another low-complexity network
- based on a set of design intuitions to reduce network size

Design Strategies

- **S1**: replace 3×3 filters with 1×1 filters $\rightarrow 9\times$ fewer parameters
- **S2**: decrease the number of input channels to 3×3 filters \rightarrow reduces the number of parameters (width multiplier)

reduce M when $D_K = 3$

 S3: downsample late in network → conv layers have large activation maps → better accuracy

Fire Module

- concatenation of squeeze (\$1) and expand layers
- parameterized by 3 variables: s_{1x1} , e_{1x1} , e_{3x3}
- Set: $s_{1x1} < e_{1x1} + e_{3x3}$ per **S2**

SqueezeNet Architecture

- Conv1: standard; no FC layer
- 8 Fire modules (fire2-9)
- max pooling after conv1, fire4, fire8, conv10 (per S3)

Table 1: SqueezeNet architectural dimensions. (The formatting of this table was inspired by the Inception2 paper (Ioffe & Szegedy, 2015).)

layer name/type	output size	filter size / stride (if not a fire layer)	depth	S _{1x1} (#1x1 squeeze)	e _{1x1} (#1x1 expand)	e _{3x3} (#3x3 expand)	S _{1x1} sparsity	e _{1x1} sparsity	e _{3x3} sparsity	# bits	#parameter before pruning	#parameter after pruning
input image	224x224x3										-	-
conv1	111x111x96	7x7/2 (x96)	1				1	L00% (7x7)	6bit	14,208	14,208
maxpool1	55x55x96	3x3/2	0									
fire2	55x55x128		2	16	64	64	100%	100%	33%	6bit	11,920	5,746
fire3	55x55x128		2	16	64	64	100%	100%	33%	6bit	12,432	6,258
fire4	55x55x256		2	32	128	128	100%	100%	33%	6bit	45,344	20,646
maxpool4	27x27x256	3x3/2	0									
fire5	27x27x256		2	32	128	128	100%	100%	33%	6bit	49,440	24,742
fire6	27x27x384		2	48	192	192	100%	50%	33%	6bit	104,880	44,700
fire7	27x27x384		2	48	192	192	50%	100%	33%	6bit	111,024	46,236
fire8	27x27x512		2	64	256	256	100%	50%	33%	6bit	188,992	77,581
maxpool8	13x12x512	3x3/2	0									
fire9	13x13x512		2	64	256	256	50%	100%	30%	6bit	197,184	77,581
conv10	13x13x1000	1x1/1 (x1000)	1					20 % (3x3)		6bit	513,000	103,400
avgpool10	1x1x1000	13x13/1	0									
	activations		pa	arameters				compress	ion info		1,248,424 (total)	421,098 (total)

Design Intuitions

- add 1 pixel zero-padding to input of 3×3 expand filters $\rightarrow 3\times3$ and 1×1 filters output activations have identical dimensions
- ReLU is applied to activations from squeeze and expand layers (Nair & Hinton, 2010)
- dropout (Srivastava et. al., 2014) with ratio 50% after fire9
- no FC layer (inspired by NiN Lin et al., 2013)
- linearly decrease learning rate from 0.04 down (Mishkin et al., 2016)
- expand layer implemented in Caffe as concatenation of 1×1 filters and 3×3 filters

with simple bypass

SqueezeNet Variants

- similar to ResNet
- simple bypass applies to fire modules with same # of input and output dimensions
- complex bypass applied to fire modules with differing input/output dimensions (adds extra parameters)
- Squeeze layers limit information; bypass layers compensate for it

with complex bypass

Table 3: SqueezeNet accuracy and model size using different macroarchitecture configurations

Architecture	Top-1 Accuracy	Top-5 Accuracy	Model Size
Vanilla SqueezeNet	57.5%	80.3%	4.8MB
SqueezeNet + Simple Bypass	60.4%	82.5%	4.8MB
SqueezeNet + Complex Bypass	58.8%	82.0%	7.7MB

• also applied model compression -> low-complexity model is further compressible

ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang* Xinyu Zhou* Mengxiao Lin Jian Sun Megvii Inc (Face++)

{zhangxiangyu,zxy,linmengxiao,sunjian}@megvii.com

- Another low complexity network for mobile devices
- Channel shuffle and ShuffleNet Unit

Design Strategy

- Channel Shuffle: related input and output channels by cross talking
- Replace standard convolution with 1x1 Point-wise Group convolution and 3x3 Depth-wise Separable convolution

Group Convolution

[Xie et al., '17, ResNext]

- Used by AlexNet for distributing computations across GPUs
- Split input features into M groups
- Each group responsible for certain depth
- Concatenation each group at the end

Channel Shuffle

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and output channels are fully related when GConv2 takes data from different groups after GConv1; c) an equivalent implementation to b) using channel shuffle.

- Allow information flow between channel groups and strengthen representation
- Differentiable operation, meaning end-to-end training is available

ShuffleNet Unit

Figure 2. ShuffleNet Units. a) bottleneck unit [9] with depthwise convolution (DWConv) [3, 12]; b) ShuffleNet unit with pointwise group convolution (GConv) and channel shuffle; c) ShuffleNet unit with stride = 2.

- Consist of 1x1 group convolution followed by channel shuffle, 3x3 depthwise separable
 Convolution, and 1x1 group convolution
- Batch Normalization and ReLU after each convolution except the last 1x1 GConv
- Element-wise addition or concatenation to inputs at the final step

ShuffleNet Architecture

Layer	Output size	KSize	Stride	Repeat	Output channels (g groups)				
					g=1	g = 2	g = 3	g = 4	g = 8
Image	224×224				3	3	3	3	3
Conv1	112×112	3×3	2	1	24	24	24	24	24
MaxPool	56×56	3×3	2						
Stage2	28×28		2	1	144	200	240	272	384
	28×28		1	3	144	200	240	272	384
Stage3	14×14		2	1	288	400	480	544	768
	14×14		1	7	288	400	480	544	768
Stage4	7×7		2	1	576	800	960	1088	1536
	7×7		1	3	576	800	960	1088	1536
GlobalPool	1×1	7×7							
FC					1000	1000	1000	1000	1000
Complexity					143M	140M	137M	133M	137M

- Conv1: standard
- 3 stages of ShuffleNet unit groups
 - Each contains ShuffleNet units with stride = 1 and stride = 2
 - The number of units in each stage is specified by the number of repeats

Accuracy vs. Use of Channel Shuffle

Model	Cls err. (%, no shuffle)	Cls err. (%, shuffle)	Δ err. (%)
ShuffleNet $1x (g = 3)$	34.5	32.6	1.9
ShuffleNet $1x (g = 8)$	37.6	32.4	5.2
ShuffleNet $0.5x (g = 3)$	45.7	43.2	2.5
ShuffleNet $0.5x (g = 8)$	48.1	42.3	5.8
ShuffleNet $0.25x (g = 3)$	56.3	55.0	1.3
ShuffleNet $0.25x (g = 8)$	56.5	52.7	3.8

- Small number represents better performance
- Channel Shuffle brings up to 6% decrease on classification error

Accuracy vs. Architecture

Complexity (MFLOPs)	VGG-like	ResNet	Xception-like	ResNeXt	ShuffleNet (ours)
140	50.7	37.3	33.6	33.3	32.4 $(1 \times, g = 8)$
38	-	48.8	45.1	46.0	41.6 (0.5×, $g = 4$)
13	_	63.7	57.1	65.2	52.7 $(0.25 \times, g = 8)$

Model	Complexity (MFLOPs)	Cls err. (%)	Δ err. (%)
1.0 MobileNet-224	569	29.4	-
ShuffleNet $2 \times (g = 3)$	524	26.3	3.1
ShuffleNet $2 \times$ (with $SE[13]$, $g = 3$)	527	24.7	4.7
0.75 MobileNet-224	325	31.6	-
ShuffleNet $1.5 \times (g = 3)$	292	28.5	3.1
0.5 MobileNet-224	149	36.3	-
ShuffleNet $1 \times (g = 8)$	140	32.4	3.9
0.25 MobileNet-224	41	49.4	-
ShuffleNet $0.5 \times (g = 4)$	38	41.6	7.8
ShuffleNet $0.5 \times$ (shallow, $g = 3$)	40	42.8	6.6

Achieve best performance across all network architectures

Summary of Methods for Designing Low-Complexity Networks

Summary

- Trade-off between complexity and accuracy
- Based on design intuitions to preserve accuracy
- separable convolutions
- use of point-wise convolutions
- delaying max-pooling
- others

Course Web Page

https://courses.grainger.illinois.edu/ece598nsg/fa2020/https://courses.grainger.illinois.edu/ece498nsu/fa2020/

http://shanbhag.ece.uiuc.edu