2020年普通高等学校招生全国统一考试 理科综合能力测试

huangkui

2019年8月1日

题目名称	物理	化学	生物
目录	physics	chemistry	biology
源文件名	physics	chemistry	biology
输入文件名	physics.in	chemistry.in	biology.in
输出文件名	physics.out	chemistry.out	biology.out
测试点个数	25	25	20
每个测试点时限	2s	2s	1s
内存限制	512MB	512MB	512MB
代码长度限制	50KB	50KB	50KB
题目类型	传统型	传统型	传统型
是否有下发样例	是	是	是
编译命令	-lm -O2 -std=c++11		

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上.
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号. 回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
- 3. 如需改动, 用橡皮擦干净后, 再选涂其它答案标号. 回答非选择题时, 将答案写在答题卡上, 写在本试卷上无效

1 物理

1.1 Description

25.(100 分)

某同学经过若干次重复实验, 探究出了电流在电路中实际流通情况. 他发现, 电流在导线中流过的时间与导线的长度有着 2 的幂次的关系. 形式化地说, 如果一根导线长度为 k, 那么电流流经这根导线所需时间为 2^k . 现在给出一个由 n 个节点, m 根导线构成的电路图 (电流在电路中可以双向流通), 你需要求出电流从节点 S 出发, 最终到达节点 T 所需的**最短时间**, 以验证这个结论是否正确.

答案可能很大, 你只需输出其对 109+7 取模的结果即可.

1.2 Input Format

从文件 physics.in 中读入数据

第一行一个整数,表示测试点编号

第二行四个整数 n, m, S, T, 分别为电路中的节点个数, 导线条数, 起点节点, 终点节点

接下来 m 行, 每行三个整数 x,y,k, 表示一条连接 x,y 这两个结点, 长度为 k 的 导线

1.3 Output Format

输出到文件 physics.out 中 -行一个整数,表示电流通过的最短时间对 10^9+7 取模的值

1.4 Sample 1

1.4.1 Input

0

4 4 1 4

1 4 2

1 2 0

2 3 0

3 4 0

1.4.2 Output

3

1.4.3 Explanation

从点 1 到点 4 有两条路径 1->4 和 1->2->3->4,第一条花费时间为 4,第二条花费时间为 3

1.5 Sample $2\sim5$

见下发文件中的 physics/physics2~5.in 与 physics/physics2~5.ans.

1.6 Constraints

对于所有数据, 满足 $n \le 10^5$; $m \le 2 * 10^5$; $1 \le S, T \le n$; $k \le 10^5$

测试点编号	n	m	k
1 ~ 3	≤ 1000	≤ 2000	≤ 10
4 ~ 7	$\leq 10^5$	$\leq 2 * 10^5$	≤ 10
8 ~ 15			≤ 1000
16 ~ 17			$=10^{5}$
18		= 0	$\leq 10^{5}$
19 ~ 21		$\leq 2 * 10^5$	$\leq 10^5$ 且 k 互不相等
22 ~ 25		<u> </u>	$\leq 10^{5}$

2 化学

2.1 Description

28.(100 分)

科学家合成出了一种由 n 个原子构成的新化合物,这 n 个原子由 n-1 条化学键相连. 当温度逐渐升高时,该物质会逐渐分解,而 n-1 条化学键也会随之断裂. 通过研究发现,在分解时,化学键将**随机断裂**,每断裂一条化学键,原物质就被分成两个新的物质. 温度升高得越多,反应进行得越彻底,断裂的化学键也就越多. 若当反应进行到一定程度时停止升温,恢复到常温,则已经断裂的化学键又会逐渐重新形成. 有趣的是,**化学键重新形成的过程中也是随机的**. 具体来说,每次将随机选择两个新的物质,随机在两个物质上各选择一个原子,在这两个原子间成键. 不难发现,最后得到的化合物与分解之前相比. 结构并不一定相同

一个物质的中心原子为, 到其他每个原子所需要经过的化学键数量的和最小的原子. 在化学反应中, 中心原子往往起着重要作用, 可是随着化学键的断裂与形成, 物质的中心原子也在变化. 因此, 科学家对你提出了 m 次询问, 每次询问这个化合物的某一个原子 x, 你需要对 x 求出, 至少需要升温至断裂多少条化学键, 在恢复常温后, 得到的新物质的中心原子**有可能** 为 x

注:该化合物无论在分解开始前还是恢复常温后,化学键均不会成环.

2.2 Input Format

从文件 chemistry.in 中读入数据

第一行两个整数 n.m 表示化合物的原子个数和询问次数.

接下来 n-1 行, 每行两个整数 x, y, 表示一条连接 x 和 y 的化学键.

接下来m行,每行一个整数x,表示询问的原子编号.

2.3 Output Format

输出到文件 *chemistry.out* 中 总共m 行, 依次为每个询问的答案.

2.4 Sample 1

2.4.1 Input

10 10

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

1 10

2.4.2 Output

2.4.3 Explanation

对于1号原子,已经满足条件.

对于其他节点, 至少需要断裂 4 条化学键, 再重新形成 4 条化学键. 例如对于 2 号原子, 可以删除 (1,3), (1,4), (1,5), (1,6) 再加入 (2,3), (2,4), (2,5), (2,6)

2.5 Sample 2

见下发文件中的 chemistry/chemistry2.in 与 chemistry/chemistry2.ans.

2.6 Constraints

对于所有数据, 有 $n \leq 10^6$

测试点编号	n	m	特殊性质
1, 2, 3, 4	≤ 10		
5	≤ 2000	$\leq n$	AC
6			BC
7			C
8			D
9, 10, 11, 12			
13	$\leq 10^5$		A
14			C
15, 16			D
17			
18	$\leq 10^6$	= 0	
19		= 1	
20			В
21			C
22		$\leq n$	D
23, 24, 25			

特殊性质:

A: 只有一个原子连n-1条键, 其他所有原子都连一条键

B: 只有两个原子连一条键, 其他所有原子都连两条键

C: 1 号原子在初始时即为中心原子

D: 对于 i 号原子,有且仅有一个编号 $\in [1,i)$ 的原子与它相连,且这个原子从 [1,i) 内均匀随机产生

3 生物

3.1 Description

32.(100 分)

近期,某公司研制出了一种治疗某疾病的药物. 将这种药物注射入人体后,它会迅速释放出 DNA 解旋酶,使 DNA 双链解旋,然后经过某一 DNA 片段,最终作用于体内. 在经过 DNA 片段时,其中的脱氧核苷酸会使该药物发生化学变化,对药物的作用强度产生影响. 然而,含不同碱基的脱氧核苷酸对其产生的影响略有不同. 具体来说,一开始,药物的作用强度为 0,在<u>按顺序依次</u> 经过该 DNA 片段时,任意一个含嘌呤 (A/G) 的脱氧核苷酸会使强度翻倍,而含嘧啶 (C/T) 的脱氧核苷酸会使强度

在本题中, 你将会按顺序得到一条长度为 n 的碱基序列, 以及该药物的强度上限 k. 在整个过程中, 对药物强度的影响均在模 2^k 意义下进行. 现在, 你可以删去原碱基序列中若干个**连续的碱基片段**, 得到一个新的碱基序列. 然后将该药物作用于新的碱基序列所对应的 DNA 片段上. 科学家们已经找到了一种方法使得最终的药物强度最大, 你需要求出这个最大值, 验证它是否正确.

答案可能很大, 你只需输出其对 109+7 取模的结果即可.

3.2 Input Format

从文件 biology.in 中读入数据 第一行两个正整数 n, k, 表示序列长度以及强度上限为 k. 第二行一个长度为 n 且的字符串 S 表示碱基序列. $S_i \in \{A, T, C, G\}$

3.3 Output Format

输出到文件 biology.out 中 一行一个整数, 为答案对 $10^9 + 7$ 取模的结果.

3.4 Sample 1

3.4.1 Input

10 5

ACTGGCAATG

3.4.2 Output

26

3.4.3 Explanation

注: 是上面那条链

最优方案中, 删掉 [1-2], [4-4] 这两段碱基片段后, 新的碱基序列为 TGCAATG 药物经过该序列后, 强度为 26

3.5 Sample $2\sim5$

见下发文件中的 biology/biology2~5.in 与 biology/biology2~5.ans.

3.6 Constraints

对于所有数据, 有 $1 \le n, k \le 10^6$

测试点编号	$n \leq$	$m \leq$	特殊限制
1 ~ 4	10	10	
5 ~ 7	500	10	 无
8 ~ 11	300	500	
12 ~ 13	10^{5}	5×10^3	
14 ~ 17	10^{6}	10^{6}	不存在相邻的两个 C/T
18 ~ 20	10	10	无