Google WaveNet

WaveNet is a powerful **predictive technique** that uses multiple Deep Learning (DL) strategies from Computer Vision (CV) and Audio Signal Processing models and applies them to **longitudinal (time-series) data**.

Google WaveNet mit einer CNN-Architektur

A CNN that grows. It was trained on a large dataset of speech samples. During training, the network determined the underlying structure of the speech and what waveforms were realistic. The trained network then synthesised a voice one sample at a time, with each generated sample taking into account the properties of the previous sample. The resulting voice contained natural intonation and other features such as lip smacks.

Speech samples	Subjective 5-scale MOS in naturalness	
	North American English	Mandarin Chinese
LSTM-RNN parametric	3.67 ± 0.098	3.79 ± 0.084
HMM-driven concatenative	3.86 ± 0.137	3.47 ± 0.108
WaveNet (L+F)	4.21 ± 0.081	4.08 ± 0.085
Natural (8-bit μ-law) Natural (16-bit linear PCM)	4.46 ± 0.067 4.55 ± 0.075	4.25 ± 0.082 4.21 ± 0.071

Table 1: Subjective 5-scale mean opinion scores of speech samples from LSTM-RNN-based statistical parametric, HMM-driven unit selection concatenative, and proposed WaveNet-based speech synthesizers, 8-bit μ -law encoded natural speech, and 16-bit linear pulse-code modulation (PCM) natural speech. WaveNet improved the previous state of the art significantly, reducing the gap between natural speech and best previous model by more than 50%.

Google WaveNet

