МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Кафедра програмування

Практичне завдання № 8 **СТАТИСТИЧНІ АЛГОРИТМИ СТИСНЕННЯ ІНФОРМАЦІЇ**

з курсу "Теорія інформації"

Виконала: студентка групи ПМІ-25 Ващук Ярина

Варіант <u>6</u>

Оцінка

Прийняв: доц. Рикалюк Р.Є. ас. Жировецький В.В.

Мета роботи: навчитись проводити стиснення тексту, використовуючи двопрохідний алгоритм Хаффмана, визначати довжину кодової послідовності на виході кодера та коефіцієнт стиснення, декодовувати послідовність знаючи, що вона закодована (стиснена) алгоритмом Хаффмана з передачею структури кодового дерева.

Хід роботи

1.

а. Провести стиснення тексту наведеного у табл. 8.1, використовуючи двопрохідний алгоритм Хафмана. (Записати вихідне кодове слово, яке складається з двох частин – Code(X) = Code₁(X) + Code₂(X). Тут Code₁(X), містить інформацію про використаний (застосований) код – у вигляді структури кодового дерева і алфавіту, друга, Code₂(X), – власне закодовану (стиснену) послідовність).

НА СОРОК СОРОК СОРОК МОРОК

Побудуємо дерево Хаффмана:

Закодоване дерево: 0 00 1001 1110 01 11

Коди ASCII символів:

O 11 001 110	
--------------	--

пробіл	00 100 000
Р	11 010 000
К	11 001 010
С	11 010 001
Н	11 001 101
A	11 000 000
M	11 001 100

 $Code(X)_1 = 0.00 \ 1001 \ 1110 \ 01.11 \ 11001110 \ 00100000 \ 11010000 \ 11010000 \ 11001010$

Символ	Частота /26	Ймовірність	Код	L	p_iL_i
О	8	0.307692308	11	2	0.615384616
пробіл	4	0.153846154	00	2	0.307692308
P	4	0.153846154	101	3	0.461538462
К	4	0.153846154	100	3	0.461538462
С	3	0.115384615	011	3	0.346153845
Н	1	0.038461538	0100	4	0.153846152
A	1	0.038461538	01011	5	0.192307691
M	1	0.038461538	01010	5	0.192307691

Закодоване речення кодом Хаффмана

b. Визначити довжину кодової послідовності на виході кодера та коефіцієнт стиснення.

```
l_1=15+8*8=79 біт. 
l=l_1+l_2=79+27=106 біт. 
Коефіцієнт стиснення: r=15*8 / 106=1.132
```

2. Декодувати послідовність

знаючи, що вона закодована (стиснена) алгоритмом Хаффмана з передачею структури кодового дерева. (Побудувати дерево, таблицю кодів і саму розпаковану послідовність, використовуючи таблицю ASCII кодів).

Код ASCII:

00 100 000 пробіл	11 001 000 И
11 001 101 Н	11 010 010 Т
11 010 000 P	00 101 100 , 00 101 110 .
11 000 100 Д 11 000 000 A	10 101 010 €
11 001 110 O	11 000 111 3
10 110 010 I	11 000 110 Ж
11 000 101 E	11 010 101 X
11 001 100 M	11 001 111 П
11 001 001 Й	11 001 010 K
11 000 001 Б	11 010 001 C
11 010 011 У	11 001 011 Л
11 000 010 В	11 011 100 Ь
11 000 010 D	11 011 100 Б

Використовуючи дерево, складаємо таблицю

пробіл	01	2
Н	000	3
P	001	3
Д	101	3
A	1000	4
О	1001	4
Ι	1100	4
Е	1101	4
M	11100	5
Й	11101	5
Б	1111100	7

У	1111101	7
В	1111110	7
И	1111111	7
Т	11110100	8
,	11110101	8
	11110110	8
ϵ	11110111	8
3	111100000	9
Ж	111100001	9
X	111100010	9
П	111100011	9
К	111100100	9
С	111100101	9
Л	111100110	9
Ь	111100111	9

1101 E 1111110 B 11110101, 01 _ 000 H 1000 A 001 P 1001 O 101 Д 01 _ 11100 M 1100 I 11101 Й 01 _ 11110111 € 11110101, 01 _ 000 H 1000 A 001 P 1001 O 101 Д 01 _ 11100 M 1100 I 11101 Й 01 _ 111100000 3 1000 A 1111110 B 111100001 Ж 101 Д 1111111 И 01 _ 1111100 Б 1111101 У 101 Д 1101 Е 11110110 . 01 _ 000 H 1100 I 111100010 Х 11110100 Т 1001 О 01 _ 000 H 1101 E 01 _ 111100101 П 1101 Е 001 Р 1101 Е 111100100 К 001 Р 1101 Е 111100101 С 111100110 Л 1111111 И 11110100 Т 111100111 Ь 01 _ 11100 М 1100 I 11101 Й 01 _ 000 Н 1000 А 001 Р 1001 О 101 Д 11110110 .

ЕВ, НАРОД МІЙ Є, НАРОД МІЙ ЗАВЖДИ БУДЕ. НІХТО НЕ ПЕРЕКРЕСЛИТЬ МІЙ НАРОД.

Висновок: в ході виконання роботи я навчилась проводити стиснення тексту, використовуючи двопрохідний алгоритм Хаффмана, визначати довжину кодової послідовності на виході кодера та коефіцієнт стиснення, декодовувати послідовність знаючи, що вона закодована (стиснена) алгоритмом Хаффмана з передачею структури кодового дерева.