ASSIGNMENT

This assignment will help you grasp the implementation aspects of the Filtered back projection algorithm that you have learnt in class.

- Q. Reconstruct the Shepp Logan phantom, given the projection data.
- 1. Call the "projection.m" function to generate the projection data, $P_{\theta}(t)\text{, using the function call}$

"[proj_data, angles]=projection(No_of_angles, No_of_rays);"

No_of_angles will decide the viewing directions, θ_i , at which the projections are taken. These are equally distributed over 360°.

No_of_rays, t, specifies the number of rays in each direction i.e. it defines the number of points in the projection data for each angle.

Proj_data stores the projection data for each angle columnwise. [No_of_rays X No_of_angles] Plot the proj_data using the image function in matlab. The figure you obtain is called a sinogram. Experiment with different no. of angles and rays.

- 2. Obtain the 1-D Fourier transform $S_{\theta}(\omega)$ using the Fourier Slice Theorem. Note: zero padding may be required if the no_of_rays is not equal to 2^{N} .
- 3. Obtain the modified backprojection data $Q_{\theta}(t)$
 - a. Multiply $S_{\theta}(\omega)$ by a suitable filter function.
 - b. Take the Inverse Fourier Transform of the product to obtain $Q_{\theta}(t)$

4. Backprojection

- a. Note that $t=x\cos\theta + y\sin\theta$. You will need to define a grid with the limits for x and y set to desired image size i.e. say $-1 \le x$, $y \le 1$
- b. For each pair of coordinates (x,y) sum $Q_{\theta}(t)$ for all angles θ_i to obtain the filtered backprojection f(x,y)
- c. Plot the phantom values and the reconstructed values along any chosen cross section and compare.

Note: Load the file "SheppLogan.mat" to obtain the phantom data.