ST314 Final Exam Fall 2020

Take a deep breath. Read every question. Follow directions. Be confident. Relax. You've got this!

Student Name: Lyell Read

Student ID: 000-000-000

Directions:

- This exam is open book and open note. You may use any materials posted on Canvas but please refrain from using any other resources.
- Please do not discuss the exam with anyone else in the class or outside of the class. Also, please do not post questions to online forums for help.
 - o Do not share solutions, code, answers, etc. Answers which appear "too similar" will be forwarded to the *Office of Student Life* for investigation.
- Write you solutions where indicated in the exam document itself. Please don't make any other alterations to the exam.
 - O I've tried to include a purple font color to make your solutions "stand out". If possible, keep the purple color for your solutions.
- When asked, please show your work and write explanations, justifications, etc. using complete sentences.
 - O This is really helpful for assigning partial credit in case you do something incorrectly in the short answer section.
 - O Do not show your work for the multiple choice questions.
 - O If you need to include math, write it out in plain text or using Word's equation editor.
- Submit your completed exam as a PDF file to Gradescope prior to the deadline shown on Canvas.
 - O Indicate where the solutions are in the uploaded document. Not doing this slows the grading process down considerably and will result in a points deduction for each instance the questions are not properly indicated in Gradescope.
- **Read each question slowly and carefully**. If you don't understand a question, write a post on the Midterm Exam Question Clarification discussion board on Canvas (But do not include solutions/partial solutions in your post).

Questions 1-2 (3 points each): Choose the appropriate statistical procedure for the scenario. That is, which test is most appropriate for answering the question of interest?

- 1 The width of a piston in an internal combustion engine can be measured using an analog caliper or with a digital laser. A piston manufacturer wants to decide if the added expense of purchasing digital lasers is worth the cost. They decide to compare both instruments by measuring each piston in a set of thirty with both instruments. They then compare the average measurements for each instrument.
 - A One sample z-test for the mean
 - B One sample t-test for the mean
 - C Two sample t-test for the difference in the means
 - D Matched pairs t-test
 - E Single-factor ANOVA
 - F Simple linear regression

Answer: C

- A car manufacturer produces a certain automobile at four different plants located throughout the United States. The manufacturer is interested in comparing the average number of cars produced per hour at each factory to see if they are similar or if there's evidence that one or more factories is producing more, or fewer, automobiles per hour. To accomplish this task, the manufacturer asks each factory to record the number of cars produced in five randomly chosen hours over the course of a week.
 - A One sample z-test for the mean
 - B One sample t-test for the mean
 - C Two sample t-test for the difference in the means
 - D Matched pairs t-test
 - E Single-factor ANOVA
 - F Simple linear regression

Answer: E

Questions 3-5 (3 points each): For each set of hypotheses, indicate the matching distribution needed to compute the p-value of the test

_	A	•	1
•	A celima a	10	Znown
J.	Assume σ	15	KIIUWII

$$H_0: \mu_1 = \mu_2$$

 $H_A: \mu_1 \neq \mu_2$

- A z-distribution
- B t-distribution
- C Chi-square distribution
- D F distribution

Answer: A

4 Assume σ is **unknown**

$$H_0: \mu_1 = \mu_2$$

$$H_A: \mu_1 \neq \mu_2$$

- A z-distribution
- B t-distribution
- C Chi-square distribution
- D F distribution

Answer: B

5 Assume
$$\sigma_1 = \sigma_2 = \sigma_3$$

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_{\scriptscriptstyle A}$: At least two population means are different.

- A z-distribution
- B t-distribution
- C Chi-square distribution
- D F distribution

Answer: D

Questions 6-10 (3 points each): Use the following scenario to answer the questions.

A manufacturer of videogame cartridges performs an experiment to compare the average time of three assembly methods. The goal of this analysis is to see whether these methods differ in average time to assemble the cartridge. Use the output provided to answer the following questions.

Comparison of Methods for Assembly Time

	aitt	IWI	upr	р афј
MethodB-MethodA	-2.221779	-3.683946	-0.7596126	0.0015977
MethodC-MethodA	1.208065	-0.254102	2.6702318	0.1243524
MethodC-MethodB	3.429844	1.967677	4.8920113	0.0000016

- 6 Based on the side-by-side boxplot, which statement is a **FALSE** description of the data?
 - A Method B is typically the fastest.
 - B Method C is typically the slowest.
 - C Method A the most variability of the methods.
 - D No method took longer than 17 seconds to produce a single cartridge.

Answer: D

- 7 From the Single-Factor ANOVA table, which value represents the **average** *between* group variation?
 - A 2.37e-06
 - B 3.69
 - C 16.4
 - D 60.53

Answer: D

8	The	F	statistic	and	<i>p</i> -value	from	the	Single-Factor	ANOVA	table	represent	a	nul
	hypo	the	esis of:										

- A $H_0: \beta_1 = \beta_2 = \beta_3 = 0$
- B $H_o: \overline{X}_1 = \overline{X}_2 = \overline{X}_3$
- C $H_o: \mu_1 = \mu_2 = \mu_3$
- D $H_o: \mu_1 = \mu_2 = \mu_3 = 0$

Answer: C

- Based on the *F* test statistic and *p*-value from the Single-Factor ANOVA table, what can we conclude?
 - A There is convincing evidence the average assembly times of at least two methods are different.
 - B There is no evidence which suggests the average assembly times for the different methods are different.
 - C The F test statistic comes from an F distribution of 3 and 60 degrees of freedom.
 - D The test is not valid since Method B contains an outlier.

Answer: A

- 10 Based on the output from the multiple comparisons procedure, which statement is **FALSE** (Assume $\alpha = 0.05 \& ?$
 - A There is a significant difference between methods A and B.
 - B Method A has smaller mean than Method B.
 - C The 95% F-W confidence interval estimates Method B is approximately 1.97 to 4.89 seconds faster than Method C.
 - D Method B has the fastest average assembly time in comparison to the other groups.

Answer: C

Questions 11 – 12 (3 points each): Use the following scenario to answer the questions.

Consider the residual plots below. What do they tell you about the relationship of the variables in a simple linear regression analysis? Each residual plot matches a specific violation or no violations.

- 11 Which plot provides evidence the variance is not the same for all values of the explanatory variable?
 - A Plot A
 - B Plot B
 - C Plot C
 - D Plot D

Answer: D

- 12 Which plot provides evidence the relationship between the response and predictors is not linear?
 - A Plot A
 - B Plot B
 - C Plot C
 - D Plot D

Answer: B

Questions 13 – 15 (3 points each): Answer the following questions.

- 13 The 90% confidence interval for μ is (1.8, 3.2). Assuming n=13 and that σ is unknown, what is the 95% confidence interval?
 - A $(1.646, 3.384) \leftarrow \text{expands}$
 - B $(1.644, 3.356) \leftarrow \text{expands}$
 - C $(1.926, 3.074) \leftarrow \text{wrong}$
 - D $(1.928, 3.072) \leftarrow wrong$

Answer: B

14 Fill in the blank cells (indicated with a "?") of the ANOVA table below (Each correct answer is worth 3 points):

$$I = 6, J = 86/6$$

Source	Degrees of Freedom	Sum of Squares	Mean Squares	F
Treatments	5	3724.5	744.9	7.8
Error	80	7640.0	95.5	
Total	85	11364.5		

- 15 In a hypothesis test, if we fail to reject a true null hypothesis, we make...
 - A the correct choice.
 - B a type I error.
 - C a type II error.
 - D All of the above

Answer: A

Questions 16 – 20: Use the following scenario to answer the questions.

A rocket motor is manufactured by bonding together two types of propellants, an igniter and a sustainer. A random sample of 20 specimens is used to investigate the relationship between the shear strength of the bond (in psi) and the age of the propellant (in weeks). Use the R software output to answer the following questions.

Coefficients:

Estimate Std. Error t-value Pr(>|t|) (Intercept) 2641.185 68.901 38.33 < 2e-16 age -49.550 4.436 -11.17 1.59e-09

Residual standard error: 138.3 on 18 degrees of freedom Multiple R-squared: 0.8739, Adjusted R-squared: 0.8669 F-statistic: 124.8 on 1 and 18 DF, p-value: 1.586e-09

16 (8 points) Based on the scatterplot, describe the relationship between the two variables **using context**

Strength: The strength of this correlation is moderately strong.

Direction: The direction of this relationship is negative.

Form: The form of this relationship appears to be linear.

Outliers: There exists two outliers in this dataset, one at (10, 1750) and one at (22.5, 1250).

17 (4 points) Write down the least squares regression equation.

$$\hat{y} = 2641.185 - 49.55 x$$

18 (4 points) Calculate the residual for the observation that is 12.4 weeks old with bond strength of 1993.8 psi. Write your answer in the blank and **show your work.**

$$\hat{y}$$
=2641.185 -49.55 x , (x_j, y_j) =(12.4,1993.8)
residual= y_j -($\hat{y}(x_j)$)=1993.8-(2641.185-49.55*12.4)=-32.964

19 (4 points) Based on the residual plot in part below, state all of the conditions for the least squared regression model to be valid, whether or not they are satisfied, and why.

The relationship is linear in the population.

There exists no noticeable U shaped curve, therefore I deem this relationship to be linear.

The response varies normally about the population regression line.

This does not hold – there is a significant number of points more above the line than below it. The variations with respect to the line are not constant either.

Observations are independent.

The observations are independent, as one observation does not impact others.

The standard deviation of the responses is the same for all values of x.

This holds, there appears to be no funnel shape in the graph of residuals.

20 (4 points) Interpret the estimated slope of the linear model:

For each additional week that the propellant ages, the shear strength diminishes by 49.55 psi.

7	00.	10.	.02	.03	.04	90'	90"	-01	80.	60'
0.0	50000	50399	50798	51197	51595	51994	52392	.52790	.53188	53586
0.1	53983	54380	54776	55172	55567	55962	56356	56749	57142	57535
0.2	57926	58317	58706	59095	59483	59871	.60257	.60642	61026	61409
0.3	16719.	.62172	62552	62930	.63307	.63683	.64058	64431	64803	.65173
0.4	.65542	01659.	.66276	06999	67003	.67364	67724	68082	68439	.68793
0.5	.69146	169497	69847	70194	70540	70884	71226	71566	71904	72240
9.0	.72575	72907	.73237	.73565	73891	74215	.74537	74857	75175	75490
0.7	75804	76115	76424	.76730	.77035	.77337	77637	.77935	.78230	78524
8.0	78814	.79103	79389	79673	79955	.80234	.80511	.80785	.81057	.81327
60	.81594	81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	83891
1.0	84134	.84375	84614	84849	.85083	.85314	.85543	.85769	.85993	86214
=	.86433	86650	\$6864	87076	87286	.87493	86918.	87900	88100	88298
1	.88493	88686	\$8877	\$9068	.89251	.89435	71968.	89796	89973	90147
13	.90320	90490	85906	90824	88606	91149	91309	91466	91621	91774
7	91924	.92073	92220	92364	92507	92647	92785	92922	93056	93189
1.5	93319	.93448	93574	93699	93822	93943	.94062	94179	.94295	94408
9.1	.94520	.94630	94738	94845	94950	.95053	.95154	.95254	.95352	95449
1.7	.95543	95637	95728	95818	95907	95994	08096	96164	96246	96327
1.8	.96407	96485	96562	96638	96712	96784	96856	96926	56696	97062
1.9	.97128	97193	97257	97320	97381	97441	97500	97558	97615	97670
2.0	97725	97778	97831	97882	97932	97982	98030	77086	98124	98169
7	98214	98257	98300	98341	98382	98422	98461	98500	98537	98574
::	98610	98645	61986	98713	98745	8778	60886	98840	07889	66886
7	98928	95686	98983	99010	98036	19066	98066	99111	99134	99158
7	99180	99202	99224	99245	99766	99286	99305	99324	.99343	99361
3.5	99379	99396	99413	99430	99446	19466	77466.	.99492	90566	99520
3.6	.99534	99547	99560	99573	58566	86566	60966	99621	.99632	99643
	.99653	99664	99674	8966	99693	99702	11796	.99720	99728	99736
30	99744	.99752	09166	19166	99774	18266	88266	36795	10866	70866
3.9	99813	61866	99825	99831	99836	99841	99846	15866	95856	19866
3.0	59866	69866	99874	81866	99882	98866	68866	68866	96866	00666
3.1	99903	90666	99910	99913	91666	81666	99921	99924	98926	99929
3.2	99931	99934	98666	99938	99940	99942	99944	96666	99948	99950
3.3	99952	.99953	99955	75666	85666	09666	19666	9866	99964	39665
3.4	99666	89666	69666	02666	11666	99972	99973	99974	39975	97666.
3.5	77666	87666	82666	61666	08666	18666	18666	99982	.99983	99983
3.6	18666	58666	58666	98666	98666	18666	L8666	\$8666	88666	68666
3.7	68666	06666	06666	06666	16666	16666	99992	99992	99992	99992
3.8	99993	56666	00003	00000	00000	00000	00000	20000	20000	20000
			71111	2000	22224	-22224	23337	.7777	.7777	2777

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.	ED NOR	TAL DIST	RIBUILD	IN: Lable	values Ke	present	KEA for	e LEF 1	I me Z sc	ore.
7	00.	10.	.02	.03	.04	90.	90.	.07	80'	60.
-3.9	300000	.00005	00000	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	70000.	.00007	90000	90000	90000	90000	00000	00000	00000
-3.7	.00011	01000	000010	01000	60000	60000	80000	800000	80000	80000
-3.6	91000	.00015	000015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	61000	61000	.00018	71000	71000.
-3.4	.00034	.00032	.00031	.000030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	69000	99000	.00064	.00062	09000	85000.	950000	.00054	.00052	.000050
-3.1	76000.	46000	06000	78000	.00084	.00082	62000	92000.	.00074	17000.
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	70100.	.00104	.00100
-2.9	.00187	.00181	27100.	69100	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00200	66100	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	80500	.00494	.00480
-2.4	.00820	86200.	97700.	.00755	.00734	.00714	26900	92900	75900.	.00639
-2.3	.01072	.01044	71010.	06600	.00964	.00939	.00914	68800	99800	.00842
2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	81910.	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	01970	.01923	97810.	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	75090.	.05938	.05821	.05705	.05592
-1.4	92080.	72670.	08770.	.07636	.07493	.07353	.07215	87070.	.06944	.06811
-1.3	08960	.09510	.09342	92160	.09012	.08851	16980	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	10204	10027	.09853
-1.1	13567	.13350	13136	.12924	.12714	.12507	.12302	12100	11900	.11702
-1.0	15866	.15625	15386	15151.	.14917	.14686	.14457	.14231	14007	.13786
6.0-	.18406	18141	17879	17619	17361	17106	.16853	16602	16354	16109
8.0-	21186	20897	20611	20327	20045	19766	19489	19215	18943	18673
-0.7	24196	23885	23576	23270	22965	.22663	22363	22065	21770	21476
9.0-	27425	.27093	26763	26435	26109	25785	25463	25143	24825	.24510
-0.5	30854	30503	30153	29806	.29460	29116	28774	28434	28096	.27760
-0.4	34458	34090	33724	33360	32997	.32636	32276	31918	.31561	.31207
-0.3	38209	37828	37448	37070	36693	36317	35942	35569	35197	34827
-0.2	42074	.41683	41294	40905	.40517	.40129	39743	39358	38974	38591
-0.1	.46017	.45620	45224	44828	.44433	.44038	43644	.43251	.42858	.42465
-0.0	.50000	10964	.49202	.48803	.48405	48006	47608	.47210	.46812	46414

t Table

cum. prob	t _{.50}	t .75	t .80	t .85	t .90	t .95	t .975	t .99	t .995	t ,999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df		-	-	-		-					
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10 11	0.000	0.700 0.697	0.879 0.876	1.093 1.088	1.372 1.363	1.812 1.796	2.228 2.201	2.764 2.718	3.169 3.106	4.144 4.025	4.587 4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.437
13	0.000	0.694	0.870	1.003	1.350	1.771	2.173	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26 27	0.000	0.684 0.684	0.856 0.855	1.058 1.057	1.315 1.314	1.706 1.703	2.056 2.052	2.479 2.473	2.779 2.771	3.435 3.421	3.707 3.690
28	0.000	0.683	0.855	1.057	1.314	1.703	2.052	2.473	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.313	1.699	2.046	2.467	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.043	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	lence Le	evel				