

(11)Publication number:

2002-165098

(43) Date of publication of application: 07.06.2002

(51)Int.CI.

HO4N HO3M

HO3M HO4N

(21)Application number: 2000-359741

(71)Applicant : SONY CORP

(22)Date of filing:

27.11.2000

(72)Inventor: FUKUHARA TAKAHIRO

KIMURA SEISHI

(54) IMAGE ENCODER AND ENCODING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To realize a target code amount in one-time encoding processing, to realize code amount control with less calculation load and storage load and with high encoding efficiency and to realize stable code amount control not only in a still picture but also in a moving picture even in various kinds of moving pictures.

SOLUTION: A picture encoder is provided with a wavelet converting part 1, a bit plane encoding pass generating part 2 for generating an encoding pass at each bit plane, a calculation encoding part 3 for performing calculation encoding in the encoding pass, a rate control part 4 for controlling the code amount to obtain the target code amount from the generated calculation codes, a packet generating part 6 for adding a header to the calculation code after code amount control and generating a packet and an encoding code stream rounding means for processing the whole encoding passes, generating an encoding code stream and, then, rounding off the rear part of the encoding code stream to obtain the target code amount.

LEGAL STATUS

[Date of request for examination]

04.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-165098 (P2002-165098A)

(43)公開日 平成14年6月7日(2002.6.7)

(51) Int.Cl.7		識別記号	F I		รั	~7J~h*(参考)
H04N	1/41		H04N	1/41	В	5 C 0 5 9
H03M	7/30		H03M	7/30	Α	5 C O 7 8
	7/40			7/40		5 J O 6 4
H 0 4 N	7/24		H04N	7/13	Z	

審査請求 未請求 請求項の数23 OL (全 15 頁)

(21)出願番号	特顧2000-359741(P2000-359741)	(71)出願人	000002185
• • • • • • • • • • • • • • • • • • • •			ソニー株式会社
(22)出顧日	平成12年11月27日(2000.11.27)		東京都品川区北品川6丁目7番35号
	,,,,,	(72)発明者	福原 隆浩
			東京都品川区北品川6丁目7番35号 ソニ
]	一株式会社内
		(72)発明者	木村 背司
			東京都品川区北品川6丁目7番35号 ソニ
			一株式会社内
		(74)代理人	100080883
			弁理士 松限 秀盛

最終頁に続く

(54) 【発明の名称】 画像符号化装置及び画像符号化方法

(57) 【要約】

【課題】 本発明では、目標符号量を1回の符号化処理で実現し、計算負荷及び記憶負荷が少なく、且つ高い符号化効率の符号量制御を実現し、静止画のみならず動画像や、様々な動画像に対しても、安定した符号量制御が実現出来る。

【解決手段】 この画像符号化装置は、ウェーブレット変換部1と、ビットプレーン毎に符号化パスを生成するビットプレーン符号化パス生成部2と、符号化パス内で算術符号化を行う算術符号化部3と、生成された算術符号から目標の符号量になるように符号量を制御するレート制御部4と、符号量制御後の算術符号にヘッダを加えてパケットを生成するパケット生成部6と、該符号化パスをすべて処理して符号化コードストリームを生成した後、目標の符号量になるように符号化コードストリームの後ろを切り捨てる符号化コードストリーム切り捨て手段を設けた。

【特許請求の範囲】

【請求項1】 入力画像に対し、低域フィルタと高域フィルタを垂直・水平方向に施すフィルタリング手段と、上記フィルタリング後の係数を、最上位ピット(MSB)から最下位ピット(LSB)に至るピットプレーンに展開するピットプレーン生成手段と、

上記ビットプレーン毎に符号化パスを生成する符号化パ ス生成手段と、

上記符号化パス内で算術符号化を行う算術符号化手段 と、

生成された算術符号から目標の符号量になるように符号 量を制御する符号量制御手段と、

符号量制御後の算術符号にヘッダを加えてパケットを生成するパケット生成手段とを有して構成される所定のフォーマットの符号化コードストリームによるパケットを 生成する画像符号化装置において、

同該符号化パスをすべて処理して符号化コードストリームを生成した後、目標の符号量になるように符号化コードストリームの後ろを切り捨てる符号化コードストリーム切り捨て手段を備えたことを特徴とする画像符号化装置。

【請求項2】 入力画像に対し、低域フィルタと高域フィルタを垂直・水平方向に施すフィルタリング手段と、上記フィルタリング後の係数を、最上位ビット (MSB) から最下位ビット (LSB) に至るビットプレーンに展開するビットプレーン生成手段と、

上記ビットプレーン毎に符号化パスを生成する符号化パス生成手段と、

上記符号化パス内で算術符号化を行う算術符号化手段 と、

生成された算術符号から目標の符号量になるように符号 量を制御する符号量制御手段と、

符号量制御後の算術符号にヘッダを加えてパケットを生成するパケット生成手段とを有して構成される所定のフォーマットの符号化コードストリームによるパケットを 生成する画像符号化装置において、

同該符号化パス生成手段では、予め設定された目標の符号量に達した時点で符号化を中止する符号化中止手段を 備えたことを特徴とする画像符号化装置。

【請求項3】 入力画像に対し、低域フィルタと高域フィルタを垂直・水平方向に施すフィルタリング手段と、上記フィルタリング後の係数を、最上位ビット(MSB)から最下位ビット(LSB)に至るビットプレーンに展開するビットプレーン生成手段と、

上記ビットプレーン毎に符号化パスを生成する符号化パ ス生成手段と、

上記符号化パス内で算術符号化を行う算術符号化手段 と、

生成された算術符号から目標の符号量になるように符号 量を制御する符号量制御手段と、 符号量制御後の算術符号にヘッダを加えてパケットを生成するパケット生成手段とを有して構成される所定のフォーマットの符号化コードストリームによるパケットを生成する画像符号化装置において、

同該フィルタリングによって生成されるサブバンド毎の 符号化パス数を予め記憶しておく記憶手段と、

同該符号化パス生成手段では、この符号化パス数内で同 該符号化パスを終了する符号化パス終了手段とを備えて いること。

【請求項4】 請求項3記載の画像符号化装置において、

同該符号化パス生成手段によって生成された符号化コードストリームが目標の符号量を越えていた場合には、同該符号化コードストリームの後ろを、目標の符号量になるように切り捨てる符号化コードストリーム切り捨て手段を備えたことを特徴とする画像符号化装置。

【請求項5】 請求項3記載の画像符号化装置において、

上記符号化パス生成手段において、サブバンド毎の符号 化パス数のパターンを複数個記憶しておく記憶手段と、 入力画像によって同該パターンを切り替える切替手段を 備えたことを特徴とする画像符号化装置。

【請求項6】 請求項5記載の画像符号化装置におい て

上記サブバンド毎の符号化パス数のパターンを切り替える切替手段は、入力画像が連続した動画像であるとき、1つ前の符号化フレームで発生した符号量が、目標の符号量よりも大きかった場合には、より符号量が発生しにくいパターンを選び、逆に目標の符号量よりも小さかった場合には、より符号量が発生し易いパターンを選ぶ選択手段を備えたことを特徴とする画像符号化装置。

【請求項7】 請求項5記載の画像符号化装置において、

上記サブバンド毎の符号化パス数のパターンを切り替える切替手段は、入力画像が連続した動画像であるとき、現在の符号化フレームから抽出した特徴量の閾値判定によって、パターンを切り替える閾値判定手段を備えたことを特徴とする画像符号化装置。

【請求項8】 請求項5記載の画像符号化装置におい て

上記サブパンド毎の符号化パス数のパターンを切り替える切替手段による符号化パス数のパターン生成において、符号量発生をし易くするパターンとしては、サブバンド内の符号化パス数を多く設定し、符号量発生をし難くするパターンとしては、サブバンド内の符号化パス数を少なく設定する設定手段を備えたことを特徴とする画像符号化装置。

【請求項9】 請求項1記載の画像符号化装置において、

上記ピットプレーン毎に符号化パスを生成する符号化パ

ス生成手段において、符号化は所定の大きさのブロック 毎に独立して行われ、同該ブロックを跨って算術符号化 の統計量測定は行われないことを特徴とする画像符号化 装置。

【請求項10】 請求項2記載の画像符号化装置において.

上記ピットプレーン毎に符号化パスを生成する符号化パス生成手段において、符号化は所定の大きさのブロック毎に独立して行われ、同該ブロックを跨って算術符号化の統計量測定は行われないことを特徴とする画像符号化装置。

【請求項11】 請求項3記載の画像符号化装置において、

上記ピットプレーン毎に符号化パスを生成する符号化パス生成手段において、符号化は所定の大きさのブロック毎に独立して行われ、同該ブロックを跨って算術符号化の統計量測定は行われないことを特徴とする画像符号化装置。

【請求項12】 請求項1記載の画像符号化装置において、

上記フィルタリング手段の後、サブバンドのフィルタ係数を量子化する量子化手段を、上記ピットプレーン毎に符号化パスを生成する符号化パス生成手段の前段部に設けたことを特徴とする画像符号化装置。

【請求項13】 請求項2記載の画像符号化装置において、

上記フィルタリング手段の後、サブバンドのフィルタ係数を量子化する量子化手段を、上記ピットプレーン毎に符号化パスを生成する符号化パス生成手段の前段部に設けたことを特徴とする画像符号化装置。

【請求項14】 請求項3記載の画像符号化装置において、

上記フィルタリング手段の後、サブパンドのフィルタ係数を量子化する量子化手段を、上記ピットプレーン毎に符号化パスを生成する符号化パス生成手段の前段部に設けたことを特徴とする画像符号化装置。

【請求項15】 請求項12記載の画像符号化装置において、

上記量子化手段は、生成されたサブバンドのウェーブレット変換係数をスカラ値の量子化ステップサイズで除算することで実現されることを特徴とする画像符号化装置。

【請求項16】 請求項13記載の画像符号化装置において.

上記量子化手段は、生成されたサブバンドのウェーブレット変換係数をスカラ値の量子化ステップサイズで除算することで実現されることを特徴とする画像符号化装置。

【請求項17】 請求項14記載の画像符号化装置において、

上記量子化手段は、生成されたサブパンドのウェーブレット変換係数をスカラ値の量子化ステップサイズで除算することで実現されることを特徴とする画像符号化装置。

【請求項18】 請求項1記載の画像符号化装置において、

上記フィルタリング手段は、画像を所定の領域だけメモリに読み出し蓄積する蓄積手段と、蓄積され次第これら画像領域に対し、水平及び垂直方向のフィルタを掛けるフィルタリング手段によって実現されることを特徴とする画像符号化装置。

【請求項19】 請求項2記載の画像符号化装置において

上記フィルタリング手段は、画像を所定の領域だけメモリに読み出し蓄積する蓄積手段と、蓄積され次第これら画像領域に対し、水平及び垂直方向のフィルタを掛けるフィルタリング手段によって実現されることを特徴とする画像符号化装置。

【請求項20】 請求項3記載の画像符号化装置において

上記フィルタリング手段は、画像を所定の領域だけメモリに読み出し蓄積する蓄積手段と、蓄積され次第これら画像領域に対し、水平及び垂直方向のフィルタを掛けるフィルタリング手段によって実現されることを特徴とする画像符号化装置。

【請求項21】 請求項1記載の画像符号化装置において

上記ビットプレーン毎に符号化パスを生成する符号化パス生成手段において、符号化パス毎に上記算術符号化手段の統計量測定を完了する測定完了手段と、ビットプレーンをレイヤ構造化するレイヤ構造化手段を備えていることを特徴とする画像符号化装置。

【請求項22】 請求項2記載の画像符号化装置におい て

上記ビットプレーン毎に符号化パスを生成する符号化パス生成手段において、符号化パス毎に上記算術符号化手段の統計量測定を完了する測定完了手段と、ビットプレーンをレイヤ構造化するレイヤ構造化手段を備えていることを特徴とする画像符号化装置。

【請求項23】 請求項3記載の画像符号化装置において、

上記ビットプレーン毎に符号化パスを生成する符号化パス生成手段において、符号化パス毎に上記算術符号化手段の統計量測定を完了する測定完了手段と、ビットプレーンをレイヤ構造化するレイヤ構造化手段を備えていることを特徴とする画像符号化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、JPEG(Joint Photographic Experts

Group)ー2000規格に基づいたフォーマットによる符号化を行う画像符号化装置及び画像符号化方法に関する。応用分野としては、静止画・動画像のデジタルカメラ、カムコーダ、監視用コーデック、放送用映像機器のコーデック、ノンリニア編集機のコーデック、PDA(Personal Digital Assistance)や携帯電話内臓のコーデック、PC(Personal Computer)上のオーサリング・ツール、画像編集ソフト、ゲーム、3次元CG(Computer Graphic)で用いるテキスチャの圧縮器またはそのソフトウェア・モジュール等が主な利用分野である。

[0002]

【従来の技術】従来の代表的な画像圧縮方式として、Ⅰ SO (InternationalOrganizat ion for Standarization)によ って標準化されたJPEG方式がある。これはDCT (Discrete Cosine Transfor m) を用い、比較的高いピットが割り当てられる場合に は、良好な符号化・復号化画像を供することが知られて いる。ところが、ある程度符号化ピット数を少なくする と、DCT特有のブロック歪みが顕著になり、主観的に 劣化が目立つようになる。これとは別に最近、画像をフ ィルタバンクと呼ばれるハイパス・フィルタとローパス ・フィルタを組み合わせたフィルタによって、複数の帯 域に分割して、それらの帯域毎に符号化を行う方式の研 究が盛んになっている。その中でも、ウェーブレット変 換符号化は、DCTで問題になる高圧縮でブロック歪み が顕著になるという欠点が無いことから、DCTに代わ る新たな技術として有力視されている。

【0003】2000年12月に国際標準化が完了する予定のJPEG-2000規格は、このウェーブレット変換に高能率なエントロピー符号化と算術符号化を組み合わせた手段を採用しており、JPEGに比べて符号的表の大きな改善を実現している。しかし、これら国際規格は、デコーダ側の規格のみを定めており、これら国ーダ側は自由に設計することが出来る。その反面、一般に負荷が重いエンコーダの処理の軽減手段や、本発明では見荷が重いエンコーダの処理の軽減手段や、本発明ではしないため、ノウハウの確立が何よりも重要になる。また、JPEGでは、目標の圧縮率を実現するための行号に、JPEGでは、目標の圧縮率を実現するための行号を施す必要も多々ある。これは、処理時間の増大に繋がることから、符号化は1回で目標の符号量を得ることが望まれる。

[0004]

【発明が解決しようとする課題】以上の背景から、本発明では、JPEG-2000規格に基づいたフォーマットによる符号化を行う画像符号化装置及び画像符号化方法において、以下の課題を実現することを目的とする。

第1に、目標符号量を、1回の符号化処理で実現すること。第2に、レート制御の計算負荷及び記憶負荷が少なくて、且つ高い符号化効率の符号量制御を実現すること。第3に、静止画のみならず動画像にも、安定した符号量制御が実現出来ること。第4に、様々なタイプの動画像に対しても、安定した符号量制御が実現出来ること。

[0005]

【課題を解決するための手段】この発明のJPEG-200規格に基づいたフォーマットによる符号化を行う画像符号化装置及び画像符号化方法は、入力画像に対し、ウェーブレット変換を施すフィルタリング手段と、ウェーブレット変換を施すフィルタリング手段と、ウェーブレット変換を放き、最上位ビット(MSB)に至るビットプレーンに成手段と、がら最下位ビット(LSB)に至るビットプレーンに毎になるビットプレーン生成手段と、だりしーンにの手段と、なりで算術符号化を行う算術符号化と、生成されたり、特別では大き生成する符号と、特別では大きなが行号がある。でも、符号量制御手段と、符号量制御後の算術符号にからは、符号量制御手段と、符号量制御後の算術符号にからのであるが行号による符号化を行う画像符号化表置において、下記の3通りの手段のいずれか1つを備えたものである。

【0006】第1の手段として、同該符号化パスをすべて処理して符号化コードストリームを生成した後、目標の符号量になるように符号化コードストリームの後ろを切り捨てる符号化コードストリーム切り捨て手段を備えたものである。

【0007】第2の手段として、同該符号化パス生成手段では、予め設定された目標の符号量に達した時点で符号化を中止する符号化中止手段を備えたものである。

【0008】第3の手段として、同該フィルタリングによって生成されるサブパンド毎の符号化パス数を予め記憶しておく記憶手段と、同該符号化パス生成手段では、この符号化パス数内で同該符号化パスを終了する符号化パス終了手段を備えたものである。

【0009】本発明によれば、以下の作用をする。この発明のJPEG-2000規格に基づいたフォーマットによる符号化を行う画像符号化装置及び画像符号化方法において、ウェーブレット変換を行うフィルタリングをは、入力画像を低域フィルタ・高域フィルタから情は、入力画像を低域フィルタリングを複数できない。特に低域のサブバンドを複数は、ないまで再帰的に変換する作用がある。量子化手段は、近常良く用いられるスカラ量子化、即ち変換係数は、レベルまで再帰的に変換する作用がある。ピットのステップサイズで除算する作用がある。ピットのステップサイズで除算する作用がある。ピットの大きに符号化プロック単位内の変換係数から、最上位ビット(MSB)から最下位ピット(LSB)に至る行りに、MSB)がら最下位ピット(LSB)に至る行りによりにして、同該符号化パスの処理を行う作

用がある。算術符号化手段は、符号化パス内から呼ばれて、統計量の測定を行い学習を行いながら所定の算術符号化を行う作用がある。生成された算術符号から目標の符号量になるように符号量のレート制御をする符号量制御手段において、目標の符号量に近づける様に、符号化コードストリーム切り捨て手段は上記符号化パスの一部を切り捨てる作用がある。

[0010]

【発明の実施の形態】以下、この発明によるJPEG-2000規格に基づいたフォーマットによる符号化を行う画像符号化装置及び画像符号化方法の実施の形態について説明する。

【〇〇11】[第1の実施の形態]本実施の形態は、請 求項第1項に記載する本発明の一実施形態である。図1 は本実施形態の画像符号化装置の構成を示すプロック図 であり、入力画像に対してウェーブレット変換を施すウ ェーブレット変換部1と、ウェーブレット変換係数を最 上位ビット(MSB)から最下位ビット(LSB)に至 るビットプレーンに展開するビットプレーン符号化パス 生成部2と、符号化パス内で算術符号化を行う算術符号 化部3と、生成された算術符号から目標の符号量になる ように符号量を制御するレート制御部4と、ヘッダを生 成するヘッダ生成部5と、符号量制御後の算術符号にへ ッダを加えてパケットを生成するパケット生成部6とを 有して構成される。ここで、ビットプレーン符号化パス 生成部2および算術符号化部3とでEBCOT (Emb edded Coding with Optimiz ed Truncation)符号化部10を構成す る。

【0012】次に本実施形態の画像符号化装置の動作について説明する。ウェーブレット変換部1におけるウェーブレット変換は、通常低域フィルタと高域フィルタから構成されるフィルタパンクによって実現される。従ってデジタルフィルタは通常複数タップ長のインパルス応答(フィルタ係数)を持っているので、フィルタリングが行えるだけの入力画像を予めバッファリングしておく必要がある。しかし本実施の形態では、図1の構成要素からは外してある。

【0013】上記によってフィリタリングに必要な最低限の画像S100を入力したウェーブレット変換部1では、ウェーブレット変換を行うフィルタリングを行い、ここでウェーブレット変換係数S101が生成される。図4に、第2ステージまでウェーブレット分割したときのサブバンドを示す。尚、ウェーブレット変換は、通常図4の様に第2レベルまでの最低域サブバンドLL2と、低高域サブバンドLH2と、高低域サブバンドHL2と、最高域サブバンドHH2のように、低域成分を繰り返し変換する手段を取るが、これは画像のエネルギーの多くが低域成分に集中しているからである。

【0014】尚、図4の場合には、ウェーブレット変換

のレベル数は2であり、この結果、第2レベルまでの最 低域サブパンドLL2と、低高域サブパンドLH2と、 高低域サブバンドHL2と、最高域サブバンドHH2 と、第1レベルの低高域サブパンドLH1と、高低域サ ブパンドHL1と、最高域サブパンドHH1の計7つの サブバンドが生成される。尚、ウェーブレット変換手段 では、通常低域成分のみを再帰的にフィルタリングする が、これ以外の手段も存在することは言うまでもない。 【0015】次に、ウェーブレット変換係数S101を 入力して、ビットプレーン符号化パス生成部2でエント ロピー符号化が行われる。本実施の形態では、特にJP EG-2000規格で定められたEBCOT(Embe dded Coding with Optimize d Truncation)と呼ばれるエントロピー符 号化を例に取りながら説明する(参考文献: ISI/IEC FD IS 15444-1, JPEG-2000Part-1 FDIS, 18 August 200 0)。

【0016】EBCOTの説明の前に、ビットプレーンの概念について図5を用いて説明する。図5Aは縦4個、横4個の計16個の係数から成る量子化係数を仮定している。この16個の係数の内、絶対値が最大のものは13で、2進表現にすると1101になる。このようにそれぞれウェーブレット変換係数S101による係数値を有している。

【0017】EBCOT符号化を実行する場合、図5Bに示すように、ウェーブレット変換係数S101による係数値の絶対値を最下位ビット(LSB:Least Significant Bit)から最上位ビット(MSB:Most Significant Bit)までの各ビットで順次スライスするようにして各サンプルに対応する「1」または「0」の係数値を有する絶対値のビットプレーン(以下、これを絶対値ビットプレーンという。)、この場合、4種類の絶対値ビットプレーンという。)を生成すると共に、図5Cに示すように、各係数値の「+」「一」の符号のビットプレーン(以下、これを符号ビットプレーンという。)を生成する。

【0018】従って、同図5Bの絶対値のビットプレーンは4つのプレーンから構成される。各ビットプレーンの要素はすべて0か1の数を取ることは自明である。他方、符号は一6が唯一負の数でそれ以外は0または正の数である。従って、符号のプレーンは同図5Cのようになる。

【〇〇19】EBCOTは、所定の大きさのブロック毎にそのブロック内の係数の統計量を測定しながら符号化を行う手段である。量子化係数をコードブロック(code-biock)と呼ばれる所定のサイズのブロック単位に、エントロピー符号化する。コードブロックは、MSBからLSB方向にピットプレーン毎に独立して符号化される。コードブロックの縦横のサイズは4から256までの2のべき乗で、通常使用される大きさは、3

2×32、64×64、128×32等がある。ウェーブレット領域の係数値が n ビットの符号付き2進数で表されていて、ビットOからビットn-2がLSBからMSBまでのそれぞれのビットを表すとする。残りの1ビットは符号である。コードブロックの符号化は、MSB側のビットプレーン(bit-plane)から順番に、次の3種類の符号化パス(pass)によって行われる。

【〇〇2〇】 EBCOT符号化では、絶対値ビットプレーン内の係数値に対する符号化方式として、シグニフィカンスプロパゲーションパス(Significance Propagation Pass)、マグニチュードリファイメントパス(Magnitude Refinement Pass) およびクリーンナップパス(Cleanup Pass)と呼ばれる3種類の符号化パスが規定されている。

【OO21】3つの符号化パスの用いられる順序は図6で示される。図6において、最初にMSB側のビットプレーン(bit-plane)(n-2)がクリーンナップパス(Cleanup Pass)によって符号化される。続いて順次LSB側に向かい、ビットプレーン(bit-plane)(n-4)・・・ビットプレーン(bit-plane)(O)の各ビットプレーンの符号化が、3つの符号化パス(pass)をシグニフィカンスプロパゲーションパス(Significance Propagation Pass)、マグニチュードリファイメントパス(Magnitude Refinement Pass)の順序で用いて行われる。

【OO22】ただし、実際にはMSB側から何番目のビットプレーンで初めて1が出てくるかをヘッダに書き、はじめのオールOのビットプレーンは符号化しない。

【0023】この順序で3種類の符号化パス(pass)を繰返し用いて符号化して行き、任意のビットプレーンの任意の符号化パス(pass)までで符号化を打ち切ることにより、符号量と画質のトレードオフを取ることによりレート制御を行う。

【 O O 2 4 】次に、係数の走査(スキャニング)について図7を用いて説明する。図7において、コードブロック(code-block)は高さ4ピクセルである4個の係数毎にストライプSTに分けられる。ストライプSTの幅はコードブロック(code-block)の幅に等しい。スキャン順とは、1個のコードブロック(code-block)ののすべての係数をたどる順番で、コードブロック(code-block)の中では上のストライプSTから下のストライプSTへの順

序、ストライプSTの中では、左の列から右の列へ向かっての順序、列の中では上から下へという順序である。

各符号化パス(pass)においてコードブロック(code-block)のすべての係数が、このスキャン順で処理される。

【0025】以下、3つの符号化パス(pass)について述べる。まず、第1に、シグニフィカンスプロパゲーションパス(Significance Propagation Pass)について説明する。あるビットプレーンを符号化するシグニフィカンスプロパゲーションパス(Significance Propagation Pass)では、8近傍の少なくとも1つの係数がシグニフィカント(Significant)であるようなノンシグニフィカント(nonーSignificant)係数のビットプレーン(bitーplane)の値を算術符号 化する。その符号化したビットプレーン(bitーplane)の値が1である 場合は、符号が+であるか、一であるかを続けて算術符号化する。

【0026】ここでシグニフィカンス(Significance)という言葉について説明する。シグニフィカンス(Significance)とは、各係数に対して符号化器が持つ状態で、シグニフィカンス(Significance)の初期値はノンシグニフィカント(non-Significant)を表す0、その係数で1が符号化されたときにシグニフィカント(Significance)とは有効析の情報を既に符号化したか否かを示すフラグとも言える。

【OO27】次に、第2に、マグニチュードリファイメントパス(Magnitude Refinement Pass)について説明する。ビットプレーン(bitーplane)を符号化するリファイメントパス(Refinement Pass)では、ビットプレーン(bitーplane)を符号化するシグニフィカンスプロパゲーションパス(Significance Propagation Pass)で符号化していないシグニフィカント(Significant)な係数のビットプ レーン(bitーplane)の値を算術符号化する。

【OO28】そして、第3に、クリーンナップパス(Cleanup Pass)について説明する。ビットプレーン(bitーplane)を符号化するクリーンナップパス(Cleanup Pass)では、ビットプレーン(bitーplane)を符号化するシグニフィカンスプロパゲーションパス(Significance Propagation Pass)で符号化していないノンシグニフィカント(non-Significant)な係数のビットプレーン(bitーplane)の値を算術符号化する。その符号化したビットプレーン(bit-plane)の値が1である場合は符号

が+であるかーであるかを続けて算術符号化する。

【OO29】尚、以上の3つの符号化パス(pass)での算術符号化では、コードブロック単位毎に算術符号化の統計量を測定しながら、ケースに応じてZC(ZeroCoding)、RLC(RunーLength Coding)、SC(Sign Coding)、MR(Magnitude Refinement)が使い分けられる。ここでMQ符号化と呼ばれる算術符号が用いられる。MQ符号化は、JBIG2(参考文献:ISO/IEC FDIS 14492、"Lossy/Lossless Codingof Bi-level Images"、March 2000)で規定された学習型の2値算術符号である。JPEG-2000規格では、すべての符号化パス(pass)で合計19種類のコンテキストがある。

【0030】以上が、ビットプレーン毎に符号化パスを生成する符号化パス生成部2、算術符号化部3の、JPEG-2000規格の手段を実例に取った説明である。尚、前記実施の形態の様に、ビットプレーン毎に符号化パスを生成する符号化パス生成部2において、ブロック毎に独立して符号化を行い、且つ算術符号化の統計量測定を同該符号化ブロック(上記例ではコードブロック(code-block))内に閉じて処理する内容は、請求項9でクレイムされている。

【〇〇31】続いて図1を用いて後段の処理について説明する。レート制御部4では、すべてのビットプレーン符号化パスの処理を行った後で、算術符号化部3の出力である算術符号S103の符号量をカウントして、目標の符号量に達した時点で、それより後の算術符号を切り捨てる。従って、全ビットプレーンの符号化パスを処理するので負荷が大きいが、符号量をオーバーする直前で切り捨てる符号化コードストリーム切り捨て手段を取るため、確実に目標の符号量に抑えることが出来る。

【0032】符号量制御完了後の算術符号S104を入力したヘッダ生成部5では、例えば同該算術符号S104を元にしてコードブロック(code-block)内での付加情報(例えばコードブロック(code-block)内の符号化パス(pass)の個数や圧縮コードストリームのデータ長等)をヘッダS105として出力する。更に、パケット生成部6では、上記算術符号S104とヘッダS105とを合わせてパケットS106を生成・出力する。

【0033】 [第2の実施の形態] 本実施の形態は、請求項第2項に記載する一実施形態である。第1の実施形態のレート制御部4では、すべてのビットプレーン符号化パスの処理を行った後で、符号化コードストリーム切り捨て手段により符号化コードストリーム(算術符号)を切り捨てたが、より符号化の負荷を軽減するために、符号化中止手段により算術符号S103より送出される符号量を常時カウントしながら、目標の符号量に達した時点で同該符号化処理を中止する。この場合には、レー

ト制御部4では、算術符号S103より送出される符号量の累積値と目標符号量とを常時カウントして比較している必要があり、第1の実施形態よりもレート制御部4での動作が複雑になる。しかし前述のように、全ビットプレーンの符号化パスを符号化する必要がないので、符号化の負荷は軽減される利点がある。

【 O O 3 4 】 [第3の実施の形態] 本実施の形態は、請求項第3項に記載する一実施形態である。図2は本実施形態の他の画像符号化装置の構成を示すブロック図であり、図1の構成に加え、フィルタリングによって生成されるサブパンド毎の符号化パス数を予め記憶しておく符号化パステーブル7を備えている。

【0035】次に動作について説明する。ウェーブレット変換係数S101は、第1の実施の形態で述べた様に、ビットプレーンに展開されてビットプレーン毎に符号化パスが生成される。ここで、目標の符号量を得るために、どの符号化パスを選んで、どの符号化パスを切り捨てるかがレート制御のポイントであるが、画質に与える影響は符号化パスによっても変わり、且つその符号化パスがどのサブパンドにあるかでも変わる。

【OO36】従って、情報理論的には、コードブロック(code-block)内の符号化パスの符号量と、それを切り捨てることによって生じる歪み量(画質の劣化に関係する)を計算して、レートディストーション(Rate-Distortion)理論の観点から最適になるように、その符号化パスを切り捨てるか、選択するかを決定するのが理想である。しかし、この制御実現のためには、非常に負荷の高い計算と、歪み量を記憶するための大きなメモリを用意する必要があることから、現実的ではない。

【0037】そこで、本実施形態では、予めサブバンド毎に、コードブロック(code-block)内の符号化パス数の上限値を設定しておき、それ以上の符号化パスがある場合には、符号化パスを強制的に切り捨てる符号化パス終了手段を取る。この場合、ウェーブレット変換係数を展開したビットプレーン上での、符号化パス数の最大値を把握する必要がある。これは、サブバンド毎の符号化パス数を予め設定した符号化パス・テーブルフを参照することによって実現される。

【0038】図8は、ロスレス(Loss Less)で符号化を行う場合、即ち全ビットプレーンの符号化パスを処理した場合の想定される符号化パスの最大値である。図8において、第2レベルまでの最低域サブバンドLH2の符号化パス数は28、高低域サブバンドHL2の符号化パス数は28、最高域サブバンドHH2の符号化パス数は28、最高域サブバンドHL1の符号化パス数は28、高低域サブバンドHL1の符号化パス数は28、高低域サブバンドHL1の符号化パス数は28、高低域サブバンドHL1の符号化パス数は28、最高域サブバンドHH1の符号化パス数は28、最高域サブバンドHH1の符号化パス数は28、最高域サブバンドHH1の符号化パス数は28、最高域サブバンドHH1の符号化パス数は31である。

【0039】これらの数値は、JPEG-2000規格で定義されているガードビットG(オーパフロー予防のための保護ビット)=2ビット、ウェーブレット変換をロスレス(Loss Less)対応の可逆型5×3フィルタ(5、3はフィルタのタップ長)を使った場合を想定している。この場合には、図8で示されている場合には、原理的に起こらないことが知られている(詳しくは前述のJPEG-2000 FDIS規格書に記述されている)。また本実施の形態は、入力画像データが、8ビット/コンポーネント(bit/component)の場合を想定している。

【0040】次に、図9は別のタイプーAの符号化パスのパターンである。図9において、第2レベルまでの最低域サブバンドLL2の符号化パス数は20、低高域サブバンドLH2の符号化パス数は19、高低域サブバンドHH2の符号化パス数は19、最高域サブバンドHH2の符号化パス数は18、第1レベルの低高域サブバンドHL1の符号化パス数は12、高低域サブバンドHL1の符号化パス数は12、最高域サブバンドHH1の符号化パス数は7である。

【0041】図9のタイプーAの符号化パスは、図8のロスレス(Loss Less)対応のものよりも、すべてのサブパンドで、符号化パス数が少ないことがわかる。これによって符号量の発生が少なく抑えられる。

【0042】続いて図10は他のタイプーBの符号化パスのパターンである。図10において、第2レベルまでの最低域サブバンドしし2の符号化パス数は23、低高域サブバンドしH2の符号化パス数は21、高低域サブバンドH12の符号化パス数は21、最高域サブバンドH12の符号化パス数は20、第1レベルの低高域サブバンドLH1の符号化パス数は14、高低域サブバンドHL1の符号化パス数は14、最高域サブバンドHH1の符号化パス数は14、最高域サブバンドHH1の符号化パス数は17である。

【0043】図10は、図9よりも全体的にサババンド内の符号化パス数が多くなっている。これは符号量の発生を促進させているので、図10の場合は、図9の場合よりは多くの符号量が発生する。尚、これは請求項8によってクレイムされている。

【0044】上記操作によってビットプレーン毎に符号化パスを生成する符号化パス生成部2で選択された、ビットプレーン毎の符号化パスS102で、算術符号化部3が呼び出され、算術符号S103が生成される。それ以降の動作は、第1の実施形態と同様である。

【〇〇45】 [第4の実施の形態] 本実施の形態は、請求項第4項に記載する一実施形態である。前記第3の実施の形態では、符号化パステーブル7によりサブバンド毎の符号化パス数を予め制限しておくことで、レート制御部4において符号量をコントロールする符号化パス終了手段を採っているが、あくまで符号化パス単位の制御であるため、高精度の符号量制御という点では不十分で

ある。

【0046】従って、更に追加手段として、レート制御部4で算術符号S103の情報量を監視し、目標の符号量を超えていた際には、符号化コードストリーム切り捨て手段により目標の符号量になるまで前記算術符号S103を切り捨てる動作を行う。これによって高精度の符号量制御が実現される。尚、この内容は、請求項4でクレイムされている。

【0047】 [第5の実施の形態] 本実施の形態は、請求項第5項に記載する一実施形態である。前記第4実施の形態では、サブパンド毎の符号化パス数を予め決めた符号化パステーブル7を用意して、それ以上の符号化パスが発生した際には符号化コードストリーム切り捨てることで符号量制御を行っていた。しかし、入力画像は多種多様であり、サブパンド毎内の符号化パス数のパターンを登録した符号化パステーブルを複数個用意しておき、画像によってそれらを切号量をコントロールしながら符号化を行うことが出来る。尚、この内容は、請求項5でクレイムされている。

【0048】 [第6の実施の形態] 本実施の形態は、請求項第6項に記載する一実施形態である。本実施形態は、前記第5の実施形態の応用例である。入力画像が動画像(連続する静止画として扱うことが可能)であった場合、前述の様に、画像によっては符号化が困難で多くの符号量が発生するものもあれば、符号化が容易で符号量の発生が少ないものもある。従って、これらの様々な画像に対して、1パターンの前記符号化パステーブルを参照して符号化パス数を決定することは得策ではない。【0049】従って、また図8から図10に符号化パス

数を示した様に、以前に符号化した画像の発生符号量、または現在の画像の特徴を利用することで、効果的な符号量制御を行うことが出来る。本実施形態は、1つ前の画像の発生符号量を利用するものである。具体的には、1つ前の画像の発生符号量を記憶保持しておき、もしこの符号量が予め決められた1フレーム当たりの画像の符号量またはそのフレームに割り当てられた符号量を上回っていた際には、現在の符号化対象画像は、発生符号量を抑制する方向に制御すべきである。

【〇〇5〇】従って、選択手段により複数個用意された符号化パスの参照テーブルの中から、発生符号量が少なくなるテーブルを選択し、これを参照する。尚、前記符号化パス数と関係してくるので、この符号化パス数を微妙に変えたテーブルを多く用意しておけばおくほど、細かい制御が可能になることは言うまでもない。しかしその分、多くの記憶容量が必要になるので、実際のトレードオフを考慮して、テーブルの数は決定することになる

【0051】逆に、もし符号量が予め決められた1フレーム当たりの画像の符号量またはそのフレームに割り当

てられた符号量を下回っていた際には、現在の符号化対 象画像は、発生符号量を増加する方向に制御すべきであ り、選択手段によりそれに相当するテーブルを選択すれ ば良い。

【0052】 [第7の実施の形態] 本実施の形態は、請求項第7項に記載する一実施形態である。本実施形態である。本実施形態である。本実施形態である。本実施形態である。本実施形態では、入力画像が動画像であった場合、現在の符号化対象画像の特徴量を利用して、前記テーブルを選択する。具体的には、例えばウェーブレット変換係数の絶対値の場合には、例えばウェーブレット変換係数の絶対値には、例えばウェーブレット変換係数の絶対値には、例えばウェーブルを選択する。この分別では、行号量のの部分領域に分割して、それら領域内の画素の分散値和を取り、これを閾値判定しても良い。この分散値が標準よりも大きい場合には、細かなテキスチャが存在すると判断出来るので符号量が多くなるとみなし、符号量発生を抑制する符号化パステーブルを選択する。

【0053】逆に、同該分散値が小さい場合には、符号量発生を増やすテーブルを選択する。尚、これらの処理はいずれも閾値処理を行うのが通常であり、予め分散値の閾値を幾つか決めておき、閾値判定手段によるその閾値との大小判定によって、符号化パステーブルを選択することになる。

【0054】 [第8の実施の形態] 本実施の形態は、請求項第12、13、14項に記載する一実施形態である。これまでに述べた実施形態では、ウェーブレット変換後の変換係数をビットプレーンに展開したが、図3の様に、ウェーブレット変換部1とビットプレーン符号化パス生成部2との間に、量子化部8を設ける。従って、ウェーブレット変換係数S101は量子化部8で量子化されて、量子化係数S108が出力される。

【0055】量子化手段としては、通常ウェーブレット変換係数S101を量子化ステップサイズで除算するスカラ量子化が一般的であり、JPEG-2000の規格にも同技術は含まれている。またウェーブレット変換係数S101のスカラ量子化手段については、請求項11でクレイムされている。

【0056】量子化係数S108は、ビットプレーン符号化パス生成部2でビットプレーンに展開されて、前記第1の実施形態で述べた様に、コードブロック(code-block)毎に符号化パスが生成される。量子化手段によって、通常量子化係数S108の絶対値は前記ウェーブレット変換係数S101の絶対値よりも小さくなるので、展開されるビットプレーン数もそれだけ少なくなる特徴がある。

【0057】ビットプレーンに展開されたコードブロック(code-block)毎の符号化パスS109からは、それぞれ必要に応じて算術符号化部3が呼び出されて、算術符号S110が出力される。以降の動作は既

に述べたものと同様で良い。

【0058】尚、この量子化手段を使って、結果として 図9、図10で示した様な各サブバンド毎の符号化パス 数になる様に量子化を行えば、前記実施形態と同様の目 的を実現出来ることは言うまでもない。この際、前記ピットプレーン符号化パス生成部2での、符号化パス生成 の手段は省略することが出来る。

【〇〇59】 [第9の実施の形態] 本実施の形態は、請求項第18、19、20項に記載する一実施形態である。前記第1の実施形態で述べたウェーブレット変換手段は、低域フィルタと高域フィルタを水平・垂直方向にかけ、それを複数のサブパンドが得られるまで繰りに行うことで実現されると述べた。しかし全画面のウェーブレット変換を行う手段は、全画面の画素サンプルを設けの変換係数を記憶・保持しておく必要があり、入力ではのサイズが大きい場合には現実的では無い。従って、ラインパッファに必要最低限の入力画像または係数を記憶・保持しておき、ウェーブレット変換を繰り返し行いながら、随時フィルタリングに必要な画素サンプルを入力するフィルタリング手段を採れば良い。

【0060】通常、ウェーブレット変換のフィルタリングを行うのに用いるフィルタは複数タップのフィルタであり、このフィルタリングに必要なだけライン数が蓄積されれば、直ちにウェーブレット変換フィルタ処理が実行出来る。

【0061】図11から図14は、上記ウェーブレット変換及びウェーブレット分割処理に関する具体的な動作を示すラインベース・ウェーブレット変換の処理を示す図である。図11において、まずステップS1で、入カ画像110のデータライン111の1ライン毎にデータ読み出しメモリ手段であるラインパッファ112に蓄積して、ステップS2で、ラインパッファ112内のデータに対して垂直フィルタが可能になるまで1ライン毎にデータを蓄積する。

【0062】図12において、ラインパッファ112内にウェーブレット変換の垂直フィルタリングに必要なだけのライン数が蓄えられたならば、ステップS3で、垂直フィルタリングを行い、続いて水平フィルタリングを行う。この時点で低域側の4つのサブパンド(LL2,LH2,HL2,HH2)のウェーブレット変換係数値が決定しており、ステップS4で、量子化対象のサブパンド係数120で示す高域側の3つのサブパンド(LH1,HL1,HH1)に対しては量子化を実行する。これにより量子化済みのサブパンド係数ライン121が生成される。

【0063】一方、ステップ5で、最低域サブバンド(LL2)のウェーブレット変換係数は、再びラインバファ112に蓄積され、これは垂直フィルタリングに必要なだけのライン数が蓄えられるまで継続する。従って、このウェーブレット変換係数はバッファ手段である

ラインパファ 1 1 2 に蓄積されている。また、ステップ S 6 で、前記最低域サブバンドのバッファ内に垂直フィルタリングに必要なだけのライン数が蓄えられたなら ば、次のウェーブレット分割ステージ生成のために垂直 フィルタリングに続いて、水平フィルタリングを実行する。

【0064】この結果、図13の左図に示す様に、ステップS7で、最低域サブバンドの第2ステージの4つのサブバンドのウェーブレット変換係数値130がここで確定するので、直ちに後段の量子化を行い、量子化係数を出力する。

【0065】尚、前記ステップS2の操作のウェーブレット変換の垂直フィルタリングに必要なだけのライン数を蓄える場合(分割ステージ数が1の場合に相当)や、ステップS5の操作の垂直フィルタリングに必要なだけのライン数を蓄える場合(分割ステージ数が2の場合に相当)には、ウェーブレット変換係数を、バッファに記憶・保持しておく必要がある。この時、各分割ステージでの1ライン毎のウェーブレット変換係数がバッファに順番に送られ、ここで記憶される。

【0066】一方、ステップS3の操作やステップS6の操作での、垂直フィルタリングの際にはパッファ部に蓄積された必要なライン数分のウェーブレット変換係数を、バッファから読み出して、これらに垂直フィルタリングを掛ける。以上の動作をすべての分割ステージが終了するまで継続する。

【0067】ステップS8で、既に述べた手段によって高域側の第1分割ステージのサブバンド(LH1, HL1, HH1)の量子化係数のライン数131が、コードブロック(code-block)のエントロピー符号化、本実施の形態では、特にJPEG-2000規格で定められたEBCOTの処理単位のブロックの高さ

(H)に到達した時点で、エントロピー符号化としてEBCOTを実行する。

【0068】図14において、更に、同様にして、ステップS9で、低域側の第2分割ステージのサブパンド (LL) の量子化係数のライン数140が、ブロックベースのエントロピー符号化としてEBCOTの処理単位のブロックの高さ(H)に到達した時点で、このエントロピー符号化としてEBCOTを実行する。なお、高域側の第1分割ステージのサブパンド(LH1, HL1, HH1)はEBCOT実行済み量子化係数領域141となる。以上の操作を必要なウェーブレット分割レベルまで繰り返し実行することで、すべての画面のウェーブレット変換+量子化+エントロピー符号化を完了する。

【0069】 [第10の実施の形態] 本実施の形態は、 請求項第21、22、23項に記載する一実施形態であ る。既に請求項1、請求項2、請求項3記載に関する実 施形態で、ビットプレーン符号化パス生成部2で生成し たビットプレーン内の符号化パスから算術符号化部3が 呼び出されて、算術符号を出力する動作については述べた。この場合、算術符号の統計量測定は、隣接する符号化パスでは継続して行われる。これによって符号化効率を向上させることが出来るが、符号化パスの独立性を考慮して、統計量測定を完了する測定完了手段により符号化パス毎に算術符号の統計量測定を完了することも出来る。

【0070】この場合、符号化パス毎の発生符号量をパケットへッダに書き込むことが出来るので、複数個の符号化パス毎の発生符号量を計算して書き込む場合よりも、処理手順が容易になるという利点がある。また、これによって1つのビットプレーンに符号化パスの個数だけパケットが出来るので、レイヤ構造化手段によりこのマルチ・パケットのレイヤ構造化をすることで、エラー対策に用いることができ、ワイヤレス送信に用いることが可能なJPEG-2000規格のプログレッシブ機能を実現することが出来る。

【0071】上述した実施の形態によれば、JPEG-2000に準拠した符号化コードストリームを生成する符号化装置及び手段を実現する上、従来規格外のために検討が十分にされていない符号量制御手段を効率良く実現する効果がある。また、符号量制御の際の計算負荷を、レート歪み特性を考慮した手段に比べて軽減する効果があるので、高速な符号化を行えるという効果もある。従って、動画像に対して単位時間当たり多くのフレーム数を符号化する効果もある。

[0072]

【発明の効果】以上の様に、この発明によれば、JPEG-2000規格に準拠した符号化コードストリームを生成する画像符号化装置及び手段を実現する上、従来規格外のために検討が十分にされていない符号量制御手段を効率良く実現する効果がある。

【0073】また、符号量制御の際の計算負荷を、レート歪み特性を考慮した手段に比べて軽減する効果があるので、高速な符号化を行えるという効果もある。従って、動画像に対して単位時間当たり多くのフレーム数を符号化する効果もある。

【0074】更に、符号化パス数をサブバンド毎に決めたテーブルを参照する手段を備えているので、変動の激しい動画像の符号量制御でも、最適なテーブルを選択することで、常時正確な制御を行う効果がある。また、レート歪み特性を考慮した手段に比べても遜色のない高画質を提供する効果もある。

【図面の簡単な説明】

【図1】本実施形態の画像符号化装置の構成を示すブロック図である。

【図2】他の画像符号化装置の構成を示すブロック図で ある。

【図3】他の画像符号化装置の構成を示すブロック図で ある。 【図4】第2ステージまでウェーブレット分割したとき のサブバンドを示す図である。

【図5】ビットプレーンの説明図であり、図5Aはウェーブレット変換係数、図5Bは係数の絶対値のビットプレーン、図5Cは係数の符号のビットプレーンである。

【図6】JPEG-2000規格の符号化パスの処理手順を示す図である。

【図7】コードブロック内のスキャニング経路を示す図 である。

【図8】ロスレス用の符号化パス数を示した図(ウェーブレット分割数=2)である。

【図9】ある符号化パス数を示した図(ウェーブレット 分割数=2)である。

【図10】他の符号化パス数を示した図(ウェーブレット分割数=2)である。

【図11】ラインベース・ウェーブレット変換の処理を 示す図(その1)である。

【図 1 2】 ラインベース・ウェーブレット変換の処理を 示す図(その2). である。

【図13】ラインベース・ウェーブレット変換の処理を

示す図(その3)である。

【図14】 ラインベース・ウェーブレット変換の処理を示す図(その4)である。

【符号の説明】

1 ……ウェーブレット変換部、 2 ……ビットプレーン符号化パス生成部、 3 ……算術符号化部、 4 ……レート制御部、 5 ……ヘッダ生成部、 6 ……パケット生成部、 7 ……符号化パス・テーブル、 8 ……量子化部、 S 1 0 0 ……入力画像、 S 1 0 1 ……ウェーブレット変換係数、 S 1 0 2 ……ビットプレーンに展開されたウェーブレット変換係数、 S 1 0 3 ……算術符号、 S 1 0 4 ……レート制御後の算術符号、 S 1 0 5 ……ヘッダ、 S 1 0 6 … …パケット化された符号化コードストリーム、 S 1 0 7 ……符号化パス・テーブルから読み出された符号化パス数、 S 1 0 8 ……量子化係数、 S 1 0 9 ……ビットプレーンに展開された量子化係数、 S 1 1 0 ……算柄符号、 S 1 1 1 ……レート制御後の算術符号、 S 1 1 2 ……ヘッダ、 S 1 1 3 ……パケット化された符号化コードストリーム

【図1】

本実施の形態の画像符号化装置の構成を示すブロック図

【図8】

ロスレス(Lossiess)用の符号化パス数を示す図

【図9】

ダイプーA

20	19	12	
19	18		
1	2	7	

ある符号化パス数を示す図

他の画像符号化装置の構成を示すプロック図

他の画像符号化装置の構成を示すプロック図

ラインベース・ウェーブレット変換の処理を示す図

【図4】

第2ステージまでウェーブレット分割したときのサブパンドを示す図

【図14】

ラインペース・ウェーブレット変換の処理を示す図

ビットプレーンの説明図

【図7】

コードブロック内におけるスキャニング経路を示す図

【図12】

ラインベース・ウェーブレット変換の処理を示す図

【図13】

ラインペース・ウェーブレット変換の処理を示す図

フロントページの続き

Fターム(参考) 5C059 KK08 KK22 MA00 MA24 MA27 MA27 MA27 MA28 MC11 PR01 PR16

MA35 MC38 ME11 PP01 RB16

RB19 RC24 UA02 UA15

5C078 AA04 BA53 CA01 DB19

5J064 AA02 BA10 BA13 BA16 BB09

BC02 BC11 BC16 BC18 BD02

THIS PAGE BLANK (USPTO)