Assign Final Project

Overview

- Requirements:
 - Your final project must be at least as complex as any of the other projects
 - You must demonstrate your project on the Nexys A7 board, but you can use additional SBC's, sensors, mobile devices, etc.
 - Your project must be an SoC w/ embedded CPU and custom hardware and software
 - Your project must make use of the embedded CPU in a <u>significant</u> way
 - ☐ Your project <u>does not</u> need to use RVfpga as the embedded CPU
 - Your results must be visible and should be interesting to class
- Can be done in teams of 2, 3 (preferred) or 4 (w/ sufficient justification)
 - Final project teams are self-assigning like we did for the other projects. Use the final project teams group in D2L
 - Final project teams will make use of GitHub

Timetable

- Proposal submitted to D2L by 10:00 PM on Sat, 27-Feb... earlier would be better to get a faster turnaround
- Written final project progress reports submitted to D2L by 10:00
 PM on Sat, 12-Mar
- Zoom-based Demo Day on Tue, 16-Mar from 2:00 PM 4:30 PM (tentative)
 - If one or more of your team membes have a conflict w/ another final exam or final project I will try to adjust the demo schedule to meet your needs
- Deliverables pushed to GitHub and uploaded to D2L by 10:00 PM on Thu, 18-Mar
 - We will use GitHub and GitHub classroom for the final project
 - We are asking you to also submit a .zip file of your GitHub repository to D2L as a backup
 - NO LATE SUBMISSIONS ACCEPTED w/o PERMISSION IN ADVANCE

Scope

- You may use:
 - The switches, buttons, display, LEDs on the Nexys A7
 - Other Nexys A7 peripherals (accelerometer, temp sensor, XADC, mic...)
 - Digilent (<u>https://store.digilentinc.com/pmod-modules-connectors//</u>) and Maxim Semiconductor have a variety of Peripheral **mod**ules (for additional functionality
 - Additional peripherals connected to the board (ex: ESP8266 for WiFi, VGA monitor, sensors, SBC's etc.)
 - Proto-strip or proto solder boards for external components

PROCURE ANY ADDITIONAL HW YOU NEED IMMEDIATELY!!!

- Online distributors <u>Digikey</u>, <u>Mouser</u>, etc.
- <u>sparkfun.com</u>, <u>adafruit.com</u>, <u>seeed studio</u> and other hobbyist sites (see Circuit Cellar)
- Surplus Gizmos (<u>surplusgizmos.com</u>)

Project Proposal

Your project proposal should include the following:

- Project name and team members
- Project description
 - What are you going to build?
 - □ What component(s) will you use?
 - ☐ Block diagram of your design as you envision it
- Design aApproach
 - ☐ How are you going to build it?
 - How will you demonstrate success (committed and stretch goals)?
 - What are your options if you start running out of time?
 - It helps to structure your proposal as committed functionality and "stretch" functionality
- Milestones
 - Weekly target dates to demonstrate that you're making acceptable progress towards completion

Grading

- Grading will be as follows:
 - Project progress report and demo presentation 5%
 - Final project presentation at Demo Day 20%
 - Correctly implements committed functionality 40%
 - Quality of design report 15%
 - Quality of code (comments, clarity, etc.) 15%
 - Degree of difficulty 5%
- Extra credit (up to 8 pts.) is possible if you go above and beyond your accepted proposal...and if the design report is good, your code is well commented, your demo works, etc.
- You are encouraged to submit, by email or in a 1-on-1 conversation w/ me, confidential reviews of your team members' performance (good and bad – the earlier the better
- □ The Final Project is 25% of your final grade

Deliverables

- Design Report:
 - Overview of your project including an English description of the circuit's function
 - Block diagram of your circuit
 - Design details, including a theory of operation, state transition diagrams or equivalent, etc.
 - Results (good and bad)
 - Contributions of individual team members
 - No more than 10 pages please

The purpose of your design report is to provide insight into your implementation. A design report with an appropriate level of detail and nicely organized and commented code are a pleasure to grade (and you want us to be happy when you're grading your project...don't you). Use the pages wisely. We don't need pages and pages of full-size figures or long blocks of code. Be concise and provide descriptions and/or explanations for the code snippets, figures, etc.

Deliverables (cont'd)

- □ Demo video. The video should be narrated by one of the team members and demonstrate the committed (and "stretch" if you completed them) features from your approved proposal
 - It is a good idea to have this video ready for your final project presentation – your presentation and demo will go more smoothly if you have a video to show during demo in case, or in lieu of, trying to do a "live" demo during a Zoom meeting
- Source Code:
 - Listings of all <u>your</u> SystemVerilog files (you do not need to include test benches)
 - Listings of <u>your</u> program source code for the embedded CPU(s) in your design
 - Your code should be liberally commented and use descriptive signal and/or variables names
- .ppt or .pdf, etc. of your final project progress report and demo presentation
- bit and executable files We may try running your project
 - Include instructions in a Readme file if they are needed to run the project

Combined ECE 540/ECE 558 project

Since several of you are taking both ECE 540 and ECE 558 this term we are willing to consider joint projects that meet these requirements:

- At least one of the team members must be enrolled in both ECE 540 and ECE 558 this term
- Your final project must be at least as complex as any of the other projects in either course
- The project needs to meet the requirements for both the ECE 540 and ECE 558 final projects
 - Your project must include an SoC w/ embedded CPU and custom hardware and software running on the Nexys A7
 - ☐ Your project must include an Android app interfaced to the SoC running on the Nexys A7 board
 - ☐ The scope of the development effort for the SoC and the Android app must be comparable
- Work with Roy before the proposal is due to agree on concept and scope of the project
 - Be prepared to discuss the concept and work-breakdown (who will be doing what)
 - Final decision on what is acceptable as a combined project is Roy's

Project Ideas

- Add keyboard and/or mouse input and do something interesting (ex: a card game or slot machine)
 - There are several open source mouse and keyboard interfaces in VHDL and Verilog. If you use them acknowledge the source
- Creative video graphics/games
 - Arcade-style games (not Duck Hunt, Pong, Pacman, or Snake...I've seen too many of those)
- □ Enhance the RojoBot (add additional sensors, weapons, etc.)
 - BotSim RojoBot simulator source code is available on request to Roy
- ☐ Build something "physical" (ex: robot platform)
- Implement a link between two Nexys A7 boards or a Nexys A7 and a single-board computer (ex: Arduino, RPI, etc.) as part of a "visually interesting" application
 - ex: Two player Battleship game
- Make use of a network connection (Ethernet, BLE, WiFi, wireless radio) to enhance your perhaps with a mobile app
 - ex: wireless irrigation system or IoT system

Project Ideas (cont'd)

- Expand one or more of the RVfpga Labs
- Use a different soft core CPU (ex: ARM DesignStart or FPGArduino) and interface it to peripherals
- Do something that involves lighting
 - Addressable LED Strip: https://www.sparkfun.com/search/results?term=addressable+led+strip
 - Addressable LED Panel: https://www.sparkfun.com/search/results?term=led+panel
 - Electroluminescent Panels:
 - □ CAUTION: requires high-voltage circuitry
 - □ https://www.sparkfun.com/search/results?term=EL+panel
 - Check Circuit Cellar and Elektor for project ideas

FPGA Project Resources

- www.opencores.org Open source HDL IP cores
 - Wide variety of functions not necessarily optimized for FPGA
- www.fpga4fun.com Lots of fun FPGA projects
- www.xilinx.com

Winter 2020 "Wall of Fame" winner

Duck Hunt

Thong D., Ramprakash B., Abhiraj AE

Demo video: ...\videos\DuckHuntFPGA Demo Video.mp4

Spring 2019 "Wall of Fame" winner

IoT-based Thermostat Controller (Combined ECE 558/544 Project)

Daniel D., Meshal A., Tristin K.

Winter 2019 "Wall of Fame" winner

Invaders from Space

Bradon K., Grant V., Brian H., Jamie W.

Actual protoboard plugged into Nexys A7

Simplified high-level program flow

Fall 2017 "Wall of Fame" winner

Motion Cricket

Varun Krishna Kayala, Vamsi Krishna Reddy Puritipati, Pradeep Reddy Pachika

Other resources – a small sampling

- https://learn.digilentinc.com/- Project ideas, contest winners, etc.
- http://www.elektor-labs.com/ Project ideas, kits, etc.
- http://www.clubjameco.com/index.php/contents More project ideas, kits, etc.

This space available for you

