

Polynomial Regression

Polynomial regression models are among the most commonly used models to describe a regression relation.

- Polynomial regression models are very flexible and are easy to fit.
 - Polynomial models with higher than third-order terms are rarely employed in practice.
 - They often lead to estimators.
 - They might fit the observed data . but generalize well to new observations, a phenomena called

Polynomial Regression

Polynomial regression models are among the most commonly used models to describe a curvilinear regression relation.

- Polynomial regression models are very flexible and are easy to fit.
- Polynomial models with higher than third-order terms are rarely employed in practice.
 - They often lead to highly variable estimators.
 - They might fit the observed data well, but could fail to generalize well to new observations, a phenomena called overfitting.

Second-Order Model with One Predictor

$$Y_{i} = \beta_{0} + \beta_{1}(X_{i} - \overline{X}) + \beta_{2}(X_{i} - \overline{X})^{2} + \epsilon_{i}$$

$$= \beta_{0} + \beta_{1}\tilde{X}_{i} + \beta_{2}\tilde{X}_{i}^{2} + \epsilon_{i}, \quad i = 1, \dots, n,$$

where $\tilde{X}_i = X_i - \overline{X}$ is the centered value of the predictor variable in the *i*th case.

- Centering often between the linear term X and the quadratic term X^2 substantially (Why?) and thus improves numerical accuracy. Will centering change the fitted regression function?
- The response function is a parabola:

- β_0 is the mean response when
- β_1 is called the and β_2 is called the

Second-Order Model with One Predictor

$$Y_{i} = \beta_{0} + \beta_{1}(X_{i} - \overline{X}) + \beta_{2}(X_{i} - \overline{X})^{2} + \epsilon_{i}$$

$$= \beta_{0} + \beta_{1}\tilde{X}_{i} + \beta_{2}\tilde{X}_{i}^{2} + \epsilon_{i}, \quad i = 1, \dots, n,$$

where $\tilde{X}_i = X_i - \overline{X}$ is the centered value of the predictor variable in the *i*th case.

 Centering often reduces the correlation between the linear term X and the quadratic term X² substantially (Why?) and thus improves numerical accuracy. Will centering change the fitted regression function?

 $E(Y) = \beta_0 + \beta_1 (X - \overline{X}) + \beta_2 (X - \overline{X})^2$

The response function is a parabola:

$$= \beta_0 + \beta_1 \tilde{X} + \beta_2 \tilde{X}^2.$$

• β_0 is the mean response when $\tilde{X} = 0$, i.e. when $X = \overline{X}$. • β_1 is called the linear effect coefficient and β_2 is called the quadratic effect coefficient.

Salary

Pr	ofe	ssi	ona	ıl or	gar	niza	tior	ns r	egı	ular	ly s	urv	⁄еу	the	ir r	ner	nbe	ers	for				
in	forr	nat	ion	cor	cer	nin	g s	ala	ries	s, p	ens	ior	ıs, a	anc	co	ndi	tior	าร (of				
er	npl	oyn	nen	t. C	ne	goa	al is	to	rel	ate	sa	lary	/ to	ye	ars	of	exp	eri	end	e.			
Tł	nis	dat	a h	as y	ear	s o	f ex	фе	rier	псе	(X) aı	nd s	sala	ary	(Y)	on	14	3				
ca	se	s. ¹																					
Ca	ıse	Sa	ala	ry(\$)	Exi	oer	ie	nce	Y)	ear	s)											
Y				X																			
1		7	71				26																
2		6	59				19																
3		7	73			:	22																
							٠.																
14	ŀ1		6 7				16																
14	ŀ2		71				20																
14	ŀ3		69				31																
	1 So	ırce o	f data	: Tryfo:	s (199	8): Me	thods	for b	usine	ss ana	lysis	and fo	recas	sting	□ ▶	4 🗗	⊢ ∢	≣ ト	∢ ≣	F	Ē	જ વ	C

Salary: Second-Order Model

Second-Order Model with Two Predictors

where
$$\tilde{X}_{i1} = X_{i1} - \overline{X}_1$$
, $\tilde{X}_{i2} = X_{i2} - \overline{X}_2$.

Response function is a conic section:

$$E(Y) = \beta_0 + \beta_1 \tilde{X}_1 + \beta_2 \tilde{X}_2 + \beta_{11} \tilde{X}_1^2 + \beta_{22} \tilde{X}_2^2 + \beta_{12} \tilde{X}_1 \tilde{X}_2.$$

- This model contains separate and terms for each of the two predictors.
- It also contains a term representing the between the two predictors.
- β_{12} is called the

Second-Order Model with Two Predictors

$$Y_{i} = \beta_{0} + \beta_{1} \tilde{X}_{i1} + \beta_{2} \tilde{X}_{i2} + \beta_{11} \tilde{X}_{i1}^{2} + \beta_{22} \tilde{X}_{i2}^{2} + \beta_{12} \tilde{X}_{i1} \tilde{X}_{i2} + \epsilon_{i}, i = 1, \cdots, n,$$

where $\tilde{X}_{i1} = X_{i1} - \overline{X}_{1}$, $\tilde{X}_{i2} = X_{i2} - \overline{X}_{2}$.

Response function is a conic section:

$$E(Y) = \beta_0 + \beta_1 \tilde{X}_1 + \beta_2 \tilde{X}_2 + \beta_{11} \tilde{X}_1^2 + \beta_{22} \tilde{X}_2^2 + \beta_{12} \tilde{X}_1 \tilde{X}_2.$$

- This model contains separate linear and quadratic terms for each of the two predictors.
- It also contains a cross-product term representing the interaction between the two predictors.
- β_{12} is called the interaction effect coefficient.

Extensions: Second-order model with K predictors; Third-order models, etc.

From Applied Linear Statistical Models by Kutner, Nachtsheim, Neter and Li

The contour curves show various combinations of the values of the two predictors that yield the same value of the response function.

Second-Order Model with K Predictors

$$Y_{i} = \beta_{0} + \sum_{k=1}^{K} \beta_{k} \tilde{X}_{ik} + \sum_{k=1}^{K} \beta_{kk} \tilde{X}_{ik}^{2} + \sum_{1 \leq k < k' \leq K} \beta_{kk'} \tilde{X}_{ik} \tilde{X}_{ik'} + \epsilon_{i}, i = 1, \cdots, n,$$

where $\tilde{X}_{ik} = X_{ik} - \overline{X}_k$ $(k = 1, \dots, K)$.

Response function:

$$E(Y) = \beta_0 + \sum_{k=1}^K \beta_k \tilde{X}_k + \sum_{k=1}^K \beta_{kk} \tilde{X}_k^2 + \sum_{1 \le k \le k' \le K} \beta_{kk'} \tilde{X}_k \tilde{X}_{k'}.$$

- β_k s are linear effect coefficients; β_{kk} s are quadratic effect coefficients.
- $\{\beta_{kk'}: 1 \le k < k' \le K\}$ are interaction effect coefficients between respective pairs of predictors. (The cross-product terms are second-order terms.)

Salary: Third-Order Model

```
> fit3=lm(Salary Experience+I(Experience^2)+I(Experience^3). data=salary.c)
> summary(fit3)
Call.
lm(formula = Salary ~ Experience + I(Experience^2) + I(Experience^3).
data = salary.c)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.9484745 0.3224575 216.92 <2e-16 ***
Experience
            0.9364986 0.0603531 15.52 <2e-16 ***
I(Experience^2) -0.0537196 0.0024866 -21.60 <2e-16 ***
I(Experience^3) -0.0003957 0.0002888 -1.37 0.173
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Residual standard error: 2,808 on 139 degrees of freedom
Multiple R-squared: 0.9257. Adjusted R-squared: 0.9241
F-statistic: 577.1 on 3 and 139 DF, p-value: < 2.2e-16
> anova(fit3)
Analysis of Variance Table
Response: Salary
Df Sum Sg Mean Sg F value Pr(>F)
Experience 1 9962.9 9962.9 1263.1043 <2e-16 ***
I(Experience^2) 1 3677.9 3677.9 466.2810 <2e-16 ***
I(Experience<sup>3</sup>) 1 14.8 14.8 1.8764 0.173
Residuals
             139 1096 4 7 9
```

- First test whether the third-order term may be dropped.
 - Full model: third-order model vs. reduced model: second-order model.
 - $SSR(X^3|X, X^2) = 14.8$ with d.f. 1 and $SSE(X, X^2, X^3) = 1096.4$ with d.f. 139. The F-statistic is 1.876 and pvalue is 0.173.
 - Therefore, the third-order term is not significant and may be dropped.
- Then test whether the second-order term may be dropped.
 - Full model: second-order model vs. reduced model: first-order model.
 - $SSR(X^2|X) = 3677.9$ with d.f. 1 and $SSE(X, X^2) = SSE(X, X^2, X^3) + SSR(X^3|X, X^2) = 1111.2$
 - with d.f. 140. The F-statistic is 466.28 and pvalue < 2e 16.
 - So the second-order term is significant and should be retained.
- Thus the first-order term should also be retained and we end up with the second-order model.

Qualitative Predictors

Qualitative variables, a.k.a. categorical variables, represent certain characteristics of a subject.

- A qualitative variable has a fixed set of possible values/levels/classes.
- If a qualitative variable takes on exactly two values, it is called a binary variable.
- Examples.
 - Blood type: A, B, AB or O.
 - Smoke status: smoke or not smoke; binary variable.
 - Income level: high, medium or low.
 - Education level: high school, college, or advanced degree.

Indicators for Qualitative Variables

- To use a qualitative variable in a regression model as a predictor, we need to its classes.
- One popular approach is to use indicator variables (a.k.a. dummy variables).
 - An indicator variable is a variable only takes on the values

Indicators for Qualitative Variables

- To use a qualitative variable in a regression model as a predictor, we need to quantitatively identify its classes.
- One popular approach is to use indicator variables (a.k.a. dummy variables).
 - An indicator variable is a variable only takes on the values 0 or 1.

То	qua	anti	fy a	a bi	nar	yν	aria	able	, w	e n	eed	b					ir	idic	ato	r		
var	iab	le.																				
	S	lau	pos	e th	ne t	two	cla	iss	es a	are	lab	elle	ed a	as (C1.	C_2 .	Th	en	the	,		
			ato												- 17	<u>-</u>						
		-	all		٠٠		Ju	~				uo										
	F	or (exa	mp	le,	to c	od	e g	end	der,												
				Ļ																		
								v		1	if	ı	mai	le								
								∧ =	Ī	0	if	fe	ema	ale								
(abo				_												oitra	arily	1	
	С	hod	se	the	re	fere	enc	e c	las	s –	the	cla	ass	СО	dec	l as	0.					

4 D > 4 B > 4 E > E 9 Q C

To quantify a binary variable, we need **one** indicator variable.

 Suppose the two classes are labelled as C₁, C₂. Then the indicator variable can be defined as

$$X = \begin{cases} 1 & \text{if} \quad C_1 \\ 0 & \text{if} \quad C_2 \end{cases}$$

For example, to code gender,

$$X = \begin{cases} 1 & \text{if} & \text{male} \\ 0 & \text{if} & \text{female} \end{cases}$$

The above coding is **not unique**, since we can arbitrarily choose the *reference class* – the class coded as 0.

Qualitative Variables with More than Two Classes

Qualitative Variables with More than Two Classes

A qualitative variable with r classes, labeled as C_1, \dots, C_r , need to be represented by r-1 indicator variables, each taking on the values 0 and 1:

$$X_1 = \left\{ egin{array}{ll} 1 & \mbox{if} & C_1 \ 0 & \mbox{if} & \mbox{otherwise} \end{array}
ight. \ X_2 = \left\{ egin{array}{ll} 1 & \mbox{if} & C_2 \ 0 & \mbox{if} & \mbox{otherwise} \end{array}
ight. \ X_{r-1} = \left\{ egin{array}{ll} 1 & \mbox{if} & C_{r-1} \ 0 & \mbox{if} & \mbox{otherwise} \end{array}
ight.$$

For
$$C_r$$
 (the reference class), $X_1 = \cdots = X_{r-1} = 0$.

The above qualification is not unique as we can choose a different reference class.

Insurance

An economist wanted to relate the speed with which a particular insurance innovation is adopted by an insurance firm (Y) to the size of the firm (X_1) and the type of the firm (X_2) . He collected data on 20 insurance firms, 10 stock firms and 10 mutual firms.

- Y - number of months elapsed before the firm adopted the innovation and X_1 – the amount of total assets of the firm are quantitative variables.
- Type of the firm is a variable taking on two values: "stock" or "mutual". If we choose "mutual" as the reference class, then it can be quantified by an indicator variable:

Insurance

An economist wanted to relate the speed with which a particular insurance innovation is adopted by an insurance firm (Y) to the size of the firm (X_1) and the type of the firm (X_2) . He collected data on 20 insurance firms, 10 stock firms and 10 mutual firms.

- Y - number of months elapsed before the firm adopted the innovation and X_1 — the amount of total assets of the firm are quantitative variables.
- Type of the firm is a binary variable taking on two values: "stock" or "mutual". If we choose "mutual" as the reference class, then it can be quantified by an indicator variable:

$$X_2 = \begin{cases} 1 & \text{if} & \text{stock} \\ 0 & \text{if} & \text{mutual} \end{cases}$$

/	4 sr	na <mark>psh</mark>	ot d	of th	ne d	data	a.															
F	irm	Number	_of_	month		psed		Fir	m_Ty	e In		or_C	ode									
1					Y 17		X1 151		tual		X2 0											
3					26 21		92 175		tual tual		0											
1	18				13 30	•	305 124		ock ock		 1 1											
	20				14		246		ock		1											
													4	□ ▶	4	> 4	≣ >	4 ∄	>	1	99	e

A first order model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, \quad i = 1, \dots, 20.$$

The response function (mean response):

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2.$$

• For mutual firms, $X_2 = 0$ and the response function becomes

- $E(Y) = \beta_0 + \beta_1 X_1$ mutual firms
- For stock firms, $X_2 = 1$ and the response function becomes $E(Y) = (\beta_0 + \beta_2) + \beta_1 X_1 \quad \text{stock firms}$
- Both are straight lines with the same slope β_1 but with intercepts differing by β_2 .

Insurance: First Order Model

The economist was most interested in the effect of firm type on the speed to adopt an innovation.

- $\hat{\beta}_{2}=8.055$ means that for any given firm size, on average, it takes stock firms to adopt an innovation than mutual firms of the same size.
- A 95% confidence interval for β_2 : t(0.975; 17) = 2.11

With 95% confidence, we conclude that on average stock firms takes to adopt an innovation than mutual firms.

• The pvalue for testing whether $\beta_2 = 0$ is 3.74×10^{-5} . Therefore, β_2 is highly significant and firm type has a effect on the speed of adopting an innovation.

Why not simply fit two separate regression models for stock firms and mutual firms?

The economist was most interested in the effect of firm type on the speed to adopt an innovation.

- $\hat{\beta}_2 = 8.055$ means that for any given firm size, on average, it takes stock firms 8 more months to adopt an innovation than mutual firms of the same size.
- A 95% confidence interval for β_2 : t(0.975; 17) = 2.11

$$8.055 \pm 2.11 \times 1.459 = [4.98, 11.13].$$

With 95% confidence, we conclude that on average stock firms takes between 5 to 11 more months to adopt an innovation than mutual firms.

• The pvalue for testing whether $\beta_2 = 0$ is 3.74×10^{-5} . Therefore, β_2 is highly significant and firm type has a significant effect on the speed of adopting an innovation.

Why not simply fit two separate regression models for stock firms and mutual firms?

Summary

Interpretation of regression coefficients in a first order model with a quantitative variable (X_1) and an indicator variable (X_2) :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, \quad i = 1, \dots, n.$$

- β_1 is the common slope of the mean response line under both classes.
- eta_0 is the baseline intercept under class 0 (i.e., the reference class).
- β_2 shows how much higher (if positive) or lower (if negative) the mean response line is for class 1 for any given value of X_1 .
- The effect of one variable is the same no matter the value of the other variable.

Interactions between Quantitative and Qualitative **Predictors**

Interaction between qualitative and quantitative predictors can be introduced into the model through the usual manner, by

Insurance company. A model with interaction between firm size and firm type:

where X_1 is the amount of assets of a firm and X_2 is an indicator variable indicating the type of a firm.

Interactions between Quantitative and Qualitative

Predictors

Interaction between qualitative and quantitative predictors can be introduced into the model through the usual manner, by adding cross-product terms.

 Insurance company. A model with interaction between firm size and firm type:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \dots, 20,$$

where X_1 is the amount of assets of a firm and X_2 is an indicator variable indicating the type of a firm.

Response function (mean response):

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2.$$

For mutual firms, $X_2 = 0$ and thus $X_1X_2 = 0$. The response function becomes

which is a straight line with slope
$$\beta_1$$
 and intercept β_0 .

• For stock firms, $X_2 = 1$ and thus $X_1X_2 = X_1$. The response function becomes

which is a straight line with slope $\beta_1 + \beta_3$ and intercept $\beta_0 + \beta_2$.

Response function (mean response):

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2.$$

For mutual firms, $X_2 = 0$ and thus $X_1 X_2 = 0$. The response function becomes

$$E(Y) = \beta_0 + \beta_1 X_1$$
 mutual firms,

which is a straight line with slope β_1 and intercept β_0 . • For stock firms, $X_2 = 1$ and thus $X_1X_2 = X_1$. The response

function becomes $E(Y) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1$ stock firms,

which is a straight line with slope $\beta_1 + \beta_3$ and intercept $\beta_0 + \beta_2$.

Insurance: Interaction Model

Insurance: Interaction Model

```
> fit2=lm(Y~ X1+factor(X2)+X1:factor(X2), data=data)
> summarv(fit2)
Ca11 ·
lm(formula = Y \sim X1 + factor(X2) + X1:factor(X2), data = data)
Residuals:
Min
        10 Median
                      30
                              Max
-5.7144 -1.7064 -0.4557 1.9311 6.3259
Coefficients
Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.8383695 2.4406498 13.864 2.47e 10 **
X 1
                -0.1015306 0.0130525 -7.779 7.97e-07 ***
factor(X2)stock 8.1312501 3.6540517 2.225 0.0408 *
X1:factor(X2)stock -0.0004171 0.0183312 -0.023 0.9821
Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
Residual standard error: 3.32 on 16 degrees of freedom
Multiple R-squared: 0.8951. Adjusted R-squared: 0.8754
F-statistic: 45.49 on 3 and 16 DF. p-value: 4.675e-08
\beta_3 is not significant and we conclude that there is no interaction
```

effect and the first-order model suffices.

Summary

Interpretation of regression coefficients in an interaction model with a quantitative variable (X_1) and an indicator variable (X_2) :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \dots, n$$

- β_0 and β_1 are baseline intercept and slope, respectively, of the response function for class 0 (i.e., the reference class).
- $m{eta}_2$ indicates how much greater (if positive) or smaller (if negative) is the intercept of the response function for class 1.
- eta_3 indicates how much greater (if positive) or smaller (if negative) is the slope of the response function for class 1.
- The effect of one variable depends on the value of the other variable.

