Cálculo II — Agrupamento IV

2018/2019

FICHA DE EXERCÍCIOS 6 Transformadas de Laplace (e aplicação às EDO lineares)

- 1. Para cada uma das funções seguintes, determine $F(s) = \mathcal{L}\{f(t)\}$:
 - (c) $f(t) = te^{3t}$; (a) $f(t) = 2 \operatorname{sen}(3t) + t - 5e^{-t}$; (b) $f(t) = e^{2t} \cos(5t)$;

 - (d) $f(t) = \pi 5e^{-t}t^{10};$ (e) $f(t) = (3t 1) \operatorname{sen} t;$ (f) $f(t) = (1 H_{\pi}(t)) \operatorname{sen} t;$ (g) $f(t) = (t 2)^{2}e^{2(t 2)}H_{2}(t).$
- 2. Para cada uma das funções seguintes, determine $\mathcal{L}^{-1}\{F(s)\}$:
 - (a) $F(s) = \frac{2s}{s^2 9}$; (b) $F(s) = \frac{4}{s^7}$; (c) $F(s) = \frac{1}{s^2 + 6s + 9}$; (d) $F(s) = \frac{1}{s^2 + s 2}$; (e) $F(s) = \frac{1}{s^2 + 4s + 6}$; (f) $F(s) = \frac{3s 1}{s^2 4s + 13}$; (g) $F(s) = \frac{4s + e^{-s}}{s^2 + s - 2}$; (h) $F(s) = \frac{s}{(s^2 + 4)^2}$.
- 3. Calcule o valor dos seguintes integrais impróprios, usando transformadas de Laplace: (a) $\int_{0}^{+\infty} t^{10} e^{-2t} dt$; (b) $\int_{0}^{+\infty} e^{-3t} t \sin t \, dt$.
- 4. Seja $f:\mathbb{R}\to\mathbb{R}$ uma função diferenciável. Sabendo que $f'(t)+2f(t)=e^t$ e que f(0)=2, determine a expressão de f(t).
- 5. Calcule:

(a)
$$\mathcal{L}\{(t-2+e^{-2t})\cos(4t)\};$$
 (b) $\mathcal{L}^{-1}\left\{\frac{2s-1}{s^2-4s+6}\right\};$ (c) $\mathcal{L}^{-1}\left\{\frac{2s}{(s-1)(s^2+2s+5)}\right\}.$

6. Usando transformadas de Laplace mostre que

$$t^m * t^n = \frac{m! \, n!}{(m+n+1)!} \, t^{m+n+1} \quad (m, n \in \mathbb{N}_0).$$

7. Determine a solução da equação

$$y'(t) = 1 - \operatorname{sen} t - \int_0^t y(\tau) \, d\tau$$

que satisfaz a condição y(0) = 0.

- 8. Resolva cada um dos seguintes problemas de Cauchy usando transformadas de Laplace.
 - (a) $3x' x = \cos t$, x(0) = -1;
 - (b) $\frac{d^2y}{dt^2} + 36y = 0$, y(0) = -1, $\frac{dy}{dt}(0) = 2$;
 - (c) y'' + 2y' + 3y = 3t, y(0) = 0, y'(0) = 1;
 - (d) y''' + 2y'' + y' = x, y(0) = y'(0) = y''(0) 1 = 0;
 - (e) $y'' + y' = \frac{e^{-t}}{2}$, y(0) = 0 = y'(0).

9. Resolva o seguinte problema de valores iniciais recorrendo às transformadas de Laplace:

$$y'' + y = t^2 + 1$$
, $y(\pi) = \pi^2$, $y'(\pi) = 2\pi$.

(Sugestão: Efetuar a substituição definida por $x = t - \pi$).

10. Usando transformadas de Laplace, resolva o seguinte sistema de EDOs sujeito às condições indicadas (onde x e y são funções da variável independente t):

$$\begin{cases} x' = 2x - 2y \\ y' = -3x + y \end{cases}, \quad x(0) = 5, \quad y(0) = 0.$$

Soluções

1.

(a)
$$\frac{6}{s^2+9} + \frac{1}{s^2} - \frac{5}{s+1}$$
, $s > 0$; (b) $\frac{s-2}{(s-2)^2+25}$, $s > 2$; (c) $\frac{1}{(s-3)^2}$, $s > 3$;

(d)
$$\frac{\pi}{s} - \frac{5 \cdot 10!}{(s+1)^{11}}, \quad s > 0;$$

(d)
$$\frac{\pi}{s} - \frac{5 \cdot 10!}{(s+1)^{11}}, \quad s > 0;$$
 (e) $\frac{6s}{(s^2+1)^2} - \frac{1}{s^2+1}, \quad s > 0;$

(f)
$$\frac{1}{s^2+1} + \frac{e^{-\pi s}}{s^2+1}$$
, $s > 0$; (g) $e^{-2s} \frac{2!}{(s-2)^3}$, $s > 2$.

(g)
$$e^{-2s} \frac{2!}{(s-2)^3}$$
, $s > 2$.

2.

(a)
$$2\cosh(3t) = e^{3t} + e^{-3t}, t \ge 0;$$

(b)
$$\frac{t^6}{180}$$
, $t \ge 0$;

(c)
$$t e^{-3t}$$
, $t \ge 0$;

(d)
$$\frac{1}{3}e^t - \frac{1}{3}e^{-2t}, t \ge 0;$$

(e)
$$\frac{e^{-2t}}{\sqrt{2}}\operatorname{sen}(\sqrt{2}t), \quad t \ge 0;$$

(f)
$$e^{2t} \left(3\cos(3t) + \frac{5}{3}\sin(3t) \right), \quad t \ge 0.$$

(g)
$$\frac{4}{3}e^t + \frac{8}{3}e^{-2t} + \frac{1}{3}H_1(t)e^{t-1} - \frac{1}{3}H_1(t)e^{-2t+2};$$
 (h) $\frac{1}{4}t \operatorname{sen}(2t).$

(h)
$$\frac{1}{4} t \operatorname{sen}(2t)$$
.

3. (a)
$$\frac{10!}{2^{11}}$$
; (b) $\frac{3}{50}$.

4.
$$f(t) = \frac{1}{3}e^t + \frac{5}{3}e^{-2t}$$
.

5.

(a)
$$\frac{s^2 - 16}{(s^2 + 16)^2} - \frac{2s}{s^2 + 16} + \frac{s + 2}{(s + 2)^2 + 16}, \quad s > 0;$$

$$\text{(b)} \ \ e^{2t} \left(2\cos(\sqrt{2}\,t) + \frac{3}{\sqrt{2}} \sin\left(\sqrt{2}\,t\right) \right) \, , \quad t \geq 0. \quad \text{(c)} \ \ \frac{1}{4} \, e^t - \frac{1}{4} \, e^{-t} \, \cos(2t) + \frac{3}{4} \, e^{-t} \sin\left(2t\right) \, , \quad t \geq 0.$$

6. –

7.
$$\left(1-\frac{t}{2}\right) \sin t$$
.

8.

(a)
$$x(t) = \frac{3}{10} \operatorname{sen} t - \frac{1}{10} \cos t - \frac{9}{10} e^{\frac{t}{3}};$$

(b)
$$y(t) = \frac{1}{3} \operatorname{sen}(6t) - \cos(6t);$$

(c)
$$y(t) = t - \frac{2}{3} + \frac{2}{3\sqrt{2}}e^{-t}\operatorname{sen}(\sqrt{2}t) + \frac{2}{3}e^{-t}\operatorname{cos}(\sqrt{2}t);$$

(d)
$$y(x) = \frac{1}{2}(x^2 - 4x + 8) - 2e^{-x}(x+2);$$

(e)
$$y(t) = \frac{e^{-t}}{2} (e^t - t - 1).$$

9.
$$y(t) = (t - \pi)^2 + 2\pi(t - \pi) + \pi^2 - 1 + \cos(t - \pi) = t^2 - 1 - \cos t$$
.

10.
$$\begin{cases} x(t) = 2e^{-t} + 3e^{4t} \\ y(t) = 3e^{-t} - 3e^{4t} \end{cases}$$