Содержание

1	Аннотация	2
2	Обзор источников	3
3	Полученные результаты 3.1 Теоретические 3.2 Практические	
\mathbf{C}_{1}	писок литературы	13

1 Аннотация

Проект посвящен 2-словам, которые играют важную роль в генетике при описании эпигенетических геномных перестроек. Удобным геометрическим представлением 2-слов являются так называемые сборные графы. Среди их характеристик выделяется сборное число — минимальное количество полигональных путей, покрывающих все 4-валентные вершины графа. В данном проекте будет сделан упор на 2-слова, являющиеся палиндромами и полупалиндромами: будут исследоваться их комбинаторные свойства и характеристики. Один из интересующих вопросов таков: верно ли, что сборное число любого полупалиндрома равно 1?

2 Обзор источников

Статья[1] содержит определение таких понятий, как сборный граф, изоморфизм сборных графов, трансверсаль, простой сборный граф, слово, сборное слово или 2-слово, разложимый и неразложимый сборный граф, Гамильтоново множество путей, полигональный путь, сборное число, реализуемый и нереализуемый сборный граф, минимальное реализующее число, а также некоторые теоремы.

Последующая статья по теме[2] определяет такие понятия, как 2-слово в порядке возрастания, палиндром, сильно-неразложимый сборный граф, а также выводит формулы для подсчета всех, неразложимых и сильно-неразложимых 2-слов, а также всех, неразложимых и сильно-неразложимых палиндромов.

В статье[3] рассматриваются матрицы инцедентности простых сборных графов и их свойства, серии сборных графов, широко известные благодаря их экстремальным свойствам, а также внутренняя петельная подстановка.

Рассматриваются конечные графы $\Gamma = (V, E)$, где V — множество вершин, а $E \subseteq V \times V$ — множество ребер. Граф может содержать петли и кратные ребра.

Определение 1. Степень вершины $v \in V$ — число ребер, инцидентных данной вершине.

Определение 2. Циклический порядок для кортежа из k элементов $(x_1, x_2, x_3, \dots, x_{k-1}, x_k)$ — множество

```
(x_1, x_2, x_3, \dots, x_{k-1}, x_k)^{cyc} = \{(x_1, x_2, x_3, \dots, x_{k-1}, x_k), (x_2, x_3, \dots, x_{k-1}, x_k, x_1), (x_3, \dots, x_{k-1}, x_k, x_1, x_2), \dots, (x_k, x_1, x_2, x_3, \dots, x_{k-1}), (x_k, x_{k-1}, x_{k-2}, \dots, x_2, x_1), (x_{k-1}, x_{k-2}, \dots, x_2, x_1, x_k), (x_{k-2}, \dots, x_2, x_1, x_k, x_{k-1}), \dots, (x_1, x_k, x_{k-1}, x_{k-2}, \dots, x_2)\}
```

то есть все циклические сдвиги кортежа и все циклические сдвиги кортежа, записанного в обратном порядке.

Чтобы задать циклический порядок, достаточно одного элемента множества $(x_1, x_2, x_3, \dots, x_{k-1}, x_k)^{cyc}$.

Определение 3. Вершина v — упорядоченная (или, иногда, регулярная), если циклический порядок ребер, инцидентных ей, зафиксирован.

Замечание 4. Для каждого из ребер упорядоченной вершины корректно определены его соседи.

Определение 5 ([1, Definition 3.1.]). Сборный граф — конечный связный граф, в котором все вершины упорядоченные и имеют степени 1 или 4.

Определение 6. Концевая вершина — вершина степени 1.

Определение 7. Порядок Γ (обозначение $|\Gamma|$) — количество вершин, степени 4 сборного графа Γ .

Определение 8. Тривиальный сборный граф — сборный граф Γ , что $|\Gamma| = 0$.

Определение 9 ([1, Definition 3.2.]). Графы Γ_1 и Γ_2 изоморфны, если $|\Gamma_1| = |\Gamma_2|$ и существует изоморфизм $\phi: V_1 \to V_2$, такой, что

- 1. для любых $u, v \in V_1$ ребро $(u, v) \in E_1$ тогда и только тогда, когда $(\phi(u), \phi(v)) \in E_2$;
- 2. для любой $u \in V_1$ циклический порядок ребер в u совпадает с циклическим порядком их ϕ -образов в $\phi(u)$.

Определение 10. Последовательность вершин и ребер $(v_0, e_1, v_1, e_2, \dots, e_n, v_n)$ — путь в графе, если $v_i \in V$, $e_i \in E$, e_i — ребро между v_{i-1} и v_i .

Определение 11 ([1, Definition 3.3.]). Трансверсаль $(v_0, e_1, v_1, e_2, \ldots, e_n, v_n)$ — путь, что каждая вершина встречается максимум два раза, все ребра различны, а ребра e_i и e_{i+1} не являются соседними в v_i .

Определение 12. Эйлеров путь в Γ — путь, содержащий каждое ребро ровно один раз.

Определение 13 ([1, Definition 3.5.]). Простой сборный граф — сборный граф, содержащий эйлерову трансверсаль.

Определение 14. Две трансверсали эквивалентны, или если они равны, или если одна является другой в обратном порядке.

Лемма 15 ([1, Lemma 3.6.]). В простом сборном графе существует единственный класс эквивалентности трансверсалей.

Лемма 16 ([1, Lemma 3.7.]). Два простых сборных графа Γ_1 и Γ_2 с трансверсалями γ_1 и γ_2 изоморфны если и только если существует отображение $\Phi = (\Phi_v, \Phi_e) : \Gamma_1 \to \Gamma_2$ с биекциями $\Phi_v : V_1 \to V_2$ и $\Phi_e : E_1 \to E_2$, что $\Phi(\gamma_1)$ эквивалентна γ_2 .

Сборные графы естественным образом связаны со специальным классом слов.

Определение 17. Сборное слово или 2-слово — это слово в некотором алфавите $S = \{a_1, a_2, \dots\}$, что каждая буква a_i либо содержится в слове ровно два раза, либо не содержится вовсе.

Определение 18. Порядок 2-слова w (обозначение |w|) — количество букв, которые встречаются в 2-слове.

Определение 19. Обратное слово к слову $w = a_{i_1} \dots a_{i_k}$ (обозначение $w^R) - a_{i_k} \dots a_{i_1}$.

Определение 20. Два 2-слова эквивалентны, если после переименования некоторых букв они или совпадают, либо являются обратными друг для друга.

Лемма 21 ([1, Lemma 3.8.]). Классы эквивалентности 2-слов находятся в биективном соответствии с классами изоморфизма простых сборных графов.

Определение 22 ([1, Definition 3.10.]). Композиция $\Gamma_1 \circ \Gamma_2$ двух ориентированных простых сборных графов Γ_1 и Γ_2 — это граф, который получается, если отождествить конечную вершину Γ_1 и начальную вершину Γ_2 , после чего забыть об этой вершине.

Замечание 23. Композиция простых сборных графов — простой сборный граф.

Определение 24 ([1, Definition 3.11.]). Разложимое 2-слово w — такое 2-слово, которое может быть записано как произведение w=uv двух непустых 2-слов u,v. Аналогично, разложимый простой сборный граф Γ — такой сборный граф, что $\Gamma = \Gamma_1 \circ \Gamma_2$ для непустых простых сборных графов Γ_1, Γ_2 . В противном случае и 2-слово, и простой сборный граф — неразложимые.

Далее рассматриваются полигональные пути и сборное число.

Определение 25. Простой путь — путь, не содержащий какую-либо вершину дважды.

Определение 26 ([1, Definition 4.2.]). Множество попарно непересекающихся простых путей $\{\gamma_1, \ldots, \gamma_k\}$ — гамильтоново, если их объединение содержит все вершины степени 4 графа Γ .

Определение 27 ([1, Definition 4.3.]). Полигональный путь — путь $(v_0, e_1, v_1, e_2, \dots, e_n, v_n)$, что $e_i e_{i+1}$ — соседи для v_i для $i \in \{1, \dots, n-1\}$.

Определение 28 ([1, Definition 4.4.]). Сборное число простого сборного графа Γ (обозначение $An(\Gamma)$), определяется как $An(\Gamma) = \min\{k | \text{ существует гамильтоново множество полигональных путей <math>\{\gamma_1, \ldots, \gamma_k\}$ в $\Gamma\}$.

Определение 29. Реализумый простой сборный граф — простой сборный граф, со сборным числом 1. Иначе — нереализуемый.

Лемма 30 ([1, Lemma 4.6.]). Для любой пары ориентированных простых сборных графов Γ_1 и Γ_2 , одно из двух равенств выполнено: $\operatorname{An}(\Gamma_1 \circ \Gamma_2) = \operatorname{An}(\Gamma_1) + \operatorname{An}(\Gamma_2)$, или $\operatorname{An}(\Gamma_1 \circ \Gamma_2) = \operatorname{An}(\Gamma_1) + \operatorname{An}(\Gamma_2) - 1$.

Предложение 31 ([1, Proposition 4.9.]). Для любого натурального числа n

- 1. Существует разложимый сборный граф Γ , что $\operatorname{An}(\Gamma) = n$.
- 2. Существует неразложимый сборный граф Γ , что $\operatorname{An}(\Gamma) = n$.

Определение 32 ([1, Definition 4.10.]). Минимальное реализующее число для натурального числа n (обозначение $R_{\min}(n)$) определяется как $R_{\min}(n) = \min\{|\Gamma| : \operatorname{An}(\Gamma) = n\}$. Граф Γ , такой что $R_{\min}(n) = |\Gamma|$, — реализация $R_{\min}(n)$.

Предложение 33 ([1, Proposition 4.13.]). Следующие свойства выполняются для R_{\min}

- 1. Для любого натурального числа $n \ R_{\min}(n) < R_{\min}(n+1)$.
- 2. Если $R_{\min}(n) = k$, то $\forall s \geq k$ существует сборный граф Γ , что $|\Gamma| = s$, $\operatorname{An}(\Gamma) = n$.
- 3. Для любого натурального числа $n \ R_{\min}(n) \le 3(n-1)+1$.

Предложение 34 ([1, Proposition 4.14.]). Существует константа N такая, что для любого реализуемого 2-слова w, существует нереализуемое неразложимое v, что $w \in v$ u |v| - |w| < N.

Предложение 35 ([1, Proposition 4.17.]). Для любого нереализуемого 2-слова v, что |v| = m, существует константа N(m) и реализуемое 2-слово w, что $v \subset w$ и $|w| - |v| \leq N(m)$.

Определение 36. Пусть слова записаны над алфавитом линейно сравнимых элементов. Тогда говорят, что слово записано в порядке возрастания, если i-ая буква в слове по величине встречается в слове первый раз только после всех букв, меньших ее.

Далее мы отождествляем 2-слово и его запись в возрастающем порядке. Далее рассматриваются комбинаторные свойства 2-слов.

Лемма 37 ([2, Lemma 3.2.]). Мощность множества 2-слов на п буквах есть

$$W_n = (2n-1)!!$$

Определение 38 ([2, Definition 3.3.]). Палиндром — такое 2-слово, что его обратное (записанное в возрастающем порядке) равно ему.

Лемма 39 ([2, Lemma 3.4.]). Количество палиндромов на n буквах есть

$$P_n = \sum_{k=\lfloor n/2\rfloor}^n \binom{k}{n-k} \frac{n!}{k!}$$

Лемма 40 ([2, Lemma 3.6.]). Количество неразложимых 2-слов на п буквах есть

$$I_1 = 1;$$

$$I_n = W_n - \sum_{k=1}^{n-1} W_k I_{n-k}$$

Лемма 41 ([2, Lemma 3.7.]). Количество неразложимых палиндромов на п буквах есть

$$J_1 = 1; J_n = P_n - \sum_{k=1}^{\lfloor n/2 \rfloor} W_k J_{n-2k}$$

Определение 42 ([2, Definition 3.8.]). Сильно-неразложимое 2-слово — такое 2-слово, что оно не содержит никакого собственного 2-подслова.

Лемма 43 ([2, Proposition 3.10]). Количество сильно-неразложимых 2-слов на n буквах есть

$$S_1 = 1;$$

$$S_n = (n-1)\sum_{i=1}^{n-1} S_i S_{n-i}$$

Лемма 44 ([2, Proposition 3.10]). Количество сильно-неразложимых палиндромов на n буквах есть

$$T_0 = -1;$$
 $T_1 = 1;$ $T_n = (n-1)\sum_{i=1}^{n-2} T_i T_{n-i} + \sum_{i=1}^{\lfloor n/2 \rfloor} (2n - 4i - 1)S_i T_{n-2i}$

3 Полученные результаты

3.1 Теоретические

Определение 45. 2-слово w на n буквах в возрастающем порядке — полупалиндром, если $\forall i \in \{1, \dots, 2n\} : w_{2n-i+1} = n - w_i + 1$.

 Π ример 46. 1122 и 1212 — полупалиндромы, а 1221 — нет.

Определение 47. Скобочная последовательность — символьная последовательность, состоящая из символов "(" и ")"

Определение 48 ([4, 2.10.1 Правильные последовательности скобок]). Правильная скобочная последовательность (ПСП) определяется индуктивно

- пустая последовательность правильна;
- \bullet если A правильная скобочная последовательность, то (A) правильная скобочная последовательность;
- \bullet если A,B правильные скобочные последовательности, то их конкатенация AB правильная скобочная последовательность.

Определение 49. Префикс ПСП длины n — скобочная последовательность, которую можно дополнить до правильной.

Определение 50. Баланс скобочной последовательности — разность количества открывающихся скобок и количества закрывающихся.

Лемма 51. Аналогично [4, Теорема 2.2.] скобочная последовательность является префиксом ПСП тогда и только тогда, когда на любом ее префиксе баланс неотрицателен.

Определение 52. Симметричная $\Pi C \Pi$ — такая $\Pi C \Pi$, что если на i месте стоит открывающаяся скобка, то на n-i+1 стоит закрывающаяся, а если закрывающаяся, то открывающаяся.

Замечание 53. Можно провести естественное отображение между 2-словами в возрастающем порядке и ПСП: первому вхождению символа сопоставить открывающуюся скобку, второму вхождению — закрывающуюся. Это отображение не является инъекцией: 1212 и 1221 переходят в (()). При этом это отображение — сюръекция.

Предложение 54. Множество полупалиндромов на n буквах биективно множеству симметричных $\Pi C \Pi$ длины 2n.

Доказательство. Рассмотрим отображение f из множества симметричных ПСП в множество полупалиндромов: отдельно пронумеруем открывающиеся скобки в порядке возрастания, отдельно закрывающиеся в порядке возрастания и запишем это в строку. Примеры: $()()() \to 112233, (()()) \to 121323, (()()) \to 123123$. Заметим, что скобки, которые при анализе ПСП разбиваются на пары "открывающая-закрывающая" не соответствуют парам букв.

Покажем, что оно действительно бьет в множество полупалиндромов. Для начала, результат отображения — 2-слово, так как количество открывающихся и закрывающихся скобочек одинаково. Результат в возрастающем порядке — первый раз каждое число встречается в том месте, в котором в ПСП стоит открывающаяся скобка (так как закрывающаяся скобка номер k всегда идет после открывающейся скобки номер k), а значит

первое вхождение числа k будет позже, чем первые вхождений чисел $1\dots(k-1)$. Результат — полупалиндром в силу симметричности ПСП: если на i-ом $(i \le n)$ месте стоит k-ая открывающаяся скобочка, то на n-i+1 будет стоять закрывающаяся, и ее номер будет равен n-k+1, и аналогично с закрывающейся.

f — инъекция: для любых двух различных $\Pi C \Pi$ в месте их первого отличия в образе будут стоять разные числа.

Покажем, что f — сюръекция. Рассмотрим полупалиндром w на n буквах. Построим следующую скобочную последовательность s: если w_i встречается в w первый раз, $s_i = ($, иначе $s_i =)$. $s_i = \Pi C\Pi$, так как баланс равен нулю и на любом префиксе баланс неотрицателен (так как каждое число мы встретим первый раз хотя бы столько же раз, сколько второй раз). s_i — симметричная $\Pi C\Pi$, так как если в полупалиндроме w_i встречается первый раз, то w_{n-i+1} — второй, и наоборот. Так как f(s) = w получаем, что f — сюръекция. Так как f — инъекция и сюръекция, то f — биекция.

Этой биекции можно придать больше смысла, введя для полупалиндрома аналогию открывающихся и закрывающихся скобок.

Определение 55. Пусть p — полупалиндром порядка n. Тогда s — префикс полупалиндрома p, если s является префиксом p как строки и длина s меньше n.

Предложение 56. Пусть s- префикс полупалиндрома. Тогда s можно продолжить

- единственным способом, если каждая буква встречается в s дважды. Этот способ новая буква (следующая по возрастанию после наибольшей среди встречающихся). Эта ситуация соответствует префиксу ПСП с нулевым балансом, единственный способ продолжить который открывающая скобка.
- двумя способами, если существует буква, которая встречается в s один раз. Первый способ новая буква (следующая по возрастанию после наибольшей среди встречающихся). Второй способ наименьшая буква префикса, которая встречалась один раз. Эта ситуация соответствует префиксу ПСП с ненулевым балансом, первый способ продолжить который открывающая скобка, второй закрывающая.

 Π ример 57. 112 можно продолжить или 2, или 3, а 1212 только 3. При этом, 123 нельзя продолжить ни 2, ни 3, а только 1 или 4.

Доказательство. Очевидно, мы не можем продолжить числом, большим чем минимальное, которое еще не встречалось — таким образом, мы нарушим возрастающий порядок. Покажем, что второе вхождение числа m, m > k в полупалиндроме невозможно раньше, чем второе вхождение числа k. Пусть k — минимальное число, которое встречается один раз до того момента, как какое-то m встречается два раза. У нас может быть два случая: k второй раз встретился в первой половине полупалиндрома, или во второй. В первом случае у нас нарушится возрастающий порядок во второй половине полупалиндрома: в первой у нас стоит k...m.m..k., значит во второй будет стоять ...(n-k+1)...(n-m+1)...(n-m+1)...(n-m+1)...(n-k+1), но n-k+1 больше, чем n-m+1. Во втором случае k второй раз встречается во второй половине полупалиндрома, значит n-k+1 встречается в первой. Но это означает, что и все числа меньше n-k+1 тоже встречаются в первой, то есть там встречается n-k+1 различное число. При этом k — первое число, которое встречается один раз, значит все числа от 1 до k-1 встречаются два раза, а еще m встречается два раза. В n мест не помещается n-k+1+k-1+1=n+1 число. Получается противоречие, доказывающее требуемое.

Лемма 58. Множество префиксов $\Pi C\Pi$ длины n биективно множеству симметричных $\Pi C\Pi$ длины 2n.

Доказательство. Пусть p — префикс ПСП. Если его отразить (развернуть и заменить открывающиеся скобки на закрывающиеся и наоборот) и присоединить к p, получится симметричная ПСП.

Предложение 59. Количество полупалиндромов на n буквах есть $SP_n = \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Доказательство. Количество полупалиндромов на n буквах равно количеству префиксов ПСП длины n по лемме 54.

Пусть P_n^k — количество префиксов ПСП длины n, в которых меньше либо равно k закрывающихся скобок. Если $k > \lfloor \frac{n}{2} \rfloor$, то $P_n^k = P_n^{k-1}$. Действительно, ведь существует ноль префиксов ПСП, в которых больше половины закрывающихся скобок. Иначе, если $k \leq \lfloor \frac{n}{2} \rfloor$, то $P_n^k = P_{n-1}^k + P_{n-1}^{k-1}$, так как последний символ может быть или открывающейся скобкой, или закрывающейся. Из-за рекуррентной формулы и начальных условий замечаем, что $P_n^{\lfloor \frac{n}{2} \rfloor} = {n \choose \lfloor \frac{n}{2} \rfloor}$, а $P_n^{\lfloor \frac{n}{2} \rfloor}$ — количество всех префиксов ПСП длины n.

Данная последовательность содержится в On-Line Encyclopedia of Integer Sequences[9] с индексом A001405.

Предложение 60. Количество неразложимых полупалиндромов на п буквах равно количеству сильно-неразложимых полупалиндромов на п буквах.

Доказательство. В общем случае верно, что сильно-неразложимое 2-слово является неразложимым 2-словом. Надо показать, что неразложимый полупалиндром является сильно-неразложимым полупалиндромом.

Для того, чтобы это показать, покажем, что если у полупалиндрома есть 2-подслово, то у него есть и префикс, являющийся 2-словом. Обозначим данное 2-подслово как w. Если w префикс, то мы нашли искомый префикс. Если w находится целиком в первой половине, то рассмотрим u — префикс до начала w невключительно. Пакажем, что u — 2-слово. Пусть это не так, то есть какая-то буква a встречается в нем только один раз. Если a не встречается второй раз в u, значит второй раз она встречается после конца w (она не может встречаться в w, так как в нем каждая буква встречается два раза). Но $w_1 > a$, при этом встречается второй раз раньше, чем a встречается второй раз, что противоречит предложению 56, а значит u-2-слово. Если w лежит целиком во второй половине, то симметрично ему есть 2-слово, которое целиком лежит в первой половине, из-за симметричности полупалиндрома. Остается случай, если w пересекает середину. Тут есть два случая. Первый случай, если середина w не является серединой полупалиндрома. Тогда симметрично w тоже лежит 2-слово v. Так как середина w не является серединой полупалиндрома, в w есть часть, которая не лежит в v. Эта часть является 2-словом, так как та часть, которая лежит и в w, и в v является 2-словом (потому что все буквы, которые в ней находятся, находятся оба раза и в w, и в v). Эта часть лежит целиком или в первой половине, или во второй, значит мы перешли к уже рассмотренному случаю. Последний случай — середина w совпадает с серединой полупалиндрома. w разделяется серединой на w_1 и w_2 . Если в w_1 какая-то буква встречается два раза, значит префикс до w невключительно является 2-словом аналогично случаю, разобранному ранее. Если в w_1 каждая буква встречается по одному разу, значит w_1 длины m есть $k(k+1)\dots(k+m-1)$. Так как полупалиндром, w_2 тоже возрастает, и чтобы w было 2-словом, надо, чтобы n-(k+m-1)+1=k, то есть n-m=2(k-1). До буквы k встречаются все k-1 меньшие буквы. Они стоят на n-m местах (на оставшихся m местах первой половины стоит w_1). То есть k-1 букв стоят на 2(k-1) местах, значит каждая буква стоит два раза, значит это 2-слово.

Предложение 61. Количество сильно-неразложимых (просто неразложимых) полупалиндромов на n буквах есть $SPI_n = \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$.

Доказательство. Если есть префикс, являющийся 2-словом, длины больше n, то оставшийся суффикс тоже является 2-словом, и в силу симметричности полупалиндрома это значит, что есть и префикс, являющийся 2-словом, длины меньше либо равной n.

Рассмотрим биекцию между полупалиндромами и префиксами ПСП. Заметим, что если у полупалиндрома есть префикс длины k, являющийся 2-словом, то при биекции он перейдет в префикс ПСП, у которого баланс префикса длины k есть ноль. Получается неразложимые полупалиндромы переходят в префиксы ПСП, у которых никогда нет баланса ноль. То есть в скобочные последовательности, баланс на любом префиксе которых больше либо равен единице. Такие скобочные последовательности длины n — открывающаяся скобка конкатенированная с префиксом ПСП длины n — 1, ведь префиксы ПСП — скобочные последовательности, баланс на любом префиксе которых больше либо равен нуля. Получается количество искомых объектов длины n равно количеству префиксов ПСП длины n — 1, то есть $\binom{n-1}{\lfloor \frac{n-1}{n-1} \rfloor}$.

Далее речь пойдет о гипотезе, что все полупалиндромы реализуемы.

Предложение 62. Не у всех полупалиндромов сборное число равно единице.

Доказательство. С помощью программы [10, assembly_number_2.cpp] был найден полупалиндром 112342534566 (рисунок 1), который имеет сборное число 2 и является самым коротким, наравне с 112345234566, полупалиндромом со сборным числом 2.

Определение 63. Аналогично R_{min} (определение 32) определим R_{min}^P и R_{min}^{SP} — минимальное реализующее число для палиндромов и полупалиндромов.

Предложение 64. В предположении, что $R_{min}(n) = 3n + 2$, R_{min}^P совпадает с R_{min} .

Доказательство. Серия примеров для R_{min} состоит из палиндромов, поэтому является серией примеров и для R_{min}^{P} .

Рассмотрим серию 2-слов $\{K_i\}$. $K_1-11,\,K_2-112342534566$ (рисунок 1). K_n есть $K_{n-1},$ в конец которого добавлено (пусть m=5(n-2)) m+2,m+3,m+4,m+2,m+5,m+6 . На рисунке $2-K_4$

Предложение 65. $K_n - nолупалиндром.$

Доказательство. Доказательство будем вести по индукции.

База: K_1 и K_2 являются полупалиндромами.

Переход: Пусть для всех $i < n \ K_i$ является полупалиндромом. Тогда K_n — тоже полупалиндром.

n>2. В начале K_n записано 1123425345, в конце m+2, m+3, m+4, m+2, m+5, m+3, m+4, m+5, m+6. Заметим, что для $1\le j\le 10$ $K_n[i]+K_n[2(5(n-1)+1)-i+1]=m+7=5(n-2)+7=(5(n-1)+1)+1$, то есть $|K_n|+1$, что и нужно для полупалиндрома. Заметим, что то, что остается между, есть K_{n-2} , но начинающийся не с единицы, а с 6. Так как по предположению индукции K_{n-2} — полупалиндром, то и K_n — полупалиндром. \square

Предложение 66. K_n имеет сборное число, равное n.

Доказательство. Доказательство будем вести по индукции.

База: $An(K_1) = 1$ и $An(K_2) = 2$.

Переход: Пусть для все i < n $An(K_i) = i$. Тогда $An(K_n) = n$.

 $An(K_{n-1}) = n - 1.$

Покажем, что $\operatorname{An}(K_n) \leq n$. Действительно, гамильтоного множество полигональных путей, покрывающее весь граф, такого: возьмем минимальное гамильтоного множество

полигональных путей для K_{n-1} , в нем n-1 элемент и добавим туда следующий путь (m+6,m+5,m+2,m+3,m+4) (рисунок 3). Этот путь покрывает все вершины и является полигональным, а так же он покрывает только добавленные вершины, поэтому никак не пересекается с путями, которые уже были в множестве.

Покажем, что $An(K_n) \ge n$. От противного, пусть это не так, то есть пусть $An(K_n) \le n-1$. 6 максимальных вершин образуют граф K_2 , про который мы знаем, что $An(K_2) = 2$. При этом существует максимум один путь, который покрывает и вершины из K_{n-1} , и добавленные, потому что единственное ребро, которое связывает эти два множества вершин есть ребро (m+1,m+2). Значит если мы выкинем добавленные вершины, мы точно выкинем хотя бы один путь. Значит $An(K_{n-1})$ будет меньше либо равен n-2, что противоречит предположению индукции и доказывает переход.

Предложение 67. Для любого натурального $n \ R_{min}^{SP}(n) \le 5(n-1) + 1.$

Доказательство. K_n содержит 5(n-1)+1 вершин, является полупалиндромом (по предложению 65) и имеет сборное число, равное n (по предложению 66).

Предложение 68. С помощью программы[10] получена таблица 4: для каждого п найдено максимальное сборное число, достижимое на полупалиндромах на п буквах.

Значения в таблице, вопреки ожиданиям, невозрастают: для n=6 значение равно 2, а для n=7 значение равно 1. Это место было дополнительно проверено вручную перебором 35 графов.

3.2 Практические

Была разработана библиотека [10] на языке C++[7] для работы с 2-словами и представлении их в виде сборных графов. Язык C++ был выбран из-за его быстродействия. Было решено не использовать объектно-ориентированное программирование, а избрать дизайн, ориентированный на данные [5]. Это позволяет библиотеке быть легко расширяемой и способствует производительности. Быстродействие так важно, потому что алгоритм поиска сборного числа [69] работает экспоненциально долго.

Библиотека реализует функции is_double_occurrence_word, to_ascending_order, is_in_ascending_order, reverse, is_palindrome, equal_as_double_occur is_semi_palindrome, is_reducible, is_strongly_reducible, next_in_ascending_order, next_palindrome, next_semi_palindrome, assembly_number, minimal_realization_number_and_its_realization, функциональность которых следует из названий.

Реализована функция draw_as_graph, использующая систему для визуализации графов Graphviz[8], которая изображает 2-слово в виде сборного графа (рисунок 1). На рисунке соблюден порядок ребер в каждой вершине, проходя каждый раз прямо, можно пройти по трансверсали. Синим обозначено минимальное гамильтоново множество полигональных путей.

Алгоритм 69. Алгоритм для поиска сборного числа.

Для поиска сборного числа необходимо перебрать все множества ребер, что все ребра в множестве попарно полигональны, проверить, что ребра не образуют циклов, вычислить количество путей, образованных ребрами, и вычислить минимум таких количеств по всем множествам. Пара ребер не полигональна тогда и только тогда, когда ребра этой пары идут в трансверсали не подряд. Таким образом, чтобы перебрать все множества ребер такие, что все ребра в множестве попарно полигональны, можно перебрать все множества ребер такие, что никакие два ребра не идут подряд. Опишем, как для фиксированного множества ребер E проверить, что ребра из E не образуют циклов и вычислить количество путей, образованных ребрами E. Структура "система непересекающихся множеств" [6] (СНМ) позволяет объединять два непересекающихся множества и проверять, лежат ли два элемента в одном множестве за $\mathcal{O}(\alpha(n))$, где $\alpha(n)$ — обратная функция Аккермана. Заведем такую структуру для одноэлементных множеств от $\{1\}$ до $\{n\}$, где множеству $\{i\}$ сопоставляется і-ая вершина. Будем перебирать ребра по порядку. Если очередное ребро соединяет вершины из разных множеств, объединим их. Иначе, оно соединяет вершины из одного множества, значит ребра E на вершинах этого множества образуют цикл, и множество E не подходит. По окончанию этого процесса каждое множество в СНМ будет связано ребрами E. Так как в множестве E нет пары неполигональных ребер, каждой вершине инцидентно или одно, или два ребра из E. Так как множество E не образует циклов, получается, что каждое множество в СНМ покрыто путем из E. Таким образом, чтобы узнать количество путей, образованных ребрами E, можно посчитать количество различных множеств в СНМ.

Пусть n — порядок Γ . Интересующих нас множеств ребер $\mathcal{O}(2^{2n})$, для каждого множества необходимо выполнить $\mathcal{O}(n\alpha(n))$ операций. Таким образом, итоговая асимптотика алгоритма есть $\mathcal{O}(2^{2n}n\alpha(n))$.

Список литературы

- [1] A. Angeleska, N. Jonoska, M. Saito DNA recombinations through assembly graphs // Discrete Applied Mathematics. 2009. №157. C. 3020-3037.
- [2] J. Burns, E. Dolzhenko, N. Jonoska, T. Muche, M. Saito Four-regular graphs with rigid vertices associated to DNA recombination // Discrete Applied Mathematics. - 2013. -№161. - C. 1378-1394.
- [3] А. Э. Гутерман, Е. М. Крейнес, Н. В. Остроухова 2-слова: их графы и матрицы // Записки научных семинаров ПОМИ. 2019. №482. С. 45-72.
- [4] М.Вялый, В.Подольский, А.Рубцов, Д.Шварц, А.Шень Лекции по дискретной математике. Изд. Дом ВШЭ, 2021. 495 с.
- [5] R. Fabian Data-oriented design. 2018. 307 c.
- [6] Томас Кормен и др. Алгоритмы: построение и анализ. 2-е изд. М.: «Вильямс», 2006.-1296 с.
- [7] B. Stroustrup The C++ Programming Language. 4-е изд. Addison-Wesley Professional, 2013. 1376 с.
- [8] Emden R. Ganser, Stephen C. North An open graph visualization system and its applications to software engineering // Software: practice and experience. 2000. C. 1203-1233.
- [9] The On-Line Encyclopedia of Integer Sequences https://oeis.org
- [10] Репозиторий с исходным кодом https://github.com/didedoshka/double_occurrence_words

1 1 2 3 4 2 5 3 4 5 6 6
A double occurrence word
Already in ascending order
Palindrome: yes
Semi-palindrome: yes
Irreducible: no
Strongly-irreducible: no
Assembly number: 2
Unrealizable

Рис. 1: Результат работы программы.

 $1\ 1\ 2\ 3\ 4\ 2\ 5\ 3\ 4\ 5\ 6\ 6\ 7\ 8\ 9\ 7\ 10\ 8\ 9\ 10\ 11\ 11\ 12\ 13\ 14\ 12\ 15\ 13\ 14\ 15\ 16\ 16$

Рис. 2: Пример полупалиндрома со сборным числом 4.

 $m \, + \, 2 \; m \, + \, 3 \; m \, + \, 4 \; m \, + \, 2 \; m \, + \, 5 \; m \, + \, 3 \; m \, + \, 4 \; m \, + \, 5 \; m \, + \, 6 \; m \, + \, 6$

Рис. 3: Полигональный путь.

n	Все слова W_n	Палиндромы P_n	Полупалиндромы SP_n
1	1	1	1
2	3	3	2
3	15	7	3
4	105	25	6
5	945	81	10
6	10395	331	20
7	135135	1303	35
8	2027025	5937	70
9	34459425	26785	126
10	654729075	133651	252
11	13749310575	669351	462
12	316234143225	3609673	924
13	7905853580625	19674097	1716
14	213458046676875	113525595	3432
15	6190283353629375	664400311	6435
OEIS[9]	A001147	A047974	A00140

Таблица 1: Количество 2-слов, палиндромов и полупалиндромов.

n	Неразл. I_n	Неразл. палин. J_n	Неразл. полупалин. SPI_n
1	1	1	1
2	2	2	1
3	10	6	2
4	74	20	3
5	706	72	6
6	8162	290	10
7	110410	1198	20
8	1708394	5452	35
9	29752066	25176	70
10	576037442	125874	126
11	12277827850	637926	252
12	285764591114	3448708	462
13	7213364729026	18919048	924
14	196316804255522	109412210	1716
15	5731249477826890	642798510	3432
OEIS[9]	A000698	A195186	A001405

Таблица 2: Количество неразложимых 2-слов, неразложимых палиндромов и неразложимых полупалиндромов.

n	Силнер. S_n	Силнер. пал. T_n	Силнер. полупал. SPI_n
1	1	1	1
2	1	1	1
3	4	2	2
4	27	7	3
5	248	22	6
6	2830	96	10
7	38232	380	20
8	593859	1853	35
9	10401712	8510	70
10	202601898	44940	126
11	4342263000	229836	252
12	101551822350	1296410	462
13	2573779506192	7211116	924
14	70282204726396	43096912	1716
15	2057490936366320	256874200	3432
OEIS[9]	A000699	A004300	A001405

Таблица 3: Количество сильно-неразложимых 2-слов, сильно-неразложимых палиндромов и сильно-неразложимых полупалиндромов.

n	Макс. An, достиж. на полупал. на <i>n</i> буквах
1	1
2	1
3	1
4	1
5	1
6	2
7	1
8	2
9	2
10	2
11	3
12	3
13	3
14	3
15	3

Таблица 4: Максимальное сборное число, достижимое на полупалиндромах на n буквах.