Max. Marks: 25

Note: Use of Mobile Phone or Calculator during the exam is prohibited.

(a) Find the divergence of the function,

Time: 1 Hour (8:00-9:00 AM)

$$\vec{v} = s(2 + \sin^2 \phi) \,\hat{s} + s \sin \phi \cos \phi \,\hat{\phi} + 3z \,\hat{z}$$

(b) Test the divergence theorem for the above function, using the quarter-cylinder (radius 2, height 5) as shown in figure.

- 2. A spherical solid conductor of radius a carries a charge Q. It is surrounded by a linear dielectric material of relative permittivity ε_r out to the radius b (see figure).
 - (a) Find \vec{D} for the three regions r < a, a < r < b and r > b.
 - (b) Find \vec{E} for the three regions r < a, a < r < b and r > b.
 - (c) Find \vec{P} within the dielectric.
 - (d) Determine the bound surface charges.

[7]

- 3. An *infinitely long* cylinder, of radius R, carries a "frozen-in" magnetization parallel to the axis, $\bar{M} = ks \ \hat{z}$ where k is a constant and s is the distance from the axis; there is no free current anywhere.
 - (a) Calculate the bound currents.
 - (b) Find the field \vec{B} in regions inside and outside the cylinder.

[6]

Q

- 4. (a) Write down the (real) electric and magnetic fields (\vec{E} and \vec{B}) for a monochromatic e.m. wave of amplitude E_0 , angular frequency ω and phase constant zero that is travelling in vacuum in the *negative* x-direction and polarized in the z-direction.
 - (b) Find the energy density and pointing vector for the above e.m. wave.
 - (c) Find the average power per unit area transported by this monochromatic wave. [5]

Vector Identities:

Triple Products

(1)
$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B)$$

(2)
$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$$

Product Rules

(3)
$$\nabla (fg) = f(\nabla g) + g(\nabla f)$$

(4)
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

(5)
$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$

(6)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

(7)
$$\nabla \times (fA) = f(\nabla \times A) - A \times (\nabla f)$$

(8)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$

Second Derivatives

$$(9) \quad \nabla \cdot (\nabla \times A) = 0$$

Fundamental Theorems:

Gradient Theorem: $\int_{\mathbf{a}}^{\mathbf{b}} (\nabla f) \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a})$

Divergence Theorem : $\int (\nabla \cdot \mathbf{A}) d\tau = \oint \mathbf{A} \cdot d\mathbf{a}$

 $\int (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{I}$

Vector Derivatives:

 $d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}; \quad d\tau = dx \, dy \, dz$

$$\nabla t = \frac{\partial t}{\partial x} \hat{\mathbf{x}} + \frac{\partial t}{\partial y} \hat{\mathbf{y}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$

Divergence:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

$$\nabla \times \mathbf{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \hat{\mathbf{x}} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \hat{\mathbf{y}} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \hat{\mathbf{z}}$$

$$\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}$$

 $d\mathbf{l} = dr\,\hat{\mathbf{r}} + r\,d\theta\,\hat{\boldsymbol{\theta}} + r\sin\theta\,d\phi\,\hat{\boldsymbol{\phi}}; \quad d\tau = r^2\sin\theta\,dr\,d\theta\,d\phi$

$$\nabla t = \frac{\partial t}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}}$$

Divergence:
$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$

Curl:

$$\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \, v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}}$$

$$+\frac{1}{r}\left[\frac{1}{\sin\theta}\frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r}(rv_{\phi})\right]\hat{\boldsymbol{\theta}} + \frac{1}{r}\left[\frac{\partial}{\partial r}(rv_{\theta}) - \frac{\partial v_r}{\partial \theta}\right]\hat{\boldsymbol{\phi}}$$

Laplacian:
$$\nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$$

 $d\mathbf{l} = ds\,\hat{\mathbf{s}} + s\,d\phi\,\hat{\boldsymbol{\phi}} + dz\,\hat{\mathbf{z}}; \quad d\tau = s\,ds\,d\phi\,dz$ Cylindrical.

Gradient:
$$\nabla t = \frac{\partial t}{\partial s} \hat{\mathbf{s}} + \frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$

Divergence:
$$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}$$

Curl:
$$\nabla \times \mathbf{v} = \left[\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right] \hat{\mathbf{s}} + \left[\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s} \right] \hat{\boldsymbol{\phi}} + \frac{1}{s} \left[\frac{\partial}{\partial s} (s v_\phi) - \frac{\partial v_s}{\partial \phi} \right] \hat{\mathbf{z}}$$

Laplacian:
$$\nabla^2 t = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$$