Decision Boundary

In order to get our discrete 0 or 1 classification, we can translate the output of the hypothesis function as follows:

$$h_{\theta}(x) \geq 0.5 \rightarrow y = 1$$

$$h_{\theta}(x) < 0.5 \rightarrow y = 0$$

The way our logistic function g behaves is that when its input is greater than or equal to zero, its output is greater than or equal to 0.5:

$$g(z) \ge 0.5$$

when $z \ge 0$

Remember.

$$z = 0, e^0 = 1 \Rightarrow g(z) = 1/2$$

$$z \to \infty, e^{-\infty} \to 0 \Rightarrow g(z) = 1$$

$$z \to -\infty, e^{\infty} \to \infty \Rightarrow g(z) = 0$$

So if our input to g is $\theta^T X$, then that means:

$$h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

when
$$\theta^T x \ge 0$$

From these statements we can now say:

$$\theta^T x \ge 0 \Rightarrow y = 1$$

$$\theta^T x < 0 \Rightarrow y = 0$$

The **decision boundary** is the line that separates the area where y = 0 and where y = 1. It is created by our hypothesis function.

Example: