

Universidade do Minho

Dep. de Matemática e Aplicações

Mestrado Integrado em Engenharia Informática Introdução aos Sistemas Dinâmicos 2019/20

bifurcações

Exercício 1. Considere a família de transformações $f_c: \mathbb{R} \longrightarrow \mathbb{R}$, $c \in \mathbb{R}$. $x \longmapsto x^2 + c$

(a) Os pontos fixos da transformação f_c são as soluções da equação $f_c(x)=x$. Temos que:

$$f_c(x) = x \Leftrightarrow x^2 + c = x \Leftrightarrow x = \frac{1 \pm \sqrt{1 - 4c}}{2}.$$

Sejam

$$p_+(c) = \frac{1 + \sqrt{1 - 4c}}{2}$$
 e $p_-(c) = \frac{1 - \sqrt{1 - 4c}}{2}$.

Atendendo ao sinal de 1-4c, podemos concluir que:

- f_c não tem pontos fixos se $c > \frac{1}{4}$.
- f_c tem um único ponto fixo $p_+=p_-=\frac{1}{2}$ quando $c=\frac{1}{4}$.
- f_c tem dois pontos fixos distintos $p_+(c) > p_-(c)$ quando $c < \frac{1}{4}$.
- (b) Ocorre uma bifurcação sela-nó para $c_0 = \frac{1}{4}$.

Temos que $f'_c(x)=2x$ para todo o $x\in\mathbb{R}$. Em particular, $f'_{\frac{1}{4}}(\frac{1}{2})=1$ e $f''_{\frac{1}{4}}(\frac{1}{2})=2\neq 0$.

Para $c > c_0$ não existem pontos fixos, para $c = c_0$ existe exatamente um ponto fixo e para $c < c_0$ existem exatamente dois pontos fixos.

(c) Quando $c>\frac{1}{4}$, temos que $\lim_{n\to\infty}f^n(x_0)=+\infty$, para todo o $x_0\in\mathbb{R}$.

Comecemos por recordar que não existem pontos fixos. Temos que $f(x_0) > x_0$ para todo o $x_0 \in \mathbb{R}$. Consequentemente, a trajectória $(f^n(x_0))_n$ é estritamente crescente. Suponhamos, por absurdo, que $(f^n(x_0))_n$ é majorada. Porque $(f^n(x_0))_n$ é majorada e estritamente crescente então é convergente para um ponto fixo, o que é absurdo uma vez que não existem pontos fixos. O absurdo resultou de termos suposto que a trajectória $(f^n(x_0))_n$ era majorada. Concluímos assim que $(f^n(x_0))_n$ é estritamente crescente e não majorada e, portanto, $\lim_{n\to\infty} f^n(x_0) = +\infty$.

- (d) Ver a resolução do exercício 6.f) da folha de exercícios 13. Tem-se que $W^s(\frac{1}{2})=[-\frac{1}{2},\frac{1}{2}].$
- (e) Ocorre uma bifurcação de duplicação do período para $c_1=-\frac{3}{4}$. Temos que $f'_c(x)=2x$ para todo o $x\in\mathbb{R}$. Em particular, $f'_{-\frac{3}{4}}(-\frac{1}{2})=-1$ (note que $f_{-\frac{3}{4}}(-\frac{1}{2})=-\frac{1}{2}$). Além disso, tem-se que:
 - para $-\frac{3}{4} < c < \frac{1}{4}$, f_c tem um ponto fixo atrativo em $p_-(c)$ e não tem ciclos de período 2:
 - para $c=-\frac{3}{4}$, $f_{-\frac{3}{4}}$ tem um ponto fixo em $p_{-\frac{3}{4}}=-\frac{1}{2}$ tal que $|f'_{-\frac{3}{4}}(-\frac{1}{2})|=1$ $(f'_{-\frac{3}{4}}(-\frac{1}{2})=-1)$ e não tem ciclos de período 2;
 - para $-\frac{5}{4} < c < -\frac{3}{4}$, f_c tem pontos fixos repulsivos em $p_-(c)$ e $p_+(c)$ e um ciclo atrativo de período 2 em $q_\pm(c) = \frac{1}{2}(-1\pm\sqrt{-4c-3})$ (que pode ser obtido resolvendo a equação $f_c^2(x) = x$).
- (f) Na seguinte figura, marque a tracejado, respetivamente a cheio, a natureza repulsiva, respetivamente atrativa, dos pontos fixos.

Exercício 2. Considere a família de transformações $f_{\lambda}: \mathbb{R} \longrightarrow \mathbb{R}$, $\lambda \in \mathbb{R}^+$. $x \longmapsto \lambda x (1-x)$

(a) Os pontos fixos da transformação f_{λ} são as soluções da equação $f_{\lambda}(x)=x$. Temos que:

2

$$f_{\lambda}(x) = x \Leftrightarrow \lambda x(1-x) = x \Leftrightarrow x = 0 \lor x = p_{\lambda} = \frac{\lambda - 1}{\lambda}.$$

Consequentemente,

- f_{λ} tem um único ponto fixo, o ponto 0, se $\lambda = 1$.
- f_{λ} tem dois pontos fixos: x = 0 e $x = p_{\lambda} = \frac{\lambda 1}{\lambda}$, se $\lambda \in \mathbb{R}^+ \setminus \{1\}$.
- (b) Temos que

$$f'_{\lambda}(x) = \lambda - 2\lambda x, \quad x \in \mathbb{R}.$$

(i) Estudemos a natureza do ponto fixo x = 0. Temos que

$$|f'_{\lambda}(0)| = |\lambda|$$
.

Consequentemente,

- se $\lambda \in]0,1[$, então $|f'_{\lambda}(0)| < 1$ e, portanto, o ponto fixo 0 é atrativo;
- se $\lambda > 1$, então $|f'_{\lambda}(0)| > 1$ e, portanto, o ponto fixo 0 é repulsivo;
- se $\lambda=1$, o ponto fixo 0 não é atrativo nem repulsivo (ver o exercício 8.h) da folha de exercícios 13).
- (ii) Estudemos agora a natureza do ponto fixo $p_{\lambda}=\frac{\lambda-1}{\lambda}.$ Temos que

$$|f'_{\lambda}(p_{\lambda})| = |2 - \lambda|$$
.

Consequentemente,

- se $\lambda \in]1,3[$, então $|f'_{\lambda}(p_{\lambda})| < 1$ e, portanto, o ponto fixo p_{λ} é atrativo;
- se $\lambda \in]0,1[\,\cup\,]3,+\infty[$, então $|f_\lambda'(p_\lambda)|>1$ e, portanto, o ponto fixo p_λ é repulsivo;
- se $\lambda=3$, então $p_3=\frac{2}{3}$. Estude a dinâmica da transformação $f_3(x)=3x(1-x)$ e conclua que o ponto fixo $\frac{2}{3}$ é atrativo.
- (c) Queremos procurar os pontos fixos de f_{λ}^2 , isto é, resolver a equação

$$f_{\lambda}^{2}(x) = \lambda^{2}x(1-x)(1-\lambda x(1-x)) = x$$

a qual pode ser escrita como

$$\lambda^3 x^4 - 2\lambda^3 x^3 + \lambda^2 (1+\lambda)x^2 + (1-\lambda^2)x = 0.$$

Como qualquer ponto fixo de f_{λ} é também um ponto fixo de f_{λ}^2 , sabemos que $x(\lambda x + 1 - \lambda)$ é um fator do polinómio de grau 4 anterior. Consequentemente, podemos fatorizar a equação anterior e obter

$$x(\lambda x + 1 - \lambda)(\lambda^2 x^2 - \lambda(1 + \lambda)x + 1 + \lambda) = 0.$$

Então, para encontrarmos uma órbita periódica de período 2 precisamos de resolver a equação

$$\lambda^2 x^2 - \lambda (1 + \lambda)x + 1 + \lambda = 0.$$

3

As raízes desta equação são:

$$s_{\pm}(\lambda) = \frac{1}{2} \left(\left(1 + \frac{1}{\lambda} \right) \pm \sqrt{\left(1 + \frac{1}{\lambda} \right) \left(1 - \frac{3}{\lambda} \right)} \right).$$

Consequentemente, quando $\lambda > 3$, a transformação f_{λ} tem um ciclo de período 2.

- (d) Consideremos primeiro a bifurcação que ocorre quando $\lambda = 1$. Temos que:
 - (i) ao atravessar o parâmetro $\lambda=1$, a transformação f_{λ} muda o número de pontos fixos:
 - quando $\lambda = 1$, a transformação f_{λ} tem um único ponto fixo, o ponto 0.
 - quando $\lambda \in \mathbb{R}^+ \setminus \{1\}$, a transformação f_λ tem dois pontos fixos: x=0 e $p_\lambda = \frac{\lambda-1}{\lambda}$.
 - (ii) ao atravessar o parâmetro $\lambda=1$, a natureza dos pontos fixos da transformação f_{λ} é alterada. Relativemente ao ponto fixo 0 tem-se que:
 - quando $\lambda > 1$, o ponto fixo 0 é repulsivo.
 - quando $\lambda < 1$, o ponto fixo 0 é atrativo.

A justificação encontra-se na alínea (b).

Relativamente ao ponto fixo p_{λ} tem-se que:

- quando $\lambda \in]1,3[$, o ponto fixo p_{λ} é atrativo.
- quando $\lambda \in]0,1[\cup]3,+\infty[$, o ponto fixo p_{λ} é repulsivo.

A justificação encontra-se na alínea (b).

Vamos agora considerar a bifurcação que ocorre quando $\lambda=3$. Comecemos por observar que a transformação $f_3=3x(1-x)$, $x\in\mathbb{R}$, tem dois pontos fixos: o ponto fixo 0 e o ponto fixo $p_3=\frac{2}{3}$. Além disso,

$$f_3'\left(\frac{2}{3}\right) = -1, \quad f_3''\left(\frac{2}{3}\right) = -6 \neq 0.$$

Quando $\lambda = 3$, ocorre uma bifurcação de duplicação de período:

- (i) a natureza do ponto fixo $\frac{2}{3}$ é alterada: quando $\lambda \in]1,3[$, o ponto fixo p_{λ} é atrativo e quando $\lambda \in]0,1[\cup]3,+\infty[$, o ponto fixo p_{λ} é repulsivo.
- (ii) uma órbita de período 2 "nasce" quando λ se torna maior do que 3. Mostre que esta órbita é atrativa quando $\lambda \in]3, 1 + \sqrt{6}[$.
- (e) Na seguinte figura, marque a tracejado, respetivamente a cheio, a natureza repulsiva, respetivamente atrativa, dos pontos fixos.

Exercício 3. Considere a família parametrizada de sistemas dinâmicos $f_a(x) = x^2 + x - 2ax$, com $x \in \mathbb{R}$, para valores do parâmetro $a \in \mathbb{R}$.

(a) Os pontos fixos da transformação f_a são as soluções da equação $f_a(x)=x$. Temos que:

$$f_a(x) = x \Leftrightarrow x^2 + x - 2ax = x \Leftrightarrow x = 0 \lor x = 2a.$$

Consequentemente,

- f_a tem um único ponto fixo, o ponto $p_1 = 0$, se a = 0.
- f_a tem dois pontos fixos: $p_1 = 0$ e $p_2 = 2a$, se $a \in \mathbb{R} \setminus \{0\}$.

Estudemos agora a natureza dos pontos fixos. Temos que

$$f_a'(x) = 2x + 1 - 2a, \quad x \in \mathbb{R}.$$

(i) Estudemos a natureza do ponto fixo $x=\mathbf{0}$. Temos que

$$|f_a'(0)| = |1 - 2a|$$
.

Consequentemente,

- se $a \in]0,1[$, então $|f_a'(0)| < 1$ e, portanto, o ponto fixo 0 é atrativo;
- se $a\in]-\infty,0[\,\cup\,]1,+\infty[$, então $|f_a'(0)|>1$ e, portanto, o ponto fixo 0 é repulsivo.
- (ii) Estudemos agora a natureza do ponto fixo $p_2=2\,a.$ Temos que

$$|f_a'(p_2)| = |2a+1|.$$

Consequentemente,

ullet se $a\in]-1,0[$, então $|f_a'(p_2)|<1$ e, portanto, o ponto fixo p_2 é atrativo;

- se $a\in]-\infty,-1[\,\cup\,]0,+\infty[$, então $|f_a'(p_2)|>1$ e, portanto, o ponto fixo p_2 é repulsivo.
- (b) Na seguinte figura, marque a tracejado, respetivamente a cheio, a natureza repulsiva, respetivamente atrativa, dos pontos fixos.

Exercício 4. Considere a família parametrizada de sistemas dinâmicos $f_a(x) = x^3 - ax$, com $x \in \mathbb{R}$, para valores do parâmetro $a \in \mathbb{R}$.

(a) Os pontos fixos da transformação f_a são as soluções da equação $f_a(x)=x$. Temos que:

$$f_a(x) = x \Leftrightarrow x^3 - ax = x \Leftrightarrow x = 0 \lor x = -\sqrt{1+a} \lor x = \sqrt{1+a}.$$

Consequentemente,

- f_a tem um único ponto fixo, o ponto $p_1=0$, se $a\leq -1$.
- f_a tem três pontos fixos: $p_1=0$, $p_2=-\sqrt{1+a}$ e $p_3=\sqrt{1+a}$, se a>-1.

Estudemos agora a natureza dos pontos fixos. Temos que

$$f'_a(x) = 3x^2 - a, \quad x \in \mathbb{R}.$$

(i) Estudemos a natureza do ponto fixo $p_1={\tt 0}.$ Temos que

$$|f_a'(0)| = |-a|$$
.

Consequentemente,

ullet se $a\in]-1,1[$, então $|f_a'(0)|<1$ e, portanto, o ponto fixo 0 é atrativo;

- se $a\in]-\infty,-1[\,\cup\,]1,+\infty[$, então $|f_a'(0)|>1$ e, portanto, o ponto fixo 0 é repulsivo.
- (ii) Estudemos agora a natureza do ponto fixo $p_2=-\sqrt{1+a}$. Só existe para a>-1. Temos que

$$|f_a'(p_2)| = 3 + 2a > 1,$$

para todo o a>-1. Consequentemente, p_2 é sempre um ponto fixo repulsivo.

(iii) Estudemos agora a natureza do ponto fixo $p_3=\sqrt{1+a}$. Só existe para a>-1. Temos que

$$|f_a'(p_3)| = 3 + 2a > 1,$$

para todo o a>-1. Consequentemente, p_{3} é sempre um ponto fixo repulsivo.

(b) Na seguinte figura, marque a tracejado, respetivamente a cheio, a natureza repulsiva, respetivamente atrativa, dos pontos fixos.

Exercício 5. Considere a família parametrizada de sistemas dinâmicos $f_a(x) = ax + x^2$, com $x \in \mathbb{R}$, para valores do parâmetro $a \in \mathbb{R}$.

(a) Os pontos fixos da transformação f_a são as soluções da equação $f_a(x)=x$. Temos que:

$$f_a(x) = x \Leftrightarrow ax + x^2 = x \Leftrightarrow x = 0 \lor x = 1 - a.$$

Consequentemente,

- f_a tem um único ponto fixo, o ponto $p_1=0$, se a=1.
- f_a tem dois pontos fixos: $p_1 = 0$ e $p_2 = 1 a$, se $a \in \mathbb{R} \setminus \{1\}$.

Estudemos agora a natureza dos pontos fixos. Temos que

$$f'_a(x) = a + 2x, \quad x \in \mathbb{R}.$$

(i) Estudemos a natureza do ponto fixo x=0. Temos que

$$|f_a'(0)| = |a|$$
.

Consequentemente,

- se $a \in]-1,1[$, então $|f'_a(0)| < 1$ e, portanto, o ponto fixo 0 é atrativo;
- se $a\in]-\infty,-1[\,\cup\,]1,+\infty[$, então $|f_a'(0)|>1$ e, portanto, o ponto fixo 0 é repulsivo.
- (ii) Estudemos agora a natureza do ponto fixo $p_2=1-a.$ Temos que

$$|f_a'(p_2)| = |2 - a|$$
.

Consequentemente,

- se $a \in]1,3[$, então $|f'_a(p_2)| < 1$ e, portanto, o ponto fixo p_2 é atrativo;
- se $a\in]-\infty,1[\cup]3,+\infty[$, então $|f_a'(p_2)|>1$ e, portanto, o ponto fixo p_2 é repulsivo.
- (b) Na seguinte figura, marque a tracejado, respetivamente a cheio, a natureza repulsiva, respetivamente atrativa, dos pontos fixos.

Exercício 6. Considere a família parametrizada de sistemas dinâmicos $f_a(x) = a + x - x^2$, com $x \in \mathbb{R}$, para valores do parâmetro $a \in \mathbb{R}$.

(a) Os pontos fixos da transformação f_a são as soluções da equação $f_a(x)=x$. Temos que:

$$f_a(x) = x \Leftrightarrow a + x - x^2 = x \Leftrightarrow x = -\sqrt{a} \lor x = \sqrt{a}.$$

Consequentemente,

- f_a não tem pontos fixos se a < 0.
- f_a tem um único ponto fixo, o ponto $p_1 = p_2 = 0$, se a = 0.
- f_a tem dois pontos fixos: $p_1 = -\sqrt{a}$ e $p_2 = \sqrt{a}$, se a > 0.

Estudemos agora a natureza dos pontos fixos. Temos que

$$f_a'(x) = 1 - 2x, \quad x \in \mathbb{R}.$$

(i) Estudemos a natureza do ponto fixo $p_1 = -\sqrt{a}$. Temos que

$$|f_a'(p_1)| = 1 + 2\sqrt{a} > 1,$$

para todo o a > 0. Consequentemente, o ponto fixo p_1 é sempre repulsivo.

(ii) Estudemos agora a natureza do ponto fixo $p_2 = \sqrt{a}$. Temos que

$$|f_a'(p_2)| = \left|1 - 2\sqrt{a}\right|.$$

Consequentemente,

- se $a \in]0,1[$, então $|f'_a(p_2)| < 1$ e, portanto, o ponto fixo p_2 é atrativo;
- ullet se $a\in]1,+\infty[$, então $|f_a'(p_2)|>1$ e, portanto, o ponto fixo p_2 é repulsivo.

(Usando o exercício 8.h da folha de exercícios 13) podemos concluir que para a=0, o ponto fixo 0 não é atrativo nem repulsivo).

(b) Na seguinte figura, marque a tracejado, respetivamente a cheio, a natureza repulsiva, respetivamente atrativa, dos pontos fixos.

