From Denoising to Compressed Sensing

Christopher A. Metzler Arian Maleki Richard G. Baraniuk

Review by: Alireza Naderi

From Compressed Sensing...

$$x_{n\times 1} \in \Sigma_k$$
, $y_{m\times 1} = \Phi_{m\times n} x_{n\times 1} + w_{m\times 1}$, $y_{m\times 1} \stackrel{\widetilde{\mathbb{P}}_1}{\Rightarrow} x_{n\times 1}$

• ISTA $\begin{cases} x^{t+1} = \eta_{\tau}(x^t + \mathbf{\Phi}^H z^t) \\ z^t = y - \mathbf{\Phi} x^t \end{cases}$

• AMP $\begin{cases} x^{t+1} = \eta_{\tau}(x^t + \mathbf{\Phi}^H z^t) \\ z^t = y - \mathbf{\Phi} x^t + \frac{1}{\delta} z^{t-1} \langle \eta_{\tau}'(x^{t-1} + \mathbf{\Phi}^H z^{t-1}) \rangle \end{cases}$ Onsager correction term $(\delta = \frac{m}{n})$

... to Denoising

• But, what if x is not sparse?

$$x_{n\times 1} \in \mathcal{C}$$
, $y_{m\times 1} = \Phi_{m\times n} x_{n\times 1} + w_{m\times 1}$, $y_{m\times 1} \stackrel{?}{\Rightarrow} x_{n\times 1}$

D-AMP

$$x_{n\times 1} \in \mathcal{C}, \qquad y_{m\times 1} = \Phi_{m\times n} x_{n\times 1} + w_{m\times 1}, \qquad y_{m\times 1} \stackrel{?}{\Rightarrow} x_{n\times 1}$$

- If there exists a family of denoisers $\{D_{\sigma}: \sigma > 0\}$ for $\mathcal{C} \subset \mathbb{R}^n$;
 - D-AMP

$$\begin{cases} x^{t+1} = D_{\widehat{\sigma}^t}(x^t + \mathbf{\Phi}^H z^t) \\ z^t = y - \mathbf{\Phi} x^t + z^{t-1} \operatorname{div} \left[D_{\widehat{\sigma}^{t-1}}(x^{t-1} + \mathbf{\Phi}^H z^{t-1}) \right] / m \\ (\widehat{\sigma}^t)^2 = \frac{\left\| z^t \right\|_2^2}{m} \end{cases}$$

will do the work!

 $\rightarrow \operatorname{div} D(x) = \sum_{i=1}^{n} \frac{\partial D(x_i)}{\partial x_i}$

Denoiser

- $\{D_{\sigma}\}$ is:
 - κ -proper $\Leftrightarrow \forall \sigma > 0$: $\sup_{x_o \in \mathcal{C}} \frac{\mathbb{E} \|D_{\sigma}(x_o + \sigma \epsilon) x_o\|_2^2}{n} \le \kappa \sigma^2$
 - (κ, B) -near proper $\Leftrightarrow \forall \sigma > 0$: $\sup_{x_o \in \mathcal{C}} \frac{\mathbb{E}\|D_\sigma(x_o + \sigma \epsilon) x_o\|_2^2}{n} \le \kappa \sigma^2 + B$
 - monotone $\Leftrightarrow \forall x_o \in \mathcal{C}$: $\frac{\mathbb{E}\|D_\sigma(x_o + \sigma \epsilon) x_o\|_2^2}{n}$ is non-decreasing in σ^2
 - Lipschitz continuous

 $\{D_\sigma\}$ can always be modified to satisfy this

Some Examples

$$\mathcal{C} = \mathbb{R}^n$$

 $D_{\sigma} = \text{ML estimator}$

$$\frac{\mathbb{E}\|D_{\sigma}(x_o + \sigma\epsilon) - x_o\|_2^2}{n}$$

$$= \frac{\mathbb{E}\|(x_o + \sigma\epsilon) - x_o\|_2^2}{n}$$

$$=\frac{n\sigma^2}{n}=\sigma^2\Rightarrow\kappa=1$$

 \mathcal{C} has no structure \Rightarrow the worst case

$$\mathcal{C} = \text{k-dimensional subspace of } \mathbb{R}^n$$

$$D_{\sigma} = \text{projection onto } \mathcal{C}$$

$$\frac{\mathbb{E}\|D_{\sigma}(x_o + \sigma\epsilon) - x_o\|_2^2}{n}$$

$$= \frac{\mathbb{E} \|P_{\mathcal{C}}(x_o) + \sigma P_{\mathcal{C}}(\epsilon) - x_o\|_2^2}{n}$$

$$= \frac{\sigma^2}{n} \mathbb{E} \|P_{\mathcal{C}}(\epsilon)\|_2^2 = \frac{k}{n} \sigma^2$$

$$\Rightarrow \kappa = \frac{k}{n}$$

 $\Rightarrow \kappa = \frac{k}{n}$ follows χ^2 distribution with k DOF

The Main Finding

• D-AMP
$$\begin{cases} x^{t+1} = D_{\hat{\sigma}^t} (x^t + \mathbf{\Phi}^H z^t) \\ z^t = y - \mathbf{\Phi} x^t + z^{t-1} \text{div} [D_{\hat{\sigma}^{t-1}} (x^{t-1} + \mathbf{\Phi}^H z^{t-1})] / m \\ (\hat{\sigma}^t)^2 = \frac{\|z^t\|_2^2}{m} \end{cases}$$

- $\rightarrow = x_o + \text{effective noise} = x_o + v^t$
- Assumption: v^t resembles i.i.d. Gaussian noise!
 - No proof. Based on extensive simulations.
 - Builds up a framework for theoretical analysis of algorithm.

State Evolution (SE)

$$\begin{cases} \theta^{0} = \frac{\|x^{0}\|_{2}^{2}}{n} \\ \theta^{t+1}(x_{o}, \delta, \sigma_{w}^{2}) = \frac{1}{n} \mathbb{E} \|D_{\sigma^{t}}(x_{o} + \sigma^{t} \epsilon) - x_{o}\|_{2}^{2} \\ (\sigma^{t})^{2}(x_{o}, \delta, \sigma_{w}^{2}) = \frac{\theta^{t}}{\delta} + \sigma_{w}^{2} \end{cases}$$

D-AMP starts from $x_0 = 0$ $m, n \gg 1 \text{ while } \frac{m}{n} = \delta$ $\Phi_{ij} \sim \mathcal{N}(0, \frac{1}{m^2}) \text{ and independent}$ w is i.i.d. Gaussian $\{D_{\sigma}\} \text{ is Lipschitz continuous}$

$$\Rightarrow \theta^t \approx \frac{1}{n} \|x^t - x_o\|_2^2$$

$$\text{SE predicts the}$$

$$\text{MSE of D-AMP}$$

D-AMP Without Noise

• Noiseless setting:
$$\sigma_{w} = 0 \implies \begin{cases} \theta^{t+1}(x_{o}, \delta, 0) = \frac{1}{n} \mathbb{E} \|D_{\sigma^{t}}(x_{o} + \sigma^{t} \epsilon) - x_{o}\|_{2}^{2} \\ (\sigma^{t})^{2} = \theta^{t} / \delta \end{cases}$$

- Two scenarios: (i) $\theta^t(x_o, \delta, 0) \to 0$ D-AMP success (ii) $\theta^t(x_o, \delta, 0) \to 0$ D-AMP failure
- What are the success and failure regions (in terms of δ)?
- Lemma 1: For monotone denoisers,

$$\theta^t(x_o, \delta_0, 0) \to 0 \quad \Rightarrow \quad \forall \delta > \delta_0 \colon \quad \theta^t(x_o, \delta, 0) \to 0$$

• $\delta^*(x_o) = \inf_{\delta \in (0,1)} \{ \delta : \ \theta^t(x_o, \delta, 0) \to 0 \}$ kind of Phase Transition

D-AMP Without Noise

- Minimum of δ for recovery of every $x_o \in \mathcal{C}$?
- Proposition 1: $\{D_{\sigma}\}$ is κ -proper $\Rightarrow \sup_{x_o \in \mathcal{C}} \delta^*(x_o) \leq \kappa$.
- What to say about nearly proper denoisers?
 - Perfect recovery may not be possible!
- Lemma 2: If $\{D_{\sigma}\}$ is (κ, B) -near proper,

$$\delta > \kappa \quad \Rightarrow \quad \lim_{t \to \infty} \left(\sigma^t(x_o, \delta, 0) \right)^2 \le \frac{B}{\delta - \kappa}$$

D-AMP With Noise

• Noisy setting: $\sigma_w \neq 0 \implies \text{recovery is not exact}$ $\Rightarrow \text{D-AMP fixed point} = \theta^{\infty}(x_o, \delta, \sigma_w^2) \neq 0$

recovery error in noisy setting

- Noise sensitivity: $NS(\delta, \sigma_w^2) = \sup_{x_o \in \mathcal{C}} \theta^{\infty}(x_0, \delta, \sigma_w^2)$
- Proposition 2: If $\{D_{\sigma}\}$ is (κ, B) -near proper,

$$\delta > \kappa \quad \Rightarrow \quad \text{NS}(\delta, \sigma_w^2) \le \frac{\kappa \sigma_w^2 + B}{1 - \frac{\kappa}{\delta}}$$

Parameter Tuning

- Practical denoisers have a few free parameters...
 - \triangleright Example: τ in soft thresholding
- State Evolution also depends on the parameters used in each iteration:

$$\theta^{t+1}(x_o, \delta, \sigma_w^2; \boldsymbol{\tau}^0, \boldsymbol{\tau}^1, \dots, \boldsymbol{\tau}^t) = \frac{1}{n} \mathbb{E} \|D_{\sigma^t, \boldsymbol{\tau}^t}(x_o + \sigma^t \epsilon) - x_o)\|_2^2$$
$$(\sigma^t)^2 = \frac{\theta^t}{\delta} + \sigma_w^2$$

• Optimal sequence of parameters at iteration t + 1:

- Lemma 3: Greedy parameter tuning is optimal for D-AMP.
 - No joint optimization. Can be done one by one.

Optimality of D-AMP

- Is there any algorithm that outperforms D-AMP?
- Uniform optimality:

•
$$\mathcal{E}_{\kappa} = \left\{ \mathcal{C} : \exists \left\{ D_{\sigma}^{\mathcal{C}} \right\} \quad \sup_{\sigma^2} \sup_{x_o \in \mathcal{C}} \frac{\mathbb{E} \|D_{\sigma}(x_o + \sigma \epsilon) - x_o\|_2^2}{n\sigma^2} \le \kappa \right\}$$

- D-AMP recovers all $x_o \in \mathcal{C} \in \mathcal{E}_{\kappa}$ from $\delta > \kappa$ measurements.
- Can it be done with fewer measurements?
- Proposition 3: $\sup_{C \in \mathcal{E}_{\kappa}} \frac{m^*(C)}{n} \ge \kappa$.
 - D-AMP is uniformly optimal!

Optimality of D-AMP

- Is there any algorithm that outperforms D-AMP?
- Single class optimality:
 - $\{D_{\sigma}^*\}$ is minimax optimal for D-AMP

$$\Leftrightarrow D_{\sigma}^* = \arg\min_{D_{\sigma}} \sup_{x_o \in \mathcal{C}} \theta_D^{\infty}(x_o, \delta, \sigma_w^2)$$

• $\{D_{\sigma}^{M}\}$ is minimax optimal for \mathcal{C}

$$\Leftrightarrow D_{\sigma}^{M} = \arg\min_{D_{\sigma}} \sup_{x_{o} \in \mathcal{C}} \mathbb{E} \|D_{\sigma}(x_{o} + \sigma\epsilon) - x_{o}\|_{2}^{2}$$

- Proposition 4: $\{D_{\sigma}^*\} = \{D_{\sigma}^M\} \Rightarrow D^*\text{-AMP requires at least}$ $n\kappa_{MM} = \sup_{\sigma^2} \frac{\min_{D_{\sigma}} \sup_{x_o \in \mathcal{C}} \mathbb{E} \|D_{\sigma}(x_o + \sigma \epsilon) x_o\|_2^2}{\sigma^2} \text{ measurements.}$
 - Not optimal in this sense.
 Some classes enjoy algorithms with fewer measurements.

Onsager Correction Term

- How to calculate $z^{t-1} \text{div}[D_{\widehat{\sigma}^{t-1}}(x^{t-1} + \Phi^H z^{t-1})]/m$ for an arbitrary denoiser?
 - Good denoisers don't have an explicit input-output relation!

Monte Carlo method: If $b \sim \mathcal{N}(0, I)$, then

$$\operatorname{div} D_{\sigma,\tau}(x) = \lim_{\epsilon \to 0} \mathbb{E}_b \left\{ b^T \left(\frac{D_{\sigma,\tau}(x + \epsilon b) - D_{\sigma,\tau}(x)}{\epsilon} \right) \right\}$$

$$\approx \left[\mathbb{E}_b \right] \left\{ \frac{1}{\epsilon} b^T \left(D_{\sigma,\tau}(x + \epsilon b) - D_{\sigma,\tau}(x) \right) \right\}, \text{ for very small } \epsilon.$$
in practice, replaced by mean of values for b^1, \dots, b^M .
$$M = 1 \text{ would suffice for images.}$$

Image Denoising Algorithms

- o Gaussian kernel
- o Bilateral filter
- o Non-local means (NLM)
- Wavelet thresholding
- o BLS-GSM
- o BM3D
- o BM3D-SAPCA

Simulation Results

10% Sampling	Lena	Barbara	Boat	Fingerprint	House	Peppers	40% Sampling	Lena	Barbara	Boat	Fingerprint	House	Peppers
AMP	18.47	17.67	18.96	15.87	19.98	17.50	AMP	26.35	24.77	25.41	18.65	29.20	25.36
Turbo-AMP	18.35	17.46	18.62	16.30	21.77	17.01	Turbo-AMP	27.91	26.11	26.98	16.65	35.37	26.83
ALSB	25.30	24.01	22.44	16.25	31.09	24.01	ALSB	34.17	34.19	30.92	24.14	41.13	35.15
NLR-CS	26.74	24.95	23.97	18.11	34.46	25.21	NLR-CS	39.07	36.99	32.75	24.78	43.45	37.63
BM3D-IT	5.68	5.97	5.43	4.70	4.93	5.72	BM3D-IT	29.50	28.22	25.13	19.47	36.94	28.86
NLM-AMP	21.81	20.17	21.43	17.69	24.81	20.42	NLM-AMP	32.58	32.15	28.94	21.53	38.62	31.47
BLS-GSM-AMP	24.92	23.35	23.98	17.53	30.52	24.09	BLS-GSM-AMP	36.50	34.33	32.41	20.32	40.84	35.86
BM3D-AMP	26.01	24.24	24.07	18.24	34.12	24.41	BM3D-AMP	38.05	35.94	32.77	24.59	42.97	36.77
BM3D-SAPCA-AMP	15.04	24.28	22.62	18.17	32.74	23.99	BM3D-SAPCA-AMP	39.33	37.05	33.56	25.01	43.86	38.06
20% Sampling	Lena	Barbara	Boat	Fingerprint	House	Peppers	50% Sampling	Lena	Barbara	Boat	Fingerprint	House	Peppers
AMP	21.26	20.08	21.62	16.86	22.97	20.27	AMP	28.12	27.19	27.44	19.84	31.86	27.99
Turbo-AMP	23.48	21.45	23.36	16.31	28.20	21.78	Turbo-AMP	30.64	27.69	28.80	19.24	37.54	29.17
ALSB	28.66	27.98	26.09	17.42	36.28	28.12	ALSB	36.95	37.10	32.96	25.80	42.76	38.11
NLR-CS	31.88	30.31	26.96	21.10	38.70	30.42	NLR-CS	42.05	39.86	35.31	26.26	45.65	40.51
BM3D-IT	25.64	24.38	23.79	6.63	32.92	23.87	BM3D-IT	30.95	29.18	27.14	20.24	38.19	29.56
NLM-AMP	27.73	24.27	23.97	19.72	31.75	23.70	NLM-AMP	35.09	34.72	31.45	25.34	39.71	34.10
BLS-GSM-AMP	29.77	28.00	27.06	18.45	35.76	29.14	BLS-GSM-AMP	38.92	36.42	34.72	21.61	42.34	38.72
BM3D-AMP	31.12	29.83	27.58	21.14	38.30	30.00	BM3D-AMP	40.89	38.21	35.07	25.99	44.91	39.38
BM3D-SAPCA-AMP	32.15	30.41	27.35	22.02	38.94	31.09	BM3D-SAPCA-AMP	42.12	39.49	36.05	26.76	45.70	40.61
30% Sampling	Lena	Barbara	Boat	Fingerprint	House	Peppers							
AMP	23.90	22.70	23.67	17.57	26.15	23.12							
Turbo-AMP	25.88	24.35	24.80	16.33	32.18	24.58							
ALSB	31.91	30.69	28.69	22.76	38.51	31.85							
NLR-CS	35.86	33.78	30.27	23.01	41.15	34.80							
BM3D-IT	28.16	27.21	24.43	18.44	35.48	25.49							
NLM-AMP	29.94	29.39	27.67	20.81	36.49	29.92							
BLS-GSM-AMP	33.29	31.06	29.95	19.20	39.17	32.73							
BM3D-AMP	34.87	33.14	30.60	22.95	40.92	33.83							
BM3D-SAPCA-AMP	36.21	34.18	31.22	23.71	41.55	34.91							

Simulation Results

Original Image

Gauss-AMP

BM3D-AMP

 $\delta = 0.1$

PSNR = 23.5822

PSNR = 26.9664

Conclusion

- Generalization of CS problem to arbitrary classes of signals
- SE as an accurate tool for performance prediction
- D-AMP is robust to noise, easy to tune, and optimal
- Potential future works
 - Proof of Gaussianity of v^t (in high-dimensional problems)
 - Characterizing the classes of signals for which D-AMP is optimal
 - Extension to other measurement matrices such as Fourier matrix