低轨卫星导航系统概述

汇报人: 袁也

小组成员: 肖涵、郭月敏、王骏铠

汇报内容

一、低轨卫星导航简要介绍

- 二、低轨卫星导航的特点
- 三、低轨卫星导航的应用

何为低轨卫星导航系统

低轨卫星导航系统是指运行轨道一般在距离地面500~2000km之间,由多个卫星构成的提供导航、定位和授时等服务的大型卫星系统。

建设低轨卫星导航系统的意义

智能化时代对于快速精确位置服务的需求

自动驾驶、移动物联网对时空信息 提出了更高的要求

传统导航无法满足室内定位

传统精密单点定位技术收敛时间较 长,无法满足实时性的需求

低轨卫星系统发展历史

低轨导航发展的3个阶段				
	低轨导航系统	星座规模	定位方式	服务对象
第一代	美国子午仪	5~10颗极轨 卫星	多普勒定位	潜艇等战略武器
	苏联"蝉"	10颗	多普勒定位	军用
第二代	美国铱星	66颗极轨卫星	多普勒定位	关键基础设施(金融、 电力以及网络)、军 用用户的GPS备份定 位授时服务
第三代	SpaceX、OneWeb、国家互联 网星座等	几百到上万颗	多普勒定位信息 增强伪距定位	备份导航、高精度 导航
	Xona、微厘空间、时空道宇	150~300颗	双频伪距和载波 相位	民用用户高精度导 航(自动驾驶、无人 机)

低轨卫星系统发展现状

- 国内外已公布数十个低轨星座计划,涉及上万颗低轨 卫星,部分星座兼具导航功能,能自主播发导航导航 测距信号(星网、微厘空间等)
- 2025年前我国北斗将建成天基低轨星座增强系统,在 全球范围提供厘米级定位服务

汇报内容

一、低轨卫星导航简要介绍

二、低轨卫星导航的特点

三、低轨卫星导航的应用

特性	低轨卫星 (LEO)	高轨卫星 (HEO/GEO)
轨道高度	160 km 到 2,000 km	35,786 km(静止轨道) 或更高
轨道周期	90 到 120 分钟	24 小时
通信延迟	30 到 50 毫秒	500 到 600 毫秒
覆盖范围	每颗卫星覆盖地面小 区域,需多个卫星形 成星座	单颗卫星可覆盖广泛 区域
寿命	较短(约5到7年)	较长(约10到15年)
能量消耗	较高, 频繁轨道调整	较低,轨道调整较少
应用	通信、地球观测、科学研究、导航增强	广播电视、气象监测、 导航系统
	University of Chinese Academy of Sciences	

不同轨道高度卫星示意图

1、低轨道高度

低轨卫星通常运行在200到2000公里之间的轨道高度。与高轨卫星(如GPS的轨道高度为约20,000公里)相比,低轨卫星离地面更近,这使得它们的信号传输时间更短,延迟更小。

且低轨卫星与与地面之间的距 离较近,信号在传输过程中的衰减 较小,信号强度较高,能够提供更 精确的定位信息。

相同时间内低轨与中轨卫星划过的轨迹,其中红色为中高轨卫星轨迹,蓝色为低轨卫星轨迹

2.覆盖区域密集及高频率刷新

低轨卫星的运行速度较快,每颗卫星的视地时间较短(约90分钟一圈),因此,定位信息能够更频繁地更新,提高了定位精度。

低轨卫星的覆盖范围较小,因此为了 实现全球覆盖,需要部署大量卫星(通常 是数百颗)。这些卫星组成的网络可以持 续提供服务,即使在传统高轨卫星难以覆 盖的地区(如极地、山区等)。

不同轨道高度卫星发射成本对比

3.较低的成本与快速部署

由于低轨卫星的发射成本较低、 卫星本身的体积和质量较小,因此低 轨卫星系统的建设和维护成本通常低 于高轨卫星系统。此特点使得低轨卫 星更具市场竞争力。

低轨卫星的建设可以快速完成, 通过较少的时间就能部署一个功能完 备的卫星网络,为短期内实现全球导 航覆盖提供了可能。

4.持续性与冗余性

低轨卫星系统通过大规模的卫星 部署和多轨道覆盖,可以有效避免单 一卫星故障导致的系统中断,增强了 系统的冗余性和稳定性。

同时,低轨卫星可以与传统的高轨卫星导航系统(如GPS、北斗等) 互补使用,提供更广泛的定位支持,提高了导航系统的可靠性和精度。

低轨导航和北斗导航卫星联合协同示意图

5.与高轨卫星导航系统的协同

低轨卫星通常与现有的高轨 卫星(如GPS、GLONASS、北 斗等)协同工作,利用低轨卫星 的高精度、低延迟特性和高轨卫 星的全球覆盖优势,提供更为精 确和可靠的定位服务。

汇报内容

一、低轨卫星导航简要介绍

二、低轨卫星导航的特点

三、低轨卫星导航的应用

低轨卫星应用

- 航海和船运通信服务
- 偏远山区、沙漠和岛屿网络服务;
- 智能交通系统和车辆通信连接
- 航空航天飞行器和民航服务;
- 工业物联网、农业自动化、海上风电、海上钻井平台

全球通信

低轨卫星在全球通信领域发挥着重要作用,特别是为偏远地区和空中、海上等通信盲区提供联网服务。由于低轨卫星距离地面较近,信号传输速度快且延迟低,因此能够为用户提供稳定、高速的互联网服务。例如,Starlink、OneWeb等低轨卫星互联网运营商已经发射了大量卫星,致力于实现全球范围的高速互联网覆盖。

鸿雁星座

鸿雁星座 为国内首套全球低轨卫星通 信系统,该系统包含一个移动通信星座和 一个宽带通信星座, 其中移动通信星座将 由数十颗窄带卫星组成, 宽带通信星座将 由数百颗宽带星组成,并辅以全球数据业 务处理中心。鸿雁星座系统将实现六方面 应用:移动通信、宽带互联网接入、物联 网接入、热点信息推送、导航增强、航空 航海监视,系统建成后可以在全球范围内 实现宽带和窄带相结合的移动通信, 实现 地球上任意地点的人与人、物与物信息互 联。

基于"鸿雁"星座的全球导航增强系统原理框图

"鸿雁"卫星通过配置高精度GNSS 监测接收机,生成驯服到GNSS系统的 准信号 和1PPS),卫星通信载荷基于该时频 信号产生测量通信一体化信号向用户 播发。同时,监测接收机观测数据通 过星间链路下传到境内中心处理站, 中心处理站利用地面监测站联合"鸿雁 "卫星移动监测站观测数据生成精密星 历,通过馈电链路和星间链路上传至 卫星,然后通过用户通信链路广播。 用户通过接收卫星通信链路播发的测 量通信一体化信号实现精密星历的获 取,实现全球精密单点定位。

全球星系统

"全球星"系统 是美国 Loral 和 Qualcomm(高通) 公司发起的,是目前唯一正式商业运行的语音移动通信系统。卫星系统由 48 颗工作卫星和 12 颗备用卫星组成。卫星重约 450kg,预定寿命为 7.5 年。分布在 8 个倾角为 52°的圆轨道上,轨道高度 1414km,每个轨道分布 6 颗工作卫星和 1~2 颗备用卫星,星座的相位因子为 1。系统主要覆盖南北纬 70°以内地区。"全球星"在主要的商业服务区(北纬25°~49°)满足任何时刻至少两重覆盖的要求,而其他地区则只要求保证一重覆盖

OneWeb

OneWeb 公司致力于实现全球天基实时互联的宽带互联网络系统,其中计划建造的 OneWeb 星座设计由 900 颗微小卫星组成,其中 720 颗将被发射到倾角为87.9° 的1200km 高度轨道,均匀分布在18个轨道面,每个轨道面工作星 36 颗,辅以 4 颗备份星,以提供全球宽带互联网实时连接。

OneWeb 卫星重约 150kg,设计寿命 5年,发射包络约为 1m x 1m x 1.3m,配备两个太阳能电池板,采用电推进系统进行轨道机动、构型保持以及主动离轨,并使用 Ku 波段通信天线实现用户链路和Ka波段通信天线实现网关链路,可提供高仰角、优于 50ms 延时、宽带速率达 50Mps 的互联网接入服务。

铱星二代(Iridium NEXT)

铱星二代由 81 颗功能相同的卫星 组成天基移动通信系统, 其中 66 颗 工作星呈 δ-Walker 星座均匀分布 在 6 个轨道面上,辅以 6 颗天基备 份星和 9 颗地基备份星。铱星二代 卫星重约 860kg, 最大功耗 2kW, 发 射包络 3.1m x 2.4m x 1.5m, 设计 寿命 10 年,任务寿命 15 年。卫星 主载荷为 L 波段通信载荷, 其相控 阵天线在地球表面生成 48 个波束, 形成直径为 4700km 的蜂窝, 用于提 供 1.5Mbps 的星地数据传输服务

项目	指标
星座规模	66颗工作星呈 δ-Walker 星座均匀分布在6个轨道面上,辅以6颗天基备份星和9颗地基备份星
卫星轨道	LEO 极轨道,倾角 86.4°,工作轨道高度 780km,轨道周期 101 分钟
发射部署	2017.01.14~2019.01.12,8次发射任务,运载火箭 Falcon-9 v1.2
总体指标	质量 ~860kg,功率 2kW,发射包络 3.1m x 2.4m x 1.5m,在轨包络 3.1m x 9.4m x 1.5m
在轨寿命	设计寿命10年,任务寿命15年
姿控方式	两轴稳定,带有星敏
主载荷	L频段通信机,相控阵天线,48个波束,1.5Mbps 星地数据传输速率
测控系统	Ka频段(20/30 GHz) ,全向天线
星地网关	两个Ka频段(20/30 GHz)可控馈线连接到地面网关,速率达 8Mbps
星间通信	四个Ka频段(23 GHz)通信机交叉连接到相邻的卫星,速率达 10Mbps (指向相临轨道面的两个天线可操纵,指向同轨道面的两个天线固定)
搭载能力	质量 ≤50kg,空间包络 ≤40 cm x 70 cm x 30 cm 长期功耗 ≤50 W,峰值功耗 ≤200 W 数据量 ≤100 kbps(90%占空比)、≤1 Mbps(10%占空比) 质心必须控制在规定的范围内 https://blog.csdn.net/Anne033

Starlink通信

Starlink星链卫星支持四种波段的通信模式,Ku波段,Ka波段,V波段和激光通信。Ku波段频率范围12-18GHz,Ka波段频率范围26.5-40GHz,V波段50-75GHz。此次60颗卫星仅支持Ku波段通信覆盖,后续卫星会陆续支持Ka,V波段和星间链路的激光通信。

在通信领域,SpaceX是首家基于低轨(LEO)卫星面向终端用户提供大规模卫星宽带接入的服务提供商,HughesNet和Viasat基于传统GEO卫星提供相关服务。将Starlink、HughesNet以及Viasat的卫星宽带接入服务数据进行比较,在服务稳定性方面,HughesNet的评估得分最高,其连接速度(带宽)的稳定性最佳。Starlink 星座服务稳定性的负面报道较多,曾出现大面积服务中断和断网的严重问题。

SpaceX 的卫星系统将主要被用于为全球个人用户、商业用户、机构用户、政府和专业用户提供各种宽带和通讯服务。SpaceX 初期部署 1600 颗卫星上天后,就能提供覆盖全球的宽带服务。一旦完成最终部署(Final Deployment),系统就能为全球消费者和商业用户提供高带宽(最高每用户 1Gbps)、低延时的宽带服务。

SpaceX星链部署情况 截至2022年5月18日

部署阶段	轨道层	轨道高度	赤道倾角	计划部署	正式运行	补充说明
第一阶段	轨道层1	550公里	53°	1584颗	1465颗	1.0版卫星 发射1665颗、在轨1448颗
	轨道层2	570公里	70°	720颗	18颗	1.5版卫星 发射51颗
	轨道层3	560公里	97.6°	348颗	0颗	1.0版卫星 发射13颗、在轨3颗
	轨道层4	540公里	53.2°	1584颗	288颗	1.5版卫星 发射862颗、在轨816颗
	轨道层5	560公里	97.6°	172颗	0颗	
第二阶段	轨道层6	335.9公里	42°	2493颗	0颗	
	轨道层7	340.8公里	48°	2478颗	0颗	
	轨道层8	345.6公里	53°	2547颗	0颗	
	Ŕ	áit		11926颗		·

SpaceX星链部署总体规划

至2024年完成第一阶段部署	4408颗卫星
至2027年完成第二阶段部署	7518颗卫星
预备轨道占位	3万颗卫星
总计部署	4.2万颗卫星

星链能提供服务的范围图

地球观测与遥感

低轨卫星在地球观测与遥感领域同样具有显著 优势。它们能够提供高分辨率的图像和数据,用于 监测环境变化、农业、城市规划、灾害管理等多个 方面。通过低轨卫星技术,可以实时追踪海上船只 的动态、监测极地海冰和冰川变化等,为环境保护 、资源勘探和气候变化研究提供重要支持。

大气监测

传统的GNSS卫星精密定轨是利用全 球均匀分布的大量地面监测站, 对导 航卫星进行伪距和载波相位测量,再 结合精确的轨道动力学模型和误差改 正模型进行数据处理,确定GNSS卫星 的精密轨道。然而,我国BDS监测站建 设受地缘因素影响较大, 难以实现全 球均匀布站。搭载星载GNSS接收机的 低轨卫星可以作为"星基监测站", 参与高中低轨卫星联合定轨,能弥补 地面站的不足,极大增强GNSS卫星跟 踪网的图形强度, 使轨道和力模型参 数估计得更准确, 实现区域监测站条 件下的导航卫星精密定轨

在农业的应用

我国的"遥感卫星4号" 就是负责我国农作物的品质 与产量监测数据的采集,如 今高光谱分辨率遥感技术也 在农作物估产中得到应用, 利用其客观、定量、准确的 优点,可同时获得单产、面 积、总产资料, 在小区试验 已取得较高精度,但大规模 估产还不能满足专业化的需 求。

军事通讯与探测

在军事领域,低轨卫 星同样具有重要的战略价 值。它们能够显著增强军 队的信息化能力,提升通 信联络和信息传输的效率 。 通过低轨卫星通信,军 队可以在复杂战场环境中 迅速反应,确保战略决策 的及时性和有效性。同时 , 低轨卫星还可以用于军 事目标探测和监视, 为国 防安全提供有力保障。

科学应用与研究

低轨卫星还可以用于空间环境监测、天气预报、电离层空间环境监测等科学应用领域。这些领域需要更高时空分辨率的监测数据来支持研究和预测工作。通过低轨卫星技术,可以获取更加准确、实时的监测数据,为科学研究提供有力支持。

空间天气监测

高中低轨导航星座联合,为大气监测提供了新的技术手段。其优势在于: 更多的可用卫星, 可以提取出数量更多的倾斜路径延迟; 短时间内能够提供更多有效的观测数据, 有利于实现快速的大气建模; 单位时间内低轨卫星划过的轨迹长, 高度角和方位角变化大, 使得有效监测范围扩大。

图为空间中心设计搭载在风云三号03批系列卫星的掩星探测仪

利用低轨卫星上的掩星探测仪器,记录处于被大气层、电离层遮掩的高轨道 GNSS卫星发出的导航信号的信息,如伪 距、载波相位等。就可提取出由大气影响 附加的延迟量,地面通过反演理论处理得 到大气的折射率、温度、压力、湿度等大 气物理参数以及电离层电子密度剖面、电 子总含量(TEC)等信息。

THANKS

