

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине: «Имитационное моделирование»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2022

Содержание

Введение. Моделирование случайных величин	2
Треугольное распределение	2
Датчики - равномерное распределение	5
Датчик - экспоненциальное распределение	11
Датчик - нормальный закон	14
Датчик - треугольное распределение	18
Метод Монте-Карло	21
	23
Проверка качества датчиков	25
Моделирование СМО	26
Модель СМО в AnyLogic	26

Введение. Моделирование случайных величин.

Треугольное распределение

Задание:

Получить аналитическое выражение для функции распределения F(x) треугольного закона с параметрами $a\ (min),\ b\ (max),\ c\ (moda)$. Найти аналитическое выражение для обратной функции $F^{-1}(x)$.

Рис. 1: График плотности треугольного закона

Решение:

Плотность распределения f(x)

Уравнение по двум точкам:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} \quad \Rightarrow \quad y = \frac{x - x_1}{x_2 - x_1} \cdot (y_2 - y_1) + y_1$$

1) Рассмотрим случай $x \in [a, c]$:

Точки: (a,0) , $\left(c,\frac{2}{b-a}\right)$

$$f_1(x) = \frac{x-a}{c-a} \cdot \left(\frac{2}{b-a} - 0\right) + 0 \quad \Rightarrow \quad f_1(x) = \frac{2(x-a)}{(b-a)(c-a)}$$

2) Рассмотрим случай $x \in [c, b]$:

Точки: $\left(c, \frac{2}{b-a}\right), (b, 0)$

$$f_2(x) = \frac{x-c}{b-c} \cdot \left(0 - \frac{2}{b-a}\right) + \frac{2}{b-a} \implies f_2(x) = \frac{2(b-x)}{(b-c)(b-a)}$$

Плотность треугольного распределения:

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & , x \in [a,c] \\ \frac{2(b-x)}{(b-c)(b-a)} & , x \in [c,b] \\ 0 & , x \notin [a,b] \end{cases}$$

Функция распределения F(x)

По свойству функции распределения: f'(x) = F(x).

1) Рассмотрим случай $x \in [a, c]$:

$$F_1(x) = \int_a^x \frac{2(t-a)}{(b-a)(c-a)} dt = \frac{t(t-2a)}{(b-a)(c-a)} \Big|_a^x = \frac{(x-a)^2}{(b-a)(c-a)}$$

2) Рассмотрим случай $x \in [c, b]$:

При вычислении функции распределения на этом участке следует помнить, что у нас был предшествующий отрезок от [a,c], тогда нужно посчитать его площадь и прибавить к $F_2(x)$.

$$F_1(c) = \frac{c-a}{b-a}$$

$$F_2(x) = \frac{c-a}{b-a} + \int_c^x \frac{2(b-t)}{(b-c)(b-a)} dt = \frac{c-a}{b-a} + \frac{t(2b-t)}{(b-c)(b-a)} \Big|_c^x = \frac{c-a}{b-a} + \frac{(2b-c-x)(x-c)}{(b-a)(b-c)} = 1 - \frac{(x-b)^2}{(b-a)(b-c)}$$

Функция распределения треугольного закона:

$$F(x) = \begin{cases} 0 & , x < a \\ \frac{(x-a)^2}{(b-a)(c-a)} & , x \in [a,c] \\ 1 - \frac{(x-b)^2}{(b-a)(b-c)} & , x \in [c,b] \\ 1 & , x > b \end{cases}$$

Рис. 2: График функции распределения треугольного закона

Обратная функция $F^{-1}(x)$

Пусть y = F(x).

У функции распределения есть ограничение: 0 < y < 1, которое стоит учитывать.

1) Рассмотрим случай $0 < y < \frac{c-a}{b-a}$:

$$F_1^{-1}(y) = x_1 = a + \sqrt{(b-a)(c-a)y}$$

2) Рассмотрим случай $\frac{c-a}{b-a} \leq y < 1$:

$$F_2^{-1}(y) = x_2 = b - \sqrt{(b-a)(b-c)(1-y)}$$

Обратная функция $F^{-1}(x)$:

$$F^{-1}(y) = x = \begin{cases} a + \sqrt{(b-a)(c-a)y} & , 0 < y < \frac{c-a}{b-a} \\ b - \sqrt{(b-a)(b-c)(1-y)} & , \frac{c-a}{b-a} \le y < 1 \end{cases}$$

Датчики - равномерное распределение

Задание:

Реализовать генератор случайных чисел, используя метод серединных квадратов (фон Нейман). Проанализировать свойства полученной последовательности.

Решение:

В методе серединных квадратов изначально задаётся количество разрядов числа k и начальное значение R_0 . Далее число R_0 возводится в квадрат и из середины квадрата числа берётся k-значное число, которое снова возводится в квадрат, и так далее.

Обязательным условием является то, что количество разрядов k должно быть чётным числом.

Данный алгоритм был реализован на языке программирования Python. (Рисунок 3)

```
def mid_square_method(init, digit, n = 10):
    if digit % 2 != 0: return

r = init
    res = [r]
    mid_d = digit//2
    for i in range(n):
        r *= r
        digits = list(str(r))
        while len(digits) < digit:
            digits = ['0'] + digits
        r = int(''.join(digits[1:-1]))
        res.append(r)
    return res</pre>
```

Рис. 3: Реализация метода серединных квадратов

Алгоритм был запущен с параметрами k = 10, $R_0 = 31$, n = 10, где n -это количество сгенерированных случайных чисел. Можно проследить, что при достаточно малых разрядах и малом начальном значении быстро получается вырождение, что плохо. (Рисунок 4)

Рис. 4: Результаты генерации случайных чисел методом серединных квадратов

Также стоит проверить гипотезу о том, что получившиеся значения распределены равномерно. Для этого воспользуемся критерием Колмогорова-Смирнова. (Рисунок 5)

```
sp.stats.kstest(res, lambda x: sp.stats.uniform.cdf(x, loc=0, scale=100))
KstestResult(statistic=0.364545454545454545, pvalue=0.08123628783386883)
```

Проверка гипотезы

Рис. 5: Результаты теста Колмогорова-Смирнова

Значение p-value > 0.05, значит мы принимаем гипотезу о том, что данная выборка имеет равномерное распределение.

Задание:

Реализовать линейный конгруэнтный датчик случайных чисел. Сгенерировать последовательность вещественных чисел, распределённых равномерно: 1) на интервале [0,1); 2) на интервале [a,b). Проанализировать полученные последовательности. Определить период, построить гистограмму.

Решение:

Линейный конгруэнтный метод – это один из рекуррентных методов генерации случайных чисел. Следующий элемент последовательности может быть найден по следующей формуле:

$$r_{i+1} = (k \cdot r_i + b) \bmod M$$

Линейная конгруэнтная последовательность, определённая числами M, k, b, r_0 периодична с периодом, не превышающим M. При этом длина периода равна M тогда и только тогда, когда:

- 1. числа b и M взаимно простые;
- 2. k-1 кратно p для каждого простого p, являющегося делителем M;
- 3. k-1 кратно 4, если M кратно 4.

Сначала был реализован алгоритм для интервала [0;1) на языке программирования Python. (Рисунок 6)

```
def linear_congruent_gauge_0_1(init, k, b, M, n):
    r = init
    unique = 0
    res = []
    for i in range(n):
        r = (k*r + b) % M
        if r/M not in res:
            unique += 1
        res.append(r/M)
    return res, unique
```

Рис. 6: Реализация линейного конгруэнтного счётчика на интервале [0,1)

Для того чтобы получить случайные числа в интервале от [0,1) нужно поделить каждый случайный сгенерированный элемент последовательности на M. Также данная функция выводит период сгенерированной последовательности.

Рис. 7: Результаты генерации случайных чисел линейным конгруэнтным счётчиком на интервале [0,1)

В качестве аргументов были выбраны следующие значения: $r_0 = 3$, k = 2, b = 1, M = 10, n = 12, где n – это количество сгенерированных случайных чисел. Можно видеть, что при данном наборе аргументов длина периода составила 4. (Рисунок 7)

Также стоит проверить гипотезу о том, что получившиеся значения распределены равномерно. Для этого воспользуемся критерием Колмогорова-Смирнова. (Рисунок 8)

Проверка гипотезы

```
sp.stats.kstest(res[0], lambda x: sp.stats.uniform.cdf(x, loc=0, scale=1))
KstestResult(statistic=0.30000000000000000, pvalue=0.18735709092941655)
```

Рис. 8: Результаты теста Колмогорова-Смирнова

Значение *p-value* > 0.05, значит мы принимаем гипотезу о том, что данная выборка имеет равномерное распределение.

Далее был реализован алгоритм для интервала [a;b). (Рисунок 9)

```
def linear_congruent_gauge_a_b(init, k, b, M, n, a_param, b_param):
    r = init
    unique = 0
    res = []
    for i in range(n):
        r = (k*r + b) % M
        val = (1-r/M)*a_param + (r/M)*b_param
        if val not in res:
            unique += 1
        res.append(val)
    return res, unique
```

Рис. 9: Реализация линейного конгруэнтного счётчика на интервале [a,b)

Для того чтобы получить случайные числа в интервале от [a,b) нужно проделать следующее преобразование:

$$(1 - \frac{r_i}{M})/a + \frac{r_i}{M} \cdot b$$

То есть сначала мы генерируем числа в интервале от [0,1), а дальше преобразуем их к интервалу от [a,b).

Рис. 10: Результаты генерации случайных чисел линейным конгруэнтным счётчиком на интервале [a,b)

В качестве аргументов были выбраны следующие значения: $r_0 = 3$, k = 2, b = 1, M = 10, n = 10, $a_{param} = 100$, $b_{param} = 200$, где n – это количество сгенерированных случайных чисел. Можно видеть, что при данном наборе аргументов длина периода составила 4. (Рисунок 10)

Также стоит проверить гипотезу о том, что получившиеся значения распределены равномерно. Для этого воспользуемся критерием Колмогорова-Смирнова. (Рисунок 11)

Проверка гипотезы

```
sp.stats.kstest(res[0], lambda x: sp.stats.uniform.cdf(x, loc=30, scale=200))
KstestResult(statistic=0.4, pvalue=0.05898924519999926)
```

Рис. 11: Результаты теста Колмогорова-Смирнова

Значение p-value > 0.05, значит мы принимаем гипотезу о том, что данная выборка имеет равномерное распределение.

Датчик - экспоненциальное распределение

Задание:

Используя метод обратной функции, получить последовательность случайных чисел, распределённых экспоненциально с заданным параметром λ . Проанализировать полученную последовательность. Оценить математическое ожидание и дисперсию, построить гистограмму.

Решение:

Плотность распределения экспоненциального закона:

$$f(x) = \begin{cases} \lambda e^{-\lambda \cdot x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Функция распределения экспоненциального закона:

$$F(x) = \begin{cases} 1 - e^{-\lambda \cdot x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Получается, что обратная функция $F^{-1}(x)$ будет выглядеть следующим образом:

$$x = \frac{-ln(1-y)}{\lambda} = -\frac{ln(y)}{\lambda}$$

Если подставлять вместо y случайные равномерно распределённые значения, то можно получать требуемые числа.

Таким образом, была реализована функция на языке программирования Python. (Рисунок 12)

```
def exp_inverse_function_method(lambda_, n):
    return [-np.log(np.random.random())/lambda_ for _ in range(n)]
```

Рис. 12: Реализация метода обратной функции для экспоненциального закона

При $\lambda = 5$ и n = 1000 получается следующий результат. (Рисунок 13) Математическое ожидание экспоненциального распределения:

$$E = \frac{1}{\lambda}$$

```
x = np.linspace(sp.stats.expon.ppf(0.01), sp.stats.expon.ppf(0.99), 100)
plt.plot(0.3*x, 600*sp.stats.expon.pdf(x), c="r")
plt.hist(res)
plt.show()
```


Рис. 13: Результаты генерации случайных чисел методом обратной функции для экспоненциального закона

Если рассчитывать математическое ожидание как среднее значение в выборке, то получается следующий результат. (Рисунок 14)

Математическое ожидание:

Рис. 14: Теоретическое и расчётное значения математического ожидания $(\lambda = 3)$

Можно заметить, что при n=1000 значения получились достаточно близкими.

Дисперсия экспоненциального распределения:

$$D = \frac{1}{\lambda^2}$$

Далее можно рассчитать дисперсию как среднее квадратное отклонение от среднего значения выборки. (Рисунок 15)

Дисперсия:

```
d = sum((x-m)**2 for x in res) / len(res)
d

0.1084274985543402

1/lambda_**2

0.1111111111111111
```

Рис. 15: Теоретическое и расчётное значения дисперсии $(\lambda = 3)$

Можно заметить, что при n=1000 значения получились достаточно близкими.

Также стоит проверить гипотезу о том, что получившиеся значения распределены экспоненциально. Для этого воспользуемся критерием Колмогорова-Смирнова. (Рисунок 16)

Проверка гипотезы

```
sp.stats.kstest(res, lambda x: sp.stats.expon.cdf(x, loc=0, scale=0.2))
KstestResult(statistic=0.03048548325866085, pvalue=0.3043931949589904)
```

Рис. 16: Результаты теста Колмогорова-Смирнова

Значение p-value > 0.05, значит мы принимаем гипотезу о том, что данная выборка имеет экспоненциальное распределение.

Датчик - нормальный закон

Задание:

Получить нормально распределённую последовательность случайных чисел, используя:

1. преобразование Бокса-Мюллера

2. формулу
$$Z = \sqrt{\frac{12}{n}} \left(\sum_{i=1}^n x_i - \frac{n}{2} \right)$$
 (частный случай $Z = \sum_{i=1}^{12} x_i - 6$)

Решение:

1. Преобразование Бокса-Мюллера

Данное преобразование заключается в замене равномерно распределённых случайных величин на нормально распределённые случайные величины, которые можно найти по следующим формулам:

$$u_1 = \cos(2\pi \cdot v_1)\sqrt{-2 \cdot \ln(v_2)}$$
$$u_2 = \sin(2\pi \cdot v_1)\sqrt{-2 \cdot \ln(v_2)}$$

То есть на каждом шаге создания нового элемента последовательности нужно сначала сгенерировать два равномерно распределённых случайных числа v_1 и v_2 , а дальше случайно выбрать формулу u_1 или u_2 для расчёта результирующего элемента последовательности.

Данный алгоритм был реализован на языке программирования Python. (Рисунок 17)

Рис. 17: Реализация преобразования Бокса-Мюллера

Была сгенерирована последовательность из 1000 элементов и на основании этого построена гистограмма. (Рисунок 18)

Рис. 18: Результаты применения преобразования Бокса-Мюллера

Как можно видеть на получившейся гистограмме, распределение действительно получилось нормальное, то есть алгоритм сработал корректно.

Также стоит проверить гипотезу о том, что получившиеся значения распределены нормально. Для этого воспользуемся критерием Колмогорова-Смирнова. (Рисунок 19)

Проверка гипотезы

```
sp.stats.kstest(res, lambda x: sp.stats.norm.cdf(x, loc=0, scale=1))
KstestResult(statistic=0.025903023429157512, pvalue=0.5050985031013947)
```

Рис. 19: Результаты теста Колмогорова-Смирнова

Значение p-value > 0.05, значит мы принимаем гипотезу о том, что данная выборка имеет нормальное распределение.

2. Применение центральной предельной теоремы

В данном алгоритме нужно изначально сгенерировать n штук случайных равномерных чисел и дальше воспользоваться формулой, которая вытекает из центральной предельной теоремы:

$$Z = \sqrt{\frac{12}{n}} \left(\sum_{i=1}^{n} x_i - \frac{n}{2} \right)$$

Данный алгоритм был реализован на языке программирования Python. (Рисунок 20)

```
def central_limit_theorem(n, m):
    return [np.sqrt(12/m)*np.sum(np.random.uniform(size=m))-m/2 for _ in range(n)]
```

Рис. 20: Реализация применения центральной предельной теоремы

Была сгенерирована последовательность из 1000 элементов и на основании этого построена гистограмма. (Рисунок 21)

Рис. 21: Результаты применения центральной предельной теоремы

Как можно видеть на получившейся гистограмме, распределение действительно получилось нормальное, то есть алгоритм сработал корректно.

Также стоит проверить гипотезу о том, что получившиеся значения распределены нормально. Для этого воспользуемся критерием Колмогорова-Смирнова. (Рисунок 22)

Проверка гипотезы

```
sp.stats.kstest(res, lambda x: sp.stats.norm.cdf(x, loc=0.5, scale=1))
KstestResult(statistic=0.026468548604575204, pvalue=0.47720508196355993)
```

Рис. 22: Результаты теста Колмогорова-Смирнова

Значение p-value>0.05, значит мы принимаем гипотезу о том, что данная выборка имеет нормальное распределение.

Датчик - треугольное распределение

Задание:

Для треугольного распределения получить функцию распределения. Используя метод обратной функции, получить последовательность случайных чисел с треугольным распределением. Оценить математическое ожидание и дисперсию, построить гистограмму.

Решение:

Пусть имеются следующие параметры: $a\ (min),\ b\ (max),\ c\ (mo\partial a).$ Плотность треугольного распределения:

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & , x \in [a,c] \\ \frac{2(b-x)}{(b-c)(b-a)} & , x \in [c,b] \\ 0 & , x \notin [a,b] \end{cases}$$

Функция распределения треугольного закона:

$$F(x) = \begin{cases} 0 & , x < a \\ \frac{(x-a)^2}{(b-a)(c-a)} & , x \in [a,c] \\ 1 - \frac{(x-b)^2}{(b-a)(b-c)} & , x \in [c,b] \\ 1 & , x > b \end{cases}$$

Получается, что обратная функция $F^{-1}(x)$ будет выглядеть следующим образом:

$$F^{-1}(y) = x = \begin{cases} a + \sqrt{(b-a)(c-a)y} & , 0 < y < \frac{c-a}{b-a} \\ b - \sqrt{(b-a)(b-c)(1-y)} & , \frac{c-a}{b-a} \le y < 1 \end{cases}$$

Если подставить вместо y случайные равномерно распределённые значения, то можно получить требуемые числа.

Таким образом, была реализована функция на языке программирования Python. (Рисунок 23)

При $a=0,\ b=1,\ c=0.5$ и n=10 получается следующий результат. (Рисунок 24)

Математическое ожидание треугольного распределения:

$$E = \frac{a+b+c}{3}$$

```
def triangle_inverse_function_method(a, b, c, n):
    res = []
    for _ in range(n):
        y = np.random.random()
        if (0 < y < (c-a)/(b-a)):
            res.append(a + np.sqrt((b-a)*(c-a)*y))
        else:
            res.append(b - np.sqrt((b-a)*(b-c)*(1-y)))
    return res</pre>
```

Рис. 23: Реализация метода обратной функции для треугольного закона

Рис. 24: Результаты генерации случайных чисел методом обратной функции для треугольного закона

Если рассчитывать математическое ожидание как среднее значение в выборке, то получается следующий результат. (Рисунок 25)

Можно заметить, что при n=1000 значения получились достаточно близкими.

Дисперсия треугольного распределения:

$$D = \frac{a^2 + b^2 + c^2 - a \cdot b - a \cdot c - b \cdot c}{18}$$

Далее можно рассчитать дисперсию как среднее квадратное отклонение от среднего значения выборки. (Рисунок 26)

Можно заметить, что при n=1000 значения получились достаточно близкими.

Математическое ожидание:

Рис. 25: Теоретическое и расчётное значения математического ожидания $(a=0,\,b=1,\,c=0.5)$

Дисперсия:

```
d = sum((x-m)**2 for x in res) / len(res)
d

0.04249121135286575

(a**2+b**2+c**2-a*b-a*c-b*c)/18

0.041666666666666666664
```

Рис. 26: Теоретическое и расчётное значения дисперсии ($a=0,\ b=1,\ c=0.5$)

Также стоит проверить гипотезу о том, что получившиеся значения распределены по треугольному закону. Для этого воспользуемся критерием Колмогорова-Смирнова. (Рисунок 27)

Проверка гипотезы

```
sp.stats.kstest(res, lambda x: sp.stats.triang.cdf(x, c, loc=0, scale=1))
KstestResult(statistic=0.05169087947748163, pvalue=0.009212252362537258)
```

Рис. 27: Результаты теста Колмогорова-Смирнова

Значение p-value>0.05, значит мы принимаем гипотезу о том, что данная выборка имеет треугольное распределение.

Метод Монте-Карло

Задание:

Используя метод Монте-Карло, вычислить $\int_0^1 \sin(\pi x) dx$. Проанализируйте, как зависит точность полученного результата от количества точек, использованных для получения оценки. Постройте график этой зависимости.

Решение:

Для начала стоить нарисовать график данной функции $\sin(\pi x)$ и сгенерировать n штук случайных точек. (Рисунок 28)

```
n = 1000
x = np.linspace(0,1,1000)
 = np.sin(np.pi*x)
x_rand = np.random.uniform(size=n)
y_rand = np.random.uniform(size=n)
plt.scatter(x_rand,y_rand, s=2, c="r")
plt.show()
1.0
0.8
0.6
0.4
0.2
0.0
      0.0
                   0.2
                               0.4
                                            0.6
                                                        0.8
```

Рис. 28: Пример применения метода Монте-Карло

Далее остаётся просто посчитать то количество точек, которые попали под график и разделить их на общее количество сгенерированных точек.

Данный алгоритм был реализован на языке программирования Python. (Рисунок 29)

```
def monte_carlo(n):
    x_rand = np.random.uniform(size=n)
    y_rand = np.random.uniform(size=n)
    count = 0
    for i in range(n):
        if y_rand[i] < np.sin(np.pi*x_rand[i]):
            count += 1
    return count/n</pre>
```

Рис. 29: Реализация метода Монте-Карло для подсчёта интеграла

Также была проанализирована зависимость между точностью результата и количеством сгенерированных точек. (Рисунок 30)

Рис. 30: Зависимость точности результатов от количества точек

Как можно видеть на графике, что чем больше количество сгенерированных точек, то тем точнее получается результат.

Дискретные СВ и случайные события

Задание:

Используя метод статистических испытаний, оценить вероятность выпадения герба при бросании правильной монеты. Проанализируйте, как зависит точность полученного результата от количества точек, использованных для получения оценки. Постройте график этой зависимости.

Решение:

Для решения данной задачи стоить сгенерировать n случайных равномерно распределённых чисел, если $x_i < 0.5$, то добавлять в результирующий список 0, в противном случае 1. Далее стоит просуммировать элементы получившегося списка и разделить на количество элементов в этом списке.

Данный алгоритм был реализован на языке программирования Python. (Рисунок 31)

```
def coin(n):
    xs = np.random.uniform(size=n)
    return sum([0 if x < 0.5 else 1 for x in xs])/n</pre>
```

Рис. 31: Реализация метода статистических испытаний

Также была проанализирована зависимость между точностью результата и количеством сгенерированных точек. (Рисунок 32)

Рис. 32: Зависимость точности результатов от количества точек

Как можно видеть на графике, что чем больше количество сгенерированных точек, то тем точнее получается результат.

Проверка качества датчиков

По ходу выполнения заданий данного раздела, в конце каждого из датчиков, были сделаны определённые выводы о проверках гипотез распределений данных датчиков.

Моделирование СМО Модель СМО в AnyLogic