Correction des de la feuille 2 sur les angles

Exercice 17

Je sais que les droites, (AL) et (TO) sont parallèles et les angles \widehat{ALT} et \widehat{LTO} sont alternes-internes. Or si deux droites coupées par une sécante sont parallèles, alors les angles alternes-internes ont la même mesure. Donc l'angle \widehat{LTO} mesure 97°.

Exercice 18

Exercice 16

- a. Les angles \widehat{xMu} et \widehat{vMy} sont opposés par le sommet, ils ont la même mesure. Donc l'angle \widehat{vMy} mesure 125°.
- **b.** Les droites (xy) et (zf) sont parallèles et les angles \widehat{vMy} et \widehat{zNu} sont alternesinternes, ils ont la même mesure. Donc l'angle \widehat{zNu} mesure 125°.

Les droites (xy) et (zf) sont parallèles et \widehat{vMy} et \widehat{vNt} sont correspondants, ils ont la même mesure. Donc l'angle \widehat{vNt} mesure 125°. Les angles

Exercice 21

Les droites (AB) et (CD) sont parallèles et les angles \widehat{BRS} et \widehat{CSR} sont alternesinternes, ils ont la même mesure. Donc l'angle \widehat{CSR} mesure 20° .

On a $\widehat{RST}=57^{\circ} \text{et } \widehat{CSR}=20^{\circ}$. Donc l'angle \widehat{CST} mesure $37^{\circ} (57^{\circ} - 20^{\circ})$.

Les droites (EF) et (CD) sont parallèles et les angles \widehat{STF} et \widehat{CST} sont alternesinternes, ils ont la même mesure. Donc l'angle \widehat{CSR} mesure 37°.

Exercice 25

- a. \widehat{LOP} est un angle plat. Donc $\widehat{LON} = 180^{\circ}$ 128° = 52° .
- **b.** Dans le triangle LON, la somme des mesure des angles est égale à 180°. Donc \widehat{ONL} = 180°- (43°+ 52°) = 85°.

c. Les angles \widehat{ONL} et \widehat{OMP} sont alternes-internes et de même mesure, donc (LN) et (MP) sont parallèles.

 $\mathbf{d}.$

Je sais que (LN) est parallèles (MP) et que LN=MP. Or si un quadrilatère non croisé a deux cotés opposés parallèles et de même mesure alors c'est un parallélogramme. Donc le quadrilatère LNPM est un parallélogramme.