A. Naive approach: use line equat	ion,
// first octant, 0 < m	< 1
m =	
b =	
for(x =; x \le; -	++x) ←
у =	
) ← choose the pixel
Inefficient due to	
B. Improvement:	
y _i =	
y _{i+1} =	
= () -	<u>+ b</u>
=	
=	
y _{i+1} =	← next value of y obtained by
<pre>C. Pseudo-code: // first octant, 0 < m</pre>	< 1, line from (x_1,y_1) to (x_2,y_2)
compute	
compute	No multiplies \Rightarrow this is called an
plot(,)	"
compute	or, a "DDA":
y =	HH
while()	
increment x_1 by	
increment y by	
plot(x_1 ,)

// DDA, all octants (lab assignment implements!):
compute
compute
plot(,)
<u></u>
// Shallow slope case (can be either or):
if < slope <
compute m
$^{\prime\prime}$ Do we increment or decrement x ?
$dx < 0 \Rightarrow$, otherwise
// Make slope + or -
m =
y =
while()
increment x_1 by
increment y by
${}$ plot(x ₁ , floor(y + 0.5))
,
else // Steep slope case:
// same algorithm as above, except
// switch and, and
${}$ plot(floor(x + 0.5), y ₁)

Bresenham's Algorith	n (1 st octant illus	strates the general id	lea but extends t	o all octan
1^{st} octant \Rightarrow	Rasterizii	to	•	
Starting at,	increment	each time.		
Question: As we move t	to the right,		?	
Keep track of	the	distance from		to
	of the line a	at	·	
Each time we				:
When the error value	, th	e line is closer to		
so wescanline by	, and reset	the error term, mak	ing it relative to	the new

```
Naïve Bresenham (x_1, y_1, x_2, y_2) // First octant only!
dx = 
dy =
e =
de =
                         <--
у =
for( x from )
 plot( __,__)
 e = ____
 if( _____)
                    <--
                         <--
Improved Bresenham (x_1, y_1, x_2, y_2) // First octant only!
dx = |x_2 - x_1|
dy = |y_2 - y_1|
e = 0
                         <--
y = y_1
for ( x from x_1 to x_2 )
 plot(x, y)
 e = e + de
 if( )
   ++y
Integer Bresenham (x_1, y_1, x_2, y_2) // First octant only!
dx = |x_2 - x_1|
dy = |y_2 - y_1|
e = 0
de = dy
y = y_1
for ( x from x_1 to x_2 )
 plot(x, y)
 e = e + de
 if( _____)
                            <--
   ++y
  e = e - dx
```

	(reflection about y = x) when _ to the steep slope case above.						
Bresenham $(\mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2,$	y ₂)	//	First	and	second	octants	only
steep =	> _			(boolean	flag)	
if(steep)							
	_						
	_						
dx =	_						
dy =	_						
e =	_						
de =	_						
у =	_						
for(x from x_1 to x_2)						
if(steep)			e	lse			
e =	_						
if(_)						
++y							
e =							

Remaining octants:		and/or				
Bresenham (x_1, y_1)	, x ₂ , y ₂) // All octa		implements):		
$steep = y_2 - y_1 $	$ > x_2$	- x ₁				
if(steep)						
$swap(x_1, y_1)$						
$swap(x_2, y_2)$						
if()					
dx =						
$dy = y_2 - y_1 $						
e = 0						
de = dy						
$y = y_1$						
if()	else				
for(x from x_1 t	.o x ₂)					
if(steep) p	lot(y,x)	else plot(x	, y)			
e = e + de						
if($2e \ge dx$)						
y +=						

e = e - dx