Practica 1.0 Naturaleza del análisis de las series de tiempo

Carrera: Licenciatura en Ciencia de Datos

Grupo: 6AV1

Materia: Análisis de Series de Tiempo

Docente: Daniel Jiménez Alcantar

Integrantes:

Aguilar Ramirez Carlos Francisco

- Arista Romero Juan Ismael
- Jiménez Flores Luis Arturo
- Vazquez Martin Marlene Gabriela

Fecha de última modificación: 27/02/2025

Metodología BOX-Jenkins para la serie de tiempo

Dataset

Este conjunto de datos contiene datos históricos del precio de las acciones de Walmart Inc. (WMT) desde el 25 de agosto de 1972 hasta el 21 de febrero de 2025.

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
import pandas as pd

df =
  pd.read_csv("/content/drive/MyDrive/SEPTIMO/SeriesDeTiempo/Practical/WMT.csv")
```

Teniendo como base la siguiente imagen para delimitar dicha metodología...

1. Identificación (fase 1 de la metodología)

En esta fase, el objetivo es explorar y preparar la serie para:

- Detectar si es estacionaria o no (en media, varianza y autocorrelaciones).
- Identificar posibles transformaciones (log, diferencias, etc.) para volverla estacionaria.
- Distinguir si hay estacionalidad y de qué tipo.
- Explorar la presencia de tendencias, picos, valles, y comportamientos cíclicos.

Exploración y limpieza de datos

 Carga del CSV, verificación de valores nulos, ordenación cronológica, conversión de fechas a datetime, etc.

```
df.head()
{"summary":"{\n \"name\": \"df\",\n \"rows\": 13233,\n \"fields\":
[\n {\n \"column\": \"date\",\n \"properties\": {\n
\"dtype\": \"object\",\n \"num_unique_values\": 13233,\n
                            \"2020-10-28\ 00:00:00-04:00\"
\"samples\": [\n
\"2005-10-03 00:00:00-04:00\",\n \"2008-06-24 00:00:00-
            ],\n
                                \"semantic_type\": \"\",\n
04:00\"\n
\"description\": \"\"\n
                               \"column\":
                                                 {\n
\"open\",\n \"properties\": {\n
                                                 \"dtype\": \"number\",\n
\"std\": 16.4984537483249,\n\\"min\": 0.005208000075072,\n\\"max\": 105.3000030517578,\n\\"num_unique_values\": 5868,\n
                            6.28125,\n
],\n
\"samples\": [\n
                                                   0.1998700052499771,\n
0.0260419994592666\n
                                            \"semantic type\": \"\",\n
\"description\": \"\"\n
                               }\n },\n
                                                           \"column\":
                                                 {\n
\"high\",\n \"properties\": {\n
                                                 \"dtype\": \"number\",\n
\"std\": 16.627365121704447,\n\\"min\": 0.005208000075072,\n\\"max\": 105.3000030517578,\n\\"num_unique_values\": 5952,\n
\"samples\": [\n 20.280000686645508,\n 24.10333251953125,\n 23.395832061767575\n \"semantic_type\": \"\",\n \"description\": \
                                     \"description\": \"\"\n
     },\n {\n \"column\": \"low\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 16.374295324948225,\n \"min\": 0.0048010000027716,\n \"max\": 103.59999847412
                                          \"max\": 103.5999984741211,\n
```

```
\"num_unique_values\": 5893,\n \"samples\": [\n
16.530000686645508,\n 42.09333419799805,\n
21.926666259765625\n
                        ],\n \"semantic_type\": \"\",\n
\"description\": \"\n }\n },\n {\n \"column\":
\"close\",\n \"properties\": {\n \"dtype\": \"number\",\n
\"std\": 16.506101737078613,\n\\"min\": 0.005208000075072,\n\\"max\": 105.0500030517578,\n\\"num_unique_values\": 6010,\n
}\
\"max\": 105.0500030517578,\n\ \"num unique values\": 9624,\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
    },\n {\n \"column\": \"volume\",\n \"properties\":
n
{\n \"dtype\": \"number\",\n \"std\": 18390036,\n
\"min\": 0,\n \"max\": 395500800,\n
\"num_unique_values\": 10302,\n \"samples\": [\n
14874000,\n 14520200,\n
                                    43785000\n
                                                    ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
                                                    }\
   }\n ]\n}","type":"dataframe","variable name":"df"}
df.tail()
{"repr error": "0", "type": "dataframe"}
df.describe()
{"summary":"{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n
{\n \"column\": \"open\",\n \"properties\": {\n
\"dtype\": \"number\",\n \"std\": 4670.192150079127,\n
\"min\": 0.005208000075072,\n \"max\": 13233.0,\n \"num unique values\": 8.\n \"samples\": [\n
                             \"samples\": [\n
\"num unique values\": 8,\n
14.428566660529656,\n
                           11.5,\n
                                          13233.0\n
                                                        ],\n
                           \"description\": \"\"\n
\"semantic type\": \"\",\n
\"std\": 4670.164159367889,\n
\"dtype\": \"number\",\n
\"min\": 0.005208000075072,\n
                               \mbox{"max}": 13233.0,\n
\"num unique values\": 8,\n
                              \"samples\": [\n
14.558144175264221,\n
                           11.59375,\n
                                             13233.0
                \"semantic_type\": \"\",\n
       ],\n
\"column\":
\"low\",\n \"properties\": {\n
                                     \"dtype\": \"number\",\n
\"std\": 4670.306570068974,\n\\"min\": 0.0048010000027716,\n
\"max\": 13233.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 14.300810546974358,\n 11.291666984558104,\n 13233.0\n ],\n
```

```
\"semantic_type\": \"\",\n \"description\": \"\"\n
    n \"dtype\": \"number\",\n \"std\": 46
\"min\": 0.005208000075072,\n \"max\": 13233.
\"num_unique_values\": 8,\n \"samples\": [\n
                                     \"std\": 4670.206136960499,\n
                                  \"max\": 13233.0,\n
14.432342590120374,\n
                            11.46875,\n
                                                 13233.0
                  \"semantic type\": \"\",\n
                                 },\n {\n
\"description\": \"\"\n }\n
                                                \"column\":
                                         \"dtype\":
\"adj_close\",\n \"properties\": {\n
\"number\",\n
                  \"std\": 4670.84642627808,\n
                                                     \"min\":
0.0028387149795889,\n\\"max\": 13233.0,\n
\"num_unique_values\": 8,\n
11.946184229469727,\n 7.3
                                \"samples\": [\n
                             7.350796699523926,\n
                                                         13233.0\n
          \"semantic_type\": \"\",\n \"description\": \"\"\n
],\n
      }\n
         \"dtype\": \"number\",\n \"std\":
{\n
                    \"min\": 0.0,\n \"max\": \"num_unique_values\": 8,\n \"samples\":
135177237.2121203,\n
395500800.0,\n
                                  18756900.0,\n
            22441840.678606514,\n
            ],\n \"semantic_type\": \"\",\n
13233.0\n
                          }\n }\n ]\n}","type":"dataframe"}
\"description\": \"\"\n
# Convertir la columna date a tipo datetime y ordenar los registros
cronológicamente para facilitar análisis de series temporales
df['date'] = pd.to datetime(df['date'])
df.sort_values('date', inplace=True)
<ipython-input-14-74971b5bf5e0>:2: FutureWarning: In a future version
of pandas, parsing datetimes with mixed time zones will raise an error
unless `utc=True`. Please specify `utc=True` to opt in to the new
behaviour and silence this warning. To create a `Series` with mixed
offsets and `object` dtype, please use `apply` and
`datetime.datetime.strptime`
 df['date'] = pd.to datetime(df['date'])
# Verificar si existen valores faltantes en el dataset
faltantes = df.isnull().sum()
faltantes
date
open
            0
            0
high
            0
low
            0
close
            0
adj close
volume
dtype: int64
# Comprobar brevemente la distribución y presencia de valores extremos
mediante percentiles extremos
```

```
percentiles = df['adj_close'].quantile([0.01, 0.05, 0.95, 0.99])
percentiles

0.01     0.005291
0.05     0.009169
0.95     46.126460
0.99     70.361108
Name: adj_close, dtype: float64
```

Transformación

Esto corresponde a la preparación de la serie y detección de valores atípicos o problemas de calidad.

```
# Convertir a datetime con UTC para asegurar que todo esté correcto
df['date'] = pd.to datetime(df['date'], utc=True)
# Crear dataframe limpio con fecha y adj close únicamente
walmart clean df = df[['date', 'adj close']].copy()
# Eliminar la hora, dejando solo la fecha
walmart clean df['date'] = walmart clean df['date'].dt.date
# Verificar el resultado
print(walmart clean df.head())
        date adj close
              0.011639
  1972-08-25
1
  1972-08-28
               0.011595
  1972-08-29
               0.011463
3 1972-08-30
               0.011463
4 1972-08-31
               0.011286
```

Una vez cargados y limpiados los datos en el DataFrame con el nombre "walmart_clean_df" cuyo contenido son las columnas 'date' y 'adj_close' se tiene el conjunto listo para el análisis.

Gráfico de la serie de tiempo

Graficar la serie donde se usa la sentencia "(plt.plot(walmart_clean_df['date'], walmart_clean_df['adj_close']))" para observar su comportamiento.

```
import matplotlib.pyplot as plt

# Crear gráfico de serie temporal con los datos limpios
plt.figure(figsize=(14, 6))
plt.plot(walmart_clean_df['date'], walmart_clean_df['adj_close'],
```

```
linewidth=1.5)
plt.title('Evolución del Precio de las Acciones de Walmart (1972 -
2025)', fontsize=16)
plt.xlabel('Fecha', fontsize=14)
plt.ylabel('Precio', fontsize=14)
plt.grid(True)
plt.tight_layout()
plt.show()
```


Hallar promedio, media, mediana, moda, desviación estándar y varianza.

```
# Calcular estadísticas básicas
mean_value = walmart_clean_df['adj_close'].mean() # Promedio
median value = walmart clean df['adj close'].median() # Mediana
mode value = walmart clean df['adj close'].mode()[0] # Moda (puede
haber múltiples valores, tomamos el primero)
std_dev = walmart_clean_df['adj_close'].std() # Desviación estándar
variance = walmart clean df['adj close'].var() # Varianza
# Resultados
stats results = {
    "Promedio (Media)": mean_value,
    "Mediana": median value,
    "Moda": mode value,
    "Desviación Estándar": std dev,
    "Varianza": variance
}
stats results
{'Promedio (Media)': 11.946184229469727,
 'Mediana': 7.350796699523926,
 'Moda': 0.0068982178345322,
```

```
'Desviación Estándar': 15.865461507019829,
'Varianza': 251.71286883072787}
```

Identificar granularidad, ciclos, tendencia, estacionalidad, máximo, mínimos, picos, valles, razones de crecimiento y razones de reducción.

```
# Análisis inicial de la serie temporal
# Granularidad: verificar diferencia entre fechas
date diff = walmart clean df['date'].diff().value counts().head()
# Identificar máximos y mínimos globales
max price =
walmart_clean_df.loc[walmart_clean_df['adj_close'].idxmax()]
min price =
walmart clean df.loc[walmart clean df['adj close'].idxmin()]
# Para identificar picos y valles locales usamos scipy.signal
from scipy.signal import find peaks
# Identificar picos locales
peaks_indices, _ = find_peaks(walmart_clean df['adj close'],
distance=200)
peaks = walmart_clean df.iloc[peaks indices]
# Identificar valles locales (invertimos la serie para encontrar
valles)
valleys indices, = find_peaks(-walmart_clean_df['adj_close'],
distance=200)
valleys = walmart clean df.iloc[valleys indices]
# Resultados iniciales
initial analysis results = {
    "Granularidad (diferencias más frecuentes entre fechas)":
date diff,
    "Máximo absoluto": max price,
    "Mínimo absoluto": min price,
    "Número de picos locales identificados": len(peaks),
    "Número de valles locales identificados": len(valleys)
}
initial analysis results
{'Granularidad (diferencias más frecuentes entre fechas\n)': date
1 days
           10361
3 days
            2413
4 days
             323
 2 days
             132
 5 days
 Name: count, dtype: int64,
```

```
'Máximo absoluto': date 2025-02-13
adj_close 105.050003
Name: 13227, dtype: object,
'Mínimo absoluto': date 1974-12-10
adj_close 0.002839
Name: 576, dtype: object,
'Número de picos locales identificados': 54,
'Número de valles locales identificados': 52}
```

Granularidad:

- La mayoría de los registros tienen una granularidad diaria (10361 observaciones con diferencia de 1 día).
- También se observan saltos típicos en fines de semana y días feriados (3 días de diferencia: 2413 casos).

Máximo Absoluto: Precio máximo: \$105.05 (13 de febrero de 2025)

Mínimo Absoluto: Precio mínimo: \$0.0028 (10 de diciembre de 1974)

Picos y Valles Locales:

- Número de picos locales identificados: 54
- Número de valles locales identificados: 52

Descomposición estacional

Uso de seasonal_decompose para separar la serie en tendencia, estacionalidad y residuo.

Te ayuda a decidir si la serie muestra estacionalidad clara (por ejemplo, anual o de otra frecuencia)

```
import numpy as np
import matplotlib.dates as mdates
# Añadir promedio móvil para analizar tendencia general
walmart clean df['moving avg'] =
walmart clean df['adj close'].rolling(window=365,
min periods=1).mean()
# Graficar la tendencia usando promedio móvil
plt.figure(figsize=(14, 7))
plt.plot(walmart clean df['date'], walmart clean df['adj close'],
alpha=0.5, label='Precio Ajustado Diario')
plt.plot(walmart_clean_df['date'], walmart clean df['moving avg'],
color='red', linewidth=2, label='Promedio Móvil Anual')
plt.title('Análisis de Tendencia del Precio Ajustado de Walmart')
plt.xlabel('Fecha')
plt.ylabel('Precio Ajustado')
plt.legend()
```

```
plt.grid(True)
plt.tight layout()
plt.show()
# Estacionalidad: Realizar un análisis de descomposición de serie
temporal
from statsmodels.tsa.seasonal import seasonal_decompose
# Preparamos la serie con frecuencia diaria
series = walmart clean df.set index('date')['adj close']
series.index = pd.to datetime(series.index)
# Usaremos un periodo anual (252 días bursátiles por año aprox.)
decomposition = seasonal decompose(series, model='multiplicative',
period=252)
# Graficar la descomposición
decomposition.plot()
plt.suptitle('Descomposición Estacional del Precio Ajustado de
Walmart', fontsize=16)
plt.tight layout()
plt.show()
```


Descomposición Estacional del Precio Ajustado de Walmart


```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Asegurar que la columna 'date' esté correctamente en formato
datetime
walmart_clean_df['date'] = pd.to_datetime(walmart_clean_df['date'])
# Extraer el año usando .dt.year
walmart clean df['year'] = walmart clean df['date'].dt.year
# Obtener el último precio ajustado (adj_close) de cada año
annual prices = walmart clean df.groupby('year')['adj close'].last()
# Calcular razones de crecimiento/reducción anual (en porcentaje)
annual growth = annual prices.pct change() * 100
# Convertir a DataFrame para visualización
annual growth df = annual growth.dropna().reset index()
annual growth df.columns = ['Año', 'Crecimiento (%)']
# Mostrar DataFrame resultante
print(annual_growth_df.head())
```

```
# Gráfica de razones anuales de crecimiento/reducción
plt.figure(figsize=(14, 7))
sns.barplot(data=annual growth df, x='Año', y='Crecimiento (%)',
palette='coolwarm')
# Mejorar presentación gráfica
plt.xticks(rotation=90)
plt.title('Crecimiento/Reducción Anual del Precio Ajustado de Walmart
(%)', fontsize=16)
plt.xlabel('Año', fontsize=14)
plt.ylabel('Crecimiento Anual (%)', fontsize=14)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight layout()
plt.show()
    Año Crecimiento (%)
              -61.230548
  1973
1
  1974
              -28.536572
  1975
              177.850001
3
  1976
               18,767662
               31.967097
4 1977
<ipython-input-35-3cc2ec4ca793>:26: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `x` variable to `hue` and set
`legend=False` for the same effect.
  sns.barplot(data=annual growth df, x='Año', y='Crecimiento (%)',
palette='coolwarm')
```


Identificación de picos y valles

Uso de find_peaks (y su inverso para valles) para localizar máximos y mínimos locales.

Si bien no es un paso clásico en Box-Jenkins, el análisis exploratorio contribuye a entender la dinámica de la serie (momentos de cambio brusco, outliers, etc.).

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.signal import find peaks
from statsmodels.tsa.seasonal import seasonal decompose
# □ 1. Cargar y preparar datos
# Asegurar formato datetime en la columna de fechas
walmart clean df['date'] = pd.to datetime(walmart clean df['date'])
# □ 2. GRANULARIDAD
# Identificar la diferencia de días más común entre registros
date diff = walmart clean df['date'].diff().value counts().head()
print("\n□ Granularidad de la serie temporal (frecuencia más común de
registros):")
print(date diff)
# □ 3. TENDENCIA (Promedio Móvil Anual)
walmart clean df['moving avg'] =
walmart clean df['adj close'].rolling(window=365,
min periods=1).mean()
# Gráfico de tendencia
plt.figure(figsize=(14, 6))
plt.plot(walmart clean df['date'], walmart clean df['adj close'],
alpha=0.5, label='Precio Ajustado Diario')
plt.plot(walmart clean df['date'], walmart clean df['moving avg'],
color='red', linewidth=2, label='Promedio Móvil Anual')
plt.title('□ Tendencia del Precio Ajustado de Walmart', fontsize=16)
plt.xlabel('Fecha', fontsize=14)
plt.ylabel('Precio Ajustado', fontsize=14)
plt.legend()
plt.grid(True)
plt.show()
# \sqcap 4. ESTACIONALIDAD Y CICLOS (Descomposición de la serie temporal)
# Convertir la serie en índice de tiempo
series = walmart clean df.set_index('date')['adj_close']
series.index = pd.to datetime(series.index)
# Descomposición usando un periodo anual (252 días bursátiles por año)
decomposition = seasonal decompose(series, model='multiplicative',
```

```
period=252)
# Graficar la descomposición estacional
decomposition.plot()
plt.suptitle('□ Descomposición Estacional del Precio Ajustado de
Walmart', fontsize=16)
plt.show()
# □ 5. MÁXIMOS Y MÍNIMOS ABSOLUTOS
max price =
walmart clean df.loc[walmart clean df['adj close'].idxmax()]
min price =
walmart clean df.loc[walmart clean df['adj close'].idxmin()]
print(f"\n□ Máximo absoluto: {max price['adj close']} el
{max price['date']}")
print(f"□ Mínimo absoluto: {min price['adj close']} el
{min price['date']}")
# □ 6. PICOS Y VALLES LOCALES
# Encontrar picos (máximos locales)
peaks indices, = find peaks(walmart clean df['adj close'],
distance=200)
peaks = walmart clean df.iloc[peaks indices]
# Encontrar valles (mínimos locales)
valleys indices, = find peaks(-walmart clean df['adj close'],
distance=200)
valleys = walmart clean df.iloc[valleys indices]
# Graficar con picos y valles marcados
plt.figure(figsize=(14, 6))
plt.plot(walmart_clean_df['date'], walmart clean df['adj close'],
label='Precio Ajustado')
plt.scatter(peaks['date'], peaks['adj_close'], color='green',
label='Picos', marker='^')
plt.scatter(valleys['date'], valleys['adj_close'], color='red',
label='Valles', marker='v')
plt.title('□ Picos y Valles del Precio Ajustado de Walmart',
fontsize=16)
plt.xlabel('Fecha', fontsize=14)
plt.ylabel('Precio Ajustado', fontsize=14)
plt.legend()
plt.grid(True)
plt.show()
print(f"\n□ Número de picos locales detectados: {len(peaks)}")
print(f"□ Número de valles locales detectados: {len(valleys)}")
# □ 7. RAZONES DE CRECIMIENTO Y REDUCCIÓN
# Extraer el año de cada fecha
```

```
walmart clean df['year'] = walmart clean df['date'].dt.year
# Obtener el último precio ajustado de cada año
annual prices = walmart clean df.groupby('year')['adj close'].last()
# Calcular tasas de crecimiento/reducción anuales (%)
annual growth = annual prices.pct change() * 100
# Convertir en DataFrame para visualización
annual_growth_df = annual_growth.dropna().reset_index()
annual_growth_df.columns = ['Año', 'Crecimiento (%)']
# Gráfico de razones de crecimiento/reducción
plt.figure(figsize=(14, 6))
sns.barplot(data=annual growth df, x='Año', y='Crecimiento (%)',
palette='coolwarm')
plt.xticks(rotation=90)
plt.title('□ Crecimiento/Reducción Anual del Precio Ajustado de
Walmart (%)', fontsize=16)
plt.xlabel('Año', fontsize=14)
plt.ylabel('Crecimiento Anual (%)', fontsize=14)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
☐ Granularidad de la serie temporal (frecuencia más común de
registros):
date
1 days
          10361
3 days
           2413
            323
4 days
2 days
            132
5 days
Name: count, dtype: int64
/usr/local/lib/python3.11/dist-packages/IPython/core/
pylabtools.py:151: UserWarning: Glyph 128313 (\N{SMALL BLUE DIAMOND})
missing from font(s) DejaVu Sans.
  fig.canvas.print figure(bytes io, **kw)
```


/usr/local/lib/python3.11/dist-packages/IPython/core/
pylabtools.py:151: UserWarning: Glyph 128313 (\N{SMALL BLUE DIAMOND})
missing from font(s) DejaVu Sans.
 fig.canvas.print_figure(bytes_io, **kw)


```
Máximo absoluto: 105.0500030517578 el 2025-02-13 00:00:00
Mínimo absoluto: 0.0028387149795889 el 1974-12-10 00:00:00

/usr/local/lib/python3.11/dist-packages/IPython/core/
pylabtools.py:151: UserWarning: Glyph 128313 (\N{SMALL BLUE DIAMOND})
missing from font(s) DejaVu Sans.
fig.canvas.print_figure(bytes_io, **kw)
```



```
□ Número de picos locales detectados: 54
□ Número de valles locales detectados: 52

<ipython-input-39-83f8f6b886f5>:91: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=annual_growth_df, x='Año', y='Crecimiento (%)', palette='coolwarm')
/usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Glyph 128313 (\N{SMALL BLUE DIAMOND}) missing from font(s) DejaVu Sans.
fig.canvas.print figure(bytes io, **kw)
```


En términos de la metodología Box-Jenkins, todo esto corresponde a la "Identificación":

- Ver si la serie es estacionaria o si hay que diferenciarla.
- Ver la estacionalidad.
- Reconocer patrones de autocorrelación.

Conclusiones de la metodología

La parte de la metodología Box-Jenkins que se está aplicando al código, se basa esencialmente en la fase de **Identificación** de esta. Donde se realiza la exploración profunda de la serie para decidir, posteriormente, cómo modelarla en los siguientes pasos.