1.1 Introduction to quantum mechanics

Slides: Video 1.1.1 Introduction to quantum mechanics

Text reference: Quantum Mechanics for Scientists and Engineers

Section 1.1

1.1 Introduction to quantum mechanics

Slides: Video 1.1.2 Light

Text reference: Quantum Mechanics for Scientists and Engineers

Section 1.1

Output power (per unit wavelength)

For a black body at 5800K approximately like the sun

Output power (per unit wavelength)

For a black body at 5800K approximately like the sun For a black body at 3000K approximately like an incandescent light bulb

Visible light spectrum

For a black body at 5800K approximately like the sun

Visible light spectrum

For a black body at 5800K approximately like the sun For a black body at 3000K approximately like an incandescent light bulb

Visible light spectrum

For a black body at 5800K approximately like the sun For a black body at 3000K approximately like an incandescent light bulb

Output power (per unit wavelength)

For a black body at 5800K approximately like the sun

Output power (per unit wavelength) For a black body at 5800K approximately like the sun The Rayleigh-Jeans classical model gives the "ultra-violet catastrophe" showing no good explanation for the shape of the curve

Planck's proposal

Light is emitted in quanta of energy E = hv

where ν (Greek letter "nu")

is the light's frequency in Hz (Hertz) and

h is Planck's constant

 $h = 6.62606957 \times 10^{-34} \, J \, s$

(Joule seconds)

Photoelectric effect

```
Shining ultraviolet light on the
 metal plate
 gives flow of negative charge
 (Hertz, 1887)
Flow can be stopped with a
 specific voltage
   independent of the
    brightness
     but dependent only on the
      frequency (Lenard, 1902)
```


Photoelectric effect

Einstein's proposal (1905) light is actually made up out of particles photons, of energy $E = h\nu$ The kinetic energy of the emitted electrons is the energy left over after the electron has been "lifted" over the work function barrier

Wave-particle duality

```
How can light simultaneously be
  a wave and a particle?
In the end, this is arguably not a problem for
 quantum mechanics
  we just need to avoid bringing along all the
   classical attributes of particles and of waves
The wave-particle duality of light is verified
 trillions of times a day
  in optical fiber communications
```


1.1 Introduction to quantum mechanics

Slides: Video 1.1.4 Matter

Text reference: Quantum Mechanics for Scientists and Engineers

Section 1.1

Hydrogen atom emission spectra

Bohr model of the hydrogen atom

A small negatively charged electron orbits a small positively charged core (the proton) like a planet round a sun but with electrostatic attraction Key assumption (Neils Bohr, 1913) angular momentum is "quantized" in units of Planck's constant, h, over 2π

$$\frac{h}{2\pi} \equiv \hbar$$
"h bar"

Bohr model of the hydrogen atom

The model does give the photon energies of the spectral lines as the separations of the energies of the different orbits

$$\frac{h}{2\pi} \equiv \hbar$$
"h bar"

Hydrogen atom emission spectra

Bohr model of the hydrogen atom

The model

successfully introduces Planck's constant into the theory of matter

gets the approximate size of the atom right

the characteristic size is the Bohr radius ~ 0.05 nm 0.5 Å (Ångströms)

$$\frac{h}{2\pi} \equiv \hbar$$
"h bar"

Bohr model of the hydrogen atom

The model does not get the angular momentum quite right though the quantization in \hbar

It appears to predict the atom would radiate all the time

units remains very important

from the orbiting electron

The atom does not "look" like this it is not a small "point" electron in a classical orbit

$$\frac{h}{2\pi} \equiv \hbar$$
"h bar"

Hydrogen atom orbitals

Electron charge density in hydrogen orbitals

The electron is not a moving point particle

de Broglie hypothesis

A particle with mass also behaves as a wave with wavelength

$$\lambda = \frac{h}{p}$$

where *p* is the particle's momentum

Matrices and waves

Werner Heisenberg (1925) matrix formulation of quantum mechanics Erwin Schrödinger (1926) wave equation More key contributions by Max Born, Pascual Jordan, Paul Dirac, John von Neumann, ...

1.1 Introduction to quantum mechanics

Slides: Video 1.1.6 The usefulness of quantum mechanics

Text reference: Quantum Mechanics for Scientists and Engineers

Section 1.1

Transistors and integrated circuits

Transistors and gate tunneling

Transistors and gate tunneling

With smaller transistors

the gate oxide becomes thinner

allowing quantum mechanical tunneling

giving undesired gate leakage current

1.1 Introduction to quantum mechanics

Slides: Video 1.1.7 Science, philosophy and meaning

Text reference: Quantum Mechanics for Scientists and Engineers

Sections 1.2 – 1.3

