BEST AVAILABLE COPY

PCT/JP2004/008924

\mathbf{H} JAPAN PATENT OFFICE

18.06.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月 Date of Application:

2003年 6月20日

出·願 番 Application Number:

特願2003-177298

[ST. 10/C]:

[JP2003-177298]

出 人 Applicant(s):

独立行政法人理化学研究所 株式会社東京大学TLO

REC'D 0 6 AUG 2004 WIPO PCT

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年

7月23日

特許庁長官 Commissioner. Japan Patent Office

【書類名】 特許願

【整理番号】 SEN-A0302

【提出日】 平成15年 6月20日

【あて先】 特許庁長官殿

【発明者】

【住所又は居所】 埼玉県川口市安行655-21

【氏名】 吉田 稔

【発明者】

【住所又は居所】 福岡県北九州市若松区畠田1-6-6

【氏名】 西野 憲和

【特許出願人】

【識別番号】 000006792

【氏名又は名称】 理化学研究所

【特許出願人】

【識別番号】 899000024

【氏名又は名称】 株式会社 先端科学技術インキュベーションセンター

【代理人】

【識別番号】 100102978

【弁理士】

【氏名又は名称】 清水 初志

【選任した代理人】

【識別番号】 100108774

【弁理士】

【氏名又は名称】 橋本 一憲

【手数料の表示】

【予納台帳番号】 041092

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 ヒストン脱アセチル化酵素阻害剤およびその製造方法

【特許請求の範囲】

【請求項1】 以下の一般式(1)で示される化合物。

【化1】

$$R_{42}$$
 R_{43}
 R_{41}
 R_{11}
 R_{31}
 R_{21}
 R_{22}
 R_{23}
 R_{23}
 R_{23}
 R_{21}
 R_{22}
 R_{23}
 R_{23}
 R_{31}

式中、 R_{11} , R_{21} , R_{31} , R_{41} はそれぞれ独立して水素またはメチル基を示す。 R_{22} , R_{23} , R_{32} , R_{33} , R_{42} , R_{43} はそれぞれ独立して水素、炭素数 $1\sim6$ の直鎖アルキル基、非芳香族環状アルキル基もしくは置換基を有することもある芳香環が結合した炭素数 $1\sim6$ の直鎖アルキル基、非芳香族環状アルキル基、または非芳香族環状アルキル基もしくは置換基を有することもある芳香環が結合した非芳香族環状アルキル基のいずれかを示す。また、 R_{21} と R_{22} , R_{22} と R_{23} , R_{31} と R_{32} , R_{32} と R_{33} , R_{41} と R_{42} , R_{42} と R_{43} は、それぞれ結合を持たず非環状構造を示すか、または鎖長炭素数 $1\sim5$ の直鎖アルキレン基、もしくは、炭素数 $1\sim6$ の分岐鎖を有する鎖長炭素数 $1\sim5$ の直鎖アルキレン基、もしくは、炭素数 $1\sim6$ の環構造を備えた鎖長炭素数 $1\sim5$ の直鎖アルキレン基を介して結合した環構造を示す。1はHDAC阻害活性を有する範囲で選択することができる。1は、ヒストン脱アセチル化酵素の活性中心部に位置する亜鉛に配位することのできる構造を持つ任意の構造体を示す。

【請求項2】Xが以下の構造式で示す置換基のいずれかである、請求項1に記載 の化合物

Mtfk

【請求項3】 請求項1記載の化合物を有効成分として含有する、ヒストン脱アセチル化酵素阻害剤。

【請求項4】 請求項1記載の化合物を有効成分として含有する、チューブリン脱アセチル化酵素阻害剤。

【請求項5】 請求項1記載の化合物を有効成分として含有する、アポトーシス 誘導剤。

【請求項6】 請求項1記載の化合物を有効成分として含有する、分化誘導剤。

【請求項7】 請求項1記載の化合物を有効成分として含有する、血管新生阻害剤。

【請求項8】 請求項1記載の化合物を有効成分として含有する、がん転移抑制 剤。

【請求項9】 請求項1記載の化合物を有効成分として含有する、ヒストン脱アセチル化酵素に起因した疾患の治療または予防のための薬剤。

【請求項10】 ヒストン脱アセチル化酵素に起因した疾患が、がん、自己免疫疾患、神経変性疾患、皮膚病、または感染症である、請求項9記載の治療または予防のための薬剤。

【請求項11】

一般式 (2)

【化7】

(式中、n, R_{11} , Xは請求項 1、 2 で定義したものと同様であり、 P_1 はアミノ基の保護基を表す)で示される化合物を、一般式(3)

【化8】

(式中、 R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , 及び R_{43} は、請求項 1 の一般式(1)で定義したものと同様であり、 P_2 はカルボキシル基の保護基を表す)で示される化合物とペプチド結合剤の存在下で反応させ、一般式(4)

【化9】

(式中、n, R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , P_1 , P_2 , 及 VX は、前記で定義したものと同様である)で示される化合物を得、次いで前記一般式(4)で示される化合物を、触媒的水素化、酸処理、もしくは加水分解により、 P_1 及び P_2 を除去した後に、ペプチド結合剤の存在下で環化反応させるか、または一般式(5)

【化10】

(式中、 R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , 及び P_1 は、前記で定義したと同様である)で示される化合物を、一般式(6)

【化11】

(式中、n, R_{11} , P_2 , 及びXは、前記で定義したものと同様である)で示される 化合物とペプチド結合剤存在下で反応させ、一般式 (7)

【化12】

(式中、n, R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , P_1 , P_2 , 及 VX は、前記で定義したと同様である)で示される化合物を得、次いで一般式(7)で示される化合物を、触媒的水素化、酸処理、 7ルオリドアニオン処理、 8 もしくは加水分解により P_1 及び P_2 を除去した後に、ペプチド結合剤の存在下で環化反応するか、または一般式(1)の環状テトラペプチドのXがカルボキシル基またはスルフィドリル基であるものを、それぞれ無水トリフルオロ酢酸や無水ペンタフルオロプロパン酸または 1,1,1-トリフルオロ-3-ブロモアセトンと反応させて別種の置換基Xとなすことを含む、 $\{1\}$ 記載の化合物の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はヒストン脱アセチル化酵素 (Histone deacetylase:HDAC) 阻害剤およびその製造方法に関する。

[0002]

【従来の技術】

真核生物のクロマチン構造と遺伝子の発現は、ヒストンアセチル化酵素(HAT)によるヒストンのアセチル化と、ヒストン脱アセチル化酵素(HDAC)による脱アセチル化によって調節されている。HDACの阻害剤ががん細胞の分化や、アポトーシスを誘導することが以前から知られ、制がん剤としての応用が期待されている(非特許文献1~3)。実際、米国では動物実験で制がん剤としての有効性を示すいくつかのHDAC阻害剤(非特許文献4及び5)の臨床研究が開始されている。

[0003]

HDAC特異的阻害剤としてはトリコスタチン A (TSA) が有名である(非特許文献6)。実際、TSAは白血病細胞、神経細胞、乳癌細胞などの分化を誘導することが

知られている(非特許文献 7~14)。さらにHDAC阻害剤とは異なる機構で遺伝子発現を活性化する薬物との併用によって、その分化誘導作用やアポトーシス誘導作用は相乗的に増大することも知られている。例えば、核内受容体であるレチノイン酸受容体を活性化し、分化に関する遺伝子発現を引き起こすレチノイン酸とHDAC阻害剤との併用でがん細胞の分化が促進される(非特許文献 9、13、15及び16)。また、多くのがん細胞ではがん抑制遺伝子の発現が低下しているが、その原因として知られるDNAのメチル化を阻害する5-アザデオキシシチジンとの併用によってがん抑制遺伝子の発現の回復とがん細胞のアポトーシスが促進される(非特許文献 17~21)。

[0004]

HDAC阻害剤は、制がん剤としてのみならず、がん予防薬としても期待されている。TSAやSAHA等は、動物の化学発がんモデルにおいて乳癌の発生を顕著に抑制した。また、バルプロ酸を用いた研究から、HDAC阻害剤は転移を抑制することも示されている(非特許文献14)。

[0005]

HDAC阻害剤は制がん剤以外にも、例えば自己免疫疾患、ポリグルタミン病等の神経変性疾患(非特許文献 2 2 及び 2 3)、皮膚病、感染症(非特許文献 2 4)などの治療・改善薬、さらには遺伝子治療におけるベクター導入の効率化(非特許文献 2 5)、導入遺伝子の発現亢進(非特許文献 2 6)など様々な応用も試みられている。また、HDAC阻害剤は血管新生阻害作用を有すると考えられている(非特許文献 2 7 及び 2 8)。

[0006]

HDACには10種類以上のサブタイプが存在するが、近年、特定のHDACサブタイプとがんとの密接な関係がわかってきた。例えば、発がんの抑制に極めて重要な役割を果たすがん抑制遺伝子p53の機能発現にp53自身のアセチル化が重要であり(非特許文献29)、その機能阻害にHDAC1やHDAC2が関わること(非特許文献30)、前骨髄球性白血病(APL)の発症に関わる蛋白質PML-RARやPLZF-RAR、リンパ腫の発症に関わるBc1-6等のがん遺伝子が、核内コリプレッサーを介してHDAC4などをリクルートし、正常な分化に必要な遺伝子群の発現を抑制することで発がんに

至ることなどが示されている(非特許文献 $31 \sim 34$)。その一方で、組織特異的に発現するHDACサブタイプの中には、正常な組織の発生や分化に重要な役割を果たすものが存在することが知られている(非特許文献 35 及び 36)。

[0007]

HDAC6は核外輸送によって核-細胞質間をシャトルし、通常は細胞質に局在する酵素である(非特許文献37)。HDAC6は精巣などで発現が高く、正常な組織の分化に関わると推定される。また、HDAC6は微小管の脱アセチル化に関与し、微小管の安定性を制御することが知られている(非特許文献38)。さらに、HDAC6は微小管に結合する脱アセチル化酵素で、細胞の運動性に関与する(非特許文献39)。よってHDAC6の阻害剤は転移抑制剤となる可能性がある。TSAは各HDACサブタイプをほぼ同等に強く阻害するが、環状テトラペプチド構造を有し、活性基としてエポキシケトンを持つトラポキシンはHDAC6を阻害することができない(非特許文献40)。酵素の立体構造の情報から、環状テトラペプチドはあまり保存されていない酵素の活性中心の外側と相互作用するため、環状テトラペプチド部分の構造によってHDAC6との結合性が低いと推定される。このことは環状テトラペプチド部分の構造によってHDAC6との結合性が低いと推定される。このことは環状テトラペプチド部分の改変によって様々なHDACに選択的な阻害剤を創製できる可能性があることを示している。

[0008]

TSAはヒドロキサム酸基がHDAC活性ポケット内で亜鉛に配位することで阻害活性を示す(非特許文献41)。ヒドロキサム酸を有するHDAC阻害剤としては、0x amflatin(非特許文献42)、CHAP(非特許文献40及び43)なども知られている。しかし、TSAは血中で不安定である上にヒドロキサム酸のキレート作用が強力なために他の必須な金属イオンとキレートを形成してしまうなどの理由で、ヒドロキサム酸を有するHDAC阻害剤はこれまでのところ抗がん剤として実際の使用には至っていない。これに対し、最近になってFK228のジスルフィド結合の還元により生じるチオール基が、HDAC活性ポケット内の亜鉛と配位する活性基となり、HDACを阻害し得ることが示された。このようにFK228は、細胞内の還元力で還元されて活性化するプロドラッグである(非特許文献44)。

[0009]

また、天然界から環状テトラペプチド構造を有し、活性基としてエポキシケトンを持つHDAC阻害剤が複数単離されている。このような知見から、酵素認識に対する環状テトラペプチド構造の有用性が示唆されているが(前掲Yoshidaら, 1995)、これまでの阻害剤は安定性などの種々の点で医薬品として十分に満足できるレベルには達したものはない。そこでそれらの問題点を解決した薬剤の開発が強く望まれている。

[0010]

尚、本出願の発明に関連する先行技術文献情報を以下に示す。

【非特許文献 1】 Marks, P. A., Richon, V. M., and Rifkind, R. A. (2000) H istone deacetylase inhibitors: Inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst. 92, 1210-1216

【非特許文献 2】 Yoshida, M., Horinouchi, S., and Beppu, T. (1995) Tricho statin A and trapoxin: novel chemical probes for the role of histone ace tylation in chromatin structure and function. Bioessays 17, 423-430

【非特許文献 3】Bernhard, D., Loffler, M., Hartmann, B. L., Yoshida, M., Kofler, R., and Csordas, A. (1999) Interaction between dexamethasone and butyrate in apoptosis induction: non-additive in thymocytes and synergistic in a T cell-derived leukemia cell line. Cell Death Diff. 6, 609-6

【非特許文献 4】 Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M., and H orinouchi, S. (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 241, 126-133

【非特許文献 5 】 Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchi ya, K., Ando, T., Suzuki, T., Tsuruo, T., and Nakanishi, O. (1999) A syn thetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA 96, 4592-4597

【非特許文献 6】 Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990) Potent and specific inhibition of mammalian histone deacetylase both in

vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174-17179 【非特許文献 7】 Yoshida, M., Nomura, S., and Beppu, T. (1987) Effects of trichostatins on differentiation of murine erythroleukemia cells. Canc er Res. 47: 3688-3691

【非特許文献 8】 Hoshikawa, Y., Kijima, M., Yoshida, M., and Beppu, T. (1991) Expression of differentiation-related markers in teratocarcinoma cells via histone hyperacetylation by trichostatin A. Agric. Biol. Chem. 55: 1491-1495

【非特許文献 9】 Minucci, S., Horn, V., Bhattacharyya, N., Russanova, V., Ogryzko, V. V., Gabriele, L., Howard, B. H., and Ozato, K. (1997) A his tone deacetylase inhibitor potentiates retinoid receptor action in embry onal carcinoma cells. Proc. Natl. Acad. Sci. USA 94: 11295-11300

【非特許文献 1 0 】 Inokoshi, J., Katagiri, M., Arima, S., Tanaka, H., Hay ashi, M., Kim, Y. B., Furumai, R., Yoshida, M., Horinouchi, S., and Omur a, S. (1999) Neuronal differentiation of Neuro 2a cells by inhibitors of cell progression, trichostatin A and butyrolactone I. Biochem. Biophys Res. Commun. 256, 372-376

【非特許文献 1 1】Wang, J., Saunthararajah, Y., Redner, R. L., and Liu, J. M. (1999) Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res. 59: 2766-2769

《非特許文献 1 2 》Munster, P. N., Troso-Sandoval, T., Rosen, N., Rifkind, R., Marks, P. A., and Richon, V. M. (2001) The histone deacetylase inh ibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 61: 8492-8497

【非特許文献 1 3】Ferrara, F. F., Fazi, F., Bianchini, A., Padula, F., Gelmetti, V., Minucci, S., Mancini, M., Pelicci, P. G., Lo Coco, F., and Nervi, C. (2001) Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer

Res. 61: 2-7

【非特許文献 1 4】Gottlicher, M., Minucci, S., Zhu, P., Kramer, O. H., S chimpf, A., Giavara, S., Sleeman, J. P., Lo Coco, F., Nervi, C., Pelicci, P. G., and Heinzel, T. (2001) Valproic acid defines a novel class of H DAC inhibitors inducing differentiation of transformed cells. EMBO J. 2 0: 6969-6978

【非特許文献 1 5 】 Coffey, D. C., Kutko, M. C., Glick, R. D., Butler, L. M., Heller, G., Rifkind, R. A., Marks, P. A., Richon, V. M., and La Quag lia, M. P. (2001) The histone deacetylase inhibitor, CBHA, inhibits grow th of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 61: 3591-3594

【非特許文献 1 6】Petti, M. C., Fazi, F., Gentile, M., Diverio, D., De Fabritiis, P., De Propris, M. S., Fiorini, R., Spiriti, M. A., Padula, F., Pelicci, P. G., Nervi, C., and Lo Coco, F. (2002) Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promye locytic leukemia: in vitro and in vivo studies. Blood 100: 1065-1067

【非特許文献 1 7】Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Tu rner, B. M., Eisenman, R. N., and Bird, A. (1998) Transcriptional repres sion by the methyl-CpG-binding protein MeCP2 involves a histone deacetyl ase complex. Nature 393: 386-389

【非特許文献 1 8】Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. (1999) Synergy of demethylation and histone dea cetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet. 21: 103-107

【非特許文献 19】Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., Lee, K. Y., Nomura, S., Lee, C. W., Han, S. B., Kim, H. M., Kim, W. J., Yamamoto, H., Yamashita, N., Yano, T., Ikeda, T., Itoh ara, S., Inazawa, J., Abe, T., Hagiwara, A., Yamagishi, H., Ooe, A., Kan eda, A., Sugimura, T., Ushijima, T., Bae, S. C., and Ito, Y. (2002) Caus

al relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113-124

【非特許文献 2 0 】Boivin, A. J., Momparler, L. F., Hurtubise, A., and Momparler, R. L. (2002) Antineoplastic action of 5-aza-2'-deoxycytidine and phenylbutyrate on human lung carcinoma cells. Anticancer Drugs 13: 86 9-874

【非特許文献 2 1 】 Primeau, M., Gagnon, J., and Momparler, R. L. (2003) S ynergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2'-d eoxycytidine and histone deacetylase inhibitor depsipeptide on human bre ast carcinoma cells. Int J Cancer 103: 177-184

【非特許文献 2 2 】 Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Cr umley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarek MA, Si ngh SB, Goetz MA, Dombrowski AW, Polishook JD, Schmatz DM. (1996) a nove l antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad.Sci.USA 93, 13143-13147

【非特許文献 2 3】Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, H ousman DE, Jackson GR, Marsh JL, Thompson LM. (2001) Histone deacetylase inhibitors arrest polyglutamine—dependent neurodegeneration in Drosophi la. Nature. 413 739—43

【非特許文献 2 4】 McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH. (2001) Histone deacetylase inhibitors reduce polyglutamin e toxicity. Proc Natl Acad Sci U S A.: 98 15179-15184

【非特許文献 2 5 】 Dion LD, Goldsmith KT, Tang DC, Engler JA, Yoshida M, Garver RI Jr. (1997) Amplification of recombinant adenoviral transgene p roducts occurs by inhibition of histone deacetylase. Virology 231, 201-209

【非特許文献 2 6 】 Chen WY, Bailey EC, McCune SL, Dong JY, Townes TM. (19 97) Reactivation of silenced, virally transduced genes by inhibitors of

histone deacetylase. Proc. Natl. Acad. Sci. USA 94, 5798-5803

【非特許文献 2 7】 Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., Moon, E. J., Kim, H. S., Lee, S. K., Chung, H. Y., Kim, C. W., and Kim, K. W. (2001) Histone deacetylases induce angiogenes is by negative regulation of tumor suppressor genes. Nature Med. 7, 437—443

【非特許文献 2 8】 Kwon, H. J., Kim, M. S., Kim, M. J., Nakajima, H., and Kim, K. W. (2002) Histone deacetylase inhibitor FK228 inhibits tumor an giogenesis. Int. J. Cancer 97, 290-296

【非特許文献 2 9】Ito, A., Lai, C. H., Zhao, X., Saito, S., Hamilton, M. H., Appella, E., and Yao, T. P. (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EM BO J. 20, 1331-1340

【非特許文献30】Juan, L. J., Shia, W. J., Chen, M. H., Yang, W. M., Se to, E., Lin, Y. S., and Wu, C. W. (2000) Histone Deacetylases Specifical ly Down-regulate p53-dependent Gene Activation. J. Biol. Chem. 275, 2043 6-20443

【非特許文献 3 1】Dhordain P., Albagli, O., Lin, R. J., Ansieau, S., Qui ef, S., Leutz, A., Kerckaert, J. P., Evans, R. M., and Leprince, D. (1997) Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc. Natl. Acad. Sci. USA 94, 10762-10767

《非特許文献 3 2 M Grignani, F., De, M. S., Nervi, C., Tomassoni, L., Gel metti, V., Cioce, M., Fanelli, M., Ruthardt, M., Ferrara, F. F., Zamir, I., Seiser, C., Grignani, F., Lazar, M. A., Minucci, S., and Pelicci, P. G. (1998) Fusion proteins of the retinoic acid receptor-alpha recruit h

istone deacetylase in promyelocytic leukaemia. Nature 391, 815-818

【非特許文献 3 3] He, L. Z., Guidez, F., Tribioli, C., Peruzzi, D., Ruth ardt, M., Zelent, A., and Pandolfi, P. P. (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine different

ial responses to RA in APL. Nature Genet. 18, 126-135

【非特許文献 3 4】Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. J., and Evans, R. M. (1998) Role of the histone deacetylase complex in a cute promyelocytic leukaemia. Nature 391, 811-814

【非特許文献 3 5】McKinsey, T. A., Zhang, C. L., Lu, J., and Olson, E. N. (2000) Signal-dependent nuclear export of a histone deacetylase regula tes muscle differentiation. Nature 408, 106-111

【非特許文献 3 6】Verdel, A., and Khochbin, S. (1999) Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation—dependent chromatin modifiers. J. Biol. Chem. 2 74, 2440—2445

【非特許文献 3 7】 Verdel, A., Curtet, S., Brocard, M.-P., Rousseaux, S., Lemercier, C., Yoshida, M., and Khochbin, S. (2000) Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm. Curr. Biol. 10, 7 47-749

【非特許文献 3 8】 Matsuyama, A., Shimazu, T., Sumida, Y., Saito, A., Yos himatsu, Y., Seigneurin-Berny, D., Osada, H., Komatsu, Y., Nishino, N., Khochbin, S., Horinouchi, S., and Yoshida, M. (2002) In vivo destabiliza tion of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 2 1, 6820-6831

【非特許文献 3 9】 Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., I to, A., Nixon, A., Yoshida, M., Wang, X.-F., and Yao, T.-P. (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458

《非特許文献 4 0 》Furumai, R., Komatsu, Y., Nishino, N., Khochbin, S., Yoshida, M., and Horinouchi, S. (2001) Potent histone deacetylase inhibit ors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA 98: 87-92

【非特許文献41】Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., Breslow, R., and Pavletich, N. P. (199)

9) Structures of a histone deacetylase homologue bound to the TSA and SA HA inhibitors. Nature 401: 188-193

【非特許文献 4 2】Kim, Y. B., Lee, K.-H., Sugita, K., Yoshida, M., and H orinouchi, S. (1999) Oxamflatin is a novel antitumor compound that inhib its mammalian histone deacetylase. Oncogene 18: 2461-2470

【非特許文献 4 3】Komatsu, Y., Tomizaki, K.-y., Tsukamoto, M., Kato, T., Nishino, N., Sato, S., Yamori, T., Tsuruo, T., Furumai, R., Yoshida, M., Horinouchi, S., and Hayashi, H. (2001) Cyclic Hydroxamic-acid-containing Peptide 31, a potent synthetic histone deacetylase inhibitor with ant itumor activity. Cancer Res. 61: 4459-4466

【非特許文献 4 】 Furumai, R., Matsuyama, A., Kobashi, N., Lee, K.-H., N ishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M., and Horinouchi, S. (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62, 4916-492

[0011]

【発明が解決しようとする課題】

そこで、本願発明者らは、環状テトラペプチド構造を有する新規なHDAC阻害剤 およびその製造方法を提供することを目的とする。

[0012]

【課題を解決するための手段】

上記課題に鑑み、本願発明者らは、ヒストン脱アセチル化酵素の活性中心部に位置する亜鉛に配位することのできる、様々な官能基を有する環状テトラペプテド構造を有する化合物を合成し、そのHDAC阻害活性を解析した。その結果、カルボニル基を有する化合物および、フルオロ基を有する化合物、レトロヒドロキサム酸基を有する化合物はin vitro、in vivoどちらの系においても強いHDAC阻害活性を示すことが確認された。さらに、細胞レベルでのこれらの化合物の活性を解析したところ、HDAC阻害剤として知られているトリコスタチンA(TSA)と同様の強い活性が観察された。また、これらの化合物はヒストンの脱アセチル化を阻

害するだけでなく、チューブリンの脱アセチル化についても阻害することが観察された。すなわち、これらの化合物は細胞内で強い活性を示すことから、HDAC阻害剤として有用であることが示された。

[0013]

即ち、本発明は、HDAC阻害剤およびその製造方法に関し、以下の $[1] \sim [1]$ 1〕を提供するものである。

〔1〕 以下の一般式(1)で示される化合物。

【化13】

$$R_{42}$$
 R_{41}
 R_{11}
 R_{33}
 R_{31}
 R_{21}
 R_{22}
 R_{23}
 R_{23}
 R_{23}
 R_{21}
 R_{22}
 R_{23}
 R_{23}
 R_{31}

式中、 R_{11} , R_{21} , R_{31} , R_{41} はそれぞれ独立して水素またはメチル基を示す。 R_{22} , R_{23} , R_{32} , R_{33} , R_{42} , R_{43} はそれぞれ独立して水素、炭素数 $1\sim 6$ の直鎖アルキル基、北芳香族環状アルキル基もしくは置換基を有することもある芳香環が結合した炭素数 $1\sim 6$ の直鎖アルキル基、北芳香族環状アルキル基、または非芳香族環状アルキル基もしくは置換基を有することもある芳香環が結合した非芳香族環状アルキル基のいずれかを示す。また、 R_{21} と R_{22} , R_{22} と R_{23} , R_{31} と R_{32} , R_{32} c R_{33} , R_{41} と R_{42} , R_{42} と R_{43} は、それぞれ結合を持たず非環状構造を示すか、または鎖長炭素数 $1\sim 5$ の直鎖アルキレン基、もしくは、炭素数 $1\sim 6$ の分岐鎖を有する鎖長炭素数 $1\sim 5$ の直鎖アルキレン基、もしくは、炭素数 $1\sim 6$ の環構造を備えた鎖長炭素数 $1\sim 5$ の直鎖アルキレン基を介して結合した環構造を示す。nはHDAC阻害活性を有する範囲で選択することができる。Xは、ヒストン脱アセチル化酵素の活性中心部に位置する亜鉛に配位することのできる構造を持つ任意の構造体を示す。

[2] X部位の構造が以下の構造式で示す置換基のいずれかである、[1]に 記載の化合物

【化14】

【化15】

【化16】

【化17】

【化18】

- [3] [1]記載の化合物を有効成分として含有する、ヒストン脱アセチル化 酵素阻害剤。
- [4] [1] 記載の化合物を有効成分として含有する、チューブリン脱アセチル化酵素阻害剤。
- [5] [1] 記載の化合物を有効成分として含有する、アポトーシス誘導剤。
- [6] [1]記載の化合物を有効成分として含有する、分化誘導剤。
- [7] [1] 記載の化合物を有効成分として含有する、血管新生阻害剤。
- [8] [1] 記載の化合物を有効成分として含有する、がん転移抑制剤。
- [9] [1] 記載の化合物を有効成分として含有する、ヒストン脱アセチル化 酵素 1、4または 6 に起因した疾患の治療または予防のための薬剤。
- [10] ヒストン脱アセチル化酵素1、4または6に起因した疾患が、がん、自己免疫疾患、神経変性疾患、皮膚病、または感染症である、[9]記載の治療または予防のための薬剤。

(11)

一般式(2)

【化19】

(式中、Xは請求項1、2 で定義したものと同様であり、 P_1 はアミノ基の保護基を表す)で示される化合物を、一般式 (3)

【化20】

(式中、 R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , 及び R_{43} は、一般式(1)で定義したものと同様であり、 P_2 はカルボキシル基の保護基を表す)で示される化合物とペプチド結合剤の存在下で反応させ、一般式(4)

【化21】

(式中、n, R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , P_1 , P_2 , 及 VX は、前記で定義したものと同様である)で示される化合物を得、次いで前記 一般式(4)で示される化合物を、触媒的水素化、酸処理、もしくは加水分解に より、 P_1 及び P_2 を除去した後に、ペプチド結合剤の存在下で環化反応させる か、または一般式(5)

【化22】

(式中、 R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , 及び P_1 は、前記で定義したと同様である)で示される化合物を、一般式(6)

【化23】

(式中、n, R_{11} , P_2 , 及びXは、前記で定義したものと同様である)で示される化合物とペプチド結合剤存在下で反応させ、一般式(7)

【化24】

(式中、n, R₁₁, R₂₁, R₂₂, R₂₃, R₃₁, R₃₂, R₃₃, R₄₁, R₄₂, R₄₃, P₁, P₂, 及 VX は、前記で定義したと同様である)で示される化合物を得、次いで一般式(7)で示される化合物を、触媒的水素化、酸処理、 フルオリドアニオン処理、もしくは加水分解によりP₁ 及び P₂ を除去した後に、ペプチド結合剤の存在下で環化反応するか、または一般式(1)の環状テトラペプチドのXがカルボキシル基またはスルフィドリル基であるものを、それぞれ無水トリフルオロ酢酸や無水ペンタフルオロプロパン酸または 1,1,1-トリフルオロ-3-ブロモアセトンと反応させて別種の置換基Xとなすことを含む、〔1〕記載の化合物の製造方法。

[0014]

【発明の実施の形態】

以下、本発明の実施の形態について図面に基づき詳細に説明する。

[0015]

本発明の化合物は、上記の一般式(1)で示すことができる。このような化合物はHDAC阻害剤として使用できる。

[0016]

上記式(1)中、 R_{11} , R_{21} , R_{31} , R_{41} はそれぞれ独立して水素またはメチル基を示す。 R_{22} , R_{23} , R_{32} , R_{33} , R_{42} , R_{43} はそれぞれ独立して水素、炭素数 $1\sim6$ の直鎖アルキル基、非芳香族環状アルキル基もしくは置換基を有することもある芳香環が結合した炭素数 $1\sim6$ の直鎖アルキル基、非芳香族環状アルキル基、または非芳香族環状アルキル基のいずれかを示す。また、 R_{21} と R_{22} , R_{22} と R_{23} , R_{31} と R_{32} , R_{32} と R_{33} , R_{41} と R_{42} , R_{42} と R_{43} は、それぞれ結合を持たず非環状構造を示すか、または鎖長炭素数 $1\sim5$ の直鎖アルキレン基、もしくは、炭素数 $1\sim6$ の分岐鎖を有する鎖長炭素数 $1\sim5$ の直鎖アルキレン基を介して結合した環構造を形成してもよい。この環状テトラペプチド構造部分は10のボケットをふさぐキャップとして機能し得ると考えられるため、このキャップ構造として機能し得る範囲で、上記炭素数 $1\sim6$ の直鎖アルキル基、芳香族環状アルキル基、これらの置換基となり得る芳香族を任意に選択することができる。

[0017]

また、式(1)中Xは、ヒストン脱アセチル化酵素の活性中心部に位置する亜鉛に配位することのできる構造を持つ任意の構造体を示す。Xに反応性の高い官能基を置換した場合には、生体内で不安定となる。そのため、Xが反応性の高い官能基である場合には、ドラッグデリバリーシステムなどのように所望の部位まで安定に輸送し得る手段と組み合わせることが好ましい。また、HDAC阻害活性を有する官能基の安定性を高めるために、生体内で代謝され、生体に有害でない置換基を用いることが好ましい。このような置換基としては、側鎖にケトン型のZn配位子を有する置換基が好ましく、置換基自身で何らかの効能を示すものであってもよく、また、単に保護基としての機能を備えているものであってもよい。

[0018]

置換基Xの好ましい構造の例を次に示す。

Mtfk

[0019]

また、本発明において式(1)中、nはHDAC阻害活性を有する範囲で選択することができ、例えば、nは好ましくは $4\sim6$ 、最も好ましくは5である。この環状テトラペプチド構造から伸び、炭素数nからなる炭素鎖は、HDACの活性ポケット部分に侵入し、この炭素鎖先端の様々な官能基をHDACのポケット内の亜鉛分子に接触させHDACを阻害する機能を有すると考えられる。

[0020]

また、以下に本発明の化合物の製造方法について説明する。本実施形態の化合物は、一般式(2)もしくは(6)で示された化合物を原料として以下の通り製造することができる。なお、 R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , P_{1} , P_{2} およびX などの定義は上述の説明で述べた定義と同一であるので、ここではその説明を省略する。

[0021]

本発明における化合物の製造方法の第一の態様は、以下の一般式(2)で示された化合物を原料として製造する方法である。具体的には、一般式(2)

【化30】

で示される化合物(Xにおける置換基の特定の部位が以後の化学反応によって何らかの修飾および置換を受ける場合は、修飾および置換を受ける部位に保護基を結合させてもよい)と、一般式 (3)

【化31】

で示される化合物をペプチド結合剤の存在下で反応させ、一般式 (4)

【化32】

で示される化合物を得る。これら式中、Xは図1に記載の置換基、 P_2 はアミノ基の保護基を表す。

[0022]

次いで前記一般式(4)で示される化合物を、触媒的水素化、酸処理、フルオリドアニオン処理、もしくは加水分解により、 P_1 及び P_2 を除去した後に、ペプチド結合剤の存在下で環化反応させ、一般式(1)で示される化合物を得る。始めに一般式(2)のXの特定の部位において保護基を結合させた場合、最後の過程において、触媒的水素化、酸処理、フルオリドアニオン処理、もしくは加水分解により保護基を取り除く工程を含んでもよい。

[0023]

本発明の化合物の製造方法の第二の態様は、以下の一般式 (6) で示された化合物を原料として製造する方法である。具体的には、一般式 (5)

【化33】

で示される化合物を、一般式 (6)

【化34】

で示される化合物 (Xにおける置換基の特定の部位が以後の化学反応によって何らかの修飾および置換を受ける場合は、修飾および置換を受ける部位に保護基を結合させてもよい) とペプチド結合剤存在下で反応させ、一般式 (7)

【化35】

で示される化合物を得る。次いで一般式(7)で示される化合物を、触媒的水素化、酸処理、フルオリドアニオン処理、もしくは加水分解によりP1 及び P2 を除去した後に、ペプチド結合剤の存在下で環化反応させて、一般式(1)で示される化合物を得る。始めに一般式(2)のXの特定の部位において保護基を結合させた場合、最後の過程において、触媒的水素化、酸処理、フルオリドアニオン処理、もしくは加水分解により保護基を取り除く工程を含んでもよい。また、一般式(1)の環状テトラペプチドのXがカルボキシル基またはスルフィドリル基であるものを、それぞれ無水トリフルオロ酢酸や無水ペンタフルオロプロパン酸または 1,1,1-トリフルオロ-3-ブロモアセトンと反応させて別種の置換基Xとなす一般式(1)で示される化合物を得る。

[0024]

HDACを阻害する化合物が、がん細胞、白血病細胞、および神経細胞などの分化を誘導すること、アポトーシスを誘導すること、また、がんの転移を抑制するこ

とが以前から知られている (Yoshida, M., Nomura, S., and Beppu, T. (1987) Effects of trichostatins on differentiation of murine erythroleukemia ce Cancer Res. 47: 3688-3691; Hoshikawa, Y., Kijima, M., Yoshida, M., and Beppu, T. (1991) Expression of differentiation-related markers in t eratocarcinoma cells via histone hyperacetylation by trichostatin A. ric. Biol. Chem. 55: 1491-1495; Minucci, S., Horn, V., Bhattacharyya, N. , Russanova, V., Ogryzko, V. V., Gabriele, L., Howard, B. H., and Ozato, K. (1997) A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 94: 11 295-11300; Inokoshi, J., Katagiri, M., Arima, S., Tanaka, H., Hayashi, M ., Kim, Y. B., Furumai, R., Yoshida, M., Horinouchi, S., and Omura, S. (1999). Neuronal differentiation of Neuro 2a cells by inhibitors of cell progression, trichostatin A and butyrolactone I. Biochem. Biophys. Res. Commun. 256, 372-376; Wang, J., Saunthararajah, Y., Redner, R. L., and Liu, J. M. (1999) Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Canc er Res. 59: 2766-2769; Munster, P. N., Troso-Sandoval, T., Rosen, N., Ri fkind, R., Marks, P. A., and Richon, V. M. (2001) The histone deacetylas e inhibitor suberoylanilide hydroxamic acid induces differentiation of h uman breast cancer cells. Cancer Res. 61: 8492-8497; Ferrara, F. F., Fa zi, F., Bianchini, A., Padula, F., Gelmetti, V., Minucci, S., Mancini, M ., Pelicci, P. G., Lo Coco, F., and Nervi, C. (2001) Histone deacetylase -targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. 61: 2-7; Gottlicher, M., Minucc i, S., Zhu, P., Kramer, O. H., Schimpf, A., Giavara, S., Sleeman, J. P., Lo Coco, F., Nervi, C., Pelicci, P. G., and Heinzel, T. (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20: 6969-6978)。よって、本発明の化合物は 、アポトーシス誘導剤、分化誘導剤、およびがん転移抑制剤として利用できる。

[0025]

また、HDACを阻害する化合物は、血管新生を阻害すると予想されている(Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., Moon, E. J., Kim, H. S., Lee, S. K., Chung, H. Y., Kim, C. W., and Kim, K. W. (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Med. 7, 437-443; Kwon, H. J., Kim, M. S., Kim, M. J., Nakajima, H., and Kim, K. W. (2002) Histone deacety lase inhibitor FK228 inhibits tumor angiogenesis. Int. J. Cancer 97, 290-296)。よって、本発明の化合物は、血管新生阻害剤としても利用できる。

[0026]

また、本発明の化合物は、種々のHDACのうち、HDAC1, 4または6に対して強い阻害活性を示す。そのため、本発明の化合物は、HDAC1, 4または6に起因した疾患の治療または予防のための薬剤として有用になる。この疾患としては、がん以外にも、HDAC1, 4または6が関与した自己免疫疾患、神経変性疾患、皮膚病、感染症などを含めることができる。また、本発明の化合物は、上記疾患の治療または予防のための薬剤への応用だけでなく、遺伝子治療におけるベクター導入の効率化、導入遺伝子の発現亢進などのような遺伝子治療の補助剤あるいは促進剤として応用してもよい。

[0027]

また、本発明の化合物はレチノイン酸やDNAメチル化阻害剤と併用することができる。本発明は、このような併用剤もまた提供するものである。

[0028]

本発明の化合物を製剤化する場合には、必要に応じて充填剤、増量剤、結合剤、保湿剤、崩壊剤、界面活性剤、滑沢剤等の希釈剤あるいは賦形剤を用いることができる。また、この医薬製剤中に着色剤、保存剤、香料、風味剤、甘味剤等や他の医薬品を医薬製剤中に含有させてもよい。この医薬製剤としては各種の形態が治療目的または予防目的に応じて選択でき、例えば、錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、注射剤、坐剤等が挙げられる。

[0029]

錠剤、カプセル剤に混和することができる添加剤としては、例えばゼラチン、コーンスターチ、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸のような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖又はサッカリンのような甘味剤、ペパーミント、アカモノ油又はチェリーのような香味剤が用いられる。調剤単位形態がカプセルである場合には、上記の材料にさらに油脂のような液状担体を含有することができる。

[0030]

また、注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80TM、HCO-50と併用してもよい。

[0031]

油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。

[0032]

患者への投与は、経口、非経口投与のいずれでも可能である。非経口投与の剤型としては、例えば、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型などが挙げられる。注射剤型の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。また、鼻腔内的、経気管支的、筋内的、経皮的、または経口的に当業者に公知の方法により投与しうる。

[0033]

本発明の化合物を非経口的に投与する場合は、その1回投与量は投与対象、対

象臓器、症状、投与方法によっても異なるが、例えば注射剤の形では通常成人(体重60kgとして)においては、通常、1日当り約0.01から30mg、好ましくは約0.1 から20mg、より好ましくは約0.1から10mg程度を静脈注射により投与するのが好 都合であると考えられる。他の動物の場合も、体重60kg当たりに換算した量、あ るいは体表面積あたりに換算した量を投与することができる。

[0034]

また、本発明の化合物を経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法によっても異なるが、例えば通常成人(体重60kgとして)においては、1日あたり約100μgから20mgであると考えられる。

[0035]

【実施例】

以下、本発明を実施例により、さらに具体的に説明するが本発明はこれら実施 例に制限されるものではない。

本発明の各化合物の合成工程について以下に詳細に説明する。なお、ここでは2-amino-6-bromohexanoic acidを「Ab6」と、2-amino-6-acetylthiohexanoic acidを「Am6(Ac)」、2-amino-6-(3',3',3'-trifluoracetonylthio)-hexanoic acidを「Am6(Tfacet)」、2,8-diaminooctanoic acidを「A2oc」、2-amino-7-dimethylphosphonylheptanoic acidを「Aph」、α-aminosuberic acidを「Asu」、formyl基を「For」、homolysineを「Hly」、2-amino-8-oxo-9,9,9-trifluoronona noic acidを「Tfm」、0-methyltyrosineは「Tyr(Me)」、2-amino-8-oxo-9,9,10,10-pentafluorodecanoic acidを「Pfe」、pipecolic acidを「Pip」と略す。

[0036]

実施例1. cyclo(-L-Asu(OMe)-D-Tyr(Me) -L-Ile-D-Pro-)の合成

既存の方法で合成したcyclo(-L-Asu(0Bz1)-D-Tyr(Me)-L-Ile-D-Pro-) (0.150 mmol, 100 mg) を MeOH (1 ml) に溶解した。4 N HC1/ジオキサン (50 μ1) を 加え、室温で 8 時間放置した。反応液を濃縮し、シリカゲルクロマトグラフィーで精製し、フォーム状の目的物を得た(column: Merck Kiesekgel 60 Φ1.5x1 5 cm, eluent: CHC13/MeOH, 99/1)。収量 65 mg (0.113 mmol, 76%)。

[0037]

実施例 2. cyclo(-L-Lys(For, OH)-D-Tyr(Me)-L-Ile-L-Pip-) およびcyclo(-L-Lys(For, OH)-D-Tyr(Me)-L-Ile-D-Pip-) の合成

(1) Ac-DL-Ab6-OtBuの合成

Ac-DL-Ab6-OH (1.26 g, 50 mmol) をDCM (100 ml) に溶解し、濃硫酸 (1 ml) を加えた。氷冷下、イソブチレンガス (50 ml) を吹き込み、室温で 11日間放置した。4% 炭酸水素ナトリウム水溶液 (80 ml) を加えた後、放置してイソブチレンガスを揮発させた。DCM溶液を10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、DCMを留去した。シリカゲルクロマトグラフィーで精製し、シロップ状の目的物を得た (column: Merck Kieselgel 60 Φ5.0x10 cm, eluent: CHCl₃ /MeOH, 49/1)。TLC: Rf, 0.8 (CHCl₃/MeOH, 49/1)。収量 9.25 g (30.1 mmol, 60%)。

[0038]

(2) Ac-DL-Lys(OBz1)-OtBu の合成

Ac-DL-Ab6-OtBu (9.25 g, 30 mmol) をメタノール (120 ml) に溶解し、0-ベンジルヒドロキシルアミン塩酸塩 (9.58 g, 60 mmol) およびDIEA (20.9 ml, 12 0 mmol) を加え、80℃ で 4日間還流を行った。反応液を濃縮し、酢酸エチルで抽出した。4% 炭酸水素ナトリウム水溶液、蒸留水で 1 回ずつ洗浄した後、炭酸ナトリウムで乾燥し、酢酸エチルを留去した。シリカゲルクロマトグラフィーによって精製し、シロップ状の目的物を得た(column: Merck Kieselgel 60 Φ5 .0x22 cm, eluent: CHCl3/MeOH, 49/1)。TLC: Rf, 0.3 (CHCl3/MeOH, 49/1)。収量 5.13 g (14.6 mmol, 49%)。

[0039]

(3) Ac-DL-Lys(For, OBz1)-OtBu の合成

泳冷下Ac-DL-Lys(OBz1)-OtBu (4.01 g, 11.5 mmol) にギ酸 (58 ml) および無水酢酸 (5.4 ml, 50 mmol) を加え、1 時間攪拌した。反応液を濃縮し、酢酸エチルで抽出した。3 回水洗後、硫酸マグネシウムで乾燥し、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、シロップ状の目的物を得た (column: Merck Kieselgel 60 Ф3.4x20 cm, eluent: CHCl3/MeOH, 99/1)。TLC: Rf, 0.45 (CHCl3/MeOH, 49 1)。収量 3.27 g (8.53 mmol, 75%)。

[0040]

(4) Ac-DL-Lys(For, OBz1)-OH の合成

Ac-DL-Lys(For, OBz1)-OtBu (3.27 g, 8.53 mmol) にTFA (9 ml) を加え、室温で 2 時間放置した。反応液を濃縮し、酢酸エチルで抽出した。3 回水洗し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。

[0041]

(5) Boc-L-Lys(For, OBz1)-OH の合成

Ac-DL-Lys(For, OBz1)-OH (8.53 mmol) を蒸留水 (2 ml) に溶解し、2 N 水酸化ナトリウム水溶液を用いて溶液のpHを 7 に調整した。塩化コバルト6水和物 (7 mg) および Aspergillus genus アミノアシラーゼ (260 mg) を加え、40℃で一晩放置した。反応液を5 ml まで濃縮し、ジオキサン (5 ml) を加えた。氷冷下 Boc20 (1.86 g, 8.52 mmol) および Et3N (1.79 ml, 12.8 mmol) を加え、6 時間攪拌した。ジオキサンを留去し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液および水で各 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去して油状の目的物を得た。収量 2.34 g (6.15 mmol, 100%)。

[0042]

(6) Boc-L-Lys(For, OBzl)-OTmse の合成

Boc-L-Lys(For, OBz1)-OH (2.34 g, 6.15 mmol) および Tmse-OH (1.76 ml, 1 2.8 mmol)をDCM (3 ml) に溶解し、氷冷下 DMAP (15 mg, 0.62 mmol) および DC C (1.52 g, 7.38 mmol) を加え、10 時間攪拌した。反応液を濃縮し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ3 回ずつ洗浄し、硫酸マグネシウム乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た (colu mn: Merck Kieselgel 60 Φ2.4x20 cm, eluent: AcOEt/hexane, 1/4)。TLC: Rf, 0.5 (CHC13/MeOH, 99/1)。収量 338 mg (0.7 mmol, 11%)。

[0043]

(7) Boc-L-Ile-DL-Pip-OBzl の合成

Boc-L-Ile-OH·1/2H₂O(2.88 g, 12 mmol)、HCl·H-DL-Pip-OBzl(2.55 g, 10 mmol)および HOBt·H₂O(2.30 g, 15 mmol)をDMF(10 ml) に溶解し、氷冷

ページ:

30/

下 Et_3N (1.4 ml, 10 mmol) および DCC (3.10 g, 15 mmol) を加えた。一晩攪拌し、不溶物を濾過し反応液を濃縮した。残渣を酢酸エチルで抽出し、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、および飽和食塩水でそれぞれ3回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去してフォーム状の目的物を得た。収量 3.79 g (9.1 mmol, 91%)。

[0044]

(8) Boc-D-Tyr (Me)-L-Ile-DL-Pip-OBzl の合成

Boc-L-Ile-DL-Pip-OBzl (2.64 g, 6.1 mmol) に氷冷下 TFA (4 ml) を加え、3 0分間放置した。TFA を留去した後、Boc-D-Tyr (Me) -OH (2.16 g, 7.3 mmol) および HOBt・H₂O (1.40 g, 9.15 mmol) を加え、DMF (10 ml) に溶解した。氷冷下 HBTU (3.47 g, 9.15 mmol) および Et₃N (3.51 ml, 25 mmol) を加え、1 時間攪拌した。反応液を濃縮し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製してフォーム状の目的物を得た(column: Merck Kieselgel 60 Φ5.0x12 cm, eluent: CHCl₃/MeOH, 99/1)。TLC: Rf, 0.75 (CHCl₃/MeOH, 9/1)。収量 2.45 g (4.02 mmol, 66%)。

[0045]

(9) Boc-D-Tyr (Me)-L-Ile-DL-Pip-OH の合成

Boc-D-Tyr(Me)-L-ILe-DL-Pip-OBz1 (2.45 g, 4.02 mmol) をメタノール (10 m l) に溶解し、Pd-C (500 mg) を加え、水素雰囲気下、室温で 3 時間攪拌した。 反応確認後 Pd-C を濾過し、メタノールを留去してフォーム状の目的物を得た。 収量 1.98 g (3.81 mmol, 95%)。

[0046]

(10) Boc-D-Tyr(Me)-L-Ile-DL-Pip-L-Lys(For, OBzl)-OTmse の合成

氷冷下 Boc-L-Lys(For, OBz1)-OTmse (338 mg, 0.7 mmol) にTFA (1 ml) を加え、30 分放置した。TFA を留去した後、Boc-D-Tyr(Me)-L-Ile-DL-Pip-OH (363 mg, 0.7 mmol) および HOBt・H2O (160 mg, 1.05 mmol) を加え、DMF (1 ml) に溶解した。氷冷下 HBTU (398 mg, 1.05 mmol) および Et₃N (0.41 ml, 2.9 mmol)

)を加え、1 時間攪拌した。反応液を濃縮し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ3回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーにより精製し、フォーム状の目的物を得た (column: Merck Kie selgel 60 Φ 1.5x12 cm, eluent: CHCl3/MeOH, 99/1)。TLC: Rf, 0.3 (CHCl3/MeOH, 49/1)。収量 485 mg (0.55 mmol, 79%)。

[0047]

(11) TFA・H-D-Tyr(Me)-L-Ile-DL-Pip-L-Lys(For, OBz1)-OH の合成

Boc-D-Tyr (Me)-L-Ile-DL-Pip-L-Lys (For, OBz1)-OTmse (485 mg, 0.55 mmol) をDMF (0.5 ml) に溶解し、1 M TBAF/THF (2.2 ml, 2.2 mmol) を加え、室温で 30 分放置した。反応液を濃縮し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、蒸留水でそれぞれ3 回洗浄し、硫酸マグネシウムで乾燥して酢酸エチルを留去した。これに、氷冷下TFA (2 ml) を加え、30 分放置した。TFA を留去した後、ジエチルエーテルおよび石油エーテルを加えて白色の粉末を得た。収量 4 89 mg (0.55 mmol, 100%)。

[0048]

(12) cyclo(-L-Lys(For, OBzl)-D-Tyr(Me)-L-Ile-L-Pip-) およびcyclo(-L-Lys(For, OBzl)-D-Tyr(Me)-L-Ile-D-Pip-) の合成

TFA・H-D-Tyr (Me)-L-Ile-DL-Pip-L-Lys (For, OBz1)-OH (489 mg, 0.55 mmol) を DMF (5 ml) に溶解した。DMF (275 ml) 中に、上記テトラペプチド/DMF 溶液 (1 ml)、HATU (63 mg, 0.16 mmol) および 0.076 M DIEA/DMF 溶液 (1 ml)を 加え、室温で 1 時間攪拌した。これを 5 回繰り返した後、反応液を濃縮して、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、4% 炭酸水素ナトリウム 水溶液、飽和食塩水でそれぞれ 3 回洗浄した。硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、ジアステレオマー (LDLL-体 および LDLD-体) の分離を行い、それぞれフォーム状の目的物を得た (column: Merck Kieselgel 60 Φ1.5x35 cm, eluent: CHCl3/MeOH, 99/1)。LDLL-体:収量 88 mg (0.13 mmol, 24%)、TLC: Rf, 0.8 (CHCl3/MeOH, 9/1)、RP-HPLC retention time: 22.44 min (column: WakoPak C18 Φ4.6x150 mm, eluent

: CH₃CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。LDLD-体:収量 92 mg(0.14 mmol, 25%)、TLC: Rf, 0.9 (CHCl₃/MeOH, 9/1)、RP-HPLC retention time: 24.59 min (column: WakoPak Cl8 Φ4.6x150 mm, eluent: CH₃CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。

[0049]

(13) cyclo(-L-Lys(For, OH)-D-Tyr(Me)-L-Ile-L-Pip-) の合成 cyclo(-L-Lys(For, OBzl)-D-Tyr(Me)-L-Ile-L-Pip-) (88 mg, 0.13 mmol) をメタノール (2 ml) に溶解し、Pd-C (100 mg) を加え、水素雰囲気下、室温で 1時間攪拌した。Pd-C を滤過し、メタノールを留去した。凍結乾燥を行い、白色粉末を得た。収量 76 mg (0.13 mmol, 100%)。RP-HPLC retention time: 17.78 min (column: WakoPak C18 Φ4.6x150 mm, eluent: CH₃CN 10-100%/0.1% TFA 1i near gradient over 30 min, flow rate: 1 ml/min)。FABMS(matrix: 2, 2'-d ithiodiethanol): m/z, 574.3228 [M+H]+ (Calcd., 573.3163, C₂₉H₄30₇N₅)。

[0050]

(14) cyclo(-L-Lys(For, OH)-D-Tyr(Me)-L-Ile-D-Pip-) の合成 cyclo(-L-Lys(For, OBzl)-D-Tyr(Me)-L-Ile-D-Pip-) (92 mg, 0.14 mmol) をメタノール (2 ml) に溶解した。Pd-C (100 mg) を加え、水素雰囲気下、室温で1 時間攪拌した。HPLC にて反応確認後、Pd-C を濾過し、メタノールを留去した。凍結乾燥を行い、白色粉末を得た。収量 75 mg (0.13 mmol, 93%)。RP-HPLC retention time: 19.57 min (column: WakoPak C18 Φ4.6x150 mm, eluent: CH 3CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。FABMS (matrix: 2, 2' -dithiodiethanol): m/z, 574.3230 [M+H]+ (Calcd., 57 3.3163, C29H43O7N5)。

[0051]

実施例3. cyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-L-Pip-) およびcyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-D-Pip-) の合成

(1) Boc-L-Ab7-OTmse の合成

Boc-L-Ab7-OH (2.7 g, 8.3 mmol) および Tmse-OH (2.37 ml, 16.6 mmol) を

DCM (4 ml) に溶解し、氷冷下 DMAP (101 mg, 0.83 mmol) および DCC (2.05 g, 9.96 mmol) を加え、6 時間攪拌した。反応液を濃縮し、酢酸エチルで抽出を行った。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウム乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た (column: Merck Kiese lgel 60 Φ3.4x20 cm, eluent: AcOEt/hexane, 1/8)。TLC: Rf, 0.85 (CHCl3/M eOH, 49/1)。収量 1.92 mg (4.54 mmol, 55%)。

[0052]

(2) ギ酸 0-ベンジルヒドロキシアミドの合成

0-ベンジルヒドロキシルアミン塩酸塩(3.19 g, 20 mmol)をクロロホルムに溶解し、4% 炭酸水素ナトリウム水溶液で洗浄し、炭酸ナトリウムで乾燥後、クロロホルムを留去した。これをギ酸(20 ml)に溶解した。一方氷冷下で無水酢酸(7.5 ml, 80 mmol)をギ酸(40 ml)に加え 30 分間放置した。これに、上記0-ベンジルヒドロキシルアミンのギ酸溶液を加え、24時間攪拌した。反応液を濃縮し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、炭酸ナトリウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、シロップ状の目的物を得た(column: Merck Kieselgel 60 Φ5.0x12 cm, eluent: AcOEt/hexa ne, 1/1)。TLC: Rf, 0.3 (CHCl3/MeOH, 49/1)。収量 1.69 g (11.2 mmol, 56%)

[0053]

(3) Boc-L-Hly(For, OBzl)-OTmse の合成

Boc-L-Ab7-OTmse (846 mg, 2.0 mmol)、ギ酸 0-ベンジルヒドロキシルアミド (453 mg, 3.0 mmol)、ヨウ化カリウム (166 mg, 1.0 mmol) および炭酸カリウム (1.20 g, 8.0 mmol) を無水アセトン (40 ml) に溶解し、90℃ で 4 日間還流 を行った。反応液を濾過後、濃縮した。ジエチルエーテルで抽出し、0.5 N 水酸 化ナトリウム水溶液で 1 回、蒸留水で 2 回洗浄した後、無水炭酸ナトリウムで乾燥し、ジエチルエーテルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た (column: Merck Kieselgel 60 Φ2.4x15 cm, eluent: Ac

OEt/hexane, 1/3)。TLC: Rf, 0.5 (CHCl₃/MeOH, 49/1)。収量 235 mg (0.48 mm ol, 24%)。

[0054]

[0055]

(5) TFA・H-D-Tyr (Me) -L-Ile-DL-Pip-L-Hly (For, OBz1) -OH の合成 Boc-D-Tyr (Me) -L-Ile-DL-Pip-L-Hly (For, OBz1) -OTmse (289 mg, 0.32 mmol) を DMF (1 ml) に溶解させ、1 M TBAF / THF (0.7 ml, 0.7 mmol) を加え、30 分放置した。反応液を濃縮後、酢酸エチルで抽出した。10% クエン酸水溶液、蒸留水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。これに、氷冷下 TFA (3 ml) を加え、30 分放置した。TFA を留去した後、ジエチルエーテルおよび石油エーテルを加えて白色の粉末を得た。収量 261 mg (0.32 mmol, 100%)。

[0056]

(6) cyclo(-L-Hly(For, OBzl)-D-Tyr(Me)-L-Ile-L-Pip-) およびcyclo(-L-Hly(For, OBzl)-D-Tyr(Me)-L-Ile-D-Pip-) の合成

TFA・H-D-Tyr (Me)-L-Ile-DL-Pip-L-Hly (For, OBz1)-OH (261 mg, 0.32 mmol) を DMF (3 ml) に溶解した。DMF (270 ml) 中に、上記テトラペプチド/DMF 溶液 (1 ml)、HATU (62 mg, 0.16 mmol) および 0.075 M DIEA/DMF 溶液 (1 ml) を

加え、室温で 45 分間攪拌した。これを 3 回繰り返した後、反応液を濃縮した。酢酸エチルで抽出し、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウム乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、ジアステレオマー (LDLL-体および LDLD-体) の分離を行った (column: Merck Kieselgel 60 Φ1.5x36 cm, eluent: CHC13/MeOH, 99/1)。 LDLL-体:収量 61 mg (0.090 mmol, 28%)、TLC: Rf, 0.55 (CHC13/MeOH, 9/1)、RP-HPLC retention time: 22.40 min (column: YMC-Pack C8 Φ4.6x150 mm, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。LDLD-体:収量 60 mg (0.089 mmol, 28%)、TLC: Rf, 0.65 (CHC13/MeOH, 9/1)、RP-HPLC retention time: 24.29 min (column: YMC-Pack C8 Φ4.6x150 mm, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。

[0057]

(7) cyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-L-Pip-) の合成

cyclo(-L-Hly(For, OBzl)-D-Tyr(Me)-L-Ile-L-Pip-) (61 mg, 0.090 mmol) を 酢酸 (2 ml) に溶解した。Pd-C (100 mg) を加え、水素雰囲気下、室温で 1 時間攪拌した。Pd-C を濾過し、酢酸を留去した。凍結乾燥を行い、白色粉末を得た。収量 48 mg (0.082 mmol, 91%)。RP-HPLC retention time: 16.02 min (col umn: WakoPak C18 Φ4.6x150 mm, eluent: CH₃CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。FABMS (matrix: 2, 2'-dithiodoe thanol): m/z, 588.3379 [M+H]+ (Calcd., 587.3319, C₃₀H₄₅O₇N₅)。

[0058]

(8) cyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-D-Pip-) の合成

cyclo(-L-Hly(For, OBz1)-D-Tyr(Me)-L-Ile-D-Pip-) (60 mg, 0.089 mmol)をメタノール (2 ml) に溶解し、Pd-C (100 mg)を加え、水素雰囲気下、室温で1時間攪拌した。Pd-Cを濾過し、メタノールを留去した。凍結乾燥を行い、白色粉末を得た。収量 38 mg (0.065 mmol, 73%)。RP-HPLC retention time: 18.68 min (column: WakoPak C18 Φ4.6x150 mm, eluent: CH₃CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。FABMS (matrix: 2, 2' -dithi

odiethanol): m/z, 588.3388 [M+H]+ (Calcd., 587.3319, $C_{30}H_{45}O_{7}N_{5})$.

[0059]

実施例4. cyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-L-Pro-) の合成

(1) Boc-L-Ab7-OTmse の合成

Boc-L-Ab7-OH (1.46 g, 4.5 mmol) および Tmse-OH (0.77 ml, 5.4 mmol) を DCM (10 ml) に溶解し、氷冷下でDMAP (55 mg, 0.45 mmol) および DCC (1.1 g, 5.4 mmol) を加え、16 時間撹拌した。溶媒を留去し、酢酸エチルで抽出した。 10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た(column: Merck Kieselgel 60 Φ3.4x30 cm, eluent: CHCl3)。TLC: Rf, 0.95 (CHCl3/MeOH, 9/1)。収量 1.25 g (3.0 mmol, 67%)。

[0060]

(2) Boc-L-Hly(For, OBzl)-OTmse の合成

Boc-L-Ab7-OTmse (2.3 g, 5.5 mmol)、ギ酸 0-ベンジルヒドルキシルアミド (1.45 g, 9.6 mmol)、ヨウ化カリウム (465 mg, 2.8 mmol) および炭酸カリウム (3.04 g, 22 mmol) を無水アセトン (50 ml) に溶解させ、90℃ で 36 時間還流を行った。反応液を濾過後、濃縮した。ジエチルエーテルで抽出し、0.5 N 水酸化ナトリウム水溶液で 1 回、蒸留水で 2 回洗浄した後、硫酸マグネシウムで乾燥し、ジエチルエーテルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た(column: Merck Kieselgel 60 Φ3.4x30 cm, eluent: CHCl 3/MeOH, 49/1)。TLC: Rf, 0.4 (CHCl3/MeOH, 49/1)。収量 1.33 g (2.7 mmol, 49%)。

[0061]

(3) Boc-L-Ile-L-Pro-OBzl の合成

Boc-L-Ile-OH·1/2 H₂O (1.19 g, 5.0 mmol) および HCl·H-L-Pro-OBzl (1.0 2 g, 5.0 mmol) をDMF (10 ml) に溶解し、氷冷下 HOBt·H₂O (765 mg, 5.0 mmol)、DCC (1.24 g, 6.0 mmol) およびEt₃N (0.7 ml, 5.0 mmol) を加え 16 時間 撹拌した。溶媒を留去し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、

4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た (column: Merck Kieselgel 60 Φ3.4x30 cm, eluent: CHCl₃/MeOH, 49/1)。TLC: Rf, 0.8 (CHCl₃/MeOH, 19/1)。収量 1.00 g (2.6 mmo 1, 52 %)。

[0062]

(4) Boc-D-Tyr(Me)-L-Ile-L-Pro-OBzl の合成

水冷下Boc-L-Ile-L-Pro-OBz1 (1.00 g, 2.6 mmol) にTFA (4 ml) を加え、30 分間放置した。TFA を留去し、減圧下で乾燥した。これをDMF (6 ml) に溶解し、Boc-D-Tyr (Me) -OH (770 mg, 2.6 mmol) を加え、続いて氷冷下HOBt・H₂O (597 mg, 3.9 mmol)、HBTU (1.50 g, 3.9 mmol) および Et₃N (0.88 ml, 6.3 mmol) を加え 16 時間撹拌した。反応液を濃縮し、酢酸エチルで抽出した。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥し、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、フォーム状の目的物を得た(column: Merck Kieselgel 60 Φ3.4 x30 cm, eluent: CHCl₃/MeOH, 99/1)。TLC: Rf, 0.45 (CHCl₃/MeOH, 19/1)。収量 1.17 g (2.06 mmol, 79 %)。

[0063]

(5) Boc-D-Tyr(Me)-L-Ile-L-Pro-OH の合成

Boc-D-Tyr(Me)-L-Ile-L-Pro-OBzl (595 mg, 1.0 mmol) をメタノール (10 ml) に溶解し、Pd-C (200 mg)を加え、水素雰囲気下で 3 時間攪拌した。Pd-C を濾過し、メタノールを留去し、フォーム状の目的物を得た。収量 380 mg (0.8 mmol, 80%)

[0064]

(6) Boc-D-Tyr(Me)-L-Ile-L-Pro-L-Hly(For, OBzl)-OTmse の合成

水冷下 Boc-L-Hly(For, OBz1)-OTmse (394 mg, 0.8 mmol) に TFA (2 ml) を加え、30 分間放置した。TFA を留去し、減圧乾燥した。これを DMF (2 ml) に溶解し、Boc-D-Tyr(Me)-L-Ile-L-Pro-OH (380 mg, 0.8 mmol) を加え、氷冷下 H OBt・H2O (183 mg, 1.2 mmol)、HBTU (461 mg, 1.2 mmol) および Et₃N (0.23 m

1, 1.6 mmol) を加え 16 時間撹拌した。反応液を濃縮し、酢酸エチルで抽出し、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、フォーム状の目的物を得た(column: Merck Kieselgel 60 Φ3.4x30 cm, eluent: CHCl3/MeOH, 99/1)。TLC: Rf, 0.6 (CHCl3/MeOH, 19/1)。収量 470 mg (0.55 mmol, 69 %)。

[0065]

(7)TFA・H-D-Tyr(Me)-L-Ile-L-Pro-L-Hly(For, OBzl)-OH の合成

Boc-D-Tyr (Me) -L-Ile-L-Pro-L-Hly (For, OBz1) -OTmse (470 mg, 0.55 mmol) をDMF (2 ml) に溶解させ、1 M TBAF/THF (1.9 ml, 1.9 mmol) を加え室温で 2 時間放置した。反応液を濃縮し、酢酸エチルで抽出し、10% クエン酸水溶液、蒸留水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。これに氷冷下 TFA (2 ml) を加え、30 分放置した。TFA 留去後、ジエチルエーテルを加えて白色ふんまつを得た。収量 437 mg (0.55 mmol, 100%)。

[0066]

(8) cyclo(-L-Hly(For, OBzl)-D-Tyr(Me)-L-Ile-L-Pro-) の合成

TFA・H-D-Tyr (Me)-L-Ile-L-Pro-L-Hly (For, OBz1)-OH (437 mg, 0.55 mmol) を DMF (5 ml) に溶解した。DMF (160 ml) 中に上記テトラペプチド/DMF 溶液 (1 ml)、HATU (63 mg, 0.017 mmol) および0.057 M DIEA/DMF 溶液 (1 ml, 0.33 mmol) を加え、室温で 30 分攪拌した。これを 3 回繰り返した後、反応液を濃縮した。酢酸エチルで抽出し、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、白色粉末を得た (column: Merck Kieselgel 60 Φ1.5x30 cm, eluent: CHCl3)。TLC: Rf, 0.55 (CHCl3/MeOH, 19/1)。収量 160 mg (0.24 mmol, 44%)。RP-HPLC retention time: 7.2 min (column: Chromolith performance RP-18e, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 15 min, flow rate: 2 ml/min)。HR-FABMS (matrix: 2, 2'-dithiodiethanol): m/z, 664.3735 [M+H]+ (Calcd., 663.3632, C36 H5007N5)。

[0067]

(9) cyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-L-Pro-) の合成

cyclo(-L-Hly(For, OBzl)-D-Tyr(Me)-L-Ile-L-Pro-) (160 mg, 0.24 mmol) を 酢酸(3 ml) に溶解し、Pd-硫酸バリウム(100 mg)を加え、水素雰囲気下、室温で5時間攪拌した。Pd-硫酸バリウムを濾過し、溶媒を留去し、ジエチルエーテルで結晶化した。収量 68 mg(0.12 mmol, 50%)。RP-HPLC retention time: 6.2 min (column: Chromolith performance RP-18e, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 15 min, flow rate: 2 ml/min)。HR-FABMS(matrix: 2, 2'-dithiodiethanol):m/z, 574.3259 [M+H] + (Calcd., 573.3163, C29H44O7N5)。

[0068]

実施例 5. cyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-D-Pro-) の合成

(1) Boc-L-Ile-D-Pro-OBzl の合成

Boc-L-Ile-OH・1/2 H₂O(1.39 g, 6.0 mmol)および HCl・H-D-Pro-OBzl(956 mg, 4.0 mmol)をDMF(10 ml)に溶解し、氷冷下 HOBt・H₂O(613 mg, 4.0 mmol)、DCC(1.24 g, 6.0 mmol)および Et₃N(0.70 ml, 4.0 mmol)を加え 8 時間 撹拌した。反応液を濃縮し、酢酸エチルで抽出し、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、油状物を得た(column: Merck Kieselgel 60 Φ3.4x30 cm, eluent: CHCl₃/MeOH, 99 1)。TLC: Rf, 0.92(CHCl₃/MeOH, 9/1)。収量 1.63 g(3.38 mmol, 85%)。

[0069]

(2) Boc-D-Tyr(Me)-L-Ile-D-Pro-OBzl の合成

水冷下Boc-L-Ile-D-Pro-OBzl (1.63 g, 3.38 mmol) に TFA (5 ml) を加え、3 0 分間放置した。TFA を留去し、減圧乾燥した。これをDMF (8 ml) に溶解し、B oc-D-Tyr(Me)-OH (1.50 g, 5.07 mmol) を加え、氷冷下 HOBt・H₂O (518 mg, 3.38 mmol), HBTU (1.92 g, 5.07 mmol) および Et₃N (2.37 ml, 16.9 mmol) を加え 3 時間撹拌した。反応液を濃縮し、酢酸エチルで抽出し。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マ

グネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、フォーム状の目的物を得た(column: Merck Kieselgel 60 Φ 3.4x30 cm , eluent: CHCl₃/MeOH, 99/1)。TLC: Rf, 0.89 (CHCl₃/MeOH, 9/1)。収量 1.44 g(2.42 mmol, 72 %)。

[0070]

(3) Boc-D-Tyr(Me)-L-Ile-D-Pro-OH の合成

Boc-D-Tyr (Me) -L-Ile-D-Pro-OBzl (1.44 g, 2.42 mmol) をメタノール (12 ml) に溶解させ、Pd-C (150 mg) を加え、水素雰囲気下、室温で 5 時間攪拌を行った。Pd-C を濾過し、メタノールを留去し、フォーム状の目的物を得た。収量1.21 g (2.4 mmol, 99%)。

[0071]

(4) Boc-D-Tyr(Me)-L-Ile-D-Pro-L-Hly(For, OBzl)-OTmse の合成

水冷下 Boc-L-Hly(For, OBz1)-OTmse (593 mg, 1.2 mmo1) にTFA (5 ml) を加え、30 分間放置した。TFA を留去し、減圧乾燥した。これを DMF (3 ml) に溶解し、Boc-D-Tyr(Me)-L-Ile-D-Pro-OH (660 mg, 1.3 mmo1) を加え、氷冷下 HOB t・H₂O (230 mg, 1.5 mmo1)、HBTU (760 mg, 2.0 mmo1) および Et₃N (0.56 ml, 4.0 mmo1) を加え 16 時間撹拌した。反応液を濃縮し、酢酸エチルで抽出し、1 0% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、フォーム状の目的物を得た(column: Merck Kieselge 1 60 Φ3.4x30 cm, eluent: CHCl₃/MeOH, 99/1)。TLC: Rf, 0.7 (CHCl₃/MeOH, 9/1)。収量 830 mg (0.94 mmo1, 83 %)。

[0072]

(5)TFA・H-D-Tyr(Me)-L-Ile-D-Pro-L-Hly(For, OBzl)-OH の合成

Boc-D-Tyr (Me)-L-Ile-D-Pro-L-Hly (For, OBzl)-OTmse (830 mg, 0.94 mmol) をDMF (2 ml) に溶解し、1 M TBAF/THF (1.9 ml, 1.9 mmol) を加え、室温で 2 時間放置した。反応液を濃縮し、酢酸エチルで抽出し、10% クエン酸水溶液、蒸留水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。これに氷冷下 TFA (2 ml) を加え、30 分放置した。TFA 留去後、ジエチル

エーテルを加えて、白色粉末を得た。収量437 mg (0.78 mmol, 93%)。

[0073]

(6) cyclo(-L-Hly(For, OBzl)-D-Tyr(Me)-L-Ile-D-Pro-) の合成

TFA・H-D-Tyr (Me) -L-Ile-D-Pro-Hly (For, OBz1) -OH (437 mg, 0.78 mmol) を DMF (5 mL) に溶解した。DMF (160 ml) 中に上記テトラペプチド/DMF 溶液 (1 m 1)、HATU (89 mg, 0.23 mmol) および 0.081 M DIEA/DMF 溶液 (1 ml, 0.47 mmo 1) を加え、室温で 30 分攪拌した。同様の操作を 5 回繰り返した後、反応液を 濃縮した。酢酸エチルで抽出し、10% クエン酸水溶液、4% 炭酸水素ナトリウム 水溶液、飽和食塩水でそれぞれ 3 回洗浄した。硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、白色粉末を得た (column: Merck Kieselgel 60 Φ1.5x30 cm, eluent: CHCl3)。TLC: Rf, 0.65 (CHCl /MeOH, 9/1)。収量 340 mg (0.51 mmol, 66%)。RP-HPLC retention time : 8.2 min (column: Chromolith performance RP-18e, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 15min, flow rate: 2 ml/min)。HR-FABMS (mat rix: 2, 2'-dithiodiethanol): m/z, 664.3700 [M+H]+ (Calcd., 663.3632, C3 6H5007N5)。

[0074]

(7) cyclo(-L-Hly(For, OH)-D-Tyr(Me)-L-Ile-D-Pro-) の合成 cyclo(-L-Hly(For, OBz1) -D-Tyr(Me)-L-Ile-D-Pro-) (200 mg, 0.30 mmol) をメタノール (3 ml) に溶解し、Pd-硫酸バリウム (100 mg) を加え、水素雰囲気下、室温で 15 時間攪拌した。Pd-硫酸バリウム触媒を濾過した後、溶媒を留去した。凍結乾燥で白色粉末を得た。収量 119 mg (0.21 mmol, 70%)。RP-HPLC retenrion time: 7.0 min (column: Chromolith performance RP-18e, eluent: CH₃CN 10-100%/0.1% TFA linear gradient over 15min, flow rate: 2 ml/min)。HR-FABMS(matrix: 2, 2'-dithiodiethanol): m/z, 574.3229 [M+H]+ (Calcd., 573.3163, C₂₉H₄40₇N₅)。

[0075]

実施例 6. cyclo(-L-A2oc(For, OH)-D-Tyr(Me)-L-Ile-L-Pip-) およびcyclo(-L-A2oc(For, OH)-D-Tyr(Me)-L-Ile-D-Pip-) の合成

(1) Boc-L-Ab8-OTmse の合成

Boc-L-Ab8-OH (3.37 g, 10 mmol) および Tmse-OH (2.86 ml, 20 mmol) をDCM (5 ml) に溶解させ、氷冷下、DMAP (122 mg, 1.0 mmol) および DCC (2.48 g, 12 mmol) を加え、6 時間攪拌した。反応液を濃縮し、残渣を酢酸エチルで抽出した。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄後、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た(column: Merck Kies elgel 60 Φ3.4×15 cm, eluent: AcOEt/hexane, 1/8)。TLC: Rf, 0.9 (CHC13/MeOH, 9/1)。収量 4.20 mg (9.60 mmol, 96%)。

[0076]

(2) Boc-L-A2oc(For, OBz1)-OTmse の合成

Boc-L-Ab8-OTmse(2.39 g, 5.50 mmol)、ギ酸 0-ベンジルヒドロキシルアミド(1.24 g, 8.2 mmol)、ヨウ化カリウム(456 mg, 2.75 mmol)および炭酸カリウム(3.30 g, 22 mmol)を無水アセトン(110 ml)に溶解し、90℃ で 6日 間還流した。反応液を濾過後、濃縮した。ジエチルエーテルで抽出し、5 N 水酸化ナトリウム水溶液で 1 回、蒸留水で 3 回洗浄した後、炭酸ナトリウムで乾燥後、ジエチルエーテルを留去した。シリカゲルクロマトグラフィーで精製し、油状の目的物を得た(column: Merck Kieselgel 60 Φ3.4x20 cm, eluent: AcOEt/hexa ne, 1/4)。TLC: Rf, 0.5 (CHCl3/MeOH, 49/1)。収量 814 mg(1.60 mmol, 29%)

[0077]

(3) Boc-D-Tyr(Me)-L-Ile-DL-Pip-L-A2oc(For, OBz1)-OTmse の合成 水冷下 Boc-L-A2oc(For, OBz1)-OTmse (487 mg, 0.96 mmol) に TFA (2 ml) を加え、30 分放置した。TFA を留去した後、Boc-D-Tyr(Me)-L-Ile-DL-Pip-OH (841 mg, 1.61 mmol) および HOBt・H2O (230 mg, 1.50 mmol) を加え、DMF (2 m 1) に溶解した。氷冷下 HBTU (569 mg, 1.50 mmol) および Et₃N (0.60 ml, 4.3 0 mmol) を加え、1 時間攪拌した。反応液を濃縮し、残渣を酢酸エチルで抽出し た。10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれ ぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカ

ゲルクロマトグラフィーで精製し、フォーム状の目的物を得た (column: Merck Kieselgel 60 Φ2.4x13 cm, eluent: CHCl3/MeOH, 99/1)。TLC: Rf, 0.65 (CHC l3/MeOH, 9/1)。収量 213 mg (0.23 mmol, 24%)。

[0078]

(4) TFA・H-D-Tyr(Me)-L-Ile-DL-Pip-L-A2oc(For, OBz1)-OH の合成

Boc-D-Tyr (Me) -L-Ile-DL-Pip-L-A2oc (For, OBz1) -OTmse (213 mg, 0.23 mmol) を DMF (0.5 ml) に溶解させ、1 M TBAF/THF (0.5 ml, 0.5 mmol) を加え、室温で 30 分放置した。反応液を濃縮後、酢酸エチルで抽出した。10% クエン酸水溶液および蒸留水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。残った油状物に、氷冷下 TFA (2 ml) を加え、30 分放置した。TFA を留去後、ジエチルエーテルおよび石油エーテルを加え、白色粉末を得た。収量 186 mg (0.23 mmol, 100%)。

[0079]

(5) cyclo(-L-A2oc(For, OBzl)-D-Tyr(Me)-L-Ile-DL-Pip-) の合成

TFA・H-D-Tyr (Me)-L-Ile-DL-Pip-L-A2oc (For, OBz1)-OH (261 mg, 0.32 mmol) を DMF (3 ml) に溶解した。DMF (200 ml) 中に、上記テトラペプチド/DMF 溶液 (1 ml)、HATU (44 mg, 0.12 mmol) および0.053 M DIEA/DMF 溶液 (1 ml)を 加え、室温で 40 分間攪拌した。これを 3 回繰り返した後、反応液を濃縮した。酢酸エチルで抽出し、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液、飽和食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。シリカゲルクロマトグラフィーで精製し、フォーム状の目的物を得た (column: Merck Kieselgel 60 Φ1.5x35 cm, eluent: CHCl3/MeOH, 99/1)。 収量 47 mg (0.068 mmol, 21%)。 LDLL-体: TLC: Rf, 0.6 (CHCl3/MeOH, 9/1)、RP-HPLC retention time: 24.02 min (column: WakoPak C18 Φ4.6x150 mm, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。 LDLD-体: TLC: Rf, 0.65 (CHCl3/MeOH, 9/1)、RP-HPLC retention time: 26.56 min (column: WakoPak C18 Φ4.6x150 mm, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。

[0080]

(6) cyclo(-L-A2oc(For, OH)-D-Tyr(Me)-L-Ile-L-Pip-) およびcyclo(-L-A2oc(For, OH)-D-Tyr(Me)-L-Ile-D-Pip-) の合成

cyclo(-L-A2oc(For, OBzl)-D-Tyr(Me)-L-Ile-DL-Pip-) (47 mg, 0.068 mmol) を酢酸 (1 ml) に溶解した。Pd-C (100 mg) を加え、水素雰囲気下、室温で 1 時間攪拌した。Pd-C を濾過し、酢酸を留去した。HPLC 分取により、ジアステレオマー (LDLL-体およびLDLD-体) の分離、精製を行った。凍結乾燥により、それぞれ白色の粉末を得た (column: YMC-Pack C8 Φ10x250 mm, eluent: CH3CN 44-53%/0.1% TFA linear gradient over 20 min, flow rate: 3 ml/min)。 LDLL-体:収量 10 mg (0.017 mmol, 25%)、RP-HPLC retention time: 20.14 min (column: Wako Pak C18 Φ4.6x150 mm, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。 HR-FABMS (matrix: 2, 2'-dithiodiethanol): m/z, 602.3521 [M+H]+ (Calcd., 601.3476, C31H4707N5)。 LDLD-体:収量 6 mg (0.010 mmol, 15%)、RP-HPLC retention time: 22.43 min (column: WakoPak C18 Φ4.6x150 mm, eluent: CH3CN 10-100%/0.1% TFA linear gradient over 30 min, flow rate: 1 ml/min)。 HR-FABMS (matrix: 2, 2'-dithiodiethanol): m/z, 602.3526 [M+H]+ (Calcd., 601.3476, C31H4707N5)。

[0081]

実施例 7. cyclo(-L-Am6(Tfacet)-D-Tyr(Me)-L-Ile-D-Pro-) の合成

(1) Boc-L-Ab6-OBzl の合成

Boc-L-Ab6-OH (622 mg, 2.0 mmol) およびベンジルアルコール (0.26 ml, 2.4 mmol) をDCM (8 ml) に溶解させ、氷冷下で DMAP (24 mg, 0.2 mmol) および D CC (453 mg, 2.2 mmol) を加え一夜撹拌した。DCM を留去し、残渣に酢酸エチルを加え、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。真空乾燥後、フラッシュクロマトグラフィー (column: Merck Kieselgel 60 Φ2.5x15 cm, eluent: CHCl₃/MeOH, 99/1) で精製し、フォームを得た。収量 626 mg (1.6 mmol, 78 %)。TLC: Rf, 0.94 (CHCl₃/MeOH, 9/1)。

[0082]

(2) Boc-D-Tyr(Me)-L-Ile-D-Pro-L-Ab6-OBzl の合成

Boc-L-Ab6-OBz1 (626 mg, 1.6 mmol) に氷冷下 TFA (2 ml) を加え、30 分間 0℃ で放置し、Boc 基を除去した。TFA 留去後、減圧下乾燥し H-L-Ab6-OBz1・T FA の油状物を得た。これに Boc-D-Tyr (Me)-L-Ile-D-Pro-OH (870 mg, 1.7 mmol) を DMF (3 ml) に溶解し、氷冷下で HATU (712 mg, 1.9 mmol)、および Et₃N (0.7 ml, 4.8 mmol) を加え 3 時間攪拌した。DMF を留去し、残渣に酢酸エチルを加え、10% クエン酸水溶液、4% 炭酸水素ナトリウム水溶液でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥後、酢酸エチルを留去した。真空乾燥後、フラッシュクロマトグラフィー (column: Merck Kieselgel 60 Φ2.5x20 cm, eluen t: CHCl₃/MeOH, 99/1) で精製し、フォームを得た。収量 1.1 g (1.4 mmol, 89 %)。TLC: Rf, 0.92 (CHCl₃/MeOH, 9/1)。

[0083]

(3) Boc-D-Tyr(Me)-L-Ile-D-Pro-L-Ab6-OH の合成

Boc-D-Tyr (Me) -L-Ile-D-Pro-L-Ab6-OBzl (1.1 g, 1.4 mmol) をメタノールに 溶解し、5% Pd-C (80 mg) を加えて H₂ ガスと 6 時間反応させた。メタノール を留去し、真空乾燥してフォームを得た。収量 925 mg (1.3 mmol, 96 %)。TLC: Rf, 0.52 (CHCl₃/MeOH, 9/1)。

[0084]

(4) cyclo(-L-Ab6-D-Tyr(Me)-L-Ile-D-Pro-) の合成

Boc-D-Tyr (Me) -L-I1e-D-Pro-L-Ab6-OH (925 mg, 1.3 mmol) に氷冷下 TFA (3 mL) を加え、30 分間 0℃ で放置し Boc 基を除去した。TFA を留去し、エーテルー石油エーテルを加えて白色粉末を得た。H-D-Tyr (Me) -L-I1e-D-Pro-L-Ab6-OH・TFA , HBTU(759 mg, 2.0 mmol), HOBt (306 mg, 2.0 mmol) および DIEA (1.46 ml) を 5 分割して 30 分毎に DMF (240 ml) に加えて、環化反応を行った。 2 時間後溶媒を留去して残渣を酢酸エチルに取り、10% クエン酸水溶液、4%炭酸水素ナトリウム水溶液、および食塩水で 3 回洗い、硫酸マグネシウムで乾燥した。酢酸エチルを留去し、残った油状物をシリカゲルカラムで精製して、フォームを得た。収量 267 mg (0.43 mmol, 32%)。TLC: Rf, 0.82 (CHCl3/MeOH, 9 /1)。RP-HPLC retention time, 9.04 min. HR-FABMS (matrix: 2, 2' -dithiodiethanol): m/z, 579.2197 [M+H]+, (Calcd., 578.2132, C27H4005N4S⁷⁹Br)。

[0085]

(5) cyclo(-L-Am6(Ac)-D-Tyr(Me)-L-Ile-D-Pro-) の合成

cyclo(-L-Ab6-D-Tyr(Me)-L-Ile-D-Pro-) (230 mg, 0.40 mmol)、およびチオ酢酸カリウム (69 mg, 0.60 mmol) のDMF (1.0 ml) 溶液にを加えて 3 時間反応させた。DMF を留去し、残渣を酢酸エチルに抽出し、10% クエン酸水溶液および飽和食塩水でそれぞれ 3 回洗い、硫酸マグネシウムで乾燥した。酢酸エチルを留去し、フォームを得た。収量 230 mg (>100 %)。TLC: Rf, 0.82 (CHCl₃/MeOH, 9/1)。

[0086]

(6) cyclo(-L-Am6(Tfacet)-D-Tyr(Me)-L-Ile-D-Pro-) の合成

cyclo(-L-Am6(Ac)-D-Tyr(Me)-L-Ile-D-Pro-) (114 mg, 0.20 mmol) のDMF (1 ml) 溶液にメタノール性アンモニア (1.0 ml) を作用させてアセチル基を除去した。溶媒留去後DMF (1.5 ml) に溶かし、3-Bromo-1.1.1-trifluoroacetone (0.0 62 ml, 0.60 mmol) および Et₃N (0.085 ml, 0.60 mmol) を加え、一夜反応させた。DMFを留去し、残渣を酢酸エチルに抽出し、10% クエン酸水溶液および食塩水でそれぞれ 3 回洗浄し、硫酸マグネシウムで乾燥した。酢酸エチルを留去して残った油状物をHPLCで精製し、白色粉末15 mg (12%)を得た。HR-FABMS (matrix: 2, 2'-dithiodiethanol): m/z, 643.2768 [M+H]+, (Calcd., 642.2707, C3 0H4206N4F3S)。

[0087]

実施例8. cyclo(-L-Tfm-D-Tyr(Me)-L-Ile-D-Pro-) の合成

(1) cyclo(-L-Asu(0-・Li+)-D-Tyr(Me)-L-Ile-D-Pro-) の合成

cyclo(-L-Asu(OBzl)-D-Tyr(Me)-L-Ile-D-Pro-) (410 mg, 0.63 mmol) をLiOH (53 mg, 1.2 mmol) と共にTHF (2 mL) および水 (2 ml) に溶解し、氷温で一夜 撹拌した。溶媒を留去し、エーテルを加えて固化した。収量 355 mg (100%)。HP LC: 9.7 min (Chromolith, 10-100% CH₃CN gradient containing 0.1% TFA over 15 min)。

[0088]

(2) cyclo(-L-Tfm-D-Tyr(Me)-L-Ile-D-Pro-) の合成:

cyclo(-L-Asu(0-・Li+)-D-Tyr(Me)-L-Ile-D-Pro-) (355 mg, 0.63 mmol) を C H₂Cl₂ (10 ml) に溶解し、氷温で (CF₃CO)₂O (0.6 ml, 3.8 mmol) を加え、次いでピリジン (0.41 ml, 5 mmol) を加えて室温で 4 時間撹拌した。反応液に水 (10 ml) を加えて振った後、目的化合物を CH₂Cl₂ に抽出した。有機層を硫酸マグネシウムで乾燥後留去し、残渣から目的化合物を HPLC で分離精製した。収量 155 mg (40%)。HPLC: 8.0 min (Chromolith, 10-100% CH₃CN gradient contain ing 0.1% TFA over 15 min)。HR-FABMS (matrix: 2, 2' -dithiodiethanol): m/z, 611.3041 [M+H]+ (Calcd., 610.2966, C₃₀H₄₂O₆N₄F₃)。

[0089]

実施例 9. cyclo(-L-Pfe-D-Tyr(Me)-L-Ile-D-Pro-) の合成

cyclo(-L-Asu(0-・Li⁺)-D-Tyr(Me)-L-Ile-D-Pro-) (355 mg, 0.63 mmol) をCH 2Cl₂ (10 ml) に溶解し、水温で (CF₃CF₂CO)₂O (0.75 ml, 3.8 mmol) を加え、 次いでピリジン (0.41 ml, 5 mmol) を加えて室温で 4 時間撹拌した。反応液に水 (10 ml) を加えて振った後、目的化合物をCH₂Cl₂に抽出した。有機層を硫酸マグネシウムで乾燥後留去し、残渣から目的化合物を HPLC で分離精製した。 収量 16 mg (5%)。HPLC: 8.8 min (hydrate) and 10.5 (keto) (Chromolith, 10-100% CH₃CN gradient containing 0.1% TFA over 15 min)。HR-FABMS (matrix: 2, 2'-dithiodiethanol): m/z, 661.3050 [M+H]+ (Calcd., 660.2955, C₃₁H₄₂F₅O₆N₄)。

[0090]

実施例10. cyclo(-L-Aph-D-Tyr(Me)-L-Ile-D-Pro-)の合成

(1) Boc-L-Aph-OTmse の合成

Boc-L-Ab7-OTmse (425 mg, 1 mmol) のアセトニトリル (2 ml) 溶液に、 NaI (150 mg, 1 mmol) および P(OMe)₃ (500 mg, 4 mmol) を加え 70℃ で 20 時間 攪拌した。アセトニトリルを留去し、残渣を酢酸エチルに抽出して水洗し、硫酸マグネシウムで乾燥後、酢酸エチルを留去して Boc-L-Aph-OTmse (440 mg, 98%)を得た。FABMS (matrix: 2, 2'-dithiodiethanol): m/z, 354 [M+H]+。

[0091]

(2) Boc-L-Aph-OH の合成

Boc-L-Aph-OTmse (440 mg, 1 mmol) のDMF (1 ml) 溶液に、1 M TBAF/THF (2 ml)を加え、2 時間室温で攪拌した。DMF を留去した後残渣を酢酸エチルに溶解し、10% クエン酸水溶液および食塩水で洗浄し、硫酸マグネシウムで乾燥した。酢酸エチルを留去して Boc-L-Aph-OH (250 mg, 0.71 mmol, 70%) を得た。

[0092]

(3) Boc-L-Aph-D-Tyr(Me)-L-Ile-D-Pro-OBzl の合成

Boc-D-Tyr (Me) -L-Ile-D-Pro-OBzl (416 mg, 0.7 mmol) をTFA (3 ml) で 30 分処理し、TFA を留去して TFA・H-D-Tyr (Me) -L-Ile-D-Pro-OBzl を得た。これに Boc-L-Aph-OH (250 mg, 0.71 mmol) の DMF (3 ml) 溶液、HBTU (400 mg, 1.05 mmol)、 HOBt 107 mg, 0.7 mmol) および Et₃N (0.5 ml, 3.5 mmol) を加えて0℃ で終夜攪拌した。DMFを留去した後、残渣を酢酸エチルに抽出し、10% クエン酸水溶液、4% NaHCO3水溶液、および飽和食塩水でそれぞれ 3 回洗浄した後、硫酸マグネシウムで乾燥した。酢酸エチルを留去し、カラムクロマトグラフィーで精製して、Boc-L-Aph-D-Tyr (Me) -L-Ile-D-Pro-OBzl (200 mg, 0.24 mmol, 35%) を得た。MALDI-TOFMS: m/z, 854 [M+Na]+。

[0093]

(4) cyclo(-L-Aph-D-Tyr(Me)-L-Ile-D-Pro-) の合成

Boc-L-Aph-D-Tyr (Me)-L-Ile-D-Pro-OBz1 (200 mg, 0.24 mmol) をメタノール中 5% Pd/C (50 mg) 存在下水素添加し、Boc-L-Aph-D-Tyr (Me)-L-Ile-D-Pro-OH (160 mg, 0.22 mmol, 92%) を得た。Boc 基を氷冷下 30 分の TFA (2 ml) 処理で除去し、ついで TFA を留去後、エーテルによって固化した。得られたテトラペプチド TFA塩 (140 mg, 0.20 mmol)の DMF (75 ml) 溶液に、HATU (114 mg, 0.3 mmol) および DIEA (0.12 ml, 0.7 mmol) を加え室温で攪拌した。3 時間後、減圧下 DMF を留去し、残渣を酢酸エチルに抽出し、10% クエン酸水溶液、4% NaHCO3水溶液、および飽和食塩水でそれぞれ 3 回洗浄した後硫酸マグネシウムで乾燥した。酢酸エチルを留去し、残った油状物をカラムクロマトグラフィーで精製し、目的物 (15 mg, 0.024 mmol, 11%) を得た。HPLC retention time, 7.0 min (Chromolith, 10-100% CH3CN gradient containing 0.1% TFA over 15 min)。HR-FABMS (matrix: 2, 2' -dithiodiethanol): m/z, 623.3177 [M+H]+ (Calc

d, 623.3210, $C_{30}H_{47}O_{8}N_{4}P)_{\circ}$

[0094]

実施例11. HDAC酵素阻害活性の測定

本実施例では様々な官能基を置換基Xに有する環状テトラペプチド構造の化合物であるN(OH)COH(n=4), N(OH)COH(n=5), N(OH)COH(n=6), COOH, COOMe, COOBzl, Tfk, Pfek, Mtfk, Stfk, SMe, SO₂Me, Aphの酵素阻害活性の測定を行った。

[0095]

活性を測定した化合物の構造の一覧を図 1 に示す。天然のHDAC阻害剤である図 2 に示すようなCyl-1, Cyl-2 (Furumai et al. (2001) Proc. Natl. Acad. Sci. USA, 98, 87-92.) を元に環状テトラペプチド構造のコンフォメーション及び活性基までの炭素鎖数を検討した。天然のCyl-1, Cyl-2は立体コンフォメーションがLDLL体であるが、本実施例ではLDLL体およびLDLDのコンフォメーションを持つものについても検討した。

[0096]

HDAC阻害活性測定を行うにあたり、次の通りHDAC溶液を調製した。100mmディッシュに1×107個の293T細胞をまき、24時間後にヒトHDAC1、4またはマウスHDAC6を発現するベクター(1μg)をLipofectAmine 2000 reagent (Life Technologies, Inc. Gaithersburg, MD)を用いてトランスフェクションした。なお、上記ヒトHDAC1発現ベクターはpcDNA3ーHD1 (Yang, W. M., Yao, Y. L., Sun, J. M., Davie, J. R. & Seto, E. (1997) J. Bio 1. Chem. 272, 28001–28007.)、ヒトHDAC4発現ベクターはpcDNA3.1 (+)ーHD4 (Fischle, W., Emiliani, S., Hendzel, M. J., Nagase, T., Nomura, N., Voelter, W. & Verdin, E. (1999) J. Biol. Chem. 274, 11713–11720.)、マウスHDAC6発現ベクターはpcDNAーmHDA2/HDAC6 (Verdel, A. & Khochbin, S. (1999) J. Biol. Chem. 274, 2440–2445.)を用いた。

[0097]

OPTI-MEM中で5時間ベクターを取り込ませた後、Dulbecco's modifie d Eagle's medium (DMEM) に培地を交換して19時間インキュベートした。細

胞をPBSで洗った後、lysis buffer(50mM Tris-HCl (pH7.5), 120mM NaCl, 5mM EDTA, 0.5% Nonidet P-40) に懸濁し、ソニケーションした。上清を遠心分離により集め、ProteinA/G plus agarose beads(Santa Cruz Biotechnologies, Inc.)を用いて、非特異的タンパクを除いた。その後、HDACl、HDAClを発現させた細胞上清には、anti-FLAG M2抗体(Sigma-Aldrich Inc.)を加え、HDAC6を発現させた細胞上清にはanti-HA抗体(clone 3F10, Roche Molecular Bioche micals)を加えて4℃で1時間反応させた。

[0098]

これにアガロースビーズを加えて4 \mathbb{C} で1時間反応させた後、lysis bufferでアガロースビーズを3回洗い、HD buffer($20\,\mathrm{mM}$ Tris $-\mathrm{HCl}$ (pH 8.0), $150\,\mathrm{mM}$ NaCl, 10%グリセロール, a complete protease i nhibitor cocktail (Boehringer Mannheim, Germany))で1回洗った。HD buffer($200\,\mu$ l)中FLAGペプチド($40\,\mu$ g)(Sigma-Aldrich Inc.)またはHAペプチド($100\,\mu$ g)で $4\,\mathbb{C}$ 、1時間インキュベートしてアガロースビーズから結合したタンパクを回収し、HDAC反応溶液とし、以下のHDAC阻害活性測定に用いた。

[0099]

In vitro系のHDAC阻害活性を以下のように評価した。被験化合物をDMS Oに溶解して、濃度 $10\,\mathrm{mM}$ の原溶液を調製し、これを阻害剤の原溶液とした。アッセイは被験化合物存在下HDAC溶液とクマリンで標識したアセチル化ヒストンペプチド溶液を $37\,\mathrm{C}$ で $30\,\mathrm{分間}$ インキュベートすることで行った(反応容積 $20\,\mu$ 1)。反応液にを $30\,\mu$ 1のトリプシンを添加して、酵素反応で切り放されたアミノメチルクマリンを蛍光プレートリーダーで測定した。なお陰性コントロールとして、阻害剤を反応系に添加せず、同じ操作を行った。阻害活性は、陰性コントロールにおけるHDAC活性の $50\,\mathrm{MB}$ 10に表度(「IC50 (nM)」)で表した(表1)。

[0100]

また、in vivo系のHDAC阻害活性はp21プロモーター誘導活性を指標に次の通り

測定した。実験に用いたMFLL-9細胞はヒト野生型p21プロモーターとルシフェラーゼの融合遺伝子(Dr. B. Vogelstaein)を安定に保持した細胞であり、10%FBSを添加したフェノールレッド不含DMEM培地を用い、37℃、5%二酸化炭素存在下、水蒸気飽和したインキュベーターを用いて培養を行った。このMFLL-9細胞を85000個/wellの細胞密度で96穴マイクロプレートに播種し、各well当たり上記の培地99 μ l中で、6時間培養した後、被験化合物溶液 1μ lを添加し、引き続き18時間培養した。また、ここでもTSAをHDAC阻害活性に起因するp21プロモーター誘導活性の陽性コントロール化合物とした。

[0101]

Luc Lite (Packard BioScsience Company) を用い、細胞内に発現しているルシフェラーゼの酵素反応の生成物に起因する発光強度を測定した。なお、被験化合物の添加量を零とした群を陰性コントロール群とし、この群における測定値を基準値とした。各被験化合物の添加濃度における活性は、前記の基準値を1とする相対値で表した。被験化合物の活性強度はTSAによる最大活性値の50%の値を示す時の濃度(「 EC_{50} (nM)」)を用いて比較した(表1)。

[0102]

【表1】

Χ		IC50 (μM)	F	21 プロモータ	
	HDAC1	HDAC4	HDAC6	EC50 (μM)	構造
					Cyclo(X-y(Me)-1-pip
N (OH) COH	33. 9	25. 2	14. 3	>100	
					Cyclo(X-y(Me)-1-Pip
№ (ОН) СОН	23. 9	17.5	8. 19	>100	n=4
					Cyclo(X-y(Me)-I-pip
N (OH) COH	0.067	0. 13	0. 18	3. 73	•
					Cyclo(X-y(Me)-I-pip
N (OH) COH	6. 36	7. 02	12. 2	>100	• •
					Cyclo(X-y(Me)-1-Pip
N (OH) COH	13. 5	18.9	11. 2	>100	n=6
					Cyclo(X-y(Me)-1-p)
N (OH) COH	0. 026	0. 074	0. 78	5. 42	n=5
					Cyclo(X-y(Me)-I-P)
N (OH) COH	0. 033	0. 090	0. 029	61. 1	n=5
					Cyclo(X-y(Me)-I-p)
COOH	4. 07	5. 69	>500	>100	n=5
					Cyclo(X-y(Me)-I-p)
COOMe	0. 12	0. 07	>500	3. 95	n=5
					Cyclo(X-y(Me)-i-p)
COOBz I	NT	NT	NT	>100	n=5
					Cyclo(X-y(Me)-1-p)
Tfk	0. 73	0. 61	1. 44	3. 09	n=5
					Cyclo(X-y(Me)-I-p),
Pfek	0. 85	1. 22	5. 72	>100	n=5
					Cyclo(X-y(Me)-I-p),
Mtfk	0. 047	0. 19	0. 95	6. 64	n=5
					Cyclo(X-y(Me)-I-p),
Stfk	>500	NT	NT	>100	n=5
					Cyclo(X-y(Me)-I-p)
SMe	>500	>500	>500	>100	n=5
					Cyclo(X-y(Me)-I-p),
SO₂Me	>500	>500	>500	>100	n=5
					Cyclo(X-y(Me)-I-p),
Aph	>500	>500	>500	>100	n=5
TSA	0. 022	0.020	0. 028	0. 77	

[0103]

表中y(Me)はD-Tyr(Me), Tyr(Me)は0-methyltyrosine, IはL-Ile, pipはD-pipe colic acid, PipはL-pipecolic acidを示す(アミノ酸は一文字表記で示しており、大文字はL体アミノ酸、小文字はD体アミノ酸を示す)。また、NTはテストしていないことを示す。

[0104]

以上の結果より、X部位の構造が違うと各酵素サブタイプに対する阻害活性が大きく異なるという、酵素サブタイプ選択的な阻害活性を持つことが示された。

[0105]

本発明の化合物はHDAC1,4および6に対して強い阻害活性を示した。環状テトラペプチド構造を有する化合物はHDAC6を阻害することができないとされてきたが、本発明のようにテトラペプチド骨格の構造を変化させることでHDAC6に対しても阻害能を持たせることが可能となった。また、X部位の構造が違うと各酵素サブタイプに対する阻害活性が大きく異なり、本発明の化合物が酵素サブタイプ選択的な阻害活性を持つことが示された。

[0106]

本発明の化合物の製造方法によりテトラペプチド骨格の構造を容易に変えることで、化合物の標的酵素に対する選択性を容易に変化させることが出来ると期待される。

[0107]

実施例12. 細胞レベルでのHDAC阻害活性の測定

チューブリンおよびヒストンのアセチル化レベルの測定は、HeLa細胞に対して被験化合物を作用させ、抗アセチル化リジン抗体を使用してチューブリンおよびヒストンのアセチル化レベルをウェスタンで確認することにより行った。詳細には、ヒト子宮がん細胞(HeLa)は10%FBSを添加したDMEM培地を用い、37%、5%二酸化炭素存在下、水蒸気飽和したインキュベーターを用いて培養を行った。この細胞を15000個/mlの細胞密度で6穴プレートに2 ml播種し、18時間培養した後、被験化合物溶液を添加し、引き続き6時間培養した。細胞をPBSで洗った後、1 ysis buffer(50 mM Tris-HCl(pH7.5)、120 mM NaC

1、5 mM EDTA、0.5% Nonidet P-40) に懸濁し、ソニケーションした。上清を遠心分離により集め、SDS bufferと混合し、100℃で5分間処理したサンプルを15%SDSゲルで電気泳動後、メンブレンフィルムにトランスファーした。1次抗体としてAKL5C1(ジャパンエナジー)、2次抗体:anti-マウス(LIFE SCIENCE)で処理後ECL(amersham pharmacia biotech)処理し、アセチル化バンドの検出を行った(図 3)。なお、図 3 において記載している化合物の濃度の単位は μ Mである。

[0108]

図3に示す通り、p21プロモーター誘導活性測定の結果(EC50)と一致した阻害傾向が示された。また、TfkおよびN(OH)COH(n=5)は細胞内でチューブリン脱アセチル化酵素を阻害し、チューブリンの高度なアセチル化を誘導した。このような酵素選択性は他の環状テトラペプチド構造を有するNDAC阻害剤にはなかった性質である。

[0109]

実施例13. 細胞毒性テスト

Tfk, Pfek, MtfkおよびAphの細胞毒性テストをヒト肺正常細胞(TIG-3)、ヒト子宮がん細胞(HeLa)を用いて行った。これらTIG-3細胞、HeLa細胞を10%FBSを添加したDMEM培地を用い、37℃、5%二酸化炭素存在下、水蒸気飽和したインキュベーターを用いて培養を行った。TIG-3は15000個/well、HeLaは5000個/wellの細胞密度で96穴マイクロプレートに播種し、各well当たり上記の培地100μl中で18時間培養した後、培地に希釈した被験化合物溶液を添加し、引き続き48時間培養した。

[0110]

各wellにCell Proliferation Kit II (XTT) (ロシュ・ダイアグノスティックス)の基質混合溶液を 50μ lずつ入れ、十分時間インキュベートして呈色反応をさせた。十分な呈色反応が進んだら、0D495 nmの発色強度をマイクロプレートリーダーで測定した。阻害活性は、遊離XTT率50 %となるときの濃度を IC_{50} として示した。なお、がん細胞選択的細胞傷害活性の値(正常細胞TIG IC_{50} / がん細胞HeLa IC_{50}) が高いほど、がん細胞選択的に細胞死を誘導していることを示す。

[0111]

【表2】

	IC ₅₀ (nM) がん糸		がん細胞選択的
抑制剤	HeLa	TIG-3	細胞傷害活性
TSA	12. 3	151	12. 3
Tfk	8. 8	87. 1	9. 9
Pfek	616	13443	21. 8
Mtfk	52. 5	468	8. 9
Aph	>50000	>50000	
[0112]			

上記表 2 に示されている通り、本発明における化合物はTSAとほぼ同程度のが ん細胞選択的に強い細胞傷害活性を有することが示された。

[0113]

【発明の効果】

本発明の化合物は、様々なサブタイプのHDACに対して強い阻害活性を示す。本発明の化合物は、HDAC1,4 および6 に関与している疾患の治療または予防のための薬剤として、利用し得る。また、本発明の化合物の製造方法により、種々のタイプの化合物を簡便に合成することができる。そのため、本発明の製造方法を用いることにより、テトラペプチド骨格の構造を様々な様態に変化させ、化合物の標的酵素に対する選択性を容易に変化させることが出来る。すなわち、本発明の化合物の製造方法は、新たな性質を持ったHDAC阻害剤などの開発に寄与することが期待される。

【図面の簡単な説明】

- 【図1】一般式(1)の化合物における置換基Xの代表的な例および本実施例で用いた化合物の構造を示した図である。
 - 【図2】天然のCyl-1、Cyl-2は立体コンフォメーションを示す図である。
- 【図3】細胞内でのチューブリン及びヒストンアセチル化レベルを、抗アセチル化リジン抗体を用いたウェスタンにより測定した結果を示す写真である。図中R4, R5, R6は各々N(OH)COH(n=4), N(OH)COH(n=5), N(OH)COH(n=6)を示す。

【書類名】

図面

【図1】

$$R_{42}$$
 R_{42}
 R_{41}
 R_{11}
 R_{31}
 R_{21}
 R_{22}
 R_{23}

[図2]

【図3】

【書類名】 要約書

【要約】

【課題】 環状テトラペプチド構造を備えた新規なHDAC阻害剤を提供する。

【解決手段】 一般式(1)で示されるHDAC阻害剤は、様々なサブタイプのHDACに対して強い阻害活性を示す。本発明の化合物は、HDAC1, 4および6に関与している疾患の治療または予防のための薬剤として有用となる。

また、本発明の化合物の製造方法は、種々のタイプの化合物を簡便に合成することができ、新たな性質を持ったHDAC阻害剤などの開発に寄与することが期待される。

【化1】

$$R_{42}$$
 R_{42}
 R_{41}
 R_{11}
 R_{31}
 R_{21}
 R_{22}
 R_{23}
 R_{23}
 R_{21}
 R_{22}
 R_{23}
 R_{32}

【選択図】 なし

1/E

ページ:

【書類名】 出願人名義変更届(一般承継)

 【提出日】
 平成15年12月 1日

 【あて先】
 特許庁長官殿

【事件の表示】

【出願番号】

特願2003-177298

【承継人】

【識別番号】 503359821

【住所又は居所】 埼玉県和光市広沢2番1号 【氏名又は名称】 独立行政法人理化学研究所

【承継人代理人】

【識別番号】 《弁理士》

100075812

【氏名又は名称】

吉武 賢次

【提出物件の目録】

【物件名】

権利の承継を証明する書面 1

【援用の表示】 平成15年11月20日提出の特許第1575167号外98件

にかかる一般承継による特許権の移転登録申請書 登記簿謄本 1

【物件名】

【援用の表示】

平成15年11月20日提出の特許第1575167号外98件

にかかる一般承継による特許権の移転登録申請書

【物件名】 委任状 1

【物件名】

委任状

委 任 状

私は、

識別番号 100075812 弁理士 吉 武 賢 次 氏 を代理人と定めて下記事項を委任する。

9545

- 1. 別紙目録に記載の特許出願に関する出願人名義変更届をする件
- 2. 上記各項の手続を処理するため復代理人を選任及び解任する件

以上

平成 / 5 年 // 月 / 9 日

住所又は居所

埼玉県和光市広沢2番1-

氏名又は名称

独立行政法人 理化类磁

代 表 者

班事長 野 份 良

目録(1)

```
1.
   特顧昭63-235737
                          51.
                             特願平07~327372
2.
   特願平05-044143
                          52.
                             特願平08-000652
3.
   特願平05-127257
                          53.
                             特願平08-026368
4.
   特願平05-127258
                          54.
                             特願平08-030850
5.
   特願平05-213675
                          55.
                             特顯平08-041279
6.
   特願平05-306164
                          56.
                             特願平08-045903
7.
   特願平05-328611
                          57.
                             特顯平08-051604
8.
   特願平05-336746
                          58.
                             特願平08-065715
9.
   特願平06-035100
                          59.
                             特願平08-070071
10.
   特願平06-061792
                          60.
                             特願平08-105667
11.
   特願平06-061793
                          61.
                             特願平08-107784
12.
   特願平06-069150
                          62.
                             特願平08-116473
13.
   特願平06-097098
                          63.
                             特願平08-123475
14.
   特願平06-111624
                          64.
                             特願平08-127005
15.
   特願平06-121100
                          65.
                             特願平08-131746
16.
   特願平06-145908
                          66.
                             特顯平08-132846
17.
   特願平06-158670
                             特願平08-132854
                          67.
18.
   特顯平06-158671
                          68.
                             特願平08-142676
19.
   特願平06-165751
                          69.
                             特願平08-158078
20.
   特願平06-165752
                          70.
                             特顯平08-167401
21.
   特願平06-181857
                          71.
                             特願平08-196331
22.
   特願平06-235742
                          72.
                             特願平08-197050
23.
   特願平06-238603
                          73.
                             特願平08-197051
24.
   特願平06-244764
                             特願平08-211946
                          74.
25.
   特願平06-248486
                          75.
                             特願平08-216506
26.
   特願平06-252942
                          76.
                             特願平08-216508
27.
   特願平06-268723
                          77.
                             特願平08-222352
28.
   特願平06-293933
                          78.
                             特願平08-231066
29.
   特願平06-301372
                          79.
                             特願平08-233442
30.
   特願平06-323795
                          80.
                             特顯平08-236685
31.
   特願平06-324490
                          81.
                             特顯平08-251410
   特願平06-507966(7飛2002-12420)82.
32.
                             特願平08-262051
33.
   特願平07-007185
                          83.
                             特願平08-302896
34.
   特顯平07-069255
                          84.
                             特願平08-308335
35:
   特願平07-082880
                             特顯平08-308336
                          85.
36.
   特顧平07-083142
                          86.
                             特願平0B-311467
37.
   特願平07-117933
                          87.
                             特願平08-315093
   特願平07-133487
38.
                          88.
                             特顧平08-317622
39.
   特願平07-205141
                          89.
                             特顯平08-320241
40.
   特願平07-214659
                          90.
                             特顯平08-506395
41.
   特願平07-217276
                          91.
                             特願平09-002295
42.
   特願平07-236185
                          92.
                             特願平0.9-010602
43.
   特願平07-240684
                          93.
                             特願平09-019968
44.
   特願平07-249244
                         94.
                             特顧平09-019969
45.
   特顯平07-259922
                          95.
                             特顧平09-019971
46.
   特願平07-282716
                         96.
                             特願平09-024890
47.
   特願平07-302793
                         97.
                             特願平09-028982
48.
   特願平07-306004
                         98.
                             特願平09-046824
49.
   特願平07-311711
                         99.
                             特願平09-049254
   特顯平07-311715
                         100.
                             特願平09-053478
```


目録(2)

101.	特願平09-054595	151. 特願平10-045434
102.	特願平09-056654	152. 特願平10-049499
103.	特願平09-057342	153. 特願平10-049867
104.	特願平09-058774	154. 特願平10-051489
105.	特願平09-067611	155. 特願平10-051490
106.	特願平09-074394	156. 特願平10-051491
107.	特願平09-080480	157. 特願平10-051492
108.	特願平09-082965	158. 特願平10-051493
109.	特願平09-091523	159. 特顯平10-060740
110.	特願平09-091591	160. 特願平10-060741
111.	特願平09-091694	161. 特顯平10-061895
112,	特願平09-096968	162. 特願平10-076139
113.	特願平09-099061	163. 特願平10-085207
114.	特顯平09-099109	164. 特願平10-085208
115.	特顯平09-104093	165. 特願平10-103083
116.	特類平09-119730	166. 特願平10-103115
117.	特願平09-129068	167. 特顯平10-103671
118.	特願平09-134525	168. 特願平10-104093
119.	特願平09-147964	169. 特願平10-113493
120.	特願平09-155364	170. 特願平10-116378
121.	特願平09-159963	171. 特願平10-121456
122.	特願平09-163630	172. 特願平10-127520
123.	特願平09-163631	173. 特願平10-136198
124.	特願平09-171924	174. 特願平10-149603
125.	特願平09-175896	175. 特願平10-150494
126.	特願平09-180423	176. 特願平10-151245
127.	特願平09-189436	177. 特願平10-155838
128.	特願平09-198201	178. 特願平10-155841
129.	特願平09-208866	179. 特願平10-156104
130.	特願平09-221067	180. 特願平10-156108
131.	特願平09-228345	181. 特願平10-198313
132.	特願平09-230870	182. 特願平10-200280
133.	特願平09-253740	183. 特願平10-217132
134.	特顯平09-256795	184. 特願平10-217180
135. 136.	特願平09-271782	185. 特願平10-222837
130. 137.	特願平09-291995	186. 特願平10-227939
138.	特願平09-297084	187. 特顯平10-229591
139.	特願平09-307627	188. 特顯平10-232520
140.	特願平09-308597 特願平09-309848	189. 特願平10-232590
141.		190. 特願平10-236009
142.	特願平09-327140	191. 特願平10-237485
143.	特願平09-327609	192. 特願平10-238144
144.	特願平09-328742 特願平09-360327	193. 特顯平10-245293
144.		194. 特顯平10-250598
146.	特願平10-002030 特願平10-010471	195. 特願平10-250811
140. 147.	特願平10-010471 特願平10-014150	196. 特願平10-252128
148.	特願平10-014152 特願平10-015690	197. 特願平10-260347
140. 149.	特願平10-015690	198. 特願平10-260416
150.	特願平10-024892	199. 特願平10-268791
TOO.	14 MAL I V - V 4 3 3 3 3	200. 特願平10-269859

目録(3)

201.	特願平10-272529	251. 特顯平11-135137
202.	特顯平10-280351	252. 特顯平11-135137
203.	特願平10-308533	253. 特願平11-135482
204.	特願平10-309765	11201 = 2 2 0 1 2 0
205.	特願平10-311673	
206.	特願平10-311674	
207.	特願平10-311675	256. 特願平11-151099
208.	特顯平10-314856	257. 特願平11-166247
209.	特願平10-315751	258. 特願平11-173839
210.	特願平10-338896	259. 特願平11-179278
211.	特顯平10-338897	260. 特願平11-186052
212.	特願平10-338898	261. 特願平11-193235
213.	特顯平10-338899	262. 特顯平11-224269
214.	特願平10-352428	263. 特願平11-225060
215.	特顯平10-354665	264. 特願平11-225832
216.	特別平10-363297	265. 特願平11-225839
217.	特顯平10-363329	266. 特页平11-226176
218.	特願平10-506788	267. 特願平11-234800 268. 特願平11-240325
219.	特願平10-532832	
220.	特顯平10-535583	
221.	特願平11-008183	
222.	特願平11-013380	271. 特願平11-242438 272. 特願平11-242490
223.	特顯平11-015176	
224.	特願平11-031724	273. 特願平11-253851 274. 特願平11-260947
225.	特願平11-035776	275. 特願平11-260947
226.	特顯平11-046372	276. 特顯平11-278976
227.	特願平11-055835	277. 特願平11-279324
228.	特願平11-055867	278. 特顯平11-281632
229.	特願平11-055930	279. 特顯平11-303976
230.	特願平11-056957	280. 特願平11-309616
231.	特願平11-057381	281. 特願平11-315036
232.	特願平11-057749	282. 特顯平11-321282
233.	特顯平11-058103	283. 特願平11-336079
234.	特願平11-061079	284. 特願平11-346467
235.	特願平11-061080	285. 特願平11-354563
236.	特願平11-064193	286. 特願平11~360274
237.	特願平11-064372	287. 特顯平11-365899
238.	特願平11-064506	288. 特願平11-373483
239.	特願平11-065136	289. 特願平11-510791
240.	特願平11-074385	290. 特顯平11-515324
241.	特願平11-081225	291. 特顧2.000-001783
242.	特願平11-090383	292. 特顧2000-005221
243.	特願平11-091875	293. 特顧2000-009363
244.	特願平11-103231	294. 特顧2000-010516
245.	特願平11-104509	295. 特願2000-011147
246.	特願平11-106920	296. 特願2000-011623
247.	特願平11-124187	297. 特願2000-016518
248.	特願平11-130771	298. 特願2000-016622
249.	特顯平11-130814	299. 特願2000-017112
250.	特願平11-130815	300. 特顧2000-018612

目録(4)

301.	特願2000-019195	351. 特願2000-141763
302.	特願2000-019528	352. 特願 2000-148843
303.	特願2000-020067	
304.	特願2000-030321	
305.	特願2000-034109	
306.	特願2000-039109	355. 特願2000-154484
307.	特願2000-039082	356. 特願2000-161895
308.		357. 特願2000-163122
	特願2000-041927	358. 特願2000-164584
309.	特期2000-041929	359. 特願2000-179723
310.	特願2000-045318	360. 特願2000-181281
311.	特願2000-045855	361. 特願2000-184259
312.	特願2000-051488	362. 特願2000-184295
313.	特願2000-051650	363. 特顯2000-191007
314.	特願2000-052040	364. 特願2000-191265
315.	特願2000-053707	365. 特願2000-192332
315.	特願2000-054949	366. 特顯2000-193817
317.	特願2000-056093	367. 袴臘2000-195384
318.	特願2000-056879	368. 特願2000-196991
319.	特願2000-057564	369. 特願2000-197022
320.	特願2000-057565	370. 特願2000-202801
3 21.	特顧2000-057566	371. 特願2000-216457
322.	特願2000-058133	372. 特願2000-223714
323.	特顯2000-058282	373. 特願2000-224970
324.	特顧2000-062316	374. 特願2000-225486
325.	特願2000-064142	375. 特顯2000-225864
326.	特顧2000-064209	376. 特顯2000-225978
327.	特顧2000-071119	377. 特顧2000-226361
328.	特顯2000-076122	378. 特願2000-229191
329.	特顧2000-085874	379. 特顧2000-230551
330.	特顧2000-089078	380. 特顯2000-237165
331.	特顧2000-092693	381. 特願2000-237166
332.	特願2000-100395	382. 特願2000-237533
333.	特顧2000-105139	383. 特願2000-246309
334.	特顧2000-105917	384. 特願2000-248331
3 3 5 .	特顧2000-107160	385. 特顧2000-249232
336.	特顧2000-108409	386. 特願2000-256149
337.	特願2000-109638	387. 特顧2000-257080
338.	特願2000-109954	388. 特願2000-257083
339.	特願2000-118361	389. 特願2000-260030
340.	特顧2000-120874	390. 特顧2000-261233
341.	特願2000-123634	391. 特顧2000-264743
342.	特願2000-128431	392. 特願2000-265344
343.	特顧2000-131049	393. 特願2000-278502
344.	特顧2000-131050	394. 特願2000-279557
345.	特願2000-131745	395. 特願2000-292422
346.	特願2000-134427	396. 特願2000-292832
347.	特願2000-136551	397. 特顧2000~292832
348.	特願2000-136572	
349.	特願2000-138977	
350.	特願2000-141566	
000.	14 W/ 7 O O O I 4 I 9 D D	400. 特願2000-309581

目録(5)

401.	特願2000-319775	451. 特願2001-071435
402.	特願2000-322056	452. 特願2001-072650
403.	特願2000-333311	453. 特願2001-072668
404.	特顧2000-334686	454. 特願2001-072963
405.	特願2000-334969	455. 特願2001-073028
406.	特願2000-343912	456. 特願2001-074964
407.	特願2000-347398	457. 特願2001-074965
408.	特顯2000-347865	458. 特願2001-077257
409.	特顯2000-358121	459. 特願2001-078671
410.	特願2000-368566	460. 特願2001-084173
411.	特願2000-374626	461. 特願2001-089541
412.	特願2000-375090	462. 特願2001-091911
413.	特願2000-378421	463. 特願2001-092337
414.	特願2000-378942	464. 特願2001-116171
415.	特願2000-378950	435. 特頭2001-124294
416.	符頭2000-384771	466. 特願2001-124452
417.	特願2000-387016	467. 特願2001-127575
418.	符願2000-394815	468. 特願2001-127576
419.	特願2000-396445	469. 特願2001-135357
420. 421.	特願2000-399940	470. 特願2001-137087
422.	特願2000-400336	471. 特願2001-138103
423.	特願2000-401110 特願2000-401245	472. 特願2001-142583
424.	特願2000-401245	473. 特願2001-147081
425.	特願2000-503838	474. 特願2001-152364
426.	特願2000-571733	475. 特願2001-152379 476. 特顧2001-153447
427.	特願2000-571943	1446-0- 100441
428.	特願2000-602588	477. 特顧2001-155572 478. 特顧2001-163740
429.	特願2000-602900	479. 特願2001-164819
430.	特願2000-618709	480. 特顏 2001-164997
431.	特顧2001-003476	481. 特顧2001-165133
432.	特顧2001-005615	482. 特顧2001-167910
433.	特顧2001-007979	483. 特願2001-168784
434.	特願2001-016626	484. 特願2001-171705
435.	特願2001-025030	485. 特願2001-173331
436.	特願2001-037141	486. 特願2001-174421
437.	特願2001-037147	487. 特願2001-174553
438. 439.	特願2001-042501	488. 特顧2001-175898
440.	特顯2001-044933	489. 特願2001-178169
441.	特願2001-047762 特願2001-050845	490. 特願2001-179858
442.	特願2001-050645	491. 特願2001-180552
443.		492. 特顧2001-180554
444.	特願2001-054717 特願2001-059115	493. 特顧2001-187735
445.	特願2001-059115	494. 特願2001-197185
446.	特願2001-060848	495. 特願2001-197897
447.	特願2001-062703	496. 特願2001-200854 497. 特願2001-201356
448.	特願2001-065799	
449.	特願2001-065917	498. 特願2001-202971 499. 特願2001-203089
450.	特願2001-068285	500. 特願2001-203089
		200 IAWE COT_500202

目録(6)

501.	特願2001-206522	551. 特願2001-325367
502.	特願2001-206523	
503.	特願2001-209305	
504.	特願2001-212947	553. 特願2001-327853
505.	特願2001-216505	
506.	特願2001-220219	
507.	特願2001-226176	556. 特願2001-337467 557. 特願2001-339396
508.	特願2001-228287	
509.	特願2001-228374	
510.	特願2001-235412	559. 特願2001-346035
511.	特願2001-235747	560. 特願 2 0 0 1 - 3 4 7 3 1 6 561, 特願 2 0 0 1 - 3 4 7 6 3 7
512.	特願 2 0 0 1 - 2 3 8 9 5 1	
513.	特願2001-241023	
514.	特願2001-243930	
515.	特爾 2 0 0 1 - 2 4 6 6 4 2	1722 - 0 1 0 0 D 1 0 0
516.	特別2001-249976	565. 特頭2001-353038 566. 特頭2001-358446
517.	特願2001-254377	567. 特顯 2001 — 358446
518.	特願2001-254378	568. 特顯 2001-358581
519.	将頭2001-255589	569. 特顯 2001-374928
520.	特願2001-256576	570. 特顧2001-376591
521.	特願2001-257188	571. 特願2001-378757
522.	特願2001-261158	572. 特顧2001-380473
523.	特願2001-266004	573. 特顧2001-382537
524.	特顯2001-266069	574. 特願2001-382539
52 5 .	特願2001-266454	575. 特願2001-382599
526.	特顧2001-267194	576. 特願2001-385258
527.	特顧2001-267379	577. 特願2001-385512
528.	特顧2001-267863	578. 特願2001-385513
529.	特願2001-272977	579. 特願2001-385538
530.	特願2001-273964	580. 特願2001-388116
531.	特願2001-276053	581. 特願2001-390122
532.	特願2001-279406	582. 特顧2001-392087
533.	特顯2001-280319	583. 特顧2001-392088
534. 535.	特願2001-285145	584. 特願2001-395196
536.	特願2001-291059 特顧2001-292223	585. 特願2001-396120
537.	特顧2001-292223 特顧2001-292224	586. 特願2001-397762
538.	特顧2001-292224	587. 特顧2001-397998
539.	特願2001—293000	588. 特願2001-401139
540.	特顧2001-293936	589. 特願2001-515803
541.	特願2001-294013	590. 特顧2001-523852 591. 特顧2001-557672
542.	特顧2001-298140	
543.	特願2001-298402	
544.	特願2001-307340	
545.	特願2001-309501	594. 特顧2002-010344 595. 特顧2002-011558
546.	特願2001-309508	
547.	特願2001-309984	596. 特願2002-019752 597. 特願2002-020329
548.	特願2001-310554	598. 待願2002-020329
549.	特顧2001-313430	599. 特願2002-028046
550.	特願2001-319360	600. 特願2002-028046
		000. 15 MR 2 0 0 2 - 0 2 8 1 0 9

目録(7)

```
601.
    特願2002-040151
                           651.
                               特願2002-162157
602.
    特願2002-042829
                           652.
                               特願2002-162211
603.
    特願2002-044340
                           653.
                               特願2002-162365
604.
    特顧2002-044640
                           654.
                               特願2002-167759
605.
    特願2002-046188
                               特願2002-170068
                           655.
606.
    特願2002-047799
                           656.
                               特願2002-170902
607.
    特願2002-053190
                           657.
                               特願2002-176435
608.
    特願2002-053575
                           658.
                               特願2002-176583
609.
    特願2002-055272
                           659.
                               特願2002-183722
    特願2002-057253
610.
                           660.
                               特願2002-185966
611.
    特職2002-057565
                           661.
                               特願2002-187362
612.
    符願2002-057935
                           662.
                               特顯2002-187957
613.
    特願2002-057963
                           663.
                              特願2002-188281
    特願2002-066249
614.
                           664.
                               特願2002-189265
615.
    德顯2002-070624
                           655.
                               特頭2002-194527
616.
    特顯2002-070987
                           663.
                               特顯2002-197812
617.
    特顯2002-071924
                           667.
                               特願2002-201443
618.
    特願2002-074902
                              特顯2002-201575
                           668.
619.
    符顧2002-078164
                              特職2002-202118
                           669.
    铃願2002-081467
620.
                           670.
                              特願2002-205814
621.
    特願2002-081502
                           671.
                              特願2002-205825
    特願2002-083081
622.
                           672.
                              特願2002-217714
    特願2002-084139
623.
                           673.
                              特願2002-221188
    特願2002-085017
624.
                           674.
                              特願2002-225469
625.
    特願2002-087342
                           675.
                              特顯2002-225724
626.
    特願2002-094681
                           676.
                              特顧2002-226859
627.
    特願2002-095132
                              特願2002-227286
                           677.
628.
    特願2002-095389
                           678.
                              特願2002-229686
    特顧2002-100431
629.
                              特願2002-230562
                           679.
    特願2002-106561
630.
                           680.
                              特顧2002-235294
    特願2002-119320
631.
                          681.
                              特願2002-235737
632.
    特願2002-120371
                          682.
                              特願2002-236838
633.
    特願2002-123347
                          683.
                              特顧2002-237058
    特願2002-128854
634.
                          684.
                              特顯2002-237092
635.
    特顯2002-133717
                          685.
                              特顯2002-248946
636.
    特願2002-133749
                          686.
                              特顧2002-253322
637.
    特願2002-134313
                              特顯2002-253689
                          687.
    特願2002-141187
638.
                          688.
                              特願2002-253697
639.
    特願2002-141438
                          689.
                              特願2002-254096
640.
    特願2002-142260
                          690.
                              特願2002-257924
641.
    特願2002-149471
                              特顧2002-260788
                          691.
642.
    特顧2002-149931
                              特顧2002-261499
                          692.
    特願2002-150541
643.
                              特願2002-264969
                          693.
644.
    特願2002-154688
                          694.
                              特願2002-267114
645.
    特願2002-154695
                          695.
                              特願2002-268987
646.
    特願2002-154823
                              特顧2002-270917
                          696.
647.
    特願2002-158237
                          697.
                              特願2002-271375
   特願2002-158352
648.
                          698.
                              特願2002-271473
649.
   特願2002-160277
                          699.
                              特願2002-273996
650.
   特願2002-162148
                          700.
                              特願2002-274469
```


目録(8)

701.	特願2002-276051	751. 特願2003-012738
702.	特願2002-282746	752. 特願2003-012738
703.	特願2002-286487	
704.	特願2002-289209	
705.	特願2002-295332	1140 0 0 1 0 0 4 4
706.	特願2002-296911	
707.	特願2002-299429	
708	特願2002-301875	1400 00 00 1 4 5 5 5
709.	特願2002-303838	
710.	特願2002-312131	759. 特願2003-024620
711.	特顯2002-320102	760. 特願2003-025277
712.	特顧2002-320704	761. 特願2003-027647
713.	特願2002-325909	762. 特願2003-027648
714.	特顯2002-325920	763. 特願2003-031882
715.	徐丽2002—332232	764. 特願2003-032932
716.	得以2002-339344	765. 特頭2003-038206
717.	特顯2002-339392	768. 特別2003-040542
718.	特顯2002-339541	767. 特願2003-043961
719.	彩麗 2 0 0 2 — 3 3 9 5 5 1	768. 特願2003-050153
720.	特願2002-341195	769. 特顯2003-050446 770. 特顯2003-052520
721.	特願2002-343807	
722.	特願2002-344279	
723.	特願2002-345597	
724.	特願2002-347401	
725.	特願2002-348760	
726.	特願2002-349042	775. 特願2003-054182 776. 特願2003-054798
727.	特願2002-354594	777. 特顧2003-054798
728.	特願2002-357768	778. 特願2003-054846
729.	特願2002-357900	779. 特願2003-054847
730.	特願2002-358019	780. 特顯2003-054848
731.	特願2002-358967	781. 特顧2003-054849
732.	特願2002-360972	782. 特願2003-055452
733.	特顧2002-360975	783. 特願2003-056628
734.	特顯2002-368112	784. 特顯2003-061426
735.	特願2002-376555	785. 特願2003-063532
736.	特願2002-376774	786. 特顯2003-065013
737.	特願2002-376831	787. 特顧2003-071028
738.	特願2002-379214	788. 特顧2003-072979
739.	特願2002-380624	789. 特願2003-074168
740.	特願2002-381888	790. 特顧2003-076107
741.	特願2002-382170	791. 特願2003-078999
742.	特願2002-383870	792. 特顧2003-079598
743.	特願2002-521644	793. 特願2003-079613
744.	特願2002-532458	794. 特願2003-082466
745.	特願2002-546564	795. 特願2003-083318
746.	特願2002-548185	796. 特願2003-083433
747.	特願2002-570743	797. 特願2003-083480
748.	特願2003-003450	798. 蒋願2003-085193
749.	特願2003-012550	799. 特願2003-089026
750.	特願2003-012694	800、特願2003-090331

目録(9)

801.	体題2002001440	054
802.	特顯2003-091446	851. 特願2003-127135
	特願2003-092654	852. 特願2003-127150
803.	特願2003-093642	853. 特顯2003-128818
804.	特願2003-094272	854. 特願2003-128897
805.	特願2003-094719	855. 特願2003-129347
806.	特願2003-095770	856. 特願2003-131313
807.	特願2003-095884	857. 铸頭2003-132280
808.	特願2003-095885	858. 特願2003-132605
809.	特願2003-095886	859. 特願2003-132606
810.	特願2003-095904	860. 特願2003-135591
811.	特願2003-097283	861. 特願 2003-136445
812.	特願2003-097327	862. 特頭2003-139397
813.	特願2003-101917	863. 特願2003-140684
814.	特願2003-104928	864. 特顯2003-142303
815.	特頭2003-105362	885. 彩紅2003-142303
815.	似題2003-107267	866. 特願2003-145932
817.	特願2003-107268	867. 特願2003-145221
818.	特願2003-107647	868. 特願2003-145390
819.	特願2003-107885	1000 111020
820.	特願2003-109575	11
821.	特願2003-115750	
822.	特願2003-115793	
823.	特願2003-115847	
824.	特願2003-115888	
825.	特願2003-116232	10000
826.	特願2003-116895	
827.	特願2003-118161	
828.	特願2003-118186	
829.	特願2003-119749	
830.	特願2003—119930	10100
831.	特願2003-120934	
832.	特願 2003-121233	
833.	特願2003-121261	
834.	特願2003-121273	883. 特願2003-170325 884. 特願2003-170326
835.	特願2003-121780	885. 特顧2003-170326
836.	特願2003-122245	
837.	特願2003-123984	886. 特顧2003-170328 887. 特顧2003-170329
838.	特願2003-124654	888. 特願2003-170329
839.	特願2003-124655	889. 特顧2003-170330
840.	特願2003-124826	11.0010
841.	特願2003-124829	10000
842.	特願2003-124833	
843.	特願2003-124835	
844.	特願2003-125388	893. 特顧2003-175819
845.	特願2003-125403	894. 特願 2003-177298
846.	特顧2003-125403	895. 特願 2 0 0 3 - 1 8 0 1 9 8
847.	特願2003-125405	896. 特願2003-182958
848.	特願2003-127090	897. 特願 2 0 0 3 - 1 9 2 7 6 3
849.	特顯2003-127093	898. 特願 2 0 0 3 - 1 9 2 7 7 5
850.	特顯2003-127109	899. 特願2003-194837
JU V.	14MM 2 0 0 3 - 1 2 7 1 3 U	900. 特願2003-197229

ページ: 11/E (11)

目録(10)

951.

952.

953.

954.

特願2003-338191

特願2003-339542

特願2003-340181

特願2003-342519

```
901.
    特願2003-198340
902.
    特願2003-204075
903.
    特願2003-205349
904.
    特願2003-205710
905.
    特願2003-206546
906.
    特願2003-207698
907.
    特願2003-207771
908.
    特願2003-207772
909.
    特願2003-207850
910.
    特願2003-270049
911.
    特願2003-271473
912.
    特願2003-272421
913.
    特願2003-275055
914.
    特願2003-277958
915.
    特願2003-279130
926.
   特願2003-285572
917.
    特願2003-284055
   特願2003-286640
918.
919.
   特願2003-289138
920.
    特願2003-293912
921.
    特願2003-296474
922.
    特願2003-298558
923.
   特願2003-299424
924.
   特願2003-303979
925.
   特願2003-304452
926.
   特願2003-304453
927.
   特願2003-305689
928.
   特顧2003-305844
929.
   特願2003-306137
930.
   特顧2003-307564
931.
   特願2003-313014
932.
   特願2003-315355
933.
   特願2003-318801
934.
   特願2003-321497
   特願2003-322948
935.
936.
   特顧2003-324974
937.
   特願2003-326510
938.
   特願2003-327645
939.
   特願2003-327907
940.
   特願2003-328600
941.
   特顯2003-328840
942.
   特願2003-330418
943.
   特願2003-330569
944.
   特願2003-331848
945.
   特顧2003-332756
   特願2003-333798
946.
947.
   特願2003-333932
948.
   待願2003-334036
   特願2003-334083
949.
950.
   特願2003-336365
```

出証特2004-3064610

認定・付加情報

特許出願の番号 特願2003-177298

受付番号 20308550887

書類名 出願人名義変更届 (一般承継)

担当官 塩野 実 2 1 5 1

作成日 平成16年 3月17日

<認定情報・付加情報> 【提出された物件の記事】

【提出物件名】 委任状 (代理権を証明する書面) 1

特願2003-177298

出願人履歴情報

識別番号

[000006792]

1990年 8月28日

1. 変更年月日 [変更理由]

理由] 新規登録

住 所 名

埼玉県和光市広沢2番1号

理化学研究所

特願2003-177298

出願人履歴情報

識別番号

[899000024]

1. 変更年月日

1999年 9月16日

[変更理由]

新規登録

住 所

東京都千代田区丸の内一丁目5番1号 新丸の内ビルヂング6

階

氏 名

株式会社 先端科学技術インキュベーションセンター

2. 変更年月日 [変更理由]

2004年 5月10日

名称変更

住所変更

住 所

東京都文京区本郷七丁目3番1号

氏 名

株式会社東京大学TLO

特願2003-177298

出 願 人 履 歴 情 報

識別番号

[503359821]

1. 変更年月日 [変更理由]

更理由]

住 所 名

2003年10月 1日

新規登録

埼玉県和光市広沢2番1号 独立行政法人理化学研究所

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
·

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.