In the Claims:

- (Original) A semiconductor package including a substrate,
 - an integrated circuit mounted on the substrate, and

a heat conductive plate having a portion interposed between the integrated circuit and the substrate, the heat conductive plate being heat-conductively connected to the integrated circuit and having at least one portion extending laterally out from between the integrated circuit and the substrate.

- 2. (Original) A semiconductor package according to claim 1 in which the integrated circuit is encased in resin, the plate extending out of the resin, whereby heat generated in the integrated circuit is conducted out of the resin.
- 3. (Currently Amended) A semiconductor package according to claim 1 or claim 2 in which the plate includes a central region disposed between the substrate and the integrated circuit and arms extending laterally from the central region with openings between them, the integrated circuit being connected to the substrate by wire bonding in the openings.
- 4. (Currently Amended) A semiconductor package according to claim 3 wherein the integrated circuit has a substantially square or rectangular profile and where in which at least one of the arms extends in a direction which is diagonal relative to the overall square or rectangular profile of the integrated circuit.

- 5. (Currently Amended) A semiconductor package according to <u>claim 1</u> any preceding elaim in which the plate is grounded and electrically connected to at least one ground input of the integrated circuit.
- 6. (Currently Amended) A semiconductor package according to <u>claim 1</u> any preceding elaim in which the plate includes at least one portion of increased thickness laterally outward from the integrated circuit.
- 7. (Currently Amended) A semiconductor package according to <u>claim 1 and any preceding</u> elaim further comprising a second integrated circuit disposed between the plate and the substrate.
- 8. (Original) A semiconductor package according to claim 7 in which the plate is in heat-conductive contact to the second integrated circuit, whereby heat generated by the second integrated circuit is conducted away from the second integrated circuit by the plate.
- 9. (Currently Amended) A semiconductor package according to claim 7 or 8 in which the second integrated circuit is a flipchip.
- 10. (Currently Amended) A method of forming a semiconductor package which includes, the method comprising:

securing a heat-conductive plate over a substrate, and

mounting at least one integrated circuit over the heat-conductive plate with a heat-conductive connection therebetween, the heat conductive plate having at least one portion extending laterally out from between the integrated circuit and the substrate.

- 11. (Currently Amended) A method according to claim 10 in which after mounting the integrated circuit to the heat-conductive plate, the integrated circuit is embedded in resin, the heat-conductive plate extending laterally out of the resin.
- 12. (Currently Amended) A method according to claim 10 or claim 11 in which, prior to securing the heat-conductive plate to the substrate a second integrated circuit is mounted on the substrate, the heat-conductive plate being secured to the substrate with the second integrated circuit between a portion of the plate and the substrate.
- 13. (Currently Amended) A method according to claim 10, elaim 11 or claim 12 in which there are a plurality of said integrated circuits, the plate extending between each of the integrated circuits and the substrate, the method further including a singulation step in which the substrate and plate are cut to produce a plurality of semiconductor packages each including at least one of the integrated circuits.
- 14. (New) A packaged semiconductor device comprising:
 - a substrate including a plurality of contact regions on an upper surface;
- a heat conductive plate mounted over the substrate, the heat conductive plate comprising a central portion and a plurality of arms extending outwardly from the central portion;

an integrated circuit having a bottom surface mounted over the central portion of the heat conductive plate; and

a plurality of electrical connections between an upper surface of the integrated circuit and the contact regions of the substrate, the electrical connections extending between adjacent ones of the arms of the heat conductive plate.

- 15. (New) The packaged semiconductor device of claim 14 wherein the heat conductive plate further comprises a rim portion that surrounds the central portion and is thermally connected to the central portion by the plurality of arms.
- 16. (New) The packaged semiconductor device of claim 15 wherein the heat conductive plate includes four diagonal arms, each diagonal arm extending outwardly from a corner of the central portion to the rim portion.
- 17. (New) The packaged semiconductor device of claim 16 wherein the heat conductive plate further includes four lateral arms, each lateral arm extending outwardly from a side surface of the central portion of the plate to the rim portion.
- 18. (New) The packaged semiconductor device of claim 14 wherein the electrical connections comprise wire bonds.

- 19. (New) The packaged semiconductor device of claim 14 and further comprising a plurality of balls disposed on a lower surface of the substrate, each of the balls electrically coupled to a respective one of the contact regions.
- 20. (New) The packaged semiconductor device of claim 14 wherein the central portion of the heat conductive plate is affixed to the integrated circuit by heat-conductive glue and wherein the central portion of the heat conductive plate is affixed to the substrate by heat-conductive glue.