

Description

The MC-421000A9 is a fast-page 1,048,576-word by 9-bit dynamic RAM module designed to operate from a single +5-volt power supply.

The module is functionally equivalent to nine standard 1M DRAMs plus a parity bit. Refreshing is accomplished by means of RAS-only refresh cycles, hidden refresh cycles, CAS before RAS refresh cycles, or by normal read or write cycles

The MC-421000A9 consists of nine 1M x 1 DRAMs (μ PD421000) or two 1M x 4 DRAMs (μ PD424400) and one 1M x 1 DRAM (μ PD421000). Packaging is in a variety of 30-pin Single Inline Memory Modules (SIMM TM).

Features

- □ 1,048,576-word by 9-bit organization
- □ Single +5-volt power supply
- Standard 30-pin Single Inline Memory Module (SIMM) packaging
- Version 1: nine 1M x 1 DRAMs
- Version 2: two 1M x 4 DRAMs and one 1M x 1 DRAM
- Includes power supply decoupling capacitors
- Low power dissipation
- TTL-compatible inputs and outputs
- Fast-page capability

SIMM is a trademark of Wang Laboratories.

Pin Configurations

30-Pin Leaded SIMM (MC-421000A9A/AA/AB)

10b

Pin Configurations (cont)

30-Pin Socket-Mountable SIMM (MC-421000A9B/BA/BB/F/FA/FB)

Pin Identification

Symbol	Function
A ₀ - A ₉	Address inputs
CAS	Column address strobe
CAS ₉	Column address strobe for data output 9
D _{IN 9}	Data input 9
D _{OUT 9}	Data output 9
1/01 - 1/08	Common data inputs/outputs
RAS	Row address strobe
WE	Write enable
GND	Ground
Vcc	+5-volt power supply
NC	No connection

Ordering Information

Part Number	Access Time (max)	Package	Height	Thickness	DRAMs	
MC-421000A9A-60	60 ns	30-pin leaded SIMM	20.0 mm	5.28 mm	Nine μPD421000LA	
-70	70 ns	(solder plating)	(0.787 inch)	(0.208 inch)		
-80	80 ns	-				
-10	100 ns	-				
MC-421000A9B-60	60 ns	30-pin socket-	_			
-70	70 ns	mountable SIMM (solder plating)				
-80	80 ns	(F 3)				
-10	100 ns					
MC-421000A9F-60	60 ns	30-pin socket-	_			
-70	70 ns	mountable SIMM (gold plating)				
-80	80 ns	- (gere premig/				
-10	100 ns	•				
MC-421000A9AA-60	60 ns	30-pin leaded SIMM	16.8 mm	5.08 mm	Two μPD424400LA	
-70	70 ns	(solder plating)	(0.661 inch)	(0.200 inch)	One μPD421000LA	
-80	80 ns					
-10	100 ns					
MC-421000A9BA-60	60 ns	30-pin socket-	_			
-70	70 ns	mountable SIMM (solder plating)				
-80	80 ns	- (colder planny)				
-10	100 ns					
MC-421000A9FA-60	60 ns	30-pin socket-	_			
-70	70 ns	mountable SIMM (gold plating)				
-80	80 ns	(3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
-10	100 ns	-				
MC-421000A9AB-60	60 ns	30-pin leaded SIMM	16.8 mm	5.08 mm	Two μPD424400LB	
-70	70 ns	(solder plating)	(0.661 inch)	(0.200 inch)	One µPD421000LA	
-80	80 ns	-				
-10	100 ns	•				
MC-421000A9BB-60	60 ns	30-pin socket-	_			
-70	70 ns	mountable SIMM . (solder plating)				
-80	80 ns	. (solder plating)				
-10	100 ns	•				
MC-421000A9FB-60	60 ns	30-pin socket-	_			
-70	70 ns	mountable SIMM . (gold plating)				
-80	80 ns	- (Solo bigging)				
-10	100 ns	-				

10b

Connection Diagram, MC-421000A9AA/BA/FA/AB/BB/FB

Connection Diagram, MC-421000A9A/B/F

Absolute Maximum Ratings

Voltage on any pin relative to GND	-1.0 to +7.0 V
Operating temperature, TOPR	0 to +70°C
Storage temperature, T _{STG}	-55 to +125°C
Short-circuit output current, IOS	50 mA
Power dissipation, P _D MC-421000A9A/B/F	9.0 W
Power dissipation, P _D MC-421000A9AA/BA/FA/AB/BB/FB	3.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

T_A = 25°C; f = 1 MHz

Parameter	Symbol	MC-421000A9A/B/F	MC-421000A9AA/BA/FA/AB/BB/FB	Unit	Pins Under Test
Input capacitance, max	C _{I1}	70	31	рF	A ₀ - A ₉ , RAS, CAS, WE
	Cl2	7	17	pF	CAS ₉ , D _{IN 9}
Input/output capacitance, max	CD	15	12	pF	1/01 - 1/08
Output capacitance, max	Со	10	17	pF	D _{OUT 9}

DC Characteristics

 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V } \pm 10\%; \text{ GND} = 0 \text{ V}$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply voltage	ν _{cc}	4.5	5.0	5.5	٧	
Input voltage, high	V _{IH}	2.4		V _{CC} + 1.0	٧	
nput voltage, low	V _{IL}	~1.0		0.8	٧	
Standby current	lcc2			18	mA	RAS = CAS ≥ V _{IH}
(Note 1)				9	mA	RAS = CAS ≥ V _{CC} - 0.2 V
Standby current	lcc2			6	mA	RAS = CAS ≥ V _{IH}
(Note 2)				3	mA	RAS = CAS ≥ V _{CC} - 0.2 V
nput leakage current	I _{IL}	-90		90	μΑ	For $A_0 - A_9$, \overline{AAS} , \overline{CAS} , \overline{WE} : $V_{IN} = 0$ to 5.5 V; other pins = 0 V
(Note 1)	l _{IL9}	-10		10	μΑ	For $\overline{\text{CAS}}_9$ and $D_{\text{IN }9}$: $V_{\text{IN}}=0$ to 5.5 V; other pins = 0 V
nput leakage current	l _{iL}	-30		30	μΑ	For A ₀ - A ₉ , $\overline{\text{HAS}}$, $\overline{\text{CAS}}$, $\overline{\text{WE}}$: $V_{\text{IN}} = 0$ to 5.5 V; other pins = 0 V
(Note 2)	l _{IL9}	-10		10	μΑ	For $\overline{\text{CAS}}_9$ and $D_{\text{IN }9}$: $V_{\text{IN}}=0$ to 5.5 V; other pins = 0 V
Output leakage current	loL	-10		10	μΑ	For $VO_1 - VO_8$ and $D_{OUT 9}$: D_{OUT} disabled; $V_{OUT} = 0$ to 5.5 V
Output voltage, low	VoL	0		0.4	٧	l _{OUT} = 4.2 mA
Output voltage, high	V _{OH}	2.4		Vcc	٧	I _{OUT} = -5 mA

Notes:

- Applicable to MC-421000A9A/B/F, which consists of nine 1M x 1 DRAMs (μPD421000).
- (2) Applicable to MC-421000A9AA/BA/FA/AB/BB/FB, which consists of two 1M x 4 DRAMs (μPD424400) and one 1M x 1 DRAM (μPD421000).

AC Characteristics

 $T_A = 0 \text{ to } +70^{\circ}\text{C}; V_{CC} = +5.0 \text{ V } \pm 10\%$

			-60		–70		-80	_	-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Operating current,	I _{CC1} (No	te 21)	810		720		630		540	mA	RAS, CAS cycling;
average	I _{CC1} (No	te 22)	330		280		250		220	mΑ	$t_{RC} = t_{RC} \min (Note 5)$
Operating current,	I _{CC3} (No	te 21)	810		720		630		540	mA	RAS cycling; CAS = V _{IH} ;
RAS-only refresh cycle, average	I _{CC3} (No	te 22)	330		280		250		220	mA	$t_{RC} = t_{RC} \min \text{ (Note 5)}$
Operating current,	I _{CC4} (No	te 21)	720		630		540		450	mA	RAS = V _{IL} ; CAS cycling;
fast-page cycle, average	I _{CC4} (No	te 22)	260		230		200		170	mA	$t_{PC} = t_{PC} \min (Note 5)$
Operating current,	I _{CC5} (No	te 21)	810		720		630		540	mA	RAS cycling; CAS before
CAS before RAS refresh cycle, average	I _{CC5} (No	te 22)	330		280		250		220	mA	RAS; t _{RC} = t _{RC} min (Note 5)
Access time from column address	t _{AA}		30		35	_	40		50	ns	(Notes 7, 10, 11)
Access time from CAS precharge (rising edge)	tACP		35		40		45		55	ns	(Notes 7, 11)
Column address hold time referenced to RAS	t _{AR}	N/A		N/A		60		70		ns	
Column address setup time	†ASC	0		0		0		0		ns	(Note 11)
Row address setup time	tasr	0		0		0		0	-	ns	
Column address to WE delay time	†AWD	30	_	35		40		50		ns	(Note 18)
Access time from CAS (falling edge)	tCAC		20	·	20		20		25	ns	(Notes 7, 9, 10, 11)
Column address hold time	t _{CAH}	15		17		20		20		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	20	10,000	25	10,000	ns	
CAS hold time for CAS before RAS refresh cycle	tCHR	15		15		15		20		ns	
CAS to output in low-Z	t _{CLZ}		0		0		0		0	ns	(Note 7)
CAS precharge time, fast- page cycle	t _{CP}	10		10		10		10		ns	(Note 11)
CAS precharge time, nonpage cycle	tCPN	10		10		10		10		ns	
CAS to RAS precharge time	t _{CRP}	10		10		10	·	10		ns	(Note 14)
CAS hold time	tcsH	60		70		80		100		ns	
CAS setup time for CAS before RAS refresh cycle	tosa	10		10		10		10		ns	
CAS to WE delay	tcwD	20	-	20		20		25		ns	(Note 18)
Write command to CAS lead time	t _{CWL}	15		15		15		20		пѕ	
Data-in hold time	t _{DH}	15		15		15		20	•	ns	(Note 17)

AC Characteristics (cont)

		-60		-70		-80		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Data-in hold time referenced to RAS	t _{DHR}	N/A		N/A		60		70		ns	
Data-in setup time	t _{DS}	0		0		0		0		ns	(Note 17)
Output buffer turnoff delay	toff	0	15	0	15	0	20	0	25	ns	(Note 11)
Fast-page cycle time	t _{PC}	40		45		50		60		пѕ	(Note 6)
Access time from RAS	t _{RAC}		60		70		80		100	ns	(Notes 7, 8)
RAS to column address delay time	t _{RAD}	15	30	15	35	17	40	17	50	ns	(Note 10)
Row address hold time	tRAH	10		10		12		12		ns	
Column address lead time referenced to RAS (rising edge)	^t RAL	30		35		40		50		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	80	10,000	100	10,000	ns	
RAS pulse width, fast-page cycle	^t RASP	60	10,000	70	100,000	80	100,000	100	100,000	ns	
Random read or write cycle time	t _{RC}	120		140		160		190		ns	(Note 6)
RAS to CAS delay time	tRCD	20	40	20	50	25	60	25	75	ns	(Note 12)
Read command hold time referenced to CAS	[†] RCH	0		0		0		0		ns	(Note 15)
Read command setup time	† _{RCS}	0		0		0		0		ns	
Refresh period	t _{REF}		8		8		8		8	ms	Addresses A ₀ - A ₉ (Note 21)
Refresh period	t _{REF}		16		16		16		16	ms	Addresses A ₀ - A ₉ (Note 22)
RAS precharge time	t _{RP}	50		60		70		80		ns	
RAS precharge CAS hold time	[†] RPC	10		10		10		10		ns	
Read command hold time referenced to RAS	^t RRH	10		10		10		10		ns	(Note 15)
RAS hold time	trsh	20	_	20		20		25		ns	
Read-write cycle time	^t RWC	145		165		185		200		ns	(Note 6)
RAS to WE delay	t _{RWD}	60		70		80		100		ns	
Write command to RAS lead time	tRWL	20		20		20		25		ns	
Rise and fall transition time	t _T	3	50	3	50	3	50	3	50	ns	(Note 4)
Write command hold time	twcH	15		15		15		20		ns	
Write command hold time referenced to RAS	twcR	N/A		N/A		5 5		70		ns	
Write command setup time	twcs	0		0		0		0		ns	
Write command	t _{WHR}	15		15		15		20			

AC Characteristics (cont)

		-60		-70		-80		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Write command pulse width	t _{WP}	15		15		15		20		ns	(Note 16)
Write command	twsR	10		10		10		10			-

Notes:

- (1) All voltages are referenced to GND.
- (2) An initial pause of 100 µs is required after power-up, followed by any eight RAS cycles, before proper device operation is achieved.
- (3) Ac measurements assume $t_T = 5 \text{ ns.}$
- (4) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- (5) I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC5} depend on output loading and cycle rates. Specified values are obtained with the output open. I_{CC3} is measured assuming that all column address inputs are held at either a high level or a low level during PAS-only refresh cycles. I_{CC4} is measured assuming that all column address inputs are switched only once during each fast-page cycle.
- (6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range (T_A = 0 to +70°C) is assured.
- (7) Load = 2 TTL (-1 mA, +4 mA) loads and 100 pF (V_{OH} = 2.0 V, V_{OL} = 0.8 V).
- (8) Assumes that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value in this table, t_{RAC} increases by the amount that t_{RCD} or t_{RAD} exceeds the value shown.
- (9) Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max).
- (10) If $t_{RAD} \ge t_{RAD}$ (max), then the access time is defined by t_{AA} .
- (11) For fast-page read operation, the definition of access time is as follows:

CAS and Column Address Input Conditions	Access Time Definition
t _{CP} ≤ t _{CP} (max), t _{ASC} ≥ t _{CP}	tacp
t _{CP} ≤ t _{CP} (max), t _{ASC} ≤ t _{CP}	t _{AA}
$t_{CP} \ge t_{CP}$ (max), $t_{ASC} \le t_{ASC}$ (max)	t _{AA}
$t_{CP} \ge t_{CP}$ (max), $t_{ASC} \ge t_{CP}$	tcac

- (12) t_{OFF} (max) defines the time at which the output achieves the open-circuit condition and is not referenced to V_{OH} or V_{OI}.
- (13) Operation within the t_{RCD} (max) limit assures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than t_{RCD} (max), then access time is controlled exclusively by t_{CAC}.
- (14) The t_{CRP} requirement should be applicable for RAS/CAS cycles preceded by any cycle.
- (15) Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- (16) Parameter twp is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write operation, both twcs and twcH must be met.
- (17) These parameters are referenced to the falling edge of CAS for early write cycles and to the falling edge of WE for delayed write or read-modify-write cycles.
- (18) For D_{OUT9}, parameters t_{WCS}, t_{CWD}, t_{RWD}, and t_{AWD} are restrictive operating parameters in read-write/read-modify-write cycles only. If t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If t_{CWD} ≥ t_{CWD} (min), t_{RWD} ≥ t_{RWD} (min), and t_{AWD} ≥ t_{AWD} (min), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of D_{OUT 9} (at access time and until CAS₉ returns to V_{IH}) is indeterminate.
- (19) CAS before RAS operation is specified.
- (20) Read-write/read-modify-write operation can be performed only by the SOJ controlled by CAS₉ because of its separate data input and output pins.
- (21) Applicable to MC-421000A9A/B/F, which consists of nine 1M x 1 DRAMs (µPD421000).
- (22) Applicable to MC-421000A9AA/BA/FA/AB/BB/FB, which consists of two 1M x 4 DRAMs (μPD424400) and one 1M x 1 DRAM (μPD421000).

Timing Waveforms

Read Cycle

Early Write Cycle

Read-Write/Read-Modify-Write Cycle (DOUT9 only)

Fast-Page Read Cycle

10b

Fast-Page Early Write Cycle

Fast-Page Read-Write/Read-Modify-Write Cycle (DOUTS only)

Hidden Refresh Cycle

RAS-Only Refresh Cycle

CAS Before RAS Refresh Cycle

Package Drawings

30-Pin Socket-Mountable SIMM (MC-421000A9BA/FA/BB/FB)

30-Pin Leaded SIMM (MC-421000A9AA/AB)

Package Drawings (cont)

30-Pin Socket-Mountable SIMM (MC-421000A9B/F)

30-Pin Leaded SIMM (MC-421000A9A)

