Representation Theory of Finite Groups

Swayam Chube

June 5, 2023

Contents

1 Repre		presentations of Finite Groups	
	1.1	Schur's Lemma	3
		Maschke's Theorem	2

Abstract	
Throughout this report, unless mentioned otherwise, all vector spaces are finite dimensional over \mathbb{C} .	

Chapter 1

Representations of Finite Groups

Definition 1.1 (Representation). A representation of a group *G* is a homomorphism

$$\varphi: G \to \operatorname{Aut}_{\operatorname{\mathbf{Vec}}}(V) = \operatorname{GL}(V)$$

for some finite-dimensional non-zero vector space V. The dimension of V is called the *degree* of φ .

In particular, from the above definition, we note that G acts on V and the action is compatible with the vector space structure of V. In this case, V is called a G-module. We shall use φ_g to denote $\varphi(g)$ and the action of g on v is denoted by $\varphi_g(v)$ or sometimes $g \cdot v$. Henceforth, a representation refers to a representation $\varphi : G \to \operatorname{GL}(V)$ where V is a finite-dimensional nonzero \mathbb{C} -vector space.

Definition 1.2 (Direct Sum of Representations). Let $\varphi : G \to GL(V)$ and $\psi : G \to GL(W)$ be representations. Then, the map

$$\varphi \oplus \psi : G \to GL(V \oplus W)$$

given by

$$\left(arphi \oplus \psi
ight)_{\mathcal{S}} \left(v, w
ight) = \left(arphi_{\mathcal{S}} (v), \psi_{\mathcal{S}} (w)
ight)$$

for all $g \in G$ and $(v, w) \in V \oplus W$.

Note, for subspaces V_1 and V_2 of V, when we write $V = V_1 \oplus V_2$, we mean there is an isomorphism $V_1 \oplus V_2 \to V$ given by $(v_1, v_2) \mapsto v_1 + v_2$. This is known as the <u>internal direct sum</u>.

Definition 1.3 (Representation Homomorphism). Let $\varphi: G \to GL(V)$ and $\psi: G \to GL(W)$ be representations of a finite group G. A *homomorphism of representations* φ and ψ is a linear transformation $T: V \to W$ such that the diagram

$$V \xrightarrow{\varphi_g} V \\ \downarrow^T \\ V \xrightarrow{\psi_g} W$$

commutes for all $g \in G$. The set of all representation homomorphisms from φ to ψ is denoted by $\operatorname{Hom}_G(\varphi,\psi)$ and is a \mathbb{C} -vector space.

An *equivalence of representations* is a homomorphism of representations which is also an isomorphism of vector spaces.

Proposition 1.4. Hom_G(φ , ψ) *is a vector subspace of* Hom(V, W).

Proof. Indeed, if $S, T \in \text{Hom}_G(\varphi, \psi)$ and $a \in \mathbb{C}$, then for all $v \in V$ and $g \in G$,

$$(S+aT)(\varphi_{\mathcal{G}}(v)) = S \circ \varphi_{\mathcal{G}}(v) + aS \circ \varphi_{\mathcal{G}}(v) = \varphi_{\mathcal{G}}(S(v)) + \varphi_{\mathcal{G}}(aT(v)) = \varphi_{\mathcal{G}}((S+aT)(v))$$

and the conclusion follows.

Definition 1.5 (*G*-invariant subspace). Let $\varphi: G \to GL(V)$ be a representation. A subspace $W \le V$ is said to be *G*-invariant if for all $g \in G$ and $w \in W$, $\varphi_g(w) \in W$. Or more succinctly, for each $g \in G$, $\varphi_g(W) \le W$. A representation is said to be *irreducible* if has no nonzero proper *G*-invariant subspaces. It is said to be *reducible* otherwise.

Proposition 1.6. Let $\varphi: G \to GL(V)$ be reducible and $\psi: G \to GL(W)$ be equivalent to φ . Then ψ is reducible.

Proof. Let $T \in \text{Hom}_G(V, W)$ be a linear isomorphism and $U \leq V$ be a nonzero proper G-invariant subspace. It is not hard to argue that T(U) is G-invariant, consequently W is reducible.

Corollary. If a representation is equivalent to an irreducible representation, then it is irreducible.

Lemma 1.7. Let $\varphi: G \to GL(V)$ be a representation and $W \leq V$ be a G-invariant subspace. Then, the restriction $\varphi|_W: G \to GL(W)$ is also a representation. This is called a **subrepresentation** of φ .

Proof. Since $\varphi_g(w) \in W$ for each $w \in W$, we see that $\varphi_g|_W$ is a linear transformation $W \to W$ (as it descended from φ_g). Since $\varphi_g : V \to V$ has a trivial kernel, so does $\varphi_g|_W$, whereby it is a linear isomorphism.

Definition 1.8 (Decomposable Representation). A representation $\varphi : G \to GL(V)$ is said to be *decomposable* if there are nonzero *G*-invariant subspaces V_1, V_2 of V such that $V = V_1 \oplus V_2$.

Obviously, every decomposable representation is reducible and equivalently, every irreducible representation is indecomposable.

Proposition 1.9. If $\varphi: G \to GL(V)$ is a decomposable representation with $V = V_1 \oplus V_2$, further, if $\varphi_1 = \varphi|_{V_1}$ and $\varphi_2 = \varphi|_{V_2}$, then $\varphi \sim \varphi_1 \oplus \varphi_2$.

Proof. The map $T: V_1 \oplus V_2 \to V$ given by $T(v_1, v_2) = v_1 + v_2$ is a linear isomorphism. Therefore, for all $g \in G$,

$$T((\varphi_1 \oplus \varphi_2)_g(v_1, v_2)) = (\varphi_1)_g(v_1) + (\varphi_2)_g(v_2) = \varphi_g(v_1 + v_2) = \varphi_g(T(v_1, v_2))$$

implying the desired conclusion.

Remark 1.0.1. Inductively, if $V = V_1 \oplus \cdots \oplus V_n$ and $\varphi_i = \varphi|_{V_i}$, then $\varphi \sim \bigoplus_{i=1}^n \varphi_i$.

Proposition 1.10. *Let* $\varphi : G \to GL(V)$ *be decomposable and* $\psi : G \to GL(W)$ *a representation equivalent to* φ . *Then* ψ *is decomposable.*

Proof. Let $T \in \operatorname{Hom}_G(\varphi, \psi)$ be a linear isomorphism. Further, let $V_1, V_2 \leq V$ be nonzero proper G-invariant subspaces such that $V = V_1 \oplus V_2$. Let $W_1 = T(V_1)$ and $W_2 = T(V_2)$. Since T is an isomorphism, $W_1 \cap W_2 = 0$ and $W = W_1 + W_2$, whereby $W = W_1 \oplus W_2$. Further, for all $g \in G$ and $w_1 \in W_1$, there is a unique $v_1 \in V_1$ such that $T(v_1) = w_1$ and

$$\psi_{\mathcal{S}}(w_1) = \psi_{\mathcal{S}}(T(v_1)) = T(\varphi_{\mathcal{S}}(v_1)) \in W_1$$

similarly, W_2 is also G-invariant and ψ is decomposable.

1.1 Schur's Lemma

Proposition 1.11. *Let* $\varphi : G \to GL(V)$ *and* $\psi : G \to GL(W)$ *be representations and* $T \in Hom_G(\varphi, \psi)$. *Then,* ker T *and* im T *are both G-invariant subspaces of* V *and* W *respectively.*

Proof. Indeed, for all $g \in G$, $v \in \ker T$ and $w \in \operatorname{im} T$, there is a corresponding $u \in V$ such that T(u) = w and we have

$$T(\varphi_{\mathcal{S}}(v)) = \psi_{\mathcal{S}}(T(v)) = 0$$
 $\psi_{\mathcal{S}}(w) = \psi_{\mathcal{S}}(T(u)) = T(\varphi_{\mathcal{S}}(u)) \in \operatorname{im} T$

implying the desired conclusion.

Lemma 1.12 (Schur). *Let* $\varphi : G \to GL(V)$ *and* $\psi : G \to GL(W)$ *be irreducible representations and* $T \in Hom_G(\varphi, \psi)$. *Then,*

- (a) T is invertible or T = 0.
- (b) if $\varphi \nsim \psi$, then T = 0.
- (c) if V = W, then $T = \lambda id_V$ for some $\lambda \in \mathbb{C}$.

Proof. (a) Since ker T is G-invariant, we must have ker $T \in \{0, V\}$. In the latter case, T = 0. In the former case, we must have im $T \in \{0, W\}$ obviously the former may not hold since V is nonzero, consequently, im T = W and T is a linear isomorphism.

- (b) Immediate from (a).
- (c) Since we are working over an algebraically closed field, \mathbb{C} , there is $\lambda \in \mathbb{C}$ which is an eigenvalue of T. Note that $\widetilde{T} = T - \lambda \mathbf{id}_V \in \operatorname{Hom}_G(V, V)$ but since $\ker \widetilde{T} \neq 0$, we must have $\widetilde{T} = 0$ and $T = \lambda \mathbf{id}_V$.

Corollary. An irreducible representation of an abelian group has degree 1, consequently, is a <u>character</u>.

Proof. Let $\rho: G \to GL(V)$ be an irreducible representation with G an abelian group. Fix some $g \in G$, then for all $h \in G$, the diagram

$$V \xrightarrow{\rho_h} V$$
 $\downarrow \rho_g$
 $\downarrow \rho_g$

commutes. Consequently, $\rho_g \in \operatorname{Hom}_G(\rho, \rho)$. From Lemma 1.12, $\rho_g = \lambda_g \operatorname{id}_V$. Due to the irreducibility of the representation, we must have dim V = 1.

1.2 Maschke's Theorem

Definition 1.13 (Completely Reducible). A representation $\varphi: G \to \operatorname{GL}(V)$ is said to be *completely reducible* if there are nonzero proper G-invariant subspaces $\{V_i\}_{i=1}^n$ such that $V = V_1 \oplus \cdots \oplus V_n$ and $\varphi|_{V_i}$ is irreducible for all $1 \le i \le n$.

From Remark 1.0.1, we have $\varphi \sim \varphi_{V_1} \oplus \cdots \oplus \varphi_{V_n}$.

Definition 1.14 (Unitary Representation). Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. A representation $\rho : G \to GL(V)$ is said to be *unitary* if for all $g \in G$ and $u, v \in V$,

$$\langle u, v \rangle = \langle \rho_g(u), \rho_g(v) \rangle$$

Remark 1.2.1. If V is a finite dimensional \mathbb{C} vector space, then there is a non trivial inner product on V. Indeed, pick any basis $\{v_i\}_{i=1}^n$ for V and define

$$\left\langle \sum_{i=1}^{n} a_i v_i, \sum_{i=1}^{n} b_i v_i \right\rangle = \sum_{i=1}^{n} \overline{a_i} b_i$$

where \overline{z} is the complex conjugate of z.

Lemma 1.15. *Let* φ : $G \to GL(V)$ *be a unitary representation. If* φ *is reducible, then it is decomposable.*

Proof. Let $W \leq V$ be a nonzero proper G-invariant subspace and W^{\perp} its orthogonal complement. We contend that W^{\perp} is G-invariant. This coupled with $V = W \oplus W^{\perp}$ would immediately imply the desired conclusion. Indeed, let $w^{\perp} \in W^{\perp}$. Then, for all $w \in W$ and $g \in G$, there is $w' \in W$ such that $\rho_g(w') = w$ and

$$\langle w, \rho_{g}(w^{\perp}) \rangle = \langle \rho_{g}(w'), \rho_{g}(w^{\perp}) \rangle = \langle w', w^{\perp} \rangle = 0$$

which completes the proof.

Proposition 1.16. Every reducible representation of a finite group G is decomposable.

Proof. Let $\varphi: G \to GL(V)$ be a reducible representation. As observed in Remark 1.2.1, there is an inner product $\langle \cdot, \cdot \rangle$ associated with V. We shall construct a G-invariant inner product using this. Define, for $u, v \in V$,

$$(u,v) = \frac{1}{|G|} \sum_{g \in G} \langle \varphi_g(u), \varphi_g(v) \rangle$$

Obviously, $(u, u) \ge 0$, $(u, v) = \overline{(v, u)}$ and $(\alpha u + \beta v, w) = \overline{\alpha}(u, w) + \overline{\beta}(v, w)$ whereby (\cdot, \cdot) is an inner product. Now, for any $g \in G$, we have

$$(\varphi_g(u), \varphi_g(v)) = \frac{1}{|G|} \sum_{h \in G} \langle \varphi_{hg}(u), \varphi_{hg}(v) \rangle = (u, v)$$

Upon equipping V with this inner product, φ is a unitary representation, and we are done due to Lemma 1.15.

Corollary. Let $\varphi : G \to GL(V)$ be a representation. Then φ is either irreducible or decomposable.

Theorem 1.17 (Maschke). Every representation of a finite group is completely reducible.

Proof. Let $\varphi: G \to GL(V)$ be a representation. We shall prove this statement by induction on the degree of φ . The base case with deg $\varphi=1$ is trivial. Now suppose deg $\varphi=n>1$. If φ is irreducible, then we are done. Else, φ is reducible and there are nonzero proper G-invariant subspaces G and G and G is that G and G are subrepresentations with degree strictly less than G and hence the induction hypothesis applies. Consequently, we have decompositions:

$$U = U_1 \oplus \cdots \oplus U_m$$
 $W = W_1 \oplus \cdots \oplus W_n$

such that each subrepresentation $\varphi|_{U_i}$ and $\varphi|_{W_i}$ is irreducible. Since

$$V = U \oplus W = U_1 \oplus \cdots \oplus U_m \oplus W_1 \oplus \cdots \oplus W_n$$

we see that φ is completely reducible. This completes the proof.

Theorem 1.18. *Uniqueness of decomposition.*

Proof. Suppose there are equivalent decompositions $V_1 \oplus \cdots \oplus V_n$ and $W_1 \oplus \cdots \oplus W_m$ of a representation $\varphi: G \to \operatorname{GL}(V)$. Consider the composition $V_i \hookrightarrow V_1 \oplus \cdots \oplus V_n \xrightarrow{\operatorname{id}_V} W_1 \oplus \cdots \oplus W_m \twoheadrightarrow W_j$ and denote it by T_{ij} . We contend that $T_{ij} \in \operatorname{Hom}_G(\varphi|_{V_i}, \varphi|_{W_j})$. Indeed, for all $g \in G$ and $v_i \in V_i$, we have

$$T_{ij}(\varphi_{\mathcal{S}}(v_i)) = \pi_j(\varphi_{\mathcal{S}}(v_i)) = \varphi_{\mathcal{S}}(\pi_j(v_i)) = \varphi_{\mathcal{S}}(T_{ij}(v_i))$$

but since both $\varphi|_{V_i}$ and $\varphi|_{W_j}$ are irreducible representations, T_{ij} is either 0 or an isomorphism and the latter is possible if and only if $V_i = W_j$. This implies the desired conclusion, since now we have a bijection between the sets $\{V_i\}_{i=1}^n$ and $\{W_j\}_{j=1}^n$.