Thm A: $f: [a,b] \to \mathbb{R}$ is integrable \Leftrightarrow For any $\varepsilon > 0$, there is a partition P of [a,b] s.t. $U(f,P) - L(f,P) < \varepsilon$

Notation: $\mathcal{P}([a,b]) = Set$ of partitions of [a,b]

Thm B

(EXERCISE)

Recall: If
$$R$$
 refines P , then $U(f,R) \leq U(f,P)$
$$L(f,R) \geq L(f,P) \iff -L(f,R) \leq -L(f,P)$$
 In particular, $U(f,R) - L(f,R) \leq U(f,P) - L(f,P)$

$$n \rightarrow \omega$$
 $\int_{a}^{b} f dx + \int_{a}^{b} g dx \leq \int_{a}^{b} f + g dx \leq \int_{a}^{b} f dx + \int_{a}^{b} g dx$

Thm D

Thm E