<u>Démonstrateur</u>

Scénario du Démonstrateur

Scène de 3m * 3m

Machine d' Etats du Démonstrateur

• Organigrammes Tâche de fond démarrage et surveillance batterie

<u>Diagrammes des Fonctions Navigue() et Stop() Machine Etats</u>

Diagramme de Navigue()

Diagramme de Stop()

• Organigrammes des fonctions Navigue() et Stop()

• Organigramme de l'ETAT 1 RotationEtRechercheBalise

Délais Sonar E/R = 100ms

Le Sous Programme des Interruptions ProgIT Init variables locales Toutes static Static char chrono_20ms Static char chrono-100ms Static char chrono_400ms Static int chrono_2s ItTelecom Drapeau.Telecom = True Mettre à False Timer3 over Flags IT True TMR3OFF Puis PWMSonar = False return ItTimer2 10ms Variables local++ $Chrono_xx$ $Chrono_XX = 0$ Drapeau.XX = True

return

La Gestion HardWare et Software du Démonstrateur

• Initialisation du BSP PIC18F2520

```
#pragma config OSC = INTIO67 // horloge interne RA6-RA7 en E/S
#pragma config WDT = OFF // Pas de chien de garde
#pragma config MCLRE = ON
#pragma config PBADEN = OFF // RB[0..4] digital I/O
#pragma config LVP = OFF
```

Fosc = 8Mhz dans le registre OSCON Ne pas oublier

Initialisations des drivers de périphériques

Les ports TOR en entrée

Le signal d'interruption de la Télécommande INTO sur front montant Les impulsions de déplacement de deux chenilles

Chenille D

Chenille G

Les signaux SDA, SCL du bus I2C

Les ports TOR en sortie

Commande de direction du déplacement du Robot

DIR D

DIR G

Commandes PWM Moteurs

PWM D

PWMG

La commande Marche Arret des deux capteurs IR

IRMarche

La commande PWM pour la rotation du mat SONAR

RotationSONAR

La led de test qui doit clignoter au rythme de 100ms suivant la trajectoire.

TestdeVie

Les trois voies analogiques de mesure des tensions capteurs en mode 8bits 'left justified' qui donne une résolution de 20mV/Ref de 5v

VBAT → ANO

IRD → AN1

IRG → AN2

Ne pas oublier de valider le convertisseur A/D

ADCONObits.ADON = True;

Les Compteurs Timers de l'application

compteurs de déplacement des chenilles

CompteChenilleD → TMR0

CompteChenilleG. → TMR1

compteur pour les commandes PWM moteurs et la chronométrie temps réel de la plate forme à 1ms \rightarrow TMR2 et PR2

Compteur pour la gestion software du servomoteur associé au sonar.

Compte ServoSonar → TMR3

Ne pas oublier de valider les Timers → TMRONx = True Ex pour TMR2 : T2CONbits.TMR2ON = True ;

Le bus I2C standard à 100Khz Attention aux sens des lignes SDA, SCL impérativement en entrée

Affichage 8bits sur PCF8574 adresse 0x40 La réception Télécommande adresse 0xA2 Le SONAR adresse 0xE0

La liaison Tx série RS232 mise en œuvre en mode _DEBUG uniquement (#ifdef .. endif)

Mode Tx 9600Bds 8 N 1 sans protocole

Affichage du message « Initialisation terminee »

Si erreur détectable affichage du message « Erreur n »

Les interruptions associées à l'application

Interruption du Timer2 toutes les 10ms qui gère la chronométrie chrono_100ms par comptage → TMR2IF

Pour la gestion du servo associé à la rotation du Sonar Interruption du débordement compteur associé au Timer3 → TMR3IF Interruption Télécommande → INTO sur front montant.

Validation des interruptions → GIEH = True ;

Descriptif de la Carte Electronique, Implantation des Interfaces

Quelques paramètres physiques du ROBOT à retenir

Electriques

- Batterie 12V, 1200mAh
- Moteurs tension nominale 6V
- Composants TTL 5V

Mécaniques

- L = 25cm, I = 15cm, H = 15cm
- Poids 2Kg
- Vitesse Max à Vbat = 12V 40cm/s
- Déplacement capteurs chenilles <= 1cm/pulse
- ServoMoteur asservi position PWM T = 20ms [825μs...2225μs] pour 180°(-+90°)

Capteurs Embarqués (voir les datasheets)

- IR D/G 30cm < distance détection < 150cm, résolution dépend de la précision de la mesure
- SONAR 5cm < distance détection < 700cm, résolution +- 1cm

Télécommande(voir la documentation)

- 5 touches accessibles par clef de codage [0..31]
- Alimentée par batterie 4V8 150mAh
- Auto répétition des codes touches 100ms