MF921 Topics in Dynamic Asset Pricing Week 5

Yuanhui Zhao

Boston University

Chapter 14

Black-Scholes (II): Dominance-Free Interval and Risk Neutral Pricing

A General Brownian Market Model

Given a complete probablity space $(\Omega, \mathcal{F}, \mathbb{P})$. $W(t) = (W_1(t), \dots, W_d(t))^{\top}$, independent d-dimensional Brownian motion. The filtraion $\mathcal{F}^W_t = \sigma(W(s): 0 \leq s \leq t)$ which is complete and right-continuous.

A financial market $\mathcal M$ with 1 bond and d stocks under a finite horizon [0,T]:

$$dS_0(t) = r(t)S_0(t)dt, \quad S_0(0) = 1$$

$$dS_i(t) = S_i(t) \left(b_i(t) dt + \sum_{j=1}^d \sigma_{ij}(t) dW_j(t) \right), \text{ for } i \in 1, 2, ..., d$$

- r(t): interest rate
- $b(t) = (b_1, \dots, b_d)$: appreciation rates
- $\sigma(t) = (\sigma_{ij}(t))$: volatility matrix
- r(t), b(t) and $\sigma(t)$ all progressively measurable with respect to $\{\mathcal{F}_t\}$ and bounded uniformly in $(t,\omega)\in[0,T]\times\Omega$.

Remarks on the Modell

- The model is very general: processes can be dependent, time-varying, and even non-Markovian
- The model does not cover stochastic volatility or jump models. Therefore, dominance arguments do not apply for stochastic volatility or jump models.
- In general, the option price is not pinned to a single number. Instead, there exists an interval $[h_{low}, h_{up}]$. If the option price is within the interval then there will be no dominance, outside the interval there will be dominance opportunity.
- Ideal market assumption: Infinite divisibility of assets, no transaction costs or taxes, no borrowing/short-selling constraints and same interest rate for borrowing and lending

Introducing auxiliary processes

Relative risk (Sharpe ratio):

$$\theta(t) = \sigma^{-1}(t) (b(t) - r(t)\mathbf{1}), \quad \mathbf{1} = (1, 1, \dots, 1)^{T}$$

Exponential martingale (RN derivative):

$$Z(t) = \exp\left(-\int_{0}^{t} \theta^{\top}(s) dW(s) - \frac{1}{2} \int_{0}^{t} \|\theta(s)\|^{2} ds\right)$$

Discount factor:

$$\gamma(t) = \exp\left(-\int_0^t r(s) \, ds\right)$$

Brownian motion with drift:

$$W_0(t) = W(t) + \int_0^t \theta(s) \, ds, \ \ 0 \le t \le T$$

 $\sigma(t)$ invertible, inverses bounded. Ensures bounded $\theta(t)$ and Z(t) is a true martingale. These tools set up the risk-neutral framework for pricing options.

Investor Setup

Investor type: "small investor" \rightarrow cannot affect market prices. Trading Strategy defined as:

$$\phi(t) = (\phi_1(t), \dots, \phi_d(t))$$

Where $\phi_0(t)$ is number of bonds held, $\phi_i(t)$ is number of shares of stock i held. If $\phi_0 < 0$ or $\phi_i < 0$ interpret as short position(loan). All decisions are adapted to \mathcal{F}_t . Cumulative consumption process defined as:

$$C(t) = \int_0^t c(s)ds, \quad c(s) \ge 0$$

C(t) is non-decreasing (consumption can only increase). $C(0)=0, C(T)<\infty$ almost surely. Models the total amount consumed by the investor up to time t

To ensure consistency, we need to specify what trading strategies are allowed in the market. Two rules impose in the market, self-financing condition and exclusion of doubling strategies.

Self-Financing Condition

Self-Financing Condition:

$$\sum_{i=0}^{d} \phi_i(t) S_i(t) = \sum_{i=0}^{d} \phi_i(0) S_i(0) + \sum_{i=0}^{d} \int_0^t \phi_i(u) dS_i(u) - C(t), \quad 0 \le t \le T$$

Changes in wealth = trading gains - consumption, no outside cash flows.

A portfolio process is defined as $\pi(\cdot)=(\pi_1(\cdot),\ldots,\pi_d(\cdot))$, where $\pi_i(t)=\phi_i(t)S_i(t)$ means that total amount of money invested in the ith risky asset. The total wealth X(t) is equal to:

$$X(t) = \sum_{i=0}^{d} \phi_i(t) S_i(t) = \sum_{i=1}^{d} \pi_i(t) + \phi_0(t) S_0(t)$$

Both the wealth process $X(\cdot)$ and the portfolio $\pi(\cdot)$ can clearly take both positive and negative values.

Self-Financing Condition

For a given initial capital x and a portfolio process $\pi(\cdot)$, the self-financing condition is translated to:

$$X(t) = X(0) + \sum_{i=0}^{d} \int_{0}^{t} \phi_{i}(u) dS_{i}(u) - C(t)$$

In terms of the differential form, we have:

$$dX(t) = \sum_{i=0}^{d} \phi_i(t)dS_i(t) - dC(t)$$

Express in terms of portfolio π and plug in dynamics of assets:

$$\begin{split} dX(t) &= \frac{X(t) - \sum_{i=1}^{d} \pi_i(t)}{S_0(t)} dS_0(t) + \sum_{i=1}^{d} \frac{\pi_i(t)}{S_i(t)} dS_i(t) - dC(t) \\ &= X(t)r(t)dt + \sum_{i=1}^{d} \pi_i(t) \left[(b_i(t) - r(t))dt + \sum_{j=1}^{d} \sigma_{ij}(t)dW_j(t) \right] - dC(t) \end{split}$$

Self-Financing Condition

By vector notation, Brownian motion with drift and Sharpe ratio, we can rewrite as:

$$dX(t) = X(t)r(t)dt + \pi^{\top}(t)\sigma(t)dW_0(t) - dC(t), \quad X(0) = x$$

Since $d\gamma(t) \cdot dX(t) = 0$, by Itô formula:

$$d(\gamma(t)X(t)) = \gamma(t)dX(t) - r(t)\gamma(t)X(t)dt$$

= $\gamma(t)\pi^{\top}(t)\sigma(t)dW_0(t) - \gamma(t)dC(t)$

Therefore, we have the wealth equation:

$$\gamma(t)X(t) = x - \int_0^t \gamma(s)dC(s) + \int_0^t \gamma(s)\pi^\top(s)\sigma(s)dW_0(s)$$

For a triple (x, π, C) , if there exists a unique strong solution $X(\cdot)$, it's called the wealth process. For the stochastic integral to be well-defined:

$$\int_0^T \|\pi(t)\|^2 dt < \infty$$

Risk-Neutral Probability via Girsanov Theorem

Definition of Risk-Neutral Measure:

$$\mathbb{P}^0(A) := \mathbb{E}[Z(T)1_A], \quad A \in \mathcal{F}_T$$

Z(T) is the exponential martingale. By Girsanov's Theorem, $W_0(t)=W(t)+\int_0^t \theta(s)ds$ is a standard Brownian motion under \mathbb{P}^0 .

Thus rewirte the wealth process:

$$N_0(t) = \gamma(t)X(t) + \int_0^t \gamma(s)dC(s)$$
$$= x + \int_0^t \gamma(s)\pi^\top(s)\sigma(s)dW_0(s)$$

A continuous \mathbb{P}^0 -local martingale.

Risk-Neutral Probability via Girsanov Theorem

Stock dynamics under risk-neutral measure:

$$dS_{i}(t) = S_{i}(t) \left[b_{i}(t)dt - \sum_{j=1}^{d} \sigma_{ij}(t)\theta_{j}(t)dt + \sum_{j=1}^{d} \sigma_{ij}(t)dW_{0}^{(j)}(t) \right]$$

Since $b(t) - \sigma(t)\theta(t) = r(t)\mathbf{1}$:

$$dS_i(t) = S_i(t) \left[r(t)dt + \sum_{j=1}^d \sigma_{ij}(t)dW_0^{(j)}(t) \right], \quad i = 1, \dots, d$$

Since $dr(t) \cdot dS_i(t) = 0$, apply Itô:

$$d(\gamma(t)S_i(t)) = S_i(t)dr(t) + \gamma(t)dS_i(t)$$
$$= \gamma(t)S_i(t) \sum_{i=1}^d \sigma_{ij}(t)dW_0^{(j)}(t)$$

Hence, the discounted stock processes $\gamma(\cdot)S_i(\cdot)$ are local martingales. This also confirms our intuition that every asset $S_i(t)$ should have a growth rate r(t) in the risk neutral world.

Doubling Strategies and Admissibility

Doubling Strategy: Double investment after each loss, leads to arbitrarily large wealth at T. Requires wealth process X(t) unbounded from below. Need to exclude, because creates arbitrage opportunities and violates no-arbitrage principle.

A uniform boundedness condition is needed to prevent the doubling strategy. Wealth must satisfy:

$$X^{x,\pi,C}(t) \ge -\Lambda, \quad 0 \le t \le T$$

With $\mathbb{E}^0[\Lambda^p] < \infty$ for some p > 1.

In summary, the admissibility on (π,C) essentially requires the portfolio to be self-financing and not to be a doubling strategy.

Some Properties

(i) Supermartingale Property:

If (π,C) is admissible, $N_0(t)$ is bound below. $N_0(t)$ is a \mathbb{P}^0 -supermartingale. Consequently:

$$\mathbb{E}^{0}\left[\gamma(T)X(T) + \int_{0}^{T} \gamma(t)dC(t)\right] \leq x$$

Expected discounted terminal wealth and consumption less than or equal to initial wealth to ensures no arbitrage.

(ii) Scaling Property:

Wealth dynamics are linear in (x, π, C) . For any $a \neq 0$:

$$X^{ax,a\pi,aC}(t) = a \cdot X^{x,\pi,C}(t)$$

In particular, a>0 outcome is scaled wealt and a=-1 is mirror strategy with wealth is $-X^{x,\pi,C}(t)$. The intuition is that the model is homogeneous of degree 1 in wealth.

Dominant Opportunities and Dominance-Free Interval

Consider European Contingent Claim (ECC), payoff at maturity is $\psi(T) \geq 0$. For example the Call option payoff $(S_1(T)-K)^+$. To ensure that option price is finite, we assume that $\mathbb{E}[(\psi(T))^{1+\epsilon}] < \infty, \ \forall \epsilon > 0$.

Price at time 0 is $\psi(0)$. Question: what is the fair value of $\psi(0)$? Price too low \to buyer arbitrage, price too high \to seller arbitrage. Therefore, the correct price must lie in an interval that rules out dominance.

The main purpose of this section is to find out what $\psi(0)$ should be in the market $\mathcal M$ with the ECC, denoted by (M,ψ) for short, with ψ standing for the pair $(\psi(0),\psi(T))$.

A dominance opportunity exists in market (\mathcal{M},ψ) if we start with some initial wealth $x\geq 0$ (or $x\leq 0$ depending on position). We take an admissible strategy (π,C) and add a position in the ECC (long if a=-1, short if a=+1).

A Definition of Dominate Opportunity

Condition:

$$x + a \cdot \psi(0) < 0$$

yet at maturity:

$$\mathbb{P}\{X^{x,\pi,C}(T) + a \cdot \psi(T) \ge 0\} = 1$$

You start with negative initial wealth, but end up with a guaranteed nonnegative payoff. This is a riskless profit strictly better than bond returns.

Moreover, the scaling property will result the unlimited arbitrage. Therefore, dominance opportunities must be excluded in rational, well-behaved markets.

Definition: The admissible price $\psi(0)$ must lie in an dominance-free interval [a,b], such that:

- If $\psi(0) > b$: dominance opportunity exists (price too high)
- If $\psi(0) < a$: dominance opportunity exists (price too low)
- If $a \le \psi(0) \le b$: no dominance opportunities exist

Lower and Upper Hedging Classes

Upper Hedging Class \mathcal{U} :

$$\mathcal{U} := \{ x \geq 0 : \exists (\hat{\pi}, \hat{C}) \in \mathcal{A}, \, X^{x, \hat{\pi}, \hat{C}}(0) = x, \, X^{x, \hat{\pi}, \hat{C}}(T) \geq \psi(T) \, a.s. \}$$

Starting with capital x, you can construct an admissible strategy whose terminal wealth is always at least as large as the claim payoff $\psi(T)$ So, the minimum of $\mathcal U$ gives the upper bound for the fair price. $\mathcal U$ may be empty (think about quadratic payoff).

Lower Hedging Class \mathcal{L} :

$$\mathcal{L}:=\{x\geq 0: \exists (\check{\pi},\check{C})\in\mathcal{A},\, X^{x,\check{\pi},\check{C}}(0)=-x,\, X^{x,\check{\pi},\check{C}}(T)\geq -\psi(T)\ a.s.\}$$

With initial wealth -x (i.e. receiving x up front), you can construct a strategy whose terminal wealth is always greater than or equal to $-\psi(T)$. So, the maximum of $\mathcal L$ gives the lower bound for the fair price.

Observe that both sets are intervals (connected):

- If $x_1 \in \mathcal{L}$ and $0 \le y_1 \le x_1$, then $y_1 \in \mathcal{L}$
- If $x_2 \in \mathcal{U}$ and $y_2 \geq x_2$, then $y_2 \in \mathcal{U}$

Thus it would be interesting to look at the endpoints of the intervals.

Upper and Lower Hedging Prices

Upper bound: $h_{\text{up}} := \inf \mathcal{U}$. Because it's the cheapest initial capital needed to guarantee covering the claim $\psi(T)$. inf \mathcal{U} is the minimal fair one for the seller.

Lower bound: $h_{\text{low}} := \sup \mathcal{L}$. Because it's the maximum initial amount from which a buyer can still hedge against the debt of paying $\psi(T)$. So $\sup \mathcal{L}$ is the highest "safe" price for the buyer.

The intuition suggests that the lower dominate price cannot be bigger than the upper hedging price.

Let $u_0 := \mathbb{E}^0[\gamma(T)\psi(T)]$. Show that $u_0 < \infty$. In fact, we can show a strong result that

$$\mathbb{E}^{0}[\{\gamma(T)\psi(T)\}^{a}] < \infty, \quad 1 < a < 1 + \epsilon.$$

Upper and Lower Hedging Prices

Proof:

Note that $u_0 = \mathbb{E}^0[\gamma(T)\psi(T)] = \mathbb{E}[\gamma(T)\psi(T)Z(T)]$. Let $c < \infty$ be a fixed constant such that $\|\theta(t)\| \le c, \ \gamma(T) \le c$. Also let $p = 1 + \epsilon, \ 1/p + 1/q = 1$. We have:

$$\begin{split} & \mathbb{E}\left[e^{-q\int_{0}^{T}\theta^{\top}(s)dW(s)-\frac{1}{2}q\int_{0}^{T}\|\theta(s)\|^{2}ds}\right] \\ & = \mathbb{E}\left[e^{-q\int_{0}^{T}\theta^{\top}(s)dW(s)-\frac{1}{2}q^{2}\int_{0}^{T}\|\theta(s)\|^{2}ds} \cdot e^{\frac{1}{2}(q^{2}-q)\int_{0}^{T}\|\theta(s)\|^{2}ds}\right] \\ & \leq \mathbb{E}\left[e^{-q\int_{0}^{T}\theta^{\top}(s)dW(s)-\frac{1}{2}q^{2}\int_{0}^{T}\|\theta(s)\|^{2}ds}\right]e^{\frac{1}{2}(q^{2}-q)c^{2}T} \text{(Typo: c)} \\ & \leq e^{q(q-1)c^{2}T/2} \end{split}$$

where the last inequality holds because inside of $\mathbb{E}(\cdot)$ is a martingale. Therefore, by the Hölder inequality:

Upper and Lower Hedging Prices

$$u_{0} \leq c \mathbb{E}(\psi(T)Z(T))$$

$$\leq c (\mathbb{E}(\psi(T))^{p})^{1/p} \cdot (\mathbb{E}(Z(T))^{q})^{1/q}$$

$$= c (\mathbb{E}(\psi(T))^{p})^{1/p} \cdot \left(\mathbb{E}\left[e^{-q \int_{0}^{T} \theta^{\top}(s)dW(s) - \frac{1}{2}q \int_{0}^{T} \|\theta(s)\|^{2} ds}\right]\right)^{1/q}$$

$$\leq c (\mathbb{E}(\psi(T))^{p})^{1/p} \cdot e^{(q-1)c^{2}T/2} < \infty$$

For $\mathbb{E}^0[\{\gamma(T)\psi(T)\}^a]$. Follow the same steps, change the measure and choose Hölder exponents, $p=\frac{1+\varepsilon}{a}>1,\quad q=\frac{p}{p-1}.$ Then:

$$\mathbb{E}[\psi^a Z] \le \left(\mathbb{E}[\psi^{ap}]\right)^{1/p} \left(\mathbb{E}[Z^q]\right)^{1/q} = \left(\mathbb{E}[\psi^{1+\varepsilon}]\right)^{1/p} \cdot \left(\mathbb{E}[Z^q]\right)^{1/q}$$

The first factor is finite by assumption; the second is bounded exactly as in previous part. Thus:

$$\mathbb{E}^{0}[\{\gamma(T)\psi(T)\}^{a}] \le c^{a} \left(\mathbb{E}[\psi(T)^{1+\varepsilon}]\right)^{1/p} \exp\left\{\frac{1}{2}(q-1)c^{2}T\right\} < \infty, \quad \forall 1 < a < 1+\varepsilon$$

An Inequality for the Upper and Lower Prices

At any time $t \in [0,T]$, we have $0 \le h_{\text{low}} \le u_0 \le h_{\text{up}}$ a.s., where $u_0 = \mathbb{E}^0[\gamma(T)\psi(T)]$.

For upper bound: If \mathcal{U} is empty, $h_{\rm up}=+\infty$ and inequality is trivial. If $\mathcal{U}\neq\emptyset$, then by definition of \mathcal{U} , for every $x\in\mathcal{U}$, there exists some admissible portfolio $(\hat{\pi},\hat{C})$ with:

$$X^{\hat{\pi},\hat{C}}(0) = x, \quad X^{\hat{\pi},\hat{C}}(T) \ge \psi(T)$$

Apply the supermartingale property to the discounted wealth process:

$$x \ge \mathbb{E}^0 \left[\gamma(T) X^{\hat{\pi}, \hat{C}}(T) + \int_0^T \gamma(s) d\hat{C}(s) \right]$$

Since $X^{\hat{\pi},\hat{C}}(T) \geq \psi(T)$, we get $x \geq \mathbb{E}^0[\gamma(T)\psi(T)]$. This mean that any initial capital in \mathcal{U} must be at least $u_0, \ u_0 \leq h_{\mathrm{up}}$.

An Inequality for the Upper and Lower Prices

For lower bound: Similarly, we can show that $0 \le h_{\text{low}} \le u_0$. Indeed, since the set $\mathcal L$ contains x=0, it is nonempty. For any $x\ge 0$ in this set, again by the supermartingale property, almost surely.

$$-x \ge \mathbb{E}^0 \left[\gamma(T) X^{\check{\pi},\check{C}}(T) + \int_0^T \gamma(s) d\hat{C}(s) \right]$$

$$\ge \mathbb{E}^0 \left[\gamma(T) (-\psi(T)) + \int_0^T \exp\left(-\int_0^s r(u) du\right) d\hat{C}(s) \right]$$

$$\ge \mathbb{E}^0 \left[\gamma(T) (-\psi(T)) \right]$$

By the definition of \mathcal{L} . Hence, $x \leq \mathbb{E}^0 \left[\gamma(T) \psi(T) \right]$ and $0 \leq h_{\text{low}} \leq u_0$, almost surely.

Dominance Outside the Interval

Claim: for any ECC price $\psi(0) > h_{\rm up}$, there exists a dominant opportunity in (M,ψ) ; similarly for any ECC price $\psi(0) < h_{\rm low}$.

Suppose that $\psi(0) > h_{\rm up}$. Then for any $x_1 \in (h_{\rm up}, \psi(0))$ we know that $x_1 \in \mathcal{U}$, since $h_{\rm up}$ is the left endpoint of a connected interval \mathcal{U} . By the definition of \mathcal{U} , there exists a $(\hat{\pi}, \hat{C}) \in \mathcal{A}$ such that:

$$X^{\hat{\pi},\hat{C}}(0) - \psi(0) = x_1 - \psi(0) < 0$$

because $x_1 < \psi(0)$, and

$$X^{\hat{\pi},\hat{C}}(T) - \psi(T) \ge \psi(T) - \psi(T) = 0$$

Hence the definition of the dominance is satisfied with a=-1.

Dominance Outside the Interval

Suppose $\psi(0) < h_{\text{low}}$. Then for any $x_1 \in (\psi(0), h_{\text{low}})$ we know that $x_1 \in \mathcal{L}$, since h_{low} is the right endpoint of a connected interval \mathcal{L} . By definition of $\sup \mathcal{L}$, there exists an admissible strategy $(\check{\pi}, \check{C})$ such that:

$$X^{\hat{\pi},\hat{C}}(0) = -x_1, \quad X^{\hat{\pi},\hat{C}}(T) \ge -\psi(T)$$

Consider:

$$X^{\hat{\pi},\hat{C}}(0) + \psi(0) = -x_1 + \psi(0) < 0$$

because $x_1 > \psi(0)$, and

$$X^{\hat{\pi},\hat{C}}(T) + \psi(T) \ge -\psi(T) + \psi(T) = 0$$

Hence the definition of the dominance is satisfied with a=1.

No dominance within the Interval

Show that for any $\psi(0) \in [h_{\text{low}}, h_{\text{up}}]$ there is no dominant opportunity in (\mathcal{M}, ψ) . Proof:

Suppose there is a dominant opportunity with $\psi(0) \in [h_{\text{low}}, h_{\text{up}}].$

Case 1: The dominant opportunity satisfies the definition with a=-1. In this case, there exist an initial wealth $x\in[0,\infty)$ and a pair $(\pi_1,C_1)\in\mathcal{A}$, such that:

$$x - \psi(0) = X^{\pi_1, C_1}(0) - \psi(0) < 0$$

whence $x < \psi(0)$, and

$$X^{\pi_1,C_1}(T) - \psi(T) \ge 0$$
, a.s.

From the definition of $\mathcal U$ we know that $x\in\mathcal U$, where $x\geq h_{\rm up}$, by the definition of $h_{\rm up}$. Therefore, $h_{\rm up}\leq x<\psi(0)$; a contradiction, since by assumption $h_{\rm up}\geq \psi(0)$.

No dominance within the Interval

Case 2: