Lung Cancer Prediction (lung2.ipynb)

- **Problem Statement**: The project aims to predict whether a patient has lung cancer (LUNG_CANCER = YES/NO). This is a binary classification problem.
- Dataset Used

.

- The dataset was loaded from survey lung cancer.csv.
- The target variable is 'LUNG_CANCER'.
- Features include 'GENDER', 'AGE', 'SMOKING', 'YELLOW_FINGERS', 'ANXIETY', 'PEER_PRESSURE', 'CHRONIC DISEASE', 'FATIGUE', 'ALLERGY', 'WHEEZING', 'ALCOHOL CONSUMING', 'COUGHING', 'SHORTNESS OF BREATH', 'SWALLOWING DIFFICULTY', 'CHEST PAIN'.
- Methodology and Approach

Data Preprocessing

• Categorical features ('GENDER', 'LUNG_CANCER', and all other symptom-based features which are initially 1/2 for NO/YES) were encoded: 'GENDER' to 0/1 and other features (including 'LUNG_CANCER') to 0/1 (originally 1 mapped to 0 for NO, 2 mapped to 1 for YES).

• Numerical features were scaled using StandardScaler.

Model Training

:

- The data was split into training (70%) and testing (30%) sets.
- The following classification models were implemented:
 - Logistic Regression (Logistic Regression)
 - K-Nearest Neighbors (KNeighborsClassifier)
 - Support Vector Classifier (SVC)
 - Decision Tree Classifier (DecisionTreeClassifier with criterion='entropy')
 - Random Forest Classifier (RandomForestClassifier with criterion='entropy')

Model Evaluation

:

• Models were evaluated using accuracy scores and confusion matrices.

· Results and Conclusion

:

- Logistic Regression: Accuracy 93.55%.
- K-Nearest Neighbors (k=1): Accuracy 91.40%.
- Support Vector Classifier: Accuracy 92.47%.
- Decision Tree: Accuracy 91.40%.
- Random Forest: Accuracy 91.40%.
- Logistic Regression provided the highest accuracy.
- The Logistic Regression model was saved to lung_cancer_model.pkl.