算分作业5

24.03.25

5.2

设共有 n 种配件, m 个供应商, 配件 i 的供应商 j 提供价格为 c_{ij} , 重量为 w_{ij} 的零件.

解向量: $\langle x_1, \dots, x_n \rangle$ 表示第 i 种配件由供应商 x_i 提供.

搜索树结构: 节点 $\langle x_1, \dots, x_k \rangle$ 表示已选定了前 k 种配件的供应商.

约束条件: $\sum_{i=1}^{k} c_{ix_i} \leq 120$.

搜索策略: 深度优先.

代价函数: $\sum_{i=1}^k w_{ix_i} + \sum_{i=k+1}^n \min_j w_{ij}$.

界函数: 已得到的可行解的最小 $\sum_{i=1}^n w_{ij}$.

最坏时间复杂度: 共有 m^n 个节点, 每个节点计算 O(1), 故为 $O(m^n)$.

实例最优解: (3,1,2,3), 价格 119, 重量 31.

5.5

解向量: $\langle x_1, \dots, x_8 \rangle$ 表示第 i 行在第 x_i 列放置皇后.

搜索树结构: 节点 $\langle x_1, \dots, x_k \rangle$ 表示已选定了前 k 行的皇后位置.

约束条件: $\forall 1 \leq i < k, x_i \neq x_k, x_i + i \neq x_k + k, x_i - i \neq x_k - k$.

搜索策略: 广度优先.

代价函数和界函数: 无.

最坏时间复杂度: 对于 n 皇后问题, 共有 n^n 个节点, 每个节点计算 O(1), 故为 $O(n^n)$.

5.6

设 $S = \{a_1, \cdots, a_n\}.$

解向量: $\langle x_1, \dots, x_n \rangle \in \{0,1\}^n$ 表示每个元素是否选取.

搜索树结构: 节点 $\langle x_1, \dots, x_k \rangle$ 表示已确定了前 k 个元素是否选取.

约束条件: $\sum_{i=1}^k x_i a_i \leq M$, k=n 时需严格取等.

搜索策略: 深度优先.

代价函数和界函数:无.

最坏时间复杂度: 共有 2^n 个节点, 每个节点计算 O(1), 故为 $O(2^n)$.

5.7

解向量: $\langle x_1, \dots, x_n \rangle$ 表示第 i 个人负责工作 x_i .

搜索树结构: 节点 $\langle x_1, \cdots, x_k \rangle$ 表示已选定了前 k 个人负责的工作.

约束条件: $\forall 1 \leq i \leq k, x_i \neq x_k$.

搜索策略: 深度优先.

代价函数: $\sum_{i=1}^k C(i,x_i) + \sum_{i=k+1}^n \min_j C(i,j)$.

界函数: 已得到的可行解的最小 $\sum_{i=1}^n C(i,x_i)$.

最坏时间复杂度: 共有 n! 个节点, 每个节点计算 O(n), 故为 O((n+1)!).