Homework 16

Problem 1

Solve the following ODE

$$\frac{dy}{dt} = ye^{-t}$$

to t=6. Plot the resulting function y(t). The initial condition is $y_0=1$.

In []:

Problem 2

For the following first order reaction $A \to B$, solve for the concentration of A in time if the initial concentration $A_0 = 1.0$, and the reaction rate is given by

$$\frac{dC_A}{dt} = -kC_A.$$

where k=2.0.

Part a

Make a plot of C_A versus time.

Part b

Calculate the product composition, $C_B(t)$ by solving the additional equation

$$rac{dC_B}{dt} = kC_A.$$

Include it on the plot of Part a.

In []:

Problem 3

We are performing a chemical reaction as follows.

Rxn 1:
$$A + B \rightarrow C \operatorname{Rxn} 2$$
: $B + C \rightarrow D$

Here, symbols A, B, C, D denote species concentrations in mol/L. The initial concentrations are $A_0=1$, $B_0=1$, $C_0=0$, $D_0=0$. Also, $k_1=1$ L/mol*s, and $k_2=1.5$ L/mol*s.

Solve for the concentrations of A, B, C, and D as functions of time. Solve at timestep intervals of $dt=0.2\,s$ and solve to a final time of $t=3\,s$. Also, solve for the selectivity defined as S=C/(C+D) as a function of time. (S is initially undefined, but you can set it equal to 1 at t=0.) Use ODEINT (not Euler's equation) applied to each d(Species)/dt above.

Plot the concentrations of A, B, C, D, and S as functions of time on the same plot. Label the axes as "time (s)" and "concentration (mol/L)". You can compare your solution to problem 2 from HW 5 where Euler's method is used to solve the same problem.

1 of 2

Tn []•		
[] •		

2 of 2