ClavaDDPM: Multi-relational Data Synthesis with Cluster-guided Diffusion Models

Wei Pang

Demographic

Account Client

foreign key constraint

 $(R_{trans} \rightarrow R_{acc})$

relation R_{trans}

	Trans ID	Acc ID	Amount Type	
	1	4		•
	2	4		
	3	4		
**,	4	3		
	5	1		

Transaction

Order

Loan

Disposition

Card

A foreign key group with size 3.

Multi-relational database:

$$\mathcal{R} = (R_1, \dots, R_m)$$

Multi-relational database with foreign key constraints (DAG):

$$\mathcal{G} = (\mathcal{R}, \mathcal{E}),$$

$$\mathcal{E} = \{ (R_i \to R_i) | i, j \in \{1, ..., m\}, i \neq j, R_i \text{ refers to } R_i \}$$

We also call $(R_i \to R_j)$ a **parent-child** relationship.

Single-table Synthesis

- Each row consists of two types of variables: **categorical** and **numerical**.
- Assumptions:
 - Different columns are correlated.
 - Different rows are i.i.d.
- Solution: generative modeling treating each row as a data instance.

Cat_1	Cat_2	Num_1	Num_2
male	true	3.1	123
female	false	1.1	321
unknown	false	2.22	0

Multi-table Synthesis

- Follows the same assumption on **categorical** and **numerical** values.
- Assumptions:
 - Different columns are correlated.
 - Different tables are correlated. (parent-child relationships)
 - Rows are not i.i.d. due to foreign key constraints.
- Desiderata:
 - **Inter-column** correlations within the same table.
 - **Intra-group** correlations within the same foreign key group.
 - Inter-table correlations.

ClavaDDPM: Gaussian Diffusion as Backbone

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

.

$$p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \mathcal{N}(\boldsymbol{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\boldsymbol{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\boldsymbol{x}_t, t))$$

Learnable parameterized **reverse** process with a Gaussian form

$$\log(p_{\theta,\varphi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{y})) \approx \log(p(\mathbf{z})) + C$$

$$z \sim \mathcal{N}(\mu + \Sigma g, \Sigma)$$

$$\boldsymbol{g} = \nabla_{\boldsymbol{x}_{t-1}} \log (p_{\varphi}(\boldsymbol{y}|\boldsymbol{x}_t)|_{\boldsymbol{x}_{t-1} = \boldsymbol{\mu}})$$

Classifier-guided sampling

Gaussian transition **forward** process

Child ID	Parent ID	X
1	2	x_1
2	2	x_2
3	1	x_3
4	3	x_4
5	3	<i>x</i> ₅
6	3	<i>x</i> ₆
7	4	x_7
8	4	<i>x</i> ₈
9	5	<i>x</i> ₉
10	5	<i>x</i> ₁₀

Parent ID	Y
1	y_1
2	y_2
3	y_3
4	\mathcal{Y}_4
5	${\cal Y}_5$

Child ID	Parent ID	X			
1	2	x_1			
2	2	x_2	Foreign key group g_1	Parent	: ID
3	1	<i>x</i> ₃		1	
4	3	x_4		2	
5	3	x_5		3	
6	3	<i>x</i> ₆		4	
7	4	<i>x</i> ₇		5	
8	4	<i>x</i> ₈		J	
9	5	x_9			
10	5	<i>x</i> ₁₀			

Child ID	Parent ID	X			
1	2	x_1			
2	2	<i>x</i> ₂	Foreign key group g_2	Parent ID	
3	1	<i>x</i> ₃		1	_
4	3	x_4		2	
5	3	x_5	·	3	•
6	3	<i>x</i> ₆		4	
7	4	<i>x</i> ₇		5	
8	4	<i>x</i> ₈		5	
9	5	<i>x</i> ₉			
10	5	<i>x</i> ₁₀			

Child ID	Parent ID	X				
1	2	x_1				
2	2	x_2			Parent ID	
3	1	<i>x</i> ₃				
4	3	x_4	•	Foreign key group g_3	1	
5	3	<i>x</i> ₅		0 70 103	2	
6	3	<i>x</i> ₆			3	
	•••••		•		4	
7	4	x_7				
8	4	<i>x</i> ₈			5	
9	5	<i>x</i> ₉				
10	5	<i>x</i> ₁₀				

	Child ID	Parent ID	X			
	1	2	x_1			
	2	2	<i>x</i> ₂		Parent ID	Y
	3	1	<i>x</i> ₃			
	4	3	x_4		1	y_1
	5	3	<i>x</i> ₅		2	y_2
	6	3	<i>x</i> ₆	Foreign key group g_4	3	<i>y</i> ₃
•	7	4	<i>x</i> ₇		4	У4
	8	4	<i>x</i> ₈		5	<i>y</i> ₅
	9	5	<i>x</i> ₉			
	10	5	<i>x</i> ₁₀			

	Child ID	Parent ID	X
	1	2	x_1
	2	2	x_2
	3	1	x_3
	4	3	x_4
	5	3	<i>x</i> ₅
	6	3	<i>x</i> ₆
	7	4	<i>x</i> ₇
	8	4	<i>x</i> ₈
*	9	5	<i>x</i> ₉
	10	5	<i>x</i> ₁₀

	Parent ID	Y
	1	y_1
	2	y_2
	3	y_3
•	4	y_4
	5	${\mathcal Y}_5$

Foreign key group g_5

Child ID	Parent ID	X
1	2	
2	2	g_2
3	1	g_1
4	3	
5	3	g_3
6	3	
7	4	_
8	4	g_4
9	5	<i>a</i>
10	5	g_5

Instead of modeling x directly, we model foreign key groups g.

Parent ID	Y
1	y_1
2	y_2
3	y_3
4	<i>y</i> 4
5	<i>y</i> ₅

ClavaDDPM: Modelling

Assumptions

- Each parent row *y* is i.i.d.
- The child row distribution x is and only is constrained by its parent y.
 - Child table *X* is formed by a collection of foreign key groups $X = \{g_1, ..., g_{|y|}\}$.
 - Each foreign key group g_j is formed by a collection of rows $g_j = \{x_j^i | i = 1, ..., |g_j|\}$, which corresponds to parent row y_j .

ClavaDDPM: Modelling

Idea

- Model parent table distribution p(y).
- Model conditional foreign key group distribution p(g|y).

Difficulties

- Parent table space *Y* can be sparse and badly shaped.
- Vectors y can be high-dimensional.

Modelling the full conditional distribution p(g|y) can be **costly** and leads to **bad performance**.

- Instead of learning the full conditional distribution p(g|y) directly:
 - We quantize (g, y) into codebook c. We call this *relation-aware clustering*.
 - Use *c* as a proxy for modelling foreign key group distributions.

$$p(g_j, y_j) = \sum_{c} p(g_j|c)p(y, c)$$

Gaussian Mixture Models (GMM) clustering.

Child ID	Parent ID	X
1	2	
2	2	g_2
3	1	g_1
4	3	
5	3	g_3
6	3	
7	4	a
8	4	g_4
9	5	
10	5	g_5

JOIN

Parent ID	Y
1	y_1
2	y_2
3	y_3
4	y_4
5	${\mathcal Y}_5$

Child ID	Parent ID	X	Y
1	2	_	
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4	_	
8	4	${g_4}$	y_4
9	5	a	27
10	5	g_5	${\cal Y}_5$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4	a	27
8	4	g_4	y_4
9	5	a	27
10	5	g_5	${\mathcal Y}_5$

Child ID	Parent ID	X	Y	С
1	2			
2	2	g_2	y_2	c_2
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	<i>c</i> ₃
6	3			
7	4	~		
8	4	${g}_4$	y_4	<i>c</i> ₂
9	5	_		_
10	5	g_{5}	${\cal Y}_5$	<i>c</i> ₃

Same cluster indicates similar parent and children, serving as a quantization.

Child ID	Parent ID	X	Y	С
1	2	~		
2	2	g_2	y_2	<i>c</i> ₂
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4	a	27	C
8	4	g_4	y_4	<i>c</i> ₂
9	5	a.	27.	C.
10	5	g_5	${\mathcal Y}_5$	<i>c</i> ₃

Augmented parent table

Parent ID	Y	C
2	y_2	<i>c</i> ₂
1	y_1	c_1
3	y_3	<i>c</i> ₃
4	y_4	<i>c</i> ₂
5	y_5	<i>c</i> ₃

Original parent table

Parent ID	Y
1	y_1
2	y_2
3	<i>y</i> ₃
4	<i>y</i> ₄
5	<i>y</i> ₅

Augmented parent table

Parent ID	Y	C
2	y_2	<i>c</i> ₂
1	y_1	c_1
3	y_3	<i>c</i> ₃
4	y_4	c_2
5	<i>y</i> 5	<i>c</i> ₃

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	y_3
6	3		
7	4	a	27
8	4	g_4	\mathcal{Y}_4
9	5	<i>a</i>	27
10	5	g_5	${\cal Y}_5$

Child ID	Parent ID	X	Y	C
1	2	, !		
2	2	<i>g</i> ₂	<i>y</i> ₂	<i>c</i> ₂
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4	_		_
8	4	g_4	y_4	<i>c</i> ₂
9	5	_		_
10	5	g_5	${\cal Y}_5$	<i>c</i> ₃

Sampled from $g_2|c_2$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4	a	27
8	4	g_4	y_4
9	5	a	21
10	5	g_5	${\cal Y}_5$

Child ID	Parent ID	X	Y	C
1	2			
2	2	g_2	y_2	c_2
3	1	g_1	<i>y</i> ₁	c_1
4	3	· · · · · · · · · · · · · · · · · · ·	у ₃	c_3
5	3	g_3		
6	3			
7	4			
8	4	g_4	y_4	c_2
9	5			
10	5	g_5	y_5	c_3

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	y_3
6	3		
7	4	a	27
8	4	g_4	\mathcal{Y}_4
9	5	a	27
10	5	g_{5}	${\cal Y}_5$

Child ID	Parent ID	X	Y	С
1	2			
2	2	g_2	y_2	c_2
3	1	g_1	y_1	c_1
4	3	g_3		
5	3		У3	c_3
6	3			
7	4	-		
8	4	${\cal g}_4$	y_4	c_2
9	5	-		
10	5	g_5	y_5	<i>c</i> ₃

Sampled from $g_3|c_3$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4	a	27
8	4	g_4	y_4
9	5	a	27
10	5	g_{5}	<i>y</i> ₅

Child ID	Parent ID	X	Y	С
1	2	_		_
2	2	g_2	y_2	<i>c</i> ₂
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4			
8	4	<i>g</i> ₄	y_4	c_2
9	5	~		
10	5	g_5	y_5	<i>c</i> ₃

Sampled from $g_4|c_2$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	<i>y</i> ₁
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4	a	27
8	4	g_4	y_4
9	5	~	
10	5	g_5	<i>y</i> ₅

Child ID	Parent ID	X Y C
1	2	
2	2	g_2 y_2 c_2
3	1	g_1 y_1 c_1
4	3	
5	3	g_3 y_3 c_3
6	3	
7	4	a v a
8	4	g_4 y_4 c_2
9	5	
10	5	g_5 y_5 c_3

Sampled from $g_5|c_3$

Child ID	Parent ID	X	Y
1	2		
2	2	g_2	y_2
3	1	g_1	y_1
4	3		
5	3	g_3	<i>y</i> ₃
6	3		
7	4	a	27
8	4	g_4	y_4
9	5	a	27
10	5	g_{5}	<i>y</i> ₅

Child ID	Parent ID	X	Y	C
1	2			
2	2	g_2	y_2	<i>c</i> ₂
3	1	g_1	y_1	c_1
4	3			
5	3	g_3	y_3	c_3
6	3			
7	4	<i>a</i>		
8	4	g_4	y_4	<i>c</i> ₂
9	5		21	
10	5	g_5	<i>y</i> ₅	<i>C</i> ₃

How many rows does g_3 contain?

- Model group size s = |g|.
- Two-step generation:
 - Sample group size *s*.
 - Sample *s* rows in foreign key group *g*.

$$p(g_j|c) = p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

Sample
$$p(c, y)$$
 c

ClavaDDPM: Group Size

ClavaDDPM: Group Size

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

$$p(X,Y) \approx \prod_{j=1}^{|R_2|} \sum_{c} p(y_j,c) p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

$$p(X,Y) \approx \prod_{j=1}^{|R_2|} \sum_{c} p(y_j,c) p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

Diffusion model for augmented parent table

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

- Parent table R_1 , data denoted Y.
- Child table R_2 , data denoted X.
- Cluster latent *c*, group size *s*.

$$p(X,Y) \approx \prod_{j=1}^{|R_2|} \sum_{c} p(y_j,c) p(s_j|c) \prod_{i=1}^{s_j} p(x_j^i|c)$$

Classifier guided sampling using child diffusion model p(x) and classifier p(c|x)

child

parent

Train diffusion model p(y, c) on augmented parent

Train diffusion model p(y, c) on augmented parent

Note: the **parent** augmentation depends on **child**.

ClavaDDPM: Two Tables Sampling

ClavaDDPM: Two Tables Sampling

Note: the **child** sampling depends on **parent**.

Cluster, augment, and train

• Parent: Disposition

• Child: Card

Cluster, augment, and train

• Parent: Client

• Child: **augmented** Disposition

Cluster, augment, and train

• Parent: Account

• Child: **augmented** Disposition

Cluster, augment, and train

- Parent: **augmented** Account
- Child: Loan

Cluster, augment, and train

- Parent: **augmented** Account
- Child: Order

Cluster, augment, and train

• Parent: **augmented** Account

• Child: Transaction

Cluster, augment, and train

- Parent: Demographic
- Child: **augmented** Account

Cluster, augment, and train

- Parent: **augmented** Demographic
- Child: **augmented** Client

Synthesize **augmented** Demographic

Demographic

Conditioned on **augmented** Demographic Synthesize **augmented** Demographic

Conditioned on **augmented** Demographic Synthesize **augmented** Client

Conditioned on **augmented** Account Synthesize Transaction

Conditioned on **augmented** Account Synthesize Order

Conditioned on **augmented** Account Synthesize Loan

Conditioned on augmented Account
Synthesize augmented Disposition (Account)

Account

Client

Demographic

Account

Client

Disposition (Account)

Conditioned on **augmented** Client Synthesize **augmented** Disposition (Client)

Demographic Conditioned on **augmented** Disposition (Client) Synthesize Card Client Account Order Transaction Disposition Loan (Client) Card

Remove augmented columns

Extension to More: Multi-parent Dilemma

Disposition (Client)

Disp ID	Client ID	X ^c
1	2	x_1^c
2	2	x_2^c
3	1	x_3^c
4	3	x_4^c
5	3	x_5^c
6	3	x_6^c
7	4	x_7^c x_8^c
8	4	x_8^c

Disposition (Account)

Disp ID	Account ID	X^a	
1	2	x_1^a	
2	1	x_2^a	
3	3	x_3^a	
4	5	x_4^a	
5	5	x_5^a	
6	2	x_6^a	
7	2	x_7^a	
8	1	x_8^a	
9	3	x_9^a	

Extension to More: Multi-parent Dilemma

Disposition (Client)

Disp ID	Client ID	X ^c
1	2	x_1^c
2	2	x_2^c
3	1	x_3^c
4	3	x_4^c
5	3	x_5^c
6	3	x_6^c
7	4	x_7^c
8	4	x_8^c

Disposition (Account)

X^a	Disp ID	Account ID	
x_1^a	1	2	
x_2^a	2	1	
x_3^a	3	3	
x_4^a	4	5	
x_5^a	5	5	
x_6^a	6	2	
x_7^a	7	2	
x_8^a x_9^a	8	1	
x_9^a	9	3	

Extension to More: Matching

Disposition (Client)

Disp ID	Client ID	X ^c
1	2	x_1^c
2	2	x_2^c
3	1	x_3^c
4	3	x_4^c
5	3	x_5^c
6	3	x_6^c
7	4	x_7^c
8	4	x_8^c

Disposition (Account)

Xa	Disp ID	Account ID	
x_1^a	1	2	
x_2^a	2	1	
x_3^a	3	3	
x_4^a	4	5	
x_5^a	5	5	
x_6^a	6	2	
x_7^a	7	2	
x_8^a	8	1	
x_9^a	9	3	

Disposition

Disp ID	Client ID	Account ID	X
1	2		
2	2		
3	1		
4	3		
5	3		
6	3		
7	4		
8	4		

Disposition (Client)

Disposition (Account)

ъ.	• . •
1)1sn(sition
Dispe	DILIOII

Disp ID	Client ID	X^c	X^a	Disp ID	Account ID
1	2	x_1^c	$\rightarrow x_1^a$	1	2
2	2	x_2^c	x_2^a	2	1
3	1	x_3^c	x_3^a	3	3
4	3	x_4^c	x_4^a	4	5
5	3	x_5^c	x_5^a	5	5
6	3	x_6^c	x_6^a	6	2
7	4	x_7^c	x_7^a	7	2
8	4	x_8^c	x_8^a	8	1
	<u>'</u>	Ü	x_9^a	9	3

Disp II	D Client ID	Account ID	X
1	2	2	(x_1^c, x_1^a)
2	2		
3	1		
4	3		
5	3		
6	3		
7	4		
8	4		

Disposition (Client)

Disposition (Account)

ъ.	• . •
1)1SDC	sition
Dispe	DICIOII

Disposition (Client)

Disposition (Account)

ъ.	• . •
L)isn	osition
	Oblition

Disposition (Client)

Disposition (Account)

Disposition

Account

Disposition (Client)

Disposition (Account)

Disposition

Disposition (Client)

Disposition (Account)

Disposition

Disposition (Client)

Disposition (Account)

Disposition

Disposition (Client)

Disposition (Account)

Disposition

Account

4

2

Evaluation: Metrics

- Kolmogorov-Sirnov Test (KST): measures the distance between two continuous distributions.
- Total Variation Distance (TVD): measures the distance between two discrete distributions.
- Pearson Correlation Coefficient: measures the correlation between two continuous distributions.
- Contingency Similarity: measures the distance between two discrete joint distributions.

Evaluation: Long-range Dependency

Evaluation: Long-range Dependency

Evaluation: Datasets

	# Tables	# Foreign Key Constraints	Depth	Total # of Attributes	# Rows in Largest Table
California	2	1	2	15	1,690,642
Instacart 05	6	6	3	12	1,616,315
Berka	8	8	4	41	1,056,320
Movie Lens	7	6	2	14	996,159
CCS	5	4	2	11	383,282

Evaluation: Baselines

- SDV HMA Synthesizer
- PrivLava $\varepsilon = 50$
- Single Table (ST): each table is synthesized independently.
- Denorm (D): synthesizes the joint table, then split into separate tables.
- Single table synthesis backbones:
 - CTGAN
 - TabDDPM
 - ClavaDDPM

Evaluation: Results

End-to-end	PrivLava	SDV	ST-CTGAN	ST-TabDDPM	ST-ClavaDDPM	D-CTGAN	D-TabDDPM	D-ClavaDDPM	ClavaDDPM
California CARDINALITY 1-WAY 0-HOP 1-HOP AVG 2-WAY	$\begin{array}{c} 99.90 \pm 0.03 \\ 99.71 \pm 0.02 \\ 98.49 \pm 0.05 \\ 97.46 \pm 0.12 \\ 97.97 \pm 0.09 \end{array}$	$71.45 \pm 0.00 \\ 72.32 \pm 0.00 \\ 50.23 \pm 0.00 \\ 54.89 \pm 0.00 \\ 52.56 \pm 0.00$	$\begin{array}{c} 99.93\ \pm0.02\\ 91.59\ \pm0.50\\ 87.67\ \pm0.63\\ 84.82\ \pm0.61\\ 86.25\ \pm0.60\\ \end{array}$	$\begin{array}{c} 99.94 \pm 0.00 \\ 83.27 \pm 0.07 \\ 79.27 \pm 0.08 \\ 78.44 \pm 0.04 \\ 78.85 \pm 0.06 \end{array}$	$\begin{array}{c} 99.89 \pm 0.04 \\ 99.51 \pm 0.04 \\ 98.69 \pm 0.08 \\ 92.96 \pm 0.05 \\ 95.83 \pm 0.07 \end{array}$	$\begin{array}{c} 99.90 \pm 0.07 \\ 91.22 \pm 0.07 \\ 86.58 \pm 0.44 \\ 82.72 \pm 0.30 \\ 84.65 \pm 0.35 \end{array}$	$\begin{array}{c} 99.94 \pm 0.00 \\ 93.10 \pm 0.84 \\ 91.12 \pm 1.35 \\ 84.43 \pm 1.80 \\ 87.78 \pm 1.57 \end{array}$	$\begin{array}{c} 99.87 \pm 0.02 \\ 94.99 \pm 0.02 \\ 94.17 \pm 0.01 \\ 87.24 \pm 0.10 \\ 90.71 \pm 0.04 \end{array}$	$\begin{array}{c} 99.19 \pm 0.29 \\ 98.77 \pm 0.02 \\ 97.65 \pm 0.05 \\ 95.16 \pm 0.39 \\ 96.41 \pm 0.20 \end{array}$
Instacart 05 CARDINALITY 1-WAY 0-HOP 1-HOP 2-HOP AVG 2-WAY	DNC	DNC	$\begin{array}{c} 95.78 \pm 0.96 \\ 79.85 \pm 0.96 \\ 78.27 \pm 0.28 \\ 62.48 \pm 0.16 \\ 24.82 \pm 8.02 \\ 60.05 \pm 1.40 \end{array}$	TLE	$\begin{array}{c} 94.73 \pm 0.14 \\ 89.30 \pm 0.00 \\ 99.70 \pm 0.00 \\ 66.93 \pm 0.07 \\ 16.22 \pm 13.41 \\ 66.66 \pm 2.37 \end{array}$	$\begin{array}{c} 93.81\ \pm0.39\\ 69.07\ \pm0.57\\ 84.85\ \pm0.44\\ 60.26\ \pm0.38\\ 0.00\ \pm0.00\\ 56.19\ \pm0.33 \end{array}$	TLE	$\begin{array}{c} 94.98 \pm 0.84 \\ 71.83 \pm 0.32 \\ 88.74 \pm 0.00 \\ 62.58 \pm 0.05 \\ 0.00 \pm 0.00 \\ 58.52 \pm 0.03 \end{array}$	$\begin{array}{c} 95.30 \pm 0.79 \\ 89.84 \pm 0.29 \\ 99.62 \pm 0.04 \\ 76.42 \pm 0.39 \\ 39.29 \pm 3.38 \\ 76.02 \pm 0.78 \end{array}$
Berka CARDINALITY 1-WAY 0-HOP 1-HOP 2-HOP 3-HOP AVG 2-WAY	DNC	DNC	$\begin{array}{c} 96.08 \pm 0.18 \\ 79.78 \pm 0.75 \\ 74.24 \pm 0.32 \\ 66.59 \pm 0.54 \\ 75.83 \pm 1.07 \\ 72.58 \pm 0.86 \\ 73.22 \pm 0.45 \end{array}$	68.29 ± 0.00 76.41 ± 2.21 72.80 ± 1.23 54.01 ± 2.35 59.88 ± 1.39 55.29 ± 1.58 61.74 ± 1.57	$\begin{array}{c} 97.06 \pm 0.80 \\ 94.58 \pm 0.01 \\ 91.72 \pm 0.23 \\ 81.77 \pm 1.19 \\ 78.09 \pm 0.53 \\ 75.56 \pm 0.34 \\ 82.33 \pm 0.40 \end{array}$	$\begin{array}{c} 97.72 \pm 0.29 \\ 83.00 \pm 0.65 \\ 76.04 \pm 0.34 \\ 75.25 \pm 0.55 \\ 72.40 \pm 0.43 \\ 71.74 \pm 0.69 \\ 73.94 \pm 0.37 \end{array}$	$\begin{array}{c} 97.71 \pm 0.00 \\ 80.09 \pm 0.68 \\ 74.82 \pm 0.49 \\ 61.99 \pm 2.10 \\ 63.94 \pm 1.33 \\ 62.67 \pm 2.26 \\ 66.29 \pm 1.30 \end{array}$	$\begin{array}{c} 96.06 \pm 1.15 \\ 83.28 \pm 0.97 \\ 72.12 \pm 0.73 \\ 55.77 \pm 2.80 \\ 57.68 \pm 1.67 \\ 55.59 \pm 1.48 \\ 60.93 \pm 1.49 \end{array}$	$\begin{array}{c} 96.92 \pm 0.71 \\ 94.29 \pm 0.44 \\ 91.49 \pm 0.82 \\ 86.86 \pm 2.74 \\ 89.25 \pm 2.27 \\ 87.27 \pm 1.92 \\ 89.21 \pm 1.95 \end{array}$
Movie Lens CARDINALITY 1-WAY 0-HOP 1-HOP AVG 2-WAY	DNC	DNC	$\begin{array}{c} 98.91\ \pm0.06\\ 86.58\ \pm0.80\\ 72.80\ \pm0.86\\ 74.86\ \pm0.63\\ 74.10\ \pm0.62\\ \end{array}$	TLE	$\begin{array}{c} 98.99 \pm 0.16 \\ 99.19 \pm 0.00 \\ 98.56 \pm 0.01 \\ 92.72 \pm 0.09 \\ 94.87 \pm 0.06 \end{array}$	$\begin{array}{c} 98.70 \pm 0.40 \\ 68.38 \pm 0.36 \\ 31.96 \pm 0.32 \\ 58.00 \pm 0.05 \\ 48.45 \pm 0.09 \end{array}$	TLE	$\begin{array}{c} 98.87 \pm 0.26 \\ 78.03 \pm 0.17 \\ 57.33 \pm 0.10 \\ 77.45 \pm 1.93 \\ 70.07 \pm 1.19 \end{array}$	$\begin{array}{c} 99.07 \pm 0.18 \\ 99.34 \pm 0.10 \\ 98.69 \pm 0.15 \\ 96.19 \pm 0.11 \\ 97.11 \pm 0.02 \end{array}$
CCS CARDINALITY 1-WAY 0-HOP 1-HOP AVG 2-WAY	DNC	74.36 ± 8.40 69.04 ± 4.38 94.84 ± 1.00 21.74 ± 9.62 41.68 ± 6.73	$\begin{array}{c} 99.00 \pm 0.53 \\ 82.21 \pm 0.32 \\ 87.02 \pm 0.18 \\ 49.84 \pm 2.30 \\ 59.98 \pm 1.72 \end{array}$	$\begin{array}{c} 93.70\ \pm0.00\\ 82.72\ \pm0.06\\ 88.10\ \pm0.07\\ 47.11\ \pm0.06\\ 58.29\ \pm0.06 \end{array}$	$\begin{array}{c} 99.37 \pm 0.16 \\ 95.20 \pm 0.00 \\ 98.96 \pm 0.00 \\ 51.62 \pm 0.22 \\ 64.53 \pm 0.16 \end{array}$	$\begin{array}{c} 26.98 \pm 0.05 \\ 73.68 \pm 0.35 \\ 81.70 \pm 0.33 \\ 56.86 \pm 0.66 \\ 63.64 \pm 0.57 \end{array}$	$\begin{array}{c} 26.97 \pm 0.00 \\ 79.28 \pm 0.10 \\ 87.15 \pm 0.16 \\ 61.53 \pm 1.50 \\ 68.51 \pm 1.11 \end{array}$	$\begin{array}{c} 26.70 \pm 0.20 \\ 79.29 \pm 0.13 \\ 86.60 \pm 0.14 \\ 57.77 \pm 0.69 \\ 65.64 \pm 0.50 \end{array}$	$\begin{array}{c} 99.25 \pm 0.16 \\ 92.37 \pm 2.30 \\ 98.47 \pm 0.79 \\ 83.15 \pm 4.22 \\ 87.33 \pm 3.12 \end{array}$

WATERLOO

Thank you!

Our greatest impact happens together.