# Universidade Federal Fluminense

LISTA 1 - REVISÃO

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

Expressões do 1º grau; sinal; retas.

Expressões do 2º grau; sinal; parábolas

Nos exercícios 1 a 5, esboce as retas dadas especificando as interseções com os eixos coordenados.

1. 
$$y = 3x + 1$$

2. 
$$y = -2$$

3. 
$$x = 4$$

4. 
$$y-2=-3$$

2. 
$$y = -2$$
 3.  $x = 4$  4.  $y - 2 = -x$  5.  $2y - x = 3, 2$ 

Nos exercícios 6 a 8, esboce as parábolas dadas especificando o vértice e as interseções com os eixos coordenados, caso existam.

6. 
$$y = x^2 + x - 3$$

7. 
$$y = 4x^2 + 4x + 1$$

8. 
$$y = -x^2 + x - 1$$

Nos exercícios 9 a 16, resolva as inequações. Nos exercícios marcados com "\*", relacione as soluções aos gráficos anteriores.

9. \* 
$$3x + 1 > 0$$

11. 
$$*x^2 + x - 3 > 0$$

11. 
$$*x^2 + x - 3 > 0$$
 13.  $*4x^2 + 4x + 1 \le 0$  15.  $\pi x^2 - x + 3 < 0$ 

15. 
$$\pi x^2 - x + 3 < 0$$

10. 
$$*2 - x < 0$$

12. \* 
$$-x^2 + x - 1 < 0$$
 14.  $x(x-1) < 0$  16.  $2x^2 - 1 \ge 0$ 

14. 
$$x(x-1) < 0$$

16. 
$$2x^2 - 1 \ge 0$$

- 17. Determine os valores reais de b, tais que  $x^2 + bx + 1 > 0, \forall x \in \mathbb{R}$ . Para um tal valor de b, como é o gráfico de  $y = x^2 + bx + 1$ ?
- 18. Determine os valores reais de a e b, tais que  $ax^2 + bx 1 < 0, \forall x \in \mathbb{R}$ . Escolha valores particulares para  $a \in b$ e esboce a parábola  $y = ax^2 + bx - 1$  correspondente.
- 19. Determine a equação da reta que passa pelo ponto P=(-2,-1) e é paralela a y=-x+1. Esboce as duas retas.
- 20. O comprimento de uma circunferência é dado por  $C = 2\pi R$ . Esboce o gráfico no plano RC.
- 21. Represente no plano RA a área de um círculo em função de seu raio.
- 22. No plano FC, esboce o gráfico da equação  $C = \frac{5}{9}(F-32)$ , que relaciona as temperaturas expressas em Fahrenheit e Celsius. Há alguma temperatura que apresente a mesma leitura nos termômetros Fahrenheit e Celsius? Se existir, qual é?
- 23. A pressão p experimentada por um mergulhador debaixo d'água está relacionada com sua profundidade d por meio da fórmula p = kd + 1, onde k é uma constante. Quando d = 0 metro, a pressão é 1 atmosfera. A 100 metros a pressão é 10,94 atmosferas. Esboce o gráfico da pressão em função da profundidade e determine a pressão a 50 metros.
- 24. Voando horizontalmente a uma altura de 11km, um avião leva 1h para percorrer uma distância de 720km entre dois pontos A e B.
  - a) Esboce o gráfico da altura do avião em função do tempo em minutos.
  - b) Determine a distância horizontal x percorrida pelo avião em 18 minutos a partir de A. Esboce o gráfico da distância percorrida pelo avião durante o voo em função do tempo t em minutos no plano tx.
- 25. Uma torneira despeja 4 l de água por minuto numa caixa d'água.
  - a) Represente a quantidade Q de água que jorra da torneira em t minutos. Esboce o gráfico no plano tQ.
  - b) Supondo que no instante inicial havia 200 l d'água na caixa, represente com uma equação a quantidade de água y presente na caixa no instante t em minutos. Esboce o gráfico.
  - c) Levando em conta o item b), quanta água exitirá na caixa após 2h e 20min? Supondo que a capacidade máxima da caixa d'água é de 2000 l, quanto tempo levará para enchê-la totalmente?

## RESPOSTAS

1. Interseção com ox em (-1/3,0) e com oy em (0,1).



2. Interseção com ox não existe e com oy em (0,-2).



3. Interseção com ox em (4,0) e com oy não existe.



4. Interseção com ox em (2,0) e com oy em (0,2).



5. Interseção com ox em (-3.2, 0) e com oy em (0,1.6).



6. Vértice em (-1/2,-13/4), interseção com ox em  $(\frac{-1-\sqrt{13}}{2},0)$ e  $(\frac{-1+\sqrt{13}}{2},0)$ e com oy em (0,-3).



7. Vértice em (-1/2,0), interseção com ox em (-1/2,0) e com oy em (0,1).



- 9.  $S = \{x; x > -1/3\}$
- 10.  $S = \{x; x \ge 2\}$
- 11.  $S = \{x; x < \frac{-1 \sqrt{13}}{2} \text{ ou } x > \frac{-1 + \sqrt{13}}{2} \}$
- 12.  $S = \mathbb{R}$

8. Vértice em (1/2, -3/4), interseção com ox não existe, pois as raízes não são reais  $(\Delta < 0)$  e com oy em (0,-1).



- 13.  $S = \{-1/2\}$
- 14.  $S = \{x; 0 < x < 1\}$
- 15. Ø
- 16.  $\{x; x \le \frac{-\sqrt{2}}{2} \text{ ou } x \ge \frac{\sqrt{2}}{2} \}$
- 17.  $y=x^2+bx+1>0, \forall x\in\mathbb{R},$  se  $\Delta<0$ , pois nesse caso a parábola dada por  $y=x^2+bx+1>0$  possui concavidade voltada para cima e não tem raízes reais. Logo, devemos ter  $\Delta=b^2-4<0$ , que é outra expressão quadrática com variável b. Então,  $\Delta=b^2-4<0 \Leftrightarrow -2< b<2$ .

O gráfico de  $y = x^2 + bx + 1$  é uma parábola com concavidade voltada para cima, que não intercepta o eixo x, pois não possui raízes reais, cujo vértice é no ponto  $(-b/2, (4-b^2)/4)$  e que intercepta o eixo y no ponto (0,1).

- 18. Se  $a=0,\ y=bx-1$  troca de sinal em  $\mathbb{R}$ . Se  $a\neq 0$ , para termos  $y=ax^2+bx-1<0, \forall x\in \mathbb{R}$  a concavidade da parábola deve ser para baixo e o  $\Delta<0$ . Logo, a<0 e devemos determinar os valores de b, tais que  $\Delta=b^2+4a<0$ , que é uma expressão quadrática na variável b. Portanto, como  $b^2+4a=0\Leftrightarrow b=\pm 2\sqrt{-a}$  (note que -a>0), temos que  $\Delta=b^2+4a<0\Leftrightarrow -2\sqrt{-a}< b<2\sqrt{-a}$ .
- 19. y = -x 3



20.  $C = 2\pi R$ 



21.  $A = \pi R^2$ 



22. A temperatura que apresenta a mesma leitura nos dois termômetros ocorre quando C=F, isto é no ponto de interseção entre as duas retas  $\frac{5}{9}(F-32)=F\Leftrightarrow 5F-160=9F\Leftrightarrow 4F=-160\Leftrightarrow F=-40$ . Tal ponto é (-40,-40).



23. Vamos calcular o valor de k usando o valor dado para a pressão a  $100\mathrm{m}$ , então  $10,94=100k+1\Rightarrow k=\frac{9,94}{100}.$  Assim,  $p=\frac{9,94}{100}\times50+1\Leftrightarrow p=4,97+1=5,97.$  atmosferas.



24. a) A altura y=11 é constante, então temos a reta horizontal y=11



b) Se em 60min a distância percorrida é de 720~km, então em 1~min são percorridos 720/60=12~km, portanto, a distância percorrida em 18~minutos a partir de A é de  $12\times18=216km$ . Para  $t\geq0$ , temos x=12t.



25. a) Q = 4tA00

200

200

30 60 90 120 150

Lista 1 Pré- Cálculo

2010-2

$$25-b)y = 200 + 4t$$



c) Após 2h e 20min, ou seja, 140 min, teremos  $y=200+4\times140=760\,litros$ na caixa.

A caixa encherá quando 2000 = 200 + 4t, isto é quando  $t = 1800/4 = 450 \, min$ . Portanto a caixa levará 7h e 30 min para encher (veja os pontos marcados no gráfico anterior).

## Universidade Federal Fluminense

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

### LISTA 2

Equações, inequações

Domínios, módulo

Nos exercícios 1 a 7 resolva, se possível, as equações, indicando em cada passo a propriedade algébrica dos números reais utilizada.

1. 
$$x(x^2 - 4x + 1) = x$$

2. 
$$x^2(x^2-4) = x(x-2)$$

3. 
$$2x(x^2-1)^2 = 4x^3(x^2-1)$$

4. 
$$x^2|x^2-4|=x(x-2)$$

5. 
$$|4x| + 1 = |x|$$

6. 
$$|x^3| = x^3 - x^2$$

7. 
$$\frac{\frac{2}{1-x}+x}{\frac{x^2-1}{x^2-1}}=0$$

Nos exercícios 8 a 17 resolva, se possível, as inequações, indicando em cada passo a propriedade de ordem dos números reais utilizada.

8. 
$$x^2 < 16$$

9. 
$$2x \le x^2$$

10. 
$$\frac{x+1}{x(x^2-1)} < \frac{1}{x^2-1}$$

11. 
$$\frac{x+1}{x-1} + \frac{x}{x-1} \le 1$$

12. 
$$x-1 > \frac{2}{x}$$

13. 
$$\frac{1}{x-1} - \frac{x+1}{x-2} \le 0$$

14. 
$$\frac{x^3}{(x+3)(x-2)} < \frac{x+x^2}{(x+3)(x-2)}$$

15. 
$$\frac{3x+1}{2x-1} + 1 > \frac{5x+3}{2x+5}$$

16. 
$$\frac{1}{|x|-1} < \frac{1}{|x|}$$

17. 
$$0 \le -x^2 + 4x \le 3$$

Nos exercícios 18 a 20 determine o domínio e estude o sinal de cada expressão. Represente o domínio na reta orientada.

18. 
$$E(x) = \frac{\frac{1}{x^2 - 2}}{\frac{1}{x} - x}$$

19. 
$$E(x) = \frac{3x^3 - 2x^2 + x}{x^2(1 - \frac{1}{x}) - 2x}$$
 20.  $E(x) = \frac{5x}{\left(\frac{x - 1}{x}\right)^2 - 4}$ 

20. 
$$E(x) = \frac{5x}{\left(\frac{x-1}{x}\right)^2 - 4}$$

21. Descubra a hipótese que falta sobre a ou/e b para tornar correta a equivalência abaixo:

$$\frac{|a|}{b^2 + b} \le 1 \Leftrightarrow |a| \le b^2 + b$$

- 22. a) Determine a solução de  $|x| \le x^2$ .
  - b) Represente o conjunto solução de a) na reta orientada.
  - c) Interprete a inequação em a) no plano cartesiano.
- 23. a) Determine os valores de x, tais que, a reta y = 2x + 1 está abaixo da parábola  $y = 2 x^2$ . Faça um esboço dos dois gráficos no plano cartesiano.
  - b) Determine os valores de c, tais que a reta y=2x+c possua algum ponto de interseção com a parábola  $y = 2 - x^2$ . Esboce.

- 24. Considere o problema : "Determinar os pontos da reta numérica cuja distância a -1 é maior do que 2."
  - a) Resolva o problema geometricamente.
  - b) Apresente o problema acima utilizando símbolos e notação matemática.
- 25. Seja b, um número real fixado, mas arbitrário. Diga quantas soluções existem para a equação |bx| = b.
- 26. Se  $-1 \le x \le 2$ , determine o menor intervalo a que y = 1 2x deve pertencer. Atribua um significado geométrico para o problema no plano cartesiano.
- 27. Verifique se cada afirmativa abaixo é falsa ou verdadeira. Se falsa, dê um contraexemplo, se verdadeira, demonstre-a.
  - **a)**  $a < 1 \Rightarrow \frac{1}{a} > 1$ .
  - **b)**  $a \ge b 3 \Rightarrow a^3 \ge a^2b 3a^2$ .
  - c)  $2a < b^2 \Rightarrow 2a^3 < a^2b^2$ .
  - **d)**  $ab \le a \Rightarrow b \le 1$ .

- e)  $|a|b > a \Leftrightarrow b > \frac{a}{|a|}$ .
- $\mathbf{f)} \ |a|b < 1 \Leftrightarrow a = 0 \ ou \ b < \frac{1}{|a|}.$
- g)  $|a| < |b| \Rightarrow |a+1| < |b+1|$

- 28. Complete e esboce na reta numérica.
  - a) Se  $x \in (-5,3]$ , então x+2 pertence ao intervalo.......
  - **b)**  $x^2 > 4 \Leftrightarrow x$  pertence ao intervalo ........
  - c) Se  $-5 < x < 3 \Rightarrow |x| < \dots$ .
  - **d)** Se  $|x| < 2 \Rightarrow |x+3| < \dots$   $e |x-1| < \dots$ .
- 29. Escreva a definição de cada expressão, abrindo o(s) módulo(s), e esboce o gráfico no plano cartesiano.

a) 
$$y = |2x + 1|$$

**b)** 
$$y = |x^2 - x|$$

c) 
$$y = |2 - x^2|$$

**d)** 
$$y = ||x| - 1|$$

e) 
$$y = \left| \frac{x^2 + 2x - 3}{x + 3} \right|$$

f) 
$$y = \frac{x|x^2 + 2x - 3|}{x + 3}$$

**g)** 
$$y = x^2 - |x^2 - x| - 1$$

### ${\bf Respostas}:$

1. 
$$S = \{0, 4\}$$

2. 
$$S = \{0, 2, -1 \pm \sqrt{2}\}$$

3. 
$$S = \{0, \pm 1\}$$

4. 
$$S = \{-1 - \sqrt{2}, -1, 0, 2\}$$

5. 
$$S = \emptyset$$

6. 
$$S = \{0\}$$

7. 
$$D = \mathbb{R} \setminus \{\pm 1\} \in S = \{2\}.$$

8. 
$$S = [-4, 4]$$

9. 
$$S = (-\infty, 0] \cup [2, +\infty)$$

10. 
$$S = (-\infty, -1) \cup (0, 1)$$

11. 
$$S = [-2, 1)$$

12. 
$$S = (-1,0) \cup (2,+\infty)$$

13. 
$$S = (-\infty, 1) \cup (2, +\infty)$$

14. 
$$S = (-\infty, -3) \cup \left[\frac{1-\sqrt{5}}{2}, 0\right] \cup \left[\frac{1+\sqrt{5}}{2}, 2\right)$$

15. 
$$S = (-5/2, -1/8) \cup (1/2, \infty)$$

16. 
$$S = (-1, 1)$$

17. 
$$S = [0,1] \cup [3,4]$$

$$18. \ \ D = \mathbb{R} \setminus \{\pm \sqrt{2}, 0, \pm 1\} \ ; \ E(x) > 0 \ se \ x \in (-\sqrt{2}, -1) \cup (1, \sqrt{2}); \ E(x) < 0 \ se \ x \in (-\infty, -\sqrt{2}) \cup (-1, 1) \cup (\sqrt{2}, \infty).$$

19. 
$$D = \mathbb{R} \setminus \{0,3\}; E(x) > 0 \text{ se } x \in (3,\infty); E(x) < 0 \text{ se } x \in (-\infty,0) \cup (0,3);$$

20. 
$$D = \mathbb{R} \setminus \{-1, 0, 1/3\}; E(x) > 0 \text{ se } x \in (-\infty, -1) \cup (0, 1/3); E(x) < 0 \text{ se } x \in (-1, 0) \cup (1/3, \infty)$$

21. 
$$a \in \mathbb{R}, b \in (-\infty, -1) \cup (0, +\infty)$$

22. a)
$$S = (-\infty, -1] \cup \{0\} \cup [1, +\infty)$$
  
b)

c) S representa as abscissas dos pontos sobre os gráficos , tais que a parábola  $y=x^2$  está acima ou intersecta o gráfico de y=|x|. Veja a representação abaixo:



23. a) $S = (-1 - \sqrt{2}, 1 + \sqrt{2})$ . Esboço dos gráficos:



b) Qualquer  $c \le 3$ . Para c = 3 há um único ponto de interseção e para cada c < 3 há dois pontos.

24. a)
$$S = (-\infty, -3) \cup (1, +\infty)$$
  
b)Determine a solução da inequação  $|x + 1| > 2$ .

25. Se 
$$b = 0 \Rightarrow S = \mathbb{R}$$
. Se  $b > 0 \Rightarrow S = \{\pm 1\}$ . Se  $b < 0 \Rightarrow S = \emptyset$ .

26. S = [-3, 3]. O gráfico da reta y = 1 - 2x está entre as retas y = -3 e y = 3, para  $x \in [-1, 2]$ .



- 27. a) (F): a = -1.
  - b) (V), pois se a=0 vale a igualdade. Se  $a\neq 0$ , então  $a^2>0$  e pela monotonicidade da multiplicação o resultado segue.
  - **c)** (F); a = 0.
  - **d)** (F); a = -1, b = 2.
  - e) (V). Observe que  $a \neq 0$ . Pela monotonicidade da g) (F); a = 1 e b = -3.
- multiplicação a equivalência segue, já que |a| > 0.
- $\begin{array}{lll} \textbf{f)} \ \ (V), & \text{pela} & \text{monotonicidade} & \text{da} & \text{multiplicação} \\ & \text{(prop.1.4.4)}, \text{ segue que } |a|b < 1 \Leftrightarrow |a| = 0 \text{ ou } b < \\ & \frac{1}{|a|} \Leftrightarrow a = 0 \text{ ou } b < \frac{1}{|a|}, \text{ onde na última} \\ & \text{equivalência usamos a prop. do módulo 1.7.1.} \end{array}$

- 28. **a** (-3,5]
  - **b)**  $(-\infty, -2)$  ou  $(2, +\infty)$
- **c)** |x| < 5
- **d)** |x+3| < 5 e |x-1| < 3.
- 29. **a)** a) $y = \begin{cases} 2x+1, & \text{se } x \ge -1/2; \\ -2x-1, & \text{se } x < -1/2. \end{cases}$



**b)** b)  $y = \begin{cases} x^2 - x, & \text{se } x \ge 1 \text{ ou } x \le 0; \\ x - x^2, & \text{se } 0 < x < 1. \end{cases}$ 



c) c)
$$y = \begin{cases} x^2 - 2, & \text{se } x \ge \sqrt{2} \text{ ou } x \le -\sqrt{2}; \\ 2 - x^2, & \text{se } -\sqrt{2} < x < \sqrt{2}. \end{cases}$$



$$\mathbf{d}) \ \mathbf{d})y = \left\{ \begin{array}{ll} |x| - 1, & \text{se } x \ge 1 \ ou \ x \le -1 \\ 1 - |x|, & \text{se } -1 < x < 1. \end{array} \right. = \left\{ \begin{array}{ll} x - 1, & \text{se } x \ge 1; \\ 1 - x, & \text{se } 0 \le x < 1. \\ 1 + x, & \text{se } -1 < x < 0. \\ -x - 1, & \text{se } x \le -1; \end{array} \right.$$



e) Observe que o domínio da expressão é 
$$\mathbb{R} \setminus \{-3\}$$
 e 
$$y = \left| \frac{(x-1)(x+3)}{x+3} \right| = |x-1| = \left\{ \begin{array}{l} x-1, & \text{se } x \geq 1 \\ 1-x, & \text{se } x < -3 \ ou - 3 < x < 1. \end{array} \right.$$



f) O domínio da expressão é  $\mathbb{R} \setminus \{-3\}$  e

$$y = \begin{cases} \frac{x(x^2 + 2x - 3)}{x + 3}, & \text{se } x \ge 1 \text{ ou } x < -3 \\ \frac{-x(x^2 + 2x - 3)}{x + 3}, & \text{se } -3 < x < 1. \end{cases} = \begin{cases} x(x - 1), & \text{se } x \ge 1 \text{ ou } x < -3; \\ -x(x - 1), & \text{se } -3 < x < 1; \end{cases}$$



g) 
$$y = \begin{cases} x - 1, & \text{se } x \ge 1 \text{ ou } x \le 0 \\ 2x^2 - x - 1, & \text{se } 0 < x < 1. \end{cases}$$



Universidade Federal Fluminense

LISTA 3

EGM - Instituto de Matemática

Raízes, Equações

GMA - Departamento de Matemática Aplicada

Inequações, miscelânea

1)Resolva, se possível, as equações:

a)
$$(\sqrt{x})^6 + x^3 = 0$$
 b) $\sqrt{x^6} + x^3 = 0$  c)  $\sqrt{x-1} - \sqrt{x+2} = x$ 

- **2)a)** Mostre que  $\sqrt{xy} \le \frac{x+y}{2}$ ,  $\forall x,y \ge 0$ . Essa desigualdade significa que a média geométrica entre dois números reais não negativos é menor do que ou igual a média aritmética entre eles.
- b) Quando é que a igualdade vale?
- **3)a)** Existe algum subconjunto da reta onde vale a igualdade  $\sqrt{\frac{x}{x-1}} = \frac{\sqrt{x}}{\sqrt{x-1}}$ ?
- **b)** Existe algum subconjunto da reta onde vale a igualdade  $\sqrt{\frac{x}{x-1}} = \frac{\sqrt{-x}}{\sqrt{1-x}}$ ?
- 4) a) Utilize a equivalência:  $|x| \ge a \Leftrightarrow x \ge a \text{ ou } x \le -a$ ; para resolver a inequação  $|2x - 3| \ge 1$ .
- b) Utilize a equivalência:  $|x| \le a \Leftrightarrow -a \le x \le a$ ; para resolver a inequação  $|2-3x| \le 1$ .
- 5)¹Mostre que a soma de um número real positivo com seu inverso não pode ser menor do que 2.
- 6) a) Se  $1 \le a \le \sqrt{2}$ , estime  $\sqrt{1+a^2}$ .
- b) Se  $\sqrt{3} \le x < 2$ , estime  $\sqrt{9 x^2}$ .
- c) Se  $\sqrt{3} \le x < 2$ , estime  $\frac{1}{\sqrt{5-\frac{x^2}{x^2}}}$ .
- d)Se  $\sqrt{3} \le x < 2$ , estime  $\frac{3}{2 \sqrt{5 x^2}}$
- 7) Verifique se cada afirmativa abaixo é falsa ou verdadeira. Se falsa, dê um contra exemplo, se verdadeira, demonstre-a.
  - a)  $a^2 < b^2 \Rightarrow a < b$ .
  - b)  $a < b \Rightarrow a^2 < b^2$ .
  - c)  $a^2 < b^2 \Leftrightarrow |a| < |b|$ .
  - d)  $a^3 < b^3 \Leftrightarrow a < b$
  - e)  $a < b \Rightarrow ca < cb, \forall c \in \mathbb{R}$ .
- 8)Complete o quadrado das expressões e determine o sinal.
- a)  $E(x) = 3x^2 + 2x + 1$
- **b)**  $E(x) = 2x^6 + 2x^3 + 0.51$
- c)  $E(x) = \sqrt{x} 4\sqrt[4]{x} + 1$ ,  $x \ge 0$
- **d)**  $E(x) = \frac{4}{x^2} \frac{4}{x} + 2, \ x \neq 0.$
- 9) Em cada caso, determine a constante c e a mudança de variável y, tais que as igualdades se verificam.
- a)  $\sqrt{x^2 + 3x} = \sqrt{y^2 + c}$
- **b)**  $\sqrt{x-x^2} = \sqrt{c-y^2}$
- c)  $\sqrt{\sqrt{2}x^2 x + 2\sqrt{2}} = \sqrt{y^2 + c}$

<sup>&</sup>lt;sup>1</sup>Ex. tirado de Druck, S., Firmo, S. e Gomes, M. E., Preparação para o Cálculo.

10) Encontre a interseção entre os gráficos de  $y=\sqrt{x}$  e a reta y=x-6. Faça um esboço.

11)Complete:

a) 
$$\sqrt[3]{x^{15}} = \dots$$

**b**) 
$$\sqrt[6]{x^{18}} = \dots$$

**c)** 
$$(x^6)^{1/2} = \dots$$

**d)** 
$$(x^4)^{1/12} = \dots$$

12) Faça as simplificações necessárias para que você saiba investigar o comportamento da expressão para x próximo do ponto  $x_0$  (fora do domínio da expressão) dado em cada caso.

a) 
$$E(x) = \frac{\sqrt{x} - \sqrt{3}}{x - 3}, x_0 = 3.$$

**b)** 
$$E(x) = \frac{\sqrt[3]{x^2 + 1} - 1}{x^2}, x_0 = 0.$$

**c)** 
$$E(x) = \frac{x^5 - 32}{x - 2}, x_0 = 2.$$

13)Dê o domínio, simplifique e estude o sinal.

a) 
$$E(x) = \frac{2x\sqrt{x+1} - \frac{x^2}{2\sqrt{x+1}}}{x+1}$$

**b)** 
$$E(x) = \frac{4x(x^2 - 1) - 2x^2 \cdot 2x}{(x^2 - 1)^2}$$

c) 
$$E(x) = \frac{2(x+1)^{3/2}(6x+4) - 3(3x^2 + 4x)(x+1)^{1/2}}{4(x+1)^3}$$

**d)** 
$$E(x) = \frac{1}{x + \frac{1}{x - \frac{2}{x}}}$$

14) a) Esboce a região limitada por  $y=\sqrt{x}$ , a reta y+x=4 e o eixo 0 y, determinando os pontos de interseção.

b) Esboce a região limitada por  $y=\sqrt{x}$  , a reta y+x=4 e a reta y=4, determinando os pontos de interseção.

15)Resolva as equações elevando-as ao quadrado.

a) 
$$|x-2| = \sqrt{x}$$

**b)** 
$$|x-3|+|x+3|=6$$

c) 
$$\sqrt{x-1} = x-3$$

16)Estude o sinal das expressões.

a) 
$$E(x) = \frac{(7-x^2)(x^2+|x|+1)}{-x^2+2x-5}$$

b) 
$$E(x) = \frac{(2-|x|)(x^5+x^3-6x)}{2x^2-3x}$$

17)Resolva e marque o conjunto solução na reta numérica.

$$a) \ \frac{2}{x-1} \le \frac{x}{2-x}$$

b) 
$$\sqrt{2|x|-1} = x$$

c) 
$$x = \sqrt{-x^2 + |x|}$$

d) 
$$\sqrt{x^2 - 2x} = 1$$

e) 
$$(|x| - 3)^5 = 6$$

f) 
$$(1-|x|)(x^2-1) \le (|x|-1)^2$$

g) 
$$(|x|-1)(x+2) = -2$$

h) 
$$\sqrt[3]{2x(x-4)} = \sqrt{2x}$$

i) 
$$x\sqrt{x^2(x^2-2)} + (1-3x)\sqrt{x^2-2} = 0$$

j) 
$$|x-2| < 2x$$

18)Determine o domínio.

a) 
$$E(x) = \frac{\sqrt[4]{x^4 + 5x^2 + 6}}{\sqrt{|x| - 5 + x}}$$

**b)** 
$$E(x) = \frac{1 + \frac{1}{\sqrt[4]{2 + x}}}{\sqrt{\frac{x^2 - |x|}{1 - x}}}$$

### RESPOSTAS

1-a)
$$S=\{0\}$$
 b) $S=(-\infty,0]$  c) $\sqrt{x-1}-\sqrt{x+2}=x\Leftrightarrow \frac{-3}{\sqrt{x-1}+\sqrt{x+2}}=x$ , daí  $x<0$ , mas o domínio é  $D=[1,+\infty)$ . Logo,  $S=\varnothing$ 

2-a) Basta considerar a inequação  $0 \le (\sqrt{x} - \sqrt{y})^2 = x + y - 2\sqrt{xy}, \forall x, y \ge 0.$ 

b) Pela inequação em a), a igualdade vale se e só se  $\sqrt{x} - \sqrt{y} = 0$ , isto é, quando x = y.

3)-a)Sim, 
$$S = (1, \infty)$$
. b)Sim,  $S = (-\infty, 0]$ . 4-a) $S = [2, +\infty) \cup (-\infty, 1]$ . b) $S = [1/3, 1]$ .

5) Deve-se mostrar que o o sinal de  $x + \frac{1}{x} - 2$  é sempre positivo ou nulo ,  $\forall x > 0$ .

6-c) Como  $0 \le \sqrt{3} \le x < 2$ , elevando ao quadrado, a desigualdade é preservada e obtemos  $3 \le x^2 < 4$ . Daí,  $-3 \ge -x^2 > -4$  e portanto  $2 \ge 5 - x^2 > 1$ . Como a raiz quadrada também preserva a ordem, temos que  $\sqrt{2} \ge \sqrt{5 - x^2} > 1$  e portanto  $\frac{1}{\sqrt{2}} \le \frac{1}{\sqrt{5 - x^2}} < 1$ .

7-a)F- Contraexemplo: a=1 e b=-3: b)F- Contraexemplo: a=-4, e b=1 c)V- Usamos a propriedade 1.8.4, pois  $a^2, b^2, |a|, |b| \geq 0$  d)V- Se a = 0oub = 0, o resultado é trivial. Suponha  $a, b \neq 0$ . Considere o produto notável  $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ , onde a parcela da direita pode ser considerada uma expressão do 2-º grau com incógnita a e  $b \neq 0$  constante , mas arbitrária. Então ,  $(a^2 + ab + b^2) > 0$ ,  $\forall a, b \neq 0$ , pois  $\Delta = -3b^2 < 0$  e a concavidade é para cima. Assim, do produto notável acima,  $a^3 - b^3 < 0 \Leftrightarrow a - b < 0$ , isto é ,  $a^3 < b^3 \Leftrightarrow a < b$ . e)F- contraexemplo: tome qualquer c < 0.

8-a)3
$$(x+1/3)^2 + 2/3$$
: b)2 $(x^3 + 1/2)^2 + 0$ ,01; c) $(\sqrt[4]{x} - 2)^2 - 3$ ; d)4 $(1/x - 1/2)^2 + 1$ .

9-a)
$$y = x + 3/2$$
 e  $c = -9/4$ ; b) $y = x - 1/2$  e  $c = 1/4$ ; c) $y = \sqrt[4]{2}x - \frac{1}{2\sqrt[4]{2}}$  e  $c = 15/4\sqrt{2}$ .

$$10-P = (9,3)$$
5
0
10
15
15

11-a)
$$x^5$$
; b) $|x|^3$ ; c) $|x|^3$ ; d) $|x|^{1/3}$ .

12-a) 
$$E(x) = \frac{1}{\sqrt{x} + \sqrt{3}}$$
e se aproxima de  $1/2\sqrt{3}$ 

b)
$$E(x)=\frac{1}{\sqrt[3]{(x^2+1)^2}+\sqrt[3]{x^2+1}+1}$$
 e se aproxima de 1/3. c) $E(x)=x^4+2x^3+4x^2+8x+16$  e se aproxima de 80.

$$c)E(x) = x^4 + 2x^3 + 4x^2 + 8x + 16$$
 e se aproxima de 80.

$$13-a)D = (-1, +\infty), \ E(x) < 0 \text{ em } (-1, 0), \ E(x) > 0 \text{ em } (0, +\infty) \text{ e } E(x) = 0 \text{ sse } x = 0. \text{ b})D = \mathbb{R} \setminus \{\pm 1\}, E(x) < 0 \text{ em } (0, 1) \cup (1, +\infty), \ E(x) > 0 \text{ em } (-\infty, -1) \cup (-1, 0) \text{ e } E(x) = 0 \text{ sse } x = 0. \text{ c})D = (-1, \infty), \ E(x) > 0, \ \forall x > -1.$$

$$\mathrm{d}D = \mathbb{R} \setminus \{\pm \sqrt{2}, 1, 0\}, \ E(x) < 0 \ \mathrm{em} \ (-\infty, -\sqrt{2}) \cup (1, \sqrt{2}) \cup (-1, 0), \ \mathrm{e} \quad E(x) > 0 \ \mathrm{em} \ (\sqrt{2}, +\infty) \cup (0, 1) \cup (-\sqrt{2}, 1) \ .$$

14-a)O ponto de interseção entre os gráficos da reta e de  $y = \sqrt{x}$  é

$$P = (\frac{9 - \sqrt{17}}{2}, \frac{-1 + \sqrt{17}}{2}).$$



b) As retas y = 4 e y + x = 4 têm interseção no ponto (0,4). A reta y=4 e a curva  $y=\sqrt{x}$ têm interseção em (16,4).



15-a) $S = \{1, 4\}$ b)Observe que nesse caso, a equação dada é equivalente à equação ao quadrado e portanto não precisamos testar o conjunto solução! S = [-3, 3].  $c)S = \{5\}$ 

$$16\text{-a})E(x)>0 \Leftrightarrow x\in (-\infty,-\sqrt{7})\cup (\sqrt{7},\infty); \quad E(x)<0 \Leftrightarrow x\in (-\sqrt{7},\sqrt{7}); \quad E(x)=0 \Leftrightarrow x=\pm \sqrt{7};$$
 
$$\text{b)}E(x)>0 \Leftrightarrow x\in (-\infty,-2)\cup (-\sqrt{2},0)\cup (0,\sqrt{2})\cup (3/2,2); \quad E(x)<0 \Leftrightarrow x\in (-2,-\sqrt{2})\cup (\sqrt{2},3/2)\cup (2,+\infty);$$
 
$$E(x)=0 \Leftrightarrow x=\pm 2,\pm \sqrt{2};$$

$$17)\mathbf{a})S = \left[\frac{-1-\sqrt{17}}{2},1\right) \cup \left[\frac{-1+\sqrt{17}}{2},2\right); \quad \mathbf{b})S = \{1\}; \quad \mathbf{c})S = \{0,1/2\}; \quad \mathbf{d})S = \{1\pm\sqrt{2}\};$$

e) 
$$S = \{\pm (3 + \sqrt[5]{6})\}$$
; f)  $S = \mathbb{R}$ ; g)  $S = \{0, -3\}$ ; h)  $S = \{0, 8\}$ ; i)  $S = \{\frac{3 \pm \sqrt{5}}{2}, \frac{-3 - \sqrt{13}}{2}, \pm \sqrt{2}\}$ ;

$$\mathbf{j})S=[2/3,+\infty)$$

18)a)
$$D = (5/2, +\infty)$$
 b) $D = (-2, -1)$ 

## LISTA 4

Raízes, Equações e inequações com módulos

Gráficos, estudo do sinal usando o TPS

1))Estude o sinal e esboce o gráfico; depois confira o sinal olhando o gráfico.

a) 
$$E(x) = x|x+2|-1$$

b) 
$$E(x) = \frac{|x^2 - 5x|}{x}$$

c) 
$$E(x) = \frac{|(2x^2 + 3x + 2)(x+3)|}{(x+3)}$$

d) 
$$E(x) = |x| - |2x - 1| + 3$$

e) 
$$E(x) = |x^2 - 1| - x|x - 2|$$

f) 
$$E(x) = \frac{|x^3 - x^2|}{x} - 2$$

g) 
$$E(x) = |x^2 - 1| + 2x - |2x + 1| + x^2$$

2) Determine o domínio.

a) 
$$E(x) = \frac{\sqrt[4]{x^4 + 5x^2 + 6}}{\sqrt{|x| - 5 + |x + 3|}}$$

**b)** 
$$E(x) = \frac{1 + \frac{1}{\sqrt[4]{2+x}}}{\sqrt{\frac{x^2 - |x+2| + |x|}{1-x}}}$$

3)Resolva usando o teorema da preservação do sinal.

a) 
$$0 \le \frac{|x+1| - |x|}{x} \le \frac{2}{x}$$

d) 
$$\sqrt[3]{2x(x-4)} = \sqrt{2x}$$

b) 
$$x \le \sqrt{3x - 2}$$

e) 
$$|x| + 2\sqrt{|x^2 + x - 6|}$$

c) 
$$\sqrt{2x-2} + \sqrt{2-x} > \sqrt{x}$$

f) 
$$x\sqrt{x^2(x^2-2)} + (1-3x)\sqrt{x^2-2} = 0$$

4) Resolva abrindo os módulos (sem estudar o sinal).

a) 
$$|x+2| - x|x| - 7 = 0$$

b) 
$$||x-1|-3|-2|x|-x=0$$

5) Seja E(x) uma expressão com o seguinte quadro de sinais



- a)Resolva  $E(|x|-1) \ge 0$ .
- b) Determine o domínio de  $\sqrt{E(x-2)}$ .
- c) Seja F(x) outra expressão com o quadro de sinais dado por

$$\frac{ ---- 0 ---- 0 + + + + + + nd_{----} }{-2 -1/2}$$
 Determine o domínio de  $G(x) = \sqrt{E(x)} \sqrt{F(x)}$  e de  $H(x) = \frac{x}{\sqrt{F(x)E(x)}}$ .

# Universidade Federal Fluminense

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

## Respostas da lista 4

- 1. a)  $E(x) > 0 \Leftrightarrow x > \sqrt{2} 1$ ;  $E(x) < 0 \Leftrightarrow x < \sqrt{2} - 1$ :  $E(x) = 0 \Leftrightarrow \sqrt{2} - 1$ .
- **b)**  $E(x) > 0 \Leftrightarrow 0 < x < 5 \text{ ou } x > 5;$   $E(x) < 0 \Leftrightarrow x < 0 ; E(x) = 0 \Leftrightarrow x = /$









**d)** 
$$E(x) < 0 \Leftrightarrow x \in (-\infty, -2) \cup (4, \infty); \quad E(x) > 0 \Leftrightarrow x \in (-2, 4); \quad E(x) = 0 \Leftrightarrow x = -2, 4$$



- e)  $E(x) > 0 \Leftrightarrow x \in (-\infty, 1/2) \cup (\frac{1+\sqrt{3}}{2}, \infty);$   $E(x) < 0 \Leftrightarrow x \in (1/2, \frac{1+\sqrt{3}}{2});$   $E(x) = 0 \Leftrightarrow$ 
  - $E(x) = 0 \Leftrightarrow$   $x = \frac{1 + \sqrt{3}}{2}, 1/2;$



 $\mathbf{f)} \ E(x) > 0 \Leftrightarrow x \in (2, \infty); \ E(x) < 0 \Leftrightarrow x \in (-\infty, 0) \cup (0, 2); \ E(x) = 0 \Leftrightarrow x = 2;$ 



- 2. **a)**  $D = (-\infty, -4) \cup (1, \infty)$ ;
  - **b)**  $D = (-2, 1 \sqrt{3}) \cup (1, \sqrt{2}).$
- 3. a) Devem ser satisfeitas simultaneamente as 2 inequações :  $\frac{|x+1|-|x|-2}{x} \leq 0$ , cujo conjunto solução é  $S_1=(0,\infty)$  e  $\frac{|x+1|-|x|}{x} \geq 0$ , cujo conjunto solução é  $S_2=(-\infty,-1/2]\cup(0,\infty)$ . Logo,  $S=S_1\cap S_2=(0,\infty)$ ;
  - **b)** S = [1, 2]
  - c) S = (1,2)
  - **d)**  $S = \{0, 8\}$
  - e)  $S = \{2\}$
  - $\mathbf{f)} \ \ S = \left\{ \frac{3 \pm \sqrt{5}}{2}, \frac{-3 \sqrt{13}}{2}, \pm \sqrt{2} \right\}$
- 4. a) 1) $S = \left\{ \frac{1 \sqrt{37}}{2} \right\}$ ;
  - **b)**  $S = \{\pm 1\}$
- 5. **a)**  $S = (-1,1) \cup [2,6] \cup [-6,-2]$ ;
  - **b)**  $D = (-\infty, 2) \cup [3, 7]$ ;
  - c) Domínio de G:  $[-1/2,0)\cup[1,2];$  Domínio de H:  $(-1/2,0)\cup(1,2)\cup(5,\infty).$

Universidade Federal Fluminense

LISTA 5

EGM - Instituto de Matemática

Polinômios, pesquisa de raízes

GMA - Departamento de Matemática Aplicada

Estudo do sinal

1) Use o método da chave para efetuar a divisão de  $p(x) = x^6 - 2x^4 + x^2 - x - 2$  por  $d(x) = x^2 + x - 1$ .

2) O objetivo desse exercício é escrever  $\frac{x^2-x+1}{x^2(x^2-1)}$  como uma soma de frações parciais mais simples. Assim, determine A,B,C,D, tais que  $\frac{x^2-x+1}{x^2(x^2-1)}=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+1}+\frac{D}{x-1}$ .

3)Determine os valores de a, tais que o resto da divisão de

a) 
$$p(x) = x^4 + 4x^3 - a^2x^2 + 3ax - 1$$
 por  $(x - 1)$  seja 0.

**b)** 
$$p(x) = x^3 - |a|x^2 + ax - 1$$
 por  $(x+1)$  seja -2.

4) Determine  $a \in b$ , tais que:

- a) o resto da divisão de  $p(x) = x^3 + ax^2 + bx + 1$  por (x-1) e (x+1) seja, respectivamente, 2 e 1.
- b)  $p(x)=x^5-ax^4+bx^3+(a+1)x^2+(2a+b)x-ab-2$  possua raiz nula com multiplicidade 2.
- c) x = 1 seja raiz com multiplicidade 2 do polinômio  $p(x) = x^4 + ax^3 + (2+b)x^2 + 2ax + 2b$ .

5)Determine o polinômio de grau 3, mônico(o coeficiente do termo de maior grau é 1), tal que 1 e 2 são raízes do polinômio e p(3) = 30.

6) Use Briott-Ruffini para checar a fórmula  $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + ... + xy^{n-2} + y^{n-1}).$ 

7) Qual é o grau do polinômio  $p(x) = (x-1)(x-2)^2(x-3)^3...(x-100)^{100}$ ?

9) Se p(-2) = 0, determine uma raiz de q(x) = p(x+2) e duas raízes de  $q(x) = p(x-x^2)$ .

10)a)Mostre que  $p(x) = 2x^3 - x + 3$  tem uma raiz irracional(não precisa determinar a raiz).

b) Mostre que  $\sqrt[n]{a}$  é inteiro ou irracional , $\forall n, a \in \mathbb{N}, n \geq 2$ .

11) Mostre que  $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$ .

 $\bigstar$ Sugestão: Construa um polinômio com coeficientes inteiros que tenha como raiz  $\sqrt{2} + \sqrt{3}$ . Faça a pesquisa de raízes racionais.

12)a)Mostre que se dois polinômios de grau 2 tiverem 3 pontos em comum, então eles são iguais.

b) Generalize o item a): mostre que se dois polinômios de grau n tiverem n+1 pontos em comum, então eles são iguais.

13) Verifique se cada afirmativa abaixo é falsa ou verdadeira. Se falsa, dê um contraexemplo, se verdadeira, demonstre-a.

- a) A soma entre dois polinômios de grau 4 pode ter grau 3.
- b) O quociente entre dois polinômios é sempre um polinômio.
- c) Se dois polinômios têm as mesmas raízes, então eles são iguais.
- **d)** O polinômio  $p(x) = (x^2 + 2)^5(x^7 3)$  tem grau 17.
- e) Se p(x)tem grau 4 e possui 4 raízes reais  $x_1, x_2, x_3, x_4$ , então  $p(x) = (x x_1)(x x_2)(x x_3)(x x_4)$

14) Encontre as raízes e fatore os polinômios.

a) 
$$p(x) = 6x^3 + 7x^2 - 1$$

**b)** 
$$p(x) = 2x^3 + 9x^2 + 15x + 9$$

c) 
$$p(x) = x^4 + \frac{2}{3}x^2 - \frac{1}{3}$$

15) Dados  $p(x) = 6x^3 + 7x^2 - 1$  e  $q(x) = 2x^3 + 9x^2 + 15x + 9$  (do ex.14), determine o domínio de :

**a)** 
$$E(x) = \sqrt{p(x)}$$

**b)** 
$$E(x) = \frac{x - \frac{1}{2 - 4\sqrt{x}}}{\sqrt[5]{p(x)}}.$$

c) 
$$E(x) = \frac{1}{\sqrt{p(x)}} - \frac{1}{\sqrt[3]{q(x)}}$$
.

16)Estude o sinal:

a) 
$$E(x) = 4x^4 - 5x^3 - 11x^2 + 11x - 2$$

**b)** 
$$E(x) = 6x^5 - 27x^4 + 39x^3 - 21x^2 + 12$$

17)Resolva:

a) 
$$\frac{(x^3 - 2x + 1)(|x| - 1)}{x} \ge \frac{(x - 1)(|x| - 1)}{x}$$

**b)** 
$$|x^3 + \frac{x}{2} + 6| - |\frac{x}{2} + 6| - x = 0$$

18)Esboce os gráficos de

a) 
$$E(x) = \frac{|x^3 - 3x + 2|}{|x| - 1}$$

a) 
$$E(x) = \frac{|x^3 - 3x + 2|}{x - 1}$$
.  
b)  $F(x) = \left| \frac{x^3 - 3x + 2}{x - 1} \right|$ 

#### Respostas

$$1)p(x) = (x^2 + x - 1)(x^4 - x^3 - x + 2) - 4x.$$

$$2)A=1$$
 ,B=-1 ,C=-3/2 ,D=1/2.

$$(3)a)a = 4$$
 ou  $a = -1$ .  $(b)a < 0$ .

4)a)
$$a = 1/2$$
 e  $b = -1/2$ ; b) $a = 1$  e  $b = -2$  ; c) $a = -2$ ,  $b = 1$  neste caso,  $p(x) = (x-1)^2(x^2+2)$ .

$$5)p(x) = (x-1)(x-2)(x+12)$$

$$7)Gr(p(x))=1+2+3+...+100=5050$$
 (Uma PA ,com r=1.)

8)m.n=-54.

9)
$$x = -4$$
 é uma raiz de  $q(x)$  ;  $x = 2$  e  $x = -1$  são raízes de  $g(x)$ .

10) Como o grau do polinômio é ímpar, então ele possui ao menos uma raiz real. Fazendo a pesquisa de raízes racionais, vemos que nenhum número racional do conjunto de teste  $T = \{\pm 1, \pm 3, \pm 3/2, \pm 1/2\}$  é raiz de p(x).

11)  
Seja 
$$x=\sqrt{2}+\sqrt{3} \Rightarrow x^2=5+2\sqrt{6} \Rightarrow (\frac{x^2-5}{2})^2=6 \Rightarrow x^4-10x^2+1=0$$
. Assim, considere o polinômio  $p(x)=x^4-10x^2+1$ . Por construção  $x=\sqrt{2}+\sqrt{3}$  é raiz de  $p(x)$ . Como as únicas raízes racionais possíveis

para esse polinômio são  $\pm 1$ , que na verdade nem são raízes, segue que p(x) não possui raiz racional, donde  $x = \sqrt{2} + \sqrt{3} \notin \mathbb{Q}$ .

12)<br/>a) Sejam p(x) e q(x) polinômio que coincidem em  $x_1, x_2, x_3$ . Então, o polinômio g(x) = p(x) - q(x) possui grau no máximo 2 e três raízes , pelo Teorema Fundamental da Álgebra segue que  $g(x) \equiv 0$ . Portanto  $p(x) = q(x), \forall x \in \mathbb{R}$ .

b) Análoga à demonstração de a).

13)a)V- Tome 
$$p(x) = x^4 + x^3 + 1$$
 e  $q(x) = -x^4$ .

b) F- Tome o contra-exemplo p(x)=1 e  $q(x)=x, \frac{p(x)}{q(x)}$  não é polinômio .

c)F- Tome o contra-exemplo p(x) = 2x(x-1) e q(x) = x(x-1)

d)V- O primeiro fator tem grau 10 e o segundo grau 7. Quando multiplicamos o grau resultante é 17.

e)F- Qualquer  $p(x) = c(x - x_1)...(x - x_4)$  tem grau 4 e tem  $x_1, x_2, x_3, x_4$  como raízes reais.

$$14)a)p(x) = (x+1)(2x+1)(3x-1).$$

b)
$$p(x) = (2x+3)(x+3+\sqrt{3})(x+3-\sqrt{3})$$
.

$$c)p(x) = (x^2 + 1)\left(x - \frac{\sqrt{3}}{3}\right)\left(x + \frac{\sqrt{3}}{3}\right).$$

$$(15)a)D = [-1, -1/2] \cup [1/3, +\infty), \text{ pois } p(x) \ge 0$$

b)
$$D = \{x \ge 0; x \ne -1, -1/2, 1/3, 1/4\}$$
, pois  $x \ge 0$ ,  $p(x) \ne 0$  e  $2 - 4\sqrt{x} \ne 0$ 

c)
$$D = (-1, -1/2) \cup (1/3, +\infty)$$
, pois  $p(x) > 0$ , e  $q(x) \neq 0$ .

$$16)\mathbf{a})E(x)>0 \Leftrightarrow x\in (-\infty,\frac{-1-\sqrt{5}}{2})\cup (1/4,\frac{-1+\sqrt{5}}{2})\cup (2,+\infty) \quad :$$

$$E(x) < 0 \Leftrightarrow x \in (\frac{-1 - \sqrt{5}}{2}, 1/4) \cup (\frac{-1 + \sqrt{5}}{2}, 2) \quad ; E(x) = 0 \Leftrightarrow x = 1/4 \text{ ou } x = \frac{-1 + \sqrt{5}}{2} \text{ ou } x = \frac{-1 - \sqrt{5}}{2}$$

b)  $E(x) > 0 \Leftrightarrow x \in (-1/2, 2) \cup (2, +\infty)$  ;  $E(x) < 0 \Leftrightarrow x \in (-\infty, -1/2)$  ;  $E(x) = 0 \Leftrightarrow x = -1/2$  ou x = 2. Nesse caso,  $E(x) = 6(x-2)^2(x+1/2)(x^2-x+1)$ .

$$17)a)S = (-\infty, -2] \cup [-1, 0) \cup [1, +\infty)$$
  $b)S = \{0, \pm 1, -2\}.$ 

18)





Universidade Federal Fluminense

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

LISTA 6

Funções; gráficos

- 1) Uma lata cilíndrica sem tampa é feita para receber 200  $cm^3$  de líquido. Encontre a área superficial da lata em função de seu raio.
- 2) Um copo com formato cônico é feito de um pedaço circular de papel de raio 4 cm cortando fora um setor circular de ângulo  $\theta$  e colando os raios que se formam. Expresse o volume do cone em função de  $\theta$ .
- 3) Encontre dois números positivos, cuja soma seja 100 e, tal que o produto entre eles assuma o maior valor posssível.
- 4)Encontre as dimensões do retângulo com perímetro de 100m, cuja área é a maior possível.
- **5)a)** Determine, em função de x, a área de um retângulo inscrito no semicírculo  $x^2 + y^2 = r^2$ ,  $y \ge 0$ .
- b) Sabendo que o retângulo de maior área que pode ser inscrito no semicículo dado em a) tem como valor de  $x \ge 0$  o ponto que é solução da equação

$$2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} = 0,$$

determine esse retângulo e calcule sua área.

6)Esboce os gráficos das funções, desenhando todos os passos necessários para chegar aos esboços.

a) 
$$y = \frac{(x+2)^5}{3} - 1$$

**e)** 
$$y = \sqrt{2x - \pi}$$

i) 
$$y = 4\sqrt{1 - 2x^2}$$

**b)** 
$$y = \frac{1}{(2x-1)^2}$$

**f)** 
$$y = \sqrt[3]{|x| - 1} + 2$$

**j**) 
$$y = |\sqrt{3-x} - 2| + 1$$

c) 
$$y = 2|x|^3$$

**g)** 
$$y = |||x - 2| - 3| - 1|$$

**k)** 
$$y = |\sqrt{4 - 2x^2} - 1|$$

$$\mathbf{d)} \ \ y = \sqrt{|x|}$$

**h)** 
$$y = \frac{1}{|2-x|} - \sqrt{2}$$

1) 
$$y = \sqrt{3x - x^2}$$

- 7) Seja  $y=ax^2+bx+c$ , uma parábola qualquer, onde  $a\neq 0$ . Complete o quadrado e mostre que todas as parábolas podem ser obtidas a partir de alongamentos e/ou compressões e/ou translações e/ou reflexões em torno do eixo 0x, da parábola  $y=x^2$ .
- 8)a) Quantas soluções tem a equação  $||x^2 4| 2| = 1$ ? Determine esse número interpretando graficamente.
- b) Resolva a equação e determine o conjunto solução.
- 9) Partindo de  $f(x) = x^3$ , esboce o gráfico e determine a expressão da função que se obtém transladando o gráfico da f 2 unidades para a esquerda, 1 unidade para baixo, comprimindo horizontalmente de um fator 2 e modulando.
- 10) Dado o gráfico de y = f(x) abaixo, esboce os gráficos de:

a) 
$$y = f(-3x)$$

**d)** 
$$y = -f(-x)$$

**g)** 
$$y = |f(x)| - 1$$

**b)** 
$$y = f(3x + 2)$$

**e)** 
$$y = f(|x|) - 2$$

**h)** 
$$y = |f(x-1)| - 1$$

**c)** 
$$y = \frac{f(4x)}{2}$$

**f)** 
$$y = f(|x| - 2)$$

i) 
$$y = |f(1-x)| - 1$$



Figura 1: Gráfico do ex.10.

11)Resolva a inequação e interprete graficamente o conjunto solução no plano.

i) 
$$\frac{1}{x^2} < x + 2$$
.

ii) 
$$\frac{1}{x^3} > x$$
.

**iii)** 
$$\sqrt{4-(x-1)^2} \ge 1$$
.

12)Esboce as regiões no plano, calculando os pontos de interseção:

- i) Região no 2º quadrante entre y=x+2 e  $y=\frac{1}{x^2}$ .
- ii) Região no 1º quadrante, tal que  $\sqrt{1+y^2} \le x \le 3$ .
- iii) Região limitada por y = 3x + 1 e  $y = x^2$ .
- iv) Região limitada por y=-x+1 ,  $y=4x^3$  e o eixo oy.
- 13) A figura abaixo mostra o gráfico de  $y=-x^2$  transladado para novas posições. Escreva uma expressão para cada novo gráfico.



1) 
$$A(r) = \frac{400}{r} + \pi r^2$$
,  $r > 0$ .

2) 
$$V(\theta) = \frac{8(2\pi - \theta)^2 \sqrt{4\pi\theta - \theta^2}}{3\pi^2}$$
,  $0 < \theta < 2\pi$ .

- 3)  $P=x\cdot y=x\cdot (100-x)$  e o máximo ocorre em  $x_V=\frac{-100}{-2}=50$ . Logo x=y=50 tornam o produto o máximo.
- 4)  $A = x \cdot y = x \cdot (50 x)$  e o máximo ocorre quando x = y = 25 ,  $A_{\max} = 625m^2$  .
- 5) a)  $A = 2x \cdot y = 2x \cdot (\sqrt{r^2 x^2})$ , 0 < x < r.



b) Tirando o mmc, a equação dada é equivalente a, p  $\frac{2(r^2-x^2)-2x^2}{\sqrt{r^2-x^2}}=0 \Leftrightarrow x^2=\frac{r^2}{2} \Leftrightarrow x=\frac{r\sqrt{2}}{2} \text{ ois } x>0 \, .$ 

Dimensões do retêngulo de área máxima: altura:  $\frac{r\sqrt{2}}{2}$  , base  $r\sqrt{2}$  .

Área máxima é  $r^2$ .

6)

a)



b)



c)



d)



e)



f)



g)



h)



i)



j)



k)



7) Completando o quadrado, temos:  $y = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$ .

<u>1º caso:</u> Suponha a > 0.

Se a=1 e b=0, basta uma translação vertical de |c| unidades, para cima, se c>0 ou para baixo se c<0 .

Se a=1 e  $b\neq 0$ , temos primeiro uma translação vertical de |b| unidades, para esquerda se b>0 ou para a direita se b<0. Depois, se  $\Delta=0$  o gráfico está pronto, mas se  $\Delta\neq 0$ , fazemos uma translação vertical para cima se  $\Delta<0$ , ou para baixo se  $\Delta>0$ .

Se  $a \ne 1$ , devemos primeiro alongar ou (a > 1) comprimir (0 < a < 1) o gráfico de  $y = x^2$  e depois vamos analisando como no caso anterior.

 $2^{\circ}$  caso: Suponha a < 0.

Observe que  $y=ax^2+bx+c=-\left((-a)x^2+(-b)x+(-c)\right)$ , o que se enquadra no 1º caso. Portando , o gráfico pode ser traçado seguindo os passos do 1º caso e depois refletindo em torno do eixo Ox.

8) a) Há<br/> 8 , veja no gráfico abaixo.b)  $S=\left\{\sqrt{7},-\sqrt{7},\sqrt{5},-\sqrt{5},\sqrt{3},-\sqrt{3},1,-1\right\}$ 





9) 
$$y = \left| \frac{1}{2} (x+2)^3 - \frac{1}{2} \right|$$

10)

a)







c)







e)

f)

-10 -5 -5 -10



g) h)





i)



11)

 $\text{i)} \frac{1}{x^2} < x+2 \Leftrightarrow \frac{1}{x^2} - (x+2) < 0 \Leftrightarrow \frac{1-x^3-2x^2}{x^2} < 0 \Leftrightarrow x^3+2x^2-1 < 0, \text{ pois } x^2 > 0 \ .$  Logo,  $(x+1)(x^2+x-1) > 0$ . Fazendo o produto de sinais, obtemos  $S = \left(\frac{-1-\sqrt{5}}{2},-1\right) \cup \left(\frac{-1+\sqrt{5}}{2},+\infty\right)$ . S corresponde às abscissas dos pontos sobre os gráficos, onde  $y = \frac{1}{x^2}$  está abaixo da reta y = x+2 .



ii)  $\frac{1}{x^3} > x \Leftrightarrow \frac{1-x^4}{x^3} > 0 \Leftrightarrow \frac{(1-x^2)(1+x^2)}{x^3} > 0$ . Temos que  $1+x^2 > 0$ ,  $\forall x \in \square$ . Fazendo o produto de sinais entre  $1-x^2$  e  $x^3$ , obtemos  $S = \left(-\infty, -1\right) \cup \left(0, 1\right)$ , que corresponde às abscissas dos pontos onde o gráfico de  $y = \frac{1}{x^3}$  está acima da reta y = x.



iii)  $y = \sqrt{4 - (x - 1)^2} \Leftrightarrow y^2 + (x - 1)^2 = 4$  (circunferência de raio 2 e centro (1,0)), para  $y \ge 0$ ,  $\sqrt{4 - (x - 1)^2} \ge 1 > 0 \Leftrightarrow 4 - (x - 1)^2 \ge 1 \Leftrightarrow (x - 1)^2 \le 3 \Leftrightarrow |x - 1| = \sqrt{(x - 1)^2} \le \sqrt{3}$ .

 $\Leftrightarrow 1-\sqrt{3} \le x \le 1+\sqrt{3}$  . Logo,  $S=\left[1-\sqrt{3},1+\sqrt{3}\right]$ . S corresponde às abscissas em que a circunferência está acima ou intercepta a reta y=1.



12)

i) 
$$R = \left\{ (x, y), \frac{1}{x^2} \le y \le x + 2, \frac{-1 - \sqrt{5}}{2} \le x \le -1 \right\}$$



ii) 
$$x = 3$$



iii) 
$$x = \frac{3 - \sqrt{13}}{2} e x = \frac{3 + \sqrt{13}}{2}$$
.



iv) Note que 
$$4x^3 = 1 - x \Leftrightarrow 4x^3 + x - 1 = 0 \Leftrightarrow (x - \frac{1}{2})(4x^2 + 2x + 2) = 0 \Leftrightarrow x = \frac{1}{2}$$
.



13)

a) 
$$y = -(x-1)^2 + 4$$
.

b) 
$$y = -(x+2)^2 + 3$$

c) 
$$y = -(x-2)^2$$

Universidade Federal Fluminense

LISTA 7

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

Funções compostas e inversas.

Gráficos de composições envolvendo o módulo.

1) Para as funções abaixo, determine o domínio e a expressão da  $f \circ g$ .

a) 
$$f(x) = \frac{1}{x-2}$$
,  $g(x) = \sqrt{x-1}$ .

**b)** 
$$f(x) = \sqrt{|x| - 1}$$
 ,  $g(x) = x - 1$ .

c) 
$$f(x) = \frac{1}{x}$$
,  $g(x) = 2x^2 - 10x + 21$ .

**2)** Dadas  $f(x) = \sqrt{9 - x^2}$  e  $g(x) = \frac{1}{x}$ , determine:

a) O maior subconjunto de  $\mathbb{R}$ , onde  $f \circ g$  está bem definida e sua expressão.

**b)** Idem ao item a) para  $g \circ f$ .

3) Complete a tabela:

| g(x) | f(x)         | $f \circ g(x)$ |
|------|--------------|----------------|
| x-7  | $\sqrt{x}$   | ?              |
| ?    | $\sqrt{x-5}$ | $\sqrt{x^2-5}$ |
| ?    | 1 + 1/x      | x              |
| 1/x  | ?            | $\sqrt{x}$     |

**4)** Determine  $f \circ g(x)$ , onde  $f(x) = \begin{cases} |x| - 1, & \text{se } -3 \le x \le 3; \\ x, & \text{se } x > 3 \text{ ou } x < -3. \end{cases}$  e  $g(x) = \begin{cases} 1, & \text{se } x \ge 0; \\ 2x + 1, & \text{se } x < 0. \end{cases}$  Esboce os três gráficos.

5) Se  $f(x) = 3x^4 - x^2 + 1$  e  $g(x) = \sqrt{x}$ , é correto afirmar que  $f \circ g(x) = 3x^2 - x + 1$  e seu domínio é  $\mathbb{R}$ ?

6) Esboce o gráfico de cada função abaixo e verifique se cada uma é inversível. Em caso afirmativo,

- a) trace o gráfico de  $f^{-1}$ ;
- **b)** determine a expressão de  $f^{-1}$ ;
- c) confirme as igualdades  $f \circ f^{-1}(x) = x$  e  $f^{-1} \circ f(x) = x$ , especificando, em cada igualdade, o domínio da variável x.

i) 
$$f(x) = x^2 + 1, x \ge 0.$$

**v)** 
$$f(x) = 1 - \frac{1}{x}, x > 0.$$

**ii)** 
$$f(x) = x^2 + 1, x \le 0.$$

**vi)** 
$$f(x) = \sqrt{4 - 2x^2}, -\sqrt{2} \le x \le 0.$$

**iii** 
$$f(x) = x^2 - x$$
,  $x > 0$ 

**vii**) 
$$f(x) = 3 - \sqrt{1 - x}, x \le 1$$
.

iv) 
$$f(x) = x^2 - 2x + 1, x \ge 1.$$

7) Considere 
$$p(x) = x^3 - 2x^2 - 3x + 6$$
.

a) Determine as raízes de p(x) e fatore-o.

**b)** Determine o domínio da função  $f(x) = \sqrt{p(x)}$ .

c) Esboce o gráfico de 
$$y = \left| \frac{p(x)}{x-2} \right|$$
.



8) As figuras acima são gráficos de funções inversíveis y = f(x). Determine o domínio, a imagem de  $f^{-1}$  e esboce seu gráfico (não precisa dar a expressão da inversa!) no mesmo sistema de coordenadas da f.

### Questões de provas anteriores

- **9)** Considere  $f(x) = \frac{2x-3}{x-1}, x \neq 1.$ 
  - a) Esboce o gráfico da f. (Sugestão: primeiro divida os polinômios).
  - b) Determine o conjunto imagem da f, Im(f).
  - c) Verifique graficamente que a  $f : \mathbb{R} \setminus \{1\} \longrightarrow Im(f)$  é inversível. Determine a expressão de  $f^{-1}$ , seu domínio e sua imagem.
- 10) Esboce, passo a passo, o gráfico de
  - a)  $y = 3\sqrt{4 |x|} + 1$ .
  - **b)**  $y = \left| \frac{3}{1 |x|} \right| 1, x \neq \pm 1.$
- 11) a) Esboce passo a passo o gráfico de  $y = -(x-1)^4 + \frac{1}{16}$ .
  - **b)** Seja  $f: (-\infty, \frac{3}{4}] \longrightarrow I$   $x \longmapsto -(x-1)^4 + \frac{1}{16}$

Determine o intervalo I, tal que a f seja bijetiva. Justifique.

- c) Para o intervalo I acima, encontre a expressão da  $f^{-1}$ , especificando seu domínio e imagem.
- d) Esboce o gráfico da  $f^{-1}$ .

#### Respostas:

1) a) 
$$f \circ g(x) = f(\sqrt{x-1}) = \frac{1}{\sqrt{x-1}-2}, \ \forall x \in D = [1,5) \cup (5,\infty).$$

**b)** 
$$f(g(x)) = f(x-1) = \sqrt{|x-1|-1}$$
,  $\forall x \in D = (-\infty, 0] \cup [2, \infty)$ 

c) 
$$f(g(x)) = f(2x^2 - 10x + 21) = \frac{1}{2x^2 - 10x + 21}$$
,  $\forall x \in \mathbb{R}$ 

- **2) a)** Devemos ter  $x \neq 0$  e  $9 x^2 \geq 0$ , logo  $D(f \circ g) = (-\infty, -1/3] \cup [1/3, +\infty)$ . Além disso,  $f \circ g(x) = \frac{\sqrt{9x^2 1}}{|x|}$ ,  $\forall x \in D$ .
  - **b)**  $g(f(x)) = \frac{1}{\sqrt{9x^2 1}}, \forall x \in D = (-3, 3)$

|    | g(x)  | f(x)         | $f \circ g(x)$ |
|----|-------|--------------|----------------|
|    | x-7   | $\sqrt{x}$   | $\sqrt{x-7}$   |
|    | $x^2$ | $\sqrt{x-5}$ | $\sqrt{x^2-5}$ |
| 3) | 1     | 1 + 1/x      | x              |
|    | x-1   | 1            |                |
|    | 1/x   | <u> </u>     | $\sqrt{x}$     |
|    |       | $\sqrt{x}$   |                |

4)

5) Não, seu domínio é  $D=[0,\infty)$ . Devemos determinar o domínio da composta  $f\circ g$  analisando o domínio da g e fazendo a interseção com os valores de x, tais que a imagem da g esteja contida no domínio da f.

6)

- 7) a) Fazendo a pesquisa de raízes inteiras, vemos que o conjunto para teste é  $\{\pm 1, \pm 2, \pm 3, \pm 6\}$  e p(2)=0. Fatorando o polinômio, obtemos  $p(x)=(x-2)(x^2-3)$ .
  - b) O domínio é composto pelos x, tais que  $p(x) \ge 0$ . Fazendo o produto dos sinais, vemos que  $D = [-\sqrt{3}, \sqrt{3}] \cup [2, \infty)$
  - c) Note que, de a),  $y = \left| \frac{p(x)}{x-2} \right| = |x^2 3|$ ,  $\forall x \neq 2$ . Assim, o gráfico é dado pela figura abaixo.



8)

9) a) Efetuando a divisão, obtemos  $f(x) = 2 - \frac{1}{x-1}$ , assim o gráfico pode ser traçado, partindo de  $y = \frac{1}{x}$ , transladando de 1 unid. para a direita  $(y = \frac{1}{x-1})$ , depois

alongando verticalmente de um fator  $3(y=\frac{3}{x-1})$ , refletindo em torno de ox  $(y=-\frac{3}{x-1})$  e depois transladando para cima de 2 unid. $(y=2-\frac{3}{x-1})$ . Observe os passos nas figuras a seguir.







- **b**) c
- **c)** b

### LISTA 8

- 1. Quando o sol está a  $60^{\circ}$  acima do horizonte, qual é o comprimento da sombra projetada no solo por um edifício de 27m de altura?
- 2. Um avião voando a uma velocidade constante de 360 km/h, subindo a um ângulo de 30°, passa por um ponto P que está no solo, a uma altura de 12km. Determine a distância de P ao avião, 1 minuto após o avião passar sobre o ponto P.
- 3. Para determinar a largura aproximada de um rio, sem atravessá-lo, um engenheiro procedeu da seguinte maneira:
  - construiu um plano vertical imaginário contendo uma reta horizontal na direção perpendicular ao rio e de forma que mirando o topo de uma árvore na margem oposta, esse topo seja um ponto P do plano vertical.
  - de um ponto A da margem, na direção da mesma perpendicular ao rio, avistou o topo P da árvore sob um ângulo de  $38^{\circ}$  com a horizontal.
  - recuando 15m na mesma direção perpendicular ao rio, até um ponto B, visou novamente o topo da árvore, registrando  $26^{\circ}$  com a horizontal.

Com esses dados ele fez os cálculos necessários. Qual a largura do rio?

- 4. Uma esfera de raio r é colocada no interior de uma cavidade cônica. sabe-se que o raio da base da cavidade é 5 cm e o ângulo entre as geratrizes da cavidade situadas em um plano vertical à essa cavidade é de 60°.
  - (a) Calcular a distância aproximada do centro da esfera de raio r ao vértice do cone, se  $r = 4 \, cm$ .
  - (b) Qual deve ser, aproximadamente, o raio da esfera para que o topo da mesma seja o centro da base do cone?
- 5. Calcule o valor da expressão  $y = \frac{\tan x + \cot x}{\sec x + \csc x}$ , sabendo que  $\sin x + \cos x = \frac{2}{3}$ .
- 6. Calcule o valor da expressão y = sen(2x) se  $\text{sen } x + \cos x = \frac{1}{\sqrt{3}}, \ 0 \le x \le \pi$ .
- 7. Calcule o valor de y, se  $y = \cos 75^{\circ} + \cos 15^{\circ}$ .
- 8. Determine m para que exista x, em cada caso:

(a) 
$$\cos x = m^2 - 8$$
 (b)  $\cos x = \frac{3 - 7m}{4}$  (c)  $2 \sin x + 1 = m$ 

9. Prove que cada identidade é verdadeira para todo  $x \in \mathbb{R}$ :

(a) 
$$\sin^4 x - \cos^4 x + \cos 2x = 0$$
   
 (b)  $(\cos x + \sin x)^2 + (\cos (-x) + \sin (-x))^2 = 2$ 

10. Simplique as expressões:

(a) 
$$\frac{\cos\left(\frac{\pi}{2} - x\right) \cdot \sin\left(\frac{\pi}{2} - x\right) \cdot \cos(\pi + x)}{\sin(\pi - x) \cdot \cos(x - 2\pi) \cdot \cos\left(\frac{\pi}{2} + x\right)}$$
 (b) 
$$\frac{\tan x + \cot x}{\csc^2 x}$$

11. Resolva e marque a solução no círculo trigonométrico.

(a) 
$$\cos x = -\frac{\sqrt{3}}{2}$$
   
(b)  $\cos x - 4\cos^5 x = 0$    
(c)  $|\sin x - 1| = \frac{1}{2}$    
(d)  $2\sin^2 x - 3\cos x - 3 = 0$    
(e)  $2\cos^3 \theta + 6\cos \theta - \cos^2 \theta - 3 = 0$    
(i)  $\cos^4 x - \sin^4 x = \frac{\sqrt{3}}{2}$    
(j)  $\sin x + \sin 4x = 0$    
(k)  $\frac{1}{1 - \sin x} \ge \frac{1}{\sin x}$ ,   
para  $0 < x < 2\pi, \ x \ne \frac{\pi}{2}, \pi$ 

(f) 
$$2 \sin x - \cos x = 1$$
  
(g)  $\frac{-1}{2} \le \sin x \le \frac{1}{2}$   
(l)  $4 \sin x < \frac{1}{\cos x}$ ,  $\tan x \le \frac{1}{\cos x}$ ,  $\tan x \le \frac{1}{\cos x}$ 

(m) 
$$\frac{\sin^2 x - \sin x}{2 \sin x - 1} > 0$$
,  
para  $0 \le x \le 2\pi$ ,  $x \ne \frac{\pi}{6}, \frac{5\pi}{6}$ 

(n) 
$$|\cos 4x| = 1$$

(o) 
$$]2 \operatorname{sen} x | \operatorname{sen} x | -1 \le 0$$

12. Esboce os gráficos passo a passo.

(a) 
$$f(x) = |\cos x - \frac{1}{2}|$$

(b) 
$$f(x) = \cos(x - \frac{\pi}{4}), 0 \le x \le 2\pi$$

(c) 
$$f(x) = \sin(2x - \pi)$$

(d) 
$$f(x) = -3 \sin |x|$$

(e) 
$$f(x) = |\tan(x - \frac{\pi}{4}) - 1|$$

(f) 
$$f(x) = |\cos(\pi - x)| - 1$$

(g) \* 
$$f(x) = 5 \sin x \cos x$$
,  $0 \le x \le 2\pi$ 

(h) \* 
$$f(x) = \frac{\sin^2 x}{2}, -\pi \le x \le \pi$$

(i) 
$$*f(x) = \sqrt{1 - \cos^2(\frac{x}{2})}$$

(j) 
$$f(x) = 2\arctan(x+1)$$

13. Calcule:

(a) 
$$\arcsin\left(\frac{\sqrt{3}}{2}\right)$$

(b) 
$$\arctan(-1)$$

(c) arccos(-1)

14. Prove que 
$$\cos(\arcsin x) = \sqrt{1 - x^2}, \forall x \in [-1, 1].$$

15)Determine o domínio das funções

a) 
$$f(x) = \frac{1 - \frac{1}{x}}{4 \sin x \cos x - 1}$$
.

**b)** 
$$f(x) = \sqrt{2 \sin^2 x - 1}$$

c) 
$$f(x) = \frac{1}{\sin 2x} + \frac{x}{\sqrt{\cos x} - \sqrt{\sin x}}$$

<sup>\*</sup>Use primeiro alguma identidade trigonométrica.

## RESPOSTAS DA LISTA 8 - Trigonometria

1. 
$$9\sqrt{3} \ m$$

2. 
$$h = 6\sqrt{7} \, km$$

4. (a) 
$$8 \, cm$$
 (b)  $\frac{5\sqrt{3}}{2} \, cm$ 

5. 
$$\frac{3}{2}$$

6. 
$$-\frac{2}{3}$$

7. 
$$\frac{\sqrt{6}}{2}$$

8. (a) 
$$-3 \le m \le -\sqrt{7}$$

ou 
$$\sqrt{7} \le m \le 3$$

(b) 
$$1 \le m \le \frac{11}{3}$$

(c) 
$$-1 \le m \le 3$$

10. (a) 
$$\cot x$$
 (b)  $\tan x$ 

11. (a) 
$$x = \frac{5\pi}{6} + 2k\pi$$
,  $k \in \mathbb{Z}$   
ou  $x = \frac{7\pi}{6} + 2k\pi$ ,  $k \in \mathbb{Z}$ 



(b) 
$$x = \frac{\pi}{4} + 2k\pi$$
,  $k \in \mathbb{Z}$   
ou  $x = \frac{3\pi}{4} + 2k\pi$ ,  $k \in \mathbb{Z}$   
ou  $x = \frac{\pi}{2} + 2k\pi$ ,  $k \in \mathbb{Z}$ 



(c) 
$$x = \frac{\pi}{6} + 2k\pi$$
,  $k \in \mathbb{Z}$   
ou  $x = \frac{5\pi}{6} + 2k\pi$ ,  $k \in \mathbb{Z}$ 



(d) 
$$x = \frac{2\pi}{3} + 2k\pi$$
,  $k \in \mathbb{Z}$   
ou  $x = \frac{4\pi}{3} + 2k\pi$ ,  $k \in \mathbb{Z}$ 

ou 
$$x = \pi + 2k\pi, k \in \mathbb{Z}$$



(e) 
$$x = \frac{\pi}{3} + 2k\pi$$
,  $k \in \mathbb{Z}$   
ou  $x = -\frac{\pi}{3} + 2k\pi$ ,  $k \in \mathbb{Z}$ 



(f) 
$$x = \pi + 2k\pi, \quad k \in \mathbb{Z}$$
 ou  $x = \arctan \frac{4}{3} + 2k\pi, \quad k \in \mathbb{Z}$ 



(g) 
$$-\frac{\pi}{6}\pi + 2k\pi < x < \frac{\pi}{6}\pi + 2k\pi, \quad k \in \mathbb{Z}$$
  
ou  $\frac{5\pi}{6} + 2k\pi < x < \frac{7\pi}{6} + 2k\pi, \quad k \in \mathbb{Z}$ 



4

(h) 
$$-\frac{\pi}{2} + 2k\pi < x < -\frac{\pi}{3} + 2k\pi, \quad k \in \mathbb{Z}$$
  
ou  $\frac{\pi}{3} + 2k\pi < x < \frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}$ 





(i) 
$$x = \frac{\pi}{12} + k\pi$$
,  $k \in \mathbb{Z}$   
ou  $x = -\frac{\pi}{12} + k\pi$ ,  $k \in \mathbb{Z}$ 



(m) 
$$\left[0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$$



$$(\mathbf{j}) \ x = \frac{\pi}{3} + \frac{2k\pi}{3}, \ k \in \mathbb{Z}$$

ou 
$$x = \frac{2k\pi}{5}, k \in \mathbb{Z}$$



(n) 
$$x = \frac{k\pi}{4}$$
,  $k \in \mathbb{Z}$ 



(k) 
$$\left[\frac{\pi}{6}, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \frac{5\pi}{6}\right] \cup (\pi, 2\pi)$$



(o) 
$$-\frac{5\pi}{4} + 2k\pi \le x \le \frac{\pi}{4} + 2k\pi, \quad k \in \mathbb{Z}$$



(l) 
$$\left(0, \frac{\pi}{12}\right) \cup \left(\frac{5\pi}{12}, \frac{\pi}{2}\right) \cup \left(\frac{13\pi}{12}, \frac{17\pi}{12}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$$

12. (a)



(b)



(c)



(d)



(e)



(f)



(g)



(h)



(i)



(j)



- 13. (a)  $\frac{\pi}{3}$
- (b)  $-\frac{\pi}{4}$
- (c)  $\pi$
- 14. Queremos calcular  $\cos(\arcsin x)$ .

Considere  $\theta = \arcsin x$ .

Nesse caso, sabemos que

$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \quad \cos \theta \ge 0, \quad x = \sin \theta.$$

Queremos calcular  $\cos \theta$ . Mas,

$$\cos^2 \theta = 1 - \sin^2 \theta \Longrightarrow \cos \theta = \pm \sqrt{1 - \sin^2 \theta}.$$

Como  $\cos \theta \ge 0$ ,  $\cos \theta = \sqrt{1 - \sin^2 \theta}$ 

Como 
$$x = \sin \theta$$
,  $\cos \theta = \sqrt{1 - x^2}$ ,

Como  $\theta = \arcsin x$ ,  $\cos(\arcsin x) = \sqrt{1 - x^2}$ .