

Vertex coloring

vertex coloring =

assign a color to each node of the graph such neighbors have different colors

- 5 y hobro nous rounds
- same algorithe
- · deterministic

not possible since coloring ust possible

Non-empty matching

Bipartite Maximal Matching

Correctness of the bipartite maximal matching algorithm

Algorithm terminates

orange nodes propose to Enodes

Δ! maximal degree of a graph

rounds: $\Delta + \Delta + 1 = O(\Delta)$ propose answers

Algorithm finds a maximal matching

orange nodes: if not matched, then all blue neighbors were matched

blue modes: if not matched, then

del not receive proposols

no matching edges could be added

Example: bipartite double cover

Correctness of the vertex cover algorithm

Algorithm terminates

clearly, maximal matching terminates

Algorithm computes a vertex cover

Idea: endpoints of any maximal matching give us a vertex cover

Proof by combadiction:

G' Assume that there is an uncovered edge

a combadd if to the matching &

GTO B a GTO B

•... it computes a 4-approximation of the minimum vertex cover

Idea: any maximal matching is a 2-approximation of the minimum vertex cover

a vertex cover must cover matchin edges

•... it computes a 3-approxi of the minimum vertex cover

