LSSTC DFSP

Unsupervised machine learning

Matthew J. Graham
Center for Data-Driven Discovery, Caltech (and NOAO)
mjg@caltech.edu / graham@noao.edu

January 23, 2017

What is unsupervised machine learning?

"Inferring a function to describe hidden structure from unlabeled data"

=> letting the data speak for itself

Data may reside in clusters or on a lower dimensional manifold

Types of activity:

- Clustering
- Density estimation
- Auto-encoding/deep neural networks
- Dimensionality reduction
- Symbolic regression

Density estimation: histograms

Build a probability density function (pdf) from the data

How to choose the bin size/number of bins:

 Assume the underlying distribution is Gaussian, Scott's rule:

$$h = \frac{3.5\sigma}{N^{1/3}}$$

where σ is the sample standard deviation and N is the number of data points

• For non-Gaussian distributions, Freedman-Diaconis rule:

$$h = \frac{2IQR}{N^{1/3}}$$

where IQR is the interquartile range $(q_{75} - q_{25})$

Knuth rule and Bayesian blocks

Treat histogram as a piecewise constant model of the underlying density function

Knuth rule: optimizes a Bayesian fitness function across fixed-width bins

$$N\log M + \log \left[\Gamma\left(\frac{M}{2}\right)\right] - M\log \left[\Gamma\left(\frac{1}{2}\right)\right] - \log \left[\Gamma\left(N + \frac{M}{2}\right)\right] + \sum_{k=1}^{M} \log \left[\Gamma\left(n_k + \frac{1}{2}\right)\right]$$

for M bins with n_k measurements in bin k.

 Bayesian blocks: optimizes a Bayesian fitness function across an arbitrary configuration of bins (optimal binning)

$$F(N_i, T_i) = N_i (\log N_i - \log T_i)$$

For higher dimensions, calculate Voronoi tesselation and then use 1-D Bayesian block

Matthew J. Graham January 23, 2017

January 23, 2017

Kernel density estimation

- Nonparametric density estimation
- Each data point is described by a kernel
- The pdf is estimated as the sum of the kernels:

$$\hat{f}_h(x) = \frac{1}{n} \sum K_h(x - x_i) = \frac{1}{nh} \sum K\left(\frac{x - x_i}{h}\right)$$

Bandwidth choice

Minimize the mean integrated squared error:

$$MISE_{h} = \int (\hat{f}_{h}(x) - f(x))^{2} dx = \int \hat{f}_{h}^{2} dx - 2 \int \hat{f}_{h} f(x) dx + \int f^{2}(x) dx$$

$$\int \hat{f}_{h} f(x) dx = E_{x} \left(\hat{f}_{h}(x) \right)$$

$$\hat{E}_{x} (\hat{f}_{h}(x)) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{h,-i}(x_{i})$$

Define cross-validation least-square score:

$$CV(h) = \int \hat{f}_h^2(x) dx - \frac{2}{n} \sum_{i=1}^n \hat{f}_{h,-i}(x_i)$$

• Optimum value of *h*:

$$\hat{h}_C V = \operatorname{arg\,min}_h CV(h)$$

Clustering

 A cluster is a collection of objects which are similar between them and are dissimilar to the objects belonging to other clusters

Types of clustering:

Partition clustering

Hierarchical clustering

K-means

- Divide objects in *k* clusters
- Each cluster is described by a centroid
- Each object is associated to the closest centroid

How to define the centroids:

- Choose initial centroids (randomly, clusters depend on initial centroids)
- Randomly pick a new object and associate it with nearest centroid
- Centroids are re-defined as the mean of the objects in the cluster
- Convergence after i iterations (subject to some measure)

How many clusters?

- If a likelihood function can be defined, use Akaike information criterion (AIC), Bayesian information criterion (BIC), or Deviance information criterion (DIC)
- Mean *silhouette* of data:
 - a: mean distance to objects within its cluster (cohesion)
 - b: minimum mean distance to objects within other clusters (separation)

$$s = \frac{b - a}{\max(a, b)}$$

- Want positive s (a<b) close to one (small a)
- Cross validation: mean value of some objective function over x partitions for k clusters
- Similarity matrix: eigenvalues/ eigenvectors

Analysis:

- Large amounts of data that do not need to be sent around processors
- Minimum processor intercommunication

 Data set needs to be read for each iteration but each point only needs to be read by one processor

Solution:

Map:

- Divide data amongst processors
- Each processor reads previous iteration's cluster centers and assigns its data to the clusters
- Each processor then calculates new centers for its data

• Reduce:

 True cluster centers for this iteration are weighted average of new centers from each processor

scatter

gather

Stream k-means

Analysis:

- Data are too large to store on available resources or hold in memory
- Data are not persistent so no later processing possible
- Rough-and-ready results required for data exploration
- Time-dependent results to check convergence, data quality

Solution:

```
Make initial guesses for the centers w_1, w_2, ..., w_t
Set the counts n_1, n_2, ..., n_t to zero
Loop until interrupted:
Acquire the next example, x
If w_i is closest to x:
Increment n_i
Replace w_i by w_i + (1/n_i)^*(x - w_i)
```


Stochasticize k-means

Analysis:

- k-means is prone to local minima and sensitive to initial clusters
- Normally repeat several times
- Stochastic algorithm can reach (global) minimum quicker:
 - (Nominally) works with subset of the data
 - Relative position of clusters found very quickly
 - Terminal convergence slowed down by stochastic noise implied by random choice of points
 - Great learning algorithm but hopeless optimization algorithm

Solution:

- The right choice of learning rate (replace scalar with inverse Hessian of loss) gives much better convergence
- This is just the online version

- Center-based density: number of points with a specified radius, eps
- Classification of points according to this density:
 - Core point (CP): at least minpts within an eps radius
 - Border point (BP): not a CP but in the neighborhood of a CP
 - Noise point (NS): neither of the above

How to pick eps and minpts:

- minpts ≥ D+1
- Plot the distance to k=minpts nearest neighbor – where plot shows a sharp bend indicates noise

Gaussian mixture models

- Assumes all data points are generated from a mixture of a finite number of Gaussian distributions with unknown parameters
- Nonparametric density estimation
- GMMs can be thought of as a generalization which incorporates information about the covariance structure of the data as well as the centers of the latent Gaussians
- Number of clusters can be considered a fine tuning parameter and selected via BIC or assume Dirichlet process prior

Hierarchical clustering

 Each point starts its own cluster and pairs of clusters are merged as one moves up the hierarchy

Linkage criteria:

Single link ("friends-of-friends")

$$D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

Complete link

$$D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

Average link

$$D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$$

Centroids

$$D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|} \sum_{x \in c_1} \overline{x}\right), \left(\frac{1}{|c_2|} \sum_{x \in c_2} \overline{x}\right)\right)$$

Ward's method

$$TD_{c_1 \cup c_2} = \sum_{x \in c_1 \cup c_2} D(x, \mu_{c_1 \cup c_2})^2$$

Similarity metrics

- The most common similarity metric is Euclidean distance
- Manhattan distance:

$$D(x,y) = \sum |x_i - y_i|$$

• Minkowski distance:

$$D(x, y, p) = \left(\sum_{i} |x_{i} - y_{i}|^{p}\right)^{1/p}$$

Mahalanobis distance:

$$D(x,y) = \sqrt{(x-y)^{T} S^{-1}(x-y)}$$

• Cosine distance:

$$D(x,y) = \frac{\sum_{i} x_i y_i}{\sqrt{\sum_{i} x_i^2} \sqrt{\sum_{i} y_i^2}}$$

• Jaccard distance:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

What are the limits to clustering?

- Clustering is obvious when dealing with a feature set (0 < D < 100)
- What about higher dimensions?
 - Spectra: Locally-biased semi-supervised eigenvectors
 - Time series: Dynamic time warping
 - Images: Convolutional neural networks
 - Documents: Latent Dirichlet allocation

• Very high dimensions are sparse: clusters occupy increasingly small volumes

Self-organizing maps (SOMs)

 Type of artificial neural network trained to produce a lowdimensional representation of the input space of the training

• Carrasco Kind & Brunner (2014) apply it to photometric redshifts

Matthew J. Graham January 23, 2017

t-distributed stochastic neighbor embedding (TSNE)

- State-of-the-art dimensional reduction technique:
 - Probability distribution, P, over pairs of high-dimensional objects in data identifying similar and dissimilar objects
 - Probability distribution, Q, over low dimensional map similarly
 - Minimize information theoretic constraint (Kullback-Leibler divergence) of Q from P

Matthew J. Graham January 23, 2017

Symbolic regression

- Find a function, in symbolic form, that fits the data
- Specific type of building block to be used in fit:
 - Algebraic operators, analytical functions (trig, exp/log, power),
 constant, Boolean, switching, squashing, state variables
- Evolutionary algorithm explores a metric space constructed from numerical partial derivatives of pairs of variables in data set looking for best match to predicted candidate function
- Produces a small set of final candidate analytical expressions on accuracy-parsimony Pareto front
- Krone-Martins, Ishida & Souza (2013):

$$z_{phot} = \frac{0.4436r - 8.261}{24.4 + (g - r)^2 (g - i)^2 (r - i)^2 - g} + 0.5152(r - i)$$

Matthew J. Graham January 23, 2017

The endpoint of unsupervised learning

