

LUNG CANCER PREDICTION

工資管113 郭哲豪

工資管113 王正廷

TABLE OF CONTENTS

(01) 動機

02 目的

03) 資料集介紹

04) 使用模型

(05) 總結

(06)

參考資料

MOTIVATION

隨著生活型態的轉變, 人們的外在壓力日趨龐大, 肺癌患者與日遽增。根 據美國CDC顯示, 吸煙者罹患肺癌或死於肺癌的機率是不吸煙者的 15 至 30 倍。英國癌症協會也 說「男性在一生中罹患肺癌的機率約為 1/15. 而女性則約為 1/17。吸煙的人風險是要高得多。」但這兩則資訊都沒有 提供它們的數據來源. 所以萌生了我們想從 其他面向探討 罹患肺癌風險 的想法。除此之外, 若能藉由資訊預測肺癌, 將能及時制定對策, 使我們 免受病魔之苦。

+

PURPOSE

藉由一些生理症狀協助人們以低成本預測罹患肺癌的風險,也幫助人們根據癌症風險狀況做出適當的決定及治療。

ABOUT DATASET

- . 名稱 | <u>Lung Cancer Does smoking cause</u> <u>lung cancer</u>
- . 來源 | Kaggle
- . 定義 本資料集共蒐集有效資料 309 筆,包含 16 種變數如:年齡、抽菸、酗酒、吞嚥困難、同儕壓力
- 其中特別挑選黃手指、焦慮、疲憊、氣喘、咳嗽、呼吸急促、吞嚥困難、胸痛等症狀來預測肺癌

DATA DISTRIBUTION

DATA

DATA DISTRIBUTION

DATA

DATA DISTRIBUTION

+ · + · + · · + ·

資料前處理

```
#資料分析
train_x = train_df[['YELLOW_FINGERS', 'ANXIETY', 'FATIGUE', 'WHEEZING', 'COUGHING', 'SHORTNESS OF BREATH',
                'SWALLOWING DIFFICULTY', 'CHEST PAIN']] # 取出訓練資料需要分析的資料欄位
train_y = train_df['LUNG_CANCER']
  數值型態資料前處理
from sklearn.preprocessing import StandardScaler # 匯入標準化的工具
# 類別型態資料前處理
 匯入 Label Encoder
from sklearn.preprocessing import LabelEncoder
la = LabelEncoder()
# 給予train y類別一個數值
la. fit(train_y)
 轉換train v類別成為數值
train_y = la.transform(train_y)
```

資料狀態

	YELLOW_FINGERS	ANXIETY	FATIGUE	WHEEZING	COUGHING	SHORTNESS OF BREATH	SWALLOWING DIFFICULTY	CHEST PAIN
0	2	2	2	2	2	2	2	2
1	1	1	2	1	1	2	2	2
2	1	1	2	2	2	2	1	2
3	2	2	1	1	1	1	2	2
4	2	1	1	2	2	2	1	1

使用模型

- Decision Tree
- Random Forest
- SVM
- KNN
- Logistic Regression
- Adaptive Boosting

Decision Tree

```
# 匯入決策樹模型
from sklearn.tree import DecisionTreeClassifier
  匯入準確度計算工具
from sklearn.metrics import accuracy_score
from sklearn.metrics import fl_score
  創造決策樹模型
  設定最佳化方法為 Gini Index
  設定最大深度為 2
# 設定最多葉子個數為 4
model = DecisionTreeClassifier(
      criterion='gini',
      max depth=4,
      max_leaf_nodes=2 ** 4
  訓練決策樹模型
model.fit(train_x, train_y)
```

```
# 訓練決策樹模型
model.fit(train_x, train_y)

# 確認模型是否訓練成功
pred_y = model.predict(train_x)
# 計算準確度
acc = accuracy_score(train_y, pred_y)
f1 = f1_score(train_y, pred_y)

# 輸出準確度
print('accuracy: {}'.format(acc))
print('F-score: {}'.format(f1))
```

accuracy: 0.9029126213592233 F-score: 0.9454545454545454

Decision Tree

```
SEED=1024
                                                       #固定隨機變數,確保每次結果一樣
np. random. seed (SEED)
from sklearn.model_selection import KFold
kf = KFold(n_splits=5,
          random_state=SEED,
          shuffle=True)
kf.get n splits(train x)
train acc list = []
                                                                              # 儲存每次訓練模型的準確度
valid_acc_list = []
                                                                              # 儲存每次驗證模型的準確度
for train index, valid index in kf.split(train x):
                                                     # 每個迴圈都會產生不同部份的資料
       train_x_split = train_x.iloc[train_index]
                                                           # 產生訓練資料
      train_y_split = train_y[train_index]
                                                           # 產生驗證資料
       valid_x_split = train_x.iloc[valid_index]
      valid_y_split = train_y[valid_index]
       model = DecisionTreeClassifier(
       criterion='gini',
                                                           #設定模型超參數
       max depth=10,
       max leaf nodes=2 ** 5
                                                            # 創浩決策樹模型
       model.fit(train_x_split, train_y_split)
                                                            # 訓練決策樹模型
       train pred y = model.predict(train x split)
                                                                                # 確認模型是否訓練成功
       train_acc = accuracy_score(train_y_split, train_pred_y)
                                                                                # 驗證模型是否訓練成功
       valid_pred_y = model.predict(valid_x_split)
       valid_acc = accuracy_score(valid_y_split, valid_pred_y)
       train acc list.append(train acc)
       valid_acc_list.append(valid_acc)
```

average train accuracy: 0.9466044142614601 average valid accuracy: 0.8933897408778424

max train accuracy: 0.9554655870445344 max valid accuracy: 0.9508196721311475

min train accuracy: 0.9392712550607287 min valid accuracy: 0.8709677419354839

Deci


```
#匯入隨機森林模型
from sklearn.ensemble i mport RandomForestClassifier
#匯入準確度計算工具
from sklearn.metrics import accuracy_score
#創造隨機森林模型
model = RandomForestClassifier(random_state=1024)
并可用急采用10个技术来不不15天子生
model.fit(train_x, train_y)
#確認模型是否訓練成功
pred_y = model.predict(train_x)
#計算準確度、fl score
acc = accuracy_score(train_y, pred_y)
f1 = f1_score(train_y, pred_y)
  輸出準確度
print('accuracy: {}'.format(acc))
print('F-score: {}'.format(f1))
```

accuracy: 0.9449838187702265

F-score: 0.9689213893967092

```
from sklearn.model selection import KFold
kf = KFold(n_splits=5, random_state=1012, shuffle=True)
#給予資料範圍
kf.get n splits(train x)
#每個迴圈都會產生不同部份的資料
train_acc_list = []
                                                                            # 儲存每次訓練模型的準確度
valid_acc_list = []
                                                                            # 儲存每次驗證模型的準確度
                                                    # 每個迴圈都會產生不同部份的資料
 or train_index, valid_index in kf.split(train_x):
      train_x_split = train_x.iloc[train_index]
                                                          # 產生訓練資料
      train v split = train v[train index]
                                                     # 產生訓練資料標籤
      valid_x_split = train_x.iloc[valid_index]
                                                          # 產生驗證資料
      valid v split = train v[valid index]
                                                      # 產生驗證資料標籤
 使用隨機森林模型
model = RandomForestClassifier(random_state=1024)
model.fit(train_x_split, train_y_split)
                                                                       # 確認模型是否訓練成功
train pred y = model.predict(train x split)
train acc = accuracy score(train y split, train pred y)
valid_pred_y = model.predict(valid_x_split)
                                                                       # 驗證模型是否訓練成功
valid_acc = accuracy_score(valid_y_split, valid_pred_y)
                                                              # 計算驗證資料準確度
train acc list. append(train acc)
valid_acc_list.append(valid_acc)
```

average train accuracy: 0.9475806451612904 average valid accuracy: 0.9344262295081968

max train accuracy: 0.9475806451612904 max valid accuracy: 0.9344262295081968

min train accuracy: 0.9475806451612904 min valid accuracy: 0.9344262295081968

```
匯入計算feature重要程度的工具
from sklearn.inspection import permutation_importance
# 計算重要程度
result = permutation importance (model, train x, train y, random state=1012)
# 排序
perm_sorted_idx = result.importances_mean.argsort()
tree_importance_sorted_idx = np.argsort(model.feature_importances_)
tree_indices = np.arange(0, len(model.feature_importances_)) + 0.5
# 繪圖
plt.barh(tree indices,
                 model.feature_importances_[tree_importance_sorted_idx],
                 tick label = train x.columns[tree importance sorted idx],
                 color = ['red', 'orange', 'yellow', 'green', 'blue', 'purple', 'teal', 'brown']
plt.style.use('ggplot')
plt.show()
```


• 準確度熱點

SVM

```
#匯入支援向量機模型
from sklearn.svm import SVC
#匯入準確度計算工具
from sklearn.metrics import accuracy_score
#創造支援向量機模型
model = SVC(random_state=1012)
#訓練支援向量機模型
model.fit(train_x, train_y)
#確認模型是否訓練成功
pred_y = model.predict(train_x)
#計算準確度、fl score
acc = accuracy_score(train_y, pred_y)
f1 = f1_score(train_y, pred_y)
# 輸出準確度
print('accuracy: {}'.format(acc))
print (F-score: {}'.format(f1))
```

accuracy: 0.9158576051779935 F-score: 0.9525547445255474

SVM

```
from sklearn.model selection import KFold
kf = KFold(n splits=5, random state=1012, shuffle=True)
#給予資料節圍
kf.get_n_splits(train_x)
#每個迴圈都會產生不同部份的資料
train acc list = []
                                                                       # 儲存每次訓練模型的準確度
valid_acc_list = []
                                                                       # 儲存每次驗證模型的準確度
for train_index, valid_index in kf.split(train_x):
                                                  # 每個迴圈都會產生不同部份的資料
     train_x_split = train_x.iloc[train_index]
                                                       # 產生訓練資料
     train_y_split = train_y[train_index]
                                                   # 產生訓練資料標籤
     valid_x_split = train_x.iloc[valid_index]
                                                       # 產生驗證密料
     valid_y_split = train_y[valid index]
                                                   # 產生驗證資料標籤
#使用支援向量機模型
model = SVC(random_state=1012)
model.fit(train_x_split, train_y_split)
train_pred_y = model.predict(train_x_split)
                                                                   # 確認模型是否訓練成功
train_acc = accuracy_score(train_y_split, train_pred_y)
                                                            # 計算訓練資料準確度
valid pred v = model.predict(valid x split)
                                                                   # 驗證模型是否訓練成功
valid_acc = accuracy_score(valid_y_split, valid_pred_y)
                                                            # 計算驗證資料準確度
train acc list.append(train acc)
valid_acc_list.append(valid_acc)
```

average train accuracy: 0.907258064516129 average valid accuracy: 0.8852459016393442

max train accuracy: 0.907258064516129
max valid accuracy: 0.8852459016393442

min train accuracy: 0.907258064516129 min valid accuracy: 0.8852459016393442

KNN

```
#匯入近鄰演算法模型
from sklearn.neighbors import KNeighborsClassifier
#匯入準確度計算工具
from sklearn.metrics import accuracy_score
#創造近鄰演質注模型
model = KNeighborsClassifier(n_neighbors=3)
#訓練近鄰演算法模型
model.fit(train x, train y)
#確認模型是否訓練成功
pred_y = model.predict(train_x)
#計算準確度、fl score
acc = accuracy_score(train_y, pred_y)
f1 = f1_score(train_y, pred_y)
  輸出準確度
print('accuracy: {}'.format(acc))
print('F-score: {}'.format(f1))
```

accuracy: 0.9288025889967637 F-score: 0.9597069597069596

KNN

```
from sklearn.model selection import KFold
kf = KFold(n_splits=5, random_state=1012, shuffle=True)
kf.get n splits(train x)
#每個迴圈都會產生不同部份的資料
train_acc_list = []
                                                                             # 儲存每次訓練模型的準確度
                                                                             # 儲存每次驗證模型的準確度
for train index, valid index in kf.split(train x):
                                                     # 每個迴閥都會產生不同部份的資料
      train_x_split = train_x.iloc[train_index]
      train v split = train v[train index]
      valid_x_split = train_x.iloc[valid_index]
                                                          # 產生驗證資料
      valid_y_split = train_y[valid_index]
                                                      # 產生驗證資料標籤
model = KNeighborsClassifier(n neighbors=3)
                                                                        # 確認模型是否訓練成功
train pred y = model.predict(train x split)
train_acc = accuracy_score(train_y_split, train_pred_y)
valid pred y = model.predict(valid x split)
                                                                        # 驗證模型是否訓練成功
valid_acc = accuracy_score(valid_y_split, valid_pred_y)
                                                              # 計算驗證資料準確度
train_acc_list.append(train_acc)
valid_acc_list.append(valid_acc)
```

average train accuracy: 0.9395161290322581 average valid accuracy: 0.9344262295081968

max train accuracy: 0.9395161290322581 max valid accuracy: 0.9344262295081968

min train accuracy: 0.9395161290322581 min valid accuracy: 0.9344262295081968

Logistic Regression

```
#匯入邏輯迴歸模型
from sklearn.linear_model import LogisticRegression
#匯入準確度計算工具
from sklearn.metrics import accuracy_score
#創造羅輯:回歸橫刑
model = LogisticRegression(random_state=1024)
#訓練雞蝈迴歸模望
model.fit(train_x, train_y)
#確認模型是否訓練成功
pred_y = model.predict(train_x)
#計算準確度、fl score
acc = accuracy_score(train_y, pred_y)
f1 = f1_score(train y, pred y)
# 輸出準確度
print('accuracy: {}'.format(acc))
print('F-score: {}'.format(f1))
```

accuracy: 0.9029126213592233 F-score: 0.9458483754512635

Logistic Regression

```
#匯入的次交叉驗證工具
from sklearn.model selection import KFold
kf = KFold(n_splits=5, random_state=1012, shuffle=True)
#給予資料範圍
kf.get_n_splits(train_x)
#每個迴圈都會產生不同部份的資料
train acc list = []
                                                                             # 儲存每次訓練模型的準確度
valid_acc_list = []
                                                                             # 儲存每次驗證模型的進確度
for train_index, valid_index in kf.split(train_x):
                                                    # 每個迴圈都會產生不同部份的資料
       train_x_split = train_x.iloc[train_index]
                                                          # 產生訓練資料
       train v split = train v[train index]
       valid x split = train x.iloc[valid index]
                                                      # 產生驗證資料標籤
       valid_y_split = train_y[valid_index]
 使用邏輯迥歸模型
 odel = LogisticRegression(random_state=1024)
model.fit(train_x_split, train_y_split)
train_pred_y = model.predict(train_x_split)
                                                                       # 確認模型是否訓練成功
train acc = accuracy score(train y split, train pred y)
valid pred y = model.predict(valid x split)
                                                                       # 驗證模型是否訓練成功
valid_acc = accuracy_score(valid_y_split, valid_pred_y)
                                                              # 計算驗證資料準確度
train_acc_list.append(train_acc)
valid acc list.append(valid acc)
```

average train accuracy: 0.9032258064516129 average valid accuracy: 0.8852459016393442

max train accuracy: 0.9032258064516129 max valid accuracy: 0.8852459016393442

min train accuracy: 0.9032258064516129 min valid accuracy: 0.8852459016393442

Adaptive Boosting

```
匯入AdaBoost模型
from sklearn.ensemble import AdaBoostClassifier
#匯入準確度計算工具
from sklearn.metrics import accuracy_score
#創造隨機AdaBoost
mode1 = AdaBoostClassifier(random_state=1024)
#訓練順機AdaBoost
model.fit(train_x, train_y)
#確認模型是否訓練成功
pred_y = model.predict(train_x)
#計算準確度、fl score
acc = accuracy_score(train_y, pred_y)
f1 = f1_score(train_y, pred_y)
  輸出準確度
print('accuracy: {}'.format(acc))
print('F-score: {}'.format(f1))
```

accuracy: 0.8932038834951457 F-score: 0.9396709323583181

Adaptive Boosting

```
from sklearn.model selection import KFold
kf = KFold(n splits=5, random state=1012, shuffle=True)
kf.get_n_splits(train_x)
#每個迴圈都會產生不同部份的資料
train acc list = []
                                                                              # 儲存每次訓練模型的準確度
valid acc list = []
                                                     # 每個迴圈都會產生不同部份的資料
for train index, valid index in kf.split(train x):
      train_x_split = train_x.iloc[train_index]
                                                           # 產生訓練資料
      train v split = train v[train index]
                                                      # 產生訓練資料標籤
      valid_x_split = train_x.iloc[valid_index]
                                                           # 產生驗證資料
      valid_y_split = train_y[valid_index]
model = AdaBoostClassifier(random state=1024)
model.fit(train_x_split, train_y_split)
train_pred_y = model.predict(train_x_split)
                                                                        # 確認模型是否訓練成功
train acc = accuracy score(train v split, train pred v)
                                                                        # 驗證模型是否訓練成功
valid_pred_y = model.predict(valid_x_split)
                                                               # 計算驗證資料進確度
valid acc = accuracy score(valid v split, valid pred v)
train acc list.append(train acc)
valid_acc_list.append(valid_acc)
```

average train accuracy: 0.8870967741935484 average valid accuracy: 0.9016393442622951

max train accuracy: 0.8870967741935484 max valid accuracy: 0.9016393442622951

min train accuracy: 0.8870967741935484 min valid accuracy: 0.9016393442622951

綜合比較

	Decision Tree	Random Forest	SVM	KNN	Logistic Regression	Adaptive Boosting
Average Train Accuracy	0.9466	0.9476	0.9073	0.9395	0.9032	0.8871
Average Valid Accuracy	0.8934	0.9344	0.8852	0.9344	0.8852	0.9016

結論

此資料集有肺癌者比例遠大 於無肺癌者, 導致決策樹的預 測結果皆為有肺癌, 若繼續向 下延伸可預測: 沒有吞嚥困 難、沒有咳嗽、沒有氣喘等症 狀的人沒有肺癌

經由綜合比較得知 隨機森林 的預測能力最佳,並由其計 算出的特徵重要程度可得知 , 黃手指、咳嗽、焦慮 等症狀 為預測肺癌的最重要依據, 此外各個症狀的預測能力差 異並不顯著

參考資料

- Lung cancer prediction with symptoms | Kaggle
- <u>GitHub IKMLab/course material: 上課教材的大集</u> 合!!!