	EE 475 HWI		Name Student #	: Zhigheng : 3226299	Lin
Exercise 2.1.					
a) gw) = ± gw2+ru	tol				
g'(w) = qw + r					
9"(w) = 9			100		
b) gw = -65 (21 w2)	tw				7
g'(w) = Sin (211 W)	4 TeN + zev		3 1 01		
9" (w) = 16 The Cos (12) +2			
c) gw) = = 69 (1+e	-apW)				
g'(w) = \frac{P}{p=1} dcu[log	(He grw)]				
P e april	(-Op) -apW		The Mili	11	
P re-api	(-ap) 1.0+e-apw)-[e	-apro (-ap)]. [e	april 7		
	(Ite-apw)2				
= \frac{1}{2} ape	(Ite apw)	·ap2			****
= Start	2 e apw				
				1 1 200	
				10-1 1	
		l lux		111	

Name: Zhishang Lin student #: 3226299 = P = [-= api - api - api - api - api - api - [1+e = apn wn, 2] $\frac{1}{2} = \frac{P}{P} = \frac{e^{-\alpha_p T} W}{(1 + e^{-\alpha_p T} W)^2}$ Exercise 2.5. Since the vector in the tangent hyperplane can be represented as [h(w)-h(v) w-v] $m^{T} = \begin{bmatrix} 1 & -xg(v)^{T} \end{bmatrix}$ $M^{T} \cdot \begin{bmatrix} h(w) - h(w) \end{bmatrix} = \begin{bmatrix} 1 - 7g(v)^{T} \end{bmatrix} \begin{bmatrix} h(w) - h(v) \end{bmatrix} = \begin{bmatrix} h(w) - h(v) \end{bmatrix} - 8g(v)^{T} (w - v)$ z g(v) = h(v) at w= v and h(v) = g(v) + 7g(v) (w-v) 1. h(w)-h(v) = h(w)-gw) = 79(v) (w-v) $\left[nT\left[\frac{h(w)-h(v)}{w-v}\right] = 89(v)T(w-v) - 89(v)T(w-v) = 0$:. [h(w) - h(v) w-v] -n=0 in n = - vgw) is the normal vector to the tangent by periplane

