Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э.Баумана (национальный исследовательский университет)»

Кафедра «Прикладная математика»

Курсовая работа

по дисциплине «Дифференциальные уравнения»

Подводный старт ракеты

Bыполнил студент группы $\Phi H2-41$ $Pазумов \ T.E.$

Hayчный профессор кафедры Φ H-2 $Kyвыркин \Gamma.H.$

руководитель

Оглавление

В	ведение	3
1.	Постановка задачи	3
2.	Решение	3
	2.1. Дифференциальное уравнение, описывающее движение для произвольного n	3
	2.2. Решение при $n=1$ и отсутствии силы тяги	4
	2.3. Решение при $n=1$ и с силой тяги	7
	2.4. Решение при $n=2$ и отсутствии силы тяги	11
	2.4.1. Решение при $mg>F_{\mathrm{apx}}(C>0)$	12
	2.4.2. Решение при $mg < F_{ m apx}(C < 0)$	14
	2.4.3. Решение при $mg=F_{ m apx}(C=0)$	17
	2.5. Решение при $n=2$ и с силой тяги	19
	2.6. Численное решение при $n=7/4$ и отсутствии силы тяги	21
	2.7. Численное решение при $n=7/4$ и с силой тяги	22
За	ключение	22
C_{T}	INCOL THEODOMYDII	23

Введение 3

Введение

1. Постановка задачи

Исследовать вертикальное движение баллистической ракеты на подводном участке траектории после ее выталкивания на глубине H_0 с начальной скоростью v_0 из стартовой шахты подводной лодки. Сила сопротивления движению ракеты в воде $F=kv^n$, где k - коэффициент сопротивления, v - скорость, n>0. На глубине $H_1\leqslant H_0$ включается ракетный двигатель, развивающий силу тяги $P=P_0-aH$, где P_0 - сила тяги на поверхости воды, H - текущее значение глубины, a>0. Объем V_0 и массу m_0 ракеты принять постоянными на подводном участке траектории.

Построить матеатическую модель вертикального движения ракеты и получить точное аналитическое решение при n=1,2. Провести численный анализ этой модели при n=7/4 и согласованых с руководителем значениях остальных параметров.

2. Решение

2.1. Дифференциальное уравнение, описывающее движение для произвольного n

Рис. 1. Силы, действующие на ракету

Баллистическая ракета совершает поступательное движение, следовательно, получив закон движения одной материальной точки, мы опишем закон движения для всей ракеты. Тело совершает движение в инерциальной системе отсчета, векторное дифферинциальное уравнение имеет вид:

$$m\vec{a} = \vec{F}_{\text{apx}} + m\vec{q} + \vec{P} + \vec{R}_{\text{comp}}.$$
 (2.1.1)

В проекции на вертикальную ось, направленную вниз, это уравнение имеет вид

$$m\frac{d^2H}{dt^2} = m\frac{dv}{dt} = mg + R_{\text{comp}} - F_{\text{apx}} - P,$$
 (2.1.2)

т.к. масса и объем ракеты по условию приняты постоянными, то для удобства в дальнейших вычислениях обозначим величину $mg-F_{
m apx}=\!{
m const},$ буквой C. Поскольку $R_{
m conp}=kv^n,$ то

$$m\frac{dv}{dt} = C + kv^n - P. (2.1.3)$$

2.2. Решение при n=1 и отсутствии силы тяги

Пусть $n=1,\ H_1\leqslant H\leqslant H_0\Rightarrow$ ракетный двигатель выключен, т.е. $P\equiv 0$, тогда $m\frac{dv}{dt}=C+kv$ - уравнение с разделяющимися переменными. Найдем v(t) и H(t):

$$\frac{dv}{C + kv} = \frac{dt}{m},$$

$$\frac{1}{k} \ln|C + kv| = \frac{t}{m} + C_1.$$

С помощью начальных условий при t=0 $v=v_0$ найдем неизвестную C_1 :

$$\frac{1}{k}\ln|C + kv_0| = C_1,$$

$$\frac{1}{k}\ln|C + kv| = \frac{t}{m} + \frac{1}{k}\ln|C + kv_0|,$$

$$\frac{1}{k}\ln\left|\frac{C + kv}{C + kv_0}\right| = \frac{t}{m},$$

$$\ln\left|\frac{C + kv}{C + kv_0}\right| = \frac{k}{m}t,$$

$$\frac{dH}{dt} = v(t) = \frac{C + kv_0}{k}\exp\left(\frac{k}{m}t\right) - \frac{C}{k}.$$
(2.2.1)

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$v^* = \frac{v}{v_0} = (\frac{C}{kv_0} + 1) \exp(-t^*) - \frac{C}{kv_0},$$

где $-t^* = \frac{k}{m}t$. Знак минус берется в силу того, что k < 0 для n = 1, т.к. при проекции дифференциального уравнения на ось направленную вниз, отрицательность скорости означает движение ракеты вверх, а т.к. вектор силы сопротивления движению всегда направлен в противоположную сторону к вектору скорости, следовательно при $F_{\rm conp} = kv$ коэффициент пропорциональности k < 0 (при n=1). Следовательно решение данного дифференциального уравнения в безразмерном виде:

$$v^*(t^*) = (A+1)\exp(-t^*) - A,$$

где
$$v^* = \frac{v}{v_0}$$
; $t^* = -\frac{k}{m}t$; $A = \frac{C}{kv_0}$.

Рассмотрим графики решения при различных значениях параметра А:

Рис. 2. Графики решения при различных значениях параметров

$$H = \int \left(\frac{C + kv_0}{k} \exp\left(\frac{k}{m}t\right) - \frac{C}{k}\right) dt = \frac{m(C + kv_0)}{k^2} \exp\left(\frac{k}{m}t\right) - \frac{C}{k}t + C_2.$$

С помощью начальных условий при t=0 $H=H_0$ найдем неизвестное C_2 :

$$H_{0} = \frac{m(C + kv_{0})}{k^{2}} + C_{2},$$

$$C_{2} = H_{0} - \frac{m(C + kv_{0})}{k^{2}},$$

$$H = \frac{m(C + kv_{0})}{k^{2}} \exp\left(\frac{k}{m}t\right) - \frac{C}{k}t + H_{0} - \frac{m(C + kv_{0})}{k^{2}},$$

$$H(t) = \frac{m(C + kv_{0})}{k^{2}} \left(\exp\left(\frac{k}{m}t\right) - 1\right) - \frac{C}{k}t + H_{0}.$$
(2.2.2)

Для того, чтобы уменьшить количество неизвестных параметров, приведем наше решение к безразмерному виду:

$$\frac{H(t)}{H_0} = \left(\frac{mC}{k^2 H_0} + \frac{mv_0}{kH_0}\right) \exp\left(\frac{k}{m}t\right) - 1\right) - \frac{C}{kH_0}t + 1,$$

$$-t^* = \frac{k}{m}t \Rightarrow t^* = -\frac{k}{m}t,$$

$$H^*(t^*) = (A+B)(\exp(-t^*) - 1) + At^* + 1.$$

A=10,B=4

A = -3, B = 2Рис. 3. Графики решения при различных значениях параметров

0.6

A = 0, B = 0.5

Найдем время t_1 и скорость v_1 , за которое ракета достигнет высоты H_1 .

Так как из уравнения (2.2.2) нельзя однозначно выразить переменное t, то воспользуемся разложением функции $f(t) = \exp\left(\frac{k}{m}t\right)$ в ряд Маклорена: $f(t) = 1 + \frac{k}{m}t + o(t)$. Пренебрегая малыми слагаемыми преобразуем формулу (2.2.2):

$$H = \frac{m(C + kv_0)}{k^2} \left(\exp\left(\frac{tk}{m}\right) - 1 \right) - \frac{C}{k}t + H_0 \approx \frac{m(C + kv_0)}{k^2} \left(1 + \frac{k}{m}t - 1 \right) - \frac{C}{k}t + H_0 = \frac{m(C + kv_0)}{k^2} \left(\frac{k}{m}t \right) - \frac{C}{k}t + H_0 = \frac{(c + kv_0)}{k}t - \frac{C}{k}t + H_0 = \frac{c}{k}t + v_0t - \frac{C}{k}t + H = v_0t + H_0.$$

Тогда при $H=H_1\ t_1pprox \frac{H_1-H_0}{v_0}$. Из уравнененя (1.1) выразм v_1 :

$$v_1 \approx \frac{C + kv_0}{k} \exp\left(\frac{k}{m}t_1\right) - \frac{C}{k}.$$

Найдем зависимость H(v); для этого преобразуем уравниение $m\frac{dv}{dt}=C+kv$:

$$\frac{dv}{dt}\frac{dH}{dH}=v\frac{dv}{dH}\Rightarrow v\frac{dv}{dH}=\frac{C+kv}{m}$$
 - уравнение с разделяющимися переменными,

$$\frac{vdv}{C+kv} = \frac{dH}{m},$$

$$\frac{C+kv-C}{k(C+kv)}dv = \frac{dH}{m},$$

$$\left(\frac{1}{k} - \frac{C}{k(C+kv)}\right)dv = \frac{dH}{m},$$

$$\frac{v}{k} - \frac{C}{k^2}\ln|C+kv| = \frac{H}{m} + C_3.$$

С помощью начальных условий при $H=H_0\ v=v_0$ найдем неизвестное C_3 ,

$$C_{3} = \frac{v_{0}}{k} - \frac{C}{k^{2}} \ln|C + kv_{0}| - \frac{H_{0}}{m},$$

$$H = m\left(\frac{v}{k} - \frac{C}{k^{2}} \ln|C + kv| - \frac{v_{0}}{k} + \frac{C}{k^{2}} \ln|C + kv_{0}| + \frac{H_{0}}{m}\right),$$

$$H(v) = \frac{m(v - v_{0})}{k} + \frac{Cm}{k^{2}} \ln\left|\frac{C + kv_{0}}{C + kv}\right| + H_{0}.$$
(2.2.3)

Для того, чтобы уменьшить число неизвестных параметров, приведем решение к безразмерному виду:

$$\frac{H}{H_0} = \frac{v_0 m(\frac{v}{v_0} - 1)}{kH_0} - \frac{Cm}{H_0 k^2} \ln \left| \frac{\frac{1}{v_0} (\frac{C}{k} + v)}{\frac{1}{v_0} (\frac{C}{k} + v_0)} \right| + 1 = \frac{v_0 m(\frac{v}{v_0} - 1)}{kH_0} - \frac{Cmv_0}{H_0 v_0 k^2} \ln \left| \frac{\frac{C}{kv_0} + \frac{v}{v_0}}{\frac{C}{kv_0} + 1} \right| + 1,$$

$$H^* = A(v^* - 1) - AB \ln \left| \frac{B + v^*}{B + 1} \right| + 1.$$

Рис. 4. Графики решения при различных значениях параметров

2.3. Решение при n=1 и с силой тяги

Теперь пусть $H \leqslant H_1 \Rightarrow$ влючился ракетный двигатель, т.е. $P = P_0 - aH$,

$$m\frac{dv}{dt} = C + kv - P_0 + aH.$$

Найдем v(t) и H(t)

$$\frac{d^2H}{dt^2} = \frac{C - P_0}{m} + \frac{kdH}{mdt} + \frac{a}{m}H,$$

 $\frac{d^2H}{dt^2} - \frac{kdH}{mdt} - \frac{a}{m}H = \frac{C - P_0}{m}$ - диф. ур. второго порядка с квазимногочленом в правой части.

1)Найдем корни характеристического уравнения:

$$\lambda^2 - \frac{k}{m}\lambda - \frac{a}{m} = 0,$$

$$D = \frac{k^2}{m^2} + 4\frac{a}{m} > 0 \text{ (т.к. } a > 0, m > 0, k \neq 0),$$

$$\lambda_{1,2} = \frac{\frac{k}{m} \pm \sqrt{\frac{k^2}{m^2} + 4\frac{a}{m}}}{2}.$$

ΦCP: $\{C_1 \exp(\lambda_1 t); C_2 \exp(\lambda_2 t)\}$

$$H_{\text{o.o}} = C_1 \exp(\lambda_1 t) + C_2 \exp(\lambda_2 t).$$

2)Комплексное число, соотвествующее нашему квазимногочлену $\mu=0$. Т.к. оно не совпадает ни с одним из корней характеристического уравнения, то его кратность r=0. Максимальная степень многочлена $\deg P=0$. Значит, $H_{\text{ч.н}}=B$. Подставляя неизвестное B в дифферинциальное уравнение получаем $-\frac{a}{m}B=\frac{C-P_0}{m}$, откуда $B=\frac{P_0-C}{a}$. Тогда

$$H_{\text{o.H}} = C_1 \exp(\lambda_1 t) + C_2 \exp(\lambda_2 t) + \frac{P_0 - C}{a}.$$

С помощью начальный условий $t=t_1\;H=H_1\;v=v_1$ найдем неизвестные C_1,C_2 :

$$\begin{cases} H_1 = C_1 \exp(\lambda_1 t_1) + C_2 \exp(\lambda_2 t_1) + \frac{P_0 - C}{a}, \\ v_1 = C_1 \lambda_1 \exp(\lambda_1 t_1) + C_2 \lambda_2 \exp(\lambda_2 t_1), \end{cases} \Rightarrow C_1 = \frac{v_1 - \lambda_2 \frac{(H_1 - \frac{P_0 - C}{a})\lambda_1 - v_1}{\lambda_1 \exp(\lambda_1 t_1)}}{\lambda_1 \exp(\lambda_1 t_1)},$$

$$C_2 = \frac{\lambda_1 (H_1 - \frac{P_0 - C}{a}) - v_1}{\exp(\lambda_2 t_1)(\lambda_1 - \lambda_2)},$$

$$H(t) = \left(\frac{v_1}{\lambda_1} - \frac{\lambda_2}{\lambda_1} \left(\frac{(H_1 - \frac{P_0 - C}{a})\lambda_1 - v_1}{\lambda_1 - \lambda_2}\right)\right) \exp\left(\lambda_1(t - t_1)\right) + \frac{\lambda_1(H_1 - \frac{P_0 - C}{a}) - v_1}{\lambda_1 - \lambda_2} \exp\left(\lambda_2(t - t_1)\right) + \frac{P_0 - C}{a}.$$
(2.3.1)

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$\frac{H}{H_1} = H^* = A \exp(t^*) + B \exp(-t^*) + D.$$

A=2,B=4,D=-5Рис. 5. Графики решения при различных значениях параметров

Во втором слагаемом перед t^* присутствует минус, т.к. $\lambda_2 < 0$ Так как $v = \frac{dH}{dt}$, то

A=-2,B=-5,D=8

$$v(t) = \left(v_1 - \lambda_2 \frac{(H_1 - \frac{P_0 - C}{a})\lambda_1 - v_1}{\lambda_1 - \lambda_2}\right) \exp\left(\lambda_1(t - t_1)\right) + \lambda_2 \frac{(H_1 - \frac{P_0 - C}{a})\lambda_1 - v_1}{\lambda_1 - \lambda_2} \exp\left(\lambda_2(t - t_1)\right).$$
(2.3.2)

Для того, чтобы уменьшить число неизвестных параметров, приведем решение к безразмерному виду:

$$\frac{v}{v_0} = \left(1 - \lambda_2 \frac{(H_1 - \frac{P_0 - C}{a})\lambda_1 - v_1}{(\lambda_1 - \lambda_2)v_1}\right) \exp\left(\lambda_1 (t - t_1)\right) + \lambda_2 \frac{(H_1 - \frac{P_0 - C}{a})\lambda_1 - v_1}{(\lambda_1 - \lambda_2)v_1} \exp\left(\lambda_2 (t - t_1)\right),$$

$$v^*(t^*) = (1 - A) \exp\left(t^*\right) + A \exp\left(-t^*\right).$$

Рис. 6. Графики решения при различных значениях параметров

Найдем зависимость H(v):

$$mv\frac{dv}{dH} = C + kv - P_0 + aH,$$

$$\frac{dv}{dH} = \frac{aH + kv - P_0 + C}{mv} - \text{уравнение, приводящееся к однородному,}$$

$$\begin{vmatrix} a & k \\ 0 & m \end{vmatrix} = am \neq 0 \Rightarrow \begin{cases} aH + kv - P_0 + C = 0, \\ mv = 0, \end{cases} \Rightarrow v^* = 0; H^* = -\frac{C - P_0}{a}.$$
 Замена $h = H - H^*; dh = dH:$
$$\frac{dv}{dh} = \frac{ah + kv}{mv} = \frac{ah}{mv} + \frac{k}{m}.$$
 Замена $h = vu(v); \frac{dh}{dv} = u(v) + v\frac{du}{dv},$
$$u + v\frac{du}{dv} = \frac{mv}{kv + auv},$$

$$u + v\frac{du}{dv} = \frac{m}{k + au},$$

$$\frac{du}{dv} = \frac{m - au^2 - ku}{v(k + au)},$$

$$\int \frac{k + au}{m - au^2 - ku} du = \int \frac{dv}{v}.$$

Рассмотрим левую часть выражения

$$\int \frac{k + au}{m - au^2 - ku} du = \int \frac{k + au}{\frac{k^2}{4a} - (\sqrt{a}u + \frac{k}{2\sqrt{a}})^2 + m} du.$$

Замена $x=\sqrt{a}u+\frac{k}{2\sqrt{a}}\Rightarrow u=\frac{1}{\sqrt{a}}(x-\frac{k}{2\sqrt{a}}); dx=\sqrt{a}du\Rightarrow du=\frac{dx}{\sqrt{a}},$

$$\frac{1}{\sqrt{a}} \int \frac{a(\frac{x}{\sqrt{a}} - \frac{k}{2a}) + k}{\frac{k^2}{4a} + m - x^2} dx = \frac{1}{\sqrt{a}} \int \frac{\sqrt{ax} - \frac{k}{2} + k}{\frac{k^2}{4a} + m - x^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{k^2 + 4am - 4ax^2} dx = 2\frac{a}{\sqrt{a}} \int \frac{2\sqrt{ax} + k}{\sqrt{a}} dx$$

$$=2\sqrt{a}\left(\int \frac{2\sqrt{a}x}{k^2+4am-4ax^2}dx+\int \frac{k}{k^2+4am-4ax^2}dx\right),$$

$$\int \frac{2\sqrt{a}x}{k^2+4am-4ax^2}dx=\sqrt{a}\int \frac{d(x^2)}{k^2+4am-4ax^2}=-\frac{\sqrt{a}}{4a}\ln|k^2+4am-4ax^2|=\\ =-\frac{1}{4\sqrt{a}}\ln|k^2+4am-4ax^2|,$$

$$\int \frac{k}{k^2+4am-4ax^2}dx=\frac{k}{4a}\int \frac{dx}{\frac{k^2}{4a}+m-x^2}=\frac{k}{8a\sqrt{m+\frac{k^2}{4a}}}\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{k}{2}}\\ =\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{k}{2}}\\ =\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{k}{2}}\\ +2\sqrt{a}\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{k}{2}\sqrt{m+\frac{k^2}{4a}}}\\ =\ln|k^2+4am-4ax^2|+\frac{1}{2}+\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{2k\sqrt{m+k^2}-2}{4a}}\\ =\ln|k^2+4am-4ax^2|^{-\frac{1}{2}}+\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{2k\sqrt{m+k^2}-2}{4a}}\\ +\ln|k^2+4am-4ax^2|^{-\frac{1}{2}}+\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{2k\sqrt{m+k^2}-2}{4a}}\\ =\ln|k^2+4am-4ax^2|^{-\frac{1}{2}}+\ln\left|\frac{x+\sqrt{m+\frac{k^2}{4a}}}{x-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{2k\sqrt{m+k^2}-2}{4a}}\\ =\ln|v|+C_3,$$

$$\ln|k^2+4am-4a(\sqrt{a}u+\frac{k}{2\sqrt{a}})^2|^{-\frac{1}{2}}+\ln\left|\frac{\sqrt{a}u+\frac{k}{2\sqrt{a}}+\sqrt{m+\frac{k^2}{4a}}}{\sqrt{a}u+\frac{k}{2\sqrt{a}}}\right|^{\frac{2k\sqrt{m+k^2}-2}}{4a}}=\ln|v|+C_3,$$

$$\ln|k^2+4am-4a(au^2+ku+\frac{k^2}{4a})|^{-\frac{1}{2}}+\ln\left|\frac{\sqrt{a}u+\frac{k}{2\sqrt{a}}+\sqrt{m+\frac{k^2}{4a}}}{\sqrt{a}u+\frac{k}{2\sqrt{a}}}\right|^{\frac{2k\sqrt{m+k^2}-2}}}=\ln|v|+C_3,$$

$$\ln|4a(m-ku-au^2)|^{-\frac{1}{2}}+\ln\left|\frac{\sqrt{a}u+\frac{k}{2\sqrt{a}}+\sqrt{m+\frac{k^2}{4a}}}{\sqrt{a}u+\frac{k}{2}}\right|^{\frac{2k\sqrt{m+k^2}-2}}}=\ln|v|+C_3,$$

Обратная замена $u = \frac{H - H^*}{v}$:

$$\ln|4a(m-k\frac{H-H^*}{v}-a\frac{(H-H^*)^2}{v^2})|^{-\frac{1}{2}}+\ln\left|\frac{\sqrt{a}\frac{H-H^*}{v}+\frac{k}{2\sqrt{a}}+\sqrt{m+\frac{k^2}{4a}}}{\sqrt{a}\frac{H-H^*}{v}+\frac{k}{2\sqrt{a}}-\sqrt{m+\frac{k^2}{4a}}}\right|^{\frac{k}{2\sqrt{4ma+k^2}}}=\ln|v|+C_3.$$

С помощью начальных условий $H=H_1\ v=v_1$ найдем неизвестное C_3 :

$$C_3 = -\ln|v_1| + \ln|4a(m - k\frac{H_1 - H^*}{v_1} - a\frac{(H_1 - H^*)^2}{v_1^2})|^{-\frac{1}{2}} + \ln\left|\frac{\sqrt{a}\frac{H_1 - H^*}{v_1} + \frac{k}{2\sqrt{a}} + \sqrt{m + \frac{k^2}{4a}}}{\sqrt{a}\frac{H_1 - H^*}{v_1} + \frac{k}{2\sqrt{a}} - \sqrt{m + \frac{k^2}{4a}}}\right|^{\frac{k}{2\sqrt{4ma + k^2}}}.$$

Тогда уравнение примет вид

$$\ln \left| \frac{\left(\sqrt{a} \frac{H - H^*}{v} + \frac{k}{2\sqrt{a}} + \sqrt{m + \frac{k^2}{4a}}\right)\left(\sqrt{a} \frac{H_1 - H^*}{v_1} + \frac{k}{2\sqrt{a}} - \sqrt{m + \frac{k^2}{4a}}\right)}{\left(\sqrt{a} \frac{H - H^*}{v} + \frac{k}{2\sqrt{a}} - \sqrt{m + \frac{k^2}{4a}}\right)\left(\sqrt{a} \frac{H_1 - H^*}{v_1} + \frac{k}{2\sqrt{a}} + \sqrt{m + \frac{k^2}{4a}}\right)} \right|^{\frac{k}{2\sqrt{4ma+k^2}}} + \\
+ \ln \left| \frac{m - k \frac{H - H^*}{v} - a \frac{(H - H^*)^2}{v^2}}{m - k \frac{H_1 - H^*}{v_1} - a \frac{(H_1 - H^*)^2}{v_1^2}} \right|^{-\frac{1}{2}} = \ln \frac{|v|}{|v_1|}, \\
\left| \frac{\left(\sqrt{a} \frac{H - H^*}{v} + \frac{k}{2\sqrt{a}} + \sqrt{m + \frac{k^2}{4a}}\right)\left(\sqrt{a} \frac{H_1 - H^*}{v_1} + \frac{k}{2\sqrt{a}} - \sqrt{m + \frac{k^2}{4a}}\right)}{\sqrt{a} \frac{H - H^*}{v} + \frac{k}{2\sqrt{a}} - \sqrt{m + \frac{k^2}{4a}}}\right)} \right|^{\frac{k}{2\sqrt{4ma+k^2}}} * \\
* \left| \frac{m - k \frac{H_1 - H^*}{v_1} - a \frac{(H_1 - H^*)^2}{v_1^2}}{m - k \frac{H - H^*}{v_1} - a \frac{(H_1 - H^*)^2}{v_1^2}} \right|^{\frac{1}{2}} = \frac{|v|}{|v_1|}. \tag{2.2.3}$$

2.4. Решение при n=2 и отсутствии силы тяги

Решим исходное дифферинциальное уравнение при n=2. Пусть $H_1 \leqslant H \leqslant H_0 \Rightarrow$ ракетный двигатель выключен, т.е. $P \equiv 0$. Найдем зависимость H(v): $mv\frac{dv}{dH} = C + kv^2$ -уравнение с разделяющимися переменными.

$$\frac{md(v^2)}{2(C+kv^2)} = dH \Rightarrow H = \frac{m}{2k} \ln|C+kv^2| + C_1.$$

С помощью начальных условий при $H=H_0\ v=v_0$ найдем неизвестное C_1 :

$$C_{1} = H_{0} - \frac{m}{2k} \ln |C + kv_{0}^{2}| \Rightarrow H = \frac{m}{2k} \ln |C + kv^{2}| + H_{0} - \frac{m}{2k} \ln |C + kv_{0}^{2}|,$$

$$H(v) = \frac{m}{2k} \ln \left| \frac{C + kv^{2}}{C + kv_{0}^{2}} \right| + H_{0}.$$
(2.4.1)

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$\frac{H(v)}{H_0} = \frac{m}{2kH_0} \ln \left| \frac{\frac{C}{v_0^2} + \frac{v^2}{v_0^2}}{\frac{C}{v_0^2} + 1} \right| + 1,$$

$$H^*(v^*) = A \ln \left| \frac{B + v^*}{B + 1} \right| + 1.$$

Рис. 7. Графики решения при различных значениях параметров

Найдем скорость v_1 , которую разовьет ракета, когда достигнет высоту H_1 :

$$H_{1} = \frac{m}{2k} \ln \left| \frac{C + kv_{1}^{2}}{C + kv_{0}^{2}} \right| + H_{0},$$

$$\frac{2k(H_{1} - H_{0})}{m} = \ln \left| \frac{C + kv_{1}^{2}}{C + kv_{0}^{2}} \right|,$$

$$\frac{C + kv_{1}^{2}}{C + kv_{0}^{2}} = \exp \frac{2k(H_{1} - H_{0})}{m},$$

$$C + kv_{1}^{2} = (C + kv_{0}^{2}) \exp \frac{2k(H_{1} - H_{0})}{m} \Rightarrow v_{1} = \sqrt{\frac{(C + kv_{0}^{2}) \exp \frac{2k(H_{1} - H_{0})}{m}}{k} - \frac{C}{k}}.$$

Найдем v(t) и H(t):

 $m\frac{dv}{dt} = C + kv^2$ - уравнение с разделяющимися переменными,

$$\frac{dv}{C + kv^2} = \frac{dt}{m}.$$

Данное уравнение имеет различные решения, зависящие от знака параметра C.

2.4.1. Решение при $mg > F_{apx}(C > 0)$

Рассмотрим случай когда C > 0:

$$\frac{dv}{C + kv^2} = \frac{dt}{m},$$

$$\frac{\arctan\left(\sqrt{\frac{k}{C}}v\right)}{\sqrt{Ck}} = \frac{t}{m} + C_2.$$

С помощью начальных условий при t=0 $v=v_0$ найдем неизвестное C_2 :

$$C_2 = \frac{\arctan\left(\sqrt{\frac{k}{C}}v_0\right)}{\sqrt{Ck}} \Rightarrow \frac{\arctan\left(\sqrt{\frac{k}{C}}v\right)}{\sqrt{Ck}} = \frac{t}{m} + \frac{\arctan\left(\sqrt{\frac{k}{C}}v_0\right)}{\sqrt{Ck}},$$

$$\arctan\left(\sqrt{\frac{k}{C}}v\right) = \frac{\sqrt{Ck}}{m}t + \arctan\left(\sqrt{\frac{k}{C}}v_0\right).$$

Для удобства в дальнейм изложении обозначим $B = \arctan\left(\sqrt{\frac{k}{C}}v_0\right)$:

$$\sqrt{\frac{k}{C}}v = \tan\left(\frac{\sqrt{Ck}}{m}t + B\right),$$

$$v(t) = \frac{dH}{dt} = \sqrt{\frac{C}{k}}\tan\left(\frac{\sqrt{Ck}}{m}t + B\right).$$
(2.4.2)

В безразмерном виде

$$v^*(t^*) = A \tan{(\frac{t^*}{2} + B)}.$$

$$A=-\sqrt{3}, B=-(\frac{\pi}{6}+\frac{1}{2})$$
 $A=-\frac{\sqrt{3}}{3}, B=-(\frac{\pi}{3}+\frac{1}{2})$ Рис. 8. Графики решения при различных значениях параметров

$$\int dH = \int \sqrt{\frac{C}{k}} \tan\left(\frac{\sqrt{Ck}}{m}t + B\right) dt,$$

$$H = -\frac{m}{\sqrt{Ck}} \sqrt{\frac{C}{k}} \ln\left|\cos\left(\frac{\sqrt{Ck}}{m}t + B\right)\right| + C_3 = -\frac{m}{k} \ln\left|\cos\left(\frac{\sqrt{Ck}}{m}t + B\right)\right| + C_3.$$

С помощью начальных условий при t=0 $H=H_0$ найдем неизвестное C_3 :

$$C_{3} = H_{0} + \frac{m}{k} \ln|\cos(B)| \Rightarrow H = -\frac{m}{k} \ln\left|\cos\left(\frac{\sqrt{Ck}}{m}t + B\right)\right| + H_{0} + \frac{m}{k} \ln|\cos(B)|,$$

$$H(t) = \frac{m}{k} \ln\left|\frac{\cos(B)}{\cos\left(\frac{\sqrt{Ck}}{m}t + B\right)}\right| + H_{0}.$$
(2.4.3)

В безразмерном виде:

$$\frac{H}{H_0} = H^*(t^*) = A \ln \left| \frac{\cos(B)}{\cos(t^* + B)} \right| + 1,$$

где
$$B = \arctan\left(\sqrt{\frac{k}{C}}v_0\right), t^* = \frac{\sqrt{Ck}}{m}, A = \frac{m}{kH_0}.$$

Найдем время t_1 за которое ракета достигнет высоты H_1 :

$$H_{1} = -\frac{m}{k} \ln \left(\cos \left(\frac{\sqrt{Ck}}{m} t^{*} + B \right) \right) + H_{0} + \frac{m}{k} \ln \left(\cos \left(B \right) \right),$$

$$-(H_{1} - H_{0} - \frac{m}{k} \ln \left(\cos \left(B \right) \right)) \frac{k}{m} = \ln \left(\cos \left(\frac{\sqrt{Ck}}{m} t^{*} + B \right) \right),$$

$$\operatorname{arccos} \left(\exp \left(\left(H_{0} - H_{1} \right) \frac{k}{m} + \ln \left(\cos \left(B \right) \right) \right) \right) = \frac{\sqrt{Ck}}{m} t^{*} + B,$$

$$t_{1} = \frac{m}{\sqrt{Ck}} (\operatorname{arccos} \left(\exp \left(\left(H_{0} - H_{1} \right) \frac{k}{m} + \ln \left(\cos B \right) \right) \right) - B).$$

2.4.2. Решение при $mg < F_{apx}(C < 0)$

Теперь рассмотрим случай, когда C < 0. Обозначим C = -b, тогда уравнение примет вид

$$\frac{dv}{kv^2 - b} = \frac{dt}{m}.$$

Разложим дробь $\frac{1}{kv^2-b}$ на простейшие:

$$\frac{1}{kv^2 - b} = \frac{A}{\sqrt{k}v - \sqrt{b}} + \frac{B}{\sqrt{k}v + \sqrt{b}} = \frac{(\sqrt{k}v + \sqrt{b})A + (\sqrt{k}v - \sqrt{b})B}{kv^2 - b},$$

$$\begin{cases} v : \sqrt{k}A + \sqrt{k}B = 0, \\ v^0 : \sqrt{b}A + \sqrt{b}B = 1, \end{cases} \Rightarrow A = \frac{1}{2\sqrt{b}}; B = -\frac{1}{2\sqrt{b}}.$$

Тогда дифферинициальное уравнение примет вид

$$\left(\frac{1}{2(\sqrt{kb}v - b)} - \frac{1}{2(\sqrt{kb}v + b)}\right)dv = \frac{dt}{m},$$

$$\frac{m}{2\sqrt{kb}}\ln|\sqrt{kb}v - b| - \ln|\sqrt{kb}v + b| = t + C_2$$

$$\frac{m}{2\sqrt{kb}} \ln \left| \frac{\sqrt{kb}v - b}{\sqrt{kb}v + b} \right| = t + C_2,$$

$$\frac{m}{2\sqrt{kb}} \ln \left| \frac{\sqrt{kb}v + b - 2b}{\sqrt{kb}v + b} \right| = t + C_2,$$

$$\frac{m}{2\sqrt{kb}} \ln \left| 1 - \frac{2b}{\sqrt{kb}v + b} \right| = t + C_2.$$

С помощью начальных условий при t = 0 $v = v_0$ найдем неизвестное C_2 :

$$\frac{m}{2\sqrt{kb}}\ln\left|1 - \frac{2b}{\sqrt{kb}v_0 + b}\right| = C_2.$$

Тогда

$$\frac{m}{2\sqrt{kb}} \ln \left| \frac{1 - \frac{2b}{\sqrt{kbv_0 + b}}}{1 - \frac{2b}{\sqrt{kbv_0 + b}}} \right| = t,$$

$$\ln \left| \frac{1 - \frac{2b}{\sqrt{kbv_0 + b}}}{1 - \frac{2b}{\sqrt{kbv_0 + b}}} \right| = \frac{2\sqrt{kb}}{m} t,$$

$$\frac{1 - \frac{2b}{\sqrt{kbv_0 + b}}}{1 - \frac{2b}{\sqrt{kbv_0 + b}}} = \exp(\frac{2\sqrt{kb}}{m} t),$$

$$1 - \frac{2b}{\sqrt{kbv} + b} = (1 - \frac{2b}{\sqrt{kbv_0 + b}}) \exp(\frac{2\sqrt{kb}}{m} t),$$

$$\frac{2b}{\sqrt{kbv} + b} = 1 - (1 - \frac{2b}{\sqrt{kbv_0 + b}}) \exp(\frac{2\sqrt{kb}}{m} t)$$

$$\frac{\sqrt{kbv} + b}{2b} = \frac{1}{1 - (1 - \frac{2b}{\sqrt{kbv_0 + b}}) \exp(\frac{2\sqrt{kb}}{m} t)},$$

$$\sqrt{kbv} + b = \frac{2b}{1 - (1 - \frac{2b}{\sqrt{kbv_0 + b}}) \exp(\frac{2\sqrt{kb}}{m} t)},$$

$$v = \frac{2\sqrt{b}}{\sqrt{k}(1 - (1 - \frac{2b}{\sqrt{kbv_0 + b}}) \exp(\frac{2\sqrt{kb}}{m} t))} - \sqrt{\frac{b}{k}},$$

$$v = \frac{2\sqrt{b}}{\sqrt{k}(1 + (\frac{2b}{\sqrt{kbv_0 + b}} - 1) \exp(\frac{2\sqrt{kb}}{m} t))} - \sqrt{\frac{b}{k}},$$

$$v = \frac{2\sqrt{b}}{\sqrt{k}(1 + \frac{2b}{\sqrt{kbv_0 + b}} - 1) \exp(\frac{2\sqrt{kb}}{m} t))} - \sqrt{\frac{b}{k}},$$

$$v(t) = \frac{2\sqrt{b}}{\sqrt{k}(1 + \frac{b - \sqrt{kbv_0 - b}}{\sqrt{kbv_0 + b}} \exp(\frac{2\sqrt{kb}}{m} t))} - \sqrt{\frac{b}{k}}.$$

$$(2.4.4)$$

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$\frac{v}{v_0} = \frac{2}{v_0} \sqrt{\frac{b}{k}} \frac{1}{(1 + \frac{1 - \frac{1}{v_0} \sqrt{\frac{b}{k}}}{1 + \frac{1}{v_0} \sqrt{\frac{b}{k}}} \exp\left(\frac{2\sqrt{kb}}{m}t\right))} - \frac{1}{v_0} \sqrt{\frac{b}{k}},$$

$$v^*(t^*) = 2A \frac{A + 1}{(A + 1 + (A - 1)) \exp t^*} - A.$$

$$A = -20 A = -\frac{1}{2}$$

Рис. 10. Графики решения при различных значениях параметров

Найдем зависимость H(t):

$$H = \int \left(\frac{2\sqrt{b}}{\sqrt{k}(1 + \frac{b - \sqrt{kb}v_0}{\sqrt{kb}v_0 + b} \exp\left(\frac{2\sqrt{kb}}{m}t\right))} - \sqrt{\frac{b}{k}} \right) dt,$$

$$H = \int \frac{2\sqrt{b}}{\sqrt{k}(1 + \frac{b - \sqrt{kb}v_0}{\sqrt{kb}v_0 + b} \exp\left(\frac{2\sqrt{kb}}{m}t\right))} dt - \int \sqrt{\frac{b}{k}} dt.$$

Для удобства в дальнейших вычислениях обозначим $\xi = \frac{b - \sqrt{kb}v_0}{\sqrt{kb}v_0 + b}$. Рассмотрим первый интеграл:

$$\int \frac{2\sqrt{b}}{\sqrt{k}(1+\xi\exp\left(\frac{2\sqrt{kb}}{m}t\right))}dt = \frac{2}{\xi}\sqrt{\frac{b}{k}}\int \frac{dt}{\left(\frac{1}{\xi}+\exp\left(\frac{2\sqrt{kb}}{m}t\right)\right)}.$$

Замена $z=\exp{(\frac{2\sqrt{kb}}{m}t)}; dz=\frac{2\sqrt{kb}}{m}\exp{(\frac{2\sqrt{kb}}{m}t)}dt \Rightarrow dt=\frac{m}{2\sqrt{kb}}\frac{dz}{z},$

$$\frac{2}{\xi} \sqrt{\frac{b}{k}} \frac{m}{2\sqrt{kb}} \int \frac{dz}{z(z + \frac{1}{\xi})} = \frac{m}{k\xi} \int \left(\frac{A}{z} + \frac{B}{z + \frac{1}{\xi}}\right) dz = \frac{m}{k\xi} \int \left(\frac{A(z + \frac{1}{\xi}) + Bz}{z(z + \frac{1}{\xi})}\right) dz,
\begin{cases}
z : A + B = 0, \\
z^0 : \frac{1}{\xi}A = 1,
\end{cases} \Rightarrow A = \xi; B = -\xi,
\frac{m}{k\xi} \int \left(\frac{\xi}{z} - \frac{\xi}{z + \frac{1}{\xi}}\right) dz = \frac{m}{k\xi} (\xi \ln z - \xi \ln (z + \frac{1}{\xi})) = \frac{m}{k} (\ln z - \ln (z + \frac{1}{\xi})).$$

Обратная замена: $z = \exp\left(\frac{2\sqrt{kb}}{m}t\right); \xi = \frac{b-\sqrt{kb}v_0}{\sqrt{kb}v_0+b},$

$$H = \frac{m}{k} \left(\ln \left(\exp \left(\frac{2\sqrt{kb}}{m} t \right) \right) - \ln \left(\exp \left(\frac{2\sqrt{kb}}{m} t \right) + \frac{\sqrt{kb}v_0 + b}{b - \sqrt{kb}v_0} \right) \right) - \int \sqrt{\frac{b}{k}} dt,$$

$$H(t) = \frac{m}{k} \frac{2\sqrt{kb}}{m} t - \frac{m}{k} \ln \left(\exp \left(\frac{2\sqrt{kb}}{m} t \right) + \frac{\sqrt{kb}v_0 + b}{b - \sqrt{kb}v_0} \right) - \sqrt{\frac{b}{k}} t + C_3,$$

$$H(t) = \sqrt{\frac{b}{k}} t - \frac{m}{k} \ln \left| \exp \left(\frac{2\sqrt{kb}}{m} t \right) + \frac{\sqrt{kb}v_0 + b}{b - \sqrt{kb}v_0} \right| + C_3,$$

Найдем неизвестное C_3 с помощью начальных условий t=0 $H=H_0$:

$$C_3 = H_0 + \frac{m}{k} \ln \left| 1 + \frac{\sqrt{kbv_0 + b}}{b - \sqrt{kbv_0}} \right|.$$

Тогда

$$H(t) = \sqrt{\frac{b}{k}}t + \frac{m}{k}\ln\left|\frac{1 + \frac{\sqrt{kb}v_0 + b}{b - \sqrt{kb}v_0}}{\exp\left(\frac{2\sqrt{kb}}{m}t\right) + \frac{\sqrt{kb}v_0 + b}{b - \sqrt{kb}v_0}}\right| + H_0.$$
 (2.4.5)

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$\frac{H}{H_0} = \sqrt{\frac{b}{k}} \frac{t}{H_0} + \frac{m}{kH_0} \ln \left| \frac{2b}{(b - \sqrt{kb}v_0) \exp\left(\frac{2\sqrt{kb}}{m}t\right) + \sqrt{kb}v_0 + b} \right| + 1,$$

$$H^* = \frac{1}{2}At^* - A \ln \left| \frac{(1-B)\exp(t^*) + 1 + B}{2} \right| + 1.$$

Рис. 11. Графики решения при различных значениях параметров

A = 20; B = -2

A = 2; B = -0.2

2.4.3. Решение при
$$mg = F_{apx}(C = 0)$$

При C=0:

$$\frac{dv}{kv^2} = \frac{dt}{m} \Rightarrow -\frac{1}{kv} = \frac{t}{m} + C_2.$$

При
$$t=0$$
 $v=v_0\Rightarrow C_2=-rac{1}{kv_0}$. Тогда

$$-\frac{1}{kv} = \frac{t}{m} - \frac{1}{kv_0} \Rightarrow -kv = \frac{1}{\frac{t}{m} - \frac{1}{kv_0}},$$

$$v(t) = -\frac{1}{k(\frac{t}{m} - \frac{1}{kv_0})}.$$
(2.4.6)

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$v^*(t^*) = -\frac{1}{At^* - 1}.$$

где A-безразмерный параметр (A < 1).

Рис. 12. График решения

$$H = -\frac{m}{k} \ln \left| \frac{t}{m} - \frac{1}{kv_0} \right| + C_3,$$

При t=0 $H=H_0 \Rightarrow C_3=H_0+\frac{m}{k}\ln\left|-\frac{1}{kv_0}\right|$. Тогда

$$H = -\frac{m}{k} \ln \left| \frac{t}{m} - \frac{1}{kv_0} \right| + \frac{m}{k} \ln \left| -\frac{1}{kv_0} \right| + H_0 = \frac{m}{k} \ln \left| \frac{-\frac{1}{kv_0}}{\frac{t}{m} - \frac{1}{kv_0}} \right| + H_0,$$

$$H(t) = \frac{m}{k} \ln \left| \frac{1}{1 - \frac{kv_0 t}{m}} \right| + H_0.$$
(2.4.7)

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$H^*(t^*) = -A \ln|1 - Bt^*| + 1.$$

где B-безразмерный параметр (B < 0).

Рис. 13. График решения

2.5. Решение при n=2 и с силой тяги

Теперь пусть $H\leqslant H_1\Rightarrow$ влючился ракетный двигатель, т.е. $P=P_0-aH,$ то

$$m\frac{dv}{dt} = C + kv^2 - P_0 + aH.$$

Найдем H(v):

$$mv\frac{dv}{dH} = C + kv^2 - P_0 + aH \Rightarrow v\frac{dv}{dH} - \frac{k}{m}v^2 = \frac{C - P_0}{m} + \frac{aH}{m} - \text{уравнение Бернулли.}$$

$$3\text{амена } z = v^2 \Rightarrow dz = 2vdv \Rightarrow dv = \frac{dz}{2v},$$

$$\frac{1}{2}\frac{dz}{dH} - \frac{k}{m}z = \frac{C - P_0}{m} + \frac{aH}{m},$$

$$\frac{dz}{dH} - 2\frac{k}{m}z = 2\left(\frac{C - P_0}{m} + \frac{aH}{m}\right) - \text{неоднородное уравнение,}$$

$$1)\frac{dz}{dH} = 2\frac{k}{m}z,$$

$$\ln z = 2\frac{k}{m}H + \ln C_0 \Rightarrow z_0 = C_0 \exp\left(2\frac{k}{m}H\right).$$

$$2)C_0' \exp\left(2\frac{k}{m}H\right) + 2\frac{k}{m}C_0 \exp\left(2\frac{k}{m}H\right) - 2\frac{k}{m}C_0 \exp\left(2\frac{k}{m}H\right) = 2\left(\frac{C - P_0}{m} + \frac{aH}{m}\right),$$

$$C_0' = \frac{2}{m}(C - P_0 + aH) \exp\left(-2\frac{k}{m}H\right),$$

$$C_0 = \frac{2}{m}(C - P_0 + aH)\left(-\frac{m}{2k}\right) \exp\left(-2\frac{k}{m}H\right) + \frac{a}{k}\int \exp\left(-2\frac{k}{m}H\right) dH,$$

$$C_0 = -\frac{C - P_0 + aH}{k} \exp\left(-2\frac{k}{m}H\right) - \frac{am}{2k^2} \exp\left(-2\frac{k}{m}H\right) + C_1,$$

$$z = \left(-\frac{C - P_0 + aH}{k} \exp\left(-2\frac{k}{m}H\right) - \frac{am}{2k^2} \exp\left(-2\frac{k}{m}H\right) + C_1\right) \exp\left(2\frac{k}{m}H\right),$$

$$v = \sqrt{-\frac{C - P_0 + aH}{k} - \frac{am}{2k^2} + C_1 \exp\left(2\frac{k}{m}H\right)},$$

С помощью начальных условий при $H = H_1 \ v = v_1$ найдем неизвестное C_1 :

$$v_1^2 = -\frac{C - P_0 + aH_1}{k} - \frac{am}{2k^2} + C_1 \exp\left(2\frac{k}{m}H_1\right) \Rightarrow C_1 = (v_1^2 + \frac{C - P_0 + aH_1}{k} + \frac{am}{2k^2}) \exp\left(-2\frac{k}{m}H_1\right),$$

Тогда

$$v(H) = \sqrt{-\frac{C - P_0 + aH}{k} - \frac{am}{2k^2} + (v_1^2 + \frac{C - P_0 + aH_1}{k} + \frac{am}{2k^2}) \exp\left(-2\frac{k}{m}H_1\right) \exp\left(2\frac{k}{m}H\right)},$$

$$v(H) = \sqrt{-\frac{C - P_0 + aH}{k} - \frac{am}{2k^2} + (v_1^2 + \frac{C - P_0 + aH_1}{k} + \frac{am}{2k^2}) \exp\left(2\frac{k}{m}(H - H_1)\right)}.$$
(2.5.1)

Для того, чтобы уменьшить количество неизвестных параметров, приведем решение к безразмерному виду:

$$\frac{v(H)}{v_1} = \sqrt{-\frac{C - P_0}{kv_1^2} - \frac{am}{2k^2v_1^2} - \frac{aH}{kv_1^2}\frac{H_1}{H_1} + \left(1 + \frac{C - P_0}{kv_1^2} + \frac{am}{2k^2v_1^2} + \frac{aH_1}{kv_1^2}\right)\exp\left(2\frac{k}{m}H_1(\frac{H}{H_1} - 1)\right)},$$

$$v^*(H^*) = \sqrt{-(A+BH^*) + (1+A+B)\exp(D(H^*-1))}.$$

где
$$H^*=\frac{H}{H_1};v^*=\frac{v}{v_1};A=\frac{C-P_0}{kv_1^2}+\frac{am}{2k^2v_1^2};B=\frac{aH_1}{kv_1^2};D=2\frac{k}{m}H_1.$$
 Рассмотрим графики решения при различных значениях параметров:

$$A=20, B=20, D=2$$
 $A=-0.5, B=0.5, D=0.2$
Рис. 14. Графики решения

2.6. Численное решение при n = 7/4 и отсутствии силы тяги

Пусть $n=7/4,\ H_1\leqslant H\leqslant H_0\Rightarrow$ ракетный двигатель выключен, т.е. $P\equiv 0$, тогда $m\frac{dv}{dt}=C+kv^{\frac{7}{4}}$. Для получения численного решения воспользуемся пакетом Wolfram Mathematica.

Рассмотрим графики решения при различных значениях параметров.

Зависимость v(t) с начальной скоростью $v_0 = 10 (\text{м/c})$:

Зависимость H(t) с начальной скоростью $v_0 = 10$ (м/с),и глубиной $H_0 = 100$ (м):

Заключение 22

Рис. 17. Графики решения

2.7. Численное решение при n=7/4 и с силой тяги

Теперь пусть $H\leqslant H_1\Rightarrow$ влючился ракетный двигатель, т.е. $P=P_0-aH$, тогда

$$m\frac{dv}{dt} = C + kv^{\frac{7}{4}} - P_0 + aH.$$

Рассмотрим графики решения при различных значениях параметров. Зависимость H(t) при $t_1 = 1(c), v_1 = 5$ (м/с), $H_1 = 90$ (м):

 $mg > F_{
m apx}(C>0)$ $mg < F_{
m apx}(C<0)$ Рис. 18. Графики решения

Зависимость v(h) при $t_1=1(c),\,v_1=5$ (м/с), $H_1=90$ (м):

Заключение

В работе была построена математическая модель вертикального движения баллистической ракеты. Разобраны частные случаи построеной модели и для каждого случая получено точное аналитическое решение и проведено его исследование. Проведен численый анализ этой модели при n=7/4.

	P =	≡ 0	$P = P_0 - aH$						
n	1	7/4	2	n	1	7/4	2		
<i>v</i> (м/c)	90.56	93.61	95.05	$v({ m M/c})$	97.57	96.27	93.46		
H(M)	102.48	103.21	104.80	H(M)	6.18	6.84	8.24		
$T_{\alpha\beta,\alpha,\alpha,\alpha}$ 1 $T_{\alpha\beta,\alpha,\alpha,\alpha}$ 2									

Taблица 1 Taблица 2

Из таблиц 1,2 заметим, что при изменении параметра n скорость ракеты изменяется нелинейно как с силой тяги, так и без неё. (В качестве остальных параметров были взяты: $m=20000({\rm Kr}),\ V=10({\rm m}^3),\ v_0=100({\rm m/c}),\ v_1=90({\rm m/c}),\ H_0=200({\rm m}),\ H_1=100({\rm m}),\ P_0=250000({\rm H}),\ a=25,\ k=10,\ a$ вычисления текущего значения глубины и скорости для таблиц 1,2 были проведены для моментов времени $t_1=1({\rm c}),\ t_2=3({\rm c})$ соответственно)

Список литературы

- 1. Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения: Учеб. для вузов. 2-е изд. / Под ред. В.С. Зарубина, А.П. Крищенко. М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. 348 с. (Сер. Математика в техническом университете. Вып. VIII).
- 2. Пономарев К.К. Составление и решение дифференциальных уравнений инженерно-технических задач. М.: Учпедгиз, 1962. 184 с.