METAL NANOWIRE AND METAL NANOPARTICLE

Publication number: JP2002067000

Publication date: 2002-03-05

Inventor:

MAKITA YOJI; IGAI OSAMU; OI KENTA; OKUBO AKIRA; HASHIMOTO NOZOMI

Classification:

NAT INST OF ADV IND & TECHNOL; TOMITA PHARMA Applicant:

- international:

B82B1/00; B82B3/00; B82B1/00; B82B3/00; (IPC1-7); B82B1/00; B82B3/00

- European:

Application number: JP20000259414 20000829 Priority number(s): JP20000259414 20000829

Report a data error here

Abstract of JP2002067000

PROBLEM TO BE SOLVED: To provide metal nanowire and metal nanoparticles, and a manufacturing method thereof without using a mold or fine processing technique. SOLUTION: A method for manufacturing nanowire and/or nanoparticles consists of irradiating with an electron beam on metal nanowire supported by a carrier at one end thereof and a metal ion carrier.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

3/00

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3409126号 (P3409126)

(45)発行日 平成15年5月26日(2003.5,26)

識別記号

(24) 登録日 平成15年3月20日(2003.3,20)

(51) Int.Cl.7 B 8 2 B 1/00 FΙ

B 8 2 B 1/00 3/00

請求項の数5(全8頁)

(73)特許権者 301021533 特爾2000-259414(P2000-259414) (21)出願番号 独立行政法人產業技術総合研究所 東京都千代田区霞が関1-3-1 (22)出版日 平成12年8月29日(2000.8,29) (74)上記1名の復代理人 100065215 弁理士 三枝 英二 特期2002-67000(P2002-67000A) (65)公開番号 (73)特許権者 000237972 (43)公開日 平成14年3月5日(2002.3.5) 富田製薬株式会社 平成12年9月13日(2000.9.13) 審查請求日 徳島県鳴門市瀬戸町明神字丸山85番地1 (74)上記1名の代理人 100065215 弁理士 三枝 英二 梶田 洋二 (72) 発明者 香川県高松市林町2217番14号 工業技術 院四国工業技術研究所内 審查官 岩本 勉

最終頁に続く

(54) 【発明の名称】 金属ナノワイヤー及び金属ナノパーティクル

1

(57)【特許請求の範囲】

AgaBoDeSifPgOb

【請求項1】金属イオン担持体に電子線を照射し、該金 属イオン担持体に担持された金属イオンが電子線の照射 により還元されて金属になり、金属ナノワイヤー及び/ 又は金属ナノパーティクルを形成することを特徴とす る、金属ナノワイヤー及び/又は金属ナノバーティクル の製造法。

[請求項2]銀イオン担持体に電子線を照射して銀ナノ ワイヤー及び/又は銀ナノパーティクルを製造する請求 項1に記載の製造法。

【請求項3】銀イオン担持体が、一般式〔1〕:

[Bは、アルカリ金属元素、アルカリ土類金属元素、 銅、亜鉛、水素およびアンモニウムから選ばれる少なく とも1種であり、Dは、3~5価の金属イオンになりう

(1)

2

【請求項4】<u>請求項1に記載の製造法により製造された</u> 金属ナノワイヤー。

【請求項5】<u>請求項2又は3に記載の製造法により製造</u>された銀ナノワイヤー。

10 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属ナノワイヤー、金属ナノパーティクル及びそれらの製造法に関する。

[0002]

2

【従来の技術】金属ナノワイヤーは、電子デバイス材料やカーボンナノチューブのテンプレートとして使用されることが知られている。従来、金属ナノワイヤーは、カーボンナノチューブ内、シリカの湖溝内、フィルム上で製造されるため、必然的に、カーボンナノチューブ、シリカ、フィルムを鎖型とした形態のナノワイヤーしか製造できなかった。例えば、AgNO∞を含有するEtOHーH₂○溶液中に、ナノスケールの満を有するシリカの粉末を懸凝、撹拌し、熱処理をすることにより銀ナノワイヤーが得られるが、このアイヤーの形態はシリカの有する清の形態に依存していた。また、微細加工技術を利用した金ナノワイヤーも知られているが、ナノ単位の金を加工するには加工条件の設定が難しく、本発明のように容易にナノワイヤーを製造することが困難である。

[0003]

【発明が解決しようとする課題】本発明は、鋳型または 微細加工技術を使用することなく、金属ナノワイヤー、 金属ナノバーティクル及びそれらの製造法を提供することを目的とする。

[0004]

【課題を解決するための手段】本発明者は、上記従来技術の問題点に鑑み鋭意検討を重ねた結果、金属イオン担持体に電子線を照射することにより、鋳型を必要とすることなく、金属ナノワイヤー及び金属ナノバーティクルが得られることを見出した。

【0005】すなわち、本発明は、以下の金属ナノワイヤー、金属ナノバーティクル及びそれらの製造法を提供するものである。

項1.一端が担持体で支持された金属ナノワイヤー。

項2, 金属ナノワイヤーが銀ナノワイヤーである項1に 30 記載のナノワイヤー。

項3. 金属イオン担持体に電子線を照射する、金属ナノ ワイヤー及び/又は金属ナノパーティクルの製造法。

項4. 銀イオン担持体に電子線を照射して銀ナノワイヤー及び/又は銀ナノバーティクルを製造する項3に記載の製造法。

項5. 銀イオン担持体が、一般式〔1〕:

AgaBoDoSifPgOh 〔1〕 「Did マルカリク原子書 アルカリナ類会局:

[Bは、アルカリ金属元素、アルカリ土類金属元素、網、 亜鉛、水素およびアンモニウムから選ばれる少なくとも1種であり、Dは、3~5個の金属イオンになりうる金属元素のうちから選択される少なくとも1種である。また式中の添字は、0<a、0≦c、1<a+c≦4、1≤e≤2、0≦f≦3、0≦g<3、10≦h≦15を満たす数である。]で示される化合物である項4に新穀の製造法。

[0006]

【発明の実施の形態】本発明では、金属イオン担持体に 電子線を照射することにより、金属ナノワイヤー及び金 属ナノパーティクルを製造する。その作用機序は、金属 50

イオン担持体に担持された金属イオンが電子線の照射により週元されて金属になり、その金属が担持体から外界に出て伸長することによって、金属ナノワイヤー及び/又は金属ナノバーティクルが生成するものと推測されるが、本発明はこの推測に限定されるものではない。

【0007】金属ナノワイヤーの金属としては、特に制限されないが、銀、パラジウム、ニッケル、金等が挙げ

【0008】本発明の金属ナノワイヤーは、一端が担持体によって支持されたナノワイヤーである。電子線照射によりナノワイヤーが伸展する際に、ナノワイヤーが担持体に接触することがあるが、この接触は前記「支持された」に該当しない。

【0009】本発明の金属ナノワイヤーは、適当な分離 方法によって、ワイヤー部分と担持体部分とに分離され 得る。分離方法としては、例えば、比重を利用する方法 (遠心分離等)、振動を与えるなどの物理的な分離方法 などが挙げられる。

【〇〇10】金属ナノワイヤーの形状は、電子線の照射 強度、照射角度、金属イオン担持体の形状(細孔構造、

無品構造等)や組成を適宜組み合わせることにより制御 可能である。

【0011】また、金属イオン担特体とは、金属イオン を担体に担持させたものをいう。

【0013】担特体は、電子線の照射により金属がワイ・ヤーやパーティクルとして成長する際に、ワイヤーやパーティクルの支持体としての役割を果たすものである。 担持体としては、例えば、NASICON型構造を有する化合物などが挙げられる。

【0014】好ましい金属イオン担持体は、銀イオン担持体、パラジウムイオン担持体、ニッケルイオン担持体、 ニッケルイオン担持体、 金イオン担持体等である。さらに好ましいのは、一般式〔1〕:

 $Ag_aB_cD_eSi_fP_eO_h$ (1)

[Bは、アルカリ金属元素、アルカリ土類金属元素、 銅、亜鉛、水素およびアンモニウムから選ばれる少なく とも1種であり、Dは、3~5値の金属イオンになりうる金属元素のうちから選択される少なくとも1種である。また式中の添字は、0~a、0≦c、1~a+c≤ 4、1≦e≤2、0≦f≦3、0≦g<3、10≦h≦ 15を満たす数である。〕で示される化合物等である。 【0015】上記一般式【1】において、0~aである。好ましいaは、一般式【1】で示される化合物中の Agの含有率が0.36モル※以上となる値である。 【0016】上記一般式【1】において、Bは、アルカリ土類金属元素、デルカリ土類金属元素、鍋、亜鉛、水素およびアンモニウムから選ばれる少なくとも1種である。 例えば、リチウム、ナトリウムおよびカリウム等のアルカリ金属元素、マグネシウムまたはカルシウム等のアルカリ土類金属元素、銅、亜鉛がある。これらの中では、化合物の安定性および安価に入手できる点から、銅、亜鉛、リチウム、ナトリウム、カリウム、水素およびアンモニウムが好ましい。

【0017】上記一般式(1) において、1 < $a+c \le 4$ であるが、好ましくは1. $5 \le a+c \le 4$ であり、より好ましくは $2 \le a+c \le 4$ である。

【0018】上記一根式(1)において、Dは、3~5 10 価の金属イオンになりうる金属元素からなる群から選択される少なくとも1種の金属元素であり、2種以上の金属元素を使用するときは、各金属元素の合計量がe(1 ≤e≤2)となるよう適宜組み合わせて使用することができる。3価金属元素としてはクロム、アルミニウム、鉄等が、4価金属元素としてはチタン、ジルコニウム、ゲルマニウム、錫、ハフニウム等が、5価金属元素としてはニオブ、タンタル等が挙げられる。好ましい具体例には、アルミニウム、ジルコニウム、チタン、錫、ニオブ等が挙げられ、化合物の安全性を考慮すると、鉄、ジ 20 ルコニウムまたはチタンが特に好ましい。

【0019】上記一般式[1]において、 $1 \le e \le 2$ であるが、好ましくはe = 2である。

【0020】上記一般式(1)において、 $0 \le f \le 3$ であるが、好ましくは $0.5 \le f \le 3$ であり、より好ましくは $1 \le f \le 2.5$ である。

【0021】上記一般式(1)において、 $0 \le g < 3$ であるが、好ましくは $0 < g \le 2$. 5であり、より好ましくは $0.5 \le g \le 2$ である。

【0022】上記一般式 $\{1\}$ において、hは、他のAg、B、D、SiおよびPの量に応じて適宜決まる。好ましくは $10 \le h \le 15$ であり、より好ましくは $11 \le h \le 13$ である。

【0023】電子線を供給するものとしては、金属イオン担持体に電子を供給できるものであれば特に制限されない。例としては、電子錠が挙げられる。電子錠としては、熱電子銃、電界放射型電子銃をはじめとして種々の型の電子鉄が使用できる。好ましいのは、熱電子銃及び電界放射型電子錠である。

【 0 0 2 5 】電子線を標的に衝突させるための装置とし 50 B'a+c Do Sif Pg Ob

ては、電子顕微鏡、X線マイクロアナライザー(EPMA)、光電子分光装置(ESCA)、サイクロトロンなどが使用できる。好ましくは、電子顕微鏡である。これらの装置を使用する場合にも上述の加速電圧及び真空度が適用されることが好ましい。電子顕微鏡としては、透過型電子顕微鏡(TEM)、走立型電子顕微鏡(SEM)、走立型透過電子顕微鏡(STEM)などが使用できる。好ましいのは、透過型電子顕微鏡である。

6

【0026】電子線を照射された金属イオン担持体は、表面に亀裂を生じ、その亀裂から金属ナノワイヤー及び/又は金属ナノバーティクルが伸長する。電子線の照射条件や金属イオン担持体の組成等を調節することにより、金属ナノワイヤーと金属ナノバーティクルの両者を同時に製造することもできるし、別々に製造することもできる。例えば、銀イオン担持体に電子線を照射した場合、銀イオン担持体中に合まれる銀イオン含有量が0、36モル%以上だと銀ナノワイヤーの製造に有利であり、0、36モル%未満だと銀ナノバーティクルの製造に有利となる。

【0027】本発明の金属ナノワイヤーのアスペクト比は、10以上であり、好ましくは、100~10000である。

【0028】本発明の金属ナノワイヤーの直径は、2~500nm、好ましくは5~50nmである。また、金属ナノワイヤーの長さは、金属イオン担持体中に合まれる金属イオンの含有量及び電子線を照射する条件(照射時間、加速電圧、真空度等)により調整可能である。好ましくは、20nm~1mm、さらに好ましくは50nm~0.5mmである。

【0029】本発明の金属ナノバーティクルの粒径は、 2~100nm、好ましくは5~80nmである。

【0030】本発明の金属ナノワイヤー及び金属ナノバーティクルは、その大きな表面積、電気伝導率及び熱伝 導率を利用することにより、様々な分野で使用できる。 例えば、電子デバイス材料、触媒、カーボンナノチュー プのテンプレート、合金材料、などに使用できる。好し しくは、触媒、電子デバイス材料などに使用できる。好 【0031】上配一般式【1】で示される化合物を合成

する方法には、固相法、湿式法および水熱法等があり、 特に限定されるものではないが、例えば以下のようにして容易に得ることができる。

【0032】 固相法により合成する場合、アルカリ金属 元素またはアルカリ土類金属元素を含有する化合物、ケ イ素を含有する化合物、3~5個の金属イオンになりう る金属元素を含有する化合物およびリン酸を含有する化 合物を適当な混合比で混合し、これを1000~130 0℃で焼成することにより、下記一般式〔2〕で示され る化合物を製造する。

[0033]

(2)

7

[B'は、アルカリ金属元素およびアルカリ土類金属元 繋からなる群から選ばれる少なくとも1種であり、D、 a、c、e、f、gおよびhは、上記のとおりであ Z.]

団相法による上記一般式〔2〕の化合物の製造におい て、アルカリ金属元素またはアルカリ土類金属元素を含 有する化合物としては、アルカリ金属またはアルカリ土 類金属炭酸塩、炭酸水素塩、水酸化物、硝酸塩、窒化物 等が例示される。好ましくは炭酸塩、炭酸水素塩および 硝酸塩であり、より好ましいのは炭酸ナトリウム、炭酸 10 カリウム、炭酸カルシウム、炭酸マグネシウム等の炭酸 塩類、および硝酸ナトリウムである。

【0034】固相法による上記一般式〔2〕の化合物の 製造において、ケイ素を含有する化合物としては、二酸 化ケイ素、ケイ酸塩等が例示される。好ましくは二酸化 ケイ素、ケイ酸ナトリウム、コロイダルシリカであり、 より好ましくは二酸化ケイ素である。

【0035】 固相法による上記一般式〔2〕の化合物の 製造において、3~5価の金属イオンになりうる金属元 素を含有する化合物としては、3~5価の金属酸化物、 金属水酸化物、炭酸塩等が例示される。好ましくは酸化 ジルコニウム、酸化チタン、酸化錫、含水酸化ジルコニ ウム、含水酸化チタン、酸化ニオブ、酸化クロム、硝酸 クロム、酸化アルミニウム等であり、より好ましくは酸 化ジルコニウム、酸化チタンである。

【0036】 固相法による上記一般式〔2〕の化合物の 製造において、リン酸を含有する化合物としては、リン 酸塩、リン酸水素塩等が例示される。好ましくはリン酸 ナトリウム、リン酸ジルコニウム、リン酸チタン、リン 酸カリウム、リン酸水素ナトリウム、リン酸水素カリウ 30 ム、リン酸水素アンモニウム等であり、より好ましくは リン酸ナトリウム、リン酸ジルコニウム、リン酸チタ ン、リン酸水素アンモニウムである。

【0037】湿式法により合成する場合は、アルカリ金 属元素またはアルカリ土類金属元素を含有する化合物、 ケイ素を含有する化合物、3~5価の金属イオンになり うる金属元素を含有する化合物およびリン酸を含有する 化合物を適当な混合比で混合し、混合物と水を耐圧容器 に封入し、好ましくは300℃にて10~30時間、好 ましくは20時間水熱条件下で反応させることにより上 40 記一般式 [2] で示される化合物を得ることができる。 【0038】湿式法による上記一般式〔2〕の化合物の 製造において、アルカリ金属元素またはアルカリ土類金 属元素を含有する化合物としては、アルカリ金属または アルカリ土類金属水酸化物、炭酸塩、炭酸水素塩、硝酸 塩等が例示される。好ましくは炭酸塩および硝酸塩であ り、より好ましいのはケイ酸ナトリウム、炭酸ナトリウ ム、硝酸ナトリウム、硝酸マグネシウム、硝酸カルシウ ム等である。

製造において、ケイ素を含有する化合物としては、ケイ 酸塩類、二酸化ケイ素等が例示される。好ましくはケイ 酸ナトリウム、コロイダルシリカであり、より好ましく はケイ酸ナトリウムである。

【〇〇4〇】湿式法による上記一般式〔2〕の化合物の 製造において、3~5価の金属イオンになりうる金属元 素を含有する化合物としては、3~5価の金属塩類、リ ン酸塩類、塩化物、硝酸塩等が例示される。好ましくは リン酸ジルコニウム、オキシ塩化ジルコニウム、塩化チ タン、塩化アルミニウム、硝酸アルミニウム、塩化錫、 塩化タンタル等であり、より好ましくはα型ーリン酸ジ ルコニウム、オキシ塩化ジルコニウム、塩化チタンであ

【OO41】温式法による上記一般式〔2〕の化合物の 製造において、リン酸を含有する化合物としては、リン 酸、リン酸塩類、リン酸水素塩等が例示される。好まし くはリン酸ジルコニウム、リン酸チタン、リン酸ナトリ ウムであり、より好ましくはリン酸ジルコニウム、リン 酸ナトリウムである。

【0042】固相法、湿式法等による上記一般式〔2〕 の化合物の製造において、これら化合物の混合比は、目 的とする一般式 [2] の化合物に従い適宜選択される。 例えば、固相法において、炭酸ナトリウム(Na2COs)、 二酸化ケイ素 (SiO₂)、酸化ジルコニウム (ZrO₂) およ びα型-リン酸ジルコニウム (Zr(HPO4)2·H2O) を、 1. 25:1.5:1.25:0.75のモル比となる よう混合し、これを1000~1300℃で焼成するこ とにより、好ましくは室温から徐々に加温し1000~ 1300℃で焼成することにより、下記一般式〔3〕の

[0043]

化合物を得ることができる。

Na2, 5 Z r 2 S i 1, 5 P1, 5 O12 [3]

固相法、湿式法等により得られた一般式〔2〕で示され る化合物を、室温~100℃の温度条件下、所定の酸濃 度、例えば O . 1 ~ 3 N に調整した酸性溶液で、例えば 2~7日間処理し、プロトン型化合物とした後、続いて 所定の銀イオン濃度、例えば0.1~3Nに調整した銀 イオン食有水溶液に例えば2~7日間浸漬して、イオン **交換することにより、一般式〔1〕で示される化合物を** 得ることができる。この際用いる酸性溶液としては、塩 酸、硝酸等が挙げられ、より好ましくは塩酸が挙げられ る。また、銀イオン含有水溶液としては硝酸銀水溶液が 好適である。

【0044】また、固相法、湿式法、水熱法等により得 られた一般式 [2]で示される化合物の酸性溶液処理を 省略し、当該化合物を銀イオン含有水溶液に浸漬するこ とによっても一般式〔1〕で示される化合物を得ること ができる。

【0045】さらに、上記プロトン型化合物を所定の銅 【0039】湿式法による上記一般式〔2〕の化合物の 50 イオン濃度、例えば0.1~3N程度に調整した銅イオ

ン含有水溶液に添加し、1~10時間程度撹拌すること で銅イオンを担持した後、引き続き0.01~3N程度 に調整した銀イオン含有水溶液中で1~10時間程度撹 拌処理することで、銀・銅型の一般式 [1]で示される 化合物を得ることができる。この際用いる鋼イオン含有 水溶液としては、硝酸銅、塩化銅等が上げられ、銀イオ ン含有水溶液としては硝酸銀水溶液が好適である。

【0046】本手法は、銀イオン含有水溶液、亜鉛イオ ン含有水溶液、鉄イオン含有水溶液等を適宜用いること により、亜鉛型、銀・亜鉛型、鉄型または銀・鉄型の一 10 般式[1]で示される化合物を調整する際にも適用が可 能であり、この際用いる亜鉛イオン含有水溶液として は、塩化亜鉛、硝酸亜鉛、硫酸亜鉛等が挙げられ、鉄イ オン含有水溶液としては、硝酸鉄、塩化第二鉄等が挙げ

[0047]

【発明の効果】金属イオン担持体に電子線を照射するこ とにより、鋳型または微細加工技術を用いずに、金属ナ ノワイヤー及び/又は金属ナノパーティクルを製造する ことが可能となる。

[0048]

【実施例】製造例1

Ag2,8 Nao,2 Zr2 Si1,5 P1,5 O12 の製造 0.288moI/1のリン酸水素二ナトリウム (Na2HPD4) 水溶 液中に、オキシ塩化ジルコニウム(ZrOC12・8H2O)と、 ケイ酸ナトリウム(NazO・3SiO2)及び水酸化ナトリウ ム (NaOH) 混合液とを、Zr; Si; P=2:1:5; 1.5となるモル比で同時滴下を行い、生じた反応物を 水洗、乾燥させた後、1200℃で焼成することによ り、Na2.5 Zr2 Si1.5 P1.5 O12で表されるナト 30 リウム型の試料(以下、NCC-Naと称する)を得た。 【0049】得られたNCC-Naを塩酸で処理し、プロトン 化を行った。即ち、3gのNCC-Naと1000m1の1N-HC1 とを混合し、室温で3時間撹拌した。撹拌後、ろ過、洗 浄、乾燥により、H2.6 Zr2 Si1.5 P1.5 O12で表 されるプロトン型の試料(以下、NCC-Hと称する)を得 た。

【0050】得られたNCC-Hの3. Ogを、0.1Nの硝酸 銀溶液300m1に添加し、室温で3時間撹拌した。撹拌 後、ろ過、洗浄、乾燥により、Ag2.3 Nao.2 Zr2 Si1.5P1.5 O12で表される銀型の試料を得た。銀イ オンは、原子吸光分光光度法により定量し、銀イオンの 初期濃度とイオン交換後の平衡濃度との差から、担持体 1g当たりの銀イオン交換量として算出した。

【0051】製造例2

実施例1と同様にして、NCC-H(H2.5 Zr2 Si1.5 P1.6 O12で表されるプロトン型の試料)を得た。 【0052】2gのNCC-Hを0.2Mの硝酸銅水溶液200ml中 に添加し、室温で3時間撹拌した後、1.0μmメンブラ ンフィルターを用いて、ろ過、水洗、乾燥を経て、銅担 50 また、得られた銀ナノパーティクルの粒径は5~80 n

特試料を調製した。

【0053】続いて、銅担持試料1,9gを0.01Nの硝酸銀 水溶液200m1中に添加し、室温で30分間撹拌した後、 1.0 μm メンブランフィルターを用いて、ろ過、水洗、 乾燥を経て、Ago, 587 Cuo, 141 H1, 772 Zr2 Si 1.5 P1.5 O12で表される銀・銅型の試料を得た。

10

【0054】製造例3

実施例1と同様にして、NCC-H (H2.5 Zr2 Si1.5 P1.5 O12で表されるプロトン型の試料)を得た。 【0055】2gのNCC-Hを0.2Mの塩化第二鉄水溶液200 ml中に添加し、室温で3時間撹拌した後、1.0μmメン ブランフィルターを用いて、ろ過、水洗、乾燥を経て、 鉄担持試料を調製した。

【0056】続いて、鉄担持試料1.9gを0.01Nの硝酸銀 水溶液200m1中に添加し、室温で30分間撹拌した後、 1.0μmメンブランフィルターを用いて、ろ過、水洗、 乾燥を経て、Ago,688 Fei.276Ho,586 Zrz Si 1,5 P1.5 O12で表される銀・鉄型の試料を得た。

【0057】実施例1

透過型電子顕微鏡を用いて、製造例1で得られた銀型の 試料 (Ag含有量: 3, 20mmol/g) に、下記の 条件で電子線を照射し、銀ナノワイヤーを得た(図 1)。得られた銀ナノワイヤーの直径は約50nm、長 さは約10 µmであった。

加速電圧:300kV 真空度:1~3×10-5Pa

照射時間:約10秒

実施例2

実施例1で得られた銀ナノワイヤー部分及び担持体部分 の定量分析を行った。定量分析には、透過型電子顕微鏡 に取り付けられたエネルギー分散型X線分光器を用い た。定量分析の結果、銀ナノワイヤー中のA g含有量は 99.35モル%であり、担持体中のAg含有量は6. 69モル%であった。

【0058】実施例3

走査型電子顕微鏡を用いて、製造例1で得られた銀型の 試料 (Ag含有量: 3, 20mmo1/g) に、下記の 条件で電子線を照射し、銀ナノワイヤーを得た(図 2) 。得られた銀ナノワイヤーの直径は約10nm、長 40 さは約1 μ m であった。

加速電圧:5kV 真空度: 1×10-6Pa 照射時間:約30秒

実施例4

走査型電子顕微鏡を用いて、製造例で得られた銀型の化 合物 (Ag含有量: 3, 20mm o 1/g) に、下記の 条件で電子線を照射し、銀ナノワイヤー及び銀ナノパー ティクルを得た(図3及び図4)。得られた銀ナノワイ ヤーの直径は約40 nm、長さは約50 μmであった。

11

mであった。 加速電圧:30kV 真空度:1×10⁻⁵Pa 照射時間:約30秒

を示す電子顕微鏡写真である。

【図面の簡単な説明】 【図1】実施例1で得られた銀ナノワイヤー及び担持体 12 【図2】実施例3で得られた銀ナノワイヤー及び担持体を示す電子顕微鏡写真である。

【図3】実施例4で得られた銀ナノワイヤー及び担持体を示す電子顕微鏡写真である。

【図4】実施例4で得られた銀ナノバーティクル及び担持休を示す電子顕微鏡写真である。

[図1]

[図2]

[図3]

【図4】

フロントページの続き

(72)発明者 猪飼 修

香川県高松市林町2217番14号 工業技術 院四国工業技術研究所内 (72)発明者

大井 健太 香川県高松市林町2217番14号 工業技術 院四国工業技術研究所内 (72)発明者 大久保 彰

徳島県鳴門市瀬戸町明神字丸山85-1

富田製薬株式会社総合研究所内

(72)発明者

橋本 望

徳島県鳴門市瀬戸町明神字丸山85-1

富田製薬株式会社総合研究所内

特開 平11-79900 (JP, A) (56)参考文献

(58)調査した分野(Int,Cl.7, DB名) B82B 1/00;3/00