#6.1

Linear Regression and Correlation
Heatmaps
Boxplots, violin plots, swarm plots
Outputting figures

Linear regression

- Model a scalar relationship between a dependent continuous variable and independent variable(s)
- Attempts to fit a slope to the data to best describe it
- Allows for correction of confounding variables

Using the same data from last class...

```
count_table <- read.table("~/Desktop/bioinformatics-
bootcamp/class_6_1/sce_mct1_03hr_counts.txt", sep = '\t', header =
TRUE, row.names = 1, check.names=F)
```

Linear modeling

```
> linearMod <- lm(
Sample4 ~ Sample6,
data=count_table)
```

> print(linearMod)

Coefficients:

(Intercept) Sample6

-0.7282 1.1097

<- a near linear relationship

Sample4 ~ Sample6

log10(count_table\$Sample4 + 1)

Correlation

- A common measure in many biological contexts to compare replicates, etc.
- Level of interdependence between two variables

Correlation examples in R

Which samples are biological replicates?

Sample4 0.9950528

Correlation examples in R

- The cor() function by default uses a Pearson (R) correlation
 - Expects datasets to be normally distributed
- By running cor(..., method="spearman"), a Spearman (ρ) correlation coefficient will be calculated
 - Rank order correlation
 - Does not assume datasets are normally distributed (better for RNA-seq)
- Coefficients are directional (negative or positive correlation)
- The Coefficient of Determination (R²) measures the proportion of the variance in the dependent variable that is predictable from the independent variable

Correlation coefficients

- The meaning of a correlation coefficient will vary field to field
- Examples:
 - Biological replicates: > 0.99 indicate correlation
 - Human biological samples: something over 0.60 might be a correlation
 - Psychology: something over 0.20 might show a correlation

What isn't correlation?

- An example of why fitting a line can be misleading
- The math will try to fit a line as best it can, but it's always important to look at your scatterplot before fitting a line and see if you can naturally see a trend
- My recommendation: Use a scatterplot with no line, provide correlation coefficient

Heatmaps

- Look at broad patterns across several variables between samples
- Use sample to sample normalized data (as appropriate)
- Use z-scored gene values

Why do we use Z-scores?

Why do we use Z-scores?

Plotting a heatmap in R

- > library(tweeDEseq)
- > norm <- normalizeCounts(count_table, method="TMM")
- > top_data = norm[1000:1030,]
- > library(pheatmap) #download if not installed
- > pheatmap(as.matrix(top_data), scale = c("row"), cluster_cols=FALSE)

Boxplots

• Hide data

> boxplot(norm)

Beeswarm plot

Similar in concept to a boxplot, but more transparent

- > library(beeswarm)
- > data(breast)
- > beeswarm(time_survival ~ ER, data = breast)

Outputting a figure

Outputting a figure

