МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

СКИН-ЭФФЕКТ В ПОЛОМ ЦИЛИНДРЕ

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

Оглавление

1. Аннотация	
2. Теоретические сведения	
3. Экспериментальная установка и методика измерений	
4. Проведение измерений и обработка результатов	
5. Обсуждение результатов	
6. Вывод	

1. Аннотация

Целью данной работы являются:

1. Исследование проникновения переменного магнитного поля в медный полый цилиндр.

2. Теоретические сведения

Пусть цилиндр достаточно длинный, так что в нём можно эффектами. краевыми В ЭТОМ приближении магнитное поле H всюду направлено по оси системы (ось z), а вихревое электрическое поле E будет всюду перпендикулярно радиусу, то есть линии поля образуют соосные окружности (рис. 1). будем колеблющимися Bce величины считать ПО гармоническому закону с некоторой частотой ω , задаваемой частотой колебания тока в соленоиде. Тогда для ненулевых компонент поля можно записать

$$H_z = H(r)e^{i\omega t}$$
 $E_{\omega} = E(r)e^{i\omega t}$

где H(r) и E(r) — комплексные амплитуды колебаний соответствующих полей, зависящие только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть непрерывны касательные к поверхности компоненты как E, так и B, поэтому функции E(r) и H(r) непрерывны во всей исследуемой области. Пусть длинный полый цилиндр имеет радиус a и толщину стенки $h \ll a$. Последнее условие позволяет для описания поля внутри стенки ограничиться одномерным

приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным (аналогично полю внутри пустого соленоида): $H_z(r,t) = H_1(r)e^{i\omega t}$, где $H_1 = \text{const}$ — амплитуда поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции (7.3) в интегральной форме:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt}$$
 \rightarrow $E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1.$

Отсюда получим связь амплитуд колебаний электрического и магнитного полей на внутренней (r=a) границе цилиндра:

$$E_1 = \frac{-1}{2} i \omega a \mu_0 H_1 \tag{1}$$

Соотношение (1) используем далее как дополнительное граничное условие для задачи о распределении поля внутри стенки.

Поле внутри тонкой стенки цилиндра («экрана») описывается уравнением скин-эффекта. Поместим начало отсчёта на внешнюю поверхность цилиндра и направим ось *х* к оси системы, и запишем дифференциальное уравнение для комплексной амплитуды магнитного поля:

$$\frac{d^2H}{dx^2} = i\omega \sigma \mu_0 H$$

Граничные условия зададим в виде:

$$H(0)=H_0, H(h)=H_1$$

 H_0 — амплитуда колебаний магнитного поля на внешней границе.

Итоговая связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{ch(\alpha h) + \frac{1}{2}\alpha a sh(\alpha h)} ,$$

ГДе
$$\alpha = \sqrt{i\omega\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}$$

Рассмотрим предельные случаи:

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta\gg h$. Тогда $|\alpha h|\ll 1$, поэтому $\mathrm{ch}(\alpha h)\approx 1$, $\mathrm{sh}(\alpha h)\approx \alpha h$ и

$$H_1 = \frac{H_0}{1 + i \frac{ah}{\delta^2}}$$

Заметим, что величина ah/δ^2 в общем случае не мала, поскольку при $h \ll a$ возможна ситуация $h \ll \delta \ll a$. Отношение модулей амплитуд здесь будет равно

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2}}.$$

При этом колебания H_1 отстают по фазе от H_0 на угол ψ , определяемый как:

$$\tan(\psi) = \frac{ah}{\delta^2} = \frac{ah \omega \sigma \mu_0}{2}$$

2. При достаточно больших частотах толщина скин-слоя станет меньше толщины стенки: $\delta \ll h$. Тогда $|\alpha h|\gg 1$ и $|\alpha a|\gg 1$, а также $\mathrm{sh}(\alpha h)\approx \mathrm{ch}(\alpha h)\approx 0.5e^{\alpha h}$. В итоге отношение модулей будет равно

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{-\alpha h} = \frac{2\sqrt{2}\delta}{a} e^{-\frac{h}{\delta}} e^{-i\left(\frac{\pi}{4} + \frac{h}{\delta}\right)}$$

Кроме того, поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\,\delta}{a}e^{\frac{-h}{\delta}}$ меньше, чем снаружи и запаздывает по фазу на:

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\pi\nu\sigma\mu_0}.$$

3. Экспериментальная

установка и методика

измерений

• Экспериментальная установка

Переменное магнитное поле создаётся с помощью соленоида, цилиндрический намотанного на полый каркас И3 поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический Для измерения магнитного ПОЛЯ используется измерительная катушка 3. Необходимые параметры измерительной катушки соленоида, экрана установке. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V . Для измерения сдвига фаз между током в цепи соленоида и измерительной катушке напряжением на используется двухканальный осциллограф. На вход одного канала подаётся

напряжение с резистора R, которое пропорционально току, а на вход второго канала — напряжение с измерительной катушки.

• Методика измерений

1. Измерение отношения амплитуд магнитного поля внутри и вне экрана.

С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле H_1e^{iwt} . Комплексная амплитуда ЭДС индукции в измерительной катушке равна

gh
$$U = -SN \frac{dB_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t},$$

Модуль амплитуды магнитного поля внутри экрана: $|H_1| \propto \frac{u}{v}$, тогда как поле вне экрана пропорционально току в цепи соленоида. В итоге:

$$\frac{|H_1|}{|H_0|} = \text{const} \cdot \frac{U}{vI} = \frac{1}{\xi_0} \cdot \frac{U}{vI}$$

2. Определение проводимости материала экрана

В установке в качестве экрана используется медная труба промышленного производства. Технология изготовления труб оказывает заметное влияние на электропроводимость. Из-за наличия примесей проводимость меди нашей трубы отличается от табличного значения (в меньшую сторону). Для определения σ нашего экрана предлагается использовать частотную зависимость фазового сдвига между магнитными полями внутри и вне экрана при высоких частотах. В области больших частот зависимость $\psi(\sqrt{\omega})$ аппроксимируется $\omega \gg 1/h^2 \sigma \mu_0$ проходящей через точку $\psi(0) = \pi/4$. По наклону этой прямой можно вычислить проводимость материала экрана.

3. Влияние скин-эффекта на индуктивность катушки

Из-за скин эффекта индуктивность соленоида с медным цилиндрическим экраном внутри будет зависеть от частоты тока. На высоких частотах магнитное поле не проникает внутрь соленоида (за экран), поэтому суммарный магнитный поток, пронизывающий катушку, уменьшается, и, соответственно, уменьшается и индуктивность. При низких частотах, когда толщина скин-слоя δ больше толщины медного экрана h, магнитное поле проникает внутрь катушки, однако его амплитуда падает и возникает разность фаз между колебаниями поля за

экраном и перед ним; из-за чего тоже изменяется магнитный поток, а, следовательно, и индуктивность.

Рассмотрим магнитный поток через катушку как сумму двух магнитных потоков: 1) пронизывающий область между катушкой и цилиндрическим экраном Φ_{out} ; 2) пронизывающий область за экраном $\Phi_{\text{in:}}$

$$\Phi = \Phi_{out} + \Phi_{i} = H_{0}S_{0} + H_{1}S_{1} = LI$$

Минимальная индуктивность будет в случае, когда $\Phi_{\rm in} = 0$.

$$\Phi_{in} = H_1 S_1 = \frac{H_1 S_1}{H_0 S_0} \Phi_{out} = \frac{\Phi_{out}}{n} \frac{S_1}{S_0}$$

где n- коэффициент, характеризующий ослабление поля за экраном.

Максимальная индуктивность катушки достигается при максимальном потоке поля во внутренней области (когда $H_0=H_1$).

Отношение площадей областей:

$$\frac{S_1}{S_0} = \frac{(L_{max} - L_{min})}{L_{min}}$$

Окончательная зависимость индуктивности катушки от частоты:

$$\frac{(L_{\max} - L_{\min})}{(L - L_{\min})} = (\pi \, ah \, \mu_0 \, \sigma \, v)^2$$

4. Проведение измерений и обработка результатов

0. Параметры установки

d, мм	h, мм	σ, См/м	ν _h , Гц
45	1.5	5*10 ⁷	2246

1. Исследование зависимости $1/\xi^2 = f(\nu^2)$

ν, Гц	U, B	I, MA	ξ, B*c/A
22.46	0.163	473.4	0,01532
32	0.228	470.0	0,01515
42	0.292	465.2	0,01496
52	0.352	459.2	0,01473
62	0.406	452.5	0,01446
72	0.455	445.5	0,01418
82	0.499	438.5	0,01388
92	0.539	431.5	0,01357
102	0.575	425.0	0,01357
112	0.606	418.5	0,01291

Зависимость $1/\xi^2(\nu^2)$ - линейная.

$$\frac{1}{\xi^2} = \frac{1}{\xi_0^2} + \left(\frac{ah\sigma\mu_0\pi}{\xi_0}\right)^2 \cdot \nu^2 = b + k\nu^2,$$

$$\frac{1}{\xi_0^2} = 4215.4 \pm 5.0 \frac{A^2}{B^2 c^2} \quad \xi_0 = 15.37 \pm 0.02 \frac{Bc}{A}$$

$$\left(\frac{ah \,\sigma \,\mu_0 \,\pi}{\xi_0}\right)^2 = 0.1422 \pm 0.0001 \frac{A^2}{B^2}$$

Тогда вычислим значение проводимости:

$$\sigma_1 = (4.28 \pm 0.01) * 10^7$$
 CM/ M

2. Исследование частотной фазового сдвига

v, Гц	X	\mathbf{X}_{0}	φ, вπ	U, B	I, MA	ξ, B *c/ A	ψ, в π
120	2.8	4.1	0.7	0.626	411.4	0,01269	0.2
135	2.5	3.6	0.72	0.663	402.9	0,01219	0.22
150	4.8	6.6	0.73	0.693	395.2	0,01169	0.23
165	4.5	5.9	0.73	0.718	388.4	0,01121	0.23
180	4.2	5.5	0.76	0.739	382.3	0,01074	0.26
195	3.9	5	0.78	0.756	376.9	0,01029	0.28
210	3.7	4.7	0.78	0.771	372.1	0,00987	0.28
250	8	10	0.78	0.799	361.7	0,00884	0.28
350	6	7	0.86	0.832	344.8	0,00689	0.36
450	5	5.7	0.89	0.839	333.9	0,00558	0.39
550	4.4	4.6	0.91	0.835	325.1	0,00467	0.41
650	3.7	3.9	0.95	0.825	317.3	0,00401	0.45
750	3.3	3.5	0.97	0.812	309.7	0,00349	0.47
850	5.9	6	1.0	0.796	302.2	0,00310	0.5
950	5.5	5.5	1.0	0.778	294.6	0,00278	0.5
1050	4.8	4.8	1.0	0.759	286.9	0,00252	0.5
1150	4.5	4.5	1.0	0.742	279.4	0,00231	0.5
1410	3.4	3.6	1.06	0.691	259.8	0,00189	0.56
1760	5.4	5.8	1.07	0.624	234.9	0,00151	0.57
2220	4.2	4.6	1.09	0.545	206.0	0,00119	0.59
2780	3.6	3.8	1.11	0.466	177.1	0,00095	0.61
3490	2.5	2.8	1.14	0.387	148.8	0,00095	0.64
4380	4.7	5.7	1.18	0.315	122.9	0,00058	0.68

5490	3.5	4.6	1.22	0.251	100.3	0,00046	0.72
6890	2.6	3.7	1.26	0.195	80.7	0,00035	0.76
8640	3.8	5.8	1.36	0.149	64.3	0,00027	0.86
10840	2.6	4.7	1.43	0.111	50.4	0,00020	0.93
13600	1.8	3.8	1.56	0.081	38.2	0,00016	1.06
17060	1	3	1.6	0.059	28.1	0,00012	1.1
21400	0.7	2.4	1.67	0.043	18.9	0.00011	1.17
26850	1.9	3.7	1.95	0.034	10.3	0.00012	1.45
33690	1.0	2.0	2.0	0.027	2.5	0.00032	1.5

При малых частотах:

$$ah \sigma \mu_0 \pi = 0.0057 \pm 0.0002 c$$
 $\sigma_2 = (4.3 \pm 0.2) * 10^7 C \text{M/M}$

3. Исследование зависимости $\psi = \pi/4 + f(\sqrt{v})$

Видно, что при больших частотах, зависимость линейная:

$$h\sqrt{\pi\sigma\mu_0}=0.0209\pm0.0004c^{1/2}$$

Тогда:

$$\sigma_3 = (4.88 \pm 0.19) * 10^7$$
 Cm/m

4. Измерение зависимости индуктивности от частоты

ν, Гц	L, мГн
50	10.3
120	8.2
250	5.5

400	4.2
800	3.3
1000	3.18
1500	3.04
2000	3.0
2500	2.9
3000	2.87

$$L_{\text{max}} = 10.3 \text{M} \Gamma_{\text{H}}$$
 $L_{\text{min}} = 2.87 \text{M} \Gamma_{\text{H}}$

Приближая полученную зависимость к линейной, воспользуемся формулой:

$$(\pi \, ah \, \sigma \, \mu_0)^2 = (48 \pm 4) * 10^{-6} c^2$$

Тогда:

$$\sigma_4 = (5.09 \pm 0.43) * 10^7 C \text{M/M}$$

5. Сравнение полученных значений проводимости

Метод	Амплитуда	Фаза1	Фаза2	Индуктивность
$σ$, 10^7 Cm/m	4.28 ± 0.01	4.3 ± 0.2	4.88±0.19	5.09 ± 0.48

Полученные результаты, несмотря на отличие от табличного значения равного $\sigma_{maбn} = 5.95*10^7 \, Cm/m$, неплохо согласуются друг с другом. Так как табличное значение приведено для чистой меди, то заниженные значения проводимостей, полученные в эксперименте, объясняются наличием примесей в материале.

6. Сравнение экспериментальной и теоретической зависимости $|H_1|/|H_0|$

Заметим, что экспериментальная зависимость лучше всего совпадает с теоретической зависимостью при $\sigma = \sigma_{max}$.