Material Teórico - Módulo de CONJUNTOS

Conjuntos Numéricos - Parte 02

9o Ano

Autor: Prof. Francisco Bruno Holanda Autor: Prof. Antônio Caminha Muniz Neto

12 de janeiro de 2020

1 Números racionais

Este material dá continuidade ao conteúdo sobre conjuntos numéricos, desta vez falando sobre números racionais e reais.

O conjunto $\mathbb Q$ dos números racionais surgiu a partir da necessidade prática de podermos representar uma fração (nesse sentido, uma parte) de um todo). Por exemplo, uma fatia de uma pizza grande é $\frac{1}{8}$ da pizza inteira. Entretanto, $\mathbb Q$ também tem a propriedade matemática agradável de ser fechado em relação à operação de divisão por um divisor diferente de zero.

Como você sabe, $\mathbb Q$ é definido por:

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N} \right\}.$$

(Recorde que, para nós, $\mathbb{N} = \{1, 2, 3, \ldots\}$.) Graças à discussão acima, seus elementos são denominados **frações**. Além disso, na **fração** $\frac{a}{b}$, o número a é chamado de **numerador** e o número b é chamado de **denominador**.

Na declaração de $\mathbb Q$ dada acima, um mesmo racional pode ser representado por duas frações distintas, isto é, podemos ter $\frac{a}{b}=\frac{c}{d}$. Por definição, isto ocorre se, e somente se, ad=bc. Em resumo,

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc. \tag{1}$$

Neste caso, dizemos que as frações $\frac{a}{b}$ e $\frac{c}{d}$ são **equivalentes**. Por exemplo, $\frac{6}{9}$ e $\frac{10}{15}$ são equivalentes, uma vez que $6 \cdot 15 = 90 = 10 \cdot 9$. Logo mais, entenderemos porque (1) é a definição adequada para a equivalência de frações.

Assim como fizemos para o números inteiros, representamos os racionais geometricamente, na reta numérica. Mais precisamente, para representar o racional $\frac{a}{b}$, com a e b inteiros positivos, começamos dividindo o segmento com extremidades nos pontos 0 e b em b partes iguais; a extremidade da direita da parte que estiver mais próxima de 0 será o ponto que representa o número $\frac{1}{b}$. Em seguida, repetimos consecutivamente o segmento de extremidades 0 e $\frac{1}{b}$, num total de a vezes, a partir de 0 e no sentido positivo da reta. A extremidade da direita do último segmento marcado é o ponto que representa a fração $\frac{a}{b}$.

A representação geométrica de números racionais torna claro porque duas frações $\frac{a}{b}$ e $\frac{c}{d}$ podem representar um mesmo racional e porque (1) é a definição adequada de equivalência de frações. Por exemplo, suponha que a,b,c,d>0 e tenhamos c=ka e d=kb, para algum inteiro k. Então,

$$ad = a \cdot kb = ka \cdot b = cd$$
,

de sorte que, de acordo com (1), temos $\frac{a}{b} = \frac{c}{d}$. Por outro lado, para representar $\frac{c}{d}$ geometricamente, dividimos o segmento de 0 a c em d=kb partes iguais; tomar c=ka segmentos consecutivos de comprimento $\frac{1}{kb}$ cada é, intuitivamente, o mesmo que tomar a segmentos consecutivos de comprimento $\frac{1}{b}$ cada.

Dada uma representação fracionária $\frac{a}{b}$ de um número racional, podemos sempre obter uma fração equivalente $\frac{c}{d}$, com mdc (c,d)=1. Por exemplo, como $10=5\cdot 2$ e $15=5\cdot 3$, temos $\frac{10}{15}=\frac{2}{3}$, com mdc (2,3)=1. Dizemos, então, que $\frac{10}{15}$ pôde ser simplificada para $\frac{2}{3}$. Em geral se d= mdc (a,b), então existem $a',b'\in \mathbb{Z}$ tais que a=da' e b=db', de forma que mdc (a',b')=1 e $\frac{a}{b}=\frac{a'}{b'}$.

É bastante frequente que, dada uma fração $\frac{a}{b}$, procuremos simplificá-la como no parágrafo anterior, gerando a partir dela uma fração equivalente $\frac{a'}{b'}$ com mdc (a',b')=1 (e que, portanto, não pode ser simplificada mais). A razão para procurarmos fazer isso é que $|a'| \leq |a|$ e $b' \leq b$, de forma que, em princípio, é mais fácil lidar com a representação $\frac{a'}{b'}$ que com a representação $\frac{a}{b}$. Por essa razão, temos a seguinte

Definição 1. Dizemos que uma fração $\frac{a}{b}$ é **irredutível** quando não pode ser simplificada, isto é, quando $\operatorname{mdc}(a,b)=1$.

Por exemplo, as frações $\frac{1}{3}$, $\frac{2}{3}$, $\frac{2}{5}$ e $\frac{4}{7}$ são todas irredutíveis.

1.1 Operações com racionais

Ao longo do Ensino Fundamental, aprende-se a como realizar as operações básica com frações. Confira o resumo a seguir:

Adição de frações:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
.

Subtração de frações:

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}.$$

Multiplicação de frações:

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$
.

Divisão de frações:

$$\frac{a}{b} \div \frac{c}{d} = \frac{a \times d}{b \times c}.$$

(Contanto que $\frac{c}{d} \neq 0$.)

Uma observação importante é que as definições de adição, subtração, multiplicação e divisão de números racionais garantem que os resultados (nas notações acima, $\frac{ad+bc}{bd}$, $\frac{ad-bc}{bd}$, $\frac{a\times c}{b\times d}$ e $\frac{a\times d}{b\times c}$) realmente são números racionais (pois ad+bc, ad-bc, $a\times c$, $a\times d$ continuam sendo inteiros e bd, bc continuam sendo naturais). Por essa razão, dizemos que $\mathbb Q$ é fechado para as operações de adição, subtração, multiplicação e divisão.

Outro ponto relevante é que essas operações são consistentes, quer dizer, os resultados não dependem das representações fracionárias escolhidas. Por exemplo, como

 $\frac{2}{3}=\frac{10}{15}$ e $\frac{3}{7}=\frac{18}{42},$ para que as operações acima tenham sentido, devemos ter

$$\frac{2}{3} + \frac{3}{7} = \frac{10}{15} + \frac{18}{42}, \quad \frac{2}{3} - \frac{3}{7} = \frac{10}{15} - \frac{18}{42},$$

$$\frac{2}{3} \times \frac{3}{7} = \frac{10}{15} \times \frac{18}{42} \text{ e } \frac{2}{3} \div \frac{3}{7} = \frac{10}{15} \div \frac{18}{42}.$$

Essas igualdades assim com as igualdades correspondentes no caso geral (para pares de frações equivalentes $\frac{a}{b} = \frac{c}{d}$ e $\frac{a'}{b'} = \frac{c'}{d'}$) podem ser verificadas facilmente (ainda que, no caso geral, essa verificação seja um pouco trabalhosa).

Outra coisa que pode ser verificada sem muitos problemas é que as operações $+, -, \times$ e \div continuam tendo as mesmas propriedades que têm em \mathbb{Z} . Por exemplo + e \times são associativas e comutativas, \times é distributiva (dos dois lados) em relação a + e a -, e \div é distributiva em relação a + e - à direita. Deixamos ao leitor a tarefa de escrever as igualdades que correspondem a essas propriedades.

1.2 Notação decimal

Também podemos expressar números racionais utilizando a base decimal. Para chegarmos até essa representação, vamos, inicialmente, recordar como ela funciona no caso de números inteiros. Considere o número inteiro 3874, cuja representação decimal é

$$3874 = 3 \cdot 10^3 + 8 \cdot 10^2 + 7 \cdot 10^1 + 4 \cdot 10^0$$

Se dividirmos 3874 por 100, usando as propriedades das frações, obtemos:

$$\frac{3874}{100} = 3 \cdot \frac{10^3}{100} + 8 \cdot \frac{10^2}{100} + 7 \cdot \frac{10^1}{100} + 4 \cdot \frac{10^0}{100}$$

Usando as propriedades das potências, temos:

$$\frac{3874}{100} = 3 \cdot 10^1 + 8 \cdot 10^0 + 7 \cdot 10^{-1} + 4 \cdot 10^{-2}.$$

Antes de continuarmos, note que, dada uma potência de 10, para obtermos a potência de 10 de ordem *imediatamente superior*, devemos *multiplicá-la* por 10 (por exemplo, $10^5 = 10^4 \times 10$). Analogamente, para obtermos a potência de 10 de ordem *imediatamente inferior*, devemos *dividir* a potência original por 10 (por exemplo, $10^3 = 10^4 \div 10$).

Essa observação nos permite expandir a representação decimal para números racionais. Para tanto, se $a \in \{0,1,2,\ldots,9\}$ é um algarismo decimal, então, da mesma forma que o número $a\underbrace{00\ldots0}$ é uma abreviação para

forma que o numero $\frac{1}{k \text{ vezes}}$ $a \cdot 10^k$, convencionamos escrever $0, \underbrace{00 \dots 0aa}_{k \text{ vezes}}$ a diferença entre a

abreviação para $\frac{a}{10^k} = a \cdot 10^{-k}$ (note a diferença entre a quantidade de zeros no primeiro e no segundo casos).

Assim, para $\frac{3874}{100}$, por exemplo, temos

$$\frac{3874}{100} = 3 \cdot 10^{1} + 8 \cdot 10^{0} + 7 \cdot 10^{-1} + 4 \cdot 10^{-2}$$
$$= 30 + 8 + 0, 7 + 0, 04$$
$$= 38, 74.$$

Veja que a vírgula foi usada para separar os algarismos que aparecem com potências de 10 de expoentes não negativos (no caso, 1, 10 e 100) daqueles que aparecem com potências de 10 de expoentes negativos (no caso, $\frac{1}{10} = 10^{-1}$ e $\frac{1}{100} = 10^{-2}$). Veja também que, na prática, como o denominador em $\frac{3874}{100}$ é 10^2 , partindo de 3874 e imaginando uma vírgula logo após o 4, nós a deslocamos dois algarismos para a esquerda (exatamente porque estamos dividindo por $100 = 10^2$).

O raciocínio anterior permite escrever a representação decimal de qualquer fração cujo denominador seja uma potência de 10. Por exemplo, $\frac{123}{10} = 12,3$ e $\frac{34}{1000} = 0,034$.

Quando o denominador é uma potência de 2 ou uma potência de 5, podemos adaptar a última técnica, passando primeiro a uma fração equivalente para obter uma potência de 10 no denominador. Por exemplo, para descobrir a forma decimal de $\frac{7}{8}$ fazemos:

$$\frac{7}{8} = \frac{7}{2^3} = \frac{7 \cdot 5^3}{2^3 \cdot 5^3} = \frac{875}{10^3} = 0,875.$$

Porém, essa estratégia não pode ser aplicada quando temos uma fração como $\frac{1}{3}$, pois não há nenhum número inteiro que multiplicado por 3 resulte em uma potência de 10. **Então, como representar tais frações no formato decimal?** O segredo está na utilização do algoritmo da divisão.

Vamos tomar como exemplo a fração $\frac{1}{3}$. O primeiro passo é notar a equivalência $\frac{1}{3} = \frac{10}{30}$, na qual o numerador e o denominador da fração original são ambos multiplicados por 10. Agora lembre-se de que $10 = 3 \cdot 3 + 1$, pelo algoritmo da divisão. Assim,

$$\frac{1}{3} = \frac{10}{30} = \frac{3 \cdot 3 + 1}{30} = \frac{3}{10} + \frac{1}{30} = 0, 3 + \frac{1}{30}.$$

Podemos repetir o processo para $\frac{1}{30}$, escrevendo

$$\frac{1}{30} = \frac{10}{300} = \frac{3 \cdot 3 + 1}{300} = \frac{3}{100} + \frac{1}{300} = 0,03 + \frac{1}{300}.$$

Portanto,

$$\frac{1}{3} = 0,3 + 0,03 + \frac{1}{300} = 0,33 + \frac{1}{300}.$$

Perceba que podemos continuar esse processo por quantas vezes quisermos, obtendo

$$\frac{1}{3} = 0, \underbrace{333...3}_{k \text{ years}} + \frac{1}{3 \cdot 10^k},$$

2

onde k é inteiro positivo. Veja também que, à medida que k cresce, o número $\frac{1}{3\cdot 10^k}$ (que é o erro entre $\frac{1}{3}$ e a aproximação $0, \underbrace{333...3}_{hyero}$) fica cada vez menor. Assim, extra-

polando esse processo para um número infinito de passos, convencionamos escrever

$$\frac{1}{3} = 0,333...$$

Um raciocínio similar ao acima pode ser feito com qualquer racional $\frac{a}{b}$ tal que b não é potência de 2 ou 5. Nesse caso, obtemos uma representação decimal com infinitos algarismos não nulos à direita da vírgula, e é possível mostrar que tal representação sempre possui uma parte **parte periódica** ou **período**, isto é, uma parte que se repete indefinidamente e engloba todos os algarismos a partir de certo ponto (em 0,333... por exemplo, a parte periódica é 3).

Outros dois exemplos desse fenômeno são

$$\frac{5117}{99} = 51,343434...$$
 e $\frac{374}{900} = 0,41555...$

Veja que o período é 34 no primeiro e 5 no segundo. Entretanto, no segundo aparece um grupo de algarismos imediatamente à direita da vírgula mas que $n\tilde{a}o$ $comp\tilde{o}e$ o período; esse conjunto de algarismos é chamado de **parte** $n\tilde{a}o$ **periódica**.

A respeito da discussão acima, temos a seguinte definição importante.

Definição 2. Os números racionais cujas representações na forma decimal necessitam de um número infinito de algarismos não nulos são conhecidos como dízimas periódicas. Se a dízima possui apenas a parte periódica, ela é chamada de dízima periódica simples. Quando há também uma parte não periódica, trata-se de uma dízima periódica composta.

Até aqui, aprendemos como escrever uma fração em sua forma decimal (seja ela finita ou uma dízima periódica). Assim, é natural questionar se também não é possível fazer o contrário, isto é, recuperar a representação fracionária a partir de um racional que está expresso em notação decimal.

Ilustramos como fazer isso nos dois exemplos a seguir. Em particular, o procedimento envolvido é até mais prático do que aquele que já aprendemos anteriormente.

Exemplo 3. Escreva o número x = 0, 121212... em formato de fração.

Solução. Veja que o número x é uma dízima periódica com período formado por um bloco dois algarismos que se repete infinitamente. Então, se multiplicarmos o valor de x por $10^2 = 100$, obteremos um outro número com a mesma parte periódica de x. De fato, veja que 100x = 12,121212... Agora, ao subtrairmos x de 100x, temos:

$$100x - x = 12, 1212212... - 0, 121212...$$

$$99x = 12 \Rightarrow x = \frac{12}{99} = \frac{4}{33}.$$

Exemplo 4. Escreva o número x = 0,5131313... em formato de fração.

Solução. Neste caso, o número x novamente possui um período formado por um bloco dois algarismos que se repete infinitamente. Além disso, x possui uma parte não periódica formada por um algarismo 5. Se multiplicarmos o valor de x por 10, obteremos um outro número com o mesmo período de x, mas sem a parte não periódica. De fato, veja que 10x = 5,131313... possui apenas parte periódica. Isso significa que, partindo de 10x, podemos usar o mesmo raciocínio que empregamos para resolver o exemplo anterior. Observe:

$$1000x - 10x = 513, 131313... - 5, 131313...$$

$$990x = 508 \Rightarrow x = \frac{508}{990} = \frac{254}{495}.$$

2 Sugestões ao professor

Recomendamos um encontro de 50 minutos para apresentar o conteúdo deste material. Note que uma boa compreensão do conjunto dos racionais (e também dos reais, os quais estudaremos subsequentemente) é de fundamental importância em grande parte dos assuntos relativos à Matemática. Por este motivo, esteja atento às dificuldades operacionais e de entendimento dos alunos. Se necessário, evite avançar no conteúdo até que essas dificuldades sejam superadas. Especialmente, enfatize com os alunos que, em geral,

$$\frac{a}{b} + \frac{c}{d} \neq \frac{a+c}{b+d}.$$

Esse erro é bastante comum, mesmo entre alunos de Ensino Superior.