পদার্থ বিজ্ঞান পরিচয়

চিত্তরঞ্জন দাশগুপ্ত

ভারতীয় সংবিধান

প্রস্তাবনা

"আমরা, ভারতের জনগণ, ভারতকে সার্বভৌম, সমাজতান্ত্রিক, ধর্মনিরপেক্ষ, গণতান্ত্রিক, সাধারণতন্ত্র রূপে গড়ে তুলতে এবং তার সকল নাগরিকই যাতে সামাজিক, অর্থনৈতিক ও রাজনৈতিক ন্যায়বিচার, চিন্তা, মতপ্রকাশ, বিশ্বাস, ধর্ম এবং উপাসনার স্বাধীনতা, সামাজিক প্রতিষ্ঠা অর্জন ও সুযোগের সমতা প্রতিষ্ঠা এবং তাদের সকলের মধ্যে ব্যক্তির মর্যাদা এবং জাতীয় ঐক্য ও সংহতি সুনিশ্চিতকরণের মাধ্যমে তাদের মধ্যে যাতে ভ্রাতৃত্বের ভাব গড়ে ওঠে তার জন্য সত্যনিষ্ঠার সজো শপথ গ্রহণ করে, আমাদের গণপরিষদে আজ, ১৯৪৯ সালের ২৬শে নভেম্বর, এতদ্বারা এই সংবিধান গ্রহণ, বিধিবন্ধ এবং নিজেদের অর্পণ করিছ।"

ভারতীয় নাগরিকের মৌলিক অধিকার (ভারতীয় সংবিধান, ধারা ১৪-৩০, ৩২ ও ২২৬)

১। সাম্যের অধিকার

- 🍅 আইনের দৃষ্টিতে সবাই সমান এবং আইন সকলকে সমানভাবে রক্ষা করবে।
- জাতি, ধর্ম, বর্ণ, নারী-পুরুষ, জন্মস্থান প্রভৃতি কারণে রাষ্ট্র কোনো নাগরিকের সজ্জো বৈষম্যমূলক আচরণ করবে না।
- 🌼 সরকারি চাকরির ক্ষেত্রে যোগ্যতা অনুসারে সকলের সমান অধিকার।
- 🐞 অস্পশ্যতা নিষিদ্ধ এবং আইন অনুসারে দশুনীয় অপরাধ।

২। স্বাধীনতার অধিকার

- 🧔 বাক-স্বাধীনতা ও মতামত প্রকাশের অধিকার।
- 🦻 শান্তিপূর্ণ ও নিরস্ত্রভাবে সমবেত হওয়ার অধিকার।
- 🌞 সংঘ ও সমিতি গঠনের অধিকার।
- 🍅 ভারতের সর্বত্র স্বাধীনভাবে চলাফেরা করার অধিকার।
- 🐞 ভারতের যে-কোনো স্থানে স্বাধীনভাবে বসবাস করার অধিকার।
- 💿 যে-কোনো জীবিকা, পেশার বা ব্যাবসা-বাণিজ্য করার অধিকার।
- জীবন ও ব্যক্তিগত স্বাধীনতার অধিকার।

৩।শোষণের বিরুদ্ধে অধিকার

- o कारना वार्क्टिक क्रय, विक्रय कता वा तिशात थाँगिरना यारव ना।
- চোন্দো বছরের কমবয়য়্ব শিশুদের খনি, কারখানা বা অন্য কোনো বিপজ্জনক কাজে নিযুক্ত করা যাবে না।

৪। ধর্মীয় স্বাধীনতার অধিকার

শকল ব্যক্তিই সমানভাবে বিবেকের স্বাধীনতা অনুসারে ধর্মস্বীকার, ধর্মাচরণ এবং ধর্ম প্রচারের স্বাধীনতা ভেগা করবে।

- কোনো বিশেষ ধর্ম বা সম্প্রদায়ের প্রসার বা রক্ষণাবেক্ষণের জন্য কোনো সম্প্রদায় বা ব্যক্তিকে কর দিতে বাধ্য করা যাবে না।
- 🦚 রাষ্ট্র পরিচালিত শিক্ষা প্রতিষ্ঠানে ধর্মশিক্ষা সম্পূর্ণ নিষিশ্ব।

৫। সংস্কৃতি ও শিক্ষা-বিষয়ক অধিকার

- 🧶 সকল শ্রেণির নাগরিক নিজস্ব ভাষা, লিপি ও সংস্কৃতির বিকাশ ও সংরক্ষণ করতে পারবে।
- রাষ্ট্র পরিচালিত বা সরকারি সাহায্যপ্রাপ্ত কোনো শিক্ষা-প্রতিষ্ঠানে শিক্ষালাভের ক্ষেত্রে কোনো ব্যক্তিকে ধর্ম, জাতি বা ভাষার অজহাতে বঞ্চিত করা যাবে না।
- ধর্ম অথবা ভাষাভিত্তিক সংখ্যালঘু সম্প্রদায়গুলি নিজেদের পছন্দমতো শিক্ষা-প্রতিষ্ঠান স্থাপন ও পরিচালনা করতে পারবে।

৬। মৌলিক অধিকার রক্ষা-বিষয়ক

শৌলিক অধিকারগুলি বলবৎ ও কার্যকর করার জন্য নাগরিকরা সুপ্রিমকোর্ট ও হাইকোর্টের কাছে আবেদন করতে পারবে—প্রয়োজনে বিশেষ লেখ (Writ) জারি করতে পারবে : হেবিয়াস কর্পাস (Habeas Corpus), ম্যাভামাস (Mandamus), সারশিওরারি (Certiorari), প্রহিবিশান (Prohibition) ও কুয়ো ওয়ারান্টো (Quo-Warranto)।

মৌলিক কর্তব্য

(ভারতীয় সংবিধান, ধারা ৫১এ)

- ১। সংবিধানের প্রতি আনুগত্য, সাংবিধানিক আদর্শ ও প্রতিষ্ঠান, জাতীয় পতাকা ও জাতীয় সংগীত সম্পর্কে শ্রন্থাবোধ।
- ২। মহৎ যেসব আদর্শ স্বাধীনতা সংগ্রামে আমাদের উদ্বুদ্ধ করেছে তাদের লালন ও অনুসরণ।
- ৩। ভারতের সার্বভৌমত্ব, ঐক্য ও সংহতি রক্ষা।
- ৪। আহ্বান এলে দেশরক্ষা ও জাতির সেবায় আত্মনিয়োগ করা।
- ৫। ভাষা-ধর্ম-অঞ্চল-শ্রেণি নির্বিশেষে ভারতের জনগণের মধ্যে পারস্পরিক ঐক্যচেতনা ও প্রাতৃত্ববোধ উদ্বোধন।
- ৬। দেশের মিশ্র সংস্কৃতির মূল্যবান উত্তরাধিকারের মাহাত্ম্য উপলব্ধি ও সংরক্ষণ।
- ৭। অরণ্য, হ্রদ, নদনদী, বন্যজীবনসহ প্রাকৃতিক পরিবেশ রক্ষণ ও উন্নয়ন এবং প্রাণীজ্ঞাতের প্রতি সহানুভূতি পোষণ।
- ৮। বিজ্ঞানমনস্কতা, মানবতাবাদ, অনুসন্ধান ও সংস্কারের বিকাশ।
- ৯। সরকারি সম্পত্তি রক্ষা করা ও হিংসা পরিহার করা।
- ১০। জাতি যাতে নিয়ত তার কর্মোদ্যম ও সাফল্যের উচ্চতর স্তরে পৌঁছোতে পারে, জীবনের সর্বক্ষেত্রে ব্যক্তিগত ও সমবেত প্রয়াসে উৎকর্ষের সেই লক্ষ্যে পৌঁছোনোর প্রচেষ্টা।
- ১১। পিতা-মাতা/অভিভাবকের দায়িত্ব ৬-১৪ বছর বয়স্ক শিশুদের শিক্ষার সুযোগের ব্যবস্থা করা।

বিভিন্ন জয়েন্ট এন্ট্রান্স, প্রতিযোগিতামূলক পরীক্ষা ও +2 পাঠক্রমের ছাত্রছাত্রীদের জন্য রচিত।

পদার্থ বিজ্ঞান পরিচয়

- দ্বিতীয় ভাগ -

অধ্যাপক চিত্তরঞ্জন দাশগুপ্ত এম.এস্-সি.
কলকাতা সিটি কলেজের পদার্থ বিজ্ঞানের প্রাক্তন প্রধান অধ্যাপক;
'স্নাতক পদার্থ বিজ্ঞান', 'ব্যবহারিক পদার্থ বিজ্ঞান', 'স্নাতক ব্যবহারিক পদার্থ বিজ্ঞান',

'A Handbook of Degree Physics', 'প্রাকৃতিক বিজ্ঞান' প্রভৃতি গ্রন্থের লেখক।

প্রথম প্রকাশ ঃ 1976

দশম সংস্করণ ঃ 1986

বিংশ সংস্করণ ঃ 1999

ত্রয়োবিংশ সংস্করণ ঃ 2005

পরিমার্জিত চতুর্বিংশ সংস্করণ ঃ 2007

530 DAS

মূল্য ঃ দুইশত পঞ্জাশ টাকা মাত্র 2

চিত্রশিল্পী ঃ শঙ্খশুল বেরা

PCC 1 2201 14

বুক সিভিকেট প্রাইভেট লিমিটেড (35 কলেজ স্ট্রিট, কলকাতা 700 073) কর্তৃক প্রকাশিত ও মুদ্রণ ভারতী-র (26 মধুসূদন ব্যানার্জী রোড, কলকাতা 700 049) পক্ষে শ্রীবিকাশ পাল কর্তৃক মুদ্রিত।

ভূমিকা

'পদার্থবিজ্ঞান পরিচয়' দ্বিতীয় ভাগ (দ্বাদশ শ্রেণির জন্য) গ্রম্থের নতুন সংস্করণ প্রকাশিত হল। এই গ্রন্থখানি সাধারণভাবে H.S. + 2 course, CBSE পরীক্ষা, W.B. Joint Entrance এবং All India Engineering Entrance (AIEEE) প্রভৃতি পরীক্ষার পাঠক্রমের উপযোগী করে লেখা।

2007 সাল থেকে W.B. জয়েন্ট এন্ট্রান্স পরীক্ষা নতুন সিলেবাস (একাদশ ও দ্বাদশ প্রেণিতে বিভাজিত) অনুযায়ী গৃহীত হবে এবং প্রশ্নপত্রে কেবল মাত্র বহুমুখী পছন্দের প্রশ্ন বা MCQ ধরনের প্রশ্ন থাকবে। 1 নম্বরের 50 টি প্রশ্নের উত্তর 1 ঘন্টায় শেষ করতে হবে। ছাত্রছাত্রীদের অনুশীলনের জন্য এই সংস্করণে প্রতি পরিচ্ছেদের শেষে প্রচুর সংখ্যক MCQ ধরনের প্রশ্ন দেওয়া হল।

ত্রিপুরা, পশ্চিমবঞ্চা প্রভৃতি বিভিন্ন রাজ্যে + 2 course-এর জন্য প্রশ্নপত্রেরও পরিবর্তন করা হয়েছে। এখন থেকে এই প্রশ্নপত্রে 5 mark-এর বিস্তারিত উত্তরের প্রশ্ন, 4 mark-এর সংক্ষিপ্ত উত্তরের প্রশ্ন, 2 mark-এর অতি সংক্ষিপ্ত উত্তরের প্রশ্ন এবং 1 mark-এর বিষয়মুখী (Objective) প্রশ্ন থাকবে। এই সংস্করণে প্রতি পরিচ্ছেদের শেষে 'প্রশাবলিকে' উপরোক্ত শ্রেণি বিভাগে বিভক্ত করে দেওয়া হয়েছে।

ছাত্রছাত্রীরা এই গ্রন্থ পাঠে উপকৃত হবে, এই আশা করি।

চিত্তরঞ্জন দাশগুপ্ত

সূচিপত্র

বলবিজ্ঞান ও পদার্থের ধর্ম

Mechanics and Properties of Matter

शंशेश	পরিক্ষেদ	0	আবর্ত	গতিবিজ্ঞান	***	***	3—50
C1 74	1131 ("0.65")	0	2110	110110011			

দ্বিতীয় পরিচ্ছেদ ঃ মহাকর্য 51-87

2

তাপ বিজ্ঞান

Heat

প্রথম পরিচ্ছেদ ঃ তাপগতিবিদ্যা	91—118
-------------------------------	--------

দ্বিতীয় পরিচ্ছেদ ঃ গ্যাসের গতীয় তত্ত্ব 119—142

3

তরঙ্গা ও ভৌতআলোক বিজ্ঞান

Wave and Physical Optics

প্রথম	পরিচ্ছেদ	0	তরজা			***	***	145—1	75

দ্বিতীয় পরিচ্ছেদ ঃ শব্দতরজা ... 176—195

তৃতীয় পরিচেছদ ঃ তরঞ্জোর উপরিপাত ... 196—233

চতুর্থ পরিচ্ছেদ ঃ ভৌত আলোক বিজ্ঞান 234—248

স্থির তড়িৎবিজ্ঞান

Electrostatics

প্রথম পরিচ্ছেদ ঃ	তড়িতাহিতকরণের সাধারণ বিষয়াদি	***	***	251—269
দ্বিতীয় পরিচ্ছেদ ঃ	স্থির তড়িং ক্ষেত্র ও তড়িং বিভব	***	***	270—318
তৃতীয় পরিচ্ছেদ ঃ	ধারকত্ব এবং ধারক	***	***	319—356

5

প্রবাহী তড়িৎ বিজ্ঞান

Current Electricity

প্রথম পরিচ্ছেদ ঃ	তড়িৎ প্রবাহের তাপীয় ফল ও তাপ	-তড়িৎ …	***	359—393
দ্বিতীয় পরিচ্ছেদ ঃ	তড়িৎ প্রবাহের রাসায়নিক ক্রিয়া	***	200	394-415
তৃতীয় পরিচ্ছেদ ঃ	তড়িৎ-চুম্বকত্ব (I)	***	***	416—453
চতুর্থ পরিচ্ছেদ ঃ	চুম্বকত্ব	***	000	454—486
পশ্চম পরিচ্ছেদ ঃ	তড়িৎ-চুম্বকত্ব (II)	***	***	487—518

6

আধুনিক পদার্থ বিজ্ঞান

Modern Physics

প্রথম পরিচ্ছেদ ঃ	তড়িৎচুম্বকীয় তরজা	•••		521—526
দ্বিতীয় পরিচ্ছেদ ঃ	্ অর্ধপরিবাহী ও ইলেকট্রনিকস	***	***	527—550
তৃতীয় পরিচেছদ ঃ	কোয়ান্টাম তত্ত্ব ও আলোকতড়িৎ	***	***	551—573
চতুর্থ পরিচ্ছেদ ঃ	বোরতত্ত্ব ও এক্সরশ্মি	***	***	574—593
	কয়েকটি সর্বজনীন ধ্রুবসংখ্যা	048	***	594

7

পরিশিষ্ট

Appendix

বহুমুখী পছন্দের প্রশ্ন [M.C.Q.]

. ... 597—724

বলবিজ্ঞান ও পদার্থের ধর্ম

[MECHANICS AND PROPERTIES OF MATTER]

আবর্ত গতিবিজ্ঞান

DYNAMICS OF ROTATIONAL MOTION

1.11 কণার আবর্ত গতি (Rotational motion of a particle) :

পূর্বে উদ্রেখ করা হয়েছে যে, কোনো বস্তুকণার দু–রকম গতি হতে পারে—(i) চলন গতি (translational motion) এবং (ii) আবর্ত বা ঘূর্ণ গতি (rotational motion)। প্রথমোন্ত গতি সম্পর্কে আমরা ইতিমধ্যে বিস্তারিত আলোচনা করেছি। এই পরিচেছদে আমরা বস্তুকণার আবর্ত গতি সম্পর্কে আলোচনা করব।

বন্ধুকণা কোনো বিন্দুকে কেন্দ্র করে যদি বৃত্তপথে সুষম দ্রুতিতে পরিভ্রমণ করে, তবে ঐ গতিকে সুষম আবর্তগতি বা ঘূর্ণগতি বলা হয়। ঐ বিন্দুর মধ্য দিয়ে এবং বৃত্তের তলের অভিলম্বভাবে যদি কোনো রেখা টানা যায়, তবে ঐ রেখাকে বলা হবে ঘূর্ণাক্ষ (axis of rotation)।

বস্তুকণা যে বৃত্তপথে পরিভ্রমণ করে ঐ বৃত্তের ব্যাসার্থকে 🌬 হয় বস্তুকণার দূরক (radius vector)। বলা বাহুল্য, কণার ঘূর্ণগতির সঞ্চো দূরকেরও ঘূর্ণগতি হয় এবং দূরক বিভিন্ন সময়ে বৃত্তের কেন্দ্রে বিভিন্ন কোণ উৎপন্ন করে।

চলন গতিতে আমাদের মুখ্য পরিমাপের বিষয় ছিল বস্তুকণা কর্তৃক অতিক্রান্ত রৈখিক দূরত্ব: আবর্তগতিতে আমাদের মুখ্য পরিমাপের বিষয় হবে দূরক কর্তৃক বৃত্তের কেন্দ্রে উৎপন্ন কোণ। এই কোণকে বলা হয় কণার কৌণিক সরণ (angular displacement)। একে সাধারণত 'রেডিয়ান' এককে পরিমাপ করা হয়। যেহেতু কৌণিক সরণ মূলত একটি কোণ, তাই একে প্রচলিত ডিগ্রি, মিনিট, সেকেন্ড এককেও মাপা যেতে পারে। কিন্তু কয়েকটি সুবিধার জন্য কৌণিক সরণকে রেডিয়ান এককেই মাপা হয়।

সংজ্ঞা ঃ যদি কোনো বৃত্ত হতে তার ব্যাসার্ধের সমান দৈর্ঘ্যসম্পন্ন চাপ (arc) নেওয়া হয়, তবে এ চাপ বৃত্তের কেন্দ্রে যে কোণ উৎপন্ন করে তাকে এক রেডিয়ান বলে।

এই পন্ধতি অনুযায়ী, কোণ $\theta=\frac{\text{ find }(S)}{\text{ ব্যাসার্থ }(r)}$ অথবা, $S=r.\theta$.

মনে রাখতে হবে, 1 রেডিয়ান = $\frac{360}{2\pi}$ = 57.32° [π = 3.14]

রেডিয়ান দুটি দৈর্ঘ্যের অনুপাত হওয়ায় এর কোনো একক বা মাত্রা নেই।

1.2. কৌণিক বেগ (Angular velocity):

সমবেগে বৃত্তাকার পথে বস্তুকণার পরিভ্রমণকালে, দূরক যদি Δt সময়ে বৃত্তের কেন্দ্রে $\Delta \theta$ কোণ উৎপন্ন করে, তার্থাৎ ঐ সময়ে কৌণিক সরণ হয় $\Delta \theta$ তবে বস্তুকণার কৌণিক বেগ $W = \lim_{\Delta t = 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$ [চিত্র 1.1]।

বীজগণিতের প্রতীক অনুযায়ী $\omega = \frac{\theta}{t}$

সংজ্ঞা ঃ সমবেগে বৃত্তাকার পথে পরিভ্রমণরত কোনো বস্তুকণার দূরক একক সময়ে বৃত্তের কেন্দ্রে যে কোণ উৎপন্ন করে, তাকে ঐ বস্তুকণার কৌশিক রেগ বলা হয়।

অর্থাৎ, সময়ের সাপেকে কৌণিক সরণের হার-কে কৌণিক বেগ বলে। সাধারণত কৌণিক বেগকে ω (উচ্চারণ 'ওমেগা') অক্ষর দ্বারা প্রকাশ করা হয়। এখন dt = 1 হলে, ω = dθ. একক সময়ে কশার কৌণিক সরণ বস্তকণার কৌণিক বেগের পরিমাপ।

লক্ষ কর যে, কৌণিক বেগের উপরিউক্ত সমীকরণটি রৈখিক বেগের সমীকরণ $\upsilon = \frac{s}{t}$ এই সমীকরণের সাথে সাদৃশ্য রাখে। কৌণিক বেগ ω রৈখিক বেগ υ -এর অনুরূপ এবং কৌণিক সরণ σ -এর অনুরূপ। রেডিয়ান এককে σ এবং সেকেন্ড এককে σ পরিমাপ করলে কৌণিক বেগের একক হবে 'রেডিয়ান প্রতি সেকেন্ড' (rads $^{-1}$)।

যখন একটি জড়বন্তু কোনো অক্ষ সাপেক্ষে সমবৃত্তগতিতে পরিভ্রমণ করে তখন ঐ বস্তুর অসংখ্য কণাগুলি ঐ জড়বন্তুর ঘূর্ণাক্ষ থেকে বিভিন্ন দূরত্বে থাকলেও তাদের প্রত্যেকের কৌণিক গতিবেগ সমগ্র জড়বন্তুর কৌণিক গতিবেগের সমান হয়।

পর্যায়কাল ঃ যদি বস্তুকণা একবার সমগ্র বৃত্ত পরিশ্রমণ করতে T সেকেন্ড সময় নেন, তবে তার কৌণিক বেগ $\omega = \frac{2\pi}{T}$ রেডিয়ান/সেকেন্ড কারণ, একবার পূর্ণ পরিশ্রমণের ফলে দূরক বৃত্তকেন্দ্রে 2π রেডিয়ান কোণ উৎপন্ন করে। এক্ষেত্রে, T–কে বলা হয় বস্তুকণার পর্যায়কাল (time period)।

কম্পান্দ ঃ বন্তুকণা প্রতি সেকেন্ডে n বার বৃত্তপথ প্রদক্ষিণ করলে, $\omega=2\pi n$: এক্ষেত্রে n-কে বলা হয় বন্তুকণার কম্পান্ডক (frequency)। এটা বন্তুকণার আবর্ড বেগ (rotational speed) প্রকাশ করে। যেমন, কোনো চক্র সেকেন্ডে 10 বার বৃত্তপথ প্রদক্ষিণ করলে, তার কম্পান্ডক বা আবর্তবেগ 10 r.p.s. (revolutions per second)। এটা মিনিটে 600 বার আবর্তজনিত — অর্থাৎ 600 r.p.m. (revolutions per minute) আবর্তবেগ বোঝারে অথবা ঘন্টায় 36000 আবর্তজনিত বা 36,000 r.p.h. (revolutions per hour) আবর্তবেগ বোঝারে।

রেডিয়ান/সেকেন্ড এবং আর.পি.এম. -এর সম্পর্কঃ সাধারণত প্রতি মিনিটে আবর্তন সংখ্যা (সংক্ষেপে আর.পি.এম.) দ্বারা কোনো বস্তু বা কণার আবর্তন গতিবেগ প্রকাশ করা হয়। কোনো বস্তুকণার আর.পি.এম. N হলে, তা ! মিনিটে N পূর্ণসংখ্যক আবর্তন সম্পন্ন করে। কাজেই, একটি পূর্ণ আবর্তনের সময় $=\frac{60}{N}s$. এবং এটাই বস্তুকণার পর্যায়কাল (T)। সূতরাং, $T=\frac{60}{N}s$.: বস্তুকণার কৌণিক বেগ ω rads $^{-1}$ হলে, $\omega=\frac{2\pi}{T}=\frac{2\pi\times N}{60}=0.104$ N rads $^{-1}$

কৌণিক বেগ ও রৈখিক বেগের সম্পর্ক (Relation between angular velocity and linear velocity

আমরা পূর্বে দেখেছি $\omega = \frac{\theta}{l}$ ।

এখন, রেডিয়ান পরিমাপ জন্মগাঁ,
$$\theta=\frac{AB}{4\pi}$$
চপের দৈর্ঘা = $\frac{1}{r}$ াচি গ্লাম্য

আতএব, $\omega = \frac{1}{r} \times \frac{1}{r} = \frac{1}{r} \times \frac{1}{r}$. এখন বস্তুকণার রৈখিক রেগ ω হলে, $\omega = \frac{s}{r}$: তাতএব, $\omega = \frac{v}{r}$ আথবা, $\omega = \omega \times r$ রৈখিক বেগ = কৌশিক বেগ \times ব্যাসার্থ। এটি একটি অভি প্রয়োজনীয় সমীকরণ।

[ক্যালকুলাসের সাহায্যে ঃ $s=r.\theta$; সময়ের সাপেকে ডিফারেন্সিয়েট করলে, $\frac{ds}{dt}=r.\frac{d\theta}{dt}$ অথবা, $v=r.\omega(r=3/400)$]

বস্তুকণা বরুপথে (curved path) গেলে $s=r\theta$ অথবা, $ds=rd\theta+\theta.dr$ [বরুপথে (গেলে, θ এবং r দুই-ই সময়ের সাথে পরিবর্তন করে]

অথবা, $\frac{ds}{dt} = v = r \frac{d\theta}{dt} + \theta \cdot \frac{dr}{dt}$. রৈখিক গতিবেগের এই বাস্তকে দ্বিতীয় একটি অংশ এসেছে যেটি সময় সাপেক্ষে দূরকের পরিবর্তনের হার জ্ঞাপন করছে। সূর্যের চতুর্দিকে গ্রহের উপবৃত্তীয় (elliptic) পথে গতির বেলায় কেণিক সরণের সঙ্গো সঙ্গো দূরকেরও পরিবর্তন ঘটে। বৃত্তীয় পথে গতির বেলায় দূরকের কোনো পরিবর্তন হয় না : তাই বৃত্তীয় গতির বেলায় $\frac{dr}{dt} = 0$ এবং $v = r \cdot \frac{d\theta}{dt}$.

কৌদিক বেগের অভিমূখ (Direction of angular velocity) :

বস্তুকণার কোঁণক বেগ ঘূণাক্ষের উপর নির্ভর করে বিভিন্ন হতে পারে। কৌণিক বেগের মান অপরিবর্তিত থাকলেও ঘূণাক্ষের পরিবর্তনে তা বিভিন্ন কৌণিক বেগ সৃষ্টি করবে। কাজেই কৌণিক বেগের একটি নির্দিষ্ট অভিমুখ আছে—এটা স্কেলার রাশি নয়।

কৌণিক বেগের অভিমুখ ভ্রামকের অভিমুখের পন্ধতি (প্রথমখন্ড, 6.10 অনুচ্ছেদ) অনুযায়ী পির করা হয়। বঙ্গুকণার আবর্তন বরাবর একটি ডানপাকের স্কু ঘোরালে তা যেদিকে অগ্রসর হবে সেটাই কৌণিক বেগের অভিমুখ। প্রামকের মত এটিও একটি অক্ষীয় ভেক্টর (প্রথমখন্ড, যন্ত পরিচ্ছেদ 6.10 অনুচ্ছেদ দ্রুইব্য)।

EXAMPLES D

🕦 একটি চক্রের পরিসীমা (perimeter) 220 cm। চক্রটি অনুভূমিক রান্তার ওপর দিয়ে 9 km/h বেগে গড়িয়ে যাচ্ছে। চক্রটি প্রতি সেকেন্ডে ক'বার আবর্তন করছে ?

উঃ। শর, চক্রটির কৌলিক বেগ ω । তাহলে $\upsilon=\omega.r.$ অথবা $\omega=\frac{\upsilon}{r}$.

এখন
$$2\pi r = 220$$
 ∴ $r = \frac{220}{2\pi} = 35$ cm এবং $v = 9$ km/h = $\frac{9 \times 10^5}{60 \times 60} = \frac{10^3}{4}$ cms⁻¹.

$$\therefore \omega = \frac{v}{r} - \frac{10^3}{4} \times \frac{1}{35} \text{ rads}^{-1}.$$

যদি n হয় প্রতি সেকেন্ডে আবর্তন সংখ্যা তাহলে $\omega=2\pi n$

$$\therefore n = \frac{10^3}{4 \times 35 \times 2\pi} = \frac{25}{22} \text{ revs}^{-1}.$$

② একটি ঘড়ির সেকেন্ডের কাঁটার এবং মিনিটের কাঁটার কৌণিক বেগ কত ?

উঃ। সেকেন্ডের কাঁটা 60 সেকেন্ডে একবার পূর্ণকৃত্ত ঘুরে আসে। অতএব কৌশিক বেগ $\omega = \frac{2\pi}{60}$ rads $^{-1}$

 $= 0.105 \text{ rads}^{-1} \text{ l}$

্রিলিটের কটো 60 মিনিটে একবার পূর্ণবৃত্ত ঘুরে আসে। অতএব, তার কৌনিক বেগ, $\omega=\frac{2\pi}{60\times60}$ রেভিয়ান $\omega=0.174\times10^{-2}$ rad/s l

একটি ঘড়ির মিনিটের কাঁটা ও ঘল্টার কাঁটা কতক্ষণ অন্তর পরস্পর মিলিত হয় ? ।
উঃ। ধরা থাক্ । ঘল্টা অন্তর কাঁটা দুটি পরস্পর মিলিত হয়। এখন ঘণ্টার কাঁটা একবার সম্পূর্ণ

বারে এলে 12 ঘণ্টা অভিবাহিত হয় এবং 2π কোণ আবর্তিত হয়। ফলে, ঘণ্টার কাঁটার কৌশিক বেগ $\omega = \frac{2\pi}{12} \operatorname{radh}^{-1} = \frac{\pi}{6} \operatorname{radh}^{-1}.$

আবার মিনিটের কাঁটা একবার সম্পূর্ণ ঘুরলে 1 ঘণ্টা অতিবাহিত হয় এবং 2π কোণ আবর্তিত হয়। অতএব, মিনিটের কাঁটার কৌণিক বেগ $\omega' = \frac{2\pi}{1} \operatorname{rad/h} = 2\pi \operatorname{radh}^{-1}$.

কাঁটা দুটি একবার পরস্পর মিলিত হবার 1 ঘন্টা পরে যদি আবার পরস্পর মিলিত হয় তবে ঐ সময়ে ঘণ্টার কাঁটার কোণিক সরণ $\theta = \omega \times t = \frac{\pi}{6} t \text{ rad....}(i)$

অনুরপ্রভাবে, মিনিটের কাঁটার কৌণিক সরণ θ'=ω'×t=2πt rad...(ii)

কাঁটা দটির পরপর দবার মিলিত হবার মধ্যে মিনিটের কাঁটাটি ঘণ্টার কাঁটা অপেক্ষা একপাক বেশি ঘোরে অথবা মিনিটের কাঁটার কৌণিক সরণ ঘণ্টার কাঁটার কৌণিক সরণ অপেক্ষা 2π rad বেশি হয়। সতরাং, $\theta' - \theta = 2\pi$

চাথবা
$$2\pi u = \frac{\pi t}{6} = 2\pi$$

... $\frac{11}{6} \times t = 2$

... $t = \frac{12}{11} \text{ h} = 1 \text{ h} 5 \text{ min} 27 \text{ s}$ (প্রায়) ৷

🗘 একটি বস্তুকণা 10 cm ব্যাসার্ধের একটি চক্রাকার পথে 0.3 rads-1 কৌণিক বেগ নিয়ে ঘুরছে। বড়কণার রৈথিক দুতি <mark>এবং একটি সম্পূর্ণ আবর্তন সম্পন্ন করতে কত সময় লাগে</mark> তা নির্ণয় করো।

উঃ। r=10 cm এবং ω=0.3 rads ¹। এখন, υ=ω×r. অতএব, υ=0.3×10=3 cms⁻¹। জাবার, $T \cdot \frac{2\pi}{\omega} = \frac{2 \times 3.14}{0.3} = 20.94 \text{ s.}$

🔝 একটি পাথরখন্ডকে 0.5 m দীর্ঘ একটি সূতোয় বেঁধে 2 সেকেন্ডে ৪ বার বৃত্তপথে পরিভ্রমণ করানো হচ্ছে। পাথরখন্ডের কৌণিক বেগ এবং রৈখিক দুতি কত १

উঃ। 2 সেকেন্ড সময়ে। বৃত্তের কেন্দ্রে উৎপন্ন কোণ, $\theta=2\pi\times 8=50.26$ radian। অভএব, $\omega=0$ $\frac{50.26}{2}$ – 25.13 rads⁻¹ | আবার, $v = \omega \times r = 25.13 \times 0.5 = 12.6$ ms⁻¹ |

1.4.

কৌণিক তুরণ (Angular acceleration):

বশুকণা যদি কোনো একের ৮৩দিকে স্বাধীনভাবে (freely) ঘূর্ণনে সক্ষম হয় এবং তার উপর যদি কোনো অসম টক কিয়া করে ৩বে তার কৌণিক বেগের পরিবর্তন হয়। কণাটি স্থিরাক্স্থা থেকে ক্রমবর্ধমান কৌলিক প্রেণ্ডে ঘ্রণ্ডে আরম্ভ করে। তখন বলা হয় যে বস্তুকণার একটি কৌলিক ত্বরণ উৎপল্ল হয়েছে। রৈখিক ত্বরণের সংজ্ঞান্তর্প যেমন বলা হয় তা সময়ের সাপেকে রৈখিক বেগের পরিবর্তনের হার ব্যায় তের্মান কৌণিক ত্বরণের সংজ্ঞাস্বরূপ বলা বায় বে তা সময়ের সাপেকে কৌণিক বেগের <mark>পরিবর্তনের হার ব্ঝায় (কৌ</mark>লিক বেগের মত কৌলিক হুরণও একটি অক্ষীয় ভেষ্টর)। ; সময়ে যদি বস্তুকণার কৌলিক বেণের পরিবর্তন হয় ω তবে বস্তুকণার কৌশিক স্করণ $\alpha=rac{\omega}{2}$, কৌশিক স্করণের একক রেডিয়ান/সে² (rads⁻²) ৷

রেখিক ত্বরণের ন্যায় কৌশিক ত্বরণও একটি ভেক্টর রাশি। এর অভিমুখ বন্তুকণার ঘূর্ণন অক্ষ বরাবর। বন্তুকণা যেদিকে ঘুরছে সেদিকে একটি দক্ষিণাবর্ত (right handed) স্কু-কে ঘোরালে স্কুটি যেদিকে অশ্রসর হয় কৌশিক বেগ বা ত্বরণ সেই দিকে অভিমুখী হয়।

[ক্যালকুলাস অনুযায়ী,
$$\alpha = \frac{d\omega}{dt} = \frac{d}{dt} \left(\frac{d\theta}{dt} \right) = \frac{d^2\theta}{dt^2}$$

রৈখিক ত্বণের অনুরূপ সমীকরণ: $a = \frac{v}{t}$

সূতরাং, রৈখিক গতির s, υ এবং a আবর্তগতিতে যথাক্রমে θ, υ এবং α –এর স্থান অধিকার করে। আবার, পূর্বোক্ত t অবকাশের শুরুতে বড়ুকণার কৌণিক বেগ ω_1 এবং শেষে ω_2 হলে কৌণিক বেগের পরিবর্তন $\omega=\omega_2-\omega_1$;

অতএব,
$$\alpha = \frac{\omega}{t} = \frac{\omega_2 - \omega_1}{t}$$
 অথবা, $\omega_2 = \omega_1 + \alpha.t$.

রৈখিক বেগের অনুরূপ সমীকরণ : v = u + at.

D-EXAMPLE CO

① একটি চক্র স্থিরাবস্থা হতে আবর্তন শুরু করে 40 সেকেন্ডে 300 r.p.m. বৃত্তগাড়ি সংগ্রহ করল। চক্রের কৌণিক ত্বরণ কত ? ঐ 40 সেকেন্ডে চক্রটি মোট কয়টি আবর্তন সম্পর্ক করল ?

উঃ। কৌশিক ত্বরণ
$$\alpha=\frac{\omega_2-\omega_1}{t}$$
; এখানে $\omega_1=0$ (চক্রটি প্রথমে স্থির ছিল) ; $\omega_2=\frac{300\times 2\pi^2}{60}$ = $10\pi=31.41~{\rm rads}^{-1}$; $t=40.s$ অতএব, $\alpha=\frac{31.41}{40}=$ 0.785 rads⁻² এখন, গড় কৌশিক গতিবেগ = $\frac{\omega_1+\omega_2}{2}=\frac{300}{2}=150~{\rm r.p.m.}=\frac{150}{60}=2.5~{\rm r.p.s.}$: .40 সেকেন্ডে চব্রু কর্তৃক সম্পাদিত মোট আবর্তন সংখ্যা = $2.5\times40=100$.

কৌণিক ত্বরণ ও রৈখিক ত্বরণের সম্পর্ক (Relation between angular and linear accolerations)

মনে করো, কোনো বস্তুকণা বৃত্তপথে চলতে চলতে t অবকাশে তার রৈখিক দুভি v_1 হতে পরিবর্তিত করে v_2 করল। অতএব, তার রৈখিক ত্বরণ $a=\frac{v_2-v_1}{t}$

এখন উক্ত t অবকাশে বস্তুকণার কৌণিক বেগ যদি ω_1 হতে পরিবর্তিত হয়ে ω_2 হয় তবে, $\upsilon_1=\omega_1\times r$ এবং $\upsilon_2=\omega_2\times r$ [r= বৃত্তের ব্যাসার্থ]

অতএব,
$$a = \frac{\omega_2 \times r - \omega_1 \times r}{t} = r.\frac{\omega_2 - \omega_1}{t} = r.\alpha$$
 [$\alpha =$ কৌলিক ত্বল $= \frac{\omega_2 - \omega_1}{t}$]

রৈষিক ত্বরণ = কৌলিক ত্বরণ x বৃত্তের ব্যাসার্য।

क्रानकूनात्मत्र मादात्याः ३

বস্তুকণার রৈখিক গতিবেগ এবং রৈখিক ত্বরণ যদি যথাক্রমে v এবং a হয় তবে

$$a = \frac{d\omega}{dt} = \frac{d}{dt}(\omega.r) = r\frac{d\omega}{dt} = r.\alpha$$
 [বৃশ্বগতির বেলায় r শ্ববক]

নিম্নের তিনটি সমীকরণের সাদৃশ্য লক্ষ্ণ করো $s=r\theta,\ \upsilon=r.\omega$; $a=r.\alpha$ সমীকরণগুলি মনে রাখার পক্ষে উত্ত সাদৃশ্য খুবুই সহায়ক।

DENAMELES D.

একটি মোটরগাড়ির ইঞ্জিন 210 r.p.m. কৌণিক বেগে চলতে চলতে 10 সেকেন্ডে 25 rads⁻² কৌণিক ত্বরণ লাভ করল। ঐ সময়ে ইঞ্জিন (i) কত কোণ আবর্তন করল এবং (ii) কয়বার পর্ণ আবর্তন করল নির্ণয় করো।

উঃ। এক্টেরে
$$\omega_1 = \frac{210}{60} \times 2\pi = 22 \text{ rads}^{-1} \quad \left[\pi = \frac{22}{7}\right]$$

এখন,
$$0 = \omega_1 t + \frac{1}{2} (a.t^2 = 22 \times 10 + \frac{1}{2} .25 \times 100 = 1470 \text{ rad}$$

র্টাপ্তন n সংখ্যক পূর্ণ আরর্তন সম্পন্ন করলে, $2\pi n=0$

$$\therefore n = \frac{\theta}{2\pi} = \frac{1470}{2\pi} = 234.$$

2. একটি চক্র 3 rads⁻² স্থির কৌণিক ত্বরণ নিয়ে আবর্তিত হচ্ছে। কোনো এক 4 s অবকাশে চক্র 120 rad কোণ আবর্তন করল। প্রিরাবস্থা হতে আবর্তন শুরু করলে, ঐ 4 s সময়ের পূর্বে চক্রটি কভক্ষণ যাবৎ আবর্তিত হয়েছিল ?

উঃ। কৌণিক শ্বরণ $\alpha=3$ rads *2 ; $t_1=4s$; $\theta=120$ rad ; উক্ত 4s অবকাশ শুরু হবার মৃহর্তে যদি চক্ষের কৌণিক বেগ ω_1 হয় তবে, $\theta=\omega_1 t_1+\frac{1}{2}$ $\alpha.t_1^2$ সমীকরণ হতে পাই,

$$120 = \omega_1 \times 4 + \frac{1}{2} \times 3 \times (4)^2$$
 অথবা $\omega_1 = 24 \text{ rads}^{-1}$.

কিন্তু, $\omega_1 = \omega_0 + \alpha t$ [$\omega_0 =$ প্রাথমিক কৌণিক বেগ] এখানে, $\omega_1 = 24 \text{ rads}^{-1}$; $\omega_0 = 0$; $\alpha t = 3 \text{ rads}^{-2}$.

অভএব, 24 = 0 + 3.t :. t = 8s.

1.6. কণার কৌণিক ভরবেগ (Angular momentum of a part)

ঘূর্ণন বিন্দুর সাপেক্ষে গতিশীল কণার রৈখিক ভরবেগের ভ্রামককে কণার ভরবেগের ভ্রামক (moment of momentum) অথবা কৌণিক ভরবেগ বলে।

ধর, m ভরের একটি কণা AB বক্রপথে যাচ্ছে। P বিন্দৃতে যদি কণার রৈখিক গতিবেগ p হয় তবে ঐ বিন্দৃতে কণার রৈখিক ভরবেগ p = m v; এই ভরবেগের অভিমুখ হরে P বিন্দৃতে বক্রের ম্পর্শক বরাবর p চিত্র p যে p বিন্দৃর স্থান-ভেপ্তর p হলে, p বিন্দৃর সাপেক্ষে কণার কৌণিক ভরবেগ p হ p অথবা p যা p হ p তবং p তবং p তবং p তবং আভিম্থের অন্তর্গ তবং p তবং p

সেকেরে $L = r \times p = m \text{tr} = m \text{tr}^2 + [m - \phi \text{max}]$ ্কালিক বেছা।

বস্তুর রৈখিক গতির নেলায় নল বস্তুর রৈখিক ভরবেগ এবং রৈখিক পুরণ সৃষ্টি করে। একইভাবে

কণার বৃত্তীয় গতির বেলায় ভাষক অথবা ট্রক কণার কৌণিক ভরবেগ এবং কৌণিক প্ররণ সৃষ্টি করে। বস্তুকলার গতি যদি $\tau-\tau$ তলে সীমাবন্ধ থাকে তবে কৌণিক ভরবেগ ওই তলের সমকোণে অর্থাৎ 2—অক্ষ বরাবর ক্রিয়া করে।

137

টর্ক এবং কৌণিক স্বয়প্তর সম্পর্ক (Relation between torque and angular acceleration

স্থিতিবিজ্ঞান (প্রথম খণ্ড) পরিচ্ছেদে 6.12 অন্তেশে দ্বন্দের প্রামক ব টর্কের কথা আলোচনা করা হয়েছে। বস্তুকগার উপর রৈখিক বল প্রয়োগ করলে যেমন তার একটি রৈখিক এরণ উৎপন্ন হয় বস্তুকগার উপর

দ্বন্দ্ব বা টর্ক প্রয়োগ করলে তেমনি ঘূর্ণগতির সৃষ্টি হয়ে কৌণিক ত্বরণ উৎপন্ন হয়। এ পর্যন্ত কৌণিক ত্বরণ সদ্ধন্ধ যে আলোচনা করা হয়েছে, তাতে প্রযুক্ত উর্কের পরিমাণ বা ঘূর্ণায়মান বস্তুর ভরের কোনো উল্লেখ প্রয়োজন হয়নি: বস্তুকে কণা হিসাবে ধরে নেওয়া হয়েছে। টর্ক এবং কৌণিক ত্বরণের সম্পর্ক নির্ণয় করতে গেলে এই দৃটি রাশির প্রয়োজন হবে।

কোনো অক্ষ সাপেক্ষে পাধীনভাবে ঘূর্ণনে সক্ষম কোনো বড়ুর উপর নির্দিষ্ট টর্ক প্রয়োগ করলে, বস্তুর যে কৌণিক প্রবণ সৃষ্টি হয় তা যে শুধু বস্তুর আকার এবং সাইজের উপর নির্ভর করে তা নয়, ঘূর্ণাক্ষের সাপেক্ষে বস্তুর ভর-বন্টনের (distribution of mass) উপরস্তু নির্ভর করে।

ধরো, কোনো টর্কের অধীনে একটি জড়বস্তু* AB–অক্ষকে বেশ্টন করে সমকৌণিক ত্বরণ α নিয়ে ঘুরছে [চিত্র 1.3]। আমরা এ কথা জানি যে জড়বস্তুর প্রভ্যেকটি কণার কৌণিক ত্বরণ জড়বস্তুর নিজস্ব কৌণিক ত্বরণের সমান কিছু ঘূর্ণাক্ষ হতে সব কণাগুলির দূরত্ব সমান নয় বলে সকল কণাগুলির রৈখিক ত্বরণ সমান হবে না।

এখন ঘূর্ণাক্ষ হতে m_1 কণার দূরত্ব r_1 হওয়ায়, ঐ কণার রৈখিক ত্বরণ $=r_1 \times \alpha$; অতএব ঐ কণার উপর প্রযুক্ত বল = ভব \times রৈখিক ত্বরণ $=m_1r_1\alpha$; ঘূর্ণাক্ষের সাপেক্ষে ঐ বলের প্রামক = বল \times ঘূর্ণাক্ষ হতে বস্তুকণার দূরত্ব $=m_1r_1\alpha \times r_1=m_1r_1^2$. α ; একইভাবে m_2 বিন্দুভরের বেলায় প্রযুক্ত বলের প্রামক $=m_2.r_2^2.\alpha$, ইত্যাদি।

যেহেতৃ জড়বস্তুটি m_1, m_2, m_3 প্রাভৃতি কণাগুলি দ্বারা গঠিত, সেহেত্ উপরোক্ত ভ্রামকগুলির সমষ্টি হবে সমগ্র জড়বস্তুর উপর ক্রিয়ারত দ্বন্দের ভ্রামক অথবা টর্ক। কাজেই,

$$\vec{v} \neq (\tau) = m_1 r_1^2 \cdot \alpha + m_2 \cdot r_2^2 \cdot \alpha + \dots$$

= $\alpha (m_1 r_1^2 + m_2 r_2^2 + \dots) = \alpha \Sigma m r^2 = I\alpha$

I= ঘূর্ণাক্ষ সাপেক্ষে জড়বন্তুর জাড়া–জামক $=\Sigma mr^2$ । এটা শুধু বন্তুর ভরের উপর নির্ভর করে না। ঘূর্ণাক্ষ থেকে ভরের দূরত্ব–বন্টনের উপরও নির্ভর করে।

সৃতরাং, প্রযুক্ত টক = বন্তুর জাড্য-ভ্রামক × কৌণিক ত্বরণ।

c.g.s. পর্ম্বাতিতে টর্কের একক ডাইন–সে.মি. (dyne-cm) এবং S.I. পর্ম্বাততে নিউটন–মিটার (new-ton-metre)।

^{*} জড়বস্তু বলতে এমন এক বস্তু বোঝায় যা অসংখা বস্তুকগাব সমষ্টি এই কণাগুলি এমনই যে প্রতাক জোড়া কগার পারম্পরিক দূরত্ব সর্বদা অপরিবর্গিত থাকে এবং সংসত্তি বলে প্রম্পরের প্রতি দৃতভাবে আবন্ধ থাকে।

1.8. জাড্য আমক (Moment of inertia) :

কোনো অক্ষ সাপেক্ষে কোনো জড় বস্তুর জাড্যদ্রামক বলতে ঐ বস্তুর প্রতিটি কণার ভর এবং অক্ষ থেকে তাদের দূরত্বের বর্গের গুণফলের সমষ্টি বোঝায়।

ধর, M একটি জড়বন্তু যা AB অক্ষের চতুর্দিকে স্থির কৌনিক বেগ ω নিয়ে আবর্তন করছে [চিত্র 1.3]। এই আবর্ত বা ঘূর্ণগতির দরুন বন্তু কিছু গতিশক্তির অধিকারী হবে। একে **আবর্ত গতিশক্তি** (rotational kinetic energy) বলা হয়।

ধর, জড়বর্তুটি m_1 , m_2 , m_3 ইত্যাদি ভরের অসংখ্য বন্তুকণার সমষ্টি এবং AB অক্ষ হতে তাদের দূরত্ব যথাক্রমে r_1 , r_2 , r_3 ইত্যাদি [চিত্র 1.3]। কণাগুলি জড়বন্তুর সাথে দৃঢ়ভাবে আবন্ধ বলে, তাদের প্রত্যেকের কৌলিক বেগ হবে ω ; কিন্তু ঘূর্ণাক্ষ AB থেকে তাদের দূরত্ব সমান নয় বলে তাদের রৈখিক বেগ সমান হবে না।

এখন m_1 বস্তুকণার রৈখিক বেগ $\upsilon_1=\omega.r_1$; কাজেই তার গতিশক্তি = $\frac{1}{2}\,m_1\upsilon_1^2=\frac{1}{2}\,m_1\omega^2r_1^2$.

তেমনি, m_2 বস্তুকণার রৈখিক বেগ $\upsilon_2=\omega.r_2$ এবং তার গতিশক্তি $=\frac{1}{2}\,m_2\upsilon_2^2=\frac{1}{2}\,m_2\omega^2r_2^2.$

এইভাবে আমরা প্রত্যেকটি কণার গতিশক্তি নির্ণয় করতে পারি। এখন সমগ্র জড়বস্তুর গতিশক্তি এই সকল কণার গতিশক্তির যোগফল।

অতএব, সমগ্র জড়বমুর আবর্ত গতিশক্তি =
$$\frac{1}{2} m_1 \omega^2 r_1^2 + \frac{1}{2} m_2 \omega^2 r_2^2 + \frac{1}{2} m_3 \omega^2 r_3^2 + \dots$$

$$= \frac{1}{2} \omega^2 \left[m_1 r_1^2 + m_2 r_2^2 + \dots \right]$$

$$= \frac{1}{2} \omega^2 \Sigma m r^2 = \frac{1}{2} I \omega^2 \quad [I = \Sigma m r^2]$$

I-কে বলা হয় AB অক্ষের সাপেক্ষে ঐ জড়বতুর জাড্য-শ্রামক (moment of inertia)। অতএব অক্ষথেকে জড়বন্তুর প্রত্যেকটি কণার দূরত্বের বর্গ এবং কণার ভরের গুণফলের সমষ্টি-র সমান হবে জাড্য-শ্রামক।

একথা উল্লেখযোগ্য যে বন্ধুর ভর এবং জাড্য-স্রামকের ভিতর সাদৃশ্য আছে। রৈথিক গতির বিরুদ্ধে জড়বন্ধুর জাড়্যের পরিমাপ হল ভরঃ আবার আবর্তগতির বিরুদ্ধে জাড়্যের পরিমাপ হল বন্ধুর জাড়্য-স্রামক।

• রৈখিক ও আবর্তগতিযুক্ত বন্ধুর মোট শক্তি (Total energy of a body having both translational and rotational motion)

কোন বন্ধু গড়াতে গড়াতে সম্মুখের দিকে অগ্রসর হলে ওই বন্ধুর একই সঞ্চো দু'রকমের গতি থাকে—(i) রৈখিক গতি ও (ii) আবর্ত গতি। ফলে, বন্ধু দু-ধরনের গতিশন্তির অধিকারী হয় : (i) ভরকেন্দ্রের রৈখিক গতির দর্ন রৈখিক গতিশন্তি এবং (ii) ভরকেন্দ্রের ভিতর দিয়ে অতিক্রান্ত অক্ষ সাপেক্ষে আবর্তনের দর্ন আর্বত গতিশন্তি।

যদি বস্তুর ভর = m ও ভরকেন্দ্রের রৈখিক গতিবেগ = υ হয়, তবে রৈখিক গতিশন্তি = $\frac{1}{2}m\upsilon^2$; আবার

কড়ুরা আবর্ত গতিশব্দি = $\frac{1}{2}I.\omega^2$

: মোট শাত্তি = আবর্ড গতিশত্তি + রৈখিক গতিশত্তি $= \frac{1}{2} I.\omega^2 + \frac{1}{2} m\upsilon^2 = \frac{1}{2} mk^2\omega^2 + \frac{1}{2} m\upsilon^2 = \frac{1}{2} m \left(k^2\omega^2 + \upsilon^2\right)$

[k = আলোচ্য অক্সাপেকে বন্ধুর চক্রগতির ব্যাসার্ধ (1.10 অনুচ্ছেদ দেখ)]

এখন, r ব্যাসার্ধের গোলাকার বস্তুর বেলায় $\omega^2 = \frac{\upsilon^2}{r^2}$

$$\therefore$$
 গোলীয় বন্ধুর মোট গতিশক্তি = $\frac{1}{2}m\left(\frac{k^2v^2}{r^2}+v^2\right)=\frac{1}{2}mv^2\left(\frac{k^2}{r^2}+1\right)$

□ Examples □

একটি গোল চাকতির ব্যাস 0.3 m এবং ভর 0.09 kg। চাকতিটি সমতল ভূমির ওপর দিয়ে 6 ms⁻¹ বেগে গড়াতে গড়াতে অশ্রসর হলে তার মোট শক্তি কত ?

উঃ চাকতির মোট শক্তি =
$$\frac{1}{2} mv^2 \left(\frac{k^2}{r^2} + 1 \right)$$

এখন, চাকতিটি তার তলের কেন্দ্রগত অভিলম্ব অক্ষের চতুর্দিকে ঘুরতে থাকায় তার চক্রগতির $k^2=rac{r^2}{2}$ । অতএব, চাকতির মোট গতিশত্তি

$$= \frac{1}{2} mv^2 \left(\frac{r^2}{2.r^2} + 1 \right) = \frac{3}{4} mv^2$$
$$= \frac{3}{4} \times 0.09 \times (6)^2 = 2.43 \text{ joule.}$$

② θ কোণে আনত একটি নততলের শীর্ষবিন্দু থেকে একটি গোলক-কে ছেড়ে দেওয়া হল। গোলকটি না পিছলে, কেবল গড়িয়ে নামলে তার গতিবেগ কি হবে যখন গোলকটি নততলের পাদদেশে পৌছাবে। নততলের দৈর্ঘ্য = l.

উঃ ধর, গোলকের ভর =m এবং ব্যাসার্ধ =r। মনে কর গোলকটি নততলের পাদদেশে পৌছালে তার রৈখিক বেগ $=\upsilon$ । যেহেতু গোলকটি না পিছলে কেবল গড়িয়ে নামছে, তাই তার কৌণিক বেগ $\omega=rac{\upsilon}{r}$ ।

নততলের পাদদেশে গোলকের গতিশন্তি,

K.E =
$$\frac{1}{2} I\omega^2 + \frac{1}{2} mv^2$$
 = $\frac{1}{2} \left(\frac{2}{5} mr^2\right) \omega^2 + \frac{1}{2} mv^2$

$$= \frac{1}{2} \left(\frac{2}{5} m r^2 \right) \cdot \frac{v^2}{r^2} + \frac{1}{2} m v^2 = \frac{7}{10} m v^2$$

এই গতিশন্তি নততলের শীর্ষ থেকে পাদদেশে অবতরণের জন্য গোলকের প্রিতিশন্তি হ্রাসের সমান। এখন স্থিতিশন্তি হ্রাস = mgh = m.gl sin θ.

$$\therefore \frac{7}{10} mv^2 = mgl \sin \theta$$

অথবা,
$$\upsilon = \sqrt{\frac{10}{7} g.l. \sin \theta}$$

জাড্য-ভ্রামকের ভৌত তাৎপর্য

(Physical significance of moment of inertia):

একথা উল্লেখযোগ্য যে বন্তুর রৈখিকগতি এবং আবর্তগতির ভিতর যথেষ্ট সাদৃশ্য আছে। যেমন,

(i) রৈখিক গতির বেলাতে গতিশক্তি = $\frac{1}{2} \times$ ভর $\times ($ রৈখিক গতিবেগ $)^2$

আবার আবর্তগতির বেলাতে, গতিশক্তি = $\frac{1}{2}$ × জাড্য-ভামক × (কৌণিক বেগ) 2

(ii) রৈখিক গতির বেলাতে, বন্তুর উপর F বল ক্রিয়া করে a রৈখিক ত্বরণ সৃষ্টি করলে, F=ma= ভর x রৈখিক তুরণ।

তেমনি, আবর্ত গতির রেলাতে, বস্তুর উপর t টর্ক ক্রিয়া করে a কৌণিক ত্বরণ সৃষ্টি করলে, $\tau = I.\alpha =$ জাড্য-ভামক x কৌণিক তুরণ।

(iii) রৈখিক গতির বেলাতে, বস্তুর ভরবেগ = ভর x রৈখিক গতিবেগ

তেমনি আবর্ত গতির বেলাতে, বন্তুর কৌণিক ভরবেগ = জাডা-গ্রামক x কৌণিক গতিবেগ। রৈখিকগতি এবং আবর্ত গতির উপরোক্ত তুলনামূলক আলোচনা থেকে বোঝা যায় যে, রৈখিক গতিতে বস্তর ভরের যে ভূমিকা আবর্তগতির ক্ষেত্রে বস্তুর জাড়া-ভ্রামকের সেই ভূমিকা। বন্তু ভর এবং জাড়া-ভ্রামক পরস্পরের সদশ (analogous) !

নিউটনের প্রথম গতিসূত্র থেকে আমরা জানি যে-কোনো বস্তু যদি পিথর থাকে, তাহলে তার ধর্মই হল চিরদিন স্থির থাকা এবং যদি গতিশীল হয় তবে চিরদিন সমবেগে সরলরেখায় গতি বজায় রাখা। জড়বস্ত যে অবস্থাতে আছে, বাইরে থেকে বল প্রয়োগে সেই অবস্থার পরিবর্তন করার চেন্টা করা হলে এই ধর্মের জন্য জড়বস্তু সেই চেম্টাকে বাধা দেয়। জড়বস্তুর এই ধর্মকে বলা হয় **জাড্য** (inertia)। বস্তুর ভরের গ্রাস-বৃদ্ধিতে তার জাড়োরও হাসবৃদ্ধি হয়। এই কারণে রৈখিক গতির ক্ষেত্রে জাড়া পরিমাপ করা হয় বহুর ভরের দ্বারা।

একইভাবে, আবর্ত গতির বেলাতেও জড়বস্তু তার আবর্ত গতিরেগ পরিবর্তন করার প্রয়াসকে প্রতিরোধ করার চেন্টা করে - অথবা আবর্তগতির বেলাতেও বস্তুর উপরোক্ত ধরনের জাচা প্রকাশ পায়। আবর্ত গতির ক্ষেত্রে বস্তুর এই জাড়া হল জাড়া-প্রামক মনে রাখা দরকার, জাড়া-প্রামক শ্র্য বস্তুর ভরের উপর নির্ভর করে না –ঘুর্ণাঞ্চের সাপেকে বস্তুর ভর-বন্টন এবং ঘুর্ণাক্ষের অবস্থানের উপরও নির্ভর করে।

রৈখিক গতির বেলাতে বন্ধর ভর এবং আবর্ড গতির বেলাতে বন্ধর জাডা-লামক সদশ, কিন্তু তারা সমান না। ঘ্ণাক্ষ ষাই হোক না কেন, বস্তুর ভর অপরিবার্তিত থাকে কিন্তু বিভিন্ন ঘুণাক্ষের বেলায় একই বস্তুর জাডা-স্রামক ভিন্ন হয়।

1.10 চক্রগতির ব্যাসার্ধ (Radius of gyration):

সংজ্ঞা ঃ ,কান আঞ্চর সাপেকে ,কানে জড়বস্তুর চকাতির বাসোধ বলতে ঐ এক হতে এমন मत्रह (वाचार स मत्रह करन्यत माथ रत राजनर अम भएम मत्न करान, वे भएमत मार्ग्यम বসুর এবং বিশ্বভারর হাস্তা প্রায়ক সমান হার

M ভারের কোনো জড়বন্ধু কোনো অঞ্চ সংপেকে অবর্তন করলে তার ভাও।-প্রামক I - ১mr , এখন हो तसूत इन भ तसूत आयार्व ताम्में ४५'(वा आए० यहां वा कहत याँच विकास यहां कता याप अतर हो বিন্দু ভববের যদি ঘূর্ণেক্ষ থেকে এবল নবঞ্জের রাখ্য যায় যে উত্ত ঘূর্ণাক্ষ সাপেকে ঐ বিন্দুভারের জাও। প্রাথক এবং সমধ্য জনুবস্তুর জানু: প্রমাক সমান হয়, গরে ঘণাঞ্চ থেকে বিন্দু শরের ঐ পর হকে বলা হয় চরুগাঁতর ALTER SAMER ATTER LOVE I SINT - MI

c.g.s. পশ্ধতিতে চক্রগতির ব্যাসার্ধের একক সেন্টিমিটার এবং S.l. পশ্ধতিতে মিটার। বলা বাহুল্য, ঘূর্ণাক্ষের অবস্থান অথবা অভিমুখ বদলালে অক্ষ থেকে বস্তুকণাগুলির পারস্পরিক দূরত্ব বদলাবে এবং সেই কারণে ঐ অক্ষের সাপেক্ষে চক্রগতির ব্যাসার্ধের মানও বদলাবে। তাছাড়া বস্তুর কিছু ভর বা উপাদান বস্তুর দেহের এক জায়গা থেকে অন্য জায়গায় সরিয়ে নিলে অথবা ঘূর্ণাক্ষের সাপেক্ষে বস্তুর ভর-বন্টনের পরিবর্তন ঘটালে চক্রগতির ব্যাসার্ধও পরিবর্তিত হবে; যদিও উভয় ক্ষেত্রেই বস্তুর মোট ভর অপরিবর্তিত থাকে। ফলে, জাড্য-ভ্রামক নির্ভর করে (i) বস্তুর ভর, (ii) ঘূর্ণাক্ষের অবস্থান ও অভিমুখ এবং (iii) ঘূর্ণাক্ষের সাপেক্ষে বস্তুর ভর-বন্টনের উপর কিন্তু চক্রগতির বাাসার্ধ নির্ভর করে শেষ দুটি শর্তের উপর।

কোন নির্দিষ্ট অক্ষের চত্র্দিকে বস্তুর ঘূর্ণগতির বেলায় বস্তু এরপভাবে আচরণ করে যেন তার সমগ্র ভর অক্ষ থেকে চক্রগতির ব্যাসার্ধের সমান দূরত্বে এক বিন্দুতে সন্নিবিষ্ট আছে চক্রগতির ব্যাসার্ধের এই ধারণা থেকে আমরা একটি দৃঢ়বস্তুকে একটি কণার দ্বারা প্রতিস্থাপন করতে সক্ষম হই।

বিভিন্ন ক্ষেত্রে জাড়া-ভ্রামক নির্ণয় (Calculation of moments of inertia in different cases):

(ক) সরু ও সুষম দণ্ডের দৈর্ঘ্যের মধ্যবিন্দু দিয়ে গত এবং দৈর্ঘ্যের অভিনাম ভাবে অতিক্রান্ত এক অক্ষ সাপেক্ষে ঘূর্ণায়মান দণ্ডের জাড্য-শ্রামকঃ

AB একটি সুষম দশু। দশুের দৈর্ঘ্য । এবং ভর M: দশুের দৈর্ঘ্যের মধ্যবিন্দু (O) দিয়ে এবং দৈর্ঘ্যের অভিলম্বভাবে অতিক্রান্ত অক্ষ CD. D বেড়িয়া দশুটি আবর্তন করলে দশুের জড়তা–ভ্রামক এবং চক্রগতির ব্যাসার্ধ নির্ণয় করতে হবে।

দণ্ডটি সুষম হওয়ায়, তার প্রতি একক দৈর্ঘ্যের ভর $\frac{M}{l}$; আন্দ হতে দ্বেরে dx দৈর্ঘ্যের একটি অতি ক্ষুদ্র অংশ নেওয়া হল (চিত্র 1.5)

এই ক্ষুদ্র অংশের ভর = $\frac{M}{l} \times dx$; অংশটি ক্ষুদ্র হওয়ায়, তার প্রত্যোকটি কণা (l) অক্ষ হতে সমদূরবর্তী বলে মনে করা যেতে পারে এবং এই দূরত্ব = x.

 \therefore CD অক্টের সাপেকে ঐ ক্টুদ্র অংশের জাড্য-ভ্রামক = Λ $\frac{M}{I} \times dx \times x^2$

এখন, x = 0 এবং x = 1/2 এই সীমার মধ্যে উক্ত জাডাভামকের সমাকল বা ইন্টিগ্রেশান নিলে, আমরা দন্ডের এক অর্ধের
ভাডা-ভামক পাব। অতঃপর ঐ ফলাফলের দ্বিগুণ করলে সমগ্র
দক্তের জাডা-ভামক পাওয়া যাবে।

$$l = 2 \int_{0}^{1/2} \frac{M}{l} \times dx \times x^{2} = \frac{2M}{l} \int_{0}^{1/2} x^{2} dx = \frac{2M}{l} \left[\frac{x^{3}}{3} \right]_{0}^{1/2}$$

$$\approx \frac{2M}{l} \left[\frac{(1/2)^{3}}{3} \quad 0 \right]$$

$$= \frac{2M}{l} \times \frac{l^{3}}{24} = \frac{Ml^{2}}{12}$$

ভাষার স্কুলাভির বাসিংহ $k = 5\pi$, $Mk^2 = \frac{Ml^2}{12} : k = \frac{l}{\sqrt{12}} = \frac{l}{2\sqrt{3}}$

[•] কেবলমার জয়েন্ট এন্ট্রান্স পরীক্ষার জন্য

(খ) পূর্বোক্ত দন্তের জাত্য-প্রামক, যখন ঘূর্ণাক্ষ ঐ দত্তের একপ্রান্ত দিয়ে এবং দত্তের দৈর্ঘ্যের অভিলয়ভাবে চলে গেছে।

এক্ষেত্রে ঘূর্ণাক্ষ CD দণ্ডের একপ্রান্ত, ধর, A প্রান্ত দিয়ে এবং দণ্ডের দৈর্ঘ্যের অভিলম্বভাবে গিয়েছে। দণ্ডের দৈর্ঘ্য = 1; এবং ভর = M; দণ্ডটি সুষম হওয়ায়, তার প্রতি একক দৈর্ঘ্য ভর $= \frac{M}{I}$.

পূর্বের ন্যায় অক্ষ হতে x দূরে dx দৈর্ঘ্যের একটি অতি ক্ষুদ্র অংশ নেওয়া হল (চিত্র 1.6)। ঐ ক্ষুদ্র অংশের ভর = $\frac{M}{l} \times dx$; অংশটি খুব ক্ষুদ্র হওয়ায় তার প্রত্যেকটি কণা অক্ষ থেকে সমূদরবর্তী বলে মনে করা যেতে পারে এবং এই দূরত্ব = x.

অতএব, CD অক্ষ সাপেকে ঐ ক্ষুদ্র অংশের জাড্য-শ্রামক = $\frac{M}{l} \times dx \times x^2$ । এখন, x = 0 এবং x = l এই সীমার মধ্যে উপরোত্ত জাড্য-শ্রামকের ইন্টিগ্রেশান নিলে, সমগ্র দন্তের জাড্য-শ্রামক পাওয়া যাবে। এই জাড্য-শ্রামক l হলে,

 $I = \int_0^l \frac{M}{l} \cdot x^2 dx = \frac{M}{l} \int_0^l x^2 dx = \frac{M}{l} \left[\frac{x^3}{3} \right]_0^l = \frac{M}{l} \times \frac{l^3}{3} = \frac{Ml^2}{3}$ এক্ষেত্ৰে, চক্ৰপতির ব্যাসার্থ $k = \frac{l}{\sqrt{3}}$

(গ) একটি পাতলা গোল চাকতির তলের অভিলম্বভাবে এবং চাকতির কেন্দ্রবিন্দু দিয়ে অতিক্রান্ত মুর্ণাব্দের সাপেকে চাকতির জাড্য-লামকঃ

গোল পাতলা চাকতির কেন্দ্রবিন্দু O; ঘূর্ণাক্ষ PQ ঐ কেন্দ্রবিন্দুর মধ্য দিয়ে চাকতির তলের

অভিলম্বভাবে গিয়েছে। ঐ অক্ষের সাপেক্ষে চাকতির জাড্য-শ্রামক নির্ণয় করতে হবে।

ধর, চাকতির ব্যাসার্ধ r এবং ভর M ; চাকতির ক্ষেত্রফল = πr^2 এবং প্রতি একক ক্ষেত্রফল ভর = $\frac{M}{\pi r^2}$.

এখন, অক্ষ হতে x দূরে চাকতির উপরে একটি সরু বলয় নাও (চিত্র 1.7)। ঐ বলয়ের ব্যাসার্ধ = x এবং প্রস্থ (width) = dx; এই বলয়ের ক্ষেত্রফল বলয়ের দৈর্ঘ্য এবং তার প্রস্থের গুণফলের সমান। বলয়ের ক্ষেত্রফল = 2πx.dx.

অতএব, বলয়ের ভর =
$$\frac{M}{\pi r^2} \times 2\pi . x. dx = \frac{2M}{r^2} x. dx$$
.

এই বলয় সরু হওয়ায়, এর প্রতিটি কণা PQ অক হতে সমদূরবর্তী বলে মনে করা যেতে পারে এবং এই দূরত্ব = x.

সূতরাং,
$$PQ$$
 অক সাপেকে এই বলয়ের জাডা-শ্রামক = $\frac{2M}{r^2}$ $tdx \times x^2$

য়েছে ই সমস্থ চাকভিকে অনেকগুলি এককেন্দ্রীয় বলয়ে (যাদের ব্যাসার্থ হবে 0 হতে r) ভাগ করা য়েছে পারে, সেইতে ই উপরিউন্ত বলয়ের জাডা-ভামককে x=0এবং x=rসীমার মধ্যে ইণ্ডিয়েট করলে, আমরা সমস্র চাকভির জাডা-ভামক (I) পাব। সৃত্রাং,

$$I = \int_{0}^{r} \frac{2M}{r^{2}} \cdot x dx \times x^{2} = \frac{2M}{r^{2}} \int_{0}^{r} x^{3} dx = \frac{2M}{r^{3}} \left[\frac{x^{4}}{4} \right]_{0}^{r} = \frac{2M}{r^{2}} \times \frac{r^{4}}{4} = \frac{Mr^{2}}{2}$$

এক্ষেত্রে, চক্রগতির ব্যাসার্থ $k = \frac{r}{\sqrt{2}}$.

(ঘ) একটি ফাঁপা চোঙ সীয় অক সাপেকে ঘূর্ণায়মান থাকলে তার জাড্য-আমক:

ফাঁপা চোঙের প্রস্থচ্ছেদ = $\pi(R^2 - r^2)$. [R = চোঙের বাইরের ব্যাসার্থ এবং r = ভিতরের ব্যাসার্থ]

চোঙের দৈখা l হলে, তার আয়তন = $\pi(R^2-r^2).l$

অতএব, চোঙের উপাদানের ঘনত্ব

$$=\frac{\text{ভর}}{\text{আয়তন}} = \frac{M}{\pi (R^2 - r^2)l}$$

ধর, চোঙাটি কতকগুলি পাতলা সমাক্ষীয় (co-axial) চোঙের সমন্টি এবং এরূপ একটি চোঙের ব্যাসার্ধ ও প্রস্থ যথাক্রমে x এবং dx (চিত্র 1.8)।

অতএব, ঐ পাতলা চোঙের উপরতলের ক্ষেত্রফল = $2\pi x.dx$. এবং আয়তন = $2\pi x.dx.l$.

অতএব, ঐ পাতলা চোণ্ডের ভর = ঘনত্ব
$$imes$$
 আয়তন $= \frac{M}{\pi (R^2-r^2)l} imes 2\pi x dx.l$ $= \frac{2Mx}{(R^2-r^2)}.dx.$

যেহেতু চোঙটি খুব পাতলা সেহেতু ঐ চোঙের প্রত্যেকটি কণা ঘূর্ণাক্ষ PQ থেকে সমদূরবর্তী এবং ঐ $\frac{2M}{(R^2-r^2)}x^2 \times dx - \frac{2M}{(R^2-r^2)}x^3 dx$.

এখন, x=rএবং x=R এই সীমার মধ্যে উপরিউত্ত জাড্য-শ্রামকের ইণ্টিগ্রেশান নিলে, আমরা সমগ্র চোঙের জাড্য-শ্রামক(I) পাব।

$$I = \int_{r}^{R} \frac{2M}{(R^2 - r^2)} x^3 dx = \frac{2M}{(R^2 - r^2)} \int_{r}^{M} x^3 dx$$
$$= \frac{2M}{(R^2 - r^2)} \left[\frac{x^4}{4} \right]_{r}^{R} = \frac{2M}{(R^2 - r^2)} \times \frac{(R^4 - r^4)}{4} = \frac{M}{2} (R^2 + r^2)$$

[সেঃ চোঙটি ফাঁপা না হয়ে যদি নিরেট হয় তবে জাড্য–ভামক $=\frac{1}{2}Mr^2$]

বিভিন্ন সুষম বন্ধুর ক্ষেত্রে জাড্য-ল্রামক এবং চক্রগতির ব্যাসার্ধ

Marine Samuel			
1. সুষম সরু দও	দিন্তে এবং দেশুহার দিয়ে এবং দেশুহার মতিকস্কর্ভাবে গতি	$M^{2}/12 \ [M + \%\%;]$	1, 2×3
2. ,,	ব্যালয় একগ্রান্থ দিয়ে ধর্ম ক্রমের শ্রুতিবাদ দত্ত	Ml ² /3	/ √3
3. পাতলা স্থ্য ়	the section of the section	(i) Ml2/12 (5 % 9) 56	1
আয়তানার পাত	G 438 434	24 b-45 74 35 41	.'\ 3
(rectanguiar lamina	সামাধির (সা গাং	11) Mh²/12 (Site 247.55)	1.
		The last sales of the	2 4 3
4. পাতলা কোল	(तरू रुप् रिव्ह इतः	$Mr^2/2$	
চাণ্ড	भक्तरत शक्तत	[1 = সাক্তিব ব্যসেখা]	r
	of comments sta		١
5. পাতলা স্যাস্থ্য	partner by	$\frac{1}{2}(R^2+r^2)$	
বিশংলি (ammual ring)	drifter of mo	TR = decent den sin	$\sqrt{(R^2+r^2)/2}$
	के भूगभू छुट्टा हाडू	। । । বং রের ১৬বন্সমন্থ্য	
6. विरात्तक (ज्ञान्यक	7. 1990 a m	$\frac{2}{5}Mr^2$,
[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,) - 5 টি - চি - চি প্রস্থিত বংগে স্থান	V5 "
7. শাঁপা গোলক	জ - এপজের সংগ্রহ	$2M(R^5 + r^5)$ $5(R^3 + r^3)$ $1R = 46 4 6 76 4$	$\sqrt{\frac{2(R^3-r)}{(R-r)}}$
Jan		1 . 2 . 4 24 ,	
8. ফ্রাপা ডেছ	. সহের নিজয় হাদ্র	$\frac{M}{2}(R^2+r^2)$	
(hollow cylinder)	3.1 70°165	[R 3" 2 12 17 19]	(R^2+r^2)
		7 5 to 3 90 7 mg	1 .

D EXAMPLE Q

া ৩র ও । দৈখাবিশিক একটি সৃষম দণ্ডের একপ্রাপ্ত আটকানে: আছে। দণ্ডটিকে অনু: মিক অবস্থানে থেকে আন্তে আন্তে ছেড়ে দেওয়া হল। দণ্ডটি যখন উল্লেখ অবস্থানে আসবে তথন দণ্ডটির কৌনিক বেগ কী হবে १

উচ্ছতি হন্ত্ৰৰ শাস্ত্ৰ পূৰ্ব উল্লেখনে প্ৰায়েশ কৰা কৰা, 1 নাইন সংখ্যাস্থ্ৰ

্চিত্র 1.9]। ফলে দণ্ডের অভিকর্ষীয় স্থিতিশক্তি হ্রাস পাবে। এই হ্রাস $= \frac{1}{2} \, mgl.$ এবং এটা দণ্ডের গতিশক্তির সমান হবে। দণ্ডটি তার বাং প্রান্থের ভিতর দিয়ে গত অনুভূমিক অক্ষ সাপেক্ষে আবর্তগতি করায় তাই দণ্ডের জাড্য-শ্রামক $I = ml^2/3$.

$$\therefore \frac{1}{2} |l.\omega|^2 = \frac{1}{2} mgl$$

অথবা,
$$\frac{ml^2}{3}$$
. $\omega^2 = glm$: $\omega = \sqrt{\frac{3g}{l}}$.

কৌলিক ভরবেগ অথবা ভরবেগের ভ্রামক এবং তার সংগ্রা টর্কের সম্পর্ক (Angular momentum or moments momentum and its relation with torque):

আবর্ত গতিযুক্ত কোনো জড়বস্তুর ক্ষেত্রে টক $\tau = \Sigma mr^2.\alpha = I\alpha$ [1.7 অনুচ্ছেদ দ্রুফ্টবা] এখন যদি বস্তু t অবকাশে উক্ত কৌণিক ত্বরণ α লাভ করে এবং ঐ সময়ে তার কৌণিক বেগ ω_1 হতে পরিবর্তিত হয়ে ω_2 হয়, তবে $\alpha = \frac{\omega_2 - \omega_1}{t}$

অতএব,
$$\tau = \frac{I(\omega_2 - \omega_1)}{t} = \frac{I.\omega_2 - I.\omega_1}{t} \dots (i)$$

রৈখিক গতির বেলায় আমরা দেখেছি, বস্তুর উপর প্রযুক্ত বল F নিম্নালিখিত সমীকরণ হতে পাওয়া যায়

$$F = \frac{mv_2 - mv_1}{I}$$

এই সমীকরণ দৃটি তৃলনা করলে দেখা যায় যে, রৈখিক ভরবেগ যদি $m \times \upsilon$ হয়, তবে $l \times \omega$ হবে কৌণিক ভরবেগ অথবা ভরবেগের স্রামক।

সংজ্ঞাঃ গৃণায়মান বস্তুর জাভা-প্রামক ও কৌণিক বেগের সমন্বয়ে বস্তুর যে ধর্মের উৎপত্তি হয় তাকে ঐ বস্তুর কৌশিক ভরবেগ বলে।

c.g.s. পর্মাতিতে কৌণিক ভরবেগকে ${
m gcm^2s^{-1}}$ এককে এবং S.I. পর্মাতিতে ${
m kgm^2s^{-1}}$ এককে প্রকাশ করা হয়। এর মাত্রা ${
m [ML^2T^{-1}]}$ ।

ঘূর্ণায়মান কোনো জড়বস্তুর কৌণিক ভরবেগের পরিমাপ হবে ঐ বস্তুর কৌণিক বেগ এবং ঘূর্ণাক্ষের সাপেক্ষে তার জাড়া-শ্রামকের গুণফল। কৌণিক ভরবেগ $L=I.\omega$ । কৌণিক বেগের মতো কৌণিক ভরবেগও একটি অক্ষীয় ভেষ্টর।

আবার, (1) নং সমীকরণ হতে লেখা যায়, τ.t. = 1.002 - 1.001

অর্থাং, টর্ক x সময় = ঐ সময়ে বন্ধুর কৌণিক ভরবেগের পরিবর্তন। এটাই টর্ক ও কৌণিক ভরবেগের সম্পর্ক। লক্ষণায় যে টর্ক যে– অক্ষের সাপেক্ষে ক্রিয়া করে কৌণিক ভরবেগের পরিবর্তনও সেই অক্ষের সাপেক্ষে হয়।

हिक र धवः क्रोंबक इंबर्जिश L करने, tx1=L-धन श्रीतवर्धन

অথবা $\tau = \frac{L}{L} = কেলিক ভরবেণ্ডের পবিবর্তনের হার$

ক্যালকুলাস প্রতীক অনুযায়ী $\overrightarrow{t} = \frac{\overrightarrow{dL}}{dt}$

এটাই টর্ক এবং কৌণিক ভরবেদের মধ্যে অবকল ভেক্টর সমীকরণ।

রৈখিক গতির বেলায় বল $(F) \times$ সময় (t) এই গুণফলকে বলা হয় **ঘাত** (impulse)। সাদৃশ্যহেতু টকি $(\tau) \times$ সময় (t)— এই গুণফলকে বলা যাবে **কৌণিক ঘাত** $(angular\ impulse)$ ।

কৌণিক ভরবেগ সংরক্ষণ সূত্র (Principle of conservation of angular momentum

রৈখিক গতির বেলায় যেমন রৈখিক ভরবেগ সংরক্ষণ সূত্র প্রচলিত আছে, ঠিক তেমনি আবর্ত গতির বেলাতেও কৌণিক ভরবেগ সংরক্ষণ সূত্র প্রমাণ করা যেতে পারে।

 কৃত্র ঃ বাইরে থেকে কোনো টর্ক প্রযুক্ত না হলে কোনো অক্ষ সাপেকে ঘূর্ণায়মান বন্তুর কৌণিক ভরবেগ সর্বদা সংরক্ষিত থাকে।

পূর্ব অনুচেছদে আমরা দেখেছি, $\tau.t = I\omega_2 - I\omega_1$.

এখন, টর্ক প্রযুক্ত না হলে, $\tau \times t = 0$: অতএব, $I\omega_2 = I\omega_1$ । অর্থাৎ চূড়ান্ত কৌণিক ভরবেগ সর্বদা প্রারম্ভিক কৌণিক ভরবেগের সমান। এটাই কৌণিক ভরবেগ সংরক্ষণ সূত্র।

এই সংরক্ষণ সূত্র সতা হলে কৌণিক বেগ বৃদ্ধি পাবে জাডা-ভ্রামক হ্রাস পেলে: আবার কৌণিক বেগ হ্রাস পাবে জাডা-ভ্রামক বৃদ্ধি পেলে। এটা নিম্নলিখিত কৌতূহলোদ্দীপক পরীক্ষার সাহায্যে প্রমাণ করা যায়।

পরীকাঃ দুই হাতে সমান ওজনের দুটি ডাম্বেল নিয়ে এক ব্যক্তি একটি ঘূর্ণায়মান টেবিলের উপর দাঁড়িয়ে আছে। তাকে অনুভূমিকভাবে দুই হাত প্রসারিত করতে বলা হল এবং ঐ অবস্থায় টেবিলকে কিছ বেগে ঘূরিয়ে দেওয়া হল [চিত্র 1.10]। এইবার যদি ঐ ব্যক্তি হাত দৃটি গুটিয়ে বুকের কাছে আনে, তবে দেখা যাবে যে টেবিলের কৌণিক গতিবেগ কিছু বৃদ্ধি পেয়েছে। পুনরায় দুই হাত প্রসারিত করলে টেবিলের কৌণিক বেগ হ্রাস পারে। কৌনিক বেগের হ্রাস-বৃদ্ধি টেবিলে দঙায়মান ব্যক্তিই সব চাইতে ভাল উপলব্ধি করবে। তার মনে হবে যেন কোনো রহস্যজনক বল তার উপর ক্রিয়া করে কৌণিক বেগের হ্রাসবৃদ্ধি করছে। এখন, দুই হাত প্রসারিত করলে, ঘূর্ণাক্ষের সাপেক্ষে ঐ ব্যক্তির জাড়া-ভামক বৃদ্ধি পায় এবং হাত গুটিয়ে নিলে জাড়া-স্রামক কমে যায়। কৌণিক ভরবেগ ধ্রবক বলে প্রথম ক্ষেত্রে কৌণিক বেগ হ্রাস পায় এবং দ্বিতীয় ক্ষেত্রে কৌশিক বেগ বৃন্ধি পায়।

বরফের উপর স্কেটিং করার সময় অথবা বরফের উপর নৃত্যপ্রদর্শনীর সময় উপরিউত্ত পন্ধতিতে কৌণিক বেগ বৃদ্ধি বা হ্রাস করে খেলা দেখানো হয়। জলে ডাইভ দেবার সময় কোনো ব্যক্তি যখন পাটাতন থেকে ঝাঁপ দেয় তখন ইচ্ছামতো হাত পা গৃটিয়ে বা ছড়িয়ে জলম্পর্শ করার পূর্বে শূন্যে বেশি বা কম সংখ্যক সামারসন্ট বা ডিগবাঞ্জি (somersault) খেতে পারে।

D EXAMPLES O

① একটি সৃত্যের একপ্রান্তে একটি ক্ষুদ্র বন্ধুকে বেঁধে অনুভূমিক বৃত্ত বরাবর ঘোরানো হচ্ছে। সৃত্যের অপরপ্রান্ত অনুভূমিক টেবিলের কেন্দ্রে একটি ছিদ্র দিয়ে ঝুলে আছে। বস্তুটি 40 cm ব্যাসার্ধের বৃত্তপথে সেকেন্ডে 3 বার পূর্ণ চক্র প্রদক্ষিণ করছে। এখন সৃত্যে টেনে বৃত্তপথের ব্যাসার্ধ 20 cm করলে তার ঘূর্ণনের গতিবেগ কি হবে?

উঃ। স্থাক্তমান বন্ধুর উপর বাইরে থেকে কোনো টর্ক ক্রিয়া করছে না এবং স্থান্ত অন্ধান্ত। এই প্রানুসারে, $I_1\omega_1=I_2\omega_2$ এবং $I_2=mr_1^2=m\times (40)^2$ এবং $I_2=mr_2^2=m\times (20)^2$;

ে $m \times (40)^2 \times 3 = m \times (20)^2 \times \omega_2$ অথবা, $\omega_2 = 12$ г.р.s.

② 100 g ভর এবং 10 cm ব্যাসার্ধের গোল চাকতি তার কেন্দ্রগত উল্লম্ব আক্ষর সাপেক্ষে 40 r.p.m. বেগে আবর্তন করছে। 20 g ভরের মোমের একটি টুকরোকে চাকতির ক্রেন্দ্র হতে 8 cm দুরে আন্তে ফেলা হল। চাকতির বর্তমান আবর্তবেগ কী হবে ?

উঃ। এক্ষেত্রে বাইরে থেকে টর্ক ক্রিয়া না করায় কৌগিক ভরবেগ সংরক্ষণ সূত্র প্রস্তুও হবে আন্তর্জ ভিত্রত ভেলাব পর্বে চাকতির কৌগিক ভরবেগ = 1.00

এখন, ,কল্রগত উল্লম্ব অক্ষের সাপেকে চাকতির জাড্য–স্তামক* $I=\frac{Mr^2}{2}=\frac{1}{2}\times 100\times (10)^2$ = 5×10^3 g-cm²

কার্কেই কেলিক ভরবেগ = $5 \times 10^3 \times \omega$ [40 r.p.m. – এর উপযোগী কৌলিক গতিবেগ = ω] খোনের টুকরো ফেলার পর চাকতি ও টুকরোর মোট কৌলিক ভরবেগ = $l\omega_1 + m v^2\omega_1$ = $5 \times 10^3 \times \omega_1 + 20 \times (8)^2 \times \omega_1 = 6.28 \times 10^3 \times \omega_1$ [ω_1 = নতুন কৌলিক গতিবেগ] কৌলিক ভরবেগ সংরক্ষণ সূত্রানুযায়ী, $5 \times 10^3 \times \omega = 6.28 \times 10^3 \times \omega_1$

$$\frac{\omega_1}{\omega} = \frac{500}{628} = \frac{2\pi n_1}{2\pi \times 40}$$
 [নতুন আবর্ত গতিবেগ = n_1 . r.p.m.]

অথবা,
$$n_1 = \frac{500 \times 40}{628} = 32 \text{ r.p.m.}$$
 (প্রায়)।

কিন্তুত্ব অক্ষ সাপেকে একটি চক্রের জাডাপ্রামক 4 kg-m²। চক্রটি অক্ষের চতুর্দিকে 100 r.p.m বেগে ঘুরছে। এক মিনিটে চক্রকে স্থিরাবস্থায় আনতে কত টর্কের প্রয়োজন হবে ?

উঃ চক্রের প্রাথমিক কৌণিক বেগ = $100 \text{ r.p.m} = \frac{2\pi n}{60} \text{ rads}^{-1} = \frac{2\pi \times 100}{60} = \frac{10\pi}{3} \text{ rads}^{-1}$

জামরা জানি কৌপিক স্বরণ
$$\alpha = \frac{\omega - \omega_0}{t} = \frac{0 - \frac{10\pi}{3}}{60} \text{ rads}^{-2} = -\frac{\pi}{18} \text{ rads}^{-2}$$

যে টক উপরোক্ত কৌণিক মন্দন সৃষ্টি করবে তা $\tau=I.\alpha=4 imes \frac{\pi}{18}=\frac{2\pi}{9}$ N-m.

া বিদ পৃথিবীর ব্যাসার্ধ $\frac{1}{2}$ শতাংশ কমে যায়, তবে দিনের দৈর্ঘ্য কতটা পরিবর্তন করবে ? ধরে নাও পৃথিবী একটি সুষম গোলক এবং এর জাড্য-ভামক $I=\frac{2}{5}MR^2$ যেখানে M এবং R যথাক্রমে পৃথিবীর ভর এবং ব্যাসার্ধ। [Jt. Entrance 1998]

^{*} গোলাকার চাকতির ভর M এবং ব্যাসার্থ r হলে প্রমাণ করা যায় যে কেন্দ্রগত উল্লয় অক্লের সাপেকে তার জাড়া–স্রামক $I=rac{1}{2}\,Mr^2$ (16 পৃষ্ঠার অলিকা দেখা)।

উঃ। যেতেতু বাইরে থেকে কোনো টর্ক ক্রিয়া করছে না, তাই কৌণিক ভরবেগ সংরক্ষণ সূত্রানুষায়ী প্রাথমিক কৌণিক ভরবেগ = চূড়ান্ত কৌণিক ভরবেগ অথবা, $I_1\omega_1=I_2\omega_2$

$$484, \ I_1 = \frac{2}{5}MR^2; \ \omega_1 = \frac{2\pi}{24}; \ I_2 = \frac{2M}{5} \left(\frac{995}{100}.R\right)^2; \ \omega_2 = \frac{2\pi}{T}$$

(পৃথিবীর ভর অপরিবর্তিত আছে ধরে নেওয়া হল)

অতএব,
$$\frac{2}{5}MR^2 \times \frac{2\pi}{24} = \frac{2}{5}M \times \left(\frac{99.5}{100}.R\right)^2 \times \frac{2\pi}{T}$$

অথবা,
$$\frac{R^2}{24} = \left(\frac{99.5}{100}\right)^2$$
. $R^2 \times \frac{1}{T}$ $\therefore T = \left(\frac{99.5}{100}\right)^2 \times 24 = 23.76 \text{ hour}$

্. দিনের দৈর্ঘ্যের পরিবর্তন = 24 23.76 hour = 0.24 hour = 14 min 24 s t

ব্রাকার পথে গতিঃ ব্যাসাধ্য্যী বা অভিলম্ব ভ্রণ (Motion in a circular path; Radial or normal acceleration):

কোনো কণা বৃত্তপথে সমদ্ভূতিতে পরিভ্রমণ করলে বলা হয় কণাটি সুষম বৃত্তগতিতে (uniform circular motion) পরিভ্রমণ করছে। এই ধরনের গতিতে কণার গতিবেগের অভিমুখ পরিবর্তন করে: গতিবেগের মান পরিবর্তন করে না। নিউটনের প্রথম গতিসূত্র হতে বোঝা যায় যে এক্ষেত্রে বঞ্চুকণার উপর বাইরে থেকে বল ক্রিয়া করছে। কারণ বাইরে থেকে বল ক্রিয়া না করলে গতিবেগ পরিবর্তিত হয় না। যেতেতু বৃত্তপথে পরিভ্রমণকালে বস্তুকণার গতিবেগের অনবরত পরিবর্তন হয় সেইহেতু বাহ্যিক বলও বস্তুকণার উপার সর্বদা ক্রিয়া করবে।

এই বাহিকে বলের অভিম্থ এরূপ হতে হবে যে এই বলের কিয়ায় ঘূর্ণায়মান বহুর গতিবেগের কেবলমাত্র অভিমুখের পরিবর্তন হয়: মানের কোনো পরিবর্তন না হয় এটা একমাত্র সম্ভব যদি বাহিনক বল বস্তুর গতিবেগের অভিলম্বভাবে ক্রিয়া করে। যদি বাহ্যিক বলের অভিমূখ অন্য কোনো দিকে হয় ৩বে বস্তুকণার গতির অভিমূথে ঐ বলের একটি উপাংশ পাওয়া যাবে যা বস্তুকণার দ্বতির পরিবর্তন ঘটাবে। অভএব, বলা যায় কেন্দ্রাভিমুখী এই বল সম্পূর্বরূপে বায়িত হয় বস্তুকণার গতির আভিমুখ পরিবর্তন করতে। এর কোনো অংশই বমুকণার দ্রতি পরিবর্তন করার জন। পাওয়া যায় না।

এখন বৃত্তপথের য়ে-কোনো বিন্দৃতে বস্তুকণার গতির অভিমুখ এ বিন্দুতে অভিকত বুরের স্পর্শক (tangent) বরাবর। অভএব, বাহিক বলকে বৃত্তের প্রতি বিন্দৃত্তে অভিকত স্পর্শকের অভিলম্ব দিকে ক্রিয়া করতে হবে। বৃত্তের ব্যাসার্ধ এবং স্পর্শক পরস্পারের অভিলম্ব হওয়ায়, বাহ্যিক বল সর্বদা বৃদ্তের ব্যাসার্ধ বরাবর ক্রিয়া করবে, অথবা বাহ্যিক वन प्रवीमा वृत्स्वत (कस्त्रभूषी इत्त।

দৃষ্টান্তঃ বৃত্তপথের প্রতি বিন্দৃতে বসুকণার গতির অভিমুখ ঐ বিন্দুর ম্পর্শক বরাবর হয় এর আনক দ্ব্রীয় আমাদের চোখে পড়ে। জল-কাদার রাস্তায় যখন জোরে সাইকেল চালানো হয়, এখন দেখা যায় সাইকেলের চাকা থেকে কাদার কণাগলি স্পর্শক বরাবর ছট্ট যাড়েছ। ঘ্রস্ত শানে যখন ছবি, কাঁচি প্রছতি শান দেওয়া হয় তখন আগুনের ফুলকি চাকার অপশক বরাবর ছটতে খাকে।

वस्त्रमा रायम वृद्धभाषा (भारत, अयम छात् छेलत विद्यावह तामार्भक्षाणा

বলের উদাহরণ প্রয়েই আমরা দেখাতে পাই। যথন সূতেয়ে রাধা কোনো পাত্রক ভবে সাহো ধাব হোৱাক। ध्या, अपना सर्वमा आणाल भिद्रा सुरकात भाषाद्वा तस्तत हेणत तुरहत ।तस्ती-- य तल शासा कतरह दर SETTITI मुद्रा है है। जान, है तन बात किया कहा है। इसे अप तम्हर धार देखाए से पूज সর্বার্থী বরাবর সুল যায়

বস্তুর উপর বল ক্রিয়া করলে বলের অভিমুখে বস্তুর একটি ত্বরণ উৎপন্ন হয়। সমঘূর্ণগতির ক্ষেত্রেও বস্তু সর্বদা কেন্দ্রাভিন্থী একটি ত্বরণ অন্ভব করে। এই ত্বরণকে বলা হয় ব্যাসার্যমুখী ত্বরণ বা অভিলয় তবংগ।

সংজ্ঞাঃ বৃত্তপথে সমর্দ্রততে ঘূর্ণায়মান বস্তুর উপর সর্বদা বৃত্তের কেন্দ্রাভিমুখী একটি ত্বরণ ক্রিয়া করে। একে ব্যাসার্ধমুখী ত্বরণ বা অভিলম্ব ত্বরণ বলে।

বৃত্তগতির সময় যে-কোনো মুহুর্তে বস্তুকণার দুতি ঐ মুহূর্তে বৃত্তের স্পর্শক বরাবর অভিম্থী হবে। সৃতরাং A বিন্দুতে বস্তুকণার রৈখিক বেগ AP স্পর্শক দারা এবং B বিন্দুতে BQ স্পর্শক দারা প্রকাশ করা যায়। এক্ষেত্রে $AP = BQ = \upsilon$ । এখন A বিন্দুতে বস্তুকণার সম্পূর্ণ রৈখিক বেগই AP বরাবর: AO বরাবর তার কোনো উপাংশ নাই, কারণ AO এবং AP পরস্পরের লম্ব। B বিন্দুতে বস্তুকণার রৈখিক বেগকে (যা BQ বরাবর কিয়া করছে)

A(I) অভিমুখের সমান্তরাল এবং অভিলম্ব দিকে বিভাজন করলে, প্রথমোক্ত উপাংশ হবে $BD=\upsilon\sin\theta$ এবং দ্বিতীয় উপাংশ হবে $BC=\upsilon\cos\theta$ ।

যদি () খুব ক্ষুদ্র হয়, তবে $\sin\theta=\theta$ (রেডিয়ান এককে) এবং $\cos\theta=1$.

কাজেই, A(t)-এর সমান্তরাল B(t) উপাংশ = v. $\sin \theta = v$.0 এবং A(t)-এর অভিলম্বে BC উপাংশ $= v \cos \theta = v$.

A এবং B বিন্দুদ্বয় খুব কাছাকাছি হলে দেখা যায় যে, AO অভিমুখের অভিলম্ব দিকে (অর্থাৎ AP অথবা BC) বড়ুকণার বেগের কোনো পরিবর্তন হল না, কারণ উভয় ক্ষেত্রেই তা v: কিন্তু AO অভিমুখে একটি অভিরিক্ত বেগ উৎপন্ন হল। যেহেতু এই বেগ t সময়ে উৎপন্ন হয়েছে, অতএব

বসুকণার জ্বরণ
$$a_n = \frac{\upsilon \cdot \theta}{t} = \upsilon \cdot \omega = \upsilon \times \frac{\upsilon}{r} = \frac{\upsilon^2}{r} \quad \left(\because \omega = \frac{\theta}{t} \text{ এবং } \omega = \frac{\upsilon}{r}\right)$$

যেহেতৃ বৃত্তের সর্বত্র দ্রুতির মান সমান, তাই বৃত্তের যে–কোনো বিন্দুতে বস্তুকণার ত্বরণ ঐ বিন্দুতে বেগের অভিলম্ন হবে – অর্থাৎ ত্বরণ ব্যাসার্ধ বরাবর কেন্দ্রাভিমুখী ক্রিয়া করবে।

সৃতরাং, বয়ুকণার ব্যাসাধ্ম্যী হ্বরণ $a_n=rac{v^2}{r}$.

বিষ্কগারে বৃতীয় গতির কম্পাঙ্ক n হলে, $\omega=2\pi n$: অতএব, $a_n=\frac{\upsilon^2}{r}=\omega^2\times r=4\pi^2n^2r$

ভেইরের সাহাব্যে বিকল প্রমাণ ঃ

মনে করে। কেনো বস্তুকণা চ সম্ভূতি নিয়ে r ব্যাসার্থের বৃত্তপথে পরিভ্রমণ করছে। A বিন্দ্র করি গতিবেল চিত্র –এর আভ্যুষ স্পর্শক AC বরাবর ক্ষুদ্র অবকাশ ঠা পরে B বিন্দৃতে তার গতিবেল দ্যু – এর অভিমুখ স্পর্লক BID বরাবর |চিগ্র 1.13(a)]।

বস্তুকণার দুতি বৃত্তের সর্বগ্র সমান বলে। v_A । \rightarrow $= |v_B| = |v|$ । যদিও v_A এবং v_B উভয়ের মান সমান, তথাপি তাদের অভিমুখ

ভিন্ন। এই কারণে বলা যায় যে A হতে Bবিন্দৃতে যাবার সময় বস্তুকণার গতিবেগের
পরিবর্তন হয়েছে অথবা তার একটি ত্বরণ সৃষ্টি হয়েছে।

এখন A বিন্দু হতে B বিন্দুতে যাবার সময় বস্তুকণার গতিবেগের পরিবর্তন $=\stackrel{
ightarrow}{\upsilon_B} - \stackrel{
ightarrow}{\upsilon_A}$ $\stackrel{
ightarrow}{\to} = \stackrel{
ightarrow}{\upsilon_B} + (-\stackrel{
ightarrow}{\upsilon_A})$; চিত্র 1.13(b)-এ PQ রেখাংশ মানে ও অভিমুখে $\stackrel{
ightarrow}{\upsilon_B}$ গতিবেগকে এবং QR রেখাংশ মানে এবং অভিমুখে $(-\stackrel{
ightarrow}{\upsilon_A})$ গতিবেগকে প্রকাশ করছে। QR এবং AC রেখাদ্বয় সমান্তরাল কিছু বিপরীতমুখী।

এক্ষেত্রে গতিবেগের পরিবর্তন = \overrightarrow{v}_B + $(-\overrightarrow{v}_A)$ = \overrightarrow{PR} (ভেক্টর ত্রিভূজ সূত্রানুসারে)। এখন, δ_I অবকাশ খুব ক্ষুদ্র হলে $\angle AOB$ অর্থাৎ δ_B খুব ক্ষুদ্র। অতএব, PR ঐ বৃত্তের কেন্দ্রবিন্দু O- এর অভিমুখী। অর্থাৎ বন্ধুকণার গতিবেগের পরিবর্তন অথবা ত্বরণ বৃত্তের কেন্দ্রাভিমুখী। এখন,

স্থারণ
$$a_n=rac{\imath \delta \omega$$
 সময় $a_n=rac{\imath k \omega}{\delta t}=rac{\imath k \omega}{\delta t}=rac{\imath k \omega}{\delta t}$ [কারণ $R=PQ.\delta\theta=\upsilon.\delta\theta$]

যখন δt খুব ক্ষুদ্র হয়ে প্রায় শূন্যের **কাছাকাছি হবে**, তখন $\frac{\delta \theta}{\delta t} = \frac{d \theta}{dt} = \omega$ ($\omega =$ কৌণিক গতিবেগ)

$$\therefore a_n = \omega \cdot \upsilon = \frac{\upsilon^2}{r} \quad [\because \upsilon = \omega r]$$

● অসম বৃত্তীয় গতি (Non-uniform circular motion) :

কণা যদি অসম দুতিতে বৃত্তীয় পথে পরিভ্রমণ করে, তাহলে প্রতি মুহূর্তে তার গতিবেগের মান ও অভিমুখ পরিবর্তন করে। বৃত্তীয় গতির অভিমুখের জন্য তার একটি কেন্দ্রাভিমুখী ত্বরণ—যাকে বলা হয় অভিলম্ব ত্বরণ (a_n) উৎপন্ন হয়; আবার বেগের পরিবর্তনশীল মানের (magnitude) জন্য বৃত্তের স্পর্শক বরাবর আর একটি ত্বরণ—যাকে বলা হয় স্পর্শকীয় ত্বরণ (tangential acceleration) $a_{\rm T}$ উৎপন্ন হয়। সুতরাং অসম বৃত্তীয় গতির ক্লেব্রে কোনো মুহূর্তে কণার দুটি ত্বরণ থাকে। আমরা দেখেছি যে

 $a_n = \upsilon^2/r$ এবং $a_{\rm T} = \frac{d\upsilon}{dt}$ $[\upsilon = \infty$ র্শক বরাবর কশার রৈথিক গতিবেগা]। এই দুই ত্বরণ পরস্পারের লম্ব হওয়ায় [চিত্র 1.14] কশার লম্ব ত্বরণ

$$a = \sqrt{a_n^2 + a_T^2} = \sqrt{\left(\frac{v^2}{r}\right)^2 + \left(\frac{dv}{dt}\right)^2}$$

ালখা জ্বন a যদি বৃত্তের ব্যাসার্ধের (AO) সজো heta কোণ করে,

$$\tan \theta = \left(\frac{dv}{dt}\right) / \left(\frac{v^2}{r}\right)$$

- (i) সমবন্তীয় গতির ক্ষেত্রে, dv/dt = 0: অতএব, $a = a_n = v^2/r$
- (ii) রৈখিক গতির ক্ষেত্রে, $a_n=0$; অভএব, $a=u_{\mathbb{T}}=dv/dt$

1.15. অভিকেন্দ্ৰ বল (Centripetal force):

নিউটনের গতিসূত্র থেকে আমরা জানি যে, বাইরে থেকে কোনো বল প্রযুত্ত না হলে, গতিশাল বত্তু সরলরেখায় সমবেগে গতিশীল থাকবে। সূতরাং বন্তু যখন বৃত্তাকার পথে পরিভ্রমণ করে, তখন প্রতি মৃহূর্তে তার সরলরেখায় গতিশীল হবার প্রবণতাকে প্রতিরোধ করে বৃত্তাকার পথে ঘোরাবার জন্য বন্তুর উপর একটি বল ক্রিয়া করবে। আমরা পূর্ব অনুচ্ছেদে দেখেছি, সমবৃত্তগতিতে পরিভ্রমণকালে বন্তুর ত্বরণ সর্বদা কেন্দ্রাভিমুখী হয়; অতএব তার উপর ক্রিয়াশীল বলও কেন্দ্রাভিমুখী হরে—অথবা ব্যাসার্ধ বরাবর কেন্দ্রের দিকে ক্রিয়া করবে। সমবৃত্তগতিসম্পন্ন বন্তুর উপর ক্রিয়াশীল এই কেন্দ্রাভিমুখী বলকে অভিকেন্দ্র বন্তুর ভির বে বন্তুর ভর ও অভিকেন্দ্র ত্বরণের গুণফলের সমান।

সংজ্ঞা ঃ অভিকেন্দ্র বল এমনই বল, যা সর্বদা বস্তুর গতির সাথে অভিলম্বভাবে ক্রিয়া করে এবং বস্তুকে স্থির দ্বুতিতে বৃত্তপথে পরিভ্রমণ করায়।

m ভরের বস্তুকণা r ব্যাসার্ধের বৃত্তপথে υ দুক্তি নিয়ে পরিশ্রমণ করলে, তার অভিকেন্দ্র বল $= m \cdot a_n = \frac{m \cdot \upsilon^2}{r} = \frac{m \cdot \omega^2 r^2}{r} = \frac{m(2\pi n)^2 r^2}{r} = 4\pi^2 \cdot n^2 \cdot m \cdot r$.

মনে রাখতে হবে 'অভিকেন্দ্র বল' কেন্দ্রাভিমুখী বলের একটি নামান্তর। এটা কোনো পৃথক ধরনের বল নয় যেমন 'উধ্বমুখী বল' বা 'নিম্নমুখী বল' কোনো পৃথক ধরনের বল নয়।

অবস্থার উপর নির্ভর করে বিভিন্ন উৎস যেমন, যান্ত্রিক বল, মহাকর্মজনিত বল, চৌম্বক বা বৈদ্যুতিক বল অভিকেন্দ্র বলরূপে ক্রিয়া করতে পারে। যেমন, একটি ঢিলকে সূতো দিয়ে বেঁধে আজ্বালের সাহায্যে ঘোরালে যে অভিকেন্দ্র বল ক্রিয়া করবে তা যান্ত্রিক বল, গ্রহগুলি সূর্যের চারদিকে পরিভ্রমণকালে যে অভিকেন্দ্র বল পায় তা মহাকর্মজনিত বল, পরমাণুর ইলেকট্রনগুলি নিউক্রিয়াসের (nucleus)-এর চতুর্দিকে আবর্তন করার জন্য প্রয়োজনীয় অভিকেন্দ্র বল সংগ্রহ করে ইলেকট্রন ও নিউক্রিয়াসের পারস্পরিক বৈদ্যুতিক আবর্ষণ বল থেকে।

• অপকেন্দ্র প্রতিক্রিয়া (Centrifugal reaction) :

নিউটনের তৃতীয় গতিসূত্র হতে আমরা জানি যে, প্রত্যেক ক্রিয়ারই একটি সমান ও বিপরীত প্রতিক্রিয়া থাকে। কাজেই, অভিকেন্দ্র বলেরও প্রতিক্রিয়া থাকবে যা অভিকেন্দ্র বলের বিপরীতমুখী কিন্তু সমান; এই প্রতিক্রিয়াকে বলা হয় অপকেন্দ্র প্রতিক্রিয়া (centrifugal reaction)। যেমন, সূতোয় বাঁধা ঢিলকে আঞ্চাল দিয়ে ঘোরালে আঞ্চাল কেন্দ্র-বহির্মুখী একটি টান অনুভব করে। এটাই অপকেন্দ্র প্রতিক্রিয়া। একথা স্মরণ রাখা প্রয়োজন যে অপকেন্দ্র প্রতিক্রিয়া ঢিলের উপর ক্রিয়া করে না। ঢিলের উপর একটি বল-ই ক্রিয়া করে এবং তা অভিকেন্দ্র বল। ঘোরাতে ঘোরাতে যদি কখনো সূতো ইড়ে ঘায় বা হঠাৎ সূতো ছেড়ে দেওয়া যায়, তাহলে ঢিলটি ব্যাসার্ধ বরাবর কেন্দ্র হতে দূরে ছুটে যায় না—এ মুহূর্তে বৃত্তের স্পর্শক বরাবর সরলরেখায় ছুটে যায়। কারণ সূতো ইড়ে গেলে ঢিলের উপর অভিকেন্দ্র বল ক্রিয়া করে না এবং অপকেন্দ্র প্রতিক্রিয়াও থাকে না। তখন, প্রতি মুহূর্তে বৃত্তের স্পর্শক বরাবর সরলরেখায় গতি বজায় রাখার প্রবণতার দর্ন ঢিলটি এ মুহূর্তে বৃত্তের উপর অভিকেন্দ্র বরাবর সরলরেখায় গতি বজায় রাখার প্রবণতার দর্ন ঢিলটি এ মুহূর্তে বৃত্তের উপর অভিকেন্দ্র বল বিসার ছুটে যায়। পৃথিবী চন্দ্রের উপর যে মহাক্রীয় আকর্ষণ প্রয়োগ করে, তা চন্দ্রের অভিকেন্দ্র বল হিসাবে কার্য করে চন্দ্রকে পৃথিবীর চতুর্দিকে পরিক্রমণ করায়। চন্দ্রও পৃথিবীর উপর একই মানের বলপ্রয়োগ করে তবে এই বল অভিকেন্দ্র বলের বিপরীত দিকে ক্রিয়া করে। এটা অপকেন্দ্র প্রতিক্রিয়া। চন্দ্রের এই অপকেন্দ্র প্রতিক্রিয়ার জন্য সমুদ্র-জলে জোয়ারভাটার সৃষ্টি হয়।

1.16 অপকেন্দ্র বল (Centrifugal force):

অনেক সময় উপরিউস্ত অপকেন্দ্র প্রতিক্রিয়াকে আলগাভাবে (loosely) অপকেন্দ্র বল বলে উল্লেখ করা হয়। প্রকৃতপক্ষে অপকেন্দ্র বলের উদ্ভব হয় ঘূর্ণায়মান বস্তুর জাড়্যের জন্য। **এই বল কেন্দ্র বহির্মুখী হয়ে ঘূর্ণায়মান বন্তুর উপরই ক্রিয়া করে।** অপকেন্দ্র প্রতিক্রিয়া ঘূর্ণায়মান বস্তুর উপর ক্রিয়া করে না।

নিউটনের প্রথম গতিসূত্র হতে আমরা জানি, বাইরে থেকে বলপ্রয়োগ না করলে গতিশীল বন্তু সরলরেখা বরাবর চলার চেন্টা করে। এটি বন্তুর অভিমুখী জাডা (directional inertia) বল। অভিমুখী-জাডাজনিত বলই অপকেন্দ্র বল। আবর্তগতির বেলায় বন্তুর অভিমুখী জাডাজনিত বলকে প্রতিরোধ করতে অভিকেন্দ্র বল প্রয়োগ করতে হয়। অপকেন্দ্র বল এবং অভিকেন্দ্র বল সর্বদা এক গতীয় সাম্যে (dynamical equilibrium) অবস্থান করে। সেই কারণে অভিকেন্দ্র বল এবং অপকেন্দ্র বল পরস্পরের সমান কিছু বিপরীতমুখী।

1.15 নং চিত্রে প্রদর্শিত ব্যবস্থার দ্বারা অপকেন্দ্র বল পরিমাপ করা যায়। এই ব্যবস্থায় একটি গোলক

অনুভূমিক দণ্ড PQ বরাবর চলাচল করতে পারে। গোলকটির সাথে সুতো লাগানো আছে। সুতোটি একটি কপিকলের উপর দিয়ে গিয়ে একটি অক্ষের ছিদ্রের ভিতর প্রবেশ করেছে এবং তৃলাপাত্রকে (S) ঝুলিয়ে রেখেছে। অক্ষকে কোনো ঘূর্ণায়মান টেবিলে (whiriling table) সাথে যুক্ত করে ঘোরালে, অপকেন্দ্র বলের প্রভাবে গোলকটি দণ্ডের প্রান্তের দিকে সরে যেতে চেন্টা করবে। তুলাপাত্রে উপযুক্ত পরিমাণ বাটখারা রেখে যদি গোলকটিকে স্থির রাখা যায়, তবে ঐ ওজন হতে অপকেন্দ্র বলের পরিমাপ করা যায়। টেবিলকে যাত চক্ত

অপকেন্দ্র বলের পরিমাপ করা যায়। টেবিলকে যত দুত ঘোরানো যাবে গোলকটিকে স্থির রাখতে গেলে তুলাপাত্রে তত বেশি পরিমাণ বাটখারা রাখতে হবে।

● অপকেন্দ্র বল অলীক বল (Centrifugal force is a pseudo-force):

অনেক সময় অপকেন্দ্র বলকে 'অলীক বল' (pseudo-force) বলা হয়। কারণ ঘুরন্ত নির্দেশতন্ত্রের বাইরে এর কোনো অন্তিত্ব নেই। এই বল কে প্রয়োগ করছে তা জানার উপায় নেই। সকল বাস্তব বলের ক্ষেত্রেই প্রয়োগ কর্তাকে চিহ্নিত করা যায়। বাস্তব বল সর্বদা দুটি বস্তুর পারস্পারিক ক্রিয়া-প্রতিক্রিয়ার ফলে উন্তব হয়। অভিকেন্দ্র বল বাস্তব বল কারণ এই বলের উন্তব হয় দুটি বস্তুর ক্রিয়া-প্রতিক্রিয়া জন্য। কিন্তু অপকেন্দ্র বলের উদ্ভবের পিছনে এরকম কোন ক্রিয়া-প্রতিক্রিয়া থাকে না। তাই একে 'অলীক বল' আখ্যা দেওয়া হয়।

মনে রাখতে হবে অপকেন্দ্র বল অথবা যে–কোনো অলীক বলের উৎস হল অজড়ত্বীয় অথবা ত্বরিত গতিযুক্ত (accelerated) নির্দেশতন্ত্র। স্থির নির্দেশতন্ত্রে এর কোনো অন্তিপ্ন নেই।

দর্শক নিজে প্রির থেকে যখন কোনো বস্তুকে বৃত্তপথে ঘুরতে দেখে তখন সে কেবল অভিকেন্দ্র বলের অন্তিত্ব টের পায়। ঘুরত্ত কণার সমান কৌণিক বেগে ঘুরছে এমন এক নির্দেশতন্ত্র হতে দেখলে সে বস্তুটিকে সামাাবস্থায় দেখবে। এর ব্যাখ্যাম্বরূপ সে বলবে বাস্তব অভিকেন্দ্র বলকে নিদ্ধিয় করে বস্তুকে সাম্যাবস্থায় রাখতে নিশ্চয়ই সমান ও বিপরীত কোনো বল বস্তুর উপর ক্রিয়া করছে। এটাই অপকেন্দ্র বল। এই বল আপাত্যাহ্য বলে একে অলীক বল আখ্যা দেওয়া হয়। আমরা ইতিপ্রেই একটি অলীক বলের সন্ধান প্রেছে। প্রথম খন্ডের 136 পৃষ্ঠার 5 নং বিষয়বস্তুতে দেখেছি যে উৎক্রিপ্ত বস্তুটি বায়ুতে থাকাকালীন যদি টেন স্বরণ পায় তবে বস্তুটি বান্তির হাতে না পড়ে পিছনে পড়ে। ত্বরণশীল যাণ্ডার মনে হবে সোজা উৎক্রিপ্ত

বল নিশ্চয়ই কোনো অলীক বলের প্রভাবে তার হাতে না পড়ে পিছনে পড়ল। তার নির্দেশতন্ত্র ওরগশীল অর্থাৎ অজড়াইীয় বলে এরকম মনে হল ঘূর্ণনশীল পর্যবেক্ষকের নির্দেশতন্ত্রও হুরণশীল এথবা অজড়াইীয় ফলে এক্ষেত্রেও এক অলীক অপকেন্দ্র বলের উদ্ভব হল।

যাত্রীপূর্ণ গাড়ি চলতে চলতে যদি হঠাৎ মোড় ঘোরে তবে যাত্রীরা বিপরীত দিকে একট' টান অন্তব করে। গাড়ি হল ঘুরস্ত নির্দেশতন্ত্র এবং ঐ নির্দেশতন্ত্র থেকে যাত্রীরা যে বল অন্তব করল তা অলীক বল এবং অপকেন্দ্র বল। গাড়ির পাশে অবস্থিত রাস্তা স্থির নির্দেশতন্ত্র। রাস্তায় দাঁড়ানো দর্শকের পক্ষে তা বাাখা। করার জন্য অলীক বলের প্রয়োজন হবে নাঃ সে বলবে এটা জাড়োর দর্ন হয়েছে।

প্রকৃতপক্ষে যখনই কোনো বন্তুকে বৃত্তপথে ঘোরাবার চেন্টা করা হয় অথচ প্রয়োজনীয় অভিকেন্দ্র বল সরবরাহ করা হয় না, তখনই ঐ বস্তুর উপর অপকেন্দ্র বলের ক্রিয়া বোঝা যায় এবং বণ্ণাট ব্যাসাধ বরাবর কেন্দ্র-বহির্মুখী সরে যেতে চায়।

সংজ্ঞা ঃ সমবৃত্তীয় গতিবিশিষ্ট বস্তুকণার সাথে একই কৌণিক বেগে ঘূর্ণায়মান পর্যবেক্ষক বঙ্গুকণার উপর যে-অলীক বল কেন্দ্র বহির্মুখী ব্যাসার্ধ বরাবর ক্রিয়াশীল বলে মনে করে, তাকেই অপকেন্দ্র বল বলা হয়।

্রিকথা মনে রাখা দরকার যে নিউটনের দ্বিতীয় সূত্র F=ma প্রযোজ্য হয় কেবলমাত্র সেই নির্দেশতন্ত্রে যেটি স্থির অথবা, সুষম গতিবেগ গতিশীল। যুরন্ত নির্দেশতন্ত্রে দ্বিতীয় সূত্র উক্ত আকারে (এর্থাৎ F=ma আকারে) প্রযোজ্য হবে না। ঘুরন্ত নির্দেশতন্ত্রে গতিসূত্রকে নিউটনীয় আকারে লিখতে গেলে প্রযুক্ত বলের সঙ্গো অন্য কিছু বল যেমন, অপকেন্দ্র বল, কোরিওলি বল (Corioli's force) প্রভৃতি যোগ করতে হবে। এই অতিরিক্ত বলগুলি সবই অলীক বল কারণ এরা বস্তুসমূহের পারস্পরিক ক্রিয়া প্রতিক্রিয়ার জন্য সৃষ্টি হয় না।

উদাহরণ: জলভর্তি বালতির অভিলম্ন তলে আবর্তন: তোমরা হয়তো লক্ষ করেছ যে জলভর্তি

একটি বালতিকে অভিলম্বতলে জোরে ঘোরালে, বালতিটি যখন সর্বোচ্চ বিন্দুতে উপুড় হয় তখনও বালতি থেকে জল পড়ে যায় না—জল বালতির গায়ে আটকে থাকে [চিত্র 1.16]। এক্ষেত্রে অভিকেন্দ্র বল জলের উপর প্রযুক্ত হয় না—বালতির উপর প্রযুক্ত হয়; অথচ বালতির সঙ্গো জলের ঘূর্ণন হয়। জলের ঘূর্ণনের জন্য কোনো অভিকেন্দ্র বল সরবরাহ করা হল না বলে জলের উপর অপকেন্দ্র বল ক্রিয়া করে এবং সর্বোচ্চ বিন্দুতে বালতি উপুড় হলেও অপকেন্দ্র বল (F) উধর্বমুখী ক্রিয়া করে নিম্নমুখী জলের ওজনকে কাটিয়ে দেয় (F>mg)। তাই, বালতি থেকে জল পড়ে যায় না। বালতি আন্তে আন্তে ঘোরালে, অপকেন্দ্র বল কম হয়।

অপকেন্দ্র বল জলের ওজন অপেক্ষা কম হলে (F < mg) বার্লতি থেকে জল পড়ে যায়। বার্লতিতে জল আটকে রাখতে হলে, বালতি জোরে ঘোরাতে হয়।

অপকেন্দ্র বল বহির্মুখী ক্রিয়া করার ফলে, যে সকল ঘূর্ণায়মান যন্ত্রপাতির অংশ ঐ যন্ত্রের বহিরাংশকে ঘূর্ণাক্ষের সাথে যুক্ত রাথে, তারা সর্বদা একটি টান (tension) অনুভব করে। অভিকেন্দ্র বল যথেন্ট বৃদ্ধি পেলে, এই টানের ফলে অংশগুলি ভেঙে পড়তে পারে। তাই ঘূর্ণায়মান যন্ত্রে কৌণক বেগের একটি সর্বোচ্চ সীমা বেঁধে দেওয়া হয়। ডায়নামো বা মোটর প্রভৃতির আর্মেচার, ফ্লাইবুইল এবং এই ধরনের অন্যান্য যন্ত্রপাতি—যেগুলি দুত্রগতিতে আবর্তন করে, তাদের নির্মাণের সময় এই বিষয়টির প্রতি লক্ষ রাখা হয়।

● অভিকেন্দ্র ও অপকেন্দ্র বলের পার্থক্য (Difference between centripetal and centrifugal forces):

Torces):	
্ৰা তিৰে ব্যৱ	শ্ৰপকেন্ত্ৰ-বন্
1. বছর পারশেরক বির জনত বল ১৩৪ একটি	1. নালে : ,শ্রের ইর্জের জানা ১ছ০ বল জাও
বান্ত্রব (real) বল :	একটি অলীক (pseudo) বল .
2. এর আন্তর কেবল স্থির নির্দেশতার অথবা	2. এর অস্তিত্ব করল প্রবণয়ন্ত নিদেশতক্সেং স্থির
সম্বৰ্ণত্যুক্ত জুৱণখন নিৰ্দেশ্তাপ্ত	অথবা ত্রপহীন নির্দেশতন্ত্রে এর কোনো আন্তর্
নুরপণ্ড নার্নি হছে এর কেনে। অভিন্ন কেই।	়াই
3. ব্রুগ্রের ক্ষেত্র আভাবেন্দ্র বল সর্বদা	3. বৃত্তপতির ক্ষেত্রে ১ গরেন্দ্র বল সর্বদা কেন্দ্র
কেন্দ্রা :	হতে বহিৰ্মুখী।

EXAMPLE D

একটি গাড়ির ছাদ থেকে একটি সরল দোলক ঝোলানো আছে। গাড়িটি $10~{
m ms}^{-2}$ হরণে সরলরেখায় চললে দোলকটি উল্লম্ব রেখার সঞ্চো কত কোণে আনত থাকবে ? $g=10~{
m ms}^{-2}$.

উঃ 1.17 নং চিত্র দেখ। ধর দোলকটি উল্লন্থ রেখার সংজ্ঞা () কোণে আনত আছে। হরণমূক্ত গতিশীল গাড়িকে নির্দেশতপ্র ধরে নিলে, বর্তমান নির্দেশতপ্রটি অজড়ঙ্গীয়। যলে নিউটনের গতিসূত্র প্রয়োগ করতে গেলে, একটি অলীক বলের অন্তিত্ব ধরে নিতে হবে। দোলকের পিডের উপর নিম্নলিখিত বলগুলি কিয়া করে।

(i) সুতো বরাবর টান T, (ii) পিল্ডের ভার mg নিম্নমুখী
 এবং (iii) অলীক বল ma বামদিকে। a হল গাড়ির
 সম্বাথের দিকে ত্বরণ (চিত্র 1.17(a))।

পিভটি স্থির থাকায়, $T\cos\theta=mg$ এবং $T\sin\theta-ma=0$ অথবা $T\sin\theta=ma$.

ভাগ নিজে,
$$\frac{T \sin \theta}{T \cos \theta} = \frac{ma}{mg}$$
 অথবা $\tan \theta = \frac{a}{g}$

প্রধান্যায়ী, $a = 10 \text{ ms}^{-2}$ এবং $g = 10 \text{ ms}^{-2}$. অন্তথ্য $\tan \theta = \frac{10}{10} = 1$ অথবা, $\theta = 45^\circ$ ।

তিনটি বল সম্পর্কে মনে রাখার বিষয় :

(i) অভিকেন্দ্র বল, অপকেন্দ্র প্রতিক্রিয়া এবং অপকেন্দ্র বল— এই তিনটি বলের মান সমান অর্থাৎ mω²r। 1.18 নং চিত্রে 1— অভিকেন্দ্র বল, 2— অপকেন্দ্র প্রতিক্রিয়া এবং 3— অপকেন্দ্র বল। মনে রাখতে হবে, সমান ও বিপরীতমুখী হলেও, অভিকেন্দ্র বল (1) এবং অপকেন্দ্র বল (3) ক্রিয়া-প্রতিক্রয়া বল নয় কারণ তারা একই বন্ধুর উপর

(a)

डिज 1.17

ক্রিয়া করে। ক্রিয়া-প্রতিক্রিয়া সর্বদা দৃটি ভিন্ন বন্ধুর উপর ক্রিয়া করে।

- (ii) অভিকেন্দ্র বল ঘুরস্ত বস্তুর উপর ব্যাসার্ধ বরাবর কেন্দ্রের দিকে ক্রিয়া করে। বাইরের কোনো সংস্থা (agent) বস্তুর উপর এই বল প্রয়োগ করে। কাজেই **এটি একটি বাস্তব বল।**
- (iii) অপকেন্দ্র প্রতিক্রিয়া বহিম্প সংস্থার উপর ব্যাসার্ধ বরাবর কেন্দ্র বহির্মুখী ক্রিয়া করে। এই বল অভিকেন্দ্র বলের প্রতিক্রিয়া স্বরূপ ঘূরন্ত বন্ধু কর্তৃক প্রযোজ্য হয়। **কান্দেই এটিও একটি বান্তব বল**।
- (iv) অপকেন্দ্র বল ঘুরন্ত বন্ধুর উপর ব্যাসার্ধ বরাবর কেন্দ্রবর্হিমুখী ক্রিয়া করে। একমাত্র ঘুরন্ত নির্দেশতন্ত্রে এই বলের অন্তিত্ব আছে এবং এর প্রয়োগকর্তাকে চিহ্নিত করা যায় না। তাই এই বল অলীক বল।

Q Examples 2

① একটি 0.1 kg ভরসম্পন্ন পাথরখন্তকে 0.8 m দীর্ঘ সুতোর সাহায্যে বৃত্তাকার পথে ঘোরানো হচ্ছে। পাথরখন্ডটি প্রতি সেকেন্ডে 2 বার বৃত্তপথ পূর্ণ প্রদক্ষিণ করঙ্গে, সুতোর টান কত ?

উঃ | টান = অভিকেশ্ৰ বল =
$$\frac{mv^2}{r}$$
 | $m = 0.1 \text{ kg}$; $r = 0.8 \text{ m.}$; $v = \frac{2\pi r}{t} - \frac{2 \times 3.14 \times 0.8}{\frac{1}{2}}$
∴ টান = $\frac{0.1}{0.8} \times \left(\frac{2 \times 3.14 \times 0.8}{\frac{1}{2}}\right)^2 = 12.63 \text{ N.}$

2 100 g ভরের একটি তিলকে 50 cm দীর্ঘ একটি সূতোয় বেঁধে অনুভূমিক বৃদ্ধানর পথে ঘোরানো হচ্ছে। সূতো সর্বোচ্চ 288 dyne টান সহ্য করতে সক্ষম। সূতো না ছিঁড়ে তিলকে সর্বাধিক কত বেগে ঘোরানো যেতে পারে এবং প্রতি মিনিটে সর্বাধিক কতবার পূর্ণ আবর্তন করানো যেতে পারে নির্ণয় করো।

উঃ। ধরো, ঢিলের সর্বাধিক বেগ v cms⁻¹.

বালতি থেকে জল পড়বে না ? $g = 9.8 \text{ ms}^{-2}$.

চিনটির অভিকেন্দ্র বল = $\frac{mv^2}{r} = \frac{100 \times v^2}{50} = 2 \times v^2$ dyne.

সর্বাচ্চ টান = 288 dyne. : $2v^2 = 288$ বা, $v = 12 \text{ cms}^{-1}$.

আবার, একবার পূর্ণ আবর্তনে ঢিলটি যে-দূরত্ব যায় তা = $2\pi r = 2 \times 3.14 \times 50 = 314$ cm. চিলটির সর্বাধিক বেগ = $12 \, \mathrm{cms}^{-1} = 12 \times 60 \, \mathrm{cm \ min}^{-1}$.

অঙ্এব, প্রতি মিনিটে ঢিলটির সর্বাধিক আবর্তন সংখ্যা $=\frac{\upsilon}{2\pi r}=\frac{12\times 60}{314}=2.3$: প্রতি মিনিটে ঢিলটির আবর্তন সংখ্যা =2.

ক্রি জলপূর্ণ একটি বালতির সন্পে দড়ি বেঁধে বালতিকে 1 m ব্যাসার্ধের উল্লম্ব বৃত্তপথে (vertical circle) ঘোরানো হচ্ছে। বৃত্তের সর্বোচ্চ বিন্দুতে বালতির সর্বনিম্ন দুতি কত হলে.

উঃ। সর্বাচ্চ বিন্দৃতে বালতির জলের উপর অপকেন্দ্র বল জলের ওছনের সমান হলে জল পঙ্রে $n = m \cos n$ স্থান হলে জল পঙ্রে না ধর, বালতির সর্বনিম্ন বেগ $n = m \cos n$ ভবে ভবা $n = m \cos n$

∴ $mv^2 = mg$ অথবা $v^2 = 9.8$ অথবা $v = \sqrt{9.8} = 3.13 \text{ ms}^{-1}$.

2 m ব্যাসার্থের একটি ফাঁপা চোঙ নিজ অক্ষের চতুর্দিকে উল্লম্ব তলে আবর্তন করে। েগ্রের নই মুহই খোলা। চোঙের গায়ে এক টুকরো পাথর আটকে আছে। চোঙের আয়েও গতিবের কর্মান্দ কত হলে পাথর টুকরোটি চোঙের গায়ে আটকে থাকরে; নীচে পড়ে যারে না ? চোঙের দেওয়াল এবং পাথরের ভিতর স্থিতঘর্ষণ গুণাজ্ক = 0.4; g = 9.8 ms^{-2} : চোঙ সম্পূর্ণ মন্নণ হলে কি হত ?

উঃ। ! ! । । এং চিত্রে পাথর টুকরোর (A) উপর ক্রিয়াশীল বলগুলি দেখানো ক্রিন্টে । । । পাছর টকরের ওজন : F = পাথর এবং চোন্ডের দেওয়ালের ভিতর ফ্রেন্ডেন । R - দেওয়াল কর্তৃক প্রদন্ত অভিকেন্দ্র বল অথবা অভিকন্থ । নির্মান নাম্বর্লেনেনা)। ধরো, চোন্ডের ব্যাসার্থ = r এবং সূর্বনিম্ন গতিকো । ।

ম ১০ হাও কে ৬% নাত পড়াছ না, সেহেতু $W=F=\mu_{\rm s}.R$ $\{\mu_{\rm s}=$ স্থাতমন্ত্র

এলে, প্রতিপ্রের কল
$$R=\frac{mv^2}{r}-\lfloor m=$$
 পাথর টুকরোর ভর \rfloor $\therefore W=\mu_s.R=\mu_s.\frac{mv^2}{r}$

 $2.864, mg = \mu_s m \frac{v^2}{r} \qquad \therefore v = \sqrt{\frac{gr}{\mu_s}}$

2.78% (6.) v = 2 m ; g = 9.8 ms $^{-2}$.44% $\mu_s = 0.4$;

$$^{\circ}$$
 5 3 $V = \sqrt{\frac{98 \times 2}{0.4}} = 7 \text{ ms}^{-1}$.

॥ () ইকে অর্থাং, চোও সম্পূর্ণ মসৃণ হলে ৩ = ∞; চৌও মসৃণ হলে, পাথর ট্করোকে
কেপ্রতিপ্রতিক রাখা ফারে না, কারণ চোঙের আবর্তন বেগ অসীম হওয়া সম্ভব নয়;

🔨 । ১০০ করত ত্রমণ ্য প্রথম টুকরোর ওজন ফলাফলকে প্রভাবিত করে না।

ু বাসার একটি ওভারবীক্ত আর্চের ন্যায় উল্লয়তলে বাঁকানো এবং তার ব্যাসার্থ r metre ; সর্বোচ্চ কত বেগে একটি মোটর গাড়ি ঐ ব্রীক্তের উপর দিয়ে যেতে পারবে যাতে ব্রীক্তের কর্মাবিন্দুতেও গাড়ি মাটি ছেড়ে লাকিয়ে উঠবে না ? বাঁকানো ব্রীক্তের ব্যাসাধ 5.4 m হলে, গাড়ির সর্বোচ্চ গতিবেগ কত হবে ? $g = 9.8 \text{ ms}^{-2}$

উঃ। ব্রাজের শার্যবিন্দাতে গাড়ির ওজন mg বক্ততের কেন্দ্রাভিন্ন্থী এবং আভাকত প্রভাবনা

 $m n^2$ নেজনভিম্ব বিষা করবে [চিত্র 1.20]। স্পন্টত যভক্ষণ $m n^2$ $m n^2$ ভঙ্কণ গাড়ি মাটি ছেড়ে $n n^2$ $n n^2$ ভঙ্কণ গাড়ি মাটি ছেড়ে $n n^2$ তথা প্রক্রি সার্গাচ গতিবেগ $n n^2$ $n n^2$

চিত্ৰ 1.19

ি M ভরের অসংনম্য (incompressible) তরল দ্বারা I. দৈখ্যের একটি চোণ্ডৃতি নলকে সম্পূর্ণ ভতি করে তার দুমুখ বস্ধ করা হল। নলটির একপ্রান্থকে কেন্দ্র করে ব্যাহার করে অনুভূমিক তলে ω কৌণিক বেগে ঘোরানো হলে অপর বস্ধ প্রান্থের উপর বস্প কত বল প্রয়োগ করবে ?

উঃ। তরলস্ক নলকে থোবানো হলে আমরা মনে করতে পর্নর য় নলের ভরকেন্দ্র C-তে অর্কান্ত ১ M ভরের হরল একই কেনিক রেগ (m) সহ 1/2 ব্যাসার্থের বৃত্তপথে ঘুরছে [চিত্র 1.21]। সমন্ত ঘুরস্ত তরলের জন্য বহির্ম্থী ভাগাকেন্দ্র বল ১৮। হবে M (L/2) ω^2

(N1) (12) (D≤ 1.21

· ্ব পালে L: গেছেই নলের তরল অসংনমা,

ত'ত' নলের অপর বন্ধপ্রাণ্ডে তরল যে বল প্রয়োগ করবে তা $F=rac{1}{2}\ M\omega^2\ L$.

া metre দৈর্ঘ্যের একটি স্প্রিংয়ের একপ্রান্ত দৃঢ়ভাবে আবন্ধ এবং অপর প্রাচ্চে । ৮৫ ভরের একটি বস্তু আবন্ধ। বস্তুটি মসৃণ অনুভূমিক টেবিলের উপর অবস্থিত। ক্রিং অনুভূমিক অবস্থায় আছে। বস্তুটি যদি 2.5 rads⁻¹ কৌণিক বেগে ঘোরে, তাহলে, স্প্রিংয়ের বিদ্যার্থ কৃত হবে ? স্প্রিংয়ের বসপ্তুবক 100 Nm⁻¹.

উ ঃ। নৃত্তপথের কেন্দ্রের দিকে বস্তুটির অভিকেন্দ্র বল = $\frac{mv^2}{r}$ । যদি স্পিং হের দৈর্ঘন শৃষ্ট । ১৮ ১ । তাহলে প্রিং কর্তৃক বস্তুর উপর প্রযুক্ত বল = k.l।

$$\langle |\zeta l| = |m\psi|^2 = m\omega^2 , r = m\omega^2 (l_0 + l) = m\omega^2 l_0 + m\omega^2 l.$$

এখনে ω . নতুর কৌলিক গতিবেগ, $I_0=$ চ্প্রিংয়ের স্বাভাবিক দৈখি। এবং (I_0+I) $^{(p)}$ ের স্ফর্ণনত দৈখি। সৃত্তি অন্যার বস্তুর বর্তমান কৃত্তপথের ব্যাসার্থ।

চাঙ্গ্ৰ,
$$(k - m\omega^2)l = m\omega^2 l_0$$
 : $l = \frac{m\omega^2 l_0}{k - m\omega^2}$

97.%6.4, m = 1 kg, $\omega = 2.5 \text{ rads}^{-1}$; $l_0 = 1 \text{ m}$; $k = 100 \text{ Nm}^{-1}$

$$1 \times 1 \times \frac{1 \times (2.5)^2 \times 1}{100 - (2.5)^2} = 0.067 \text{ m} = 6.7 \text{ cm}.$$

একটি ট্রাক υ সূষম বেগে R ব্যাসাধবিশিষ্ট একটি উত্তল আকারের সেই এবং একই

ব্যাসাধের অপর একটি অবতল সেতুর উপর দিয়ে যায়। দেখাও যে ট্রাকটি উত্তল সেতুর উচ্চতম বিন্দু এবং অবতল সেতুর নিম্নতম বিন্দুতে যে বল প্রয়োগ করে, তাদের অনুপাত $(gR-\upsilon^2):(gR+\upsilon^2)$ যেখানে $g=\omega$ তিকর্যক্ত হরণ।

উঃ। । 22 ন চিত্র দেখো। উত্তল সেতৃর উচ্চতম বিন্দাত উক্তির অপকেন্দ্র প্রতিবয়া — $\frac{mv^2}{R}$ কেন্দ্র হতে বৃত্তব্যা এবং ওজন m_R কেন্দ্র হাত নিয়নুখী এই দুই বল

হিলের এমখা ওওয়ার সেত্র উচ্চতম বিন্দৃতে লব্দ বল = $mg - \frac{mv^2}{R} = \frac{m}{R} (gR - v^2)$

্রির (b. - তে অবতল সেত্র **অবস্থা দেখালো হয়েছে**। সেতুর নিম্নতম বিন্তুত অপক্রেজ লাভ কর

্লা^{নি}্রেন্ড নিয়ে নিমাখী এবং ওজনও (mg) কেন্দ্র দিয়ে নিমানুখী। এই দুই বল সমন্থ ২৬০ র R

$$|e^{-\frac{R}{R}}| \ll |e^{-\frac{R}{R}}| = \frac{m}{R} (gR + v^2)$$

$$= \frac{m}{R} (gR - \upsilon^2) / \frac{m}{R} (gR + \upsilon^2) = (gR - \upsilon^2) \cdot (gR + \upsilon^2).$$

25 cm ব্যসার্ধের একটি মসৃণ অর্ধবৃত্তাকার গামলার ভিতর একটি m ভরের বস্তকণা
24 cm ব্যাসার্ধের অনুভূমিক বৃত্তপথে খুরছে। গামলার উপরের মুখ অনুভূমিক। এক গাছা

হালকা সূতো বভুটির সাথে আটকানো আছে। সূতোটি গামলার তলার একটি ছিদ্র দিয়ে বার হয়ে m ভরের অপর একটি বভুকে ঝুলিয়ে রেখেছে। ঝুলভ বভু স্থির অবস্থায় থাকলে ঘুরম্ভ বভুর গতিবেগ নির্ণয় করো [চিত্র 1.23]।

উঃ। 1.24 নং চিত্র দেখ। O হল অর্ধবৃত্তাকার গামলার ক্রেক্টাস্থা বৃত্তের ব্যাসার্ধ = PO = 25 cm। P বিন্দৃতে অবস্থিত m ভর যে বৃত্তপথে গামলার গা বরাবর ঘুরছে তার কেন্দ্রবিন্দ্

হল O'; m বন্ধুর উপর গামলার প্রতিক্রং' ব ∞ (R) গামলার ব্যাসার্ধ PO বরাবর ক্রিয়া করছে। মেহেত্ এবংই সুতো ঝুলস্ত ভর m–কে P বিন্দুর ভরের সংগ্রে আবন্ধ রেখেছে তাই ঐ সুতোর সর্বগ্র টান ≈ 1 .

P বিন্দুখিত m ভরের সাম্যাকথা বিবেচন করপৌ পাই, $R.\sin\theta = mg + T.\sin\alpha$...(i)

আবার, $(R\cos\theta + T\cos\alpha)$ বল PO বর'বর বিশা করে m ভরের আবর্তগণ্ডির জন্য প্রয়োজনীয় খাতকেপ্র বল সরবরাহ করবে। যুরস্ত ভরের গতিবেগ υ হলে, $\frac{m\upsilon^2}{24} = R\cos\theta + T\cos\alpha \dots (ii)$

বলম্ভ ভরের স্থিতাবস্থা বিবেচনা করলে পাই, T=mg (iii)

চিত্রানুয়ায়ী,
$$\sin \theta - \frac{7}{25}$$
; $\cos \theta = \frac{24}{25}$; $\sin \alpha = \frac{18}{30}$ এবং $\cos \alpha = \frac{24}{30} = \frac{4}{5}$

$$(1)$$
 নং স্থাকিরণ থেকে $R \times \frac{7}{25} = mg + mg \times \frac{3}{5}$ অথবা, $R = \frac{40}{7} \times mg$

(ji) নং সমাকলে থেকে
$$\frac{mv^2}{24} = \frac{40}{7} mg \times \frac{24}{30} + mg \times \frac{4}{5} = \frac{44}{7} mg$$
 অথবা $v^2 = \frac{24 \times 44 \times g}{7}$

$$v = \sqrt{\frac{24 \times 44 \times g}{7}} = \sqrt{\frac{24 \times 44 \times 980}{7}} = 384.5 \text{ cms}^{-1} = 3.85 \text{ ms}^{-1}.$$

9.8 m ব্যাসার্বের একটি অর্থগোলাঞ্চি পাত্র নিজ কেন্দ্রগামী অক্ষের চারিলিকে w
কোপক বেগে ঘুরছে। পাত্রটির মসৃপ অভ্যন্তরে 4g ভরের একটি কণা না হড়কে একই বেগে

পাত্রের সন্ধো ঘুরছে। কণার সন্ধো যুব্ব পাত্রের ব্যাসার্থ অক্ষের সন্ধো 60 কোণ করলে পাত্রের কৌণিক গভিবেগ নির্ণয় করো।

উঃ। 1 25 নং চিত্রে ব্যবস্থা দেখানো হয়েছে। m ভবের কণা পারের অভান্তরে A বিন্দৃতে আছে। m ভবের উপর পারের অভিলম্ব প্রতিক্রিয়া R ব্যাসার্থ AO ব্যাবর ক্রিয়া করছে। R-এর উপাংশ (R vin 0) ভরের হাণ্ডের ভানা প্রয়োজনীয় অভিকেন্দ্র বল সরবরাই

করে অপর উপাংশ $R\cos\theta$ ভরের গুজনকে প্রতিমিত করে। অতএব, $R\sin\theta = m E\omega^2/(r-r)$ র বুভিস্থেরে বাসেগি) এবং $R\cos\theta = mg$

$$\therefore \tan \theta = \frac{r.\omega^2}{g}$$
 অথবা $\omega = \sqrt{\frac{g \tan \theta}{r}}$

ভাবার,
$$r = OA.\sin\theta = R\sin\theta$$
 ৷ অতএব $\omega = \sqrt{\frac{g}{R.\cos\theta}} = \sqrt{\frac{9.8}{9.8}\cos 60} = \sqrt{2}$ rads⁴.

া ি লেগের একটি সরু দন্ডের একপ্রান্ত দৃঢ়ভাবে আবন্ধ। দণ্ডটি থিরে কেলিব বৈদ ω নিয়ে অন ভূমিক তলে আবর্ডন করতে পারে। দণ্ডের মুন্ত প্রান্তে থেকে। দৈর্ঘার একটি স্টোর সাখায়ে। π ভরের একটি বযু ঝুলানো আছে। সুতো উল্লেখ্র সঞ্জো θ কোণ করলে দণ্ডের কৌণক বেগ নির্ণয় করো।

উঃ 1.26 নং চিত্রে সমগ্র ব্যবস্থা দেখানো হয়েছে। দণ্ড A প্রান্তে আবন্ধ এবং B প্রান্ত থেকে m

ধর, দণ্ডের আবর্তনের কৌণিক বেগ ω । চিত্র থেকে বোঝা যায় m ভরটি $(l+l\sin\theta)$ ব্যাসার্ধের অনুভূমিক বৃত্তপথে ঘূরছে। ভরটির কেন্দ্রাভিমুখী ত্বরণ = $\omega^2(l+l\sin\theta)$ । ভরটির উপর ক্রিয়ারত বল ঃ

(1) সূতো বরাবর টান T এবং (ii) ভরের ওজন mg। টান T-কে ব্যাসার্ধ বরাবর এবং ব্যাসার্ধের অভিলম্ব বরাবর বিভাজন করলে পাই

$$T \sin \theta = n\omega^2 l (1 + \sin \theta)$$

এবং $T \cos \theta = mg$
ভাগ দিলে,

$$\tan \theta = \frac{m\omega^2 l(1+\sin \theta)}{mg} = \frac{\omega^2 l(1+\sin \theta)}{g}$$

$$\omega = \sqrt{\frac{g \tan \theta}{l(1 + \sin \theta)}}$$

অভিকেন্দ্র বলের কয়েকটি দৃষ্টান্ত (Some illustrations of centripetal force):

(ক) যখন একই লেভেলে দুই রেলের পাটির উপর দিয়ে ট্রেন বাঁক ঘুরতে চেম্টা করে তখন ট্রেনের খাঁজ (rim) এবং পাটির ভিতর যে-বল ক্রিয়া করে তাই ট্রেনকে প্রয়োজনীয় অভিকেন্দ্র বল সরবরাহ করে। পাটি য়ে অভিলম্ব প্রতিক্রিয়া (normal reaction) সৃষ্টি করে তা সম্পূর্ণভাবে ট্রেনের ওজনকে কাটাতে ব্যয়িত হয়। এতে পাটি ও চাকার ভিতর প্রচণ্ড ঘর্ষণের (grinding) উৎপত্তি হয়ে উভয়েরই অনাবশ্যক ক্ষমক্ষতি হয়। এছাড়া ঘর্ষণের দর্ন পাটি পরস্পর হতে সরে গিয়ে ট্রেন লাইনচ্যুত হতেও পারে। এই সকল দুর্ঘটনা রোধ করার জন্য বাঁকের মুখে ভিতরের পাটি অপেক্ষা বাইরের পাটিকে খানিকটা উচু লেভেলে রাখা হয়। একে রেললাইনের 'ব্যাংকিং' বলে। ঐ জায়গায় অনুভূমিক রেখার সাথে পাটিদ্বয় যে কোণ উৎপন্ন করে গ্রেকে 'ব্যাংকিং কোণ' (angle of banking) বলে।

- অনুভূমিক বৃক্তপথে ট্রেনের গতি (Motion of a train round a horizontal circular track) :
- (i) উল্টে না পড়ার শর্ত (Condition of no overturning) :

ধরো, একটি ট্রেন (বা মোটরগাড়ি) r ব্যাসার্ধের অনুর্ভূমক বৃত্তপথে ও গতিবেগে যাচছে। ট্রেনটি বাঁদিকে বাঁক নেবে। ট্রেনের A এবং B চাকায় অভিলম্ব প্রতিক্রিয়া R_1 এবং R_2 ; F_1 এবং F_2 হল ঐ দুই চাকায় ঘর্ষণবল [চিত্র 1.27]। অনুভূমিক বৃত্তপথে গতির ক্ষেত্রে ঘর্ষণবল গাড়ির প্রয়োজনীয় অভিকেন্দ্র বল সরবরাহ করে এবং অভিলম্ব প্রতিক্রিয়া ট্রেনের ওজনকে কাটিয়ে দেয়। অর্থাৎ,

$$F_1 + F_2 = \frac{mv^2}{r}$$
 and $R_1 + R_2 = mg$.

 $F_1 + F_2 = \frac{m}{r}$ এবং $R_1 + R_2 = mg$. মনে করো, G হল ট্রিনের ভারকেন্দ্র। ভারকেন্দ্র

চাকা দৃটির ঠিক মানাখানে থাকরে। ভূমি হতে G বিন্দুর উচ্চতা h এবং চাকা দৃটির পারস্পরিক দৃরত্ব = 21। ট্রেনের উপ্টেনা পড়ার শর্ভ হল ঃ G বিন্দু সাপেক্ষে উত্ত বলগুলির শ্রামকের সমষ্টি শূন্য হবে। G বিন্দুর সাপেক্ষে বলগুলির শ্রামক নিলে,

$$(F_1 + F_2)h + R_1x - R_2x = 0$$

উপরিউক্ত ভিনটি সমীকরণ হতে পাই,
$$R_2=\frac{1}{2}m\left(g+\frac{\upsilon^2h}{x.r}\right)$$
 এবং $R_1=\frac{1}{2}m\left(g-\frac{\upsilon^2h}{x.r}\right)$

 R_2 পজিচিভ ২৬য়য়. তা কখনও শূন্য হতে পারে নাঃ কিছু গতিবেগ v বৃদ্ধি পেলে R_1 হাস পায়। যখন $v^2=rac{r}{h}$ তখন R_1 শূন্য হয় অর্থাৎ Λ চাকার সাথে ভূমির কোনো সংস্পর্শ থাকে না। v^2 - এর মান আর একট রশি তলেই গাড়ি উল্টে পড়ে। কড়েছই, গাড়ি না উল্টে সর্বাপেকা বেশি য়ে গতিবেগে

$$t$$
 and the second very are so $v_{max} = \sqrt{\frac{t}{h}} \frac{r}{h}$

(ii) হড়কে না যাবার শর্ত (Condition for no skidding) আমরা দেখেছি, $R_1 + R_2 = mg$ (i)

and with the standard experience in the $F_1 = \mu R_1$ and $F_2 = \mu R_2$

$$I_1 + I = \frac{mv^2}{I} \approx e^{i\theta}, \ \mu(R_1 + R_2) = \frac{mv^2}{I}$$
 (11)

(i) এবং (ii) সমীকরণ হতে পাই,
$$\mu mg = \frac{m\upsilon^2}{r}$$
 অথবা, $\upsilon^2 = \mu.r.g$

অতএব, না হড়কে যে সর্বোচ্চ গতিবেগে গাড়ি r ব্যাসার্ধের বৃত্তপথে ঘুরতে পারবে তা $\upsilon_{max} = \sqrt{\mu rg.}$

• ব্যাংকিং যুক্ত বৃত্তপথে ট্রেনের গতি (Motion of a train round a banked track) :

রেল লাইনে ব্যাংকিং থাকলে অথবা ভিতরের পাটি অপেক্ষা বাইরের পাটি থানিকটা উঁচু লেভেলে থাকলে, লাইনের প্রতিক্রিয়া বল R পাটিদ্বয়ের সংযোগ রেখার অর্থাৎ AB রেখার অভিলম্বভাবে ক্রিয়া করবে এবং উল্লম্ব রেখার সাথে ব্যাংকিং কোণে বা θ কোণে আনত থাকবে [চিত্র 1.28]। এই প্রতিক্রিয়া বলকে অনুভূমিক এবং উল্লম্ব দিকে বিভাজন ক্রলে, অনুভূমিক উপাংশ ট্রেনকে বাঁক নেবার জন্য প্রয়োজনীয়

অভিকেন্দ্র বল যোগাবে। এতে চাকার খাঁজের সাথে পাটির অনাবশ্যক ঘর্ষণ হবে না এবং ক্ষয়ক্ষতিও হবে না। এখন প্রতিক্রিয়া বলের উপ্লেম্ব উপাংশ = $R\cos\theta$ এবং অনুভূমিক উপাংশ = $R\sin\theta$ ।

প্রথমটি ট্রেনের ওজনকে নিষ্ক্রিয় করে এবং দ্বিতীয়টি ট্রেনকে অভিকেন্দ্র বল যোগায়। ট্রেনের দ্রুতি υ এবং বাঁকের ব্যাসার্ধ r হলে $R\sin\theta=\frac{m\upsilon^2}{r\cdot g}$ এবং $R.\cos\theta=mg$; ভাগ দিলে পাই, $\tan\theta=\frac{\upsilon^2}{r\cdot g}$

আবার লাইনদ্বয়ের পারস্পরিক দূরত্ব x (অর্থাৎ BC = x)

এবং উচ্চতার প্রভেদ h হলে, $\tan \theta = \frac{h}{x}$

$$\therefore \frac{h}{x} = \frac{v^2}{r \cdot g} \ \, \blacktriangleleft \uparrow, \ \, h = \frac{v^2 \cdot x}{r \cdot g}$$

এ থেকে বোঝা যায়, লাইনের ব্যাঙ্কিং বা h-এর মান (i) ট্রেনের দ্বুতি (v) এবং (ii) বাঁকের ব্যাসার্ধের (r) উপর নির্ভর করে। সুতরাং রেললাইনের যথোপযুক্ত ব্যাংকিং একটি নির্দিষ্ট গতিবেগের দ্বারা নির্ধারিত হয়। গতিবেগ তার কম বা বেশি হলে, পার্শ্বচাপ পড়বে এবং চাকার ক্ষয়ক্ষতি হবে।

মোটরগাড়ির বাঁক নেবার সময়ও অনুরূপ ঘটনা ঘটে। রাস্তা সমতল হলে, বাঁকের মূখে টায়ার এবং রাস্তার ভিতর ঘর্ষণবল প্রয়োজনীয় অভিকেন্দ্র বল যোগায়। রাস্তা পিচ্ছিল হলে—অথবা যথেন্ট ঘর্ষণ উৎপশ্ল না হলে, দুতবেগে বাঁক নেবার সময় গাড়ি কাত হয়ে পড়তে পারে। এইজন্য বাঁকের মুখেও রাস্তায় ব্যাংকিং ব্যবস্থা থাকে।

. Example D

একটি ট্রেন যখন 36 kmh⁻¹ বেগে চলছে তখন রেল লাইনের বাঁকের মুখের বক্ততা-ব্যাসার্থ 300 m; পাটি দুটির পারস্পরিক দৃরত্ব 90 cm হলে, যথোপযুক্ত ব্যাংকিং এর জন্য ভিতরের পাটি অপেক্ষা বাইরের পাটি কতটা উঁচুতে থাকবে?

উঃ। ঐনের বৃহ্চি
$$\upsilon=36\,\mathrm{kmh}^{-1}=\frac{36\times1000}{60\times60}=10\,\mathrm{ms}^{-1}$$
, লাইনের বক্ততা -ব্যাসার্থ $r=300\,\mathrm{ms}$

$$\theta$$
 ভূপমুন্ত বাংগ্ৰিং কোল হয়, তবে $\tan\theta=\frac{v^2}{r,g}=\frac{100}{300\times9.8}=\frac{1}{3\times9.8}$

আন্তন, নুই পশ্চির উচ্চতার প্রভেদ
$$h$$
 metre ইবলৈ, $\frac{h}{t} = \tan \theta$

$$\approx 4^{\circ}$$
, $\frac{h}{10^{\circ}} = \frac{1}{3.98} \approx h = \frac{0.9}{3.98} = 0.0306 \text{ m} = 3.06 \text{ cm}$.

● বক্লপথে সাইকেলের গতি (Motion of a cycle in a curved path):

যারা সাইকেল চালাতে জানে তারা লক্ষ করেছে যে বাঁক নিতে গেলে আরোহীকে সাইকেলসহ ভিতরের

দিকে— অর্থাং বাঁকের বৃত্তাকার পথের কেন্দ্রাভিমুখী কাত হয়ে বাঁক নিতে হয়: খাড়াভাবে দুতবেগে বাঁক নিতে গেলে সাইকেল উপ্টে যাবার সম্ভাবনা থাকে।

সাইকেলসহ আরোহী রাম্ভার উপর আনতভাবে চাপ দিলে রাম্ভার প্রতিক্রিয়া বিপরীত দিকে ক্রিয়া করে এবং ঐ প্রতিক্রিয়ার অনুভূমিক উপাংশ আরোহীকে বাঁক নেবার জনা প্রয়োজনীয় অভিকেন্দ্র বল সরবরাহ করে। ভূমির প্রতিক্রিয়া বল R হলে, তার অনুভূমিক উপাংশ = R. cos θ এবং উল্লম্ব উপাংশ = R. sin θ [চিত্র 1.29]।

জতএব,
$$R. \cos \theta = \frac{mv^2}{r}$$
 এবং $R. \sin \theta =$

m.g. $\therefore \tan \theta = \frac{r.g}{v^2}$

অতএব, সাইকেল আরোহী u বেগে r ব্যাসার্ধের বাঁক নিতে গেলে তাকে অনুভূমিক রান্তার সাথে যে কোণে আনত হতে হবে তা উত্ত সমীকরণ হতে হিসাব করা যাবে।

ান্তঃ সমাওলাভুমিরে সাইকেল কান্ত হলে গোরাব সময়, পিছলে পড়াব সম্ভাবনা। কিন্তু দাকা এবং মাট্রিব নিন্তর ঘূর্যনা স্থিপোকার করে সর্বপ্রকার রোশ কান্ত হওলের মর্থ r-4র সর্বনি মানের রোশয় R তেও $R=\mu$ m g হবে আরিও ,বাশ কান্ত হলের মর্বনিম মানের রোশয় R তেও $R=\mu$ m g হবে আরিও ,বাশ কান্ত ইলে, সাইকেল পিছলে মানের করেনই পিছলে না পড়ার ভাল, $\frac{n-2}{n_{min}}$ μ m g σ , $\frac{n}{n_{min}}$ $\frac{n}{\mu}$ $\frac{n}{\mu}$

UExames II

ি সমতল রাস্তায় $12 \, \mathrm{kmh^{-1}}$ বেগে চলতে চলতে জনৈক সাইকেল আরোহী $100 \, \mathrm{cm}$ ব্যাসার্ধের বাঁক নিতে চেকী করলে তাকে অনুভূমিক রাস্তার সাথে কত কোণে আনত হতে হবে ? $g=9.8 \, \mathrm{ms^{-2}}$.

উঃ। সাইকেল আরোহীর বেগ (v) = $\frac{12 \times 1000}{60 \times 60} = \frac{10}{3}$ ms $^{-1}$. ব্যাকের ব্যাসার্ভ (r) = $100 \, \mathrm{cm}$ ।

m ; লিখেই, কোলে
$$\theta$$
 হলে, $\tan \theta = \frac{r \cdot g}{v^2} = \frac{1 \times 9.8 \times 9}{100} = 0.882$ $\therefore \theta = 43^{\circ}12^{\circ}$ (প্রায়)।

2 সমতলভূমিতে 3 ms $^{-1}$ বেগে চলতে চলতে একজন সাইকেল আরোহা বাঁদিকে মে'ড় ঘুরল। রাস্তা ও চাকার ঘর্ষণগুণাখ্ক 0.3 হলে, কত কম ব্যাসার্গের বৃত্তপথে 9^{-1} ভূ শার্গে ? $g=9.8~{
m ms}^{-2}$.

উঃ ি
$$t_{m,n} = \frac{v^2}{\mu g}$$
: এখন $v = 3 \text{ ms}^{-1}$; $g = 9.8 \text{ ms}^{-2}$ এবং $\mu = 0.3$

$$\therefore r_{m,n} = \frac{(3)^2}{(0.3 \times 9.8)} = 3.06 \text{ m} (202)$$

🚯 একটি অনুভূমিক ঘূর্ণায়মান টেবিল তার কেন্দ্রগত উল্লম্ব অক্লের সাপেকে প্রতি মিনিট 120 বার আবর্তন করছে। টেবিলের কেন্দ্র থেকে সর্বাধিক কন্ত দূরে একটি । । বার থেতে পারে যাতে টেবিলের সাপেকে বস্তুটির কোন গতি না থাকে? বহু এবং টেক্তর মধ্যে ঘর্ষণগণাঞ্চ 0.8।

উঃ। ্রতিবলের ঘর্ণনের জনা বস্তুটি বহির্ম্বা অপকেন্দ্র বল অনভব করে হটে ১০০ ১০০ ১ ব িত্ব ঘর্ষণবল একে কাষ্য দেৱে। কেন্দ্র হতে সর্বাধিক দ্রত্ত্বে অপকেন্দ্র বল চন্দ্রণস্ক ব সহায় একু বভূটির গতি থাকরে না। যদি r সর্বাধিক দূরত্ব হয় এবং তথন ট্রেনিলের গতিলে ।। হয় ও,

Now, the definition
$$=\frac{mv^2}{r}=m\omega^2.r-\frac{4\pi^2m.r.}{T^2}$$

এখন, ঘ্রণবেল = μ x 'অভিলম্ন প্রতিক্রিয়া = μm.g. অতএব, বুল² п.г. = μm.g.

প্রথমে,
$$r = \frac{\mu g \cdot T^2}{4\pi^2} = \frac{0.8 \times 980 \times \left(\frac{1}{2}\right)^2}{4 \times (3.14)^2} = 4.96 \text{ cm. (প্রায়)}$$

একটি ঘূর্ণায়মান গ্রামোফোনের চাকতির ঘূর্ণাক্ষ থেকে 7 cm দুরে একটি ক্ষল মুদ্রা রাখা আছে। শূন্য থেকে ঘূর্ণনের হার ধীরে ধীরে বৃষ্ধি করায় যখন ঘূর্ণনের হার প্রতি মিনিটে 60 বার হয় তখন মুদ্রাটি বাইরের দিকে চলতে আরম্ভ করে। যদি মুদ্রাটি অক্ষ থেকে 12 cm দূরে রাখা হয়, তবে ভূর্ণনের হার কত হলে মুদ্রার চলন শুরু হবে ?

উঃ। ঘর্ণনের দরুন মুদ্রাটি অপকেন্দ্র বল অনুভব করে বাইরের দিকে মেত চেম্টা করতে ভিত্ত স্থাণ বল তাকে বাধা দেবে। যখন ঘর্ষণ বলের সীমাস্থ মান অপকেন্দ্র বলের সমান হবে তখন মন্ত্র^ত চক্তত শুর্ করবে: চার্কভির ঘূর্ণনের হার n হলে, ঘূর্ণাক্ষ থেকে r দূরে মুদ্রার উপর ক্রিয়ারত অপকেন্দ্র বল $F = m\omega^2 . r = m (2\pi n)^2 . r = 4\pi^2 n^2 . mr$

.. ঘর্ষণ বলের সর্বোচ্চ মাম
$$F_3=4\pi^2.n^2.mr=4 imes\pi^2 imes\left(rac{60}{60}
ight)^2 imes m imes 7=28.\pi^2.m$$

যখন মুদ্রাটি ঘূর্ণাক্ষ থেকে 12 cm দূরে, তখন ধর চাকতির ঘূর্ণন বেগ 🐠 ফলে মুদ্রাটি ভলতে পুরু করল . তাইলে, $F_5 = (\omega_1)^2 .mr = (2\pi n_1)^2 .m \times 12$

$$\sim 28\pi^2.m = (2\pi n_1)^2.m.\times 12 \quad [n_1 = প্রতি সেকেন্ডে ঘূর্ণন সংখ্যা]$$

ভাৰৰা.
$$n_1=\sqrt{\frac{7}{12}}$$
 প্ৰতি সেকেন্ড = $\sqrt{\frac{7}{12}}$ $imes 60=$ **45.8 বার প্রতি মিনিটে**

प्रशासमा वालंब कार्यकृषि यंभायन ७ श्रीसार्ग (Some effects and applications of centrifugal 1.

(ক) পৃথিবীর দৈনিক গতির দর্ন পার্থিব বন্ধুর ওজন হ্রাস (Loss of weight of terrestrial bodies due to the earth's diurnal motion):

পৃথিবী যেমন সূর্যের চতর্দিক প্রদক্ষিণ করে, তেমনি নিচ্ছ অক্ষের চতুর্দিকেও আবর্তন করে। একে পৃথিবীর দৈনিক গতি বলা হয়। এই গতির জন্য দিন-রাত্রি দেখা যায়।

মনে করো, পৃথিবীর উপর m ভরের একটি বন্ধু আছে [চিত্র 1.30]। তার ওছন mg (যে বলের দ্বারা

পৃথিবী বস্তুকে নিজ কেন্দ্রের দিকে আকর্ষণ করে) পৃথি বীর কেন্দ্রাভিমুখী ক্রিয়া করবে। এখন, পৃথিবীর দৈনিক গতির সঙ্গো সঙ্গো বস্তুটিও পৃথিবীর অক্ষের চতুর্দিকে একই কৌলিক বেগে প্রদক্ষিণ করে এবং একটি অপকেন্দ্র বল (mw²r) অনুভব করে। এই বলের প্রভাবে বস্তুটি তার বৃস্তাকার পথের ব্যাসার্ধ বরাবর বহির্মুখী ছুটে যেতে চেন্টা করে; কিন্তু বন্তুর ওজনের একাংশ সর্বদা বিপরীত দিকে ক্রিয়া করে অপকেন্দ্র বলকে নিদ্ধিয় করে। ফলে, পৃথিবী স্থির থাকলে বন্তুর যে ওজন হত, এই গতির দরুন বন্তুর ওজন তা থেকে কিছু কম হয়।

একথা সহজেই বোঝা যায় যে বন্ধু যতই মেরুআপল হতে নিরক্ষ-রেখা অপলের দিকে আসে, ততই তার বৃত্তাকার পথের ব্যাসার্ধ বৃদ্ধি পায় এবং তত
অপকেন্দ্র বলও ($m\omega^2 r$) বৃদ্ধি পায়। ঠিক নিরক্ষরেখায় এই ব্যাসার্ধ (R) সর্বাধিক এবং ওজন-হ্রাসও
সর্বাধিক। আবার, ঠিক মেরুতে এই ব্যাসার্ধ শূন্য এবং ওজন-হ্রাসও শূন্য।

(খ) পৃথিবীর মেরুপ্রদেশ চাপা হবার কারণ (Reason for the flattening of the earth at the poles): পৃথিবীর আকার সম্পূর্ণ গোল নয়; উত্তর ও দক্ষিণ মেরু অঞ্বল একটু চাপা এবং নিরক্ষীয় অঞ্বল (equatorial region) একটু স্ফীত। পৃথিবীর এইরূপ আকারের কারণ নিজ অক্ষের চতুর্দিকে পৃথিবীর দৈনিক গতি ও ডজ্জনিত অপকেন্দ্র বলের সৃষ্টি।

পৃথিবী যখন প্রথম সৃষ্টি হয় তখন তা গলিত বন্তু (fused matter) দ্বারা গঠিত ছিল বলেই মনে করা হয়। এখন, পৃথিবী নিজ অক্ষের চতুর্দিকে ঘোরার জন্য পৃথিবীপৃষ্ঠের বন্তুকণাগুলি অপকেন্দ্র বল অনুভব করে। এই বলের পরিমাণ নিরক্ষীয় অন্ধলে সর্বাধিক এবং মেরু অন্ধল সম্পূর্ণ শূন্য। এই কারণে, নিরক্ষীয় অন্ধলের বন্তুকণাগুলির বাইরের দিকে ছুটে যাবার প্রবণতা সর্বাধিক হয় এবং এই প্রবণতা ক্রমশ হ্রাস পেয়ে মেরু অন্ধলে বিলুপ্ত হয়। পৃথিবীপৃষ্ঠের বন্তুকণাগুলি প্রাথমিক স্তরে গলিত অবস্থায় থাকলেও পরস্পরের ভিতর সংসন্তি (cohesion) যথেন্ট ছিল; এই কারণে অপকেন্দ্র বলের জন্য নিরক্ষীয় অন্ধল থানিকটা স্ফীত হতে চেন্টা করলে মেরু অন্ধলকে সঞ্চো সঞ্চো চাপা করে দিয়েছে। সময়ের সঞ্চো পৃথিবীপৃষ্ঠ যখন ক্রমশ জমাট বেঁধে শক্ত হয়েছে, তখন এর আকারের এই বৈষম্য একটি স্থায়ী বিশেষত্বে পরিণত হয়েছে। নিম্নলিখিত মডেলের সাহায্যে গবেষণাগারে উত্ত ঘটনা খুব সুন্দরভাবে দেখানো হয়ে থাকে।

পাতলা ধাতব পাতের তৈরি কয়েকটি গোলাকার রিং একটি টাকু (spindle) AB-এর সাথে যুক্ত [চিত্র 1.31] রিংগুলি একসজো মিলে একটি গোলকের পৃষ্ঠদেশ তৈরি করে বলে মনে করা যেতে পারে। এর তলদেশ টাকুর সাথে দৃঢ়ভাবে আবন্ধ এবং শীর্ষদেশ একটি কলার (coller) C-এর সাথে যুক্ত। এই কলারটি টাকু-দন্ড বরাবর উপর-নীচ চলাচল করতে পারে। টাকু-দন্ড খাড়াভাবে একটি অনুভূমিক ঘূর্ণি-টেবিল T (whirling table)-এর সাথে আবন্ধ। এখন ঘূর্ণি-টেবিলের হাতল H-এর সাহায্যে দুক্ত টাকুকে ঘোরালে, রিংগুলিও ঘুরবে এবং পাতের প্রত্যেকটি কশা অপকেন্দ্র বল অনুভ্ব করে বহির্ম্থী সরে যেতে চেন্টা করবে। এর ফলে কলার C খানিকটা

নেমে আসবে এবং রিংগুলির ওলদেশ ও শীর্ষদেশ চাাপ্টা হবে। সজ্যে সজ্যে রিংগুলি মাঝবরাবর স্ফীত হবে। একযোগে তাদের আকার যেরপ হবে তা কাটা কাটা রেখা দ্বারা দেখানো হয়েছে।

(গ) সেন্টিফিউজ (Centrifuge): এটা এমন যন্ত্র যার সাহায়ে। ভরলে ভাসমান বিভিন্ন ঘনত্বের বস্তুকণাকে পৃথক করা যায়। দুধ হতে মাখন তোলা, রভ হতে রভকণিকা পৃথক করা প্রভৃতি এই যন্ত্রের সাহায়ে। খব সহজে করা যায়।

ভিজা কাপড় শৃকাবার জন্য একই পন্ধতি অবলম্বন করা হয় অপর একটি যন্ত্রে—যার নাম 'সেন্ট্রিফিউগাল ডাইং মেশিন' (centrifugal drying machine)। এটি একটি চোঙাকৃতি পাত্র। এর দেওয়ালে কতকগৃলি ছিদ্র থাকে এবং একটি অক্ষের চতুর্দিকে দুতবেগে ঘুরতে পারে। ভিজা কাপড় এই পাত্রে রেখে পাত্র দুত ঘোরালে কাপড়ের জলকশাগুলি অপকেন্দ্র বলের প্রভাবে ছিটকে দেওয়ালের ছিদ্র দিয়ে বার হয়ে আসে এবং কাপড় শৃকিয়ে যায়।

রৈখিক গতি ও আবর্ত গতির তুপনা (Compariso between linear motion and rotational motion).

রৈমিক গাঁও

- 1, 为点^(x) (s)
- 2. siferas $\left(v = \frac{ds}{dt}\right)$
- 3. জুরুল $\left(a = \frac{d^2s}{dt^2}\right)$
- 4. ভরবেগ (= mu)
- 5. 44 (F = mu)
- 6. গতিশান্ত $\left(E_k = \frac{1}{2}mv^2\right)$
- 7. ক্ষাতা (= F.v) [F = বল]
- রেখিক ভরবেগ সংরক্ষণ নীতি প্রয়োজ্য।

আৰ্ভ গতি

কৌণক সর্গ (৪)

কৌলিক প্রতিরেগ $\left(\omega = \frac{d\theta}{dt}\right)$

কৌণিক তুরণ $\left(\alpha = \frac{d^2\theta}{dt^2}\right)$

কৌণিক ভরবেগ (= Iw)

 $\vec{b} = (\tau = 1.\alpha)$

আবৰ্ত গতিশক্তি $\left(E_k = \frac{1}{2}I\omega^2\right)$

ক্ষমতা (= t.w) [t = টক]

কৌনিক ভরবেগ সংরক্ষণ নীতি প্রযোজ্য

1.20.

উল্লম্ব বৃত্তপথে বন্তুর ঘূর্ণগতি (Rotational motion of a body in a vertical circ

ধর, m ভরের একটি বস্তুকে সুতোয় বেঁধে উল্লম্ব বৃত্তপথে ঘোরানো হচছে। এই অবস্থায়, বস্তুর ওজন

সর্বদা খাড়া নিম্নমুখী ক্রিয়া করবে কিছু অপকেন্দ্র প্রতিক্রিয়া সুতো বরাবর কেন্দ্র বহির্মুখী ক্রিয়া করবে। ফলে, উল্লম্ব বৃত্ত বরাবর বহুর ঘূর্ণগতি সুষম (uniform) হবে না; সুতোর টানও সর্বদা প্রথর (constant) থাকে না। বহু যখন উধর্বমুখী যায় তখন তার গতিবেগ ক্রমশ কমে আসে কারণ তখন অভিকর্ম বল গতির বিরোধিতা করে; আবার নিম্নমুখী যাবার সময় গতিবেগ ক্রমশ বাড়ে কারণ তখন অভিকর্ম বল তখন গতিকে সাহায্য করে। বৃত্তের সর্বনিম্ন বিন্দৃতে সুতোর টান সর্বাধিক এবং তা বহুর ওজনের এবং অপকেন্দ্র প্রতিক্রিয়ার সমস্থি; আবার বৃত্তের সর্বোচ্চ বিন্দৃতে টান সর্বাপেক্ষা কম এবং তা অপকেন্দ্র প্রতিক্রিয়া ও বহুর ওজনের বিয়োগফলের সমান (চিত্র 1.32)।

ধর, বৃত্তের সর্বনিম্ন বিন্দু A-তে গতিবেগ = u1 এবং সর্বোচ্চ

বিন্দু B-তে গতিবেগ = v_2 : A এবং B বিন্দুতে সূতোয় টান যথাক্রমে T_1 এবং T_2 হলে,

$$T_1 = \frac{mv_1^2}{r} + mg$$
 and $T_2 = \frac{mv_2^2}{r} - mg$ (i)

ব্ৰের শার্থবিপু B-তে যদি সুতোর টান ঠিক শূন্য হয় $(T_2=0)$ তবে, $\frac{mv_2^2}{r}=mg$ অথবা $v_2=\sqrt{gr}$...(ii)

একথা সহজে বেণ্ঝা যায় যে শীর্ষবিন্দুতে বস্তুর গতিবেগ এই সন্দি গতিবেগ (critical velocity) অর্থাৎ ৮_২-এর কম হলে, সুতো আলগা হয়ে পড়বে। তখন বস্তু বৃত্তপথে না ঘুরে নীচে পড়ে যাবে।

সন্ধিবেগ বজায় রাখার জন্য নিম্নতম গতিবেগ:

বৃত্তের শীর্যবিন্দুতে উপরোক্ত সন্ধি গতিবেগ বজায় রাখতে হলে, বৃত্তের সর্বনিম্ন বিন্দুতে নিম্নতম গতিবেগ এর্প মানের হওয়া উচিত যে, উর্ধ্বগতির সময় ঐ গতিবেগ ক্রমশ কমে শীর্ষবিন্দুতে ঠিক v_2 হয়। A বিন্দু হতে B বিন্দুতে প্রেছোলে বস্তু 2r উচ্চতা আরোহণ করে। এতে বস্তুর $mg \times 2r$ পরিমাণ স্থিতিশক্তি বৃদ্ধি পায়। স্পায়ত এই স্থিতিশক্তি বৃদ্ধি বস্তুর গতিবেগ কমে যাবার দর্ন গতিশক্তি হ্রাসের সমান হবে। কাজেই,

$$\frac{1}{2}m\upsilon_1^2 - \frac{1}{2}m\upsilon_2^2 = mg \times 2r$$
 বা, $\frac{1}{2}m\upsilon_1^2 = mg \times 2r + \frac{1}{2}m\upsilon_2^2$ বা, $\upsilon_1^2 = 4gr + \upsilon_2^2 = 4gr + gr = 5gr$ [(ii) নং সমীকরণ থেকে] কাজেই, υ_1 -এর নিম্নতম মান হবে $(\upsilon_1)_{min} = \sqrt{5gr}$

• নিল্লতম টান (Minimum tension) :

আমরা দেখলাম যে, উল্লম্ব বৃত্ত বরাবর গতি বজায় রাখতে হলে, বৃত্তের নিম্নতম বিন্দু A–তে গতিবেগ হবে $(\upsilon_1)_{min}=\sqrt{5gr}$; তখন শীর্ষবিন্দু B–তে গতিবেগ হবে $\upsilon_2=\sqrt{gr}$ এবং টান হবে শূন্য। গতিবেগের এই মানগুলি T_1 –এর সমীকরণে বসালে আমরা বৃত্তগতি বজায় রাখবার জন্য (বৃত্তের নিম্নতম বিন্দুতে) সুতোর নিম্নতম টান কত হবে তা নির্ধারণ করতে পারব। (i) নং সমীকরণ হতে পাই,

$$T_1 = \frac{mv_1^2}{r} + mg = \frac{mv_1^2}{r} + \frac{mv_2^2}{r} \left[T_2 = 0 : \frac{mv_2^2}{r} = mg \right]$$

:
$$(T_1)_{min} = \frac{m}{r} \left[(v_1)_{min}^2 + (v_2)_{min}^2 \right] = \frac{m}{r} \left[(5gr + gr) \right] = 6mg = 6 \times বস্তুর ওজন$$

দেখা গেল যে, বৃত্তপথে বস্তুকে ঠিক ঘুরিয়ে আনলে বৃত্তের নিম্নতম বিন্দুতে সূতোর টান (নিম্নতম) হবে বস্তুর ওজনের হয়গুণ।

DEtamosu

② 2.5 m দীর্ঘ একটি সূতোর একপ্রান্তে 10 g ভরের পাথর টুকরোকে আবদ্ধ করে উল্লম্ব বৃত্তপথে খোরানো হচ্ছে। সূতোর অপর প্রান্ত দৃঢ়ভাবে আবদ্ধ। বৃত্তের শীর্ষবিন্দৃতে পাথর টুকরোরি গতিবেগ 5 m/s; পাথর টুকরোটি যখন (i) বৃত্তের শীর্ষবিন্দৃতে, (ii) বৃত্তের সর্বনিম্ন বিশ্বের এবং (iii) বৃত্তের কেন্দ্রের সাথে এক লেভেল থাকে তখন সূতোর টান কত হবে ?

$$\exists 3 \mid v_1 : \frac{4\pi}{r} \text{ for each } 3 \text{ for } \Gamma_2 = \frac{mv_2^2}{r} \quad mg \qquad [m = 10 \text{ g} = 0.01 \text{ kg}]$$
$$= \frac{0.01 \times 25}{2.5} \quad 0.01 \times 10 = \mathbf{0}.$$

 $\exp 2\pi i + \frac{\pi}{2} \exp 2\pi i + m_0 = 2\pi i + m_0$

$$I_1 = \frac{0.01 \times 25 \times 5}{2.5} + 0.01 \times 10 = 0.6$$
N.

াম ধর, কোন্তের সংখ্যে এক লেভেলে, বস্তুর গভিবেগ = 0: তখনকার টান $T = \frac{m v^2}{r}$ করেব ${\bf G}$ তিনেলায় বস্তুর ওজন সূত্রের টানের সাথে লম্বভাবে ক্রিয়া করে এবং টানের উপর কোনো প্রভাব কিন্তুর বাবে না

্মন, কলেব লেভেলে বস্তর মোট গতিশস্তি = শীর্ষবিন্দৃতে গতিশস্তি + $2.5\,\mathrm{m}$ ম্বভনগেব জন্ম চন্দ্র ক্রমে = $\frac{1}{2}\,\mathrm{mv}_2^2 + \mathrm{mg}h = \frac{1}{2} \times 0.01 \times 25 + 0.01 \times 10 \times 2.5 = 0.375\,\mathrm{N}\,\mathrm{m}$ কেন্দ্রে ক্রভেলে বস্তুকণার গতিবেগ ও ধরা ইয়েছে ঃ

SIGNAT.
$$\frac{1}{2}mv^2 = 0.375$$
 At, $v^2 = \frac{0.375 \times 2}{0.01} = 75$

$$\therefore \ 5m, \ T = \frac{mv^2}{r} = \frac{0.01 \times 75}{2.5} = 0.3N$$

ন উচ্চতার বিন্দু হতে একটি বল নততল বরাবর গড়িয়ে পড়ে অনুভূমিকভাবে না গিয়ে r ব্যাসার্থের একটি বৃত্তপথে ঘুরে গেল। h-এর নিম্নতম কত মানে বলটি ঐরুপ গতি সম্পন্ন করতে পারবে? ঘর্ষণ অগ্রাহ্য করতে পারো।

উঃ। অনভূমিকভাবে না গিয়ে উল্লম্ব বৃত্তপথে ঘ্রতে জেল, পতের সর্বমিদ্ধ বিন্দু A-তে বলের নিম্নতম গতিবেগ

্ ্ ্ ্ ্ ছেনে: 'মতএব, A বিন্দৃতে বলের গতিশন্তি =
$$\frac{1}{2}mv^2 = \frac{1}{2}m \times 5 g.r.$$
পূত্র বল এই গতিশন্তি লাভ করবে h উচ্চতায় থাকাকালীন স্থিতিশন্তির বিনিময়ে (চিত্র 1 33) য
ভাতরব, $mqh = \frac{1}{2}m \times 5. \ g.r.$ $h = \frac{5. \ g.r.m.}{2m} = \frac{5}{2} \cdot r$

এই পরিচেছদের বিষয়বন্থ সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- কোনো ভারী জ্যোতিছ যদি আকাশ হতে ভূপৃষ্ঠে পড়ে তবে পৃথিবীর কৌশিক গতিবেগ
 কী হাস পাবে
- বাইরে থেকে টর্ক ফিয়া না করলে বয়ৣর কৌণিক ভরবেগ সংরক্ষিত থাকে। এখন, ভূপ্ষ্ঠে পড়ার পূর্বে
 পৃথিবীর ফক্ষ বেড়ে জোভিস্কের কৌণিক ভরবেগ শৃন্য। সূতরাং ভূপ্ষ্ঠে পড়ার পর পৃথিবী এবং
 জোভিস্কের মোট কৌণিক ভরবেগ = কেবল মাত্র পৃথিবীর কৌণিক ভরবেগ। এখন, জোভিস্ক ভূপ্ষ্ঠে
 পড়লে পৃথিবীর ভর কিছ্ বৃদ্ধি পাবে। অতএব মোট কৌণিক ভরবেগ ঠিক রাখতে গেলে, পৃথিবীর
 বর্তমান কৌণিক গতিবেগ কিছ্ খ্রাস পাবে।

- পৃথিবীর আকার সম্পূর্ণ গোল হলেও বিভিন্ন অক্ষাংশে কোনো বন্তুর ওজন বিভিন্ন হত কেন ?
- বিভিন্ন অক্ষাংশে বস্তুর ওজন বিভিন্ন হবার দৃটি কারণ (i) পৃথিবীর অনিয়মিত আকার এবং (ii) নিজ আক্ষের চতুর্দিকে পৃথিবীর আবর্তন। পৃথিবীর অনিয়মিত আকারের জন্য বিভিন্ন অক্ষাংশের বিন্দু ভূকেন্দ্র হতে সমান দৃরে অবস্থিত নয়। নিরক্ষরেখা (equator) হতে মেরুর দিকে অগ্রসর হলে, এই দূরত্ব ক্রমশ হ্রাস পায়। ফলে, বিভিন্ন অক্ষাংশের বিন্দুতে অভিকর্ষজ ত্বরণের মান বিভিন্ন হয়ে বস্তুর ওজনের বিভিন্নতা সৃষ্টি করে। আবার, নিজ অক্ষের চতুর্দিকে পৃথিবীর আবর্তগতির জন্য ভূপৃষ্ঠে তাগ করে অবস্থিত যে−কোনো বস্তু ভূকেন্দ্র বহির্মুখী একটি অপকেন্দ্র বল অনুভব করে এবং ভূপৃষ্ঠ তাগ করে দৃরে চলে যাবার প্রবণতা পায়। কিন্তু বস্তুর প্রকৃত ওজনের একাংশ এর বিবুল্ধাচরণ করে বস্তুকে ভূপৃষ্ঠে আটকে রাখে। এই কারণেও বন্তু কিছু ওজন নন্ট করে। এখন, বিভিন্ন অক্ষাংশে পৃথিবীর বৃত্তগতির ব্যাসার্ধ সমান নয়; নিরক্ষরেখায় সর্ববৃহৎ এবং মেরু অশ্বলে প্রায় শৃন্য। এই কারণে, নিরক্ষরেখায় বস্তুর ওজন-ভ্রাস সর্বাধিক এবং মেরু অশ্বলে সর্বনিন্ন। পৃথিবীর আকার সম্পূর্ণ গোল হলে, প্রথম কারণটি থাকে নাঃ কিন্তু দ্বিতীয় কারণটি থেকে যায়। তাই আকার সম্পূর্ণ গোল হলেও, আবর্তগতির জন্য বিভিন্ন অক্ষাংশে বস্তুর ওজন বিভিন্ন হবে।
- 3. সার্কাসের 'মৃত্যু-কূপ' খেলায় একজন মোটর সাইকেল আরোহী নীচে না পড়ে কূপের দেওয়াল বরাবর মোটর সাইকেল চালায়। এটা কীরূপে সম্ভব ?
- মোটর সাইকেল চালক দেওয়াল বরাবর দুতগতিতে বৃত্তাকার পথে সাইকেল চালায়। ঐরূপ
 বৃত্তগতিতে চলার সময় সে দেওয়ালের উপর ব্যাসার্ধ বরাবর বল প্রয়োগ করে। দেওয়ালও ব্যাসার্ধ
 বরাবর সমান অভিলম্ব প্রতিক্রিয়া প্রয়োগ করে। ধরো, এই অভিলম্ব প্রতিক্রিয়া = R : এক্কেত্রে R
 = mv² : এখন, এই অভিলম্ব প্রতিক্রিয়ার দরুন দেওয়াল বরাবর উধর্বমুখী ঘর্ষণবল F ক্রিয়া করবে

এবং $F=\mu\,R=\frac{\mu m \upsilon^2}{r}$ । যদি এই ঘর্ষণবল চালক এবং সাইকেলের মোট ওজনের সমান হয় তবেই চালক নীচে না পড়ে একটি নির্দিন্ট বৃত্তপথে ঘুরতে থাকবে। অতএব, r ব্যাসার্ধের বৃত্তপথে ঘুরতে হলে সাইকেলের নিম্নতম বেগ হবে $\frac{\mu m \upsilon_{min}^2}{r}=mg$ অথবা, $\upsilon_{min}=\sqrt{\frac{rg}{\mu}}$.

- 4. একটি পাথরখন্ডকে সূতোর বেঁধে নির্দিষ্ট বেগে অনুভূমিক তলে বৃত্তপথে ঘোরানো হলে সূতোটি ছিঁড়ে যার না। কিছু একই বেগে উল্লঘ্ব তলে ঘোরালে সূতোটি ছিঁড়ে গেল। কারণ কী ?
- ধরো, পাথরখণ্ডটির ভর m এবং গতিবেগ υ। অনুভূমিক তলে বৃত্তীয় গতির ক্ষেত্রে, সূতোয় টান =
 অপকেন্দ্র বল = mυ²// [/ = স্তোর দির্ঘা। এ অবস্থায় সুতো ছেঁছে না বলে বোঝা য়য় অপকেন্দ্র
 বল স্তো ছেঁছার পক্ষে মথেন্ট নয়। একই বেগে উল্লেম্ব তলে ঘোরানো হলে, পাথরখণ্ডটি মখন
 বৃত্তের সর্বনিম্নবিন্দৃতে উপস্থিত হয়, তখন সূতোয় টান = অপকেন্দ্র বল + পাথরখণ্ডের ওজন =
 (mv²//) + mg। এক্ষেত্রে টান কৃশিং পাওয়াতে সূতে ভিছে গল
- 5. मृत्यत मत्था अकि पक्ष बाता वृर्गन मृथि कतरण मुध वर्र भाषन शृथक वर्रा याद्य रकन १
- বিভিন্ন ঘনত্বের বন্ধকলা যদি কোনো ভরপে ভাসে এবং ঐ ভরপের ভিতর যদি দুও ঘবন সৃথি কবা

 যায় ভবে অপকেন্দ্র বলের প্রভাবে ঘনতর বন্ধুর্গুল ঘৃবাক্ষ ঘতে দৃরে সবে যায় এবং লঘ্ডর কলাবুলি

 ঘ্রণাক্ষের কাছে এসে জয়া হয়া দুল হতে য়াখনা তালার সময়া একটি দর্ভের সাহায়ে দুল্লর মাল্লা

দুত ঘূর্ণনের সৃষ্টি করা হয়। মাখন তোলা দুধ হতে মাখন হালকা হওয়ায়, দণ্ডের চতুর্দিকে মাখন জমা হয় এবং পরে তা আলাদা করা হয়।

- 6. বৃত্তপথে সুষম বেগে গতিশীল বল্পুকণার উপর অভিলম্ব ত্বরণ সর্বদা কেন্দ্রমুখী ক্রিয়া করে। কিন্তু বন্ধ কণা কেন্দ্রমুখী না গিয়ে একই বৃত্তপথে ঘুরতে থাকে। এর কারণ কি ?
- অভিলম্ব ত্বরণ বৃত্তের কেন্দ্রাভিমুখী ক্রিয়া করে বলে ক্তুকণার গতির অভিমুখের সাথে (অর্থাৎ বৃত্তের
 স্পর্শক) লম্ব হয়। বয়ৣর গতির অভিমুখের দিকে এই ত্বরণের কোনো উপাংশ থাকে না। ফলে কণার
 দ্রুতির কোনো পরিবর্তন হয় না। তাই কণা একই বৃত্তপথে ঘুরতে থাকে।
- ঋজুগতির বেলায় বছুর গতি ত্বরশহীন হতে পারে। কিছু বৃত্তগতির বেলায় সর্বদা একটি
 ত্বরণ থাকে। কেন ব্যাখ্যা করো।
- ঋজুগতির বেলায় বন্তুর উপর বাইরে থেকে কোনো বল প্রয়োগ না করলে বয়ৢ সৃষম বেগে চলে ;
 তার কোনো ত্বরণ থাকে না কারণ তার গতিবেগের কোনো পরিবর্তন হয় না। কিয়ৢ বৃত্তগতির বেলায়
 বস্তুর উপর বাইরে থেকে বল প্রয়োগ করতে হয় য়াকে অভিকেন্দ্র বল বলে। বয়ৢর অভিমুখ জাড্য
 (directional inertia) প্রতিহত করার জনা অভিকেন্দ্র বলের প্রয়োজন। য়েহেতু বৃত্তগতির বেলায়
 বয়ৢর উপর সর্বদা একটি বল প্রয়ুত্ত হয়, তাই বয়ৢরও সর্বদা একটি ত্বরণ থাকে। উয়েখ করা য়ায়
 য়ে এই ত্বরণকে অভিলম্ব ত্বরণ বলে।
- 8. অভিকেন্দ্র বল বান্তব বল; অপকেন্দ্র বল অলীক বল। ব্যাখ্যা করো।
- বস্তুসমূহের পারস্পরিক ক্রিয়া-প্রতিক্রিয়ায় যে-বলের উদ্ভব হয় তাকে বাস্তব বল বলে। বাস্তব বলের উৎস (origin) চিহ্নিত করা যায়। অভিকেন্দ্র বল দুটি বস্তুর পারস্পরিক ক্রিয়া প্রতিক্রিয়ায় উদ্ভব হয় বলে, একে বাস্তব বলে।

যে বল দুই বা ততোধিক বন্ধুর ক্রিয়া-প্রতিক্রিয়ায় উদ্ভব হয় না এবং যে-বল কেবলমাত্র অজড়ত্বীয় নির্দেশ তব্রে অস্তিত্ব প্রকাশ করে তাকে অলীক বল বলে। অপকেন্দ্র বল এই অর্থে অলীক বল।

9. চন্সনগতি একটি নির্দিষ্ট দিকে হয়। ঘূর্ণন গতিতে কি অপরিবর্তিত থাকে ?

[Jt. Entrance 1991]

- ঘর্ণনগতিতে বস্তুর ত্বরণ সর্বদা ব্যাসার্ধ বরাবর কেন্দ্রাভিমুখী হয়।
- চক্রগতির ব্যাসার্থ কাকে বলে ? দুটি গোলকের ভর ও বহির্ব্যাসার্থ সমান। এদের একটি ফাঁপা ও অপরটি নিরেট। কোন্টির চক্রগতির ব্যাসার্থ বেশি হবে ?[Jt. Entrance 2001]
- কোনো অক্ষ সাপেক্ষে কোনো বস্তুর চক্রগতির ব্যাসার্ধ বলতে ঐ অক্ষ থেকে এমন দূরত্ব বোঝায় য়ে
 দূরত্বে বয়ৣর সমন্ত ভর কেন্দ্রীভৃত আছে মনে করলে ঐ অক্ষের সাপেকে বয়ৣর ও ঐ বিন্দৃভরের
 জাড্যশ্রমক সমান হবে।

কোনো ব্যাস সাপেক্ষে নিরেট গোলকের চক্রগতির ব্যাসার্ধ $k_1^2 = \frac{2}{5}R^2 = 0.4R^2$ একইভাবে ফাঁপা গোলকের বহিব্যাসার্ধ R এবং ভিতরের ব্যাসার্ধ r হলে, চক্রগতির ব্যাসার্ধ

$$k^{\frac{2}{2}} = \frac{2}{5} \frac{(R^{\frac{5}{4}} - r^{\frac{5}{4}})}{(R^{\frac{3}{4}} - r^{\frac{3}{4}})} \text{ and } k^{\frac{2}{2}} = \frac{2(R^{\frac{5}{4}} - r^{\frac{5}{4}})}{5(R^{\frac{3}{4}} - r^{\frac{3}{4}})} = \frac{2}{5} R^{\frac{2}{4}} \left(\frac{1 - \frac{r^{\frac{5}{4}}}{R^{\frac{3}{4}}}}{1 - \frac{r^{\frac{5}{4}}}{R^{\frac{3}{4}}}}\right) = k^{\frac{2}{4}} \frac{(1 - \frac{r^{\frac{5}{4}}}{R^{\frac{3}{4}}})}{(1 - \frac{r^{\frac{5}{4}}}{R^{\frac{3}{4}}})}$$
where $R > r$ and $R > r$ an

জতএব,
$$1 - \left(\frac{r}{R}\right)^5 > 1 - \left(\frac{r}{R}\right)^3$$
, জতএব, $k_2^2 > k_1^2$.

- 11. u বেগে ছুটন্ত একটি ট্রাকের চালক সহসা a দূরে একটি দেওয়াল দেখতে পেল।
 দেওয়ালের সাথে সংঘর্ব এড়াবার জন্য চালক কি ব্রেক কববে, অথবা ব্রেক না কবে,
 ব্যাস্থা নাড় দুরো ঘাবে ?
- বৃত্তপথে যুৱলে, অভিকেন্দ্র বল $\frac{1}{a}mv^2$, প্রক কমলে $\frac{1}{2}mv^2 = x কল কল <math>\times a$. : মন্দ্রন বল $= \frac{mv^2}{2a}$ । খেছেতু $\frac{mv^2}{a} > \frac{mv^2}{2a}$ তাই প্রেক কমা স্বিশ্বভাবন ।
- 12. সূর্যের চতুর্দিকে উপবৃত্তাকার পথে পরিভ্রমণ করার সময় যখন কোনো গ্রহ সূর্যের নিকটবর্তী আসে তখন তার কৌণিক বেগ বৃশ্বি পায়। কেন ?
- উপবৃত্তাকার পথে পরিভ্রমণ করার সময় সূর্য থেকে গ্রহের দরও বাড়ে-কমে, যখন গ্রহ সূর্যের
 সর্বাপেক্ষা নিকটবলী হয় তখন সূর্য সাপেক্ষে গ্রহের হাভাভ্রমক প্রাম পায় কৌনিক ভরবেগ সংরক্ষণ
 সূত্রপুযায়া, গ্রহের কৌনিক গতিবেগ বৃদ্ধি পায়। একই কারণে গ্রহ সূর্য থেকে সর্বাধিক দূরপ্রে গেলে,
 তার কৌনিক গতিবেগ হাস পাবে।
- 13. स्मत्र श्रामाणात्र वत्रक गरम कम रहम मित्नत्र मिर्पाइत कि कारना अतिवर्जन रहत १
- হবে: দিনের দৈর্ঘ্য, বড়ে যাবে। কারণ: বরফ গলে জল হলে, ঐ জল মেরুপ্রদেশ থেকে বিষুব
 অশ্বলে চলে আসরে। পৃথিবার ,বশ কিছ্ ভর এই ভাবে পৃথিবীর ঘূর্ণাক্ষ থেকে সরে আসার ফলে
 পৃথিবীর ঘূর্ণনের চক্রগতির ব্যাসার্ধ বৃদ্ধি পায় অথবা জাডা- শ্রামক বৃদ্ধি পায়। কৌণিক ভরবেগ
 সংরক্ষিত থাকে বলে, জাডা- শ্রামক বৃদ্ধির ফলে পৃথিবীর কৌণিক গতিবেগ ω হ্রাস পায়। কিছু দিনের
 দৈর্ঘ্য
 T = 2π/ω : ফলে T বৃদ্ধি পাবে —অর্থাং দিনের দৈর্ঘ্য বৃদ্ধি পাবে।
- 14. वारेमारेट्राव्या हाकाग्र ट्यांक् (spoke) मागाता थाटक ट्राव्या १
- চাকায় স্পোক লাগালে চাকার জাড্য-ভামক বৃদ্ধি পায় অথচ চাকার ভর বিশেষ বৃদ্ধি পায় না কারণ স্পোকগুলি খুব হালকা। চাকার জাড্য-ভামক বৃদ্ধি পাওয়ায় সাইকেলের গতি মসৃণ হয়।
- 15. কৌণিক ভরবেগ সংরক্ষিত আছে এরূপ একটি সংস্থার জাড্য-ভ্রামক বৃদ্ধি করা হন্স। এতে সংস্থার আবর্ত গতিশক্তি কি সংরক্ষিত থাকবে ?
- সংস্থার জাডা–দ্রামক I এবং কৌণিক গতিবেগ ω হলে, তার আবর্ত গতিশন্তি $E_k=\frac{1}{2}I.\omega^2$ এখন, কৌণিক ভরবেগ সংরক্ষিত থাকায় $I.\omega=k$ (ধুবক)

$$\therefore E_k = \frac{1}{2}$$
 .k.w অথবা, E_k ০০.w.

এখানে জাড্য-ভ্রামক বৃদ্ধি করা হলে, ভরবেগ সংরক্ষণ সূত্র অনুযায়ী কৌণিক গতিবেগ ω হ্রাস পাবে। তাতে, E_{i} হ্রাস পাবে। ফলে, আবর্তগতিশক্তি সংরক্ষিত থাকরে না।

- 16. বন্তুর রৈখিক গতিবেগ হ্রাসবৃষ্ধি করার চেন্টা করলে গতিজ্ঞাভ্য ঐ প্রচেন্টাকে বাধা দেয়। বন্তুর বৃত্তীয় গতিবেগ হ্রাসবৃষ্ধি করার চেন্টা করলে কোন্ জাভ্য তাকে বাধা দেবে ? এই দৃই জাভ্য কি এক ?
- বস্তুর বৃত্তীয় গতিবেগ বৃদ্ধি বা হ্রাস করার চেন্টা করলে বস্তুর জাড্য- এমক ঐ প্রচেন্টাকে বাধা দেয়।
 এই দুই জাড্য এক নয়। বস্তুর জাড্য বস্তুর ভরের সমানুপাতিক। ভর বাড়লে জাড্য বাড়ে; আবার

ভর কমলে জাড়া কমে। কিন্তু জাড়া-ভাষক শৃদু ভব নয় । ভবের বণানের উপর নিউব করে এবং ঘূর্ণা**ক্ষের অবস্থানের উপর নির্ভর করে**।

- 17. A এবং B দুটি গোল চাকতির বেধ ও তর সমান কিছু তাদের উপাদান ভিন্ন। উপাদানের ঘনম r_A এবং r_B $(r_4>r_B)$ । চাকতি দুটির কেন্দ্রগত ও তাদের তলের অভিলম্ব দুই অক্সের সাপেকে তাদের ভাঙ্য ভামক যথাক্রমে I_A এবং I_B । কোন্টি বেশি १
- $m{m}_A = m_B$ অথবা $\pi r_A^2 \iota. \rho_A = \pi r_B^2 \iota \rho_B \quad [\iota = বেধ]$

$$\therefore \frac{r_A^2}{r_B^2} = \frac{\rho_B}{\rho_A} : \text{APA}, \quad \frac{I_A}{I_B} = \frac{\frac{1}{2} m_A r_A^2}{\frac{1}{2} m_B r_B^2} = \frac{\rho_B}{\rho_A}$$

কিন্তু দেওয়া আছে $\rho_A > \rho_B$, অতএব, $l_B > l_A$.

* क्षित्रमात्र**ि**

□ तहनाम्भक श्री

- (a) জৌলক বেল, জৌলক ভ্রল, জৌলক ভরবেশ ও টর্কের সংজ্ঞা লেখে। টর্ক ও কৌলক ভ্রলের মধ্যে সম্পর্ক
 নির্ণয় করো।
 - (b) নিয়্মলিখিত রাশিগুলির মধ্যে সম্পর্ক নিয়রণ করে: (i) কৌনিক ও বৈথিক পতিবেশ (ii) বেশিকে ও বৈথিক ত্বরণ: (iii) কৌনিক ত্বরণ ও টক এবং (iii) কেশিক ভববেশ ও টক
- কৌণিক ভরবেগ সংরক্ষণ সূত্র বিবৃত করে। এর সমর্থনে একটি পরীক্ষা বর্ণনা করে। টেশিক ভববেগ য়েলার না ভেটব।
- অভিকেন্দ্র ও অপকেন্দ্র বল বলতে কী বোঝ বাাখা। করো। অভিকেন্দ্র বলের একটি বাশিমালা মর্ধারণ করো।
 অভিকেন্দ্র বলকে 'বান্তব বল' এবং অপকেন্দ্র বলকে 'অলীক বল' আখা। দেওয়া হয় ,কন ?
- 4. যখন কোনো বন্তু সমবেগে বৃত্তপথে পরিভ্রমণ করে, তখন যে সকল বল ক্রিয়া করে, ওাদের সম্প্রেশ সংক্ষেপে আলোচনা করে।। সেই সকল বলের রাশিমালা নির্ণয় করে।। দৈনন্দিন জীবনের কতকর্গাল উলাহরণ নিয়ে এই বলের অক্তিত্ব প্রমাণের স্বর্গকে যুন্তি দেখাও।
- দুভগতিতে বাঁক নেবার সময় কোন সাইকেল আরোহী নিজের ভারসাম্ম বজায় রাখার জনা বাঁকের দিকে নিজের দেহ
 হেলিয়ে দেয়। কেন
 গতিবেগ, নতি কোণ ও বৃত্তের ব্যাসার্ধের ভিতর সম্পর্ক স্থাপন করে।
- 6. । দৈর্ঘ্যের একটি সূতোর প্রান্তে আবম্ধ একটি বন্ধ বাধাহীনভাবে ঝুলছে। প্রমাণ করো যে সম্পূর্ণ উল্লম্ব বৃত্ত পরিক্রমা করতে বৃত্তুকে যে নিম্নতম অনুভূমিক বেগ V দিতে হবে তা v5 gl-এর সমান। 'e' অভিকর্মক ত্বরণ। আরও প্রমাণ করো যে ঐ অবস্থায় বৃত্তের সর্বনিম্ন বিন্দৃতে সূতোর ন্যুনতম টান বন্ধুর ওঞ্জনের ছয়গৃণ হবে।
- 7. M ভরবিশিষ্ট একটি পাথর সূতোয় বাঁধা অবস্থায় R বাাসার্ধের উল্লম্বতলে ঘূর্ণিত হচ্ছে। দেখাও যে সর্বোচ্চ অবস্থানে সূতোটি শিথিল হবে না যদি ঐ অবস্থানে পাথরটির বেগ \sqrt{gr} অপেক্ষা বেশি হয়।
- প্রমাণ করে। যে, একটি উত্তল সেতৃর উপর দিয়ে যাবার সময় কোনো মোটরগাড়ির ওজন সেতৃর উপর বিথর অবস্থায় থাকাকালীন ওজন অপেকা কম।

লংকিপ্ত উভরের প্রশা

- র্যাডিয়ান কী? কোশের র্যাডিয়ান পরিমাপ প্রত্যেক পশ্বতিতেই স্বিধাজনক কেন?
- বয়ৢকণা r ব্যাসার্দের বৃত্তপথে (i) কৌণিক বেগ নিয়ে ঘুরছে। তার রৈখিক বেগ, রৈখিক ত্বরণ ও কৌণিক ভরবেগেব
 মান লেখা। একটি চিয়ে এদের অভিমুখ দেখাও।
- 3. একটি চক্রের কেন্দ্রগত এবং তার তলের অভিলম্বভাবে গত এক অক্ষের চতুর্দিকে একটি চক্র ঘুরছে। চক্রের পরিধির উপর একটি কদা কল্পনা করো। যখন চক্রটি সমকৌণিক বেগে ঘুরছে তথন কণণ্য কি কোনো ন্যাসার্যমুখী ত্বরণ আছে? চক্রটি সমকৌণিক ত্বরণে ঘুরলে ঐ বিন্দ্র কি কোনো ব্যাসার্থমুখী ত্বরণ বা কোনো, স্পর্শাকীয় ত্বরণ থাকে?
- কোনো অক্ষ বেড়ে বাধাহীনভাবে ঘূর্ণনক্ষম দৃত্বসূর উপর টর্ক প্রয়োগ কবলে ঐ বন্তর যে কৌনিক ত্বরণ সৃষ্টি হয় তা

যে শৃধু বস্তুর সাইভ এবং আকারের উপর নির্ভর করে, তা নয়, ঐ অক্ষের সাপেক্ষে বস্তুর ভর-বন্টনের উপর নির্ভর করে। ব্যাখ্যা করো।

- 5. একটি গোল মস্ণ চ'কতির উপর একটি মস্ণ পিংপং বল রাখা আছে চাকতি ঘ্রতে আরম্ভ করলে বলটি চাকতি হতে পড়ে যায় কেন?
- 6. কোন সাইকেল আরোহী বাঁক নেবার সময় উল্লেখ্য সজো 45° কোলে আনত অকম্পায় বাঁক নিতে পারে কি ?
- এক ব্যক্তি একটি ঘূর্ণায়মান টেবিলের উপর দাঁড়িয়ে আছে। সে দৃই হাতে সমভরের দৃটি বয়ু নিয়ে হাত ছড়িয়ে দাঁড়িয়ে
 আছে। হাত না নাড়িয়ে সে হাত হতে বয়ু দৃটি ফেলে দিল। তার কৌলিক গতিবেগের কোন পরিবর্তন হবে কি ?
- 8. উচু স্থান হতে জলে ডাইভ দেবার সময় শরীর বেশি বাঁকিয়ে নিলে জল স্পর্শ করার পূর্বে বেশিবার ডিগবাজি (somersaults) খাওয়া যায় কেন?
- যাগ্রীপূর্ণ বাস সহসা বাঁক নিলে, যাত্রীরা বিপরীত দিকে ঝুঁকে পড়ে। বাসের যাত্রী এবং রান্তায় দণ্ডায়মান এক ব্যক্তি তা কীরূপে ব্যাখ্যা করবে?
- নির্মালখিত প্রশ্নগুলির উত্তর দাও: (i) অলীক বল বলতে কী বোঝ? অপকেন্দ্র বলকে অলীক বল বলা হয় কেন?
 (ii) পৃথিবীর আহ্নিক গতি কীভারে পার্থিব বস্তুর ওজনকৈ প্রভাবিত করে?
- 11. যে সকল ঘূর্ণায়মান যন্ত্রপাতির অংশ ঐ যন্ত্রের বহিরাংশকে ঘূর্ণাক্ষের সাথে যুক্ত রাখে তাদের ক্ষেত্রে কৌণিক বেগের একটি সর্বোচ্চ সীমা বেছে দেওয়া হয় কেন ?
- 12. একটি ছোটো চেনকে (chain) খব জোরে ঘরিয়ে মেঝের উপর ছেডে দিলে তা চাকার মতো গড়িয়ে যায়। কেন?
- সুতায় বাঁধা একটি পাথরখন্তকে উল্লম্ব বৃত্তপথে ঘোরানো হচছে। বৃত্তের কোন্ বিন্দুতে সুতোয় টান (1) সর্বোচ্চ এবং
 (ii) সর্বনিন্ন?

ত তাত সংকিও উত্তরের প্রবা

- নিম্নলিখিতক্ষেত্রে যে ধরনের বল অভিকেন্দ্র বল উৎপন্ন করে তার নাম উল্লেখ কর :
 (a) পৃথিবী প্রদক্ষিণরত একটি কৃত্রিম উপশ্রহ (b) বক্রপথে রেল লাইনের ব্যাংকিং (c) সুতায় বাঁধা ঢিলের অনুভূমিক তলে আবর্তন (d) পরমাণর ইলেকট্রনের আবর্তন।
- 2. একটি ঘুরন্ত টেবিলের উপর এক ব্যক্তি তার দুই বাহু ছড়িয়ে দিয়ে দাঁড়িয়ে আছে। ঐ ব্যক্তির তার দুই বাহু বুকের কাছে গুটিয়ে আনলে কি হবে ?
- 3. সুষম বৃত্ত গতি বজায় রাখতে হলে বস্তুর উপর সর্বদা বৃত্তের কেন্দ্রভিমূখী একটি বল প্রয়োগ করতে হয়। ঐ বলকে কি বলা হয় ?
- 4. पुर ना स्करन पुर ভर्लि वानिज्ञिक उन्नम्न वृज्यभाष्य स्थाताता यात्व कि ?
- 5. অপকেন্দ্র বল এবং অপকেন্দ্র প্রতিক্রিয়া কি একই ?
- বড়ুর ভর, ব্রুতি এবং বৃত্তপথের ব্যাসার্ধের মান ব্যবহার করে অভিকেন্দ্র বলের মান প্রকাশ করে।
- 7. কৌণিক বেগ বলতে কি বোঝ ? টর্ক ও কৌণিক ভরবেগের মধ্যে অবকল ভেষ্টর সমীকরণটি লেখো।

[Jt. Entrance 2005]

৪. টর্কের মাত্রা লেখো।

- [Jt. Entrance 2005]
- 9. রৈখিক বেগের মত কৌণিক বেগও কি ভেক্টর রাশি ? যদি হয়, তবে এর দিক্ কিভাবে নির্ণয় করা যায় ?
- 10. দ্বন্দ্র কাকে বলে ? দ্বন্দ্বের শ্রামকের মান ও দিক কিভাবে নির্দেশ করা হয় ?
- 11. একটি কণা স্থির দুতি v cm/s নিয়ে r ব্যাসার্ধের বৃত্তপথে ঘুরছে। তার কৌশিক বেগ কত ?
- 12. জাডাপ্রামক কি স্কেলার না ভের্টর ?
- 13. ঘড়ির ঘন্টার কাঁটার বৃত্তগতির কৌণিক বেগ পৃথিবীর নিজ অক্ষের চতুর্দিকে বৃত্তগতির কৌণিক বেগ অপেক্ষা বেশি না কম ?

সংক্রেড ঃ ঘন্টার কাঁটা 12 ঘন্টার একবার বৃত্তপথ ঘোরে কিন্তু পথিবী একবার বৃত্তপথ ঘোরে 24 ঘন্টায় অতএব ঘন্টার কাঁটার কোঁণিক বেগ পৃথিবীর কোঁণিক বেগের দ্বিগুণ।

14. অভিকেন্দ্র বলকে কার্যহীন বল বলা হয় কেন ?

⇒ বহুমুখী পছদের প্রশ্ন (Multiple Choice type (MCQ))

- নির্ভুল উত্তরটি √ চিহ্নিত করোঃ
 - [i] m ভরের একটি কশা সমতলে r বাাসার্ধের বৃত্তপথে ঘূর্ছে কশার কৌশিক ভর্বেগ = L ; কশার উপর

ক্রিয়ারত অভিকেন্দ্র কল

(A)	$\frac{L}{mr^2}$		$(B) \frac{L^2}{m^2r^2}$	(C) $\frac{L^2}{mr}$	(D)	$\frac{L^2}{mr^3}$
-----	------------------	--	--------------------------	----------------------	-----	--------------------

[ii] সমত্তলের উপর Μ ভারের এবং R ব্যাসার্ধের একটি চাকতি ω কৌণক বেগে গড়িয়ে য'লেচ : মুলবিন্দু () সাপেকে চাকতির কৌপিক ভরবেগ

(A)
$$\frac{1}{2}MR^2\omega$$
 (B) $MR^2\omega$ (C) $\frac{3}{2}MR^2\omega$ (D) $2MR^2\omega$

[iii] কোনো এক বিন্দু সাপেক্ষে একটি বস্তুর উপর ক্রিয়ারত টর্ক $\overrightarrow{\mathfrak{t}}=\overrightarrow{A}\times \overrightarrow{L}$ যেখানে \overrightarrow{A} একটি স্থিরমানের ভেক্টর এবং L=0 বিন্দু সাপেকে বন্ধর কৌনিক ভরবেগ। এথেকে সিখান্ত করা যায়

$$(A)$$
 সর্বদা $\dfrac{\overrightarrow{dL}}{dt}$ এবং $\overset{\longrightarrow}{L}$ পরস্পারের লম্ব

(B) \overrightarrow{A} ভেক্টরের অভিমুখে \overrightarrow{L} -এর উপাংশ সময়ের সাপেকে অপরিবর্তিত থাকে

(C) I -এর মান সময়ের সাপেকে অপরিবর্তিত থাকে

(D) \overrightarrow{L} সময়ের সাপেকে পরিবর্তন করে না।

[iv] m ভরের একটি কণা স্থির ব্যাসার্ধ r এর বৃত্তপথে এরুপভাবে আবর্তন করছে যে তার অভিকেন্দ্র ত্বরণ a_r সময়। এর সাথে $a_r = k^2 r l^2$ সমীকরণ অনুযায়ী পরিবর্তিত হচ্ছে। k একটি শ্ববসংখ্যা। কণার উপর ক্রিয়ারত বল যে ক্ষমতা প্রয়োগ করছে তা

(A)
$$2m\pi k^2 r^2 t$$
 (B) $km^2 r^2 t$ (C) $\frac{1}{3} mk^4 r^2 t^5$ (D) $\sqrt[m]{eq}$

[Hints:
$$a_r = k^2 nt^2$$
; $\frac{v^2}{r} = k^2 nt^2$ जलन $v = knt$; $\lambda \frac{dv}{dt} = kr$.

ক্রিয়ারত বল F=m. $\frac{dv}{dt}=mk.r$; : ক্ষাতা $=F.v=mkr\times k.rt=mk^2r^2t$]

m ভরের একটি পাথরখন্ডকে সূতোয় বেঁধে অনুভূমিক বৃত্তপথে ঘোরানো হচ্ছে। সূতোর দৈর্ঘ্য আন্তে আন্তে কমানো হচ্ছে যাতে বুত্তের কেন্দ্রবিন্দু সাপেকে কণার কৌণিক ভরবেগ একই থাকে। এক্ষেত্রে সুতোর টান T = A.r" যেখানে A একটি ধ্রবসংখ্যা এবং r বৃত্তের তাৎক্ষণিক ব্যাসার্ঘ। n-এর মান হবে

(A) -3 (B) -2 (C)
$$-\frac{1}{2}$$
 (D) $-\frac{1}{3}$

m ভরের একটি বস্তুকণাকে অনুভূমিকের সঙ্গো 45° কোণ করে V গতিবেগ দিয়ে নিক্ষেপ করা হল। কণাটি যখন গতিপথের সর্বোচ্চ বিন্দুতে উপস্থিত হবে তখন প্রক্ষেপ বিন্দুর সাপেক্ষে কণার কৌণিক ভরবেগের মান হবে

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{1}{4\sqrt{2}} \cdot \frac{m_{\nu}v^{3}}{g}$ (C) $\frac{1}{\sqrt{2}} \frac{mv^{3}}{g}$ (D) $m\sqrt{2gh^{3}}$

 m_1 এবং m_2 ভরের দৃটি গাড়ি যথাক্রমে r_1 এবং r_2 ব্যাসার্যের বৃত্তপথে ঘুরছে। একবার সম্পূর্ণ বৃত্তপথ ঘুরে আসতে যদি তাদের একই সময় লাগে, তবে তাদের কৌণিক গতিবেগের অনুপাত হবে,

(A)
$$\frac{m_1}{m_2}$$
 (B) $\frac{r_1}{r_2}$ (C) $\frac{m_1 r_1}{m_2 r_2}$ (D) 1

[viii] সূতোয় বাঁধা একখণ্ড পাথরকে বৃত্তপথে ঘোরানো হচ্ছে। সূতো ছিড়ে গেলে পাথরখণ্ডটি

(A) বৃষ্টের কেন্দ্রের দিকে ছুটে যাবে (B) বৃত্তের কেন্দ্রের বর্ছিমুখী ছুটে যাবে

(C) বৃত্তের স্পর্শক বরাবর ছুটে যাবে (D) থেমে যাবে।

[ix] একটি ঘূর্ণি টেবিলের উপর একটি ছোটো মূদ্রা রাখা আছে। মূদ্রাটিকে টেবিলের কেন্দ্র থেকে 4 cm দুরে রাখলে, মুদ্রাটি পিছলাতে শুরু করে। ঘূর্ণি টেবিলের কৌণিক গতিবেগ দ্বিগুণ করলে, মুদ্রাকে কত দরে রাখলে

	সেটা সদা পিছলাতে শুরু করবে ?
	(A) 1 cm (B) 2 cm (C) 4 cm (D) 8 cm.
[x]	R নাস্পর্নর একী ওভাবব্রীভ দিয়ে একটি মেটের সাইকেল যাচেছ। সাইকেল ওভারব্রীভের উপর উঠাতে
	থাকলে, তার উপর অভিলয় বল (normal force)
	(A) বৃদ্ধি পারে (B) হ্রাস পারে (C) একই থাকরে (D) কখনও বৃদ্ধি পারে, কখনও হ্রাস পারে।
[xi]	উল্লন্ন তলে দলতে একুণ একটি সরল দোলকেব কৌনিক সরণ ।। দোলক পিডের ভর m হলে সুতায় টান
	wa cos 9
	(A) সর্বদা mg cos θ (B) কখনই না
	(C) বিস্তারের শেষ প্রায়ে mg cos θ (D) পতিপথের মধ্য অবস্থানে।
[xii]	একটি বস্তুক্রমা বন্ধপথে গতিশীল। গতির সময় তার নির্মাণখিত রাশিগুলি স্থির থাকতে পারে
	(A) প্রতি (B) গতিবেশ (C) স্বরণ (D) স্বরণের মান।
[xiii]	নিম্নলিখিত মাত্রাস্ত্রগুলির কোন্টি টর্কের মাত্রা ?
[Massa]	(A) MLT^{-2} (B) $ML^{-1}T^{-2}$ (C) $M^{-1}L^{2}T^{-2}$ (D) $ML^{2}T^{-2}$.
[xiv]	দৃঢ় বস্তুর উপর একটি বিন্দু ঘূর্ণাক্ষ থেকে 5 cm বরে অবস্থান করে 10 rad/s বেগে ঘুরছে। ঘূর্ণাক্ষ থেকে
()	10 cm দুরে একই বন্ধুর উপর আর একটি বিন্দুর Q-এর বেগ হবে
	(A) 2 rad/s (B) 20 rad/s (C) 15 rad/s (D) 10 rad/s.
[xv]	2 kg ভরের একটি বন্ধু 2 m ব্যাসার্ধের বৃত্তপথে 10 r.p.m বেগে আবর্তন করছে। বন্ধুর উপর ব্রিয়ারত
	অভিকেন্দ্ৰ বল
	(A) 4.38N (B) 503N (C) 50N (D) 5N
[xvi]	দভিতে বাধা একটি পাথরথন্ড একটি উল্লম্ব বৃত্তপথে ঘুরছে। যখন পাথরখন্ড বৃত্তপথের সর্বনিম্ন বিন্দু অতিক্রম
	করছে তখন সূতোর টান ' '
	(A) সর্বনিম্ন (B) সর্বাধিক (C) সর্বনিম্নও না সর্বাধিকও না (D) শূনা।
[xvii]	একটি বস্তুকণা , ব্যাসার্ধের উল্লম্ব বৃত্তপথ ঠিক সম্পূর্ণ ঘূরে আসে। বৃত্তপথের শীর্ষবিন্দৃতে তার গতিবেগ
	(A) $\sqrt{5gr}$ (B) $\sqrt{2gr}$ (C) \sqrt{gr} (D) কোনোটাই নয়।
[xviii]	নিম্নলিখিত যুগ্ম রাশিগৃলি মধ্যে একটার রাশি দৃটির মাত্রা সমান। সেটি কোন্টি ?
	(A) টর্ক এবং কার্য (B) কৌলিক শ্রামক এবং কার্য
	(C) শব্তি ও জাড্যশ্রামক 🔒 : 😁 (D) ক্ষমতা ও চক্রগতির ব্যাসার্থ।
[xix]	একটি গ্ণিব টর্ক 500 Nm একটি চক্রকে কেন্দ্রগত অক্ষ সাপেক্ষে আবর্তন করাচ্ছে। ওই অ ক্ষ সাপেক্ষে চক্রের
	জাডাভামক 100 kgm² 2 সেকেন্ড সময় চক্রেব কৌশিক রেগ যতটা বৃশ্বি পাবে তা
	(A) 1 rad/s (B) 4 rad/s (C) 6 rad/s (D) 10 rad/s.
[xx]	সমতলে থেকে কোনো এক বিন্দর চতুর্দিকে বন্ধু আবর্তন করলে, তার কৌশিক ভরবেগের অভিম্থ হবে
	(A) ব্যাসার্ধ বরাবর (B) বৃত্তপথের স্পর্শক বরাবর (C) আবর্তন তলের সঞ্জে 45° কোণে আনত সরল
	রেখা বরাবর (D) ঘূর্ণাক্ষ বরাবর।
[xxi]	r ব্যাসার্ধের একটি বক্রপথে to গতিবেগের জনা ব্যক্তিং করা আছে। W ওজনের একটি গাড়ি ওই চক্রপথ
	বরাবর p গতিবেগে চলে গেলে, রাস্তার অভিলম্ন প্রতিক্রিয়া হয় N ; এক্ষেত্রে
	(A) অভিকেন্দ্র বল হবে W এবং N এর লব্দ্বি (B) অভিলম্ন প্রতিক্রিয়া হবে W (C) অভিকেন্দ্র বল হবে
	मुना (D) অভিকেন্দ্র বল হবে W।
[itxx]	দড়িতে নাধা একটি লাগত্তখন্ত উল্লন্ধ বৃত্তপথে ঘূরছে। দড়িতে সর্বাধিক এবং সর্বনিম্ন টানের পার্থক্য 3 kgwt
[AAII]	মলে, পাধরধন্তের তর
	(A) 0.25 kg (B) 0.50 kg (C) 2.0 kg (D) 3.0 kg.
xxiii)	হিলার ক্রেন্সিক স্কুন্রের ঘুর্বার্থান একটি বক্তৃক্পার ক্রেনিক সরণ $\theta = 4I+4I ^2$, θ রেভিয়ান এককে এবং I
	সেকেতে পরিমাপ করা হয়েছে। কণার কৌনিক ত্বণ
	(A) 14 rad/s^2 (B) 4 rad/s^2 (C) 2 rad/s^2 (D) 8 rad/s^2 .
[xxiv]	েক্টি নিৰেট পোলক টেবিলের উপর দিয়ে পড়িয়ে গাড়েছ। গোলকেব আবার্ত গতিশান্তি ও মোট গতিশান্তির
AAIV	অনুপাত
	(A) $\frac{7}{10}$. (B) $\frac{2}{7}$ (C) $\frac{1}{2}$ (D) $\frac{1}{5}$

- সূতোয় বাঁধা একটি ঢিলকে সমদ্ভিতে অনুভূমিক তলে চক্রাকারে ঘোরানো হচছে। বৃত্তের ব্যাসার্ধ 40 cm এবং ঢিলের
 দুভি 160 cm/s হলে, ব্যাসার্ধমুখী ত্বরণের মান নির্ণয় করো।
 [Ans. 6.4 m/s²]
- 9. 2 g ভরের বস্তুকে 100 cm দীর্ঘ স্তাের সাহায্যে অন্ভূমিক বৃত্তাকার পথে আবর্তন করানাে হচ্ছে এবং 1.2 s সময়ে 3 বার পূর্ণ আবর্তন সম্পন্ন করছে। সুতাের টান নির্ণয় করাে। g = 980 cm/s². [Ans. 50.4 g-w৷ (প্রায়)]
- 10. একটি সুতোর একপ্রান্তে m ভরের একটি ক্ষুদ্র বস্তুকে বেঁধে r_1 ব্যাসার্হের অনুভূমিক বৃত্ত বরাবর υ_1 বেগে ঘোরানো হক্ষে। সুতোর অপর প্রান্ত টেবিলের কেন্দ্রে একটি ছিদ্র দিয়ে ঝুলে আছে। এখন সুতো টেনে বৃত্তের ব্যাসার্ধ r_2 করলে $(r_1)^2$
 - $< r_2$) বস্তুর নতুন রৈখিক গতিবেগ ও কৌনিক গতিবেগ কী হবে ? [Ans. $rac{v_1 r_1}{r_2}$: $\omega_1 \left(rac{r_1}{r_2}
 ight)^2$]
- 11. 20 cm দীর্ঘ একগাছা সূতোয় 150 g ভরের বন্ধু বেঁধে একটি পিনের চারদিকে মিনিটে 120 বার ঘোরানো হচ্ছে r সূতোর টান এবং উল্লেম্ব রেখার সাথে সূতোর নতি কত? [Ans. 4.73×10^5 dyne; $71^\circ 56^\circ$] সংকেতঃ সূতোর নতি θ হলে, $T\cos\theta = mg$ এবং $T\sin\theta = m\omega^2 r$. কিন্তু $r = l\sin\theta$ $T\sin\theta = m\omega^2 l\sin\theta$ অথবা $T = m\omega^2 l$: আবার $\cos\theta = g/\omega^2 l$. এম্পলে, $\omega = 2\pi$ $n = 2\pi$ \times (120/60)
- 12. রেলসাইনের একটি বাঁকের ব্যাসার্ধ 45 m; লাইনের দুই পাটির ভিতরকার দূরত্ব 1.5 m, ভিতরের পাটি অপেক্ষা বাইরের পাটি 12 cm উঁচু হলে, ট্রেন সর্বাপেক্ষা কত বেশি বেগে ঐ বাঁক নিতে পারবে যাতে কোনো পার্ধ চাপ না পড়ে ? [Ans. 5.94 m/s]
- 13. একটি গাড়ির দুই পাটি চাকার দূরত্ব 1.35 m এবং ভূমি হতে তার ভারকেন্দ্রে উচ্চতা 45 cm : 60 m ব্যাসার্ধের একটি সমতল বৃত্তপথে গাড়িটি বাঁক নেবে। গাড়িটির সর্বোচ্চ বেগ কত হবে?
- 14. একটি বালতি দুধ হাতে করে উল্লম্ব তলে 66 cm ব্যাসার্ধের বৃত্তপথে ঘোরানো হচ্ছে। সর্বনিম্ন কত ধুতিতে খোরালে উপুড় হওয়া সত্ত্বেও দুধ পড়ে যাবে না ? g = 980 cm/s² [Ans. 2.54 m/s (প্রায়)]

(সংকেতঃ $\frac{v^2}{r} = g$)

- 15. 26(N) kg ভরের মোটনগাড়ি 10() km/h বেগে চলতে চলতে 15() metre ব্যাসার্ধের একটি বাঁক নেবে। রাস্তার ব্যাংকিং কোণ কত হবে যাতে গাড়িটি পিছলিয়ে না যায়? এক্ষেত্রে রাস্তা ও টায়ারের ঘর্ষণগুণাঙক কত কম হওয়া চলবে?
- 16. একজন সাইকেল মারোহী 5 metre/s বেগে চলে 2 metre ব্যাসার্শের বাঁক নিজে। মারোহীর ৩র 50 kg হলে, ভার উপর অভিকেন্দ্র বল কঙ? এটা মারোহীর ওজনের কত গুণ? [Ans. 625N: 1 27 গুণ]
- 18. একটি সাইকেল আরোহী R ব্যাসার্ধের বৃত্তপথে V দুভিতে সাইকেল চালিয়ে ভূমির সাথে 🖯 কোণে ছেলে পড়ে। দেখাও

বে $\tan \theta = \frac{gR}{V^2}$; g = অভিকৰ্মজ জ্বলগ

- একটি কৃত্রিম উপশ্রহ পৃথিবীর খুব নিকট দিয়ে বৃত্তপথে পরিশ্রমণ করছে। ৩০ মিনিটে তা একবার ঘুরে এলে, তার গুরণ কঙ্ পৃথিবীর ব্যাসার্ধ 6.4 x 10° কিলোমিটার।
- 20. অনুভূমিক নাগরদোলার কেন্দ্র হতে $4.5 \, \mathrm{m}$ দূরে একটি বালক বসে আছে। নাগরদোলা গুরুতে আরম্ভ করলে যখন বেগ $10 \, \mathrm{rp \, m}$ ছাড়াল ঠিক তখন বালকটি পিছলে পড়ল। বালক ও নাগরদোলার ভিতর ঘর্ষণগুণাক্ষক কতে $9.8 \, \mathrm{m}$ 2 [Ans. 0.50]
- 21. একটি বিমান 720 km/h গতিবেগা নিয়ে অন হুমিক বৃত্তপথে চক্রাকারে ঘুরছে । বিমানের ডানার বাংকিং কোগ 15° হলে, ব্যস্তর বাংসার্থ ক্তও tan 15' : 0.26"9 [Ans. 15.23 km]
- 22. 500 g ভবের পাথ্যখন্তরে ব্যান্ত একটি সূত্রায় বেঁধে উল্লন্ন বৃদ্ধপথে ঘোরণনো হবে সূত্রা 20 N টান সন্ধ্র করতে পাবে পাথ্যখন্তরে রখা ভোবে খোনাতে আবস্ভ করতে, এক সময় সূত্রে উচ্চ গোল বৃদ্ধের কোন বিন্দৃতে হা সন্ধান হথান পাথ্যখন্তর কালিক বেশ করত (Ans. ব্যারণ সর্পীনার বিন্দৃত্ত ? 7 rad/s)
- 23. ১(৪) ৮ নার্বালয় পাছার্য স্থানার ওকলারে দ্বালা হল উল্লয় ওলে 200 cm বার্সার্বালয় বরণায় 4 metre/s এবলে সাবোলো হলে পাছারীত স্থান্ত হল সম্বীনন্ন অসমধানে স্থান্ত টান নির্বাহ করে। ৮ ৭৪০ cm/s²

[Ans. 31 × 10⁴ dyne; 129 × 10⁴ dyne]

24. যা (rpm । বাল ঘণ্ডামান একটি ঘৃণিটোনালের (tum table) উপর একটি মুলা । বাছে কোটা । বাল য়ে মুলাটি সাল ঘৃণ্ডাম হতুর আনিক (tit.m) নার ঘাতে একে এ না বিভাগে ঘণিটোনাকে সাজে। মুবতে পাতে, ঘণ্ডাম এক বাছামারে মুলাটিক কালে এ না সভাগে ঘৃণিটোনালক সাজে। মুবতে পাতার ফালা টোকা 48 rpm ।বালে ঘৃণ্ডার ৫ g − ৭০০ \ (πν√) [সংকেড ঃ $\omega_1^2 \times 10 = \omega_2^2 x$; $\omega_1 = 33\frac{1}{3}$ r.p.m. এবং $\omega_2 = 45$ r.p.m.] [Ans. 5.49 cm]

25. 20 rad/s কৌশিক বেগে আবর্তনশীল একটি চক্রকে একটি স্থির মানের টর্ক প্রয়োগ করে 4 সেকেন্ড সময়ে স্থিরবস্থায় আনা হল। ঘূর্ণাক্ষের সাপেক্ষে চক্রের জাড্য ভ্রামক 0.2 kg-m² হলে টর্কের মান নির্ণয় করো।
[সংকেতঃ পৃষ্ঠার 3 নং অঞ্চ দেখো]

🖚 কঠিন গাণিতিক প্রশ্ন

- উল্লন্থ অক্ষের সাপেক্ষে একটি অনুভূমিক চাকতি 100 r.p m. বেগে ঘুরছে। 10 g ভরের একটি ছোটো মোমের টুকরা খাড়াভাবে পড়ে অক্ষ হতে 9 cm দূরে চাকতিতে আটকে গেল। চাকতির জাড়্য-ভ্রামক 7.3 x 10³ g-cm² হলে, তার বর্তমান কৌনিক বেগ কত হবে?
- 2. একটি গ্রামোফোনের ঘূর্ণায়মান চাকতির কেন্দ্র হতে 7 cm দূরে একটি ক্ষুদ্র মুদ্রা রাখা আছে। শূন্য থেকে ঘূর্ণনের হার ধীরে ধীরে বেগ বৃদ্ধি করায় যখন মিনিটে 60 বার আবর্তন করতে লাগল তখন মুদ্রাটি বাইরের দিকে চলতে আরম্ভ করে। মুদ্রাটি 12 cm দূরে রাখলে তা চাকতির কন্ত ঘূর্ণন বেগে ছিট্কে বাইরে দিকে চলবে? ঐ বন্ধুর পরিবর্তে দ্বিগুল ভরের একটি বন্ধু পূর্বের 7 cm দূরের বিন্দুতে রাখলে, ছিট্কে যাবার ঘূর্ণন বেগ কত হবে? [Ans. 45.82 rev/min; 42.43 rev/min]

 সার্কাসে একজন মোটর সাইকেল আরোহী 5 মিটার ব্যাসার্ধের একটি বৃত্তাকার খাঁচার মধ্যে সাইকেল চালাচ্ছে। খাঁচার সর্বোচ্চ বিন্দু অতিক্রমকালে তার নিম্নতম বেগ কত হবে যাতে খাঁচার সাথে সংস্পর্ণ ছেদ না হয়?

[Ans. 700 cm/s]

- 4. আর্চের ন্যায় বাঁকানো একটি সেতুর পরিকল্পনা করতে হবে যাতে গাড়িগুলি সর্বাধিক 180 km/h বেগে সেতুর সর্বোচ্চ বিন্দুর উপর দিয়ে না লাফিয়ে নিরাপদে চলে যেতে পারে। সেতুর সর্বনিম্ন বা সর্ববৃহৎ বক্ততা ব্যাসার্ধ কত করতে হবে?

 [Jt. Entrance 1975] [Ans. 255 m (প্রায়)]
- 5. 10 g ভরের একটি বন্ধুকণাকে 100 cm দীর্ঘ একটি সূতোয় বেঁধে উল্লম্বভলে ঘোরানো হচ্ছে। উল্লম্বের সাথে সূতো যখন 60° কোণ করে তখন বন্ধুকণার গতিবেগ 200 cm/s। বন্ধুকণা যখন বৃত্তপথের সর্বনিম্ন বিন্দুতে তখন তার গতিবেগ কত হবে? g = 980 cm/s² [Ans. 671.5 cm/s]
- 6. টেবিলের উপর রাখা m ভরের একটি বন্ধু সূতো দ্বারা একটি ঝুলন্ত ভর M (M>m)–এর সঞ্জো যুন্ত। সুতোটি টেবিলের একটি দ্বিদ্র চলে গিয়ে M ভরকে ঝুলিয়ে রেখেছে। m ভর r ব্যাসার্ধের বৃত্তপথে υ গতিবেগে ঘুরে

যদি M ভরকে স্থিরাকথায় রাখে তবে প্রমাণ কর যে $\upsilon = \sqrt{\frac{Mg.r}{m}}$

[সংকেত ঃ এক্ষেত্রে T= সূতোর টান $=\frac{mv^2}{r}$; আবার Mg=T]

- 7. 4 metre দীর্ঘ সূতোর প্রান্তে 60 g ভর যুক্ত আছে। সুষম বেগে সেটা অনুভূমি তলে বৃহুপথে ঘুরছে। ঐ বৃত্তপথের তল সুন্তার উপর প্রান্ত করে 3.2 মিটার নীচে। সূতোর টান এবং একবার পূর্ণ বৃত্ত ঘুরতে কত সময় লাগে নির্ণয় করে।
 [Jt. Entrance 1981] [Ans. 7.35 × 10⁴ dyne; 2.785 s]
- 8. ট্রেনের একটি কামরার ছাদ হতে নমনীয় তার হারা একটি বাতি ঝোলানো আছে। ট্রেনটি অনুভূমিক তলে $200 \, \mathrm{m}$ ব্যাসার্ধের বক্রপথে ঘূরে গেলে বাতিটি উল্লখ রেখার সাথে 19°48' কোণে হেলে থাকে। ট্রেনের গতিবেগ কত? $g=9.8 \, \mathrm{ms}^{-2}$ এবং $\tan 19°48'=0.36$. [Ans. $26.56 \, \mathrm{ms}^{-1}$]
- 9. m ভরের দৃটি বুক একটি দভের দৃষ্ট প্রান্তে আবস্থ (চিত্র 1 35)।
 দঙ্কের কেন্দ্র দিয়ে গত একটি উল্লম্ব অক্ষের চতুর্দিকে দণ্ডটি ঘুরছে।
 দঙ্কের উপর চান T₀ এর বেশি হলে দণ্ডটি ভেঙে যায়। দণ্ডটি
 সর্বাধিক কত কম্পাতেক ঘুরতে পারবে যাতে তা ভেজো না পড়ে?

Ann. $n = \frac{1}{2\pi} \sqrt{\frac{T_0}{ml}}$

10. 01 মিটার বাসমর্থবিশিন্ট একটি অর্থগোলাকৃতি পাত্র দ্বীয় কেব্রুগামী অক্ষের চারদিকে ০০ কৌশিক বেগে ঘুরছে। 10 ² kg ভরেব একটি কণাও পাত্রের মসুল অভান্তরে একট কৌশিক বেগে ঘুরছে। পাত্রের ভলনেল হতে কণাটির উচ্চতা h হলে, h এবং ০০-এর ভিতর সম্পর্ক নির্পন্ন করো। h>0 হতে গেলে ০০-এর ল্যুনতম মান কী হবে ?

[Ans. $h = 0.1 \left(1 - \frac{98}{\omega^2} \right)$; 9.89 rad/s]

11. F = 21N একটি বল অনুভূমিক অমসৃণ তলে রাখা 3 kg ভরের একটি গোলকের শীর্ষবিন্দৃতে স্পর্শকীয়ভাবে ক্রিয়া করছে (চিত্র 1.36)। গোলকটি না পিছলে কেবল গড়িয়ে চললে, গোলকের কেন্দ্রবিন্দুর ত্বরণ নির্দ্য করো।

[সংকেত ঃ F বলের জন্য যখন গোলকটি গড়াবে তখন তলের সঙ্গো তার স্পর্শবিণ্দু A বাঁদিকে সরে যাবে ; ফলে গোলকের ওপর ঘর্ষণ বল f ডান দিকে ক্রিয়া করবে। গোলকের রৈখিক ত্বরণ a হলে, কেন্দ্রবিদ্ধুর সাপেক্ষে কৌণিক

ত্বণ হবে $\alpha = \frac{a}{r}$.

কেন্দ্রের রৈখিক গতির জন্য, F + f = ma (i)

এবং আবর্ত গতির জন্য $F.r - f.r = I.\alpha = \left(\frac{2}{5}mr^2\right)\left(\frac{a}{r}\right)$

অতএব, $F - f = \frac{2}{5}$ ma (ii)

$$\therefore a = \frac{10}{7} \times \frac{F}{m} = \frac{10}{7} \times \frac{21}{3} = 10 \text{ ms}^{-2}$$

12. একটি r ব্যাসার্ধযুম্ভ গোলক প্রাথমিকভাবে তার অনুভূমিক অক্ষ বরাবর a) কৌণিক বেগে ঘুরছে। গোলকটি যখন একটি তলের (ঘর্ষণ গুণাঙ্ক = µ) উপর পড়ে তখন প্রথমে তা পিছলাতে থাকে। তারপর না পিছলে আবর্তিত হতে থাকে। (i) ভরকেন্দ্রের চুড়ান্ত রৈখিক বেগ কত হবে ? (ii) এই গতিবেগ পাবার আগে গোলকটি কত দূরত্ব অভিক্রম

করবে ?

[Jt. Entrance 2001] [Ans. (i)
$$\frac{2}{7} \omega r$$
 (ii) $\frac{2}{49} \frac{\omega^2 r^2}{\mu_R}$]

F=21n

(i)	D	(iv)	13	(xi)	C		13				
						(xvi)	13	(xxi)	A	(ixxx)	(
(ii)		(vii)	1)	(xii)	A, D	(Avii)	('	(avii)	4	(XXVIII)	C
(111)	A. B. C	(viii)	C	(xiii)	[)	(xviii)	A	Oxiii)	1)	(XXXIII)	B
(ÉV)	В	(ix)	A	(xiv))	(xix)	J)	(xxiv)	В	(ANIX)	4,0
IV)	A	EX.)	1	(xv)	A	(xx)	D	(337)	((1111)	

মহাকর্ষ

[GRAVITATION]

2.1. नुजना (Introduction):

সূর্যকে কেন্দ্র করে গ্রহগুলি সর্বদা ঘুরছে। বহুপূর্বে জ্যোতির্বিদ টাইকো ব্রেই (1546–1601) ও জোহানেস কেপলার (1571–1630) গ্রহগুলির এই গতি পর্যবেক্ষণ করে কতকগুলি সূত্র দিয়েছিলেন। কিন্তু কেন গ্রহগুলি সর্বদা ঘুরছে তার কোনো কারণ তাঁদের জানা ছিল না। পরে মহাবিজ্ঞানী স্যার আইজ্যাক নিউটন (1642–1728) যখন মহাকর্ব সূত্র (law of gravitation) প্রতিষ্ঠা করেন তখন সেই কারণ জানা গেল। মহাকর্য পদার্থের সাধারণ ধর্ম। কঠিন, তরল এবং গ্যাসীয় সকল পদার্থেরই এই ধর্ম আছে।

2.2. নিউচনের মহাক্ষ সূত্র (Newton's law of gravitation

বিশ্বের যে-কোনো দৃটি বস্তুকণা পরস্পরকে তাদের সংযোজী সরলরেখা বরাবর আকর্ষণ করে। এই আকর্ষণের মান বস্তুকণা দৃটির ভরের গুণকলের সমানুপাতি এবং তাদের ভিতরকার দূরত্বের বর্গের ব্যক্তানুপাতি (inversely proportional)। এটাই নিউটনের মহাকর্ষ সূত্র।

m

m
2

বস্তুকণা দুটির ভর m_1 ও m_2 ধরলে এবং তাদের ভিতরকার দূরত্ব d হলে [চিত্র 2.1], সূত্রানুযায়ী তাদের পারস্পরিক আকর্ষণ বল (i) $F \propto m_1 \, m_2$ [যথন দূরত্ব (d) পিথর থাকে] (ii) $F \propto \frac{1}{d^2}$

[যখন কণা দৃটির ভর $(m_1$ ও m_2) স্থির থাকে] অর্থাৎ, $F \propto \frac{m_1 m_2}{d^2}$ [যখন d, m_1 এবং m_2 পরিবর্তিত

হয়] অথবা, $F = G \frac{m_1 m_2}{d^2}$(i)

মিউব্য ঃ (i) নং সমীকরণ থেকে বন্তুকণাদ্বয়ের পারস্পরিক আকর্ষণ বলের পরিমাণ জানা যায়। আতএব, m_2 অভিমুখে m_1 কণার ত্বরণ হবে Gm_2/d^2 । একইভাবে m_1 অভিমুখে m_2 কণার ত্বরণ হবে Gm_1/d^2 । লক্ষ করো যে পারস্পরিক আকর্ষণ বল সমান হলেও কণাদ্বয়ের ত্বরণ সমান নয়। আকৃষ্ট বৃত্তুর ত্বরণ আকর্ষণকারী বৃত্তকশার ভরের সমানুপাতি।

(ii), (i) নং সমীকরণ কেবলমাত্র কণার ক্ষেত্রে প্রযোজ্য। বিস্তৃত বস্তুর ক্ষেত্রে ওই সমীকরণের সরাসরি প্রয়োগ চলে না।।

ধ্বসংখ্যা G-কে বলা হয় মহাকরীয় ধ্বক (Gravitational constant)। সি.জি.এস্. পর্মান 6.67×10^{-8} ; দৃটি । গ্রাম ভরের বস্তুকণাকে $1~{\rm cm}$ দূরে রাখলে তারা পরস্পারের প্রতি

^{*} টাইকো ব্রেই এবং কেপলারের বছপুরে বিশিষ্ট ভারতীয় জ্যোতির্বিদ ও গণিতবিদ আর্যন্তট্ট চাঁদ, পৃথিবী, প্রহ ইত্যাদি নভোবরুর গতিবিদ পৃত্যানুপৃত্যবুপে পর্যালোচনা করেছিলেন এবং তাঁর মতামত 'আর্যভাট্টিয়া' নামে বিখ্যাত প্রশেষ জিপিকত করে গোলেন।

6.67 × 10^{-8} dyne আকর্ষণ বল প্রয়োগ করবে। এটা সর্বপ্রথম পরীক্ষামূলকভাবে নির্ণয় করেন বিজ্ঞানী হেনরী ক্যাভেডিস 1798 খ্রিস্টাব্দে। বলা বাহুল্য, মহাক্ষীয় আকর্ষণ খুবই ক্ষীণ।

এস্.আই. পম্ধতিতে G–এর মান $6.67\times 10^{-11}{\rm N}$; অর্থাৎ দুটি $1~{\rm kg}$ ভরের বস্তুকণাকে $1~{\rm m}$ দূরে রাখলে তারা পরস্পরের প্রতি $6.67\times 10^{-11}{\rm N}$ আকর্ষণ বল প্রয়োগ করবে।

G-এর সংজ্ঞা ও এককঃ

 $F=G\,rac{m_1m_2}{d^2}\;; m_1=m_2=1$ এবং d=1 হলে G=F ; একক ভরবিশিক্ট দৃটি বস্তুকণা একক দূরত্বে থেকে যে পরিমাণ বল ঘারা পরস্পরকে আকর্ষণ করে তাকেই মহাকর্ষীয় ধ্রুবক বলা হয়।

পূর্বোক্ত (i) নং সমীকরণ হতে লেখা যায়, $G = \frac{Fd^2}{m_1 m_2}$. এথেকে G–এর যে একক পাওয়া যায় তা নিম্নরূপ ঃ F সি.জি.এস্. একক \rightarrow ডাইন–সে.মি 2 /প্রাম 2 (dyne-cm 2 /g 2) এস্.আই. একক \rightarrow নিউটন–মি 2 /কিলোগ্রাম 2 (newton-metre 2 /kg 2)

● G-এর মাত্রা (Dimension of G):

$$F = G \frac{m_1 m_2}{d^2}$$
 অতএব, $[G] = \frac{[F][d^2]}{[m_1][m_2^2]} = \frac{[MLT^{-2}][L^2]}{[M^2]} = [M^{-1} L^3 T^{-2}]$

নিউটনের মহাকর্ব সূত্রের বিশ্বজ্ঞনীনতা (Universality of Newton's law of gravitation):

নিউটনের মহাকর্ষ সূত্র পার্থিব ক্ষুদ্র দূরত্ব এবং মহাকাশের দুস্তর নাক্ষত্রিক দূরত্বের বেলাতে সমভাবে প্রযোজ্য। এই সূত্রের সরাসরি কোনো প্রমাণ না থাকলেও, এর উপর নির্ভর করে জ্যোতিষ্কমগুলীদের ক্ষেত্রে যে সকল গণনা (calculation) করা হয়েছে, তা অভ্রান্ত বলে প্রমাণিত হয়েছে। এই সূত্রের সাহায্যে সূর্যের চতুর্দিকে গ্রহগুলির গতিবিধি সুন্দরভাবে ব্যাখ্যা করা সম্ভব হয়েছে। তাছাড়া এই সূত্র মাধ্যম-নিরপেক্ষ এবং বফুকণা দুটির প্রকৃতি, তাপমাত্রা এবং রাসায়নিক উপাদান প্রভৃতি সম্পর্কেও নিরপেক্ষ; এই সকল কারণে এই সূত্রকে বিশ্বক্ষনীন বা সার্বিক বলে গণ্য করা যেতে পারে।

কিন্তু সূর্যের নিকটবর্তী অশ্বলে— যেখানে সূর্যের আকর্ষণ প্রবল— সেখানে এই সূত্রের সামান্য বিচ্নাতি দেখা যায়। যেমন বুধগ্রহের (Mercury) অনুসূর (perihelion) প্রতি একশ বছরে সামান্য ঘূর্ণগতির সৃষ্টি করে, দেখা আছে। নিউটনের মহাকর্ষ সূত্র এর কোনো ব্যাখ্যা দিতে পারেনি। তাছাড়া আপেক্ষিক তত্ত্ব অনুযায়ী গতিবেগের উপর বন্ধুর ভর নির্ভরশীল বলে এবং দূরত্বের পরিমাপ পর্যবেক্ষকের স্থিতির উপর নির্ভর করে বলে মহাকর্ষ সূত্রকে বিশ্বজনীন আখ্যা দেওয়া সম্ভব নয়। অতি ক্ষুদ্র দূরত্ব— যেমন, 10 9 m- এর মতো বা তদপেক্ষা ক্ষুদ্র আন্তরাণবিক দূরত্বের ক্ষেত্রেও এই সূত্র প্রয়োজ্য নয়।

□ Examples □

ি 5 kg এবং 8 kg ভরের দুটি কুদ্র বন্ধুর ভিতর আকর্ষণবল কত যখন তাদের পারস্পরিক দূরত্ব 10 cm ; $G=6.67 \times 10^{-11}$ S.J. unit.

3:1
$$F = \frac{G.m_1m_2}{d^2}$$
; around $G = 6.67 \times 10^{-11} \text{ (S.I.)} m_1 = 5 \text{ kg}$; $m_2 = 8 \text{ kg}$, $d = 10 \text{ cm} = 10 \text{ cm}$

0.1 metre.

$$\approx 9.54$$
, $F = \frac{6.67 \times 10^{-11} \times 5 \times 8}{(0.1)^2} = 26.8 \times 10^{-8}$ newton.

(৪) বিভিন্ন বাশির এককগুলি লক্ষ কর)

2 সমান ভরের দৃটি কণা পারস্পরিক মহাকর্ষীয় আকর্ষণের প্রভাবে R ব্যাসার্ধের বৃত্তপথে ঘুরছে। প্রত্যেক কণার গতিবেগ হিসাব করো।

উঃ। কণা দৃটি সর্বদা বৃত্তের ব্যাসের দৃই প্রান্তে থাকবে : কারণ *তাহলে* তাদের পারস্পরিক মহাকর্ষীয় আকর্ষণ বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রাভিমুখী হবে। যে-কোনো একটি কণার গতি

বিবেচলা করলে, তার উপর আকর্ষণ বল
$$F = G. \frac{m \times m}{(2R)^2} = \frac{Gm^2}{4R^2}$$

প্রতিটি কণার বেগ υ হলে, প্রতি কণার অভিকেন্দ্র বল = $\frac{m\upsilon^2}{R}$

পু উয় গতি ৰজায় রাখতে গেলে,
$$\frac{m v^2}{R} = \frac{G m^2}{4 R^2}$$
 অথবা, $v = \sqrt{\frac{G.m}{4R}}$

নভোমগুলীয় বন্তুগুলির ভিতর মহাকবীয় বল (Gravitational force between heavenly bodies):

মহাকাশে গ্রহ, উপগ্রহ, নক্ষত্র প্রভৃতি বহু বস্তু আছে। এই সকল বস্তু আকারে গোলক ধরা হয়। প্রমাণ করা যায় যে মহাকষীয় আকর্ষণের বেলায় দূরত্ব যাই হোক না কেন গোলকের সমস্ত ভর যেন বিন্দৃবৎ তার কেন্দ্রে সংহত (concentrated) করা আছে। ফলে, দুটি বিস্তৃত পরিসরের গোলকের ভিতর আকর্ষণ হিসাব করতে হলে আমরা মনে করব যে ঐ গোলক দুটির ভরের সমান বিন্দৃভর (point mass) তাদের কেন্দ্রে জমা করা আছে এবং কেন্দ্রহয়ের পারস্পরিক দূরত্ব ঐ বিন্দৃভর দুটির ভিতর দূরত্বের সমান।

যেহেতু সূর্য, চন্দ্র, পৃথিবী, উপগ্রহ প্রভৃতি নভোমগুলীয় বস্তুগুলিকে আমরা গোলক বলে মনে করি, তাই তাদের ভিতর মহাকষীয় আকর্ষণ হিসাব করার সময় তাদের সমস্ত ভর তাদের কেন্দ্রে জমা করা আছে মনে করে আমরা নিউটনের মহাকর্ষ সূত্র প্রয়োগ করব।

(ক) সূর্য ও পৃথিবীর ভিতর মহাকর্ষীয় আকর্ষণ (Gravitational attraction between the sun and the earth):

সূর্যের ভর
$$(M) = 1.99 \times 10^{30} \text{ kg}$$
পৃথিবীর ভর $(m) = 5.96 \times 10^{24} \text{ kg}$.

সূর্যের চতুর্দিকে পৃথিবী প্রায় বৃত্তাকার কক্ষপথে পরিভ্রমণ করে ধরে নিলে দেখা গেছে যে ঐ বৃত্তের ব্যাসার্ধ $d=1.497 \times 10^{11}$ metre (প্রায়)।

অতএব, সূর্য ও পৃথিবীর ভিতর মহাকধীয় আকর্ষণ বল

$$F = G.\frac{M.m}{d^2} = \frac{6.67 \times 10^{-11} \times 1.99 \times 10^{30} \times 5.96 \times 10^{24}}{(1.497 \times 10^{11})^2}$$
$$= 3.53 \times 10^{22} \text{ newton } (203) \text{ } 1$$

(খ) পৃথিবী ও চন্দ্রের ভিতর মহাকর্ষীয় আকর্ষণ (Gravitational attraction between the earth and the moon):

পৃথিবীকে কেন্দ্র করে চন্দ্র 3.84 × 10⁸ metre ব্যাসার্ধের বৃত্তাকার কক্ষপথে পরিভ্রমণ করে। এখন,

পৃথিবীর ভর
$$(M_e) = 5.96 \times 10^{24} \text{ kg}$$

চন্দ্রের ভর $(M_m) = 7.33 \times 10^{22} \text{ kg}$.

অতএব, পৃথিবী ও চন্দ্রের ভিতর মহাক্ষীয় আকর্ষণ বল

$$F = \frac{G.M_e.M_m}{(3.84 \times 10^8)^2} = \frac{6.67 \times 10^{-11} \times 5.96 \times 10^{24} \times 7.33 \times 10^{22}}{(3.84 \times 10^8)^2}$$

= 1.98 × 10²⁰ newton (21羽) |

লক্ষ কর যে সূর্যের ভর চন্দ্রের ভরের তুলনায় প্রায় 3 কোটি গুণ বেশি, কিন্তু সূর্য ও পৃথিবীর ভিতর মহাকর্ষীয় আকর্ষণ বল পৃথিবী ও চন্দ্রের ভিতর মহাকর্ষীয় বল অপেক্ষা মাত্র 178 গুণ বেশি।

প্রতিক্ষ ও অতিক্ষত ত্মুগ (Gravity and acceleration due to gravity);

পৃথিবীর পৃষ্ঠে বা পৃষ্ঠের কাছাকাছি অবস্থিত কোনো বন্ধুর উপর পৃথিবীর আকর্ষণকে অভিকর্ষ বলা হয়। অভিকর্ষের ফলে গাছ থেকে ফল পড়লে ফলটি পৃথিবী অভিমুখে ধাবিত হয়, যে-কোনো বন্ধুকে পড়তে দিলে তা পৃথিবীর দিকে পড়ে এবং বন্ধুসমূহের ওজন পরিলক্ষিত হয়। অভিকর্ষকে মহাকর্ষের একটি বিশেষ ক্ষেত্র (special case) বলে গণ্য করা হয়।

নিউটনের দ্বিতীয় গতিসূত্র হতে আমরা জানি, কোনো বন্ধুর উপর বল ক্রিয়া করলে বন্ধুর গতি ত্বরান্বিত হয় অথবা একটি ত্বরণ সৃষ্টি হয়। অভিকর্ষ বলের ক্রিয়ায় যখন কোনো বন্ধু পৃথিবীর দিকে পড়ে তখন তারও একটি ত্বরণ থাকে। এই ত্বরণকে বলা হয় অভিকর্ষ স্বরণ (acceleration due to gravity)। একে g অক্ষর ভারা নির্দেশ করা হয়।

সংজ্ঞা ঃ অভিকর্ষ বলের ক্রিয়ায় অবাধে পতনশীল বড়ুতে যে ত্বরণ সৃষ্টি হয় তাকে অভিকর্বজ ত্বরণ বলে।

মনে করো, m ভরের একটি বস্তুকণা পৃথিবীর কেন্দ্র থেকে d দূরত্বে আছে [2.3 নং চিত্র]। এখন বস্তুটিকে ছেড়ে দিলে পৃথিবীর আকর্ষণে তা নিচে পড়বে। তখন তার একটি ত্বরণ সৃষ্টি হবে যাকে অভিকর্ষজ ত্বরণ (g) বলা হয়। পৃথিবীর ভর M এবং আকর্ষণ বল F

হলে নিউটনের মহাকর্ষ সূত্রানুযায়ী লেখা যেতে পারে, $F \equiv G.\frac{M.m}{d^2}$.

এখানে পৃথিবীর সমস্ত ভরকে তার কেন্দ্র বিন্দু O–তে একঞীভূত করা আছে কল্পনা করা হয়েছে। এখন বন্ধটি যদি g ছরণ নিয়ে পড়ে তবে নিউটনের দ্বিতীয় গতিসূত্র হতে পাই, F=mg বা, $mg=G\frac{mM}{d^2}$

$$g = \frac{GM}{d^2}.$$

য়েছেতু G এবং M ধ্বক, কাভেই $g \propto \frac{1}{d^2}$ অর্থাৎ কোনো স্থানে ϱ -এর মান পৃথিবীর কেন্দ্র হতে

সেই স্থানের দূরত্বের বর্গের বাস্তানুপাতি। উপরোক্ত সমীকরণ থেকে এটাও বোঝা যায় যে, নির্দিষ্ট কোনও স্থানে অভিকর্ষজ ত্বরণ বন্তুর ভরের উপর নির্ভর করে না; তাই, কোনো নির্দিষ্ট স্থানে ভারী, হালকা সব রকম বন্তুর অভিকর্ষজ ত্বরণ সমান।

ভূপৃষ্ঠে
$$d=R$$
 (পৃথিবীর ব্যাসার্ধ) ; কাজেই ভূপৃষ্ঠে $g=\frac{GM}{R^2}=\frac{G\times\frac{4}{3}\pi R^3\rho}{R^2}=\frac{4\pi}{3}G.R.\rho$

● এই প্রসঙ্গে একটি কথা খুবই উল্লেখযোগ্য। বলা হয়েছে m ভরের বন্ধুকে কিছু উপর হতে ছেড়ে দিলে, অভিকর্ষের ক্রিয়ায় বস্তু পৃথিবীর দিকে পড়ে। কিছু অভিকর্ষের নিয়মানুযায়ী পৃথিবী ও বন্ধু পরস্পরের প্রতি সমান অভিকর্ষ বল প্রয়োগ করে। তবে বন্ধুর দিকে পৃথিবী ধাবিত না হয়ে বন্ধু পৃথিবীর দিকে ধাবিত হয় কেন ? এই প্রশ্নের উত্তর খুবই সহজ।

আমরা দেখলাম, বন্ধু ও পৃথিবী পরস্পরের প্রতি যে অভিকর্ষ বল F প্রয়োগ করে তা এইরূপ:

$$F=Grac{M.m}{d^2}$$
: এখন বস্তু পৃথিবীর দিকে যে ত্বরণ নিয়ে অগ্রসর হয় তা $=rac{ ag{3}}{ ag{3}}$ র উপর প্রযুপ্ত বল

 $=rac{F}{m}=rac{G.Mm}{d^2m}=rac{GM}{d^2}$ আবার পৃথিবী বস্তুর দিকে যে ত্বরণ নিয়ে অগ্রসর হয় তা অর্থাৎ,

পৃথিবীর ত্বরণ =
$$\frac{\gamma$$
থিবীর উপর প্রযুক্ত বল $}{\gamma$ থিবীর ভর $}=\frac{F}{M}=\frac{G.Mm}{d^2M}=\frac{Gm}{d^2}$

$$\frac{\log x}{\gamma}$$
 ত্রণ $\frac{M}{m}$

পৃথিবীর ভর M বন্তুর ভর m অপেক্ষা বহুগুণঃ সূতরাং বন্তুর ত্বরণ পৃথিবীর ত্বরণ অপেক্ষা বহুগুণ হবে। এথেকে বোঝা যায় কেন পৃথিবী বন্তুর দিকে ধাবিত হয় না—বন্তুই পৃথিবীর দিকে ধাবিত হয়।

DEX comes 0:

 $m{O}$ যদি পৃথিবী লোহার তৈরি $6.37 \times 10^6 \, \mathrm{m}$ ব্যাসার্য এবং $7.86 \, \mathrm{gcm}^{-3}$ ঘনত্বের একটি নিরেট গোলক হত, তবে ভূপৃষ্ঠে অভিকর্ষন ত্বপের মান কত হত የ $G = 6.67 \times 10^{-8} \, \mathrm{c.g.s.}$ একক।

উঃ। সুপ্তে
$$g = \frac{4\pi}{3}G.R.\rho$$

 $= \frac{4 \times 3.14}{3} \times 6.67 \times 10^{-8} \times 6.37 \times 10^{8} \times 7.86$
 $= 1398.16 \text{ cms}^{-2}$ [$R = 6.37 \times 10^{6} \text{ m} = 6.37 \times 10^{8} \text{ cm}$]

② ভূ পৃষ্ঠে একটি শ্প্রিং য়ের তলায় আবস্থ একটি বস্তু শ্প্রিংয়ের দৈর্ঘ্য 2 cm বৃষ্ণি করে।
ভূপুষ্ঠ থেকে 1000 km উচ্চে ঐ বস্তু শ্প্রিংয়ের দৈর্ঘ্য কতটা বৃষ্ণি করে ? পৃথিবীর ব্যাসার্ঘ
= 6400 km.

উঃ। ধর, বন্ধুর ভর =
$$m$$
 এবং ব্দ্রিংয়ের বল-ধুবক = k ; ভূপুন্তে অভিকর্মজ ভূরণ $g=\frac{GM}{R^2}$ এবং বন্ধুর ওজন = $mg=\frac{GMm}{R^2}$ জনং বন্ধুর ওজন = $mg=\frac{GMm}{R^2}$ । R^2 সতংব, $2=\frac{GMm}{R^2}$ (1)

আবার,
$$h=1000 \text{ km}$$
 উচ্চতায় দৈর্ঘ্য বৃদ্ধি $x=\frac{GMm}{k(R+h)^2}$ (ii)

(i) এবং (ii) সমীকরণ থেকে
$$\frac{x}{2} = \frac{R^2}{(R+h)^2} = \left(\frac{6400 \text{ km}}{7400 \text{ km}}\right)^2 = 0.75 \therefore x = 1.5 \text{ cm}.$$

ভর অপরিবর্তিত রেখে পৃথিবীর ব্যাসার্থ 1% কমলে পৃথিবীপৃষ্টে অভিকর্ষজ ত্বরণের

মানের শতকরা কী পরিবর্তন হবে ?

উঃ। পৃথিবীপৃষ্ঠে
$$g = \frac{GM}{R^2}$$
 (i) $M = পৃথিবীর ভর এবং $R =$ ব্যাসার্ধ)$

$$R$$
- এর সাপেক্ষে ডিফারেন্সিয়েট করলে, $\frac{dg}{dR}=-2\frac{GM}{R^3}$ অথবা, $dg=-2\frac{GM}{R^3}dR$ (ii)

(ii) নং সমীকরণকে (i) নং দিয়ে ভাগ করলে,
$$\frac{dg}{g} = -\frac{2GM}{R^3} dR / \frac{GM}{R^2} = -2\frac{dR}{R}$$

প্রশানুযায়ী,
$$\frac{dR}{R} = 1\%$$
 : $\frac{dg}{g} = -2 \times 1 = -2\%$
অভিকর্যজ তুরণের মান 2% কমে যাবে।

2.6 অভিকর্মন ত্রণের মানের পরিবর্তন (Variation of the of acceleration due to gravity):

(i) পৃথিবীর অসম আকৃতির দরুন (For the non-spherical shape of the earth): পৃথিবীর আকার সম্পূর্ণ গোল নয়। মেরুপ্রদেশ একটু চাপা এবং বিষুব (equatorial) অস্কল একটু ফোলানো। ফলে, পৃথিবীর কেন্দ্র হতে মেরুদ্রয়ের দূরত্ব বিষুব-বিন্দুদ্রয়ের দূরত্ব অপেক্ষা কম। মেরু-ব্যাসার্ধ (polar radius) অপেক্ষা বিষুব ব্যাসার্ধ (equatorial radius) প্রায় 20 km বেশি। আমরা পূর্ব অনুচ্ছেদে দেখেছি যে পৃথিবী-কেন্দ্র হতে কোনো স্থানের দূরত্ব বাড়লে ৪-এর মান কমে এবং দূরত্ব কমলে ৪-এর মান বাড়ে। অতএব, মেরুপ্রান্তে ৪-এর মান বিষ্বরয়েখা হতে বেশি হবে।

(ii) পৃথিবীপৃষ্ঠ থেকে স্থানের উচ্চতার দর্ন (Due to the altitude of the place):

ধরো, পৃথিবীপৃষ্ঠে অভিকর্মজ ত্বরণের মান g_0 এবং h উচ্চতায় মান g_h ; পৃথিবীকে গোলক মনে করলে, কোনো স্থানে g–এর মান পৃথিবী–কেন্দ্র হতে ঐ স্থানের দূরত্বের বর্গের ব্যস্তানুপাতি। কাজেই,

পৃথিবীর ব্যাসার্থ
$$R$$
 ধরলে, $\frac{g_0}{g_h} = \frac{(R+h)^2}{R^2} = \frac{R^2 + 2Rh + h^2}{R^2} = 1 + \frac{2h}{R} + \frac{h^2}{R^2}$ (i)

পৃথিবীর ব্যাসার্ধ R-এর তুলনায় ঐ স্থানের উচ্চতা h যদি খুব কম হয়, তবে $\frac{h^2}{R^2}$ -কে অগ্রাহ্য করা যায়। তাহলে, $\frac{g_0}{g_h}=1+\frac{2h}{R}$

$$\therefore g_h = \frac{g_0}{1 + \frac{2h}{R}} = g_0 \left(1 + \frac{2h}{R} \right)^{-1} = g_0 \left[1 - \frac{2h}{R} + \dots \right] \simeq g_0 \left(1 - \frac{2h}{R} \right) \dots$$
(ii)

|h << R হওয়ায় h/R-এর উৎবंঘাত অগ্রাহা করা যায়।

মন্তব্য : (1) উচ্চতা h বাড়লে, g-এর মান কুমশ কমে যাবে—'অথবা উচ্চতা বৃশ্বির সংজ্ঞা অভিকর্ষজ ত্বরণ হ্রাস পাবে।

(ii) আবার, $g_0-g_h=$ উচ্চতার দর্ম অভিকর্বন্ধ ত্বলের হ্রাস $=\frac{2h.g_0}{R}$(iii) ক্রঃ যখন h<< R. তখন (ii) নং সমীকরণ প্রয়োজ্য যদি R-এর ভুলনায় h খুব ক্ষুদ্র না হয় তবে (i) নং সমীকরণ

श्रियांका ।]

D Evannus D

ভুপৃষ্ঠ থেকে কত উচ্চতায় গেলে সেখানকায় অভিকর্ষজ ত্রনের মান ভুপৃষ্ঠেয় মানের এক শতাংশ হবে ? পৃথিবীকে 6.38 × 106 m ব্যাসার্ধের সমসম্ভ গোলক বলে মনে করতে পারো।

😘। ধর, নির্ণেয় উচ্চতা h metre : ঐ স্থানে অভিকর্ষক্ত ত্বরণ g_h হলে এবং ভূপন্তে g_0 হলে,

$$\frac{g_h}{g_0} = \frac{R^2}{(R+h)^2}$$
: প্রস্নানুযায়ী, $\frac{g_h}{g_0} = \frac{1}{100}$ $\therefore \frac{1}{100} = \frac{R^2}{(R+h)^2}$ বা, $\frac{1}{10} = \frac{R}{R+h}$

অথবা, $h = 9R = 9 \times 6.38 \times 10^6 \text{ m.} = 57.42 \times 10^3 \text{ km.}$

কুপৃষ্ঠের 2 মাইল উধের্ব অভিকর্বজ ত্বরণ কত হবে ? পৃথিবীর ব্যাস ৪০০০ মাইলঃ ভূপতে g = 9.8 ms⁻².

উঃ।
$$g_h = g_0 \left(1 - \frac{2h}{R} \right) = 9.8 \left(1 - \frac{2 \times 2}{4000} \right) = 9.79 \text{ ms}^{-2}$$
 (প্রায়)

য়িঃ লক্ষ করে। যে একেত্রে h এবং R-এর মান cgs এককে বুপান্তরিত করার প্রয়োজন হল না।

(iii) পৃথিবীর অভ্যন্তরে (At a depth inside the earth): মনে করো, O পৃথিবীর কেন্দ্র,

R পৃথিবীর ব্যাসার্ধ এবং ভূপৃষ্ঠ থেকে পৃথিবীর অভ্যন্তরে x দূরে m ভরের একটি বস্ত আছে। চিত্র 2.4)। এখন যদি O বিন্দুকে কেন্দ্র করে এবং (R-x) ব্যাসার্ধ নিয়ে একটি গোলক কল্পনা করা যায়, তবে ঐ গোলক পথিবীকে দৃটি অংশে ভাগ করবে। একটি অভ্যন্তরীণ গোলক (কালো রেখাঙ্কিত) যার ব্যাসার্ধ = (R-x) এবং অপরটি x বেধের একটি খোলক (shell)। বস্তুটি অভ্যন্তরীণ গোলকের ঠিক বাইরে কিন্তু খোলকের মধ্যে অবস্থিত। এই অবস্থায় প্রমাণ করা যায়, বস্তুটি শুধু অভ্যন্তরীণ গোলকের দরুন অভিকর্ষ বল অনুভব করবে— খোলক কোনো অভিকর্ষ বল প্রয়োগ করবে না। মহাকর্ষ সূত্র হতে আমরা বলতে পারি, যদি বডু

$$F$$
 আকর্ষণ বল অনুভব করে, তবে $F=\dfrac{G imes$ অভ্যন্তরীণ গোলকের ভর $imes$ বস্তুর ভর $\left(R-x\right)^2$

এখন, অভান্তরীণ গোলকের ভর $=\frac{4}{3}\pi\left(R-x\right)^3$.p $\left[\rho=\gamma\right]$ থবীর গড় ঘনত্ব $\left[\rho=\gamma\right]$

$$\therefore F = \frac{G \times \frac{4}{3} \cdot \pi (R - x)^3 \rho \cdot m}{(R - x)^2} = G \cdot \frac{4}{3} \pi (R - x) \rho \cdot m$$

অতএব, ঐ স্থানে অভিকর্ষজ ত্বরণ
$$g_{x}=\dfrac{\operatorname{বস্তুর উপর প্রযুম্ভ বল}}{\operatorname{বস্তুর ভর}}=\dfrac{F}{m}=G.\dfrac{4}{3}\pi(R-x)\,\rho.$$

G এবং ρ ধ্রুবরাশি; কাজেই x যত বৃদ্ধি পাবে অর্থাৎ যত বন্তু পৃথিবীর অভ্যন্তরে যাবে তত (R-x)-এর মান কমবে। ফলে, g-এর মান কমবে। বন্তুকে পৃথিবীর কেন্দ্রে নিয়ে যাওয়া হলে, x=R হবে এবং সেক্ষেত্রে (R-x)=0 এবং g=0; কাজেই পৃথিবীর কেন্দ্রে অভিকর্ষন্ত ত্বরণের মান শূন্য।

পৃথিবীপৃষ্ঠে অভিকর্মজ ত্বরণ g_0 হলে, $g_0=\frac{4\pi}{3}G.R.
ho$ (2.5 অনুচ্ছেদ)

$$\frac{g_x}{g_0} = \frac{\frac{4}{3}\pi G(R-x)\rho}{\frac{4}{3}\pi GR.\rho} = \left(1 - \frac{x}{R}\right) :: g_x = g_0\left(1 - \frac{x}{R}\right) = \frac{g_0}{R}(R-x) \cdot \dots (iv)$$

সুতরাং, ভূপ্ষের অভ্যন্তরে অভিকর্ষজ ত্বরণ ভূকেন্দ্র হতে দূরত্বের $(R_{\bullet}-x)$ সমানুপাতি। আবার, $g_0-g_x=rac{x\cdot g_0}{R}$(v)

(iii) এবং (v) নং সমীকরণ তুলনা করে বলা যায় যে ভূপৃষ্ঠ থেকে কোনো উচ্চতায় অভিকর্ষজ্ঞ ত্বরণ ভূপৃষ্ঠের অভ্যন্তরে একই দূরত্বে অভিকর্ষজ্ঞ ত্বরণ অপেকা কম।

্ষত্ব্য ঃ পৃথিবী সমসত্ত্ব গোলক নয়। উর্ধান্তরে পৃথিবীর ঘনত্ব কম, নিম্নস্তরে বেশি। তাই, গভীরতা বৃশ্বির সঙ্গে g-এর মান প্রথমে কিছু বাড়ে, পরে কমতে থাকে।

(ii) এবং (iv) নং সমীকরণ থেকে জানা যায় যে, ভূপৃষ্ঠ থেকে উধর্ষে গেলে অভিকর্যজ ত্বরণের মান হ্রাস পায়; আবার পৃথিবীর অভ্যন্তরে গেলেও অভিকর্যজ ত্বরণ হ্রাস পায়। অতএব অভিকর্যজ ত্বরণের মান সর্বাধিক হবে ভূপৃষ্ঠের উপর। পৃথিবীর ব্যাসার্য R হলে ভূকেন্দ্র হতে দূরত্বের সাথে অভিকর্যজ ত্বরণের মানের পরিবর্তন 2.5 নং চিত্রে দেখানো হয়েছে।

DEXAMPLES D.

একটি গভীর খাদের তলদেশে এবং ভূপৃষ্ঠে অভিকর্মজ ত্বরণের মানের অনুপাত্ত
 790
 800; পৃথিবীর সর্বত্র ঘনত সমান হলে এবং পৃথিবীকে 6400 km ব্যাসার্দের গোলক মনে
করলে, খাদের গভীরতা নির্ণয় করো।

উঃ। ধরো, খাদের গভীরতা =x km এবং সেখানে অভিকর্যজ ত্বরণ $=g_{\pi}$; ভূপ্যে অভিকর্মতা ধরণ

$$g_0$$
 ধরকো, $\frac{g_x}{g_0} = 1 - \frac{x}{R}$ জথবা, $\frac{790}{800} = 1 - \frac{x}{6400}$:: $x = \frac{6400 \times 10}{800} = 80$ km.

2 যদি কোনো ব্যক্তি ভূপৃষ্ঠ থেকে পৃথিবীর ব্যাসার্ধের সমান উচ্চতায় যায় এবং ভূগর্প্তে পৃথিবীর ব্যাসার্ধের সমান গভীরতায় নামে তাহলে দৃট্ট ক্ষেত্রে তার ওজনের কীরুপ পরিবর্তন হবে ?

উঃ। ভূপতে কেবল কৰিব ওছল $W_1=$ ব্যক্তির ভর $(m) \times g_0 \mid g_0=$ ভূপতে ফ * ্কন্ত হলে।। $g_0 = g_0 = g$

$$R$$
 উচ্চতায় ব্যক্তির গুজন $W_2=mg_R$ \therefore $\frac{W_2}{W_1}=\frac{m.g_R}{mg_0}=\frac{GMm}{4R^2}\times\frac{R^2}{GMm}=\frac{1}{4}$

আবার, পৃথিবীর অভ্যন্তরে ভূপৃষ্ঠ থেকে R গভীরতা মানে ভূকেন্দ্র এবং সেখানে g=0 : সুতরাং পৃথিবীর অভ্যন্তরে ব্যাসার্ধের সমান গভীরতায় বস্তুর ওজন শূন্য।

ভূপৃষ্ঠ থেকে যে উচ্চতায় এবং ভূপৃষ্ঠ থেকে যে গভীরতায় অভিকর্ষজ্ঞ ত্বরণের মান
 সমান, সেই উচ্চতা ও গভীরতার অনুপাত নির্পর করো।

উঃ। ধরা যাক্, ভূপৃষ্ঠ থেকে h উচ্চতায় অভিকর্ষজ ত্বরণ g_h ; তাহলে $g_h=g_0\left(1-\frac{2h}{R}\right)$; R= পৃথিবীর ব্যাসার্ধ। আবার মনে করো ভূপৃষ্ঠ থেকে d গভীরে অভিকর্ষজ ত্বরণ g_d :

তাহলে
$$g_d = g_0 \left(1 - \frac{d}{R}\right)$$
। প্রশ্নানুযায়ী, $g_h = g_d$ -

অতএব,
$$1-\frac{2h}{R}=1-\frac{d}{R}$$
 $\therefore \frac{h}{d}=\frac{1}{2}$.

এই ফলাফল থেকে বলা যায় ভূপৃষ্ঠ থেকে h উচ্চতায় অভিকর্ষজ ত্বরণের মান ভূপৃষ্ঠ থেকে d সভীরতায় অভিকর্ষজ ত্বরণের মানের সমান হবে যদি d=2h হয়। এই ফলাফল প্রযোজ্য যখন h-এর মান খুব বেশি নয়।

(iv) পৃথিবীর দৈনিক ঘূর্ণনের দরুন (Due to the earth's diurnal rotation): পৃথিবী নিজ অক্ষের চতুর্দিকে পশ্চিম থেকে পূব দিকে প্রদক্ষিণ করে। পৃথিবী যদি স্থির থাকত এবং একটি সমসত্ত্ব গোলক হত তাহলে পৃথিবীর সর্বত্ত অভিকর্ষজ ত্বরণের মান সমান হত এবং পৃথিবীর কেন্দ্রের দিকে অভিমুখী হত। নিজ অক্ষ সাপেক্ষে পৃথিবীর ঘূর্ণনের ফলে ভূপৃষ্ঠের প্রতিটি বন্ধু পৃথিবীর সঙ্গো একই কৌণিক বেগে (ω) ঘুরছে। এই কৌণিক বেগের জন্য বন্ধুর উপর যে বহির্মুখী অপক্রেন্দ্র বল ক্রিয়া করে অভিকর্ষ বলের কিছু অংশ ঐ বর্হিমুখী বলকে নিষ্ক্রিয় করতে ব্যয় হয়। তাই, অভিকর্ষজ ত্বরণ প্রকৃত মান অপেক্ষা কিছু কম হয়।

প্রমাণ st করা যায় যে, ϕ অক্ষাংশে অভিকর্মজ ত্বরণের আপাত মান g_{ϕ} হলে

$$g_{\phi} = g_0 \left(1 - \frac{R\omega^2 \cos^2 \phi}{g_0} \right) \dots (i)$$

$$[R = পৃথিবীর ব্যাসার্থ I]$$
এখন, $\frac{R\omega^2}{g_0} = \frac{1}{289}$

$$\therefore g_{\phi} = g_0 \left(1 - \frac{\cos^2 \phi}{289} \right) \dots (i)$$

[* প্রমাণ ঃ ধরো, m ভরের একটি বর্তু
পৃথিবীপৃষ্ঠে ф অক্ষাংশে A বিন্দুতে অবস্থিত আছে
(b.a 2.6)। বঙ্গটি r ব্যাসার্ধের বৃত্তপথে (কাটা
কাটা রেখা দারা দেখানো হয়েছে) পৃথিবীর কৌনিক

বেগ $_{(1)}$ সহ পৃথিবীর সঙ্গো N-S অক্ষ বেড়ে ঘুরছে। পৃথিবীর ব্যাসার্ধ R হলে, $r=R\cos \phi$.

এখন বস্তুর উপর ক্রিয়াশীল (বহির্মুখী) অপকেন্দ্র বল $F=m\omega^2 r$; এই বলের অভিমুখ AC বরাবর। বস্তুর ওজন W=mg পৃথিবীর কেন্দ্র O অভিমুখে। AB অভিমুখে অপকেন্দ্র বলের উপাংশ $=F.\cos\phi=m\omega^2 r\cos\phi$. এই উপাংশ W-এর বিপরীত দিকে ক্রিয়া করে বস্তুর ওজনের হ্রাস ঘটাবে। A বিন্দুতে অবস্থিত বস্তুর আপাত ওজন W হলে $W=mg_0-m\omega^2 r.\cos\phi$ । A বিন্দুতে অভিকর্ষজ ত্বরণের কার্যকর মান g_ϕ হলে, $W=mg_\phi$

$$\therefore mg_{\phi} = m.g_0 - m\omega^2 r. \cos \phi$$

$$= m.g_0 - m\omega^2 R. \cos^2 \phi \quad [r = R \cos \phi]$$

$$\therefore g_{\phi} = g_0 - \omega^2 R \cos^2 \phi$$

$$= g_0 \left(1 - \frac{\omega^2 R \cos^2 \phi}{g_0} \right)$$

মন্তব্য (Remarks):

(i) সমীকরণ থেকে বিভিন্ন অক্ষাংশে g-এর মান পাওয়া যাবে।

(a) বিষুবরেখায় $\phi=0$; কাজেই $\cos\phi=1$, সুতরাং, ঐ স্থানে g_{ϕ} –এর মান সর্বনিম্ন (9.78 ms $^{-2}$)

(i) নং সমীকরণ থেকে পাই,
$$g_{\phi=0} = g_0 \left(1 - \frac{R\omega^2}{g_0} \right) = g_0 - R.\omega^2$$
(ii)

(b) মেরু অপ্সলে, $\phi=90^\circ$; কাজেই $\cos\phi=0$, সুতরাং মেরুতে অভিকর্ষের উপর পৃথিবীর দৈনিক ঘূর্ণনের কোনো প্রভাব থাকে না এবং সেখানে g_ϕ –এর মান সর্বাধিক (9.82 ms $^{-2}$) এবং $g_{\phi}=90=g_0$ -

(c) মেরু এবং নিরক্ষরেখায় অভিকর্ষজ ত্বরণের মানের পার্থক্য

$$g_{\phi=90} - g_{\phi=0} = g_0 - (g_0 - R.\omega^2) = R.\omega^2$$

(d) (ii) নং সমীকরণ থেকে জানা যায় যে পৃথিবীর আবর্তন বন্ধ হলে $(\omega=0)g_{\phi}$ –এর মান বৃদ্ধি পাবে আবার পৃথিবীর আবর্তন বেগ (ω) বৃদ্ধি পেলে, g_{ϕ} হ্রাস পাবে।

O Examples O

পৃথিবীর আবর্ডন বেগ বর্তমান বেগের তুপনায় 17 গুণ বৃষ্ধি পেলে প্রমাণ করো যে
বিষুবরেখায় অবস্থিত কোনো বন্ধু পৃথিবীপৃষ্ঠে থাকতে পারবে না।

উঃ। বিষ্বরেখায় অবস্থিত বন্ধু পৃথিবীর দৈনিক ঘূর্ণনের দরুন যে আপাত অভিকর্মক ত্রুরণ অনুভব্

করে ভা
$$g'=g_0\left(1-\frac{R\omega^2}{g_0}\right)$$
: [বিষুবরেখায় $\phi=0$]

যদি আবর্তনবেগ 17 গুণ বৃদ্ধি পায়, তবে যে অভিকর্ষজ ত্বরণ ক্রিয়া করবে ভা

$$g'' = g_0 \left\{ 1 - \frac{R(17\omega)^2}{g_0} \right\} = g_0 \left\{ 1 - \frac{289 R\omega^2}{g_0} \right\}$$

িছু
$$\frac{R\omega^2}{g_0} = \frac{1}{289}$$
; জন্তব, $g'' = g_0 \left(1 - \frac{289}{289}\right) = 0$

এই অবস্থায় বস্তু পৃথিবীর কেন্দ্রের দিকে কোনো অভিকর্মজ ত্বরণ অন্ভব করবে নাঃ ফলে স পৃথিবী প্রষ্টে থাকতে পারবে না। বহির্মী অপকেন্দ্র বলের জন্য পৃথিবীপৃষ্ঠ থেকে চিটকে দরে চলে মধুব।

 $m{\Omega}$ পৃথিবীকে $6.37 \times 10^6 \, \mathrm{m}$ ব্যাসার্থের গোলক মনে করে এবং শীয় অক্ষের চতুর্দিকে ভার প্রদক্ষিণ কাল 1 দিন $(8.64 \times 10^4 \, \mathrm{s})$ ধরে নিয়ে, পৃথিবীর মেরু থেকে বিষ্করেখা পর্যন্ত অভিকর্ষক ত্বরণের মানের কীরূপ পার্থক্য হবে নির্ণয় করো।

• অভিকর্যজ তুরণের গড় মান (Mean value of acceleration due to gravity) :

নিম্নে সি.জি.এস্ এবং এস্.আই. পশ্ধতিতে পৃথিবীপৃঠে g-এর গড় আসন্ন মান দেওয়া হল। সি.জি.এস্. পশ্বতিতে g = 980 cms⁻² এস.আই. পশ্বতিতে $g = 9.8 \text{ ms}^{-2}$ ।

2.7. বন্তর ভার বা ওজন (Weight of a body):

কোনো বস্তুকে হাতের উপর রাখলে আমরা নিম্নাভিমুখী বল অনুভব করি। বস্তু খুব ভারী হলে এই বল এত বেশি হয় যে আমরা হাতের উপর বস্তুটিকে রাখতে পারি না। কেন এই বল অনুভূত হয়? কারণ পৃথিবী বস্তুকে আকর্ষণ করে। বস্তুর উপর পৃথিবীর অভিকর্ষীয় আকর্ষণই বস্তুর ওজন।

সংজ্ঞা ঃ বন্তুর উপর পৃথিবী মোট যে অভিকর্ষীয় বল প্রয়োগ করে সেটাই বন্তুর ওজন।

মনে রাখতে হবে, ওজন কার্যত একটি বল। cgs পশ্বতিতে ওজনের একক dyne অথবা gf এবং SI পশ্বতিতে newton অথবা kgf.

আমরা নিউটনের দ্বিতীয় সূত্র হতে জানি, বল = ভর x ত্বরণ।

কার্জেই, কোনো বস্তুর উপর অভিকর্ষীয় বল অথবা ওজন মাপতে গেলে বস্তুর ভরকে অভিকর্ষজ ত্বরণ দারা গুণ করতে হবে। বস্তুর ওজন, W= ভর imes অভিকর্ষজ ত্বরণ =m imes g.

🗣 ডর ও ওজনের পার্থক্য (Difference between mass and weight) :

সাধারণভাবে আমরা বন্ধর ওজন এবং ভারের ভিতর পার্থক্য করি না। যে বন্ধুর ওজন 30 কিলোগ্রাম বলি তার ভর বলতেও 30 কিলোগ্রাম বলা হয়। প্রকৃতপক্ষে দৃটি সম্পূর্ণ আলাদা জিনিস। এদের পার্থক্য নিম্নে বলা হল ঃ

- (ক) ভর বলতে বশ্বর ভিতর কওটা জড় পদার্থ (matter) আছে তা বুঝায় কিন্তু ওজন কার্যত একটি বল-- যে বলের দারা পৃথিবী বস্তুকে আকর্ষণ করে।
- (খ) বস্তুর ভরকে _৫-এর মান দিয়ে গুণ করলে ওঞ্জন পাওয়া যায়। কাজেই ভর ও ওজন সমান হতে পারে না। যেমন, কোনো বস্তুর ভর 2 kg হলে, তার ওজন হবে 2 × 9.8 = 19.6 newton।
- (গ) ওজনের মান ও অভিমুখ আছে কান্ডেই ওজন ভেক্টর রাশি, কিন্তু ভরের শুধু মান আছে, ভর স্থেলার রাশি।
- (ঘ) বন্ধুকে যেখানেই নিয়ে যাওয়া হোক তার ভর একই থাকবে। কিন্তু পৃথিবীর বিভিন্ন স্থানে g-এর মান বিভিন্ন বলে বস্তুর ওক্তন বিভিন্ন হবে। যেমন পর্বতের চূড়ায় কোনো বস্তুর ওক্তন ভূপষ্ঠের চাইতে কম। পৃথিপার কেন্দ্রে ৮-এর মান শুনা বলে কোনো বস্তুকে পৃথিপার কেন্দ্রে নিয়ে গেলে ডা ওজন-শুনা হরে কিছু ভর অপরিবর্তিত থাকবে।

তাছাড়া, পৃথিবী থেকে গ্রহান্তরে বা চন্দ্রে কোনো বন্ধু নিয়ে গেলে তার ওজনের তারতম্য হবে কিন্তু ভর ঠিক থাকবে; কারণ অন্যান্য গ্রহ বা চাঁদের ভর পৃথিবীর ভর অপেক্ষা ভিন্ন বলে তাদের অভিকর্ষীয় আকর্ষণও ভিন্ন হবে। যেমন, পৃথিবীতে কোনো বন্ধুর ওজন চন্দ্রপৃষ্ঠে প্রায় ছয় ভাগের এক ভাগ হয়ে যাবে। যদি হঠাৎ কোনো কারণে অভিকর্ষীয় আকর্ষণ লুপ্ত হয় তবে সকল বন্ধুই ওজনহীন হবে কিন্তু প্রত্যেক বন্ধুর ভর অপরিবর্তিত থাকবে।

বন্ধুর গতি, স্থিতি, তাপমাত্রা, তড়িতাবস্থা, চুম্বকত্ব প্রভৃতি বন্ধুর ভরকে প্রভাবিত করতে পারে না বলে ভরকে বন্ধুর স্বকীয় বা অপরিহার্য ধর্ম (intrinsic property) হিসাবে গণ্য করা হয়। কিছু ওজন বন্ধুর স্বকীয় ধর্ম নয়, কারণ ওজন পরিবর্তনীয়।

তবে বিশ্ববিশ্রুত বিজ্ঞানী আইনস্টাইন কর্তৃক উপস্থাপিত আপেক্ষিক তত্ত্বের (theory of relativity) দ্বারা প্রমাণ করা যায় যে বস্তুর গতিবেগ আলোকের গতিবেগের কাছাকাছি হলে বস্তুর ভর পরিবর্তিত হয়। কিন্তু সাধারণ ক্ষেত্রে বস্তুর গতিবেগ অনেক কম হওয়ায় এই পরিবর্তন গ্রাহ্য নয়।

মনে রাখতে হবে বন্তুর ওজন এবং ভর সম্পূর্ণ আলাদা জিনিস।

2.8. বলের অভিক্যায় একক (Gravitational unit of

পদার্থবিজ্ঞান পরিচয় প্রথমখন্ডে বলের পরম (absolute) এককের কথা বলা হয়েছে। বলের আরও একটি একক আছে। এই একক অভিকর্ষ সূত্রের উপর প্রতিষ্ঠিত বলে একে অভিকর্ষীয় একক বলে।

(i) সি.জি.এস্. পম্বতিতে এই এককের নাম—গ্রাম-ভার (gram-weight)।

সংজ্ঞা ঃ এক গ্রাম ভরসম্পন্ন বন্ধু যে বলের দ্বারা পৃথিবী কর্তৃক আকর্ষিত হয় তাকে। গ্রাম-ভার বলে। একে অনেক সময় 'এক গ্রাম বল' (force of 1 g) এই নামেও অভিহিত করা হয় এবং 1 gf রূপে লেখা হয়।

1 গ্রাম-ভার = 1 গ্রাম $\times g = g$ ডাইন = 980 ডাইন (প্রায়)।

(ii) এস্.আই. পশ্বতিতে বলের মহাকর্ষীয় এককের নাম **কিলোগ্রাম**-ভার (kg-wt)।

্ব সংজ্ঞা ঃ এক কিলোগ্রাম ভরসম্পন্ন বস্তু যে বলের দ্বারা পৃথিবী কর্তৃক আকর্ষিত হয় তাকে । কিলোগ্রাম-ভার বলে। একে অনেক সময় 'এক কিলোগ্রাম বল' (force of 1 kg) বলা হয় এবং l kgf রূপে লেখা হয়।

1 কিলোগ্রাম-ভার = 1 কিলোগ্রাম $\times g = g$ নিউটন = 9.8 নিউটন 1

ক) পৃথিবীর ভর ও গড় খনত (Mass and mean dense) of the earth):

ভর : পৃথিবীপৃষ্ঠের কোনো স্থানে অভিকর্ষজ ত্বরণ g হলে, ঐ স্থানে m ভরের একটি বস্তুর ওজন = mg; আবার পৃথিবীর ভর ও ব্যাসার্ঘ যথাক্রমে M এবং R হলে, ঐ বস্তুর উপর পৃথিবীর অভিকর্ষীয় আকর্ষণ বল $= \frac{G.M.m}{R^2}$;

বস্তুর উপর পৃথিবীর অভিকর্মীয় আকর্ষণ–বলই বস্তুর ওজন। অতএব, $mg=\frac{G.M.m}{R^2}$; $M=\frac{gR^2}{G}$. $g=9.8~{\rm ms}^{-2}$; $R=6.37\times 10^6~{\rm m}$. এবং $G=6.67\times 10^{-11}$ (S.I.) ধরলে,

$$M = \frac{9.8 \times (6.37 \times 10^6)^2}{6.67 \times 10^{-11}} = 5.96 \times 10^{24} \text{ kg}$$

গড় ঘনত্বঃ পৃথিবীকে সর্বত্র সমঘনত্ত্বের নিরেট গোলক ধরে নিলে এবং ঐ ঘনত্ব ho হলে,

$$M = \frac{4}{3}\pi R^3 \rho$$
 । অতথ্য, $\frac{4}{3}\pi R^3 \cdot \rho = \frac{gR^2}{G}$: $\rho = \frac{3g}{4\pi RG}$

R,G এবং g-এর মান বসালে, $ho=5520\,\mathrm{kgm^{-3}}$ পাওয়া যায়। কিছু পৃথিবীর ঘনত্ব সর্বত্র সমান নয়। উর্ধ্বস্তবে পৃথিবীর উপাদানের ঘনত্ব মাত্র 2700 $\mathrm{kgm^{-3}}$: অতএব নিম্নস্তবের ঘনত্ব 5520 $\mathrm{kgm^{-3}}$ অপেক্ষা বেশি।

(খ) সুর্যের ভর (Mass of the sun):

সূর্যের চতুর্দিকে পৃথিবীর পরিভ্রমণ কাল (period of revolution) থেকে সূর্যের ভর হিসাব করা যায়। ধরো, পৃথিবী সূর্যের চতুর্দিকে ω কৌলিক বেগ নিয়ে পরিভ্রমণ করছে। পৃথিবীর আবর্তগতির জন্য প্রয়োজনীয় অভিকেন্দ্র বল (Μρω²r) পৃথিবীর উপর সূর্যের মহাকর্ষীয় আকর্ষণ থেকে উদ্ভূত হয়। অতএব পৃথিবীর

আবর্তগতির বেলায় লেখা যায়,
$$\frac{GM_sM_e}{r^2}=M_e\omega^2r$$
 জথবা, $M_s=\frac{r^3.\omega^2}{G}$

এখানে, $M_s=$ সূর্যের ভর $:M_e=$ পৃথিবীর ভর এবং r= সূর্যের কেন্দ্র থেকে পৃথিবীর কেন্দ্রের দূরত্ব।

সূর্যের চতুর্দিকে পৃথিবীর পরিভ্রমণ কাল
$$T$$
 হলে, $\omega=\frac{2\pi}{T}$: অতএব, $M_s=\frac{4\pi^2r^3}{T^2G}$;

T = 365 দিন; $r = 1.5 \times 10^{11}$ m এবং $G = 6.70 \times 10^{-11}$ ধরে নিলে,

$$M_s = \frac{4\pi^2 \times (1.5 \times 10^{11})^3}{(365 \times 24 \times 3600)^2 \times 6.70 \times 10^{-11}} = 1.99 \times 10^{30} \text{ kg} \text{ (213) } \text{I}$$

সূর্যের ভর এবং পৃথিবীর ভর তুলনা করলে দেখা যায় যে সূর্য পৃথিবী অপেক্ষা প্রায় তিন লক্ষ গুণ ভারী।

DEXAMPLE D.

পৃথিবীর ভর ও ব্যাসার্ধ চন্দ্রের ভর ও ব্যাসার্ধের তুলনায় যথাক্রমে ৪1 গুণ ও 4 গুণ বড় হলে তাদের পৃষ্ঠে অভিকর্মজ তুরণের মানের তুলনা করো।

উঃ। কোনো গোলকের ভর M এবং ব্যাসার্ধ R হলে, ঐ গোলকের পৃষ্ঠে অভিকর্মভ পুরণ

$$g=rac{GM}{R^2}$$
. পৃথিবীর ক্ষেত্রে, $g_e=rac{G.M_e}{R_e^2}$ এবং চল্ডের ক্ষেত্রে $g_m=rac{GM_m}{R_m^2}$;

ভাগ লিভো,
$$\frac{R_e}{v_m} = \frac{M_e}{M_m} \times \left(\frac{R_m}{R_e}\right)^2$$
; প্রশানুযায়ী, $\frac{M_e}{M_m} = 81$ এবং $\frac{R_m}{R_e} = \frac{1}{4}$.

$$\therefore \frac{g_e}{g_m} = 81 \times \frac{1}{(4)^2} = 5.06.$$

পৃথিবীর কেন্দ্র দিয়ে অতিক্রান্ত সুড়জ্গের মধ্যে বস্তুত (Motion of a body through a tunnel in the em th

পৃথিবীর এপিঠ-ওপিঠ ভেদ করে এবং পৃথিবীর কেন্দ্রের ভিতর দিয়ে অভিক্রান্ত একটি ঘর্ষণবিহীন সরু সৃড়জা তৈরি করতে পারলে নিম্নলিখিতভাবে প্রমাণ করা যায় যে, কোনো বস্তু ঐ সৃড়জোর ভিতর দিয়ে সরল দোলগতিতে ঐ ব্যাস বরাবর পৃথিবীর এক প্রান্ত হতে অপর প্রান্ত পর্যন্ত চলাচল করেব। এই কারণে অনেক সময় পৃথিবীকে 'তলহীন কৃপ' (bottomless well) বলা হয়।

মনে করো, পৃথিবীর কেন্দ্রের ভিতর দিয়ে পৃথিবীর একপ্রান্ত হতে অপরপ্রান্ত পর্যন্ত একটি ঘর্ষণবিহীন

সরু সুভূজা AB তৈরি করা হল এবং m ভরের একটি বযুকে ঐ সুভূজোর ভিতর ফেলা হল। ধর, কোনো সময়ে বস্তুটি পৃথিবীর কেন্দ্র হতে x দূরে P বিন্দুতে উপস্থিত হল [চিত্র 2.7]। ঐ অবস্থানে বস্তুটি পৃথিবীর কেন্দ্রভিমুখী একটি আকর্ষণ বল অনুভব করবে। আমরা যদি O বিন্দুকে কেন্দ্র করে এবং x ব্যাসার্ধ নিয়ে একটি গোলক আঁকি, তাহলে P বিন্দুতে অবস্থিত বস্তুর উপর গোলকই অভিকর্ষ-বল প্রয়োগ করবে—AP বেধের খোলক (shell) ঐ বস্তুর উপর কোনো অভিকর্ষ-বল প্রয়োগ করবে না; কারণ খোলক মধ্যস্থিত কোনো বস্তুর উপর খোলক কোনো অভিকর্ষ-বল প্রয়োগ করে না।

এখন, পথিবীকে ρ ঘনত্বের সমসত্ত্ব গোলক মনে করলে, m বস্তুর উপর প্রযুক্ত বল

$$F = \frac{G \times x$$
-ব্যাসার্থের গোলকের ভর $\times m}{x^2} = \frac{G \times \frac{4}{3} \pi x^3 \rho \times m}{x^2} = \frac{4}{3} \pi G \rho.m.x.$

বস্তুর ত্বরণ
$$a = \frac{F}{m} = \frac{\frac{4}{3}\pi.G.\rho.m.x}{m} = \frac{4}{3}\pi G.\rho.x.$$

দেখা যাচ্ছে যে, ত্বরণ $a \propto x$ এবং এই ত্বরণ PO বরাবর পৃথিবীর কেন্দ্রাভিমুখী। গতির এই দুটি শর্ত সরল দোলগতির প্রধান শর্তঃ সুতরাং বস্তুটি পৃথিবীর কেন্দ্রবিন্দুকে মধ্য অবস্থানে (mean position) রেখে পৃথিবীর একপ্রান্ত হতে অপর প্রান্ত পর্যন্ত সরল দোলগতিতে দুলতে থাকবে। এখন, উপরিউত্ত দোলনের

দোলনকাল
$$T$$
 হলে, $T=2\pi \sqrt{\frac{\pi \pi q}{\sqrt{\frac{4}{3}\pi G \rho x}}}=2\pi \sqrt{\frac{x}{4\pi G \rho}}$

প্রথমখন্ডে, সরল দোলগতি অধ্যায়ের 2.7 অনুচ্ছেদ দেখো।

আবার, পৃথিবীপৃষ্ঠে অভিকর্ষজ ত্বরণ g হলে, $2.9(\pi)$ অনুচ্ছেদ অনুযায়ী $ho=rac{3g}{4\pi R.G}$

অতএব
$$T = 2\pi \sqrt{\frac{3}{4\pi G}} \times \frac{4\pi RG}{3g} = 2\pi \sqrt{\frac{R}{g}}$$

পৃথিবীর ব্যাসার্ধ $R=6400~{
m km}$ এবং ভূপৃষ্ঠে অভিকর্ষজ ত্বরণ $g=9.8~{
m ms}^{-2}$ ধরলে

$$T = 2\pi \sqrt{\frac{6400 \times 10^3}{9.8}}$$
s = 84 min. 40 s (প্রায়)

সূতরাং, সূড়ফা বরাবর বয়টি $\frac{T}{2}$ অথবা 42 mnt 20 s সময়ে পৃথিবীর এক প্রান্ত হতে অপর প্রান্তে যাবে।

2.11.

মহাক্ষীয় ক্ষেত্র প্রাবল্য ও বিভব (Gravitational field intensity and potential):

কোনো বন্ধু বা বন্ধুগোন্ঠীর চতুর্দিকে যডদূর পর্যন্ত ঐ বন্ধু বা বন্ধুগোন্ঠীর মহাকবীর আকর্ষণ অনুভূত হয় সেই প্রানকে ঐ বন্ধু বা বন্ধুগোন্ঠীর মহাকবীয় ক্ষেত্র বলে।

গাণিতিক নিয়মান্যায়ী এই ক্ষেত্র অসীম পর্যন্ত বিস্তৃত কিন্তু কার্যত দেখা যায় একটি নির্দিন্ট দূরত্ব পর্যন্ত বস্তু বা বস্তুসমূহ তার আকর্ষণঞ্জনিত প্রভাব বিস্তার করে: তারপর আর কোনো প্রভাব দেখা যায় না।

ক্ষেত্রের প্রাবল্য ঃ মহাক্ষীয় ক্ষেত্রের কোনো বিন্দৃতে একটি একক ভর (unu muss) রাখলে, এ ভর যে আকর্ষণ বল অনুভব করবে, এ বলই হরে উক্ত মহাক্ষীয় ক্ষেত্রের ঐ বিন্দুর প্রাবলা।

M ভরের কোনো বন্ধু থেকে r দূরে একটি একক ভর রাখলে সে যে আকর্ষণ বল অনুভব করবে,

মহাকর্ষ সূত্রানুযায়ী তা
$$\frac{G.M.\times 1}{r^2}=\frac{GM}{r^2}$$
। অতএব, ঐ বিন্দুতে ক্ষেত্র-প্রাবল্য $E=\frac{GM}{r^2}$. ক্ষেত্রপ্রাবল্যের একক নিউটন / কেজি (Nkg $^{-1}$)।

মহাকর্ষীয় বিভব ঃ অসীম থেকে একটি একক ভরকে মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে আনতে যে কার্য করা হয়, তাকে ঐ বিন্দুর মহাকর্ষীয় বিভব বলে।

O বিন্দুতে M ভরের একটি বন্ধু আছে [চিত্র 2.8]। O বিন্দু থেকে r দূরে একটি বিন্দু P নেওয়া হল। P বিন্দুতে মহাকর্ষীয় বিভব নির্ণয় করতে হবে। ধরো, O বিন্দু থেকে x দূরে A বিন্দুতে একটি একক ভর রাখা হল। মহাকর্ষ সূত্রানুযায়ী A বিন্দুর একক ভর এবং O বিন্দুর M ভরের ভিতর আকর্ষণ বল

$$F = \frac{G \times M \times 1}{x^2} = \frac{G \cdot M}{x^2}.$$

একক ভর যদি A বিন্দু থেকে dx দূরত্ব সরে B বিন্দুতে আসে, তবে মহাকষীয় বল কর্তৃক কৃতকার্য dW=F.dx

$$=\frac{GM}{x^2}.dx$$

একক ভরকে অসীম দূরত্ব থেকে P বিন্দুতে আনতে যদি মোট কার্য W হয় তবে

$$W = \int dW = \int_{cc}^{r} \frac{GM}{x^{2}} dx = GM \int_{cc}^{r} \frac{1}{x^{2}} dx = -GM \left[\frac{1}{x} \right]_{cc}^{r} = -GM \left[\frac{1}{r} - \frac{1}{\infty} \right] = -\frac{GM}{r}$$

বিভবের সংজ্ঞা অনুযায়ী, উক্ত কার্য P-বিন্দুর বিভবের (V) সমান। অতএব P বিন্দুর মহাকর্ষীয় বিভব

$$V = -\frac{GM}{}$$

মহাকর্ষীয় বিভব ঋণাত্মক কারণ একক ভরকে অসীম দূরত্ব থেকে P বিন্দুতে আনতে মহাকর্ষীয় আকর্ষণ বলই কার্য করে; বাইরে থেকে কার্য করার প্রয়োজন হয় না। মহাকর্ষীয় বিভবের একক জুল / কেজি Jkg⁻¹)।

পৃথিবীকে M ভরের একটি গোলক মনে করলে, পৃথিবীপৃষ্ঠে মহাকর্ষীয় বিভব হবে $V=-\frac{GM}{D}$ যেখানে R = পথিবীর ব্যাসার্ধ!

2012. মহাক্ষীয় বিভবশন্তি বা স্থিতিশন্তি (Gravitational potential energy):

M ভরের মহাক্ষীয় ক্ষেত্রে এক বিন্দু থেকে অন্য এক বিন্দুতে মহাক্ষীয় বলের বিরুধে m जत्र अतार श्राहे वार्ष अपन कि कार्य कार्य कार्य कार्य m जर्ज महाक्यीय স্থিতিশন্তিরূপে সন্ধিত থাকে।

ধরো, M ভরের মহাক্ষীয় ক্ষেত্রে P বিন্দুতে m ভরের একটি বস্তু রাখা আছে |চিত্র 2.8|। M ভরের কেন্দ্র O বিন্দু থেকে P বিন্দুর দূরত্ব = r

যখন m ভর A বিন্দৃতে (দূরত্ব = x) অবস্থিত তখন M ভরের দর্ন তার উপর আকর্ষণ বল $F = \frac{GMm}{\sqrt{2}}$

এবার m ভর A বিন্দু থেকে dx দূরত্ব সরে B বিন্দুতে এলে, কৃতকার্য $dW = F.dx = \frac{GMm}{.2}.dx$

m ভরকে অসীম দূরত্ব থেকে P বিন্দুতে (O বিন্দু থেকে r দূরে) আনতে মোট কার্য $W=\int^r \frac{GMm}{r^2} dx$ $= GMm \int_{-2}^{r} dx = -\frac{GMm}{r}$

এই কার্য m ভরের বন্ধতে স্থিতিশন্তিরপে সন্ধিত থাকবে। অতএব M ভরের বন্ধু থেকে r দুরে m ভরের মহাক্ষীয় স্থিতিশক্তি $E=-G\frac{Mm}{r}\times m=$ মহাক্ষীয় বিভব \times ভব।

213. ভূপৃষ্ঠের নিকটবর্তী অঞ্চলে মহাকর্ষীয় স্থিতিশক্তি (Gravitational potential energy near the surface of the earth)

ভূপৃষ্ঠ থেকে h উচ্চতায় m ভরের মহাকর্ষীয় প্থিতিশক্তি $E=-rac{GMm}{R+h}$ [M = পৃথিবীর ভর] [চিত্র 2.9]

$$= -\frac{GMm}{R(1 + \frac{h}{R})} = -\frac{GMm}{R} (1 + \frac{h}{R})^{-1} = -\frac{GMm}{R} \left[1 - \frac{h}{R} \right]$$

R>>h হওয়ায় $\frac{h}{R}$ -এর উচ্চঘাত অগ্রাহ্য করা যায়।

$$\therefore E = -\frac{GMm}{R} + \frac{GMmh}{R^2}$$
 ; কিছু $\frac{GM}{R^2} = g$ (অভিকর্ষজ ত্বরণ)।
$$\therefore E = -\frac{GMm}{R} + mgh$$

আবার, $\frac{GMm}{R} = \frac{1}{2}$ ভূপুন্তে m ভরের মধ্যক্ষীয় স্পিতিশান্ত রুগ্রে (convention) অনুষ্ণী ভূপুন্তে মহাক্ষীয় স্পিতিশান্ত শুনা ধরা হয়। অভ্যাব, E = mgh.

D EXAMPLE D

ি একটি রকেটকে $5~{
m km s^{-1}}$ বেগ দিয়ে ভূপুন্ঠ থেকে খাড়া উচ্চের্ব নিচ্ছেপ করা হল। রকেটটি পুনরায় ভূপুন্তের দিকে ফিরে আসার আগে কত উচ্চতা আরোহণ করবে ? পৃথিবীর তির $= 6 \times 10^{24} {
m kg}$ পৃথিবীর গড় ব্যাসার্থ $= 6.4 \times 10^6 {
m m}$; $G = 6.6 \times 10^{-11} {
m S.I.}$

উঃ। ধরো, রকেটের প্রাথমিক গতিবেগ = চ এবং রকেট ভূপ্স থেকে h উচ্চত আরোজন করক।
ভূপ্সে থাকাকালীন রকেটের মোট শক্তি = গতিশক্তি + স্থিতিশক্তি = $\frac{1}{2}m v^2 - \frac{GMm}{R}$

সংবাচ বিশ্বত $\upsilon=0$ হওয়ায় গতিশক্তি =0 এবং স্থিতিশক্তি $=\frac{GMm}{R+h}$

*গ্রি সংরক্ষণ সূত্রাল্যায়ী, $\frac{1}{2}mv^2 - \frac{GMm}{R} = 0 - \frac{GMm}{R+h}$

অথবা, $\frac{GMm}{R+h} = \frac{GMm}{R} - \frac{1}{2}mv^2$

$$, \frac{GM}{R+h} = \frac{GM - 0.5Rv^2}{R}$$

$$R + h = \frac{GM}{GM - 05Rv^2}$$

উভয়দিক থেকে ৷ বিয়োগ দিলে, $\frac{h}{R} = \frac{0.5R.v^2}{GM - 0.5Rv^2}$

থাবা, $h = \frac{0.5R^2 \cdot v^2}{GM - 0.5Rv^2} = \frac{0.5 \times (6.4 \times 10^6)^2 (5 \times 10^3)^2}{(6.67 \times 10^{-11} \times 6 \times 10^{24}) - 0.5 \times 6.4 \times 10^6 \times (5 \times 10^3)^2}$ $= 1.6 \times 10^6 \text{ m } \text{ (প্রায়)} \text{ (213)}$

2.14 এই ও উপমত্তের গাঁত (Motion of planets and satelline

মানবসভ্যতার অতি প্রাচীনকাল থেকে আকাশের গ্রহ-নক্ষ্ম্রাদি সম্বন্ধে বিজ্ঞানীরা কৌতৃহল প্রকাশ করে এসেছেন। যোড়শ শতান্ধীর মধ্যভাগে ডেনমার্কের বিশিষ্ট জ্যোতির্বিদ টাইকোব্রেই মঞ্চালগ্রহের গতিবিধি লক্ষ্মকরে কয়েকটি প্রয়োজনীয় তথ্য সংগ্রহ করেছিলেন। পরবর্তীকালে 1609 খ্রিস্টাব্দে ঐ তথ্যপুলির সহায়তায় এবং আরও কিছু পর্যবেক্ষণের পর ডেনমার্কের আর একজন জ্যোতির্বিদ জোহানেস কেপলার উপলব্ধি করলেন যে গ্রহগুলি কোনো এক বলের প্রভাবে সূর্যকে কেন্দ্র করে অবিরত ঘুরছে। তিনি গ্রহের গতি সম্পর্কে কয়েকটি গুরত্বপূর্ণ সূত্রের প্রভাব করেন। আরও পরে সপ্তদশ শতান্ধীর মধ্যভাগে বিশ্ববিশ্রত বিজ্ঞানী স্যার আইজাক নিউটন মহাকর্ষ সূত্র প্রতিষ্ঠা করেন এবং বলেন গ্রহগুলি সূর্যের মহাকর্ষ বলের অধীনে থেকে নিজ নিজ কক্ষ্পথে আবর্তন করে।

• কেপলারের সূত্রাবলি (Kepler's laws of planetary motion):

সূর্যকে একটি ফোকাসে রেখে প্রতিটি গ্রহ উপবৃত্তাকার কক্ষপথে পরিভ্রমণ করে।

(The path of each planet is an elliptical orbit with the sun at one of its focii).

 সূর্য ও গ্রহের সংযোজক সরলরেখা (একে বলা হয় দূরক) সমান অবকাশে সমান ক্ষেত্রফল অতিক্রম করে—অর্থাৎ একক সময়ে অতিকান্ত ক্ষেত্রফল ধ্রবক।

(The radius vector, drawn from the sun to a planet sweeps out equal area in equal time *i.e.*, the area swept out per unit time is constant).

3. সূর্যের চতুর্দিকে প্রত্যেক গ্রন্থের আবর্তনকালের বর্গ সূর্য থেকে ঐ গ্রহের গড় দূরত্বের ত্রিঘাতের সমানুপাতি।

(The square of the period of revolution of a planet round the sun is proportional to the cube of its mean distance from the sun.)

T যদি কোনো গ্রহের আবর্তনকাল হয় এবং সূর্য থেকে ঐ গ্রহের গড় দূরত্ব হয় r তবে তৃতীয় সূত্রানুযায়ী, $T^2 \simeq r^3$ অথবা, $\frac{T^2}{r^3} =$ ধুবক;

গ্রহের প্রদক্ষিণ বেগ ও প্রদক্ষিণ কাল :

সূর্যের চতুর্দিকে গ্রহগুলি বৃত্তাকার কক্ষপথে (প্রকৃতপক্ষে কক্ষপথগুলি উপবৃত্তাকার) পরিভ্রমণ করে ধরে

নিলে* মহাকর্য সূত্রের প্রয়োগে আমরা গ্রহগুলির দুতি এবং পর্যায়কাল নির্ণয় করতে পারি। ধরা যাক m ভরের একটি গ্রহ সূর্যকে (M) কেন্দ্র করে r ব্যাসার্ধের বৃত্তপথে পরিভ্রমণ করছে [চিত্র 2.10]। এখন কোনো বস্তুকে বৃত্তাকার পথে পরিভ্রমণ করাতে হলে, তার উপর অভিকেন্দ্র বল প্রয়োগ করতে হবে। গ্রহের বেলায় এই অভিকেন্দ্র বল আনে সূর্যের মহাকর্ষ বল থেকে। যদি গ্রহের দুতি

 υ হয়, তবে এই অভিকেন্দ্র বল $F=rac{m\upsilon^2}{r}$: আবার, সূর্যের ভর

M হলে, মহাক্ষীয় বা অভিকেন্দ্র বল $=\frac{G.M.m}{r^2}$.

অতএব,
$$G.\frac{Mm}{r^2} = \frac{mv^2}{r}$$
 অথবা, $v = \sqrt{\frac{G.M.}{r}}$ (i)

এটাই গ্রহের কক্ষপথ বরাবর দুতি। একে গ্রহের **প্রদক্ষিণ বেগ** (orbital velocity) বলা হয়। সমগ্র কক্ষপথ একবার ঘুরে আসতে যদি গ্রহের T সময় লাগে, ভবে, $\upsilon=rac{2\pi r}{T}$ (ii)

(1) এবং (II) নং সমীকরণের বর্গ নিলে পাই,
$$\frac{4\pi^2r^2}{T^2} - \frac{GM}{r}$$
 $\therefore T^2 = \left(\frac{4\pi^2}{GM}\right) \cdot r^3 \dots$ (III)

G এবং M ধ্রবর্গাল হওয়ায়, $T^2 \propto r^3$ অর্থাৎ, সূর্যের চত্র্নিকে গ্রহের আবর্তনকালের বর্গ সৃষ্ঠ হতে গ্রহের দরশ্লের বিধাতের সমান্পাতি। এটাই কেপলারের ভূতীয় সৃত্ত। লক্ষ করে যে, **গ্রহের প্রদক্ষিণ বেল** বা প্রদ**ক্ষিণ কাল গ্রহের ভরের উপর নির্ভরশীল নয়।**

(III) নং সমীকরণ থেকে এটাও বোঝা যায় যে r যত ছোটো হবে অর্থাৎ গ্রহ সূর্যের মত নিকটবর্তী হবে তার পর্যায়কাল অথবা তার 'বংসরের' দৈখা তত কম হবে। সূর্যের নিকটবর্তী গ্রহগুলির 'বংসর'

[্] কক্ষণত প্রত উপরোধার বিশ্ব উপরোধর ইয়িক (major axis) এবং মুস্তাক্ষর (minor axis) পাথক। এর ক্রম স্থ কক্ষণথগুলিকে কর্মিত বৃদ্ধ বলে বলা বার।

দূরবর্তী গ্রহগুলির 'বৎসর' অপেক্ষা কম। যেমন, পৃথিবীর 'বৎসর' হয় 12 মাসে কিন্তু সূর্য থেকে বহুদূরে অবস্থিত প্লুটো গ্রহের 'বৎসর' হয় প্রায় 253 x 12 মাসে। আবার সূর্যের নিকটবর্তী গ্রহ শুক্রের (Venus) বৎসর হয় প্রায় বিশ্বর প্রায় সাড়ে সাত মাসে এবং সূর্যের সর্বাপেক্ষা নিকটবর্তী গ্রহ বুধের (Mercury) বৎসর হয় প্রায় তিন মাসে।

উপগ্রহগুলি তাদের নিজস্ব গ্রহের চতুর্দিক প্রদক্ষিণ করে। উপগ্রহগুলির অভিকেন্দ্র বল গ্রহের অভিকর্ষীয় আকর্ষণ থেকে আসে। একই পন্ধতি অনুসারে এক্ষেত্রেও প্রমাণ করা যায় যে উপগ্রহের প্রদক্ষিণ কালের বর্গ গ্রহ ২তে তার গড় দূরত্বের ত্রিঘাতের সমানুপাতি।

. Examples U

া সূর্যের চতুর্দিকে পৃথিবীর বৃত্তাকার কক্ষপথের ব্যাসার্থ $15 \times 10^7 \, \mathrm{km}$ । 365 দিনে এই কক্ষপথ পৃথিবী একবার ঘুরে এলে, পৃথিবীর দুতি কিলোমিটার প্রতি ঘণ্টা এককে (kmh^{-1}) প্রকাশ করো।

$$\Im s \mid v - \frac{2\pi r}{T} = \frac{2 \times 3.14 \times 15 \times 10^7}{365 \times 24} = 10^5 \text{ kmh}^{-1} \mid$$

পৃথিবীর চতুর্দিকে 3.8 × 10⁵ km ব্যাসার্ধের এক বৃত্তপথে চাঁদ একবার পরিশ্রমণ করতে 27 দিন সময় নেয়। সূর্যের চতুর্দিকে 1.5 × 10⁸ km ব্যাসার্ধের অপর এক বৃত্তপথে পৃথিবী পরিশ্রমণ করতে 365 দিন সময় নেয়। এথেকে সূর্য ও পৃথিবীর ভরদ্বয়ের অনুপাত নির্ণয় করো।
[Jt. Entrance 1997]

উঃ। ধরো, $M_s=$ সূর্যের ভরঃ $M_e=$ পৃথিবীর ভরঃ $r_1=$ সূর্য হতে পৃথিবীর দূরত্ব এবং $T_1=$

পৃথিবীর প্রদক্ষিণ কাল।
$$2.14$$
 অনুচ্ছেদের (iii) নং সমীকরণ থেকে লেখা যায় $T_1^2 = \left(\frac{4\pi^2}{GM_{\odot}}\right) r_1^3$

পৃথিবী থেকে চাঁদের দূরত্ব r_2 এবং চাঁদের প্রদক্ষিণ কাল T_2 হলে, $T_2^2=\left(\frac{4\pi^2}{GM_e}\right) r_2^2$

$$\text{Test farm, } \frac{T_2^2}{T_1^2} = \frac{M_{\chi} \cdot r_2^3}{M_{\varrho} \cdot r_1^3} \quad \therefore \quad \frac{M_{\varrho}}{M_{\varrho}} = \frac{T_2^2}{T_1^2} \times \frac{r_1^3}{r_2^3} = \left(\frac{T_2}{T_1}\right)^2 \times \left(\frac{r_1}{r_2}\right)^3$$

এম্থালে $T_2 = 27$ দিন ; $T_1 = 365$ দিন ঃ $r_1 = 1.5 \times 10^8$ km এবং $r_2 = 3.8 \times 190^5$ km.

$$\therefore \frac{M_s}{M_e} = \left(\frac{27}{365}\right)^2 \times \left(\frac{1.5 \times 10^8}{3.8 \times 10^5}\right)^3 = 3.37 \times 10^5.$$

কুর্য থেকে পৃথিবীর দূরত্ব অকলাৎ বর্তমান দূরত্বের অর্থেক হয়ে গেলে, এক বৎসর
ক্ত দিনে হবে ?

উঃ। সুর্গ হাত পৃথিবীর বর্তমান দূরত্ব r এবং বর্তমান প্রদক্ষিণ কাল T হলে, কেম্প্রারের ভূতীয় সূর অনুসংটি পাই, $T^2=k.r^3$ $\{k=4$ রক)

মদি দর্ভ অপের $\binom{r}{2}$ হয়ে যায়, হরে নতুন পর্যায়কাল $I_1=k(\frac{r}{2})^3-k(\frac{r}{4})$

ভাগ দিলে
$$\frac{T_1}{T} = \sqrt{\frac{1}{8}} = \frac{1}{2\sqrt{2}}$$
 : $T_1 = \frac{T}{2\sqrt{2}}$

বর্তমান পর্যায়কাল T=365 দিন। কাজেই, $T_1=\frac{365}{2\sqrt{2}}=129$ দিন। অভএব বর্তমান দরত্ব অকস্মাৎ অর্ধেক হয়ে গেলে **129 দিনে** এক বংসর হবে।

2.15. মুব্রিবেগ (Escape velocity):

সংজ্ঞা ঃ পৃথিবী বা অন্য কোনো গ্রহের পৃষ্ঠ হতে কোনো বস্তুকে ন্যুনতম যে বেগে খাড়া উধের্ব উৎক্ষেপ করলে তা পৃথিবী বা ঐ গ্রহের মহাকধীয় আকর্ষণের বাইরে চলে যেতে পারে তাকে পৃথিবীর বা ঐ গ্রহের মুক্তিবেগ বলে।

হয়ে যেতে পারে। যে ন্যুনতম বেগ দিলে বস্তু এই কার্য করতে সক্ষম হয়, তাকে মন্তিবেগ বলে।

সাধারণ গণিতের সাহায্যে এই বেগ হিসাব করা খুবই জটিল। ক্যালকুলাস প্রয়োগ করলে খুব সহজে হিসাব করা যায়। পৃথিবীর ব্যাসার্ধ R এবং ভূপৃষ্ঠে অভিকর্ষজ ত্বরণ g হলে, পার্থিব বস্তুর পক্ষে মুন্তিবেগ হবে, $\upsilon_{r}^{*}=\sqrt{2gR}$; লক্ষ করার বিষয় যে উত্ত সমীকরণে বস্তুর ভর m অন্তর্ভুক্ত হয়নি। কাজেই বলা যায়, মুন্তিবেগ ছোটো-বড়ো সকল বস্তুর বেলাতেই সমান।

এখন, R = 6400 km এবং $g = 9.8 \text{ ms}^{-2}$ হলে, $v_e = 11.2 \text{ kms}^{-1}$. (প্রায়)

অতএব, পার্থিব কোনো বস্তুকে সেকেন্ডে প্রায় 11 km গতিবেগ দিয়ে উৎক্ষেপ করতে পারলে তা আর ভূপৃষ্ঠে ফিরে আসবে না। চন্দ্রপৃষ্ঠে অভিকর্ষজ ত্বরণ ভূপৃষ্ঠের ত্বরণের প্রায় ছয় ভাগের একভাগ। সূতরাং চন্দ্রপৃষ্ঠে কোনো বস্তুর মুক্তিবেগ আরও কম। চন্দ্রপৃষ্ঠে মুক্তিবেগ প্রায় 2.4 kms⁻¹.

*প্রমাণ ঃ ধরো, উৎক্ষিপ্ত বন্ধুর ভর = m; পৃথিবীর ভর = M; কোনো এক মুহূর্ত পৃথিবীর কেন্দ্র থেকে উৎক্ষিপ্ত বন্ধুর দূরত্ব = x; ঐ স্থানে বন্ধুর উপর পৃথিবীর আকর্ষণ বল = $\frac{GMm}{r^2}$ ।

বস্তু এই বলের বিরুম্খে সামান্য dx দূরত্ব সরে গেলে কৃতকার্য $=\frac{GMm}{x^2}.dx$

অতএব, বস্তুকে পৃথিবীর আকর্ষণের বাইরে নিলে মোট কৃতকার্য = $\int\limits_R^\infty \frac{GMm}{x^2}.dx = GMm\int\limits_R^\infty \frac{1}{x^2}.dx$

$$=GMmigg[-rac{1}{x}igg]_R^{\infty}=rac{GMm}{R}$$
 [$R=$ পৃথিবীর ব্যাসার্ধ] ;

 v_e যদি মুক্তিবেগ হয়, তবে বস্তুর প্রাথমিক গতিশক্তি = $\frac{1}{2}mv_e^2$: স্পষ্টত এই গতিশক্তি হবে পূর্বোক্ত মোট

কার্যের সমান। অতএব,
$$\frac{1}{2}mv_e^2 = \frac{GMm}{R}$$
 অথবা, $v_e = \sqrt{\frac{2GM}{R}}$

ু যদি ভূপুঠে অভিকর্ষক ত্বরণ হয়, তবে 2.5 অনুক্ষেদে আমরা দেখেছি যে $R=\frac{GM}{R^2}$

$$\therefore v_g = \sqrt{2gR}$$

• মুব্রিবেগের বিকল্প ব্যশ্বক (Alternative expression of escape velocity) :

- (i) পৃথিবীর ভর = M এবং ব্যাসার্ধ = R হলে, মুন্তিবেগ $v_e = \sqrt{\frac{2GM}{R}}$
- (ii) পৃথিবীর গড় ঘনত্ব ρ হলে, পৃথিবীর ভর $M=\frac{4}{3}\pi R^3.
 ho$, কান্ডেই

$$v_e = \sqrt{\frac{2GM}{R}} = \sqrt{\frac{2G}{R}} \times \frac{4}{3} \pi R^3 \cdot \rho = R\sqrt{\frac{8\pi G \cdot \rho}{3}}$$

গাণিতিক সমস্যা সমাধানে উপরোক্ত সমীকরণগুলি প্রায়ই প্রয়োজন হয়।

• মহাক্ষীয় বন্দনশক্তি (Gravitational binding energy) ই

ইতিপূর্বে আমরা দেখলাম ভূপৃষ্ঠমথ m ভরের বস্তুকে যদি $\frac{1}{2}mv_e^2 = \frac{GMm}{R}$ অথবা আরও বেশি শত্তি দেওয়া হয় তবে ঐ বস্তু ভূপৃষ্ঠ ত্যাগ করে বহু দূরে চলে যাবে।

কোনো বন্তুকে ভূপৃষ্ঠ থেকে অসীম দূরত্বে নিয়ে যেতে যে ন্যূনতম শব্তির প্রয়োজন তাকে পৃথিবী-বন্তু সংস্থার বন্ধনশক্তি বলে। সূতরাং পৃথিবী-বন্তু সংস্থার বন্ধনশক্তি = GMm/R।

পৃথিবীর আবহমন্ডলে হালকা গ্যাসের দৃষ্পাপ্যতা :

পৃথিবীর আবহমগুলে হাইড়োজেন, হিলিয়াম প্রভৃতি হালকা গ্যাস খুবই দুষ্প্রাপ্য। এই ঘটনা আমরা মুন্তিবেগ থেকে ব্যাখ্যা করতে পারি। কোনো গ্রহে বায়ুমগুলের অন্তিত্ব ও উপাদান তার মুন্তিবেগের উপর নির্ভর করে। বায়ুমগুলের বিভিন্ন গ্যাসের অণু সর্বদা প্রচণ্ড বেগে ছুটে বেড়ায়। অণু যত হালকা হয় এবং উন্ধাতা যত বাড়ে এই বেগও তত বেশি হয়। হিসাব করে দেখা গেছে যে প্রমাণ তাপমাত্রা ও চাপে হাইড়োজেন অণুর গতিবেগের গড় বর্গের বর্গমূল মান (root mean square value) প্রায় 1.6 kms⁻¹। কিয়ু পৃথিবী সৃষ্টির আদি যুগে ভূপ্ঠের তাপমাত্রা খুব বেশি ছিল এবং তখনকার তাপমাত্রায় হাইড়োজেন অণুর উপরিউন্ত গতিবেগ প্রায় 3.2 km কিংবা 4.8 kms⁻¹ ছিল। সুতরাং এটা খুবই সম্ভব যে পৃথিবীর আবহমগুলের হাইড়োজেন গ্যাসের অণুগুলির বহুলাংশের একক (individual) গতিবেগ মুন্তিবেগের (11 kms⁻¹) সমান বা বেশি ছিল এবং কিছু অণুর গতিবেগ কম ছিল। ফলে, ধীরে ধীরে হাইড়োজেন, হিলিয়াম প্রভৃতি হালকা ধরনের গ্যাসের অণুগুলি ভূপৃষ্ঠ ছেড়ে মহাশূন্যে বিলীন হয়ে গিয়েছে।

চাঁদের চতুর্দিকে পৃথিবীর মতো কোনো গ্যাসীয় আবরণ নেই। বুধ গ্রন্থেরও তাই, কারণ, চাঁদ বা বুধগ্রহের ভর তুলনায় অনেক কম বলে তাদের বেলায় মুন্তিবেগের মানও কম। গ্যাসীয় অণুগুলির গতিবেগ ঐ মুন্তিবেগ অপেক্ষা বেশি হওয়ায় তারা বুধ বা চন্দ্রপৃষ্ঠ হতে বিলীন হয়ে গেছে। এই কারণে অন্যান্য গ্রহগুলির উপগ্রহে ঐ ধরনের কোনো গ্যাসীয় আবহমশুল নেই। আবার বৃহস্পতি গ্রহের ভর খুব বেশি হওয়ায় তার মুন্তিবেগও খুব বেশি (প্রায় 60 kms⁻¹)। তাই বৃহস্পতি গ্রহের আবহমশুলে প্রচুর হিলিয়াম ও হাইড্রোজেন আছে। উল্লেখযোগ্য যে পৃথিবীর চতুর্দিকে গ্যাসীয় আবহমশুল থাকায় ভূপৃষ্ঠের তাপমাত্রা মানুষ ও জীবজন্তুর জীবনের পক্ষে সহনীয় হয়েছে।

ক্রিম উপশ্রহ (Artificial satellite):

1957 খ্রিস্টাব্দের এঠা অক্টোবর পূর্বতন সোভিয়েট যুক্তরান্ট্রের বিজ্ঞানীরা সর্বপ্রথম কৃত্রিম উপগ্রহ উৎক্ষেপ করেন। চাঁদ যেমন পৃথিবীকে প্রদক্ষিণ করে এটাও তেমনি পৃথিবীকে প্রদক্ষিণ করেছিল। তারপর, অবশ্য অনাান্য দেশের বিজ্ঞানীরাও একাধিক কৃত্রিম উপগ্রহ উৎক্ষেপ করেছেন। ভারতের বিজ্ঞানীরাও 1975 খ্রিস্টাব্দে এপ্রিল মাসে 'আর্যভট্ট' এবং 1980 খ্রিস্টাব্দে 'ভাস্কর' নামে কৃত্রিম উপগ্রহ মহাকাশে উৎক্ষেপ করেছেন।

ভূপৃষ্ঠ হতে কৃত্রিম উপগ্রহকে উৎক্ষেপ করার সময় খাড়া উধর্বমুখী উৎক্ষেপ করা হয়। যত এটা উধ্বের্য

আরোহণ করে, নিয়ন্ত্রণকারী জেট দারা তাকে ধীরে ধীরে তত একটি অনুভূমিক কক্ষপথের অভিমুখী করা হয়। চাঁদের মতো পৃথিবীর চতুর্দিক প্রদক্ষিণ করতে হলে, ঐ অনুভূমিক কক্ষপথে কৃত্রিম উপগ্রহের গতিবেগ কী হবে তা আমরা নিম্নলিখিত আলোচনা হতে বুঝতে পারব।

মনে কর, ভূপৃষ্ঠ হতে একটি রকেট উর্ধ্বমুখী এরুপভাবে ছোড়া হল যে কয়েক শত মাইল উঁচু একটি মিনারের শীর্ষদেশে (P) পৌছোলে তার বেগ অনুভূমিক হয় [চিত্র 2.11]। নিক্ষেপ বেগ কম হলে নিক্ষিপ্ত বন্তু মোটামুটি অধিবৃত্ত পথে (parabolic path) ভূপৃষ্ঠের A-বিন্দুতে পৌছাবে। নিক্ষেপ বেগ আরও বেশি হলে বন্তুটি আরও বড়ো অধিবৃত্ত পথে ভূপৃষ্ঠের আরও দুরবর্তী B বিন্দুতে পৌছাবে। নিক্ষেপ বেগ বৃদ্ধি করে

একটি নির্দিষ্ট মানে পৌছোলে বস্তুটি ভূপৃষ্ঠে না পড়ে বৃত্তাকার পথে পৃথিবী প্রদক্ষিণ করবে। তখন তাকে কৃত্রিম উপগ্রহ বলা হবে। যে বেগে কৃত্রিম উপগ্রহ পৃথিবী প্রদক্ষিণ করে সেই নির্দিষ্ট বেগকে বলা হয় প্রদক্ষিণ বেগ (orbiting velocity)। নিক্ষেপ বেগ প্রদক্ষিণ বেগকে ছাড়িয়ে গেলে বস্তুটি হয় উপবৃত্তাকার পথে পৃথিবী প্রদক্ষিণ করবে কিংবা মহাশূন্যে বিলীন হয়ে যাবে। 2.14 অনুচ্ছেদে আমরা দেখেছি যে বৃত্তাকার পথে পরিভ্রমণরত বস্তুর বেলায় তার অভিকেন্দ্র বল ও মহাকর্ষ বলের সমীকরণ হতে ঘূর্ণায়মান বস্তুর

প্রদক্ষিণ বেগ নির্ণয় করা যায়। ঐ অনুচ্ছেদ অনুযায়ী, উপগ্রহের প্রদক্ষিণ বেগ, $\upsilon = \sqrt{\frac{GM}{r}}$ [r= কৃত্রিম উপগ্রহের বৃত্তাকার কক্ষপথের ব্যাসার্থ)

ভূপৃষ্ঠ হতে উপগ্ৰহের কক্ষপথের উচ্চতা
$$h$$
 হলে $r=R+h$, অতএব, $\upsilon=\sqrt{\frac{GM}{R+h}}$ (i) আবার উপগ্রহের প্রদক্ষিণ কাল T হলে, $\upsilon=\frac{2\pi(R+h)}{T}=\sqrt{\frac{GM}{R+h}}$... $T=2\pi\sqrt{\frac{(R+h)^3}{GM}}=2\pi\sqrt{\frac{R^3}{GM}}\Big(1+\frac{h}{R}\Big)^{\frac{3}{2}}$

$$g = \frac{GM}{R^2}$$
 হওয়ায় $T = 2\pi \sqrt{\frac{R}{g}} (1 + h/R)^{3/2}$(ii)

মহাবিশ্বে যে-কোনো নভোবন্তর চত্র্দিক প্রদক্ষিণকারী উপগ্রহের প্রদক্ষিণ বেগ এবং প্রদক্ষিণ কাল (i) এবং (ii) সমীকরণগুলি হতে পাওয়া যাবে। লক্ষ করো যে, কৃত্রিম উপগ্রহের প্রদক্ষিণ বেগ ও প্রদক্ষিণ কাল উপগ্রহের ভরের উপর নির্ভরশীল নয়।

ভূপৃষ্ঠের খুব নিকটবতী উপগ্রহ:

ভূপ্ঠের খুব কাছে এবং নিরক্ষ তলে থেকে কোনো কৃত্রিয় উপগ্রহ পৃথিবী প্রদক্ষিণ করলে, তার কক্ষপথের ব্যাসার্ধ (r) পৃথিবীর ব্যাসার্ধের (R) সমান ধরা যেতে পারে। এই বিশেষ ক্ষেত্রে, অভিকেন্দ্র বল F বস্তুর গুজন mg-এর সমান ধরা যায়।

অতএব,
$$mg = G \frac{Mm}{R^2}$$
 অথবা, $GM = gR^2$

প্রদক্ষিণ বেগের সমীকরণে এই মান বসালে পাই,
$$\upsilon=\sqrt{\frac{gR^2}{r}}=\sqrt{gR}$$
 $[\because R=r]$

উপবৃত্তাকার কক্ষপথে প্রদক্ষিণ বেগঃ

কৃত্রিম উপশ্রহের কক্ষপথ বৃত্তাকার না হয়ে উপবৃত্তাকার হলে, কক্ষপথের বিভিন্ন জায়গায় প্রদক্ষিণ বেগ

বিভিন্ন হবে। 2.12 নং চিত্রে প্রদর্শিত উপবৃত্তাকার কক্ষপথে পরাক্ষের (major axis) বামপ্রান্তের A বিন্দুতে প্রদক্ষিণ বেগ সর্বাধিক এবং দক্ষিণ– প্রান্তের B বিন্দুতে সর্বনিম্ন। A বিন্দুকে বলা হয় অনুভূ (perigee) এবং B বিন্দুকে অপভূ (apogee)। উপগ্রহটি অনুভূ বিন্দু হতে যত দূরে সরে যায়, গ্রহের (M) পশ্চাদ্বতী মহাকর্ষ বলের (F) প্রভাবে তার বেগ ধীরে ধীরে হ্রাস পায় এবং অপভূ বিন্দুতে (B) ঐ বেগ সর্বনিম্ন হয়। কক্ষপথের অপরার্ধে উপগ্রহটি গ্রহের নিকটবতী হতে থাকে এবং ক্রমবর্ধমান মহাকর্ষ বল তার প্রদক্ষিণ বেগকে ধীরে ধীরে দ্রুতত্রর করতে থাকে যতক্ষণ পর্যন্ত না তা পুনরায় অনুভূ বিন্দুতে (A) পৌছে সর্বোচ্চ বেগের অধিকারী হয়।

2.17.

ভূ-সমলর উপত্রহ (Geo-stationary satellite) এবং কক্ষপথ (Parking orbit):

ধরো, পৃথিবীর কেন্দ্রের (O) সাথে এককেন্দ্রীভাবে বিষুবরেখার (plane of the equator) সমতলে m ভরের একটি কৃত্রিম উপগ্রহ পৃথিবী পরিক্রমা করছে [চিত্র 2.13]। পৃথিবী যে অভিমুখে নিজ অক্ষের চতুর্দিকে

ঘুরছে, কৃত্রিম উপশ্রহটিও ধরা যাক্, একই অভিমূখে ঘুরছে। উপশ্রহের কক্ষপথের ব্যাসার্ধ r হলে এবং

কন্দীয় গতিবেগ ৩ হলে,
$$\frac{mv^2}{r} = \frac{GMm}{r^2}$$

যদি পৃথিবীর ব্যাসার্ধ হয় R তবে, $GM = gR^2$;

কাজেই,
$$\frac{mv^2}{r} = \frac{mgR^2}{r^2}$$
 অথবা, $v^2 = \frac{gR^2}{r}$

কৃত্রিম উপগ্রহের কক্ষপথ বরাবর আবর্তনকাল

$$T = \frac{2\pi r}{T} \therefore \frac{4\pi^2 \cdot r^2}{T^2} = \frac{gR^2}{r}$$

অথবা,
$$T^2 = \frac{4\pi^2 \cdot r^3}{\varrho \cdot R^2} \cdot \dots$$
 (i)

এখন কৃত্রিম উপগ্রহের উত্ত আবর্তনকাল যদি পৃথিবীর নিজ অক্ষের চতুর্দিকে আবর্তনকালের (অর্থাৎ 24 ঘন্টা) সমান হয় গ্রহলে পৃথিবীর কৌণিক গতিবেগের সাপেক্ষে উপগ্রহের আপেক্ষিক কৌণিক গতিবেগ হবে শূন্য। তখন পৃথিবী হতে উপগ্রহকে এক জায়গায় স্থির দেখা যাবে। এই ধরনের কক্ষপথকে পার্কিং কক্ষপথ বলা হয় এবং উপগ্রহকে বলা হয় ভূ-সমলয় (geo-stationary) উপগ্রহ। পার্কিং কক্ষপথে রিলে উপগ্রহ স্থাপন করে পৃথিবীর একস্থানে অনুষ্ঠিত খেলাধুলা, গানবাজনা প্রভৃতি পৃথিবীর অন্যস্থানে ধারাবাহিকভাবে দ্রদর্শন যোগে দেখানো হচ্ছে।

এখন T=24 ঘণ্টা এই মান (i) নং সমীকরণে বসিয়ে পার্কিং কক্ষপথের ব্যাসার্ধ r নির্ণয় করা যায়।

$$r = \sqrt[3]{\frac{T^2 \cdot g \cdot R^2}{4\pi^2}} = \sqrt[3]{\frac{(24 \times 3600)^2 \times 980 \times (6.4 \times 10^8)^2}{4\pi^2}} \text{ cm.} = 42340 \text{ km} \text{ (213)}$$

অতএব, কোনো কৃত্রিম উপগ্রহকে পার্কিং কক্ষপথে স্থাপন করতে হলে তাকে ভূপৃষ্ঠ হতে (42340 – 6400) = 35940 km উচ্চে তুলতে হবে।

পূর্বোক্ত আলোচনা হতে ভূ-সমলয় উপগ্রহের নিম্নলিখিত বৈশিক্ট্য উল্লেখ করা যায় ঃ

- (i) বিষুবরেখার তল হতে উপগ্রহ প্রায় 35,940 km উধের্ব অবস্থিত।
- (ii) পৃথিবী যেমন নিজ অক্ষের চতুর্দিকে পশ্চিম হতে পূবদিকে আবর্তন করে, ভূ-সমলয় উপগ্রহও তেমনি নিজ কক্ষপথে পশ্চিম হতে পূবদিকে ঘুরে আসে [চিত্র 2.13]।
- (iii) এর প্রদক্ষিণ বেগ প্রায় 2.61 kms⁻¹.
- (iv) এর পরিভ্রমণের কক্ষতল (plane of orbit) সর্বদা পৃথিবীর ঘূর্ণাক্ষের অভিলম্ব।
- এর প্রদক্ষিণ কাল (অর্থাৎ পৃথিবীর চতুর্দিক একবার পূর্ণ আবর্তনের সময়) পৃথিবীর স্বীয় অক্ষের
 চতুর্দিকে একবার পূর্ণ প্রদক্ষিণ কালের সমান। এই প্রদক্ষিণ কাল 24 ঘন্টা। এই কারণে 'সমলয়'
 (synchronous) নাম দেওয়া হয়েছে।

্রিষ্ট ভারতীয় বিজ্ঞানীরা INSAT-1 নামে যে কৃত্রিম উপগ্রহ 1982 সালের এপ্রিল মাসে উৎক্ষেপ করেছেন, তা পূর্বোক্ত ধরনের ভূ-সমলয় উপগ্রহ। এটি পার্কিং কক্ষপথে পরিভ্রমণ করছে।

D.Examples O

(b) পৃথিবীর ব্যাসার্ধ 6400 km ; ভর 6×10^{24} kg এবং মহাকর্ষীয় ধুবক $G = 6.6 \times 10^{-1} \, \mathrm{SI}$ হলে পার্থিব বন্ধুর পক্ষে মৃক্তিবেগ কী হবে ?

উঃ। ভূপৃষ্ঠে অভিকর্ষজ ত্বরণ g হলে, মুন্তিবেগ $v_e = \sqrt{2gR}$

এখন, বস্তুর ভর যদি
$$m$$
 হয় তবে $mg = \frac{G.Mm}{R^2}$: $g = \frac{GM}{R^2}$

অতএব,
$$v_e = \sqrt{\frac{2GM}{R^2} \times R} = \sqrt{\frac{2GM}{R}}$$

রাশিগুলির মান কসালে পাই,
$$v_e = \sqrt{\frac{2 \times 6.6 \times 10^{-11} \times 6 \times 10^{24}}{6400 \times 10^3}}$$
 ms $^{-1}$ = 11.12 kms $^{-1}$.

প্রভাগ হতে 700 km উচ্চে থেকে একটি কৃত্রিম উপশ্রহ পৃথিবীকে প্রদক্ষিণ করছে।
কৃত্রিম উপশ্রহটির প্রদক্ষিণ বেগ নির্ণয় করে। উপশ্রহটির পরিঅমণের পর্যায়কাল কত ?

পৃথিবীর ব্যাসার্য = 6300 km এবং ভূপ্তে g এর মান 9.80 ms⁻². [Jt. Entrance 1992]

উঃ। প্রথাকণ বেল
$$v = \sqrt{\frac{gR^2}{r}}$$
 একেছে, $r = 6300 + 700 = 7000 \,\mathrm{km} = 7 \times 10^6 \,\mathrm{m}$.

$$R = 6300 \text{ km} = 63 \times 10^5 \text{ m}. \quad \therefore \quad v = \sqrt{\frac{9.8 \times (63 \times 10^5)^2}{7 \times 10^6}} = 74.54 \times 10^5 \text{ ms}^{-1} = 7.45 \text{ kms}^{-1}.$$

একবার পূর্ণ পরিভ্রমণে উপগ্রহ কওটা দূরত্ব অতিক্রম করে। অথাৎ কঞ্চপ্রের পরিষ্টে হ'ল থাকলে, অম্বর উপগ্রহের পর্যায়কাল নির্ণয় করতে পারি।

এখন কচ্চপথের পরিষ্ঠি = $2\pi~(R+h)$ = $2\pi~(6300)$ + 7000 = $2\pi \times 70000~{\rm km}$ = $2\pi \times 70000 \times 10^{\circ}$ m উপপ্রের প্রদক্ষিণ রেগ = $7.45~{\rm kms}^{-1}$

্ পর্যয়েকাল =
$$\frac{2\pi \times 7000 \times 10^3}{7.45 \times 10^3}$$
 = 5900 s = 1 h 64 min.

3 পৃথিবীর চতুর্দিকে একটি কুদ্র কৃত্রিম উপশ্রহ পরিক্রমণ করছে। উপশ্রহের কক্ষপথের ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের সামান্য কিছু বেশি। উপশ্রহটির প্রদক্ষিণ বেগ এবং পর্যায়কাল নির্ণয় করে। $g=9.8~{
m ms}^{-2}$ এবং পৃথিবীর ব্যাসার্ধ $R=6300~{
m km}$.

উঃ। ভূপুটোর খুব কাছে থেকে কৃত্রিম উপগ্রহ ভূপ্রদক্ষিণ করলে তার প্রদক্ষিণ বেল v v R

$$= \sqrt{9.8 \times 6300 \times 10^3} = 78.57 \times 10^2 \,\text{ms}^{-1}. = 7.84 \,\text{kms}^{-1}.$$

আবার, পর্যায়কাল
$$T = \frac{2\pi R}{v} = \frac{2 \times 3.14 \times 6300}{7.84} \text{ s} = \frac{2 \times 3.14 \times 6300}{7.84 \times 3600} \text{ h} = 1 \text{ h} 24 \text{ mnt.}$$
 (প্রায়

পৃথিবীর কেন্দ্রবিন্দুকে কেন্দ্র করে একটি কৃত্রিম উপগ্রহ পৃথিবী পরিক্রমণ করছে।
প্রমাণ করো ঐ অবস্থায় তার মৃত্তিবেগ তার কন্দীয় গতিবেগেয় 1.41 গুণ।

উঃ। ধরো, উপগ্রহের ভর m; তার কক্ষীয় গতিবেগ = 0; কক্ষপথের বাংসার্ধ = r; কক্ষপথে আর্বর্তনকালে তার অভিকেন্দ্র বল তার উপর পৃথিবীর অভিকর্ষ বলের সমান।

ভাতএব,
$$\frac{GMm}{r^2} = \frac{m.\upsilon^2}{r}$$
 [$M = প্থিবীর ভর$] অথবা, $\upsilon^2 = \frac{GM}{r}$ (i)

2.15 অনুচ্ছেদে দেখেছি যে ভূকেন্দ্র হতে r দূরত্বে মুব্রিবেগ $v_e = \sqrt{\frac{2GM}{r}}$

অথবা,
$$v_e^2 = \frac{2GM}{r}$$
 (ii)

(i) এবং (ii) নং সমীকরণ হতে পাই, $v_e^2 = 2v^2$ অথবা, $v_e = v2.v = 1.41$ u.

একটি কৃত্রিম উপগ্রহ বৃত্তাকার কক্ষপথে পৃথিবীর চারিদিক পরিস্তমণ করছে। তার কক্ষীয় গতিবেগ পৃথিবী সাপেক্ষে মৃত্তিবেগের অর্ধেক। (i) উপগ্রহটি পৃথিবীপৃষ্ঠ হতে কতটা উচ্চে অবন্ধিত ? (ii) যদি কক্ষপথে থাকাকালীন উপগ্রহটির গতি সহসা রুখ করা যায় এবং তাকে অবাধে পৃথিবীর দিকে পড়তে দেওয়া হয় তবে পৃথিবীপৃষ্ঠ স্পর্শ করার পূর্বে তার গতিবেগ কত হবে ? পৃথিবীর ব্যাসার্ধ = 6.4 × 106 m এবং g = 9.8 ms⁻².

[Jt. Entrance 1996]

2.18. তারহীন অবস্থা (Weightless condition):

বস্তুর ভার বা ওজন বলতে বন্তুর উপর পৃথিবীর অভিকর্ষজ্ঞনিত মোট আকর্ষণ বল বুঝায়। সুতরাং এই অভিকর্ষ বলকে নিষ্কিয় করতে পারলেই বন্তু ভারহীন হয়ে পড়বে।

ভূপৃষ্ঠে থাকাকালীন আমরা আমাদের ওজন অনুভব করি কারণ ভূপৃষ্ঠ দেহের উপর ওজনের সমান প্রতিক্রিয়া সৃষ্টি করে। লিফ্ট যখন অবাধে অবতরণ করে তখন লিফ্টের অভ্যন্তরপথ সকল বস্তুর ত্বরণ ৪-এর সমান হয় এবং সেক্ষেত্রে বস্তুর উপর লিফ্টের প্রতিক্রিয়া শূন্য। লিফ্টের ভিতর কোনো ব্যক্তি থাকলে, (প্রতিক্রিয়া শূন্য হওয়ায়) ঐ অবস্থায় সে নিজেকে 'ভারহীন' মনে করবে।

যখন মহাকাশচারী সহ মহাকাশযানকে রকেটের সাহায্যে উৎক্ষেপ করা হয় তখন প্রচণ্ড বল প্রয়োগ করে উৎক্ষেপ করা হয়। প্রথমাবস্থায় যানের ত্বরণ a প্রায় অভিকর্ষজ ত্বরণের 15 পুণ হয়। মনে কর মহাকাশযানের ভিতর কোনো ব্যক্তির উপর এই অবস্থায় প্রতিক্রিয়া R; তাহলে, R-mg=m.a=m.15g [m= ব্যক্তির ভর]

$$\therefore R = 16 \, mg.$$

অর্থাৎ, প্রথমাকস্থায় মহাকাশচারীর উপর যে প্রতিক্রিয়া পড়বে তা ব্যক্তির ওজনের প্রায় 16 গুণ। তখন সে প্রচণ্ড বল অনুভব করবে।

কিন্তু কক্ষপথে পৌছে অবস্থা অন্যরকম হয়। তখন মহাকাশযান এবং মহাকাশচারী উভয়ের ত্বরণ g' যদি অবশ্য কক্ষপথের ঐ উচ্চতায় অভিকর্ষজ ত্বরণ g' মনে করা হয়। এই অবস্থায় মহাকাশচারীর উপর দূটি বল ক্রিয়া করে (i) তার ওজন mg' নিম্নাভিমুখী এবং (ii) মহাকাশযানের তল কর্তৃক বিপরীত প্রতিক্রিয়া R'; এই বলদ্বয়ের লব্বি মহাকাশযানের বৃত্তাকার পথে ঘোরার জন্য অভিকেন্দ্র বলের সমান; অর্থাৎ,

$$mg'-R'=\frac{mv^2}{R'}=mg'\left[v=\sqrt{g'R'}\right]$$
 অথবা $R'=0$.

প্রতিক্রিয়া শুনা হওয়ায় মহাকাশচারী মহাকাশযানের ভিতর নিজেকে ওচনার্হান মনে করবে এবং হাঁটাচলা করলে নিজের ওঞ্জন ব্যাতে পারবে নাঃ অর্থাৎ সে 'ওজনশুনা' বা 'ভারহীন' হবে। কক্ষপথে প্রদক্ষিণরত মহাকাশ্যানের ভিতরকার সকল বস্তুকে আমরা 'অবাধ অবতরণ' অবস্থায় আছে বলে মনে করতে পারি কারণ বস্তুগুলির ত্বরণ ৪-এর সমান হয়।

বলা বাহুলা, ভারহীন অবস্থা স্বাভাবিক মানুষের পক্ষে এক অস্বাভাবিক অবস্থা। এতে নানারকম অর্মন্তি এবং প্রতিক্রিয়া সৃষ্টি হয়। তাই, মহাকাশ অভিযানে পাঠাবার পর্বে ভূপন্তে কৃত্রিম উপায়ে ভারহীন অবস্থা সৃষ্টি করে তার সাথে মহাকাশচারীকে বহুদিন ধরে অভান্ত করানো হয়। বর্তমানে দৃটি মহাকাশযানকে কেবল দারা আবন্ধ করে একসঙ্গো উৎক্ষেপ করা হয় এবং একের উপস্থিতির দারা অন্যটির অভাধরে কৃত্রিম ভার সৃষ্টি করা হয়।

প্রশ্ন উঠতে পারে যে কৃত্রিম উপশ্রহের ভিতর বস্তু যদি ভারশুনা অবস্থায় থাকে তবে আসল উপশ্রহ চন্দ্রপৃষ্ঠে বস্ত ভারশন্য হবে কিনা। চাঁদও ত' পথিবীর মহাক্ষীয় আকর্ষণে পৃথিবীর চতর্দিকে প্রদক্ষিণ করে। চন্দ্রপূষ্ঠে বস্তুর পৃথিবীর আকর্ষণজনিত কোনো ভার থাকবে না ঠিকই কিন্তু ঐ বস্তুর উপর চন্দ্রের অভিকর্ষীয় আকর্ষণ পড়বে এবং তার জন্য বন্তর ভার লক্ষিত হবে। হিসাব করলে দেখা যায় যে চন্দ্রপৃষ্ঠে g-এর মান পৃথিবীর তুলনায় প্রায় $\frac{1}{4}$ ভাগ। অতএব পৃথিবীপৃষ্ঠে কোনো বন্ধুর যা ওজন চক্রপৃষ্ঠে ঐ ওজন হবে $\frac{1}{4}$ ভাগ।

> এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ (Some typical problems of this chapter)

- 1. অবাধ অবতরণের সময় বন্তু ওজনহীন হয়। কারণ কী?
- কোনো বন্তর ওজন আমরা তখনই অনুভব করি যখন আমরা কোনোপ্রকারে বন্তুর উপর পৃথিবীর আকর্ষণ বলকে বাধা দিই। যেমন, মাথায় একটি বোঝা চাপালে, আমরা তার ওজন অনুভব করি কারণ আমরা পেশীর সাহায্যে বোঝার উপর পথিবীর আকর্ষণ বলকে প্রতিহত করি। কিন্তু মাথায় বোঝা নিয়ে যদি কোনো ব্যক্তি কিছু উপর হতে লাফ দেয় তবে যতক্ষণ সে বায়ুতে থাকে ততক্ষণ পৃথিবীর আকর্ষণকে প্রতিহত করার প্রয়োজন হয় না এবং ততক্ষণ সে অনুভব করে না যে তার মাথার উপর কোনো বোঝা আছে। অর্থাৎ বায়ুর ভিতর দিয়ে অবাধ অবতরণের সময় বোঝা ওজনহীন হয়ে পড়ে। কিন্তু যে মুহূর্তে ব্যক্তির পা মাটি স্পর্শ করে সেই মুহূর্তে সে মাথার উপর বোঝার অন্তিত্ব টের পায়। এই কারণে 'অবাধ অবতরণের সময় বন্তুর কোনো ওজন থাকে না'—এরপ মন্তব্য সর্বপ্রথম করেন গ্যালিলিও। নিম্নবর্ণিত সহজ পরীক্ষা দ্বারা এই ঘটনা সুন্দর দেখানো যায়।

একটি স্প্রিংতুলা নেওয়া হল। ধরা যাক, তুলাতে কোনো ওজন না চাপালে, কাঁটা শূন্য পাঠ দেয়। এখন একটি ভার (load) স্প্রিং-এ চাপানো হল। মনে কর, কাঁটা 5 kg দাগে সরে গেল। বোঝা গেল ভারটির ওজন 5 kg wt. এইবার ভারসমেত স্প্রিংতুলাকে কিছু উপর হতে খাড়া নীচে পড়তে দেওয়া হল। দেখা যাবে যতক্ষণ স্প্রিংতলা বায়তে আছে, ততক্ষণ কাঁটা শুনা পাঠ দিচেছ; যেন স্প্রিংতুলার হুকে কোনো ভার চাপানো নেই। এই সহজ পরীক্ষা সন্দেহাতীতভাবে প্রমাণ করে যে অবাধ অবতরশের সময় বন্ত ওজনহীন হয়।

- 2. দৃটি একই রক্ষের রেলগাড়ি ভূপ্ষের বিষ্বুব অশ্বলে নিরক্ষরেখা বরাবর রেললাইনের উপর দিয়ে বিপরীত দিকে ছুটছে। তারা কি লাইনের উপর সমান চাপ প্রয়োগ করবে?
- গাড়ি দুটি সমান চাপ প্রয়োগ করবে না। যে গাড়ি পশ্চিম হতে পুর্বদিকে যাচ্ছে, পৃথিবীর নিজস্ব ঘূর্ণাক্ষ সাপেক্ষে তার কৌণিক গতিবেগ বৃদ্ধি পাবে কারণ পৃথিবী নিজেও ঐ অক্ষ সাপেক্ষে পশ্চিম হতে পুবদিকে

আবর্তিত হচ্ছে। ফলে গাড়ির অপকেন্দ্র বল (w²r-এর সমানুপাতিক) কুশি পাবে। এই বর্ষিত অপকেন্দ্রবলকে কটোবার জনা ট্রেনের প্রকৃত ওজনের অনেকখানি নন্ট হবে অথবা ট্রেনের আপাত ওজন কমে যাবে। ফলে ঐ ট্রেন লাইনের উপর কম চাপ দেবে। অপরপক্ষে যে গাড়ি পূব হতে পশ্চিমে যাচ্ছে, তার কৌনিক গতিবেগের অভিমূখ পৃথিবীর কৌনিক গতিবেগের বিপরীত। এতে তার অপকেন্দ্র বল কমে যায়। ফলে, ট্রেনের আপাত ওজন বৃশ্বি পাবে এবং লাইনের উপর অপেক্ষাকৃত বেশি চাপ দেবে।

- 3. পৃথিবীর আবর্তন বন্ধ হয়ে গেলে এবং পৃথিবীর আবর্তন বেগ বৃদ্ধি পেলে অভিকর্মজ ত্বরণ g-এর মান কী হবে ? [Jt. Entrance 1986, '96]
- ullet প্রমাণ করা যায় যে ϕ অক্ষাংশে অভিকর্ষজ ত্বরণ g_ϕ এবং পৃথিবীর কোনো আবর্তন না থাকলে,

অভিকর্মজ জুরণ g হলে, $g_{\phi}=g\left(1-\frac{R.\omega^2\cos^2\phi}{g}\right)$ [R= পৃথিবীর ব্যাসার্ধ এবং ω পৃথিবীর কৌণিক গতিবেগ}।

উপরোক্ত রাশিমালা থেকে জানা যায় যে g-এর মান পৃথিবীর আবর্তনের উপর নির্ভর করে। পৃথিবীর আবর্তন করে হলে $\omega=0$: তখন g_{ϕ} -এর মান বেড়ে g-এর সমান হবে।

আবার, আবর্তন বেগ বেড়ে গেলে অর্থাৎ ω –র মান বৃদ্ধি পেলে উপরোক্ত সমীকরণ থেকে বোঝা যায় যে g_{ϕ} –এর মান কমে যাবে।

- 4. ভর স্থির থেকে যদি পৃথিবীর ব্যাসার্য অকস্মাৎ কমে যায় তবে ভূপৃষ্ঠে অভিকর্ষজ ত্বরণের মান বৃশ্বি পাবে। ব্যাখ্যা করো।

$$mg = \frac{GMm}{d^2}$$
 অথবা, $g = \frac{GM}{d^2}$;

এখন, ভূপুষ্ঠে d=R (পৃথিবীর ব্যাসার্য): কাজেই ভূপুষ্ঠে $g=\frac{GM}{R^2}$: G এবং M অপরিবর্তিত থাকলে $g \sim \frac{1}{R^2}$; অতএব ব্যাসার্থ R অকম্মাৎ কমে গেলে ভূপুষ্ঠে অভিকর্ষজ ত্বরণের মান বৃদ্ধি পাবে।

5. যদি মহাকর্ষীয় ধ্রুবক (G) সময়ের সঙ্গো খুব ধীরে ধীরে কমে যায় ভাহলে চাঁদের গতিতে কী ফল দেখা যাবে ? পরিষ্কারভাবে ব্যাখ্যা করো।

[Jt. Entrance 1990]

• পৃথিবীর চতুর্দিকে বৃত্তাকার পথে চাঁদের পরিভ্রমণের জন্য
অভিকেন্দ্র বল আসে চন্দ্রের উপর পৃথিবীর মহাকষীয় বল
থেকে। যতক্ষণ পর্যন্ত G-এর মান ব্যির থাকে যতক্ষণ
পর্যন্ত চাঁদ বিধর ব্যাসার্ধের কক্ষপথে (2.14 নং চিত্রের টানা
লাইনের বৃত্ত) পরিভ্রমণ করে। যদি G-এর মান হ্রাস পায়,
তবে মহাকষীয় আকর্ষণ বল হ্রাস পাবে – অর্থাৎ চক্রের
অভিকেন্দ্র বল হ্রাস পাবে। ফলে চাঁদ পৃথিবী থেকে খানিকটা
দুরে সরে গিয়ে বৃহত্তর ব্যাসার্ধের কক্ষপথে পরিভ্রমণ করে।

যদি G-এর মান সময়ের সজো ধীরে ধীরে কমতে থাকে ভাহলে চাঁদের কক্ষপথের ব্যাসার্ধত ধারে ধীরে বাড়তে থাকরে অথবা চাঁদ ক্রমবর্ধমান ব্যাসার্ধের পাঁচালো কক্ষপথে ঘূরে পৃথিবী থেকে দূরে সরে যাবে। পরিশেষে যখন G=0 হবে, তখন চাঁদ কক্ষপথের স্পর্শক বরাবর সরলরেখায় ছুটে যাবে।

- 6. মনে করো মহাকর্ব সূত্র ব্যম্ভ বর্গ (inverse square) থেকে ব্যম্ভ বিঘাতে (inverse cube) পরিবর্তিত হল। এর ফলে সূর্যের চতুর্দিকে পৃথিবীর কৌণিক ভরবেগের কি কোনো পরিবর্তন হবে?
- সূর্যের যে-আকর্ষণ বলের জন্য পৃথিবী আবর্ভিত হয় তা সর্বদা পৃথিবীর কক্ষপথের কেন্দ্রের অভিম্বী
 অর্থাৎ এই বল কেন্দ্রীয় বল (central force)। বল যতক্ষণ পর্যন্ত কেন্দ্রাভিম্বী থাকে ততক্ষণ পৃথিবীর
 উপর কোনো টর্ক ক্রিয়া করে না। যতক্ষণ টর্ক ক্রিয়া না করে, ততক্ষণ পৃথিবীর কৌণিক ভরবেগ
 অপরিবর্তিত থাকে।
- 7. একটি প্রহের ঘনত্ব পৃথিবীর ঘনত্বের $\frac{1}{3}$ এবং ব্যাসার্য পৃথিবীর ব্যাসার্যের $\frac{1}{4}$; এক ব্যক্তি পৃথিবীপৃষ্ঠে $2\,\mathrm{m}$ উঁচু পর্যন্ত লাফাতে পারলে, ঐ প্রহে সে সর্বাধিক কতটা উচুতে লাফাতে পারবে ?
- ধরি ঐ ব্যক্তি পৃথিবী পৃষ্ঠে h_1 এবং ঐ গ্রহে h_2 পর্যস্ত উচ্চতা লাফাতে পারে। লাফ দেবার আগে দুক্ষেত্রেই ব্যক্তির গতিশক্তি সমান ধরে নিলে সর্বাধিক উচ্চতায় তার স্থিতিশক্তি দুক্ষেত্রেই সমান হবে। এখন ভূপৃষ্ঠের h_1 উচ্চতায় ব্যক্তির স্থিতিশক্তি $= mg_1h_1 \mid g_1 =$ ভূপৃষ্ঠে অভিকর্ষজ ত্বরণ $= mg_2h_2 \mid g_2 =$ গ্রহের পৃষ্ঠে অভিকর্ষজ ত্বরণ $= mg_1h_1 = mg_2h_2$ $\therefore mg_1h_1 = mg_2h_2$

অথবা,
$$h_2 = \frac{g_1}{g_2}.h_1$$

ভূপুষ্ঠে $g_1=rac{4\pi}{3}$. $G.R_1
ho_1$ (2.5 অনুচ্ছেদ) এবং গ্ৰহের পৃষ্ঠে $g_2=rac{4\pi}{3}$. $GR_2
ho_2$

$$\therefore h_2 = \frac{\frac{4\pi}{3} \cdot G \cdot R_1 \rho_1 \times h_1}{\frac{4\pi}{3} \cdot G R_2 \cdot \rho_2} = \frac{R_1}{R_2} \times \frac{\rho_1}{\rho_2} \times h_1 = 4 \times 3 \times 2 = 24 \text{ m}$$

ব্যক্তি ঐ গ্রহে সর্বাধিক 24 m পর্যন্ত উচুতে লাফাতে পারবে।

- 8. দুটি কৃত্রিম উপশ্রহ ভূপৃষ্ঠ হতে একই উচ্চতায় থেকে ভূ-প্রদক্ষিণ করছে। একটি উপশ্রহের ভর অপরটির দ্বিগুল হলে, তাদের গতিবেগ কি ভিন্ন হবে?
- ভূপৃষ্ঠ থেকে উপগ্রহের কক্ষপথের উচ্চতা h হলে, তার প্রদক্ষিণ গতিবেগ $\upsilon = \sqrt{\frac{GM}{R+h}}$: M= পৃথিবীর ভর এবং R= পৃথিবীর ব্যাসার্ধ। উপরোক্ত রাশিমালা থেকে বে. মা যায় যে প্রদক্ষিণ বেগ কৃত্রিম উপগ্রহের ভরের উপর নির্ভর করে না। তাই, একটি উপগ্রহের ভর অপরটির দ্বিগুণ হলেও, তাদের প্রদক্ষিণ বেগ সমান থাকরে।
- বৃত্তপথে পৃথিবীকে প্রদক্ষিণরত কোনো কৃত্রিম উপশ্রহে রক্ষিত কোনো পাত্রে জলের
 মধ্যস্থিত কোনো বিন্দৃতে চাপ কত ? যুব্তিসহ উত্তর লেখো। [Jt. Entrance 1987]
- কোনো বন্ধুর যদি ভার বা ওজন থাকে তবেই সে চাপ প্রয়োগ করতে পারে। পৃথিবীকে প্রদক্ষিণতে

কৃত্রিম উপগ্রহের ভিতর সকল বন্তু ভারহীন অবস্থায় থাকে। সুতরাং পাত্রস্থ জলের কোনো ভার বা ওজন থাকরে না ; তাই জলের ভিতর যে-কোনো বিন্দৃতে চাপ হবে শূন্য।

- 10. চন্দ্র ও পৃথিবীর ক্ষেত্রে কোন্ মুক্তিবেগ বেশি— যুক্তিসহ উত্তর দাও। কোনো বস্তুর (গোলকাকৃতি) ব্যাসার্ধ R এবং ঐ বস্তুর পৃষ্ঠে অভিকর্ষক ত্বরণ g হলে, ঐ বস্তুর বেলায় মুক্তিবেগ v_e হবে $v_e = \sqrt{2gR}$
- এখন পৃথিবীপৃষ্ঠে অভিকর্ষজ ত্বরণ এবং পৃথিবীর ব্যাসার্ধ উভয়ই চন্দ্রপৃষ্ঠে অভিকর্ষজ ত্বরণ ও চাঁদের ব্যাসার্ধ অপেক্ষা বেশি। অতএব, পৃথিবীর বেলায় মুন্তিবেগ চাঁদের মুন্তিবেগের চাইতে বেশি।
- 11. 75 kg ভরের একজন বিমানছত্রধারী সমবেগে নীচের দিকে নামছে। তার উপর বায়ুর বাবা কত ? [Jt. Entrance 1988]
- 12. একটি শ্রহের ভর ও ব্যাস পৃথিবীর ভর ও ব্যাসের দ্বিগুণ। পৃথিবীর একটি সেকেড পেভূলামের পর্যায়কাল ঐ শ্রহে কত ? [Jt. Entrance 1990, '95]
- ullet ভূপৃষ্ঠে অভিকর্ষজ ত্বরণ g_e হলে, $g_e=rac{GM}{r^2}$; এখানে M=পৃথিবীর ভর এবং r=পৃথিবীর ব্যাসার্ধ।

গ্রহে অভিকর্মজ ত্বরণ
$$g_p$$
 হলে, $g_p = \frac{G(2M)}{(2r)^2}$ $\therefore \frac{g_e}{g_p} = 2$

এখন, পৃথিবীর সেকেন্ড পেন্ডুলামের বেলায় $2=2\pi\sqrt{\frac{l}{g_e}}$ এবং গ্রহে ঐ পেন্ডুলামের বেলায়

$$T=2\pi\sqrt{\frac{l}{g_p}}$$
 : $\frac{T}{2}=\sqrt{\frac{g_e}{g_p}}$ । জাত্ৰাৰ, $T=2\sqrt{2}=2.8\mathrm{s}$ (প্ৰায়)।

13. একজন লোক একটি মোটর গাড়িতে বসে আছে ও তার ভর $70\,\mathrm{kg}\,\mathrm{l}$ মোটর গাড়িটি $4\mathrm{ms}^{-2}$ হরণসহ চলছে। লোকটির উপর মাধ্যাকর্ষণ বল কত হবে $?~\mathrm{g} = 9.8~\mathrm{ms}^{-2}$

[Jt. Entrance 1996]

- লোকটির উপর মাধ্যাকর্ষণ বল = লোকটির ওজন = 70 × 9.8 = 686 N; গাড়ির অনুভূমিক গতি
 নিম্নমুখী মাধ্যাকর্ষণ বলের উপর কোনো প্রভাব ফেলরে না।
- 14. নভোচারী সমেত একটি উপগ্রহকে রকেটের সাহায্যে কক্ষপথে স্থাপন করা হল। নভোচারী তার ওজনের কি কি পার্থক্য (i) উৎক্ষেপণের সময় (ii) কক্ষপথে অনুভব করবে १
- (i) যখন নভোচারী সহ উপগ্রহকে রকেটের সাহায্যে উৎক্ষেপ করা হয় তখন প্রচণ্ড বল প্রয়োগ করে উৎক্ষেপ করা হয়। প্রথম অবস্থায় উপগ্রহের ত্বরণ a প্রায় অভিকর্ষজ ত্বরণের 15 গুণ হয়। উপগ্রহের ভিতর অবস্থিত কোনো ব্যক্তির উপর প্রতিক্রিয়া R হলে, R – mg = ma = 15 mg অথবা R = 16 mg সুতরাং উৎক্ষেপণের সময় নভোচারী নিজেকে 16 গুণ ভারী মনে করবে।
 - (ii) কক্ষপথে পৌছানোর পর অবস্থা অনারকম হয়। প্রদক্ষিণরত উপগ্রহের অভান্তরে সব কিছু ওজনহীন অবস্থায় থাকে কারণ তখন প্রতিক্রিয়া শূন্য হয়। সুতরাং কক্ষপথে থাকাকালীন নভোচারী নিজেকে ভারহীন মনে করবে।
- 15. পৃথিবীর ব্যাসার্ধ 6000 km। পৃথিবীর ঘূর্ণনের ফলে বিষুবরেশার উপর অবস্থিত কোনো বিস্পুর কি পরিমাণ অভিকেঞ্জ ত্বরণ হয় ?

• বিষুব রেখায় অবস্থিত বিন্দুর অভিকেন্দ্র ছরণ = $\omega^2 R = \frac{4\pi^2}{T^2}$. R; এখানে T= সীয় অক্ষের চতুর্দিকে পৃথিবীর প্রদক্ষিণ কাল = $24 \times 60 \times 60 = 86400 \, \mathrm{s}$; $R=6000 \, \mathrm{km} = 6000 \times 10^3 \, \mathrm{m}$

:. ত্রণ =
$$\frac{4 \times (3.14)^2 \times 6000 \times 10^3}{(86400)^2} = \frac{4 \times (3.14)^2 \times 6 \times 10^2}{(864)^2} = 0.03169 \text{ ms}^{-2}.$$

- 16. সকল বছুর ক্ষেত্রে অভিকর্ষক বল বছুর ভরের সমানুপাতিক হলে, ভারী বছু হালকা বছু অপেকা ব্রতিগতিতে নীচে পড়ে না কেন ?
- কোনো বন্ধুর উপর অভিকর্মজ বল F হলে এবং তার ভর m হলে, F=m.g কিছু ভূপৃষ্ঠে F=G $\frac{Mm}{R^2}$ $[M=\gamma]$ থিবীর ভর এবং $R=\gamma[$ থবীর ব্যাসার্য]

.
$$\frac{GMm}{R^2} = m.g$$
 অথবা $g = \frac{GM}{R^2} = 5$ ্বক

অতএব, ভারী বা হালকা সকল বড়ুই সমান দুততায় নীচে পড়বে।

- 17. পৃথিবীর কেন্দ্রে অভিকর্বজ ছরণ g-এর মান কড বেখানে পৃথিবীর তর হল M এবং ব্যাসার্থ R।
- প্রমাণ করা যায় যে পৃথিবীর অভ্যন্তরে ভূপৃষ্ঠ থেকে x দূরে $g_x = g(1 x/R)$ এখন x = R হলে, $g_x = 0$; সুতরাং পৃথিবীর কেন্দ্রে g-এর মান শূন্য।

* প্রধাবলি *

⇒ ব্ৰহ্মানুক্ক প্ৰ<u>শ্</u>

- নিউটনের মহাকর্ষ সূত্র কী? মহাকর্ষীয় ধুবকের সাথে পৃথিবীর গড় ঘনত্বের সম্পর্ক নির্ণয় করে। অভিকর্ষজ ত্বরণ বলতে কী বোঝ? তার সাথে সার্বিক মহাকর্ষীয় ধুবক G-এর সম্পর্ক কী?
- 2. বস্তুর ভর ও ওজনের ভিতর পার্থক্য বৃনিয়ে লেখো।
- 3. ভূপৃষ্ঠের অভান্তরে অভিকর্বন্ধ ত্বরণের মান গভীরতার সঙ্গো হ্রাস পায় কেন ? পৃথিবীর কেন্দ্রে এর মান কত ?
- 4. ভূপৃঠের বিভিন্ন স্থানে অভিকর্ষজ ত্বরণের মান পরিবর্তন করার কী কী কারণ থাকতে পারে? পৃথিবীর আহ্নিক গতির জন্য অভিকর্ষজ ত্বরণের মান বিভিন্ন স্থানে কীভাবে পরিবর্তিত হয়?
- 5. প্রমাণ করো যে ভূপুষ্ঠে অভিকর্ষক ত্বরণ g-এর মান $GMIR^2$ যেখানে M = পৃথিবীর ভর ; G = মহাকর্ষীয় ধ্রুবক এবং R = পৃথিবীর ব্যাসার্য ।
- 6. প্রমাণ করে। যে ভূপৃষ্ঠ হতে নির্দিন্ট উচ্চতার অভিকর্মজ ত্বরণ ভূপৃষ্ঠের অভ্যন্তরে একই দূরত্বে অভিকর্মজ ত্বরণ অপেকা কম।
- অভিকর্যক ত্বরণ পৃথিবীর পৃষ্ঠে কোনো স্থানের অক্ষাংশের সাথে কীভাবে পরিবর্তিত হয় তা নির্ণয় করে। এবং তা
 থেকে ত্বরণের মান পৃথিবীপৃষ্ঠে কোন্ স্থানে সর্বোচ্চ তা নির্দেশ করে।
- 8. ভূপৃষ্ঠ হতে উপরে উঠলে এবং পৃথিবীর অভ্যন্তরে গেলে অভিকর্ষীয় ত্বরদের মান কীভাবে পরিবর্তিত হয় তা আলোচনা করো। পৃথিবীর কেল্লে কোনও বর্ত্তর ওজন কত?
- পৃথিবীর ব্যাস বরাবর একটি ঘর্ষণবিহীন সৃড়জা খোঁড়া হল। প্রমাণ করো যে কোনো মসৃণ বন্ধুকে ঐ সুড়জো ফেললে
 তা সুড়জোর সমগ্র দৈর্ঘ্য 42 মিনিট 20 সেকেন্ডে অতিক্রম করবে।
- 10. ভূপৃত্তে অভিকর্বজ ত্বরণের মান g হলে, h উচ্চতার তার মান নির্ণয় করো। পৃথিবীর কেন্দ্রে এর মান নির্ণয় করো।
- 11. গ্রহের গতিসংক্রান্ত কেপলারের সূত্রগুলি বিবৃত করো। মহাকর্ষ সূত্র হতে কীভাবে কেপলারের ভৃতীয় সূত্র প্রতিষ্ঠা করবে?
- সূর্যের চতুর্দিকে বৃদ্ধাকার পথে পরিভ্রমণরত গ্রছের কক্ষীয় গতিবেল ও আবর্তনকাল নির্বারণ করে।
- 13. ভূপৃষ্টের খুব নিকটে থেকে একটি কৃত্রিম উপশ্রহ পৃথিবী প্রদক্ষিণ করছে। প্রমাণ করো যে তার প্রদক্ষিণ বেগ

- $\upsilon = \sqrt{gR}$; $R = পৃথিবীর ব্যাসার্ধ এবং <math>g = \frac{1}{2}$ পূর্চে অভিকর্ষজ ত্বরণ।
- 14. গোলাকার গ্রহের চতুর্দিকে বৃত্তাকার পথে পরিভ্রমণরত কৃত্রিম উপগ্রহের সর্বনিম্ন প্রদক্ষিণ কাল কেবলমাত্র গ্রহের গড় ঘনত্বের উপর নির্ভর করে—প্রমাণ করে।
 [Ji. Entrance, 1975]
- 15. কোন কক্ষপথে উপগ্রহকে স্থাপন করলে ভূপৃষ্ঠ হতে একে স্থির বলে প্রতীয়মান হবে?
- 16. একটি কৃত্রিম উপগ্রহ r ব্যাসার্থের বৃত্তপথে প্রদক্ষিণরত। দেখাও যে কক্ষপথে উপগ্রহের দুতি উপগ্রহের ভর নিরপেক্ষ। কক্ষপথের আবর্তন কাল T হলে দেখাও যে T² oc p³..
 দ্রেন্টব্য ঃ 2.14 নং অনুচ্ছেদ দেখো।
- 17 পৃথিবী পৃষ্ঠের কেনো বিন্দৃতে মহাকবীয় বিভবের মান কত (পৃথিবীকে M ভরের এবং R ব্যাসার্ধের একটি সমসত্ত্ব গোলক ধরে নাও)। কমপক্ষে কত বেগে কোনো বস্তুকে পৃথিবী পৃষ্ঠ থেকে ছুঁড়লে সে আর ফিরে আসবে না ? বস্তুটিকে কি উন্নম্বভাবে ছুড়তে হবে না পৃথিবী পৃষ্ঠের সঞ্জো যে–কোনো কোণে ছুড়লেই হবে ?
- 18. মৃত্তি বেগ কি ? ভূপন্ঠ থেকে একটি বন্ধুর মৃত্তিবেগ নির্ণয় করো।
- 19. পৃথিবীর বায়ুমগুলে হাইড়োজেন, হিলিয়াম গ্যাস অপ্রচর কেন ?

ভাষ্টি সংক্রিপ্ত উত্তরের প্রশ্ন ।

- 1. মহাক্ষীয় ধ্রুবকের মাত্রা কি ?
- 2. কোন্টি বেশি—পৃথিবীর উপর 1 kg সিসার আকর্ষণ, না 1 kg সিসার উপর পৃথিবীর আকর্ষণ ?
- 3. কোথায় বস্তুর ওজন বেশি হবে—মেরুপ্রান্তে না বিষুব অপ্রলে ?
- 4. কোনো বস্তুকে বিষুব অপ্তল থেকে ধীরে ধীরে মেরু অপ্তলের দিকে নিলে, তার উপর 'g'-এর মান বাড়বে না কমবে ?
- 5. ভূকেন্দ্রে g-এর মান কত ?
- সূর্যের নিকটবতী গ্রহগুলির বৎসর দূরবতী গ্রহগুলির 'বৎসর' অপেক্ষা ছোটো না বড়ো ? একটি উদাহরণ দাও।
- 7. কৃত্রিম উপগ্রহের প্রদক্ষিণ বেগ বা প্রদক্ষিণ কাল কি উপগ্রহের ভরের উপর নির্ভর করে ?
- 8. পার্কিং কক্ষপথ কী ? ভূপন্ঠ থেকে এর উচ্চতা কত ?
- 9. কোনো গ্রহে মৃত্তিবেগ কি উৎক্ষিপ্ত বন্ধুর ভরের উপর নির্ভর করে ?
- 10. মুব্তিবেগ কোথায় বেশি হবে—ভূপুষ্ঠে না চন্দ্রপৃষ্ঠে ?

⇒ সংক্রিপ্ত উভরের প্রশ

- মহাকর্ষীয় ধ্রুবকের সংজ্ঞা এবং একক লেখে।
- 2. কোনো বন্ধুকে ভূপ্নেষ্ঠ, সমুদ্রসমতলে এবং পর্বতশ্জো ওজন করা হল। বন্ধুর ওজনের কোনো পরিবর্তন লক্ষ করা যাবে কি? তোমার উন্তর সতর্কতার সাথে ব্যাখ্যা করো।
- 3. পৃথিবীপৃষ্ঠ হতে কোনো স্থানের উচ্চতার দর্ন ঐ স্থানের অভিকর্মক হলণ কীভাবে পরিবর্তিত হবে?
- 4. পৃথিবীকে প্রদক্ষিণরত কোনো কৃত্রিম উপগ্রহে অবস্থানরত ব্যক্তি নিজেকে ভারশূনা অনুভব করে কেন তার ব্যাখ্যা দাও।
- 5. (a) মুব্তিবেগ কাকে বলে? ভূপষ্ঠের কোনো স্থানের সাপেক্ষে একটি কৃত্রিম উপগ্রহকে কি আকাশে স্থির রাখা যায়? ঐরূপ উপগ্রহকে এবং তার কক্ষপথকে কী বলা হয়?
 - (b) ন্যুনতম কত বেগে উর্থেপ উৎক্ষিপ্ত হলে একটি বন্তু পৃথিবীর অভিকর্ষজ ক্ষেত্রের বাইরে চলে যেতে সক্ষম হবে?
- 6. প্রদক্ষিণরত একটি কৃত্রিম উপগ্রহ হতে একটি বন্তুকে মহাশুন্যে ছেড়ে দেওয়া হল। এটা কি খাড়া নীচের দিকে পড়বে না উপগ্রহের মত পৃথিবী প্রদক্ষিণ করবে ?

[সংকেড: উপগ্রহের মত পৃথিবী প্রদক্ষিণ করবে।]

- ভূপুঠে অবস্থিত একটি বয়ু পৃথিবী ও সূর্যের অভিকর্ষ বল দ্বারা আকর্ষিত হয়। মধাহে এই বল দৃটি বিপরীতমুখী
 কিন্তু মধারাত্তিত সমম্খী। ভাহলে, মধারাত্তিত কি ঐ বয়ুর ওজন বেশি হবে?
- একই কক্ষপথে রেখে একটি উপগ্রের ভর দ্বিগৃণ করলে, তার পরিভ্রমণকালের কী পরিবর্তন হবে?
 সংক্ষেতঃ পরিভ্রমণকাল ভরের উপর নির্ভরশীল নয়।।
- 9. নিম্নলিখিত প্রস্নগুলির উত্তর দাও :
 - (a) ৯-সমগ্য উপায়হ কোনো একটি বন্তুর ওঞ্জন ক্রভং
 - (h) মনে করে পৃথিবতি দ্বীয় অক্ষের চাতুলিকে আবর্তন কথ চয়ে গেল। এতে ভুপ্রের বয়ৣয়য়য়য়য়য় ওভানের কি পরিবর্তন দেখা বাবে?

(c) ভূগোলকের ভর ভূকেন্দ্রের কাছাকাছি ঘন সন্ধিবিক্ট হলে উচ্চভার সাথে _৪-এর মানের পরিবর্তনকৈ কি প্রভাবিত করে? সেংকেডঃ ভ-পদার্থের যে-কোনো সন্ধিবেশ উচ্চভার সাথে _{৪-এই} পরিবর্গনের উপত্র পালের স্থোপে না কারণ

সেকেতঃ ভূ-পদার্থের যে-কোনো সন্ধিবেশ উচ্চতার সাথে ৫-এর পরিবর্তনের উপর প্রভাব ফেলে না, কারণ পৃথিবীর বাইরের কোনো বিন্দুর সাপেকে পৃথিবী এরূপ আচরণ করে যেন তার সমস্ত ভর কেন্দ্রে সন্নিবিন্ট আছে।

10. মহাক্ষীয় বিভব ঋণাত্মক হয় কেন?

👄 বহুমূৰী পছদের প্রশ্ন [Multiple Choice Type (MCQ)]

- (A) নির্ভুল উত্তরটি া চিহ্নিত করোঃ
 - [i] পৃথিবীর ভর M এবং ব্যাসার্ধ R। মহাকবীয় ত্বরণ ও মহাকবীয় ধুবকের অনুপাত
 - (A) $\frac{R^2}{M}$ (B) $\frac{M}{R^2}$ (C) MR^2 (D) $\frac{M}{R}$.
 - [ii] মঞ্চাল গ্রহের ভর পৃথিবীর ভরের $rac{1}{10}$ এবং ব্যাস পৃথিবীর ব্যাসের অর্ধেক। মঞ্চালগ্রহে পতনশীল বযুর ত্বরণ হবে

(A) 9.8 ms^{-2} (B) 1.96 ms^{-2} (C) 3.92 ms^{-1} (D) 4.9 ms^{-2} .

[III] ভূপপ্তে একটি বতুর ওজন W newton r বতুকে স্প্রিং তুলা থেকে ঝুলিয়ে স্প্রিং তুলাকে একটি মহকাশ যানের ছাদের সজো আটকানো হল। মহকাশ যানটি একটি স্থির কক্ষপথে পৃথিবী পরিক্রমা করলে, স্থিং তুলার পাঠ হবে (A) W (B) W অপেক্ষা কম (C) W অপেক্ষা বেশি (D) শূনা।

[iv] ভূপৃষ্ঠ থেকে মুব্তিবেগ υ়। পৃথিবীর ভর এবং ব্যাসের দ্বিগুণ ভর এবং ব্যাস যুব্ত একটি গ্রহের মুব্তিবেগ হবে

(A) v_e (B) $2v_e$ (C) $4v_e$ (D) $16v_e$.

[v] পৃথিবীর ব্যাস বরাবর একটি লম্বা গর্ত করে তারমধ্যে একটি পাথরখন্ত ফেলা হল। পাথরখন্ডটি ভূকেন্দ্রে পৌছালে তার একটি সসীম (finite)

(A) ভর থাকরে (B) ওজন থাকরে (C) ত্বরণ থাকরে (D) স্থিতিশান্তি থাকরে।

[vi] ভূপুষ্ঠে অভিকর্মজ ত্বরণের মান g:m ভরের কোনো বন্ধুকে ভূপুষ্ঠ থেকে ভূ-ব্যাসার্ধের সমান উচ্চতায় নিঙ্গে তার স্থিতিশক্তি লাভ (gain)

(A) $\frac{1}{2} mgR$ (B) 2 mgR . (C) mgR (D) $\frac{1}{4} mgR$.

- [vii] ভূপৃষ্ঠ থেকে খাড়া উধ্বের্য নিক্ষিপ্ত এক বন্তুর পক্ষে মুন্তিবেগ 11.2 kms⁻¹। উ**র**ম্বের সঞ্চো 45° কোণে নিক্ষিপ্ত হলে, গুই বন্তুর মুন্তিবেগ হবে
 - (A) $\frac{11.2}{\sqrt{2}}$ kms⁻¹ (B) $11.2 \times \sqrt{2}$ kms⁻¹ (C) 11.2×2 kms⁻¹ (D) 11.2 kms⁻¹.
- [viii] একটি উপগ্রহ ভূপ্রদক্ষিণ করছে। ভূপৃষ্ঠ থেকে এর দূরত্ব বাড়ালে, এর

(A) কৌনিক বেগা বৃষ্ণি পাবে (B) রৈখিক বেগা বৃষ্ণি পাবে

(C) কৌশিক বেগ হ্রাস পাবে (D) পর্যায়কাল বৃশ্বি পাবে।

[ix] বসুর ওজন

• (A) ভূকেন্দ্রে শূন্য (B) ভূপৃষ্ঠ থেকে ভূ-ব্যাসার্ধের সমান উচ্চতায় সমুদ্রতলের তুলনায় $\frac{1}{4}$

(C) সকল কৃত্রিম উপগ্রহে সমান (D) ভূপক্তের সকল স্থানে সমান।

[x] দৃটি বস্তুর ভিতর মহাকর্ষ বল যদি R²-এর পরিবর্তে R³-এর সমানুপাতে এবং বস্তু দৃটির ভরের সমানুপাতে বৃষ্ণি পায়, তবে

(A) ভগ্নে বন্ধুদ্টির ওজন বর্তমান ওজন অপেক্ষা বেশি হবে (B) ওজন বর্তমান ওজন অপেক্ষা কম হবে

(C) গ্রহের সূর্য প্রদক্ষিণের পর্যায়কাল $T \propto R^2$ যেখানে R গড় দূরত্ব (D) $T^2 \propto R^2$.

[Hints:
$$v = \sqrt{\frac{Gm}{R^2}}$$
 ; $T = \frac{2\pi R}{v} = \frac{2\pi R^2}{\sqrt{GM}}$ অথবা $T \propto R^2$]

[xi] একটি ভূ-সমলয় উপগ্ৰহ

(A) যে-কোনো অক্ষের সাপেকে ঘুরতে পারে (B) অবশাই মেরু অক্ষের (polar axis) চতুর্দিকে ঘুরবে

(C) বিষুবরেখার সমতলে অবস্থিত অক্ষের চতুর্লিকে ঘুরবে (D) বিষুব তলে অর্বান্থত হবে।

(A) शत्वधणशात्व याष्ठारे (venty) कता याग्र (B) शत्वधणशात्व याष्ठारे कता याग्र ना ; किंकु भृवाि निर्जुन (C)
কেবলমাত্র পৃথিবীতে প্রয়োজা (D) কেবলমাত্র সৌরব্জগতে প্রয়োজ্য।
[xv] মহাক্ষীয় ধ্রুবকের মাত্রাসূত্র হল
(A) $M^{-1}L^2T^{-2}$ (B) $M^{-1}L^3T^{-2}$ (C) $M^{-1}L^3T^{-2}$ (D) $M^{-2}L^{-2}T^{-2}$.
[xvi] পৃথিবীর উত্তর ও দক্ষিণ মেরু অপ্তল একটু চাপা এবং বিষ্কৃ অপ্তল একটু স্ফীত। এর কারণ
(A) সূর্যের চঙ্দিকে পৃথিবীর উপবৃত্তাকার কক্ষপথে পরিভ্রমণ,
(B) পৃথিবীর নিজ অক্ষের চভূদিকে ঘৃণনের কৌলিক বেগ বিষুব অপ্তলে বেশি,
(C) পৃথিবীর অপকেন্দ্র বল মেরু প্রদেশ অপেক্ষা বিষুব অপ্তলে বেশি,
(D) কোনটাই না। [xvii] গভীর কয়লা খনিতে, সমুদ্র সমতলে এবং পর্বতশ্জো একটি বস্তুর ওজন যথাক্রমে W ₁ , W ₂ এবং W ₃ । তাহলে,
(A) $W_1 < W_2 > W_3$ (B) $W_1 = W_2 = W_3$ (C) $W_1 < W_2 < W_3$ (D) $W_1 > W_2 > W_3$.
[xviii] ভূপুষ্ঠ থেকে যে উচ্চতায় এবং ভূপুষ্ঠের অভ্যন্তরে যে গভীরতায় অভিকর্মন্ধ ত্বরণের মান সমান সেই উচ্চতা ও
গভীরতার অনুপাত
1
(A) $\frac{1}{3}$ (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{5}$.
[xix] পৃথিবীর ব্যাসার্ধ R হলে, ভূপুষ্ঠ থেকে একটি ভূ–সমলয় উপশ্রহের উচ্চতা হবে প্রায়
(A) R (B) 2R (C) 3R (D) 6R.
[xx] ভূপ্ন থেকে একটি বস্তুকে মুক্তিবেগের সমান বেগ দিয়ে উৎক্ষেপ করা হল। বায়ুর ঘর্ষণ উপেক্ষা করলে, বস্তুর
গতিপথ হবে
(A) সরল রেখা ' (B) উপবৃত্ত (C) পরাবৃত্ত (D) বৃত্ত। '
[xxi] পৃথিবীর ভর 6×10 ²⁴ kg এবং চল্রের ভর 7.4×10 ²² kg। মহাক্ষীয় প্রবেকর মান 6.67×10 ⁻¹¹ Nm ² kg ⁻² ।
সংস্থার স্থিতিশক্তি 7.79×10 ²⁸ joule। পৃথিবী ও চন্দ্রের ভিতর গড় দূরত্ব
(A) 3.8×10^5 km (B) 3.37×10^5 km (C) 7.60×10^4 km (D) 1.90×10^2 m.
$[xxii]$ ভূপৃষ্ঠ থেকে ' h ' উচ্চতায় g -এর মানের পরিবর্তন ভূপৃষ্ঠের নীচে x গভীরতায় $(h \le R)$ এবং $v \le R$) পরিবর্তনের
সমান হলে।
h a
(A) $x = h$ (B) $x = 2h$ (C) $x = \frac{h}{2}$ (D) $x = h^2$.
(A) $x = h$ (B) $x = 2h$ (C) $x = \frac{\pi}{2}$ (D) $x = h^2$. [xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃত্তাকার পথে পরিভ্রমণ করছে।
6r
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃত্তাকার পথে পরিভ্রমণ করছে। প্রত্যেক কণার বেগ হবে
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃত্তাকার পথে পরিভ্রমণ করছে। প্রত্যেক কণার বেগ হবে
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিভ্রমণ করছে। প্রত্যেক কণার বেগ হবে (A) $\sqrt{\frac{GM}{4R}}$ (B) $\sqrt{\frac{GM}{R}}$ (C) $\sqrt{\frac{G}{MR}}$ (D) $\sqrt{\frac{GR}{M}}$.
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিভ্রমণ করছে। প্রত্যেক কণার বেগ হবে $ (A) \ \sqrt{\frac{GM}{4R}} \qquad (B) \ \sqrt{\frac{GM}{R}} \qquad (C) \ \sqrt{\frac{G}{MR}} \qquad (D) \ \sqrt{\frac{GR}{M}} \ . $ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিশ্রমণ করছে। প্রত্যেক কণার বেগ হবে $ (A) \ \sqrt{\frac{GM}{4R}} \qquad (B) \ \sqrt{\frac{GM}{R}} \qquad (C) \ \sqrt{\frac{G}{MR}} \qquad (D) \ \sqrt{\frac{GR}{M}} \ . $ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান $ (A) \ (A) \$
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিভ্রমণ করছে। প্রত্যেক কণার বেগ হবে $ (A) \ \sqrt{\frac{GM}{4R}} \qquad (B) \ \sqrt{\frac{GM}{R}} \qquad (C) \ \sqrt{\frac{G}{MR}} \qquad (D) \ \sqrt{\frac{GR}{M}} \ . $ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিপ্রমণ করছে। প্রত্যেক কণার বেগ হবে $ (A) \ \sqrt{\frac{GM}{4R}} \qquad (B) \ \sqrt{\frac{GM}{R}} \qquad (C) \ \sqrt{\frac{G}{MR}} \qquad (D) \ \sqrt{\frac{GR}{M}} \ . $ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান $ (A) \ \cos \ ($ থেকে বিন্দুর দূরত্ব বাড়লে কমবে $ (B) \ \sqrt[3]{4} $ (D) কেন্দ্র থেকে বিন্দুর দূরত্ব বাড়লে বাড়বে। $ (C) \ \sqrt[3]{4} $
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ভাকার পথে পরিপ্রমণ করছে। প্রত্যেক কণার বেগ হবে $ (A) \sqrt{\frac{GM}{4R}} \qquad (B) \sqrt{\frac{GM}{R}} \qquad (C) \sqrt{\frac{G}{MR}} \qquad (D) \sqrt{\frac{GR}{M}} \ . $ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান $ (A) \text{ কেন্দ্র থেকে বিন্দুর দৃরত্ব বাড়লে কমবে } (B) ধ্বক কিন্তু মান শূন্য হয় $ $ (C) শূন্য \qquad (D) \text{ কেন্দ্র থেকে বিন্দুর দৃরত্ব বাড়লে বাড়বে।} $ [XXV] একটি কৃত্রিম উপগ্রহ r ব্যাসার্ধের বৃন্তাকার পথে প্রদক্ষিণরত। উপগ্রহের আবর্তনকাল T হবে
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্তাকার পথে পরিভ্রমণ করছে। প্রত্যেক কণার বেগ হবে $ (A) \sqrt{\frac{GM}{4R}} \qquad (B) \sqrt{\frac{GM}{R}} \qquad (C) \sqrt{\frac{G}{MR}} \qquad (D) \sqrt{\frac{GR}{M}} . $ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান $ (A) \text{ কন্দ্র থেকে বিন্দুর দূরত্ব বাড়লে কমবে (B) ধ্বক কিন্তু মান শূন্য হয় (C) \text{ গূন্য } \qquad (D) \text{ কন্দ্র থেকে বিন্দুর দূরত্ব বাড়লে বাড়বে ।} [XXV] একটি কৃত্রিম উপগ্রহ r ব্যাসার্ধের বৃদ্তাকার পথে প্রদক্ষিণরত । উপগ্রহের আবর্তনকাল T হবে (A) T < r^3 \qquad (B) T^2 < r \qquad (C) T^2 < r^3 \qquad (D) T < r. $
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ভাকার পথে পরিভ্রমণ করছে। প্রত্যেক কণার বেগ হবে $ (A) \sqrt{\frac{GM}{4R}} \qquad (B) \sqrt{\frac{GM}{R}} \qquad (C) \sqrt{\frac{G}{MR}} \qquad (D) \sqrt{\frac{GR}{M}} $ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবন্ধ্যের মান $ (A) \text{ কেন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে কমবে (B) ধ্বক কিন্তু মান শূন্য হয় (C) \overset{r}{\to} \text{ (C) } \overset{r}{\to} \text{ (D) } \text{ কন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে বাড়বে। } [xxv] একটি কৃত্রিম উপগ্রহ r ব্যাসার্ধের বৃদ্ভাকার পথে প্রদক্ষিণরত। উপগ্রহের আবর্তনকাল T হবে (A) T < r^3 \qquad (B) T^2 < r \qquad (C) T^2 < r^3 \qquad (D) T < r. [xxvi] কোন কারণে সুর্য থেকে পৃথিবীর গড় দূরত্ব কমে গেলে বছরের দৈর্ঘ্য$
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিশ্রমণ করছে। প্রত্যেক কণার বেগ হবে (A) $\sqrt{\frac{GM}{4R}}$ (B) $\sqrt{\frac{GM}{R}}$ (C) $\sqrt{\frac{G}{MR}}$ (D) $\sqrt{\frac{GR}{M}}$ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান (A) কেন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে কমবে (B) ধ্রক কিন্তু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে কমেবে ভি) ধ্রক কিন্তু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে বাড়বে। [xxv] একটি কৃত্রিম ট্টপশ্রহ r ব্যাসার্ধের বৃদ্ধাকার পথে প্রদক্ষিণরত। উপশ্রহের আবর্তনকাল T হবে (A) $T < r^3$ (B) $T^2 < r$ (C) $T^2 < r^3$ (D) $T < r$. [xxvi] কোন করেনে সূর্য থেকে পৃথিবীর গড় দূরত্ব কমে গেলে বছরের দৈর্ঘ্য (A) কমবে (B) বাড়বে (C) একই থাকরে (D) কমতেও পারে, আনার বাড়তেও পারে।
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিশ্রমণ করছে। প্রত্যেক কণার বেগ হবে (A) $\sqrt{\frac{GM}{4R}}$ (B) $\sqrt{\frac{GM}{R}}$ (C) $\sqrt{\frac{G}{MR}}$ (D) $\sqrt{\frac{GR}{M}}$. [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান (A) কেন্দ্র থেকে বিন্দুর দূরত্ব বাড়লে কমবে (B) শ্ববক কিছু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দুর দূরত্ব বাড়লে বাড়বে। [xxv] একটি কৃত্রিম ট্রপগ্রহ r ব্যাসার্ধের বৃদ্ধাকার পথে প্রদক্ষিণরত। উপগ্রহের আবর্তনকাল T হবে (A) $T < r^3$ (B) $T^2 < r$ (C) $T^2 < r^3$ (D) $T < r$. [xxvii কোন কারণে সুর্গ থেকে পৃথিবীর গড় দূরত্ব কমে গেলে বছরের দৈশ্য (A) কমবে (B) বাড়বে (C) একই থাকবে (D) কমতেও পারে, আবার বাড়তেও পারে। [xxvii] R বাস্পর্য এবং M ভরের একটি সুষম গোলকের কেন্দ্র থেকে r_1 এবং r_2 দূরতে মহাক্ষীয় প্রাবলোর মান যথাক্রমে
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিশ্রমণ করছে। প্রত্যেক কণার বেগ হবে (A) $\sqrt{\frac{GM}{4R}}$ (B) $\sqrt{\frac{GM}{R}}$ (C) $\sqrt{\frac{G}{MR}}$ (D) $\sqrt{\frac{GR}{M}}$ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান (A) কেন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে কমবে (B) ধ্রক কিন্তু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে কমেবে ভি) ধ্রক কিন্তু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দৃর দূরত্ব বাড়লে বাড়বে। [xxv] একটি কৃত্রিম ট্টপশ্রহ r ব্যাসার্ধের বৃদ্ধাকার পথে প্রদক্ষিণরত। উপশ্রহের আবর্তনকাল T হবে (A) $T < r^3$ (B) $T^2 < r$ (C) $T^2 < r^3$ (D) $T < r$. [xxvi] কোন করেনে সূর্য থেকে পৃথিবীর গড় দূরত্ব কমে গেলে বছরের দৈর্ঘ্য (A) কমবে (B) বাড়বে (C) একই থাকরে (D) কমতেও পারে, আনার বাড়তেও পারে।
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিশ্রমণ করছে। প্রত্যেক কণার বেগ হবে (A) $\sqrt{\frac{GM}{4R}}$ (B) $\sqrt{\frac{GM}{R}}$ (C) $\sqrt{\frac{G}{MR}}$ (D) $\sqrt{\frac{GR}{M}}$ [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান (A) কেন্দ্র থেকে বিন্দৃর দৃরত্ব বাড়লে কমবে (B) ধ্রবক কিন্তু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দৃর দৃরত্ব বাড়লে কমবে (B) ধ্রবক কিন্তু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দৃর দৃরত্ব বাড়লে বাড়বে। [xxv] একটি কৃত্রিম টুপগ্রহ r ব্যাসার্ধের বৃদ্ধাকার পথে প্রদক্ষিণরত। উপগ্রহের আবর্তনকাল T হবে (A) $T < r^3$ (B) $T^2 < r$ (C) $T^2 < r^3$ (D) $T < r$. [xxvii কোন কারণে সূর্য থেকে পৃথিবীর গড় দৃরত্ব কমে গেলে বছরের দৈর্ঘ্য (A) কমবে (B) বাড়বে (C) একই থাকবে (D) কমতেও পারে, আবার বাড়তেও পারে। [xxvii] R বালেগের্থ এবং M ভরের একটি সুষম গোলকের কেন্দ্র থেকে r_1 এবং r_2 দূরত্বে মহাক্র্যীয় প্রাবল্যের মান যথাক্রমে F_1 এবং F_2 ; ভাহলে
[xxiii] সমান ভরের দৃটি কণা পারম্পরিক মহাকর্ষীয় আকর্ষণ বলের অধীনে R ব্যাসার্ধের বৃদ্ধাকার পথে পরিশ্রমণ করছে। প্রত্যেক কণার বেগ হবে (A) $\sqrt{\frac{GM}{4R}}$ (B) $\sqrt{\frac{GM}{R}}$ (C) $\sqrt{\frac{G}{MR}}$ (D) $\sqrt{\frac{GR}{M}}$. [xxiv] একটি ফাঁপা ও পাতলা গোলকের অভ্যন্তরে কোন বিন্দৃতে মহাকর্ষীয় প্রাবল্যের মান (A) কেন্দ্র থেকে বিন্দুর দূরত্ব বাড়লে কমবে (B) শ্ববক কিছু মান শূন্য হয় (C) শূন্য (D) কেন্দ্র থেকে বিন্দুর দূরত্ব বাড়লে বাড়বে। [xxv] একটি কৃত্রিম ট্রপগ্রহ r ব্যাসার্ধের বৃদ্ধাকার পথে প্রদক্ষিণরত। উপগ্রহের আবর্তনকাল T হবে (A) $T < r^3$ (B) $T^2 < r$ (C) $T^2 < r^3$ (D) $T < r$. [xxvii কোন কারণে সুর্গ থেকে পৃথিবীর গড় দূরত্ব কমে গেলে বছরের দৈশ্য (A) কমবে (B) বাড়বে (C) একই থাকবে (D) কমতেও পারে, আবার বাড়তেও পারে। [xxvii] R বাস্পর্য এবং M ভরের একটি সুষম গোলকের কেন্দ্র থেকে r_1 এবং r_2 দূরতে মহাক্ষীয় প্রাবলোর মান যথাক্রমে

[xii] দৃটি গ্রহের ব্যাসের অনুপতে 4.1 এবং গড় ঘনছের অনুপাত 1·2; ওই গ্রহ দুটিতে অভিকর্ষক ছরণের অনুপাত

[xiii] একটি গ্রন্থের ভর ও ব্যাস পৃথিবীর ভর ও ব্যাসের তিনগুণ। ভূপুঞ্চে অভিকর্ষক ত্বরণ ৪, হলে ওই গ্রহের পৃষ্ঠে হবে

(B) $\frac{1}{3} g_e$ (C) $\frac{1}{4} g_e$ (D) $\frac{1}{5} g_e$

(A) 4:1 (B) 1:4 (C) 1:2 (D) 2:1.

[xxviii]	দৃটি বন্ধুর প্রত্যেকটির ভর দ্বিগুণ হলে এবং তাদেব পারস্পরিক দৃবত্বও দ্বিগুণ হলে মহাকর্ষ বল
	(A) বাড়বে (B) কমবে (C) একই থাকবে (I)। ,৫%% 🔐
[xxix]	একটি উপশ্রহ পৃথিবীর চারিদিকে বৃত্তাকার পথে ঘুরতে থাকলে, তার স্করণ
	A) धुवक (B) পরিবর্তনশীল (C) শুনা (D) গাড়ে, করে
	পৃথিবী পৃষ্ঠ থেকে পৃথিবীর ব্যাসার্ধের সমান উচ্চগ্রায় অভিকর্ষক স্থবদের মান কর ধরে 🤊 🙊 10 mx 🗒
	(A) 5 ms ² (B) 3 ms ² (c) 8 ms ² (D) 2.5 ms ² [Jt. Entrance 2006
	যদি h উচ্চতা এবং d গভীরতায় ৮ এর মান সমান হয় এবং h ও d পৃথিধার বাস্পর্ধের ভূজনায় অনেক ওম চা
	हाराज h अवर d अत्र जम्मिक स्टब
	(A) $h = d$ (B) $h = 2d$ (C) $2h = d$ (D) $3h = d$ [Jt. Entrance 2006
(৪) শূন্যস্থ	र्गन भूतर्ग करता (Fill up the gaps) है .
[i] 4	কটি ভূ-সমলয় উপগ্ৰহ ভূপতে থেকে 6R উচুতে থেকে ভূ-প্ৰদক্ষিণ কৰছে। ভূ-পূচ থেকে 2 S R দূৱে থেকে গ্ৰাৱ
এ	कि उभावत्वत अमिक्कनकाम कर्व : (R = शृधितीत नामार्थ)
[ii] P	র্হকে প্রদক্ষিণরত পৃথিবীর কৌণিক ভরবেগ R*-এর সমানুপাতিক। R = পৃথিবী ও সূর্বের ভিতরকার প্রত্ব। n-এর
	न हरत1' ' ' ' '
[III] A	পুঠে একটি বন্ধুর ওভন W : ভূকেন্দ্র থেকে R/2 দূরে ওই বন্ধুর ওজন । উপগ্রহের প্রতিষ্ঠিত স্বর্কটিকে সর্বাচ্চালন লং লবের একটি কলিম উপগ্রহের মোট শবি
	Otal Andre Suran W Otal and Suran Suran
	ক্ষপথের ব্যাসার্য = r.
[v] @	কেন্দ্রে কোনো বস্তুর ওজন। যুবরেখায় কার্যকর অভিকর্ষজ তুরণ শূন্য হলে পৃথিবীর কৌণিক গতিবেগের মান হওয়া উচিত
(C) ভূপ	कि निर्जुल विठान करता (True or False type):
[i] 😇	র অপরিবর্তিত রেখে পৃথিবীর ব্যাসার্ধ 2% সংকৃতিত হলে ভূপৃষ্ঠে অভিকর্ষক ত্বরণের মান ৭৫ বৃদ্ধি পারে .
[ii] প	খিবীর আকার সম্পূর্ণ গোল হলেও, বিভিন্ন অক্ষাংশে (latitude) বস্তুর ওজন বিভিন্ন হরে। কটি কৃত্রিম উপশ্রহকে এরুপভাবে উৎক্ষেপ করা সম্ভব যাতে সেটি সর্বদা কলকাতার ঠিক উপরে অবস্থান করে।
(iii) a	কাট ক্রিম ভপত্রহকে এর্পভাবে ডংক্ষেপ করা সময় তার উপর একটি বল ক্রিয়া করে। অতএব ওই বল র্যের চতুর্দিকে বৃস্তাকার কক্ষপথে পৃথিবী পরিজ্ঞমণ করার সময় তার উপর একটি বল ক্রিয়া করে। অতএব ওই বল
[iv] 7	यित छुणारक वृष्णकात कव्यनार्थ कृषिया गालवना करार गान करा करा । थिवीत छैनत किंद्र कॉर्य करत ।
(**) el	থিবার ওপর ক্ষিত্র ক্ষিত্র করে। থিবীর চতুর্দিকস্থ বাযুমগুলে হঠাৎ অপসারণ করলে পৃথিবীর পরিভ্রমণের পর্যায়কাল হ্রাস পারে।
[V] Q	M এবং M ভরের দুটি উপশ্রহ r এবং 3r ব্যাসার্ধের বৃক্তপথে পৃথিবীর চতুর্দিকে ঘুরছে। তাদের দুতির অনুপাত = 1
⇒ 2 1€0	नानिक श्रम
1. 40	Dkg ভরের একটি গোলক তার কেন্দ্র হতে 20 cm দূরে অবস্থিত 15 kg ভরের অপর একটি গোলককে হে
20	লের দ্বারা আকর্ষণ করে তা । মিলিগ্রামের $rac{1}{10}$ ওজনের সমান। এ থেকে মহাক্ষীয় ধুবকের মান নির্ণয় করো
41	[Ans. 6.53 × 10 ⁻⁸ c.g.s.
2	Dg ভরের দৃটি ক্ষুদ্র গোলক সম্পূর্ণ মসৃণ অনুভূমিক তলে পরস্পর হতে 1 m তফাতে রাখা আছে। মহাকধী:
2. 10	Je ভরের পুটি ক্ষুদ্র গোলাক সম্প্রির সঞ্জো মিলে যাবে? [Ans. 14.2 দিন (প্রায়)
3. ভূ	পৃষ্ঠে একটি বস্তুর ভর 90 kg ; একটি গ্রহের ভর পৃথিবীর ভরের $rac{1}{9}$ এবং ব্যাসার্ধ পৃথিবীর ব্যাসার্ধের $rac{1}{2}$ হলে
8	Ans. 40 kg wt.
4 5	ত্তি মাজের চার্কিকে প্রতিটোর আর্কেগতি যদি সহসা স্তব্ধ হয়ে যায় তবে ৭5° অক্ষাংলৈ ৫-এর মানের কার্
~	ক্রিটার 6.29 । 106 m ব্যাসার্থের গোলক মনে করতে পারে। Ans. 1.089 / cms
5. 9	থিবীপন্ন হতে কত উচ্চতায় এবং কত গভীরতায় অভিকর্ষজ ত্বরণের মান ভূপ্তের মানের অবেক ২বে? শৃথিবা
ব	াসার্থ 6300 km. [Ans. 2609 km; 3150 km
	কেন্দ্র হতে কত উচ্চে গেলে সেখানকার অভিকর্ষজ ত্বরণের মান ভৃপৃষ্ঠের মানের $\frac{1}{16}$ হবে ? পৃথিবীকে 6 kk) kr
6. 3	किस इंदि के लिए डिसि भिनाबकाथ नावकन्त्र सम्दार मार के दिवस पा में

 $(C) \ \frac{F_1}{F_2} = \frac{r_1}{r_2} \ \overline{q^{(n)}} \ r_1 > \overline{R} \qquad (D) \ \frac{F_1}{F_2} \ \frac{r_1^2}{r_2^2} \ \overline{q^{(n)}} \ r_1 < R \ \text{sets} \ r_2 < R$

ব্যাসার্থের গোলক বলে মনে করতে পারো।

[Ans. 25200 km]

- 8. যদি পৃথিবীর ব্যাসার্থ হয় 6400 km ; $g=9.8~{\rm ms}^{-2}$ এবং $G=6.7\times 10^{-8}~{\rm c.g.s.}$ তাহলে পৃথিবীর ভর নির্ণয় করো। $(Ams.~6\times 10^{24}~{\rm kg.})$
- 9. পৃথিবীর গড় ঘনত $5500~{
 m kgm}^{-3}$ মহাকর্ষীয় ধ্বক $6.7 \times 10^{-11}~{
 m N~m}^2{
 m kg}^{-3}$ এবং পৃথিবীর ব্যাসার্ধ $6400~{
 m km}$ ধেরে নিলে, পৃথিবীপৃষ্ঠে অভিকর্ষক ত্বপের মান নির্ণয় করো। [Ans. $9.9~{
 m ms}^{-2}$]
- 10. পৃথিবী হতে সূর্যাভিমুখী রেখার কত দূরে একটি বন্ধুর উপর সূর্যের মহাকর্ষজনিত আকর্ষণ পৃথিবীর মহাকর্ষজনিত আকর্ষণের সমান হবে? পৃথিবী হতে সূর্যের দূরত্ব = 9.3×10^7 মাইল এবং সূর্যের ভর 3.24×10^5 M $_{\odot}$.

[Ans. 1.63 × 10⁵ মাইল]

- 11. গ্রহের কক্ষপথ বৃত্তাকার ধরে কেপলারের সূত্র হতে প্রমাণ করে। যে গ্রহগুলির তুরণ সূর্য হতে তাদের দূরত্বের বর্গের ব্যস্তানুপাতিক।
- 12. একজন লোক-কে পৃথিবীপৃষ্ঠ হতে $1.6 \times 10^5 \, \mathrm{m}$ উপরে বৃপ্তাকার কক্ষে রাখা হল। পৃথিবীর ব্যাসার্ধের মান $6.37 \times 10^6 \, \mathrm{m}$ এবং পৃথিবীর ভর $5.98 \times 10^{24} \, \mathrm{kg}$! লোকটির প্রদক্ষিণ বেগ কন্ত হবে? $G = 6.67 \times 10^{-11} \, \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$. [Ans. $7.8 \, \mathrm{kms}^{-1}$]

কঠিন গাণিতিক প্রশ্ন

তিনটি সৃষম গোলকের প্রত্যেকটির ভর m এবং বাাসার্ধ r। গোলক তিনটি এর্পভাবে বসানো হল যাতে প্রত্যেক
গোলক অপর দুটি গোলক-কে স্পর্শ করে। প্রত্যেকটি গোলকের উপর অপর দুটি গোলকের দর্ন অভিক্রীয় বল
কত হবে?

Ans. $\frac{\sqrt{3} \text{ Gm}^2}{4r^2}$

2. m ভরের দৃটি কণা পারস্পরিক মহাকর্ষীয় আকর্ষণ বলের প্রভাবে r ব্যাসার্ধের বৃত্তপথে ঘুরছে। প্রত্যেকটি কণার বেগ

নির্ণয় করো।

 $[Ans. \sqrt{\frac{Gm}{4r}}]$

3. পৃথিবীর সর্বপ্রথম কৃত্রিম উপশ্রহ ভূপৃষ্ঠ হতে $3400 \, \mathrm{km}$ উচ্চতায় থেকে পৃথিবী প্রদক্ষিণ করেছিল বলে প্রকাশ। তার প্রদক্ষিণ বেগ এবং পর্যায়কাল নির্ণয় করো। পৃথিবীর ব্যাসার্থ $6400 \, \mathrm{km}$ এবং $g = 980 \, \mathrm{cms}^{-2}$.

[Ans. 6.4 km/s; 2h 40m 22s]

- প্রমাণ করো যে, চাঁদের গতিবেগ 42% বৃশ্বি পেলে চাঁদ চিরতরে মহাশ্রুনা বিলীন হয়ে যাবে।
- 5. পৃথিবীকে σ ভর-খনত্বের একটি সুষম গোলক মনে করে প্রমাণ করো যে পৃথিবীর নিরক্ষতলের ঠিক বাইরে দিয়ে একটি কক্ষপথ বরাবর কৃত্রিম উপগ্রহের পরিক্রমণ কাল কেবলমাত্র σ -র উপর নির্ভর করে।

$$T = 2\pi \sqrt{\frac{(R+h)^2}{GM}} \; ; \quad \text{with } h = 0 \; ; \; M = \frac{4}{3} \, \pi R^3 \sigma \; \therefore T = 2\pi \sqrt{\frac{R^2}{GM}} = 2\pi \sqrt{\frac{3}{4\pi G \sigma}}$$

- 6. একটি বস্তুকে পৃথিবীর আকর্ষণ থেকে মুক্ত করতে যে ন্যূনতম গতিশক্তির প্রয়োজন তার অর্থেক গতিশক্তি দিয়ে পৃথিবীপৃষ্ঠ থেকে সোজা উপরদিকে ছোড়া হল। পৃথিবীপৃষ্ঠ থেকে কত উচ্চতা পর্যন্ত বস্তুটি উঠবে ? পৃথিবীর ব্যাসার্থ = R

$$t=rac{GMm}{2Q}igg(rac{1}{R}-rac{1}{r}igg)$$
 সময় পরে ভূপৃঠে এসে পড়বে।

একটি অর্ধবৃত্তাকার তারের দৈর্ঘ্য । এবং ভর M : বৃত্তের কেল্ফে m ভরের একটি কলা অবস্থিত আছে। তারের দর্ন

m ভারের কশার উপর মহাকর্ষীয় বল নির্ণয় কর।

 $\left[\text{Ans. } \frac{2\pi G \ Mm}{l^2} \right]$

9.M এবং m ভরের দুটি বন্ধু পারস্পরিক মহাকর্ষ বলের অধীনে অসীম দুরত্ব হতে পরস্পরের দিকে অহাসর হতে লাগল।

বস্তু দৃটির দূরত্ব যখন r_0 তথন প্রমাণ করো তাদের পরস্পরের দিকে অগ্রসর হকার গতিকো $\sqrt{\frac{2G}{r_0}(M+m)}$

10. প্রত্যেকটি m ভরের তিনটি ব্যুক্ষা একটি সমবাহু তিভূছের শার্ষবিন্দুতে ধ্যালিত আভূছের বাহু দৈর্ঘাং l . ব্যুক্ষাকৃতি পারস্পরিক মহাক্ষীয় আকর্ষণ বলের প্রভাবে সমবাহু আভূছের পরিবৃত্ত curcumercle) বরাবর প্রদক্ষিণ করলে,

বস্তুকণার গতিবেগ নির্ণয় করো।

Ans. $\sqrt{\frac{GM}{l}}$

(i) B	(vi) A	(xi) B	(xvf) C	(881)	(xxxi) B
(ii) C	(vii) D	(xii) D	(xvii) A	(xxii) B	(xxxii) A.F
(iii) D	(viii) A,C,D	(xiii) B	(xviii) C	(xxiii) \	(xxviii) C
(iv) A	(ix) A.C	(xiv) B	(xix) D	(xxiv) B	(XXIX) B
(v) A	(x) B,C	(av) B	(xx) A	(xxv) C	(333) D (333i) C

তাপ বিজ্ঞান

[HEAT]

তাপগতিবিদ্যা

THERMODYNAMICS

তাপ এক প্রকার শত্তি (Heat is a form of energy):

ঘর্ষণের দারা কার্য করলে সর্বদা তাপের সৃষ্টি হয়, এটা আমাদের সাধারণ অভিজ্ঞতা। বড়ো বড়ো যন্ত্রপাতির বিভিন্ন অংশগুলি ভালোভাবে পিচ্ছিলকারী তেল (lubricating oil) দ্বারা পিচ্ছিল না রাখলে ঘর্ষণের ফলে বেশ উত্তপ্ত হয়ে পড়ে তা তোমরা জান। আদিমকালে মান্ধেরা পাথরে পাথর ঘ্যে আগুন জ্বালাত, তা ইতিহাস বই-এ পড়েছ। ঘর্ষণজনিত তাপের এইরূপ অসংখ্য উদাহরণ উল্লেখ করা যেতে পারে।

কোনো গ্যাসকে আবন্ধ স্থানে রেখে চাপ দিলে কিছু কার্য সম্পাদিত হয়, তার ফলে তাপ উৎপন্ন হয়। সাইকেলের চাকা পাম্প করার সময় বা ফুটবল ব্লাডারে হাওয়া ভর্তি করার সময় এই ঘটনা হয়ত তোমরা লক্ষ ক্রবেছ।

গতিশক্তিকে রূপান্তরিত করে তাপশক্তি সৃষ্টির উদাহরণ প্রায়ই আমাদের চোখে পড়ে। কোনো মানুষ কিছুদূর বেশ জোরে দৌড়ালে তার দেহ উত্তপ্ত হয়। কামার যখন হাতুড়ি দিয়ে লোহা পেটায় তখন লোহা উত্তপ্ত হয়ে পড়ে। এগুলি গতিশক্তির তাপশক্তিতে রূপান্তরের দৃষ্টান্ত।

উপরিউত্ত উদাহরণগুলি থেকে বলা যায়, তাপ একপ্রকার শক্তি কারণ বিভিন্ন শক্তিকে তাপশক্তিতে বা তাপশক্তিকে অন্যান্য শক্তিতে রূপান্তর সম্ভব।

তাপগতিবিদ্যা (Thermodynamics):

পূর্বে তাপগতিবিদ্যায় কেবলমাত্র তাপশত্তি ও যান্ত্রিক শক্তির ভিতর পারস্পরিক সম্পর্ক বিষয়ে আলোচনা করা হত। কিন্তু বিজ্ঞানের অগ্রগতির ফলে তাপগতিবিদ্যার পরিসর খুবই বিস্তৃত হয়েছে। বর্তমানে যে–কোনো প্রকার শক্তি—যান্ত্রিক, রাসায়নিক, বৈদ্যুতিক ইত্যাদি এবং তাপ শক্তি কীভাবে পরস্পরের সঙ্গো সম্পর্কিত তা তাপগতিবিদ্যায় আলোচনা করা হয়।

প্রায় প্রত্যেক প্রাকৃতিক ঘটনার সাথে শক্তির পরিবর্তন ঘনিষ্ঠভাবে জড়িত। সুযোগ ও সুবিধামতো যে-কোনো শব্তিকে অন্য কোনো শব্তিতে রূপান্তর করা সম্ভব। সকল প্রকার শব্তির মধ্যে তাপশব্তি অনন্য কারণ দেখা যায় যে, সকল প্রকার শক্তি শেষ পর্যন্ত তাপশক্তিতে রূপান্তরিত হয়। বিভিন্ন প্রকার শক্তির তাপ শক্তিতে রূপান্তর এবং বিপরীতক্রমে তাপশন্তির অন্য বিভিন্ন শন্তিতে রূপান্তরের সূত্র এবং নিয়ম বর্তমানে তাপগতিবিদ্যার আলোচ্য বিষয়।

কোনো এক সংস্থার (system) আচরণবিধি আলোচনা করার দুটি পন্ধতি আছে। প্রথমটিকে বলা হয় আণুবীক্ষণিক আচরণ (microscopic behaviour) যেখানে সংস্থার উপাদানের অণু-পরমাণুগুলির আচরণ বা ধর্ম বিচার করা হয় এবং অন্যটিকে বলা হয় সমব্দিগত আচরণ (macroscopic behaviour) যেখানে সংস্থা যে অসংখা অণু-প্রমাণু দ্বারা গঠিত তাদের সমন্টিগত গড় ধর্ম বিচারবিবেচনা করা হয়। তাপগতিবিদ্যার আলোচনায় উষ্মতা, চাপ, আয়তন, অভ্যন্তরীণ শক্তি প্রভৃতি রাশিগুলির অবতারণা দুটি সাধারণ প্রাকৃতিক সূত্রের উপর ভিত্তি করে তাপগতিবিদ্যা গড়ে উঠেছে। এই সূত্র দুটি তাপের কার্যে রূপান্তর অথবা কার্যের তাপে রূপান্তর প্রক্রিয়াকে নির্মান্ত্রত করে। প্রথম সূত্র—যাকে 'তাপগতিবিদ্যার প্রথম সূত্র' বলা হয়—তাপ ও যান্ত্রিক কার্যের ভিতর সম্পর্ক নির্দেশ করে এবং দ্বিতীয় সূত্র—যাকে বলা হয় 'তাপগতিবিদ্যার দ্বিতীয় সূত্র'—নির্দেশ করে কীভাবে এই শক্তির পরিবর্তন ঘটে।

1.3. বস্তুর অভ্যন্তরীণ শক্তি (Internal energy of a body):

গাাসের গতীয় তত্ত্ব হতে আমরা জানতে পারি যে গাাস অণুগুলির গড় গতিশন্তি গাাসের তাপমাত্রার সমানুপাতিক। পদার্থের অণুগুলির গতিশন্তি ছাড়া অণুগঠনকারী পরমাণ্গুলির ভিতর পারস্পরিক আকর্ষণ ও বিকর্ষণ ক্রিয়ার জন্য কিছু স্থিতিশক্তি থাকে। কোনো বস্তুর অণুগুলির গতিশন্তি ও স্থিতিশন্তির সমষ্টিকে অর্থাৎ অণুগুলির মোট যান্ত্রিক শক্তিকে অভান্তরীণ শন্তি বলে। বস্তুকে উত্তপ্ত করলে, তাপশন্তির কিছু অংশ বস্তুর অভান্তরীণ শন্তি বৃদ্ধি করে। ফলে বস্তুর তাপমাত্রার বৃদ্ধি ঘটে—কখনও বা অবস্থান্তরও ঘটে।

বস্তুর প্রকৃত অভান্তরীণ শক্তি পরিমাপের কোনো উপায় নেই। কিন্তু তাতে কোনো অসুবিধা হয় না কারণ বাস্তবক্ষেত্রে আমাদের প্রকৃত অভ্যন্তরীণ শক্তি জানবার প্রয়োজন হয় নাঃ প্রয়োজন হয় অভ্যন্তরীণ শক্তির পরিবর্তন জানবার। এই পরিবর্তন নিখুতভাবে পরিমাপ করবার ব্যবস্থা আছে।

গ্যাস অণুর তাপজ গতি (thermal motion) সম্পূর্ণ অবিন্যস্ত বা এলোমেলো (random); তাই একে 'তাপজ উন্তেজনা' (thermal agitation) বলা যুত্তিযুত্ত। একথা মনে রাখা দরকার যে গ্যাসের অভ্যন্তরীণ শক্তি অণুর তাপজ গতির উপরই নির্ভরশীল—গ্যাসের সমগ্র গতির (bulk motion) উপর নির্ভরশীল নয়। যেমন, এক সিলিন্ডার হাইড্যোজেনকে মোটরগাড়ি করে বেগে নিয়ে গেলে, গ্যাসের সমগ্র গতিশন্তি বৃদ্ধি পায় কিন্তু সিলিন্ডারের সাপেক্ষে অণুগুলির তাপজ গতির কোনো পরিবর্তন হয় না। তাই তার তাপমাত্রারও কোনো পরিবর্তন হয় না।

অনুরূপভাবে, কোনো কঠিন পদার্থের অভান্তরীণ শক্তি পদার্থের অণুগুলির কম্পনজনিত গতিশন্তির উপর নির্ভর করে। এই কারণে একখণ্ড লোহাকে বায়ুমধ্যে জোরে ছুড়ে দিলে তার সমগ্র গতিশন্তি বৃদ্ধি পাবে কিন্তু অভান্তরীণ শন্তির কোনো পরিবর্তন হবে নাঃ ফলে তার তাপমাব্রারও কোনো পরিবর্তন হবে না। কিন্তু ঐ টুকরোকে হাতুড়ি দিয়ে পেটালে, তার তাপমাব্রা বৃদ্ধি পাবে। কেন ?

তাপগতিবিদ্যা সংক্রান্ত কয়েকটি রাশি (A few terms in thermodynamics):

- (i) তাপগতীয় সংস্পা (Thermodynamic system): তাপগতীয় সংস্থা বলতে অসংখ্য অণু বা পরমাণুর সমন্টিগত সংস্থা বুঝায়—যে সংস্থার নির্দিষ্ট আয়তন, চাপ এবং তাপমাত্রা থাকে।
- (ii) পরিপার্য (Surroundings): কোনো তাপগতীয় সংস্থার চতুর্দিকস্থ পরিবেশ যা ঐ সংস্থার ওপর সরাসরি প্রভাব বিস্তার করতে পারে, তাকে ঐ সংস্থার পরিপার্শ্ব বলে।

মনে করো, আমরা কিছু পরিমাণ গ্যাসকে মসৃণ পিস্টন দ্বারা একটি চোঙের মধ্যে আবন্ধ রাখলাম। এক্কেত্রে গ্যাসকে বলা হবে তাপগতীয় সংস্থা। চোঙের চতুর্দিকস্থ বায়ুমন্ডল হবে পরিপার্শ্ব। গতিশীল চোঙকেও পরিপার্শ্ব বলা হবে কারণ গ্যাসের উপর পিস্টনেরও প্রভাব আছে।

যে সংস্থা পরিপার্শ্বের সাথে শক্তি এবং পদার্থ উভয়েরই আদানপ্রদান করতে সক্ষম তাকে মৃত্ত (open)

সংস্থা বলে এরকম সংস্থার মধ্যে পদার্থ ও শাঁও য়াগ বা অপসাবণ সভুব অপবপ্রক্ষ যে সংস্থা পরিপার্শ্বের সাথে শাঁও বা পদার্থের কোনোরপ আলনপ্রদান করে না, তাকে বলা হয় বিভিন্ন (icolated) সংস্থা। বিভিন্ন সংস্থার বেলায় ভর বা শাঁও যোগ বা অপসাবণ করা যাবে না। আবার যে সংস্থা পরিপার্শ্বের সাথে কেবলমাত্র শাঁওর বিনিময় করে কিন্তু পদার্থের বিনিময় করে না, তাকে বলা হয় বাধ্ব (closed) সংস্থা। এই ধরনের সংস্থার মধ্যে কোনো পদার্থ যোগ করা বা তার থাকে কানো পদার্থ অপসারিত করা যাবে না।

(iii) তাপগতীয় প্রাচন্দ (Thermodynamic variables or parameters): .ক'লে গুলগতীয় সংস্থার অবস্থা ঐ সংস্থার উন্ধৃতা (T), আয়তন (V), চাপ (P), অভান্তরীণ শাস্ত (L) প্রভৃতির দ্বারা নির্দিন্ট হয়। এদের বলা হয় ঐ সংস্থার তাপগতীয় প্রাচল।

কোনো তাপগভীয় সংস্থার কতকর্গুলি প্রাচল (parameters) থাকে যেগুলি পরিমাপসাধা। যখন উত্ত প্রাচলগুলিকে সঠিকভাবে নির্দেশ করা থাকে তখন আমরা বলি যে সংস্থাটির তাপগভীয় অবস্থা সুনির্দিশ্ব হল। অবশা এই প্রাচলগুলির সবকটিই পরস্পারের সাপেকে স্বাধীন (independent) নয়। যেমন, আমরা কোনো আদর্শ গ্যাসের চাপ, আয়তন, উন্মতা, অভান্তরীণ শক্তি ইভাদি প্রাচলগুলি পরিমাপ করতে পারি। কিন্তু চাপ ও আয়তন নির্দিশ্ব হলে, অন্যানা প্রাচলগুলি আমরা হিসাব করতে পারি। কান্তেই কোনো আদর্শ গ্যাসের চাপ ও আয়তন জানা থাকলে তার তাপগভীয় অবস্থার পূর্ণ বিবরণ পাওয়া যেতে পারে। এ সংস্থার উপর কোনো তাপগভীয় প্রক্রিয়া (thermodynamic process) সংঘটিত হলে, সংস্থা এক তাপগভীয় অবস্থা হতে অন্য তাপগভীয় অবস্থায় উত্তীর্ণ হয়।

তাপগতীয় প্রাচল দু-রকম হতে পারে: যথা (i) তীব্র (intensive) এবং (ii) ব্যাপক (extensive)। কোনো এক তাপগতীয় অবস্থায় সংস্থার প্রাচলগুলি যদি সংস্থার ভর অথবা সংস্থার কলা-সংখার উপর নির্ভর না করে তবে তাদের তীব্র প্রাচল বলে। অপরপক্ষে ব্যাপক প্রাচলগুলি সংস্থার ভর অথবা সংস্থার কলা-সংখ্যার সমানুপাতিক। যেমন, চাপ, ঘনত্ব, আপেক্ষিক গুরুত্ব ও উশ্বতা তীব্র প্রাচল কিন্তু আয়তন, আপেক্ষিক তাপ, এনট্রপি প্রভৃতি ব্যাপক প্রাচল।

(iv) তাপগতীয় অবস্থা (Thermodynamic state): কোনো সংস্থার তাপগতীয় অবস্থার বর্ণনা করতে হলে কয়েকটি প্রাচলের সাহায্য নিতে হয়। যেমন, কোনো গ্যাসীয় সংস্থার তাপগতীয় অবস্থা তার চাপ (P), আয়তন (V) এবং তাপমাত্রা (T) দ্বারা সুনির্দিন্ট হয়। এই তিনটি প্রাচলের মধ্যে দৃটি প্রাচল স্বাধীন: তৃতীয়টি এদের উপর নির্ভরশীল অর্থাৎ এদের অপেক্ষক (function)। যেমন, নির্দিন্ট পরিমাণ গ্যাস নিয়ে যদি তার চাপ (P) কোনো নির্দিন্ট মানে স্থির রাখা যায় তবে বিভিন্ন তাপমাত্রায় (T) ঐ গ্যাসের আয়তন হবে ভিন্ন। কিন্তু তাপমাত্রাও যদি প্রের রাখা যায় তবে আয়তনও প্রির মান পাবে। সূতরাং গ্যাসের আয়তন তাপমাত্রা ও চাপের অপেক্ষক। আবার আয়তন (V) এবং তাপমাত্রা (T) থির রাখলে, ঐ গ্যাসের চাপ (P)—ও একটি নির্দিন্ট মান পাবে। এভাবে, তিনটি প্রাচলের দৃটির মান সুনির্দিন্ট করলে, তৃতীয়টি আপনা হতেই সুনির্দিন্ট হবে। অতএব, দেখা যাচ্ছে যে–কোনো সংস্থার তাপগতীয় অবস্থা বোঝাবার জন্য দৃটি প্রাচলই যথেন্ট। এই প্রাচলগুলিকে বলা হয় তাপগতীয় স্থানান্ড্ক (thermodynamic co-ordinates)। কার্টেসীয় নির্দেশতন্ত্রের কোনো বিন্দুর স্থানান্ড্ক (x, y, z) জানা থাকলে যেমন বিন্দুটির অবস্থান নির্দেশ করা যায়, তেমনি সংস্থার তাপগতীয় স্থানান্ডক (P, V, T) জানা থাকলে ঐ সংস্থার তাপগতীয় অবস্থার নির্দেশ পাওয়া যায়। সংস্থার উপর কোনো তাপগতীয় প্রক্রিয়া সম্পন্ন করলে সংস্থার তাপগতীয় অবস্থার নির্দেশ পাওয়া যায়। কংপোর উপর কোনো তাপগতীয় প্রক্রিয়া সম্পন্ন করলে সংস্থার তাপগতীয় অবস্থার তিব তবে এবং সংস্থা এক তাপগতীয় অবস্থা হতে অন্য এক তাপগতীয় অবস্থায় উত্তীর্ণ হবে।

তাপগতিবিদ্যার প্রথম সূত্র এবং তাপের যান্ত্রিক তুলানিক (First law of thermodynamics and mechanical equivalent of heat):

'তাপগতিবিদ্যা' (thermodynamics) বলা হত। আজকাল অবশ্য তাপগতিবিদ্যার পরিধি বিস্তৃত হয়েছে এবং যে-কোনো শক্তিতে তাপের রূপান্তরণ সম্পর্কিত বিষয় আলোচিত হচ্ছে, একথা পূর্বেই উল্লেখ করা হয়েছে। যখনই কার্য করা হয় তখনই তাপ উৎপন্ন হয় এবং কৃতকার্য ও উৎপন্ন তাপ সর্বদা সমানুপাতিক। একেই তাপগতিবিদ্যার প্রথম সূত্র বলে। যদি W কার্যকে সম্পূর্ণরূপে রূপান্তরিত করে Q তাপ উৎপন্ন করা হয়, তবে $W \sim Q$ অথবা, $\frac{W}{Q} = ধ্বক।$

এই ধ্রুবককে তাপের **যান্ত্রিক তুল্যাঙ্ক** (mechanical equivalent) বা **জুল তুল্যাঙ্ক** (Joule equivalent) বলা হয় এবং J অক্ষর দ্বারা প্রকাশ করা হয়। সুত্রাং,

$$\frac{W}{O} = J$$
 অথবা, $W = JQ$.

ক্লাসিয়াস প্রথম সূত্রকে আরও ব্যাপক অর্থে প্রয়োগ করেছিলেন। সাধারণভাবে যখনই কোনো বস্তুতে তাপ সরবরাহ করা হয়, তখন তাপের কিছু অংশ বস্তুর অভ্যন্তরীণ শক্তি বৃদ্ধি করতে অর্থাৎ তাপমাত্রা বৃদ্ধি করতে ব্যয়িত হয় এবং বাকি অংশ দ্বারা বস্তু কিছু বাহ্য কাজ (external work) সম্পন্ন করে। যেমন, কোনো বস্তু তাপ শোষণ করে আয়তনে প্রসারিত হলে বাহ্য চাপের বিরুদ্ধে কিছু বাহ্য কার্য সম্পাদিত হবে।

অতএব, প্রদত্ত তাপ = অভান্তরীণ শক্তি বৃদ্ধি + বাহ্য কাজ।

যদি সামান্য পরিমাণ প্রদন্ত তাপ হয় dQ এবং সামান্য পরিমাণ অভ্যন্তরীণ শক্তি বৃদ্ধি এবং কৃত বাহ্য কাজ যথাক্রমে dU এবং dW হয় তবে, dQ = dU + dW.

ক্লাসিয়াস প্রথম সূত্রকে সাধারণভাবে উক্ত সমীকরণ দ্বারা প্রকাশ করেছিলেন। এটা স্পন্ট যে, ঐ সমীকরণ 'শক্তির নিত্যতা' এই সাধারণ সূত্রেরই এক বিশেষ রূপ। ক্লাসিয়াসের মতানুযায়ী তাপগতিবিদ্যার প্রথম সূত্রের নিম্নলিখিত সংজ্ঞা দেওয়া যেতে পারেঃ

বাহ্য কান্ধ সম্পন্ন করতে সক্ষম এরূপ কোনো সংস্থাকে (system) তাপ সরবরাহ করলে সংস্থা কর্তৃক শোষিত তাপ ঐ সংস্থার অভ্যন্তরীণ শক্তিবৃদ্ধি ও সংস্থা কর্তৃক কৃত বাহ্য কার্যের সমন্টির সমান হবে।

একথা মনে রাখা দরকার যে সংস্থা যখন নিজে কার্য সম্পন্ন করে তখন dW ধনাত্মক; আবার সংস্থার উপর কার্য করা হলে dW ঋণাত্মক। সংস্থায় তাপ সরবরাহ করলে dQ ধনাত্মক; আবার সংস্থা তাপ সরবরাহ করলে dQ ঋণাত্মক। dW ধনাত্মক হলে সংস্থার অভ্যন্তরীণ শক্তি হাস পায়; dQ ধনাত্মক হলে অভ্যন্তরীণ শক্তি বৃদ্ধি পায়।

প্রথম সূত্রের তাৎপর্য

তাপগতিবিদ্যার প্রথম সূত্রের তাৎপর্য এই যে এই সূত্র তাপ এবং কার্যের ভিতর সম্পর্ক স্থাপন করে। এই সূত্র বলে যে, নির্দিন্ট পরিমাণ কার্য পেতে গেলে নির্দিন্ট পরিমাণ তাপের প্রয়োজন অথবা নির্দিন্ট পরিমাণ তাপ পেতে গেলে নির্দিন্ট পরিমাণ কার্য সম্পন্ন করা প্রয়োজন। কোনো কিছু বায় না করে কার্য অথবা শক্তি পাওয়া সম্ভব নয়। এমন কোনো যন্ত্র উদ্ভাবন করা সম্ভব নয় যা জ্বালানি ব্যতিরেকে কাজ করতে সক্ষম।

1.6. J-র সংজ্ঞা ও একক (Definition and units of J):

W=J.Q. সমীকরণে Q=1 বসালে W=J হয় অর্থাৎ **একক পরিমাণ তাপ উৎপন্ন করতে** যে পরিমাণ কার্য করা দরকার তাকেই তাপের যান্ত্রিক তুল্যাম্ক বলা হয়।

(i) সি. জি. এস্. এককঃ যদি কার্য আর্গে ও ভাপ ক্যালরিতে প্রকাশ করা হয় তবে $J=4.2\times 10^7$ erg/cal অর্থাৎ, 4.2×10^7 erg কার্য সম্পূর্ণরূপে তাপে রূপান্তরিত হলে 1 ক্যালরি তাপ উৎপন্ন হবে। 1 ক্যালরি $=4.2\times 10^7$ আর্গ। এটাই আর্গ ও ক্যালরির পারস্পরিক সম্পর্ক।

য়েহেতু, 1 joule = 10⁷ erg. কাক্তেই, J-মান মান 4.2 joule/cal এভাবেও দেন যেতে পারে।

(ii) এস্. আই. পর্শ্বতিতে কার্য ও তাপ উভয়কেই 'জুল' এককে পরিমাপ করা হয়। এই কারণে এস্. আই. পর্শ্বতিতে Q=W

দেখা যাচ্চে যে কার্য এবং তাপ শক্তির দৃই ভুলা রাশি (equivalent terms)। তথাপি তাদের পার্থক্য বৃঝে রাখা দরকার। কার্য হল যান্ত্রিক শক্তির স্থানান্তর। এটা তাপমাত্রা পার্থকোর উপর নির্ভরশীল নয়। তাপ হল তাপীয় শক্তির স্থানান্তর। এটা তাপমাত্রা পার্থকোর উপর নির্ভরশীল।

আরও লক্ষ কর, **এস্. আই. পশ্বতিতে তাপের যান্ত্রিক তুল্যাখ্ক রাশিটির প্রয়োজন নেই**।

□ Example □

 $lackbox{1}{f b}-10$ f C উশ্বতার 1000 $f g}$ বরফকে 1000 f C উশ্বতার স্টিমে পরিগত করতে কত কার্য করতে হবে $f c}$ বরফের স্পানতাপ $L_f=80~{
m cal/g}$; বরফের স্পাঃ তাপ =0.5. স্টিমের স্পানতাপ $L_c=540~{
m cal/g}$ ।

উঃ । -10° C উম্বভার 100 g বরফকে 100° C উম্বভার ফিন্সে পরিণত করতে প্রয়োজনীয় তাপ $Q=100\times0.5\times[0\ (-10)]+100\times80+100\times(100-0)+100\times540=72500$ cal. \therefore কৃতকার্য $W=J.Q.=4.2\times10^{7}\times72500=3045\times10^{9}$ erg (cgs) $=3045\times10^{2}$ joule (SI).

(ক) জুলের পরীকা; J-এর মান নির্ণয় (Joule's experiment; Determination of the value of J):

রূপান্তরিত কার্য ও উৎপন্ন তাপের অনুপাত সর্বদা ধুবক এটা সর্বপ্রথম জুল পরীক্ষা করে দেখান এবং

J-র মান নির্ণয় করেন। পরীক্ষার উপযুক্ত ব্যবস্থা 1.1 নং চিত্রে দেখানো হল।

বিবরণ ঃ C-একটি ক্যালোরিমিটার।
এর মধ্যে কিছু পরিমাণ জল রাখা হয়।
ক্যালোরিমিটারের গায়ে কতকগৃলি পাত
(V) আটকানো আছে। এই পাতগুলি
ক্যালোরিমিটারের অক্ষের দিকে প্রসারিত।
ক্যালোরিমিটারের অক্ষ বরাবর একটি
দশু আছে এবং এর গায়েও কতকগৃলি
পাত (P) আটকানো আছে। S দশু ঘুরলে
P পাতগুলি V পাতের ফাঁকের মধ্য দিয়ে
ঘুরতে পারে। S দশুের সাথে কপিকলের
সাহায্যে দুটি একই রকম ভার A ও B
যুক্ত আছে। ছেড়ে দিলে ভার দুটি নীচে
পড়বে এবং সজো সজো S দশু ঘুরবে।
ফলে, ক্যালোরিমিটারের জলে আবর্তন
সন্থিত হবে। কিন্ত ক্যালোরিমিটারের গায়ে

আটকান V-পাতগুলি জলের আবর্তনকে বাধা দিতে চেম্টা করবে। তাতে জলের গতিশক্তি তাপে রূপান্তরিত ইয়ে জলের তাপমাত্রা বৃদ্ধি করবে। A ও B ভার দুটি মাটি স্পর্শ করার পূর্ব মুহূর্তে যথাস্থানে গুটিয়ে তোলার জন্য একটি হাতল H দেওয়া আছে। A ও B-কে গোটাবার সময় দণ্ড হতে এদের আলাদা করার জন্য একটি পিন থাকে। এভাবে ভার দুটিকে কয়েকবার নির্দিষ্ট উচ্চতা হতে পড়তে দেওয়া হয়। ভার দুটি যে উচ্চতা হতে পড়তে তা জানার জন্য তাদের পাশে দুটি ক্ষেল রাখা থাকে। T একটি থার্মোমিটার যা ক্যালোরিমিটারের জলে ডোবানো থাকে।

পরীক্ষাঃ সর্বপ্রথম জল ওজন করে নিয়ে তার প্রারম্ভিক (mitial) তাপমাত্রা দেখতে হবে। অতঃপর A ও B ভার দটিকে কয়েকবার নির্দিষ্ট উচ্চতা হতে পড়তে চিতে হবে। এর ফলে জলের তাপমাত্রা বৃদ্ধি পাবে এবং সেই বর্ধিত চুড়ান্ত (tinal) তাপমাত্রা পড়তে হবে।

ধরো, A ও B ভারদ্বয়ের প্রত্যেকের ভর = M g,

যে উচ্চতা হতে তারা পড়ে = h cm.

সূতরাং প্রতাক পতনে A অথবা B যে কার্য করে তাহা = M.g.h. erg

:. ভারদায় কর্ত্ব মোট কৃতকার্য = 2 M.g.h. erg

ভারদ্বয়কে n বার পড়তে দেওয়া হলে, মোট কৃতকার্য W=2n.M.g.h. erg.

যদি জলের ভর হয় m g ও ক্যালোরিমিটারের তাপগ্রাহিতা (cal এবং তাপমাত্রা বৃদ্ধি ι° C হয়, তবে উৎপন্ন তাপ $Q=(m+C).\iota$ cal.

:
$$J = \frac{\phi \circ \phi$$
 কার্য $(W)}{\ddot{\Theta} \circ \phi'$ ল তাপ $(Q) = \frac{2n. Mg.h}{(m+C)t}$ erg/cal

এই সমীকরণের সব কিছ্ জানা থাকায় J-এর মান নির্ণয় করা যাবে।

- শুন্দি (Correction): উপরোক্ত সমীকরণে ধরে নেওয়া হয়েছে যে, ভার দুটির পূর্ণ স্থিতিশক্তিই জলকে উত্তপ্ত করার জনা প্রয়োজনীয় তাপশক্তিতে রূপান্তরিত হয়েছে। প্রকৃতপক্ষে তা হয় না। মাটি স্পর্শ করার পূর্বমুহুর্তে ভার দুটির কিছু গতিবেগ থাকে। তার দরুন তারা যে গতিশক্তির অধিকারী হয় তা পূর্ণ স্থিতিশক্তি হতে বাদ দিলে অবশিষ্ট শক্তি তাপে পরিণত হয়। এই কারণে উপরোক্ত সমীকরণে কিছু শুন্দির প্রয়োজন। মাটি স্পর্শ করার মুহূর্তে যদি ভার দুটির প্রত্যেকের গতিবেগ υ হয় তবে তাদের মোট গতিশক্তি = 2 × 1/2 M.v² = M.v² erg
 - \therefore প্রত্যেক পতনে কায়িত শক্তি = $2Mgh M.\upsilon^2 = M(2gh \upsilon^2)$ erg

n বার পতনের ফলে মোট ব্যয়িত শক্তি $W = n.M(2gh - v^2)$ erg

$$\therefore J = \frac{nM(2gh - v^2)}{(m+W)t} \text{ erg/cal.}$$

D EXAMPLE D

জুলের পরীক্ষায় নিম্নলিখিত তথ্যগুলি পাওয়া গেলঃ প্রত্যেকটি ভর $(M)=13~{
m kg}$; প্রত্যেক পতনের উচ্চতা $(h)=160~{
m cm}$; পতনের সংখ্যা (n)=20: জলের ভর $(m)=6,000~{
m g}$; ক্যালোরিমটারের তাপগ্রাহিতা $(C)=300~{
m cal}$; তাপমাত্রা বৃশ্বি $=0.3^{\circ}{
m C}$

মোট কৃতকার্য তাপে রূপান্তরিত হলে J-র মান নির্ণয় করো।

উঃ। মোট কৃতকার
$$W = 2n$$
. $Meh = 2 \times 20 \times 13000 \times 980 \times 160$
= 8.15×10^{10} erg.

উৎপার শ্রাপ $Q = (m+C)t = (6000+300) \times 0.3 = 1890 \text{ cal.}$

ਸਤਰਾਨ,
$$J = \frac{W}{Q} = \frac{8.15 \times 10^{10}}{1890} = 4.3 \times 10^7 \text{ erg/cal.}$$

(খ) কার্ডবোর্ড নল এবং সিসা-গোলক পরীকা (Cardboard tube and lead shots experiment):

এই পরীক্ষার সাথায়ে গবেষণাগারে J-র মান মোটামুটি নির্ণয় করা যায়।
কর্ক দ্বারা দুই মুখ বন্ধ প্রায় এক মিটার লম্বা কার্ড বোর্ডের নল নাও।
ছোটো ছোটো কিছু সিসা-গোলক নিয়ে একটি থার্মোমিটারের সাহায্যে তাদের
প্রাথমিক তাপমাত্রা দেখে রাখ। নলকে অনুভূমিক অবস্থায় রেখে এক মুখের
কর্ক খোল এবং ঐ মুখের ভিতর দিয়ে সিসা গোলকগুলিকে নলের ভিতর
ঢুকাও। নলের মুখ কর্ক দিয়ে বন্ধ করার পর নলটিকে হঠাও উল্টাও (চিত্র
1.2)। এতে সব সিসা-গোলকগুলি নলের এক প্রান্ত হতে অপর প্রান্তে পড়বে।
নলকে এইরূপ দুত কয়েকবার উল্টাও যাতে সব সিসা-গোলক কয়েকবার
নলের একপ্রান্ত হতে অপর প্রান্তে পড়তে পারে। এই কার্যের ফলে সিসা-গোলকগুলির তাপমাত্রা বৃদ্ধি পাবে। থার্মোমিটারের সাহায্যে গোলকগুলির
অন্তিম তাপমাত্রা লক্ষ্ক করে।।

গণনা ঃ প্রত্যেকবার নল উল্টালে মনে করো, সিসা-গোলক যে গড় উচ্চতা অবতরণ করে তা = h cm. সিসা-গোলকের মোট ভর m g হলে, প্রত্যেক পতনে কৃতকার্য = mgh erg.

নলকে n বার উল্টানো হলে, মোট কৃতকার্য $W = nmgh \text{ erg. } \alpha$

$$J = \frac{\phi$$
তকার্য $(W)}{\overline{\mathbb{G}}$ হেপন্ন তাপ $(Q) = \frac{nmgh}{m.s.(\theta_2 - \theta_1)} = \frac{n.g.h}{s(\theta_2 - \theta_1)}$ erg./cal.

□ Example □

তাপ অপরিবাহী বস্তুর ঘারা তৈরি একটি নলের মধ্যে 800 g সিসার গুলি ভর্তি করে নলের দুই মাথা বন্ধ করা হয়েছে। নলটি 1 metre লম্বা ও তাকে উদ্রম্বভাবে ধরা আছে। নলটিকে হঠাৎ উন্টানো হল যার ফলে সিসার গুলি কটি এক মাথা হতে অন্য মাথায় এসে পড়ল। 50 বার এই রকম উন্টানোর ফলে দেখা গেল যে সিসার গুলির উন্ধাতা 3.89°C বৃদ্ধি পেয়েছে। উৎপন্ন তাপ সম্পূর্ণভাবে সিসায় আছে ধরে নিয়ে তাপের যান্ত্রিক তুল্যাম্পের মান বার করো। সিসার আপেক্ষিক তাপ = 0.03

উঃ। প্রত্যেক পতনে কৃতকার্য = mgh = $800 \times 980 \times 100$ = $8 \times 98 \times 10^5$ erg. 50 বার পতনে মোট কৃতকার্য (W) = $50 \times 8 \times 98 \times 10^5$ erg = $4 \times 98 \times 10^7$ erg. সিসা-গুলি কর্তৃক গৃহীত তাপ (Q) = m.s. θ = $800 \times 0.03 \times 3.89$ cal = 24×3.89 cal.

$$J = \frac{}{}$$
 ভূৎসার গ্রাপ $(Q) = \frac{4 \times 98 \times 10^7}{24 \times 3.89}$ erg./cal. = 4.2 × 10⁷ erg/cal (প্রায়)।

1.8. গ্যানের আপেক্ষিক তাপ (Specific heat of gases) :

সাধারণভাবে আপেক্ষিক তাপ বলতে আমরা বুঝি একক ভরের কোনো পদার্থে যে পরিমাণ তাপ (Q) সরবরাহ করা হয় এবং তার জন্য ঐ পদার্থের যে তাপমাত্রা বৃশ্বি (θ) হয়—এই দুইয়ের অনুপাত

 $\left(S=rac{Q}{ heta}
ight)$ । কিন্তু এই সংজ্ঞা কঠিন ও তরলের বেলায় প্রয়োজ্য হলেও গ্যাসের বেলায় প্রয়োজ্য নয়।

মনে করো, আমরা একক ভরের কোনো গ্যাস নিয়ে হঠাৎ চাপ দিয়ে তাকে সংকৃচিত করলাম। এতে গ্যাসের তাপমাত্রা বৃদ্ধি পাবে যদিও বাইরে থেকে গ্যাসে কোনো তাপ সরবরাহ করা হল না। এক্ষেত্রে সরবরাহ করা তাপ এবং তাপমাত্রা বৃদ্ধির অনুপাত—অর্থাৎ গ্যাসের আপেক্ষিক তাপ $\left(S = \frac{Q}{\theta} = \frac{0}{\theta} = 0\right)$

শূন্য হবে। আবার মনে করো, ঐ গ্যাসকে হঠাৎ সম্প্রসারিত করা হল। এতে গ্যাসের তাপমাত্রা হ্রাস পাবে কিন্তু বাইরে থেকে নির্দিন্ট পরিমাণ তাপ সরবরাহ করে তাপমাত্রা হ্রাস প্রতিরোধ করা হলে, গ্যাসের তাপমাত্রা অপরিবর্তিত থাকবে। এক্ষেত্রে দেখা যাচ্ছে যে, বাইরে থেকে গ্যাসে তাপ সরবরাহ করা হল বটে কিন্তু গ্যাসের তাপমাত্রার কোনো পরিবর্তন হল না। ফলে সরবরাহ করা তাপ এবং তাপমাত্রা পরিবর্তনের

অনুপাত— অর্থাৎ গ্যাসের আপেক্ষিক তাপ $\left(S=rac{Q}{\theta}=rac{Q}{0}=\infty
ight)$ অসীম হবে। উপরোক্ত সংজ্ঞা অনুযায়ী

কোনো গ্যান্সের আপেক্ষিক তাপ ধনাত্মক ও ঋণাত্মক মানসহ শূন্য হতে অসীম পর্যন্ত যে-কোনো মান পেতে পারে। এটি একটি অবান্তব ব্যাপার। এই অবান্তবতার কারণ এই যে যখন নির্দিন্ট পরিমাণ গ্যাসকে উত্তপ্ত করা হয় তখন তার তাপমাত্রা বৃন্ধির সঞ্জো সাধারণভাবে আয়তন ও চাপেরও বৃন্ধি হয়। কিছু কোনো কঠিন বা তরল পদার্থকে তাপ দিলে শুধুমাত্র তার তাপমাত্রারই পরিবর্তন হয়, চাপ বা আয়তনের কোনো উল্লেখযোগ্য পরিবর্তন হয় না। গ্যাসের আচরণবিধি চাপ, আয়তন ও তাপমাত্রা—এই তিনটি রাশির উপর নির্ভরশীল বলে গ্যাসের আপেক্ষিক তাপের সংজ্ঞায় আয়তন ও চাপ নির্দিন্ট করে দেওয়া প্রয়োজন। আমরা নির্দিন্ট পরিমাণ গ্যাসের আয়তন স্থির রেখে তাপপ্রয়োগে তার তাপমাত্রা বৃন্ধি করতে পারি; আবার চাপ স্থির রেখে তাপপ্রয়োগে গ্যাসের তাপমাত্রা বৃন্ধি করতে পারি। প্রথম ক্ষেত্রে গ্যাসের চাপ বৃন্ধি পায় কিছু আয়তন স্থির থাকে এবং দ্বিতীয় ক্ষেত্রে আয়তন বৃন্ধি পায় কিছু চাপ স্থার থাকে। সুতরাং গ্যাসের আপেক্ষিক তাপের সংজ্ঞা সুনির্দিন্ট করতে হলে আয়তন বা চাপের যে–কোনো একটিকে স্থির রাখতে হবে। এই কারণে গ্যাসের দটি আপেক্ষিক তাপ আছে বলে গণ্য করা হয় ঃ

(i) প্রির আয়তনে আপেক্ষিক তাপ (Specific heat at constant volume) এবং (ii) প্রির চাপে আপেক্ষিক তাপ (Specific heat at constant pressure)। কিন্তু কঠিন ও তরল পদার্থের একটি মাত্র আপেক্ষিক তাপ থাকে কারণ তাপমাত্রা বৃদ্ধিতে তাদের আয়তন বা চাপ বৃদ্ধি খুবই নগণ্য।

সংজ্ঞাঃ স্থির আয়তনে আপেক্ষিক তাপ (C_v) বলতে সেই পরিমাণ তাপ বুঝায় যা আয়তনের কোনো পরিবর্তন না করে একক ভর গ্যাসের I°C উম্মতা বৃদ্ধি করে।

সুতরাং, স্থির আয়তনে $\log n$ গ্রাসের 1° C উষ্ণতা বৃদ্ধিতে C_0 cal ক্যালরি তাপ লাগবে। C_0 -এর একক cal/g°C.

এখন গ্যাসের আণবিক ভর M হলে, M গ্রাম গ্যাসের আয়তন পরিবর্তন না করে 1°C উন্মতা বৃদ্ধি করতে যে–তাপ লাগরে তা = $M.C_v$; একে বলা হয় মোলার আপেক্ষিক তাপ (molar specific heat)। একে ছোটো হাতের c দিয়ে বুঝানো হয়। অতএব, স্থির আয়তনে মোলার আপেক্ষিক তাপ $c_v = M.C_v$ যেমন, হাইড়োজেনের আণবিক ভর 2 এবং স্থির আয়তনে আপেক্ষিক তাপ $C_v = 2.41$ সূতরাং স্থির আয়তনে হাইড়োজেনের মোলার আপেক্ষিক তাপ $c_v = 2 \times 2.41 = 4.82$ cal/mol°C।

সংজ্ঞা ঃ হিংর চাপে গ্যাসের আপেক্ষিক ভাপ (C_p) বলতে সেই পরিমাণ ভাপ বুঝায় যা চাপের কোনো পরিবর্তন না করে একক ভর গ্যাসের 1° উম্মতা বৃদ্ধি করে।

সূতরাং, স্থিরচাপে । g গ্যাসের ।°C উদ্ধৃতা বৃদ্ধিতে C_p cal তাপ লাগবে। C_p -এর একক cal/g°C.

পূর্বের নায়ে, গান্সের আর্থাবক ভর M হলে, স্বির চাপে মোলার আর্পোক্ষক তাপ 👝 MC., হাইড়োড়েনের ফির চাপে আপেক্ষিক তাপ $C_p=3.4\,\mathrm{caVg}$ অতএব ফিরে চাপে মেলের আপেক্ষিক তাপ $c_n = 2 \times 3.4 = 6.8 \text{ cal/mol}^{\circ}\text{C}$.

ম্রেক্টবা: একক ৬৫ এথাং । g গান্সের আপুনিক্ত হাপ কে আনুক্ত সময় ই গণ্ডের ১০ গণ্ডিত পুন

(principal specific heat) বলা হয়।

1.9. C_v হতে C_p বড়ো $(C_p$ is greater than C_v):

আয়তন থিরে রেখে কিছু গ্যাসে তাপ প্রদান করলে, গ্যাসের অণুগুলির গতিশক্তি বুলিং পায় ফলে, ঐ গাাসের তাপমাত্রা বৃদ্ধি পায়। কিন্তু আয়তন স্থির থাকায়, গাাস কোনো বহিস্থ (external) কর্মে করে না। এক্ষেত্রে প্রযুক্ত তাপ শুধু গ্যাসের তাপমাত্রা বৃদ্ধি অথবা অভান্তরীণ শক্তিবৃদ্ধির কাছে নিয়ক্ত হয়

কিন্তু চাপ প্রির রেখে ঐ গ্যাসের সমতাপমাতা বৃদ্ধির জন্য তাপ প্রয়োগ করলে তাপমাত্রা বৃদ্ধির সজো সজো গ্যাসের আয়তনও বৃদ্ধি পায়। এক্ষেত্রে প্রযুক্ত তাপ দ্বিবিধ কার্য করে। প্রথমত গণসের তাপমাত্রা বৃদ্ধি (অথবা অভ্যন্তরীণ শক্তি বৃদ্ধি) করে এবং দ্বিতীয়ত বাইরের চাপের বির্দ্ধে গ্যাসের আয়তন বৃদ্ধি করে কিছু বাহ্য কার্য সম্পন্ন করে। দুই ক্ষেত্রে তাপমাত্রার পরিবর্তন সমান বলে, অভান্তরীণ শক্তির প্রিবর্তনও সমান কারণ অভান্তরীণ শক্তির পরিবর্তন তাপমাত্রা পরিবর্তনের উপর নির্ভর করে। সূতরাং শুধু তাপমাত্রা বৃদ্ধির জন্য উভয় ক্ষেত্রে সমান তাপ লাগলেও আয়তন বৃদ্ধির জন্য যে অতিরিত্ত কার্য সম্পাদিত হয়, তার জন্য কিছু অতিরিত্ত তাপশক্তি লাগবে। সূতরাং স্থির আয়তনে 1 g গ্যাসের 1°C তাপমাত্রা বৃদ্ধির জন্য যে তাপ লাগবে ফিথর চাপে ঐ গ্যাসের সমতাপমাত্রা বৃদ্ধির জন্য তা অপেক্ষা কিছ্ বেশি তাপ লাগবে। অর্থাৎ C, > C,

গ্যাসের দুই আপেক্ষিক তাপের অন্তর্ফল (Difference between the two specific heats of a gas):

ধরো, আমরা V আয়তন ও P চাপে এক গ্রাম–অণু আদর্শ গ্রাস (এক মোল) নিলাম। গ্রাসের তাপমাত্রা T K ; গ্যাসকে পিস্টনযুক্ত একটি চোঙে আবন্ধ রাখা হল [চিত্র 1.3]। আয়তন থিরে রেখে ঐ গ্যানের তাপমাত্রা dT বৃদ্ধি করতে যে তাপশক্তির প্রয়োজন হবে তা = $c_v dT$ $\|c_v\|$ = স্থির আয়তনে গ্যানের মোলার আপেক্ষিক তাপ।]

(S.I. পর্ম্বতিতে C_v বা C_p –এর একক ${
m Jkg}^{-1}{
m K}^{-1}$ এবং মোলার আপেক্ষিক তাপের একক ${
m J\,mol}^{-1}{
m K}^{-1}$) . যদি আয়তনের পরিবর্তে চাপ স্থির রাখা হয় এবং আয়তন বৃদ্ধি পায়, তাহলে, আয়তন বৃদ্ধির্জনিত

যে বহিস্থ কার্য করা হল তার সমতুল্য অতিরিক্ত তাপশক্তির প্রয়োজন হবে। এখন পিস্টনের ক্ষেত্রফল A এবং আয়তন বৃদ্ধির দরুন পিস্টন dx সরে গেলে যে-কার্য করা হয় তা $P \times A \times dx = P.dV$ [dV = আয়তনবৃশ্বি]

কাজেই, যে-অতিরিত্ত শক্তি লাগবে তা = P.dV এখন, স্থির চাপে গ্যাসের মোলার আপেক্ষিক তাপ \mathbf{c}_p হলে, 1 গ্রাম–অণু গ্যাসের তাপমাত্রা dT বৃন্ধি করতে যে তাপশক্তির প্রয়োজন তা $= c_p.dT$

অতএব, $c_p.dT = c_v.dT + P.dV$

অথবা, $(c_n - c_v)dT = P.dV$ (i)

। দুই ক্ষেত্রে তাপমাত্রা বৃদ্ধি সমান বলে দুই ক্ষেত্রেই গ্যাসের অভান্তরীণ শক্তিবৃদ্ধি সমান হবে।

কিন্ত এক গ্রাম-অণু আদর্শ গ্যাসের বেলায় $P.V=R_0T$

চাপ স্থির থাকায়, ডিফারেন্সিয়েট করলে পাই, $P.dV = R_0 dT$ [$R_0 =$ মোলার গ্যাস খ্রবক]

- (i) নং সমীকরণে এই মান বসালে পাই, $(c_p c_v)dT = R_0 dT$ অথবা, $(c_p c_v) = R_0 \dots$ (ii)
- (ii) নং সমীকরণে c_p,c_v এবং R_0 –কে J $\mathrm{mol}^{-1}\mathrm{K}^{-1}$ এককে পরিমাপ করা হয়েছে। যদি তাদের তাপ এককে পরিমাপ করা হয় তাহলে $c_p-c_p=\frac{R_0}{J}$; এখানে J=4.2 joule/cal.
 - (c) এক প্রাম-অণুর পরিবর্তে এক প্রাম গ্যাস নিলে, উপরোক্ত ভাবে প্রমাণ করা যায়

$$C_p - C_v = R(v)$$

এখানে R = এক গ্রাম গ্যাসের জন্য গ্যাস-ধ্রবক।

[● বিকল্প প্রমাণ: তাপগতিবিদ্যার প্রথম সূত্রের সাহায্যে:

তাপগতিবিদ্যার প্রথম সূত্রানুসারে, $dQ = dU + dW \dots (i)$

ধরো, আমরা V আয়তন ও P চাপে এক গ্রাম—অণু আদর্শ (এক মোল) গ্যাসে তাপ প্রয়োগ করে dT তাপমাত্রা বৃদ্ধি করলাম। যদি গ্যাসের আয়তন স্থির থাকে তবে প্রযুক্ত তাপ $dQ = c_v dT [c_v = স্থির আয়তনে মোলার আপেক্ষিক তাপ]। গ্যাসের আয়তন স্থির থাকায়, বহিস্থ কার্য <math>dW = 0$; অতএব, (i) নং সমীকরণ অনুযায়ী, $c_v dT = dU$(ii)

[dU= তাপমাত্রা পরিবর্তনে অভ্যন্তরীণ শক্তির পরিবর্তন।]

এবার ঐ একই গ্যাসের চাপ স্থির রেখে তাপ প্রয়োগে একই তাপমাত্রা বৃদ্ধি dT করানো হল। এক্ষেত্রে প্রযুক্ত তাপ $dQ=c_p.dT[c_p=$ স্থির চাপে মোলার আপেক্ষিক তাপ]। এইবার গ্যাসের আয়তন বৃদ্ধি পাবে এবং কিছু বাহ্য কার্য সম্পন্ন হবে। P স্থির চাপের বিরুদ্ধে গ্যাসের আয়তন বৃদ্ধি dV হলে, বহিস্থ কার্য dW=P.dV;

(i) নং সমীকরণ অনুযায়ী, $c_p.dT = dU + P.dV$ $= c_0 dT + P.dV.... (iii)$

[উভয় ক্ষেত্রে গ্যাসের অভ্যন্তরীণ শক্তিবৃদ্ধি সমান কারণ তাপমাত্রা বৃদ্ধি সমান।

(ii) এবং (iii) নং সমীকরণ হতে পাই,

$$c_{pr}dT - c_{vr}dT = P.dV \qquad (iv)$$

এখন, এক গ্রাম অণু গ্যাসের বেলায় $P.V = R_0T[R_0 =$ মোলার গ্যাস-ধ্রুক)। চাপ স্থির থাকায়, ডিফারেন্সিয়েট করলে পাই, $P.dV = R_0dT$. এই মান (iv) নং সমীকরণ বসালে,

$$c_p dT - c_v dT = R_0 dT$$
 অথবা, $c_p - c_v = R_0$]

উল্লেখযোগ্য যে গ্যাসের দুই আপেক্ষিক তাপের মান প্রতি গ্যাস অণুতে পরমাণুর সংখ্যার উপর নির্ভর করে। যেমন, হিলিয়াম, নিয়ন প্রভৃতি এক পরমাণুক (mono-atomic) গ্যাসের $c_v=\frac{3}{2}\,R$; সূতরাং ঐ গ্যাসের $c_p=R+c_v=R+\frac{3}{2}\,R=\frac{5R}{2}$; হাইডোজেন, অক্সিজেন, ক্লোরিন প্রভৃতি দ্বি-পরমাণুক গ্যাসের $c_v=\frac{5}{2}\,R$ এবং $c_p=\frac{7}{2}\,R$ ইত্যাদি।

মনে রাখা দরকার যে (v)নং সমীকরণ কেবলমাত্র আদর্শ গ্যাসের বেলায় প্রয়োজ্য হলেও, বাস্তব গ্যাসের বেলায়েওও (মাঝারি চাপে) মোটামৃটি প্রয়োজ্য।

DEXAMPLES D

♠ 10⁶ dyne/cm² প্রির চাপে একটি গ্যাসের আয়তন 30 litre থেকে 20 litre কমিরে আনা হল। কতথানি ভাপ উদ্ভূত হল নির্ণয় করো।

উঃ | কুলের্ছ $W = P.dV = 10^6 (30 - 20) \times 10^3 \text{ erg} = 10^{10} \text{ erg}$ (1 htre 10 m)

$$W < 3$$
, $Q = \frac{W}{J} = \frac{10^{10}}{4.2 \times 10^3} = 0.24 \times 10^3 \text{ cal.}$

| बार् , जारे, न्यांक : $P = 10^6 \text{ dyne/cm}^2 = 10^5 \text{ newton/m}^2$; $dV = (30 - 20) \text{ litre} = 10 \times 10^{-4} \text{ m}^3$. ∴ কঙকাৰ্য = P.dV = 10⁵ × 10 × 10³ = 10³ joule = উম্বৃত তাপ।]

🕗 0°C উন্মতার এবং 76 cm পারদ চাপে 1 litre হাইড়োজেনের ভর 0.0896g; স্থির চাপ ও পির আয়তনে প্রতি গ্রাম হাইড়োজেনের আপেক্ষিক তাপ যথাক্রমে 3.419 এবং 2.411 cal হলে, J-এর মান নির্ণয় করো। g = 980 cm/s² এবং পারদের ঘনত্ব = 13.6 g/cm³.

উঃ। তাপের এককে 1 g গ্যাসের ক্ষেত্রে $C_p - C_v = \frac{R}{J}: [R = 1$ g গ্যাসের ক্ষেত্রে গ্যাস- ধুবক।]

এখন প্রতি গ্রাম গ্যানের আয়তন $V=\frac{1000}{0.0896}\,\mathrm{cm}^3$; প্রমাণ চাপ $=76\,\mathrm{cm}$ পারনের চাপ $=76\times13.6$ × 980 dyne/cm² প্রমাণ তাপমাত্রা = 0°C = 273 K; সুতরাং, এক গ্রাম গ্যানের বেলায় গ্যাস-ধুবক

$$R = \frac{PV}{T} = \frac{76 \times 13.6 \times 980 \times 1000}{0.0896 \times 273} \text{ erg/gK}$$

$$\therefore J = \frac{R}{C_p - C_v} = \frac{(76 \times 13.6 \times 980 \times 1000) \text{ erg / gK}}{\{(0.0896 \times 273(3.409 - 2.411))\} \text{ cal / gK}}$$
$$= 4.15 \times 10^7 \text{ erg/cal.}$$

3 290K তাপমাত্রায় এবং $9.48 \times 10^4 \, \text{N/m}^2$ চাপে 1 মোল গ্যাস $2.541 \times 10^{-2} \, \text{m}^3$ আয়তন অধিকার করে। ঐ একই ভরের গ্যাসকে স্থির আয়তনে 290K হতে 315K তাপমান্তায় উন্ধ করতে 125 cal তাপ লাগে। গ্যাসের দুই মোলার আপেক্ষিক তাপের অনুপাত = 1.40 হলে J-এর মান নির্ণয় করো।

উঃ। । মোল গ্যাসের ক্ষেত্রে আমরা পাই, $P.V = R_0T$

$$\therefore R_0 = \frac{P.V}{T} = \frac{9.48 \times 10^4 \times 2.541 \times 10^{-2}}{290} = 8.3 \text{ joule/mol K}$$

আবার, ম্থির আয়তনে মোলার আপেক্ষিক তাপের (c_{v}) সংজ্ঞা হতে লেখা যায়, $Q=c_{\rm c}dT=1$ মোল গ্যাসের স্থির আয়তনে $1{
m K}$ (অথবা $1{
m ^{o}C}$) উন্মতা বৃশ্বির জন্য প্রয়োজনীয় তাপ

$$Q = c_1 dT = 1 \text{ (a)}$$

∴
$$c_v = \frac{2$$
যুন্ত তাপ $(Q)}{$ উ্থাতা বৃদ্ধি (dT) = $\frac{125}{(315-290)} = \frac{125}{25} = 5$ cal/mol K.

প্রস্নান্যায়ী, $c_p / c_v = 1.40$ অথবা, $c_p = 1.40 \times c_v = 1.40 \times 5 = 7.0$ cal/mol K

$$c_p - c_v = (7.0 - 5.0) = 2 \text{ cal/mol K} = 2 \times J \text{ joule/mol K}$$

কর্পের একজে c_{ij} $c_{ij} = R_{ij}$ অথকা, $2 \times J = 8.3$

 $\therefore J = 4.15$ joule/cal.

प्रकार : ४ (अर एकर एकर्गांक नक काता)

� 44.8 litre প্রির আয়তনের একটি চোঙে প্রমাণ চাপ ও তাপমাত্রায় হিলিয়াম গ্যাস ভর্তি করা হল। ঐ গ্যাসের উন্মতা 15° C বৃষ্ধি করতে কত তাপের প্রয়োজন হবে ? $R_0=8.31~\mathrm{J~mol}^{-1}~\mathrm{K}^{-1}$.

উঃ। ১নং চার্পার্টে প্রকল্প হতে জানা যায় যে প্রমাণ চাপ (76 cm পারদ)ও তাপমার্থায় (273 K) এক মেল চার্ল্পার্টি গাস 22.4 litre আয়তন অধিকার করে। এথেকে বোঝা যায় যে চোঙে 2 মেল হিলিয়াম গাস এবে তিলিয়াম এক পরমাণুক গাসে হওয়ায় স্থির আয়তনে তার মোলরে আর্পেক্ষিক তাপ $\epsilon_1 = \frac{3}{2} R_0$

:. জিলের জরিমাপ =
$$nc_0$$
 .0 = $n.\frac{3}{2}$. $R_00 = 2 \times \frac{3}{2} \times 8.31 \times 15$ = 373.95 joule.

উঃ। (a) যখন গামের আয়তন অপরিবর্তিত আছে ঃ

- (1) সরবরাহ করা তাপের পরিমাণ $dQ = m.C_{\nu}.(\theta_2 \theta_1) = 5 \times 0.153$ (100 10) = **68.85 cal.**
- (ii) মেঙেত্ গ্যানের আয়তনের কোনো পরিবর্তন হয়নি, সেই হেতু কোনো বাহা কাজ করা হল না; কাজেই. 🗸 🕊 = ()
- (iii) গ্রপগতিবিদ্যার প্রথম সূত্র হতে পাই, dQ=dW+dU ; অভ্যন্তরীণ শক্তির পরিবর্তন dU=dQ=68.85 cal. [dW=0]
 - (b) যখন গাসের চাপ অপরিবর্তিত আছে ঃ
 - (i) সরবরাহ করা তাপের পরিমাণ $dQ = mC_p (\theta_2 \theta_1)$ cal

$$= 5 \times 0.217 (100 - 10) = 97.65 \text{ cal.}$$

- (ii) রেহেত্ তাপমাএার পরিবর্তন দুই ক্ষেত্রেই সমান এবং অভ্যন্তরীণ শক্তির পরিবর্তন কেবল তাপমাএা পরিবর্তনের উপর নির্ভর করে, সেইহেতু অভ্যন্তরীণ শক্তির পরিবর্তন মা: = 68.85 cal.
 - (iii) এখন, dQ = dW + dU অথবা dW = dQ dU = 97.65 68.85 = 28.8 cal.

1811

গ্যাসের দুই আপেক্ষিক তাপের অনুপাতের গুরুত্ব

(Importance of the ratio of two specific heats of a gas)

কোনো গ্যামের বেলায় $\gamma=rac{\sum_{p=1}^{p} \gamma_p(p)}{\sum_{p=1}^{p} \gamma_p(p)}$ কামতনে $\gamma_p(C_p)$

এই অনুপাত নানাকারণে খুবই গুরুত্বপূর্ণ। প্রথমত, γ-র মান থেকে ঐ গ্যাসের আণবিক বিন্যাস (molecular constitution) সম্বশ্বে আমরা ধারণা করতে পারি। যেমন, হিলিয়াম, নিয়ন প্রভৃতি এক পর্মাণ্ক (monatomic) গাদের বেলার দৃ-র মান 1 66 , জিপরমাণক (diatomic) পাদের বেলার মান পার 1.4 ; অবশা দিপর্মাণ্ক গাসে ক্রোরনের বেলার দু-র মান 1 4 - এর চাইতে কিছ ক্যা তিপর্মাণক (tra-atomic) গাদের দু-র মান 1.3 - এর কাছাকাছি , কিছু বহুপর্মাণ্ক গাদে দু র মান 1 3 এবং 1 1 - এর মধ্যে অবস্থিত। সূত্রাং দু-র মান নির্দ্ধ করে গাসে এক প্রমাণ্ক কিবে ছিপর্মাণ্ক তা জানা যায়। দিতীয়ত, গাস মাধামে শানের গতিবেগ নির্দ্ধির দুনর মান প্রয়োজন হয়। প্রকতপ্রে শনের গতিবেগ নির্দ্ধির কিছুর কুটি ধরা পড়ে। পরে, গাদের অপ্রেশিক্ষক তাপধ্বরে অন্পাত্রের সাহায়ো ল্যাপ্র্যাসের ব্রহ্মান করেন (শর্কাব্রান ক্রান্ত্রান)। তুর্ভিয়ত, গাদের ব্রহ্মান প্রক্রিয়া (adiabatic) পর্যালোচনার জনা দু-র মান প্রয়োজন।

1.12 সমোশ্ব প্রক্রিয়া (Isothermal process):

যে প্রক্রিয়ায় কোনো বন্ধুর চাপ ও আয়তনের পরিবর্তন হয় কিছু তাপমাত্রা স্থির থাকে, সেই প্রক্রিয়াকে সমোত্ম প্রক্রিয়া এবং সেই পরিবর্তনকে সমোত্ম পরিবর্তন বলে।

কোনো গাাসকে যদি সহসা চাপ দিয়ে সংনমিত করা হয়, তবে কিছ্ তাপের উৎপত্তি তবে এবং গোসের উন্মতা বৃদ্ধি পাবে। কিন্তু যদি ধীরে ধীরে গ্যাসকে সংনমিত করা হয় এবং উৎপন্ন তাপকে সঙ্গো সঙ্গো অপসারণের ব্যবস্থা করা হয়, তবে এ গ্যাসের তাপমাত্রা স্থির থাকবে কিন্তু অগ্যতনের পরিবর্তন হবে। তথন এ পরিবর্তনকে সম্মান্থ পরিবর্তন বলা হবে।

অনুরূপভাবে, কোনো গ্যাসকে যদি সহসা প্রসারিত হতে দেওয়া হয়, তবে গ্যাস কিছু কর্ম্ব করবে এবং তাতে গ্যাস শীতল হবে। কিছু প্রসারণ যদি ধীরে ধীরে হয় এবং যে-হারে গ্যাস শীতল হল চিক সেই হারে বাইরে থেকে তাপ সরবরাহ করা হয় তবে ঐ গ্যাসের উম্বভা চিথর থাকবে কিছু য়য়তনের পরিবর্তন হবে। তথন ঐ পরিবর্তনকেও সমোম্ব পরিবর্তন বলা হবে। প্রথমটিকে বলা হয় সমোম্ব য়য়তন সংকোচন এবং দি তায়িটি সমোম্ব য়ায়তন প্রসারণ। বলা বাহুল্য, দুটি প্রক্রিয়াই তাপগতীয় প্রক্রিয়া (thermodynamical processes)।

অতএব, সমোশ্ব প্রক্রিয়ায় প্রয়োজন মতো তাপ নিদ্ধাশন বা তাপ সরবরাই করে বস্তুর তাপমাত্রা পিরে রাখা হয়। একথা স্পন্ট বোঝা যায় যে, সমোশ্ব প্রক্রিয়া সফল করার জন্য— অর্থাৎ প্রয়োজন মতো তাপের আদানপ্রদান ঘটাবার জন্য— যে পাত্রে গ্যাস রাখা হবে তা তাপের সুপরিবাহী হওয়া প্রয়োজন এবং ওই পাত্রকে যথেক্ট তাপগ্রাহিতা—সম্পন্ন কোনো মাধ্যমের দ্বারা বেক্টন করে রাখা প্রয়োজন। তাছাড়া, সংলমন বা প্রসারণ খুব ধীরে ধীরে করা বাশ্বনীয়, কারণ তাহলে, উৎপন্ন তাপ নিদ্ধাশন করার অথবা তাপ শোষণের জন্য প্রয়োজনীয় তাপ সরবরাই করার সময় পাওয়া যাবে। এই কারণে, মন্থর পরিবর্তনের যে-কোনো প্রক্রিয়া সাধারণত সমোশ্ব প্রক্রিয়া বলে গণ্য করা হয়।

উল্লেখযোগ্য যে, আদর্শ গ্যাসের সমোশ্ব পরিবর্তনের ক্ষেত্রে চাপ ও আয়তন বয়েল সূত্র দারা নিয়ন্ত্রিত হয়। অর্থাৎ P.V.= প্রবক।

সামোশ্ব প্রক্রিয়ায় তাপমাত্রার কোনো পরিবর্তন হয় না বলে, বস্তুর অভ্যন্তরীণ শক্তিরও কোনো পরিবর্তন হয় না—অর্থাৎ dU=0। কাজেই তাপগতিবিদ্যার প্রথম সূত্র হতে পাই dQ=dW: এর অর্থ এই যে সমোশ্ব প্রক্রিয়ায় যে তাপ বস্তুতে সরবরাহ করা হয় তার সবটাই বাহ্য কার্য সম্পন্ন করতে ব্যয়িত হয়।

1.18 রুখতাপ প্রক্রিয়া (Adiabatic process):

যে-প্রক্রিয়ায় কোনো বন্তুর চাপ ও আয়তনের পরিবর্তন হয় কিন্তু কোনো তাপ বাইরে থেকে বন্তুতে প্রবেশ করতে পারে না বা বন্তু হতে তাপ বেরিয়ে যেতে পারে না, সেই প্রক্রিয়াকে রুখতাপ প্রক্রিয়া এবং সেই পরিবর্তনকে রুখতাপ পরিবর্তন বলে। চাপ প্রয়োগে কোনো গ্যাসকে সংনমিত করলে যে তাপের উদ্ভব হয় তা অপসারণ না করলে গ্যাসের উশ্বতা বৃদ্ধি পাবে। আবার গ্যাসকে প্রসারিত হতে দিলে এবং বাইরে থেকে তাপ সরবরাহ না করলে, গ্যাস শীতল হবে—অর্থাৎ, তার উশ্বতা হ্রাস পাবে। প্রথম প্রক্রিয়াকে বলা হবে, বৃশ্বতাপ সংনমন বা সংকোচন এবং দ্বিতীয়টিকে বৃশ্বতাপ প্রসারণ। দুটি প্রক্রিয়াই তাপগতীয় প্রক্রিয়া।

সুতরাং বুল্ধতাপ প্রক্রিয়ায় তাপমাত্রা স্থির থাকে না। বুল্ধতাপ প্রক্রিয়া সফল করার জন্য—অর্থাৎ তাপের আদানপ্রদান বন্দ করতে হলে—যে পাত্রে গ্যাস রাখা হবে তা তাপের কুপরিবাহী হতে হবে এবং সংনমন ও প্রসারণ খুব দুত সম্পন্ন করতে হবে। কারণ তাহলে, উৎপন্ন তাপ বার হয়ে যাবার অথবা শোষণের জন্য প্রয়োজনীয় তাপ বাইরে থেকে সরবরাহ করার সময় পাওয়া যাবে না। তাই, দুত পরিবর্তনের যে-কোনো প্রক্রিয়াকে সাধারণত বুল্ধতাপ প্রক্রিয়া বলে গণ্য করা হয়।

রুখতোপ পরিবর্তনের বেলায়, কোনো আদর্শ গ্যাসের চাপ ও আয়তন বয়েল সূত্র দ্বারা নিয়ন্ত্রিত ২র না—নিম্নলিখিত সম্পর্ক দ্বারা নিয়ন্ত্রিত হয় ঃ $P.V^{\gamma}=$ ধুবক; এখানে $\gamma=$ স্থির চাপে গ্যাসের আঃ তাঃ এবং স্থির আয়তনে আঃ তাপের অনুপাত।

• বৃশ্বতাপ প্রক্রিয়ায় গ্যাস শীতল বা উন্ধ হয় কেন ?

তাপগতিবিদ্যার প্রথম সূত্র হতে আমরা বুঝতে পারি কেন রুশ্বতাপ সম্প্রসারণে গ্যাস শীতল হয় এবং রুশ্বতাপ সংকোচনে গ্যাস উন্ধ হয়।

রুশ্বতাপ প্রক্রিয়ায় বাইরে থেকে কোনো তাপ সরবরাহ করা হয় না বলে dQ=0; সম্প্রসারণের ক্ষেত্রে গ্যাস নিজে বাহ্য কার্য করে বলে কৃতকার্য dW ধনাত্মক ধরা হয়। এই অবস্থায় প্রথম সূত্র হতে পাই dW=-dU; অর্থাৎ গ্যাসের অভ্যন্তরীণ শক্তি হ্রাস পায়। গ্যাসের তাপমাত্রা অভ্যন্তরীণ শক্তির পরিবর্তনের সমানুপাতিক। তাই রুশ্বতাপ সম্প্রসারণে গ্যাসের তাপমাত্রা হ্রাস পাবে অথবা গ্যাস শীতল হবে। এই কারণে সাইকেল বা মোটরগাড়ির টায়ার ফেটে গেলে যে বায়ু নির্গত হয় তা পারিপার্শ্বিক বায়ুর তুলনায় ঠান্ডা মনে হয়।

আবার, রুশ্বতাপ সংকোচনে, গ্যাসের উপর কার্য করা হয় বলে কৃতকার্য dW ঋণাত্মক ধরা হয়। কাজেই, প্রথম সূত্র প্রয়োগ করে পাই 0=dU-dW অথবা, dW=dU; অর্থাৎ গ্যাসের অভ্যন্তরীণ শক্তি তথা গ্যাসের তাপমাত্রা বৃদ্ধি পায়। এই কারণে ফুটবল ব্লাডার অথবা সাইকেলের টায়ার বায়ুভর্তি করার সময় বায়ু উদ্ধা হয়ে পড়ে।

রুষ্থতাপ পরিবর্তনে কোন আদর্শ গ্যাসের তাপমাত্রা-আয়তন এবং তাপমাত্রা-চাপ সম্পর্ক নিম্নরূপ :

(i)
$$T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1} =$$
ধ্বক
(ii) $P_1^{\gamma-1}T_1^{-\gamma} = P_2^{\gamma-1}T_2^{-\gamma} =$ ধ্বক

□ Example □

0°C তাপমাত্রায় ও প্রমাণ বায়ুমওলীয় চাপে কোন গ্যাসের আয়তন রুখতাপ প্রক্রিয়ায় সংকৃচিত করে অর্থেক করলে গ্যাসের চাপ ও তাপমাত্রা মান কি হবে ? γ = 1.67 উঃ। (i) রুখতাপ প্রক্রিয়ায় গ্যাসের আয়তন ও চাপের সম্পর্ক : PV^γ = ধ্রক

অর্থাৎ
$$P_1V_1^{\gamma}=P_2V_2^{\gamma}$$
 অথবা, $\frac{P_2}{P_1}=\left(\frac{V_1}{V_2}\right)^{\gamma}$

এখানে,
$$P_1 = 76 \text{ cm}$$
 পারদ ; $\frac{V_1}{V_2} = 2$; অতএব, $\frac{P_2}{76} = (2)^{167}$

লক্ষ্য নিলে, $\log P_2 - \log 76 = 1.67 \log 2$

অথবা, $\log P_2 - 1.8808 = 1.67 \times 0.3010$ অথবা, $\log P_2 = 2.3855$ $\therefore P_2 = 241.7$ cm পারদ $\cap P_2 = 241.7$ তি তালে $\cap P_2 = 241.7$ cm পারদ $\cap P_2 = 241.7$ cm $\cap P_2 = 241.7$ cm পারদ $\cap P_2 = 241.7$ cm $\cap P_2 = 241.7$ cm

প্রত্যাবর্তক ও অপ্রত্যাবর্তক প্রক্রিয়া (Reversible and irreversible process):

সেলসিয়াস স্কেলে to = 432.7 - 273 = 159.7°C

ধরো, কোনো একটি প্রক্রিয়ায় কোনো কার্যরত বন্ধু (working substance) বিশেষ এক পরিবেশে A অবস্থা হতে পরিবর্তিত হয়ে B অবস্থায় গেল এবং ঐ সময় বন্ধু কিছু তাপ শোষণ করল ও কিছু বাহা কার্য সম্পাদন করল। এই প্রক্রিয়াকে সম্মুখগামী প্রক্রিয়া (direct operation) বলে গণ্য করলে, বন্ধু যখন একই পরিবেশে পশ্চাৎবর্তী প্রক্রিয়ায় (reverse operation) B অবস্থা হতে A অবস্থায় ফিরে যাবে এবং একই পরিমাণ তাপ উদ্গীরণ (evolve) করবে ও বন্ধুর ওপর একই পরিমাণ বাহ্য কার্য সম্পাদিত হবে, তখন সমগ্র প্রক্রিয়াকে প্রভাবিত্কক প্রক্রিয়া বলা হবে।

সূতরাং তাপগতিবিদ্যার দৃষ্টিকোণ হতে আমরা সেই প্রক্রিয়াকে প্রত্যাবর্তক প্রক্রিয়া বলব যা বিপরীতমুখী হয়ে প্রত্যাবর্তন করতে পারে এবং সম্মুখগামী ও প্রত্যাবর্তনমুখী প্রক্রিয়ার প্রতি স্তরে তাপ ও কার্যের ফলাফল সমান ও বিপরীত হয়।

কোনো প্রকৃত পরিবর্তনই সম্পূর্ণরূপে প্রত্যাবর্তক নয় কিন্তু অনেকগুলি প্রক্রিয়া ধীরে ধীরে সম্পাদন করলে প্রত্যাবর্তক হতে পারে। যেমন, পিস্টনসহ কোনো বেন্টনীর মধ্যে কিছু গ্যাস নিয়ে যদি পিস্টনের দ্বারা গ্যাসকে ধীরে ধীরে সমোশ্ব ও রুশ্বতাপ প্রক্রিয়ায় সংনমিত করা যায় তবে গ্যাসের উপর পিস্টন যে কার্য করবে তা গ্যাস কর্তৃক পিস্টনের উপর কৃতকার্যের সমান হবে যখন গ্যাস ধীরে ধীরে প্রসারিত হয়ে পূর্বের অবস্থায় ফিরে আসবে। সুতরাং এই প্রক্রিয়াকে প্রত্যাবর্তক বলে গণ্য করা যাবে।

বরফ নির্দিন্ট পরিমাণ তাপ শোষণ করে জল হয়। আবার, ঐ জল হতে সমপরিমাণ তাপ নিষ্কাশন করলে, পুনরায় বরফ পাওয়া যায়। সূত্রাং এই প্রক্রিয়া প্রত্যাবর্তক।

একই তাপমাত্রায় রাখা দুই বা ততোধিক বন্ধুর ভিতর তাপের আদানপ্রদান হলে তা প্রত্যাবর্তকঃ কিন্তু ভিন্ন তাপমাত্রায় রক্ষিত বন্ধুদ্বয়ের মধ্যে পরিবহন বা বিকিরণ পম্পতিতে তাপের স্থানান্তর প্রক্রিয়া প্রত্যাবর্তক হবে না—এটা একমুখী।

যে প্রক্রিয়া বিপরীতমুখী হয়ে প্রত্যাবর্তন করতে পারে না, তাকে **অপ্রত্যাবর্তক প্রক্রিয়া** বলা হয়। বিস্ফোরণ ইত্যাদির ন্যায় সহসা সংঘটিত পরিবর্তন সর্বদা অপ্রত্যাবর্তক।

বায়ুমণ্ডলীয় চাপে কোনো ফ্লাস্ক-কে বায়ুপূর্ণ করে অপর একটি বায়ুশূন্য ফ্লাস্কের সংজা সংযোগ স্থাপন করলে প্রথম ফ্লাস্ক হতে বায়ু দ্বিতীয় ফ্লাস্কে প্রবেশ করবে যতক্ষণ না উভয়ের চাপ সমান হয়। এক্ষেত্রে গ্যাসের সম্প্রসারণ হল বটে কিন্তু গ্যাস কোনো বাহ্য কার্য সম্পন্ন করল না। এই প্রক্রিয়া প্রত্যাবর্তক হলে, বাইরে থেকে কোনোরূপ কার্য না করেই গ্যাসকে পুনরায় আগের অবস্থায় ফিরিয়ে আনা সম্ভব হত। কিন্তু কার্যক্ষেত্রে দেখা যায় যে গ্যাসকে পুনরায় প্রারম্ভিক অবস্থায় ফিরিয়ে আনতে গেলে বাইরে থেকে কিছু কার্য করা প্রয়োজন। সূতরাং এই প্রক্রিয়া প্রত্যাবর্তক নয়—অপ্রত্যাবর্তক।

এইরূপ ঘর্ষণে তাপের উৎপত্তি, ভড়িৎপ্রবাধের দর্ন ভড়িৎরোধে তাপের উদ্ভব এই সকল প্রক্রিয়াই অপ্রত্যাবর্তক। পেলটিয়ার ক্রিয়া প্রত্যাবর্তক কিন্তু জুল ক্রিয়া প্রত্যাবর্তক নয়।

এই আলোচনা ২তে আমরা বলতে পারি যে, কোনো প্রক্রিয়া প্রভ্যাবর্তক ২তে গেলে নিম্নলিখিত শর্তগুলি পূরণ করতে হবেঃ

- (i) কার্যরত বস্তু প্রতাবর্তক প্রক্রিয়ার ভিতর দিয়ে গেলে পরিবহন, পরিচলন, বিকিরণ অথবা ঘর্ষণজনিত পর্ন্ধতিতে তাপ নন্ট করতে পারবে না। কোনো তাপ চৌম্বক অথবা তড়িংশক্তিতেও রূপান্তরিত হতে পারবে না অর্থাৎ প্রক্রিয়া প্রতাবর্তক হতে গেলে ঘর্ষণ, তড়িংরোধ বা হিস্টারিসিস প্রভৃতি অপচয়মূলক (dissipative) ফলাফলগুলি সম্পূর্ণরূপে বন্ধ করতে হবে।
- (ii) কার্যরত বস্তুর চাপ ও আয়তনের পরিবর্তন খুব ধীরে ধীরে করতে হবে যাতে বস্তু তাপ গ্রহণ করলে তার তাপমাত্রা উত্তপ্ত বস্তুর (যা থেকে তাপ গ্রহণ করবে) তাপমাত্রা হতে খুব সামান্য পরিমাণে পৃথক হবে, আবার যখন কার্যরত বস্তু তাপ ত্যাগ করে তখন তার তাপমাত্রা শীতল বস্তুর (যাকে তাপ ত্যাগ করা হবে) তাপমাত্রা হতে খুব সামান্য পরিমাণে পৃথক হবে। অর্থাৎ সমস্ত প্রত্যাবর্তক প্রক্রিয়া খুব মন্থর হতে হবে।

এই সকল শর্ভ বাস্তবক্ষেত্রে ঠিক ঠিক মেনে চলা সম্ভব নয় কারণ কোনো যান্ত্রিক প্রক্রিয়াই ঘর্ষণবিহীন করা যায় না বা এমন কোনো অন্তর্ক (insulator) পদার্থ বা পরিবাহী পদার্থ (conductor) নেই যাদের আদর্শ অন্তরক বা আদর্শ পরিবাহী বলা যেতে পারে। কাজেই যথার্থ প্রত্যাবর্তক প্রক্রিয়া একটি আদর্শ কল্পনা—অপ্রত্যাবর্তক প্রক্রিয়াই বাস্তবসম্মত। তবে, উপরের শর্ভগুলি প্রায় পূরণ করে আমরা কার্যক্ষেত্রে এরূপ প্রক্রিয়া উদ্ভাবন করতে পারি যাকে মোটামুটি প্রত্যাবর্তক বলা যেতে পারে।

*1.15.

তাপগতিবিদ্যার দ্বিতীয় সূত্র (Second law of thermodynamics):

- তাপগতিবিদ্যার দ্বিতীয় সূত্র ভালোভাবে উপলব্ধি করার জন্য নিম্নবর্ণিত দুটি প্রক্রিয়া বিবেচনা করা যাক।
 (1) মনে করো 100°C উদ্মতার একটি বস্তুকে 0°C উদ্মতার অপর একটি সদৃশ (similar) বস্তুর সংস্পর্শে রাখা হল। আমরা জানি, তাপ উদ্ম বস্তু হতে শীতল বস্তুতে প্রবাহিত হবে এবং কিছু সময় পরে উভয়ের তাপমাত্রা হবে 50°C। এখন, প্রশ্ন এই যে বিপরীত প্রক্রিয়া কি সম্ভব? অর্থাৎ উভয়ের তাপমাত্রা 50°C এরূপ দুটি সদৃশ বস্তুকে সংস্পর্শে রাখলে তাপ কি এক বস্তু হতে অপর বস্তুতে প্রবাহিত হবে যাতে কিছুক্ষণ পরে এক বস্তু শীতল হয়ে 0°C তাপমাত্রা পেল এবং অপর বস্তু উত্তপ্ত হয়ে 100°C তাপমাত্রা পেল?
- (2) সুদৃঢ় দেওয়ালযুত্ত একটি পাত্র বিবেচনা কর যাকে ভালভ সহ একটি পার্টিশান দৃটি প্রকাষ্টে ভাগ করেছে। ভালভ বন্ধ রেখে এক প্রকাষ্টে গ্যাস ভর্তি করা হল এবং অন্য প্রকোষ্ঠ শূন্য রাখা হল। এইবার ভালভ খুলে দিলে শূন্য প্রকোষ্ঠে গ্যাস প্রবেশ করতে থাকরে এবং কিছুক্ষণ পরে দৃই প্রকোষ্ঠই সমভাবে গ্যাসপূর্ণ হবে। এক্ষেত্রেও কি বিপরীত প্রক্রিয়া সম্ভব ? অর্থাৎ দৃই প্রকোষ্ঠে সমভাবে গ্যাস রেখে যদি ভালভ খোলা যায় তবে কি গ্যাস এক প্রকোষ্ঠ হতে অন্য প্রকোষ্ঠে ক্রমাগত প্রবেশ করে এক প্রকোষ্ঠ সম্পূর্ণ শূন্য এবং অন্য প্রকোষ্ঠ গ্যাসপূর্ণ করবে ?

বলা বাঙ্গলা, উপরোপ্ত দৃই ক্ষেত্রে বিপরীত প্রক্রিয়া সম্ভব নয় যদিও ভাপগতিবিদ্যার প্রথম সূত্র উপরোপ্ত দৃটি বিপরীত প্রক্রিয়াতেই সমভাবে প্রয়োজ্য এবং দৃটি প্রক্রিয়াতেই শক্তির সংরক্ষণ সূত্র অলজ্যিত থাকে। দেখা যাচেচ যে তাপগতিবিদ্যার প্রথম সূত্র চাড়াও প্রকৃতিতে আরও একটি সূত্র আচে যা প্রথম সূত্রের অন্মোদন থাকা সম্ভেত কোনো একটি বিশেষ প্রক্রিয়া আদৌ ঘটবে কি ঘটবে না, গ্রাচিক করে দেয়া প্রকৃতির এই সএই তাপগতিবিদারে দ্বিতীয় সত্র

বিভিন্ন বিজ্ঞানী প্রপগতিবিদ্যার দ্বিতীয় সূত্রের প্রস্তাবন্য বিভিন্ন রক্ত্রে করেছেন কিন্তু প্রত্যেকটি প্রস্তাবন্যর ভিতরই একটি মূলগত ঐক্য আছে। উনবিংশ শতাব্দীর মধ্যভাগে ক্লমিয়াস দ্বিতীয় সত্তর যে প্রস্তাবন্য দেন তা নিমন্ত্রপ ঃ

বাইরের কোনো শক্তি (agency) কার্য না করলে শীতল বন্ধু থেকে উন্ধ বন্ধতে তাপ নিজ হতে প্রবাহিত হতে পারে না।

শ্লেষ্ট বোঝা যায় যে উত্ত প্রস্তাবনা একটি সাধারণ প্রাকৃতিক নিয়মেরই প্রবাব্তি। এই প্রাকৃতিক নিয়মের প্রকাশস্বর্গ আমরা দেখতে পাই যে, বাইরের কোনো শত্তির সহায়তা ভিন্ন কোনো ভঙ্ বয় নীচ্তল হতে উচ্তলে যেতে পারে না বা তড়িৎপ্রবাহ নির্মাবিভব বিন্দু হতে উচ্চ বিভব বিন্দুতে মেতে পারে না: জঙ্ বস্তুকে নীচ্চ তল হতে উচ্চ তলে নিতে গোলে যন্ত্রের প্রয়োজন: তেমনি তড়িংপ্রবাহকে নির্মাবিভব হতে উচ্চ বিভব বিন্দৃতে চালনা করতে হলে তড়িংযাপ্তরে প্রয়োজন। এই ঘটনা হতে সাধারণভাবে দিতীয় সূত্রকে নির্মালিখিতরূপে প্রকাশ করা যেতে পারেঃ

বাইরের সাহায্য ব্যতিরেকে কোনো স্বয়ংক্রিয় (self-acting) যন্ত্রের পক্ষে নিম্ন তাপমাত্রার বস্তু হতে উচ্চ তাপমাত্রার বস্তুতে তাপের সরবরাহ সম্ভব না।

দিতীয় সূত্রের সরাসরি কোনো প্রমাণ উপস্থিত করা সম্ভব নয়: কিছু এর সভাতার সমর্থনে এই কথা বলা যায় যে এ পর্যন্ত এরূপ কোনো যন্ত্র উদ্ধাবিত হয়নি যা এই সূত্রের বির্ণধাচরণ করেছে।

লক্ষ কর যে তাপগতিবিদ্যার প্রথম সূত্র হতে জানতে পারি যে কার্য তাপে রূপান্তরিত হয় অথবা তাপ কার্যে রূপান্তরিত হয়। কিন্তু কীভাবে এই রূপান্তর ঘটানো যায় তা প্রথম সূত্র হতে জানা যায় না। তাপগতিবিদ্যার দ্বিতীয় সূত্র এই রূপান্তরের গতিমুখ (direction) এবং সীমা (limit) নির্ধারণ করে। তাপ ইঞ্জিনে তাপ কার্যে রূপান্তরিত হয় এবং রেফ্রিজারেটারে কোনো স্থানের উম্বাতা পারিপার্শ্বিক উম্বাতার নীচে আনা হয়। এই দুটি যন্ত্রই দ্বিতীয় সূত্র অনুযায়ী কাজ করে।

ানার তাপগতিবিদ্যার দুই সূত্রের পার্থক্য (Distinction between two laws of thermodynamics):

তাপগতিবিদ্যার দুই সূত্রের মূল পার্থক্য বুঝে রাখা প্রয়োজন। প্রথম সূত্রের প্রস্তাবনা এই যে তাপ ও যান্ত্রিক কার্য উভয়েই শক্তির বিভিন্নরূপ এবং এক রূপ থেকে অন্যরূপে পরিবর্তন সম্ভব। এছাড়া, রূপান্তরের সময়ে একে অন্যের সমতুল্য এটাও আমরা প্রথম সূত্র থেকে জানতে পারি। কিন্তু তাপের উৎপত্তি কোথায়—কোনো উত্তপ্ত বস্তু কি শীতল বস্তু অথবা তাপকে কার্যে রূপান্তরিত করার শর্ত কি তা এই সূত্র থেকে কিছু জানা যায় না। এইসব প্রশ্নের উত্তর আমরা তাপগতিবিদ্যার দ্বিতীয় সূত্র থেকে পাই। এই সূত্র বলে যে তাপ যখন কার্যে রূপান্তরিত হয় তখন তার কিছু অংশ কার্যে রূপান্তরিত হয়; সকল তাপই রূপান্তরিত হয় না এবং ঐ রূপান্তরের জনা সর্বদা একটি উত্তপ্ত এবং একটি শীতল বস্তুর যুগপৎ উপস্থিতি প্রয়োজন। উত্তপ্ত বস্তু থেকে শীতল বস্তুতে তাপের হন্তান্তর হলে কিছু পরিমাণ তাপ কার্যে রূপান্তরিত হরে।

D Example D

1 দুই মুখ বন্ধ একটি কাচনলে 25 g সিসা-গুলি রাখা আছে এবং নলের বাকি অংশ 1 litre জল দারা ভর্তি। নলটিকে খাড়াভাবে ধরে উন্টানো হলে সিসা-গুলি নলের 1 m দৈর্ঘ্য বরাবর পড়ল। জলের তাপমাত্রা 1°C বৃষ্ধি করতে নলটিকে ঐরূপ কয়বার উন্টাতে হবে ? \mathbf{G} ঃ। ধারে, নির্পেয় পতানের সংখ্যা = n

n বাব প্রভাব মাট কৃতকার্য = n.mgh = n × 25 × 980 × 100 erg = n × 245 × 10⁴ erg.

ভাতপ্ৰ উৎপল্ল তাপ =
$$\frac{W}{J} = \frac{n \times 245 \times 10^4}{4.2 \times 10^7}$$
 cal. = $\frac{7n}{120}$ cal.

জল এই তাপ শোষণ করবে: 1 litre জলের ভর = 1000 g; জলের তাপমাত্রা 1°C বৃদ্ধি পেলে, শোষত হ'ল = 1000 x 1 cal.

$$\therefore \frac{7n}{120} = 1000$$
 অথবা, $n = 17142$ (প্রায়)।

🙆 একটি জলপ্রপাতের জ্বল 50 metre উচ্চতা হতে নীচে পড়ছে। তার শক্তির 75% তাপে পরিণত হয়ে জলে শোষিত হলে, জলের উন্মতা কত বৃষ্ধি পাবে ? $g = 9.8 \text{ metre/s}^2$.

উঃ। জল কর্তৃক কৃতকার্য $W=mgh=m\times 9.8\times 50$ N-m $[m \ kg= (য-কোনো মুহূর্তে পড়ন্ত জলের$

য়ে শব্তি ভাপে পরিণত হল তা = $\frac{75}{100} \times W = \frac{75}{100} \times m \times 9.8 \times 50 \text{ N-m.}$ অথবা জুল। টংপল তাপ = $m \times s \times \theta = m \times 4200 \times \theta$ joule

্রিস, আই পশ্বতিতে জলের আঃ তাঃ = 4200 J/kg K.]

$$\therefore \frac{75}{100} \times m \times 9.8 \times 50 = m \times 4200 \times \theta \quad \therefore \theta = 0.0875 \text{ K} = 0.0875^{\circ}\text{C}.$$

3) 20°C উয়তার একটি সিসার বুলেট কত বেগে একটি লক্ষে আঘাত করলে বুলেটি ঠিক গলে যাবে ? আঘাতজনিত সমন্ত তাপ বুলেটে আবন্ধ থাকে ধরে নিতে পার। সিসার আপেক্ষিক তাপ = 0.126×10^3 J/kg K ; সিসার গলনাম্ক = 320° C এবং সিসা গলনের জীনতাপ = 22.5×10^3 J/kg.

উঃ। ধরো, বুলেটের ভর = m kg : উৎপন্ন তাপ = m × .0.126 × 10³ × (320 − 20) + m × 22.5 × $10^3 = 60.3 \times 10^3 \times m$ joule. [লক্ষ করো $(320 - 20)^{\circ}$ C = (320 - 20)K]

কৃতকার্য
$$W = বুলেটের গতিশক্তি = \frac{1}{2}mv^2$$
জুল ($v = বুলেটের m/s$ এককে গতিবেগ)

$$\therefore \frac{1}{2}mv^2 = 60.3 \times 10^3 \times m$$
 অথবা, $v = \sqrt{2 \times 60.3 \times 10^3}$ m/s = 347.3 m/s.

4 700 metre/s বেগে 27°C উন্ম একটি সিসার বুলেট একটি ইম্পাত প্লেটকে আঘাত করল। যে তাপ উৎপন্ন হল, তাতে বুলেট ঠিক গলে গেল। উৎপন্ন তাপ বুলেট এবং গ্লেটে বশ্টিত হলে, ইম্পাত প্লেট উৎপন্ন তাপের শতকরা কত ভাগ শোষণ করল নির্ণয় করো। সিসার আঃ তাপ = 0.03; সিসার গলনাষ্ক = 327°C এবং দীনতাপ = 5.4 cal/g.

[Jt. Entrance 1984]

উঃ। মোট উৎপন্ন হাপ
$$H = \frac{1}{2} \frac{m v^2}{J} \text{ cal} = \frac{1}{2} \times m \times \frac{(700 \times 100)^2}{4.2 \times 10^7} = \frac{700m}{12} \text{ cal. } [m =$$
্রাম

এককে বলেটের ভর

ব্ৰুটে কৰ্তৃক শোষিত গ্ৰাপ $H=m\times 0.03\times (327-27)+m\times 5.4=14.4$ m cal.

বুলেটে কর্তৃক শোহিতে ভাগের শভকর হাংশ =
$$\frac{H_1}{H} \times 100 = \frac{14.4 m \times 12}{700 m} \times 100$$
 200×100 300×100

কৃথিবীর আবহাওয়ার ভিতর দিয়ে যাবার ফলে, 42 kg ভরের এ৯টি ভো^{তি}দ্ধের গতিবেগ 20 km/min হতে হাস পেয়ে 5 km/min হল। এই গতিবেগ পরিবর্তনের দর্ল কত ভাপ উৎপন্ন হল তা ক্যালরিতে নির্দয় করো।

উঃ। জোভিয়ের প্রারম্ভিক গভিশক্তি, =
$$\frac{1}{2}mu^2 = \frac{1}{2} \times 42 \times \left[\frac{20 \times 10^3}{60} \right]$$
 joule জোভিয়ের পরবর্তী গভিশক্তি = $\frac{1}{2}mv^2 = \frac{1}{2} \times 42 \times \left[\frac{5 \times 10^3}{60} \right]^2$ joule

: গতিশন্তির পরিবর্তন =
$$\frac{1}{2} \times 42 \times \frac{10^3 \times 10^3}{60 \times 60}$$
 (400 – 25)= $\frac{42 \times 10^6}{2 \times 60 \times 60}$ joule.
= 218.75×10^4 joule

উৎপন তাপ $Q = 218.75 \times 10^4 \, \mathrm{J}$ ক্যালরিতে উৎপন তাপ $= \frac{218.75 \times 10^4}{4.2} = 52 \times 10^4 \, \mathrm{cal}.$

6 কত উচ্চতা হতে একখন্ড বরফ ফেললে ঐ বরফখন্ড সম্পূর্ণরূপে গলে যাবে। পতনের ফলে 20% শক্তি বরফে আক্ষ আছে ধরে নিতে পারো। বরফ গলনের লীনভাপ = 80 cal/g. [Jt. Entrance 2001]

উঃ। ধরো, বরফ টুকরোর ভর = m g ও নির্ণেয় উচ্চতা = h cm. এক্ষেত্রে পতনের ফলে বরফ টুকরোর দ্বারা কৃতকার্য = mgh erg.

এর 20% বরফে আবন্ধ বলে ঐ শক্তির পরিমাণ = $\frac{20}{100}$ $mgh = \frac{1}{5}$ mgh erg

আমরা জানি, W = J.H $\therefore \frac{1}{5} mgh = JH$ বা, $H = \frac{mgh}{5J}$

কিন্তু বরফ টুকরোর গলার জন্য প্রয়োজনীয় তাপ $= mL = 80 \ m$ cal.

∴
$$\frac{mgh}{5J} = 80 \, m$$
 ∴ $h = \frac{80 \times 5 \times J}{g} = \frac{80 \times 5 \times 4.2 \times 10^7}{980} \, \text{cm} = 171.4 \, \text{km}$ (213)

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. জলপ্রপাতের উপরের জল এবং নীচের জলের মধ্যে উম্বতার পার্থক্য হয় কেন ?
- জলপ্রপাতের উচ্চতা সাধারণত খুব বেশি। অত উচ্চে থাকায় বিরাট জলরাশির মোট স্থিতিশক্তি খুব
 উচ্চ হয়। যখন জলরাশি উপর হতে নীচে পড়ে তখন এই বিরাট স্থিতিশক্তির বেশ কিছু অংশ রূপাগুরিত
 হয় তাপশক্তিতে। এই তাপশক্তি জলে আবন্ধ থাকার ফলে, নীচের জলের তাপমাত্রা বৃদ্ধি পায়।
 উল্লেখযোগ্য যে তাপমাত্রার পার্থক্য লক্ষ করে প্রপাতের উচ্চতা নির্ধারণ করা যায়। 108 পৃষ্ঠার 2 নং
 উদাহরণ দেখো।

- গতিশক্তি বাড়লে তাপমাত্রা বাড়ে। কিছু লোহার টুকরোকে জোরে ছুড়ে দিলে তার গতিশক্তি বাড়ে কিছু তাপমাত্রা বাড়ে না। অথচ লোহার টুকরোকে এক জায়গায় স্থির রেখে হাতুড়ি দিয়ে আঘাত করলে, তার তাপমাত্রা বাড়ে। কেন এর্প হয় ?
- কোনো কঠিন পদার্থের অভান্তরীণ শক্তি ঐ পদার্থের অণুগুলির কম্পনভানিত গতিশক্তির উপর নির্ভর
 করে। এই কারণে একখন্ড লোহাকে বায়ুমধ্যে জোরে ছুড়ে দিলে তার সমগ্র গতিশক্তি বৃদ্ধি পাবে কিন্তু
 আভান্তরীণ শক্তির কোনো পরিবর্তন হবে না: ফলে, তার উন্ধাতার কোনো পরিবর্তন হবে না। কিন্তু ঐ
 টুকরোকে হাতুড়ি দিয়ে পেটালে অণুগুলির কম্পনজনিত গতিশক্তি বৃদ্ধি পায় এবং সজ্যে
 অভ্যন্তরীণ শক্তিও বৃদ্ধি পায়। তথন টুকরোটি উন্ধ হয়ে পড়ে।
- 3. সমোশ্ব প্রক্রিয়া কার্যত অত্যন্ত মন্থর একটি প্রক্রিয়া—ব্যাখ্যা করো।
- সমোশ্ব প্রক্রিয়ার ভিতর দিয়ে গেলে বস্তুর তাপমাত্রার কোনো পরিবর্তন হয় না।
 কোনো গ্যাসকে যদি সহসা চাপ দিয়ে সংনমিত করা হয়, তবে কিছু তাপের উৎপত্তি হবে এবং গ্যাসের
 উয়তা বৃদ্ধি পাবে। কিছু যদি খুব ধীরে ধীরে গ্যাসকে সংনমিত করা হয় এবং উৎপত্ন তাপকে সঙ্গো
 সঙ্গো অপসারণের ব্যবস্থা করা হয় তবে ঐ গ্যাসের তাপমাত্রা স্থির থাকবে। তখন ঐ পরিবর্তনকে
 সমোশ্ব পরিবর্তন বা প্রক্রিয়া বলা হয়।

একইভাবে, কোনো গ্যাসকে যদি সহসা প্রসারিত হতে দেওয়া হয়, তবে গ্যাস কিছু কার্য করবে এবং তাতে গ্যাস শীতল হবে। কিন্তু প্রসারণ যদি খুব ধীরে ধীরে হয় এবং যে হারে গ্যাস শীতল হচ্ছে ঠিক সেই হারে বাইরে থেকে তাপ সরবরাহ করা হয়, তবে ঐ গ্যাসের উষ্ণতা স্থির থাকরে। তখন ঐ প্রক্রিয়াকেও সমোশ্ধ প্রক্রিয়া বলা হবে।

অতএব সামোশ্ব প্রক্রিয়ায় প্রয়োজনমত তাপ নিষ্কাশন এবং তাপ সরবরাহ করে বস্তুর তাপমাত্রা শ্বির রাখা হয়। একথা স্পন্ট বোঝা যায় যে সমোশ্ব প্রক্রিয়া সফল করার জন্য—অর্থাৎ প্রয়োজনমত তাপের আদানপ্রদান ঘটাবার জন্য সংনমন বা প্রসারণ খুব ধীরে ধীরে করা বাশ্বনীয়—কারণ তাহলে উৎপন্ন তাপ নিষ্কাশন করার অথবা তাপ শোষণের জন্য প্রয়োজনীয় তাপ সরবরাহ করার সময় পাওয়া যাবে। তাই, খব মন্থর পরিবর্তনের যে-কোনো প্রক্রিয়াকে সমোশ্ব প্রক্রিয়া বলে গণ্য করা যায়।

- 4. রুশতাপ প্রক্রিয়ায় গ্যাসের প্রসারণ হলে, গ্যাস কোনো কার্য করে কি ? করলে, এই শক্তির উৎস কী ?
- বুন্ধতাপ প্রক্রিয়ায় প্রসারণ হলে গ্যাস কার্য করে। কার্য করার শক্তি গ্যাস নিজম্ব অভ্যন্তরীণ শক্তি হতে
 আহরণ করে। অভ্যন্তরীণ শক্তির হ্রাসের ফলে গ্যাস শীতল হয়ে পড়ে।
- 5. 1m³ আয়তনের একটি পাত্রকে পার্টিশান ঘারা সমান দু-ভাগে ভাগ করা হয়েছে। একভাগ 300 K উয়ৢতার আদর্শ গ্যাস ঘারা ভর্তি এবং অপর ভাগ সম্পূর্ণ শূন্য। সমন্ত ব্যবস্থাটিকে পরিপার্শ্বের সাথে তাপীয় সংযোগহীন অবস্থায় রাখা আছে। এইবার পার্টিশান সরিয়ে নিলে, গ্যাস প্রসারিত হয়ে সমগ্র আয়তন অধিকার করল। এতে গ্যাসের উয়ৢতার কী পরিবর্তন হবে?
 [Jt. Entrance 1993]
- সমগ্র প্রক্রিয়াটি ব্লেশতাপ প্রক্রিয়া কারণ পাত্রটির সাথে পরিপার্শ্বের কোনো তাপীয় য়োগায়োগ নেই।
 এখন তাপগতিবিদার প্রথম সূত্র হতে জানি য়ে dQ = dU + dW অথবা dQ = dU + p.dV.
 প্রক্রিয়াটি ব্লেশতাপ হওয়ায় dQ = 0 এবং গামে পাত্রের শূন্য অংশে প্রসারিত হওয়ায় চাপ p = 0:
 অতএব, dU = 0
 গামের উয়্মতা গামের অভান্তরীণ শক্তি পরিবর্তনের উপর নির্ভর করে। য়েতেই dU = 0 তাই গামের

গ্যাসের উন্মৃত্য গ্যাসের অভান্তরীণ শাক্ত পারবহনের উপর নির্ভর করে। য়েঙ্হের U'=0 তহি গ্যাসে উন্মৃত্যর কোনো পরিবর্তন হবে নাঃ উন্মৃত্য 300 K থাকনে।

6. নির্দিষ্ট পরিমাণ গ্যাসের আয়তন ধীরে ধীরে অর্ধেক করা হল। প্রক্রিয়াটি দুত সম্পন্ন হলে, কৃতকার্য বেশি না কম হত ? ব্যাখ্যা করো। [Jt. Entrance 1988] আয়তন ধীরে ধীরে অর্থেক করা হলে, প্রাক্তয়ণ্ট সয়োয় হবে, এবং তাপয়ায় প্রবর্গ পরের বাকরে। ফলে
গাসের অভ্যন্তরীণ শক্তির কোনো পরিবর্তন হবে না। এখানে শৃধ্ গাসের অফ্তরন পরিবর্তন করার
জন্য কার্য করতে হবে।

অপরপক্ষে, আয়তন দুও অর্থেক করা থলে, প্রক্রিয়াটি থবে বুন্ধতাপ প্রকিয়া ফলে গোনের তাপমাত্রা তথা অভান্তরীণ শক্তি বৃদ্ধি পারে। এর জনা কিছ্ কার্থের প্রয়োজন, আবার গোনের আয়তন অর্থেক করার জনাও কিছু কার্থের প্রয়োজন। সুতরাং দ্বিতীয় ক্ষেত্রে কৃতকার্থের পরিমাণ বেশি হবে।

- 7. সমোঝ ও বৃশ্বতাপ লেখ দৃটির মধ্যে কোন্টি বেশি খাড়া ?
- উপরোক্ত লেখ দৃটির মধ্যে রুম্বতাপ লেখ রেশি খাড়া।

1.4 নং চিত্রে AB সমোস্থা লেখ এবং CD বৃশ্বভেপ লেখ। সমোস্থা লেখন M বিন্দৃতে চাপ P এবং

আয়তন V হলে, PV= ধ্রুবক। ডিফারেন্সিয়েট করলে পাই, V.dP+p.dV=0; লেখচিত্রের M বিন্দৃতে নতি $=\frac{dP}{dV}=-\frac{P}{V}$ (নেগেটিভ চিহ্ন বুঝায় যে চাপ বৃদ্ধি করলে আয়তন হ্রাস পায়।) আবার, বুন্ধতাপ লেখচিত্রের M বিন্দৃতে $P.V^T=$ ধ্রুবক। ডিফারেন্সিয়েট করলে, $\gamma PV^{N-1} \ dV + V^Y dP=0$ অথবা, $\frac{dP}{dV}=-\gamma \frac{P}{V}$ অর্থাৎ বুন্ধতাপ লেখচিত্রের

M বিন্দুতে নতি $\frac{dP}{dV} = -\gamma \cdot \frac{P}{V}$

γ সর্বদা 1-এর বেশি; সুতরাং রুষ্ধতাপ নতি সমোয় নতি অপেক্ষা বেশি খাড়া।

৪. কিছু গ্যাসকে দুটি ভিন্ন পশ্বতিতে 1 নম্বর অবস্থা থেকে 2 নম্বর (উচ্চচাপ) অবস্থায় সম্প্রসারিত করা হল। পশ্বতি দুটি যথাক্রমে (ক) প্রথমে আয়তন থির রেখে পরিবর্তন ঘটানো হল ও পরে চাপ থির রেখে শেষ অবস্থায় আনা হল (খ) প্রথমে চাপ থির রেখে পরিবর্তন ঘটানো হল ও পরে আয়তন থির রেখে শেষ অবস্থায় আনা হল। তাহলে কোন্ পশ্বতিতে গ্যাসকে বেশি তাপের (heat) যোগান দিতে হবে ? যুক্তিসহ উত্তর দাও।

[Jt. Entrance 1989]

- া কি খরো, 1 নং অবস্থায় গ্যাসের চাপ, আয়তন ও তাপমাত্রা যথাক্রমে P_1 , V_1 এবং T_1 : 2 নং অবস্থায় P_2 , V_2 এবং T_2 । দেওয়া আছে $P_2 > P_1$. প্রথম পদ্ধতির প্রথমাংশে আয়তন স্থির থাকায় চাপ এবং তাপমাত্রার পরিবর্তন হবে। আয়তনের কোনো পরিবর্তন না হওয়ায় কোনো বাহ্য কাজ করা হবে না কিছু তাপমাত্রার পরিবর্তনে অভ্যন্তরীণ শক্তির পরিবর্তন হবে। সুতরাং প্রথম অংশের জন্য কোনো তাপ দরকার হবে না। দ্বিতীয় অংশে চাপ স্থির রেখে আয়তন পরিবর্তন করায় বাহ্য কাজ করা হবে এবং তারজন্য তাপ সরবরাহ করতে হবে। সুতরাং এক্ষেত্রে প্রয়োজনীয় তাপ $Q_1 = dU + P_2$ $(V_2 V_1)$ (i)
 - (খ) দ্বিতীয় পন্ধতির প্রথমাংশে আয়তন পরিবর্তন করায় (P_1 স্থির চাপে) কৃতকার্য = $P_1(V_2-V_1)$; দ্বিতীয়াংশে আয়তন স্থির থাকায় কোনো বাহা কাজ হবে না কিন্তু তাপমাত্রার পরিবর্তনে অভ্যন্তরীণ শক্তির পরিবর্তন হবে। এক্ষেত্রে প্রয়োজনীয় তাপ $Q_2=dU+P_1(V_2-V_1)$

যেহেতু $P_2 > P_1$ সেহেতু $Q_1 > Q_2$

সুতরাং, প্রথম পশ্বতিতে গ্যাসে বেশি তাপ জোগান দিতে হবে।

- 9. একই ধাতৃ দিয়ে তৈরি দৃটি গোলকের ভর 5g এবং 10g। এরা একই গতিবেগে একটি টার্গেটকে আঘাত করল। সমন্ত শক্তি যদি গোলক দৃটিকে উত্তপ্ত করতে ব্যয়িত হয় তবে কোন গোলকটির তাপমাত্রা বেশি হবে ?
- ছোটো গোলকটি যে তাপ উৎপন্ন করল তা $H=\frac{1}{2} imes rac{5 imes v^2}{I}$ cal [v= গোলকের গতিবেগ।] গোলকটির উন্ধতা বৃদ্ধি θ_1 হলে $\theta_1=\frac{H}{m_l S}=\frac{1}{2}\times\frac{5\times v^2}{J\times 5\times S}=\frac{v^2}{2J.S}$...(i)

[S = ধাতুর আপেক্ষিক তাপ।।

অনুরূপভাবে, বড়ো গোলকটির উশ্বতা বৃশ্বি θ_2 হলে, $\theta_2=\frac{H}{m_2S}=\frac{1}{2}\times\frac{10\times v^2}{J\times 10\times S}=\frac{v^2}{2JS}$...(ii) (i) এবং (ii) সম্পর্ক হতে দেখা যায় যে গোলকদ্বয়ের উন্ধাতা বৃষ্ধি সমান হবে।

- 10. সাধারণ উন্মতায় এক-পরমাণুকে গ্যাস এবং দ্বি-পরমাণুক গ্যাসের মধ্যে কোন্টির আপেঞ্চিক তাপ বেলি।
- ভিথর আয়তনে এক-পরমাণুক গ্যাসের মোলার আপেক্ষিক তাপ $\frac{3}{2}R_0$ এবং দ্বি-পরমাণুক গ্যাসের $\frac{5}{2}\,R_0$ । স্পন্থত সাধারণ উন্ধতায় দ্বি–পরমাণুক গ্যাসের আপেক্ষিক তাপ এক– পরমাণুক গ্যাস অপেক্ষা বেশি।

বচনাম্লক প্ৰশ্ন

- তাপ এক প্রকার শক্তি—এই সিম্বান্তে পৌছোবার সপক্ষে যুক্তির অবতারণা করো।
- 2. পরীক্ষার সাহায্যে তাপের যান্ত্রিক তুল্যাঙ্কের মান কীরূপে নির্ণয় করবে?
- 3. গ্যানের ক্ষেত্রে হিথরচাপে আপেক্ষিক তাপ (C_n) এবং হিথর আয়তনে আপেক্ষিক তাপ (C_n) পৃথক হয় কেন ? তাদের অন্তরফল নির্ণয় করো।
- 4. সমোশ্ব ও বুন্ধতাপ প্রক্রিয়া কাকে বলে? ঐ সকল প্রক্রিয়া সফল করবার জন্য কী কী শর্ত প্রয়োজন?

5. প্রত্যাবর্তক ও অপ্রত্যাবর্তক প্রক্রিয়া ব্যাখ্যা করো। তাপগতিবিদ্যার দ্বিতীয় সূত্র বিবৃত ও ব্যাখ্যা করো।

⇒ সংক্রিপ্ত উত্তরের প্রক্র

- 1. তাপের যান্ত্রিক তুলাাজ্ঞক কাকে বলে? এস. আই. এবং সি. জি. এস. এককে এর মান কত?
- 2. তাপগতিবিদ্যার প্রথম সূত্রটি বল ও ব্যাখ্যা করো।
- (i) কার্য তাপে রূপান্তরিত হয়—এর ব্যাখ্যাম্বরূপ দৃটি সাধারণ উদাহরণ উল্লেখ করো। তাপের যান্ত্রিক তুলা। ১৯০০ joule/cal বলতে কী বোঝ? (ii) 1g জলের 1°C তাপমাত্রা বৃদ্ধি করতে কত কার্য দরকার হবে?
- 4. তাপগতিবিদ্যার প্রথম সূত্র বিবৃত করো। গাাসের অভান্তরীণ শক্তি কাকে বলে? এটা কীসের উপর নির্ভর করে?
- 5. একটি লোহার বল এবং একটি রবার বল (একই ভর ও সাইন্জের) একই উচ্চতা হতে মাটিতে ফেললে, কোন্ বলটি বেশি উত্তপ্ত হবে? ।সংকেত : এক্ষেত্রে উচ্চতা এবং ভর সমান হওয়ায় কৃতকার্য সমান। কিন্তু লোহা ও রবারের আপেক্ষিক তাপ সমান

না হওয়ায়, তাদের এপমাত্রা সমান হবে না। যেতির আপেক্ষিক তাপ কম, সেটির তাপমাত্রা বেশি হবে কারণ তাপমাত্রা বিশ্ব $\theta = Hlms.$]

- 6. ছরি, কাঁচি শান দেবার সময় আগুনের ফুল্কি গুঠে। সেই তাপ কীরূপে সৃষ্টি হয়?
- 7. গ্যাসের নোলার আপেক্ষিক ভাপ কাকে বলে? গ্যাসের দৃটি আপেক্ষিক ভাপের অনুপান্ত কী কাজে লাগে?
- 8. সমোদ্ধ ও বৃশ্বতাপ প্রক্রিয়ার ভিতর পার্থক্য কী?

- বংগ্যের বৃদ্ধতাপ প্রসারলৈ পাবিপাঝিতের সাহে তাপের অভানতালন ঘটেনা বংলসাব্রন বাসের ইল্পার সে পায়। এর কারণ কী?
- 10. কোনো সংস্থার তাপমাত্রা বৃদ্ধি পেল কিন্তু সংস্থায় ,জানো হাল সরববাহ করা হল না 🖒 🕏 সঞ্চর 🤊 [সংকেতঃ সম্বর বৃশ্বতাপ প্রত্নিয়ায় সংখ্যার সায়ে পারপার্থের কোনে গপ আলনপ্রন লা না কিছু সংখ্যার তাপমাত্রার পরিবর্তন হর।।
- গাদ্যের বুল্বভাগ প্রসার্থের সময় গাসে ভি ্কানো কার্য করেও কর্লে এই কর্ণ করবার লাকু কাছা হলে আনেত
- পিস্টন ফিট করা একটি চোল্লে এক ঝোল আদর্শ গাসে আছে ট্র গণপের চাল P, আমতন) এবং তালামারা / তাপমাত্রা IK বৃশ্বি পোলে (চাপ অপরিবর্তিত থাকে) দেখাও বে 🗤 গাদেশের আয়তন বৃশ্বি 🔭 🕕 🕕 পাসে কইক কৃতকাৰ্য = $\frac{PV}{T}$ (iii) গাসে কর্তক শোৰিত তাপ = $\frac{PV}{M}$

ক্ষতি সংকিও উত্তরের প্রা

- 1. একটি তারা খসে পৃথিবীর আবহুমঙ্গে প্রবেশ করলে পুড়ে ছাই হরে যায়। এই তাপ উৎপর হয় কোখা থেকে ৮
- পির চাপে এবং পির আয়তনে গ্যাসের আপেনিক তাপের মধ্যে কোনটি বড় ? এদের পার্থকোর বালিমালা লেখ।
- এমন একটি প্রক্রিয়ার নাম করে। বেখানে তাপের কোনো আদানপ্রদান হল না কিন্তু সংস্থার তাপমাত্রার পরিবর্তন হল।
- সমোল সংকোচনের ক্ষেত্রে কোনো গ্যাসের অভাররীণ শাঁত
- 5. জলপ্রপাতের তলার জল উপরের জল অপেক্ষা উন্নতর। কেন ?
- 6. 1.5 নং চিত্রে প্রদর্শিত A এবং B লেখচিত্র দৃটি আদর্শ গ্যাসের সমোদ্ধ ও বৃশ্বতাপ P অবস্থায় P-V লেখচিত্র প্রকাশ করো। A লেখচিত্রটি সমোন্ত প্রক্রিয়া প্রকাশ করে। এটা কি ঠিক ?
- 朝: 7. রুখতাপ প্রসারণে গ্যাস _
- হাতের দুই তালু ঘষলে, তালু উত্তপ্ত হয়। তালুতে কি তাপ সরবরাহ করা হল ?
- 9. তরলকে জোরে আলোড়ন করলে, তরল উদ্ধ হয়। এটা কি প্রভাবিত্রক প্রক্রিয়া ?
- 10. নির্দিন্ট ভরের গ্যাসের দুই সমোশ্ব লেখচিত্র পরস্পরকে ছেদ করতে পারে কি ?

➡ वद्वयूपी वदापत श्री [Multiple choice type (MCQ)]

(A) নির্ভল উত্তরটি √ চিহ্নিত করোঃ

- [1] তাপগতিবিদ্যার প্রথম সূত্রের বস্তব্য থেকে জানা যার যে
 - (A) সংস্থায় কোনো তাপ প্রবেশ করে না, কোন ভাপ নির্গত হয় না।
 - (B) সংস্থার তাপমাত্রা স্থির থাকে।
 - (C) সংস্থার শত্তি সংরক্ষিত থাকে।
 - (D) সমন্ত কাৰ্যই যান্ত্ৰিক।
- [ii] নিম্নলিখিত রাশিগুলির মধ্যে কোন্টি রুশ্বতাপ প্রক্রিয়ায় স্থির থাকে ?
 - (A) চাপ (B) তাপমাত্রা (C) তাপ (D) আয়তন।
- [iii] একটি নির্দিন্ট ভরের গ্যাসের বেলায় চারটি P-V লেখচিত্র দেখানো হল (চিত্র 1.6)। যে দৃটি লেখচিত্র রুখতাপ ও সমোশ্ব প্রক্রিয়া প্রকাশ করে তারা হল যথাক্রমে
 - (A) R এবং S (B) S এবং R (C) P এবং Q (D) Q এবং P.
- [iv] বাইরের চাপের বিরুদ্ধে একটি আদর্শ গ্যাস রুশ্বতাপ প্রক্রিয়ায় সমপ্রসারিত হয়ে 51 কার্য করন। এতে গ্যানের

 - (A) তাপমাত্রা হ্রাস পাবে (B) অভান্তরীণ শক্তি হ্রাস পাবে
 - (C) চাপ বৃশ্বি পাবে
- (D) চাপ হ্রাস পাবে।
- [v] নির্মালিথত সংরক্ষণগুলির মধ্যে কোনটি তাপগতিবিদ্যার প্রথম সূত্র জ্ঞাপন করে ?
 - (A) তাপের সংরক্ষণ
- (B) कार्त्त সংत्रकन (D) শক্তির সংরক্ষণ।
- (C) ভরবেগের সংরক্ষণ [vi] সমোদ্ধ প্রক্রিয়ায় আদর্শ গ্যাসে তাপ সরবরাহ করলে,
 - (A) গ্যানের অভ্যন্তরীণ শক্তি বৃদ্ধি পায়
 - (C) গ্যাস ঋণাত্মক কার্য সম্পন্ন করে
- (B) গ্যাস ধনাত্মক কার্য সম্পন্ন করে
- (D) ঐ প্রক্রিয়া সম্ভব নয়।

-	the state of the s
[vii]	নিম্নলিখিত উর্ভি দৃটি বিবেচনা করো (৷) কোনো সংস্থায় তাপ সরবরাহ করলে তার তাপমাত্রা অবশাই বৃদ্ধি পারে
	(n) কোনো তাপগতীয় প্রক্রিয়ায় কোনো সংস্থা ধনাত্মক কার্য করলে, তার আয়তন অবশ্যই বৃদ্ধি পাবে
	(A) দুটি উত্তিই নিৰ্ভুল (B) (I) উত্তি নিৰ্ভুল কিন্তু (II) উত্তি ভূল
	(C) (i) डेंडि जून किंडु (II) डेंडि निर्ज्ल (D) पूर्ण डेंडिरे जून।
[viii]	
	(A) প্রক্রিয়াটি রুম্বতাপ প্রক্রিয়া (B) প্রক্রিয়াটি সমোন্ন প্রক্রিয়া
	(C) প্রক্রিয়াটি সমচাপ (Isoberic) প্রক্রিয়া (D) তাপমাত্রা অবশ্যই হ্রাস পায়।
[ix]	$PV''=$ ধুবক এই সমীকরণে $\gamma=1$ হলে প্রক্রিয়াটি
	(A) সমোয় (B) রুখতাপ (C) সমচাপ (D) অপ্রভাবির্তক।
[x]	বায়ুমঙলীয় চাপে জলকে উত্তপ্ত করণ প্রক্রিয়াটি
	(A) সমোৰ প্ৰক্ৰিয়া (B) সমচাপ (isobaric) প্ৰক্ৰিয়া
	(A) সমাস প্রাক্তরা (B) সমাস্ত্রতা (Isobanc) প্রক্রিয়া (C) সম্প্রায়তন (Isochoric) প্রক্রিয়া
[xi]	l mole আদর্শ গ্যাসের উশ্বাতা 10J. বৃদ্ধি করতে 207J তাপ লাগে ঐ গ্যাসকে পথির আয়তনে একই উশ্বাতা বৃদ্ধি
	করতে তাপ লাগবে,
	(A) 198.7J (B) 215.3J (C) 124J (D) 24J; (D) 24J;
[xii]	। একটি পরীক্ষাকার্যে C, এবং C _P নিম্নলিখিত মানগুলি পাওয়া গেল। এদের একক cal g ⁻¹ mol ⁻¹ K ⁻¹ ।কোন্ মান
	দুটি সর্বাপেকা নির্ভরযোগ্য ? চালে গালের রাজ ক্রেন্সালের ক্রেন
	(A) $C_V = 3$, $C_P = 5$ (B) $C_V = 4$, $C_P = 6$ (C) $C_V = 3$, $C_P = 2$ (D) $C_V = 3$ $C_P = 4.2$.
[xiii	i]একটি আদর্শ গ্যাসের রু খবতাপ সংকোচনের ক্ষেত্রে যখন তার তাপমাত্রা প্রাথমিক তাপমাত্রার দ্বিগুণ হয় তখন তার
	চূড়াত আয়তন ও প্রাথমিক আয়ন্তনের অনুপাত 🦈 🔑 📝
	(A) $\frac{1}{2}$ (B) $<\frac{1}{2}$ (C) $>\frac{1}{2}$ (D) 1 and $\frac{1}{2}$ and with
[xiv] নির্দিন্ট পরিমাণ আদর্শ গ্যানের অভ্যন্তরীণ শক্তি নির্ভর করে গ্যানের
	(A) চাপের ওপর (B) আয়তনের ওপর (C) তাপমাত্রার ওপর (D) ঘনত্বের ওপর
[xv]	গ্যাসের দুটি আপেক্ষিক তাপ C_p এবং C_V -র ক্ষেত্রে নিম্নের কোনো সম্পর্কটি সঠিক ?
	(A) $C_P - C_V = \frac{R}{J}$ (B) $\frac{C_p}{C_1} = R$ (C) $C_P - C_V = R.J.$ (D) $C_P + C_1 = R.J.$
	(A) $Cp - Cy = \frac{1}{J}$ (B) $\frac{1}{C_1} = R$ (C) $Cp - Cy = R.J.$ (D) $Cp + C_1 = R.J.$
[xvi] রুম্বতাপ প্রসারণে 10 মোল পরিমাণ একটি গ্যাসের আন্তর্শান্তর পরিবর্তন হল 100 joule। গ্যাসটি কি পরিমাণ কার্য
	AVA 0
	(A) 100 joule (B) +100 joule (C) 1000 joule (D) 1000 joule
B) 💆	কি নির্ভুল বিচার করো (True or false type) :
[i]	ঘর্ষণের ফলে বস্তুর অণু পরমাণ্র গতি বৃদ্ধি পায় এবং এই বর্ধিত গতিশক্তিই তাপশক্তিরপে আহাপ্রকাশ করে।
[ii]	সাধারণভাবে যখনই কোনো বন্ধতে তাপ সরবরাহ করা হয়, তখন তার সবটাই বন্ধুর অভান্ধরীণ শক্তি বৃদ্ধি করে।
[iii]	কুসিয়াস তাপগতিবিদ্যাব প্রথম সূত্রকে যেভাবে ব্যাখ্যা করেছেন তা অতি পরিচিত শক্তি সংরক্ষণ সূত্রের নামান্তর।
[iv]	তাপগতিবিদার প্রথম সূত্র থেকে জানা যায় যে কোনো কিছু বায় না করে কার্য বা শক্তি পাওয়া সন্তব হতে পারে।
	মোটর টায়ার ফেটে বায়ু নির্গত হবার প্রণালীতে সমোদ্ধ প্রণালী বলা যেতে পারে।
[vi]	আদর্শ গানের ক্রেক্তে হিথর আয়তনে আপেক্লিক তাপ সর্বদা হিথর চাপে আপেক্লিক তাপ আপেক্লা কম।
C) 'শূন	गर्भान श्रृंतर्भ करता (Fill up the gaps) :
[1]	া মোল একপরমাণুর গাসেকে। মোল দ্বিপরমাণুর আদর্শ গাসের সাতে মিশ্রিত করা হল। স্থির আয়তনে মিশ্রণের
	स्मानात चार िक्क जान स्टब ।
(iii)	প্রক্রিয়ায় আদর্শ গ্যাসের অভাশ্বরীণ শক্তি অপনিবর্তিত থাকে।
[iii]	একই বিন্দু দিয়ে অভিক্রান্ত বৃষ্ণতাপ বক্রবেখা সমোদ্ধ বক্রবেখা অপেক্ষা অধিকত্ব
[iv]	কালির = জুল। ৪০% তাপ জরো আবন্ধ থাকলে ২০০ metre উঠু জলপ্রপাতের শীর্ষ ও পাদক্ষ্পর তালচার, পার্থানা হার
[v]	80% তাপ জলে আৰম্ভ থাকলে 400 metre উঠু জলপ্রপাতের শীর্ষ ও পাদস্থান ভাকতের কার্যানা করে
	A
	একটি অমস্থ অনুভূমিক তলেব উপৰ বসালো বয়ুকে বলপ্রায়াণে এক স্থান হাকে খন স্থানে নিয় যাওয়ার
	প্रक्रियाणि थक्या।
[vii]	সম্মান্ত সংক্ষাংলৰ কেন্দ্ৰ কেন্দ্ৰ গ্ৰাহাৰৰ আভাৱৰীৰ কৰিছ

সহজ পাণিতিক প্রশ্ন

- 2. ভান্তরক পদার্থের তৈরি চোঙাকৃতি একটি নলের দৈর্ঘা 15 cm : এর দুই মুখ বন্ধ এবং এর ভিতরে 500 g সিমা পুলি আছে। নলের খাড়া অবস্থায় সিমা-পুলি নলের 6 cm দৈর্ঘা অধিকার করে নলিটকে হসতে উল্টালে সিমা পুলি এক প্রান্ত হতে অপর প্রান্তে পড়ল। নলটিকে এভাবে দুত 2000 বার উল্টালো হল খার্মেমিটাবের সাহায়ে দেখা পেল য়ে সিমা-পুলির তাপমাত্রা 14°C বৃশ্বি পেরেছে। বিকিরণ প্রভৃতি পশ্বভিত্তে কোনো ভাপক্ষয় না হলে, তাপের যাত্ত্রিক তুলাঙক নির্ণয় করো। সিমার আঃ তাঃ = 0.03, g = 980 cms⁻² [Ans. 4.2 × 10⁷ ergest 1]
- 3. 0° C উশ্বতার 50 g বরফকে 100° C উশ্বতার জলে পরিণত করতে যে তাপের প্রয়োজন, তা উৎপন্ন করতে কত কার্য করতে হবে? বরফ গলনের গীনতাপ $L_i=80$ cal/g [Ans. 37.8×10^{10} cal]
- 4. 1 kg ভারের একটি বস্তু l km উঁচু হতে মাটিতে পড়ল। সমন্ত শক্তিই তাপে রূপান্তরিত হলে কত তাপ উৎপন্ন হবে? $J=4.1 \times 10^7 \ erg/cal.$ [Ans. 233 \times $10^3 \ cal$]
- 5. প্রত্যেকটি 1.3 kg ভরের দৃটি বন্ধকে 160 cm উচ্চতা হতে 200 বার ফেলা হল। এতে যে কাজ সম্পন্ন হল তা 6 kg জলের তাপমাত্রা 0.3°C বৃশ্বি করল। এ জল রাখা ছিল 300 g জলসমযুত্ত একটি কালোরিমিটারে। তাপের যান্ত্রিক তুল্যাঞ্চন নির্ণয় করো।
 (Ans. 4.3 × 10⁷ erg/cal)
- 6. স্থির অবস্থা হতে একটি ধাতব টুকরো 90 m নীচে মাটিতে পড়ায় তার তাপমাত্রা । 4°C বাড়ল। যদি ধরা হয় যে, উৎপন্ন তাপের $\frac{2}{3}$ অংশ ধাতৃটির তাপমাত্রা বৃশ্বিতে কার্যকর হর, তাহলে, তাপের যাদ্রিক তুলাাভেকর মান কত পূ ধাতৃটির আপেন্দিক তাপ = 0.1 এবং $g = 980 \,\mathrm{cms}^{-2}$. [Ans. $4.2 \times 10^7 \,\mathrm{erg\,cal}^{-1}$]
- 7. 200 m উচু হতে একখন্ড সিসা ভূমিতে পড়ল। সমন্ত শব্ভিই তাপে রূপান্তরিত হল এবং ঐ তাপ সম্পূর্ণরাপ সিসাখন্ডে আবন্ধ থাকলে তার তাপমাত্রা বৃশ্বি কত হবে? সিসার আপেক্ষিক তাপ = 0.03 . J = 4.2 × 10⁷ erg/cal [Ans. 15.5°C]
- 8. I2.6 kg ভরের একটি ধাতব স্লেট 230 cm উচু হতে 0° C উন্মতায় একখন্ড বর্ফের উপর পড়ল। সমন্ত শবিষ্ট তাপে পরিণত হলে, কত বরফ গলবে? $J=4.2\times 10^7 {\rm\ ergcal}^{-1}$ এবং বরফ গলনের লীনতাপ $I_g=80 {\rm\ cal/g}$. [Ans. $0.85 {\rm\ g}$ (প্রায়]]
- 50 m/s বেগে ধাবিত একটি লোহার বলকে হঠাৎ গতিহীন করা হল। সমন্ত শব্তি তাপে নৃপান্তরিত হলে বলটির চূড়ান্ত তাপমাত্রা কত হবে? বলটির প্রারম্ভিক তাপমাত্রা ছিল 25°C. (লোহার আপেক্ষিক তাপ 0.1) [Ans. 27.9°C]
- সিসার তৈরি বুলেট লক্ষে আঘাত করবার ফলে যে-তাপের সৃষ্টি করল, তাতে বুলেটের তাপমাত্রা 200°C বৃদ্ধি
 পেল। বুলেটের গতিবেগ নির্ণয় করো। সিসার আপেক্ষিক তাপ = 0.03. [Ans. 224.4 metre/s (প্রায়)]
- 11. একটি সিসা বুলেট $0.4 \, \mathrm{km/s}$ বেগে ছুটে একটি কংক্রীট দেওয়ালে আঘাত করল। বুলেটের গতিশন্তির $\frac{1}{4}$ অংশ তাপে পরিগত হলে, বুলেটের তাপমাত্রা কত বৃদ্ধি পাবে? সিসার আঃ তাপ =0.03 [Ans. $158.73^{\circ}\mathrm{C}$]
- 12. কার্গিল যুম্খে জনৈক ভারতীয় সৈনিক লক্ষ করলেন যে 47° তাপমাত্রার একটি সিসার বুলেট ছুটে গিয়ে একটি প্রতিবেশকে ধাঞ্চা খেল এবং ধাঞ্চার ফলে যে তাপ সৃষ্টি হল তা বুলেটকে গলাবার পক্ষে ঠিক সমান ছিল। বুলেট কত গতিবেগে প্রতিবেশকে ধাঞ্চা দিল? সিসার গলনাজ্ক = 327° C; সিসার আঃ তাঃ = 0.03; গলনের লীনতাপ = 6 calg^{-1} এবং $J = 4.2 \times 10^7 \text{ ergcal}^{-1}$.
- 13. একখণ্ড সিসার উন্নতা 27° C; কত নিম্নতম গতিবেগে খণ্ডটি একটি দেওয়ালে আঘাত করবে যাতে আঘাতজনিত তাপে খণ্ডটি গলে যায়? উৎপন্ন তাপের 58% নন্ট হয়েছে ধরে নাও। সিসার গলনাঞ্চ = 327° C; আঃ তাঃ = 0.03; গলনের লীনতাপ $L_r = 5$ calg 1 এবং J = 4.2 joulecal 1 . [Ans. 5.3×10^4 cms 1]
- 14.0°C উল্পতায় এক খণ্ড বরফ উপর হতে মাটিতে ফেলা হল। কেবলমাত্র মাটির সাথে সংঘাতে বরফখণ্ডটি গলে গেল। এর শক্তির 60% তাপশক্তিতে রূপান্তরিত হলে তাকে কোন্ উচ্চতা হতে ফেলা হয়েছিল? বরফ গলনের নিনতাপ = 80 cal/g.
- 15. 1 kg জলকে 10°C উত্তপ্ত করতে যে-তাপ প্রয়োজন হয় তার সমতুল্য কার্য আর্গে নির্ণয় করে। [Ans. 4.2 × 10¹¹ erg]
- 16. সূর্য হতে পৃথিবী 8.4 joule/cm²/min হারে শক্তি সংগ্রহ করে। 100 g জলের তাপমাত্রা 25°C হতে বৃশ্বি পেয়ে ক্লুটনাজের পৌছাতে কত সময় লাগবে নির্ণয় করে। ঐ জল 150 g ভরের একটি কৃষ্ববর্গ তামার পাত্রে রেখে পাত্রকে 1000 cm² উয়োবযুক্ত এবং সূর্যের দিকে মুখ করে বসানো একটি অবতল দর্পদের ফোকাস বিন্দুতে রাখা আছে। (J = 4.2 joule/cal এবং তামার আপেন্দিক তাপ = 0.1)

- 17. একটি লোহার বল প্রিবার্করণ হাতে ২০ m উচ্চতা অবরোহণ করাতে যে গতিশত্তি লাভ করল তা বলটির তাপমাঞ্জা
 0.7° (বৃশ্বি করবার পক্ষে যথেন্ট হল। এ থেকে তাপের যান্ত্রিক তুল্যাঞ্চের কী মান পাওয়া যায়? লোহার আঃ তাপ

 0.1]
- 18. (a) 400 m উচ্ জনপ্রপাতের শীর্ষদেশ ও পাদদেশের তাপমন্তার পার্থকা কত হবে যদি উৎপন্ন তাপের ৪০৫ জালে আবন্ধ থাকে?

[সংকেত ঃ $m \times 980 \times 400 \times 10^2 \times \frac{80}{100} = 4.2 \times 10^7 \times m \times \theta$]

- 19. কোনো জলপ্রপাতের উপরের জলের উদ্ধৃতা নীচের জলের উদ্ধৃতা অপেক্ষা 0.49° C কম জলপ্রপাতের শীর্ষদেশ হতে পাদদেশে আসতে জল যে কার্য করে তার সবটাই যদি ভাপশন্তিতে রূপান্তরিত হয়, তাহলে জলপ্রপাতের উচ্চতা নির্ণয় করো। $g=980 {\rm cm/s}^2$; $J=4.2\times 10^7$ erg/cal [Ans. 210 metre]
- 28. একটি চলপ্রপাতের উচ্চতা 200 m। চলপ্রপাতের উপরিস্থিত জলের স্থিতিশন্তিব শতকরা 90 ভাগ তাপে রূপান্তরিত হয়ে জলে আবন্ধ থাকলে জলপ্রপাতের শীর্ষ ও পাদদেশের জলের উশ্পতার পার্থক্য করো। J=4.2 joule/cal; g=980 cm/s 2 [Jt. Entrance 1987] [Ans. 0.42° C]
- 21. 5°C তাপমাঞ্জার 5_g বরক্ষকে 100° C তাপমাঞ্জার স্থিমে পরিণত করতে যে তাপ প্রয়োজন হার সমতুল্য কার্য নির্ণয় করো। বরফের আঃ তাপ = 0.5; গলনের লীনতাপ $L_f = 80$ cal/g; স্থিমের লীনতাপ $L_s = 537$ cal/g; $J = 4.2 \times 10^7$ erg/cal. [Ans. 1.5×10^4 joule. (প্রায়)]
- 22. lg জলকে 100°C উশ্ব এবং 76 cm পারদ চাপের স্টিমে পরিণত করলে তা 1672 cm² আয়তন অধিকার করে। তরল হতে বাস্পে রূপান্তরিত হবার সময় প্রতি জল-অণু কতটা স্থিতিশক্তি লাভ করবে হিসাব করো। জলের বাম্পীভবনের লীনতাপ = 540 cal/g. [Ans. 6.2 × 10⁻¹³ erg]
- 23. $C_p = 6.85$ cal/g mol . $C_V = 4.87$ cal/g-mol এবং $R_0 = 8.31 \times 10^7$ erg/mol K হলে, J-র মান নির্ণয় করো। {Ans. 4.18×10^7 erg/cal}
- 24. যে আদর্শ গাসের $\gamma=1.41$, তার মোলার আপেক্ষিক তাপ C_p এবং C_r কত? $R=1.99~{\rm cal/mol}~{\rm ^{\circ}C}$ [Ans. 6.84 cal; 4.85 cal]
- 25. 2g অক্সিজেনের তাপমাত্রা 30° C হতে 120° C-এ বৃশ্বি করা হল। স্থির আয়তনে গ্যাসের সম্প্রসারণ হলে গ্যাসের অভ্যন্তরীণ শত্তিবৃশ্বি হিসাব করো। অক্সিজেনের $c_{v}=0.155$ cal./g. [Ans. 27.9 cal]

⇒ শুঠিন গাণিতিক প্রশ

- একটি সিসার বুলেট 300 metre/s গতিবেগে একটি ইম্পাত প্লেটে আঘাত করল: সংঘর্ষের পর বুলেট সম্পূর্ণ স্তব্ধ
 হলে এবং উৎপন্ন তাপ সমানভাবে বুলেট এবং প্লেটে বন্ধিত হলে বুলেটের তাপমাত্রা বৃদ্ধি নির্ণয় করো। সিসার আঃ
 তাপ = 0.03; J = 4.2 × 10⁷ erg/cal.
- 2. প্রতি মিনিটে 180 বার আবর্তন করতে পারে এরুপ একটি ডিলের সাহায়্যে একখণ্ড ইম্পাতে ছিদ্র করতে হবে। ডিল এবং ইম্পাতখণ্ডের মোট তর 180 g , সমস্ত কার্য যদি তাপে রূপান্তরিত হয় এবং ইম্পাতখণ্ডের তাপমাত্রা বৃদ্ধির হার 0.5°C/s হয় ওবে (1) ওয়াট এককে ডিলের কার্যের হার এবং (n) ডিল চালাতে প্রয়োজনীয় দ্বন্ধ নির্ণয় করে। ইম্পাতের আঃ তাঃ = 0.1 cal/g.

 [Ans. (1) 37.8 watt (n) 2 newton-metre]
 [সংকেতঃ (1) প্রতি সেকেন্ডে উৎপন্ন তাপ = 180 × 0.1 × 0.5 = 9 cal. কার্যের হার = J.H. = 4.2 × 9 = 37.8

watt (ii) $2\pi n \tau = 9 \times 4.2$ অথবা, $2\pi \times \frac{180}{60} \times \tau = 9 \times 4.2$]

- 3. 0.1 kg এবং 0.4 kg ভরের দৃটি সিসার গোলক যথাক্রমে 1 metre/s এবং 0.1 metre/s গতিবেগে পরস্পরের দিকে অগ্রসর হচ্ছে। কিছুক্ষণ পরে তাদের সরাসরি সংঘর্ষ হল এবং পরস্পরেরর সাথে যুক্ত হল। যুক্ত ভর 1.2 cm/s গতিবেগে চলতে লাগল। সংঘর্ষের পূর্বে উভয় গোলকের উন্ধতা সমান থাকলে যুক্তভরের উন্ধতার্গিধ নির্ণয় করো। $J = 4.2 \times 10^7 \text{ erg/ cal.}$, সিসার আপেন্ধিক তাপ = 0.03.
- 4. পরস্পরের দিকে ধার্বিত দুউ গতিশীল দুটি সমান বরফের টুকরো সমান গতিবেগে পরস্পরকে আঘাত করল ও সংঘর্ষের ফলে বাম্পে রুপান্তরিত হয়ে গেল। যদি বরফের তাপমাত্রা 12°('ও আপেক্ষিক তাপ 0.5 হয় তবে ন্যুনতম কত গতিবেগে বরফ দুটি যাক্ষিক? বরফের লীনতাপ L_f = 80 cal/g এবং বাম্পের লীনতাপ L_c · ১40 cm ·
- 5. 10 kg ভবের এক বিরটি ববফখন্ডকে অন্ভ্যিক ভল্যুর ববফ মেঝের উপর দিয়ে 100 metre দরত্ব টেলে বেওয়া হল। সময় বরফেব ভাপমারা ৩°ে, কত পবিমাণ বরফ গলবে ছিসাব করো। বরফ ভলদরের ভিতর ঘর্ষণ গুলাকক = 0.03 এবং L_f = 80 cal/g.

- 6. 50 kg ভারের একটি বিবাট ব্যক্তমণ্ড (উত্তল ১০০০) অনুকৃষ্ণিক কল ব্যাপন গাঁচনিক গাঁচনিক। 5 kk metrols নিয়ে চলে 23 8 metro চলবার পর নিয়ে বলা বলক ও ভারতের ভিতরভার ঘর্ষণের ভনা যে পরিমাণ বরক গলবে ভা নিবয় করে। বরক গলনের জীনভাপ ৯ ৪৮ ১৯৮৪ (Ans. 2.15 kg)
- 7. 50 g ভরের একটি সিসা বুলেটের প্রথমিক ভালমাত্রা ২০ (. একে ৪২০ m/s ব্রভিটেবলে থাড়া উর্জে ছোড়া হল। বুলেট উৎক্ষেপ বিল্পতে পৌশিত্রে ০° উদ্ধানর একখন্ত ববকের উপর পড়ল। সমস্ত পরি বরফ গলাতে বায় হল মনে করে মিলে, কন্ত বরফ গলাবে গসিসাব আঃ ভাঃ = 0.02 . বরফ গলাবের লাঁনতাল 1. = ৪০ cal/g

[Ams. 52.87 g]

- 8. 2 kg ভারের একটি বস্তুকে একটি অনুভূমিক অমস্থ গুলের উলর দিয়ে 3metrels গতিবালে টোনে নেওয়া হচ্ছে। বসু এবং তলের ভিতর ঘর্ষণ গুণান্ধক 0.2 হলে, ১১ সময়ে কত তাল উৎপন্ন হারে নির্দাবল করো। J = 4.2 joule/cal. g = 9.8 m/s² [Ans. 9.33 cal.]
- 9. 1 kg ভরের হাত্তি 50 metre/১ গতিবেগে 200 g ভরের একটি কোচার প্রাঞ্জাকে আঘাত করল। হাতুদ্ধির লান্তিব অর্থেক গৌজাকে উত্তপ্ত করতে বায়িত হলে, গৌজার উদ্ধান্তা কৃষ্ণি কত হবেও লোহাব আঃ গাঃ = 0 105

[Ans. 7.1°C(201)]

- 10. দৃই মুখ বন্ধ একটি কাচ নলের দৈর্ঘা I metre . তাতে 25 g সিসা-গুলি নিয়ে বাকি অংশ I litre জল ছারা ভর্তি করা হল। নলকে থাড়াভাবে ধরে ২৯াৎ উল্টানো হল এতে সিসা-গুলি নলের পুরো দৈর্ঘা বরাবর নীচে পড়ল। 1°C উল্লাভাবৃদ্ধি করতে নলকে ঐরূপ ক'বার উল্টাতে হবে? কাচ কর্তৃক শোষিত তাল অহাহা করতে পারো। সিসার আঃ তাল = 0.02; J = 4.2 joule/cal.
 [Jt. Entrance 1981] [Ans. 17152.9(প্রায়)]
- 11. কিছু পরিমাণ জলকে ঘরের তাপমাদ্রা হতে উদ্ধ করে 80° C করবার জনা 6000 watt বৈদাতিক হিটার ব্যবহার করা হল। আবার ঐ একই পরিমাণ জলকে একই সময়ে একই তাপমাদ্রা বৃদ্ধির জনা নালর মধ্যে দিম পাঠানে হল। এতে বয়লারে প্রতি মিনিটে 16 g জল বাম্পীভূত হল। তাপের যান্ত্রিক তুলাাজেকর মান নির্ধারণ করে। জলের বাম্পীভবনের লীনতাপ $L_{\rm c}=515.7$ cal/g. [Ans. 4.2×10^7 erg/cal]
- 12. 10⁶ dyne/cm² চাপ প্রদান করে কোনো গ্যাসের আয়তন 20 litre হতে 10 litre করা হল। এতে কত ভাপ সৃষ্টি হল ?

 [Jt. Entrance 1982] [Ans. 0.24 × 10³ cal]
- 13. কোনো গ্যাসের দুই আপেক্ষিক তাপের অনুগাত 1:4 এবং প্রমাণ চাপ ও তাপমাদ্রায় ঘনত $0.09~\rm g/cm^3$; গ্যাসের পির আয়তনে এবং পির চাপে আপেক্ষিক তাপ কত $9~\rm cm^3$ প্রমাণ চাপ $=1.01\times 10^9~\rm dyne/cm^2$.

[Ans. $C_p = 3.43$ cal/g K; $C_v = 2.4$ cal/gK]

- 14. 0°C তাপমাত্রায় 1 মোল অক্সিজেন গ্যাসকে স্থির চাপে উত্তপ্ত করে আয়তন দ্বিগৃণ করা হল। এতে কত তাপের প্রয়োজন হবে? স্থির চাপে অক্সিজেনের মোলার আঃ তাঃ = 7.03 cal/mol K. [Ans. 1919.2 cal]
- 15. প্রমাণ চাপ ও তাপমাত্রায় কোলো গ্যাসের আয়তন $22.4 \, \mathrm{htre/mole}$ এবং প্রমাণ চাপ $1.01 \times 10^6 \, \mathrm{dyne/cm^2}$ হলে, মোলার গ্যাস ধ্রুবক R_0 —এর মান নির্ণয় করে। এবং ঐ মানের সাহায়ে $10_{\,\mathrm{E}}$ অক্সিজেনের (a) স্থির চাপে এবং (b) স্থির আয়তনে তাপমাত্রা $0^{\,\mathrm{e}}\mathrm{C}$ হতে $10^{\,\mathrm{e}}\mathrm{C}$ করতে যে তাপ লাগবে তার পার্থক্য নির্ণয় করে। অক্সিজেনের আপেক্ষিক আগবিক তর = 32. [Ans. $R_0 = 8.3 \, \mathrm{joule/mol} \, \mathrm{K}$; $6.32 \, \mathrm{cal} \, (\mathrm{Mix})$]
- 16. একটি তাপ-অন্তরক আবন্ধ পাত্রে এক গ্রাম-অণু অক্সিজেন গ্যাস রাখা আছে। পাত্রটিকে υ_0 দিধর বেগে চালনা করে হঠাং গতিহীন করা হল। এতে গ্যাসের উন্ধতা ।°C বৃদ্ধি পেল। υ_0 এর মান নির্ণয় করো। বায়ুর বেলায় $\gamma=1.41$ এবং মোলার গ্যাস-ধুবক $R_0=8.31$ joule/mol K. [Ans. 35.6 m/s]

্সংকেত : M ভরসম্পন্ন অণুর গতিশত্তি = $\frac{1}{2} M.v_0^2$; 1° C উদ্ধতাবৃন্ধির জন্য গৃহীত তাপশত্তি = $C_v \times 1 = C_v$;

কিন্তু C_p – C_v = R_0 অথবা, C_v = $\frac{R_0}{\gamma-1}$; এখন, গতিশান্তি = গৃহীত ভাপশন্তি

$$\therefore \frac{1}{2} M \cdot v_0^2 = C_v = \frac{R_0}{\gamma - 1}$$
 অথবা, $v_0 = \sqrt{\frac{2R_0}{M(\gamma - 1)}} = \sqrt{\frac{2 \times 8.31}{32(1.41 - 1) \times 10^{-3}}} = 35.6 \text{ m/s}$; $M = 32 \text{ g} = 32 \times 10^{-3} \text{ kg}$]

(i) C	(iv) A,B	(vii) C	(x) B	(xiii) B	(avi) A
(ii) C	(v) D	(viii) A.D	(xi) C	(xiv) C	
iii) C	(vi) B	(ix) A	(xii) A	(xv) A	
		লৈ, [iv] নির্ভুল, [v] জ ল, [iv] 4 2, [v] 0.747		(- -	

7. 5 . 10

4

গ্যাসের গতীয় তত্ত্ব

[KINETIC THEORY OF GASES]

2.1. পদার্থের আণবিক গঠন (Molecular structure of matter):

পদার্থের অণু অন্য অণুকে আকর্ষণ করে নিকটে রাখে আবার বিকর্ষণ করে নির্দিন্ট দূরত্বে থাকতে বাধ্য করে। এই পারম্পরিক আকর্ষণ ও বিকর্ষণকৈ আন্তরাণবিক বল (intermolecular force) বলা হয়। কঠিন পদার্থের বেলায় এই আন্তরাণবিক বল প্রচন্ড। তাই কঠিন পদার্থের অণুগুলি পরস্পরের সঙ্গো ঘন সন্নিবিন্ট অবস্থায় থাকে এবং কঠিন পদার্থ নির্দিন্ট আকার ও আয়তন পায়। তরলের ক্ষেত্রে এ বল অপেক্ষাকৃত কম। তাই, তরলের অণুগুলি অত ঘন সন্নিবিন্ট হয় না এবং তরল এক ম্থান হতে অন্য ম্থানে প্রবাহিত কম। তাই, তরলের অণুগুলি অত ঘন সন্নিবিন্ট হয় না এবং তরল এক ম্থান হতে অন্য ম্থানে প্রবাহিত কম। তাই, তরলের অণুগুলি অত ঘন সন্নিবিন্ট হয় না এবং তরল একটি আয়তন অধিকার করে বটে কিন্তু কোনো বিশেষ আকার পায় না—পাত্রের আকার ধারণ করে। গ্যাসের ক্ষেত্রে আন্তরাণবিক বল বটে কিন্তু কোনো বিশেষ আকার পায় না—পাত্রের আকার ধারণ করে। গ্যাসের ক্ষেত্রে আন্তরানিক বল বা গ্যাসের অণুগুলি মোটামুটি ম্বাধীনভাবে আকর্ষ ম্থানের মধ্যে বিচরণে সক্ষম। তাই, গ্যাসীয় পদার্থের বিহু ভৌত ও রাসায়নিক ধর্মাবলির সুষ্ঠু ব্যাখ্যা সম্ভব হয়েছে।

অনিয়মিত আণবিক গতির পক্ষে প্রমাণ (Evidences in favour of random molecular motion):

বহুবিধ ঘটনা যেমন, ব্যাপনতা (diffusion). আম্রাবদ (osmosis). বাষ্পায়ন প্রভৃতি পর্যবেক্ষণের ফলে একথা জানা গেছে যে পদার্থের অণুগুলি সর্বদা সম্বরণশীল। তবে, কঠিন পদার্থের অণুগুলি অপেক্ষা তরল পদার্থের অণুগুলি বেশি সম্বরণশীল আবার তরল পদার্থের তুলনায় গ্যাসীয় পদার্থের অণুগুলির সম্বরণশীলতা আরও বেশি।

(1) ব্যাপনতা এবং দ্রাব্যতা পদার্থের আর্গবিক গঠন এবং অণ্র অবিনাম্ত গতির সাক্ষা বহন করে। ঘরের একপ্রান্তে এক ফোঁটা সুগন্ধি তেল পড়লে ঐ গন্ধ মৃহতের মধ্যে ঘরের সর্বত্র ছড়িয়ে পড়ে। এক- প্লাস জলে কিছু চিনি ফেলে দাও। কিছুক্ষণের মধ্যে চিনির দানাগুলি অদৃশ্য হয়ে যাবে এবং জলের সর্বত্র মিন্টি স্বাদ ছড়িয়ে পড়বে। এথেকে বোঝা যায় অণুগুলি সতত দুত্তবেগে সম্বরণশীল এবং একস্থান থেকে অন্যস্থানে দ্রতগতিতে বিচরণে সক্ষম।

- (2) বাষ্পায়ন (evaporation) এবং বাষ্পীভবন (vaporization) ঘটনাও আগবিক গতির সাথে সংশ্লিষ্ট। তরলকে উত্তপ্ত করলে, তরলের অণুগুলির গতিবেগ বৃদ্ধি পায়। উন্নতা বৃদ্ধির সঞ্জো সংজ্ঞা গতিবেগ বৃদ্ধি এরূপ হয় যে এক সময়ে অণুগুলি তরল ত্যাগ করে গ্যাস বা বাষ্পর্পে বায়ুতে মিশে যায়। তখন বলা হয় যে তরল বাষ্পীভূত হয়েছে।
- (3) গ্যাসের প্রসারণশীলতার নানারূপ ঘটনা লক্ষ করেও আমরা বুঝতে পারি যে গ্যাস অণুগুলি পরস্পর হতে দূরে সরে যাবার প্রয়াস করে।
- (4) প্রায় দেড়শত বৎসর পূর্বে একজন ইংরাজ উদ্ভিদবিজ্ঞানী রবার্ট ব্রাউন সর্বপ্রথম অণুগুলির এই নিরম্ভর অবিন্যন্ত গতির ফলাফল প্রত্যক্ষভাবে পর্যবেক্ষণ করেন। তথন হতে এই গতিকে 'ব্রাউনীয় গতি' আখ্যা দেওয়া হয়।

2.2. ব্রাউনীয় গতি (Brownian motion):

যদিও পদার্থের অণু প্রত্যক্ষভাবে দৃশ্যমান নয় তথাপি এদের সংঘাতে অপেক্ষাকৃত বড় কোনো

দৃশ্যমান কণিকার অবিন্যন্ত গতি অণুবীক্ষণ যন্ত্রের সাহায্যে দেখা যায়। 1827 সালে রবার্ট ব্রাউন এটাই লক্ষ করেছিলেন। কোনো তরলে বিলম্বিত (suspended) পরাগ রেণুর (pollen grains) মতো ক্ষুদ্র কণিকাকে শক্তিশালী অণুবীক্ষণ যন্ত্রের সাহায্যে লক্ষ করে তিনি দেখতে পান যে কণিকাগুলি নিরন্তর দুতবেগে কিন্তু অনিয়মিতভাবে চলাফেরা করছে। কণিকাগুলি কখনও বা ঘুরপাক খাচ্ছে, কখনও বা উঠছে কখনও বা পড়ছে—এভাবে অনবরত যেন উদ্দাম নৃত্য করে যাছে। এই গতি চিরকালের জন্য অব্যাহত থাকে—ক্রাস পাবার বা কল্ম হবার কোনো চিহ্ন দেখা যায় না। পদার্থের অণুগুলির এই অনিয়মিত (সম্পূর্ণ বিশৃদ্বল) গতিকে বাউনীয় গতি বলা হয়। 2.1 নং চিত্রে একটি কণিকার ব্রাউনীয় গতিপথ কীর্প

বিভিন্ন বিজ্ঞানী এই অদ্পুত গতি পর্যালোচনা করে যে সকল তথ্যাদি সংগ্রহ করেছেন, তাদের নিম্নলিখিতভাবে লিপিবন্দ্ব করা যায় ঃ

- (i) এই গতি নিরবচ্ছিন্ন, চিরস্থায়ী এবং সম্পূর্ণরূপে অনিয়মিত ও এলোমোলো। সাধারণভাবে, কোনো দুটি কণার গতি একই রকম হতে দেখা যায় না—এমনকি এক অপ্বলে অবস্থিত হলেও না।
 - (ii) পাত্রের নড়াচড়ার উপর এই গতি নির্ভরশীল নয়।
 - (iii) তরলের সান্দ্রতা যত কম হয়, গতি তত বৃদ্ধি পায়।
 - (iv) কণাগুলি যত ক্ষুদ্র হয়, তাদের গতি তত বৃদ্ধি পায়।
 - (v) একই তাপমাত্রায় একই সাইজের দুটি কণা একই বেগে গতিসম্পন্ন হয়।
 - (vi) তাপমাত্রা বৃদ্ধি পেলে গতি বৃদ্ধি পায়।

হতে পারে তা দেখানো হল।

ব্যাখ্যা: প্রথমে মনে করা হয়েছিল, এই গতি তরলের পৃষ্ঠটান (surface tension), তাপমাত্রার

অনিয়ানিত পরিবর্তন, রাসায়নিক বিক্রিয়া ইত্যাদির জনা ঘটছে। কিন্তু এই সকল বাহ্বা সম্পূর্ণ বার্থ প্রমাণত ছল এবং এই গতির কারণ বহু দিন যাবং অনিনীত বয়ে গেল। পরে বোঝা গোল য়ে এভাগুরাণ তাপীয় উত্তেলনার ফলে তরলের অণুগুলি নিরন্তর বেগবান হয় এবং তার দনুনই কণার ঐবুল গতি হয়—অর্থাৎ কণার গতি অণুর নিরন্তর গতির প্রকাশ।

বিলায়িত ব্যুকণার সাইজ যত ছোটো হোক না কেন, তরলের অণু অপেক্ষণ লক্ষ লক্ষ গুল বড় গাই অণু দশামান না হলেও ব্যুকণা অণুবীক্ষণ যন্তে দৃশামান হবে। তালীয় উত্তেভনায় নিরন্তর সন্তরণলীল তরলের অণুগুলি ঐ ব্যুকণাকে চতুর্দিক হতে আঘাত করে। ব্যুকণা আকারে বড় হলে, মনে করা গোতে পারে যে, যে-কোনো মৃহূর্তে সমসংখাক অণু চতুর্দিক হতে আঘাত করছে। ফলে, বড়ুব কোনো গতি সৃষ্টি হবে না—যেমন জলে ভাসমান কাসের টুকরোর বা শোলার টুকরোর এরণ কোনো গতি লক্ষিত হয় না। কিন্তু ব্যুকণা আকারে খুব ক্ষুদ্র হলে, আগবিক সংঘাতগুলি চতুর্দিক হতে সমানভাবে পড়বে না। তখন ঐ ক্ষুদ্র কণার উপর একটি অসম বল ক্রিয়া করে কণার গতি সৃষ্টি করে। যেহেতু আর্গবিক সংঘাতগুলি কোনো নিয়মবন্ধ নয়—এলোমেলো, সেইহেতু কণার উপর অসম বলও এলোমেলোভাবে ক্রিয়া করে এবং কণার অনিয়মিত ও বিশৃষ্কল গতি সৃষ্টি করে। কণা যত ক্ষুদ্র হবে বলের পরিমাণও তত বাড়বে। ফলে, কণার গতি বৃদ্ধি পাবে এবং গতি বেশি অনিয়মিত হবে।

গাসের গতীয় তত্ত্বের মূল অসীকারসমূহ (Basic assum) tions of kinetic theory of gases):

ব্রাউনীয় গতি পর্যবেক্ষণ করে আমরা জানতে পারি যে পদার্থের অণু সর্বদা দুত ও অবিনাম্ভভাবে সন্ধারমান। এই ঘটনা পদার্থ—তথা গ্যাসের গতীয়তত্ত্বের ভিত্তি। ম্যাক্সওয়েল, বোল্জ্মাান, ভ্যান-ভার-ওয়ালস্ প্রভৃতি বিজ্ঞানীদের চেন্টায় এই তত্ত্ব সুপ্রতিষ্ঠিত হয় এবং গ্যাসের বিভিন্ন বৈশিন্টা ও আচরণ সম্পূর্ণরূপে ব্যাখ্যা করতে সমর্থ হয়। গ্যাসের তাপমাত্রা, চাপ, শক্তি বা গ্যাসের সূত্রাবলি গতীয় তত্ত্বের সাহায্যে সন্তোষজনকভাবে ব্যাখ্যা করা হয়েছে। গ্যাসের গতীয় তত্ত্ব কতকগূলি মূল অজ্ঞীকারের উপর নির্ভরশীল। এই অজ্ঞীকারগুলি নিম্নরূপঃ

- (i) সকল গ্যাসই অণুর দ্বারা গঠিত। একই গ্যাসের সকল অণুগুলি সদৃশ কিন্তু বিভিন্ন গ্যাসের অণুগুলি পরস্পর থেকে বিভিন্ন।
- (ii) সকল অণুগুলিই বিন্দুভর (point mass) ; অণুগুলির পারস্পরিক দূরত্বের তুলনায় তাদের আকার নগণা।
- (iii) অণুগুলি সভত গতিসম্পন্ন; তাদের গতিবেগ সর্বদিকে প্রসারিত এবং ঐ বেগ শূন্য হতে অসীম (infinite) পর্যন্ত বিস্তৃত।
- (iv) স্থিতাকস্থায় (steady state) অণুগুলি নিরন্তর পরস্পরের সাথে এবং পাত্রের দেওয়ালের সাথে ধাকা খায় এবং প্রতি দুটি ধাক্কার ভিতর অণুগুলির গতি সমবেগে সরলরেখা বরাবর হয়।
- (v) যে সময় ব্যাপি একটি ধাকা সংঘটিত হয় তা মুক্তপথ অতিক্রম করার সময়ের তুলনায় অতি নগণ্য।
 অন্যভাবে বললে বলা যায় য়ে ধাকা সবই মুহূর্তমধ্যে সংঘটিত হয় বা ধাকাগুলি সবই তাৎক্ষণিক
 (instantaneous)।
- (vi) অণুগুলি পরস্পরের প্রতি অথবা পাত্রের দেওয়ালের প্রতি কোনো অভিকর্ষীয় আকর্ষণ বা বিকর্ষণ বল প্রয়োগ করে না—অর্থাৎ গ্যাসের শক্তি সম্পূর্ণরূপে গতিশক্তি।
- (vii) অণুগুলি সব আদর্শ স্থিতিস্থাপক গোলক। সুতরাং তাদের সংঘর্ষে অণুগুলির গতিবেগ পরিবর্তিত হয় কিন্তু গতিশক্তি ও রৈখিক ভরবেগ সংরক্ষিত থাকে।
- (viii) গাাসের অণুগুলি পরস্পরের সঞ্জো অনবরত ধাক্কা খেলেও স্থিতাবস্থায় গ্যাসের আণবিক ঘনত্ব অর্থাৎ এক ঘন আয়তনে অণুর সংখ্যা অপরিবর্তিত থাকে।

এসংলে উদ্ধেখনে যে, উপরিউন্ত শ্রজীকারগুলি একমাএ আদর্শ গাসের রেলান্ডেই প্রয়োজ। যে-সকল বাস্তব গাসের সঙ্গে আমরা পরিচিত তাদের কোনোটাই উপরোন্ত অজীকারগুলি মেনে চলে না। তবে দেখা যায় যে একমাত্র হাইড়োক্তেন গাসেই উন্ত অজীকারগুলির অনেকাংশ প্রয়ন্ত হয়। তাই হাইড়োক্তেন গাসেকে মেণ্টমেটি আদর্শ গাসে বলা যেতে পারে।

2.4

গতীয় ভত্ত অনুযায়ী আদর্শ গ্যাসের চাপ (Pressure of a perfect gas according to kinetic theory):

কোনো পাত্রে কিছ পরিমাণ গাাস রাখলে পাত্রের দেওয়ালে ঐ গাাস চাপ প্রয়োগ করে। গাাসের গভীয় তত্ত্ব অন্যায়ী এই চাপ গাাস-অণ্ কর্ভক পাত্রের দেওয়ালের উপর অবিরত সংঘর্শের (collision) ফল। গাাসের উশ্বতা বৃদ্ধি করলে গাাস অণুগুলির গতি দৃতত্ব হয়: ফলে চাপও বৃদ্ধি পায়। আবার, উশ্বতা দ্রাস করলে গাস-অণুগুলির গতি মধ্যের হয়ে পড়ে: তখন চাপও হ্রাস পায়। নির্দিষ্ট আয়তনের পাত্রে আরও গাাস ঢোকালে দেওয়ালে প্রতি সেকেন্ডে আঘাতকারী অণুর সংখ্যা বৃদ্ধি পায়: তাতে চাপও বৃদ্ধি পায়।

• চাপের রাশিমালা (Expression for the pressure):

ধরো, আমাদের ছয়ঙলবিশিস্ট ঘনকাকৃতির একটি ফাঁপা পাত্র আছে—যার দেওয়ালগুলি সব পূর্ণস্থিতিস্থাপক

এবং বে-কোনো পার্শের দৈর্ঘ্য ।; ঐ পাত্রের ভিতর প্রচুর সংখ্যক গ্যাস—অণু আছে। ধরো ঐ অণুগুলির সংখ্যা হচ্ছে দ ; ঐ অণুগুলির ভিতর থেকে বে-কোনো একটি অণুর কথা বিবেচনা করে যদি আমরা মনে করি যে-কোনো একটি দিকে ঐ অণুর গতিবেগ c_1 , তাহলে ঐ গতিবেগকে OX, OYএবং OZ অক্ষবরাবর বিভাজন করে বলতে পারি যে, উত্ত বিভাজিত অংশগুলি যথাক্রমে u_1 , v_1 এবং w_1 [চিত্র 2.2]। এক্ষেত্রে

অক্ষগুলিকে ঘনকের দৈর্ঘ্য, উচ্চতা ও প্রস্থের সমান্তরাল ধরা হয়েছে। এই অকথায় আমরা লিখতে পারি,

$$c_1^2 = u_1^2 + v_1^2 + w_1^2$$

এখন, A তলের অভিলম্ব দিকে—অর্থাৎ, OX বরাবর (2.2 চিত্রের ডানদিকে) গতির কথা চিন্তা করা যাক। অণু A-তলে u_1 গতিবেগে আঘাত করে একই বেগে পশ্চাৎদিকে প্রতিক্ষিপ্ত (rebound) হয়ে আসবে, কারণ আঘাতগুলি সবই স্থিতিস্থাপক বলে ধরা হয়। অণুর ভর m হলে প্রতি আঘাতে ভরবেগের পরিবর্তন $= mu_1 - (-mu_1) = 2mu_1$; অণুটি প্রতিক্ষিপ্ত হয়ে A-তল থেকে A_1 -তলের দিকে অগ্রসর হবে। A_1 -তলে আঘাত করে অণুটি আবার প্রতিক্ষিপ্ত হবে এবং A-তলে পৌছাবে। এতে অণুটি 2l দূরত্ব অতিক্রম করবে। এর জন্য অণুটির যে সময় লাগবে তা $\frac{2l}{u_1}$ সেকেন্ড। কাজেই দুটি পরপর ধাক্কার অন্তর্বতী সময়

হবে
$$\frac{2l}{u_1}$$
 সেকেন্ড।

অতএব, প্রতি সেকেন্ডে যে কয়টি ধাকা সংঘটিত হবে তা = $\frac{u_1}{2l}$ প্রতি সেকেন্ডে ভরবেগের পরিবর্তন = $\frac{u_1}{2l} \times 2mu_1 = \frac{mu_1^2}{l}$

নিউটনের দিতীয় গতিসূত্র হতে আমরা জানি যে ভরবেগ পরিবর্তনের হার প্রযুক্ত বলের সমান হয়।

A-Section also May a don F_1 each Section $F_1 = \frac{m_H^2}{l}$

অনুরূপভাবে, আর একটি অনুর গতিবেগ ধর ্ এবং ঐ পতিবেগের উপাংল u_2, v_2, v_3 র্যদি A-তলে ঐ অনু F_2 বল প্রয়োগ করে তবে, $F_2=\frac{mu_2^2}{l}$ । এরূপে অন্যান। অণুগুলিও A-তলে বল প্রয়োগ করে।

 \therefore A-তলে মোট প্রযুক্ত বল $F_1 = F_1 + F_2 + F_3 + \dots$

$$= \frac{mu_1^2}{l} + \frac{mu_2^2}{l} + \dots + \frac{mu_n^2}{l} = \frac{m}{l} \left(u_1^2 + u_2^2 + \dots + u_n^2 \right)$$

অতএব, A-তলে চাপ,
$$P_x = \frac{F_x}{(- \sqrt{2} + \sqrt{2})^2} = \frac{m}{l \times l^2} \left(u_1^2 + u_2^2 + \dots + u_n^2 \right)$$

$$= \frac{m}{V} \left(u_1^2 + u_2^2 + \dots + u_n^2 \right) \qquad [\because V = l^3]$$

একইভাবে, B-তলে অর্থাৎ, OY বরাবর চাপ, $P_v = \frac{m}{V} \left(v_1^2 + v_2^2 + + v_n^2 \right)$

এবং C-তলে অর্থাৎ, OZ বরাবর চাপ, $P_{r} = \frac{m}{V} \left(w_1^2 + w_2^2 + \dots + w_n^2 \right)$

যেহেতু স্থিতাবস্থায় গ্যাস চতুর্দিকে সমান চাপ প্রয়োগ করে, সেইহেতু,

$$P_x = P_y = P_z = P$$
 (ধরো)

$$P = \frac{1}{3} (P_x + P_y + P_z)$$

$$= \frac{1}{3} \cdot \frac{m}{V} \left[\left(u_1^2 + u_2^2 + \dots + u_n^2 \right) + \left(v_1^2 + v_2^2 + \dots + v_n^2 \right) + \left(w_1^2 + w_2^2 + \dots + w_n^2 \right) \right]$$

$$= \frac{1}{3} \cdot \frac{m}{V} \left[\left(u_1^2 + v_1^2 + w_1^2 \right) + \left(u_2^2 + v_2^2 + w_2^2 \right) \dots + \left(u_n^2 + v_n^2 + w_n^2 \right) \right]$$

$$= \frac{1}{3} \cdot \frac{m}{V} \left(c_1^2 + c_2^2 + \dots + c_n^2 \right)$$

$$=\frac{1}{3}\cdot\frac{mn}{V}\cdot c^{\frac{7}{2}}$$
 এস্থালে $c^{\frac{7}{2}}=\frac{c_1^2+c_2^2+...+c_n^2}{n}$ ় $c^{\frac{7}{2}}$ -কে বলা হয় অণুর গড় বর্গবেগ

(mean square velocity)

এখন গ্যাসের মোট ভর M=mn ; ঘনত্ব ρ হলে $\frac{M}{V}=\rho$.

কাজেই,
$$P = \frac{1}{3} \cdot \frac{M}{V} \cdot c^{\frac{7}{2}} = \frac{1}{3} \cdot \rho c^{\frac{7}{2}} \dots \dots \dots (i)$$

এটাই হল গভীয় তত্ত্বানুযায়ী গ্যাসের চাপের রাশিমালা।

উল্লেখযোগ্য যে, চাপের উপরিউত্ত রাশিমালা দ্বারা গ্যাসের আচরণ বিধি সংক্রান্ত বয়েল সূত্র, চার্লস সূত্র, আদর্শ গ্যাসের সমীকরণ, অ্যাভোগাড়ো প্রকল্প ইত্যাদি সব কিছু প্রমাণ করা যায় (পরবর্তী অনুচ্ছেদ দ্রুইব্য)

2.5.

(a) গ্যাস অপুর গড় বর্গ বেগের বর্গমূল (Root menn square speed or R.M.S. speed of gas molecules):

পূর্ব অনুচ্ছেদে বলা হয়েছে যে c^2 – কে বলা হয় অপুর গড় বর্গবেগ। কাজেই c– কে বলা হবে অপুর গড় বর্গবেগের বর্গমূল, কারণ c^2 – এর বর্গমূল নিলে অমরা c পাই। একে c_{rmv} রূপে লেখা হয়। সূতরাং বিভিন্ন অপুর গতিবেগের বর্গ নিয়ে তার গড় নির্ণয় করার পর গড় মানের বর্গমূল নিলে আমরা অপুর গড় বর্গবেগের বর্গমূল পাব। সংক্ষেপে একে বলা হয় **আর. এম্. এস্. (r.m.s.) গতিবেগ।** গতীয় তত্ত্বানুযায়ী চাপের পূর্বোক্ত রাশিমালা প্রতিষ্ঠা করার সময় দেখা যায় যে গ্যাস অপুগুলির গড় গতিবেগ নিলে চলে না; আর. এম্. এস্. গতিবেগ নিতে হয়। প্রকৃতপক্ষে গ্যাসের গতীয় তত্ত্বে অপুগুলির গড় গতিবেগের কোনো গুরুত্ব নেই; আর. এম্. এস্. গতিবেগই গুরুত্বপূর্ণ। আর. এম. এস বা গড় বর্গ বেগের বর্গমূলকে কখনো–

কখনো বৰ্গমাধ্য মূল বা মূল গড় বৰ্গবেগগু বলা হয়। অতএব, $c_{
m rms} = \sqrt{\frac{\Sigma c^2}{n}}$ অথবা, c^2 =

 $\left(c_{rms}\right)^2$ । R.M.S. গতিবেগের $\left(c_{rms}\right)$ পরিপ্রেক্ষিতে গ্যাসের চাপের রাশিমালা নিম্নলিখিতভাবে প্রকাশ করা যায়,

$$P=rac{1}{3}\,
ho\,c_{rms}^2$$
 অথবা, $c_{rms}=\sqrt{rac{3P}{
ho}}=\sqrt{rac{3PV}{M}}$.

• R.M.S. গতিবেগের ধারণা (Concept of r.m.s, speed):

নিম্নলিখিত বিবরণ থেকে আর. এম্. এস্. গতিবেগ সম্বন্ধে ধারণা স্পন্ট হবে। মনে করো, একটি পাত্রে n সংখ্যক অণু আছে এবং নির্দিন্ট চাপ ও তাপমাত্রার তাদের বেগ $c_1, c_2, c_3, \dots, c_n$;

এই অবস্থায় অণুগুলির গড় বেগ \overline{c} হলে, $\overline{c}=\frac{c_1+c_2+c_3+...+c_n}{n}$

অণুগুলির প্রত্যেকটির বেগের বর্গ নিয়ে তাদের গড় $\left(c^{\overline{2}}
ight)$ নির্ণয় করলে, আমরা পাই,

$$c^{\frac{7}{2}} = \frac{c_1^2 + c_2^2 + c_3^2 + \dots + c_n^2}{n}$$

এবার c^2 এর বর্গমূল নিলে, গড় বর্গবেগের বর্গমূল পাওয়া যাবে। গড় বর্গবেগের বর্গমূল যদি c_{rms} ধরা যায়, তবে

$$c_{rms} = \sqrt{c_1^2 + c_2^2 + c_3^2 + ... + c_n^2}$$

লক্ষ করার বিষয় যে \bar{c} এবং c_{rms} সমান না; অর্থাৎ গড় বেগ এবং গড় বর্গবেগের বর্গমূল সমান না।

মনে করো আমরা 6টি অণুর গতিবেগ বিবেচনা করছি। তাদের গতিবেগ যথাক্রমে 1,2,3,4,5,6 একক ফলে তাদের গড় গতিবেগ $c=\frac{1+2+3+4+5+6}{6}=\frac{21}{6}=3.5$ একক।

ভাদের বর্গ বেরোর গড়
$$c^2 = \frac{(1)^2 + (2)^2 + (3)^2 + (4)^2 + (5)^2 + (6)^2}{6} = \frac{91}{6} = 15.2$$
. একক।

দেখা যাচেছ যে \bar{c} এবং c_{rms} সমান নয়: সাধারণত আর, এম্, গ্রুবেগ গড় গতিবেগ অপেক্ষা কিছু বেশি হয়।

(b) সর্বাপেকা সম্ভাব্য গতিবেগ (Most probable velocity):

গাাসের গতীয় তত্ত্ব থেকে আমরা জানি হে কিছ্ পরিমাণ গাাসের ভিতর যে অসংখা অণু থাকে তাদের গতিবেগ সব সমান নয়। নির্দিষ্ট উন্মতায় সর্বাধিক সংখ্যক অণু যে বেগে গতিশীল থাকে সেই বেগকে সর্বাপেকা সন্তাব্য গতিবেগ বলে।

প্রমাণ করা যায় যে T পরম উন্ধতায় সর্বাপেক্ষা সম্ভাব্য গতিবেগ $c_m = \sqrt{\frac{2RT}{M}}$. M = গ্যাসের আগবিক

ভর। আবার,
$$c_{rms}=\sqrt{\frac{3P}{\rho}}=\sqrt{\frac{3.RT}{V.\rho}}=\sqrt{\frac{3RT}{M}}$$
 \therefore $\frac{c_m}{c_{rms}}=\sqrt{\frac{2}{3}}$ $[\because P.V=R\ T].$

D Examples O

 $m{Q}$ হাইড়োজেন অণুর ভর $3.32 \times 10^{-24} \mathrm{g}$: একটি দেওয়ালের প্রতি $2~\mathrm{cm}^2$ ক্ষেত্রফলে প্রতি সেকেন্ডে 10^{23} হাইড়োজেন পরমাণু দেওয়ালের অভিসম্বের সাথে 45 কোণ করে $10^5~\mathrm{cm/s}$ গতিবেগে আঘাত করছে। এতে দেওয়ালে কত চাপ পড়ছে ?

উঃ। প্রতি হাইড্রোজেন অণুর ভরবেগ = $m.v = 3.32 \times 10^{-24} \times 10^5$ g cm/s . দেওয়ালে অণুগুলির আপতন কোণ ও প্রতিফলন কোণ সমান ধরে নিলে প্রতিটি হাইড্রোজেন এণুর ভরবেগের

পরিবর্তন = $2m.0\cos\theta = 2 \times 3.32 \times 10^{-24} \times 10^5 \times \cos 45^\circ = 2 \times 3.32 \times 10^{-24} \times 10^5 \times \frac{1}{\sqrt{2}}$

= 4.7×10^{-19} g. cm/s.
প্রতি সেকেভ আপতিত 10^{23} অণুর মোট ভরবেগ পরিবর্তন = $10^{23} \times 4.7 \times 10^{-19} = 4.7 \times 10^4$ g.cm/s

প্রতি সেকেন্ডে মোট ভরবেগের পরিবর্তন = $\frac{4.7 \times 10^4}{2} = 2.35 \times 10^4$ ্কেত্রফল

dyne/cm

প্রমাণ তাপমাত্রা এবং চাপে বায়ুর অণুগুলির গড় বর্গবেণের বর্গয়ূল নির্দয় করো।
বায়ুর ঘনত্ব = 0.00129 g/cm³.

উঃ।
$$P=\frac{1}{3}\rho.c_{rms}^2$$
 অথবা, $c_{rms}=\sqrt{\frac{3P}{\rho}}$

এখানে, $P = 76 \times 13.6 \times 980$ dyne/cm² (প্রমাণ চাপ) এবং $\rho = 0.00129$ g/cm³.

$$c_{rms} = \sqrt{\frac{3 \times 76 \times 13.6 \times 980}{0.00129}} = 4.85 \times 10^4 \text{ cm/s} = 485 \text{ m/s}.$$

গতীয় তত্ত্বানুযায়ী কয়েকটি প্রয়োজনীয় ফলাফল (Some important results from kinetic theory):

(i) এক প্রাম-অণু (এক মোল) গ্যাসের গড় গতিশক্তিঃ এক গ্রাম-অণু গ্যাসের কথা বিবেচনা করা যাক্। ধরো, চাপ P এবং ভাপমাত্রা T–তে গ্যাসের আয়তন =V এবং ভর $=M_0$: কাজেই তার ঘনত্ব $\rho=\frac{M_0}{V}$.

2.4 অনুচেছদ হতে পাই,
$$P=\frac{1}{3}\rho c_{rms}^2=\frac{1}{3}\cdot\frac{M_0\,c_{rms}^2}{V}$$
 অথবা, $P.V.=\frac{1}{3}\,M_0\,c_{rms}^2$;

কিন্তু এক গ্রাম–অণু আদর্শ গ্যাসের বেলায় $P.V.=R_0T.$ $\therefore \frac{1}{3}\,M_0\,c_{rms}^2=R_0T$

ভাথবা, $\frac{1}{2}M_0c_{rms}^2 = \frac{3}{2}R_0T$

কাজেই, T পরম উশ্বতায় এক গ্রাম-অণু (এক মোল) গ্যাসের গড় গতিশক্তি = $\frac{3}{2}R_0T$... (i)

(ii) প্রতি অণুর গড় গতিশাক্তিঃ N= অ্যাভোগাড়ো সংখ্যা হলে, প্রতি মোল গ্যাসে N সংখ্যক এণু থাকে। অতএব, T উন্মতার প্রতি অণুর গড় গতিশাক্তি $E=\frac{\text{মোট গতিশাক্তি}}{\Lambda}=\frac{3}{2}\cdot\frac{R_0}{N}$ $T.=\frac{3}{2}$ kT... (ii)

 $[k=rac{R_0}{N}=rac{8.311\, ext{mol}^{-1} ext{K}^{-1}}{6.023 imes10^{23}}=1.38 imes10^{-23}\, ext{J mol}^{-1}\, ext{K}^{-1}=$ ধুবসংখ্যা; একে বলা হয় বোল্জ্ম্যান ধুবসংখ্যা।

(iii) তাপমাত্রার ধারণা (Concept of temperature) :

(ii) নং সমীকরণ হতে দেখা যায় প্রতি গ্যাস-অণুর গড় গতিশন্তি $E=\frac{3}{2}\,kT$; অর্থাৎ গতিশন্তি গ্যাসের পরম তাপমাত্রা T-এর সমানুপাতিক। যেহেতু আদর্শ গ্যাসের অণুগুলির ভিতর কোনো পারম্পরিক আকর্ষণ নেই, সেইহেতু তাদের স্থিতিশন্তি শূন্য। তাদের কেবল গতিশন্তি আছে এবং তাপমাত্রা ঐ গতিশন্তি দ্বারাই নিয়ন্ত্রিত হয়। গতিশন্তি বৃদ্ধি পেলে তাপমাত্রা বৃদ্ধি পাবেঃ আবার গতিশন্তি হাস পেলে তাপমাত্রা হ্রাস পাবে। অন্যভাবে বললে দাঁড়ায় যে তাপমাত্রাই গ্যাস-অণুর গতিশন্তির পরিমাপ। গতীয় তত্ত্বানুযায়ী এটাই তাপমাত্রার ধারণা। যখন তাপমাত্রা শূন্য হয় তখন গ্যাস-অণুগুলির গতিশন্তিও শূন্য হয়—অর্থাৎ অণুগুলির গতি স্তম্ব হয়। গতীয় তত্ত্ব অনুযায়ী এই তাপমাত্রাকেই আদর্শ গ্যাস স্কেলের পরম শূন্য (absolute zero) তাপমাত্রা ধরা হয়। অতএব, পরম শূন্য তাপমাত্রা এমনই এক তাপমাত্রা যে তাপমাত্রায় গ্যাস-অণুগুলির গতিবেগ শূন্য হয়। মনে রাখা দরকার যে উপরোভ গতি স্তম্বতার কল্পনা একটি আদর্শ কল্পনা কারণ বাস্তব ক্ষেত্রে পরম শূন্য তাপমাত্রায় কোনো বতুই গ্যাসীয় অবস্থায় থাকবে না; আগেই তরলীভূত হবে।

(iv) গ্যাসের চাপের বিকল রূপ ঃ

2.4 নং অনুচ্ছেদে বলা হয়েছে যে গ্যাসের চাপ $P=\frac{1}{3} \rho. c_{rms}^2$ । যদি এক গ্রাম-অণু গ্যাসের ভর এবং

আয়তন যথাক্রমে M_0 এবং V হয়, তবে $P=\frac{1}{3}\frac{M_0\,c_{rms}^2}{V}$

আবার, এক গ্রাম-অণু গ্যাসের মোট গতিশক্তি $E=rac{1}{2}\,M_0\,c_{rms}^2$

$$\therefore P = \frac{2}{3} \times \frac{1}{2} \frac{M_0 c_{rms}^2}{V} = \frac{2}{3} \cdot \frac{E}{V}.$$

অতএব, গ্যাসের চাপ আয়তন প্রতি গতিশব্বির 2/3 অংশ। এটাই গ্যাসের চাপের একটি বিকল রূপ।

E EXAMPLE CI

 \bigcirc 100 \bigcirc উন্মতায় কোনো আদর্শ গ্যাসের প্রতি অণুর গড় গতিশান্ত নিশয় করে। বোলজম্যান ধ্রবসংখ্যা $k=1.38\times 10^{-23}\,\mathrm{J\,mol}^{-1}\mathrm{K}^{-1}$.

উঃ। 2.6(n) নং অন্তেছদ হতে পাই যে আদেশ গালের প্রতি অগুর গড় গতিশা । $\frac{3}{2}$ I ন একারে, $k=1.38\times 10^{-23}$ joule/mol K এবং $T=100+273=373{\rm K}$ $\therefore E=\frac{3}{2}\times 1.38\times 10^{-23}\times 373=772\times 10^{-23}$ joule.

আর. এম্. এস্. গতিবেগের পরিবর্তন (Variation of r.m.s. speed) :

কোনো গ্যানের এক প্রাম–অণুর বেলায়, $\frac{1}{3}M_0\,c_{rms}^2=R_0T$ অথবা, $c_{rms}^2=\frac{3R_0T}{M_0}$

$$\frac{1}{2} \frac{2\pi i}{2\pi i} = \frac{1}{2\pi i} \frac{1}{2\pi i} = \frac{1}{2\pi$$

এথেকে বলা যায় যে (i) c_{rm} , $\sim \sqrt{T}$ অর্থাৎ কোনো গ্যাস অগুর আর. এম্. এস্. গতিবেগ ঐ গ্যাসের পরম উশ্বতার বর্গমূলের সমানুপাতিক। গ্যাসের পরম উশ্বতা বৃদ্ধি পেলে, গ্যাস-অগ্র আর. এম্. এস্. গতিবেগ বৃদ্ধি পাবে; উশ্বতা ব্রাসে গতিবেগও ব্রাস পাবে। (ii) একই উশ্বতায় বিভিন্ন গ্যাসের অগ্র আর. এম্. এস্. গতিবেগ গ্যাসগুলির আণবিক ভরের বর্গমূলের ব্যস্তানুপতিক : c_{rm} , $\sim \frac{1}{\sqrt{M_0}}$: অথবা, একই উশ্বতায় ভারী গ্যাস-অগুর আর. এম্. এস্. গতিবেগ হালকা অগুর চাইতে কম হবে।

D EXAMPLES D

া 0° ে উন্মতায় এবং 76 cm পারদের চাপ হাইড়োজেন অণুর আর. এম. এস্. গতিবেগ 1.84×10^5 cm/s; চাপ অপরিবর্তিত রেখে উন্মতা 100° ে করলে, হাইড়োজেন অণুর আর. এম্. এস্. গতিবেগ কী হবে ?

উঃ। আর. এম্. এস্. গতিবেগ
$$c_{rms} \propto \sqrt{T}$$
 $\therefore \frac{\left(c_0\right)_{rms}}{\left(c_{100}\right)_{rms}} = \sqrt{\frac{T_0}{T_{100}}}$

এখন, $T_0 = 0 + 273 = 273$ K এবং $T_{100} = 100 + 273 = 373$ K

ম্ভ্রব,
$$\frac{(c_0)_{rms}}{(c_{100})_{rms}} = \sqrt{\frac{273}{373}}$$
 :: $(c_{100})_{rms} = (c_0) \sqrt{\frac{373}{273}} = 1.84 \times 10^5 \sqrt{\frac{373}{273}}$
= 2.16 × 10⁵ cm/s.

2 আদর্শ গ্যাসের ভিতর শব্দের গতিবেগ গ্যাস-অণুর আর. এম্. এস্. গতিবেগের সমান ধরে প্রমাণ করো, স্থির তাপমাত্রায় $u_1/u_2=\sqrt{M_2/M_1}$; u_1 হল M_1 আণবিক ভরযুব গ্যাসে শব্দের গতিবেগ এবং u_2 হল M_2 আণবিক ভরযুব গ্যাসে শব্দের গতিবেগ। উঃ। 2.7 অনুচ্ছেদে আমরা দেখেছি, আদর্শ গ্যাস-অণুর আর. এম্. এস্. গতিবেগ

$$c_{rms} = \sqrt{\frac{3R_0T}{M_0}}$$

 $[R_0 =$ মোলার গাস-ধুবক এবং $M_0 =$ গাসের আগবিক ভর]। যেছের গাস-মাধ্যমে শঙ্রের গতিবেগ গাস-অধ্র আর. এম্. এস্. গতিবেগের সমান ধরা হয়েছে সেইছের, লেখা যায়, গাসেশধের গতিবেগ

 $\therefore \upsilon_1/\upsilon_2 = \sqrt{M_2 / M_1} .$

3 কোনো গ্রহের ঘনত $5.5 \times 10^3 \, \mathrm{kgm^{-3}}$ এবং উন্ধাতা $27^{\circ}\mathrm{C}$; এই গ্রহের ন্যুনতম্ব ব্যাসার্থ কত হলে, ঐ গ্রহের অক্সিজেন গ্যাসকে গ্রহের বায়ুমন্ডলের মধ্যে ধরে রাখা সম্ভব $R_0=8.3 \, \mathrm{J \ mol^{-1} \ K^{-1}}$; $M_{\mathrm{oxy}}=32 \times 10^{-3} \, \mathrm{kg \ mol^{-1}}$; $G=6.67 \times 10^{-11} \mathrm{S.I.}$

উঃ। কোনো গ্রহের ব্যাসার্ধ R এবং ঘনত্ব ho হলে, ঐ গ্রহের বেলায় মুন্তিবেগ $ho_e = \sqrt{\frac{8}{3} G\pi
ho R^2}$

এখন, T K উন্নতায় অক্সিজেন অণুর আর. এম্. এস্. গতিবেগ $c_{rms} = \sqrt{\frac{3R_0T}{M_{out}}}$

$$\therefore \sqrt{\frac{8}{3} \cdot G\pi\rho R^2} = \sqrt{\frac{3R_0T}{M_{oxy}}}$$
 ভাথবা, $R = \sqrt{\frac{9R_0T}{8G\pi\rho M_{oxy}}} = \frac{3}{2} \sqrt{\frac{R_0T}{2G\pi\rho M_{oxy}}}$

$$= \frac{3}{2} \sqrt{\frac{8.3 \times 300}{2 \times \left(6.67 \times 10^{-11}\right) \times 3.14 \times \left(5.5 \times 10^{3}\right) \times \left(32 \times 10^{-3}\right)}} = 2.76 \times 10^{5} \text{ m}.$$

গ্যাসের গতীয় তত্ত্ব থেকে বিভিন্ন গ্যাসসূত্রের প্রমাণ (Price) of different gas laws from the kinetic theory of gases)

(ক) বয়েল সূত্র : গ্যাসের গতীয় তত্ত্ব অনুযায়ী, চাপ $P=rac{1}{3}\rho\,c_{rms}^2$

ধরো, ছয়তলবিশিন্ট একটি ঘনাকাকৃতির পাত্তে রাখা গ্যাসে n সংখ্যক অণু আছে। প্রত্যেকটি অণুর

ভর m হলে, $\rho = \frac{mn}{V}$ [V = পাত্রের আয়তন]।

অতএব, $P = \frac{1}{3} \cdot \frac{mnc_{rms}^2}{V}$ অথবা, $P.V. = \frac{1}{3}m.n.c_{rms}^2 = \frac{1}{3}Mc_{rms}^2$ [M = mn = নিৰ্দিষ্ট পরিমাণে

আবার, হ
$$\frac{GM}{R^2} = G \frac{4}{3} \frac{\pi R^3 \rho}{R^2} - \frac{4}{3} \exp(R\rho) \quad |M = পৃথিবীর ভর) :: v = $\sqrt{2 \cdot \frac{4}{3}} G \pi \rho R^2$$$

[•] মৃত্তিবেগ ve = $\sqrt{2gR}$ [মহাকর্ষ পরিক্ষেদ দেউবা।]

গ্যাসের ভর]

গ্যানের গতীয় তত্ত্ব অনুযায়ী $\,c_{mv}^2 \propto T\,$ অভএব $P.V \sim T\,;$ যথম $\,T\,$ ধুবক এখন $\,PV = ধুবক + কংকেই$ নির্দিন্ট ভরের (M) গ্যাসের বেলায়, তাপমাত্রা চিথর থাকলে PV = ধুনক। এটাই বয়েল সত্র।

(খ) চালর্স সূত্রঃ গ্যাসের গতীয় তত্ত্ব হতে পাই, $P=rac{1}{3} rac{W_{cime}}{V}$ গ্রহণে, $V=rac{1}{3} rac{W}{P}$

 $c_{rms}^2 \propto T$ এবং M ও P অপরিবর্তিত থাকলে, $V \propto T$ অর্থাৎ নির্দিন্ট ভরের গ্যাসের আয়তন গ্যাসের পরম উন্নতার সমানুপাতিক হয় যখন গ্যাসের চাপ অপরিবর্তিত থাকে। এটাই চার্লস সূত্র।

(গ) রেনোর চাপের সূত্র (Regnault's pressure law):

গ্যাসের গতীয় তত্ত্বানুযায়ী, $P = \frac{1}{3} \frac{M}{V} c_{rms}^2$

আয়তন অপরিবর্তিত থাকলে এবং নির্দিত ভরের গ্যাসের বেলায় $P \propto c_{im}^2$ অথবা $P \propto T$ অর্থাং নির্দিন্ট ভরের গ্যাসের চাপ (P) তার পরম উন্মতার (T) সমানুপাতিক যখন গ্যাসের আয়তন অপরিবর্তিত থাকে। একেই রেনোর চাপ সূত্র বলে।

(ঘ) **আভোগাড়ো প্রকর :** ধরো, আমরা সম–আয়তনের দুটি বিভিন্ন গ্যাস নিলাম যাদের তাপমাত্রা ও চাপ যথাক্রমে T এবং P ; যদি গ্যাস দৃটির সম–আয়তনে অণুর সংখ্যা যথাক্রমে n_1 এবং n_2 হয় এবং প্রতি অণুর ভর যথাক্রমে m₁ এবং m₂ হয় তবে গতীয় তত্ত্ব হতে লেখা যায়

$$P = \frac{1}{3} \frac{m_1 n_1 c_1^2}{V} = \frac{1}{3} \frac{m_2 n_2 c_2^2}{V} \dots \dots (i)$$

 $[c_1$ এবং c_2 গ্যাস দুটির অণুর আর. এম্. এস্. গতিবেগ] আবার, যেহেতু গ্যাস দুটির তাপমাত্রা সমান সেইহেতু প্রতি অণুর গড় গতিশক্তি সমান।

জাर्शार,
$$\frac{1}{2}m_1c_1^2 = \frac{1}{2}m_2c_2^2$$
(ii)

(i) এবং (ii) স্মীকরণ হতে পাই, $n_1 = n_2$

এভাবে যে-কোনো আয়তন নিয়ে এবং যে-কোনো সংখ্যক গ্যাস নিয়ে প্রমাণ করা যায় যে, তাপমাত্রা ও চাপ সমান থাকলে, সম–আয়তনের বিভিন্ন গ্যাসে সম–সংখ্যক অণু থাকবে। এটাই আভোগাড়ো প্রকর।

(%) আদর্শ গ্যাসের সমীকরণ (Ideal gas equation)

2.6 অনুচ্ছেদে আমরা দেখেছি যে T উষ্ণতায় একটি আদর্শ গ্যাসের একটি অণুর গড় গতিশন্তি =

$$\frac{3}{2}\left(\frac{R_0}{N}\right)T$$
 ; তাহলে এক মোল অণুর গড় গতিশন্তি = $\frac{3}{2}\left(\frac{R_0}{N}\right)T \times N = \frac{3}{2}.R_0T$ (i)

আবার, এক মোল অণুর গড় গতিশক্তি = $\frac{1}{2}M_0 c_{\rm rms}^2$ [M_0 = এক মোল গ্যাসের ভর

কিন্তু
$$c_{rms}^2 = \frac{3P}{\rho} = \frac{3P}{M_0} \cdot V \left[V =$$
 মোলার আয়তন]

 \therefore এক মোল অণুর গড় গতিশন্তি = $\frac{1}{2}M_0 \times \frac{3PV}{M_0} = \frac{3}{2}PV$.

অতএব (1) নং সমীকরণ থেকে পাই $\frac{3}{2}PV = \frac{3}{2}R_0T$. অথবা, $PV = R_0T$. এটাই আদর্শ গ্যাসের সমীকরণ।

*2.9 সাধীনতার মাত্রা (Degrees of freedom):

কোন বস্তু স্থাপানভাবে বা অবাধে যে কয়প্রকার গতির অধিকারী হতে পারে সেই সংখ্যাকে ওই বস্তুর গতির স্থাধীনভার মাত্রা বলা হয়। কয়েকটি দৃষ্টান্ত নিলে এটা পরিষ্কার বোঝা যাবে।

একটি বিল্ কলা যদি কোন বিশেষ রেখা বরাবর গতিসম্পন্ন হয়, তবে তার গতির স্বাধীনতার মাত্রা মাত্র একটি, কারণ ওই বিশেষ রেখা ছাড়া থনা কোনো দিকে কণার গতি নেই. যদি কণা একটি নির্দিষ্ট সমতলে গতিসম্পন্ন হয় তবে তার স্বাধীনতার মাত্রা দৃই, কারণ, তার গতিকে আমরা ওই সমতলের উপর অভিকত দুটি অক্ষের সাহায়ে প্রকাশ করতে পারি। অন্রুপভাবে কণা ত্রিমাত্রিক দেশ (three-dimensional sapce)-এ গতিয় হলে, তার গতির স্বাধীনতার মাত্রা তিন। বিন্দু কণার কেবলমাত্র রৈখিক গতি থাকলে এই ধরনের স্বাধীনতার মাত্রাকে বলা হয় বৈথিক গতির স্বাধীনতার মাত্রা (degrees of freedom of translational motion)।

কোনো দৃঢ় বস্তু তিনটি স্বতন্ত্র অক্ষের চত্দিকৈ আবর্তনে সক্ষম হলে, তার দর্নও ওই বস্তুর স্বাধীনতার মাত্রা হবে তিন এবং তাদের বলা হবে **আবর্ত গতির স্বাধীনতার মাত্রা** (dgrees of freedom of rotational motion) বলা বাহুল্য কোনো দৃঢ় বস্তুর একই সঞ্চো তিনটি রৈখিক গতির স্বাধীনতার মাত্রা এবং তিনটি আবর্ত গতির স্বাধীনতার মাত্রা—মোট ছয়টি মাত্রা থাকতে পারে কারণ দৃঢ় বস্তুর এক সঞ্চো রৈখিক ও আবর্ত গতি সম্ভব।

দুইটি বিন্দু কণা A এবং B কিছু দূরে থেকে যদি পরস্পরের সাথে দৃঢ়ভাবে আবন্ধ থাকে [চিত্র 2.3]

তবে তাদের X,Y,Z অক্ষ বরাবর রৈখিক গতির দর্ন স্বাধীনতার মাত্রা হবে তিন কিন্তু তাদের আবর্তন গতি সম্ভব শুধু Y এবং Z-অক্ষের চতুর্দিকে; ফলে আবর্ত গতির দর্ন স্বাধীনতার মাত্রা দুই; অথবা তাদের মোট স্বাধীনতার মাত্রা পাঁচ।

ত্রিমাত্রিক দেশে অবিষ্থিত দুটি বিন্দুর অবস্থান সম্পূর্ণরূপে প্রকাশ করতে মোট ছয়টি স্থানাঙ্কের (co-cordinates) প্রয়োজন হয়, এটা আমরা জানি। কিন্তু ওই দুটি বিন্দুর ভিতর কোনো নির্দিন্ট সম্পর্ক বজায় থাকলে, স্থানাঙ্কের সংখ্যা এক কমে যায়, অথবা ওই সংস্থার স্বাধীনতার মাত্রা দাঁড়ায় পাঁচ। এথেকে আমর স্বাধীনতার মাত্রা নির্ণয়ের একটি

সাধারণ সূত্র পেতে পারি। সূত্রটি নিম্নলিখিতরূপে বিবৃত করা যায় ঃ

কোনো সংস্থার (system) উপাদানগুলির (elements) অবস্থান সম্পূর্ণরূপে প্রকাশ করার জন্য প্রয়োজনীয় স্থানাজেকর মোট সংখ্যা থেকে ওই উপাদানগুলির মধ্যে সভস্তভাবে বর্তমান সম্পর্কগুলির সংখ্যা বিয়োগ করলে স্বাধীনতার মাত্রা সংখ্যা পাওয়া যায় (The number of degrees of freedom is equal to the total number of co-ordinates required to define the positions of the elements of the system minus the number of independent relations existing between them)।

যেমন, কোনো গ্যাসের অণ্তে n-সংখ্যক পরমাণু থাকলে, তার স্বাধীনতার মাত্রা 3n-এর বেশি হতে পারে না। এক পরমাণুক গ্যাসের ক্ষেত্রে n=1. কাজেই তার স্বাধীনতার মাত্রা সংখ্যা 3: দি-পরমাণুক গ্যাসের ক্ষেত্রে n=2. তারা পরস্পর নির্দিষ্ট দূরত্বে দৃচ্ভাবে আবন্ধ বলে, তাদের স্বাধীনতার মাত্রা সংখ্যা $=(3\times 2+1)=5:$ এ-পরমাণুক গ্যাসের বেলাভে আমরা পরমাণগুলির দৃই রক্ম বিন্যাস পেতে পর্তি এক, একটি কেন্দ্রীয় পরমাণ এবং উভয় পর্পে অবস্থিত অন্য দৃটি পরমাণু (ভাস্কেল আক্তি) এবং দুই,

ত্রিভ্জের তিন কোণায় তিনটি প্রমাণু। প্রথম ক্রেক্তে স্বাধীনতার মাত্রা সংখ্যা = 7 এবং দ্বিতীয় প্রথম $= (3 \times 3 - 3) = 6$; এইরূপে অন্যান্য বহুপরমাণুক গ্যাসেরও স্বাধীনতার মাত্রা নির্ণয় করা যায়

যখন প্রমাণগুলি অণুর কম্পনে (vibration) অংশ গ্রহণ করে ৩খন কম্পনজনিত সাধীনতার মাত্রা (vibrational degrees of freedom) নামক অতিরিস্ত মাত্রা বিবেচনা করা প্রয়োজন হয়

210. শন্তির সমবিভাজন নীতি (Principle of equi-partition of energy):

গ্যাসের গভীয়তত্ত্ব অনুযায়ী ধরে নেওয়া হয় যে কোনে অপুর ক্ষেত্র ভিন্ট ইচ্ছাই অঞ্চ বরণবর উপাংশ-গভিবেগের গড় বর্গ মান সমান অর্থাৎ, $\vec{u}^2=\vec{\overline{v}}^2=\vec{\overline{w}}^2$ [এক্ষেত্র $\vec{\overline{u}}$, $\vec{\overline{v}}$ এবং $\vec{\overline{w}}$ অপুর উপাংশ গভিবেগের গড় মান]। সূতরাং, আনুষ্ঠ্যিক গভিশক্তিও সমান অর্থাৎ, $\frac{1}{2}m\overline{u}^2=\frac{1}{2}m\overline{\overline{v}}^2=\frac{1}{2}m\overline{v}^2$

কিন্তু আমরা জানি, $c^2 = \overline{u}^2 + \overline{v}^2 + \overline{\omega}^2$; কাজেই

$$\frac{1}{2}mu^{-2} = \frac{1}{2}mv^{-2} = \frac{1}{2}m\omega^{-2} = \frac{1}{3}\left(\frac{1}{2}mc^{2}\right)$$

আবার, 2.5 অনুচেছদে আমরা দেখেছি, প্রতি অণুর গড় শত্তি = $\frac{1}{2}mc^2 = \frac{3}{2}KT$ |k|= বোল জ্যানি ধ্রবরাশি।

$$\therefore \frac{1}{2}m\overline{\omega}^2 = \frac{1}{2}m\overline{\omega}^2 = \frac{1}{2}m\overline{\omega}^2 = \frac{1}{3}\left(\frac{3}{2}kT\right) = \frac{1}{2}k.T.$$

এক প্রমাণুক অণুর স্বাধীনতার সংখ্যা = 3 ; উক্ত তিনটি উপাংশ তিনটি অক্ষের সাপেক্ষে ধরা হয়েছে। সূতরাং, তারা স্বাধীনতার মাত্রাসংখ্যা বোঝায়।

কাজেই বলা যেতে পারে যে, প্রত্যেক এক পরমাণুক অণুর স্বাধীনতার মাত্রা পিছ্ গড় গতিশান্ত = $\frac{1}{2}$ KT.

এই ৩থা যে-কোনো সংখ্যা স্বাধীনতার মাত্রার বেলাতেও প্রয়োজা। একেই বিভিন্ন স্বাধীনতার মাত্রা বরাবর শক্তির বিভাজন নীতি বলা হয়। এই নীতি অনুযায়ী আমরা বলতে পারি যে তাপীয় সাম্ম্যে (thermal equilibrium) অবহিথত কোনো গতীয় সংস্থার (dynamical system) বেলায় মোট শক্তি স্বাধীনতার বিভিন্ন মাত্রা বরাবর সমভাবে বিভাজিত হয় এবং প্রত্যেক অণুর স্বাধীনতার মাত্রা পিছ গড় গতিশক্তির পরিমাণ = $\frac{1}{2}$ KT.

D. EXAMPLES D

একটি এক লিটার ফ্লান্কে 10²⁵ অক্সিঞ্চেন অণু আছে। প্রতিটি অণুর ভর 2.7 × 10⁻²⁸ kg
 এবং গড় বর্গবেগের বর্গমূল মান 4 × 10²m/s হলে ফ্লান্কের চাপ কত হবে ? গ্যানের মোট
 গতিশক্তি কত ?

উঃ। সাপ $P = \frac{1}{3} \frac{mnc_{rms}^2}{V}$; এখানে $m = 2.7 \times 10^{-28} \text{ kg}$; $n = 10^{25}$; $c_{rms} = 4 \times 10^2 \text{m/s}$ এবং V = 1 litre = 10^{-3}m^3

$$\therefore P = \frac{1}{3} \times \frac{2.7 \times 10^{-28} \times 10^{28} \times \left(4 \times 10^{2}\right)^{2}}{10^{-3}} = 14.4 \times 10^{4} \text{ N/m}^{2}.$$

প্রতিটির জন্মর রাজিশন্তি = $\frac{1}{2}mc_{mn}^2$ = $\frac{1}{2}\times 2.7\times 10^{-28}\times (4\times 10^2)^2$ = 2.16×10^{-28} joule.

2. মোলার গ্যাস ধ্বক R_0 এর মান $8.31 \times 10^7 \, erg/mol \, K$ হলে, θ C তাপমাত্রায় কার্বন ডাইঅক্সাইড অণুর গড় বর্গবেগের বর্গমূল মান কী হবে ? কার্বন ডাইঅক্সাইডের আণবিক ভর = 44.

উঃ।
$$c_{rms}=\sqrt{\frac{3P}{\rho}}$$
 ; আবার আদর্শ গ্যাসের ক্ষেত্রে $PV=R_0T$

$$\therefore c_{ims} = \sqrt{\frac{3R_0.T}{V.\rho}} = \sqrt{\frac{3R_0T}{M_0}}$$
 [$M_0 =$ এক গ্রাম-অণু গ্যাসের ভর}

 ΔT $\approx C.5$, $R_0 = 8.31 \times 10^7 \text{ erg}$; T = 273 + 0 = 273 K; $M_0 = 44 \text{ g}$.

∴
$$e_{rms} = \sqrt{\frac{3 \times 5.31 \times 10^7 \times 273}{44}} = 3.93 \times 10^4 \text{ cm/s}$$
 (প্রায়)।

3) বাভাবিক চাপ ও তাপমাত্রায় হাইডোজেন অণুর গড় বর্গবেগের বর্গমূল 1.84 km/s
হলে অক্সিজেন অণুর কত হবে? হাইডোজেন ও অক্সিজেনের আণবিক ভর 2 এবং 32।

উঃ
$$+\frac{1}{2}mc_{rms}^2 = \frac{3}{2}kT$$
. অংকা, $mc_{rms}^2 = 3kT =$ ধুকক; $\therefore c_h^2.m_h = c_0^2.m_0$
এখন, $m_h = 2$; $m_0 = 32$, $c_h = 1.84$ km/s;; $c_0 = ?$

$$\therefore c_0 = \sqrt{\frac{c_h^2 m_h}{m_0}} = c_h \sqrt{\frac{m_h}{m_0}} = 1.84 \times \sqrt{\frac{2}{32}} = 1.84 \times \frac{1}{4} = 0.46 \text{ km/s}.$$

কোন তাপমাত্রায় নাইট্রোজেন অণুর গড় বর্গবেগের বর্গমূল মান স্বাভাবিক চাপ ও তাপমাত্রার মান অপেক্ষা দ্বিগুণ হবে ? চাপ অপরিবর্তিত আছে ধরে নাও।

উঃ।
$$\epsilon_{mn}=\sqrt{\frac{3P}{\rho}}$$
 : আদর্শ গ্যাসের বেলায়, $PV=R_0T$ অথবা, $P=\frac{R_0T}{V}$

:
$$c_{rms} = \sqrt{\frac{3R_0T}{N_0}} = \sqrt{\frac{3R_0T}{M_0}}$$
 [$M_0 = \Phi\Phi$ গ্রাম-জাণু গ্রামের ভর]

ভার্যাহি, $\epsilon_{mn} \sim \sqrt{T}$, এখন সাভাবিক অপমাত্রায় $(T_0 {\rm K})$, গড় বর্গবেগেরে বর্গনে মান ϵ_{mn} এলি, প্রান্থায়ী নির্দেষ্ট অপমাত্র। (ধর, I ${\rm K}$) হরে $2\epsilon_{mns}$

Sec. (2)
$$\frac{2c_{rms}}{c_{rms}} = \sqrt{I_0}$$
 of $A = \frac{T}{T_0}$ $\therefore T = 4T_0 = 4 \times 27.3 = 1092 \text{ K}$

アデアア メディ 5 75 579 19 1092 273 = 819 C.

5 1092 K উন্মতায় কার্বন ভাইঅকাইড গ্যাস অণুর ঝার. এম. এস. গভিবেগ নির্ণয় করো। প্রয়াণ চাপ ও উন্মতায় কার্বন ভাইঅকাইড গ্যাসের ঘনই - 1.997 kg/m².

উঃ। প্রথকে প্রমাল চাপে (0.76 m পরিদ) ও উদ্ধৃতায় (৪)ু এসে চল্ল ছাল্ল এনু এ এনু এ কিনীয় করতে হরে।

এখালে $P_0 \approx 0.76 \,\mathrm{m}$ পার্যে = $1.01 \times 10^5 \,\mathrm{N/m^2}$, $\rho_0 = 1.90^7 \,\mathrm{kg m^3}$

$$\therefore (c_{10})_{cir.} = \frac{\sqrt{3P_{0}}}{\sqrt{\rho_{0}}} = \sqrt{\frac{3 \times 1.01 \times 10^{5}}{1.997}} = 3.8915 \times 10^{2} \,\text{m/s}$$

End' sile, com a NT

$$\therefore \frac{(e^{-1})_{m}}{c_{rms}} = \sqrt{\frac{2^{-3}}{1092}} \therefore c_{rms} = c_0 \sqrt{\frac{1092}{273}} = (2c_0)_{rms}$$

 $c_{mn} = 2 \times 3.8915 \times 10^2 = 7.719 \times 10^2 \text{ m/s}.$

6 27 ে তাপমাত্রায় হিলিয়াম গ্যাসের প্রতি গ্রাম-অণুর গতিশক্তি নিণয় করো ৷ $R_0 = 8.3 \times 10^7 \, {\rm erg/mol} \, {\rm K}_0$

উঃ। কোনো গ্রামের প্রতি গ্রাম - অণ্র (। মোল) গড় গতিশক্তি = $\frac{3}{2}R_0I$

 $\mathfrak{A}(\mathfrak{S})$, $R_0 = 8.3 \times 10^7 \text{ erg/mol K}$; T = 27 + 273 = 300 K

$$\therefore$$
 51 ($= \frac{3}{2} \times 8.3 \times 10^7 \times 300 \text{ erg} = 3735 \times 10^7 \text{ erg} = 3735 \text{ joule.}$

7) 5 লিটার আয়তনের একটি পাত্রে $16 \, \mathrm{g}$ অক্সিজেন, $28 \, \mathrm{g}$ নাইট্রোজেন এবং $44 \, \mathrm{g}$ কার্বন ডাইঅক্সাইড গ্যাসের মিশ্রণ রাখা আছে। মিশ্রণের উশ্বতা $27 \, \mathrm{C}$ হলে গ্যাস মিশ্রণটি পাত্রের দেওয়ালে কত চাপ প্রয়োগ করবে ? মোলার গ্যাস-ধুবক $R_0 = 8.315 \, \mathrm{joule/mol} \, \mathrm{K}.$

উঃ। আমরা জানি, $PV=rac{m}{M}R_0T$ অথবা, $P=rac{mR_0T}{MV}$ [m=গ্যাসের ভর এবং M= গ্যাসের আথবিক ভর)

াৰিক ভব|
ভাজিজেন গ্যামের চাপ,
$$p_1 = \frac{16}{32} \times \frac{8.315 \times 300}{5 \times 10^{-3}} = \frac{\frac{1}{2} \times 8.315 \times 60}{10^{-3}}$$
 [1 লিটার = 10 3 m³]

একই ভাবে, নাইট্রোজেন গ্যাসের চাপ
$$p_2=\frac{28}{28}\times\frac{8.315\times300}{5\times10^{-3}}=\frac{8.315\times60}{10^{-3}}$$

গ্রন্থ কার্নন ভাইভাক্সিইড গ্যামের চাপ =
$$p_3 = \frac{44}{44} \times \frac{8.315 \times 300}{5 \times 10^{-3}} = \frac{8.315 \times 60}{10}$$

অতএব, গ্যাস মিশ্রণের চাপ

$$P = p_1 + p_2 + p_3 = \frac{8.35 \times 60}{10^{-3}} \left(\frac{1}{2} + 1 + 1\right) = \frac{8.35 \times 60 \times \frac{5}{2}}{10^{-3}} = 1.25 \times 10^6 \text{ newton/m}^2.$$

শুরুষ বন্ধ । দৈর্ঘ্যের একটি অনুভূমিক নলে (AB) কিছু আদর্শ গ্যাস আবন্ধ আছে।
গ্যাসের আণ্রিক ভর M; নলের A বিন্দু দিয়ে গত একটি উল্লম্ব আক্ষের সাপেক্ষে নলকে

স্থির কৌণিক বেগ w দিয়ে ঘোরানো হচ্ছে [চিত্র 2.4]। নলের সর্বত্র তাপমাত্রা সৃষম ও $m\omega^{2/2}$ পির ধরে নিয়ে প্রমাণ করো যে, P_A এবং P_B দুই মুখের চাপ হলে, $P_B = P_A e^{-2RT}$ যেখানে R গ্যাস ধুবক এবং T নলের পির তাপমাত্রা।

উঃ। ধর, A প্রান্ত থেকে x এবং x + dx দৈর্ঘ্যের ভিতর একটি গ্যাস সূত্র (pellet) বিবেচনা করা হচ্ছে (চিত্র 2.4)। x দূরত্বে চাপ p এবং x + dx দূরত্বে p + dp হলে ঐ সূত্রের উপর ক্রিয়ারত বল $= \alpha.dp$ $[\alpha = a$ লের প্রস্থাসচ্চদ]। যেহেতু গ্যাস-সূত্রটি x ব্যাসার্ধের বৃত্তপথে ছবছে, গই ($\alpha dp = (dm) \cos^2 x$ [dm =গ্যাস-সূত্রের ভর] (1)

অবস্থার সমীকরণ pV = nRT বিবেচনা করলে পাই,

$$p.\omega.dx = \frac{dm}{M}.R.T$$
 অথবা, $dm = \frac{M.p.\alpha}{RT}dx$.

(i) নং সমীকরণের সাহায্যে পাই $\alpha.dp = \frac{M.p.\alpha}{RT} \omega^2 x.dx$.

অথবা,
$$\frac{dp}{p} = \frac{M\omega^2}{RT} . x dx$$

ইন্টিপ্রেট করলে,
$$\int_{p_A}^{p_B} \frac{dp}{p} = \int_{0}^{I} \frac{M\omega^2}{RT} . x dx$$

অথবা,
$$\log \frac{p_B}{p_A} = \frac{M\omega^2 l^2}{2RT}$$
 অথবা $p_B = p_A e^{\frac{M\omega^2 l^2}{2RT}}$

গ্যানের গতীয়তত্ত্ব অনুযায়ী ধরে নেওয়া হয় যে গ্যামের অণুগুলি সর্বদা পরম্পরের সঞ্চো এবং

আধারের (container) দেওয়ালের সজো ধাকা খায়।
থেহেও অণুগুলি পরস্পরের উপর কোন আকর্ষণ বল
প্রয়োগ করে না, তাই পরপর দুটি ধাকার ভিতর অণগুলি
যে দূরত্ব অভিক্রম করে তা ঋজুরেখা বরাবর করে এবং
ওই সময় অণুর বেগ অপরিবর্তিত থাকে। এই দূরত্বকে
অণুর মুক্তপথ (free path) বলে। এটা সহজেই অণুমেয়
যে কোনো বিশেষ অণুর মুক্ত পথগুলি সব সমান হতে
পারে না (চিত্র 2.5)। এই কারণে গড় মুক্ত
পথের করানা করা হয়েছে এর সংজ্ঞা নিম্নর্প।

প্রতি পরপর দটি ধাঞার ভিতর অণু যে গড় দূরত্ব অতিক্রম করে তাকে ঐ অণ্র গড় মৃত্ত পথ বলা হয়। যদি

চিত্ৰ 2.4

n সংখ্যাক ধাঝার ভিতর অণ্ মোট d দূরত্ব অভিক্রম করে ভবে সংজ্ঞা অনুমায়ী গড় মৃত্ত পথ (λ) . হবে $\lambda=rac{d}{n}$.

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- কোনো কথ আধারে গ্যাস রাখলে গ্যাস অণুগুলি আধারের দেওয়ালে অনিয়মিতভাবে
 ধাক্কা দেয়। কিছু তাপমাত্রার পরিবর্তন না হলে, আধারে গ্যাসের চাপ প্রির থাকে। এর
 কারণ কী?
- একটি ঘনকাকৃতির পাত্রের অভ্যন্তরস্থ একটি দেওয়াল গ্যাস অণুকে প্রতিক্ষিপ্ত (rebound)
 করে না। ঘনকের এই তলে গ্যাসের চাপ কি অন্যান্য তলের তুলনায় কম হবে ? যদি
 হয়, তবে কেন হয়, তা ব্যাখ্যা করো।
- যে দেওয়াল গ্যাস-অণুকে প্রতিক্ষিপ্ত করে না, সেই দেওয়ালে গ্যাস-অণু ধাঞ্চা দিলে তার প্রতিক্ষিপ্ত গতিবেগ হবে শূন্য। ফলে, এই দেওয়ালে ধাঞ্চা দিলে অণুর ভরবেগ পরিবর্তন হবে গ্যাস-অণুর ভর এবং অণুর আপতিত গতিবেগের গুণফলের সমান। কিন্তু অন্যান্য দেওয়ালে গ্যাস-অণুগুলির ভরবেগের পরিবর্তন হবে, অণুর ভর এবং দ্বিগুণ গতিবেগের গুণফলের সমান। সূতরাং প্রথম দেওয়ালে প্রযুক্ত বল হবে অন্যান্য দেওয়ালে প্রযুক্ত বলের অর্ধেক। অথবা প্রথম দেওয়ালের চাপ অন্যান্য দেওয়ালের তুলনায় কম হবে।
- 3. A এবং B দৃটি সমআয়তনের পাত্রকে একই উন্মতায় একই গ্যাস দ্বারা ভর্তি করা হল। A পাত্রের তুলনায় B পাত্রের চাপ দ্বিগুণ হলে B পাত্রের অণুর সংখ্যা এবং A পাত্রের অণুর সংখ্যার অনুপাত কী হবে ?
- পাত্রের চাপ $P=rac{1}{3}rac{M}{V}c_{rms}^2=rac{1}{3}.rac{mn}{V}c_{rms}^2$; কাজেই, $P\propto n$ কারণ অন্যান্য রাশিগুলি ধ্রুবক।

$$\frac{P_B}{P_A} = \frac{n_B}{n_A} = \frac{2}{1} A$$

- 4. বিভিন্ন আদর্শ গ্যাসের তাপমাত্রা সমান হলে, তাদের অণুর আর. এম্. এস্. গতিবেগ কি

 শাসমান হবে ?
- কোনো গ্যাসের এক প্রায় অপুর বেলায় $c_{mis} = \sqrt{\frac{3R_0T}{M_0}}$ এখন, 1 প্রায় অপুর ক্ষেত্রে বিভিন্ন গ্যাসের গ্যাস-প্রবক (R_0) সমান : তাছাড়া তাপমাত্রা যদি সমান হয়, তবে আমরা পাই, $c_{mis} \propto \frac{1}{\sqrt{M_0}}$; এক্ষেত্রে

বলা যায়, একই তাপমাত্রায় ভারী গ্যাস-অণুর আর. এম্. এস্. গতিরেগ হালকা অণুর চাইতে কম হবে।

- 5. যখন একটি গ্যাস সিলিভারকে গাড়িতে চাপিয়ে নিয়ে যাওয়া হয় তখন কি গ্যাস অণগুলির গতিশক্তি বৃষ্ধি পায় ? তাপমাত্রা বৃষ্ধি পায় ?
- গাড়ির গতিবেগ বৃদ্ধি পেলেও গাসে অণ্গুলির গতিবেগ বৃদ্ধি পায় না। গাসে অণ্গুলির গতিবেগ পূর্বের নায় একই থাকে। ফলে, অণ্গুলির গতিশন্তি বা তাপমাত্রা কোন পরিবর্তন হয় না।
- 6. রালা করার গ্যাস সিলিভারের অভ্যন্তরুথ গ্যাস কি আদর্শ গ্যাস সমীকরণ মেনে চলে ?
- না ; রাল্লার গ্যাস সিলিন্ডারের গ্যাস ক্রমাগত খরচ হয় এবং ঐ গ্যাসের ভর কমতে থাকে। কিয়ু
 আদর্শ গ্যাস সমীকরণ প্রয়োজা হয় যখন গ্যাসের ভর স্থির থাকে।
- একটি আবেইনীর মধ্যে কিছু গ্যাস রাখা আছে। পাল্পের সাহায্যে কিছু গ্যাস বার করে
 নিয়ে গ্যাসের চাপ কমানো হল। গ্যাসের তাপমাত্রা কি চার্লস সূত্র অনুযায়ী কমে যাবে ?
- না : চার্লস সূত্র প্রয়োজা হবে যখন গ্যাসের ভর অপরিবর্তিত থাকে।
- 8. পরম শূন্য তাপমাত্রায় গ্যাস-অণুর গতিবেগ কী হবে?
- গ্যাসের গতীয় তত্ত্ব থেকে জানা যায় যে গ্যাস—অণুর মোট শক্তি $=\frac{3}{2}\,kT$ যেখানে k=2 বুবক; অতএব মোট শক্তি $\propto T$ । এখন গ্যাস অণুগুলির ভিতর পারম্পরিক আকর্ষণ নেই বলে, অণুগুলির কোনো মিথতিশক্তি থাকে না; গ্যাস—অণুর শক্তি কেবলমাত্র গতিশক্তি। T=0 হলে গ্যাস—অণুর গতিশক্তি হবে শূন্য এবং সেই কারণে গতিবেগও হবে শূন্য।
- সমতাপমাত্রায় সকল প্রকার আদর্শ গ্যাসের 1 মোলে বে অণুগুলি থাকে, তাদের গড়
 গতিশক্তি কি সমান হয় ?
- ই্যা, সমান হয়। আদর্শ গ্যাসের 1 মোলের গড় গতিশন্তি $E=\frac{3}{2}$ R_0T ; R_0 –মোলার গ্যাস-ধ্বক সকল প্রকার গ্যাসের বেলায় সমান। তাছাড়া তাপমাত্রা (T) সমান হওয়ায় 1 মোলের গড় গতিশন্তি সকল প্রকার গ্যাসের বেলায় সমান।
- 10. সচ্ছিদ্র দেওয়ালযুক্ত একটি পাত্রকে দুটি গ্যাসের মিশ্রণ দ্বারা ভর্তি করে বায়ুশূন্য স্থানে রাখা হল। মিশ্রণের যে গ্যাসটি হালকা, সেটি আগে পাত্র হতে নিদ্ধান্ত হবে। কেন ?
- ullet তাপমাত্রা যদি সমান থাকে, তবে গ্যাস-অণুর গড় বর্গবেগের বর্গমূল $c_{rms} \simeq \frac{1}{\sqrt{M_0}}$; এথেকে বলা যায় যে হালকা গ্যাসের অণুগুলির আর. এম্. এমু. গতিবেগ ভারী গ্যাসের অণুর চাইতে বেশি। এই কারণে হালকা গ্যাসের অণুগুলি দেওয়ালের ছিদ্র দিয়ে আগেই বার হয়ে আসবে।
- 11. গ্যাসের গতীয় তত্ত্ব কোন্ ধরনের গ্যাসের পক্ষে প্রযোজ্য।
- PV = RT এই গ্যাস সমীকরণ কেবলমাত্র আদর্শ গ্যাসের পক্ষে খাটে। কয়েকটি আদর্শ মূল
 অজীকারের উপর প্রতিষ্ঠিত গতীয় তত্ত্ব হতে উপরোক্ত গ্যাস সমীকরণ প্রতিষ্ঠা করা যায়, এটা আমরা
 জানি। ঐ অজীকারগুলি আদর্শ গ্যাসের বেলাতে প্রয়োজ্য। অতএব, গ্যাসের গতীয় তত্ত্ব কেবলমাত্র
 আদর্শ গ্যাসের পক্ষেই প্রয়োজ্য; বাস্তব গ্যাসের (real gases) পক্ষে সকল অবস্থাতেই প্রয়োজ্য নয়।
- 12. একটি পাত্র A-তে হাইড়োজেন গ্যাস এবং **দ্বিপৃণ আয়তনের অপর একটি** পাত্র B-তে সমভরের অক্সিজেন গ্যাস আছে। গ্যাস দৃটির তাপমাত্রা সমান। (i) হাইড়োজেন এবং অক্সিজেন অণ্র গড় গতিশক্তির অনুপাত (ii) গ্যাস-অণু দৃটির আর. এম্. এস্ গতিবেগের অনুপাত এবং (iii) পাত্র দৃটিতে গ্যাসের চাপের অনুপাত কী হবে ?
- (i) তাপমাত্রা সমান থাকায় গ্যাস দৃটির অণ্র গড় গতিশত্তি সমান হরে ৷ অণ্র গড় গতিশত্তি

 $E=rac{3}{2}\,kT$ = ধুবক imes T অথবা, $E \propto T$. অঙএব গড় গতিশস্তির অনুপাও = 1:1

(ii) আমরা জানি,
$$\frac{(c_1)_{rms}}{(c_2)_{rms}} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{32}{2}} = 4:1$$

(iii) আমরা জানি, $P = \frac{1}{3} \frac{M}{V} c_{rms}^2$; প্রশ্নানুযায়ী M ধ্বক।

জতএব,
$$\frac{P_1}{P_2} = \frac{\left(c_1^2\right)_{rms}}{V_1} \times \frac{V_2}{\left(c_2^2\right)_{rms}} = \frac{V_2}{V_1} \left(\frac{c_1}{c_2}\right)_{rms}^2 = \frac{2}{1} \times \left(\frac{4}{1}\right)^2 = \frac{32}{1}$$
.

লচনামূলক প্রশা

- পদার্থের অণুগুলি যে সতত সম্বারমান তা কীর্ণে বোঝা যায়?
- ব্রাউনীয় গতি কাকে বলে? এই গতির বৈশিশ্যা কী? ঐরুপ গতির কারণ কী?
- গ্যাসের গতীয় তত্ত্ব কাকে বলে ? এই তত্ত্বের মূল অঞ্জীকারগৃলি বিবৃত করে।
- গ্যাসের গতীয় তত্ত্ব অনুযায়ী গ্যাসের চাপ ব্যাখ্যা করে। এবং একটি রাশিমালা প্রতিষ্ঠা করে।
- (a) গতীয় তত্ত্বের সাহায়্যে আদর্শ গ্যাসের চাপ ও উল্পন্তার ধারণা বাাখ্যা করো।
 - (b)গভীর তন্ত্ব অনুযায়ী প্রমাণ করো যে গ্যাসের চাপ $P=rac{2}{3} \; rac{E}{V} \; ; E=$ এক প্রাম-অণু গ্যাসের মোট গতিশন্তি এবং V = মোলার আয়তন।
 - (c) দেওয়া আছে যে T পরম তাপমাত্রায় আদর্শ গ্যাসের একটি অপুর গড় গতিশব্তি $\frac{3}{2} \left(rac{R_0}{N}
 ight) T$ ় বেখানে R_0 গ্যাস-
 - ধুবক এবং N অ্যাভোগাড়ো সংখ্যা। এক্ষেত্তে আদর্শ গ্যাসের সমীকরণ নির্ণয় করে।
- তাপমাত্রা গ্যাস-অপুর গড় গতিশক্তির সমানুপাতিক, তা প্রমাণ করা যায়।

লাট সংকিও উভরের প্রথ

- 1. ব্রাউনীয় গতি পর্যবেক্ষণের সময় আমরা তরলের অণুর গতি দেখি না, কোন কলিকার গতি দেখি?
- 2. আদর্শ গ্যাস কাকে বলে ?
- একটি পাত্রে দুটি বিভিন্ন গ্যাদের মিল্রণ আছে। অণুপ্রতি গড় গতিলত্তি কি দুই গ্যাদের বেলায় সমান ছবে ?
- 4. চারটি গ্যাস অগুর গতিবেগ v_1,v_2,v_3 এবং v_4 । এদের গড় বেগ এবং গড়বেগের বর্গমূল মান কন্ত ছবে m ?
- 5. একটি পাত্রে সমসংখ্যক হাইড়োজেন ও অক্সিজেন অণু আছে। বাক্সে একটি কৃদ্র ছিদ্র আছে। কোন গাাসটি মৃত ছিদ্র
- স্বাভাবিক চাপ ও তাপমাত্রায় 1 cm³ হাইডোজেন ও 1 cm³ অক্সিজেন আছে। কোন্ গ্যাসে অণুর সংখ্যা বেশী ?
- 7. সর্বাপেকা সম্ভাব্য গতিবেগ কাকে বলে ?
- 8. গড় মুক্ত পথের সংজ্ঞা দাও।

गरिकेश उँचरतत अर्थ

- গ্যাসের অণুগুলি সর্বদা অবিনায় গভিতে ছোটাছটি করে এই ধারণার স্বপক্তে সরাসরি সাক্ষা প্রমাণাদি কী আছে?
- 2. আর. এম. এস্. বেগ বলতে কী বোঝার?
- 3. গ্যাস-অণুর গড় গতিবেগ ও গড় বর্গবেগের বর্গমূল কাকে বলে ? গ্যাসের গভীয় তত্ত্বে কোন্টি বেলি প্রয়োজনীয় ?
- (a) একটি আদর্শ গ্যাসের অণুগুলির গড় বর্গবেগের বর্গমূল কীরুপভাবে পরিবর্তিত হবে যদি (i) তাপমাত্রা বৃশ্বি করা যায় (ii) গ্যাসের ঘনত ক্যানো বায়?

সংকেতঃ আদর্শ গ্যাসের চাপ P এবং ঘনত্ব ρ হলে, গ্যাস-অণ্র গড় বর্গবেগের বর্গমূল $c_{rms} = \sqrt{3P/\rho}$; এখন তাপমাত্রা বৃন্ধি করলে, গ্যাসের চাপ P বৃন্ধি পাবে; কাজেই c_{rms} -এর মান বৃন্ধি পাবে। আবার, উপরিউত্ত

সমীকরণ হতে পাই, c_{rm} $\propto \frac{1}{\sqrt{\rho}}$ অর্থাৎ গ্যাসের ঘনত্ব কমলে, c_{rm} - এর মান বাড়ে।]

5. ''একই প্রপন্নাত্রণ বিভিন্ন আদর্শ গাণ্ডের অণু লের আর. এন, এন পতিবেগের মান সমান ''এটা কি চিক্ত গু যুক্তি-সহ উত্তর দাও।

[সংকেত: $\epsilon_m = \sqrt{\frac{3R_0I}{M_0}}$, M_i থাম অর্থেরত তব]

- The state of the s গাাসের গভীষ পর্যান ই চাপের বাশিছাল হৈও বারল সূত্র ও আলভাগাড়ো প্রকল্প প্রতিক্ষা করে।.
- 7. গ্যানের গতীয় তত্ত্বানুষায়ী তাপমাব্রার ব্যাখ্যা কী ?
- এক গ্রাম অল্ লেণ্সের গতিশক্তি নির্ণয় করে। এব মাল কি সকল গাণ্সের ক্ষেত্র সমান ;
- 9. প্রমাণ করে যে গভায় ভব্তান্যায়া, গ্যাস-ভাগর গড় পতিশান্ত গোসেন প্রেম ভাপমাত্রার সম্মাণাতিক
- 10. সমউয়তার অক্সিজেন এবং হাইড়োজেন গাাসের অণুণালর এর, এম, এস, এর গতিবেগ সমান হবে কি ?

[Jt. Entrance 1989]

- গাাসের গভায় ৩০৬ গাাস- ৬৭গলিব মহাক্ষী ছিল্টেশন্তি পরিবর্তনের কথা বিবেচনা করা হয় না কেন ? !সংক্রেড ঃ গ্রাস ৬.৭%লব গড় গতিশন্তিক তুলনায় মহাক্ষীয় স্পিতিশত্তির পরিবর্তন এতই এগণ্য যে তাকে উপেক্ষা করা যায়।।
- 12. একই আয়তনের তিনটি পাত্রে একই তাপমারা ও চাপে তিনটি গ্যাস আছে। একটি গ্যাস এক-প্রমাণ্ক, দ্বিতারটি দ্বি-পর্মাণ্ক এবং ছুটারটি বহু-পর্মাণ্ক। পাত্রত্থ গ্যাসগ্লির অণ্র সংখ্যা কী সব সমান্ত এদের আর্, এম, এস, গতিবেগ কী সব সমান ৪ বিক বৰ্ণ ক্লিক্টে ১৩ বিক ব্যক্তি বিজ্ঞান ক্লিক্টে ক্লিক্টে ব [সংকেত ঃ আন্ভোলকুট উপপাদা অনুসারে পাতুস্থ গাসিগুলির অণ্য সংখ্যা সমান। আগবিক ভর (M) গাসিগুলির

ক্ষেত্রে বিভিন্ন বলে আর, এম্. এম্. গতিবেচ্ $\binom{c_{em}}{c_{em}} = \sqrt{\frac{3RT}{M}}$ সমান নয়। $_{\parallel}$

বহুমুখী পছদের প্রশ্ন [Multiple choice type (MCQ)]

- (A) নির্ভুস উত্তরটি √ চিহ্নিত করো:
 - [i] কোন গ্যাসের গড়বেগ ϵ , r.m s. বেগ $\epsilon_{
 m mis}$ এবং সর্বাপেক্ষা সম্ভাব্য বেগ $C_{
 m m}$ হলে,

(A) $c_m < \epsilon < \epsilon_{rms}$ (B) $\overline{\epsilon} < c_{rms} < c_{rm}$ (C) $\epsilon_m > \overline{\epsilon} > \epsilon_{rms}$ (D) क्लामिक्ट क्रिट महा

- [ii] পারে রাখা গাসি পারের দেওয়ালে যে চাপ পেয় তার কারণ গাসে অণুগুলি [Jt. Entrance 2006]
 - (A) গতিশক্তি নন্ট করে,
 - (B) দেওয়ালে আটকে থাকে.
 - (C) দেওয়ালের দিকে জ্বণসহ অগ্রসর হয়,
 - (D) দেওয়ালে ধারা দিয়ে ভরবেগ পরিবর্তন করে।
- [iii] গতীয়তত্ত্ব অন্যায়ী পরম শুনা উন্মতায়

 - (A) জল জামে যায় (B) তরল হিলিয়াম জামে যায়
 - (C') আগবিক গতি স্তব্ধ হয়ে যায় (I)। তরল হাইড়োজেন জয়ে যায়।
- [iv] একটি আদর্শ গালের চাপ P এবং আয়তন প্রতি গড় গতিশান্তি ৷ তাদের মধ্যে প্রকৃত সম্পর্ক ধরে

(A) P = E (B) $P = \frac{E}{2}$ (C) $P = \frac{2}{3}E$ (D) $P = \frac{8}{2}E$

[v] নির্দিষ্ট আয়তনের একটি কম্প পারে m ভারের আদর্শ পাসে জাগে: তালেব i m ১ বেগ i) আভাব ও m ভারের একট গ্যাস পাত্রে ঢোকালে ফি.ব তাপামাত্রায় চাপ ১৮ 2৮ জাস অগত্তিব বর্তমান rms বেগ হবে

 $(A) v \sim (B) 2v \sim (C) \sqrt{2}v \Leftrightarrow (D) \frac{v}{\sqrt{2}}$

- [vi] কোনো পালের বলত ৪০০ ম উস্কল্ড rms প্রবেগ হবে
 - (A) 200 K তাপমাত্রার গতিবেশের চারগুণ, .
 - (B) 200K ভাপমাত্রার গতিবেশের অর্বেক,
 - (C) 200K ভাপমাত্রার গতিবেগের দ্বিগুণ,
 - (D) 200K তাপমাত্রার গতিবেগের সমান)
- [৩]] আন্তর্ন লাড়ের হিন্তিট ইকুল্ল সর্বাল্যকা সভাবা পদ্ভিত্ত তথা পঞ্জ বেলিক বাহিক মান ১০০০ তাতকো c de অনুপাত হবে

	(A) $\sqrt{\frac{3}{2}}$ (B) $\sqrt{\frac{2}{3}}$ (C) $\sqrt{\frac{3}{4}}$ (D) $\frac{2}{\sqrt{3}}$.
	গ্যাস অণুর _{r.m.s.} গতিবেগ
	(A) তাপমাত্রা <i>1</i> -এর সমানুপাতিক (B) তাপম'তা 1 এর বাঞ্চনুপাতিক
	(C) আর্ণবিক ভরের বাস্তানুপাতিক (D) (কাল্ডাই নয়।
[ix]	নিম্নলিখিত রাশিগুলির মধ্যে কোন্টি নির্দিউ তাপামন্তায় সকল প্রকার গাসে অণুর বেলায় সমান ?
	(A) ভর (B) দ্রুতি (C) ভরবেগ (D) গতিশান্ত।
[x]	আদর্শ গ্রান্সের চাপের রাশিমালা $p=rac{2}{3}rac{E}{V}$ এখানে E ব্রেক্সেছ
	(A) বৈখিক গতিশক্তি (B) বৃত্তীয় গতিশক্তি (C) কম্পনজনিত গতিশক্তি (D) মোট গতিশক্তি।
[xi]	নিম্নলিখিত গ্যাসগুলির মধ্যে কোন্টির নির্দিষ্ট ভাপমাত্রায় rm ে শতিবেল সর্বাধিক ?
	(A) হাইডোজেন (B) নাইট্রোজেন (C) অগ্নিজেন (D) কার্বন ডাই- অক্সাইড।
[xii]	ঘরের তাপমাত্রায় অক্সিজেন গ্যাস অণুর rm.s গতিবেগ প্রায় 500 m/s। ঐ তাপমাত্রায় হাইড়োজেন গ্যাসের rm.s
	গতিবেগ হবে। ³
	(A) 125 m/s (B) 2000 m/s (C) 8000 m/s (D) 31 m/s.
[xiii]	অক্সিজেন অণু হাইড়োজেন অণু অপেকা 16 গুণ ভারী হলে একই তাপমাদ্রার তাদের rm ১ গতিবেশে অনুপাত
	(A) 2:1 (B) 1:2 (C) 4:1 (D) 1:4.
(xiv)	কোন তাপমাত্রায় হাইড়োজেন অণুর r.m.s. বেগ 47°C তাপমাত্রার অক্সিজেন অণুব r.m.১ গতিবেগের সমান হবে ?
	(A) 80K (B) -73K (C) 3K (D) 20K.
[xv]	দুটি পারে 1:5 অনুপাতে হাইডোজেন ও অক্সিজেন গ্যাসের মিশ্রণ থাকলে, ঐ দুই গ্যাসের অণুগুলির গড়
	গতিশক্তির অনুপাত
	(A) 1:16 (B) 1:4 (C) 1:5 (D) 1:1.
[xvi]	কোনো আদর্শ গ্যাসের r.m.s. বেগ ে। তাপমাত্রা স্থিররেখে গ্যাসের আয়তন দ্বিগুণ করলে ওই মান হবে
	The state of the s
	(A) $2C$ (B) $\sqrt{2}C$ (C) $\sqrt{2}$ (D) C
[xvii]	কোনো নির্দিন্ট পরিমাণ গ্যাসের অভান্তরীণ শক্তি নির্ভর করে
	(A) চাপের উপর (B) আয়তনের ওপর (C) তাপমাত্রার ওপর (D) খনত্থের তথ্য
(xviii] এক মোল পরিমাণ আদর্শ গ্যাসের গতিশন্তির মান
	(A) $KT = \frac{1}{2}RT$ (B) $\frac{1}{2}RT$ (C) $\frac{3}{2}RT$ (D) $\frac{3}{2}KT$.
[xix]	কোন আদর্শ গ্যাসের রুশ্বতাপ প্রসারণে বাহ্যিক কৃতকার্য ১W হলে
[xx]	(A) $\Delta W>0$ (B) $\Delta W<0$ (C) $\Delta W=0$ (D) কেন্টোডিব (T^1) সমানুপাতিক। ওই গ্যাসটিব একটি গ্যাসের রুশ্বতাপ পরিবর্তনে চাপ (P) পরম তাপমাত্রার ত্রিঘাতের (T^1) সমানুপাতিক। ওই গ্যাসটিব
	0
	C - अह भाग वृद्ध अस्ति । स्वर्थ प्राप्त प्राप्त प्राप्त कर की विकास मान्य कर की विकास स्वर्थ कर की विकास स्वर्ध कर की विकास स्वर्थ कर की विकास स्वर्ध कर की विकास कर की विकास स्वर्ध क
	·
	(A) $\frac{4}{8}$ 1. (B) 2. (C) $\frac{5}{8}$ 11 (D) $\frac{3}{2}$ 2. (A)
[ব্যালের চিশ্রর আছে। অক্সিজেন অণ্যালর গড় বেগের বগমূল
[XXI]	একটি পাত্রে হাইড্রোজেন ও আক্সজেন বা সাধ্যা বিশ্ব বিশ্ব বিশ্ব বিশ্ব হবে (A) হাইড্রোজেনের একই রাশির 4 গুণ হবে
	(A) electronical and the second secon
	(C) হাইড্রোজেনের একই রাশির $\frac{1}{4}$ গুণ হবে (D) হাইড্রোজেনের একই রাশির $\frac{1}{16}$ গুণ হবে।
	(Jt. Chtrance 2000
	ুযদি k বোলজম্যান ধুবক ও ়ি তাপমাত্রা হয় তাহলে গ্যাদের প্রতি অণুর গড় গতিশক্তি হবে,
[xxii] योष १ (वीलक्ष्यानि धुवक छ । ज्ञानसाधा रस जनगर ।
	(A) $\frac{2}{3}$ KT (B) $\sqrt{\frac{2}{3}}$ KT (C) $\frac{3}{2}$ KT (D) $\sqrt{\frac{3}{2}}$ KT
	14/3 61

[xxiii]	একটি < জিটার পারে কোনো গাটের 10^{24} সংখ্যক ফলু আছে। প্রতিটি অপুর ভব 2.4×10^{-24} g . গড়
	বর্ণবোরে বর্ণমূল হল 3.5 × 10° cm । । গাল্সের চাল হবে প্রায়
	(A) 2×10^6 dyne cm ⁻² (B) 10^6 dyne cm ⁻²
	(C) 1x 10° dyne cm - [Jt. Entrance 2005]
[xxiv]	এক প্ৰায় অৰু বিকিয়ায় গাঢ়েকৰ ১০০০ উদ্বাহায় গতিকাঁৱ ইবে (R ₀ = 8.3 × 10 ⁷ erg/mole k) (A) 1000J (B) 3735 J (C) 2000J (D) 1500J.
f 1	A SECONDARY WAS A WARREN OF CHARLES OF CHARLES OF CHARLES
[xxv]	্বিটি বিজ্ঞান বিজ্ঞান বিভিন্ন বিজ্ঞান বিশ্ব বিজ্ঞান বিশ্ব বিজ্ঞান বিশ্ব বিজ্ঞান বিজ্ঞান বিশ্ব বি
	রাখা হল , গাাস দটির ভিতর তাপের প্রাহ হয়ে ,শবে একটি অন্তিম সাধারণ তাপমাত্রা উপস্থিত হল। To
	তাপমাত্রায় পরিপ্রেক্সিতে ঐ সাধারণ তাপমাত্রা T _ব কবে,
	(A) $T_1 = \frac{7}{3} T_0$ (B) $T_1 = \frac{3}{2} T_0$ (C) $T_1 = \frac{3}{2} T_0$ (D) $T_1 = \frac{3}{7} T_0$
	[x.I.E.E. Exam. 2006]
	त्रिशीन पृत्रपं करता (Fill up the gaps) ३
	গ্যাস-অণুর গড় বর্গবেশের বর্গমূল মান নির্ভর করে আর্ণাবক এবং উপর।
	গ্যাস-অণুর গড় রৈখিক গতিশান্তি তার সমানুপাতিক।
	T পরম তাপমাত্রার এক মোল আদর্শ গ্যাসের গড় রৈখিক গতিশব্তি।
[iv]	একটি গাাস একটি অতিরিপ্ত সম্পর্ক VP ² মেনে ৮লে। গ্যাসের প্রাথমিক তাপমাত্রা এবং আয়তন যথাক্রমে T এবং
	VI जातक 2V रहा, जनमाना रखI
	গাাসের গতীয় তত্ত্ব অনুযায়ী গাাস অণুগুলির সম্পূর্ণ শক্তি।
[vi]	গভীয় তত্ত্বের আলোচনায় গড় বেগ অপেন্দা বেশি প্রয়োজনীয়।
(C) 🔯	कि निर्कुल विठात करता (True or false type):
[i]	বিভিন্ন গ্যাদের উন্নতা সমান হলে তাদের অণুর r.m.s. গতিবেগ সমান হবে।
	পরমশূনা উন্নতার গাাস অশুর বেগ হর শূনা।
	নিম্নচাপে আদর্শ গ্যাসের আচরণের সক্ষো বাস্তব গ্যাসের আচরণের কোনো মিল নেই।
[iv]	গ্যাস অণুর ব্রাউনীয় গতি তাপমাত্রা বৃশ্বি পেলে বৃশ্বি পায়।
-	ানিতিক প্রকৃ
	া লিটার আয়তনের একটি প্রকোঠে 10 ²⁵ সংখ্যক গ্যাস-অণু আছে। ঐ গ্যাসের প্রত্যেকটি অণুর ভর
-	$5 \times 10^{-25} {\rm g}$ এবং গড় বর্গবেগের বর্গমূল মান $5 \times 10^3 { m cm/s}$ হলে গ্যাসের চাপ নির্ণয় করে।
	[Ans. $4.16 \times 10^4 \text{ dyne/cm}^2$]
2.	া litre আয়তনের একটি আধারে 2.5×10^{23} সংখ্যক নাইট্রোজেন অণু আছে। অণুগুলির প্রতিটির ভর
	4.65 ×10 ⁻²³ g ও মূলগড় বর্গবেগ 5 × 10 ⁴ cm/s. গ্যাসের চাপ ও মোট গতিশক্তি নির্ণয় করো।
	[Jt. Entrance 1995] [Ans. 9.69×10^6 dyne/cm ² ; 1.45×10^{10} erg]
3.	প্রমাণ চাপ ও তাপমাত্রায় হাইড়োজেন অণুর গড় বর্গবেগের বর্গমূল নির্ণয় করো। হাইড়োজেনের ঘনত্ব
	$= 9 \times 10^{-5} \text{g/cm}^3$ [Ans. 1.84 × 10 ⁵ cm/s]
4.	0°C উন্মতায় নাইট্রোচ্ছেন গ্যাসের অণুগুলির গড় বর্গবেগের বর্গমূল মান নির্ণয় করো। প্রমাণ চাপ ও তাপমান্তায়
	নাইট্রোক্সেনের ঘনত্ব = 1.25g/litre, পারদের ঘনত্ব = 13.6 g/cm ³ . [Ans. 4.93 × 10 ⁴ cm/s]
5.	প্রমাণ চাপ ও উম্বভায় একটি গ্যাসের অপুর r.m.s. বেগ = 10 km/s হলে, এ গ্যাসের ঘনত্ব কত ? চাপ যদি পির্বর
	রাখা হয়, তাহলে 100°C তাপমাত্রায় ঘনত্ব কত হবে ? [Ans. 0.003 g/cm³; .0022 g/cm³]
6.	কোন্ তাপমাত্রায় হাইডোজেন অণুর গড় বর্গবেশের বর্গমূল কার্বন ডাইঅক্সাইড অণুর বর্গমূলমানের সমান হবে?
_	কার্বন ডাইঅক্সাইড অণু হাইড়োজেন অণুর চাইতে 22 গুণ ভারী। [Ans. 15K]
7.	গ্যাস-ধ্রক R = 8.3 × 10 ⁷ erg per °C এবং ক্লোরিনের পারমাণবিক ভর = 35.5 হলে, 0°C উন্নতায় ক্লোরিন
	অণুর আর. এম্. এস্. গতিবেগ নির্ণয় করো। $[{ m Ans. 3.1} imes 10^4 { m cm/s}]$
	[সংকেড ঃ $c_{rms} = \sqrt{\frac{3RT}{M_0}}$; $M_0 = 2 \times 35.5$ কারণ ক্লোরিন অণু ছি-পারমাণবিক]
8.	0° ে উদ্বাতায় এবং 10^{-2} বায়ুমগুলীয় চাপে কোনো গ্যাসের ঘনত্ব 1.24×10^{-5} g/cm 3 , ঐ গ্যাসের আর. এম্
	এস্. বেগ এবং আগবিক ভর নির্ণয় করো। $R_0 = 8.31$ joule/mol K. [Ans. 495 m/s: 27.2]
	[সংকেত: $c_{rms}^2 = \frac{3R_0T}{M_0}$ সমীকরণ প্রয়োগ করো।]
	TALLED B. L. THE TOTAL CONT. TOTAL

9, 27 (উদ্ধার্তম রাজ্যক্তন গাল্সের মধুর রেগের কাসাধ্য মুল নগাং কারা (৪০০০) তার বিশ্বর সাল অজিক্তোনর পরমার্থকিক ভর ৮ 16) - ১৯১১ - ১৮ জন্ম ১৮ জন্ম

কঠিন গাণিতিক প্ৰশ্ন

- কোনো গণেসের হাপমারা ১৭৫০ বহর বাঁধ করে ২০০০ করা হল নিমান ; লাব হিল হালনারে বালে আর এম, এস, গতিবেশ প্রাথমিক গতিবেগের খ্র পুশ।
- প্রমাণ চাপ ও তাপমার্ক্রা, এগনা আনল গোদের অপ্র আর ক্রম ক্রম করে। চাপ অপার্ক্রবিতি রেখে 21°C উল্লভায় র গোদের খনত্ব অর্থক করে। বায়য়ভশীত গুলা ২ ।। ১ গাদের খনত করে। বয়য়ভশীত গুলা ২ ।। ১ গাদের আর করে। বয়য়ভশীত গুলা ২ ।। ১ বলা ।
 (It. Entrance 1983) [Ans. 1.2 kg/m²; 1.11 kg/m²]
- 3. $100\,\mathrm{cm}^3$ yrcs 5.5×10^{24} vibration and are great and on the 10^{14} g are and as an algebraic 3×10^4 cm/s are, analysis as a great for with are. And 51 1 we have the results
- 4. 10 বায়ুমন্ডলীয় চাপ ও 27°C উশ্বভাষ I cm' অভাতনের গালেস ছব্ত সংখ্যা হলত ৪. ৭ বা joule/mol K এবং আন্তোলান্তো সংখ্যা = 603 × 10°1 (Ams. 2.98 × 10°)
- হাইড়েছেন অণুর সংখ্যা 6.8 x 10¹⁴ প্রতি cm¹ এবং অণুর অার এম এস পতিরেশ । 9 x 10¹⁵ এম হাল মিলিমিটার পারদ এককে ঘাইড়েছেনের চাপ নির্ণয় করে। আভোগান্তো সংখ্যা = 6.02 x 10¹⁵ এম হালিড়েছেনর আপেন্দিক আগবিক ভর = 2.02
- 6. 1092 K উল্পতায় অক্সিজেন অণুর আর. এম্. এস. গতিবেগ নির্ণয় করে প্রমাণ চাল ও উল্পতায় অক্সিজেনর বিষয় + 1.424 kg/m³.
 [Ans. 9.22 x 101 nov.]
- 7. 27°C উদ্বভা এবং 1 cm পারদ চাপে কোনো আদর্শ গ্যাসের প্রতি cm¹ আয়তনে অধুর সংখা নিশ্ব করে। 27°C উদ্বভার অপু প্রতি গড় গতিশব্বি = 4 × 10 ⁴ crg এবং পারদের অবদু 13.6 g/cm².[Am. 4.99 × 10²]
- 8. হাইড়োজেন অনুর গড় গতিশান্তি 5.64 x 10 ¹⁴ erg যথন উল্পতা 0°C , মালার গাস-বুংক R , = k ২2 v '0° erg/K হলে, অ্যাভোগাড়ো সংখ্যা নির্ণর করে। (Ans. 6.04 x 10°')

[সংকেত : গড় গতিশন্তি = $\frac{3}{2} \cdot \frac{R}{V} \cdot T \cdot N = আন্টোগান্তে সংখ্যা]$

- 9. যে তাপমাত্রায় পৃথিবীর বায়ুমন্ডলম্পিত নাইট্রোজন জগুর আব. এম. এস. প্রান্থ প্রিটি. প্রান্থ তার হাত মুন্তিবেগের সমান হবে তা নির্দায় করে। নাইট্রোজন প্রমাণুর তর = 23.24×10^{-24} g. প্রিটির বাসার্থ = 6370 km; বোল্জ্মান প্রবসংখ্যা = 1.38×1^{-16} ccg/ C. g = 980 cm/s^2 (Ans. $14.12 \times 10^4 \text{ K}$) সিংকেত ঃ মুন্তিবেশ = $\sqrt{2gR}$; R = 9থিবীর বাসার্থ।)
- 10. 14 g নাইটোজেন, 24 g অক্সিজেন এবং 22 g কার্বন ডাইঅক্সাইড একত্রে মিলায় κ কিটাব আমন্তানৰ একটি মিলাব তৈরি করা হল। মিলাবের তাপমাত্রা 27° ে, মিলাবের চাপ কন্ত হবে γ $R_0 = 8$ $\times 10^{10}$ ${\rm km}^{-2}$ 1

[সংকেত হ $PV = \frac{m}{M} \cdot \frac{R_0 T}{V}$; $P_1 =$ নাইট্রেজন চাপ $= \frac{14}{28} \cdot \frac{R_0 T}{V}$. $P_2 =$ হান্সভেন চাপ $\frac{24}{12} \cdot \frac{R_0 T}{V}$ এবং P_3

= কার্বন ডাইঅক্সাইড চাপ = $\frac{22}{44}\cdot\frac{R_0T}{V}$: এখন, $\frac{R_0T}{V}=\frac{8.31\times300}{8\times10^{-3}}$ | নিশ্রের চাপ $P=P_1+P_2+P_3$ |

11. 27°C উদ্ধাতায় (i) একটি অক্সিজেন অণুর রৈখিক গতিশন্তি (ii) একটি অক্সিজেন অণুর মোট গতিশন্তি এবং (iii) এক মোল অক্সিজেন অণুর মোট গতিশন্তি নির্ণয় করো। [আন্ডোগাড়ো সংখ্যা = 6.023×10^{23} এবং বোল্জুমান খুবক = 1.38×10^{-16} erg/°C, অক্সিজেন অণু ছি-প্রমাণুক]

[Ans. (i) 6.21×10^{-21} J/molecule. (ii) 10.35×10^{-21} J/molecule (iii) 6233.8 joule/mol}

[সংকেত $\mathbf c$ (i) $E_1=rac{3}{2}$ KT (ii) $E_2=rac{5}{2}$ KT এবং (iii) $E_3=N imes E_2$ সূত্র প্রয়োগ করো।]

12. $100 \, \text{litre}$ আয়তনের একটি চোঙে নাইটোজেন গ্যাস আছে। গাসের তাপমাত্রা এবং চাপ যথাক্রমে 27°C এবং $2 \, \text{KP}_a$ । চোঙে $10^{-4} \, \text{m}^2$ ক্ষেত্রফলের একটি ছিন্তু করে খোলা জায়গায় রাখা হল। ছিন্তু দিয়ে সব গ্যাস বের হয়ে যেতে কত সময় লাগবে? $R=8.3 \, \text{J K}^{-1}$, $M=28 \times 10^{-3} \, \text{kg}$. [Ans. $3.9 \, \text{s}$]

সিংকেত ঃ 27° C উন্মতায় $c_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.3 \times 300}{2.8 \times 10^{-3}}} = 516.5 \text{ ms}^{-1}$. গ্যাস নিৰ্গত হতে থাকলে,

গ্যাসের উন্ধতা হ্রাস পাবে এবং সেই কারণে আর. এম্. এস্. গতিবেগও হ্রাস পাবে গড় $c_{rms}=\frac{0+516.9}{2}=258.25~{\rm ms}^{-1}$. প্রতি সেকেন্ডে নির্গত গ্যাসের আয়তন = প্রস্থাকেন্দ \times গড় $c_{rms}=10^{-4}\times258.25~{\rm ms}^2$

∴ নির্ণের সময় =
$$\frac{100 \times 10^{-3}}{10^{-4} \times 258.25} = 3.9 \text{ s.}$$
]

 যে তাপমাত্রার কোনো গ্যাসের অণুগুলির গড় রৈখিক গতিশক্তি 180°C তাপমাত্রায় ঐ অণুগুলির গড় রৈখিক গতিশক্তির 1/3 হবে তা নির্ণয় করো।

সেংকেড ঃ
$$\left(\frac{3}{2}k(273+t') = \frac{1}{3} \times \frac{3}{2}k(273+180)\right)$$

[সংকেতঃ $1 {
m m}^3$ আয়তনে অণুর সংখ্যা $n=rac{P}{KT}$; $c_{rms}=\sqrt{rac{3RT}{M}}$ । এক সেকেন্ডে লম্বভাবে একক ক্ষেত্রফল

অতিক্রমকারী অপুর সংখ্যা = $\frac{1}{6}$ n c_{rms}]

,		40 9 %	M.C.Q. eta	াব উভ	4 0 0	-		
(A)								
(i) A	(vi)	C.	(xi) A		(xvi)	В	(vvi)	A
(ii) D	(vii)	В	(xii) B		(xvii)	C	(xxii)	("
(iii) C	(viii)	В	(xiii) E)	(xviii)	C	(xxiii)	Α
(iv) C	(ix)	D	(xiv) f)	(xix)	A	(xxiv)	В
(v) A	(x)	A	(XV) E)	(xx)	D	(xxv)	В
			4)				, ,	

(B) [i] ভর, তাপমাক্রা [ii] পরম তাপমাক্রা, [iii] $\frac{3}{2}$ KT. (iv) $\sqrt{2}$ T. [v] গতিশন্তি, [vi] গড় বর্গের বর্গমূল।

(C) [i] इम, [ii] निर्द्रम, [iii] इम, [iv] निर्द्रम, [v] निर्द्रम।

তরঙ্গ ও ভৌতআলোক বিজ্ঞান

[WAVES AND PHYSICAL OPTICS]

তর্জ Waves

নি ক্লিভিন্থাপক তর্কা (Elastic waves):

একটি স্থির জলাশয়ে যদি ঢিল ফেলা যায় তবে ঢিল যেখানে জল স্পর্শ করে সেখানে একটি আলোড়নের সৃষ্টি হয়, কিন্তু আলোড়ন ঐ জায়গাতেই আবন্ধ থাকে না—ক্রমশ ছড়িয়ে পড়ে এবং এক সময় সমস্ত জলাশয়েই আলোড়ন বিস্তৃত হয়।

যখন ঢিলটি জল স্পর্শ করে তখন ঐ স্থানের জলকণাগুলি আন্দোলিত হয় এই জলকণগুলি তখন পার্শ্ববর্তী স্থির জলকণাগুলিকে আন্দোলিত করে। এভাবে কণা হতে কণ্যত স্থানভূতিত হয়ে আন্দোলন (disturbance) অবশেষে জলাশয়ের কিনারায় গিয়ে পৌছায়। কিন্তু লক্ষ করার বিষয় এই য়ে, আন্দোলনের ফলে কোনো জলকণাই তার অবস্থান হতে দূরে সরে যায় না : শুধু ওপরে-নীচে পূর্ববতী অবস্থানকে মধো রেখে পর্যায়গতিতে দুলতে থাকে। প্রত্যেক কণাগুলির এই ধরনের গতির ফলে যে গ্রাণেলালন জলের ওপর দিয়ে চলে যায় তাকেই **তরঙ্গ** বলা হয়। কঠিন, তরল অথবা গ্যাস— য়ে-কোনো বস্তু বা মাধ্যমের অংশ বিশেষকে স্থানচ্যুত করে ছেড়ে দিলে, তার কণাগুলি পুনরায় স্ক্রম্থানে ফিরে আসতে চেন্টা করে। স্থানচ্যতির ফলে বস্তুর স্থিতিস্থাপকতার জন্য উদ্ভূত বল স্থানচ্যুত কণিকাকে পূর্বের অবস্থানে ফিরিয়ে আনে কিয় সেখানে পৌছে কণিকাটি থেমে যায় না: গতি জড়তার জন্য বিপরীত দিকে স্থানচ্যুত হয়। অর্থাৎ কণিকাটি দোলকপিণ্ডের মতো দুলতে থাকে। জড় মাধ্যমের এক কণিকার সঞ্জো অপর কণিকার সংসত্তিজনিত এরুপ বন্ধন ও সম্পর্ক থাকে যে একটি স্থান্চ্যত হলে অপরটিও তাকে অনুসরণ করে। ফলে মাধ্যমের কোনো অংশে আলোড়ন সৃষ্টি করলে তা মাধ্যমের সর্বত্ত ছড়িয়ে পড়ে। মাধ্যমের ভিতর দিয়ে ছড়িয়ে পড়া আলোড়নকেই বলা হয় **তরঙ্গা** একথা বলা বাহুলা, যে এই তরঙ্গা **স্থিতিস্থাপক তরঙ্গা** (elastic waves) কারণ জড় বস্তুর স্থিতিস্থাপক ধর্মের জনাই এই তরক্ষোর উদ্ভব হয়। স্থিতিস্থাপক তরক্ষোর ফলে মাধামের কণার সরণ ঘটলেও মাধামের কোনো সামগ্রিক গতি সৃষ্টি হয় না : যেমন, জলতলের উপর দিয়ে তরঙা চলে গেলেও জলের কোনো প্রবাহ ঘটে না।

সংজ্ঞা: ম্থিতিস্থাপক মাধ্যমের কণাগুলির সমষ্টিগত কম্পনের ফলে সৃষ্ট আন্দোলনকেই ম্থিতিস্থাপক তরজা বলে।

এই প্রসংগা উল্লেখযোগ্য যে কেবলমাএ জড় মাধ্যমেই (কঠিন, তরল বা গ্যাস) স্থিতিস্থাপক তরজোর উদ্ভব হয়। এই কারণে এই তরজাকে অনেক সময় জড় তরজা বলা হয়। জলের উপর তরজা, বায়ুর ভিতর দিয়ে শব্দতরজা প্রভৃতি এই ধরনের স্থিতিস্থাপক জড়তরজা। আবার মাধ্যমের যান্ত্রিক গতি না থেকেও অনা কোনো ভৌত রাশির, যথা—চৌম্বক বা তড়িং প্রাবল্য-সন্থারের ফলে আর এক রক্ষের তরজা উৎপন্ন হতে পারে। এরা স্থিতিস্থাপক তরজা নয়, এদের বলা হয় তড়িংচ্ম্বকীয় তরজা। এই ধরনের অস্থিতিস্থাপক বা তড়িংচ্ম্বকীয় তরজা। এই ধরনের অস্থিতিস্থাপক বা তড়িংচ্ম্বকীয় তরজা (electromagnetic waves) উৎপত্তির জন্য কোনো জড় মাধ্যমের প্রয়োজন হয় না। এরা মাধ্যমের কণার কোনো সরণ সৃষ্টি করে না। কেবল মাধ্যমের বিভিন্ন

145

স্থানে তড়িৎ ও চৌম্বকক্ষেত্রের প্রাবল্য পর্যায়ক্রমে পরিবর্তিত হয়। আলোক তরজা, বেতারতরজা, এক্সরশ্মি তরজা প্রভৃতি তড়িৎচুম্বকীয় তরজা শূন্য মাধ্যমে চলাচল করতে পারে। তবে এই সকল তরজা যখন জড় মাধ্যমের ভিতর দিয়ে যায় তখন তাদের গতিবেগ মাধ্যমের প্রকৃতির উপর নির্ভর করে। যেমন, বায়ু মাধ্যমে আলোর গতিবেগ কাচ মাধ্যমে গতিবেগের সমান নয়। শূন্য মাধ্যমে, অবশ্য, এদের গতিবেগ সমান এবং সর্বাধিক। বর্তমানে আমরা স্থিতিস্থাপক তরজোর বিভিন্ন বিষয় আলোচনা করব।

1.2. স্থিতিস্থাপক তরঙ্গের প্রকার ভেদ (Types of elastic waves):

যে তরজা মাধ্যমের কণাগুলির সরল দোলগতির ফলে সৃষ্টি হয় **াকে সরল দোলতরজা** (simple harmonic wave) বলা হয়।

সরল দোলতরজা দুই প্রকার হতে পারে। যথা—(1) **তির্যক** বা **অনুপ্রস্থ** (transverse) তরঙ্গা ও
(2) অনুদৈর্য্য (longitudinal) তরঙ্গা।

● অনুপ্রস্থ বা তির্যক তরষ্পাঃ কোনো স্থিতিস্থাপক মাধ্যমের কণাগুলি একই ধরনের সরল দোলগতিতে কম্পমান হয়ে যে তরশোর উত্তব করে তা যদি কণাগুলির গতির সাথে সমকোণে অশ্রসর হয় তবে ঐ তরষ্ণাকে তির্যক বা অনুপ্রস্থ তরষ্ণা বলা হয়।

কোনো মাধ্যমের ভিতর যান্ত্রিক (mechanical) তির্যক তরজা সৃষ্টি করলে তার মধ্যে কৃন্তন পীড়ন (shearing stress) ঘটে। তাই বিকৃত কঠিন মাধ্যমে তির্যক তরজাকে কৃন্তন তরজা (shear wave) বলা হয়। তরল বা গ্যাসে কৃন্তন পীড়ন ঘটে না বলে কেবলমাত্র কঠিন মাধ্যমেই তির্যক তরজা উৎপন্ন করা যায়—তরল বা গ্যাসীয় মাধ্যমে তির্যক তরজাের উৎপত্তি হয় না। প্রশ্ন উঠতে পারে যে, আলাে তির্যক তরজা অথচ তরল ও গ্যাসের ভিতর দিয়েও আলােক তরজাের বিস্তার হয়। এটা কীভাবে সম্ভব ? মনে রাখা দরকার যে আলাে সাধারণ স্থিতিস্থাপক তরজা (elastic waves) নয় — তড়িংচুদ্ধকীয় তরজা। তড়িং-চুদ্বকীয় তরজা কঠিন, তরল, গ্যাস এমনকি শূন্য মাধ্যমের ভিতর দিয়েও যেতে পারে।

তির্যক তরজ্ঞাকে 1.1 নং চিত্রের দ্বারা প্রদর্শন করানো যেতে পারে। এস্থালে কণার কম্পনের অভিমুখ

তরজার গতির অভিমুখের সাথে সমকোণ করেছে। যে মুহূর্তে O কণাটি সর্বাধিক বেগে নীচের দিকে সাম্যাবস্থান (OBE রেখা) অতিক্রম করছে সেই মুহূর্তে অন্যান্য কণাগুলির কম্পনের অভিমুখ ছোটো ছোটো তিরচিক ধারা দেখানো হয়েছে। ধনাপ্পক (উধর্ব) দিকে সর্বাধিক সরণযুক্ত A বিন্দুকে বলা হয় তরজ্ঞানীর্ব (crest) ও ঋণাপ্থক (নিম্ন) দিকে সর্বাধিক সরণযুক্ত C-বিন্দুকে বলা হয় তরজ্ঞানদ (trough)। লক্ষ করবে A & C বিন্দুরের গতির

অবস্থা ঠিক বিপরীত। এইজনা এদের দশাকে বলা হয় বিপরীত দশা। আবার A ও D বিল্দ্রাের দশা এক। এভাবে কণাগুলি যত কম্পিত হতে থাকরে তরজাও OE রেখা বরাবর বাম হতে দাক্ষণে এলসর হবে।

উদাহরণ ঃ (1) একটি স্থির জলাশরের জলের উপর একখন্ড কর্ক ভাসাত। এখন জলে একটি চিল ফেললে তবাজার উন্তর হবে এবং আন্তে আন্তে তরজা অগ্রসর হয়ে কর্কের কছে পৌশুলাল কর অদুলালত হাবে। লক্ষ্ণ কেবলে দেখার কর্ক সর্বাদ ওপর—নাচে আন্দোলিত হাছে পালে সরে মাছে লা, অঘচ তরজা কর্ক ছাড়িয়ে জলতল ববাবর বিশ্রত হয়ে পড়াছে। সৃতরাং এস্বালে জালের কলেল্লির ওপর নাচে সবল দোলগতির ফলে জালের উপর দিয়ে তবজোর সৃষ্টি হল। এই তর্মালের গতি কলাল্লির বাত্র সাথে সমার্কিণে সম্পন্ন হস স্তরাং জালের উপর চিয়ে তরজারে হিন্ত তরজা বলা মারে এইবস আলো, তাপ, বত্রত্বতা প্রত্তির তর্মালের দুলির

্সঃ তির্যক তরজোর উদাহরণ হিসাবে জলের চেউ-এর কথা বলা হলেও, এই তরজা প্রকৃতপক্ষে তিয়ক নয়। জলের তরজো অভিকর্ষ এবং পৃষ্ঠটানের প্রভাব আছে। তা সন্ত্বেও ধোঝার সুবিধার জনা আমরা প্রথমিক এরে ভালের তরজাকে তির্যক তরজা বলে গণ্য করব।

অনুদৈর্ঘ্য তরঙ্গাঃ কোনো স্থিতিস্থাপক মাধ্যমের কণাগুলি একই ধরনের সরল দোলগতিতে
কম্পমান হয়ে যে তরঙ্গের সৃষ্টি করে তা যদি কণাগুলির গতির সমান্তরালে অগ্রসর হয় তবে
ঐ তরঙ্গাকে অনুদৈর্ঘ্য তরঙ্গা বলা হয়।

কঠিন, তরল এবং গ্যাস—তিনপ্রকার মাধ্যমেই অনুদৈর্ঘ্য তরজা সৃষ্টি করা যায়। 1.2 নং চিত্রে বায়ুমাধ্যমে অনুদৈর্ঘ্য তরজাে সৃষ্টি দেখানাে হয়েছে। চিত্রে একটি বায়ুস্তম্ভকে কতকগুলি সমান বায়ুস্তরে ভাগ করা হয়েছে। এই স্তরগুলির ভিতর দিয়ে অনুদর্য্য তরজা প্রবাহিত হলে স্তরগুলি দক্ষিণে ও বামে আন্দোলিত হবে। এম্থলে মাধ্যমের কণাগুলির সরল দোলগতির অভিমুখ তরজাের অভিমুখের সমাস্তরাল বলে তনুভবন ও ঘনীভবনের সৃষ্টি হয়েছে

অর্থাৎ কতকগুলি বায়ুম্ভর **যেঁসায়েঁসি করে আছে যাকে বলা হ**য় **ঘনীভবন** (compression) এবং কতকগুলি ফাঁক ফাঁক হয়ে আছে যাকে বলা হয় তনুভবন (rarefaction)। বলা বাহুল্য, ঘনীভবনে ম্তরগুলির ঘনত্ব ও চাপ বৃদ্ধি পায়; আবার তনুভবনে ঘনত্ব ও চাপ হ্রাস পায়।

একটি সরু কিছু দীর্ঘ স্প্রিং নিয়ে একপ্রান্ত একটি দৃঢ় অবলম্বনে আটকাও এবং অপর প্রান্ত একটি সুরশলাকার বাহুর সঞ্জো আবন্ধ করো। সুরশলাকার বাহু যখন স্থির তখন স্প্রিং-এর কুণ্ডলীগুলি সুষমভাবে

অবস্থান করবে। সুরশলাকার বাহুকে কম্পিত করলে স্প্রিং-এর দৈর্ঘ্য বরাবর একটি তরঙা চলে যাবে এবং স্প্রিং-এর কিছু অংশের কুণ্ডলী খুব ঘেঁসাঘেঁসি হয়ে ঘনীভবনের সৃষ্টি করবে এবং কিছু অংশের কুণ্ডলীগুলি

কাঁক ফাঁক হয়ে তনুভবন উৎপন্ন করবে। স্প্রিং-এর দৈর্ঘ্য বরাবর এই তরজা অনুদর্ঘ্য তরজা [চিত্র 1.3]। তির্যক এবং অনুদর্ঘ্য তরজাকে সাধারণভাবে **চলতরঙা** বা প্রগামী তরঙা (progressive waves) বলা হয়: কারণ, এই তরজাপ্রসৃত কম্পন মাধ্যমের এক কণা হতে পরবর্তী কণাতে হস্তাগুরিত হয় এবং তরজা একযোগে সম্মুখের দিকে অগ্রসর হতে থাকে। চলতরজাের বিপরীতধর্মী আর একপ্রকার তরজা আছে, তাকে বলা হয় স্থাণু তরঙা (stationary waves)। এদের সম্বন্ধে পরে আলােচনা করা হবে। তরজা একমাঞিক, দিমাঞিক অথবা বিমাঞিক হতে পারে। দড়ি বা স্থিংয়ে যে তরজাের উদ্ভব হয় তা

তর্জা একমাত্রিক, দিমাত্রিক অথবা ব্রিমাত্রিক হতে পারে। দাড় বা শ্রেরে বে তর্জোর ভঙ্গ হয় ও একমাত্রিক। জলের উপরিওলে যে তর্জোর সৃষ্টি হয়, তা দ্বিমাত্রিক। আবার কোনো উৎস হতে সৃষ্ট আলোক তর্জা বা শব্দতর্জা—যা চতুর্দিকে ছড়িয়ে পড়ে, তা ব্রিমাত্রিক।

1.3. মাধ্যমের প্রকৃতি (Nature of medium):

বিধাতিস্থাপক ভরজোর উপ্তব এবং চলাচলের জন্য একটি স্থিতিস্থাপক মাধ্যম প্রয়োজন। পূর্বে উল্লেখ করা হয়েছে যে, কেবলমাত্র কঠিন মাধ্যমেই তির্যক ভরজা উৎপল্ল করা যায়। কঠিন পদার্থের একটি নির্দিষ্ট আকার থাকে এই কাবলে সকল কঠিন পদার্থ কম-বেশি আকার পরিবর্তনকে প্রতিরোধ করে এবং পদার্থেব কোনো একটি কলার কম্পানের সমকোলে অপর কলান্ড আন্দোলিত হতে পারে। কাড়েই কঠিন পদার্থে তির্যক তরজোর উদ্ভব হতে পারে। তরল অথবা গ্যাসীয় পদার্থের কোনো নির্দিষ্ট আকার নেই। এজন্য তাদের মধ্যে শুধ্র স্থিতিস্থাপক ধর্মেই তির্যক তরজোর উৎপত্তি হয় না।

আবার, কঠিন, তরল এবং গ্যাস—তিনপ্রকার মাধ্যমেই অনুদৈর্ঘ্য তরঞ্চা সৃষ্টি করা যায়। কারণ কঠিন, তরল ও গ্যাস—প্রত্যেকেই আয়তন বিকৃতি প্রতিরোধ করতে পারে। তাই জড় মাধ্যমের কোনো একটি কণার কম্পনের সমান্তরালে অন্য কণাও কম্পিত হতে পারে এবং সেই কারণে অনুদৈর্ঘ্য তরঞ্চা সকল জড় মাধ্যমেই উৎপন্ন হতে পারে।

উল্লেখযোগ্য যে, কোনো স্থিতিস্থাপক মাধ্যমে যখন স্থিতিস্থাপক তরজা সৃষ্টি করা হয় তখন ঐ তরজোর বেগ মাধ্যমের স্থিতিস্থাপক গুণাঙ্ক এবং ঘনত্বের উপর নির্ভর করে।

নিম্নে বিভিন্ন ধরনের তরজোর গতিবেগের রাশিমালা উল্লেখ করা হল। কিছু কিছু তরজোর বিস্তৃত আলোচনা পরবর্তী পরিচ্ছেদে করা হবে।

1. তরল ও গ্যাস মাধ্যমে অনুদৈর্ঘ্য তরশ্যের গতিবেগ:

$$V=\sqrt{rac{E}{
ho}}$$
: $E=$ মাধ্যমের আয়তন বিকৃতি গুণাঙ্ক এবং $ho=$ মাধ্যমের ঘনত্ব।

2. কঠিন মাধ্যমে অনুদৈর্ঘ্য তরখোর গতিবেগঃ

$$V=\sqrt{rac{Y}{
ho}}\colon Y=$$
 মাধ্যমের ইয়ং গুণাঙ্ক এবং $ho=$ মাধ্যমের ঘনত্ব।

3. গ্যাস বা বায়ু মাধ্যমে শব্দতরভোর গতিবেগ:

$$V=\sqrt{\frac{\gamma P}{\rho}}$$
; $P=$ গ্যাস বা বায়ুর চাপ; $\rho=$ গ্যাস বা বায়ুর ঘনত্ব এবং $\gamma=$ গ্যাস বা বায়ুর দুই

আপেক্ষিক তাপের অনুপাত।

4. টান করা তারে তির্যক তরশ্যের গতিবেগ:

$$V=\sqrt{\frac{T}{m}}\colon T=$$
 তারের টান $\colon m=$ তারের প্রতি একক দৈর্ঘোর ভর।

5. তড়িংচ্মকীয় তরশ্গের গতিবেগঃ

$$V = \sqrt{\frac{1}{\mu k}}$$
; μ = মাধ্যমের ভেদাঙা (permeability) এবং k = মাধ্যমের ভেদনমোগাঙা (per-

মনে রাখা প্রয়োজন যে **তড়িৎচুম্বকীয় তরকা ন্থিতিস্থাপক তরকা নয়।** শুনা মাধ্যমে সকল প্রকার তড়িৎচুম্বকীয় তর্গোর গতিবেগ সমান। এই গতিবেগ প্রায় 3 × 10⁸ m/s

EXAMPLE D

mittivity) (

জালের তুলনায় ইম্পাতের আয়তন বিকৃতি গুণাচ্চ ও ঘনত যথাক্রমে ৪০ গুণ ও ৪ গুণ ছলে, ইম্পাতের মধ্যে শব্দের দুতি নির্ণয় করো। দেওয়া আছে জগের মধ্যে শব্দের দুতি = 1493 m/s.

ভাগ দিলে,
$$\frac{V_s}{V_w} = \sqrt{\frac{E_s}{E_w}} \times \frac{\rho_w}{\rho_s} = \sqrt{80 \times \frac{1}{8}} = \sqrt{10} = 3.162$$

 $\therefore V_s = 3.162 \times V_w = 3.162 \times 1493 = 4720.87 \text{ m/s.}$

1.4

চলতরজোর বৈশিষ্ট্য (Characteristics of progressive waves):

তির্যক ও অনুদৈর্ঘ্য তরজোর আলোচনা হতে সাধারণভাবে চলতরজ্ঞাসমূহের নিম্নলিখিত বৈশিষ্ট্যের উল্লেখ করা যেতে পারেঃ

- (i) মাধ্যমের অংশ বিশেষের নিরন্তর আন্দোলনের ফলে চলতরজ্ঞার উদ্ভব হয়। মাধ্যমের ঘনত্ব ও স্থিতিস্থাপকতা অনুযায়ী একটি বিশেষ গতিবেগে তা মাধ্যমের ভিতর দিয়ে অগ্রসর হয়।
- (ii) মাধ্যমের প্রতিটি কণা তার সাম্য-অবস্থানের সাপেক্ষে একই কম্পাঙ্ক ও বিস্তারসহ একই ধরনের কম্পনে কম্পিত হয়। তরজোর গতির অভিমুখের সাপেক্ষে এই কম্পন তির্যক অথবা অনুদৈর্ঘ্য হতে পারে।
- (iii) কোনো কণার কম্পনের দশা তরজোর বিস্তার–রেখা (line of propagation) বরাবর পরবর্তী কণাতে হস্তান্তরিত হয় এবং এই রেখা বরাবর দুটি কণার দশাপার্থক্য তাদের দূরত্বের সমানুপাতিক হয়।
- (iv) চলতরঙ্গা এক বিন্দু হতে অন্য বিন্দুতে তরঙ্গামুখের (wave front) অভিলম্ব বরাবর শক্তি বহন করে নেয় কিন্তু এতে সামগ্রিকভাবে মাধ্যমের কোনো স্থানান্তর হয় না।
- (v) চলতরজা মাধাম দিয়ে অগ্রসর হলে, মাধ্যমের প্রতিটি বিন্দুর চাপ এবং ঘনত্বের একই রকম পরিবর্তন হয়।
- (vi) তরজাদৈর্ঘ্য ১ চলতরজোর **দেশজ পর্যাবৃত্তি** (space periodicity) এবং পর্যায়কাল T সময়ের সাপেক্ষে পর্যাবৃত্তি (time periodicity) প্রকাশ করে। এই কারণে তরজাদৈর্ঘ্যকে **দেশ পর্যায়** (space period) এবং পর্যায়কালকে **কাল পর্যায়** (time-period) বলা হয়।

1.5.

তর্ম্পা সম্পর্কে করেকটি সংস্কা (Some definitions in connection with a wave):

তরতাদৈর্ঘ্য (Wavelength): তরজোর উপর অবস্থিত পরপর দুটি সমদশাসম্পন্ন কণার রৈখিক দূরত্বকে তরজাদৈর্ঘ্য বলা হয়।

1.1 নং চিত্রে যে তরজোর আকৃতি দেখানো হয়েছে সেখানে A এবং D অথবা B এবং E কণাদ্বয়ের দশা এক। অতএব, এই কণাদ্বয়ের ভিতরকার রৈখিক দূরপ্পকে (AD অথবা BE দূরপ্প) বলা যাবে তরজাদৈর্ঘা। লক্ষ করো যে, A হতে D পর্যন্ত দূরপ্পের ভিতর দৃটি তরজাশীর্ষ পড়ছে। সূতরাং তির্যক তরজানের্ঘা ক্ষেত্রে পরপর দৃটি তরজাশীর্ষ অথবা দৃটি তরজাপাদের মোট দৈর্ঘাকে সাধারণভাবে তরজাদৈর্ঘ্য বলা যায়।

অনুরূপভাবে, 1.2 নং চিত্রে যে অনুদৈর্ঘ্য তর্জোর আকৃতি দেখানো হয়েছে, সেখানে যে-কোনো তনুভবনের কেন্দ্রম্থলে অবস্থিত কণার দশা এবং ঠিক পরবতী তনুভবনের কেন্দ্রম্থলে অবস্থিত কণার দশা এক। অতএব, এই কণাদ্বয়ের ভিতরকার রৈখিক দূরত্বকে তরজাদৈর্ঘ্য বলা যাবে। অনুদৈর্ঘ্য তরজোর ক্ষেত্রে পরপর একটি তন্ভবন ও একটি ঘনীভবনের মোট দূরত্বকে সাধারণভাবে তরজাদৈর্ঘ্য ধরা যায়।

তরকা সংখ্যা (Wave number): এক একক দৈর্ঘো যে কয়টি তরজা থাকে তাকে তরজা সংখ্যা বলো এটা তরজাদৈর্ঘার অন্যোনাকের (reciprocal) সমান। তরজাদৈর্ঘ্য λ হলে, তরজাসংখ্যা $\bar{v} = \frac{1}{\lambda}$.

তরশ্যের বিস্তার (Amplitude of wave): মধ্য অবস্থান হতে তরজা সৃষ্টিকারী কণার সর্বাধিক সরণকে তরজাবিস্তার বলে। 1.1 নং চিত্রে OBE রেখা হতে A অথবা D বিন্দুর সরণ হল তরজাবিস্তার।

তরভোর পর্যায়কাল (Period of wave): তরজোর পর্যায়কাল তরজা সৃষ্টিকারী কম্পনশীল কণাগুলির পর্যায়কালের সমান। কাজেই, তরজোর পর্যায়কাল বলতে সেই সময় বোঝায় যে সময়ে একটি পূর্ণতরজা (1.1 নং চিত্রে A হতে D) সৃষ্টি হয়।

তরখোর কম্পাৎক (Frequency of wave): এক সেকেন্ডে মাধ্যমের ভিতর যে কটি পূর্ণ তরজা সৃষ্টি হবে সেই সংখ্যাকে তরজোর কম্পাঙক বলে। স্পষ্টত এটা তরজা সৃষ্টিকারী কম্পনশীল কণাগুলির কম্পাঙ্কের সমান।

তরঙ্গামুখ (Wave front): জলের উপর কোনো আন্দোলন সৃষ্টি করে তরজা উৎপন্ন করলে আমরা দেখি যে তরজাগুলি বৃত্তের আকারে জলের উপর বিষ্তৃত হয়। একটু লক্ষ্ক করলে দেখা যায় যে বৃত্তগুলিতে অবস্থিত জলকণাগুলি হয় ওপরের দিকে উঠে গেছে কিংবা নীচের দিকে নেমে গেছে—অর্থাৎ তরজাশীর্ষে অথবা তরজাপাদে অবস্থিত আছে। সুতরাং তরজাশীর্ষে বা তরজাপাদে অবস্থিত জলকণাগুলি বৃত্তের আকারে সজ্জিত থাকে। কাজেই তরজাশীর্ষে অবস্থিত বৃত্তাকারে সজ্জিত জলকণাগুলি সব সমদশাসম্পন্ন। তেমনি, তরজাপাদে অবস্থিত জলকণাগুলিও সমদশাসম্পন্ন। সমদশাসম্পন্ন কণাগুলির সঞ্চরণ পথকে (locus) তরজামুখ বলে; জলের ওপর তরজা সৃষ্টি হলে তাদের তরজামুখ বৃত্তাকার।

শুধু জলের ওপর নয়—যে-কোনো সমসত্ত্ব (homogeneous) মাধ্যমে আন্দোলন সৃষ্টি করলে, তরজা চতুর্দিকে সমান বেগে বিস্তার লাভ করে এবং আন্দোলনের কেন্দ্রবিন্দু হতে সমদূরবর্তী সকল কণাই সমদশাসম্পন্ন হয়। যদি কোনো বিশেষ তলের কথা চিন্তা না করে সমগ্র মাধ্যমের কথা বিবেচনা করা যায় তবে কোনো এক মুহূর্তে সমদশাসম্পন্ন কণাগুলি একটি গোলকের (sphere) উপর অবস্থান করবে। সূতরাং ঐ ক্ষেত্রে তরজামুখ গোলকাকৃতি (spherical) পাবে।

তরঙ্গাবেগ (Wave velocity) : এক সেকেন্ডে তরজা যে দূরত্ব অতিক্রম করে তাকে তরজাবেগ বলা হয়।

আমরা দেখেছি যে, কোনো মাধ্যমের ভিতর দিয়ে তির্যক বা অনুদৈর্ঘ্য — যে-কোনো তরজা চলে গেলে মাধ্যমের কণার কোনো অগ্রগতি হয় না — কণাগুলি আপন আপন মধ্য-অবস্থানের ওপর-নীচে অথবা দক্ষিণে–বামে আন্দোলিত হয়। তাহলে তরজোর বেগ বলতে কিসের বেগ বোঝায়?

জলের উপর তরজোর সৃষ্টি হলে আমরা দেখি যে, জলকণাগুলির ওপর-নীচে আন্দোলন হয় বটে কিছু বৃত্তাকার তরজাম্খগুলি একটি নির্দিষ্ট বেগে সম্মুখের দিকে অগ্রসর হয়ে যায়। তরজামুখের এই বেগকেই তরজাবেগ বলা হয়। মনে রাখবে, তরজাবেগ এবং তরজোর উপরিস্থ কোনো কণার বেগ সমান নয়।

L.6. কয়েকটি প্রয়োজনীয় সম্পর্ক (A few important relations)

(ক) তরজাবেগ, কম্পান্ক ও দৈর্ঘ্যের পারম্পরিক সম্পর্ক ই যদি তরজোর কম্পান্ক n এবং তরজাদৈর্ঘ্য λ (উচ্চারণ 'লামডা') হয়, তবে কম্পান্কের সংজ্ঞানুষায়ী । সেকেন্ডে n সংখ্যক পূর্ব তরজা সৃষ্টি হবে । যেতে ই প্রতাক তরজোর দৈর্ঘ্য λ , তাই এই তরজাগুলি উদ্ভ সময়ে অর্থাং । স্পেক্তে $n\lambda$ দর্ব্ধ অধিকার করবে এখন, কালো তরজোর বেগ বলতে এক সেকেন্ডে ট্র তরজা য়ে দুবন্ধ যায় তাই বোনায়। স্তর্গাং, যদি তবজাবেগ V ধরা যায় তবে, $V = n\lambda$

তরকাবেগ = কম্পাচ্চ x তরকাদৈর্ঘা।

were, $n = \frac{1}{I}$, $V = n\lambda$, $\frac{\lambda}{I}$ were, $\lambda = VI$

(খ) দুই মাধ্যমে তরজাবেগের মধ্যে সম্পর্ক:

ধরা যাক, A এবং B দুটি ভিন্ন মাধ্যম। A মাধ্যমে কোনো তরজোর বেগ = V_A এবং B মাধ্যমে ঐ তরজোর বেগ = V_B । তরজোর কম্পাঙক n হলে লেখা যায়, A মাধ্যমের ক্ষেত্রে $V_A = n.\lambda_A$ $[\lambda_A = A -$ মাধ্যমে তরজানৈর্ঘ্য] এবং B মাধ্যমের ক্ষেত্রে $V_B = n.\lambda_B$ $[\lambda_B = B -$ মাধ্যমে তরজারে দৈর্ঘ্য]

ভাগ দিলে পাই, $\frac{V_A}{V_B}=\frac{\lambda_A}{\lambda_B}$ [মাধ্যমের পরিবর্তনে তরজ্ঞার কম্পাঙ্কের কোনো পরিবর্তন হয় না।] এটাই হল দুটি ভিন্ন মাধ্যমে তরজোর বেগের মধ্যে পারম্পরিক সম্পর্ক।

(গ) তরঙাদৈর্ঘ্য ও কম্পাঞ্চের মধ্যে সম্পর্ক:

ধরা যাক, কোনো একটি মাধ্যমে দুটি ভিন্ন তরজা একই বেগে প্রবাহিত হচছে। একটি তরজোর কম্পাঙ্ক ও দৈর্ঘ্য যথাক্রমে n_1 এবং λ_1 এবং অপরটির n_2 এবং λ_2 . ঐ মাধ্যমে তরজাবেগ V হলে, প্রথম তরজোর ক্ষেত্রে $V=n_1\lambda_1$ এবং দ্বিতীয় তরজোর ক্ষেত্রে $V=n_2\lambda_2$.

$$\therefore n_1 \lambda_1 = n_2 \lambda_2$$
 অথবা, $\frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$.

এটাই হল কোনো মাধ্যমে দুটি তরজাদৈর্ঘ্য ও দুটি কম্পাঙ্কের মধ্যে পারস্পরিক সম্পর্ক।

.D.Exames D

① জলের উপরে 580 cm দীর্ঘ তরঙ্গা সৃষ্টি করা হল। জলে তরঙ্গের বেগ 145,000 cm/s হলে ওই তরঙ্গের কম্পাঙ্ক কত হবে ?

উঃ। এগ্ৰেলে $\lambda = 580 \, \mathrm{cm}$; $V = 145,000 \, \mathrm{cm/s}$; n = ?

এখা,
$$V = n.\lambda$$
 অথবা, $n = \frac{V}{\lambda}$: $n = \frac{145,000}{580} = 250$.

এ একটি সুরশলাকার কম্পান্ক 256; সুরশলাকার 16 বার কম্পনে যে সময় লাগে সেই সময়ে শব্দ 20 metre দুরত্ব যায়। ঐ শব্দের তরশ্গদৈর্ঘ্য এবং বেগ নির্ণয় করো।

উঃ। ধরো, শব্দতরক্ষোর দৈর্ঘ্য = λ metre; সুতরাং সুরশলাকার একবার কম্পনে শব্দ λ metre

দূরত্ব যাবে। কাজেই
$$16\lambda = 20$$
 বা, $\lambda = \frac{20}{16} = \frac{5}{4}$ m আবার, $n = 256$, $V = ?$

এখন,
$$V = n\lambda = 256 \times \frac{5}{4} = 320$$
 m/s.

③ একটি জলের ট্যাঙ্কে ছোটো একটি কর্ক ভাসছে। ছোটো ছোটো তরঙ্গা জলের উপর দিয়ে চলে গেলে কর্ক টুকরো ওপর-নীচে আন্দোলিত হয়। তরঙ্গের গতিবেগ 0.2 m/s, দৈর্ঘ্য 15 mm ও বিভার 5 mm হলে, কর্ক টুকরোর সর্বাধিক গতিবেগ কত?

উঃ। তরজ্ঞ প্রবাহিত হলে, কর্ক টুকরো তরজোর বিস্তার ও কম্পন নিয়ে ওপর–নীচ আন্দোলিত হবে। ত্রেম্ব ্রেম্বর ্ক্রে $V=n\lambda$: এক্কেরে V=0.2 m/s; $\lambda=\frac{15}{1000}$ metre. অভএব,

$$n = \frac{V}{\lambda} = \frac{0.2 \times 1000}{15}$$

কিছু কঠ টুকারে সর্বাধিক গভিবেগ $v_{max} = a.\omega = 2\pi.na = 2 \times \frac{22}{7} \times \frac{0.2 \times 1000}{15} \times \frac{5}{1000}$ = $0.42 \,\text{m/s}$ (প্রায়) = $42 \,\text{cm/s}$ (প্রায়) া সুরশলাকার একটি বাহুর সপো একটি হালকা সূচক যুদ্ধ করে শলাকাকে এরপভাবে বসানো হল যে সূচক একটি খাড়া পাতকে স্পর্শ করে থাকে। শলাকাকে কম্পিত করার সজো সশো পাতটিকে অবাধে নীচে পড়তে দেওয়া হল। পাতটি যে সময়ে 10 cm দবয়্ব নীচে পড়ল সেই সময়ে সূচক পাতের উপর ৪টি পূর্ণ তরজা অঞ্জন করল। সুরশলাকার কম্পাধ্ক কত ?

উঃ। ধরো, পাতটি $10\,\mathrm{cm}$ নীচে পড়তে t সেকেন্ড সময় নিল। তাহলে $h=\frac{1}{2}\,\mathrm{gr}^2$ সমীকরণ হতে। পাই, $10=\frac{1}{2}\times 980\times t^2$ অথবা, $t^2=\frac{1}{49}$ অথবা, $t=\frac{1}{7}$ সেকেন্ড।

ই সমায়ে ৪টি পর্য তরজা তৈরি হওয়ায়, সুরশলাকা $\frac{1}{7}$ সেকেন্ডে ৪ বার পূর্ণ কম্পন্ন সম্পন্ন করে। ১.৩এব সুরশলাকার কম্পাডক = $8/\frac{1}{7} = 56 \; \mathrm{Hz}$.

1.7

চলতরঙ্গের বা প্রগামী তরঙ্গের বীজ্ঞগাণিতিক সমীকর্ন (Algebraic equation of a progressive wave):

মাধামের কণাগুলির সরল দোলগতি হলে, চলতরক্ষাের উদ্ভব হয়। আমরা এখন এই চলতরক্ষাের গাণিতিক সমীকরণ নির্ণয় করব।

যখন চলতরজা মাধামের ভিতর দিয়ে অগ্রসর হয় তখন মাধ্যমের কণাগুলি সরল দোলগতিতে

কম্পমান হয়। যেহেতু এক কণা হতে পরবর্তী কণাতে আন্দোলন পৌছোতে একটি নির্দিষ্ট সময় লাগে, সেইহেতু তরজোর অভিমুখ বরাবর কণাগুলির দশার ক্রমাবনতি (gradual fall) ঘটে। যদি তরজা বামদিকে হতে দক্ষিণে যায়, তবে বামদিকের কোনো কণা আন্দোলিত হবার কিছুক্ষণ পরে দক্ষিণ দিকের কণা আন্দোলিত হবে। ফলে, তাদের ভিতর দশার পার্থক্য ঘটবে। এইরূপ, যতই দক্ষিণ দিকে যাওয়া যাবে ততই আন্দোলন পরপর দক্ষিণ দিকের কণাগুলিতে সঞ্জারিত হবে এবং প্রতি দৃটি পরপর কণার ভিতর দশাপার্থক্য দেখা যাবে।

মনে করো, একটি চলতরজ্ঞা A হতে C অভিমুখে প্রবাহিত হচ্ছে [চিত্র 1.4]। যেহেতু মাধ্যমের কণাগুলির কম্পন সরল দোলগতি পর্যায়ের, সেইহেতু A কণার গতিকে নিম্নলিখিত সমীকরণ দারা প্রকাশ করা যাবে $y = a \sin \omega t$ । এম্থলে a = a কণার কম্পনের বিস্তার ; y = t অবকাশ পরে ABC রেখা হতে কণার সরণ এবং $\omega = a$ কণার কৌণিক গতিবেগ।

যদি কণার কম্পাডক n হয়, তবে $\omega = 2\pi n$; কাজেই, $y = a \sin 2\pi nt$.

তরজোর চিত্র হতে দেখা যায় যে, যখন A কণা মধ্য-অবস্থান অতিক্রম করে, তখন B কণাটিও একই অভিমুখে মধ্য- অবস্থান অতিক্রম করে -অর্থাৎ, উক্ত কণাদুটি সমদশাসম্পন্ন। সমদশাসম্পন্ন পরপর দুটি কণার দূরত্ব হল তরজাদৈর্ঘা। এস্থলে তরজাদৈর্ঘা = λ = AB দূরত্ব। এখন A হতে B বিন্দৃতে যাবার সময় কণার 2π দেশা পরিবর্তন হয় (অথবা কণাদুটি সমদশাসম্পন্ন হয়)।

অভএব, A বিন্দু হতে । দূরে অপর একটি বিন্দু P-তে যাবার কালে দশার পরিবর্তন $\delta=\frac{2\pi\iota}{\lambda}$ কাজেই, P-বিন্দুতে অবস্থিত কণার সরণ হ হলে,

এখন তর্গোর সমীকরণ বলতে মাধ্যমের সংক্রানো বিভব সাখাজন, সময় এবং ঐ বিন্তৃত্ব বন্ধুকণার সর্বের সম্পর্ক বোঝায় ।। নং সমীকরণ হত্ত আলে । এজ । এগাং ১৪(১ বেখা) বরাবর স্থাপিত P বিন্তুর (মার স্থানাজক ১,০)। সমায়ে সর্বে (ই) পাই অত্তর, উপবিউত্ত সমীকরণ।

অনুরূপভারে, বিপরীতম্খী (অর্থাং ১ অভিমূদ্ধ) চলতরংগোল সমাকরণ এবে

$$\xi = a \sin \frac{2\pi}{\lambda} (Vt + x) \dots \dots (ii)$$

(i) অথবা (ii) নং সমীকরণ লক্ষ করলে বোঝা যায় যে চলতরংশার গতিপথে অবস্থিত কোনো কারে সরণ ह—এর পরিবর্তন কণার স্থানান্ডক। এবং সময়। সাপেক্ষে পর্যাবত। জিলিট স্থানান্ডকযুত্ত কোনো কণার বিভিন্ন সময়ে সরণের লেখচিত্র [(६ - 1) লেখ। আঁকলে ৩' সাইনসদৃশ (vinuxoidal) লেখ হবে: আবার নির্দিষ্ট সময়ে বিভিন্ন স্থানান্ডকযুত্ত কণার সরণের লেখচিত্র [(६ - 1) লেখ। আঁকলে তাও সাইনসদৃশ লেখ হবে।

● চলতরজা সমীকরণের কয়েকটি বিকল্প রূপ (A few alternative forms of progressive wave equation):

(a) তরজোর বেগ V, তরজাদৈর্ঘা λ এবং বিস্তাব u হলে, আমরা দেখলাম,

$$\xi = a \sin \frac{2\pi}{\lambda} (Vt \mp x)....(i)$$

(b) তরজোর কম্পাঙ্ক n হলে, $V = n\lambda$; অতএব,

(c) $\xi = a \sin{(2\pi nt + 2\pi \frac{x}{\lambda})} = a \sin{(\omega t + kx)} \dots$ (iii) মেখান $k = \frac{2\pi}{\lambda}$; λ -কে বলা হয় বিস্তার ধ্বক (propagation constant) অথবা তরজা ভেক্তর (wave vector)!

(d) তরজোর পর্যায়কাল T হলে $n=\frac{1}{T}$: অতএব,

$$\xi = a \sin 2\pi \left(\frac{t}{T} + \frac{x}{\lambda}\right) \dots \dots (iv)$$

(e) আবার, $V=n\lambda$ অথবা, $\frac{V}{\lambda}=n$: এই মান (i) নং সমীকরণে বসালে পাই,

$$\xi = a \sin \frac{2\pi V}{\lambda} \left(t + \frac{\lambda}{V} \right) = a \sin 2\pi n \left(t + \frac{\lambda}{V} \right) \dots \dots (V)$$

(ii), (iii), (iv) এবং (v) সমীকরণগুলি চলতরক্ষোর বিকল্প সমীকরণ।

দ্রুব্য ঃ (a) (iv) নং সমীকরণ থেকে পাই $\xi=a\sin 2\pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)=a\sin\left(\frac{2\pi t}{T}-\frac{2\pi x}{\lambda}\right)$ তরজোর কোনো নির্দিষ্ট বিন্দুর বেলায় x ধ্রক। অতএব,

$$\xi = a \sin\left(\frac{2\pi t}{T} - 3\sqrt{3}\right)$$

(b) আবার, কোনো এক নির্দিষ্ট সময়ে । ধ্রুবক হয়। সেক্ষেত্রে

$$\xi = a \sin \left($$
 ধ্বরাশি $-\frac{2\pi x}{\lambda} \right)$

এই সমীকরণ হতে জানা যায় যে x-এর বদলে $(x + \lambda)$ অথবা $(x + 2\lambda)$ অথবা $(x + 3\lambda)$ ইত্যাদি বসালে ξ -এর মান অপরিবর্তিত থাকে। অর্থাৎ সরণ- ξ দূরত্ব x-এর সাথে সরল সমঞ্জসভাবে পরিবর্তিত হয়। তরজোর এই বৈশিষ্ট্যকে দেশ-পর্যাবৃত্ত (space periodicity) বলা হয়।

(c) লক্ষ কর যে t-এর মান বৃদ্ধি পেয়ে $(t+\Delta t)$ এবং x-এর মান বৃদ্ধি পেয়ে $(x+\upsilon \Delta t)$ হলেও ξ -এর মান অপরিবর্তিত থাকে।

এথেকে বলা যায় যে–কোনো বিন্দুতে তরজোর দরুন আন্দোলনের প্রকৃতি ঐ বিন্দু হতে (υ.Δι) দূরে অন্য এক বিন্দুতে Δι সময় পরপর পুনরাবৃত্ত (repeated) হবে। সুতরাং তরজা যে গতিবেগে সম্মুখের দিকে

অপ্রসর হবে তা =
$$\frac{v.\Delta t}{\Delta t} = v.$$
]

কণার গতিবেগ ও তুর্ণ ঃ

আমরা দেখেছি মাধ্যমের ভিতর দিয়ে তির্যক তরঙ্গ $\pm x$ অভিমুখে অগ্রসর হলে মাধ্যমের কণাগুলি অভিলম্ব $\pm y$ দিকে সরল দোলগতিতে আন্দোলিত হয়। কণাগুলির গতিবেগ সময়ের সঙ্গো পরিবর্তিত হয়। পূর্বে উল্লেখ করা হয়েছে তরঙ্গোর গতিবেগ এবং কণার গতিবেগ সমান নয়। কোন মাধ্যমে তরঙ্গোর গতিবেগের একটি নির্দিষ্ট মান থাকে। আমরা এখন, কণার গতিবেগ এবং তুরণ নির্ণয় করব।

x-অভিমুখে অগ্রসরমান তির্যক তরজোর সাধারণ সমীকরণ ঃ $\xi = a \sin \frac{2\pi}{\lambda} \left(Vt \pm x \right) ... (i)$ বলা বাহুল্য, যে V তরজোর গতিবেগ প্রকাশ করছে। মূলবিন্দু $(1.5 \, \text{e}^2)$ চিত্রে A বিন্দু) থেকে x দূরে অবস্থিত কণার t সময়ে গতিবেগ v হলে,

$$\upsilon = \frac{d\xi}{dt} = \frac{d}{dt} \left[a \sin \frac{2\pi}{\lambda} (Vt \pm x) \right]$$

$$= a \cos \frac{2\pi}{\lambda} (Vt \pm x) \frac{d}{dt} \left[\frac{2\pi}{\lambda} (Vt \pm x) \right]$$

$$= a \cos \frac{2\pi V}{\lambda} \cos \frac{2\pi}{\lambda} (Vt \pm x)$$

$$= \frac{2\pi a}{\lambda} V \cos \frac{2\pi}{\lambda} (Vt \pm x) ...(ii)$$

(11) নং সমীকরাণের $\cos \frac{2\pi}{\lambda} (Vi \pm v)$ এই রাশির উপস্থিতি বুঝিয়ে দেয় কশার গতিবেগ () এবং $\frac{2\pi u}{\lambda} V$

এর মধো বিভিন্ন মান পায় এবং স্বাধিক গতিরের ফ্রাম্ম = ²ামে ৮

লক্ষ কর কণার গতিবেগ পরিবর্তনশীল : কণার গতিপাথের মধ্য- একস্থানে গতিবেগ সর্বাধিক এবং দই প্রান্তীয় অবস্থানে শন্য কিন্তু তরজ্যের গতিবেগ V সর্বদা স্পির।

সরণ ধূ এবং দূরত্ব x-এর ভিতর লেখ আঁকলে সরণ লেখচিত্র (displacement curve) পাওয়া যায়। এই লেখচিত্রের নতি (slope) = dE/dx, এখন (i) নং সমীকরণ থেকে

$$\frac{d\xi}{dx} = -a \frac{2\pi}{\lambda} \cos \frac{2\pi}{\lambda} (V.t \pm x)$$
 [(ii) নং সমীকরণ থেকে। $\therefore v = \pm V \frac{d\xi}{dx}$ অর্থাৎ, কণার গতিবেগ = \pm তরপোর গতিবেগ \times সরণ লেখচিত্রের নতি।

কণার তর্গ ঃ

$$t$$
 সময়ে কণার ত্বরণ f হলে $f=rac{dv}{dt}=rac{d}{dt}igg[rac{2\pi a}{\lambda}.V\cosrac{2\pi}{\lambda}(Vt\pm x)igg]$

$$=-igg(rac{2\pi V}{\lambda}igg)^2.a.\sinrac{2\pi}{\lambda}(Vt\pm x)$$

$$=-igg(rac{2\pi V}{\lambda}igg)^2.y$$
 $[(i)$ নং সমীকরণের সাহায্যে $]$

কণার ত্বরণও পরিবর্তনশীল। গতিপথের মধ্য-অবস্থানে ($\xi=0$) ত্বরণ শূন্য এবং দুই প্রান্তীয় অবস্থানে সর্বাধিক।

D.Example D

 $m{\Phi}$ একটি তির্যক তরজোর সমীকরণ $y=y_0 \sin 2p (ft-rac{x}{\lambda})$ । মাধ্যমের কণার স্বাধিক বেগ তরজোর বেগের চারগুণ হলে, দেখাও যে $1=rac{\lambda}{2}.y_0$ ।

উঃ। তির্যক তরজোর সমীকরণ $y = y_0 \sin 2\pi (\beta - \frac{x}{\lambda}) \dots$ (i)

$$\therefore y = y_0 \sin \frac{2\pi}{\lambda} (\lambda f. t - x)$$

এখন, তির্যক তরজোর সাধারণ সমীকরণ $y=a\sin\frac{2\pi}{\lambda}\;(Vt-x)$ উক্ত সমীকরণ দৃটি তুলনা করলে পাই তরজোর বিস্তার $a=y_0$ এবং তরজাবেগ $V=\lambda f$.

এখন, কণার বেগ $\upsilon=rac{dy}{dt}=2\pi f.y_0\cos2\pi\left(ft-rac{x}{\lambda}
ight)$ [(i) নং সমীকরণকে অবকলন করে] কণার সর্বাধিক বেগ $\upsilon_{max}=2\pi f.y_0$

প্রস্থানুযায়ী, $2\pi f_{\nu_0} = 4V = 4.\lambda f$: $1 = \frac{\pi}{2} y_0$.

1.8. চলতরভোর ধর্ম (Properties of progressive waves):

তির্যক অথবা অনুদৈর্ঘ্য — যে-কোনো চলতরজ্ঞার নির্মালখিত ধর্ম আছে।

(ক) প্রতিফলন (reflection): একটি মাধামের ভিতর দিয়ে এসে অপর একটি মাধ্যমে তরজা আপতিত হলে, তরজোর এক অংশ আবার প্রথম মাধ্যমে ফিরে আসে। এই ঘটনাকে তরজোর প্রতিফলন বলে। 1.11 নং অন্তেদে শক্তরজোর প্রতিফলন সম্বধে আলোচনা করা হয়েছে।

- (খ) প্রতিসরণ (Refraction): চলতরজা এক মাধামের ভিতর দিয়ে অগ্রসর হয়ে যদি ভিন্ন ঘনত্বের অপর এক মাধামে প্রবেশ করতে চায়, তবে মাধামছয়ের বিভেদতলে তরজাের কিছু অংশ দিক্ পরিবর্তন করে দিতীয় মাধামে প্রবাহিত হয়। এই ঘটনাকে তরজাের প্রতিসরণ বলে। 1.15 নং অনুচ্ছেদে এই প্রসঞা আলােচিত হয়েছে।
- (গ) ব্যতিচার (Interference): একই কম্পাঙ্ক ও বিস্তারের অথবা একই কম্পাঙক ও সামান্য পৃথক বিস্তারের দৃটি চলতরজা একে আর একের উপর আপতিত হলে, ব্যতিচার সৃষ্টি হয়। এই ঘটনা তরজ্যের একটি ধর্ম। 1.8 অনুচ্ছেদ এই ঘটনার আলোচনা করা হয়েছে।
- (ঘ) অপবর্তন (Diffraction): কোনো প্রতিক্ধকের ধার ঘেঁসে চলতরজা ঋজুরেখায় ন' গিয়ে সামানা ঘুরে বক্রপথে যায়। তরজোর বাঁক ঘোরার এই ক্ষমতাকে অপবর্তন বলা হয়। শব্দতরজোর অপবর্তন ক্ষমতা খুব বেশি।
- (%) সমবর্তন (Polarisation): তির্যক তরঞ্জা বিস্তার লাভ করার সময় মাধ্যমের কণাগুলি তরঞাগতির অভিমুখের সজো সমকোণে আন্দোলিত হয়। যদি কণাগুলির আন্দোলন তরঞ্জা-প্রবাহের অভিমুখে লম্বতলে একটি নির্দিন্ট দিকে সীমাবন্দ্র থাকে তবে তাকে তরঞাের সমবর্তন বলে। আলাক তরঞাের সমবর্তন হয়। বায়ুমধ্যে শব্দতরজা তির্যক নয় বলে শব্দতরজাের সমবর্তন হয় না।
- (চ) বিক্ষেপণ (Scattering): প্রবাহিত হবার সময় চলতরজ্ঞা যখনই কোনো বস্তুকণার উপর পড়ে তখন ঐ কণা পরবশ কম্পনে কম্পিত হয়। কম্পিত কণা তখন তরজ্ঞার গৌণ উৎসরূপে কাজ করে চতুর্দিকে তরজা ছড়িয়ে দেয়। এই ঘটনাকে তরজোর বিক্ষেপণ বলে।

O Expuns O

① একটি চলতরজোর সমীকরণ $y = 4 \sin 2p \left(\frac{t}{0.02} - \frac{x}{400} \right)$; এখানে x-সেন্টিমিটারে, y মিটারে এবং t সেকেন্ডে প্রকাশ করা হয়েছে। (i) তরজোর বিস্তার, (ii) তরজোর কম্পাঙ্ক নির্গয় করো।

উঃ। চলতরভোর ক্ষেত্রে সাধারণ সমীকরণ
$$y=a\sin\left(2\pi nt-\frac{2\pi x}{\lambda}\right)$$

পূর্ব অনচ্ছেদে (ii) নং সনাকরণী

এখন, পর্যায়কাল
$$T=\frac{1}{n}$$
; অতথ্যক, $y=a\sin 2\pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$

প্রদত্ত তরপ্রের সমীকরণ
$$y = 4 \sin 2\pi \left(\frac{t}{0.02} - \frac{x}{400}\right)$$

এই সমীকরণ দৃটি তুলনা করলে দেখা যায় যে প্রদন্ত তরজোর বিস্তার a = 4 metre : তরজাদৈখ্য

$$\lambda = 400 \text{ cm} = 4 \text{ metre}$$
; Φ^{EM} is $n = \frac{1}{T} = \frac{1}{0.02} = 50 \text{ Hz}$

১.১১৭, ১৫% বেগ V=n\lambda = 50 × 4 = 200 m/s.

্র একটি মাধ্যমে x অক্ষের দিকে 2 m/s বেগে একটি চলতরকা যাছে। x=0 অবস্থানে একটি কণার t সেকেন্ড সময়ে সরণ $7 \sin{(10pt)} \text{ mm} \ | \ x=60 \text{ cm}$ অবস্থানে 0.75 সেকেন্ড, পরে কণার সরণ কত হবে ?

উও। সবক সাক্রতিতে সর্বের সাধারণ সমীকরণ । = a < 111 ।।।।।।।

ভাগার সর্ব নালগতির কৌশিক কম্পাঙ্ক (e) = 10π এবং তর্গের ও গোলা 🗀 চ 🧸

Estimates
$$\lambda = \frac{V}{n} = \frac{V}{\omega/2\pi} = \frac{2\pi \times 2}{10\pi} = 0.4$$
 metre.

1 = 60 cm অব্যথানে কণার কম্পানের দশা r = () অব্যথানে কণার দশা সংগ্রহণ ও ইলি

$$φ = \frac{2\pi}{\lambda} x = \frac{2\pi}{0.4} \times 0.6 = 3\pi$$
 পশ্চাংবতী।

হতেবে, দ্বিতীয় কণার সরণ = 7 sin (10πu – 3π) mm

 $=7\sin(10\times\pi\times0.75-3\pi)\,\mathrm{mm}$

ত্র y = 0.25 sin (4pt - 0.2px) যেখানে x এবং y cm এবং t সেকেন্ডে প্রকাশ করা হয়েছে। এরপ একটি তির্যক তরকা একগাছা সূতো বরাবর অগুসর হচ্ছে। তরকাগতির অভিলম্ব দিকে সূতোর প্রত্যেকটি কণা উপর-নীচ দুলছে। t = 0.5 s পরে এবং সূতোর একপ্রাম্ভ হতে x = 10 cm দুরে একটি কণার গতিবেগ ও ছরণ নির্ণয় করো। ঐ সময় কণার অবস্থান কোথায় ?

উঃ। বিস্তার A, কম্পাঙ্ক n এবং তরজাদৈর্ঘ্য λ যুক্ত চলতরজ্ঞার সাধারণ সমীকরণ ং

 $y = A \sin \left(2\pi n t - \frac{2\pi n}{\lambda} \right)$; এই সমীকরণের সঞ্জো প্রশ্নে উল্লিখিত তরজোর সমীকরণ তল্লা করলে

পাই, $A=0.25~{
m cm}$; $2\pi n=4\pi$ অথবা, n=2 এবং $\frac{2\pi}{\lambda}=0.2\pi$ অথবা, $\lambda=10~{
m cm}$. এখন, কণার

The case
$$v = \frac{dy}{dt} = 2\pi A.n.\cos 2\pi \left(nt - \frac{x}{\lambda}\right) = 2\pi \times 0.25 \times 2 \times \cos 2\pi \left(2t - \frac{x}{10}\right) = 2\pi \times 0.5 \times 10^{-3}$$

 $\cos 2\pi \left(2 \times 0.5 - \frac{10}{10}\right) = \pi.\cos 2\pi (1 - 1) = 3.14 \text{ cm/s.} \quad [\because \cos 0^{\circ} = 1]$

ভাবং কণার স্বরণ $a = \frac{dv}{dt} = -2\pi nA \times 2\pi n$. $\sin 2\pi \left(nt - \frac{x}{\lambda} \right)$

=
$$-4\pi^2 .n^2 A.\sin 2\pi \left(2 \times 0.5 - \frac{10}{10}\right) = 0. \quad [\because \sin 0^\circ = 0]$$

রবণ শুন্য হওয়ায় বোঝা যায় যে কণা ঐ মুহূর্তে মধ্য-অবস্থান অতিক্রম করছে।

পুর্টি সরল দোলতরশের সমীকরণ নিমরূপ:

 $y_1 = 0.30 \sin(314t - 1.57x)$

 $y_2 = 0.10 \sin(314t - 1.57x + 1.57)$

উপরোত্ত তরজা দুটির দশাপার্থক্য এবং প্রাবল্যের অনুপাত নির্ণয় করো।

উঃ। তরজাধ্বয়ের সমীকরণ হতে বোঝা যায় যে প্রথমটির দশা $\delta_1 = 314t - 1.57$ । এবং দ্বিতীয়টির

 $\delta_2 = 314i - 1.57x + 1.57$. ∴ দশাপার্থক্য $\Delta \delta = \delta_2 - \delta_1 = 1.57 \text{ rad} = 1.57 \times \frac{180}{\pi} = 90^\circ$ [$\pi = 3.14$]

ত্রপাদ্ধের বিস্তারের অনুপাত = $\frac{a_1}{a_2} = \frac{0.3}{0.1} = \frac{3}{1}$

: প্রাবল্যের অনুপাত =
$$\frac{I_1}{I_2} = \frac{a_1^2}{a_2^1} = \left(\frac{3}{1}\right)^2 = \frac{9}{1}$$
.

্রেঃ ত্রাঞ্জর প্রাহল। ত্রাঞ্জর বিস্তারের বর্গের সমানুপাতিক।

1.9. তর্পের দশা (Phase of a wave):

সরল দোলগতির দশার ন্যায় তরজোর দশাও এমন একটি রাশি যা থেকে তরজোর সকল তথ্য পাওয়া যায়। 1.7 অনুচ্ছেদের (i) নং সমীকরণ হতে দেখা যায় যে তরজোর $\frac{2\pi}{\lambda}(Vt-x)$ রাশিটি জানা থাকলে, তরজোর সকল তথ্যই জানতে পারা যায়। কাজেই, মাধ্যমের x বিন্দৃতে এবং t সময়ে তরজোর দশা $\delta = \frac{2\pi}{\lambda}(Vt-x) = \frac{2\pi x}{T} - \frac{2\pi x}{\lambda}$ $\left[\because V = \frac{\lambda}{T}\right]$ লক্ষণীয় যে তরজোর দশা সময় t এবং স্থানাঙ্ক x উভয়ের উপর নির্ভর করে। অর্থাৎ কোনো এক বিশেষ বিন্দৃতে (x=4রক) তরজোর দশা সময়ের (t) সাথে পরিবর্তিত হয়; আবার কোনো এক বিশেষ মুহূর্তে (t=4রক) তরজোর বিভিন্ন বিন্দৃতে দশা বিভিন্ন হয়।

(a) দুরত্বের সাথে দশার পরিবর্তন :

ধরা যাক, তরজোর উৎস বিন্দু A হতে x_1 এবং x_2 দূরে দুটি বিন্দু নেওয়া হল [চিত্র 1.5]। যে-কোনো t মৃহূর্তে x_1 বিন্দুতে তরজোর দশা $\delta_1=\frac{2\pi t}{T}-\frac{2\pi x_1}{\lambda}$; অনুরূপভাবে ঐ মৃহূর্তে x_2 বিন্দুতে তরজোর দশা $\delta_2=\frac{2\pi t}{T}-\frac{2\pi x_2}{\lambda}$

 \therefore ঐ মুস্থূর্তে দুই বিন্দুর ভিতর তরজ্ঞার দশাপার্থক্য $\Delta\delta=\delta_1-\delta_2=\frac{2\pi}{\lambda}\,(x_2-x_1)=\frac{2\pi}{\lambda}\,.$ Δx [x-অক্ষ বরাবর বিন্দুদ্বয়ের পথ-পার্থক্য = Δx]

 $\Delta r=rac{\lambda}{2}$ হলে অর্থাৎ পথ-পার্থক্য তরজা দৈর্ঘোর অর্ধেক হলে, দশাপার্থক্য $\Delta\delta=rac{2\pi}{\lambda} imesrac{\lambda}{2}-\pi$: অতএব, বিন্দু দৃটির দশা সম্পূর্ণ বিপরীত।

আবার, $\Delta x=\lambda$ হলে, দশাপার্থক্য $\Delta \delta=\frac{2\pi}{\lambda} \times \lambda=2\pi$; অর্থাৎ বিশ্বদ্ধয়ের দশা সমান।

(b) সময়ের সাথে দশার পরিবর্তন :

কোনো এক নির্দিষ্ট বিন্দুতে (x = ধ্বুবক) তরজোর দশা সময়ের (1) সাথে সরল সমশ্বসভাবে পরিবর্তিত হয়। ধরো, 11 এবং 12 সময়ে ঐ নির্দিষ্ট বিন্দুতে তরজোর দশা যথাক্রমে δ_1 এবং δ_2 । তাইলে,

$$\delta_1 = 2\pi \left(\frac{t_1}{T} - \frac{x}{\lambda}\right)$$
 as $\delta_2 = 2\pi \left(\frac{t_2}{T} - \frac{x}{\lambda}\right)$

বিয়োগ করলে, $\delta_2 - \delta_1 = 2\pi \left(\frac{t_2}{T} - \frac{t_1}{T}\right) = \frac{2\pi}{T}(t_2 - t_1)$: $\Delta \delta = \frac{2\pi}{T} \cdot \Delta t$

যখন $\Delta t=T$ (তরজোর পর্যায়কাল), $\Delta\delta=2\pi$: সূত্রাং পর্যায়কালের সংজ্ঞামরূপ বলা যায় যে এটা এমন সময় যে সময়-অবকাশে (interval) মাধ্যমের কোনো নির্দিষ্ট বিন্দৃতে দশাপার্থক্য হয় 2π অথবা শূন্য।

II Francisco

1) একটি চলতরভোর কম্পান্ক 500 এবং গতিবেগ 350 metre/s। তরভোর উপর দৃটি বিন্দর দশাপার্থকা 60° হলে বিন্দময়ের ভিতর দরত কত ?

The property of $(\delta_2-\delta_1)=\Delta\delta=60^{\rm o}=\frac{\pi}{3}$ radian :

$$\mathfrak{A}\approx \mathfrak{i}, \ \Delta \delta = \frac{2\pi}{\lambda}\left(\, \mathfrak{r}_2 - \mathfrak{x}_1 \, \right)$$

$$\therefore (x_2 - x_1) = \frac{\Delta \delta. \lambda}{2\pi} = \frac{\Delta \delta. V}{2\pi. n} = \frac{\pi \times 350}{3 \times 2\pi \times 500} \text{ metre} = 0.1166 \text{ m} = 11.67 \text{ cm}.$$

2 একটি প্রগামী তরশ্যের সমীকরণ $y=2.5\sin{(400t-0.68x+p/2)}$. নিম্নলিখিত বিষয়গুলি নির্ণয় করোঃ (i) x=0 এবং t=0 সময়ের দশা (ii) x-অক্ষ বরাবর $20\,\mathrm{cm}$ দূরহে অবস্থিত দৃটি বিন্দুর দশাপার্থক্য (iii) 0.4 মিলিসেকেন্ডে কোনো বিন্দুতে দশার পরিবর্তন।

উঃ। তরজোর সাধারণ সমীকরণ
$$y=a\sin\left(\frac{2\pi}{T},t-\frac{2\pi}{\lambda},x+\pi/2\right)$$

প্রসম্ভ সমীকরণের সজো তুলনা করলে পাই, $\frac{2\pi}{T}=400$ এবং $\frac{2\pi}{\lambda}=-0.68$

ভাছাড়া তরজের দশা $\delta = 400t - 0.68x + \frac{\pi}{2}$

(i) x = 0 এবং t = 0 সময়ে দশা $\delta_0 = 400 \times 0 - 0.68 \times 0 + \frac{1}{2} = p/2$.

(ii) 20 cm দূরত্বে দশাপার্থক্য $\Delta\delta=\frac{2\pi}{\lambda}.\Delta x=-0.68\times 20=-13.6$ rad.

(iii) ().4 মিলিসেকেন্ডে দশার পরিবর্তন $\Delta \delta = \frac{2\pi}{T}.\Delta t = 400 \times 0.4 \times 10^{-3} = 0.16$ rad.

[1 মিলিসেকেড = 10⁻³ সেকেড]

তির্যক ও অনুদৈর্ঘ্য তরজোর মধ্যে পার্থক্য (Difference between transverse and longitudinal waves):

তির্যক ও অনুদৈর্ঘ্য তরজোর মধ্যে নিম্নলিখিত পার্থক্য বর্তমান ঃ

তিয়ক বা অনুপ্রস্থ ভর্গ

- কোনো হিথতি স্থাপক মাধ্যমের কণাগলর আন্দোলনের ফলে সৃষ্ট তরজা যদি কণাগুলির গতির অভিমুখের সমকোণে প্রবাহিত হয়, তবে ঐ তরজাকে তির্মক তরজা কলা হয়।
- তির্যক তরজোর চলাচলের ফলে মাধামে তরজাশার্ব ও তরজালাদের উদ্ধব হয়।
- 3. তির্গক তরজোর ফলে সৃষ্ট পরপর দুটি তরজাশীর্স ব তরজাপাদের মধাবতী দূরত্বকে তরজাদৈর্যা বলে।

BERT CAN

- কোনো স্থিতিস্থাপক মাধ্যমের কণাগুলির আন্দোলনের ফলে সুই তরজা যদি কণাগুলির গতির সমান্তরালে প্রবাহিত হয়, তবে ঐ তরজাকে অনুদৈর্ঘ্য তরজা বলা হয়।
- এন্দৈর্ঘ্য তরজোর চলাচলের ফলে মাধামে ঘনীভবন ও তন্তবনের উদ্ভব হয়।
- অনুদৈর্ঘ্য তরজোর ফলে সৃষ্ট একটি ঘনীভবন ও একটি তনুভবনের মিলিত দৈর্ঘ্যকে তরজাদৈর্ঘ্য বলা হয়।

- 1 1000 com consist dis 28.5 স্থিত হয়।
- 5. ভিহ্ন ভরজোর সমবর্তন uponansation। हरा।
- 6. মাধ্যমের ভিতর লিয়ে তিই ক ত্রশা চলে পোলে, মাধ্যমে চপুপর কোনো পরিবর্ধন হয় ল

- 4. Water your observer or the in-
 - 5 March gerond Francis St. C.
- 6. 212174 EST FOR SOLDER STEEL STEEL 1517 - 118- 12 1780 VICA EN 87)

একটি মাধ্যমের ভিতর দিয়ে যেতে যেতে চলতরজা অন্য একটি ভিন্ন ঘনত্তের মাধ্যমে আপতিত হলে তরজোর কিছু অংশ প্রতিফলনের সূত্র মেনে প্রতিফলিও হয়ে প্রথম মাধ্যমে ফিরে আসে। একে প্রতিফলিত তরজা বলা হয়। দেখা গেছে প্রতিফলক সৃদৃড় (rigid) *হলে* আপতিত ও প্রতিফলিত তরজোর প্রকৃতি একই থাকে। অর্থাৎ অনুপ্রস্থ বা তির্ঘক তরজোর বেলায় তরজাশীর্ষ প্রতিফলিত হয় তরজাশীর্ষরূপে এবং তরজাপাদ প্রতিফলিত হয় তরজাপাদরূপে: আর এন্দৈর্ঘ্য তরজোর বেলায় ঘনীভবন অথবা তনুভবন প্রতিফলিত হলে তারা যথাক্রমে ঘনী ভবন ও তনুভবনরপেই ফিরে আসে। কিন্তু প্রতিফলক নমনীয় হলে বিপরীত ঘটনা ঘটে—সেখানে তরজা শীর্য প্রতিফলিত হলে তরজাপাদে পরিণত হয়; তেমনি তরজাপাদ প্রতিফলিত হলে তরজাশীর্যবুপে ফিরে আসে। অনুদৈর্ঘ্য তরজোর বেলায় প্রতিফলনের জন্য ঘনীভবন তনুভবনে এবং তনুভবন ঘনীভবনে বুপান্তরিত হয়। অর্থাৎ নমনীয় প্রতিফলকে প্রতিফলন হলে, তরজের π পরিমাণ দশা পরিবর্তন ঘটে।

শব্দতরক্ষা প্রতিফলনের সূত্র ঃ

- (i) আপতিত শব্দরশিম, প্রতিফলিত শব্দরশিম ও আপতন বিন্দৃতে প্রতিফলক তলের উপর অঙ্কিত অভিলম্ব এক সমতলে অবস্থান করে।
 - (ii) আপতন কোণ ও প্রতিফলন কোণ প্রম্পরের স্মান হয়।

প্রতিফলনের ফলে, আপতিত ও প্রতিফলিত তর্গের কম্পাঞ্চক, তরজাদৈর্ঘ্য এবং বেগের কোনো পবিবর্তন হয় না।

শব্দতরভোর প্রতিফলন দেখাবার পরীক্ষাঃ

(1) সমতল প্রতিফলক দারাঃ 1.5 নং চিত্রে একটি কাঠের সমতল বোর্ড (C) শব্দের প্রতিফলক

হিসাবে ব্যবহৃত হয়েছে। A এবং B দৃটি ফাঁপা নল টেবিলের উপর অনুভূমিক অবস্থায় রাখা। দুই নলের মানখানে P একটি কাঠের পার্টিশান। A এবং B নলকে এমনভাবে বসাও যেন তাদের অক্ষণয় (axes) C বিন্দৃতে মেশে এবং CP রেখার সাথে সমান কোণ উৎপন্ন করে; অর্থাৎ ZPAC = ZPCB. এখন A নলের খোলা মুখের সম্মুখে একটি ঘড়ি ধরে B নলের মুখে কান রাখলে প্র্যাট টিক টিক শব্দ শোনা যাবে। যদি B নল দহিত্য বা বাবে ঘোরানো যায় তবে आत नक (नावा यात वा। अठी श्रुपाण कर्त, प्रात्मारकत वाश नक ह ে বিন্দৃতে এমনভাবে প্রতিফলিত হয় যে, আপতন কোণ /PCA ও

প্রতিফলন কোণ ZPCB সমান। নল দটির মাকখানে কাস্তের ফলক P বাখার জন্য ঘটির শব্দ সোজার্যা কানে পৌচোতে পাববে না।

(2) অবতল প্রতিফলক ঘারা: 1.6 নং চিত্রে A এবং B দটি অবতল প্রতিফলক মুখোমুখি রাখা আছে A প্রতিফলকের ফোকাসে (focus) একটি ঘাঁভ রেখে B প্রতিফলকের ফোকাসে কান রাখলে স্পন্ট ঘটির শব্দ শোনা যাবে। কান একট এদিক ওদিক সরালে আর শব্দ শোনা যাবে না। এপ্সলে আলোকরশার নায় শব্দবশ্মি A

প্রতিফলক দাবা প্রতিফলিত হয়ে প্রতিফলকের অক্ষেব সমান্তরালভাবে B-এর উপর পড়ে এবং প্রনায় B কর্তৃক প্রতিফলিত হয়ে B-এর ফোকাসে একবিত হয়।

व्यावशतिक প্রয়োগ (Praetical শব্দ প্রতিফলনের applications of reflection of sound):

(2) বড়ো মোটরগাড়িতে আরোহী ও চালকের ভিতর কথাবার্তা বলার জনা একপ্রকার নল ব্যবহত হয় চিত্ৰ 1.71। একে কথন নল (speaking tube) বলে। এই নলের এক দিকে কথা বললে

শব্দরশ্মি বারবার নলের ভিতরের গায়ে প্রতিফলিত হয়ে অন্যপ্রান্তে পৌচায় এবং ঐ প্রান্তে কান রাখলে কথা স্পষ্ট শোনা যায়।

(3) ডাক্তারেরা রোগীর বুক পরীক্ষার জন্য যে যন্ত্র ব্যবহার করেন তা উপরিউক্ত নলের মতো কার্য করে। এই যন্ত্রকে স্টেথোস্কোপ (stethoscope) বলে। এতে দুটি নল থাকে। নল দুটি এক জায়গায় মিলিত হয়ে একটি পাতলা পর্দাযুক্ত (diaphragm) যন্ত্রের সাথে যুক্ত থাকে। এই যদ্ধ বুকে রাখলে রোগীর হৃৎস্পন্দনের শব্দ নলের ভিতর দিয়ে বারবার প্রতিফলিত হয়ে চিকিৎসকের কানে পৌছায়।

(4) তোমরা জান যে, দূরাগত কোনো ক্ষীণ শব্দ স্পন্ট শোনার জনা আমরা আমাদের হাতের তালু বাঁকিয়ে কানের কাছে ধরি। ওইভাবে বাঁকানো হাতের তালু অবতল প্রতিফলকের কাব্ধ করে এবং শব্দরশ্মি হাতের তাল দ্বারা প্রতিফলিত হয়ে কানে পৌছায়।

গ্রামোফোনের চোঙ, বধিরেরা কথা শোনার জন্য যে যন্ত্র (ear-trumpet) ব্যবহার করে সেই যন্ত্র শব্দের

প্রতিফলনকে কাজে লাগিয়ে তৈরি করা হয়।

(5) বক্তৃতা, জনসভা, সঞ্জীতের আসর প্রভৃতি অনুষ্ঠানের উদ্দেশ্যে কোনো হলঘর (auditorium) নির্মাণ করার সময় তার পরিকল্পনা বিজ্ঞানসম্মত হওয়া উচিত। শব্দবিজ্ঞানের নিয়মানুযায়ী হলঘর নির্মাণ করলে তাকে বলা হয় acoustically designed অডিটোরিয়াম। এই ধরনের হলঘরের ছাদ সমতল না করে আর্চের ন্যায় বাঁকানো থাকে। এর সুবিধা এই যে বক্তা আন্তে বক্তৃতা করলেও শব্দ ছাদের বিভিন্ন স্থান হতে প্রতিফলিত হয়ে শ্রোতৃবর্গের সকলের কাছে পৌছায় এবং সকলেই বন্ধৃতা শুনতে পান। অবশ্য, দেওয়াল হতে প্রতিফলিত শব্দ মূল শব্দের সাথে মিশলে গোলমালের সৃষ্টি হবার সম্ভবনা থাকে। তাই, দেওয়ালে নরম কাপড়ের পর্দা ঝুলিয়ে রাখলে বা নরম প্যাড দ্বারা দেওয়াল আবৃত রাখলে, দেওয়াল হতে শব্দের প্রতিফলন হতে পারে না এবং দ্ট শব্দের মিশ্রণজনিত বিশ্রান্তিরত সৃষ্টি হরে না। হলঘর লোকভর্তি থাকলে, লোকের পোশকে-পরিস্কাদ কর্তক শব্দরাশ্রর শোষণের ফলে বিশ্রান্তির সন্তাবনা অনেক কমে যায়। তাই, জপেক্ষাকৃত থালি ঘরে বঞ্জার চেয়ে লোকভর্তি হলঘরে বঞ্জা অনেক ভালো শোনা যায়। আবার ঘরে বঞ্জা দিলে শব্দ যেমন শোনা যাবে, খোলা মাঠে বক্ততা দিলে বস্তাকে আরও জোরে বক্ততা দিতে হবে। করেণ, খোলা মাঠে শব্দের প্রতিফলন হতে কোনো সাহাযাই পাওয়া যাবে না।

1.18. প্রতিধ্বনি (Echo):

রাত্রিবেলা এটার পাড়ে দাঁড়িয়ে শব্দ করলে কিছুক্ষণ বাদে সেই শব্দের প্নরাবৃত্তি শোনার অভিজ্ঞতা হয়তো তোমাদের অনেকেরই আছে। অথবা বড় খালি হলঘরের একপ্রান্তে ধ্বনি করলে কিছ্ক্ষণ পরে ঠিক সেই শব্দ শোনা যায়—এটা তোমরা লক্ষ করে থাকবে। শব্দের প্রতিফলনের জনা এরূপ শব্দের সৃষ্টি হয়।

সংজ্ঞাঃ প্রতিফলনের জন্য শব্দ বা ধ্বনির পুনরাবৃত্তিকে প্রতিধ্বনি বলে। প্রতিধ্বনি সৃষ্টি কর'র জন্য গাছের সারি, বড় বাড়ির দেওয়াল, পাহাড়ের ঢাল ইভাাদি প্রতিফলক হিসাবে কাজ করে থাকে।

- প্রতিফলকের ন্যুনতম দূরত্বঃ কোনো ধ্বনি কানে পৌছোলে সেই ধ্বনির রেশ কিছুক্ষণ যাবৎ কানে স্থায়ী হয়। একে শব্দনির্বন্ধ (presistence of hearing) বলে। এই সময়ের পরিমাণ $\frac{1}{10}$ সেকেন্ড। সাধারণ সাইজের ঘরে কথাবার্তা বললে দেওয়াল কর্তৃক প্রতিফলিত হয়ে শব্দ $\frac{1}{10}$ সেকেন্ডের ভিতর কানে পৌছায় বলে ধ্বনি ও প্রতিধ্বনির মধ্যে পার্থক্য করা যায় না। কানে উভয়েই এক শব্দ বলে মনে হয়। প্রতিধ্বনি স্পেই শুনতে হলে শব্দকে প্রতিফলিত হয়ে কানে পৌছাবার পূর্বে কমপক্ষে $\frac{1}{10}$ সেকেন্ড সময় অতিবাহিত করতে হবে। সূতরাং, সাধারণ ধ্বনি—যেমন বন্দুকের শব্দ, হাততালি ইত্যাদি যা খুব অঙ্কা সময়ের ভিতর করা হয়, তার প্রতিধ্বনি শুনতে গেলে প্রতিফলককে এমন দূরে রাখতে হবে যে ধ্বনি প্রতিফলক পর্যন্ত গিয়ে প্রতিফলিত হয়ে পুনরায় শ্রোতার কানে পৌছানো পর্যন্ত অন্তত $\frac{1}{10}$ সেকেন্ড অতিবাহিত হয়। যদি শব্দের বেগ প্রতি সেকেন্ডে 330 metre ধরা যায় তবে উত্ত $\frac{1}{10}$ সেকেন্ডে শব্দ মোট 33 m যাবে। সূতরাং, প্রতিফলককে শ্রোতা হতে অন্তত $\frac{3.3}{2} = 16.5$ m দূরে রাখতে হবে।
- বোধগম্য শব্দের প্রতিধ্বনি ঃ কোনো বোধগম্য (articulate) শব্দের প্রতিধ্বনি শুনতে হলে প্রতিফলককে আরও দূরে রাখতে হবে। কারণ, দেখা গেছে, মানুষ সেকেন্ডে পাঁচটি পদাংশের (syllable) বেশি উচ্চারণ করতে পারে না। সুতরাং একমাত্রিক (mono-syllabic) শব্দের বেলাতে ধ্বনি ও প্রতিধ্বনির ভিতর ন্যুনতম সময়ের ব্যবধান দিতে হবে $\frac{1}{5}$ সেকেন্ড। উদ্ভ সময়ে শব্দ মোট $330 \times \frac{1}{5} = 66$ m যায়। সূতরাং, একমাত্রিক ধ্বনির বেলাতে প্রতিফলকের দূরত্ব কমপক্ষে $\frac{66}{2} = 33$ m হওয়া দরকার। তেমনি দিমাত্রিকের বেলাতে দূরত্ব এর দ্বিগুণ, ত্রিমাত্রিকের বেলাতে প্রায় ভিনগুণ ইত্যাদি প্রয়োজন।
- একাধিক প্রতিধ্বনি (Multiple echoes): কখনও কখনও ধ্বনির বারবার প্রতিফলনের জন্য একবার শব্দ করে অনেকগুলি প্রতিধ্বনি শোনা যায়। দুই সমান্তরাল পাহাড়ের মাঝখানে দাঁড়িয়ে ধ্বনি করলে ঐ শব্দ বারবার দুই পাহাড় দ্বারা প্রতিফলিত হয়ে শ্রোতার কানে পৌছায়। ফলে একাধিক প্রতিধ্বনি শোনা যায়। এদের তীব্রতা ক্রমশ হ্রাস পেয়ে অবশেষে মিলিয়ে যায়। ফ্রান্সের ভার্দুন শহরের কাছে প্রায় 46 m দূরত্বে দুটি সমান্তরাল দেওয়াল আছে যার মাঝখানে দাঁড়িয়ে শব্দ করলে অন্তত্ত 12 বার প্রতিধ্বনি শোনা যায়। অনেক প্রাচীন গির্জা বা মন্দিরেও এরূপ একাধিক প্রতিধ্বনি শোনা যায়। মেঘের গুরুগুরু ধ্বনি বিভিন্ন উচ্চতায় মেঘের স্তর কর্তৃক শব্দের বারবার প্রতিফলনের জন্য হয়।

● অনুরপনঃ থালি বড়ো হলছারে গদ করাল দেখা যায় ঐ শদ ছায়ে যাখার পরত অন্তর্জন লার সেই শালের প্রের ক্ষার্থ করে। এই ধর্নের শদতে কলা হয় অনুর্থন লাকেলাকারেলাল প্রত্যাল কঠক বার্বার শালের প্রতিফলনের জন্য অনবধন হয়ে থাকে। ঘলের জানলা প্রনা, ফালের আনবধন ইতাদি থাকেনে এবং ঘারে আনবার থাকেলে ও শালেকে শালের করে নিতে পারে বলে সাধান্যত অসনারপর্য বড় ঘারে এরপা অনুরপন শোনা যায় না।

1-14

প্রতিধ্বনির সাহায়ে গভীরতা বা উচ্চতা নির্ণয় (Beho-depth sounding) :

(ক) সমুদ্রের গভীরতা নির্ণর ঃ

শানের প্রতিধ্বনিকে কাজে লাগিয়ে সমাদের গড়ীবতা নিগমের একটি স্বিশভনক পাশতি হ'ছে। সম্প্র

ভাসমান একটি ভাষাজের একপ্রাপ্ত হতে দ গণ্ডবর্তার একটি বিশ্বেদারক বস্তু A এবং অলাপ্রাপ্ত হতে একই গণ্ডারতায় একটি হাইড্যোকোন (জলের ভিতর বাবহার করা যায় এরপ মাইক্রোকোন) নামক শব্দগ্রাহী যক্ত্র B থালিয়ে দেওয়া হয় [চিত্র 1.8]। বিক্ষোরক দ্রবো আগুন লাগিয়ে বিক্ষোরণ সৃষ্টিকরলে যে প্রচন্ত শক্ষের উদ্ভব হয় তার একটি অংশ সোভা AB পথে হাইড্যোকোন যক্ত্রে পৌছায়। হাইড্যোকোন স্বয়ংকিয় বৈদ্যুতিক যন্ত্রের সাহায্যে শব্দ পৌছায়। হাইড্যোকোন স্বয়ংকিয় বিদ্যুতিক যন্ত্রের সাহায্যে শব্দ পৌছায়। হাইড্যোকোন স্বয়ংকিয় বিদ্যুতিক যন্ত্রের সাহায্যে শব্দ পৌছায় এবং সেখানে থেকে প্রতিফলিত হয়ে CB পথে হাইড্যোকোনে যায় হাইড্যোকোন এই প্রতিফলিত শব্দ পৌছবার সময়ও লিপিবন্ধ করে।

মনে করো, শব্দের সরাসরি AB পথে যেতে সময়

লাগল $=t_1$: যদি সমুদ্রজলে শব্দের গতিবেগ হয় V ওবে $AB=Vt_1$: এখন, $DB=\frac{1}{2}$ $AB=\frac{1}{2}$ Vt_1 (i)

আবার ধরো, প্রতিফলিত শব্দ AC এবং CB পথে যেতে সময় নিল = 121

GRACH CB = 2BC = $V.t_2$:: BC = $\frac{1}{2}Vt_2$

অতএব,
$$h_1 = \sqrt{\left(\mathrm{BC}\right)^2 - \left(\mathrm{BD}\right)^2} = \sqrt{\left(\frac{1}{2}V.t_2\right)^2 - \left(\frac{1}{2}V.t_1\right)^2} = \frac{V}{2}\sqrt{t_2^2 - t_1^2}$$

 \therefore সমুদ্রের গভীরতা $d = h + h_1 = h + \frac{V}{2} \sqrt{t_2^2 - t_1^2}$.

হাইড়োফোনের সাহায্য t_1 এবং t_2 নির্ণয় করলে সমুদ্রের গভীরতা হিসাব করা যাবে। গভীরতা নির্ণয় ছাড়াও সমুদ্রের তলায় নিমজ্জিত জাহাজের সন্ধান, সাবমেরিন, মাছের ঝাঁক প্রভৃতির অবস্থান জানতেও প্রতিধ্বনির ব্যবহার করা হয়।

(খ) উড়োজাহাজের উচ্চতা নির্ণয়:

প্রতিফলনের সাহায্যে উড়োজাহাজের উচ্চতা নির্ণয় করা যায়। উড়োজাহাজ গতিশীল হওয়ায় নির্ণয় পশ্বতি একট আলাদা।

ধরো, একটি উড়োজাহাজ ভূমির সমান্তরালে XY সরলরেখায় উড়ে যাচ্ছে [চিত্র 1.9]। X বিন্দুতে

উপস্থিত হয়ে উড়েজগ্রাজ হতে একটি শব্দ করা হল। ধরা যাক, ভপ্স দারা ঐ শব্দ প্রতিফলিত হয়ে যখন

প্রতিধ্বনির সৃষ্টি করল ভ্যন উড়োজাহাক Y বিন্দৃতে উপস্থিত হয়েছে। $\widehat{\Gamma}$ চিত্র হতে বোঝা যায়, শন্দকে X(I) এবং OY পথে প্রতিফ্রলিত হয়ে। যোত হরে। শন্দ সৃষ্টি এবং প্রতিধ্বনি শোনা—এই দৃষ্ট্রের ভিতর। সময়ের বাবধান যদি I সেকেন্ড হয় এবং উড়োজাহাজের গতিবেগ v হয়, ভবে, XY = v.t. জাবার, $XA = \frac{1}{2}XY = \frac{1}{2}v.t.$ বায়ুমধ্যে শক্ষের গতিবেগ V হলে, $XO = OY = \frac{1}{2}Vt.$

যদি উণ্ড়োজাহাজের উচ্চতা h হয়, তবে AO = h + AOX সমকোণী ত্রিভুক্ত হতে পাই,

$$h = \sqrt{(XO)^2 - (XA)^2} = \sqrt{\left(\frac{1}{2}Vt\right)^2 - \left(\frac{1}{2}vt\right)^2} = \frac{1}{2}t\sqrt{V^2 - v^2}.$$

উড়োজাহাজের গতিবেগ (υ), শব্দের গতিবেগ (V) এবং মূলশব্দ ও প্রতিধ্বনির অন্তর্বতী সময় (t) জানা থাকলে উপরিউন্ত সমীকরণের সাহায্যে উড়োজাহাজের উচ্চতা (h) নির্ণয় করা যায়।

☐ Examples ☐

একটি প্রতিধ্বনি পশ্বমাত্রিক শব্দের পুনরাবৃত্তি করল। শব্দের গতিবেগ 332 m/s হলে
প্রতিফলকের দূরত্ব কত
 ।

উঃ। একমাত্রিক ধ্বনির প্রতিধ্বনি শুনতে হলে ধ্বনি ও প্রতিধ্বনির ভিতর সময় ব্যবধান কমপঙ্গে $\frac{1}{5}$ সেকেন্ড হওয়া প্রয়োজন। সূতরাং, পশ্বমাত্রিক ধ্বনির জনা $5 \times \frac{1}{5} = 1$ সেকেন্ড সময় প্রয়োজন। শব্দ এই সময়ে মোট দূরত্ব যায় = $332 \times 1 = 332 \, \mathrm{m}$ । সূতরাং প্রতিফলক = $\frac{332}{2} = 166 \, \mathrm{m}$ দূরে থাকা প্রয়োজন।

2 বন্দুকধারী এক সৈনিক 4 metre/s বেগে একটি পাহাড়ের দিকে দৌড়াতে দৌড়াতে পাহাড় থেকে 2.4 km দূরে থেকে বন্দুক ছুড়ল। কখন এবং কোথায় সে প্রতিধ্বনি শুনবে ? শব্দের গতিবেগ = 330 metre/s.

উঃ। ধরো, বন্দুক ছোড়ার। সেকেন্ড পরে সৈনিক প্রতিধ্বনি শুনতে পেল। ঐ সময়ে সৈনিক যতটা অগ্রসর হবে তা = 41 metre.

কাজেই বন্দৃক ছোড়ার পর প্রতিধ্বনি শোনা পর্যন্ত শব্দ মোট যে দূরত্ব অতিক্রম করে, তা = 2400 + (2400 – 4) metre [2,4 km = 2400 m]

এখন ঐ দূরত্ব শব্দ । সেকেন্ড সময়ে অতিক্রম করল। অতএব, শব্দের গতিবেগ 2400+(2400-41) metre/s

$$\frac{2400 + (2400 - 4t)}{t} = 330$$
 (প্রকান্যায়ী) বা, $4800 = 334t$; $t = 14.3$ সেকেন্ড।

অতএব বন্দক ছোড়ার 14.3 সেকেন্ড পরে প্রতিধ্রনি শোনা যাবে।

ঐ সময় পাহাড় থেকে সৈনিকের দূরত্ব = 2400 - (14.3 × 4) = 2342.8 metre = 2.34 km (প্রায়)।

বুড়ি সমান্তরাল পাহাড়ের মাঝে দাঁড়িয়ে এক ব্যক্তি বন্দুক ছুড়ল। সে 1.5 সেকেন্ড পরে প্রথম প্রতিধ্বনি এবং 3.5 সেকেন্ড পরে দ্বিতীয় প্রতিধ্বনি শুনল। পাহাড় দুটির মধ্যে দুরত্ব কত ? কখন সে তৃতীয় প্রতিধ্বনি শুনবে ? বায়ুতে শব্দের বেগ = 330 m/s. উঃ। প্রথম প্রতিধানি ব্যক্তির নিকটবর্তী পাতাড় থেকে শক্তের প্রতিফলনের ছলা হবে এবং ি ইয় প্রতিধানি হবে দরবর্তী পাতাড থেকে প্রতিফলনের জন।

এমন, ধারে
$$d_1 = \alpha$$
র্মন্ত মতে নিবটনতী পালাভ্র ন্রঞ্জ
এবং $d_2 = \dots$ দুরবটী

শক্তের গতিবেগ V ধরলে, প্রথম প্রতিধ্বনির বেলায়, $2d_1 = V \times 1.5$

$$\therefore d_1 = \frac{V \times 1.5}{2} = \frac{330 \times 1.5}{2} = 247.5 \text{ m}$$

দ্বি শ্রীয় প্রতিধ্বনির বেলায়, 2d2 = V × 3.5

অথবা,
$$d_2 = \frac{330 \times 35}{2} = 577.5$$

:. পাহাড দটির মধ্যে দ্রঞ্জ = $d_1 + d_2 = 247.5 + 577.5 = 825$ m.

এখন, নিকটবৰ্তী পাহাড় থেকে শব্দ প্ৰতিফলিত হয়ে প্ৰতিশ্বনি সৃষ্টির পৰ দবৰ ট পাহাড়েব বিক্রে যাবে এবং দ্ববতী পাহাড় থেকে ঐ শব্দ প্ৰতিফলিত হয়ে দ্বিতীয় প্ৰতিশ্বনিব স্পিনিব পৰ নিকাৰ্বতী পাহাড়েৱ দিকে যাবে এই শব্দ দৃটি পুনৱায় প্ৰতিফলিত হয়ে যখন একসংশ ব্যক্তিৰ নিকাই স্পিছাবে তথন সে ততীয় প্ৰতিশ্বনি শনবে।

সহজেই বোঝা যায় যে তার জন্য সময় লাগবে (1.5 + 3.5) = 5 সেকেন্ড অর্থাৎ **5 সেকেন্ড** পরে সে তৃতীয় প্রতিধ্বনি শুনবে।

4 একটি দেওয়ালের সম্মুখে দাঁড়িয়ে একটি ক্ষণস্থায়ী শব্দ করা হল এবং 1.6 সেকেন্ড পরে তার প্রতিধ্বনি শোনা গেল। দেওয়ালের দিকে 33 metre অগ্রসর হয়ে আবার শব্দ করলে 1.4 সেকেন্ড পরে প্রতিধ্বনি শোনা গেল। শব্দের বেগ এবং দেওয়ালের দূরত্ব নির্ণয় করো।

উঃ। ধরো, শব্দের গতিবেগ = V metre/s এবং দেওয়ালের দূরত্ব = D metre.

সূতরাং, প্রথম ক্ষেত্রে 2D = V × 1.6 (i)

এবং দ্বিতীয় ক্ষেত্রে 2(D-33) = V × 1.4 (ii)

(ii) নং সমীকরণকে (i) নং সমীকরণ দারা ভাগ করলে,

$$\frac{D-33}{D} = \frac{1.4}{1.6} = \frac{7}{8}$$
 $\overline{4}$, $8D-264=7D$; $D=264$ metre

(i) নং সমীকরণে D-এর মান বসালে, 2 x 264 = V x 1.6

:
$$V = \frac{2 \times 264}{1.6} = 330$$
 metre/s.

দুই সারি সমান্তরাল বাড়ির ঠিক মাঝখান দিয়ে একটি রান্তা গেছে। 36 km/h বেগে গাড়ি চালাতে চালাতে একজন মোটরচালক হর্ন বাজায়। 1 সেকেন্ড পরে সে প্রতিধ্বনি শুনতে পেল। দুই সারি বাড়ির ভিতরকার দূরত্ব কত ? সে দ্বিতীয় প্রতিধ্বনি কখন শুনবে ? শব্দের গতিবেগ = 330 metre/s.

উঃ। ধরো, AB ও CD দুটি সমান্তরাল অট্টালিকাশ্রেণি এবং O মোটরের অবস্থান যখন হর্ন বাজানো হল।। সেকেন্ড পরে প্রতিধ্বনি শোনার সময় মোটরের অবস্থান O'[1.10 নং চিত্র]।

OE অপ্রতিত শব্দরশ্রি এবং EO' প্রতিফলিত শব্দরশ্রি এবং OE = O'F মেউরের গতিকো 36 × 1000 60 × 60 = 10 metre/s অর্থাৎ, OO = 10 metre

গ্রম্ম তা $=\frac{1}{2}$ সেকেও সময়ে শব্দ যে-দূরণ প্রতিক্রম করে $=\frac{330}{2}=165\,\mathrm{m}$

হাবার, $(EF)^2 = (EO)^2 + (OF)^2$ হাথবা, $(165)^2 + (5)^2 = 27200 - [OF = OO] = \frac{1}{2} \times 10 = 5 \text{ m}$

অথবা, FF - √27200 = 164.9 m.

∴ দুই সারির ভিতর দরত্ব = 2 × 164.9 = 330 m (প্রায়)।

হর্ম বাজ্যবার 2 সেকেন্ড পরে আরোহী দ্বিতীয় প্রতিধ্বনি শনতে পাবে।

1.15 তর্গোর প্রতিসরণ (Refraction of waves):

চলতরঙ্গা এক মাধ্যমের ভিতর দিয়ে অগ্রসর হয়ে যদি ভিন্ন ঘনত্বের অপর এক মাধ্যমে প্রবেশ করতে চায় তবে দেখা যায় যে মাধ্যমদ্বয়ের বিভেদ তলে তরঙ্গোর কিছু অংশ (দিক পরিবর্তন করে) দিতীয় মাধ্যমে সন্ধারিত হয়। বিভিন্ন মাধ্যমে তরঙ্গোর গতিবেগ বিভিন্ন বলে এই ধরনের দিক-পরিবর্তন ঘটে। একেই বলে তরঙ্গোর প্রতিসরণ শব্দতরঙ্গা, আলোক তরঙ্গা প্রভৃতি যে-কোনো তরঙ্গোরই এরূপ প্রতিসরণ হতে দেখা যায়। প্রমাণ করা যায় যে শব্দতরঙ্গা আলোকতরঙ্গা প্রতিসরণের সকল সৃত্র মেনে চলে।

- শব্দতরকা প্রতিসরণের সূত্র ঃ (i) আপতিত শব্দতরঞ্চা, প্রতিসূত শব্দতরঞ্চা এবং আপতন বিন্দৃতে প্রতিসরণ তলের উপর অঞ্চিত অভিলম্ব এক সমতলে অবস্থান করে।
- (ii) দুটি নির্দিন্ট মাধ্যমের বেলায় এবং একটি নির্দিন্ট শব্দতরজ্ঞার ক্ষেত্রে আপতন কোণের সাইন এবং প্রতিসরণ কোণের সাইনের অনুপাত সর্বদা ধ্রুবক।

প্রতিসৃত তরজোর কম্পাঙ্ক আপতিত তরজোর কম্পাঙ্কের সমান হলেও, দুই মাধ্যমে তরজোর গতিবেগ ভিন্ন হওয়ায়, প্রতিসরণের ফলে তরজাদৈর্ঘ্য ভিন্ন হয়।

প্রতিসরণ দেখাবার পরীক্ষাগার ব্যবস্থা (Laboratory arrangement): পরীক্ষাগারে শব্দতরজ্ঞার প্রতিসরণ দেখাবার জন্য নিম্নলিখিত ব্যবস্থা করা যেতে পারে।

একটি গোলাকার ফ্রেমে দুখানা পাতলা রবারের পর্দা আটকে তার ভিতর কার্বন ডাইঅক্সাইড গ্যাস ভর্তি করো। কার্বন ডাইঅক্সাইড গ্যাস ভর্তি করো। কার্বন ডাইঅক্সাইড বায়ু অপেক্ষা ঘন। রবারের পর্দা দুটি ফুলে উঠবে। তখন তাকে একটি উত্তল লেঙ্গের মতো মনে করা যেতে পারে। বায়ুতে শব্দের বেগ 330 m/s কিন্তু কার্বন ডাইঅক্সাইডে 260 m/s; কার্বন ডাইঅক্সাইডে শব্দের বেগ অপেক্ষাকৃত কম হওয়ায়, এই গ্যাসের লেন্স অভিসারী লেন্স হিসাবে ব্যবহার করবে। এখন, এই লেঙ্গের অক্ষের উপর কোনো বিন্দৃতে একটি ঘড়ি রাখলে ঘড়ির শব্দ লেঙ্গের অপর পার্শে অক্ষের উপর কোনো এক বিশেষ বিন্দৃতে জোর শোনা যাবে। অন্য কোনো জায়গায় কান রাখলে শব্দ গোনা যাবে। এব্দেক্ত শব্দতরকা

বায়ু ২তে ঘনতর মাধ্যম কার্বন ডাইঅক্সাইড গ্যাসে প্রবেশ করলে প্রতিসূত হবে এবং আলোক তরংক্সার নায়ে উত্তল লেন্স কর্তৃক একটি বিশেষ বিন্দৃতে কেঞ্জিভূত হবে [চিত্র 3.11]। ঘড়ি থেকে লেন্সের দূরত্ব (॥) এবং শ্রেণ্ডার কান থেকে লেন্সের দেও ।।। মাপালে, । ॥ ।।
সমীকরণ থেকে শব্দ-লেন্সের ফোকাস দৈখা নির্ণয় করা মারে ।কানে একটি বিশেষ বিভাৱে শব্দতরজ্ঞা
বা যান্ত্রিক তরজাকে একত্রী ২৩ করবার জন্য শব্দ-লেন্সকে ব্যবহার করা হয়।

1:16.

বায়্মগুলে শব্দতরপোর প্রতিসরণ (Refraction at sound waves in atmosphere):

কে) তাপমাত্রার প্রভাব (Effect of temperature): দিনের বেলায় রোর্লকরণে হস্ত ভপঞ্জর সংলগ্ন বায়ন্তর সর্বাপেক্ষা বেলি উত্তপ্ত হয় এবং যত উপরে ওঠা যায় হত লাভেল বায়ন্তর পাওয়া হয়। অর্থাৎ, উচ্চতা বৃদ্ধির সজো বায়ন্তরের ঘনত্ব বৃদ্ধি পায়। এখন, বায়তে শদের বেল বায়ন্ত ঘনত্ব বৃদ্ধির সজো হাস পায়। সুতরাং, ভুপৃষ্ঠ সংলগ্ন বায়ন্তরে শদেতরজা যে-বেগে যাবে উপ্প বায়ন্তরে তদপেক্ষা কম বেগে যাবে: ফলে, তরজোর প্রতিসরণ হবে এবং তরজাম্থ (wave front) বৈকে উপরের দিকে পরিবর্তন করে উর্বেষ্ঠ উঠে যায়।

তেমনি, রাত্রিবেলা ভূপৃষ্ঠ ঠান্ডা হলে তার সংলগ্ধ বায়ুম্তরও ঠান্ডা হয়ে পড়ে। কিন্তু উপরের বায়ুম্তর অপেক্ষাকৃত উশ্ধ থাকে। ফলে উচ্চ বায়ুম্তরে শন্দের বেগ বেশি হয় এবং নিম্ন বায়ুম্তরে কম। এতে শব্দতরঙ্গা প্রতিসৃত হয়ে নীচের দিকে বেঁকে যায় [চিত্র 1.12]। এই কারণে রাত্রে নদীতে নৌকায় বসে অনেক দূরের কথাবার্তা বা শব্দ স্পন্ট শোনা যায় কিন্তু দিনের বেলায় ঐ শব্দ শ্রুতিগোচর হয় না।

(খ) বায়ুপ্রবাহের প্রভাব (Effect of wind): বায়ুপ্রবাহের ফলে ভূপৃষ্ট সাপেক্ষে শব্দের আপাত বেগ বিভিন্ন হয়। যখন বায়ুপ্রবাহ ও শব্দতরজা একই দিকে অগ্রসর হয় তখন শব্দতর্জোর উপরাংশ নীচের অংশ অপেক্ষা বেশি বেগে যায় এবং শব্দতরজা সম্মুখের দিকে বেঁকে যায় [চিত্র 1.13(i)]। ফলে বহু দূরবতী

শব্দ স্পন্ট শোনা যায়। আর যদি বায়ুপ্রবাহ বিপরীত দিক হতে আসে তখন শব্দতর্জার উপরাংশ নীচের অংশ অপেক্ষা কম বেগে যায় এবং শব্দতর্জা উপরের দিকে বেঁকে যায়। তখন দূরের শব্দ শোনা যায় না।[চিত্র 1.13(ii)]। ্**ষ্টেন্য ঃ** বাষ্ণ্ৰাহেৰ দৰ্ম শৰ্ভবাজাৰ উপাৰে**ও** ব্ৰুগতিতে প্ৰভলাক শক্ষের প্ৰিসৰণ বল যায় মা কাৰণ <u>চল্চেটে</u> বায়ু মাধ্যমেৰ সাপেকে শৰ্ভবাজাৰ প্ৰিবেশেৰ কোনো পাৰবৰ্তম হয় না তব্ৰ ফলাফল প্ৰতসন্ধাৰ অনুবুপ বলে একে শৰ্ভবাজাৰ প্ৰতিসক্ষা বলে গণা কয় হয়।

এই পরিচেছদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- যরের দেওয়াল শব্দতরভাকে প্রতিকলিত করে কিছু আলোক তরভাকে করে না। আবার, একখানি ছোটো সমতল দর্শন আলোক তরভাকে প্রতিকলিত করে কিছু শব্দতরভাকে করে না। এই পার্যকোর কারণ কী ?
- যে-কোনো প্রতিফলক যে-কোনো তরজাকে প্রতিফলিত করে না। প্রতিফলনের জন্য তরজোর প্রকৃতি এবং প্রতিফলকের প্রকৃতির ভিতর একটি সম্পর্ক প্রয়োজন। পরীক্ষা করে দেখা গোছে, কোনো তরজাকে প্রতিফলিত করতে হলে (i) প্রতিফলক তলের আকার ঐ তরজোর দৈর্ঘোর তুলনায় বড় হতে হবে এবং (ii) প্রতিফলক তলের অমসৃণতার পরিমাণ তরজাদৈর্ঘোর তুলনায় খুব ছোটো হতে হবে: অমসৃণতার পরিমাণ বেশি হলে, প্রতিফলন নিয়মিত না হয়ে বিক্ষিপ্ত প্রতিফলন হবে। এখন, আলোক তরজা অপেক্ষা শব্দতরজা দৈর্ঘ্যে অনেক বড়ো। যে সকল শ্রাব্য শব্দ আমরা শূনি তাদের তরজাদৈর্ঘ্য 15 থেকে 20 metre পর্যন্ত হয় এবং দৃশ্যমান আলোক তরজা দৈর্ঘ্যে প্রায় 4 × 10 ⁷ m থেকে 8 × 10 ⁻⁷ m পর্যন্ত। অর্থাৎ, আলোক তরজোর তুলনায় শব্দতরজা বহুগুণ দীর্ঘ। এই কারণে শব্দতরজার বেলায় প্রতিফলকের তল খুব বিস্তৃত হওয়া প্রয়োজন। আবার, আলোক তরজা দৈর্ঘ্যে খুব ছোটো বলে তার প্রতিফলক তলকে খুব মসৃণ হতে হবে। নতুবা আলোর বিক্ষিপ্ত প্রতিফলন হবে। তাই ঘরের দেওয়াল, পাহাড়ের গা প্রভৃতি বিস্তৃত এবং অমসৃণ তল শব্দতরজাকে প্রতিফলিত করবে কিন্তু আলোক তরজাকে প্রতিফলিত করে। বিক্ষু আলোক তরজাকে প্রতিফলিত করে।
- রাত্রিবেলা দ্রাগত শব্দ স্পর্ক শোনা যায় কিছু দিনের বেলায় শোনা যায় না। কেন ?
- রাত্রিবেলা ভূপৃষ্ঠ তাপ ছেড়ে ঠান্ডা হয়। সেইসজো ভূপৃষ্ঠ সংলগ্ধ বায়ুন্তরও ঠান্ডা হয়ে যায়। কিন্তু উপরের বায়ুন্তর অপেক্ষাকৃত উন্ধ থাকে। বায়ুন্তরের উন্ধতা যত বাড়ে তার ঘনত্ব তত কমে যায়। এতে রাত্রিবেলা উচ্চ বায়ুন্তরে শব্দের বেগ বেশি হয় এবং নিম্ন বায়ুন্তরে কম। এতে শব্দতরজা প্রতিসৃত হয়ে নীচের দিকে বেঁকে যায়। এই কারণে রাত্রিবেলা অনেক দূরের কথাবার্তা বা শব্দ শোনা যায় কিন্তু দিনের বেলা শোনা যায় না।
- 3. দুটি পলিখিন নির্মিত থলির একটিতে কার্বন ডাইঅক্সাইড এবং অপরটিতে হাইড্রোজেন গ্যাস ভর্তি করে দুটি উত্তল লেল তৈরি করা হল। এই লেল দুটিকে বায়ুতে রাখলে দেখা যায় যে, শব্দতরশোর বেলায় কার্বন ডাইঅক্সাইড পূর্ণ থলিটি উত্তল লেলের মতো কিছু হাইড্রোজেনপূর্ণ থলিটি অবতল লেলের মতো ক্রিয়া করছে। কারণ কী ?
- আলোক তরজের মতো শব্দতরজা যখন এক মাধ্যম হতে অন্য মাধ্যমে যায় তখন একই নিয়মানুসারে
 শব্দতরজাের প্রতিসরণ হয়। এখন, কার্বন ডাইঅক্সাইড বায়ু অপেক্ষা ঘন। ফলে শব্দতরজা বায়ু হতে
 কার্বন ডাইঅক্সাইড পূর্ণ থলির ভিতর দিয়ে গেলে আলাে যেমন বায়ু হতে কাচ লেক্সের ভিতর দিয়ে
 যায় সেইরূপ ঘটনা ঘটবে। কাচলেক্স উত্তল হলে আলােকরিশ্ম যেমন অভিসারী হয় কার্বন ডাইঅক্সাইড
 থিলির ভিতর দিয়ে যাবার ফলে শব্দরশ্মিও অভিসারী হবে এবং থিলিটি উত্তল লেক্সের মত ক্রিয়া
 করবে। কিয়ু হাইডােজেনের বেলাতে উল্টাে প্রতিসরণ হবে কারণ হাইডােজেন বায়ু অপেক্ষা কম ঘন।

এ কেন্ত্র শক্রামি ঘন মাধাম হতে লঘ মাধানের ভতর জন্ম যাবার ফলে, মলসারা হরে এবং র্থালটি অবঙল লেন্দের মতে কিয়া করতে

4. তির্যক তরখা কোনো প্রতিকলক দারা প্রতিকলিত ছলে, তরখোর গতিবেদ, তরশের দৈখ্য বা কম্পাড়েকর কোনো পরিবর্তন হর না। বঞ্জি সহকারে ব্যাখ্যা করো।

Lit. Entrance 1989]

তর্জা প্রতিফলিত হয়ে একই মাধ্যমে ফিরে আদে বলে ওরজেব গতিবেশের কানা পরিবর্তন হয় না। তরজোর কম্পাঙ্ক প্রতিফলনের উপর নির্ভর করে না বলে, কম্পাঙ্ক অপ্রিবৃত্তিত থাকে। তরজাদৈর্ঘ্য তরভোর গতিবেগ তরজোর কম্পান্তক তরজোর কম্পান্তক

কোনো পবিবর্তন হয় না।

তর্জোর প্রতিসরণ হলে, গতিবেগ ও ভরুজাদৈর্ঘ্যের পরিবর্তন হয় কিন্তু কম্পান্তর অপরিবর্তিত থাকে।

- একটি শব্দতরক্ষা বায় থেকে জলে বায়। বায় ও জলের সংযোগতলে (interface) আপতন কোণ α_1 এবং জলে প্রতিসরণ কোণ α_2 । বরা যাক এক্ষেত্রে ত্রেল সূত্র খাটে। তা হলে ব্যাখ্যা করে দেখাও α_1, α_2 -র চেয়ে বড়ো না ছোটো।
- শব্দতর্জাের সাপেকে বায়ুর প্রতিসরাজ্ঞ, ধরো, μ, এবং জলের μ, এক্ষেত্রে প্লেল সূত্র খাটে বলে

লেখা যায়, $\mu_1 \sin \alpha_1 = \mu_2 \sin \alpha_2$ অথবা, $\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{\mu_2}{\mu_1} = \frac{\text{বায়ুতে শবের বেগ }(V_a)}{\text{ভল } (V_a)}$ যেহেতু, $V_{\omega} > V_{\alpha}$; $\sin \alpha_2 > \sin \alpha_1$ অথবা, $\alpha_2 > \alpha_1$ অতএব, α1, α2-র চেয়ে ছোটো।

প্রশাবলি

াচনামদক প্রস্থ

- 1. তরজা বলতে কি বোঝ ? তির্যক ও অনুদৈর্ঘা তরজা কাকে বলে ? উদাহরণসহ বাংখাা করে:
- আলোকের নাায় শব্দেরও প্রতিফলন হয়, সেটা পরীক্ষার সাহায়ো প্রমাণ করে।
- 3. a বিস্তার এবং u গতিবেগসহ একটি চলতরজা ঋণাস্থাক x-অভিমুখে অপ্রসর হলে, প্রমাণ করো যে ঐ ভরজোর সমীকরণ $y=a\sin\frac{2\pi}{\lambda}$ (vt-x). যদি তরকা ধনাপ্তক x-অভিমূখে অপ্রসর হয়, তবে তার সমীকরণ কী হবে?
- তির্যক ও অন্দৈর্ঘ্য তরজোর ভিতর তুলনা করো।
- শব্দের প্রতিফলনের ব্যাবহারিক প্রয়োগ উল্লেখ করো।
- তাপমাত্রা ও বায়ৣপ্রবাহের জন্য শব্দতরকা কীরুপে প্রতিসৃত হয় তা চিত্র সহবোশে বাাখা করে।
- সাধারণভাবে শব্দের বেগ গ্যাসের তুলনায় কঠিন পদার্থের ভিতর বেশি হয়—এই উব্তির সভাতা বাচাই করো।

[Jt. Entrance 1991]

नरिकेश उँखरतत श्रंथ

- 1. একটি চলতরজা সম্পর্কে নিম্নলিখিত সংজ্ঞা লেখো:—(i) কম্পাঙ্ক, (ii) তরজালৈর্ঘ্য, (iii) পর্যায়কাল, (iv) তরজামুখ, (v) বিন্তার।
- 2. (a) তরজোর কম্পাঙক, তরজাবেগ এবং তরজাদৈর্ঘোর ভিতর সম্পর্ক কী?
 - (h) তরজোর সময় পর্যাবৃত্তি ও দেশ পর্যাবৃত্তি কাকে বলে?
- 3. নিম্নলিখিত অপেক্ষকগুলি $f(x\pm vt)$ প্রকৃতির \hat{s} (i) y=A(x-vt); (ii) $y=A(x+vt)^2$; (iii) $y=A\sqrt{x-vt}$; (iv) $y = \log_e(x + ut)$ (যখানে A একটি ধ্ব–সংখ্যা। ব্যাখ্যা করে।, কেন তরজাগতি প্রকাশে কোনো অপেক্ষকই সহায়ক
- 4. দেখাও যে চলতরজ্ঞার সাধারণ সমীকরণ $y=a\sinrac{2\pi}{\lambda}\left(V_{I}-x
 ight)$ নিম্নলিখিত বিকল্প রূপে প্রকাশ করা যায়ঃ

(i) $y = a \sin 2\pi^{2} nt - \frac{x}{2}$ (ii) $y = a \sin 2\pi \left(\frac{t}{x} - \frac{x}{x^{2}} \right)$ (iii) $y = a \sin 2\pi n \left(t - \frac{x}{x^{2}} \right)$ (iv) $y = a \sin n n \left(t - \frac{x}{x^{2}} \right)$

- ६ গাসীয় মাধামে অনাদর্ধা তরজা ব্যাপ্ত হতে পারে কিন্তু তির্যক তরজা পারে না কারণসহ ব্যাখ্যা করে।।
- 6. প্রতিধ্বনি বী ও প্রতিধ্বনির সাহায়েয় সমদ্র-গভীরতা কারপে নির্ণয় করা যায় ও খব অন্ধ দরতে প্রতিধ্বনি শোনা যায় না
- 7. অনুবান কাকে বলে? আধুনিক সিনেমা হলে অনুবান নান্তম করবার জন্য কী বাকথা অবলম্বন করা হয়?
- ৪ নিম্নলিখিত প্রপ্রালিব উত্তর লেখে : —(1) ঘরের দেওয়াল শব্দতর্জাকে প্রতিফলিত করে কিন্তু আলোক তরজাকে করে না আবার, একখানি ছোটো সমতল দর্পণ আলোক তর্জাকে প্রতিফলিত করে কিন্তু শব্দতর্জাকে করে না। কেন ? (iii) জনসভার উদ্দেশ্যে নির্মিত হলঘরের ছাদ আর্চের মতো বাঁকানো থাকে কেন?

(iii) দ্বাগত ক্ষীণ শব্দ শোনবাব জন্য আম্বা অনেক সময় হাতের তালকে বাঁকিয়ে কানের কাছে ধরি কেন ? (iv) রাত্রিবেলা দ্রাগত শব্দ স্পন্ট শোনা যায় কিন্তু দিনের বেলা শোনা যায় না কেন ?

 একটি তার বরাবর বাম থেকে দক্ষিণে একটি তির্যক তরজা অগ্রসর হচ্ছে। 1.14 নং চিত্রে কোনো এক মহর্তে তারের আকতি দেখানো হয়েছে। A. B. C ইত্যাদি তারের বিভিন্ন বিন্দু ঐ মহর্তে (i) কোন কোন বিশ্ব গতিবেগ উধর্বমুখী, (II) কোন কোন বিন্দর গতিবেগ নিম্নমখী, (iii) কোন কোন বিন্দর গতিবেগ সর্বাধিক গ

অতি সংকিপ্ত উত্তরের প্রশ্ন

1. একটি শব্দতরক্ষা বায় থেকে জলে প্রবেশ করল। তাতে তরক্ষোর গতিবেগ, কম্পাঙ্ক ও তরক্ষাদৈর্ঘ্যের কীর্প পরিবর্তন হবে ?

[সংকেতঃ গতিবেগ বন্ধি পাবে; কম্পাডক অপরিবর্তিত থাকবে। তরজাদৈর্ঘ্য বন্ধি পাবে।।

- 2. অনদৈর্ঘা তরজা একটি ঘনীভবন ও তার নিকটতম তন্তবনের মধ্যে দ্রত্ব কত ?
- 3. গাাস মাধামে তির্যক তরজা উৎপন্ন করা যায় না কেন ?
- 4. কোনো এককে একটি চলতরঞ্জের সমীকরণ $v = 10 \sin 2\pi \left[100t + 5x + \frac{1}{2} \right]$ হলে তর্জোর কম্পাঙ্ক ও বেগের
- 5. একটি তির্যক তরজোর বিস্তার 10 cm, কম্পাঙক 500 Hz এবং তরজাদৈর্ঘা 100 cm। ঐ তরজোর সমীকরণ লেখ।

[Ans.
$$y = 10 \sin 2\pi \left(500r - \frac{x}{100} \right)$$
]

- কোণ α_1 । এক্ষেত্রে স্লেল সূত্র সত্য হলে, α_1 কি α_2 থেকে বড় হবে না ছোটো হবে ?
- 7. ভির্যক তরজো একটি তরজাশীর্য এবং পরের তরজা পাদের ভিতর দূরত্ব কড ?
- 8. কোনো মাধামের ভিতর দিয়ে অনুদৈর্ঘ্য তরজা বিস্তার লাভ করলে, মাধামের কণাগুলি কোনদিকে আন্দোলিত হয় ?
- 9. কোনো শব্দের প্রতিধ্বনি শুনতে হলে, শব্দের উৎস এবং প্রতিফলকের ভিতর ন্যুনতম দূরত্ব কত রাখতে হবে।

বহুমুখী পছন্দের প্রশ্ন [Multiple choice type (MCO)]

(A) নির্ভুল উত্তরটি √ চিহ্নিড করো :

- [i] v = 0.02 sin (301+ x) যেখালে x মিটারে এবং 1 সেকেন্ডে মাপা হয়েছে একটি ভির্যক ভরজা প্রকাশ করছে. ঐ তরজোর গতিবেগ
 - (A) 45 m/s
- (B) 60 m/s
- (C) 30 m/s
- (D) 15 m/s.
- [11] একটি ভির্যক ভরজোর সমীকরণ ৮ = 5 km 2π : 1104 : 50 : বেখানে : সেলিমিটারে এবং / সেনেন্ডে প্রকাশিত হয়েছে। ঐ তরজোর তরকাদৈর্ঘ্য
 - (A) 5 cm
- (B) 10 cm
- (C) 25 cm (D) 50 cm

[iii]	কোনো তরজা বায়ু মাধ্যম থেকে জলে প্রতিস্ত হলে,
	(A) আপতন কোল > প্রতিসরণ কোল, (B) আপতন তাল < প্রতিসরণ কাল,
	(C) আগতন কোণ = প্রতিসরণ কোণ, (D) কোনটাই নর।
[[1]	$t=t_0\sin 2\pi\left(m-rac{3}{\lambda} ight)$ সমীকরণ ভির্যক ভরজা প্রকাশ কবছে মাধানেশ কেন্দ্র কলের বর্গভারেশ ভরজারেরের
	চারগুণ হলে,
	(A) $\lambda = \frac{\pi y_0}{2}$ (B) $\lambda = \frac{\pi y_0}{4}$ (C) $\lambda = \pi y_0$ (D) $\lambda = 2\pi y_0$.
[v]	বায়্তে শব্দের বেগ = 330 m/s . চারটি পদাংশযুত্ত শক্ষের প্রতিফর্নান শুনতে হলে, প্রতিফলকের ন্যানতম দ্বত্ব হবে
[vi]	(A) 122 m (B) 130 cm (C) 132 m (D) 150 m. তির্বক তরঙা চলাচল করতে পারে
	(A) গ্যাসীয় এবং কঠিন মাধানে, (B) গ্যাসীয় মাধানে কিন্তু কটিন মাধানে নয়,
F007	(C) গ্যাস মাধ্যমে নয় কিন্তু কঠিন মাধ্যমে, (D) গ্যাস বা কঠিন কোনো মাধ্যমেই নয়
[AII]	শাব্দের বার বার প্রতিফলনে সৃষ্টি হয় (A) অনুরগন (B) প্রানুতরজ্ঞা (C) বাতিচ'র (D) প্রতিধর্মন
[viii]	λ তরজাদৈর্ঘোর কোনো তরজোর এক মাধামে গতিবেগ v_{1} যে মাধামে ঐ তরজোর গতিবেগ $4v_{1}$ সেই মাধামে
	ঐ তরজ্গের দৈর্ঘ্য হবে
	(A) 4λ (B) $\frac{\lambda}{2}$ (C) 2λ (D) 2λ .

[ix]	$t=0.4\cos\left(8t-rac{y}{2} ight)$ একটি প্রগামী তরজোব সমীকরণ হলে, তরজাতির কম্পাঙ্ক
	(A) $\frac{4}{\pi}$ (B) $\frac{8}{\pi}$ (C) $\frac{1}{\pi}$ (D) 2π .
	1 th
[x]	দুটি তরভোর সমীকরণ $v_1=10\sin\left(3\pi\iota+\frac{\pi}{3}\right)$ এবং $v_2=5(\sin3\pi\iota+\sqrt{3}\cos3\pi\iota)$ হলে তাদের বিস্তারের
	অনুপাত হয়
[xi]	(A) 1:2 (B) 2:1 (C) 1:1 (D) 1:4. কোন প্রকার তরক্ষা সমবর্তন প্রদর্শন করে ?
	কোন্ প্রকার তরক্ষা সমবর্তন প্রদর্শন করে ? (A) অনুদৈর্ঘ্য (B) তির্যক (C) স্থানু (D) এর কোনটাই নয়।
[xii]	$y=v_0\sin 2\pi (f-x\lambda)$ তির্যক তরজোর তরজা দৈর্ঘ্য $\lambda=rac{\pi v_0}{2}$ হলে ঐ তরজো কোনো কণার সর্বোচ্চ বেগ তরজা
	বেগের
f n. 1221	(A) 4 পূর্ণ (B) 2 পূর্ণ (C) 8 পূর্ণ (D) 3 পূর্ণ। একটি চলতরজ্ঞার সমীকরণ $y=10 \sin \pi (i-0.002x) {\rm cm}$ হলে, মাধ্যমের কোনো কণার সর্বাধিক বেগ হবে
LAHIJ	(A) 3.14 cm/s (B) 62.8 cm/s (C) 31.4 cm/s (D) 6.28 cm/s.
[xiv]	একটি প্রগামী তরজাকে $v=0.25\cos{(2\pi t - \pi x)}$ সমীকরণ দারা প্রকাশ করা যায়। বিপরাত দিকে প্রগামা অপর
	একটি তরজোর বিশ্বার দ্বিগুণ এবং কম্পান্ধক অর্থেক হলে। তার সমীকরণ $(A) \ y = 0.5 \cos (\pi t + \pi x)$
	(A) $y = 0.5 \cos (\pi t - \pi x)$ (B) $y = 0.5 \cos (\pi t + \pi x)$ (C) $y = 0.25 \cos (\pi t + 2\pi x)$ (D) $y = 0.5 \cos (2\pi t + 2\pi x)$
[xv]	ঘনতর মাধ্যম কর্তৃক প্রতিফলিত হলে, তরজোর কোন্টি পরিবর্তিত হয় ?
	(A) বিস্তার (B) গতিবেগ (C) কম্পাঙ্ক (D) দশা।
xvi]	একটি দর্পণ আলোকতরজোর উত্তম প্রতিষ্ণক্ষক কিন্তু শব্দ তরপ্তোর নয় ; আবার একটি বড় গাছ শব্দতরপ্তোর উত্তম প্রতিফলক কিন্তু আলোক তরপ্তোর নয়। এর কারণ আলোক তরপ্তোর সাথে শব্দতরপ্তোর নিম্নলিখিত পার্থকা আছে :
	(A) এবছা দৈখ্য — (B) গতিবেগ — (C) বিস্তাব — (D) পর্যায়কাল।
xvii]	নীচের কোন রাশিমাপাটি সরল দোল-চলস্তরজ্ঞা প্রকাশ করে ?
	(A) $a \sin \omega t$ (B) $a \sin \omega t \cos kt$ (C) $a \sin (\omega t - kx)$ (D) $a \cos kx$ [Jt. Entrance 2006]

(xviii) একটি কলা সরল দেলগভিত্তে স্পন্ধিত হাছে তার কম্পাঙ্ক 100Hz হলে তার পর্যায়কাল হল
(A) 10^{-2} s (B) 10^{64} s (C) 10^{-1} s (D) 10^{-3} s [Jt. Entrance 2006]
(B) भूनाञ्थान भूतम करता (Fill up the gaps):
[1] যখন এক মাধ্যম থেকে অনা মাধ্যমে ভরজা প্রবৃহিত হয় তখন ভরজোর অপরিবৃতিত থাকে:
[ii] যথন অপর এক মাধামের বিভেদতলে তরজা প্রতিফালত হয় তথন তর্গের <u>এপারবাতত</u> থাকে।
[iii] তির্যক ও অনুদৈর্ঘ্য তরজাকে একসজো তরজা বলা হয় কারণ এই তরজাপ্রসূত কম্পন মাধামের
এককণা থেকে পরবর্তী কণাতে হয়।
[iv] তরজোর তরজাদৈর্ঘাকে পর্যায় এবং পর্যায়কালকে পর্যায় বলা হয়। v একটি মাধ্যমে কম্পাঙেকর n_1 এবং λ_1 দৈর্ঘ্যের একটি তরজা এবং n_2 কম্পাঙেকর এবং λ_2 দৈর্ঘ্যের আর একটি
ভরভা প্রবৃত্তিত হচ্ছে। এদের মধ্যে সম্পর্ক।
[vi] একটি তরজোর উপর দুটি কদার পথপার্থকা $\Delta \tau$ হলে, তাদের ভিতর দশাপার্থকা $\Delta \delta =$
[vii] কোনো বাড়ির দেওয়াল শব্দতরজ্ঞাকে প্রতিফলিত করে কিন্তু আলোকতরজ্ঞাকে করে না, কারণ শব্দতরজ্ঞা দৈর্ঘা
(C) भूज कि निर्जुल विठांत करता (True or false type):
[i] 10 cm. তরজাদৈর্ঘার এবং 10 কম্পাঞ্চের ভরজা সৃষ্টি ছলে, ঐ ভরক্তোর গতিবেগ 100 cm/s
[ii] চলতরঞ্গ মাধামের ভিতর দিয়ে অগ্রসর হলে মাধামের প্রতিটি বিন্দুর চাপ ও ঘনত্বের একই রকম পরিবর্তন হয়।
[iii] যখন কোনো তরজা প্রতিফলক তল থেকে প্রতিফলিত হয় তখন তার গতিবেগ, তরজাদৈর্ঘ্য এবং কম্পাঙ্ক
অপরিবর্তিত থাকে।
[iv] শব্দের গতিবেগ 330 m/s ধরলে সাধারণ ধর্মানর প্রতিধর্মান শূনতে গেলে প্রতিফলককে 33 m দূরে রাখলেই হবে।
[v] নৌকা থেকে নোঙর ফেলার শব্দ সম্মুখের পাহাড় থেকে প্রতিফলিত হয়ে 2 সেকেন্ড পরে পৌছোল। বায়ুতে শব্দের
বেগ 332 m/s ধরলে পাঁহাড়ের দূরত্ব হবে 332 metre। [vi] কাচে শন্তের বেগ বায়ুতে শন্তের বেগ অপেক্ষা কম।
সহজ্ব গাণিতিক প্রশ্ন
1. বিস্তার 0.01 metre, কম্পাঙক 550 এবং গভিবেগ 330 metre/s সহ ১-অক্ষ বরাবর ঋণাদ্মক অভিমুখে যাচ্ছে
এরূপ একটি তরজের সমীকরণ লেখো।
2. Y-অক্ষ বরাবর কম্পনসহ একটি তরজা ঋণাত্মক X-অক্ষ বরাবর বিস্তার লাভ করছে। তরজোর বিস্তার, কম্পাজ্ক ও
তরজ্ঞাদৈর্ঘোর মান যথাক্রমে 10 cm, 500 Hz ও 100 cm চলমান তরজাের সমীকরণ লিখ।
[Jt. Entrance 1990] [Ans. y = 10 sin 2π(500t + x/100)] 3. বাদুড় শব্দোন্তর তরঞ্চা উৎপন্ন করে। বায়ুতে বাদুড় যে ক্ষুদ্রতর তরঞ্চা উৎপন্ন করে তার দৈর্ঘ্য 0.335 cm. বাদুড়
সর্বাধিক উচ্চতম কত কম্পাভেকর শব্দ তৈরি করে? (বায়ুতে শব্দের বেগ = 330 metre/s,)[Ans. 10 ⁵ (প্রায়)]
4. এক ব্যক্তি সমুস্রতীরে দাঁড়িয়ে লক্ষ করল যে প্রতি মিনিটে 54টি তরজা সমুস্রতটে আঘাত করছে। তরজাদৈর্ঘ্য 10
metre হলে, তরজাবেগ কত? [Ans. 9 metre/s]
 দৃটি সুরশলাকার কম্পাঙক যথাক্রমে 128 এবং 384, বায়ুমধ্যে তাদের দ্বারা সৃষ্ট তর্জোর দৈর্ঘ্যের তুলনা করে।
[Ans. 3:1]
6. 50 Hz এবং 100 Hz কম্পাজনবিশিষ্ট দুটি সুরশলাকা কম্পনশীল অবস্থায় ভল ম্পর্শ করলে যথাক্রমে 6 cm এবং
36 cm তরজাদৈর্ঘ্যের তরজা সৃষ্ট হয়। এই দৃটি তর্জোর বেগ তুলনা করো।
[Jt. Entrance 1998] [Ans. 1:12] 7. একটি সুরশলাকার কম্পাঙ্ক 440। বায়ুমধ্যে শব্দের বেগ ২20 metre/১ ধলে, যে-সময়ে সুরশলাকার ১০টি কম্পন
শেষ করে সেই সময়ে শব্দ কন্ত পথ অভিক্রম কবাবে স
 একটি সুরশলাকার কম্পাক 560 এবং বায়ুমধ্যে শবের বেল 332 m/s. সুরশলাকার 100 বার কম্পন শেষ হলি.
ঐ সময়ের শব্দ কত দূরে যাবে? [Ans. 59.3 m]
9. বায়ুমধো শব্দের বেগ ২২০ m/s হলে, যে সময়ে শব্দ 50 m পথ অভিক্রম করে সে সময়ে ২০১ কম্পাত্তের
সুরশ্চাকা ক্যবার কম্পন সম্পন্ন করবে ? [Ans. 40]
10. একটি সুরললাকার কম্পান্তক 264 . যে সময়ে সুরলপাকার লব্দ ২২ 2 m পথ অভিক্রম করে ,সই সময়ে সুরললাকা
কয়বার পূর্ব কম্পন করবে হ বায়ুতে শক্তের ,বগ : ২২2 m/s
11. স্থিরমানের কম্পাড়ের কম্পানশীল কোনো বৃদ্ধ A-মাধানে 10cm দীর্ঘ ওবজা কিন্তু B মাধানে Iscm দীর্ঘ ওবজা প্রের্জ

করে A এবং B মাধ্যমে তরজারেগের তুলনা করে A মাধ্যমে তরজার লো 90 cm/s B মাধ্যমে রেল কভ ৮
[Ans. 2:3:135 cm/s]

- 12. (a) $v = a \sin 2000 \pi i$ দুন্ত সমীকরণ একটি ভরজাকে প্রকাশ করে এখানে ও cm এবং i সেকেভ বলা আছে এই তরগোর (i) ভরজাকৈর (ii) গতিবেগ (iii) কম্পাক নির্বাহ করে। তরগোর উপর 180 cm দুরছে অর্বাহ্বিত দুটি কদার দশাপার্থকা নির্বাহ করো। (Ans. (i) 14 cm. (ii) 140 m/s. (iii) 1000, (iv) $\frac{180\pi}{17}$ rad]

 (b) একটি চলতরজোর রাশিমালা নিমর্প $v = 10 \sin 2\pi$ $\frac{1}{0.005}$ $\frac{1}{10}$ cm নেখানে i এবং নির্বাহ করে। (সভ্যাত আছে। তরজাটির বিন্তার, তরজাদৈর্ঘা এবং গতিবেগ নির্বাহ করে। (Ans. 10 cm. 10 cm. 2 × 10 cm/s)

 (c) একটি চলতরজোর সমীকরণ নিমর্প : $v = (1.0 \text{ mm}) \sin \pi$ $\frac{1}{0.01}$ $\frac{1}{2.0 \text{ cm}}$. ভবজোর বিন্তার, পর্যায়কাল এবং তরজা দৈর্ঘা কত ?
 - [সংকেত $v = a \sin \left(2\pi \frac{t}{T} \frac{2\pi x}{\lambda}\right) = a \sin \pi \left(\frac{t}{T/2} \frac{x}{\lambda/2}\right)$
- 13. একট চলতরজোর সমীকরণ $y=15\sin(660\pi x-0.02\pi x)$ cm হলে তরজোর বেগ নির্ণয় করো.

[Ans. 330 m/s]

- 14. একটি শন্তরজোর কম্পাঙ্ক ১(X) H7 এবং গতিবেগ 360 metre/১ তরজোর উপর অর্থান্থত দুটি কলার দুরাই কত হলে তাদের দশাপার্থক্য 60° হবে? [Ans. 12 cm]
- 15. একটি শব্দের প্রতিধ্বনি শুনতে হলে ব্যক্তি হতে প্রতিফলকের ন্যুনতম দূরত্ব শব্দের গতিবেল ১'-এর পরিপ্রেক্ষিতে কত হতে হবে?
 [Ams. V/20]
- 16. A এবং B দুই বাত্তি একটি পাহাড়ের অভিলম্বভাবে একই সরলরেখায় দাঁড়িয়ে আছে A পাহাড়ের নিকটবভী এবং B থেকে A-এর দূরত্ব 248 m। A বন্দুক ছুড়লে, 1 সেকেন্ড পরে সে তার প্রতিধর্মি শনতে পেল: B বন্দুক ছুড়লে 1.75 সেকেন্ড পরে A তার প্রতিধ্বনি শূনল। শন্দের গতিবেগ ও পাহাড় থেকে A-এর দূরত্ব নির্বয় করে। [Ans. (i) 330.66 m/s, (ii) 165.33 m]
- 17. (a) একটি পাহাড়ের চূড়ার দিকে অগ্রসর হবার সময় একটি ফিয়ার হুইসিল বাজাল এবং 10.১ পরে তার প্রতিষ্ধানি শুনল। 5 মিনিট পরের আবার শব্দ করে ৪.১ পরে প্রতিষ্কানি শুনল। এখন স্টিমারটি পাহাড় চূড়া থেকে কন্ডদুরে আছে? স্টিমারের গতিবেগ কী? বায়ুতে শব্দের গতিবেগ = 1120 ft/s.
 (b) গাড়িতে করে একটি পাহাড়ের দিকে যেতে যেতে যথন পাহাড়টি ঠিক ১ km দূরে তখন চালক ভার বন্দুক ছুঁড়লেন। গাড়ির বেগ 5 m/s এবং শব্দের বেগ 340 m/s হলে কখন চালক প্রতিষ্কানি শুনতে পারেন?

[Jt. Entrance 2003] [Ans. 17.4 s *[5]]

- 18. দৃটি সমান্তরাল পাহাড়ের মধ্যে দাঁড়িয়ে এক বান্তি বন্দুক ছুড়ল। সে $1\frac{1}{2}$ সেকেন্ড এবং $2\frac{1}{2}$ সেকেন্ড পরপর দৃটি প্রতিধ্বনি শুনতে পেল। পাহাড় দুটির পারম্পরিক দূরত্ব কত? ঐ ব্যক্তি হৃতীয় প্রতিধ্বনি কখন শুনতে পাবে? শব্দের গতিবেগ = 330 m/s.
- 19. (a) একটি প্রতিধ্বনি ছয়টি পদাংশের পুনরাবৃত্তি করল। প্রতিফলকের দূরত্ব কতং শব্দের গতিবেগ = 330 m/s.
 [Ans. 198 m]

(b) একটি ত্রিমাত্রিক শব্দের প্রতিধ্বনি শুনতে হলে প্রতিফলক ও শ্রোতার মধ্যে নূমতম দূরত্ব কত হতে হবে?
বাতালে শব্দের গতিবেগ 330 m/s.

- 20. পাহাড় বেন্টিভ একটি সুড়জোর দিকে অগ্রসর হবার সময়, একটি ইঞ্জিন ক্ষণকালের জনা বংশীধর্মী করল। তখন পাহাড় থেকে ইঞ্জিনের দূরত্ব ছিল আধ মাইল। 45 সেকেন্ড পরে ঐ শব্দের প্রভিধর্মন ইঞ্জিনে পৌছোল। ইঞ্জিনের গতিবেগ হ০ । (Ans. 1100 ফুট/সেকেন্ড)
- 21. 300 মাইল/দান্টা গতিবেগে অনুভূমিক রেখা বরাবর উড়ন্ত একটি বিমান থেকে বুলেট ছোড়া হল। ভূপৃষ্ঠ কর্তৃক প্রতিফালিত প্রতিশ্বনি 4 ৎ পরে পাইলট শুনতে পেল। ভূপৃষ্ঠ থেকে বিমানের উচ্চতা নির্ণয় করো। বায়ুতে শব্দের বেগ = 1120 fi/ৎ

 [Jt. Entrance 1985] [Ans. 2860 ft (প্রায়)]

[সংকেতঃ $h = \frac{1}{2}i\sqrt{V^2 - v^2}$ সমীকরণ প্রয়োগ করে।]

22. সম্দ্রের । গান্টাবাতায় কিছু বিশেষাকক প্রবা বাখা আছে। বিশেষাকক প্রবার বিশেষাকণ হলে, হাইডোফোনে । এবং । অবকাশে দুটি শক্ষ পাওয়া গোল সম্ভাজন শক্ষের গতিবেগ । হলে প্রমাণ করো যে সমুদ্রের গাতীরতা

$$=x+\frac{V}{2}\sqrt{t_2^2-t_1^2}$$
.

- 23. একটি সমান্তনীয় চলতরজাকে নিম্নলিখিত সমান্তবল ছাবা প্রকাশ করা হয়েছে : \ = 0.1 \sin(200) ম । 20 \tau(17) \
 \ = মিলিমটারে সরগ, । = সেকেন্ডে সময় এবং । মিটারে কোনো একটি নির্দিষ্ট বিন্দু হতে দূরত্ব ঐ তরগেছার ।
 কুম্পান্তর, (III) তরজাদৈর্ঘা, (IIII) পতিরোগ নির্দাহ করো | [Ans. (I) 100 (III 1.7 m (III) 170 ms]
- 24. বায়তে শক্ষের বেগ ২২2 m/s এবং জলে 1440 m/s. শক্ষতরজ্ঞার ক্ষেত্রে বায় হতে জলে প্রতিসরগের সময় আপেন্দিক প্রতিসরগের কৃত্ত থবে ?

কঠিন গাণিতিক প্রশ্ন

- দৃটি সমাধ্রনাল পর্বন্থের মধ্যে একটি উপভাকায় দাঁড়িয়ে একটি বন্দুক ছোড়া হল একটি পর্বত থেকে প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত প্রতিফলিত প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত প্রতিফলিত করিছিল প্রতিফলিত করিছিল প্রতিফলিত করিছিল করিছিল করিছিল প্রতিফলিত প্রতিফলিত করিছিল করেছিল করিছিল করিছিল করিছিল করিছিল করিছিল করিছিল করিছিল করিছিল করিছ
- 2. 57 metre পদা একটি কম্ব বারান্দার একপ্রান্তে দাঁড়িয়ে এক ব্যক্তি হঠাৎ একটি শব্দ করল এবং শব্দ করবার 2s পরে বর্চ প্রতিধানি শুনতে পেল। ঐ সময়কার ভাপমাত্রা 17° ে হলে, 0° ে তাপমাত্রায় শব্দের গতিবেগ কী হবে? [সংকেড $v_t = v_0 (1 + 0.00183 \times t); t = 17^{\circ}$ C] [Ans. 331.7 metre/s]
- 3. একটি পাহাড় থেকে কিছুদুরে দাঁড়িয়ে এক বাজি নির্দিষ্ট সময় অন্তর বাদাযন্তের শব্দ করতে লাগল যন্তের শন্দের হার বৃশ্ধি করাতে সে দেখতে পেল যে, যখন প্রতি মিনিটে 40টি শব্দ করা হল তখন আর প্রতিধ্বনি স্পন্ট শোনা গেল না। ঐ ব্যক্তি তখন পাহাড়ের দিকে আরও 90 metre অগ্রসর হয়ে দেখল য়ে প্রতি মিনিটে 60টি শব্দ করা হলে আর স্পেই প্রতিধ্বনি শোনা যায় না। পাহাড় থেকে ব্যক্তির দূরত্ব ও শন্দের গতিবেগ নির্ণয় করো।

[Ans. 270 metre; 360 metre/s]

4. সমুদ্রতীরে একটি পর্বতশ্রেণির সম্মুখে দাঁড়িয়ে বন্দক ছোড়া হল। বন্দুক থেকে 300 metre দূরে ও পর্বতশ্রেণি থে কে সমদূরে অবস্থিত এক ব্যক্তি লক্ষ করলেন যে বন্দুকের শব্দ সরাসরি তার নিকটে যেতে যে সময় লাগে, তার প্রতিধ্বনি যেতে তার দ্বিগুণ সময় লাগে পর্বতশ্রেণি থেকে বন্দুকের দূরত্ব নির্ণয় করো।

[Jt. Entrance 1999] [Ans. 225 m]

- 5. একটি দেওয়াল থেকে 112 ft দূরত্বে দাঁভিয়ে একটি বান্তি পরপর ৪টি পদাংশ উচ্চারণ করল। সে কি সব কয়টি পদাংশের প্রভিধ্বনি শুনতে পাবে? না পেলে, কোন্ পদাংশের প্রভিধ্বনি স্পন্ট শোনা যাবে? বায়তে শব্দের গতিবেগ = 1120 ft/s.
- একটি পাহাড়ের দিকে অগ্রসর হবার সময় ভাহাত থেকে সাইরেন বাজানো হল এবং 6s পরে প্রতিধর্বনি শোনা গেল।
 য়িনিট পরে আবার সাইরেন বাভালে, 4s পরে প্রতিধর্বনি শোনা গেল। জাহাজের গতিবেগ কড ছিল ? শব্দের গতিবেগ = 1120 ft/s.
- 7. একটি দেওয়াল এবং একটি ঘণ্টার মাঝে একই লাইনে দুইজন পর্যবেক্ষক A এবং B দাঁড়িয়ে আছে। ঘণ্টার শব্দ দেওয়াল কর্তৃক প্রতিফলিত হলে Is পরে A প্রতিধর্বনি শ্বনল কিন্তু B শ্বনল আরও 0.2 সেকেন্ড পরে। A এবং B পর্যবেক্ষকদ্বয়ের ভিতর দূরত্ব কত ? বায়ুতে শব্দের বেগ 1100 ft/s.

 [Ans. 220 ft]
- ৪. একটি হুদের পাড়ে দাঁড়িয়ে এক বাজি হুদের ভিতর এক ছাহাড়েল সাইরেনের বোঁয়া দেখাতে পেল কিন্তু সাইরেনের শব্দ শুনল 36 পরে: শব্দ শুনবার 46 পরে সে হুদের অপর পাড়ে অবিথিত পাহাড় কর্তৃক প্রতিফলিত শব্দের প্রতিধ্বনি শুনল হুদের এপাড় হতে ওপাড় পর্যন্ত দুরত্ব কত ? শব্দের গতিবেগ = 1100 tt/s [Ans. 5500 ft.]
- একটি জাহাজের শব্দ সম্বাদী যন্ত্র তার চারপাশে 3 km ব্যাসার্থের মধ্যে সাবমেরিকের অন্তিত্ব নির্পণের জন্য সংকেত
 পাঠায়। প্রতি মিনিটে এরূপ করটি করে ঝলক পাঠানো প্রয়োজন ? দেওয়া আছে জলে শক্তের বেগ = 1500 m/s

 [Jt. Entrance 1995] [Ans. 15]
- 10. দেখাও যে, $v = a \sin \omega \left(1 \frac{1}{D} \right)$ এবং $y = a \sin \omega \left(1 + \frac{1}{D} \right)$ দৃটি প্রগামী তরজা বোঝাচে যারা D গতিবেগে
 - যথাক্ষে ধনাত্মক ও ঋণাত্মক χ অভিমূখে চলঙে। এর পর্যায়কাল এবং দেশ পর্যায় নির্ণয় করো। $\left[\frac{2\pi}{\omega}, \frac{2\pi \upsilon}{\omega}\right]$
- 11. দৃটি শব্দতরজা একটি বিন্দৃতে t সময়ে পৌজয় এবং তাদের সমীকরণ $v = v_{\rm cl} \sin(kv \omega t)$ এবং $v = v_{\rm cl} \sin(kv \omega t)$ $\{k(x + \Delta x) \omega t + \delta_0\}$ তাদের ভিতর দশাপার্থকা কত?

12. একটি ভরজাকে নিম্নলিখিত সমীকরণ ধারা প্রকাশ করা যায় : ১ এ৮ জেন $\frac{2\pi i}{I}$ তিবজোর উপর $\mathbf{r} = \frac{\lambda}{6} \quad \text{অবস্থানে একটি কণার } I \cdot \frac{T}{i} \quad \text{সময়ে সরগ নিশ্য করে!} \qquad \qquad \qquad [\ \mathbf{vns.} \ \ \mathbf{io} \ \ \mathbf{cm}]$

(1)	C	(iv) A	Oill A	(3) (Dillio C	(200)
(li)		(5) C	(viii) A	ONLY B	exist B	EXVIDE C
(iii)	B	(1)	(ix) X	CS11) A	(44) 4	(xvni) \
(B)	[i] 2500(5)	F. [ii] তথাপা দৈশ্য	(iii) 2"", \$"	e'd≤ [iv] .** ·	$f(\vec{r}, \{v\}) = v - r$	· Nil 5

শব্দতর্জা

[SOUND WAVES]

শন্তরঙ্গা অনুদৈর্ঘ্য স্থিতিস্থাপক তরঙ্গা (Sound waves are longitudinal elastic waves) :

নিম্নলিখিত কারণগূলির জন্য আমরা বলতে পারি, **মাধ্যমের ভিতর দিয়ে শব্দ স্থি**তিস্<mark>থাপক তরপোর আকারে বিভৃতি লাভ করে।</mark>

- (1) তরজোর সন্টির জন্য বন্তুর কম্পন প্রয়োজন। শব্দের সন্টির জন্যও বন্তুর কম্পন প্রয়োজন।
- (2) তরজোর এক স্থান থেকে অন্য স্থানে বিস্তৃতি লাভের জন্য কিছু সময়ের প্রয়োজন। শব্দের বেলাতেও তাই।
- (3) শব্দের বিস্তৃতির জন্য মাধ্যমের প্রয়োজন। শূন্য মাধ্যমে শব্দের চলাচল হয় না। স্থিতিস্থাপক অনুদৈর্ঘ্য তরজোর বিস্তৃতির জন্যও মাধ্যমের প্রয়োজন।
 - (4) শব্দের সমবর্তন হয় না। তাই শব্দতরজ্ঞা অনুদৈর্ঘ্য স্থিতিস্থাপক তরজ্ঞা।
- (5) তরজোর বিস্তৃতির সময় মাধ্যম স্থান ত্যাগ করে না। শব্দের বিস্তৃতির সময়ও মাধ্যমের কোনো স্থানচ্যুতি হয় না।
- (6) প্রত্যেক তরজ্ঞার যেমন প্রতিফলন, প্রতিসরণ ও ব্যতিচার (interference) হয়, শব্দের বেলাতেও তা দেখা যায়।

সূতরাং এই সিম্বান্ত করা যায় যে, উৎসের কম্পনের ফলে যে শব্দের সৃষ্টি হয় তা তরংগার আকারে মাধ্যমের ভিতর দিয়ে বিস্তৃতি লাভ করে আমাদের কানে পৌছোলে শব্দের অনুভৃতি হয়। মাধ্যমের কণাগুলির ফিথতিস্থাপক বিচলনের জন্য এই তরংগার উদ্ভব হয়। উপরোক্ত কারণগুলির জন্য শব্দ স্থিতিস্থাপক অনুদৈর্য্য তরগা।

শব্দের বিভার কৌশল ঃ

মনে করো, একটি কম্পমান
সুরশলাকা থেকে নিঃসৃত শব্দ কানে
এসে পৌছাচছে। লব্দ করলে দেখা যাবে
সুরশলাকার যে-কোনো বাহু (ধর, ()বাহু) বার বার দক্ষিণে ও বামে
(() বিন্দু দিয়ে ah পথে) পর্যাবৃত্ত গভিতে
আন্দোলিত হচ্ছে। এই বাহুর সম্মুথে
যে বায়ুমভেল আছে তা সুরশলাকার
বাহুর সম্মন্তর্বালভাবে সমান কতকগুলি
ব্যরে ভাগ করা আছে কল্পনা করো |চিত্র
2.1 (i)11 আন্দোলিত হত্তে বর্খন বাহুটি

a বিন্দু থেকে b বিন্দ্র দিকে অগ্রসর হবে তখন সে তার সংলগ্ন বায়ুস্তরকে চাপ দেবে। ফলে বায়ুস্তরটি সঙ্কচিত হবে। এই বায়ুন্তর আবার তার সন্মুখের বায়ুন্তরকে চাপ দেবে। এইরূপ যতক্ষণ বাহু । বিন্দু থেকে b বিন্দৃতে পৌছাবে ততক্ষণ এক স্তর থেকে অন্য স্তরে চাপ স্থানান্তরিত হবে ধরা যাক, () বাহু যখন b বিন্দুতে পৌছোল তখন চাপ বায়ুস্তরের B বিন্দুতে পৌছোল। অর্থাৎ সুরশলাকার অর্ধকম্পানের ফলে AB বায়ন্তরের সঙ্কোচন হল। এই সঙ্কোচনকৈ বলা হয় ঘনীভবন (compression) এই ঘনীভবন লক্ষ করলে দেখা যাবে যে স্তরগুলি সর্বত্ত সমান ঘন নয়। কারণ, () বঙ্বে বেগ ab পথে র মধাবিন্দৃতে সর্বাপেক্ষা বেশি। সুতরাং AB ঘনীভবনের মধ্যস্থলের দ্তরগুলি সর্বাপেক্ষা ঘন [2.1 (ii) নং চিত্র।।

তারপর O বাহু h বিন্দু থেকে a বিন্দুর দিকে অগ্রসর হবে। ফলে, তার পশ্চাতে আংশিক শ্নাতার (partial vacuum) সৃষ্টি হয়। বায়ু স্থিতিস্থাপক মাধ্যম বলে O-বাহুর সংলগ্ন স্তর তৎক্ষণাৎ সেই শুনাস্থান অধিকার করার জন্য ছুটে যায়। ফলে, তার পরের স্তরের চাপ কমে যাওয়াতে সে-ও পিছনে চলে আসে। এইভাবে যতক্ষণ O বাহু b থেকে a বিন্দুতে পৌঁছায় ততক্ষণ স্তর থেকে স্তরে প্রসারণ সঞ্চলিত হয় অর্থাৎ AB স্তরগুলি ফাঁক ফাঁক হয়ে পড়ে। গুকে তনুভবন (rarefaction) বলে। সূতরাং সুরশলাকার বাকি অর্ধকম্পনের ফলে একটি তনুভবনের সৃষ্টি হয়। কিন্তু এই সময়ের ভিতর পূর্বের ঘনীভবন যা AB পর্যন্ত বিস্তৃত ছিল তা সম্মুখে অগ্রসর হয়ে BC পর্যন্ত বিস্তার লাভ করে [2.1 (iii) নং চিত্র]। এম্থালেও পূর্বোক্ত একই কারণে তনুভবনের মুরগুলি সর্বত্র সমান ফাঁক নয়। মধ্যস্থলে ফাঁক সর্বাপেক্ষা রেশি।

সুতরাং দেখা গেল, সুরশলাকার একটি পূর্ণকম্পনে একটি ঘনীভবন ও একটি তনুভবন সৃষ্টি হয়। যতক্ষণ সুরশলাকার কম্পন চলবে ততক্ষণ এইরূপ পর্যায়ক্রমে ঘনীভবন ও তনুভবন সৃষ্টি হবে এবং তারা পারস্পরিক অবস্থান ঠিক রেখে বায়ু মাধ্যমের ভিতর দিয়ে সম্মুখে অগ্রসর হবে। এই ঘনীভবন ও তন্ভবনের দৈর্ঘ্য সমান কারণ এরা সুরশলাকার প্রত্যেক অর্ধ-কম্পনে গঠিত হয়। এদের মিলিত দৈর্ঘাকে ত্রজাদৈর্ঘ্য বলা হয়। এইরূপ **ঘনীভবন ও তনুভবন দ্বারা সৃষ্ট অনুদৈর্ঘ্য স্থিতিস্থাপক তরক্ষা বায়ু** মাধ্যম অবলম্বন করে অশ্রসর হয়ে যখন আমাদের কানে পৌছায় তখন আমরা শব্দ শুনি।

2.2. শব্দের নির্দিষ্ট বেগ আছে (Sound has a definite velocity)

প্রত্যেক তরজোর যেমন নির্দিষ্ট বেগ থাকে তেমনি শব্দতরজোরও একটি নির্দিষ্ট বেগ আছে। তোমরা লক্ষ করে থাক্বে, যখন বিদাৎ চমকায় তখন কলক দেখার বেশ কিছুক্ষণ পরে মেঘের গর্জন শোনা যায়। প্রকৃতপক্ষে উভয়েই একসজে হয়। মেঘ ও পৃথিবীর ভিতরকার দূরত্ব অতিক্রম করতে শব্দের খানিকটা সময়ের প্রয়োজন হয়। কিন্তু আলোর গতিবেগ প্রতি সেকেন্ডে প্রায় এক লক্ষ ছিয়াশি হাজার মাইল বলে মেঘ থেকে পৃথিবীতে খালো আসতে কোনো সময় লাগে না বলেই ধরা মেতে পারে। সেইজনা খালোর ঝলক সংজ্ঞা সংজ্ঞা দেখলেও শব্দ সংজ্ঞা সংজ্ঞা শোনা যায় না। দূর থেকে ট্রেন বংশীধ্বনি করলে ধোঁয়া দেখার খানিকক্ষণ পরে শব্দ শোনা যায়: যদিও বংশীধ্বনির সজো সজো ধোঁয়া বার হয় দূর থেকে কিকেট খেলা দেখার সময় তোমরা অনেকেই দেখেছ য়ে বাাটে ও বলে সংঘাত হবার কিছক্ষণ পরে শব্দ কানে পৌছায়। এই সমস্ত সাধারণ অভিজ্ঞ গ্রহেক আমরা জানতে পারি যে দূরত্ব অতিক্রম করতে শব্দের কিছু সময়ের প্রয়োজন হয় অথবা শব্দ নির্দিষ্ট বেগে চলে। পরীক্ষা করে দেখা গেছে ()°ে তাপমাত্রাতে বায়ুমাধায়ে শক্তের বেগ প্রতি সেকেন্ডে প্রায় 332 মিটার। সাধারণ ক্ষেত্রে অল্প দূরত্বের ভিতর শব্দ সঙ্গো সংগো শোনা ্ণেলেও দূরত্ব নাড়লেই শক্ষের বেগ স্পন্ধ প্রতীয়মান হবে।

DE EXAMPLE DE

একটি বৃত্তাকার ক্রিকেট মাঠের উত্তর থেকে দক্ষিণে বায়ু 36 km/h বেগে বয়ে যাতে। মাঠের কেন্দ্রে বাটে ধারা বলকে আঘাত করার শব্দ উত্তর প্রান্তে 13 সেকেন্ড পরে এবং দক্ষিণ প্রান্তে $\frac{3}{11}$ সেকেন্ড পরে শোনা গেল। প্রির বায়ুতে শব্দের গতিবেগ কত ? মাঠের, পূর্ব বা পশ্চিম প্রান্তে কতক্ষণ পরে শব্দ শোনা যাবে ?

ঊঃ। বার্ব গতিবেগ = 36 km/h = $\frac{36 \times 1000}{60 \times 60}$ = 10 m/s ; মাস্তের কেন্দ্র থেকে উত্তর্গিকে শব্দের আপেক্ষিক গতিবেগ = (V – 10) m/s [যদি প্রির বায়ুতে শব্দের গতিবেগ ধরা যায় = V m/s.] বৃত্তকার মাস্তের ব্যাসার্ধ দ মিটার হলে, শব্দ মাঠের কেন্দ্র থেকে উত্তরপ্রান্তে পৌছাতে যে সময় নেনে তা

$$=\frac{r}{V-10}$$
s, $\therefore \frac{r}{V-10} = \frac{13}{44}$ (i)

আবার মাঠের কেন্দ্র থেকে দক্ষিণদিকে শব্দের আপেক্ষিক গতিবেগ = $(V+10)\,\mathrm{m/s}$; অতএব, কেন্দ্র থেকে দক্ষিণ প্রান্তে শব্দ পৌছাতে সময় লাগবে = $\frac{r}{V+10}$ · $\div \frac{r}{V+10}$ = $\frac{3}{11}\,...\,(11)$

V-এর মান (ii) নং সমীকরণে বসালে পাই, $r = \frac{3}{11} \times 260 = 71$ m (প্রায়) :

এখন, মাঠের কেন্দ্র থেকে পূর্ব বা পশ্চিম প্রাণ্ডে যেতে শব্দতরক্ষা বায়্প্রবাহ চারা কেন্দ্র রঞ্জিল প্রভাবিত হবেনা (কারণ বায়ু উত্তর–দক্ষিণ বরাবর বয়ে যাক্ষে)। শব্দতরক্ষা গতিবেগ 250 m/s থাব বে।

কাজেট পূর্ব বা পশ্চিম প্রান্তে শব্দ পৌঁছাবার সময় $\frac{r}{V} = \frac{71}{250} = 0.284 \, \mathrm{s}.$

23.

গ্যাস মাধ্যমে শব্দের গতিবেগ সম্পর্কিত নিউটনের সর (Newton's formula for the velocity of sound in gases)

কোনো গ্যাস-মাধ্যমের ভিতর দিয়ে যখন শব্দতরজ্ঞা বিস্তার লাভ করে তখন তার গাতবেশ সম্পর্কে

নিউটন গুলুমুলক আলোচনা করেন এবং গতিবেগের যে সূত্র নির্ধারণ করে তা ২০০ $V=\frac{E}{V\rho}$: V= শঙ্গের বেগ , E= মাধ্যমের স্থিতিস্থাপক গুণাস্ক এবং $\rho=$ মাধ্যমের ঘনত্র I= , কান সংI= গুণাস্ক গুণাস্ক বোঝাবে তা মাধ্যমের প্রকৃতির উপর নির্ভির করে।

এখন গ্যাস মাধ্যমে শব্দ অনুদৈর্ঘ্য ওরজ্ঞা সৃষ্টি করে বিস্তার লাভ করে এব ক্রান্ত্রৰ শৃষ্ট এই করি বিকৃতি গুলাঙ্ক (bulk elasticity) আছে। স্তর্গে উপরিউত্ত সমাকরণে । ১০১৮ শব্দ লাক বাকের রগ বোঝারে এবং ট্রান্সের আয়তন বিকৃতি গুলাঙ্ক বোঝারে। স্তুত্রাং লাক্ত বা নাক বাকের রগ

সম্পরিত নিউটনের সূত্র হলে $V = \frac{k}{\sqrt{\rho}}$: k = লাংসের আয়েত্ন দিকতি শুলাঙ্ক

য়ে গুলুমুলক আলোচনা দারা নিউটন উপরিউত্ত সূত্র প্রতিষ্ঠা করেন গ্রান্থ কলেন বলেচকেন এই, বাই বা গাসীয় মাধ্যমে শক্তরক্ষার বিজ্বের সময় মাধ্যম প্র প্রকৃতি করে কল্পকৃত্য কলেন ও ১৮ জনা নত হয় এব। সংলোসকো মাধ্যমের চাল ও গন্ধের পরিবর্তন দ্বী একটি গনাভ্যনের কলা ১৮ জুল নিজেন কটি স্থাবা যে গ্রাপের সামী হয় ও পরবর্তী ওন্তবন শুর হবার পরেই আর্লিই প্রকৃতিত্য কলেনাত বহয়। একইভাবে তনুভবনের জন্য যে শীতলতার সশ্বার হয় তা ঐ বায়ুস্তরে আবন্ধ থাকে না। পরবর্তী স্তরগুলি থেকে তাপ শোষণ করে সমতা বজায় রাখে। ফলে ঐ স্তরের তাপমাত্রার কোনোরূপ পরিবর্তন হয় না। তাই, নিউটনের মতে শব্দরতজ্ঞার বিস্তৃতি মাধ্যমের সমোশ্ধ (isothermal) অবস্থায় সংঘটিত হয়। সমোশ্ধ অবস্থায় প্রমাণ করা যায় গ্যাসের আয়তন বিকৃতি গুণাহ্বক k উক্ত গ্যাসের সমান। এতএব গ্যাসের

চাপ P ধরলে নিউটনের সূত্রকে নিম্নলিখিতরূপে প্রকাশ করা যেতে পারে ঃ $V=\sqrt{\frac{P}{P}}$

সি.জি.এস্. পশ্ধতি অনুযায়ী P–কে dyne/cm 2 এবং ρ -কে g/cm 3 এককে প্রকাশ করতে হবে। এস্. আই. পশ্ধতিতে P–কে newton/m 2 এবং ρ -কে kg/m^3 এককে প্রকাশ করতে হবে।

্রিক্টবাঃ তাপমাত্রার পরিবর্তন না হলে (সমোশ্ধ অবস্থায়) গ্যাসের অয়েতন-বিকৃতি পুগণক গ্যাসের ৮'পের সমান হয়। তা নিম্নলিখিতরূপে প্রমাণ করা যায়।

মনে করো, কিছু পরিমাণ গ্যাসের আয়তন ও চাপ যথাক্রমে V এবং P: ধরো, চাপ অতি সামান। p পরিমাণ বর্ধিত করা হল এবং তার ফলে আয়তন v পরিমাণ কমে গেল। তাপমাত্রার পরিবর্তন না হলে, বয়েল সূত্র থেকে লেখা যায় P.V = (P + p)(V - v) অথবা, PV = PV - Pv + p, V - p.v. অথবা, Pv = pV[p,v] খুব কৃদ্র বলে উপেক্ষণীয়া

অথবা,
$$P = \frac{pV}{v} = \frac{p}{v/V} = \frac{\text{আয়তন পীড়ন}}{\text{আয়তন বিকৃতি}}$$

এক্ষেত্রে p হল আয়তন পীড়ন এবং v/V হল আয়তন বিকৃতি; এদের অনুপাত আয়তন-বিকৃতি গুণাভেকর (k) সমান।

কাজেই
$$P = \frac{p}{v/V} = k$$
. }

প্রমাণ তাপমাত্রা ও চাপে বায়ুতে শব্দের বেগ (Velocity of sound in air at N.T.P.):

প্রমাণ বায়ুচাপ $P=0.76\,\mathrm{m}$ পারদশীর্ষের চাপ= $0.76\times(13.6\times10^3)\times9.8=1.013\times10^5\,\mathrm{newton/m}^2$ প্রমাণ ভাপমাত্রা (0°C) ও উপরিউক্ত চাপে বায়ুর ঘনত্ব $\rho=1.293\,\mathrm{kg/m}^3$

সুতরাং, নিউটনের সূত্র থেকে বায়ুতে শব্দের বেগ
$$V=\sqrt{\frac{P}{\rho}}=\sqrt{\frac{1.013\times 10^5}{1.293}}=280~\mathrm{m/s}$$
 (প্রার)।

িত্ত পরীক্ষা করে দেখা গেছে, প্রমাণ তাপমাত্রা ও চাপে বায়ুতে শব্দের বেল হয় প্রশ্ন 3.12 m/ই অর্থাৎ নিউটনের সূত্র থেকে প্রাপ্ত ফলাফলে প্রায় 16% ভূল আসছে। একে যান্ত্রিক এটি বলে অল্লাহা বায় না। পরীক্ষালব্ধ ফল এবং নিউটনের সূত্র থেকে প্রাপ্ত ফলের ভিতর যথেক্ট পর্বাক্তিয়াকার বলা যায়, নিউটনের সূত্রের কোথাও এটি আছে।

প্রাপল্যাস্ কর্তৃক নিউটনের সূত্র সংশোধন (Laplace's correction of Newton's formula):

নিউটনের সৃত্রের ব্রটি নির্ধারণ করেন ফরাসি গণিতবিদ ল্যাপল্যাস্। তিনি প্রর প্রয়োজনীয় সংশোধনও করেন। গ্যাস মাধ্যমে শব্দতরজ্ঞার বিস্তার হলে গ্যাসের তাপমাত্রার কোনো পরিবর্তন হয় ন' – নিউটনের এই সিন্ধান্ত সম্প্রের দ্যাপল্যাস্ সন্দেহ প্রকাশ করেন। তিনি বলেন, বায়ুপ্তরে দ্যাভবন ও হনুভবন এই প্রত সম্প্রাদিও হয় যে তার দর্ল তাপবৃদ্ধি ও তাপস্তাস অবশাস্তাবী। এতে বায়ুপ্তরের তাপনারে পরিবর্তন হতে বাধা। গ্যাসের তাপ পরিবাহিতা ও বিকরণ ক্ষমতা কম বলে এইরপ ঘটরে। মোটের উপর শক্ষরবাহার বিক্তিত মাধ্যমের সমোল্ল অবস্থায় সংঘটিত হয়। এটাই ছিল ল্যাপলাসের যুব্তি।

গ্যানের তাপমাত্রা পরিবর্তিত হলে (অর্থাৎ রুখাতাপ প্রক্রিয়ায়। প্রমাণ করা যায় যে, PV= ধ্রবক নয়:

$$PV^{\gamma}=$$
 শ্বুবক। এক্ষেত্রে $\gamma=rac{\log \pi}{\log \pi}$ ভাগে গ্রানের অপ্রেচিক ভাগে $\gamma=\frac{\log \pi}{\log \pi}$ আয়তনে $\gamma=\frac{1}{2}$

এখন চাপ P যদি অতি সামান্য পরিমাণ (p) বৃদ্ধি পায় এবং তার ফলে নির্দিষ্ট পরিমাণ বায়ুর আয়তন V যদি v পরিমাণ ব্রাস পায়, তবে

$$P.V^{\gamma} = (P + \dot{p})(V - \upsilon)^{\gamma} = V^{\gamma}(P + p)\left(1 - \frac{\upsilon}{V}\right)^{\gamma}$$

বাইনোমিয়াল উপপাদ্য অনুসারে লেখা যায়,

$$PV^{\gamma} = V^{\gamma} \left(P + p\right) \left(1 - \frac{\gamma \upsilon}{V}\right)$$
 $\left\{\frac{\upsilon}{V}\right\}$ থুব ক্ষুদ্র হওয়ায় উচ্চ ঘাতের মান অগ্রাহ্য করা যায়। $\left\{\frac{\upsilon}{V}\right\}$

$$P = (P + p) \left(1 - \frac{\gamma \cdot \upsilon}{V} \right) = P - \frac{\gamma \cdot P \cdot \upsilon}{V} + p - \frac{\gamma p \upsilon}{V} = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon] = P - \frac{\gamma P \cdot \upsilon}{V} + p \quad [p \cdot \upsilon$$

অথবা,
$$p=\frac{\gamma.\,P.\,\upsilon}{V}$$
 বা $\gamma.\,P=p+\frac{\upsilon}{V}=\frac{}{}{}$ আয়তন বিকৃতি = আয়তন বিকৃতি গুণাঙক।

 \therefore বায়ুর আয়তন বিকৃতি গুণাঙ্ক $k=\gamma.P.$

উপরিউত্ত সিশ্বান্ত অনুযায়ী গ্যাস মাধ্যমে শব্দের বেগ নিম্নলিখিত সূত্রানুযায়ী নিণীত হবে ঃ

$$V = \sqrt{\frac{\gamma \, P}{
ho}}$$
: বায়ুর বেলাতে $\gamma = 1.41$ সুতরাং, $V = \sqrt{\frac{1.41 \times P}{
ho}}$.

প্রমাণ তাপমাত্রা ও চাপে ল্যাপল্যাসের সংশোধিত সূত্র প্রয়োগ করলে বায়ুতে শব্দের বেগ দাঁড়াবে $V=280\,\sqrt{1.41}=332.3~{
m m/s}$ । এটা পরীক্ষালস্থ ফলের সাথে প্রায় মিলে যায়। সূতরাং এই মিল न्गाननगरमत युन्तित यथार्थे अभाग करता

গ্যাস মাধ্যমে শব্দের বেগের উপর গ্যাসের ঘনত্ব, চাপ, তাপমাত্রা ও আর্দ্রতার প্রভাব (Dependence of velocity of sound on density, pressure, temperature and humidity of a gas):

(i) খনজের প্রভাব : মনে করো, দুটি গ্যাসে শব্দের বেগের তুলনা করা হচছে। তাদের ঘনত্র ho_1 এবং ho_2 ; তাদের চাপ ও তাপমাত্রা সমান এবং তারা যথাক্রমে P ও T ; উত্ত গ্যাস দুটির মধ্যে শব্দের বেগ যথাক্রমে V_1 ও V_2 ধরলে

$$V_1 = \sqrt{\frac{\gamma P}{\rho_1}} \quad \text{side} \quad V_2 = \sqrt{\frac{\gamma P}{\rho_2}} \qquad \therefore \frac{V_1}{V_2} = \sqrt{\frac{\rho_2}{\rho_1}} \quad \text{with} \quad V \propto \frac{1}{\sqrt{\rho}}$$

সূতরাং কোনো গ্যাস মাধ্যমে শব্দের বেগ ঐ গ্যাসের ঘনত্বের বর্গমূলের ব্যন্তানুপাতিক। যেমন, হাইড্রোজেন ও অক্সিজেনের কথা ধরা যাক। অক্সিজেনের ঘনত্ব হাইড্রোজেনের 16 গুণ: সূতরাং চাপ ও তাপমাত্রা অপরিবর্তিত থারুলে অক্সিজেনে শব্দের গতিবেগ হাইড্রোজেনে শব্দের গতিবেগের $rac{1}{A}$ ভাগ হবে। উপরোক্ত আলোচনায় উভয় গ্যানের ү–র মান সমান ধরা হয়েছে। গ্যাস দটির প্রত্যেকটির অণুতে যদি সমান সংখ্যক প্রমাণ্ থাকে, ত্রেই তানের γ-র মান সমান হয়। গাড়ের অগ্তে বিভিন্ন সংখ্যক প্রমাণ্ থাকলে γ-র মান সমান হবে না। তখন γ-র উপযুক্ত মান বাসরো হিসাব করতে হবে।

(ii) চাপের প্রভাব ঃ কোনো গণসের চাপ P ও ঘনত্ব ho হলে বয়েল সূত্র থেকে প্রফাল করা যায়, $P \sim
ho$ যদি ভাপমারো অপরিবর্তিত থাকে। অর্থাৎ, $\frac{P}{
ho}$ = ধুবক।

সুতরাং চাপ পরিবর্তন করলে ঘনত্ব পরিবর্তিত হবে, কিন্তু $\frac{P}{\rho}$ সর্বদা ধ্রুবক থাকরে এবং শব্দের বেগ $V=\sqrt{\frac{\gamma}{\rho}}$ হওয়ায় বেগের কোনো পরিবর্তন হবে না ।

(iii) তাপমাত্রার প্রভাব ঃ গ্যাসের গুপমাত্রা পরিবর্তিত হলে তার ঘনত্বের পরিবর্তন হয়। স্তরাং শক্তের বেগেরও পরিবর্তন হয়। ধরো, (PC এবং PC তাপমাত্রায় বায়ুর ঘনত্ব মধ্যক্রমে ρ_0 এবং ρ_1 . উত্ত দুই তাপমাত্রায় শব্দের বেগ ধরা হল V_0 এবং V_0 .

তাহলৈ
$$V_o = \sqrt{\frac{\gamma P}{\rho_o}}$$
 এবং $V_t = \sqrt{\frac{\gamma P}{\rho_t}}$: $\frac{V_t}{V_o} = \sqrt{\frac{\rho_o}{\rho_t}}$

এখন চার্লস সূত্র থেকে পাই, $\frac{\rho_o}{\rho_t} = \frac{T}{T_o}$ $\therefore \frac{V_t}{V_o} = \sqrt{\frac{T}{I_o}}$ অর্থাৎ $V \propto \sqrt{T}$.

[T এবং T, হল PC এবং (PC তাপমাত্রার প্রাসজ্ঞাক পরম স্কেল তাপমাত্রা। অতএব, গ্যাসে শব্দের গতিবেগ ঐ গ্যাসের পরম তাপমাত্রার বর্গমূলের সমানুপাতিক।

👁 শব্দের বেগের তাপমাত্রা গুণাব্দ (Temperature co-efficient of velocity of sound) :

 $T = t^{\circ}C = (t + 273) \text{ K}$ $94^{\circ}C = 0^{\circ}C = 273 \text{ K}$

কাজেই,
$$\frac{V_t}{V_0} = \sqrt{\frac{273+t}{273}} = \sqrt{1+\frac{t}{273}} = \left(1+\frac{t}{273}\right)^{\frac{1}{2}} = 1+\frac{1}{2} \times \frac{t}{273} = 1+\frac{t}{546}$$

∴
$$V_t = V_0 \left(1 + \frac{t}{546} \right)$$
; $V_o = 332 \text{ m/s}$ ধরে নিলে, $V_t = 332 \left(1 + \frac{t}{546} \right) = 332 + 0.61t$ (প্রায়) ।

অর্থাৎ, বায়ুতে বা যে-কোনো গ্যাসে 0°C তাপমাত্রায় শব্দের যে-বেগ হয় প্রতি 1°C তাপমাত্রা বৃদ্ধি বা হ্রাসের জন্য ঐ বেগ সেকেন্ডে প্রায় 0.61 মিটার অথবা 61 cm বৃদ্ধি বা হ্রাস পায়। একে বায়ুতে শব্দের বেগের তাপমাত্রা গুণাঙক বলা হয়।

[বিকল্প পর্ণতিঃ ধরা যাক্, কোনো গ্যাসের এক গ্রাম-অণুর ভর = M এবং আয়তন = υ : তার

ঘনত্ব $ho=rac{M}{\upsilon}$ কাজেই, ঐ গ্যাসে শব্দের গতিবেগ $V=\sqrt{rac{\gamma\,P}{
ho}}=\sqrt{rac{\gamma\,P\,\upsilon}{M}}$; কিন্তু এক গ্রাম-অণু গ্যাসের বেলায় $P.\upsilon=R_o.T$; $R_o=$ সর্বজনীন গ্যাস ধ্রুবক এবং T= গ্যাসের পরম তাপমাত্রা।

কাজেই,
$$V = \sqrt{\frac{\gamma . R_o . T}{M}}$$
.

(ক) একই ধরনের আণবিক কাঠামোযুম্ভ গ্যাসের বেলায় γ এবং R_o ধ্বক বলে, $V \propto \frac{1}{\sqrt{M}} \propto \frac{1}{\sqrt{\rho}}$ যখন তাপমাত্রা অপরিবর্তিত থাকছে। অতএব শব্দের গতিবেগ গ্যাসের ঘনত্বের বর্গমূলের ব্যপ্তানুপাতিক।

- ্খ) যাদ তাপ্যাল দু পিরে রাখা যায় তাহলে উপরোস্ত সমীকরণ থেকে বোঝায় য়ে **শব্দের গতিবেগ** গ্যাসের চাপের উপর নির্ভর করে না কারণ চাপের পরিবর্তনে যে-কোনো গ্যাসের ক্ষেত্রে γ. Μ এবং R_o পরিবর্তন করে না।
- েগ। নির্দিষ্ট পরিমাণ গ্যাসের বেলায়, γ , R_0 এবং M অপরিবর্তিত থাকে বলে, উপরোক্ত সমীকরণ থেকে পাই যে, $\gamma = \sqrt{T}$; গ্যাসের ভিতর শব্দের গতিবেগ গ্যাসের পরম তাপমাত্রার বর্গমূলের সমানুশাতিক।
- (iv) আর্দ্রতার প্রভাব ঃ গাদ্সের আর্দ্রতা বৃদ্ধি পেলে ঐ গ্যাদের মধ্য দিয়ে শব্দের বেগ সামান বৃদ্ধি পায়। কাবণ, একট তাপমাত্রা ও চাপে জলীয় বাপ্পের ঘনত্ব শৃষ্ক বায়ুর ঘনত্বের $\frac{5}{8}$ ভাগ। সূতরাং, বায়ু আর্দ্র হলে তার ঘনত্ব কমে যায় এবং ঐ বায়ুতে শব্দের বেগ বেড়ে যায়।

 $V_d=P~{
m cm}$ পারদ চাপে এবং $P'{
m C}$ তাপমাত্রায় শৃষ্ক বাষুতে শব্দের বেগ ; $V_m=$ ঐ চাপ ও তাপমাত্রায় সিঙ বাষুতে শব্দের বেগ এবং $P'{
m C}$ তাপমাত্রায় জলীয় বাঙ্গের সংপৃস্ত চাপ $f~{
m cm}$ পারদ হলে, প্রমাণ করা যায়,

 $V_m = V_d \left(1 + 0.189 \frac{f}{P} \right).$

ধরো, ঘরের ভাপমাত্রা $20^{\circ}\mathrm{C}$: ঐ তাপমাত্রায় $f=1.74~\mathrm{cm}$ পারদ। সূতরাং $\frac{f}{P}=\frac{1.74}{76}=0.029$: এ অবস্থায় $V_m=V_d(1+0.189\times0.0231)=1.0043\times V_d$ অর্থাৎ V_m মাত্র 0.43% বৃদ্ধি পায়।

DECIMEND

্রি দুরবর্তী একটি কেল্লার তোপধ্বনি শুনে এক ব্যক্তি হাত-ঘড়ি ঠিক করল। পরে সে দেখল যে তার ঘড়ি 2 সেকেন্ড 'ক্লো' যাচেছ। ঐ সময়ে উন্মতা 15°C হলে এবং ⊕°C উন্মতায় শক্তের গতিবেগ 332 metre/s ধরলে, ব্যক্তি থেকে কেল্লার দূরত্ব কন্ত ছিল ?

উঃ। খড়ি 3 সেকেভ 'মো' গেল এর অর্থ, কেলা থেকে ব্যক্তি পর্যন্ত পৌছাতে শব্দের 2 সেকেভ সময় লাগ্ন এখন, $V_0 = V_0(1 + 0.00183 \times t)$ এক্ষেত্রে $V_0 = 332$ metre/s ; $t = 15^{\circ}$ C

◆行かえ、V₁ = 332 (1+0.00183×15) = 332×1.027 = 341 metre/s (2間))

- 2 সেকেও সময় শব্দ যে দূরত্ব যায় তা = 2 x 341 = 682 metre. ১৩এব, ব্যক্তি থেকে কেলার দূরত্ব = 682 m.
- 2) 51°C উন্মতায় কোনো গ্যাসের ভিতর শব্দের গতিবেগ 340 m/s. গ্যাসের চাপ দ্বিগুণ করলে এবং উন্মতা বৃদ্ধি করে 127°C করলে শব্দের গতিবেগ কত হবে ?

উঃ। চাপের পরিবর্তনে শব্দের বেগের কোনো পরিবর্তন হয় না; এক্ষেত্রে শৃধু উয়াতার পরিবর্তনে বেগের কত পরিবর্তন হরে তাই নির্ণয় করতে হবে। এখন, 51° C = (51 + 273) = 324K (T_1) এবং 127° C = (127 + 273) = 400K (T_2) .

এখন,
$$\frac{V_{127}}{V_{51}} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{400}{324}}$$
 অথবা, $V_{127} = \sqrt{\frac{400}{324}} \times V_{51} = \frac{10}{9} \times 340 = 377.78 \text{ m/s.}$

ho 78.4 m গভীর একটি কুরোর মধ্যে একটি পাথর ফেললে 4.23 সেকেন্ড পরে পাথরটির ভালম্পর্শ করার শব্দ শোনা গেল। বায়ুতে শব্দের বেগ নির্ণয় করো। $g=9.8~{
m m/s}^2$.

টিঃ, ১৮ কলে, কুরোর তলন্ধ পৌছোতে পাথরটির । সেকেন্ড সময় লগেল ১ - 1 स

1.1-4 7100

০০১ব, করের তলা থেকে উপরে প্রীক্ষাত অথবা 78.4 m (মতে শাকের ৫.২২ \pm 0.23 \times 78.4 m) সূত্র প্রাণে স্তরাং শকের গাঁওবেগ \pm $\frac{78.4}{0.23}$ \pm 340.87 m/s.

্র এক বান্তি বজ্লের ঝলক দেখার 2.5 সেকেন্ড পরে শব্দ শূনতে পেল। বায় 30°C উন্নতায় জলায় বাপেপ সংপৃত্ত ছিল ধরে বছ্রপাতের স্থান থেকে ঐ ব্যক্তির দূরত নির্ণয় করো। ২০ ° উন্মতায় সংপৃত্ত জলীয় বাষ্পচাপ = 1.9 cm পারদ এবং ০°° উন্মতায় শৃত্ত বাস্ত্রত শক্তের বেগালে ব্যক্তি বাস্তের শক্তের বাস্ত্রত বাস্ত্রত বাস্তের বাস্ত্রত বাস্তের বাস্ত্রত বাস্তর্গন বাস্ত্রত বাস্তরত বাস্ত্রত ব

তিও I তেলা বালে সংপ্র বাস্ত্রে শব্দের বেল $V_m = V_d \Big(1 + 0.189 \frac{f}{p} \Big)$ তিও I' তেলা বালে সংপ্র বাস্ত্রে শব্দের বেল $V_d = V_0 \Big(1 + \frac{f}{546} \Big)$ $2 + 4 + \frac{30}{546} \Big(1 + 0.189 \times \frac{f}{p} \Big)$ $= 330 \Big(1 + \frac{30}{546} \Big) \Big(1 + 0.189 \times \frac{1.9}{76} \Big)$ $= 330 (1 + 0.0549) (1 + 0.189 \times 0.025)$ $= 330 \times 1.0549 \times 1.0047$ $= 349.75 \, \text{m/s}$ হাত্ত্ব, ব্রুপত্তর স্থান থেকে ব্যক্তির দূরত্ব = গতিবেগ \times সময়

হতে এবং, ব্রুপ্রত্র স্থান থেকে ব্যক্তির দূরত্ব = গতিবেগ × সময় = 349.75 × 2.5 metre = **874.38 metre** (প্রায়)।

বৃহস্পতি গ্রহের চতুর্দিকের আবহমন্ডল অ্যামোনিয়া এবং মিথেন গ্যাসের মিশ্রণে তিরি। এর উন্মতা -130° C. এই মিশ্রণের γ -এর মান 1.3 এবং আণবিক ভর 16.5 হলে বৃহস্পতি গ্রহে শব্দের বেগ নির্ণয় করো। গ্যাস-ধুবক $R_0=8.3$ joule/K-mol.

উঃ। আনোনিয়া এবং মিথেন গ্যাসের মিশ্রণের আণবিক ভর = 16.5- অর্থাৎ ক্রিপের 1 g-molecule = 16.5 g । মিশ্রণের ঘনত্ব ρ ধরলে, 1 g-molecule মিশ্রণের আয়তন $V_0 = \frac{16.5}{\rho}$ cm 3

এখন, আদর্শ গ্রাস সমীকরণ থেকে পাই, $PV_0 = R_0T$ [T = -130 + 273 = 143 K]

$$\text{SISINT.} \quad P = \frac{R_0 T}{V_0} = \frac{8.3 \times 10^7 \times 143 \times \rho}{16.5} \qquad \therefore \frac{P}{\rho} = \frac{8.3 \times 10^7 \times 143}{16.5} \\ [R_0 = 8.3 \text{ joule} = 8.3 \times 10^7 \text{ erg}]$$

এখন শক্তের গতিবেগ $V = \sqrt{\frac{\gamma.P}{\rho}} = \sqrt{\frac{1.3 \times 8.3 \times 10^7 \times 143}{16 \cdot 5}} = 30580 \text{ cm/s} = 305.8 \text{ m/s}.$

বিকল্প পশ্বতিঃ আমরা জানি কোনো গ্যাসে শব্দের বেগ $V=\sqrt{\frac{\gamma.R_0T}{M}}$ এখানে $\gamma=1.3$, $R_0=8.3$ J/K mol : T=143 K ; $M=16.5\times10^{-3}$ kg

$$\therefore V = \sqrt{\frac{1.3 \times 8.3 \times 143}{16.5 \times 10^{-3}}} = 305.8 \text{ m/s}.$$

ি অক্সিজেন গ্যাসে শব্দতরপোর বেগ 300 m/s হলে, হাইড়োজেন গ্যাসে বেগ কত হবে ?

উঃ। গ্যাসে শব্দের বেগ $V=\sqrt{\frac{\gamma P}{\rho}}$; একই তাপমাত্রা এবং চাপে অক্সিজেনের ঘনত্ব হাইড্রোজেনের 16 গুগ। তাছড়ো, দ্ট গ্যাসের বেলায় γ -র মান সমান। অতএব,

$$\frac{V_{\rm H_2}}{V_{\rm O_2}} = \sqrt{\frac{\rho(\rm O_2)}{\rho(\rm H_2)}} \ \ \therefore \ \ V_{\rm H_2} = \ \sqrt{16} \ . \ V_{\rm O_2} = \ 4 \times 300 = 1200 \ \text{m/s}.$$

ত ৩°C উয়তায় হাইড়োজেন গ্যাস মাধ্যমে শব্দের বেগ 1200 m/s. হাইড়োজেনের
সাথে কিছু পরিমাণ অক্সিজেন গ্যাস মিপ্রিত করলে শব্দের বেগ কমে 500 m/s হয়। মিপ্রণে
হাইড়োজেন ও অক্সিজেন গ্যাসের আয়তনগত অনুপাত কত, তা থির করো। দেওয়া আছে
অক্সিজেনের ঘনত্ব হাইড়োজেনের ঘনত্বের 16 গুণ।

[Jt. Entrance 1982]

উঃ। ধরো, হাইড়োজেনের ঘনত্ব = ho_h ; যদি V_1 আয়তনের হাইড়োজেন এবং V_2 এয়াওনের আক্সিজেন নিয়ে মিশ্রণ তৈরি করা হয় তবে ঐ মিশ্রণের ভর = $ho_h V_1$ + $16
ho_h V_2$ এবং আয়াতন = $V_1 + V_2$

সূত্রাং বিশ্ববের ঘলর
$$\rho_m = \frac{\rho_h V_1 + 16 \rho_h \cdot V_2}{V_1 + V_2} = \frac{\rho_h (V_1 + 16 \, V_2)}{V_1 + V_2}$$

এখন হাইড়োজেন গান্সে শব্দের গতিবেগ $V_h = \sqrt{\frac{\gamma P}{\rho_h}}$

sate where silvasi
$$V_m = \sqrt{\frac{\gamma P}{\rho_m}} = \sqrt{\frac{\gamma P(V_1 + V_2)}{\rho_h(V_1 + 16 \, V_2)}}$$

$$\therefore \frac{V_m}{V_h} = \sqrt{\frac{\gamma P(V_1 + V_2)}{\rho_h(V_1 + 16V_2)}} \times \frac{\rho_h}{\gamma P} = \sqrt{\frac{V_1 + V_2}{V_1 + 16V_2}}$$

প্রধান্সায়ী,
$$\frac{500}{1200} \frac{V_1 + V_2}{V_1 + 16V_2}$$
 ; বর্গ নিলে, $\frac{25}{144} - \frac{V_1 + V_2}{V_1 + 16V_2}$

অথবা, $25V_1 + 400V_2 = 144V_1 + 144V_2$

$$256V_1 - 119V_1 = 4\frac{V_1}{V_2} + \frac{256}{119}$$

আবার অক্সিজেনের বেলায়,
$$V_{\rm O_2} = \sqrt{\frac{1.4 \times R_0 (273 + 7)}{32}} = \sqrt{\frac{1.4 \times R_0 \times 280}{32}}$$

য়েছেছু, $V_{\rm CO_2}=V_{\rm O_2}$ কার্জেই, $\frac{1.33T}{44}=\frac{1.4\times280}{32}$; অথবা, $T=\frac{1.4}{1.33}\times\frac{44}{32}\times280=405$ (প্রায়)

সেলসিয়াস স্কেলে নির্ণেয় তাপমাত্রা = 405 - 273 = 132°C.

দুটি ভিন্ন গ্যাসের γ-র অনুপাত 14:15; একই চাপে তাদের ঘনতের অনুপাত
 7:3; প্রথম গ্যাসে শব্দের বেগ 320 m/s হলে দ্বিতীয় গ্যাসে শব্দের বেগ কত?

উঃ। প্রথম গ্যাসে শব্দের বেগ
$$V_1$$
 হলে, $V_1 = \sqrt{\frac{\gamma_1 P}{\rho_1}}$

অনুরূপভাবে, দ্বিতীয় গ্যাসে শব্দের বেগ V_2 হলে, $V_2=\sqrt{\frac{\gamma_2\,P}{\rho_2}}$

ভাগ দিলে,
$$\frac{V_2}{V_1} = \sqrt{\frac{\gamma_2}{\gamma_1}} \times \frac{\rho_1}{\rho_2} = \sqrt{\frac{15}{14}} \times \frac{7}{3} = \sqrt{\frac{5}{2}}$$

∴
$$V_2 = V_1 \times \sqrt{\frac{5}{2}} = 320 \times \sqrt{2.5} = 506 \text{ m/s}$$
 (প্রায়)।

10 হিলিয়াম গ্যাসে – 173°C উশ্বতায় শব্দের বেগ 582 m/s. হিলিয়ামের আণবিক ভর্ 4; ঐ গ্যাসের ү ধ্রকের মান কত ? $R = 8.31 \times 10^7 \,\mathrm{erg/°C}$. [Jt. Entrance 1988

উঃ। গামে শব্দের গতিবেগ
$$V = \sqrt{\frac{\gamma \times R \times T}{M}}$$

এখানে, V = 582 m/s ; $R = 8.31 \times 10^7$ erg/°C = 8.31 joule/°C ; T = 273 - 173 = 100 K এব M = 4 g = 4×10^{-3} kg (সব S.1. এককে প্রকাশ করা হল)।

থাঙ্গ্রব,
$$582 = \sqrt{\frac{\gamma \times 8.31 \times 100}{4 \times 10^{-3}}} = 5(\gamma \times 8.31 \times 10^{3})^{1/2}$$

$$\left(\frac{582}{5}\right)^2 = \gamma \times 8.31 \times 10^3$$
 অথবা, $\gamma = \frac{(116.4)^2}{8.31 \times 10^3} = 1.63$.

া 300 m উচু একটি মিনারের শীর্ষ থেকে একটি পাথরখন্ড ফেলা হল। মিনারের পাদদেশে একটি জ্বলাশয়ের জলে ঐ পাথরখন্ড পড়ার শব্দ মিনারের শীর্ষে পৌছোতে ক সময় লাগবে ? বায়ুতে শব্দের বেগ = 340 ms^{-1} এবং $g = 9.8 \text{ ms}^{-2}$.

উঃ। জলে পড়ার শব্দ মিনারের শীর্ষে পৌছোতে যে মোট সময় লাগবে তা পাথরখা,গুর মিনারে

শীর্ষ থেকে পাদদেশে স্পেছেনতে সময়। । এবং শব্দের মিনারের পাদদেশ থেকে শীর্ষে স্পিছোতে সময়। । – এই দুয়ের সমস্টি।

এখন,
$$S=\frac{1}{2}gt^2$$
 স্মীকরণ থেকে পাই, $S=\frac{1}{2}gt_1^2$ অথবা, $t_1=\sqrt{\frac{2S}{g}}=\sqrt{\frac{2\times300}{9.8}}=7.82$ s

আবার,
$$t_2 = \frac{\text{মিখারের উচ্চতা}}{\text{শব্দের গভিবেগ }} = \frac{300}{340} = 0.88 \text{s}$$

়. মোট নির্ণেয় সময় = $t_1 + t_2 = 7.82 + 0.88 = 8.7$ s.

অনুনাদী বায়ুস্তম্ভ দারা বায়ুতে শব্দের বেগ নির্ণয় (Determination of velocity of sound in air by resonant air column):

পরীক্ষা : একটি মোটা ও লম্বা কাচের পাত্র A দুই তৃতীয়াংশ জল ভর্তি করে জলের ভিতর একটি দুমুখ খোলা কাচনল B প্রবেশ করাও (2.2 নং চিত্র)। K চাবি খুলে B নলকে ওপর-নীচে সরানো যায়। জল দ্বারা B নলের নীচের মুখ বন্ধ হয়ে যাবে। সূতরাং একে বন্ধ নল হিসাবে ব্যবহার করা যাবে। এর সুবিধা এই যে, B নলকে উপরে উঠিয়ে বা নীচে নামিয়ে নলের ভিতরকার বায়ুস্তস্তের দৈর্ঘ্য ইচ্ছামত কম-বেশি করা যেতে পারে। এইবার একটি কম্পমান সুরশলাকা T-কে B-মলের খোলা মুখের সামনে ধরে নলের বায়ুস্তস্তের দৈর্ঘ্য বাড়ালে-কমালে এক সময়ে জার শব্দ শোনা যাবে। এর অর্থ এই যে, বায়ুস্তস্তে অনুনাদ সৃষ্টি হয়েছে। এই অবস্থায় সুরশলাকার কম্পাঙ্ক ও বায়ুস্তস্তের কম্পাঙ্ক সমান হবে। যদি বায়ুস্তস্তের নূয়নতম দৈর্ঘ্যে এই

অনুনাদ হয়ে থাকে তবে বুঝতে হবে, বায়ুম্ভম্ভ মূলসূর সৃষ্টি করেছে। শব্দের বেগ V, অনুনাদী বায়ুম্বন্তের দৈর্ঘ্য I ও কম্পাঙ্ক n হলে মূলসূরের বেলায় প্রমাণ করা যায়, V=4ln. (তৃতীয় পরিচেছদে বায়ুম্বন্তের কম্পন দ্রুষ্টব্য)।*

সুতরাং, সুরশলাকার কম্পাঙ্ক জানা থাকলে ও অনুনাদী বায়ুস্তস্তের দৈর্ঘ্য মাপলে শব্দের বেগ নির্ণয় করা যাবে।

• প্রান্তিক বুটি সংশোধন (End correction): B-নলে অনুনাদ সৃষ্টি হলে আমরা ধরেছি যে, নলের ভিতরস্থ জলতলে একটি নিম্পন্দ বিন্দু ও ঠিক খোলা মুখে একটি সুম্পন্দ বিন্দু উৎপন্ন হয় (3.14 অনুচ্ছেদ দ্রুষ্টির)। কিন্তু বিজ্ঞানী লর্ড রালে প্রমাণ করেছেন যে, সুম্পন্দ বিন্দু ঠিক খোলা মুখে হয় না, একটু উপরে হয়। ধর, নলের মুখ থেকে সুম্পন্দ বিন্দুর দূরত্ব x: এক্ষেত্রে x-কে বলা হয় প্রান্তিক বুটি। নলের ব্যাসার্ধ r হলে, x = 0.6r: অতএব V = 4(l+v)n = 4(l+0.6r)n.

এই প্রান্তিক ব্রুটি পরিহার করে নির্ভুলভাবে শক্ষের রেগ নির্ণয় করার আর একটি উপায় আছে। বায়ুস্তস্তের ন্যানতম দৈর্ঘ্য মূলসুর অনুনাদ সৃষ্টি করে তা আমরা দেখেছি। এখন বায়ুস্তস্তের দৈর্ঘ্য বাড়িয়ে প্রায় তিনগুণ

[॰] এই অনুষ্ঠেদ । । ব অনুষ্ঠেদ (বায়ুস্তরের কম্পন) অধায়নের পর পড়া বাশ্বনীয়।

করলে ভিত্তরের অননাদ সৃত্তি হরে এ একে রাক্য মত , তাল গুড়াই উপসূর্ব বা হতায় সময়েল উৎপক্ষ হয়েছে।

ধরা যাক, স্রশলকো নিজেত শকের তর্গনৈর λ . প্রথম অনুনাদের সময় বায়্রপ্রের দৈর্ঘ্য l_1 হলে, $\frac{\lambda}{4}=l_1+x$ (চিত্র 2.3) বিতীয় অনুনাদের সময় বায়্রপ্রের দৈর্ঘ্য l_2 বলে, $\frac{3\lambda}{4}=l_2+x$ (2.4 লং চিত্র)।

দিতীয় সমীকরণ থেকে প্রথমটি বিয়োগ করলে $\frac{\lambda}{2}=l_2-l_1.$ অথবা, $\lambda=2(l_2-l_1)$, সূতরাং $V=n\lambda=2n(l_2-l_1)$; এই সমীকরণে প্রান্তিক বুটি (ι) নেই ι

• প্রান্তিক বুটি নির্ণয় ঃ প্রথম অনুনাদের ক্ষেত্রে আমর। দেখলাম, $\frac{\lambda}{4}=l_1+v$: আবার, দিতীয় অনুনাদের ক্ষেত্রে $\frac{3\lambda}{4}=l_2+v$ [চিত্র 2.3 এবং 2.4]।

 $\therefore 4(l_1+x)=\frac{4}{3}(l_2+x)$ অথবা, $x=\frac{l_2-3l_1}{2}+l_1$ এবং l_2 জানা থাকলে প্রান্তিক এটি । নির্ণয় করা যায়।

DECIMAL

512 কম্পাঙ্কের একটি সুরশলাকাকে বন্ধ নলের মুখে ধরে দেখা গেল বে বায়ুভান্তের ন্যুনভম দৈর্ঘ্য 17 cm হলে অনুনাদ সৃষ্টি হয়। বায়ুতে শব্দের গতিবেগ নির্ণয় করো।

উঃ। এম্বালে $l=17\,\mathrm{cm}$; n=512 ; ন্যানতম দৈর্ঘো অনুনাদ হওয়ায় ২ লসুর উৎপন্ন হয়েছে। স্তরাং, $V=4nl=4\times512\times17\,\mathrm{cm/s}=34816\,\mathrm{cm/s}=348.16\,\mathrm{m/s}$.

একটি কম্পনশীল সরশলাকাকে কোনো বন্ধ নলের মুখে ধরে বায়ুস্তান্তর 27 cm এবং 82 cm দৈর্ঘ্যে অনুনাদ পাওয়া গেল। সুরশলাকার কম্পান্ক 300 হলে বায়ুতে শব্দের বেগ নির্ণয় করো।

উঃ ৷ এম্বলৈ $l_1=27~{\rm cm}$; $l_2=82~{\rm cm}$ এবং n=300 এখন, $V=2n(l_2-l_1)=2\times 300(82-27)=2\times 300\times 55~{\rm cm/s}$ $=2\times 3\times 55~{\rm m/s}=330~{\rm m/s}$.

কু দুটি অর্গান নল একটির দুমুখ এবং অপরটির একমুখ খোলা—মূলসুর উৎপন্ন করলে তাদের কম্পাঙ্কের পার্থক্য 25 দেখা গেল। খোলা নলের দৈর্ঘ্য 166 cm; বায়ুতে শব্দের গতিবেগ 332 m/s হলে বন্ধ নলের দৈর্ঘ্য কও ?

উঃ। মতে করে , খোলা নলে বাধ্যন্তের কম্পাঙ্ক ও দৈর্ঘ্য যথাক্রম n_1 এবং l_1 ; বন্ধ নলের বেলপ্তে হরে , তাক যথাক্রমে n_2 এবং l_2 . প্রশ্ননুষায়ী , n_1-n_2 সংঘাব, $n_2-n_1=25$.

ভখন কোল নক্তর সলস্বের বেলাতে (3.15 অনুচেছদ দ্রন্থীবা),

$$n_1 = \frac{V}{2l_1} = \frac{332}{2 \times 1.66} = 100$$
 এবং কথ নলের বেলাতে $n_2 = \frac{V}{4l_2}$
$$\therefore l_2 = \frac{V}{4n_2} = \frac{332}{4(n_1 \pm 25)} = \frac{332}{4(100 \pm 25)} = \textbf{0.664 m}$$
 অথবা **1.1 m.**

কঠিন ও তরলের মধ্যে শব্দের বেগ (Velocity of sound in solid and liquid):

বিভিন্ন মাধামে শব্দের বেগ বিভিন্ন। গ্যাস বা বায়ুতে শব্দের যে বেগ তা কঠিন ও ৩রলের মধ্যে শব্দের বেগ থেকে ভিন্ন। নিউটনের সূত্র থেকে আমরা জানি,

শব্দের গতিবেগ =
$$\sqrt{\frac{মাধ্যমের স্থিতিস্থাপক গুণাচ্চ}}$$
 এ মাধ্যমের ঘনত্ত্ব

এখন, বায়ু অপেক্ষা কঠিন পদার্থের ঘনত্ব বেশি কিন্তু কঠিন পদার্থের হিথতিস্থাপক গুণাঙক বায়ুর প্রিতিস্থাপক গুণাঙ্ক অপেক্ষা অনেক গুণ বেশি। ফলে কঠিন পদার্থের মধ্যে শব্দের বেগ বায়ু মাধ্যমে শব্দের বেগ অপেক্ষা অনেক বেশি হয়। 1801 খ্রিস্টাব্দে বিও সর্বপ্রথম লোহার ভিতর শব্দের বেগ নির্ণয় করেন। কতকগুলি ছোটো ছোটো ফাঁপা লোহার পাইপ জোড়া দিয়ে তিনি প্রায় 1000 মিটার দীর্ঘ নল তৈরি করেন। নলের একম্থে একটি শব্দ করে অপর মুখে কান রেখে তিনি দুবার শব্দ শ্নতে পেলেন। শব্দ লোহার ভিতর দিয়ে এবং ফাঁপা নলের ভিতরস্থ বায়ুমধা দিয়ে চালিত হয়ে অপর প্রান্তে পৌছে ঐরূপ দূবার শব্দ সৃষ্টি করে। বিও পরীক্ষা করে দেখলেন, লোহার ভিতর দিয়ে শব্দ চালিত হয়ে অপর প্রান্তে পৌচাতে যে সময় লাগল তা বায়ুমধ্য দিয়ে শব্দ আসার সময়ের প্রায় $\frac{1}{16}$ ভাগ: অর্থাৎ, লোহার ভিতর শব্দের বেগ বায়ুমধ্যে শব্দের বেগের প্রায় 16 গুণ।

1827 খ্রিস্টাব্দে Colladon ও Strum সর্বপ্রথম জলে শব্দের বেগ নির্ণয় করেন। ভারা জেনেভার হ্রদে প্রায় 14 km দরত্বে দুখানি জাহাজ থেকে এই পরীক্ষা করেন। একটি জাহাজ থেকে জলের মধ্যে একটি ঘন্টা নিমজ্জিত করা হল। ঘন্টা বাজাবার সঙ্গো সঙ্গো বায়ুতে বারুদের বিস্ফোরণ করে দিন্টীয় জাথাঞ্জে তাঁ তৎক্ষণাৎ জানাবার ব্যবস্থা করা হল। দ্বিতীয় জাহাজ থেকে একটি ear-trumpet (জলের মধ্যে শব্দ হলে এই যথ্রে তা ধরা পড়ে) জলের ভিতর ডুবিয়ে ঘন্টার শব্দ গ্রহণ করার ব্যবস্থা ছিল। দি হীয় জাহাঞের পর্যবেক্ষক বিজ্ঞোরণের সময় এবং জলের ভিতর দিয়ে বাহিত হয়ে শব্দ ear-trumpet -এ পৌচাবার সময় নোট করল। এই দুই সময়ের অন্তর্যুক্ত (difference) হবে জাহাজ দুটির ভিতরকার দুরত্ব জলের ভিতর দিয়ে অতিক্রম করতে শব্দের যে-সময় লাগল তার সমান। অভঃপর এই দুরঞ্কে সময় দিয়ে ভাগ করে জলে শন্দের বেগ নির্ণয় করা হল। এই পরীক্ষা দ্বারা তারা দেখলেন, ৪।°(তাপমাত্রায় জলে শন্দের বেগ প্রতি সেকেন্ডে প্রায় 1435 মিটার। এই গতিবেগ বায়ুমধ্যে শব্দের গতিবেগ অপেক্ষা চারগুণেরও বেশি।

 ● (ক) কঠিনের ভিতর শব্দের বেগঃ কোনো মাধানে শব্দের বেলের সাধারণ স্ক্রীকরণ $V=\sqrt{E/\rho}$, advise sector E se about advise the states of anterest and the sector Vक्रीन सम्पत्न बहुत्व व्हेन्स्स १ । १० क्रिन सम्पत्न प्रवास

жум мет. У = 2 1 × 10¹¹ Nm⁻³ сет р = 7800 kg m ³

- \therefore লৌহের ভিতর শব্দের গতিবেগ $V=\sqrt{\frac{2.1\times10^{11}}{7800}}=5189\,\mathrm{m/s}$. পূর্বেই উদ্রেখ করা হয়েছে যে এই গতিবেগ বায়ুমধ্যে শব্দের গতিবেগের প্রায় 16 গুণ।
- (খ) তরলের ভিতর শব্দের গতিবেগঃ তরলের বেলায় নিউট্রের সাধারণ সমীকরণে E-এর পরিবর্তে তরলের আয়তন বিকৃতি গুণাঙক k ব্যবহার করতে হবে। অতএব তরলের বেলায় শব্দের গতিবেগ

$$V = \sqrt{\frac{k}{\rho}}$$
; $\rho =$ তরলের ঘনত্ব।

জলের ক্ষেত্রে $k = 2.23 \times 10^3 \text{ Nm}^{-2}$ এবং $\rho = 10^3 \text{ kg m}^{-3}$

:. জলের ভিতর শব্দের গতিবেগ
$$V = \sqrt{\frac{2.23 \times 10^9}{1000}} = 1493 \text{ ms}^{-1}$$
.

জলের ভিতর শব্দের গতিবেগ বায়ুমধ্যে শব্দের গতিবেগের প্রায় চারগুণ।

● লক্ষ করার বিষয় যে জলের গভীরতা যত বৃশ্বি পায় জলের আয়তন বিকৃতি গুণাঙ্ক ও ঘনত্ব উভয়ই বৃশ্বি পায়। কিন্তু আয়তন বিকৃতি গুণাঙ্ক বৃশ্বি ঘনত্ব বৃশ্বির তুলনায় অনেক বেশি বলে জলের গভীরতা বৃশ্বির সংগ্রা শব্দের গতিবেগও বৃশ্বি পায়।

Examples D

① একটি জাহাজ থেকে আর একটি জাহাজে শব্দ সংকেত পাঠানো হল। শব্দ সংকেত সমুদ্রজলের ভিতর দিয়ে এবং বায়ুমধ্য দিয়ে—এই দুই পথ দিয়ে অগ্রসর হল। অপর জাহাজে 5 সেকেন্ড সময় ব্যবধানে সংকেত দুটি ধরা পড়ল। জাহাজ দুটির ভিতর দূরত্ব নির্ণয় করো। বায়ুমধ্যে ও সমুদ্রজলে শব্দের গতিবেগ যথাক্রমে 340 m/s এবং 1435 m/s. উঃ। ধর, জাহাজ দুটির ভিতরকার দূরত্ব = x metre. এখানে বায়ুমধ্যে π metre থেতে শব্দের ধদি

 t_1 সেকেভ সময় লাগে তাবে $t_1=rac{x}{340}$ সেকেভ। আবার সমুদ্রজলে a metre যেতে শব্দের যদি t_2

সেকেন্ড সময় লাগে, এবে
$$t_2 = \frac{r}{1435}$$
 সেকেন্ড।

িও প্রশ্নাথায়ী,
$$t_1$$
 $t_2 = 5$ সেকেন্ড : $\frac{x}{340} - \frac{x}{1435} = 5$ অথবা, $\frac{x(1435 - 340)}{340 \times 1435} = 5$

বা,
$$t = \frac{5 \times 340 \times 1435}{1095}$$
 m = 2227.8 m = **2.23 km** (প্রায়) |

কোনো ধাতৃর মধ্যে শব্দের বেগ V:l দৈর্ঘ্যের ঐ ধাতৃর একটি দন্তের একপ্রান্তে আঘাত করে শব্দ সৃক্তি করা হল। দন্তের অন্য প্রান্তে কান রেখে জনৈক শ্রোতা দৃটি শব্দের প্রতি পেল। এর কারণ কী ℓ বায়ুতে শব্দের গতিবেগ ν হলে, দুই শব্দের অন্তর্বতী সময় কত ℓ ধর, অন্তর্বতী সময় $\ell=1.4$ সেকেন্ড। $\ell=5130$ m/s এবং $\nu=330$ m/s হলে ℓ -এর আন নির্ণয় করো।

ি উঃ। লড়ের একপ্রান্তে আঘাত করলে, শব্দ ধাতব পদার্থের ভিতর দিয়ে এবং বায়্র ভিতর দিয়ে প্রকাশন করে। প্রতিবাদিয়ে এবং বায়্রে বান্ধের গতিবেগ ভিন্ন বলে দঙ্কের দৈর্য্যে আহিক্সা করতে শব্দ ধাতবপদার্থে এবং বায়ুতে ভিন্ন সময় নেবে। এই কারণে দঙ্কের অন্য প্রান্তে বান্ধি বান্ধি দুবার শব্দ শোলা মান্ধি।

খাত্র ভিতর লিয়ে মন্দ্র হিন ট্রেম্ম করতে t_1 সময় কেয়, তবে $t_2=\frac{1}{0}$ । কেতে 1/2 সময় কেয়, তবে $1/2=\frac{1}{0}$ । কেতে 1/2 সময় কেয় করতে 1/2 সময় কেয়, তবে $1/2=\frac{1}{0}$ । কেতে 1/2 সময় তবে 1/2 সময় কেয় করতে 1/2 সময় কর

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- হিলিয়াম এবং অক্সিজেন গ্যাসের ক্ষেত্রে Plp অনুপাত অপরিবর্তিত রাখলেও দেখা যায়
 বি তাদের ভিতর শব্দের বেগ সমান হয় না। কারণ কী ?
- া গাসে শব্দের বেগের যে–মান ল্যাপল্যাস্ নির্দেশ করেছেন তা নিমন্ত্র ৪ $V=\sqrt{\frac{\gamma\cdot P}{\rho}}$; $\gamma=$ ম্থির চাপে এবং ম্থির আয়তনে গ্যাসের আপেচ্চিক তাপের অনুপাত। এখন, গ্যাসের অণুতে পরমাণুর সংখ্যার উপর γ –এর মান নির্ভর করে। হিলিয়াম গ্যাসের অণুতে একটি মাএ পরমাণু আছে এবং হিলিয়ামের $\gamma_1=1.66$. আবার অক্সিজেন গ্যাসের অণুতে দুটি পরমাণু আছে এবং অক্সিজেনের $\gamma_2=1.41$. সূত্রাং P/ρ অনুপাত সমান হলেও অক্সিজেন ও হিলিয়াম গ্যাসে শব্দের গতিবেগের অনুপাত $=\sqrt{\frac{\gamma_2}{\gamma_1}}=\sqrt{\frac{1.44}{1.66}}=0.093$: অভএব, দুই গ্যাসে শব্দের গতিবেগে সমান হতে পারে না কারণ অনুপাত 1–এর সমান নয়।
- - বর্ষাকালে বায়ুর উশ্বতা সাধারণত শীতের দিনের উশ্বতা অপেক্ষা বেশি থাকে: আবার বর্যাকালে বৃষ্টি পড়ার জনা বায়ুতে জলীয় বাস্পের পরিমাণ্ড শীতের শৃদ্ধ দিন অপেক্ষা বেশি থাকে। এই দ্ই কারণে শীতের দিনে বায়ুতে শব্দের গতিবেগ বর্ষার দিনের গতিবেগ অপেক্ষা কঃ থাকে।
- 3. সুরশলাকার বাহু ধীরে ধীরে আন্দোলিত হলে কোনো তরগোর উদ্ভব হয় নাঃ বুড আন্দোলিত হলে তরগোর উদ্ভব হয়। এই পার্থক্যের কারণ কী ?

বাহুর ভিতর দিয়ে একটি সংনয়ন তরকা (compression wave) সূল যায় এবং প্রবল পাক সৃদ্ধি

রচনামুলক প্রশ্ন

- শাক্তরভাকে স্বিভিস্বাপক তরভা বলে মনে কববার কারণ কা? মাধামের ভিতর দিয়ে শব্দতবজা স্থালন পদাতি আলোচনা করো।
- 2. গাসি মাধামে শরের গতিবেল গাাসের চাপ ও তাপমান্তার দ্বারা কীরপে প্রভাবিত হয় গ
- 3. অন্নাদী বাহস্তে কাকে বলে ? তার সাহায়ো শব্দের গভিরেগ কীব্রে নিগম কর্বে প্রাধিক বুটি কাকে বলে > স্টা
- 4. খোলামুখ একটি জারের (100 cm দীর্ঘ) মুখে একটি কম্পামান সুরশ্বাকা (খরো, 256 কম্পাঞ্চম্ও) খনে ভাবে আন্তে আন্তে জল ঢালা হতে লাগল, কী ঘটতে বর্ণনা করো। এই বাবস্থার দ্বারা কি শঙ্গের বেগ নির্ণয় করা যায় १

সংকিশু উভরের প্রম

- 1. প্রমাণ চাপ ও তাপমাত্রায় কঠিন মাধান্ম শক্তের গতিবেগ সাধারণভাবে গাসে মাধানে গতিবেগ অপেকা বেলি কারণ [Jt. Entrance 1987, '91]
- 2. গ্যাস মাধ্যমে শব্দের গতিবেগ সংক্রান্ত নিউটনের সূত্র উল্লেখ করে। কী ছিসাবে এই সূত্র এটিপূর্ণ ? ল্যাপলাস্ ভার কি সংশোধন করেছিলেন ?
- 3. একটি ক্রীড়া প্রতিযোগিতায় 200 m দৌড়ের সময় রাখা হচ্ছে। দৌড় সূর্ করা হল আরম্ভের জায়গায় বন্দুক ছাড়ে এবং সময় নোট করা হল দৌড় শেষ হবার জায়গায় স্টপওয়াচ চালিয়ে। এভাবে সময় নোট করলে গ্রীছে ও শাতে কি সেট নির্ভূল হবে?

সিংকেতঃ গ্রীগ্রকালে সময় নোট করা মোটামটি নির্ভুল হবে। শব্দের গতিবেগ পরম তাপমাঞ্জার বর্গমূলের সমান্পর্গিতক হওয়ায় গ্রীষ্মকালে শব্দের বেগ বেশি হবে। ফলে, গ্রীষ্মকালে দৌড় আরম্ভ হবার স্থান থেকে শেষ হবার স্থানে আসতে শব্দের কম সময় লাগবে।

- 4. বায়ুমধ্যে কোন শক্তের তীব্রতা অপেকা কার্বন ডাই-অক্সাইডের ভিতর তীব্রতা বেলি হয় কেন ? সিংকেত: কোনো মাধামে শব্দের তীব্রতা মাধামের ঘনত্ব বাড়লে বেড়ে যায়।
- 5. বায়ুতে শব্দ উৎপন্ন করলে ঐ শব্দ জলের ভিতর ডুবে থাকা ব্যক্তি শুনতে পায় না কেন ?
- 6. हिट्छ मृहे वाल्डि कथा वलाल, जाता भत्रप्भात्तत कथा मृनाउ भाग्न ता किन ?

অতিসংক্ষিপ্ত উত্তরের প্রশ

- বজ্রবিদ্যুতের সময় বিদ্যুতের ঝলকানি দেখার বেশ কিছ্ক্ষণ পরে মেঘের শব্দ শোনা যায় বেনা ?
- 2. অনুনাদী বায়ুক্তম্ব দারা শব্দের গতিবেগ নির্ণয় পরীক্ষায় যদি নলের ভিতর জলের পরিবর্তে জল অপেক্ষা রেশি ঘনত্বের কোনো তরল রাখা যায়, তবে কম্পাঙ্কের কি পরিবর্তন হবে?
- 3. একটি দীর্ঘ ফাঁপা ।লের একপ্রান্তে হার্ডাড়র দ্বারা আঘাত করলে অপর প্রান্তে দুটি শব্দ শোনা যায়। সেটা কীবৃপে সম্ভব ?
- 4. দূর থেকে ট্রেনের শব্দ সাধারণভাবে শোনা না গেলেও রেল লাইনে কান পাতলে শোনা যায়। এরূপ হবার কারণ কী ?
- [Jt. Entrance 1994] 5. একই উন্মতায় শৃষ্ক বায়ুর তুলনায় আর্দ্র বায়ুতে শব্দের বেগ অধিক হয় কেন?
- 6. কোনো অস্থলে দিনে ও রাত্রে শব্দের বেগ সমান থাকে না কেন?
- 7. নিম্নলিখিত উদ্ভিগুলি কারণসহ ব্যাখ্যা করো: যত বেশি উচ্চতা আরোহণ করা যায় শব্দের বেগ তত হ্বাস পায়। (ii) একটি গভীর জ্লাশয়ের উপরতলে শব্দের বেগ জলাশয়ের তলায় বেগের অনেক কম। (iii) চন্দ্রপৃষ্ঠে মহাকাশযাগ্রীদের নিজেদের মধ্যে বেতারের সাহায়ে কেন [Jt. Entrance 1998]
- 8. 1°C উদ্বতা বৃন্ধিতে শব্দের বেগ কতটা বৃন্ধি পায় ?

কথা বলতে হয়:

	। अर्थिन्यस		[Manribas	(MOICE	1 Abe	(MIC	ניץ
	উভরটি 🗸 চি		क्दबा :				
		_	-			-	

- [1] শব্দের বেগা সম্পর্কিত নিউটনের সূত্রের লগপনাস শুন্ধির প্রয়োজন ছিল কারণ শক তর্ঞা iB।সমান্থ অসকার্য বিশ্বাব লাভ কার (A) অনুদৈর্ঘ্য
 - (C) রুশ্বতাপ অবস্থার বিস্তার লাভ করে (D) দৈর্ঘ মানুক বড়
- [ii] 5'প এপার্বাইত রামে উশ্বর্তা 2k বাঙালো হল তাতে শ্রেক বেরোর কে পরিবাইন হাবে প
 - (A) কোন পরিবর্তন হবে না
- (B) 2x0.61 m/s 夏戸 পাবে
- (C) 2x0.61 m/s বৃশ্বি পাবে
- (D) আরও কিছু তথ্য প্রয়োজন।

[iii] $\sqrt{\frac{\gamma P}{\rho}}$ এই ফর্মুলার মান্তা হবে

(A) চাপের মাত্রার সমান

- (B) গতিবেগের মান্তার সমান
- (C) ত্বরণের মাত্রার সমান
- (D) খনছের মাত্রার সমান।
- [iv] সিত্ত বায়ুতে শব্দ প্রুত চলে কার্রশ
 - (A) শৃষ্ক বায়ু অপেকা সিত্ত বায়ু অপেকাকৃত ভারী,
 - (B) শুভ্রু বায়ু অপেক্ষা সিক্ত বায়ুর γ-র মান বেশি,
 - (C) শুষ্ক বায়ুর চাপ অপেক্ষা সিক্ত বায়ুর চাপ বেশি,
 - (D) শৃষ্ক বায়ুর ঘনছের তুলনায় সিন্ত বায়ুর ঘনত কম।
- [v] বায়তে জলীয় বাঞ্পের আধিকা হলে ঐ বায়ুতে শব্দের বেগ
 - (A) कहा यात्र (B) (वर्ष् यात्र (C) এकरे थार्क (D) कानगेरि नग्न

- [vi] তাপমাত্রা অপরিবর্তিত রেখে গ্যামের চাপ দ্বিগুণ করলে ঐ গ্যামে শব্দের গতিবেগ
 - (A) দ্বিগুণ বেড়ে যায় (B) দ্বিগুণ কমে যায়

(C) একই থাকে

- (D) শূন্য হয়।
- [vii] নির্মালখিত উত্তিগুলির মধ্যে কোনটি ঠিক নর :

 - (A) শব্দ তরজা শক্তি পরিবহন করে (B) শব্দতরজ্ঞা সরল রেখা বরাবর চলাচল করে
 - (C) শব্দ তরজা বৃন্ধতাপ প্রক্রিয়া অগ্রসর হয় (D) বায়ু অপেক্ষা শূন্য মাধ্যমে শব্দ তরজা দুত চলাচল করে।
- [viii] 273K তাপমাত্রায় শব্দের যে বেগ কোন্ তাপমাত্রায় বেগ তার দ্বিগুণ হবে ?
- (A) 2×273 K (B) 4×273 K (C) 8×273 K . (D) 16×273 K.
- [ix] নিম্নলিখিত উক্তিগুলির মধ্যে সঠিক উক্তিটি নির্ধারণ করো :
 - (A) তরজা যদি অনুদৈর্ঘ্য হয় তবে তা অবশাই যায়িক তরজা,
 - (B) এরকা যদি যান্ত্রিক হয় তবে তা তির্যক হতে পারে, আবার নাও হতে পারে,
 - (C) শূন্য দেশে কোনো যান্ত্রিক তরজোর অবস্থিতি সম্ভব নয়,
 - (1)) জনানা তরজা থেকে যান্ত্রিক তরজা আলাদাভাবে বেছে নেবার উপায় হল তর্পোর অপবর্তন;
- [x] ভালের আয়াতন বিকার গুণাঞ্চ 2.0x10¹⁰ dyne/cm² হলে জলে শক্তের গভিবেগ হবে
 - (A) $\sqrt{2} \times 10^3$ m/s (B) $\sqrt{2}$ m/s (C) $14\sqrt{2}$ m/s (D) $\sqrt{2} \times 332$ m/s.

- [xi] সাধারণ অবস্থায় বায়্তে শব্দের বেগ প্রায় 330 m/s হলে ঐ অবস্থায় হাইড়োকেন গ্যাসে বেগ হবে প্রায়
 - (A) 330 m/s (B) 1200 m/s
- (C) 600 m/s
- (D) 900 m/s.
- [xti] বিদ্যংখালক দেখার 5.5 সেকেন্ড পর বাজ্রের শব্দ শোলা গেল। শব্দের বেগ = 130 m/\ হলে বিদ্যং মালকেব দুরত্ব
 - (A) 1.815 km (B) 18.15 km (C) 0.1815 km (D) 181.5 km.

- [xiii] উন্মতা 10 C থেকে 20 C-এ কৃষ্ণি পেলে বায়ুতে শকের বেগের শতকবা পরিবর্তন হয় প্রায়

- (B) 1.75% (C) 1.5% (D) 2.1%.
- [viv] বায়তে শক্তের বেগ সংক্রান্ত নিউটন সূত্রের ল্যাপলাস শৃশ্বির কারণ শব্দ তর্জা

- (A) তির্থক ভরজা (B) সরল দোলতরজা (C) তড়িং চুদকায় এবজা (D) বায়ু মাধ্যমের বুম্বতাল প্রক্রিয়ায় সঞ্চলন
- [xv] বায়ুর আর্ম্রতা হ্রাস পেলে বায়ুতে শব্দের বেগ
 - ে বিশ্বদ পায় । B। ইস পায়
- া(া কেই গ্ৰহ্
- ([) शिविक) नगर तका शाहा भा

(A) বাবে উস্কৃত্য (B) বাষ্ট্র আর্থতা ।() বাহব মনত্র ।(D) বাষ্ট্র সাপ
[AAII] (Speller alide 1.11 (Steat, Ed. steat, See 1772 or 174 supplier of 1 74 supplier K :
8.31×10 ⁷ erg/mole°C करन वे गाएनस ५-६व घान
(A) 1.2 (B) 1.63 (C) 1.4 (D) 1.1.
[XVIII] अराज कामान हेम्लाएटन आयक्त दिक्छ पुनाकत ७ शमद यथानुस्य XII अगर तुन वर्ग हैम्लाए ७ कर्ल नासन
বেগের অনুপাত হয়
(A) 1: $\sqrt{5}$ (B) 1: $\sqrt{10}$ (C) $\sqrt{5}$: 1 (D) $\sqrt{10}$: 1.
(viv) চাপ । বায়্মন্ডল এবং তাপমাত্রা ।°C বৃদ্ধি পোল বায়ুতে শক্ষের গতিবেগ
(A) 0.61 m/s বৃদ্ধি পায় (B) 0.61 m/s ব্লাস পায় (C) 61 m/s বৃদ্ধি পায় (D) 61 cm/s ব্লাস পায়
[xx] 512 কম্পাড়েকর একটি সুরশলাকাকে বন্ধ নলের মুখে ধরে দেখা গেল য় বায়ুক্তপ্তের নানতম শৈষী 17 cm মর্লে
তানুনাধ সৃদ্ধি হর। বারুতে শক্তের গতিবেশ
(A) 343.16 m/s (B) 350 m/s (C) 348 m/s (D) 360 m/s.
[vvi] যদি গ্যাসের ঘনত্ব ρ হয় ভাহতে নিউটনের সূত্র অনুযায়ী গ্যাসটিতে শব্দের বেগ ιV) হল
(A) $V \propto \frac{1}{\rho}$ (B) $V \propto \frac{1}{\sqrt{\rho}}$ (C) $V \approx \frac{1}{\rho^2}$ (D) $V \approx \rho$. [Jt. Entrance 2006]
[xxii] গ্যাস মাধ্যমে শব্দের বেগ সংক্রান্ত লাপলামের সমীকরণটি হল
(A) $V = \sqrt{\frac{P}{\rho}}$ (B) $V = \sqrt{\frac{\gamma P}{\rho}}$ (C) $V = \sqrt{\frac{P}{\gamma, \rho}}$ (D) $V = \sqrt{\frac{\gamma \rho}{P}}$
[Jt. Entrance 2006]
C. C. C. T. Falso tanal ⁹
(৪) ভূল কি নির্ভূল বিচার করো (True or false type) ই
্যা গানে বায়ুর গতিবেগ গানের ঘনতের বর্গমূলের বাস্তানুপাতিক।
[ii] দিনে ও রাত্রিতে শব্দের গতিবেগ এক থাকে না। (iii) বর্ধাকালে এবং শীতকালে একই তাপমাত্রায় শব্দের গতিবেগ সমান থাকে।
াাা ব্যক্তিৰ ব্ৰং শতিকাৰে অক্ তান্ধ্ৰায় স্থায়
[iv] বজ্ৰধ্বনি বজ্ৰপাতের সজো সজো শোনা বায়। ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
[v] N.T.Pতে শক্ষের বেগ সাধারণত গাসে নাবান এটা বা স্থান করিব গতিবেগ 330 ms । হলে উৎস থেকে প্রতিফলকের [vi] একটি প্রতিধ্বনি 5টি পদাংশ পুনরাবৃত্তি করল। বায়ুতে শব্দের গতিবেগ 330 ms । হলে উৎস থেকে প্রতিফলকের
[vi] একটি প্রতিকান ১টি পদানে বুলনাগত করনে বুলনাগত করে
(C) শূন্যস্থান পূরণ করো (Fill up the gaps) ঃ
(i) গ্যাসে বায়ুর গতিবেগ ঐ গ্যাসের ঘনত্বের ব্যস্তানুপাতিক। [ii] বর্ষাকালে এবং শীতকালে একই তাপমাত্রায় শব্দের সমান থাকে না।
[ii] বর্ষাকালে এবং শতিকালে একং তাসমাত্রার শংস্ক্র বেল ক্রত
[iii] যত বেশি উচ্চতা আরোহন করা যায় শব্দের বেগ ক্তত পায়। [iv] একই গভীর জলাশয়ের উপরতলে শব্দের বেগ জলাশয়ের তলায় বেগের অনেক।
[iv] একই গভার জলাশয়ের ওপরতলে নিশের বেশ কর্মায় সংঘটিত হয়। [v] শব্দতরক্ষার বিস্তৃতি মাধ্যমের অবস্থায় সংঘটিত হয়।
[v] শাসভাবজোর বিস্তৃতি মাধ্যমের! [vi] ল্যাপলাসের শৃন্ধি অনুযায়ী বায়ুমাধামে শব্দে বেগ V =!
[vi] नामिनारमत मुन्धि अनुयास पासूनायाच्या १८० ६६१ १ -
সরল গাণিতিক প্রশ্ন
সরল গাণাতক প্রশ্ন। 1. একটি নির্দিশ্ট সময়ে কেলা থেকে তোপধ্বনি করা হয়। দূর থেকে কোনো ব্যক্তি ঐ শব্দ শুনে নিজের ঘড়ি ঠিক করে 1. একটি নির্দিশ্ট সময়ে কেলা থেকে তোপধ্বনি করা হয়। দূর থেকে কোনো ব্যক্তি ঐ শব্দ শুনে নিজের ঘড়ি ঠিক করে
নিল। কিন্তু পরে দেখল তার ঘড়ি আই মানিচ প্রো গেরেছে। বেন্দ্র বনু
া (x) ফুট/সেকেন্ড ধরে নিলে কেলা থেকে ঐ ব্যক্তির দূরত্ব (মাইলে) হিসাব করতে পার কী? [Ans. $6\frac{1}{4}$]
2. বন্ধ্রের ঝলক দেখার 5.5 সেকেন্ড পরে বন্ধনাদ শোনা গেল। তখনকার তাপমাত্রা 20°C হলে মেঘের দূরত্ব নির্ণয় (Ans. 1.881 km)
করো। দেশে তাপমাত্রয় শক্তের বেগ 330 m/s

(২৬) বাহতে শক্তের রেগ নিয়লিখিত কোন বাশির পারবর্তনের উপর নার্ভর করে না ৮

27°C উশ্বতায় এক নির্দিষ্ট সময়ে দুর্গ থেকে তোপধ্বনি শুনে এক বান্তি তার ঘড়ি ঠিক করে দেখল যে ঘড়িটি 10
সেকেন্ড লো বাজে: শব্দের গতিবেগ 0°C উশ্বতায় ২২০ metre/s হলে দুর্গা থেকে ব্যত্তির দূরত্ব নির্দিয় করে।

[Ans. 3463.2 metres]

[Jt. Entrance 1989] [Ans. 1.75%]

- 4. (a) উদ্বভা 10°C থেকে বৃশ্বি পেয়ে 20°C হলে শব্দের বেগের শতকরা পরিবর্তন কড হরে নির্ণয় করো।
 - (b) প্রমাণ অবস্থায় অক্সিক্তেনে শব্দের বেগ 317 m/s হলে 30°C উন্মতায় ও 374 mm চাপে হাইড্রোজেনে তার বেগ কতঃ
- কোন্ তাপমাত্রায় বায়ুতে শব্দের বেগ 10°C উশ্বতায় বেগের 15 গুল হবে? [Ans. 363 75°C]
 সেবকভ য় V ∞ √ 7 প্রয়োগ করো।]
- কোনো এক শীতের দিনে শব্দ সেকেন্ডে 336 মিটার দূরত্ব যায়। বায়ুমন্ডলের উল্পতা নির্ণয় করো। 0°C উল্পতায়
 শব্দের বেগ = 332 m/s.
- কোন দিনের তাপমাত্রা যখন 29°C তখন 1750 metre দূরের কোনো বন্দুকের ঝলক দেখার 4 সেকেন্ড পরের শব্দ শোনা গেল। 0°C-এ শব্দের গতিবেগ এবং বায়ৣর ঘনত্ব নির্ণয় করে।। ঐ সময় বায়ৣয়ড়লীয় চাপ = 76 cm পারদ এবং দৃই আপেক্ষিক তাপের অনুপাত = 1.41.] [Ans. 415.4 metre/s; 0.746 ×10 ³ g/cm³]
- 8. এক লিটার হাইড়োজেন ও এক লিটার বায়ুর ভর একই উল্পতা ও চাপে যথাক্রমে 0.0896 g এবং 1.293 g. বায়ুতে শব্দের বেগ ঐ উল্পতায় 330 m/s হলে হাইড়োজেন গ্যাসে ঐ গতিবেগ কত হবে? [Ans. 1253.6 m/s]
- একটি পাথরখন্ড একটি ব্যক্তের শীর্ষ থেকে ফেলা হল এবং মাটিতে আঘাত করার শব্দ 4.4 s পরে শোনা গেল।
 ব্রস্তুটির উচ্চতা নির্ণয় করো। বাতাসে শব্দের বেগ = 1000 ft/s এবং g = 32 ft/s². [Ans. 272.25 ft]
- 10. 44.1 মিটার গভীর একটি কুণ্ডের মধ্যে একটি ঢিল ছেড়ে দেওয়া হল। কত সময় পরে ঢিলটি জলে পড়ার শব্দ শোনা যাবে? বায়ুতে শব্দের বেগ = 340 m/s. [Ans. 3.13 s (প্রায়)]
- 11. 27°C তাপমাত্রায় শুষ্ক বায়ুতে শক্তের বেগ 348 metre/s এবং 27°C-এ সংপৃত্ত জলীয় বাম্পের চাপ = 11.2 mm পারদন্তন্তের সমান। 27°C তাপমাত্রায় জলীয় বাম্প দ্বারা সংপৃত্ত বায়ুতে শব্দের বেগ কত ?[Ans. 348.97 metre/s]

[সংকেত ঃ $V_m = V_d \left(1 + 0.189 \frac{f}{P}\right)$ সমীকরণ প্রয়োগ করো।]

- 12. জলে নিমজ্জিত 10 cm ব্যাসের একটি কাচনলের মুখে 512 কম্পাঙকের একটি সুরশলাকা ধরা হল। জল থেকে কাচনলকে কতথানি তুললে সুরশলাকার সাথে অনুনাদ হবে? শব্দের গতিবেগ = 330 metre/s. [Ans. 16.11 cm]
- 13. 50 cm দীর্ঘ ও উভয় মুখ খোলা বায়ুনল একটি সুরশলাকার সাথে অনুনাদী কম্পন করছে। বায়ুতে শব্দের বেগ 350 metre/s হলে সুরশলাকার কম্পাক্ত কভ ?
- 15. 256 কম্পাঙেকর একটি সুরশলাকাকে কথা নলের খোলামুখে ধরে 31 cm এবং 97 cm দৈর্ঘ্য বায়ুস্তন্তে সর্বাপেক্ষা জোর শব্দ শোনা গোল। প্রান্তিক ব্রুটি ও বায়ুতে শব্দের গতিবেগ নির্পয় করো। [Ans. 2 cm : 337.92 metre/s]

কঠিন গাণিতিক প্রক্র

- কোন গাাসের γ = 1.41 হলে, প্রমাণ করো যে, ঐ গ্যাসে শব্দের গতিবেগ 0.68 C যেখানে C হচ্ছে গ্যাস অণুর আর. এম্. এম্. গতিবেগ।
- 2. 512 H7 কম্পাঙ্কের একটি সুরশলাকা 17°C ভাপমাত্রায় বায়ৣতে য়ে-শাসতরজা উৎপল্ল করে, তার দৈর্ঘ্য 66.5 cm . প্রমাণ চাপ ও ভাপমাত্রায় বায়ৣর ঘনত্ব 1.293 x 10 ¹ g/cm¹ হলে, বায়ৣর মোলার আপেক্ষিক ভাপায়য়ের অনুপাত নির্পয় করো। পারদের ঘনত্ব = 13.6 g/cm³ এবং g = 980 cm/s². [Ans. 1 48]
- এক ব্যক্তি সোজা উন্তরমুখী তাকিয়ে একটি বন্দুকের ঝলক দেখবার ४ ৎ পরে শব্দ শুনতে পেল। বায়ুর তাপমাত্রা
 20°C এবং বায়ৢ 48 km/h গতিবেগে পূর্ব থেকে পশ্চিমে প্রবাহিত হলে, বাজি থেকে বন্দুকের দূরত্ব নির্মারণ করো।
 0°C উন্ধতায় বায়ৢতে শব্দের গতিবেগ = 330 metre/s

 [Ans. 1368 8 metre]
- 4. একটি রেলপথের উপর বোমা বিজ্ঞোরণ করে তীব্র শব্দ সৃষ্টি করা হল। 1 km দূরে এক ব্যক্তি লোটনের উপর কান রেখে দৃটি শব্দ শূনতে পেল। শব্দ দৃটির ভিতর সময় বাবধান কতে ছিল? ইম্পাতের Y = 2×10¹² dyne/cm².

p = 7.8 g/cm', 可提出 \$P\$ = 0.0013 g cm' ; - 1.4 Let 可以中 : 11' dsne cm'

[Am. 2.85 (7646)

5. একটি পাতকুয়ের মধ্যে পাথব কুলা হল পাছবটি ভলানাল কৰবাৰ লক। সময় পাব লামা বাল পাতকুয়াব अनिवंश व निवंश करवा ते व्यापा केवर अपर १ १० श्राम त वर याच करण १ - १ सा वार

[Ans.
$$ut^2/2\left(\frac{v}{s}+t\right)$$
; 40.5 metre]

- একটি টাপে থেকে সমহাত্রে জল নামল একটি লম্ব চাপাকার পার এই কল বাছে এক বাছি পানে য় ।(৪), সময় অন্তর ২০০০ কম্পাত্তেকর একটি সুরশ্বনাথার সামে অনুনাদ থাকে প্রতি সামেরে কর ১৪ cm অন্তর্ভাবে কল সরবরাত করা হক্তে, ডা ছিসাব করো। চ্রান্ডের বাসার্হ - Itiem এবং লাকের পাঁডাকো = ২৭) metres (Ans. 172 ° cm %)
- 7. 27°C উল্পুতা এবং 76 cm পারদ্যাপে আগন ও কার্থন ডাইঅক্সেইড গাস্মে শক্ষের পাত্রের্গের ভুগানা করে। আগন

ও কার্বন ডাইঅক্সাইডের আগবিক ভার যথারতে ২০ এবং ১৫, আর্থনের γ 🐧 এবং কার্বন ডাইঅক্সাইডের

$$\gamma = \frac{4}{3}$$

(A) (i) C (ii) C (iii) B (iv) D	(v) B (vi) C (vii) D (viii) B	(lx) D (x) A (xi) B (xii) A	(xill) B (xiv) D (xv) D (xvi) D	(xvii) B (xviii) D (xix) A (xx) A	(izz) (izzi)
		ii) \$77. [iv] \$77. [v]	कुक्टाल. [vi] √ ह	p S	

তর্গের উপরিপাত

[SUPERPOSITION OF WAVES]

3.1. উপরিপাতের নীভি (Principle of superposition) :

তরঙ্গের উপরিপাতের নীতি সর্বপ্রথম উপস্থাপিত করেন টমাস ইয়ং 1801 খ্রিস্টাব্দে। এই নীতি অনুযায়ী কোনো মাধ্যমের ভিতর দিয়ে যুগপৎ একাধিক তরঞ্জা চলে গেলে, মাধ্যমের যে-কোনো বিন্দুর লব্ধ সরগ প্রত্যেকটি তরজ্ঞা পৃথকভাবে ঐ বিন্দুতে যে সরণ সৃষ্টি করে তাদের ভেক্টর সমষ্টির সমান হবে। মনে করো, একটি তরজ্ঞার জন্য মাধ্যমের কোনো বিন্দুতে এক সময় সরণ হল y_1 : দ্বিতীয় একটি তরজোর জন্য, ধরো, ঐ বিন্দুতে সরণ y_2 : তাহলে ঐ দুটি তরজ্ঞা যুগপৎ চলে গেলে, ঐ বিন্দুর লব্ধ সরণ (y) হবে $y=y_1\pm y_2$; যদি সরণ দুটি একই অভিমুখে এবং একই লাইন বরাবর হয় তবে পজিটিভ অথবা ধনাত্মক চিহ্ন নিতে হবে: আর সরণ দুটি বিপরীতমুখী কিন্তু একই লাইন বরাবর হলে নেগেটিভ অথবা ক্ষণাত্মক চিহ্ন নিতে হবে।

শব্দ, আলো, এক্স-রশ্মি প্রভৃতি তরজোর বেলায় সাধারণভাবে এই নীতি প্রয়োজা। উপরিপন্ন তরজাগুলির গতির অভিমুখ, কম্পাঙ্কের পার্থকা বা বিস্তারের পার্থকা এই নীতির প্রয়োগে কোনো বাধা জন্মায় নাঃ তবে তরজাগুলির কম্পাঙ্ক ও বিস্তার সমান বা প্রায় সমান হলে নির্মালখিত দুটি গুরুত্বপূর্ণ ঘটনার উৎপত্তি হয়। যেমন,

- (ক) স্থাণুতরঙ্গা (Stationary or Standing waves) : সর্ববিষয়ে একরকম দৃটি সরল দোলতরঙ্গা বিপরীত দিক থেকে অগ্রসর হয়ে একে আর একের উপর আপতিত হলে স্থাণ্ডরজোর উদ্ভব হয়।
- (খ) সরকম্প (Beats): একই বিস্তারের কিন্তু সামান্য পৃথক কম্পান্ডেকর দৃটি সরল দোলতরজা একই দিকে অগ্রসর হয়ে পরস্পারের উপর আপতিত হলে স্বরকম্পের উদ্ভব হয়।

এই পরিচ্ছেদে আমরা তরজোর—বিশেষত শব্দওরজোর ক্ষেত্রে উপরিউত্ত ঘটনাগুলির বিশাদ আলোচনা করব।

3.2. পাণ্তরণা (Stationary or standing waves):

পূর্বে উল্লেখ করা হয়েছে, ভির্যক ভরজা বা অনুদৈর্ঘা তরজাকে চলভরশা (progressive waves) বলা হয়, কারণ, এই ভরজা মাধ্যমের একম্পান থেকে অন্যাপানে চলচিল করে।

সংজ্ঞা । একই বিশ্বার ও কম্পাতেকর দৃটি চলতরজা বিপর্নীত দিক থেকে সমাবৃদ্ধে অহাসর হয়ে। একটি আর একটির উপর আপতিত হালে যে তর্গোত সন্দি হয় তাকে স্মাবৃদ্ধে অহাসর হয়ে।

এপথলে যে কোনো মৃত্যু আধানের কলাগুলির পেশন উত্ত তরজা দুটির উপর চিউর করে। দেখা যায়। মাধানের কলাগুলি উত্ত তরজা দুটির প্রভাবে যে কোনো মৃথ্যু এক বিশোস তরজাক্তিত সাংক্তত হয়। ওই তরজাব বিশোস এই যা সময়ের পরিবর্তনে আধানের ভিতর দিয়ে এই তরজা অধানর হয় না, আধানের ওই আশোস পর্যাক্তিক উপাধানের ভিতর কলাক্তি কামিরনের উৎপক্ষ ও বিল্পে হয়। এই তরজোর কোনো চলন নেই বলে একে বলা হয় পালুতরজা। তা ছাডা লক্ষ করলে দেখা যাবে, আধানের কোনো কোনো বিশেষ বিশ্বুর অনাকার কালোকার

কোনো স্পন্দন নেই আবার কোনো কোনো বিশেষ বিন্দৃত অবস্থিত কণাগুলির স্পন্দন স্বাধিক।

প্রদর্শনের পরীকা :

স্থাণুতরভোর উৎপত্তি প্রদর্শনের জন্য নিম্নলিখিত সহজ পরীক্ষা করা যেতে পারে। একটি তার নিয়ে একপ্রান্ত দৃঢ়ভাবে আটকে অন্যপ্রান্তে আড়াআড়িভাবে বা উপর-নীচ ঝাঁকুনি দিলে তির্যক তরজা তার বেয়ে অগ্রসর হবে এবং বন্ধপ্রান্ত কর্তৃক প্রতিফলিত হয়ে পুনরায় ফিরে আসবে। এই প্রতিফলিত তরজা যখন নতুন অগ্রগামী তরজোর উপর পড়বে তখন তারে স্থাণ্তরজোর উৎপত্তি হবে কিন্তু এই তরজা তার বেয়ে অগ্রসর হবে না; তারের ঐ অংশেই পর্যায়ক্রমে উৎপন্ন হবে এবং বিলুপ্ত হবে। আরও লক্ষ্ক করলে দেখা যাবে

তারের কোনো কোনো অংশ মোটেই স্পন্তিত হচ্ছে না এবং কোনো কোনো অংশের স্পন্তন সর্বাধিক।
3.1 নং চিত্রে ঐরূপ টানা দেওয়া তারে স্থাণুতরজার উৎপত্তি দেখানো হয়েছে। ঐ স্থাণুতরজার N₁, N₂ প্রভৃতি বিন্দুর কোনো

ম্পদন নেই এবং A_1, A_2 প্রভৃতি বিন্দুর ম্পন্দন সর্বাধিক। তা ছাড়া তারের $N_1 N_2$ অংশ অথবা $N_2 N_3$ প্রভৃতি অংশগুলি একযোগে তরজোর আকারে ওঠানামা করে এবং ঐ তরজা একম্থান থেকে অনাস্থানে সন্ধালিত হয় না; তারের ঐ অংশেই পর্যায়ক্রমে তাদের উদ্ভব ও বিলয় হয়। এই কারণে এই তরজাকে স্থাণুতর্কা (stationary waves) বা দ্ভায়মান তরকা (standing waves) বলা হয়।

 N_1, N_2 প্রভৃতি বিন্দুগুলি —যাদের কোনো স্পন্দন নেই —তাদের বলা হয় নিস্পন্দ বিন্দু (nodes) এবং A_1, A_2 প্রভৃতি সর্বাধিক স্পন্দনের বিন্দুগুলিকে বলা হয় সুস্পন্দ বিন্দু (antinodes)।

দুটি পরপর নিম্পন্দ বিন্দু বা সুম্পন্দ বিন্দুর মধ্যবতী দূরত্ব স্থাণুতরজা দৈর্ঘ্যের অর্ধেকের সমান। স্থাণুতরজোর দৈর্ঘ্য λ হলে N_1 N_2 = A_1 A_2 = $\lambda/2$ (3.1 নং চিত্র)। সুতরাং, N_1 N_3 = A_1 A_3 = λ . অথবা, N_1 A_1 = $\lambda/4$.

) অনুদৈর্ঘ্য তরশোর উপরিপাতে স্থাণুতরশাঃ

পূর্বোত্ত তারের পরীক্ষায় তির্যক তরজোর সাহায্যে স্থাণুতরজোর উৎপত্তি দেখানো হয়েছে। একটি নমনীয় স্প্রিং নিয়ে অন্দৈর্ঘ্য তরজোর সাহায্যে স্থাণুতরজোর উৎপত্তি দেখানো যেতে পারে। স্প্রিং-এর দৈর্ঘ্য বরাবর অগ্র-পশ্চাৎ নাড়ালে, অথবা স্প্রিংয়ের এক প্রান্ত সুরশলাকার একটি বাহুর সাথে যুক্ত করে সুরশলাকাকে কম্পিত করলে, স্প্রিং বরাবর একটি অনুদৈর্ঘ্য তরজা (ঘনীতবন ও তনুতবনের সমষ্টি)

আগ্রসর হবে এবং বন্ধপ্রান্তে প্রতিফলিত হয়ে প্নরায় ফিরে আসরে। আপতিত ও প্রতিফলিত তরজা পরস্পারের উপর আপতিত হয়ে নিস্পন্দ বিন্দু (N₁, N₂ ইতাদি) এবং সুস্পন্দ বিন্দু (A₁, A₂ ইতাদি) সৃষ্টি করবে [চিত্র 3.2]। নিস্পন্দ বিন্দুগুলিতে স্প্রিং-এর কণার কোনো স্পন্দন নেই এবং সুস্পন্দ বিন্দুতে

কণার অগ্র-পশ্চাৎ সর্বাধিক সরণ হয়। এটা চিত্র 3.2-তে দেখানো হয়েছে।

এক্ষেত্রেও দুটি পরপর নিম্পন্দ বিন্দু বা দুটি পর পর সুম্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব স্থাপুতরজ্ঞা দৈর্ঘ্যের আর্ধেকের সমান। স্থাপুতরজ্ঞার দৈর্ঘ্য λ হলে, $N_1\,N_2=A_1\,A_2=\lambda/2$: সুতরাং, $N_1\,N_3=A_1A_3=\lambda$. অথবা, $A_1\,N_1=\lambda/4$.

উল্লেখযোগ্য যে প্রায় সকল তারের বাদ্যযন্ত্রে (সেতার, এস্রাজ প্রভৃতি) দুই তির্যক তরজাের উপরিপাতে স্থাণুতরজাের উৎপত্তি হয় এবং বায়ুচালিত বাদ্যযন্ত্রে (বাশি, অর্গান ইত্যাদি) দুই অনুদৈর্ঘ্য তরজাের উপরিপাতে স্থাণুতরজাের উৎপত্তি হয়।

লেখচিত্রের সাহায্যে স্থাণুতর্গের উৎপত্তি ব্যাখ্যা (Explanation of the formation of stationary waves by graphical method):

বিপরীত দিক থেকে আগত একই বিস্তার, পর্যায়কাল এবং গতিবেগযুক্ত দুটি চলতরজ্ঞাকে 3.3 (a) নং চিত্রে টানা লাইন এবং কাটা লাইন দ্বারা দেখানো হয়েছে। যখন তরজ্ঞা দুটি ঠিক বিপরীত দশায় পরস্পরের সাথে মিলিত হল [চিত্র 3.3 (a)] ধরো, তখন থেকে সময় গণনা শুরু করা হল।

অতএব, যখন i=0, তখন তরজা দুটি ঠিক বিপরীত দশায় পরম্পরের উপর আপতিত হওয়ায় একটির তরজাশীর্য অপরটির তরজাপাদের সাথে মিলরে এবং সেখানে লব্দ সরণ শুনা হবে। এভাবে সর্বত্ত দুটি তরজোর জন্য সরণ বিপরীত এবং সমান হওয়ায় সর্বত্ত লব্দ সরণ হবে শুনা। লব্দ লেখ, এক্ষেত্তে একটি সরলরেখা হবে। 3.3 (a) নং চিত্রে টানা সরলরেখা দ্বারা লব্দ লেখ দেখানো হয়েছে। সময়ের সজো সজো

তরজাদয় নিজস্ব অভিমুখে এগিয়ে যাবে। পর্যায়কালের এক-৮৬খাংল আত্রাহিত হলে তারা তরজাদৈয়ের এক-চতুর্যাংশ দূরত্ব অতিক্রম করবে। এর এর্থ এই যে একটি তর্গোর তরজাশীর্ব যে-স্থান আধকার করেছে অপর তরজোর তরজাশীর্ষও সেই প্রান অধিকার করবে। অনুরুপভাবে, উভয় ভরজোর ভরজাপাদর্গলও মিলে যাবে। A চিহ্নিত বিন্দুগুলিতে সরণের পরিমাণ সর্বাধিক এবং মাধ্যমের ঐ স্থানের কণাগুলি বিস্তারের সর্বশেষ প্রান্তে অবস্থান করে। আবার, N চিহ্নিত বিন্দুগুলিতে মাধ্যমের কণার কোনো সরণ নেই—তারা স্থির [চিত্র 3.3 (b)]। এই অবস্থায় লব্ধ তরজোর আকৃতি মোটা রেখা দ্বারা দেখানো হয়েছে।

পর্যায়কালের অর্ধেক অতিবাহিত হলে, তরজাদ্বয় বিপরীত দিকে তরজাদৈর্ঘোর অর্ধেক দূরত্ব অগ্রসর হবে এবং একটি তরজোর তরজাশীর্ষ অপরটির তরজাপাদের সাথে মিলিত হবে . এই অবস্থায় মাধামের সকল কণাগুলিই মধ্য অবস্থান অতিক্রম করার উদ্যোগ করে এবং মৃহূর্তের জনা গতিহীন হয়। ফলে, লব্দ লেখ পুনরায় একটি সরলরেখা হয় [চিত্র 3.3 (c)] 1

পর্যায়কালের আরও এক-চতুর্থাংশ অভিবাহিত হলে [অর্থাৎ, যখন 1 = 37/4] তরজাশ্বয় বিপরীত দিকে আরও তরজাদৈর্ঘ্যের এক-চতুর্থাংশ অগ্রসর হবে এবং 3.3(b) নং চিত্রে যে-অকথা দেখানো হয়েছে তার বিপরীত অবস্থার সৃষ্টি করবে। এক্ষেত্রেও A চিহ্নিত বিন্দুগুলির সরণ সর্বাধিক এবং N চিহ্নিত বিন্দুগুলির সরণ শুন্য [চিত্র 3.3 (d)]।

যখন t=T, তখন আবার প্রাথমিক অবস্থার উদ্ভব হবে [চিত্র 3.3(e)]।

অতএব, দেখা যায় যে, একটি পূর্ণ পর্যায়কাল অতিবাহিত হলে, A চিহ্নিত বিন্দুগুলির সরণ সর্বাধিক হয় এবং N চিহ্নিত বিন্দুগুলি সর্বদা স্থির থাকে। প্রথমোক্ত বিন্দুকে বলা হয় সুম্পন্দ বিন্দু (antinodes) এবং শেষোন্ত বিন্দুগুলিকে বলা হয় **নিম্পন্দ বিন্দু** (nodes)।

প্রধাণুতরশ্যের গাণিতিক বিশ্লেষণ (Mathematical analysis of stationary waves)

সমবিস্তার a, সমতরজাদৈর্ঘ্য λ এবং সমবেগ υ নিয়ে দুটি চলতরজা একই অক্ষ বরাবর পরস্পরের দিকে অগ্রসর হলে, আমরা তাদের নিম্নলিখিত সমীকরণ দ্বারা প্রকাশ করতে পারি:

$$y_1 = a \sin \frac{2\pi}{\lambda} (\upsilon t - x)$$
 and $y_2 = a \sin \frac{2\pi}{\lambda} (\upsilon t + x)$.

এই দুই তরজোর উপরিপাতে লব্ধ সরণ যদি y হয় তবে উপরিপাতের নীতি থেকে পাই,

$$y = y_1 + y_2 = a \sin \frac{2\pi}{\lambda} (\upsilon t - x) + a \sin \frac{2\pi}{\lambda} (\upsilon t + x)$$

$$= 2a \cos \frac{2\pi x}{\lambda} \sin \frac{2\pi}{\lambda} \upsilon t$$

$$= A \sin \frac{2\pi}{\lambda} \upsilon t. \quad [A \text{ when } A = 2a \cos \frac{2\pi x}{\lambda}]$$

এই সমীকরণ লক্ষ করলে বোঝা যায় যে তা উপরিপাতিত তরজাদ্বয়ের সমতরজাদৈর্ঘ্যের (λ) একটি সরল দোলগতি প্রকাশ করছে। কিন্তু ঐ দোলগতির কম্পাঙ্ক $=rac{v}{\lambda}$ এবং বিস্তার $A=2a\cosrac{2\pi x}{\lambda}$; বিস্তার কণার অবস্থিতি x-এর উপর নির্ভরশীল। তা ছাড়া উন্ত সরল দোলগতি কোনো চলতরজা বোঝায় না কারণ তার দশা কোণের ভিতর $(\mathbf{w}t\pm x)$ –এর ন্যায় x–নির্ভর কোনো রাশি নেই। অতএব উন্ত সমীকরণ স্থাণুতরজ্ঞাকে প্রকাশ করে।

া সুম্পন্দ বিন্দু (Antinodes): যে সকল বিন্দুতে লব্ধ বিস্তার $A=\pm 2a$ সেখানে সুম্পন্দ বিন্দু তৈরি হবে অর্থাৎ, যে সকল বিন্দুতে $\frac{2\pi x}{\lambda}=0$, π . 2π $n\pi$ অথবা, x=0, $\frac{\lambda}{2}$, $\frac{2\lambda}{2}$ $\frac{n\lambda}{2}$ (n=0,1,2,3) ইত্যাদি), সেই সকল বিন্দুতে বিস্তার সর্বাধিক হবে এবং সেখানে সুম্পন্দ বিন্দু গঠিত হবে। বলা বাঙ্গা, দৃটি সুম্পন্দ বিন্দুর ভিতর দূরত্ব $=\frac{\lambda}{2}=$ তরজাদৈর্ঘোর অর্ধেক।

াঠিত হবে অর্থাৎ যে–সকল বিন্দুতে $\frac{2\pi x}{\lambda} = \frac{\pi}{2}, \frac{3\pi}{2}....(2n+1)\frac{\pi}{2}$ অথবা, $x = \frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}...$ $(2n+1)\frac{\lambda}{4}$ সেই সকল বিন্দুই হবে নিম্পন্দ বিন্দু। এক্ষেত্রেও দেখা যায় পর পর দুটি নিম্পন্দ বিন্দুর ভিতর দূরত্ব $= \frac{\lambda}{2} =$ তরজাদৈর্ঘ্যের অর্থেক।

DEVANALED

উঃ। প্রতিফলিত শব্দতরঞ্চা ও অশ্রগামী শব্দতরঞ্চা পরম্পারের উপর আপতিত হয়ে স্বাধি করবে। দেওয়াল হবে একটি নিম্পন্দ বিন্দুর অবস্থান কারণ দেওয়ালের জন্য ঐ স্থানের ক্রক্ষার কোনোরূপ গতি থাকবে না। অন্যান্য নিম্পন্দ বিন্দুগুলি দেওয়াল থেকে এইনূপ দূরত্বে থাকবে ও এতি পরপর দৃটি নিম্পন্দ বিন্দুর অন্তর্বতী দূরত্ব $=\frac{\lambda}{2}$: ধরো, এই দূরত্ব $=\lambda$.

এখন,
$$\lambda = \frac{V}{n} = \frac{332}{100} = 3.32 \,\mathrm{m}$$
 ; অতথ্য, $x = \frac{\lambda}{2} = \frac{3.32}{2} = 1.66 \,\mathrm{m}$

অভএব, দেওয়াল থেকে নিম্পন্দ বিন্দুগুলি অথবা সর্বনিম্ন বিস্তারের বায়ুকণাগুলি 1.66, ১.১১, 4 98 metre..... প্রস্তৃতি দুরত্বে থাকবে।

প্রতি দৃটি নিম্পন্দ বিন্দুর মধ্যে একটি সুম্পন্দ বিন্দু থাকরে। কাজেই সর্বাধিক বিস্তারের কণার্গাল দেওয়াল থেকে 0.83, 2.49, 4.15 metre....প্রভৃতি দূরত্বে থাকরে।

় পুটি তরঙা $y_1 = 0.05 \sin{(3\pi t - 2x)}$ এবং $y_2 = 0.05 \sin{(3\pi t + 2x)}$ সমাপতিত হয়ে স্থাণ্তরঙা সৃষ্টি করেছে। এখানে, x এবং y মিটার এককে এবং t সেকেন্ডে এককে মাপা হয়েছে। x = 0.5 m অবস্থানে কণার দোলনের বিস্তার নির্ণয় করো।

উঃ। সমাপত্নের ফলে সৃষ্ট লক্ষ্ম তরজা হবে,

$$v = v_1 + v_2 = 0.05 \sin(3\pi t - 2v) + 0.05 \sin(3\pi t + 2v)$$

$$= 0.05 \left[2\sin\frac{(3\pi t + 2x + 3\pi t - 2x)}{2} \times \cos\frac{(3\pi t + 2x - 3\pi t + 2x)}{2} \right]$$

 $= 0.05 [2 \sin 3\pi x \cos 2x]$

 $= 0.1 \cos 2x \sin 3\pi x$

সূত্র", উৎপত্ন স্থাল্ডর্জার বিস্তার A=0.1 cos 2x

• 6.5 metre *75.
$$4 = 0.1 \cos(2 \times 0.5)$$
 rad $= 0.1 \cos(\frac{180^{\circ}}{314})$ $= 0.1 \cos 57.3^{\circ} = 0.1 \times 0.54 = 0.054$ m = 5.4 cm.

② একটি স্থাণুতরশাকে $y = 5 \cos \frac{\pi x}{3} \sin 40\pi x$ সমীকরণ দারা প্রকাশ করা যায়। এখানে x এবং y সেন্টিমিটারে এবং t সেকেন্ডে প্রকাশিত হয়েছে। যে দৃটি তরশোর উপরিপাতে উপরোভ স্থাণুতরশোর উৎপত্তি হয়েছে তাদের (i) বিস্তার, (ii) তরগাদৈর্ঘ্য এবং (iii) গাঁতবেগ নির্ধারণ করো। সমাপতিত তরগাদ্বয়ের সমীকরণ কী হবে ?

ভিঃ। সমাবস্তার ৫. সমতরজ্ঞাদৈর্ঘ্য ১ এবং সমাবেগ ১ নিয়ে দৃটি চলতরজ্ঞা একই আক বরবের বিশ্বাত্যকা অগ্রসর হলে, তাদের নিম্নলিখিত সমীকরণ দারা প্রকাশ করা যায়

$$v_1 = a \sin \frac{2\pi}{\lambda} (\upsilon t - \tau)$$
 and $v_2 = a \sin \frac{2\pi}{\lambda} (\upsilon t + x)$

২.4 জনক্ষেদে আমরা দেখেছি যে তাদের উপরিপাতে যে স্থাণুতরক্ষোর উৎপত্তি হয়, তার সমাকরণ

$$y = 2a \cos \frac{2\pi x}{\lambda} \sin \frac{2\pi}{\lambda} \upsilon t \dots$$
 (i)

প্রদান ক্রাক্তির সমীকরণ $y=5\cos{\pi x\over 3}\sin{40}~\pi t$ (ii)

া) ও $_{(11)}$ এই সমীকরণ তুলনা করে বলা যায় যে 2a=5 অথবা আপতিত তরক্ষদ্ধয়ের বিস্তার $\pi_{X}=2\pi_{X}$

a=2.5 cm. গ ছাড়া, $\frac{\pi x}{3}=\frac{2\pi x}{\lambda}$ $\therefore \lambda=6$ cm.

(iii) গালার, $\frac{2\pi}{\lambda}$. $\upsilon=40\pi$ অথবা, $\upsilon=20\times\lambda=20\times6=$ **120 cm/s.**

(iv) পরপর দুটি নিম্পন্দ বিন্দুর দূরত্ব = $\frac{\lambda}{2} = \frac{6}{2} = 3$ cm.

(v) ১ খাভিমুখে গতিশীল সমাপতিত তরজের সমীকরণ $y_1 = 2.5 \sin \frac{2\pi}{6} (120t - v)$

 $= 2.5 \sin \frac{\pi}{3} (120t - x)$; -x অভিমুখে গতিশীল তরজের সমীকরণ $y_2 = 2.5 \sin \frac{\pi}{3} (120t + x)$.

্র একটি তরঙ্গাগতিকে $y = 4\cos^2{(t/2)}\sin{1000}\,t$ সমীকরণ দারা প্রকাশ করা যায়। দেখাও যে তরঙ্গাটি তিনটি পৃথক দোলতরঙ্গের উপরিপাতে সৃষ্টি হয়েছে।

উঃ। মনে করো, আমরা (i) $y_1=\sin{(\omega-\Delta\omega)}\,t$ (ii) $y_2=2\sin{\omega t}$ এবং (iii) $y_3=\sin{(\omega+\Delta\omega)}\,t$ এই তিনটি দোলতরজোর উপরিপাত বিবেচনা করছি। তাইলে

 $y = y_1 + y_2 + y_3 = \sin(\omega - \Delta\omega) t + 2\sin(\omega + \sin(\omega + \Delta\omega) t$ = \sin \omega \cos \Delta \omega t - \cos \omega \sin \Delta \omega t + 2\sin \omega t + \sin \omega t \cos \Delta \omega t + \cos \omega t \sin \Delta \omega t

= $2 \sin \omega t \cos \Delta \omega t + 2 \sin \omega t$ = $2 \sin \omega t (\cos \Delta \omega t + 1)$

 $= 4 \sin \omega t \cos^2 \left(\frac{\Delta \omega}{2} . t \right)$

্যাল $\omega=1000$ এবং $\Delta\omega=1$ ধরা যায় তবে $y=4\cos^2(^t/_2)\sin 1000$ । অর্থাৎ প্রদত্ত তরজা স্থান করণ পাই এতএব যে তিনটি তরজা উপরিপন্ন হয়েছে তারা $y_1=\sin 999$ $t,y_2=2\sin 1000$ t এবং $y_3=\sin (1001)t$.

স্থাণতর্জোর বৈশিক্য

(Characteristics of standing waves):

স্থাণুতরঞ্জা সম্পর্কে পূর্ববর্তী অনুচ্ছেদগুলিতে যে আলোচনা করা হল তা থেকে ঐ তরঞ্জোর নিম্নলিখিত বৈশিষ্ট্য লক্ষ করা যায় :--

- (i) এই তর্জোর তর্জাশীর্য ও তর্জাপাদ অথবা ঘনীভবন ও তন্তবন একযোগে সম্মুথের দিকে অগ্রসর হয় না। মাধ্যমের সীমিত অপ্তলেই তারা যথাক্রমে গঠিত ও বিলপ্ত হয়।
- (ii) তরজোর বিভিন্ন বিন্দতে কম্পনের বিস্তার বিভিন্ন; যে বিন্দতে বিস্তার সর্বাধিক তাকে বলা হয় সম্পন্ন বিন্দ।
 - (iii) কতকগুলি বিন্দতে মাধ্যমের কণার কোনো কম্পন দেখা যায় না; তাদের বলা হয় নিস্পন্দ বিন্দ।
- (iv) পর পর দৃটি নিম্পন্দ বিন্দুর মধ্যম্থিত সকল কণাগুলি একই দিকে সরণ হয়। এইরপ অংশকে বলা হয় 'লুপ' (loop)।
 - (v) পর পর দৃটি লুপের কণাগুলির সরণ বিপরীত দিকে হয়।
- (vi) নিম্পন্দ বিন্দতে চাপের পরিবর্তন তথা ঘনত্বের পরিবর্তন সর্বাধিক; আবার সম্পন্দ বিন্দুতে চাপের পরিবর্তন তথা ঘনতের পরিবর্তন শন্য।

চলতর্জা ও স্থাণতর্জোর পার্থক্য

(Distinction between progressive and standing waves)

চলভরজা

SENCROPIUM

- পর্যাবন্ত গতির ফলে চলতরঞ্চোর উম্ভব হয়।
- 2. তর্জোর বিস্তারের অভিমুখে এক কণার কম্পন 2. মধামের ভিতর দিয়ে তর্জোর কোনো গতি নেই। পরবর্তী কণায় হস্তভরিত হয়। ফলে, তরজা নির্দিশ্ত গতিবেগে অগ্রসর হয়ে যায়।
- 3. বিশ্বার, বেগ, সুরণ ইত্যাদি সাপেকে মাধামের 3. স্থাণুতর্জোর বিস্তার, বেগ, চাপ, পরিবর্তন ইত্যাদি প্রতিটি কণা একই পৌনঃপনিকতায় একই ধরনের। পরিবর্তনচক্রের মধ্য দিয়ে আবর্তিত হয়।
- 4, তরজোর গতির অভিময়ে কণাগুলির ভিতর 4, দটি নিস্পন্দ বিন্দর ভিতর সকল কণার দশী কম্পনদশার পার্থকা থাকে কিন্তু বিস্তাব সমান হয়। দই কণার দশাপর্থকা ভাদের দ্রদের সমানুপাত্রি।
- সকল কণাগলি পিরে অবস্থাতে **আ**সে না।
- 6. চলতর্জো শক্তি এক অম্বল থোকে অনা অম্বলে 6. স্থান তর্জো এক অম্বলের শক্তি সেই অম্বলেই বাহিত হয়
- য়া সিক উল্লেখ্য য়াই শক্তি সংবাদত থাকে.

- 1. মাধামের কোনো অশ্বলের কণাগুলির নিরম্ভর 1. মাধ্যমের ভিতর দিয়ে বিপরীতম্থী দুটি একই রকমের চলতরকোর উপরিপাতের ফলে স্থাণতরজ্গের উদ্ভব হয়।
 - মাধ্যমের যে অপুলে চলতরক্ষাদ্বয়ের উপরিপাত হয় সেই অন্ধলে স্থাণ্ডরঙ্গ আবন্ধ থাকে।
 - বিন্দ হতে বিন্দতে পথক হয় কিন্তু প্ৰতি বিন্দুতে এদের মান স্থির।
 - সমান কিন্তু বিশার ভিন্ন। নিম্পদ্দ বিশার উভয় পালে কথাব দলা বিভিন্ন।
- 5. একটি পূর্ণ কম্পনের ভিতর কখনও মাধানের 5. একটি পর্য কম্পনে দুবার মাধানের সকল ক্যাগুলি একসংখ্যা চিথার আবস্থাতে আসে
 - আক্রম থাকে:
- 7. মাধ্যমের মোট শত্তি সর্বদা আংশিক গতিশত্তি ও 7. মাধ্যমের মোট শত্তি সর্বাচন্দ্রম গতিশত্তি ও व्यक्ति वर्ष कुर्णासुद्र हमः प्राप्तः वर्षः व्यक्ति MICO :

একই প্রাবল্যের দৃটি শব্দতরজ্ঞার মধ্যে কম্পাঙ্কের সামান্য তফাত থাকলে তারা একসঙ্গো মিলে যে শব্দ সৃষ্টি করে তার প্রাবল্যের পর্যায়ক্রমে হ্রাসবৃদ্ধি হতে থাকে। তখন তা স্বরকম্প বলে অভিহিত হয়।

সংভা ঃ দৃটি উৎস থেকে একই দিকে গতিশীল শব্দতরঞ্চোর কম্পাঙ্কে সামান্য প্রভেদ থাকলে তাদের উপরিপাতের ফলে মাধ্যমের নির্দিষ্ট এক বিন্দুতে কম্পনের বিশ্বার তথা প্রাবলা পর্যাক্রমে বৃদ্ধি ও হ্রাস পায়। শব্দের প্রাবলোর এরূপ হ্রাসবৃদ্ধিকে স্বরকম্প বলা হয়।

পরীকাঃ ফাঁপা কাঠের বাক্সের উপর বসানো দৃটি একই রক্সের সুরশলাকা নাও। এখন, একটি একটি করে সুরশলাকা দৃটিকে আঘাত করে শব্দ উৎপন্ন করো। দেখবে প্রত্যেক ক্ষেত্রেই একই রক্স শব্দ হছে। এখন একসজো দৃটিকে আঘাত করে শব্দ উৎপন্ন করো। এবারও শব্দ একটানা হবে কিছু পূর্বাপেক্ষা জারালো হবে। এখন, একটি সুরশলাকার বাহুতে কিছু মোম লাগিয়ে ভারী করো। এতে সুরশলাকা দৃটির কম্পাঙ্কের কিছু তফাত হবে। এবার উভয়কে একসজো আঘাত করে শব্দ উৎপন্ন করলে দেখা যাবে যে শব্দ একটানা হছে না। শব্দ পর্যায়ক্রমে একবার বাড়ছে এবং একবার কমছে। শব্দের প্রাবলোর এরপ পর্যায়ক্রমে হাসবৃন্ধি (waxing and waning) হলে ঐ ঘটনাকে স্বরকম্প বলা হয়। হাসবৃন্ধির একটি সম্পূর্ণ পর্যায়কে একটি স্বরকম্পন বলা হয়।

ব্যাখ্যা (Explanation): মনে করো, আমরা দুটি শব্দ উৎস নিলাম যাদের কম্পাঙক যথাক্রমে ছয়
এবং পাঁচ। প্রথমটি বায়ুমধ্যে প্রতি সেকেন্ডে ছয়টি এবং দ্বিতীয়টি পাঁচটি তরজাের সৃষ্টি করবে। ঐ তরজা
দুটির প্রতিকৃতি 3.4(a) নং চিত্রে দেখানাে হল। মাটা লাইন দিয়ে ছয়টি তরজাের এবং কাটা লাইন দিয়ে

পাঁচটি তরজোর প্রতিকৃতি দেখানো হয়েছে। ঐ তরজাদ্বয় পরস্পরের উপর আপতিত হয়ে যে লব্দ তরজা সৃষ্টি করবে তা 3.4(b) নং চিত্রে দেখানো হয়েছে।

যদি মনে করা যায় যে, কোনো
মুহূর্তে দৃটি তরকোর দশা এক
অর্থাৎ উভয়েই শ্রোতার কানে
ঘনীভবন বা তনুভবন প্রেরণ করে
তবে শ্রোতা জোর শব্দ শুনতে পাবে।
3.4(b) নং চিত্রে A বিন্দু ছারা ঐ
অবস্থা প্রকাশ করা হয়েছে। ঐ
স্থানে লব্দ তরকোর বিন্তার
সর্বাপেক্ষা বেশি। 1 সেকেন্ড পরে

প্রথম উৎসের তরজা দ্বিতীয়টির তুলনায় একটি পূর্ণ তরজো অগ্রসর হবে এবং তাদের দশা পুনরায় সমান প্রথম উৎসের তরজা দ্বিতীয়টির তুলনায় একটি পূর্ণ তরজো অগ্রসর হবে এবং তাদের দশা পুনরায় সমান হবে। তথন তারা আবার জোর শব্দ উৎপন্ন করবে। চিত্রে C বিন্দু দ্বারা এই অবস্থা প্রকাশিত হয়েছে। কিন্তু

া সেকেন্ড পরে প্রথম উৎসের তরজা দ্বিতীয়টির তুলনায় অর্ধ-তরজো অগ্রসর থাকবে। তখন তাদের
দশা হবে সম্পূর্ণ বিপরীত—অর্থাৎ একটির ঘনীভবন অপরটির তনুভবনে আপত্তিত হবে। এতে শব্দের
প্রাবল্য হ্রাস পাবে অথবা ক্ষীণ শব্দ শোনা যাবে। চিত্রে B' বিন্দু এই অবস্থা প্রকাশ করছে—এ স্থানে
তরজোর বিস্তার সর্বাপেক্ষা কম।

এভাবে যত সময় যাবে তত শব্দের প্রাবল্যের পর্যায়ক্রমে হ্রাসবৃদ্ধি হবে এবং শ্রোতা একটি কম্পিত শব্দ (throbbing sound) শূনতে পাবে।

- স্বরকম্পের সংখ্যা (Beat frequency): এক সেকেন্ডে যে-কর্মার প্রবল অথবা মূদ শব্দ শোনা যায় সেই সংখ্যাকে ফরকদ্পের সংখ্যা বলে। পর্বের আলোচনা থেকে দেখা গেল যে উৎস দৃষ্টির কম্পান্ধ পাঁচ ও ছব্ব (কম্পান্ধের পর্যেক) = 1) গলে তারা প্রতি সেকেন্ডে একটি প্রবল বা একটি মৃদ্ শব্দ উৎপন্ন করে। এক্ষেত্রে গ্রকদ্পের সংখ্যা 1 : এটা উৎসদ্ধরের কম্পান্ধের পার্থক্যের সমান প্রকৃতপক্ষে, সর্বক্ষেত্র প্রথাণ করা যায় (অন্ধেন্ধে 3.৪ দুখ্যবা) স্বরকম্পের সংখ্যা = উৎসদ্ধরের কম্পান্ধের পার্থক্য। সাধারণভাবে বলা যায় যে উৎসদ্ধরের কম্পান্ধ্য n_1 এবং n_2 হলে, $(n_1 > n_2)$ স্বরকম্পের সংখ্যা $N = n_1 n_2$.
- স্বরকম্প উপলব্ধি (Perception of beats): স্বরকম্প উপলব্ধি করতে থলে উৎসদ্বরের কম্পাজের পার্থকা কম হওয়া প্রয়োজন। পার্থকা বেশি হলে প্রতি সেকেন্ডে উৎপন্ন স্বরকম্পের সংখ্যা বেশি হয়। তখন শব্দের প্রাবলোর হ্রাসবৃদ্ধি এত দুত হারে হয় যে কানে শুনে তা উপলব্ধি করা যায় না— কানে একটানা শব্দ শোনা যায়। পরীক্ষা করে দেখা গেছে যে স্বরকম্পের সংখ্যা প্রতি সেকেন্ডে 15 কিংবা 16-এর বেশি হলে কানে তা উপলব্ধি করা সম্ভব হয় না। তাছাড়া, উৎসদ্বয়ের শব্দের প্রাবলা অসমান হলেও স্বরকল্প উপলব্ধি করা কঠিন হয়ে পড়ে, কারণ, এই অবস্থায় জ্লীণতর শব্দের প্রভাবে জোরালো শব্দের প্রাবলোর বিশেষ দ্রাসবৃদ্ধি ঘটবে না।

সূতরাং ম্বরকম্প প্রতিবোধ্য হতে গেলে দুটি শর্ত প্রয়োজন ঃ (i) উৎসদ্বয়ের কম্পাঙ্কের পার্থক। কম (প্রতি সেকেন্ডে 16–এর কম) হতে হবে এবং (ii) উৎসদ্বয়ের শব্দের প্রাবল্য সমান বা প্রায় সমান হতে হবে।

স্থান স্থানিতিক বিশ্লেষণ (Analytical treatment of beats) :

ধরো, সমবিস্তার কিন্তু সামান্য কম্পাঙ্ক-পার্থক্যের দৃটি সরল দোলতরজ্ঞা একই দিকে চলছে। তাদের সমীকরণ হবেঃ $y_1=a\sin 2\pi n_1 t$ এবং $v_2=a\sin 2\pi n_2 t$. এখানে a= তরজ্ঞান্তয়ের বিস্তার এবং n_1 ও n_2 তাদের কম্পাঙ্ক $(n_1>n_2)$ । কম্পাঙ্কন্নয়ের পার্থক্য খব বেশি নয়।

ধরো, তারা সমদশায় থেকে যাত্রা শুরু করল। তাদের উপরিপাতে যে লব্ধ সর্ণ হবে তা । ধরলে, উপরিপাতের নীতি অনুযায়ী,

$$y = y_1 + y_2 = a \sin 2\pi n_1 t + a \sin 2\pi n_2 t$$
$$= 2a \cos 2\pi \frac{(n_1 - n_2)t}{2} \sin 2\pi \frac{(n_1 + n_2)t}{2}.$$

এই সমীকরণ এবং প্রদন্ত তরজাদ্বয়ের সমীকরণ তুলনা করলে দেখা যায় যে, লব্দ ৩রজা সরল দোলগতি পর্যায়ের কিন্তু এর বিস্তার $A=2a\cos 2\pi\frac{(n_1-n_2)t}{2}$ এবং কম্পাঙক $=\frac{n_1+n_2}{2}$; বিস্তার A সময়ের (t) সাথে পরিবর্তনশীল। অভএব, যত সময় অভিবাহিত হবে, লব্দ তরজোর বিস্তার A ভঙ পরিবর্তিত হবে। কখন কখন এই বিস্তার সর্বাধিক হবে, কখনও বা সর্বনিম্ন হবে। এর ফলে শক্দের গ্রাসবৃদ্ধি হবে এবং একটি কম্পিত শব্দ শোনা যাবে। তাকেই স্বরকম্প বলা হয়।

) স্বরকম্পের সংখ্যা ঃ যখন t=0, n_1-n_2 n_1-n_2 তিলাদি তখন লব্দ তর্জোর বিস্তার A সর্বাধিক (=2a) হয়ে প্রবল শব্দ সৃষ্টি কর্বে কারণ শব্দের তীব্রতা বিস্তারের বর্গের স্ক্রানুপাতিক . যাত্রবর

পরপর দৃটি প্রবল শব্দ শোলার ভিতর অবকাশ $\frac{1}{n_1-n_2}$ সেকেভ অথবা 1 সেকেভ অথবা 1 সেকেভ সেব n_1 n_2) বার প্রবল শব্দ শোলা মারে। অভ্যার স্থান্থলৈ সংখ্যা $=n_1$ n_2 উৎসেপ্তার কম্পান্থেরর পথিকা। আবার হয়ন হয়ন t-1 1 1 $2(n_1-n_2)$ $2(n_1-n_2)$ $2(n_1-n_2)$ $2(n_1-n_2)$ ত্রিলা হরে এবং নিংশানের সৃষ্টি করবে অভ্যাব, পরপর দৃটি নিংশানের অবকাশ $\frac{1}{n_1}$ সেকেভ অথবা 1 সেকেভ সময়ে (n_1-n_2) বার নিংশান সৃষ্টি হরে। অভ্যাব, স্বরকম্পের সংখ্যা $=n_1-n_2=$ উৎসাব্যারের কম্পান্থেকর পথিক্য।

্রাঃ তবজা দৃটির বিস্তার সমান না থলে, একবার প্রবল শব্দ এবং একবার ক্রীণ শব্দ সৃষ্টি থবে, ক্রমনত নিংশক সৃষ্টি থবে না। a এবং b এবংগদ্ধাের বিস্তার থলে লব্ধ ওরাজার সর্বাধিক বিস্তাব থবে (a - b) এবং সবদান বিস্তার থবে (a - b)। লক্ষ্ক করাে যে, ব্যতিচারে ও স্বরকম্প উভয়ই দৃটি ওরাজাের উপরিপাত্রের ফালে সৃষ্ট হয়। কিন্তু এদের প্রকৃতি এক নয়। ব্যতিচারে দৃই তরাজাের কম্পন-দশার পার্থকা উৎসাহােকে দরহের পার্থকাের ফালে সৃষ্ট হয় কিন্তু সময়ের সাজাে পরিবর্তিত হয় না। স্বরকম্পে কম্পান্তকর বিভিন্নতার ফালে দশাপার্থকা সময়ের সাজাে সর্বাদাই পরিবর্তিত হয়। ফালে মাধামের কােনো অশ্বলেই কম্পনহান অবস্থাের সৃষ্টি হয় না।

3.9. স্বকশ্পের প্রয়োগ (Applications of beats):

কে) অজ্ঞাত কম্পান্দ নির্ণয় (Determination of unknown frequency): দৃটি সুরশলাকা স্বরকম্প উৎপন্ন করলে এবং তাদের মধ্যে একটির কম্পান্তক জানা থাকলে অপরটির কম্পান্তক নির্ধারণ করা যায়। ধরো, জানা সুরশলাকার কম্পান্তক 256 এবং উভয়ে একসঙ্গো কম্পিত হয়ে প্রতি সেকেন্ডে বিটি স্বরকম্প উৎপন্ন করছে। এক্ষেত্রে অজ্ঞাত সুরশলাকা কম্পান্তক = 256 + 4 = 260 জথবা, 256 - 4 = 252 হতে পারে। কারণ উভয়ের কম্পান্তেকর পার্থকা হবে স্বরকম্পের সংখ্যা। এখন, অজ্ঞাত সুরশলাকার কম্পান্তক কোন্টি—260 জথবা 252—তা নির্ণয় করতে হলে জানা সুরশলাকার বাহুতে একটু মোম লাগাতে হবে। এতে ঐ সুরশলাকার কম্পান্তক একটু কমে যাবে—256 থাকবে না। কারণ, শলাকাটি একট্ ভারী হবে। এই অবস্থায় পুনরায় স্বরকম্পের সংখ্যা নির্ণয় করতে হবে। যদি স্বরকম্পের সংখ্যা বৃদ্ধি পায় তবে বুঝতে হবে তাদের কম্পান্তকর পার্থক্য বেড়ে গিয়েছে, অথচ জানা সুরশলাকার কম্পান্তক কমানো হয়েছে। এটা সম্ভব যদি গোড়াতেই জানা সুরশলাকার কম্পান্তক অপ্রেক্ত অথাক অথাকে। অর্থাৎ অজ্ঞাত সুরশলাকার কম্পান্তক অন্য সুরশলাকার কম্পান্তক অপ্রেক্ত কম থাকে। অর্থাৎ অজ্ঞাত সুরশলাকার কম্পান্তক অন্য সুরশলাকার কম্পান্তক অব্যক্ত অব্যক্

তা 260।
আর যদি জানা সুরশলাকাকে ভারী করার পর স্বরকম্পের সংখ্যা কমে যায় তবে বৃঝতে হবে যে তাদের কম্পাঙেকর পার্থক্য হ্রাস পেয়েছে, অথচ জ্ঞাত সুরশলাকার কম্পাঙক কমানো হয়েছে। এটা সম্ভব যদি গোড়াতেই জানা সুরশলাকার কম্পাঙক অজ্ঞাত সুরশলাকার কম্পাঙক এতাত সুরশলাকার কম্পাঙক এতাত প্রশালাকার কম্পাঙক ১১০।

(খ) খনিতে দূষিত গ্যাসের অন্তিত্ব নির্ণয় (Detection of poisonous gases in mines):
ফরকম্পের সাহায্যে খনি বা খাদের বায়ু দৃষিত বাষ্পপূর্ণ হয়েছে কিনা তা বোঝার একটি সহজ পন্ধতি আছে। যে খনির বায়ু সন্দেহজনক বলে মনে হয় তার ভিতরে দৃটি একই ধরনের আর্গান নল কর্তৃক শব্দ উৎপন্ন করা হয়। একটি নল খনির বায়ুর দ্বারা পূর্ণ এবং অনাটি বাইরে থেকে আনা বিশৃষ্ধ বায়ু দ্বারা পূর্ণ। এখন, খনির বায়ু বিশৃষ্ধ না হলে তার ঘনত্ব আলাদা হবে এবং তার ভিতর শব্দের বেগও আলাদা হবে। এখন, দ্বি নল থেকে উৎপন্ন শব্দের কম্পাঙ্কের সামান্য তফাত থাকবে। এতে স্বরকম্পের সৃষ্টি হবে। আর বিদি খনির বায়ু বিশৃষ্ধ হয় তবে এ শব্দ দৃটির ভিতর কম্পাঙ্কের কোনো পার্থক্য থাকবে না; অতএব কোনো স্বরকম্পেরও সৃষ্টি হবে না। স্বরকম্পের সৃষ্টি হবে না। স্বরকম্পের সৃষ্টি হবে না। স্বরকম্পের সৃষ্টি হবে বা। বিশৃষ্ধ নয়।

D Examples D

উঃ। যেহেতৃ A এবং B সেকেন্ডে 4টি স্বরকম্প উৎপন্ন করে কাজেই A শলাকার কম্পাঙ্ক = 510+4=514 অথবা 510-4=506।

এখন A সুরশলাকাতে মোম লাগানের ফলে, এটি একটু ভারী হবে এবং এর কম্পাঙ্ক সামান্য ব্রাস পাবে: যদি A-এর কম্পাঙ্ক 514 হয় তবে কম্পাঙ্ক হ্রাস পেয়ে B-এর কম্পাঙ্ক 510-এর কাছাকাছি আসবে। এতে স্বকম্পের সংখ্যা হ্রাস পাবে। পরীক্ষালব্ধ ফলাফল একে সমর্থন করে না। সুতরাং গোড়াতে A-র কম্পাঙ্ক ছিল 506। এই কম্পাঙ্ক হ্রাস পাবার ফলে B-এর সাথে কম্পাঙ্ক-পার্থকা বৃদ্ধি পাবে এবং স্বরকম্পের সংখ্যাও বৃদ্ধি পাবে।

দূটি শব্দতরপোর তরপাদৈর্ঘ্য যথাক্রমে $\frac{80}{195}$ m এবং $\frac{80}{193}$ m; প্রত্যেকটি তরপা তৃতীর একটি পির কম্পাচ্চের শব্দতরপোর সাথে প্রতি সেকেন্ডে 4টি স্বরকম্প সৃষ্টি করে। বায়ুতে শব্দের বেগ নির্দয় করো।

উঃ। ধরো, তরঙা দৃটির কম্পাঙ্ক n₁ এবং n₂। তাহলে,

$$n_1 = \frac{V}{\lambda_1} = \frac{V \times 195}{80}$$
 এবং $n_2 = \frac{V}{\lambda_2} = \frac{193 \times V}{80}$; (i) স্পাইড, $n_1 > n_2$

ভূ তীয় তরজোর স্থির কম্পাঙক n ধরলে, পাই, $n_1 - n = 4$ এবং $n - n_2 = 4$ যোগ করলে, $n_1 - n_2 = 4 + 4 = 8$ (ii)

(i) নং সমীকরণ থেকে n₁ এবং n₂-এর মান (ii) নং সমীকরণে বসালে,

$$\frac{V \times 195}{80} - \frac{V \times 193}{80} = 8$$
 অথবা, $\frac{2V}{80} = 8$

 $\therefore V = 320 \text{ m/s}.$

3 সুরশলাকা P-কর্তৃক উৎপন্ন শব্দ PRQ এবং PSQ দুই পথ হয়ে Q-তে পৌছার। PSQ পথের দৈর্ঘ্য PRQ-এর দৈর্ঘ্য অপেকা 11.5 cm বেশি হলে Q-তে কোনো শব্দ শোনা বায় না। ঐ পথপার্থক্য 23 cm হলে Q-তে শব্দের প্রাবল্য উর্ফ্বতম হয়। আবার দৈর্ঘের পার্থক্য 34.5 cm হলে, Q-তে শব্দহীনতা অনুভূত হয়। শব্দের গতিবেগ 331.2 m/s হলে সুরশলাকার কম্পাঞ্চ নির্ণয় করো।

উঃ। পথ পার্থকা 11 5 cm হলে শক্তীনতা এবং 23 cm হলে উপাঠিম শব্দ প্রবলা হণ্ডত হা ছিত্রব, একটি শক্তীনতা বিদ্দু এবং পর্বতী উপাঠিম শব্দ-প্রাবল্য বিদ্দুর ভিত্র পথ পার্থকা । 11 5

জানার পুথায় উধর্বতম শব্দ প্রাবলা এবং পরবাতী শব্দটানতা বিভূষ্যার ভিতর পথ পাইন্সী = 34.5−23=11.5cm

म् १९८ , मृति अदलद मक्किन हा विस्तृव िहहत अध- अधिका = 115 + 115 = 23 cm

ক্রতিগারের শার্ভ অনুসায়ী দুটি পরপর শক্ষীনতা বিন্দুর ভিতর পথ প্রথক। - ১ (৴ - শাদেরী চব্লস্থানা এখন, সুরশলাকার কম্পাঙ্ক n হলে, $n = \frac{V}{\lambda} = \frac{331.2}{0.23} = 1440 \text{ Hz}$

উঃ। সুরশলাকাগুলির কম্পন বিস্তার সমান হওয়ায় এরা যে তরজা সৃষ্টি করে, তাদের নিপ্ললিখিতরূপে। প্রকাশ করা যায়ঃ

$$y_1 = a \sin 2\pi (n + x)t$$

$$y_2 = a \sin 2\pi nt$$

এবং $v_1 = a \sin 2\pi (n - x)t$

এই তরজাগুলির উপরিপাতে যে লব্দ তরজা উৎপন্ন হবে তাকে নিম্নবর্ণিত উপায়ে লেখা যায় ঃ $y = y_1 + y_2 + y_3 = a[\sin 2\pi(n+x)t + \sin 2\pi nt + \sin 2\pi(n-x)t]$

$$= a \left[2\sin\frac{2\pi(n+x)t + 2\pi(n-x)t}{2} \cdot \cos\frac{2\pi(n+x)t - 2\pi(n-x)t}{2} + \sin 2\pi nt \right]$$

 $= a \left[2 \sin 2\pi nt \cos 2\pi xt + \sin 2\pi nt \right]$

 $= a \left((1 + 2 \cos 2\pi xt) \sin 2\pi nt \right)$

 $= A. \sin 2\pi nt \quad [A = a(1 + 2\cos 2\pi xt) ধরা হলে]$

এটি সরল দোলতরজোর সমীকরণ যে-তরজোর বিস্তার A: এই বিস্তার যে-কোনো বিন্দৃতে (অর্থাৎ x = ধ্রুবক) সময় t-এর উপর নির্ভর করে। তার অর্থ এই যে, সময়ের পরিবর্তনের সজো কোনো বিন্দৃতে লব্ধ তরজোর বিস্তার অথবা প্রাবল্য (intensity) পরিবর্তিত হয় এবং সেই সজো স্বরকম্পের উৎপত্তি হয়।

এখন, A সর্বোচ্চ মান পাবে যখন $\cos 2\pi xt$ সর্বোচ্চ হবে অর্থাৎ যখন $\cos 2\pi xt = 1$ অথবা $2\pi xt$ = $2S\pi$ যেখানে S=0,1,2....ইত্যাদি।

এ থেকে জানা যায় যে যখন $t=0,\,\frac{1}{x},\,\frac{2}{x},\,\frac{3}{x}$ ইত্যাদি তখন প্রবল শব্দ শোনা যাবে। কাজেই, প্রতি সেকেন্ডে স্বরকম্পের সংখ্যা =x.

আবার, Λ সর্বনিম্ন মান পাবে যখন $2\cos 2\pi xt + 1 = 0$ হবে অর্থাৎ $\cos 2\pi xt = -\frac{1}{2}$ হবে অথবা $2\pi xt = 2S\pi \pm 2\pi/3$ হবে; $[\cos 2\pi/3 = -\frac{1}{2}]$

এথেকে পাই, যখন $t=\frac{1}{3x},\,\frac{4}{3x},\,\frac{7}{3x},\dots$ ইত্যাদি তখন ক্ষীণ শব্দ শোনা যাবে। কাজেই প্রতি

সেকেন্ডে সরকাম্পর সংখ্যা =
$$\frac{1}{\left(\begin{array}{cc} 4 & 1\\ 3\iota & 3v \end{array}\right)} = v.$$

নেটি সুরশলাকা ক্রমবর্ধমান কম্পাচ্চ হিসাবে পরপর সাজানো আছে। শেষেরটির
কম্পাচ্চ প্রথমটি অপেক্ষা দ্বিগুল এবং যে-কোনো পরপর দুটি শলাকা প্রতি সেকেন্ডে এটি
বরকম্প তৈরি করে। প্রথম সুরশলাকার কম্পাচ্চ কত ?

উঃ। ধরে', প্রথম সূরশলাকার কম্পাঙ্ক = n.

্যতে তুলর পর দৃটি সুরশলকা প্রতি সেকেন্ডে এটি স্বরকম্প তৈরি করে এবং সুরশলাকাগুলি

ক্রমবর্ধমান কম্পাঙ্ক হিসাবে সাজানো আছে, অতএব, দিতীয় সুরশলাকার কম্পাঙ্ক $-n+1\times 1$: তৃতীয়টির = $n+2\times 4$ ইত্যাদি। এই হিসাবে সর্বশেষ সুরশলাকার কম্পাদ্দ - $p+6.5\times 4$ প্রশান্যায়ী, 2n=n+63×4... $\therefore n = 63 \times 4 = 252.$

টানা দেওয়া বা প্রসারিত তারে তির্যক স্থাণুতরঙগ (Transverse standing waves in a stretched string):

ঐ তির্যক তরজোর গতিবেগ $V=\sqrt{\frac{T}{m}}$ । এই তরজাদ্বয় নন্দপ্রাম্ভ কর্তৃক প্রতিফলিত হয়ে পুনরায় বিপরীত দিক থেকে অগ্রসর হয়ে মাঝ বরাবর পরস্পরকে অতিক্রম করে এবং পুনরায় ক্রপ্রান্ত কর্তৃক প্রতিফলিত হয়। এরূপ দৃটি একই ধরনের তির্যক তরকা বিপরীত

দিক থেকে এসে উপরিপন্ন হবার ফলে তারে স্থাণুতরশোর উদ্ভব হয় এবং তারটি কাঁপতে থাকে। তারের দুই প্রান্ত দৃঢ়ভাবে আবন্ধ থাকায় ঐ বিন্দুদ্বয় সর্বদা স্পন্দনহীন অথবা তারা নিস্পন্দ বিন্দু। <mark>যদি তারের মধ্যস্থলে একটি সুস্পন্দ বিন্দু থাকে অর্থাৎ তার এক</mark>যোগে উপরে-নাচে ওঠানামা করে (3.5 নং চিত্র) তবে ঐরূপ কম্পনে যে-সুর নির্গত হয় তাকে তারের মূলসুর (tundamental tone) বলে।

আমরা জানি দুটি পরপর নিম্পন্দ বিন্দুর অন্তর্বতী দূরত্ব = $\lambda/2$. সূতরাং AB তারের দৈখ্য । হলে, মূলসূরের বেলায় $l = \lambda/2$ অথবা, $\lambda = 2l$.

এখন, মূলসুরের কম্পাঙ্ক
$$n$$
 হলে, $n=rac{V}{\lambda}=rac{1}{2I}.\sqrt{rac{T}{m}}~...~...~(1)$

এই প্রসজ্ঞো মনে রাখতে হবে যে সি.জি.এস্. পন্ধতিতে lem. T dyne এবং m g/cm একাকে এবং এম্. কে. এস্. পশ্বতিতে l metre, m kg/m এবং T newton এককে প্রকাশ করতে ২বে :

আবার, একক দৈর্ঘ্যের তারের প্রম্পচ্ছেদের ব্যাসার্ধ r হলে এবং তারের উপাদানের ঘনত্র p হলে $m = \pi r^2 \times 1 \times \rho$; िख 3.51।

$$\therefore n = \frac{1}{2l} \cdot \sqrt{\frac{T}{\pi r^2 \rho}} = \frac{1}{2lr} \sqrt{\frac{T}{\pi \rho}} \dots \dots (ii)$$

প্রসারিত তারে তির্যক কম্পনের সূত্রাবলি (Laws of transverse vibrations of a stretched string

দুই প্রান্তে আবন্ধ তারে তির্যক কম্পন উৎপদ্ম করলে যে মুলস্র সৃষ্টি হয় ভার কম্পান্ক নির্মালখিত সুর্গাল দারা নিয়ন্ত্রিত হয়। ফরাসি গলিভজ্ঞ মার্সেন (Marvenne) 1636 খ্রিস্টাব্দে এট সূত্রগুলি আনিমার করেন।

(i) দৈর্ঘ্যের সূত্র (Law of length): কম্পমান ভারের টান (T) ও প্রতি একক দৈর্ঘের ভর (m) অপরিবর্ণিত থাকলে, তারের তির্মক কম্পনের কম্পাক্ত তারের দৈর্ঘোর বাস্তান্পণ্ডে পরিবাটত হয়। T ও m অপরিবর্তিত থাকলে, $n \propto \frac{1}{r}$ ।

- (ii) টানের সূত্র (Law of tension) : কম্পান্ত তারের কৈছি। (/) ও প্রতি একক দৈছোর ভর (m) অপরিবর্তিত থাকলে তারে তির্যক কম্পানের কম্পানের বর্গমানের সমান্পাতে পরিবর্তিত হয়। / ও m অপরিবর্তিত থাকলে, $n \sim \sqrt{T}$ ।
- (iii) ভরের সূত্র (Law of mass) : কেনে কম্পনশীল ভারের টান (I) ও দৈর্ঘা (I) পরিবর্ভন না করলে তির্যক কম্পনের কম্পান্ধ প্রতি একক দৈর্ঘের ভরের বর্গমূলের নাম্ভন্পাতে পরিবর্ভিত হয়। T ও I অপরিবর্তিত থাকলে, $n \approx \frac{1}{\sqrt{m}}$ ।

পূর্বে'ও তিনটি সূত্রকে তারের **তির্যক কম্পানের সূত্র** বলা হয়। লক্ষ করলে দেখা যাবে, উত্ত সূত্রগুলি মূলস্বের কম্পাঙ্কের সমীকরণ $n=\frac{1}{2l\sqrt{m}}$ থেকে পাওয়া যায়।

- [3.10 খন্চ্ছেদের (ii) নং সমীকরণ থেকে তারের তির্থক কম্পনের আরও দৃটি সূত্র পাওয়া যায়। যথাঃ
- (i) কম্পমান তারের দৈর্ঘা ও ঘনত্ব অপরিবর্তিত থাকলে, তারে তির্যক কম্পনের কম্পান্তক তারের ব্যাসার্ধের ব্যাসার্ধের ব্যাসার্ধের ব্যাসার্ধের বাস্তানুপাতে পরিবর্তিত হয়। I,T ও ρ অপরিবর্তিত থাকলে, $n = \frac{1}{r}$; একে বলা হয় ব্যাসার্ধের সূত্র (law of radius)।
- (ii) কম্পুমান তারের দৈর্ঘ্যা, টান ও বাসোর্ধ অপরিবর্তিত থাকলে, তারের তির্যক কম্পুনের কম্পুজক তারের উপাদানের ঘনত্বের বর্গমূলের বাস্তানুপাতে পরিবর্তিত হয়। I, T ও r অপরিবর্তিত থাকলে, $n \propto \frac{1}{\sqrt{\Omega}}$: একে বলা হয় **ঘনত্বের সূত্র** (law of density)।

একথা মনে রাখা দরকার যে, তারের তির্যক কম্পনের সূত্র বলতে মার্সেন আবিষ্কৃত প্রথম তিনটি সূত্রই বোঝায়।]

D Examples D

1 50 cm দীর্ঘ একটি তার প্রতি সেকেতে 100 বার কম্পিত হয়। যদি দৈর্ঘ্য হ্রাস পেরে 40 cm হয় এবং টানা দেওয়া ভার চারগুণ করা হয়, তবে কম্পাষ্ক কত হবে ?

উঃ। ধরো প্রথমবার তারের টান T newton : তাহলে, $100=\frac{1}{2\times0.5}\sqrt{\frac{T}{m}}$ [m= তারের প্রতি একক দৈর্গের ভর]। যখন টান চারগুণ করা হল তখন টান 4T newton হল। সেক্ষেত্রে,

$$n = \frac{1}{2 \times 0.4} \sqrt{\frac{4T}{m}} = \frac{1}{0.4} \sqrt{\frac{T}{m}} \quad \text{with finite}, \quad \frac{n}{100} = \frac{2 \times 0.5}{0.4} \qquad \therefore n = \frac{2 \times 0.5 \times 100}{0.4} = 250.$$

② একটি তার 150 কম্পাশ্কযুক্ত সূর উৎপন্ন করে। যদি ঐ তারের টান 9:16 । অনুপাতে বৃধ্বি করা হয় এবং দৈর্ঘ্য দ্বিগুণ করা হয় তবে ঐ তার কত কম্পাশ্কের সুর সৃষ্টি করবে ?

উঃ। মনে করো, প্রথম ক্ষেত্রে তারের দৈর্ঘা ও টান যথাক্রমে I_1 এবং T_1 . দিতীয় ক্ষেত্রে ভানুরপ্রভাবে, ধরা যাক, তারের দৈর্ঘা ও টান যথাক্রমে I_2 এবং T_2 .

প্রথম ক্ষেত্রে,
$$150=\frac{1}{2l_1}\sqrt{\frac{T_1}{m}}$$
 এবং দ্বিতীয় ক্ষেত্রে, $n=\frac{1}{2l_2}\sqrt{\frac{T_2}{m}}$ ভাগে দিলে অন্মরা পাই, $\frac{n}{150}=\frac{l_1}{l_2}\sqrt{\frac{T_2}{T_1}}$: প্রশ্নান্যায়ী, $l_1:l_2=1:2$ এবং $T_2:T_1=16:9$

$$n = \frac{1}{150} = \frac{1}{2} \sqrt{\frac{16}{9}} = \frac{4}{2 \times 3} \qquad \therefore n = \frac{4 \times 150}{2 \times 3} = 100.$$

3 100 g ভরের ছোটো বন্ধু 50 cm দীর্ঘ একটি সুতোর একপ্রান্তে আবন্ধ অবস্থায় একটি মসৃণ টেবিলের উপর বৃত্তাকার পথে সেকেন্ডে 250 cm বেগে ঘুরছে। সুতোর অপর প্রান্ত বৃত্তের কেন্দ্রে আবন্ধ আছে। সুতোর ভর 5 mg/cm হলে সুতোর ভিতর তির্যক তরশোর বেগ এবং মূলসুরের কম্পাশ্ক নির্ণয় করো।

উঃ। সুতোয় তির্যক তরঙ্গের গতিবেগ $V=\sqrt{\frac{T}{m}}$

এখানে, T= বস্তুর উপর ক্রিয়ারত অভিকেন্দ্র বল $=\frac{mv^2}{r}=\frac{100\times(250)^2}{50}=125\times10^3\,\mathrm{dyne}$

এবং সুতোর একক দৈর্ঘ্যের ভর $m = 5 \text{ mg/cm} = 5 \times 10^{-3} \text{ g/cm}$ $\therefore V = \sqrt{\frac{125 \times 10^3}{5 \times 10^3}} \text{ cm/s}$

= 50 m/s আবার, মূলসুরের কম্পাঙক $n = \frac{1}{2l} \sqrt{\frac{T}{m}} = \frac{1}{2 \times 50} \times 5 \times 10^3 = 50$ Hz.

কুর্টি সমদৈর্ঘ্যের ইম্পাত-তার 225 g এবং 256 g ভর দ্বারা টান রাখলে মূলসুর উৎপদ্ম করে। মূলসুরদ্বয়ের কম্পাতেকর অনুপাত 1:4; তার দুটির ব্যাসের অনুপাত নির্ণয় করো।

উঃ। মূলসূরের কম্পাঙক,
$$n=\frac{1}{2lr}\sqrt{\frac{T}{\pi\rho}}=\frac{1}{l.d.}\sqrt{\frac{T}{\pi\rho}}$$
 $[d=$ তারের ব্যাস $=2r]$

তার দটি দৈর্ঘ্যে সমান এবং উভয়েই ইম্পাতের তৈরি হওয়ায় ঘনত্বও সমান। যদি তাদের ব্যাস যথাক্রমে d_1 এবং d_2 হয় তবে প্রথম তারের বেলাতে, $n_1=\frac{1}{ld_1}\sqrt{\frac{225}{\pi o}}$ এবং দিঙীয় ভারের বেলাতে

$$n_2 = \frac{1}{ld_2} \sqrt{\frac{256}{\pi \rho}}$$
; ভাগ দিলে, $\frac{n_1}{n_2} = \frac{d_2}{d_1} \sqrt{\frac{225}{256}} = \frac{d_2}{d_1} \times \frac{15}{16}$.

প্রধান্যায়ী, $n_1:n_2=1:4$; কাজেই, $\frac{1}{4}=\frac{d_2}{d_1} imes \frac{15}{16}$, বা $\frac{d_1}{d_2}=\frac{15}{4}$.

সুই প্রান্তে আক্ত একটি তারের দৈর্ঘ্য 1.1 m । দুটি সেতু (bridge) কে কীরুপ দূরত্বে
রেখে তারকে তিন অংশে বিভব্ত করবে যাতে ঐ তিন অংশের মৃল কম্পাঞ্কের অনুপাত

উঃ। ধরো, তিন অংশের দৈর্ঘ্য যথাক্রমে l_1, l_2, l_3 , তাহলে, $l_1 + l_2 + l_3 =$

1.1 . .(1)

1:2:3 रश?

টান এবং তারের একক দৈর্ঘেরে ভর অপরিবর্তিত থাকলে, মূলসূরের কম্পাঙ্ক ... 1

The second
$$n_1 l_1 = n_2 l_2 = n_3 l_3$$
 where, $l_1 \cdot l_2 \cdot l_3 = \frac{1}{n_1} \cdot \frac{1}{n_2} \cdot \frac{1}{n_3} \cdot \frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{3} = 6 \cdot 3 \cdot 2$

:. 11 = 6k . 12 = 3k 948 12 = 2k [k = 448 \$44]

(i) স্মীকরণ থেকে পাই, 6k+3k+2k=1.1 অথবা k=0.1 , অতথ্য, $l_1=0.6\,\mathrm{m}$, $l_2=0.3\,\mathrm{m}$ এবং $l_3=0.2\,\mathrm{m}$

্বে-,কানো প্রাপ্ত থেকে প্রথম সেত্র দূরত্ব = 0.6 m এবং দ্বিতীয় সেতুর দূরত্ব = 0.6 + 0 % = 0.9 m.

6 একটি তারের রৈখিক ভর ঘনত্ব 5×10⁻³ kg/m। তারটিকে দুটি দৃঢ় অবলম্বনের ভিতর 450N বলে টান করা আছে। তারটি 420Hz কম্পান্ধের সাথে সমসূর। তারটি এর ঠিক পরবর্তী উচ্চতর কম্পান্ধ 490 Hz-এর সাথেও সমসূর হয়। তারটির দৈর্ঘ্য নির্ণয় করো। উঃ। ধর, তারটির কম্পনের nth সমমেল 420 Hz-এর সাথে এবং (n+1)th সমমেল 490 Hz-এর সাথে এবং (n+1)th সম্মেল 490 Hz-

$$420 = \frac{n}{2l} \sqrt{\frac{T}{m}}$$
 এবং $490 = \frac{n+1}{2l} \sqrt{\frac{T}{m}}$ ভাগ দিলে $\frac{490}{420} = \frac{n+1}{n}$ অথবা $n = 6$

প্রথম সমীকরণে
$$n$$
-এর মান বসালে পাই $420=\frac{6}{2l}\sqrt{\frac{T}{m}}=\frac{6}{2l}\sqrt{\frac{450}{5\times 10}};=\frac{900}{l}$

$$\therefore l = \frac{900}{420} \text{ m} = 2.1 \text{m}$$

একটি উল্লম্ব তারের একপ্রান্তে কিছু ভর চাপানো আছে। 60 cm দীর্ঘ তারকে তির্যক

 কম্পনে কম্পিত করলে তা একটি সুরশলাকার সাথে সমসুর হয়। তারে আরও 10 g ভর

 কম্পনে কম্পিত করলে তা একটি সুরশলাকার সাথে সমসুর হয়। তারে কাপালে শলাকার সম্পো অনুনাদ করার জন্য তারের দৈর্ঘ্য 2 cm বাড়াতে হয়। তারে
প্রারম্ভিক ভর কত ছিল ?

উঃ। ধর, প্রথমবার তারে M kg ভর চাপানো ছিল। তারের কম্পাঙ্ক যদি n হয়, তবে,

$$n = \frac{1}{2l} \sqrt{\frac{T}{m}} = \frac{1}{2 \times 0.6} \sqrt{\frac{M \cdot g}{m}} \dots \dots (i)$$

দ্বিতীয়বার যখন তারের ভর এবং দৈর্ঘ্য বৃদ্ধি করা হল, কম্পাঙ্ক একই থাকল। অতএব,

$$n = \frac{1}{2 \times 0.62} \sqrt{\frac{(M + 0.01)g}{m}} \dots \dots (ii)$$

(i) নং এবং (ii) নং সমীকরণ থেকে পাই,

$$\frac{1}{2\times0.6}\sqrt{\frac{M \cdot g}{m}} = \frac{1}{2\times0.62}\sqrt{\frac{(M+0.01)g}{m}}$$
 অথবা, $\frac{62}{60} = \sqrt{\frac{M+0.01}{M}}$

বৰ্গ নিজে,
$$\frac{3844}{3600} = \frac{M + 0.01}{M}$$
 : $M = 0.14754 \text{ kg} = 147.54 \text{ g}$.

৪ একটি তারের দৈর্ঘ্য স্থির রেখে টান 44% বৃশ্বি করলে মূলসুরের কম্পাঙ্ক 6 Hz
বৃশ্বি পায়। টান স্থির রেখে তারের দৈর্ঘ্য 20% বৃশ্বি করা হলে, কম্পাঙ্কের পরিবর্তন
হিসাব করো।

উঃ। তির্যক কম্পনে তারের মূলস্রের কম্পাঙ্ক
$$n=\frac{1}{2l}\sqrt{\frac{T}{m}}$$
(i)

প্রাথমিক টান = T হলে, 44% বৃশ্বির পর টান হবে T' = T + 0.44T = 1.44T :

টান বৃদ্ধিতে কম্পাঙক 6 Hz বৃদ্ধি পায় বলে এবার,
$$n+6=\frac{1}{2l}\sqrt{\frac{1.44T}{m}}$$
....(ii)

(ii) নং সমীকরণকে (i) দ্বারা ভাগ করলে পাই,
$$\frac{n+6}{n} = \sqrt{1.44}$$
 অথবা, $\frac{n+6}{n} = 1.2$ $\therefore n = 30$

আবার, দৈর্ঘ্য 20% বৃদ্ধির পর দৈর্ঘ্য হবে, $l'=1.2\,l$: এক্ষেত্রে কম্পাঙ্ক n' হলে পাই,

$$n' = \frac{1}{1.2l} \sqrt{\frac{T}{m}}$$
(iii)

- (iii) নং–কে (i) নং সমীকরণ দ্বারা ভাগ করলে পাই, $\frac{n'}{n}=\frac{1}{1.2}$ অথবা, $n'=\frac{n}{1.2}=\frac{30}{1.2}-25$ অতএব, কম্পাঙ্কের পরিবর্তন =n-n'=30-25=5 Hz.
- 200 কম্পাঙ্কযুত্ত সুরশলাকা একটি টান করা তারের সাথে সমসুর। তারের টান

 1% বৃষ্ধি করলে, কয়টি য়রকম্প শোনা যাবে ?

উঃ। অন্যান্য বিষয় অপরিবর্তিত থাকলে, টান করা তারের কম্পাঞ্চ টানের বর্গমূলের সমান্পাতিক হয়। প্রথমে তারের টান T এবং পরে (T+T/100)। তখনকার কম্পাঞ্চ n_1 এবং n_2 হলে,

জতএব,
$$\frac{n_2}{200} = \sqrt{\frac{T + T/100}{T}} = \sqrt{1 + \frac{1}{100}} = \sqrt{1.01} \therefore n_2 = 201$$
 (প্রায়)

স্বরকম্পের সংখ্যা = 201 - 200 = **1 প্রতি সেকেন্ডে**।

3-12. টান করা তারে বিভিন্ন উপসূর (Overtones in a stretched string) :

- 3.10 অনুচ্ছেদে বলা হয়েছে দুই প্রান্ত (A এবং B) দৃঢ়ভাবে আবন্ধ টান করা তারের মধ্যস্থলে (c বিন্দু) তারের দৈর্ঘোর সমকোণে টেনে ছেড়ে দিলে তারটি একয়োগে উপর নীচ ওঠানামা করে [3.7
- (a) নং চিত্র]। এই অবস্থায় তারের দৈর্ঘ্য $l=\frac{\lambda_1}{2}$ এবং $n_1=\frac{1}{2l}\sqrt{T}$ এরূপ স্পন্দন চাড়া তার বিভিন্ন বৃত্তাংশে (segment) বা লুপে (loop) বিভক্ত হয়ে বিভিন্ন রূপে স্পন্দিত হতে পারে। যদি তারের মধ্যস্থল স্পর্শ করে যে-কোনো প্রান্ত থেকে তারের দৈর্ঘোর এক চত্ত্বাংশ দূরে তারকে টোকা (pluck) দেওয়া যায় তবে তার দুই বৃত্তাংশে বা দুটি লুপে বিভক্ত হয়ে কম্পিত হবে [3.7 (b)]। এই অবস্থায় তারের দৈর্ঘা l

 $=\lambda_2$ এবং $n_2=rac{2}{2l\sqrt{m}}-2n_1$ এর্প, যে- এংগো প্রাপ্ত থেকে তারের নির্মার এক ৩৬খিনে দরে

তারকে সামান্য স্পর্শ করে। মধ্যেৎ, ঐস্থানে একটি নিজ্পন্দ বিন্দুর সৃষ্টি করে। প্রাপ্তবিন্দ্ এবং ঐ বিন্দুর মধ্যম্পলে তারকেটোকা দিলে তারটি তিন বুভাগো বা লুপে বিভঙ্ক হয়ে কম্পিত হরে [3.7 (c) নং চিত্র]। তখন $l=\frac{3\lambda}{2}$, এবং $n_3=\frac{3}{2l}\sqrt{m}=3n_1$. এরূপে তারের বিভিন্ন বিন্দৃতে নিজ্পন্দ বিন্দু সৃষ্টি করে তারকে মধ্যোপযুক্ত স্থানে আঘাত করলে চার, পাঁচ, ছয় ইত্যাদি লুপে বিভক্ত হয়ে তার স্পন্দিত হরে। সাধারণভাবে তার যদি S বুভাগো বা লুপে বিভক্ত হয়ে কম্পিত হয়, তবে $n_3=\frac{S}{2l}\sqrt{\frac{T}{m}}=S.n_1$...(i)

একে বলা হয় Sth সমমেল অথবা (S - 1)th উপসুর।

উপসুর ও সমমেল ঃ

তার যদি একযোগে ওঠা-নামা করে — অর্থাৎ একটি বৃত্তাংশে স্পন্দিত হয় গ্রাহলে যে সূর নির্গত হয় তাকে মৃলসুর বলে। তার একাধিক বৃত্তাংশে স্পন্দিত হলে ঐ সূরগুলিকে বলা হয় উপসুর (overtones)। উপসুরের মধ্যে যেগুলির কম্পাঙক মূলসুরের কম্পাঙকর সরল গুণিতক তাদের বলা হয় সমমেশ (harmonics)।

চিত্র 3.7(a) থেকে দেখা যায় যে তার একযোগে ওঠানামা করছে এবং ঐ অবস্থায় তার কম্পাঙ্ক সর্বাপেক্ষা কম। সূতরাং ঐ অবস্থায় মূলসূর বা প্রথম সমমেল (first harmonic) নির্গত হবে। দ্বিতীয় চিত্র 3.7(b) থেকে দেখা যাচ্ছে, তার দুই বৃত্তাংশে বিভক্ত হয়ে কম্পিত হচ্ছে। তখন তারের দৈর্ঘ্য তরজার দৈর্ঘ্যের সমান—অর্থাৎ ঐ সুরের কম্পাঙ্ক মূলসুরের কম্পাঙ্কের দ্বিগুণ। এই কারণে ঐ সমমেলকে বলা হয় দ্বিতীয় সমমেল অথবা প্রথম উপসুর। তৃতীয় ক্ষেত্রে [3.7(c) নং চিত্র] তারের দৈর্ঘ্য তরজা দৈর্ঘ্যের $\frac{2}{3}$ -র সমান অথবা মূলসুরের তরজা দৈর্ঘ্যের $\frac{1}{3}$ -র সমান। অতএব, এই সুরের কম্পাঙ্ক মূলসুরের কম্পাঙ্কর তিনগুণ। তাই একে বলা হয় তৃতীয় সমমেল অথবা দ্বিতীয় উপসুর। এভাবে অন্যান্য উপসুরের কম্পাঙ্ক নির্ণয় করতে হবে।

মূলসুরের পর ক্রমবর্ধমান কম্পাঙেকর উপসুরগুলিকে ক্রমানুসারে প্রথম উপসূর, দ্বিতীয় উপসূর, তৃতীয় উপসূর ইত্যাদি বলা হয়। উপসুরগুলির মধ্যে কেবলমাত্র যেগুলির কম্পাঙ্কর দিলপুরের সরল গুলিতক, তাদের বলা হয় সমমেল। সমমেল সুরের কম্পাঙ্ক মূলসুরের কম্পাঙ্কর দ্বিগুণ, তিনগুণ ইত্যাদি হলে, ঐ উপসুরকে যথাক্রমে দ্বিতীয় সমমেল, তৃতীয় সমমেল ইত্যাদি বলা হয়। মনে রাখতে হবে প্রথম সমমেল বলতে মূলসুরকেই বোঝাবে এবং যে–কোনো পরপর দুটি সমমেলের মধ্যে এক বা একাধিক উপসূর থাকতে পারে। উদাহরণস্বরূপ ধরো, কোনো বাদ্যযন্ত্রের স্বরে 256,468,502,768, 1020,1280 প্রভৃতি কম্পাঙ্কের সুর আছে। এক্ষেত্রে 256 কম্পাঙ্কের সুরটি মূলসুর এবং অন্যান্য সবগুলিই উপসুর। কিছু 768 এবং 1280 কম্পাঙ্কের সুর দুটি মূলসুরের কম্পাঙ্কের যথাক্রমে তিনগুণ এবং পাচগুণ বলে তাদের বলা হবে তৃতীয় সমমেল এবং পঞ্চম সমমেল। লক্ষ করো যে তৃতীয় এবং পঞ্চম সমমেলের মধ্যে 1020 কম্পাঙ্কর একটি উপসুর আছে এবং প্রথম সমমেল অর্থাৎ মূলসুর এবং তৃতীয় সমমেলের মধ্যে দুটি উপসুর আছে। সূতরাং বলা যায় সব সমমেলগুলিই উপসুর কিছু সব উপসুর সমমেল নয়।

উপরোক্ত (i) নং সমীকরণ থেকে পাই যে, তারের ধিভিন্ন প্রকার কম্পনে উদ্ভুত কম্পাঙকগুলির প্রতিটিই মূলসুরের কম্পাক্তেকর সরল গুণিতক। সুতরাং তারের কম্পনে সৃষ্টি উপসূরগুলির প্রতােকটিই এক একটি সমমেল। কিন্তু বায়ুন্তস্তের কম্পনে সৃষ্ট উপসুরগুলি তা নয় [3.22 এবং 3.23 অনুচ্ছেদ দ্রুষ্টব্য]।

D Example D

D 4 kg wt বলে 1 metre দীর্ঘ একটি তার টান করা আছে। একই উপাদান এবং ব্যাসের আর একটি তার প্রথম তারটির পাশে 16 kg wt বলে টান করে খাটানো আছে। দ্বিতীয় তারের দ্বিতীয় সমমেল কম্পান্ক প্রথম তারের পঞ্চম সমমেল কম্পান্তেকর সমান করতে হবে। দ্বিতীয় তারের দৈর্ঘ্য কী হবে ?

উঃ। তার দুটির উপাদান এবং ব্যাস সমান হওয়ায়, তাদের রৈখিক ঘনত্ব (m) অথবা প্রতি একক দৈর্ঘো ভর সমান হবে। এখন প্রথম তারের টান T_1 , দৈর্ঘা l_1 এবং পশ্বম সমমেল কম্পাঞ্চ n_5 ধরলে

পাই, $n_5=rac{5}{2l_1}\sqrt{rac{T_1}{m}}$: অনুরূপভাবে, n_2 দ্বিতীয় তারের দ্বিতীয় সমমেল কম্পাঙ্ক, T_2 টান এবং l_2

দৈর্ঘা ধরলে পাই,
$$n_2 = \frac{2}{2l_2} \sqrt{\frac{T_2}{m}} = \frac{1}{l_2} \sqrt{\frac{T_2}{m}}$$

ষ্ঠেতু
$$n_5=n_{2}$$
 সেইেতু $\frac{1}{l_2}\sqrt{\frac{T_2}{m}}=\frac{5}{2l_1}\sqrt{\frac{T_1}{m}}$ অথবা, $\frac{\sqrt{T_2}}{l_2}=\frac{5\sqrt{T_1}}{2\times l_1}$

অথবা,
$$5 \times l_2 \times \sqrt{T_1} = 2 \times l_1 \sqrt{T_2}$$

$$5 \times l_2 \times \sqrt{4} = 2 \times 100 \times \sqrt{16}$$

অথবা, l₂ = 80 cm.

ি তারে তির্যক ও অনুদৈর্ঘ্য তরশাবেগের তুলনা 3 13. (Comparison between transverse and longitudinal waves in a wire):

1.3 অনুচ্ছেদে দেখা গেছে যে তারে অনুদৈর্ঘ্য তরজাবেগ $V_L=\sqrt{rac{Y}{O}}$

আবার, 3.10 অনুচ্ছেদে দেখেছি যে টান করা তারে তির্যক তরজোর বেগ $V_T=\sqrt{\frac{T}{m}}$

তারের প্রস্থাছেদ α হলে, $m=\alpha.\rho$; কাজেই $V_T=\sqrt{\frac{T}{\alpha.\rho}}$

$$\therefore \frac{V_L}{V_T} = \sqrt{\frac{\gamma}{\rho} \times \frac{\alpha \cdot \rho}{T}} = \sqrt{\frac{\gamma \cdot \alpha}{T}}$$

ধর, তারের দৈর্ঘা = I এবং টানের ফলে তারের দৈর্ঘাবৃদ্ধি = ΔI : তাহলে,

$$Y = \frac{T}{\alpha} + \frac{\Delta l}{l} = \frac{T.l}{\alpha.\Delta l}$$
; অতথ্য, $\frac{V_L}{V_l} = \sqrt{\frac{\alpha}{T}.\frac{T.l}{\alpha.\Delta l}} = \sqrt{\frac{l}{\Delta l}}$

যেহেত $\Delta l \ll l$, তাই $V_{\rm T} \ll V_{\rm L}$

আমরা সিন্ধান্ত করতে পারি যে–কোনো নির্দিন্ট টানে, $V_{
m T}$ সর্বদা $V_{
m I}$ অপেক্ষা কম হবে।

্র বায়স্থান্তর কম্পন (Vibration of air column) 🔾

3.14.

বার্তত্তে অন্দৈর্ঘ্য স্থাণ্ডরপা

(Longitudinal standing waves in air columns):

কাচের শিশির মুখে ফুঁ দিলে বা চাবির খোলা মুখে ফুঁ দিলে সুমিন্ট শব্দ নিবত হয় তা এডারে জান বাড়িতে পুজার সময় শীখে ফুঁ দিয়ে সুমিন্ট শব্দ সৃষ্টি করা হয় ভাও তোমরা দেখেছ। এখেকে প্রমাণ হয় কোনো আবন্ধ বায়ুম্ভত্তকে বিচলিত করা হলে, ঐ বায়ুম্ভত্তে অনুদৈর্ঘ্য তরজ্যের উপরিপাতে স্থাপুতরজ্যের সৃষ্টি হয় ও কম্পনশীল বায়ুম্ভত্ত হতে শ্রুতিসুখকর শব্দের উদ্ভব হয়। নানাপ্রকার নলাকৃতি বাদায়ন্ত্রে বায়ুম্ভন্তের এই কম্পনকে কাজে লাগানো হয়। এই শক্ষের কম্পান্তর বায়ুম্ভন্তের কিবল সৃষ্টি করার জন্য সাধারণত দুই প্রকার নল বাবহার করা হয় -(1) দুমুখ খোলা, যাকে বলা হয় খোলা নল বা open pipe এবং (2) একমুখ কম্ব ও একম্থ খোলা, যার নাম বন্ধ নল বা closed pipe নিমে দুই প্রকার নলে বায়ুম্ভন্তের কম্পন্তর প্রকৃতি ও নিঃস্ত শব্দের কম্পান্ডক সম্বন্ধে আলোচনা করা হল। মনে রাখন্তে হবে যে নলে আবন্ধ বায়ুম্ভন্তে কেবলমাত্র অনুদৈর্ঘ্য তরজা সৃষ্টি হতে পারে।

3.15.

ক্রম্ব নলে বায়ুন্তন্তের কম্পন

(Vibrations of air column in a closed pipe):

যথন বন্ধ নলের খোলামুখে অর্থাৎ A মুখে (3.8 নং চিত্রে) ফুঁ দেওয় হয় (অথবা কম্পমান সুরশলাকা ধরা হয়) তখন একটি অনুদৈর্ঘ্য তরজা বায়ুস্তস্তের ভিতর দিয়ে বন্ধ মুখ অর্থাৎ N মুখের দিকে অগ্রসর হয় এবং বন্ধ দেওয়াল কর্তৃক প্রতিফলিত হয়ে (প্রকৃতি অপরিবর্তিত রেখে অর্থাৎ তন্ত্বন তনুভবনর্পে এবং ঘনীভবন ঘনীভবন রূপে) পুনরায় A-মুখের দিকে অগ্রসর হয়। ইতিমধ্যে আর একটি নূতন তরজা আবার N-মুখের দিকে অগ্রসর হলে দুটি বিপরীতগামী তরজা একে আর একের উপর আপতিত হয়ে থাণুতরজোর সৃষ্টি করে। এতে সুরের উৎপত্তি হয়। থাণুতরজোর দৈর্ঘ্য আলাদা হলে

সুরের তীক্ষ্ণতা বা কম্পাঙ্ক আলাদা হয়। যতক্ষণ পর্যন্ত ফুঁ দেওয়া হতে থাকে অথবা সুরশলাকার কম্পন হতে থাকে ততক্ষণ পর্যন্ত ঐ সুরের উৎপত্তি হয়।

তারে তির্যক তরজা কর্তৃক সৃষ্ট স্থাণুতরজোর (চিত্র 3.1) সাথে নলে অনুদৈর্ঘ্য তরজা কর্তৃক সৃষ্ট স্থাণুতরজোর তুলনা খুবই সুবিধাজনক। উভয় ক্ষেত্রেই নিস্পন্দ ও সুস্পন্দ বিন্দুর্য়ের দূরত্ব তরজাদৈর্য্যের এক-চতৃর্থাংশ। চিত্রের দ্বারা অনুদৈর্ঘ্য তরজা প্রকাশ অসুবিধাজনক বলে সাধারণত প্রতীক হিসাবে তাদের তির্যক তরজাচিত্র দ্বারা প্রকাশ করা হয়। 3.8 এবং 3.9 চিত্রে তাই করা হয়েছে।

নলের N মুখ বন্ধ থাকায় ঐ স্থানের বায়ুকণা স্পন্দনক্ষম নয়। সূতরাং ঐ স্থানে সর্বদাই একটি নিস্পন্দ বিন্দুর উৎপত্তি হবে। আবার, A মুখ খোলা থাকায় ঐ স্থানের বায়ুকণা স্পন্দনের সর্বাধিক সুবিধা পায়। এই কারণে খোলা মুখে সর্বদাই একটি সুস্পন্দ বিন্দু উৎপন্ন হবে। এই অবস্থায় যে স্থাণুতরজ্ঞা পাওয়া যায় তা সর্বাপেক্ষা সহজ্ঞতম তর্জ্ঞা এবং

তাতে যে সুরের উৎপত্তি হয় তাকে **মূলসুর** বা প্রথম সমমেল বলে। 3.৪ নং চিত্রে প্রথম নলে এই সহজ্জম স্থাণুতর্জা দেখানো হয়েছে।

্চিত্রে কাটা লাইন দ্বারা প্রতিফলিত তরজা এবং টানা লাইন দ্বারা আপতিত তরজা বোঝানো হয়েছে ho সহজতম স্থাণুতরজোর দৈর্ঘ্য ho_0 হলে নিস্পন্দ ও সুস্পন্দ বিন্দুর ভিতর ন্যুনতম ব্যবধান হয় $rac{\lambda_0}{4}$ এবং এক্ষেত্রে তা নলের দৈর্ঘ্য I-এর সমান। সুতরাং, $I=NA=rac{\lambda_0}{4}$ অথবা, $\lambda_0=4I$

মূলসুরের কম্পাঙ্ক n_0 ও শব্দের বেগ V ধরা হলে, $V = n_0 \lambda_0 = n_0.4I$ অথবা, $n_0 = \frac{V}{4I}$ এই সুর হবে নলের সম্ভাব্য সকল সুরের মধ্যে খাদের সুর। এর তরজাদৈর্ঘ্য সর্বাপেক্ষা কম।

• বন্ধ নলে উপসুর (Overtones in a closed pipe): টান করা তার যেমন বিভিন্ন লুপে কম্পিত হয় একাধিক উপসুর সৃষ্টি করতে পারে (3.12 অনুচ্ছেদ) নলের ক্ষেত্রেও তেমনি উপসুর সৃষ্টি সম্ভব। যদি নলের খোলা মুখে আরও জোরে ফুঁ দেওয়া হয় তবে নলের বায়ুস্তম্ভে উৎপন্ন স্থাণুতরজাের দৈর্ঘ্য পরিবর্তিত হবে এবং চড়া সুরের শব্দ নিঃসৃত হবে। নলের রুদ্ধপ্রান্তের নিম্পন্দ বিন্দু ও মুক্ত প্রান্তের সুম্পন্দ বিন্দুর মধ্যে যথাক্রমে একটি সুম্পন্দ ও একটি নিম্পন্দ বিন্দুও থাকতে পারে (3.8 নং চিত্রের দ্বিতীয় নল)। এই অবস্থায় বায়ুস্তম্ভে যে স্থাণুতরজা সৃষ্টি হয় তার দৈর্ঘ্য λ_1 ধরলে $I=\frac{3\lambda_1}{4}$ অথবা, $\lambda_1=\frac{4I}{3}$. এই সুরের কম্পাঙ্ক n_1 হলে $V=n_1\lambda_1=n_1$ $\frac{4I}{3}$ $n_1=\frac{3V}{4I}=3n_0$: এই সুরের কম্পাঙ্ক মূলসুরের কম্পাঙ্কর তিনপুণ বলে একে খোলা নলের তৃতীয় সমমেল বলা হয়। আবার, ক্রমানুসারে মূলসুরের ঠিক পরের সুর হওয়ায় একে প্রথম উপসুরও বলা হয়।

খোলামুখে আরও জোরে ফুঁ দিলে (অর্থাৎ বায়ুস্তম্ভের উপর চাপ নিয়ন্ত্রণ করে) আরও যে উপসুরের উৎপত্তি হবে উপরিউক্ত উপায়ে প্রমাণ করা যায় যে তাদের কম্পাঙক মূলসুরের কম্পাঙ্কের পাঁচগুণ, সাতগুণ ইত্যাদি হবে। অর্থাৎ ক্রমান্বয়ে পঞ্চম সমমেল বা দ্বিতীয় উপসুর, সপ্তম সমমেল বা তৃতীয় উপসুর ইত্যাদি পাওয়া যাবে। অতএব বংশ নল হতে মূলসুর এবং কেবলমাত্র তার অযুগ্ম সমমেলগুলি (odd harmonics) পাওয়া যায়।

উপরের সমীকরণগুলি হতে সাধারণভাবে বলা যায় যে একম্খ বন্ধ নলে যে সকল সূর সৃষ্টি হতে পারে তাদের তরজাদৈর্ঘ্য $\lambda_x=\frac{4l}{(2x+1)}=\frac{\lambda_0}{(2x+1)}$. আবার কম্পাঙ্ক $n_x=\frac{V}{\lambda_x}=(2x+1)\frac{V}{4l}=(2x+1)n_0$ এখানে x=0,1,2,3, ইত্যাদি যে-কোনো একটি পূর্ণ সংখ্যা।

3.16. খোলা নলে বায়ুন্তন্তের কম্পন (Vibrations of air column in an open tube):

যখন খোলা নলের যে-কোনো খোলা মুখে ফ্ দেওয়া হয় বা অনা কোনো উপায়ে বায়ৢয়য়্জাক আন্দোলিত করা হয় তখন তরজা এক প্রায়্ত হ৻৩ অনা প্রায়্তের দিকে অল্লাসর হয়। অনা প্রায়ের উপালিও হরল এই তরজা হঠাৎ প্রসারিত হবার সুয়োগ পায়, কারণ নলের ভিতরে থাকাকালীন ওরজা শুধু সম্মুখের দিকে অল্লাসর হতে পায়ের কিন্তু খোলা মুখে উপালিও হয়ে চহুদিকে জায়গা পোয়ে হঠাৎ প্রসারিত হয়। ফলে তরজাের এক অংশ মুগু বায়ৢময়ের প্রসারিত হয় এবং অপর অংশ ঐ প্রায়্তির্গলিত হয়ে। নলের ভিতর মূল তরজাের বিপরীত দিকে অল্লাসর হয়। খোলাম্থে উত্ত প্রতিফলনের প্রক্রিয়া আলােচা গন্ডাের বহির্ভত বলা এখানে ঐ সম্বাশে বিস্তারিত আলােচনা করা সম্বন নয়। প্রতিফলিত ওরজা সম্বাশ কেবলমােএ একটি কথা বলা যায় যে এর প্রকৃতিতে π দশাপার্থকা ঘটে— মর্থাৎ তন্ত্রত্বন ঘটাভবন এবং ঘনাভবন এব্রত্বন

বুলে প্রতিফলিত হয় প্রতিফলিত তরজা ও অল্লগ্রেই তরজা একে আর একের উপর আপতিত হয়ে স্থাণ্ডরজোর স্থিট করে তাতে স্রের উৎপত্তি হয়। স্থাণ্ডরজোর দৈখা বিভিন্ন হলে সুরের তীক্ষতা অথবা কম্পান্ত বিভিন্ন হয়।

নলের দ্ই মৃথই খোলা থাকায় ঐ দুই স্থানের বায়ুকণা স্পানরের সর্বাধিক সুবিধা পায়। সুতরাং দুই মৃত্তপ্রাপ্ত দুটি সুস্পন্দ বিন্দু সর্বাধিক সুবিধা পায়। সুতরাং দুই মৃত্তপ্রাপ্ত দুটি সুস্পন্দ বিন্দু রাধাস্থালে একটি নিস্পন্দ বিন্দু থেকে নলে যে স্থাণুতরজ্ঞার সৃষ্টি হবে তাই হবে খোলা নলে সর্বাপেক্ষা সহজ্ঞতম তরজা। তার ফলে যে সুরের উৎপত্তি হবে (3.9 নং চিত্রের প্রথম নল) তাকে মৃলসুর অথবা প্রথম সমমেল বলা হবে।

সহজতম স্থাণুতরজোর দৈর্ঘ্য ১০ হলে দৃটি পর পর সুস্পন্দ

বিন্দুর ভিতর ন্যুন্তম বাবধান হয় $\frac{\lambda_0}{2}$ এবং এক্ষেত্রে সেটা নলের নৈর্ঘ্য I- এর সমান। সুতরাং, $I=AA=\frac{\lambda_0}{2}$ অথবা, $\lambda_0=2I$.

মূলসূরের কম্পাঙ্ক n_0 এবং শব্দের বেগ V হলে $V=n_0\lambda_0=n_02l$; $n_0=\frac{V}{2\tilde{l}}$.

এই সূর হবে খোলা নলের সন্তাব্য সকল সূরের মধ্যে সর্বাপেক্ষা খাদের সূর। এর তরজাদৈর্ঘ্য সর্বাপেক্ষা বেশি এবং কম্পাঙ্ক কম। একে প্রথম সমমেলও বলা হয়।

• খোলা নলে উপসুর (Overtones in an open tube) : কশ্ব নলের ন্যায় খোলা নলেও জোরালো ফুঁ দিলে বা প্রবলবেগে বায়ুপ্রবাহ ঘটালে বিভিন্ন চড়া সুরের শব্দ উৎপন্ন হবে। পরবর্তী উপসুর উৎপন্ন করতে গোলে এমনভাবে বায়ুপ্রবাহ ঘটাতে হবে যে দুই খোলামুখে দুটি সুস্পন্দ বিন্দু ছাড়া নলের মধ্যস্থলেও একটি সুস্পন্দ বিন্দু থাকে (3.9 নং চিত্রের দ্বিতীয় নল)। এস্থালে বায়ুস্তস্তে যে স্থাণুতরজোর উৎপত্তি হয় তার দৈর্ঘ্য λ_1 হলে চিত্র হতে বোঝা যায় যে $\lambda_1 = l$. এই সুরের কম্পাঙ্ক n_1 ধরলে $V = n_1 \lambda_1 = n_1 l$.

 $\therefore n_1 = \frac{V}{l} = \frac{2V}{2l} = 2n_0$ অর্থাৎ এর কম্পাঙক মূলসূরের অথবা প্রথম সমমেল সুরের কম্পাঙকর ছিগুণ। অতএব, এটা হবে **দ্বিতীয় সমমেল** বা **প্রথম উপসুর।**

যদি নলে বায়প্রবাহ আরও জোরালো হয় যাতে দুই মুগুপ্রান্তে দুটি সুম্পন্দ বিন্দু ছাড়া নলের অভ্যন্তরে আরও দুটি সুম্পন্দ বিন্দু থাকে (3.9 নং চিত্রে তৃতীয় নল) তবে দ্বিতীয় উপসূর উৎপন্ন হবে। এক্ষেত্রে তরজাদৈর্ঘ্য λ_2 ধরলে $l=\frac{3\lambda_2}{2}$ অথবা $\lambda_2=\frac{2l}{3}$; দ্বিতীয় উপসূরের কম্পাঙ্ক n_2 হলে $V=n_2\lambda_2=0$

 $n_2 \times \frac{2l}{3}$; $\therefore n_2 = \frac{3V}{2l} = 3n_2$.

এই কম্পাঙক মূলসুরের কম্পাঙেকর তিনগুণ। তাই এই সুরকে বলা হয় **তৃতীয় সমমেল** বা **দ্বিতীয়** উপসর।

এইরূপ অন্যান্য সুরের উৎপত্তি হলে উপরিউক্ত উপায়ে প্রমাণ করা যায়, তাদের কম্পাঙ্ক মূলসুরের চার, পাঁচ, ছয় গুণ ইত্যাদি হবে। সুতরাং খোলা নলের কম্পনে মূলসুর এবং তার যুগা ও অযুগা সকল প্রকার সমমেল সৃষ্টি করা সম্ভব। এই কারণে দুমূখ খোলা বাঁলি বা অর্গান নলের সুর বন্ধ নলের সুর অপেক্ষা বেশি শ্রুতিমধুর।

সাধারণভাবে বলা যায় যে, দুই মুখ খোলা নলে যে সকল সুর উৎপন্ন হতে পারে তাদের

$$\mathbf{SAM(Crti)} \quad \lambda_x = \frac{2l}{(x+1)} = \frac{\lambda_0}{(x+1)}$$

অথবা, কম্পাঙ্ক $n_x=rac{V}{\lambda_x}=(x+1).$ $rac{V}{2l}=(x+1)n_0$ এখানে, x=0,1,2,3 ইত্যাদি যে–কোনো একটি পূর্ণসংখ্যা।

সমদৈর্ঘ্যের কথ ও খোলা নলে মূলসুরের কম্পাক (Frequencies of fundamental in closed and open tubes of same length):

মনে করো, সমদৈর্ঘ্যের দৃটি নল নেওয়া হল। তাদের একটি বন্ধ নল ও অপরটি খোলা নল। উভয় নলের দৈর্ঘ্য I : কল্ম নলে মূলসূরের কম্পাঙ্ক n_0 হলে 3.15 অনুচ্ছেদ অনুযায়ী, $n_0=rac{V}{4I}$

আবার, খোলা নলে মূলসুরের কম্পাঙ্ক n'_0 ধরলে, 3.16 অনুচ্ছেদ অনুযায়ী, $n_0 = \frac{V}{2I}$ $=2\frac{V}{4I}=2n_0.$

অর্থাৎ, সমদৈর্ঘ্যের খোলা নলের মূলসুরের কম্পাক্ষ কথ নলে মূলসুরে কম্পাক্ষের দ্বিগুণ অথবা খোলা নলের মূলসুরের তীক্ষ্ণতা সমদৈর্ঘ্যের বন্ধ নলের মূলসুরের তীক্ষ্ণতার এক অম্টক উর্ধে।

এই কারণে, একটি খোলা নল হতে মূলসুর নির্গত হতে থাকাকালীন যদি হঠাৎ একমুখ বন্ধ করে দেওয়া হয়, তবে ঐ নল ক্ষ নলে পরিণত হবে এবং সুরের তীক্ষ্ণতাও হ্রাস পাবে—অর্থাৎ সুর খাদে নেমে যাবে। অপরপক্ষে, একটি খোলা নলের একমুখ ঢাকনা দিয়ে বন্ধ করে ফুঁ দিতে দিতে যদি হঠাৎ ঢাকনা সরিয়ে নেওয়া হয় তবে সূরের তীক্ষ্ণতা বৃন্ধি পাবে—অর্থাৎ সুর চড়া হবে।

বায়ুন্তন্তের কম্পান্কের উপর বায়ুর তাপমাত্রা ও আর্দরান 3 18. প্রভাব (Effect of temperature and humidity on the frequency of air column):

বন্ধ-নলের মূলসুরের কম্পাঙ্ক $n_0=rac{V}{4I}$ এবং খোলা নলে $n_0=rac{V}{2I}$; এখন বায়ুতে শব্দের বেগ V বায়ুর তাপমাত্রার উপর নির্ভর করে। তাপমাত্রা বাড়লে শব্দের বেগ বাড়ে; আবার তাপমাত্রা কমলে বেগ কমে যায়। অতএব, বন্ধ এবং খোলা নলে বায়ুস্তম্ভের মূলসুরের কম্পাঙক তাপমাত্রা বৃদ্ধি পোলে বৃদ্ধি পাবে এবং তাপমাত্রা হ্রাসে হ্রাস পাবে।

নলের বায়ুস্তম্ভের আর্দ্রতার উপরও শব্দের বেগ নির্ভর করে। বায়ুর আর্দ্রতা হ্রাসবৃদ্ধিতে শব্দের বেগেরও ষ্ট্রাসবৃন্ধি হয়। সূতরাং বায়ুস্তস্তের মৃলসুরের কম্পাঙ্ক আর্দ্রতা বৃন্ধি পেলে বৃন্ধি পাবে অথবা সুর চড়া হবে; আবার আর্দ্রতা কমে গেলে কম্পাঙ্ক কমে যাবে অথবা সূর খাদের হবে।

☐ Examples ☐

П দুমুখ খোলা একটি নলের দৈর্ঘ্য সর্বাপেকা কত কম হলে তা ওা

ত কলাভেকর একটি সুরশলাকার সাথে সমসুর হবে ? বায়ুতে শব্দের বেগ = 3.30 ms^{-1} .

উঃ। সর্বাপেক্ষা কম দৈর্ঘো মৃলসুর উৎপদ্ধ হয়। ্থালা নলের একায় দ্ 6.7876. no = 300 640 V = 330 ms 1

$$\therefore t : \frac{V}{2.n_0} = \frac{330}{2 \times 300} = 0.55 \text{ m} = 55 \text{ cm}.$$

🙆 একটি দুমুখ খোলা নলের দৈখ্য 4 metre ৷ এ নলে বাযুদ্ভারে কম্পন হলে অক্স সময়েলের কম্পাষ্ক কত হবে ? শব্দের গতিবেগ = 356 m/s l

উঃ। সুমুখ খোলা নলের বেলায় মূলসূরের কম্পাঙ্ক $n_0 = \frac{V}{\gamma_1} = \frac{356}{\gamma_2}$ চাবার, এটম সম্মোলের কম্পাঙ্ক n হলে, এরপ নলের বেলায়, $n=8\times n_0$

$$\therefore n = \frac{8 \times 356}{2 \times 4} = 356.$$

🚯 বায়ুপূর্ণ একটি খোলা অর্গান নলের মৃলসূরের কম্পাচ্ছ 500; CO₂ পূর্ণ অপর একটি বংধ অর্গান নলের প্রথম উপসুরের কম্পাধ্ক পূর্বের খোলা অর্গান নলের প্রথম উপস্রের কম্পান্কের সমান। প্রত্যেক নগের দৈর্ঘ্য নির্ণয় করো। বায়ুতে এবং CO2 গ্যাসে শব্দের গতিবেগ যথাক্রমে 330 m/s এবং 264 ms/.

উঃ। বায়ুপূর্ণ খোলা অর্গান নলের মূলসুরের কম্পাঙক $n_0 = rac{V_{air}}{2i}$

$$l = \frac{V_{aut}}{2n_0} = \frac{330}{2 \times 500} = 0.33 \text{ metre} = 33 \text{ cm}.$$

বার্পূর্ণ খোলা অর্গান নলের প্রথম উপসুরের কম্পাঙক $n_1=2n_0=2 imes 500$

আবার, CO_2 গ্যাস পূর্ণ বন্ধ নলের প্রথম উপসূরের কম্পাঙ্ক $n'_1=rac{3V_{\mathrm{co}_2}}{4I}=rac{3 imes264}{4I_0}$

কিন্তু
$$n_1 = n_1^2$$
 : $2 \times 500 = \frac{3 \times 264}{4 \times l_1}$

$$l_1 = \frac{3 \times 264}{4 \times 2 \times 500} = 0.198 \text{ metre} = 19.8 \text{ cm}.$$

🕒 48 cm দীর্ঘ দুমুখ খোলা একটি অর্গান নলের মূলসুরের কম্পাক্ষ 320 Hz; বায়ুডে শব্দের বেগ 320 metre/s হলে, নলের ব্যাস নির্ণয় করো। নলের একমুখ বন্ধ করে দিলে, [Jt. Entrance 2001] ন্যনতম কত কম্পাঙ্কে ঐ নল অনুনাদী হবে ?

উঃ। ধরো, নলের ব্যাসার্থ = r, দুইমুখ খোলা নলের মূলসূরের বেলায় $l+2x=\lambda/2=\frac{1}{2}\frac{V}{n}$ | ∵ V = n\rangle | এখানে x = প্রান্তিক বুটি = 0.6r| একেরে l = 48 cm; x = 0.6r; $V = 320 \times 100 \text{ cm/s}$ এবং n = 320 Hz.

∴
$$48 + 2 \times 0.6r = \frac{1}{2} \times \frac{32 \times 10^3}{330} = 50$$
 অথবা, $r = \frac{5}{3}$ cm.

অতএব, নলের ব্যাস = $2r = \frac{10}{3} = 3.33$ cm.

আবার, এক মুখ বন্ধ নলের মূলস্রের বেলায়,

$$\lambda = 4(l+x) = 4(l+0.6r) = 4(48+0.6 \times \frac{5}{3}) = 4 \times 49 \text{ cm.}$$

$$\therefore \implies n = \frac{V}{\lambda} = \frac{32 \times 10^3}{4 \times 49} = 163.3 \text{ Hz.}$$

5) দৃটি সুরশলাকাকে একসভো বাজালে ৪টি স্বরকম্পের সৃষ্টি হয়। প্রথম শলাকাটি
32 cm দৈর্ঘাবিশিক্ট একমুখ খোলা নলের বায়ৣয়ৢয়য়য় অনুনাদ এবং দ্বিতীয় শলাকাটি 3.3 cm
দৈর্ঘাবিশিক্ট এক মুখ খোলা নলের বায়ৣয়য়য়য় সভো অনুনাদ সৃষ্টি করে। সুরশলাকা দৃটির
কম্পাত্ক নির্ণয় করো।
[Jt. Entrance 1991]

উঃ। ধরো, সুরশলাকাদ্বয়ের কম্পাঙক n_1 এবং $n_2(n_1>n_2)$; তাহলে $n_1-n_2=8$

প্রথম সুরশলাকার ক্ষেত্রে পাই,
$$n_1 = \frac{V}{4l_1} = \frac{V}{4 \times 32} \dots \dots (i)$$

$$n_2 = \frac{V}{4l_2} = \frac{V}{4 \times 33} \dots \dots (ii)$$

$$\therefore n_1 - n_2 = \frac{V}{4} \left(\frac{1}{32} - \frac{1}{33} \right)$$
 ছাথবা, $8 = \frac{V}{4} \times \frac{1}{32 \times 33}$ $\therefore V = 32 \times 32 \times 33$ cm/s

(i) it half-arised anison,
$$n_1 = \frac{32 \times 32 \times 33}{4 \times 32} = 264$$

(ii) At সমীকরণে বসালে,
$$n_2 = \frac{32 \times 32 \times 33}{4 \times 33} = 256$$
.

6. 1 metre দীর্ঘ একটি নলের একমুখ বস্ধ। খোলা মুখের সম্মুখে একটি তার টান করে আটকানো আছে। তারটির দৈর্ঘ্য 30 cm এবং ভর 10 g. তারটি তির্যক কম্পনে কম্পিত হয়ে মূলসুর নির্গত করছে এবং নলের বায়ুদ্ভন্তে কম্পন সৃষ্টি করছে। তারের কম্পনের মূলসুর বায়ুদ্ভন্তের কম্পনের মূলসুরের কম্পানের মূলসুরের কম্পান্ধ এবং (ii) তারের টান নির্ণয় করো। বায়ুতে শব্দের গতিবেগ = 330 m/s.

উঃ। তারের তির্যক কম্পনের মূলসুরের বেলায়,
$$n_0=\frac{1}{2l}\sqrt{\frac{T}{m}}$$
 এখানে, $l=30\,\mathrm{cm}$; $m=\frac{10}{30}=\frac{1}{3}$ ं $n_0=\frac{1}{2\times30}\sqrt{\frac{T}{\frac{1}{3}}}=\frac{1}{60}\sqrt{3T}$ আবার, বন্ধ নলের মূলসুরের বেলায় $n_0=\frac{V}{4l}=\frac{330}{4\times1}=82.5$ যেহেড্ নল ও তারের ভিতর অনুনাদ হয়েছে, সেহেড্, $\frac{330}{4}=\frac{1}{60}\sqrt{3T}$ অথবা, $T=81.7\times10^5\,\mathrm{dyne}$ (nearly).

3.19. ডপলার ক্রিয়া (Doppler's effect):

যখন কোনো শব্দের উৎস n-কম্পাঞ্চের সুর উৎপন্ন করে ৩খন উৎস হতে কিচ্চু দূরে দশুরমানি কোনো শ্রোভা প্রতি সেকেন্ডে n-সংখ্যক তরজা গ্রহণ করেবে, যদি সে এবং উৎস উভয়ই স্থির থাকে: কিন্তু উৎসের গতির দবুনই হোক কিংবা শ্রোভার গতির দবুনই হোক অথবা উভয়ের যুগপৎ গতির দব্নই হোক, উৎস ও শ্রোভার ভিতর যদি আপেক্ষিক গতি থাকে তবে শ্রোভার কানে প্রতি সেকেন্ডে ভিন্ন সংখ্যক त्यका त्याकार्य त्रहाद से व बालय कत्यारकथ त्यायवहत कर्य - से व्यावय कत्याक हराय कत्यारकथ

সমান হরে না যদি শ্রোভা এবং উৎস পরস্পরের দিরে অগ্রসর হয় তবে শ্রত শাদের কম্পাদেরর আপাত বৃদ্ধি হয় এবং শ্রোভা ও উৎস পরস্পর ৩৩ে দরে সরে গোলে শ্রত শব্দের কম্পাদ্ধের আপাত হ্রাস হয়।

ক্ষোতা এবং উৎসের ভিতর আপেক্ষিক বাত্র আরু কম্পাক্ষের আপাত পরিবর্তনকে **ডপলার জিয়া** (Dop pler's effect) বলৈ এবং যে নীতির সাধায়ে ডপলার এই আপাত পরিবর্তন বাাখ্যা করেছিলেন তাকে ডপলার নীতি (Doppler's principle) বলা হয়।

রেলভারে প্রাটিফর্মে দাঁড়িয়ে গতিশীল ট্রেনের বংশীধর্মান শুনালে শানের ভীক্ষাভার (putch) এই পরিবর্তন সহড়েই লক্ষা করা যায়। দূর হতে যখন ট্রেন বংশীধর্মান করতে করতে প্রাটিফর্মের দিকে অগ্রসর হয় তখন শানের তীক্ষ্ণতা বৃদ্ধি পায় বলে মনে হয়; আবার

প্লাটফর্ম ছেড়ে দ্রে চলে যাবার সময় মনে হয় শব্দের ঔক্ষণ্ডা ব্রাস পাছে.

ডপলার প্রভাব আলোচনা করতে গিয়ে আমরা নিম্নলিখিত বিষয়গুলি বিবেচনা করব : — (1) উৎস গতিশীল কিন্তু শ্রোতা স্থির, (ii) শ্রোতা গতিশীল কিন্তু উৎস স্থির, (iii) উৎস ও শ্রোতা উভয়ই গতিশীল, (iv) বায়ু প্রবাহের প্রভাব।

ডপলার প্রভাবের দর্ন তীক্ষতার আপাত পরিবর্তনের হিসাব (Calculation of the apparent change of pitch due to Doppler effect):

(ক) উৎস গতিশীল কিন্ত শ্রোতা প্রির (Source in motion but the listener at rest):

ধরো, উৎস n কম্পাঙ্কের শব্দ উৎপন্ন করছে এবং শব্দের বেগ V: উৎস প্রতি সেকেন্ডে n সংখাক তরঙা সৃষ্টি করছে। তারা এক সেকেন্ডে V দৈর্ঘ্য অধিকার করবে যদি উৎস (S) ম্থির থাকে, কারণ শব্দের বেগ =V: এখন, উৎস যদি শ্রোতার দিকে (শব্দের অভিমুখে) V, গতিবেগে অগ্রসর হয় তবে I second পরে উৎস S হতে S' অবস্থানে যাবে এবং SS' = V, I চিত্র 3.10 I ফলে, প্রতি সেকেন্ডে যে n-সংখ্যক তরঙা উৎপন্ন হচ্চে তারা S'L ম্থানে চাপাচাপি করে অবস্থান করবে কারণ এই তরঙ্গাগুলির প্রথমটি I S সময়ে S হতে L বিন্দৃতে পৌছাবে এবং শেষ তরঙ্গাদির্ঘ্যের পরিবর্তন হবে I দেখা অধিকার করবে I ফলে, তরঙ্গাদৈর্ঘ্যের পরিবর্তন হবে I দেখা

যাচ্ছে, উৎসের গতির ফলে, তরজা-দৈর্ঘ্যের পরিবর্তন হয়। পরিবর্তিত তরজাদৈর্ঘ্য = $\frac{V-V_{_{_{\mathrm{Y}}}}}{n}$: শ্রোভা (L)

যে শব্দ শুনবে তার আপাত কম্পাঙক
$$n'=rac{$$
শ্বের গতিবেগ}{পরিবর্তিত তরজাদৈর্ঘ্য $}=rac{V}{(V-V_{s})}.n\ldots$ (i)

এই সমীকরণ হতে বোঝা যায় যে n'>n: অর্থাৎ উৎস শ্রোতার দিকে অগ্রসর হলে, শ্রুত শব্দের তীক্ষতার আপাত বৃশ্বি হয়।

যদি উৎস শ্রোতা হতে দূরে সরে যায় (শব্দের অভিমূখের বিপরীত দিকে) তবে V_{*} নেগেটিভ ধরতে হবে এবং সেক্ষেরে $n'=\frac{V}{V+V_{*}}.n\dots$ (i)

এক্ষেত্রে n' < n হওয়ায়, **উৎস শ্রোভা হতে দূরে গেলে শুত শব্দের তীক্ষতার আপা**ত হ্রাস হয়।

(খ) শ্রোতা গতিশীল কিন্তু উৎস স্থির (Listener in motion but the source at rest):

যদি শ্রোভা প্থির থাকে তবে প্রতি সেকেন্ডে শ্রোতাকে অতিক্রম করে যে n সংখ্যক তরজা গুচ্ছ চলে যাবে তারা V দূরত্ব অধিকার করবে কারণ শব্দের বেগ ধরা হয়েছে V; এক্ষেত্রে শব্দের তরজ্ঞাদৈর্ঘ্য,

$$\lambda = \frac{V}{n}$$

কিন্তু শ্রোতা যদি নিজে V_0 বেগে উৎস হতে দূরে সরে যায় (শব্দের গতির অভিমুখে) তবে $1 \sec$ second পরে সে L' অবস্থানে পৌছাবে যেখানে $LL' = V_0$: ফলে শ্রোতাকে অতিক্রম করে যে তরজাগৃছে যাবে তার বিস্তার হবে $(V-V_0)$ [চিত্র 3.11]। লক্ষ করবার বিষয় যে, ভরগোর তরজাদৈর্ঘ্য অপরিবর্তিত থাকছে কিন্তু শ্রোতা কর্তৃক গৃহীত তরগোর সংখ্যা পরিবর্তন করছে। (যেমন, স্থির অবস্থায় শ্রোতা 4টি তরজা গ্রহণ করলে গতিশীল অবস্থায় সে 3টি তরজা গ্রহণ করেবে)

 \therefore শব্দের আপাত কম্পাঙ্ক $n'=\frac{\sigma_3}{\sigma_3}$ ত্রজানুচ্ছের বিস্তার $\frac{V-V_0}{\lambda}=\frac{V-V_0}{V}.n...$ (iii)

এখানে, $(V-V_0) < V$ হওয়ায়, n' < n অর্থাৎ শ্রোতা উৎস হতে দূরে সরে গেলে শ্রুত শব্দের তীক্ষ্মতার আপাত হাস পায়। যদি শ্রোতা উৎসের দিকে গতিশীল হয় (শব্দের গতির লাইন বরাবর) তবে, V_0 নেগেটিভ ধরতে হবে এবং $n' = \frac{V+V_0}{V}.n \dots (iv)$

এবার n'>n অর্থাৎ শ্রোতা শব্দ-উৎসের দিকে অপ্রসর হলে দৃত শব্দের তীক্ষ্ণতার আপাত বৃদ্দি হয়।

(গ) উৎস ও শ্রোতা উভয়েই গতিশীল (Source and listener both in motion) :

উৎস এবং শ্রোতা উভয়েই গতিশীল হলে, উৎসের গতির দরুন তরজাদৈর্ঘ্যের পরিবর্তন হবে এবং শ্রোতার গতির দরুন শ্রোতা কর্তৃক গৃহীত তরজা–সংখ্যার পরিবর্তন হবে। যদি উভয়েই শব্দের গতির অভিমুখে গতিশীল হয়, তবে উৎসের গতির দরুন পরিবর্তিত তরজাদৈর্ঘ্য $\lambda' = \frac{V - V_s}{r}$.

আবার, শ্রোতার গতির দরুন শ্রোতা কর্তৃক গৃহীত তরজাগুচ্ছের বিস্তার = $V-V_0$.

$$\therefore$$
 শব্দের আপাত কম্পাঙ্ক $n_1=rac{$ তরজাগুচেছর বিস্তার $}{$ তরজাদৈর্ঘ্য $}=rac{V-V_0}{V-V_s}.n\dots$

(ঘ) বার্থবাহের প্রভাব (Effect of wind) :

যদি বায়ু মাধ্যম পতিশীল হয় । অর্থাৎ উৎস ১ হতে প্রাতা / এর দিকে বায়ু ৻০ পতিবেশে প্রাহিত হয়, তবে শক্তের কার্যকর পতিবেশ হবে (৮ + ০০), কাডেই,

$$n_1 = \frac{(V + \omega) - V_0}{(V + \omega) - V_s}.n...(vi)$$

যদি বায়ু বিপরীত দিকে একই বেণে প্রবাহিত হয়, তবে 🕦 নেণেটিত ধবতে হবে এবং সংক্ষরে,

$$n_1 = \frac{(V - \omega) - V_0}{(V - \omega) - V_s} . n \text{ (vii)}$$

☐ EXAMPLES ☐

① একটি ট্রেন ক্রমাগত 256 কম্পাডেকর বংশীধ্বনি করতে করতে রেল স্টেশনের দিকে 36 km/h বেগে অগ্রসর হচছে। স্টেশনের গ্লাটফর্মে অপেকারত একজন ব্যক্তির কানে ঐ কম্পাডক কত মনে হবে ? ঐ সময় বায়ুতে শব্দের বেগ = 332 m/s.

উঃ। এক্ষেত্রে পর্যবেক্ষক স্থির এবং শক্ষের উৎস পর্যবেক্ষকের দিকে গতিশাল। আপাত কম্পাধ্

$$n'=rac{V}{V-V_s} imes n$$
: এখানে, $V=$ শধ্যের গতিবেগ = 332 m/s ; $V_s=$ উৎসের গতিবেগ = $rac{3(s+1)^3}{(60\times60)}$ =

10 m/s : n = মূল কম্পাঙ্ক = 256

∴
$$n' = \frac{332}{332 - 10} \times 256 = 264$$
 (প্রায়)।

🕗 একটি ট্রেন 72 km/h বেগে একজন দণ্ডায়মান পর্যবেক্ষককে অতিক্রম করে চলে গেল। ট্রেনটি ক্রমাগত বংশীধ্বনি করতে থাকলে, ইন্ধ্রিন পর্যবেক্ষকের দিকে অগ্রসর হবার সময় এবং পর্যবেক্ষক হতে দূরে চলে যাবার সময় প্রত শব্দের কম্পান্ধের অনুপাত নির্ণয় করো। বায়ুতে শব্দের বেগ = 330 m/s.

উঃ। ট্রনের গতিবেগ $V_s = \frac{72 \times 10^3}{60 \times 60} = 20 \text{ m/s}.$

যখন ট্রেন পর্যবেক্ষকের দিকে অগ্রসর হচ্ছে তখনকার শুত কম্পাঙ্ক

$$n_1 = \frac{V}{V - V_0} \times n = \frac{330}{330 - 20} \times n = \frac{330}{310} \times n$$
 [$n =$ শালের মূল কম্পাঙক]

যখন ট্রেন পর্যবেক্ষক থেকে দূরে চলে যাচেছ, তখনকার শ্রুত কম্পাঙক

$$n_2 = \frac{V}{V + V_5} \times n = \frac{330}{330 + 20} \times n = \frac{330}{350} \times n$$

$$\therefore \frac{n_1}{n_2} = \frac{330}{310} \times \frac{350}{330} = 1.13.$$

কোনো শ্রোতার দিকে 100 m/s বেগে অগ্রসরমান ট্রেনের বংশীধ্বনির তীক্ষ্ণতার সাথে শ্রুত শব্দের তীক্ষ্ণতার শতকরা পার্থক্য কত হবে

ই বায়ুতে শব্দের বেগ = 330 m/s.

উঃ। যেহেতৃ উৎস শ্রোতার দিকে অগ্রসর হচ্ছে তাই
$$n'=rac{V}{V-V_s} imes n=rac{330}{330-100} imes n=rac{33}{23}n$$

অভএব, দুই কম্পাঙ্কের পার্থক্য =
$$n'-n==\frac{33.n}{23}-n=\frac{10n}{23}$$

সূতরাং, শতকরা পার্থকা =
$$\frac{10n}{23} \times \frac{100}{n} = 43.5\%$$
.

একটি মোটর গাড়ি একটি খাড়া দেওয়ালের দিকে অগুসর হচ্ছে। গাড়ির চালক লক্ষ
করল যে তার হর্নের শব্দের কম্পাৎক 440 Hz থেকে পরিবর্তিত হয়ে 480 Hz হচ্ছে যখন
হর্নের শব্দ দেওয়াল কর্তৃক প্রতিফলিত হয়ে তার কানে পৌছাছে। শব্দের গতিবেগ 330 m/s
হলে, গাড়ির প্রতি নির্ণয় করো।

উঃ। ধর, গাড়ি দেওয়ালের দিকে V_S গতিবেগে অগ্রসর হচ্ছে। এক্ষেত্রে দেওয়াল বায়ু সাপেকে স্থির এবং উৎস দেওয়ালের দিকে অগ্রসর হচেছ। হর্নের কম্পাঙ্ক n হলে, দেওয়াল (এক্ষেত্রে শ্রোতা) যে কম্পাঙ্ক শুনবে তা

$$n' = \frac{V}{V - V_C} \cdot n$$
 [3.8 অনুচেছদ সমীকরণ (i)]

দেওয়াল এই শব্দকে কম্পাঙ্ক অপরিবর্তিত রেখে প্রতিফালত করবে। এবার দেওয়াল 'n' কম্পাঙ্কের উৎস হিসাবে কাজ করবে এবং গাড়ির চালক হবে শ্রোতা। এক্ষেত্রে উৎস ম্থির এবং শ্রোতা V_S বেগে উৎসের দিকে

অগ্রসর হচ্ছে। প্রতিফলিত শব্দের দরুন চালক যে কম্পাঙ্ক শুনতে পাবে তা, $n''=rac{V+V_S}{V}.n'$ [3.8 অনুচেছদ সমীকরণ (iii)]

:.
$$n'' = \frac{V + V_S}{V} \cdot \frac{V}{V - V_S} \cdot n = \frac{V + V_S}{V - V_S} \cdot n$$
; একেনে $n'' = 480$ এবং $n = 440$

$$\therefore \frac{480}{440} = \frac{V + V_S}{V - V_S}$$
 অথবা $\frac{V_S}{V} = \frac{4}{92}$

:.
$$V_S = \frac{4}{92} \times 330 = 14.3 \text{ m/s} = 52 \text{ km/h}.$$

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- একটি সঞ্চীত্যয়ের তার যে-কম্পান্কের সূর উৎপন্ন করছে নিম্নলিখিত ক্লেত্রে তা কীরুপভাবে পরিবর্তিত হবে কারণসহ উল্লেখ করো।
 - (i) টান চতুর্গুণ করলে, (ii) দৈর্ঘ্য অর্থেক করলে, (iii) মোটা তার নিলে।
- টান করা তারের তির্যক কম্পনে যে মূলসুর উৎপন্ন হয় তার কম্পাঙ্ক নিম্নলিখিত সমীকরণ হতে পাওয়া যায় ঃ $n=rac{1}{2l}\sqrt{rac{T}{m}}$.
 - (i) উপরোক্ত সমীকরণ হতে বোঝা যায় যে, টান চতুর্গুণ করলে (T=4T), কম্পাঙ্ক দ্বিগুণ হবে।
 - (ii) দৈর্ঘ্য অর্থেক করলে (l=1/2) কম্পাঙক দ্বিগুণ হবে।

- inn মার্ল হার মার্লে, প্রাত একক ক্রিয়ে ভব mu বাল্য পারে। ক্রম্যার ক্রান্ত হার জন হার। মান্ত প্রকৃতি প্রের্জ ক্রম্পান্তর (m) ব্যক্ত পার্ব।
- শোলা অর্গান নলে মূলস্বের উপর নিয়লিখিত বিষরগুলির প্রভাব কীর্প ছয়ঃ
 (i) খোলামুখ পরিপূর্ণ ঢেকে দেওয়া হল, (ii) নলের দৈর্ঘ্য বাড়ানো হল, (iii) নলের ব্যাস বাড়ানো হল, (iv) নলের বায়ৢর তাপমাঞা বৃধ্য করা হল।
- খোলা অর্থনে নকে মৃত্যসূর উৎপন্ন হলে, তার কম্পাকক নির্মালিখিত সমীকরণ হলে পাওয়া যায় :
 $n_0 = \frac{V}{2I}$ আবার, একট দৈর্ঘের কম্ম অর্থনে নকে মৃত্যসূরের কম্পান্ধ n_1' , $\frac{V}{4I}$
 - (1) এখন ,খালা মুখ পরিপূর্ণ তেকে দিলে ,খালা অগান নল বন্ধ নাল পরিবত হবে এব ভিংপন্ন সূরের কম্পাঙ্ক হবে $n'_0=rac{V}{4I}=rac{V}{2.2I}=rac{n_0}{2}$, অর্থাৎ কম্পাঙ্ক পূর্বের ভুলনায় অর্থেক হবে :
 - (ii) যেহেতু, $n_0 \propto \frac{1}{l}$ সেহেতু নলের দৈখা বাড়ালে, কম্পাঙ্ক কয়ে যাবে।
 - (iii) খোলা নলের প্রান্তিক-ব্রুটি বিবেচনা করলে, মৃলসূরের কম্পাঙক $n_0 = \frac{V}{2(l+2)}$: প্রান্তিক-ব্রুটি $x = 0.6 \times$ নলের ব্যাসার্ধ। এখন, নলের ব্যাস বাড়ালে, প্রান্তিক-ব্রুটির পরিমাণ বৃদ্ধি পায়, জাবার প্রান্তিক- ব্রুটি বৃদ্ধি পেলে কম্পাঙ্ক হ্রাস পারে।
 - (iv) নলের বায়ুর তাপমাত্রা বৃদ্ধি করলে, বায়ুতে শব্দের বেগ বৃদ্ধি পাবে উপরোও সমাকরণ ২৫ে বোঝা যায় যে, শব্দের গতিবেগ (V) বৃদ্ধিতে মূলসুরের কম্পাঙ্ক বৃদ্ধি পাবে।
- একটি সুরশলাকা একটি বন্ধনলের সাথে অনুনাদ করে। কিছু ঐ সুরশলাকা একই দৈর্ঘ্যের খোলা নলের সাথে অনুনাদ করে না। কেন?
- া সূরশলাকার কম্পাঙ্ক n হলে সমসুর বন্ধ নলের কম্পাঙ্কও n । কিন্তু বন্ধ নলের দৈর্ঘা । হলে $l=rac{V}{4n}$: আবার খোলানলের কম্পাঙ্ক $n=rac{V}{2l'}$. অথবা $l'=rac{V}{2n}$ । এবং l' সমান নয় : তাই একই সুরশলাকা সমদৈর্ঘার বন্ধ এবং খোলা নলের সাথে অনুনাদ করবে না ।
- 4. দৃটি সুরশলাকা সেকেন্ডে 6টি বরকম্প তৈরি করে। একটির বাহু অল্প ভারী করলে শ্বরকম্পের সংখ্যা হয় সেকেন্ডে 2টি। ভার আরও বাড়ালে, বরকম্পের সংখ্যা আবার সেকেন্ডে 6টি হল। এটা কীয়পে সন্তব ?
- সুরশলাকাকে ভারী করলে কম্পাঙ্ক কমে যায়। ফলে স্বরকম্পের সংখ্যাও কমে যায়। স্বরকম্পের
 সংখ্যা কমে যাওয়াতে বোঝা যায় ঐ সুরশলাকার কম্পাঙ্ক অপর সুরশলাকা অপেক্ষা বেশি ছিল।
 এখন, এই সুরশলাকাকে আরও ভারী করলে, কম্পাঙ্ক আরও কমে যাবে এবং এক সময়ে দুই
 সুরশলাকার কম্পাঙ্ক সমান হবে। তখন কোনো স্বরকম্প শোনা যাবে না। তার পর যদি ঐ
 সুরশলাকাকে আরও ভারী করা যায় তবে এই সুরশলাকার কম্পাঙ্ক এবার অপর সুরশলাকা অপেক্ষা
 কম হবে এবং আবার স্বরকম্প শোনা যাবে। এভাবে সুরশলাকার ভার বৃদ্ধি করে যদি তার কম্পাঙ্ক
 অপর সুরশলাকা হতে 6 কম হয় তবে আবার সেকেন্ডে 6টি স্বরকম্প শোনা যাবে।

💥 প্রশাবলি 🔻

রচনামূলক প্রশ

- 1. স্থাণ্তরজা কারুপে উৎপন্ন হয় ? তাদের বৈশিষ্ট্য কী? লেখচিত্রের সাহায্যে স্থাণ্তরজোর উৎপত্তি ব্যাখ্যা করো।
- 2. স্থাণু অন্দৈর্ঘ্য এবং স্থানু তির্যক তরজেরে একটি করে উদাহরণ দাও। সুস্পন্দ বিন্দু ও নিস্পন্দ বিন্দু কাকে বলে চিত্রসম্ভ ব্যিয়ে দাও।
- গাণিতিক বিশ্লেষণের সাহায্যে প্রমাণ করে। যে স্থাণুতরজাে পরপর দৃটি নিম্পন্দ বিন্দু অথবা পরপর দৃটি সুস্পন্দ বিন্দুর দ্রাত্ব সমান এবং তারা প্রত্যাকে স্থাণুতরজা দৈর্ঘ্যের অর্ধেকের সমান।
- তারের তির্যক কম্পনের নিয়য়গুলি ব্যাখ্যা করো। তারের তির্যক কম্পনে যে মূলস্র নির্গত হয় তার কম্পাতেকর রাশিমালা নির্ধারণ করো।
- 5. উপসূর ও সমমেল কাকে বলে? টানা দেওয়া তারের তির্যক কম্পনে তারা কীরুপে উৎপন্ন হয়?
- খোলা ও বন্দ নলে বায়ৣয়য়য়য় কম্পনের বিভিন্ন প্রকৃতি আলোচনা করে। এবং তাদের মূলসূর ও উপসুরের কম্পাঙ্ক
 নির্ণয় করে।
- প্রমাণ করে। যে, একমুখ বন্ধ নলে বায়ুস্তন্তের কম্পনের দ্বারা মৃলসুরের বিজ্ঞাড় কম্পনাক্তের উপসুরগুলির কেবল
 উৎপন্ন হয়।
- পরিষ্কার চিত্র এঁকে বুঝিয়ে দাও কীরপে খোলা এবং বন্ধ নলে স্থাণুতরক্ষোর উৎপত্তি হয়।
- 9. একটি বন্ধমুখ নলের দৈর্ঘ্যের সাথে তার অভান্তরম্প কম্পমান বায়ুদ্রন্তের তরজাদৈর্ঘ্যের সম্পর্ক নির্ণয় করো।
- 10. দুই মুখ খোলা অর্গান পাইপে প্রগামী ও প্রতিফলিত শব্দতরকোর উপরিপাত আলোচনা করো।
- 11. স্বরকম্প কী? স্বরক্ষেপর সাহায়ে। কীর্পে অজ্ঞান্ত কম্পাঞ্চ নির্ণয় করা যায়?
- 12. স্বরকম্প কাকে বলে ? প্রায় সমান কম্পান্তেকর দৃটি সুর একসজে ধর্বনিত হলে, কীর্পে সরকম্পের উৎপত্তি হয় তা গাণিতিক পম্চতিতে য্যাখ্যা করো। ে া
- 13. 256, 264, 272, 280 এবং 288 কম্পাঙ্কের কতকগৃলি সুরশলাকা তোমাকে দেওয়া হল । আর একটি সুরশলাকা দেওয়া হল যার কম্পাঙক 266 হতে 288-র ভিতর। স্বরকম্পের সাহাযে। সুরশলাকার কম্পাঙ্ক সচিকভাবে কীর্পে নির্পন্ন করবে?
- 14. একটি তরজা উৎস কোনো স্থার পর্যবেক্ষকের দিকে । বেগে অগ্রসর হচ্ছে। উৎস থেকে নির্গত তরগোর কম্পাঙক

 и ও তরজাবেগ V হলে আপাত কম্পাঙক কী হবে ? যদি পর্যবেক্ষক উৎসের দিকে ।, বেগে অগ্রসর হয় তাহলে

 আপাত কম্পাঙক কী হবে ?

⇒ সংক্রিপ্ত উত্তরের প্রশা

- (a) দৃটি তরিপোর ভিতর পার্থকা শুধু বিস্তারে। তাঁবা কোনো মাধ্যমের ভিতর ছিল্ল 'দপরাতমুখা অগসের হলে কী
 স্থাণ্তরকা সৃষ্টি হবেও তাতে কী নিজ্পদ বিন্দু থাকরেও শক্তির কোনো স্থানান্তর হবে কৈও
 [সংক্ষেত ঃ স্থাণ্তরকা সৃষ্টি হবেও কোনো নিজ্পদ গিলু থাকরে না কিন্দু স্বাচন কর্ সর্বাচন স্বাধার
 থাকরে। শক্তির স্থানাত্তর হবে না।)
 - (b) ষয়কম্প শ্রুডিবোধা হবার শর্তগুলি কী কী?
- দুই মুখ খোলা একটি নলের দৈর্ঘ্য বখন ভরকাদৈর্ঘের সমান এবং ভরকাদের্থের টু গুল, তখন নলের অভাতার স্বাগ্তরকোর বৃদ্দ হ'ব একে দেখাও।
 [It. Entrance 1982]
- 5. म्यागडरका ७ ५गडराकाद 'चडर लार्थका उँग्राम् काता
- 6. क्षरक कील हात्व करवास्त्र काराव (i) हात्व क्रिये , iii) हात्वद प्राप्त व क्रिय के वेत कार ह
- ৪. । বালে বৰ্ণত নাম চান্ত লাকের আয়ুৰ্য কৰা বৰ্ণতা নাম উল্লেখ্য লাভ আগোঞ্জা আনত নিল্পা। তা লাখ্যা কৰোঁ।

- একটি খোলা অপান নলে মৃলসূরের কার্প পরিবর্তন হবে যদি (i) খোলা মৃথ আংশিক চেকে নেওয়া হয় (iii)
 খোলামৃথ পরিপূর্ণ ঢেকে দেওয়া হয়। (iii) নলেব দৈর্ঘা বাড়ানো হয়। (iii) নলেব বাসে বাড়ানো হয়।
- 10. (a) দু'মুখ খোলা সমদৈর্থার দুটি এগান নল হতে বিভিন্ন তীক্ষতাযুক্ত সূর নির্গত হয় যদি নলের ব্যাসাধি সমান না হয়।
 কেন?
 - (b) দৃটি সমান দৈর্ঘের কিন্তু বিভিন্ন বাসোধের অর্গান নলের ক্ষেত্রে আলাদা কম্পাঙ্ক হয় কেন?

$$\left[\exists \mathsf{RCAS} \; \mathsf{S} \; \; n = \frac{V}{2(l+2r)} \right]$$

- 11. তোমাকে সমদৈর্ঘ্যের দৃটি নল দেওয়া হল—একটি কথ নল এবং অপরটি খোলা নল। ঐ দৃই নল ছতে নিঃসৃত মূলসুরের কম্পাঙ্কের ভিতর কী সম্পর্ক থাকরে? অথবা, কোনো খোলা নলে মূলসুরের ভীক্ষতা সমদৈর্ঘ্যের কথ নলে মূলসুরের তীক্ষতার এক অংটক উধের্ঘ প্রমাণ করে।।
- নিয়লিখিত রাশিগুলি ব্যাখ্যা করো:—(1) মূলসুর, (11) উপসুর, (iii) সময়েল এবং (1v) অউক। "সকল সময়েল উপসুর কিছু সকল উপসুর সময়েল নয়।"—বাাখ্যা করো।
- 13. (i) খনিতে বিধান্ত বাচ্পের অন্তিত্ব নির্ণয়ের স্বরকম্প কীরূপে প্রযুক্ত হয় ?
 - (ii) দৃটি সুরশলাকা সেকেন্ডে 4টি স্বরকম্প তৈরি করে। একটি বাছু অক্স ভারী করলে স্বরকম্পের সংখ্যা হয় সেকেন্ডে
 - ? ; ভাব আরও বাড়ালে, সরকদেশর সংখ্যা আবার সেকেন্ডে 4টি হয়। এটা কীরূপে সম্ভব ?

⇒ অতি সংকিশ্ত উভরের প্রশ্

- অনুদৈর্ঘ্য তরজো একটি ঘনীভবন এবং পরবতী তনুভবনের মধ্যে দূরত্ব কত ?
- 2. গ্যাসে তির্বক তরকা উৎপন্ন করা বার না কেন ? ্
- পুমুখ খোলা একটি চোঙাকৃতি নলের বায়ুবস্তের মূল কম্পাঙক f, নলটিকে খাড়াভাবে জলে অর্থেক নিমজ্জিত রাখলে
 মূল কম্পাঙক কি 2f হবে ?
- 4. কঠিন মাধানে শক্তের বেগ সাধারণভাবে গ্যাস মাধানে বেগ অপেক্ষা বেশি হয় কেন ?
- 5. তারে অনুদৈর্ঘা তরজোর বেগ কি তির্যক তরজোর বেগ অপেক্ষা বেশি ?
- দৃটি সুরশলাকাকে একসংজ্ঞা কম্পিত করলে ().2সেকেন্ড অন্তর জ্ঞার শব্দ শোনা যায়। শলাকাদ্টির কম্পাঙ্ক পার্থক্য কত ?
- 7. তরজোর উপরিপাতের ফলে কি কি ঘটনা ঘটে ? ঐ সকল ঘটনা ঘটার শর্ত কি ?
- 8. সরকম্প শ্রতিবোধ্য হতে গেলে কি কি শর্তের প্রয়োজন ?
- টানা দেওয়া তারের তির্যক কম্পানের কম্পাঙক তারের উপাদানের ঘনত্বের উপর কিভাবে নির্ভর করে ?
- 10. ডপলার প্রভাব (effect) কী ?

⇒ বহুমুখী পছদের প্রশ্ন [Multiple choice type (MCQ)]

(A) নির্ভুল উত্তরটি **্চিহ্নিত করো** :

- একটি সলোমিটারের দৃটি অভিম উপাদানের তার লাগানো আছে ও এদের টানও অভিম। তার দৃটির দৈর্ঘ্য ও ব্যাসার্ধের অনুপাত যথাক্রমে 2:1 এবং 1.4 হলে এদের কম্পাঙেকর অনুপাত হবে
 - (A) 2:1 (B) 1:2 (C) 1:1 (D) $\sqrt{2}$:1.
- রকটি দৃম্থ খোলা নলের বায়ুন্তভের মৃলসুরের কম্পান্তক n। নলটির অর্থেক জলে ডোবালে বায়ুন্তভের মৃলসুরের ক্লান্তক হবে
 - (A) $\frac{n}{2}$ (B) $\frac{3n}{4}$ (C) n (D) 2n.
- [III] দৃটি প্রায় সমান কম্পাঙ্ক ও সমান বিস্তারের তরঙ্গামালা একই দিকে অগ্রসর হয়ে উপরিপন্ন হলে (A) স্থান্তরঙ্গা (B) প্রতিধ্বনি (C) স্বরকল্প (D) অপবর্তন তৈরি হয়।
- যখন টান দেওয়া তারের মধাবিদ্দৃতে টোকা দেওয়া হয় তখন য়ে সকল উপস্রের
 (A) সৃত্পক্ষ বিন্দু (B) নিত্পন্দ বিন্দু তারের মধাবিন্দৃতে অবস্থিত থাকে তারাই চাপা পড়ে।
- [v] গাাসের ভিতর দিয়ে চলাচল করে কেবলমার
 - (A) ভিয়াক ভ্রন্তা (B) অনুদৈর্ঘ্য তরজা
- अन्द्रिम्म उत्का (C) स्थान् उत्का
- (D) তড়িৎচুম্বকীয় তরঙা।

[খা] টানা দেওয়া তারে তিয়ক কম্পান য় তথাকাৰ উৎপতি হয় তার পাতারণ

	(A) $\sqrt{\frac{E}{\rho}}$ (B) $\sqrt{\frac{T}{m}}$ (C) $\sqrt{\frac{\gamma P}{\rho}}$ (D) $\sqrt{\frac{\gamma p}{P}}$
[vii]	১ - a cax (k) (iii) সমীকরণ দাল মির্টেশিত একটি তর্পা আনা আব একটি তর্পেক উপরে উপরিপর করে এক্
	একটি স্থান্তবংখ্যার উদ্ধব করে যে ৮ = ০০ বিন্দৃতে একটি নিস্পাদ বিন্দৃ গঠিত হয় আন তবখাতির সমাকবণ হয়
	(A) $y = a \sin(kx + \omega t)$ (B) $y = -a \cos(kx - \omega t)$
	(C) $y = -a \cos(kx + \omega t)$ $(D) y = a \sin(kx - \omega t) t + \cdots + (D)$
[vlii]	া দৈর্ঘ্যের একটি কথ অগান নলের বায়ুক্তছের দৈর্ঘ্য ও শব্দের গতিবেগের সম্পর্ক
	(A) 0 (B) l (C) 2l · (D) 4l.
[ix]	একটি এত্তিন যখন একজন স্থির পর্যবেক্ষকে অভিক্রম করে যায় তখন এত্তিনের বৃষ্টমের আপাত কম্পাঙ্ক । অনুপাতে পরিবর্তিত হয়। শব্দের বেগ ३३0 m/s হলে, এতিনের গতিবেগ হবে
	(A) 3 m/s (B) 30 m/s (C) 0.33 m/s (D) 660 m/s.
[w]	একটি টানা দেওয়া তারের দৈর্ঘ্যের তিন অংশের কম্পাঙক n_1, n_2 এবং n_3 ছলে, সম্পূর্ণ তারের কম্পাঙক ছবে
101	
	(A) $n_1 + n_2 + n_3$ (B) $\left[\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}\right]^{-1}$
	$(n_1 n_2 n_3)$
	(C) $n_1.n_2.n_3$ (D) $(n_1.n_2.n_3)^{\frac{1}{3}}$.
[xi]	দর্পণ আলোকতরজোর উত্তম প্রতিফলক কিন্তু শব্দ তর্জোর উত্তম প্রতিফলক নয়। আবার, একটি বড়ো গাছ শ
	তরজোর উত্তম প্রতিফলক কিছু আলোক তরজোর নয়। এর কারণ আলোকতরজা ও শব্দ তরজোর পার্থকা,
	(A) তরজাদৈর্ঘ্যে (B) গতিবেগে (C) বিস্তারে (D) পর্যায়কালে
[xii]	65টি সুরশলাকাকে এরূপভাবে সাজ্ঞানে হল যে প্রত্যেক সূরশলাকা আগের শলাকার সজো সেকেন্ডে ३টি স্বরক্ষ উৎপন্ন করে। শেষ সুরশলাকা প্রথমটির এক অস্টক উধ্বর্ম থাকলে প্রথম ও শেষ শলাকার কম্পান্ধ্ক হবে
	(A) 384, 192 (B) 192, 384 (C) 184, 392 (D) 392, 184.
[xii]	একটি সুরশলাকা 95 cm এবং 100 cm দীর্ঘ টান করা তারের সঙ্গো প্রতি সেকেন্ডে 10টি ম্বরকম্প উৎপন্ন করে ঐ শলাকার কম্পাহক
	(A) 375 (B) 380 (C) 390 (D) 400.
[xiv]	শব্দ উৎস স্থির শ্লোতার দিকে অগ্রসর হলে শব্দের আপাত্ত কম্পাঙ্ক
	(A) হ্রাস পায় (B) একই থাকে (C) বৃদ্ধি পায় (D) বহুগুণ হ্রাস পায়।
[xv]	A এবং B দৃটি সুরশলাকা একসক্ষো কম্পিত থেকে সেকেন্ডে গটি স্বরকম্প সৃষ্টি করে। শলাকা দৃটি যথাক্রমে ३৮০ এবং 37 cm দীর্ঘ বন্ধনলের বায়ুস্তম্ভের সাথে অনুনাদী হলে, তাদের কম্পাড়েকর মান
	(A) 175, 180 (B) 180, 185 . , (C) 185, 190 . (D) 195, 200.
[xvi]	সমদৈর্ঘোর দৃটি খোলা ও বন্ধনলের বায়ুত্তন্তের কম্পনের ক্ষেত্রে মূলসুরের কম্পাঞ্জের অনুপাত
	(A) 2:1 (B) 1:2 (C) 1:4 (D) 4:1.
[xvli]	খনিতে দূবিত গ্যাসের অন্তিত্ব পরীক্ষা করা যায়
	(A) শব্দের ব্যতিচার ঘারা (B) স্বরকম্পের ঘারা
	(C) প্রতিফলকের ন্বারা ।
[xviii] স্থানুতরজোর ক্ষেত্রে পরপর দৃটি নিম্পন্দ বিন্দুর মধোকার দৃরত্ব
	(A) $\frac{\lambda}{2}$ (B) $\frac{\lambda}{3}$ (C) 2λ (D) $\frac{\lambda}{4}$
[xix]	একটি বন্দনলের বায়ুন্তন্তের কম্পনের মূলসূরের কম্পাজক 512 Hz। ঐ নলটি দুমুখ খোলা হলে ঐ নলের মূলসূরে কম্পাজক হবে
	(a) 256 Hz (B) 1024 Hz (C) 221 Hz (D) 128 Hz.

[66] Maries and a see to 1) Change for demonstrating deal section of a 20 and	
्रेशी स्त्र	
(A) 40 cm (B) 80 cm (C) 120 cm (D) 20 cm	
news and naturally not weather than once the end of the property of the work (Hilly) for [Hilly]	
হাছে পাইবাজন সংগাত Internally কাল কেন্দ্ৰ শুৰু পুনাত প্ৰবাস, চাত্ৰত সৰ্বাসন মান হ'ব	
$(A) = \frac{18}{\sqrt{2}} \text{ ms}^{-1}$ (B) 18 ms (C) 30 ms (D) 18 $\sqrt{2}$ ms (
[XVII] मेर्ड कामक केले भार कल्याका प्रशास कल्याकार प्रमान प्राप्त कामका काम केले केलीहर (वह)-	
31°C घरम, সেবেহত प्रावण्य स्थान गरान,	
(A) 1 (B) 3 (C) 2 (D) 4. [3t. Entrance 3006]	
(১৯টা) কি ধ্বালের মানুষর স্মান্ত্রকা হল 👉 ০০০ চন 📜 ০০০ চন জন্ম 🃜 এক চন ইপরিপাইন মটার্ন্ধা হল	
উপরিপতিত ভরজ্যের বিরোর হল ' ' '	
(A) $2a\cos 2\pi a b$ (B) $2a\cos (2\pi a a)$ (C) $2a\cos (2\pi a a)$ (D) $2a\cos \frac{2\pi a}{\lambda}$	
[Jt. Entrance 2006]	
RI	
[xxiv] একটি স্থান্তরভারে সমীকরণ দেওয়া থাকে > = 10 sin 🔏 cos 20π/cm> দুটি পালাপালি নিস্পাদ বিশ্বর দ্বাস্থ	
The second state of the second	
(A) 2 cm (B) 4 cm (C) 1 cm (D) 8 cm [Jt. Entrance 2006]	
(B) 'नृजान्यान नृज्ञ' करता [Fill up the gaps] ह	
[i] দৃটি সুসংগত তরক্ষার প্রত্যাকটির তীব্রতা I তরক্ষা দৃটিন উপরিকাতে উৎপন্ন ধালারের উজ্জ্বল পটিন কীব্রতা	
के कि	
[11] খোলা নাল খুব ভোরে বায়পুরাহ চালালে মৃলস্বের এক উর্কের সূব নির্গত হয়	
(iii) একই দৈর্ঘের মোটা এবং সরু নলের ক্ষেত্রে মোটা নলের সুরের কম্পাক্ত সরু নল আপক্তা	
(iv) একটি দুমুখ খোলা নল থেকে মূলসূর নির্গত হতে থাকার সময় যদি হঠাৎ এক মুখ বন্ধ করে দেওলা হয় তবে নির্গত সূরের তীক্ষতা পায়।	
সুরের ভাক্কথা পার। [v] কোনো নির্দিষ্ট টানে ভারে তির্মক তর্জার বেগ অনুদৈর্ঘ্য তর্জার বেগ অপেকা!	
[vi] উপস্বগুলির মধ্যে কেবলমাত্র যেগুলির কম্পাঙ্ক মূলসূরের কম্পাঙ্কের সরল গুলিতক তাদের বলা হর	
(C) कुल कि निर्जुल विहास करता (True or false) :	
[i] একই বিস্তার ও কম্পাঙ্কের দুটি চলতরঙ্গা বিপরীত দিক থেকে অগ্রসর হয়ে একটি আর একটির উপর আপতিত	
হলে স্বরক্তেপর সৃষ্টি হয়। [ii] একই কম্পাঙক ও বিস্তারের অথবা একই কম্পাঙক ও সামানা পৃথক বিস্তারের দৃটি সরল দোলতরজা একে আর	
একের উপর আপতিত হলে বাতিচার সৃষ্টি হয়।	
[111] স্থান্তরজোর নিস্পন্দ বিন্দুগুলির ভিতর দিয়ে সর্বাধিক শক্তি চালিত হয়।	
[iv] একটি স্থানুতরঞ্চাকে $2a\cos\frac{2\pi\iota}{\lambda}\sin\frac{2\pi}{\lambda}$ w সমীকরণ দিয়ে প্রকাশ করা যায়। ঐ তরফোর বিস্তার =	
$2a\cos\frac{2\pi\kappa}{\lambda}$	
[v] কম্পমান তারের দৈর্ঘা ও ঘনত্ব অপরিবর্তিত থাকলে তারে তির্যক্ত কম্পনের কম্পান্তর তারের ব্যাসারের ব্যক্তানুপাতে	
পরিবর্তিত হয়। ১০০০ ১০০ ১০০ ১০০ ১০০ ১০০ ১০০ ১০০ ১০০ ১০	
[vi] একটি বাদাযন্ত্রের স্পরে 256, 468, 502, 768, 1020, 1280 প্রভৃতি কম্পাড়েকর সূর আছে। এক্সেক্তে 256 কম্পাড়েকর সুরটি মৃলসূর কিন্তু 768 এবং 1280 কম্পাড়েকর সূর দুটি সমমেল	
⇒ সহজ গাণিতিক প্রশ্ন	
1. 220 কম্পাঙ্কের শব্দত্রজা বার্তে ব্যাণ্ডার্ডার গাঁও বিষয়ে ক্রিক্তর দলত নেত্র দিটি প্রপ্র নিম্পন্দ বিন্দর দর্ভ	

সুম্পন্দ বিন্দ্র দূরত্ব, (ii) একটি নিম্পন্দ ও পরবর্তী সুম্পন্দ বিন্দ্র দূরত্ব, (iii) দৃটি পরপর নিম্পন্দ বিন্দ্র দূরত্ব

নির্ণয় করো

[Ans. (i) 75 cm, (ii) 37.5 cm, (iii) 75 cm]

100 কম্পাঙেকর শনতরক্ষামালা একটি দৃঢ় প্রতিফলকে অভিলম্বভাবে আপতিত হয়ে প্রতিফলিত হক্ষে। দেওয়াল হতে
নিম্পান এবং সুম্পান বিন্দুগুলির দৃরত্ব কীর্প হবে? শন্তের গতিবেগ = 340 m/s

[Ans. নিম্পুল বিন্দু = 17 m, 34 m, 51 m সুম্পুল বিন্দু = 0.85 m, 2.55 m, 4.25 m]

3. y = a cos ki sin k.ui সমীকরণটি একটি স্বাণুতরক্ষা বোঝায়। ভার তরক্ষাদৈর্ঘ্য ও কম্পাঙ্ক কত?

[Ans. $\frac{2\pi}{k}$: $\frac{vk}{2\pi}$]

- 4. দৃটি চলতরজার প্রভাবে x=0 অবস্থানে মাধ্যমের একটি কণার সরণ যথাক্তমে $y_1=\sin 4\pi i$ এবং $y_2=\sin 2\pi i$.

 1. সেকেন্ডে কতবার কণাটির লন্দি সরণ শূনা হবে?

 [Ans. 4 বার]
- 5. একটি দীর্ঘ অনুভূমিক ভারের একপ্রান্তকে উপর নীচে মোট 16 cm নাড়িয়ে তারে তির্যক কম্পন সৃষ্টি করা হল। ঐভাবে সেকেন্ডে 2 বার নাড়ানো হচছে। তারের ভর ৪ p/cm এবং টান 10 g wt হলে, তরজোর গতিবেগ, বিস্তার ও তরজানৈর্যা নির্ণয় করো।
 [Ans. 35 cm/s; 8 cm; 17.5 cm]
- 6. 1 kg ভর দ্বারা টান দেওয়া একটি তারের কম্পাঙক 320 কম্পাঙকর একটি সুরশলাকার সাথে সমসুর। 256 কম্পাঙকর সুরশলাকার সাথে সমসুর হতে গেলে তার টানের কী পরিবর্তন করতে হবে ?[Ans. 0.36 kg কমাতে হবে ?
- ... 7. 36 cm দীর্ঘ একটি তার 256 কম্পান্তেকর একটি সুরশলাকার সাথে সমসুর। ঐ তারের 40 cm দৈর্ঘ্য অপর একটি সুরশলাকার সাথে সমসুর। ঐ দ্বিতীয় সুরশলাকার কম্পান্তক কত ? [Ans. 230.4]
 - 8. টানা দেওয়া কোনো তারের মূল কম্পান্তক 250/s। দৈর্ঘ্য দ্বিগুণ করা হল এবং টানও এমনভাবে বাড়ানো হল যে মূল কম্পান্তক একই থাকে। নতুন ও পূর্বের টানের মধ্যে সম্পর্ক বের করো।
 [Ans. 4:1]
 - একই নমুনার (একক দৈর্ঘ্যে সমান ভরবিশিক্ট) দুটি তার টান অবস্থায় আছে। একটির দৈর্ঘ্য অপরটির দ্বিগুণ। কিছু
 তারা পরস্পর অনুনাদ উৎপল্ল করছে। তাদের টানের তুলনা করো।

 [Ans. 4:1]
 - 10. একটি বেহালার তারের দৈর্ঘ্য 24 cm হলে মূলসুর নির্গত হয়। পরবর্তী অন্টক সুর উৎপন্ন করতে কত দৈর্ঘ্য প্রয়োজন হবে? [Ans. 12 cm]
 - 11. m ভরবিশিষ্ট একটি সূতো হতে M ভরের (M>>m) একটি পিঙ ঝোলানো আছে। সরল দোলক হিসাবে দোলালে তার পর্যায়কাল হয় T_1 . পিঙটিকে পথর রেখে সূতোর তির্যক কম্পন সৃষ্টি করলে তার মূলসূরের পর্যায়কাল হয় T_2 । প্রামাণ কর $T_1/T_2 = \pi \sqrt{M/m}$.

 $[\pi(c = 0)] T_1 = 2\pi \sqrt{l/g}; T_2 = 2l \sqrt{m/M.g.l}]$

- 12. একটি তার ৪০ কম্পাঙ্কের সূর উৎপন্ন করছে। ঐ তারের টান 1:9 অনুপাতে এবং দৈর্ঘ্য 1:2 অনুপাতে বৃশ্বি করলে, তা কত কম্পাঙ্কের সূর সৃষ্টি করবে? [Ans. 120]
- 13. একই উপাদানে তৈরি দুটি তারের দৈর্ঘোর অনুপাত 2.3: তাদের ব্যাস সমান হলে এবং ব্রন্থ তার কতৃক সৃষ্ট মূলসূরের কম্পাঙ্ক দীর্ঘ তারের মূলসূরের কম্পাঙ্কর এক অন্টক উধের্য থাকলে তাদের টানের অনুপাত কত? [Ans. 16:9]
- 14. 0.9 mm ব্যাসের একটি সনোমিটার তারের বদলে একই উপাদানের কিছু 0.93 mm ব্যাসের আর একটি তার ব্যবহার করা হল। টান একই থাকলে, তাতে মূলসুরের কম্পাঞ্চের শতকরা পরিবর্তন কী হবে? [Ans. -3.2%]

[সংকেত ঃ $n=\frac{K}{d}$: K= ধ্বক ; d= ব্যাস ; প্রথমবার , $n_1=\frac{10K}{9}$; দিতীয়বার $n_2=\frac{10K}{93}$; অতএব , শতকর

পরিবর্তন =
$$\frac{n_2 - n_1}{n_1} \times 100$$
]

- 15. অজ্ঞাত কম্পাঞ্জের একটি সুরশলকা ২৪4 কম্পাঞ্জের একটি প্রমাণ সুরশলাকার সাথে সেকেন্ডে ২টি স্বরকম্প তৈরি করে। প্রথম সুরশলাকার বাহুতে একটি মোমের টুকরো সাগালে, স্বরকম্পের সংখ্যা হ্রাস পায়। ঐ শলাকার কম্পাঞ্জ কত ?
 [Ans. 387]
- 16. দৃটি সুরশলাকাকে একসঞ্চো কম্পিত করলে 5টি মরকম্প শোনা যায়। একটি শলাকার কম্পাক্ষ 295 Hz. অন্য শলাকার বাহৃতে একট মোম পাগিয়ে আবার উভয়কে একসকো কম্পিত করা হল এবাব ১টি মবকম্প শোনা গোল। ছিতীয় সুরশলাকার কম্পাক্ষ কত?
- 17. A এবং B দৃটি সরশলাকা একসভো কম্পিত হলে 4টি স্বকম্প উৎপর করে B সরশলাকাতে কিছু মোম পাণারে স্বকম্পের সংখ্যা হয় 6. মোয়ের পরিমাণ কিছু কমালে, স্বরকম্পের সংখ্যা এ-এ নেমে অত্যাঃ A শলাকার

18. 200 जिल्ला वाका में दे 200 वर्षा कर वाहर प्रमाणक प्रमाणक स्थान । 200 वर्षा वाहर वर १ वर्षा वर्षा वर्षा वर्षा Process 63 Response (mail organisms of 63 2007, 81 000mg 541 [Ans. 0.02]

19. तक द्वार प्रांत पृष्ठि वलहे 25 cm निर्म हार्युत कल्लाक कर रहतः लाका । इ.स. ... र प्रांत [Ams. 336 , 672 (2011)]

20. 100 cm. মার্ম একটি অধ্যান নালে মুক্তসন্ত্রর কাব্যাকর 200 cm কার্ম একটি জানুব কাব্যাকরত সাগে, সমস্ত্র ঐ कार्यय अहर अनुभूतिशय अन्तराय कर 1 में तथा यसेटन बटन्य राज्यंता, " रतामार" कार्यय सम स्थाप कर्या। [Ana linh a 10" dyne]

21. वक्सर तम १,वड़ी धर्मण गत्नद (मर्ग) पा.m अनुमृत्य केंद्र लकाही महाहात्मद क्रम्म का हात्मा, वहवा। (नामुट्ट শব্দের বেগা. = 300 m/s) . া ্বান বিশ্বন হিচাপের হিচাপের হিচাপের হিচাপের হিচাপের বিশ্বন হিচাপের হি

22. একটি গাণ্ডেৰ মধ্যে ৰুটি ভ্ৰমণ ২ সংকৰে 10টি মারকম্প সুস্ট কৰে। ভালেৰ ভৰত ক্ৰম, মধ্যক্ষম 1m ও 101m Ans. \$56.67 ms 1 ট্র মাধ্যমে শকের বেশ দেশ্য করে।

[π (π 0 : $V = n_1 \times 1 = n_2 \times 1.01$; $n_1 - n_2 = \frac{10}{3}$]

23, 24টি সুরশলাকা কুমনর্ধমান কুম্পান্ধ হিসাবে পরপর সাজালে। আছে। ম-কোনো সর্গলাকা তার পরবাতী শলকার সাথে সেকেন্ডে এটি ম্বকম্প তৈরি করে। ,শম সুরশলাকাটি যদি প্রথমটির অস্টক হয়, তবে পথম ও শেষ শলাকা দৃটির কম্পাঙ্ক নির্পন্ন করো।

24. দৃটি সুরশলাকা একসংক্ষা কম্পিত করলে সেকেন্ডে চটি স্বরকম্প হয় : তারা একইরকম একলাচা নিবর টানের 90 cm এবং 91 cm দৈর্ঘের সক্ষো যথাক্তমে সমসূর। সুরশ্লাকা দুটির কম্পাক্ত কত? [Ans. 546 , 540]

[সংক্তেঃ $\frac{n_1}{n_2} = \frac{91}{90}$ এবং $n_1 - n_2 = 6$]

25. 75 cm मोर्च একটি ভার একটি ফার্কের সাথে অনুনাধী। ভারের দৈশা । m কমানে সেটা ফার্কেব সাথে সেকেন্ডে ১টি স্থরকম্প উৎপন্ন করে। ফর্কের কম্পাঙ্ক নির্ণয় করে।। [Abs. 144]

26. A & B দৃটি সুরশলাকা একত্র কম্পিত হলে প্রতি সেকেন্ডে ১টি মরকম্প উৎপর হয়। নির্দিশ্য একটি টানে একটি তারের 40 cm দৈর্ঘোর কম্পাঞ্চ A সুরশলাকার সাথে সমসূর এবং B সুরশলাকার কম্পাঞ্চ সমটানে ঐ তারের 40.5 cm দৈর্মোর কম্পাঙ্কের সাথে সমস্ব : সুরশলাকাছরের কম্পাঙ্ক নির্বয় করে [Ans. 405, 400]

27. A এবং B দৃটি সুরশলাকা একই সঙ্গো কম্পিত করলে ১টি স্বরকম্প সৃষ্টি হয় যদি A এবং B উভয়েই একটি একমুখ কৰা নলের যথাক্তমে 36 cm এবং 17 cm বায়ুস্তস্তের সাথে অনুনাদ সৃষ্টি করে, ভাষলে সুরশলাকা দৃটির [Ans. 37 · 36] কম্পাঙেকর অনুপাত নির্ণয় করে।।

28. একটি মুখখোলা অর্গান নলের দৈর্ঘ্য একটি বস্থ অর্গান নলের দৈর্ঘ্যের দ্বিগুণ। যদি খোলা নলের মূল কম্পান্তক 100 [Jt. Entrance 1992] [Ans. 300] Hz হয় তবে বন্ধ নলের তৃতীয় সমমেলের কম্পাঙক কত ?

29. 60 cm দীর্ঘ টানা দেওয়া তার যথন মূলসূর উৎপন্ন করে কম্পিত হচ্ছে তখন 245 কম্পাঙ্কের একটি সুরশলাকাকে ঐ তারের পাশে রাখলে সেকেন্ডে ১টি স্বরকম্প উৎপন্ন হয়। তারের টান একটু বাড়ালে, স্বরকম্পের সংখ্যা বৃশ্বি [Ans. 360 m/s] পায়। শব্দের গতিবেগ কত?

30. এক মুখ বন্ধ দৃটি অর্গান নল একস্কো মূলসুর উৎপন্ন করে তখন গটি স্বরকম্প তৈরি হয়। নল দুটির দৈর্ঘোর [Ans. 255, 250] অনুপাত ১০:5। হলে, তাদের মূলসুরের কম্পাঙক নির্ণয় করো।

কঠিন গাণিতিক প্রশ্ন

- দৃটি দৃঢ় অবলম্বনের ভিতর একগাছা তামার তার আটকানো আছে। 30°C তাপমাত্রার তারটি ঠিক টান হয়ে থাকে এবং টানের পরিমাণ প্রায় শূন্য। 10°C গ্রপমান্ত্রায় তার দিয়ে যে তির্যক তরঙ্গা যাবে তার গতিবেগ নির্ণয় করো। তামার $Y = 1.3 \times 10^{11} \text{ N/m}^2$, $\alpha = 1.7 \times 10^{-5}$ PC 요작한 퇴하철 = $9 \times 10^3 \text{ kg/m}^3$. [Ans. 70 m/s (설템)]
- 2. 005 g/cm রৈখিক ঘনত্ত্বে একটি তার দুটি অবলম্বনের ভিতর 45 x 10' dyne বলে টান করা আছে। তারটি 420 কম্পাঞ্চের সাথে সমসুর। পরবতী যে কম্পাঞ্চের সাথে তারটি অনুনাদ সৃষ্টি করে তা হল এ৭০। তারটির দৈর্ঘ্য 本意?
- 3. 50 cm দীর্ঘ একটি তার টান করে আটকানো আছে। তারের ভর 2 g : তারটি তির্যক কম্পনে কম্পিত হলে মূলসুরের

কম্পাঙ্ক হয় 440 ় তারটির কোথায় আঞ্চাল চাপলে ১১৪ কম্পাঙ্কের সূর নির্গত হবে?

[Ans. প্রান্ত হতে 8.3 cm দুরে]

- 4. একটি তারের দৃই প্রাপ্ত দৃঢ়ভাবে আবন্ধ। তারের তাপমাত্রা 10° C হ্লাস পেল। এতে যে টানের পরিবর্তন হল তার জনা তারে তির্যক কম্পানের মূলসূরের কম্পান্ডক দ্বিগুণ হল। প্রাথমিক বা মূল টানের মান কড ছিল ? তারের প্রস্থাক্তেদ = $0.01~\text{cm}^2$; $\alpha=16\times10^{-6}/\text{°C}$ এবং $Y=20\times10^{11}~\text{dyne/cm}^2$. [Ans. $8\times10^{5}~\text{dyne}$]
- 5. 12 metre দীর্ঘ এবং 6 kg ভরের একটি সুকম দড়ি দৃঢ় অবলম্বন হতে খাড়া ঝুলছে। দড়ির নিম্ন প্রান্তে 2 kg ভরের একটি বুক যুক্ত করা হল। দড়ির ঐ প্রান্তে 0 06 m তরজাদৈর্ঘেরে একটি তির্যক তরজা উৎপন্ন করা হল। ঐ তরজা যখন দড়ির শীর্ষপ্রান্তে পৌচাবে তখন তার দৈর্ঘা কত হবে?
 [Ans. 0.12 metre]
- 6. 3 13 নং চিব অন্যায়ী 4 kg ভরকে কপিকল P হতে ঝোলানো আছে। সূতোর অপব প্রান্ত মাটিতে অবন্ধ মাটিতে কোনো ভির্যক তরজা উৎপন্ন করলে, ঐ তরজা মাটি হতে কপিকল পর্যন্ত (পীছাতে কত সময় নেবে? g = 10 m/s² এবং সূতোর ভর = 20 g

[Ans. 0.04 s]

ি সিংকেত ঃ
$$V = \sqrt{\frac{T}{m}}$$
; $T = 4 \times 10$ N ; $m = \frac{20 \times 10^{-3}}{5}$ kg/m ;

1 সময় হলে 4 = V x t

- 7. $100\,\mathrm{cm}$ দূরত্বে রাখা দূটি অবলম্বনে $9\,\mathrm{g/cm^3}$ ঘনম্বের একগাছা তারকে আটকানো হল। এতে তারের দৈর্ঘ্যবৃদ্ধি হল $0.05\,\mathrm{cm}$: তার তির্যক কম্পনে কম্পিত হলে, নিম্নতম কম্পান্ডক কত? তারের উপাদানের ইয়ং গুণান্ডক = $9\times10^{11}\,\mathrm{dyne/cm^2}$.
- 8. 25 cm ব্যবধান রাখা দৃটি ব্রীক্তের উপর একটি তার রেখে তাতে টান প্রয়োগ করে 0.04 cm দৈর্ঘ্য প্রসারণ ঘটানো হল। তারের বস্তুর ঘনত্ব এবং ইয়ং গুণাঙক যথাক্রমে 10 g/cm³ এবং 9 x 10¹¹ dyne/cm² হলে, ঐ টানে রাখা তারের মূলসুরের কম্পাঙক নির্ণয় করো।
 [Jt. Entrance 1987] [Ans. 240]
- 9. একই দৈর্ঘ্যের তিনটি তার আছে। তাদের আপেক্ষিক ভরের অনুপাত 2:8:18 এবং টানের অনুপাত 12:12:27. তাদের তির্যক কম্পনের কম্পান্তর ক্রমান্তর ক্রমান্তর ক্রমান্তর ক্রমান্তর ক্রমান্তর ক্রমান্তর ক্রমান্তর ক্রমান্তর ক্রমান্তর
- 10. r এবং 2r ব্যাসার্ধের দৃটি তারের এক প্রান্ত গলিয়ে জুড়ে দেওয়া হল। সংযুক্ত তারকে T টান প্রয়োগ করা হল। তার দৃটির সংযোগ বিন্দু দৃটি সেতৃর ঠিক মাঝখানে অবস্থিত। তার দৃটিতে স্থাণুতরজা সৃষ্টি করলে সংযোগ বিন্দুতে একটি নিস্পন্দ বিন্দু সৃষ্টি হয়। তার দৃটিতে গঠিত লুপের সংখ্যার অনুপাত নির্দম করো।

[Ans. 1:2]

- একটি বোর্ডের উপর দৃটি তার খাটালো আছে। তাদের টানের অনুপাত 8:1. দৈর্ঘ্যের অনুপাত 36:35, ব্যাসের অনুপাত 4:1 এবং ঘনত্বের অনুপাত 1:2: সর্বাধিক কম্পাঞ্চটি 360 হলে, তার দৃটি সেকেন্ডে কয়টি স্বরকম্প তৈরি কয়বে?
 [Jt. Entrance 1989] [Ans. 10]
- 12. একটি স্বশলাকা 95 cm এবং 100 cm দৈর্ঘের টান করা তারের সাথে প্রতি সেকেন্ডে 10টি স্বরকম্প সৃষ্টি করে। সুরশলাকার কম্পান্ডক কভ १
- একটি তারের ম্পিতিস্থাপকরৃপে শতকরা ().()4 ভাগ দৈর্ঘ্য বৃশ্বি করা হল। ঐ তারে তির্যক ও অনুদৈর্ঘ্য তরছোর গতিবেগের অনুপাত নির্ণয় করো।
 [Ans. 1:50]
- 14. একজন ভর্তি জলের তলা হতে উপবভালে একটি শব্দ সংক্রেড পারাল। তাকে 20 cm দীর্ঘ একটি কথা নালের মলস্থেতা সাথে তুলনা করলে ১টি স্বকাস্প পাওয়া যায়। জলে শব্দতবালোর দৈর্ঘ্য কড়ং বায়ুতে শব্দের গতিত্তা = ১০০ metres এবং জাল গতিবেশ = ১১০০ metres [Jt. Entrance 1996] [Ans, ২২ বা ২২০ metre]
- 15. নিম্নলিম্ভ ত্রপদ্য স্মাপতিত হলে, করণী স্বক্ষণ তৈরি হরে নিব্য করে।

$$y_1 = 11 \cos(400\pi t - \pi x)$$

- 16. দুটি স্বশালক ও এব B প্রার ১ সাকেও নটি সরকাপ ব জা ১০ । সাক্ষরতার বাল জা ১০ । ৪ ত জা জার ব জারার ১ সাকেও নটি সরকাপ ব জা ১০ । ৪ ত জারার বজালার ১ সাকেও নটি সরকাপ ব জা ১০ । ৪ ত জারার বজালার ১ সাক্ষরতার হব । ৪ । পরে কড নির্বারণ করো।
- একটি লক্ষ এবান নলে চুঠাই, সমামেল কম্পান্ত । বাটি হেলা গোটা নলেব কাই সমামেল কম্পান্তবার সাক্ষ প্রভাগত সৃষ্টি করে। নাল দুটিক লোটার অনুসাহ কহা
- 19. একটি খোলা অর্থান নাল খালসন্তের কাল্পাক্ষ মাখা। একটি বাখা নালের প্রথম সমান্তেলে উপরোক্ত আলা নালের প্রথম সমান্ত্রেলের সাথে অন্তর্নান ভারি করে। প্রতেকটি নালের নেখা, কতা শালের বাছতে রাশ — 330 metrol.... (Ams. 55 cm; 27.5 cm)
- 20. 25 cm দীর্ঘ এবং 2.5 g ভরষ্ট্র একটি তাব গিল করা অগ্যে একটি ১০ m দীর্ঘ করু এক এক লেওয়া হল তার যথা।
 প্রথম উপসূব উৎপক্ষ করে এবং নল মূলসূর উৎপদ করে তথা। উৎপদ সাকতে এটি সকক্ষণ দেয়া দেখা যায় যে
 তারের টান ক্যাকে স্বরক্ষপের সংখ্যাও ক্ষেম। বাসতে শক্ষের গতিবেশ ২২০ metro/১ হলে, তাকের টান কঙ্গ (প্রায়)

HE M.C.O. BON TON (A) (xxii) B (ix) B (viii) (v) B (i) A (xviii) A (xiv) ((x) B (vi) B (iii) C (axiii) B (xix) B (N) B (xi) A (iii) C (viii) C (Avi) A (xii) B (viii) D (iv) B (B) [i] 21, [ii] অন্টক, [iii] কম, [iv] হ্রাস, [v] কম, [vi] সমানেল (C) [i] इंज, [ii] तिर्जुल, [iii] इंज, [iv] विर्जुल, [v] विर्जुल, [vi] विर्जुल,

ভৌত আলোক বিজ্ঞান

PHYSICAL OPTICS

4.1. ভূমিকা (Introduction) :

আলোকবিজ্ঞান।

আলোক বিজ্ঞান দুই অংশে বিভক্ত ; (i) জ্যামিতিক আলোক বিজ্ঞান এবং (ii) ভৌত আলোকবিজ্ঞান। জ্যামিতিক আলোক বিজ্ঞান সম্বশ্বে আমরা ইতিপূর্বে আলোচনা করেছি।

জ্যামিতিক আলোকবিজ্ঞানে আমরা আলোর যে সকল ধর্মের কথা আলোচনা করেছি, যেমন আলোর ঋজুরেখার গতি, প্রতিফলন, প্রতিসরণ ইত্যাদি তাতে আলোর প্রকৃতি সম্বন্ধে কোনো প্রশ্ন উঠে না। জ্যামিতিক আলোক বিজ্ঞানের সকল ঘটনাই ব্যাখ্যা করা যায় যদি আমরা ধরে নিই যে আলো রশ্মির আকারে সরল রেখায় গমনাগমন করে। কিন্তু ভৌত আলোক বিজ্ঞানে 'আলোর প্রকৃতি কী'? এই প্রশ্নের আলোচনা করা হয়। আলোর প্রকৃতি সম্বন্ধে বিভিন্ন সময়ে বিভিন্ন তত্ত্ব উপস্থাপিত করা হয়েছে। এই তত্ত্বপূলির ভিতর আলোর তরজাতত্ত্ব খুবই গুরুহপূর্ণ। ভৌত আলোক বিজ্ঞানের এই পরিচ্ছেদে আমরা আলোর তরঙ্গা-প্রকৃতি এবং তরজা-প্রকৃতির ওপর নির্ভর করে একটি আলোকীয় ঘটনা যেমন, ব্যতিচার (interference) আলোচনা করব।

একথা স্মরণ রাখা প্রয়োজন যে আলো তড়িচ্চুম্বকীয় তরজা ; যান্ত্রিক স্থিতিস্থাপক তরজা নয়। এক্স রশ্মি, গ্যামা রশ্মি ইত্যাদি এই তড়িচ্চুম্বকীয় তরজা গোষ্ঠীর অন্তর্গত।

বিভিন্ন তড়িচ্চুস্বকীয় তরগোর তরগাদৈর্ঘ্য ও কম্পাদ্ধ (Wave lengths and frequencies of different electromagnetic waves)

বিভিন্ন তড়িং চুম্বকীয় তরজোর তরজাদৈর্ঘ্য এবং কম্পাঞ্চক বিভিন্ন।

- (i) বেতার তরঙ্গা (Radio waves): এই তরঙ্গোর তরঙ্গা দৈর্ঘ্যের সীমা কয়েক কিলোমিটার থেকে 0.3 m পর্যন্ত এবং কম্পাঙক সীমা কয়েক হাৎস থেকে 10⁹ Hz পর্যন্ত। বেতার, টেলিভিশন প্রভৃতির কার্যে এই তরঙ্গা ব্যবহার করা হয়।
- (ii) মাইক্রোওয়েভস বা অণু তরঙ্গা (Micro waves) : এই তরজাগুলির তরজাদৈর্ঘ্যের সীমা 0.3 m থেকে 10^{-3} m পর্যন্ত এবং কম্পাঙ্ক সীমা 10^{9} Hz থেকে 10^{11} Hz পর্যন্ত। রাডার এবং অন্যান্য যোগাযোগ পন্ধতিতে (communication system) মাইক্রোওয়েভের ব্যবহার আছে। একে UHF (ultra high frequency) তরজাও বলা হয়।
- (iii) দৃশ্যমান আলোকতরঙ্গা (Visible light waves) : চোখে ধরা পড়ে যেসকল তড়িচ্চুম্বকীয় আলোক তরজা —লাল থেকে বেগুনি—তাদের তরজা দৈর্ঘ্যের পালা $7.8\times10^{-7}\,\mathrm{m}$ থেকে $3.8\times10^{-7}\,\mathrm{m}$ পর্যন্ত এবং কম্পাঙ্কের পালা $4\times10^{14}\,\mathrm{Hz}$ থেকে $8\times10^{14}\,\mathrm{Hz}$ পর্যন্ত।
- (iv) অতিবেগুনি আলোকতরঙ্গা (Ultra violet waves) : দৃশমোন আলোর সর্বাপেক্ষা কুদ্র তরজাদৈর্ঘ্যের আলো-কে বলা হয় অতিবেগুনি তরজা। এদের ওরজা দৈর্ঘ্যের পালা $3.8\times10^{-7}~\mathrm{m}$ থেকে $6\times10^{-10}~\mathrm{m}$ পর্যন্ত এবং কম্পান্ডেকর পালা $8\times10^{14}~\mathrm{Hz}$ থেকে $3\times10^{17}~\mathrm{Hz}$ পর্যন্ত। সূর্য দেহ অতিবেগুনি আলোক তরজোর একটি প্রধান উৎস।
- (v) গামা রশ্মি (Gamma rays): তেজন্তিয় পদার্থের নিউক্রিয়াস বিঘটনে গামা রশ্মির উদ্ভব হয়। এদের তরজা দৈর্ঘের সীমা 10⁻¹⁰ m থেকে 10 ¹⁴ m অথবা আরও কিছু কম এবং কম্পাতক সীমা

3 × 10¹⁸ Hz (454 3× 10²² Hz user was ten (4)

(vi) একবলি (X-rays) · W Rontgen 1895 মিস্টাকে X-রাল্ম কার্যান করেন। একার্যাল্ম করেন। একার্যাল্ম করেন। একার্যাল্ম করেন। একার্যাল্ম করেন। একার্যাল্ম করেন। $3\times 10^{17}~{\rm Hz}$ থেকে $5\times 10^{19}~{\rm Hz}$ পর্যন্ত।

4.2. ভরকামুখ (Wave front):

্ক'নো মাধামে আন্দোলন সৃষ্টি করলে, মাধামের কলাগুলি আন্দোলত হতে থাকে। বে-কোনো মৃষ্টুর্তে সমদলা সম্পন্ন কণাগুলির সন্ধার পথকে (locus) তরভামুখ বলা হয়।

কোনো চিথর জলাশয়ের জন্সে আন্দোলন সন্টি করে ওরজা উৎপন্ন কবলে, ঐ ওরজোর ভরজান্থ বৃস্তাকার হয়, এটা তোমনা বোধ হয় লক্ষ করেছ। নীচের বিবরণ থেকে ভরজাম্থের পরিস্কার ধারণা হবে।

ধরো, ঝুলপ্ত একটি স্থিতিস্থাপক সূতোয় একটি বিন্দু A (নওয়া হল (চিত্র 4.1(a))। ঐ সূতোয় ঝাকুনি দিলে সূতো বরাবর একটি তির্থক তরজা চলে যাবে। এক্ষেত্র তরজাম্থ হবে বিন্দু। এবার মনে

করো, একইরকম কতকগুলো স্থিতিস্থাপক সুতো একটি দশু থেকে পাশাপাশি ঝুলানো আছে। এখন ঐ দশুকে সুতোর দৈর্ঘ্যের অভিলম্ব দিকে আন্দোলিত করলে প্রভোকটি সূতো বরাবর তির্যক তরজা চলে যাবে এবং তরজা মুখ হবে একটি সরলরেখা ; কারণ \mathbf{A}_1 থেকে \mathbf{A}_2 পর্যন্ত সকল বিন্দুগুলি একই দশায়

কম্পিত হবে [চিত্র 4.1(b)]। এবার ঐ সুতোগুলি একটি দণ্ড থেকে না ঝুলিয়ে একটি প্লেটে সমভাবে আবস্থ করে, প্লেটকে নিজের সমান্তরালে আন্দোলিত করলে, তরজা মুখ একটি সমতল ABCD-এর আকার পাবে [চিত্র 4.1(c)]। তেমনি একটি বিন্দুতে অনেকগুলি একইরকম সুতো আবস্থ করে আন্দোলিত করলে আমরা ত্রিমাত্রিক দেশে গোলীয় তরজামুখ (spherical wave front) পাব [চিত্র 4.1(d)]।

কোনো সমসত্ত্ব মাধ্যমে তরজামুখ সর্বদা নিজের সমান্তরালে অগ্রসর হয় এবং আলোকরশ্মি ঐ তরজামুখের অভিলম্ব হয়। একথা মনে রাখতে হবে যে, কোনো কণা ত্রিমাত্রিক দেশে কম্পিত হলে চতুর্দিকস্থ কণাতে ঐ কম্পন হস্তার্ভারত হয় এবং তরজা চতুর্দিকের মাধ্যমে ব্রিমাত্রিক দেশে পরিব্যাপ্ত হয়ে পড়ে। যদি মাধ্যম সমসত্ত্ব (homogeneous) হয় তবে তরজা চতুর্দিকে সমবেগে ছড়িয়ে পড়ে। উৎস বিন্দুকে কেন্দ্র করে একটি গোলক কল্পনা করলে তরজাগুলি কোনো এক সময়ে ঐ গোলকের উপরিস্থ সকল বিন্দুতে উপস্থিত হয়। অর্থাৎ এক্ষেত্রে গোলীয়তরজামুখ পাওয়া যায়। গোলীয় তরজামুখ যত উৎস থেকে দূরে চলে যায় তত তার বক্রতা হ্রাস পায়-অর্থাৎ বক্রতা-ব্যাসার্ধ বৃদ্ধি পায়। অবশেষে ঐ গোলীয় তরজামুখের ব্যাসার্ধ খুব বৃহৎ হলে, তরজামুখের ক্ষুদ্র অংশকে সমতল তরজামুখ (plane wave front) বলে গণা করা যেতে পারে (চিত্র 4.2)। তরজা সমতল হোক কি গোলীয় হোক—সকল ক্ষেত্রে, একই কম্পনতলে অবস্থিত পরপর দুটি তরজামুখের অভান্তরম্থ লম্ব-দূরত্বকে ঐ তরজোর তরজাদৈর্ঘ্য বলা হয়।

4.3

তরঙ্গের বিস্তার সম্পর্কে হাইগেন্সের নীতি (Huygen's principle of wave propagation) :

হাইণেন্সের নীতি অনুযায়ী কোনো সমসত্ত্ব মাধ্যমে আলোক উৎস হতে আলোক তরজা সমরেণে

চতুর্দিকে ছড়িয়ে পড়ে এবং কোনো এক মুহূর্তে সমদশায় কম্পমান মাধ্যমের কণাগুলি একটি গোলকের ওপর অক্থান করে।

ধর, S একটি আলোক-উৎস। উৎস চতুর্দিকে আলোকতরজা ছড়িয়ে দিছে। কোনো এক সময়, মনে কর AB হল তরজামুখের অবস্থান [চিত্র 4.3(a)]। আমরা জানি, ত্রিমাত্রিক দেশে তরজোর বিস্তার হলে ঐ তরজামুখ S বিন্দুকে কেন্দ্র করে অভিকত একটি গোলকের অংশ হবে। যত সময় অতিবাহিত হবে তত তরজা সম্মুখের দিকে বিস্তার লাভ করবে এবং তরজামুখও নিজের সমান্তরালে সম্মুখের দিকে অগ্রসর হবে। ৫ সময় পরে তরজামুখের অবস্থান কোথায় হবে তা হাইগেন্স-এর নীতি প্রয়োগ করে নিম্নলিখিত পন্ধতিতে নির্ণয় করা যায়।

তাইগেন্স-এর নীতি অন্যায়ী তরজামুখে অবস্থিত প্রত্যেকটি কণাকে আন্দোলনের কেন্দ্র বলে গণা করা হয়। ঐ কণাগুলি হতে অণুতরজাসমূহ (secondary waves) নির্গত হয়ে একই বেগে ৮৩়দিকে ছড়িয়ে পড়ে। সুতরাং t সেকেন্ড পরে তরজামুখের অবস্থান নির্ধারণ করতে হলে AB তরজামুখের উপর P_1, P_2, P_3 ইত্যাদি কণাকে কেন্দ্র করে এবং ct (c= আলোকের গতিবেগ) ব্যাসার্ধ নিয়ে ছোটো ছোটো গোলক কল্পনা করতে হবে। ঐ গোলকগুলিই হবে P_1, P_2 প্র ভ ভ কণাসমূহ হতে নির্গত অণুতরজোর অবস্থান, কারণ, তরজাগুলি t সেকেন্ডে ct দর্ভ্র যায়। এখন দেখা যাবে যে ঐ ছোটো ছোটো গোলকগুলিকে স্পর্ণ করে একটি গোলীয় তল A_1B_1 পাওয়া যাবে যার কেন্দ্রবিন্দ্র হবে আলোক-উৎস S_1 এই অবস্থায় A_1B_1 হবে সেকেন্ড পরে অগ্রসরমান তরজামুখের অবস্থান। এই ভাবে তরজামুখ ক্রমল সম্বাহার দিকে অগ্রসর হবে। যদি আলোক-উৎস হতে তরজামুখের দ্বেত্ব খ্ব বেশি না হয় তবে তরজামুখ গোলীয় আকার পাবে

[চিত্র 4.3(a)]। কিন্তু আলোক উৎসাধেকে তরজন্মের দ্রাহ্ন হবে বাশি থালা, তরজন্মের এ অংশ সমতল হয়ে পড়াবে [চিত্র 4.2]। এ থেকে বোঝা যায় যে, উৎসাধতে নিগত অপসারী বা অভিসারী রিশাগুচ্চ গোলীয় তরজামুখ উৎপন্ন করে এবং বহুদ্রবাতী উৎসাধতে আগত সমাধ্রাল বিশাগুচ্চ সমতল তরজামুখ উৎপন্ন করে। যে অভিমুখে তরজোর বিস্তার হয়, তাকে রাশ্য বালে এবং এটা সর্বদা তরজাম্থিক অভিলম্ব হয়।

ত্রজাম্থ সম্পর্কিত হাইরেন্স্-এর অভকন পন্ধতি হতে একটি বিষয় লক্ষ করা যায় যে প্রতি ক্রেএ সম্মুখে অগ্রসরমান তর্জোর সজো সজো আলোক-উৎস অভিমুখী আর একটি তরজাম্থ পাওয়া যায় য'কে পশ্চাদ্বতী তরজাম্থ (back wavefront) বলা যেতে পারে [4.3 নং চিত্রে A_2B_2]। এ সম্পর্কে হাইরেন্স্-এর বন্তব্য ছিল যে, সমসন্তু মাধ্যমে সম্মুখব তী তরজাম্থই বিবেচনা করতে হবে : পশ্চাদ্বতী তরজাম্থের অন্তিত্ব সন্তব নয়। পরে, এই বন্তবোর তন্ত্রীয় এবং পরীক্ষামূলক প্রমাণ পাওয়া গিয়েছে।

তর্জা তত্ত্ব অনুযায়ী আলোর প্রতিফলন (Reflection of light according to the wave theory) :

ধরো, AB একটি সমতল তরজামুখের অংশ। কাগজের তলের অভিলম্বভাবে এসে কোনো এক সময়ে XY প্রতিফলক তলে আপতিত হল। প্রতিফলক তলও কাগজের তলের অভিলম্ব (চিত্র 4.4), মনে করো,

বায়ুতে আলোর গতিবেগ c:t সেকেন্ড পরে তরজামুখের B প্রান্ত XY প্রতিফলক তলকে B' বিন্দূতে স্পর্শ করল। AB তরজামুখ যতই XY প্রতিফলক তলে পরিব্যাপ্ত হবে হাইগোন্স্-এর নীতি অনুযায়ী ততই প্রতিফলক তলের প্রতিটি বিন্দু অণুতরজা সৃষ্টি করবে। যদি t সময়ে B বিন্দূ হতে তরজা B' বিন্দৃতে পৌছায়, তবে সেই সময়ে A বিন্দু কর্তৃক উৎপন্ন অণুতরজা সন্মুখের দিকে অগ্রসর হবে। A বিন্দুকে কেন্দ্র করে ct বাাসার্ধের একটি গোলক কল্পনা করলে ঐ অণুতরজা উন্ত গোলকের ওপর অবস্থান করবে। B' বিন্দু হতে ঐ গোলকের উপর স্পর্শকতল (tangent plane) B'A' অঙ্কনকরো। ঐ স্পর্শকতল হবে প্রতিফলিত তরজামুখ।

আমরা যদি প্রমাণ করতে পারি যে, t সেকেন্ড সময়ে যখন A বিন্দু হতে অণুতরজ্ঞা A' বিন্দুতে পৌছোল ঠিক একই সময়ে AB তরজ্ঞামুখের অন্য যে-কোনো বিন্দু ধর, P হতে তরজ্ঞা প্রতিফলক তল কর্তৃক Q বিন্দুতে প্রতিফলিত হয়ে B'A' স্পর্শকতলের Q' বিন্দুতে প্রৌছায় তবেই বলা যাবে A'B' প্রতিফলিত তরজ্ঞামুখ। Q বিন্দু থেকে B'A' তলের উপর QQ' লম্ব টাম।

BB' রেখার সমান ও সমান্তরালভাবে AC রেখা টান। B'ও C' যুক্ত করো। PQ রেখাকে B'C রেখা পর্যন্ত প্রসারিত করো। ধর ঐ রেখা B'C রেখাকে R বিন্দৃতে ছেদ করল। এখন, একথা বুঝতে কোনো অসুবিধা নাই যে, t সেকেন্ড সময়ে যখন B বিন্দৃ হতে তরজা B' বিন্দৃতে পৌছায়, প্রতিফলক তল না থাকলে সেই সময়ে A বিন্দৃ হতে তরজা C বিন্দৃতে অথবা P বিন্দৃ হতে তরজা R বিন্দৃতে পৌছোতো, কারণ, AC = BB' = PR = c.t.

এখন, Δ^8 AA'B' এবং ACB' নিলে $\angle ACB' = \angle AA'B$ কারণ উভয়েই সমকোণ AC = AA' = c.t.; AB' সাধারণ বাহু।

: ∠AB'A' = ∠AB' C (i) আবার, ∆° QQ'B' এবং QRB' নিলে

 $\angle QQ'B = \angle QRB'$ কারণ উভয়েই সমকোণ $\angle QBQ' = \angle QB'R[ij]$ নং সমীকরণ থেকে

QB' সাধারণ বাছু। $\therefore QQ' = QR$

এখন, PQ + QR = PQ + QQ'

অথবা, PR = PQ + QQ'

এ থেকে প্রমাণ হয় যে, যে-সময়ে P বিন্দু হতে তরজা প্রতিফলক তলের অনুপস্থিতিতে R বিন্দুতে উপস্থিত হত, প্রতিফলক তলের উপস্থিতিতে ঐ একই সময়ে তরজা Q বিন্দুতে প্রতিফলিত হয়ে Q' বিন্দুতে পৌছোবে কারণ PR পথ (PQ+QQ') পথের সমান। এইভাবে প্রমাণ করা যায় AB তরজামুখের অন্যান্য বিন্দু থেকে তরজা এসে প্রতিফলক তলে আপতিত হলে, বিভিন্ন বিন্দু কর্তৃক প্রতিফলিত হয়ে B'A' তলের বিভিন্ন বিন্দুতে পৌছোবে। অর্থাৎ B'A' হবে প্রতিফলিত তরজামুখ।

প্রতিফলনের সূত্রাবলি প্রমাণ ঃ সহজেই বোঝা যায় যে, $\angle BAB' = \angle AB'A'$ অর্থাৎ আপতিত তরজামুখ প্রতিফলক তলের সাথে যে কোণ উৎপন্ন করে, প্রতিফলিত তরজামুখও প্রতিফলক তলের সাথে সেই কোণ উৎপন্ন করে। কিন্তু $\angle BAB' = \angle i$, আপতন কোণ এবং $\angle AB'A' = \angle r$ প্রতিফলিত কোণ। অতএব, $\angle i = \angle r$.

তাছাড়া, আপতিত তরঙ্গামুখের ছেদরেখা, প্রতিফলিত তরঙ্গামুখের ছেদরেখা এবং প্রতিফলক তলের ছেদরেখা কাগজের তলে থাকায়, আপতিত রশ্মি, প্রতিফলিত রশ্মি এবং প্রতিফলক তলের অভিলম্ব—সবই এক সমতলে থাকরে।

ভরতা-তত্ত্ব অন্যায়ী আলোর প্রতিসরণ (Refraction of light according to the wave theory)

XY হল a এবং b মাধ্যমদ্বয়ের ছেদতল। এইতল কাগজের তলের অভিলম্ব [চিত্র 4.5]। ধর, উপরের

α মাধ্যমে আলোর গতিবেগ c_1 এবং তলার b মাধ্যমে গতিবেগ c_2 । মনে করো, AB একটি সমতল তরজামুখের অংশ কাগজের তলের অভিলম্বভাবে XY তলে আপতিত হয়েছে। ধর, t সেকেন্ড সময়ে তরজামুখের B প্রান্ত হতে অণৃতরজা XY তলকে C বিন্দৃতে স্পর্শ করল। তাহলে, $BC = c_1t$. ঐ সময়ে A বিন্দৃ হতে উৎপন্ন অণৃতরজা b মাধ্যমে $AE = BC = c_1t$ ব্যাসার্ধের গোলকের উপর ছড়িয়ে পড়ার পরিবর্তে c_2 গভিরেগে $AD = c_2t$ ব্যাসার্ধের গোলকের উপর বিস্তৃত হবে। এক্ষেত্রে, c_1 অপেক্ষা c_2 ছোটো ধরা হয়েছে। এখন, C বিন্দু হতে উত্ত গোলকের উপর CD স্পর্শক-তল আঁকলে, সেটা হবে b মাধ্যমে প্রতিসৃত তরজামুখ (DC)।

আমরা যদি প্রমাণ করতে পারি, t সেকেন্ড সময়ে যখন তরজা A হতে D নিন্দৃতে অথবা B হতে C বিন্দৃতে পৌছায়, সেই একই সময় AB তরজামুখের বিভিন্ন বিন্দৃত তরজা b মাধ্যমে প্রতিসৃত হয়ে CD তলের বিভিন্ন বিন্দৃতে পৌছায়, তবেই বলা যাবে CD তল প্রতিসৃত তরজামুখ।

P temps AB simp some PQN was smith, it with the smith which is a CE-some constitute the property with some P and P

STEE, AS ACE SAS QCN FROM SARENI, QN QC

আবার, এর ACD এবং QCM এবার সদৃশ। অতএব,

দেখা যাছে যে, AD এবং AE-র ভিতর য়ে অনুপাত, QM ও QN-এর ভিতরও সই অনুপাত, সেইছেও D বিন্দু প্রতিস্ত এরজামুখে অবস্থান করে, সেইছেও M বিন্দুও উপরিউত্ত অনুপাত সম্পর্কের দর্শ ঐ ভরজামুখে অবস্থান করে। অর্থাং যে। সময়ে এরজা A হতে যাত্র করে E বিন্দুর পরিবর্তে টিবন্দুতে পৌচাছে ঐ একই সময়ে P বিন্দু হতে ভরজা যাত্রা করে N বিন্দুর পরিবর্তে পৌচাছে বিন্দুতে পৌচারে। অঙএব, বলা যায় CD হচ্ছে সাধারণ প্রতিস্ত এবজামুখ।

প্রতিসরণ সূত্রের প্রমাণ : আমরা জানি,

 $\angle {
m BAC} = \angle \iota$, আপতন কোণ এবং $\angle {
m ACD} = \angle r$ প্রতিসরগ কোণ

এখন,
$$\sin i = \sin BAC = \frac{BC}{AC}$$

এখন
$$\sin r = \sin ACD = \frac{AD}{AC}$$

..
$$\frac{\sin i}{\sin r} = \frac{BC}{AD} = \frac{c_1 t}{c_2 t} = \frac{c_1}{c_2} = 3431 \text{ (i)}$$

এটা প্রতিসরণ সংক্রান্ত স্লেলসূত্র প্রমাণ করে।

আবার, যেহেত্ আপতিত তরজমুখের ছেদরেখা, প্রতিস্ত তরজামুখের ছেদরেখা এবং প্রতিসারক তলের ছেদরেখা কাগজের তলে অবস্থান করে, সেইহেত্ অ'পতিত রশ্মি, প্রতিস্ত রাশ্মি এবং প্রতিসারক তলের অভিলম্ব—সবই এক সমতলে অবস্থান করবে।

মাধ্যমের প্রতিসরাক্ষ (Refractive index of a medium) :

a মাধ্যমের সাপেকে b মাধ্যমের প্রতিসরাংক aub ধরা হলে, মেস সূত্র হতে

আমরা লিখতে পারি, $a\mu_b = \frac{\sin i}{\sin r}$.

কিন্তু (i) মং সমীকরণের সহায়তায় পাই, $\frac{\sin i}{\sin r} = \frac{c_1}{c_2}$

এখন, a মাধ্যমের সাপেকে b মাধ্যম ঘনতর হলে (যেমন, বায়ু ও কাচ) $a\mu_b > 1$.

অতএব,
$$\frac{a}{b}$$
 মাধ্যমে আলোর গতিবেগ > 1

অর্থাৎ, a মাধ্যমে আলোর গতিবেগ b মাধ্যম অপেক্ষা বেশি। অথবা, ঘন মাধ্যমের তুলনায় লঘু মাধ্যমে আলোর গতিবেগ বেশি হয়। পরীক্ষালব্ধ ফলাফলের সাথে এটা মিলে যায়।

$$a$$
 মাধ্যম যদি শূনা (vacuum) হয় তবে $\mu = \frac{$ শূনা মাধ্যমে আলোর গতিবেগ b মাধ্যমে $,,$

এখন শূনা মাধামে আলোর গতিবেগ ধুবক হওয়ায় বলা যায়, b মাধামের প্রতিসরাঞ্চক ঐ মাধামে আলোর গতিবেগের বাস্তান্পাতিক। প্রতিসরাঞ্চক যত বৃদ্ধি পাবে অর্থাৎ মাধাম যত ঘন হবে, ঐ মাধামে আলোর গতিবেগও তত হ্রাস পাবে।

☐ EXAMPLE ☐

একটি বিন্দু উৎস হতে 3 cm দূরে একটি পর্দা আছে। এদের মারখানে 3 mm পুরু এবং ,1.5 প্রতিসরাধ্ব্যুক্ত একখানি কাচ প্লেট রাখা আছে। উৎস শূন্য মাধ্যমে 6000A° তরঙ্গ দৈর্ঘ্যের আলোক তরঙ্গ উৎপন্ন করে। উৎস এবং পর্দার ভিতর আলোকীয় দূরত্ব কত ? তাদের ভিতর কয়টি তরঙ্গ থাকবে ?

উ $^{\circ}$ । পর্দা এবং উৎসের মধ্যে বায়ুপথের দৈর্ঘা $=3-0.3=2.7~\mathrm{cm}$; কাচের বেধের তুলা বায়ুপথ = বেধ imes প্রতিসরাঙক $=0.3 \times 1.5=0.45~\mathrm{cm}$; অতএব,

মোট আলোকীয় পথ = 2.7 + 0.45 = 3.15 cm.

4.6. আলোর ব্যতিচার (Interference of light) :

আলোর ব্যতিচার পরিষ্কারভাবে বোঝার জন্য আমরা প্রথমে যান্ত্রিক তরজোর (mechanical wave) একটি উদাহরণ নেবঃ

ধরো, স্থির জলাশয়ের জলতলে A এবং B বিন্দৃত অনবরত একই ধরনের আলোডন সন্টি করা হচ্ছে 16ত্র 4.6। এ বিন্দুদয় থেকে জলতলের ওপর দিয়ে অনবরত ব্রত্তাকার তরজা বা তেউ চলে যাবে। এই তর্জাগলি অবিকল একই রক্মের হবে এবং তা তর্গাপাদ (trough) ও তরজাশীর্ষের (crest) সমন্বরো গঠিত হবে। 4.6 নং চিত্রে বৃত্তাকার টানা রেখা দারা তরজাশীর্য এবং কাটা কাটা বৃত্তাকার রেখাদারা ভরঙ্গাপাদ ব্বানো হয়েছে। A এবং B বিন্দু থেকে ত্ররপ তরজা বিস্তার লাভ করলে, তারা উপরিপয় (superposed) হবে। উপরিপাতের নাতি হতে আমরা জানি জলতলের কোনো বিন্দর সরণ উভয় তরজা কর্তৃক সৃষ্ট পৃথক সরণের প্রন্ধির সমান হবে। যে বিশ্বগুলিতে একটি তরজাপাদের উপর অপরটির তরজানীর্স্ এসে প্রাড়েছে (কাটা লাইন এবং টানা লাইনের ছেদবিন্দ) মেই বিন্দুগুলিকে চিত্র () চিক্ত ছারা ব্যালো হয়েছে ই বিন্দুগুলিতে ভরজাদ্য পরস্পরের সাজে ধ্বংসাস্থক

ব্যতিচার (destructive interference) করে লক্ষ্ সর্গ শন্ত করেছে। ফলে, ই বিদ্যুক্তির টাবুডা

শুনা। 4.6 চিত্র লক্ষ করলে দেখা যায় তারা G.F. প্রভৃতি বিন্দুর্গুলর মধা দিয়ে গত একটি রেখার ওপর অবস্থান করে। ঐ রেখাগুলিকে ধবংসাশ্বক ব্যতিচার রেখা বলা যায় তথাজার অর্থপর্যায়কাল পরে, তরজাপাদ তরজালীর্ষে এবং তরজালীর্ষ তরজাপাদ পরিণত হয় কিন্তু ঐ বিন্দুর্গুলর অবস্থা অপরিবর্তিত থাকে। ঐ অঞ্জল দিয়ে কথানত কোনো শক্তির প্রবাহ হয় না

আবার, যে বিন্দুগুলিতে একটি ভরজোর ভরজাপাদের ওপর অপরটির ভরজাপাদ (দুটি কাটা লাইনের ছেদবিন্দু) অথবা একটির ভরজাশীর্মের ওপর অপরটির ভরজাশীর্ম (দুটি টানা লাইনের ছেদবিন্দু) এসে পড়েছে 4.6 নং চিত্রে ভাদের × চিহ্ন ঘারা বুঝানো হয়েছে। সহজেই বোঝা যায়, ঐ সকল বিন্দুতে মোট সরণ দ্বিগুণ অথবা তীব্রভা চারগুণ হবে। C.D.E প্রভৃতি বিন্দু দিয়ে গত রেখার ওপর ঐ সকল বিন্দুত অবস্থান করে। বলা হয়, ঐ সকল বিন্দুতে তরজাদ্বয় গঠনমূলক ব্যতিচার (constructive interference) করেছে। ঐ রেখাগুলি হল গঠনমূলক ব্যতিচার রেখা অর্ধপর্যায়কাল পরে যে-কোনো বিন্দুতে তরজাপাদের স্থান অধিকার করে তরজাশীর্ম এবং তরজাশীর্মের স্থান অধিকার করে তরজাপাদ কিন্তু ঐ সকল বিন্দুর তীব্রতা অপরিবর্তিত থাকে। বলা বাহুলা, ঐ সকল বিন্দু দিয়ে শক্তির প্রবাহ হয় সর্বাধিক।

অনুরূপ ঘটনা আলোর ক্ষেত্রেও ঘটে। জলতলের পরিবর্তে যদি মনে করা যায় কোনো আলোকীয় মাধ্যমে A এবং B দৃটি আলোক উৎস হতে একই ধরনের তরজা মাধ্যমের ভিতর দিয়ে অগ্রসর হচ্ছে এবং CDE রেখার স্থানে উৎস দৃটির সংযোগ রেখার সমান্তরালে একটি পর্দা আছে, তবে বাতিচারের ফলে পর্দার উপর C,D,E বিন্দৃতে উজ্জ্বল আলোক বিন্দু এবং F, G প্রভৃতি বিন্দু অন্ধকারাচ্ছয় হবে—অর্থাৎ পর্দার ওপর একান্তরভাবে (alternately) উজ্জ্বল এবং অন্ধকার বিন্দু দেখা যাবে। 1801 খিস্টান্দে ইয়ং সর্বপ্রথম পরীক্ষামূলকভাবে এটা প্রদর্শন করান।

4.7. ইয়ং-এর পরীক্ষা (Young's experiment) :

কাগজের তলের অভিলম্বভাবে রাখা একটি সরু রেখাছিদ্রের (S) ভিতর দিয়ে সাদা সূর্যরশ্মি প্রবেশ করে অপর দৃটি রেখাছিদ্র A এবং B-এর ওপর পড়ল [চিত্র 4.7]। ঐ রেখাছিদ্রহয় S রেখাছিদ্রের সমান্তরাল এবং পরস্পরের খুবই কাছাকাছি। ঐ রেখাছিদ্রহয়ের ভিতর দিয়ে যাবার ফলে আলোকতরজা দুভাগে বিভক্ত হল এবং মাধ্যমের ভিতর দিয়ে অগ্রসর হবার কালে পরস্পরের সজো ব্যতিচার করল। CDE অবস্থানে একটি পর্দা রেখে ইয়ং পর্দার উপর C,F,D ইত্যাদি ব্যতিচার পটি (interference bands) লক্ষ্ক করেন। সূর্যের আলো সাদা হওয়ায়, ঐ পটি বর্গ-বিশিষ্ট হল এবং সংখ্যায় খুব অন্ধ দেখা

গেল। সাদা আলোর পরিবর্তে একবর্ণের আলো নিলে, একান্তরভাবে উজ্জ্বল (bright) এবং অস্বকার (dark) বিন্দু দেখা যাবে। A এবং B রেখাছিদ্রের যে-কোনো একটিকে বন্ধ করে দিলে, ব্যতিচার পটি আর দেখা যায় না। এভাবে ইয়ংসর্বপ্রথম পরীক্ষামূলকভাবে আলোর ব্যতিচার প্রদর্শন করান এবং আলোর তরজা-প্রকৃতি প্রমাণ করেন।

4.8. ব্যতিচারের গাণিতিক বিশ্লেষণ (Analytical treatment of interference) :

মনে করো, S_1 এবং S_2 দৃটি আলোক উৎস হতে λ তরজাদৈর্ঘ্যের একবর্ণের আলোক তরজা একই

অভিমুখে অগ্রসর হয়ে P বিন্দুতে অবস্থিত একটি কণার ওপর উপরিপন্ন (superposed) হল [চিত্র 4.8]! উপরিপাতের নীতি হতে আমরা জানি যে-কোনো সময়ে P কণার লব্দ সরণ হবে উক্ত তরজাদ্বয় কর্তৃক সৃষ্ট পৃথ ক পৃথক সরণের বীজগাণিতিক সমষ্টির সমান।

প্রথম তরজা (S_1 উৎস হতে) P কণাতে t মুহূর্তে y_1 সরণ উৎপন্ন করলে আমরা লিখতে পারি,

$$y_1 = a \sin \frac{2\pi}{\lambda} (ct - x)$$
 [শব্দবিজ্ঞান দ্রুষ্টব্য]

এক্ষেত্রে, a = তরজোর বিস্তার ; c = আলোক তরজোর গতিবেগ ; x = S_1 হতে P বিন্দুর দূরত্ব। অনুরূপভাবে, দ্বিতীয় তরজা (S_2 উৎস হতে) P কণাতে t মুহূর্তে y_2 সরণ উৎপন্ন করলে, লেখা যায়,

$$y_2 = a \sin \frac{2\pi}{\lambda} \left[ct - (x + \delta) \right].$$

এখানে উদ্লেখযোগ্য যে উভয় তরজোর বিস্তার সমান এবং উৎসদ্বয় হতে P কণার পথ পার্থক্য (path-difference) = δ .

উপরিপাতের নীতি হতে P কণার লব্ধ সরণ y নিম্নলিখিতভাবে পাওয়া যায়,

$$y = y_1 + y_2 = a \sin \frac{2\pi}{\lambda} (ct - x) + a \sin \frac{2\pi}{\lambda} [ct - (x + \delta)]$$

$$= 2a \cos \frac{\pi \delta}{\lambda} \cdot \sin \frac{2\pi}{\lambda} \left[ct - \left(x + \frac{\delta}{2} \right) \right] \dots \dots (i)$$

(i) নং সমীকরণ হতে দেখা যায় যে, P কণার লব্ধ সরণ কর্তৃক সৃষ্ট লব্ধ তর্জা পৃথক তর্গোর

মতে! একই নৈৰ্মোর (λ) সাইন ভরজা : তবে লব্দ ভরজোর বিস্থার $=2a\cos{\pi\delta\over\lambda}$: কিন্তু পৃথক

তরকোর বিন্তার = a.

এটা প্রমণ করে যে, লক্ষ ওর্জের বিশ্বর ৪-এর উপর নির্ভর করে পরিবর্তনশীল। মখন $\delta=\frac{\lambda}{2},\frac{3\lambda}{2},\frac{5\lambda}{2},\dots\dots(2n+1)\frac{\lambda}{2}$ ওখন, $\cos\frac{\pi\delta}{\lambda}=0$ অধ্যুব লক্ষ্য বর্জের বিশ্বর শরাহে P বিন্দৃহে অপুলাকের উব্রহণ ঐ বিন্দৃর বিশ্বরের বর্গের সমানুস্পতিক, স্টুরেতু বলা যায়, য়ে সকল বিন্দৃহে দুই তর্জের সহা-প্রহার $\frac{\lambda}{2}$ -এর অমুগ্র গুলিতক সেই সকল বিন্দৃহে আলোকের ভাব্রহণ শুনা বা সেই সকল বিন্দু অন্ধকার বিন্দু (dark points)। ঐ সকল বিন্দৃহে তর্জান্তর ধ্বংসান্ত্রক বাভিচার করে [4.9 নং চিয়ে P_1,P'_1 ইত্যাদি বিন্দুগুলি।।

অতএব, ধ্বংসাদ্ধক ব্যতিচারের নর্ত হল $\delta=\frac{\lambda}{2},\frac{3\lambda}{2},\frac{5\lambda}{2}$ (2n+1) $\frac{\lambda}{2}$ রেখানে, n=0,1,2,3, ইত্যাদি।

আবার, যখন, $\delta=\frac{2\lambda}{2},\frac{4\lambda}{2},\frac{6\lambda}{2},\dots 2n$ $\frac{\lambda}{2}$ তখন $\cos\frac{\pi\delta}{\lambda}$ র মান সর্বাধিক (± 1) এবং লখ্য তরজোর বিস্থার $=\pm 2a$ -এর সমান। ঐ বিন্দর স্টিব্রতা $=(-2a)^2=4a^2$ অর্থাৎ একটি উৎস কর্তৃক সৃষ্ট তীব্রতার চারগুণ। এতএব যে-সকল বিন্দুতে দৃই ওরজোর পর্থ-পার্থক। $\frac{\lambda}{2}$ -এর যুগ্ম গুণিওক সেই সকল বিন্দুতে তরজাদ্বয় গঠনমূলক বাতিচার করে উজ্জ্বল বিন্দু (bright points) সৃষ্টি করে। [4.9 নং চিত্রে P, P_2 ইত্যাদি বিন্দুগুলি]।

সূতরাং গঠনমূলক ব্যতিচারের শর্ভ হল $\delta=0,\ \frac{2\lambda}{2},\frac{4\lambda}{2},.....2n.$ $\frac{\lambda}{2}$ য়েখানে, n=0,1,2, 3, ইত্যাদি।

3, ইত্যাদি।

(দ্রঃ উজ্জ্বল বিন্দু এবং অন্ধকার বিন্দুগুলিকে অনেক সময় যথাক্রম চরম (maxima) এবং অবম

(minima) বিন্দু বলা হয়।)

প্রায়ী ব্যতিচারের শর্তাবলি (Conditions for permanent interference) :

ব্যতিচারের গাণিতিক বিশ্লেষণ থেকে দেখা যায় যে ব্যতিচারের দর্ন অন্ধকার বিন্দু সৃষ্টির জন্য তরজাদ্বয়ের পথ-পার্থক্য $\frac{\lambda}{2}$ এর অযুগ্ম গুণিতক হতে হবে এবং উজ্জ্বল বিন্দু সৃষ্টির জন্য পথ-পার্থক্য $\frac{\lambda}{2}$ এর যুগ্ম গুণিতক হওয়া প্রয়োজন। তাছাড়া, তরজাদ্বয়ের দৈর্ঘ্য এবং বিস্তার সমান হবে। কিন্তু বিশেষ বিশ্বেষ বিশ্বের অন্ধকার বিন্দু এবং অনা বিন্দুগুলিকে উজ্জ্বল বিন্দুরূপে অনেকক্ষণ যাবৎ দেখতে হলে—অর্থাৎ স্থায়ীভাবে ব্যতিচার নকশা (interference pattern) তৈরি করতে হলে আর একটি শর্তের বিশেষ প্রয়োজন। শর্তটি হল এই যে, তরজাদ্বয় যখন উৎস হতে নির্গত হবে, তথন তারা পারস্পরিক দর্শো সম্পর্ক (phase-relation) সর্বক্ষণের জন্য বজায় রাখবে। যদি তারা সমদশায় নির্গত হয় তবে বরাবরের জন্য সমদশা নিয়ে নির্গত হবে : আর যদি বিশেষ কোনো দশা পার্থক্য নিয়ে নির্গত হয় তবে বরাবরের জন্য মদশা–পার্থক্য বজায় রাখবে। কোনো কারণে, একটি তরজো দশার কোনো পরিবর্তন হলে সঙ্গো সঙ্গো অন্য তরজোও সেই পরিবর্তন হতে হবে। এটা না হলে, অন্ধকার বিন্দু এবং উজ্জ্বল বিন্দু অনবরত স্থান পরিবর্তন করবে এবং ব্যতিচার নকশা স্থায়ীভাবে দেখা যাবে না। অতএব, স্থায়ী ব্যতিচারের শর্তাবিলি হিসাবে আমরা লিখতে পারি,

- (i) উৎসদ্বয় নিরন্তর সমদৈর্ঘ্যের এবং সমবিস্তারের তরজ্ঞা নিঃসরণ করবে।
- (ii) উৎসদ্বয় হতে নিঃসৃত তরজাগুলি পারস্পরিক দশা–সম্পর্ক সর্বক্ষণের জন্য বজায় রাখবে। একটি উৎসে দশার কোনো পরিবর্তন ঘটলে সজো সজো অন্যটিতেও অনুরূপ পরিবর্তন হওয়া প্রয়োজন। এই ধরনের উৎসকে বলা হয় সুস্পাত উৎস (coherent sources)।
- (iii) উৎসদ্বয় খুব কাছাকাছি থাকা প্রয়োজন ; নতুবা উজ্জ্বল বিন্দু এবং অন্থকার বিন্দু খুব নিকটবর্তী হয়ে পরস্পরের সাথে মিশে যেতে পারে।
- (iv) অন্ধকার বিন্দুতে তরজাদ্বয়ের পথ-পার্থক্য $rac{\lambda}{2}$ এর অযুগ্ম গুণিতক এবং উচ্ছাল বিন্দুতে $rac{\lambda}{2}$ এর যুগ্ম গুণিতক হবে !

দৃটি সদৃশ দীপ ব্যতিচার নকশা তৈরি করে না কেন ?

উপরের শর্তাবলি হতে পরিষ্কার বোঝা যায় যে সাধারণভাবে দুটি সদৃশ দীপ (candle) হতে আগত তরজ্ঞামালা—এমনকি একই দীপশিখার দুই অংশ হতে আগত তরজ্ঞামালাও স্থায়ী ব্যতিচার নকশা তৈরি করতে সক্ষম নয়। কারণ, শিখার কোনো কণার কম্পন-দশা চতুত্পার্শস্থ কণার সংঘাতের ফলে প্রতি সেকেন্ডে বহুবার আকস্মিকভাবে পরিবর্তিত হয়। ফলে, ঐ কম্পন হতে সৃষ্ট তরজ্ঞার দশারও প্রতি সেকেন্ডে অসংখ্যবার আকস্মিক পরিবর্তন হবে। একটি শিখায় সকল প্রকার সম্ভাব্য দশাসম্পন্ন অসংখ্য কণা থাকে এবং ঐ কণাগুলি হতে নির্গত তরজ্ঞাসমূহ স্বাভাবিক কারণেই পারস্পরিক দশা-সম্পর্ক বজায় রাখতে পারে না। সূতরাং দুটি সদৃশ দীপ অথবা একই দীপের দুই বিভিন্ন অংশকে কোনোমতেই সুসজাত উৎস বলা যায় না। এই তরজ্ঞামালাগুলির দশা সম্পর্কের নিরন্তর পরিবর্তনের ফলে, চরম এবং অবম বিন্দুগুলির (maxima and minima) অবস্থানের অতি দুত পরিবর্তন ঘটে। ফলে, আমরা পর্দাকে সাধারণভাবে আলোকিত হতে দেখি; কোনো ব্যতিচার নক্শা দেখতে পাই না।

• সুস্পাত উৎস (Coherent sources) :

ইতিপূর্বে আমরা দেখেছি যে যে-কোনো দুটি আলোক-উৎস স্থায়ী ব্যতিচার গঠন করতে পারে না। স্থায়ী ব্যতিচার গঠনের জন্য দুটি সুসঞ্চাত উৎসের প্রয়োজন। এই উৎসদ্বয় এরূপ হবে যে তারা প্রায় সমান তীব্রতার ঠিক সমান তরজ্ঞাদৈর্ঘ্যের এবং পারস্পরিক দশা-সম্পর্ক বজায় রেখে নিরন্তর আলোকতরজ্ঞা নির্গত করবে।

উৎস সুসজাত হতে গোলে আরও একটি শর্তের প্রয়োজন। শর্তটি এই যে উৎস নির্গত তরজাদ্বয়ের সমবর্তন তল (planes of polarisation) এক হতে হবে। X-অক্ষ বরাবর গতিশীল থাকার সময় একটি তরজোর সমবর্তন তল উদ্লম্ব Y-Z তল হলে এবং একই দিকে গতিশীল অন্যতরজোর সমবর্তন তল অনুভূমিক X - Y তল হলে, দুই তরজোর তরজাশীর্ষ বা তরজাপাদ পরস্পরের সজো মিলবে না কারণ উভয়তরজোর আন্দোলন পরস্পরের লম্ব হবে। ফলে গঠনমূলক ব্যতিচার হবে না। সুতরাং দুটি আলোক উৎস সুসজাত হতে হলে নিঃসৃত তরজাদ্বয় একই তলে সমবর্তিত হতে হবে।

- দুটি সুসংগত উৎস নির্মাণের বিভিন্ন পশ্চি (Different methods for producing two coherent sources):
 - দুটি সুসংগত আলোক উৎস নির্মাণের নিম্নলিখিত পন্ধতি আছে :
- (ক) একটি সরু আলোক উদ্বাসিত (illuminated) রেখাছিদ্র (slit) এবং প্রতিফলনের সাহায়ে। তার প্রতিবিদ্ধ সৃষ্টি দ্বারা।
 - (খ) প্রতিসরণের সাহায্যে একই উৎসের (সরু উদ্ভাসিত রেখাছিদ্র) দৃটি প্রতিবিশ্ব সৃষ্টি দ্বারা।
 - (গ) তরজোর বিস্তারের বিভাক্তন দ্বারা।

দৃটি সুস্পাত উৎস কর্তৃক সৃষ্ট ব্যতিচার ঝালরের প্রস্ (Width of interference fringes produced by two coherent sources) :

ধরো, A এবং B দৃটি একবর্ণের সৃসঙ্গান্ত উৎস। উৎসদ্ধয় হতে নিরন্তর সমাদর্যা, সমবিশ্বার এবং সমদশাসম্পন্ন তরজামালা নির্গত হয়ে সম্মুখের দিকে অগ্রসর হচ্ছে। ওরজামালার পথে এবং কাগজের তলের লম্বভাবে একটি পর্দা রাখলে, এ পর্দা সমভাবে আলোকজ্ঞাল হবে না পর্দায় একান্তর ভাবে উজ্ঞাল এবং অব্ধকার পটি অথবা কৃষ্ণপটি (dark band) দেখা যাবে, কারণ, কোনো কোনো বিন্দুতে তরজামালা সমদশায়—আবার কোনো কোনো কিনুতে বিপরীত দশায় উপস্থিত হয়ে গঠনমলক এবং ধ্বংসাগ্রক ব্যতিচার সৃষ্টি করবে। পর্দার উপরকার উজ্জ্বল এবং কৃষ্ণপটিগুলিকে একসজো ব্যতিচার বালম (interference fringes) বলা হয় [চিত্র 4.9]।

AB দ্রত্বের মধ্যবিন্দু O হতে পর্দার উপর OC লম্ব টান (চিন্দ্র 4.10)। ধর, AB=2d এবং OC=D, অর্থাৎ AB দ্রত্বের মধ্যবিন্দু O থেকে পর্দা PC-র দূরত্ব =D ; উৎসদ্বয়ের পারম্পরিক দূরত্ব =2d। ঝালর প্রস্থ (fringe width) y হলে প্রমাণ করা যায় $y=\frac{D.\lambda}{2d}$ ।

প্রিমাণ: A এবং B বিন্দু থেকে C বিন্দুর দূরত্ব সমান বলে উৎসদ্বয় থেকে তরজামালা সমদশায়

যাত্রা শুরু করে C বিন্দুতে সমদশাতেই উপপিওত হবে, কারণ তারা সমদূরত্ব অতিক্রম করল। অতএব, C বিন্দুর বিস্তার অথবা আলোর তীব্রতা হবে সর্বাধিক।

এখন, পর্দার উপর আর একটি বিন্দু P নেওয়া হল। ধরো, PC = x; AP এবং BP যোগ করো। যেহেতু এই দুই পথের দৈর্ঘ্য সমান নয়, তাই তরজ্ঞামালা উংস থেকে সমদশায় নির্গত হলেও P বিন্দুতে পৌছালে তাদের দশা পৃথক হবে। সূতরাং P বিন্দু উজ্জ্বল হবে কি অন্ধকারাচ্ছয় হবে, তা নির্ভর করবে এই পথ-পার্থক্যের উপর।

এখন, BP² = D² + $(x + d)^2$ এবং AP² = D² + $(x - d)^2$ জ্বেব, BP² – AP² = $(x + d)^2 - (x - d)^2 = 4.dx$

 \therefore BP – AD = $\frac{4.d.x}{BP+AP}=\frac{4d.x}{2D}=\frac{2d.x}{D}$ {d – এর তুলনায় D অনেক বড়ো বলে, BP = AP = D (প্রায়) ধরা যেতে পারে}

সূতরাং, P বিন্দুতে উপস্থিত হলে, তরঙ্গদ্বয়ের পথপার্থক্য $\delta = BP - AP = \frac{2d.x}{D}$

আমরা 1.8 অনুচেছদে দেখেছি, উজ্জ্বল বিন্দুর শর্ত হল $\delta=2n.rac{\lambda}{2}$ । সুতরাং, P বিন্দু nth উজ্জ্বল

বিন্দু হলে, $\frac{2dx_n}{D}=2n$. $\frac{\lambda}{2}=n\lambda$ অথবা, $x_n=\frac{D.n\lambda}{2d}$

n=1,2,3 ইত্যাদি ধরে আমরা C বিন্দুর উপরে এবং নীচে প্রথম, দ্বিতীয়, তৃতীয় ইত্যাদি উজ্জ্বল বিন্দুর অবস্থান পেতে পারি।

এখন, $(n+1)^{th}$ উজ্জ্বল বিন্দু C থেকে x_{n+1} দূরে থাকলে আমরা পাই $x_{n+1}=\frac{D(n+1)\lambda}{2d}$ অতএব, পরপর দৃটি উজ্জ্বল বিন্দুর ব্যবধান (একে বলে পটিপ্রস্থ বা ঝালর প্রস্থ)

$$y = x_{n+1} - x_n$$

$$= \frac{D(n+1)\lambda}{2d} - \frac{Dn\lambda}{2d} = \frac{D}{2d} \cdot \lambda$$

এস্থালে উল্লেখযোগ্য যে পর্দাকে A,B উৎসদ্ধারে সম্মুখে যে-কোনো জায়গাতে রাখলেই পর্দার ওপর ব্যতিচার ঝালর দেখা যাবে। ব্যতিচার ঝালর কোনো নির্দিষ্ট জায়গায় সীমাবন্ধ নয় বলে একে একদেশতাবিহীন ঝালর (non-localised fringes) বলা হয়।

□ Examples □

 $m{1}$ 3 mm পারম্পরিক দূরত্বে অবস্থিত দুটি ঋজু এবং সমান্তরাল রেখাছিদ্রকে একবর্ণের আলোক উৎস $(1=5.9 imes10^{-7}\ m)$ দ্বারা উদ্ভাসিত করা হল। রেখাছিদ্র হতে $m{0.3}\ m$ দূরে ব্যতিচার ঝালর দেখা হল। ঝালর-প্রস্থ কত হবে ?

উঃ। ঝালর-প্রস্থ y হলে আমরা দেখেছি, $y = \frac{D}{2d}\lambda$.

একেরে, $D = 0.3 \,\mathrm{m}$; $2d = 3 \,\mathrm{mm} = 3 \times 10^{-3} \,\mathrm{m}$ এবং $\lambda = 5.9 \times 10^{-7} \,\mathrm{m}$. কাড়েছে,

$$y = \frac{0.3 \times 5.9 \times 10^{-7}}{3 \times 10^{-3}} = 0.59 \times 10^{-4} \text{ m} = 0.0059 \text{ cm}.$$

2) ব্যতিচার সম্পর্কিত ইয়ং-এর পরীক্ষায় রেখাছিদ্র দৃটির পারম্পরিক দূরত্ব ছিল 0.1 mm এবং রেখাছিদ্রের তল হতে পর্দার দূরত্ব ছিল 50 cm; 5000A° তরজা দৈর্ঘ্যের একবর্ণ আলো ব্যবহার করলে, পর্দার ওপর কেন্দ্রীয় চরম বিন্দু হতে প্রথম চরম বিন্দুর দূরত্ব নির্ণয় করো।

উঃ। কেন্দ্রীয় চরম বিন্দু হতে প্রথম চরম বিন্দুর দূরত্ব ঝালর-প্রস্থের সমান।

ঐ প্রস্থ y হলে,
$$y = \frac{D}{2d} \cdot \lambda$$

এখানে, $D=50~{\rm cm}$; $\lambda=5000{\rm A}^\circ=5000\times 10^{-8}~{\rm cm}=5\times 10^{-5}~{\rm cm}$; $2d=0.1~{\rm mm}=0.01~{\rm cm}$.

$$\phi$$
 (558), $y = \frac{50 \times 5 \times 10^{-5}}{0.01} = 0.25$ cm.

এই পরিচেছদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. দুটি বৈদ্যুতিক বাতিকে পাশাপাশি রেখে ব্যতিচার ঝালর গঠন করা যাবে কি ?
- না, কারণ, বৈদ্যুতিক বাতি থেকে নির্গত আলোক তরজ্জার পরস্পরের ভিতর দশ্য প্রথাক বজার রাখতে পারে না। তাই কোন স্থায়ী ব্যতিচার ঝালর প্রদায় গঠিত হয় না। পর্না সংধারণভূবে আলোকিত হবে।
- ইয়ং এর পরীকার এক বর্ণের আলোক উৎসের পরিবর্তন করে ক্ষুদ্রতর তরভাদৈর্ঘ্যযুক্ত
 অন্য এক বর্ণের আলোক উৎস ব্যবহার করলে ব্যতিচার ঝালরের কি পরিবর্তন হবে?
- ঝালর প্রস্থ এবং রেলিক পর্যাকা দৃই-ই হ্রাদ পারে।

- জলে নিম্মিত অবস্থায় ইয়ং এর পরীকা করলে ব্যতিচার ঝালরের কি পরিবর্তন হবে ?
- আলোর তরজাদৈর্ঘা বায়ু মধে। য' হয় জালে ঐ দৈর্ঘ, হুসে পায়। এখন ঝালব পুসং $y = \frac{D}{2d}$. A stead, λ give (with γ states and α with a state and other states) কাছাকাছি গঠিত হবে।
- 4. দুটি তরশোর ভিতর পথ পার্থকা λ হলে তাদের ভিতর দশা পার্থক্য কত হবে ?
- ভরজান্তরের ভিতর পথ-পার্থকা λ হলে, দলা পার্থকা হরে 2π অথবা ভরজান্ত সমদলায় উপস্থিত হবে।
- সাদা আলো ব্যবহার করে ব্যতিচার ঝালর গঠন করা যায় कि?
- সাদা আলো বাবহার করলে, বাভিচার ঝালর হবে রভিন কারণ পথ-পার্থকোর ওপর নির্ভর করে এক এক বিন্দৃতে এক একরকম রংয়ের ভরজা ধ্বংসাথক ব্যতিচার করে অনুপস্থিত থাকবে। অন্যান্য বংয়ের তরজা উপস্থিত থেকে ঝালরকে রভিন করে লেবে।

⇒ বচনাধর্মী প্রশ

- নিম্লিখিত তড়িস্কেটীয় তরজাণ্লিকে কুমবর্গমান তবজাদৈর্ঘা অন্যায়ী সাজাও রেডিও তরজা, অতিবেগনি তরজা, গামা র'লা, মাইকোতরজা, এরবেলা।
- 2. হাইগোন্সের নীতি বর্গনা করে। এবং এর সাহায়ে। কীরূপে আলোর প্রতিফলন সংক্রান্ত সূত্রবলি প্রমাণ করা যায়, তা ব্যাখ্যা করে।
- 3. হাইগোনস্-এর নীতি পরিষ্কারভাবে ব্যাখ্য করো এবং তা থেকে প্রতিসরগের সূত্রবিল প্রতিষ্ঠা করো। প্রতিসর্গক কাকে বলে এবং তা বিভিন্ন মাধামে আলোর গতিবেগের সক্ষেণ কীর্পভাবে সম্পর্ক যুত্ত?
- 4. আলোর তরজা-তত্ত্বের সাহায়ো দেখাও যে, কোনো মাধ্যমের প্রতিসরাজ্ঞ ঐ মাধ্যমের আলোর গতিবেগের
- 5. দৃটি একই বর্ণের বিন্দু উৎস কর্তৃক উৎপন্ন ব্যতিচার ঝালরের অবস্থান এবং প্রস্থ প্রকাশের রাশিমালা নির্ধারণ
- 6. আলোর ব্যতিচার সংক্রান্ত ইয়ং-এর দ্বিরেখা ছিদ্র পরীক্ষাটি সংক্ষেপে বর্ণনা করো। পটির প্রস্থ কাকে বলে ? এর একটি ব্যশ্বক প্রতিষ্ঠা করে।
- 7. সুসংগত আলোক উৎস বলতে কি বোঝায় ? দুটি সুসংগত আলোক উৎস থেকে উৎসারিত আলোক উপরিপাতিত হল। একটি পর্দা উৎস থেকে দূরে এমনভাবে রাখা হল যে উৎস দূটির সংযোগ রেখা পর্দার সমান্তরাল হয়। পর্দায় কী দেখা যাবে বল ও পটিবেধের মান নির্ণয় করো। (উৎস দুটির দূরত্ব 2d, পর্গা থেকে উৎসের দূরত্ব D ও তরজা लिया थ।

সংকিপ্ত উত্তরের প্রধা

- 1. দুই মাধ্যমের ভিতর প্রতিসরাজ্ক কাকে বলে? ঐ দুই মাধ্যমের ভিতর আলোর গতিবেগের সজো প্রতিসরাজ্কের সম্পর্ক কী ?
- 2. তরজামুখ কাকে বলে? উৎস থেকে তরজা বহুদ্র চলে গেলে এ তরজার তরজামুখ কী প্রকারের হবে?
- 3. ওরজোর সম্বালন সম্পর্কিত হাইগেন্স্ নীতি সংক্ষেপে আলোচনা করে। পশ্চাংবতী তরজানুথ কাকে বলে ?
- 4. আলোর বাতিচার বলতে কি বোঝং গঠনমূলক ও ধ্বংসাস্থাক ব্যতিচার কাকে বলেং
- 5. ইয়ং-এর পরীক্ষায় পর্দাকে উৎসর্গুল থেকে দূরে সরালে ব্যতিচার নক্শার কি পরিবর্তন হবে?
- 6. দীর্ঘস্থায়ী ব্যতিচার ঝালর তৈরি করার জনা প্রয়োজনীয় শর্তগুলি উল্লেখ করো। সুসজাত উৎস কাকে বলে?
- 7. দৃটি ভিন্ন উৎস থেকে আগত একবর্ণের আলো দ্বারা ব্যতিচার উৎপন্ন হয় কি না? যদি না হয় কেন?
- 8. দটি সুসংগত আলোক উৎস পাবার যে–কোনো একটি পর্ম্বাত উল্লেখ করো।

অতি-সংক্ষিপ্ত উত্তরের প্রশা

দু'একটি তড়িকৃষকীয় তরজোর নাম করো।

- 2. অতিবেশুনি আলোর তরজাদৈর্ঘ্য বড়ো না এক্সরশ্মির তরজাদৈর্ঘ্য বড়ো ?
- 3. তরজামুখ থেকে রশ্মির গতির অভিমুখ কীভাবে পাওয়া যায় ?
- 4, সুসংগত উৎস কাকে বলে ?
- 5. দটি উৎস সুসংগত হতে গেলে কী শর্ভ পুরণ করতে হরে ?

বহুমুখী পছদের প্রশ [Multiple choice type (M.C.Q.)]

(A) নির্ভুল উত্তরটি √ চিহ্নিড করো:

- [1] তড়িচ্চুম্বকীয় তত্ত্বের প্রতিষ্ঠাতা কে 🎉 🐪 😘 🔞 🔞 💮 🔭
 - (A) নিউটন (B) মাাক্সওয়েল (C) হাইগেনস (D) প্ল্যাঙ্ক।
- [ii] কোনো জড় পদার্থের সাহায্য না নিয়ে শুনোর মধ্য দিয়ে তড়িচ্চুম্বকীয় তরঞ্চা চলাচল করতে পারে। এই উন্তি (A) প্রায় সত্য (B) প্রায় অসত্য (C) অসত্য (D) সত্য:
- [iii] বেতার তরজা, অণু তরজা, অবলোহিত রন্মি, U-V রশ্মি, এঞারন্মি এবং গামা রন্মি,
 - (A) সকলই আলোকরশ্মি

- (B) সকলই ভড়িচ্ছস্কীয় তর্জা
- (C) সকলই তড়িং তরজা (D) সকলই টোম্বক তরজা।
- [iv] একটি তরজোর তরজাদৈর্ঘ্যের পাল্লা কয়েক কিলোমিটার থেকে 0.3m পর্যন্ত। ওই তরজাগুচ্চ হবে (A) অণ্তরজা (B) অবলোহিত তরজা (C) দৃশ্যমান তরজা (D) বেতার ওরজা।
- [v] আলোক উৎস অসীয়ে থাকলে, তরজামুখের আকার হয়
 - (A) গোলীয় (B) চোভাকৃতি (C) উপবৃত্তাকার (D) সমতল।

(B) भूनाम्थान भूतण करता (Fill up the gaps) :

- [i] যথন তরজ্ঞা সম্মুখের দিকে অগ্রসর হয় তখন কোনো মুহুটে সমদশা সম্প্র মাধ্যমের কলাগুলির সঞ্জার পথকে
- [ii] আলোর ব্যতিচার হলে যেখানে পথ-পার্থকা তরজাদৈর্ঘোর অয়য়য় গুণিতক সেখানে বাতিচার হয়।
- [iii] আলোক তরজোর শ্বারা বোঝা যায় যে ওই তরজা তির্যক।

(C) ज्ल कि निर्जुल विठात करता (True or false) :

- [i] কেবলমাত্র সুসংগত আলোক উৎস স্থায়ী বাতিচার ঝালর তৈরি করতে পারে।
- [ii] শব্দের নাায়, আলো শৃনা মাধ্যমে চলাচল করতে পারে না।
- [iii] ফিলামেন্ট বাতি সর্বদা স্থির দশার আলো নি:সর্গ করে .
- [iv] সাদা আলো বাতিচার নকশা তৈরি করে না

গাণিতিক প্রশ

- শুনো যে আলোকের তরজাদৈর্ঘা 5896A°, কাচের মধ্যে তার গতিবেল এবং তরজা দৈর্ঘ্য লিবয় করে। ঐ তরজা দৈর্ঘোর বেলায় কাচের প্রতিসরাঙ্ক = 1.5 এবং শুনো আলোর গতিবেগ - 3 × 10⁸ ms.
- [Ans. 2 × 108 m/s; 3930 A°] বায়ুসাপেকে কাচের সংকট কোন 41": বায়ুতে আলোর গতিবেল 3 × 10⁸ m s ফলে কাচে অলোব গতিবেল কত

ब्रुव ? sin 41° = 0 6576 [Ana. $1.97 \times 10^8 \text{ m/s}$]

3. দৃটি রেখাছিদ্র হতে 120 cm দূরে রাখা একখানি পর্মন্ন 1.5 mm প্রতেপর বাতিচার ঝালব পাওয়া বোল ্রখাছিদ্র দৃটির পারস্পরিক দুরত্ব () 45 mm হলে আলোর ভরজা- দৈখা কত ৮ [Ans. 5625 × 10 10 cm]

M.C.O. STORE BURE OF

(A) (i) B (ii) D (iii) B (iv) D (v) D

(B) [i] 64年[5]。[ii] 图 2018 [iii] 2014年4

(C) [i] + \$\pi_*, [ii] *\pi_*, [iii] \$\pi_*, [iv] *\pi_*

স্থির তড়িৎ-বিজ্ঞান

[Electrostatics]

সূচনা (Introduction):

খ্রিস্টপূর্ব 600 অন্দে প্রাচীন ত্রিক পভিতগণ লক্ষ করেন যে, আমবার (amber) নামক একটি পদার্থকে (এটি পাইন গাছের শস্তু আঠা) রেশমি কাপড় দিয়ে ঘষলে তা ছোটো ছোটো কাগজের টুকরো বা অন্য কোনো হালকা জিনিস আকর্ষণ করেতে পারে। তোমরা হয়তো অনেকে লক্ষ করে থাকরে, শীতকালে সেল্লয়েড বা গাটাপার্চার চিরুনি দিয়ে চল আঁচড়াবার পর ঐ চিরুনি ছোটো ছোটো পাতলা কাগজের টুকরোকে আকর্ষণ করে। কিন্তু ত্রিক পভিতগণের অ্যামবার সংক্রান্ত ঐ ঘটনা লক্ষ করার পর আর কেহ এ সম্বন্ধে বিশেষ আত্রহ প্রকাশ করেননি: পরে 1600 খ্রিস্টাব্দে ডাঃ গিলবার্ট এ সম্বন্ধে বিস্তারিত অনুসন্থান করেন তিনি দেখতে পান আমবার ছাড়া আরও অনেক পদার্থে ঐ ধর্ম বর্তমান। গ্রিক ভাষায় আ্যামবারকে ইলেকট্রন (electron) বলা হয় বলে সম্ভবত ডাঃ গিলবার্ট এই ব্যাপারকে ইলেকট্রিফিকেশন (electrification) বা তিতৃতাহিতকরণ নাম দেন। রেশম দ্বারা ঘষা আমবার-এর নাায় যে বস্তু অন্যান্য হালকা জিনিস আকর্ষণ করার ক্ষমতা রাখে তাকে বলা হয় তড়িতাহিত (electrified) বন্তু। এই তড়িৎ বন্তুতে আবন্ধ থাকে এবং চলাচল করতে পারে না বলে এই ধরনের তড়িৎকে বলা হয় স্পির-তড়িৎ (static electricity)। বিশ্ব বি

পরিবাহী (Conductor) ও অপরিবাহী (Non-conductor) বা অন্তরক (Insulator) :

একটি পিওলের দশুকে হাতে ধরে রেশম, ফ্লানেল বা পশম ইত্যাদি বন্তু দিয়ে ঘষে ছোটো ছোটো কাগজের টুকরোর সামনে ধরলে কোনো আকর্ষণই দেখা যাবে না, অর্থাৎ দশু তড়িতাহিত হবে না। অথচ উত্ত ঘর্ষণকারী পদার্থগুলি দ্বারা কাচ, গালা, এবোনাইট প্রভৃতি বন্তুকে ঘষে সহজেই তড়িতাহিত করা যায়। এই ঘটনা লক্ষ করে প্রাচীন বিজ্ঞানীগণ মনে করতেন যে, কোনো কোনো পদার্থ আছে যাদের কিছুতেই তড়িতাহিত করা যায় না। কিছু এই ধারণা ঠিক নয়। প্রকৃতপক্ষে যে-কোনো বন্তুকেই উপযুত্ত ঘর্ষণকারীর সাহায্যে তড়িতাহিত করা যায়। তবে পিতলের দশুে তড়িৎ এল না কেন?

এই প্রশ্নের উত্তর এই যে, পিতলের দণ্ডে তড়িতের উত্তব হয়েছিল: কিন্তু পিতলের ভিতর দিয়ে এবং মান্যের দেহ দিয়ে হড়িৎ সহজে চলাচল করে বলে দণ্ড হাত দিয়ে ধরে রাখলে ঐ তড়িৎ মান্যের দেহ দিয়ে হৎক্ষণাৎ পৃথিবীতে চলে যায়। কাজেই দণ্ডে তড়িতের প্রকাশ হয় না। যদি পিতলের দণ্ড হাতে না ধরে একটি কাসের হাতলের সাহায়ে ধরা যায় হবে দেখা যাবে, দণ্ড হাত্তিহিত হয়েছে। এফালে কাসের ভিতর দিয়ে তড়িৎ সহজে চলাচল করতে পারে না বলে হাত্তিৎ দণ্ডে আবন্ধ থাকে। অতএব আমরা এই সিন্ধাণ্ডে আসতে পারি যে, কোনো কোনো পদার্থ আছে যার ভিতর দিয়ে তড়িৎ সহজে চলাচল করতে পারে এবং কোনো কোনো পদার্থের ভিতর দিয়ে সহজে চলাচল করতে পারে না। প্রথমোক্ত পদার্থকে তড়িতের পরিবাহী (conductor) এবং শেষোক্ত পদার্থকে অপরিবাহী (non-conductor) বা অন্তরক (insulator) বলা হয়।

সাধারণত সব ধাত্ই ভালো তড়িৎ পরিবাহী। এদের ভিতর আবার তামা, রূপা, আলুমিনিয়াম খুব ভালো পরিবাহী তোমরা লক্ষ করে থাকবে, বৈদ্যুতিক তার তামার তৈরি হয়। আজকাল বৈদ্যুতিক তার আল্মিনিয়াম লিয়েও তৈরি করা হচ্ছে। ধাতব পদার্থ ছাড়া মাটি, নরদেহ, কার্বন, কয়লা, পারদ প্রভৃতি তিভিং পরিবাহীর উদাহরণ।

শৃদ্ধ বায়, কাচ, কাগজ, মোম, কাঠ, এবোনাইট, পোর্সিলেন, বেকালাইট প্রভৃতি অপরিবাহী বা অন্তর্ধক পদার্থ: তেমরা নিশ্চয় দেখেছ টেলিফোনের তার বা বিদ্যুৎ-সরবরাহ ব্যবস্থার তার খাটাবার সময় ইলেকট্রিক পোস্টের সাথে তার সরাসরি যুক্ত করা হয় নাঃ পোর্সিলেন বাটির (procelain cup) মাধায়ে খাটানো হয় পোস্টের সাথে যুক্ত থাকলে পোস্ট দিয়ে সর্বদা মাটিতে তড়িং-ক্ষরণ (leakage of electricity) হবে এবং এ পোস্ট কোনো লোক স্পর্শ করলে তৎক্ষণাৎ সে তড়িং-ক্ষরণ হবে। পোর্সিলেন তড়িং অন্তরকঃ পোর্সিলেন বাটির মাধ্যমে তার খাটালে পোস্ট দিয়ে তড়িং-ক্ষরণ হবে না এবং এরকম বিপদের অস্ক্রজন থাকরে না। পরীক্ষাণারে তড়িং-সংক্রান্ত কাজে যে সকল সংযোগী তার (connecting wires) ব্যবহার করা হয় তাতে রেশম বা সুতির কাপড়ের আবরণ থাকে। এটা অপরিবাহী বলে তারে তারে তেকে গেলেও কাজের বিঘ্ন হয় না। এই ধরনের তারকে অন্তরিত তার (insulated wire) বলা হয়।

মনে রাখতে হবে, কোনো পদার্থই সম্পূর্ণ অপরিবাহী নয়। ওপরে যে অপরিবাহী পদার্থের উদাহরণ দেওয়া হল তাদের ভিতর দিয়ে তড়িৎ তুলনামূলকভাবে খুব কম চলাচল করতে পারে বলে অপরিবাহী বলা হয়।

্রিক্টব্য ঃ জনীয়-বাস্প তড়িতের পরিবাহী বলে স্থির তড়িতের কোনো পরীক্ষায় পরীক্ষাধীন বন্ধুগুলিতে জলীয় বাস্প থাকলে তড়িৎ সহজেই চলাচল করতে পারবে এবং বন্ধুগুলিতে তড়িৎ আবন্ধ থাকবে না। পরীক্ষা সাফলামন্ডিত করতে হলে বন্ধুগুলি শৃষ্ক রাখতে হবে। বর্ধাকালে আবহাওয়া সিন্ত থাকে বলে স্থির তড়িতের পরীক্ষা ঐ সময়ে ভালো হয় না। শীতকালে আবহাওয়া শৃষ্ক থাকে, পরীক্ষাও খুব সন্তোষজনক হয়।

1.3. বৰ্ষণে তড়িৎ সৃষ্টি (Electrification by rubbing) :

তোমরা ইতিমধ্যে জেনেছ যে দুই বস্তুকে ঘর্ষণ করে তড়িৎ সৃষ্টি করা যায়। একটি কাচের দণ্ড এবং এক টুকরো রেশমি কাপড় নিয়ে সূর্যকিরণে শুষ্ক ও উষ্ণ করো। তারপর রেশমি কাপড় দিয়ে কাচদণ্ডকে কয়েকবার ঘবে ছোটো ছোটো কাগজের টুকরোর সামনে ধরো। দেখবে কাচদণ্ড কাগজের টুকরোগুলিকে আকর্ষণ করছে। ঘর্ষণের ফলে কাচদণ্ড তড়িতাহিত হয় বলে কাচদণ্ড ঐবুপ আকর্ষণী শক্তি লাভ করে।

সুযোগ ও সুবিধা পেলে কোনো বন্ততে ঘর্ষণজাত তড়িতের পরিমাণ বিপদজ্জনকভাবে বৃদ্ধি পেতে পারে। পেট্রলভর্তি ট্রাক চলার সময় আধারে রাখা পেট্রলে খুব নড়াচাড়া পড়ে। এরূপ ঘর্ষণের ফলে তড়িৎ উৎপন্ন হয়। এই তড়িৎ ক্রমশ সন্ধিত হয়ে স্ফুলিজোর সৃষ্টি করতে পারে। পেট্রল সাংঘাতিক দাহ্য পদার্থ বলে স্ফুলিজোর দ্বারা প্রচন্ড বিস্ফোরণের আশঙ্কা থাকে। ঘর্ষণজাত তড়িৎ যাতে সন্ধিত না হতে পারে সেই উদ্দেশ্যে একটি ধাতব শিকল ট্রাকের দেহের সাথে যুক্ত করে মাটি পর্যস্ত ঝুলিয়ে দেওয়া হয়। ট্রাক চলার সময় শিকল মাটিতে গড়াতে গড়াতে যায়। এতে ঘর্ষণজাত ওড়িৎ উৎপন্ন হবার সঙ্গো সঙ্গো শিকলের মাধ্যমে মাটিতে চলে যায়—সন্ধিত হবার সুযোগ পায় না।

দুই বিপরীত ধরনের তড়িতাধান (Two opposite kinds of electric charge) :

একটি কাচদন্ডকে সিদ্ধ দাবা ঘ্যে তাঁড়তাহিত করো এবং একগাছা সিক্ষের সূতাের সাহায়ে একটি অবলস্থন হতে ঝুলিয়ে দাও [চিত্র 1.1 (a)]। আর একটি এবােনাইট দন্ডকে পশম দারা ঘ্যে তড়িতাহিত করার পর কাচ দন্ডের কাছে একই অবলস্থন হতে ঝুলাও। দেখা যাবে দন্ড দ্টি পরস্পর্কে আকর্ষণ করে দুই প্রান্তকে কাছাকাছি এনেছে।

এবার দুটি এবোনাইট দশুকে পশম দারা ঘয়ে একইভাবে তড়িতাহিত করে। এবং পাশাপাশি ঝুলাও [চিত্র 1.1 (b)]। এবার দেখা যাবে যে দশু দুটি পরস্পরকে বিকর্ষণ করে প্রান্তদ্বয়কে পরস্পর হতে দূরে

সরিয়ে দিয়েছে।

দুটি একই প্রকার দশুকে একই জিনিস দিয়ে ঘর্ষণ করলে স্বভাবতই আমরা ধরে নিই যে দুই দশুই সমপ্রকার তড়িৎ সৃষ্টি হয়েছে। আবার দুটি ভিন্ন দশুকে দুই প্রকার জিনিস দিয়ে ঘর্ষণ করলে, আমরা মনে করি তাতে ভিন্ন প্রকারের তড়িৎ উৎপন্ন হয়েছে। এইরূপ ধারণার পরিপ্রেক্ষিতে উপরোক্ত পরীক্ষার ফলাফল বিচার করলে এই সিন্ধান্ত করা যায় যে কাচ ও এবোনাইট দশু বিপরীত ধরনের তড়িতাধান আছে এবং তারা পরস্পরকে আকর্ষণ করছে। তেমনি দুই এবোনাইট দশু একই ধরনের তড়িতাধান আছে এবং তারা পরস্পরকে বিকর্ষণ করছে। এথেকে আমরা স্থির তড়িৎ বিজ্ঞানের নিম্নলিখিত মূলসূত্রটি প্রাই

সমজাতীয় তড়িৎ পরস্পরকে বিকর্ষণ করে এবং বিপরীত জাতীয় তড়িৎ পরস্পরক আকর্ষণ করে।

বিজ্ঞানীগণ সর্বসম্মত ভাবে স্থির করেন যে সিল্ক দ্বারা ঘষা কাচদন্তে যে তড়িতের উদ্ভব হয় তাকে ধনাত্মক (positive) তড়িৎ এবং পশম দ্বারা ঘষা এবোনাইটে যে তড়িতের উদ্ভব হয় তাকে ঋণাত্মক (negative) তড়িৎ বলা হবে। 'ধনাত্মক' এবং 'ঋণাত্মক' এই নামের অন্য কিছ্ তাৎপর্য নেই; শুধু এটাই বুঝায় যে, তড়িৎ দু-প্রকারের।

এখানে একটি বিষয় উল্লেখ করা প্রয়োজন। কাচকে যে-কোনো জিনিস দিয়ে ঘষলে কাচে সর্বদা ধনাত্মক তড়িৎ বা এবোনাইটকে যে-কোনো জিনিস দিয়ে ঘষলে এবোনাইটে সর্বদা ঋণাত্মক তড়িৎ উৎপন্ন হবে, তা ঠিক নয়। কোনো বস্তুকে অপর একটি বস্তু দিয়ে ঘষলে, কোন্টিতে কি ধরনের তড়িৎ উৎপন্ন হবে তা ঐ দুই পদার্থের প্রকৃতির ওপর নির্ভর করে। নীচে একটি তালিকা দেওয়া হল। এই তালিকার যে-কোনো দুইটি বস্তু ঘষলে ক্রমিক সংখ্যা অনুযায়ী প্রথমটি ধনাত্মক এবং দিতীয়টি ঋণাত্মক তড়িৎ পাবে।

40	- minater
	14 m 71

2. 季吃

3. রেশম

4. মানবদেহ

5. ধাতবপদার্থ

6.এবোনাইট

7.গালা

৪. আমবার

9. রজন (Resin)

10. গাটাপার্চা (Gutta percha)

উপরের তালিকা হতে দেখা যায় য় একই বস্তুকে দটি ভিন্ন বস্তু দিয়ে ঘর্ষণ করলে ধনায়ক ও ঋণা থক দ্লকাম তাভং উংপন্ন করা যায়। যেমান, এবোনাইটকৈ পশম দিয়ে ঘষলে এবোনাইটে ঋণায়ক তড়িং উংপন্ন হবে কিন্তু রজন দিয়ে ঘষলে ধনাপুক তড়িং উৎপন্ন হবে, কারণ ক্রমিক সংখ্যান্যায়ী রেশম এবোনাইটের আগে এবং রজন পরে।

আকর্ষণ অপেক্ষা বিকর্ষণ তড়িতাহিতকরণের প্রকৃষ্ট প্রমাণ (Repulsion is a surer test of electrification than attraction):

ধরা যাক, A বস্তুকে অন্য একটি ভড়িৎগ্রস্ত বস্তু B - এর সম্মুখে আনলে আকর্ষণ দেখা গেল। A বস্তুটি এস্থালে ভড়িৎগ্রস্ত কিনা সে সম্বন্ধে সন্দেহাতীত কোনো সিন্ধান্ত করা সম্ভব নয়; কারণ A বস্তুটি ভড়িৎগ্রস্ত হতে পারে, আবার গ্রাভংবিহীনত হতে পারে. উভয় ক্ষেত্রেই আকর্ষণ দেখা যাবে।

কিন্তু যদি উভরের ভিতর বিকর্ষণ লক্ষ করা যায় তবে A বস্তুটি যে তড়িৎপ্রস্ত সে সম্বন্ধে কোনো সন্দেহ থাকতে পারে নাঃ কারণ বিকর্ষণ একমাত্র সমতড়িতের ভিতর ছাড়া অন্য কোনো ক্ষেত্রে হয় না। সুতরাং A বস্তুটিতে B–এর সমতড়িং বর্তমান অথবা A বস্তুটি তড়িংগ্রস্ত।

এই কারণে বলা হয়, বিকর্ষণই তড়িতাহিতকরণের প্রকৃষ্ট প্রমাণ । উল্লেখ করা যেতে পারে, চুম্বকের বেলাতেও একই রকম ঘটনা ঘটে।

তড়িতাধানের অস্তিত্ব নির্ণয়ের যন্ত্র (Instrument for detection of electric charge) :

কোনো বস্তুতে তড়িং আধানের অন্তিত্ব ও প্রকৃতি সৃক্ষভাবে নির্ণয় করার উপযুক্ত যন্ত্র হল মর্ণপত্র তড়িংবীক্ষণ। অন্টাদশ শতাব্দীর শেষভাগে আব্রাহাম বেনেট নামে ইয়র্কশায়ারের জনৈক পাদরী এই যন্ত্রের উদ্ভাবন করেন।

ষর্গ-পত্র তড়িংবীক্ষণ: 1.2 নং চিত্রে এই যন্ত্রের ছবি দেখানো হল। দুটি হালকা ও পাতলা সোনার পাত (L, L) একটি সরু ধাতব দণ্ড P—এর নিম্প্রান্তে সংযুত্ত। দণ্ডটি সাধারণত পিতলের তৈরি। পাত দুটি সোনার না হয়ে অ্যালুমিনিয়াম বা অন্য কোনো হালকা ধাতুরও হতে পারে। পিতলের দণ্ডটি একটি পাতলা কাচের দেওয়ালযুক্ত পাত্রের ভিতর রাখা থাকে এবং এবোনাইট বা অনুরূপ কোনো অন্তরক পদার্থ নির্মিত ছিপির ভিতর দিয়ে ঢুকানো থাকে। দণ্ডের ওপর প্রান্তে এবং পাত্রের বাইরে একটি ধাতব (পিতল) চাকতি D আটকানো। কোনো কোনো যন্ত্রে চাকতির পরিবর্তে বর্তুল (knob) থাকে। ম্বর্ণ পত্র দৃটি কাচের দেওয়ালযুক্ত পাত্রের ভিতরে

থাকায় বায়প্রবাহ কর্তৃক বাধাপ্রাপ্ত হয় না। দুটি টিনের পাত (t,t) স্বর্ণপএদ্বরের সম্মুখে এবং পারের ভিতরের গায়ে আটকানো থাকে **টিনপাতসহ পাত্তের ধাতবভূমি** (metallic base) **সাধারণত ভূ সংলগ্ন** (earthed) থাকে। পাত্রস্থ বায়ু যাতে সর্বদা শুদ্ধ থাকে সেজনা এর ভিতর একটা বাটিতে কিছ্ হলশোষক ক্যালশিয়াম ক্লোরাইড রাখা থাকে। বায়ু ভিজে থাকলে স্বর্ণপত্রের কার্যে বিশ্ব উপস্থিত ১%।

• তড়িৎবীক্ষণের ব্যবহার : বস্তু আহিত কিনা তার পরীক্ষা : কোনো বস্থু আহিত কিনা তা নির্ণয় করতে গেলে বস্তুকে তড়িৎবিহীন (uncharged) তড়িৎবীক্ষণের চাকতি D-এর নিকট আনতে হবে , বস্তুটি আহিত হলে তড়িৎবীক্ষণের স্বর্ণপত্র দৃটি ফাঁক হয়ে যাবে এবং কতটা ফাঁক হল তা থেকে বস্তুতে আধানের তীব্রতা (intensity) সম্বন্ধে মোটামুটি ধারণা করা যেতে পারে। যদি বস্তুটি আহিত না হয় ওবে তাকে চাকতির কাছে আনলে স্বর্ণপত্রদ্বয় ফাঁক হবে না। এভাবে অতি অল্প পরিমাণ তড়িতাধানের অধিকও নিধারণ করা সম্ভব।

বর্ণপত্র তড়িৎবীক্ষণ দ্বারা পরিবাহী ও অপরিবাহীর শনান্তকরণ :

যে-কোনো একপ্রকার তড়িং—ধনাত্মক অথবা ঋণাত্মক দ্বারা একটি ম্বর্ণপত্র ভড়িংবীক্ষণকে আহিত কর। এতে স্বর্ণপত্র দুটি তড়িংগ্রস্ত হয়ে একটু ফাঁক হয়ে থাকবে। এইবার পরীক্ষাধীন বন্ধুকে মূহূর্তের জন্য তড়িংবীক্ষণের চাকতির সাথে স্পর্শ করাও। বন্ধুটি পরিবাহী হলে, তড়িংবীক্ষণের তড়িং তংক্ষণাং পরিবাহী বন্ধুর ভিতর দিয়ে মাটিতে চলে যাবে এবং ম্বর্ণপত্রদ্বয় নিমীলিত (collapse) হবে। আর যদি বন্ধুটি অপরিবাহী হয় তবে তড়িংবীক্ষণের তড়িতাধান মাটিতে যেতে পারবে না এবং ম্বর্ণপত্রদ্বয় আগের মতো ফাঁক হয়েই থাকবে। এইভাবে ম্বর্ণপত্র তড়িংবীক্ষণের সাহায়ে খুব সহজে পরিবাহী ও অপরিবাহী বন্ধু শনাক্ত করা যায়।

ঘর্ষণে একই সঙ্গো সমপরিমাণ উভয় প্রকার তড়িতের সৃষ্টি হয় (Friction produces simultaneously both kinds of electricity in equal amount):

ঘর্ষণপ্রণালীতে একই সঙ্গো উভয়প্রকার তড়িতের উৎপত্তি হয় এবং তাদের পরিমাণও সমান হয়। এটা নিম্নলিখিত সহজ পরীক্ষা দ্বারা প্রমাণ করা যায়।

পরীক্ষা: একটি এবোনাইট দশু নাও। তার এক মাথায় একটি ফানেলের টুপী পরাও। টুপীর সাথে একগাছা রেশমি সূতো যুক্ত কর যাতে হাত দিয়ে দশু স্পর্শ না করে সূতোর সাহায়ে টুপীকে দশু থেকে পৃথক করা যায় (চিত্র 1.3)।

এইবার ফ্লানেলের ঐ টুপী দিয়ে দণ্ডকে ঘষলে তড়িতের উদ্ভব হবে। উভয়কে পৃথক না করে একসঞ্জো একটি নির্ম্ভিৎ তড়িৎ

বীক্ষণের কাছে খান। দেখবে, তড়িৎবীক্ষণের স্বর্ণপত্রের কোনো বিস্ফারণ হল না। এথেকে বোঝা যায়, একসংক্ষা থাকাকালীন তাদের কোনো তড়িৎ নেই।

এইবার সূতো টেনে দশু থেকে টুপীকে পৃথক করো এবং উভয়কে আলাদা আলাদা ভাবে তড়িংগ্রস্থ তড়িংবীক্ষণ যন্ত্র দারা পরীক্ষা করো। দেখবে, দশুে ঋণাত্মক তড়িং এবং টুপীতে ধনাত্মক তড়িং বর্তমান। দশু ও টুপীতে বিপরীত ধর্মী তড়িং বর্তমান অথচ একসঙ্গো থাকাকালীন তারা কোনো তড়িতের অস্তিত্ব দেখায় না—এর অর্থ এই যে উভয় বস্তুতে তড়িতের পরিমাণ সমান কারণ সমপরিমাণ বিপরীত তড়িং পরস্পরের গুড়িংকিয়াকে প্রশমিত (neutralise) করে।

এই পরীক্ষা হতে সিন্ধান্ত করা যায়, ঘর্ষণে সমপ্রিমাণ উভয়প্রকার তড়িতের উদ্ভব হয়।

তড়িতের ইলেকট্রনীয় তত্ত্ব (Electronic theory of electricity) :

তড়িং সম্প্রকীয় বিভিন্ন ঘটনা বাখোন করার জন্য ভিন্ন সময়ে কতকগুলি তত্ত্ব প্রচলিত ছিল। এই সময়ে তত্ত্বে ঘণ্ডন করে যে তত্ত্ব অংধ্নিক বিজ্ঞান কর্তৃক গুঠাত তাকে ইলেকট্রনীয় তত্ত্ব বলা হয়। এই তত্ত্বের প্রবর্তকদের মধ্যে অন্যতম হলেন বিশিষ্ট পদার্থবিদ্ সাবে জে. জে. টুম্সন।

প্রত্যক বট্ট কুল কুল কলাখারা গঠিত : এদের বলা হয় সর্বাহাণু। এই পর্বাহাণু আরও ক্ষ্ম কুল কলিকা দারা

গচিত। তাদের নাম দেওয়া হয়েছে **ইলেকট্রন**। ইলেকট্রন ঋণাত্মক তড়িৎসম্পন্ন। পরমাণুর ইলেকট্রন একটি ধনাত্মক ওড়িৎসম্পন্ন কেন্দ্রক বা নিউক্রিয়াস (nucleus)-কে কেন্দ্র করে কতকগুলি সুনির্দিষ্ট কক্ষপথে সতত ঘূর্ণায়মান

(1.4 নং চিত্র)। নিউরিয়াস দু-রকম কণাদ্বারা তৈরি। এরা হল — ধনাত্মক
তড়িৎসম্পন্ন কণা প্রোটন ও নিস্তড়িৎ কণা নিউট্রন। একটি প্রোটনের
ধনাত্মক তড়িতের পরিমাণ একটি ইলেকট্রনের ঋণাত্মক তড়িতের পরিমাণের
সমান এবং একটি গোটা পরমাণুতে সমসংখ্যক প্রোটন ও ইলেকট্রন থ
াকে। সুতরাং একটি গোটা পরমাণুতে কোনোরকম তড়িৎ-ধর্মের প্রকাশ
পায় না। বিভিন্ন মৌলের পরমাণুতে বিভিন্ন সংখ্যক ইলেকট্রন থাকে।
ইলেকট্রনগুলি নিউরিয়াসকে কেন্দ্র করে বিভিন্ন খোলকে (shell) অবিরত
ঘুরতে থাকে। সরলতম মৌল হাইড়োজেন পরমাণুতে আছে মাত্র একটি
ইলেকট্রন এবং নিউরিয়াসে আছে মাত্র একটি প্রোটন। দ্বিতীয় মৌল হিলিয়ামে

আছে দুটি ইলেকট্রন এবং নিউক্লিয়াসে আছে দুটি প্রোটন ও দুটি নিউট্রন। সাধারণত মৌলের পারমাণবিক সংখ্যা (atomic number) তার পরমাণুতে প্রোটন অথবা ইলেকট্রনের সংখ্যা জ্ঞাপন করে এবং ভরসংখ্যা (mass number) নিউক্লিয়াস মোট কণিকার সংখ্যা (নিউট্রন + প্রোটন) জ্ঞাপন করে। যেমন কোনো মৌলের পারমাণবিক সংখ্যা Z হলে তার পরমাণুতে Z সংখ্যক ইলেকট্রন আছে এবং নিউক্লিয়াসেও Z সংখ্যক প্রোটন আছে। আবার ঐ পরমাণু ভরসংখ্যা A হলে নিউক্লিয়াসে প্রোটন ও নিউট্রনের সমবেত সংখ্যা হবে A; অতএব, ঐ নিউক্লিয়াসে নিউট্রনের সংখ্যা – A – Z.

যেহেতু গোটা পরমাণুতে ইলেকট্রন ও প্রোটনের সংখ্যা সমান, সেইহেতু গোটা পরমাণু নিস্তড়িং।
নিউক্লিয়াসের কণিকাণুলি পরস্পরের সাথে দৃঢ়ভাবে আবন্ধ — তাদের হেরফের করা সহজসাধ্য নয়। কিন্তু
ইলেকট্রনগুলির বেলায় তা হয় না। সহজ প্রক্রিয়ায় পরমাণু হতে ইলেকট্রন বিচ্চিত্র করা যায়। কোনো রকমে
পদার্থের পরমাণুতে ইলেকট্রন সংখ্যার আধিকা বা হ্রাস করতে পারলে পরমাণু হণতড়িং বা ধনতড়িংগ্রস্ত
হয়ে পড়বে। একেই সংক্ষেপে তড়িতের ইলেকট্রনীয় তত্ত্ব বলে। (বিশ্বদ বিবরণের জন্য 'আধুনিক পদার্থ বিজ্ঞান' অংশ দ্রুষ্ব্যু)।

ইলেকট্রন প্রভাক পদার্থের পরমাণুতে বর্তমান। কার্জেই একে পদার্থের প্রাথমিক উপাদান (fundamental constituent) বলা যেতে পারে। ইলেকট্রন ওজনে সর্বাপেক্ষা হালকা এবং তার তড়িৎ-পরিমাণ সর্বাপেক্ষা কম। পরীক্ষা করে দেখা গেছে প্রতি ইলেকট্রনের ভর $9\times 10^{-31}{
m kg}$ এবং তড়িৎ-পরিমাণ 1.6×10^{-19} coulomb অথবা $4.8\times 10^{-10}{
m e.s.u.}$ –এর সমান। তড়িৎ-পরিমাণ সর্বাপেক্ষা কম ২ওয়াতে একে তড়িতের 'একক' (unit) ধরা হয়।

ইলেকট্ৰীয় তত্ত্ব দারা ঘর্ষণজাত তড়িতের ব্যাখ্যা (Explanation of frictional electricity according to the electronic theory):

সাধারণ অবস্থায় প্রত্যেক পরমাণুতে নিউক্লিয়াসস্থিত ধনাথক তড়িতাধানকে প্রশান্ত করার জনা বে কয়টি ইলেকট্রন প্রয়োজন তা থাকে। কিন্তু প্রভোক পরমাণ্রই ঐ প্রয়োজনীয় ইলেকট্রন সংখ্যার অতিরিত্ত ইলেকট্রনের প্রতি একটা আসত্তি বা আকর্ষণ থাকে। প্রয়োজনীয় সংখ্যার অতিরিত্ত ইলেকট্রনের প্রতি এই আকর্ষণ বিভিন্ন পরমাণ্তে বিভিন্ন। তাই, যখন দ্টি ভিন্ন বঞ্জে পরস্পরের সাথে সংস্প্রকা প্রমাণ্ত হয় তথন, যে বঞ্জতে উপরিউত্ত আকর্ষণ বা আসত্তি বেশি সেই বয়ু অপর বয়ু হতে কাজাকাতি ইলেকট্রন্ত অবর্কাল করে নেবে এবং কলাথক তভিতে আহিত হবে এই ধরনের ঘটনা ঘটন যাক তবেলাইট দত্ত কলা ধরা ঘষা হয়। পশানের ত্রানাইটার ইলেকট্রন আসত্তি বেশি বলে এবোলাইটা দত্ত কলায়ক তভিত প্রস্থা

এবং পশ্মের ইলেকট্রনের ঘাটতি হওয়ায় তা ধনাত্মক তড়িতে আহিত হয়।

তেমনি রেশম দারা কাচদণ্ড ঘষলে কাচদণ্ড হতে কিছু সংখ্যক ইলেকট্রন বিচ্যুত হয়ে রেশমে যুক্ত হয়। কারণ কাচদণ্ডের তুলনায় রেশমের ইলেকট্রন–আসন্তি বেশি। তাই, রেশম ঋণাত্মক তড়িতে এবং কাচদণ্ড ধনাত্মক তড়িতে আহিত হয়।

আমরা জানি ঘর্ষণে উভয় প্রকার তড়িং সমপরিমাণে সৃষ্টি হয়। এটাও উপরিউন্ত ব্যাখ্যা হতে সহজে বোঝা যায়, কারণ, একবস্তু যে-সংখ্যক ইলেকট্রন হারাবে অন্য বস্তুটি ঠিক সেই সংখ্যক ইলেকট্রন লাভ করবে। প্রতি ইলেকট্রনের তড়িতাধানের পরিমাণ সমান বলে উভয় বস্তুতে সমপরিমাণ তড়িতের উন্তব হবে। সূতরাং একই সংজা দুই বস্তুতে বিপরীত তড়িতের সৃষ্টি হবে এবং তাদের পরিমাণও হবে সমান।

এখানে উদ্রেখযোগ্য যে ইলেকট্রনীয় তত্ত্ব অনুযায়ী অন্তরক ও পরিবাহীর ভিতর পার্থক্য এই যে অন্তরক পদার্থের পরমাণুতে ইলেকট্রনগুলি দৃঢ়ভাবে আবন্ধ। তারা স্বাধীনভাবে ইচ্ছামত চলাচল করতে পারে না। আর পরিবাহীর ইলেকট্রনগুলি পরমাণুতে শিথিলভাবে সংযুক্ত থাকে এবং স্বচ্ছদ্দে এক পরমাণু হতে অন্য পরমাণুতে চলাচল করতে পারে।

তড়িতাধানের কোয়ান্টায়ন (Quantisation of electric charge) :

এই বিশ্বে কেবল ইলেকট্রন ও প্রোটন তড়িদ্বাহী কণিকা হলে, অন্য সকল তড়িতাধান প্রোটন বা ইলেকট্রনের আধানের (e) অথশু গুণিতক (integral multiple) হবে। কোনো বস্তুতে n_1 সংখ্যক প্রোটন ও n_2 সংখ্যক ইলেকট্রন থাকলে, ঐ বস্তুর নিট তড়িতাধান হবে $n_1(e)+n_2(-e)=(n_1-n_2)e$.

অবশ্য প্রোটন ও ইলেকট্রন ছাড়া আরও অনেক তড়িছাহী প্রাথমিক (elementary) কণিকা আছে কিতৃত্ব তাদের সকলের তড়িভাধানই e-এর অখন্ড গুণিতক। এই বিশ্বে ইলেকট্রন বা প্রোটনের তড়িভ পরিমাণ সর্বাপেশ্বা কম। কাজেই কোনো বস্তুর তড়িভাধান সর্বাদ ইলেকট্রন আধানের অখন্ড গুণিতক। বস্তুর ঐ আধান q থলে $q=\pm ne$ মেখানে $n=1,2,3\dots$ ইভাদি n-এর ভগ্নাংশ হয় না। তার তড়িভাধানের বৃদ্ধি বা হ্রাস করতে হয়। এই ঘটনাকে বা হ্রাস করতে হরে। এই ঘটনাকে তড়িভাধানের কোয়ান্টায়ন বলা হয়। সূতরাং 1 কোয়ান্টা তড়িভাধান = একটি প্রোটন অথবা একটি ইলেকট্রন তড়িভাধান (e)।

1.11. তড়িতাধানের সংরক্ষণ (Conservation of electric charge)

আমরা 1.5 অন্তেক্তনে দেখেছি য়ে একটি কাচদন্তকে রেশমি কাপড় দিয়ে ঘষলে কাচদন্ত হতে ইলেকট্রন রেশমি কাপড়ে পরিবাহিত হয়ে রেশমি কাপড়কে নেগেটিত ও কাচদন্তকে পজিটিত তড়িতে আহিত করে। কেশমি কাপড়ে পরিবাহিত হয়ে রেশমি কাপড়কে নেটে পজিটিত তড়িতের ঠিক সমান। সূত্ররং দেখা যায় রেশমি কাপড়ের মেটি নেগেটিত ইড়িং কাচদন্তের মেটি পজিটিত তড়িতের ঠিক সমান। সূত্রবং রেশমি কাচ এই বিশ্বির সংস্থার মোটি ইড়িং হার্মনির অপরিবর্তিত থাকে — অর্থাং ঘষার পূর্বে ও পরে মোট রেশমি কাচ এই বিশ্বির সংস্থার মোটি ইড়িং হার্মনির তড়িতাধানের সংরক্ষণ সূত্র প্রস্তাবিত হয়েছে। ইড়িংখান শূল্য থাকে। সর্বদা এরপরিবর্তিত ও বিভিন্ন সংস্থার (isolated system) মোট তড়িতাধানে (পজিটিত ও এই সত্রান্মানের বীজগালিতিক সমন্তি) সর্বদা সংরক্ষিত থাকে। শিক্তি, তর ইঙাাদি সংরক্ষণ সেরে মাণ্ডার সংবদ্ধার সর্বাহাত একটি সর্বজনীন সত্র।

এই সংবে পাবপ্রেক্ষাত পদাট করা মায় যে 'ওড়িং সন্ধি করা' বা 'বিনাশ করা'— প্রভৃতির নায় ১টি সাবের পাবপ্রেক্ষাত পদাট করা মায় না 'বিনাশ করাও মায় না - তড়ি ভাষান কেবলমাত্র সংস্থার ১টি বিপ্রাণসম্প্রত নম প্রতিভি স্থানি করা মায় না 'বিনাশ করাও মায় না - তড়ি ভাষান কেবলমাত্র সংস্থার এক আ শ হতে এলা আলো স্থানিত এতে পারে একটো বল্প নায় যে এড়িভাছিত করল পদাতি অবশান স্থানিক্ষাল বিশাস্থানিক আলোভাই এই বুলি বিক্লে একটা বলা যায় যে এড়িভাছিত করল পদাতি আশান নামায় করে না প্রান্তি ও লাভিভ এই বুলি প্রনানক আধানকৈ প্যক্ত করে দেয়।

1.12 পরাবৈদ্যতিক মের্বর্তিতা (Dielectric polarisation) :

ক্র্যিন পদার্থে প্রমাণগুলি পারস্পরিক বলের প্রভাবে নিজম্ব জায়গা অধিকার করে থাকে। কোনো কোনো কঠিন পদার্থে পর্মাণ্র ইলেকট্রন্থলি ঐ কচিন পদার্থের জ্যামিতিক সীমরেখার ভিতরে থেকেই পরমাণ্ডতে আলগাভাবে আকল্ব থাকে। ঐ ইলেকট্রনগুলকে বলা হয় পরিবাহী ইলেকট্রন এবং যে বস্তুতে ঐ ধরনের ইলেকট্রন থাকে তাকে পরিবাহী (conductor) বলা হয়। বিভিন্ন পরিবাহীতে অবশ্য পরিবাহী ইলেকট্রনগুলির চলাফেরার স্বাধীনতার মাত্রা বিভিন্ন। আবার যে সকল বস্তুতে পরিবাহী ইলেকট্রনের অবাধ চলাফেরার স্বাধীনতা খব কম, তাদের বলা হয় **অন্তরক** (insulator) বা পরা-বিদাৎ (dielectrics)। সতরাং পদার্থ গঠনের ইলেকট্রন তত্ত অনুযায়ী পরিবাহী ও পরা-বিদ্যাতের ভিতর ত্যাত এই য়ে প্রথমোক্ত বস্তুতে প্রচুর স্বধীন ইলেকট্রন বর্তমান এবং শেষোক্ত বস্তুতে ইলেকট্রনগুলি পরমাণতে দঢ়ভাবে আবশ্ব।

পরিবাহীতে প্রচর স্বাধীন ইলেকট্রন থাকায়, পরিবাহী কোনো বৈদ্যতিক পীড়ন সহ্য করে না; আর পরাবিদাতে ইলেকট্রনগলি পরমাণতে দঢভাবে আবন্ধ থাকায় এরা বৈদ্যতিক পীড়ন সহা করতে সক্ষম। কোনো কোনো পরাবৈদ্যতিক পদার্থের অণুগুলির প্রত্যেকটির মোট ধনাত্মক তড়িতাধানের (অর্থাৎ প্রত্যেকটি অণুর সকল প্রোটনের আধান) কেন্দ্র এবং মোট ঋণাত্মক তড়িতাধানের (অর্থাৎ প্রত্যেকটি অণুর সকল ইলেকট্রনের আধান) কেন্দ্র এক বিন্দতে মিলিত হতে পারে। যদি মিলিত হয় তবে সেইসব পদার্থ কৈ **অমের-বর্তী** (non-polar) বলে। কোনো অমেরবর্তী পরাবৈদ্যতিক পদার্থকে তডিৎক্ষেত্রে স্থাপন করলে, অণুগুলির ধনাত্মক আধানের কেন্দ্র তড়িৎ ক্ষেত্রের অভিমুখে এবং ঋণাত্মক আধানের কেন্দ্র বিপরীত দিকে সামানা সরে যায়। ধনাত্মক ও ঋণাত্মক আধানের কেন্দ্রদ্ম পরম্পর থেকে পৃথক হয়ে যাবার ফলে অণ্টি একটি তড়িৎ দিমেরু (electric dipole) গঠন করে। একে আবিষ্ট দিমেরু বলা হয় এবং এই দ্বিমেরুর ভামক-কে (moment) দ্বিমের ভ্রামক বলা হয়। প্রাবিদ্যুতের ঐ অবস্থাকে বলা হয় মেবুবর্তিতা (polorisation)।

কিছু কিছু পরাবিদ্যুতের অণুতে—য়েমন জলের অণুতে আপনা হতেই বিপরীত আধানদ্বয় স্থায়ীভাবে স্থানচাত হয়ে থাকে। বাইরের কোনো তড়িৎ ক্ষেত্রের প্রভাব ছাড়াই জলের অণু (H₂O), নাইট্রোজেন অক্সাইড অণু $(\mathrm{N}_2\mathrm{O})$ মেরুবর্তী অণুর উদাহরণ। এরা আপনা থেকেই মেরুবর্তিতা লাভ করে।

> © পরিবাহী-পৃষ্ঠে আধান বল্টন © (Distribution of charge on a conductor)

আহিত পরিবাহীর আধান সর্বদা পরিবাহীর ওপরের পূরে অবস্থান করে (Charge always resides on the outer surface of a conductor):

যখন কোনো পরিবাহীকে তড়িতাহিত করা হয় তখন দেখা যায় যে, ঐ আধান সর্বদা পরিবাহীর ওপর পুষ্ঠে অবস্থান করে। বস্তুত পরিবাহীকে আধান দেওয়া মাত্রই তা পরিবাহীর বাহিরের পুষ্ঠে চড়িয়ে পড়ে। এই প্রস্কো ফ্যারাড়ের একটি ইতিহাস প্রসিদ্ধ পরীক্ষা আছে। দৈর্ঘো, প্রস্থে ও উচ্চতায় প্রায় 4 মিটার করে চৌকোণা একটি বাক্স তৈরি করে তিনি তার বহিরাবরণ টিনের পাত দিয়ে মুড়ে দেন। অভঃপর, তড়িতের অন্তিত্ব পরীক্ষার উপযোগী করেকটি যন্ত্রসহ নিজে বাক্সের মধ্যে চ্কে দরজা বন্ধ করে দেন। ভড়িৎযন্ত্রের যাহায়ে ঐ বাক্সকে এত প্রচ্র পরিমাণ ভড়িতে আহিত করা হল যে টিনের পাত থেকে বাইরের দিকে ভড়িংক্ষলিজা (electric spark) হতে দেখা গেল। কিছু বাজের অভান্তরে ফারোডে কোনোরুপ ৩ড়িৎ-ম্পৃষ্ট হলেন না বা যন্ত্রপাতিতে তড়িতের অস্ত্রিত্ব ধরা পড়ল না। নিম্নবূর্ণিত

কয়েকটি সহজ পরীক্ষা দ্বারাও উপরিউত্ত ঘটনা প্রমাণ করা যায়।

(1) ফ্যারাডের প্রজ্ঞাপতি জ্ঞাল পরীকা: A-একটি শঙ্কু আকৃতির মসলিন বা সুতোর জ্ঞাল।

জালটি একটি আংটার সাথে (1.5 নং চিত্র) আটকানো। আংটাটি অন্তরক হাতলের ওপর স্থাপিত। জালের সর্প্রান্তে দুই গাছা লম্বা রেশম সুতো যুক্ত আছে। ঐ সুতো টেনে জালকে উণ্টানো যায়। কোনো তড়িৎ-যন্ত্রের সাহায্যে জালকে তীব্র আধানে আহিত করো। এইবার একটি আধান-পরীক্ষক (proof-plane) নিয়ে জালের ভিতরের পিঠে ছোঁয়াও। আধান-পরীক্ষককে তড়িৎবীক্ষণের কাছে আনলে স্বর্ণপত্রের কোনো বিক্ষারণ দেখা যাবে না। এটা প্রমাণ করে, জালের ভিতরের পিঠে কোনো আধান নেই। এইবার আধান-পরীক্ষককে জালের বাইরের পিঠে ছোঁয়াও। আধান

পরীক্ষকে তড়িৎবীক্ষণের কাছে আনলে তৎক্ষণাৎ পাত দুটি ফাঁক হয়ে যাবে। এটা প্রমাণ করে জালের বাইরের পিঠ তড়িৎগ্রন্ত।

এইবার সুতো টেনে জালকে উপ্টাও অর্থাৎ, বাইরের পিঠ ভিতরে এবং ভিতরের পিঠ বাইরে আনো। আধান-পরীক্ষক দ্বারা এই নতুন ভিতরের পিঠকে উপরিউক্ত উপায়ে পরীক্ষা করলে দেখা যাবে, ভিতরের পিঠে কোনো আধান নেই। উপরের পিঠ পরীক্ষা করলে দেখা যাবে, আধান উপরের পিঠে চলে এসেছে।*

(2) বিও-এর পরীক্ষা: A একটি ধাতব গোলক। একটি অন্তরিত হাতলের (D) উপরে এটা স্থাপিত। Bও C দুটি পাতলা ধাতব অর্ধগোলক। এরা A-গোলককে সম্পূর্ণ আবৃত করতে পারে। এই দুটি অর্ধগোলকের সাথে অন্তরিত হাতল যুক্ত আছে [1.6 নং চিত্র]। A-গোলককে তড়িতাহিত করা হল। এইবার অর্ধগোলক দুটি দ্বারা A-কে সম্পূর্ণ আবৃত করা হল কিন্তু A-র

সাথে অর্ধগোলক দৃটির সংযোগ করা হল না। অর্ধগোলক দৃটিকে অন্তরিত হাতল দ্বারা সরিয়ে এনে আলাদাভাবে তড়িৎবীক্ষণ দ্বারা পরীক্ষা করলে দেখা যাবে, তারা কোনো তড়িৎ পায়নি।

পুনরায় অর্ধগোলক্ষয় কর্তৃক

A-কে আবৃত করা হল কিছু এইবার
উভয়ের ভিতর সংযোগ করা হল।
এখন অর্ধগোলক্ষয়কে সরিয়ে নিয়ে
পরীক্ষা করলে দেখা যাবে, A-গোলকে
কোনো আধান নেই। সব আধান
অর্ধগোলক্ষয়ে চলে এসেছে। চিত্র

1.71। এর কারণ কী ?

্র ফ সেতে স্থান প্রথমে এই পরীক্ষা করেন তখন প্রজাপতি-ধরা জাল ব্যবহার করেছিলেন বলে পরীক্ষাটিকে প্রজাপতি জাল পরীক্ষা বলা হয়।] যখন অর্ধাণোলকদ্বয় দারা A-কে আবৃত করে উভয়কে স্পর্শ করানো হল তখন উভয়ে মিলে একটি একক (single) পরিবাহীতে পরিণত হল যার উপরের পিঠ হল অর্ধণোলক দৃটির উপরের পিঠ: সূতরাং এই অবস্থায় আধান পরিবাহীর উপরের পিঠে আসবে। অর্থাৎ, A-গোলকের আধান অর্ধণোলকদ্বয়ের উপরের পিঠে চলে আসবে। পরীক্ষাটির উদ্ভাবক বিজ্ঞানী বিও।

(3) ফাঁপা পরিবাহীর ঘারা পরীক্ষা (Experiment with a hollow conductor): A-একটি গভীর ধাতবপাত্র একটি অন্তরক আসনের উপর বসানো (1.৪ নং চিত্র)। পাত্রকে তীর (strong) ধনাত্মক তড়িতের আহিত করা হল। এখন একটি আধান-পরীক্ষককে ধাতবপাত্রের ভিতরের দেওয়ালের বিভিন্ন অংশে স্পর্শ করিয়ে ম্বর্ণপত্র তড়িৎবীক্ষণ দ্বারা পরীক্ষা করলে দেখা যাবে যে, আধান-পরীক্ষক তড়িতাহিত হয়ন। অর্থাৎ, ধাতব-পাত্রের অভ্যন্তরে কোনো আধান নেই। এইবার আধান-পরীক্ষককে ধাতবপাত্রের বাইরের দেওয়ালের বিভিন্ন অংশে স্পর্শ করানো হল এবং আধান-পরীক্ষককে তড়িৎবীক্ষণের কাছে আনা হল। দেখা যাবে, ম্বর্ণপত্রদ্বর বিক্ষারিত হয়েছে। এতে প্রমাণিত হয়, তড়িতাহিত ফাঁপা পরিবাহীর আধান পরিবাহীর বাইরের পৃষ্ঠে অবস্থান করে।

সূতরাং উপরোক্ত পরীক্ষাগুলি হতে সিন্ধান্ত করা যায়, **আহিত পরিবাহীর আধান পরিবাহীর** বাইরের পৃষ্ঠে অবস্থান করে, ভিতরের পৃষ্ঠে করে না।

এই ঘটনা দুই কারণে তাৎপর্যপূর্ণ, প্রথমত এর সাহায়্যে এক বন্ধু হতে অনা বন্ধুতে তড়িতের স্থানান্তর খুবই সহজ। একটি ফাঁপা পরিবাহী নিয়ে তার অভান্তরীণ তলের সাথে কোনো তড়িংগ্রস্ত বন্ধু স্পর্শ করালে তড়িংগ্রস্ত বন্ধু হতে তড়িং সম্পূর্ণভাবে ফাঁপা পরিবাহীতে স্থানান্তরিত হবে। কারণ, ওড়িতের ধর্মই হল একটা গোটা পরিবাহীর বাইরের পৃষ্ঠে অবস্থান করা। দ্বিতীয়ত, স্থির তড়িং-বিজ্ঞানের পরীক্ষায় নিরেট (solid) পরিবাহী ব্যবহার প্রয়োজন করে না: ফাঁপা পরিবাহী বা টিনপাত অথবা অ্যালুমিনিয়াম পাতে মোড়া অপরিবাহী বন্ধু হলেই কাজ চলে যায়।

1.14 তড়িৎপর্দা বা আচ্ছাদন (Electric screen) :

কোনো পরিবাহীকে তড়িতাহিত করলে তড়িতাধান পরিবাহীর ওপরের পুন্নে অবস্থান করে এই ধর্মকে অবলম্বন করে তড়িৎপর্দা বা আচ্চাদন গঠন করা যেতে পারে — অর্থাৎ, কোনো আবন্ধ স্থানকে তড়িতের প্রভাব হতে মুপ্ত রাখা যেতে পারে। বিশ্লমবর্ণিত পরীক্ষা হতে এই ঘটনা বোঝা যাবে।

পরীক্ষা: C তামার তারের জাল দারা তৈরি একটি খাঁচা। খাঁচাটি একটি অওরক আসন A-র ওপর বসালো আছে (চিত্র 1.9)। খাঁচার ভিতরে একটি তড়িৎবীক্ষণ রাখা আছে। এখন যদি একটি তড়িৎগ্রস্ত দণ্ডকে খাঁচার সাথে স্পর্শ করানো যায় তবে তড়িৎবীক্ষণের স্বর্ণপত্র দৃটির কোনো বিক্ষারন দেখা যাবে না যদিও খাঁচাটি তড়িৎগ্রস্ত হবে। এমনকি তড়িংগ্রের সাহণ্যে গদি খাঁচাকে তার তড়িতাহিত করা যায় তব্ও স্বর্ণপত্রদ্রের কালো বিক্ষারণ হবে না। এর কারণ, খাঁচা তড়িতাহান পোলে, তা খাঁচার বাইবের পাসেই থাক্রেন খাঁচার ভিতর তড়িতের কোনো অধিত্র থাক্রেন না স্তরা খাঁচার অভারর তড়িতের প্রভাবর থাক্রে

এই প্রণালীর সভায়ে। তড়িং সংক্রান্ত স্থানী (sensitive) সভুপাতি। লাক সভিসাত ও অক্সাং

উৎপন্ন তড়িতের প্রভাব হতে মুক্ত রাখা হয়। প্রসঙ্গাত, উল্লেখ করা যেতে পারে, চুম্বকের ক্ষেত্রেও এই ধরনের পর্দা সৃষ্টি করা যায়। কি প্রামান বিভাগ কিন্তু কিন্তু করা যেতে পারে, চুম্বকের ক্ষেত্রেও এই

1 16.

পরিবাহী পৃষ্ঠে আধান বন্টন (Distribution of charge on a conductor) ও আধানের তলমাত্রিক ঘনত (Surface density of charge):

আমরা দেখলাম, আহিত পরিবাহীর আধান পরিবাহীর ওপর পৃষ্ঠে অবস্থান করে। কিন্তু পরিবাহীর পৃষ্ঠে সর্বত্র আধানের পরিমাণ সমান হয় না। পরিবাহীর আকারের ওপর বিভিন্ন স্থানের আধানের পরিমাণ নির্ভর

করে। পৃষ্ঠের যে অংশের বক্ততা বেশি বা যে অংশ তীক্ষাণ্ড সেই অংশে আধানের পরিমাণ বেশি হয়।

1.10 নং চিত্রে বিভিন্ন আকা-রের তড়িৎগ্রস্ত পরিবাহীর পুষ্ঠে আধানের পরিমাণ কীরপ হবে তা

দেখানো হয়েছে। পরিবাহীর পৃষ্ঠের যে-কোনো বিন্দু হতে কাটা কাটা লাইনের দূরত্ব ঐ বিন্দুর তড়িৎ-পরিমাণের সমান্পাতিক বোঝাচ্ছে। প্রথম পরিবাহীটি গোলাকার হওয়ায় তার পৃষ্ঠের সর্বত্র আধানের পরিমাণ সমানঃ কিন্তু অনা দৃটি পরিবাহীতে তা হয়নি।

সংজ্ঞাঃ পরিনাহীর পৃষ্ঠে যে-কোনো বিন্দুর চতুর্দিকে যদি একক ক্ষেত্রফল (unit area) কল্পনা করা ২য় ৩বে এ ক্ষেত্রফলে যে পরিমাণ আধান থাকবে তাকে ঐ বিন্দুর আধানের তলমাত্রিক ঘনত্ব বলা হয়।

গোলকের ক্ষেত্রে, তার পূর্কে সর্বত্র আধানের পরিমাণ সমান হওয়ায় গোলকের আধানের তলমাত্রিক ঘনত্ব সর্বত্র সমান। গোলকের ব্যাসার্থ r এবং তড়িতাধান Q হলে, আধানের তলমাত্রিক ঘনত্ব $\sigma=\frac{Q}{4\pi r^2}$; তলমাত্রিক ঘনত্বের এই রাশিমালা হতে বোঝা যায় যে, $\sigma \propto \frac{1}{r^2}$; এখন, $\frac{1}{r}$ তলের কোনো বিন্দুর বক্ততা (curvature) পরিমাপ করে, অঙ্এব বলা যায় কোনো বিন্দুর আধানের তলমাত্রিক ঘনত্ব ঐ বিন্দুর বক্ততার $\left(\frac{1}{r}\right)$ বর্গের সমানুপাতি। এটা যে-কোনো আকৃতির পরিবাহীর ক্রেত্রেই প্রযোজ্য।

পরীক্ষা দারা পুরুগে করা যায়, অসম বস্তুর বিভিন্ন স্থানে মাধানের তলমাত্রিক ঘনতু বিভিন্ন।

প্রাক্ষা: 111 - ১০ ১৪ ১৪ ১৯৯ ছাক্তির প্রিরাটী

মুলাকে বর ন ৪ লাম হাল্ডল করা। প্রিরাটকে হাতি হ করা

হলা ই মাদ্র প্রাক্তির রাষ্ট্রের প্রায় হবিদ্যা পাহরে এইবার

রেনী হাল্ডল প্রকল্যের প্রিরাহর রাষ্ট্রের প্রায়র বিশিল্প হাল্ডল

হলা ই মাদ্র প্রায়র কর্মার হলার হ লাল্ডল হলার বিশ্বর হাল্ডল

হলা হ হলা হলার লাহে বলার হলার প্রায়র বিশ্বরার হলার

হলার স্থানিক ক্রেলি বলার হলার বলার হলার বিশ্বরার হলার

বলার ই সকল বলার হলার বলার হলার বলার হলার

ধারণা পাওয়া যাবে। এইভাবে পরীক্ষা করলে দেখা যাবে, A বিন্দুর বেলাতে পাতা দুটির বিস্ফারণ B – বিন্দুর চাইতে কম অর্থাৎ, A বিন্দুর আধানের তলমাত্রিক ঘনত্ব B-বিন্দু অপেক্ষা কম। সূতরাং পরিবাহীর তীক্ষাগ্র অংশে বেশি পরিমাণ আধান জমা হয়।

এই পরীক্ষায় দৃটি বিষয়ের প্রতি লক্ষ রাখতে হবে। প্রথমত, পরিবাহীর কোনো বিন্দুতে আধান-পরীক্ষক স্পর্শ করিয়ে পরীক্ষা করার পর দ্বিতীয় বিন্দু স্পর্শ করার পূর্বে আধান-পরীক্ষককে নিস্তড়িং করে নিতে হবে। দ্বিতীয়ত, প্রত্যেকবার আধান-পরীক্ষককে তড়িংবীক্ষণ হতে সমান দূরে রাখতে হবে। এক্ষেত্রে একটির পরিবর্তে কয়েকটি আধান-পরীক্ষক নিয়ে পরীক্ষা করা উচিত। ঐ আধান-পরীক্ষকগুলির চাকতির ক্ষেত্রফল সব সমান হবে কিন্তু এমনভাবে বাকানো থাকবে যাতে পরিবাহীর বিভিন্ন অংশের বক্রতা অনুযায়ী তারা পরিবাহীর গায়ে ঠিকভাবে এটে বসে।

© Example Q

4 m ব্যাসার্ধের কোনো একটি গোলককে 1.82 coulomb তড়িতাধান দিলে তার আধানের তলমাত্রিক ঘনম্ব কী হবে ?

উঃ। গোলকের আধানের তলমাত্রিক ঘনত্ব $\sigma = rac{Q}{4\pi r^2}$

এখানে, Q = 1.82 C এবং r = 4 m; কাজেই,

 $\sigma = \frac{1.82}{4 \times \frac{22}{7} \times (4)^2} = \frac{1.82 \times 7}{4 \times 22 \times (4)^2} = 9 \times 10^{-3} \text{ coulomb/m}^2.$

1.16. তীক্ষাই পরিবাহীর ক্রিয়া (Action of points) :

(i) তড়িৎমোকণ ব্রিয়া (Discharging action): আমরা দেখলাম, পরিবাহীর তীক্ষাগ্র প্রান্তে আধান বেশি পরিমাণ জমা হয়। যদি প্রান্ত খুবই তীক্ষাগ্র হয় তবে খুব অল্প জায়গায় বেশি পরিমাণ আধান জমা হবার ফলে তীক্ষাগ্র প্রান্তের চতুম্পার্শ্বস্থ বায়ুকণাগৃলি আবেশের দরুন বিপরীত আধান কর্তৃক আহিত হয়। বায়ুকণাগৃলি ও তীক্ষাগ্র প্রান্তের আধান বিপরীত জাতীয় বলে তাদের ভিতর আকর্ষণ ক্রিয়া করে এবং বায়ুকণাগৃলি তীক্ষাগ্র প্রান্তের উপর গিয়ে পড়ে। এতে বায়ুকণাগৃলি ক্ষণকালের জন্য নিস্তৃতিং হয়। বায়ুকণাগৃলি নিস্তৃতিং হবার পর পরিবাহীর সংস্পর্শের জন্য পরিবাহীর সমত্তিং পায় এবং বিকর্ষিত হয়ে পরিবাহী থে কে দূরে সরে য়ায়। তথন পরিপার্শ্ব হতে নতুন বায়ু ঐ স্থান অধিকার করে এবং সমগ্র প্রক্রিয়ায় পুনরাবৃত্তি ঘটে। এভাবে পরিবাহীর তীক্ষাগ্র প্রান্ত ধীরে তিড়িং হায়য়। একে সূচিমুন্থের তিড়ংমোক্ষণ ব্রিয়া বলা হয়। সূত্রাং, কোনো আহিত পরিবাহীর আধান ধরে রাখতে হলে পরিবাহীর আকার যথাসন্তব

নিম্নবর্ণিত কয়েকটি পরীক্ষা দ্বারা তীক্ষাগ্র পরিবাহীর এই ক্রিয়া প্রদর্শন করানো যেতে পারে।

(ii) সূচিমুখের সেচন ব্রুয়া (Spraying action of points): A একটি সূচিমুখ পরিবাহী। পরিবাহীর সূচিমুখের সম্মুখে একটি মোমবাতির শিখা আছে। পরিবাহী নিস্তড়িৎ হলে, শিখা খাড়া থাকবে। কিন্তু পরিবাহীকে তড়িংযন্ত্র কর্তৃক তীব্র তড়িতে আহিত করলে শিখাকে হেলে পড়তে দেখা যাবে (1.12 নং চিত্র)। এর কারণ, সূচিমুখ হতে তড়িংমোক্ষণ হয় এবং চতুষ্পার্শ্বস্থ বায়ুকণাগুলি সূচিমুখের ওপর পড়ে সমজাতীয় তড়িং কর্তৃক আহিত হয় ও সূচিমুখের তড়িং দারা বিকর্ষিত হয়ে প্রবাহের সৃষ্টি করে। কাছাকাছি

নিস্তাড়িৎ বায়ুকণাগুলিও তখন ঐ স্রোতের মৃথে পড়ে প্রবাহের সঙ্গো যুক্ত হয় এবং প্রবল বায়ু প্রবাহের সৃষ্টি করে। মোমবাতির শিখা এই বায়ু প্রবাহের ধাকায় হেলে পড়ে। এই ধরনের প্রবাহকে তড়িৎবাত্যা (electric wind) বলে। সূচিমুখের এই ক্রিয়াকে অনেক সময় সেচন ক্রিয়া (spraying action) বলা হয়।

(iii) সংগ্রাহকরূপে সূচিমুখের ক্রিয়া (Collecting action of points) : পরিবাহীর সূচিমুখ দিয়ে যেমন তড়িৎমোক্ষণ হয় এবং তার ফলে পরিবাহী ক্রমশ তড়িতাধান নন্ট করে তেমনি পরিবাহীর সূচিমুখ তড়িতাধান সংগ্রহও করতে পারে। সংগ্রাহকরূপে সূচিমুখের ক্রিয়া নীচের বিবরণ হতে বোঝা যাবে।

একটি স্বর্ণপত্র তড়িৎবীক্ষণের চাকতির উপর সূচিমুখযুক্ত একটি তার (A) রাখা হল এবং একটি ধনাত্মক তড়িৎগ্রস্ত দণ্ড (B) ধীরে ধীরে সূচিমুখের কাছে আনা হল। দেখা যাবে যে স্বর্ণপত্রদ্বয় বিস্ফারিত হচ্ছে। দণ্ড

(B) সরিয়ে নিলেও পত্রদ্বয়ের বিস্ফারণ থেকে যাবে। তড়িৎবীক্ষণকে পরীক্ষা করলে দেখা যাবে যে এতে ধনাত্মক তড়িৎ আছে; আর B দণ্ডকে পরীক্ষা করলে দেখা যাবে যে দণ্ডে কোনো তড়িৎ নেই। অর্থাৎ, সূচিমুখযুস্ত তার দণ্ড B হতে ধনাত্মক তড়িৎ সংগ্রহ করে স্বর্ণপত্রদ্বয়কে দিয়ে দিয়েছে। 1.13 নং চিত্র হতে এই ঘটনার ব্যাখ্যা মিলবে।

ধনাত্মক তড়িতাহিত B দণ্ডের আবেশ-প্রভাবে সূচিমূখ ঋণাত্মক তড়িৎ এবং পত্রদ্বয় ধনাত্মক তড়িৎ পাবে। যখন দণ্ড সূচিমূখের খুব কাছে আসবে তখন আবেশ ক্রিয়া সর্বাধিক হবে এবং স্বর্ণপত্রদ্বয়ের বিক্ষারণও সর্বাধিক

হবে। এইবার সূচিমুখের ক্ষরণ ক্রিয়া শুরু হয়ে বায়ুকণাগুলিকে ঋণাত্মক তড়িতে আহত করবে এবং তারা ৪ দণ্ডের ধনাত্মক তড়িৎ দ্বারা আকৃষ্ট হয়ে দণ্ডের ওপর পড়বে এবং দণ্ডের তড়িৎ-কে প্রশমতি করবে। তড়িৎমোক্ষণ হয়ে সূচিমুখযুক্ত তারও তড়িৎবিহীন হবে। মোট ফলাফল দাঁড়াবে এইরূপ যেন ৪ -দণ্ড ধনাত্মক তড়িৎ হারাবে এবং সূচিমুখ যেন দণ্ড হতে তড়িৎকে শোষণ করে তড়িৎবীক্ষণকে দান করবে।

1.17. বজ্ৰ (Lightning) :

নানাকারণে মেঘে তড়িতের সম্বার হতে পারে। কখনও কখনও এরকমও হয় যে, একখণ্ড মেঘের উপরিভাগে এবং নিম্নভাগে একইসাথে বিপরীত তড়িতের সম্বার হল। একই ধরনের তড়িতাহিত মেঘের এক অংশ অন্য অংশ হতে পৃথক হয়েও যেতে পারে। এইভাবে যখন বৃহৎ একখণ্ড মেঘ প্রচুর তড়িতাধান কর্তৃক আহিত হয় তখন সে ভূপৃষ্ঠে বিপরীত আধান আবিষ্ট করে। ফলে, মেঘ এবং ভূপৃষ্ঠের ভিতর একটি বিভব প্রভেদের সৃষ্টি হয় এবং তাদের ভিতরকার বায়ুদ্বস্তের উপর চাপ পড়ে। বিভব প্রভেদ যত বৃদ্ধি পায়, বায়ুদ্বস্তের উপর চাপও তত বাড়ে। অবশেষে পরিবেশ উপযুক্ত হলে, মেঘ এবং ভূপৃঠের ভিতর বিশাল তড়িৎ মোক্ষণ (electric discharge) হতে পারে। এই ধরনের তড়িৎমোক্ষণকে বক্স বলা হয়। যে পথে তড়িৎ মোক্ষণ হয়, সাধারণত উচ্ছ্বল বিদ্যুৎক্ষুরণে (electric flash) সেই পথ আলোকিত হয়ে উঠে। বক্সপাতের সময় যে তীব্র শব্দের উৎপত্তি হয়, তাকে বক্সনাদ বলা হয়।

যখন তড়িতাহিত মেঘ এবং ভূপুষ্ঠের মধ্যে বজ্রপাত হয় তখন, বজু মেঘের তড়িৎসম্বংখীয় সর্বাপেক্ষা নিকটবর্তী বিন্দর ভিতর দিয়ে ভূপুষ্ঠকে আঘাত করে। এই কারণে সৃউচ্চ অট্টালিকা বা দীর্ঘ বৃক্ষ (য়েমন, তালগাছ) প্রভৃতির উপর বেশি বজ্রপাত হতে দেখা যায়।

1.18. বস্তুবহ (Lightning conductor) :

বাড়ির ওপর রাজ পড়লে সাধারণত বাড়ির কোনো সৃষ্টিচ্চ অংশে বজুপাত হয় এবং যে-পথে রোধ সর্বাপেক্ষা কম সেইপথে তীব্র তড়িৎপ্রবাহ ঘটে। এতে প্রচ্র উদ্ভাপের সৃষ্টি হয় এই তাপ বাড়ির গীথনীর ভিতর যে জলীয় পদার্থ থাকে তাকে স্টিয়ে পরিণত করে। স্টিয়ের উচ্চ-চণ্ডে বাড়িতে ফণ্টল ধরে যায়। বজ্রপাতের ফলে অট্রালিকা বা উচু বাড়ি যাতে এইভাবে ক্ষতিপ্রস্ত না হয় তার জন্য বজ্রবহ ব্যবহার করা হয়। একটি পূরু তামার পাত (R) বাড়ির গা বেয়ে আটকানো থাকে। এই পাতের উপরপ্রাপ্ত অট্রালিকার উচ্চতম অংশ হতে আরও খানিকটা উচুতে রাখা হয় এবং নিম্নপ্রাপ্ত মাটিতে গভীরভাবে পুঁতে রাখা হয় (1.14 নং চিত্র)। পাতের উপরপ্রাপ্তে কয়েকটি সূচিমুখ (pointed ends) থাকে। বজ্রবহকে বক্ষনিবারক (lightning arrester)-ও বলা হয়।

কার্যপ্রণালী ঃ যখন কোনো তড়িৎগ্রস্ত মেঘ গৃহের উপরে আসে তখন তা R পাতের সূচিমুখে বিপরীত আধান আবিস্ট করে এবং অপরপ্রান্তে সমতড়িৎ আবিষ্ট করে; কিন্তু ঐ প্রান্ত মাটিতে পোঁতা থাকে বলে ঐ আবিষ্ট সমতড়িৎ পাত বরাবর মাটিতে চলে যায়। পাতের উপরপ্রান্ত সূচিমুখ বলে ঐ স্থানে আধান বেশি পরিমাণে জমা হয় এবং সৃক্ষমুখ দিয়ে আন্তে আন্তে আধান মোক্ষণ (leak) হয়। বায়ুকণাগুলি ঐ আধান পেয়ে মেঘের বিপরীত আধান কর্তৃক আকর্ষিত হয় এবং মেঘের দিকে ধাবিত হয়ে মেঘের আধানকে অনেকাংশে প্রশমিত করে। সৃতরাং মেঘের এবং ভূপৃষ্ঠের ভিতর বিভব-প্রভেদ বিপজ্জনকভাবে বৃদ্ধি পেতে পারে না ও বজ্রপাতেরও ভয় থাকে না।

সূচিমুখের ক্রিয়া সত্ত্বেও বজ্রপাত হলে, তড়িং অট্টালিকার ভিতর দিয়ে না গিয়ে নিম্ন রোধ যুক্ত তামার পাত বরাবর মাটিতে চলে যায়। এতে অট্টালিকার কোনো ক্ষতি হয় না।

ভাল বজ্রনিবারকের নিম্নলিখিত গুণগুলি থাকা প্রয়োজন :—

- (1) তড়িৎমোক্ষণের ফলে যে-তাপ সৃষ্টি হয় তাতে তামার পাত গলবে না।
- (2) পাতের উপরপ্রান্ত তীক্ষ্ণাগ্র বা কতকগুলি সূচিমুখের সমষ্টি করা প্রয়োজন।
- (3) সূচিমুখ হতে মাটি পর্যন্ত পাতটি একটানা হওয়া প্রয়োজন—মাঝখানে কাটা থাকলে চলবে না। মাটিতে পাতটিকে গভীরভাবে পুঁতে রাখা দরকার।

ইম্পাতের ফ্রেম নির্মিত বাড়ি, বজ্রসহ-যুক্ত গৃহ, মাটি সংলগ্ন ধাতব ছাদযুক্ত গাড়ি অথবা চালাঘর ইত্যাদি বজ্র-বিদ্যুতের সময় নিরাপদ আশ্রয়স্থল। তারের জাল, বিচ্ছিন্ন উঁচু গাছ, দেওয়াল, টেলিগ্রাফ বা টেলিফোন পোস্ট ইত্যাদি ঐ সময় খুবই বিপজ্জনক।

একথা মনে রাখতে হবে যে, বজ্রপাত ও বজ্রনাদ একই সঙ্গো হয়। কিন্তু শব্দের গতিবেগ আলোর গতিবেগ অপেক্ষা অনেক কম বলে বাজ পড়লে শব্দ আসতে বেশ খানিকটা সময় লাগে। এই কারণে বজ্রনাদ শুনলে বজ্রাহত হবার ভয় থাকে না, এইরূপ একটি প্রবাদ বাক্য প্রচলিত আছে। কারণ, বজ্রপাতে মৃত্যু ঘটলে তা সঙ্গো সঙ্গো হয়; বজ্রনাদ শোনার আর সময় থাকে না।

এই পরিচ্ছেদের বিষয়বন্ধু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. বৈদৃতিক তারগুলি সরাসরি ধাতব পোস্টে না লাগিয়ে পোর্সিলেন বাটির মাধ্যমে লাগানো হয় কেন ?
 - টেলিগ্রাফ, টেলিফোনের তার বা বিদাৎ সরবরতে ব্যবস্থার তার মাটোবার সম্ভা ধ্যত্র সোলের সাথে তার সরাসরি সংখ্ করা হয় লাং পোসিলেন বাটির মাধ্যমে মাটালো হয় লোস, ধাত্র পদার্থের হওয়ায় এবং প্রায় সকল ধাতই ভালো তড়িং পরিলতা ওওসায়, পোসের সাথে তার সরাসরি সংখ্ ওাকলে, পোসে দিয়ে সর্বদা মাটাও তডিংক্ষরণ হরে এ প্রায় স্বাদ লাভ তার আসতর মৃত্যুর্ত ক্ষরণ করে তবে তংগ্রাজা স্বাদ লাভ

পোর্সিলেন বাটির মাধ্যমে তার খাটালে পোস্ট দিয়ে তড়িৎক্ষরণ হবে না এবং ঐরূপ কোনো বিপদের আশব্দকা থাকবে না চোটাই কি বাটাই

2. স্বর্ণপত্র তড়িৎবীক্ষণের মধ্যে কিছু জলশোষক বন্তু রাখা থাকে কেন?

শুদ্ধ বায়ৢ তড়িৎ অন্তরক। বায়ৣতে জলীয় বাষ্প থাকলে, ঐ বায়ৢ তড়িতের পরিবাহী হয়ে পড়ে। ঐরকম
ভিজে বায়ৢর মধ্যে কোনো তড়িৎপ্রস্ত বয়ৢ রাখলে ঐ বয়ৢ তড়িৎ ধরে রাখতে পারবে না; বয়ৢ হতে তড়িৎ
ভিজে বায়ৢর মধ্য দিয়ে ক্ষরিত হবে এবং বয়ৢ দুত তড়িৎবিহীন হয়ে পড়বে। য়র্ণপত্র তড়িৎবীক্ষণ যয়ের
অভ্যন্তরস্থ বায়ৢ যাতে ভিজে না থাকে, সেইজন্য আধারের ভিতর কিছু জলশোষক বয়ৢ (ক্যালশিয়াম
ক্রোরাইড) রাখা হয়। বায়ু ভিজে থাকলে য়র্ণপত্র তড়িৎ ধরে রাখতে পারবে না এবং ঐরূপ য়য়্র দিয়ে
কোনো পরীক্ষা-কার্য করা যাবে না।

3. দুটি একই রকম শোলাবলকে দুটি পৃথক ধাবতদণ্ড হতে রেশম সূতোর সাহায্যে এবং তামার তারের সাহায্যে ঝুলানো হল। শোলাবল দুটিকে সমান পরিমাণে তড়িতাহিত করা হল। কিছুক্ষণ পরে দেখা গেল যে রেশম সুতোয় ঝুলানো শোলাবলের তড়িৎ অপরিবর্তিত আছে কিছু অপর শোলাবলে কোনো তড়িৎ নেই। এরূপ হবার কারণ কী ?

রেশম স্থাে ৩ড়িতের অপরিবাহী। রেশম সুতােয় ঝুলানাে শোলাবলকে ৩ড়িতাহিত করলে, ওই ৩ড়িৎ রেশম সুতাের ভিতর দিয়ে ধাতবদণ্ডের মাধ্যমে মাটিতে চলে যেতে পারে নাঃ তাই, ওই শোলাবলের ৩ড়িৎ বলেই আবন্ধ থাকবে। কিন্তু তামা তড়িতের সুপরিবাহী। তামার তারে ঝুলানাে শোলাবল ৩ড়িতাহিত করলে, ওই ৩ড়িৎ দুত তামার তারের ভিতর দিয়ে ধাতবদণ্ডের মাধ্যমে মাটিতে চলে যাবে এবং শোলাবল তড়িৎবিহীন হবে।

4. দৃটি সমভর অবিকল একই রকম ধাতব গোলক নেওয়া হল। একটিকে Q পরিমাণ ধনাত্মক তড়িং দ্বারা এবং অন্যটিকে সমপরিমাণ ঋণাত্মক তড়িং দ্বারা আহিত করা হল। তড়িতাহিত করার পর গোলক দুটির ভরের কোনো পরিবর্তন হবে কি?

ধনা থক তড়িতে আহিত করার অর্থ গোলক হতে কিছু ইলেকট্রন অপসারিত করা এবং ঋণাত্মক তড়িতে আহিত করার অর্থ গোলকে অতিরিস্ত ইলেকট্রন যোগ করা। সূতরাং প্রথম গোলক হতে কিছু পরিমাণ ইলেকট্রন অপসারণ করা হল এবং দ্বিতীয় গোলকে সমপরিমাণ ইলেকট্রন যোগ করা হল। থেতেও প্রতিটি ইলেকট্রনের নির্দিষ্ট ভর আছে (9.1 × 10⁻³¹ kg) সেইত্তেত, ঋণাত্মক তড়িতাহিত গোলকের ভর অপেক্ষা সামান্য কিছু বেশি হবে। তবে এই পাথ ক্যি এত কম যে সাধারণভাবে এটা বোঝা যায় না।

একটি আহিত দশু কুল কাগজের টুকরোকে আকর্ষণ করে। কিন্তু দশুের গায়ে লাগার সপো
সপো টুকরো বিকর্ষিত হয়। কারণ কি ?

দন্ত তড়িতাহিত হলে আকর্ষণী ধর্ম পায়। তাই ছোটো, হালকা কাগজের টুকরোকে নিজের দিকে
আকর্ষণ করে। কিন্তু কাগজের টুকরো দন্তকে স্পর্শ করলে দন্তের কিছ্ তড়িং টুকরো পেয়ে যায়।

সভাতিছং প্রস্পর্ক বিকর্ষণ করে। এই ধর্মের জন্ম কংগজ্জ ট্রেরো বিকর্ষিত হয়।

কোনো পরিবাহী বয়্বকে তড়িতাহিত করলে, নানাপ্রকার পরীক্ষার সাহায্যে প্রমাণ করা

যায় যে ঐ তড়িৎ বয়ৢর বাইরের পৃষ্ঠে অবস্থান করে। এর কারণ কী ?

সাম্প্রী আসাদ্ধি আবিজ্ঞানিক বিশ্বর্গণ বল এব করেল সর্, ব্যুক্ত ক্ষণায়্ক ভড়িতে অভিত বল্প হল

কর্মত একালাত বস্তুত্ত অন্তাল্ভকার কেলি ইলেকাইল গাবেরে এই ইলেকাইলাছিল অনুস্কর্কে বিকাশে করে

স করে স্থান করে ছিল্লে আনুর নুজাই বিকার ই বিশ্বেষ্টিত হল্পে আইবের আর্থন ক্ষান্তের ভিত্তার

অস্ত্রের ক্ষান্তের আবিজ্ঞানিক বন্ধ ইলেকাইলাল বিকার্থিত হল্পে আইবের আর্থিত হিন্তু আহি

স্কান্ত্রির স্থান বিশ্বরালির স্থানিক বিশ্বরালির স্থানিকার্থিত হল্পে আইবের আর্থিত হিন্তু আহি

স্কান্ত্রির স্থানিক বিশ্বরালির স্থানিক স্থানিকার্থিত হল্পে আইবিল আর্থিকার

স্কান্ত্রির স্থানিকার বিশ্বরালির স্থানিকার বিশ্বরালির স্থানিকার্থিত হল্পে আইবিল আর্থনিকার

স্কান্ত্রির স্থানিকার

স্কান্তর স্থানিকার

স্কানিকার

7. একটি ফাপা ধাতৰ গোলকের ভিতর একটি আহিত বস্তু এরপভাবে রাখা হল যেন বস্তু

গোলককে স্পর্শ না করে। এক্ষেত্রে গোলকের ভিতরের পৃষ্ঠে কোনো আধান থাকবে কি ? এইবার আহিত বন্ধকে সরিয়ে নেওয়া হল। ধাতব গোলকে কোনো আধান থাকবে কি ?

- আহিত বন্তুকে গোলকের ভিতর গোলক স্পর্শ না করে রাখলে তড়িতাবেশ ঘটবে এবং গোলকের ভিতরের পৃষ্ঠে বন্তুর তড়িতের বিপরীত-জাতীয় তড়িৎ এবং বাইরের পৃষ্ঠে সম-জাতীয় তড়িৎ আবিষ্ট হবে। ভিতরের পৃষ্ঠের আবিষ্ট তড়িৎ বন্ধ (bound) বলে ভিতরের পৃষ্ঠেই থাকরে; বাইরের পৃষ্ঠে যাবে না। কাজেই আহিত বন্তুকে গোলকের ভিতর যতক্ষণ রাখা থাকবে গোলকের ভিতরের পৃষ্ঠে ততক্ষণ আধান থাকবে। এখন, গোলকের ভিতর থেকে আহিত বন্তুকে সরিয়ে নিলে, গোলকের ভিতরকার আধান আর বন্ধ থাকবে না। ঐ আধান তখন গোলকের বাইরের পৃষ্ঠে ছড়িয়ে পড়ে সেখানকার বিপরীত আধানকে প্রশমিত করবে এবং গোলক তড়িংশুন্য হবে।
- 8. বজ্রপাতের সময় বৃক্ষতলে দাঁড়ানো বিপজ্জনক কেন ? ঐ সময় কি ধরনের আশ্রয়স্থল নিরাপদ?
- তড়িংগ্রস্ত মেঘ যে অশ্বলে থাকে সেই অশ্বলের কোনো সুউচ্চ বন্তুর ওপর বন্ধ্রপাতের সম্ভাবনা বেশি। গাছের ঠিক ওপরে আকাশে কোনো তড়িংগ্রস্ত মেঘ এলে, গাছ লম্বা এবং উঁচু বলে, গাছের ওপর প্রান্তে মেঘের তড়িতাধানের বিপরীত আধান আবিষ্ট হয় এবং নীচের প্রান্তে সমজাতীয় তড়িং আবিষ্ট হয়। কিন্তু গাছের নীচের প্রান্ত পৃথিবীর সাথে যুক্ত বলে সমজাতীয় আবিষ্ট তড়িং মাটিতে চলে যায়। মেঘের এবং গাছের উপরের প্রান্তের দুই বিপরীত আধানের ভিতর বিভব পার্থক্য খুব বৃদ্ধি পেলে, গাছের ভিতর দিয়ে বজ্রপাত হয়। গাছের তলায় কোনো লোক থাকলে সে বজ্রাহত হয়ে প্রাণত্যাগ করে। এই কারণে বক্রবিদ্যুতের সময় গাছের তলায় দাঁড়ানো মোটেই নিরাপদ নয়।

ঐ সময় ইম্পাতের ফ্রেম নির্মিত বাড়ি, বজ্জনিবারকযুত্ত বাড়ি, মাটির সংলগ্ন ধাতবছাদযুত্ত গাড়ি অথবা চালাঘর ইত্যাদি নিরাপদ আশ্রয়।

- 9. একটি নিম্নবিভব বন্ধু থেকে উচ্চবিভবযুক্ত বন্ধুতে তড়িতের স্থানান্তর কি সম্ভব ?
- দুটি বস্তুকে (তড়িতাহিত) তার দিয়ে অথবা অন্য যে-কোনো উপায়ে সংযুদ্ধ করলে সাধারণভাবে
 তড়িৎ উচ্চ বিভবযুদ্ধ বয়ু হতে নিম্নবিভবযুদ্ধ বয়ু স্থানান্তরিত হয় ঠিক যেমন উচু লেভেল হতে জল
 নীচু লেভেলে প্রবাহিত হয়। সাধারণভাবে উল্টো প্রবাহ দেখা যায় না। কিছু নিম্নবিভবযুদ্ধ বয়ুকে
 উচ্চবিভবযুদ্ধ বয়ু দারা সম্পূর্ণরূপে আবৃত করে যদি তাদের ভিতর সংস্পর্শ ঘটানো যায়, তবে তড়িৎ
 নিম্নবিভবযুদ্ধ বয়ু হতে উচ্চবিভবযুদ্ধ বয়ুতে প্রবাহিত হবে। এর কারণ, ঐ অবস্থায় সংস্পর্শ ঘটালে
 দুটি বয়ু মিলে একটি একক বয়ুতে পরিণত হয়। একক বয়ুর তড়িৎ সর্বদা বয়ুর বাইরের পৃষ্ঠে অবস্থান
 করে বলে, অভান্তরস্থ নিম্নবিভবযুদ্ধ বয়ু হতে তড়িৎ বাইরের উচ্চবিভবযুদ্ধ বয়ুতে চলে আসবে।
 এইভাবে একটি নিম্নবিভব বয়ু হতে উচ্চবিভব বয়ুতে তড়িতের স্থানান্তর সম্ভব।
- 10. আহিত পরিবাহীর আধান ধরে রাখতে হলে পরিবাহীর আকার যথাসন্তব গোল করা দরকার। এর কারণ কী ?
- পরিবাহী গোল না হয়ে যদি অসম আকারের হয় ভবে তার তীক্ষাগ্র প্রান্তগুলিতে বেশি পরিমাণ আধান
 জয়া হয় এবং সেখান থেকে ধীরে ধীরে ৩৬িং ক্ষরণ হয়। ফলে, পরিবাহী য়য় সয়য়ের য়য়ে নিজডিং
 হয়ে পড়ে। কিয় পরিবাহীর আকার গোল হলে, ঐ রকম কোনো তীক্ষাগ্র বিল্দু থাকে না এবং ৩৬িং
 ফরণ ২৩ে পারে না. পরিবাহী তার আধান ধরে রাখতে পারে।
- 11.একটি দোলকের পিশু ধাতুর তৈরি। ঐ পিশুকে ভড়িতাহিত করে কোনো উধ্বমুখী ভড়িং ক্ষেত্রে আন্দোলিত হতে দিলে, দোলনকাল বৃদ্ধি পাবে না হ্রাস পাবে ? ভড়িংক্ষেত্র নিম্নমুখী হলে কী হবে ?
- উধর্মী ৩ড়িংক্ষের ৩ড়িংগ্রস্ত পিতের উপর উধর্মী বল প্রয়োগ করবে ফলে পিতের ওপর

কার্যরত ত্বরণ g অপেক্ষা কম হবে। যেহেতু দোলনকাল কার্যরত ত্বরণের বর্গের ব্যস্তানুপাতিক তাই দোলনকাল বৃশ্বি পাবে।

তড়িৎক্ষেত্র নিম্নমুখী হলে স্পন্টত কার্যকর ত্বরণ g অপেক্ষা বেশি হবে। তাই দোলনকাল হ্রাস পাবে।

- 12. উড়োঞ্চাহাঞ্জের রবার টায়ার সামান্য পরিমাণে তড়িৎ পরিবাহী করা হয়। কেন ? মনে রাখতে হবে যে সাধারণ রবার তড়িৎ-অম্ভরক।
- উড়োজাহাজ যখন মাটি ছেড়ে ওপরে ওঠে (take off) অথবা ওপর থেকে মাটিতে নামে (landing) তখন রবার টায়ারের সঙ্গে মাটির ঘর্ষণের ফলে কিছু তড়িৎ উৎপন্ন হতে পারে। রবার সামান্য তড়িৎ পরিবাহী করা থাকলে, উৎপন্ন তড়িৎ সঞ্জো সঞ্জো মাটিতে চলে যায়। না হলে, ঐ তড়িৎ স্ফুলিঙা (spark) সৃষ্টি করে টায়ারকে ক্ষতিগ্রস্ত করতে পারে।

13. তীব্র তড়িৎ পরিবাহী পাওয়ার লাইন তারে (high-power line) পাধি বসলে, পাখি শক্ পায় না কেন ?

- তড়িৎ পরিবাহী তারে পাখি বসলেও, পাখির দেহ ও পৃথিবীর ভিতর বর্তনী সম্পূর্ণ হয় নাঃ তাই পাখির দেহের ভিতর দিয়ে তড়িৎ-প্রবাহ যায় না এবং পাখি শক অন্ভব করে না।
- 14. বৈদ্যুতিক ক্ষেত্রের সঙ্গো মহাকর্ষীয় ক্ষেত্র ভেক্টর পশুতিতে যোগ করে কি মোট ক্ষেত্র পাওয়া যেতে পারে ?
- নাঃ বৈদ্যুতিক ক্ষেত্র এবং মহাকর্যীয় ক্ষেত্র সমপ্রকৃতির নয়। দুটি রাশি সমপ্রকৃতির না হলে, ভেস্টর পন্ধতিতে তাদের যোগফল নির্ণয় করা যায় না।
- 15. তড়িৎপর্দা কাকে বলে? এখানে কোন্ নীতির প্রয়োগ করা হয়?
- তড়িৎপর্দা এমনই একটি ব্যবস্থা যা দিয়ে কোনো স্থানকে তড়িতের প্রভাব থেকে মুক্ত রাখা যায়। যেমন, একটি তড়িংবীক্ষণকে তামার তারের জাল দিয়ে তৈরি খাঁচা দিয়ে ঢেকে রাখলে, খাঁচার বাইরের কোনো ৩ড়িৎক্ষেত্র তড়িৎবীক্ষণের ওপর কোনো প্রভাব বিস্তার করবে না। তড়িৎবীক্ষণের পাতা দুটির কোনো বিস্ফারণ হবে না। এক্ষেত্রে ঐ খাঁচাকে তড়িৎপর্দা বলা হবে।

কোনো পরিবাহীকে তড়িতাহিত করলে, তড়িতাধান সর্বদা পরিবাহীর উপরের পৃষ্ঠে অবস্থান করে — এই নীতিকে এখানে প্রয়োগ করা হয়।

ু প্রশ্নাবলি

➡ क्रांधर्मी अंध

- তড়িংবীক্রণ কাকে বলে? একটি দ্বর্ণপত্র তড়িংবীক্ষণের বিবরণ ও কার্যপ্রণাদী ব্যাখ্যা করো।
- 2. ঘর্ষণের ফলে সমপ্রিমাণ বিপরীত ধর্মী তড়িতের উৎপন্ন হয়, এটা কীর্পে প্রমাণ করা যায় ?
- 3. ইলেকট্রন কংকে বলে ? তড়িতাহিতকরণের ইলেকট্রনীয় তাত্ত ব্যাখাণ করে। এই তত্ত্বের দ্বারা ঘর্ষণজ্ঞাত তড়িতের ব্যাখ্যা কীভাবে করা যায় የ
- 4. তিত্ততিভক্তবাদে আধান উৎপন্ন হয় না পজিটিভ ও নেশেটিভ আধান পুথক হয়ে পড়ে ব্যাখ্যা করে।
- 5. 'আহিতু প্রিনার্টার আধান সর্বান প্রিনার্টার ওপরের প্রেছ অবস্থান করে' উপযুত্ত প্রীকার সাহায়ে। উপবিউত্ত नारकात वार्षा करता।
- 6. (a) বেটি বাইনে সাতুলাহাত ক্রিবাইণ করা হল বেটি আস্তা পরীক্ষকরে লাহের বিব্রুবর দেওলালে স্বর্ধ कामाव रक्षी ही र माक्षापार अधार्य मना देश कि प्रोग्त हा मानव अद माव । कामा
 - (b) विश्वमान्त्रक क्यांच कहता. हा, काफ्ना हो हमाइन घोरामा क्रियावहरूत मीठ मान घासूच इप्राम्भाव कार्य
- काल इंग्लिंग झाकात्वर लिकाहात छलत हो हामार्ग की सात तार्वा द्राह्म इहै तकेंग की नात लेगेकात छता. ितमा करा राम ५ करावा प्रतिमाहीय प्रतिकामात ग्रामाः कारण किया प्रमाणत कः दक्षी प्रश्लेषात सर्वना मानु
- के अनुसारी स्टूबकर पावर हो हु र मण महा र कहत होते द्वारात होता तथा है? ... तथा है 'होकू है आनंदर होते तथा'' প্রদর্শনের জনা করেকটি পরীক্ষা বর্ণনা করে।।
- 9. সাম্যান সংক্ষেত্র : জনাগ কৃষ্ট : ৪ সামে কৃষ্ট এবং : 1d সংগঠক কৃষ্ট কন্ত্র কী নাজক স্থাপ্তরে সংস্থাপ্ত वाचा काव

10. বছ্রপাত কখন হয়? বছ্রপাত হতে অট্রলিকা কীর্পে রক্ষা করা যায়? বছ্রবিদ্যুতের সময় কি খোলা জায়গাতে থাকা নিরাপদ? ঐ সয়য় কী ধরনের আশ্রয়ম্পল নিরাপদ ও কী ধরনের আশ্রয়ম্পল বিপজ্জনক বলে মনে করো?

সংকিশ্ব উভরের প্রশ্ন

- 1. প্রির তড়িং কী ? তড়িতাহিতকরণ কাকে বলে ?
- "কোনো বন্ত তড়িৎশ্রন্ত কিনা বোঝার জন্য আকর্ষণ অপেক্ষা বিকর্ষণ অধিকতর নির্ভরযোগ্য" ব্যাখ্যা করে।
- 3. নির্মালিখিত প্রশ্নগুলির উত্তর দাও : (ক) যেদিন আবহাওয়া আর্দ্র থাকে সেদিন স্থির তড়িৎ বিজ্ঞানের পরীক্ষাকার্য সম্রোষজনক হয় না কেন?
 - (ব) পেট্রলবাহী ট্রাকে একটি লিকল মাটি পর্যন্ত ঝলিয়ে রাখা হয় কেন?
 - (গ) পরিবাহী ও অন্তরকের ভিতর পার্থক্য কী?
- 4. পদার্থের ইলেকট্রনীয় তত্ত্ব অনুসারে দুই প্রকার গ্রড়িতের ব্যাখ্যা ধীরূপে করবে?
- 5. একটি ধাতবদন্ডকে থাতে ধরে রাখলে ঘর্ষণ দ্বারা তড়িৎপ্রন্ত করা যায় না কেন? ঐ ধাতবদন্ডকে তড়িতাহিত করার জন্য তুমি কী করবে?
- 6. কী বৈশিভৌর জন্য কোনো বস্তু অন্তরক হয়?
- একটি অর্জারত আসনের ওপর দাঁড়িয়ে এক বাজি একটি ঝর্জারত কিছু তড়িতাহিত পরিবাহীকে স্পর্শ করল। পরিবাহীটি কি
 সম্পূর্ণারূপে তড়িথবিহীন হবে?
- 8. একটি প্রোটনের আধান + 1.6×10^{-19} কুলম্ব এবং একটি ইলেকট্রনের আধান 1.6×10^{-10} কুলম্ব। এর অর্থ কি এই যে ইলেকট্রনের আধান প্রোটনের আধান অপেক্ষা $|+1.6-(-1.6)| \times 10^{-19} = 3.2 \times 10^{-19}$ কুলম্ব কম ?
- একটি অন্তরক পদার্থে ইলেকট্রন সংখ্যা একটি পরিবাহী পদার্থের ইলেকট্রন সংখ্যার সমপর্যায়ের। তাহলে অন্তরক এবং পরিবাহীর ভিতর মূল পার্থক্য কী?
- 10 (a). তড়িতাধানের কোয়ান্টায়ন বলতে কী বোঝ?
 - (b). তড়িতাধানের সংরক্ষণ সূত্র বিবত ও ব্যাখ্যা করো।
- 11. মেরুবর্তী ও অমেরুবর্তিত অণু কাকে বলে? পরাবিদ্যুতের মেরুবর্তিতা বলতে की বোঝ?
- 12. একটি নিরেট খাতব গোলক কি সমবাাসের ফাঁপা গোলক অপেক্ষা বেশি তড়িভাষান ধরে রাখবে ? প্রতিক্ষেত্রে তড়িভাষান কোথা ায় অবস্থান করবে ব্যাখ্যা করো।
- 13. অসম আকৃতির একটি ফাঁপা বুদুর গায়ে একটি ছিল্ল আছে। বুদুকে তড়িতাছিত করে একটি অন্তরক আসনের ওপর বসানো হল। একটি ফ্রর্ণপত্র তড়িংবীক্ষণ ও একটি আধান পরীক্ষকের সাহায়ে তুমি বুদুটির আধান বন্টন পরীক্ষা করছ। তড়িংবীক্ষণের বিক্ষারণের কি পরিবর্তন হবে যখন আধান-পরীক্ষক নির্মালিখিত ম্থান হতে আধান সংগ্রহ করবে :- (ক) তলের চ্যাম্টা অংশ হতে। (খ) তলের তীক্ষ্ণপ্র অংশ হতে। (গ) বুদুর অভ্যন্তর হতে।
- 14 বছ নিবারকের কার্যনীতি কী ?

⇒ অতি-সংকিপ্ত উভরের প্র

- 1. আধানের কোয়ান্টায়ন কী ?
- 2. কাচদশুকে সিল্ক দ্বারা এবং এবোনাইট দশুকে পশম দিয়ে ঘবলে প্রভাকটিতে কীরকম তড়িৎ থাকরে ১
- 3. কি বৈশিক্টোর জনা কোনো বস্তু তড়িতের পরিবাহী হয় १
- 4. দৃটি তড়িতাহিত বন্তু পরস্পরকে বিকর্ষণ করলে, তাদের কি রক্তম ভড়িতাধান থাকা সম্ভব ৪
- 5. একটি চোভাকৃতি পাত্র তড়িতাহিত করা হল। পাত্রের ভিতরে এবং বাইরে কিবক্ষ আধান থাক্রে ৮
- আধানের তলমাত্রিক ঘনত্ব কাকে বলে ?
- 7. একট রক্ষের আধান যুত্ত দৃটি পবিবাহা কি পরম্পরের খাবা আকর্ষিত হতে পারে ৬
- 8. একটি পরিবাহী এবং একটি অন্তরক পদার্থের নাম কর।

⇒ বহুমুখী পছন্দের প্রশ্ন [Multiple choice type (M.C.Q.)]

- (A) নির্ভুল উত্তরটি√ চিহ্নিত করোঃ
 - (a) কোনো আধানমূত্র ববিবাহাকে সূত্রে দিয়ে ঝালানো প্রমা কেটি আধানইম পরিবাহা লোলকের মূর কাছে আনা হল ঝোলানো অন একটি আধানইম পরিবাহা লোলকের মূর কছে আনা হল ঝোলানো পরিবাহা লোকহা।
 (A) আর্ক্সিত হয়ে আধানমূত্র পরিবাহার গেয়ে লোলে থাকার;

The world	
	(B) আকর্ষিত বা বিকর্ষিত হবে না,
	(C) প্রথমে আকর্ষিত হবে এবং আধানযুত্ত পরিবাহীকে স্পর্শ করেই বিকর্ষিত হবে,
	(D) বিকর্ষিত হবে।
[ii]	কোনো পরিবাহী বন্তু ঋণাদ্মক তড়িতে আহিত হয় যখন,
	(A) বন্ধুটি ইলেকট্রন বর্জন করে (B) বন্ধুটি ইলেকট্রন গ্রহণ করে
	(C) বস্তুটি প্রোটন বর্জন করে (D) বস্তুটি নিউট্রন গ্রহণ করে।
iii}	এবোনাইট দশুকে পশম দিয়ে ঘষলে দশুের আধান হবে
	(A) ধনাত্মক (B) ঋণাত্মক (C) শূনা (D) এক অর্ধে ধনাত্মক এবং অপর অর্ধে ঋণাত্মক।
iv}	একটি গভীর ধাতবপাত্রকে তীব্র তড়িতাহিত করা হল। তড়িতাধানের অবস্থান হবে
	(A) পাত্রের ভিতরে (B) পাত্রের বাইরে (C) কিছু ভিতরে এবং কিছু বাইরে।
[v]	ঘর্ষণের দ্বারা একটি বন্ধুকে ভড়িতাহিত করা হলে বন্ধুর ওজন
	(A) পরিবর্তিত হবে না (B) সামান্য বৃদ্ধি পাত্রে (C) সামান্য হ্রাস পারে (D) সামান্য বৃদ্ধি পেতে পারে আবার হ্রাস পোতে পারে।
	(C) সামান্য হ্রাস পাবে (D) সামান্য বৃদ্ধি পেতে পারে আবার হ্রাস পেতে পারে।
[vi]	ব্রদ্ধবিদ্যতের সময় কোনটি নিরাপদ আশ্রয় স্থল ?
	(A) বিভিন্ন উচু গাছের তলা (B) ইম্পাতের ফ্রেম নির্মিত বাড়ি
	(C) টেলিগ্রাফ পোস্ট (D) সুউচ্চ দেওয়াল।
20/0	ন্যুম্থান পুরণ করো (Fill up the gaps) :
111	লোকলারী একটি উল্লম কম্ব !
(44)	অপেক্ষা তড়িতাহিত করণের প্রকৃষ্ট প্রমাণ
1222	া সর্বাসর পারে ব্রান্তরান্তর আভায়বস্থা বায় শন্ধ রাখার জন। তিত্রে বিশ্ব
Line	ু আহিত, প্রিরাহীর আধান স্ব্দা প্রিবাহীর পুষ্ঠে অবস্থান করে।
[v]	তড়িৎ সংক্রান্ত সুবেদী যন্ত্রপাত্তিকে বহিরাগত ও অকস্মাৎ উৎপন্ন তড়িতের প্রভাব থেকে মুস্ত রাখতে
	ব্যবহার করা হয়।
0.00	ণিতিক প্রশ্ন
االد	াতিক অম 1 cm ব্যাসার্শের একটি গোলাকার ফাঁপা পরিবাহীতে 6.28 একক তড়িতাধান দেওয়া হল। পরিবাহীর বাইরের এবং
1.	িত ব্যাসাধ্যের একট গোলালার কান নির্বেশনত 0.20 বি
2.	$25~ m cm$ ব্যাসার্ধের একটি গোলককে কত পরিমাণ গুড়িতাধান দিলে তার আধানের তলমাত্রিক ঘনত্ব ${5\over\pi}$ হরে $?$
	[Ans. 12500 unit]
	5 এবং 7 cm ব্যাসবিশিক্ট দৃটি গোলককে যথাক্সে 22 এবং 35 একক গুড়িভাধান দেওয়া হল। গোলক দৃটির
3.	5 440 7 cm qualifier qualifier qualifier (Ans. 154 : 125)
	्रिक्षणा ग्राप्त क्षार्थक्ष हे व्यवस्था क्षार्थक्ष विकास क्षार्थक्ष विकास क्षार्थक्ष विकास क्षार्थक्ष विकास क्षार्थक
	🗆 M.C.Q. প্রধার উত্তর 🚨 👝
11	y (i) C (ii) B (iii) B (iv) B (v) D (vi) B
458	া [i] অপানবাইং, [ii] আনর্মণ, বিকর্মণ [iii] উপাশোক, [iv] উপারের, [v] গ্রন্থিপ্রের

দুটি তড়িতাধানের মধ্যে পারস্পরিক আকর্ষণ ও বিকর্ষণ কুলম্বের সূত্র (Force of attraction and repulsion between two electric charges : Coulomb's law) :

সমতড়িৎ পরস্পরকে বিকর্ষণ করে ও বিষম তড়িৎ পরস্পরকে আকর্ষণ করে, এটা আমরা জানি। তড়িতের এই আকর্ষণ বা বিকর্ষণ বলের পরিমাণ সর্বপ্রথম নির্ণয় করেন বিজ্ঞানী চার্লস অগাস্টিন ডি. কুলম্ব 1785 খ্রিস্টাব্দে। এই সম্পর্কিত সূত্রকে বলা হয় কুলম্ব সূত্র।

কুলম্ব সূত্র: দুটি বিন্দু তড়িতাধানের মধ্যে আকর্ষণ বা বিকর্ষণ বল আধান দুটির গুণফলের

সমানুপাতিক এবং তাদের দূরত্বের বর্গের ব্যন্তানুপাতিক। মনে কর, r দূরত্বে q_1 এবং q_2 দুটি বিন্দু তড়িতাধান রাখা আছে (2.1 নং চিত্র)। যদি তাদের পারস্পরিক আকর্ষণ বা বিকর্ষণ বল F ধরা যায় তবে, কুলম্ব সূত্র হতে আমরা লিখতে পারি,

$$F \propto q_1.~q_2$$
 এবং $F \propto rac{1}{r^2}$ অর্থাৎ, $F \propto rac{q_1.q_2}{r^2}$ অথবা, $F = k rac{q_1.q_2}{r^2}$

এখানে, k হল আনুপাতিক ধ্বক (constant of proportionality)। k ধ্বকের মান মাধামের উপর এবং ব্যবহৃত এককের পশ্বতির উপর নির্ভর করে। k-কে বলা হয় মাধামের ভেদনযোগ্যতা (permittivity) অথবা পরাবৈদ্যুতিক ধ্বক (dielectric constant) অথবা আপেক্কিক আবেশিক ধারকত্ব (specific inductive capacity)।

সি. জি. এস পথতি অনুযায়ী বায়ুমাধ্যমে (প্রকৃতপক্ষে শুনা মাধ্যমে) k=1 ধরা হয়। অতএব, বায়ুমধ্যে দুটি বিন্দু তড়িতাধান q_1 এবং q_2 পরস্পর হতে r দূরে থাকলে, ভাদের ভিতর আকর্ষণ বা বিকর্ষণ

বল,
$$F=rac{q_1.q_2}{r^2}$$
.

$$\therefore$$
 বায়ুহে বিকর্ষণ বল $= \frac{q_1q_2}{r^2} \times \frac{k_r^2}{q_1q_2} = k$

এস. আই. পশ্বতিতে কুলম সূত্রঃ $\mathrm{S.I.}$ পশ্বতিতে ধুবক $k=rac{1}{4\pi\,\epsilon_0}$ ধরা হয়। ১৮৬৫ .

 $F=rac{1}{4\pi\epsilon_0},rac{q_1q_2}{r^2}$; এখানে $\epsilon_0=$ শুলা বা বায়ু মাধানের (ভদনারোগেও'। এই পদ্ধতি অনুষ্ঠা F নিউঠনে $({
m N}),r$ মটাবে $({
m m})$ এবং q_1 ও q_2 কুলার এককে মাপো হয় বলে শুনা মাধানের , ভদনা সাংগ্রহ

 ϵ_0 –এর মান দাঁড়ায় = $8.85 imes 10^{-12} \, \mathrm{C}^2/\mathrm{N}$ – m^2 , লক্ষ কর যে সি. জি. এস. পন্ধতিতে শুনা মাধ্যমের ভেদনযোগ্যতা 1 কিন্তু এস. আই. পদ্ধতিতে 1 নয়।

বিন্দু তড়িতাধান দুটি যদি শূন্য মাধামের পরিবর্তে কোনো বিশেষ মাধামে অবস্থিত থাকে তবে €০- এর পরিবর্তে ∈ ধরা হয়। এখানে ∈ = ঐ মাধ্যমের পরম ভেদন-যোগ্যতা। শূন্য মাধ্যমের ক্ষেত্রে ∈=∈0। অন্য কোনো মাধ্যমের বেলায় ∈/∈0-এই অনুপাতকে ঐ মাধ্যমের আপেক্ষিক ভেদন যোগ্যতা অথবা পরাবৈদ্যুতিক ধ্রবক (dielectric constant) বলা হয়। একে সাধারণত K অথবা \in , দ্বারা সূচিত

করা হয়। সুতরাং
$$\in_r$$
 (অথবা K) $=\frac{\in}{\in_0}$ $=$ মাধ্যমের পরম ভেদনযোগ্যতা শূন্য মাধ্যমের $,,$

ঐ মাধ্যমে তথন কুলম্ব সূত্র হবে $F=rac{1}{4\pi\,\epsilon}\cdotrac{q_1q_2}{r^2}=rac{1}{4\pi\,\epsilon_0\epsilon_r}\cdotrac{q_1q_2}{r^2}$

ভেক্টরের সাহায্যে কুলম্ব সূত্রঃ

কুলম সূত্র: $F=krac{q_1q_2}{r^2}$; যেহেতু বল (F) এবং দূরত্ব (r) উভয়ই ভেক্টর, তাই ভেক্টর অংকপাতনে $\overrightarrow{F}=krac{q_1q_2}{r^2}$. \hat{r} যেখানে q_1 থেকে q_2 অভিমুখে \hat{r} একক ভেক্টর।

2.2. আধানের স্থির-তড়িৎ একক (Electrostatic unit of charge):

সি. জি. এস. পশ্বতি : $F=rac{q_1.q_2}{2}$ সমীকরণ হতে আমরা আধানের স্থির-তড়িৎ একক গঠন করতে পারি। যদি F=1 dyne, r=1 cm এবং $q_1=q_2=q$ (ধর) হয়, তবে $q^2=1$ অথবা $q=\pm 1.$

সংজ্ঞাঃ যদি এক জাতীয় সমপরিমাণ আধানযুক্ত দুটি বভুবিন্দু বায়ুমধ্যে 1 cm দূরে অবস্থিত থেকে পরস্পরের প্রতি 1 dyne বিকর্ষণ বল প্রয়োগ করে তবে প্রত্যেক বন্ধবিন্দুর আধানকে একক আধান (unit charge) বলা হয়।

এই একক-কে সি. জি. এস. স্থির- তড়িৎ একক (cgs electrostatic unit) অথবা সংক্ষেপে e.s.u বলা হয়। একে মার্কিন বিজ্ঞানীরা স্ট্যাটকৃপস্থ (statcoulomb) বলেন।

এস. আই. পশ্বতিঃ

এস্. আই. পম্পতি অনুযায়ী শুন্য মাধানে কুলম্ব সৃত্ত লেখা হয়
$$F=rac{1}{4\pi \in _0}.rac{q_1q_2}{r^2}$$
 .

যদি
$$q_1=q_2=1$$
 এবং $r=1$ m হয়, তবে $F=\frac{1\times1\times9\times10^9}{{(1)}^2}$ $N=9\times10^9$ $N=\frac{1}{4\pi\epsilon_0}=\frac{1}{4\pi\times8.85\times10^{-12}}=9\times10^9$ $N-m^2/C^2$

একক আধানের সংজ্ঞাঃ দৃটি সমপরিমাণ ও সমজাতীয় আধান শৃন্য মাধ্যমে পরস্পর হতে $1~{
m m}$ দুরে অর্থতে হয়ে যদি পরস্পারের প্রতি $9 imes 10^9~{
m N}$ বিকর্ষণ বল প্রয়োগ করে, তবে তাদের প্রত্যেককে একক আধান বলা হবে। এই এককের নাম কুলম্ব (C)।

্র প্রতঃ গ্রহবিজ্ঞান অন্যায়ী কুলসের সংজ্ঞা গ্রহ বিশ্লেষণ হতে পাওয়া যায়। য় পরিয়াণ তড়িছ সিলভার নাইট্রেট প্রবংশ পাসংলে রাসায়নিক বিষার ফলে 0.001118 g রপা কাংগ্রেড প্রেটে জনা করতে পারে তাহাকে 1 কলম ধরা হয়।]

खनाना अक्क 8

CCS अन्तिहार अभागत न्यात हीस्ट हक्क छाउ। आत हकी हक्क आहः हाक हीस्ट नृभक्षेत्र

একক (electro-magnetic unit বা সংক্ষেপে e.m. u.) বলে। এই একক-কে আনেক সময় আাবকুলম্ব (abcoulomb) ও বলা হয়। এই একক তড়িৎপ্রবাহের চুম্বকীয় ফলের ওপর প্রতিষ্ঠিত (প্রবাহী তড়িৎ-বিজ্ঞান দুফ্বরা)। 1 ই.এস্.ইউ তড়িতাধান পরিমাণে ক্ষুদ্র হওয়ায় ব্যাবহারিক ক্ষেত্রে আর একটি বড়ো এককের প্রচলন আছে। তড়িতাধানের এই ব্যাবহারিক নাম কুলম্ব (coulomb)। লক্ষ্ণ কর এস্. আই. পদ্ধতি অনুযায়ীও তড়িতাধানের এককের নাম কুলম্ব (প্রবাহী তড়িৎ বিজ্ঞান দুফ্ব্য)। নিম্নলিখিত সম্পর্কগুলি মনে রাখবেঃ

 $1 ext{ e. m. u.}$ তড়িতাধান $= c ext{ esu}$ তড়িতাধান $= 3 imes 10^{10} ext{ e.s.u.}$ তড়িতাধান ($c = ext{ আলোর}$ গতিবেগ)

1 e.m. u. তড়িতাধান = 10 কুলম্ব অথবা, 1 কুলম্ব = 3 × 10⁹ e.s. u. তড়িতাধান।

D EXAMPLES D

শুটি তড়িতাধান, একটি অপরটি অপেকা 20 গুণ শক্তিশালী — বায়ু মধ্যে 10 m দূরে থেকে পরস্পরের ওপর 250 mg wt বল প্রয়োগ করে। কুলম্ব এককে প্রত্যেক তড়িতাধানের মান নির্ণয় করে।

উঃ। এক্ষেত্রে $F=250~{
m mg.~wt.}=(250 imes10^{-6}) imes9.8~{
m N}$ । ধরি, একটি আধানের পরিমাণ = q কুলস্ব।

এখন, বায়ু মধ্যে
$$F=rac{q_1\,q_2}{4\pi\,\epsilon_0\,r^2}$$
 ; একেরে $F=(250 imes9.8 imes10^{-6}){
m N}; q_1=q$; $q_2=0$

$$20q$$
; $r = 10 \text{ m}$ এবং $\frac{1}{4\pi \in 0} = 9 \times 10^9$.

$$\therefore 250 \times 9.8 \times 10^{-6} = \frac{20.q^2}{(10)^2} \times 9 \times 10^9 = 18q^2 \times 10^8$$

$$\therefore q^2 = \frac{250 \times 9.8 \times 10^{-6}}{18 \times 10^8} \approx 13.61 \times 10^{-13}$$

 $\therefore q = 1.16 \times 10^{-6} \,\mathrm{C}$; অপর আধান = $20 \times 1.16 \times 10^{-6} = 2.32 \times 10^{-5} \,\mathrm{C}$.

② দৃটি অবিকল একই রকমের ধাতব গোলককে সমপরিমাণ ধনায়ক তড়িভাধান দেওয়া হলে তাদের ভিতর 2 dyne বিকর্ষণ বল ক্রিয়া করে। আর একটি একই রক্মের গোলক C-কে A-গোলকের সাথে স্পর্শ করে A এবং B-এর ঠিক মাঝখানে রাখা হল। C গোলকের ওপর মোট কত বল ক্রিয়া করবে ?

উঃ। ধরো, A এবং B গোলকে + q পরিমাণ ওড়িতাশন দেওয়া হল এবং তাদের দ্বত্ব r.

$$289837, \frac{q^2}{r^2} = 2 \dots (i)$$

ে গোলককে A গোলকের সজে ফলল করালে,

A ব্যালাকের উত্তির্থান ট দুই ব্যালাকে সমাভাবে ব্যিত হবে সূত্রণ করে জবল চাল চাল চাল

তড়িতাধানের পরিমাণ হবে +q/2. কিন্তু B গোলকের তড়িৎ আধান পূর্বের মতো +q আছে। Cগোলক-কে A এবং B-এর ঠিক মাঝখানে বসালে A এবং B হতে C-গোলকের দর্ভ্ব হরে 🖰 🎁 🕫 2.211

এই অবস্থায়
$$A$$
 কর্তৃক C –এর ওপর প্রযুক্ত বিকর্ষণ বল $=rac{q\cdot 2 imes q\cdot 2}{(r\cdot 2)^2}$ $=rac{q^2}{r^2}\cdot {
m dyne}\stackrel{
ightarrow}{
m AC}$ অভিমুখে ,

চাবার B কর্তৃক C-এর ওপর প্রযুক্ত বিকর্ষণ বল $=\frac{q\times q'2}{(r/2)^2}=\frac{2q^2}{r^2}$. dyne BC অভিমাথে

$$\therefore$$
 C-এর ওপর মোট বল $=\frac{2q^2}{r^2}-rac{q^2}{r^2}=rac{q^2}{r^2}=\mathbf{2}$ dyne $\stackrel{
ightarrow}{
m BC}$ অভিমুখে।

| म : অঙ্কটি c.g.s. পর্ম্বভিত্তে করা হয়েছে।

 দৃটি ক্ষুদ্র ম্যাগনেসিয়াম কণা —প্রত্যেকটির ভর 360 mg — পরস্পর হতে 10 cm দূরে রাখা আছে। যদি একটি কণা হতে 0.01% ইলেকট্রন অপর কণায় স্থানান্তরিত করা হয়, তাহলে, কণা দৃটির ভিতর কত তড়িংবল কার্য করবে নির্ণয় করো। ম্যাণনেসিয়ামের পারমাণবিক ভর 24 g/mol এবং প্রত্যেকটি ম্যাগনেসিয়াম পরমাণুতে 12 টি ইলেক্টন আছে। প্রত্যেক ইলেকট্রনের আধান $e=1.6 imes 10^{-19}{
m C}.$

উঃ। মাগেনোসয়ামের পারমাণবিক ভর $24~\mathrm{g/mol}$ । অতএব, $24~\mathrm{g}$ মাগেনেসিয়ামে $6 imes 10^{23}$ প্রমাণ্ মাছে যার প্রত্যেকটিতে 12 টি ইলেকট্রন বর্তমান। অতএব, 360 mg মাগনেসিয়ামে ইলেকট্রনের

$$\Re(360 \times 10^{-3}) \times 6 \times 10^{23} \times 12 = 10.8 \times 10^{22}$$

্রেন কলা হতে অপর কলাতে স্থানাগুরিভ ইলেকট্রনের সংখ্যা $=rac{0.01}{100} imes10.8 imes10^{22}$ $= 10.8 \times 10^{18}$

ংগ্রেণ্ট্রের হাড় রাধ্যের পরিমাণ = $e \times 10.8 \times 10^{18} = 1.6 \times 10^{-19} \times 10.8 \times 10^{18} =$

1 73 C হুণ্য কল ক্ষিত্ৰ কোনো ভড়িভাপান ছিল লা এখন, একটি কলতে + 1.73 (এবং অলেবটিতে - 1 73 (' १ ५६'म्पाल हेस्त दल।

🕒 বায়ু মধ্যে দৃটি বন্ধকণাকে 10 m দৃরে রাখা হল। মোট 20 কুলম তড়িতাধান কণা দৃদ্ধি ভিতর কাঁডাবে বল্টন করলে, তাদের পারস্পরিক বিকর্ষণ বল স্বাধিক হবে ? ওই স্বাধিক বলের পরিমাণ কত ?

উঃ। ধরা যাক, একটি বস্তুকণাতে q কুলম্ব তড়িতাধান দেওয়া হল। তাহলে অপর বস্তুর কণার আধান = (20-q) কুলম্ব; এই অবস্থায় বিকর্ষণ বল $F=\dfrac{q(20-q)}{4\pi\in_{\Omega}\left(10\right)^2}$ newton.

এখন, F সর্বাধিক হতে গেলে সহজেই বোঝা যায় $q\left(20-q\right)$ সর্বাধিক হতে হবে। ধর, $x=q\left(20-q\right)=20$ $q-q^2$

 $=100-(q-10)^2$ ্রপন্টত x সর্বাধিক মান পায় যখন q-10=0 অথবা q=10 কুলম্ব। সুতরাং বিকর্ষণ বল Fসর্বাধিক হবে যখন বম্তুকণা দুটিতে 20 কলম্ব সমানভাবে বব্দিত হবে।

মাবার
$$F_{max}=rac{10 imes10}{4\pi\,\epsilon_0\,\left(10
ight)^2}=9 imes10^9 imesrac{100}{100}=9 imes10^9 imes1.$$

5 দুটি শোলাবল — প্রত্যেকটির ভর $0.1\,\mathrm{g}-10\,\mathrm{cm}$ দীর্ঘ সিল্কের সুতো দিয়ে ঝুলানো আছে। তাদের সমপরিমাণ তড়িতাধান দিলে বিকর্যণের ফলে, পরস্পর হতে $10\,\mathrm{cm}$ ফাঁক হয়ে থাকে। প্রত্যেক শোলাবলে কত পরিমাণ আধান দেওয়া

উঃ। সূতো O বিন্দ্ হতে ঝুলানো এবং A ও B দুটি শোলাবল [চিত্র 2.3]। সামাবস্থায় A বলের ওপর নিম্নলিখিত বলগুলি ক্রিয়া করেঃ

- (i) সতোর টান T
- (ii) বলের ওজন mg
 - (iii) B বলের দর্ন বিকর্ষণ বল F.
 বলগুলিকে অনুভূমিক ও উল্লন্ধদিকে বিভাজন করলে পাই,
 T. cos AOC = mg এবং T sin AOC = F.

$$\text{SIST factor} \quad \frac{F}{mg} = \tan AOC = \frac{AC}{OC}$$

অথবা
$$F = \frac{AC}{OC} \times mg$$
 (i)

এখন,
$$AC = \frac{10}{2} = 5 \text{ cm}$$
 এবং $OC = \sqrt{(40)^2 - (5)^2} = \sqrt{1575} = 39.69 \text{ cm}$.

10km

िंख 2.3

(i) নং সমীকরণ হতে পাই
$$F=(0.1 \times 980) imes rac{5}{39.69} = 10.03 \, \mathrm{dyne}$$
 = $10 \, \mathrm{dyne}$ (প্রায়)

প্রতিকে শোলাবলৈ
$$q$$
 পরিমাণ ভড়িভাধান থাককে, $F=rac{q^2}{(10)^2}$: $10-rac{q^2}{(10)^4}$

এগল, $q^2 = (10)^3$ এগল, $q = \sqrt{(10)^3} = 31.65$ unit.

10: 1 % of c.g.s পদ্ধতিত করা তল]

মাধ্যমের পরাবৈদ্যুতিক ধ্রুবক (Dielectric constant of a medium) :

পূর্বে বলা হয়েছে, কোনো মাধ্যমের পরম ভেদনযোগ্যতা ∈ এবং শূন্য মাধ্যমের পরম ভেদনযোগ্যতা ∈ 0

হলে ঐ মাধ্যমের পরাবৈদ্যুতিক ধ্বুবক $K=\frac{\epsilon}{\epsilon_0}$ মাধ্যমের পরম ভেদনযোগ্যতা একে ঐ মাধ্যমের আপেক্ষিক ভেদনযোগ্যতা (relative permittivity) বলা হয়।

এখন \mathbf{cgs} পশ্বতিতে $\epsilon_0=1$ ধরা হয়: কাজেই ঐ পশ্ধতি $K=\epsilon$ অর্থাৎ মাধ্যমের পরাবৈদ্যুতিক ধ্রুবক, ভেদনযোগ্যতা এবং পরম ভেদনযোগ্যতা সবই সংখ্যাগত ভাবে সমান। তবে পরম ভেদন যোগ্যতার একটি একক আছে $(\mathbf{esu}^2/\mathbf{dyn}.\,\mathbf{cm}^2)$ কিন্তু পরাবৈদ্যুতিক ধ্রুবক দুটি ভেদন যোগ্যতার অনুপাত হওয়ায়, এর কোনো একক নেই; এটা বিশুন্ধ সংখ্যা মাত্র। যেমন, অব্রের পরাবৈদ্যুতিক ধ্রুবক =5.7; তাই অব্রের ভেদনযোগ্যতা =5.7 $\mathbf{esu}^2/\mathbf{dyn}.\,\mathbf{cm}^2$.

এস্. আই. পশ্বতিতে ϵ_0 = 1 নয়; এর মান = $8.85 \times 10^{-12} \, \mathrm{coulomb}^2/\mathrm{newton} \, \mathrm{m}^2$; ফলে $K=\epsilon$ হবে না। যেমন, অন্তের পরাবৈদ্যুতিক ধুবক K=5.7 কিন্তু এর ভেদনযোগ্যতা = $K.\epsilon_0=5.7 \times 8.85 \times 10^{-12} \, \mathrm{coulomb}^2$ / newton $\mathrm{m}^2=5.04 \times 10^{-11} \, \mathrm{C}^2/\mathrm{newton} \, \mathrm{m}^2$.

ullet তড়িংবলের পরিপ্রেক্ষিতে মাধ্যমের পরাবৈদ্যুতিক ধুবক : শূন্য মাধ্যমে দুটি ওড়িতাধান q_1 এবং q_2 থাকলে, তাদের ভিতর যদি তড়িংবল F_1 হয় তাহলে,

$$F_1=rac{1}{4\pi\,\epsilon_0}\,.rac{q_1q_2}{r^2}\,....(\mathrm{i})\;[\;r=\,$$
 আধানদ্বয়ের পারস্পরিক দূরত্ব $]$

ঐ আধানদয় কোনো বিশেষ মাধ্যমে (যার পরাবৈদ্যতিক ধুবক € r) একই দূরত্বে অবস্থিত থাকলে,

তাদের ভিতর তড়িংকল
$$F_2=rac{1}{4\pi\,\epsilon_0\,\epsilon_r}\cdotrac{q_1q_2}{r^2}$$

(i) লং সমীকরণ-কে (ii) লং দ্বারা ভাগ দিলে পাই $\dfrac{F_1}{F_2}=\in_r$ (অথবা K) (iii)

(iii) নং সমীকরণের পরিপ্রেক্ষিতে মাধ্যমের পরাবৈদ্যতিক ধুবকের নিম্নলিখিত সংজ্ঞা দেওয়া যায় ঃ
শূন্য মাধ্যমে দৃটি বিন্দু তড়িতাধান পরস্পর হতে কিছু দৃরে অবস্থিত থেকে পরস্পরের
ওপর যে তড়িৎবল প্রয়োগ করে এবং একই দূরত্বে কোনো নির্দিষ্ট মাধ্যমে অবস্থিত থেকে
যে তড়িৎবল প্রয়োগ করে, এই দুই বলের অনুপাতকে ঐ মাধ্যমের পরাবৈদ্যুতিক ধুবক বা
আপেক্ষিক ভেদন যোগ্যতা বলা হয়।

িপরতাড়িতিক বল ও মহাকর্ষ বলের তুলনা (Comparis between electrostatic force and gravitational force)

দৃটি ৩'ড়ংগ্রন্থ বসুর ভিতর স্থির তাড়িতিক বল ছাড়া মহাকর্ষ বলও কিয়া করে। এই দৃট বলের মধ্যে মেমন সদেশা আছে, তেমনি কিছু বৈসদৃশাও আছে।

সাদৃশ্য ঃ (1) দৃট বলই (কন্দ্রগ বল (central force)— অর্থাৎ এরা বন্ধুদ্ধয়ের কেন্দ্রবিন্দু সংযোগকারী সবলবেখা বরাবর কিয়া করে।

- (11) हेल्य तल्हे भराईत वार्यंत वास्त्रामणहिन अग्र ह्यांच हाल
- ।।।।। উভ্যাবলট সার্কী বলা অধাং বলদ্ধ কর্তৃক ক্তকার্য পথ-নির্ভর নয়।
- ।। १। १ वय तन्त्री नन्त्रा भाषाम्य क्रियानीनः।

বৈসাদৃশ্যঃ (i) মহাকর্ষ বল সর্বদা আকর্ষক বল; স্থিরতাড়িতিক বল আকর্ষক অথবা বিকর্ষক দুই-ই হতে পারে।

- (ii) মহাকর্ষ বল মাধ্যম নিরপেক্ষ কিন্তু স্থিরতাড়িতিক বল মাধ্যমের ওপর নির্ভর করে।
- (iii) মহাকর্ষ বল পরিমাণে খুব সামান্য; স্থিরতাড়িতিক বল পরিমাণে খুবই বৃহৎ।
- ullet ইলেকট্রন ও প্রোটন এই দুটি মূল কণিকার ক্ষেত্রে উপরোক্ত দু-প্রকার বলের পরিমাণ হিসাব করে দেখানো যায় যে মহাকর্ষ বলের তুলনায় তড়িংবল অনেকগুণ বেশি। ইলেকট্রন ও প্রোটন উভয়ের তড়িতাধান $e=1.6\times 10^{-19}$ কুলম্ব; ইলেকট্রনের ভর $m_e=9.1\times 10^{-31}~{
 m kg}$; প্রোটনের ভর $m_p=1.67\times 10^{-27}~{
 m kg}$ ।

কণা দুটি বায়ুমাধ্যমে r metre দূরত্বে থাকলে, তাদের ভিতর তড়িৎ-আকর্ষণ বল

$$F_1 = \frac{1}{4\pi \epsilon_0} \cdot \frac{e \times e}{r^2} = \frac{1}{4\pi \epsilon_0} \cdot \frac{(1.6 \times 10^{-19})^2}{r^2} = 9 \times 10^9 \cdot \frac{(1.6 \times 10^{-19})^2}{r^2} \text{ newton.}$$

নিউটনের মহাকর্ষ সূত্রানুযায়ী কণা দুটির ভিতর মহাকর্ষীয় আকর্ষণ বল

$$F_2 = G \frac{m_e \times m_p}{r^2} = 6.67 \times 10^{-11} \cdot \frac{9.1 \times 10^{-31} \times 1.67 \times 10^{-27}}{r^2}$$
 newton.

$$\therefore \frac{F_1}{F_2} = 2.27 \times 10^{39}$$
 (প্রায়)।

দেখা যাচেছ যে ইলেকট্রন ও প্রোটনের ভিতর তড়িৎ আকর্ষণ বল তাদের ভিতর মহাকর্ষীয় আকর্ষণ বল অপেক্ষা অনেক বেশি।

তথাপি একথা মনে করার কোনো কারণ নেই যে স্থির-তাড়িতিক বলই একমাত্র গুরুংপূর্ণ বল। বস্তুও মহাকর্ষীয় বল স্থির-তাড়িতিক বল অপেক্ষা অধিক গুরুত্বপূর্ণ কারণ এই বিশ্বের বেশিরভাগ বস্তুই তড়িৎ বিহীন।

□ Examples □

1. + 80 এবং - 70 e.s.u. মানের দৃটি তড়িতাধান 25 cm দূরে একটি মাধ্যমের ভিতর বসানো আছে। এদের ভিতর বল যদি 4 dyne হয়, তবে মাধ্যমের পরাবৈদ্যুতিক ধুবক কত ?

উঃ। মাধ্যমের পরাবৈদ্যুতিক ধ্বক K হলে, কুলম্ব সূত্র হতে লেখা যায়, $F=rac{1}{K}\cdotrac{q_1q_2}{r^2}$ $_{\rm CRS})$

F=4 dyne; $q_1=80$ e.s.u.; $q_2=-70$ e.s.u. [ঋণাত্মক চিচ্চ বুঝায় যে অক্ষরণ বন্ধ কিলা করছে]; r=25 cm;

শত্রব,
$$4 = \frac{1}{K} \cdot \frac{80 \times 70}{(25)^2}$$
 $\therefore K = \frac{80 \times 70}{4 \times (25)^2} = 2.25$ (প্রায়)।

উঃ। যখন গোলকঘয় বায়ুতে [চিত্র 2.4(1)] হখন যে-কেনে গোলকের ওপর নির্দান হত্ত র ্ন

(i) গোলকের ওজন mg
খাড়া নিল্লমুখী (ii) বিকর্ষণ বল
F (iii) টান T. যেহেড় গোলক
চিথর, সেহেতু T cos 15° =
mg এবং T sin 15° = F;

$$\tan 15^{\circ} = \frac{F}{mg}$$
 (i)

যখন গোলক দুটি ভরলের ভিতর নিমজ্জিত [চিত্র 2.4 (ii)] ভখন তাদের ওপর স্থানচ্যুত ভরলের উধর্ষধাত পড়বে। যদি

গোলকের ব্যাসার্ধ r এবং তরলের ঘনত্ব σ হয় তবে উধর্বঘাত $B=rac{4\pi}{3}r^3.\sigma.g.$ একেরে, $T\cos 15^\circ+B=mg$ এবং $T\sin 15^\circ=F_1$

অথবা, $an 15^\circ = rac{F_1}{mg-B}$ (ii) $[F_1 = ext{osc} নিমজ্জিত অবস্থায় বিকর্ষণ বল।}$

(j) এবং (ii) সমীকরণ থেকে পাই,
$$\frac{F_1}{F}=\frac{mg-B}{mg}=1-\frac{B}{mg}$$

$$\therefore \frac{F_1}{F} = 1 - \frac{\frac{4}{3}\pi r^3 \sigma g}{\frac{4}{3}\pi r^3 \rho g} = 1 - \frac{\sigma}{\rho} = 1 - \frac{0.8}{1.6} = \frac{1}{2}$$
 অথবা $\frac{F}{F_1} = 2$

চাপাল
$$\frac{F_{air}}{F_{hound}} = 2$$

|
ho | গোলার উপাদানের ঘনার এবং $m=rac{4}{3}\pi r^3.
ho. 1$

িতৃ
$$F_{\mathrm{int}} = K \, (4.1 \,$$
 সংগ্ৰেমণ দুইবা) $\therefore K = 2$

অত্যাব, তরলের প্রাবৈদ্যতিক ধুবক = 2.

2.5. তড়িৎ কেত্ৰ (Electric field):

সংজ্ঞা ঃ কালে উত্তর্গানের চতুনিকে য়ে অশ্বলে অনা কোনো ক্ষুদ্র উত্তর্গান আনলৈ তা প্রথ ম আশ্বল কর্ত্ত আক্ষণ বা বিকর্ষণ বল অনুভব করবে সেই অশ্বলকে প্রথমোন্ত ভড়িতাখানের ক্ষেত্র বলা হয়

গোলা কৰা হিনাকে এই ক্ষেত্র অসাম পর্যন্ত কিন্তুত কিন্তু কার্যত দেখা যায় নিদিন্ত সীমা পর্যন্ত আকর্ষণ বা বিকাশণ বল হিনা করে। তারপ্র আর বিশেষ কোনো বল অনুভূত হয় না

ক্ষেত্রের তীব্তা বা প্রাবন্ধা (Intensity of the field) : গ্রিংক্ষেত্রের কোনো বিন্দুতে একক ধনাধুক অসাল unit positive charge। রাখনে তা য়ে-বল অনুভব করে তাকে ঐ বিন্দুতে উত্ত গ্রিং ক্ষেত্রের তীব্রতা বা প্রাবল্য বলা হয়। উত্ত একক আধান যে অভিমুখে বল অনুভব করবে তাই হবে ঐ বিন্দুতে প্রাবল্যের অভিমুখ।

সি.জি.এস্ পশ্বতিতে প্রাবলোর একক **ডাইন./ ই.এস্.ইউ** এবং এস. আই পশ্বতিতে **নিউটন/কুপস্ব** (N/C)। এদের আলাদা কোনো নাম নেই।

• প্রাবল্যের E.S.U এবং S.I. এককের সম্পর্ক ঃ

 $1 \text{ N} = 10^5 \text{ dyne এবং } 1 \text{ coulomb} = 3 \times 10^9 \text{ e.s.u.}$ কাজেই,

1 e.s.u. ক্ষেত্রপ্রাবল্য =
$$\frac{1 \text{ dyne}}{1 \text{ e.s.u}} = \frac{3 \times 10^9}{10^5} = 3 \times 10^4 \text{ S.I. unit}$$

অর্থাৎ প্রাবল্যের e.s.u. একক = 3×10^4 প্রাবল্যের S.I. একক।

ক্ষেত্র প্রাবল্যের মান ঃ

(a) মনে কর, \in ভেদনযোগ্যতাসম্পন্ন কোনো মাধ্যমে q e.s.u. আধান হতে r cm দূরে একটি বিন্দু নেওয়া হল। ঐ বিন্দুতে ধনাত্মক একক আধান রাখলে কুলম্ব সূত্রানুযায়ী ঐ একক আধান যে বল অনুভব করবে তাহা $F=\dfrac{q\times 1}{\in r^2}=\dfrac{q}{\in r^2}$ dyne/e.s.u. সূত্রাং ঐ বিন্দুতে ক্ষেত্রপ্রাবল্য $E=\dfrac{q}{\in r^2}$ dyne/e.s.u.; শূন্য বা বায়ু মাধ্যমে $\in=1$ হওয়ায়, বায়ু মাধ্যমে ক্ষেত্রপ্রাবল্য $E=\dfrac{q}{2}$ dyne/e.s.u.।

এথেকে বোঝা যায় ক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্যের মান বিভিন্ন। এখন, কোনো বিন্দুতে ক্ষেত্রের প্রাবল্য E হলে, ঐ বিন্দুতে রাখা q আধান যে-বল অনুভব করবে তা যদি F ধরা হয় তবে F=Eq \mathbf{dyne} ।

বল = ক্ষেত্রপ্রাবল্য × তড়িতাধান।

বলা বাহুলা, তড়িৎক্ষেত্রের তীব্রতা বা প্রাবল্য একটি ভেক্টর রাশি। অনেক সময় একে **তড়িৎক্ষে**ত্র ভেক্টর (electric field vector) বলা হয়।

(b) এস্. আই, পন্ধতিতে q কুলম্ব তড়িতাধান হতে r metre দূরে ক্ষেত্রপ্রাবলা $E=rac{q}{4\pi\,\epsilon_0\,\epsilon_r\,r^2}$

 $\operatorname{newton/C}$ এবং শূন্য মাধ্যমে $(\in_r=1)$, ক্ষেত্রপ্রাবল্য $E=rac{q}{4\pi\in_0 r^2}$ $\operatorname{newton/C}.$

্তিড়িং প্রাবল্যের বিকল্প এককঃ প্রাবল্য $E=NC^{-1}=\frac{\widetilde{m}\,\widetilde{b}\,\widetilde{b}\,\widetilde{a}\,\times\,\widetilde{a}\,\widetilde{b}\,\widetilde{b}\,\widetilde{d}}{\widetilde{q}\,\widetilde{m}\,\widetilde{d}\,\times\,\widetilde{a}\,\widetilde{b}\,\widetilde{b}\,\widetilde{d}}=\frac{\widetilde{m}\,\widetilde{b}\,\widetilde{b}\,\widetilde{a}\,\times\,\widetilde{a}\,\widetilde{b}\,\widetilde{b}\,\widetilde{d}}{\widetilde{q}\,\widetilde{b}\,\widetilde{d}\,\widetilde{d}}=Vm^{-1}$

2.6 বিন্দু তড়িতাধানের জন্য তড়িৎ ক্ষেত্র প্রাবল্য (Electric field due to a point charge) :

ধর, কার্টেসীয় নির্দেশতন্ত্রের মূলবিন্দ্ O - ে একটি বিন্দু তড়ি তাধান q রাখা আছে। এখন, () বিন্দুৰ সাপেক্ষে r দূরে একটি বিন্দু P নেওয়া হল। r' হল P বিন্দুর স্থান- েইর (position vector) ধরো, P বিন্দুরে q_0 পরিমাণ একটি টেম্ট-চার্জ (test charge) রাখা হল। q ও ত গ্রেণ্ডের জনন q_0 আধান যদি F বল অন্ভব করে, তবে ক্লম্ম সূত্রান্যায়ী, $\frac{1}{F}=\frac{1}{4\pi},\frac{q\cdot q_0}{r^2}$ $\frac{q\cdot q_0}{r^2}$ $\frac{1}{r}$ যোগানে r তল

r এর অভিমুখে একক ভেক্টর।

যেহেতু
$$\hat{r}=\dfrac{\overrightarrow{r}}{r}$$
 ; সেহেতু $\dfrac{\overrightarrow{F}}{F}=\dfrac{1}{4\pi\,\epsilon_0}\,.\dfrac{q.q_0}{r^3}\,.\dfrac{\overrightarrow{r}}{r}$

উভয় দিক-কে q_0 দ্বারা ভাগ করলে পাই,

$$\frac{\overrightarrow{F}}{q_0} = \frac{1}{4\pi \in_0} \cdot \frac{q \cdot \overrightarrow{r}}{r^3}$$

কিন্তু
$$\dfrac{\overrightarrow{F}}{q_0}=$$
 একক আধান কর্তৃক অনুভূত বল। যেহেতু

একক আধান কর্তৃক অনুভূত বল P বিন্দুতে তড়িৎ ক্ষেত্র $\stackrel{
ightarrow}{E}$ এর সমান,

তাই,
$$\stackrel{\rightarrow}{E}(r) = \frac{1}{4\pi \in_0} \cdot \frac{q}{r^3} \cdot \stackrel{\rightarrow}{r}$$

তড়িৎক্ষেত্রের মান (magnitude)
$$E_r = rac{1}{4\pi \, \epsilon_0} \cdot rac{q}{r^2}$$

দ্রিকীয়ঃ একই তলে অবস্থিত n সংখ্যক বিন্দু আধানের জন্য কোনো বিন্দৃতে ক্ষেত্র প্রাবল্য

$$\overrightarrow{E}_{(r)} = \frac{1}{4\pi \in_0} \sum_{n=1}^n \frac{q_n}{r_n^2} \hat{r}_n$$

EXAMPLES D

া বায়ু মধ্যে পরস্পর হতে 12 cm দূরে অবস্থিত + 30 এবং +60 e.s.u. দুটি তড়ি তাধানের ঠিক মধ্যস্থলে তড়িৎক্ষেত্রের প্রাবল্য কত হবে ?

উঃ। আধান দৃটির দ্রত্ব $12~\mathrm{cm}$ হওয়ায় তাদের ঠিক মধাবর্তী বিন্দ্র দূরত্ব প্রতোক আধান হতে $6~\mathrm{cm}$ এখন $6~\mathrm{cm}$ দূরের বিন্দৃতে $+30~\mathrm{e.s.u.}$ আধানের দর্ন প্রাবলা $\frac{30}{(6)^2}~\mathrm{dyne}$ এবং এর

অভিম্য + 60 e.s.u. থাধানের দিকে। আবার, 6 cm দূরের বিন্তে +60 e.s.u.আধানের দর্ব

প্রাবলা (6) dyne এবং এর অভিমুখ +30 e.s.u. আধানের দিকে।

্টে ন্ট প্রবল। একই বিশ্তে একই সরলরেখা বরাবর বিপরীত দিকে কিয়া করায় ঐ বিশ্তে লক্ষ

প্রারক। 60 30 = **0.88 dyne'e.s.u.** এবং এর অভিমুখ + 30 e.s.u মাধারের ছিরে।

② + 4 এবং + 9 কৃপত্ম তড়িতাধান বায়ুমধ্যে পরস্পর হতে 0.1 m দরে রাখা আছে।
তানের মোগ করলে যে সরসরেখা পাওয়া যায় তার ওপর দৃটি বিন্দু নির্ধারণ করো যেখানে
একটি একক ধনায়ক আধান (i) সমান কিছু বিপরীতমুখী বল অনুভব করবে, (ii) সমান
কিছু সমম্খী বল অনুভব করবে।

্টিছিল। এটা প্রত্যুক্ত প্রতিক্রাপ্তারে ওপর প্রস্তু রক্ত সমান ও বিপর্ভাষ্ট করে করে। তিন্তু নানি হ স্থানি অসাম ও হরে, করেল, উভয়, আধানাই ধ্নাহ্র

মনে করো, +4 C আধান হতে ঐ বিন্দুর দূরত্ব x m; অতএব অপর আধান হতে ঐ বিন্দুর দূরত্ব इत्त (0.1 - x)m। अथन, श्रमानयायी,

$$\frac{4}{4\pi \,\epsilon_0 \, x^2} = \frac{9}{4\pi \,\epsilon_0 \, (0.1 - x)^2} \, \text{ at, } \frac{2}{x} = \frac{3}{(0.1 - x)}$$

$$\P$$
, 0.2 - 2 x = 3x ∴ x = $\frac{1}{25}$ m = 4 cm |

বিন্দটি +4 কুলম্ব আধান হতে 4 cm দুৱে অথবা +9 কুলম্ব আধান হতে 6 cm দুৱে অবস্থিত 2(9

(ii) একক ধনাত্মক আধানের ওপর প্রযুক্ত বল সমান ও সমমুখী হতে গেলে বিন্দুটি দুটি আধানের একই দিকে থাকরে এবং + 4C আধান হতে বিন্দুর দূরত্ব অপর আধান হতে দূরত্ব অপেক্ষা কম হতে 2(4)

মনে করো, +4 ে আধান হতে ঐ বিন্দ্র দূরত্ব x m; অতএব, অপর আধান হতে ঐ বিন্দুর দূরত্ব कत्व (0.1 + x) m.

এখন প্রশান্যায়ী,
$$\frac{4}{4\pi \, \epsilon_0 \, x^2} = \frac{9}{4\pi \, \epsilon_0 \, (0.1+x)^2}$$
 বা, $\frac{2}{x} = \frac{3}{(0.1+x)}$

$$√1$$
, 0.2 + 2 x = 3x ∴ x = 0.2 m = 20 cm |

বিশ্চি + 4 C. আধানের বাম দিকে 20 cm দূরে থাকলে অপর আধানেকভ বাম দিকে থাকরে এবং দূরত্ব হবে (20 + 10) = 30 cm |

বি দুটি এক একক ঋণাত্মক তড়িতাধান এবং একটি q পরিমাণ ধনাত্মক আধান একই সরলরেখায় রাখা হল। q এর কোন্ অবস্থানে এবং পরিমাণ কী হলে ঐ তড়িতাধানগুলি সাম্য অবস্থানে থাকবে ? এই সাম্য কি সুস্থির, অস্থির না নিরপেক্ষ সাম্য ?

উঃ। q ধনাঞ্জক আধানটি, অবশাই, দুটি একক ঋণাস্থক তড়িতাধানের মাঝে অবস্থিত তবে কারণ ভাহলে তার উপর একটি ঋণাত্মক আধানের আকর্ষণ বল অপরটির আকর্ষণ বলের সমান ও বিপরীত হবে। ধরো, একক ঝণাত্মক আধান দটির ভিতরকার দরত্ব = r এবং একটি ঝণা থক আধান হতে x দুরে + q ভড়িতাধান রাখা হল, (চিত্র 2.6)। A বিশুতে রাখা ঋণাত্মক তড়িভাধান

কর্তি প্রস্তু আকর্ষণ বল
$$=rac{q imes 1}{4\pi \in _0}$$

এবং
$$B$$
 কিন্দ্রে অবস্থিত কণাত্মক আধান কর্তৃক প্রযুক্ত আকর্মণ বল $= - q \cdot 1 - 4\pi \cdot {}_{0} \cdot r - 4\pi \cdot {}_{0} \cdot r$

$$4\pi\cdot_0\cdot r$$
 ক্ষা থাকলে, $q\times 1$ $q\times 1$

$$v < x - r - x \qquad \therefore x = \frac{r}{2}$$

mention a contract many manufactured to the state of the हा राज्य राज पूर्व क्षण ब्रुक कामण्डल माराज्यिक रिकाम राज्य जान व अवसार का वार्

চার্থাৎ
$$\dfrac{q imes 1}{4\pi \in_0 (r/2)^2} = \dfrac{1 imes 1}{4\pi \in_0 r^2}$$
 অথবা $q = \dfrac{1}{4}$ একক।

এই সামা অস্থির সাম্য কারণ তড়িতাধানগুলির অবস্থানের সামান্য পরিবর্তন হলে তারা আর পূর্বের অবস্থানে ফিরে আস্বে না।

🚯 + q, + q, -q এবং - q e.s.u. এই চারটি তড়িতাধানকে ABCD বর্গের A, B. C এবং D বিন্দৃতে রাখা হল। বর্গের যে-কোনো বাহুর দৈর্ঘ্য a cm হলে বর্গের কেন্দ্রবিন্দু O -তে তড়িৎক্ষেত্রের প্রাবল্য নির্দয় করো।

উঃ।
$$\Lambda$$
 বিন্দৃতে অবস্থিত $+q$ তড়িতাধানের জন্য 0 বিন্দুতে প্রাবল্য $=rac{q imes 1}{\left(\mathrm{AO}
ight)^2}=rac{q}{\left(a/\sqrt{2}
ight)^2}=$

 $\frac{2q}{a^2}$ dyne; এর গ্রন্থি $\stackrel{\longrightarrow}{OC}$: (চিত্র 2.7)

ে বিন্দৃতে অবস্থিত -q তড়িতাধানের জন্য O বিন্দৃতে প্রাবলা

$$\frac{q}{(0)(1)^2} = \frac{q}{(a-\sqrt{2})^2} = \frac{2q}{a^2} \text{ dyne};$$
 এর অভিমুখও \overrightarrow{OC} ।

এতএব, এই দুই তড়িতাধানের জনা O বিন্দৃতে মোট প্রাবল্য

$$F_1 - \frac{2q}{a^2} + \frac{2q}{a^2} = \frac{4q}{a^2}$$
 dyne; এর অভিমুখ \overrightarrow{OC} । অনুরূপভাবে

(B) বিন্দু ও (B) বিন্দুতে রাখা তড়িতাধান দুটির জন্য মোট প্রাবল্য $F_2=rac{4q}{a^2}\,\mathrm{dyne};$ এর অভিমূখ (A)

এখ ϵ ় সখা যাচে $F_1=F_2$ এবং এরা পরস্পরের অভিলম্ন।

মত্তৰ, () বিশ্বত প্ৰাৰল =
$$\sqrt{\left(\frac{4q}{a^2}\right)^2 + \left(\frac{4q}{a^2}\right)^2} = \frac{4 \times 2.q}{a^2}$$
 dyne এবং মাভমুখ ZDOC-

এব কিমাড়ক ()ট ববাবর

্র একটি সমবাহু ত্রিভ্জের ভূমির দৃই প্রান্তে + 1 μC (মাইক্রোক্লম্ব) ও - 1 μC (মাইক্রোক্লম্ব) মান বিশিষ্ট দৃটি আধান রাখা হল। ত্রিভ্জের একটি বাহুর দৈখ্য 0.7 metre হলে ত্রিভ্জের শীর্যবিন্দৃতে তড়িংক্লেত্রের প্রাবল্য নির্ণয় করো।

For ABC with range form B say C freque various + 1 uC say = 1 uC with a = 1 =

B will a some of the A land sprawn

$$F = \frac{1}{17} \sum_{n=0}^{\infty} \frac{1 \cdot 10^{-6}}{0.77} \{1 \text{ nC} = 10^{-6} \text{C}\}$$

এখন
$$\frac{1}{4\pi \epsilon_0} = 9 \times 10^9$$
 ইওয়ায়

$$F_1 = \frac{9 \times 10^9 \times 10^{-6}}{(0.7)^2} = \frac{9}{49} \times 10^5 \,\text{N/C}.$$

এই প্রাবলেরে অভিম্থ BA বরাবর। অন্রপভাবে, C বিন্দুর তড়িতাধানের জন্য A বিন্দুর প্রাবল্য

$$F_2=rac{9}{49}\, imes 10^5\, ext{N/C}\,$$
 ; এর অভিমৃথ $ext{AC}$ বরাবর।

এই প্রাবলা দৃটিকে ভূমির সমান্তরাল GAD বরাবর এবং
তার অভিলম্ব FAE বরাবর বিভাজন করলে, স্পর্ট বোঝা যায়
FAE বরাবর উপাংশদ্বয় সমান এবং বিপরীত কিন্তু ভূমি সমান্তরাল
।উপাংশদ্বয় সমান এবং উভয়ই AD বরাবর অতএব A বিন্দুর

$$E = 2 \times F_1 \times \cos 60^{\circ}$$

$$=2\times\frac{9}{49}\times10^5\times\frac{1}{2}$$

$$=rac{9}{49} imes 10^5=1.84 imes 10^4\ {
m N/C}$$
 ; এর অভিমুখ ${
m AD}$ বরাবর।

6 50 cm দীর্ঘ একটি অন্তরিত সুতোর সাহায্যে 1 e.s.u. তড়িতাধানযুক্ত একটি শোলাবল ঝুলানো আছে। একটি সুষম তড়িৎক্ষেত্র অনুভূমিকভাবে শোলাবলের ওপর প্রয়োগ করলে বলটি উল্লম্ব রেখা হতে 2 cm সরে যায়। শোলাবলের ভর 0.5 g হলে, তড়িৎক্ষেত্রের প্রাবল্য কত ?

উঃ। ধর, তড়িংক্ষেত্রের প্রাবল্য = E dyne/e.s.u.। স্থির অবস্থায় শোলাবলের ওপর নিম্নলিখিত তিনটি বল ক্রিয়া করে ঃ

(i) বলের ওজন mg dyne খাড়া নিম্নমুখী; (ii) তড়িংক্ষেত্রের দর্ন অন্ ভমিক বল $F=E.e=E\times 1$ dyne; (iii) সুগ্রে বরাবর টান T dyne। উপ্লম্ব রেখার সাথে সুগো θ কোণ (চিত্র 2.9) করলে (i) টানের উপ্লম্ব উপাংশ $T\cos\theta$ শোলাবলের ওজন mg কে নিদ্রিয় করে এবং (ii) খন ভমিক উপাংশ $T\sin\theta$ নিদ্রিয় করে F বলকে।

$$T\cos\theta = mg = 0.5 \times 980 = 490$$

$$T\sin\theta = F = E$$

$$\therefore \tan \theta = \frac{E}{490}$$
 sea $\frac{2}{50} = \frac{E}{490}$

 $\therefore E = 19.6 \text{ dyne/e.s.u.}$

উঃ। প্ৰিকিক প্ৰপ্ৰ প্ৰেক কৰা = প্ৰেকে প্ৰেকিক × প্ৰিক্তাপৰ = 100 × (1.6 × 10 ¹⁹)N = 1.6 × 10 ¹⁹ N

প্রেটনের ত্বরণ
$$a=\frac{\mbox{প্রয়ন্ত বল}}{\mbox{ভর}}=\frac{1.6\times 10^{-17}}{1.7\times 10^{-27}}=9.4\times 10^9\ \mbox{m/s}^2.$$
[ভর = $m=1.7\times 10^{-24}\mbox{ g}=1.7\times 10^{-27}\mbox{ kg}]$
 $100\mbox{ cm}$ (অর্থাৎ $1\mbox{ m}$) দূরত্ব যাবার পর প্রোটনের গভিবেগ v হলে, $v^2=u^2+2.as.=0+2\times (9.4\times 10^9)\times 1=18.8\times 10^9$ $\therefore v=1.37\times 10^5\mbox{ m/s}$ (প্রায়)।

তড়িতাহিত পরিবাহীর নিকটবর্তী বিন্দুতে ক্ষেত্রপ্রাবল্য (Electric intensity at a point near a charged conduct

थरता, r व्यामार्थत এकि शालकरक वायुर्ड द्वरथ + Q कूलप्र পরিমাণ তড়িৎ দেওয়া হল (চিত্র 2.10)। এখন গোলকের খুব নিকটবর্তী একটি বিন্দু P -তে ক্ষেত্রপ্রাবল্য বলতে আমরা বুঝি যে P-বিন্দুতে রাখা একটি একক ধনাত্মক আধান ঐ গোলকের কেন্দ্রবিন্দু O-তে কেন্দ্রীভৃত + Q তড়িতাধানের জন্য যে-বল অনুভব করবে তা; কারণ প্রমাণ করা যায় যে-কোনো বহির্বিন্দৃতে প্রাবল্য নির্ণয়ের ক্ষেত্রে গোলকের তড়িতাধান গোলকের কেন্দ্রে জমা করা আছে বলে মনে করা য়েতে পারে। এখন, O বিন্দুতে কেন্দ্রীভূত +Q তড়িতাধান এবং P বিশ্দুতে অবস্থিত +1 তড়িতাধানের দূরত্ব এক্ষেত্রে গোলকের ব্যাসার্ধের সমান ধরা যাবে।

সূতরাং প্রাবল্য
$$E=rac{Q imes 1}{4\pi\,\epsilon_0\,r^2}=rac{Q}{4\pi\,\epsilon_0\,r^2}$$

মাবার গোলকের তলমাত্রিক ঘনত্ব σ হইলে, $\sigma=rac{Q}{4\pi r^2}$ অথবা $Q=4\pi r^2\sigma$

অতএব,
$$E = \frac{4\pi r^2 \sigma}{4\pi \epsilon_0 r^2} = \frac{4\sigma}{\epsilon_0}$$

 δ ্তুসার্শস্থ মাধারের আপেক্ষিক তেদলযোগাতা \in $_r$ হলে $E=rac{\sigma}{\in$ $_r\in _0}$.

ক্ষেত্রপ্রবেলার উপরিউত্ত রাশিমালাতে গোলকের ব্যাসার্ধ নেই; শুধু গোলকের আধানের তলমাত্রিক ঘনত্ব আছে। সূত্র' উপরিউত্ত বাশিয়ালা যে-কোনো ৩ড়িভাইত পরিবাহীর ক্ষেত্রে প্রয়োগ করা যেতে পারে। অঙ্হর অভারা বলতে পারি য়ে, কেশো ৩ড়িভাঙিত পরিবাহার নিকটবর্তী বায়্-মধাস্থিত কোনো বিশ্বতে ৩'৬২ক্ষেবের প্রাবল। পরিবাটীর ঐ বিশ্ব নিকটবর্তী অংশের আধানের তলমাত্রিক ঘনত্নের (৫) मर्गान्यर्गं १क । ११क **कुमच डेननामा** वाला।

্রি শেলকের পরিবর্টে মেন্ত্রেলা আকারের পরিবাই নিয়ে কুলম্ব উপপাদের বিধিবন্ধ প্রমাণের জন। উচ্চত্তরের পাঠাপুত্তক দ্রন্টবা।]

2.8. ভড়িং দ্বিমেরু (Electric dipole):

সমপরিমাণ কিন্তু বিপরীতধর্মী দুটি বিন্দু তড়িতাধান খুব কাছাকাছি থাকলে, তাকে তড়িৎ ৰিমেৰু বলে।

জল (H₂()), ক্লেকের্ম (CHCl₃), আমোনিয়া (NH₃) অণ্ প্রভৃতি স্থায়ী তড়িং-দ্বিমেরুর উদাহরণ। এ সকল অণুর ধনায়ক অংগন-বন্দীনের কেন্দ্র এবং ঝণায়ক আধান-বন্দীনের কেন্দ্র একই বিন্দৃতে অবস্থিত নয়।

তড়িং দ্বিমের যে তড়িং ক্ষেত্র উৎপন্ন করে, তাকে দ্বিমের ক্ষেত্র (dipole field) বলা হয় 2.11 নং চিত্রে একটি তড়িং দ্বিমের দেখানো হয়েতে। + q এবং – q দুটি সমপরিমাণ কিন্তু

বিপরীত ধর্মী বিন্দু তড়িতাধান 21 ক্ষুদ্র দূরত্বে থেকে দ্বিমেরু গঠন করেছে। তড়িৎ দ্বিমেরুর শক্তি (strength) মাপা হয় যে ভেক্টর রাশির দ্বারা তাকে **দ্বিমেরু আমক** (dipole moment)। \overrightarrow{p}) বলে। দ্বিমেরুর যে–কোনো একটির তড়িতের পরিমাণ এবং তাদের ভিতরকার দূরত্বের গুণফল দ্বারা দ্বিমেরু আমক পরিমাপ করা হয়।

$$p = q \times 2l$$

দ্বিমের প্রামকের অভিমুখ হবে ঋণাত্মক তড়িতাধান থেকে ধনাত্মক তড়িতাধানের দিকে। এর একক হল coulomb-metre (C-m)।

2:0.

তড়িৎ দ্বিমেরুর জন্য ক্ষেত্র প্রাবল্য (Electric intensity due to an electric dipole) :

(ক) দ্বিমেরু অক্ষের ওপর অবস্থিত বিন্দু (Point situated on the dipole axis)
দ্বিমেরুর ধনাত্মক ও ঋণাত্মক বিন্দু আধানকে যুক্ত করলে যে সরলরেখা পাওয়া যায় তাকে দ্বিমেরু অক্ষ বলে।

মনে করো, + q এবং - q বিন্দু
আধানদ্বয় ক্ষুদ্র 21 দূরত্বে থেকে একটি
দ্বিমের গঠন করেছে। ধরো, আধান দুটি
A এবং B বিন্দুতে অবস্থিত। অক্ষস্থিত
P বিন্দুতে ক্ষেত্র প্রাবল্য নির্ণয় করতে
হবে। দ্বিমেরুর মধ্যবিন্দু O

থেকে P বিন্দুর দূরত্ব = r; এখন, -q তড়িতাধানের জনা P বিন্দুর ক্ষেত্র প্রাবল্য

$$E_1=rac{1}{4\pi \in_0} \cdot rac{q}{\left(r+l
ight)^2}$$
 ; এই প্রাবলোর অভিমুখ $\stackrel{
ightarrow}{
m PB}$ বরাবর

আবার, + q তড়িতাধানের জনা P বিন্দুর ক্ষেত্র-প্রাবলা

$$E_2=rac{1}{4\pi\,\epsilon_0}\,.rac{q}{\left(r-l
ight)^2}\,;$$
 এই প্রাবল্যের অভিমুখ $\stackrel{
ightarrow}{
m BP}$ বরাবর।

$$\therefore$$
 P বিন্দুর লখা প্রাবল্য $E=E_2$ – $E_1=rac{1}{4\pi}\epsilon_0\cdot \left[egin{array}{c} q & 1 \ (r-l)^2 & (r+l)^2 \end{array}
ight]$ BP বরবের।

$$=\frac{q}{4\pi\,\epsilon_0}\,,\frac{4.r.l}{(r^2-l^2)^2}\,=\frac{2(q\times2l)r}{4\pi\,\epsilon_0}\,(\frac{r^2-l^2}{r^2-l^2})^2}\,=\,\frac{1}{4\pi\,\epsilon_0}\,,\frac{2\,p.r.}{(r^2-l^2)^2}$$

যেখানে, তড়িং দিমেরু ভামক $p = q \times 2l$.

যদি P বিন্দু বহু দূরে অবস্থিত হয় (অর্থাং যদি $r\!>\!l$) তাহলে r^2 এর তুলনায় l^2 অপ্রাহ। করা যায় এবং সেক্ষেত্রে $E=rac{1}{4\pi\,\epsilon_0}\cdotrac{2p}{r^3}$

(খ) দ্বিমেরু অক্ষের লম্ব-দ্বিশুভকের ওপরে অবস্থিত বিন্দু (Point situated on the perpendicular bisector of the dipole axis)

বিন্দু P দ্বিমের আক্ষ AB-এর লদ্ধিখন্ডক OP -এর উপর অব্ধিত (চিত্র 2.13)।

O বিন্দু থেকে P -এর দূরত্ব = r; এখন, -q তড়িতাধানের জন্য P বিন্দুর ক্ষেত্র-

প্রাবল্য
$$E_1=rac{1}{4\pi\,\epsilon_0}\cdotrac{q}{\left(\mathrm{AP}
ight)^2}$$

$$=rac{1}{4\pi\,\epsilon_0}\cdotrac{q}{\left(r^2+l^2
ight)};\;\mathrm{এই}$$

প্রাবল্যের অভিমুখ PA বরাবর।

আবার, +q তড়িতাধানের জন্য P বিন্দুর $^{-}$ ন্দেত্র-প্রাবল্য $E_2=rac{1}{4\pi\,\epsilon_0}\,.rac{q}{(\mathrm{RP})^2}$

$$=rac{1}{4\pi\,\epsilon_0}\,.rac{q}{(r^2+l^2)}\,;$$
 এই প্রাবল্যের অভিমুখ $\stackrel{
ightarrow}{
m BP}$ বরাবর।

মপ্ৰতিত
$$E_1 = E_2 = \frac{1}{4\pi \epsilon_0} \cdot \frac{q}{(r^2 + l^2)}$$

আমরা E_1 এবং E_2 প্রাবল্যকে দুটি পারম্পরিক অভিলম্ব দিকে বিভাজন করলে দেখতে পাব যে $\stackrel{\longrightarrow}{OP}$ বরাবর উপাংশদ্বয় পরস্পর সমান কিন্তু বিপরীত। ফলে তারা পরস্পরকে নিষ্ক্রিয় করে দেয়। কিন্তু $\stackrel{\longrightarrow}{BA}$ বরাবর উপাংশদ্বয় ($E_1\cos\theta$ এবং $E_2\cos\theta$) একই দিকে ক্রিয়া করে। তাই, P বিন্দুতে লব্ধ প্রাবল্যের মান $E=E_1\cos\theta+E_2\cos\theta=2E_1\cos\theta$ $[\because E_1=E_2]$

$$= \frac{1}{4\pi \in_{0}} \cdot \frac{q}{(r^{2} + l^{2})} \cdot 2 \cos \theta$$

$$= \frac{1}{4\pi \in_{0}} \cdot \frac{q}{(r^{2} + l^{2})} \times 2 \times \frac{l}{\sqrt{l^{2} + r^{2}}} \qquad \left[\cos \theta = \frac{l}{\sqrt{l^{2} + r^{2}}}\right]$$

$$= \frac{1}{4\pi \in_{0}} \cdot \frac{p}{(r^{2} + l^{2})^{3/2}} \qquad [p = 2l \times q]$$

লব্ধ প্রাবল্য E দ্বিমের অক্ষের সমান্তরালে B থেকে A অভিমুখে ক্রিয়া করে। যদি P বিন্দু O বিন্দু থেকে দুরে অবস্থিত হয় (অর্থাৎ যদি r>>l) তবে লব্ধ প্রাবল্য

$$E = \frac{1}{4\pi \, \epsilon_0} \, . \, \frac{p}{r^3}$$

(গ) যে-কোনো বিন্দতে প্রাবল্য (Intensity at any point):

P যে-কোনো বিন্দু। ধরো OP রেখা দিমের অক্ষের সঞ্চো ও কোণে আনত এবং P- বিন্দ অক্ষের মধ্যবিন্দ O থে কে r দরে অবস্থিত। দ্বি-মেরু ভ্রামক p $=2l\times a$, AB বরাবর ক্রিয়া করে। এই ভামক-কে OP এবং OP এর অভিলম্ব দিকে বিভাজন করলে OP বরাবর উপাংশ হয় $p_r = p \cos \theta$ এবং অভিলম্ব **मिर**क উপাংশ $p_{\mathrm{G}}=p\sin\theta$ [চিত্র দেখো]। স্পর্যত

$$E_1 = \frac{1}{4\pi \epsilon_0} \cdot \frac{2p_r}{r^3}$$
$$= \frac{1}{4\pi \epsilon_0} \cdot \frac{2p \cdot \cos\theta}{r^3}$$

$$\begin{array}{l} \text{Ad: } E_2 = \frac{1}{4\pi \in_0} \cdot \frac{p_\theta}{r^3} \\ \\ = \frac{1}{4\pi \in_0} \cdot \frac{p.\sin\theta}{r^3} \end{array}$$

 E_1 এবং E_2 পরস্পরের লম্ব হওয়ায়, P বিন্দুতে লব্দি প্রাবলা

$$E = \sqrt{E_1^2 + E_2^2} = \frac{p}{4\pi \epsilon_0 r^3} \sqrt{1 + 3\cos^2 \theta}$$

E -এর অভিমুখ ঃ ধর, OP রেখার সজো লব্দি প্রাবলা E-এর নতি =♦ [চিএ 2.14 দেখা]

$$\tan \phi = \frac{E_2}{E_1} = \frac{p \cdot \sin \theta}{r^3} \times \frac{r^3}{2p \cos \theta} = \frac{1}{2} \tan \theta \qquad \therefore \phi = \tan^{-1} \left(\frac{1}{2} \tan \theta\right)$$

সূষম তড়িংক্লেরে ম্পাপিত তড়িং দ্বিমের্র উপর কি ব (Torque on an electric dipole placed in an uniform electric field):

আমরা ইতিপরে দেখেছি যে সমপ্রিমাণ কিন্তু বিপরতিধ্রী নটি বিন্দু হতিত্যধ্য খব রাজাকাছ থেকে একটি গুড়িং দিমের গঠন করে। + q এবং - q গুড়িগুশান্দর কুন্ন 21 দ্বে থেকে স্ গুড়া দিনে ণঠন করে, তার ভামক $p = a \times 2l$

ধরি, একটি তড়িং-দ্বিমেরু E প্রাবল্যের একটি সুষম তড়িং ক্ষেত্রের সাথে θ কোণে অবস্থান করছে। তড়িং দ্বিমেরুর কোনো নিট আধান না থাকায় সুষম ক্ষেত্রে এর উপর কোনো নিট বল ক্রিয়া করে না। এর ওপর দ্বন্দ্ব ক্রিয়া করে। দুটি সমান ও বিপরীতমুখী বল F এবং F দ্বিমেরুর ওপর ক্রিয়া করেবে [চিত্র 2.15]। তড়িতাধান দুটি আবন্ধ বলে, সমান ও বিপরীত বল F এবং F দ্বিমেরুর ওপর একটি টর্ক (torque) প্রয়োগ করবে। স্পেষ্টত F=E.a.

টকের মান $\tau = E.q~(2l.\sin\theta) = (2lq)~E~\sin\theta = p.~E~\sin\theta.$

ভেক্টর অঙ্কপাতনে লেখা যায় $\tau = p \times E$ অর্থাৎ
দিমেরু প্রামক এবং ক্ষেত্র প্রাবল্যের ভেক্টর গৃণফল হবে দ্বিমেরুর ওপর ক্রিয়ারত টর্কের মান। বলা বাহুল্য,
টর্কের অভিমুখ হবে দ্বিমেরু প্রামকের অক্ষ এবং তড়িংক্ষেত্র যে-তলে অবস্থিত তার অভিলম্ব।

2.11) তড়িৎ বিভব (Electric potential):

যখন কোনো বস্তুকে ভূপৃষ্ঠ থেকে কিছু উপরে তোলা হয়, তখন ঐ বস্তু কিছু প্রিতশন্তির অধিকারী হয়। অভিকর্বের ফলে ভারী বস্তু উঁচু থেকে নীচু জায়গায় আসার চেন্টা করে। আমরা বলি যে পৃথিবীর অভিকর্ম ক্ষেত্রের ভিতরে থেকে ভূপৃষ্ঠ থেকে উচ্চতা অন্যায়ী ঐ দ্–জায়গায় বিভিন্ন অভিকর্মজনিত বিভব আছে। উচ্চ বিভবযুক্ত (অভিকর্মজনিত) জায়গা থেকে নিম্ন বিভবযুক্ত জায়গায় স্থানান্তরিত হবার একটি স্বাভাবিক প্রবর্ণতা বস্তুর থাকে।

অভিকর্ষ ক্ষেত্রের বিভবের মতো তড়িৎক্ষেত্রেরও বিভব আছে। একটি ধনাত্মক তড়িতাধান তার চতুর্দিকে যে তড়িৎক্ষেত্র সৃষ্টি করে সেই ক্ষেত্রের ভিতর আর একটি ধনাত্মক আধান আনলে দ্বিতীয় আধানটি প্রথ ম আধান হতে দূরে সরে যেতে চেম্টা করে। বলা হয় প্রথম তড়িতাধানের চতুর্দিকের বিন্দুর্গুলির 'তড়িৎ বিভব' আছে।

কোনো অন্ধলের তড়িৎক্ষেত্রকে যেমন ওই অন্ধলের প্রতিটি বিন্দৃতে ক্রিয়ারত ভেক্টর রাশি \widehat{E} দ্বারা বর্ণনা করা যায় ঠিক তেমনি ওই ক্ষেত্রকে ওই অন্ধলের প্রতি বিন্দৃতে ক্রিয়ারত একটি শ্বেলার রাশি V দ্বারাও বর্ণনা করা যায়। এই শ্বেলার রাশিই হল তড়িৎবিভব।

তড়িংক্ষেত্রের কোনো বিন্দৃতে বিভব (Potential at a point in an electric field) :

মনে করো, আমাদের একটি $+q_1$ তড়িতাধান আছে এবং তার চতুর্দিকে অন্য কোনো তড়িতাধান বা কোনো বস্তু নেই অর্থাং, ঐ তড়িতাধানটি সর্ববাধামুক্ত। এই অবস্থায় তাকে সরিয়ে অন্য কোনো স্থানে রাখতে কোনো কার্য করার প্রয়োজন হবে না, কারণ তার ওপর কোনো বল ক্রিয়া করে না।

এইবার মনে করো, উপরিউত্ত $+q_1$ ওড়িওাধান আনার পূর্বে ঐ অঞ্জের কোনো বিন্দু P-তে +Q ওড়িওাধান রাখা আছে এইবার $+q_1$ আধানকে ঐ অঞ্জেল এনে এক খোন থেকে অনা ম্যানে সরাওে চলে কার্ম করার প্রন্যোজন হবে, কারল q_1 ওড়িওাধানটি সর্বদা +Q ওড়িওাধান কর্ত্ত বিকর্মণ বল অন্তব্ধ করে যেদি $+q_1$ আধানকে +Q অধ্যানে নিক্টি আনার ১৮৮র স্বান্থ আহা করে ওছে তার বিকর্মণ বলের বিবল্প কার্ম করেও হবে, আর +Q আধান হতে দরে স্বিয়ো নেবার ডেম্টা করেল বিকর্মণ বল নিজেউ কার্ম করেবে ওড়িওাধান নৃত্তী ক্ষণোগ্ধক অথারা একটি ক্ষণাগ্ধক ও অপর্যুটি ধনাগ্ধক হলেও এই ধরনের কার্ম করার প্রয়োজন হবে।

সূত্রাং দেখা যাচে + Q গড়ি তাধানের অবস্থিতির ফলে তার চত্র্দিকস্থ অপ্থল এমন একটি ধর্ম পায় যার ফলে ঐ অপ্থলে অবস্থিত অনা কোনো তড়ি তাধানকে এক স্থান হতে অন্য স্থানে সরাতে বা বহুদূর হতে ঐ অপ্থলের কোনো বিন্দৃতে আনতে সর্বদা কার্য করার প্রয়োজন হয়। এই ধর্মকেই তড়িৎ বিভব বলা হয়।

সংজ্ঞা ঃ অসীম হতে একটি একক ধনাত্মক তড়িতাধানকে তড়িৎক্ষেত্রের কোনো বিন্দুতে আনতে যে পরিমাণ কার্য সম্পদিত হবে সেটাই হবে ত্র বিন্দুর তড়িৎ বিভব।

• বিভব ও শক্তি (Potential and Energy):

ধরো, তড়িৎক্ষেত্রে কোনো বিন্দৃ P -এর বিভব V এবং বহুদূর হতে + q একক তড়িতাধানকে ঐ বিন্দুতে আনতে W একক কার্য করতে হল। এক্ষেত্রে, $V=\frac{W}{q}$ অথবা, $W=V \times q$

অর্থাৎ সম্পাদিত কার্য = বিভব x তডিতাধান।

যদি বিভব ও গ্রভ়িগ্রধানকৈ ই.এস.ইউ, একক-এ প্রকাশ করা হয় তাহলে কার্যকে 'আর্গ' একক-এ প্রকাশ করতে হবে। আর বিভব 'ভোল্ট' এককে এবং গ্রভ়িগ্রধান 'কুলম্ব' এককে (অর্থাৎ এস. আই. পন্ধিভিত্তে) প্রকাশ করা হলে, কার্যকে 'জুল' এককে প্রকাশ করতে হবে। উপরোম্ভ কার্য + q তড়িতাধানে তিড়িৎ স্থিতিশক্তি (electric potential energy) রূপে সঞ্জিত থাকে।

• দুই বিন্দুর বিভব-পার্থক্যঃ

বিভবের উপরিউক্ত সংজ্ঞা অনুযায়ী, A এবং B বিন্দৃদ্বয়ের ভিতর বিভব পার্থক্য = B বিন্দৃ হতে A বিন্দৃতে একটি একক ধনাত্মক আধান স্থানান্তরিত করতে যে কার্য সম্পাদিত হয় তার সমান। অর্থাৎ V_B

 $-\,V_A=rac{W_{AB}}{q}\,;\,W_{AB}$ ধনাত্মক হলে, $\,V_B>V_A;\,\,W_{AB}$ ঝণাত্মক হলে $V_B< V_A$ এবং W_{AB} শূন্য হলে $\,V_A=V_B.$

• বিভব-পার্থক্য পথের (path) ওপর নির্ভর করে নাঃ

এখানে লক্ষ করা প্রয়োজন যে, ধনাত্মক আধানকে B হতে A বিন্দৃতে কোন্ পথে স্থানাগুরিত করতে হবে তার কোনো উদ্ধেখ নেই। প্রকৃতপক্ষে B বিন্দৃ হতে A বিন্দৃতে একক ধনাত্মক আধানকে স্থানাগুরিত করতে যে কার্য সম্পন্ন হবে তা পথের ওপর নির্ভর করে নাঃ ঠিক যেমন, পাহাড়ের চূড়োয় উঠতে যে

কার্য প্রয়োজন তা কোন্ পথে যাওয়া হল তার উপর নির্ভর করে না। এরূপ না হলে, হয়ত P বিন্দুর ভিতর দিয়ে একক আধানকে B বিন্দু হতে A বিন্দুতে (চিত্র 2.16) নিয়ে গোলে কৃতকার্য এবং Q বিন্দুর ভিতর দিয়ে আবার B বিন্দুতে ফিরিয়ে আনলে কৃতকার্য অসমান হত এবং উদ্বন্ত কার্য প্রয়োগ করে অনন্ত গতিযন্ত্র (perpetual motion machine) উদ্ভাবন করা যেত। কিন্তু বাস্তবক্ষেত্রে তা সম্ভব নয়। দুটি বিন্দুর ভিতর বিভব পার্থক্য তাদের ভিতর সম্ভাব্য বিভিন্ন ধরনের পথের উপর নির্ভর

করে না—এটা বিভবের একটি গুরুত্বপূর্ণ ধর্ম। এই ধর্ম অন্যায়ী বলা যেতে পারে যে লিগর তড়িং ক্ষেত্রে BPAQB-এর মতো কোনো বন্ধ পথে কোনো তড়িতাধানকে ঘ্রিয়ে আনলে কৃতকার্য হবে শন। কাড়েত্র অভিকর্ম বলের ন্যায় তড়িংবলও সংরক্ষী (conservative) বল।

213> পৃথিবীর বিভব শূন্য (The earth has zero potential):

পৃথিবী নিজে একটি তড়িৎ পরিবাহী। প্রতিনিয়ত বিভিন্ন সূত্র হতে পৃথিব নিজে তড়িতাধান লাভ করে: আবার, বিভিন্ন সূত্রে তড়িতাধান সরবরাহও করে। অর্থাৎ, প্রতিনিয়ত পৃথিবার পক্ষে তড়িতাধানের লাভ ও লোকসান ঘটে। কিন্তু এই লাভ বা লোকসান প্রায় সমানঃ তাছাড়া পৃথিবীর আকার এত বিরাট যে সামান্য তড়িতাধান লাভ করলে বা লোকসান ঘটলে পৃথিবীর তড়িং-বিভরের কিছ্মাত্র পরিবর্তন হয় না। এ সম্পর্কে সমুদ্রজলের লেভেলের তুলনা করা যেতে পারে। সমুদ্রে জলের পরিমাণ এতই বিরাট যে, সমুদ্র হতে সামান্য জল তুলে নিলে বা সামান্য জল ঢাললে সমুদ্র-লেভেলের কোনো পরিবর্তন হয় না। এই কারণে উচ্চতা নির্ণয়ে আমরা সর্বদা সমুদ্র সমতলকে (sea level) শূন্য উচ্চতাযুক্ত বলে মনে করি এবং তার পরিপ্রেক্ষিতে অন্যান্য উচ্চতা পরিমাপ করি। ঠিক একই রকমভাবে পৃথিবীর তড়িং-বিভব সর্বদা অপরিবর্তিত থাকে বলে পরিমাপের ক্ষেত্রে পৃথিবীরে শূন্য বিভবযুক্ত ধরি এবং তার পরিপ্রেক্ষিতে অন্যান্য বস্তুর বিভব পরিমাপ করি। কোনো ধনাত্মক বিভবযুক্ত বস্তুর বিভব পৃথিবীর বিভব অপেক্ষা উচ্চ এবং ঋণাত্মক বিভবযুক্ত বস্তুর বিভব পৃথিবীর বিভব অপেক্ষা উচ্চ

তড়িতাহিত পরিবাহীর বিভব (Potential of a charged conductor) :

তড়িতাহিত পরিবাহীকে পরিবাহী তার দিয়ে ভূ-সংলগ্ন করলে যদি ইলেকট্রন ভূমি হতে তড়িতাহিত বস্তুতে চলে আসে, তবে ঐ বস্তুর বিভব ধনাত্মক [চিত্র 2.17 (a)]। বিপরীতক্রমে, যদি ইলেকট্রন তড়িতাহিত

বতু হতে ভূমিতে চলে যায় তবে ঐ বস্তুর বিভব ঋণাত্মক [চিত্র 2.17(b)]। বলা বাহুল্য, এই সংজ্ঞায় পৃথিবীকে শূন্য-বিভবযুক্ত ধরা হয়েছে। পরিবাহীর বিভব ধনাত্মক হলে, ভূসংলগ্ন করার ফলে, ইলেকট্রন ভূমি হতে বস্তুতে প্রবাহিত হয়ে পরিবাহীর ইলেকট্রন ঘাটতি পূরণ করবে এবং বিভব শূন্য করবে; আবার বস্তুর বিভব ঋণাত্মক হলে, পরিবাহী হতে ভূমিতে উদ্বন্ত ইলেকট্রনের প্রবাহ হয়ে বস্তুর ইলেকট্রন-আধিক্য হ্রাস করবে

এবং বিভব শূনা করবে। এইজন্য বলা হয় যে, যে-কোনো প্রকার তড়িৎগ্রন্ত বস্তুকে পৃথিবীর সাথে যুক্ত করলে, ঐ বস্তুর বিভব শূন্য হয়।

কোনো তড়িতাহিত বস্তুর বিভব পরিমাপ করতে হলে একটি একক ধনাত্মক তড়িতাধানকে বহুদূর হতে ঐ বস্তুর খুব নিকটে আনতে হবে এবং তার জন্য যে কার্য সম্পাদিত হবে অথবা বস্তুতে যে-পরিমাণ স্থিতিশক্তি সঞ্চিত হবে সেটাই হবে ঐ বস্তুর তড়িংবিভবের পরিমাপ।

সংজ্ঞা ঃ অসীম হতে একক ধনাস্থাক আধানকে কোনো তড়িতাহিত বস্তুর খুব নিকটে আনতে যে কার্য সম্পাদিত হয় তাকে তড়িতাহিত বস্তুর তড়িৎবিভব বলা হয়।

যদি বন্ধুর গ্রন্থিতাধান Q ধনাত্মক হয়, তবে একক ধনাত্মক আধানকে বন্ধুর নিকটে আনলে, বন্ধুতে শস্তি সঞ্জিত হবে এবং সেক্ষ্ণেটো বিভব V ধনায়ক: আর যদি Q ঋণাত্মক হয়, তবে একক ধনাত্মক আধানকে বন্ধুর নিকটে আনলে, বন্ধু শস্তি নির্গত করবে এবং সেক্ষেত্রে বন্ধুর বিভব V হবে ঋণাত্মক।

2.15 বিভবের একক (Units of potential):

অসাম হতে 1 e.s.u. ধনাথাক আধানকে তড়িংক্ষেত্রের কোনো বিন্ত আনলে যদি সম্পাদিত কার্য 1 erg হয়, তবে ঐ বিন্তুর বিভবকে 1 e.s.u. বিভব বলে। একে অনেক সময় স্ট্যাটভোনট (statvolt)-ও বলা হয়।

অসম হতে 1 e.m.u. ধনাম্বাক আধানকে তড়িংক্ষেব্রের কোনো বিন্দতে আনলে যদি সম্পাদিত কার্য l erg হয়, তবে এ বিশ্ব বিভবকে 1 e.m.u. বিভব বলে। একে অনেক সময় আবিভোলী (abvolt) -ও

য়েঙেও $1 \, \mathrm{e.m.u.}$ তভিভাধান $= 3 \times 10^{10} \, \mathrm{e.s.u.}$ তড়িভাধান এবং য়েহেড় দুই ক্ষেত্রে একই পরিমাণ কার্ম সম্পাদিত হয়, সেই/২০ 1 e.m.u. বিভব = $\frac{1}{3 \times 10^{10}}$ e.s.u. বিভব।

অথবা, 1 e.s.u. বিভব = 3 × 10¹⁰ e.m.u. বিভব।

বিভবের ব্যাবহারিক এককের নাম ভোল্ট (volt): অসীম হতে 1 coulomb ধনাত্মক তড়িতাধানকৈ ভডিংক্ষেত্রের কোন বিন্দৃতে আনলে যদি সম্পাদিত কার্য 1 joule হয়, তবে ঐ বিন্দৃর বিভবকে 1 ভোল্ট বলা হয় এস. আই. পর্দ্ধতিতে বিভবের একক ভোল্ট। মনে রাখবে,

1 ভেপ্টে =
$$\frac{1}{1}$$
 জুল = $\frac{10^7 \, \text{erg}}{3 \times 10^9 \, \text{e.s.u}} = \frac{1}{300} \times \frac{1 \, \text{erg}}{1 \, \text{e.s.u.}} = \frac{1}{300} \, \text{e.s.u.}$ বিভব = $\frac{1}{300}$ স্ট্যাটভোপ্ট

এবং 1 ভোল্ট = 10^8 e.m.u. বিভব = 10^8 আবেভেল্ট

বিন্দু তড়িতাধানের তড়িৎক্ষেত্রে কোনো বিন্দুর বিভবের হিসাব (Calculation of potential at a point in an electric field due to a point charge):

ধরো, O বিন্দুতে + q পরিমাণ বিন্দু আধান রাখা আছে এবং ঐ আধান থেকে r দরে P বিন্দুতে ঐ আধানের দর্ন বিভব হিসাব করতে হবে [চিত্র 2.18] + OP রেখার উপর P বিন্দু থেকে সামান্য dr দুরে আর একটি বিন্দু Q নেওয়া হল।

এখন, + q তড়িতাধানের জন্য P বিন্দুতে প্রাবল্য = $\frac{1}{4\pi} \in Q$ এবং এর অভিমুখ OP বরাবর। P এবং Q খুব কাছাকাছি বিন্দু হওয়ায় আমরা মনে করতে পারি যে ঐ বিন্দুদ্বয়ের ভিতর সর্বত্র ক্ষেত্র-প্রাবল্য $=rac{1}{4\pi\,\epsilon_0},rac{q}{r^2}.$

 ${f P}$ এবং ${f Q}$ বিন্দুদ্বয়ের ভিতর বিভব-পার্থক্য $d{f V}$ হলে সংজ্ঞা অনুযায়ী, $d{f V}=$ একক পজিটিভ তড়িতাধানকে Q থেকে P বিন্দুতে আনতে যে-কার্য করা হয় তা = একক তড়িতাধানের ওপর বল 🗴 Q থেকে P পর্যন্ত সরণ $=-rac{1}{4\pi \epsilon_0} \cdot rac{q}{2} \cdot dr$ ্নেগেটিভ চিহ্ন নেওয়া হল কারণ প্রাবল্য ও সরণ বিপরীতমুখী।

এখন, অসীম থেকে r -এই সীমার মধ্যে উপরোক্ত রাশিমালাকে ইন্টিগ্রেট করলে আমরা P বিন্দুর বিভব (V) পাব। অর্থাৎ

q কুলম্ব এককে এবং r মিটার এককে প্রকাশ করতে হবে V এর একক হবে (৬৮%।

egs পন্ধতিতে $4\pi\epsilon_0=1$; কাড়েই ঐ পন্ধতিতে $V=rac{q}{r}$.

বিভব কেলার রাশি ঃ

উল্লেখযোগ্য যে বিভব ভেক্টর রাশি নয়: এটা স্কেলার রাশি। সৃতরাং একাধিক ধনাস্থাক ও ঋণাস্থাক তড়িতাধানের জন্য কোনো বিন্দুতে বিভব নির্ণয় করতে হলে আমরা প্রতিটি আধানের জন্য পথকভাবে বিভব নির্ণয় করে বীজগাণিতিক সমষ্টির সাহায্যে ঐ বিন্দুর মোট বিভব পেতে পারি।

মনে করো, কোনো বিন্দু ${\bf P}$ হতে r_1, r_2, r_3 প্রভৃতি দূরত্বে যথাক্রমে $+ q_1, + q_2, -q_3$ ইত্যাদি তড়িতাধান রাখা আছে। তাহলে ${\bf P}$ বিন্দুর মোট বিভব

$$V = \frac{q_1}{4\pi \epsilon_0 \, r_1} + \frac{q_2}{4\pi \epsilon_0 \, r_2} - \frac{q_3}{4\pi \epsilon_0 \, r_3} \ \dots \ \ \stackrel{=}{\dots} \ \frac{1}{4\pi \epsilon_0} \sum_{r_i} \frac{q_i}{r_i} \, .$$

E EXAMPLES C

 $igoplus 80 \ {
m e.s.u.}$ সম্পন্ন $+ \ q$ তড়িতাধান থেকে $10 \ {
m cm}$ দূরবর্তী A বিন্দৃতে $-10 \ {
m e.s.u.}$ একটি তড়িতাধান রাখা আছে। একে q তড়িতাধান থেকে $20 \ {
m cm}$ দূরে B বিন্দৃতে নিতে কত কার্য করতে হবে ?

উঃ। q তড়িতাধান থেকে r দূরে কোনো বিন্দুতে বিভব $V=rac{q}{r}=rac{$ আধান $}{ দূরত্ব }$ $({
m egs} \ {
m Yrv} {
m follow})$

ভাতএব, A বিন্দুর বিভব V_A ধরলে $V_A=rac{80}{10}=8~\mathrm{e.s.u.}$

এবং B "
$$V_B$$
 " $V_B = \frac{80}{20} = 4 \text{ e.s.u.}$

 $V_A - V_B = (8 - 4) = 4 \text{ e.s.u.}$

কাজেই, $-10~{\rm e.s.u.}$ তড়িতাধান A বিন্দু হতে B বিন্দুতে নিলে সম্পাদিত কার্য $=(V_A-V_B)$ $\times~10=4\times10=40~{\rm erg}$ । q তড়িতাধানের আকর্ষণের বিরুদ্ধে এই কাজ করতে হল বলে এই কার্যধনাম্বাক।

② একটি ধাতৃখন্ডকৈ 0.1 μC তড়িতাধান দিয়ে 0.2 m ব্যাসার্ধের ফাঁপা ধাতব গোলকের কেন্দ্রে বসানো হল। গোলকের বিভব কত হবে ? নিম্নলিখিত ক্ষেত্রে গোলকের বিভব কি হবে (i) গোলককে কিছুক্ষণের জন্য ভূ-সংলগ্ন করে পরে অন্তরিত রাখা হল (ii) ধাতৃখন্ডবে গোলকের অভ্যন্তরীণ পৃষ্ঠের সাথে স্পর্শ করানো হল।

উঃ। আবেশের দরুন গোলকের ভিতরের পৃষ্ঠে $-0.1~\mu C$ এবং বাইরের পৃষ্ঠে $+0.1~\mu C$ আধান আবিষ্ট হবে। পৃথিবীর সাপেক্ষে গোলকের বিভব (V) গোলকের বাইরের পৃষ্ঠের আধান q দারা নির্ধারিত হবে।

$$\therefore V = \frac{1}{4\pi \in_0} \cdot \frac{q}{r} = 9 \times 10^9 \times \frac{0.1 \times 10^{-6}}{0.2} \text{ volt}$$
= 4500 volt

 (i) গোলক-কে মুহর্তের জন্য ভূ-সংলগ্ন করলে, বাইরের পৃষ্ঠের মুক্ত আধিক্ট আধান পৃথিবীতে চলে যাবে। ফলে গোলকের বিভব হবে

শন্ত লক্ষ্ণ করে। প্রালকের ভিত্রের পঞ্জের কথ আবিষ্ট আধানের কোনো পরিবর্তন হল না।

া। সাত্য ভাষে তালকের অভান্তরীপ প্রের সাথে পদশ করালে, চোলকের অভান্তরীণ প্রের অংশ এক আশান আশান প্রাথিত হবে। ফালে গোলক ও ধাতখণ্ড— উভয়ই তড়িংবিহীন হবে। বলা বিহুণ , ১০ হব্দেষ্ট উভয়ের বিভিধ-ই হবে শ্রা।

12 এবং ৪ মাইক্রো কৃলবের দৃটি ধনাম্বক বিন্দু আধান পরস্পর হতে 10 cm দৃরে

 আনাম্পত। এদের পরস্পরের দিকে 4 cm এগিয়ে আনতে কত কার্য করা দরকার ?

উঃ। মনে করে, 12 m() আধানকে হিথার রেখে 8 μ C আধানকে 4 cm এগিয়ে আনা হল। এদের বর্তমান করেজার বর্তমান বিজ্ঞান বিভ্রমণানে বিভ্রমণানি

$$V = \begin{pmatrix} Q & \begin{pmatrix} 1 & 1 \\ 4\pi \cdot & r_1 & r_2 \end{pmatrix} = \frac{12 \times 10^{-6}}{4\pi \cdot 6} \left(\frac{1}{0.06} - \frac{1}{0.1} \right)$$

$$-12 \times 10^{6} \times 9 \times 10^{9} \times \frac{20}{3}$$
 volt = 72×10^{4} volt

ভাতএন, ৪॥(' অ'ধানকে স্থানান্তরণের জন্য কৃতকার্য

W = গ্রেষ্ট্রাল \times বিভব-পার্থকা = $(8 \times 10^{-6}) \times (72 \times 10^4) = 5.76$ joule.

(1) 10 cm বাহুবিশিক্ট একটি বর্গক্ষেত্রের চারটি কোণের প্রত্যেকটিতে 20 coulomb ধনা মাক্র আধান আছে। বর্গক্ষেত্রের কর্ণদ্বয়ের ছেদবিন্দুতে তড়িৎক্ষেত্র প্রাবল্য ও তড়িৎ বিভব

উঃ । ABCD বর্গক্ষেত্র এবং O কর্ণছয়ের ছেদবিন্দু [চিত্র 2.20] । AO = BO = CO = DO =

$$\frac{10}{\sqrt{2}} = 5\sqrt{2} \text{ cm.} = \frac{1}{10\sqrt{2}} \text{ m}$$

প্রতি বিপরীত কৌণিক বিন্দৃতে সমান ধনাত্মক আধান থালং এবং A() = ()B = ()C = ()D হওয়ায় A এবং C বি নাহণত ধনাত্মক আধানদ্বয় () বিন্দৃতে সমান কিছু বিপরীত প্রাবলা সৃষ্টি করবে অন্বপভাবে B এবং D বিন্দৃথিত ধনাত্মক আধান দৃষ্টিও () বিন্দৃতে সমান ও বিপরীত প্রাবল্য সৃষ্টি করবে। ফলে, () বিন্দৃতে লক্ষ্ম প্রাবল্য হবে শুন্য।

ভাবার, ৩ ৬ং বিভব স্কেলার রাশি হওয়ায়, O বিন্দুতে বিভব

$$V = \frac{1}{4\pi\epsilon_0} - \left(\frac{20}{\text{AO}} + \frac{20}{\text{OB}} + \frac{20}{\text{CO}} + \frac{20}{\text{DO}}\right)$$
$$= \frac{1}{4\pi\epsilon_0} \cdot \frac{4 \times 20}{10 \times 2} = 50.9 \times 10^9 \text{ volt}$$

উঃ। ধর, ছোটো গোলকে Q_1 এবং বড়ো গোলকে Q_2 তড়িতাধান অ v_{r+1} এই অন্তর্গার $Q=Q_1+Q_2$ । তাছাড়া, তাদের আধানের তলামাত্রিক ঘনত্র সমান হওয়ায়,

$$rac{Q_1}{4\pi r^2} = rac{Q_2}{4\pi R^2}$$
 অথবা, $rac{Q_1}{Q_2} = rac{r^2}{R^2}$ অথবা, $rac{Q_1+Q_2}{Q_2} = rac{r^2+R^2}{R^2}$

$$\begin{split} & : Q_2 = \frac{R^2}{(r^2 + R^2)} \cdot (Q_1 + Q_2) = \frac{R^2}{r^2 + R^2} \cdot Q \; ; \; \text{Soldwith}, \; Q_1 = \frac{r^2}{r^2 + R^2} \cdot Q \; \\ & \text{sold}, \; \text{confidence fact } V = \frac{1}{4\pi\epsilon_0} \left(\frac{Q_1}{r} + \frac{Q_2}{R} \right) \\ & = \frac{1}{4\pi\epsilon_0} \left[\frac{r^2 Q}{(r^2 + R^2)r} + \frac{R^2 Q}{(r^2 + R^2)R} \right] = \frac{1}{4\pi\epsilon_0} \times \frac{Q(r + R)}{r^2 + R^2} \; . \end{split}$$

কয়েকটি তড়িতাধান সমন্বিত সংস্থার তড়িৎ স্থিতিশক্তি (Electric potential energy of a system consisting of a number of charges):

'কার্য ও শক্তি' পরিচ্ছেদে (পদার্থ বিজ্ঞান পরিচয়, প্রথম ভাগ) আমরা দেখেছি য়ে-কোনো বয়ুকে ভূপ্ষ্ঠ

হতে কিছু উঁচ্ছে তুলতে কিছু কার্য করতে হয় এবং ঐ কার্য বস্তু এবং
পৃথিবীর স্থিতিশন্তিরূপে সঞ্চিত থাকে। বস্তুটিকে ছেড়ে দিলে, তার
সঞ্চিত স্থিতিশন্তি ভূপুঠে পড়ার সময় ধীরে ধীরে গতিশন্তিতে পরিণত
হয়। বস্তুটি ভূপুঠে পড়ে স্থিরাবস্থায় এলে মাটি স্পর্শ করার পূর্ব
মুহূর্তে তার যে গতিশন্তি উংপন্ন হয় (যা বস্তুটির সঞ্চিত স্থিতিশন্তির
সমান) তা তাপশন্তিতে রূপান্তরিত হয়ে বস্তু এবং পৃথিবীতে আবন্ধ থাকে।

স্থিরতড়িৎ বিজ্ঞানেও অনুরূপ ঘটনা ঘটে। মনে কর, q_1 এবং q_2 দুটি তড়িতাধান পরস্পর হতে r দূরে আছে (চিত্র 2.21)। যদি তড়িতাধান দুটি বিপরীত ধরনের হয় তবে তাদের পারস্পরিক দূরত্ব বৃদ্ধি করতে হলে কিছু কাজ করতে হবে এবং ঐ কার্য হবে ধনাত্মক। তড়িতাধান দুটি সমধর্মী হলে তারা নিজেরাই বিকর্ষণ বলের দ্বারা দূরত্ব বৃদ্ধি করে ঐ কার্য সম্পন্ন করবে এবং তা হবে ঋণাত্মক। ঐ কার্যের পরিণাম কি হবে ? কৃতকার্য (q_1+q_2) তড়িতাধান সংস্থার তড়িৎ স্থিতিশন্তিরূপে সঙ্গিত থাকবে। অন্যান্য শন্তির মতো এই তড়িৎ স্থিতিশন্তিরও রূপান্তর সম্ভব। যেমন, q_1 এবং q_2 যদি বিপরীতধর্মী আধান হয় ওবে তাদের ছেড়ে দিলে, তারা পরস্পরের দিকে বেগে অগ্রসর হবে এবং তড়িৎ স্থিতিশন্তি আধান দুটির গতিশন্তিতে রূপান্তরিত হবে। সুতরাং দেখা যাচ্ছে যে, তড়িতাধান দুটির শন্তির সাথে বন্ধ ও পৃথিবীর যুক্ত সংস্থার অভিকর্ষীয় শন্তির যথেন্ট সাদৃশ্য আছে। একমাত্র তঞ্চাত এই যে তড়িৎ বল আকর্ষক বা বিকর্ষক হতে পারে কিন্তু মহাকর্ষ বল একমাত্র আকর্ষক বল।

কয়েকটি বিন্দু তড়িতাধান সমন্বিত সংস্থার তড়িৎ স্থিতিশক্তির সংজ্ঞা নিম্নলিখিতরূপে দেওয়া যেতে পারে:

সংজ্ঞা ঃ কতকগুলি বিন্দু তড়িতাধানকে অসীম দূরত্ব হতে কোনো বিন্দুতে এনে সংস্থা (system) গঠন করতে মোট যে কার্মের প্রয়োজন হবে তাই হবে ঐ তড়িতাধান সংস্থার তড়িৎ স্থিতিশক্তি।

ধরো, q_2 তড়িতাধানকে তার অকথান হতে অসীম দূরত্বে নিয়ে প্থির রাখা হল। এখন, q_1 তড়িতাধানের দর্ন q_2 তড়িতাধানের পূর্ব অকথানে—অর্থাৎ, r দূরে—বিভব $V=\dfrac{q_1}{4\pi\epsilon_0.r}$; এখন, q_2 তড়িতাধানকে যদি অসীম দূরত্ব হতে পূর্বোক্ত r দূরত্বে আনা যায় তবে তড়িৎ বিভবের সংজ্ঞা হতে বলা যায়, কৃতকার্য $W=V\times q_2$.

বলা বাহুল্য, উপরোক্ত কৃতকার্য (q_1+q_2) তড়িতাধান সংস্থার তড়িৎ স্থিতিশক্তিরূপে সঞ্জিত হবে। অতএব, তড়িৎ স্থিতিশক্তি $U=W=V imes q_2=rac{q_1q_2}{4\pi\epsilon_0 J^2}.$

সংস্থায় একাধিক তড়িতাধান থাকলে, প্রতি দুটি তড়িতাধানের ক্ষেত্রে উপরোক্ত প্রক্রিয়া অবলম্বন করে তাদের তড়িৎ স্থিতিশক্তি নির্ণয় করতে হবে; অতঃপর ঐ স্থিতিশক্তিগুলির বীজগাণিতিক সমষ্টি নির্ধারণ করতে হবে। সমগ্র প্রক্রিয়াকে আমরা এভাবে কল্পনা করতে পারি: (i) প্রথমে q_1 তড়িতাধানকে তার অবস্থানে বসানো হল, (ii) q_2 তড়িতাধানকে অসীম হতে q_1 তড়িতাধানের নিকটবতী অবস্থান-বিন্দুতে আনা হল, (iii) তারপর q_3 তড়িতাধানকে অসীম হতে q_1 এবং q_2 নিকটবতী অবস্থান-বিন্দুতে আনা হল, ইত্যাদি।

D Example D

বায়ু মধ্যে একটি সমবাহু ত্রিভূজের A,B এবং C শীর্যবিন্দুতে যথাক্রমে -4q, +q এবং +2q তড়িতাধান রাখা আছে। এই সংস্থার তড়িৎ স্থিতিশক্তি নির্ণয় করো। $q=3\times 10^2$ coulomb এবং $a=10~\mathrm{m}$.

উঃ। মোট পিথতিশক্তি প্রতি জোড়া তড়িতাধানের পিথতিশক্তিগুলির বীজগাণিতিক সমণ্টি।

$$U = \frac{(+q)(-4q)}{4\pi\epsilon_0 a} + \frac{(+q)(+2q)}{4\pi\epsilon_0 a} + \frac{(-4q)(+2q)}{4\pi\epsilon_0 a}$$

$$= \frac{1}{4\pi\epsilon_0} \left(-\frac{4q^2}{a} + \frac{2q^2}{a} - \frac{8q^2}{a} \right)$$

$$= \frac{1}{4\pi\epsilon_0} \left(-\frac{10q^2}{a} \right) = -\frac{10 \times (3 \times 10^2)^2}{10}$$

 $= -81 \times 10^{13}$ joule

ঋণাস্থাক চিহ্ন রোঝায় যে তড়িতাধানগুলিকে A, B এবং C বিন্দু ২৩ে সরিয়ে এসীম দুরত্বে নিতে $81 imes 10^{13} ext{ joule}$ কার্য করতে হবে।

সুষমভাবে তড়িতাহিত গোলকের দর্ন তড়িৎ প্রাবলা ও তড়িৎ বিভব (Electric intensity and potential due to uniformly charged sphere):

এ পর্যন্ত আমরা বিন্দু তড়িতাধানের (point charge) জন্য তড়িৎ বিভব এবং প্রাবল্য আলোচনা করেছি। কিন্তু সসীম আকারের কোনো পরিবাহীকে তড়িতাহিত করলে তার জন্য তড়িৎ বিভব অথবা প্রাবল্য নির্ণয় জটিল হয়ে পড়ে। তবে, পরিবাহী গোলক হলে, নির্ণয় পন্থতি সহজ্ঞ হয় কারণ প্রমাণ করা যায় যে গোলকের পুর্লে অথবা গোলকের বাইরের কোনো বিন্দৃতে প্রাবল্য অথবা বিভব এমন হয় যেন পরিবাহীর সমস্ত আধান গোলকের ক্রেবিন্দৃতে একঞ্জীভূত করা আছে।

ধরো, আমরা r ব্যাসার্ধের একটি গোলীয় পরিবাহীকে Q একক তাড়িতাধানে আহিত করলাম [চিত্র 2.23]। গোলকের কেন্দ্র O হতে 🗴 দূরে P একটি বিন্দু। P বিন্দুতে তড়িৎ প্রাবল্য অথবা বিভব নির্ণয় করতে আমরা মনে করব যে গোলকের আধান Q গোলকের পৃষ্ঠে ছড়ানো নেই— গোলকের কেন্দ্র বিন্দতে জমা করা আছে।

এখন, O বিন্দুতে অবস্থিত উত্ত Q বিন্দু তড়িতাধানের জন্য x দূরে P বিন্দুতে প্রাবল্য =

 $\frac{Q}{4\pi \in X^2} \quad \text{এবং বিভব} = \frac{Q}{4\pi \in X^2}$

যদি x=r হয়, তবে, গোলকের পৃষ্ঠে তড়িৎ প্রাবল্য $=rac{Q}{4\pi \in_0 r^2}$ এবং তড়িৎ বিভব

এটাও প্রমাণ করা যায় যে পরিবাহী গোলকের অভ্যন্তরে সর্বত্র তড়িৎ বিভব সমান এবং তা গোলকের

পৃষ্ঠের বিভবের সমান অর্থাৎ $\dfrac{Q}{4\pi \in_0 r}$ -এর সমান। গোলকের অভ্যন্তরে সর্বত্র বিভব সমান হওয়ায় অভ্যন্তরে তড়িৎ প্রাবল্য শুন্য।

সমবিভব তল ঃ তড়িতাহিত পরিবাহীর পৃষ্ঠ সমবিভবযুক্ত (Equipotential surface : surface of a charged conductor is equipotential):

ইতিপূর্বে আমরা দেখেছি যে ভূপষ্ঠের সর্বত্র বিভব সমান (শূন্য) কারণ ভূপ্ষ্ঠ একটি তড়িৎ-পরিবাহী। তড়িৎ-পরিবাহীর পৃষ্ঠে বিভব-প্রভেদ থাকা সম্ভব নয় কারণ বিভব-প্রভেদের নতিমাত্রা (gradient) থ াকলে পৃষ্ঠে একটি গ্রড়িং ক্ষেত্র কাজ করবে এবং পৃষ্ঠের ইলেকট্রনগুলি ঐ গ্রড়িং-ক্ষেত্রের প্রভাবে নিজেদের এরূপভাবে পুনর্বন্টন করবে যাতে ওড়িৎ-ক্ষেত্র লোপ পায়। পরিবাহীর মোট আধান ধনাত্মক কি ঋণাত্মক হোক কিংবা পরিবাহী তড়িৎবিহীন হোক অথবা অন্য কোনো বস্তুর সাপেক্ষে পরিবাহীর প্রকৃত বিভব যাই হোক না কেন, সর্বক্ষেত্রে প্রের বিভব সর্বত্র সমান হরে।

সংজ্ঞাঃ কোনো তল বা আয়তন যদি এরুপ হয় যে তার পৃষ্ঠে বিভব সর্বত্র সমান, তবে ঐ তল वा आग्राट्नाक अभविच्य उल वा आग्राटन वला श्रा।

ঐ ভল বা আয়তন কোনো বন্ধুর তল বা আয়তন হতে পারে; আবার শূন্য দেশস্থ (in space) তল বা আয়তনও হতে পারে। একটি ফাঁপা পরিবাহীর অভান্তরস্থ আয়তন সমবিভব আয়তন। বলা বাহুলা, এই আয়তন শুনা দেশস্থ আয়তন। এইরূপ যে-কোনো শুনা দেশে তড়িৎ ক্ষেত্র কাজ করলে সেখানে আমরা সমবিভব তল আঁকতে পারি।

মনে কর, বায়ুতে একটি বিচ্ছিম (isolated) ভড়িভাধান q আছে। ঐ ভড়িভাধান হতে r দূরে বিভব =q ; ট্র ভড়িভাধানকে কেন্দ্র করে এবং r ব্যাসার্ধ নিয়ে গোলক আঁকলে, ট্র গোলকের ভল ্র মানের সম্প্রিত্র ভব্দ হবে। প্রকৃতপক্ষে, ওই তড়িতাধানকে কেন্দ্র করে যে-কোনো গোলক $4\pi \in \Gamma$

মীকলেট, ভা সম্বিভ্র ভল হবে এবং ভার বিভ্র হবে গোলকের বাসের্ধের বাস্তান্পাতিক।

উল্লেখ্যাল যে, কোনো তল সম্বিভবসম্পন্ন হলে, ঐ তল বরাবর কোনো তড়িতাধানকে এক স্থান হতে অন্য স্থানে সরালে কোনো কার্য করা হয় না।

তড়িতাহিত পরিবাহীর তল সমবিতব তল এটা প্রদর্শনের পরীকা ঃ একটি অসম আকৃতির মন্ত্রবিত পরিবাই (A) নিয়ে, ধরো, তাকে ধনান্ত্রক তড়িতে আহিত করা হল একটি অনাহিত স্বৰপত্ৰ ভড়িৎকাক্ষণ নিয়ে একগাছা তারের সাহায়ে। তার চাকতির সাথে একটি আধান পরীক্ষক যান্ত করে। তডিংবাক্ষণকে পরিবাহী হতে যথেষ্ট দরে রাখ যাতে পরিবাহী দ্বারা তড়িংবীক্ষণে ওড়িভাবেশ না হতে পারে। এ অবস্থায় ভড়িৎবীক্ষণের মর্গপত্র দটির কোনো বিস্ফারণ হবে না।

এইবার আধান পরীক্ষকের চাক্তিকে পরিবাহীর প্রে স্থাপন করো। সঙ্গে সজে তড়িৎবীক্ষরের স্বর্ণপত্র দটি বিস্ফারিত হবে। আধান পরীক্ষককে না উঠিয়ে পরিবাহীর পৃষ্ঠ বরাবর বিভিন্ন স্থানে নিয়ে যাও [চিত্র 2.24]। দেখা যাবে যে স্বৰ্ণপত্ৰদয়ের বিস্ফারণ সর্বত্র সমান থাকছে। এটা নিঃসন্দেহে প্রমাণ করে যে পরিবাহীর পষ্ঠের বিভিন্ন বিন্দৃতে বিভব সমান।

যদি পরিবাহীকে আবেশের দ্বারা একই সঙ্গো ধনাত্মক ও ঋণাস্থক তড়িৎ দেওয়া হয়, তাহলেও একই ফল পাওয়া

যাবে। অর্থাৎ আবেশ প্রক্রিয়া পরিবাহীতে একই সঙ্গো উভয় প্রকার তড়িতের উদ্ভব করলেও, পরিবাহীর পৃষ্ঠ সমবিভবসম্পন্ন হয় এবং এই বিভব নির্ভর করে আবেশী তড়িতের (inducing charge) উপর। আবেশী তড়িং ধনাত্মক হলে পরিবাহীর বিভব ধনাত্মক হবে; আর, আবেশী তড়িং ঋণাত্মক হলে পরিবাহীর বিভব ঋণাত্মক হবে।

এম্বলে উল্লেখযোগ্য যে উপরিউক্ত তড়িতাহিত অসম আকৃতির পরিবাহীর পৃষ্ঠের সর্বত্র বিভব সমান হলেও, আধানের তলমাত্রিক ঘনত সমান হবে না।

প্রাবল্য ও বিভবের পারম্পরিক সম্পর্ক (Relation between intensity and potential) ঃ

ধরো, কোনো র্জড়ংক্ষেত্রে A এবং B দুটি কাছাকাছি বিন্দু নেওয়া হল। তাদের ভিতর দূরত্ব x; যদি x খুব ক্ষুদ্র হয় তাহলে মনে করা যেতে পারে যে বিন্দুদ্বয়ের ভিতর সর্বত্র একটি অপরিবর্তিত মানের ক্ষেত্র-প্রাবল্য ক্রিয়া করছে। ধর, ঐ ক্ষেত্র-প্রাবল্যের মান = E [চিত্র 2.25] এবং অভিমুখ A থেকে B-এর দিকে। ফলে,

 ${f B}$ অপেক্ষা ${f A}$ উচ্চতর বিভবে আছে। এখন ${f A}$ এবং ${f B}$ বিন্দু দুটির বিভব যথাক্রমে V_A এবং V_B হলে $(\ V_A\ > V_B\),\ V_A\ - V_B\ =\ B$ থেকে একটি একক ধনাত্মক আধানকে A পর্যস্ত আনতে কৃতকার্য =বল \times A এবং B-এর ভিতরকার দূরত্ব = $-(E \times x)$ [ঋণাত্মক চিহ্ন কারণ প্রাবল্য এবং সরণ বিপরীতমুখী]।

$$\therefore E = -\frac{V_A - V_B}{x}$$

ক্যালকুলাস প্রতীক অনুযায়ী দুই বিন্দুর ভিতর দূরত্ব dx এবং বিভব প্রভেদ dV হলে,

$$E = -\frac{dV}{dv} \dots \dots \dots (i)$$

 $E=-rac{dV}{dx}$ (i) $rac{dV}{dx}$ - কে বলা হয় বিভবের নতিমাত্রা (potiential gradient) : অতএব তড়িংক্ষেত্রের কোনো বিন্দুর ক্ষেত্র-প্রাবল্য ঐ বিন্দুর বিভবের ঋণাত্মক নতিমাত্রার সমান। ধর, দুটি সমান্তরাল ও সমতল প্লেট পরস্পর হতে h উচ্চতায় রাখা আছে। এদের বিভব পার্থক্য V হলে, প্লেট দৃটির মধ্যস্থানে তড়িৎক্ষেত্র সুষম হবে (যদি h ক্ষুদ্র হয়) এবং ঐ ক্ষেত্র প্রাবলোর মান হবে $E=rac{V}{h}$: প্লেটের কিনারায় ক্ষেত্র সুষম হবে না।

(i) নং সমীকরণ হতে জানা যায় যে ক্ষেত্র প্রাবল্য তীব্র হলে বিভরের নতিমাত্রা বেশি হবে এবং

ক্ষীণ হলে নতিমান্তা কম হবে।

2.5 অনুচ্ছেদে প্রাবলোর একক বলা হয়েছে dyne/esu (সি.ভি.এস) এবং newton/coulomb (এস. আই)। (i) নং সমীকরণ হতে প্রাবলোর বিকল্প একক হতে esu বিভব / cm (সি.জি.এস) এবং volt/metre (এস. আই)।

□ Examples □

 $m{0}$ কোনো তড়িৎক্ষেত্রে তড়িৎবিভব (V_x) কেবলমাত্র x-এর উপর নির্ভর করে এবং $V(x) = ax - bx^3$ যেখানে a এবং b ধুবক। x-অক্ষের কোন কোন স্থানে তড়িৎ প্রাবদোর মান শূন্য হবে ?

উঃ।
$$V(x) = ax - b.x^3$$
 ভাহলে, প্রাবল্য $E = -\frac{d(V_x)}{dx} - \frac{d}{dx}(ax - bx^3)$
= $-(a - 3b.x^2) = -a + 3b.x^2$.

প্রাবল্য শূল্য হলে
$$-a + 3bx^2 = 0$$
 অথবা, $x = \sqrt{\frac{a}{3b}}$

igoplusকোনো আহিত পরিবাহীর পৃষ্ঠে বিভবের নতিমাত্রা $30,000 \text{ volt cm}^{-1}$ হলে, পরিবাহীর পৃষ্ঠ হতে বায়ুতে বিদ্যুৎস্কৃতিখা হয়। বিদ্যুৎস্কৃতিখা সৃষ্টি না করে একটি অন্তরিত ধাতব গোলকের $3 \times 10^6 \text{ volt}$ বিভবে তড়িতাহিত করতে হলে ঐ গোলকের ব্যাসার্য কড হতে হবে ?

উঃ। ধরো, গোলকের নির্ণেয় ব্যাসার্ধ = x মিটার। গোলকের পৃষ্ঠে বিভব V হলে, তার তড়ি গুধান

$$Q$$
 নিম্নলিখিত সমীকরণ হতে পাই, $V=rac{Q}{4\pi \, \epsilon_o \, x}$; এক্ষেত্রে $3 imes 10^6 = rac{Q}{4\pi \, \epsilon_o \, x}$

$$\therefore Q = 4\pi \in \mathcal{A} \times 3 \times 10^6 \times x$$
 কুলম্ব (i)

এখন, বিদ্যুৎক্ষ্মিজ না হয়ে গোলকের পৃষ্ঠের সর্বাপেক্ষা বেশি বিভবের নভিমাত্রা $\dfrac{dV}{dx}=\dfrac{30,000}{1\cdot100}$

= 3×10^6 voltem.

প্রাবার,
$$V=rac{Q}{4\pi\,\epsilon_{_{\scriptsize O}}\,x}$$
 : ডিফারেন্সিয়েট করলে, $rac{dV}{dx}=-rac{Q}{4\pi\,\epsilon_{_{\scriptsize O}}\,x^2}$:

্ব্যাইনাস চিহ্ন বোঝায় যে x বৃদ্ধি পেলে বিভবের নতিমাত্রা কমে।

প্রক্রে
$$3 \times 10^6 = \frac{4\pi \in_0 \times 3 \times 10^6 \times x}{4\pi \in_0 \cdot x^2}$$
 [(i) নং সমীকরণের সাংখ্যা] $\therefore x = 1$ metre.

2.21 তড়িং বলরেখা (Electric lines of force) ঃ

তড়িং ক্ষেত্রের বিভিন্ন বিন্দৃতে প্রাবল্যের মান ও অভিমুখ বিভিন্ন। তাঁড়ং ক্ষেত্রের বিভিন্ন বিন্দু দিয়ে যদি এমন একটি রেখা কল্পনা করা যায় যে ঐ রেখার যে-কোনো বিন্দৃতে স্পর্শক টানলে তা ঐ বিন্দৃর প্রাবল্যের অভিমুখ নির্দেশ করে, তবে, ঐ রেখাকে তড়িং বলরেখা বলা হবে। তড়িংক্ষেত্রে মৃত্ত অবস্থায় একটি ক্ষুদ্র ধনাত্মক তড়িতাধান ছেড়ে দিলে তা তড়িং বলরেখা বরাবর চলতে থাকরে।

চৌদ্বক বলরেখার অন্তিত্ব কল্পনা করে যেমন চৌদ্বক ক্ষেত্রের বিভিন্ন ধর্ম ব্যাখ্যা করা যায় ঠিক তেমনি উপরোক্ত ধরনের তড়িং বলরেখার অন্তিত্ব কল্পনা করে তড়িংক্ষেত্রের বিভিন্ন ধর্ম ব্যাখ্যা করা যায়।

সংজ্ঞা ঃ কোনো তড়িৎক্ষেত্রে বলরেখা বলতে এরূপ একটি বক্ররেখা বোঝায় যে, ঐ রেখার যে-কোনো বিন্দুতে স্পর্শক টানলে তা ঐ বিন্দুতে ক্ষেত্র-প্রাবল্যের অভিমুখ নির্দেশ করে।

কোনো তড়িতাহিত বন্তুর
চতুর্দিকস্থ তড়িৎক্ষেত্রব্যাপী
ঐরপ অসংখ্য বলরেখা টানা
যেতে পারে। 2.26 নং চিত্রে
কয়েকটি বিশেষ ক্ষেত্রে
বলরেখার আকৃতি দেখনো
হয়েছে। 2.26 (i) নং চিত্রে
যে-বলরেখাগলি দেখানো

হয়েছে তা একটি তড়িতাহিত গোলকের দরুন। বলরেখাগুলির অভিমুখ এরূপ যে পশ্চাতে বর্ধিত করলে সব বলরেখা গোলকের কেন্দ্রে মিলিত হয়। 2.26 (ii) নং চিত্তের বলরেখাগুলি গঠিত হয়েছে দুটি সমপরিমাণ কিন্তু বিপরীতধর্মী তড়িতাধানের ঘারা এবং 2.26 (iii) নং চিত্তের বলরেখাগুলি গঠিত হয়েছে দুটি সমপরিমাণ কিন্তু সমধর্মী বিন্দু তড়িতাধানের ঘারা। 2.26 (iii) নং চিত্ত লক্ষ করলে দেখা যায়, চৌম্বক বলরেখার ক্ষেত্রে যেরূপ উদাসীন বিন্দু (neutral point) পাওয়া যায় এক্ষেত্রেও সেইরূপ উদাসীন বিন্দু পাওয়া যাছে।

- তড়িৎ বলরেশার বৈশিষ্ট্য (Characteristics of electric lines force) :
- (i) ধনাত্মক আধানযুক্ত পরিবাহীর হতে বলরেখা নির্গত হয়ে ঋণাত্মক আধানযুক্ত পরিবাহীতে শেষ হয়। রেখাগুলি অসীম হতে আধানযুক্ত পরিবাহীর দিকে অথবা পরিবাহী হতে অসীমের দিকেও যেতে পারে। সুতরাং তড়িৎ বলরেখাগুলি বন্ধ রেখা নয়।
- (ii) দুটি বলরেখা কখনও পরস্পরকে ছেদ করে না; ছেদ করলে বলরেখার সংজ্ঞা অনুযায়ী ছেদবিন্দুতে তড়িৎক্ষেত্র-প্রাবলা দুটি বিভিন্ন দিকে ক্রিয়া করবে যা সম্পূর্ণ অবাস্তব ব্যাপার।
- (iii) বলরেখাগুলি প্রসারিত প্থিতিস্থাপক সুঙোর মতো দৈর্ঘ্য বরাবর সংকৃচিত হবার চেন্টা করে। বলরেখার এই ধর্ম দ্বারা দুটি তড়িতাধানের পারস্পরিক আকর্ষণ ব্যাখ্যা করা সম্ভব।
- (iv) বলরেখা পরিবাহীকে সমকোণে স্পর্শ করে। এর কারণ পরিবাহীর ঠিক বাইরে ভড়িৎক্ষেত্র প্রাবল্য পরিবাহীর পৃষ্ঠের অভিলম্ব।
 - (v) প্রত্যেক বলরেখার দুই প্রান্তে সমান কিন্তু বিপরীত আধান থাকে।
- (vi) কোনো বন্ধ পরিবাহীর অভ্যন্তরে বলরেখার অন্তিত্ব নেই। তাই বন্ধ পরিবাহী তড়িৎ-পর্দার কাজ করতে পারে।
- (v) বলরেখাগুলি পরস্পরকে পাশের দিকে বিকর্ষণ করে। বলরেখার এই ধর্ম দ্বারা দৃটি ভড়িভাধানের বিকর্ষণ ব্যাখ্যা করা যায়।
 - তড়িৎ বলরেখা এবং চৌশ্বক বলরেখার পার্থক্য ঃ
- (i) তড়িৎ বলরেখা সর্বদা আহিত পরিবাহীতে লম্বভাবে শেষ হয় অথবা পরিবাহী হতে লম্বভাবে নির্বাত হয়। কিন্তু চৌদ্ধক বলরেখা য়ে-কোনো চৌম্বকতল হতে নির্বাত হতে পারে বা ওলে শেষ হতে পারে
- (ii) পরিবাহার অভান্তরে ওড়িং বলরেখার অস্তিত্ব নেই কিন্তু চৌম্বক পদার্থের ভিতর বলরেখা থাকতে পারে।

(iii) স্থির তড়িৎ ক্ষেত্রে তড়িৎ বলরেখাগুলি বঙ্গ বলরেখা নয়; কিন্তু চৌম্বক ক্ষেত্রে আবেশ রেখাগুলি বন্ধ রেখা।

উদাসীন বিন্দু (Neutral points) ঃ পূর্বে উল্লেখ করা হয়েছে যে চৌম্বক বলরেখার ক্ষেত্রে

যেরূপ উদাসীন বিন্দু পাওয়া যায়, তড়িং-বলরেখার ক্ষেত্রেও সেইরূপ উদাসীন বিন্দুর উদ্ভব হয়। তড়িং ক্ষেত্রে উদাসীন বিন্দুর ধারণা স্পষ্ট করার জন্য, মনে করো, আমরা কিছু তফাতে রাখা দুটি সমপরিমাণ এবং সমপ্রকৃতির (ধনাত্মক) বিন্দু আধান + q এবং + q এর কথা বিবেচনা করি [চিত্র 2.27]। এই অবস্থায় বোঝা যায় যে আধান দুটির ঠিক মধ্যবিন্দুতে (N) ক্ষেত্রপ্রাবল্য সমান ও বিপরীতমুখী হবে। ফলে N বিন্দুতে লব্ধ তড়িং ক্ষেত্র প্রাবল্য হবে শূন্য। N বিন্দুতে একটি মুক্ত তড়িতাধান—একে বলা হয় test charge— রাখলে

তা কোনো বল অনুভব করবে না এবং N বিন্দুতে সাম্য-অবস্থাতে থাকবে। N বিন্দুকে বলা হয় উদাসীন বিন্দু।

কিন্তু প্রশ্ন এই যে N বিন্দৃতে অবস্থিত মৃক্ত তড়িতাধানের সাম্য কি সুস্থির সাম্য? সুস্থির সাম্যের শর্ত এই যে, মৃক্ত তড়িতাধানকে যে-কোনো দিকে একটু স্থানান্তরিত করলে, তার উপর প্রত্যানয়নকারী (restoring) বল কিয়া করে আধানকে আবার N-বিন্দৃতে ফিরিয়ে আনবে। এখন দেখা যাক যে বর্তমান ক্ষেত্রে এই শর্ত পালিত হয় কিনা? মৃক্ত তড়িতাধানকে (test charge) সামান্য দক্ষিণে বা বামে সরালে তার ওপর একটি প্রত্যানয়ন বল ক্রিয়া করবে এবং তড়িতাধান N বিন্দৃতে ফিরে আসবে। কিন্তু তড়িতাধানকে N বিন্দৃ থেকে সামান্য ওপরে বা নীচে সরালে, তার ওপর যে তড়িৎ বল ক্রিয়া করবে তা তড়িতাধানকে N বিন্দৃ থেকে দূরে সরিয়ে নেবে। মৃক্ত তড়িতাধান সবদিকে প্রত্যানয়নকারী বল অনুভব করে না। অতএব, N বিন্দৃতে অব্থিত মৃক্ত আধানের সাম্য সুস্থির নয়।

তড়িৎ বলরেখা সমবিভব তলকে সমকোণে ছেদ করে (Electric lines of force intersect an equipotential surface normally) ঃ

একটি তড়িতাহিত পরিবাহীর সমবিভব তল AB-এর ওপর দৃটি খুব কাছাকাছি বিন্দু P এবং Q বিবেচনা করো। ধরো, ঐ বিন্দুদ্ধরের ভিতর তড়িং ক্ষেত্রের প্রাবল্য E এবং ঐ প্রাবলোর অভিমুখ ওলের সাথে ৪ কোণ করে [চি এ 2.28]। P এবং Q খুব কাছাকাছি বলে PQ-কে একটি সরলরেখা বলে গণা করা যায়। এখন ক্ষ্মে-প্রাবলা E-কে যদি PQ-এর সমান্তরালে এবং উল্লেখনের বিভাজন করা যায় তবে তল PQ-এর সমান্তরাল

টুপালে $=E\cos\theta$. উত্তলে, একটি ধনায়ক আধানকৈ P বিন্দু হতে Q বিন্দৃতে সরালে যে কর্মে করা হবে তা $=E.\cos\theta \times PQ$.

সমবিভব গুলুর বৈশিন্টা থেকে আমরা জনি য়ে এ তল বরাবর কোনো ওড়িতাধানকে এক স্থান হতে থান। খানে নিলে কোনো কার্য করা হয় না। খাতএব, $E \, \cos \theta imes PQ = 0$ অথবা $\cos \theta = 0$ অথবা 0 = 11.2; এটা প্রমাণ করে যে ক্ষেত্র-প্রাবলোর অভিমুখ সমবিভব তলকে অভিলম্বভাবে ছেদ করে। আমরা এটাও জান যে-কোনো বিন্দৃতে ক্ষেত্র-প্রাবলেরে অভিমুখ এবং ঐ বিন্দু দিয়ে অভিকান্ত তড়িৎ বলরেখার অভিমুখ একই অতএব, বলা যায় ওড়িং বলরেখা সমবিভব তলকে সমকোণে ছেদ করে।

র্ভাঙ্ বলরেখার ধর্ম প্রস্কো আমরা দেখেছি যে পরিবাহীর তল হতে লম্বভাবে তড়িং বলরেখা নির্গত হয়: আবার লম্বভাবে পরিবাহীতে প্রবেশ করে। তড়িৎগ্রস্ত পরিবাহীর তল সম্মিত্তবয়ন্ত বলে, উপরোক্ত ঘটনা বলরেখার এই ধর্মকে ব্যাখ্যা করে।

200 সমবিভব তলের বৈশিষ্ট্য (Special features of equipotential surface)

সমবিভবতল সম্পর্কে উপরোক্ত আলোচনা হতে এই তলের নিম্নলিখিত বৈশিষ্টা লক্ষ করা যায়ঃ

- (i) ৩ড়ি গ্রহিত পরিবাহীর ৩ল সর্বদা সম্বিভব তল। ঐ ৩লের ওপর তড়ি ভাধানগুলি স্থির থাকে।
- (ii) ৩ড়িং বলরেখা সর্মাবভবতলকে সমকোণে ছেদ করে।
- (iii) সম্মবিভব তলের ওপর কোনো তড়িতাধানকে এক বিন্দু থেকে অপর বিন্দুতে স্থানাগুরিত করতে কোনো কার্য করতে হয় না।
- (iv) কোনো বস্তুর তল বা আয়তন সমবিভবসম্পন্ন হতে পারে; আবার শূন্য দেশস্থ (in space) কোনো তল বা আয়তনও সমবিভবসম্পন্ন হতে পারে।

. D. EXAMPLES D

 $oldsymbol{oldsymbol{h}}$ r_1 এবং r_2 ব্যাসার্ধের দুটি গোলক-কে তড়িতাহিত করে একটি সরু তার দিয়ে যুক্ত করা হল। এই অবস্ধায় গোলক দুটির আধানের তলমাত্রিক ঘনত্বের অনুপাত কত ?

উঃ। ছড়িছাইত গোলক দৃটিকে তার দিয়ে সংযুক্ত করলে হড়িতাধান এক গোলক হতে অন্য গোলকে স্থানভারিত হবে যতক্ষণ পর্যন্ত না তাদের বিভব সমান হয় যখন তাদের বিভব সমান হল, ধরো, তখন তাদের তড়ি চাধান যথাক্রমে q_1 এবং q_2 ; সমবিভব V হলে,

$$V=rac{q_1}{4\pi \in_0 r_1}=rac{q_2}{4\pi \in_0 r_2}$$
 অথবা $rac{q_1}{q_2}=rac{r_1}{r_2}$. গোলক দৃটির আধানের ওলমাত্রিক ঘনত্র

ৰখাক্ৰমে
$$\sigma_1$$
 এবং σ_2 ধরলে, $\sigma_1=\dfrac{q_1}{4w_1^{\;2}}$ এবং $\sigma_2=\dfrac{q_2}{4w_2^{\;2}}$ ।

ভাগ দিলে পাই,
$$\frac{\sigma_1}{\sigma_2} = \frac{q_1}{q_2} \cdot \frac{r_2^2}{r_1^2} = \frac{r_1}{r_2} \times \frac{r_2^2}{r_1^2} = \frac{r_2}{r_1}$$

্যাতএব, দেখা যাচে যে, তার দিয়ে সংযুক্ত করলে গোলক দুটির আধানের তলমাত্রিক ঘনত্র ওদের বাাসার্ধের বাস্তানপাতিক হবে।

2) r ব্যাসার্ধের একটি ছোটো গোলককে R ব্যাসার্ধের আর একটি বড়ো এবং ফাঁপা গোলকের ভিতর এককেন্দ্রিকভাবে বসানো আছে। গোলক দৃটিকে যথাক্রমে q এবং Q তড়িতাধান দেওয়া হলে, তাদের বিভবপার্থক্য নির্ণয় করো। সরু তার দারা গোলক দৃটিকে যক্ত করলে, ছোটো গোলকের বিভব কত হবে ?

উঃ। বড়ো গোলকের বিভব সৃষ্টি হবে (i) নিজস্ব তড়িতাধানের জন্য এবং (ii) আভাত্তরে গোলকের তড়িভাধানের জনা, কাবণ বড় গোলকটি অভান্তরস্থ q আধান দ্বারা সৃষ্ট র্ভাঙ্গক্তে আছে।

A(q)

চিত্ৰ 2.29

B(q)

নিজ্য এছি গ্রামনের জন্য প্রস্থা বিভব = $\frac{Q}{4\pi \cdot _0 R}$ এবং q জ্যাধানের জন্য, বিভব = $\frac{q}{4\pi \cdot _0 R}$ কালে q এছি গ্রামনের বাছে প্রামনের বাছে প্রামনের বাছে বিভাগ করা তাছে যানে করাত হবে

we say,
$$V_R = \frac{1}{4\pi\epsilon_0} \left(\frac{Q}{R} + \frac{q}{R} \right)$$

তাবার, ৯% গোলকের বিভব সৃষ্টি হরে দুই গোলকের ৩ড়ি৩াধানের জন ই কারণ ভোগে গোলক বিভেগ গোলকের অভ্যন্তরে আছে নিজস্ব অধ্যানের জন্য এর পুষ্টের বিভব $=rac{q}{4\pi\epsilon_0 r}$ এবং Q অধ্যানের জন্য এর পুষ্টের বিভব $=rac{Q}{4\pi\epsilon_0 R}$

জভতার,
$$V_r = rac{1}{4\pi^2 \left(rac{q}{r} + rac{Q}{R}
ight)}$$

$$\therefore V_r - V_R = \frac{1}{4\pi \in_0} \left[\left(\frac{q}{r} + \frac{Q}{R} \right) - \left(\frac{Q}{R} + \frac{q}{R} \right) \right] = \frac{1}{4\pi \in_0} \left(\frac{q}{r} - \frac{q}{R} \right) - \frac{q}{4\pi \in_0} \left(\frac{1}{r} - \frac{1}{R} \right)$$

িলোজক দটিকে যুক্ত করলে ছোটো গোলকের সব আধান বড়ো গোলকের পূর্তে চলে যাবে এবং সেক্ষেত্রে $V_F = V_R$ হবে।

একটি সমবাহ ত্রিভুজের তিন শীর্ষবিন্দুতে 0.1 coulomb পরিমাণ তিনটি তড়িতাধান
 রাখা আছে। ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য 1 metre; তড়িতাধানগুলির যে-কোনো একটিকে

1 kW হারে শক্তি সরবরাহ করলে, তাকে অপর দুই তড়িতাধান
শ্বুক্ত করে যে রেখা পাওয়া যায় তার মধ্যবিন্দৃতে আনতে কত
সময় লাগবে ?

উঃ। ধরো, ABC সমবাহু ত্রিভুক্ত। A, B, এবং C শীর্ষবিন্দৃতে q (= 0.1 coulomb) পরিমাণ তড়িতাধান রাখা আছে [চিত্র 2.29]. D হল BC বাহুর মধাবিন্দৃ। এখন, B এবং C বিন্দৃতে অবস্থিত তড়িতাধানের জন্য A বিন্দৃতে বিভব $V_{\alpha}=\frac{1}{4\pi\,\epsilon_0}\Big(\frac{q}{a}+\frac{q}{a}\Big)$

 $=rac{2q}{4\pi}$ আবার, B এবং C বিন্দুতে অবহিথত তড়িতাধানের জন্য

$$D$$
 বিশ্ব বিভব $V_d = \frac{1}{4\pi \in_0} \left(\frac{q}{a/2} + \frac{q}{a/2} \right) = \frac{4.q}{4\pi \in_0.a}$
 $\therefore A$ এবং D বিশ্বর ভিতর বিভব পার্থক্য $= V_d - V_a$

$$= \frac{4q}{4\pi. \, \epsilon_0. \, a} - \frac{2q}{4\pi. \, \epsilon_0. \, a} = \frac{2q}{4\pi. \, \epsilon_0. \, a}$$

ধরো, Λ বিন্দৃতে অবস্থিত q আধানকে শস্তি সরবরাহ করা হল এবং ঐ আধান Λ বিন্দৃ হতে D বিন্দৃতে q তড়িতাধান নিতে কৃতকার্য

W = A এবং D বিশ্বর বিভব-প্রভেদ $\times q$

$$= \frac{2q \times q}{4\pi \in_{0}. \ a} = \frac{2 \times 0.1 \times 0.1 \times 9 \times 10^{9}}{1} \qquad \left(\frac{1}{4\pi \in_{0}} = 9 \times 10^{9}\right)$$
$$= 1.8 \times 10^{8} \text{ joule}$$

শ*় সরবরতের হার = 1 kW = 1000 watt = 1000 joulers.

$$800 \times 10^{10} = \frac{1.8 \times 10^8}{1000} = 1.8 \times 10^5 \text{s} = 50 \text{ h}.$$

© গসের উপপাদ্য ও তার প্রয়োগ © (Gauss's theorem and its applications)

2.24. তড়িৎক্ষেত্রের ফ্লাক্স (Flux of electric field) ঃ

E তড়িৎক্ষেত্রের ভিতর একটি তল (surface) কল্পনা করো। ওই তলের ওপর একটি অতি ক্ষৃত্র ক্ষেত্র ds নেওয়া হল। বলা বাহুলা, সমগ্রতলকে ওইরকম অসংখা ক্ষৃত্র ক্ষেত্রে বিভঞ্জ করা যেতে পারে। ক্ষ্

ক্ষেত্রের পরিচয় সম্পূর্ণ করতে (অর্থাৎ মান ও অভিমূখ) ds-কে একটি ভেক্টর হিসাবে গণা করা হয়। ds-এর উপর লম্ব টানলে, সেটাই হবে ক্ষেত্র-ভেক্টর ds-এর অভিমূখ।

এখন তড়িৎক্ষেত্রের সংজ্ঞা থেকে বলা যায় যে ds ক্ষেত্র-ভেন্তর তড়িৎ ফ্রাক্স্ বলা হয়। ফ্রাক্সের মান $E\cos\theta$. ds [চিত্র 2.30]।

সমগ্র S ক্ষেত্রের ভিতর দিয়ে তড়িৎ ফ্লাক্স্ $\phi = \int \stackrel{
ightarrow}{E.ds}$ ।

বন্ধ ক্ষেত্রের বেলায় ফ্লাক্স $\phi = \oint_{\mathcal{S}} \overrightarrow{E}.\overrightarrow{ds}.$

পুত্তীক-কে বলা হয় ক্ষেত্র সমাকল (surface integral)। এর অর্থ, সমগ্র ক্ষেত্রকে অসংখ্য ক্ষুদ্র

 কৃদ্র ক্ষেত্র বিজ-এ ভাগ করতে হবে এবং প্রত্যেক ক্ষুদ্র ক্ষেত্রের জন্য E.ds স্কেলার গুণফল নির্ণয় করে

 তাদের সমষ্টি হিসাব করলে, সমগ্র ক্ষেত্রফল দিয়ে অতিক্রান্ত মোট ফ্লাকস পাওয়া যাবে।

্ তড়িৎ ফ্লাক্স্ ঘনত (Electric flux density) : একটি বিন্দু আধানের চহুর্দিকে তড়িৎক্ষেত্র বিরাজ করে। q তড়িতাধান থেকে r দূরে তড়িৎক্ষেত্রের প্রাবল্য $\overrightarrow{E}=\frac{1}{4\pi\,\mathbb{E}_0}\,.\,\frac{q}{r^2}\,.\,\hat{r}$ । \hat{r} হল \overrightarrow{r} -এর অভিমুখে একক ভেষ্টর]

উপরোক্ত সম্পকর্কে নিমরুপে প্রকাশ করা যায় $-rac{q}{4\pi r^2}.\hat{r}=\epsilon_0\stackrel{
ightarrow}{E}$

স্পান্টত উপরোম্ভ সমীকরণের বামদিক আধানের তলমাত্রিক ঘনত্ব (কুলম্ব। মি 2)বুঝায়। অভএব $\in_0 E$ -এই গুণফলের মাত্রা (dimension) তলমাত্রিক ঘনত্বের মাত্রার সমান হবে। একে বলা হয় তড়িৎ ফ্রাক্স্ ঘনত্ব অথবা তড়িৎ আবেশ। D অক্ষর ধারা একে প্রকাশ করা হয়। অভএব

তড়িং আবেশ
$$\overset{
ightarrow}{D}=\in_0\overset{
ightarrow}{E}$$

উপরোক্ত সমীকরণ অন্যায়ী ফ্রাক্স ঘনত্ব বা আবেশ এবং ক্ষেত্র-প্রাবল উভয়ই সমাম্বী ভেস্টর।

2.25) গসের উপপাদা (Gauss's Theorem) ঃ

স্থির ভড়িংবিজ্ঞানে গসের উপপাদ। মূবই পুরুত্বপূর্ণ কোনো বন্ধ হলের বিভিন্ন বিন্দৃতে যদি ওড়িংপ্রাবলা জানা থাকে ওবে এই উপপাদের সাহাযো যে- ৩৬ হাধান ঐ প্রাবলা সৃষ্টি করে ও নিবয় করা যায়। বিকল্পে, তড়িতাধানের পরিমাণ জানা থাকলে এই উপপাদ্যের সাহায্যে ক্ষতলের বিভিন্ন বিন্দৃতে প্রাবল্য নির্ধারণ করা যায়। উপপাদ্যটি নিম্নরূপঃ

কোনো বন্ধতলের ভিতর দিয়ে অতিকান্ত মোট অভিলয় তড়িংফ্লাক্স্ ঐ তলের অভ্যন্তরে অবন্থিত মোট তড়িতাধানের $\frac{1}{\epsilon_0}$ গুণের সমান। * (Total normal electric flux over a closed surface is equal to $\frac{1}{\epsilon_0}$ times the total charge inside the surface).

🔸 গস উপপাদ্যের বিকন্ধ রূপ (Alternative form of Gauss's theorem) : গস উপপাদ্যের

গাণিতিকরূপ :
$$\oint \stackrel{
ightarrow}{E} \cdot \stackrel{
ightarrow}{ds} = rac{q}{\epsilon_0}$$
 অথবা $\epsilon_0 \oint \stackrel{
ightarrow}{E} \cdot \stackrel{
ightarrow}{ds} = q$

যেহেতু
$$\in_0$$
 $\overset{
ightarrow}{E}$ $\overset{
ightarrow}{D}$ তাই লেখা যায় $\oint \overset{
ightarrow}{D} \overset{
ightarrow}{ds} = q$

পূর্বে উল্লেখ করা হয়েছে $\stackrel{
ightarrow}{D}$ ভেক্টর কে বলা হয় ফ্লাক্স্ ঘনত্ব বা ভড়িতাবেশ। সূতরাং উপরোক্ত সমীকরণ অন্যায়ী গস উপপাদোর বিকল্পরূপ হবে ঃ

তড়িৎ ক্ষেত্রে রাখা কোনো বন্ধতলের উপর মোট অভিলম্ব আবেশ ঐ বন্ধতলের অভ্যন্তরে অবস্থিত মোট তড়িতাধানের সমান।

র্তাড়ং ক্ষেত্রে অবস্থিত কোনো কম্বতলকে সাধারণভাবে গসের তল (Gauss's surface) বলা হয়। অনুসিশান্ত (Corollaries):

- (i) বন্ধ থলের অভান্তরক্ষা তড়ি তাধান পজিটিভ হলে (+q) বলরেখা বহির্ম্থী এবং নেগেটিভ (-q) হলে বলরেখা অন্তর্ম্থী ধরা হয়। বহির্মুখী বলরেখাকে সাধারণত পজিটিভ এবং অন্তর্মুখী বলরেখাকে নেগেটিভ গণ্য করা হয়।
- (ii) যদি বন্ধাংগের অভান্তরে q_1,q_2-q_n প্রভৃতি একাধিক তড়িতাধান থাকে এবং তৎসংলগ্ন তড়িৎ ক্ষেত্র যদি E_1,E_2,\ldots,E_n হয়, তবে উপরিপাতনের নীতি থেকে লেখা যায়।

$$\epsilon_0 \oint \vec{E} \cdot d\vec{s} = \epsilon_0 \oint (\vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_n) \cdot d\vec{s} = (q_1 + q_2 + \dots + q_n) = Q$$

য়েখানে Q= বন্ধতালের অভ্যন্তরে মোট বা নিট আধান।

আধানগুলি নেগেটিভ হলে মোট ওড়িং ফ্লাক্স্
$$=-rac{1}{\epsilon_0}\left(q_1'+q_2'+\dots\right)$$

অতএব, পজিটিভ ও নেগেটিভ সকল গ্র্ডিং গ্র্যানের দর্ন মোট ফ্লাক্স

$$= \frac{1}{\epsilon_0} (q_1 + q_2 + \dots - q_1' - q_2' \dots \dots) = \frac{1}{\epsilon_0} \sum q_n$$

(iii) যদি কশশুলের বাইরে এক বা একাধিক ভড়িতাধান থাকে হবে তারা কশুওলের ভিতর দিয়ে কোনো বলরেখা পাঠায় না।

(iv) বৃষ্ণতলের অভান্তরে যদি কোনো তড়িভাধান না থাকে, তবে ঐ তলের অভিলম্ব ফ্লাক্স হবে শুনা।

^{*} ध्रमान +2 नाठाख्रम विवर्ष्ट।

গস উপপাদোর প্রয়োগ

(Applications of Gauss's Theorem) 8

(i) সৃষমভাবে আহিত সৃদীর্ঘ ঋজু তারের সন্নিকট্পথ কোনো বিন্দুতে তড়িং প্রাবল্য (Field intensity at a point near a uniformly charged infinitely long straight wire):

AB একটি সৃষমভাব আহিত সুদীর্ঘ ঋজু তার। তার-কে Q তড়িতে আহিত করা হল যাতে তারের প্রতি

একক দৈর্ঘো ভড়িভাধানের পরিমাণ = λ . ভারের অক্ষ (কাটা কাটা রেখা) থেকে r দূরে বাইরে একটি বিন্দু P নেওয়া হল। P বিন্দুর ক্ষেত্র প্রাবল্য নির্দয় করতে হবে। তারের প্রস্থেচছদের ব্যাসার্থ = R; P বিন্দুর ভিতর দিয়ে r ব্যাসার্থের এবং l উচ্চতার একটি সমাক্ষীয় বন্ধ চোঙ কল্পনা করো [চিত্র 2.31]। এই চোঙ হবে বর্তমান ক্ষেত্রে গসীয় তল। ধর, P বিন্দৃতে ক্ষেত্রপ্রাবল্য E_r : প্রতিসাম্য হেতু রোঝা যায় যে কাল্পনিক চোঙের বক্রতলের সকল বিন্দৃতে প্রাবল্য E_r এবং এর অভিমুখ বক্রতলের অভিলম্ব বরাবর। সূতরাং বক্রতলের ভিতর দিয়ে অভিক্রান্ত মোট ফ্রাক্স = $\oint E_r . ds$ = $E_r \times 2\pi r l$

কাল্পনিক চোণ্ডের দুই সমতল মুখ দিয়ে কোনো

বলরেখা যাবে না কারণ প্রাবলা ঐ সমতলের স্পর্শক। অতএব, ঐ সমতলে ফ্লাক্স্ শূন্য। আবার আহিত তারের একক দৈর্ঘ্যে ১ তড়িতাধান থাকায় কাল্পনিক চোঙ মা তড়িতাধানকে নিজের মধ্যে আবন্ধ রেখেছে।

অতএব, গসের উপপাদা অন্যায়ী $\oint \overrightarrow{E}_r . \overrightarrow{ds} . = rac{\lambda l}{\epsilon_0}$ অথবা $E_r imes 2\pi r l = rac{\lambda l}{\epsilon_0}$ অথবা

$$E_r = \frac{\lambda}{2\pi \in_0 r}$$

যদি P বিন্দু তারের খুব নিকটে অবস্থিত হয়। তবে r=R ; সেক্ষেত্রে

$$E_R = \frac{\lambda}{2\pi \in_0 R}$$

(ii) বহু বিভূত সমতল পাতসদৃশ আধানের নিকটবর্তী বিন্দুতে প্রাবল্য (Field intensity near an infinitely plane sheet charge)

ধরো, XY একটি বহুবিস্তৃত সমতল পাতসদৃশ আধান (উভয় পৃষ্ঠে)। ঐ সমতল আধানের তলমাত্রিক ঘনত্ব ত (উভয় পৃষ্ঠের আধান বিরেচনা করে)। ঐ সমতলের উভয় দিকে সমদ্রবর্তী দৃটি বিন্দু C এবং D নেওয়া হল [চিত্র 2.32]। ঐ বিন্দৃদয়ের ভিতর দিয়ে ds ছেদের একটি ক্ষুদ্র চৌঙ কল্পনা করো। এই চোঙের তল গসীয় ভলরূপে কার্য করেব। যদি সমতল বহু-

বিষ্ণুত (infinitely extended) হয়, তবে প্রতিসমো থেকে বলা যায় যে, তড়িৎপ্রাবলা \vec{E} ও ছেদের অভিলম্ব এবং গসীয় চোঙের বক্ততলের সমান্তরাল হবে। সমাত্রালর উভয় পার্মে \vec{E} সমান। অতএব, বক্ততলের ভিতর দিয়ে কোনো বলরেখা যাবে না: বলরেখা কেবলমাত্র চোঙের প্রান্তথে দৃই সমতল পৃষ্ঠের ভিতর দিয়ে যাবে। এখন, C বিন্দুতে ds ক্ষেত্রের ভিতর দিয়ে ফ্রাক্স্ $\oint \vec{E}.\vec{ds}$ এবং এটা বহির্মুখী। আবার D বিন্দুতে ds ক্ষেত্রের ভিতর দিয়ে ফ্রাক্স্ $= \oint \vec{E}.\vec{ds}$ এবং এটাও বহির্মুখী। অতএব, গসীয় চোঙের ভিতর দিয়ে মোট অতিক্রান্ত ফ্রাক্স্ $= \oint \vec{E}.\vec{ds} + \oint \vec{E}.\vec{ds} = 2 \oint \vec{E}.\vec{ds}$ । কাম্বনিক চোঙ অর্থাৎ গসীয় তল যে আধান বেন্টন করে তা $= \sigma.ds$.

গসের উপপাদ্য অনুযায়ী $2\oint \vec{E}.d\vec{s}=rac{\sigma.ds}{\epsilon_0}$ অথবা $\stackrel{
ightarrow}{E}=rac{\sigma}{2\,\epsilon_0}$ [ত কুলম্ব/মিটার 2 এককেপ্রকাশ করতে হবে]

দেখা যাচ্ছে যে ক্ষেত্রপ্রবাল্য সৃষম; পাত থেকে দূরত্বের উপর নির্ভর করে না। এটা একমাত্র সত্য যখন সমতল পাত বহুবিত্তত থাকে।

(iii) সুৰমভাবে অহিত পাতলা গোলীয় খোলকের দরুন ক্ষেত্র-প্রাবল্য (Field intensity due to a uniformly charged thin spherical shell) ঃ

মনে করো, R ব্যাসার্ধের একটি পাতলা গোলীয় খোলকের পৃষ্ঠে Q তড়িতাধান সুষমভাবে বন্টিত আছে। প্রতিসাম্যের দরুন বলা যায় তড়িৎবলরেখা ব্যাসার্ধ বরাবর বহির্মুখী হবে। [[bar b

(ক) বিন্দু খোলকের বাইরে (the point is outside the shell):

P বিন্দু খোলকের বাইরে খোলকের কেন্দ্র থেকে r দূরে অবস্থিত (r>R)। P বিন্দুর ভিতর দিয়ে r ব্যাসার্ধের গোলক (কাটা রেখা) কল্পনা করলে সেটাই গসীয় তলের কাজ করবে [চিত্র 2.331।

এখন, খোলকের তল অতিক্রম করে মোট ফ্লাক্স্ = $\oint \overrightarrow{E}.\overrightarrow{ds} = E imes 4\pi r^2.$

গসীয় তল কর্তৃক বেন্টিত তড়িতাধান =
$$Q$$
 ; গসীয় উপপাদ্য অনুযায়ী $\oint \vec{E}.\vec{ds} = rac{Q}{\epsilon_0}$

অথবা
$$E imes 4\pi r^2 = rac{Q}{\epsilon_0}$$
 অথবা $E = rac{1}{4\pi\,\epsilon_0} \cdot rac{Q}{r^2}$

উপরোক্ত সমীকরণ থেকে সিন্ধান্ত করা যায় যে খোলকের বাইরের কোনো বিন্দুতে ক্ষেত্র প্রাবল্যের বেলায় তড়িতাহিত খোলক এমনভাবে ব্যবহার করে যেন তার সমস্ত আধান খোলকের কেন্দ্র সংহত করা আছে।

(খ) বিন্দু খোলকের পৃষ্ঠে অবস্থিত (The point is on the surface of the shell) : যদি P বিন্দৃটি খোলকের পৃষ্ঠে অবস্থিত হয়, তবে r=R : সেক্ষেত্র

$$E=rac{1}{4\pi \in _{0}}\cdot rac{Q}{R^{2}}$$
 ; কিছু $rac{Q}{4\pi R^{2}}$ = আধানের তলমাত্রিক

যনত
$$(\sigma)$$
া অতএব, $E=rac{\sigma}{\epsilon_0}$

(গ) বিন্দু খোলকের অভ্যন্তরে (The point is inside the shell):

ধরো, P বিন্দৃটি খোলকের অভ্যন্তরে কেন্দ্র থেকে r দূরে অবস্থিত। এক্ষেত্রে R>r. P বিন্দুর ভিতর দিয়ে কাটা কাটা রেখা দ্বারা চিহ্নিত তল এক্ষেত্রে গসীয় তল (চিত্র 2.34)।

এখানে গসীয় তলের অভান্তরে কোন তড়িতাধান না থাকায়

(সমস্ত আধান খোলকের বাইরের পৃষ্ঠে ছড়ানো) $\oint \vec{E} \cdot \vec{ds} = 0$ অথবা $\vec{E} = 0$ অর্থাৎ ওড়িৎগ্রস্ত গোল খোলকের অভ্যস্তরে কোনো তড়িৎক্ষেত্র নেই।

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

1. তড়িং ক্ষেত্রের কোনো বিন্দুতে ক্ষেত্রপ্রাবল্য শূন্য হলে, ঐ বিন্দুতে তড়িংবিভব কি শূন্য হবে ? ঐ বিন্দুতে তড়িংবিভব শূন্য হলে, ক্ষেত্রপ্রাবল্যও কি শূন্য হবে ?

আমরা জানি ৩ড়িৎক্ষেত্রের কোনো বিন্দুতে ক্ষেত্রপ্রাবল্য ঐ বিন্দুতে তড়িৎবিভবের নতিমাত্রার সমান।
 ক্ষেত্রপ্রাবল্য শৃন্য হলে বিভবের নতিমাত্রাও শৃন্য। এতে ঐ বিন্দুতে বিভব শৃন্য হবে এরপ কোনো

বাধ্যবাধকতা নেই। অর্থাৎ, কোনো বিন্দুতে ক্ষেত্রপ্রাবল্য শূন্য হলে বিভব শূন্য নাও হতে পারে। যেমন কোনো পরিবাহীকে তড়িতাহিত করলে, পরিবাহীর পৃষ্ঠে সর্বন্ত বিভব সমান হয়। সুতরাং বাইরের পৃষ্ঠে যে–কোনো দুই বিন্দুর ভিতর বিভবের নতিমাত্রা শূন্য। কিন্তু সেখানে তড়িংবিভব শন্য নয়।

মনে করো, A এবং B বিন্দুতে সমান পরিমাণ ধনাত্মক তড়িং + Q রাখা আছে [চিএ 2.35]। AB রেখার মধ্যবিন্দু O-এর দূরত্ব A এবং B হতে x; A বিন্দুতে অবস্থিত + Q গ্রছিতাধানের জনা O

বিন্দুতে প্রাবল্য
$$F_1=rac{Q}{4\pi \in_0 x^2}$$
 এবং এর অভিমুখ \overrightarrow{OB} বরাবর। একইভাবে B বিন্দুতে অবস্থিত $f Q$

ভিড়ি তাধানের জন্য () বিন্দৃতে প্রাবল্য $F_2=rac{Q}{4\pi\,\epsilon_0\,x^2}$ এর অভিমুখ () Λ বরাবর। কাজেই ()

বিন্দৃত্তে লক্ষ্ম প্রাবলা $= F_1 - F_2 = \frac{1}{4\pi r_0} \cdot \left(\frac{Q}{x^2} - \frac{Q}{x^2} \right) = 0$. কিন্দু 0 বিন্দৃত্ত হোট বিভব

$$=\frac{Q}{4\pi\epsilon_0\,x} + \frac{Q}{4\pi\epsilon_0\,x} - \frac{2Q}{4\pi\epsilon_0\,x}$$
 Heat () while were grade for some fixed for

হয় না। আবার ধরো, A বিন্দুতে Q পরিমাণ ধনাত্মক আধান এবং B বিন্দুতে সমপরিমাণ ঋণাত্মক আধান — Q রাখা আছে [চিত্র 2.35 (ii)]

মধ্যবিন্দু O-তে + Q আধানের জন্য প্রাবল্য $F_1=rac{Q}{4\pi \in_0 x^2}$ এবং এর অভিমুখ $\stackrel{
ightarrow}{ ext{OB}}$ বরাবর।

তেমনি, \mathbf{B} বিন্দুর $-\mathbf{Q}$ আধানের জন্য \mathbf{O} বিন্দুর প্রাবল্য $F_2=rac{Q}{4\pi \in_0 x^2}$ এবং এর অভিমুখও

$$\stackrel{
ightarrow}{ ext{OB}}$$
 বরাবর। অতএব, $\stackrel{
ightarrow}{ ext{O}}$ বিন্দুর লব্ধ প্রাবল্য $= \frac{1}{4\pi \in _0} \left(\frac{Q}{x^2} + \frac{Q}{x^2} \right) = \frac{2Q}{4\pi \in _0} x^2$; কিছু $\stackrel{
ightarrow}{ ext{O}}$

বিন্দুর মোট বিভব $=rac{1}{4\pi \in Q} \left(rac{Q}{x} - rac{Q}{x}
ight) = 0$. একইভাবে AB রেখার লম্বদ্বিখন্ডকের উপর যে-

কোনো বিন্দুতে কিছু লব্ধ প্রাবল্য পাওয়া যাবে কিন্তু বিভব হবে শূন্য। কাজেই দেখা যাচেছে যে, কোনো বিন্দুতে বিভব শূন্য হলে সেখানে ক্ষেত্রপ্রাবল্য শূন্য নাও হতে পারে।

- 2. একটি গোলাকার ফাঁপা পরিবাহীকে তড়িতাহিত করা হল। পরিবাহীর ভিতরে এবং বাইরে তড়িৎবিভব ও ক্ষেপ্রধাবল্য গোলকের কেন্দ্র হতে দূরত্বের সাথে কীভাবে পরিবর্তিত হবে লেখচিত্রের সাহায্যে ব্যাখ্যা করো।
- আমরা জানি, ফাঁপা পরিবাহীর অভ্যন্তরম্থ সকল বিন্দৃতে তড়িৎবিভব সমান এবং তা পরিবাহীর পৃষ্ঠম্থ
 বিভবের সমান। যদি পরিবাহীর তড়িতাধান হয় Q এবং ব্যাসার্ধ হয় r তবে পরিবাহীর অভ্যন্তরে সর্বত্র

এবং পৃষ্ঠে গ্রন্থিবিভব $V=rac{Q}{4\pi\,\epsilon_0\,r}$ । সুগুরাং কেন্দ্র হতে পৃষ্ঠ পর্যন্ত বিভব শ্রুবক , এটা OX অক্ষের সমাস্তরাল AB রেখা দ্বারা দেখালো গুড়েছে। [চিত্র 2 36 (i)]। পরিবাহীর বাইরের কোলো বিন্দ্র দূরত্ব $(কেন্দ্র হতে)_{X} হলে, সেখালে বিভব <math>V=rac{Q}{4\pi\,\epsilon_0\,x};$ অভএব, দূরত্ব x র্গাব্দ পোলে বিভব হ্রাস পারে। এই হ্রাস আয়তকার প্রাবৃত্তের অংশ BC দ্বারা দেখালো গুড়েছে।

ফাঁপা পরিবাহীর অভান্তরে পরিবাহীর গ্রন্থিতের দর্ল ক্ষেত্রপ্রাবলা শূনা। পরিবাহীর বাসার্থ r হলে, পৃষ্ঠদেশে বা পৃষ্ঠের খ্ব নিকটবর্তী বিন্দৃতে ক্ষেত্র প্রাবলা $E=rac{Q}{4\pi\,\epsilon_0\,\,r^2}$, পরিবাহীর বাইরের কোনো বিন্দুর দূরত্ব

x হলে, সেখানে প্রাবল্য $E=rac{Q}{4\pi \in_0 x^2}$. এই সমীকরণ হতে রোঝা যায় যে পরিবাহীর পৃষ্ঠে

ক্ষেত্রপ্রাবলা সর্বোচ্চ এবং পরিবাহী হতে যতদূরে যাওয়া যাবে প্রাবলা দুত হ্রাস পাবে। এই পরিবর্তন লেখচিত্রের সাহায়ে। 2.36 (ii) নং চিত্রে দেখানো হয়েছে। x=r পর্যন্ত প্রাবলা *ূন। তারপর প্রাবলা সর্বোচ্চ হয় এবং পরে x গুন্ধির সঙ্গো প্রাবলা দুত হ্রাস পায় (লেখ চিত্রের AB অংশ)।

- কোনো বিন্দৃতে Q পরিমাণ আধান বসানো আছে। Q-আধানের চারিদিকে r ব্যাসার্ধের একটি বৃত্ত বরাবর একক মাত্রার একটি ধনাত্মক আধান এক পাক ঘুরিয়ে আনলে কত কার্য করা হবে ?
- r ব্যাসার্ধের বৃত্তের কেন্দ্রে অবস্থিত Q আধানের জন্য, বৃত্তের পরিধির যে-কোনো বিন্দৃতে তড়িংবিভব $V=rac{Q}{4\pi \in_0 r}$ অর্থাং বৃত্তের পরিধি একটি সমবিভব পথ; এই পথের যে-কোনো দুই বিন্দুর ভিতর বিভব-পার্থক্য হবে শূন্য। অতএব, একক মাত্রার একটি ধনাত্মক আধানকে পরিধি বরাবর এক পাক ঘুরিয়ে আনলে কৃতকার্য = প্রথম ও শেষ বিন্দুর ভিত্তর বিভব পার্থক্য = 0।
- কুলয় সূত্রে আনুপাতিক ধ্বসংখ্যা k-এর পরিবর্তে 4π∈ο ধরা হয় । 4π রাশিটির অন্তভৃত্তির
 কারণ কি ?
- এস্. আই পন্ধতিতে কুলম্ব সূত্র ঃ $F=\frac{1}{4\pi \in_0}\cdot \frac{q_1q_2}{r^2}$ । এক্ষেত্রে আনুপাতিক ধ্রুবসংখ্যাকে $\frac{1}{4\pi \in_0}$ ধরা হয়েছে। 4π রাশির অন্তর্ভৃত্তির দ্বারা M.K.S. একক সংস্কারিত (rationalised) করে S.I এককের প্রচলন করা হয়েছে। আমরা জানি c.g.s পন্ধতিতে কতকগুলি বহুল ব্যবহৃত সমীকরণে 4π অথবা 2π রাশিটি আসে; যেমন সমান্তরাল পাত ধারকের ধারকত্ব $C=\frac{A}{4\pi d}$; তড়িৎবাহী সলিনয়েডের অভান্তরে চৌম্বক ক্ষেত্র $H=4\pi ni$ ইত্যাদি। প্রকৃতপক্ষে যে সকল রাশিতে গোলীয়, বৃত্তাকার বা বেলনাকার প্রতিসাম্য (symmetry) আছে তাদের ক্ষেত্রে সমীকরণে সাধারণভাবে 4π অথবা 2π রাশিটি উপস্থিত থাকে। কিন্তু দেখা যায় যে c.g.s পন্ধতিতে কয়েকটি রাশির গোলীয় অথবা বৃত্তাকার প্রতিসাম্য থাকা সত্ত্বেও তাদের সমীকরণে π রাশিটি অনুপ্র্যিত। যেমন, i তড়িৎ বাহী ঋজু পরিবাহীর চতুর্দিকে বৃত্তাকার চৌম্বক ক্ষেত্রের প্রাবল্য $H=\frac{2i}{r}$ এবং গোলীয় ধারকের

ধারকত্ব $C = \frac{a.b}{a-b}$ ইত্যাদি।

উপরোক্ত সমীকরণগুলির অসংগতি দূর করে এবং সর্বপ্রকার প্রতিসামার্বিশক্ট রাশিগুলির সমীকরণে π রাশির উপস্থিতি আবশ্যিক করে তড়িৎ ও চৌশ্বক রাশির এককগুলি নৃতনভাবে সংগ্রায়িত বা সংস্কারিত করার প্রয়োজনে এস্. আই পদ্ধতিতে আন্পাতিক প্রুবসংখ্যাকে k-এর পরিবর্তে ধনা হয়েছে। এজন্য সংস্কারিত M.K.S. পদ্ধতি S.I. পদ্ধতি নামে প্রচলিত।

5. দুটি ফাঁপা পরিবাহীকে ধনাত্মক তড়িতে আহিত করা হল। ছোটোটির বিভব 50V এবং বড়োটির বিভব 100V। এদের কীভাবে রেখে পরস্পরকে তার দিয়ে যুক্ত করলে ছোটো পরিবাহী হতে বড়ো পরিবাহীতে ধনাত্মক তড়িৎ প্রবাহিত হবে ?

- সাধারণত উচ্চবিভবযুত্ত পরিবাহী হতে ধনাত্মক তড়িং নিম্নবিভবযুত্ত পরিবাহীতে প্রবাহিত হয়। কিন্তু আমরা একথাও জানি যে, একক পরিবাহীর তড়িং গান সর্বদা পরিবাহীর ওপর পৃষ্ঠে অবস্থান করে: ভিতরের পৃষ্ঠে থাকে না। সৃতরাং ছোটো পরিবাহীকে যদি বড়ো পরিবাহীর অভান্তরে রেখে তাদের তার দিয়ে যুত্ত করা যায় তবে তারা একক পরিবাহীতে পরিণত হবে। এ অবস্থায় ছোটো পরিবাহীর ধনাত্মক তড়িং বড়ো পরিবাহীতে চলে আসবে।
- 6. গসের উপপাদ্যের সাহায্যে প্রমাণ করো যে কোনো ফাঁপা পরিবাহীকে তড়িতাধান সরবরাহ করলে সেই আধান সম্পূর্ণরূপে পরিবাহীর উপরের পৃষ্ঠে অবস্থান করে।
- ধরো, A একটি ফাঁপা পরিবাহী। পরিবাহীকে কিছ্ আধান
 সরবরাহ করা হল। মনে করো, S একটি গসীয় তল
 যেটি পরিবাহীর সম্পূর্ণ অভান্তরে আছে [চিত্র 2.37]।
 আমরা জানি যে-কোনো পরিবাহীর অভ্যন্তরে তড়িৎ
 ক্ষেত্রপ্রাবল্য শূন্য। অতএব S তলের প্রতিটি বিন্দৃতে
 প্রাবল্য E 0; ফলে, E ক্ষেত্রের দর্বন S তল অতিক্রম
 করে বহির্মুখী অভিলদ্ধ ফ্লাক্স্ = 0; তাহলে গস
 উপপাদ্য অনুযায়ী S-তলের অভান্তরে মোট তড়িতাধান
 শূন্য। সুতরাং পরিবাহীকে সরবরাহ করা সম্পূর্ণ তড়িতাধান
 পরিবাহীর বহিঃপৃঠে অবস্থান করে।

- 7. পৃথিবীর বিভব শূন্য—এই উদ্ভির ব্যাখ্যা করো। ধনাস্থক ও ঋণাস্থক তড়িতাহিত দুটি বস্তুকে পৃথকভাবে পৃথিবীর সাথে যুক্ত করা হল। যুক্ত করার আগে ও পরে তাদের বিভব কত হবে ?
- পৃথিবী নিজে একটি তড়িৎ পরিবাহী। প্রতিনিয়ত বিভিন্ন সূত্র থেকে পৃথিবী নিজে তড়িতাধান লাভ করে:
 আবার বিভিন্ন সূত্রে তড়িতাধান সরবরাহ করে। কিন্তু এই লাভ বা লোকসান প্রায়্ত সমান। তাছাড়া পৃথি
 বীর আকার এত বিরাট যে সামানা তড়িতাধান লাভ করলে বা লোকসান ঘটলে পৃথিবীর তড়িৎ
 বিভবের কিছুমাত্র পরিবর্তন হয় না। এই কারণে পৃথিবীর বিভব শূন্য ধরে নিয়ে অন্যান্য বয়ুর বিভব
 পরিমাপ করা হয়।

পৃথিবীর সঞ্চো যুক্ত করার আগে ধনাত্মক তড়িতাহিত বস্তুর বিভব ধনাত্মক এবং ঋণাত্মক তড়িতাহিত বস্তুর ঋণাত্মক। পৃথিবীর সজো যুক্ত করার পর উভয়ের বিভবই হয় শূন্য। ধনাত্মক তড়িতাহিত বস্তুর বেলায় ভূমি থেকে প্রয়োজনীয় ইলেকট্রন বস্তুতে প্রবাহিত হয়ে বিভব শূন্য করবে: আবার ঋণাত্মক তড়িতাহিত বস্তুর বেলায় অতিরিক্ত ইলেকট্রন ভূমিতে চলে গিয়ে বস্তুর বিভব শূন্য করবে।

- 8. কোনো অন্তলে সর্বত্র বিভব স্থির (constant) আছে। ঐ অন্তলের ক্ষেত্রপ্রাবল্য কী হবে ?
- ullet আমরা জানি, ক্ষেত্রপ্রাবল্য $E=-rac{d\,V}{dx}=$ বিভবের নতিমাত্রা। এখন বিভব স্থির থাকলে,

 $\frac{dV}{dx}=0$ অতএব ঐ অপ্রলের ক্ষেত্রপ্রাবলা শূন্য অথবা ঐ অপ্রলে কোনো তড়িংক্ষেত্র নেই।

- 9. দুটি বিন্দু তড়িতাধান q_1 এবং q_2 -কে পারস্পরিক r দূরত্বে (i) প্রথমে বায়ুতে (ii) পরে জলের ভিতর রাখা হল। কোন্ ক্ষেত্রে তাদের পারস্পরিক বল বেশি হবে এবং কেন?
- ullet বায়ুকে পারম্পরিক বল $F_1=rac{1}{4\pi\,\epsilon_0}\cdotrac{q_1q_2}{r^2}\,;$ আবার জলে পারম্পরিক বল

$$F_2 = rac{1}{4\pi \in_0 \in_r} \cdot rac{q_1 q}{r^2}$$
 ; \in_r জলের আপেন্সিক ভেদনযোগ্যতা।

এখন
$$\dfrac{F_1}{F_2}=\dfrac{1}{4\pi\in_0}.\dfrac{q_1q_2}{r^2}/\dfrac{1}{4\pi\in_0^-\epsilon_r}.\dfrac{q_1q_2}{r^2}=\epsilon_r$$
 যেহেতু $\epsilon_r>1$ তাই $F_1>F_2$ অর্থাৎ বায়ুমধ্যে পারস্পরিক বল বেশি হবে।

- 10. আধানযুক্ত দৃটি ধাতব গোলক-কে কাছাকাছি রাখা হল। একবার দুই আধানের পরিমাণ সমান এবং উভয়ই ধনাত্মক। আর একবার দুই আধানের পরিমাণ সমান হলেও, একটির আধান ধনাত্মক কিছু অপরটির ঋণাত্মক। কোন্ ক্ষেত্রে দুই আধানের মধ্যে কার্যকর বল বেশি হবে ?
- ullet দুই ক্ষেত্রেই কার্যকর বল সমান হবে। কার্যকর বল $F=rac{q.q.}{4\pi}$ তবে প্রথম ক্ষেত্রে কার্যকর বল হবে বিকর্ষণ বল এবং দ্বিতীয় ক্ষেত্রে হবে আকর্ষণ বল।
- 11.x,y,z, (সব মিটারে) বিন্দুতে তড়িংবিভব V নিম্নলিখিত সমীকরণ থেকে পাওয়া যায়: $V=4x^2 \ {
 m volt}$ । এ অবস্থায় $(1{
 m m},0,2{
 m m})$ বিন্দুতে তড়িংন্দের প্রাবল্য কত হবে ?
- $\vec{E}=-\left(\hat{i}\,\frac{dV}{dx}+\hat{j}\,\frac{dV}{dy}+\hat{k}\,\frac{dV}{dz}\right);$ এখন $V=4x^2$ হওয়ায় $\frac{dV}{dx}=8x$; $\frac{dV}{dy}=0$ এবং $\frac{dV}{dz}=0$; কাজেই $\vec{E}=-8x\,\hat{i}$

এখন, (1m, 0, 2m) বিন্দুতে $\overrightarrow{E} = -8$ volt/m.

- 12. + Q এবং -Q দৃটি বিন্দু তড়িতাধানকে a দূরত্বে রাখা হল। কোন্ কোন্ বিন্দুতে তড়িৎ ক্ষেত্রের লখ্য প্রাবল্য তড়িতাধান দৃটির সংযোগ রেখার সমাস্তরাল হবে ?
- সংযোগ রেখার লম্ব-দ্বিখন্ডকের উপর অবিথিত সকল বিন্দুতে লব্ধ তড়িৎক্ষেত্রপ্রাবলা সংযোগ রেখার সমান্তরাল হবে।
- 13. বলরেখার শুরু ও শেষ কি একই পরিবাহীতে হতে পারে ?
- বলরেখার ধর্ম হচ্ছে সর্বদা ধনাত্মক আধান থেকে নির্গত হয়ে ঋণাত্মক আধানে গিয়ে শেষ হওয়া।
 একই পরিবাহীতে দুরকম আধান থাকা সম্ভব হলে, কোনো বলরেখার শুরু ও শেষ একই পরিবাহীতে হতে পারে।
- 14. তড়িতাধানের কোয়ান্টায়ন কাকে বলে ?
- প্রকৃতিতে তড়িতাধান বিদ্যমান থাকে একটি নির্দিন্ট ন্যুনতম আধানের অথশু গুণিতক (integral multiple) রূপে। এই গুণিতক পজিটিভ বা নেগেটিভ হতে পারে। নির্দিন্ট ন্যুনতম আধানের পরিমাণ হচ্চে একটি ইলেকট্রনের আধানের সমান। অর্থাৎ কিছু পরিমাণ আধান ইলেকট্রনীয় আধারের n গুণ হবে যেখানে n = 1, 2, 3, ইত্যাদি। n এর মান ভগ্নাংশে হয়্ম না। এই ঘটনাকে তড়িতাধানের কোয়াল্টায়ন বলা হয়।
- 15. একটি অন্তরক পদার্থে ইলেকট্রনের সংখ্যা একটি পরিবাহী পদার্থের ইলেকট্রন সংখ্যার সমান। তাহলে, অন্তরক ও পরিবাহীর ভিতর মূল পার্থক্য কী ?
- মৃল পার্থকা : (1) অন্তরক পদার্থের ইলেকট্রনগুলি ঐ পদার্থের প্রমাণ্র সংজ্ঞা দৃঢ্ভাবে আবন্ধ; আর
 পরিবাহী পদার্থের ইলেকট্রনগুলি পদার্থের প্রমাণ্র সংজ্ঞা আলগা ভাবে আবন্ধ।
 - (2) অপ্তরক পদর্থে বিভবপ্রভেদ প্রয়োগ করলে, ইলেকট্রনগুলির কোনো অণুপ্রবাহ (drift velocity) থাকে না ফলে, অপ্তরক পদর্থে দিয়ে কোনো গ্রভিছ প্রবাহ যায় না। পরিবাহী পদার্থে বিভব-প্রভেদ প্রয়োগ করলে, পদার্থের ইলেকট্রনগুলির অণুপ্রবাহ সৃষ্টি হয়। ফলে পরিবাহী পদার্থ দিয়ে গ্রভিছ প্রবাহের চলে যায়।
- 16. তড়িং ক্লেত্রে একটি তড়িং বিমেরুকে কীভাবে রাখলে তার উপর ক্রিয়ারত টর্ক সর্বাধিক হবে ? ঐ সর্বাধিক টর্কের মান কত ?

 \overrightarrow{p} দিমেরু ভ্রামক যুক্ত একটি তড়িৎদিমেরু \overrightarrow{E} তড়িৎক্ষেত্রে অবস্থিত হলে, তার উপর ক্রিয়ারত টর্ক $au=p.\,E.\,\sin heta$; স্পষ্টত au সর্বাধিক মান পাবে যখন $\sin heta=1$ অথবা $heta=90^\circ$; কাজেই তড়িৎ-দ্বিমেরুকে তড়িৎক্ষেত্রের অভিমুখের সজো সমকোণে রাখলে, তার উপর ক্রিয়ারত টর্ক হবে স্বাধিক। স্বাধিক টকের মান tmax = p.E.

্ প্ৰশ্নাবলি

রচনাধর্মী প্রশ

- 1. দুটি বিন্দু আধানের ভিতর পারস্পরিক বল সংক্রান্ত কুলম্বের সূত্র বিবৃত করো। আধানের স্থির-তড়িৎ একক কী? এর ব্যাবহারিক একক কী ? এই দই এককের ভিতর সম্পর্ক কী ?
- 2. বিন্দু তড়িতাধানের (+q) জন্য r দূরত্বে বিভব $= \frac{q}{4\pi \in_0 r}$; এটা প্রমাণ করো। একাধিক বিন্দু আধানের জন্য বিভাবের মান কত?
- তড়িৎ-দিনের কাকে বলে ? সুষম তড়িৎক্ষেত্রে একটি তড়িৎ-দ্বিমেরর উপর ক্রিয়াশীল বল এবং টর্কের রাশিমালা নির্গয় করো।
- 4. তড়িং বলরেখা কাকে বলে? এদের বৈশিষ্টা কি?
- দেখাও যে তড়িৎ বলরেখা ও সমবিভব তল পরস্পরের লম্বভাবে থাকে।
- সমবিভব তল বলতে কি বোঝ
 একটি তড়িতাহিত পরিবাহীর পৃষ্ঠ সমবিভব তল

 এটা কীরূপে প্রমাণ করবে
 প্রমাণ কর যে তড়িৎ ক্ষেত্রের কোনো বিন্দুতে প্রাবলা ঐ বিন্দুর মধ্য দিয়ে অঙ্কিত সমবিভবতলের সাথে সমকোণে অবস্থান
- 7. নাশপাতি আকারের (pear shaped) পরিবাহীর তলের বিভিন্ন বিন্দৃতে (i) আধানের তলমাত্রিক ঘনত্ব (ii) তড়িং ক্ষেত্র-প্রাবল্য এবং (iii) বিভব কীরুপভাবে পরিবর্তন করে তা বল। (i) এবং (ii) নং ক্ষেত্রে তোমার উন্তরের সপক্ষে পরীক্ষা বিবত করো।
- 8. তড়িতাহিত গোলকের নিকবর্তী বিন্দৃতে তড়িংক্ষেত্র গোলকের ব্যাসার্ধের ওপর নির্ভর করে না, কিন্তু গোলকের আধানের তলমাত্রিক ঘনত্বের উপর নির্ভর করে প্রমাণ করো। পরিবাহী গোলক না হলেও কি এটা প্রযোজ্য?
- 9. বংশতলের ওপর মোট অভিলম্ন আবেশ সংক্রান্ত গসের উপপাদ্য বিবৃত করো।
- গসের উপপাদা প্রয়োগ করে নিয়্য়লিখিত ক্ষেরে গুড়িৎ প্রাবল্য নির্ণয় করে। ঃ (i) সুষমভাবে আহিত সুদীর্ঘ ঝজু তার (ii) সুষমভাবে আহিত পাতলা গোলীয় খোলক।

সংক্রিয় উত্তরের প্রশ

- নার্দশ্য দৃরত্বে অবস্থিত দৃটি ইলেকট্রনের ভিতর স্থির তড়িৎ বল F হলে একই দৃরত্বে অবস্থিত দৃটি প্রোটনের ভিতর
- তড়িং ক্ষেত্র কাকে বলে ? তড়িং ক্ষেত্রের কোনো বিন্দৃতে প্রাবল্যের সংজ্ঞা লেখা। তড়িং ক্ষেত্রের দিক-নির্দেশ বলতে
- 3. পিথর ৩ড়িং ক্ষেত্রে (1) বিভব এবং (ii) ক্ষেত্র প্রাবলা কী ? এরা কি স্কেলার না ভেক্টর ? তড়িং বিভবের ব্যাবহারিক
- 4. (ক) আশানের গ্রন্থ বিভব (খ) কোনে বিশ্বাহ তড়িং বিভব (গ) দুই বিশুর ভিতর বিভব-প্রভেগ বলতে শী
- বিভব প্রভেদ ও ক্ষেত্র-প্রাবালের মধ্যে সম্পর্ক কী ? বিভবের নতিমাত্রা বলতে কী বোঝ?
- 6. সমবিভব ৩০ বলতে কী বোঝণ একটি সমবিভব ৩লের উপর এক বিন্দু থেকে অপর এক বিন্দৃতে একক ধনাস্ত্রক আধান সরিত্রে নিলে কত কার্য করা হয়?
- 7. যদি ওড়িংক্ষেত্রের কোন বিন্দুতে প্রবেল শুনা হয় তবে কি ঐ বিন্দুতে বিভবত শুনা ? যদি বিভব শুনা হয় তবে কি
- ৪. যদি গুড়িং ক্ষরের কোনো বিশ্ব প্রাবলা ভানা থাকে এবে কি ঐ বিশ্বর বিভবও জানা যায় ? যদি না ভানা যায়, হাছলে বিভব ভাবতে হার কোন বাশির প্রয়োজন হয়?

- 9. (a) + a বিশ্ব ততি গ্রধানকে কেন্দ্র করে একটি বত্ত আঁকা হল। চিত্র 2.38)। অন্য একটি + o অপ্রপার প্রথমে B হতে A বিন্দৃতে এবং পরে A হতে C বিন্দৃতে আনা হলে, কত কার্য করা হবে?
 - thrun এবং u, দটি বিদ্দ আধান d দরে অবস্থিত। এদের ক্ষেত্রে এমন কোনো বিন্দ নেই যাখানে ডডিৎ পাবলা শনা। এথেকে কি সিন্ধান্ত করা যায়? সেংকেত : আধান দটি সমমাত্রার কিন্ত বিপরীতধর্মী।
- 10. +q এবং q দটি বিন্দু আধান d দরে অবস্থিত। এদের দর্ন শুনা-বিভব রেখা সনাক করো।
- 11. দটি পরিবাহীর ভিতর বিভব-পার্থকা অত্যন্ত বেশি। নিম্নলিখিত তিনটি অবস্থায় কী হবে ?— (i) পরিবাহী দৃটিকে একটি ধাতব তার দ্বারা যুক্ত করা হল, (ii)

छिज 2.38

- বিন্দু আখান নেওয়া হল সেই পথের উপর নির্ভর করে। এ সম্বন্ধে তোমার মতামত ব্যস্ত করো।
- 13. + q এবং q হাঁচতাধান দটিকে d দত্তে রাখা হল। কোন কোন বিন্দুতে তাদের লব্দি তাঁচিৎ ক্ষেত্রের অভিমুখ তডিতাধান দটির সংযোগ রেখার সমান্তরাল হবে? [সংকেতঃ ৩ড়িং- গ্রাধান দটির সংযোগ রেখার লম্ব দ্বিখন্তের উপর অবস্থিত সকল বিন্দ।]
- 14. একক তড়িতাধন বলতে কী বোঝা? আধানের পিয়র-তড়িং একক (e.s.u.) এবং ব্যাবহারিক এককের মধ্যে সম্বন্ধ কি?
- 15. তড়িতাধানের তলমাত্রিক ঘনত্নের সংজ্ঞা দাও। তড়িং ক্ষেত্র ও তড়িং বলরেখা বলতে কী বোঝং তড়িং বলরেখার ধর্মগলি কী কী?
- 16. একটি দার্ঘ, ঝজ পরিবাহীর মধ্যবিন্দ ভূ-সংলগ্ন। পরিবাহীর দুই প্রান্তের বিভব-পার্থক্য 200 V হলে দুই প্রান্তের এবং মধ্যবিন্দর বিভব কত?

া সংকেত ঃ দই প্রাম্ভীয় কিভব + 100 এবং - 100 volt; মধ্যবিন্দর বিভব = 0]

- 17. পদার্থের উপস্থিতিতে দুই আধানের মধ্যে কার্যকর বল পরিবর্তিত হয় -- ব্যাখ্যা করো।
- 18. অভিলম্ব আবেশ ও মোট অভিলম্ব আবেশ কাকে বলে? এরা কী মাধ্যমের ওপর নির্ভরশীল?

অতি সংক্রিপ্ত উন্তরের প্রশ্ন

- 1. A এবং B দটি বিন্দুর বিভব যথাক্রমে 50 e.s.u. এবং 10 e.s.u.। কোন বিন্দুর বিভব উচ্চতর? ঐ বিন্দুন্বয়ের বিভব পার্থকা কত?
- 2. 1 e.s.u. বিভবকে ভোগ্টে প্রকাশ করো।
- 3. দটি অম্বরিত পরিবাহী A এবং B একটি ধাতব তার দ্বারা যন্ত। একটি ধনাত্মক তড়িংযুক্ত দশু A-এর নিকটে রাখা হল (B-এর অপর প্রান্তে)। A এবং B -এর মধ্যে বিভব-প্রভেদ কত হবে?
- সমপরিমাণ আধানে আহিত দৃটি গোলকের ব্যাসার্ধের অনুপাত 2:1 হলে তাদের বিভবের অনুপাত কি এবং কেন? [সংকেত : আধান সমান থাকলে, গোলকের বিভব গোলকের ব্যাসার্ধের ব্যন্তানপাতিক। 2.18 অনুচ্ছেদ দুর্ভীব্য]
- 5. তড়িৎ ক্ষেত্রের কোনো বিন্দুতে দৃটি বলরেখা পরস্পরকে ছেদ করে না কেন?
- 8. কোন বন্ধতলের বাইরে রাখা তড়িতাধানের জনা ঐ বন্ধতলে মোট অভিলম্ব আবেশ কত ?
- 7. ছিমের স্রামক কাকে বলে ?
- 8. একটি সুষম তডিংক্ষেরে দরন বলরেখা আঁক।
- $9. 12.5 imes 10^{18}$ ইলেক্ট্রনের মোট আধান কত ?
- 10. একটি র্তাড়ংগ্রপ্ত কণা একটি ত্রাড়ংক্ষেত্রে ফচ্চন্দে ঘ্রে বেড়াতে পারে। কণাটি কী সর্বদা ত্রাড়ংবলরেখা বরাবর ठलादव ?

বহুমুখী পছন্দের প্রম [Multiple choice type (M.C.Q.)]

(A) নির্ভল উত্তরটি √চিহ্নিড করো ঃ

(A) আধান কার্য করে

- [1] একটি একক ইড়ি গ্রধানকৈ সমবিভবতলের এক বিন্দু থেকে আর এক বিন্দুতে নিয়ে গেলে

 - ·B: আধানের উপর কার্য করা হয় (C) आशास्त्रद डेल्ट कहकार्य ध्राक (D) कार्मा कार्य कता द्वार मा
- [iii] একটি বর্গের তিন কেলিক বিন্দুত্তে +1, +2 এবং +3 eau আধান রাখা হল। সূতর্থ কৌলিক বিন্দুত্তে কতে আধান

	(A) $\frac{Q(R^2+r^2)}{4\pi \epsilon_0 (R+r)}$ (B) $\frac{Q}{R+r}$ (C) For $\frac{Q(R+r)}{4\pi \epsilon_0 (r^2+R^2)}$.
[v]	5 cm ব্যাসার্ধের একটি ফাঁপা ধাতব গোলককে এর্পভাবে তড়িংগ্রন্ত করা হল যে তার উপরপৃষ্ঠে বিভব 10V গোলকের কেন্দ্রে বিভব হবে,
	(A) 0 (B) 10V
	(C) পৃষ্ঠ থেকে 5 cm দূরের বিন্দুর বিভবের সমান (D) পৃষ্ঠ থেকে 25 cm দূরের বিন্দুর বিভবের সমান।
[vi]	দুটি সমান আধান Q -এর সংযোগ রেখার মধ্যবিন্দৃতে আধান q রাখা হল। এই তিনটি আধান সাম্যবস্থায় থাকবে যদি q এর মান হয়
	(A) $-\frac{Q}{2}$ (B) $-\frac{Q}{4}$ (C) $+\frac{Q}{4}$ (D) $+\frac{Q}{2}$
[vii]	কোনো এক বিন্দুতে তড়িৎক্ষেত্র প্রাবল্য ও তড়িৎবিভব পরস্পরের সংগে সম্পর্কযুক্ত। নিম্নলিখিত সম্পর্কগুলির ময়ে কোন্টি ঠিক ?
	(A) $V = \frac{dE}{dx}$ (B) $E = -\frac{dV}{dx}$ (C) $E = Vx$ (D) $V = -\frac{dE}{dx}$.
(viii	${ m i}$ ${ m A}$ এবং ${ m B}$ দুটি গোলীয় পরিবাহীর ব্যাসার্থ r এবং $2r$ । এদের প্রত্যেককে q আধান দেওয়া হল। তাদের সরু ধাও তার দারা যুক্ত করলে, আধান
	ভার দ্বারা বৃদ্ধ করলে, আধান (A) A থেকে B তে প্রবাহিত হবে, (B) B থেকে A তে প্রবাহিত হবে,
	(C) কোনো প্রবাহ হবে না, (D) এর কোনোটাই নর।
[ix]	তড়িংবলরেখা কোনো সমবিভব তলকে যে কোণে ছেদ করে তার মান
	(A) 30° (B) 60° (C) 90° (D) 45°.
[x]	n বাহুবিশিক্ট একটি ঘনকের সকল কৌণিক বিন্দুতে q পরিমাণ আধান রাখলে ঘনকের কেন্দ্রে তড়িৎ বিভব হ
	(A) $\frac{4}{\sqrt{3\pi}\epsilon_0} \cdot \frac{q}{n}$ (B) $\frac{2}{\sqrt{3\pi}\epsilon_0} \cdot \frac{q}{n}$ (C) $\frac{1}{\sqrt{3\pi}\epsilon_0} \cdot \frac{q}{n}$ (D) $\frac{4}{\sqrt{5\pi}\epsilon_0} \cdot \frac{q}{n}$
[xi]	দৃটি আধানের ভিতরকার দূরত্ব বৃশ্বি করলে, তাদের তড়িৎ বিভবশত্তি
	(A) বন্ধি পায় (B) হ্রাস পায় (C) একই থাকে (D) বাড়াতেও পারে কমতেও পারে।
[xii) A এবং B বিন্দৃতে দুইটি সমান ধনাশ্বক আধান রাখা আছে। A এবং B বিন্দৃর মধ্যে বিভিন্ন বিন্দৃতে তড়িৎবিত পর্যালোচনা করা হচ্ছে। A বিন্দু থেকে B পর্যন্ত গেলে তড়িৎ বিভব,
	(A) ক্রমাগত বৃশ্বি পার,
	(C) প্রথমে বৃশ্বি পায়, পরে হ্রাস পায়, (D) প্রথমে হ্রাস পায়, পরে বৃশ্বি পায়।
[xiii]	একটি সূত্রম তাড়িৎক্ষেত্রে একটি তড়িৎ দ্বিমেরু রাখা হল। দ্বিমেরুর উপর মোট তাড়ং বল
	(A) সর্বাদা শুনা, (B) দ্বিমেরুর বিন্যাসের (orientation) উপর নির্ভর করে,
	(C) কখনট শুনা হতে পারে না, (D। ছিমেরুর শক্তির উপর নির্ভর করে।

রাখলে বর্গের কেন্দ্র বিন্দৃতে বিভব শুনা হবে (বর্গের বাহু $= \sqrt{2} \ \mathrm{cm}$)

যে এদের আধানের তলমাত্রিক ঘনত্ব সমান। এদের কেন্দ্রে বিভব হবে

(A) +6 esu (B) +4 esu

(A) 1:8

(B) 8:1

(C) -6 esu (D) -4 esu.

(D) 1:2.

[iii] 40 μc এবং - 20 μc দৃটি ভড়িভাধান খানিকটা দৃরে রাখা আছে। তাদের পরস্পরের সঞ্চে স্পর্শ করিয়ে আবার আগেকার দূরত্বে সরিয়ে রাখা হল। আধান দৃটির ভিত্তর প্রাথমিক বল ও অন্তিম বল দৃটির অনুপাত

[iv] দৃটি ফাঁপা এককেন্দ্রিক গোলকের ব্যাসার্ধ r এবং $R\left(R>r
ight)$ । এদের ভিতর Q তড়িভাধান এরপভাবে বন্টিত হল

- [xiv] 2.39 নং চিত্র লক্ষ করো, একটি বিন্দ আধানকে P থেকে A বিন্দতে আনতে কতকাৰ্য WA. P থেকে B বিন্দতে আনতে Wp এবং C বিন্দতে আনতে Wc হলে
 - (A) $W_A < W_R < W_C$
- (B) $W_A > W_B > W_C$
- (C) $W_A = W_B = W_C$
- (D) একটাও না।
- [xv] Q আধান কর্তক উৎপন্ন তডিৎক্ষেত্রের মধ্যে একটি a বিন্দ আধানকে বৃত্তপথে ঘুরানো হল। একবার পূর্ণ ঘুর্ণনে, a আধানের উপর ক্ষেত্র কতক কতকাৰ্য
 - (A) শূন্য
 - (B) ধনাত্মক
 - (C) খাণাদ্মক
 - (D) Q वर्षात (कर्म थाकरन नना ; खनाड थाकरन नना नम्।
- [xvi] একটি স্বর্ণপত্র তড়িংবীক্ষণকে তড়িতাহিত করলে স্বর্ণপত্রধয় বিক্ষারিত হয়। কিছক্ষণের জন্য তড়িংবীক্ষণের উপর X-রশ্মি ফেললে
 - (A) বিক্ষারণ বন্ধি পারে.
- (B) স্বৰ্ণপত্ৰছয় গলে যাবে,
- (C) বিস্ফারণে কোনো পরিবর্তন হবে না.
- (D) বিক্ষারণ থাকবে না।

[xvii] দুটি প্রোটন কিছদরে থেকে যে মহাকর্ষ বল এবং স্থির তাড়িতিক বিকর্ষণ বল প্রয়োগ করে তাদের অনপাত (প্রায়)

- (A) 10⁻³⁶
- (B) 10³⁶
- (C) 10⁵⁴
- (D) 10⁴.

Б. 2.39

[xviii]+10 esu, -10 esu এবং +5 esu আধান একটি সমবাহ ব্রিভুজ PQR-এর তিন কৌণিক বিন্দতে রাখা হল। Q বিন্দতে স্থাপিত আধানের উপর মোট বল (PQ = QR = PR = 5 cm)

(A) 2 dyne

- (C) 18×10^9 newton
- (D) 9×10^9 dyne

[xxix]একটি বিন্দু আধানকে একটি তড়িৎক্ষেত্রের মধ্যে আনা হল। আধানের নিকটবর্তী বিন্দৃতে

- (A) ক্ষেত্র প্রাবন্ধ্য বৃদ্ধি পাবে যদি আধানটি ধনাত্মক হয়,
- (B) ক্ষেত্রপ্রাবল্য হ্রাস পাবে যদি আধান ঋণাত্মক হয়,
- (C) আধান ধনাত্মক হলে গ্রাবন্য বন্ধি পেতে পারে.
- (D) আধান ঋণাত্মক হলে প্রাবল্য হ্রাস পেতে পারে।

[xx] এক বিন্দুতে ক্ষেত্র প্রাবল্য E এবং বিভব V;

- (A) যদি E=0 হয় V অবশাই শূনা (B) যদি V=0 হয় E অবশাই শূনা (C) যদি $E\neq 0$, V শূনা হতে পারে না (D) যদি $V\neq 0$, E শূনা হতে পারে না (কানটি ঠিক ?

[xxi]একটি অসম তড়িৎক্ষেত্রের সঞ্চো 30° কোণ করে একটি তড়িৎদ্বিমের রাখা হল। দ্বিমেরটি

- (A) ক্ষেত্রের অভিলম্ব দিকে রৈখিক বল অনভব করবে.
- (B) রৈখিক বল এবং টর্ক অনভব করবে.
- (C) কেবলমাত্র টর্ক অনুভব করবে,
- (D) ক্ষেত্রের অভিমুখে কেবল রৈখিক বল অনুভব করবে।

[xxii] দৃটি অন্তরিত প্লেট এরূপভাবে তড়িতাহিত করা আছে যে তাদের ভিতর বিভব-প্রভেদ $V_2 - V_1 = 20V$ (i.e., 2 নং প্লেট উচ্চবিভবে)। প্লেট দুটির ব্যবধান $d=0.1~\mathrm{m}/1~\mathrm{a}$ ং প্লেট থেকে একটি ইলেকট্রনকে স্থিরাক্তথা থেকে ছেড়ে দেওয়া হল। ইলেকট্রন যে গতিবেগে 2 নং প্লেটকে আঘাত করবে ভা

- (A) 7.02×10^{12} m/s
- (B) 1.87×10^6 m/s
- (C) 32×10^{-19} m/s
- (D) 2.65×10^6 m/s.

[xxiii] একটি ফাঁপা পরিবাহী গোলক কিছু পরিমাণ আধান বহন করে। গোলকের অভাগুরে কোন বিশ্বতে বিভব

(A) সর্বদা শুন্য

- (B) সর্বদা একটি ধনাত্মক প্রথক
- (C) সর্বদা একটি ঝণাস্থক ধ্রবক । D) ধ্রবক যার চিক্ন আধানের চিক্নের অনবপ।

[Jt. Entrance 2006]

[xxiv] যদি E মানেব একটি সৃষম তড়িংক্ষেক্তে একটি ইলেকট্রন অবস্পিত যার আধান -e এবং ভর m : E- এর মান এমনই যে ইলেকট্রের উপর তড়িৎক্ষেত্রের জন্য বল এর ওজনেব সমান। এ অবস্থায় ह.এব মান

(A) $\frac{mg}{e}$ (B) mge (C) $\frac{e}{mg}$ (D) $\frac{e^2g}{2}$.
(B) भूनाभ्यांन शृंतर्ग करता (Fill up the gaps) ह
[i] r ব্যাসার্ধের একটি তারের রিংকে Q তড়িতাধান দেওরা হল। রিং-এর কেন্দ্রে q তড়িতাধান রাখলে রিংয়ের টান পরিমাণ বন্ধি পাবে।
[ii] Q তড়িতাধানকে q এবং $(Q-q)$ পূই অংশে বিশুন্ত করা হল। অংশ দৃটিকে পরস্পর থেকে কিছু দূরে রাখলে তাদের ভিতর বিকর্ষণ বল সর্বাধিক হবে যদি Q এবং q -এর ভিতর সম্পর্ক হয়!
[iii] 2 cm ব্যাসার্ধের একটি ফাঁপা ধাতব গোলককে 20 coulomb তড়িতে আছিত করা হল। গোলকের ভিতরের পৃষ্ঠে এবং বাইরের পৃষ্ঠে আধানের তলমান্ত্রিক ঘনত্ব হবে যথাক্রমে এবং
[iv] $+q$, $-4q$ এবং $+2q$ ($q=1\mu c$) তড়িতাধানকে একটি সমবাহু ত্রিভুজের তিন কৌশিক বিন্দুতে রাখা হল। ত্রিভুজের বাহুর দৈর্ঘ্য $0.5~{ m metre}$ । আধানগুলির পারস্পরিক তড়িৎ স্থিতিশক্তি।
[v] প্রত্যেকটি $2\mu c$ এরূপ তিনটি তড়িতাধানকে ABC ব্রিভুজের তিন কৌণিক বিন্দুতে রাখা হল। AC + BC = 12 cm এবং AB × BC = 32 cm^2 ; তাহলে C বিন্দুর বিভব হবে।
[সংক্রেণ্ড: $V_{\rm C} = \frac{2 \times 10^{-6}}{4\pi \epsilon_0} \left(\frac{1}{AC} + \frac{1}{BC} \right)$]
[vii] S.I. পশ্বতিতে তড়িৎক্ষেত্রের প্রাবস্থাের একক। [vii] দ ব্যাসার্ধের একটি গোলককে বায়ুতে রেখে Q কুলম্ব তড়িতাধান দেওয়া হল। গোলকের নিকটবর্তী বিন্দুতে
্ৰেগ্ৰপ্ৰাবল্য
(C) जून कि निर्जून विচার करता (True or false type):
[i] বিভবপার্থকাকে ওয়াট / অ্যাম্পিয়ার এককে প্রকাশ করা যায়।
[ii] এক বিন্দু থেকে অপর কোনো বিন্দুতে তড়িভাধানকে স্থানাস্তরিত করতে যে কার্মের প্রয়োজন তা বিন্দু দুটির ভিতর
পথের উপর নির্ভর করে।
[iii] ইলেকট্রন উচ্চ বিভব অপ্তল থেকে নিম্নবিভব অপ্তলে গমন করে।
[iv] শূন্য দেশে (space) কোনো বিন্দুতে তড়িংকের শূন্য হলেও বিভব শূন্য
না হতেও পারে। A q C
[v] একটি পরিবাহীর পরাবৈদ্যুতি ধ্রুবকের মান শূনা।
[vi] দুটি কাছাকাছি রাখা পরিবাহী একই ধনান্ধক আধানশ্রম্ভ হলেও, তাদের
ভিতর বিভব-পার্থক্য সম্বব।
[vii] সাধারণভাবে পৃথিবীর বিভব শূন্য ধরা হয়। এর অর্থ এই যে পৃথিবীর
কোনো নীট (net) আধান নেই।
[viii] 2.41 নং চিত্রে প্রদর্শিত বৃত্তের কেন্দ্রে ধনাদ্মক আধান q রাখা আছে।
একটি একক ধনাত্মক আধানকে A থেকে C-তে নিতে যে কার্য করা হয়
ভা A থেকে B তে নিতে কৃতকাৰ্য অপেকা বেশি।
₩ পাবিভিত্ত প্ৰছা
আয়রন নিউক্লিয়াসের ভিতর দুটি প্রোটনের মধ্যে কত কুলম্ব বিকর্ষণ বল ক্রিয়া করে? দুরত্ব = 4 × 10 ⁻¹⁵ m এবং বিকর্মন নিউক্লিয়াসের ভিতর দুটি প্রোটনের মধ্যে কত কুলম্ব বিকর্ষণ বল ক্রিয়া করে? দুরত্ব = 4 × 10 ⁻¹⁵ m এবং
AUR 14.4 N
$2.033 imes 10^{-7}$ coulomb তড়িতাধানকে একটি তড়িৎ ক্ষেত্রে কোনো বিন্দৃতে রাখলে, সে 10^{-9} newton বল
Ans. 300 volt/m
ও ০০০ সংখ্যান নিশিষ্ট একটি বিন্দু একটি পূর অন্তরিত ধাতব গোলীয় খোলকের কেন্দ্রে অবাস্থত আছে। গোলায়
क्षान्त्रक के नामान नामार्थ संशोकत्व 10 वर् 12 cm! (शानकाव्य निव भावन मुना। किस २०७
5 cm 11 cm এবং 15 cm দরের বিন্দুর্গুলিতে তড়িৎ প্রাবল্য নির্ণয় করে। বিন্দু আবান ও খোলকের মধ্যে কা
Ans. 0.8 dyne; 0; 0.088 dyne; 0
A A CRE DE ARE GROWN PALE বিশ্ব প্রতির প্রত্যেকটিতে 🕂 Q মানযুত্ত একটি করে আধান রাখা হল। P. A এবং
R- ব মধাবিদ্য। P বিদ্যাত ভড়িৎ ক্ষেত্রের প্রাবলা ও বিভব কত ? যাদ B বিদ্যাত আবানাট পারবতন করে - U কর
হয়, তবে এই রাশিগুলির মান কীর্প পরিবর্তিত হবে? [Ans. 0; 2Q/d; 2Q/d²;0

(D) $\frac{e^2g}{2}$.

5. একটি গ্রহণ ক্ষেত্রের দটি বিন্দৃতে বিভবের পরিমাণ যথাক্রমে $400~{
m volt}$ এবং $1000~{
m volt}$ । $3 imes 10^{-8}~{
m coulomb}$ পরিমাণ ধনাস্থক আধান ঐ বিন্দ দটির একটি হতে অপর্টিতে নিয়ে যেতে কি পরিমাণ কার্য করতে হবে?

[Ans. 18×10^{-6}]]

- 6. দটি ক্ষম্র অপ্তরিত গোলককে পরস্পরের সক্ষো ঘরে 1 cm দরতে বসানো হল। তারা যদি পরস্পরকে 0.1 N বলে আকর্ষণ করে তবে ঘর্ষপের ফলে এক গোলক হতে অন্য গোলকে ক্যাটি ইলেকট্রন স্থানাগুরিত হল ? e=1.6 imes10⁻⁹ क्लाभ
- 7. 2 mm ব্যাসবিশিক্ট ও 5 মাইক্রোস্ট্যাটক্লম্ব তড়িংযুক্ত আটটি গোলাকার তর্লবিন্দু একঞ্জীভূত করা হল। ঐ যুক্ত গোলকের উপরিতলের বিভব ভোল্টে প্রকাশ করো। $[Ans. 6 \times 10^{2}V]$
- 8. আলফা কণার তড়িভাধান $+3.2 imes 10^{-19}$ coulomb | 8000 N/C তড়িৎ ক্ষেত্রে ঐ আলফা কণা কন্ত বল [Ans. 2.56 × 10⁻¹⁵N]
- 9. দৃটি তড়িতাহিত কদার প্রতোকটিতে $2 imes 10^{-6}\,\mathrm{C}$ তড়িতাধান আছে। তাদের $1\,\mathrm{m}$ দীর্ঘ একটি সূতো দারা যুক্ত করে মস্ণ টেবিলের ওপর রাখা হল। সতোর টান নির্ণয় করো। $|Ans. 3.6 \times 10^{-6} \text{ N}|$

কঠিনতর গাণিতিক প্রশ্ন

- 1. একটি সমবাহু ত্রিভ্জের তিন শীর্ষবিন্দ্ A. B. C-যথাক্রমে 1, 2 এবং 3 μC তড়িভাধান রাখা হল। ত্রিভ্জের প্রত্যেক বাহুর দৈর্ঘা 200 cm. BC বাহুর মধাবিন্দু P-তে (i) বিভব এবং (ii) ক্ষেত্র প্রাবলা নির্ণয় করে।। [Ans. (i) 40 × 10³ volt (ii) 9.5 × 10³ V/m; 18°25 (कार्ष)
- $2.~80~\mathrm{mg}$ ভরের একটি দোলকপিও $2 imes 10^{-8}~\mathrm{coulomb}$ তড়িভাধান বহন করে একটি $20,000~\mathrm{volt/metre}$ অনুভূমিক তড়িৎ ক্ষেত্রে দোলকপিশুটি স্থির আছে। দোলক সুত্রের টান ও উল্লম্বের সাথে সুত্রের কোণ নির্ণয় করে।। $g = 10 \text{ m/s}^2$. | Ans. $8.8 \times 10^{-4} \text{ N}(213); \tan \frac{1}{49}$ |
- $3. \ 2 imes 10^{-6}$ কলম্ব তড়িভাধানযুক্ত এবং $100 \, \mathrm{g}$ ভরের একটি কণা (A) 30° কোণে আনত একটি নততলের তলায় রাখা আছে। অনুরূপ আর একটি কণা B-কে নততলের কোথায় রাখলে তা ঐ অবস্থানে স্থির থাক্বে?

(Ans. তল হতে 27 cm দুরে)

4. সমান ব্যাসার্ধ, ভর ও তড়িতাধানযুক্ত দৃটি গোলককে সূতো দ্বারা এক বিন্দু হতে ঝুলানো হল। প্রথমে গোলকদ্বয় শুন্য মাধ্যমে এবং পরে $0.8\,\mathrm{g/cm^3}$ ঘনত্বের এবং 3 পরা-বৈদ্যুতিক ধ্রুবকের একটি তরলে নির্মাজ্জত রাখা হল। উভয় ক্ষেত্রেই সূতো দৃটি পরস্পরের সঙ্গে একই কোণ করে রইল। গোলকের উপাদানের ঘনত্ব নির্ণয় করো।

[Ans. 1.2 g/cm³]

5. A, B, C একটি সমবাহ ত্রিভুজের শীর্ষবিন্দু। প্রত্যেক বাহুর দৈর্ঘ্য a. A এবং B বিন্দুতে সমান ভড়িতাধান q রাখা হল। এই দুই আধানের জন্য C বিন্দুতে বিভব এবং ক্ষেত্র প্রাবল্য নির্ণয় করো যখন (i) উভয় তড়িতাধান ধনাত্মক এবং (ii) A বিন্দর তড়িতাধান ধনাত্মক কিন্তু B-র তড়িতাধান ঋণাত্মক।

[Ans. (i)
$$\dot{E}=\frac{\sqrt{3}q}{a^2}$$
 ; $\dot{V}=\frac{2q}{a}$ (ii) $\dot{E}=\frac{q}{a^2}$ ও AB রেখার সমাবরাল $\dot{V}=0$]

 একটি বর্গাকার ক্ষেব্রের (চিত্র 2.42) তিনটি কৌণিক বিন্দর প্রান্তাকটিতে +q আধান রাখা হল। ক্ষেত্রটির কেন্দ্রবিন্দৃতে (Ω) তড়িৎ প্রাবল্যের মান কি হবে ? কোন দিকে ক্রিয়া করবে ?

[Ans.
$$\frac{q}{4\pi \in 0}$$
 $\frac{a}{\sqrt{2}}$; 4π datas]

 দৃটি সমান ও সমান্তরাল প্লেটকে কিছ্ পারস্পরিক উচ্চতায় অন্ত্যিক অবস্থায় রাখা আছে। নাঁচের প্লেটের ছিল দিয়ে একটি ইলেকট্ন প্লেটের দৈর্ঘার অভিলন্ধভাবে 6 × 10 cm s বেগ সহ প্লেট দটিব মধাবতী প্রশক্তে উপস্থিত হল। নীচের প্লেটটি ভূ সংক্ষা রেখে উপরের প্লেটকে কন্ত বিভব দিলে ইলেকট্রনকৈ ওপরেব প্লাট পৌচাতে ঠিক বাধা লেওয়া হরে ? ইলেকটুরের $em=1.8\times10^8$ coulomb g

সিংকেড ঃ
$$\frac{1}{2}mv^2 = Ve$$
 , $V =$ (মট দুটির বিভব পাছারঃ $)$

- 8. একটি বর্গের চার কোলায় যথাক্রমে q_1,q_2,q_3 এবং q_4 ছড়িভাধান রাখা হল বর্গের বাত্র শৈষ্যা a=1 metre এবং $q_1=+1\times 10^{-8}$ C; $q_2=-2\times 10^{-8}$ C, $q_3=+3\times 10^{-8}$ C এবং $q_4=+2\times 10^{-8}$ C হলে, ভডিভাধান সংস্থার ভড়িভ স্পিডিভার্ডি নির্দিং করে। [Ans. -6.4×10^{-7} J]
- 9. দুটি সমান ক্ষুদ্র পরিবাহী পিথবল একই বিন্দু হতে দুটি $70~{
 m cm}$ লম্বা রেশম সূতো দিয়ে ঝোলানো হল। এদের একটি বলে বিদ্যুৎ দেওয়া হল এবং তারা পরস্পরকে স্পর্শ করল। এরা যদি পরস্পর হতে $20~{
 m cm}$ দুরে সরে এসে স্থির হয় এবং প্রতিটি বলের ভর $3~{
 m decignam}$ হয়, তবে আদি বিদ্যুতের পরিমাণ বের করো। $g=980~{
 m cm}~{
 m s}^2$.

[Ans. 130.5 e.s.u.]

10. m ভরের একটি ক্ষুদ্র গোলক–কে l দৈর্ঘের সুভো দ্বারা ঝুলিয়ে একটি সরল দোলক তৈরি করা হল। গোলকটি q পরিমাণ তড়িৎ দ্বারা আহিত এবং E প্রাবল্যের উধ্বমুখী তড়িৎ ক্ষেত্রে অবস্থিত। তড়িৎ বল মহাকর্ষ বল অপেক্ষা

কম হলে, দোলকের দোলনকাল কি হবে?

$$\left[\mathbf{Ans.} \ T = 2\pi \sqrt{\frac{ml}{mg - Eq}} \right]$$

11. m ভরের একই রকম দুটি গোলককে l দৈর্ঘ্যের সিচ্ছের সূতো দ্বারা একটি বিন্দু হতে ঝুলানো আছে। গোলক দুটির প্রত্যেকটির q পরিমাণ তড়িভাধান আছে। যদি সূতো দুটির ভিতরকার কোণ খুব ছোটো হয় তাহলে প্রমাণ করো যে, $(2, 1)^{\frac{1}{3}}$

সাম্যকথায় গোলকম্বরের কেন্দ্রবিন্দু দুটির দূরত্ব $x=\left(rac{q^2l}{2\pi \in_0 mg}
ight)^{\!\!\!\!\frac{1}{3}}$

12. a ব্যাসার্ধের একটি সরু রিংয়ে q পরিমাণ তড়িভাধান সুষমভাবে বব্দিত হল। প্রমাণ করে। যে রিংয়ের অক্ষের উপর কেন্দ্র হতে r দূরে প্রাবল্য $E=rac{q.r}{4\pi \in_0 (a^2+r^2)^{\frac{3}{2}}}$; ঐ বিন্দুর বিভব কত ? আক্ষম্পিত কোন্ বিন্দুতে E-এর মান সর্বাধিক

হবে १

$$\left[\text{Ans.} \frac{q}{4\pi \,\epsilon_0 \, (a^2 + r^2)^{\frac{3}{2}}}; \, \frac{a}{\sqrt{2}} \right]$$

14. 9 cm ব্যাসার্ধের দৃটি একই রকম সরু ধাতব রিং সমাক্ষীয় ভাবে $12 \, \mathrm{cm}$ দূরত্বে পরস্পরের সমান্তরালভাবে বসানো আছে। একটি রিংয়ে $13.5 \times 10^{-8} \, \mathrm{coulomb}$ এবং অপরটিতে $15 \times 10^{-8} \, \mathrm{coulomb}$ তড়িতাধান দেওয়া হল। $5 \times 10^{-8} \, \mathrm{coulomb}$ তড়িতাধানকে একটি রিংয়ের কেন্দ্র হতে অপর রিংয়ের কেন্দ্রে সরিয়ে নিতে কত কার্য করতে হবে? $\epsilon_0 = 8.85 \times 10^{-12}$. [Ans. $7.5 \times 10^{-6} \, \mathrm{J}$]

মিঃ কৃতকার্য = দুই কেন্দ্রের বিভব পার্থকা x তড়িতাধান]

15. 9 cm দীর্ঘ একটি সরলরেখার ওপর তিনটি বিন্দু আধান q, 2q এবং 8q বসাতে হবে। যে অবস্থানে সমগ্র সংস্থার স্থিতিশক্তি ন্যুনতম হবে তা নির্ণয় করে। ঐ অবস্থানে q আধানের ওপর অপর দুই আধান কত বলপ্রয়োগ করবে? [Ans. 2a হতে $q \to 3$ cm দুরে; 0]

16. একই বিন্দু থেকে প্রত্যেকটি m ভরের ও q আধানে আছিত দুটি বন্ধুকশা প্রত্যেকটি l দৈর্ঘ্যের দুটি দিয়ে ঝোলানো হল। প্রমাণ করো যে, প্রত্যেকটি দড়ি উল্লম্বের সাথে θ কোণে আনত থাকলে, $q^2\cos\theta=16~\pi\epsilon_0 mg~l^2\sin^2\theta$ (S.I. এককে)।

				-@ M.C	.Q. z	দের উত্তর	₽ _{p0}				
(A)											
(i)	1)	(4)	В	dst	((xiii)	A	(xvii)	A	(ixxi)	В
(11)		(vi)	В	(x)	1	(AIV)	(.	(Aviii)	A	(xxii)	1)
(iii)		(vii)	В	(xi)	1)	(27)	A	(viv)	1)	(iiizz)	1)
(iv)		(viii)		(xii)	()	(ivx)	D	(xx)	((xxiv)	Α

ধারকত্ব এবং ধারক

CAPACITANCE AND CAPACITOR

3.1. ধারক্ত (Capacitance or capacity):

বিভিন্ন হয়। অনরপভাবে, বিভিন্ন আকারের কয়েকটি পরিবাহীতে সমপ্রিমাণ তড়িতাধান দিলে তাদের বিভব ভিন্ন হয়। দটি অসমান আকারের ধাতবপাত্র নিয়ে তাদের দটি সদশ স্বর্ণপত্র তডিৎবীক্ষণের চাকতির ওপর রাখো (চিত্র নং 3.1)। এবার পাত্র দৃটির প্রত্যেককে *Q* পরিমাণ তড়িতাধানে আহিত করো। দেখা যাবে ছোটো পাত্রের তলায় রাখা তডিং বীক্ষণের স্বর্শপত্রদ্বয়ের বিক্ষারণ অপর যন্তের তলনায় বেশি। এটা প্রমাণ করে যে ছোটো পাত্রের বিভব বডো পাত্রের তলনায় বেশি। এই অবস্থায় বলা হয় যে বডো পাত্রের ধারকত্ব ছোটো পাত্র অপেক্ষা বেশি।

তার দিয়ে পাত্র দটিকে যন্ত করলে, ছোটো পাত্র হতে

তডিতাধান বড়ো পাত্রে চলে যাবে যতক্ষণ পর্যন্ত না উভয়ের বিভব সমান হয় ঠিক যেমন জলপূর্ণ দৃটি পাত্রকৈ পাইপ দিয়ে যন্ত করলে জলপ্রবাহ হয়ে পাত্রের জলের লেভেল সমান হয়। পাত্র দটির বিভব সমান হলে স্বর্ণপত্রদ্বয়ের বিক্ষারণ দইক্ষেত্রেই সমান হবে।

দেখা যায় যে, নির্দিষ্ট কোনো পরিবাহীর বেলায় তার বিভব সর্বদা তার আধানের সমানুপাতিক হয়। Q পরিমাণ তড়িতাধান দিলে কোনো পরিবাহীর বিভব বৃদ্ধি যদি V হয়, তবে $Q \propto V$ অথবা Q = C.V.C একটি ধ্রবসংখ্যা। একেই পরিবাহীর ধারকত্ব (capacitance or capacity) বলা হয়।

ধারকত্ন
$$(C)=rac{$$
তড়িতাধান $(Q)}{$ বিভব বৃদ্ধি (V)

এখন, যদি V=1 হয়, তবে Q=C: এ থেকে আমরা ধারকত্বের নিম্নলিখিত সংজ্ঞা পাই।

সংজ্ঞা ঃ কোনো পরিবাহীর বিভব এক একক বৃদ্ধি করার জন্য পরিবাহীকে যত পরিমাণ তড়িতাধান সরবরাহ করতে হয়, তাকে পরিমাণমূলকভাবে পরিবাহীর ধারকত্ত্বের সমান ধরা হয়।

পরিবাহীর ধারকত্ব আধান Q অথবা বিভব V এর ওপর নির্ভর করে না। Q পরিবর্তন করলে Vএরপভাবে পরিবর্তিত হবে যে Q/V অনুপাত সর্বদা অপরিবর্তিত থাকবে। কোন কোন্ বিষয়ের উপর পরিবাহীর ধারকত্ব নির্ভর করে তা 3.3 অনুচ্ছেদে উল্লেখ করা হয়েছে।

3.2. বারকহের একক (Units of capacitance) :

সি. জি. এস : উপরিউন্থ সমীকরণে যদি Q=1 esu এবং V=1 esu ধরা যায় তবে C=1 esu অর্থাং কোনো পরিবাহীর বিভব 1 esu বৃদ্ধি করতে যদি 1 esu তড়িতাধানের প্রয়োজন হয় তবে, তার ধারকাপুকে 1 esu বলা হয়। একে আনেক সময় স্ট্যাটক্যারাড (statfarad) বলা হয়। এস. আই. পশ্ধতি অন্যায়ী গ্রন্থিয়াম 'কুলম্বে' এবং বিভব 'ভোল্টে' প্রকাশ করলে, ধারকত্ব এস্. আই. এককে প্রকাশিত হবে এবং এই এককের নাম ক্যারাড (farad)।

সংজ্ঞা ঃ এক কুলম্ব তড়িতাধান দিলে যদি কোনো পরিবাহীর বিভব এক ভোল্ট বৃদ্ধি পায়, তবে ঐ পরিবাহীর ধারকত্বকে এক ফারোড বলা হয়।

ফ্যারাড খুব বড়ো একক হওয়ায়, ব্যাবহারিক ক্ষেত্রে তার ভগ্নাংশ করা হয়েছে। যেমন,

1 ফ্যারাড $(F) = 10^6$ মাইকো-ফ্যারাড (μF)

অথবা, 1 ফ্যারাড (F) = 10^{12} মাইক্রো-মাইক্রো-ফ্যারাড ($\mu\mu$ F) বা পিকো ফ্যারাড (pF).

কোনো পরিবাহীর ধারকত্ব 9 μF বলতে বোঝায় যে, পরিবাহীর বিভব 1 ভোগ্ট বৃদ্ধি করতে 9×10^{-6} কুলম্ব তড়িতাধান প্রয়োজন।

ফ্যারাড এবং ই এস ইউ এককের সম্পর্ক ঃ

জানা আছে, 1 কুলম্ব = $3 \times 10^9 \, \mathrm{esu}$ তড়িতাধান

এবং 300 ভোল্ট = 1 esu বিভব।

কাজেই,
$$1$$
 ফ্যাব্লাড $= \frac{1}{1}$ কুলম্ব $= \frac{3 \times 10^9 \ \mathrm{esu}}{1/300 \ \mathrm{esu}}$ বিভব

= 9 × 10¹¹ esu ধারকছ

 $\therefore 1\mu F = 10^{-6}$ ফ্যারাড = 9×10^{5} esu ধারকত্ব

E Example I

একটি পরিবাহীর বিভব 250 volt বৃষ্ধি করতে $5 \times 10^{-7}\,\mathrm{C}$ তড়িতাধান দিতে হয়। ঞ্জিপরিবাহীর ধারকত্ব কত ? বিগুণ ধারকত্বের অপর একটি পরিবাহীর বিগুণ বিভব বৃষ্ধি করতে কত তড়িতাধান দিতে হবে ?

উঃ। $C=rac{Q}{V}$; এক্ষেয়ে $Q=5 imes 10^{-7}~\mathrm{C}$ এবং $V=250~\mathrm{volt}$ । অতএব,

$$C = \frac{5 \times 10^{-7}}{250} = 0.2 \times 10^{-8} \text{ F}$$

আবার, দিতীয় ক্ষেত্রে,

$$Q = C$$
. $V = (2 \times 0.2 \times 10^{-8}) \times (2 \times 250) = 2 \times 10^{-6}$ C.

পরিবাহীর ধারকথ কোন কোন বিষয়ের ওপর নির্চন (Factors governing the capacitance of a conduct

- 3.1. অন্চেদে আছবা দেখতে পাই যে Q অপারবার্ত থাকলে, $C \propto \frac{1}{V}$ অর্থাৎ যে সকল কারণে দিন্দিট আধানে আহিত পরিবাহীর তড়িৎ বিভব পরিবার্তিত হয়, সেই সকল কারণে তার ধারকত্ব বিভবের বাস্তান্পাতে পরিবার্তিত হয়। কারণগুলি নিম্নুস z
- (i) পরিবাহীর ক্ষেত্রফল ঃ ক্ষেত্রফল যত বৃদ্ধি পায় পরিবাহীর বিভব তত কমে; ফলে ধারকত্ব বৃদ্ধি পায়। একটি এবোনাইট দশু থেকে একখানি পাতলা টিনপাত ঝুলিয়ে তাকে ফুর্পপত্র ভড়িংবীক্ষণের চাকতির সাথে যুক্ত করো। (চিত্র নং 3.2)। টিনপাতের তলায় একটি ভারী ধাতব দশু যুক্ত আছে। দশু

পাতকে টান টান রাখবে। টিনপাতকে তড়িৎযন্ত্রের সাহায়ে। আহিত করো: স্র্র্ণপত্রদ্বরের বিক্ষারণ হবে।
এইবার এবোনাইট দণ্ডের সাহায়ে টিনপাতকে কিছু গুটিয়ে নিলে, স্বর্ণপত্রদ্বরের বিক্ষারণ বৃদ্ধি পাবে—অথ
থি টিনপাতের বিভব বৃদ্ধি পাবে। টিনপাতের পাক খুলে আবার আগের ক্ষেত্রফলে ফিরিয়ে আন স্বর্ণপত্রদ্বরের
বিক্ষারণ কমে আবার আগেকার সমান হবে। এথেকে বোঝা যায় যে, উনপাত সমস্ত তড়িতাধান ধরে
রেখেছে। যেহেতু তড়িতাধানের পরিমাণ অপরিবর্তিত আছে সেইতেতু বোঝা যাচ্চে, টিনপাতের ক্ষেত্রফল
কমাবার ফলে তার ধারকত্ব ব্রাস পেয়েছে। অনুরূপভাবে, টিনপাতের ক্ষেত্রফল বৃদ্ধি পেয়েছে।

(ii) পরিবাহীর চতুর্দিকস্থ মাধ্যম ঃ পরিবাহীর চতুর্দিকে বায়ুর পরিবর্তে অপর কোনো অপরিবাহী মাধ্যম যেমন প্যারাফিন, গশ্বক, কাচ থাকলে পরিবাহীর ধারকত্ব বৃদ্ধি পায়।

(iii) ভূ-সংলগ্ন পরিবাহীর উপস্থিতি:

A একটি ধনাত্মক তড়িতাহিত পরিবাহী। একে দ্র্মপত্র তড়িংবীক্ষণের সাথে যুক্ত করলে পত্রদয়ের

বিস্ফারণ হবে এবং ঐ বিস্ফারণ হবে পরিবাহীর বিভবের পরিমাপ।

এখন আর একটি অন্তরিত পরিবাহী B (তড়িংবিহীন) নিকটে আনলে দেখা যাবে স্বর্ণপত্রদ্বয়ের বিক্ষারণ কিছু প্রাসপেল [চিত্র 3.3 (i)]। B পরিবাহীকে সরিয়ে নিলে স্বর্ণপত্রদ্বয়ের বিক্ষারণ পূর্বের বিক্ষারণের সমান হবে। অর্থাৎ A পরিবাহী পর্ণতিভিতাধান ধরে রেখেছে। এথেকে

বোঝা যায় যে B পরিবাহীকে কাছে আনাতে A পরিবাহীর বিভব ব্রাস পেলে অথবা ধারকত্ব বৃদ্ধি পেল। এর কারণ B পরিবাহীতে ধনাত্মক এবং ঋণাত্মক তড়িং আবিন্ট হবে এবং আবেশের জন্য A পরিবাহীর বিভব ব্রাস পাবে। এখন যদি B পরিবাহীকে ভূ-সংলগ্ন করা হয়, [চিত্র 3.3 (ii)] তবে দেখা যাবে যে স্বর্ণপত্রদ্বয় প্রায় নিমীলিত হল। B পরিবাহীকে সরিয়ে নিলে স্বর্ণপত্রদ্বয় পূর্বের বিস্ফারণ ফিরে পাবে; অর্থাৎ A পরিবাহীর সমস্ত তড়িতাধান অক্ষ্ম আছে। এটা প্রমাণ করে যে B পরিবাহীকে ভূ-সংলগ্ন করলে A পরিবাহীর বিভব খুব ভ্রাস পায় অথবা ধারকত্ব খুব বৃদ্ধি পায়।

উপরোক্ত পরীক্ষা হতে জানা যায় য়ে কোনো তড়িতাহিত বস্তুর নিকটে তড়িংবিহীন পরিবাহী—বিশেষত

ভ্-সংলাল প্রিটি নামলে, ঐ বস্তর বিভব বিশেষভাবে হাসে পায় অথবা ঐ বস্তর ধারকত্ব খুব বৃদ্ধি পায়। প্রিবিটার প্রিটি জন্ম ; এরে পূর্বের মতে অভটা কাম লা এর কারে (i) ছভ্-সংলাল করে মারিট এড়িতের পরিমাণ কম হয় এবং (ii) ছভ্-সংলাল করে অভবের বস্তর মারিট এড়িতের পরিমাণ কম হয় এবং (ii) ছভ্-সংলাল করে অভবের বস্তর মারিট মারিটি আধান্তি (free induced charge) অপসারণ করা যায় না।

3

পরিবাহী গোলকের ধারকত্ব (Capacitance of a spherical conductor):

ধারে।, R= গোলকের বাসোর্গ এবং Q= বায়তে রাখা গোলকের কুলম্ব এককে ওড়িতাধানের পরিমাণ।

এখন, প্রেল্ডের পূর্তে বিভব $V=rac{Q}{4\pi \in_0 R}$ (গোলকের তড়িতাখান কেন্দ্রে জমা করা আছে কর্মনা

করতে ২(ব) ৷ গ্রহর, গোলকের ধারকত্ব (S.I. এককে) $C=rac{Q}{V}=rac{Q}{Q\,/\,4\pi\,\epsilon_0^{}\,R}=4\pi\,\epsilon_0^{}\,R$;

ই.এস.ইউ. এককে গোলকের ধারকত্ব $C=rac{Q}{Q/R}=R$ অর্থাৎ বাযুমাধ্যমে অর্থাত একটি গোলকের esu এককে ধারকত্ব সংখ্যাগতভাবে তার ব্যাসার্ধের সমান। যে গোলকের ব্যাসার্ধ $1~{
m cm}$ সেই গোলকের ধারকত্ব $1~{
m esu}$: কানেই কোনো গোলকের ধারকত্ব $1~{
m esu}$ করতে হলে তার ব্যাসার্থ $9\times 10^{11}~{
m esu}$ করতে হলে তার ব্যাসার্থ $9\times 10^{11}~{
m cm}$ করতে হবে। এই কারণে ধারকত্ব অনেক সময় সেন্টিমিটার এককে প্রকাশ করা

েমন, কোনো পরিবাহীর ধারকত্ব 5 cm বললে বোঝাবে যে, 5 cm ব্যাসার্ধসৃত্ত গোলকের বায়ুতে যে ধারকত্ব সেটাই উত্ত পরিবাহী ধারকত্ব (esu এককে)।

্রিক্টব্য ঃ পৃথিবীর ব্যাসার্ধ $6.4 \times 10^9~{
m cm}$; 1 ফ্যারাড ধারকত্বের কোনো গোলকের ব্যাসার্ধ $9 \times 10^{11}~{
m cm}$ অর্থাৎ পৃথিবীর ব্যাসার্ধের প্রায় হাজার গুণের বেশি। এথেকে বোঝা যায় যে ফ্যারাড একটি খুব বড়ো একক।]

যদি গোলকের চতুম্পার্শ্বস্থ মাধ্যম বায়ুর পরিবর্তে অন্য কোনো পদার্থ হয় এবং ঐ মাধ্যমের পরাবৈদ্যুতিক ধ্বক (di-electric constant) K হয়, তবে গোলকের বিভব $V=rac{1}{4\pi}rac{Q}{\epsilon_0}$;

অতএব, গোলকের ধারকত্ব $C=rac{Q}{V}=4\pi \in_0 KR$

অর্থাৎ, উপরিউক্ত মাধ্যমে গোলকের ধারকত্ব বায়ুর তুলনায় K গুণ হবে।

O EXAMPLE O

একটি ভ্যান ভি প্রাফ জেনারেটারের ধাতব গোলকের ব্যাস $1 \, \mathrm{metre}$ । এর বিভব $2.7 \times 10^6 \, \mathrm{volt}$ উচ্চতায় তুলতে কুলম্ব এককে কি পরিমাণ আধান প্রয়োজন ?

উঃ। এস্. আই. পর্ন্ধতিতে r ব্যাসার্ধের গোলকের ধারকত্ব $C=4\pi\,\epsilon_0.r=rac{r}{9 imes10^9}$ farad।

এক্টো r=0.5 metre ; অতএব, গোলকের ধারকত্ব $C=\dfrac{0.5}{9\times10^9}$ farad।

এখন, নিৰ্পেয় ভড়িভাধান
$$Q=C.V=rac{0.5}{9 imes10^9} imes2.7 imes10^6$$
 = $0.15 imes10^3$ C = $150~\mu$ C.

আহিত পরিবাহীর স্থিতিশক্তি

(Potential energy of a charged conductor):

ধ্রা, একটি পরিবাহার ধারকার C এব তারে +Q তত্তিখান দেওয়া হল যাতে তার বিভব হল V: এখন পরিবাহার বিভব বলতে আমরা বৃদ্ধি য়ে একক ধনারক তত্তি প্রাণ্ডিক বহুলর \tilde{C} নিশ্ হতে পরিবাহার আঁত নিক্টবর্তী বিন্দৃতে আনতে য়ে কার্য করা হয় তা Q তত্তি গোনের সমস্ত্রত এক সংক্ষা পরিবাহার না দিয়ে যদি মনে করা হয় যে ক্লে ক্লেন্ড পরিমাণে এনে পরিবাহার কেওয়া হল যাতে তার বিভব শুনা মান হতে ধারে ধারে বৃদ্ধি পেয়ে V হল, তাহুলে মোট যে কার্য করতে হবে সোগাই হবে আহিত পরিবাহার স্থিতিশক্তি।

সহজ উপায়ে এই স্থিতিশক্তি হিসাব করতে হলে আমরা মনে করতে পারি য়েন পরিবাহীর বিভব ক্রমায়য়ে বৃদ্ধি পায়নি ; সমগ্র প্রক্রিয়াব্যাপী এর বিভব গড় মান (average value) ভার্থাং $\frac{V}{2}$ \leftarrow তে $\left(\frac{0+V}{2}\right)$ পির আছে। এই অবস্থায় পরিবাহীকে Q এড়ি তাধান দিয়ে তার বিভব শূনা হতে V করতে মোট যে কার্য করতে হবে তা W= গড় বিভব \times তড়ি তাধান $\frac{1}{2}V\times CV-\frac{1}{2}CV^2$ [::Q=CV]

এই কার্যই আহিত পরিবাহীতে স্থিতিশক্তি হিসাবে সঞ্চিত থাকে।

অতএব, পরিবাহীর স্থিতিশক্তি = $\frac{1}{2}CV^2$

অপরপক্ষে, থিতিশক্তি
$$\frac{1}{2}CV^2=\frac{1}{2}C\left(\frac{Q}{C}\right)^2=\frac{1}{2}\frac{Q^2}{C}$$
 $\left(\therefore V=\frac{Q}{C}\right)$

স্থিতিশন্তির উপরোপ্ত সমীকরণগুলি হতে দেখা যায় যে, পরিবাহাটীকৈ ছাহিত করার সময় তার বিভব গড়মান V2 –তে কার্যত স্থির থাকে, এরপ ধরে নেওয়া যায়।

এস. আই পৃষ্ধতি অন্যায়ী ('ফারাড়ে এবং V ভোল্টে প্রকাশিত হলে স্থিতিশক্তি 'জুল' এককে প্রকাশ করতে হবে।

ক্যোলকুলাসের সাহায্যে প্রমাণ ঃ ধরো, পরিবাহীকে ক্ষ্ দ্রু এড়িতাধান দিয়ে আহিত করার যে কোনো মৃহতে পরিবাহীর মোট আধান ও বিভব যথাক্রমে q এবং v: এই অবস্থায় পরিবাহীকে আরও ক্ষুদ্র dq পরিমাণ আধান দিলে, এড়িং বিকর্ষণ বলের বিরুদ্ধে কৃতকার্য $dW = v \ dq$.

য়েহেতু $\psi=rac{q}{C}$ অথবা $q=C.\psi$. অতএব dq=C. $d\psi$ (পরিবাহীর ধারকত্ব C ধুবক।) সূতরাং পরিবাহীকে শুনা হতে Vনিভবে আহিত করতে মোট কৃতকার্য

$$W = \int_0^V C.$$
 $v dv = C \int_0^V v. dv = \frac{1}{2} C.V^2$
সূতরাং স্থিতিশত্তি = $\frac{1}{2} CV^2$

D EXAMPLE D

একটি ধারককে 10 coulomb তড়িতাধান দেওয়ায় তার বিভব শূন্য হতে 150 volt হল। তার ধারকহের মান কত ? তাতে কত শক্তি সঞ্জিত হল ?

উটা
$$C = \frac{Q}{V}$$
: এখানে $Q = 10 \text{ C}$; এবং $V = 150 \text{ volt}$ ভাঙাৰ, $C = \frac{10}{150} = \frac{1}{15}$ Farad

আবার, সহিত ***ও =
$$\frac{1}{2}C.V^2 = \frac{1}{2} \times \frac{1}{15} \times (150)^2 = 750 \text{ J}$$

বিভিন্ন বিভবযুক্ত দুই পরিবাহীর ভিতর আধান বন্টন (Sharing of charges between two conductors at different potentials):

মনে করে , C_1 এবং C_2 ধারকত্বের দুটি পরিবাহী ${\bf A}$ এবং ${\bf B}$ নিয়ে তাদের পৃথকভাবে যথাক্রমে Q_1 এবং Q_2 তড়িতাধান দেওয়া হল।

এই অবস্থায়, Λ পরিবাহী বিভব $V_1=rac{Q_1}{C_1}$

এবং B ,,
$$V_2=rac{Q_2}{C_2}$$

এখন, একটি সরু ও লম্বা তার দিয়ে পরিবাহীদ্বয়কে যুক্ত করলে উচ্চবিভবযুক্ত পরিবাহী হতে নিম্ন বিভবযুক্ত পরিবাহীতে তড়িতাধান প্রবাহিত হবে যতক্ষণ পর্যন্ত না উভয়ের বিভব সমান হয়। যদি মনে করা যায়, $V_1 > V_2$ তবে A পরিবাহী হতে B পরিবাহীতে তড়িতাধানের প্রবাহ হবে। ধরো, সংযোগের পর উভয়ের সমবিভব (common potential) হল V.

যেহেতু সংযোগের পূর্বে মোট যে তড়িতাধান ছিল পরেও তা থাকল, সেইতেত

$$Q=Q_1+Q_2$$
 অথবা $V(C_1+C_2)=V_1\,C_1+V_2\,C_2$

$$\therefore V = rac{C_1 V_1 + C_2 V_2}{C_1 + C_2} = rac{Q_1 + Q_2}{C_1 + C_2} = rac{$$
মোট আধান মোট ধারকত্ব

সংখোগের পর ${\bf A}$ এবং ${\bf B}$ পরিবাহীতে আধান বন্টন হয়ে যদি যথাক্রমে q_1 এবং q_2 আধান থাকে, তবে

$$q_1 = C_1 V = C_1 \times \frac{\left(Q_1 + Q_2\right)}{C_1 + C_2} = \frac{C_1 Q}{C_1 + C_2}.....(\mathbf{i})$$

এবং
$$q_2 = C_2 V = C_2 \times \frac{(Q_1 + Q_2)}{C_1 + C_2} = \frac{C_2 Q}{C_1 + C_2}$$
 (ii)

(i) এবং (ii) নং সমীকরণ হতে পাই $q_1/q_2=C_1/C_2$ অর্থাৎ সংযোগের পর পরিবাহীদ্বনের আধান তাদের ধারকত্তের স্থান্পাতিক। পরিবাহী যদি গোলক হয় এবং তাদের স্থাস্থার্ক স্থান্ত R_1 এবং R_2 হয় তবে আমর্থ ছানি, $C_1 \ll R_1$ এবং $C_1 \ll R_2$; কাজেই

$$q_1 = \frac{R_1 Q}{R_1 + R_2} \text{ and } q_2 = \frac{R_2 Q}{R_1 + R_2}]$$

উপরোক্ত সম্পর্ক হতে পাই $q_1/q_2=R_1/R_2$ অর্থাং গোলক্ষয় যে আধান ধরে রাখে তা গোলক্ষয়ের ব্যাসার্ধের সমানুপাতিক।

[দ্রুক্তব্য : প্রমাণ করা যায় যে পরিবাহীদ্ধাের ভিতর আধান বন্টানের ফলে সর্বদা কিছ ভডিংশন্তি ক্ষয়

হবে। শক্তিক্ষরের পরিমাণ =
$$\frac{1}{2} \frac{C_1 C_2 (V_1 - V_2)^2}{C_1 + C_2}$$

শক্তি সংরক্ষণ সূত্রানুযায়ী যেহেতু শক্তির বিনাশ সম্ভব নয়, উত্ত শত্তি অন্যান্য শত্তিরূপে আত্মপ্রকাশ করবে। যেমন, পরিবাহীদ্বয়ের ভিতর বিদ্যুৎ ফূলিজা সৃষ্টি হয়ে তাপ, শব্দ এবং আলোকশত্তির সৃষ্টি করবে।]

O'Exameso

floor 3 cm এবং 8 cm ব্যাসার্ধের দুটি গোলক-কে যথাক্রমে 4×10^{-9} C এবং 16×10^{-9} C তড়িতাধান দেওয়া হল। একটি সবু তার দিয়ে যদি তাদের যুক্ত করা হয়, তবে এক গোলক থেকে অপর গোলকে কত তড়িতাধান প্রবাহিত হবে ?

উঃ। প্রথম গোলকের ধারকত্ব $C_1=4\pi\epsilon_0 imes3 imes10^{-2}\mathrm{F}$ এবং দিতীয় গোলকের ধারকত্ব $C_2=4\pi\epsilon_0 imes8 imes10^{-2}\mathrm{F}$.

যুক্ত করার পর তাদের মোট ধারকত্ব $C=C_1+C_2=4\pi_{\in\,0}(3+8) imes 10^{-2}=4\pi_{\in\,0} imes 11$ $imes 10^{-2} F$

গোলক দৃটির মোট আধান $Q=4\times 10^{-9}+16\times 10^{-9}=20\times 10^{-9}\,\mathrm{C}$

যদি সাধারণ বিভব
$$V$$
হয়, তবে $V = \frac{Q}{C} = \frac{20 \times 10^{-9}}{4\pi \in_0^{-} \times 11 \times 10^{-2}}$ volt

যুক্ত করার পর প্রথম গোলকে যদি q_1 আধান থাকে, তবে

$$q_1 = V.C_1 = \frac{20 \times 10^{-9}}{4\pi \epsilon_0 \times 11 \times 10^{-2}} \times 4\pi \epsilon_0 \times 3 \times 10^{-2} = 5.45 \times 10^{-9} C$$

িছিটীয়া গোলাকের আধান
$$q_2 = V.C_2 = \frac{20 \times 10^{-19}}{4\pi \, \epsilon_0^{} \times 11 \times 10^{-2}} \times 4\pi \, \epsilon_0^{} \times 8 \times 10^{-2}$$

$$=14.55 \times 10^{-9}$$
 C

অতএব, দিতীয় গোলক থেকে প্রথম গোলকে (16 – 14.55) imes 10^{-9} = $1.45 imes 10^{-9}$ C আধান প্রবৃত্তিত হবে।

2 5 cm ব্যাসার্ধের একটি গোসককে 2 × 10⁻⁸ C তড়িতাধানে আহিত করে **দিগুণ** ব্যাসার্ধের কিন্তু একই পরিমাণ তড়িতাধানে আহিত অপর একটি গোসকের সাথে উপেক্ষণীয়া ধারকত্বের একটি তার দিয়ে যন্ত করা হল। এতে শক্তির অপচয় নির্ণয় করো।

উঃ ৷ এক্লেরে
$$C_1 = K \times 5 \times 10^{-2} \,\mathrm{F}$$
 $(K = 4 \,\pi_{\leq 0})$

$$\text{Sec} V_1 - \frac{Q}{C_1} = \frac{2 \times 10^{-8}}{K \times 5 \times 10^{-2}} = \frac{4 \times 10^{-7}}{K} \text{ volt}$$

পৃথিবীকে 6400 km ব্যাসার্ধের একটি সম্পূর্ণ গোলক মনে করলে তার ধারকত্ব মাইকোফারাড এককে কত হবে ?

উঃ। প্রতিষ্ঠার বাসেই R = 6400 km = 6400 × 10³ m

ਸ਼ਾਣਵਾਫ਼ =
$$4\pi \in {}_{0}$$
 $R = \frac{6400 \times 10^{3}}{9 \times 10^{9}}$ $F = 71.1 \times 10^{-3}$ $F = 71.1$ mF

 $m{Q}$ A এবং B দৃটি পরিবাহীর ধারকত্বের অনুপাত 3:1; পরিবাহী A-কে $m{Q}$ পরিমাণ তড়িতাধান দিয়ে B পরিবাহীর সাথে আধান বন্টন করানো হল। আধান বন্টনের পর পরিবাহী দৃটির মোট শক্তির সাথে A –পরিবাহীর প্রারম্ভিক শক্তির তুলনা করো। আধান বন্টনের ফলে যে শক্তি কয় হল তার সাথে A-পরিবাহীর প্রারম্ভিক শক্তির তুলনা করো।

উঃ। ধরো, B পরিবাহীর ধারকত্ব = C; তাহলে A-পরিবাহীর ধারকত্ব = 3C.

আধান বণ্টনের পর A–পরিবাহীর আধান
$$q_1=\frac{3C\times Q}{3C+C}=\frac{3}{4}.Q$$
 এবং B ,,
$$q_2=\frac{C\times Q}{3C+C}=\frac{1}{4}.Q.$$

এখন, আধান বভানের পূর্বে A–পরিবাহীর শক্তি $E=\frac{1}{2} imes \frac{\left($ আধান $\right)^2}{$ ্ধারকত্ব $=\frac{1}{2} imes \frac{Q^2}{3C}=\frac{Q^2}{6C}$

এবং, ,, পরে ,, A ,,
$$=\frac{1}{2} \times \frac{(3/4.Q)^2}{3C} = \frac{3}{32} \cdot \frac{Q^2}{C}$$
., ,, B ,, ,, $=\frac{1}{2} \times \frac{\left(\frac{1}{4}Q\right)^2}{C} = \frac{3}{32} \cdot \frac{Q^2}{C}$

$$E_1 = Q^2 - 6C - 3$$

$$E_2 = R^2 - 8C - Q^2 - 4$$

$$E_3 = R^2 - 8C - Q^2 - 4$$

$$E_4 = R^2 - R$$

3.7 ধারক এবং তার মূলনীতি (Capacitor and its principle):

এনটি অর্থারত পরিবার্ট (insulated conductor) এবং আর একটি হু সালয় কলিবার্ট কাছাকাছি

রেখে তাদের ভিতরকার স্থান বায়ু বা অন্য কোনো অর্পারবারী আধ্যান দর্বা পর্ণ করলে যে বাবস্থা হয় তাকে তড়িংধারক বল' হয় তড়িতাধান জন্মা ধরার জন্য ধারক ব্যবহার করা হয়। কার্যক্ষেত্রে বাবহৃত ধারকের সরল জ্যামিতিক আকার থাকে। যেমন, সমান্তরাল পাত ধারক (parallel plate capacitor) -এ দৃটি সমান্তরাল ধাতবপাত মুখেম্খি রাখা হয় অথবা গোলীয় ধারকে দৃটি বিভিন্ন ব্যাসাধবিশিষ্ট সমকেন্দ্রিক গোলক থাকে। ধারকের কার্যনীতি আমরা নিম্নলিখিত বিবরণ হতে বুঝতে পারব।

কার্যনীতি ঃ মনে করো, A একটি অন্তরিত ধাতবপাত। তড়িংযন্ত্রের সাহায়ে। একে এর্পভাবে তড়িতাধান দেওয়া হল যে পাতটির বিভব হল +V ; এই অবস্থায় A পাতের

ধারকত্ম অন্যায়ী তা তড়িতাধান সংগ্রহ করবে (Q=C.V.)। এখন A পারের নিকটে অন্রূপ আর একখানি ধাতব পাত B আনলে তড়িতাবেশের উদ্ভব হবে এবং B পাতের ভিতরের পিঠ ঋণাত্মক আধান এবং বাইরের পিঠ ধনাত্মক আধান পাবে [চিত্র নং 3.4(i)]। এখন, B পাতের ঋণাত্মক আধান A–পাতের ধনাত্মক বিভবকে কিছু কমিয়ে দেবে ; আবার B পাতের ধনাত্মক আধান A পাতের বিভব মোটের উপর বাড়িয়ে দেবে। কিয়ু B পাতের ঋণাত্মক তড়িংযুক্ত পৃষ্ঠ A পাতের কাছে থাকায় A পাতের বিভব মোটের উপর

সামান্য কমে যাবে। ফলে, A পাতের ধারকত্ব কিছু বাড়বে, কারণ আমরা জানি, $C \propto \frac{1}{V}$ অর্থাৎ বিভব কমলে ধারকত্ব বাড়ে। A পাত তথন উৎস হতে আরও তড়িতাধান গ্রহণ করে বিভব পুনরায় V করবে। এখন B পাতকে ভূ-সংগগ্ন করলে, তার মুক্ত ধনাত্মক আধান ভূমিতে চলে যাবে $\{$ চিত্র নং 3.4 $(ii)\}$ । এ আধান A পাতের বিভবকে বাড়াবার যে চেম্টা করছিল, এখন আর তা করবে না। ফলে, A পাতের বিভব আরও হ্রাস পাবে এবং পুনরায় বিভব V-এর সমান করতে উৎস হতে আরও বেশি তড়িতাধান A পাত সংগ্রহ করবে—অর্থাৎ ধারকত্ব আরও বৃদ্ধি পাবে।

সংজ্ঞা ঃ ভূ-সংগ্রম কোনো ভড়িৎবিহীন পরিবাহীকে অন্য একটি অগুরিত ও ভড়িংগ্রেষ্ট পরিবাহীর নিকটে এনে কৃত্রিম উপায়ে অন্তরিত পরিবাহীর ধারকত্ব কৃশ্বির কারস্থাকে ধারক সংল (প্রকৃতপক্ষে য়ে কানে অভিত পরিবাহী-ই ধারক কারণ ঘরের মেঝে এবং দেওয়াল সর্বদা ভূ-সংলগ্ন পরিবাহীর কাজ করে।]

ধারকের ধারকত্ব নিম্নতিখিত বিষয়গুলির ওপর নির্ভর করে ঃ

- (i) A এবং B ধাতবপাত ন্টির ভিতরকার দূর্ম ; এই দূর্ম বাড়লে ধারকত্ব হাস পায় এবং দূরত্ব কমলে, ধারকত্ব বৃশ্বি পায়।
- (ii) তড়িতাহিত পাত A-র ক্ষেত্রফল ; ক্ষেত্রফল বৃদ্ধি পেলে ধারকত্ব বাড়ে এবং ক্ষেত্রফল কমলে ধারকত্ব কমে যায়।
- (iii) পাত দৃটির ভিতরকার মাধ্যম ; পাত দৃটির ভিতরকার জায়গা যদি বায়য়র পরিবর্তে কোনো অন্তরক পদার্থ যেমন কাচ, এবোনাইট, পায়রফিন মোম দ্বারা ভর্তি করা হয় তবে ধারকের ধারকত্ব বৃদ্ধি পায়।

ধারকের সার্থকতা (Significance of a capacitor) ঃ প্রশ্ন উঠতে পারে যে অন্তরিত পরিবাহীর ধারকত্ব কৃত্রিম উপায়ে বৃদ্ধি করার সার্থকতা কী ? ব্যাবহারিক ক্ষেত্রে দেখা যায় যে বিশেষ ধরনের কাজের জন্য তড়িতাধান জন্মা করে রাখার প্রয়োজন হয়। অল্প পরিমাণ স্থানে বেশি পরিমাণ আধান জন্মা করার উদ্দেশ্যেই তড়িৎধারকের সৃষ্টি।

কোনো পরিবাহীতে হড়ি তাধান দিতে থাকলে তার বিভব ক্রমশ বাড়তে থাকে। শেষ পর্যন্ত তার বিভব ব্যথেন্ট বেড়ে গোলে পরিবাহী হতে আধান ক্ষরিত (leak) হতে থাকে। সাধারণ অবস্থায় (কোনো পাত্রের জল ধারণ করার যেমন একটি সীমা আছে ঠিক তেমনি) কোনো পরিবাহীর তড়িৎ-ধারণ ক্ষমতার একটি চরম মাত্রা আছে যেটা পরিবাহীর আকার, সাইজ, মাধ্যম ইত্যাদি কয়েকটি বিষয়ের ওপর নির্ভরশীল। কোনো উপায়ে যদি এই অবস্থায় পরিবাহীর বিভব হ্রাস করানো যায় তাহলে তড়িৎ-ক্ষরণ বন্ধ হয় এবং পরিবাহী আরও কিছু আধান ধরতে সমর্থ নয়। নিম্নতর বিভব থেকে পরিবাহীকে বেশি আধান ধরে রাখার উপযোগী করাই তড়িৎ ধারকের কাজ। 3.4 নং চিত্রে ধারকের যে কার্যপ্রশালী বলা হয়েছে সেখানে B পরিবাহী না থাকলে A পাতে যে–পরিমাণ আধান সঞ্চিত হলে পাত হতে তড়িৎক্ষরণ শুরু হত, B পরিবাহীর উপস্থিতিতে তা অপেক্ষা বেশি আধান A পাতে জমা করা যাবে।

যখন ধারকের সাথে বাটারি যুক্ত করা হয় তখন ধারক চার্জড্ (charged) হয় অর্থাৎ ধারকে তড়িতাধান জমা হতে থাকে। এই প্রণালীকে বলে 'চার্জিং'। আবার, বাটারি খুলে ফেলে

ধারকের দুই প্লেটকে তার দিয়ে যুক্ত করলে ধারক ধীরে ধীরে ভড়িতাধান হারায়। একে ধারকের 'ডিসচার্জিং' বলে। নিম্নলিখিতভাবে ধারকের চার্জিং এবং ডিসচার্জিং হয়ে থাকে। মনে করো, A এবং B একটি ধারকের দুটি প্লেট এবং তাদের সাথে E তড়িচ্চালক বলের একটি ব্যাটারি যোগ করা হয়েছে | চিত্র 3.5 |। ব্যাটারির ঋণাত্মক মেরু হতে ইলেকট্রন ধারকের A প্লেটের দিকে প্রবাহিত হয়। একই সজো ধারকের অপর প্লেট B হতে ব্যাটারির ধনাত্মক মেরুর দিকে ইলেকট্রনের প্রবাহ ঘটে। এতে প্লেট দুটিতে ধনাত্মক ও ঋণাত্মক তড়িতাধানের উৎপত্তি হয়ে ইলেকট্রন প্রবাহের পথে বাধা

জন্মায়। যত ধারক চার্জ ৬ হয়ে প্লেটে তড়িতাধানের সমাবেশ ঘটায় তত প্লেট দুটির বিভব-পাথ কি বাড়তে থাকে। যখন এই বিভব-পার্থকা বেড়ে বাটোরির তড়িচ্চালক বল E -এর সমান হয় তখন চার্জিং প্রবাহত শুন। হয় তখন বলা হয় যে ধারকটি সম্পূর্ণরূপে 'চার্জ'ছ' হয়েছে। একথ গমনে রাখা প্রয়োজন যে চার্জিং প্রধালী তাংক্ষণিক (instantaneous) নয়; এর জন্য কিছু সময় দরকার। তাছাড়া, চার্ভিং প্রবাহ চার্ভিং শুরু হবার সময় স্বাধিক থাকে এবং কুমশ স্ফীণ হয়ে ধারক সম্পূর্ণ 'চার্জ্ড' হলে শুনা হয়।

ধারক হতে ব্যাটারি খুলে ফেলে ধারকের প্লেট পৃটিকে তার দিয়ে যুক্ত করলে, A প্লেট থেকে ইলেকট্রন B—প্লেটে ফিরে যায় এবং B—প্লেটের ধনাত্মক আধানও ধীরে ধীরে প্রশমিত হয়। একে বলা হয় ভিস্চার্জ প্রবাহ। কিছুক্ষণের মধ্যেই A প্লেটের সব ইলেকট্রন B প্লেটের সব ধনাত্মক আধানকে প্রশমিত করে এবং ডিসচার্জ প্রবাহ শ্নামানে উপস্থিত হয়। তখন বলা হয় যে ধারক সম্পূর্ণরূপে 'ডিসচার্জড' হয়েছে। বলা বাহুল্য, যে ডিসচার্জ প্রণালীও তাৎ-ক্ষণিক নয়। তাছাড়া ডিসচার্জ প্রবাহও ডিসচার্জিং শুরু হবার সময় সর্বাধিক থাকে

এবং ক্রমশ হ্রাস পেয়ে ধারক সম্পূর্ণ 'ডিসচার্জড' হলে শূন্য হয়। তবে চার্জিং প্রবাহ এবং ডিসচার্জ প্রবাহ পরস্পরের পিরীতমুখী [চিত্র 3.6]।

3.8

ধারকের ধারকত্ব ও বিভব (Capacitance and potential of a capacitor) :

দুটি পরিবাহী দ্বারা ধারক গঠিত ; তাদের মধ্যে একটি অন্তরিত এবং অপরটি ভূ-সংলগ্ন। ধারকের ধারকত্ব বলতে অন্তরিত পরিবাহীর ধারকত্বই বুঝায়।

সংজ্ঞা ঃ ধারকের দুই পরিবাহীর ভিতর একক মাত্রার বিভব-পার্থক্য সৃষ্টি করতে তার অন্তরিত পরিবাহীতে যে-পরিমাণ তড়িতাধান দেওয়া প্রয়োজন, তাকেই ধারকের ধারকত্ব বলা হয়।

থারকের ধারকত্ব = পরিবাহীদ্বয়ের বিভব-পার্থকা

ধারকের অন্তরিত পরিবাহীকে q তড়িতাধান দিলে, পরিবাহী দুটির ভিতর বিভব-পার্থক্য যদি V হয়,

তবে ধারকের ধারকত্ব $C=rac{q}{V}$ ।

এস্থালে উল্লেখযোগ্য যে ধারকত্ব সর্বদাই একটি ধনাত্মক রাশি, আধান বা বিভবের ন্যায় ধারকত্ব ঋণাজ্মক হয় না। তাছাড়া, পরিবাহী এবং ধারকের ধারকত্ব একই এককে প্রকাশ করা হয়। অনুরূপভাবে, ধারকের বিভব বলতে তার অন্তরিত পরিবাহীর বিভব বুঝায়। অপর পরিবাহী ভূ–সংলগ্ধ; তার বিভব সর্বদা শূন্য। কাজেই ধারকের বিভব বলতে তার অন্তরিত এবং ভূ–সংলগ্ধ পরিবাহীদের বিভব–পার্থক্য বলা যেতে পারে।

সাধারণত ধারক প্রস্তুতকারীরা ধারকত্বের মান এবং ব্যবহারয়োগ্য সর্বোচ্চ ভোপ্টেজের মান ধারকের গায়ে খোদাই করে অথবা লেবেল এঁটে দেন। $0.05\,\mu F-230V$ খোদাই করা থাকলে বুঝতে হবে যে ঐ ধারকের ধারকত্ব $0.05\mu F$ এবং সর্বোচ্চ যে ভোপ্টেজ ঐ ধারকে প্রয়োগ করা যেতে পারে তা 230V; যদি কখনও 230 ভোপ্টের বেশি ভোপ্টেজ প্রয়োগ করা হয়, তাহলে ধারকটি নম্ট হয়ে যেতে পারে।

ধারক সম্বশ্বে কয়েকটি জ্ঞাতব্য বিষয় :

(i) যখন কোনো ধারককে কোনো ব্যাটারির দুই ক্ধনীর সঙ্গে যুগু করা হয় তখন ধারকের দুই প্লেটের ভিতর বিভব-প্রভেদ ব্যাটারির তড়িচ্চালক বলের সমান হয়। ব্যাটারির তড়িচ্চালক বল E হলে, ধারকের প্লেট দুটির ভিতর বিভব-প্রভেদ হবে E।

- (ii) ব্যাটারির পর্জিটিভ প্লেট ধারকের পর্জিটিভ প্লেটে +Q আধান এবং নেগেটিভ প্লেট ধারকের নেগেটিভ প্লেটে -Q আধান সরবরাহ করে। ফলে ধারকের মোট আধান হয় শন্য।
- (iii) E এড়িচ্চালক বলযুক্ত বাাটারি তার নেগেটিভ প্রান্ত থেকে পজিটিভ প্রান্তে Q এড়িৎ পাঠালে বাাটারি কর্তৃক কৃতকার্য = EQ। এই কার্য ধারকে স্থিতিশক্তিবপে সঞ্জিত থাকে।

3.9. আপেক্ষিক আবেশিক ধারকত্ব (Specific inductive capacity)

ধারকের দুই পরিবাহীর ভিতর যে মাধ্যম থাকে তাকে পরাবিদ্যুৎ (dielectric) বলা হয়। পরীক্ষা করে দেখা গেছে যে ধারকের পরাবিদ্যুৎ হিসাবে বায়ুর পরিবর্তে প্যারাফিন, গল্ধক, কাচ, এবোনাইট, অস্ত্র প্রভৃতি অপরিবাহী পদার্থ ব্যবহার করলে ধারকের ধারকত্ব বৃদ্ধি পায়। এই কারণে বলা হয় যে ঐ সকল পদার্থের আপোঞ্চক আর্বোশক ধারকত্ব বায়ু অপেঞ্চা বেশি।

সংজ্ঞা ঃ কোন ধারক-এ কোন পরাবিদাৎ ব্যবহার করলে যে-ধারকত্ব হয় এবং বায়ু মাধ্যম ব্যবহার করলে যে-ধারকত্ব হয় এই দুই ধারকম্বের অনুপাতকে ঐ পরাবিদ্যুত্র আপেক্ষিক আবেশিক ধারকত্ব বলা হয়।

K = ধারক-এ ঐ মাধ্যম নিয়ে ধারকত্ব ধারক-এ বায়ু নিয়ে ধারকত্ব

যেমন, কোনো ধারক-এ পরাবিদ্যুৎ হিসাবে কাচ ব্যবহার করলে তার ধারকত্ব বায়ু মাধাম অবস্থায় ধারকত্ব অপেক্ষা প্রায় 8.5 গুণ হয়, অর্থাৎ কাচের আপেক্ষিক আবেশিক ধারকত্ব ৪.5 গোরক সম্পর্কিত আলোচনায় আপেক্ষিক আবেশিক ধারকত্ব বা পরাবৈদ্যুতিক ধ্ববক-কে অনেক সময় K অক্ষর দারা সুচিত করা হয়।

cgs পদ্ধতিতে মাধ্যমের পরাবৈদ্যতিক ধুবক এবং আপেক্ষিক আবেশিক ধারকত্ব একই – এদের ভিতর পার্থক্য নেই। কিন্তু এস. আই পদ্ধতিতে পরাবৈদ্যতিক ধুবক – আপেক্ষিক আবেশিক ধারকত্ব \times শূন্য মাধ্যমের ভেদনযোগ্যতা (2.4 অনুচ্ছেদ দ্রুষ্টব্য)।

3.10 বিভিন্ন প্রকার ধারক (Different types of capacitors)

(i) সমান্তরাল পাত ধারক (Parallel plate capacitors) : যে-কোনো আকারের দুটি ধাতব পাতকে পরস্পর হতে সামান। দূরে সমান্তরালভাবে রেখে ধারক গঠন করলে তাকে সমান্তরাল পাত

ধারক বলা হয়। 3.7 নং চিত্রে য়েমন দেখানো হয়েছে ইরপ পাত দ্টির ভিতর একখানি কণ্টের ফ্লেট রাখলে তাকে এপিনাসের সমান্তরাল পাত ধারক বলা হয়।

- (ii) গোলীয় ধারক (Spherical capacitor):
 দৃটি সমকেন্দ্রিক গোলক নিয়ে যে কোনো একটিকে তড়িতাহিত
 করে অপ্রবৃত্তিক ভ সংলগ্ন কবলে গোলীয় ধারক গঠিত
 হয় গোলক দৃটির ভিতরকার জয়বংশ বয়ে অথবা এন
 কোনো মাধ্যম দারা ভর্তি করা যেতে পারে।
- (iii) চোঙাকৃতি ধারক (Cylindrical capacitor): ও চার্ড ক্রিক ক্রিক্টেড ১৬

থাকে। A চোঙ তড়িতাহিত এবং স্থির। এর খ্ব নিকটে সামান্য বায়পর্ব স্থান কাঁক রেখে একই ব্যাসের

অপর চোগু C একই অক্ষ বরাবর স্থাপিত থাকে । চিত্র নং 3.8]। C চোগু রাখার উদ্দেশ্য হচ্ছে A চোগুর প্রান্তভাগের বলরেখাগুলি অবিকৃত রাখা। অভ্যন্তরস্থ ভূ-সংলগ্ন চোগু B বাইরের A চোগুর সাথে সমাক্ষীয় এবং অক্ষ বরাবর তাকে সামনে-পিছনে সরানো যায়। B চোগুর সাথে মোইক্রোমিটার স্কু (M) থাকে তা থেকে এ চোগুর সরণ

মাপা যায়। বাইরের কোনো বৈদাতিক প্রভাব যাতে ধারককে প্রভাবিত করতে না পারে এই উদ্দেশ্যে তড়িতাহিত A–চোঙকে ভূ-সংলগ্ন আর একটি চোঙ (চিত্রে কণ্টা রেখা দিয়ে দেখানো হয়েছে) দারা আচ্ছাদিত রাখা হয়।

(iv) পরিবর্তনীয় বায়ু ধারক (Variable air capacitor) : এটা বস্তুত একটি পরিবর্ধিত

সমান্তরাল পাত বায়ু ধারক। এর সুনিধা এই যে ইচ্ছামত এর ধারকত্ব বাড়ানো-কমানো যায়। বেতার গ্রাহক যন্ত্র এবং অন্যান্য ইলেকট্রনিক যন্ত্রপাতিতে এর বহুল ব্যবহার আছে। এতে দুই সারি আলুমিনিয়াম প্লেট আছে; এক সারি স্থির এবং অন্য সারিকে ঘুরানো যায়। ঘুর্ণনক্ষম সারিকে আন্তে আন্তে ঘোরালে দুই সারির ভিতর প্রাবরিত ক্ষেত্রফল (area of overlap) পরিবর্তিত হবে এবং তাতে ধারকের ধারকত্বও ধীরে ধীরে পরিবর্তিত হবে। প্রতি দুটি প্লেটের ভিতর বায়ু পরাবিদ্যতের কাজ করে। বায়ুপূর্ণ স্থানের বেধ যত কম হবে, ধারকত্ব তত বৃদ্ধি পাবে।

3.9 নং চিত্রে একটি পরিবর্তনীয় বায়ুধারকের আকৃতি দেখানো হয়েছে। প্লেটগুলির আকার এরপ যে K - বর্তুল ধীরে ধীরে একই দিকে ঘোরাতে থাকলে দুই সারি প্লেটের প্রাবরিত ক্ষেত্রফল সুষমভাবে গ্রাস বা বৃদ্ধি পায়; ফলে, ধারকত্বের সুষম পরিবর্তন ঘটে। চিত্রে A প্লেটগুলি স্থির এবং B

প্লেটগুলি ঘূর্ণনক্ষম। A প্লেটগুলি S1 কথনীতে এবং B প্লেটগুলি S2 কথনীতে যুক্ত।

(v) অল্ল-ধারক বা বুক-ধারক (Mica capacitor or block capacitor) : এটা প্রকৃতপক্ষে

কয়েকটি সমান্তরাল পাত ধাককের সমান্তরাল সমাবয়। আকারে এটি একটি ক্ষুদ্র ফলক বা ব্লকের নায় বলে একে অনেক সমান্ত বুক ধারক বলা হয়। চিত্র 3.10।। এর ধারকত্ব থিরে (fixed), কিছু বিভিন্ন থির ধারকত্বের বুক ধারক পাওয়া যায়। বেতার গ্রাহক যত্রে এই ধরনের বুক ধারকে পাওয়া যায়। বেতার গ্রাহক যত্রে এই ধরনের বুক ধারকে বাহু বাবহার আছে। এই ধারক নির্মাণ করা হয় কতকর্গাল টিনপাত পর পর রেখে এবং প্রত্যেক দৃটি পাতের ভিতর পাতলা অগ্রের চাদর রেখে। চিত্রে সরু লাইনগুলি টিনপাত এবং মোটা লাইনগুলি অগ্রের চাদর বোঝাড়ে বলা বংহুলা, উনপাত্রগুল ধারকের প্রেটার কাছ করে এবং অগ্রের চাদর ক্রেণ্ড প্রবারকাশ্বের ক্রছে করে এবং অগ্রের চাদর ক্রেণ্ড প্রবারকাশ্বের ক্রছে করে এবং অগ্রের

পাত্রগুলি একস্থাে মৃত করে A কলনার সাথে এব সায়ে পাত্র্লি একস্থাে মৃত্ত করে B কর্মীর সাথে সাংয়োগ করা হয়। ফলে, ধারকর্শেল সমান্তরাল সমবান মৃত্ত হয়ে, একটি বড় ধার্কে পরিগত হয়।

(vi) কাগভ ধারক (Paper capacitor): এই ধারক সিল্ল করা হয় লী পিল অথবা আলেহিনিয়াম লাডের মধ্যে পণবাসিল মোমে ভিজনো নাম পাত্রা বাংগ্রের ফলি বেয়ে। কাংগ্রের ফালিসহ পাত দুটিকে পাকিয়ে (rolled) চোঙাকৃতি করা হয়। অন্তংপর পুনরায় একে প্যারাফিনে ভিজিয়ে নেওয়া হয়। বলা বাহুলা, এটাও একটি সমান্তরাল পাত ধারক ; টিন বা অ্যালুমিনিয়াম পাতদম ধারকের প্রেট এবং পাকানো প্যারাফিনযুক্ত কাগজ প্রাবিদ্যুৎ। পাকিয়ে রাখার ফলে এর আয়তন খুব ছোটো হয়। তাছাড়া, প্যারাফিনযুক্ত কাগজ মাধ্যম হিসাবে ব্যবহার করাতে এটি খুব কম মূল্যে পাওয়া যায়। 3.11 নং চিত্রে একটি কাগজ-ধারক দেখানো হয়েছে।

(vii) তড়িদ্বিপ্লিম্ট ধারক (Electrolytic capacitor): দৃটি অ্যালুমিনিয়াম পাতের মাঝখানে কোনো উপযুক্ত তড়িদ্বিপ্লেষ্য (electrolyte) বা তরল পরিবাহী রেখে তাদের ভিতর সম তড়িৎপ্রবাহ (direct current) পাঠালে তড়িৎবিপ্লিম্ট ধারক তৈরি হয় (চিত্র 3.12)।

তড়িংপ্রবাহের ফলে অ্যানোড প্লেট অর্থাৎ সমতড়িৎ প্রবাহ উৎসের ধনাত্মক মেরুর সাথে যুক্ত অ্যালুমিনিয়াম প্লেটে পাতলা আালুমিনিয়াম অক্সাইডের একটি সর (film) পড়ে। এই সরটি তড়িৎ অম্ভরক। দুই প্লেটের মাঝখানে থেকে এটি পরাবিদ্যুতের (dielectric) কাজ করে। যেহেতু ধারকের ধারকত্ব C পরাবিদ্যুতের বেধের

(d) ব্যস্তানুপাতি $\left(C \propto rac{1}{d}
ight)$ এবং অ্যালুমিনিয়াম অক্সাইড সরের বেধ খুব কম, সেহেতৃ এই ধারকের

ধারকত্ব খুবই উচ্চ মানের হতে পারে। খুব ক্ষুদ্রায়তনের এইরূপ ধারক কয়েক সহস্র মাইক্রো-ফাারাড ধারকত্ব উৎপন্ন করতে পারে। অক্সাইড সরকে অক্ট্রর রাখার জন্য অ্যানোড প্রান্তকে লাল রংয়ে চিহ্নিত করা হয় অথবা + চিহ্ন লিখে দেওয়া হয়। যে বর্তনীতে এই ধারক ব্যবহার করা হয় তার ধনাত্মক প্রান্ত সর্বদা এই অ্যানোড প্রান্তর সঙ্গো যুস্ত করা প্রয়োজন। সংযোগ উল্টো হলে, অক্সাইড সরটি ক্ষতিগ্রস্ত হয়ে ধারকটিকে নন্ট করে দেবে। যে ভোল্টেজ এই ধারকের প্রয়োগ করতে হবে তাও সরের বেধের দ্বারা সুনির্দিন্ট এবং তার মান ধারকের গায়ে লেখা থাকে। বেশি ভোল্টেজ প্রয়োগ করলে সরটি ভেন্তে যেতে পারে।

উপরিউত্ত শর্তাদির জন্য এই ধারকের ব্যবহার খুবই সীমিত। ধারকটি খুব নির্ভরযোগ্যও নয়—কারণ একটু পুরানো হলেই অক্সাইড সরটি ভেঙে যাবার সম্ভাবনা থাকে। একমাত্র সুবিধা এই যে খুব অল্প পরিসরে এই ধারক থেকে উচ্চ মানের ধারকত্ব পাওয়া যায়। তাই সম্ভা ধরনের বেতার-গ্রাহক যন্ত্রে এর প্রচুর ব্যবহার দেখতে পাওয়া যায় কিন্তু দামি যন্ত্রে ব্যবহার করা হয় না।

কোনো কোনো তড়িদ্বিক্লিন্ট ধারকে আলুমিনিয়াম পাতের পরিবর্তে ট্যানটালাম পাত ব্যবহার করা হয় এবং পাত দুটিকে সালফিউরিক অ্যাসিড তড়িদ্বিক্লেয়্যে নিমজ্জিত রাখা হয়।

3.11. সমান্তরাল পাত ধারকের ধারকত্বের হিসাব (Calculation of capacitance of parallel plate capacitors) :

যে–কোনো আকারের দৃটি ধাতব পাতকে পরস্পর হতে সামান্য দূরে সমান্তরালভাবে রেখে ধারক গঠন করলে ভাকে সমান্তরালপাত ধারক বলা হয়। ধারকের তড়িতাহিত পাত A এবং ভূ-সংলগ্ন পাত B যদি সমান আকার ও আকৃতিবিশিষ্ট হয় এবং যদি খুব কাছাকাছি থাকে তাহলে আমরা মনে করতে পারি যে, পাতদ্বরের মধ্যে ৩ড়িং বলরেখার্গুল ঋজু ও সমান্তরাল (চিত্র 3.13)। ফলে, ঐ পাত দুটির ভিতর তড়িংক্ষেত্রের প্রাবল্য সর্বত্র সমান হবে।

ধরো, য়ে-কোনো পাতের ক্ষেত্রফল $= \alpha$. A-পাতের ভড়ি তাধান = +Q. পাতদ্বরের পারস্পরিক দূরত্ব = d এবং মাধ্যমের পরাবৈদ্যুতিক ধ্রবক = K.

A–পাতের আধানের তলমাত্রিক ঘনত্ব $\sigma=rac{Q}{lpha}$; যদি পাত দুটির মধ্যে তড়িৎক্ষেত্রের প্রাবল্য E ধরা যায়, তবে প্রমাণ করা যায় যে $E=rac{\sigma}{K}$ [2.5 অনুচ্ছেদ দ্রস্টব্য]

পাত দুটির বিভব-পার্থক্য V হলে, (B পাত ভূ-সংলগ্ন বলে শূন্য বিভব পায়) V= একটি একক তড়িতাধান (ধনাত্মক)-কে B প্লেট হতে A প্লেটে আনতে কৃতকার্য = একক আধানের উপর প্রযুক্ত বল \times দূরত্ব = $\frac{\sigma}{K \in \Omega} \times d$

ধারকের ধারকত্ব
$$C$$
 হলে, $C = \frac{Q}{V} = \frac{Q}{\sigma.d} = \frac{K \in_0 Q}{\sigma.d}$

A–প্লেটের তড়িতাধান $Q = \alpha. \sigma$;

$$C = rac{K \in_0 lpha.\sigma}{\sigma.d} = rac{K.\in_0 lpha}{d} = K \in_0.$$
 $rac{A$ পাতের ক্ষেত্রফল পাত দুটির ভিতর দূরত্ব

যদি পরাবৈদ্যুতিক মাধ্যম বায়ু হয় , তবে K=1 এবং সেক্ষেত্রে $C=rac{\epsilon_0}{d}$ farad

লক্ষ কর, যে ধারকের ধারকত্ব আধান Q-এর উপর নির্ভর করে না ; যেমন কোনো জলাধারের জল ধারণ-ক্ষমতা (capacity) জলের পরিমাণের উপর নির্ভর করে না।

্রিকটব্য ঃ cgs পদ্ধতিতে, $C=rac{K.lpha}{4\pi d}$ । এখানে K= মাধ্যমের পরাবৈদ্যুতিক ধ্রুবক; $lpha={
m cm}^2$ এককে প্রত্যেক প্লেটের ক্ষেত্রফল এবং $d={
m cm}$ এককে প্লেটেদ্যের অন্তর্বতী দূরত্ব।

D Examples D

① একটি সমান্তরাল পাত ধারকের উচ্চ বিভব পাতের ক্ষেত্রফল 200 cm² এবং পাত দুটির ভিতরকার দূরত্ব 1 cm। পাত দুটির ভিতরকার জায়গা যদি একটি এবোনাইট (আপেক্ষিক আবেশিক ধারকত্ব = 3) প্লেট অধিকার করে, তবে ঐ ধারকের ধারকত্ব কত?

উঃ। cgs পন্ধতিতে সমান্তরাল শ্লেট ধারকের ধারকত্ব $C=rac{K}{4\pi d} {
m esu}.$

এখনে K = 3; $\alpha = 200 \text{ cm}^2$; d = 1 cm.

জান্ত্রবর্গ, $C = \frac{3 \times 200}{4 \times 3.14 \times 1}$ esu = 47.77 esu.

এস. আই পথতি ঃ S.I. গশ্বতিতে
$$C = \frac{K.\epsilon_0}{d} = \frac{3 \times 8.85 \times 10^{-12} \times 200 \times 10^{-1}}{10^{-2}}$$
 = 53.1 × 10¹² farad.

একটি সমান্তরাল পাত বায় ধারকের দুই প্লেটের দূরত 1 mm; প্লেট দুটির ক্ষেত্রকল কত হলে ধারকের ধারকত্ব 1 ফ্যারাড হবে?

উঃ। বায়ুহে $C = \frac{\epsilon_0}{d}$ F ; এখানো C = 1 F ; $\epsilon_0 = 8.85 \times 10^{-12}$ এবং d = 1 mm = 0.001 m.

$$\therefore 1 = \frac{8.85 \times 10^{-12} \times \alpha}{0.001} \therefore \alpha = \frac{0.001}{8.85 \times 10^{-12}} = 1.13 \times 10^8 \,\mathrm{m}^2.$$

একটি সমান্তরাল পাত বায়ু ধারকের প্রেটের ক্ষেত্রফল $2m^2$ এবং প্লেট দৃটির ব্যবধান
 5 mm। ধারকের প্লেট দৃটির ভিতর বিভবপ্রভেদ 10,000 volt হলে, (i) ধারকের ধারকত্ব
 (ii) প্রত্যেক প্লেটের আধান (iii) প্লেট দৃটির অভ্যন্তরে তড়িৎক্ষেত্রপ্রাবল্য নির্ণয় করো।
 ধারকের প্লেট দৃটির ভিতরম্প ব্যবধান পরিপূর্ণভাবে কাচ দ্বারা ভর্তি করলে, ধারকের
 ।ধারকত্ব কত হবে ? কাচের আপেঞ্চিক আবেশিক ধারকত্ব = 5.6

উঃ। (i) সমান্তরাল পাত বায় ধারকের ধারকত্ব $C=\frac{\epsilon_0}{d}$; এখানে $\epsilon_0=8.85\times 10^{-12}$; $\alpha=2\mathrm{m}^2$ এবং $d=5~\mathrm{mm}=5\times 10^{-3}~\mathrm{m}$.

(ii) ধারকের প্লেটের আধান $Q=C.V-3.54 \times 10^{-9} \times 10^4=$ 3.54 \times 10^{-5} coulomb

(iii) ভড়িৎক্ষেত্রের প্রাবল্য
$$E = \frac{V}{d} = \frac{10,000}{5 \times 10^{-3}} = 20 \times 10^{5} \text{ volt/metre.}$$

K - আপেকিক আবেশিক ধারকত্বের মাধ্যমযুগু সমান্তরাল পাত ধারকের ধারকত্ব C=K.C=5.6 $imes 3.54 imes 10^{-9}$ farad.

(খ) মিশ্র পরাবিদ্যুৎযৃত্ত সমান্তরাল পাত ধারকের ধারকত্ব (Capacitance of a parallel plate capacitor with a compound dielectric):

শারকের দৃটি পাত A এবং B ্রর ভিতরতার বর্ত্ন d । ঐ দূরত্ব K_1 পরাবিদ্যুৎ দারা অধিকৃত। ঐ

মাধানের ভিতর t্রপের এবং K_0 পরাবিদ্রতের এপর একটি মাধ্যমের সমাওরাল ফলক রাখলে $|5 \le 3.14|$, মিশ্র পরাবিদ্যথেও ধারক তৈরি হয়। বলা বাইলা, K_1 পরাবিদ্যতের বেধ — (d-t); এই বারস্থার ফালে ধারকের অভ্যন্তরস্থা তড়িৎক্ষেত্রের সুষমভার (uniformity) কোনো পরিবর্তন হয় লা। ধরো, গ্রাভূত তিও A প্রতের ক্ষেত্রের সাহতের

আধানের তলমাত্রিক ঘনত $\sigma = \frac{Q}{\alpha}$;

 K_1 where the same of a project state E_1 had $E_1 = rac{\sigma}{|\cdot|_0} K_1$ and K_2 which a first

$$E_2 = \frac{\sigma}{\kappa_1 K_1}$$

এখন, A এবং B দুই পাতের কথা বিরেচনা করলে এবং তাদের বিভব পার্থকা V হলে \cdot

$$V = \frac{\sigma}{\epsilon_0 K_1} \times (d - t) + \frac{\sigma}{\epsilon_0 K_2} \times t = \frac{\sigma}{\epsilon_0} \left[\frac{d - t}{K_1} + \frac{t}{K_2} \right] = \frac{Q}{\epsilon_0 \alpha} \left[\frac{d - t}{K_1} + \frac{t}{K_2} \right]$$

$$:$$
 ধার কের ধারকত্ব $C=rac{Q}{V}=rac{\epsilon_0 \ lpha}{\left[rac{d-t}{K_1}+rac{t}{K_2}
ight]}$ $\left[Q=\sigma.lpha
ight]$

যদি
$$K_1=1$$
 (বায়ু) হয়, এবং $K_2=K$ হয় তবে, $C=\dfrac{\epsilon_0}{\left(d-t+\dfrac{t}{K}\right)}=\dfrac{\epsilon_0}{\left\{d-\left(t-\dfrac{t}{K}\right)\right\}}$

্রিক্টব্য ঃ লক্ষ করার বিষয় যে $\left(t-\frac{t}{K}\right)$ ধনাত্মক হওয়ায় ধারকের অভ্যন্তরস্থ বায়ু মাধ্যমে t বেধের অপর একটি মাধ্যম প্রবেশ করাবার ফলে ধারকত্ব বৃদ্ধি পায়। উপরিউক্ত সমীকরণ হতে এটাও বোঝা যায় যে t বেধযুক্ত পরাবিদ্যুতের ফলক প্রবেশ করালে পাত দুটির অন্তবতী দূরত্ব কার্যত $\left(t-\frac{t}{K}\right)$ পরিমাণ কমে যায়। পূর্বের ধারকত্ব ফিরে পেতে গোলে A এবং B পাত দুটির দূরত্ব বৃদ্ধি করতে হবে। এই দূরত্ব বৃদ্ধি x হলে স্পন্টত $x=t-\frac{t}{K}$ অথবা $x=t\left(1-\frac{1}{K}\right)$.

EXAMPLES D

$$x=t\bigg(1-\frac{1}{K}\bigg)\,\mathrm{m}.$$
 Solve, $x=3.5~\mathrm{mm}=3.5\times10^{-3}\mathrm{m}$ and $t=4\mathrm{mm}=4\times10^{-3}~\mathrm{m}$

কালেই $3.5 \times 10^{-3} - 4 \times 10^{-3} \left(1 - \frac{1}{K}\right)$ অথবা, $\frac{3.5}{4} = 1 - \frac{1}{K}$: K = 8

2 একটি সমান্তরাল পাত ধারকের শ্রেট দৃটির ভিতর দূরত্ব d; ঐ স্থানে যখন t বেধের (t < d) কোনো অন্তরক স্র্যাব ঢুকানো হয়, তখন ধারকের ধারকত্ব দ্বিগুণ হয়। অন্তরক পদার্থের পরাবৈদ্যুতিক ধুবক 3 হলে, t/d এর মান নির্ণয় করো। t=3 cm হলে, d-এর মান কত ?

উঃ। ধর, ধারকের প্রতিটি প্লেটের ক্ষেত্রকে = $\alpha \, \mathrm{cm}^2$ । যথন ধারক বায়ুপূর্ণ তথন তার ধারকত্ব C_1 α α α α α α α প্রতিক প্রতিক প্রতিক প্রতিক স্থান কর্মনা কর্মনা কর্মনা কর্মনা কর্মনা কর্মনা ধারকত্ব α

$$C_2=rac{a}{4\pi(d-t+t-k)}-rac{a}{4\pi(d+t+t-3)}-rac{a}{4\pi(d-2t-3)}$$
 ; প্রগালেরী $C_2=2C_1$

4md 21 3) 4md swartd - 34; 220 1 3, 520 d 4 cm.

(গ) গোলীয় ধারক (Spherical capacitor) : ধরো, একটি গোলীয় ধারকের ভিতরের গোলকটির ব্যাসার্ধ r_1 এবং বাইরের গোলকটির r_2 ; ভিতরের গোলককে +Q আধান দেওয়া হল এবং

বাইরের গোলকটি ভূ-সংলগ্ন (চিত্র 3.15) আছে। যেহেতু A গোলক থেকে নির্গত সকল তড়িং বলরেখা B গোলককে ছেদ করে, সেইহেতু B গোলকের অভান্তরে -Q তড়িতাধান আবিষ্ট হবে এবং বাইরের পৃষ্ঠের আবিষ্ট আধান ভূমিতে চলে যাবে। ভিতরের গোলক A-র বিভব V হলে, V = নিজম্ব (+Q) তড়িতাধানের জন্য বিভব + আবিষ্ট তড়িতাধানের (-Q) জন্য বিভব।

একটি সুষমভাবে তড়িতাহিত গোলকের পৃষ্ঠের বিভব হিসাবে করতে গিয়ে আমরা মনে করতে পারি যে তার সমস্ত আধান যেন তার কেন্দ্রে জমা করা আছে। অতএব, নিজস্ব তড়িতাধানের জন্য A গোলকের বিভব =

 $rac{Q}{4\pi\in_0^-r_1}$; আবার একটি ফাঁপা গোলকের অভ্যন্তরে সর্বত্র বিভব সমান এবং তা এ গোলকের পৃষ্ঠ-বিভবের সমান বলে =Q আবিষ্ট তড়িতাধানের জন্য A গোলকের বিভব

$$= - \frac{Q}{4\pi \in_0^0 r_2}$$

অতএব,
$$V = \frac{1}{4\pi \epsilon_0} \left[\frac{Q}{r_1} - \frac{Q}{r_2} \right] = \frac{Q}{4\pi \epsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{Q}{4\pi \epsilon_0} \left(\frac{r_2 - r_1}{r_1 r_2} \right)$$

ধারকের ধারকত্ব
$$C$$
 হলে, $C=rac{Q}{V}=rac{4\pi \in _0}{\left(rac{r_2-r_1}{r_1r_2}
ight)}=rac{4\pi \in _0.r_2r_1}{r_2-r_1}$

যদি পরিবাহীদ্বয়ের ভিতরকার মাধ্যম বায়ু না হয়ে অন্য কিছু হয় যার পরাবৈদ্যুতিক শ্বুবক K তবে

$$C = 4\pi \frac{K. \in_0^{\sim} r_2 r_1}{r_2 - r_1}$$

্রেক্টব্য ঃ (i) যদি ভিতরের গোলকটি ভূ-সংলগ্ন হয় এবং বাইরের গোলকটি ভড়িতাহিত হয় তবে প্রমাণ করা যায় যে, ঐ ধারকের ধারকত্ব $C=rac{4\pi\,\epsilon_0}{r_2-r_1}$

(ii) c.g.s পশ্ধতি অনুযায়ী $C=rac{Kr_1r_2}{r_2-r_1}$ । গোলীয় ধারকের বাইরের গোলকটি অসীম দূরত্বে $(r_2=\infty)$ স্থানান্তরিত হলে, আমরা একটি বিচ্ছিন্ন (isolated) গোলক পাই। ঐ বিচ্ছিন্ন গোলকের ধারকত্ব $C=rac{4\pi \in_0 Kr_1r_2}{r_2}=4\pi \in_0 Kr_1$ (3.4 অনুচ্ছেদ দেখো।]

Examples O

 $m{B}$ একটি গোলক $m{A}$ –কে আর একটি বৃহত্তর ব্যাসার্ধের ভূ-সংলগ্ন গোলক $m{B}$ দারা সম্পূর্ণ আবৃত করলে, প্রমাণ করো যে, $m{A}$ –গোলকের ধারকত্ব $m{n}$ পূণ বৃদ্ধি পায় যদি $m{B}$ গোলক এবং $m{A}$ গোলকের ব্যাসার্ধের অনুপাত হয় $\frac{n}{(n-1)}$

উটা ধরে A গোলকের বাসোর্থ = r_1 এবং B গোলকের = r_2 , গোলকের $r_1 - \frac{n}{n-1}$ (i)

এখন, বাহুমধ্যে A গোলপুকর ধারক $C_I=4\pi\epsilon_0 r_1$ B গোলক ছার A গোলক-কে আবেও করলে এবং B গোলক ভ সংলগে হলে, এ গোলীয়

ধালকের ধারকজ্ব
$$C_2=rac{4\pi}{\left(r_2-r_1
ight)}$$
 ; এখন, $rac{C_2}{C_1}=rac{r_2}{\left(r_2-r_1
ight)}$

(i) নং সমীকরণ থেকে r_2 –এর মান বসালে পাই,

$$\frac{C_2}{C_1} - \frac{r_1 \cdot n}{(n-1) \times \binom{r_1 n}{(n-1)} - r_1} = n$$

সাতএব, $C_2=n.$ C_1

2) 4 cm ও 6 cm ব্যাসার্ধের দৃটি সমকেন্দ্রিক ধাতব গোলকের বাইরের দিকে + 30 esu আধানে আহিত করা হল। যদি ভিতরের গোলকটিকে ভূমির সাথে সংযুক্ত করা হয়, তবে এর ওপর কতটা আধান থাকবে? সংস্থাটির ধারকত্ব কত হবে?

উঃ। 3.16 চিত্র দেখো। A 4cm ব্যাসার্ধের এবং B 6 cm ব্যাসার্ধের গোলক। A গোলক ভূ-

সংল্যা। ধরো বাইরের গোলক-কে + Q গড়িত'ধান দেওয়' হল। এ ক্ষেত্রে A গোলকে আবিষ্ট তড়িতাধান - Q গরে না ; কাবণ B গোলক থেকে নির্গত বলরেখার রেশির ভাগ অংশ বাইরের দিকে প্রসারিত হয়ে এসীমে এথবা অন্যবস্তুতে শেষ থবে। ভূ-সংলগ্ন A গোলকের উপস্থিতির জনা কিছ্ সংখ্যক বলরেখা ভিত্রের দিকে প্রসারিত হয়ে A-গোলকে শেষ থবে। ধরো, A গোলকের আবিষ্ট গুড়িগুগানের পরিমাণ = Q'। এখন, A গোলকের বিভব নিজস্ব গাবিষ্ট গুড়িগের জন্য বিভব

 $=rac{Q'}{a}+rac{Q}{b}$; কিন্তু A গোলক ভ-সংলগ্ন হ ওয়ায় এর মোট বিভব শুনা। সতএব, $rac{Q'}{a}+rac{Q}{b}=0$ জথ

বা Q'=-Q. $\frac{a}{b}$: এখানে $Q=30~{
m esu}$; $a=4{
m cm}$ এবং $b=6~{
m cm}$.

 \therefore A গোলক হড়ি গুধান $Q'=-30 imes rac{4}{6}=-20$ esu.

গাবার, B গোলকের মোট বিভব = নিজস্ব গুড়িতের জন্য বিভব +Λ গোলকের গুড়িতের জন্য

[A প্রোজকের অভান্তরে বলে তার সমস্ত তভিতাধান B গোলকের কেন্দ্রে করা আছে একেম ধরা ধ্যো।

 Λ ্গাল্পের বিভব শন, হওয়ে, দুই গোলকের বিভব পার্থক: $V_B \cdot V_A = rac{Q(b+a)}{b^2}$

অভএব, সংস্থার ধারকত্ব
$$C=\dfrac{Q}{V_B-V_A}=\dfrac{b^2}{b-a}$$
 esu. [3.11 (গ) (i) note ত্রুইব} এখানে $b=6$ cm এবং $a=4$ cm ; অভএব, $C=\dfrac{(6)^2}{6-4}=18$ esu.

3.12 ধারকের সমবায় (Combination of capacitors) :

(ক) শ্রেণি সমবায় (Series combination): এই সমবায়ে প্রথম ধারকের দ্বিতীয় প্লেট দ্বিতীয় ধারকের প্রথম প্লেটের সজো যুত্ত। আবার, দ্বিতীয় ধারকের দ্বিতীয় প্লেট তৃতীয় ধারকের প্রথম প্লেটের সঙ্গো

সংযুত্ত। এইভাবে পরপর একাধিক ধারক সমবায়ের অন্তর্ভুক্ত করা হয়। এই ব্যবস্থায় শেষ ধারকের শেষ প্লেট ছাড়া অন্য সব স্লেটগুলি অন্তরিত। শেষ প্লেটটি ভূ-সংলগ্ন থাকে (চিক্ত 3.17)। প্রথম ধারকের প্রথম স্লেট A-কে + Q তড়িভাধান দিলে আবেশের দরুন B স্লেটের ভিতরে দিকে – Q এবং দ্বিতীয় ধারকের প্রথম প্লেট C-তে + Q আধান আবিষ্ট হবে। এভাবে আবেশের প্রভাব এক ধারক থেকে অন্য ধারকে কার্যকর হবে ; ফলে,

প্রত্যেক ধারকের প্রথম শ্লেট +Q এবং দ্বিতীয় শ্লেটের ভিতরের পিঠ -Q আধান পারে। ধারকগুলির শ্লেটদ্বয়ের মধ্যে বিভব-প্রভেদ যথাক্রমে V_1 , V_2 ইত্যাদি হলে এবং সমগ্র সমবায়ের প্রথম শ্লেট A এবং শেষ প্লেট G-এর মধ্যে বিভব-প্রভেদ V ধরলে, $V=V_1+V_2+V_3+...$

ধরো, সমগ্র সমবায়ের পরিবর্তে C_s ধারকত্বের একটি ধারক বসানো হল—যা সমগ্র সমবায়ের তুল্য (equivalent); অর্থাৎ ঐ একক ধারকের অপ্তরিত প্লেটে + Q তড়িতাধান দিলে তার প্লেট দুটির ভিতর বিভব পার্থক্য হবে V; অতএব, $V=\frac{Q}{C_s}$

আবার, সমবায়ের পৃথক ধারকগুলির ধারকত্ব যথাক্রমে C_1 , C_2 , C_3 ইত্যাদি হলে আমরা লিখতে পারি, $V_1=rac{Q}{C_1}$; $V_2=rac{Q}{C_2}$ ইত্যাদি।

অভএব, (i) নং সমীকরণ হতে লেখা যায়,
$$\frac{Q}{C_s}=\frac{Q}{C_1}+\frac{Q}{C_2}+\frac{Q}{C_3}+\ldots$$
 অথবা, $\frac{1}{C_s}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}+\ldots$

অর্থাৎ পৃথক ধারকগুলির ধারকত্বের বিপরীত মান (reciprocal value) যোগ দিলে তুলা ধারকের ধারকত্বের বিপরীত মান পাওয়া যায়। উলেখযোগ্য যে শ্রেলি সমবায়ের ফলে মোট তুলাধারকত্ব যে-কোনো একটি ধারকের ধারকত্ব অপেক্ষা কম হয় কিছু এই ব্যবস্থার দ্বারা উচ্চ বিভব-প্রভেদ উৎপন্ন করা যায়।

(খ) সমান্তরাল সমবায় (Parallel combination): এই ব্যবস্থায় বিভিন্ন ধারকের অন্তরিত প্লেটগুলি একটি বিন্দুতে (M) এবং অন্য প্লেটগুলি অন্য এক বিন্দুতে (N) সংযক্ত M বিন্দুর সাথে কোনো

তড়িং-উৎস যোগ করা হয় এবং N-বিন্দুকে ৬-স লগ্ন রাখা হয় (চিত্র 3.18)। এই ব্যবস্থায় প্রতে ব পূথাক ধারকের অন্তরিত পাত ওড়িং-উৎসের সাথে এবং জন্ম পাত ভূ-সংলগ্ন হওয়ায় প্রত্যেক ধারকেরই বিভব-প্রতেশ হবে V: M বিন্দুতে ওড়িতাধান দিলে ধারকর্গনির ধারকর্জ অনুযায়ী ভড়িতাধান তাদের মধ্যে ছড়িয়ে প্রতেশে ধারকর্গনির তড়িতাধান Q_1, Q_2, Q_3 ইত্যাদি হলে মেণ্টেত তড়িতাধান $Q = Q_1 + Q_2 + Q_3 \dots$ (i)

ধরো, সমগ্র সমবায়ের পরিবর্তে C_p ধারকারের একটি ধারক ক্রাণ্টের ত্রা । ত্রাংক, এ একক ধারকের অন্তরিত প্লেটে +Q এড়িতাধান দিলে তার প্লেট দার্চর পার্থকা ধরে V ; অতএব, $Q=C_pV$.

আবার সমবায়ের পৃথক ধারকগুলির ধ'রকত্ব যথাক্রমে C_1 , C_2 , C_3 ইত ি হলে আমরা লিখতে পারি, $Q_1=C_1\,V$; $Q_2=C_2V$ ইত্যাদি।

অতএব (i) নং সমীকরণ হতে লেখা যায়, $C_p V = C_1 V + C_2 V + C_3 V + \dots$

অথবা,
$$C_p = C_1 + C_2 + C_3 + \dots$$

অর্থাৎ, সমান্তরাল সমবায়ের বেলায়, পৃথক ধারকগুলির ধারকত্বের সক্ষান্ত হল বারকের ধারকত্বের সমান। উল্লেখযোগ্য যে সমান্তরাল সমবায়ের ফলে মোট ধারকত্ব অনেক বৃশ্বি পার

[দ্রুষ্টব্য ঃ ধারক এবং রোধক (resistor)-এর এই দুই প্রকার সমবায়ের ফলাফল ঠিক বিপরীত।]

থারকের সমবায় সম্বধ্ধে গুরুত্বপূর্ণ তথ্য ঃ

(i) ধারকের সমান্তরাল সমবায়ে, সকল ধনাত্মক প্লেটগুলির বিভব সমান এবং ঋণাত্মক বিভবও সমান। সমবায়ের প্রত্যেকটি ধারকের বিভব প্রভেদ সমান কিন্তু আধানের পরিমাণ সমান নাও হতে পারে।

ধারকের শ্রেণি সমবায়ে, সকল ধারকের অংগন সমান কিন্তু বিভব-প্র'ডেস সমান নাও হতে পরে।

(ii) সমান্তরাল সমবায়ের ফলে, মোট ধারকত্ব বৃদ্ধি পায় কিন্তু শ্রেণি সমবায়ের ফলে মোট ধারকত্ব
 যে-কোনো একটি ধারকের ধারকত্ব অপেক্ষা কম হয়।

Examples U

1) দৃটি ধারকের ধারকত্ব যথাক্রমে 10 এবং 15 cgs একক। প্রথমেন্ত ধারকটিকে 10, একক এবং দ্বিতীয়োন্তটিকে 5 cgs একক বিভবে আহিত করা হল। ধারক দৃতিকে সমান্তরাল সমবায়ে যুক্ত করলে তাদের সাধারণ বিভব কত হবে ?

উঃ। প্রথম ধারকের তভ্তিধান $q_1=$ ধারকত্ব imes বিভব = 10 imes 100 \cdots । দিঙীয় $q_2=$ ধারকত্ব imes বিভব = 15 imes 5=7.5 একক ্মেটি আধান = $q_1+q_2=100+7.5=1.75$ গঠক

্ষ্তেত্ ধারকজয় সমান্তরাল সমবায়ে যুক্ত সেইহেতু তাদের ৫°ও ধারকর = 10 + 15 - 25 একক

্র সাম্পর্ক বিভব =
$$\frac{175}{100}$$
 তাঙ্গাধ্য = $\frac{175}{25}$ = 7 একক.

2 1 μ F, 2μ F এবং 3 μ F ধারকত্বের তিনটি ধারককে শ্রেণি সমবায়ে যুক্ত করে সমবায়টিতে 1100 ভোল্ট বিভব-পার্থক্য প্রয়োগ করা হল। প্রত্যেকটি ধারকের আধান ও বিভবপার্থক্য নির্ণয় করো।

উঃ। ধারক ভিনটির তল্য ধারকত্ম $\frac{1}{C} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{11}{6} : C = \frac{6}{11} \, \mu F = \frac{6}{11} \times 10^{-6} \, F$ ধারক ভিনটির প্রতেক্টিতে সমান অধান থাকরে। এই আধান $\, Q \,$ হলে,

$$Q = V.C = 1100 \times \frac{6}{11} \times 10^{-6} \text{ coulomb} = 6 \times 10^{-4} \text{ coulomb}$$

আবার, প্রথম ধারকের বিভব পার্থক্য
$$m V_1=rac{Q}{C_1}=rac{6 imes 10^{-4}}{1 imes 10^{-6}}=600~
m V$$

$$V_2 = \frac{Q}{C_2} = \frac{6 \times 10^{-4}}{2 \times 10^{-6}} = 300V$$

$$V_3 = \frac{Q}{C_3} = \frac{6 \times 10^{-4}}{3 \times 10^{-6}} = 200V$$

বায়ু মাধ্যমযুক্ত একটি সমান্তরাল পাত ধারকের ধারকত্ব = C; যদি ধারকটিকে 1.6 পরা-বৈদ্যতিক ধুবক (dielectric constant) বিশিক্ত একটি তেলে অধনিমজ্জিত করা হয় যাতে পাত দুটি তেলের উপরিতলের সাথে লম্বভাবে থাকে, তাহলে ধারকটির ধারকত্ব কত হয় ?

উঃ। ্যতেত্ব ধারকটি তেলে অর্থনিমজ্জিত, সেইছেতু বায়ুপূর্ব অপরার্ধের ধরত হ হলে C_1 $\frac{C}{2}$

পরাবিদ্ধে তেলযুম্ভ নিমজিলত মর্পেক ধারকের ধারকম্ব
$$C_2 = K.rac{C}{2} - rac{160}{2}$$
 ০৭(*

এখন, তেলে নিম্ভিদ্নত করলে এই দুটি ধারক সমাধ্রাল সমবায়ে আছে বলে মনে করা ২০০ পারে কারণ উভয় ধারকের ধনায়ক তড়িংযুক্ত শ্লেট এক জায়গায় এবং ঋণাথ্যক তিনিয়ন্ত প্লেট অন্য চনস্পায় **আবন্ধ। তাই সমগ্র ধারকের ধারকত্ব হবে**,

$$C = C_1 + C_2 = \frac{C}{2} + 0.8 C = 1.3 C.$$

ি উটা এটা সহজেত বোৰা সাম A এবং Cাকে শ্রেণি অথবো সমান্ত্রাল সহলেও হ'ব না নাক্রিক Bা সমান্ত্রাল সংবাদ হ'ব এবং বারা মারে না কার্বব সেক্ষেট্র ভারত সংবাদ হ'বে Bাইব

2% কেন্ট্র,
$$\frac{300}{40}$$
 + C = 30 অথবা C = 22.5 μ F

 $(in\ B)$ এবং C ধারকদ্বয়কে শ্রেণি সমবায়ের যুক্ত করে তার সাথে A ধারককে সমান্তরাল সমবায়ে $[6\, 2\, 3.19\, (ii)]$ রাখলে, তাদের তুল্য ধারকত্ব $\frac{30\, imes C}{30\, +\, C}\, +\, 10\, ;$ প্রধানুসায়ী $\frac{30\, imes\, C}{30\, +\, C}\, +\, 10\, =\, 30\, c$

ভাপব:
$$\frac{30 \times C}{30 + C} = 20 \therefore C = 60 \mu F.$$

(iii) A এবং B ধারকদ্বয়কে সমান্তরাল সমবায়ে যুক্ত করে তার সাথে C ধারক- কে প্রেলি সমবায়ে রাখিলে [চিত্র 3.19(iii)] তাদের 'তুল্য ধারকত্ব $=1/igg(rac{1}{40}+rac{1}{C}igg)=rac{40 imes C}{40+C}$;

প্রক্রিয়া
$$\frac{40 \times C}{40 + C} = 30$$
 : $C = 120 \, \mu \text{F}$.

[**দেখ্টবা ঃ** রোপক নিয়ে অনুরূপ অঙ্ক হতে পারে। ছাত্রছাত্রীরা অনুশীলনী হিসাবে এই আঙ্ক ক্ষতে পারে ব

64টি ক্ষুদ্র জলবিন্দ্রর প্রত্যেকটিকে 220 volt বিভব দিয়ে তড়িতাহিত করা হল। বিন্দৃগুলি একসংখ্যা মিশে একটি বড়ো বিন্দৃ গঠন করলে, তার বিভব কি হবে?

ে উঃ। ধরে, প্রভাক ছোটো বিন্দুর ব্যাসার্ধ = r এবং বড়ো বিন্দুর = R ; যেওেও জোটো বিন্দুর কিন্দুর কিন্দুর সমান, সেইহেও $\frac{4}{3}$ $\pi R^3 = 64 imes \frac{4}{3}$ πr^3 অথবা $R^3 = 64 imes r^3$ এথবা R = 4r.

saw, when properties also $C_1=4\pi\epsilon_0 r$

(still,
$$4 \neq \dots$$
 , $C_2 = 4\pi \in _0 R$

লেকেন্টে ফ্রেন্টে বিশ্ব হ'ছি হাধান, $q_1=C_1\,V_1=4\pi$ ে $_0\,r imes220=4\pi$ ে $_0 imes220\,r$

the factor of states $q_2=64\times q_4=64\times 4\pi r_{c0}\times 220r$

$$r_{\rm S} = {\rm const} \; {\rm dec} = \frac{{\rm cost} \; {\rm sins}}{{\rm cost} \; {\rm des} \; q} = \frac{q_2}{C_2} = \frac{64 \cdot 4\pi \, c_0 \cdot 220 \, r}{4\pi \, c_0 \, R} = \frac{64 \cdot 220 \, r}{4r}$$

= 3520 volt.

(a) আন্ত ধান্তক সঞ্জিত শক্তি (Energy stored in a charged papacitor):

ধারককে আহিত করতে ,য় কার্য সম্পাদিত হয় সেটা ধারকে স্থিতিশক্তি রূপে সঞ্চিত থাকে। 3.5 অনুচেহদের মতে প্রমণ এর বাং যে, কোনো ধারকের তড়িতাধান Q, ধারকত্ব C এবং ধারকের পাতদ্বয়ের

বিভব-প্রভেদ
$$V$$
 হলে, স্বাকের স্থিতিশক্তি $W=\frac{1}{2}\cdot\frac{Q^2}{C}=\frac{1}{2}$ $Q.V=\frac{1}{2}$ $C.V^2$.

(i) Q, V এবং ('esu এককে খাকলে W-এর একক হার আর্গ (erg)।

সমান্তরাল পাত ধারকের ক্ষাত্রে $C = \frac{KA}{4\pi d}$ esu ; ধারকের আহিত পাতের তলমাত্রিক ঘনত্ব ত esu/ cm^2 হলে, Q = A. σ . esu অতএব,

$$W = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{A^2 \sigma^2 \times 4 \pi d}{KA} = \frac{2\pi \sigma^2 A.d}{K} \text{ erg}$$

(ii) যদি Q coulomb, V volt এবং C farad -এ প্রকাশ করা হয় তবে, W joule এককে প্রকাশিত হবে।

সমান্তরাল পাত ধারকের বেলায় এস. আই. পম্পতিতে $C=rac{k.\in_0}{d}$ ফারেড। এখানে A $metre^2$ এবং d metre - এ প্রকাশ করতে হবে। ধারকের অন্তরিত পাতের আধানের তলমাত্রিক ঘনত্ব σ coulomb/m² হলে Q = Α. σ coulomb কাজেই, এস্. আই. পর্শ্বতিতে সমান্তরাল পাত ধারকের স্থিতিশন্তি

$$W = \frac{1}{2} \cdot \frac{Q^2}{C} = \frac{1}{2} \frac{A^2 \cdot \sigma^2 \cdot d}{K \cdot \epsilon_0 A} J = \frac{\sigma^2 A \cdot d}{2 \times 8.85 \times K} \times 10^{12} J \qquad [\epsilon_0 = 8.85 \times 10^{-12}]$$

[ক্যালকুলাসের সাহায্যে বিকল্প পঙ্গতি ঃ

ধরো, ধারকের চার্জিং-এর সময় কোনো এক মৃহূর্তে ধারকে q পরিমাণ তড়িতধান আছে। ঐ সময় ধারকের দুই পাতের বিভব-প্রভেদ υ হলে, আমরা লিখতে পারি $q=C.\upsilon[C=$ ধারকত্ব]। এখন যদি ধারক-কে সামানা পরিমাণ তড়িতধান dy দেওয়া হয়, তবে তার জন্য যে কার্য সম্পন্ন হবে তা $dW = v \times dq$.

ধারক-কে Q পরিমাণ আধান দিলে, মোট কৃতকার্য

$$W = \int dW = \int_{0}^{Q} v \times dq = \int_{0}^{Q} \frac{q}{C} dq = \left[\frac{q^{2}}{2C} \right]_{0}^{Q} = \frac{Q^{2}}{2C}$$

$$W = \frac{1}{2} \cdot \frac{Q^2}{C} = \frac{1}{2} C V^2 = \frac{1}{2} Q V$$

(b) জাহিত ধারকের দৃই প্লেটের ভিতর বল (Force between the plates of a capacitor):

একটি সমান্তরাল পাত ধারকের দুই প্লেটের কথা বিবেচনা করে। যে-কোনো প্লেটের ক্ষেত্রফল = 🛛 ধ্রা যাক +Q ততিহ'লে এক শ্লেটে এবং -Q তড়িতাধান অন্য প্লেটে সরবরাহ করা হল (চিত্র 3.20)। কেবল মাত্র পজ্চিটিভ শ্লেটের জন্য শ্লেটের প্রতিবিন্দুতে তড়িৎক্ষেত্র $E_+ = \frac{\sigma}{2\,\epsilon_0} = \frac{Q}{2\,\epsilon_0.\alpha}$ [$\sigma=$ প্লেটের আধানের তলমাত্রিক ঘনস্ক]

এখন, আমরা মনে করতে পারি যে -Q **তড়িতাধান** E_+ তড়িৎক্ষেত্রে স্থাপিত আছে।

অতএব, 🛶 তড়িতাধানের উপর বল,

$$F = -Q.E$$

$$= (-Q) \frac{Q}{2 \in_{0}.\alpha} = -\frac{Q^{2}}{2 \in_{0}.\alpha}$$

নেগেটিভ চিহ্ন বোঝায় যে এই বল আকর্ষণী বল। সূতরাং প্লেট দুটি পরস্পরকে $\dfrac{Q^2}{2 \in_{0}.\alpha}$ বলে আকর্ষণ করবে।

EXAMPLES D

① 2 μF এবং 4 μF ধারকছের দৃটি ধারককে সমান্তরাল সমবায়ে আবাধ করে তাহাদের প্রান্তে 300 volt বিভব-পার্থক্য প্ররোগ করা হল। সমবায়ে মোট কত শক্তি সঞ্চিত হল নির্পন্ত করো।

উঃ। সমান্তরাল সমবায়ে মোট ধারকত্ব $C=2+4=6\,\mu\mathrm{F}=6 imes10^{-6}$ farad.

সূতরাং সন্ধিত শক্তি $W=\frac{1}{2}$ $CV^2=\frac{1}{2}$ $imes (6 imes 10^{-6})$ $imes (300)^2=27 imes 10^{-2}$ joule.

2) 1 metre² ক্ষেত্রেফলযুক্ত দৃটি পিতলের শ্রেট পরস্পর হতে 10 cm দূরে সমান্তরাল ভাবে রেখে একটি সমান্তরাল-পাত ধারক তৈরি করা হরেছে। শ্রেট দুটির ভিতরকার জায়গা একটি কাচফলক অধিকার করলে এবং ধারকের তড়িতাহিত শ্রেটের আধানের তলমাত্রিব খনত্ব 0.01 coulomb/cm² হলে, ধারকের স্থিতিশক্তি নির্ণয় করো। কাচের আপেকিব আবেশিক ধারকত্ব = 8.

উঃ।
$$W = \frac{\sigma^2 A.d.}{2 \times 8.85 \times k} \times 10^{12} \, \text{J.} [3.13 \, (ii) অনুচ্ছেদ দ্রন্টব্য]}$$

এখানে, $\sigma = 0.01 \text{ coulomb/cm}^2 = 0.01 \times 10^4 \text{ coulomb/m}^2 = 100 \text{C/m}^2$; A = 1m^2 ; d = 10 cm = 0.1 m এবং k = 8.

$$\therefore W = \frac{(100)^2 \times 1 \times 0.1 \times 1012}{2 \times 8.85 \times 8} = 70.6 \times 10^{11} \text{ J.}$$

3.14 ত্যান্-ডি-গ্রাফ জেনারেটার (Van-de-Graff generator)

এই যন্ত্রের সাহায্যে অন্যান্য সকল যন্ত্র অপেক্ষা বেশি বিভব-প্রভেদ উৎপন্ন করা যায়। আজকাল পারমাণবিক শক্তি গবেষণাগারে এই যন্ত্র খুব ব্যবহৃত হচ্ছে। 1931 খ্রিস্টাব্দে যুক্তরান্ট্রের প্রিন্সটন বিশ্ববিদ্যালয়ে রবার্ট ভ্যান-ডি-গ্রাফ এই যন্ত্র নির্মাণ করেন।

সূচিমুখের ক্ষরণ-ক্রিয়া এবং ফাঁপা গোলকের সংগ্রাহক ক্রিয়ার ওপর এই যন্ত্রের নীতি প্রতিষ্ঠিত। যদি একটি তড়িতাহিত পরিবাহীকে কোনো ফাঁপা পরিবাহীর ভিতরের পৃষ্ঠের সাথে সংস্পর্শে আনা যায় তাহলে তড়িতাধান তৎক্ষণাং ফাঁপা পরিবাহীতে স্থানান্তরিত হয়—পরিবাহীদ্বয়ের বিভব যাই হোক না কেন।

বিবরণ ঃ এই যন্ত্রের একটি নকশা 3.21 নং চিত্রে দেখানো হয়েছে। A এবং B দুটি ফাপা ধাতব গোলক—প্রত্যেকের বাাস প্রায় 50 cm; কাচ অথবা অন্য কোনো অন্তরক পদার্থ নির্মিত বৃহৎ দুটি স্তম্ভের (XX) ওপর ঐ দুটি গোলক বসানো থাকে। গোলকদ্বয় একটি ডি. সি. জেনারেটারের ধনাত্মক ও ঋণাত্মক প্রান্তর্নরের কাজ করে। প্রত্যেক স্তম্ভে উপরে-নীচে একজোড়া কপিকল (P1, P2) আছে। P2 কপিকল দুটি যথাক্রমে A এবং B ফাপা গোলকের মধ্যে অবস্থিত। প্রত্যেক জোড়া কপিকলের গা বেয়ে সিল্ক অথবা অন্য কোনো নমনীয় দুক্ত তির চিহের দিকে ঘ্রতে থাকে। বেন্ট S1 ছিদ্রের মধ্য দিয়ে ফাপা গোলকের অভান্তরে প্রকেশ করে এবং S2 ছিল্ দিয়ে বার হয়ে আসে।

কার্যপ্রণালী ঃ দক্ষিণ দিকের বেল্টের D বিন্দৃর কাছে যে ক্ষ্মন্ত্র গোলক আছে তা ডি.সি. জেনারেটার থেকে ধনাত্মক ভড়িভারান পায়। আবেশের দর্ন তার সম্ব্যুথ্য সৃচিম্থ ঋণাত্মক ভড়িৎ পায় এবং মুক্ত তড়িৎ মাটিতে চলে যায়। সূচিমুখের ক্ষরণ-ক্রিয়ার জন্য তার ঋণাত্মক আধান বেল্টে ক্ষরিত হয় এবং বেল্ট ঐ আধান উধর্বমুখী নিয়ে যায়। এভাবে বাহিত হয়ে যখন ঋণাত্মক আধান ক্ষাপা গোলক B এর মধ্যে প্রবেশ করে তখন তা গোলকের গায়ে আবন্ধ আর একটি সূচিম্থ G এর সম্বুখীন হয়। পুনরায় আবেশের জন্য সূচিমুখ ধনাত্মক ভড়িৎ পায় এবং B ঋণাত্মক ভড়িৎ পায়। G এর ধনাত্মক আধান বেল্টের আধান কর্তৃক শীঘ্রই প্রশমিত হয়। ফলে গোলক B ঋণাত্মক ভড়িছে আহিত হয়। একই ভাবে, বামদিকের বেল্টের C সূচিমুখ তার সম্বুখ্যথ ক্ষ্ম গোলক হতে আবেশের জন্য ধনাত্মক আধান পেয়ে তা বেল্ট ক্ষরিত করে এবং বেল্ট ঐ ধনাত্মক ভড়িং A গোলকে জন্ম দেয়। এভাবে বৈদ্যুতিক মোটারের দ্বারা বেল্ট ক্রমানত ঘোরালে A এবং B গোলকে ক্রমাণত ধনাত্মক এবং ঋণাত্মক আধান জন্য হতে থাকরে এবং খাণাত্মক তিছে মোলক ক্রমাণত ধনাত্মক এবং ঋণাত্মক আধান জন্য। ২তে থাকরে এবং তাদের বিভব-পার্থকা বৃদ্ধি পোরে থাকরে। গোলকদ্বয়ের বিভব-পার্থকা বৃদ্ধি পারার সঙ্গো সাজে বায়ুতে ভড়িৎমোক্ষণ ধনার সন্তর্গাকরে গুলিবার পার গুল করা হয়। এবং সম্বার্থক পুরু ধাতিব প্রক্রের্থ এবং সম্বার্থক বৃহৎ ধাতব প্রক্রের্থে প্রক্রের্থ প্রক্রেন্ত উচ্চাবের শৃদ্ধ বায় খ্রারা পূর্ণ করা হয়।

বলা বাঙ্গা, এই যন্ত্রটি উদ্বাবনের পর আজ পর্যন্ত এর আনেক পরিবর্তন হয়েছে ওয়াশিংটন শহরের কার্ণেগী ইনস্টিট্টে এবং ইউসকনসিন বিশ্ববিদ্যালয়ে মতি আধুনিক ও বিরটকায় ভাল্ ডি গ্রাফ জেলারেটার যন্ত্র আছে। এই যন্ত্র দারা প্রায় 50 লক্ষ্ণ তেন্দ্র বিভব-প্রভেদ উৎপন্ন করা যায়।

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. দৃটি পরিবাহীতে সমধর্মী সমপরিমাণ তড়িভাধান আছে। পরিবাহী দৃটির ভিতর কি বিভব পার্থক্য থাকা সত্তব ?
- মনি প্রতির্ভিত্ত নার ধরত হা দিয় হয়, য়র্ব, হবি হাসালের প্রক্রেও সক্ষক হর্নেও য়র্বের ভিতর
 বিভ্রাক্তর আলাক হা বর্বাইবর
 বিভ্রাক্তর বিভ্রাকর হার্বাইবর
 বিভ্রাকর
 বিভ্

বিভব $V_1=rac{Q}{C_1}$ এবং দ্বিতীয়টির $V_2=rac{Q}{C_2}$ যেহেতৃ $C_1 \neq C_2$, $V_1 \neq V_2$ অর্থাৎ পরিবাহীদ্বয়ের ভিতরে একটি বিভব-পার্থক্য থাকবে।

- 2. কোনো ধারক-কে যে-কোনো উচ্চমানের বিভবে আহিত করা যায় ?
- কোনো ধারক-কে যে-কোনো উচ্চমানের বিভবে আহিত করা যায় না। সাধারণত ধারকের উপর তার
 ধারকত্ব ও সর্বাধিক প্রযোজ্য বিভবের মান লেখা থাকে। যেমন, 0.05µF 250V বলতে বোঝায়
 ঐ ধারকত্ব 0.05µF এবং ঐ ধারকে সর্বাধিক প্রযোজ্য বিভব 250 ভোল্ট। যদি ঐ ধারকে 250
 volt—এর বেশি বিভব প্রয়োগ করা হয় তাহলে ধারকের প্লেট দুটির মধ্যে যে মাধাম (বায়ু অথবা
 কোনো পরাবিদ্যুৎ) থাকে তার অন্তরণ (insulation) নন্ট হয়ে যায় এবং ধারকটি অকেজো হয়ে
 পড়ে।
- 3. একটি পরিবাহী গোলকের ব্যাসার্য 1cm। গোলকটি কী 1 coulomb আধান ধরে রাখতে সমর্থ হবে ?
- $m{R}$ মিটার ব্যাসার্ধের গোলকের ধারকত্ব $C=4\pi\epsilon_0.R$; কাজেই $1~{
 m cm}$ অথবা $0.01~{
 m m}$ ব্যাসার্ধের গোলকের ধারকত্ব $C=4\pi\epsilon_0 imes 0.01$ ফ্যারাড। ঐ গোলক-কে $1~{
 m coulomb}$ তড়িতাধান দিলে, তার বিভব হবে

$$V = \frac{Q}{C} = \frac{1}{4\pi \in_0 \times 0.01} = \frac{1}{4 \times 3.14 \times (8.85 \times 10^{-12}) \times 0.01} = 8.9 \times 10^{11} \text{ volt}$$

এই পরিমাণ উচ্চ বিভবে গোলকের চতুর্দিকের বায়ুস্তরের অন্তরণ (insulation) সম্পূর্ণরূপে ভেঙে পড়বে এবং গোলক হতে স্ফুলিঙ্ক (spark) নির্গত হয়ে আধান ক্ষরিত হতে থাকবে। সুতরাং ঐ গোলকটি 1 coulomb আধান ধরে রাখতে সমর্থ হবে না।

- 4. ধারকে ব্যবহৃত তরল পরাবিদ্যুতের তুলনায় কঠিন পরাবিদ্যুতের সুবিধা কি?
- ধারকে পরাবিদ্যুৎ ব্যবহার করলে ধারকের ধারকত্ব সাধারণভাবে বৃদ্ধি পায়। ফলে, একই বিভবপ্রভেদে ধারক বেশি পরিমাণে আধান সন্থিত করতে পারে। এই পরিপ্রেক্ষিতে, তরল পরাবিদ্যুতের
 তুলনায় কঠিন পরাবিদ্যুতের কয়েকটি সুবিধা আছে।

(i) কঠিন পরাবিদ্যুতের পরাবৈদ্যুতিক ধ্বুবকের মান তরল পরাবিদ্যুতের তুলনায় বেশি বলে (যেমন, কাচের k=5.6; বেনজিনের =2.6) কঠিন পরাবিদ্যুৎ ব্যবহার করলে, ধারকের ধারকত্ব বেশি বন্দি পায়।

- (ii) কঠিন পরাবিদাৎ ব্যবহার করলে ধারক-কে উচ্চ বিভবে আহিত করা যায়।
- (iii) ধারকের পাত দুটির মধ্যে কঠিন পরাবিদ্যুৎ থাকলে, পাতদুটি পরম্পর ঠেকে যেতে পারে না।
- একটি সাবান-জলের বৃদ্বৃদকে তড়িতাহিত করা হল। বায়ৢতে ভাসমান অবস্থায় বৃদ্বৃদটি
 জায়তনে প্রসারিত হতে থাকলে, তার বিভবের কী পরিবর্তন হবে ?
- াবান-জলের বুদ্বুদকে গোলীয় পরিবাহী হিসাবে গণ্য করা যায়। বায়ুতে থাকাকালীন গোলীয় পরিবাহীর ধারকত্ব ভার ব্যাসার্থের সমানুপাভিক : সুতরাং বুদব্দের ধারকত্বও বুদবুদের ব্যাসার্থের সমানুপাভিক। এখন, বুদ্বুদিট প্রসারিত হলে, ভার ব্যাসার্থ বৃদ্ধি পায়। ফলে, বুদবুদের ধারকত্ব বৃদ্ধি পায়। \mathbf{v} বৃদ্ধুদের ধারকত্ব বৃদ্ধি পায়। \mathbf{v} বিভব \mathbf{v} = $\frac{\mathbf{v}}{\mathbf{v}}$ বারকত্ব \mathbf{v} তি ত্রাধান \mathbf{v} তি ত্রাধান তি ত্রাধান তি ত্রাধান গোলীয় পরিবাহিত ত্রাধান প্রারক্তির ত্রাধান প্রারক্ত ত্রাধান তি ত্রাধান প্রারক্ত ত্রাধান প্রার্থ ত্রাধান প্রারক্ত ত্রাধান প্রক্ত ত্রাধান প্রারক্ত ত্রাধা

সমীকরণ হতে বোঝা যায় যে বিভব V ক্রমশ হ্রাস পায়। অওএব, বাস্ত্রতে ভাসমান অবস্থায় বুদবুদটি প্রসারিত হলে, তার বিভব ক্রমশ হ্রাস পাবে।

- 6. "অন্তরিত একটি গোলককে তড়িতাহিত করলে তাকে ধারক হিসাবে গণ্য করা যায়।" ব্যাখ্যা করো।
- ullet কোনো গোলকীয় ধারকের ভিতরের গোলকটির ব্যাসার্ধ r_1 এবং বাইরের ভূ–সংলগ্ন গোলকটির ব্যাসার্ধ r_2 হলে, বায়ু মাধ্যমে তার ধারকত্ব $C=rac{4\pi \in_0 r_1 r_2}{r_2-r_1}$ ${f F}$ [3.11 (গ) অনুচ্ছেদ দ্রুইব্য]।

ঐ ধারকত্বকে নিম্নলিখিতরূপে লেখা যায়
$$C=rac{4\pi\,\epsilon_0\;r_1}{1-rac{r_1}{r_2}};$$
 এখন, $r_2=\infty$ হলে,

 $C=4\pi\epsilon_0\ r_1$ = ভিতরের গোলকের বাসোর্ধ $\times 4\pi\epsilon_0$ । এই ধরনের ধারকত্বে যারকত্ব অন্তরিত একক গোলকের ধারকত্বের সমান। কাজেই, একটি অন্তরিত গোলককে তড়িতাহিত করলে, তাকে একটি ধারক হিসাবে গণ্য করা যায়—যে ধারকের বাইরের আবরণটি (outer coating) অসীম দূরত্বে অবস্থিত।

- 7. ধরো, কোনো ধারকের পজিটিভ শ্লেটে + Q_1 আধান এবং নেগেটিভ শ্লেটে Q_1 আধান দেওয়া হল। এই অবস্থায় 'ধারকের তড়িভাধান' কত ?
- ullet ধারকের তড়িতাধান বলতে ধারকের পজিটিভ প্লেটে যে আধান থাকে তাই বুঝায়। এক্ষেত্রে ধারকের আধান $+Q_1$ । লক্ষ কর মোট আধানকে ধারকের আধান বলা হয় না কারণ মোট আধান $= +Q_1-Q_1=0$.
- 8. সমব্যাসার্ধের একটি নিরেট এবং একটি ফাঁপা গোলকে সমপরিমাণ তড়িতাধান দেওয়া হল। তাদের ভিতর কোন্টির বিভব উচ্চতর ?
- ullet ব্যাসার্ধ সমান হওয়ায়, ফাঁপা এবং নিরেট যে-কোনো গোলকের ধারকত্ব সমান হবে কারণ $C=4\pi \epsilon_0 imes$ ব্যাসার্ধ। আহিত গোলকের বিভব V=Q/C. যেহেতু উভয় গোলকের তড়িতাধান (Q) সমান, সেইহেতু তাদের বিভবও সমান।
- 9. ধারকে পরাবিদ্যুৎ ব্যবহার করলে, তার ধারকত্ব বৃদ্ধি পায়। কারণ কী ? 3.4 অনুচ্ছেদে বলা হয়েছে যে, K পরাবৈদ্যুতিক ধ্রুবক সম্পন্ন মাধ্যমে তড়িৎ প্রাবল্য E=

 $\frac{q}{4\pi K} \in _0^{-2}$ । প্রাবল্যের এই রাশিমালা হতে বলা যায় যে, বায়ু (অথবা শূন্যস্থান) অপেক্ষা

পরাবৈদ্যুতিক মাধ্যমে প্রাবল্য 1:K অনুপাতে হ্রাস পায়। বিভবপ্রভেদ প্রাবল্য এবং পাতদ্বয়ের দূরত্বের পূণফলের সমান (V=E.d) বলে পরাবৈদ্যুতিক মাধ্যমের উপস্থিতিতে ধারকের পাতদ্বয়ের বিভব-প্রভেদ স্পর্বত K গুণ হ্রাস পাবে। আবার ধারকত্ব $C \propto \frac{1}{V}$ হওয়ায় বিভব-প্রভেদ K গুণ হ্রাস পেলে, ধারকত্ব K গুণ বর্ধিত হবে।

10. একটি সমান্তরাল পাত ধারক-কে চার্জ করার পর চার্জিং ব্যাটারিকে ধারক হতে খুলে ফেলা হল এবং শ্লেট দৃটির ভিতর একটি পরাবৈদৃতিক স্ন্যাব প্রবেশ করানো হল। প্রমান করো এতে ধারকের কিছু শক্তি ক্ষয় হবে। ক্ষয়িত শক্তি কোথায় যায় ?

ধরি, ধারকের প্রাথমিক ধারকত্ব $=C_0$ এবং বিভব-প্রভেদ $=V_0$

তাহলে, ধারকের প্রাথমিক শক্তি $U_0=rac{1}{2}\,C_0V_0^{\,2}$

ব্যাটারি খুলে ফেলার পর ধারকের আধান অপরিবর্তিত থাকবে। এই অবস্থায় পরাবৈদ্যুতিক স্নাব (পরাবৈদ্যুতিক ধুবক = K) প্রবেশ করালে ধারকত্ব K গুণ বৃদ্ধি পাবে এবং বিভব-প্রভেদ K গুণ স্থাবে। অতএব,

চুড়ান্ত শান্তি
$$U=\frac{1}{2}$$
 (KC_0) $\left(\frac{V_0}{K}\right)^2=\frac{1}{2}\frac{C_0V_0^2}{K}=\frac{U_0}{K}$

যোহেতু K>1, সেইকেতু $U< U_0$; কাজেই ধারকের কিছু শব্তি ক্ষয় হল এই ক্ষয়িত শব্তি পরাবৈদ্যুতিক স্ল্যাবে মেরুবতী শব্তিরূপে (polarisation energy) সন্ধ্রিত থাকে।

11. সমান ব্যাসার্ধের দুটি ভামার গোলকের একটি নিরেট এবং অপরটি কাঁপা। উভয়কে সমান বিভবে ভঙ্জিছিত করা হল। কোন গোলকে বেলি আধান থাকবে ?

- গোলকের ধারকত্ব C এবং বিভব V হলে, তার আধান Q=C.V আবার গোলকের ব্যাসার্ধ r হলে, তার ধারকত্ব $C=4\pi\epsilon_0.r$. অভএব তার আধান $Q=4\pi\epsilon_0.r$. এখন, গোলক দৃটির ব্যাসার্ধ এবং বিভব সমান হওয়ার বোঝা যাচ্ছে যে তাদের ওড়িতাধান সমান।
- 12. ব্যাটারির সাহায্যে একটি ধারক-যে চার্জ করে ব্যাটারি খুলে ফেলা হল। প্রেট দুটির ভিতর এখন একটা পরাবৈদ্যুতিক স্ল্যাব ঢুকিয়ে দিলে, ধারকের আধান, ধারকত্ব, বিভব-প্রভেদ এবং সন্দিত শক্তির কী পরিবর্তন হবে ?
- খারকের আধান পরাবিদ্যুতের ওপর নির্ভর করে না বলে, আধানের কোনো পরিবর্তন হবে না। পরাবৈদ্যুতিক স্যাব ঢুকিয়ে দেওয়ায় ধারকের ধারকত্ব বৃদ্ধি পাবে। ধারকের আধান অপরিবর্তিত আছে, অথচ ধারকত্ব বৃদ্ধি পেয়েছে। এথেকে বলা যায় ধারকের বিভব ছাস পেয়েছে কারণ V = Q/C.

ধারকের আধান অপরিবর্তিত থাকলে, সঞ্চিতশক্তি $m{E} \propto rac{1}{C}\;; C\;$ বৃদ্ধি পাওয়ায়, শক্তি হ্রাস পাবে।

- 13. সমান্তরাল পাত ধারকের পাত দুটির ব্যবধান বৃশ্বি করলে এবং শ্লেট দুটির মাঝে পরাবৈদ্যুতিক স্যাব ঢোকালে, ধারকত্বের কি পরিবর্তন হয় ?
- ullet সমান্তরাল পাত ধারকের ধারকত্ব $C=rac{\epsilon_0}{d}$; d বৃদ্ধি করলে, C হ্রাস পাবে। পরাবৈদ্যুতিক স্ন্যাব

ঢোকানো অবস্থায় $C=rac{K.\in_0 lpha}{d}$; অতএব ধারকত্ব K গুণ বৃন্ধি পাবে।

- 14.5 cm ব্যাসার্ধের একটি ফাঁপা ধাতব গোলককে এরূপডাবে তড়িতাহিত করা হল যে তারপৃষ্ঠে তড়িং বিভব হল 2 volt। ঐ গোলকের কেন্দ্রে বিভব কত ?
- ফাঁপা গোলকের অভান্তরে বিভব সর্বত্র সমান এবং ঐ বিভব গোলকের বাইরের পৃষ্ঠের বিভবের সমান। অতএব, গোলকের কেন্দ্রে বিভব হবে 2 volt।
- 15. ধারকের দুই গ্রেটের ভিতর পরাবিদ্যুৎ হিসাবে ধাতব পদার্থ ব্যবহার করা হয় না কেন ?
- শাতব পদার্থ তড়িতের পরিবাহী। পরাবিদ্যুৎ রূপে ধাতব পদার্থ ব্যবহার করলে, প্লেট দুটির ভিতর
 সংক্ষেপ সংযোগ হবে (short circuiting) এবং ধারক থেকে তড়িৎক্ষরণ হবে। ধারক তড়িৎ ধরে
 রাখতে পারবে না।
- 16. দৃটি গোলীয় পরিবাহীর প্রত্যেকটিতে Q পরিমাণ আধান আছে। একটি গোলকের আয়তন অপরটির দ্বিগুণ। পরিবাহী দৃটিকে তার দিয়ে যুক্ত করলে, তার দিয়ে আধানের প্রবাহ হবে কি ? হলে, প্রবাহের অভিমুখ কী হবে ?
- একটি পরিবাহীর আয়তন অপরটির ভিগুণ হওয়ায় বড় পরিবাহীর ব্যাসার্ধ অপরটির অপেক্ষা
 বেশি।

ফলে, তার ধারকত্ব বেশি হরে এখন, বিভব - <mark>আধান
ধারকত্ব
ধারকত্ব
বিভব
- তথেকে বোঝা যায় বড়ে পরিবাহীর</mark>

ছোটো আয়তনের পরিবাহী অপেক্ষা কম। সুতরাং তার দিয়ে যুত্ত করলে ছোটো আয়তনের পরিবাহী থেকে আধান তার বেয়ে বড়ো পরিবাহীতে প্রবাহিত হবে।

- 17. একই রকম n সংখ্যক ধারক-কে সমান্তরাল সমবায়ে যুক্ত করে সমবায়ের দুই প্রান্তে V বিভব-প্রভেদ প্রয়োগ করা হল। এখন ধারকগুলিকে প্রেণি সমবায়ে যুক্ত করলে সমবারের দুই প্রান্তে বিভব-প্রভেদ কত হবে ?
- ullet ধরি, প্রত্যেকটি ধারকের ধারকত্ব = C ; সমান্তরাল সমবায়ে থাকার ফলে, প্রত্যেক ধারকের আধান Q = C.V. এখন, ধারকগুলিকে প্রেণি সমবায়ে যুস্ত করলে, মোট ধারকত্ব $C_S = rac{V}{n}$ আবার সমবায়ের মোট আধান n.Q।
 - : সমবায়ের প্রাক্তথ বিভব প্রভেদ = $\frac{nQ}{C_s} = \frac{nQ}{C/n} = n^2 \cdot \frac{Q}{C} = n^2 \frac{CV}{C} = n^2 V$.
- 18. দুটি সমান তড়িতাহিত ও সমান আয়তনের সাবান বুদবুদ এক সংখ্য মিশে এদের মোট আয়তনের সমান একটি বড়ো বুদবুদে পরিণত হল। ছোটো বুদ্বুদ দুটির প্রত্যেকটির প্রাথ মিক বিভব V হলে সংযুক্ত বড়ো বুদ্বুদটির বিভব কত ?
- আয়তন হিসাব করলে, $R=(2)^{\frac{1}{3}}r$. $\{R=$ বড়ো বুদ্বুদের ব্যাসার্ধ] এখন, বড় বুদ্বুদের ধারকত্ব $=4\pi\epsilon_0$. $R=4\pi\epsilon_0$. $(2)^3$.r; বড়ো বুদ্বুদের তড়িতাধান =Q+Q=2Q.

$$\therefore$$
 বড়ো বুদ্বুদের বিভব = $\dfrac{\text{থাবান}}{\text{থারকত্ব}} = \dfrac{2Q}{4\pi \epsilon_0(2)^{\frac{1}{3}}.r} = \dfrac{2.V}{(2)^{\frac{1}{3}}} \qquad [V = \dfrac{Q}{4\pi \epsilon_0 r}]$

 $= (2)^{3}.V \ [V = প্রত্যেকটি বুদ্বুদের বিভব]$

* 2110

⇒ রচনাথমী প্রশা

- পরিবাহীর ধারকত্ব বলতে কী বোঝ ? এই ধারকত্ব কোন্ কোন্ বিষয়ের উপর নির্ভয় করে ? পরীক্ষার সাহায্যে ব্যাখ্যা
 করে।
- 2. প্রমাণ করো যে পরিবাহী গোলকের ধারকত্ব গোলকের ব্যাসার্থের সমানুপাতিক। ধারকত্বের ই. এস. ইউ. এবং ব্যাবহারিক একক কী? এদের ভিতর সম্পর্ক কী?
- একটি আহিত পরিবাহীর পিথাঙশান্ত প্রকাশ করার রাশিয়ালা নির্ধারণ করো।
- "একটি অন্তরিত পরিবাহীর ধারকত্ব কৃত্রিম উপায়ে বিশ্ব করার ব্যবস্থাকে তড়িৎ ধারক বলে" এই উত্তির স্থায়থ
 ব্যাখ্যা করো।
- 5. থারক বলতে কী ব্রায়ত ধারকের মুলনাতির রাখে দাও ধারকের ধারকত্ত্ব স জা দাও কোন্ কোন বিষয়ের ওপর ধারকত্ব নির্ভয় করে?
- বায়ুয়াধায়সহ একটি সয়াল্ডবাল পশত ধাবক বর্ণনা করে। এবং তাব ধাবকরের একটি বালিয়ালা নির্বাহ করে। সয়ায়্ডবাল
 পাত দৃটির য়ধ্যে একখানি এবোলাইটেব বয় প্রবেশ করালে ধাবকরের ঝা পবিবর্তন হয়।

- সমাণ্ডরার্ল পাত বাবকের ধারকাত্ব কোন কোন বেষয়ের ওপর এবং কাভাবে নির্বয় করে হ জলের পরাইবদ্যতিক ধ্রবক ৪০ বলতে কী বোঝায় ?
- 8. ক্ষেত্র সমান্তলন পাত ধাবকের ধারকর $C=rac{c-A}{d}$, এখানে A= যে কোনো পাতের ক্ষেত্রফল এবং d=পাতমূরের পারস্পরিক দূরত্ব।
- 9. (' ধাবকান্ধ বিশেষ্ট একটি ধাবকাকে দ্র গণিছালক বল বিশিষ্ট কোনো গণিছালৰ সজো মৃত্ত করে রাখালে ধারকের পাতে তড়িতাধান ও ধারকে মোট সন্থিত শক্তি কত হবে ১
- 10. একটি গোলীয় ধাবকের প্রকাশ কলত একটি বর্ণলয়ালা নিগারল কারা।
- একটি গোলীয় ধারকের দৃটি গোলীয় থোলকের .shellয় ব্যাসার্ধ প্রায় সমান হলে ৭টি একটি সমান্তবাল পাত্র ধারকে
 পরিণত হয়। প্রমাণ করে।
- কওগুলি ধারককে (1) সমান্তরাল সমবায়ে এবং (in প্রেণি সমবায়ে আবন্ধ করলে তুলা ধারকত্ব কও হবে নির্ণয় করো।
- 13. একটি ভাল, ডি. গ্রাফ যন্ত্রের বর্ণনা দাও এবং কর্মপুণালী ব্যাখা করো।

त्राकिश्च উख्ताव श्रम

- কোনো তড়িংধারকের ধারকত্বকে একটি পারের ধারণক্ষমতার সক্ষো সচরাচর তুলনা করা হয়ে থাকে। পারের আকার
 কি রকম হলে এই তুলনাটি যথাযথ হবে ?
 [সংকেত ঃ চোঙাকৃতি]
- 2. একটি ধারকের ধারকত্ব 12 Farad এই উদ্ভির ব্যাখা করো।
- 3. প্রমাণ করো ∈০ –এর একক ফ্যারাড/মিটার (F/m)।
- 4. ধারকের ধারকত্ব ও বিভব কাকে বলে ? আপেক্ষিক আবেশিক ধারকত্ব কী ?
- 5. ধারকের ধারকজের সংজ্ঞা লেখো। একটি সমান্তরাল পাত ধারকের ধারকত্ব কোন কোন বিষয়ের ওপর নির্ভর করে?
- 6. সমান্তরাল পাত ধারকের ধারকাজের রাশিমালা ঠিক মির্ভুল বলা যায় না এর কারণ কী?
- 7. একই ব্যাসার্ধের দৃটি ভাষার গোলক একটি ফাঁপা এবং অপরটি নিরেট। উভয়কে তড়িৎগ্রস্ত করে একই বিভব দেওয়া হল। কোন্টিতে বেশি তড়িতাধান থাকবে?

[সংকেত : দুটিতে একই পরিমাণ তড়িতাধান থাকবে তড়িতাধান সর্বদা পরিবাহীর ওপরের পৃষ্ঠে থাকে এবং Q = C.V. এক্ষেপ্রে ব্যাসার্ধ সমান বলে ধারকত্ব (C) সমান এবং বিভবও (V) সমান । অতএব Q সমান হবে (C)

- 8. 'কাচের পরাবৈদ্যতিক ধ্রবক = 8.5' বলতে কী বুঝায়?
- 9. একটি সমান্তরাল পাত ধারকের দুই প্লেটের অন্তর্গত থানে একটি খুব পাতলা (বেধ গ্রাহোর মধ্যে নয়) স্থাল্মিনিয়াম পাত ঢ্কানো হল। এটা ধারকের ধারককের ওপর কী প্রভাব বিন্তার করবে, যখন (1) পাতটি অন্তরিত অবস্থায় আছে এবং (11) পাতটি ওপরের প্লেটের সাথে যুক্ত আছে?
- 10. একটি নির্দিষ্ট বিভব-প্রভেদের বেলায় কোনো ধারক কি বেশি বা কম আধান সংগ্রহ কররে, যখন (i) ধারকে পরাবিদ্যুৎ আছে এবং (ii) ধারকে কোনো পরাবিদ্যুৎ নাই ?
- 11. দুটি একই নক্ষা ধাতৰ প্লেটকে Q_1 এবং $Q_2 \cdot Q_1 > Q_2 \cdot$ ধনাম্মক আধান দেওয়ার পর তাদের খুব কাছাকাছি এনে ে ধারকজ্বে একটি সমান্তরাল প্লেট ধারক গঠন করা হল। প্লেট দৃটির ভিতর বিভবপ্রভেদ টে $(Q_1 + Q_2)/2C$ (ii) $(Q_1 + Q_2)/C$ (iii) $(Q_1 Q_2)/2C$. কোনটি ঠিক?
- 12. একটি ধারক-কে চার্জ করতে কিছু শক্তির অপবায় হয়, এই অপচিত শক্তি ধারকের সন্ধিত শক্তির সমান, মন্তব্য করো।

সংকেত ঃ ধারক-কে চার্জ করতে যে মোট শব্তির প্রয়োজন হয়, প্রমাণ করা যায় যে অর্থেক শব্তি ধারকে সন্ধিত থাকে এবং বাকি অর্থেক তাপশব্তিতে পরিণত হয়ে অপচিত হয়।

- 13. ভ্যান-ডি-গ্রাফ যন্ত্রে গোলক ও বেন্টকে যথাসকল মসুণ রাখা হয় কেন?
- 14. ভান-ডি-গ্রাফ যন্ত্রকে যে ধাতবপ্রকোষ্ঠে রাখা হয় জাকে ভ্-সংলগ্ন রাখা হয় কেন?

- 1. ধারকছের বাবেহারিক একক কী ?
- তভিতাহিত একটি গোলীয় পরিবাহীকে ধাবক কলে গণা করা যায়। ঐ ধারকের দিতীয় য়েটটি কী?
- 3. একটি বিন্দু আধানের বেলায় সমবিভদ তলের আকৃতি কিবৃপ ?
- 4. ∈ 0-এর একক ফ্যারাড মিটার (F/m)-এটা কি ঠিক ?

- 5. কোনো এক বিন্দুতে তড়িৎক্ষেত্র প্রাবলা শুনা না হলে সেখান বিভব কি শুনা হতে পারে ?
- 6. একটি সমান্তরাল ক্লেট ধারকের প্রতিটি ক্লেট গোলাকার এবং ব্যাসার্ধ r। এই ধারকের ধারকত্ব একটি বিচ্ছিন্ন r ব্যাসার্ধের গোলকের ধাবকাহের সমান হলে, প্লেট দৃটির দূরত্ব কত হবে ?
- 7. 1 farad ধারকত্বের সমান্তরাল প্লেট ধারক-কে কি বাড়িতে লাগানো যায় ? [সংক্রেড: না : ধারকের প্লেট দুটির ব্যবধান 1 mm হলেও প্রতি প্লেটের ক্রেডফল হবে 100 km².]
- 8. একটি সমান্তরাল শ্লেট ধারকের প্লেট দুটির ঠিক মাঝখানে একটি ধাতব পাত রাখলে ধারকের ধারকত্বের কি পরিবর্তন

সেংকেতঃ প্রায় কোনো পরিবর্তনই হবে না।

- 9. সমান্তরাল পাত্র ধারকের একটি প্লেট A-র বিভব শূন্য এবং অন্য প্লেট B-এর বিভব +V; A থেকে B পর্যন্ত বিভিন্ন বিন্দুর বিভব কিভাবে পরিবর্তন করবে ?
- 10. মনে করো, কোনো ধারকের পঞ্চিটিভ ক্লেটে $+Q_1$ তড়িতাধান এবং নেগেটিভ ক্লেটে $-Q_2$ তড়িতাধান দেওয়া হল। তাহলে ধারকের আধান কত ?
- 11. যেহেতু $C = \left(\frac{1}{V}\right)$.Q তাই একখা বলা যায় কি যে C আধান -Q-এর সমানুপাতিক ?
- 12. সম ব্যাসার্ধের একটি ফাঁপা গোলক এবং একটি নিরেট ধাতব গোলকে সমান তড়িতাধান দেওয়া হল। কোন্টির বিভব উচ্চতর হবে ?

বহুমুখী পছদের হার [Multiple choice type (M.C.Q.)]

(A) নির্ভুল উত্তরটি √চিহ্নিত করো :

- (i) তিনটি ধারকের ধারকত্বের জুনপাত 1:2:3। তাদের প্রথমে সমান্তরাল সমবায়ে, পরে শ্রেণি সমবায়ে যুক্ত করা হল। প্রথম ক্লেব্রে তুল্য ধারকত্ব দ্বিতীয় ক্লেব্র অপেক্ষা $2rac{8}{11}\,\mu\mathrm{F}$ বেশি। ধারক তিনটির ধারকত্ব
 - (A) 1μF, 2μF, 3μF

(B) 0.5µF, 1.0µF, 1.5µF

- (C) 0.2µF, 0.4µF, 0.6µF
- (D) 0.3µF, 0.6µF, 0.9µF.
- [ii] সমব্যাসার্থ এবং সম আধান যুক্ত 64টি ক্ষুদ্র ক্ষুদ্র জনলবিন্দু একসক্ষো মিশে একটি বড় বিন্দু গঠন করল। বড়ো বিন্দৃটির ধারকত্ব এবং ছোট বিন্দুর ধারকত্বের অনুপাত হবে
- (B) 1:4
- (D) 1:2.
- [iii] C ধারকত্বের একটি ধারক-কে V বিভবে আহিত করা হল। ধারক-কে বেন্টন করে একটি বন্ধ বেন্টনীর ভিতর দিয়ে তডিং ক্ষেত্রের ফ্রাক্স হবে

 - (A) $\frac{CV}{\epsilon_0}$ (B) $\frac{2CV}{\epsilon_0}$
 - (C) $\frac{CV}{2 \in_0}$ (D) white
- [iv] 3.22 নং চিত্রে প্রদর্শিত ধারক সমবায়ের তুল্য ধারকত্ব

 - (A) C . . . (B) 2C
 - (C) $\frac{C}{2}$
- (D) কোনটাই নয়।
- [v] একটি বিচ্ছিন্ন ধারকের দুই প্রেটের মাঝখানে একটি পরাবৈদ্যুতিক স্ন্যাব ঢোকানো হলে, স্লেট দুটির ভিতর পারস্পরিক 0.00
 - (A) বৃন্ধি পাবে

- (B) হ্রাস পাবে
- (C) কোনো পরিবর্তন হবে না
- (D) भूना शरव।
- [vi] বায়ুপূর্ণ একটি সমান্তরাল প্লেট ধারকের ধারকত্ব 10 12 F প্লেট দুটির দূরত্ব ত্বিপূপ করা হল এবং তাদের ভিতর মোম ভর্তি করা হল। এতে ধারকাত্ব বৃদ্ধি পেয়ে হল $2 \times 10^{-12} \, \mathrm{F}$; মোমের আপেক্ষিক আবেশের ধারকাত্ব কন্ত ?
- (A) 2.0 (B) 3.0 . M(C) 4.0
- [vii] যখন একটি ধারককে বাটোরির সক্ষো যুত্ত করা হয় তখন
 - (A) বর্তনী দিয়ে কোনো প্রবাহ যায় না,

- (B) কিছুক্শের জনা প্রবাহ যায় ; পরে হ্রাস পেয়ে শুনা হয়,
- (C) প্রবাহ ক্রমল বৃশ্বি পেয়ে সর্বাধিক হবে যখন ধারক বাটোরির ভোটেউজ পাবে,
- (D) বর্তনীতে পরিবর্তি প্রবাহ বাবে:
- [viii] একটি চার্জড সমান্তরালক পাত ধারকের প্লেট দৃটির মাঝখানে k আপেন্দিক আরেশিক ধারকছের বুক রাখলে, প্লেট দুটির ভিতর কোনো বিস্তুতে তড়িংকের
 - (A) বৃশ্বি পার

(B) **되**겨 পার

(C) k.E.-এর সমান হয়

(D) E/k-এর সমান হর।

- [ix] একটি সমান্তরাল শ্লেট ধারকের প্লেটের ক্ষেত্রফল u এবং ভড়িভাধান Q। শ্লেট দুটি পরস্পরকে যে বলে আকর্ষণ করে
 - (A) Q-এর সমানুপাতিক

(B) α-এর সমানৃগাতিক

(C) α-এর ব্যক্তানুপাতিক

(D) α²-এর বাতানুপাতিক।

- [x] একটি সমান্তরাল প্লেট ধারকের প্লেট দৃটির ক্ষেত্রফল সমান নয়। বড়ো প্লেটটি ব্যাটরির পঞ্চিটিভ প্রান্তের সাথে এবং ছোটটি নেগেটিভ প্রান্তের সাথে যুক্ত। বড়ো এবং ছোটো ক্লেটে যথাক্রমে Q_+ এবং Q_- তড়িভাধান থাকলে,
 - (A) $Q_{+} > Q_{-}$

(B) $Q_{+} = Q_{-}$

(C) $Q_{+} < Q_{-}$

- (D) আরও কিছু তথ্য প্রয়েরাজন।
- [f xi] C ধারকত্বের একটি ধারকে আধান Q, প্লেট দূটির বিভবপ্রভেদ V এবং প্রভোক প্লেটের ক্ষেত্রফল A। প্লেট দূটির

(A)
$$\frac{Q^2}{4\pi \epsilon_0 d^2}$$
 (B) $\frac{Q^2}{\epsilon_0 A}$ (C) $\frac{Q^2}{2\epsilon_0 A}$ (D) $\frac{CV^2}{2d}$.

- [xii] 3µF ধারকত্বের একটি ধারক A এবং 5µF ধারকত্বের আর একটি ধারক B দুটি ব্যাটারির সাথে যন্ত আছে [চিত্র 3.23]। A ধারকের স্লেট দৃটির ভিতর বিভব-পার্থক্য
 - (A) 16V (B) 4V (C) 6V (D) 10V. সিংকেত: A এবং B ধারকে আধান সমান। তাই

$$3 \times V_A = 5 \times V_B$$
 জাথবা $\frac{V_A}{V_B} = \frac{5}{3}$

$$\therefore \frac{V_A + V_B}{8} = \frac{V_A}{5} \quad \text{well} \quad V_A = 10V$$

[xiii] 4µF ধারকত্বের ধারককে 100V ব্যাটারি দ্বারা আহিড করার পর ধারককে সম্পূর্ণরূপে ডিসচার্জ করা হল। এতে যে শক্তি নিৰ্গত হবে তা

(B) 0.02J

(C) 0.03J

(D) 0.04J.

- [xiv] একটি সমান্তরাল প্লেট ধারককে আহিত করার পর চার্জিং ব্যাটারি খুলে ফেলা হল। অন্তরক হাতলের দ্বারা প্লেট দুটিকে मृदत्र अतिरात्र निल्न.
 - (A) প্লেটের আধান বৃন্ধি পায়,
- (B) প্লেট দৃটির বিভব পার্থক্য বৃষ্ধি পায়,
- (C) ধারকত্ব বৃশ্বি পায়,
- (D) ধারকে সন্থিত শক্তি বৃদ্ধি পায়।
- [xv] একটি সমান্তরাল শ্লেট ধারক-কে একটি ব্যার্টানির সাথে যুক্ত করা হল। ধারকের সংগে যুক্ত আধান, ভোস্টেজ, তড়িৎ ক্ষেত্র এবং শক্তি যথাক্রমে $Q_0,\,V_0,\,E_0$ এন U_0 । ব্যাটারি যুক্ত থাকা অবস্থায় ধারকের প্লেট দৃটির ভিতর কার জায়গা সম্পূর্ণ দখল করে একটি পরা বৈদাতিক জ্ঞাব ঢোকানো হল। উপরোক্ত রাশিগুলির বর্তমান মান Q, V, E এবং U। এ অবস্থায়

- (A) $Q > Q_0$ (B) $V > V_0$ (C) $E > E_0$ (D) $U > U_0$. $[{f xvi}]$ C_1 এবং C_2 ধারকক্ষের দুটি ধারক সমান্তরাল সমবায়ে যুক্ত করে Q তড়িতাধান দেওয়া হল। C_1 ধারকে আধান এবং C_2 ধারকে আধান দুটির অনুপাত

C C_2 C_3 C_4 C_5 C_5
(A) $\frac{C_1}{C_2}$ (B) $\frac{C_2}{C_1}$ (C) $\frac{C_1C_2}{1}$ (D) $\frac{1}{C_1C_2}$
ে ১৯০০ তার এর প্রারক্তের মন্ত্রি প্রারক্তের সমাজবাল সমবায় যন্ত করে V বিভবপ্রভেদে আহিত করা হর্ল। তারপর ব্যাটারি
খুলে ফেলে 4 আপেক্ষিক আবেশিক ধারকত্বের একটি ব্রককে C ধারকের প্লেট দটির ভিতর সম্পূর্ণ ঢুকিয়ে দেওয়া
হল। ধারক দটির বর্তমান বিভবপ্রভেদ
(A) 0.5 V (B) 1V (C) 2V (D) 4V
্রিসংক্তে : প্রাথমিক তুলা ধারকত্ব $C_1=C+2C=3C$ এবং আধান $Q_1=3CV$. নতুন তুলা ধারকত্ব $4C+$
$2C=6C$; আধান অপরিবর্তি থাকায় বর্তমান বিভব–প্রস্থেদ $V=rac{Q_1}{6C}=rac{3CV}{6C}=0.5V$]
[xviii] একটি ধাতন গোলকের ধারকত্ব 1F হবে যদি গোলকের ব্যাসার্থ
(A) 3×10^9 m (B) 6×10^9 m (C) 9×10^9 m (D) 12×10^9 m.
[xix] t বেধের একটি স্নাবকে একটি সমান্তরাল পাত ধারকের পাত দুটির ভিতর ঢোকানো হল। পাত দুটির ব্যবধান $=d$ ।
সমূদ্র $t=rac{d}{d}$ তথন স্নাব ঢোকানোর আগে ও পরে ধারকের ধারকত্বের অনুপাত হবে
(A) $1:\sqrt{2}$ (B) $1:2$ (C) $1:1$ (D) $\sqrt{2}:1$.
[xx] প্রত্যেকটি 6μF ধারকত্বের তিনটি ধারক আছে। এদের দিয়ে সর্ববৃহৎ এবং সর্বনিম্ন ধারকত্ব পাওয়া যাবে,
(A) 6μF, 18μF (B) 3μF, 12μF (C) 2μF, 12μF (D) 18μF, 2μF.
[xxi] 2.0 µF এবং 8.0 µF ধারকঙ্কের দুটি শ্রেণি সমবায়ে আবন্ধ ধারক সমবায়ে 300 V বিভবপ্রভেদ দেওয়া হল।
2 ০ ৮৮ ধারকে আধান হবে.
(A) 2.4×10^{-4} C (B) 4.8×10^{-4} C (C) 7.2×10^{-4} C (D) 9.6×10^{-4} C.
[xxii] 10 cm ব্যাসার্ধের একটি পরিবাহী গোলককে একটি মাধ্যমে রাখা হল যার পরাবৈদ্যতিক ধ্রুবক 8; এর ধারকত্ব,
(A) 80 esu (B) 10 e.s.u. (C) $\frac{1}{9} \times 10^{-10}$ F (D) 80 F. [Jt. Entrance 2006]
[xxiii] ধারকদ্বের একক হল
(A) পিকোফাারাড (B) কুলম্ব (C) মাইক্রোভোল্ট (D) ওরস্টেড।
[Jt. Entrance 2006]
(C) भूनाञ्चान भूतम करता (Fill up the gaps) :
[i] কোনো উড়িংখারকের একটি পা ডকে E প্রড়িচালক বলসম্পন্ন একটি কোশের সঙ্গো যান্ত করা হল ও মন্য পাতটিকে একটি
পরিবাহী তার দারা মাটিতে যুক্ত করা হল ৬-সংযোগ বিচ্ছিন্ন করলে পাত দৃটির মধ্যে বিভব প্রতেদ
$[ii]$ একটি সমান্তরাল পাঙ ধারকের পাঙ দুটির আধান $8.85 imes 10^{-5}$ (* এবং ক্ষেত্রমল $10 \mathrm{m}^2$, প্লেট দুটি পরস্পরকে যে-
বলে আকর্ষণ করবে তা।
[III] C_1 এবং C_2 শব্দের বিভ্নস্তাভেদ V_1 এবং V_2 হলে, V_2
[iv] 2μF ধারকহেব ধারককে 10V বিভবপ্রকে মাহিত কর হল। একটি আধানবিহীন ধারকেব সজো একে সমান্তরাল সমবায়
মৃত্ত করনে উভয়ের সাধারণ (common) বিভর দীভূম 40V, দ্বিতীয় ধারকের ধারকত্ব
[v] উল্লাভা পাড়ালে পরা বিদ্যাহের পরা বাদ্যাহিল ধুবক পায় .
[vi] একটি ধারক-কে 12V প্রভৃত্তালক বলের বার্টারর সাথে যুক্ত করলে 60 μC আধান পায়। ধারকের ধারকত্ব
Office and a second sec
(vii) সমান্তবাল ক্লট থাবাকর ক্লেট পতির বাবধান বাহালে, ধাবকের বাবকাই পায়।
(viii) সমাপ্রবাল এট বাবককে ব্যাটারের সাহথ্যে চার্ভ করার পর, বাটারি খুলে নিজে, বাবকের ভাষান
elica $\{ix\}$ and $\{ix\}$ are a sun such as set all all $\{ix\}$ and $\{ix\}$ and $\{ix\}$ are a sun $\{ix\}$ are a sun $\{ix\}$ are a sun $\{ix\}$ and $\{ix\}$ are a sun $\{ix\}$ are a s
(ix) The bound of a sure that of the sure allowing animals and the sure of the
the beautiful actually actually acts, the survest days days and later acts also but appeals the day day in the B lander and A manufact and a solution of the survey and appeals and a solution of the survey

- [i] একটি পরিবাহী বস্তুর পরা বৈদ্যুতিক ধ্রুবক শুন্য।
- [ii] একটি ধারকের বিভব-প্রভেদ স্থির থাকাকালীন ধারকের প্লেট দৃটির মাঝে কোনো পরাবিদাৎ (dielectric) ঢোকালে, প্লেটের তড়িতাধানের কোনো পরিবর্তন হয় না।
- [iii] কোনো ধারকের ধারকত্ব তার আধানের উপর নির্ভর করে না ।
- [iv] একটি পরিবাহীর বিভব 250 volt বৃদ্ধি করতে 5 × 10 coulomb হড়িভাধীন দিছে হয়। পরিবাহীর ধারকত্ব 0.2 × 10-8 ह
- [v] কোনো তড়িতাহিত বন্ধুর নিকটে তড়িৎবিহীন পরিবাহী আনলে ওই বন্ধুর বিভবের বিশেষ কোনো পরিবর্তন হয় গা।
- [vi] সমান্তরাল পাত ধারকের পাতদ্টির ব্যবধান বাড়ালে ধারকের ধারকত্ব হ্রাস পায়
- [vii] কতকগুলি ধারককে সমান্তরাল সমবায়ে যুক্ত করলে পৃথক ধারকগুলির ধারকত্বের সমষ্টি গুলা ধারকত্বের সমান হয়।
- [viii] সমান বাাসার্ধের দৃটির ভামার গোলকের একটি নিরেট এবং অপরটি ফাপা। উভয়কে সমান বিভবে তড়িতাহিত করলে, নিরেট গোলকে বেশি আধান থাকবে।

লাণিতিক প্ৰথ

 4 unit ধারকত্বের একটি পরিবাহীকে 100 unit ধনায়ক আধানে আহিত করা হল এবং 2 unit ধারকত্বের অপর একটি পরিবাহীকে 20 unit ঋণাত্মক আধানে আহিত করে প্রথম পরিবাহীর সহিত যুক্ত করা হল। এখন, তাদের বিভব কীরপ পরিবর্তন করবে এবং তাড়িতাধান কত থাকবে নির্ণয় করো।

> [Ans. প্রথম পরিবাহী : + 25 হতে 13.3 unit; 53. 5 unit. দ্বিতীয় পরিবাহী : - 10 হতে + 13.3 unit; + 26.7 unit.]

- 2. 20 এবং 30 unit ধারকত্বের দুটি পরিবাহীকে সরু ভার দিয়ে যুক্ত করে তাদের 100 unit তড়িভাধান দেওয়া হল। তাদের বিভব এবং তড়িভাধান নির্ণয় করো। [Ans. বিভব 2 unit; $q_1 = 40$ unit; $q_2 = 60$ unit;]
- 3. একটি 100μF ধারকত্বের ধারককে 50 volt বিভব প্রভেদে আহিত করা হল , মতঃপর চার্জিং ব্যাটারি খুলে নিয়ে ঐ ধারককে আর একটি ধারকের সাথে যুক্ত করা হল , এতে বিভব গ্রাস পেরে 35 volt হল , মিত্তীয় ধাবকের ধারকত্ব কত?

 [Ans.43μμF (প্রায়)]
- 4. 20 cm × 25 cm সাইজের আয়ভাকার দৃটি টিনপাত 0.1 mm পূর্ পাতলা একটি অল্রপাতের দুই দিকে লাশানো হল। এই ধারকের ধারকছু মাইক্রোফানারেড হির্মির করে। অন্তের প্রাইরেদ্যুভিক ধ্বক = 5. [Ans. 0.022uF]
- 5. 4,6 এবং 12μF শাবকংশ্বর ভিনটি শারককে শ্রেলি সমানায়ে আবন্ধ করে একটি 500 ভোল্ট বাটেরি সাথে যুক্ত করা হল । ।।। ভাষের ভূল, শারকঞ্জ ।।। প্রতাক ধানারের সভি এখন এবং ।।।। প্রতোক ধানারের ভূলি, শারকঞ্জ নিশ্ব করে।
 [Ans. (i) 2μF (ii) 0.001C (iii) 250 V. 167 V. এবং 83 V]
- 6. ৪ cm ব্যাসার্থের দৃটি গ্রান্ধাকার প্লেট পারম্পরিক নরও 1 mm রয়ে একটি সমান্তরাল পাত ধারক তিরি করে। ট্র ধারকে 100 volt বিভসপ্তবেদন প্রায়ণ্য করলে ধার্রেক প্লেটে কত আধান ছফা থাকার?

[Ans. 1.8 × 10⁻⁸ C (劉邦)]

7. দৃটি অস্থাবিত দাতব ,গোলকের ব্যাসাধি R এবা 2R একেব এমনভাবে তড়িতাধান দেওয়া হল যে তাদের আধানের তল্যাত্রিক তল্যাত্রিক ঘনত্র (৪) সমান ।গোলক বৃটিকে সরু ৩৩ ছালা যুক্ত ব্রেলে নড়ো ,গোলকটির আধানের তল্যাত্রিক

ঘনত্ব ৰত ৰবে ? $\left[Ans. \frac{5}{6}\sigma\right]$

- 8. কোনো প্রিলাটা ্লালকের ধ্বকার $1 \mathrm{nF}$ গেল আধ্যা $10 \mathrm{\ coulomb}$ গ্লে, (বাসাচে) মুক বিভাগ কার্ড? $[\mathbf{Ans.} \mathbf{10}^7 \, \mathrm{V}]$
- 9. একটি সমাধ্রাল পাত ধাবকেব ধাবকর $10 \mu {
 m k}^2$ বেং পাতৃত্ব কেম্ফল $100 {
 m cm}^2$, ধাবককে $50 {
 m volt}$ বিভব-প্রভেদ দিলে, পাতৃত্ব আধানের তলমাত্রিক ঘনত্ব কী হবে? [Ans. 0.05×10^{-9}]

[Ans. $q_1 = 3\frac{1}{13}$; $q_2 = 6\frac{12}{13}$ esu]

11. 2 cm এব 4 cm শাসন্তব নৃতি পোন শাত এই চানা প্রকাশনে প্রকারতীতে অভিযান বর এন পানুর এ ছতি করে নিয়া সাক কুরনে, পর্যাবাহীতে বাব সাধান গাব্দাং

- 12. সর্ববিষয়ে সমান দৃটি ধাবককে সমান্তরাল সমাবয়ে আবন্ধ করলে মোট যে ধারকত্ব হয় তা প্রেশি সমাবায়ে আবন্ধ থাকাকালীন মোট ধারকফ্বের চারগুণ — এটা প্রমাণ করো।
- 13. 2. 3 এবং 4 একক ধাবকত্ত্বের হিনটি ধারককে যথাক্রমে (i) শ্রেণি সমবায়ে এবং (ii) সমাপ্তরাল সমবায়ে যুস্ত করা इस भृदे (कर्ड इसा धानकर्वत इसना कर्ता।
- 14. প্রত্যেকটি 10 μF ধারকত্ত্বর দৃটি ধারক সমান্তরাল সমাবায়ে বৃত্ত করা হল এবং সমবায়টিকে 30 μF ধারকত্ত্বর ধারকের সংক্ষা প্রেলি সমবারের যুক্ত করা হল। সমগ্র সমবায়টির তুলা ধারকত্ব কত? (Ans. 12 µF)
- 15. একটি সমান্তরাল পাত ধারকের প্রতিটি পাতের ক্ষেত্রফল 200 sqcm। পাত দুটির বাবধান দ্রত্ব 2 mm এবং অনুর্বতী মাধাম বায়ু একটি পাত ভ-সংলগ্ন এবং অপরটির বিভব 300 ভোলী প্রতিটি পাতৃত আধান কাত নির্ণায়

ি সংক্রেড
$$Q = C V = \frac{200}{4\pi \times 0.2} \times \frac{300}{300} = 79.6 \text{ esu}$$

- 16. 20μF এবং 60μF ধারকত্ববিশ্রিত দৃটি ধারক শ্রেণি সমাবায়ে যুক্ত। সমবায়ে দুই প্রাণ্ডের বিভব পার্থকা 40 volt [Ans. 30 volt, 10 volt] করলে ধারকের প্রাওছয়ের মধ্যে বিভব-প্রভেদ নির্ণয় করো।
- 17. দৃটি গোলীয় ধারকের প্রভোটিকে q র্জভাষান **আছে। একটি ধারকের আ**য়তন অপরটির ছিগুণ। একটি সরু তার দারা ধারক দটিকে যুত্ত করা হল প্রত্যেক গোলকের আধান নির্ণয় করো। $\sqrt[3]{2}=1.26$ [Ans. 1.15~q:0.885~q]
- 18. 2 mm ব্যাস বিশিষ্ট ও 5 মাইক্রোস্ট্রাটকু**লম তড়িংযুর আটটি গোলাকার** তরল বিন্দু একত্রীভূত করা হল। এই যুর গোলকের উপরিভালের বিভব ভো**ণ্টে প্রকাশ করো**।
- 19, একটি গোলীয় ধারকেব বাইরেব গোলকের ব্যাস 30 cm এবং ভিতরের গোলকের 20 cm ; এদের ভিতরকার জায়গা 2 আপেক্ষিক আর্বেশিক ধারকাত্বের একটি **তরল দারা পূর্ণ। ঐ ধারকের ধা**রকত্ব মাইক্রো-ফ্যারাড়ে নির্ণয় করো। [Ans. 1.33 × 10-4µF]
- 20. একটি সমানুরাল পাত ধাবক 21 টি গোলাকার ধাতব পাত দিয়ে তৈরি, যার প্রত্যেকটির ব্যাস 10 cm : এই পাতগুলিকে 0 2 mm পুরু অন্ত দিয়ে পৃথক করা আছে . একটি অন্তর একটি পাত সংযুক্ত করা থাকে তবে ধারকটির [Ans. 0.042 µF] ধারকত্ব মাইক্রোফারেড এককে নির্ণয় করো।

[FIGURE 2
$$C = \frac{(n-1)k \cdot \alpha}{4\pi d} \times \frac{1}{9 \times 10^5} \, \mu\text{F}; n = 21; k = 6; \alpha = \pi(5)^2 \, \text{cm}^2; d = 0.2 \, \text{mm} = 0.02$$

- 21, প্রতিটি 500 cm² ক্ষেত্রফল বিশিন্ট সমান্তরাল দুটি ধাতব পাত পরস্পর হতে 0.075 cm দূরত্বে আছে। অন্তর্বতী স্থান 6.28 আপেক্ষিক আবেশিক ধারকত্বে অন্ত দারা পূর্ণ করা হল। তড়িতাহিত প্লেটের আধানের তলমাত্রিক ঘনত্ব 0 1 C/ cm² হলে, ধারকের স্থিতিশস্তি নির্ণয় করো। [Ans. 3 37 joule]
- 22. একটি সমান্তরাল পাত ধারকের ক্ষেত্রফল 1 m² এবং পরা-বৈদ্যুতিক ধ্রবক 7 ; আহিত করে তার বিভব 300 volt-এ তোলা হলে কত শক্তি সন্থিত থাকে নির্ণয় করো। দেওয়া আছে সমান্তরাল পাত দুটির দূরত্ব 0.01 cm.

[Ans. 2.78 joule]

23. 5 এবং 10 একক ধার**কত্বের দুটি ধারককে তড়িতাধান দিয়ে বিভব যথাক্রমে** 16 এবং 10 একক করা হল। এদের সমান্তরাল সমবায়ে যুক্ত করলে সাধারণ বিভব কী হবে ? শ্রেণি সমবায়ের ক্ষেত্রে কী হবে ?

Ans. 12 একক ; 54 একক]

10µF

24, 3,24 নং চিত্রে প্রদর্শিত ধারক-বর্তনীয় A এবং B বিন্দুর ভিতর ধারকার নির্ণয় করো। তিনটি ধারকের আধান কত? B বিন্দুর বিভব শুনা ধরে D বিন্দুর বিভব নির্ণয় করো।

[Ans. (i) $\frac{16}{3}\mu F$ (ii) $86\mu C$; $24\mu C$; 4.8 V] সেংকেত: (i) 10µF এবং 5µF শ্রেণি সমবায়ে থাকায় তুল্য ধারকত্ব $\frac{1}{C} = \frac{1}{10} + \frac{1}{5}$ অথবা, $C = \frac{10}{3} \mu F$ এই সমবায় আবার 2µF শারকের সমান্তরাল সমবায়ে থাকায় A এবং B-এর ভিতর

(u) বাটেরি কর্তৃক প্রদান $Q=CV=rac{10}{2}+18-60 \mu C+2 \mu F$ ধার্কের প্রাক্তি। বিভব পাঞ্চক। $\sim 18 V$

(ব্যাটারিব ভড়িজালক বল) ভাই, এই ধাবনের আধান - 2μF × 18V - 36μC অতএব, 10μF এবং 5μF ধারক শুটিকে প্রভেত্তের আধান - 60 - 36 - 24 μC

 $\sin 5 \mu F$ বাবকের বিভব-প্রভেদ = $\frac{\text{silator}}{874000} = \frac{24}{5} = 4.8 \text{V}$

B বিন্দুর বিভবশুনা ছওরার D বিন্দুর বিভব = 4.8V.

25. একটি গোলকীয় জনের ্ফাটা $10 imes 10^{-12}$ কুলম্ব আধানে আছিত একস্থায় এর পূর্ণের বিভব 100 1805 হয (nকোঁটাটির ব্যাসার্য কত ০ (n) যদি সমজাধানে আহিত ঐরকম আটটি একই ব্যাসার্থের ফোঁটা সংযুদ্ধ হয়ে একটি ফোঁটায় পরিগত হয়, নতুন ফোঁটাটির পূর্কে বিভব কত হবে? (Ans. (i) 9 × 10⁻¹⁹ m (ii) 400 volt)

[F:(FE : T = C = 4EE 0.r]

কাঠনভর গাণিডিক প্রস

- একটি সমান্তরাল পাত ধারকের প্লেট দৃটি পরস্পর হতে 2 cm দৃরে। ঐ প্লেট দৃটিব মধ্যে 1 cm নধ্য ভ একটি পরাবিদাৎ রাখা হল যার আপেক্ষিক আবেশিক ধারকত্ব = 5 ; এখন প্লেট দুটির দুবন্ধ এরপভাবে পরিবর্তন কবা হল যে ধারকত্ব অপরিবর্তিত থাকল। প্লেট দুটির বর্তমান দৃগত্ব কত? [Ans. 2.8 cm]
- একটি ব্যাটারির সাথে একটি ধারককে যুক্ত করলে ধারকে 50 µC আধান সন্ধিত হয়। ধারকেব প্লেট দটির ভিতর একটি পরাবৈদ্যতিক স্ল্যাব ঢুকালে ব্যাটারি দিয়ে 100μC আধান অতিক্রম করে। স্ল্যাবের পরাবৈদ্তিক ধুবক কর?
- 3, একটি সমান্তরাল পাত ধারকের দৃষ্ট প্লেটের মধ্যে পরাবিদ্যাতের একটি স্ল্যাব দুকানো হল। প্রমাণ করে। যে ধারকের প্রতি একক ক্ষেত্রফলে ধারকত্ব দ্বিগুণ হবে যদি পরাবৈদ্যুতিক ধ্বুবক $K=rac{2x}{2x-d}$ হয় ; d= পরাবিদ্যুৎ প্রবেশ করাবার পূর্বে বায়ুর বেধ ; x =পরাবিদ্যুতের বেধ।
- 4. 2μF, 3μF এবং 6μF ধারকত্ত্বের ভিনটি ধারককে শ্রেণি সমবায়ে আবন্ধ করে 12V বাটারির সাথে বৃত্ত করা হল।

পরে সংযোগী তারগুলি খুলে ফেলে তিনটি পজিটিভ প্লেটকে একসকো এবং তিনটি নেগেটিভ প্লেটকে একসকো যুক্ত করা হল (চিত্র 3.25)। এখন তিনটি ধারকের আধান নির্ণয়

সিংকেত: প্রথমে শ্রেণি সমবায়ে আবন্ধ অবস্থায় তুল্য

ধারকত্ব
$$\frac{1}{C} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1\mu$$
F

ব্যাটারির কর্তৃক প্রদন্ত আধান = 1µF × 12V = 12µC। ধারকগুলি শ্রেণি সমবায়ে থাকার প্রত্যেক ধারকের পজিটিভ

সেটে +12μC এবং নেণেটিভ সেটে -12μC আধান থাকবে আধানযুত্ত ধারকগুলিকে এবার 3.25 নং চিত্রে প্রদর্শিত সমবায়ে আবন্ধ করা হল।

মোট $+36\mu\mathrm{C}$ আধান এবার তিনটি পঞ্জিটিভ প্লেটে, ধরো, Q_1,Q_2 এবং Q_3 এবং তিনটি নেগেটিভ প্লেটে -36 $\mu\mathrm{C}$ যথাক্রমে $-Q_1$, $-Q_2$ এবং Q_3 আধানে বন্টিত হল। এখন, তিনটি পজিটিভ প্লেটের একটি সাধারণ (Common) বিভব এবং তিনটি নেগেটিভ প্লেটের একটি সাধারণ বিভব হবে। ধরে, প্রতোক দুই প্লেটের বিভব-

পার্থক্য
$$=V$$
; তাহলে

$$Q_1 = (3\mu F).V$$

$$Q_2 = (3\mu F).V$$

এবং
$$Q_3 = (6\mu F).V$$

তাছাড়া,
$$Q_1 + Q_2 + Q_3 = 36\mu\text{C}$$

সমীকরণগুলি সমাধান করলে পাই
$$Q_1=rac{72}{11}\,\mu\mathrm{C}$$
 ; $Q_2=rac{108}{11}\,\mu\mathrm{C}$; $Q_3=rac{216}{11}\,\mu\mathrm{C}$]

5. প্রত্যেকটি 15 cm² ক্লেক্রেফলবিশিষ্ট এরুপ 11 টি ধাতব প্লেট দারা একটি সমান্তরাল প্লেট ধারক তৈরি করা হয়েছে। প্রতি দটি প্লেটের ফাঁকের জিতব 0.2 mm বেধ ও 6 আপেক্ষিক আবেশিক ধারকত্ব যুক্ত অভ্রপাত রাখা আছে। ধাতব প্রেটিগুলিকে ওকটি অন্তর একটি করে পরস্পারে সংযুক্ত, মার্টরো-ফ।রড়ে এই পারকের পাকর । 👀 করে।

|Ans. 0.00398µF]

6. 4nF ধারক- ,ক 1000 ভেপেন্ট আছিত করা হল। ধারকে সঞ্ছিত শক্তির পরিমাণ নিগছ করে। ও পরাক্রিক সাহে 2nF ধারকরের আর একটি অন্তিত শারক সমান্তরাল সমবাদে যুত্ত করলে ঐ সমান্তরের বিভাব কর ১০০০

[Ans. 2 joule ; 666.6 volt]

দৃটি ধারকাকে সমাদ্রাল সমবায়ে 20 esu বিভব পার্থকা রাখালে তাদের ততিহশান্তি লাড় হ 5000 erg. কিও প্রেলি
সমবায়ে একট বিভব পার্থকো রাখালে, তড়িংশান্তি হয় 1500 erg. ধারক দৃটির ধারক হ কেছে

[Ans. 30 এবং 10 esu]

সিংকেত ঃ প্রথমবরে, $8000=\frac{1}{2} \ (c_1+c_2) \times (20)^2$ এবং নিতীয়বার $1500=\frac{1}{2} \times \frac{c_1c_2}{c_1+c_2} \sim (20)^2$

- 8. 1 mm এবং 2 mm ব্যাসর্গের দৃষ্টি বারিবিন্দৃকে যথাকনে 1500 এবং 75000 বোরি দিন চাহত করা জন।
 বারিবিন্দুর্য যদি মিশে একটি বিন্দৃতে পবিশত হয়, তাহলে শক্তির পরিবর্তন আগে প্রকাশ করে। 1 volt $\frac{1}{300}$ esti.
- একই রকমের 1000 গুড়িজাহিত বৃষ্টির ফোঁটা মিলে একটি বৃঢ় গোঁটা পরিণত হং যাতে আট ভিড়িতের পরিমাণ অপরিবর্তিত থাকে ফোঁটাপুলির মোট ভড়িৎশন্তির কন্টটা পরিবর্তত হল বাব করো। ধরে নাও যে কোঁটাপুলির প্রালীয় এবং ছোটো ফোঁটাগুলি একে অপরের থেকে অনেকটা দূরে অর্কম্পত। [Ans. প্রাণমিক শক্তির 99 গুণ]
- 10. দৃটি সম্ভবিত ধাতৰ গোলকের ব্যাসার্থের অনুপাত 4:1; তাদের একই পরিমাণ আধানে আঁতত করে একচি সর্ তারের সাথানে যুত্ত করা হল। তারে কোন আধান নেই ধরে নিলে, সংযোগ বিক্লিয় করার পর সাত্ত লোলক বৃত্তিব আধানের তলস্থিক ঘনত্বের অনুপাত নির্বারণ করো।
- 11. একটি সমাওরাল পাত ধাবকের A, B এবং C ধাতব পাতগুলির প্রতিটিব ক্ষেত্রগর্ল 220 cm². . A ও B এর : . 0.5 mm পূর্ কাগজ এবং B ও C এর মধ্যে 0.2 mm পূর্ আগ্রের পাত আছে A ওবং C কে ধারকের ওতে হিসাবে বাবতার করলে ধারকত্ব কত হবে? A, B পাত নৃষ্টিকে ভার দিয়ে যাও করে ওকটি পাত্তিসভাগ বলা ও কেন্দ্র পাত হিসাবে বাবতার করলে ধারকত্ব কত হবে? কাগড়েক এবং অবং আগর সংগতিক ও বেশিক ধারকত্ব কত হবে? কাগড়েক এবং এবং ১ প্রতিক ও বেশিক ধারকত্ব কত হবে? কাগড়েক এবং এবং ১ প্রতিক ও বেশিক ধারকত্ব কত হবে? কাগড়েক এবং ১ বিশ্বর বাবতার বিজ্ঞান ও বিশ্বর বাবতার বিজ্ঞান ও বিশ্বর বাবতার বাবতার
- 12. একটি অভিত্যিত ধারক তার দ্বিগুণ ধারকত্ব সম্পন্ন অপর একটি অলাতিও পার্কের নাড়ে নিজ আধান বজন করে। এই অবস্থায় উভয় ধারকের মোট শক্তির পরিমাণ নির্ণয় করে। ।Ans. 🕡 ।

(A)							
(ž)	В	(*)	((ix) C	txiii) B	(Svio A	(NIII)
ii)	(,	(vi)	((x) B	ixivi ls	exviio (INNIE
ii)	D	(vii)	13	(xi) ((11)	tain is	2230
¥ F	В	(viii)	B	(vii) 1)	(Ni) A		

(B) [i] E, [ii] 44.25N [iii] (2) ([ix] 5µF, [v] 20. (vi) 5µF [vii] 40. [viii] 20. (vii) 41. (vii) 42.

(C)[[] 李, [[]] 李, [[]] [[李], [[]] [[本字, [v]] [[本], [vi] [[x]], [x]] [[x]], [x]]

প্রবাহী তড়িৎ বিজ্ঞান

[CURRENT ELECTRICITY]

1.1. সূচনা (Introduction) ঃ

কোনো পরিবাহীর ভিতর দিয়ে তড়িৎ প্রবাহ ঘটলে পরিবাহী উত্তপ্ত হয়ে পড়ে। একে তড়িৎ প্রবাহের তাপীয় ফল বলা হয়।

প্রত্যেক পরিবাহীতে বেশ কিছু সংখ্যক মুক্ত ইলেকট্রন থাকে। পরিবাহীর দু-প্রান্তে বিভবপ্রভেদ থাকলে, ইলেকট্রনগুলি নির্মাবিভব প্রান্ত হতে উচ্চবিভব প্রান্তের দিকে যেতে চেন্টা করে। এতে ইলেকট্রনগুলির কিছু গতিশক্তি লাভ হয়। প্রকৃতপক্ষে পরিবাহীর ভিতর দিয়ে ইলেকট্রনের এই অণুপ্রবাহের (drift) জন্য পরিবাহীতে তড়িৎ প্রবাহের উৎপত্তি হয়। এখন, গতিশক্তিসম্পন্ন ইলেকট্রনগুলি পরিবাহীর মধ্য দিয়ে গতিশীল হবার সময় পরিবাহীর অণুর সজো সংঘর্ষ ঘটায়। ফলে, পরিবাহীর অণুগুলির গতিশক্তি বৃদ্ধি পায়। গতীয়তত্ত্ব (kinetic theory) অণুযায়ী অণুর গতিশক্তি বৃদ্ধির অর্থ উদ্ধাতা বৃদ্ধি। এভাবে তড়িৎপ্রবাহের জন্য পরিবাহীতে তাপের উদ্ভব হয় এবং পরিবাহীর উদ্ধাতা বৃদ্ধি পায়। যত উদ্ধাতা বৃদ্ধি পায় পরিবাহীর পৃষ্ঠ হতে তত বর্ধিত হারে তাপের বিকিরণও হয়। এভাবে চলতে থেকে এক সময় তাপ উদ্ভবের হার এবং তাপ বিকিরণের হার সমান হয়। পরিবাহী তখন একটি স্থির তাপমাত্রা লাভ করে। এই কারণে পরিবাহী ভিতর দিয়ে অনির্দিন্টকাল তড়িৎ প্রবাহের ফলে নিরবচ্ছিন্নভাবে তাপ উৎপাদন হলেও কিছুক্ষণ পর পরিবাহীর উন্ধাতা স্থির হয়ে যায়; উন্ধাতা অনির্দিন্টভাবে বৃন্ধি পায় না।

তড়িৎ প্রবাহের এই তাপীয় ফলের ব্যাবহারিক প্রয়োগ দ্বারা বহু প্রয়োজনীয় কার্য সম্পাদন করা হয়। বিজলিবাতি হতে আমরা যে আলো পাই, বৈদ্যুতিক হিটার ও স্টোভ হতে যে তাপ উদ্ধৃত হয় তা তড়িৎ প্রবাহের তাপীয় ফলের গার্হস্থা প্রয়োগ। আবার, বৈদ্যুতিক আর্ক প্রয়েলডিং (arc welding), বৈদ্যুতিক ফার্নেস প্রভৃতি তাপীয় ফলের শিল্পক্ষেরে প্রয়োগের দৃষ্টান্ত। তড়িৎ প্রবাহের ফলে যে তাপের উদ্ভব হয় সেই সংক্রান্ত সূত্র সর্বপ্রথম আবিদ্ধার করেন তাঃ জেমস্ প্রেসকট জুল 1841 খ্রিস্টান্দে। তাঁর নামানুসারে এই সূত্রকে জুল সূত্র বলা হয়।

1.2. জুল সূত্ৰ (Joule's Law) :

R রোধযুক্ত পরিবাহীতে যদি t সময় ব্যাপী I প্রবাহমাত্রা চালু থাকে, তবে জুল সূত্রকে নিম্নলিখিতরূপে প্রকাশ করা যেতে পারে—

- (i) রোধ ও সময় অপরিবর্তিত থাকলে উদ্বৃত তাপ (H) প্রবাহমাত্রার বর্গের সমানুপাতিক হয়। তথাং $H \simeq I^2$ যদি R ও t প্রবক হয়।
- (ii) প্রবাহমাত্রা ও সময় অপরিবর্তিত থাকলে উদ্বত তাপ রোধের সমানুপাতিক হয়; $H \sim R$ যদি I ও t প্রবক হয়।
- (iii) রোধ ও প্রবাহমাত্রা অপরিবর্তিত থাকলে উদ্ভূত তাপ সময়ের সমানুপাতিক হর: অর্থাৎ $H \propto t$ যদি I ও R ধ্রক হয়।

র্গালতের সাহায়ে। সমগ্রভাবে সূত্রকে নিম্নলিখিত উপায়ে প্রকাশ করা য়েতে পারে ঃ—

 $H \propto I^2$. R. t.

1.3 জুল সূত্রের প্রতিষ্ঠা (Establishment of Joule's Law)

ধরে', AB পরিবাহীর প্রান্তীয় বিভবপ্রভেদ E এবং এর রোধ R (চিত্র 1.1)। মনে করো, ঐ পরিবাহী দিয়ে t সময় ধরে I প্রবাহ যাছে।

বিভবপ্রভেদের সংজ্ঞা অনুযায়ী বলা যায় যে পরিবাহীর বিভবপ্রভেদ E হলে তার এক প্রান্ত হতে অপর প্রান্ত একক মাত্রার ওড়িতাধান নিঙে E একক কার্য করতে হবে। এখন, t সময় ধরে I প্রবাহ চ'ল থাকার জন। যদি পরিবাহীর এক প্রান্ত হতে অপর প্রান্তে Q পরিমাণ ওড়িতাধান স্থানাগুরিত হয়, তবে, Q = I.t এবং কৃতকার্য $W = Q \times E = E.I.t$.

এ পর্যন্ত বিভবপ্রভেদ, তড়িৎ প্রবাহমাত্রা ইত্যাদি কোনো রাশিরই একক উদ্ধেখ করা হয়নি। এস. আই. একক অথবা ব্যাবহারিক একক অনুযায়ী E ভোল্টে, I অ্যাম্পিয়ারে, t সেকেন্ডে প্রকাশ করা হলে, W=E.I.t জুল। এই পরিমাণ কার্য তাপে রূপান্তরিত হয়ে পরিবাহীকে উত্তপ্ত করবে।

সূতরাং উৎপন্ন তাপ
$$H = E.I.t$$
 joule

$$=I^2.Rt$$
 joule (i) $[E=I\times R]$

যদি উৎপন্ন তাপ ক্যালোরিতে প্রকাশ করতে হয় এবং ঐ তাপ যদি $H \operatorname{cal}$ হয় তবে

W = JH অথবা E.I.t = JH $[J = 4.2 \text{ joule cal}^{-1}]$

অথবা,
$$H = \frac{E.I.t}{J} = \frac{E.I.t}{4.2}$$
 cal $= \frac{I^2.R.t}{4.2}$ cal (iii)

অথবা, $H \propto I^2$. R.t.; এটাই জুল সূত্র।

ওপরন্তু I=1A, R=1 Ω এবং t=1s হলে $H=rac{1}{4.2}=0.24$ cal (প্রায়)।

অর্থাৎ $1~\Omega$ রোধের পরিবাহী দিয়ে $1~\Lambda$ প্রবাহ গেলে প্রতি সেকেন্ডে প্রায় $0.24~{
m cal}$ তাপ উৎপন্ন হয়।

🞐 কয়েকটি গুরুত্বপূর্ণ তথ্য :

(a) (ii) নং সমীকরণ হতে দেখা যায় যে $H \propto I^2$, অতএব, প্রবাহের অভিমুখ বিপরীত হলেও উদ্ভূত তাপ একই থাকে অথবা উদ্ভূত তাপ প্রবাহের অভিমুখের ওপর নির্ভর করে না। এই কারণে জুল তাপীয় ফলকে অপ্রত্যাবর্তক (irreversible) প্রক্রিয়া বলা হয়। আবার, $H \propto R$ কিন্তু $R \propto l$ (অর্থাৎ, পরিবাহী তারের দৈর্ঘ্য) এবং $R \propto \frac{1}{\alpha}$ (α পরিবাহী তারের প্রস্থাক্ষেদ)। এথেকে সিন্ধান্ত করা

যায় যে প্রবাহমাত্রা এবং সময় অপরিবর্তিত থাকলে উদ্ভূত তাপ পরিবাহী তারের দৈর্ঘ্যের সঞ্জো সমানুপাতিক এবং প্রস্থাক্ষেদের সঞ্জো ব্যাস্তানুপাতিক ভাবে পরিবর্তিত হবে। দৈর্ঘ্য বৃদ্ধি পেলে তারের রোধ বৃদ্ধির দরুন উৎপন্ন তাপ বৃদ্ধি পারে: আবার, তার যত সরু হবে উৎপন্ন তাপও তত বৃদ্ধি পারে।

(b) যদি পরিবাহীর প্রাণ্ডীয় বিভবপ্রভেদ E volt হয় তবে ওহম স্থান্যায়ী,

$$E=I.R.$$
 কাজেই আমরা লিখন্ত পারি, $H=rac{1}{4.2}\,EIt=rac{1}{4.2}\, imesrac{E^2}{R} imes t$ cal

অংগাং (i) $H \propto E^2$ যখন t এবং R ধুবক (ii) $H \propto \frac{1}{R}$ যখন E এবং t ধুবক (iii) $H \propto t$ যখন E এবং R ধুবক।

1.4. জুস সূত্রের সত্যতা পরীক্ষা (Verification of Joule's Law)

জ্বল সূত্রের সভাতা পরীক্ষার জন্য 1.2 ছিব অন্যায়ী বাবস্থা অবলক্ষ্য করতে হবে

(i) প্রথম স্ত্রের পরীক্ষা ঃ C একটি আংশিক ভরলপর্ণ (কোন (৩০০) কালোর্মিটার। তার উপরে কয়েকটি ছিদ্রযুদ্ধ একটি এবোনাইটের ঢাকনা রাখা আছে তরলের মধ্যে একটি তারের কণ্ডলী ভুবানো আছে। ক্ওলীর প্রান্তদ্বয় দৃটি বন্ধনী S, S-এর সাথে যুক্ত। একটি বাাটারি B, একটি চাবি (key), একটি প্রবাহমাত্রামাপক আমেমিটার A ও একটি রিওস্টাট R1 তারের সাথে শ্রেণি সমবায়ে যন্ত। উদ্বত তাপ তড়িৎ প্রবাহের বর্গের সমানুপাতিক দেখাতে হলে রিওস্টাট দারা নিয়ন্ত্রিত কোনো তডিৎ-প্রবাহ তার দিয়ে পাঠাও ধরো, এটা I_1 অ্যাম্পিয়ার; নির্দিষ্ট সময় (ধর, 10 মিনিট) ধরে প্রবাহ পাঠাবার ফলে তরলের তাপমাত্রা বৃদ্ধি থার্মেমিটার T হতে লক্ষ করো। ধরো, এই তাপমাত্রা বৃদ্ধি θ1° : প্রবাহ বন্ধ করে তরলকে আবার ঘরের তাপমাত্রায় আসতে দাও।

অতঃপর রিওস্ট্যাট দ্বারা প্রবাহমাত্রা বদলাও। ধরো, এই প্রবাহমাত্রা I_2 , একে পূর্বোন্ত নির্দিষ্ট সময় ধরে তারের ভিতর দিয়ে পাঠাবার ফলে তরলের যে তাপমাত্রা বৃদ্ধি হল তা লক্ষ করো। এটা θ_2 ° C, তরলের ও ক্যালোরিমিটারের ভর অপরিবর্তিত থাকায় দুই ক্ষেত্রে উদ্ভূত তাপ উশ্মতা বৃদ্ধির সমানুপাতিক হবে।

উদ্ভূত তাপ যদি H_1 ও H_2 cal ধরা যায় তবে, $\dfrac{H_1}{H_2}=\dfrac{ heta_1}{ heta_2}$

পরীক্ষার ফলে দেখা যাবে $\frac{\theta_1}{\theta_2} = \frac{{I_1}^2}{{I_2}^2}$; সূতরাং, $\frac{H_1}{H_2} = \frac{{I_1}^2}{{I_2}^2}$

আবার, $H \propto I^2$ যখন R ও t ধ্রবক।

(ii) বিতীয় সূত্রের পরীকা : উদ্ভূত তাপ রোধের সমানুপাতিক দেখাতে হলে একই ভর ও একই

উপাদানের দুটি ক্যালোরিমিটারে সমপরিমাণ তরল রেখে R_1 ও R_2 রোধযুক্ত দৃটি রোধকুণ্ডলী তরলের ভিতর ডবাও। 1.3 নং চিত্রে যেমন দেখানো হয়েছে এরপ তড়িৎ সংযোগ ব্যবস্থা করো। R_1 ও R_2 সমবায়ে থাকায় একই তড়িৎ প্রবাহ দুটি কুণ্ডলীতে প্রবাহিত হরে। রিওস্টাাট নিয়ন্ত্রিত করে কোনো তড়িৎ প্রবাহ পাঠাও। কোনো নির্দিষ্ট সময় ধরে প্রবাহ চললে কালোরিমিটার দুটিতে তরলের উন্ধতা বৃদ্ধি পাবে। থার্মোমিটার দ্বারা তাপমাত্রা পাঠ করো। মনে করো, তাপমাত্রা বৃদ্ধি θ_1 ° C, ও θ_2 ° C; উভয় ক্যালোরিমিটারের জলসম = W এবং তর্লের ভর = m হলে উৎপন্ন

তাপ H=(W+ms) heta অথবা $H \propto 0$; উভয় কালোমিটারের ভর ও তাদের তরলের পরিমাণ সমান

হওয়ায় উদ্ভূত তাপ H_1 ও H_2 উন্মতা বৃদ্ধির সমান্পাতিক হরে। অর্থাৎ $\dfrac{H_1}{H_2}=\dfrac{ heta_1}{ heta_2}$

কিছু পরীক্ষার ফালে দেখা যাবে $rac{R_1}{R_2}=rac{ heta_1}{ heta_2}$ সূতরাং, $rac{H_1}{H_2}=rac{R_1}{R_2}$

অথবা, H oc R যখন I ও t ধ্রবক।

(iii) **তৃতীয় সূত্রের পরীক্ষা ঃ** উদ্ভূত ভাপ সময়ের সমানুপাতিক ক্রখাতে হলে প্রথম পরীক্ষায় যে ব্যবস্থা করা হয়েছিল তা করতে হবে।

রি এক্টাটি দ্ব র' নিয়ন্ত্রিত কোনো নির্দিষ্ট প্রবাহ t_1 সেকেন্ড ধরে তারের ভিতর পাস্তাভ (1.2 নং চিত্র)। এর ফলে তরলের তরলের গুলিং ধরো, θ_1 ° C হল। প্রবাহ বন্ধ করে তরল ও ক্যালেরিমিসরকে ঘরের তাপমাত্রায় আসতে দাও।

প্নরায় উক্ত প্রবাহকে ভিন্ন সময় ধরে—ধরে, t_2 সেকেন্ডে – তারের ভিতর পাসেও। পুনরায় তরলের উন্ধতা বৃশ্বি লক্ষ্ণ করো। মনে করো, এটা θ_2 ° C.

আমরা জানি, দুই ক্ষেত্রে উদ্ধৃত তাপ H_1 এবং H_2 হলে, $\dfrac{H_1}{H_2}=\dfrac{ heta_1}{ heta_2}$

পরীক্ষার ফলে দেখা যাবে, $\dfrac{ heta_1}{ heta_2}=\dfrac{t_1}{t_2}$ সূতরাং $\dfrac{H_1}{H_2}=\dfrac{t_1}{t_2}$

অথবা, H cc t যখন I ও R প্রবক।

EXAMPLES D

1 50 Ω রোধবিশিষ্ট একটি তারের কুশুলীর মধ্যে 5 মিনিট ধরে 2 Λ প্রবাহ পাঠানো হল। নির্ণয় করঃ (i) কুশুলীর মধ্যে কত পরিমাণ তড়িৎ আধান প্রবাহিত হয়েছে। (ii) তড়িচ্চালক বলের উৎস কত পরিমাণ কার্য করেছে এবং (iii) ক্যালরি এককে কত তাপ উৎপদ্ধ হয়েছে।

 $oxed{\psi}$ উঃ। (i) কুণ্ডলীর মধ্য দিয়ে প্রবাহিত তড়িৎ আধানের পরিমাণ Q= তড়িৎ প্রবাহমাত্রা (i) imes সময় |(t)=2 imes5 imes6 imes600 C ।

(ii) গঙ্গুড়ালক বলের উৎস কর্তৃক কৃতকার্য $W=i^2.R.t.=(2)^2 imes 50 imes 5 imes 60~J=6 imes 10^4~J$ ৷

(iii) কালিবিতে উৎপন্ন তাপ $= \frac{W}{J} = \frac{6 \times 10^4}{4.2} = 14.2 \times 10^3$ cal. $|\mathrm{J}=4.2|$ joule cal 4 |

 $m{f B}$ ে এস্. আই পর্ম্বভিত্তে উৎপন্ন তাপ $=6 imes 10^4\,
m J$ কারণ এই পর্ম্বভিত্তে ডাপশস্থিকে জ্ল এককে প্রকাশ করা হয়। $m{f B}$

2 10 Ω রোধের রোধকের ভিতর দিয়ে 0.8 A প্রবাহমাত্রা 1 minute ব্যাপী চললে, কত তাপ উৎপদ্ধ হবে ?

উ:। এখালে $i = 0.8 \text{ A}; R = 10 \Omega; t = 1 \text{ minute} = 60 \text{ s}$:

সূত্রাং কৃত্কার্য = $i^2.R.t$ joule = $(0.8)^2 \times 10 \times 60$ J = $8 \times 8 \times 6$ J = 384 J তিপেন তাপ = 384 J

ক্যালবিত্ত উৎপন্ন তাপ = 384 4.2 = 91.43 cal.

3 10 minute ব্যাপী 10 Ω রোধের কৃগুলীতে তড়িৎপ্রবাহ পাঠানো হল এবং উৎপন্ন তাপ সম্পূর্ণরূপে 100 g জলে সরবরাহ করা হল। জলের তাপমাত্রা 15° C হতে 75°C হলে, প্রবাহমাত্রা নির্ণয় করো।

F.2002

R 502

WWW

www.

िया 1.4

উঃ। উৎপন্ন ৩% H = 1 1/2 পরিমাণ × তাপমাত্রার পরিবর্তন = 100 (75 - 15) cal : 100 × 60 = 6000 cal

এখন তড়িং প্রবাহের দর্শ উৎপ্রম তাপ $H = \frac{I^2 \cdot R \cdot t}{4 \cdot 2}$ cal;

$$5000 = \frac{I^2}{1000} \times \frac{10 \times 10 \times 60}{4.2}$$

$$\therefore I^2 = \frac{6000 \times 4.2}{10 \times 10 \times 60} = 4.2$$
 বা $I = \sqrt{4.2} = 2.04$ A (প্রায়)।

 $oldsymbol{\Phi}$ $oldsymbol{\Phi}$ রোধের একটি তাপন কুশুলী একটি তর্জিৎ কোশের সাথে যুক্ত করা হল। কোশটির অভ্যন্তরীণ রোধ $oldsymbol{20}$ $oldsymbol{\Omega}$ । কি মানের সান্ট যুক্ত করলে $oldsymbol{\Omega}$ তাপন তারটিতে উৎপন্ন তাপ পূর্বের মানের $oldsymbol{\frac{1}{\Omega}}$ অংশ হবে ?

উঃ। E= ৩ড়িংকাশের বিভবপ্রভেদ। বর্তনীর মোট রেংং = 20+5=25 Ω. অতএব, প্রবাহমাত্রা $i=rac{E}{25}$ Λ এবং R=5 Ω. অতএব, প্রথমবার প্রতি সেকেন্ডে উৎপন্ন তাপ

$$H_1 = v^2 R = \frac{E^2}{(25)^2} \times 5 = \frac{E^2}{5 \times 25}$$
 (i)

এবার, ধরো, r Ω সান্ট তাপন কৃঙ্গাীর সমান্তরালে যুক্ত করা হল |চিত্র 1.4}। এ অবস্থায় বর্তনীর মোট রোগ

$$R = rac{5.r}{5+r} + 20 = rac{25(r+4)}{5+r}$$
 অতএব বর্তনীর মোট প্রবাহ

$$I = \frac{E}{R} - \frac{E(5+r)}{25(r+4)}$$

যে প্রবাধ $5~\Omega$ রোধোর ভিতর দিয়ে যায়, তা $I_1=rac{r}{5+r}$ I

$$= \frac{r}{5+r} \times \frac{E(5+r)}{25(r+4)} = \frac{E.r}{25(r+4)}$$

প্রতি সেকেন্ডে 5-
$$\Omega$$
 রোধে উৎপন্ন ভাপ $H_2=rac{E^2r^2}{\left(25
ight)^2(r+4)^2} imes 5\,\mathrm{J}\,\dots$ (ii)

িবু $H_2=\frac{H_1}{9}$ অথবা $\frac{H_1}{H_2}=9$; অতএব, (i) নং সমীকরণকে (ii) নং দারা ভাগ করে পাই,

$$\frac{(25)^2(r+4)^2}{5\times25\times5\times r^2}$$
 - 9 অথক, $r^2+8r+16=9r^2$ অথক, $r^2-r-2=0$

খথবা, (r+1)(r-2)=0 খথবা, $r=2\Omega$.

[দ্রফীব্য ঃ রোধ রোগেটিভ হয় না বলে r=-1 সংক্ষেত্র হলে।

দৃটি তারের উপাদান ও ভর সমান কিন্তু একটির দৈর্ঘ্য অপরটিব বিগুল। (i) সমভোল্টেজে এবং (ii) সমপ্রবাহে এ দুই তারে উৎপন্ন তাপের অনুপাত নির্ণয় করে।

 $oldsymbol{\mathfrak{G}}$ ঃ। ধরো, একটি তারের দৈর্ঘা ও রোধ যথাক্রমে l এবং R_1 ; স্মতএব , অপর তার্ণটির দৈর্ঘা 21 এবং এর প্রস্থাচ্ছেদ প্রথম তারের প্রস্থাচ্ছেদ আপেক্ষা আর্ধেক, কারণ, উভয়ের ভর সমন্য আবার, উভ্রের উপাদান এক হওয়ায়, তার দুটির রোধাঙ্ক (ho) সমান। এই অবস্থায় এবং $E_1=
ho imes rac{\ell}{2}$

এবং $R_2 = \rho \times \frac{2l}{\alpha/2} = 4R_1$.

- (i) আমরা জান বিভবপ্রভেদ ও সময় অপরিবর্তিত থাকলে, তাপ উৎপত্রি এর নামের স্থাতিক হয়। স্তরাং এক্ষেত্রে তাপ উৎপত্রি হারের অনুপার্ত = $R_2:R_1=4:1$.
- (ii) মানার প্রব্যুখ্যাতা এবং সময় অপরিবৃতিত থাকলে তাপ উৎপত্তির হ'র বাসের সমান্ত্রণতিক হয়। সূতরাং এক্ষেত্রে তাপ উৎপত্তির হারের অনুপাত $=R_1:R_2=1:4.$
- 6) r অভ্যন্তরীণ রোধবিশিষ্ট একটি ব্যাটারির সঙ্গে পরপর (successively) r a এবং r_2 রোধের দুটি তার যুক্ত করা হল। দুটি তারে একই সময়ে একই তাপ উৎপন্ন হলে, প্রমাণ করো $r=\sqrt{r_1.r_9}$.

উঃ। ধরো, বাটারির তড়িৎচ্চালক বল e: যখন r_1 রোধ যুক্ত করা ২ল, তখন তড়ং প্রবাহ $i_1 = \frac{e}{r_1 + r}$: অতথ্য উৎপয় তাপ $H_1 = \frac{i_1^2 r_1 t}{d} = \left(\frac{e}{r_1 + r}\right)^2 \frac{r_1 t}{d}$... (i)

যখন r_2 রোধয়ত্ত করা হল তখন শুড়িৎ প্রবাহ $i_2=rac{e}{r+r_o}$;

খিঙাৰ উৎপন্ন হাপ
$$H_2=rac{i_2^2.r_2t}{J}-\left(rac{e}{r+r_2}
ight)^2rac{r_2t}{J}$$
 ... $m (ii)$

প্রধান্সায়ী,
$$H_1=H_2$$
; কার্ডেই $\dfrac{e^2 \times r_1 \times t}{\left(r_1+r\right)^2 \times J}=\dfrac{e^2 \times r_2 \times t}{\left(r_2+r\right)^2 \times J}$

স্থান, $r_2(r_1+r)^2=r_1(r_2+r)^2$

Signat, $r_2 r_1^2 + r_2 r^2 + 2r r_1 r_2 = r_1 r_2^2 + r_1$, $r^2 + 2r r_1 r_2$

ভাগৰা, r²(r₂ · r₁) = r₁r₂(r₂ - r₁)

\$9.70 r1.70

धश्या, r = , r1.r9

by Electrical Method): বৈদাতিক প্রণালীতে J এর মান নির্ণয় (Determination

the $R|\Omega$ largest infrarest from LA detail proper the Sig. (i.e. and π কতকার্য $W = I^2 \cdot R.t.$ joule।

where were describe V voltand $V\circ IR$, well, $W\circ VII$ joule as which with

তাপের সৃষ্টি হবে। যদি H cal তাপ সৃষ্টি হয় তবে, W=J.H. [J= তাপের যান্ত্রিক তুল্যাঞ্জক]

অথবা,
$$V.I.t. = JH$$
. বা $J = \frac{V.I.t}{H}$ joule cal⁻¹

সুতরাং তড়িং-প্রবাহ (I), পরিবাহীর প্রান্তীয় বিভবপ্রভেদ (V), সময় (t) এবং উৎপন্ন তাপ (H) জানা থাকলে, J-এর মান নির্ণয় করা যাবে।

পরীক্ষা ঃ পরীক্ষা ব্যবস্থা 1.5 চিত্রে দেখানো হয়েছে একটি নিকেল প্রলেপসহ তামার কালোরিমিটার

নিতে হবে। ক্যালোরিমিটারের মুখ একটি এরোনাইটের টাকনা দ্বারা বংগ করা যায়। ক্যালোরিমিটারকে S আলোড়কসহ খালি অবস্থায় ওজন করতে হবে এবং পরে তাতে কিছু তরল (কোনো তেল) নিয়ে তরলসহ ওজন করতে হবে। এথেকে তরলের ভর পাওয়া যাবে। তরলের মধ্যে একটি তার কুগুলী R এবং একটি থার্মোমিটার T ঢাকনার ছিদ্র দিয়ে প্রবেশ করানো আছে। একটি ব্যাটারি E, পরিবর্তনীর রোধক R_h , চাবি K এবং আ্যামিটার A কুগুলীর সাথে শ্রেণি সমবায়ে যুগু আছে। কৃগুলীর দুই প্রান্তে (B এবং C) একটি ভোল্টমিটার (V) যুক্ত আছে।

থার্মোমিট রের সাধায়ে। তরলের প্রারম্ভিক তাপমাত্রা লক্ষ করো। সিনি *K* কথ করে কৃণ্ডলীতে প্রবাহ পাসাও এবং আলেভেনের সংখ্যাতরল ধারে ধীরে নাড়তে

থাক : স্টপর্যাভূর সাধায়্যে সময় লক্ষ করে পাঁচ মিনিট (t) পর প্রবাহ বশ্ব করো। থার্মোমিটারের সহায়তায় তরলের চূড়ান্য তাপমাত্রা দেখো। অ্যামমিটার হতে প্রবাহমাত্রা (I) এবং ভোল্টমিটার হতে বিভবপ্রভেদ (V) নোট করো।

স্থাদি ব্যাকে বিভিন্নর জলস্ক M g, তরলের ভর m g, তরলের আপোন্ধক তপে s এবং তাপমাঞা বৃদ্ধি θ° C হয় তবে উৎপন্ন তাপ H=(M+m.s.) θ cal

$$v_{e} \approx 4$$
, $J = \frac{V.I.t}{(M+m.s.)\theta}$ joule cal⁻¹.

পরিবর্তনা প্রস্তুত্র মান পরিবর্তন করে নতন প্রবাহমাত্রা ভিগ্ন সময় ধরে পাঠিয়ে পরীক্ষার প্রবাবৃত্তি করতে হবে তা তেতে মু-এর গড় মান নিধারণ করতে হবে।

জুটির উৎস সources of error): এই পরীক্ষায় কালোবিমিটারের জলসম ও তরলের চুড়াও গুলুমারে নিজু নালে কিছুটা পরিবার্তত হয়: ১৩ লাক কলা চলাকালার V এবং I-এর মান ম্থির রাখা যায় না। তাছাড়া, বিকিরণের দর্শ ক্যালে বিদ্যাল হতে বেশ বিছু পরিমাণ তাপ নাট হয়। এই সকল কারণে এই পরীক্ষার সাহান্যে J-র খুব নির্ভরযোগ্য মান পাওয়া যায় না।

m, Blairing h

্রি 2 A গ্রাহ্মারা 3 Ω রোধের একটি তার কৃঙলীর ভিতৰ দিয়ে 2 minute ব্যাপী পাসেনে। হল। কৃঙলী 50 g জলসমযুৱ একটি ক্যালোরিমিটারে বাখা 50 g জলের ভিতর নিচ্ছিত্ত ছিল। জলের তাপমাত্রা বৃশ্বি 3.4°C হলে, J এর মান নির্ণয় করো।

$$\mathfrak{F}: J = \underbrace{V.I.t}_{M+m,s,1\theta} - \underbrace{I^2Rt}_{M+m,s,1\theta} \text{ joule cal}^{-1}$$

 $\mathfrak{L}(\mathfrak{S}, I = 2 \text{ A}; R = 3 \Omega)$: $t = 2 \times 60 \text{s}$; M = 50 g; m = 50 g; s = 1 440 H = 3.4 C

কণ্ডেই,
$$J = \frac{(2)^2 \times 3 \times 2 \times 60}{(50 + 50) \times 3.4} = 4.23 \text{ joule cal}^{-1}$$
.

② একটি বৈদ্যুতিক উত্তাপক কুণ্ডলীকে $X\Omega$ রোধের সন্ধো শ্রেণি সমবায়ে আবংধ করে 240 volt মেইনসের সন্ধো যুক্ত করা হল। কুণ্ডলীটি 20°C তাপমাত্রার এক কিলোগ্রাম জনে নিমজ্জিত ছিল। 10 মিনিট সময়ে জলের তাপমাত্রা স্ফুটনান্ফে পৌঁছোল। X-রোধকটিকে বাদ দিয়ে আব একবার পরীক্ষা করলে দেখা গেল যে একই তাপ উৎপন্ন করতে সময় লাগল 6 মিনিট। X-রোধের মান নির্ণয় করো।

উঃ। এব কিলোগ্রাম (এথাৎ 1000 g) জলের তাপমাত্রা 20°C হতে 100°C (জলের ফুটনাঞ্চ) প্রবিভ ববিধ কর্ছে প্রয়োজনীয় ৩প = 1000 × (100 − 20) = 1000 × 80 cal.

ভড়িং-প্রথাকের দরুল উৎপন্ন তাপ,
$$H=rac{E^2}{R} imesrac{t}{J}$$
 cal. প্রথমক্ষেত্রে বর্তনীর রোধ $(R+X)$ $[R=$ কুঙলীর রোধ]

સદેશન,
$$1000 \times 80 = \frac{(240)^2}{R+X} \times \frac{10 \times 60}{J}$$

অথবা,
$$R + X = \frac{(240)^2 < 10 \times 60}{1000 \times 80 \times 4.2} \dots$$
 (i)

দি S নানার X রোধ বাদ কেওয়ায়, বর্তনী রোধ = R; কাজেই,

$$1000 \times 80 = \frac{(240)^2 \times 6 \times 60}{R \times J}$$
 হাথবা $R = \frac{(240)^2 \times 6 \times 60}{1000 \times 80 \times 4.2} \dots$ (ii)

(ii) নং সমীকরণকে (i) নং হতে বিয়োগ করলে পাই:

$$X = \frac{(240)^2 \times 60 \times 4}{1000 \times 80 \times 4.2} = 41.14 \Omega$$
 (প্রায়)।

সুইচের সাহায়্যে বর্তনী: সংহত করার 15 minute পর একটি বৈদ্যুতিক কেটলির তরল ফুটতে আরম্ভ করে। এর তাপক তারটির দৈর্ঘ্য 6 m। তাপক তারটির কি পরিবর্তন করলে 'সুইচ অন্' করার 10 minute পর কেটলীর তরল ফুটতে থাকবে ? পারিপার্শ্বিক বায়্মগুলো তাপকর উপোকা করো।

উঃ। ধরে।, ভরল ফুটাতে H cal তাপ লাগে। যদি E হয় তাপক তারের বিভবপ্রভেদ এবং R_1 তারের

রোধ হবে
$$H=rac{E^2}{\hat{J}_+\hat{R}}$$
 সমাজবর্গ হাছে লেখা যায়, $H=rac{E^2}{\hat{R}_1} imesrac{15 imes60}{4.2}$ i)

ি \cdot ংকা ধরা, তাপক কোছের মানু $=R_2$; যোকুত্ এক্ট পরিমাধ তাপ লাগছে সেইকেছু

$$H = \frac{E^2}{R_2} \times \frac{10 \times 60}{4.2} \dots \dots$$
 (ii)

 $(1) \ \ \text{in} \ \ \text{fin} \ \ \text{for} \ \ \text{for} \ \ \text{for} \ \ \text{for} \ \ \ \frac{15}{R_1} = \frac{10}{R_2} \ .$

রোধ পরের কৈর্মের সমান্ধাতিক বলে লেখা যায়, $\frac{15}{6} - \frac{10}{l}$. $l = \frac{6}{15} \cdot 10 - 4~\mathrm{m}$ মুতর'' তাপক তারের দৈর্ঘ্য $2~\mathrm{m}$ কম করতে হবে।

1.6 নং চিত্রে 5Ω রোধটি ক্যালোরিমিটারের জলে নির্মাঞ্জত রাখা আছে। জলসহ ক্যালোরিমিটারের তাপগ্রাহিতা $1000 \, \mathrm{J}' \mathrm{K}$ । ব্যাটারি যদি $10 \, \mathrm{minute}$ যাবৎ তড়িৎ প্রবাহ পাঠায় তা হলে জলের তাপমাত্রা বৃদ্ধি কত হবে ? ধরো, নিমজ্জিত $5 \, \Omega$ রোধের সমান্তরালে আর একটি যে 5Ω রোধ আছে তা হঠাৎ পুড়ে গিয়ে বিচ্ছিন্ন হল। এই ঘটনার $10 \, \mathrm{minute}$ পরে জলের তাপমাত্রা বৃদ্ধি কত হবে ? ব্যাটারির তড়িচ্চালক বল - $7.5 \, \mathrm{V}$.

উঃ। স্টি $5~\Omega$ রোধ সমান্তরাল সমবায়ে থাকায় তাদের তুলা রোধ = $5~2~-~2~5~\Omega$ বর্তনীর মোট রোধ $2.5~+~2.5~=5~\Omega$

বর্তনির প্রবংশারা
$$\hat{v}=\frac{7.5V}{5\Omega}=1.5\,\mathrm{A}$$

এই প্রবংধর যে অংশ জলে নিমজ্জিত রোধে যাচেছ তা

$$i_1 = \frac{5}{5+5} \times i = \frac{1}{2} \times 1.5 = 0.75$$
A.

 \cdot . এতিং প্রবাহের দর্শ উৎপন্ন তাপ $=i^2_1 imes r imes t = (0.75)^2 imes 5 imes 10 imes 60 poule$

যদি জালার তাপমাত্রা র্ণাপ ৪°C হয়, তারে জল কর্তৃক গৃহীত ভাপ - ভাপলাহিতা × ৪ = 1000 × ৪ joule.

: 1000 × θ = (0.75)² × 5 × 10 × 60 : θ = 1.69° C (প্রায়) :

এখন, সমাভ্রাস $5\,\Omega$ ারাধ $({
m AB})$ পুড়ে বিচ্ছিন্ন হলে, বর্তনীর রোধ গাঁড়ায় $=5+2.5=7.5\Omega$ এইবার তালে নিমাজিক 5Ω তারে প্রবাহমাত্রা $i=rac{7.5}{7.5}=1{
m A}.$

 \therefore উ পর তাপ = $i^2.r.t = (1)^2 \times 5 \times 10 \times 60$ joule

জকের এপমাত্রা বৃদ্ধি যদি $heta_1^\circ C$ হয়, তবে জল কর্তৃক গৃহীত তাপ = $1000 imes heta_1$ joule.

 $1000 \theta_1 = (1)^2 \times 5 \times 10 \times 60$

অথবা, $\theta_1 = 3^{\circ}C$.

1.6. তড়িৎ শক্তি ও ক্ষমতা (Electrical energy and power) ঃ

কোনো এড়িংখন্ত্রের কার্য করার সামর্থ্যকে শুড়িং শক্তি বলা হয়। যেমন, কোন ওড়িংখন্ত্র যদি কোন পরিবাহীর ভিতর দিয়ে Q-পরিমাণ তড়িং পাঠায় এবং পরিবাহীর প্রান্তীয় বিভবপ্রভেদ V হয়, তবে সম্পাদিত কার্য অর্থাং, তড়িং শক্তি = $V \times Q$.

(a) এস্ আই একক খন্যায়ী যদি Q coulomb এবং V volt এককে প্রকাশ করা হয় তবে সম্পাদিত কার্য বা তড়িৎ শক্তি = $Q \times V$ joule.

(b) Q এবং V কে c.g.s (emu) পর্ম্বাতিতে প্রকাশ করলে, সম্পাদিত কার্য বা তড়িংশত্তি = Q imes V erg.

● ক্ষমতার একক ঃ কর্মা, ক্ষমতা ও শতি শীর্ষক পরিচেছনে (পদার্থ বিজ্ঞান পরিচয় প্রথম ভাগ) উল্লেখ করা হয়েছে যে, কার্য করার হারকে ক্ষমতা বলে। তড়িং ক্ষমতা বলতে তড়িং প্রবাহের কার্য করার হার-কে বৃঝায় বৈদ্যুতিক হছের ক্ষমতা ওয়াট (watt) নামক এককে প্রকাশ করা হয়। এক সেকেন্ডে এক জুল কার্য করতে পারলে সেই ক্ষমতাকে 1 ওয়াট বলা হয়।

 \therefore 1 watt = 1 Js⁻¹ = 10⁷ erg s⁻¹

পূর্বে উল্লেখ করা হয়েছে যে, Q coulomb তড়িং t সেকেণ্ড সময়ে V volt বিভবপ্রভেদ অতিক্রম করলে মোট সম্পাদিত কার্য = $Q \times V$ joule । সুতরাং তড়িং প্রবাহের কার্যের হার বা ক্রমতা

$$P = \frac{Q \times V}{t} = I \times V$$
 watt কারণ, $\frac{Q}{t}$ কারণ = I (ampere)

मत्न दाथरव, **७शां**र = आिलाशांत × त्लानी

• ক্ষমতার বিভিন্ন ব্যঞ্জক (expression):

ক্ষমতা $P = I \times V$ watt $= I^2 R$ watt [::V = I.R]

অথবা ক্ষমতা
$$P=I^2\cdot R=rac{V^2}{R^2} imes R=rac{V^2}{R}$$
 watt $\left[\because I=rac{V}{R}
ight]$

বড় বৈদ্যুতিক যন্ত্রের ক্ষমতা প্রকাশের জন্য সাধারণত বড় একক ব্যবহৃত হয়। এই বড় একক-কেকিলোওয়াট (kilowatt বা kW) এবং মেগাওয়াট (MW) বলে।

 $1 \text{ kW} = 10^3 \text{ W}$ এবং $1 \text{ megawatt} = 10^6 \text{ watt}$ ।

● বৈদ্যুতিক শস্তির একক ঃ যেহেতু সম্পাদিত কার্য = ক্ষমতা × সময়, তাই P ক্ষমতাসম্পন্ন কোনো বৈদ্যুতিক যন্ত্র অবিচ্চিন্নভাবে t সময়ব্যাপী কার্য করলে উন্ত যন্ত্র কর্তৃক সম্পাদিত কার্যের পরিমাণ ক্ষমতা (P) ও সময়ের (t) গুণফল হতে পাওয়া যাবে। এথেকে আমরা বৈদ্যুতিক শক্তি বা কার্যের বিভিন্ন একক গঠন করতে পারি।

যদি 1 watt ক্ষমতা 1 second ব্যাপী কার্য করে তবে যে শক্তি বায়িত হয় ডাকে 1 Joule বলা হয়। অর্থাৎ জুল = ওয়াট × 1 সেকেন্ড।

আবার, 1 ওয়াট ক্ষমণ্ডা 1 ঘণ্টাব্যাপী কার্য করলে যে শক্তি ব্যয়িত হয় তাকে ওয়াট-ঘণ্টা (watthour) বলে। অর্থাৎ 1 ওয়াট-ঘণ্টা 1 ওয়াট × 1 ঘন্টা।

- ওয়াট-ঘন্টা ও জ্বলের সম্পর্ক : 1 watt-hour = 1 ওয়াট × 1 ঘন্টা
 - = 1 ভয়াট × 3600 সেকেন্ড 3600 joule !
- কিলোওয়াট ঘণ্টা বা বি. ও. টি এককঃ বিদ্যুৎ সরবরাহ কেম্পোনি বাড়িতে যে বিদ্যুৎ সরবরাহ করে তার পরিমাপ শত্তির একক এনুমারা করা হয়। একে কিলোওয়াট ঘণ্টা (kılowatthour) সংক্ষেপে kWh) বা বোর্ড অব ট্রেড একক (B.O.T. unit) বলা হয়। এক কিলোওয়াট-ফমতাসম্পন্ন যন্ত একঘণ্টা ধরে এড়ং প্রবাহ সরবরাহ করলে মোট শক্তির পরিমাণকে 1 কিলোওয়াট-ঘণ্টা বলে।

1 B.O.T = 1000 watt-hour

প্রত্যেক ব্যাড়র বিদ্যাৎ-সংযোগ বাবস্থার সাথে কেম্প্রানি একটি মিটার বসিয়ে দেয় এই মিটার বি.ও.টি. একক অন্যায়ী বাড়িতে মোট তড়িৎ শক্তি থরচের হিসাব রাখে। এই একক সাধারণ কথায় 'ইউনিট' নামে পরিচিত।

BOT একক এবং क्यानवित्र সম্পর্ক :

- 1 BOT $4 \approx 1000 \text{ watt-hour} = 3600 \times 1000 \text{ J} = \frac{36 \times 10^5 \text{ J}}{4.2 \text{ J} \cdot \text{cal}} = 8.6 \times 10^5 \text{ cal}$ [1 watt-hour = 360 J]
- বৈদ্যুতিক বাতি সম্প্রে আতব্য বিষয় :

 আনে সময় সৈন্দির বাতে বাতে একি ও জ্যাট লখা থাকে সমন 1220 volt 100

watt'। একথার পূর্ণ অর্থ আমরা উল্লিখিত বৈদ্যুতিক রাশিগুলি থেকে পেতে পরি।

'220 volt ' লিখে দেবার অর্থ এই যে ঐ বাতি 220 volt তড়িং উৎসের - গোমন মেইন্স–এর সাথে যুক্ত করলে বাতি সর্বোচ্চ উজ্জ্বলতা নিয়ে আলো দিতে থাকরে। '100 watt' কথার অর্থ এই যে বাতি প্রতি সেকেন্ডে 100 joule তড়িং শক্তি বায় করে এবং যে তড়িং প্রবাহ নেয় তা $\frac{100}{220} = 0.45 \, \mathrm{A}$

তাছাড়া, যদি ঐ বাতিকে ধরো, 10 ঘণ্টা জ্বালানো হয়, তবে যে মোট তড়িংশান্ত ব্যয়িত হল, তা হবে = $100 \times 10 = 1000$ watt hour = $\frac{1000}{1000}$ 1 kWh. (স্থাবা 1 B.O.T. একক)

মনে রাখারে যে বাড়িতে ভড়িৎ সংযোগ বাবস্থায় আলো, পাখা ইত্যাদি সব ভাড়ংযার যাতে একই বিভেদপ্রভেদ পায় যেজন্য তাদের সমান্তরাল সমবায়ে রাখা হয়।

EXAMPLES U

ি ভাষর অবস্থায় একটি বৈদ্যুতিক বাতির রোধ 400 Ω। ঐ বাতিকে 10 ঘণ্টাব্যাপী 200 volt বিভবপ্রভেদের সাথে যুক্ত করা হল। প্রতি ইউনিটের ব্যয় 30 পয়সা হলে, তাতে মোট কত খরচ পড়বে ?

উঃ। বাতির এড়িং প্রবাহ
$$\dfrac{\text{বিভবপ্রাভেদ}}{\text{রোধ}} = \dfrac{200}{400} \text{A} - \dfrac{1}{2} \text{A}$$
 ্যোট বায়িত বি. ও. টি. একক – $\dfrac{\text{আম্ম্পীয়ার } \times \text{ভোন্ট } \times \text{ঘন্টা}}{1000} = \dfrac{\frac{1}{2} \times 200 \times 10}{1000}$ সুভরাং খরচ – $\dfrac{30}{2}$ পরসা।

② একটি প্রতিমিত Wheatstone bridge-এর চারটি বাহুতে যথাক্রমে 100, 10, 500 এবং 50 Ω রোধ আছে। Bridge-এর বিভিন্ন শাখাতে উৎপন্ন তাপের অনুপাত নির্ণয় করো।

উয়। 1.7 নং চিত্রে প্রতিমিত Wheatstone bridge দেখালো তায়েছে। ব্রীজ প্রতিমিত বলে AC পাপে i_1 প্রবাহ গোলে CB পথেও i_1 প্রবাহ গোলে CB পথেও i_1 প্রবাহ গোলে DB পথেও i_2 প্রবাহ গোলে DB পথেও i_2 প্রবাহ গোলে DB পথেও i_2 প্রবাহ গোলে DB পথেও রেগ্র নিচ্চ করে বরার নিচ্চ করে মিচি পথেও রেগ্র নিচ্চ করে মিচি পথেও রেগ্রেষ প্রচাণ মিতএও মিচি পথেও রেগ্রেষ প্রচাণ মিতএও মিচি পথেও রেগ্রেষ প্রবাহমাত্রার প্রচাণ অর্থর $i_1 = 5i_2$.

েষ্ট, 100Ω রেগ্রে উৎপ: গ্রেপ্তর হার = $i_1^2 \times 100 = (5i_2)^2 \times 100 = 25i_2^2 \times 100J$

1000 - 2002 × 1000 1000 - 2002 × 1000 তালের হার $= i_1^2 \times 10 = (5i_2)^2 \times 10 = 25$ × 1000 50002 বেশে উৎপন্ন ভাগের হার $= i_1^2 \times 500$ তালে উৎপন্ন ভাগের হার $= i_1^2 \times 50$ তা

153. 1.7

 $H_1 - H_2 - H_3 = 25t_2^2 \times 100 \cdot 25t_2^2 \times 10 - t_2^2 \times 500 - t_2^2 \times 50$ = **50 : 5 : 10 : 1**. 3 220 volt লাইনে 500 watt ক্ষমতা গ্রহণকারী দৃটি বৈদ্যুতিক বাতিকে শ্রেণি সমবায়ে 110 volt লাইনে যুক্ত করা হল। প্রতিটি বাতি কত ক্ষমতা উৎপন্ন করবে?

উঃ। ক্ষমতা - আ্যাম্পিয়ার \times ভোল্ট। 220 ভোল্ট লাইনে যুক্ত থাকাকালীন প্রত্যেক বাতি কর্তৃক গৃহীত প্রবাহ = ক্ষমতা $\frac{500}{220} = \frac{50}{22}$ A.

ভাতএন, প্রতি বাভির রোধ
$$R=\frac{$$
ভোন্ট $}{}$ আ্যাম্পিয়ার $=\frac{220}{50/22}=\frac{(22)^2}{5}$ Ω

াতি দুটিকে শ্রেণি সমবায়ে 110 ভোল্ট লাইনে যুক্ত করা হলে, প্রত্যেক বাতির প্রবাহ \cdot $\frac{110}{2R}$ A. প্রোণি সমবায়ে থাকায় প্রত্যেক বাতির বিভবপ্রভেদ $\frac{110}{2}$ = 55V । অতএব, প্রত্যেক বাতি কর্তৃক

উৎপন্ন ক্ষমতা - ভোল্ট \times প্রবাহ - $55 \times \frac{10}{2R} = \frac{55 \times 110}{2 \times (22)^2} \times 5 = \frac{125}{4} = 31.25$ watt.

4 একই মানের তিনটি রোধ-কে শ্রেণি সমবায়ে যুক্ত করে তাদের দুই প্রান্তে একটি তড়িংচালক বলের উৎস যুক্ত করা হলে 10 W ক্ষমতা ব্যয়িত হয়। রোধ তিনটিকে সমাস্তরাল সমবায়ে যুক্ত করে একই তড়িং চালক বল প্রয়োগ করলে, কত ওয়াট ক্ষমতা ব্যয়িত হবে ? উঃ। ধরো, প্রত্যেকটি রোধের মান - R এবং তড়িং উৎসের তড়িংচালক বল = E.

রোধণুলি শ্রেণি সমবায়ে থাকলে মোট রোধ = 3R ; অতএব, বর্তনীর প্রবাহমাত্রা $i=rac{E}{3R}$

বৰ্তনী কৰ্তৃক ব্যয়িত ক্ষমতা – প্ৰবাহমাত্ৰা imes তড়িৎচ্চালক বল – $i imes E=rac{E^2}{3R}$

প্রশান্যায়ী $\frac{E^2}{3R}$ = 10 অথবা $\frac{E^2}{R}$ = 30 ... (i)

রোধগুলি সমান্তরাল সমবায়ে থাকলে, মোট রোধ = $\frac{R}{3}$; অভএব, বর্তনীর পুরাহমাত্রা

 $i=rac{E}{R-3}$ $=rac{3E}{R}$ া বৰ্তনী কৰ্তৃক বায়িত ক্ষমতা = প্ৰবাহমাত্ৰা imes তড়িচ্চালক বল $=i imes E=rac{3E^2}{R}$ =3 imes30 [(i) নং সমীকরণ হতে]

ব্যয়িত ক্ষমতা = 90 W.

একটি গৃহে ছয়টি 40 W এবং দৃটি 100 W বৈদ্যুতিক বাতি, চারিটি 40 W বৈদ্যুতিক পাখা এবং একটি 1000 W বৈদ্যুতিক হিটার আছে। যদি এপ্রিল মাসে প্রতিদিন প্রত্যেক বাতি পাঁচ ঘণ্টা ধরে জলে, প্রত্যেক পাখা পনেরো ঘণ্টা ধরে চলে এবং হিটার দৃই ঘণ্টা ধরে জলে, তবে ঐ মাসের বৈদ্যুতিক বিল কত হবে ? ধরা যায় যে ঐ গৃহে মূল বৈদ্যুতিক সরববাহের বিভব পার্থক্য 200 volt এবং প্রতি B.O.T এককের মূল্য = টা 1.50.

উঃ। ছয়টি $40~{
m W}$ এবং দুইটি $100~{
m W}$ বাতির মোট ওয়াট $=6\times40+2\times100=440~{
m W}$ প্রতিদ্দিন পাঁচ ঘণ্টা জ্বললে বাতিগুলি কর্তৃক মোট বৈদ্যুতিক শক্তি বয়ে $=440\times5$

= 2200 watt-hour

প্রতিটি প্রাথা 15 ঘটা চলালে পাখা কর্তৃক মোট বৈদ্যুতিক শক্তি বায় = 160 × 15

= 2400 watt-hour

1000~
m W ্নদ্ভিক ভিটান প্রতিদিন 2 ঘণ্টা চলকে মোট বৈদুৰ্ভিক শক্তি বয়ে $\simeq 1000~
m x/2 = 1000~
m x$

2000 watt-hour

বাড়িতে প্রতিদিন মোট শক্তি বায় = 2200 + 2400 + 2000 = 6600 watt-hour

মোট B.O.T. ইউনিট বায়
$$=\frac{6600}{1000}=6.6$$
 ইউনিট

এপ্রিল মাসে 30 দিন আছে বলে মাসে মোট বৈদ্যুতিক শক্তি বায় = $6.6 \times 30 = 198$ ইউনিট \therefore বৈদ্যুতিক বিল = $198 \times Rs$. 1.50 = Rs. 297.

चिम विদ্যুৎ সরবরাহের ভোল্টেজ 220V হতে কমে 200V হয় তবে '220V 1000W' চিহ্নিত একটি হিটার কর্তৃক প্রদন্ত তাপশক্তির পরিমাণ শতকরা কত কমবে ? হিটারটির রোধের পরিবর্তন অগ্রাহ্য করো। উন্মতার সাথে রোধের পরিবর্তন ধরলে, হিটার কর্তৃক প্রদন্ত তাপের হাসের পরিমাণ কি পূর্ব নিধারিত পরিমাণ হতে কম হবে না বেশি হবে ? ব্যাখ্যা করো।

উঃ। ক্ষমতা
$$P = \frac{E^2}{R}$$
 অথবা $R = \frac{E^2}{P}$

িটারের বেলায়, E=220~
m V এবং P=1000~
m W; অতএব, হিটারের রোধ $R-rac{(220)^2}{1000}=$

পরিবর্ডিত ক্ষমতা
$$P' = \frac{(E')^2}{R} = \frac{(200)^2}{48.4} = 826.45 \,\mathrm{W}$$

প্রদান্ত তাপশন্তির শতকরা হ্রাস = $\frac{P-P'}{P} \times 100 = \frac{1000-82645}{1000} \times 100 = 17.3\%$.

উন্মতা বৃদ্ধিতে ছিটারের রোধ বৃদ্ধি পাবে। ক্ষমতা রোধের বাস্তানুপাতিক বলে, লোধ বৃধিতে ক্ষমতা ছাস পাবে। সুতরাং উন্মতার সাথে রোধের পরিবর্তন ধরলে প্রদত্ত তাপের হ্রাস পূর্ব নির্ধারিত পরিমাণ হতে আরও কম হবে।

11.7. স্বনিম্ন তাপের নীতি (Principle of least heat):

যখন কোনো তড়িৎ বর্তনীর বিভিন্ন শাখায় তড়িৎ প্রবাহ বণ্টিত হয় তখন এই বন্টন প্রবৃপভাবে ঘটে যাতে তাপ উৎপাদন সর্বাপেকা কম হয়। একে সর্বনিম্ন ভাপের নীতি বলা হয়। দুটি রোধ r_1 এবং r_2 সমান্তরাল সমবায়ে থেকে যদি একটি ব্যটিরির সাথে যৃত্ত হয় এবং ব্যটিরি যদি মূলপ্রবাহ i পাঠায় হবে ওহুম সূত্র হতে প্রমাণ করা হয়েছে, ঐ প্রবাহ রোধ দিরি ভিতর এরপভাবে বণ্টিত হবে যে $i_1 - \frac{r_2}{r_1 + r_2}$ i এবং $i_2 - \frac{r_1}{r_1 + r_2}$ i এথবা, $i_1 - \frac{r_2}{r_1}$ এটা ও নির্মালাখ তর্পে প্রমাণ করা যায় যে r_1 এবং r_2 রোধে তাপ উৎপাদন সর্বনিম্ন হলে, $i_1 - \frac{r_2}{r_1}$ হবে।

প্রমাণ ঃ ধরো, r_1 রোধে i_1 প্রবাহ যাচেছ এবং r_2 রোধে i_2 ; অভএব $i_1+i_2=i$ এথবা $i_2=(i-i_1)$ । সমবায়ে উদ্ভূত মেউ তাপের হ'ব $H={i_1\over J}^2r_1={(i-i_1)^2\cdot r_2\over J}$ cals ${i_1\over J}$.

এই ভাপ উৎপাদ্ধের হার নিয়েওম হারে, $\frac{dH}{dt_1}$ 0

$$\mathfrak{L}^{\mathrm{Mod}}, \ \frac{dH}{d\iota_1} = \frac{1}{J} \left[\left(2\iota_1 r_1 + 2(\iota - \iota_1) \right) r_2 \right]$$

1 = 400

তাপ উৎপাদনের হার সর্বনিম্ন হলে, $2i_1r_1 - 2(i-i_1).r_2 = 0$

অথবা,
$$2i_1r_1=2i_2r_2$$
 অথবা, $\frac{i_1}{i_2}=\frac{r_2}{r_1}$

সূতরাং বলা যায়, তড়িৎ প্রবাহ রোধ দৃটিতে এরূপভাবে বন্টিত হবে যে তাদের তাপ উৎপাদন সর্বনিম্ন হয়। বর্তনীতে দৃটির বেশি রোধ থাকলেও এই নীতি প্রযোজ্য হবে।

' DEXAMPLES D

 $oldsymbol{1}$ E তড়িচ্চালক বল এবং r অভ্যন্তরীণ রোধের একটি ব্যাটারির সাথে একটি পরিবর্তনীয় বহিঃরোধ R যুক্ত আছে। বহিঃরোধ R-এর মান কত হলে, ঐ রোধে উৎপ্রক্ষমতা সর্বাধিক হবে ?

উঃ। বর্তনীর মোট রোধ =R+r; অতএব বর্তনীর প্রবাহমাত্র। $i=rac{E}{R+r}$

$$R$$
 বেশি উৎপন্ন ক্ষমতা $P=i^2R=rac{E^2.R}{(R+r)^2}$... (i)

P সর্বাধিক (maximum) হলে, $\frac{dP}{dR} = 0$

(i) নং সমীকরণকে ডিফারেন্সিয়েট করলে পাই,
$$\frac{dP}{dR} = E^2 \left[\frac{(R+r)^2 - 2R(R+r)}{(R+r)^2} \right]$$

এটা শূন্য হলে যখন $(R+r)^2-2R(R+r)=0$ অথবা, R+r=2R $\therefore R=r$ এথাৎ বহিঃরোধ যখন ব্যাটারির অভ্যস্তরীণ রোধের সমান হয়, তখন উৎপন্ন ক্ষমতা গরিষ্ঠ মান পায়।

② একটি বৈদ্যুতিক লাইনের মোট রোধ 0.2Ω এবং এই লাইন একটি ফ্যাক্টরীকে 220V বিভবপ্রতেদে 10 kW ক্ষমতা সরবরাহ করে। সরবরাহ লাইনের কর্মদক্ষতা নির্ণয় করো।

উঃ। বিদ্যুৎ সরবরাহ লাইন (electric transmission line) গ্রাহক-কে (মেমন, কোন কারখানাকে যে ক্ষমতা সরবরাহ করে বাইরের উৎস হতে লাইনে তদপেক্ষা বেশি ক্ষমতা দেওয়া আবশ্যক কারণ লাইন বরাবর তড়িৎ প্রবাহ যাবার সময় লাইনের রোধের জন্য কিছু ক্ষমতাব অপচয়া হয়।

েখ'ে a k W = লাইনের রোধের জন্য ক্ষমতা।

$$R = \left(\frac{P}{V}\right)^2$$
. $R = \left(\frac{10,000 \text{ W}}{220 \text{ V}}\right)^2 \times 0.2\Omega = 413.2 \text{ W} = 0.4132 \text{ kW}$

$$\frac{10}{10+0.4132}=0.96=96\%.$$

্ৰ তাপ-তড়িৎ © (Thermo-Electricity)

1.8. সীবেক ক্রিয়া (Seebeck effect):

দুটি বিভিন্ন ধাতুর দণ্ড বা তারকে পারম্পরিক দুই প্রান্তে ঝালাই করে একটি সংহত বর্তনী গঠন করলে

এবং সংযোগস্থল দুটিকে বিভিন্ন তাপমাত্রায় রাখলে দেখা যায় যে বর্তনী দিয়ে একটি তড়িৎ প্রবাহ যাচেছ। এই তড়িৎ প্রবাহ প্রমাণ করে যে, বর্তনীতে একটি তড়িচ্চালক বল ক্রিয়া করছে। এই তড়িচ্চালক বলের উৎপত্তির কারণ হল দশুদ্বয়ের সংযোগস্থালের তাপমাত্রার পার্থকা।

1.8 নং চিত্রে একটি তামার দক্ত এবং একটি লোহার দক্তকে A এবং B প্রান্তে ঝালাই করে

একটি সংহত বর্তনী দেখানো হয়েছে। ঐ বর্তনীর মধ্যে একটি সূবেদী গ্যালভাানোমিটার G যুক্ত করা হয়েছে; এখন বর্তনীর B প্রান্তকে স্পিরিট ল্যাম্প বা বার্নারের সাহায্যে উত্তপ্ত করলে এবং A প্রান্তকে শীতল রাখলে দেখা যাবে যে গ্যালভ্যানোমিটার কাঁটার একটি বিক্ষেপ হয়েছে— অর্থাৎ বর্তনী দিয়ে নির্দিষ্ট অভিমুখে তড়িৎ প্রবাহ চলছে। যদি A প্রান্ত উত্তপ্ত করে B প্রান্তকে শীতল রাখা হয়, তবে বিক্ষেপ উল্টোদিকে হয়—অর্থাৎ ভড়িৎ প্রবাহের অভিমুখ উল্টোযায়।

কোনো তড়িৎ কোশের সাহায্য ছাড়া কেবলমাত্র তাপীয় ক্রিয়ায় কোনো বর্তনীতে তড়িৎ প্রবাহ সৃষ্টির এই ঘটনাকে তাপ-তড়িৎ ঘটনা বলে। এটি সর্বপ্রথম আবিষ্কার করেন জার্মান পদার্থবিদ্ টি. জে. সীবেক 1821 খ্রিস্টাব্দে। এই কারণে একে সীবেক ক্রিয়া বলে। উপরিউত্ত প্রক্রিয়ায় বর্তনীতে যে তড়িং প্রবাহ পাওয়া যায় তাকে বলা হয় তাপ-তড়িং প্রবাহ (thermo-electire current)।

4.8 নং চিত্রে প্রদর্শিত তামা ও লোহার বেলায় দেখা যায় তাপ-তড়িৎ প্রবাহ শীতল প্রান্তে লোহা হতে তামাতে এবং উষ্কা প্রান্তে তামা হতে লোহাতে প্রবাহিত হয়। তাপ-তড়িৎ ক্রিয়া সর্বতোভারে প্রতাবর্তক (reversible)-অর্থাৎ শীতল ও উষ্কা সংযোগ উল্টে দিলে, তাপ-তড়িৎ প্রবাহের অভিমুখও উল্টে যায়। তাপ-তড়িৎ প্রবাহযুত্ত ধাতৃযুগ্মকে তাপ-যুগ্ম (thermo-couple) বলা হয় এবং যে দুই ধাতৃ দারা ঐ তাপযুগ্ম গঠিত তাদের নামানুসারেই তাদের নামকরণ করা হয়। যেমন, তামা-লোহা তাপযুগ্ম: আন্টিমনি-বিসমাথ তাপযুগ্ম ইত্যাদি। তাপযুগ্মের দুই সংযোগস্থলে তাপমাত্রার ব্যবধান ঘটালে বর্তনীতে যে তড়িচ্চালক বলের উৎপত্তি হয় তাকে তাপীয় তড়িৎচ্চালক বল (thermo-e. m. f.) বলা হয়।

বলা বাহুলা, তাপথুয়োর দুই সংযোগ্যথালের তাপমাত্রা যদি সমান থাকে তবে কোনো তড়িচ্চালক বল বা তড়িৎ প্রবাহের উৎপত্তি হয় না।

1.9. তাপ তড়িৎ সারণি (Thermo-electric series) :

পরীক্ষা করে দেখা প্রেছে যে, গ্রাপথুয়ে উৎপন্ন তাপায় গ্রভিচ্চালক বল দৃটি বিষয়ের ওপর নির্ভর করে:
(i) তাপযুগা গঠনকারী ধাতৃযুগল এবং (ii) দুই সংযোগস্থালের তাপমাত্রার ব্যবধান।
বিভিন্ন ধাতু নিয়ে সাবেক এই গটনার পর্যালোচনা করেন এবং যে-কোনো দুটি ধাতুর বলাই তাপ-গ্রভি
প্রবাহ তথা গ্রভিচালক বল কোন অভিমুখে ক্রিয়া করেবে তা দুও নির্ণয় করের জনা ধাতর পদার্থালের একটি
সার্বাব প্রস্তুত করেন এই সার্বাব্দক বলা হয় তাপ-তড়িৎ সার্বাব। প্রপ্রস্তাই সার্বাব্দ উল্লেখ করা
কলা এই সার্বাব্দ যে-কোনো দুটি ধাতু নিয়ে ঐ গ্রপমুশ্য ক্রীতলপ্রান্ত দিয়ে ক্রিক সংখ্যা জন্মায়ী

প্রথম ধাত হতে দিও'য় ধাততে তড়িং প্রবাহ হবে।

- (i) অ্যান্টিমনি (v) তামা
- (ii) লোহা ১৯০০ (vi) নিকেল .
- (iii) দন্তা 🥶 🤔 ে (vii) ক্যস্ট্যান্টান 💮
- (iv) সিসা (viii) বিসমাথ

যেমন আন্টিমনি এবং বিসমাথ ধাতু নিয়ে তাপযুগা তৈরি করলে, ঐ তাপ যুগোর শীতল সংযোগ দিয়ে আন্টিমনি হতে বিসমাথে *ত*ড়িং-প্রবাহ হবে: কারণ সারণিতে ক্রমিক সংখ্যায় আন্টিমনির ম্থান প্রথমে এবং বিসমাথের ম্থান পরে। তেমনি, তামা-লৌহ যুগো উম্ব সংযোগ দিয়ে তামা হতে লোহাতে তড়িংপ্রবাহ হবে।

110 তাপমাত্রা-তড়িচ্চালক বল সম্পর্ক (Temperature E. M. relation) :

তাপযুগোর নাঁ এল সংযোগস্থাল 0°C তাপমাত্রায় রেখে উশ্ব সংযোগস্থালের তাপমাত্রা ক্রমশ যদি বৃদ্ধি করা যায় এবে এপীয় এড়িচ্চালক বলও ধীরে ধীরে বৃদ্ধি পায়। তাপমাত্রার ব্যবধান যতক্ষণ ক্ষুদ্র থাকে ততক্ষণ এপীয় এড়িচ্চালক বল তাপমাত্রার সমানুপাতে বৃদ্ধি পায় কিন্তু ব্যবধান বেড়ে গেলে, তড়িচ্চালক বল কিছ্ক্ষণ বৃদ্ধি পোয়ে উশ্ব সংযোগস্থালের এক বিশেষ তাপমাত্রায় সর্বোচ্চ মান পায়। উশ্ব সংযোগস্থালের এ বিশেষ তাপমাত্রারে কলা হয় নিরপেক্ষ তাপমাত্রা (neutral temperature)। লক্ষ কর যে, নিরপেক্ষ তাপমাত্রায় (t_n) তাপমাত্রার সাথে তাপীয় তড়িচ্চালক বলের পরিবর্তন শূন্য হয়।

অর্থাৎ, $\frac{dE}{dt}=0$ হয় যখন উন্ধা সংযোগের তাপমাত্রা = t_n .

সংজ্ঞা ঃ কোনো তাপযুণ্মের এক সংযোগস্থাল শীতল রেখে অপর সংযোগস্থালের তাপমাত্রা বৃদ্ধি করলে উন্ধ সংযোগস্থালের যে-তাপমাত্রায় তাপীয় তড়িচ্চালক বল অথবা তাপ-তড়িৎ প্রবাহ সর্বোচ্চ হয় তাকে ঐ তাপযুণ্মের নিরপেক্ষ তাপমাত্রা বলা হয়।

কোনো একটি বিশেষ যুগ্মের বেলায় এই তাপমাত্রা ধুবক। এটা যুগ্মের ধাতব পদার্থ যুগলের ওপর নির্ভর করে কিন্তু শীতল সংযোগফ্থলের তাপমাত্রার ওপর নির্ভর করে না। যেমন, লোহা–তামা তাপযুগ্মের নিরপেক্ষ তাপমাত্রা 270°C –শীতল সংযোগফ্থলের তাপমাত্রা যাই হোক না কেন।

তাপম্থাের উয় সংযোগস্থালের তাপমাত্রা যদি নিরপেক্ষ তাপমাত্রা ছাড়িয়ে আরও বৃদ্ধি করা যায় তবে দেখা যায় যে তাপীয় তড়িচালক বল এবার হ্রাস পাচ্ছে এবং সংযোগস্থালের আর একটি বিশেষ তাপমাত্রায় তড়িচালক বল শৃন। তয়। উয় সংযোগস্থালের এই তাপমাত্রাকে বলা তয় উৎক্রম তাপমাত্রা (temperature of inversion)।

সংজ্ঞাঃ ত প্রায়ের উন্ধা সংযোগস্থালের যে তাপমান্তায় তাপীয় তড়িচ্চালক বল সর্বোচ্চ মান ংকে ২০৮ প্রে শুলা হয় এবং অভিমুখ উল্টে যাবার উপক্রম করে, তাকে তাপমান্তার উৎক্রম তাপমান্তা বলে। তাপমাএরে সাথে তাপীয় তড়িচ্চালক বলের উত্ত পরিবর্তন লেখচিত্রের সাথানে প্রকাশ করলে লেখচিত্র 1.9 নং চিত্রে যেমন দেখানো হয়েছে ঐরূপ একটি অধিবৃত্ত হরে। ঐ লেখচিত্রের A বিন্দু লোগা-তামা তাপযুগোর নিরপেক্ষ তাপমাত্রা (270°C) এবং B বিন্দু উৎক্রম তাপমাত্রা (540°C) বোঝায় (যখন তাপযুগোর শীতলপ্রান্ত 0°C তাপমাত্রায় আছে।)

এস্থলে উদ্লেখযোগ্য যে, উৎক্রম তাপমাত্রা ধ্বক নয়; এটা শীতল সংযোগ তাপমাত্রার ওপর নির্তর করে। তাপযুগ্মের শীতল সংযোগের তাপমাত্রা নিরপেক্ষ তাপমাত্রার যত নিমে উৎক্রম তাপমাত্রা নিরপেক্ষ তাপমাত্রার ঠিক তত উর্দ্ধে। শীতল সংযোগের তাপমাত্রা 0°C হলে, উৎক্রম তাপমাত্রা 540°C কিন্তু শীতল সংযোগের তাপমাত্রা 100°C রাখলে, উৎক্রম তাপমাত্রা হরে 440°C (চিত্র 1.9)।

সাধারণভাবে ধরো, শীতল সংযোগের তাপমাত্রা = θ_1 ; নিরপেক্ষ তাপমাত্রা = θ_n এবং উৎক্রম তাপমাত্রা = θ_2 .

তাহলে, $\theta_n-\theta_1=\theta_2-\theta_n$ অথবা, $\theta_n=\frac{\theta_1+\theta_2}{2}$

তাছাড়া, উল্লেখযোগ্য যে, উশ্ধ সংযোগস্থালের তাপমাত্রা বৃদ্ধি করে উৎক্রম তাপমাত্রা ছাড়িয়ে গেলে তাপযুগ্মের তাপীয় তড়িচ্চালক বল আবার বৃদ্ধি পেতে থাকে কিন্তু অভিমৃথ উপ্টে যায় (চিত্র নং 1.9)।

শীতল প্রান্তের উশ্মতা যদি 0°C না হয় অন্য কিছু হয় (ধর, 100°C), তাহলে তাপীয় তড়িচ্চালক বল উপরোক্ত তাপমাত্রা-তড়িচ্চালক বল লেখচিত্র (চিত্র 1.9) হতেই পাওয়া যাবে ; কেবলমাত্র লেখচিত্রের মূলবিন্দুটিকে 0°C হতে সরিয়ে 100°C বিন্দুতে আনতে হবে। অন্যভাবে বললে বলা যায় তাপমাত্রা অক্ষ কাটা-কাটা রেখা বরাবর থাকবে। এতে নিরপেক্ষ তাপমাত্রার কোনোরূপ পরিবর্তন হয় না ; কিন্তু উৎক্রম তাপমাত্রা 540°C থেকে পরিবর্তিত হয়ে 440°C হয়।

কোনো তাপযুগোর শীতল প্রান্তের তাপমাত্রা 0°C এবং উশ্ব প্রান্তের তাপমাত্রা 0°C হলে, তাপমাত্রা এবং তড়িচ্চালক বলের সম্পর্ক নিম্নলিখিতভাবে প্রকাশ করা যায় ঃ

 $E=a\theta+b\theta^{2*}$; এম্বলে, E= উৎপন্ন তড়িচ্চালক বল ; a,b= তাপযুগ্মের ধ্বুবরাশি ; $\theta=$ দুই সংযোগম্থলের তাপমাত্রার পার্থক্য (সেলসিয়াস স্কেলে)। এই সমীকরণটি অধিবৃত্তের (parabola) গাণিতিক সমীকরণ বলে তড়িচ্চালক বল (E) এবং তাপমাত্রার (θ) লেখ আঁকলে, তা একটি অধিবৃত্ত হয় (চিত্র 1.9)।

ভাপযুগোর ওপর নির্ভর করে a এবং b পজিটিভ বা নেগেটিভ হতে পারে।

111) তাপ তড়িৎ ক্ষমতা (Thermoelectric power):

কোনো তাপযুগ্মের উন্ধ সংযোগস্থালের উন্ধাতা (৪) পরিবর্তনের সঙ্গে তাপ-তড়িংচালক বলের (E) পরিবর্তনের হার-কে ওই তাপযুগ্মের তাপ-তড়িং ক্ষমতা বলে।

অর্থাৎ তাপ-তড়িৎ ক্ষমতা $P=rac{dE}{d heta}$

[$\theta = \overline{\delta}$ খ় সংযোগের তাপমাত্রা]

তাপযুগোর তাপীয় তড়িচ্চালক বলের সমীকরণ $E=a\theta+b\theta^2$ নিলে

$$P = \frac{dE}{d\theta} = \alpha + 2b.\theta$$

এটি সরলরেখার সমীকরণ বলে তাপ-তড়িং ক্ষমতা ও তাপমাত্রার লেখচিত্র $(P-\theta)$ একটি সরলরেখা হয় (চিত্র নং 1.10)। এই রেখাকে তাপ-তড়িং ক্ষমতা রেখা বলা হয়। P-অক্টের সাথে ঐ সরলরেখার ছেদ (intercept)

st এই সমীকরণের বিভিন্ন বুপ আছে। যেমন $E=a\, heta+rac{1}{2}b heta^2$;

ধুবক ৫-এর সমান এবা সরলরেখার নতি ধুবক 26-এর সমান :

ullet $oldsymbol{lpha}$ এবং $oldsymbol{b}$ ধ্বকের সাপেকে নিরপেক তাপমাত্রা $(oldsymbol{ heta}_n)$ এবং উৎক্রম তাপমাত্রা $(oldsymbol{ heta}_1)$:

আমরা দেখেছি
$$\frac{dE}{d\theta} = a + 2b.0$$

যখন,
$$heta=0_n$$
 হখন E সর্বাধিক মান পায়। আতএব, $heta=0_n$ হলে $\dfrac{dE}{d heta}=0$

অর্থাৎ
$$a + 2b$$
. $\theta_n = 0$ $\therefore \theta_n = -\frac{a}{2b}$ (i)

আবার, ফান heta=0, (উৎক্রম তাপমাত্রা) তখন E=0

অতএব,
$$a\theta_i + b\theta_i^2 = 0$$

অথবা
$$\theta_i (a + b.\theta_i) = 0$$

$$a + b.\theta_i = 0$$

[भृना २८७ शास्त्र ना]

$$\therefore \theta_i = -\frac{a}{b} \dots \dots (ii)$$

(i) এবং (ii) নং সমীকরণ হতে পাই $\theta_i = -2.\left(rac{a}{2b}
ight) = 2. heta_n$

অর্থাৎ উৎক্রম তাপমাত্রা = 2 × নিরপেক তাপমাত্রা।

□ Exameras □

ু একটি তাপয়গোর শীতল প্রান্তের তাপমাত্রা 2.8°C এবং উৎক্রম তাপমাত্রা 572.2°C; এ তাপয়গোর নিরপেক্ষ তাপমাত্রা কত ?

উঃ। শতক সংযোগের তাপমাত্রা $heta_1$, এবং উৎক্রম তাপমাত্রা $heta_2$ হলে নিরপেক্ষ তাপমাত্রা

$$\theta_n = \frac{\theta_1 + \theta_2}{2}$$
 when $\theta_1 = 2.8^{\circ}\text{C}$; $\theta_2 = 572.2^{\circ}\text{C}$

2 একটি তাপ বিদ্যুৎ যুগো একটি সংযোগ 0°C ও অপর সংযোগ t°C উন্মতায় থাকলে উৎপন্ন তাপ বিদ্যুৎ তড়িচ্চালক বলের পরিমাণ হয় 16.7t – 0.019t² μV । এই যুগাটির নিরপেক্ষ উন্মতা নির্ণয় করো।

f ar Gঃ। প্রদত্ত তাপ-বিদ্যুৎ যুণ্মে তাপীয় তড়িচ্চালক বল $E=at-bt^2$ ।

এক্ষাের,
$$\frac{dE}{dt}=a-2\,bt$$
. নিরপেক উম্বা t_n -এ $\frac{dE}{dt}=0$; অতএব, $0=a-2.b.t_n$;

$$\therefore \ell_n = \frac{a}{2b}$$
 : 25% $a = 16.7$.48° $b = 0.019$;

স্তলং,
$$t_n = \frac{16.7}{2 \times 0.019} = \textbf{439.5°C}$$
 (প্রায়)।

1512 পেজনিয়ার ক্রিয়া (Peltier effect):

1834 খিস্পাকে জান চার্লস পেলটিয়ার নামে একজন ফরাসি বিজ্ঞানী আর একটি তাপ-তড়িং ক্রিয়া আবিষ্কার করেন মাকে স্পারেন কিয়ার বিপরীত ঘটনা বলা যেতে পারে। তিনি দেখতে পান যে-কোনো তাপমুখোল সংক্রেপের gunction। ভিতর দিয়ে বাটারির সাহায়ে। তড়িং প্রবাহ পাঠালে প্রবাহের হাভিমুখ এনসাবে এক সংযোগে তাপ শোষিত হয় এবং অনা সংযোগে তাপ উদ্ধৃত হয়। অর্থাং স যোগে দুটিতে তাপমাত্রার ব্যবধান সস্টি হয় একে পেলটিয়ার ক্রিয়া ক্ল

পেলটিয়ার ক্রিয়া এবং সাঁবেক ক্রিয়া একই হাসংখ্যার একসা বসার কবলে এই দৃষ্ট ক্রিয়ার বৈপরীত্য পরিষ্কার বোঝা যাবে। প্রের লোহ:–হামা হাস্যায়ের কহা নিবেচনা করা যাক।

সীবেক ক্রিয়ায় আমরা দেখেছি যে ঐ তপয়গের এক সংযোগ তম্ম এবং এপর সংযোগ শীতল করলে তড়িৎ প্রবাহ শীতলপ্রান্তে লোভা হতে তামণ্ড প্রবহিত হয়। (চিত নং 19)। এখন, তাপযুশ্মর উভয়

সংযোগে একই তাপমাত্রায় রেখে একটি বার্টারির (চি চ নং 1.11) সাহায়ে সীবেক প্রবাহের অভিমৃত্য কর্দি তিছিৎ প্রবাহ পাঠানো যায় তবে সীবেক ক্রিয়ার বলার যে সংযোগস্থল উন্ম ছিল এবার সেই সংযোগস্থল শতল তাপের শোষণ হবে অর্থাৎ, সেই সংযোগস্থল শতল হবে এবং অন্য সংযোগস্থল তাপের উচ্চব হবে তর্থাৎ সেই সংযোগ উন্ম হবে লোহা-তামা যুগ্মের বেলায় যে সংযোগস্থল ব্যাটারি প্রদন্ত প্রবাহ লোহা হতে

তামাতে যাবে সেই সংযোগস্থল উত্তপ্ত হবে এবং অপর সংযোগস্থল শীতল হবে। যদি ব্যাটারির মেরু পরিবর্তন করে প্রবাহের অভিমূখ উপ্টে দেওয়া যায়, ৩বে সংযোগস্থল দুটিতে পেলটিয়ার ক্রিয়াও উপ্টে যায়।

এই তাপ-তড়িৎ প্রক্রিয়া দুটি পর্যালোচনা করে আমরা নিম্নলিখিত সিম্বান্তগুলি করতে পারি:

- (i) কোনো তাপ-যুগোর দুই সংযোগপথলে এপমাত্রার পার্থকা সৃষ্টি করে বর্তনীতে তড়িৎ প্রবাহের উৎপত্তি হল সীবেক ক্রিয়া : কিন্তু বর্তনী দিয়ে বাটাবির সংলাফো তড়িৎ প্রবাহ পার্ঠিয়ে দুই সংযোগস্থলের তাপমাত্রার পার্থকা সৃষ্টি করা হল পেলটিয়ার ক্রিয়া । মতএব, এই দুটি প্রক্রিয়া পরস্পরের বিপরীত।
- (ii) তাপযুগোর দুই সংযোগস্থালের ও'পমাত্রার পার্থকা সৃষ্টি নরন্ধে, ত'প-ওড়িং প্রবাহের অভিমুখ এরপ হয় যে প্রবাহ শীতল প্রান্তকে উত্তপ্ত এবং উত্তপ্ত প্রান্তকে শীতল করার চেম্টা করে।
 - (iii) উভয় প্রক্রিয়াই প্রত্যাবর্তক (reversible)।
 - পেলটিয়ার গুণাষ্ক (Peltier coefficient):

তাপযুশ্বের সংযোগ দিয়ে এক সেকেন্ডে একক মাত্রার তড়িৎ প্রবাহ গেলে (অর্থাৎ একক পরিমাণ তড়িতাধান অতিক্রম করলে) যে পরিমাণ কার্য সম্পন্ন হয়, সেই পরিমাণ কার্যকে ঐ সংযোগের পেলটিয়ার গুণান্দক বলে। একে র প্রতীক দারা প্রকাশ করা হয়। ম-এর মান সংযোগের উশ্বতা এবং তাপযুশ্বে ব্যবহৃত ধাতৃদ্বয়ের প্রকতির ওপর নির্ভর করে। সংযোগ দিয়ে t সেকেন্ডে i আ্যাম্পিয়ার প্রবাহের দরুন প্রবাহের অভিমুখ অন্যায়ী উদ্ভূত তাপের পরিমাণ হবে $\pm \pi i t$ জুল। A এবং B ধাতু যুগলের বেলায় ম ধনাত্মক বা পর্জিটিভ হবে যদি তড়িৎ-প্রবাহ A ধাতৃ হতে B ধাতৃতে গেলে সংযোগে তাপ শোষিত হয়। সংযোগে তাপের উদ্ভব হলে, ঐ সংযোগের ম ঋণায়েক বা নেগেটিভ হবে।

ধরো, একটি সংযোগের পেলটিয়ার গুণাঞ্চ = π এবং ঐ সংযোগ দিয়ে q কুলদ্ব গুড়গুখান অতিক্রম করে। তাহলে শেষিত অথবা উদ্ভূত শক্তি = πq জুল। যদি ঐ সংযোগের পেলটিয়ার তড়িচালক বল E ভোল্ট হয়, তবে $\pi q = E.q$ এথবা $\pi = E$.

● পেলটিয়ার ক্রিয়ার পরীক্ষাম্পক প্রদর্শন
(Experimental demonstration of Peltier effect):
নির্মালখিত পরীক্ষার সাহায়ে পেলটিয়ার ক্রিয় প্রদর্শন করালো
যেতে পারে। দৃটি মোটা হামার দণ্ডের মাঝাখালে একটি অন্রপ্র
মোটা লোহার দণ্ড ঝালাই করা আছে : এতে হামা- লোহার দৃটি
সংযোগ পাওয়া যাবে। ঐ সংযোগস্থল দৃটিকে 1.12 ০ং চিত্র
প্রদর্শিত ব্যবস্থা অনুষ্ট্রী একটি বায় থামোন্টারের দৃটি কান্তের

ক্ষা করে প্রবেশ করাও। একটি কাচের U-নলের না মান্য দটি কণ্ড বন্ধ করে এ থার্মামিটার তৈরি করা হয়। U-নলে কিছ্ তরল পদার্থ থাকে একটি করে বাচানর সাহায়ে। সংযোগ দটির ভিতর দিয়ে তড়িং প্রবাহ পায়াবার বাবস্থা করা হল মাতে একটি ক্ষান্ত প্রবাহ তামা থেকে লোহাতে প্রবেশ করে জনা কৃষ্টে লোহা থেকে আন্তে প্রবেশ করে এই বাবস্থার ফলে জল-প্রবাহের দরন যে তাপের উৎপত্তি হবে তা দুই ক্ষেই সমান হবে এবং ভাতে U-নলের দুই বাহ্ব তরলস্তন্তের কোনো পার্থকা হবে না। তাছাড়া দন্তদ্বয় মাটা হওয়াতে এমনিতেই জল-প্রবাহের দর্ন তাপ খ্ব সামানা হবে। ফলে যদি লোভেলদ্বয়ের কোনো পার্থকা দেখা যায় তবে ক্রতে হবে তা ধাত্ দুটির সংযোগস্থালে তাপ-তড়িং ক্রিয়ার দরুনই হয়েছে।

এখন বাাটারির সাহায়ো তড়িৎ প্রবাহ পাঠালে দেখা যাবে যে, A বাহতে তরলস্কন্ত B বাহু অপেক্ষা উচ্ছে উঠেছে। এটা প্রমাণ করে B বাহ্র সংযোগ (রেখানে তড়িৎ প্রবাহ লোহা হতে তামাতে প্রবেশ করছে) উত্তপ্ত হয়েছে এবং অনা সংযোগ শীতল হয়েছে কারণ ঐ ক্তের বায়ু উত্তপ্ত হয়ে প্রসারিত হয়েছে এবং B তরলস্তন্তের ওপর চাপ দিয়ে তাকে নীচে নামিয়ে দিয়েছে। ফলে, A বাহুর তরলস্তন্ত উধের্ব উঠেছে। বাটারির মেরদ্বয় উল্টে তিঙিং প্রবাহের অভিমুখ উল্টে দিলে, A বাহুর তরলস্তন্ত নীচে নেমে যাবে এবং

বার্টারির মের্ধয় ডল্টে ভড়িং প্রবাহের আভম্থ ডল্টে দেলে, A বাহুর ভরলভন্ত নাটে নেমে বাবে এবং B বাহুর ভরলন্তন্ত উচ্চতে উচ্চের ট্রানে এটা নিংসন্দেহে প্রমাণ করে যে পেলটিয়ার ক্রিয়া প্রত্যাবর্তক (reversible)।

1418.

পেলটিয়ার ক্রিয়া এবং জুল ক্রিয়ার পার্থক্য (Distinction between Peltier effect and Joule effect):

পেলটিয়ার এবং জুল—উভয় ক্রিয়া তড়িৎ প্রবাহের দারা তাপের উৎপত্তির সাথে সম্পর্কযুক্ত হলেও, এই দুই ক্রিয়া সম্পূর্ণ ভিন্ন। এদের মধ্যে নিম্নলিখিত পার্থক্য উল্লেখযোগ্য :

পেলতিয়ার ক্রিয়া

- এক সংযোগে তাপের উত্তব এবং অপর
 সংযোগে তাপের শোষণ হয়।
- সংযোগস্থালে উছত বা শোষিত তাপ প্রবাহমাত্রার (i) সমানপাতিক।
- তাপের উদ্ভব বা শোষণ দুটি ভিন্ন ধাতুর ভারের সংযোগদধ্যে সীমানপ্র।
- 4. পেলটিয়ার ক্রিয়া প্রতাবর্তক।
- 5. পেলটিয়ার ব্রিয়া প্রবাধের অভিম্থের গুপর নির্ভরশীল। কোনো এক সংযোগ দিয়ে প্রবাহ এক অভিমুখে পামালে যদি সংযোগস্থানে তাপের উত্তর হয়, তবে ঐ সংযোগ দিয়ে প্রবাহের অভিমুখ উপ্টে দিলে, সংযোগে তাপের শোষণ হয়।
- পেলিটিয়ার ক্রিয়ায় পরিবাহীর রোধের কোনো প্রভাব নেই।

ভ্লা ক্রিয়ার শৃধু ত'পের উদ্ভব হয়।

িছত তাপ প্রবাহমাত্রার বর্গের (ι^2) সমান্পাতিক

হারের সর্বত্র হাণের উদ্ভব হয়।

জন ক্রিয়া অপ্রত্যাবর্তক। জন ক্রিয়া প্রবাহের অভিমূখের ওপর নির্ভরশীল নয়। প্রবাহের অভিমূখ যাই হোক না কেন, পরিবাহীতে সর্বদা গ্রাপের উদ্ভব হয়।

েল ক্রিয়া পরিকাঠার রোধের ওপর নির্ভরশীল।

*1.14 টমসন ক্রিয়া (Thomson effect):

1856 খ্রিস্টাব্দে উনসন বলেন যে, কোনো ভপেষ্ণে তড়িৎ-প্রবাহ গেলে শুধ্ যে তার দুই সংযোগে তাপের শোষণ ও উদ্ধব হয় ত' নয়, তাপযুগোর যে-কোনো ধাতব দঙের দৈর্ঘ্য বরাবর অথবা দুই ধাতব দক্তেরই দৈর্ঘা বরাবর অপের শোষণ বা উদ্ভব হয়, কারণ প্রতিটি লভের দই প্রণতের তাপমাত্রা সমান নয়।

অর্থাৎ অসমভাবে উত্তপ্ত পরিবাহীতে তড়িৎ প্রবাহ হলে দণ্ড বরাবর সর্বত্র তাপের শোষণ অথবা উত্তব হবে। একেই টমসন ক্রিয়া বলে। তিনি আরও বলেছেন যে, এই ক্রিয়া প্রত্যাবর্তক।

্ ব্যাখ্যা ঃ ধরো, একটি মোটা তামার দক্ত AB নিয়ে তার মধ্যস্থল O উত্তপ্ত

করা হল এবং প্রান্তদ্বয়কে বর্ফের (0°C) তাপমাঞ্রা রাখ্য হল (চিত্র নর 1.13)। বদি দন্ড দিয়ে কোনো তড়িছ-প্রবাহ না যায় তবে ধাত্র পরিবাহিতার জন। তাপ সমাভাবে দৈর্ঘা বর্ণবার দই প্রান্তর দিকে ছড়িয়ে পড়বে এবং O বিন্দু হতে দন্ডের দই আর্ধে সমাদ্রবতী দই বিন্দু A এবং B-এর তাপমাঞা সমান হবে। কিন্তু দন্ড বরাবর যদি তিরচিক্রের দিকে অর্থাৎ A হতে B-এর দিকে তড়িৎ প্রবাহ পাঠানো যায় তবে দেখা যায় যে A বিন্দুর তাপমাঞা B বিন্দুর তাপমাঞা অপেক্ষা কম হয়েছে অর্থাৎ A হতে O পর্যন্ত (যে অন্ধলে তড়িৎ প্রবাহ নিম্ন উন্নতা বিন্দু হতে উচ্চ উন্নতা বিন্দৃতে যাচেছ) দন্ড বরাবর তপের শোষণ এবং O হতে B পর্যন্ত (যে অন্ধলে তড়িৎ প্রবাহ উচ্চ উন্নতা বিন্দু হতে নিম্ন উন্নতা বিন্দৃতে যাচেছ) তাপের উদ্ভব হয়েছে। একে পজিটিভ টমসন ক্রিয়া বলা হয়। তামার নাায় দন্তা, রুপা, আন্টিমনি, ক্যাডামিয়াম প্রভৃতি ধাতুতেও পজিটিভ টমসন ক্রিয়া দেখা যায়। সূত্রাং পজিটিভ টমসন ক্রিয়া বলতে আমরা বুঝি যে কোনো সমসন্ত্র ধাতবদন্তে যখন তড়িৎ প্রবাহ দন্তের নিম্ন তাপমাঞা বিন্দু থেকে উচ্চ তাপমাঞা বিন্দু অভিমুখে যায় তখন তাপের শোষণ হয় এবং উচ্চ তাপমাঞা বিন্দু হতে নিম্ন তাপমাঞা বিন্দুর জিলে তাপের উদ্ভব হয়। বলা বাহুলা, তড়িং প্রবাহের অভিমুখ উন্টে দিলে টমসন ক্রিয়াও উন্টো হবে।

এবার এক্রি ,মাটা লৌহদণ্ডের কথা বিবেচনা করা যাক। অন্রূপভাবে দণ্ডের মধ্যস্থল O উত্তপ্ত করে

এবং প্রান্তদ্বয় শীতল রেখে তিরচিক্তের দিকে (অর্থাৎ A হতে B-এর দিকে) তড়িৎ-প্রবাহ পাঠালে দেখা যাবে যে A বিন্দুর তাপমাত্রা B বিন্দু অপেক্ষা বেশি হয়েছে (চিত্র 1.14) অর্থাৎ এবার A হতে O পর্যন্ত তাপের উদ্ভব এবং O হতে B পর্যন্ত তাপের শোষণ হয়েছে। একে নেগেটিভ টমসন কিয়া বলে।

লোহার ন্যায় প্লাটিনাম, কোবাল্ট, বিসমাথ, নিকেল প্রভৃতি ধাতৃতেও নেগেটিভ টমসন ক্রিয়া দেখা যায়। সূতরাং নেগেটিভ টমসন ক্রিয়া বলতে আমরা বৃঝি যে, কোনো সমসত্ত্ব ধাতবদক্তে যখন তড়িৎ প্রবাহ দক্তের নিম্ন তাপমাত্রা বিন্দু হতে উচ্চ তাপমাত্রা বিন্দু অভিমুখে যায় তখন তাপের উদ্ভব হয় এবং উচ্চ তাপমাত্রা বিন্দু হতে নিম্ন তাপমাত্রা বিন্দুর দিকে গেলে তাপের শোষণ হয়। এক্ষেত্রেও তড়িৎ-প্রবাহের অভিমুখে উল্টে দিলে ক্রিয়াও উল্টো হবে।

- (i) একথা উল্লেখ্যোগ্য যে, সিসাতে কোনো টমসন ক্রিয়া হয় না। একটি সিসা দণ্ড নিয়ে তার মধ্যস্থাল উত্তপ্ত করলে এবং শীতল প্রান্ত হতে উত্তপ্ত প্রান্তের দিকে বা উত্তপ্ত প্রান্ত হতে শীতল প্রান্তের দিকে তড়িং-প্রবাহ পাঠালে কোনো তাপের উদ্ভব বা শোষণ হয় না। এই কারণে কোনো বিশেষ ধাতুর তাপ তড়িং বৈশিষ্ট্য পর্যালোচনার জনা সর্বদা ঐ ধাতৃ এবং সিসা নিয়ে তাপয্ণা তৈরি করা হয়।
- (ii) তিনটি তাপ- তড়িৎ ক্রিয়ার মধ্যে একমাত্র টমসন ক্রিয়াতে একটি মাত্র ধাতৃ বাবহার করা হয়। এই কারণে টমসন ক্রিয়াকে অনেক সময় সমসত্ত্ব তাপ-তড়িৎ ক্রিয়া (homogeneous thermoelectric effect) বলা হয়।

• টমসন গুণাৰ্ক (Thomson coefficient):

কোনো ধাতব দণ্ডের দৃটি বিন্দুর উন্মতা পার্থক্য 1K হলে এবং দণ্ড দিয়ে 1 অ্যাম্পিয়ার প্রবাহ 1 সেকেন্ড যাবৎ প্রবাহিত হলে, জুল এককে উদ্ভত অথবা শোষিত ভাপের পরিমাণকে টমসন গুণাম্ক বলে। ত প্রতীকের সাহায়ো টসমন গোচক প্রকাশ কলা হয়। কোনো ধাতুতে টমসন ক্রিয়ায় উৎপন্ন তড়িচ্চালক বল নিম্ন হতে উচ্চ উন্মতার দিকে অভিমুখী হলে, ত ধনাত্মক বা পজিটিভ ধরা হয়। এবং তড়িচ্চালক বল উচ্চ হতে নিম্ন উন্মতার দিকে অভিমুখী হলে, ত ধনাত্মক বা প্রতিভিভ ধরা হয়।

ধাত্র দঙ্কের দৃটি বিন্দুর উষ্ণতা প্রভেদ $1 {
m K}$ এবং i াম্পিয়ার তড়িং প্রতহ t সেকেন্ড যাবং প্রবাহিত হলে, উদ্ভত বা শোষিত তাপের পরিমাণ হরে $\pm \alpha \, t$ হলে।

উক্ত বিন্দুদ্বায়ের ভিতর উমসন তড়িচ্চালক বল E পেল্ট হলে,

 $\sigma it = E.it$ অথবা $\sigma = E$

• টমসন ক্রিয়ার পরীক্ষামূলক প্রদর্শন (Experimental demonstration of Thomson effect): একটি মোটা লোহার পাতকে আঁকাবাকাভাবে বাঁকিয়ে 1.15 নং চিত্রে যেখন দেখানো হয়েছে

ব্রন্থ আকৃতি দেওয়া হল। পাতের দুই মুক্ত প্রান্ত A এবং G একটি কমুটেটর – এর মাধ্যমে ব্যাটারির সাথে যুক্ত আছে। D বিন্দৃকে উত্তপ্ত করা হল এবং B ও F বিন্দৃদ্য়কে সমানতাবে শীতল র'খ' হল। C এবং E বিন্দৃত্ত গর্ত করে দুটি থার্মেমিটার T_1 এবং T_2 তকালো আছে। তড়িং প্রবাহ পাঠাবার আগে পরিবহনের দবুন তাপ উভয়দিকে সমভাবে বাহিত হবে এবং থার্মোমিটার T_1 এবং T_2 সমান তাপমাত্রা প্রদর্শন করবে।

প্রদর্শন করবে।

এখন A হতে G অভিমুখে তড়িৎ প্রবাহ পাসালে দেখা যাবে
যে T_1 থার্মোমিটার T_2 থার্মোমিটার অপেক্ষা বেশি এপমাত্রা

প্রদর্শন করছে। কমুটেটরের সাহায্যে তড়িৎ প্রবাহের আঁতন্থ উল্টে G ০/০ A অতিমুখী করলে ক্রিয়াও উল্টো হয়। তথন T_2 থার্মোমিটার T_1 থার্মোমিটার অপেক্ষা বেশি তাপমাত্রা প্রদর্শন করে।

□ EXAMPLE □

1 cm² প্রস্পচ্ছেদের একটি ধাতবদণ্ডে সুষম তাপমাত্রার নতি 1°Ccm⁻¹। ধাতুর রোধাঙ্ক 200 × 10⁻⁶ Ω-cm। দণ্ডের উষ্ম প্রান্ত হতে শীতল প্রান্তের দিকে 0.05A তড়িৎ প্রবাহ পাঠালে তাপমাত্রার নতি (temperature gradient) অপরিবর্তিত থাকে। ধাতুর টমসন গুণাঙ্ক নির্ণয় করো।

উঃ। তড়িং প্রবাহ পাঠালে, দক্তের তাপমাত্রার নতি অপরিবর্তিত থাকে—এটা ধোঝায় যে জ্ল ব্রিয়ার জন্য যে তাপ উচ্চুত হচ্চে টমসন ক্রিয়ার জন্য দণ্ড বরাবর ঠিক সেই তাপ শেষিত হচ্চে। এখন,

$$1~{
m cm}$$
 দীর্ঘ দভের রোধ $R=rac{{
m (রোধাঞ্চ } imes {
m The } {
m (Spa})}{{
m প্রস্থাটেন }}=rac{200 imes 10^{-6}~{
m c}}{1}=200 imes 10^{-6}\Omega$

লাঙর যে দই বিন্দর ভিতর তাপমাঞার পার্থক। $1~\mathrm{C}$ তালের ভিতর বৈচবপ্রভেন V= প্রবাহমাঞা imes রোপ = $0.05 \times 200 \times 10^{-6}~\mathrm{volt} = 10^{-5}~\mathrm{V}$

উল্লেখ্য গুণাড়েকর সাজ্ঞা অনুযায়ী 1'(' তাপমাত্রা পথিকাষ্ট্র দই বিশ্ব ভিতর বিভবপার্থকা সিংখ্যাণত ভাবে (numerically) উল্লেখ্য গুণাড়েকর সমান এতএব,

स' त जिल्ला प्रतापक त = 10 5 joule °C-1.

এই পরিচেছদের বিষয়বস্থ সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. ক্ষমতা সম্পর্কিত $P=I^2$. R সমীকরণ হতে মনে হয় যে, কোনো পরিবাহীতে উৎপন্ন তাপের হার তার রোধের সমান্পাতিক : আবার $P=\frac{E^2}{R}$ সমীকরণ হতে মনে হয় যে, উৎপন্ন তাপের হার রোধের ব্যস্তান্পাতিক : এই পরস্পর বিরোধী উদ্ভিকে কীভাবে ব্যাখ্যা করা যায় ?
- া পরিবাহীতে উৎপন্ন তাপে থার নির্ভর করে পরিবাহীতে বৈদ্ধিত কর্মার (electric work) সম্পন্ন করার হারের ওপর। পরিবাহীর বিভবপ্রতে E এবং প্রবাহমার I হলে, বৈদ্ধিতক কার্মের হার অথ বা ক্ষমতা =E.I. এখা, পরিবাহীর রেশ R হলে, E=I.R; অতএব, ক্ষমতা $P=I^2.R.$ আবার, $I=\frac{E}{R}$ বলে ক্ষমতা $P=\frac{E}{R}$ কার্মের ক্রিয়াণ কার্মের হার বা ক্ষমতা বুঝায়। প্রথম ক্ষেত্রে, প্রবাহমার। I অপরিবর্তিত রাখলে, বিভবপ্রতেদ E পরিবাহীর রোধের I সমানুপাতিক বলে, ক্ষমতা এখাং তাপ উৎপন্নের হার রোধের সমানুপাতিক হয় এবং দ্বিতীয় ক্ষেত্রে বিভবপ্রতেদ I অপরিবর্তিত রাখলে, পরিবাহীর প্রবাহমার। রোধের ব্যঞ্জনুপাতিক
- বলে তাপ উৎপদ্ধের হার রোধের বাস্তানুপতিক হয়।
 2. দুটি বৈদ্যুতিক বাল্বের ক্ষমতা যথাক্রমে 500 watt এবং 100 watt; একই বিভবপ্রভেদ কাজ করলে, কোন বাল্বের ফিলামেন্টের রোধ বেশি হবে?
- ullet ক্ষমতা $P=rac{E^2}{R}$; বিভনপ্রেভেদ E সমান্থকেলে, $P \sim rac{1}{R}$ সূতরাং যে-বালবের ক্ষমতা বেশি (500 watt) তার ফিলামেন্টের রোধ কম এবং যে-বাল্বের ক্ষমতা কম (100 watt) তার ফিলামেন্ট রোধ বেশি।
- 3. একটি 220V 60W ার্বন ফিলাডেন্ট বাল্বকে একটি 220V 60W ধাতু নির্মিত ফিলামেন্ট বাল্বের সংখে শ্রেণি সমবায়ে যুক্ত করে সমবায়ের প্রান্তদয়কে 220V মেইনের সাথে যুক্ত করা হল। কোন্ বাল্বটি অধিকতর উজ্জ্বলভাবে জ্বলবে ? ব্যাখ্যা করো।
- াল্ব দুটি শ্রেণি সমবাদে বৃদ্ধ বলে একই প্রবাহ উত্য ফিলামেন্ট দিয়ে যাবে। এখন, বাল্ব দুটির ফিলামেন্ট রোধ যদি R_1 এবং R_2 হয় ৩বে প্রথমটিতে তাপ উৎপল্লের হার $=i^2R_1$ এবং দ্বিতীয়টিতে $=i^2R_2$; যেকেতু উভদের ক্ষমতা 60W. শীতর অবস্থায় উভয় ফিলামেন্টের রোধ সমান অর্থাৎ $R_1=R_2$ কিন্তু প্রজ্বেনিত অবস্থার কার্নিন ফিলানেন্টের রোধ (R_1) ধাতব ফিলামেন্টে রোধ (R_2) অপেক্ষা ক্ম অর্থাৎ $R_1 < R_2: 43$ কারণে সুইচ অন করার পর কিছু সময়ে দৃটি বাতিই সমান উজ্জ্বলভাবে জ্বলবে কিন্তু পরে ধাতব ফিলামেন্ট বান্ব গ্রিকতর উজ্জ্বলভাবে জ্বলবে।
- 4. 20 Ω বিশিষ্ট একটি রোধ নষ্ট না য় সর্বোচ্চ 2 kW পর্যন্ত ক্ষমতা তাপের মাধ্যমে উৎপন্ন করতে পারে। এই রোধটিকে ট উপেক্ষণীয় অভ্যন্তরীণ রোধবিশিষ্ট একটি 300 V ডি.সি. উৎসের দুই প্রাণ্ডের সাথে সাম্বারি যুক্ত করবে ?
- $300~{
 m V}$ ডি.সি. উৎসের সাথে সরসোর যুক্ত করলে রোধের ভিতর দিয়ে তড়িৎ প্রবাহ $I=\frac{300}{20}=15{
 m A}$. এই গ্রহেঞ্চায় রোধ যে ক্ষমতা উৎপন্ন করবে তা = ভোল্ট imes প্রবাহ $=300~{
 m X}$ $=15=4500~{
 m W}=4.5~{
 m kW}$ মোহেত রোধ্য না হয়ে সার্বাচে $2~{
 m kW}$ পর্যন্ত ক্ষমতা উৎপন্ন করতে

পারে, সেইহেটু একে 300 V ডি.সি. উৎসের সাথে সরাসরি যুক্ত করা যাবে না ; যুক্ত করলে নস্ট হয়ে যাবে।

- 5. 25 W-110 V এবং 100 W-110 V এরপ দৃটি বাতিকে 220 V সরবরাহের সাথে শ্রেণি সমবায়ে যুক্ত করা হল। দুটি বাতিই কী জুলবে ?
- ullet 25 W বাতির রোধ $R_1=rac{V^2}{P}=rac{(110)^2}{25}=484~\Omega$; অনুরূপভারে 100 W বাতির রোধ $R_2=rac{(110)^2}{100}=121\Omega$ ।

 $25~{
m W}$ বাতি সর্বাধিক যে প্রবাহ কেয় তা $v_1=rac{P}{V}=rac{25}{110}=0.227A$; অনুরূপভারে $100~{
m W}$ বাতি

সর্বাধিক যে প্রবাহ নেয় তা $i_2 = \frac{P}{V} = \frac{100}{110} = 0.909 \mathrm{A}$

এখন, বাতি দুটিকে $220~{
m V}$ সরবরাহ লাইনে শ্রেণি সমবায়ে যুক্ত করলে দুটি বাতিতেই একই প্রবাহ যাবে। এই প্রবাহ $i=\frac{220}{$ ্নাট রোধ $}$ $\frac{220}{484+121}=0.364{
m A}$

য়েহেত্ $i>i_1$ এবং $i< i_2$ তাই $25\,\mathrm{W}$ বাতিটি নফ্ট হয়ে যাবে এবং $100\,\mathrm{W}$ বাতিতে কোনো প্রবাহ যাবে না। তাই বাতি দুটি জ্বলবে না।

- ৪. একটি তাপযুগ্ম শীতল প্রান্তের তাপমাত্রা হাস হলে (i) নিরপেক্ষ তাপমাত্রা এবং (ii) উৎক্রম তাপমাত্রার কী পরিবর্তন হবে ?
 - (i) নিরপেক্ষ তাপমাত্রা: শীতল প্রান্তের উন্মতার ওপর নির্ভর করে না বলে শীতল প্রান্তের তাপমাত্রা হ্রাস করা হলে নিরপেক্ষ তাপমাত্রারা কোনো পরিবর্তন হবে না।
 - (ii) তাপযুশোর শীতল প্রান্তের নিরপেক্ষ তাপমাত্রা যত নিম্নে, উৎক্রম তাপমাত্রা নিরপেক্ষ তাপমাত্রার ঠিক তত উধর্ষ। এখন শীতল প্রান্তের তাপমাত্রা উশ্বতা ব্রাস করলে, নিরপেক্ষ উশ্বতার সাথে শীতল প্রান্তের উশ্বতার বাবধান বৃদ্ধি পাবে : ফলে উৎক্রম তাপমাত্রার সাথে নিরপেক্ষ তাপমাত্রার ব্যবধানও বৃদ্ধি পাবে। যেহেত্ নিরপেক্ষ তাপমাত্রা অপরিবর্তিত থাকে তাই উৎক্রম তাপমাত্রা পূর্বাপেক্ষা বেশি হবে।
- তাপযুগ্ম দ্বারা নিরপেক্ষ তাপমাত্রার বেশি তাপমাত্রা মাপা উচিত নয়। কেন ?
- তাপমাত্রা ও তাপীয় তড়িচ্চালক বলের লেখচিত্র হতে দেখা যায় নিরপ্রেক্ষ তাপমাত্রার উর্ধের্ম গোলে
 একই তাপীয় তড়িচ্চালক বলের আনুর্যাগাক দৃটি ভিন্ন তাপমাত্রা পাওয়া যায়। ফলে কোন্ তাপমাত্রা
 নির্পেয় তাপমাত্রার মান তা স্থির করতে বিভ্রম উপস্থিত হয়।
- ৪. একই উপাদানে তৈরি দৃটি উত্তাপক কুগুলী A এবং B মেইন্সের সাথে সমান্তরাল সমবায়ে যুক্ত আছে। A কুগুলীর তারের দৈর্ঘ্য ও ব্যাস B কুগুলীর তারের তুলনায় দ্বিগুণ। কোন্ তার বেশি তাপ উৎপন্ন করবে ?
- কোনো তারের রোধ $R=\rho$. $\frac{l}{\alpha}$: $\alpha=\frac{\pi d^2}{4}$ এতএব, $R=\frac{4\rho l}{\pi d^2}$ এখন, A তারের দৈর্ঘ্য (l) ও ব্যাস (d) দ্বিগুণ বলে এই সমীকরণ অন্যায়ী A তারের রোধ, B তারের রোধের অর্ধেক। তার দৃটি সমাস্তরাল সমবায়ে থাকায়, কম রোধের তারে অর্থাৎ A তারে বেশি প্রবাহ যাবে এবং বেশি তাপ উৎপন্ন হবে।
- 9. 240 V 100 W বৈদ্যুতিক বাল্বের ফিলামেন্ট 240 V 1000 W বাল্বের ফিলামেন্ট থেকে সরু হবে না মোটা হবে ? ঐ দৃটি বাল্বকে শ্রেণি সমবায়ে মেইন্সের সাথে যুক্ত করলে কোন্টি বেশি উচ্জ্বল হয়ে আলো দেবে ?

- প্রথম বাল্রের প্রবাহমাত্র $\frac{100}{240} \, \mathrm{A}$; জাতঞ্জ, ভার কিলামেন্টের রোগ = $\frac{240}{100-240} = 576 \, \Omega$ । দিবটার বাল্রের প্রবাহমাত্র $\frac{1000}{240} \, \mathrm{A}$, অভ্যাব, তার ফিলামেন্ট রোগ $\frac{240}{1000 \cdot 240} = 576 \, \Omega$ । প্রথম বাল্রের রোগ রেশি ওওয়ায় রোকা যাম প্রথম বাল্রের ফিলামেন্ট সরু হরে। বাল্র দৃটি শ্রেণি সমবায়ে যাত্র বলে, এবই প্রথম উভারের ভিতর দিয়ে যারে কিন্তু প্রথম বাল্রের
- 10. বিজ্ঞলী বাতির ফিলানেন্টের ভিতর দিয়ে এবং লাইন তার দিয়ে একই প্রবাহমাত্রা যায়;
 কিন্তু ফিলামেন্ট খুব উত্তপ্ত হয়ে আলো দেয় আর লাইন তার মোটেও উত্তপ্ত হয় না।
 কেন ?

রোধ রেশি বলে, তার ফিলাড়েন্ট রেশি উত্তর হারে এবং বেশি উজ্জ্বল হয়ে আলো দেবে .

- বিজ্ঞালী বাতির ফিলামেন্ট উচ্চ রোধযুদ্ধ হয় করে ফিলামেন্ট খব সর তার দিয়ে তৈরি করা হয়। কিয়ু
 লাইন তার (সাধারণত ৩৯রে) বেশ মেটা ২৩য়য় রোধ খব নাল হয়। য়েছেও একই প্রবাহমাত্রার
 জন্য উৎপন্ন তাপ পরিবাহীর রোধের সমানপাতিক, তাই লাইন তার বিশেষ উত্তপ্ত হয় না, কিয়ু
 ফিলামেন্ট তার উচ্চ রোধের দর্ব খুব উত্তপ্ত হয়ে আরো দেয়।
- 11. সমান দৈর্ঘ্য ও প্রস্থাচেছদবিশিষ্ট দৃটি ভিন্ন উপাদানের তারকে একই বিভব পার্থক্যে রাখলে কোন তারে বেশি হারে তাপ উৎপন্ন হবে ?
- উপাদান ভিন্ন হওয়ায়, দৈর্ঘা, ও প্রস্থাচ্ছেদ সনান হওয়া সভেও তার দটির রোধ সমান হবে না। আবার বিভব পার্থকা সমান থাকলে, তাপ উৎপদ্ধার হার রোধের বাজান্পাতিক হয়। এ৩এব য়ে- তারের রোধ বেশি সেই তারে কম হারে তাপ উৎপদ্ধ হবে এবং য়ে তারের রোধ কম সেই তারে রেশি হারে তাপ উৎপদ্ধ হবে।
- 12.একটি তামার তার ও অনুরূপ একটি লোহার তারকে একটি স্টোরেজ কোশের সাথে প্রথমে সমান্তরাল সমবায়ে ও পরে শ্রেণি সমবায়ে যুক্ত করা হল। প্রথম ক্ষেত্রে তামার তারটি এবং দ্বিতীয় ক্ষেত্রেও লোহার তারটি বেশি উত্তপ্ত হল। কেন?
- তামার তারের রোধ অন্ব্রপ একটি লোহার তারের রোধ অপেক্ষা কম। সমন্তরাল সমবায়ে থাকার সময় উভয়ের প্রান্তীয় বিভব প্রভেদ সমান। প্রান্তীয় বিভব প্রভেদ সমান থাকলে, উৎপন্ন তাপ রোধের বান্তানুপাতিক। তাই কম রোধঘৃত্ত তামার তার বেশি উত্তপ্ত হবে।
 শ্রেণি সমবায়ে থাকার সময়, উভয় তারে একই প্রবাহমাতা যাবে। প্রবাহমাতা সমান থাকলে, উৎপন্ন তাপ রোধের সমান্পাতিক হয়। তাই, এবার বেশি রোধয্ত্ত লোহার তার বেশি উত্তপ্ত
- 13. একটি বৈদ্যুতিক ইন্ত্রিতে অনির্দিষ্টকাল তড়িৎ প্রবাহের ফলে নিরবচ্ছিন্নভাবে তাপ উৎপন্ন হয়।
 কিন্তু কিছুক্ষণ পরে উন্মতা স্থির হয়ে যায়। এর কারণ কী?
- প্রথম প্রথম তড়িৎ প্রবাহের ফলে তাপ উৎপাদন হয়ে ইন্ত্রির উন্মতা বাড়তে থাকে। যত উন্মতা বাড়ে
 তত ইন্ত্রি তাপ বিকিরণ করতে থাকে। পরে এরকম এক অবস্থার উদ্ভব হয় যখন ইন্ত্রি যে–হারে তাপ
 লাভ করে ঠিক সেই হারে বিকিরণ পদ্ধতিতে তাপ ক্ষয় করে। তারপর আর ইন্ত্রির উন্মতা বাড়ে না ;
 উন্মতা স্থির হয়ে যায়।
- 14. সকল প্রকার তাপযুগ্মের বেলাতেই কী নিরপেক্ষ তাপমাত্রা পাওয়া যায় ?

- 15. A এবং B দৃটি উত্তাপক উপাদানকে একই ধরনের সিলকরা কাচ নলের মধ্যে রেখে হিটার হিসাবে ব্যবহার করা হল। একই রকম দৃটি ক্যালোরিমিটারে সমপরিমাণ জল নিয়ে তাদের ঐ জলে নিমজ্জিত রাখা হল। দেখা গেল যে শ্রেণি সমবায়ে আবস্থ থাকলে A উপাদান B উপাদান অপেকা বেশি তাপ উৎপন্ন করছে কিন্তু সমান্তরাল সমবায়ে থাকলে B উপাদান A উপাদান অপেকা বেশি তাপ উৎপন্ন করছে। অথচ মিটার ব্রীজের সাহায্যে A এবং B উপাদানের রোধ মেপে দেখা গেল তারা সমান। এই ঘটনার ব্যাখ্যা কী ?
- ullet এরূপ ঘটনা ঘটতে পারে যদি A উপাদানের রোধের ওপেমাত্রা গুণাঞ্চ্চ B উপাদান অপেক্ষা বেশি হয়। শদি A উপাদানের রোধের তাপমাত্রা গুণাঞ্চ μ হয়, তবে $R_i=R_0\cdot 1+\mu$ এবং $H_0=i^2R_B\cdot t$; থেঙে হ $R_A>R_B$ এই $H_A>H_B$ এবং A উপাদান বেশি উত্তপ্ত

হবে। সমান্তরাল সমবায়ে
$$H_A=R_A.tigg(rac{R_B}{R_A-R_B}.iigg)^2$$
 এবং $H_B=R_B.t\left(rac{R_A}{R_A+R_B}.i
ight)^2$

যেহেতু $R_A>R_A$ তাই $H_B>H_B$ অর্থাং B টুপাদান বেশি উত্তপ্ত হবে। আবার ঘরের তাপমাত্রায় $R_A=R_B$ হওয়ায়, মিটার ব্রীজ পরিমাপে সমান রোধ পাওয়া যাবে।

- 16. একটি উত্তাপক তারে তড়িৎ প্রবাহ পাঠিয়ে উত্তপ্ত করা হল। অতঃপর তারের দৈর্ঘ্যের অর্থেক ঠান্ডা জলে নিমজ্জিত রাখা হল। তারের কোন অর্থ এই অবস্থায় আরও উত্তপ্ত হবে ?
- জিলের বাইরে তারের অংশ বেশি উত্তপ্ত বলে, সেই অংশের রোধ বেশি। তাছাড়া তারের দুই আর্থেই
 সমান প্রবাহমাত্রা আছে। কান্ডেই জলে নিম্ভিত অংশ অপেক্ষা জলের বাইরে তারের অংশ আরও
 বেশি উত্তপ্ত হবে।
- 17. একটি 60 W বাল্বকে রুম হিটারের সাথে সমান্তরাল রেখে মেইন্সের সাথে যুক্ত করা হল। পরে 60 W বালব্-কে বদলে 100 W বাল্ব আনা হল। এবার রুম হিটার কি বেশি না কম তাপ উৎপন্ন করবে ?
- ullet ধরি, মেইন্সের ভোন্টেজ =V ; $60~{
 m W}$ বাল্বের রোধ $R_{60}=rac{V}{60~/V}=rac{V^2}{60}~\Omega$

আবার, $100~{
m W}$ বাল্বের রোধ $R_{100}=rac{V^2}{100}~\Omega$. ৷ এত এব, $R_{60}>R_{100}$

এখন, 60~W বাতির পরিবর্তে 100~W বাতি লাগালে, যেছেও $R_{100} < R_{60}$. বেশি প্রবাহ R_{100} রোধের ভিতর দিয়ে যাবে এবং কম প্রবাহ হিটারে যাবে ফলে হিটারে তাপ উৎপাদন কমে যাবে।

- अ

⇒ ব্লচনাধ্মী প্ৰশ

- 1. তাড়িৎ প্রবাহের দর্ম উৎপর হাস সাকাত ফালের সাব প্রিছা করের
- 2. তাপ সংক্রান্ত জুলের সূত্রগুলি লেখো ও ব্যাখা করো।
- 3. জ্ল সূত্র বিবৃত করো এবং ঐ সূত্রের পরীক্ষামলক প্রমাণ করে। প্রতিক্ষেরে পরিয়ার চিত্র স্নীকো।
- 4. তাপের যান্ত্রিক তুল্যান্ক নির্বায়ের বৈদ্যতিক পশোততি বর্ণনা করে।
- প্রমাণ করে যে, করেকটি পরিবার প্রেণি সমবারে ঘাকরে তাদের প্রত্যেকটিতে তাপ উৎপল্পের হার পরিবাহীর রোধের সমানুপাতিক কিন্তু সমাজ্বলত সমবারে থাবারে, তাপ উপপন্পের হার পরিবাহীর রোধের বান্তান্পাতিক হয়।
- 6. একই উপাদান এবং একই দৈখায়ন্ত দৃটি ইন্তাপক তাদের ক্রমটি সন্ এবং অপরটি মোটা। প্রথমে প্রেণি সমবায়ে এবং পরে সমায়রাল সমবায়ে যুক্ত করে একই র্লিড উৎসেল সাথে লাগালো হল প্রমাণ করাে, প্রথম ক্ষেত্রে সরু তারে এবং বিতীয় ক্ষেত্রে মোটা তারে বেশি তাপ উংপয় হবে।
- 7. ৪৯টি প্রসমূলের ৪৬টি সংযোগদরত () (' প্রসালের সংগ্রে মাসর সায়ণ গোরের প্রসমান্ত্র শীরে বর্ষিত

- করলে উৎপন্ন তালীয় তাড়জ্যালক বলেব লাববর্ডন কি বক্তম হবে ৩ লেখডিয়ের সাহায়েছে দ্বাত
- ৪. সীরেক কিয় এবং পেলটিয়ার জিয়াব বাংলা করে জুল কিয়াজনিত তাপ এবং পেলটিয়ার কেয়াজনেত তাপের য়য়ে পার্থক্য কী?
- মখন কোনো ইকেবট্রিক সার্কিটের বিভিন্ন ব্রাপে বিদ্যুৎ প্রবাহ বিভাগিত হয় তথান এটা এমনভাবে ঘটে মাতে তাপ উৎপাদন স্বক্তেরে কম ইয়। প্রমাণ করো।
 [Jt. Entrance 1992]
- সীরেক কিলা, পেলটিয়ার কিয়া এবং উয়সন কিয়া কাছে বরলাও সাবেক কিয়া এবং ওপলালি বা করা বা ভনাতি করে ব্যাবহারিক প্রয়োগ উল্লেখ করে।
- 11. পেলটিয়ার ক্রিয়া এবং উমসন ব্রিয়া প্রদর্শনের জনা একটি করে পরিক্ষা বর্ণনা করে।
- 12. তাপমার্য এবং তাপ-ভড়িংচক্ষক বলের ভিতর একটি লখ আঁকে এবং ঐ লং এ নবংশক্ষ প্রসমার্থ এব উৎক্রম তাপমার্য প্রদর্শন করো।

সংক্রিপ্ত উত্তরের প্রশ্ন

- একট তারের ভিতর দিয়ে কিছুক্ষণ যাবং তড়িং প্রবাহ চালনা করা হল। ট্র তারে উৎপন্ন তাপের পার্যাণ নিমোও
 অনুষঞ্জাগুলির ওপর কীডারে নির্ভর করের বলোঃ (i) তারের দৈর্ঘা, (ii) তারের প্রস্থাক্ষদ, (iii) রোধাঙক এবং
 (iv) তারের উভয় প্রান্তের বিভবপার্থকা। প্রথম তিনটি ক্ষেত্রে বিভবপার্থকা স্থিব আছে ধরতে হরে।
- 2. একটি বৈদ্যুতিক বাল্বের দৃইপ্রান্তে স্থিরমানের বিভব-প্রভেদ প্রান্থাণ করলে প্রথমত তড়িং প্রবাহ সামানা কমে যায় কিন্তু পরে স্থির মানের প্রবাহ পাওয়া যায়। ব্যাখ্যা করে।
- 🎗 জুলক্রিয়া ও পেলটিয়ার ক্রিয়ার পার্থক্য উল্লেখ করো।
- 5. একটি বৈদ্যতিক বাতির গায়ে '220 ভোল্ট 60 ওয়াট'' কথা ক্রেখা খ্রাচে এব ভালপা ক্রিণ্ট B.() T একক বলতে কী বোঝাণ বিভাগ
- কোনো তারের প্রান্তীয় বিভবপ্রভেদ স্থির থাকলে তাতে উৎপন্ন তালের হার কীভাবে (i) তাবেক লৈর্ঘাব সাথে এবং
 প্রথকেদের সাথে পরিবর্তিত হয়?
- 7. (a) তাপযুশ্মের নিরপেক্ষ তাপমাত্রা এবং উৎক্রম তাপমাত্রা বলতে কী বেশনা ?
 - (b) গ্রাপীয় তড়িচ্চালক বলের সাথে উদ্ধতার লেখচিত্রে নিবপেক্ষ উদ্ধারা এবং উৎক্ষা উদ্ধারা নির্দেশ করে।, (শী ওল সংযোগখল 0°C-এ আছে।)
- একট উপাদদনে তৈরি দৃটি উধাপক কুগুলী মেইনসের সহে সমান্তরাল সমবায়ে বৃত্ত অছে। একটি কৃগুলীর তারের দৈর্ঘা এবং ব্যাস অপর কুগুলীর তারের তুলনায় ছিগুণ। কোনটি রেশ তাপ উৎপয় করবে?
- 9. 500 watt এবং 100 watt-এর দৃটি বাতিকে 110 volt বিভবপ্রভেরে যুঙ করা হল। কোন্ বাচের ফিলানে শুরু রোধ বেশি হবে ৪
- 10. 50 watt এবং 100 watt-এর দৃটি বৈদ্যাতিক বাতি আছে , যখন তাদের মেইনসের সাদে (ক) প্রোণ স্কলায়ে এবং (খ) সমান্তরাল সমবায়ে লাগানো হবে তখন কোন বাতিটি উজ্জ্বলতর হয়ে আলে দিবে?

 (সংকেত: সমান্তরাল সমবায়ে 100 watt বাতি এবং প্রেণি সমবায়ে 50 watt বাতি উজ্জ্বলতর ২বে . 50 watt বাতিব রোধ 100 watt বাতি অপেক্ষা বেলি প্রেণি সমবায়ে উভয় বাতির ভিতর প্রবাহমত্ব, সমান হবে। এইন উজ্জ্বলতা কাই ম হবিয়ায়, ঐ সমবায়ে, 50 watt বাতির উজ্জ্বলতা বেলি তার, সমাত্রাল সমবায়ে, উভয়ের বিভবপ্রভেদ সমান হওয়ায়, 100 watt বাতিতে 50 watt বাতি অপেক্ষা বেলি প্রবাহ যাবে । এতএব তার উল্লেখ্য বেলি করে।

অতিসংকিপ্ত উত্তরের প্রক

- 1. তাপযুগা কাকে বলে ?
- 2. বাড়িতে বিদৃৎ সংযোগ বাবস্থায় আলো, পাখা ইত্যাদি কিরুপে সংযুক্ত থাকে শ্রেণি সমবায়ে না সমান্তরাল সমবায়ে ?
- 3. বাড়িতে নিদৃং সদানাত্তর ক্ষেত্রে ইলেকট্রিক নিলে বানহত নিদৃংশগুর একক কি ?
- একটি বৈদ্যতিক বালবে 220V-100W দাগ কাটা আছে , বালবটিতে 150 অথবা অধিক ওয়াট দিলে বালবটি পুড়ে
 যায় , বালবটি কতটা ভোল্টেজ পরিবর্তন সহ্য করতে পারবে ?
 |Ans. 270 V পর্যন্ত।
- 5. তড়িংশন্তি ও ক্ষমতার S.I. একক কি ?
- 6. ঘরের দুটি বালবের মধ্যে একটি উজ্জ্বলতর আলো দেয়। কোনটির রোধ বেশী ?

- 7. আদ্পিয়ার, ভোল্ট এবং বি.ও.টি. এককের মধ্যে সম্পর্ক কি ?
- 8. খার্মোগাইল কি ?
- 9. পেলটিয়ার ক্রিয়া প্রদর্শপের জন্য তুমি সরু তার না মোটা তার বাবহার করবে ?
- 10. একটি ইলেকট্রিক কেটলিতে জল 15 মিলিটে ফুটতে শুরু করে। ঐ ভলকে 10 মিনিটে ফোটাতে কেটলির কুন্ডলীর তারের দৈর্ঘ্য বাড়াবে না কমাবে ?

⇒ বহুমুখী পছন্দের প্রশ্ন [Multiple choice type (MCQ)]

- (A) নির্ভুল উত্তরটি √চিহ্নিত করো:
 - [i] একটি ধাতব তারের দুই প্রান্তে স্থিরমানের ভোপ্টেক্ক প্রয়োগ করা হল। তারে তাপের উত্তব হবে। তাপের পরিমাণ দ্বিগুণ হবে যদি—
 - (A) তারের দৈর্ঘ্য এবং ব্যাসার্ঘ দুই-ই অর্থেক করা হর,
 - (B) তারের দৈর্ঘা ও ব্যাসার্য দুই-ই ছিগুণ করা হর,
 - (C) কেবল ব্যাসার্থ হিগুণ করা হর,
 - (D) কেবল দৈর্ঘ্য বিগুণ করা হর।
 - [ii] 200W বালব এবং 100W বালবের ফিলামেন্টের রোধ যথাক্রমে R_1 এবং R_2 । তারা একই ভোস্টেকে কাজ করলে, R_1 এবং R_2 এর অনুপাত হবে
 - (A) 1:2 (B) 2:1 (C) 1:4 (D) 4:1.
- (III) একটি স্টোরেজ বাাট্যারিতে প্রথমে R_1 বহি:রোধ দারা এবং পরে R_2 বহি:রোধ দারা সর্ট সার্কিট করা হল। ব্যাট্যারির অভান্তরীণ রোধ R_0 -এর কি মান হলে, উভয়ক্ষেত্রে বহি:রোধে উত্তৃত তাপ সমান হবে ?
 - (A) $R_0 = R_1 R_2$ (B) $R_0 = R_1 \sqrt{R_2}$ (C) $R_0 = R_2 \sqrt{R_1}$ (D) $R_0 = \sqrt{R_1 R_2}$.
- (iv) দুটি বালব সমান্তরাল সমবায়ে আবন্ধ আছে। বালব $\bf A$ বালব $\bf B$ অপেক্ষা উজ্জ্বনতর আলো দেয়। যদি তাদের ফিলামেন্টের রোধ $\bf R_a$ এবং $\bf R_b$ হয় তবে—
 - $(A) R_A = R_R$ $(B) R_A > R_B$ $(C) R_A < R_C$ (D) কোনটাই না।
 - [v] একটি বৈদ্যুতিক কেটলির দুটি উত্তাপক কুন্তলী আছে। একটিকে সুইচ অন্ করলে কেলটির জল 10 মিনিটে ফুটতে শুরু করে। দিতীয় কুন্তলীকে সুইচ অন্ করলে ঐ জল ফুটতে সময় নের 45 মিনিট। কুন্তলী দুটিকে সমান্তরাল সমবায়ে যুক্ত করে ব্যবহার করলে ঐ একই পরিমাণ জল ফুটতে যে সময় নেবে তা—
 (A) 6 মিনিট (B) 12 মিনিট (C) 18 মিনিট (D) 24 মিনিট।
- [vi] বরফে নিমজ্জিত একটি তার কুন্ডলী দিয়ে 10A প্রবাহ 210V বিভব প্রভেদে পাঠানো হল। প্রতি ঘণ্টায় যে পরিমাণ বরফ গলবে তা—
 - (A) 0.84 kg (B) 8.4 kg (C) 84 kg (D) 2.25 kg.
- [vii] 40W, 60W এবং 100W ক্ষমতার তিনটি বৈদ্যুতিক বাতি 240 volt উৎসের সাথে শ্রেদি সমবায়ে লাগানো আছে, এক্ষেত্রে --
 - (A) 40W বাতির প্রান্তিয় বিভব-প্রভেদ হবে সর্বাধিক,
 - (B) 100W বাতির প্রবাহ মাত্রা হবে সর্বাধিক,
 - (C) 40W বাতির রোধ হবে সর্বাধিক,
 - (D) 60W বাতির প্রবাহমাত্রা 0.1A এর সামান্য কম।
- [viii] 40W, 60W এবং 100W ক্ষমতার তিনটি বৈদ্যুতিক বাতি 220V মেইনস্-এর সাজা শ্রেণিসমবায়ে লাগানো আছে। কোন্ বাতিটি সর্বাপেকা উ**ম্বাল যবে** ?
 - (A) 40W বাতি

(B) 60W বাতি

(C) 100W বাতি (D) সবকটি সমান উজ্জ্বল ছবে।

- [ix] n সংখ্যক কোশ শ্রেণি সমবায়ে আকশ্ব হয়ে তড়িৎপ্রবাহ পাঠাকে। প্রতিটি কোশের তড়িচ্চান্সক বন্দ 1.5V এবং অভন্তেরীণ রোধ 0.25Ω । প্রবাহ একটি 12V, 24W টাংস্টেন ফিলামেন্ট বাভিতে গেলে n এর কি মান হলে বাভিত্যর নির্ধারিত ক্ষমতায় জলবে ?
 - (A) 6 (B) 8 (C) 12 (D) 16.
- [*] একই উপাদান এবং একই প্রস্থাচ্ছেদের দুটি তার একটি তড়িৎবর্তনীতে যুক্ত আছে। তার দুটির ভর m এবং 2m থার দুটির ভিতর দিয়ে 1 প্রবাহ গোলে, কোন নির্দিন্ট সময়ে উদ্ভূত তাপের অনুপাত হবে—

- (A) 2:1 যখন তারা শ্রেপি সমবারে আকখ,
- (B) 2: 1 বর্থন তারা সমান্তরাল সমবারে আক্ষ,
- (C) 1:2 বর্থন তারা সমান্তরাল সমবারে আবন্ধ,
- (D) 1:2 বর্থন তারা শ্রেণি সমবারে আক্ষ।
- [xi] একটি স্থম তারের দুই প্রান্তে সিংর বিভব-প্রভেদ প্রয়োগ করা হল। গ্রারের নৈখ্য এবং রাজার্ধ দুই ও ছিগুল করলে—
 - (A) তারে উত্তত তাপের পরিমাণ দ্বিগুণ হবে,
 - (B) তারের দুই প্রান্তের ভিতর তড়িংক্ষের বিগুণ হবে,
 - (C) উদ্ভত তাপের পরিমানের কোন পরিবর্তন হবে না,
 - (D) তড়িংকের অর্ধেক হবে।
- [xii] আান্টিমনি-বিসমাথ ধাতু যুগুরর ক্ষেত্রে তাপ ভড়িংপ্রবাহ -
 - (A) উশ্ব সংযোগে অ্যান্টিমনি থেকে বিসমাখের দিকে বার,
 - (B) गीठन সংযোগে आाग्ठिमन थ्याक विसमार्थत जिल्ह यास,
 - (C) শীতল সংযোগে বিসমাথ থেকে আাতিমনির দিকে,
 - (D) উন্ধ সংযোগে বিসমাথ থেকে আণ্টিমনির দিকে।

(A.I.E.E.Exam. 2006)

fs 1.16

- [xiii] তোমাকে 50 cm লম্বা একটি তার এবং নগনা রোধের একটি ব্যাটারি দেওয় হল। কিরকন ব্যবস্থা করপে উৎপন্ন তাপ সর্বাপেক্ষা বেশী হবে ?
 - (A) তারকে সরাসরি ব্যাটারির সাথে বুর করলে,
 - (B) তারকে দুভাগে ভাগ করে দুভাগই বাাটারির সাথে সমান্তরালে লাগালে,
 - (C) তারকে চারভাগে ভাগ করে চারভাগই বাটোরির সাথে সমান্তরালে লাগালে,
 - (D) তারের অর্ধেক ব্যাটারির সঞ্চো লাগালে।
- [xiv] 1.16 নং চিত্রে প্রদর্শিত বর্তনীতে কোন প্রবাহের দর্ন 5Ω রোধে উৎপন্ন ভাগ 10 cal/a; 4Ω রোধে ভাগ উৎপন্ন হবে
- (A) 1 cal s1 (B) 2 cal s1 (C) 3 cal s1 (D) 4 cal s1.
 - [xv] জেনারেটরের সঞ্জো লাগালে R, রোধ P ক্ষমতা বায় করে।
 R, এর সঞ্জো R, রোধ শ্রেণি সমবায়ে লাগালে, R, কর্তৃক
 বাায়িত ক্ষমতা—
 - (A) হ্রাস পাবে.
 - (B) বৃশ্বি পারে, ১০ জন ১ ১০ ১০ ১০ ১০ ১০ ১০ ১০
 - (C) একই থাকবে, 🗤 😘 🐪
 - (D) $\mathbf{R}_{_1}$ এবং $\mathbf{R}_{_2}$ এর মানের উপর নির্ভর করে যেকোন একটা হতে পারে।

(A) $-\frac{a}{2b}$ (B) $\frac{2b}{a}$ (C) $\frac{a}{b}$ (D) $\frac{b}{a}$

[xvii] শীঙল সংযোগের তাপমাত্রা 0° C এরপ কোন তাপমুগ্রের ক্ষেত্রে তাপীয় তড়িচ্চালক বল $E=2164t^2-6.2t^2\mu V$ হলে, ওই তাপযুগ্রের নিরপেক ও উৎক্রম তাপমাত্রা হবে—

(A) 174.5°C; 349°C

(B) 349°C; 174.5°C

(C) 349°C; 698°C

(D) 698°C; 349°C.

tan shirt

[xviii] 1kW-250V ব্যতির ফিলামেন্টের রোধ-

(A) 1250

- (B) 62.5Ω
- (C) 0.625Ω
- (D) 0.125Ω.

[xix] একটি d.c. ভোপ্টেঞ্জ সরবরাহ যন্ত্রের অভান্তরীণ রোধ $r\Omega$ । সরবরাহের দুই প্রান্তে একটি রোধ R যৃত্ত করা হল। R রোধে ক্ষমতা সর্বাধিক হবে যখন R-এর মান—

(A) $\frac{1}{r}$ ··· · · (B) \sqrt{r} · · · · (C) r · · · · (D) $\sqrt{2r}$.

[xx] একটি তারের প্রস্থাছেদ 0.5 mm² এবং রোধাজ্ক 2.5×10-7 Ω-m। ওই তার দিয়ে 72W ক্ষমতার একটি হিটার
তৈরি করতে হবে। হিটার 12V-এ কাজ করলে, তারের দৈর্ঘ্য হবে —
(A) 4 cm (B) 40 cm (C) 4m (D) 40m.
[xxi] 220 volt-100 watt একটি বৈদ্যুতিক বাতিকে 110 volt এক কাজ করালে যে ক্ষমতা গ্রহণ করবে তা
(A) 40 watt (B) 25 watt (C) 50 watt (D) 75 watt.
[xxii] যদি কোন ওড়িংবালবে তড়িংপ্রবাহ 0.5% হ্রাস পায় তবে বালবে ক্ষমতা হ্রাস পাবে প্রায়
(A) 0.25% (B) 0.5% (C) 2% (D) 10%. [Jt. Entrance 2006]
[xxiii] কোন একটি রোধক কুগুলীর উপর নির্দিষ্ট বিভব প্রভেদ আরোপ করলে প্রতি সেকেন্ডে W1 তাপের উদ্ভব হয়।
দ্বিতীয় একটি কৃঙলীর ক্ষেত্রে ওই তাপ উদ্ভবের হারের মান W2। কুঙলী দুটিকে সমান্তরালে যুক্ত করলে ওই মান
W এবং শ্রেণি সমবায়ে যুক্ত করলে ওই মান W' হয় যদি সমবায়ের দুপাশে ওই একই বিভব প্রভেদ আরোপ
করা হয়। এক্ষেত্রে
(A) $\frac{W'}{W} = \frac{W_1 + W_2}{\sqrt{W_1 + W_2}}$ (B) $\frac{W'}{W} = \frac{W_1}{W_2} + \frac{W_2}{W_1}$
(A) $\frac{W'}{W} = \frac{\overline{W_1} + \overline{W_2}}{\sqrt{W_1 W_2}}$ (B) $\frac{W'}{W} = \frac{\overline{W_1}}{W_2} + \frac{\overline{W_2}}{W_1}$
(C) $\frac{W'}{W} = \frac{(W_1 + W_2)^2}{W_1 W_2}$ (D) $\frac{W'}{W} = \frac{W_1 W_2}{(W_1 + W_2)^2}$. [Jt. Entrance 2006]
(C) $\frac{W'}{W} = \frac{(W_1 + W_2)^2}{W_1 W_2}$ (D) $\frac{W'}{W} = \frac{W_1 W_2}{(W_1 + W_2)^2}$. [Jt. Entrance 2006]
[xxiv] একটি 220 volt 40 watt ল্যাম্পের রোধের মান কত ?
(A) 1210 Ω (B) 1000 Ω (C) 800 Ω (D) 500 Ω.
[Jt. Entrance 2006]
[xxv] আন্টিমনি এবং বিসমাথ ধাতু দিয়ে একটি তাপযুগা গঠন করা হল। যদি যুগোর এক প্রান্ত উল্ল এবং অপর প্রান্ত
শীতল রাখা হয় তবে, তড়িৎ প্রবাহ
(A) শীতল প্রান্তে অ্যান্টিমনি থেকে বিসমাধে বাবে,
(B) শীতল প্ৰান্তে বিসমাথ থেকে আণ্টিমণিতে বাবে,
(C) युचा मित्रा त्कारना छिन्ने श्रेवाह हरत मो,
(D) উম্ব প্রান্তে আন্তিমনি থেকে বিসমধ্যে যাবে। [A.I.E.E. Entrance Exam. 2006]
[xxvi] একটি বৈদ্যতিক বাতির রেটিং 220 volt-100 watt। 110 volt লাইনে লাগালে বাতি যে ক্ষমতা নেবে তা
(A) 40 watt (B) 25 watt (C) 50 watt (D) 75 watt. [A.I.E.E. Entrance Exam. 2006]
(B) শ্ন্যথান পূরণ করো (Fill up the blanks):
[1] P এবং Q একই উপাদানের দৃটি পরিবাহী। P-এর দৈর্ঘ্য Q-এর দ্বিগুণ কিন্তু তাদের ভর সমান। উভয় পরিবাহীতে
একই বিভব-প্রভেদ প্রয়োগ করা হল। P পরিবাহীতে 1 watt ক্ষমতা ব্যায়িত হলে Q পরিবাহীতে হবে
watt1
[ii] 50W-100V একটি নৈদান্তিক বাতিকে এমন একটি বর্তনীতে লাগানো হল যার সরবরাহ ভোলেউক (supply
voltage) 200 V। বাতিটি 500W ক্ষমতা ব্যয় করতে পারে এরূপ করতে গেলে বাতিব সজে। প্রেণি সমবায়ে যে
রোধ যুক্ত করা দরকার ভা <u> </u>
[iii] একটি 100W এবং একটি 200W বাতি 110V এবং 220V এক কাভ করছে। এদের রোধের অনুপাত হবে
[iv] একটি সুষম পরিবাদী তারে স্থিব ভোশেউভ প্রয়োগ করলে তারে তাপের উদ্ভব হয়। তারের দৈর্ঘা দিগুণ কবলে,
উৎপন্ন গ্রাপ একই থাকরে যদি তারের প্রস্থাক্ষদ করা হয় ।
 একটি বৈদ্যুতিক কেটলিতে দৃটি একই রকম উল্লেপক কৃতলী আছে। একটি কৃতলীর সুইচ অন কবলে কেটলির জল
4 মিনিটে ফুটতে শুরু করে। দুটি কুভলীব সুইচ এক সজো অন করলে সময় লাগে 16 মিনিট। কুভলী দুটি অবশাই
সমবারো আবন্ধ ছিল।
[vi] একটি তাবের প্রতির বিভবপ্রান্তদ V এবং প্রবাহমাত্রা / হলে । সমরে তারে উদ্বত তালের পরিমাণ
H = कारलाहि।
C) জুক্ত কি নির্ভুল বিচার করে। (True or false type questions) :
[1] একটি সংশংশ 100W বর্ণিত্র ,বাধ 60W বর্ণিতর রোধ অনুসক্ষা কম।
[H] বি.৩.টি, একক ক্ষয়তার একক।
[668] ্লাপাক সিংধ গাকলে, সুসম ভাবে উৎপন্ন তাপ তাবেব দৈৰ্ঘোৰ বাজানুপাতে পৰিবৰ্তন হয়।

- [iv] রোধ R-এর দুই প্রান্তে 2.5V তড়িচ্চালক বল এবং 0.5Ω অভ্যন্তরীণ রোধের একটি ব্যাটারি যুক্ত আছে। বর্তনীতে ক্ষমতা ব্যয় সর্বোচ্চ হবে যখন R=0.5W
- [v] সম দৈর্ঘ্যের দৃটি সুষম তার শ্রেণি সমবায়ে যুক্ত আছে। তার দৃটির ভর m এবং 2m। তার দৃটিতে তড়িৎপ্রবাহ গেলে, দিতীয় তারটি বেশী উত্তপ্ত হবে।
- [vi] একটি তাপমূশ্যে যখন সর্বাধিক তাপীয় তড়িচ্চালক বল সৃষ্টি হয় তখন ঐ যুগোর উশ্ব সংযোগের তাপমাত্রাকে উৎক্রম তাপমাত্রা বলে।

⇒ গাণিতিক প্রশা

- 1. 250 volt-এ যুক্ত থেকে 450 watt ক্ষমতা উৎপন্ন করতে পারে এরূপ একটি নাইক্রোম তার তৈরি করতে হবে। নাইক্রোম ফিতার প্রস্থ 1 mm এবং বেধ 0.05 mm হলে, ফিতার প্রয়োজনীয় দৈর্ঘ্য করো। নাইক্রোমের রোধাক্ত = 110 × 10⁻⁶ Ω-cm.
 [Ans. 6.3 m (প্রায়)]
- 2. $10~\Omega$ রোধের ভিতর দিয়ে $1~{
 m mnt}$ ব্যাপী $0.8~{
 m A}$ তড়িৎ প্রবাহ গেলে কী পরিমাণ তাপ উৎপন্ন হরে?

[Ans. 71.4 cal (역대)]

- 3. জুলের বৈদ্যুতিক ক্যালোরিমিটারে 1.5 kg তেল (আ: তা: = 0.6) নেওয়া হল এবং 3 Ω রোধের একটি কুওলী তার ভিতর নিমজ্জিত করে 3A তড়িৎ প্রবাহ উত্ত কুওলীর ভিতর দিয়ে পাঠানো হল। ক্যালোরিমিটারের তেলের তাপমাত্রা 10°C বৃশ্বি করতে কত সময় যাবং উত্ত তড়িৎ প্রবাহ পাঠানো প্রয়োজন ? ক্যালোরিমিটারে জলসম ও বিকিরণজনিত তাপক্ষয় নগণা ধরা যেতে পারে।

 [Ans. 23 mnt 20s]
- 4. 50 Ω-এর একটি তারকুওলীকে 5V তড়িচালক বলের একটি ব্যাটারির সঞ্চো যুক্ত করা হল। মনে করো উদ্ধৃত সব তাপ কুওলীর তাপমাত্রা বৃদ্ধির জন্য ব্যবহার করা হল। কুওলীর তাপগ্রাহিতা 6 J/K হলে 20°C উন্নতা বৃদ্ধির জন্য কত সময় লাগবে? [Ans. 4 mnt]
- 5. $10\,\Omega$ তারের ভিতর দিয়ে 2 minute ব্যাপী 5A প্রবাহ গেল। উৎপন্ন তাপ সম্পূর্ণরূপে $100\,\mathrm{g}$ জলে সরবরাহ করা হল। জলের তাপমাত্রা বৃদ্ধি কত হবে? [Ans. $72^\circ\mathrm{C}$]
- 6. একটি বৈদ্যুতিক হিটার 110 volt সরবরাহ লাইনের সাথে যুক্ত হলে 5 A প্রবাহ নেয়। 1 মিনিট সময়ে ঐ হিটার কত ক্যালোরি তাপ উৎপদ্ম করবে?
 [Ans. 7920 cal]
- 7. সমান্তরালভাবে সংযুক্ত দৃটি তারের প্রান্তে 2 volt তড়িচ্চালক বল এবং 0.4 ohm অভান্তরীণ রোধের একটি কোশ লাগানো হল। তার দৃটির রোধ 3 Ω এবং 7 Ω হলে, তাতে প্রতি সেকেন্ডে উৎপন্ন তাপের অনুপাত নির্ণয় করো।
 [Ans. 7:3]
- 8. একটি প্রতিমিত চুইটন্টোন ব্রীজের চারটি বাছুর রোধ যথাক্রমে 100, 10, 500 এবং 50 Ω । বাহুগুলিতে উৎপন্ন তাপের তুলনা করো। [Ans. 50:5:5:10 1]
- 9. 40 Ω এবং 60 Ω -এর দুটি রোধক শ্রেলি সমবামে আকর্ম এবং ঐ সমবাম 200 volt মেইন্সের সাথে যুব।

1 মিনিট সময় প্রতি রোধকে কত তাপ উৎপন্ন হবে?

(Ans. 1152 cal; 1728 cal)

10. $80~\Omega$ এবং $120~\Omega$ রোধের দৃটি তারকে 100~V সরবরাহ লাইনের সাথে (i) প্রেলি সমবারে এবং (ii) সমান্তরাল সমবারে যুক্ত করা হল। প্রতি ক্লেন্তে তার কর্তৃক গৃহীত ক্লমতা নির্ণয় করো।

[Ans. (i) 20 W, 30 W, (ii) 125 W, 83.3 W]

- 11. 6Ω এবং 9Ω রোধের দৃটি তারকে শ্রেলি সমবায়ে যুক্ত করে 5Ω রোধের আর একটি তারের সঙ্গো সমান্তরাল সমবায়ে আবন্ধ করা হল। এই সমগ্র সময়কে আবার 2Ω রোধের আর একটি তারের সঙ্গো শ্রেণি সমবায়ে যুক্ত করা হল। তাঙ্গিং প্রবাহের ফলে 5Ω তারে প্রতি সেকেন্ডে 21 cal তাপ উৎপন্ন হলে 2Ω তারে গ্রপ উৎপন্নের হার কড $(Ans. 14.93 \text{ cals}^{-1})$
- 12. এক নৈদ্যভিক চৃদ্ধির বার্নার সমান রোধের তিনটি অংশ দ্বারা তৈরি। অংশ ভিনটি সমশুরাল সমবায়ে যুক্ত করলে একটি কেটলিব জল 6 min-এ ফুটতে শুরু করে। যদি অংশগুলি শ্রেলি সমবায়ে য়োগ করা হয় ভাহলে ঐ কেটলিতে সমপ্রিমান জল কভজ্জে ফুটতে সুরু করবে?

 $[\ \, \Rightarrow t \not \Rightarrow \ \, H_1 \simeq \frac{V^2}{r-3}, \ \, H_2 \simeq \frac{V^2}{3r} \quad \, : \ \, \frac{H_1}{H_2} = \frac{9}{1} = \frac{t_2}{t_1} \quad t_2 = 9t_1 = 54 \ \mathrm{min}]$

13. একই উপাদানে পরিত দৃটি সূবম তাবের প্রতোকটির তর 1 g, তাদেব একটিব কৈই অপবটির ছিলে তারা প্রেলি সমবায়ে মৃত্ত এবং 10 A প্রভিত্ত প্রবাহ তাদের ভিতর দিয়ে যাছে। দীর্য এবং প্রবাহ তাবে ছিলে, প্রতোটির মধ্য দিয়ে পাঁও প্রবাহের হার নির্বাহ করে। তাদের মধ্যে কোনটি বেলি উত্তর হবেও তাবের উপাদানের ঘনত ও রোধাকর 11 gcm া এবং 20 × 10⁻⁴ Ω-cm

- [সংক্রেড ঃ $1 = 10 \, m r_1^2 \times 11$ কা, $m r_1^2 = \frac{1}{10 \times 11}$ $\therefore R_1 = 20 \times 10^{-4} \times (10)^2 \times 11 = 2 \cdot 2 \, \mathrm{ohm}.$ ছিন্তীয় ভারের বেলায়, $1 = 20 \, m r_2^2 \times 11 \, \mathrm{or}$, $m r_2^2 = \frac{1}{20 \times 11}$ $\therefore R_2 = 20 \times 10^{-4} \times (20)^2 \times 11 = 8.8 \, \Omega$
- 14. উত্তপ্ত অবস্থায় একটি বৈদ্যুতিক ইন্দ্রির রোধ $80\,\Omega$; তাকে দুই ঘণ্টা বাপৌ $200\,\mathrm{volt}$ লাইনে যুক্ত রাখিলে খরচ কত হবে ? প্রতি ইউনিটের মূল্য $36\,$ পয়সা।
- 15. 220 V 60 W বৈদ্যুতিক বাতিকে 220 V সরবরাহ লাইনের সাথে যুক্ত করে জ্বালানো হল। জ্বলম্ভ অবস্থায় বাতির ফিলামেন্টের রোধ নির্ণয় করো। [Ans. 806.67Ω]
- **16.** 400 watt বৈদ্যুতিক বাতিকে 200 volt সরবরাহ লাইনে যুক্ত করলে বাতি দিয়ে কত প্রবাহ যাবে? তার রোধ কত? বাতি 100 ঘন্টা ব্যবহার করলে নোট খরচ কত হবে? প্রতি ইউনিটের খরচ 25 পয়সা.

[Ans. 2 A; 100 Ω; 10 টাকা]

- 17. তিনটি একই মানের রোধক একটি e.m.f. উৎসের সাথে শ্রেণি সমবায়ে যুক্ত থাকলে 10 W ওয়াট ক্ষমতা গ্রহণ করে। রোধক ভিনটিকে একই উৎসের সাথে সমান্তরাল সমবায়ে যুক্ত করলে, তারা মোট কন্ত ক্ষমতা গ্রহণ করবে?
 [Ans. 90 W]
- 18. $1.5\,
 m V$ তড়িচ্চালক বল এবং $0.1\,
 m \Omega$ রোধের একটি কোশ একটি রোধক ও উপেক্ষণীয় অল্প রোধের অ্যাম্মিটারের সাথে প্রেলি সমবায় যুক্ত করা হলে অ্যামিটারটি $2.0\,
 m A$ স্থির প্রবাহমান্ত্রা দেখার। (i) কোশের ভিতর শক্তি উৎপাদনের হার এবং (ii) রোধকে তাপ উৎপাদনের হার নির্ণয় করো। [Ans. (i) $0.4\,
 m J$ (ii) $2.6\,
 m J$]
- 19. একটি ছোটো বৈদ্যুতিক মোটরের ক্ষমতা $\frac{1}{8}$ HP; এটিকে 220 V সরবরাহ লাইনে যুক্ত করলে লাইন থেকে মোটরটি কত প্রবাহমাত্রা নেবে ? 80 ঘণ্টা ধরে মোটরটি চালালে কত খরচ হবে ? প্রতি B.O.T. ইউনিটের খরচ 70 পয়সা এবং 1 H.P. = 746 W.
- 20. 200 volt সরববাহ লাইনে ব্যবহার করতে হবে এরপ দুটি বাতির একটি 200 watt এবং অন্যটি 100 watt ক্ষমতাযুক্ত বাতি দুটিকে শ্রেণি সমবায়ে 200 volt মেইন্স-এ লাগানো হল। বাতিছয়ের রোধ অপরিবর্তিত ধরে নিলে তারা প্রত্যেকে কত ওয়াট বায় করবে?
 (Ans. 22.2; 44.4)
- 21. একটি 220 volt 100 watt বাতিকে 110 volt বিভবপ্রভেদ যুক্ত করা হল। বাতি কত ওয়াট গ্রহণ করবে নির্ণয় করো।
 [Ans. 25 watt]
- 22. 60 V-120 W একটি বাতি 220 V D.C. লাইনে পূর্গভাবে স্বাস্থাতে পারে স্টেজনা বাতিটির সাথে কোন্ মানের একটি রোধ শ্রেণি সমবায়ে রাখা উচিত? $\{Ans. 80 \Omega\}$
- 23. 500 watt ক্ষমতার একটি উত্তাপক 115 volt লাইনে কাজ করে। লাইন ভোপ্টেজ 110 volt-এ নেমে গের্লে উত্তাপকের আউটপুট ক্ষমতার শতকরা হ্রাস কত হবে? উত্তাপকের রোধ পরিবর্তন করেনি, ধরতে পারো।

[Ans. 8.6%]

24. কোনো বাড়ির মেন-মিটার 10 A 220 V চিহ্নিত আছে। কতগুলি 60 watt বাতি ঐ বাড়িতে নিরাপত্তার সাথে ব্যবহার করা যাবে? [Ans. 36]

সংকেত ঃ মোট সরবরাহ করা ওয়াট = 10×220 \therefore $\frac{10 \times 220}{60}$ = 36]

25. একটি হোস্টেলে 180 জন আবাসিক আছে। প্রতি আবাসিক প্রতিদিন 5 ঘণ্টা 60 W বৈদ্যুতিক বাতি স্কালায়। 30 দিনের মাসে যে পরিমাণ বিদ্যুৎশক্তি লাগবে তার দর্ন বিল কত হবে? প্রতি ইউনিট শক্তির বায় 25 পয়সা।

[Ans. 405 টাকা]

28. একটি বাড়িতে 10টি 40 watt বাতি, 5টি 80 watt পাখা এবং একটি 80 watt চিভি দৈনিক 6 ঘন্টা করে চলে। 30 দিনের মাসে ঐ বাড়ির মাসিক তড়িংশক্তি বায় কত ? বোর্ড অফ ট্রেড (B.OT.) এককে তার মান কত ?

[Ans. 158.4×10³ kWh; 158.4×10³ BOT]

27. একটি সাধ্য কলেকে 60 W বাতি 100টি, 100 W বাতি 80 টি, এবং 100 W পাখা 70টি প্রতিদিন ম্থাক্সে 5 ঘণ্টা, 4 ঘণ্টা এবং 4 ঘণ্টা মাবেং বাবহার করা হয়। প্রতি kWh 0.50 টাকা হলে কলেজকে মাসে (30 দিন) কত কৈন্তিক মলা দিতে হয়।?

🖚 কঠিনতর গাণিতিক প্রশ

- 2. সিসার তৈরি একটি ফিউচ্চ তারের প্রশক্ষেদ $0.2\,\mathrm{mm}^2$ । বর্তনীতে সংক্ষেপে-সংযোগ ishort circuiting) ছবার ফলে ফিউচ্চ দিয়ে $30\,\mathrm{A}$ প্রবাহ গেল। সংক্ষেপ সংযোগ হবার কতক্ষণ পরে ফিউচ্চ গলতে শুরু করবে? সিসার আঃ তাপ = 0.032; গলনাক্ষ $= 327^{\circ}\mathrm{C}$; ঘনত্ব $= 11.34\,\mathrm{g/cm}^3$ এবং রোধাক্ষ $= 22 \times 10^{-6}\,\Omega\,\mathrm{cm}$; তারটির প্রারম্ভিক উপ্লতা $27^{\circ}\mathrm{C}$. [Ans. 0.1a]
- 3. একটি বৈদূতিক স্টোভের রোধ 55 Ω এবং তা 220 volt মেইন্স-এর সজো যুত আছে। ঐ স্টোভ দারা 1 kg জলের তাপমাত্রা 34°C হতে বৃশ্বি করে 100°C করতে কত সময় লাগবে? (Ans. 5 min 12 s (প্রায়))
- 4. $10\,\Omega$ রোধের একটি উত্তাপ—কুন্ডলী 0° C তাপমাত্রায় $40\,g$ ছলে ডুবানো আছে। ঐ জন যে–পাত্রে রাখা আছে সেই পাত্রের জলসম $10\,g$; ঐ কুন্ডলী একটি ব্যাটারির সাথে যুক্ত এবং কুন্ডলীর প্রান্তীয় বিভবপ্রভেদ $25\,V$ । কন্ডক্ষণ পরে জন্ম ফুটতে শুরু করবে? $[J=4.2\ \text{joule cal}^{-1}]$
- 5. 240 volt সরবরাহ লাইনের সাথে একটি বৈদ্যুতিক কেটলি সংযুক্ত করলে 6 মিনিটে কেটলির জল ফ্টতে শুরু করে। সরবরাহ লাইন 210 volt হলে, জল ফুটতে কন্ত সময় লাগবে? [Ans. 7 mnt. 50 s]
- 6. 80 cm দীর্ঘ 0.16 mm²; প্রস্থাজেদের একটি অন্তরিত তারকে 250 g জলে নিমজিত করে 3A প্রবাহ পাঠানো হল। 20 মিনিটে জলের তাপমাত্রা 17°C বৃশ্বি পেলে, তারের রোধাঙক নির্ণয় করো। সমন্ত তাপই জলে যাজে মনে করতে পার।[J = 4.2 joule cal⁻¹]
 [Ans. 3.28 × 10⁻⁵ Ω-cm]
- 7. একটি বৈদ্যুতিক কেটলির রেটিং 220 V, 1 kW; ঐ কেটলির সাহায্যে 1 litre জলকে 80°F হতে স্ফুটনাঙ্কে নিতে ছবে। কেটলীর জলসম 100 g; উজ্বত তাপের 80% জল গ্রহণ করলে, ঐ কাজের জনা কত সময়ের প্রয়োজন ? 1 B.O.T. ইউনিটের খরচা 25 পরসা হলে, উত্ত কাজের জন্য বায় কত হবে?

[Ans. 6 mnt; 44s; 3 paisa (211)]

8. 100 volt সরবরাহ লাইনে পৃথকভাবে যুব্ত করলে দৃটি বাতি যথাক্রমে 60 watt এবং 75 watt ক্ষমতা বায় করে। প্রত্যেকটি বাতির রোধ কত ? এবার বাতি দৃটিকে শ্রেল সমবায়ে 200 volt সরবরাহ লাইনে যুক্ত করলে (a) তারা মোট কত ওয়াট বায় করবে? 60 ঘব্টা বাাপী বাতি দৃটিকে জ্বালালে মোট খরচ পড়বে কত্ত প্রতি ইউনিটের দাম

25 পরসা। [Ans. $166\frac{2}{3}\Omega$; $133\frac{1}{3}$ W; $133\frac{1}{3}$ W; Rs. 2]

9. একটি বৈদ্যুতিক কেটলির দুটি উত্তাপক কুন্ডলী আছে। একটি কুন্ডলীর সুইচ টিপলে কেটলি 6 মিনিটে ফুটতে শুরু করে কিল্প অন্য কুন্ডলীর সুইচ টিপলে স্কুটন আরম্ভ হয় ৪ মিনিটে। কত সময়ে কেটলি ফুটতে শুরু করবে যদি (i) কুন্ডলী দুটিকে শ্রেণি সমবায়ে এবং (ii) সমান্তরাল সমবায়ে রেখে একসাথে উভয় সুইচ টেপা হয়?

[Ans. 14 mnt; 3 3 mnt]

10. একটি হিটার কুঙলী 200 V-এ কাজ করে 100 watt কমতা গ্রহণ করে। কুঙলীকে সমান দুটি ভাগে ভাগ করা হল।
দুটি অংশকে সমান্তরাল সমবায়ে যুক্ত করে আবার 200 V লাইনে যুক্ত করা হল। নতুন সমবায়টি কি পরিমাণ কমতা
বার করবে ?

[Ans. 400 watt]

[সংকেতঃ $H=rac{E^2.t_1}{R_1}$; প্রথম কুন্ডলীর বেলায় $R_1=rac{E^2.t_1}{H}$; অনুরূপভাবে দ্বিতীয় কুণ্ডলীর বেলায়

 $R_2 = rac{E^2 \cdot t_2}{H}$; শ্রেলি সমবায়ের বেলায় মোট রোধ $R = R_1 + R_2 = rac{E^2}{H} \; (t_1 + t_2)$;

 $\text{for } H = \frac{E^2}{R_1 + R_2} \cdot t_s = \frac{E^2 \times H \times t_s}{E^2(t_1 + t_2)} \; ; t_s = t_1 + t_2 = 6 + 8 = 14 \; \text{minute}.$

সমান্তরাল সমবায়ের বেলায় $R_p = rac{R_1 R_2}{R_1 + R_2} = rac{E^2}{rac{H}{H}} rac{t_1 imes E^2 imes t_2}{rac{H}{H} + rac{E^2 imes t_2}{H}} = rac{E^2}{H} \left(rac{t_1 t_2}{t_1 + t_2}
ight)$

 $\text{Width}, \ H = \frac{E^2}{R_p}.\ell_p = \frac{E^2H(t_1+t_2)}{E^2.t_1.t_2}.t_\rho = H\frac{(t_1+t_2)}{\ell_1\ell_2}.t_\rho \ \ \therefore \quad \ell_\rho = \frac{t_1t_2}{\ell_1+\ell_2} = \frac{6\times 8}{6+8} = 3\frac{3}{7} \quad \text{mnt.} \]$

11. একটি ইলেকট্রিক কেলিতে দটি তারের কন্তলী আছে। প্রথম কন্তলিটি মেইলসের সংলা যুক্ত রবলে কেটলির জলা । মিনিটি পরে ফ্রান্ত আবন্ধ করে ও দিতীয় ক্তলীব ক্ষেত্রে ঐ সময় । সেকেন্ড। দটি কন্তলী একট সংজো (1) শ্রেণি সমবায়ে ও (11) সমাধ্রণাল সমবায়ে যুক্ত কবলে কেটলির জল কন্ত সময় পরে ফুটাতে আবন্ধ করে।

Ans. (i)
$$t_1 + t_2$$
 (ii) $\frac{t_1 t_2}{t_1 + t_2}$

- 12. একট 110 volt 550 watt হিটারকে 220 volt মেইন্স-এ ব্যবহার করতে হবে। হিটারের সাথে শ্রেণি সমবায়ে কত রোধ লাগাতে হবে?
- 13. 0.5 A গ্রন্থি প্রবাহী একটি তার বরফ ক্যালোরিমিটারে ডুবানো আছে এবং প্রতি মিনিট 1 g বরফ গলছে। তারটির রোধ ওহুমে নিশ্ম করো। বরফ গলনের লীনতাপ = ৪0 cal g. [Ans. 22.2 \Omega]
- 14. 100 \(\Omega\) রাগরিশন এনটি তারকভলার ভিতর নিয়ে 30 mmute 2A তড়িং প্রবাহ পাটালো হল। উৎপন্ন তাপের পরিমাণ, প্রবাহিত তড়িতাধানের এবং কতকার্মের পরিমাণ নিগম করো।

[Ans. 17.14 \times 10⁴ cal. 3600 coulomb ; 72 \times 10⁴ J]

- 15. 1.1 V এড়িচাপন বল এবং 1 W অভান্তরাণ রোধ সম্পন্ন এর্প ৪টি কোশ থাঁরা 3 W রোধের একটি তারকে উত্তপ্ত করা প্রয়োজন। কোশগুলিকে কাভাবে সংযুক্ত করলে, তারকে যথাসম্ভব দুত উত্তপ্ত করা যাবে? এই অবস্থায় প্রতি মিনিটে কত তাপ উৎপন্ন হবে? J = 4.2 joules cal 1. [Ans. 23 cal; দুটি পংক্তির প্রত্যেকটিতে প্রটি কোশ শ্রেণি সমবায়ে এবং তাদের সাথে অপর দুটি কোশ শ্রেণি সমবায়ে।
- 16. একটি উদ্রাপক যন্ত্রকে 250 volt-এ কান্ত করালে 1000 watt ক্ষমতা বায় করে। ঐ যন্ত্রকে 200 volt সরবরাহ লাইনে লাগিয়ে একই ওয়াট বায় করতে যন্ত্রের উন্তাপক তারের শতকরা কীর্প পরিবর্তন প্রয়োজন ?
- 17. একটি বৈদ্যুতিক বাল্বে 220 V 100 W দাগ কাটা আছে। বাল্বটিতে 150 অথবা তার অধিক ওয়াট দিলে বাল্বটি পুড়ে যায়। বাল্বটি কতটা ভেল্টেজ পরিবর্তন সহ। করতে পারে ?
- 18. একটি বৈদ্যতিক বেদিজগরেটার চালাবার জন্য $120 \, \mathrm{watt}$ মোটর ব্যবহার করা হল। মোটরটি যদি দিনের $\frac{1}{3} \, \, \mathrm{সময়}$ চলে, তবে $30 \, \, \mathrm{fr}$ দেন মাসে মোট কত ব্যয় হবে? বৈদ্যতিক শক্তির মূল্য প্রতি কিলোওয়াটি ঘণ্টাতে $8 \, \, \mathrm{পয় সা}$ ।
- [Ans. 2 টাকা 30 পরসা]

 19. 0.1500 kg/min বেগে একটি নালের মধ্য দিয়ে জল প্রবাহিত হচ্ছে এবং 25.2 W-এর একটি চুলি দ্বারা উত্তপ্ত হচ্ছে।
 অন্তর্প্রবাহী জলের তাপমাত্রা 17.4°C এবং বর্হিপ্রবাহী জলের 19.6°C। জলের প্রবাহবেগ বাড়িয়ে 0.2318 kg/min
 করলে এবং উত্তাপের হার 37.8 W করলে দেখা যায় যে অন্তর্প্রবাহী এবং বর্হিগামী জলের তাপমাত্রা অপরিবর্তিত
 থাকে। (i) জলের আপেক্ষিক তাপ (ii) নল থেকে তাপক্ষয়ের হার বার করো।

 [Ans. (i) 1; 0.5 cal/s]

সংকেতঃ প্রথমবার,
$$25.2 = \frac{150}{60} \times S \times 2.2 + H$$

বিতীয়বার,
$$37.8 = \frac{231.8}{60} \times S \times 2.2 + H$$
]

20. একটি তাপযুগ্মের দুই প্রান্তের তাপমাত্রা 0° C এবং 200° C ; তাপযুগ্মে উৎপন্ন তড়িৎচালক বল নির্ণয় করো। দেওয়া আছে $a=16.3\times 10^{-6}~{
m V/^{\circ}}$ C এবং $b=-0.021\times 10^{-6}~{
m V/^{\circ}}$ C ে $(5.3\times 10^{-6}~{
m V/^{\circ}})$ । সংক্রেড : E=a+b t^2

18. 23.9 \times 10 $^{-4}$ V/°C। একটি তাপযুগোর একটি সংযোগের উয়্মতা t°C হলে উৎপন্ন তড়িচোলক বল মাইক্রোভোট এককে হয় : $E=18.9t-0.0021\,t^3$; তাপযুগোর উৎক্রম তাপমাত্রা এবং নিরপেন্স তাপমাত্রা নির্পন্ন করো।

18. 900°C; 450°C।

	O M.C	🚇. প্রবের উত্তর 🗈		
(A)				
(i) B	(i) D	(MLAD	(xvi) A	4
(iii A	(vii) ACD	(xii) B	(XVII) X	(vvi) (
iii) D	(viii) A	(xiii) ((xviii) B	(vvii) E
is: (GNI C	(xiv) B	(NiX)	(xxiii) C
[3.1 s	(x) R,D	(11) 1	(XX) C	(334) 4
				(xxxi) B

(B) [i] 4 · [ii] 2022 [fii] $\frac{1}{2}$ [iv] 동생 · [v] · [vi] · [vi

2.1. সূচনা (introduction) :

যখন তার দিয়ে বা এরূপ কোন কঠিন পরিবাহীর ভিতর দিয়ে তড়িৎ-প্রবাহ ঘটে তখন পরিবাহী উত্তপ্ত হয়ে পড়ে কিন্তু তার কোনো রাসায়নিক পরিবর্তন দেখা যায় না। যেমন, তামার তার দিয়ে তড়িৎ-প্রবাহ ঘটলে তাপের সৃষ্টি হবে এবং তার উত্তপ্ত হবে। কিন্তু তামার কোনো রাসায়নিক পরিবর্তন ঘটবে না। তরল পরিবাহীর ভিতর দিয়ে তড়িৎ-প্রবাহ গেলে অন্যরকম ঘটনা ঘটে। যেমন কোন ক্ষারক (base), অন্ন (acid) বা লবণ (salt) দ্রবণের ভিতর দিয়ে তড়িৎ-প্রবাহ পাঠালে একটি রাসায়নিক ক্রিয়া ঘটতে দেখা যায়, যার ফলে দ্রাব পদার্থের (solute substance) অণুগুলি বিশ্লিষ্ট হয়ে পড়ে। এই ঘটনাকে তড়িৎ-প্রবাহের রাসায়নিক ক্রিয়া বলা হয়। ধাতু-নিষ্কাশন, তড়িৎ-প্রবেলপন, প্রভৃতি নানাপ্রকার শিল্পকর্মে এই ঘটনার ব্যাপক প্রয়োগ দেখা যায়।

2.2. কয়েকটি প্রয়োজনীয় রাশি (Some Important terms) :

(ii) তড়িদ্বিশ্লেষ্য (Electrolyte): যে তরলের ভিতর দিয়ে পজিটিভ (কাটায়ন) এবং নেগেটিভ আয়নের (আনায়ন) সহায়তায় তড়িৎপ্রবাহ চাল থাকে তাকে তড়িদ্বিশ্লেষ্য বলা হয়। যেমন, তুঁতের দ্রবর্গ (copper sulphate solution), সিলভার নাইট্রেট দ্রবন, ঈষং অপ্লয়ন্ত জল প্রভৃতি ভাল তড়িং-বিশ্লেষ্য। আবার চিনির দ্রবন তড়িদ্বিশেষা নয়। সাধারণভাবে তেল বা বিশৃদ্ধ জল তড়িং-পরিবাহী নয়। পারদ তরল এবং তড়িতের সুপরিবাহী হলেও একে তড়িদ্বিশ্লেষ্য বলে গণ্য করা হয় না কারণ পারদ এবং তরল অবস্থায় অন্যান্য ধাতুর ভিতর দিয়ে তড়িংপ্রবাহ পাঠানোর চেন্টা করলে তরলের মধ্যে আধান বহনকারী আয়নের সৃষ্টি হয় না, এদের মৃত্ত ইলেকট্রনগুলিই আধান পরিবহনে অংশ প্রহণ করে। ক্ষাবক, লবন এবং অন্ধের দ্রবন সাধারণভাবে তড়িদ্বিশ্লেষ্য।

(III) তড়িং বিশ্লেষণ (blectroly VIX) দ্রবণের ভিতর দিয়ে তড়িংপ্রবাহ হলে, দ্রার পদার্থের অনুগুলির বিশ্লেষ্ণের দর্ভ দ্রবণে যে রাসায়নিক ক্রিয়া ঘটে তাকে তড়িদবিশ্লেষণ বলে।

কেবলগার ভারেন্ট এন্ট্রাল পরীক্ষার জন্য।

- (iv) তড়িদ্দার (Electrodes): যে-দৃটি পরিবাহীর সাহায়ো তড়িং-বিশ্লোষার ভিতর তড়িং প্রবাহ প্রবেশ করে এবং তড়িদ্বিশ্লোষা হতে প্রবাহ নিদ্ধান্ত হয় তাদের তড়িদ্ধার বলা হয়। যে তড়িদ্ধারের মাধ্যমে প্রবাহ তড়িদ্বিশ্লোষাে প্রবেশ করে তাকে বলা হয় আানোড (anode) এবং যে-নারের মাধ্যমে নিদ্ধান্ত হয় তাকে বলা হয় ক্যাথোড (cathode)।
- (v) তড়িদ্বিশ্লেষক কোশ (Electrolytic cell): যে পাত্রে ভড়িৎ-বিশ্লেষা, ভড়িদ্ধার প্রভৃতি রেথে তড়িদবিশ্লেষণ করা হয় তাকে ভড়িদবিশ্লেষক কোশ বলা হয়।

তড়িদ্বিশ্লেষক কোশ এবং তড়িৎকোশ এক জিনিস না, একথা মনে রাখা প্রয়োজন। তড়িদ্বিশ্লেষক কোশে তড়িৎশক্তি রাসায়নিক শক্তিতে রুপান্তরিত হয় কিন্তু তড়িৎ কোশে — রাসায়নিক শক্তি তড়িৎ শক্তিতে রুপান্তরিত হয়।

্রন্থ তড়িদ্বিশ্লেষক কোশকে ইংরাজিতে 'ভোল্টাফিটরে' (voltameter) এই নামে অভিহিত করা হয়। এই সম্পর্কে ভোল্টমিটারের (voltmeter) সাথে এর পার্থক্য লক্ষণীয়।

তড়িদ্বিশ্লেষণের কয়েকটি উদাহরণ (Some illustrations of electrolysis) :

(i) **তুঁতের দ্রবণের তড়িদ্বিশ্লেষণ** (Electrolysis of copper sulphate solution) : একটি কাচের পাত্রে খানিকটা তুঁতের দ্রবণ নাও এবং ভাতে কয়েক ফোঁটা সালফিউরিক আসিড মিশাও। দ্রবণের ভিতর

দুটি তামার পাত ডুবিয়ে পাত দৃটির সাথে একটি তড়িৎ কোশ যুক্ত কর। C-পাত ডোবাবার পূর্বে তাকে পরিষ্কার করে ওজন নাও। এইবার কিছুক্ষণ যাবৎ তড়িৎ কোশ থেকে দ্রবণের ভিতর তড়িৎ প্রবাহ পাঠাও। এখানে Aপাত আনোড এবং C-পাত ক্যাথোড (2.1 নং চিত্র)। কিছুক্ষণ পরে, C-পাত তুলে শুষ্ক কর ও ওজন নাও। দেখবে তার ওজন বৃদ্ধি পোয়েছে।

এক্ষেত্রে তুঁতের দ্রবণের প্রতি অণু Cu⁺⁺ এবং SO
আয়নে বিশ্লিষ্ট হয়। (CuSO₄←→Cu⁺⁺ + SO₄) ্প্লাচ দৃটির ভিতরকার তড়িৎক্ষেত্র দারা চালিত হয়ে Cu⁺⁺ আয়ন ক্যাথোডের দিকে অগ্রসর হয় এবং তামার অণুরূপে এ পাতে জমা হয়। SO₄ আয়ন আন্নোডের দিকে অগ্রসর হয়ে

আানোড পাতের Cu অণুর সাথে বিক্রিয়া করে CuSO অণু সৃষ্টি করে এবং ঐ অণু দ্রবণে দ্রবীভূত হয়ে দ্রবণের ঘনত্ব ঠিক রাখে (Cu⁺⁺ + SO₄ = CuSO₄), সুতরাং মোট ফল এই য়ে, আানোড হতে তামা ক্যাথোডে জন্ম হয়। ফলে আানোডের ওজন কমে এবং ক্যাথোডের ওজন বৃদ্ধি পায় কিন্তু দ্রবণের ঘনত্বের কোলো পরিবর্তন হয় ন।

যদি তড়িদ্ধার দৃটি তামার পরিবর্তে অন্য কোন নিজিয় ধাত্র তৈরি হয় তবে ক্যাথোড়ে পূর্বের মত তামার অণু জন্মা হবে কিন্তু SO, অদ্বান জলের H, অগ্র সংযোগে H,SO, আসিড তৈরি করবে এবং O, গ্যাস বিমুক্ত করবে। এক্ষেত্রে ঘন্ডর কালে কান্দ্র যাবে তড়িং-বিশ্লেষণ চালালে, ক্রমশ করে হবে (শ্রম কর্ত্রে সালাফ্ট্রির আসিড পড়ে থাকরে। তারপরেও জনশ হতে CuSO, অপসাবিত হবে এবং শ্রেষ ক্রান্ত বিশ্লেষণ হত্ত, ক্যাথোড়ে হাইড্রাজন এবং আল্লোড় তড়িং প্রবাহ চালালে, ম সিত্রুক্ত সালের তড়িং বিশ্লেষণ হত্ত, ক্যাথোড়ে হাইড্রোজন এবং আল্লোড় অজিজেন মৃত্ত হবে।

অন্রপভাবে রপার তভিদ্ধারের সাধারে। সিলাভার শাইটেট প্রবাশের তভিদ্বিশ্লেষণ করলে, আন্রোড থেকে রুপা ক্যাথোড়ে জমা হবে। (ii) **জলের ত**ড়িদ্বি**শ্লেষণ** (Electrolysis of water) : শেলের তভি্দ্বিশ্লেষণ দেখাবার জন্য অধ্যাপক

হক্ষমান একটি স্বিধাজনক যন্ত্র নির্মাণ করেন। এই যার মার এর বার নাগ দাগ কাটা স্নাচকলসহ দটি কাঁচ-নল নেওয়া হয় এবং ওপের ভিতর প্লাটিনাম নির্মিত নৃটি ওড়িদ্বার প্রবেশ করানো থাকে। চিত্র নং 22)। নল দৃটিকে যুক্ত করে নীচের দিকে আর একটি অনভ্যমিক নল থাকে। ঐ অনভূমিক নলের সাথে আবার আর একটি উল্লম্ব নল এবং ঐ নলের মাথায় একটি জলাধার যুক্ত আছে।

প্রথমে পাঁচিকল দৃটি খুলে জলাধারে আসিভযুক্ত জল ঢালতে হরে, যতক্ষণ না দাগ কাটা নল দৃটি জলপূর্ণ হয় তারপর পাঁচিকল কথ করে বাটোরির সাহায়ে। তড়িৎ প্রবাহ পাঠাতে হরে। উভয় তড়িদ্ধার হতে বুদ্বুদ্ উঠতে থাকরে এবং দাগকাটা নল হতে জল ধীরে ধীরে নেমে আসবে। যখন দুই নলে যথেষ্ট পরিমাণ গ্যাস জমা হরে তখন তড়িৎ প্রবাহ কথ করে দিতে এবে।

দেখা যাবে একটি নলে অপরটি অপেক্ষা প্রায় দ্বিগুণ হায়তনের গ্যাস জমা হয়েছে। রাসায়নিক পরীক্ষায় প্রমাণিত হবে যে কম আয়তনের গ্যাসটি অক্সিজেন এবং দ্বিগুণ আয়তনের গ্যাসটি গইড়োক্তেন।

এক্ষেত্রে জলের প্রতি অণু তড়িং-বিশ্লেষ্ণণের ফলে গ্রাইড়োজেন এবং অক্সিজেন পরমাণুতে বিশ্লিষ্ট হয় এবং তারা পরে গ্যাস আকারে নলে জমা হয়। হাইড়োজেন আয়ন পজিটিভ বলে ক্যাথোড়ে এবং অক্সিজেন আয়ন নেগেটিভ বলে অ্যানোড়ে জমা হয়। অ্যাসিড অপরিবর্তিত থাকে।

$$H_2 \rightarrow (H^+ + H^+) + O$$
(i)

জালের তড়িদ্বিশ্লেষণ থেকে আমরা একথাও জানতে পারি, আয়ন্তন হিসাবে একভাগ অক্সিজেন ও দুইভাগ হাইড়োজেন গামের সংমিশ্রণে জল তৈরি হয়

প্রশ্ন উঠাতে পারে যে, জলের তড়িদ্বিশ্লেষণে যদি শুধু জালের ঘণু বিশ্লিষ্ট হয় এবং অ্যাসিড
অপরিবর্তিত থাকে তবে জালে আাসিড মিশ্রিত করার প্রয়োজন কি १

সালফিউরিক আসি৬যুক্ত জলে ৩ড়িৎ প্রবাহ পাঠালে অ্যাসিডের প্রতিটি গ্রণু বিয়োজিত হয়ে **হাইড্রোজেন** এবং সালফেট আয়নে পরিণত হয়।

$$H_2SO_4 \iff 2H^+ + SO_4^{--}$$

পজিটিভ তড়িংযুক্ত H⁺ আয়নগুলি ক্যাথোড়ে পৌড়ে ক্যাথোড় পাত থেকে ইলেকট্রন সংগ্রহ করে এবং নিস্তড়িৎ হাইড়োজেন পরমাণ গঠন করে। দুটি হাইড়োজেন পরমাণু সংযুক্ত হয়ে হাইড়োজেন অণু গঠিত হয় এবং ক্যাথোড পাত থেকে গ্যাসের আকারে নির্গত হয়।

নেগেটিভ তড়িংয়স্ত (SO₄) আয়নগুলি আনোড়ে পৌছে তাদের অতিরিক্ত ইলেকট্রন আনোড পাতে বর্জন করে এবং নিস্তড়িং সালফেট (SO₄) মূলকে পর্যবসিত হয়। মূলকের স্বাধীন অস্তিত্ব থাকে না বলে, এরা নিস্তড়িং হবার সঞ্জো সজো জলের সাথে বিক্রিয়া করে সালফিউরিক আ্যাসিড ও অক্সিজেন উৎপন্ন করে। এই কারণে আনোড থেকে অক্সিজেন নির্গত হতে দেখা যায়।

$$SO_4 + H_2O = H_2SO_4 + O \uparrow$$

দেখা গেল যে সালফিউরিক আাসিড প্নরায় সৃষ্টি হয় তাই সম্পূর্ণ বিক্রিয়াকে (i) নং সমীকরণ দারা বুঝানো হয়। স্তরাং সালফিউরিক আাসিডের কাজ শৃং (i) দ্রবণে আয়নের ঘনত্ব বৃদ্ধি করা এবং (ii) একটি নির্দিষ্ট বিভবপ্রভেদে বিশৃষ্ধ জল অপেক্ষা আসিড মিশ্রিভ জলে অধিকতর সুবিধার সজো ভড়িৎ প্রবাহ চালনা করা। অধিকতর প্রবাহ অধিকতর হারে H⁺ এবং OH আয়নে বিশ্লিষ্ট হয়। এতে ওড়িং-বিশ্লেষণ প্রক্রিয়া মসুণভাবে সম্পাদিত হয়।

D Example C

জলের বিয়োজনে তড়িৎ কোশের তড়িচ্চালক বলের সর্বানন্ন মান কত হওয়া উচিত নির্ণয় কর। জল গঠনে 1g হাইড্যোজেনের সংযোগে তাপ উৎপাদনের পরিমাণ 3400 calorie! হাইড্যোজেনের তড়িৎ-রাসায়নিক তুল্যাজ্য 0.0000104 g/coulomb..l = 4.2 joule/cal.

উঃ । মু জল বিয়োজনে মে-ভোপশন্তির উদ্ধব হয় তা তড়িন্বিপ্লেসপোৰ মাধ্যমে তড়িংশতি , থাকে উদ্ধৃত। ।হয়ে , এখন উদ্ধৃত ভোপশক্তি -- ১4৮/৮ cal = 3400 x 4.2 joule

1 g জল বিয়েজনে যদি / coulomb ওড়িগুধানের প্রয়েজিন ২য় এবং ওজিং উৎসেব বিভর পার্থকা যদি V volt হয়, ও হলে কৃতকার্য = q V joule

এখন হাই/,৮৭:জনের ৩ড়িৎ-রাসায়নিক তুল্যাঞ্চ Z_H = 0.000010H p/C , ১:১১৮ ৯/জ/,জনের ১ড়িৎ

–রাসায়নিক ডুল্যাঙ্ক
$$Z_{oxy} = (C.E)_{oxy} \times Z_H = \frac{16}{2} \times 0.00000104 = 0.0000832 g/C$$

ম্পাষ্টত, I coulomb আপান (0,0000104+0 0000832) = 0,0000936 g জনকৈ বিয়োজন করবে।

জতএব, 1 g জল বিয়োজনের জন্য প্রয়োজনীয় তড়িতাধান $q=rac{1}{936} imes 10^7 {
m C}$

অথবা,
$$\frac{10^7}{936} \times V = 3400 \times 4.2$$

$$v = V = \frac{3400 \times 4.2 \times 936}{10} \text{ volt}$$

= 1.34 volt (2331) !

অতএব, 1 g জল বিয়েজনের জন তড়িচ্চালক বলের সর্বনিম্ন মান = 1.34 volt.

কঠিন এবং তালের ভিতর দিয়ে তড়িৎ পরিবহন (Conduction of electricity through solids and liquids

ধাতুর ন্যায় কঠিন পদার্থ এবং তড়িৎ-বিশ্লেষ্যের মতো তরল পদার্থ — উভয়েই তড়িৎ পরিবাহী। কিন্তু এদের ভিতর দিয়ে তড়িৎ পরিবহন প্রণালী এক নয়, পার্থক্যগুলি নিম্নরূপঃ

- (i) ধাতব পদার্থের তড়িৎ পরিবাহিতা তড়িদ্বিশ্লেষ্যের পরিবাহিতার তুলনায় অনেক বেশি।
- (ii) ধাতব পদার্থে নেগেটিভ তড়িৎযুক্ত ইলেকট্রনের অনুপ্রবাহের (drift) দারা তড়িৎ পরিবাহিত হয় কিছু তরল পদার্থে পরিটিভ ও নেগেটিভ তড়িৎযুক্ত দৃষ্ট প্রকার আয়নের বিপরতীমুখী গতির দারা তড়িৎ পরিবাহিত হয়।
- (iii) ধাতব পদার্থে তড়িৎ প্রবাহ হলে, ্যানাত্র আধানের পরিবহন (transport) হয় কিন্তু তরল পদার্থে আধানযুক্ত পদার্থের পরিবহন হয়।
- (iv) ধাতব পদার্থে গ্রড়িৎ প্রবাহ ঘটলে, বেন রাসায়নিক ক্রিয়া হয় না কিন্তু গ্রড়িদ্বিশ্লেষ্যের ভিতর দিয়ে তড়িৎ প্রবাহ হলে গ্রড়িদ্ধারে অথবা তড়িদ্ধারের নিকটবর্তী অশ্বলে রাসায়নিক ক্রিয়া হয়।
 - (১) তাপমাত্রা বৃন্ধিতে ধাতব বস্তুর পরিবহন ক্ষমতা হ্রাস পায় কিন্তু ওড়িদ্বিশ্লেষোর ক্ষমতা বৃদ্ধি পায়।

তড়িদবিশ্লেষণ সম্পর্কিত ফ্যারাডের সূত্রাবলি (Faraday's laws of electrolysis):

1833 খ্রিস্টাব্দে ফারাড়ে গ্রভিদ্বিশ্লেষণ সম্পর্কিত করেকটি পরিমাণমূলক (quantitative) পরীক্ষা করেন এবং পরীক্ষার ফলফল থেকে বৃটি সূত্রের প্রতিষ্ঠা করেন। এদের গ্রভিদ্বিশ্লেষণ সম্পর্কিত ফ্যারাডের সূত্রাবলি বলা হয়।

প্রথম সূত্র: তড়িদ্বিশ্লেষ্যের ভিতর দিয়ে তড়িং প্রবাহ পাঠালে যে কোনো তড়িদ্দারে মৃত্ত আয়নের ভর প্রবাহিত তড়িতের পরিমাণের সমানুপাতিক।

(The mass of an ion liberated at any electrode is proportional to the quantity of electricity that flows through the electrolyte.)

বিতীয় সূত্রঃ সমপরিমাণ তড়িৎ বিভিন্ন তড়িদ্বিশ্লেষ্যের ভিতর দিয়ে প্রবাহিত হলে, বিভিন্ন তড়িদ্দারে মুক্ত আয়নের ভর তাদের রাসায়নিক তুল্যাঞ্চের সমানুপাতিক হয়।

(When same quantity of electricity passes through different electrolytes, the masses of ions liberated at different electrodes are proportional to their chemical equivalents.)

প্রথম সূত্রের আলোচনা ঃ ধরো, কোনো তড়িশ্বিশ্লেয়ের ভিতর দিয়ে I তড়িৎ প্রবাহ I-সময় ধরে চলার ফলে W পরিমাণ আয়ন মুক্ত ২ল। একেত্রে, প্রবাহিত তড়িতের পরিমাণ, $Q = I \times I$ । সূতরাং প্রথম সূত্র হতে আমরা লিখতে পারি.

$W \propto Q \propto l \times t$ বা $W = Z.l.t. [Z = \xi]$ বক]

যদি, I=1 আম্পিয়ার এবং t=1 সেকেন্ড হয়, তবে W=Z অর্থাৎ তড়িৎ-বিশ্লেষ্যের ভিতর দিয়ে 1 আম্পিয়ার প্রবাহমাত্রা 1 সেকেন্ড ব্যাপী চললে যত ভরের আয়ন মৃত্ত হবে তাই ধ্রবক Z-এর সমান। এই ধ্রবককে বলা হয় তড়িৎ-রাসায়নিক তুল্যাম্ক (electro-chemical equivalent সংক্ষেপে, E.C.E.)।

সংজ্ঞা ঃ কোনো পদার্থের ভড়িৎ-রাসায়নিক তুলাণ্ডকর সংজ্ঞাস্বরূপ বলা যেতে পারে যে ওই পদার্থের কোনো লবণের দ্রবণের ভিতর দিয়ে । কৃলস্ব তড়িৎ অর্থাৎ । আম্পিয়ার প্রবাহ মাত্রা । সেকেন্ড বাপী প্রবাহিত হলে যত গ্রাম ঐ পদার্থ মৃক্ত হবে তাই ঐ পদার্থের তড়িৎ-রাসায়নিক তুলাঙ্ক।

যেমন, রুপার ৩ড়িং রাসায়নিক তুল্যাঙ্ক 1.118×10 3 ু/C বলতে আমরা বুঝি যে রৌপঘটিত কোনো লবণের ভিতর দিয়ে। কুলম্ব ৩ড়িং পাঠালে 1.118×10 3 ু রুপা মৃক্ত হবে।

এস্. আই. পর্ণ্ধতিতে গ্রড়ং-রাসায়নিক তুলাক্ষের সংজ্ঞা নিয়নুপ ঃ

কোনো পদার্থের লবণের দ্রবণের ভিতর দিয়ে 1 কুলস্ব তড়িতাধান পাঠালে, যত কিলোগ্রাম ব্রী পদার্থ মুক্ত হবে তাই ঐ পদার্থের তড়িৎ-রাসায়নিক তুল্যাম্ক। এর একক কিলোগ্রাম প্রতি কুলম্ব (kg/C)। এস্. আই. পার্ধতিতে রুপার তড়িৎ-রাসায়নিক তুল্যাম্ক = 1.118 × 10 % kg/C.

আবার, তড়িতাধানকে emu এককে (C.G.S. পর্ন্ধাত) প্রকলে করলে, রূপার র্ডাড়ৎ-রাসায়নিক কুল্যাঙ্ক দাঁড়াবে 1.118×10^{-2} g/emu । [1 emu তড়িতাধান = 10 কুলস্ব।

দ্বিতীর সূত্রের আলোচনাঃ

সংআ ঃ কোনো মৌলের রাসায়নিক তৃত্যাক্ত (chemical equivalent সংক্ষেপে, C.E.) বলতে এ মৌলের আপেক্ষিক পারমার্থাবক ভর ও য়োজাতার (valency) অনুপতি বুঝায়।

রুপার আপেক্ষিক পারমাণবিক ভর 10৪ এবং য়োজাতা । ; অতএব, রুপার রাসায়নিক ভুলাজ্ঞ 108। অক্সিজেন, তামা, দস্তা ও সোডিয়ামের আপেক্ষিক পারমার্ণবিক ভর যথাক্রমে 16,635,65 ২7 এবং 23 এবং তাদের যোজ্যতা যথাক্রমে 2.2.2 এবং 1. অতএব, তাদের রাসায়নিক তুল্যাঞ্চর যথাক্রমে ৪.31.75, 32.68 এবং 23।

এখন, মনে কর, আমরা জল, ওঁতের দ্রবণ এবং সিলভার নাইট্রেট দ্রবণ নিয়ে তাদের ভিতর দিয়ে সমপরিমাণ তড়িৎ পাঠালাম। তড়িৎ-বিশ্লেষণের ফলে, বিভিন্ন ক্যাথোড়ে যথাক্রমে গাইভ্রোজন, তামা এবং রুপা মুক্ত হবে। দ্বিতীয় সূত্র হতে আমরা পাই যে, । g হাইড়োজেন মুক্ত হলে, তামা মৃক্ত হরে, 63.5 g:

এবং রূপা মুক্ত হবে 108 g; কারণ 1. $\frac{63.5}{2}$ এবং 108 ষথাক্রমে হাইড়োজেন, তামা ও রূপার রাসায়নিক

। দ্রঃ তড়িৎ-রাসায়নিক তুল্যাঙ্ক এবং রাসায়নিক তুল্যাঙ্কের পার্থক্য মনে রাখা প্রয়োজন।

মৌলের তড়িৎ-রাসায়নিক তুল্যাষ্ক এবং রাসায়নিক তুল্যান্দের ভিতর সম্পর্ক (Relation between E.C.E. and C.E. of an element):

ধরো, আমরা একটি তাম্র-ভোষ্টামিটার এবং একটি জল ভোষ্টামিটার নিয়ে তাদের প্রত্যেকের ভিতর l coulomb তড়িতাধান পাঠালাম। ফ্যারডের প্রথম সূত্র হতে পাই, $W_1=Z_1$: এবং $W_2=Z_2$ এম্থলে, W_1 এবং W_2 যথাক্রমে মুক্ত তামা এবং হাইড়োজেনের ভর এবং Z_1 ও Z_2 যথাক্রমে তাদের তড়িৎ-

রাসায়নিক তুল্যাঞ্জ।
$$\therefore \frac{W_1}{W_2} = \frac{Z_1}{Z_2}$$
(i)

তাম ভোল্টামিটারের ক্যাথোড়ে তামা এবং জল ভোল্টামিটারকে ক্যাথোড়ে হাইড়োজেন জমা হবে।

আবার, ফাারাডের দিতীয় সূত্র হতে পাই,
$$\frac{W_1}{W_2} = \frac{C_1}{C_2}$$
 (ii)

 C_1 এবং C_2 হল যথাক্রমে তামা এবং হাইড়োজেনের রাসায়নিক তুল্যাঙ্ক।

অতএব,
$$\frac{Z_1}{Z_2} = \frac{C_1}{C_2}$$
(iii) অথবা, $Z_1 = \frac{C_1}{C_2} \times Z_2 = C_1 \times Z_2$

[∴ হাইড়োজেনের রাসায়নিক তুলাঙ্ক C₂ = 1]

সূতরাং ডামার তড়িৎ-রাসায়নিক তুলাঙ্ক = তামার রাসায়নিক তুলাঙ্ক × হাইড়োজেনের তড়িৎ-রাসায়নিক তুল্যাঞ্চ। এই সম্পর্ক যেকোন মৌলের বেলায় প্রযুক্ত হবে।

সাধারণভাবে বলা যায়, কোন মৌলের তড়িং রাসায়নিক তুল্যাখ্ক = ঐ মৌলের রাসায়নিক তুল্যাষ্ক × হাইড়োজেনের তড়িৎ রাসায়নিক তুল্যাষ্ক।

(iii) নং সমীকরণ হতে একথাও বলা যায় যে দুটি মৌলের তড়িং-রাসায়নিক তুল্যাঞ্চের অনুপাত মৌল দটির রাসায়নিক তুল্যান্কের অনুপাতের সমান।

এই সম্পর্ক হতে কোন একটি বিশেষ মৌলের তড়িৎ-রাসায়নিক তুলা।ধ্ক জানা থাকলে, অপর কোন মৌলের তড়িৎ-রাসায়নিক ওল্যাঞ্চ নির্ণয় করা যায় বিশেষ মৌল হিসাবে রূপাকে নেওয়া হয়। নিম্নলিখিত উদাহরণ লক্ষ কর।

☐ EXAMPLES ☐

বুপার আপেক্ষিক পারমাণবিক ভর = 108 এবং তড়িৎ-রাসায়নিক তুল্যাখ্ক = 1.118
 mg/ে নিকেলের আপেক্ষিক পারমাণবিক ভর = 59; নিকেলের যোজ্যতা 2.নিকেলের তড়িৎ
 -রাসায়নিক তুল্যাখ্ক নির্ণয় করো।

উঃ। আমরা লিখাতে পর্ণর,
$$\frac{Z_{A_R}}{Z_{A_I}} - \frac{(C.E)_{A_R}}{(C.E)_{A_R}}$$
 রাসায়নিক ভুল্যাঙ্ক = $\frac{\sin 2\pi}{2}$ পার্মাণবিক ভর

$$(C.E)_{\text{Ag}} = \frac{108}{1} = 108$$
 , SMATA, $(C.E)_{\text{NI}} = \frac{59}{2}$.

অতএব,
$$\frac{1.118}{Z_{\text{Ni}}} = \frac{108 \times 2}{59}$$
 অথবা $Z_{\text{Ni}} = \frac{1.118 \times 59}{108 \times 2} = 0.305 \text{ mg/C}.$

2. 1 A প্রবাহমাত্রা কপাার সালফেট দ্রবণ হতে 33 মিনিটে 0.65 g তামা মুক্ত করে।
তামার পারমাণবিক ওজন 63 এবং যোজ্যতা 2; হাইড্রোজেনের তড়িৎ-রাসায়নিক তুল্যাঙ্ক নির্ণয় করো।

উঃ। তড়িদবিশ্লেষণের ক্ষেত্রে আমরা জানি, W = Zit

কপারের বেলায় W = 0.65g; i = 1A; $t = 33 \text{ mmt} = 33 \times 60 \text{ s}$

চাতএব, 0.65 = Z_{cu} × 1 × 33 × 60

$$\therefore Z_{cu} = \frac{0.65}{33 \times 60} = 3.28 \times 10^{-4} \text{ g/C}$$

খোবার, কপারের রাসায়নিক তুল্যাঙ্ক
$$(C.E)_{c_{u}}=\frac{\text{তামার পারমাণবিক ওজন}}{\text{যোজাতা}}=\frac{63}{2}=31.5$$

আবার, $Z_{\rm en}$ = $(C.E)_{\rm cn} \times Z_{\rm H} = [Z_{\rm H}$ হাইছোজেনের তড়িৎ – রাসায়নিক তুলনাকা তথাবা, 3.28×10^{-4} = $31.5 \times Z_{\rm H}$

$$\therefore Z_{H} = \frac{3.28 \times 10^{-4}}{31.5} = 1.03 \times 10^{-5} \text{ g/C}.$$

মৌল	E.C.E. (g/C এককে)	ECE (kg/C এককে) (S.L.)	ECF (g/emu এককে)
হৈড়োজেন	1.04 × 10 ⁻⁵	1.04 × 10 ⁻⁸	1.04×10 ⁻⁴
ग	3.29 × 10 ⁻⁴	° 3.29 × 10 ^{−7} ··	3.29×10^{-2}
1	1.118×10 ⁻³	1.118×10 ⁻⁶	1.118×10 ⁻²
	3.387 × 10 ⁻⁴	3.387 × 10 ⁻⁷	3.387×10^{-3}
ब्राट्टा	8.29 × 10 ⁻⁵	8.29×10 ⁻⁸	3.29×10^{-4}

27

ফ্যারাডের সূত্রাবলির পরীক্ষামূলক প্রমাণ (Experimental verification of Faraday's laws) :

প্রথম সূত্র: একটি তাম-ভোল্টামিটার নাও এবং তাকে একটি বিওনটো, আমমিটার, একটি প্রাণ

চাবি ও একটি তড়িৎ কোশের ব্যাটারির সাথে প্রেণি সমবায়ে যুক্ত কর (2.3 নং চিক্র)। ব্যাটারি থেকে তড়িৎ প্রবাহ নেবার আগে তাম্র ভোল্টামিটার হতে ক্যাথোড পাত (K) তৃলে নিয়ে পরিষ্কার কর ও শুষ্ক অবস্থায় তার ওজন নির্ণয় কর। রিওস্ট্যাটের মান এরুপভাবে নিয়ন্ত্রিত কর যাতে ক্যাথোড পাতের প্রতি 50 cm² ক্ষেত্রফল এক আদিপরার প্রবাহমাত্রা যায়। এবার ক্যাথোড পাত যথাস্থানে রেখে ভোল্টামিটার দিয়ে তড়িৎ প্রবাহ পাঠাও। ধর, I_1 আ্যাম্পিয়ার প্রবাহমাত্রা I_1 সেকেন্ড ধরে চালানো হল। অ্যামমিটার হতে এই প্রবাহমাত্রা ও স্টপঘড়ি হতে সময় নির্ণয় করতে হবে। অভঃপর পাতকে

তুলে পরিষ্কার জলে ধুয়ে ফেল এবং শৃষ্ক করে পুনরায় ওজন নাও এই দুই ওজন থেকে মুক্ত তামার ওর পাওয়া যাবে। ধর, এটা W_1 গ্রাম : পুনরায় পাতকে যথাস্থানে রেখে পর্বের প্রবংশতা ভিন্ন সময় r_2 সেকেন্ড ব্যাপী পাঠাও। পূর্বের ন্যায় মুক্ত তামার ভর নির্ণয় কর। ধর, এই ওজন W_2 গ্রাম:

দেখা যাবে,
$$\frac{W_1}{W_2}=\frac{I_1\times t_1}{I_1\times t_2}=\frac{Q_1}{Q_2}$$
 অর্থাৎ, $W\propto Q$.

বিতীয় সূত্র: এবার তিনটি ভোল্টামিটার—রৌপা, তাম ও জল ভোল্টামিটার—বাটারি, আর্মানটার,

রি ওস্টাটি ও
চাবির সাথেশ্রেপি
সমবায়ে যুক্ত কর
(2.4 নং চিত্র)।
জল ভোল্টামিটারে সালফিউরিক আসিড
মিশ্রিত জল
নেওয়া হয়।শ্রেপি
সমবায়ে যুক্ত
হওয়ায়, প্রত্যেক

ভোল্টামিটার দিয়ে একই তড়িৎ প্রবাহ চালু থাকরে। এখন, একটি নির্দিষ্ট সময় ব্যাপী ব্যাটারিথেকে তড়িৎ প্রবাহ পাঠাও। এক্ষেত্রে রৌপা ও তাম্র ভোল্টামিটারগুলির ক্যাথোড়ে বুলা এবং তামা ও জল ভোল্টামিটারের অ্যানোড়ে অক্সিডেন জমা হবে। পূর্বের মত মুক্ত রুপা ও তামার ভর নির্ণয় কর এবং অক্সিজেনের বেলাতে, প্রমাণ ভাপমাত্রা ও চাপে গ্যাসের আয়তন নির্ণয় করে তার ভর তিসাব করে। যাদ মুক্ত রুপা, তামা ও অক্সিজেনের ভর যথাক্রমে W_1, W_2, W_3 গ্রাম হয় এবং তাদের রাসাম্নিক ভুল্পাকের

মান যথাক্তে C_1,C_2,C_3 হা তবে, উদ্ভ পরীক্ষার ফলে দেখা যাবে

 $W_1 \cdot W_2 : W_3 = C_1 \cdot C_2 : C_3 :$ এটা দ্বিতীয় সূত্র।

TO ESCHIPTION OF

া g দঙা মৃত্ত করতে জিম্ক সালফেট দ্রবণের ভিতর দিয়ে 25A প্রবাহ কভক্ষণের জন্য পাঠাতে হবে ? দস্তার তড়িৎ রাসায়নিক তুল্যাম্ক = 0.0003387 g/C.

3° + W $ZII \in \mathbb{Z}[F]$, W + lg; Z=0.0003387 g/C, I=2.5A ∴ 1=0.0003387 × 2.5 × t

.
অতএব,
$$t = \frac{1}{0.0003387 \times 2.5}$$
 s = 1181 s = 19 min 41 s.

় ② 1.5 A প্রবাহ কপার সা**লফেট দ্রবণের ভিতর 40 min ব্যাপী চালু** থাকলে, 1.2 g তামা মুক্ত হয়। তামার তড়িং রাসায়নি**ক তুল্যাংক নির্ণয় করো**।

উঃ। এখানে, $W = 1.2 \,\mathrm{g}$; $I = 1.5 \,\mathrm{A}$; $t = 40 \times 60 \,\mathrm{s}$.: $1.2 = \mathbb{Z} \times 1.5 \times 40 \times 60$

$$711, Z = \frac{1.2}{1.5 \times 40 \times 60} = 0.00033 \text{ g/C}.$$

 একটি বাটারি প্রদত্ত তড়িং প্রবাহ সিলভার নাইট্রেট দ্ববণ হতে 60 এ রুশা মৃত্ত করলে ঐ ব্যাটারিতে কত দস্তা ব্যায়িত হবে যদি স্থানীয় ক্রিয়ার দরুন 20% দস্তা নফ্ট হয় ? রুশার রাসায়নিক তুল্যাণ্ড্য = 108 এবং দন্তা = 32.6.

উঃ। তাড়ৎ প্রবাহ ব্যাটাবির ভিতর দিয়ে যাবার ফলে, ব্যাটারি হতে দস্তা মৃত ১৫।

তখন, ফ্যারাডের দিতীয় সূত্র ২তে লেখা যায়, <mark>মুক্ত দন্তার ভর ভর নতার রাসায়নিক তুল্যা জ্ব</mark>

জাখাবা,
$$\frac{\sqrt{3}}{60}$$
 দন্তার ভব = $\frac{32.6}{108}$: মুন্ত দন্তার ভব = $\frac{32.6 \times 60}{108}$ = 18.1 g

স্থানীয় ক্রিয়ার দর্ন 20% দন্তা নন্ট হয়েছে। মোট হগ্রাম দন্তা বায়িত হলে, স্থানীয় ক্রিয়ার জন্য দন্তার অপ্যায় = $1 \times \frac{20}{100} = \frac{1}{5}$ g , কাজেই মূল প্রবাহের ফলে মুক্ত দন্তার পরিমাণ $-\left(1 + \frac{1}{5}\right) = \frac{4}{5}$ g

∴
$$\frac{4x}{5} = 18.1$$
 MeVeY $x = \frac{18.1 \times 5}{4} = 22.63 \text{ g (2181)}$ (

একটি তাত্র ভোল্টামিটার এবং একটি জল ভোল্টামিটার শ্রেণি সমবামে যুক্ত
আছে। তাদের ভিতর 20 min ব্যাপী 1.5 A প্রবাহ পাঠানো হল। তাত্র ভোল্টামিটারে

 9.63 g তামা জমা হলে, জল ভোল্টামিটারে কত প্রাম হাইড্রোজেন মুক্ত হবে ? তামার
আঃ শারমাণবিক তর = 63.6; যোজ্যতা = 2; হাইড্রোজেনের আঃ শারমাণবিক তর =

 1.008 এবং যোজ্যতা = 1।

উঃ। একই প্রশহমারা একই সময় বাাপী দুই ভোল্টামিটারে যাওয়ায়, ফারাওের ছিতায় সূত্র ২তে

লেখা যাহ: $\frac{W_{cu}}{W_H} = \frac{C_{cu}}{C_H}$ এবাংন, W_{cu} এবং C_{cu} যথাক্রমে মুস্ত তামার আয়নের ভর এক ব সাফনিক

ভূলাপর সাল পারে মানু এবং 🕒 পৃত্তি গতিকোজেন জায়ানের ১৯ এ মা সাস্পর্যার ২০ সের বিভু

জাতএব,
$$\frac{0.036}{W_H} = \frac{63.6}{2} \times \frac{1}{1.008}$$
 : $W_H = \frac{0.636 \times 2 \times 1.008}{63.6} = 0.02 \,\mathrm{g} \,(2\%)$

🜀 20 cm³ হাইডোজেন প্রেমাণ তাপমাত্রা ও চাপে) মুব্ব করতে 3 মিনিট ব্যাপী 1 A ব্রবাহ পাঠানো প্রয়োজন। হাইড়োজেন পরমাণুর ভর 1.6 x 10²⁴ g হলে, কৃসত্ব এককে লৈকটনের তড়িতাধান নির্ধারণ করো। প্রমাণ তাপমাত্রা ও চাপে হাইড়োজেনের ঘনত্ব = $9 \times 10^{-5} \text{ g/cm}^3$.

উঃ মুক্ত হাইড্রোজেনের ভর (W) = আয়তন \times ঘনত্ব = $20 \times 9 \times 10^{-5}$ g. श्रद्धाः अभीव नभग = 3 भिनिए = 180 s.

এখন,
$$W = Z_{\rm H}.Lt$$
. $\therefore Z_{\rm H} = \frac{W}{L.t} = \frac{20 \times 9 \times 10^{-5}}{1 \times 180} = 10^{-5}$ g/C.

মনেকর, ইলেকট্রের তড়িভাধান = e coulomb : যেহেতু হাইড়োজেনের যেভাত । সেইছেত্ প্রত্যেক হাইডোজেন আয়নের তড়িতাধান = e coulomb ; এখন, তড়িৎ-রাসায়নিক চলাপ্রের সংবো **হতে বলা যায় যে I coulomb তড়িতাধান Z_H g হাইড়োজেন মুক্ত করে। অতএব, e coulomb মুক্ত করবে** eZH g; আবার, e coulomb তড়িতাধান । হাইড়োজেন পরমাণু অর্থাৎ 1.6 x 10 🔭 g ধাইড়োজেন মৃত করে ' অভএব, ८.Z_H = 1.6 × 10⁻²⁴.

$$\therefore e = \frac{1.6 \times 10^{-24}}{Z_H} = \frac{1.6 \times 10^{-24}}{10^{-5}} = 1.6 \times 10^{-19} \text{ C}.$$

6) একটি রৌপা ভোল্টামিটারের মধ্য দিয়ে 16 mnt 40 s যাবং তড়িং প্রবাহ চালনার ব্দুলে 2 g 236 mg রূপা ক্যাথোড পাতে সন্ধিত হয়। তড়িৎ প্রবাহের মান দ্বিগুণ করে 25 mnt তা চালনা করলে কি পরিমাণ রূপা ক্যাথোডে সন্দিত হবে ?

উঃ W=Z.1.1. প্রথম ক্ষেত্রে 2.236 = Z.1. x 1000

[2g. 236 mg = 2.236 g এবং 16 mnt 40 s = 1000 s]

দি ভীয় কেত্ৰে W = Z × 21 × 25 × 60

ভাগ দিলে, $\frac{W}{2.236} = \frac{2 \times 25 \times 60}{1000}$: W = 6.708 g = 6 g 708 mg.

2.8 তড়িদ্বিশ্লেষণের পরিপ্রেক্ষিতে অ্যাম্পিয়ারের সংজ্ঞা (Definition of ampere according to electrolysis) :

1910 খ্রিস্টাব্দে এক আন্তর্জাতিক কমিটি তড়িৎ প্রবাহের ব্যাবহারিক এককের একটি সংজ্ঞা স্থির করেন। এই সংজ্ঞার ভিত্তি হল রৌপা ভোল্টামিটারে তড়িৎ-বিশ্লেষণ পন্ধতিতে রুপার বিন্যন্ত (deposit) করণ। এই একক-কে আন্তর্জাতিক আাম্পিয়ার বলা হয় এবং A অক্ষর দ্বারা বুঝানো হয়। সংজ্ঞাটি নিমন্ত্রপ :

য়ে স্থির তড়িৎ-প্রবাহ (steady current) রৌপ্য ভোল্টামিটারে পাঠালে কাাথোড প্লেটে । সেকেন্ডে 0.001!18 g রুপা বিনান্ত করবে, তাকে । আন্তর্জাতিক আাম্পিয়ার বলা হবে। এস্.আই. পন্দতিতেও তড়িৎ প্রবাহের একক আাম্পিয়ার : তবে তার সংজ্ঞা অনারূপ।

ফ্যারাডে এবং আভোগাড়ো সংখ্যা (Faraday and Avogadro number) :

(i) ফারোডে তড়িতাধানের একটি একক। তড়িদ্বিশ্লেষণ সংক্রান্ত ফ্যারাডের প্রথম সূত্র হতে আমরা জানি যে-কোন মৌলের তড়িং-রাসায়নিক তুল্যাঙ্ক Z g/C হলে, 1 কুলম্ব তড়িতাধান ওই মৌলের Z g মুক্ত করবে। কাজেই, ওই মৌলের রাসায়নিক তুল্যাঙ্ক (C) পরিমাণ ভর মুক্ত করিতে যে তড়িতাধানের (Q) প্রয়োজন হবে কুলম্বে তা

। এন থবে কুলারে তা
$$Q = \frac{GZ}{Z}$$

$$= \frac{C}{Z}$$

এখন, যে-কোনো দুটি মৌলের বেলায় আমরা জানি, $\frac{C_1}{C_2}=\frac{Z_1}{Z_2}$ [2.6 (ii) সমীকরণ]

অথবা,
$$\frac{C_1}{Z_1} = \frac{C_2}{Z_2}$$
 অর্থাৎ, $\frac{C}{Z} =$ ধুবক। সূতরাং Q ধুবক।

কাজেই, বলা যায় রাসায়নিক তুল্যাঙ্ক পরিমাণ ভর মুক্ত করতে যে তড়িতাধান প্রয়োজন, সকল মৌলের বেলায় তা সমান।

সংজ্ঞা ঃ যে-কোনো মৌলের তড়িদ্বিশ্লেষণ প্রক্রিয়ায় 1 রাসায়নিক তুল্যাঙক পরিমাণ (অথবা । গ্রাম তুল্যাঙ্ক) ভর মুক্ত করতে যে তড়িতাধানের প্রয়োজন হয়, তাকে এক ফ্যারাড়ে বলা হয়।

বিকল্প সংজ্ঞাসরূপ বলা যায়, যে পরিমাণ তড়িতাধান কোন একযোজী মৌলের এক মোল পরিমাণ ভর মৃত্ত করবে তাই 1 ফাারাডে।

উদাহরণদ্বরূপ রূপার কথা বিবেচনা করা যায়। রূপার তড়িৎ-রাসায়নিক তুল্যান্তক 0.001118 g/coulomb এবং রাসায়নিক তুল্যান্তক 107.87 : অতএব, 107.87 g রূপা মুক্ত করতে প্রয়োজনীয় তড়িতাধান

$$= \frac{107.87}{0.001118} = 96490 \text{ coulomb (21)} 1.$$

এইভাবে হিসাব করলে দেখা যাবে হাইড়োজেন, তামা, দম্ভা প্রভৃতি যে-কোনো মৌলের রাসায়নিক তুলা। জ্ব পরিমাণ ভর মৃত্ত করতে একই পরিমাণ অর্থাৎ 96490 কুলম্ব তড়িতাধান লাগছে। এই পরিমাণ তড়িতাধানকে। ফ্যারাডে বলা হয়।

সাধারণত। ফারাড়ে = 96500 কুলম্ব ধরা হয়।

(ii) च्यांट्यंगाद्धा त्रश्या ३

(a) কোনো মৌলের সোজাতা চহলে, ওই পদার্থের এক প্রাম পরমাণু = $i \times 3$ রাসায়নিক তুলাকে। বুপার বেলায় i = 1, মতএব, বুপার এক প্রাম পরমাণু = রুপার রাসায়নিক তুলাকে। বুপার বেলায় আমরা দেখলায় যে এক প্রাম পরমাণু অর্থাৎ এক মোল পরিমাণ বুপার পরমাণুগুলি মোট 96490) কুলার তড়িতাখান বহন করে। বুপার স্থানি তিন্ধান তিন্ধান ত । ইওয়ায়, প্রত্যেক বুপার পরমাণু এক ইলেকট্রনের তড়িতাখান (e) বহন করে। এখন ইলেকট্রনের তড়িতাখান $c = 1.6 \times 10^{-19}$ coulomb।

ে। মাল প্ৰমাণ্য সংখ্যা =
$$\frac{96490}{1.6 \times 10^{-10}}$$
 = 6.03×10^{23} (প্ৰায়) ।

য় কোনে মানেব কোন্তা এইরপ হিসাব করলে দেখা মারে যে প্রত্যেক মৌল পদার্থের। মোর্লে সমসাখ্যক কমেনু আছে এবং ঐ সংখ্যা হবে 6.03 x 10²³, অতএব, এট একটি প্রব সংখ্যা একেই বলা হয় **আভোগাড়ো সংখ্যা** (NA)।

লক্ষ্য করার বিষয় যে ৷ মোল ইলেকট্রনের মোট তড়িতাধান 9649() coulomb অথবা e. N_A = F.

(b) আমরা দেখলাম যে, কোন মৌলের রাসায়নিক তুল্যাঙ্ক C এবং তড়িৎ-রাসায়নিক তুল্যাঙ্ক Z হলে $\frac{C}{2}=$ ধ্রুবক =1 ফ্যারাডে =96490 কুলম।

$$\therefore Z = \frac{C}{96490}$$

এতএব, মৌলের তড়িৎ-রাসায়নিক তুল্যাঙ্ক = মৌলের রাসায়নিক তুল্যাঙ্ক 96490

এটি একটি প্রয়োজনীয় সম্পর্ক। প্রায়ই মৌলের তড়িৎ-রাসায়নিক তুল্যাঙ্ক নির্ণয়ে উপরোপ্ত সম্পর্ক ব্যবহার করা হয়।

O EXAMPLES O

া বুপার তড়িং-রাসায়নিক ভুল্যাম্ক 1.118×10⁻³ g/coulomb এবং আপেক্ষিক পারমাণবিক তর 108. এথেকে হাইড়োজেন আয়নের (প্রোটন) তড়িতাধান ও ভরের অনুপাত নির্ণয় কর। বুপা একযোজী।

উঃ সংজ্ঞা অনুযায়ী রুপার তড়িৎ-রাসায়নিক তুল্যাঙ্ক Z হবে 1 coulomb তড়িৎ ধারা বিমুক্ত Z g রুপা। যেতেতু রুপা একযোজী সেইহেতু প্রত্যেকটি রুপার আয়ন একটি প্রোটনের সমপরিমাণ পজিটিভ তিড়িৎ (অর্থাৎ, e কুলম্ব) বহন করবে।

আছে। কাজেই । coulomb তড়িৎ গেলে যে সংখ্যক বুপার আয়ন বিমুক্ত হবে তা $\frac{Z N_A}{108}$: অতএব,

প্রত্যেক আয়নের তড়িতাধান $e=\frac{1}{Z.N_A/108}=\frac{108}{Z.N_A}$ কুলম্ব।

আবার, । গ্রাম-পরমাণু অর্থাৎ । g হাইড়োজেনেও N_A সংখ্যক পরমাণু আছে : অতএব, একটি হাইড়োজেন পরমাণুর ভর $M_H=rac{1}{N_A}$ g.

: প্রোটনের তড়িতাধান (e)
$$= \frac{108 \times N_A}{Z \times N_A} = \frac{108}{Z} = \frac{108}{1.118 \times 10}$$

থাদি 96490 (তড়িতাধান যে-কোনো মৌলের এক গ্রাম-তৃল্যাখ্ব পরিমাণ আয়ন মৃত্ত করে, তবে 0.15 A প্রবাহ কত সময়ে কপার সালকেট দ্রবল হতে 20 mg তামা যুক্ত করিবে ? তামার রাসায়নিক তৃল্যাখ্ব = 32.

উঃ।
$$1$$
 ফারেণ্ডে অর্থাৎ $96.490 = \frac{32}{Z} = \frac{32}{Z_{CH}}$

$$\therefore Z_{\text{Cu}} = \frac{32}{96490} \text{ g / coulomb}; W = 20 \text{ mg} = 20 \times 10^{-3} \text{ g}$$

44.
$$W = 4_0 It$$
 41 $20 \times 10^{-3} = \frac{32}{96490} \times 0.15 \times t$

$$t = \frac{20 \cdot 10^{-3} \times 96490}{0.15 \times 32}$$
 s = 402 s = 6 mnt. 42 s. (2°31)

তড়িদ্বিশ্রেষণের ব্যাবহারিক প্রয়োগ (Practical applications of electrolysis) :

নানা শিল্পকর্মে তড়িদবিশ্লেষণের ব্যাবহারিক প্রয়োগ দেখতে পাওয়া যায়। নিম্নে এদের সম্বন্ধে সংক্ষেপে আলোচনা করা হল।

(i) তড়িৎ প্রলেপন (Electroplating): এই প্রক্রিয়ার দ্বারা কাঁটা, দুঁরি, চামচ, বোতাম, বিভিন্ন

যন্ত্রপাতির অংশ প্রভৃতির উপর নানারকম ধাত—যেমন, সোনা, রপা, নিকেল প্রভতির প্রলেপ দেওয়া হয়। এতে জিনিসগলি চকচকে এ: ১ সন্দর দেখায়। ছরি, কাঁটা প্রভৃতি যেসকল দ্রবো প্রলেপ দিতে হবে সেগুলি একটি পরিবাহী দণ্ড হতে একটি বাক্সের ভেতর ঝুলানো থাকে। বাক্সের ভিতর রপা, সোনা প্রভৃতি যার প্রলেপ দিতে হবে তার দ্রবণ থাকে। অপর একটি পরিবাহী দণ্ড হতে প্রলেপ অনুযায়ী বিশৃষ্ধ রূপা বা তামার একটি প্লেট ঝলানো থাকে। দণ্ড দুটির সাথে তড়িৎ কোশ লাগিয়ে তড়িৎ প্রবাহ চালালে ঝলন্ত জিনিসগলির ওপর প্রলেপ পড়ে যাবে (2,5 नং চিত্র)।

- (ii) **ইলেক্ট্রোটাইপিং** (Electrotyping) : এটি ইলেক্ট্রোপ্লেটিং-এর এক বিশেষ পর্ম্বাত। সে সকল পুস্তক বা লেখা বহু কপি ছাপাতে হয় তা সাধারণত ইলেক্ট্রোটাইপ প্লেট হতে ছাপানো হয়। প্রথমে লেখাটি সাধারণ টাইপে কম্পোক্ত করা হয় এবং মোমের ওপর তার একটি ছাপ নেওয়া হয়। তার ওপরে গ্রাফাইট শুঁড়ো ছাড়িয়ে একে ওড়িং পরিবাহী করা হয়। অতঃপর একটি তুঁতের দ্রবণে একে ক্যাথোড পাত হিসাবে ঝুলানো হয় এবং অ্যানোড পাত হিসাবে তামার একটি প্লেট ব্যবহার করা হয়। তড়িৎ প্রবাহ চালালে মোমের ছাঁচের ওপরে তামা জমবে। তামা খানিকটা পুরু হলে ছাঁচ থেকে তাকে ছাড়িয়ে নেওয়া হয়। এর সাহায্যে লেখাটির বহু কপি ছাপানো যায়। একই পম্পতিতে গ্রামোফোনের রেকর্ড তৈরি করা হয়।
- (iii) **অ্যানোডাইজকরণ** (Anodising) : এই পম্বতিতে ধাতব পদার্থের উপরতলে অক্সাইডের প্রলেপ দেওয়া হয়। তড়িৎ-বিশ্লেষোর ভিতর ধাতব বস্তুকে নিমজ্জিত করে একে আনোড হিসাবে ব্যবহার করা হয়। এই প্রলেপ ধাতব বন্তকে বায়ু দারা ক্ষয়ক্ষতি হতে রক্ষা করে।
 - (IV) ধাতৃ নিদ্ধাশন ও শোধন (Extraction and purification of metal)

আলেমিনিয়াম, সেণ্ডিয়াম, পটালিয়াম প্রভৃতি ধাঙু নিয়ালনে এবং কস্কিক পটাল প্রভৃতি বাসয়েনিক দ্রবাটি প্রস্তুতিতে তড়িংদবিক্সেমণ পদ্ধতির ব্যাপক ব্যবহার দেখতে পাওয়া যায়। ভাচাড়া এমা, দস্তা, প্রভৃতি পাত্র আক্রিক হতে নিয়াশনের পর শোধন করার জনাত তড়িলবিক্সেম্বর পদাতি কাডে লাগেনো হয়। এ अध्यातं, वाभागात् व ए। (कार्मा भारत-असुद्ध विभाव विवत्न पास्या साद्य)

☐ EXAMPLES ☐

① 10 cm² প্রথকেদের একটি প্লেটের উভয় দিকে 0.001 cm পুরু ভামার প্রলেপ দিতে ছবে। এই উদ্দেশ্যে 12 volt-এর একটি ব্যাটারি ব্যবহার করা হল। তামার প্রদেশন পর্পাততে বাটোরি কভ শব্ধি বায় করল হিসাব করো। তামার অনত্ব = 9 g/cm³, তামার ভাড়ৎ-রাসায়নিক কল্যাম্ক = $3 \times 10^{-4} \, g/C$. [Jt. Entrance 1999] উঃ থেহেওু প্লেটের উভয় দিকে প্রলেপ দিতে হবে সেইহেতু কার্যকর ক্ষেত্রফল $= 10 + 10 = 20 \,\mathrm{cm}^2$. যুক্ত তামার ভর W = ক্ষেত্রফল \times বেধ \times ঘনত্ব $= 20 \times 0.001 \times 9 = 0.18 \,\mathrm{g}$.

ফ্যারাডের সূত্র হতে পাই, ভড়িভাধান
$$Q = \frac{W}{Z} = \frac{0.18}{3 \times 10^{-4}} = 600 \text{ coulomb}$$

∴ ব্যয়িত তড়িৎশক্তি = ভোল্ট × কুলম্ব = 12 × 600 = **7200** joule.

একজন তড়িং-প্রলেপন ব্যবসায়ী 1000টি থালাতে তড়িং-প্রলেপনের কাক্ষ পেল। প্রত্যেকটি থালার তর 109.44 g এবং 10 ঘণ্টায় সমন্ত কাজটি এরপভাবে শেষ করতে হবে যে প্রত্যেকটি থালায় যেন তার ভরের 0.1% নিকেল প্রলেপ পড়ে। নির্দিষ্ট সময়ে কাজ শেষ করতে যে পরিমাণ তড়িং প্রবাহ প্রয়োজন হিসাবমত ঐ ব্যবসায়ী ঐ তড়িং প্রবাহ নিয়েক্ষ আরম্ভ করল। কিন্তু চারঘণ্টা কাজের পর তড়িং প্রলেপন যন্ত্রকে 1 ঘণ্টা বন্ধ রাখতে হল। নির্দিষ্ট সময়ে কাজটি শেষ করতে তড়িং প্রবাহমাত্রা কতখানি বৃশ্বি করতে হবে তা নির্দিষ্ট কর। নিকেলের E.C.E. = 3.04 × 10⁻⁴ g/C.

উঃ মোট যে-পরিমাণ নিকেল জমা করতে হবে তা = $1000 \times \left(109.44 \times \frac{01}{100}\right) = 109.44 g.$ ঐ পরিমাণ নিকেল 10 ঘণ্টার জমা করতে যে তড়িং প্রবাহের প্রয়োজন তা W = Z.i.i. |Z = নিকেলের.(E.C.L.)

ভাগৰা, 109.44 = 304 × 10⁻⁴ × i × 10 × 3600

$$3.04 \times 10^{-4} \times 10 \times 3600 = 10A$$

এই প্রবাহমাঞ্জ যন্ত্র প্রথম 4 ঘণ্টা কাজ করল। ঐ সমরে যে পরিমাণ নিকেল জমা হল তা, $W_1=Z.t.t=3.04\times 10^{-4}\times 10\times 4\times 3600=43.776$ g.

হাতএব, বাকি $|10\rangle$ (4+1)|=5 ঘণ্টায় |1| ঘণ্টা যন্ত্র কথ ছিল। যে পরিমাণ নিকেল জমা করতে হবে তা =109.44 43.776 = 65.664 g । যদি i_1 প্রবাহমাত্রা প্রয়োজন ইয়, হবে $W=Z.i_1.t.$

অথবা, 65.664 = 3.04 × 10 -4 × i_1 × 5 × 3600

$$i_1 = \frac{65.664}{3.04 \times 10^{-4} \times 5 \times 3600} = 12A.$$

চাত্রন, প্রবাহমারা (12 - 10) = 2A বৃদ্ধি করতে হবে।

211 মৌল কোশের বিভাগ (Types of primary cells):

যে কোশ বিভিন্ন বস্তুর রাসায়নিক ক্রিয়ার সাহাযো তড়িং প্রবাহ সৃষ্টি করে তাকে মৌল কোশ বলে। এই কোশ শুধ উড়িং সরবরাধের জন্য ব্যবহার করা হয়। ওড়িং প্রবাহ কোশের ধনাথক মের হতে যার করে বহিবর্তনীতে যায় এবং ঋণাথাক মের দিয়ে পুনরায় কোশে প্রবেশ করে। আর এক প্রকার কেল ভাতে যাকে গৌল কোশ হয়। গৌল কোশ যেনা ততিং প্রবাহ সরবরাথ করে বিজেনিয়াছে। হর্মনি নিজের ভিতর উড়িং প্রবাহ গ্রহণ করে চার্জড (charged) ২০০ প্রবেশ এই কোশে প্রবাহ দুই অভিমধেই চলতে পারে।

্রতি ,কংশের রাসায়নিক বস্তুগুলি ওড়িৎপ্রবাহ সরবরাহ করে নিঃশেস হলে, গালের (ফার্ট দি.ও হয় এবং নতন রাসায়নিক বস্তু নিয়ে ,কাশ পুনরায় গঠন করতে হয়। এই কোশে সাধারণত ভিনী কিলিস থাকে ঃ (1) প্রতিনিত ও নেরে (pole) অথবা দার (electrode), (2) বিভব-প্রভেদ সৃষ্টিকারী সক্রিয় তবল (active liquid) ও (3) ছদন নিবারক কোন বস্তু (depolariser) .

মৌল কোশগুলিকে প্রধানত দু-ভাগে ভাগ করা যায়; যথা—(1) এক তরল : ं gle fluid) ও (2) দুই তরল (double fluid) কোশ।

2.12 বিভিন্ন এক তরল কোশ (Different single fluid cells)

(ক) লেকগান কোশ (Leclanche scell):

বিবরণঃ আন্মানিক 1865 খ্রিস্টাব্দে জর্জেস লেকল্যান্স এই কোশ উদ্ভাবন করেন। 2.6 নং চিত্রে

লেক্লান্স কেশের নকশা দেখানো হল। একটি কণ্ডপারের ভিতর জলে দ্রবীভূত নিশাদল বা আমোনিয়াম ক্লোরাইডের (NH4Cl) ঘন দ্রবণ রাখা হয় এবং তার ভিতর পারদের প্রলেপ যুক্ত একটি দন্তার দন্ত আংশিক ভুবানো থাকে। কাচপাত্রের মাঝখানে অ্যামোনিয়াম ক্লোরাইড দ্রবণের ভিতর একটি সছিদ্র পাত্র রাখা আছে। ঐ পাত্র ম্যাজানিজ ডাই-অক্সাইড (MnO2) ও কাঠকয়লার গুঁড়ো (কার্বন) দিয়ে ভরতি। এর ভিতর একটি গ্যাস কার্বন দন্ড ঢুকানো থাকে। গ্যাস বার হয়ে যাবার জন্য সছিদ্র পাত্রের ওপরের মুখে একটি

সরু নালীপথ (vent) খোলা থাকে। এই কোশে দন্তার দশু নিম্নবিভব অর্থাৎ, নেগেটিভ মেরু () ও কার্বন দশু উচ্চবিভব অর্থাৎ পজিটিভ মেরু (+) গঠন করে। অ্যামোনিয়াম ক্লোরাইড দ্রবণ কোশের বিভব-প্রভেদ সৃষ্টিকারী সক্রিয় তরল ও ম্যাজ্ঞানিজ ডাই-অক্সাইড (জারক দ্রব্য) ছদন-নিবারক। এই কোশের তড়িচ্চালক বল প্রায় 1.4 ভোল্ট।

কাচপাত্রের আন্মোনিয়াম ক্রোরাইড বাষ্পীভূত হবার ফলে ছোটো ছোটো দানা গঠিত হয়। এই দানাগুলি পাত্রের গা বরাবর আটকে থাকে। এটা নিবারণের জন্য পাত্রের ওপরের কিছু অংশ বিশেষ একপ্রকার কালো প্রলেপ দারা আবৃত থাকে। দানাগুলি এই রংয়ের গায়ে আটকে থাকতে পারে না।

কার্যপ্রশালী ঃ দন্তা (Zn) ও NH₄Cl রাসায়নিক ক্রিয়া করে পাজিটিভ তড়িৎযুক্ত H⁺ আয়ন মুক্ত করে এবং দন্তা নিজে নেগেটিভ তড়িৎযুক্ত হয়।

 $Zn^{++} + 2NH_4Cl = ZnCl_2 + 2NH_3 + (H^+ + H^+)$ $[2NH_4Cl \rightarrow 2NH_3 + 2Cl^2 + (H^+ + H^+)]$

 $Zn^{++} + 2Cl^- \rightarrow ZnCl_2l$

স্তলাত, হাইছে কেন লোক কার্নাল্ড জানতে পারে না এবং ছানারিয়াও হতে পারে না

এই কোশের সর্বপ্রধান হাস্থিপ এই যে ১ ১ ১ ও ৪ এব ভিডার বাস্থান এই ধ্যারে ধ্যারে হয় যে, গ্যাস আসামাত্র সংক্ষা করে জলে পরিগত হয় না জিও ৪ এব জনে এবে যায়। এই গ্যাস কর্মেন দন্তের ওপর একটি নিয়েড়িং প্রকেশ সৃষ্টি করে ৩৩, যখন এই কাশ নক্ষা কৈছকা ধরে ৩ড়িং প্রবাহ দেয়ে তখন ছদনকিয়া সম্পূর্ণ নিবারিত হয় না কিছকা কোন কে জিলাই ত এই ড়োলেন ১০০ কর্ম্ব হারে জারিত হয়ে জলে পরিগত হয় তবন কোন জননাত্র হব লাগে হার জারিত হয়ে জলে পরিগত হয় তবন কোন জননাত্র হব লাগে হার জারিত কারণের জনা যোখানে বির্বাত্য্য untermittent হার জার কোন যোখানে বির্বাত্য্য লোক কোন বিবাহ হয়। তালিয়াক, টেলিফোন ইভাগি সেইখানে এই কেশা বিশ্বত হয় না।

এই কোশের সর্বপ্রধান সুবিধা এই যে, এটি সম্পর্যক্ষে ফাটোস কিয়া এই এই এই পজিটিভ ও নেগেটিভ মেরু যোগ না করে খোলা রেখে দিলে কোলোলন করি হয় । একাডার মারে জল ও আমোনিয়াম কোরাইড দেওয়া ছাড়া এই কোশের আর কোনো যন্ত নেবার প্রয়োজন নেই।

(খ) নিৰ্জল কোশ (Dry cell):

এটি লেক্ল্যান্স কোশেরই মত, শুধ্ লেক্লান্স কোশের তরলের পরিবর্তে এখানে একটি লেই (paste) ব্যবহার করা হয়। এই কারণে একে নির্ভল কোশ বলা হয়; যদিও এটা প্রকৃতপক্ষে নির্জল নয়। টর্চলাইট, রেডিও, ট্রানজিস্টার, কোয়ার্টজ ঘড়ি প্রভৃতি যন্ত্রে ওড়িং প্রবাহ পাঠাবার জনা এই কোশের বহুল ব্যবহার দেখা যায়। 2.7 নং চিত্রে একটি নির্জল কোশের ছবি দেখানো হল।

এই কোশে একটি দন্তার চোঙকে ধারক পাত্র ও কোশের নেগেটিভ মেরু হিসাবে ব্যবহার করা হয়। এই পাত্রের মধ্যস্থলে একটি কার্বনদন্ড থাকে। কার্বনদন্ড কোশের পজিটিভ মেরু। কার্বনদন্ডের চর্তুদিকে গুঁড়ো কার্বন ও ম্যাংগানিজ ডাই-অক্সাইডের মিশ্রণ রাখা হয়। এই মিশ্রণ কাপড়ের থলিতে (calico

bag) ভর্তি করে রাখা হয়। থলি সছিদ্র পারের কাজ করে। সমস্ত বাবস্থাটি একটি দন্তার চোঙের মধ্যে রেখে থলি এবং চোঙের মধ্যবর্তী স্থান একটি লেই (paste) দারা পূর্ব করা হয়। এই লেই তৈরি করা হয় NH4Cl দ্রবণ ও ময়দা দ্বারা। NH4Cl এবং দন্তার ভিতর রাসম্বেদিক কিয়া হয়ে পলিটিভ লইডোজেন আয়ন মুক্ত হয় এবং ঐ আয়নগুলি থলির ছিচ দিয়ে কার্বন দন্তের দিকে এগ্রসর হয়। কে শের উপরিভাগ বালি, পিচ প্রভৃতি দারা কথ করা থাকে। গাসে বার থবার জন্য পিচের মধ্যে একটি ছিল (hole) থাকে। এতঃপর সমস্ত জিনিসটাকে কাগজে মুড়ে বাজারে বিকির জন্য দেওয়া হয়।

এই কোশে কোন তরল থাকে না, ওজন হ'লকা এবং জাকারে ভোট ও বহনযোগা বলে এই কোশের প্রচুর ব্যবহার আছে। বিভিন্ন তড়িচ্চালক বলের নিজল কোশ ব্যক্তরে প্রভয়া সম্ভয়

2.13. পুই তরল কোশ : ড্যানিন্যর কোশ (Two fluid cell : Daniel cell) :

বিবরণঃ লভ্রুস্থ, কিল্স কলেজের রস্থাতের অধ্যাপক জন ডাল্লেল 1836 থিস্টাব্দে এই কোশ উদ্ভাবন করেন। একটি তামার পাত্রে CuSO4 (কপ্যের সালকেন্ট) ভূতে। জলে দ্রবীভত করে একটি সংপৃত্ত দ্রবণ রাখা হয় (2.৪ নং চিত্র) . তামার পাত্রই কোশের পজিটিভ মেরু হিসাবে ব্যবহৃত হয়। তামার পাত্রের

ওপরের দিকের নুটি সছিল তাকে (shelf) কিছু CuSO₄ টুকরো রাখা হয়। এই টুকরোগুলি CuSO₄ দ্রবণের সাথে যুক্ত থাকায় CuSO₄ দ্রবণ সর্বদা সংপৃত্ত (saturated) থাকে। এই দ্রবণের ভিতর একটি সছিল পাত্রে লঘু সালফিউরিক জ্যাসিড রেখে ঐ অ্যাসিডের ভিতর পারদের প্রলেপযুক্ত একটি দম্ভার দণ্ড রাখা হয়। দন্তার দণ্ডটি কোশের নেগেটিভ মেরু। সালফিউরিক অ্যাসিড কোশের সক্রিয় তরল ও CuSO₄ দ্রবণ ছদন–নিবারক। এই কোশের তড়িচ্চালক বল 1.1 ভোল্ট এবং মোটামুটি স্থায়ী (constant) থাকে। সুতরাং কিছুক্তণের জন্য স্থায়ী তড়িৎ প্রবাহ পেতে হলে এই কোশে খুব স্বিধাজনক।

কার্যপ্রণালী: দস্তার (Zn) সাথে H₂SO₄-এর রাসায়নিক ক্রিয়ার ফলে পজিটিভ তড়িৎ-যুক্ত H⁺ আয়ন মুক্ত হয় ও দস্তার দশু নিজে নেগেটিভ তড়িৎ পেয়ে থাকে;

$$Zn^{++} + H_2SO_4 = ZnSO_4 + (H^+ + H^+)$$

এই H⁺ আয়ন সছিদ্র চিনামাটির পাত্রের ছিদ্র হতে বার হয়ে তামার পাত্রের দেওয়ালের দিকে যেতে চেন্টা করে। কিন্তু CuSO₄ দ্রবণের সাথে রাসায়নিক ক্রিয়ার ফলে পজিটিভ Cu⁺⁺ আয়ন সৃষ্টি হয়।

$$(Cu)^{++}(SO^4)^{--}+(H^++H^+)=Cu^{++}+H_2SO_4$$

এই Cu⁺⁺ আয়ন পাত্রের দেওয়ালে আধান দিয়ে দেওয়ালে প্রলিপ্ত হয়। সৃতরাং তামার পাত্র নিজে পজিটিভ মেরুতে পরিণত হয়। এই রাসায়নিক ক্রিয়ার ফলে দন্তের ওজন কমে যায় এবং তামার পাতের ওজন বৃদ্ধি পায়।

এখানে হাইড়োজেন গ্যাস তামার গায়ে যুক্ত হতে না পারায় এই কোশ সম্পূর্ণরূপে ছদনমুক্ত। তাই, এই কোশের তড়িচচালক বল এবং তড়িৎপ্রবাহ অনেকক্ষণ যাবৎ একই হারে চালু থাকে। যতই কোশের কিয়া হয় ততই দ্রবণ হতে তামা দেওয়ালে প্রলিপ্ত হবার ফলে $CuSO_4$ লবণ লঘু হতে থাকে। দ্রবণকে সংপৃত্ত রাখার জন্য সছিদ্র তাকে $CuSO_4$ টুক্রো রাখা হয়। এই টুকরোগুলি দ্রবীভূত হয়ে দ্রবণকে লঘু হতে দেয় না। এই কোশের একমাত্র অসুবিধা এই যে, অব্যবহৃত অবস্থায় থাকাকালীন $CuSO_4$ অণু সছিদ্র পাত্রের ভিতর ঢুকে দন্তার সাথে রাসায়নিক কিয়া করে। ফলে কোশটি নানারূপে ক্ষতিগ্রস্ত হয়। এই জন্য অব্যবহৃত অবস্থায় কোশের বিভিন্ন অংশ পৃথক করে রাখা হয়।

এই পরিচ্ছেদের বিষয়বস্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. তড়িৎ-বিশ্লেষক কোশ ও ভোল্টীয় কোশের পার্থক্য কী ?
- উভয়কেই কোশ নামে অভিহিত করা হলেও মূলত তারা সম্পূর্ণ ভিন্ন যন্ত্র। এদের মধ্যে নিম্নলিখিত
 পার্থক্য বর্তমানঃ
 - (a) ৩ড়িং-বিশ্লেষক কোশের ভড়িদ্ধার দৃটি একই উপাদানে তৈরি হয় : কিন্তু ভোল্টীয় কোশের তড়িদ্ধার দৃটি ভিন্ন উপাদানের ধারা তৈরি হয়।

- (b) তড়িং-বিশ্লেষক কোশে তড়িংশন্তি রাস্মেনিক শত্তিতে রূপার্থারত হয় কিছু ভোপ্টায় কোশে রাস্মামিক শত্তি ওড়িংশক্তিতে রূপার্থারত হয়।
- (c) তড়িং-বিশ্লেষক কোশের ক্রিয়া তাপমাত্রার ওপর নির্ভরশীল : ভোপীয় কোশের ক্রিয়া তাপমাত্রার ওপর খুব সামান্যভাবে নির্ভরশীল।
- 2. বিশুশ্ব জল তড়িং পরিবাহী নর; কিছু ঐ জলে দু'চার কোঁটা আসিড ফেললে, জল তড়িং পরিবাহী হয়। কারণ কী ?
- া কোন তরল পদার্থে তড়িৎ পরিবহন হয় আয়নের উপস্থিতির ফলে। বিশুন্ধ জলে কোন আয়ন থাকে না বলে জলের ভিতর দিয়ে তড়িৎ পরিবাহিত হয় না। কিন্তু বিশূন্ধ জলে দু'চার ফোঁটা সালফিউরিক অ্যাসিড ফেললে, জলের সংস্পর্শে আসামাত্র প্রতিটি আর্সিড অণু H^+ আয়ন এবং $(SO)_4^-$ আয়নে বিয়োজিত হয় $H_2SO \rightarrow 2(H)^+ + (SO)_4^-$: হাইড়োজেন আয়নগুলি ক্যাথোড়ে পৌছে ক্যাথোড় প্লেটে আধান দিয়ে H_2 গাস হিসাবে নির্গত হয়। $(SO_4)^-$ আয়নগুলি অ্যানোড়ে পৌছে জল অণুর সাথে বিক্রিয়া করে সালফিউরিক অ্যাসিড অণু এবং $(O)^-$ আয়ন গঠন করে। $2(SO_4)^- + 2H_2O = H_2SO_4 = 2(O)^{--}$; অক্সিজেন আয়নগুলি অ্যানোড়ে আধান দিয়ে O_2 গ্যাসরূপে নির্গত হয়। দুই প্রকার আয়নের বিপরীতমুখী চলাচলের ফলে জলের ডেতর দিয়ে তড়িৎ পরিবহন কার্য সম্পাদিত হয়।
- 3. একটি ড্যানিয়েল কোশ বা একটি লেক্ল্যাল কোশ জলের তড়িদ্বিপ্লেষণ করতে পারে না। কারণ কী १
- ক্যালরিমিতি পর্যালোচনায় জানা যায় যে 1 g জলের বিয়োজনে প্রায় 3800 ক্যালরি তাপের প্রয়োজন।
 তিদ্দ্বিশ্লেষণ পশ্বতিতে যে উৎস জলে তড়িৎ প্রবাহ পাঠায়, স্পন্টত সেই উৎস তড়িৎশক্তির মাধ্যমে
 ঐ তাপশক্তি সরবরাহ করে। হিসাব করলে দেখা যায় এই কাজের জন্য তড়িৎ-উৎসের নিম্নতম
 তড়িচ্চালক বল 1.5 ভোল্টের কাছাকাছি হওয়া দরকার। এখন ড্যানিয়েল কোশের তড়িচ্চালক বল
 প্রায় 1.1 ভোল্ট এবং লেক্লেন্স কোশের প্রায় 1.4 ভোল্ট। এই কারণে একটি ড্যানিয়েল কোশ বা
 একটি লেকল্যান কোশ জলের তড়িদ্বিশ্লোষণ করতে পারে না।
- 4. জলের তড়িদ্বিপ্রেষণে বলা হয় য়ে, আয়তন হিসাবে দুভাগ হাইড়োজেন এবং একভাগ অক্সিজেন গ্যাস উৎপন্ন হয়। সৃত্ম পরিমাণে দেখা যায়, উৎপন্ন হাইড়োজেনের আয়তন অক্সিজেনের ঠিক বিগুণ হয় না। কারণ কী ?
- কয়েকটি কারণে উৎপন্ন হাইড়োজেন গ্যাসের আয়তন উৎপন্ন অক্সিজেন আয়তনের ঠিক দ্বিগুণ হয় না।
 প্রথমত ক্যাথোড প্লেটে আধান দিয়ে যখন H_2 গ্যাস নির্গত হয় তখন সামান্য পরিমাণ গ্যাস অন্তর্ধার্তির
 ফলে শোষিত হয়। দ্বিতীয়ত অ্যানোড প্লেটে O_2 গ্যাস নির্গত হবার সময় সামান্য পরিমাণ গ্যাস ওজোন
 (O_3) গ্যাসে রুপান্তরিত হয়। তৃতীয়ত, অ্যাসিড মিশ্রিত জলে হাইড়োজেন এবং অক্সিজেন গ্যাসের
 দ্রাব্যতা সমান নয়। এই সকল কারণে আয়তনের হিসাব ঠিক 2:1 হয় না।
- 5. চিনির দ্রবণ তড়িদ্বিশ্লেষ্য নয় : কিছু খাদ্যলবণের দ্রবণ তড়িদ্বিশ্লেষ্য। এই পার্থক্যের কারণ কি ?
- কোনো দ্রবণ তড়িদ্বিশ্লেষ্য হতে গেলে দ্রবণ প্রমুত করার সময় দ্রাব পদার্থের অণুগুলির বিয়োজন হওয়া প্রয়োজন। চিনি দ্রাব এবং জল দ্রাবক হিসাবে যে চিনির দ্রবণ প্রমুত হয় তাতে চিনির অণুগুলি বিয়োজিত হয় না। তাই, ওই দ্রবণকে তড়িদ্বিশ্লেষ্য বলে গণ্য করা হয় না। অপরপক্ষে খাদ্যলবণ (NaCl) দ্রাব এবং জল দ্রাবক হিসাবে যে খাদ্য লবণের দ্রবণ পাওয়া য়য় তাতে খাদ্য লবণের প্রতি অণু Na⁺ এবং Cl⁻ আয়নে বিয়োজিত হয়। তাই, এই দ্রবণ তড়িদ্বিশ্লেষ্য বলে ধরা হয়। তড়িদ্অবিশ্লেষ্য দ্রবণের ভিতর আয়নের উপস্থিতির ফলে তড়িদ্ পরিবহন ফ্রয়া সংঘতিত হয়।
- 6. তড়িদ্বিশ্লেষণ পশ্বতিতে সাধারণত দুটি আানোড ব্যাবহার করা হয়। কারণ কি ?

 একটি ক্যাথোড পাতের দুই পাশে দুটি আনোড ব্যবহার করা হলে, তড়িদ্বিশ্লেষণ প্রক্রিয়ায় ক্যাথোডের দুই পৃঠে আয়ন সঞ্জিত হবার সুয়োগ পায়। এর ফলে সঞ্জিত আয়নের পরিমাণ দ্বিগুণ হয় এবং এর ভর মাপতে ন্যনতম তুটি হয়।

अश्वारिक : *

\Rightarrow ব্রচনামূলক প্রশ

1. ভড়িদাবিশ্লেমের ভিতর কী পম্পতিতে তড়িৎ প্রবাহ চলাচল করে ?

- 2. জুঁতের দ্রবণ দিয়ে তড়িং প্রবাহ পাঠালে কী ঘটনা ঘটে তার বিবরণ দাও যখন তড়িদ্ধার দুটি (ক) তামা এবং (খ) প্রাটিনামের তৈরি।
- 3. তড়িদ্বিশ্লেষণ সম্পর্কিত ফারোডের সূত্র বর্ণনা করো। এদের পরীক্ষামূলক প্রমাণ দেবে কীর্পে? তড়িৎ-রাসায়নিক তল্যাঙ্কের সংজ্ঞা লেখো।

এড়িং-রাসায়ানক বিশ্লেষণ সংক্রান্ত কয়েকটি ব্যাবহারিক প্রয়োগ উল্লেখ করে। এবং তাদের সংক্রিপ্ত বিবরণ দাও।

5. নিম্নলিখিত বিষয় সম্বন্ধে নোট লেখোঃ (ক) তড়িং-রাসায়নিক তুল্যাঙ্ক রাসায়নিক তুল্যাঙ্কর সম্পর্ক, (খ) ফ্যারাডে, (গ) ইলেকট্রোপ্লেটিং।

সংক্রিপ্ত উত্তরের প্রশ্ন

- নিম্নলিখিত রাশিগুলির বাাখ্যা করে। : (ক) আয়ন, (খ) তিড়িং-বিয়েষ, (গ) তিড়িং-বিয়েষণ, (ঘ) তিড়িং-বিয়েষক কোশ।
- 2. ভোগ্টীয় কোশ ও তড়িদ্বিশ্লেষক কোশের পার্থকা কী ?
- 3. তড়িদবিশ্লেষ্য কাকে বলে ? চিনির দ্রবণ কী তড়িদবিশ্লেষ্য ? পারদকে তুমি তড়িদবিশ্লেষ্য বলবে কি ?
- 4. তামার তড়িৎ-রাসায়নিক তুল্যাঙক 3.29 x 10 4 g/coulomb বলতে কী বোঝ ?
- 5. কোন মৌলের তড়িৎ-রাসায়নিক তুলাঙ্ক এবং রাসায়নিক তুল্যাঙ্কের ভিতর সম্পর্ক কী ?
- 6. ধাতব পদার্থের ভিতর দিয়ে এড়িং প্রবাহ এবং তড়িদ্বিশ্লেষোর ভিতর দিয়ে ওড়িং প্রবাহের মূল পার্থক্য কী ?

[Jt. Entrance 1998]

- 7. তোমাকে শ্রেণি সমবায়ে দৃটি কোশ, একটি প্লাগচাবি, একটি রিওস্ট্যাট, একটি অ্যামমিটার এবং একটি তাড়দ্বিশ্লেষক কোশ দেওয়া হল। এদের সাহায়্যে কীর্পে একটি তাড়ৎ-বর্তনী গঠন করবে তা চিত্র একে দেখাও। প্রত্যেক অংশ চিহ্নিত করে। এবং যথায়োগ্য স্থানে পজিটিভ ও নেগেটিভ চিহ্ন দাও।
- 8. পরিবর্তি প্রবাহের দ্বারা তড়িদ্বিশ্রেষণ হয় না কেন ి

ভাতিসংক্ষিপ্ত উত্তরের প্রশ্ন

- 1. व्यानायन এवः काणियन की ?
- 2. তড়িদ্বিশ্লেষ্য কাকে বলে ? বিশৃষ্ধ জল কি তড়িদ্বিশ্লেষ্য ?
- 3. ইলেক্ট্রোপ্লেটিং की १
- 4. তড়িং-রাসায়নিক তুল্যাঙ্কের S.I. একক কী ?
- 5. পরিবতী প্রবাহের ঘারা তড়িদ্বিশ্লেষণ কী সম্ভব ?
- 6. প্রাইমারি কোশ কাকে বলে ? একটি উদাহরণ দাও।
- 7. শৃষ্ক কোশের তড়িচ্চালক বল কড ?
- ৪. টানা তড়িৎপ্রবাহের জনা কী লেকল্যান্সের কোশ ব্যবহার করা হয় ?

⇒ বহুমুখী পছন্দের প্রস: [Multiple choice type questions (MCQ)]:

- নির্ভুল উত্তরটি √চিহ্নিত করোঃ
- বৃপার রাসায়্রনিক ভুল্যাঞ্চ 108 , ফারান্তে সংখ্যার স্কান
 (A) 9.65 × 10⁷ C/kg (B) 9.65 × 10⁴ C/kg (c) 9.65 × 10² C/kg (D) 9.65 × 10¹ C/kg
- [11] একট তাদ্র ভালেনিটাবের সাথে 10 Ω বোধের একটি তাপনক্তলী প্রেলি সমবায়ে যুপ্ত আছে। বর্তনী দিয়ে 20 মিনিট বাপৌ থিবর প্রবাত চলার ফলে 0.99 g তামা জমা হল। তামার ECE 0.00033 gC । তলে কৃতলী যে পরিমাণ তাপের উন্নব করেবে তা

[Ans. 5 ohm]

	(A) 25,000 J (B) 50,000 J (C) 75,000 J (D) 100,000 J.
[iii]	তড়িদ্বিশ্ৰেষ্যে তড়িতাআধান ৰাষ্ট্ৰক
	(A) ইলেকটন (B) - ve আয়ন (C) + ve আয়ন (D) + ve এবং ve উল্যা আয়ন
[iv]	l ampere প্রবাহ 10 k ব্যাপী কপার সালফেট দ্রবলে প্রবহিত হলে, স্নাক্ষণ্ডে ক্র সংখ্যার আমান জন্মা হরে তা
	(A) 3.125×10^{19} (B) 96500 (C) 96500 (D) 4×96500
[v]	একটি তাম ভোলটামিটারে $100\mathrm{kWh}$ শক্তি $33\mathrm{V}$ বিভব $-$ প্রভেদে প্রযুক্ত হল তামার তড়িং শাসায়খিক ভূলা কি $0.33\mathrm{kg}$ $10^{-6}\mathrm{kg}$ C^{-1} হলে মুক্ত তামার পরিমাণ
	(A) $\frac{3.6}{2}$ kg (C) $\frac{3.6}{2}$ kg (D) $\frac{3.6}{3}$ kg
[vi]	নিম্নলিখিত বন্ধুগুলির মধ্যে কোন্টি তড়িদ্বিশ্লেষ্য নয় ?
	(A) পারদ (B) ইুতের দ্রবণ (C) চিনির প্রবণ (D) অমযুত্ত জল
[vii]	জলের তড়িদ্বিশ্লেষণে মুক্ত অক্সিজেনের আয়তন মুক্ত হাইড্রোজন আয়তন অপেকা
	(A) দ্বিগুণ (B) তিনগুণ (C) সমান (D) কোন সম্পর্ক নেই।
(vili)	যে পরিমাণ তড়িতাধান কোন একযোজী মৌলের এক মোল পরিমাণ ভর মৃত্ত করে তাকে বলে
	(A) ফ্যারাডে (B) তড়িৎরাসায়নিক তুলাাঙক (C) রাসায়নিক তুলাাঙক (D) আন্ভাগাড়ে। সংখা।
[ix]	কোন মৌলের রাসায়নিক তুল্যাঙ্ক C এবং তড়িৎ রাসায়নিক তুল্যাঙ্ক Z ইলে তাদের সম্পর্ক
	(A) $Z = C$ (B) $Z = \frac{C}{96490}$ (C) $C = \frac{Z}{96490}$ (D) som Apple (a) t
[x]	তড়িদ্বিদ্রেষণের জন্য যে পাত্র ব্যবহার করা হয় তাকে বলে
	(A) ভোল্টমিটার (B) ভোল্টামিটার (C) অ্যামমিটার (D) গ্যালভ্যানেমিটার।
	নিতিকু প্রশ্ন
	তিকু প্রশ্ন সিলভার নাইট্রেট দ্রবণে 0.1 A তড়িৎ-প্রবাহ ! ঘণ্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িৎ-রাসায়নিক
1.	শিক্তার নাইট্রেট দ্রবণে 0.1 A তড়িৎ-প্রবাহ। ঘন্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িৎ-রাসায়নিক স্কলাক্ত = 0.001118 e/C1 (Ans. 0.402 g)
1.	সিলভার নাইটেট প্রবণে 0.1 A তড়িং-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুল্যাঞ্চ = 0.001118 g/C। একটি ভোন্টামিটারে সিলভার নাইট্রেট প্রবণ আছে। এক ঘন্টা ব্যাপী কত প্রবাহমাত্রা পাঠাইলে ().805 g রূপা ক্যাথোড পাতে জমা হবে ? রূপার 7 = 1.118 × 10 l g/coulomb [Ans. 0.2A]
1.	সিলভার নাইটেট প্রবশে 0.1 A তড়িং-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কন্ত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুল্যাক্ত = 0.001118 g/C । একটি ভোল্টামিটারে সিলভার নাইট্রেট প্রবণ আছে। এক ঘন্টা ব্যাপী কন্ত প্রবাহমান্তা পাঠাইলে 0.805 g রূপা ক্যাথোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb [Ans. 0.2A] স্কল-ভোল্টামিটারে অর্ধঘন্টারাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm টাপে 423 cm²
2.	সিলভার নাইট্রেট দ্রবণে 0.1 A তড়িৎ-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কন্ত রূপা জমা হবে ? রূপার তড়িৎ-রাসায়নিক তুলাক্ষ = 0.001118 g/C। একটি ভোল্টমিটারে সিলভার নাইট্রেট দ্রবণ আছে। এক ঘন্টা ব্যাপী কত প্রবাহমাত্রা পাঠাইলে 0.805 g রূপা কাাখোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb [Ans. 0.2A] জল-ভোল্টমিটারে অর্ধঘন্টাব্যাপী 2 A তড়িৎ প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm টাপে 423 cm² হাইড়োজেন গ্যাস মুন্ত হল। হাইড়োজেন গ্যাসের তড়িৎ-রাসায়নিক তুলাঙক নির্ণয় কর। প্রমাণ চাপ ও তাপমাত্রায়
1. 2. 3.	সিলভার নাইট্রেট দ্রবণে 0.1 A তড়িৎ-প্রবাহ । ঘণ্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িৎ-রাসায়নিক তুল্যাক্ক = 0.001118 g/C। (Ans. 0.402 g) একটি ভোণ্টামিটারে সিলভার নাইট্রেট দ্রবণ আছে। এক ঘণ্টা ব্যাপী কত প্রবাহমাত্রা পাঠাইলে 0.805 g রূপা কাথোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb (Ans. 0.2A) জল-ভোণ্টামিটারে অর্ধঘণ্টাব্যাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm টাপে 423 cm² হাইড্রোজেন গ্যাস মুন্ত হল। হাইড্রোজেন গ্যাসের তড়িং–রাসায়নিক তুলাঙ্কে নির্ণয় কর। প্রমাণ চাপ ও তাপমাত্রায়
2.	সিলভার নাইটেট প্রবণে 0.1 A তড়িং-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুল্যাঞ্চ = 0.001118 g/C । (Ans. 0.402 g) একটি ভোল্টামিটারে সিলভার নাইটেট প্রবণ আছে। এক ঘন্টা ব্যাপী কত প্রবাহমাত্রা পাঠাইলে ().805 g রূপা কার্থোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb (Ans. 0.2A) জল-ভোল্টামিটারে অর্ধঘন্টাব্যাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm চাপে 423 cm² হাইড়োজেন গ্যাস মুন্ত হল। হাইড়োজেন গ্যাসের তড়িং-রাসায়নিক তুল্যাঞ্চন নির্ণয় কর। প্রমাণ চাপ ও তাপমাত্রায় । litre হাইড়োজেনের ওজন 0.089 g। (Ans. 1.05 × 10 log) g/C হলে, ভোল্টামিটারে 10 মিনিট সময়ে 1.5 g তামা মুন্ত হল। তামার তড়িং রাসায়নিক তুল্যাঞ্চন (০০ম).২২৪ g/C হলে, ভোল্টামিটার দিয়ে কত তড়িং প্রবাহ যাক্ষে ?
1. 2. 3.	সিলভার নাইটেট প্রবশে 0.1 A তড়িং-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুল্যাক্ষ = 0.001118 g/C । (Ans. 0.402 g] একটি ভোল্টামিটারে সিলভার নাইট্রেট প্রবণ আছে। এক ঘন্টা ব্যাপী কত প্রবাহমাত্রা পাঠাইলে 0.805 g রূপা কার্যোড পাতে জমা হবে ? রূপার $Z = 1.118 \times 10^{-1}$ g/coulomb (Ans. 0.2A) জল-ভোল্টামিটারে অর্থঘন্টাব্যাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm টাপে 423 cm² হাইড্রোজেন গ্যাস মুক্ত হল। হাইড্রোজেন গ্যাসের তড়িং-রাসায়নিক তুল্যাক্ষ নির্ণয় কর। প্রমাণ চাপ ও তাপমাত্রায় । litre হাইড্রোজেনের ওজন 0.089 g। (Ans. 1.05 × 10 \$ g/C । তাম ভোল্টামিটারে 10 মিনিট সময়ে 1.5 g তামা মুক্ত হল। তামার তড়িং রাসায়নিক তুল্যাক্ষ (0.00)328 g/C হলে, ভোল্টামিটার দিয়ে কত তড়িং প্রবাহ যাচ্ছে ?
1. 2. 3. 4.	সিলভার নাইটেট দ্রবণে 0.1 A তড়িং-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কন্ত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুল্যাক্ত = 0.001118 g/C । (Ans. 0.402 g] একটি ভোল্টামিটারে সিলভার নাইট্রেট দ্রবণ আছে। এক ঘন্টা ব্যাপী কন্ত প্রবাহমান্তা পাঠাইলে 0.805 g রূপা ক্যাথোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb (Ans. 0.2A) জল-ভোল্টামিটারে অর্থঘন্টাবাাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমান্তায় এবং 80 cm চাপে 423 cm² হাইড়োজেন গ্যাস মুক্ত হল। হাইড়োজেন গ্যাসের তড়িং-রাসায়নিক তুলাক্ষিক নির্ণয় কর। প্রমাণ চাপ ও তাপমান্তায় 1 litre হাইড়োজেনের ওজন 0.089 g । (Ans. 1.05 × 10 log/C) তাম ভোল্টামিটারে 10 মিনিট সময়ে 1.5 g তামা মুক্ত হল। তামার তড়িং রাসায়নিক তুলাক্ষিক (০০০) 328 g/C হলে, ভোল্টামিটার দিয়ে কত তড়িং প্রবাহ থাজেং ? (Ans. 7.62 A) 1 A প্রবাহমান্তা 33 মিনিট সময়ে কপার সালক্ষেট দ্রবণ হতে 0.65 g তামা মুক্ত করলে, হাইড়োজেনের তড়িং-বাসায়নিক কল্যাক্ষক করে ৪ তামার পারমাণবিক ওজন = 63 এবং যোজাতা = 2 (Ans. 1.042 × 10 log/C)
 2. 3. 4. 	সিলভার নাইটেট প্রবণে 0.1 A তড়িং-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুলাক্ষ = 0.001118 g/C । (Ans. 0.402 g] একটি ভোলটামিটারে সিলভার নাইট্রেট প্রবণ আছে। এক ঘন্টা ব্যাপী কত প্রবাহমান্তা পাঠাইলে 0.805 g রূপা কাাথোড় পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb (Ans. 0.2A) জল-ভোলটামিটারে অর্থঘন্টাবাাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm চাপে 423 cm² হাইড়োজেন গ্যাস মুন্ত হল। হাইড়োজেন গ্যাসের তড়িং-রাসায়নিক তুলাক্ষ নির্ণয় কর। প্রমাণ চাপ ও তাপমাত্রায় l litre হাইড়োজেনের ওজন 0 089 g ! (Ans. 1.05 × 10 s g/C) তাম ভোলটামিটারে 10 মিনিট সময়ে 1.5 g তামা মুন্ত হল। তামার তড়িং রাসায়নিক তুলাক্ষ 0 000328 g/C হলে, ভোলটামিটার দিয়ে কত তড়িং প্রবাহ যাক্ষে ? 1 A প্রবাহমাত্রা 33 মিনিট সময়ে কপার সালকেট প্রবণ হতে 0.65 g তামা মুন্ত করলে, হাইড়োজেনের তড়িং-রাসায়নিক তুলাক্ষ কত ? তামার পারমাণবিক ওজন = 63 এবং যোজাতা = 2 . [Ans. 1 042 × 10 s g/C] একটি সিলভার ভোলটামিটার এবং একটি কপার ভোলটামিটার শ্রেণি সমবায়ে একটি বাাটারি এবং অমামমিটারের সহিত
1. 2. 3. 4.	সিলভার নাইট্রেট প্রবণে 0.1 A তড়িং-প্রবাহ । ঘণ্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুলাক = 0.001118 g/C । (Ans. 0.402 g] একটি ভোল্টামিটারে সিলভার নাইট্রেট প্রবণ আছে। এক ঘণ্টা ব্যাপী কত প্রবাহমান্তা পাঠাইলে 0.805 g রূপা কাথোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 ¹ g/coulomb (Ans. 0.2A) জল-ভোল্টামিটারে অর্ধঘণ্টাব্যাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm চাপে 423 cm² হাইড়োজেন গ্যাস মুন্ত হল। হাইড়োজেন গ্যাসের তড়িং-রাসায়নিক তুলাঙ্কি নির্ণয় কর। প্রমাণ চাপ ও তাপমাত্রায় 1 litre হাইড়োজেনের ওজন 0.089 g। (মns. 1.05 × 10 ⁵ g/C) তাম ভোল্টামিটারে 10 মিনিট সময়ে 1.5 g তামা মুন্ত হল। তামার তড়িং রাসায়নিক তুলাঙ্ক 0.00).328 g/C হলে, ভোল্টামিটার দিয়ে কত তড়িং প্রবাহ যাছেং ? 1 A প্রবাহমাত্রা 33 মিনিট সময়ে কপার সালফেট প্রবণ হতে 0.65 g তামা মুন্ত করলে, হাইড়োজেনের তড়িং-রাসায়নিক তুলাঙ্ক কত ? তামার পারমাণবিক ওজন = 63 এবং যোজাতা = 2 . (Ans. 1.042 × 10 ˚ g/C) একটি সিলভার ভোল্টামিটার এবং একটি কপার ভোল্টামিটার শ্রেণি সমবায়ে একটি বাাটারি এবং আমামিটারের সহিত যুদ্ধ। ভোল্টামিটার দিয়ে 0.89 A প্রবাহ গেলে 30 মিনিট সময়ে 1.8 g রূপা মুন্ত হল। (a) রূপার তড়িং-রাসায়নিক
 2. 3. 4. 6. 	সিলভার নাইটেট প্রবণে 0.1 A তড়িং-প্রবাহ । ঘণ্টা বাাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুলাক = 0.001118 g/C । (Ans. 0.402 g] একটি ভোণ্টামিটারে সিলভার নাইটেট প্রবণ আছে। এক ঘণ্টা ব্যাপী কত প্রবাহমান্তা পাঁঠাইলে 0.805 g রূপা কাাথোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 ¹ g/coulomb
 2. 3. 4. 6. 	সিলভার নাইট্রেট দ্রবণে 0.1 A তড়িং-প্রবাহ । ঘণ্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক ছুল্যাঞ্চ = 0.001118 g/C । (Ans. 0.402 g] একটি ভোণ্টামিটারে সিলভার নাইট্রেট দ্রবণ আছে। এক ঘণ্টা ব্যাপী কত প্রবাহমাত্রা পাঠাইলে 0.805 g রূপা কাাথোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb (Ans. 0.2A) জল-ভোণ্টামিটারে অর্ধঘণ্টাব্যাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm চাপে 423 cm² হাইড়োজেন গ্যাস মুন্ত হল। হাইড়োজেন গ্যাসের তড়িং-রাসায়নিক তুলাঞ্চিক নির্ণয় কর। প্রমাণ চাপে ও তাপমাত্রায় l litre হাইড়োজেনের ওজন 0.089 g l (Ans. 1.05 × 10 log/C) তাম ভোণ্টামিটারে 10 মিনিট সময়ে 1.5 g তামা মুন্ত হল। তামার তড়িং রাসায়নিক তুলাঞ্চ 0.000328 g/C হলে, ভোণ্টামিটার দিয়ে কত তড়িং প্রবাহ যাছেং ? [Ans. 7.62 A] 1 A প্রবাহমাত্রা 33 মিনিট সময়ে কপার সালফেট দ্রবণ হতে 0.65 g তামা মুন্ত করলে, হাইড়োজেনের তড়িং-রাসায়নিক তুলাঞ্চক কতে ? তামার পারমাণবিক ওজন = 63 এবং যোজাতা = 2 l (Ans. 1.042 × 10 log/C) একটি সিলভার ভোণ্টামিটার এবং একটি কপার ভোল্টামিটার ল্রেণি সমবায়ে একটি বাটারি এবং আমামিটারের সহিত যুন্ত। ভোল্টামিটার দিয়ে ৩ ৪৭ প্রবাহ গেলে ২০ মিনিট সময়ে 1.8 g রূপা মুন্ত হল। (এ) রূপার তড়িং-রাসায়নিক তুল্যাঞ্চ এবং (b) মুন্ত তামার ভর নির্ণয় করো। ভামা এবং রূপার রাসায়নিক তুল্যাঞ্চ যথাক্রমে 3.18 এবং 108] [Ans. (a) 0.001123 g/C (b) 0.053 g]
 2. 3. 4. 6. 	সিলভার নাইট্রেট দ্রবণে 0.1 A তড়িৎ-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িৎ-রাসায়নিক তুলাক্ষ = 0.001118 g/C। (Ans. 0.402 g] একটি ভোলটামিটারে সিলভার নাইট্রেট দ্রবণ আছে। এক ঘন্টা ব্যাপী কত প্রবাহমান্তা পাঠাইলে 0.805 g রূপা কাথেছিল পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb (Ans. 0.2A) জল-ভোলটামিটারে অর্ধঘন্টাব্যাপী 2 A তড়িৎ প্রবাহ পাঠালে 18°C তাপমান্তায় এবং 80 cm চাপে 423 cm² হাইড়োজেন গ্যাস মুন্ত হল। হাইডোজেন গ্যাসের তড়িৎ-রাসায়নিক তুলাঙ্কে নির্ণয় কর। প্রমাণ চাপ ও তাপমান্তায় l litre হাইডোজেনের ওজন 0.089 g। (Ans. 1.05 × 10 lg/C) তাম ভোলটামিটারে 10 মিনিট সময়ে 1.5 g তামা মুন্ত হল। তামার তড়িৎ রাসায়নিক তুলাঙ্ক () 000)328 g/C হলে, ভোলটামিটার দিয়ে কত তড়িৎ প্রবাহ যাছেছ ? 1 A প্রবাহমান্তা 33 মিনিট সময়ে কপার সালফেট দ্রবণ হতে 0.65 g তামা মুন্ত করলে, হাইডোজেনের তড়িৎ-রাসায়নিক তুলাঙ্ক কত ? তামার পারমাণবিক ওজন = 63 এবং যোজাতা = 2 l (Ans. 1.042 × 10 lg/C) একটি সিলভার ভোলটামিটার এবং একটি কপার ভোলটামিটার শ্রেণি সমবায়ে একটি বাটারি এবং আমামিটারের সহিত যুদ্ধ। ভোলটামিটার দিয়ে ০ ৪৭ A প্রবাহ গেলে ২০ মিনিট সময়ে 1.8 g রূপা মুন্ত হল। (০) রূপার তড়িৎ-রাসায়নিক তুল্যাঙ্ক এবং (h) মুন্ত তামার ভর নির্ণয় করো। তামা এবং রূপার রাসায়নিক তুলাাঙ্ক যথাক্রমে 3.18 এবং 108] (Ans. (a) 0.001123 g/C (b) 0.053 g) একটি চক্রাকার তামার প্রেটের একপাশে 0.1 mm পুরু তামা জমাতে 1.25 A তড়িৎ প্রবাহের কত সময় লাগেবে ? চক্রের ব্যাসার্থ 2.5 cm তামার তড়িৎ-রাসায়নিক তুল্যাঙ্ক = 0.00033 g/C; তামার ঘনত্ব = 8.9 g/cm².
 2. 3. 4. 6. 	সিলভার নাইট্রেট দ্রবণে 0.1 A তড়িং-প্রবাহ । ঘন্টা ব্যাপী পাঠালে, কত রূপা জমা হবে ? রূপার তড়িং-রাসায়নিক তুলাক্ষ = 0.001118 g/C। (Ans. 0.402 g] একটি ভোলটামিটারে সিলভার নাইট্রেট দ্রবণ আছে। এক ঘন্টা ব্যাপী কত প্রবাহমান্তা পাঠাইলে 0.805 g রূপা কাথোড পাতে জমা হবে ? রূপার Z = 1.118 × 10 l g/coulomb (Ans. 0.2A) জল-ভোলটামিটারে অর্ধঘন্টাব্যাপী 2 A তড়িং প্রবাহ পাঠালে 18°C তাপমাত্রায় এবং 80 cm চাপে 423 cm² হাইড়োজেন গ্যাস মুন্ত হল। হাইডোজেন গ্যাসের তড়িং-রাসায়নিক তুলাঙ্কে নির্ণয় কর। প্রমাণ চাপ ও তাপমাত্রায় l litre হাইডোজেনের ওজন 0.089 g! (Ans. 1.05 × 10 log/C) তাম ভোলটামিটারে 10 মিনিট সমায়ে 1.5 g তামা মুন্ত হল। তামার তড়িং রাসায়নিক তুলাঙ্ক (0.00)328 g/C হলে, ভোলটামিটার দিয়ে কত তড়িং প্রবাহ যাছে ? 1 A প্রবাহমাত্রা 33 মিনিট সমায়ে কপার সালফেট দ্রবণ হতে 0.65 g তামা মুন্ত করলে, হাইডোজেনের তড়িং-রাসায়নিক তুলাঙ্ক কতে ? তামার পারমাণবিক ওজন = 63 এবং যোজাতা = 2 l (Ans. 1.042 × 10 log/C) একটি সিলভার ভোলটামিটার এবং একটি কপার ভোলটামিটার শ্রেণি সমাবায়ে একটি বাাটারি এবং আমামিটারের সহিত যুন্ত। ভোলটামিটার কিয়ে 0.89 A প্রবাহ গেলে ২০ মিনিট সমায়ে 1.8 g রূপা মুন্ত হল। (a) রূপার তড়িং-রাসায়নিক তুল্যাঙ্ক এবং (b) মুন্ত তামার ভর নির্ণয় করো। তামা এবং রূপার রাসায়নিক তুলাাঙ্ক যথাক্রমে 3.18 এবং 108] (Ans. (a) 0.001123 g/C (b) 0.053 g) একটি চক্রাকার তামার প্রেটের একপাশে 0.1 mm পুরু তামা ক্রমাতে 1.25 A তড়িং প্রবাহের কত সময় লাগেবে ? চাক্রের বাস্থার্ম 2.5 cm তামার তিভিং-রাসায়নিক তুল্যাঙক = 0.00033 g/C; তামার ঘনত্ব = 8.9 g/cm².

9. একটি অ্যামমিটার একটি তামার ভোল্টামিটার ও একটি ব্যাটারির সক্ষো শ্রেণি সমবায়ে যুক্ত আছে। আমেমিটারের

0.48 g তামা মুত্ত হয়। ভোল্টামিটারেব রোধ কত ?

স্কেলের পাঠ অনুযায়ী, । A প্রবাহ 30 মিনিট ধরে ঐ ভোল্টামিটারের ভিতর দিয়ে পাঠিয়ে দেখা গেল যে ক্যাখোড পাতের ওপর 0.575 g তামা সন্ধিত হয়েছে। আমেমিটারের স্কেলের পাঠে কী ভুল আছে ? তামার তড়িৎ-রাসায়নিক ভুলাক্ত = 0.000329 g/C.

- 10. 1 g ছাইড়োজেন মুন্ত করতে 96500 coulomb তড়িতাধানের প্রয়োজন। কত সময়ে 20 mA প্রবাহ 1 g রুপা মুন্ত করবে ? রুপার রাসায়নিক তুল্যান্ডক = 108 । [Ans. 12 h 24 mnt 36 s]
- 11. 12 ∨ তডিচ্চালক বল এবং 2Ω অভান্তরীণ রোধের একটি বাাটারিকে একটি রৌপ্য ভোল্টামিটারের সংজ্ঞা যুক্ত করলে ব্যাটারির প্রান্তীয় বিভবপ্রভেদ দাঁড়ায় 10 ∨ আধ ঘণ্টায় ভোল্টামিটারের ক্যাথোডে কত রূপা জমা হবে ? রূপার তড়িৎ রাসায়নিক তুল্যাক্ক = 1.118 mg/C.
- 12. একটি তাম-ভোন্টামিটারের ভিতর দিয়ে 3 A তড়িং-প্রবাহ গেলে 60 cm² ক্ষেত্রফলের তড়িন্দারে তামা মুক্ত হল। 30 মিনিট সময়ে কত পুরু তামা জমা হবে ? তামার ঘনত্ব = 9 g/cm³; তামার তড়িং-রাসায়নিক তুলা।তক = 0.000329 g/C. [Ans. 0.00329 cm]
- 13. কপার সালফেট প্রবণের ভিতর দিয়ে 4 ঘণ্টা 27 মিনিট ব্যাপী 2 A প্রবাহ পাঠানো হল। 5 cm × 6 cm ক্ষেত্রযুগের তিড়িছারের এক পাশে কত পুরু তামা জমা হবে ? তামার তিড়িং–রাসায়নিক তুলা।জক = 0.00033 g/C; তামার হন্দ্ = 8.9 g/cm³.

 [Ans. 0.0396 cm]
- 14. প্রতি বর্গইঞ্জিতে 20 A বিদ্যুৎপ্রবাহ ছারা 0.05 cm পুরু নিকেল জমা করতে কত সময় লাগবে ? নিকেল একটি ডাই-ভাালেন্ট মেটাল। এর আটেমিক ওয়েট 59 এবং ঘনত্ব = 9 g/cm³ ; সিলভারের আটেমিক ওয়েট 108 এবং ইলেকট্রোকেমিকাাল ইকুইভ্যালেন্ট 1.118 mg/coulomb. [Jt. Entrance 1992] [Ans. 7 mnt 55s]

[সংকেতঃ
$$\frac{\mathbb{Z}_{A_R}}{\mathbb{Z}_{N_t}} = \frac{(C.E)_{A_R}}{(C.E)_{N_t}}$$
 or, $\frac{1.118}{\mathbb{Z}_{N_t}} = \frac{108}{59/2}$ $\therefore Z_{N_t} = \frac{1.118 \times 59}{108 \times 2} \, \text{mg/C} = \frac{1.118 \times 59}{108 \times 2 \times 10^3} \, \text{g/C}$

 $W=0.05\times6.5\times9$ g : এবার, $W=Z_{\rm N_1}\times i\times i$ সমীকরণ প্রয়োগ কর।

⇒ কঠিনতর গাণিতিক প্রশা

জলেরা তড়িদ্বিশ্লেষণে 20 মিনিট ব্যাপী 0.5 A তড়িং প্রবাহ পার্টিয়ে 25°C তাপমাত্রায় এবং 68 cm পারদের চাপে
83.7 cm³ হাইড্রোজেন সংগৃহীত হল। তুঁতের ত্রবণে তামার তড়িং-রাসায়নিক তুলাঙক কত ? তামার পারমাণবিক
তর = 63.57; হাইড্রোজেনের = 1.008. প্রমাণ চাপ ও তাপমাত্রায় হাইড্রোজেনের খনত্ব = 0.08987 g/litre.

[Ans. 3.24×10^{-4} g/coulomb]

- 2. শ্রেণি সমবায়ে আক্ষ একটি তাল্র-ভোল্টামিটার এবং একটি জল জোল্টামিটারের ভিতর দিয়ে তড়িৎ প্রবাহ পাঠানো হল। তাল্র-ভোল্টামিটারে $5 \times 10^{-2} \, \mathrm{g}$ তামা মৃত্ত হল 25° C তাপমাত্রা এবং $78 \, \mathrm{cm}$ পারনের চাপে জল ভোল্টামিটারে কত আয়াতনের চাইড়োজেন বিমৃত্ত হবে ? চাইড়োজেনের তড়িৎ-রাসায়নিক তুল্যাঞ্চন $= 1.04 \times 10^{-5} \, \mathrm{g/C}$: তামার $= 3.3 \times 10^{-4}$, প্রমাণ চাপ ও তাপমাত্রায় হাইড়োজেনের ঘনত $= 9 \times 10^{-5} \, \mathrm{g/cm}^3$ [Ans. $18.6 \, \mathrm{cm}^3$]
- 3. উপেক্ষণীয় অভান্তরীণ রোধযুত্ত 6 volt কোশের সাথে শ্রেণি সজ্জায় একটি জুল ক্যালনিট্টিন ও একটি তাল্রভোল্টামিটার যুত্ত করা হল। ক্যালনিট্টিনের উত্তাপক কুজলীর রোধ ২১১ ৭বং ক্যালনিট্টিনের জলসম 240 g.
 ভোল্টামিটার ও তার অভান্তরম্প তরলের জলসম 600 g. 12 মিলিটে ক্যালনিট্টিনের গুল্পারা বৃদ্ধি 4.2°(হলে (i)
 ভোল্টামিটারের তত তামা জমা তরে ? (ii) ভোল্টামিটারের বোধ ও তাপমারা বৃদ্ধি কহ হবে ? (iii) গিলিটারের
 ভিড়িনিক্সেনোর লেভেল দিশুল করা হয় এবং তড়িদ্ধার আংশিক ভাবে তরলের বাইবে থাকে এবে ভোল্টামিটারের
 রোধ কী হবে ?
 [Anv (i) 0 ২২২ g (ii) 3 ohm (i) 7.2 (* (iii)) অর্থেক)
- সালফিউরিক আসিন্তর লঘু দ্রবানে । A প্রবাহমাত্রা কিছুক্তন পায়ানো হলে । য় প্রবাহন মৃত্ত হল । য়য়ায়ায় কত
 হাইডেগ্রেন মৃত্ত হল ? য়য়কল যাবং প্রভিং-প্রবাহ পায়ানো হয়োছিল ? । ফ্যাবান্ড = 96.5(0) কৃষ্ণছ ।

[Ann. 0 125 g ; 3h 20 mnt]

- 5. একটি ভোলাগিটাটার 27 Ω বোধবিলিন্ট একটি তারের সজে। প্রেণি সমবায়ে যুক্ত আছে। তালটি ০.১ আপেন্দিক ভাল বিলিন্ট 150 ৫ তেলে নির্মাজনত আছে। ভোলাগিমিটারের ভিতর দিয়ে 20 মিনিট তড়িং প্রবাহ পায়ালে 0.66 ৫ তামা মৃত্ হয়। তুলিং প্রাত চলার ফালে, তেলের তাপমাহাবৃদ্ধি নির্বারণ কর। তামার Z - 0.00031 ৫/C [Ans. 122 45°C]
- 6. ৫০ না হিন্তা কেন্দ্রী রৌপা ভোগামিনির মেখানে হয়েছে। রৌপা ভোগামিনির হিয়ে 10 mm হলি প্রবাহ পারিয়ে ক্রিলা বেল হা 1812 শোর 120 KJ তাপ উৎপন্ন হয়েছে। ভোগামিনিরে ক্রাথেছে । ই সময় কর রুপা ক্রমা হরে ? মুপারে 2 = 1.118 x 10⁻³ g/C. [Ams. 2.236 gl]

डिज 2.9

AWW

7. CuSO, দুবাণের হাডিদবিক্সেমণ পরীক্ষায় ২০ মিনিট বাপী 0.8 A হাডিৎ-প্রবাহ পাসবাব ফলে কাথোড প্রেটে 0.477 g তামা জমা হল। তামা দ্বিযোজী হলে, তামার পারমাণবিক ওজন 1842

্রিংকেড ঃ $Z = \frac{A}{2} \times \frac{1}{F}$ সমীকরণ প্রয়োগ কর; F = ক্যারাডে =96490 কলম্ব 1

- 8. সালফিউরিক আসিডের লঘ দ্রবণের মধ্য দিয়ে 1 coulomb আধান পাঠালে প্রমাণ উন্মতা ও চাপে যে-আয়তনের শঙ্ক হাইড়োজেন মন্ত হয় তা নির্ণয় কর। ইলেকট্রনের আধান = 1.6 × 10⁻¹⁹ coulomb এবং অ্যাভোগাড়ো সংখ্যা = 6.02 × 10²³. [Ans. 0.116 cm³]
- 9. 200 g জলে নিমজ্জিত 10 s2 নোধের একটি ক্ণুলীর সাথে শ্রেণি সমবায়ে একটি রূপার ভোল্টামিটার যুক্ত করে ১৯ প্রবাহ পাঠানো হল। 0.1 g বুপা মৃত্ত হলে, জলেরা তাপমাত্রাবৃদ্ধি কত হরে ? বুপার

[সংকেতঃ W = 711 এবং $(w + m)\theta + l^2Ri/J$ সমীকরণ প্রয়োগ করা।]

- 10. একটি ইলেক্ট্রোপ্লেটিং ভোন্টামিটারে 4 volt তড়িৎচালক বল প্রয়োগ করা হল। 400 kg তামা ইলেক্ট্রোপ্লেট করতে বায় কত হবে ? 1 kwh এর খরচ 20 প্রসা : তামার ECE = 10 4 g/C. fAns. 27 शंग्रजा।
- 11. 300 cm² ক্ষেত্রফলের একটি ধাতব প্লেটে নিকেলের প্রলেপ দিতে হবে। 3 ঘন্টা বাাপী । 5 ১ প্রবাহ পাঠানো হলে প্রেটে প্রালেপের বেধ কত হবে ? নিকেলের ঘনত্ব = 8.8 g/cm³ : নিকেলের তড়িৎ-রাসায়নিক তুল্যাঙক = 3.04 × [Ans. 0.0187 mm] 10 4 g/coulomb.
- 12. 10 cm² ক্ষেত্রফলের একটি পিতলের পাতের দুই পিঠেই 10 মাইক্রেমিটার পুরু রুপার তড়িং-প্রলেপনের জন্য 12 V ব্যাটাগ্নি ব্যবহার করা হল। এই প্রলেপনকালে ব্যাটারি হতে বায়িত শক্তি কত নির্ণয় কর বুপার ECE = 11.18 × [Ans. 2254 J] 10⁻⁴ g/C এবং ঘনত = 10.5 g/cm³. সংকেত : 1 মাইক্রোমিটার = 10⁻⁶ মিটার|
- একটি জল ভোলী মিটাব ও একটি তামার ভোলীমিটারকে একটি বর্তনীতে প্রেলি সমবারে রেখে বর্তনী দিয়ে 10⁴ coulomb আধান পাঠানো হল। কওটা হাইড়োজেন মুক্ত হবে এবং কওটা তামা জমবে ? হাইড়োজেনের তড়িৎ-রাসায়নিক তুলাজ্ঞ = 1.05 × 10 5 g /coulomb , তামার পারমাণবিক ভর = 63 3 ; তামার যোজাতা = 2 ; হাইড়োজেনের রাসায়নিক কুলাঙ্ক = 1 008. | Jt. Entrance 1982] [Ans. 0.105 g; 3.32 g]
- একটি রোপা ভোলামিটারের সাথে প্রেণি সমবায়ে যুক্ত একটি আমমিটারের পাঠ। ১ A. 10 মিনিট সময়ে ক্যাথোডে 1.085 g রূপা মুক্ত হলে আমেমিটারের পাস ঠিক কিনা নির্ণয় করো। বুটি থাকলে বুটির পরিমাণ কন্ত ? রূপার Z = [Ans. - 7.8%] 1.119 x 10⁻³ g/C.
- 15. শ্রেণি সমবায়ে যুব্ত একটি আমেনিটার এবং একটি তাম ভোল্টামিটারের মধ্য দিয়ে একটি নির্দিষ্ট পরিমাণ তড়িৎ প্রবাহ পাসালে । ঘন্যায় 0.6২২১ গুমে তামা সন্দিত হয়। মাম্মিটারে 0.525A প্রাথমাত্রা নির্দেশ করলে আম্মিটার পাঠের শতকবা পুট নির্ব্য করে। এমোর পার্মাণ্ডিক ভর ২63.54, এমার যোজাতা ২2, । ফারাড়ে = 96500 কুলস্থ। (Ans. - 2%)

M.C.O. EIGHT FOUR

(i) A (ii) C (iii) D (iv) A (v) B (vi) C (vii) A (viii) A (ix) B (x) B

ELECTROMAGNETISM - I]

্র (ক) চুপ্তকের ওপর তভিংগ্রাহত জিয়া 😂 A filor of electric corrent on magnet

3.1. চৌমক কেত্রের গারেণা (Consept of magnetic field):

আমরা জানি তড়িংপ্রবাহ তারংক্ষেত্র উৎপন্ন করে না। তাড়ংপ্রবাহযুক্ত কোনো তারের কাছে A বিশ্বতে

কোনো তড়িওখান q রাখলে, এড়িওখান বিশেষ কোনো বল অনুভব করে না [চিত্র. 3.1]। সিশান্ত করা যায় যে A বিন্দৃত কোনো ওড়িৎক্ষেত্র নেই। এরপ ঘটনাই আমরা আশা করি কারণ তারের যে কোনো আয়তনে (যেখানে অসংখা পরমাণু আছে) সমপরিমাণ পশ্ভিটিভ ও নেগেটিভ আয়ান থাকে। ফলে, তারটি তডিৎ-নিরপেক্ষ হয় এবং কোনো তডিৎক্ষেত্র উৎপন্ন করে না।

কিন্তু q আধানটিকে যদি A বিন্দু থেকে গ্রানের গ্রন্থিবাহের অভিমুখে গতিশীল করা যায় গ্রন্থেল আধানটি গ্রানের দিকে অথবা তার থেকে দরে বিক্ষিপ্ত

হয়ে যায়। বিক্ষেপের দিক নির্ভর করে আধানটি পজিটিভ কি নেগেটিভ তার ওপর। বিক্ষেপের এই ঘটনা থেকে বোঝা যায় যে A বিন্দৃতে নিশ্চয়ই কোনো ক্ষেত্র আছে যা আধান q –এর ওপর বল প্রয়োগ করল; কিন্তু q পিথর থাকলে কোনো বল প্রয়োগ করল না। স্পন্টত এই ক্ষেত্র ভড়িৎক্ষেত্র হতে ভিন্ন কারণ আধান স্থার থাকক কি গভিশীল থাকক উড়িংকের আধানের ওপর সর্বদা বল প্রয়োগ করে। এই ক্ষেত্র বিভ্নন কোনো বল প্রয়োগ করে। এই ক্ষেত্র যে-বল প্রয়োগ করে সেই বলকে বলা হয় চৌম্বক বল (magnetic force)। তড়িতাধানের ওপর প্রযুক্ত বল আধানের গতিবেগ ও গতির অভিমুখের ওপর নির্ভর করে। কাজেই তড়িংবাহী তার চতুর্দিকে চৌম্বকক্ষেত্র সৃষ্টি করে।

3.2. পরতেউ এর পরীক্ষা (Oersted's experiment) :

তড়িৎবাহী তার চ্চ্চিকে টোস্বক ক্ষেত্র সৃষ্টি করে তড়িৎপ্রবাহের এই পুর পুর্প ফল সর্বপ্রথম কল্ফ করেন কোপেনহেগেনের অধ্যাপক প্রন্স ক্রিন্ডিয়ান ওরতেও 1820 মিস্টান্দে। নিম্নে ওরস্টেড-এর পরাক্ষণ বর্ণনা করা হল ঃ

AB একটি পরিবাহী তার (চিত্র 3.2) যার ভিতর দিয়ে তড়িৎপ্রবাহ চলতে পারে। তারটি উত্তর দক্ষণ বরাবর আটকানো আছে। তারের কাঁচে একটি স্থাক-শলাকা (magnetic needle) রাখা আছে। যখন তারের ভিতর দিয়ে কোনো তড়িংপ্রবাত সলে না তখন স্থাকশলাকা

নক্ষিণামুখী হয়ে অবস্থান করে। 3.2 নং চিত্রে কাটা কাটা রেখান্ধারা (dotted line) এ অবস্থানার দেখানো হয়েছে। কিন্তু তার দিয়ে তড়িংপ্রবাহ পাসানোর সঙ্গো সঙ্গো সংজ্ঞা চ্চত্রশালকার বিক্রেপ থবে এবং শলাকা তারের সাথে প্রায় লক্ষভাবে অবস্থান করবে (3.2 নং চিত্র) যদি থার শলাকার নিক্রেপ উল্টো দিকে হবে। অথবা ওড়িংপ্রবাহের অভিমায় A থেকে B এব দিকে না করে উল্টো B থেকে A -দিকে করলে শলাকার বিক্রেপ উল্টো দিকে হবে। এই সভিয়া অবস্থা 3.3 নং ভিয়েছ দেখানো হয়েছে।

এই পরীক্ষা থেকে আমরা নির্ম্নলিখিত বিষয়গুলি জানতে পারি ঃ

(i) তড়িৎপ্রবাহ টোম্বক ক্ষেত্র সৃষ্টি করতে পারে: কারণ, টৌম্বক ক্ষেত্রের প্রভাব ছাড়া চূম্বক শলাকার বিক্ষেপ হয় না। এই প্রসঙ্গো মনে রাখা কর্তবা, এই চৌম্বকক্ষেত্রের দ্বারা পরিবাহী চূম্বিকত হয় না। কিছু লৌহচূর্ণ

তড়িৎবাহী তারের কাছে আনলে, ঐ তার চূর্ণগুলিকে আকর্ষণ করবে না

- (ii) তারকে চৌম্বকশলাকার অক্ষের সঞ্চো কোনো কোণে আনত রাখলে (হন্ত্রিক তলে রেখে) তারের তড়িৎপ্রবাহ চৌম্বকশলাকাকে বিক্ষিপ্ত করবে কিন্তু তারকে যদি পূর্ব-পশ্চিম দিকে অর্থাৎ চৃম্বকশলাকার অক্ষের লম্বভাবে রেখে তড়িৎপ্রবাহ পাঠানো যায় তাহলে চৃম্বকশলাকার কোনো বিক্ষেপ হয় না।
- (iii) তড়িতাধান গতিশীল হলে, তা তড়িংপ্রবাহের সমতুলা হয়। ক'জেই আমরা বলতে পারি যে, কোনো তড়িতাধান গতিশীল হলে তার চতুর্দিকে একটি চৌম্বকক্ষেত্রের সৃষ্টি হয়; **তড়িতাধান স্থির থাকলে ঐরপ কোনো চৌম্বকক্ষেত্র সৃষ্টি হবে না।**

ওরস্টেড-এর এই আবিষ্কার তড়িৎবিজ্ঞানে এক নৃতন যুগের সূচনা করেছে। তড়িং ও চ্স্বাকের পারস্পরিক ক্রিয়ার ফলে বহু প্রয়োজনীয় তড়িংযন্ত্র তৈরি হয়েছে।

3:8:

চুম্বক বিক্লেপের দিক নির্ণয়ের নিয়ম (Rule for the direction of deflection of the magnetic needle):

পূর্ববর্ণিত পরীক্ষায় আমরা দেখলাম চুম্বক শলাকা তারের উপরে রাখলে যে দিকে বিক্ষেপ হয় নীচে রাখলে

বিক্ষেপ উল্টো দিকে হয়। অথবা তড়িৎপ্রবাহের অভিমুখ উল্টে দিলেও বিক্ষেপ উল্টো দিকে হয়। তড়িৎপ্রবাহের ফলে চুম্বক শলাকার বিক্ষেপের দিক নির্ণয় নিম্নলিখিত নিয়মগুলির দ্বারা করা হয়।

(1) **অ্যাম্পিয়ারের সম্ভরণ নিয়ম** (Ampere's swimming rule) : মনে করো, কোনো ব্যক্তি তড়িবাহী তার বরাবর প্রবাহের অভিমুখে এমনভাবে

হাত ছড়িয়ে সাঁতার দিচ্ছে যে তার মুখ সর্বদা চুম্বকের দিকে থাকে [3.4 নং চিত্র]। এই অবস্থায় এ ব্যক্তির বাম হাতের দিকে চুম্বকের উত্তরমের (N-pole) বিক্ষিপ্ত হবে। সুতরাং দক্ষিণমের্ এ ব্যক্তির ডান হাতের অভিমুখে বিক্ষিপ্ত হবে। (2) **ম্যান্তওয়েলের কর্ক-ক্কু নিয়ম** (Maxwell's cork screw rule) : পরিবাহী তার দিয়ে যে দিকে তড়িৎপ্রবাহ সঙ্গুহ, মনে কর, একটি ডান পাকের (right handed) কর্ক-স্কুকে পরিবাহী তার বরাবর

সেই দিকে চালনা করা হল। এই অবস্থায় কুখাজালি যেদিকে ঘুরবে চুম্বক শলাকার উত্তরমের সেই দিকে বিক্ষিপ্ত হবে [3.5 নং চিত্র]।

(3) বৃষ্ধান্সৃষ্ঠ নিয়ম (Thumb rule): ভান হাতের প্রথম তিনটি আঞ্চূল এরূপভাবে প্রসারিত কর যে তারা পরস্পরের সাথে লম্বভাবে অবস্থান করে। তর্জনী (fore finger) তার বরাবর প্রবাহের অভিমুখী হলে এবং মধ্যমা (middle finger) চুম্বকশলাকার দিকে মুখ করলে, বৃষ্ধাঞ্জালি যে দিক্

নির্দেশ করবে চুম্বকশলাকার উত্তরমরু সেই দিকে বিক্ষিপ্ত হবে [3.6 চিত্র]।

3.4. বায়ো-সাভার্ট সূত্রঃ (Bio-Savart law) :

ভড়িংবাহী পরিবাহী তার চতুর্দিকে যে চৌম্বকক্ষেত্র সৃষ্টি করে যে-কোনো বিন্দৃতে ঐ চৌম্বক ক্ষেত্রের প্রাবল্য বায়ো-সাভার্ট সত্ত্র হতে পাওয়া যায়।

P P A A A A B B B B B

ধরো, XY পরিবাহী দিয়ে X হতে Y অভিমুখে i তড়িৎপ্রবাহ যাছে। ঐ পরিবাহীর একটি ক্ষুদ্র অংশ AB — মার দৈর্ঘ্য মনে করো, dl — কল্পনাশ করো [চিত্র 3.7]। এখন বায়ো-সাভার্ট সূত্রানুযায়ী ঐ ক্ষুদ্র অংশের দরুন যে-কোনো বিন্দু P-তে চৌষক ক্ষেত্রের প্রাবল্য (i) দৈর্ঘ্য dl –এর সমানুপাতিক, (ii) ঐ ক্ষুদ্র অংশ হতে P বিন্দুর দূরত্ব দেবর বর্গের ব্যস্তানুপাতিক; এই দূরত্বকে বলা হয় দূরক (radius vector) (iii) ঐ ক্ষুদ্র অংশে তড়িৎপ্রবাহের অভিমুখ এবং দূরকের অভিমুখের অন্তর্বতী কোণ α র সাইনের সমানুপাতিক

এবং (iv) প্রবাহামাত্রার সমানুপাতিক হবে।

ঐ এলিমেন্টের দর্ন P বিন্দুতে চৌম্বক ক্ষেত্রের প্রাবল্য dH ধরলে, বায়ো-সাভটি সূত্রান্যায়ী,

$$dH \propto \frac{i \, dl. \sin \alpha}{r^2} \, \blacktriangleleft, \, dH = \frac{ki \, dl. \sin \alpha}{r^2} \dots \dots (i)$$

[k = আনুপাতিক ধ্রুবক যা প্রবাহমাত্রার এককের ওপর নির্ভরশীল।]

এই সূত্র ল্যাপলাসের সূত্র (Laplace's law) নামেও পরিচিত।

উক্ত চৌদ্বক ক্ষেত্রের অভিমৃথ হবে এলিমেন্ট dl এবং দূরক যে তলে অবস্থিত সেই তলের অভিলম্ব বরাবর। চিত্রে dl এবং দূরক কাগজের তলে আঁকা হয়েছে; অতএব P বিন্দুতে চৌদ্বক ক্ষেত্র কাগজের তলের অভিলম্ব এরে তভিংপ্রবাহের অভিমূথ X হতে Y -এর দিকে হলে চিত্রে যেরপ দেখানো হয়েছে

[॰] डिंडर मेरे प्रियोश देखा कम घरणाक वना का श्रेवा डिनायने (current element)

ঐরূপ হবে চৌম্বকক্ষেত্রের অভিমুখ। এই অভিমুখ 3.2 অনুচেছদে উল্লেখিত নিয়মগুলি প্রয়োগ করলে পাওয়া যাবে।

সমশ্র পরিবাহীর দরুন P বিন্দুতে মোট টৌম্বকক্ষেত্র পেতে গেলে পরিবাহীকে ঐরপ কৃদ্র কৃদ্র এলিমেন্টের দরুন P বিন্দুতে চৌম্বক ক্ষেত্র (dH) নির্ণয় করতে হবে এবং তাদের ভেক্টর সমষ্টি নিতে হবে।

C.G.S refere
$$k = 1$$
, $H = \Sigma dH = \Sigma \frac{i.dl.\sin\alpha}{r^2}$ Oe ... (iii)

উপরোক্ত সমীকরণ হতে বলা যায় যে $\alpha=\pi/2$ হলে, H-এর মান সর্বাধিক হয় এবং $\alpha=0$ হলে H এর মান সর্বনিম্ন হয়ে শুন্য হয়।

• তড়িৎ প্রবাহের তড়িচ্চুম্বকীয় একক * বায়ো-সাভার্ট (iii) নং সমীকরণে যদি মনে করা যায়, $dl=1, \alpha=90^\circ; r=1$ এবং H=1 এবং আনুষঙ্কিক প্রবাহমাদ্রাকে যদি একক হিসাবে ধরা যায় তবে k=1 হয়। এ থেকে আমরা তড়িৎপ্রবাহের তড়িচ্চুম্বকীয় এককের সংজ্ঞা পাই।

সংজ্ঞা ঃ এক সেন্টিমিটার দীর্ঘ (dl = 1 cm) একটি তারকে এক সেন্টিমিটার ব্যাসার্ধ-বিশিষ্ট (r = 1 cm) বৃত্তের আকারে বাঁকিয়ে তাতে যে তড়িংপ্রবাহ চালনা করলে বৃত্তের কেন্দ্রে এক ওরস্টেড (H = 1 oersted) চৌম্বক ক্ষেব্র উৎপন্ন হবে, তাকে প্রবাহমান্তার তড়িং-চুম্বকীয় একক বলা হবে।

এক্ষেত্রে $\alpha=90^\circ$ অথবা $\sin\alpha=1$ কারণ বৃত্তকার তারের যে–কোনো ক্ষুদ্র অংশ ব্যাসার্ধের সাথে সমকোণ করে। তড়িৎপ্রবাহের তড়িচ্চুম্বকীয় একক অনুযায়ী,

 $dH=rac{i\;d\;l.\sin\alpha}{r^2}$ Oe এবং $H=\sumrac{i\;d\;l.\sin\alpha}{r^2}$ Oe [i= তড়িচ্চুম্বকীয় এককে প্রবাহমাত্রা]। প্রবাহমাত্রার ব্যাবহারিক এবং এস্. আই একক 'অ্যাম্পিয়ার" –এর সাথে উপরিউত্ত তড়িৎ–চুম্বকীয় এককের সম্পর্ক নিমরপ ঃ

10 আাম্পিয়ার = 1 ই. এম. ইউ.।

ullet S. I. পত্থতিতে বায়ো-সাভার্ট সূত্রঃ এস. আই. পত্থতিতে $k=rac{\mu_0}{4\pi}$; চৌম্বক ক্ষেত্রের কোনো বিন্দুতে ক্ষেত্র প্রাবল্যকে **চৌম্বক আবেশ** (magnetic induction) বলা হয় এবং B অক্ষর দারা সৃচিত করা হয়। S.I পত্থতিতে $B=\sum rac{\mu_0}{4\pi}\cdot rac{i\ d\ l.\sin\alpha}{r^2}$.

ভেক্টর অন্দ্রপাতনে $\overrightarrow{B} = \sum \frac{\mu_0}{4\pi} \cdot \frac{i(\overrightarrow{dl} \times \overrightarrow{r})}{i(\overrightarrow{dl} \times \overrightarrow{r})}; \dots...(iv) \overrightarrow{idl}$ এই রাশিটিকে বলা হয় প্রবাহী

এলিমেন্ট (current element)। $i \ dl$ -এর অভিমুখ তড়িৎপ্রবাহের অভিমুখ বরাবর ; r=0-বিন্দুর সাপেকে P-বিন্দুর স্থানভেক্টর (position vector)।

পূর্বেই উল্লেখ করা হয়েছে যে চৌম্বক আবেশ \overrightarrow{B} -এর অভিমুখ $(\overrightarrow{dl} imes \overrightarrow{r})$ এই ভেক্টর গুণন যে

অভিমুখ নির্দেশ করে সেই অভিমুখে। $[\pi \overline{\phi} \sigma]$ ইন্ধেখযোগ্য যে বারো-সাভার্ট সূত্র থেকে প্রাপ্ত সমীকরণ (iii) অথবা (iv) বিন্দু আধান (point charge) কর্তৃক উৎপন্ন তড়িৎক্ষেত্রের সমীকরণের সদৃশ। বিন্দু আধান কর্তৃক উৎপন্ন তড়িৎক্ষেত্রের সমীকরণের সদৃশ। বিন্দু আধান কর্তৃক উৎপন্ন তড়িৎক্ষেত্রের মান্তির মত চৌম্বক ক্ষেত্র (বা আবেশ) দূরত্বের বর্গের ব্যপ্তানুপতিক সূত্র $\left(\frac{1}{r^2}\right)$ মেনে চলে। তবে উভয় ক্ষেত্রের মধ্যে পার্থকা এই যে, তড়িৎক্ষেত্রের উৎস হল বিন্দু আধান কিন্তু চৌম্বক ক্ষেত্রের উৎস

হল ক্ষুদ্র প্রবাহী এনিয়েন্ট (\overrightarrow{idl}) । বিন্দু আধানের মত বিন্দু চৌম্বক মেরুর (magnetic monopole) কোন অস্তিত্ব নেই। গ্রছাড়া, তড়িতাধান (তড়িৎক্ষেত্রের উৎস) একটি স্কেলার কিন্তু প্রবাহী এলিমেন্ট (চৌম্বক ক্ষেত্রের উৎস) একটি ভেক্টর।।

□ Example □

উত্তর দক্ষিণ মূখ করা একটি তারে 5 A প্রবাহ দক্ষিণ থেকে উত্তরে যাচেছ। ঐ তারের 1 em দৈর্ঘ্যের দর্ন তার থেকে উত্তর পূর্বদিকে 1 metre দূরে চৌম্বক আবেশ নির্ণয় করো। উন্তর: বায়ো সভোর্ট সূত্রানুযায়ী P বিন্দুতে চৌম্বক আবেশ [চিত্র 3.8],

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \cdot \frac{i \left(\overrightarrow{dl} \times \overrightarrow{r} \right)}{r^3}$$

জ্বাবা |
$$dB$$
 | = $\frac{\mu_0}{4\pi} \cdot \frac{i.dl.r \sin \alpha}{r^3} = \frac{\mu_0}{4\pi} \cdot \frac{idl.\sin \alpha}{r^2}$
এলানে $i = 5\Delta$, $dl = 1$ cm = 10^{-2} metre; $\alpha = 45^\circ$ এবং $r = 1$ m

$$\therefore dB = \frac{4\pi \times 10^{-7}}{4\pi} \times \frac{5 \times 10^{-2} \times \sin 45^{\circ}}{(1)^2} \text{ tesla (T)}$$
$$= \frac{5}{\sqrt{2}} \times 10^{-9} \text{ T}$$

 $= 3.54 \times 10^{-9} \text{ T}.$

চৌপক আনেশের অভিমুখ ভেক্টর গুণফলের দক্ষিণহন্ত নিয়মানুযায়ী di x r -এর অভিমুখে। ট্রানুখায়ী খাড়া নিচ্চত 👍

• চৌস্বক ক্ষেত্রের S.I. একক (S.I. unit of magnetic field):

চৌসক ক্ষেত্রের S.I. এককের নাম **টেসলা** (T)। যুগো**লা**ভের বিজ্ঞানী নিকোলা টেসলার নামান্সরণে এই নামকরণ করা হয়েছে। নিম্নলিখিতভাবে বায়ো সাভাট সূত্রের সাহায়ে। টেসলা এবং আভিপয়ারের সম্পর্ক নির্ণয় করা যায়। এস্.আই পন্ধতি অনুযায়ী বায়ো-সাভাট সমীকরণ হবে

$$dB = \frac{\mu_0}{4\pi} \cdot \frac{idi \sin \alpha}{r^2}$$
 किंग्ला

এখন, $\mu_0 = 4\pi \times 10^{-7}$ কেনরি/মিটার (Hm 1)

$$\therefore dB = 10^{-7} \frac{idl \sin \alpha}{r^2}$$

যদি i=1A. r=1m এবং $lpha=90^\circ$ হয়, গুরে $dB=10^{-7}$ tesla

অভএন, dl metre দীর্ঘ একটি ক্ষদ্র প্রবাহী এলিমেন্ট 1 আ্যাতিপরারে প্রবাহ বহন করলে এলিমেন্ট থেকে 1 metre দরে তে এলিয়েন্টের অভিলম্ন দিকে 10⁻⁷ tesla চৌপক ক্ষেত্র সৃষ্টি করে। এই ভারে টেসলাকে আত্পয়াবের পরিপ্রেক্ষিতে সংজ্ঞায়িত করা যায়।

जनीर्घ भाक् छात्व डिफिल्श्रवास्त्र छना त्य त्यात्नी ্চীসকক্ষেত্রের প্রাবল্য নির্ণয় (Determination of interestant magnetic field at a point due to current in a long stracen WITE).

বায়ো–সাভার্ট সূত্র প্রয়োগ করে যে–কোনো বিন্দু P–তে ঐ প্রবাহের দরুন চৌদ্বক ক্ষেত্রের প্রাবল্য নির্ণয় করা যায়। ঐ তারের একটি ক্ষুদ্র অংশ AB=dl হলে [চিত্র 3.9], P- বিন্দুতে চৌদ্বক ক্ষেত্রের প্রাবল্য

 $\overrightarrow{dB} = \frac{\mu_0}{4\pi} \cdot \frac{i \, \overrightarrow{dl} \times \overrightarrow{r}}{r^3}$ যেখানে \overrightarrow{r} হল $i \, \overrightarrow{dl}$ প্রবাহ এলিমেন্টের (current element) সাপেকে P বিন্দুর স্থান-ভেষ্টর।

চৌম্বক ক্ষেত্রের মান $dB=\frac{\mu_0}{4\pi}\frac{idl.\sin\alpha}{r^2}$ যেখানে $\alpha=dl$ এবং \overrightarrow{r} এর ভিতরকার কোণ। B থেকে AP রেখার ওপর BC লম্ব টানো। সরল জ্যামিতির সাহায্যে প্রমাণ করা শায় $\angle ABC=\angle OPB=\theta$ (ধর) কাজেই $r.d\theta=BC=AB\cos\theta=dl\cos\theta$.

 $\alpha = 90^{\circ} - \theta) : \sin \alpha = \cos \theta.$ $u_{\alpha} idl \sin \alpha \quad u_{\alpha} idl \cos \theta \quad u_{\alpha} ir.d\theta \quad u_{\alpha} id\theta$

অতএব,
$$dB = \frac{\mu_0}{4\pi} \frac{idl.\sin\alpha}{r^2} = \frac{\mu_0}{4\pi} \frac{idl.\cos\theta}{r^2} = \frac{\mu_0}{4\pi} \frac{i.r.d\theta}{r^2} = \frac{\mu_0}{4\pi} \frac{id\theta}{r}$$

আবার OP = a ধরলে, $\frac{a}{r} = \cos \theta$ কাজেই, $dB = \frac{\mu_0}{4\pi} \frac{i \cdot \cos \theta}{a} \frac{d\theta}{a}$

তারের OX দৈর্ঘ্যে এরূপ ক্ষুদ্র ক্ষুদ্র এলিমেন্ট নিয়ে তাদের দর্ন dB মানের সমষ্টি নির্ণয় করলে P বিন্দৃতে মোট চৌম্বকক্ষেত্র পাওয়া যাবে। এখন $\angle OPX = \theta_1$ হলে OX অংশের দর্ন P বিন্দৃতে চৌম্বক ক্ষেত্র প্রাবলা

 $= \int_0^{\theta_1} dB = \int_0^{\theta_1} \frac{\mu_0}{4\pi} \frac{i \cos \theta}{a} d\theta = \frac{\mu_0 i}{4\pi a} \cdot \sin \theta_1$

অনুরূপভাবে, \angle OPY = θ_2 হলে OY অংশের দরুন P বিন্দৃতে চৌম্বক ক্ষেত্র-প্রাবল্য

$$= \int_{0}^{\theta_{2}} dB = \frac{\mu_{0}}{4\pi} \int_{0}^{\theta_{2}} \frac{i \cos \theta}{a} d\theta = \frac{\mu_{0} i}{4\pi a} \cdot \sin \theta_{2}$$

 \therefore XY তারের দরুন P বিন্দুতে মোট চৌম্বক ক্ষেত্র প্রাবল্য $B=rac{\mu_0 \, i}{4\pi a}\, (\sin heta_1 + \sin heta_2)...(i)$

যদি তার সুদীর্ঘ হয় (infinitely long) তবে $\theta_1=\theta_2=90^\circ$ । সেক্ষেত্রে

$$B = \frac{\mu_0}{4\pi} \cdot \frac{2i}{a} = \frac{\mu_0 i}{2\pi a} \dots$$
 (ii)

• লম বিশুন্তকের উপর চৌম্বক ক্ষেত্র (Magnetic field on a perpendicular bisector): ধরো, XY = x এবং P বিন্দু XY রেখার লম্বদ্বিখন্ডকের উপর অবস্থিত (চিত্র 3.9)।

ভাহতো,
$$OX = OY = \frac{x}{2}$$
 এবং $\cos \theta_1 = \frac{x/2}{\sqrt{a^2 + \frac{x^2}{4}}} = \frac{x}{\sqrt{4a^2 + x^2}}$ $\cos \theta_2 = \frac{a}{\sqrt{4a^2 + x^2}}$ সমীকরণ (i) নিছায় $B = \frac{\mu_0 i}{4\pi a} \cdot \frac{2a}{\sqrt{4a^2 + x^2}} = \frac{\mu_0 ia}{2\pi a \sqrt{4a^2 + x^2}}$. (iii)

EXAMPLE O

একটি সুদীর্ঘ ঋজু তার খাড়া ভাবে রাখা আছে। তার দিয়ে তড়িৎপ্রবাহ উধর্বমুখী। তার থেকে $0.20~\mathrm{m}$ দূরের বিন্দুতে চৌম্বক ক্ষেত্র-প্রাবদ্য পাওয়া গেল $5.0 \times 10^{-4}~\mathrm{T}$. তারে প্রবাহমাত্রা কত ?

উঃ। সুদীর্ঘ ঝজু তারে তড়িৎপ্রবাহের দরুন তার থেকে a দূরে ক্ষেত্রপ্রাবল্য $B=rac{\mu_0}{2\pi a}$ এখানে $B=5.0 imes10^{-4}~{
m T}$; $\mu_0=4\pi imes10^{-7}$; $a=0.20~{
m m}$.

$$\therefore 5.0 \times 10^{-4} = \frac{4\pi \times 10^{-7}}{2\pi \times 0.20} \times i$$
 অথবা $i = 500$ A

বৃত্তাকার তারের লুপে তড়িৎপ্রবাহের জন্য বৃত্তের অক্ষণিত কোনো বিন্দুতে চৌম্বক ক্ষেত্রপ্রাবল্য (Magnetic field at a point on the axis of a current-carrying circular loop of wire)

lpha ব্যাসার্ধের একটি বৃত্তাকার তারের লুপের কেন্দ্রবিন্দু ${f O}$ থেকে অক্ষের $({f OQ})$ ওপর x দূরে একটি বিন্দু ${f P}$ নেওয়া হল [চিত্র 3.10]। পরিবাহী তার দিয়ে i অ্যাম্পিয়ার প্রবাহমাত্রা তিরচিহ্ন প্রদর্শিত পথে

চলছে। ঐ প্রবাহের দর্ন P
বিন্দুতে চৌষকক্ষেত্রের প্রাবল্য
নির্ণয় করতে হবে। লুপটি
কাগজের তলের অভিলম্ব
কিন্তু অক্ষ OPQ কাগজের
তলে অবস্থিত। ধরো, M
বিন্দুতে পরিবাহীর i dl
দৈর্ঘ্যের একটি অভি কুদ্র
এলিমেন্ট AB নেওয়া হল।
P বিন্দু থেকে ঐ এলিমেন্টের
মধ্যবিন্দু দুরে অবস্থিত।
চিত্র থেকে বোঝা যায় যে

এই সংযোগী রেখা (অর্থাৎ r) dl কৃদ্র অংশের অভিলম্ন। কাভেট একেরে $lpha=90^\circ;$

এখন বায়ো-সাভাট সূত্রান্যায়ী dl অংশের প্রবাহের দর্ন P বিন্ধতে টেমক ক্ষেত্র প্রাবলা

$$\vec{dB} = \frac{\mu_0}{4\pi} \cdot \frac{i \, \vec{dl} \times \vec{r}}{r^3}$$

মেহেও dl কাগড়ের তলের অভিলম্ম ডাই $dl \times r$ কাগড়ের ওলে অর্থস্থ ওবে। ভেম্বর গুণনের নিরমান্সায়ী dB এব অভিমুখ হবে চিত্রে প্রদর্শিও PR অভিমুখে (MP রেখার অভিলম্ বরাবর)। d চৌম্বকক্ষেত্রের মান

$$dB = \frac{\mu_0}{4\pi} \cdot \frac{i \, dl}{r^2} = \frac{\mu_0 \, i}{4\pi} \cdot \frac{dl}{(a^2 + x^2)} \cdot \left[(x \, r^2 + a^2 + x^2) \right]$$

 $\stackrel{
ightarrow}{
ightarrow}$ অভিমুখী $\stackrel{
ightarrow}{dB}$ চৌম্বক ক্ষেত্ৰকে অক্ষ OP এবং তার অভিলম্ব বরাবর দুই উপাংশে বিভব্ত

করলে অক্ষীয় উপাংশ
$$dB$$
 . $\sin\theta=\frac{\mu_0\,i}{4\pi}\,\frac{a\,dl}{(a^2+x^2)^{3/2}}\,\dots$ (i)

$$\sin \theta = \frac{a}{r} = \frac{a}{(a^2 + x^2)^{1/2}}$$

পরিবাহীর উপরার্ধে M বিন্দুর ক্ষুদ্র অংশের ন্যায় নিমার্ধে অনুরূপ N বিন্দুতে একটি ক্ষুদ্র অংশ নিলে, $\xrightarrow{}$ তার দর্নও P বিন্দুতে চৌম্বক প্রাবল্য হবে dB এবং তা PN অভিমুখে ক্রিয়া করবে। এ প্রাবল্যকে পূর্বের ন্যায় বিভাজন করলে OP-র অভিলম্ব উপাংশ হবে PR এর অভিলম্ব উপাংশের সমান এবং বিপরীত। স্তরাং বৃদ্তাকার পরিবাহীর যে-কোনো দুটি বিপরীত ক্ষুদ্র অংশ নিলে P বিন্দুতে তারা যে চৌম্বক প্রাবল্য সৃষ্টি করবে এসব প্রাবল্যের OP রেখার অভিলম্ব উপাংশগুলি সমান ও বিপরীত হবে। ফলে, অভিলম্ব উপাংশগুলি পরস্পরকে নাকচ করে দেবে।

কিন্তু পরিবাহীর উপরার্ধ এবং নিম্নার্ধ উভয়ের জন্যই OP রেখা বরাবর অক্ষীয় উপাংশগুলি সব একমুখী। কাজেই সমগ্র বৃত্তাকার পরিবাহীর দর্ম P বিন্দুতে চৌম্বক প্রাবলা

$$B = \frac{\mu_0}{4\pi} \frac{i.a}{(a^2 + x^2)^{3/2}}. \int dl = \frac{\mu_0}{4\pi} \frac{2\pi a^2 i}{(a^2 + x^2)^{3/2}} \left[\int dl = l = 2\pi a \right]$$

যদি বৃত্তাকার লুপে পাক সংখ্যা (number of turns) হয় n তবে,

$$B = \mu_0 \times \frac{2 \pi n a^2 i}{4 \pi (a^2 + x^2)^{3/2}} = \frac{\mu_0}{2} \frac{n a^2 i}{(a^2 + x^2)^{3/2}} \dots \dots (ii)$$

যদি x=0 হয়, তবে P বিন্দু বৃত্তাকার পরিবাহীর কেন্দ্রে অবস্থিত হবে এবং সেখানে চৌম্বক প্রাবল্য

$$B = \frac{\mu_0}{2} \cdot \frac{n \cdot a^2 \cdot i}{(a^2)^{3/2}} = \frac{\mu_0}{2} \cdot \frac{n i}{a}.$$

☐ Examples ☐

15 cm ব্যাস এবং 10 পাকের একটি ক্ষুদ্র বৃদ্ধাকার কুঙলীতে 10A প্রবাহ গেলে, ঐ কুঙলীর কেন্দ্রে চৌম্বকক্ষেত্রের প্রাবল্য কত হবে ?

উঃ। শুড়িংনাহী বৃগ্রাকার লুপের কেন্দ্রে চৌম্বক প্রাবল্য $B=\dfrac{\mu_0}{2}$. $\dfrac{n\,i}{a}$

(1) Spainted,
$$n = 10$$
; $i = 10$ A; $a = 7.5$ cm $= \frac{7.5}{100}$ m; $\mu_0 = 4\pi \times 10^{-7}$

$$\therefore B = \frac{4\pi \times 10^{-7} \times 10 \times 10 \times 100}{2 \times 7.5} = 8.38 \times 10^{-4} \text{ tesla.}$$

② 0.12 m ব্যাসের এবং 10 পাকের একটি তার কুন্ডলীতে 7A প্রবাহমাত্রা যাচছে। কুন্ডলীকে চৌম্বক মধ্যরেখায় স্থাপন করা আছে। ঐ কুন্ডলীর কেন্দ্র থেকে 0.08 m দূরে এবং কুন্ডলীর তলের অভিলয় দিকে একটি চৌম্বক শলাকা রাখলে, শলাকা কত কোণে বিক্ষিপ্ত হবে ? ঐ স্থানে ভূচৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ = 0.4 × 10⁻⁴ T.

উঃ। কুণ্ডলার কেন্দ্র থেকে
$$x$$
 দূরে কুণ্ডলার অক্ষের ওপর চৌম্বক প্রাবলা $B=rac{1}{2}rac{\mu_0 n \, \iota \, a^2}{(a^2-x^2)^{3/2}}$

$$\mathfrak{S}^{3/7}$$
, $n = 10$; $t = 7 \,\mathrm{A}$; $\alpha = 0.06 \,\mathrm{m}$; $x = 0.08 \,\mathrm{m}$

$$B = \frac{4\pi \times 10^{-7} \times 10 \times 7 \times (0.06)^2}{2 \left\{ (0.06)^2 + (0.08)^2 \right\}} = 1.58 \times 10^{-4} \text{ T}.$$

ে ১৮০ শংকার বিক্রেপ । হয় তবে ট্যানজেণ্ট সূত্র (4.6 অনুচেছদ দুষ্টবা) থেকে পাই

$$\tan \theta = \frac{B}{H} = \frac{1.58 \times 10^{-4}}{0.4 \times 10^{-4}} = 4 \ (প্রয়) : \theta = 75°60' \ (প্রায়)$$

3.7.

আম্পিয়ারের পরিক্রমণ উপপাদ্য (Ampere's circuita theorem):

কোনো নির্দিন্ট তড়িৎপ্রবাহ বন্টনের (current distribution) দবুন উৎপন্ন চৌম্বকক্ষেত্র নির্ণয়ের আর একটি উপায় হল আন্দিপয়ারের পরিক্রমণ উপপাদা। চথর তড়িৎবিজ্ঞানে গঙ্গের উপপাদা (চথর তড়িৎ বিজ্ঞান, 4.22 অনুচ্ছেদ) একটি য়োলিক উপপাদা। গসের উপপাদা থেকে কোনো বন্ধপৃষ্ঠে চথির তড়িৎক্ষেত্রের পৃষ্ঠ সমাকল (surface integral) এবং ঐ বন্ধ পৃষ্ঠ কর্তৃক আবন্ধ মোট তড়িতাধানের ভিতর সম্পর্ক পাওয়া যায়। কৌম্বক ক্ষেত্র B এর বেলায় ঐ রকম কোনো সম্পর্ক পাওয়া যায় না কারণ একক তড়িতাধানের মতো একক চৌম্বক মেবুর কোনো অন্তিত্ব নেই। চুম্বক সর্বদা দ্বিমেরু বিশিষ্ট। কিন্তু চৌম্বক ক্ষেত্রে অবচ্থিত কোনো বক্ররেখার (curve) বিভিন্ন বিন্দৃতে চৌম্বক ক্ষেত্রপ্রাবলোর সাথে ঐ বক্ররেখা বেন্টিত ক্ষেত্রের ভিতর দিয়ে প্রবাহিত মোট তড়িৎপ্রবাহের একটি সম্পর্ক আছে। সর্বপ্রথম অ্যাম্পিয়ার এই সম্পর্ক আবিষ্কার করেন। তাই এই সম্পর্ককে বলা হয় আন্মিপয়ারের পরিক্রমণ উপপাদা।

একটি বন্ধ পথ বরাবর চৌম্বক আবেশের লাইন ইন্টিগ্রাল (রেখা সমাকল) ঐ বন্ধ রেখা বেন্টিত মোট প্রবাহমাত্রার μο গুণ (μο = শূন্য মাধ্যমের চৌম্বক ভেদ্যতা)।

(The line integral of the magnetic induction around a closed path is the total current enclosed by the path multiplied by the permeability of free space)
এটাই পরিক্রমণ উপপাদ্য।

ব্যাখ্যা (Explanation) ঃ XY একটি তার যার ভিতর দিয়ে i আন্দিপয়ার প্রবাহ যাছে [চিত্র 3.11]। ঐ প্রবাহ তারের চতুর্দিকে চৌম্বকক্ষেত্র উৎপন্ন করবে। ঐ চৌম্বক ক্ষেত্রের মধ্যে i প্রবাহকে বেন্টন করে একটি কন্দ্র বক্ররেখা C কল্পনা করে। dl ঐ রেখার ওপর একটি ক্ষ্ম দৈর্ঘা। ঐ স্থানে তড়িৎপ্রবাহের দর্ন টৌম্বক ক্ষেত্র B ক্ষম দৈর্ঘা dl এর সাথে 0 কোণে আনত। এখন, B . dl এই ফ্লেলার গুণন সম্পন্ন কর এবং কন্দ্র রেখা বরাবর বিভিন্ন বিন্দৃতে dl নিয়ে ঐ গুণন সম্পন্ন করে ইন্টিশ্রেশন নির্ণয় করে। অথাৎ, f f . dl নির্যয় করে। করে।

 $\oint \overrightarrow{B} \cdot dl$ কে বলা হয় **ঢৌয়ক কেন্ত্রের লাইন ইণ্টিখ্রাল** বা **রেখা সমাকল** thme integral of magnetic field) । \oint প্রস্তাকটি বৃবায় য়ে বক্তরেখার এক বিন্দু থেকে যাত্রা শুরু করে এক পাক কোরার সম্পূর্ণ বন্ধ পথ। পূর্বোক্ত (i) নং সমীকরণ হল পরিক্রমণ উপপাদেরে গাণিতিক রূপ \overrightarrow{B} এবং dl এর অন্তর্বাতী কোণ θ হওয়ায় লেখা যায় $\oint \overrightarrow{B} \cdot dl = \oint B \, dl \, \cos \theta = \mu_0 \, t$ বলা বাহুল্য, n যার C বক্তরেখা পরিক্রমণ করলে

$$\oint \stackrel{\rightarrow}{B} \stackrel{\rightarrow}{\cdot dl} = \mu_0 \, ni$$

রেখা সমাকলের পরিপ্রেক্ষিতে আন্দিপয়ারের উপপাদাকে নিম্নলিখিওরপ বিবত করা মায় ঃ

চৌসকক্ষেত্রের মধ্যে কোনো বন্ধরেখা বরাবর ঐ ক্ষেত্রের রেখাসমাকলের মান ঐ বন্ধরেখা বেন্টিত প্রবাহমাত্রার μο গুণ।

আ্যাম্পিয়ারের পরিক্রমণ উপপাদ্য বায়ো সাভার্ট সূত্র থেকে উপপাদন করা যায় : আবার, বায়ো সাভার্ট সূত্র আ্যাম্পিয়ারের পরিক্রমণ উপপাদ্য থেকে উপপাদন করা যায়। অর্থাৎ, অন্তর্নিছিত বৈজ্ঞানিক তথ্যের ভিত্তিতে এই দুটি উপপাদ্য পরস্পারের তুল্য (equivalent)। তথাপি, কয়েকটি প্রতিসম অবস্থার ক্ষেত্রে আ্যাম্পিয়ারের উপপাদ্য বায়ো–সাভার্ট উপপাদ্যের তুলনায় বেশি কার্যকর। ঐ সব ক্ষেত্রে চৌম্বক আবেশ নির্ণয় খুব সহজ হয় যদি আমরা আ্যাম্পিয়ারের উপপাদ্য ব্যবহার করি। পরবর্তী অনুচ্ছেদে দু একটি উদাহরণ দেওয়া হল।

3.৪ অ্যাম্পিয়ারের পরিক্রমণ উপপাদ্যের প্রয়োগ (Application of Ampere's circuital theorem) :

(ক) তড়িঘাহী ঋজু পরিবাহীর দর্ন চৌষক ক্ষেত্র (Magnetic field due to a long straight conductor carrying a current):

i অ্যাম্পিয়ার তড়িদ্বাহী ঋজু পরিবাহী থেকে a দূরে একটি বিন্দু P নেওয়া হল। এইরূপ প্রবাহের দরুন আবেশ রেখাগুলি (lines of induction) সমকেন্দ্রিক কৃত্ত হয়। বৃত্তের কেন্দ্র তারের ওপর অবস্থিত এবং বৃত্তগুলির তল তারের দৈর্ঘ্যের সমকোণে থাকে [চিত্র 3.12]। প্রতিসামোর (symmetry) জন্য যে-কোনো বৃত্তাকার পথের সর্বত্র ঋজু তড়িৎপ্রবাহের দরুন চৌম্বক ক্ষেত্রের প্রাবল্য সমান এবং ক্ষেত্রের অভিম্থ বৃত্তের স্পর্শক বরাবর (চিত্র দেখ)।

এখন P বিন্দৃতে চৌম্বক ক্ষেত্রের প্রাবলা B হলে বৃত্তপথ

বরাবর চৌম্বক ক্ষেত্রের রেখা সমাকল = $\oint \overrightarrow{B} \cdot \overrightarrow{dl} = \oint B \, dl = B \int dl = B.2\pi a$ এক্ষেত্রে বৃত্ত পরিবেন্টিত তড়িৎ প্রবাহ = i অতএব, অ্যাম্পিয়ারের উপপাদ্য অনুযায়ী,

 $B imes 2\pi a = \mu_0 i$ অথবা $B = \frac{\mu_0}{2\pi} \cdot \frac{i}{a}$

আমরা এই সমীকরণ 3.5 অনুচ্ছেদ বায়োসাভার্ট সূত্র থেকে উপপাদন করেছি।

*(খ) সলিনয়েডে তড়িৎপ্রবাহের দর্ন চৌষকক্ষেত্র (Magnetic field due to current in a solenoid)

দীর্ঘ অন্তরিত তারকে একটি অন্তরক চোঙের গায়ে যদি এমনভাবে জড়ানো যায় যে প্রত্যেক পাক

^{*} কেবলমাত্র জয়েন্ট এন্ট্রান্স পরীক্ষার জন্য

চোঙের অক্ষের সঙ্গে অভিলম্ব হয় তবে ঐ তারকুঙলীকে সনিনয়েত বলে (চিত্র 3.13)। সাধারণত সনিনয়েতের দৈর্ঘা কৃঙলীর ব্যাসার্ধ অপেক্ষা অনেক বেশী থাকে। কুঙলী দিয়ে তড়িংপ্রবাহ পাঠালে চৌম্বক

ক্ষেত্র উৎপন্ন হরে। ঐ চৌম্বক ক্ষেত্রের বলরেখা অঙকন করলে দেখা যায় সলিনয়েডের বাইরের কোনো বিন্দুতে ক্ষেত্রপ্রাবল্য শূন্য কিন্তু ভিতরে অক্ষের উপর সকল বিন্দুতে টৌম্বক ক্ষেত্র সৃথম (uniform)। সলিনয়েডের অক্ষ্পিত কোন বিন্দু P তে আদ্পিয়ারের উপপাদ্য প্রয়োগে চৌম্বকক্ষেত্র প্রাবল্য নির্ণয় করতে হলে P বিন্দুর ভিতর দিয়ে PQRS একটি আয়তক্ষেত্র অঙকন করো (চিত্র 3.14)। আয়তক্ষেত্রর PQ বাহু সলিনয়েড অক্ষের সমান্তরাল : অতএব,

সলিনয়েডের অভ্যন্তরম্থ চৌম্বক ক্ষেত্র $\stackrel{
ightarrow}{B}$ এরও সমান্তরাল। ফলে, $\int\limits_{P}^{Q} \stackrel{
ightarrow}{dl} = B.l$ ' আয়তক্ষেত্রের

অন্য তিনবাহুতে $\stackrel{\longrightarrow}{B}$. $\stackrel{\longrightarrow}{dl}$ হবে শূন্য কারণ সলিনয়েডের বাইরে $\stackrel{\longrightarrow}{B}$ এর মান শূন্য এবং ভিতরে আয়তক্ষেত্রের বাহুর (m QR এবং m SP) অভিলম্ব। কাজেই m PQRS বরাবর

চৌম্বক ক্ষেত্রের রেখা সমাকল $\oint \stackrel{
ightarrow}{B} \cdot \stackrel{
ightarrow}{dl} = Bl.$

S ... R

P Q ... R

ধরো, সলিনয়েড়ে দৈর্ঘ্য বরাবর প্রতি একক দৈর্ঘ্যে পাকসংখ্যা = n; তাহলে PQRS আয়তক্ষেত্রের ভিতর দিয়ে মোট nl সংখ্যক পাক অতিক্রম করছে যার প্রতিটি পাকে তড়িংপ্রবাহ = i; তাহলে PQRS ক্ষেত্রফলের ভিতর দিয়ে অতিক্রান্ত প্রবাহ = nli

আাম্পিয়ারের পরিক্রমণ উপপাদ্য অনুযায়ী, $\oint \stackrel{
ightarrow}{B} \stackrel{
ightarrow}{.dl} = \mu_0 n l i$

অথবা, $Bl = \mu_0.n.l.i$ অথবা, $B = \mu_0.n.i$

সলিনয়েডে মোট পাক সংখ্যা যদি N হয়, তবে $n=\frac{N}{l}$; অতএব, $B=\frac{\mu_0 N i}{l}$

(গ) প্রান্তবিহীন সন্দিনয়েড বা টরয়েডের দর্ন চৌম্বকক্ষেত্র (Magnetic field due to an endless solenoid or toroid):

একটি দীর্ঘ সলিনয়েডকে যদি বৃত্তাকারে বাঁকানো হয় তবে তাকে টরয়েড বলে। বিকল্পে, একটি অপরিবাহী বস্তুর রিং নিয়ে যদি তার গায়ে সমভাবে তড়িৎ পরিবাহী তার জড়ানো হয়, তাহলেও একটি টরয়েড পাওয়া যায়

[চিত্র 3.15]। আম্পিয়ারের উপপাদোর সাহায়ে এই টরয়েডের অভ্যন্তরে চৌম্বক ক্ষেত্র নির্ণয় করা যায়।

ধরো, টরয়েডের অভ্যন্তরে P বিন্দুতে চৌদ্বক ক্ষেত্র নির্ণয় করতে হবে। টরয়েড বৃত্তের সজো এককেন্দ্রিক ভাবে P বিন্দুর ভিতর দিয়ে একটি বৃত্ত (কাটা কাটা রেখা প্রদর্শিত) কল্পনা করো। টরয়েডের গুড়িৎপ্রবাহ i কর্তৃক উৎপন্ন চৌদ্বকক্ষেত্রের মান ঐ বৃত্তের প্রতি বিন্দৃতে সমান হবে। তাছাড়া বৃত্তের মোকরোলা বিন্দৃতে ঐ ক্ষেত্রের অভিম্ম হবে বৃত্তের স্পর্শক বরাবর। চিত্রে প্রদর্শিত পথে গুড়িৎপ্রবাহ গোলে চৌদ্ধক ক্ষেত্রের অভিম্ম হবে ঘড়ির কাঁটার দিকে বৃত্তের ব্যাসার্ধ r এবং সলিনরেছের

প্রতি একক দৈর্ঘার পাক-সংখ্যা n হলে, বৃত্তের সাথে জড়িত তড়িৎপ্রবাহ = 12πn.11

আন্থিয়ারের উপপাদন অনুযায়ী,
$$\oint \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 \cdot (2\pi r.n.) t$$
 অথবা $B \times 2\pi r = \mu_0 \cdot (2\pi r.n.) i$ অথবা $B = \mu_0 \cdot n i$

যদি টরয়েডে মোট পাক সংখ্যা হয় N তবে $n=rac{N}{2\pi r}$;

সেকেতে,
$$B = \frac{\mu_0 Ni}{2\pi r}$$
.

O Example O

একটি টরয়েডের শাঁসের (core) অন্ধর্ব্যাসার্থ 20 cm এবং বহির্ব্যাসার্থ 21 cm। টরয়েডে 3500 পাক তার জড়ানো আছে। তারে তড়িৎপ্রবাহ 10 A হলে (i) টরয়েডের বাইরে (ii) টরয়েডের শাঁসের ভিতর এবং (iii) টরয়েডের অভ্যন্তরের শুন্য ম্থানে চৌম্বকপ্রাবল্য নির্ণয় क्दर्श।

উঃ। শীসের গড় ব্যাসার্ধ
$$r=\frac{20+21}{2}=20.5~\mathrm{cm}=20.5\times10^{-2}~\mathrm{m}$$

মোট পাক সংখ্যা N=3500; তারের প্রবাহ i=10A

প্রতি একক দৈর্ঘ্যে পাক সংখ্যা
$$n=rac{N}{2\pi r}=rac{3500}{2\pi imes 20.5 imes 10^{-2}}=rac{3500}{41 imes 10^{-2} imes \pi}$$

- (i) টরয়েডের বাইরে চৌম্বক প্রাবল্য শূন্য।
- (ii) টরয়েডের শীসের ভিতর চৌম্বক প্রাবল্য $B = μ_0 n i$

$$= 4\pi \times 10^{-7} \times \frac{3500}{41 \times 10^{-2} \times \pi} \times 10$$

tesla

$$= 3.41 \times 10^{-2} \text{ T.}$$

(iii) টরয়েডের অভ্যন্তরে শূন্য স্থানে চৌম্বক প্রাবল্য শূন্য কারণ সেখানে কোনো তড়িৎপ্রবাহ নেই।

সুবম চৌমক ক্ষেত্রে স্থাপিত তড়িৎবাহী বাজু তারের জন্ম প্রযুক্ত বল (Force on a current-carrying straigh conductor placed in a uniform magnetic field):

ধরো, P বিন্দুতে m মেরুশক্তির একটি চৌম্বক মেরু রাখা আছে এবং ঐ মেরু থেকে r দরে কাগজের তলে একটি ঋজু তার AB অবস্থিত। তার দিয়ে i ampere তড়িৎপ্রবাহ যাচ্ছে [চিত্র 3.15]। বায়ো-সাভার্ট সূত্রানুযায়ী একটি ক্ষুদ্র এলিমেন্ট dl কর্তৃক P বিন্দৃতে উৎ

পন্ন চৌম্বক ক্ষেত্রের প্রাবল্য $=rac{\mu_0}{4\pi}\cdotrac{i.dl.\sin a}{2}$; এর অভিমুখ হবে

কাগজের তলের অভিলম্ব দিকে।

P বিন্দুতে রাখা চুম্বক মেরুর শক্তি = m; তাই ঐ মেরু কর্তৃক

খাণুড়ত বল
$$dF=$$
 মোৰণাঙি $(m) imes$ জেনি-পূৰ্বল্য $=rac{\mu_0}{4\pi}\cdotrac{m\,i.dl.\sinlpha}{r^2}$

এই বল কাণাভের তলের অভিলম্ব দিকে ক্রিয়া করে এবং সম্মুখ থেকে পিছনের দিকে অভিমুখী।

এখন, নিউনির এতীয় গতি সূত্রান্যায়ী প্রত্যেক ক্রিয়ারই সমান ও বিপরীত প্রতিক্রিয়া আছে। সূত্রাং তড়িংব হী ক্ষ্ম এতি নেউ idl যেমন m মের্শন্তির মের্র ওপর বল প্রয়োগ করে, চৌদ্ধক মের্ও তেমনি তড়িংবাহী পরিবাহী dl অংশে সমান ও বিপরীত বল প্রয়োগ করেব। অর্থাৎ পরিবাহীর ক্ষ্মন অংশ যে

প্রতিকিয়া বল অনুভব করবে তা
$$dF=rac{\mu_0}{4\pi}\,.rac{m\,i.dl.\sinlpha}{r^2}$$

এখন m মের্শন্তির কেলো মের্ r দূরে যে ঐদকক্ষেত্র সৃষ্টি করে তা B ধরলে, $B=\frac{\mu_0}{4\pi}\cdot\frac{m}{r^2}$. পরিবাহীর dl ক্ষুদ্র অংশে প্রযুক্ত বল $dF=B.i.dl\sin\alpha$

ভেক্টর প্রতীক অন্যায়ী $d\overrightarrow{F}=i(dl\times\overrightarrow{B})$

সমস্ত পরিবাহীর বল দরুন
$$\overrightarrow{F}=\int d\overrightarrow{F}=\int i (\overrightarrow{dl}\times\overrightarrow{B})=i (\overrightarrow{l}\times\overrightarrow{B})$$

বলের মান $F = ilB \sin \alpha$

- (a) তারের প্রতি একক দৈর্ঘ্যে (l=1) প্রযুক্ত বল $F=B\,i\,\sin\,lpha$; যখন $lpha=90^\circ$ তখন বল F=B.i
- (b) পরিবাহীতে যদি n সংখ্যক তারের পাক্ থাকে এবং প্রত্যেক পাকের তড়িৎপ্রবাহ যদি i ampere হয় তবে পরিবাহীর ওপর প্রযুক্ত বল F=n.B.i.l.; প্রলম্বিত কুণ্ডলী (suspended coil) গ্যালভ্যানোমিটারে এই বলের প্রয়োগ দেখতে পাওয়া যায় [3.17 অনুচ্ছেদ দুন্টব্য]।
- (c) যদি পরিবাহী B চৌম্বকক্ষেত্রের সমান্তরালে থাকে, তবে $\alpha=0$ এবং সেক্ষেত্রে পরিবাহীর ওপর প্রযুক্ত বল F=0.

3.10. তারের গতির অভিমুখ নির্ণয় ঃ ফ্লেমিং-এর বাম হস্ত নির্বাম (Fleming's left hand rule) :

তড়িৎপ্রবাহের দিক ও চৌম্বক ক্ষেত্রের দিক অনুযায়ী পরিবাহী তার কোন্ দিকে বিক্ষিপ্ত হবে তা ফ্লেমিং-এর বামহন্ত নিয়ম হতে জানা যায়। নিয়মটি নিমর্প ঃ বাম হন্তের প্রথম তিনটি আঙ্গাল পরস্পরের সাথে সমকোণে রেখে প্রসারিত করো। যদি তর্জনী (forefinger) চৌম্বক ক্ষেত্রের দিক এবং মাধ্যমা (middle finger) তড়িৎপ্রবাহের দিক নির্দেশ করে তবে বৃদ্ধাঞ্জালি তারের গতির অভিমুখ নির্দেশ করেবে (3.16 নং চিএ)। একে অনেক সময় মোটর নিয়ম (motor rule) বলা হয়।

Examples 0

② 200 cm লম্বা তার 10 A প্রবাহ নিয়ে 0.3 T চৌম্বকক্ষেত্রে ম্পাপিত আছে। তারের ওপর কত বল প্রযুক্ত হবে যখন (i) তার চৌম্বকক্ষেত্রের অভিলম্ন (ii) তার চৌম্বকক্ষেত্রের সমান্তরাল থাকে।

উঃ। (1) তার উপক্ষেত্রর অভিনম হলে, গণের ওপর বল – Bil newton

 $= 0.3 \times 10 \times \frac{200}{100} = 6N.$

(ii) তার চৌম্বক ক্ষেত্রের সঞ্চো a কোণ করলে,

(ijj) তাব চৌদ্ধক ক্ষেত্রের সমান্তরাল হলে $\alpha=0$, $\sin\alpha=0$; কংগ্রেই ভারেব ওপর বল =0,

② XYZ তারের একটি সমবাহু ত্রিভুজ। তারের প্রতি বাহুর দৈর্ঘা 1 মিটার এবং তার
দিয়ে 4A প্রবাহ তিরচিহ্ন বরাবর যাছে। YZ বাহুর সমান্তরালে 0.2 × 10⁻⁴ tesla

চৌম্বকক্ষেত্র $\begin{pmatrix} \rightarrow \\ B \end{pmatrix}$ ক্রিয়া করছে। XY, YZ, এবং ZX-এই তিনটি বাহুতে কার্যরত বলের মান নির্ণয় করো।

48/

উঃ। প্রতি বাহুর দৈর্ঘ্য $l=1 \mathrm{m}$

YZ বাহুর ওপর ক্রিয়ারত বল $\overrightarrow{F}_{yz} =$ $\hat{i}.(\overrightarrow{i} \times \overrightarrow{B})$

অথবা
$$F_{yz} = i.l \times B \times \sin \alpha$$

= $4 \times 1 \times 0.2 \times 10^{-4} \times \sin 0^{\circ}$
= 0

[(होसक स्कब B अवः YZ সমাखतान]

$$ZX$$
 বাহুর ওপর বল $\stackrel{
ightarrow}{F_{zx}}=i.$ ($\stackrel{
ightarrow}{l} imes\stackrel{
ightarrow}{B}$)

$$F_{2x} = 4 \times 1 \times 0.2 \times 10^{-4} \times \sin 120^{\circ} \qquad (\alpha = 120^{\circ})$$

$$= 0.8 \times 10^{-4} \times \sqrt{3.2}$$

$$= 0.69 \times 10^{-4} \text{ N}.$$

ভেস্টর ক্রশ গুণুনের নিয়মানুযায়ী, এই বল কাগজের তলের অভিলম্ব এবং ওপর থেকে নীচের দিকে।

হান্র্পভাবে,
$$XY$$
 বাহুর ওপর বল $\overrightarrow{F}_{XY} = i.$ ($\overrightarrow{l} \times \overrightarrow{B}$)

ভাগৰ
$$F_{xy} = i \times l \times B \times \sin 120^\circ$$
 [$\alpha = 120^\circ$]
= $4 \times 1 \times 0.2 \times 10^{-4} \times \sqrt{3/2}$

$$= 4 \times 1 \times 0.2 \times 10^{-4} \times 366$$
$$= 0.69 \times 10^{-4} \text{ N}.$$

একইভাবে এই বলের **অভিমুখ কাগজের** ত**লের অভিলম্ব এবং নী**চু থেকে উপরের দিকে।

চৌম্বক ক্ষেত্রে গতিশীল তড়িতাধানের ওপর বল (Force on a charge moving in a magnetic field) :

অণুপ্রবাহ (drift) হলে পরিবাহীতে তড়িৎপ্রবাহের উৎপত্তি হয়।

সূতরাং বলা যায় যে তড়িতাধান গতিশীল হলে তা তড়িৎপ্রবাহের সমতৃল্য হয় এবং চৌম্বক ক্ষেত্রের ভিতর গতিশীল হলে তড়িংবাহী তারের মত তড়িতাধানও বল অনুভব করে।

মনে করো. l দৈর্ঘ্যের পরিবাহীতে i প্রবাহমাত্রা পাঠিয়ে তাকে B চৌম্বকক্ষেত্রে রাখা হল। পরিবাহী যে-বল

অনুভব করবে তা F_1 ধরকে $F_1=B.i.l\sin\alpha$ [3.9. অনুচেছদ]

কিন্ত ইলেকট্রনের অণপ্রবাহ বেগ (drift velocity) v হলে, $i=n\ e\ A.v$ যেখানে n= পরিবাহীর প্রতি আয়তনে ইলেকটন সংখ্যা; e = ইলেকটনের তডিতাধান; A = পরিবাহীর প্রস্থাচ্ছেদ। প্রথম খন্ড 2.2 অনচ্ছেদ প্রবাহী তডিংবিজ্ঞানা

$$\therefore F_1 = B.n.e.A.v.l \sin \alpha$$

এই বল পরিবাহীর অভ্যন্তরে মোট মন্ত ইলেকটন

n Al -এর ওপর ক্রিয়া করে। অতএব, প্রতি ইলেকট্রনের ওপর প্রযুক্ত বল $F=rac{F_1}{n|A|l}=$ $\frac{B n e A v l \sin \alpha}{n A l} = Bev \sin \alpha.$

সাধারণভাবে q তড়িতাধান যুক্ত কোনো কণা B চৌম্বক ক্ষেত্রে v বেগে গতিশীল থাকলে, আধানের ওপর বল $F=B.q.v\sin lpha$ অথবা $\overrightarrow{F}=q(\overrightarrow{v} imes\overrightarrow{B})$ । এই বল চৌম্বক ক্ষেত্র ও তড়িভাধানের গতি—উভয়েরই লম্বভাবে ক্রিয়া করে [চিত্র 3.17]।

বিশেষ ক্ষেত্ৰ (Special cases):

- (i) আধান গতিশীল না থাকলে অর্থাং v=0 হলে F=0 : কাজেই চৌত্বক ক্ষেত্রে স্থির তড়িতাধান কোনো বল অনুভব করে না।
- (ii) যদি (t = 0° অথবা 180° হয়, অর্থাৎ তড়িতাধান চৌম্বক ক্ষেত্রের সমান্তরালে গতিশীল থাকলে F=0 ; কাজেই চৌধকক্ষেত্রের সমান্তরালে গতিশীল ভড়িভাধান কোনো বল অনুভব করে না।
- (iii) যদি (x = 90° হয় অর্থাৎ তড়িতাধান চৌসকক্ষেত্রের সজো সমকোণে গতিশীল থাকলে F = B.q.v.

টে সকক্ষেত্র গতিশীল কোনো ভড়িভাধানযুত্ত কণার ওপর প্রযুত্ত বলের এটাই সর্বাধিক মান।

সাইক্লেটোন কম্পাঙ্ক (Cyclotron Frequency):

আমারা পর্ব অনুষ্ঠেদে দেখেতি য়ে আহিত ক্যার গতিবেল ৮ চৌম্বক্ষেত্র B এর সমাকাশে হলে $(u=90)^\circ$) and god dot $F=B\,q\,v$ and dot (b) having and and shorter grants ক্ষাকোলে ক্যা কৰে আমৰা জালি কৰাৰ গতিবেশেৰ সক্ষো বল সৰ্বলা আভলমূ বুলে কলা একটি ব্রুলায়ে हर्नान हु हम अहता. अपूर कताहित स्वाहित स्वाहित विश्वास कर्य र्प्त करता पूर्व বাহুল্য F = B.q.v. বল কণার অভিকেন্দ্র বল সরবরাহ করে। কণার ভর m এবং বৃত্তপথের ব্যাসার্ধ r হলে,

$$\frac{mv^2}{r} = B.q.v.; \quad \therefore r = \frac{mv}{B.q.}$$

বৃত্তপথ বরাবর কণাটির আবর্তবেগের কম্পাঙ্ক f হলে,

$$f=rac{v}{2\,\pi\,r}=rac{1}{2\,\pi}\,.rac{B.\,q}{m}=rac{B.\,q}{2\,\pi\,m}$$
 ; দেখা যাচেছ যে

আবর্তবেগের কম্পাঙ্ক কণার গতিবেগের ওপর নির্ভর করে

f কেবলমাত্র চৌম্বকক্ষেত্র B এর ওপর নির্ভর করে। আহিত কণার গতিবেগ যদি B চৌম্বক ক্ষেত্রের সাথে θ কোণে আনত হয় (চিত্র 3.21) তবে কণার গতিপথ বৃত্তাকার হয় না; গতিপথ জটিল স্প্রিংয়ের (helix) আকার পায়।

এক্ষেত্রে, কণার গতিবেগকে চৌম্বকক্ষেত্রের অভিমুখে এবং অভিলম্ব দিকে বিভাজন

করলে $v\cos\theta$ এবং $v\sin\theta$ উপাংশ পাই। চৌম্বকক্ষেত্র B এর অভিমথে কণার ওপর কোনো বল ক্রিয়া করে না বলে $v\cos heta$ উপাংশ অপরিবর্তিত থাকে। কণা ঐ স্থির উপাংশ গ**তিবেগ** নিয়ে সোজা পথে যেতে চেন্টা করে। অভিলম্ব উপাংশ (υ sin θ) চৌম্বকক্ষেত্রের সমকোণে আছে বলে কণা চৌম্বকক্ষেত্র দ্বারা যে-বল অনুভব করে তা কণাকে ব্রপথে গতিশীল করার চেম্টা করে. যুগপৎ এই দুটি গতিরেগ কণাকে পাঁচালো স্প্রিং-এর মতো গতিপথে চালনা করে (চিত্র 3.22)।

3.1৪ লোরেগ্ধ বল (Lorentz Force):

কোনো গতিশীল তড়িতাধান একই সঙ্গে তড়িৎক্ষেত্র এবং চৌম্বকক্ষেত্রের ভিতর দিয়ে গেলে भाषि य वल अन्छव करत, তाक लातिश्व वल वला दस।

ধরা মাক, ह होत्তার তড়িৎক্ষেত্রের ভিতর দিয়ে একটি তড়িতাধান e চলে গেল। এক্ষেত্রে আধানের ওপর প্রয়ন্ত ৩ড়িং বল $F_1=e,\,E$, বলাবাধূলা, এই বলের অভিমুখ ৩ড়িংক্ষেত্রের অভিমুখের দিকে। এক্ষেত্রে উল্লেখনোগা যে ভড়িৎক্ষেত্রে আধান ৮ সিলে থাক্ক কী গতিশীল থাক্ক, প্রয়প্ত বলের মান একই হবে।

আবার, একই অন্ধলে চৌদ্ধকক্ষেত্রের হীব্রতা যদি B হয় এবং তড়িতাধান e এর গতিবেগ যদি vহয়, গুহাল মাধানের ওপর প্রয়ন্ত চৌধক বল $F_2=e$ (v imes B): এই বল (v imes B) এর অভিমুখে।

দুই ক্ষেত্র একই সজো ক্রিয়া করলে, তড়িতাধানের ওপর প্রযুক্ত মোট বল উক্ত দুই বলের ভেক্টর সমষ্টির সমান: অর্থাৎ মোট বল $\overrightarrow{F}=\overrightarrow{F_1}+\overrightarrow{F_2}=e$ ($\overrightarrow{E}+\overrightarrow{v}\times \overrightarrow{B}$)। এটাই **লোরেশ্ব বল**। প্রসঞ্জাত উদ্লেখ্যোগ্য যে চৌম্বনক্ষেত্র ভড়িতাধান বিধর থাকলে, আধানের ওপর কোনো বল প্রযুক্ত হয় না।

□ Examples □

় একটি দীর্ঘ ঝজু তারে 3 A তড়িংপ্রবাহ যাছে। তার থেকে 0.1 m দূরে এবং তারের সমান্তরালে কিছু তড়িংপুরাহের বিপরীত দিকে একটি ইলেকট্রনর 5×10^4 ms $^{-1}$ বেগে গতিশীল আছে। তড়িংপ্রবাহের দর্ন উৎপন্ন চৌম্বকক্ষেত্র ইলেকট্রনের ওপর কত বল প্রয়োগ করবে ? ইলেকট্রনের তড়িতাধান $e=1.6 \times 10^{-19}$ C এবং $\mu_0=4\pi \times 10^{-7}$.

উঃ। তড়িংবাহী দীর্ঘ ও ঋজু তার থেকে r দূরে চৌম্বক ক্ষেত্র $B=rac{\mu_0\,i}{2\,\pi\,r}=rac{4\pi imes10^{-7} imes3}{2\pi imes0.1}$

]= 6× 10 ⁴⁶ Wb/m² (অথবা tesla). [3.5 অনুচেছদ দেখ]

এই চৌম্বক ক্ষেত্রের অভিমুখ তড়িৎ-প্রবাহের অভিমুখের লম্ব। কাজেই ঐ ক্ষেত্র ইলেকট্রনের গতির

অভিম্থেরও লম্ব। এখন, ইলেকট্রনের ওপর প্রযুক্ত বল =e ($\stackrel{
ightarrow}{v}$ $\stackrel{
ightarrow}{B}$)

অথবা, প্রযুক্ত বলের মান $= e.v.B \sin \theta$ $= (6 \times 10^{-6}) \times (1.6 \times 10^{-19}) \times (5 \times 10^{4})$ $[\theta = 90^{\circ}]$ $= 4.8 \times 10^{-20}$ newton.

 $2 extbf{4} imes 10^5 ext{ ms}^{-1}$ গতিবেগ নিয়ে একগৃচ্ছ প্রোটন (তড়িতাধান $q=1.6 imes 10^{-19} ext{ C}) 0.4 ext{T}$ প্রাবল্যের একটি সুষম টৌম্বক ক্ষেত্রের প্রবেশ করল। প্রোটন গুচ্ছের গতিবেগ টৌম্বক ক্ষেত্রের সঙ্গো 60° কোণ করে। প্রোটন যে কৃণ্ডলীকৃত (helical) গতিপথ অনুসরণ করবে তার ব্যাসার্ধ এবং পর্যায়কাল নিপর্য় করো। $m=1.67 imes 10^{-27} ext{ kg}$,

উঃ। চৌম্বক ক্ষেব্রের সমান্তরাল প্রোটনের গতিবেগের উপাংশ $v_{
m h}$ = $4 imes10^5 imescos 60^\circ$ = $2 imes10^5$ ms $^{-1}$

টৌম্বক ক্ষেত্রের অভিলম্নে প্রোটনের গতিরেগের উপাংশ $\upsilon_n=4\times 10^5 \times \sin 60^\circ=2\sqrt{3}\times 10^5~\text{ms}^{-1}$,

টৌম্বক ক্ষেত্রের সমান্তরাল উপাংশ অপরিবর্তিত থাকবে এবং অভিলম্ব উপাংশের দর্ণ প্রোটন বৃত্তাকার পথে চালিত হবে। বৃত্তের ব্যাসার্ধ r হলে,

$$qv_{\rm n}.B = {mv_n^2 \over r}$$
 অথবা, $r = {mv_n \over qB}$.
$$\therefore r = {(1.67 \times 10^{-27}) \times (2\sqrt{3} \times 10^5) \over 1.6 \times 10^{-19} \times 0.4} = 0.9 \times 10^{-2} \, {
m m} = 0.9 \, {
m cm}$$

প্রয়াকাল
$$T = \frac{2\pi r}{v_n} = \frac{2 \times 3.14 \times 0.9 \times 10^{-2}}{2\sqrt{3} \times 10^5} = 1.63 \times 10^{-7} \text{ s.}$$

দুই ভড়িৎপ্রবাহের পারম্পরিক ক্রিয়া (Action of current on current):

আমরা পরে দেখেছি, তড়িমাইা পরিবাইারে ১৯মক্ষেরে বাখালে পবিবাইা একী বল অন্তব করে এই বলের অভিমুখ ক্রেমিং এর বাম হস্ত নিয়ম হতে নিধায় করা যায়। এখন যদি দুটি ভাড়দাটো তার

কাছাকাছি রাখা যায় তবে প্রত্যেক তারের তড়িংপ্রবাহ কর্তৃক সৃষ্ট চৌম্বকক্ষেত্র অপর তারে বলপ্রয়োগ করবে। 3.20 (a) ও (১) নং চিত্রে দৃটি সমান্তরাল তার দেখানো হয়েছে। (a) নং চিত্রে উভয় প্রবাহ একমুখী এবং (b) নং চিত্রে বিপরীত ম্খী। উভয়ের বেলাতেই একের টোম্বকক্ষেত্র অন্যের ওপর যে বল প্রয়োগ করবে তা ফ্রেমিং-এর বামহন্ত নিয়ম হতে নির্ণয় করলে দেখা যাবে প্রথম ক্ষেত্রে উভয় তারের মধ্যে আকর্ষণ ও দ্বিতীয় ক্ষেত্রে বিকর্ষণ বল ক্রিয়া করে।

আকর্ষণ

আকর্ষণ

বিকর্মণ

চিত্ৰ 3.24

(i)

(iii)

(ক) সমাস্করাল প্রবাহের নিয়ন (Laws of parallel currents):

(i) দৃটি একমুখী সমান্তরাল প্রবাহ পরস্পরকে আকর্ষণ করে। (ii) দৃটি বিপরী হয়ুখী সমান্তরাল প্রবাহ পরস্পর্কে বিকর্ষণ করে।

(খ) কৌণিক প্রবাহের নিয়ম (Laws of angular currents):

(i) দুটি তড়িৎপ্রবাহের অভিমুখ যদি পরস্পরের সাথে কোণ উৎপন্ন করে এবং দৃটি প্রবাহই যদি ঐ কোণের চূড়ার (apex) অভিমুখে অগ্রাসর হয় অথ বা চূড়া থেকে অপসূত হয় তবে তারা পরস্পর্কে আকর্ষণ করে (চিত্র 3.24 (i) এবং (ii)]।

(1i) প্রবাহ দৃটির একটি যদি চূড়ার অভিমূখে অগ্রসর হয় এবং অপরটি চুড়া থেকে দুরে সরে যায়, তবে তারা পরস্পরকে বিকর্ষণ করে [চিত্র 3.24

সমান্তরাল প্রবাহের নিরম পরীকা : (i) রজেটের স্পন্দনশীল

(Roget's vibrating spiral) : এই ক্ঙলী দারা দৃটি একমুখী

সমান্তরাল প্রবাহের ভিতর আকর্ষণ দেখানো যায়। C একটি সরু তামার তারের কুগুলী বা স্প্রিং [চিত্র 3.25] স্প্রিংয়ের ওপর প্রান্ত একটি বন্ধনী T-এর সাথে যুক্ত। নীচের প্রান্তে একটি ভার (load) লাগানো থাকে। সাধারণ অবস্থায় এই ভারটি B-পাটাতনের ওপর একটি গর্তে রাখা পারদের সাথে স্পর্শযুত্ত। পারদের সাথে অপর একটি বন্ধনী T সংযুত্ত। T - T বন্ধনীদ্বয়ের ভিতর তড়িৎ কোশ লাগালে স্প্রিং এর ভিতর দিয়ে তড়িৎপ্রবাহ যাবে।

প্রত্যেক দুটি পরপর পাকের ভিতর তড়িৎপ্রবাহ সমান্তরাল ও একমুখী। ফলে পাক দুটি পরস্পরক আকর্ষণ করবে এবং এই আকর্ষণ প্রত্যেক দৃটি পরপর পাকের ভিতর ক্রিয়া করবে। এতে কুণ্ডলী সংকৃচিত হয়। কণ্ডলী সংকৃচিত হলেই ভার পারদ হতে উঠে আসে। তখন বর্তনী ছিন্ন হয় এবং তড়িং প্রবাহ বন্ধ হয়ে যায়। প্রবাহ বন্ধ হলে আকর্ষণ বল আর ক্রিয়া করে না। তখন স্প্রিং-এর তলায় ভারের জন্য স্প্রিং প্রসারিত হয় এবং পুনরায় পারদ স্পর্শ করে। এভাবে যতক্ষণ প্রবাহ চলে ততক্ষণ কুঙলী অনবরত ওঠা নামা করে।

তড়িৎবাহী অতি দীর্ঘ দুটি সমান্তরাল তারের ভিতর আকর্ষণ ভ 3 15. বিকর্ষণ বল (Forces of attraction and repulsion between two infinitely long parallel wires carrying current) :

ধরো, ${
m AB}$ এবং ${
m CD}$ দৃটি অতি দীর্ঘ সমান্তরাল তার i_1 এবং i_2 অ্যাম্পিয়ার প্রবাহ বহন করছে (চিত্র 3.23)। ${
m AB}$ তারের ওপর একটি এলিমেন্টে dl বিবেচনা করা যাক। ${
m CD}$ তারের প্রবাহ i_2 -এর জন্য dl

এলিমেন্টে উৎপন্ন চৌম্বকক্ষেত্র প্রাবল্য $B=\frac{\mu_0}{2\pi}.\frac{i_2}{r}$ [3.5 অনুচ্ছেদের (i) নং i_1 i_2 সমীকরণ দ্রুট্ব্য]। dl এলিমেন্টের উপরে এবং নীচে AB তারের অংশের জন্য B' চৌম্বক ক্ষেত্র শূন্য। অতএব dl এলিমেন্টে মোট চৌম্বক ক্ষেত্র $B=\frac{\mu_0}{2\pi}.\frac{i_2}{r}$ এই dlক্ষেত্রের অভিমুখ AB তারের অভিলম্ব (PB')। অতএব dl এলিমেন্টের উপর

পুষ্ভ বল
$$dF = \left(i_1 \overrightarrow{dl} \times \overrightarrow{B}\right) = \frac{\mu_0}{2\pi} \cdot \frac{i_1 \cdot i_2 dl}{r}$$
 ;

এই বলের অভিমুখ কাগজের তলে থেকে AB তারের অভিলম্ব। এই অভিমুখ চিত্র 3.26 ফ্রেমিং-এর বামহন্ত নিয়ম থেকে পাওয়া ষায়।

অতএব, AB তারের dl এলিমেন্ট CD তারের দিকে যে বলে আকৃষ্ট হবে তা $d\mathbf{F} = i_1 dl. \, \frac{\mu_0}{2\pi} \cdot \frac{i_2}{r}$

 \therefore AB তারের প্রতি একক দৈর্ঘ্যে প্রযুক্ত বল $=\frac{dF}{dl}=\frac{\mu_0.i_1i_2}{2\pi r}$

একইভাবে AB তারের প্রবাহের দর্ন CD তারের প্রতি একক দৈর্ঘার ওপর প্রযুক্ত বল হবে $F = \frac{\mu_0}{2\pi} \cdot \frac{i_1 \, i_2}{r}$; ফ্রেমিং-এর বামহস্ত নিয়ম প্রয়োগ করলে দেখা যায় যে দুই তারে প্রবাহ সমমুখী হলে, পারস্পরিক বল হয় আকর্ষক বল; আর প্রবাহ বিপরীতমুখী হলে, পারস্পরিক বল হয় বিকর্ষক বল। যদি $i_1=i_2=i$ হয় তবে

$$F = \frac{\mu_0}{2\pi} \cdot \frac{i^2}{r} \, .$$

অ্যাম্পিয়ারের সংজ্ঞাঃ উপরোক্ত সমীকরণ থেকে আমরা এস্. আই. পর্ধাতিতে আদ্পিয়ারের সংজ্ঞা পাই। যদি $i_1=i_2=1$ এবং r=1 m হয় তবে $F=\frac{\mu_0}{2\pi}=\frac{4\pi\times 10^{-7}}{2\pi}=2\times 10^{-7}\ \mathrm{Nm}^{-1}.$

সংক্ষা ঃ শূন্য মাধ্যমে 1 m বাবধানে রাখা সূদীর্ঘ দৃটি ঋজু এবং সমাধ্ররাল ভারে ্য স্থির তড়িৎ প্রবাহ প্রবাহিত হলে, তাদের প্রতি মিটার দৈর্ঘো 2 × 10⁻⁷ নিউটন বল ক্রিয়া করবে সেই প্রবাহমাত্রাকে 1 অ্যাম্পিয়ার বলা হবে।

1946 মিন্টান্দে International committee of weights and measures আনিস্থানের উপরোধ সংজ্ঞা ধার্য করেন।

□ Examples □

1) দৃটি সমান্তরাল দীর্ঘ তার ঘথাক্রমে 3 A এবং 4 A প্রবাহ বহন করছে। তার দৃটির ব্যবধান 10 cm হলে, একটি তার অপরটির ওপর কত বল প্রয়োগ করবে ?

জঃ।
$$F = \frac{\mu_0}{2\pi} \times \frac{i_1 \ i_2}{r}$$
 ; এখানে, $\frac{\mu_0}{2\pi} = 2 \times 10^{-7}$; $i_1 = 3$ A; $i_2 = 5$ A এবং $r = 10$ cm $= 0.1$ m.

$$F = \frac{2 \times 10^{-7} \times 3 \times 5}{0.1} \text{ Nm}^{-1} = 30 \times 10^{-6} \text{ Nm}^{-1}.$$

2) দৃটি বুব দম্বা পরিবাহী তার শূন্যে 4 cm দূরত্বে আছে। একটির তড়িৎপ্রবাহ হল 25 ampere ও অপরটির 5 ampere। তাহলে পরিবাহীর কতথানি দৈর্ঘ্য 125 dyne বলের সম্মুখীন হবে, সেটা নির্ণয় করো।

উঃ।
$$C.G.S.$$
 পধ্ধতিতে প্রতি একক দৈর্ঘ্য বল $F=rac{2\,i_1\,i_2}{r}$

$$F = 2 \times \frac{25}{10} \times \frac{5}{10} \times \frac{1}{4} \text{ dyne cm}^{-1} = \frac{5}{8} \text{ dyne cm}^{-1}$$

$$[i_1 = \frac{25}{10}$$
 e.m.u. এবং $i_2 = \frac{5}{10}$ e.m.u.]

প্রয়োজনীয় দৈর্ঘা l cm হলে, $\frac{5}{8} \times l = 125$ অথবা l = 200 cm.

প্রিঃ ছাত্রছারীবা অধ্বর্গটি S I পর্যাতিতে করার চে**টা করবে**।

সুষম চৌম্বক ক্ষেত্রে রাখা তড়িৎবাহী লুপের ওপর টক 3.16. (Torque experienced by a current loop placed in a uniform magnetic field):

 \overrightarrow{B} সুষম চৌম্বকক্ষেত্রে রাখা চতুষ্কোণ তার কুণ্ডলী বা লুপ ABCD বিবেচনা করে। ABCD লুপে তড়িং প্রবাহ i অ্যাম্পিয়ার ঘড়ির কাঁটার বিপরীত দিকে যাছে। চৌম্বকক্ষেত্রের অভিলম্বভাবে গত একটি অক্ষ্ সাপেক্ষে লুপটি আবর্তনে সক্ষম। ধরো, কোনো এক সময় লুপের তল চৌম্বকক্ষেত্রের অভিমুখের সাথে θ কোণ করে আছে। চতৃষ্কোণ লুপের প্রতিটি বাহুতে তড়িংপ্রবাহ আছে এবং বাহুগুলি চৌম্বকক্ষেত্রে অবস্থিত বলে, প্রত্যেক বাহু বল অনুভব করবে [চিত্র 3.24]। ধর, AB = DC = b = লুপের প্রস্থ এবং AD = BC = l = লুপের কৈর্ঘা।

(i) DC বাহুর ওপর প্রযুক্ত বল $\overrightarrow{F_1}=i$ ($\overrightarrow{l} imes \overrightarrow{B}$)। এই বলের অভিমুখ DC বাহুর মধ্যবিন্দু দিয়ে খাড়া নিম্নুখী (3.8 অনুচ্ছেদ)।

(ii) BA বাহুর ওপর প্রযুক্ত বল $\overrightarrow{F_2}=i$ ($\overrightarrow{l}\times\overrightarrow{B}$)। এই বলের অভিমুখ AB বাহুর মধ্যবিন্দু দিয়ে খাডা উধ্পমখী।

 F_1 এবং F_2 বল দুটি লুপের অক্ষ বরাবর বিপরীত দিকে ক্রিয়া করে বলে এবং তাদের মান সমান বলে তারা লুপের ওপর কোনো টর্ক প্রয়োগ করে না। তাছাড়া বলদ্বয়ের লব্দি শূনা হওয়ায় উল্লম্ব দিকে — নীচে অথবা উপরে — লুপের কোনো সরণ হয় না।

(iii) AD বাহুর ওপর প্রযুক্ত বল $\overrightarrow{F_3} = i$ ($\overrightarrow{l} \times \overrightarrow{B}$

)। এই বল ৈ এবং B
উভয়ের অভিলম্ব এবং
পাঠকের দিকে ক্রিয়াশীল।

(iv) CB বাহুর ওপর প্রযুক্ত বল $F_4=i$ ($l \times B$)। এই বল পাঠক হতে দূরের দিকে ক্রিয়া করবে।

চিত্র থেকে দেখা যায় $\overrightarrow{F_3}$ এবং $\overrightarrow{F_4}$ বল দুটি সমান, সমান্তরাল এবং বিপরীতমুখী। এরা একটি দ্বন্দ্ব গঠন করে এবং লুপকে উল্লম্ব অঞ্চ সাপেক্ষে ঘুরিয়ে দেয়।

ৰন্থের ভাষক (Moment of the torque):

দ্বন্ধের আমক $\tau = F_3$ (অথবা F_4) \times AP [চিত্র 3.28] $= B.i.l~(b~\cos\theta)$

 $=B.i.A\cos heta$ [A=l.b=লুপের তলের ক্ষেত্রফল]

লুপে n সংখ্যক পাক (turn) থাকলে, $\tau = nB.i.A\cos\theta$ (i)

- (i) যখন, $\theta=0^\circ$ তখন au=nB.i.A= ট্রেকর স্বাধিক মান
- (ii) যখন $heta=90^\circ$ তখন au=0= টকের সর্বনিম্ন মান।

অতএব, কুণ্ডলীর তল টোম্বকক্ষেত্রের সমান্তরাল থাকলে $(\theta=0^\circ)$ কুণ্ডলী সর্বাধিক টর্ক অনুভব করে; আবার টোম্বকক্ষেত্রের সমকোণে (0) = 90°) থাকলে, কোনো টর্ক অনুভব করে না।

 θ যদি লুপের তলের অভিলম্ব এবং চৌদক ক্ষেত্র B এর অওর্ণতী কোণ হয় [চিত্র 3.26] তবে, $\tau=B.i.A\sin\theta$]

3.17.

চলক্ওলী বা ডি-আরসোনভ্যাল গ্যালভ্যানোমিটার (Moving coil or D' Arsonval Galvanometer) :

এই গ্যালভানোমিটারে ক্ডলাটি ঝুলানো বা প্রলম্বিত (suspended) থাকে এবং একটি স্থায়ী চৃষ্ণকের চৌদ্দকক্ষেত্র অবাধে আবর্তন করতে পারে। এই করণে একে চলক্ডলা গ্যালভানোমিটার (moving coil galvanometer)-ও বলা হয়। এই ষয়ের মূলনীতি হল গ্রহণেব্যাহের ওপর চৃষ্ণকের জিয়া।

বিবরণঃ ABCD ভারের একটি চভূদ্ধেণ ক্ণুলী কয়েক পাকের অন্তর্গিত সর্ তামার তার একটি হালকা ধাতব ফ্লেমের (পিতল অথ বা অ্যাল্মিনিয়াম নির্মিত) ওপর জড়িয়ে এই কুণ্ডলী তৈরি করা হয়। পাতলা ফসফর-ব্রোঞ্জ রজ্জ্ব দ্বারা কৃণ্ডলীকে একটি স্থায়ী অক্ষক্ষর চুম্বকের দূই মের্র (N – S) মধ্যবতী স্থানে ঝালিয়ে রাখা হয় (চিত্র নং 3.27) ক্ণুলীর নিম্নপ্রান্ত একটি ছোটো চ্প্রিং S-এর সাথে যন্ত এই ত্র্পিংটিও ফসফর-বোঞ্জর তৈরি। কুণ্ডলীর উপরিস্থিত ফসফর-বোঞ্জ ঝুলন-রজ্জুর ওপর প্রান্ত একটি বাবর্ত লিরে T-এর সাথে সংযুত্ত। তড়িংপ্রবাহ ফরফর-ব্রোঞ্জ ঝুলন-রজ্জ্বর ওপর প্রান্ত একটি বাবর্ত লিরে এসে ABCD-কুণ্ডলীর ভিতর দিয়ে স্প্রেং S-এ যায় এবং প্নরায় বহির্বর্তনীতে ফিরে যায়। নরম লোহার চোগুক্তি একটি ট্করো E কুণ্ডলীর মাঝাখানে কারের বোর্ডে আবন্ধ থাকে। কণ্ডলী ঐ টকরোকে স্পর্শ না করে

টুকরো এবং চৌম্বক মেরুদ্বয়ের ফাঁকের মধ্যে অবাধে ঘুরতে পারে। চোণ্ডাকৃতি টুকরো রাখার ফলে চৌম্বকক্ষেত্র খুব তীব্র হয়। ফসফর-ব্রোঞ্জ ঝুলন-রজ্জুর সাথে ছোটো গোলাকার দর্পণ M আবন্ধ থ াকে। দর্পণের ওপর আলোকরশ্যি ফেলে এবং প্রতিফলিত আলোকরশ্মিকে একটি স্কেলের ওপর গ্রহণ

করে (একে আলোক এবং স্কেল পন্ধতি বলা হয়) কুণ্ডলীর বিক্ষেপ পরিমাপ করা হয়।

অশ্বক্ষুর চুম্বকের মেরুমুখ দুটি সমতল (plane) না করে চোঙাকতি করা হয় এবং P নরম লোহার চোঙের সাথে সমাক্ষীয় করা হয়। এর সুবিধা এই যে, চৌম্বকক্ষেত্র ব্যাসার্ধমুখী (radial) হয়— অর্থাৎ, বলরেখাগুলি সর্বদা চতুষ্কোণ কুগুলীর তলের সমান্তরাল হয় (চিত্র নং 3.28)। কার্যনীতিঃ যখন কুগুলী দিয়ে কোন তড়িৎপ্রবাহ থাকে

অভিলম্ব ভাবে নিজেকে স্থাপন করার চেন্টা করে এবং বিক্ষিপ্ত হয়। ফলে, ঝুলন-রজ্জুতে পাক্ ধরে এবং কুণ্ডলীর ওপর বিপরীতমুখী একটি দুন্দ্ব ক্রিয়া করে। তড়িৎপ্রবাহের জনা দুন্দ্ব এবং ঝুলন-রজ্জুতে পাকের জন্য বিপরীত দুন্দ্ব পরস্পরের সমান হলে, কুণ্ডলী বিক্ষিপ্ত অবস্থায় স্থির হয়ে দাঁড়ায়। স্কেলের ওপর দর্পণ কর্তৃক প্রতিফলিত আলোকরন্মির সরণ লক্ষ্ণ করে ঐ বিক্ষেপ পরিমাপ করা হয়। এই বিক্ষেপ তড়িৎপ্রবাহের সমানুপাতিক হওয়ায়, এথেকে প্রবাহমাক্রা নির্ণয় করা যায়।

মূলতত্ত্ব (Theory): ধরো, ABCD চতুক্কোণ কুণ্ডলার উল্লন্থ দৈর্ঘ্য = l; প্রস্থ = b; B = চৌম্বক ক্ষেত্রের প্রাবল্য, n = কৃণ্ডলীর পাক সংখ্যা (number

of turns) এবং i = আাম্পিয়ার এককে কৃঙলীর প্রবাহমাত্র।

ধরো, কুগুলীটি ম কোণে বিক্ষিপ্ত হল। এই অবস্থায় কুগুলী একটি টর্ক অনুভব কররে [পূর্ব

অনুক্রেদ দ্রুট্রা এবং এই টার্কের মান $\tau=n$ BiA $\cos\theta$

চৌদ্ধক ক্ষেত্র বাস্পর্ধেশ্বী হওয়ায় কৃজলীর যে-কোনো অবস্থায় চৌদ্ধক ক্ষেত্র কৃজলীর তলের সমান্তরাল এবং উপ্লয় বাহু AD অথবা BC-র অভিলম্ব হবে। ফলে, $\theta=0^\circ$ এবং $\tau=nBiA$ । এই টর্কের প্রভাবে কৃজলী স্থির অবস্থা থেকে বিক্ষিপ্ত হবে। কিন্তু এতে ঝুলন রজ্জ্ব (suspension fibre) একটি মোচড় (torsion) পায় এবং কৃজলীর ওপর একটি বিরুদ্ধ দ্বন্দের উৎপত্তি করে কৃজলীরে প্রাথমিক অবস্থায় ফিরিয়ে আনার চেন্টা করে। যখন কৃজলী সাম্য-অবস্থায়ে আসে (θ কোণে বিক্ষিপ্ত হয়ে) তখন এই দুই বিরুদ্ধ দ্বন্দের শ্রামক সমান হয়।

এখন, একক মোচড়ের দরুন ঝুলন রজ্জুতে ব্যবর্ত দক্ষের স্রামক (torsional rigidity) τ হলে θ মোচড়ের দরুন ব্যবর্ত দক্ষের স্রামক ≠ τθ.

যেহেতু কুঙলী স্থির অবস্থায় আছে, অতএব, nB.i.A. = au heta.

$$\therefore i = \frac{\tau}{nBA} . \theta = K.\theta \left[K = \frac{\tau}{nBA} =$$
ধুবক $\right]$ অর্থাৎ, $i \propto \theta . \dots$ (i)

সূতরাং, এই গ্যালভ্যানোমিটারে প্রবাহমাত্রা বিক্ষেপ কোণের সমানুপাতিক।

• যন্ত্রের প্রবাহ সুবেদীতা (Current sensitivity of the instrument):

যদি প্রবাহমাত্রা i-এর খুব অল্প মানে θ -র মান বড় হয় তবে যন্ত্রকে সুবেদী বলা হয়। যন্ত্রের প্রবাহ সুবেদীতা প্রতি একক প্রবাহমাত্রায় কুণ্ডলীর বিক্ষেপ কোণ অর্থাৎ $\frac{d\theta}{di}$ অনুপাত দ্বারা পরিমাপ করা হয়। (i) নং সমীকরণ থেকে পাই $\frac{d\theta}{di} = \frac{nBA}{\tau}$ ।

এথেকে বোঝা যায় যন্ত্রকে সুবেদী করতে হলে (i) n, A এবং B বৃদ্ধি করতে হবে এবং (ii) τ –এর মান কম রাখতে হবে।

● গ্যান্সভ্যানোমিটারের সুবিধা (Advantages of the galvanometer): এই গ্যানভানোমিটারের নিম্নলিখিত সুবিধা আছে ঃ (i) এই গ্যানভ্যানোমিটারে কোনো চুম্বকশলাকা ব্যবহার করতে হয় না বলে ভূ-টৌম্বক ক্ষেত্রের কোনো প্রভাব তার ওপর নেই। তাই একে সুবিধামতো যে-কোনো স্থানে বসানো যেতে পারে। (ii) পাকসংখ্যা, কুগুলীর মুখের ক্ষেত্রফল, ঝুলন-রজ্জুর ব্যবর্ত-দৃঢ়তা প্রভৃতি রাশিগুলি সুবিধামতো নিয়ন্ত্রণ করে এই যন্ত্রকে খুব সুবেদী করা যায় এবং ক্ষীণ প্রবাহমাত্রা পরিমাপের উপযুক্ত করা যায়। (iv) প্রবাহমাত্রা বিক্ষেপ কোণের সমানুপাতিক হওয়ায়, প্রবাহমাত্রা পরিমাপে সুষম অংশাজ্কিত স্কেল বাবহার করা যায়। (v) যন্ত্রটি 'ডেড বিট' (dead beat)—অর্থাৎ, একবার বিক্ষিপ্ত হলে দুত স্থির অবস্থানে ফিরে আসতে পারে—বহুক্ষণ যাবৎ আন্দোলিত হয় না।

☐ Examples ☐

একটি ডি-আরসোনভ্যাল গ্যালভ্যানোমিটারের কুগুলীর ক্ষেত্রফল $100~{
m cm}^2$ এবং $5 imes 10^{-2} {
m tesla}$ প্রাবল্যযুক্ত চৌষকক্ষেত্রে বিলম্বিত। কুগুলী চৌষকক্ষেত্রের অভিমুখের সংখ্য 30° কোণে আনত অবস্থায় স্থির থাকতে হলে, কুগুলী দিয়ে কত প্রবাহমাত্রা পাঠাতে হবে ? ঝুলনরজ্জুর $\tau=10^{-8}~{
m Nmdegree}^{-1}.$

উঃ। ডি-আরসোনভ্যাল গ্যালভ্যানোমিটারের কার্যনীতি হতে লেখা যায় $i=rac{ au. heta}{nBA}$ ampere [3.17 অন্তেচ্চ দ্রুষ্টবা]

বৰ্তমান ক্ষেত্ৰে, $A = 100 \text{ cm}^2 = 100 \times 10^{-4} \text{ m}^2$; $n = 1, B = 5 \times 10^{-2} \text{ T}$; $\theta = 30^\circ$

এব॰ $\tau = 10^{-8} \text{ N-mdegree}^{-1}$ [সমন্ত রাশিগুলিই S.I. এককে নেওমা]

$$i = \frac{10^{-8} \times 30}{1 \times (5 \times 10^{-2}) \times (100 \times 10^{-4})} A = 6 \times 10^{-4} A = 0.6 \text{ mA}$$

3.18 আমমিটার এবং ভোল্টমিটার (Ammeter and Voltmeter) যে যন্ত্র আ্রাম্পিয়ার এককে বর্তনীর তড়িৎপ্রবাহ পরিমাপ করে গ্রাকে আর্ম্মাটার এবং ভোগ্ট একরে

বিভবপ্রভেদ পরিমাপ করে তাকে ভোল্টমিটার বলে। উভয় যন্ত্রই প্রবলম্বিত কগুলী গ্যালভাানোমিটারের নীতি অনুযায়ী কাজ করে। এই যথের আকৃতি

3.30 নং চিত্রে দেখানো হয়েছে।

সরু তামার তারের একটি কণ্ডলীকে একটি স্থায়ী চুম্বকের মেবুদ্বয়ের মাঝে এমনভাবে আবন্ধ রাখা হয় যে তার আবর্তন একটি হেয়ার স্প্রিং দ্বারা নিয়ন্ত্রিত হয়। কণ্ডলী যত তার সাম্য অবস্থান অথ বা 0- দাগের অবস্থান থেকে ঘুরে যাবে তত তার ওপর নিয়ন্ত্রণ বল প্রযুত্ত হবে। কুণ্ডলীর সাথে একটি দীর্ঘ সূচক যুক্ত থাকে যা স্কেল বরাবর আবর্তন করতে পারে। অ্যামমিটারের ক্ষেত্রে স্কেল অ্যাম্পিয়ারে

এবং ভোল্টমিটারের ক্ষেত্রে ভোল্টে দাগ কাটা থাকে। ভোল্টমিটার বা আমমিটারের চলকুগুলীর ভিতর দিয়ে যত বেশি মাত্রার প্রবাহ যাবে, তার ওপর বিক্ষেপ দ্বন্দ্ব

হয়ে সাম্য প্রতিষ্ঠা করে। गुवशत थ्रणानी :

যখন বর্তনীর তড়িংপ্রবাহ মাপার জন্য যন্ত্রকে অ্যামমিটার হিসাবে ব্যবহার করা হবে তখন তাকে শ্রেণি সমবায়ে যুক্ত করতে হবে যাতে বর্তনীর মূলপ্রবাহ ঐ যন্ত্রের ভিতর দিয়ে যেতে পারে। 3.31 নং চিত্রের

(deflecting couple) তত বেশি হবে এবং কুণ্ডলী তত বেশি ঘুরে যাবে যতক্ষণ পর্যন্ত না হেয়ার স্প্রিং প্রযুক্ত প্রত্যানয়নকারী দ্বন্দ্ব (restoring couple) তার সমান

বর্তনীতে অ্যামমিটার শ্রেণি সমবায়ে যুক্ত হয়েছে। এইভাবে বর্তনীতে অ্যামমিটার যুক্ত করার ফলে যাতে বর্তনীর প্রবাহমাত্রার কোনোরূপ পরিবর্তন না ঘটে সেজন্য অ্যামমিটারের সাথে সর্বদা নিম্নমানের রোধক সমান্তরাল সমবায়ে যুক্ত করে যন্ত্রের রোধ খুব কম করা হয়। এই রোধককে আমমিটারের সান্ট বলা হয়। বস্তুত আদর্শ অ্যামমিটারের রোধ শূন্য হওয়া উচিত।

আবার, যখন বর্তনীর কোনো অংশের বিভবপ্রভেদ মাপার জনা যন্ত্রকে ভোল্টমিটার হিসাবে ব্যবহার করার প্রয়োজন হয় তথন তাকে ঐ অংশের সমান্তরালে যুক্ত করতে হয়। যদি মনে করা যায় যে, R_1 রোধকের প্রান্তীয় বিভবপ্রভেদ পরিমাপ করতে হবে তাহলে যন্ত্রকে 3.31 নং চিত্রে এরূপ দেখানো হয়েছে ঐরূপ R_1 রোধকের সাথে সমান্তরাল সমবায়ে যুক্ত করতে হবে। অনুরূপভাবে R_2 রোধকের প্রান্তীয় বিভবপ্রভেদ মাপার প্রয়োজন হলে C এবং D বিন্দুর ভিতর অথবা ব্যাটারির বিভবপ্রভেদ প্রয়োজন হলে যত্ত্বকে A এবং D বিন্দুর ভিতর যুক্ত করতে হবে। বর্তনীতে ভোল্টমিটারের সংযোগের ফলে যাতে বর্তনীর তিভিংপ্রবাহের কোনো পরিবর্তন না হয় সেজন্য যন্ত্বকে উচ্চ রোধযুক্ত করা হয়। যন্তের কৃণ্ডলীর নিজস্ব রোধ উচ্চমানের না হলে, যন্ত্রের সাথে প্রেণি সমবায়ে একটি উচ্চ মানের অতিরিক্ত রোধক যুক্ত করে নেওয়া হয়। প্রকৃতপক্ষে আদর্শ ভোল্টমিটারের রোধ অসীম হওয়া উচিত কারণ তাহলে যন্ত্র মূলবর্তনী থেকে কোনো প্রবাহ নেবে না।

- আাম্মিটার ও ভোন্টমিটারের মধ্যে পার্থক্য
- (i) আম্মিটার আম্পিয়ার এককে তড়িৎ প্রবাহ পরিমাপ করে। ভোল্টমিটার ভোল্ট এককে বিভবপ্রভেদ পরিমাপ করে।
- (ii) আম্মিটার কার্যত **সম্পর গ্যালভানোমিটার।** ভোল্টমিটার প্রকৃতপক্ষে উচ্চরোধ সম্পন্ন গ্যালভ্যানোমিটার।
- (iii) আমমিটার গঠন করা হয় একটি গ্যালভ্যানোমিটারের সাথে স্কল্প মানের রোধ সমান্তরাল সমবায়ে যুক্ত করে। অন্যদিকে, ভোল্টমিটার তৈরি করতে একটি উচ্চ মানের রোধ গ্যালভ্যানোমিটারের সংখে শ্রেশি সমবায়ে যুক্ত করা হয়।
- (iv) অ্যামমিটারের সাহায্যে কোনও বর্তনীর প্রবাহমাত্রা পরিমাপ করতে বর্তনীর সাথে শ্রেণি সমবায়ে অ্যামিটার ব্যবহার করা হয়। অপরপক্ষে, তড়িৎ বর্তনীর যে-কোনো দুটি বিন্দুর মধ্যে বিভবপ্রভেদ পরিমাপ করতে ঐ দুই বিন্দুর মধ্যে সমান্তরাল সমবায়ে ভোল্টমিটার ব্যবহার করা হয়।
- আ্যামমিটার এবং ভোল্টমিটারের নীতি ((Principles of ammeter and voltmeter): পূর্বে উল্লেখ করা হয়েছে যে, গ্যালভ্যানোমিটারকে আ্যামমিটাররূপে ব্যবহার করতে হলে তার সক্ষো সমান্তরাল সমবায়ে উপযুক্ত সান্ট ব্যবহার করা প্রয়োজন। এই সান্টের মান নির্ধারিত হয় ঐ গ্যালভ্যানোমিটার পূরো স্কেল বিক্ষেপের জন্য সর্বাধিক কত প্রবাহ নেয় এবং পরিমেয় প্রবাহের সর্বাধিক মান কত তার ওপর। ধরো, গ্যালভ্যানোমিটারের রোধ = G এবং তা সর্বাধিক যে-প্রবাহ নিতে পারে অথ বা যে-সর্বাধিক প্রবাহে গ্যালভ্যানোমিটার কাঁটার বিক্ষেপ পূরো স্কেল হবে—তা I_G ; যদি পরিমেয় প্রবাহের পালা 0 A হতে IA হয় ($I > I_G$) তবে সান্টের নীতি থেকে লেখা যায়,

$$I_G = \frac{S}{S+G}.I$$

এখানে S হল গ্যালভ্যানোমিটার প্রান্তম্বয় A এবং B এর সাথে যুত্ত প্রয়োজনীয় সান্ট [চিত্র 3.32]। সান্টের মান নিম্নলিখিত উপায়ে নির্ধারণ করা যায়ঃ

$$rac{S+G}{S}=rac{I}{I_G}$$
 অথবা $1+rac{G}{S}=rac{I}{I_G}$ অথবা $1+rac{G}{S}=rac{I}{I_G}$ অর্থাৎ, $rac{G}{S}=rac{I-I_G}{I-I_G}$ $\therefore S=rac{I_GG}{I-I_G}$

এই সান্ট A এবং B বিশ্বেষ গ্যালভানেমিটারের সমান্তরালে যুত্ত করলে গ্যালভানেমিটার 0-I পালার আমেমিটাররূপে কার্য করতে পারবে। সাধারণত S-এর মান যুব কম হয়: ফলে সান্ট্যুত্ত গ্যালভানেমিটারের কার্যকর রোধত কম হয়। এই কারণে বর্তনার প্রবাহমাত্রা পরিমাপ করতে গিয়ে আমেমিটারকে বর্তনার যে-কোনো স্থানে শ্রেণি সমবায়ে যুক্ত করলে, বর্তনার রোধ ভুগা মলপ্রবাহমাত্রার কোনো পরিবর্তন হয় না অথচ আমেমিটার ঐ প্রবাহমাত্রার পাঠ দেয়। যে গ্যালভানেমিটারের রোধ G যুব কম এবং পণ্ডলে বিশ্বেল্ প্রয়োভনীয় তড়িৎ প্রবাহ I_G) কম, সেটাই আমেমিটার ভিসাবে ব্যবহারের পক্তে খব উপযত্ত।

আবার, গ্যালভ্যানোমিটারকে ভোল্টমিটারে পরিণত করতে হলে, তার সাথে একট উচ্চমানের রোধ শ্রেণি সমবায়ে যুক্ত করা প্রয়োজন। এই রোধ যত অধিক হয় তা মূলবর্তনা থেকে ৩০ কম তাভংপুরাত টানে এবং মূলবর্তনীর প্রবাহকে তত কম প্রভাবিত করে। আছাড়া পূর্ণয়েল বিক্ষেপের জন তাভ্তপুরাতত যথাসম্ভব

কম হওয়া বাশ্বনীয়। ধরো, গ্যালভ্যানোমিটার সর্বাধিক যে-প্রবাহ নিতে পারে তা I_G অর্থাৎ, গ্যালভ্যানোমিটার দিয়ে ঐ প্রবাহ গেলে কাঁটার পুরো স্কেল বিক্ষেপ (full scale deflection) হবে। গ্যালভ্যানোমিটারের রোধ =G; একে সর্বাধিক বিভবপ্রভেদ V পরিমাপের উপযোগী ভোল্টমিটারে পরিণত করতে হলে যে উচ্চমানের রোধ R গ্যালভ্যানোমিটারের সাথে প্রেণি সমবায়ে যুক্ত করতে হবে তা নিম্নলিখিতরূপে নির্ণয় করা যায় [চিত্র 3.33]।

$$I_G = rac{V}{R+G}$$
 অথবা $R+G = rac{V}{I_G}$.: $R = rac{V}{I_G} - G$

যুক্ত করলে, তা 0-V পালার বিভবপ্রভেদ পরিমাপের উপযুক্ত ভোল্টমিটারে পরিণত হবে। সূচকের বিক্ষেপ হতে আমরা সরাসরি ভোল্ট এককে বিভবপ্রভেদ পাই, কারণ স্কেল ভোল্ট এককে দাগ কাটা থাকে।

সুতরাং, দেখা যাচ্ছে যে-কোনো গ্যালভ্যানোমিটারকে অ্যামমিটার বা ভোল্টমিটারে পরিণত করতে হলে, গ্যালভ্যানোমিটার সম্পর্কে নিম্নলিখিত দুটি বিষয় জানা প্রয়োজন (i) গ্যালভ্যানোমিটারের রোধ (G) এবং (ii) যে প্রবাহমাত্রায় (IG) গ্যালভ্যানোমিটার পুরো স্কেল বিক্ষেপ দেয়।

অনেক সময় খুব ক্ষীণ প্রবাহ বা বিভবপ্রভেদ পরিমাপের জন্য সুবেদী যন্ত্রের প্রয়োজন হয়। আম্পিয়ারের হাজার ভাগের একভাগ অথবা ভোল্টের হাজার ভাগের এক ভাগ মাপতে সক্ষম যে যন্ত্র তাকে বলা হয় মিলিআামিটার বা মিলিভোল্টমিটার। তেমনি, মাইক্রোআামিটার বা মাইক্রোভোল্টমিটার যন্ত্র এক মিলিআাশিপয়ার বা এক মিলিভোল্টের হাজার ভাগের এক ভাগ পরিমাপ করতে পারে।

O Examus o

f 1 একটি গ্যালভ্যানোমিটারে $f 0.001\,A$ প্রবাহ গেলে পুরো ত্বেল বিকেপ হয়। ঐ যন্ত্রকে কীরূপে f 10A পর্যন্ত প্রবাহমাত্রা পঠনক্ষম অ্যামমিটারে রুপান্তরিত করা যাবে ? $f G=100\,\Omega$.

উঃ। গ্যালভ্যানোমিটারের সাথে এরূপ সান্ট সমান্তরাল সমবায়ে যোগ করতে হবে যাতে বর্তনীর 10 আাম্পিয়ার প্রবাহমাত্রার 0.001 আম্পিয়ার গ্যালভ্যানোমিটারে গিয়ে পুরো স্কেল বিক্ষেপ উৎপন্ন করবে এবং বাকি প্রবাহ সান্ট দিয়ে যাবে। ধরো, S হল নির্ণেয় সান্ট। এখন, গ্যালভ্যানোমিটার প্রবাহ $I_{\rm G}=$

$$\frac{S}{S+G}$$
. I অথবা, $0.001=\frac{S}{S+100}\times 10$ অথবা $1+\frac{100}{S}=\frac{10}{0.001}=10000$

অথবা,
$$S = \frac{100}{9999} = 0.01 \,\Omega$$
 (প্রায়)।

কারেই, 0.01 Ω সান্ট গ্যালভ্যানোমিটারের সাথে যোগ করলে তা 10A পর্যন্ত প্রবাহমাত্রা পঠনক্ষম আমমিটারে রুপার্থারত হবে।

② 120 মাইক্রোআন্শিয়ার পর্যন্ত পঠনক্ষম এবং 100 Ω রোধের একটি গ্যালভ্যানোমিটারকে কীর্পে 2.4 ভোল্ট পঠনক্ষম ভোল্টমিটারে রূপান্তরিত করা যাবে ?

উঃ। ভোল্টমিটারে রুপাশ্ররিত করতে হলে গ্যালভানেমিটারের সাথে এরূপ উচ্চরোধ প্রেণি

সমবায়ে যুক্ত করতে হবে যাতে ঐ সন্মিলিত রোধের প্রান্তে $2.4~{
m volt}$ বিভবপ্রভেদ প্রয়োগ করলে গ্যালভানোমিটার দিয়ে $120{
m \mu A}$ (অর্থাৎ, $120\times 10^{-6}~{
m A}$) প্রবাহ যায় এবং পুরো স্কেল বিক্ষেপ উৎপন্ন করে। ধরো, R নির্দেয় রোধ।

জাত্ৰাৰ
$$120 \times 10^{-6} = \frac{2.4}{100 + R}$$
 জাথকা, $100 + R = \frac{2.4}{120 \times 10^{-6}} = 20000$; $\therefore R = 19900 \Omega$.

সুতরাং গালেভ্যানোমিটারের সাথে শ্রেণি সমবায়ে 19900 Ω রোধ যুক্ত করলে তা $2.4~{
m volt}$ পর্যন্ত বিভরপ্রভেদ পঠনক্ষম ভোল্টমিটারে রপান্তরিত হবে।

3) 5 mA প্রবাহ গেলে একটি মিলিঅ্যামমিটারে পুরো ক্ষেল বিক্ষেপ হয়। এই যত্ত্বকৈ 5 A প্রবাহ পঠনক্ষম অ্যামমিটারে রূপান্তরিত করতে কি পরিবর্তন প্রয়োজন ? যত্ত্বের কুগুলীর রোধ = 20 Ω.

আামমিটারের সঙ্গো সান্ট ব্যবহার করতে হবে। $R_{
m S}$ যদি প্রয়োজনীয় সান্ট হয় তবে

$$I_G = \frac{R_S I}{R_S + G}$$
 অথবা, $5 \times 10^{-3} = \frac{R_S}{R_S + G} \times 5$

এক্ষেরে
$$R_8=rac{20}{10^3}=0.02~\Omega.$$
 (প্রায়)

সুতরাং, মিলিঅ্যামিমিটারকে 5A প্রবাহ পঠনক্ষম অ্যামিমিটারে রূপান্তরিত করতে হলে যন্ত্রের সাথে 0.02 Ω রোধের সান্ট যুক্ত করতে হবে।

ক্রি একটি 110 volt ব্যাটারির অভ্যন্তরীণ রোধ 4 Ω । 250 Ω রোধের একটি ভোল্টমিটারকে ব্যাটারির তড়িচ্চালক বল মাপার জন্য ব্যবহার করা হল। পরিমাপে এক শতাংশের বেশি ত্রুটি হবে না এরূপ করতে গেলে ভোল্টমিটার রোধের ন্যুনতম পরিবর্তন কি করা উচিত ?

উঃ। ধরো, ভোল্টমিটারের নূদেতম রোধ R হলে ব্যাটারির তড়িচ্চালক বলের পরিমাপে 1% বুটি হল। এই অবস্থায় ভোল্টমিটার দিয়ে তড়িৎ-প্রবাহ $i=rac{100}{R+4}$ A.

ভোল্টমিটার কর্তৃক বিভব-পতনের পাঠ = তড়িৎপ্রবাহ imes ভোল্টমিটারের রোধ = $\frac{100}{\dot{R}+4} imes R$. 1% বুটির কথা ধরলে ভোল্টমিটারে পাঠ পাওয়া উচিত 99 volt.

$$\therefore 99 = \frac{100}{R+4} \times R$$
. অথবা $R = 396 \Omega$.

স্তরাং, ভোল্টমিটারের রোধ (396 – 250) = 146 Q বৃদ্ধি করতে হবে।

5 100 V সরবরাহ লাইনে 1000 Ω-এর একটি রোধ আছে। ঐ রোধের একপ্রান্ত ও রোধের মধ্যবিন্দুর ভিতর একটি ভোল্টমিটার সংযুক্ত করলে 40V পাঠ পাওয়া যায়। ভোল্টমিটারের রোধ নির্ণয় করো।

উ:। 3,37 নং চিত্রে বর্তনী নাবস্থা দেখানো হল।
AC বোধের এক প্রান্ত A এবং মধর্মবন্দ B-এর ভিতর
ভেল্ডিডিসর (V) যুক্ত। অতএব, AB রোধ = BC
বেশে = 500 \(\)2.

ত্যাহে ত ভেল্টাফটার AB অংশের বিভবপ্রভেদ 40 । volt পাট সেয়ে, সেয়েত্ব BC অংশের বিভবপ্রভেদ = । (100 – 40) = 60 V।

অতএব, বর্তনীর মূলপ্রবাহমাত্রা $i=\frac{V_B-V_C}{500}=\frac{60}{500}=\frac{6}{50}$ A. এখন, মূলপ্রবাহের i_1 অংশ যদি ভোল্টমিটার দিয়ে প্রবাহিত হয়, তবে $i_1=\frac{AB}{500+G}\frac{\text{section}}{500+G}\times i=\frac{500}{500+G}\times \frac{6}{50}=\frac{60}{500+G}$ A [G= ভোল্টমিটারের রোধ] সুতরাং, ভোল্টমিটারের প্রান্তীয় বিভব পতন $=i_1\times G=\frac{60\times G}{500+G}$ প্রশান্যায়ী, $\frac{60\times G}{500+G}=40$ অথবা G= 1000 Ω .

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

 একটি তারে তড়িং-প্রবাহ আছে কিনা পরীক্ষা করার জন্য তারকে একটি চুম্বক-শলাকার কাছে আনা হল; কিন্তু শলাকার কোনো বিক্ষেপ দেখা গেল না অথচ, তারকে জলপূর্ণ ক্যালোরিমিটারে ডোবালে, জলের তাপমাত্রা বৃশ্বি হল। এটা কীর্পে ব্যাখ্যা করবে?

তিড়িৎপ্রবাহযুত্ত তারকে যদি পূর্ব-পশ্চিম দিকে রাখা যায়, তবে উত্তর-দক্ষিণমুখী চুম্বক-শলাকার ওপর তা কোনো প্রভাব বিস্তার করবে না; ফলে শলাকার কোনো বিক্ষেপ দেখা যাবে না। কিন্তু ঐ তারকে জলে ডোবালে, জুল প্রভাবের দরুন যে তাপ উৎপন্ন হবে তাতে জলের তাপমাত্রা বৃদ্ধি পাবে। আরও একভাবে উপরোত্ত ঘটনাকে ব্যাখ্যা করা যায়। যদি তার দিয়ে উচ্চ কম্পাঙ্কের পরিবর্তী প্রবাহ যায় (H.F. alternating current) তবে তা শলাকার কোনো বিক্ষেপ সৃষ্টি করতে পারবে না। কিন্তু জুল প্রভাব সৃষ্টি হবে কারণ জুল প্রভাব প্রবাহমাত্রার বর্গের ওপর নির্ভর করে, প্রবাহের অভিমূখের ওপর নির্ভর করে না। তাই পরিবর্তী প্রবাহয়ুত্ত তারকে জলে ডোবালে উৎপন্ন তাপ জলের তাপমাত্রা বৃশ্ধি করবে।

2. দুইটি সমান্তরাল ঋজু তারে সমমুখী প্রবাহ যচেছ। তার দুটির অভ্যন্তরস্থ দূরত্বের মধ্যবিন্দৃতে এবং তার দুটি থেকে দূরের কোনো বিন্দৃতে চৌম্বক বলরেখা কীরূপ হবে?

প্রত্যেকটি তারের জন্য বলরেখা হবে বৃত্তাকার এবং সমকেন্দ্রিক। তারের সাথে কার্ডবোর্ডের ছেদবিন্দু হবে

ঐ বৃত্তাকার বলরেখাগুলির কেন্দ্র। এখন, তার দিয়ে প্রবাহ যদি ওপর থেকে নীচুতে যায় তবে উভয়
বল রেখাগুলির অভিমুখ হবে দক্ষিণাবতী। ফলে দুই তারের মাঝখানে দুই প্রবাহের দরুন চৌম্বক ক্ষেত্রের
প্রাবল্য হবে বিপরীভমুখী। যে বিন্দুতে দুই প্রাবল্য সমান হবে সেখানে উদাসীন বিন্দুর সৃষ্টি হবে এবং
সেখানে কোনো বলরেখা থাকবে না। তার দুটি হতে সামান্য দূরে বলরেখা দুটি তারকেই বেখন করে
প্রায় বৃত্তাকার হবে কিপ্তু তার দুটি থেকে বেশ দরের বলরেখাগুলি সম্পূর্ণ বৃত্তাকার হবে এবং একটি
তার দিয়ে (i1 + i2) প্রবাহ গেলে যেরপ বলরেখা হত, সেরকম হবে।

3. একটি তার দিয়ে i_2 তড়িৎ-প্রবাহ যাচেছ। তারটি অপর একটি বৃত্তাকার তার কুণ্ডলীর কেন্দ্র

দিয়ে এবং কুণ্ডলীর তলের অভিলম্বভাবে চলে গেছে [চিত্র 3.38]। কুণ্ডলী দিয়ে i₁ প্রবাহ বাছে। এরূপ অবস্থায় তড়িৎ প্রবাহ দৃটি পরস্পরের ওপর কীরকম বল প্রয়োগ করবে?

কুশুলীর তড়িং-প্রবাহ i1 যে চৌম্বক ক্ষেত্র উৎপন্ন করে তার
অভিমুখ i2 প্রবাহের অভিমুখের সমান্তরাল। আমরা জানি, তড়িং
প্রবাহযুত্ত ঋজু তার চৌম্বকক্ষেত্রের অভিমুখের সমান্তরালভাবে স্থাপিত
হলে তা কোনো বল অনুভব করে না। অতএব, এক্ষেত্রে

- i_2 প্রবাহের ওপর i_1 প্রবাহ কোনো বল প্রয়োগ করবে না। আবার ঋজ্ গ্রারে i_2 প্রবাহ যে চৌম্বকক্ষেত্র সৃষ্টি করবে, গ্রা কুঙলীর হলের সমান্তরাল হবে, এক্ষেত্রেও i_1 প্রবাহ i_2 প্রবাহের ওপর কোনো বল প্রয়োগ করবে না। স্তরাং তত্তিৎপ্রবাহ দুটির ভিতর পারম্পরিক বল হবে শুন্য।
- 4. একটি তড়িতাহিত বয়ু কণাকে সুতোর এক প্রান্তে আটকে মসৃণ টেবিলের ওপর অনুভূমিক তলে ঘোরানো হচ্ছে। সুতোর অপর প্রান্ত একটি বিন্দুতে দৃঢ়ভাবে আকখ। এই অবস্থায় খাড়া উল্লম্ব দিকে একটি চৌম্বকক্ষেত্র কার্য করলে, সুতোর টান কীরূপ হবে ?
- যে-কোনো মৃহর্তে কণার গতির অভিম্থ ঐ বিন্দৃতে বৃত্তের স্পর্শক বরাবর অন্ভূমিক দিকে। চৌষক ক্ষেত্র খাড়া উল্লেখ্ন দিকে প্রিয়া করায়, চৌষ্বকক্ষেত্রের অভিম্থ এবং কণার গতির অভিম্থ পরস্পরের অভিলম্ব। ফলে চৌষ্বকক্ষেত্রের দর্ন কণার ওপর প্রযুক্ত বল উভয়ের অভিলম্ব অর্থাৎ অনুভূমিক দিকে বৃত্তের কেন্দ্র বরাবর অথবা কেন্দ্র বিহর্ম্থী হবে। অতএব চৌম্বক ক্ষেত্রের দিক অনুযায়ী (উপর হতে নীচে কিংবা নীচু হতে উপরে) সৃতোর টান বৃদ্ধি পেতে পারে অথবা ব্লাস পেতে পারে।
- 5. চৌমকক্ষেত্রে তড়িংগ্রস্ত কণার ব্যবহার এবং প্রির তড়িংক্ষেত্রে তড়িংগ্রস্ত কণার ব্যবহারের পার্থক্য কী 🕫 💮 💮 💮 💮
 - 1. চৌদ্বকক্ষেত্র কেবলমাত্র গতিশীল তড়িৎ
 –গ্রস্ত কণার উপর বলপ্রায়োগ করে; তড়িৎগ্রস্ত হিথর কণার উপর কোনো বলপ্রায়োগ করে না।
- 2. চৌদকক্ষেত্রের অভিমুখের সমান্তরালে গতিশীল তড়িৎগ্রস্ত কণার উপর চৌদ্বকক্ষেত্র কোনো বলপ্রয়োগ করে না।
- 3. গতিশীল তড়িংগ্রন্থ কণার উপর চৌম্বক ক্ষেত্র কর্তৃক প্রযুক্ত বল \overrightarrow{v} এবং \overrightarrow{B} নির্দেশিত তলের অভিলম্বভাবে ক্রিয়া করে।
- 4. চৌষক ক্ষেত্ৰ কৰ্তৃক প্ৰযুক্ত বল F=B.e.v $\sin\theta~[\theta=\overrightarrow{B}$ এবং \overrightarrow{v} –এর অন্তৰ্গত কোণা

- শির তড়িৎক্ষেত্র গতিশীল এবং শির তড়িৎ
 গ্রস্ত কণা উভয়ের উপরই বলপ্রয়োগ করে।
- গতিশীল তড়িৎগ্রস্ত কণার গতির অভিমুখ

 যাই হোক না কেন তড়িৎক্ষেত্র সর্বদা কণার উপর
 বলপ্রয়োগ করে।
- 3. তড়িৎক্ষেত্র কর্তৃক প্রযুক্ত বল ক্ষেত্র নির্দেশিত তলে ক্রিয়া করে।
 - 4. তড়িংক্ষেত্র কর্তৃক প্রযুক্ত বল F=E.q [E= ক্ষেত্রপ্রাবল্য; q= কণার তড়িতাধান]
- 7. সুষম চৌম্বকক্ষেত্রে একটি তড়িতাধান রাখা আছে। আধানের ওপর চৌম্বকক্ষেত্র কি কোনো বলপ্রয়োগ করবে যখন (i) আধান পির অবস্থায় আছে (ii) চৌম্বকক্ষেত্রের সমান্তরালে আধান গতিশীল আছে এবং (iii) চৌম্বকক্ষেত্রের অভিমুখের সমকোণে আধান গতিশীল আছে।
- (i) স্থম টোসকক্ষেত্রে আধান স্থির অবস্থায় থাকলে, টোসকক্ষেত্র কোনো বলপ্রয়োগ করে না! (ii) গতিশীল আধান তড়িৎপ্রবাহের সমতৃলা: ফলে তা টোসকক্ষেত্রেরও সৃষ্টি করে। কিন্তু এক্ষেত্রে যেহেতু প্রবাহের অভিমুখ টোসকক্ষেত্রের সমান্তরাল, তাই আধানের ওপর কোনো বল প্রয়ন্ত হবে না। (iii) আধানের গতির অভিমুখ এবং টোসকক্ষেত্রের অভিমুখ পরস্পরের সমকোণে থাকলে, গতিশীল আধানের ওপর বল প্রয়ন্ত হবে। এই বলের মান = B.q.v. য়েখানে B = টোসক আবেশ, q = আধান এবং v = গতিশীল আধানের গতিবেগ।
- 8. চৌম্বক ক্ষেত্র প্রাবস্য H এবং চৌম্বক আবেশ B এর মধ্যে সম্পর্ক কি ho এরা কি একই ধরনের ভেরুর ho
- শূল্য (বা বায়) মাধ্যমে কোনো বিন্দৃতে চৌদ্ধকক্ষেত্র প্রাবলা H হলে এবং বায়ুর পরিবর্তে অনা কোনো মাধ্যমে ঐ বিন্দৃতে চৌদ্ধক আরেশ B হলে $B=\mu H$ হবে, যেখানে $\mu=$ ঐ মাধ্যমের

- ভেদারা S.I. পর্ম্বাহিতে H-এর একক আদিসমূদে মিনর এবং B-এর একক ভাষেবার । মানর- অথবা টেসলা। সমসন্ত্র টোম্বক পদার্থের মধ্যে H এবং B উভয়েই একই ধরনোর ্নস্টব।
- Y-অক্ষ বরাবর কাজ করছে এর্প একটি চৌম্বকক্ষেত্রে X-অক্ষ বরাবর গতিলীল একটি ইলেকট্রন প্রবেশ করল। ইলেকট্রনের ওপর প্রযুদ্ধ বল কোন অভিমৃধে ক্রিয়া করবে ?
- এক্ষেত্র ওড়িতাধান চৌদ্ধকক্ষেত্রের অভিম্যার সদৃষ্ঠ অভিম্যাভাবে পরিবল করে ইনেকরকের পরিব অভিমুখ এবং চৌদ্ধকক্ষেত্রে অভিমুখ — উভরের সাথে সমাক্ষাত চাধক কা ক্রিয়া করবে — অর্থাৎ ইলেক্ট্রকের ওপর প্রযুক্ত বল Z-অঞ্চ বরবের ক্রিয়া করবে
- 10.একটি তড়িৎগ্রস্ত কণা একটি সৃষম চৌম্বকক্ষেত্রে প্রবেশ করল। নির্মালবিত ক্ষেত্রে তার গতিপথ কি হবে:—(i) প্রাথমিক গতিপথ চৌম্বকক্ষেত্রের সমাস্তরাল (ii) প্রাথমিক গতিপথ চৌম্বকক্ষেত্রের সঙ্গো যে কোনো কোণে আনত।
- (i) তড়িপ্রান্ত কণার প্রাথমিক গতিপথ চৌদ্দকক্ষেত্রের সমান্তরাল হলে টেম্বর্জের কণার ওপর ,কানো বলপ্রয়োগ করে না। ফলে কণা সরলরেখা বরাবর প্রাথমিক গতিন্বর্জের অভিমুক্ত ১লে যুগুর ।
 - (ii) তড়িৎগ্রস্ত কণার প্রাথমিক গতিপথ চৌম্বকক্ষেত্রের অভিলম্ন হলে, চৌম্বকক্ষেত্র কথার ওপর অরীয় (radial) বল প্রয়োগ করবে। ফলে কণা চৌম্বকক্ষেত্রের অভিলম্ন হলে বৃত্তপথে ঘ্রে যুগরে।
 - (iii) তড়িংগ্রস্ত কণার প্রাথমিক গতিপথ চৌম্বকক্ষেত্রের সজো আনত হলে, গতিপাংগর যে উপাংশ চৌম্বকক্ষেত্রের সমান্তরাল তার দরুন সরলরেখা বরাবর অগ্রসর হবে এবং যে উপাংশ চৌম্বকক্ষেত্রের অভিলম্ন তার দর্ন বৃত্তপথে ঘ্রবে। এই দ্য়ের সন্মিলিত প্রভাবে তডিংগ্রস্ত কণা প্রাস্থারের ক্ষিংয়ের অক্ষ চৌম্বকক্ষেত্রের সমান্তরাল হবে।
- 11.একটি তড়িৎগ্রস্থ কণা একটি চৌম্বকক্ষেত্রের অভিমৃথের সঙ্গে লম্বভাবে চৌম্বকক্ষেত্রে প্রবেশ করল। এর ফলে নিম্নলিখিত বিষয়গুলি মধ্যে কোন্টির পরিবর্তন হবে: (i) কণার তড়িতাধানের পরিমাণ (ii) কণার দুতি (iii) কণার শক্তি (iv) কণার গতিপঞ্ব ?
- প্রথম তিনটি বিষয়ের কোনো পরিবর্তন হবে না। কণার গতিপথ সরলরেখার পরিবর্তে বৃত্তকার হবে।
- 12. একটি বৃত্তাকার তার কুগুলী দিয়ে এরূপ প্রবাহমাত্রা পাঠানো হল যে কুগুলীর কেন্দ্রে উৎপন্ন চৌম্বক ক্ষেত্র ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশকে নাকচ করে দিল। এই উদ্দেশ্যে তার কুগুলীকে কীভাবে স্থাপন করতে হবে ?
- কুগুলীর তল (plane) এমনভাবে স্থাপন করতে হবে যেন তার কেন্দ্রে তড়িংপ্রবাহজনিত চৌদ্বক
 ক্ষেত্রের অভিম্য ভূ-চৌদ্বক ক্ষেত্রের অনুভামিক উপাংশের ঠিক বিপরীত হয়। সূতরাং কৃগুলীর তলকে
 উল্লেম্ব হতে হবে এবং চৌদ্বক মধ্যতলের সজো লম্বভাবে থাকতে হবে। তাছাড়া প্রবাহের অভিমুখ
 এমন হবে যে উত্তর দিক থেকে দেখলে প্রবাহ দক্ষিশাবতী দেখাবে।
- 13. একটি চোঙাকৃতি পরিবাহীর ভিতর দিয়ে প্রির মানের তড়িংপ্রবাহ যাচেছ। পরিবাহীর ভিতরে কোনো তড়িংক্ষেত্রের অন্তিছ আছে কি ?
- হাঁা, পরিবাহীর দিয়ে স্থির মানের প্রবাহ বজায় রাখতে গেলে পরিবাহীর অভা**ন্তরে ত**ড়িৎ**ক্ষে**এের অবস্থিতি প্রয়োজন।
- 14.একটি সরু ও নমনীয় (flexible) তারকে আয়তাকার দিয়ে মস্ণ টেবিলের ওপর রাখা হল এবং তার দিয়ে প্রবল তড়িৎপ্রবাহ পাঠানো হল। তার কীরকম আকার পাবে?
- আয়াতাকার তারের প্রত্যেক দৃষ্ট সমান্তরাল ব হতে সমান, সমান্তরাল এবং বিপরীতমুখী তড়িৎপ্রবাহ যাবে।
 ফলে, প্রত্যেক দৃষ্ট সমান্তরাল বাহু পরস্পরকে বিকর্ষণ করের। এতে তার গোল আকার পাবে।
- 15. একটি প্রোটন ও একটি ইলেকট্রন অভিন্ন বেগ নিয়ে একটি চুম্বকক্ষেত্রের লম্বভাবে ঐ ক্ষেত্রে প্রবেশ করে। কোনটির ওপর অধিক বল ক্রিয়া করবে? কোনটি নিজ গতিপথ থেকে অধিকতর বিচ্যুত হবে?

 Β টোম্বকক্ষেত্র e তড়িতাধান υ গতিবেগ নিয়ে লম্বভাবে প্রবেশ করলে তড়িতাধানের ওপর ক্রিয়ারত বল = B.e.υ.
 য়েহেতু ইলেকট্রন ও প্রোটনের তড়িতাধান সমান এবং প্রশ্নানুযায়ী গতিবেগও সমান, তাই উভয়

ক্ষেত্রেই বল সমান হবে। আবার, যেহেতু প্রোটন অপেক্ষা ইলেকট্রন খুব হালকা, তাই একই বলের

অধীনে ইলেকট্রনের বিচ্যুতি বেশি হবে।

16. দৃটি সমান্তরাল তারে একই অভিমূখে তড়িৎপ্রবাহ গেলে তার দৃটি পরস্পরকে আকর্ষণ করে। কিন্তু দৃটি ইলেকট্রন বীম একই দিকে গতিশীল হলে তারা পরস্পরকে বিকর্ষণ করে।

এই পার্থক্যের কারণ কী ?

- তারে তড়িৎপ্রবাহ গেলে একটি চৌম্বকক্ষেত্রের সৃষ্টি হয়। ঐ চৌম্বকক্ষেত্রে অপর একটি তড়িৎবাহী তার
 আনলে, তড়িৎপ্রবাহের দিক অনুযায়ী তার দুটি পরস্পরকে আকর্ষণ বা বিকর্ষণ করে। প্রমাণ করা যায়
 যে দুই তারে তড়িৎপ্রবাহের অভিমুখ এক হলে তার দুটি আকর্ষণ বল অনুভব করবে। কিয়ু দুটি
 ইলেকট্রন বীম একই দিকে পাশাপাশি গেলে সমতড়িতের ভিতর বিকর্ষণের ফলে ইলেকট্রনগুলি
 পরস্পরকে বিকর্ষণ করবে।
- 17. একটি অন্তলের বিভিন্ন বিন্দুতে চৌয়কক্ষেত্রে মান বিভিন্ন কিছু অভিমুখ এক (পূব থেকে পশ্চিমে)। একটি প্রোকষ্ঠের ভিতর এরূপ একটি চৌয়কক্ষেত্র কান্ধ করছে। একটি তড়িতাহিত কণা ঐ প্রোকষ্ঠে চুকে বিচ্যুত না হয়ে স্থির বেগে (constant speed) সোজা চলে গেল। কণার প্রাথমিক বেগ কীরূপ হলে ঐ ঘটনা সন্তব ?
- আমরা জানি যে চৌম্বকক্ষেত্রের সমান্তরালে যদি কোনো আহিত কণা চৌম্বক ক্ষেত্রে প্রবেশ করে তবে
 তার ওপর চৌম্বকক্ষেত্র কোনো বল প্রয়োগ করে না। প্রশ্নানুযায়ী যদি তড়িতাহিত কণা বিচ্যুত না হয়ে
 সোজা পথে চলে যায়, তাহলে বুঝতে হবে যে কণার ওপর কোনো বল প্রযুক্ত হয়নি। এটা সম্ভব
 যদি আহিত কণার প্রাথমিক বেগের অভিমুখ চৌম্বক ক্ষেত্রের সমান্তরাল হয়।
- 18. একটি সুষম চৌম্বকক্ষেত্রের ভিতর ক্ষেত্রের অভিমুখের সঙ্গো $\theta(0^\circ < \theta < 90^\circ)$ কোণ করে এবং υ গতিবেগ দিয়ে একটি আহিত কণাকে নিক্ষেপ করা হল। কণাটির গতিপথ কি রকম হবে ?
- কণার গতিবেগ υ-কে যদি চৌম্বকক্ষেত্রের অভিমুখের দিকে এবং তার উল্লম্ব দিকে বিভাজন করা হয়
 তবে আমরা যথাক্রমে υ cos θ এবং υ sin θ দুটি উপাংশ পাব। υ cos θ উপাংশের জন্য কণা
 কোনো বল অনুভব করবে না। ফলে কণা ঐ উপাংশকে প্থির রেখে চৌম্বকক্ষেত্রের অভিমুখে চলতে
 থাকবে। কিন্তু অভিলম্ব উপাংশ υ sin θ-এর জন্য কণা বৃত্তপথে ঘুরতে চেন্টা করবে। ফলে, দুই
 উপাংশের অধীনে থেকে কণা সপ্রিল পথে (helical path) অগ্রসর হবে।

⇒ রচনাধ্যী প্রঞ্

- চুমকের ওপর তড়িৎপ্রবাহের ক্রিয়া কীর্পে প্রদর্শন করবে? চুম্বক বিক্লেপের অভিমুখ নির্ণয় সংক্রাপ্ত নিয়মটি ব্যাখ্যা
 করো।
- তড়িৎবাহী ঋজু পরিবাহী যে চৌম্বক ক্ষেত্র সৃষ্টি করে তা কীর্পে প্রদর্শন করবে? ঐ চৌসক ক্ষেত্রের বলরেখা আঁকো এবং তড়িৎপ্রবাহ ও বলরেখার অভিমুখ নির্দেশ করে।
- 3. তড়িধাহী বস্তাকার পরিবাহী যে চৌদক ক্ষেত্র সৃষ্টি করে পরিবাহীর কেন্দ্রে ঐ চৌদক ক্ষেত্রের মান কত?
- কোনো পরিবাহী দিয়ে প্রবাহিত তড়িৎপ্রবাহের ফলে পরিবাহীর চতুর্দিকে সৃষ্ট ট্রৌমক ক্ষেত্রের যে-কোনো বিশ্বতে প্রাবল্য সম্পর্কিত বায়ো-সাভার্ট সূত্র বিবৃত করো।
- শুরিবাহী পরিবাহীকে টোম্বক ক্ষেত্রে রাখলে পরিবাহী যে বিক্ষিপ্ত হয় তা প্রদর্শনের একটি পরীক্ষা বর্ণনা করে।
 পরিবাহীর বিক্ষেপের দিক নির্দেশ করবার প্রয়োভনীয় নিয়য়টি কী ?
- 6. (a আর্ণাস্প্রয়ারের পরিক্রমণ উপপাদা বিবৃত করো এবং বাংখ্যা করো। এই উপপাদা প্রয়োগ করে একটি তড়িগাছী

টরয়েডের দরুন চৌম্বক ক্ষেত্রের প্রাবলা নির্দর করো।

- (b) আম্পিয়ারের পরিক্রম উপপাদেরে সাহায়ো একটি লম্বা সন্ধিনয়েন্ডের ^{ভি}ঙরে এবং বাইরে স্টেম্পকক্ষের্ডর প্রবন্ধা নির্ণয় কর।
- 7. চৌদকক্ষেত্রে স্থাপিত তড়িংবাহী ল্লেপর ওপর আর্যকর উর্ক নির্ধায় করে।
- 8. একটি চলকুজলী গ্রালভারেনামিটারের গঠন ও কর্মপুলালী লেখো। ঐ গলভারনামিটারের স্বিদ্ধ হি ১
- 9. একটি আমেমিটার এবং একটি ভোল্টামিটার বর্ণনা করে। এবং পার্থক, নির্দেশ করে।
- 11. সূষম চৌম্বক ক্ষেত্রে একটি তড়িয়াহী তারের কৃতনী বাখলে তার উপর বিষ্ণাশীল ট্রেটর মনে তি এবে নিবস এব
- 12. চিত্রের সাহায়্যে একটি চলকুগুলী আমেখিটারের কার্যপ্রণালী বিবৃত করে। কাঁপুসে একে একটি ভোলসমটারে বস ছারত করা যায় ?
- 13. চলকুঙলী গ্যালভানোমিটারকে কীভাবে আমেমিটারে পরিণত করা যায় ?
- 14. তোমাকে একটি গ্যালভ্যানোমিটার দেওয়া হল। বাঁর্পে ভূমি ঐ যাত্রকে (1) আত্মহিটার এবং (11) (ভাল্টমিটারে পরিগত করবে ? এই কাজ করবার পূর্বে গ্যালভ্যানোমিটার সম্পর্কে কী কী তথা জানা দককার ?
- 15. সান্ট ব্যবহার করে কোনো গালেভানোমিটারকে আমমিটারে কুপান্তরিত করা হলে আমমিটার প্রবাহ ও গালেভানোমিটার প্রবাহের সম্পর্ক চিত্র সহযোগে নির্ণয় করো। এই বূপান্তরের জনা সাধারণত কীর্প গালিভানোমিটার ব্যবহার করা হয়?

ি সংকেতঃ 3.17 অনুচ্ছেদ দুর্ভীবা। এই কালের জন্য কম রোধের গ্যালভ্যানেখিটার প্রারোজন।

সংক্রিপ্ত উন্তরের প্রশ্ন

- 1. তড়িংবাহী তারের সন্নিকটে উৎপন্ন চৌম্বক ক্ষেত্রের দিক নির্দেশক স্ত্রটি বিবৃত করো
- 2. একটি খাড়া অবলম্বনের ওপর একটি সৃচিচ্ম্বক আলম্বিত আছে। একটি তড়িংবাহী তারকে চৃম্বকের অক্ষ বরাবর চূমকের কিছু উপরে ধরলে চুম্বকের অবস্থান কীরূপ হবে? নিম্নলিখিত ক্ষেত্রে চুম্বকের অবস্থানের কীরূপ পরিবর্তন লক্ষ করা যাবে; (ক) তারটি চুম্বকের কিছু উপরে (খ) তারটি চুম্বকের কিছু নীচে (গ) প্রবাহের অভিমুখ উপ্রো হলে।
- 3. একটি তামার তার একটি সূচি-চুম্বকের ওপর দিয়ে পূর্ব-পশ্চিম দিকে আটকানো আছে। যদি ব্যাটারির পঞ্চিটিভ মের্ ঐ তারের পশ্চিম-প্রান্তে এবং নেগেটিভ মের পূর্ব প্রান্তে যুক্ত থাকে তবে সূচি-চুম্বক কীর্পে ব্যবহার করবে?
- 4. সাইক্রোট্রোন কম্পান্ডক কি ? এর একটি রাশিমালা নির্ণয় করে।।
- 5. সরলরেখায় গতিশীল একটি প্রোটন একটি তীব্র চৌম্বকক্ষেত্রে প্রবেশ করল। চৌম্বকক্ষেত্রে অভিমূখ যদি প্রোটনের গতির অভিমূখের সমান্তরাল হয় তবে প্রোটনের গতিপথ এবং গতিবেগের কীরূপ পরিবর্তন হবে ৪
- 6. দৃটি অভি দীর্ঘ সমান্তরাল তারে একই দিকে সমান প্রবাহ যাচ্ছে। নিম্নলিখিত প্রধার উত্তর দাঙঃ (ক) কোনো তারের প্রবাহর দর্ন অপর তারের প্রবাহর কোনো বিন্দুতে চৌম্বক ক্ষেত্রের অভিমূখ কী? (খ) কোনো তারের দর্ন অপর তারে প্রযুক্ত বল কত? (গ) প্রত্যেক তারের প্রবাহ দ্বিগুণ করলে, ঐ বল কীর্পভাবে পরিপত্তিত হবে (ঘ) দৃই তারের সম-দূরবর্তী কোনো বিন্দুতে চৌম্বক ক্ষেত্রের অভিমূখ কী?

 [K.I.T. 1973]
 [সংকেতঃ (ক) কোনো তারের প্রবাহের দর্ন অপর তারের কোনো বিন্দুতে চৌম্বক ক্ষেত্রের অভিমূখ হবে ঐ বিন্দু হতে প্রথম তারের অরীয় দূরম্বের (radial distance) স্পর্শক বরাবর। (খ) তারের প্রবাহ সমা্থী বলে এক তার অপর তারের ওপর আকর্ষণ বল প্রয়োগ করবে। (গ) আকর্ষণ বল প্রবাহমান্ত্রা দূটির গুণফলের সমান্প্রতিক মধ্যে, ৮ নায়ে অভএব প্রত্যেক তারের প্রবাহ দ্বিগুণ করলে আকর্ষণ বল চারগুণ হবে। (ঘ) দুই তারের সমদ্রবর্তী বিন্দুতে দুই তারের দর্ন চৌম্বক ক্ষেত্র সমান এবং বিপরীতমুখী হবে। অভএব ঐ বিন্দুতে কোনো চৌম্বক ক্ষেত্র থাকবে না।
- 7. দুটি আঁত দীর্ঘ সমান্তরাল তার দিয়ে একই প্রবাহ শাছে। দুই তার হতে সমদূরবর্তী বিন্দুতে চৌম্বক ক্ষেত্র কি হবে যথন

 (1) প্রবাহদায় একই দিকে অভিমুখী এবং (ii) প্রবাহদায় বিপরীত দিকে অভিমুখী।
- 8. ভোল্টমিটার এবং অ্যামমিটারের মধ্যে মৌলিক পার্থক্য কী?
- 9. কার রোধ বেশি (i) মিলিআমেমিটার এবং আমেমিটার (ii) মিলিভোন্টমিটার এবং ভোন্টমিটার? আদর্শ আমমিটার ও আদর্শ ভোন্টমিটারের রোধ কীরূপ হওয়া উচিত?
- 10. ভুলক্রমে একটি হড়িৎবর্তনীতে একটি রোধকের সমান্তরালে আমেমিটার ও শ্রেণি সমবায়ে ভোন্টমিটার লাগানো হল। যন্ত্র দুটির অবস্থা কী হবে?

সিংকেতঃ যন্ত্র দুটি নন্ট হয়ে যাবে। ভোলীমিটার একটি উচ্চ রোধের যন্ত্র। শ্রেণি সমবায়ে লাগালে, উচ্চ রোধের জন্য যে তাপ উৎপন্ন হবে (1², n.t) তা যন্ত্রটির কুঙলীকে পুড়িয়ে ফেলবে। আমেমিটার, অপর পক্ষে একটি নিম্নরোধের যান্ত্র সমান্তরাল সমধ্যমে লাগালে বর্তনীর মূল প্রবাহের বেশির ভাগ অংশ আর্মেমিটারে যাবে এবং তা যে তাপ উৎপন্ন করবে তাতে যাত্রের কুন্ডলী পুড়ে বাবে।

11. আত্মমিটালের রেখে কম ও ভোল্টমিটারের রোধ রেশী হয় কেন ব্যাখা করে।

⇒ অভিসংকিশ্ব উত্তরের প্রশা

- 1. অ্যাম্পিয়ারের সন্তরণ নিয়ম থেকে কি জানা যায় ?
- 2. চম্বকের উপর তড়িৎপ্রবাহের ফল কে প্রথম লক্ষ্য করেন ?
- 3. X-অক্ষ বরণের গতিশীল একটি ইলেকট্রন Y-অক্ষ বরাবর বিক্ষিপ্ত হল। এই বিক্ষেপ চৌদ্ধক ক্ষেত্র দ্বারা সংঘটিত হলে, চৌদ্ধক ক্ষেত্রের অভিমুখ কি ? আমরা কি এই সিখ্বান্ত করতে পারি যে চৌদ্ধকক্ষেত্র Z-অক্ষ বরাবর ক্রিয়া করছে ?
- 4. Β চৌম্বক প্রাবলোর ক্ষেত্রে υ গতিবেগে সম্বরণশীল তড়িতাধান q-এর উপর কত বল ক্রিয়া করে ?
- 5. প্রির তডিতাধানের উপর চৌম্বকক্ষেত্র কি কোন বল প্রয়োগ করে ?
- 6. দুটি সমান্তরাল তারে বিপরীতমুখী তড়িৎপ্রবাহ থাকলে তার দুটির ভিতর ক্রিয়ারত বলের অভিমুখ কি হবে ?
- 7. একটি দীর্ঘ সলিনয়েডে 'অভিৎপ্রবাহ পাঠানো হল। স<mark>লিনয়েডের ভিতরে এবং বাইরে কি চৌম্বক ক্ষেত্র সৃষ্টি</mark> হবে ?
- 8. একটি তড়িতাধান q এমন একটি অঞ্চলের ভিতর দিয়ে যাচ্ছে যেখানে চৌম্বক ক্ষেত্র $\stackrel{\longrightarrow}{B}$ এবং তড়িৎক্ষেত্র $\stackrel{\longrightarrow}{E}$ যুগপৎ বিদ্যমান। আধানের উপর লোরেঞ্জ কল কত ?
- 9. $\frac{4\pi}{\mu_0}$ –এর মান কত ?
- 10. একটি সুষম ক্ষেত্রের অভিলম্ব রূপে একটি ইলেকট্রন ক্ষেত্রের ভিতর প্রবেশ করল এবং বিক্লিপ্ত হল। ক্ষেত্রটি চৌসক ক্ষেত্র কি তড়িংক্ষেত্র কি করে বুঝবে ?

[সংকেতঃ ইলেকট্রন অধিবৃত্ত (parabolic) পথে বিশ্বিপ্ত ছলে ক্ষেত্রটি তড়িৎক্ষেত্র সার বৃত্তাকার পথে বিশ্বিপ্ত ছবে ক্ষেত্রটি চৌম্বক ক্ষেত্র।]

11. কার রোধ কম— (i) আামমিটার না ভোল্টামিটার ?

⇒ বহুমুবী পছন্দের প্রস্ন [Multiple choice type (MCQ)]

(A) নির্ভুল উত্তরটি √চিহ্নিত করো:

- [i] দুটি সমান্তরাল তারের একটিতে 100 A এবং অন্যটিতে 20 A প্রবাহ যাচ্ছে। তারা পরম্পরকে $0.08 Nm^{-1}$ বলে বির্কষণ করলে, তাদের বাবধান হবে
 - (A) 1 mm (B) 5 mm (C) 10 mm (D) 15 mm.
- [ii] একটি আয়তক্ষেত্র আকার দিয়ে একটি সরু ও নমনীয় তারকে টেবিলের উপর রাখা হল। তার দিয়ে তীব্র তড়িৎপ্রবাহ পাঠালে তারের আকার হবে
 - (A) ত্রিভুজাকৃতি (B) গোলাকৃতি (C) ষড়ভুজাকৃতি (D) আয়তাকার।
- [iii] একটি ধনাত্মক তড়িতাধান পূর্বানুখী যেতে যেতে একটি চৌম্বকক্ষেত্র দ্বারা উত্তরাভিমুখী বিক্ষিপ্ত হল। চৌম্বক ক্ষেত্রের অভিমুখ
 - (A) পূব দিকে (B) দক্ষিণ দিকে (C) উপ্বমূখী (D) নিল্লমুখী।
- [iv] একটি হড়িহাহিত কণাকে সুতোয় বেধে মসৃণ টেবিলের উপর অনভূমিক বৃত্তপথে ঘোরানো হচ্ছে। সুতোর অপর প্রান্ত দৃঢ়ভাবে আবন্ধ। যদি উল্লাম্ব দিকে ক্রিয়ারত একটি চৌম্বক ক্ষেত্র কণার উপর আরোপ করা যায় তবে সুতোয় টান
 - (A) বৃশ্বি পাবে

(B) হ্রাস পাবে

(C) একই থাকবে

- (D) বাড়তেও পারে কমতেও পারে।
- [v] $1~{
 m cm}^2$ ক্ষেত্রফারে একটি বৃস্তাকার লুপে 10A প্রবাহ যাচ্ছে। লুপের তলের অভিলম্বভাবে 0.1T প্রাবলোর টোম্বকক্ষেত্র আরোপ করলে, লুপের উপর টর্ক হবে
 - (A) *[o] (B) 10⁻⁴ N-m (c) 10⁻² N-m (D) 1 N-m.
- [vi] প্রোটন ও ইলেকট্রনের একটি গুচ্ছ সমবেগে একটি অভিলয় চৌম্বকক্ষেত্রে প্রবেশ করল। প্রোটন ও ইলেকট্রনগুলি
 (A) বিক্ষিপ্ত হবে না,
 - (B) পৃথক না হলে একই কোণে বিক্লিপ্ত হবে,
 - (C) বিভিন্ন কোণে বিকিপ্ত হবে : ফলে তা পৃথক হয়ে যাবে,
 - (D) তারা পৃথক হরে বিভিন্ন কোণে বিকিপ্ত হবে।

	(27) old other field
	(B) চৌম্বক ক্ষেত্ৰ হবে শূনা,
	(C) তড়িংক্ষের শূন্য হতেও পারে আবার নাও পারে,
	(D) চৌষক ক্ষেত্র শূন্য হতেও পারে আবার নাও হতে পারে।
[writin]	টোম্বল ক্ষেত্র ও ডাড্ডংক্ষেত্র সম্মানত একটি অধ্যান্ত ভিতর দিয়ে একটি আহিত কল ৮ গতিবেলে বিক্ষিপ্ত না হয়ে
[A say]	जिल (श्रेल : ब्रिक्ट्ड
	$(\mathbb{A}) \overset{ ightarrow}{E}$ এবং $\overset{ ightarrow}{B}$ সমান্তরাল এবং $\overset{ ightarrow}{arphi}$ ও $\overset{ ightarrow}{E}$ সমান্তরাল নর,
	$\stackrel{ ightarrow}{E}$ এবং $\stackrel{ ightarrow}{B}$ সমান্তরাগ নয়,
	(C) \overrightarrow{v} ও \overrightarrow{B} সমান্তরাল কিছু \overrightarrow{E} ও \overrightarrow{B} সমান্তরাল নয়,
	$(\mathrm{D}_1\stackrel{\longrightarrow}{E}$ এবং $\stackrel{\longrightarrow}{B}$ সমান্তরাল কিন্তু $\stackrel{\longrightarrow}{\mathrm{U}}$ এবং $\stackrel{\longrightarrow}{E}$ সমান্তরাল নয়।
[ix]	একটি প্রোটন 😈 গতিবেগে B চৌম্ব কক্ষেরের বিপরীত দিকে অগ্রসর হচ্ছে। প্রোটনের উপর চৌম্বক বল
	(A) Bev (B) -Bev (C) Bv (D) 1/41!
f.m.l	একটি টোম্বক ক্ষেত্রের অভিলম্ন দিকে গতিশীল থেকে একটি আহিত কণা চৌম্বক ক্ষেত্রে প্রবেশ করল। নিম্নালিখিত
[x]	
	অনুবঞাগুলির মধ্যে কোনটি পরিবর্তিত হবে ?
	(A) কশার দ্বৃতি
	(C) ক্লার গতিপথ ' ' (D) ক্লার আধান।
[xi]	3.39 নং চিট্রে প্রদর্শিত অর্ধবৃত্তের কেন্দ্রবিন্দৃতে (O) দুই অজু অংশ AB এবং ('I)-র তড়িৎপ্রবাহের দর্ম চৌশ্বক
	ক্ষেত্র হবে
	(A) 카리 (B) $\frac{\mu_0 s}{4\pi}$ (C) $\frac{\mu_0 s}{2\pi}$ (D) অসম।
	(A) শূন্য (B) $\frac{\mu_0 i}{4r}$ (C) $\frac{\mu_0 i}{2r}$ (D) অসীম। তিপরোন্ত প্রক্লে অর্ধবৃত্তের প্রবাহের পর্ম O বিন্দৃতে চৌস্বক
[xii]	जिम्हां अस्त व्यवस्थित भवून U विभूटि कियम विकास किया किया विकास किया विकास किया विकास किया विकास किया किया विकास किया किया विकास किया किया विकास किया किया किया किया किया किया किया किया
	श्रावना रूत
	μοί (D)
	(A) শূল্য (B) $\frac{\mu_0 i}{4r}$ (C) $\frac{\mu_0 i}{2r}$ (D) অসীম। চিন্ত 3.39
[will]	সুষম বেগে গতিশীল একটি তড়িতাধান
(wree)	(A) কেবল ডড়িংকের সৃষ্টি করে,
	(B) কেবল টোম্বক ক্ষেত্র সৃতি করে,
	(C) তড়িং এবং চৌম্বক দুই ক্ষেত্ৰই সৃষ্টি করে,
	(D) কোনো কেবই সৃতি করে না। ্র বিশ্বস্থ বিশ্বস্
	\overrightarrow{v} গতিবেগ নিয়ে ধনাত্মক তড়িতগ্রস্ত একটি কণা \overrightarrow{B} প্রাবস্থোর চৌম্বকক্ষেত্রে প্রবেশ করল। কণাটি সর্বাধিক বিক্ষেপ
[xiv]	
*	বল অনুভব করবে যখন \overrightarrow{v} এবং \overrightarrow{B} ভেষ্টরম্বরের ভিতরকার কোণ
	(A) 0 ⁴ · · · (B) 45° (C) 90° · (D) 180°.
	(A) 0. (B) 40 (C) पर कार्य प्रस्त कर किये शत
	একটি দীর্ঘ ফাঁপা নলের ভিতর দিয়ে তাঁড়ৎপ্রবাহ গেলে, তার দরুন চৌদ্ধক ক্ষেত্র তৈরী হবে,
1	(A) কেবল নলের অভ্যন্তরে,
	(B) কেবল নলের বাইরে,
	(८) कार्याक्षक वर्ष अधिकार वर्ष
	(D) অভ্যন্তর এবং বাইরে-দু জায়গায় ৷
[xvi]	্রকটি ইলেকট্ন (ভর = $9 \times 10^{-31} \mathrm{kg}$; আধান = $1.6 \times 10^{-19} \mathrm{C}$) $10^6 \mathrm{ms}^{-1}$ গতিবেগ নিয়ে একটি চৌম্বক
	ক্ষেত্রে প্রবেশ করার পর 0.1 m ব্যাসার্ধের বৃত্তপথে বিক্ষিপ্ত হল। চৌম্বক ক্ষেত্রের মান
	(A) $1.8 \times 10^{-4} \text{ T}$ (B) $5.6 \times 10^{-5} \text{ T}$
	(C) $14.4 \times 10^{-6} \mathrm{T}$ (D) $1.3 \times 10^{-6} \mathrm{T}$
An 60	

[vii] বিধবারস্থায় থাকা একটি আহিত কলা যদি কোন তড়িছচুপ্রকীয়ে বল অন্তর না করে, তরে সংখানে

[xvii]সমদৈর্ঘার কিন্তু ভিন্ন পাকসংখ্যার দৃটি সলিনয়েড P এবং Q সমীক্ষায়ভাবে বসানো আছে (চিত্র 3.40)। P-এর পাকসংখ্যা 200 এবং Q-এর 300। Q-এ-1A ডড়িৎপ্রবাহ

যাচ্ছে। P-এ কত তড়িৎপ্রবাহ গেলে ক্ভলীছয়ের মধ্যবিদ্দ O-তে লব্দ ক্ষেত্রপ্রাবল্য শন্য হবে ?

(A) $\frac{2}{3}$ A (B) $\frac{3}{2}$ A (C) 1A (D) $\frac{4}{3}$ A.

200

MMM

[xvili] 3.41 নং চিত্রে প্রদর্শিত একটি ঋজুতারে v-অক্ষ বরাবর তড়িৎপ্রবাহ যাচেছ।

- (A) P-বিন্দৃতে চৌম্বকক্ষেত্র x-অক্ষের সমান্তরাল
- (B) টোম্বক ক্ষেত্র Z-অক্ষের সমান্তরাল
- (C) টেম্বক বলরেখা সমকেন্দ্রিক বৃত্ত যার কেন্দ্রবিন্দ্র তারের উপর স্থাপিত
- (D) তারের দক্ষিণে ও বামে চৌম্বক ক্ষেত্রের অভিমুখ বিপরীত।

[xix] দৃটি দীর্ঘ, সরু এবং সমান্তরাল তারের প্রত্যেকটিতে । আম্পিয়ার প্রবাহ যাছে। তার দৃটির ব্যবধান b। প্রতি তার অপর তারের একক দৈর্ঘ্যে যে বল প্রয়োগ করবে ভা

(A) $\frac{\mu_0 i^2}{b^2}$ (B) $\frac{\mu_0 i^2}{2\pi b}$ (C) $\frac{\mu_0 i}{2\pi b}$ (D) $\frac{\mu_0 i}{2\pi b^2}$.

[xx] একটি মিলিঅ্যামমিটারের পালা 0-40 mA এবং রোধ 212। যজের পালা 100 mA পর্যন্ত বৃদ্ধি করতে যে সান্ট দরকার ভা

(A) $0.5\Omega^{+}$ (B) 0.75Ω (C) 1.33Ω (D) 2Ω .

[xxi] 2m বাত্মত একটি বর্গাকার তারের ফ্রেমে 2A তড়িৎপ্রবাধ যাড়েছ। একই প্রবাহ 2m পরিসীমা (permeter)-র একটি বৃত্তাকার ভারে প্রবাহিত হতে। তার দটির কেন্দ্র বিদ্যুত উৎপন্ন টোমক কোরের অনুপাত

(A) $\frac{32}{\pi^2}$ (B) $\frac{\pi^2}{8\sqrt{2}}$ (C) $\frac{8\sqrt{2}}{\pi^2}$ (D) $\frac{\pi^2}{32}$.

3.41

300

िख 3.40

lA

 $oxed{[xxii]} \stackrel{
ightharpoonup}{B}$ চৌধক ক্ষেত্র এবং $\stackrel{
ightharpoonup}{E}$ হাণ্ট্রেক্তেরের ইপ্পন্থিতে একটি গৃহিন্দিনে আধানের উপর মোট বল

$$(\mathsf{A}) \ \stackrel{\rightarrow}{F} \ \stackrel{\rightarrow}{V} \left[\ \stackrel{\rightarrow}{q} \ \stackrel{\rightarrow}{\times} \ \stackrel{\rightarrow}{B} + \stackrel{\rightarrow}{E} \ , \right]$$

$$\underset{(B)}{\Rightarrow} q \left[\left(\overrightarrow{V}, \overrightarrow{E}, \overrightarrow{E} \right) \right]$$

$$_{(C},\stackrel{\rightarrow}{F}, q\Big[\Big(\stackrel{\rightarrow}{V},\stackrel{\rightarrow}{B}\Big),\stackrel{\rightarrow}{E}\Big]$$

(D)
$$\vec{F} = \vec{B} \left[(\vec{q} \cdot \vec{E} + \vec{V}) \right]$$
.

[xxiii] 40 mm বনসংগ্রন একটি বৃভাকার হারকুঙ্গীতে 250 পাক আছে। প্রেডাক পাক্ষের প্রবাহমারা 20 mA. কুঙ্গীর কেন্দ্রে চৌথককের, $(\mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1})$

(A) 0.785×10^{-2} T

(B) 0.525×10^{-3} T

(C) 0.629×10^{-3} T

(D) 0.9×10^{-8} T.

[xxiv] একটি অধ্যান মিনে এবং স্থান প্রভিৎক্ষেত্র ও ট্রাস্কর্করে কাজ বর্গত ক্ষেত্র দটি প্রকল্পেরের সমান্তরাল একটি ত্তিভাৱিত কলাকে সিলোবস্থান রাখে ওই অলান করে ভেড়ো তল কলাটির বাতিলও এবে

[A.I.E.E. Exam. 2006]

(A) সরল রৈখিক

(B) উপবৃদ্ধাঞ্চার

(C) वृखकात

(D) কেলিয়া।

রক্তি নিয়া সন্তিয়ে তার প্রতিক্র সাক্ষর সংখ্যা 2(N) তবং পার্থনার । এব কেন্দ্রে ভ্রীপ্তক ক্ষেত্রের মান 6.25 - 10 · When - ১০০ একী কিই স্নান্ত পুত্ স্থান্ত প্ৰকল্পা 100 এবং প্ৰায়েখন [A.I.E.E. Exam. 2006] (A) 1.06×10^{-8} Wbm⁻⁸ (B) 1.06×10^{-8} Wbm⁻²

(C) $1.05 \times 10^{-4} \text{ Wbm}^{-3}$ (D) $1.06 \times 10^{-2} \text{ Wbm}^{-6}$

[xxvi] 16 × 10 ° kg লব্দ েল্ট, লাট্টা 0.1 m শাসাদেশ সমস্যে পরিবাহের করে মধ্য মধ্যিকর ক 4 - 10 1 दे भाग अंगान सार्थ सार्थ सामान हात्. [Jt. Entrance 2006]

iAns. 1 25 Ω आहे।

	(A) 8×10^8 per sec \sim \sim	(B) 4×10^8 per sec
	(C) 8 x 10 ⁶ per sec	(D) 8 × 10 ⁵ per sec.
Exvi	i] যদি E মানের একটি সুষম তাড়ংক্ষেত্র একটি	ইকেকট্রন যার অংশন ন এবং ভর m ভপত্থতি থাকে যাতে
	ইলেকট্রনের উপর তড়িৎক্ষেত্রৈর জনা বল ইয়	ধর্মুক্রের ওজকে সমাল হয়, একলে ট্রিকে মান করে
		[Jt. Entrance 2006]
	(A) $\frac{mg}{\rho}$	(B) mge
	(C) e	(D) e ² g
	(C) mg worked to the time V.	(D) $\frac{1}{m^2}$
) णृना	স্থান পুরণ করো (Fill up the blanks) :	
[i]	100 cm² ক্ষেত্রফলের একটি বৃদ্ধাকার তবে কৃত	লৈত পাক স খা' 100 কণ্ডলীয় sm 0.01 Wbin ² প্রবিলোর
	একটি চৌম্বক ক্ষেত্রের সমান্তরাল কুঙলী দিয়ে	IOA প্রবাহ গোলে ক্ডলাব উপর কার্যরেও টক
[ii]	এক পাক বিশেষী একটি বাহাকার ভারকন্ডলীতে	ভড়িৎ প্রবাহের দরন কন্তলীর ,কান্ডে চৌম্বক ক্ষেত্র প্রাবলা B।
	ক্রুজীর পাক খলে আনার দপাক বিশিষ্ট বস্তাকা	র তারকভুলী তৈরি করলে একই পুৰণ্যের জনা কুডুলীর কেঞে
(iii)	কোন গতিশীল তড়িতাধান তার চতুর্দিকে	ক্ষেত্র সৃষ্টি করে কিন্তু প্রভিতাধান স্থিরে থাকালে, এরুপ
	কোন ক্ষেত্ৰ সৃষ্টি হবে না।	and the second second
[iv]	কোনো তড়িতাধান একই সজো তড়িৎক্ষেত্র এবং	চৌম্বক ক্ষেত্রের ভিতর দিয়ে গোলে নোট যে বল অন্ভব করে,
	2727	
[v]	তড়িৎবাহী অভি দীর্ঘ দৃটি সমান্তরাল তারে প্রবাহ	হুলে, তার' পরস্পারকে করে কিন্তু
	প্রবাহ হলে, তারা পরম্পরকে	The state of the s
[vi]	গালে লাগোলিককে ভোল্টমিটারে পরিণত করে.	হলে, রোধসমবায়ে যুক্ত করতে
	হয় কিন্তু আ'মমিটারে পরিণত করতে হলে	রোধ সম্বায়ে যুত্ত করতে হয়।
[vii]	তড়িৎবাহী ভার চৌম্বক ক্ষেত্রে রাখলে তারের বি	ব্রুক্তবুপর অভিমুখ পাওয়া যায় ফ্রেমিং এর নিয়ম
	(भारक)	
') GF	कि निर्देश विहास करता (True or false t)	pe) \$
[11]	্রারণ (০ তিভিৎপরাহ যুক্ত দটি তার পরস্পরে	র লম্বভাবে অবস্থিত। যে সশাবণাথর (locus) সর্বত্র চৌম্বক
fill	। দৈর্শ্বের একটি তাবে। প্রশত যাক্তে তারটিকে	বস্তাকার দিলে, কোম নির্দিষ্ট ঐসক ক্ষেত্রে তার উপর যে টক
()		
	ক্রিয়া করে তা সর্বাধিক মান পায় যখন কৃতলীর	পাক্সংখ্যা হয় ${f J}$ ঐ সর্বাধিক টার্কের মান হয় ${{\cal L}^2 \cdot B \over 4\pi}$.
		কোন টোসত ক্ষেণে নৃত্তভাবে ঝোলানো কৃত্তলীৰ উপর কোন বল
	किया करत ना ,	এরা যায় যদি শিল্প মানের কোশ গালে ভালোমিউগরের সাহে শ্রেণি
	मध्यारा युच कर्ता हरा।,	বাসের্ধের বৃত্তপথে একট ইলেকডুন প্রতি সেকেন্ডে 3.2×10 ¹⁵
	Comment of the state of the sta	S STACT SIS HIS WOLL
	वात भूकाका कराइ भूका स्थाप अपने भीवार	মেডের আভাররে চৌদ্ধক ক্ষত্র সুষম কিছু বাইতে প্রায় পুনা।
-		
THE	তিক প্ৰদ	्र प्राप्त (दोसकाका के स्वर्धात
1.	5 cm লম্বা এবং 2 A ভড়িংপ্রবাহবাই একটি প	রিবাহী 2000 oersted এর এক সুষম চৌস্পকক্ষেত্র ক্সভাবে
	রাখালে তার ওপর কত বল কিয়া করবে? গাঁবলা	ভট্টি কেন্ত্রের সমান্তরালে থাকলে বলের মান কী হবে? [Ans. 2000 dyne; 0]
	(जसरकड श का = Hil/10 dyne)	Comment of the commen
2.	একটি 10 Ω সাধের গালে ভালেমট'র 10 mA	ব্যাহে পর্ব স্কের্ম বিক্লেপ কোয়ে। গাগেভারেনিফিনির্কে (1) 0 2A
	প্রবাহ পাল্লাব আর্মেমিটার এবং (11) 0.5V (ভালে	 পালার ভোর্নটামিসের কভারে বাবহার করা ফারে? [Ans. (i):0.06 Ω সাট (ii) 490 Ω শ্রেণি সমবায়ে]
		প্রমান্ত প্রমান্ত হয় সালে প্রমান পর
3.	750 Ω রোকের বাজানুগর ঝিটার 0 005A প্রায়	পুলার মাজাত সামান হ বান ১৪ নগত আৰু আৰু চালাত তথ্য

के कर समादना

- 4. একটি মিলি-আমেমিটারের পাঠনসীমা 0.15 mA পর্যন্ত। তার রোধ 5 Ω। তাকে 0.75 V পর্যন্ত পাঠনক্ষম ভোলনিমিটারে রপান্তরিত করতে হলে কী করা প্রয়োজন ? [Ans. 4995 Ω শ্রেণি সমবায়ে যুক্ত করতে হলে
- 5. একটি আমর্মাটার 1A তড়িৎ প্রবাহে পূর্ণ বিক্ষেপ প্রদর্শন করে। কী বাবস্থা গ্রহণ করলে তা 10Λ তড়িৎ-প্রবাহে পূর্ণ বিক্ষেপ দেখাবে? স্মাম্মিটারের রোধ 1Ω .

ি সংকেতঃ
$$R_s = \frac{R}{n-1} = \frac{1}{10-1} = \frac{1}{9}\Omega_1$$

6. 120 Ω রোধের একটি গ্যালভ্যানোমিটার $5 \times 10^{-4} \, \mathrm{A}$ প্রবাহে পূরো স্কেল বিক্লেপ দেয়। এর সাথে কন্ত সাষ্ট সমান্তরাল সমবায়ে যুক্ত করলে তা সর্বাধিক $5 \, \mathrm{A}$ প্রবাহ মাপতে পারবে? ঐ অ্যামমিটারের বর্তমান রোধ কন্ত?

[Ans. 0.012Ω ; 0.012Ω]

7. একটি চল কুন্ডলী গ্যালভ্যানোমিটারের কুন্ডলীর রোধ 50 Ω এবং 10 mA তড়িৎপ্রবাহ গেলে শ্লেলে পূর্ণ বিক্ষেপ ঘটে। একে কীভাবে সর্বোচ্চ 100 V মাপার ভোল্টমিটারে পরিবর্তিত করা যায়?

[Ans. 9950Ω শ্রেণি সমবায়]

8. দৃটি সৃদির্ঘ ঝজু এবং সমাস্তরাল তার যথাক্রমে 100 A এবং 20 A তড়িৎ-প্রবাহ বছন করছে। তারা প্রস্পরকে 0.08 Nm⁻¹ বলে বিকর্ষণ করলে, তাদের পারস্পরিক ব্যবধান কত? [Ans. 5 mm]

[সংকেত : $f = \frac{\mu_0}{2\pi} \times \frac{i_1.i_2}{r} \text{ Nm}^{-1}$ ফর্মুলা প্রয়োগ করো।]

কঠিনতর গাণিতিক প্রশ্ন

1. 100 পাক সংখ্যা বিশিষ্ট দুটি তারকুঙলীর একটিকে উল্লম্ব তলে এবং অপরটি অনুভূমিক তলে সমকেন্দ্রিকভাবে প্রপাপন করা হল। উল্লম্ব ও অনুভূমিক তারকুঙলীয়য়ের বাাসার্ধ যথাক্রমে 20 cm এবং 30 cm; তাদের কেন্দ্রবিন্দৃতে ভূ-চৌম্বক ক্ষেত্রকে প্রশমিত করা যাবে কীভাবে? এর জনা তার কুঙলীর ভিতর কত তড়িৎপ্রবাহ পাঠাবার প্রয়োজন? ভূ-চৌম্বক ক্ষেত্রের আনুভূমিক উপাংশ = 0.349 Oe এবং নতি কোণ = 30° [সংকেতঃ ভ্-চৌম্বক ক্ষেত্রের উল্লম্ব উপাংশ = H. tan 30° = 0.349 tan 30°]

[Ans. 0.11 A; 0.096 A (2017)]

2. e তড়িতাধান যুস্ত একটি কণিকা B প্রাবলোর একটি তীব্র চৌস্পক ক্ষেত্রের ভিতর অভিলম্বভাবে গিয়ে একটি সিসার ব্লকে প্রবেশ করল। এতে কণিকার গতিশন্তি অর্থেক হ্রাস পেল। কণিকটির গতিপথের বক্রতা–ব্যাসার্থের কী পরিবর্তন

रदि ?

(Ans. পূর্বের ব্যাসার্বের 1/2 গুল]

- 3. L দৈর্ঘ্যের একটি তারে ι প্রবাহমান্ত্রা যাচ্ছে ι প্রমাণ করো যে, তারটিকে বৃত্তাকার দেওয়া হলে, B টোসক ক্লেত্রে এ তারের কুঙলীর ওপর সর্বাধিক টক ক্রিয়া করবে যখন কুঙলীতে একটি পাক (turn) থাকবে এবং এ সর্বাধিক টর্কের মান হরে $au_{max} = L^2 \iota B 4\pi$.
- 4. $0.1\,\mathrm{m}$ দীর্ঘ একটি অনুভূমিক ভার দিয়ে 5Λ তড়িৎপ্রবাহ যাছে। যে চৌসক ক্ষেত্র তারের ওপর তারের ওজনের সমান কিন্তু বিপরীতমুখী বল প্রয়োগ করেও পারবে তার মান ও অভিমুখ নির্ণয় করে। তারের ভর = $3\times10^{-3}\,\mathrm{kgm^{-1}}$ [Ans. $5.88\times10^{-3}\mathrm{T}$] [সংকেত : তারের ওজম = $3\times10^{-3}\times9.8=2.94\times10^{-3}\,\mathrm{N}$. চৌসক ক্ষেত্রের দর্ন তারের ওপর বল = $B.i.l=B\times5\times0.1\,\mathrm{N}$.। চৌসক ক্ষেত্র অনুভূমিক গুলে থেকে তারের অভিলম্ব এবং পরীক্ষাকারীর দিকে অফিন্সামী।
- 5. অনু ভূমিক উলে পূর্ব থেকে পশ্চিমানিকে একটি শুভিগ্রাছিত কলিকা $3 \times 10^6\,\mathrm{ms}^{-1}$ নোগ ৮লে যাকে। এ অন্ধলে থাড়া উপামুখী চৌমক ক্ষেত্র B ক্রিয়া করছে। চৌমকক্ষেত্রের প্রাবলা $2 \times 10^{-3}\,\mathrm{T}$ হলে (i) কণার ওপর প্রযুক্ত বল এবং (ii) কণার ত্বরণ নির্ণয় করে। কণার ভব -1 $67 \times 10^{-27}\,\mathrm{kg}$

[সংকেড: বল = B e.u. sin 0] [Ans. (i) 9.6×10⁻¹⁶ N (ii) 5 8×10¹¹ ms ²]

- 6. 10 4 কৃষ্ণন্থ আধান ও 10×10^{-6} kg ভরের একটি ছড়িংবাছী কথা 2.5×10^{-2} টোম্বক ক্ষেত্রের অভিনয়ভাবে 10 ms 1 গভিবেগ নিয়ে প্রবেশ করল। কণাটি বৃত্তপথে ঘ্রে গোলে, ঐ বৃত্তের নামোর্য এবং কণার বৃত্তগতির পর্যাঘকাল নির্ণয় করো।
- 7. চাইড়েণ্ডেন প্রমাণ্য ইলেকট্রনটি প্রোটনের চাইদিকে 5.3×10^{-11} metre ব্যাসার্গর বন্তপথে 2.18×10^6 ms 1 পতিরোগে প্রদক্ষিক করে। প্রোটনের ওপর ইলেকট্রন করেটা চৌমক ক্ষেত্র সূচি করে? ইলেকট্রনের ওিড় গামান $e=1.6 \times 10^{-19}$ C 1

[সংকেত : এক সেকেন্ডে প্রদক্ষিণ সংখ্যা $n=rac{v}{2\pi r}$, উৎপদ্ধ প্রবাহ $v=nc=rac{v}{2\pi r}$ ে

চৌমক ক্ষেত্ৰ
$$B=rac{\mu_0 i}{2r}$$
]

8. যেম্বানে ভূ-টোস্ক ক্ষেত্রের অনুভূমিক উপাংশ 2×10 °T সেখানে একটি বস্তাবার তারকুন্ডলী দিয়ে কত উড়িং প্রবাহ পাঠালে, এ উপাংশের কোনো প্রভাব থাকরে নাং কুন্তলীর পাকসংখ্যা 1(ম) এবং বাসেপে 5 cm ।

[Ans. 15 9 mA]

- 9. $20~\Omega$ রোধের গ্যালভানোমিটার 0.5~mA প্রবাহের জনা পূর্ব (শ্বেল বিক্লেপ দেখার: 0.4 পূর্ব 5.A পূর্বাহ মাপতে পারে এমন আার্মিটার হিসাবে বাবহারের জনা এর কি পরিবর্তন প্রয়োজন 2.4 (Ans. $0.002~\Omega$ সাট)
- একটি মিলি-আমেমিটারের পঠন সীমা 0.15 mA পর্যন্ত। এর রোধ 5 52 একে 0.75 V পর্যন্ত পঠনকম , ভাশ্টামিটারে রূপান্তরিত করতে হলে কী করা প্রয়োজন ?
 Jt. Entrance 2005) [Ans. 499552 শ্রেলি সমবার]

(A)											
(i)	R	(vi)	C	(ix)	A	(xxii	В	(xxi)	В	(xxvi)	C
(ii)			A,D	(xii)	В	(avii)	В	(iivx)	C	(myii)	A
iii)		(viii)		(xiii)	C	(xviii)	C.D	(iiiza)	A		
iv)		(ix)		(xiv)	C	(xix)	В	(xxiv)			
(3)		(x)	C	(11)	A	(11)	D	(424)	D		

(B) [i] 0.1 N-m : [ii] চারগুণ : [iii] চৌধক : [is] লোৱেশ্ব বল : [v] সমমূখী আরুর্নণ, 'বপরীভমুখী বিকষণ ; [vi উচ্চমানের, শ্রেণিসমবায়ে, নিম্নমানের সমান্তরাল সমবায়ে : [vii] বামধ্য

(C) [i] ভুল, [ii] নির্ভুল, [iii] নির্ভুল, [iv] ভুল, [v] নির্ভুল, [vi] নির্ভুল।

চুম্বকত্ব

MAGNETISM

45 টোম্বক ছিমেরু (Magnetic dipole) :

সমমের্শন্তির একটি উত্তরমের এবং একটি দক্ষিণমের সামান্য তফাতে রেখে বসানো থাকলে তাদের চৌম্বক দ্বিমের বলে।

মের্ছরের পারম্পরিক দূরত্ব 2l এবং মেরুশন্তি m হলে, এদের পুণফলকে বলা হয় বিমেরু স্রামক (dipole moment)। দিমের স্রামক একটি ভেক্টর রাশি। এর অভিমূখ দক্ষিণ মেরু থেকে উত্তর মেরুর দিকে। \vec{M} (অথবা $\vec{p_m}$) প্রতীক দারা দিমেরু স্রামক-কে বুঝানো হয়।

ভামকের মান, $M=m\times 2l$

মনে রাখো যে ক্ষুদ্র দৈর্ঘের দশুচুম্বককে একটি চৌম্বক দিমেরু রূপে গণ্য করা যায়।

দিমের শ্রামকের S.I. একক হল Am^2 . এক পাক্ বিশিষ্ট এক বর্গ মিটার ক্ষেত্রফলের লুপ 1A তড়িং প্রবাহ বহন করলে যে চৌম্বক ভ্রামক উৎপন্ন করে সেটাই Am^2 .

4.2. সুষম চৌস্বকক্ষেত্রে চৌস্বক দ্বিমেরু (Magnetic dipole in uniform magnetic field) :

মনে কর, 2l দৈর্ঘ্যের একটি চৌম্বক দ্বিমেরু সুষম চৌম্বকক্ষেত্র $m{B}$ —এ রাখা আছে। দ্বিমেরুর প্রতিটি মেরুর

*ান্তি =m। মনে কর, চৌম্বক দ্বিমেরু ভ্রামক $\stackrel{
ightarrow}{M}$ চৌম্বক ক্ষেত্র $\stackrel{
ightarrow}{B}$ —এর সাথে heta কোণে আনত (চিত্র 4.1)।

দ্বিমেরুর প্রতি মেরুতে চৌম্বকক্ষেত্রের জন্য প্রযুক্ত বল F হলে, F = mB

বলম্বয় (i) সমমানের (ii) অভিমুখে বিপরীত

এবং (iii) ভিন্ন রেখা বরাবর

কিয়া করে বলে, তারা একটি দ্বন্দের উদ্ভব করে। এই দ্বন্দের প্রামক au হলে, au=F imes NT

 ΔSTN থেকে পাই $\sin \theta = \frac{NT}{2l}$ অথবা, $NT = 2l \sin \theta$ $\therefore \tau = mB \times 2l \sin \theta$ $= (m \times 2l) B \sin \theta$ $= MB \sin \theta$

ভেষ্টর অঙকপাতনে, $\overset{
ightharpoonup}{\tau} = \overset{
ightharpoonup}{M} imes \overset{
ightharpoonup}{B}$

ে এর অভিন্য আমরা ভেক্টর ক্রস গুগনের নিয়ম থেকে পাব (চিত্র 4.2)।

এই দলের প্রভাবে দিমের নিজেরে ১৯৯৫ কেন্দ্র B এর সমাত্রালৈ ও তে তরাত এত করবে। $\theta=90^\circ$ এবং B=1 হলে, M=r

সূতরাং কোনো চৌম্বক দ্বিমের্কে একক প্রাবলাবিশিউ (B=1) চৌম্বকক্ষেরের অভিমূখের সমকোপে $(\theta=90^\circ)$ স্থাপন করতে যে যাদ্রিক দ্বন্দের প্রয়োজন ভার প্রামককে চৌম্বক দিমেরুর প্রামক বলা হয়। এভাবেও দিমেরু প্রামকের সংজ্ঞা দেওয়া যায়।

তড়িম্বাহী লুপ এবং চৌম্বক দিমেরু (A current loop as & magnetic dipole): নিম্নলিখিত ভাবে দেখানো যেতে পারে যে ১ উত্তর্গর্য এবং A ক্ষেত্রকার একটি গ্রাম্বর

দিমেবুর মতো ব্যবহার করে। প্রবাহ লুগের দিমেবুর দ্রামেক হবে প্রবাহমান্তা i এবং ক্ষেত্রফল A-এর গুলফলের সমান অর্থাৎ M=iA এবং দ্বিমেবুটি লুগের অক্ষ বরাবর বসানো আছে মনে করতে হবে (চিন্তু 4.3)।

3.16 অনুচ্ছেদে আমরা দেখেছি যে B চৌম্বক ক্ষেত্রে রাখা প্রবাহ লুপ যে টর্ক অনুভব করে তা $\tau = BiA \sin \theta$ যেখানে $\theta =$ লুপের তলের অভিলম্ব (normal) এবং চৌম্বক ক্ষেত্রের অবর্ধতী কোণ।

আবার পূর্ব অনুচ্ছেদে দেখেছি যে B চৌম্বক ক্ষেত্রে রাখা একটি চৌম্বক দ্বিমেরু যে টর্ক অনুভব করে তা $\tau = MB \sin\theta$ টর্কের এই দুটি সম্পর্ক তুলনা করলে পাই M = i A.

আবর্তনশীল ইলেকট্রনের চৌম্বক দিয়ের ভামক (Magnetic dipole moment of a revolving electorn): আমরা কোনো পরমাণুর একটি ইলেকট্রনের কথা বিবেচনা করি যেটি ধনাগ্রক ঠড়িৎগ্রস্ত নিউক্লিয়াসের

চতুর্দিকে r ব্যাসার্ধের কৃত্তপথে ঘড়ির কাঁটার বিপরীত দিকে পরিভ্রমণ করছে [চিত্র 4.4]। পরিভ্রমণরত ইলেকট্রনটির গতি ঘড়ির কাঁটার অভিমুখে i তড়িৎ প্রবাহের উৎপত্তি করে মেখানে $i=\frac{e}{T}$ $[e=\frac{e}{T}]$

প্রায়কাল] আবর্তনশীল ইলেকট্রনের কৌণিক গতিবেগ w হলে,

$$i = \frac{e}{2\pi/\omega} = \frac{\omega.e}{2\pi}$$

প্রবাহলুপের টোম্বক শ্রামক M=i A যেখানে A= কক্ষপথের তলক্ষেত্র (face area)। কিন্তু $A=\pi r^2$; অতএব,

$$M = i \times \pi r^2 = \frac{\omega \cdot e}{2\pi} \times \pi r^2 = \frac{\omega e \cdot r^2}{2} = \frac{e}{2m} \quad (mr^2 \omega)$$

[m= ইলেকট্রনের ভর] আবার ইলেকট্রনের কৌণিক ভরবেগ $L=mr^2\omega$.

 \therefore ইলেকট্রনের চৌম্বক ভ্রামক $M=rac{e}{2m}$. L

64 4.4

ভেক্টর অঙ্কপাতনে $\stackrel{
ightharpoonup}{M}=-rac{e}{2m}$. $\stackrel{
ightharpoonup}{L}$

নেগেটিভ চিহ্ন বোঝায় যে চৌম্বক ভ্রামকের অভিমুখ কৌণিক ভরবেগের অভিমুখের বিপরীত। পরমাণুতে একাধিক ইলেকট্রন থাকলে, পরমাণুর লব্ধি চৌম্বক ভ্রামক বিভিন্ন ইলেকট্রনের চৌম্বক ভ্রামকের ভেক্টর যোগফলের সমান হবে।

☐ Example □

একটি ইলেকট্রন স্থির কক্ষপথে আবর্তন করছে। ইলেকট্রনের কৌণিক ভরবেগ $\frac{h}{2\pi}$ হলেকট্রা গতির জন্য ইলেকট্রনের চৌম্বক স্রামক কত ? $h=6.66\times 10^{-34}~\mathrm{J}\cdot\mathrm{S}: e=1.6\times 10^{-19}~\mathrm{C}$; $m=9.1\times 10^{-31}~\mathrm{kg}.$

উঃ ইলেকট্রনের চৌম্বক শ্রামক $M=rac{e}{2m}$. L

এখানে
$$e=1.6\times 10^{-19}\,\mathrm{C}$$
 ; $L=\frac{h}{2\pi}$; $m=9.1\times 10^{-31}\,\mathrm{kg}$.

$$\therefore M = \frac{1.6 \times 10^{-19}}{2 \times 9.1 \times 10^{-31}} \times \frac{h}{2\pi} = \frac{1.6 \times 10^{-19} \times 6.66 \times 10^{-34}}{2 \times 9 \times 10^{-31} \times 2 \times 3.14} = 9.3 \times 10^{-24} \text{ A} - \text{m}^2$$

4.5

চৌম্বক দ্বিমের্র দর্ন চৌম্বকক্ষেত্রের প্রাবল্য (Intensity of magnetic field due to a magnetic dipole) :

(ক) প্রান্ত অবস্থান বা অক্ষস্থিত অবস্থান (End-on position or axial position):

NS একটি ক্ষুদ্র দণ্ড-চুম্বক (অথবা চৌম্বক দিমেরু)। এর কার্যকর দৈর্ঘ্য 21 এবং মেরুশস্তি m ; দ্বিমেরুর অক্ষ বরাবর তার মাধ্যবিন্দু () থেকে d দূরে একটি বিন্দু P নেওয়া হল। (চিএ 4.5)। P বিন্দুর

এই অবস্থানকে প্রান্ত বা অক্ষস্থিত অবস্থান বলা হয়। দ্বিমের্র উভয় মের্র দর্ন P বিন্দৃতে উৎপন্ন চৌদ্ধক প্রাবলা নির্ণয় করতে হবে। চৌদ্ধক প্রাবলোর সংজ্ঞা হতে আমরা জানি যে P-বিন্দৃতে যদি একটি একক উত্তরমের্ কল্পনা করি তবে ঐ মের্ দিমেরর জনা নোট য়ে-বল অন্তব

কররে সেটাই হবে P বিন্দুতে চৌদ্ধক প্রাবলা। এখন, P-বিন্দুতে স্থাপিত একক উত্তর মেবুর ওপর

দিনোরর N-মের কর্তৃক প্রয়ুপ্ত বিকর্ষণ বল, $F_1 = \frac{\mu_0}{4\pi} \frac{m \times 1}{\left(\mathrm{NP}\right)^2} = \frac{\mu_0}{4\pi} \frac{m}{\left(d-l\right)^2}$ এর অভিমুখ $\overline{\mathrm{OP}}$,

P বিন্দৃতে স্থাপিত একক উত্তর মেবুর ওপর ছিমেবুর S মেবু কর্তৃক প্রয়ন্ত আকর্ষণ বল $F_2=rac{\mu_0}{4\pi}rac{m+1}{(SP)^2}rac{\mu_0}{4\pi}rac{m}{(d+I)^2}$ এর প্রতিমুখ PO .

Fig. F_1 on F_2 said find find fail date for said said F_1 in F_2 said F_3 said F_4 in F_4 said F_4 in F_5 said F_6 said F_6 in F_6 said F_6

সুতরাং P বিন্দুতে লব্ধ বল = $F_1 - F_2$.

$$= \frac{\mu_0}{4\pi} \left[\frac{m}{(d-l)^2} - \frac{m}{(d+l)^2} \right] = \frac{\mu_0}{4\pi} \frac{4m \cdot l \cdot d}{\left(d^2 - l^2\right)^2} = \frac{\mu_0}{4\pi} \frac{2M \cdot d \cdot d}{\left(d^2 - l^2\right)^2}; \text{ as a simple of } 0$$

[M=2,m.l= খিমেরুর চৌম্বক্সামক।]

P বিন্দুতে চৌম্বকপ্রাবল্য
$$F$$
 হলে, আমরা পাই, $F=rac{\mu_0}{4\pi} \ rac{2M.d}{\left(d^2-l^2
ight)^2}$...(i) এর অভিমুখ $\overrightarrow{\mathrm{OP}}$ বরাবর।

c.g.s পশ্বভিতে
$$F = \frac{2M.d}{\left(d^2 - t^2\right)^2}$$

P বিন্দু খুব দূরে নিলে d>>l মনে করা যেতে পারে এবং সেক্ষেত্রে d^2 এর তুলনায় l^2 উপেক্ষণীয় হয়ে পড়ে। এই অবস্থায়,

$$F = \frac{\mu_0}{4\pi} \frac{2M.d}{d^4} = \frac{\mu_0}{4\pi} \frac{2M}{d^3}$$
 অভিমুখ \overrightarrow{OP} (ii)

c.g.s reduce
$$F = \frac{2M}{d^3}$$

দ্র: P বিন্দুর উপরিউত্ত অবস্থানকে অনেক সময় ট্যানজেন্ট-A (tangent-A) অবস্থান বলা হয়।

□ Example □

একটি চৌম্বক দ্বিমেরু 10 cm দীর্ঘ এবং 13 A - m মেরুশক্তিবিশিষ্ট। দ্বিমেরুর অক্ষ বরাবর দ্বিমেরু থেকে 15 cm দূরে দ্বিমেরুর দরুন চৌম্বকক্ষেত্র প্রাবল্য নির্ণয় করো।

উঃ। অক্ষম্থিত কোনো বিন্দৃতে ক্ষেত্র-প্রাবলা
$$F=rac{\mu_0}{4\pi}\cdotrac{2Md}{\left(d^2-l^2
ight)^2}$$

এখানে, $m=13~{\rm A-m}$; দিমেরুর দৈর্ঘা $=2l=10~{\rm cm}=0.1~{\rm m}$; অঙ্এব $l=0.05~{\rm m}$. $\therefore M=2~l\times$ মেরুশান্তি $=0.1\times13=1.3~{\rm A-m}^2$ (অথবা $J/{\rm T}$)

জিনোর হাতে বিশ্বর দূর ও $d=15~\mathrm{cm}=0.15~\mathrm{m}$ এবং $\frac{\mu_0}{4\pi}=10^{-7}$

িনিন্ত ডিনিক প্রাবলা $F = 10^{-7} \times \frac{2 \times 1.3 \times 0.15}{\left\{ \left(0.15\right)^2 - \left(0.05\right)^2 \right\}^2}$ tesla

 $= 0.975 \times 10^{-4}$ tesla.

(খ) পার্ব অবস্থান বা বিষুব অবস্থান ((Broad – side on or equatorial position):
পূর্বের নায়ে NS একটি চৌদ্ধক দ্বিমেরু। এর কার্যকর দৈর্ঘা 21 এবং মেরুশান্ত m ; দ্বিমেরু
মধাবিন্দু () দিয়ে এর অক্ষের ওপর অভিলম্ন ট্রনে ঐ অভিলম্বের ওপর ()-থেকে d দ্রাধে একটি বিন্দু

P নেওয়' ২ল (চি.৪.4.6) । P বিন্দুর এর্প অবস্থানকে বলা হয় পার্কা অবস্থান বা বিষ্ব অবস্থান ত্র বিন্দুতে চৌম্বক ক্ষেত্রের প্রাবলা নির্দয় করতে হবে, মনে করো, P বিন্দুতে একটি একক উত্তর মেরু রাখা আছে এখন এ একক মেরুর ওপর ছিমেরুর N মেরু কর্তৃক প্রয়ন্ত বিকর্ষণ বল F_1 হলে, $F_1 = \frac{\mu_0}{4\pi} \frac{m \times 1}{(PN)^2}$ এবং এই বল PA অভিমুখে ক্রিয়া করে।

ঐ একক মের্র ওপর দিমের্র S মের্ কর্তৃক প্রযুক্ত আকর্ষণ বল , $F_2=rac{\mu_0}{4\pi}rac{m imes 1}{\left(\mathrm{PS}
ight)^2}$ এবং এই বল $\stackrel{
ightarrow}{\mathrm{PB}}$ অভিমুখে ক্রিয়া করে।

এখানে, PN = PS; কাভেই, $F_1 = F_2$; ধরাযাক, PA এবং PB বাহুদ্বয় এই সমান দুই বলকে প্রকাশ করছে। সুতরাং PACB সামন্তরিকের কর্ণ PC লব্ধ বল F—কে প্রকাশ করে। বলা বাহুলা, দুই সমান বলের লব্ধি তাদের অন্তর্ভুক্ত কোণকে সমদ্বিখণ্ডিত করে। সুতরাং PC হবে দ্বিমেরু অক্ষের সমান্তরাল; এখন, Δ APC এবং Δ PNS সদৃশ (similar) হওয়ায়, $\frac{PC}{PA} = \frac{NS}{PN}$ অথবা,

$$rac{\mu_0}{4\pi}rac{F}{m/\left(PN
ight)^2}=rac{2l}{PN}$$
 $\therefore F=rac{\mu_0}{4\pi}rac{2ml}{\left(PN
ight)^3}=rac{\mu_0}{4\pi}rac{M}{\left(PN
ight)^3}$ [$M=2~m.l.=$ ছিমেরুর চৌসকলামক]

এখন,
$$PN = (d^2 + l^2)^{\frac{1}{2}}$$
 অতথ্য $(PN)^3 = (d^2 + l^2)^{\frac{3}{2}}$

:
$$F = \frac{\mu_0}{4\pi} \frac{M}{\left(d^2 + l^2\right)^2}$$
; অভিমুখ \overrightarrow{PC} (iii) পূর্বের ন্যায় $d^2 >> l^2$ হলে, $F = \frac{\mu_0}{4\pi} \cdot \frac{M}{d^3}$ [c.g.s পৃথ্যতিতে $F = \frac{M}{\left(d^2 + l^2\right)^{\frac{3}{2}}}$]

(ii) এবং (iv) নং সমীকরণ তুলনা করে বলা যায়, **চৌস্বক বিমেরুর বেলাতে প্রান্তবিন্দুর প্রাবল্য** সমদূরবর্তী বিষুব-বিন্দুর প্রাবল্যের দ্বিগুণ।

[দ্রুটবা : P-বিন্দুর উপরিউক্ত অবস্থানকে অনেক সময় ট্যানজেন্ট-B (tangent - B) অবস্থান বলা হয়।]

D Examples D

^{*} দৃটি ১৮০ কে:এর দব্ন কান বিন্দৃতে , চীম্বক প্রবিলা শূন্য হলে ঐ বিন্দুকে উদাসীন বিন্দু বলে 4 10 অনুক্রেন দ্রন্টবা।

উঃ। ১ছক নট কর বাদ প্রত্যেতীক ভাষন নামৰ লাগ গে কর সাহে পাবে ত হল তনসান বিন্দু এবা এটা এ-১৯বের উত্তর কেব হ'তে 4 cm বুরে ত উনসান বিন্দু হওমাম, ঐ বিন্দুর প্রবাদেশ্য সমান ভাবেন B চুম্বাকর নবুন প্রাবাদ্যার সমান ভাবিকবাত হবে তথ্য, ত বিন্দু চুম্বামান্ত্র

আক্ষের ওপর অর্কারত বালে, ঐ বিন্দৃতে A-চ্ছাকের সর্ক তাবল 1,

পশ্বাত):

 $C/\gg C$, $M=M_A$; d=9 cm; l=5 cm; 4/6.

$$F_A = \frac{2M_A \times 9}{(81 - 25)^2}$$
 dyne = $\frac{2M_A \times 9}{56 \times 56}$ dyne.

অনুরূপভাবে B—চুধকের দরুন O–বিন্দুতে প্রাবল্য $F_B = rac{2M_B + 11}{\left(121 - 25
ight)^2} \, ext{dyne} + rac{2M_B + 11}{96 + 96} \, ext{dyne}.$

$$\therefore \frac{2M_A \times 9}{56 \times 56} = \frac{2 \times M_B \times 11}{96 \times 96}$$
 অথবা, $M_A = \frac{11 \times 49}{144 \times 9} \times M_B$

অথবা,
$$M_A = \frac{11 \times 49 \times 1000}{144 \times 9} = 415.9 \text{ cgs}$$
 একক।

2) 20 cm দীর্ঘ ও 30 একক মেরুশন্তি বিশিষ্ট একটি চৌম্বক দিমেরুর প্রতি প্রান্ত থেকে 30। cm দূরে একটি 40 একক মানের মেরু অবস্থিত। তার ওপর প্রযুক্ত বলের মান নিগম করো। ভিঃ। 4.7 াং চিত্র দেখো। NS চৌম্বক দিমেরু এবং P 40-একক মানের মেরু। এখানে PN = PS = 30 cm; চৌম্বক দিমেরু প্রামক M = দৈর্ঘ্য × মেরুশন্তি = 20 × 30 একক।

P বিশ্বতে ক্ষেত্র প্রাবল্য $\frac{M}{\left(d^2+l^2\right)^2} = \frac{20 \times 30}{\left(800+100\right)^2}$ [c.g.s পর্মেণ্ড] $\left(d^2=(30)^2-(10)^2\right)$ = 800]

$$= \frac{20 \times 30}{30 \times 30 \times 30} = \frac{2}{90}.0e$$

অতএব, P বিন্দৃতে অবস্থিত 40 একক মানের মেরুর ওপর প্রয়ত্ত বল = ক্ষেত্রপ্রাবল্য imes মোর্শন্তি $\frac{2}{90} imes 40 = \mathbf{0.88} \ \mathbf{dyne}$

দৃটি পারস্পরিক অভিলম্ব চৌম্বকক্ষেত্রে চৌম্বক দিমের (Magnetic dipole in two cross magnetic fields) :

অভিলম্ব ক্ষেত্রের মধ্যে যদি কোনো চৌম্বক দিমের বা ক্ষদ্র চম্বকদন্ড রাখা হয় তাহলে প্রমাণ করা যায় যে ঐ চুম্বক H প্রাবল্যের চৌম্ব**কক্ষেত্রে**র অভিমুখের সাথে যে কোণে (৪) আনত থাকবে তা নিম্নলিখিত ট্যানজেন্ট সত্ৰ হতে পাওয়া যায়: $\tan \theta = F/H$

প্রমাণ ঃ 4.৪ নং চিত্রে যেমন দেখানো হয়েছে এরপ ক্ষুদ্র চুম্বকের প্রত্যেক মেরু H এবং F চৌম্বক কোরের জানা mH এবং mF বল আনুভব করাব (m = চুম্বকের মেরুশক্তি)। ফলে চুম্বকের ওপর বিপরীতমুখী দুটি দম্ব (couple) ক্রিয়া করে চৃদ্বক দশুকে

বিপরীত দিকে ঘোরাবার চেম্টা করবে। পক্ষ করো, mF দ্বন্দ্ব চুম্বককে ঘড়ির কাঁটার দিকে এবং mH দ্বন্দ্ব ঘড়ির কাঁটার বিপরীত দিকে ঘোরাবার চেন্টা করছে। যখন এই দুই দন্দের ভ্রামক সমান হবে, তখন চুম্বকদণ্ড প্রির অবস্থানে আসবে। ধরো, প্রিরাবস্থায় চুম্বকটি H চৌম্বক ক্ষেত্রের অভিমুখের সাথে 0 কোণ করল।

এখন, H চৌম্বকক্ষেত্রের জন্য ঘন্থের ভামক = $mH imes d_1 = mH imes 2 \, l \sin heta \, | \, 2 l =$ ফুদ্র চুম্বকের কার্যকর দৈর্ঘ।।

এবং F চৌম্বকক্ষেত্রের জন্য দ্বন্দের শ্রামক $= mF imes d_2 = mF imes 2 \, l \cos heta$.

চম্বক স্থিরাক্স্থায় থাকলে $mF imes 2 \, l \cos \theta = mH imes 2 \, l \sin \theta$

অথবা, $\tan \theta = F/H$; একে ট্যানজেন্ট সূত্র (Tangent law) বলে।

4.7. ট্যানজেন্ট গ্যালভ্যানোমিটার (Tangent galvanometer) :

এই যন্ত্রে ভড়িৎ প্রবাহের চুম্বকীয় ফলের প্রয়োগ করা হয়েছে। 4.9 নং চিত্রে একটি ট্যানজেন্ট গ্যালভ্যানোমিটারের ছবি দেখানো হল। কয়েক পাক অন্তরিত

তামার তার একটি উল্লম্ব (vertical) কাঠের গোল ফ্রেমের খাজে জড়ানো থাকে। তারের দুই প্রান্ত একটি অনুভূমিক পাটাতন B-এর ওপর আটকানো বন্ধনীর (T.T) সাথে যন্ত। পাটাতনকে অনুভূমিক করার জন্য কয়েকটি স্কু (S, S) দেওয়া আছে। তার জড়ানো ফ্রেম একটি উল্লম্ব অক্ষের (vertical axis) সাপেকে আবর্তন করতে পারে। এই ফ্রেমের কেন্দ্রুপলে বা কণ্ডলীর কেন্দ্রম্থালে একটি অনুভূমিক বৃত্তাকার কাচের ঢাকনাযুক্ত চাকতি A লাগানো আছে। এই চাকতির কেন্দ্রে অথ াং তারক্ণজীর কেন্দ্রে একটি ছোটো চম্বক-শলাকা আটকানো থাকে। চুম্বক-শলাকা বাধাহীনভাবে অন্ভূমিক তলে আবর্তিত হতে পারে। এই চম্বকের সাথে সমকোণে একটি লম্না আলেমিনিয়াম কাঁটা (pointer) আটকানো আছে। কাঁটা একটি অন ভাষাক স্কেলের ওপর ধ্রতে সক্ষম। শ্লেলটি 0 – 90° ভাগে

চারটি পাদে (quadrant) বিভক্ত। কাঁটা স্কেলের ওপর যে কোণে আবর্তিত হবে চুমকের আবর্তন কোণও ভাই হবে।

যদ্ভের সমন্ত্র (Adjustment of the instrument) : এই যন্ত্র বাবহার করতে হলে সর্বপ্রথম S,

S স্ক্র-গুলির সাহায়ের পাটা হন B অনুভূমিক করে নিত্তে হবে: হারপর ফ্রেমকে ঘ্রিয়ে হার হল এবং চুম্বকের তল এক করতে হবে। এই অবস্থায় চুম্বক ও ফ্রেম চৌম্বক-মধা হলের অবস্থান নির্দেশ করবে তখন কাঁটা স্ক্রেলের 0° – 0° দাগের সাথে ফ্রিনে থাকবে। এইবার, T, T বন্ধনীদ্বয়ের সাথে ৩ডিৎ প্রবাহস্ত বর্তনী যোগ করলে গালেভ্যানোমিটারের বতাকার তার দিয়ে তড়িৎ প্রবাহ হবে। আমরা দেখেছি, এর ফলে বাত্তের কেন্দ্রের চতর্দিকে কিছুম্থানে সমবল (uniform) চৌম্বকক্ষেত্রের সৃষ্টি হয়। চূম্বক N - S 🕫 চৌম্বকক্ষেত্রের দ্বারা বিক্ষিপ্ত হবে। কাঁটার সাহাযো শ্লেষ্স হতে বিক্ষেপ কোণ নির্ণয় করতে ২বে।

মুলতম্ব (Theory) : কুঙলী দিয়ে তড়িৎপ্রবাহ পাঠালে একটি চৌম্বকক্ষেত্রের উদ্ভব হবে। এই ক্ষেত্রের অভিমুখ কণ্ডলীর তলের অভিলম্ব হওয়ায়, এই ক্ষেত্র ভূ-চৌম্বক ক্ষেত্রেরও অভিলম্ব হবে। তখন চুম্বক-শলাকা চৌম্বক মধ্যতল থেকে বিচ্যুত হবে। সঞ্জো সজে ভূ-চৌম্বক ক্ষেত্র শলাকার ওপর ক্রিয়া করে শলাকাকে পুনরায় চৌম্বক মধ্যতলে ফিরিয়ে আনার চেন্টা করবে। অর্থাৎ, চুম্বক-শলাকার ওপর যুগপৎ দৃটি দৃন্দ বা কাপল (couple) ক্রিয়া করবে। এই দুইটি কাপলের অধীনে থেকে শলাকা একটি বিশেষ কোণে বিক্ষিপ্ত হবে।

mili **6.9** 4.10

মনে করো, AB শলাকা θ কোণে বিক্ষিপ্ত হল (4.10 নং চিত্র)। ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক প্রাবলা H, তড়িৎ প্রবাহের দর্ন

টোম্বক ক্ষেত্রের প্রাবল্য F এবং শলাকার মের্শন্তি m হলে শলাকার ওপর (mH, mH) এবং (mF,mF) দ্বন্ধ ক্রিয়া করবে (ছবি দেখো)। শলাকার স্থিরাবস্থায় এই দুই দ্বন্দ্বের ভ্রামক বা মোমেন্ট সমান হবে।

এখন বিক্ষেপকারী mF দক্ষের ভ্রামক = $mF imes AC = mF imes AB \cos \theta$ আবার নিয়ন্ত্রণকারী mH দ্বন্দের ভ্রামক = $mH imes BC = mH imes AB \sin heta$ $\therefore mF \times AB \cos \theta = mH \times AB \sin \theta$ ₹ ₹ $= H \tan \theta$

এখন, কুঙলীর পাক-সংখ্যা =n, প্রবাহমাত্রা =i ampere. এবং কুঙলীর ব্যাসার্ধ =r হলে,

প্রমাণ করা যায় $F = \frac{\mu_0}{2} \cdot \frac{mi}{r}$ [3.6 অন্চেছদ দেখো]।

$$\therefore \frac{\mu_0}{2} \cdot \frac{ni}{r} = H \cdot \tan \theta$$
 অথবা, $i = \frac{H}{\mu_0 \cdot n} \tan \theta$

অথবা, $i = \frac{H}{G} \tan \theta$ $[G = \frac{\mu_0}{2} \cdot \frac{n}{r} =$ গালভ্যানোমিটার ধ্বক]

= K. tan θ . ampere $K = \frac{H}{G}$ = লঘু গুণক [reduction factor]] ...

সূতরাং লঘু গুণক K-এর মান জানা থাকলে এবং স্কেল হতে θ পাঠ করলে তড়িৎ প্রবাহের মাত্রা নির্ণয় করা যায়।

এই গ্যালভ্যানোমিটারে যে তড়িৎ-প্রবাহ যায় তা বিক্ষেপ কোণের ট্যানজেন্টের সমানুপাতিক বলে এই গ্যালভানোমিটারকে ট্যান্জেন্ট গ্যালভ্যানোমিটার বলা হয়।

আলোচনা (Discussion):

(i) tan θ -র মান শুনা হতে অসীম হতে পারে বলে ট্যানজেন্ট গ্যালভ্যানোমিটার দ্বারা শুন্য হতে অসীম পর্যন্ত যে-কোনো মানের ভড়িৎ প্রবাহ পরিমাপ করা যায়। কিন্তু কার্যন্ত তা করা হয় না। প্রমাণ করা যায় যে বিক্ষেপ $\theta=45^\circ$ হলে, পরিমাপে বুটি সর্বনিম্ন হয়। তাই, ট্যানজেন্ট গ্যালভ্যানোমিটার ব্যবহার করতে হলে প্রবাহের মান এরপ রাখা হয় যাতে বিক্ষেপ 45° —এর কাচাকাছি হয়। এই উদ্দেশ্যে একই যন্ত্রে অনেক প্রকার পাক্ষত তারক্ওলী থাকে। প্রবাহ তীব্র হলে, কম পাকের কুওলী এবং প্রবাহ ক্ষীণ হলে বেশি পাকের কৃঙলী ব্যবহার করা হয়, যাতে বিক্ষেপ সর্বদা 45° —এর কাচাকাছি থাকে।

- (ii) চুগক কঁটার ঘূর্ণাক্ষ বৃদ্ধাকার স্কেলের কেন্দ্রগত না হলে, উৎকেন্দ্রিক (eccentric) শ্রম আসতে পারে: এই শ্রম দর করে নির্ভুল পাঠ নিতে গেলে, কাঁটার দৃষ্ট প্রান্তের পাঠ নিয়ে গড় নির্ধারণ করতে হবে।
- (iii) তার কুণ্ডলী ঠিক চৌদ্বক মধাতলে না থাকলে, পাঠে যে স্তম আসতে পারে তা দূর করবার জন্য প্রবাহের অভিমূখ উল্টে দিয়ে পাঠ নেওয়া উচিত।
- (IV) র্ডাড়ং প্রবাহ যে চৌপক ক্ষেত্র সৃষ্টি করে, কুণ্ডলীর কেন্দ্রের চতুর্দিকে খুব অল্প স্থান ব্যাপী সেই ক্ষেত্র সৃষম (uniform) হয়। বিক্ষিপ্ত অক্সথায় চুদ্দক-শলাকা সুষম চৌদ্দকক্ষেত্রে না থাকলে, ট্যানজেন্ট সূত্র প্রয়োজ্য হবে না। এই কারণে চুদ্দক-শলাকা খুব ছোটো নেগুয়া হয়, যাতে তা সর্বদা স্বল্পখান ব্যাপী সুষম চৌম্বকক্ষেত্রে থাকতে পারে।

(v) লঘুপুণক
$$K = \frac{H}{G} = \frac{2r.H}{\mu_0 n}$$

স্পেন্টত K-এর মান নির্ভর করে (i) ক্ওলীর জ্যামিতিক আকার এবং (ii) পরীক্ষাস্থলে ভূচৌম্বক প্রাবল্যের অনুভূমিক উপাংশ H-এর ওপর।

যদি $heta=45^\circ$ হয় তাহলে উপরোক্ত (i) নং সমীকরণ থেকে পাই K=I

অতএব, ট্যানজেন্ট গ্যালভানোমিটারের লঘ্গুণক সংখ্যাগত ভাবে সেই প্রবাহমাত্রার সমান হবে যে প্রবাহমাত্রা কুডলীর 45° বিকেপ সৃষ্টি করে।

EXAMPLES O

একটি ট্যানজেন্ট গ্যালভ্যানেমিটারের পাক সংখ্যা 500 এবং তাদের গড় ব্যাসার্থ
 25 em; যখন গ্যালভ্যানোমিটারের বিক্ষেপ 45° তখন প্রবাহমাতা কত
 (H = 0.36 × 10⁻⁴ tesla)

উঃ ।
$$i = \frac{2r.H}{\mu_0 n}$$
. $\tan \theta = \frac{2 \times (25 \times 10^{-2}) \times 0.36 \times 10^{-4}}{(4\pi \times 10^{-7}) \times 500} \times 1 = 0.028 \text{ A}$ (প্রায়)

্র একটি ট্যানজেন্ট গ্যালভ্যানোমিটারের ভারকুঙলীর ব্যাস 15 cm এবং পাক সংখ্যা 50; ঐ কুঙলীতে $0.1~\Lambda$ প্রবাহ গেলে, কুঙলীর কেন্দ্রে চৌম্বক ক্ষেত্রের প্রাবল্য কত হবে ? ঐ স্থানে ভূ চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ $B_H=0.42\times 10^{-4}~\mathrm{T}$ হলে গ্যালভ্যানোমিটার বিক্ষেপ কত হবে ?

তিঃ। কড়লির কেনে (১৯৫১ কানের প্রস্তার
$$B = \frac{\mu_0}{2} \cdot \frac{ni}{r}$$
 জিন্দার কানে, $i = 0.1 \, \mathrm{A} \cdot r + \frac{15}{2} - 7.5 \, \mathrm{cm} = 7.5 \times 10^{-2} \, \mathrm{m}$, $n = 50$

$$4\pi \times 10^{-7} \times 50 \times 0.1 = 0.42 \times 10^{-4} \text{ teals}$$

$$B = B_{ef} + a_{ef} + a_{ef}$$

শ্রেণি সমবায়ে আবস্ধ দৃটি ট্যানজেন্ট গ্যালভ্যানোমিটারে একই প্রবাহমাত্রা পাঠানো

হল। দৃই গ্যালভ্যানোমিটারেই সমান বিক্লেপ সৃষ্টি হল। প্রথম গ্যালভ্যানোমিটারের কুগুলীতে

110 পাক এবং দ্বিতীয়টিতে 25 পাক থাকলে, তাদের ব্যাসার্ধদ্বয়ের তুলনা করো।

উঃ। গ্যালভানোমিটার দুটি প্রেণি সমবায়ে থাকায় উভয়ের মধ্য দিয়ে একই প্রবাহ যাবে . এখন,

আমরা জানি, $i=rac{2\,H.r}{\mu_0 n}. an heta$ [r= কুঙলীর ব্যাসার্ধ]

এথেকে দেখা যায় যে অন্যান্য রাশিগুলি অপরিবর্তিত থাকলে $rac{r}{n}$ - ধ্রুবক .

$$\frac{r_1}{n_1} = \frac{r_2}{n_2}$$
 অথবা, $\frac{r_1}{r_2} = \frac{n_1}{n_2} = \frac{110}{25} = \frac{22}{5}$.

4.8 চৌস্বক বলরেখা (Magnetic lines of force):

কোনো চুম্বকের চতুর্দিকে যে চৌম্বকক্ষেত্রের উদ্ভব হয় সেই ক্ষেত্রে চৌম্বকবল (magnetic force) নির্দিন্ট রেখা বরাবর ক্রিয়া করে। নিম্নলিখিত পরীক্ষা দ্বারা এটা বোঝা যাবে।

পরীকা ঃ জলপূর্ণ একটি পাত্তের ওপর একপাশে একটি দন্ড-চুম্বক N-S রাখার ব্যবস্থা করো (4.11

নং চিত্র)। একটি চুম্বকিত লৌহশলাকা এক টুকরো কর্কের ভিতর ঢুকিয়ে জলে ভাসাও, যাতে শলাকা খাড়াভাবে ভাসতে পারে এবং শলাকার n—মেরু জলের ওপর এবং s—মেরু জলে নিমজ্জিত থাকে। এইবার উন্ত লৌহ শলাকাকে দণ্ড-চুম্বকের N—মেরুর নিকট নিয়ে ছেড়ে দিলে দেখা যাবে শলাকা আন্তে আন্তে একটি নির্দিষ্ট বক্তপথ অবলম্বন করে দণ্ড চুম্বকের S—মেরুর নিকট উপস্থিত হল (4.11 নং চিত্র)। যদি শলাকাকে বার বার একই স্থান থেকে ছাড়া হয় ভবে ওা একই পথে বার বার বার যাবে; কিণ্ডু বিভিন্ন স্থান থে

কে ছাড়া হলে বিভিন্ন বক্রপথ অবলম্বন করে চলবে (চিত্রে কাটা কাটা রেখা দিয়ে দেখানো হয়েছে)। যদি শলাকার n-মেরু জলের মধ্যে এবং s-মেরু জলের উপরে রেখে শলাকাকে ভাসানো হয় তবে তা একই পথে যাবে কিছু তার অভিমুখ উপৌ হবে। এইরুপ হবার কারণ কী?

এর কারণ, শলাকার n-মেরু জলের উপরে থাকায় একই সজো দণ্ড-চুম্বরে N মেরু কর্তৃক বিকর্ষণ বল ও S-মের্ কর্তৃক আকর্ষণ বল অন্ভব করে। তখন মেরুটি উক্ত বল দটির লব্দ (resultant) বলের অভিমুখে সরে যায়। নতুন অবস্থায় পুনরায় তার ওপর উক্ত দুই বল ক্রিয়া করায় লব্দ বলের অভিমুখ পরিবর্ভিত হয়। তাতে মেরুটি পুনরায় সরে যায়। এইভাবে ক্রমশ বক্রপথ অবলম্বন করে তা দণ্ড চ্মকের S-মেরুর নিকট উপস্থিত হয়। এথেকে বোঝা যায়, চৌম্বক্তেরে চৌম্বকবল একটি নির্দিশ্য বক্ররেখা বরাবর ক্রিয়া করে। উত্ত বক্ররেখাকে দণ্ড চুমকের বলরেখা বলা হয়।

পূর্বে বলা হয়েছে, n -মেরু এবং s-মেরু চৌম্বক বলরেখা বরাবর বিপরীত দিকে গান্য করে। গাহলে বলারেখার অভিমুখ কোন দিকে ধরা হবে? সাধারণত উত্তর মেরু মেদিকে যায় হাকেই বলরেখার অভিমুখ বলে ধরা হয় এবং তির্চিক্ন দ্বারা প্রকাশ করা হয় $(4.11 \, \mathrm{ev} \, 5\,\mathrm{s})$ এই বলরেখা দণ্ড চমকের N মের্ হতে শুরু হয় ও S-মেরুতে শেষ হয়।

সংজ্ঞা: কাল সুদারক ক্রীশ্বক বলরেম বলতে এমন রেমা বুনায় যে-রেমা বর্লবর কোন সর্ববাধান্ত (pree) বিজ্ঞান (isolated) N-মেরু গমন করে এবং উক্ত রেমার যে-কোনো বিল্যুত স্পর্কক (tangent) টানলে উক্ত স্পর্কক ঐ বিল্যুত লক্ষ্য চৌদ্ধক বলের অভিমুখ নির্দেশ করে।

বলবেখা প্রসংগ্ধ মনে রাখা দরকার যে, রেখাগুলি চুখকের N-মেরুতে শুরু হয় ও S-মেরুতে শেষ হয়। সাধারণত কোনো চোম্বকক্ষেত্রের বিভিন্ন বিদ্তে চৌম্বক প্রাবলোর অভিমুখ বিভিন্ন হয়; তাই চৌম্বক বলরেখা সাধারণভাবে বক্তরেখা। তবে চৌম্বকক্ষেত্র সুষম (uniform) হলে বলরেখাগুলি সমান্তরাল সরলরেখা হতে পারে। বলরেখা সম্পর্কে অবশাই মনে রাখতে হবে যে এই রেখাগুলির বাস্তবে কোনো অন্তিছ নেই; এরা সম্পূর্ণরূপে কাল্পনিক। এইবূপ বলরেখার অন্তিছ কল্পনা করে নিলে, এনেক চৌম্বক ঘটনা সহক্ষে ব্যাখ্যা করা যায়।

4:08

চৌম্বক বলরেখার ধর্ম (Properties of magnetic lines of force):

বিভিন্ন টোম্বক ঘটনাগুলি বলরেখার সাহায়ে ব্যাখ্যা করার জন্য বলরেখাতে নিম্নলিখিত ধর্মগুলি আরোপ করা হয়।

- (1) বলরেখা N-মেরুতে শুরু হয় এবং S-মেরুতে শেষ হয়।
- (2) টান করা স্থিতিস্থাপক সূতোর মতো প্রত্যেক বলরেখা তার দৈর্ঘ্য বরাবর সংকুচিত হবার চেন্টা করে।
 - (3) বলরেখাগুলি পার্শ্বভাবে (laterally) দৈর্ঘ্যের অভিলম্বে পরস্পরকে বিকর্ষণ করে।
- (4) দুটি বলরেখা পরস্পরকে ছেদ করবে না, কারণ, ছেদ করলে ছেদবিন্দু দিয়ে দুটি বলরেখার ওপর বিভিন্ন দিকে দৃটি স্পর্শক টানা যাবে এবং স্পর্শক দৃটির প্রত্যেকটি ছেদবিন্দুতে লব্ধ বলের অভিমুখ নির্দেশ করবে। কিন্তু একই বিন্দৃতে লব্ধ বলের দৃটি অভিমুখ থাকা সম্ভব নয়। কাজেই দুটি বলরেখা পরস্পরকে ছেদ করাও সম্ভব নয়।
 - (5) একক শক্তির মের হতে শূন্য মাধাম 4π সংখ্যক বলরেখা নির্গত হয়।

4:10.

করেকটি স্থায়ী চুম্বকের বলরেখার চিত্র (Pictures of lines of force due to some permanent magnets):

নিম্নে কয়েকটি স্থায়ী চুম্বক কীরূপ বলরেখা উৎপন্ন করবে তা দেখানো হল।

একটি মাত্র বিচ্ছিন্ন মেরু পাওয়া সম্ভব হলে তার জন্য যে বলরেখা উৎপন্ন হত তা 4.12 (i) নং চিত্রের মতো। বলরেখাগুলি মেরুকে কেন্দ্র করে অজ্ঞিত বৃত্তের ব্যাসার্ধগুলির মতো।

4.12 (ii) নং চিত্রে একটি দণ্ড-চৃষকের ও 4.12 (iii) নং চিত্রে একটি অশ্বক্ষুরাকৃতি চুষকের বলরেখাগুলি দেখানো হয়েছে।

দৃটি বিষম - মেরু বা সম - মেরু মুখোমুখি রাখলে কীরূপ বলরেখা উৎপন্ন হবে তাহা 4.12 (iv) ও 4.12 (v) নং চিত্রে দেখানো হয়েছে।

চৌম্বক বলরেখাগুলির দৈর্ঘ্য বরাবর সংকৃচিত হবার প্রবণতা থাকায় (iv) নং চিত্রের N-মেরু এবং S-মেরু পরস্পরকে আকর্ষণ করবে। আবার, বলরেখাগুলি পার্শভাবে দৈর্ঘ্যের অভিলয়ে পরস্পর বিকর্ষণ করে বলে (v) নং চিত্রে দৃটি N-মেরু পরস্পরকে বিকর্ষণ করবে। বলরেখা দ্বারা চৌম্বক আকর্ষণ ও বিকর্ষণ এইভাবে ব্যাখ্যা করা যায়। তাছাড়া লক্ষ করো যে (v) নং চিত্রে মেরুদ্বয়ের মাঝখানে বলরেখাহীন একটি ক্ষুদ্র অঞ্চল পাওয়া যায়। ঐ অঞ্চলের কোনো বিন্দুতে চৌম্বক প্রাবলা শূন্য। ঐ বিন্দুকে উদাসীন বিশু (neutral point) বলে।

দুটি দশু–চূম্বক পাশাপাশি (অর্থাৎ অক্ষদ্বয় সমান্তরাল) থাকলে বলরেখা কীরূপ হবে তা 4.13 (vi) এবং (vii) নং চিত্রে দেখানো হয়েছে। (vi) নং চিত্র দশু–চূম্বকদ্বয় পাশাপাশি কিন্তু সম মেরুদ্বয় মুখোমুখি। x চিহ্ন দারা উদাসীন বিন্দুর অবস্থান দেখানো হয়েছে।

একটি মের পৃথক করা অসম্ভব (Isolation of a single pole is impossible) :

হন্ন করা সম্ভব

প্রাকৃতিক বা কৃত্রিম চুম্বকের দৃটি মেরু থাকে। এই দৃটি মেরু থেকে কোনো একটিকে বিচ্ছিন্ন করা সম্ভব নয়। একটি দণ্ড-চুম্বক নিয়ে সমান দৃই টুকরো করলে আপাতদৃষ্টিতে মনে হয় মেরু বিচ্ছিন্ন হল। কিন্তু প্রত্যেক টুকরাকে পৃথকভাবে চুম্বক-শলাকার দ্বারা পরীক্ষা করলে দেখা যাবে প্রত্যেক টুকরোতে দুটি করে মেরু আছে। অর্থাৎ, ভশ্নস্থানের দুই মুখে বিপরীত মেরুর উত্তব হয়ে প্রত্যেক টুকরো স্বয়ং-সম্পূর্ণ চুম্বক হয়েছে। এই দুই টুকরোর প্রত্যেকটিকে যদি আবার অর্ধেক করে ফেলা যায় তবে প্রত্যেক ভাগই স্বয়ং-সম্পূর্ণ চুম্বক বলে প্রমাণিত হবে (4.13 নং চিত্র)। এইভাবে ক্রমাণত ভেঙে ছোটো

করলে সব সময়ই ভগ্ন অংশগুলি দুই মের্বিশিষ্ট চুম্বকে হবে। কিছুতেই দণ্ড-চুম্বকের দুটি মেরু পৃথক করা যাবে না।

4.12 চুম্বকম্বের আণবিক তত্ত্ব (Molecular theory of magnetism

সুষ্বককে ভেজো টুকরো টুকরো করলে কিছুতেই দৃটি
মেরু পৃথক করা যায় না। চুম্বকের এই ক্রমিক বিভাজনের
ফলে শেষ পর্যন্ত আমরা চুম্বকের একটি অণু অথবা
পরমাণুসমন্টিতে পৌছোব। সজাত কারণে তথনও ঐ
অণু বা পরমাণুসমন্টি দুই মেরুবিশিন্ট স্বয়ংসম্পূর্ণ চুম্বকের
ন্যায় ব্যবহার করবে। এই ঘটনা হতে বিশিন্ট জার্মানি

বিজ্ঞানী ওয়েবার চুম্বকত্বের আণবিক তত্ত্ব সম্বশ্বে একটি মতবাদ প্রচার করেছিলেন। এই তত্ত্ব অনুযায়ী :

(i) চৌম্বক পদার্থের অণুগুলি দুই মেরুবিশিষ্ট স্বতম্ত্র চুম্বক কিন্তু চুম্বকিত না করা পর্যন্ত তাদের চৌম্বক অক্ষগুলি বন্ধমুখ শৃঙ্খলের (closed chain) ন্যায় সজ্জিত থাকে। এইরূপ একটি শৃঙ্খলে অণু-চুম্বকগুলির বিপরীত মেরুদ্বয় পরম্পরকে প্রশমিত করায় চৌম্বক পদার্থে চৌম্বক ধর্ম প্রকাশ পায় না (4.14 নং চিত্রে অণু-চুম্বকগুলির অক্ষ দেখানো হয়েছে।) সেইজন্য

চুম্বকিত না করা পর্যন্ত চৌম্বক পদার্থের কোনো স্বাধীন (free) মেরু দেখা যায় না বা চৌম্বক পদার্থ চুম্বকের ন্যায় ব্যবহার করে না।

কিন্তু যখন কোনো চৌম্বক পদার্থকে কোনো শক্তিশালী চুম্বকের মেরু (ধর, S-মেরু) দ্বারা ঘষা যায়

তথন ঐ মেনুর প্রভাবে বন্ধম্থ শৃদ্ধালগুলি ভেঙে যায়। অণু-চুম্বকগুলির n মেনু ঘর্ষণকারী S-মেনু কর্তৃক আকর্ষিত হয়ে তার দিকে মুখ ঘুরিয়ে দাঁড়ায় (4.15 নং চিত্রে)। এইভাবে ঘর্ষণকারী S-মেনু দারা বারবার চৌদক পদার্থটিকে ঘরকে ক্রমল বেলি সংখ্যক অণু-চুমকের অক্ষ উপরোক্তভাবে সজ্জিত হয়ে পড়লে চৌম্বক পদার্থটি চুমুকে পরিণত হয় (4.16 নং চিএ)।

(ii) দণ্ডের মাবখানে চৌত্বক ধর্ম থাকে না কেন १

চৌদক পদার্থটির দৈর্ঘোর মানামানি জায়গায় অণু-চূদকর্গুলির নিপরীত মের্ মৃথোম্থি থাকায় তারা পরস্পরের প্রভাব নন্ট করে দেয়। তাই দক্তের মানাখানে কোনো চৌদক ধর্ম দেখা যায় না। শুধু দুই প্রান্তে মেরুগুলি একই ধর্মাবলম্বী বলে নিজেদের প্রভাব অক্ষুব্ন রাখে এবং দুই প্রান্তদেশে বিপরাত মেরু সৃষ্টি করে।

(iii) উত্তর বা দক্ষিণ মের দঙের ঠিক প্রান্তে অবস্থিত নয় কেন ?

দক্তের যে-কোনো প্রান্তে অণু-চম্বকগুলির সমমের থাকায় তাদের ভিতর পারস্পরিক বিকর্ষণ বল ক্রিয়া করে। ফলে শৃঙ্খলগুলি ঠিক সমান্তরাল হয় না ; প্রান্তের দিকে বেঁকে যায়। এই কারণে দক্ত স্থাকের মের্ দণ্ডের ঠিক প্রান্তে অবস্থিত হয় না, প্রান্তের কাছাকাছি কোনো বিন্দুতে অবস্থিত হয়। ভাছাড়া প্রত্যেক দুই প্রান্তে একটি করে মুক্ত আণবিক মেরু থাকায় বোঝা যায় যে, চুম্বকের মোট মুক্ত N-মের্ এবং S-মের্ পরম্পরের সমান।

চৌম্বক পদার্থের কয়েকটি বিশেষ ধর্ম (Some special prope of a magnetic substance) :

(i) ভেদ্যতা (Permeability) : চৌম্বকক্ষেত্রে কোনো চৌম্বক পদার্থ রাখালে ঐ পদার্থটি রাখার পূর্বে বায়ুতে যে কয়টি বলরেখা থাকে পদার্থটি রাখার পর তার ভিতর দিয়ে বেশি সংখ্যক বলরেখা যায়। বায়ুর তুলনায় প্রতি বর্গক্ষেত্র দিয়ে লম্বভাবে (normally) কোনো চৌম্বক পদার্থের ভিতর কতগুণ বলরেখা যাচেছ তা দিয়ে উত্ত পদার্থের ভেদ্যতা প্রকাশ করা হয়। যেমন, কোনো চৌদ্বক পদার্থের ভেদ্যতা 100 বললে বোঝা যাবে যে, কোনো চৌম্বকক্ষেত্রে প্রতি বর্গস্থানের ভিতর দিয়ে বায়ুতে যে-কয়টি বলরেখা আছে, উত্ত পদার্থ রাখলে তার ভিতর দিয়ে প্রতি বর্গস্থানে 100 গুণ বলরেখা থাকরে। সাধারণত অচৌসক পদার্থ থেকে চৌম্বক পদার্থের ভেদাতা অনেক বেশি। আবার, বিভিন্ন চৌম্বক পদার্থের ভেদাতাও ভিন্ন।

এখন কোনো চৌম্বক পদার্থের ভিতরে কোনো বিন্দুর চতুর্দিকস্থ একক ক্ষেত্রফল দিয়ে লম্বভাবে যত সংখ্যক আবেশ–রেখা অতিক্রম করে তাকে ঐ বিন্দুর **ফ্লান্স-ঘনত্ব** (flux density) বা **চৌম্বক আবেশ** (magnetic induction) বলে। চৌম্বক পদার্থের অভ্যন্তরস্থ কোনো বিন্দুর চৌম্বক-আবেশ সাধারণত ফ্লাক্স-ঘনত্ব দ্বারাই পরিমাপ করা হয়। একে B অক্ষর দ্বারা বুঝানো হয়।

কোনো বিন্দুর চৌম্বক-আবেশ বা ফ্লাক্স-ঘনত্ব B-এর অর্থ এই যে এ বিন্দুর চতুর্দিকস্থ একক ক্ষেত্রফল দিয়ে লম্বভাবে B সংখ্যক আবেশরেখা অতিক্রম করছে।

বস্তুর ভিতর দিয়ে প্রতি একক ক্ষেত্রফলের অভিলম্বভাবে যদি B সংখাক আবেশ-রেখা অতিক্রম করে এবং বস্তুকে সরিয়ে নিলে বায়ুর ভিতর দিয়ে ওইভাবে যদি H সংখ্যক বলরেখা অতিক্রম করে, তবে ওই

বস্তুর চৌম্বক ভেদাতা $\mu = \frac{B}{H} = \frac{198}{100}$ বহিন্দ চৌম্বক ক্ষেত্রে প্রাবলা

বস্তুর অভাশুরস্থ ফ্লাক্স-ঘনত্ব

 $\therefore B = \mu H$

'এখন H=1 হলে, $\mu=B$; অর্থাৎ একক প্রাবন্যাবিশিক্ট চৌম্বকক্ষেত্রে কোনো চৌম্বক পদার্থ রাখলে তার ভিতর যে ফ্লাক্সখনত্ব বা চৌত্বকআবেশ সৃষ্টি হয়, তাকে ঐ পদার্থের ভেদ্যতা বলা হয়।

স্পর্যটত শুনা মাধ্যমে $\mu=1$ এবং B=H; কিছু মনে রাখা দরকার যে, শূন্য মাধ্যমে B এবং Hসংখ্যাগতভাবে সমান হলেও তাদের মাত্রা (dimension) ও একক সম্পূর্ণ পৃথক। শূন্য মাধ্যমে কোনো বিদ্যুত টোস্বক আবেশ B বলতে আমারা বৃঝি ঐ বিন্দুতে চৌস্বক ফ্লাক্স-ঘনত্ব বা প্রতি একক ক্ষেত্রফলের ভিতর দিয়ে অতিক্রান্ত মোট চৌম্বক বলরেখা কিন্তু ঐ বিন্দৃতে চৌম্বক ক্ষেত্রের প্রাবল্য H বলতে বুঝি ঐ বিন্দৃতে একটি একক N–মেরুর ওপর প্রযুক্ত বল। H মাধ্যম নিরপেক্ষ কিষ্ণু B মাধ্যমের ধর্মের ওপর নির্ভরশীল। এস্. আই পর্ন্ধতিতে B—এর একক টেসলা (Tesla) এবং H—এর একক অ্যাম্পিয়ার/মিটার (Am^{-1})।

(ii) চুম্বকনের পরিমাত্রা (Intensity of magnetisation) কোনো চৌম্বক পদার্থকে চৌম্বক ক্ষেত্রে রাখলে, চৌম্বক পদার্থে চৌম্বক দ্বিমের ভ্রামকের (magnetci dipole moment) উদ্ভব হয়। এই ভ্রামক M এর অভিমুখ দক্ষিণমের থেকে উত্তর মেরুর দিকে [চিত্র 4.17) পদার্থের একক আয়তনে উদ্ভূত দ্বিমের ভ্রামক-কে ঐ পদার্থের চুম্বকনের পরিমাত্রা (I) বলা হয়। অর্থাৎ, $I=rac{\mathbf{M}}{\mathbf{M}}$

(V পদার্থের আয়তন) যদি পদার্থের মেরুশন্তি হয় m এবং চৌম্বক দৈর্ঘ্য হয় 2l তাহলে, $I=rac{m imes2l}{m imes2l}=$

 \underline{m}

[

 ব = পদার্থের প্রস্থাচ্ছেদ] অতএব, চৌম্বক পদার্থকে চৌম্বক ক্ষেত্রে রাখলে, পদার্থের প্রতি একক **ক্ষে**এফলে যে মেরু শব্তির উদ্ভব হয়, তাকে চুম্বকনের পরিমাত্রা বলা যেতে পারে।

(iii) চৌম্বক প্রবণতা বা প্রাহিতা (Susceptibility) : চৌম্বক পদার্থের প্রবণতা বলতে সাধারণভাবে আমরা বুঝি যে, কত সহজে ঐ পদার্থে চম্বকত্ব আবিষ্ট করা যায়। কোনো চৌম্বক পদার্থকে চৌশ্বক ক্ষেত্রে রাখলে তাতে যে চম্বকত্ব আবিষ্ট হবে তা প্রথমত উত্ত পদার্থ এবং দ্বিতীয়ত চৌম্বকক্ষেত্রের ওপর নির্ভর করে। কিন্তু নির্দিষ্ট চৌম্বকক্ষেত্রে আবিষ্ট চ্ম্বকত্ব পদার্থভেদে বিভিন্ন হবে। পরীক্ষা করে দেখা গেছে যে, নির্দিষ্ট চৌম্বকক্ষেত্রে ত্থাপিত নরম লোহার আবিষ্ট চুসকত্ব ইম্পাত অপেক্ষা অনেক বেশি। এইজন্য বলা হয়, নরম লোহার চৌম্বক প্রবণতা ইম্পাত অপেক্ষা বেশি।

একটি নরম লোহার দশুকে চুম্বক শলাকার যে-কোনো মেরুর নিকট আনলে দণ্ডে চম্বকত্ব আবিষ্ট হবে এবং ৮৬ ও শলাকার ভিতর আকর্ষণের জন্য দণ্ডের দিকে চুম্বকশলাকার বিক্ষেপ হবে। কিন্তু নরম লোহার দণ্ডের পরিবর্তে সমান সাইজের ইম্পাত দণ্ড আনলে চুম্বক শলাকার বিক্ষেপ অপেক্ষাকৃত কম হবে। এথেকে বোঝা যায়, নরম লোহার **আবিন্ট চ্ম্বকত্বের মাত্রা (অর্থাৎ, চৌম্বক প্রবণতা**) ইম্পাত অপেকা বেশি। মিউমেটাল (73% নিকেল, 22% লোহা, 5% তামা) নামক একপ্রকার সংকর ধাতুর চৌম্বকপ্রবণতা খব বেশি।

H প্রাবল্যের সমবলসম্পন্ন কোনো চৌম্বকক্ষেত্রে কোনো চৌম্বক পদার্থ রাখলে (H ক্ষেত্রের বলরেখার সমান্তরালে), যদি ঐ পদার্থের প্রতি একক প্রস্থাক্তদে I মেরুশন্তির মেরু উৎপন্ন হয়, অর্থাৎ চুম্বকনের পরিমাগা I হয় এবে $I \propto H$ অথবা I = KH; K একটি ধ্রবসংখ্যা, একে বলা হয় চৌম্বক প্রবণতা। অতএব $K = \frac{I}{H}$; যদি H = I হয় তবে K = I;

স্ত্রাং একক প্রাবল্যবিশি**ন্ট চৌম্বক ক্ষেত্রে কোনো চৌম্বক পদার্থ** রাখলে ভাতে যে চুত্বকনের পরিমাত্রা সৃষ্টি হয় তাকে ঐ পদার্থের চৌত্বকথাহিতা বা চৌত্বক প্রবণতা বলা হয়। টৌশ্বক ভেদ্যতা এবং টৌশ্বক প্রবদতার পারস্পরিক সম্পর্ক : টৌশ্বক আবেশ B এবং চৌদ্বক পদার্থের চম্বকনের পরিমাত্রা 1-এর ভিতর নিকট সম্পর্ক আছে।

কোনো চৌম্বক পদার্থকে H প্রাবলোর চৌম্বকক্ষেত্রে রাখলে, পদার্থটি চৌম্বকত্ব লাভ করে। পদার্থের অভান্তরে চৌম্বক ক্ষেত্র হবে বাইরে থেকে প্রযুক্ত চৌম্বক ক্ষেত্র Η এবং আরেশের জন্য উৎপন্ন

চৌসকার I-এর সমন্তি। অর্থাৎ, লব্দি চৌসক ক্ষেত্র $\dfrac{\overrightarrow{B}}{\mu_0}=H+I$ $[\mu_0=$ শুনা মাধ্যমের ভেদাতা]

অথবা,
$$\stackrel{\rightarrow}{B}=\mu_0\left(\stackrel{\rightarrow}{H}+\stackrel{\rightarrow}{I}\right)$$

$$= \mu_0 (H + KH) \xrightarrow{\rightarrow}$$

$$= \mu_0 (1 + K)H$$

$$= \mu H \text{ [CINICA]}, \mu = \mu_0 (1 + K)\text{]}$$

আবার, $\frac{\mu_0}{\mu_0} = \mu_r = 1 + K$; ধ্রুবক μ_r কে বলা হয় পদার্থের আপেক্ষিক ভেদ্যতা।

(iii) ধারণক্ষমতা (Retentivity) এবং সহনশীলতা (Coercivity) : দুটি একই আকার ও সাইজের নরম লোহা ও ইম্পাতের দন্ড নিয়ে একই টোম্বক বল (magnetising force) দ্বারা চুম্বকিত করে ঐ টোম্বক বল অপসারণ করলে দেখা যায়, বিশেষ অবস্থায় টোম্বক বল অপসারণ সন্তেও ইম্পাতের ন্যায় নরম লোহা প্রায় পূর্ণ চূম্বকত্ব ধরে রেখেছে। পরীক্ষা করে দেখা যায় উভয় দণ্ডই প্রায় শতকরা 90 ভাগ চূম্বকত্ব বজায় রাখে। কিন্তু দণ্ড দুটিকে একটু নাড়াচাড়া করলে সঞ্চো সজো নরম লোহার প্রায় সব চূম্বকত্বই অন্তর্হিত হয় কিন্তু ইম্পাতের চূম্বকত্বের বিশেষ পরিবর্তন হয় না। বলা হয় ইম্পাত এবং লোহার ধারণক্ষমতা প্রায় সমান কিন্তু নরম লোহার সহনশীলতা অনেক কম। কারণ দুটি পদার্থই বিশেষ অবস্থায় প্রায় সমপরিমাণ চূম্বকত্ব ধরে রাখতে সক্ষম ; কিন্তু চূম্বকত্ব দূর করার জন্য বল প্রয়োগ করলে নরম লোহার চৌম্বকত্ব অতি সহজে অপসারিত হয়।

সংজ্ঞা: কোনো চৌম্বক পদার্থকে চুম্বকন ক্ষেত্র হতে সরিয়ে নিলেও যে ধর্মের জন্য ঐ পদার্থ কিছু পরিমাণ চুম্বকত্ব ধরে রাখতে পারে তাকে ঐ পদার্থের ধারণ ক্ষমতা বলে।

যে ধর্মের জন্য কোনো চৌম্বক পদার্থ বাহ্যিক নিপ্রহ সত্ত্বেও আবিন্ট চুম্বকত্ব ধরে রাখতে পারে তাকে ঐ পদার্থের সহনশীলতা বলে।

বিভিন্ন যন্ত্রপাতিতে ব্যবহার করার জন্য স্থায়ী ও অস্থায়ী চুম্বক তৈরি করার সময় চৌম্বক পদার্থের উপরিউন্ত বিশেষ ধর্মগুলি বিচার করা হয় এবং সেই অনুযায়ী লোহা, ইম্পাত বা বিভিন্ন সংকর থাতুকে কাজে লাগানো হয়। যেমন, স্থায়ী চুম্বক তৈরি করতে হলে তার উপাদানের ধারণক্ষমতা ও সহনশীলতা উচ্চ হওয়া প্রয়োজন। তাই স্থায়ী চুম্বক নির্মাণে সর্বদা টাংস্টেন স্টিল, কোবাল্ট স্টিল, আালনিকো, টিকোনাল (টিটানিয়াম, কোবাল্ট ও আলুমিনিয়ামের সংমিশ্রণে তৈরি) প্রভৃতি ব্যবহার করা হয়। আবার, তড়িৎ-চুম্বক তৈরি করার উপযুক্ত উপাদান হতে হলে তার ধারণক্ষমতা ও সহনশীলতা খুব কম হওয়া প্রয়োজন। তাই তড়িৎ-চুম্বক নির্মাণে সর্বদা নরম লোহা বা স্ট্যালয় (stalloy)—যা 5% সিলিকন এবং 95% লোহার দ্বারা তৈরি—ব্যবহৃত হয়। ট্যাঙ্গফরমার 'কোর' (core) নির্মাণে এরূপ উপাদান নির্বাচন করতে হবে যার উচ্চ ভেদ্যতা আছে। তাই, আজকাল এই উদ্দেশ্য 'পারম্যালয়' (শতকরা 50 ভাগ লোহা এবং 50 ভাগ নিকেল) এবং ট্রাঙ্গফরমার ইম্পাত (transformer steel)—নরম লোহার সাথে 4% সিলিকনের মিশ্রণ—নামক সংকর ধাতুর বহুল ব্যবহার দেখা যায়।

D Examples D

🕒 একটি ইম্পাতদন্তকে 7.6 Oe চৌম্বকক্ষেত্রে দৈর্ঘ্য বরাবর রাখা আছে। দণ্ডের দৈর্ঘ্য 23 cm প্রস্থ 1.2 cm এবং বেধ 0.5 cm। যদি ইম্পাতের ভেদ্যতা 640 হয়, তবে আবিষ্ট ইম্পাত দল্ডের চৌম্বক ভামক কত হবে ?

উঃ। আবিন্ট চৃষ্ণকলের পরিমাত্রা I, দণ্ডের চৌম্বক স্থামক M এবং দণ্ডের আয়তন V হলে $I=rac{M}{V}$, অবোর, K এবং μ ইস্পাতের চৌম্বক প্রবণ্তা এবং চৌম্বক ভেদাতা হলে , $K=rac{I}{H}$ এবং $\mu=1+4\pi K$. $({
m cgs})$

এই সম্পর্কগুলি হতে পাই,
$$\mu-1=4\pi\frac{I}{H}$$
 অথবা $I=\frac{H}{4\pi}\left(\mu-1\right)$

এখানে H = 7.4 Oe এবং $\mu = 640$.

অতএব,
$$I = \frac{7.5}{4\pi} (640 - 1) = 381.57 \text{ unit } (প্রায়)$$
।

ে চৌদ্বকল্রামক $M=I\times V=381.57\times 23\times 1.2\times 0.5=$ 5265.67 cgs unit (প্রায়)।

় 🕗 একটি তড়িদ্বাহী টরয়েডের অভ্যন্তরে পরিপূর্ণভাবে অ্যালুমিনিয়াম প্রবেশ করালে, চৌম্বকক্ষেত্র B-এর শতকরা বৃন্ধি কত হবে নির্ণয় কর। অ্যালুমিনিয়ামের চৌম্বক প্রবণতা = 2.0×10^{-5}

উঃ। টরয়েডের অভান্তর বায়ুপূর্ণ থাকলে, $B_0=\mu_0 H$

টরয়েডের অভান্তর আালুমিনিয়াম দ্বারা ভর্তি করলে, চৌম্বক ক্ষেত্র হবে $B=\mu H=\mu_0(1+K)H$

 \therefore চৌম্বক ক্ষেত্রের বৃদ্ধি $= B - B_0 = \mu_0 KH$

টোম্বক ক্ষেত্রের শতকরা বৃদ্ধি =
$$\frac{B-B_0}{B_0} \times 100 = \frac{\mu_0 KH}{\mu_0 H} \times 100$$
 = $K \times 100 = 2.0 \times 10^{-5} \times 100 = 2 \times 10^{-3} \%$

4.14. পরাটোম্বক, তিরন্টোম্বক এবং অয়ন্টোম্বক পদার্থ (Paramagnetic dia-magnetic and ferro-magnetic substances) :

শক্তিশালী চুম্বক নিয়ে পরীক্ষা করে ফারাডে দেখতে পান যে কিছু কিছু পদার্থ চুম্বক দ্বারা আকৃষ্ট হয় আবার, কিছু কিছু বিকর্ষিত হয়। চুম্বক যে-সকল পদার্থকে আকর্ষণ করে তাদের বলা হয় পরাচৌম্বক পদার্থ এবং যে সকল পদার্থকে বিকর্ষণ করে তাদের বলা হয় তিরন্দৌম্বক পদার্থ। যেমন, লোহা, অ্যালুমিনিয়াম, নিকেল, কোবান্ট ইত্যাদি চুম্বক দ্বারা আকৃষ্ট হয়; কাজেই ভারা পরাচৌম্বক পদার্থ। আবার, বিসমাথ, আন্টিমনি, দন্তা প্রভৃতি চুম্বক দ্বারা বিকর্ষিত হয়। সুতরাং তারা তিরন্দৌম্বক পদার্থ।

পরাচৌম্বক পদার্থের ভিতর আবার কয়েকটি পদার্থ চুম্বক কর্তৃক বিশেষভাবে আকৃন্ট হয়। এদের বলা হয় **অয়শ্টোম্বক** পদার্থ। যেমন, নরম লোহা, ইম্পাত ইত্যাদি।

নিম্নে এদের বিভিন্ন ধর্ম সম্বন্ধে আলোচনা করা হল।

(ক) পরাচৌম্বক পদার্থ : পরাচৌম্বক পদার্থের চৌম্বক ভেদ্যতা 1 হতে 1.001—এর মধ্যে এবং চৌম্বক্যাহিতা ধনাত্মক কিন্তু নিম্নমানের। কোনো পরাচৌম্বক গোলককে চৌম্বক ক্ষেত্রে রাখনে বলরেখাগুলি

বেশি পরিমাণে ঐ গোলকের ভিতর দিয়ে যেতে চেম্টা করে। ফলে ঐ পদার্থের মধ্যে বলরেখাগুলি ঘনতরভাবে সন্নিবিউ হয় [চিত্র 4.18]। পরাচৌদ্ধক পদার্থে চৌদ্ধক আবেশ B—এর মান বহিস্থ চৌদ্ধক ক্ষেত্রের প্র'বলা H অপেক্ষা কিছু বেশি হয়। তাই $\mu\left(=\frac{B}{H}\right)$ —এর মান 1—এর কিছু বেশি এবং চৌদ্ধক গ্রাহিতা $K\left(\mu=1+4\pi K\right)$ ধনাম্মক হয়। অসম চৌদ্ধক ক্ষেত্রে স্থাপন করলে, এরা

ক্ষেত্রের দুর্বলতর অংশ হতে প্রবলতর অংশে গমন করে এবং শক্তিশালী চূমক দারা দ্বলভাবে আক্ষিত হয়। পরাটোম্বক পদার্থের উদাহরণম্বরূপ আলুমিনিয়াম, ম্যাজ্ঞানীজ, প্লাটিনাম, ক্রোমিয়াম, লৌহ ও অক্সিজেন ঘটিত লবণের দ্রবণ ইত্যাদির নাম করা যেতে পারে।

তাপমাত্রা বৃদ্ধি করলে পরাচৌম্বক পদার্থের ভেদাতা এবং গ্রাহিত - উভয়ই ব্রাস পয়ে। বিশিষ্ট বিজ্ঞানী পিয়ের কুরী পরীক্ষার সাহায়ে৷ প্রমাণ করেছিলেন যে পরাচৌদ্বক পদর্থের প্রতি একক

ভরে চৌম্বক গ্রাহিতা λ $(\lambda=K/
ho)$ পরম তাপমাত্রার বাস্তানুপাতিক। তাই লেখা যায়, $\lambda=rac{C}{T}$: C একটি ধুবক। এই সম্পর্ককে কুরী সূত্র (Curie law) বলা হয়। পরীক্ষার ফলে দেখা গেছে যে কুরী-সূত্র কেবলমাত্র পরাটোম্বক গ্যাসের বেলায় প্রয়োজা। পরাচৌম্বক কঠিন পদার্থের বেলায় যে সূত্র প্রয়োজা তাকে বলা হয় **কুরী-ভাইস** (Curi-Weiss) সূত্র। এই সূত্রান্যায়ী, $\lambda = \frac{C}{T-\Omega}$; θ একটি বিশেষ তাপমাত্রা যাকে ঐ পরাটোম্বক পদার্থের কুরী-তাপমাত্রা বলা হয়। প্রায় সকল পরাটোম্বক পদার্থের বেলায় কুরী-তাপমাত্রার মান খুব কম।

(খ) তিরশ্চৌম্বক পদার্থ : তিরশ্চৌম্বক পদার্থের চৌম্বক ভেদাতা নিম্নমানের এবং চৌম্বকগ্রাহিতা ঋণাত্মক। অসম চৌম্বকক্ষেত্রে তিরস্টোম্বক পদার্থ ঐ ক্ষেত্রের প্রবল অংশ থেকে দুর্বল অংশে গমন করে এবং চুম্বক দ্বারা ক্ষীণভাবে বিকর্ষিত হয়। তিরশ্চৌম্বক পদার্থের চুম্বকত্ব তাপমাত্রার ওপর নির্ভর করে না। বিসমাথ, অ্যান্টমনি, ফসফরাস, তামা, অ্যালকোহল, পারদ, সোনা, হাইড়োজেন, জল ইত্যাদি তিরস্টৌম্বক পদার্থ। প্রকৃতপক্ষে পরাচৌম্বক ও অয়শ্চৌম্বক পদার্থ ছাড়া অন্য সকল পদার্থই তিরশ্চৌম্বকধর্মী।

চৌম্বকক্ষেত্রে তিরশ্চৌম্বক পদার্থের গোলক স্থাপন করলে বলরেখাগুলি ঐ পদার্থকে এড়িয়ে যাবার চেষ্টা

डिंड 4.19

করে : ফলে পদার্থের ভিতর বলরেখাগুলির ঘনত্ব ব্রাস পায় অর্থাৎ চৌম্বক আরেশ B-এর মান বহিস্থ চৌম্বক ক্ষেত্রের প্রাবলা H অপেকা किছ कम रहा (हिंच 4.19)। यरन, μ (= B/H)-এর মান 1 -এর কিছ কম এবং চৌম্বক্যাহিতা K ঋণাত্মক হয়। অয়শ্চৌম্বক পদার্থ : অয়শ্চৌম্বক পদার্থের চৌম্বক ভেদাতা খ্ব উচ্চমানের (1 থেকে 10⁶ পর্যন্ত) এবং

চৌম্বক্যাহিতা ধনাত্মক ও উচ্চমানের। অয়শ্চৌম্বক পদার্থ চুম্বক দ্বারা বিশেষ ভাবে আকৃষ্ট হয় এবং তাকে শিন্তিশালী চুম্বকে পরিণত করা যায়। অয়শ্চৌম্বক পদার্থগুলির চৌম্বক আচরণ পরাচৌম্বক পদার্থগুলির আচরণের তুলনায় বেশি প্রকট বলে তাদের একটি পৃথক শ্রেণিতে অন্তর্ভুত্ত করা হয়েছে। উদাহরণস্বরুপ, লোহা, ইম্পাত, কোবাণ্ট, নিকেল এবং তাদের সংকর ধাতুর নাম করা যেতে পারে। সকল অয়শ্চৌম্বক পদার্থই কেলাসাকার কঠিন পদার্থ। তরল বা গ্যাসের কোনো নির্দিষ্ট আকার না থাকায়, তরল ও গ্যাসীয় পদার্থ অয়শ্চৌম্বক হয় না।

পরাচৌদ্বক পদার্থের সকল ধর্মাবলিই অয়শ্চৌম্বক পদার্থে বর্তমান এবং বেশি মাত্রায় বর্তমান। পরাচৌদ্বক পদার্থের নায়ে অয়শ্চৌদ্বক পদার্থের চৌম্বক্যাহিতা এবং ভেদ্যতা পরম তাপমাত্রার সাথে পরিবর্তিত হয় বটে, তবে বিশেষ কোনো সূত্রানুযায়ী নয়। তাপমাত্রা বৃষ্ধি পেলে চৌম্বকগ্রাহিতা হ্রাস পায় এবং একটি সংকট তাপমাত্রায় অয়শ্চৌম্বক ধর্ম সম্পূর্ণরূপে লুপ্ত হয় ; তখন তা পরাচৌম্বক পদার্থে পরিণত হয়। ঐ সংকট ভাপমাত্রাকে বলা হয় কুরী-বিন্দু (Curie point)। লৌহের কুরী-বিন্দু

প্রায় 770° C এবং কোবালের 1100° C। কোনো অয়ন্টোম্বক পদার্থকে পরাটোম্বক পদার্থে পরিণত করার সহও উপায় হল তাকে করী-বিন্দ অথবা তাথেকে বেশি তাপমাত্রায় উত্তপ্ত করা।

অয়শ্চৌম্বক, পরাচৌম্বক ও তিরশ্চৌম্বক পদার্থের (Comparison between ferro- para- and dia-magnetic substances):

		\$ P				
অয়দেচীশ্বক	পরাচৌম্বক	তিরশ্চৌস্বর্				
1. চূম্বক দারা প্রবলভাবে আকর্ষিত হয়।	চূম্বক দারা ক্ষীণভাবে আকর্ষিত হয়।	চুম্বক দারা ক্ষীণভাবে বিকর্ষিত				
2. চৌধক ভেদতা উচ্চ মানের (1 – 10 ⁶ পর্যন্ত)।	চৌম্বক ভেদাতা নিম্নমানের	হয়। চৌম্বক ভেদাতা খুব নিম্নমানের				
ত্রীস্থক গ্রাহিতা ধনাত্মক এবং উচ্চমানের।	(1–1.001 পর্যস্ত)। টৌম্বক গ্রাহিতা ধনাত্মক এবং নিম্নমানের।	(1-এর কম)। চৌম্বক্যাহিতা ঋণাত্মক ও				
ক্রিষ্টকক্ষেত্রে রাখলে বলরেখাগুলি বেশি পরমাণে বলরেখাগুলি বেশি পরমাণে	চৌমকক্ষেত্রে রাখলে,	নিম্নমানের। চৌম্বকক্ষেত্রে রাখলে				
পদার্থের ভিতর দিয়ে যেতে চায়।	বলরেথাগুলি সামান্য পরিমাণে পদার্থের ভিতর	বলরেখাগুলি পদার্থকে এড়িয়ে যাবার চেন্টা করে।				
 চৌম্বক গ্রাহিতা পরম তাপমাত্রার সাথে পরিবর্তিত হয়। এই পরিবর্তন কোনো সহজ সৃত্র মেনে চলে না। 	দিয়ে যেতে চায়। টৌম্বক গ্রাহিতা কুরী-সূত্র অথবা কুরী-ভাইস সূত্রানুযায়ী পরম তাপমাত্রার সাথে	চৌম্বক গ্রাহিতা তাপমাত্রার ওপর নির্ভর করে না।				
কুরী-বিন্দু পাওয়া যায়। সেম্বকক্ষেত্রের দুর্বলতর অংশ কতে প্রবলতর অংশে দ্রত গমন	ব্যজানুপাতে পরিবর্তিত হয়। কুরী-বিন্দু পাওয়া যায় না। চৌম্বকক্ষেত্রের দূর্বলতার	কুরী-বিন্দু পাওয়া যায় না। চৌম্বকক্ষেত্রের প্রবলতর				
করে। 8. চৌম্বক আবেশ B—এর মান বহিস্থ চুম্বকন ক্ষেত্র H অপেক্ষা	অংশ হতে প্রবলতর অংশে ধীরে ধীরে গমন করে। চৌম্বক আবেশ B—এর মান	অংশ থেকে দুর্বলতর অংশে গমন করে। চৌম্বক আবেশ B-এর মান				
অনেক বেশি হয়। 9. এদের ধারণ-ক্ষমতা আছে। 10. কেলাসিত কঠিন পদার্থ।	বহিস্থ চুম্বকন ক্ষেত্র H অপেক্ষা সামান্য বেলি হয়। এদের ধারণ-ক্ষমতা নেই। তরল, কঠিন বা গ্যাসীয়।	বহিস্থ চুম্বকন ক্ষেত্র H অপেক্ষা কম হয়। এদের ধারণ ক্ষমতা নেই।				
23. 3. 11. 110.1 [11.4]	्यरा, काल्य वा ग्रामार्थे।	তরল, কঠিন বা গ্যাসীয়।				

4.16. পৃথিবী একটি বিরাট চুম্বক (The earth is a huge magnet)

আমরা জানি, মুক্ত অবস্থায় ঝুলানো চুম্বক বা চুম্বকশলাকা সর্বদা উত্তর-দক্ষিণ মুখ করে থাকে। শলাকাকে নাড়িয়ে দিলে কিছুক্ষণ আন্দোলনের পর পুনরায় পূর্বের জায়গায় ফিরে আসে। ভূপঠের প্রায় সর্বএই চুম্বকশলাকার এইরকম আচরণ লক্ষ করা যায়। মনে হয় যেন কোনো আকর্ষণ-বলের প্রভাবেই চুম্বকশলাকা ঐরুপ নির্দিষ্ট দিকে মুখ করে থাকে। এই ঘটনা লক্ষ করে বহু পূর্বে প্রায় 1600 খ্রিস্টাব্দে ইংল্যান্ডের রানি এলিজাবেথের চিকিৎসক ডাঃ গিলবার্ট মত প্রকাশ করেন, পৃথিবী নিজেই একটি চুম্বক। ডাঃ গিলবার্ট বলেন, চুম্বক-শলাকাকে প্রভাবিত করতে একমাত্র চুম্বকই সক্ষম। য়েহেত্ চতুর্দিকে অন্য কোনো চম্বক নেই সূতরাং পৃথিবীর চৌম্বক প্রভাবের দর্বনই শলাকার ঐরুপ ব্যবহার লক্ষিত হয়। পরে ডাঃ গিলবার্ট একটি চুম্বকের গোলক তৈরি করে তার নিকট ছোটো ছোটো চুম্বক রেখে পরীক্ষা করে দেখান

্ম, তাদের বাবহারের সাহে পাছিরার বিভিন্ন স্থানে রাখা চুষ্ট্রের বার্তারের সভিন্ন আছে। শাচাড়া এটা তানা ছিল, মাটির ভিত্র কোনো টোম্বক পাছা। বিহু সমস্ত কার্লে গাছাল কার্তার কার্তার মনে করেন। গুটিম্বক পাছা আই সমস্ত কার্তা বিজ্ঞানীপাল মান করেন। পৃথিবী একটি বিরাট চুম্বক।

সাধারণ চুমকের যেমন দৃটি মের থাকে পৃথিবার চুমকংগ্রেরও তেমনি দৃটি মর আছে পাছবাল উপক মেরুকে নিচ মেরু (dip poles) বলে। ভারকেন্দ্র দিয়ে ঝুলানো কোনো চুমকশলারা পৃথিবাল দুটি স্বান্দ্র বিছিল (vertical) অবস্বায় থাকবে। সেই দৃটি স্বান্দ্রক পথিবাল নিত মেরু বলা হয়। পৃথিবার উত্তর চৌদ্দক মেরু কানাভার রোখিয়া ফেলিক্স অব্যক্তি তরং তা পাছবাল ভারণালক উত্তর মেরু হতে প্রায় 2400 কিলোমিটার দৃরে। পাছবাল চৌদ্দক মের নিচল ভিক্সালয়। অবলে অবস্থিত এবং ভৌগোলিক দক্ষিণ মেরু হতে প্রায় 2200 কিলোমিটার দৃরে

মনে রাখবে, চুম্বক-শলাকার যে-প্রান্ত পৃথিবার উত্তর মেবুর অভিমুখা ওা প্রকংপক্ষে শলাকার থাকিব প্রক্রিপ মেরু, কারণ, দুই বিষম মেবুর ভিতর আকর্ষণ হয়ে থাকে। সেজন্য শলাকার উত্ত প্রান্তকে বলা হয় উত্তর-সম্পানী মেরু। কিন্তু সংক্ষেপ করার জনা শলাকার ঐ প্রান্তকে উত্তর মেবুই বলা হয়। তেমনি শলাকার অপর প্রান্তকে বলা হয় দক্ষিণ-সম্পানী মেরু। সংক্ষেপে তা দাঁড়িয়েছে দক্ষিণ মেরু।

চৌশ্বক মধ্যতল (Magnetic meridian plane):
কোনো স্থানের চৌশ্বক মধ্যতল বলতে ঐ স্থানের মধ্য
দিয়ে এবং পৃথিবীর চৌশ্বক উত্তর ও দক্ষিণ মেরর মধ্য
দিয়ে অভিকত এক কাল্পনিক অভিলম্ব তল বুঝায়। কোনো
স্থানে মুক্তভাবে (freely) ঝুলানো চুম্বকের অক্ষের ভিতর
দিয়ে অভিকত কাল্পনিক অভিলম্ব তল হবে ঐ স্থানের
চৌশ্বক মধ্যতল (চিত্র 4.20) ঐ তলের ওপর যদি
একটি রেখা কল্পনা করা যায় যা মেরুদ্বয় এবং ঐ
স্থানকে সংযুক্ত করে, তবে ঐ রেখাকে ঐ স্থানের
চৌশ্বক মধ্যরেশা (meridian line) বলে।

ভৌগোলিক মধ্যতল (Geographical meridian plane) : কোনো স্থানের ভৌগোলিক মধ্যতল বলতে ঐ স্থানের মধ্য দিয়ে এবং পৃথিবীর ভৌগোলিক উত্তর ও দক্ষিণ মেরর মধ্য দিয়ে অভিকত এক কাল্পনিক অভিলম্ব তলকে বুঝায়। ঐ তলের ওপর যদি একটি রেখা কল্পনা করা যায় যা ভৌগোলিক মেরুদ্বয়কে ও ঐ স্থানকে সংযুক্ত করে, তবে ঐ রেখাকে ঐ স্থানের ভৌগোলিক মধ্যরেখা বলে।

ভৌগোলিক অক্ষ ও ভৌগোলিক বিষুবরেশা : ভৌগোলিক উত্তর ও দক্ষিণ মেরুকে যুক্ত করে সরলরেখা কল্পনা করলে, তাকে ভৌগোলিক অক্ষ বলে। ভৌগোলিক অক্ষের কেন্দ্র দিয়ে অক্ষের অভিলম্ব রেখাকে বলা হয় ভৌগোলিক বিষুবরেশা।

চৌশ্বক অক্ষ ও চৌশ্বক বিষুবরেশা : চৌশ্বক উত্তর মেরু ও দক্ষিণ মেরুকে যুক্ত করে সরলরেখা করনা করলে, তাকে চৌশ্বক অক্ষ বলে। চৌশ্বক অক্ষের কেন্দ্র দিয়ে অক্ষের অভিলম্ব রেখাকে বলা হয় চৌশ্বক বিষুবরেখা।

4.17 পৃথিবী কর্তৃক চুম্বকন (Magnetisation by the earth) :

পূর্বে উল্লেখ করা হয়েছে পৃথিবী একটি বিরাট চুম্বকের নাায় ব্যবহার করে। এর স্বপক্ষে আরও একটি জোরালো প্রমাণ এই যে অন্যান্য চুম্বকের নাায় পৃথিবীও চুম্বকনে সক্ষম। অবশ্য এই চুম্বকন খুব ক্ষীণ। নরম লোহা, পারম্যালয়, মিউ-মেটাল প্রভৃতি বিশেষ ধরনের চৌম্বক-প্রবণ পদার্থ ছাড়া এটি প্রদর্শন করা সম্ভব নয়। এই ধরনের চৌম্বক পদার্থকে যদি চৌম্বক মধ্যতলে ভূপৃষ্ঠের সমান্তরালভাবে বা উল্লম্বভাবে কিছুদিন রাখা যায়

ও মারে মারে একট টোকা দেওয়া হয় এবে তারা ন্ধীণ চূমকে পরিণত হয়।

পৃথিখার চ্পকন শব্রির দৃষ্টান্ত নানা সাধারণ ঘটনার মধ্য দিয়ে মাথে মাথে আমাদের দৃষ্টিগোচর হয়।

যে সকল প্রাথর বরণা উত্তর-দক্ষিণ মুখ করে ছাদে আটকানো আছে তাদের বা উপ্পন্ন অবস্থায় রাখা

প্রশাধের রেলিং রা স্তম্ভ পরীক্ষা করলে ক্ষাণ চূষকত্ব ধরা পড়বে। পৃথিবীর উত্তর গোলার্থে উপ্পন্ন লোহা,

ইম্পাতের রেলিং ও স্তম্ভ পরীক্ষা করা ঘটে। জাহাজ নির্মাণের সময় ইম্পাতের প্রেটকে হাতুড়ি দিয়ে পেটাতে হয়

ও রিভেট করতে হয়। এই সময় পৃথিবীর চুম্বকপ্রের দর্ম প্রেটগুলি ক্ষাণ চূম্বকে পরিণত হয়। জাহাজ নির্মাণে

ঐ প্রেটগুলি বাবহার করলে জাহাজটি ক্ষাণ চূম্বকত্ব লাভ করবে। জাহাজের এই ক্ষাণ চূম্বকত্ব উপলক্ষা

করে জামানরা 'ম্যাগনেটিক মাইন' উদ্ভাবন করেছিল। জাহাজের ক্ষাণ চূম্বকত্ব এই মাইনকে সক্রিয় করে

তোলে এবং বিরাট বিস্ফোরণের সৃষ্টি করে জাহাজটিকে ধ্বংস করে।

4.48. ভূ-চুম্বকত্বের উপাদান বা মূলরাশি (Elements of earth magnetism) :

পৃথিবীর কোনো স্থানের ভূ-চুম্বকত্বের পরিমাণমূলক (quantitative) সঠিক ধারণার জন্য তিনটি মূল বিষয় জানা প্রয়োজন। এদের ভূ-চুম্বকত্বের উপাদান বা মূলরাশি বলে। এরা যথাক্রমে (1) বিনতি কোণ (angle of dip), (2) চুতি কোণ (angle of declination) ও (3) ভূ-চৌম্বক প্রাবল্যের অনুভূমিক উপাংশ (horizontal component of earth's magnetic intensity)। এখন এদের সম্বন্ধে একে আলোচনা করা হবে।

(1) বিনতি বা নতি কোণ (Angle of dip or inclination): কোনো অটোম্বক পদার্থ নির্মিত দশু—ধরা যাক, একটি পিতলের দশু নিয়ে তাকে তার ভারকেন্দ্র হতে সুতো দিয়ে ঝোলালে দশুটি সর্বদা অনুভূমিক অবস্থায় ঝুলবে [চিত্র 4.21 (ক)]। কিন্তু কোনো চুম্বক-শলাকাকে ভারকেন্দ্র হতে সুতো দিয়ে ঝোলালে তা পৃথিবীর সব জায়গায় অনুভূমিক অবস্থায় ঝুলবে না। দেখা যাবে, চুম্বক-শলাকার অক্ষ

কোনো নির্দিন্ট স্থানে অনুভূমিক রেখার সাথে একটু কাত হয়ে ঝুঁকে আছে [চিত্র 5.21 (খ)]। কারণ, চুম্বক-শলাকা পৃথিবীর চৌম্বক ক্ষেব্র বারা আকর্ষিত হয় এবং ঐ নির্দিন্ট স্থানে ভূ-চৌম্বক ক্ষেত্রের অভিমুখ অনুযায়ী নিজেকে স্থাপন করে। যদি কোনো ঝুলন্ত শলাকাকে ক্রমশ পৃথিবীর উত্তর গোলার্ধে নিয়ে যাওয়া হয় তবে দেখা যাবে, শলাকার উত্তরমেরু

ক্রমশ নীচের দিকে ঝুঁকছে। আবার দক্ষিণ গোলার্ধে নিয়ে গেলে দেখা যাবে দক্ষিণ মেরু নীচের দিকে ঝুঁকছে। কেবলমাত্র চৌম্বক বিষুবরেখায় শলাকা অনুভূমিক থাকবে।

ওপরের বিবরণ থেকে বোঝা যায় যে ভূ-চৌম্বক ক্ষেত্র সর্বদা ভূ-সমান্তরাল হবে—তার কোনো অর্থ নেই। ভূপ্ষেত্র বিভিন্ন বিন্দৃতে ভূ–চৌম্বক ক্ষেত্রের প্রাবলোর অভিমুখ সাধারণভাবে ভূ–সমান্তরাল হয় না।

সংজ্ঞা: কোনো স্থানে অভিলম্বতলে বাধাহীনভাবে ঝুলম্ভ চুম্বক-শলাকার বিলম্ব বিশুর (point of suspension) মধ্য দিয়ে অভিকত অনুভূমিক তলের সাথে চুম্বকশলাকার অক্ষ যে কোণ উৎপন্ন করে তাকে ঐ স্থানের বিনতি বা নতি কোণ বলা হয়।

কোনো স্থানের বিনতি কোণ জানা থাকলে ঐ স্থানের ভূ-চৌম্বক ক্ষেত্রের অভিমর্খ নির্ণয় করা যায়।

4 22 নং চিত্রে একটি জালকাবন্ধ (pivoted) চ্যুক্তললকে ক্রুম্পূর্ণ লো ললকেটি হ'ব ভাবকেছ দিয়ে গত অনুভূমিক অক্ষ সালেক্ষে বাধাইনভাবে উল্লয় তলে (vertical plane) ৯০ ৩০ ০বতে পাবে। ধরো, কোনো নির্দিট স্থানে চুম্বকললকা অনুভূমিক তলের সাথে ৪ এল উৎপন্ন করে স্থেব আছে। সংকা এ স্থানে বিনতি কোল বা নতি কোল ৪ : কোনো স্থানে চুম্বক ললকোবে অক্ষ অনুভূমিক বেখার সাথে মাল

গোলে সেখানকার বিনতি 0°; আবার কোনো স্থানে টৌম্বক শলাকার অক্ষ খাড়া উল্লম্ব হলে, সেখানকার বিনতি কোণ 90°।

উপরোপ্ত কীলকাবন্ধ অবস্থায় চুম্বকশলাকাকে
সাধারণভাবে বিনতি চক্র (dip circle) বলা হয়
চুম্বকশলাকার N- মেরু নীচের দিকে বাঁকে থাকেলে সেই
স্থানের বিনতি কোণ ধনায়ক বা পজিটিভ এবং S-মেরু নীচের দিকে বাঁকলে সেই স্থানের বিনতি কোণ ম্বণাম্বক বা নেগেটিভ ধরা হয়। উত্তর গোলার্বে বিনতি কোণ মোটামুটি ধনাম্বক এবং দক্ষিণ গোলার্বে ক্লাম্বক।

"কলকাতার বিনতি কোণ 30° N"—এই উত্তি বুঝায় যে, কলকাতায় কোনো চুম্বক শলাকাকে ভারকেন্দ্র হতে ঝোলালে তার উত্তর-মের নীচের দিকে গুঁকরে এবং চুম্বক শলাকার অক্ষ অনুভূমিক তলের সাথে 30° কোণ উৎপন্ন করবে। পৃথিধীর বিভিন্ন প্রধানে বিনতি-কোণ বিভিন্ন ; পৃথিবীর চৌম্বক মেরুভে বিনতি-কোণ 90° এবং চৌম্বক বিষ্বুব্রেখায় বিনতি কোণ 0°

- (2) চ্যুতি কোণ (Angle of declination): পূর্বে উল্লেখ করা হয়েছে, পথিবার চৌদ্ধক উত্তর্গমর্
 ও ভৌগোলিক উত্তরমের অথবা চৌদ্ধক দক্ষিণমের ও ভৌগোলিক দক্ষিণমের একই ভাষণায় অর্কম্পত নয়।
 তারা পরস্পর হতে কিছু দূরে অবস্থিত। ফলে পৃথিবার যে-কোনো স্থানে চৌদ্ধক মধ্যতল (magnetic meridian) এবং ভৌগোলিক মধ্যতল (geographical meridian) পরস্পর মিলে না যেতেও পারে।
 কোনো স্থানের চ্যুতিকোণ বলতে ঐ স্থানে ভৌগোলিক মধ্যতল ও চৌদ্ধক মধ্যতলের ভিতর যে কোণ উৎপন্ন হবে তা তংগ্র এবং বাধাহীন ভাবে কোলে বুঝাবে, কলকাতায় ঐ দুই মধ্যতলের ভিতর যে কোণ উৎপন্ন হবে তা তংগ্র এবং বাধাহীন ভাবে অনুভূমিকতলে ঘুরতে সক্ষম এইরূপ একটি চুদ্ধক-শলাকার উত্তরমের উত্ত কোণ উৎপন্ন করে ভৌগোলিক মধ্যরেখা হতে প্রদিকে সরে থাকবে। আবার দিলির চ্যুতি কোণ 2°W বললে বুঝাবে যে দিলিতে চুদ্ধকশলাকার উত্তরমের উত্ত কোণ করে ভৌগোলিক মধ্যরেখা হতে পশ্চিমদিক সরে থাকবে। সাধারণভাবে তাদের ৪°E অথবা ৪°W এইভাবে প্রকাশ করা হয়। যেস্থানে চৌদ্ধক ও ভৌগোলিক মধ্যতে সাথে মিলে যাবে, সেখানে চ্যুতি কোণ শূন্য।
- (3) ভূ-চৌস্বক প্রাবল্যের অনুভূমিক উপাংশ (Horizontal component of earth's magnetic field): বিনতি কোণ প্রসঞ্জো বলা হয়েছে, উল্লম্ব তলে ঘুরতে সক্ষম এরূপ একটি চুম্বক-শলাকা পৃথিবীর কোনো স্থানে অনুভূমিক রেখায় সাথে কোণ করে অবস্থান করে (চিত্র 4.22 দেখ)। এথেকে বোঝা যায়, ঐ স্থানে পৃথিবীর মোট চৌম্বক-প্রাবলা (total magnetic intensity) ঐ অভিমুখে ক্রিয়া করে। এই প্রাবল্যকে অনুভূমিক ও উল্লম্ব তলে বিভাজন করলে অনুভূমিক উপাংশকে বলা হয় ঐ স্থানের ভূ-চৌম্বক প্রাবল্যের অনুভূমিক উপাংশ।

সংজ্ঞা : কোনো স্থানে ভূ-চৌম্বক ক্ষেত্রের প্রাবলাকে চৌম্বক মধাতল বরণবর অনুভূমিক ও উল্লম্ব অংশে বিভাজন করলে, অনুভূমিক উপাংশকে অনুভূমিক প্রাবলা বলা হয়। বিভিন্ন স্থানে ভূ-টেম্বক প্রাবলোর অন্ভূমিক উপাংশের মান বিভিন্ন। চৌম্বক মের্দ্বয়ে এর মান সর্বনিম্ন (অর্থাৎ শূনা) এবং চৌম্বক বিষ্বরেখা বা নিরক্ষরেখায় সর্বোচ্চ। উল্লেখযোগ্য যেস্থানে বিনতি কোণ 45° সেইস্থানে উল্লম্ব উপাংশ ও অন্ভূমিক উপাংশ পরস্পরের সমান।

ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক ও উল্লম্ব উপাংশের মান :

4.23 চিত্রে ভৌগোলিক মধাতল এবং চৌম্বক মধাতল দেখানো হয়েছে। ঐ দুই তলের অন্তর্বতী কোণ δ ঐ স্থানের চ্যুতি কোণ। কোনো চুম্বকশলাকা যদি চৌম্বক মধাতলে থেকে অনুভূমিকের সাথে θ কোণ করে, তবে ঐ কোণ হবে ঐ স্থানের বিনতি কোণ। N— মেরু নীচের দিকে ঝুঁকে থাকলে ঐ বিনতি কোণ ধনাত্মক এবং S— মেরু নীচের দিকে ঝুঁকে থাকলে বিনতি কোণ ঋণাত্মক। তাছাড়া ঐ স্থানের ভূ—চৌম্বক

ক্ষেত্রের মোট প্রাবল্য I শলাকার অক্ষরবাবর জিয়া করবে। এখন, ঐ প্রাবল্যকে অনুভূমিক এবং উল্লম্ব তলে বিভাজনকরলে আমরা অনুভূমিক উপাংশ স্বরূপ পাই $H = I\cos\theta$ এবং উল্লম্ব উপাংশ স্বরূপ পাই $V = I\sin\theta$ । প্রথমটিকে বলা হয় ভূ-চৌম্বক প্রাবল্যের অনুভূমিক উপাংশ এবং দ্বিতীয়টিকে উল্লম্ব উপাংশ। এইভাবে একই চিত্রে তিনটি উপাদানকে প্রদর্শন করানো যায়। সূত্রাং ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ $H = I\cos\theta$. এবং ভূ-চৌম্বক ক্ষেত্রের উল্লম্ব উপাংশ $V = I\sin\theta$.

$$\therefore \frac{V}{H} = \frac{I \cdot \sin \theta}{I \cdot \cos \theta} = \tan \theta \quad ;$$

জাবার, $H^2 + V^2 = I^2 (\sin^2 \theta + \cos^2 \theta) = I^2$: $I = \sqrt{H^2 + V^2}$

6.23 নং চিত্র হতে বোঝা যায় যে H, θ এবং δ এই তিনটি রাশির মান জানা থাকলে, প্রাবল্য I- এর মান ও অভিমুখ সাধারণভাবে নির্ণয় করা যায়।

☐ EXAMPLES ☐

 $m{\Omega}$ কোনো স্থানে বিনতি কোণ 45° এবং ভূ-ঢৌম্বক ক্ষেত্রের মোট প্রাবল্য $5 imes 10^{-3} \, \mathrm{T}$ । এ স্থানে ভূ ঢৌম্বক ক্ষেত্রের অনুভূমিক ও উল্লম্ম উপাংশ কত ?

উঃ।
$$\frac{V}{H}$$
 - $\tan\theta$ - $\tan 45^\circ$ - 1 ; কাজেই $V=H$ আবার, $I=\sqrt{H^2+V^2}=\sqrt{2}.H$.: $5\times 10^{-3}=\sqrt{2}.H$ আবার, $H=\frac{5\times 10^{-3}}{\sqrt{2}}=3.54\times 10^{-3}\,\mathrm{T}$ । আবার $V=H=3.54\times 10^{-3}\,\mathrm{T}$

2 A স্থানে ভূ চৌম্বক ক্ষেত্রের মোট প্রাবল্য $5 \times 10^{-3} \, \mathrm{T}$ এবং বিনতি কোণ 30 ; B স্থানে মোট প্রাবল্য $5.5 \times 10^{-3} \, \mathrm{T}$ এবং বিনতি কোণ 45° ; Δ দুইস্থানে ভূ চৌম্বক ক্ষেত্রের অনুভূমিক প্রাবল্যের ভূলনা করো।

উ:। মনে করেণ, H_A , H_B এবং I_A , I_B মথাক্রমে A এবং B স্থাকে ঘন্তুমিক প্রাবলন ও স্থাবলন। স্থান্সারে, $H_A=I_A\cos\theta_1$ এবং $H_B=I_B\cos\theta_2$.

$$\therefore \frac{H_A}{H_B} = \frac{I_A \cdot \cos \theta_1}{I_B \cdot \cos \theta_2} = \frac{5 \times 10^{-3} \cos 30^{\circ}}{5.5 \times 10^{-3} \cos 45} = \frac{5 \times \sqrt{3} \times \sqrt{2}}{2 \times 5.5 \times 1} : \frac{11}{10} \text{ (2BT)} :$$

কোনো এক স্থানে ভূ চৌশ্বক ক্ষেত্রের অনুভূমিক উপাংশ 0.4212 Oe, বিনতি কোণ
 70°এবং চ্যুতি কোনো 15°। ঐ স্থানে ভৌগোলিক মধ্যতলে, ভূ চৌশ্বক ক্ষেত্রের অনুভূমিক
উপাংশ কত হবে ?

উঃ। 6.23 নং চিত্র দেখো। এখানে $H=0.4212~{
m Oe}; \delta=15^\circ$ এবং $\theta=70$.

্রেটালেক মধ্যতল ভূ–চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ $H'=H.\cos\delta=0.4212 imes \cos 15^\circ$ =0.4212 imes 0.9659=0.4068 Oe.

ভূ-চুদ্দক ক্ষেত্রের উল্লম্ব উপাংশ মান চৌম্বক মধ্যতলে এবং ভৌগোলিক মধ্যতলে একই হবে।

স্তরাং নির্পেয় উল্লম্ব উপাংশের V'=V=H. $\tan\theta=0.4214\times\tan70^\circ=0.4214\times2.7475=$ 1.1578 Oe.

3.5g ভরের একটি চৌম্বক-শলাকার স্রামক 2000 cgs একক। তাকে কোন বিন্দুতে ঝোলালে তা চৌম্বক মধ্যতলে অনুভূমিক অবস্থায় থাকবে ? ঐ স্থানে ভূচৌম্বক ক্ষেত্রের প্রাবল্য 0.32 Oe ও বিনতি কোণ 45°N [g = 980 cm/s²]

উঃ। এখানে $H=0.32~{
m Oe}$ এবং বিনতি কোণ $\theta=45^\circ$ এখন, $V=H~{
m tan}~\theta=0.32\times{
m tan}~45^\circ=0.32~{
m Oe}.$ থকো, শলাকার দৈর্ঘ্য =2l এবং শলাকার ভারকেন্দ্র G হতে N-মেবুর দিকে x দূরত্বে শলাকাকে ঝোলালে শলাকা

তান্ত্যিক হল [চিত্র 4.24] ভাবকেন্দ্র হতে শলাকার ওজন W= $mg = 3.5 \times 980$ dyne ক্রিয়া করে: তাছাড়া দুই মেরুতে mV বল খাড়া নীচু নিকে এবং উচু দিকে
হিন্যা করে। শলাকা সাম্যাবস্থায় থাকায় যে-কোনো বিন্দু (ধরে: O বিন্দু) সংপ্রেক্ত বস্ত্রালীর করে। অভএব, mV(l-x) + mV(l+x) - Wx = 0 অথবা 2mVl = Wx অথবা MV= Wx [M = টৌস্বক ভামক = 2ml]

$$x = \frac{MV}{W} = \frac{2000 \times 0.32}{3.5 \times 980} = 0.18 \text{ cm}.$$

তি একটি চৌম্বক শলাকার চৌম্বক অক্ষ যে-কোনো উন্নম্ব তলে অনুভূমিক রেখা থেকে δ_1 কোণে নত থাকে এবং প্রথম উন্নম্ব তলের লম্ব উন্নম্ব তলে δ_2 কোণে নত থাকে। প্রমাণ করো δ প্রকৃত বিনতি কোণ হলে, $\cot^2\delta = \cot^2\delta_1 + \cot^2\delta_2$ [Jt. Entrance 1984]

উঃ। প্রথম উল্লম্ব তলে OC চৌম্বক শলাকার অক্ষ [চিত্র 6.25]। তা P_1Q_1 অনুভূমিক রেখা হতে δ_1 কেলে নত - এর্থাৎ ঐ স্থানে আপাত বিনতি কোণ = δ_1 ; এই অবস্থায় OC ভূ-চৌম্বক ক্ষেত্রের নেও প্রাবালার দিক নির্দেশ করছে। OA হবে ভূ-চৌম্বক ক্ষেত্রের উল্লম্ব উপাংশ। এটা দুই উল্লম্ব ভূনত অপ্রিবর্তিত থাকরে।

ংখন, () $B=H_1:$ ছ-এটাস্ক ক্ষেত্ৰের অনুভূমিক উপাংশ নিলে, লেখা যায় $rac{V}{H_1}= an\delta_1\dots$ (i)

বিভিন্ন স্থানে ভূ-চৌম্বক উপাদানের মানঃ

স্থান	ভূ-চৌম্বক প্রাবল্যের অনুভূমিক উপাংশ		চ্যুতি কোণ	বিনতি কোণ		
কলকাতা	0.372	Oersted	44'	E	30°	N
मिद्धि	0.340	**	2°2′	E	40°56′	99
মুম্বই	0.365	,,	41′	E	25°	11
চেন্নাই	0.369	,,	10′	W	34.37	,,
লন্তন	0.180	,,	14°18′	W	66°64´	7.7

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. একটি ইম্পাতের তারকে চুম্বকিত করে L অক্ষরের মত বাঁকানো হল। তারের দুই বাহুর দৈর্ঘ্য 3 cm এবং 4 cm হলে এবং তারের চৌম্বক মেরুশক্তির 30 একক হলে, তার চৌম্বক ভ্রামক কত হবে ?
- তারের দুই বাহু পরস্পরের সাথে সমাকোণে আছে বলে দুই মেরুর অন্তর্বতী দূরত্ব = $\sqrt{{(3)}^2 + {(4)}^2} = 5 \, \mathrm{cm}$.

অতএব, চৌদকভামক = চুম্বকের মেরুশন্তি × মেরুদ্বয়ের অন্তর্বতী দূরত্ব = 30 × 5 = 150 একক।

- 2. একটি দণ্ড চুমকের কাছাকাছি জায়গায় বলরেখাগুলি বেশ ঘনবিন্যন্ত হয় কিছু অপেকাকৃত দূরবর্তী স্থানে তত হয় না ; এর কারণ কী ?
- পৃথিবী নিজে একটি বিরাট চৃষকের ন্যায় ব্যবহার করে এবং কোনো একটি সীমিত স্থানে ভূ-চৌম্বক ক্ষেত্র
 সমমানয়ুত্ত (uniform) হয়। ঐ ক্ষেত্রের বলরেখা টানলে, সর্বদা সমাত্তরাল বলরেখা পাওয়া যাবে;
 এখন ভূপঠের কোথাও একটি দশু-চৃম্বক রাখলে, দশু-চৃম্বক সেখানে তার নিজম্ব বলরেখাও

সূষ্টি করবে। দক্তের কাছাকাতি ভারণা ভারণ করবেয়া এবং ৩- ১৯৯০ ক্ষরের বলবেয়া একসক। আল ঘর্মবিনায় বলরেয়া উৎপদ্ধ করে। এখন দক্ত হতে যত দুরে যাত্রা যায় ৩৩ দক্তের ক্লেক্সার সংখ্যাত কমে যায় কিন্তু ৮- ১৯৯০ ক্লেক্সার কলবেয়া প্রশান কলবেয়ার মার্থিত কমে যায় কিন্তু ৮- ১৯৯০ ক্লেক্সার কলবেয়ার সংখ্যাত কমে যায় কিন্তু ৮- ১৯৯০ ক্লেক্সার কলবেয়ার মার্থিত কমে যায় কিন্তু ৮- ১৯৯০ ক্লেক্সার কর্মবার মার্থিত ক্লেক্সার মার্থিত ক্লেক্সার মার্থিত ক্লেক্সার মার্থিত ক্লেক্সার মার্থিত ক্লেক্সার মার্থিত ক্লেক্সার মার্থিত কলবেয়ার মার্থিত ক্লেক্সার মার্থিত কলবেয়ার মা

- 3. চৌশক দিমেরু (dipole) কাকে বলে ? এর আমক কত ?
- মথন m মের্শন্তির একটি উত্তর মেরু এবং সমর্শন্তর
 একটি দক্ষিণ মেরু সামানা ভফাত রেখে বসালে হয় তথান
 তাদের চৌম্বক দিমেরু বলে। মেরুদ্ধরের পারক্পরিক দরত্ব
 d হলে, দিমেরু ভামক = m.d. এই ভামকেব অভিমৃত্য
 দক্ষিণ মেরু হতে উত্তর মেরুর দিকে।

একটি ক্ষুদ্র বৃত্তাকার তারের লুপে যদি। তড়িৎপ্রবাহ যায় এবং লুপের ক্ষেত্রফল যদি A হয় তবে ঐ তড়িৎবাহী লুপকে একটি চৌম্বক দ্বিমের দ্বারা প্রতিস্থাপন করা যায় যার ভাষক = md = iA [চিত্র 4.26]। ঐ দ্বিমেরটি লুপের অক্ষ বরাবর বসানো আছে মনে করতে হবে।

- প্রায়ী চুয়ক নির্মাণের জন্য ইম্পাত ও তড়িং চুয়ক নির্মাণের জন্য কাঁচা লোহা ব্যবহায় কয়া
 হয় ? কারণ কী ?
- স্থায়ী চুম্বক নির্মাণ করতে হলে তার উপাদান এরপ হওয়া প্রয়োজন য়ে তাকে একবার চুম্বকিত করলে
 সে তার চুম্বকত্ব দীর্ঘদিন বজায় রাখবে অর্থাৎ ঐ উপাদানের ধারণক্ষমতা ও সহনশীলতা উচ্চ
 মাত্রার হওয়া প্রয়োজন। দেখা গেছে যে ইম্পাতের ধারণক্ষমতা ও সহনশীলতা উচ্চমানের । গাই
 ইম্পাত দ্বারা স্থায়ী চুম্বক নির্মাণ করা হয়।

তড়িৎ চুম্বক নির্মাণ করতে হলে এরুপ উপাদান নির্বাচন করতে হবে যাকে চুম্বকিত করলে শক্তিশালী চুমকে পরিণত হয় কিন্তু খুব সহজেই ঐ চুম্বকত্ব লোপ করা যায়। তড়িৎ চুম্বককে বার বার চুম্বকিত করতে হয় বলে তার উপাদানের উপরোক্ত ধর্ম প্রয়োজন। সংক্ষেপে বলা যায় যে উপাদানের ধারণক্ষমতা ও সহনশীলতা নিম্নমানের কিন্তু টোম্বক প্রবণতা ও ভেদাতা উচ্চমানের হওয়া প্রয়োজন। পরীক্ষা করে দেখা গোছে যে কাঁচা লোহা উপরোক্ত ধর্মাবলির অধিকারী। তাই তড়িৎ চুম্বক নির্মাণে কাঁচা লোহা ব্যবহৃত হয়।

- তোমাকে একটি ছোটো ধাতব দশু দেওয়া হল। দশুটি পরাচৌত্বক কিংবা অয়শ্চৌত্বক
 কিংবা তিরশ্চৌত্বক তা কীভাবে পরীক্ষা করবে ?
- দশুকে সুতো দিয়ে অনুভূমিকভাবে একটি শক্তিশালী তড়িৎ চুম্বকের দুই মের্র মাঝখানে ঝলাও। এবার
 তড়িৎ চুম্বকে তড়িৎ প্রবাহ পাঠালে দশুটি প্রবল চৌম্বকক্ষেত্রে পড়বে। তখন যদি ধীরে ধীরে ঘুরে তড়িৎ
 চুম্বকের N S বরাবর নিজেকে স্থাপন করে, তবে তা পরাচৌম্বক পদার্থ। যদি দশুটি দুত ঘুরে N
 S বরাবর নিজেকে স্থাপন করে, তবে তা অয়ক্টোম্বক পদার্থ। আর যদি দশুটি ঘুরে N S
 অভিমুখের সঙ্গো সমকোণে নিজেকে স্থাপন করে, তবে তা তিরক্টোম্বক পদার্থ।
- 6. একটি কম্পাস কাঁটাকে এক টুকরো কর্কের ওপর রেখে কর্কটিকে উন্তর-গোলার্ধে হদের জলের ওপর ভাসানো হল। কর্কসহ কম্পাস কাঁটা কি উন্তর দিকে চলতে থাকবে ?
- কম্পাস কাঁটা আকারে খুব ক্ষুদ্র। এ অল্প পরিসরে ভূ-টৌম্বক ক্ষেত্রের প্রাবল্য সমমানের। তাছাড়া
 কম্পাস-কাঁটার দুই মেরুর শক্তি সমান। এই সকল কারণে কম্পাস কাঁটার উত্তর-মেরু উত্তরমুখী

 যে-বল অনুভব করবে দক্ষিণ-মেরুও একই বল অনুভব করবে কিছু বিপরীত দিকে। দুটি সমান
 বল একই রেখা বরাবর বিপরীত দিকে ক্রিয়া করলে লব্ধি বল হয় শূন্য। কম্পাস কাঁটার ওপর

কোনো লব্ধি বল ক্রিয়া না করায় তার কোনো চলন হবে না ; তা স্থির অবস্থাতেই ভাসতে থাকবে।

- 7. অধিকাংশ কেত্রে আমাদের ভূ-চৌশ্বক প্রাবল্যের অনুভূমিক উপাংশ জানান প্রয়োজন হয় ; উল্লখ্ন উপাংশের বিশেষ প্রয়োজন হয় না। এর কারণ কী ?
- কোনো চৃষক-শলাকাকে যদি এর্পভাবে আলম্বিত (suspended) রাখা যায় য়ে তা অনুভূমিক ও উল্লয়্ব—দুই তলেই স্বাধীনভাবে ঘোরাফেরা করতে পারে, তাহলে ঐ স্থানের ভূ-টোম্বক ক্ষেত্রের উল্লয়্ব ও অনুভূমিক—উভয় উপাংশই শলাকার ওপর ক্রিয়া করে বিক্ষেপ ঘটাবে। কিন্তু গবেষণাগারে আমরা সাধারণত য়ে-সকল চুম্বক-শলাকা ব্যবহার করি, তাদের এর্পভাবে কীলকাকর্ম (pivoted) করা থাকে য়ে তারা কেবলমাত্র অনুভূমিক তলে ঘোরাফেরা করে—উল্লম্বতলে করে না। ফলে পৃথিবীর টৌম্বকপ্রাবল্যের অনুভূমিক উপাংশই তার ওপর ক্রিয়া করে বিক্ষেপ ঘটায়—উল্লম্ব উপাংশের কোনো প্রভাব থাকে না। তাই, ব্যাবহারিক ক্ষেত্রে আমাদের কেবল অনুভূমিক উপাংশের মান জানা প্রয়োজন হয়।
- 8. তড়িঘাহী লুপ-কে চৌশ্বক খিমেরু বলে গণ্য করার বৃত্তি কী?
- আমরা জানি যে B টৌম্বকক্ষেত্রে রাখা একটি তড়িদ্বাহী লুপ যে টর্ক অনুভব করে তা τ =
 B iA. sin θ যেখানে θ = লুপের তলের অভিলম্ব এবং টৌম্বক ক্ষেত্রের অভিমুখের অন্তর্বতী কোণ।
 আবার B টৌম্বক ক্ষেত্রে রাখা একটি টৌম্বক দ্বিমেরু যে টর্ক অনুভব করে, তা τ = MB sinθ
 টর্কের এই দুটি সম্পর্ক তুলনা করলে পাই তড়িদ্বাহী লুপ একটি টৌম্বক দ্বিমেরুর সমতুল্য। তাছাড়া তড়িদ্বাহী
 লুপের দরুন টৌম্বক ক্ষেত্রের রাশিমালা টৌম্বক দ্বিমেরুর দরুন টৌম্বক ক্ষেত্রের রাশিমালার সদৃশা।
- 9. সুষম চৌম্বক ক্ষেত্রে রাখা একটি চৌম্বক দ্বিমেরুর ওপর কার্যরত টর্কের রাশিমালা কী?
- ৪ নং প্রশ্ন দেখো।
- 10. ভূপুষ্ঠের দু-জায়গায় চৌস্বক বিনতি 0° এবং 90°। ঐ দু-জায়গার নাম উল্লেখ করো।
- চৌম্বক বিষুব রেখায় বিনতি কোণ 0° এবং চৌম্বক মেরুতে 90°।
- 11. কোনো এক বিন্দুতে চৌম্বক ক্ষেত্রের অন্তিহ থাকলে, তা তড়িংবাহী পরিবাহী সৃষ্ট না ভূ-চুম্বকত্বের জন্য সৃষ্ট কী করে বোঝা যাবে ?
- পর্যবেক্ষণ বিন্দুতে একটি ছোটো কম্পাস কাঁটা (compass needle) রাখলে কাঁটা যদি উত্তর-দক্ষিণ
 মুখী হয়ে স্থির হয়, তবে বুঝতে হবে চৌম্বক ক্ষেত্র ভূ-চুম্বকত্বের জন্য সৃষ্টি হয়েছে : আর যদি
 কম্পাস কাঁটা উত্তর-দক্ষিণ দিক্ ছাড়া অন্য য়ে-কোনো দিক নির্দেশ করে স্থির হয় তবে বুঝতে হবে
 চৌম্বক ক্ষেত্র তড়িৎবাহী পরিবাহী দ্বারা সৃষ্টি হয়েছে। পরিবাহীর তড়িৎ প্রবাহ বন্ধ করে দিলে কাঁটা
 আবার উত্তর-দক্ষিণ দিকে মুখ করে স্থির হয়ে।
- 12. (i) এমন একটি পদার্থের নাম করো যার চৌত্বক ভেদ্যতা ঋণাস্থক। (ii) এমন একটি পদার্থের নাম করো যার চৌত্বক প্রাহিতা ঋণাস্থক।
- (i) কোনো পদার্থেরই চৌম্বক ভেদ্যতা ঋণাত্মক হয় না। (ii) তিরচৌম্বক পদার্থের চৌম্বক গ্রাহিতা ঋণাত্মক।
- 13. নিম্নলিখিত পদার্থগুলির মধ্যে ক্ষেত্র $\stackrel{\rightarrow}{B}$ প্রবলতর না ক্ষেত্র $\stackrel{\rightarrow}{H}$ প্রবলতর $^{\circ}$ তারন্দেটাম্বক (খ) পরা চৌম্বক (গ) তিরন্দেটাম্বক $^{\circ}$
- ullet (a) অয়ান্টোম্বক পদার্থে B>>H (b) পরাচৌম্বক পদার্থে B>H (c) ভিরন্টোম্বক পদার্থে B< H.

্ প্রশাবলি

রচনগুলক প্রথ

- 1. क्रिक विराद काल वाल १ टकी क्रिक विरादांद क्रिक क्रिक क्रिक वाला मामानामा । शहर वाला वाल वाल वर ওপর য়ে টক কিয়া করে ভাব বশিমালা নিশ্য করে। এগোকে ট্রাম্বক ছিয়ের দামাকর সংবাং দাভ
- 2. टाहाजाहरू अन्यायाह (अपिनाक तकल कार वकी देलकोंन वहलाए अन्याय काव देलकोंनव जिसके विवाद ত্রামকের একটি রাশিমালা নির্ণয় করো।
- 3. চৌদ্ধক দ্বিয়েরুর জনা ।। প্রাক্তিশত বিশ্বতে এবং ।।। চৃদ্ধকের লাম দ্বিশুভাকর ওপণ বিশ্বতে প্রীশ্বক প্রাব্লোর রাশিমালা মির্ণয় করো এই বিন্দু দৃটি চুদ্ধকেব কেন্দ্র গোকে সমদবলতী হলে এই প্রাবলা দৃটিব মানেব অনুপাত কন্ত গ
- 4. চৌসক বলরেখা বলতে কী বোঝা চিমক বলরেখার মুখা ধর্মপুলি লেখো।
- চুম্বকটের আগরিক তথ্ সংক্রেপে বর্ণনা করে। ঘর্ষণভাত চুম্বকত্ব এই তত্ত্ব ধারা কী নাবে বাংখা করবে।
- 6. নির্মালখিত বিষমপুলি সমূদের যা ভান লোকা ।।। ভালতা ।।।। প্রীপক প্রবাহা ।।।। গ্রাবাক্ষণতা ।।।। সহলাজীলতা।
- 7. অয়ন্টোম্বক, পরাটোম্বক ও তিরন্টোম্বক পদার্থের ভিতর ভুক্তামূলক আলোচনা করে। একটি অয়ন্টোম্বক পদার্থ কখন পরাচৌশ্বক পদার্ঘে পরিণত হয় ?
- 8. পৃথিনী একটি বিরাট চুম্বক এটা বিশ্বাস করবাব পক্তে যুক্ত কি ০ পৃথিনীর চৌম্বক অঞ্চীয় মেরু এবং নতি মেরুর ভিতর
- 9. পৃথিবীর চৌদ্ধক কেরের চুদ্ধকীয় উপাদানণুলির নাম করে। ও বাংখা দাও।
- 10. কোনও স্থানের বিনতি ও চ্যুতির সংজ্ঞা লেখো।
- 11. ভূ-চুম্বকত্ত্বের তিনটি উপাদান কি কি ? একই চিত্রে ঐ তিনটি উপাদানকে কীভাবে দেখানো যায় ? ভূ- চৌম্বক ক্ষেত্রের প্রকৃতি বর্ণনা করো।

সংক্রিপ্ত উত্তরের প্রস

- দেখাও যে : তড়িছাইী এবং A ক্ষেত্ৰফল যুক্ত একটি লুপ একটি টেল্ছক ছিমেনুর সমতুলা এবং তার আমক M = iAI
- 2. ট্যানজেন্ট গ্যালভ্যানোমিটার কী ? এই যব্ত্তের ঐ নাম কেন ? ট্যানজেন্ট গ্যালভ্যানোমিটারর সাহায়ে পরীক্ষা করার সময় গ্যালভানোমটার বিক্ষেপকে 45°-র কাছাকাছি রাখা হয় কেন?
- 3. একটি টানজেন্ট গালেভ্যানোমিটারে (ক) কুঙলীর তল চৌম্বক মধারেখায় না থাকলে (খ) কুঙলী উন্নয়ৎলের না থাকলে এবং (iii) চম্বক শলাকা ছোটো না হলে কী হবে ব্যাখ্যা করো।
- এক মেরু বিশিষ্ট চয়য়ক সৃষ্টি করা সম্ভব নয় এর কারণ কী?
- कूती विन्नू वलाए की त्वाब ? लाहाव क्ती विन्नू 770°C वााचा करता?
- $6.\,$ A এবং B দুটি বস্তুর আপেক্ষিক ভেদাতা যথাক্রমে 1 থেকে কিছু বেশি এবং কিছু কম। এ থেকে বন্ধু দুটির চৌম্বক ধর্ম সম্বন্ধে কী জানা যায়? A এবং B কি ধরনের চৌম্বক পদার্থের অন্তর্গত?
- 7. কোনো তীব্র স্থম চৌস্বক ক্ষেত্রে (1) পরাচৌম্বক পদার্থের এবং (ii) তিরন্দৌম্বক পদার্থের গোলক স্থাপন করলে বলরেখাসমূহের বিন্যাস কী রকম হবে দেখাও।

অতিসংক্ষিপ্ত উত্তরের প্রশ

- 1. जानत्वण मुख की ?
- 2. কলিং রেলের তড়িৎচুস্বকটি ইম্পাতের তৈরি করলে অসুবিধা কি ?
- 3. কোন কোন পরমাণ না আয়নে পরাচৌদ্বকত্ব নেই ? উদাহরণ দাও। সিংকেত: যে সকল প্রমাণ বা আয়নে খোলকগৃলি (shell) সংপ্ত – অর্থাৎ, কোনো ভ্যালেক ইলেকট্রন নেই—তাদের পরাচৌদ্দকত্ব থাকে না। উদাহরণ, He, Ne প্রাভৃতি পরমাণু এবং Na + Cl 1 প্রভৃতি আয়ন।
- 4. চৌম্বক বিমের প্রামকের S.I. একক কি ?
- 5. পৃথিবীরক চৌম্বক মেবতে নতি কোণ কত ?
- 6. বিচ্ছিন্ন একক ট্রেম্বক মেবুর অস্থ্রিত্ব কি সম্বর ?
- একটি লোহার পেরেক চৃদ্ধক দন্ত দ্বারা আকৃষ্ট হয়। পেরেকের গতিশান্তির উৎস কি ?
- 8. ভৃ-চৌমকত্বের উত্তর বা দক্ষিণ মেণুর ঠিক উপরে একটি কম্পাস রাখলে তার অভিমুখ কি হবে ?
- 9. বিনতি কোণ কাকে বলে ?
- 10. পৃথিবীর কোন স্থানে পৃথিবীর চৌম্বক প্রাবলের উল্লম্ব উপাংশং শুন্য হবে ? [Hints: বিষুবরেখা]
- 11. চৌদ্বক বিমেরু বামক কোন্ অভিমুখে ক্রিয়া করে ?

(A) নির্ভুল উত্তরটি √চিহ্নিত করোঃ

[i] চৌম্বক বলরেখাগুলি

(A) অসীম দুরাত্ব ছেদ করে

(A) ভৌগোলিক উত্তর মেরু

12. পৰাচৌদ্ধক পদাৰ্থকৈ কি অয়ন্দৌদ্ধক পদাৰ্থে পৰিণত কৰা যায় ?

■ বহুসুৰী পছলের প্ৰশ্ন [Multiple choice type (MCQ)]

	(C) চ্ছকের অভান্তরে ছেদ করে (D) উদাসীন বিন্দুতে ছেদ করে।
[11]	একটি দত চুমকের মধ্য বিষ্ণু থেকে 10 cm এবং 20 cm দূরে চৌম্বক প্রাবলোর অনুপাত 18:1; দড়ের চৌমক
	(A) 24.9 cm (B) 12.65 cm (C) 29.3 cm (D) 22.65 cm
[iii]	M চৌম্বক ভ্রামকবৃত্ত একটি দন্ত চুম্বককে সমান দুভাগে ভাগ করা হল। প্রত্যেক ভাগের চৌম্বক ভ্রামক হবে
	(A) M (B) 2M (C) M/2 (D) 呼用 (
[iv]	নির্মালখিত চৌম্বক পদার্থগুলির ভিতর কোনটির সাহায্যে স্থায়ী চুম্বক তৈরি করা হয় ?
	(A) তিরন্টোম্বক (B) অরন্টোম্বক (C) পরাটোম্বক (D) নরম লোহা।
[v]	কোনো স্থানে বিনতি কোন 60° । সেখানে ভূচৌম্বক ক্ষেত্রের অনুভূমিক ও উল্লম্ব উপাংশ যথাক্রমে H এবং V হলে।
	(A) $V = H$ (B) $V = \sqrt{3}H$ (C) $H = \sqrt{3}V$ (D) $V = \frac{\sqrt{3}}{2}H$.
(vi)	চৌষক ক্ষেত্রে তিরশ্রেম্বরু পদার্থকে ঝুলিয়ে দিলে
	(A) তা চৌম্বকক্ষেত্রের দুর্বলতর অংশ থেকে প্রবলতর অংশের দিকে ঘূরে যায়
	(B) চৌম্বকক্ষেত্র দারা প্রভাবিত হয় না
	(C) প্রবলতর অংশ থেকে দুর্বলতর অংশের দিকে ঘুরে যায়
	(D) চৌষক ক্ষেত্রের সঞ্চো অভিলম্বভাবে স্থাপিত করে।
[vii]	সূবেদী চৌম্বক যন্ত্রকে বহিরাগত চৌম্বক ক্ষেত্র থেকে আড়াল করতে হলে যন্ত্রকে
	(A) সেগুন কাঠের বান্ধে রাখা উচিত।
	(B) প্লাণ্টিকের বান্সে রাখা উচিত।
	(C) উচ্চ ভেদত্যতা যুক্ত নরম লোহার বাজে রাখা উচিত।
	(D) উচ্চ পরিবাহিতার ধাতব বাজে রাখা উচিত।
[viii]	পরাচৌম্বক পদার্থের চৌম্বক ভেদ্যতা এবং বায়ুর চৌম্বক ভেদ্যতার অনুপাত
	(A) 1-এর সামান্য বেশী।
	(B) 1-এর সামান্য কম
	(C) 1-এর সমান।
	(D) 1-এর অনেক বেশী।
(ix)	অচুস্বকিত পদার্থের একটি টুকরোকে শক্তিশালী চুম্বকের কাছে আনলে পদার্থটি বিকর্ষিত হয়ে যায়। পদার্থটি
	(A) পরাটোম্বক (B) অয়ন্টোম্বক (C) আটোম্বক (D) তিরন্টোম্বক
[x]	7 cm বাাস এবং 24 পাকযুত্ত একটি বৃত্তাকার কুভলীতে 0.75A প্রবাহ যাচ্চে। কুভলীর চৌম্বক স্রামক
	(A) $6.9 \times 10^{-2} \text{ Am}^2$ (B) $2.3 \times 10^{-2} \text{ Am}^2$
6 13	(C) 10^{-3} Am ² (D) 10^{-2} Am ²
[xr]	M চৌদ্বক স্রামক বিশিষ্ট L দৈর্ঘ্যের কোন চুম্বকিত তারকে অর্ধবৃত্তাকারে বাঁকালে তার চৌশ্বক স্রামক হবে।
	(A) πM (B) $\frac{\pi}{M}$ (C) $\frac{2M}{\pi}$ (D) $\frac{3M}{\pi}$.
[xii]	যে স্থানে ভূচৌম্বক ক্ষেত্রের উল্লম্ব উপাংশের মান শৃন্য সেম্থানের বিনতি ক্লোণ
	(A) 45° (B) 90° (C) 60° (D) 0.
[xiii]	M চৌম্বক্রামক্যুস্ত কোন দন্ত চুম্বককে Η সুষম চৌম্বকক্ষেত্রের সকো θ কোণে স্থাপিত করা জন্য প্রয়োজনীয়
	ঘশের ভ্রামক
	(A) MH (1 - cos θ) (B) MH sin θ (C) MH cos θ (D) MH tan θ .
[xiv]	কোন স্থানে ভূ-চৌম্বক ক্ষেত্রের উ ন্নয় উপাংশ শূন্য ?

(B) চৌদক বিব্ৰাক্তথা

(B) কখনই ছেদ করে না

(C) ভূ চৌষক মেৰু	(D) 45° भाषारता।	
[xv] ভূটোশ্বক ক্ষেত্রর অনুভূমিক উলাইলের দর্ন টৌ		
(A) च्यू अर अभाउताम	(B) चैनवृष्यकार	
(C) এককেন্ত্ৰিক বৃত্ত	(D) ** CP(1)	•
[xvi] 2 cm দীর্ঘ একটি দত চুম্বকের আক্ষেব অভিকল্পন	गर्व कवः भग्छव पृष्टे व्यक्ति वछ ।	ब्राइक प्र कारा, 37 में ब्राइक में हुए , याने
A এবং B নেওয়া চল: A এবং B বিন্দৃতে ঠে	विक किलाव खनुनार	
(A) 1:9 (B) 2:9 (C)	27:1 D) 9:1.	
$egin{array}{c} egin{array}{c} egin{array$	একটি ক্ৰীম্বক বিষেক্ স্থালিত ব	गरक विद्यावृद्ध 180. ह्याबाह्य
(A) MB · · · (B) 2MB · · · (C)	-	
[xvIII] এক স্থানে মতি কোণ 30° এবং ভূটোছত বে	দ্বর অনুভূমিক উপাংশ 0.5 T	ভূচৌশ্বক ক্ষেত্ৰের মেটি প্রাদানা
(A) √3T (B) 1T (C)		
(xix) সকল স্থানেই ভূচৌদ্বক ক্ষেত্রের অনুভূমিক উপা	ংশ পাওয়া গোলেও ব্যতিক্রম হল	
(A) ভূচৌম্বক বিবৃব রেখা	(B) ভূচৌম্বক মের্ (D) 90° অক্ষাংশে।	
(C) 60° जाकाश्राम	(D) 90° 可等技術 (
[XX] তড়িংচুত্বক নির্মাণের সর্বোৎকৃষ্ট উপাদান পদার্থ I	ল	
(A) Resetting (D) Settlet (C) (C)	গ্রহা (D) জ্যাল্মিনিরাম।	
[wwi] একটি 10 cm লম্বা চম্বকের মের্শবি 10 এক	ক। চুম্বকটিকে একটি সৃক্ষ চৌম	ভ ক্লেব্ৰের সাথে 60° কোণ করে
নাগলে উৎপন্ন টার্ক্তব মান 639 dyne cm ⁻¹	। চৌম্বক ক্ষেত্রাটর প্রাবলা হল	
(A) 4 Oe (B) 6 Oe (C)	9 Oe (D) 7 4 Oe	[Jt. Entrance 2006]
[হয় বি একটি চম্বক ললাকাকে অসম চম্বক কে <u>তে</u> রা	থা হল। চুম্বকটির উপর প্রযুক্ত হ	বে
(क) क्यारि सम्बन्ध के स्थान क्यारिक	13) अकार एक ल नुना वण	
(O) अपा उस के सेना किर्य	(D) একটি বল ও একটি টক	[Jt. Entrance 2006]
[xxiii] একটি কুড দণ্ড চুম্বকের মধ্যবিন্দু থেকে সমান	দ্রত্বের প্রান্ত ও পার্শবিশ্বরের (চান্ত্রক ক্ষেত্রের প্রবিধ্যার পুলপাও
(A) 2:1 (B) 1:2 (C)	9·3 (D) 1:1.	[Jt. Entrance 2006]
(A) 2:1 (B) 1:2 (C) [xxiv] একট দত চুম্বক 10 cm লম্বা ও প্রস্থাক্ষে 2	_{cm²।} এব চৌম্বক ভাষক 100	cgs একক। চুম্বকন তীব্রতার মান
(A) 50 unit (B) 5 unit	(C) 25 unit (D)	10 unit.
	(0) 2.0 0	[Jt. Entrance 2006]
r. nah		
[EXV] SI এককে শুনো চৌম্বক ভেদাতা (A) $\pi \times 10^{-7}$ (B) $2\pi \times 10^{-7}$	(C) $4\pi \times 10^{-7}$	(D) $8\pi \times 10^{-7}$.
		fill by winner down a new y
[xxvi] 1 cm দৈর্ঘা বিশিষ্ট একটি ক্ষুদ্র দণ্ড চুম্বকের	নিমনকলে চম্বক থেকে 8 cm গু	র চৌশ্বক প্রাবল্য 0.1 cgs একক
[xxvi] 1 cm (भधा विनिध अकि। मूख गड प्रवरण	T. T	[Jt. Entrance 2006]
হলে, চুম্বকের মেরুশন্তি কত ? (A) 51.2 unit (B) 175 unit	(C) 100 unit	(D) 165.5 unit
(A) 51.2 unit (B) 175 unit (IXXVIII) ফ্রেমিং-এর বামহন্ত নিরম বাবহার করা হয়	মর্ণায়ের জনা	
[xxvii] क्षाय:- अत वामरख नित्रं पायरात कर्ता रहा वि	हा . भूग	
(A) তড়িং প্রবাহের উপর তড়িং প্রবাহের ক্রি	n n	
(B) চুম্বকের উপর তড়িব প্রবাহের জিয়া,		
(C) তড়িৎপ্রবাহের উপর চুম্বকের জিয়া,		[Jt. Entrance 2006
(D) চুম্বকের উপর চুম্বকের ক্রিয়া।		
B) मृनाञ्चान भूतम करता (Fill up the blanks)	And the state of t	তা অয়ন্টোম্বক পদার্থে পরিণা
(i) যখন পরাটোম্বক পদার্থকে উল্প করে তাপমাত্রা	———— ङ्गाकेट्स तास ० ४ -	
হয়। [ii] পরীক্ষা করে দেখা গেল যে একটি দন্ড চুম্বনে	কর দরুন উদাসীন বিন্দু দন্ডের	অক্ষের উপর অবস্থিত। তাহতে
[ii] পরীক্ষা করে (দেখা গোলা বে অকাত ত সুনত	*	

-	1110 1 10001
	চৌৰফাণ্ডের উদ্ধা মেনু করে রাখ্য আ রে।
[666]	একটি ইংশাত দত্তে চুম্বত করার পর দেখা গেল যে সভের মুট প্রাক্তি সুচি চুম্বকের উত্তর মের্কে বিকর্ষণ করে।
	4 पारम्पात गढ ह्यार <u>विध्य पारम्पा</u>
[iv]	একটি কৃষ্ণ চুম্বকাক বালাইনালারে প্রাম্বক মধাবেখা ববাবর বুলানো আছে চুম্বকটি আথবা
	पाप्राकादव स्वयंपान कादव।
	জীপক উত্তর অধুর ,কান এক স্থানে ভূচেম্বিক ক্ষেত্রের মান 0.5T , চৌম্বক বৈশ্ব রেখায় মান হবে
[vi]	ক্রান্তক স্নিক্ষাবার্য হব। সাম্বক উত্তর মানুহে একটি চুম্বক শলকার সাম। অবস্থান হবে এবং
1 8	न कि निर्जुल विरुद्धि करता (True or false type questions):
[1]	টোম্বৰ বামৰ একটি ভেটার রাশি।
(iii)	একটি ক্ষু দৈর্ঘের ২৬ চ্ছাকের বেলায়ে প্রান্তবিশ্ব প্রাবলা সমদ্ববতী বিষ্ক বিশ্ব প্রাবলের মর্থেক।
	জীয়ক বলবেখা চ্যকেন N-মেয়ুতে শুরু হয় এবং S-মেরুতে শেষ হয়।
	मन्ड इञ्चलक्द मनुभ अव वनात्त्रथा डिमाजीभ विन्नु नित्ता अधिक्रम करत ।
[v]	পরাচৌত্বক পদার্থের কোন গোলককে চৌত্বক ক্ষেত্রে রাখলে কারেখাগুলি রেলি পরিমানে ঐ গালকের ভিতর দিয়ে
	(सरह क्राफ़ी बदा।
	্য স্থানে বিনতি কোল 45° সেখানে ভূচৌদ্বক ক্ষেত্রের অনুভূমিক ও উল্লম্ব উপাংশ পরস্পারের সমান।
-111	निक्य श्रा
1.	l দৈখাযুদ্ধ একটি ইস্পাত তারের চৌমকশ্রামক M; তারটিকে বাঁকিরে অর্থবৃত্তাকার করা হলে প্রমাণ করো যে এই
	অবস্থার তার চৌশ্বকভামক হবে 2M/x.।
2.	একটি ৰঙ চুমকের চৌম্বক দৈর্ঘ। 10 cm এবং চৌম্বক্সামক 2 A·m².। চুম্বকটির মধাবিন্দু থেকে 15 cm দূরের
	কোনো অন্ধীয় বিন্দৃতে চৌমক প্রাবদা কত? ${ m [Ans.~1.5 \times 10^{-4} tesla]}$
3.	(a) একটি ভূপ্র দণ্ড সুসকের চৌসকলামক 2 A - m²। চুষকের লম্ব-বিশ্বন্তকের ওপর কেন্দ্র থেকে 10 cm দূরে
	কোনো বিন্দৃতে চৌম্বক প্রাবলা কন্ত ? ${ m (Ans.~2 imes 10^{-4}~tesla)}$
	(b) 0.32 একক প্রাবলোর কোন সুষম টৌষক ক্ষেত্রে একটি চুম্বকরে ক্ষেত্রের সঞ্জো 30° কোণে রাখলে যদি তার
	ওপর ৪ একক মানের ঘন আরোপিত হয়, তবে চুম্বকটির চৌম্বক ল্রামক নির্ণয় করে। Ans. 50 একক
4.	একটি দণ্ড-চুম্বক্ত চৌম্বক মধাতলে অনুভূমিকভাবে দক্ষিণ মেরু উত্তরমূখী করে রাখা হল। দক্ষিণ মেরু থেকে
	10 cm দূরে একটি নিন্দুতে লব্দি চৌম্বক প্রাবলোর মান শূনা। চুম্বকটির দৈর্ঘ্য 10 cm এবং ভূচ্মকত্বের অনুভূমিক
	প্রাবলা 0.2 × 10 ⁻⁴ Wb m ² হলে চুম্বকের মেরুশত্তি কত? [Ans. 2.67 A - m]
5.	একটি দন্ত চুদকেব মেরুশত্তি 3.6 A – m এবং দৈর্ঘা 8 cm। (a) দন্তের মধাবিন্দু থেকে N – মেরুর দিকে আক্ষসিধত
	6 cm দূরত্বের বিন্দুতে (b) দক্তের লম্ব-দিখন্ডকের ওপর একই দূরত্বে ক্ষেত্রপ্রাবলা কত?
	[Ans. (a) 8.6×10^{-4} T (b) 4.3×10^{-4} T]
6.	কোনও স্থানে বিনতি কোণ 45° এবং ভূ-চৌসক প্রাবলা 0.8 একক হলে ভূ-চৌসক প্রাবলার অনুভূমিক ও উল্লহ উপাংশ কড?
7.	কোনো স্থানের চুটিত কোণ 30° E এবং নতি কোণ 45° N : এ স্থানে ভূ-চুম্বক ক্ষেত্রের অন্ভূচিক প্রাবল
•	0.3 Oe হলে, ভৌগোলিক মধারেখায় অনুভূমিক প্রাবল্য এবং উল্লন্থ প্রাবল্যের মান কত?
	lAns. 0.26 Oe; 0.3 Oe
8.	কলকাতায় ভূ-টৌম্বক ক্ষেত্রের অনুভূমিক উপাংশ 0.35 Oe এবং বিনতি কোণ 30° হলে, কলকাতায় ভূ-টৌম্বক
	প্রাবল্যের মান এবং উল্লম্ব উপাংশের মান নির্ণয় করো। [Ans. 0.4 Oe; 0.2 Oe
9.	কোনো স্থানে বিনতি কোণ 30° S এবং ভূ-টোম্বক ক্ষেত্রের অনুভূমিক প্রাবল্য 0.35 Oe হলে, ঐ স্থানের উল্লয
	প্রাবদ্য কত এবং কোন্ দিকে? চিত্রে দিক ব্যাখ্যা করো। [Ans.0.202 Oe; দক্ষিণ গোলার্বে খাড়া নীচু দিকে
10.	কোনো স্থানে ভূ-টোম্বক ক্ষেত্রের অনুভূমিক উপাংশ 26 µT এবং নতি কোণ 60°। ঐ স্থানে ভূ-টোম্বক ক্ষেত্রের
	মোট প্রাবল্য এবং উল্লম্ব উপাংশ নির্ণয় করে। Ans. 52 μT; 45 μT
11.	কোন স্থানে চৌম্বক মধ্যতলে অবাধে ঘূর্ণনক্ষম একটি চৌম্বক শলাকাকে ভারকেন্দ্র হতে ঝ্লিয়ে দিলে তা অনুভূমিব
	তলের সজো 30° কোণে আনত অবস্থায় থাকে। আলোচ্য স্থানে ভূ-চৌম্বকত্বের অনুভূমিক উপাংশ 0.36 Oe হলে
	ভ-চৌম্বক প্রাবল্যের মান কত?

কঠিনতর গাণিতিক প্রশা

- 1. 12cm ১৯৯০ কৈ: বিশিন্ত এবং 25 c.g.s. মেরুর শতি সম্পন্ন একটি দও-চুম্বকের উত্তর মেরুকে উত্তরমুখী করে
 কোনও স্থানের চৌম্বক মধ্যক্তল বরাবর ঐ দও-চুম্বককে রাখা হল। ঐ স্থানের ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক প্রাবলা

 0.3 persted উদ্যাসান বিশ্বর অবস্থান নির্ণয় করো।

 (Ans. লক্ষ্যিন্ডকের ওপর 8cm দ্রে)
- একটি দণ্ড চৃষকের নিকটবর্তী মেরু হতে 7 cm দৃরে অক্তের (প্রসারিত) ওপর উদাসীন বিন্দু পাওয়া গেল। দণ্ডচৃষকের মেরুদ্ধারে ভিতরকার দূরত্ব 4 cm এবং ভূ-টৌষক ক্লেক্সের অনুভূমিক প্রাবলা 0.36 oersted। দণ্ড-চৃষকের
 মেরুদ্দির নির্ণয় করে।।
 (J.E. Entrance 1979) [Ans. 29.65 unit]
- 3. একটি দণ্ড-চৃষকের দুই মেরুর পারস্পরিক দূরত্ব 10 cm এবং চৌত্বক শ্রামক 1000 একক। দণ্ড-চৃত্বকের মধাবিন্দু হতে 25 cm দূরে চৃত্বক অক্ষের ওপর 200 মেরু শক্তির একটি উত্তর-মেরু রাখা আছে। দণ্ড-চৃত্বক ঐ মেরুর ওপর কড় বল প্রয়োগ করবে?

 [Ans., 27.7 dyne]
- 4. M₁ এবং M₂ টোষকভাষক যুত্ত দুটি কুল্ল চুমককে চৌষক মধ্যরেখা বরাবর 4.27 নং চিত্রে যেমন দেখালো হয়েছে, প্রবুপভাবে রাখা আছে। M₂ = 2700 c.g.s. এবং M₂ = 4000 c.g.s. হলে d₂ কত হবে যাতে P একটি উনাসীন বিন্দু হয় ? ভূ-টোষক ক্ষেত্রের অনুভূমিক উপাংশ = 0.3 c.g.s. [Ans. (i) 20 cm যখন M₁ এবং M₂ চুমকর্মের উত্তর-মের্ উত্তরম্থী (ii) 34.24 cm যখন M₁ চুমকের N-মের্ দক্ষিশমুখী কিন্তু M₂ চুম্বক N-মের্ উত্তরম্থী]

5. 4.28 নং চিত্রে দৃটি কুম্র দৈর্ঘ্যের চৃষক দক্ত A এবং B দেখানো হয়েছে। ওদের প্রত্যেকের চৌষক আমক M এবং ব্যবধান d। এদের অক্ষয়য় পরস্পরের লম্ব। চুষক দৃটির দূরত্বের চিক মধাবিক্দু P -তে ক্ষেএপ্রবাদ্যা নির্ণয় করো।

[Ans. $\frac{2\sqrt{5}\mu_0 M}{\pi\,d^3}$ এর অভিমূখ A-চুমকের অঞ্চের

সাথে θ কোণে করলে $\tan \theta = \frac{1}{2}$]

- 6. 30 cm দীর্ঘ একটি দণ্ড—চুম্বককে উল্লম্ব অবস্থায় একটি টেবিলের ওপর এমনভাবে রাখা আছে যে তা N-মেরু নীচের দিকে আছে। টেবিলের ওপর N-মেরু হতে 40 cm দূরে একটি উদাসীন বিন্দু পাওয়া গেল। চুম্বকটির মেরুশন্তি নির্পন্ন করো। H=0.089 Oe [Ans. 112.5 e.g.s.]
- 7. কোনো চুম্বক মেরুকে 0.4 ওরস্টেড প্রাবলাসম্পন্ন চৌম্বক ক্ষেত্রে স্থাপন করলে ওর ওপর যে বল ক্রিয়া করে, সেই একই বল ক্রিয়া করে যদি অপর একটি অজ্ঞানা মেরু থেকে ঐ মেরুটিকে 20 cm দূরে রাখা হয়। অজ্ঞানা মেরুটির মেরুশন্তি নির্ণয় করে। দৃটি ক্লেক্রেই মাধাম এক।
 [Ans. 160 c.g.s.]
- 8. 900 unit টোম্বক প্রামক এবং 50 unit মেরুশন্তির একটি চূম্বক শলাকাকে এরুপভাবে কীলকাকশ্ব করা আছে যে শলাকাটি অবাথে অনুভূমিক তলে ঘুরতে পারে। অনুভূমিক তলে ভূ-টৌম্বক ক্ষেত্রের প্রাবল্য 0.36 Oe। শলাকার সঙ্গো সুতো আবন্ধ করে সুতোকে পূর্বদিকে টান দিয়ে শলাকাকে টৌম্বক মধ্যরেখা হতে 30° কোণে স্থির রাখা হয়েছে। সৃতায় টান কত ? শলাকার দৈর্ঘা কত ?

 [Ans. 20.78 dyne; 18 cm]
- 9. তিনটি ছোটো চুমকের মধ্যবিন্দুগুলি একটি সমবাহু আিভুজ ABC-এর তিনটি কোণে অবস্থিত এবং ওরা ওদের মধ্যবিন্দুর সাপেক্ষে ঘুরতে পারে। সাম্যাবস্থায় A বিন্দুর চুমকের দৈর্ঘ্য BC বাহুর সঙ্গো সমাব্তরাল এবং Bও C বিন্দুতে অবস্থিত চুম্বকদ্বয়ের দৈর্ঘ্য মথাক্রমে ABএবং AC বাহুর সঙ্গো লম্বভাবে অবস্থিত। প্রমাণ করো যে, এই অবস্থায় Bও C বিন্দুতে অবস্থিত চুম্বকদ্বয়ের প্রামক সমান।
- 10. এক স্থানে বিনতি শলাকা অনুভূমের সহিত 45° কোণ করে। শলাকার উর্ধ্বপ্রান্তে 1g ভর চাপালে বিনতি কোণ হ্রাস পেয়ে 30° হয়। কত ভয় চাপালে শলাকা অনুভূমিক হবে?

[সংকেত : প্রথমবার, 2ml H sin 45° = 2ml V cos 45° দ্বিতীয়বার, 2 ml H sin 30° + 1 gl cos 30° = 2 ml V cos 30° তৃতীয়বার, m'gl = 2 mlV [m' = নির্বেশ্ব ভর]

[Ans. 2.3 g]

11. একটি বিনতি শলাকার উর্ধ্বপ্রান্ত 1 g ভর ঢাপালে বিনতি কোণ 60° হতে হ্রাস পেয়ে 30° হয়। ঐ স্থানে ভূ-চৌম্বক

ক্ষেত্রের মোট প্রাবল্য $0.42~{
m Oe}$ হলে, শলাকার মেরুশন্তি নির্ণয় করে। $g=980~{
m cm/s}^2~{
m [Ans.~1885~unit]}$

- 12. কোন স্থানে চৌম্বক মধ্যরেখায় স্থাপিত চুম্বক-শলাকার নতি কোণ 45°; ঐ উল্লম্ব তল 60° ঘূরিয়ে আর একটি উল্লম্ব তলে আনলে চৌম্বক-শলাকার নতি কোণ কত হবে? [Ans. 63° 27' (প্রায়)]
- 13. 7.5 g ভরবিশিন্ট একটি চুম্বক-শলাকার চৌম্বকপ্রামক 98 একক: যদি উত্তর গোলার্ছে চুম্বক-শলাকাকে অনুভূমিক রাখতে হয় তাহলে শলাকার ভারকেন্দ্র হতে কও দূরে তাকে বিশৃত করতে হবে? ভূ-চৌম্বক ক্ষেত্রের উল্লম্ব উপাংশ = 0.25 Oe।
 [Ans. উত্তর মেরুর দিকে 3.33 × 10⁻³cm দিকে]
- 14. এক স্থানে চৌত্বক মধ্যতলে অবাধে ঘূর্ণনক্ষম একটি চুম্বক-শলাকাকে ভারকেন্দ্র হতে ঝোলালে তা অনুভূমের সহিত 60° কোণ করে। শলাকার চৌত্বক-শ্রামক $300 \, \mathrm{c.g.s.}$; $50 \, \mathrm{mg}$ ভর শলাকার কোথার রাখলে, শলাকাটি অনুভূমিক থাকবে? $\{H=0.37 \, \mathrm{Oe}\}$
- 15. কোন স্থানে কেটি উল্লম্ব তলে আপাত নতি কোণ 40° এবং তার সমকোণে অপর একটি উল্লম্ব তলে আপাত নতিকোণ 30° হলে ঐ স্থানের প্রকৃত নতি কোণ কত? [Ans. 26°30']

[সংকেত ៖ $\cot^2 \delta_1 + \cot^2 \delta_2 = \cot^2 \delta$; এখানে $\delta_1 = 40^\circ$ এবং $\delta_2 = 30^\circ$; $\delta = ?$]

(i)	В	(vi)	С	(xi)	C	(xvi)	C	(xxi)	D	(xxvi)	A
(11)		(vii)	C	(xii)		(avii)		(xxii)		(xxvii)	
iii)	C	(viii)	A	(xiii)	В	(xviii)	C	(xxiii)	A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(iv)	В	(ix)	D	(xlv)	C	(xix)	В	(vxiv)	В		
(v)	В	(x)	A	(xv)	A	(xx)	C	(xxv)	C		

তড়িৎচুম্বকত্ব – II

ELECTRO-MAGNETISM-II

5.1. সুচনা (Introduction) ঃ

1820 খিস্টাব্দে যখন ওরস্টেড চুম্বকের ওপর তড়িৎ প্রবাহের ক্রিয়া আবিষ্কার করেন এবং পরীক্ষা করে দেখান যে তড়িৎপ্রবাহ চৌম্বকক্ষেত্র সৃষ্টি করতে পারে তখন বিজ্ঞানীদের মনে কৌতৃহল হল, উপৌপথে চৌম্বকক্ষেত্র তড়িৎপ্রবাহ সৃষ্টি করতে পারে কি না ? বিজ্ঞানীদের এই কৌতৃহলের নিরসন করেন বিখ্যাত আবিষ্কারক মাইকেল ফ্যারাডে। 1831 খ্রিস্টাব্দে মাইকেল ফ্যারাডে তড়িচ্চুম্বকীয় আবেশ আবিষ্কার করেন। তিনি দেখতে পান একটি চুম্বক বা তড়িৎবাহী বর্তনীর সাহায্যে অন্য একটি সংহত বর্তনীতে (closed circuit) ক্লাম্বায়ী তড়িচ্চালক বল সৃষ্টি করা যায়। এই ক্ষণস্থায়ী তড়িচ্চালক বল কে আবিষ্টা (induced) তড়িচ্চালক বল এবং এই ঘটনাকে তড়িচ্চুম্বকীয় আবেশ বলা হয়। ফ্যারাডের এই আবিষ্কার তড়িৎ বিজ্ঞানে সুদ্রপ্রসারী পরিবর্তন এনেছে, কারণ এই আবিষ্কারের ফলে জেনারেটর, ট্রান্সফরমার এবং অন্যান্য প্রয়োজনীয় তড়িৎযন্ত্রের উদ্ভাবন সম্ভব হয়েছে।

5.2

তড়িৎচুম্বকীয় আবেশ সম্পর্কিত পরীক্ষা (Experiments demonstrate electro-magnetic induction):

(ক) চুম্বক কর্তৃক আবিক প্রবাহ (Current induced by a magnet): 1 মিটার লম্বা ও প্রায়

5 সেন্টিমিটার ব্যাসযুত্ত কার্ডবোর্ডের একটি চোঙের ওপর 150 কি 200 পাক তামার তার জড়াও। চোঙকে খাড়াভাবে রেখে তারটির দুইপ্রান্ত একটি সুবেদী (sensitive) গ্যালভানোমিটার যন্ত্রের সাথে যুত্ত করো। তারে কোন তড়িংপ্রবাহ নেই: কাজেই গ্যালভ্যানোমিটারেও কোন বিক্ষেপ দেখা যাবে না। এইবার একটি দক্ত-চুম্বক নিয়ে তার N মেরু নিম্নাভিমুখী করে তাড়াভাড়ি চোঙের ভিতর চুকাও। দেখবে, গ্যালভ্যানোমিটার কাটার ক্ষণিক বিক্ষেপ (sudden deflection) হল [5.1 (a) নং চিত্র]। কাটার বিক্ষেপ প্রমাণ করল যে তারক্তলাতে তড়িংপ্রবাহের আবেশ

হল। চুম্বককে এইবার তাড় গুড়িছ টোন্ড থেকে বার করে নাও। দেখনে, আবার ইণ্টার ক্ষণিক বিক্ষেপ হল - উল্টো দিকে [5 1 (a) নং চিত্র] আবন্ত লক্ষ্ণ করবে, মহক্ষণ চূম্বক চোন্ডের ভিতর স্থিব থাকে গুড়ক্ষণ কোনো বিক্ষেপ হয় না । অথবা হারকুন্ডলীতে কোন হড়িছপ্রবাহ আবিস্ট হয় না। চুম্বক পতিশীল হলেই কাঁটার বিক্ষেপ হয়।

যদি বেশি সংখাব পাকেব কুগুলী নিয়ে অথবা শক্তিশালী দণ্ড চুম্বক্ত থাবত বৃত্ধতিতে নাড়িয়ে উপবিউন্ত প্ৰাক্ষাণুলি কৰা যায় তাৰ দেখা যায় প্ৰতেকে ক্ষেত্ৰেই অবিষ্ট তভিংপ্ৰতমাতা বৃদ্ধি পেয়েছে। দণ্ড চুম্বকের N মেরুর পবিবর্তে যদি S-মেরু কুগুলীর ভিতর চুকানো যায় বা কুগুলী থেকে বার করে আনা যায় তাহলেও কুগুলীতে ক্ষণস্থায়ী তড়িংপ্রবাহ পাওয়া যাবে, তবে এই প্রবাহের অভিমুখ N-মেরু ব্যবহার করে যে আবিষ্ট তড়িংপ্রবাহ পাওয়া যায় তার বিপরীত।

দণ্ড চুম্বকের দিক থেকে কুণ্ডলীকে দেখলে বিভিন্ন ক্ষেত্রে আবিষ্ট প্রবাহের অভিমূখ কীরুপ হবে তা নীচের তালিকায় দেওয়া হল।

(খ) প্রবাহ কর্তৃক আবিষ্ট প্রবাহ (Current induced by current): আমরা জানি, কোনো কুগুলী দিয়ে তড়িৎপ্রবাহ গেলে কুগুলী একটি চৌম্বকক্ষেত্র সৃষ্টি করে। সূতরাং কোনো কগুলীতে তড়িৎ

প্রবাহের পরিবর্তন হলে তার চৌম্বক বলরেখার পরিবর্তন হবে এবং এই পরিবর্তন অন্য একটি নিকটবর্তী কুণ্ডলীতে আরোপিত হলে দ্বিতীয় কুণ্ডলীতেও একটি তড়িচ্চালক বল আবিষ্ট হয়। এই ঘটনা 5.2 নং চিত্রে প্রদর্শিত ব্যবস্থা দ্বারা দেখানো যেতে পারে।

P একটি সলিনয়েড। এর সাথে একটি ব্যাটারি B, একটি রিওস্ট্যাট R ও একটি টেপা চাবি K যুক্ত আছে (ছবি দেখো)। S আর একটি সলিনয়েড— আকারে P থেকে বড়ো। এতে অনেকগুলি তারের পাক আছে। এর সাথে একটি সুবদী গ্যালভাানোমিটার G যুক্ত আছে। P সলিনয়েডকে বলা হয় মুখ্য কুণ্ডলী (primary coil) এবং S সলিনয়েডকে বলা হয় গৌণ কুণ্ডলী (secondary coil)। প্রথমে S গৌণ কুণ্ডলীর বর্তনীতে একটি রিওস্টাটে ও তড়িৎকোশ যুক্ত করে কুণ্ডলীতে প্রবাহের অভিমুখ নির্ণয় করতে হবে। মনে করে।

প্রবাহ বামাবর্তে (anti-clockwise) চলছে। এখন, গ্যানভানোমিটারের কাঁটার বিক্লেপের অভিমুখ লক্ষ করো। নিম্নের পরীক্ষাগুলিতে এই অভিমুখে কাঁটা বিক্ষিপ্ত হলে S কুগুলীতে প্রবাহ সমম্থী। direct) এবং বিপরীত দিকে বিক্ষিপ্ত হলে প্রবাহ বিপরীতমুখী (inverse) ধরা হবে। এখন S কুগুলীর বর্তনী থেকে তড়িৎ কোশ ও রিগুন্টাটে খুলে নাও এবং নিম্নালিখিত পরীক্ষাগুলি করো।

- (i) মুখ্য কুণ্ডলী P-তে ওড়িং কোশের সাহায্যে বাজাবর্তী গুড়ংপ্রবাহ চালিয়ে দ্বুত ওছের ৪ কুণ্ডলীর ভিতর প্রবেশ করাও। দেখবে, ৪-কুণ্ডলীর সাথে যুক্ত গালভানোমিটারে ক্ষণস্থায়ী বিক্ষেপ সৃষ্টি হল। বিক্ষেপের অভিমুখ লক্ষ করো। এই অভিমুখ হতে বোঝা যায় গৌল কুণ্ডলী ৪-এ বিপরীতমুখী গুড়ংপুবাহ আবিষ্ট হল। এখন, মুখ্য-কুণ্ডলীকে দুও গৌল-কুণ্ডলীর ভিতর থেকে বার করে আনলে ক্ষণগোয়া বিদর্শত বিক্ষেপ দেখা যাবে, অর্থাং এইবার ক্ষণস্থায়ী সমমুখী প্রবাহ আবিষ্ট হল।
- (ii) মুখা কুণ্ডলীর চাবি K ছেড়ে দিয়ে অথাৎ, কুণ্ডলীতে কোনো প্রবাহ হতে না দিতে হাকে কোন কুণ্ডলীর মধ্যে বসাও এইবার K চাবি টিপে মুখা কুণ্ডলীর প্রবাহ চালাও কালে চালাকি কিন্তাকি ছবাস্থায়ী বিপরী হুমুখী ওড়িৎপ্রবাহ আবিদ্য হল সাদি বিভাগতির সাহায়েয়া মুখা কুণ্ডলীতে প্রবাহমাত্রা হঠাৎ বাড়ানো যায় তবে গোল কুণ্ডলীতে একই প্রক্রের প্রবাহ এবিদ্য হবে

(iii) এইবার মুখ্য কুণ্ডলীর চাবি K ছেড়ে দিয়ে প্রবাহ বন্ধ করো। সঙ্গো সঙ্গো গৌণ কুণ্ডলীতে আবার ক্ষণস্থায়ী তড়িৎপ্রবাহ যাবে, কিন্তু এই প্রবাহ সমমুখী হবে। একই ব্যাপারে দেখা যাবে যদি মুখ্য কুণ্ডলীর প্রবাহমাত্রা রিওস্ট্যাটের সাহায্যে দুত কমানো যায়।

এই ঘটনাগুলি মনে রাখার জন্য তাদের নিম্নরূপ তালিকাবন্ধ করা যেতে পারে।

কার দারা আবেং ক্র	শীমা	Men Dell
্রাড়ৎবাই ক্ওলী কর্তৃক	(1) প্রবাহযান্ত মুখ্য কৃতলাকে দ্রুত	্য। ক্ষণিক বিপৱীতম্থী বিক্ষেপ
17	গৌণ কুণ্ডলীর মধ্যে টুকালে। (ii) প্রবাহযুক্ত মুখ্য কুণ্ডলীকে এড গৌণ কুণ্ডলীর ভিতর থেকে গাঁৱ	বিপরীভম্খী প্রবাহের আবেশ। (ii) ক্ষণিক সমমুখী বিক্লেপ— । ১৮'ং, ক্ষণিক সমমুখী প্রবাহের
>>	করে নিলে। (iii) মুখ্যক্তলীকে গোঁণ কণ্ডলীর ভিতর রেখে হসাৎ প্রবাহ চালালে	আবেশ। (iii) ক্ষণিক বিপরীতমুখী বিক্টেপ অর্থাৎ ক্ষণিক বিপরীতমুখী প্রবা–
"	(iv) ঐ অবস্থায় হঠাৎ প্রবাহ বন্ধ করকো।	থের আবেশ। (iv) ক্ষণিক সমম্থা বিক্লেপ এক্ছি, ক্ষণিক সমমুখী প্রবাহের
57	(v) ম্থা কৃঙলীকে গৌল কৃডলীব মধ্যে রেখে ম্থাক্ডলীর প্রবাহয়াতা	মাবেশ। (v) ক্ষণিক বিপরীতম্যী বিক্ষেপ - এখাং বিপরীতম্যী প্রবাহের
	হসংৎ বৃদ্ধি করলে (v1) ঐ অক্সথায় হসং প্রবাহ্মারা হ্রাস করলে	মানেশ। (vi) ক্ষণিক সমন্থী বিশেষপ অংগিং, সমন্থী প্রবাহের আবেশ
	(vii) প্রবাহযুত্ত মুখ্যমন্তলীকে কোন কুন্তনার মধ্যে রেখে দিলে।	(vii) কোনো বিক্ষেপ হয় না - হহাহি, কোনো প্রবাহের সাবেশ হয় না।

5.3. চৌসক প্রবাহ ও প্রবাহ ঘনত (Magnetic flux and flux density) ঃ

μ চৌস্বক ভেদ্যতার কোনো মাধামে α ক্ষেত্রফলের একটি বন্ধতল Α আছে। ধরো, ঐ তলের অভিলম্ব

ভাবে H মানের একটি সুষম চৌম্বকক্ষেত্র কাক করছে [ba 5.3 (a)] যেহেওু মাধামের চৌম্বক ভেলাতা μ , সেহেওু চৌম্বক আরেশ $B = \mu H$; চৌম্বকক্ষেত্রের সংজ্ঞা হতে বলা যায় এ মাধামের প্রতিক্ষেত্রকার ভিতর দিয়ে অভিলম্বভাবে গত চৌম্বক বলরেখার সংখ্যা μH । চৌম্বক বলরেখার সংখ্যাকে বলা হয় **চৌম্বক** প্রবাহ ঘরমন্থ এবং একে সাধামের চৌম্বক প্রবাহ ঘরমন্থ $B = \mu H$; বলা বাহুলা B একটি ভেলাই বাহ্নি রবং এবং একটি চিনিম্ব প্রতিন্তিক প্রবাহ ঘরমন্থ $B = \mu H$; বলা বাহুলা B একটি ভেলাই বাহ্নি রবং এবং একটি চিনিম্ব প্রতিন্তিক

 $\phi = \alpha B$, ϕ is seen as A since B is A and A

চীস্কি ফুার। অতএব, চৌম্বক প্রবাহ ঘনার $B=rac{\Phi}{H}$

র্যাদ চৌম্বকপ্রবাহ ঘনত্ব B, A- তলের অভিলম্ব না হয়, তবে A তলের সাথে সংশ্লিষ্ট চৌম্বক প্রবাহ $\phi=B.\alpha$, $\cos\theta.=B.\alpha$ যেখানে θ হল B- এর অভিমুখ এবং A তলের অভিলম্বের ভিতরস্থ কোপ [চিন্ন b-3.3 (b)]।

এককসমূহ ঃ সি. জি. এস্. পশ্বতি অনুযায়ী চৌদ্ধক প্রবাহের এককের নাম ম্যাদ্ধওয়েল (maxwell)। কোনো কুগুলীতে চৌদ্ধক ফুল্ম প্রতি সেকেন্তে যে পরিমাণে পরিবর্তিত হলে কুগুলীতে 1 e.mu. পরিমাণ তডিচ্চালক বল আবিষ্ট হবে তাকে 1 ম্যাদ্ধওয়েল বলা হয়।

সি. জি. এস্. পশ্ধতিতে ফ্লাক্স-ঘনত্বের বা চৌম্বক প্রবাহ ঘনত্বের একক হল ম্যাক্সওয়েল প্রতি বর্গ সেন্টিমিটার (maxwell cm 2)। এর অপর নাম ওরস্টেড (Oe)।

এস, আই পন্ধতিতে টোম্বক ফ্লাক্স বা প্রবাহের এককের নাম ওয়েবার (Wb)।

কোনো কুন্ডলীতে চৌদ্বক ফ্লাক্স প্রতি সেকেন্ডে যে পরিমাণে পরিবর্তিত হলে কুন্ডলীতে 1 ভোল্ট ভিচ্চালক বল আবিষ্ট হবে তাকে 1 ওয়েবার বলা হয়।

এস্, আই পম্বতিতে ফ্লাক্স-ঘনত্বের বা চৌম্বক প্রবাহ ঘনত্বের একক হল ওয়েবার প্রতি বর্গমিটার (weber m^{-2})। এর অপর নাম **টেসলা** (T). স্পস্টত, চৌম্বকপ্রবাহ ঘনত্ব এবং পূর্বে উল্লিখিত চৌম্বক আবেশ (magnetic field induction) অভিন্ন।

্র সম্পর্ক (Relationship) :

এখন, 1 Wb = 10⁸ maxwell.

আবার,
$$IT = \frac{1Wb}{m^2} = \frac{10^8 \text{ maxwells}}{10^4 \text{ cm}^2} = 10^4 \text{ Oe.}$$
 অথবা 1 $Oe = 10^{-4} \text{ T.}$

ম্যাক্সওয়েল এককে ফ্লাক্সের পরিবর্তন মনে রাখবে, আবিষ্ট তডিচ্চালক বল e = _______e.

সময় (সেকেন্ডে)

ম্যাক্সওয়েল এককে ফ্লাক্স পরিবর্তন

সময় $\times 10^8$ (সেকেন্ডে)

volt.

পজিটিভ ও নেগেটিভ চৌম্বক প্রবাহ (Positive and negative flux) :

কোনো তলের ওপর অভিলম্ব দুই রকমভাবে টানা যায়। যখন ঐ অভিলম্ব B-এর অভিমুখী অর্থাৎ $\theta=0$, তখন ঐ তলের সাথে সংশ্লিষ্ট চৌম্বক প্রবাহকে পদ্ধিটিভ ধরা হয়। আর যদি অভিলম্ব B-এর অভিমুখের বিপরীত দিকে টানা হয় অর্থাৎ $\theta=180^\circ$, তখন চৌম্বকপ্রবাহ $\phi=B.\alpha.\cos 180^\circ=-B.\alpha.$ বলা বাহুল্য, তখন সংশ্লিষ্ট চৌম্বক প্রবাহ নেগোটিভ।

ফ্যারাডে তড়িচ্চম্বকীয় ঘটনাবলি চৌম্বক প্রবাহের সাহায়ো ব্যাখ্যা করেছিলেন।

5.4. তড়িৎচুম্বকীয় আবেশের ব্যাখ্যা ও সূত্রাবলি (Explanation and laws of electro-magnetic induction) ঃ

5.2 অনুচ্ছেদে দণ্ড চুম্বক এবং তড়িদ্বাহী কুণ্ডলীর সাহায়ে। যে সকল তড়িচ্চুম্বকীয় ঘটনাবলির কথা বলা হয়েছে টৌম্বক প্রবাহের সাহায়ে। তাদের ব্যাখ্যা এবং তা থেকে তড়িচ্চুম্বকীয় সূত্রাবলি প্রতিষ্ঠা করা যায়। সূত্রাবলিকে ফ্যারাডের সূত্রাবলি বলে।

আমরা জানি যে দশুচুম্বক বলরেখা সৃষ্টি করে এবং একটি তড়িছাইী তারকুঙলী দশুচুম্বকের ন্যায় আচরণ করে অর্থাৎ ঐ তারকুঙলীও নিজম্ব চৌম্বক বলরেখা সৃষ্টি করে। এখন, (i) দশুচুম্বকের N মেরুকে অথবা তড়িছাইী তার-কুঙলীকে অপর একটি বন্ধ কুঙলীর দিকে এগিয়ে নিলে, তাদের বলরেখা বন্ধ কুঙলীকে ছেদ করবে। যত তারা বন্ধ কুঙলীর দিকে অগ্রসর হবে তত বন্ধ কুঙলীর সাথে সংশ্লিষ্ট চৌম্বক প্রবাহ বৃন্ধি পাবে। পরীক্ষার ফলে দেখা যায় যে, এই অবস্থায় বন্ধ কুঙলীতে একটি তড়িৎপ্রবাহ আবিষ্ট হয়। (ii) আবার, দশুচুম্বক অথবা তড়িছাইী কুঙলীকে দূরে সরিয়ে নিলে, বন্ধ কুঙলীর সাথে সংশ্লিষ্ট চৌম্বক প্রবাহ ব্রাস পায়। দেখা যায়, এই অবস্থাতেও কুঙলীতে একটি প্রবাহ আবিষ্ট হয়। (ii) কিন্তু দশুচুম্বক অথবা তড়িংছাইী কুঙলীকে বন্ধ কুঙলীর ভিতর পির রাখলে, বন্ধ কুঙলীর সাথে সংশ্লিষ্ট চৌম্বক প্রবাহের কোনো পরিবর্তন হয় না। পরীক্ষা করে দেখা যায় এই অবস্থাতে বন্ধ কুঙলীতে কোনো তড়িংপ্রবাহও আবিষ্ট হয় না। এথেকে ফ্যারাডে সিন্ধান্ত করেন যে, বন্ধ কুঙলীতে তড়িংপ্রবাহ আবেশের মূল কারণ হল বন্ধ কুঙলীর সংশ্লিষ্ট চৌম্বক প্রবাহের পরিবর্তন। তড়িচুমুম্বকীয় আবেশের প্রথম সূত্রস্বরূপ তিনি বলেন ঃ

প্রথম সূত্র : কোনো বন্ধ কুণ্ডলীর সাথে সংশ্লিষ্ট চৌম্বক প্রবাহের (magnetic flux) পরিবর্তন হলে কুণ্ডলীতে তড়িচ্চালক বলের আবেশ হয় এবং কুণ্ডলী দিয়ে একটি তড়িৎপ্রবাহ বায়।

যদি দশুচুম্বককে অথবা তড়িদ্বাহী কুণ্ডলীকে দুত বন্ধ কুণ্ডলীর দিকে নিয়ে যাওয়া হয় অথবা দুত দূরে সরিয়ে নেওয়া হয়, তবে বন্ধ কুণ্ডলীর আবিন্ট প্রবাহের মাত্রা বৃদ্ধি পায়। দণ্ডচুম্বক অথবা তড়িদ্বাহী কুণ্ডলীর গতি মন্থর হলে আবিন্ট প্রবাহের মাত্রা হ্রাস পায়। এখন, দণ্ডচুম্বক অথবা তড়িৎদ্বাহী কুণ্ডলীর গতি দুত হলে, বন্ধ কুণ্ডলীর সাথে সংশ্লিষ্ট চৌম্বক প্রবাহ পরিবর্তেনের হার (rate of change of flux) দুত হয়; আবার গতি মন্থর হলে, চৌম্বক প্রবাহ পরিবর্তনের হার মন্থর হয়। পরীক্ষালব্ধ এই ফলাফল হতে ফ্যারাডে তড়িচ্চুম্বকীয় আবেশ সংক্রান্ত দ্বিতীয় সূত্র প্রতিষ্ঠা করেন।

বিতীয় সূত্র : কোনো বন্ধ কুগুলীর ভিতর দিয়ে যে হারে সংশ্লিক চৌম্বক প্রবাহের পরিবর্তন হয়, আবিক তড়িচ্চালক বল অথবা আবিক তড়িংপ্রবাহের মাত্রা তার সমানুপাতিক।

t অবকাশের পূর্বে এবং পরে কোনো বন্ধ কুঙলীর প্রতি পাকের সাথে সংশ্লিষ্ট টোম্বক প্রবাহ যদি যথাক্রমে ϕ_1 এবং ϕ_2 হয় তবে প্রতি পাকে আবিষ্ট তড়িচ্চালক বল $e \propto \frac{\phi_2 - \phi_1}{t} \propto \frac{\phi}{t}$ $[\phi = t$ অবকাশে চৌম্বক প্রবাহ পরিবর্তন] যদি কুঙলীতে n সংখ্যক পাক থাকে তবে কুঙলীতে মোট আবিষ্ট তড়িচ্চালক

বল $e \sim n.\frac{\phi}{t}$; ক্যালকুলাস প্রতীকের সাহায্যে লেখা যায় যে, $e \sim n.\frac{d\phi}{dt}$; (i)

লক্ষ করার বিষয় যে ফ্যারাডের সূত্র দুটি থেকে আমরা তড়িচ্চুস্বকীয় আবেশের (i) কারণ (cause) (ii) স্থায়িত্ব (duration) এবং (iii) মান (magnitude) পাই।

এইবার তড়িচ্চুম্বনীয় আবেশ সংক্রান্ত তৃতীয় সূত্রের উপস্থাপনা আলোচনা করা যাক। সলিনয়েড কুঙলীতে তড়িৎপ্রবাহ গেলে কুঙলী নিজে দণ্ডচুম্বন্ধের ন্যায় ব্যবহার করে এবং তার দুই মুখে বিপরীত মেরুর উদ্ভব হয়। 5.2 অনুচ্ছেদে বর্ণিত পরীক্ষায় দণ্ডচুম্বন্ধকে কুঙলীর ভিতর ঢোকার এবং কুঙলী থেকে বার করার সময় সলিনয়েড কুঙলীতে যেদিকে তড়িৎপ্রবাহ হয় তা লক্ষ করলে দেখা যায় যে, কুঙলীর ওপর মুখে 5.1 নং চিত্রে যেমন দেখানো হয়েছে সেরকম মেরুর উদ্ভব হয়। অর্থাৎ দণ্ডচুম্বকের N মেরু ঢোকার সময় ওড়িৎপ্রবাহের দরুন কুঙলীর উপরের মুখে N মেরুর উদ্ভব হবে এবং বার করে নেবার সময় S মেরুর উদ্ভব হবে। যদি দণ্ড চুম্বকের N মেরু না চুকিয়ে S মেরু চুকানো হয় ওবে ঢোকাবার সময় কুঙলীর উপরের মুখে S মেরু চুকানো হয় ওবে ঢোকাবার সময় কুঙলীর উপরের মুখে S মেরু এবং বার করে নেবার সময় N মেরুর উদ্ভব হবে। লক্ষ করলে দেখা যাবে কন্দ্র সলিনয়েড কুঙলীতে আবিন্ট প্রবাহের দরুন ওপরের মুখে এরকম মেরুর উদ্ভব হচে যে দণ্ড চুম্বকের N মেরু বা S মেরুর অগ্রগমন অথবা পশ্চাদগমন সর্বদা বাধা পাছে।

তড়িংখাই কুডলার ক্ষেত্র অনুরপ ব্যাখ্যা দেওয়া যায় আমরা জানি, দৃটি সমান্তরাল সমপ্রবাহ পর্তকর্কে আকর্ষণ করে এবং দৃটি সমান্তরাল অসমপ্রবাহ পরতপরকে বিকর্ষণ করে এবং , তড়িছাই। কুডলাকে বদং তরে-কুডলার দিকে আগিয়ে আনলে, বন্ধ কুঙলাকৈ যে আবিন্ট প্রবাহ পাওয়া যায়, তার অভিমুখ দেখা যায় তড়িছাই। কুডলার তড়িৎপ্রবাহের অভিমুখের বিপরীত। আবার, তড়িছাই। কুডলাকে দ্রে সারেরে নিলে কন্ধ কুঙলাতে আবিন্ট প্রবাহের অভিমুখ তড়িছাই। কুডলার তড়িৎপ্রবাহের সমম্বা হতে দেখা যায় উভয় ক্ষেত্রই আবিন্ট প্রবাহের অভিমুখ এমনই য়ে তা তড়িছাই। কুডলার অলগমন বা পশ্চাদ্গমনকে বাধা দেবে। এই ঘটনা হতে বিজ্ঞানী ডঃ লেক্ক আবিন্ট প্রবাহের অভিমুখ সংক্রান্ত তড়িচ্ছ্মকীয় আবেশের ভূটায় স্ত্রের উপস্থাপনা করেন। এই স্ব্রকে লেক্ক স্ক্র বলা হয়।

তৃতীয় সূত্র বা লেঞ্জ সূত্র ঃ যে-কোনো তড়িংচুম্বকীয় আবেশের বেলায়, আবিষ্ট ৩ড়িংপ্রবাহের অভিম্ব এরপ হবে যে, যে-কারণে প্রবাহের স্থি হয়, প্রবাহ সর্বদা সেই কারণকে বাধ দেবে।

লেশ্ব সূত্রের কথা মনে রেখে আমরা পূর্বোক্ত (i) নং সমীকরণকে নিম্নলিখিতরূপে ারখতে পারি,

$$e \propto -n. \frac{d\phi}{dt}$$
; [- চিহ্ন লেঞ্চ সূত্র বোঝায়] অথবা, $e = -k.n. \frac{d\phi}{dt}$ [$k = একটি ধ্রুবক$]

তড়িৎচুম্বকীয় পর্ম্বাতিতে বিভিন্ন রাশির একক সুবিধামত নির্ধারণ করে নিলে $k=1\,$ করা যেতে পারে।

PROPERTY,
$$e = -n \cdot \frac{d\phi}{dt}$$

উপরোক্ত সমীকরণ গাণিতিকভাবে তড়িচ্চুম্বকীয় আবেশ সংক্রান্ত তিনটি সূত্রকেই প্রকাশ করে। $d\phi/dt$ নেগেটিভ অর্থাৎ ফ্লাক্স পরিবর্তনের হার হ্রাস পেলে e পজিটিভ হয়। এর অর্থ ঐ অবস্থায় আবিষ্ট তড়িচ্চালক বল সমমুখী (direct) হয়। আবার $d\phi/dt$ পজেটিভ অথবা ফ্লাক্স পরিবর্তনের হার বৃদ্ধি পেলে e নেগেটিভ বা আবিষ্ট তড়িচ্চালক বল বিপরীতমুখী (inverse) হয়।

তড়িৎ-বর্তনীর রোধ R হলে, বর্তনীতে আবিষ্ট তড়িৎ প্রবাহ

$$i=rac{$$
 আবিস্ট তড়িচ্চালক বল $}{$ বর্তনীর রোধ $}=rac{n}{R}.rac{d\phi}{dt}$

□ Examples □

1 100 পাক সংখ্যা এবং 20 cm ব্যাসবিশিষ্ট একটি তারকুণ্ডলীকে একটি চৌম্বকক্ষেত্রে এরকম ভাবে রাখা হল যে কুণ্ডলীর তল চৌম্বকক্ষেত্রের অভিলম্ব। চৌম্বকক্ষেত্রের প্রাবল্য 5×10^{-2} সেকেন্ডে সুষমভাবে 0.1 tesla থেকে 0.3 tesla তে পরিবর্তিত হল। এতে তার কুণ্ডলীতে কত তড়িচ্চালক বলের উদ্ভব হবে ?

উঃ। কুগুলীর তলের ক্ষেত্রফল $A=\pi\,r^2=\pi\,(0.1)^2\,\mathrm{m}^2$; পাকসংখ্যা n=100. মোট ফ্লাকা পরিবর্তন $d\phi=nA\,(B_2-B_1)=100\times(\pi\times0.1)^2\,(0.3-0.1)$ Wb.

$$\therefore$$
 আবিষ্ট ভড়িচ্চালক বল = $\dfrac{$ ফুাক্স পরিবর্তন $(d\phi)}{$ সময় (dt) $\dfrac{100 \times (\pi \times 0.1)^2 \times 0.2}{5 \times 10^{-2}} = 12.6 \mathrm{V}.$

② 100 Ω রোধ ও 100 পাকযুক্ত একটি কুঙলী 1 milli-Wb শক্তিসম্পন্ন চৌম্বকক্ষেত্রে অবস্থিত। একটি 400 Ω রোধবিশিক গ্যালভ্যানোমিটার ওই কুঙলীর সাথে শ্রেণি সমবায়ে যুদ্ধ। যদি 1/10 সেকেঙে কুঙলীকে বর্তমান ক্ষেত্র হতে 0.2 milli-Wb শক্তির চৌম্বকক্ষেত্রে নিয়ে যাওয়া হয়, তবে গড় তড়িচ্চালক বল ও প্রবাহমাত্রা নির্ণয় করো।

উঃ চৌম্বক ফ্রাক্সের পরিবর্তন $(d\phi)=1-0.2=0.8$ milli Wb. $=0.8\times 10^{-8}$ Wb. কঙলাতে মেট চোম্বক ফ্লাক্সের পরিবর্তন $=(n\,d\phi)=100\times 0.8\times 10^{-3}=8\times 10^{-2}$ Wb.

ভড়িৎচ্চালক বল (e)= ফ্লাকা পরিবর্তনের হার $=\left(\frac{n.d\phi}{dt}\right)=\frac{8\times 10^{-2}}{1.10}$ 0.8 volt.

বর্তনীর মোট রোধ $(R) = 100 + 400 = 500 \Omega$.

ভাঙ্এৰ, প্ৰাহ্মাঞা = $\frac{e}{R} = \frac{0.8}{500} = 1.6 \times 10^{-3} \,\mathrm{A} = 1.6 \,\mathrm{mA}.$

63 40 cm দীর্ঘ একটি তারকে 15 cm × 5 cm সাইজের আয়তাকার লুপে বাঁকিয়ে একটি চৌশ্বক ক্ষেত্রের সমকোণে স্থাপন করা হল। চৌশ্বকক্ষেত্রের ফ্লান্স-ঘনত্ব 0.8 tesia। 0.6 সেকেণ্ড অবকাশে লুপের সাইজ পরিবর্তিত হয়ে হল 10 cm × 10 cm এবং ফ্লান্স-ঘনত্ব বৃথি পেয়ে হল 1.5 tesia। লুপে আবিষ্ট তড়িচ্চালক বল নির্ণয় করো।

উঃ, ল্পের প্রাথমিক ক্ষেত্রফল $\alpha_{\rm l}=15~{\rm cm}\times 5~{\rm cm}=75~{\rm cm}^2=75\times 10^4~{\rm m}^2$ প্রাথমিক চৌস্কক ফ্রাক্স ঘনত্ত্ব $B_1=0.8~{\rm tesla}$

ল্পের সহিতে সংশ্লিষ্ট প্রাথমিক ফ্রাক্স $\phi_1=B_1\alpha_1=0.8\times75\times10^{-4}\,\mathrm{Wb}=60\times10^{-4}\,\mathrm{Wb}$ চুড়ান্ত ক্লেব্রুল $\alpha_2=10\times10=100\,\mathrm{cm}^2=100\times10^{-4}\,\mathrm{m}^2$

" চৌসক ফুল্ম **ঘনত্ব B**> = 1.5 tesla

" সংক্রিন্ট ফ্রাক্স ϕ , = $B_2\alpha_2=1.5\times 100\times 10^{-4}~{\rm Wb}=150\times 10^{-4}~{\rm Wb}$ ফ্রাক্স পরিবর্তন $(d\phi)=\phi_2-\phi_1=150\times 10^{-4}-60\times 10^{-4}~{\rm Wb}=90\times 10^{-4}~{\rm Wb}$

ল্পে আবিষ্ট ভড়িচ্চালক বল $e=-\frac{d\phi}{dt}=-\frac{90\times 10^{-4}}{0.6}$ volt = - 15 mV.

্র একটি তারের কুণ্ডলীতে চুম্বকীয় আবেশ (ϕ) সময়ের উপর নির্ভর করে এবং $\phi=t^3-2t^2+5$) wb যেখানে t সেকেন্ডে মাপা হয়। কুণ্ডলীর রোধ 10Ω হলে t=1 সেকেন্ডে কুণ্ডলীর প্রবাহমাত্রা কত ? কোন্ সময়ে তড়িৎপ্রবাহের মান সবচেয়ে বেশি হবে ও এই মান কত ?

$$331 \phi = t^3 - 2t^2 + 5$$

:. Where substitutes of
$$e=-\frac{d\phi}{dt}=-\frac{d}{dt}\left(t^3-2t^2+5\right)=-\left(3t^2-4t\right)$$

:. Signature
$$i = \frac{e}{R} = \frac{-(3t^2 - 4t)}{10} \text{ A} \dots$$
 (i)

$$vert t = 1s vert i = \frac{-3 + 4}{10} = 0.1A$$

য়খন পূৰ্ব সৰ্বাপেকা বেশী হয়
$$\frac{di}{dt}=0$$
 ছাহবা $\frac{d}{dt}\left(\frac{4t-3t^2}{10}\right)=0$

জাধাৰা
$$4 \cdot 6t = 0$$
 : $t = \frac{4}{6} = \frac{2}{3}$ s.

্র ক্রিকরের ১০ ক্রিকরের মানু বস্তালে
$$i_{\text{max}} = \frac{\left(4 \times \frac{2}{3} - 3 \times \frac{4}{9}\right)}{10} = \frac{1}{15} \text{ A.}$$

় একটি পরিবাহী তারের গোলাকার কুন্ডলী একটি চৌমকক্ষেত্রের অভিলম্বভাবে রাখা। আছে। চৌম্মক ক্ষেত্রের মান $B=0.05~\mathrm{T}$; কোনো কারণে হঠাৎ কুন্ডলীর ব্যাসার্থ সৃবমভাবে। $2~\mathrm{mms}^{-1}$ হারে সংকৃচিত হতে শুরু করল। কুন্ডলীর ব্যাসার্থ বখন $3~\mathrm{cm}$ তখন কুন্ডলীতে আবিষ্ট তভিচ্চালক বল কত?

ট্রঃ ধরেং, t সময়ে কুঙলীর বাংসার্ধ হল r. ঐ মুহূর্তে কুঙলীর সাথে জড়িত চৌম্বক প্রবাহ $\phi=\pi r^2\,B$. মত এব $\therefore \, \frac{d\phi}{dt}=2\pi.r.\,B.\, \frac{dr}{dt}$

একেনে
$$r=3~{\rm cm}=0.03~{\rm m}$$
 ; $B=0.05~{\rm T}$ এবং $\frac{dr}{dt}=2~{\rm mms}^{-1}=2\times10^{-3}~{\rm ms}^{-1}$.

ভাবিষ্ট গুড়ালক বল
$$e=-\frac{d\phi}{dt}=-2\times 3.14\times 0.03\times 0.05\times 2\times 10^{-3}$$
 volt.
= - 18.84 × 10⁻⁶ volt.

= - 18.84 μV. [- চিহ্ন তড়িচ্চালক বলের অভিমুখ বুঝায়]

লেজের সূত্র ও শক্তির সংরক্ষ সূত্র (Lenz's law and the law of conservation of energy) :

(ক) আবিক ভড়িৎপ্রবাহের অভিমুখ (Direction of induced current) :

লেক্স সূত্র প্রয়োগ করে কুন্তলীতে আবিস্ট তড়িৎ প্রবাহের অভিমুখ নির্ণয় করা যায়।

5.4 অনুচ্ছেদে লেঞ্জের সৃত্র সম্বন্ধে বলা হয়েছে, তড়িৎচুম্বকীয় আবেশের বেলায় আবিষ্ট তড়িৎপ্রবাহের অভিমুখ এরকম হবে যে, যে-কারণে প্রবাহের সৃষ্টি হয়, প্রবাহ সর্বদা সেই কারণকে বাধা দেবে।

মনে করো, একটি দণ্ড চুম্বকের S মেরুকে একটি তার-কুন্ডলীর দিকে নেওয়া হচ্ছে [চিত্র 5.4]। তড়িচ্চুম্বকীয় আরেশের জন্য কন্ডলীতে একটি তড়িৎপ্রবাহের উৎপত্তি হবে। এই তড়িৎ

প্রবাহের অভিমুখ এরূপ হবে যে, তা S-মেরুর অগ্রগতিকে বাধা দেবে। এটা সম্ভব যদি S মেরুর সম্মুখবর্তী কুগুলীর তল (plane of the coil)-এ S -মেরুর উদ্ভব হয়, কারণ, সেক্ষেত্রে দুই সমমেরুর বিকর্ষণের দরুন চুম্বকের অগ্রগতি বাধা পাবে। সলিনয়ডের নিয়ম হতে আমরা জানি কুগুলীর সম্মুখতলে S-মেরুর উৎ পত্তি হতে গেলে কুগুলী দিয়ে প্রবাহের অভিমুখ দক্ষিণাবর্তী (clockwise) হতে হবে। (চিত্র নং 5.4)। অতএব এক্ষেত্রে আবিষ্ট প্রবাহ দক্ষিণাবর্তী হবে; আবার দণ্ড চুম্বকের S-মেরুকে কুগুলী থেকে দূরে সরিয়ে নেবার চেন্টা করলে পুনরায় কুগুলীতে তড়িংপ্রবাহ আবিন্ট হবে। এই প্রবাহের অভিমুখ এরুপ হবে যে দণ্ড-চুম্বকের পশ্চাদ্গমন বাধা পাবে। যদি প্রবাহের দরুন কুগুলীর সম্মুখ তলে N মেরুর উদ্ভব হয় তবে বিপরীত মেরুর আকর্ষণে দণ্ড-চুম্বকের পশ্চাদ্গমন বাধা পাবে। অতএব এক্ষেত্রে আবিন্ট প্রবাহ বামাবর্তী (anti clockwise) হবে।

(খ) শব্তির সংরক্ষণ সূত্র থেকে দেখা সূত্র ঃ ধরো, উপরিউত্ত পরীক্ষায় দণ্ড চুম্বকের S-মেরুকে কুগুলীর দিকে একটু চালনা করায় কুগুলীতে যে তড়িংপ্রবাহ হল তা S-মেরুর অগ্রগমনে বাধা না দিয়ে বরং সাহায্য করল। অর্থাং, প্রবাহের অভিমুখ এরুপ হল যে কুগুলীর সম্মুখতলে N-মেরুর উৎপত্তি হল। এ অবস্থায় দুই বিষম মেরুর আকর্ষণে ত্রু চুম্বক আপনা হতেই কুগুলীর দিকে অগ্রসর হতে থাকরে এবং তার জন্য কোনো শক্তির প্রয়োগ প্রয়োজন হবে না। তাহলে এই ব্যবস্থার দ্বারা আমরা

কোনো শক্তি বায় না করে অনন্ত গতি (perpetual motion) সৃষ্টি করতে পারি। কিন্তু শক্তির সংরক্ষণ সূত্র অনুযায়ী এটা কোনোমতেই সম্ভব নয়। সূত্রাং কুগুলীর প্রবাহ-অভিম্থ এরপ হতে পারে না যাতে কুগুলীর সম্মুখ তলে N মেরুর উৎপত্তি হয়—সূত্রাং কুগুলীর প্রবাহ দক্ষিণাবর্তী হয়ে S মেরুর উদ্ভব করবে এবং দণ্ড-চম্বকের অগ্রগতিকে বাধা দেবে।

অনুরূপভাবে, দণ্ড চুম্বক কুণ্ডলী হতে দূরে সরিয়ে নিলে তড়িং-চুম্বকীয় আবেশের জন্য কুণ্ডলীতে প্রবাহের অভিমুখ এরূপ হতে পারে না যা দণ্ড চুম্বকের গতিকে সাহায্য করে, কারণ, সেক্ষেত্রে দণ্ড-চুম্বক আপনা হতেই ক্রমবর্ষমান বেগে দূরে সরে যেতে থাকবে। অর্থাৎ এক্ষেত্রে কুণ্ডলীতে প্রবাহ বামাবর্তী হয়ে কুণ্ডলীর সম্মুখতলে S মেরুর পরিবর্তে N মেরুর গঠন করবে এবং তা দণ্ড চুম্বকের গতিকে বাধা দেবে। এইভাবে, শক্তির সংরক্ষণ সূত্র হতে আমরা লেঞ্ক সূত্রের যথার্থতা প্রমাণ করতে পারি।

5.6. সাবেশ (Self inductance) :

যখন কোনো কুণ্ডলীর ভিতর দিয়ে তড়িৎপ্রবাহ যায়, তখন কুণ্ডলী একটি চৌম্বকক্ষেত্র উৎপন্ন করে এবং ঐ চৌম্বক ক্ষেত্রের বলরেখা কুণ্ডলীর সাথে জড়িয়ে পড়ে। সূতরাং বলা যায় ঐ কুণ্ডলীতে তড়িৎপ্রবাহ শুরু হবার সময়, কুণ্ডলী সহসা নিজম্ব চৌম্বক বলরেখার সাথে জড়িত হয়। সময়ের সাথে প্রবাহমাত্রা পরিবর্তন করলে, কুণ্ডলীর সাথে জড়িত ফ্লাক্সেরও পরিবর্তন হবে। ফলে, কুণ্ডলীতে একটি ক্ষণস্থায়ী বিপরীত তড়িচালক বল আবিন্ট হয়ে প্রবাহমাত্রার বৃদ্ধিতে বাধা জন্মায়।

আবার, কুণ্ডলীর প্রবাহমাত্রা কথ করলে, কুণ্ডলীর সাথে জড়িত নিজম্ব বলরেখাগুলি সহসা অপসারিত হয় অর্থাৎ কুণ্ডলীর সাথে জড়িত বলরেখার পুনরায় পরিবর্তন ঘটে। তখন আবার, কুণ্ডলীতে একটি ক্ষণস্থায়ী বিপরীত তড়িচ্চালক বল আবিষ্ট হয়ে প্রবাহমাত্রার অবলুপ্তি বিলম্বিত করে।

এই প্রক্রিয়াকে বলা হয় স্বাবেশ। কুশুলীর নিজের প্রবাহের দরুন কুশুলীর সাথে সংশ্লিষ্ট নিজস্ব ফ্লাক্সের পরিবর্তন হয়ে তড়িচ্চালক বলের আবেশ হয় বলে এই ঘটনার নামকরণ করা হয়েছে 'স্বাবেশ'।

সংজ্ঞা ঃ তড়িৎ বর্তনীর যে-ধর্মের ফলে ঐ বর্তনী প্রবাহমাত্রার পরিবর্তনের বিরূদ্ধে বাধার সৃষ্টি করে তাকে স্বাবেশ ধর্ম (self induction) বলে এবং ঐ ঘটনাকে বলা হয় স্বাবেশ (selfinductance)। স্বাবেশযুক্ত বর্তনীকে বলা হয় আবেশ বর্তনী (inductive circuit)।

হাবেশাখ্ক এবং তার একক (Coefficient of self-induction and its units) ঃ

কোনো তড়িংবাহী কুঙলীর সাথে জড়িত টোম্বক বলরেখার সংখ্যা অবশাই তার তাংক্ষণিক প্রবাহমাত্রার সমানুপাতিক হবে। কোনো মুহূর্তে কুঙলীর প্রবাহমাত্রা i এবং ঐ কুঙলীর সাথে জড়িত চৌম্বক বলরেখার সংখ্যা (অথবা, চৌম্বক ফ্রাক্স) **b** হলে,

এখানে L একটি ধ্বক যার মান কৃগুলীর আকার, প্রস্পচ্ছেদ, পাক-সংখ্যা এবং পারিপার্শ্বিক মাধ্যমের ভেদ্যতার ওপর নির্ভর করে। এই ধ্ববককে কুগুলীর স্থাবেশাঙ্ক বলা হয়। স্পর্টত, i=1 হলে $L=\phi$ হবে।

কোনো কুণ্ডলী দিয়ে একক মাত্রার প্রবাহ গেলে, কুণ্ডলীর সাথে জড়িত মোট চৌষক বলরেখাকে ঐ কুণ্ডলীর স্বাবেশাক্ষ বলা হয়।

আবার (i) নং সমীকরণকে সময়ের (t) সাপেক্ষে ডিফারেন্সিয়েট করলে পাই, $\dfrac{d\phi}{dt} = L\,\dfrac{di}{dt}$

এখন, আাবিষ্ট ভড়িচ্চালক বল, $e=-\frac{d\phi}{dt}=-L\,\frac{dt}{dt}\,\dots$ (ii)

খুলাইক ট্রক ব্রকার ব ক্রতাতে আবেট হতিস্থালক বল সর্বদা প্রবাহমাত্রা পরিবর্তনের বিরুদ্ধে কাজ ঝরে: এখাং প্রবাহমাত্রা বৃদ্ধি পোলে, আবিষ্ট তভিচ্চালক বল ঐ বৃদ্ধির বিরোধিতা করবে: আবার প্রবাহমাত্রা হসে পেতে থাকলে, তা ঐ হাসেরও বিরোধিতা করবে।

এখন, $\frac{di}{dt}=1$ হলে, (ii) সমীকরল হাতে পাই, e=-Lএখেতে আন্ত স্থাবেশ্যকর এক বিকল্প সংজ্ঞা পাই,

সংবা ঃ কোনে কণ্ডলীতে একক হাবে প্রবাহমাত্রার পরিবর্তন হলে, কণ্ডলীতে যে তডিজ্ঞালক বল আবিষ্ট হারে তাকে সংখ্যাগতভাবে।numerically) ঐ কণ্ডলীর স্বাবেশাঙক বলে।

একক (Units):

- (ক) পরম একক (Absolute unit) : উপরের (ii) নং সমীকরণে $\frac{di}{dt}$ = 1 emu s⁻¹ এবং e = l e.m.u. হলে, L = l e. m. u কোনো বর্তনীতে প্রতি সেকেতে l emu হারে প্রবাহমাত্রার পরিবর্তন হলে, যদি 1 emu তড়িংচ্চালক বল আবিষ্ট হয়, তবে ঐ বর্তনীর স্বাবেশাঙক 1 e.m.u.
 - (খ) गांवशिक अथवा धत्र. आहे धक्क (Practical or S. I. unit):

উপরের (ii) নং সমীকরণে $\frac{di}{dt}$ = 1 ampere s^{-1} এবং e=1 volt হলে L=1 henry; কোন বর্তনীতে প্রতি সেকেন্ডে 1 ampere হারে প্রবাহমাত্রার পরিবর্তন হলে যদি 1 volt তডিচ্চালক বল আবিষ্ট হয়, তবে ঐ বর্তনীর স্বাবেশাঙক 1 henry : এটা স্বাবেশাঙেকর ব্যাবহারিক এবং এস. আই একক।*

হেনরি এককের ভগ্নাংশ নিমরূপ ঃ

10³ milli henry = 1 henry এবং 10⁶ microhenry = 1 henry (H) তাছাড়া 1 henry = 10⁹ সি. জি. এস. প্রম একক (ই. এম. ইউ)।

5.8. পারস্পরিক আবেশ (Mutual induction) :

P এবং S কয়েক পাকের দটি ভারকগুলী পরস্পরের কাছাকাছি রাখা আছে। চিত্র 5.51। P ক্ডলীর সাথে শ্রেণি সমবায়ে একটি ব্যাটারি B এবং চাবি K যুক্ত। এই কুডলীকে সাধারণত মুখা কুডলী (primary coil) वल উল্লেখ कता হয়। S-क छलीत সাথে একটি সবেদী গ্যালভ্যানোমিটার যুত্ত। এই কণ্ডলীকে বলা হয় গৌণ কণ্ডলী (secondary)। K চাবি টিপে ম্থা কুণ্ডলীতে (P) প্রবাহ চাল করলে দেখা যাবে, ৪ গৌণমুগুলীর গালেভাানোমিটারে একটি ক্ষণিক বিক্ষেপ (sudden deflection) হল। যে অবকাশে P মুখা কণ্ডলীর প্রবাহমাত্রা স্থির মানে পৌছায় শধু সেই অবকাশেই গ্যালভ্যানোমিটারে বিক্ষেপ ঘটে: তার পর কাঁটা প্রাথমিক অকথানে ফিরে আসে। এর কারণ নিম্নরপঃ

যখন মুখ্য ক্ণুলীতে তড়িৎপ্রবাহ চালু করা হয়, তখন একটি চৌম্বক ক্ষেত্রের সৃষ্টি হয় এবং ঐ ক্ষেত্রের বলরেখা S-গৌণ কণ্ডলীর সাথে আংশিক জড়িত হয়ে পড়ে। [চিত্রে কাটাকাটা লাইন দিয়ে

^{*}S.I পশ্বতিতে স্বাবেশ্যকের একক হয় ওয়েনার আাম্পিয়ার।(i) নং সমীকরণ। অথবা (ii) নং সমীকরণ থেকে হয় ভোল্ট-সেকেন্ড আন্দিপয়ার। এই দুয়ের পরিবর্তে সাবেশান্তেকর একককে একটি বিশেষ নাম দেওয়া হয়েছে — হেনরি (H)।

দেখানো হয়েছে। S-কুগুলীর সাথে চৌম্বক ফ্লাক্সের সংখৃতির ফলে তড়িৎ চুম্বকীয় আবেশের নিয়মান্যায়ী ঐ কুগুলীতে একটি তড়িচালক বল আবিষ্ট হয়। এতে গৌণ কুগুলীতে একটি তড়িৎপ্রবাহ হয়ে গালভানেমিটারের ও বিক্ষেপ উৎপন্ন করে।

এবার অক্সাং K চাবি ছেড়ে মুখা কণ্ডলী P-এর প্রবাহ বন্ধ করলে, পুনরায় গালে ভারোমিটারে একটি ফাবিক বিক্ষেপ দেখা যাবে কিছু প্রথম বিক্ষেপের সাপেক্ষে এই বিক্ষেপ হবে বিপরী হন্থী। এর কারণ, প্রবাহ বন্ধ করে দিলে, গোণ কুণ্ডলী S-এর সাথে আগে থেকে জড়িত বলরেখাগুলি সহসা অপসারিত হয়। তাতে S-কুণ্ডলীতে প্নরায় একটি বিপরীতমুখী তড়িচ্চালক বলের আবেশ হয়ে গ্যালভ্যানোমিটারে উল্টো বিক্ষেপ উৎপন্ন করে।

লক্ষণীয় যে $P \circ S$ ক্ওলীদেয় পরস্পর বিনিময়যোগা, অর্থাৎ P কুণ্ডলীর বদলে S কণ্ডলীতে ব্যাটারি যুক্ত করে একই হারে তড়িংপ্রবাহ পরিবর্তন করলে, P কুণ্ডলীতে একই তড়িচ্চালক বল আবিস্ট হবে। এই কারণে এই ঘটনাকে 'পারস্পরিক আবেশ' বলা হয়। আরও লক্ষনীয় যে P এবং S কুণ্ডলীর ভিতর কোনো সাক্ষাৎ (direct) বৈদ্যুতিক সংযোগ নেই; P-কুণ্ডলীর তড়িংপ্রবাহ যে চৌম্বকক্ষেত্র সৃষ্টি করে তাই কুণ্ডলী দৃটির পারস্পরিক সংযোগ ঘটায়।

সংজ্ঞা ঃ একটি কৃঙলীর প্রবাহমাত্রার পরিবর্তন করে নিকটবর্তী অপর একটি বন্ধ কৃঙলীতে ক্ষণস্থায়ী তড়িৎপ্রবাহ উৎপন্ন করার উপরোক্ত ঘটনাকে পারস্পরিক আবেশ (mutual induction) বলা হয়।

পারস্পরিক আবেশাৎক এবং তার একক (Coefficient o mutual induction and its units) :

মুখ্য কুণ্ডলীতে তড়িৎপ্রবাহ চালু থাকলে তা থেকে চৌম্বক বলরেখা নির্গত হবে। ঐ বলরেখাগুলির কিছু অংশ গৌণ কৃণ্ডলীকে অতিক্রম করবে। S গৌণ কুণ্ডলীর মধ্য দিয়ে অতিক্রান্ত বলরেখার সংখ্যা অবশাই P মুখা কুণ্ডলীর প্রবাহমাত্রার সমানুপাতিক হবে। P মুখা কুণ্ডলীর তড়িৎপ্রবাহমাত্রা যখন i, তখন S গৌণ কুণ্ডলীর সাথে জড়িত চৌম্বক বলরেখার মোট সংখ্যা অথবা চৌম্বক ফ্লাক্স কুংলে,

এখানে M একটি শ্রবক যার মান কৃণ্ডলীদ্বরের আকার, প্রস্থচ্ছেদ, পাক-সংখ্যা, আপেক্ষিক অবস্থান ও গোণ কৃণ্ডলীর ভিতরস্থ মাধ্যমের ভেদাতার ওপর নির্ভর করে। এই ধ্রবকটিকে কুণ্ডলীদ্বরের পারস্পরিক আবেশাস্ক বলা হয়।

মপ্ৰত i = 1 হলে, $\phi = M$

● একটি কুশুলীর ভিতর দিয়ে একক মাত্রার তড়িৎপ্রবাহ গেলে কুশুলীতে যে চৌম্বক ফ্লাল্ল
 জড়িত হয়, তাকে কুশুলীদ্বয়ের পারস্পরিক আবেশাশ্ক বলা হয়।

থাবার (t) নং সমীকরণকে সমরোর (t) সাপেক্ষে ডিফারেন্সিয়েট করলে পাই, $\frac{d\phi}{dt}$ M . $\frac{di}{dt}$ এখন, থাবিষ্ট র্ডড়েন্ডালক বল $e=-\frac{d\phi}{dt}=-M.\frac{di}{dt}$ (ii)

ঋণা মুক bিহ্ন রোঝায় যে দুই কুগুলীর প্রবাহের অভিমুখ বিপরীত।

এখন $\frac{di}{dt}=1$ হলে, (ii) নং সত্তীকরণ হতে পাই, e=-M.

এথেকে অত্মরা পারস্পরিক আবেশাডেকর একটি বিকল্প সংগ্রা পাই।

সংখ্যা । মুখ্য কৃত্তনা তে একক হারে ততিংপ্ররহমান্তার পরিবর্তন হাল, গ্রাণ ক্ত্তনীতে হ ততিসালক বালর খ্যারশ হয়, সংখ্যালগুভারে (numerically) তাই হার কৃত্তলীহারের পালফারিক আরেশান্তন।

একক (Units) :

- (ক) পরম একক (Absolute unit) :
- (ii) নং সমীকরণে $\frac{di}{dt}$ = 1 emu s $^{-1}$ এবং e = 1 emu হলে M = 1 emu

মুখ্য কুণ্ডলীতে প্রতি সেকেন্ডে 1 emu হারে তড়িৎপ্রবাহমাত্রায় পরিবর্তন হলে, অপর কুণ্ডলীতে যদি 1 emu তড়িচ্চালক বল আবিষ্ট হয়, তবে তাদের পারস্পরিক আবেশাঙ্ক 1 emu।

- (খ) ব্যাবহারিক এবং এস. আই. একক (Practical and S. I unit):
- (ii) নং সমীকরণে $\frac{di}{dt}$ = i ampere s⁻¹ এবং e = 1 volt হলে, M = 1 henry.

মুখ্য কুগুলীতে প্রতি সেকেন্ডে 1 ampere হারে তড়িৎপ্রবাহমাদ্রার পরিবর্তন হলে অপর কুগুলীতে যদি 1 volt তড়িচ্চালক বল আবিন্ট হয় তবে তাদের পারস্পরিক আবেশাঙ্ক 1 henry। এটা পারস্পরিক আবেশাঙ্কের ব্যাবহারিক এবং এস. আই. একক।

● M-এর সর্বাধিক এবং সর্বনিম্ন মান ঃ M-এর মান সর্বাধিক হয় যখন মুখ্য কুগুলী এবং গৌণ কুগুলী পরস্পারের সমান্তরাল হয় কারণ তখন মুখ্য কুগুলী থেকে নির্গত চৌম্বক বলরেখাগুলি প্রায় পরিপূর্ণভাবে গৌণ কুগুলীর সাথে জড়িত হয়ে পড়ে; আবার M-এর মান সর্বনিম্ন হয় যখন মুখ্য কুগুলী এবং গৌণ কুগুলী পরস্পারের লম্ব অবস্থানে থাকে। তখন মুখ্য কুগুলী থেকে নির্গত বলরেখার প্রায় কোনো অংশই পৌণ কুগুলীর সাথে জড়িত হয় না।

5 10.

চৌস্বক ক্ষেত্রে ঝজু পরিবাহীর গতির দর্ন আবিষ্ট তড়িচ্চালিক বল (E.M.F induced in a linear conductor moving in a magnetic field):

তড়িচ্চুম্বকীয় আবেশ দ্বারা কোনো পরিবাহীতে তড়িচ্চালক বলের সৃষ্টি করা যায় তিন রকম উপায়েঃ (i) পরিবাহীকে স্থির রেখে চৌম্বকক্ষেত্রের পরিবর্তন করে (ii) চৌম্বকক্ষেত্রের প্রাবল্য স্থির রেখে পরিবাহীকে অথবা পরিবাহীর কোনো অংশকে চৌম্বক ক্ষেত্রের ভিতর গতিশীল করে এবং (iii) পরিবর্তনীয় চৌম্বকক্ষেত্রের মধ্যে পরিবাহীকৈ অথবা পরিবাহীর কোনো অংশকে গতিশীল করে—

অর্থাৎ প্রথম এবং দিতীয় পন্ধতির সংমিশ্রণের দারা। উত্ত প্রত্যেক ক্ষেত্রেই পরিবাহীর সাথে সংশ্লিষ্ট চৌদ্ধকফ্লাক্লের পরিবর্তন হবে এবং পরিবাহীতে তড়িচ্চালক বলের আবেশ হবে। এ পর্যস্ত আমরা প্রথম পন্ধতির কথা আলোচনা করেছি। এবার, দিতীয় পন্ধতির সম্বন্ধে আলোচনা করব।

AB একটি ঋজ্ব পরিবাহী। একটি চুম্বকের দুটি মেরুখন্ড (pole pieces) N-S কর্তৃক উৎপন্ন দিথার চৌম্বকক্ষেত্রে একে রাখা হয়েছে এবং চৌম্বক বলরেখার অভিলম্ব দিকে গতিশীল করা হয়েছে। চৌম্বক বলরেখা N-মেরু হতে S-মেরুর দিকে অনুভূমিক ভাবে গেছে এবং পরিবাহী দণ্ড AB ভাদের অভিক্রম করে ওপর-নীচে গতিশীল আছে [চিত্র 5.6]।

টোস্বকক্ষেত্রের অভিলম্বে AB পরিবাহী খাড়া নীচের দিকে গতিশীল হলে তা টেম্বক বলরেখা ছেদ করবে। এতে পরিবাহীর সাথে সংশ্লিষ্ট বলরেখার সংখ্যা অর্থাং টৌম্বক প্রবাহের (magnetic flux) পরিবর্তন ঘটাবে। ওড়িচ্চ্যুক্টার আবেশের সূত্রানুযায়ী পরিবাহাতে B হতে A অভিমুখে একটি গ্র্চিটালক বল কান্ত করবে এবং তির্টিচ্ছের পথে আবিষ্ট তড়িংপ্রবাহ চলবে। পরিবাহীর গতি যদি বিপরীত দিকে অর্থাৎ খাড়া ওপরের দিকে হয় তবে আবিষ্ট তড়িচ্চালক বলের অভিমুখ উপ্টে যাবে এবং তার দর্ন বহির্বর্তনীতে তড়িৎপ্রবাহের অভিমুখও উপ্টে যাবে। চৌম্বক ক্ষেত্রে পরিবাহীর গতির দারা এইরূপ আবিষ্ট তড়িচ্চালক বলের সৃষ্টি করা বৈদ্যুতিক জেনারেটারের মূলনীতি। পরিবাহী দণ্ড যদি বলরেখার সমান্তরালে গতিশীল হয়, তাহলে কোনো তড়িচ্চালক বলের আবেশ হয় না।

আবিষ্ট তড়িচ্চালক বলের মূল উৎস (Origin of induced e.m.f.): আমরা জেনেছি
যে, (i) পরিবাহীকে বা পরিবাহীর অংশকে পিয়র রেখে চৌম্বক ক্ষেত্রের ভিতর গতিশীল করে তড়িচ্চালক
বলের সৃষ্টি করা যায়। এই দুই পম্পতিতে অবশ্য তড়িচ্চালক বল সৃষ্টির কৌশল (mechanism)
আলাদা।

ধর, l দৈর্ঘ্যের একটি সরু দন্ড $\overrightarrow{\upsilon}$ স্থির গতিবেগ নিয়ে \overrightarrow{B} চৌম্বক ক্ষেত্রের ভিতর গতিশীল আছে

[চিত্র 5.7]। দভের দৈর্ঘ্য চৌম্বক ক্ষেত্রের অভিলম্ব এবং গতিবেগ 📆 দভের দৈর্ঘ্য এবং চৌম্বক ক্ষেত্র

উভয়েরই অভিলম্ব। দন্ডের স্বাধীন ইলেকট্রনগুলি একই গতিবেগ \overrightarrow{v} নিয়ে দন্ডের সাথে গতিশীল থাকে। উপরস্তু ইলেকট্রনগুলির স্বাভাবিক এলোমেলো (random) গতিবেগ ত' থাকেই। এলোমেলো গতিবেগের দরুন গড় চৌম্বক বল হবে শূন্য। সুতরাং, প্রতি মুক্ত ইলেকট্রনের উপর চৌম্বক ক্ষেত্র কর্তৃক প্রযুক্ত বল $\overrightarrow{F_v} = q \overrightarrow{v} \times \overrightarrow{B}$ যেখানে q = 2তি ইলেকট্রনের তড়িতাধান $(-1.6 \times 10^{-19} \mathrm{C})$ । এই বলের অভিমুখ AB বরাবর ; কাজেই মন্ত ইলেকট্রনগিল B এর দিকে অগ্রসর হয়। ফলে,

B প্রান্তে নেগেটিভ এবং A প্রান্তে পজিটিভ আধানের সমাবেশ হতে থাকে। দভের ভিতর তখন A থেকে B এর দিকে একটি প্রির তড়িৎক্ষেত্র (E) সৃষ্টি হয়। এই ক্ষেত্র প্রত্যেক মুক্ত ইলেকট্রনের উপর আর একটি

বল $\overrightarrow{F_c}$ প্রয়োগ করে যার মান $\overrightarrow{F_c}=q\overrightarrow{E}$ হয় ; দন্ডের দুই প্রান্তে পঞ্জিটিভ ও নেগেটিভ আধানের

সমাবেশ চলতে থাকে ততক্ষণ না $F_v=F_e$ হয় অর্থাৎ $|q\overrightarrow{v} imes B|=|q\overrightarrow{E}|$ অথবা vB=E হয়। এরপর আর AB দভের সাধীন ইলেকট্রনগুলির উপর কোন লব্ধ বল ক্রিয়া করে না এবং A এবং B বিন্দুর ভিতর বিভব-প্রভেদ দাঁড়ায় V=E.l=vBl

অভএব, গতিশীল মৃত্ত ইলেকট্রনগুলির উপর কার্যরত চৌশ্বক বল উত্ত বিভব প্রভেদ বজায় রাখে এবং একটি তড়িচ্চালক বল e = vBl এর উৎপত্তি করে। পরিবাহী দত্তের গতির জন্য উত্ত তড়িচ্চালক বল উৎ

পীয় হয় বলে, একে গভীয় ভড়িচ্চালক বল (motional e.m.f.) বলে।

আবিউ তড়িকালক বলের অভিমুখ : ফ্লেমিংএর ডানহাত নিয়ম : টোম্বক ক্লেরে অঞ্জু পরিবাহীর গতি
বর্তনীতে যে তড়িকালক বলের উল্লব করে তাব অভিমুখ
টোমিং-এর ডান হাত নিয়ম প্রযোগ করে পাওয়া যায়।
নিয়মটি নিয়রুপ :

ভানহাত্তৰ প্ৰথম ভিনটি আজাল প্ৰস্পাৰেৰ সাথে।
সম্কোণে প্ৰথম প্ৰসাধিত কৰে (চিন্ন 5.8)। যদি ভটনী
(fore-finger) উপক্ষেত্ৰৰে অভিমুখী হয় এবং ক্ষাজালি
(thumb) প্ৰিবাহীৰ প্ৰতৰ অভিমুখী হয়, গ্ৰেম মধ্যমা (middle finger) আবিন্ট ভড়িছাকৰ ব্ৰেব

অভিমুখ নির্দেশ করবে।

এখন, গ্রাড়স্কুটার আবেশ সূত্রনুযায়ী, দাঙে আবিদ্য গ্রাড়সালক বল, $e=rac{d\phi}{dt}$ – B.l.v

B । এবং । বর্ণশর্গনকে e.g.s পশ্বতিতে প্রকাশ করলে e ই. এম. ইউ (e.m.u) এককে প্রকাশিত হবে। আবার ঐ রাশিগৃনিকে S.I. পশ্বতিতে প্রকাশ করলে e ভোল্টে প্রকাশিত হবে। AB পরিবাহীর সাথে কোনো বর্তনী যুগু থাকলে বর্তনী দিয়ে গুড়ংপ্রবাহ ঘটবে। কর্তনীর মোট রোধ R হলে, প্রবাহমাত্রা i=B.l.v/R.

কোনো বিমান ভূ-সামন্তরালে উড়ে যাবার সময় তার ডানার দুই প্রান্ত-বিন্দুর মধ্যে বিভবপ্রভেদ উৎপদ হয়। এর কারণ ভ-সমান্তরাল গতির দর্ল বিমানের ধাতব দেহ ভ-টোদ্ধক ক্ষেত্রের উল্লদ্ধ উপাংশের সম্বোগে যায় এবং দেকের সাথে সংশ্লিষ্ট ভূ-টোদ্ধক প্রবাহের পরিবর্তন হয়। ফলে ডানার দুপ্রান্তে বিভবপ্রভেদ আবিষ্ট হয়। বলা বাহুলা, এই বিভবপ্রভেদ (i) ভূ-টোদ্ধক ক্ষেত্রের উল্লদ্ধ উপাংশ (B) (ii) ভালর নুই প্রান্তর ভিতর দুরত্ব (l) এবং (iii) বিমানের গতিবেগ (u) এর ওপর ভিতর করে,

D Examples D

1.2 m দীর্ঘ ধাতব স্পোকযুম্ভ একটি চক্র $5 \times 10^{-5} \text{ Wbm}^{-2}$ চৌম্বক ক্ষেত্রে অবিরত স্থান্ত। চৌম্বকক্ষেত্র চক্রের তলের অভিলম্ব। স্পোকের দুই প্রান্তে 10^{-2} volt বিভবপ্রভেদ উংশ্বং থাল চক্র প্রতি সেকেন্ড কতবার আবর্তন করছে তা নির্ণয় করে:।

উঃ। $e=rac{d\phi}{dt}=B imes$ প্রতি সেকেন্ড ক্ষেত্রফলের পরিবর্তন।

েত সৈকৈও আবর্তন সংখ্যা n হয় তবে ক্ষেত্রফলের পরিবর্তন $= n \times nr = n \times \pi \times (1.2)^2 \, \mathrm{m}^2$.

 $10^{-2} = 5 \times 10^{-5} \times n \times \pi \times (1.2)^{2}$

হাহবো,
$$n = \frac{10^{-2}}{5 \times 10^{-5} \times \pi \times (1.2)^2} = 44.2 \text{ rev s}^{-1}$$
.

পা হু নির্মিত একটি উড়োজাহাজের ডানার দুই প্রান্তীয় বিন্দুর দূরত্ব 5 m. উড়োজাহাজটি 360 kmh⁻¹ বেগে ভূ-সমান্তরাল উড়ে যাচেছ। চতুর্দিকস্থ ভূ-টৌশ্বক ক্ষেত্রের মান $4 \times 10^{-4} \, \mathrm{Wm}^{-2}$ এবং ঐ স্থানের বিনতি কোনো 30° হলে, ভানার দুই প্রান্তে জাবিস্ট তড়িচ্চালক বল নির্দয় করো।

উটা। উড়োজাহাজটি ভূ-সামন্তরাল উড়ে যাচেছ বলে তা ভূ-টোম্বক ক্ষেত্রের ইল্লম্ন উপাংশের দেবনা বিশার্থনকৈ ছেদ করবে এবং এ কারণে তার ভানার দুই প্রান্তে হড়িচ্চালফ কে হানত হান এবং ভূ টাম্বক ক্ষেত্রের উল্লম্ন উপাংশ V= ভূ-টোম্বক ক্ষেত্রের প্রাবল্য $\times \sin 30^\circ=4\times 10^{-4}\times \frac{1}{2}$ $\pm 2\times 10^{-4} \, \mathrm{Wb m}^{-2}$.

আবিষ্ট ভড়িচ্চালক বল e = B. l. v.

अशास्त्र, $B=2\times 10^{-4}\,\mathrm{Wbm}^{-2}$; $t=5\,\mathrm{m}$ 4वर $v=360\,\mathrm{kmh}^{-1}=100\,\mathrm{ms}^{-1}$. $e=2\times 10^{-4}\times 5\times 100=$ **0.1 volt.**

রোধ 1 Ω। টোম্বক ক্ষেত্রের বলরেখাগুলি বগাকার তারের তলের অভিলম্ব। তারের সাথে সংযুক্ত আছে একটি রোধ-সমবায় (network of resistors) যার প্রত্যেকটি রোধের মান 3 Ω। PQ এবং OS সংযোগীতার দুটির রোধ খুবই নগণ্য। বর্গাকার তারে 1 mA প্রবাহ উৎপদ্ধ করতে হলে তাকে কভ এবলে টোনে নিতে হবে ?

উঃ। A Q C S রোধ-সমবায়ের প্রত্যেকটি রোধ 3 Ω হওয়ায়, এটি ব্যালান্সড হুইটস্টোন

ব্রীটের নামি ব্যবহার করবে এবং AC বাহুতে কোনো প্রবাহ যাবে না। ফলে, সমবায়ের ভুলা রোধ $rac{1}{R}=rac{1}{6}+rac{1}{6}=rac{1}{3}$ অথবা $R=3~\Omega$;

অতএব, বর্তনীর মোট রোধ = 3 + 1 = 4 \, \Omega

সেহেতু তারে 1 mA (= 10^{-3} A) প্রবাহ যাবে, সেহেতু বর্তনীর বিভবপ্রভেদ = 4×10^{-3} volt। তারের গতির ফল্য তারের সঙ্গো সংশ্লিষ্ট চৌম্বক ফ্লাব্সের যে পরিবর্তন হবে সেটাই উপরোক্ত বিভবপ্রভেদ স্বিটি করবে।

এখন, চৌপুক ফুণুঞ্জুর পরিবর্তনের দর্ন সৃষ্ট বিভবপ্রভেদ = B. l. v

এখানে, $B = 2 \text{ Wbm}^{-2}$; l = 10 cm = 0.1 m; $v = v_0$

বিভবপ্রভেদ = $2 \times 0.1 \times v_0$ volt.

ধাতএব, $2 \times 0.1 \times v_0 = 4 \times 10^{-3}$ জথবা, $v_0 = 2 \times 10^{-2} \,\mathrm{ms}^{-1} = 2 \,\mathrm{cm} \,\mathrm{s}^{-1}$.

5.11 পরিবর্তী প্রবাহ (Alternating current):

কোনো ব্যাটারির দৃষ্ট প্রান্তের সাথে রোধক যুক্ত করা হলে রোধকের ভিতর দিয়ে তড়িৎপ্রবাহ ঘটে।
এই প্রবাহের একটি নির্দিন্ট অভিমুখ থাকে। প্রবাহ ব্যাটারির পজিটিভ প্রান্ত হতে নিগত হয়ে রোধকের
ভিতর দিয়ে ব্যাটারির নেগেটিভ প্রান্তে পৌছায়। তাছাড়া, তড়িৎপ্রবাহের সময় প্রবাহের মান প্রায় থির
থাকে। এই ধরনের প্রবাহকে ডি. সি. প্রবাহ বলে। যদি রোধকের ভিতর দিয়ে অথবা বর্তনীর বিশেষ
কোনো অংশের ভিতর দিয়ে তড়িৎপ্রবাহের অভিমুখ একমুখী না হয়ে নির্দিন্ট অবকাশ অন্তর অভিমুখ
পরিবর্তন করে— অর্থাৎ যে সময়ব্যাপী যেভাবে নির্দিন্ট অভিমুখে প্রবাহিত হয়়, ঠিক একই সময়ব্যাপী
একইভাবে বিপরীত দিকে প্রবাহিত হয়়, তবে সেই প্রবাহকে বলা হয় পরিবর্তী প্রবাহ। তাছাড়া, ডি. সি.
প্রবাহ যতক্ষণ বর্তনীতে প্রবাহিত হয়় ততক্ষণ প্রবাহের মান থির (constant) থাকে, কিন্তু পরিবর্তী
প্রবাহের মান একটি নির্দিন্ট সময় অন্তর সর্বাধিক ও সর্বনিম্ন মানের ভিতর পরিবর্তিত হয়়। অর্থাৎ নির্দিন্ট
সময় অন্তর পরিবর্তী প্রবাহের মানের প্নরাবৃত্তি ঘটে এই নির্দিন্ট সময়কে পরিবর্তী প্রবাহের প্রবাহকাল
(time-period) বলা হয়়। পর্যায়কালের এক অর্থে প্রবাহ পজিটিভ এবং পরবর্তী প্রবাহ করে থাকলে ক্ওলীতে
ঐরপ পরিবর্তী র্তাড়চালক বল আবিন্ট হয়়। কীভাবে পরিবর্তী প্রবাহ উৎপন্ন হয়়, আমরা এখন তার
আলোচনা করব।

5.10 নং চিত্রে চৌম্বকক্ষেত্রে অবিরত ঘুর্ণায়মান একটি কুগুলীর বিভিন্ন অবস্থা দেখানো হয়েছে। যখন ABCD কগুলীর ওল উল্লম্ব [চিত্র (a)] তখন তাতে কোনো তড়িচ্চালক বল আবিষ্ট হয় না। কুগুলী যতই

তির চিহ্নের দিকে ঘুরে (b) অবস্থানে আসতে থাকে তত তা বেশি পরিমাণে চৌম্বক বলরেখা ছেদ করে এবং কুগুলীতে আবিন্ট তড়িচচালক বলের পরিমাণও তত বাড়তে থাকে। সম্পূর্ণ 90° ঘুরে যখন ABCD কুগুলীর তল অনুভূমিক হয় [চিত্র (b)] তখন আবিন্ট তড়িচচালক বলের মানও সর্বাধিক হয়। আরও ঘুরে ABCD কুগুলী (c) অবস্থানের দিকে যেতে আরম্ভ করলে সংশ্লিন্ট চৌম্বক বলরেখার সংখ্যা কমতে থাকে: ফলে কুগুলীর আবিন্ট তড়িচচালক বলও হ্রাস পেতে থাকে; কুগুলী (c) অবস্থানে পৌছোলে অথ থি কুগুলীর তল পুনরায় উপ্লম্ব হলে, তড়িচচালক বলের মান শূন্য হয়; সুতরাং দেখা গেল যে আর্মেচার কুগুলীর আবর্তনের এক অর্ধে, তড়িচ্চালক বল শূন্য মান হতে বৃদ্ধি পেয়ে সর্বোচ্চ হয় এবং পরে আবার ধীরে ধীরে কমে শূন্য হয়।

আবর্তনের অপরার্ধে কুগুলী যখন (d) অবস্থানের দিকে যেতে থাকে তখন তার তড়িচ্চালক বলের অভিমুখ উপ্টে যায়। 5.10 নং চিত্র লক্ষ্য করলে দেখা যাবে যে (b) অবস্থানে AB বাহুতে তড়িচ্চালক বলের অভিমুখ পরস্পরের বিপরীত। বলা বাহুল্য, এই সকল অভিমুখ ফ্রেমিং-এর দক্ষিণ-হস্ত নিয়ম প্রয়োগ করলে পাওয়া যাবে। ABCD কুগুলী যখন আবর্তনের দ্বিতীয়ার্ধে (d) অবস্থানে আসে, তখন তা পুনরায় সর্বাধিক চৌম্বক বলরেখাকে ছেদ করে এবং বিপরীতমুখী তড়িচ্চালক বলের মান সর্বোচ্চ হয়। তার পর কুগুলী যত (e) অবস্থানের দিকে যেতে থাকে, আবিষ্ট তড়িচ্চালক বলের মান তত কমতে থাকে। কুগুলী যতক্ষণ চৌম্বক ক্ষেত্রে আবর্তন করবে, তড়িচ্চালক বলের এই পরিবর্তন-চক্র (cycle of changes) বারবার সম্পাদিত হবে।

5.10 নং চিত্রের তলায় তড়িচ্চালক বলের এই পরিবর্তন লেখচিত্রের সাহায্যে দেখানো হয়েছে। লেখ হতে বোঝা যায় যে তড়িচ্চালক বল পরিবর্তী (alternating) অর্থাৎ তড়িচ্চালক বল পরিবর্তনশীল এবং পর্যায়ক্রমে বিপরীতমুখী। কুণ্ডলীর সাথে যুক্ত কোনো বহিবর্তনী থাকলে, এই পরিবর্তী তড়িচ্চালক বল ঐ বর্তনীতে পরিবর্তী প্রবাহের (alternating current) উৎপত্তি করবে।

সংজ্ঞা ঃ যে প্রবাহ (অথবা যে তড়িচ্চালক বল) পর্যায়ক্রমে অভিমূখ পরিবর্তন করে এবং একটি নির্দিষ্ট সময়-অবকাশে (time interval) একটি নির্দিষ্ট পরিবর্তন চক্রের মধ্য দিয়ে যায়, তাকে পরিবর্তী প্রবাহ (অথবা পরিবর্তী তড়িচালক বল) বলে।

যে সময় অবকাশে উত্ত পরিবর্তন চক্রের পুনরাবৃত্তি ঘটে তাকে পরিবর্তী প্রবাহের (অথবা তড়িচ্চালক বলের) পর্যায়কাল বলে এবং এক সেকেন্ড যতুবার পরিবর্তন চক্রের পুনরাবৃত্তি ঘটে সেই সংখ্যাকে কম্পাশ্ক বলে।

পরিবর্তী তডিচ্চালক বল বা প্রবাহের সমীকরণ:

ঐরূপ পরিবর্তী তড়িচ্চালক বলকে নিম্নলিখিত সমীকরণ দ্বারা প্রকাশ করা যেতে পারে ঃ $E=t^*$ $E_0\sin\frac{2\pi t^*}{T}$. এক্ষেত্রে $E=t^*$ বেলনো মুহুর্তে (অর্থাৎ t মুহূর্তে) বর্তনীর তড়িচ্চালক বল ; $E_0=t^*$ বর্তনীর সর্বোচ্চ তড়িচ্চালক বল (একে অনেক সময় তড়িচ্চালক বলের শীর্ষমান বলা হয়।) এবং $T=t^*$ পরিবর্তী তড়িচ্চালক বলের পর্যায়কাল।

যখন t=0,T, 2 অথবা T (অথিৎ 5.10 নং চিত্রের a,c, এবং e অকথান), তখন, $\sin\frac{2\pi}{T}$ t=0 অথবা, E=0.

আবার যখন t=T/4 (অর্থাৎ 5.10 নং চিত্রের b অবস্থান) তখন $\sin\frac{2\pi}{T}$ t=+1 এবং $E=+E_0$

যখন t=3T/4 (অর্থাৎ, 5.10 নং চিত্রের d অবস্থানে) তখন $\sin\frac{2\pi}{T}\,t=-1$ এবং $E=-E_0$. অতএব কুগুলীর একবার পূর্ণ আবর্তনে আবিষ্ট তড়িচালক বল শূন্যমান হতে $+E_0$ হয়ে আবার শূন্যমান পায় এবং পরে অভিমুখ বিপরীত করে শূন্যমান হতে $-E_0$ হয়ে পুনরায় শূন্যমান পায়। অভিমুখ এবং মান এভাবে পরিবর্তিত হতে থাকলে, তড়িচালক বলকে পরিবর্তী তড়িচালক বল বলা হয়।

উপরিউত্ত পরিবর্তী তড়িচ্চালক বল কোনো বর্তনীতে প্রযুক্ত হলে, বর্তনী দিয়ে একটি পরিবর্তী তড়িৎ প্রবাহ যাবে এবং ঐ তড়িৎ-প্রবাহকে তড়িচ্চালক বলের মত সাইন-সদৃশ (sinusoidal) সমীকরণ দ্বারা প্রকাশ করা যায়। যথা, $i=i_0\sin\frac{2\pi}{T}$ ্রঃ

দ্বিষ্টব্য ঃ পরিবর্তী বর্তনীর প্রকারভেদে, বর্তনীর তড়িচ্চালক বল এবং তড়িৎপ্রবাহের ভিতর দশাপাথ ক্যি বিভিন্ন হয়। কখনও বা প্রবাহমাত্রা তড়িচ্চালক বল অপেক্ষা এগিয়ে থাকে আবার কখনও বা পিছিয়ে থাকে। তাদের ভিতর দশাপার্থক্য ϕ হলে তড়িৎপ্রবাহকে নিম্নলিখিত সমীকরণ দ্বারা প্রকাশ করা হয় ঃ $i = i_0 \sin\left(\frac{2\pi}{T}t.\pm\phi\right)$]

• গড় এবং আর. এম. এস. প্রবাহ (Mean and R.M.S. current):

পরিবর্তী প্রবাহের পর্যায়কালের প্রথমার্ধে তড়িৎপ্রবাহ যে অভিমুখে যায় দ্বিতীয়ার্ধে বিপরীত দিকে প্রবাহিত হয় বলে (চিত্র 5.10) একটি পূর্ণ পর্যায়কালে গড় প্রবাহমাত্রার মান হয় শূন্য। কাজেই সাধারণ অ্যামমিটার—যা নির্দিষ্ট অবকাশে প্রবাহের গড় মান নির্দেশ করে—তার সাহায্যে পরিবর্তী প্রবাহমাত্রা পরিমাপ করার চেন্টা করলে, কোনো ফলই পাওয়া যাবে না। পরিবর্তী প্রবাহমাত্রা পরিমাপ করতে হলে সেই ধরনের মাপনী যন্ত্র ব্যবহার করতে হবে যেগুলি তড়িৎপ্রবাহের তাপীয় ফলের ওপর ভিত্তি করে কাজ করে কারণ তড়িৎপ্রবাহের তাপীয় ফলে প্রবাহের অভিমুখের ওপর নির্ভরশীল নয়।

একটি পূর্ণ পর্যায়কালে পরিবতী প্রবাহমাত্রার গড় মান শূন্য হলেও, প্রবাহমাত্রার বর্গের গড় মান শূন্য নয়। কোনো নির্দিষ্ট পরিবাহী দিয়ে স্থির মানের (steady) তড়িংপ্রবাহ পাঠালে যে-হারে

$$E = -\frac{d\phi}{dt} = -\frac{d}{dt}(nAB\cos\omega t)$$
$$= -nAB\frac{d}{dt}(\cos\omega t) = nAB\omega \sin\omega t$$

কুজ্জীর আবর্তনের পর্যায়কাল T হলে, $\omega=\frac{2\pi}{T}$ $E=n\,A\,B$ $\sin\,\frac{2\pi}{T}\,t=E_0\,\sin\,\frac{2\pi}{T}\,t$ $E_0=n\,A\,B$ $E_0=n\,A\,B$ তে ভাগিক তিন্দুচালক বলের সর্বোচ্চ মান

^{*} ধরো, কুঙলীর ক্ষেত্রফল =A এবং যে-কোনো এক সময় (t সেকেন্ডে) কুঙলীর তল B চৌম্বক ক্ষেত্রের সাথে θ কোণ করে আছে। তখন কুঙলীর ভিতর দিয়ে চৌম্বক প্রবাহ =A. B. $\cos\theta$; কুঙলীর পাকসংখ্যা n হলে, মোট চৌম্বক প্রবাহ $\phi=nA.B.\cos\theta$.

কুণ্ডলী সমকৌণিক বেগ $_0$ নিয়ে আবর্তন করলে $\theta=\omega t$. কাজেই, t সেকেণ্ডে কুণ্ডলীর সহিত জড়িত চৌম্বক প্রবাহ $\phi=n$ $A.B.\cos \omega t$ ফারোডের সূত্রানুযায়ী চৌম্বক প্রবাহের পরিবর্তনের দর্ন কুণ্ডলীতে আবিষ্ট হড়িচ্চালক বল

তাপের উদ্ভব হয় তা ঐ একই পরিবাহী দিয়ে কোনো পরিবতী প্রবাহ পাঠালে তাপ উৎ পাদনের গড় হারের সমান হলে ঐ প্রিরমানের তড়িৎপ্রবাহমাত্রাকে উদ্ভ পরিবতী প্রবাহের কার্যকর মান অথবা গড় বর্গের বর্গমূল মান root mean square ২৮০ rm ১। বলা হয়।

্কানে পণ চাকেব ব'হন সময়কাৰ হ'ছিচ্চ'লক বল ব' প্ৰাহের বর্গ নিয়ে হাদের শাহ ছিচারণ করার পর ঐ গাহ্মানেব বর্ণমূল ছিলে শাহ্রাগরি বর্ণমূল মান পাহ্যা যায়। যদি পরিবাটী ইভিংপুলাই ও পরিবাচী ইছিচ্চ'লক বলাকে যথাক্যমে $I=I_0\sin\frac{2\pi t}{T}$ এবং $E=E_0\sin\frac{2\pi t}{T}$ র'বা প্রকাশ করা হয় হবে প্রমাণ করা যায় যে,

গড় প্রবাহ
$$I_{\rm cri} = \frac{2I_0}{\pi} = \frac{2}{\pi}$$
 ত ওছপ্রবাহের নার্মান (I_0)

ণড় গুড়স্তালক কল
$$E_{aa}=rac{2}{\pi}$$
 - গুড়স্তালক কলের শীর্মান (E_0)

অব.এম.এস প্রবাহ
$$I_{rms}=rac{I_0}{\sqrt{2}}=rac{1}{\sqrt{2}} imes$$
 তড়িৎপ্রবাহের শীর্ষমান

্রেব. এম. এস তড়িচ্চালক বল
$$E_{rms}=rac{E_0}{\sqrt{2}}=rac{1}{\sqrt{2}} imes$$
 তড়িচ্চালক বলের শীর্ষমান

পরিবর্তী প্রবাহ একমুখী প্রবাহ (d.c.) অপেক্ষা বেশি বিপ্রজ্জনক কেন

কোনো পরিবর্তী প্রবাহ বর্তনীতে (alternating current circuit) তড়িচ্চালক বল বা প্রবাহমাঞার উল্লেখ করলে সর্বদ্য তাদের গড় বর্গরেগের বর্গমূল মানকেই বৃঝানো হয়। যেমন, 220 ভোল্ট পরিবর্তী ইডিচ্চালক বল বললে তা তড়িচ্চালক বলের গড় বর্গের বর্গমূল মান বোঝারে। তার শীর্ষমান $E_0=\sqrt{2}\times 220=311$ ভোল্ট। এথেকে বোঝা যায় যে-কেনে 220 volt a.c. হতে পাওয়া শক্ 220 volt d.c. হতে পাওয়া শক্ অপেক্ষা অনেক বেশি বিপজ্জনক। 220 volt d.c. যে শক্ দেরে তা 220 volt দারাই হবে—তার বেশি নয়। কিন্তু 220 volt a.c. এর শীর্ষমান 311 volt হওয়ায় এর দরুন শক্ হবে 311 volt দারা। মানুষের পক্ষে এটি অধিকতর বিপজ্জনক।

দূরবতী স্থানে তড়িৎশক্তি প্রেরণের বেলায় পরিবতী প্রবাহ নানাকারণে সুবিধাজনক প্রমাণিত হয়েছে। তাই, বিস্তৃত পরিসরে তড়িৎশক্তি উৎপাদনের ক্ষেত্রে বর্তমানে শতকরা প্রায় 90 ভাগই পরিবতী প্রবাহ উৎপাদন করা হচ্ছে।

একমুখী প্রবাহ ও পরিবর্তী প্রবাহের মধ্যে তুলনা (Comparison between direct current and alternating current):

TRACT WATER LAND

- পরিবর্তী প্রবারের মান ও আভিমুখ সময়ের সঙ্গে পরিবর্তিত হয়
- একটি নির্নিষ্ট সময় সন্তর পরিবাতী প্রবাহের অভিমুখ বারবার বিপরীত হয়
- পরিবর্তী প্রবাহের খান একটি নির্দিষ্ট সময় অন্তর শ্বন হয়।
- পরিবতী তড়িচালক বল ও প্রবাহের ম্পো দ*" পার্থকা থাকে : কখনও তড়িচালক বল এগিয়ে থাকে ; আবার কখনও তড়িছ-প্রবাহ এগিয়ে থাকে।

क्कृषीः अवाव (IXC)

- একম্থী প্রাঙের মান ও আভিনুখ সময়ের সজো পরিবর্তিত হয় না।
- একম্মী প্রবাহের অভিম্য সর্বদা একই দিকে থাকে।
- 3. বর্তনীতে একম্থী প্রবহ চলাকালীন, প্রবাহমাঞা কখনও শন্ত হয় না
- একড্র, প্রতি রতিনাতে তড়িচালক বল ও প্রবারের মাধ্য কোনো দশ্য প্রথকা থাকে না ;
 এরা সর্বান সমদশাস থাকে ;

STATE STATE (A.C.)

5. প্ৰিত্তী প্ৰবাহ নিয়ন্ত্ৰ কৰাৰ জন্ম 보기점하다 unductor) 전 원선(호회 (capacitor) i 토토리 tohmic resistor) 표정(호회) अल्. (क्रम)

Interest to GIG 500 all 1

5. একম্বা প্রার ১ মুদ্রুল করার জন্য ও**হ**নীয়

6. পরিবর্তী প্রবাচ ওছম সত্র কটোরভাবে | 6. একমখা প্রবাচ সর্বাদ ওছম সত্র মেনে ठिला।

☐ EXAMPLES ☐

ি কোনো পরিবতী প্রবাহমাত্রা $i=10\sin{(200\pi t-\pi/15)}$ দারা প্রকাশ করলে, সর্বোচ্চ প্রবাহমাত্রা এবং কম্পাৎক নির্ণয় করো।

উঃ। সাধারণভাবে পরিবতী প্রবাহকে $i=i_0\sin\left(rac{2\pi}{T}.t\pm\phi
ight)$ এই সমীকরণ দারা প্রকাশ করা হয়। একেরে i_0 সর্বোচ্চ প্রবাহমাত্রা এবং T= প্রবাহমাত্রার পর্যায়কাল।

প্রদত্ত সমীকরণকে সাধারণ সমীকরণের সাথে তলনা করলে আমরা দেখতে পাই যে, i_0 = সর্বোচ্চ প্রবাহমাত্রা = $10~\mathrm{A}$ এবং $200~\pi=rac{2\pi}{T}$ অথবা $T=rac{1}{100}=0.01~\mathrm{s}$; আবার কম্পাঙ্ক $n = \frac{1}{70} = 100 \text{ cycle s}^{-1}$.

20 cm × 10 cm ক্ষেত্রফল যুক্ত এবং 485 পাকের একটি আয়তাকার তারকঙলী 20 Wbm⁻² প্রাবল্যের সুষম চৌম্বক ক্ষেত্রে 1800 r.p.m বেগে আবর্তন করছে। চৌম্বক ক্ষেত্রের সাথে কুণ্ডলী যখন 60° কোণ করে তখন কণ্ডলীতে উৎপন্ন তড়িচ্চালক বল নির্ণন্ন করো। এক্ষেত্রে তড়িচ্চালক বলের গরিষ্ঠ এবং লঘিষ্ঠ মান কত ?

উঃ। উৎপন্ন তড়িচ্চালক বলের মান $E=nAB\omega$. $\sin\theta$ [443 পৃষ্ঠার ফুটনোট দ্রন্থবা]

এখানে,
$$n=485$$
; $A=\frac{20\times15}{10^4}~{\rm m}^2$; $B=20~{\rm Wbm}^{-2}$; $\omega=2\pi\times30=60\pi$

[1800 r.p.m = 30 r.p.s] এবং θ = 60°.

$$\therefore E = 485 \times \frac{20 \times 15}{10^4} \times 20 \times 60\pi \times \sin 60^\circ.$$

$$\frac{485 \times 20 \times 15 \times 20 \times 60\pi \times \sqrt{3}}{2 \times 10^4} = 4.75 \times 10^4 \text{ V}$$
 (প্রায়)

(i) ৩ড়িচ্চালক বল গ্রিষ্ঠ মান পায় যখন $0=90^\circ$ অথবা $\sin\theta=1$

$$E_{\text{max}} = 485 \times \frac{20 \times 15}{10^4} \times 20 \times 60\pi = 5.48 \times 10^4 \text{ V}.$$

(ii) ৩ড়িচালক বল লঘিন্ট মান পায় যখন $\theta=0^\circ$ অথবা $\sin\theta=0$

$$\therefore E_{\min} = 0.$$

3 50 cycle/s কম্পাম্কয়র পরিবর্তী তড়িৎপ্রবাহ বর্তনীতে গড় প্রবাহমাত্রা 45A। প্রবাহের শীর্ষমান কত ? প্রবাহ শূন্য মান পাবার $rac{1}{100}$ সেকেন্ড পরে বর্তনীর প্রবাহমাত্রা কত ?

উঃ। গড় প্রবাহ
$$=\frac{2}{\pi}\times$$
 তড়িৎপ্রবাহের শীর্ষমান। অথবা $45=\frac{2}{3.14}\times I_0$ অথবা $I_0=\textbf{70.65}$ A. আবার, $I=I_0\sin\frac{2\pi}{T}.t=70.65\,\sin\left(2\pi\times50\times\frac{1}{400}\right)$ A $=70.65\,\sin\pi/4$ $=70.65\times\frac{1}{\sqrt{2}}$ $=\textbf{50}$ A $($ প্রায় $)$ ।

5.13 ডায়নামো (Dynamo) :

আধুনিক সভ্য জগৎ তড়িৎশক্তির ওপর নির্ভরশীল এবং বিষ্ণৃতক্ষেত্রে তড়িৎপ্রবাহ সরবরাহ করতে হলে
ডায়নামো একান্ত অপরিহার্য বিদ্যুৎ যন্ত্র। ডায়নামো দুই প্রকারের হতে পারে : (1) অল্টারনেটার (Alternator) বা A.C. ডায়নামো যা কোনো বর্তনীতে পরিবর্তী (alternating) তড়িৎপ্রবাহ
সরবরাহ করে ও (2) সমপ্রবাহ (Direct current) বা D.C. ডায়নামো যা—কোনো বর্তনীতে সমতড়িৎ
প্রবাহ সরবরাহ করে। ডায়নামোর আর একটি বহুল-ব্যবহৃত নাম জেনারেটার (generator)।

এই দুই যন্ত্রের মূলনীতি তড়িচ্চুম্বকীয় আবেশের ওপর প্রতিষ্ঠিত। একটি বন্ধ কুন্ডলীকে (closed coil) যদি কোনো চৌম্বকক্ষেত্রের ভিতর অবিরত ঘুরানো যায় তবে ঐ ঘূর্ণায়মান কুন্ডলীর সাথে জড়িত বলরেখার সংখ্যা সর্বদা পরিবর্তিত হবে। সূতরাং তড়িৎ-চুম্বকীয় আবেশ অনুযায়ী উত্ত কুন্ডলীতে একটি তড়িচ্চালক বল আবিষ্ট হবে। যদি ঐ কুন্ডলীর দুই প্রান্ত একটি বহির্বর্তনীর (external circuit) সাথে যুক্ত থাকে তবে ঐ বর্তনীতে পরিবর্তী তড়িৎ প্রবাহের উৎপত্তি হয়। এই পরিবর্তী তড়িৎপ্রবাহকে সমপ্রবাহে পরিণত করতে হলে কমুটেটার (commutator) নামক একটি ব্যবস্থার সাহায্য নিতে হয়। উপরিউক্ত দুই রকম ডায়নামোর সৎক্ষিপ্ত বিবরণ নিম্নে দেওয়া হল।

(1) A.C. **ডায়নামো :** 5.11 নং চিত্রে এই যন্ত্রের গঠনপ্রণালীর নকশা বুঝানো হয়েছে। একটি নরম লোহার চোঙের ওপর কয়েক পাক তামার তার জড়িয়ে **আর্মেচার** (armature) তৈরি করা হয়। এই

আর্মেচার একটি শক্তিশালী চৌম্বকক্ষেত্রে ঘুরতে পারে। এই চৌম্বকক্ষেত্র যে চুম্বকের (N.S) সাহায্যে উৎপন্ন করা হয় তাকে ক্ষেত্রচুম্বক (field-magnet) বলে। আর্মেচার কুন্ডলীর শেষ দুই প্রান্ত ধাতু-নির্মিত দুটি আংটার (slip rings) সাথে যুক্ত। এই আংটা দুটি আর্মেচারের সাথে ঘুরতে পারে। কার্বন নির্মিত দুটি ব্রাশা (brush) এরপভাবে রাখা হয় যে, যখন আর্মেচার ঘুরতে থাকে তখন তারা আংটার সাথে আলগাভাবে ঠেকে থাকে। এই ব্রাশা দুটির সঙ্গো বহিবর্তনী যুক্ত করে বহিবর্তনীতে পরিবর্তী তভিৎ প্রবাহ সরবরাহ করা হয়।

যখন আর্মেচারকে ঘ্রানো হয় তখন আর্মেচার-ক্ভলী
টোদ্ধক ক্ষেত্রের বলরেখাগুলিকে চেদ করে। তখন তড়িছ
চূদ্ধকীয় আবেশের নিয়মান্যখ্যী কুঙলীতে তড়িচ্চালক বল
আবিষ্ট হয়। এই আবিষ্ট তড়িচ্চালক বলের অভিমুখ কোন্
দিকে তা ফ্রেমিং-এর ভান হাত নিয়ম বা ভায়নামো নিয়ম
(dynamo rule) ছারা নির্ণয় করা যায়।

মনে করো, ABCD আর্মেচার কুগুলী N-S চুম্বক মেরুদ্বয়ের মধ্যে XY অনুভূমিক রেখাকে অক্ষ করে অবিরত ঘুরছে। ঘোরার অভিমুখ তিরচিহ্ন দিয়ে দেখানো হয়েছে। কোনো এক সময়, ধরা যাক কুগুলী অনুভূমিক অবস্থায় এল [5.12(i) নং চিত্র]। এখন AB বাহু উপরের দিকে যাবে এবং CD

বাহু নীচের দিকে যাবে। যদি উভয় বাহুতে ফ্রেমিং-এর ডান হাত নিয়ম প্রয়োগ করা যায়, তবে দেখা যাবে, AB বাহুতে আবিন্ট তড়িপ্রবাহ A থেকে B-এর দিকে অভিমুখী এবং CD বাহুতে C থেকে D-এর দিকে অভিমুখী। সূতরাং সমস্ত কুণ্ডলীর কথা বিবেচনা করলে প্রবাহ ABCD অভিমুখে চলবে। এই ধরনের প্রবাহ চলবে যতক্ষণ না কুণ্ডলী উলম্ব (vertical) অবস্থায় আসে [5.12(ii) নং চিত্র] এই সময় AB এবং CD বাহুবয় ক্ষণিকের জন্য টোম্বক ক্ষেত্রের সমান্তরালভাবে চলে বলে মুহুর্তের জন্য কুণ্ডলীতে কোনো প্রবাহ থাকে না। কিন্তু পরমুহূর্তে গতিজড়তার জন্য AB বাহু নীচের দিকে এবং CD বাহু উপরের দিকে যেতে শুরু করবে। পুনরায় ফ্রেমিং-এর নিয়ম প্রয়োগ করলে দেখা যাবে যে এইবার কুণ্ডলীর তড়িৎ প্রবাহের অভিমুখ উল্টে গেছে। এই উল্টো প্রবাহ চলবে যতক্ষণ না কুণ্ডলী পুনরায় উলম্ব অবস্থায় আসে। মনে রাখার সুবিধার জন্য বলা যেতে পারে, (i) কুণ্ডলী উলম্ব অবস্থা পার হলে প্রবাহের অভিমুখ উল্টে যায় এবং (ii) অনুভূমিক অবস্থায় এলে প্রবাহের মাত্রা সর্বাপেক্ষা বেশি হয়। সূতরাং একবার পূর্ণ আবর্তনের অর্ধেক সময় কুণ্ডলীতে প্রবাহ যে দিকে চলে বাকি অর্ধেক সময়ে প্রবাহ উল্টো দিকে চলে। তার ফলে বছর্বর্তনীতে ভড়িৎপ্রবাহ পরিবর্তী (alternating) হয়।

পূর্বে উল্লেখ করা হয়েছে ভায়নামোতে উৎপন্ন তড়িচ্চালক বলের সর্বোচ্চ মান $E_0=nAB\omega$. এখানে n= আর্মেচার কন্দ্রনীর পাক সংখ্যা : A= আর্মেচার কন্দ্রনীর ক্ষেত্রখল : B= টৌম্বক ক্ষেত্রের প্রাবল্য এবং $\omega=$ কন্দ্রনীর ঘূর্ণনের কৌনিক কো (443 পৃষ্ঠার যুট-নোট দ্রন্টব্য)। উদ্ভ সম্পর্ক হতে বলা যায়,

- (i) চৌশ্বক ক্ষেত্রের প্রাবলোর (B) হ্রাসবৃন্ধির সাথে সমানুপাতে তড়িচ্চালক বলের (E_0) হ্রাসবৃন্ধি হবে,
 - (ii) কুঙলীর পাক সংখ্যায় (n) য়াসবৃশ্বির সাথে সমানুপাত তড়িচ্চালক বলের য়াসবৃশ্বি হরে।
- (iii) কুওলীর ঘৃর্ণনের কৌণিক বেণের (ω) হাসবৃদ্ধির সাথে সমানুপাতে তড়িচ্চালক বলের হাসবৃদ্ধি
 হবে,
 - (iv) কুন্ডলীর ক্ষেত্রফলের (A) হ্রাসবৃশ্বির সাথে সমানুপাতে তড়িচ্চালক বলের হ্রাসবৃশ্বি হরে।

ভায়নামো বা জেনারেটারে শক্তির উৎস ঃ

ভায়নামো বা কেনারেটারে যান্ত্রিক শস্ত্রিকে হড়িং শস্ত্রিতে বৃপার্গ্রনত করা হয়। ভায়নামোর আর্থিটারক ঘোরাবার জনা সাধারণত দিয়ে-টারবাইন (steam turbine) বা জল সিবোইন (water turbine) বাবহার করা হয়। দিয়ে টারবাইনে কয়পাব দহনে উচ্চ চাল ও হাপ্যারার পিয়া উংপল্ল করা হয় এবং ঐ সিন্মের তাপশান্ত বা গতিশান্ত টারলাইন ও ৩ৎসও আমেচারকে চালিত করে এক্ষেত্রে জ্বালানির (অর্থাৎ কয়লা) রাসায়নিক শন্তি প্রথমে স্টিমের গতিশান্ত ও পরে টারলাইন ও আর্মেচারের যাদ্ধিক শন্তিও পরিগত হয় এই যাদ্ধিক শন্তিই ভারনামোর তড়িৎশন্তির উৎস। এই ধরনের ভারনামোকে ভাপীয় ভেনারেটর (thermal generator) বলা হয়। পশ্চিমবজো কোলাঘাট, ব্যান্ডেল প্রভৃতি ভায়গায় এই ধরনের তাপীয় ভেনারেটার দ্বারা বিদাৎশন্তি উৎপন্ন করা হচ্চে।

জল-টাবেশইনে উচ্ জলাধারে সন্ধিত জলের স্থিতিশক্তিকে প্রথমে গতিশক্তিতে পরিণত করা হয় : জলের এই গতিশক্তি টারবাইন ও ৩ৎসহ আর্মেচারকে চালনা করে। এক্ষেত্রে যাদ্রিক শক্তিকে সরাসরি বিদ্যুৎশক্তি উৎপাদ্রের কাজে লগোনো হয়। এই ধরনের ভায়নামোকে জলবিদ্যুৎ জেনারেটার (hydroelectric generator) বলা হয়। মাইথন, পান্ধেৎ প্রভৃতি ভায়গায় এই ধরনের জলবিদ্যুৎ জেনারেটার বসানো হয়েছে বলা বাহুলা, তাপীয় জেনারেটার অপেক্ষা জল-বিদ্যুৎ জেনারেটার দ্বারা বিদ্যুৎশক্তি উৎপাদন আনেক কম খরচে করা যায় কারণ জল-বিদ্যুৎ জেনারেটারে কয়লার মতো কোনো জ্বালানির প্রয়োজন হয় না।

5.14) মোটর (Motor):

মোটরের কার্যনীতি ডায়নামোর কার্যনীতির ঠিক বিপরীত। ডায়নামোতে যান্ত্রিক শক্তির বদলে তড়িৎশক্তি পাওয়া যায়। মোটরে ঠিক তার বিপরীত—তড়িৎশক্তি হতে যান্ত্রিক শক্তি পাওয়া যায়।

মোটর দুই প্রকারের হতে পারে। (1) সম-প্রবাহ মোটর বা Direct current motor থাকে সংক্ষেপে D.C. motor বলে এবং (2) পরিবতী প্রবাহ মোটর বা Alternating curent motor থাকে সংক্ষেপে A.C. motor বলে। আমরা এখানে সম-প্রবাহ মোটর—অর্থাৎ D.C. motor সম্বন্ধে আলোচনা করব।

মোটরের গঠনপ্রণালী ডায়নামোর অনুরূপ ; অর্থাৎ ডায়নামোর ন্যায় মোটরে আর্মেচার, শক্তিশালী ক্ষেত্র-চুম্বক, ব্রাশ, কমুটেটার প্রভৃতি থাকে।

চিত্র 5.13 (i) এবং (ii) দারা মোটরের কার্যপ্রণালী বুঝানো হল। ABCD আর্মেচার কুণ্ডলী। কুণ্ডলী একটি অনুভূমিক অক্ষ LL-এর চতুর্দিকে ঘুরতে পারে। কুণ্ডলীর সাথে একটি তড়িৎ কোশ যুক্ত। ধরো, তড়িৎপ্রবাহ DCBA অভিমুখে যাচ্ছে এবং কুণ্ডলী অনুভূমিক অবস্থায় আছে। এই অবস্থায় তড়িৎ কোশের পজিটিভ মেরু কমুটেটার-এর P-পাতের সাথে এবং নেগেটিভ মেরু Q-পাতের সাথে যুক্ত। 5.12 নং চিত্র। আমরা জানি, তড়িৎবাহী সম্বয়শীল তার চৌম্বক ক্ষেত্রে রাখলে ঐ তার একটি বল অনুভব করে এবং বিক্ষিপ্ত হয়। বিক্ষেপের দিক্ ফ্রেমিং-এর বামহন্ত নিয়ম দ্বারা নির্ণয় করা যায়। এস্থলে

AB এবং CD বাহুতে তড়িৎপ্রবাহ আছে এবং তারা N-S চৃষ্ণকের চৌষক ক্ষেত্রে অবস্থিত। সূতরাং তারা প্রত্যেকে একটি বল অনুভব কররে। ফ্রেমিং-এর বামহস্ত নিয়ম প্রয়োগ করলে দেখা যাবে, AB তার উর্দ্ধম্থী এবং CD তার নিম্নমুখী বল অনুভব করে, কারণ দুই বাহুতে গ্রন্থং প্রবাহের অভিমুখ উল্টো। CB এবং AD বাহু কোনো বল অনুভব করে না, কারণ, তাদের তড়িং প্রবাহের অভিমুখ চেম্বক্রের অভিমুখ কিন্তুর করে নারার অভিমুখ তিরচিহ্ন দ্বারা দেখানো হয়েছে [5.13 (i) নং চিত্র]। কুগুলী ঘুরে যখন খাড়া (vertical) অবস্থায় আসে [5.13(ii) নং চিত্র] তখন P-Q কমুটেটারের সাহাব্যে কুগুলীতে তড়িৎপ্রবাহের অভিমুখ উল্টে দেওয়া হয়। অর্থাৎ, কোশের পজিটিভ মেরু Q-পাতের সঙ্গো এবং নেগেটিভ মেরু P-পাতের সঙ্গো যুগু হয়। কুগুলীতে এখন তড়িৎপ্রবাহ ABCD অভিমুখে প্রবাহিত হবে [5.13(ii) নং চিত্র]। পুনরায় AB ও CD বাহুতে ফ্রেমিং-এর বামহস্ত নিয়ম প্রয়োগ করলে দেখা যাবে, তাদের ওপর বলের অভিমুখ উল্টে গিয়েছে—অথ বি CD তার উর্দ্ধমুখী এবং AB তার নিম্নমুখী বল অনুভব করছে। ফলে কুগুলী একই দিকে ঘুরে যাবে। এইরুপ যখনই কুগুলী থাড়া অবস্থায় আসে তখনই কম্টেটারের সাহাব্যে তড়িৎ প্রবাহের অভিমুখ বদলে কুগুলীকে সর্বদা একই দিকে ঘুরানো হয়। তড়িৎ প্রবাহের মাত্রা বাড়িয়ে এবং শক্তিশালী চুম্বক ব্যবহার করে কুগুলীকে প্রবলবেগে ধেরোনো যেতে পারে। কুগুলীর এই আবর্তনকৈ নানাভাবে অন্য কার্যে প্রয়োগ করা হয়। এটাই D.C. মোটরের নীতি।

বৈদ্যুতিক পাখা, ট্রামগাড়ি, পাম্প, রোলিং মিল প্রভৃতিতে মোটরের ব্যাবহারিক প্রয়োগ দেখতে পাওয়া যায়।

• মোটরে পশ্চাৎবর্তী তড়িচ্চালক বল (Back e.m.f. in motors):

মোটরের ক্ষেত্র চুম্বকের চৌম্বকক্ষেত্রে যখন আর্মেচারে কুগুলী দ্বুতবেগে ঘুরতে থাকে তখন কুগুলীর সাথে জড়িত চৌম্বক বলরেখার সংখ্যার পরিবর্তন হয়। এতে কুগুলীর প্রান্তে একটি তড়িচচালক বল আবিষ্ট হয়। লেঞ্কের সূত্রানুযায়ী এই তড়িচচালক বল আর্মেচার কুগুলীকে যে তড়িংপ্রবাহ ঘোরায় সেই প্রবাহের বিরুপ্রচারণ করে। এই কারণে এই তড়িচচালক বলকে 'পশ্চাৎবর্তী তড়িচচালক বল বলা হয়। আর্মেচার কুগুলীর সাথে যুক্ত ব্যাটারির তড়িচচালক বল E, পশ্চাৎবর্তী তড়িচচালক বল V এবং কুগুলীর রোধ r হলে, আর্মেচার কুগুলীর প্রবাহমাত্রা $i=\frac{E-V}{r}$; সাধারণত আর্মেচার কুগুলীর রোধ প্রায় 1 Ω -এর মতো নিম্নমানের থাকে।

পশ্চাৎবতী ভড়িচ্চালক বল নির্ভর করে (i) ক্ষেত্র-চুম্বকের চৌসক প্রাবলাের ওপর এবং (ii) আর্মেচার কুণ্ডলীর আবর্তন গতিবেগের ওপর। যখন মোটরকে প্রথম চালু করা হয়, তখন পশ্চাৎবতী ভড়িচ্চালক বলের মান শুন্য থাকে কিছু কুণ্ডলীর আবর্তন গতিবেগ যত বাড়তে থাকে পশ্চাৎবতী ভড়িচ্চালক বলভ তত বাড়তে থাকে। বড় আকারের মোটরের বেলায়, প্রারম্ভিক প্রবাহ (starting current) খ্ব উচ্চমানের হয়। একে সীমিত না করলাে আর্মেচার কুণ্ডলী পুর্ছে করা থ প্রারম্ভিক প্রবাহকে সীমিত রাখার জন্য কুণ্ডলীর সাথে শ্লেণি সমবায়ে একটি পরিবর্তনীয় রোধ যুক্ত করা থ কিন। যত কুণ্ডলীর আবর্তন বেগ বাড়তে থাকে তত এই পরিবর্তনীয় রোধের মান হ্রাস করা হয়। কুণ্ডলী পূর্ণ বেগ লাভ করলে রোধ সম্পর্ণ ভেদ করা হয়।

মেটির সম্পূর্ণ চালু অবস্থায়, পশ্চাৎবর্তী র্যন্তিচালক বল (V) গুড়িৎপ্রবাহ সরবরাহকারী ব্যাটারির গুড়িস্ঠালক বলের (E) প্রায় সমান হয়। যেমন, মেইনস্ $(E=220~{
m volt})$ চালিও মেটিরে পশ্চংবর্তী কড়িস্ঠালক বল প্রায় $210~{
m volt}$ -এর মতো হতে পারে। আর্মেচার কুড়লীর রোধ $1~\Omega$ হলে পূর্ণচালু অবস্থায় মোটরের গুড়িংপুরাহমার = $220-210=10~{
m A}$; কিন্তু কোনো প্রবিদ্ধিক রোধ istarting resistance) ব্যবহার না করে ঐ মাটিরকে মখন প্রথম চালু করা হয়, তখন প্রারান্তক প্রবাহ হয় $220~{
m A}$ । এত উচ্চমানের প্রবৃধ্যে আর্মেচার কড়লী প্রভূমানের

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- দৃটি একই রকমের রিং—একটি তামার এবং অপরটি কাঠের—পালাপালি রাখা আছে।
 দৃটি দশু চুত্বককে একই উচ্চতা হতে রিং দৃটির অক্ষ বরাবর অবাধে পড়তে দেওয়া হল।
 দটি চত্বক দশুই কি একই স্বরণ নিয়ে পড়বে ?
- যথন দশু চুম্বক তামার রিংয়ের দিকে অগ্রসর হবে অথবা রিং হতে দূরে সরে যাবে তখন রিং-এর সাথে সংলিন্ট টোম্বক ফ্লাব্রের পরিবর্তন ঘটবে। অগ্রসর হবার সময় ফ্লাক্স পরিবর্তনের হার বৃদ্ধি পাবে এবং দূরে সরে যাবার সময় হ্রাস পাবে। উভয়ক্ষেত্রেই তামার রিং-এ একটি তড়িচ্চালক বলের উত্তব হবে। কারণ তামা তড়িং পরিবাহী। লেশ্ধ সূত্রানুযায়ী, আবিন্ট তড়িচ্চালক বল দশু-চুম্বকের পতনকে বাধা দেবে। ফলে চুম্বক দশু অভিকর্ষজ ত্বরণ নিয়ে পড়বে না; তার ত্বরণ অভিকর্ষজ ত্বরণ অপেক্ষা কিছ কম হবে।

কাঠ তড়িতের অপরিবাহী বলে দশু চুম্বকের পতনের ফলে কাঠের রিং-এ কোনো তড়িচুম্বকীয় আবেশ হবে না। সেজন্য কাঠের রিং-এর ভিতর দিয়ে পড়ার সময় দশু চুম্বক কোনো বাধার সম্মুখীন হবে না। দশু অভিকর্ষজ ত্বরণ থেকে নীচে পড়বে। সূতরাং দ্বিতীয় দশু চুম্বক প্রথম দশু চুম্বক অপেক্ষা দ্রুত নীচে পড়বে।

- 2. একটি তামার প্লেটকে একটি চৌশ্বকক্ষেত্রের ভিতর আংশিক প্রবেশ করানো আছে। তামার প্লেটকে বদি চৌশ্বকক্ষেত্র হতে বাইরে আনার অর্থ বা চৌশ্বকক্ষেত্রের আরও ভিতরে প্রবেশ করাবার চেন্টা করা হয় তবে বাধার সম্মুখীন হতে হয়।
 এর ক্রারণ ক্রী ?
- তামা তড়িৎ-পরিবাহী। তামার প্লেটকে টোম্বকক্ষেত্র হতে
 দূরে অথবা টোম্বকক্ষেত্রের আরও ভিতরে প্রবেশ করানো
 হলে, প্লেটের সাথে সংশ্লিষ্ট টোম্বক ফ্লাক্সের পরিবর্তন
 হবে। ফলে, প্লেটে তড়িৎ-চুম্বকীয় আবেশ হবে। এতে
 প্লেটের উপাদানের ভিতর বন্ধপথে তড়িৎপ্রবাহ ঘটবে
 [চিত্র 5.14]। এই প্রবাহকে বলা হয় ঘূর্ণি প্রবাহ (eddy

current)। লেঞ্জের সূত্রানুযায়ী ঘূর্ণি প্রবাহ তার উৎপাদনের মূল কারণকে বাধা দেবে। তাই প্লেটকে বাইরে আনার অথবা চৌম্বকক্ষেত্রের অভ্যন্তরে প্রবেশ করাবার সময় বাধার সৃষ্টি হয়।

- 3. অবিকল একই রকমের তিনটি তারকুগুলী A, B এবং C-কে তাদের তল (plane) সমান্তরাল রেখে বসানো আছে। A এবং C কুগুলী দিয়ে 5.15 নং চিত্রে প্রদর্শিত অভিমুখে তড়িং প্রবাহ যাচ্ছে। B এবং C কুগুলী শ্বির (fixed)। A কুগুলীকে সমবেগে
 - B কুণ্ডলীর দিকে চালনা করা হলে, B কুণ্ডলীতে কি কোনো প্রবাহ আবিষ্ট হবে ?
- A কুন্ডলীকে B কুন্ডলীর দিকে চালনা করা হলে, B কুন্ডলীর সাথে জড়িত ফ্লাক্স বৃদ্ধি পাবে। তড়িং-চুম্বকীয় সূত্রানুসারে B-কুন্ডলীতে একটি তড়িং

প্রবাহ আবিষ্ট হরে। প্রবাহের অভিমুখ এমনই

হবে যে তা B সাপেক্ষে A-র আপেক্ষিক গতিকে বাধা দেয়। যেহেতৃ A কুণ্ডলীতে তড়িং প্রবাহ ঘড়ির কাঁটার অভিমূখে, তাই B-কুণ্ডলীর আবিষ্ট প্রবাহের অভিমূখ হবে ঘড়ির কাঁটার বিপরীত দিকে। আবার B এবং C কুণ্ডলীদ্বয় স্থির থাকায় তাদের ভিতর কোনো আপেক্ষিক গতিবেগ নেই। ফলে, C কুণ্ডলীর প্রবাহের দর্ন B-কুণ্ডলীতে কোনো আবেশ ঘটবে না।

- 4. আবিষ্ট তড়িচ্চালক বলের নিজম্ব কোনো অভিমধ নেই। ব্যাখ্যা করো।
- উত্তিটি ঠিক। লেঞ্জের সূত্রান্যায়ী আবিস্ট তড়িচ্চালক বলের অভিম্থ এরূপ হবে যে, যে-কারণে
 তড়িচ্চালক বলের সৃষ্টি হয়, তড়িচ্চালক বল সর্বদা সেই কারণকে বাধা দেবে। যে মুহূর্তে আবেশের
 কারণ অভিমুখ পরিবর্তন করবে সেই মুহূর্তে তড়িচ্চালক বলের অভিমুখও পরিবর্তন করবে। এতএব
 আবিষ্ট তড়িচ্চালক বলের অভিমুখ নির্দেশিত হয় ঐ তড়িচ্চালক বল উৎপত্তির কারণ দারা।
- 5. একটি ধাতব তারের কুণ্ডলী একটি অসম চৌম্বক ক্ষেত্রে স্থির অবস্থার আছে। কুণ্ডলীতে কোনো তড়িচ্চালক বল আবিস্ট হবে কি ?
- কুণ্ডলীতে তড়িচ্চালক বল আবিষ্ট হবে। তড়িচ্চালকীয় আবেশের সূত্রান্যায়ী কোনো বন্ধ কুণ্ডলীর
 সাথে সংশ্লিষ্ট চৌম্বক প্রবাহের পরিবর্তন হলে কুণ্ডলীতে তড়িচ্চালক বলের আবেশ হয়। প্রশ্লের
 চৌম্বক ক্ষেত্র অসম হওয়ায়, ক্ষেত্রের চৌম্বক প্রবাহ (flux) পরিবর্তন করে। ঐরপ পরিবর্তিত চৌম্বক
 প্রবাহে তার-কুণ্ডলী পিথর অবস্থায় থাকায় কুণ্ডলীতে তড়িচ্চালক বলের আবেশ হবে।
- 6. 50 cycle/s কম্পাঙ্কের একটি পরিবর্তী প্রবাহ লাইনে কত সময় অবকাশে প্রবাহের অভিমুখ একবার করে উল্টে যায় ?
- 50 cycle/s কম্পাঙ্কের পরিবর্তী প্রবাহ লাইনে প্রতি সেকেন্ডে প্রবাহের অভিমুখ 50 বার উল্টো যায়।
 অতএব, একবার প্রবাহের উল্টাবার সময় অবকাশ = 1/50 s।
- 7. চৌম্বক ক্ষেত্রে স্থাপিত একটি পরিবাহীকে চৌম্বকক্ষেত্রের সমান্তরালে চালনা করা হলে পরিবাহীতে কোনো তডিৎচালক বলের আবেশ হবে কি ?
- না ; কোনো তড়িৎচালক বলের আবেশ হবে না। কারণ এক্ষেত্রে পরিবাহীর সঞ্জো জড়িত টৌষক ফ্রান্সের কোনো পরিবর্তন হচ্ছে না।
- 8. l দৈর্ঘ্যের একটি কাচ দশু v গতিবেগ নিয়ে B চৌম্বক ক্ষেত্রের ভিতর গতিশীল আছে। দশু কোনো তড়িৎ-চালক বল আবিষ্ট হবে কি ?
- না ; কোনো তড়িৎচালক বল আবিষ্ট হবে না। কারণ কাচ একটি অন্তরক পদার্থ (insulator)।
- 9. দুটি তারকুণ্ডলীকে একটি চৌশ্বক ক্ষেত্রের ভিতর দিয়ে বার করে আনা হল। একটি কুণ্ডলীকে খুব দুত কিছু অপর কুণ্ডলীকে ধীরে চালনা করা হলে কোন্ ক্ষেত্রে বেশি কার্য করা হবে ?
- যে-কুণ্ডলীকে দুও বার করে আনা হল সেক্ষেত্রে বেশি কাজ করতে হবে। কারণ, কুণ্ডলীর দুত গতির
 জন্য কুণ্ডলীর সাথে সংশ্লিষ্ট চৌদ্ধক ফ্লাক্সের দুও পরিবর্তন ঘটরে। ফলে ঐ কুণ্ডলীতে আবিষ্ট
 তড়িচ্চালক বলের মান অপর কণ্ডলীর তুলনায় বেশি হবে।
- 10. কুওলীতে চৌম্বক ফ্রাক্সের পরিবর্তন হলে সর্বদাই কি আবিক তড়িংপ্রবাহ পাওয়া যাবে ?
- আবিষ্ট তড়িং প্রবাহ পাওয়া যাবে যখন ক্রুলী বন্ধ কুরুলী (closed coil) হবে। ক্রুলী থান্ডিত হলে কোনো প্রবাহ পাওয়া যাবে না। কিছু কুন্ডলী কর্ম হোক কি যান্ডিত হোক তড়িচ্চালক বল সর্বদাই আবিষ্ট হবে।
- 11. High tension তারে বসা পাপি তার দিয়ে প্রবাহ চালানো মাত্রই উড়ে যায় কেন ?

- 12. একটি বৃদ্তাকার তারকুওলী এবং দশু চুম্বক একই দিকে একই গতিবেগ নিয়ে অগ্রসর হচ্ছে। এ অবস্থায় কণ্ডলীতে কোনো তড়িচ্চালক বলের আবেশ হবে কি ?
- কৃশুলার সাথে ছডিত চৌদ্ধক ফ্লাপ্স পরিবর্তন করলে, কুশুলীতে তড়িচ্চালক বলের আবেশ হয়। কিতৃ
 এক্ষেত্রে উভয়েই একই লিকে এবং বেলে অপ্রসর হওয়য়, কুশুলীর সজো জড়িত বলরেখার কোনো
 পরিবর্তন হচ্চেনা : ফলে কোনো তড়িচ্চালক বলের আবেশ হবে না।
- 13. কোনো তড়িচ্চালক বলের উৎসের সম্পো যুক্ত একটি ঋজু পরিবাহী তারে বাঁ দিক থেকে ডানদিকে প্রির মানের তড়িৎ প্রবাহ যাচ্ছে। তড়িৎ চান্সক বলের উৎসকে সরিয়ে নিলে তারে আবিষ্ট ডডিৎপ্রবাহের অভিমুখ কী হবে ?
- িথর মানের ৩ড়িং প্রবাহ বাদিক থেকে ভান দিকে চলার সময় তারের সজো জড়িত চৌদ্বক বলরেখার সংখ্যা স্থির ছিল। প্রবাহ বল্থ করে দিলে সহসা বলরেখার সংখ্যা স্বাধিক মান থেকে শূনা হয়ে গেল। তড়িংচুম্বকীয় গ্রাবেশের নিয়মানুযায়ী তারে বিপরীত দিকে অর্থাৎ ভানদিক থেকে বাঁ দিকে ক্ষণস্থায়ী তড়িং প্রবাহ আবিন্ট হবে।
- 14. দৃটি ব্যাকার তারকুঙলী সমাক্ষীয়ভাবে কিছু সামান্য তফাতে রাখা আছে। একটি কুঙলীতে ব্যাটারি যুক্ত করে সহসা কুঙলীতে তড়িৎপ্রবাহ পাঠানো হল। অপর কুঙলীতে কি কোনো প্রবাহ পাওয়া যাবে ? গেলে, প্রবাহ কখন শুরু হবে এবং কখন শেষ হবে ? কুঙলী দৃটি কী পরস্পরকে আকর্ষণ করবে না বিকর্ষণ করবে ?
- অপর কুঙলীতে ক্ষণস্থায়াঁ প্রবাহ পাওয়া য়াবে। কারণ প্রথম কুঙলীতে তড়িং প্রবাহ শুরু হলে, তার
 দর্ব চৌম্বক বলরেখা দিতীয় কুঙলীকে ছেদ করবে। তড়িং চুম্বকীয় আবেশের সূত্রানুয়ায়ী দিতীয়
 কুঙলীতে তড়িং চালক বলের আবেশ হবে এবং কুঙলী দিয়ে তড়িং প্রবাহ য়াবে। দিতীয় কুঙলীর
 এই প্রবাহ ক্ষণস্থায়ী। প্রথম কুঙলীতে তড়িং প্রবাহ চালু হবার সজো সজো দিতীয় কুঙলীতে প্রবাহ
 য়াবিন্ট হবে কিন্তু মুহূতের মধ্যেই এই প্রবাহ শেষ হবে। তড়িংচুম্বকীয় আবেশের লেঞ্জ সূত্রানুয়ায়ী
 দিতীয় কুঙলীর প্রবাহ প্রথম কুঙলীর প্রবাহের অভিমুখের বিপরীত হবে। ফলে, মুহূতের জন্য কুঙলী
 দৃটি পরস্পরকে বিকর্ষণ করবে।

⇒ রচনাধ্মী প্রশ

প্রশাবলি 💌

- আবিক্ট তড়িং প্রবাহ কাকে বালে ? চৃষ্বক ও তড়িংবাই ক্ওলীর সাহায্যে আবিক্ট তড়িং প্রবাহ উৎপন্ন করার পরীক্ষা
 বর্ণনা করো।
- 2. তড়িৎ-চ্মকায় আবেশ সংকাশ্ত পরীক্ষাগুলি সংক্ষেপে কানা করো।
- তড়িং-চম্বকীয় আবেশ সংক্রান্ত ফ্যারাডের সূত্রপুলি বিবৃত করে। আবিষ্ট তড়িচালক বলেব অভিমুখ কীর্পে নির্ণয় করবে?
- 4. একটি এরোপ্লেন অনুভূমিকভাবে উড়ে যাবার সময় তার ভানার দুই প্রান্ত বিন্দুর মধ্যে বিভবপ্রভেদ দেখা যায় কারণ কী? এই বিভবপ্রভেদ কোন্ কোন্ বিষয়ের ওপর নির্ভর করে ?
- 5. থালিক্ট ৩ড়িৎ প্রবাহ কী ? আবিক্ট প্রবাহের (ক) স্থায়িত্ব (খ) অভিমুখ এবং (গ) মান কী ক্ট বিষয়ের ওপর নির্ভর করে ?
- 6. লেঞ্জের সূত্র বিবৃত করে। এবং এর সাহায্যে আবিষ্ট তড়িৎ প্রবাহ সৃষ্টি ব্যাখ্যা করে।।
- 7. श्वारवनाञ्क वनए की ताब ? পातम्प्रतिक आत्वनाञ्क 1 रस्त्री अर्थ की ?
- 8. अंशानात्मा कारक वरल ? अन नौटि की ? A.C. अंशनात्मात वर्षना जाउ।
- 9. সরল পরিব টী প্রবাহ ভায়নামোর কার্যনীতি চিত্র সহকারে ব্যাখ্যা করো।
- 10. একটি এ.সি. ডায়নামো উৎপন্ন তড়িচ্চালক বলের নিম্নলিখিত ক্ষেত্রে কী পরিবর্তন ঘটরে উল্লেখ করো: (i) চৌম্বক ক্ষেত্রের প্রাবলা দ্বিগুণ করা হল, (ii) ক্ওলীর পাক-সংখ্যা 5 গুণ বৃষ্দি করা হল, (iii) ক্ওলীর ঘূর্ণনের বেগ হ্রাস করা হল, (iv) কুওলীর ক্ষেত্রফল বৃষ্দি করা হল।
- মখন একটি দও চুধকেব ততর মের একটি গুড়িংবাই দিবের প্রেলকার কুণ্ডলীক দিকে তার আন্ধ বরাবর অল্লসর হয়.
 তথন দও চুম্বকটির গতি বাধা প্রাপ্ত হয়—ব্যাখ্যা করে।

- 12. মোটরের কার্য কী ? ডায়নামো এবং মোটরের কার্যনীতি তুলনা করো।
- 13. পরিবতী প্রবাহ বলতে কী বোক: ? পরিবতী প্রবাহের ক্ষেত্রে শীর্ষমান ও গড়বর্গের বর্গমূল মান কাকে বলে ? তাদের সম্পর্ক কী ? উত্ত প্রবাহের কম্পাঞ্চ কাকে বলে ?

⇒ সংক্রিপ্ত উভরের এখ

- 1. আবিষ্ট তড়িচ্চালক বল এবং আবিষ্ট তড়িং প্রবাহ বলতে কী বোঝং
- 2. একটি সূবেদী গ্যালভ্যানোমিটারের সাথে যুক্ত একটি তারকুন্ডলী তোমাকে দেওয়া হল। নিম্নলিখিত ক্ষেত্রে কী ঘটবে তার কারণসহ ব্যাখ্যা করোঃ—
 - (ক) ক্ঙলীর ভিতর একটি দন্ড চুম্বকের N-মেরু হঠাৎ প্রবেশ করালে, (খ) তাকে ক্ঙলীর ভিতর রেখে দিলে, (গ) তাকে কুঙলী হতে হঠাৎ বার করে আনলে।
- 3. একটি দণ্ড চুম্বকের উত্তর মেরুকে একটি বংধ বর্তনীর দিকে মুখ করে বর্তনীর অভিমূখে নিয়ে গেলে বর্তনীতে উৎপাদিত অবিষ্ট প্রবাহ কোন দিকে প্রবাহিত ছবে ?
- লেঞ্চ সৃত্রের সাহাযো কুগুলীতে আবিন্ট তড়িং প্রবাহের অভিমুখ কীরূপ হবে বাাখ্যা করো যখন (ক) কোনো চুমকের S মের কুগুলীর নিকট আনা হয়, (খ) দুরে সরিয়ে নেওয়া হয়।
- প্রমাণ করো য়ে, শক্তির সংরক্ষণ সত্র হতে লেছের সত্র পাওয়া য়য়।
- 6. আবিষ্ট প্রবাহ কোথা হতে শক্তি সংগ্রহ করে ? শক্তি সংরক্ষণ সূত্র হতে কীরূপে লেঞ্ছের সূত্র প্রতিষ্ঠা করা যায় ?
- 7. একটি গোলাকার তারক্ডলীর অক্ষ বরাবর একটি চোঙাকৃতি দন্ড চুম্বক রাখা আছে। দণ্ড-চুম্বককে তার অক্ষের চতুর্দিকে ঘোরালে তারকুঙলীতে কোনো প্রবাহ অবিন্ট হবে কি १ (সংকেতঃ দণ্ড চুম্বক চোঙাকৃতি হওয়ায়, দণ্ডের অক্ষের চতুর্দিকে তার আবর্তনের ফলে তার-কুঙলীর সাথে জড়িত বলরেখা সংখ্যার কোনো পরিবর্তন হবে না। কান্ডেই কঙলীতে কোনো

তার আবর্তনের ফলে তার-কুণ্ডলীর সাথে জড়িত বলরেখা সংখ্যার কোনো পরিবর্তন হবে না। কাঞ্চেই কুণ্ডলীতে কোনো তড়িৎ প্রবাহ আবিন্ট হবে না।) একটি পরিবাহী তার বাস্তব আকারে বাঁকানো হল এবং তার

8. একটি পরিবাহী তার বৃত্তের আকারে বাঁকানো হল এবং তার বাইরে অথচ নিকটে একটি ঋজু পরিবাহী AB রাখা আছে। (চিক্র 5.16) যদি A হতে B অভিমুখে ক্রমবর্ধমান তড়িং প্রবাহিত হয়, তবে বৃত্তাকার পরিবাহীতে কোনও তড়িং–প্রবাহিত হবে কী
? হলে ঐ প্রবাহের অভিমুখ নির্ণয় করো।

দৃটি একরকম বৃত্তাকার তারের লুপ পরস্পারের স্পর্শ না করে টেবিলের ওপর রাখা আছে। A লুপে একটি প্রবাহ

যাচ্ছে যা সময়ের সাথে বৃদ্ধি পায় এই অবস্থায় B লুপ কি কোনো বল অনুভব করবে ? করলে কির্প বল অনুভব

করবে ?

(সংকেতঃ A লুপের প্রবাহের হার পরিবর্তনের ফলে B লুপের সঞ্জো সংক্লিউ চৌদ্বক ফ্লাক্স পরিবর্তন করবে। তাড়িচ্চুস্বকীয় আবেশের ফলে B লুপে একটি বিপরীতমুখী ভড়িৎ প্রবাহ অবিউ হবে। দুই লুপে বিপরীত প্রবাহের ফলে, B লুপ A লুপ কর্তক বিকর্ষণ ফল অন্ভব করবে।)

 একটি ছোটো দশু চুম্বক M-কে যদি একটি অ্যামমিটার
 (A) যুস্ত তার কুগুলী C-এর নিকট উত্তর-মেরু সম্পুথ করে আনা যায় (চিয় 5 17) তায়লে দেখাও

যে লেন্ডের সূত্র শন্তি সংরক্ষণ সূত্রের সাথে সহমত হয়। চিত্রে অঞ্চিত কুন্ডলীটিব টোসক মেরু কীর্প যদি M তার ভিতর প্রবেশ করে যাম দিকে বার হরে আসে।

➡ অতিসংকিশ্ত উত্তরের প্রশ্ন

- 1. ফ্লেমিং-এর ডাম হাত নিরুম বিবৃত কর।
- 2. একটি দত চ্ছক্তে থাড়া ওপর হতে নীচে তামার কৃষ্ণনীর কেন্দ্র দিয়ে ফেলা হল দণ্ডটি কি অভিনর্যক্ত ত্বরণ অপেক্ষা কম স্বরণে পড়বে ৪
- 3. একটি পরিবাটার পূরুপে কোন বিন্দু দিয়ে পূর্ত্তের অভিলক্ষভাবে গত রেখা একটি ক্রীম্বক ক্ষেত্র B-এর সাক্ষে ৫ কোন করে। পরিবাহীর A ক্ষেত্রফল দিয়ে কত চৌম্বক ফ্রান্স অতিক্রম করে ?

 কেই কৰা হালে তাৰ জাতে ভাতৰ দিয়ে ক্ষেত্ৰৰ সমান্তৰাল দিয়ে যান্ত্ৰা হলা পৰিবাইণাত বি প্ৰত্যালক বল ৪ । ১৯ এ একটি প্রায়ের এক। পরিবরণ নিয়ে ৪ জীয়াক স্করের ছড়িজয়ারণের একটি । ও এবং বর । वन याविके वर्व १ 6. ৪০০০ - বা তেত্ৰী প্ৰতিয়া উপপ্ৰত নিৰুক্ষান্তকো পুৰুষে পছিবী পৰিব্ৰহণ জনত তেতা প্ৰবৃত্ত তথ আবিষ্ট হল না। বেন १ 7. টোম্বক ফ্রান্স কি ? এর S.I. একক কি ? ৪. চৌম্বক ফ্রান্স ভেটর না ক্লেসার ? 9. এবনি কড়লালে লেনি সময় স্তাপক ক্ষেত্র থেকে (৮) প্রত দা। শ্রীরে শীরে সরিয়ে কেওয়া ওল। কোন ক্ষেত্র লেলা কার্য 10. প্রতি ১ ২ open প্রতিপ্রক্রের কি কেন্দ্র সত্র প্রয়োজা ২ 11, পরিবার্টী পূর্বত ক্যোগী প্রাত অপেক্ষা বেলি বিপক্তনক ক্রে ৩ 12. 220 volt A.C পূর্বে য়ে শক (অভিযাত) পাওয়া যায়, তা 220 volt J) C -ব শক পূর্ব ⇒ বহুমুখী পছ্লের প্রশ্ন [Multiple choice type (MCO)] (A) নির্ভল উত্তরটি √চিছিত করো: [i] একটি গোলকার তার ব্যক্তলার অক্ষ ব্যাব্য স্থাপিত এবং ক্রভনীর অভিমুখী চৌদ্ধকলামক্ষুপ্ত একটি দত সৃদ্ধক্কে নিকের সমাধরালে ব্রন্তলী থেকে দরে সরিয়ে নিয়ে ক্তলীকে তড়িং প্রবাহণার হার (১) শুলা (B) ঘড়ির কাটার বিপরীতে (C) ঘড়ির কটেরে লিকে (D) ্বভটেই নর liil / দৈর্দের একটি দত এব লম্ব দ্বিখন্ডককে অক্ষ করে ক্ষন্ত সমাকৌশিক গতি (n নিয়ে আবর্তন করছে। ঘণাক্ষের সন্মন্তরপূল একটি চৌম্বক ক্ষেত্র বিরাজ করছে। দাভের কেন্দ্র এক প্রশাসন ভিতর তালিটা ভালচালক বালের য়াল--(A) $\frac{1}{8}\omega Bl^2$ (C) $\frac{1}{9}\omega Bl^2$ (D) Bwl^2 [iii] উপরোক্ত ক্ষেত্রে নডের দুই প্রণন্তের ভিতর আবিষ্ট তডিচ্চালক বলের মান— (B) $\frac{1}{2}Bl\omega^2$ (D) 2Blw2 (C) Blo² liv] আতি দীর্ঘ উল্লয় একটি ওমোর নালের অক্ষ বরাবর একটি দন্ত চুম্বককে স্থিরাবস্থা থেকে ফেলে দেওয়া হল কিছুক্ষণ পরে দন্ত চম্বকটি-া ে লালর ভিতর থেয়ে যাবে (B) পিল ছতিতে পড়তে থানার

।('। ইরণ g নিয়ে পড়াত থাকবে

(D) উপর নীচ্চে দলতে থাকরে।

lvl বিশ্ব বিশ্ব নাম ইত্তি পিৰেছনা কর : (i) চৌম্বক ক্ষেত্রে পরিবাহিকে প্রতিশীন করে হতিচালক কর হাবিন্দ করা যায় না। টাসক ক্ষেত্রের পরিবর্তন দ্বারা তড়িচ্চালক বল আবিষ্ট করা যায়।

(A) (i) এবং (ii) দৃটিই নির্ভল

(B) (i) নির্ভুল ; (ii) ভুল

(C) (ii) নির্ভুল; (i) ভূল

(D) (i) এবং (ii) দৃটিই ডল।

[vi] একটি টৌসক ক্ষেত্র। দৈর্গোব একটি পরিবাহী দন্তকে p গতিবেগে গতিশীল রাখা হয়েছে। দন্তের দই প্রায়ে তডিচ্চালক বলের উত্তব হবে যদি---

(A) v1/

 $(B) \overrightarrow{v} \parallel \overrightarrow{B}$

(C) $\vec{l} \parallel \vec{B}$

(D) কোনটাই লা।

[vii] একটি পরিবাহী তার ক্উলীকে চৌম্বক ক্ষেত্রের অভিলম্বভাবে স্থাপন করা ১ল কড্নাতে ছতিকেপ্রক বলের উপ্তব হবে যদি

(A) करुलोत अतुष इय

(B) ক্ভলীর অক্ষ সাপেকে ক্ভলীর ঘূর্ণন ১য়

(l' क्ष्रुलीत वाप्त प्रार्थास्य धुर्वन इस् (D) क्रुडलीर्क वित् कर् पर

[viii] একটি পরিবাহী কৃন্ডলীকে দিধর দুভিতে একটি স্থির মানের চৌম্বকক্ষেত্রে আবর্তন করানো হলে কন্ডলীতে যে

0100 total 401 0114 0 464 01
(A) একমুখী (B) পরিবর্তী
(C) ঘৃণাক্ষের উপর নির্ভর করে সমযুখী অথবা পরিবটী (D) শূন।
[ix] 1 m ব্যাসের একটি বৃদ্ধকোর কুভলীকে একটি চৌম্বক ক্ষেত্রে গতিশীল রাখা হল , কুভলীতে 5 সেকেন্ডে 10\
তড়িচালক বল আবিন্ট হলে, চৌম্বক ফ্লান্সের পরিবর্তন—
(A) 10Wb (B) 5Wb (C) 50Wb (D) 100Wb
[Hints: $d\phi = E dt = 10 \times 5 \text{ Wb}$]
্রিত্র কোন কুডলীতে তড়িৎপ্রবাহের পরিবর্তনের হার 100As ⁻¹ হলে 5V তড়িজালক বল আবিন্ট হয়। কুডলী
'अग्रिका' ७५
(A) 0.5 H (B) 0.005 H (C) 0.05 H (D) 0.4 H.
[xi] দুটি কুন্ডলীর ভিতর পারস্পরিক আবেশাঙ্ক 4 H. মুখা কুন্ডলীতে 5A তড়িৎপ্রবাহ $\frac{1}{1500}$ সেকেন্ডে বন্ধ করে দিনে
গৌণ কুডনীর প্রান্তে যে তড়িচ্চালক বল আবিন্ট ছবে তা—
(A) 15 kV (B) 60 kV (C) 10 kV (D) 30 kV.
[xii] চৌম্বক ক্ষেত্রে ঋজু পরিবাহীর গতি যে তড়িচ্চালক বলের উন্তব করে তার অভিমুখ পাওয়া যায়—
(A) ফ্রেমিং-এর বামহন্ত নিয়ম থেকে (B) আাণ্সিয়ারের সন্তরণ নিয়ম থেকে
(C) ফারোডের সূত্র থেকে (D) ফ্রেমিং-এর ডান হাত নিয়ম থেকে।
[xiii] কোন বর্তনীতে পরিবতী প্রবাহ সরবরাহ করার জনা প্ররোজন—
(A) D.C. ভায়নামো (B) A.C. ভায়নামো
(I) with it
(C) মোডগ (D) পাবে 1 বাব
ক্ণাটির অনুভূমিক বেগ বজায় রাখতে হলে—
(A) চৌম্বক ক্ষেত্র গতিবেগের অভিসম্ম হওয়া উচিত,
(B) চৌম্বক ক্ষেত্রে কণার গতির সমান্তরাল হওয়া উচিত,
(C) চৌম্বক ক্ষেত্রের সর্বনিম্ন মান হবে 3.27T,
(D) কোন চৌম্বক ক্ষেত্রের প্রয়োজন নেই।
[xv] কোন কুণ্ডলীতে তড়িৎপ্রবাহের পরিবর্তন একক হলে, আবিক্ট তড়িচ্চালক বল হবে—
(A) কুঙলীর স্বাবেশাঙ্কের সমান (B) কুঙলীর সাথে জড়িত চৌশ্বক ফ্লাক্সের সমান
(C) কুণ্ডলীর পাক সংখ্যার সমান (D) কুণ্ডলীর বেধের সমান
[xvi] 220V পরিবর্তি তড়িচালক বলের শীর্ষমান হবে—
(A) 220V (B) 440V (C) 311V (D) *[4]
[xvii]একটি পরিবর্তি তড়িচ্চালক বলকে E = 200 sin (100πt − φ) ভোষ্ট এই সমীকরণ দ্বারা প্রকাশ করা যায়, এ
ভড়িজালক গলেন শীৰ্মমান—
(A) 200V (B) 300V (C) 400V (D) 220V. [xviii] কোন পৰিবৰ্তি প্ৰবাহের r.m.s. মান $I_{\rm rm.s.}$ এবং শীৰ্ষমান I_0 হলে এদের সম্পর্ক হবে
[xviii] কোন পবিবর্তি প্রবাহের r.m.s. মান $I_{ m rm.s.}$ এবং শীর্ষমান I_0 হলে এদের সম্পর্ক হবে
(A) $I_{\text{rms}} = \frac{1}{2}I_0$ (B) $I_{\text{rms}} = \frac{1}{\sqrt{2}}I_0$ (C) $I_{\text{rms}} = \sqrt{2}.I_0$ (D) $I_{\text{rms}} = \frac{\sqrt{2}}{I_0}$
[xix] কোন কুন্ডলীতে তড়িৎপ্রবাধ +2A থেকে -2A এ 0.05 সেকেন্ডে পরিবর্তিত হলে 8V ওড়িচ্চালক বল আহি
্বে ় হয়। ওই কুভগীর স্বাবেশাঞ্চল
(A) 0.2H (B) 0.4H (C) 0.8H (D) 0.1H.
[xx] কোন আবেশ কৃডলীর পারস্পরিক আবেশাঙ্ক 5H হলে এবং মুখা কৃডলীতে 10 ³ সেকেডে প্রবাহমাত্রা
থেকে শূনা থলে, গৌণ কুন্ডলীতে আবিষ্ট তড়িচ্চালক বলের মান হয়—
(A) 2.5×10 ³ V (B) 2.5×10 ⁴ V (C) 2.5×10 ² V (D) 결제 (D)
[xxi] নিম্নলিখিত ফলগুলির মধ্যে কোন্টি পরিবতী প্রবাহ প্রদর্শন করে ?
(A) রাসায়নিক ফল - (B) চৌশ্বক ফল
(C) তাপীয় ফল ·

[xxii]	পরিস্তী প্রবাহে আর.এম.এস মান শীর্বমানের
	(A) 7% (B) 7.7% (C) 70% (D) 70.7%.
[xviii]	একটি চুম্বকের দুই মেবৃখন্তের ভিতর দিয়ে একটি খুদ্র ধাতব তারকে 0.5 s সময়েক টোনে নেওয়া হল।
	মের্খণ্ডমারে ভিতর চৌম্বক ফ্লান্স $8 \times 10^{-4} \mathrm{wb}$ । তারে আবিস্ট তড়িচ্চালক বল
	(A) 16 mV (B) 1.6 V (C) † 6 mV (D) 16 V.
[xxiv]	A C , জেনারেটরে N পাকের কুন্ডলী আছে। প্রত্যাকের রোধ R ; ক্নডলী B , $\mathrm{Six}_{\mathbb{R}^{+}}$ কেরে $_{\mathbb{R}^{+}}$
	ঘুরছে। কুণ্ডলীতে আবিষ্ট সর্বোচ্চ শুড়িন্ডালক বণ
	(A) N.A.B (B) N.A.B.R (C) N.A.B. ω (D) $^{\text{N}}$.A.B.R. ω
[XXV]	্ = 15 sin (60π) মারা একটি পরিবতী প্রান্থ প্রকাশিত হয় যেখালন / সেকেন্ড এককে আর্ প্রবাহমাক্রার
	শীর্বমান, r.m.s মান এবং কম্পান্তক বথাক্রমে
	(A) $15\sqrt{2}$ A, 15A, 60 l.z (B) 15A, $\frac{15}{\sqrt{2}}$ A, 60 Hz
	√2
	(C) 15A, $15\sqrt{2}$ A, 30 Hz (D) 15A $\frac{15}{\sqrt{2}}$ A, 30 Hz. [Jt. Entrance 2006]
[xxvi]	যদি E পরিবতী বিভবের শীর্ষমান হয়, তার r.m.s মান অথবা কার্যকর মান হবে
	(A) $\frac{E}{\pi}$ (B) $\frac{E}{\sqrt{\pi}}$ (C) $\frac{E}{\sqrt{2}}$ (D) $\frac{E}{2}$ [Jt. Entrance 2006]
	$\frac{1}{8}$ $\sqrt{\pi}$ $\sqrt{2}$ (b) 2. [at. Entrance 2000]
[xxvii]	10 Ω রোধের একটি বন্ধ বর্তনীতে চৌম্বক প্রবাহ ϕ (ওয়েবার এককে) সময় t সেকেন্ডে)-এর সাথে ϕ =
	$4t^2+6t+5$ সমীকরণ অনুযায়ী পরিবর্তিত হয়। $t=0.5$ সেকেন্ডে আবিষ্ট প্রবাহমাত্রার মান হবে
	(A) 1.0 A (B) 0.5 A (C) 2.0 A (D) 0.0 A
	[Jt. Entrance 2006]
	[Hints: $e = \frac{d\phi}{dt} = 8t + 6$: $i = \frac{8t + 6}{10}$; $t = 0.5$ সেকেন্ড প্ৰবাহ $i = \frac{8 \times 0.5 + 6}{10} = 1$ A]
[xxviii]	একটি পরিবতী তড়িৎ প্রবাহের সমীকরণ $i=10\cos{(100\pi t)}$ । ওই প্রবাহের অর্ধচক্রে গড় মান কত ?
	[Jt. Entrance 2006]
	(A) 6.37 A (B) 10 A (C) 5 A (D) 0.
[xxix]	t মুহূর্তে একটি কুণ্ডলীর সাথে জড়িত ফ্লাক্স ϕ নিম্নলিখিত সমীকরণ থেকে পাওয়া যায় \cdot $\phi = 10t^2$ $50t +$
	250। t = 3 সেকেন্ড মূহুর্তেক আবিক্ট তড়িচ্চালক বল ছবে
	(A) -10 V (B) 10 V (C) 190 V (D) -190 V.
[[Jt. Entrance 2006]
[xxx]	একটি এ.সি. জেনারেটার কুঙলীতে N পাক আছে : প্রত্যেকটি পাকের ক্ষেত্রফল A এবং মোট রোধ R । কুঙলীটি B চৌশ্বক ক্ষেত্রে ω কম্পাঙ্কে ঘুরতে থাকলে, কুঙলীতে যে সর্বাধিক তড়িচ্চালক বল আর্নিট হবে গ্র
	(b) N.A.B.R.G.
[xxxi]	[Jt. Entrance 2006] নিম্নলিখিত রাশিগুলির মধ্যে কোন্টির মাত্রা সূত্র [ML ² /Q ²] হবে
	(A) হেনরি (H) (B) H/m ² (C) ওয়েবার (Wb) (D) Wb/m ² [A.I.E.E. Exam. 2006]
B) चुमाञ्था	শ পূরণ করো (Fill up the blanks) :
	00 পাক এবং 0.5 cm ব্যাসার্ধের একটি কৃতলীতে ভড়িৎপ্রবাহের দর্ন চৌদ্বক ক্ষেত্র কৃতলীতে সুগমভাবে সংশ্লিষ্ট
403	বং কুন্ডলীর তলের অভিলয়। কুন্ডলীর স্বাবেশাঙ্ক ।
	ংকেত ঃ $B=rac{\mu_0 ni}{2.r}$; কুওলীর সাথে সংশ্বিউ ফ্লাক্স $\phi=B.A=rac{\mu_0 ni}{2.r} imes \pi r^2$ $\therefore L=rac{\phi}{i}\cdotrac{\mu_0 n}{2} imes \pi r$ \mid
[11] এই	কটি কুন্ডলীর তলের অভিলম্বভাবে সংশ্লিক টোম্বক ফ্লান্স ϕ সময় t এর সাথে সমীকরণ $\phi = 10t^2 + 5t + 1$
18 C	वा प्रश्निको । क्रियानिकासवाव अवः १ (माकाल श्रकानिकः । - १० प्राप्ता कर्मी

[iii]	একটি তার কৃডলীতে 2A প্রবাহ গেলে কৃডলীর সাথে 1 weber ফ্লাক্স	ছাড়ত হয়। কুভলীতে প্রবাহ পারবতনের
	হার 1As-1 হলে, কুন্ডলীতে আবিষ্ট তড়িচ্চালক ৰল	
	volti	S
(iv)	1 m দীর্ঘ একটি পরিবাহী তার 0.5T চৌম্বকক্ষেত্রের অভিলম্বভাবে সুষম	
	বেগে গতিশীল হলে তারের প্রান্তদ্বয়ে 2V তড়িচ্চালক বলের উদ্ভব হয়।	
	তারের গতিবেগ।	18
[v]	টেবিলের উপর রাখা একটি কুন্ডলীর দিকে খাড়াভাবে একটি চৌম্বক	
	দ্বিমের পড়ছে ।চিত্র 5.18।। কুন্ডলীতে আবিন্ট প্রবাহের দরুন উৎপন্ন	
	চৌম্বক ক্ষেত্রের অভিমুধ হবে!	চিত্ৰ 5.18
[vi]	হাইন্ডোজেন প্রমানুতে ইলেক্ট্রন 0.5Å ব্যাসার্ধের বৃত্তপথে সেকেন্ডে	[Vii] 3.10
	10 ⁶ বার ঘুরে আসে। এর ফলে চৌম্বক আমক হবে	A CONTRACTOR OF SECURITY OF SECURITY OF SECURITY
	$A.m^2$	
C) ভুল	कि निर्जुश विष्ठांत करता (True or false type) ?	
[i]	একটি খজু ধাতব তারকে সুর্বম ক্রীয়ক ক্ষেত্রের ভিতর দিয়ে সরিয়ে নিলে আবেশ হবে।	তার প্রান্তদ্বয়ের ভিতর তড়িচ্চালক বলের
[11]	के दिल्ला के जिल्ला के उसे पूर्व	দা তড়িৎপ্রবাহকে হ্রাস করে দেয়।
[SAS]	কুঙলী দিয়ে প্থায়ী চৌম্বক ফ্লাক্স কুঙলীর প্রবাহকে চালু রাখে যদি কুঙ	নী খণ্ডিত না হয়।
Fiv1	ধাতর তাবের কণ্ডলীকে একটি অসম চৌম্বকক্ষেত্রে স্থির রাখা হল। কৃষ	লীতে তড়িৎপ্রবাহ আবিষ্ট হবে।
[w]	তড়িৎস্বকীয় আনেশের বেলায় আবিষ্ট তড়িৎপ্রবাহের অভিমুখ এরূপ হয়	য় যে যে-কারণে প্রবাহের সৃষ্টি হয়, প্রবাহ
6.1	সর্বদা সেই কারণকে বাধা দেয়।	
[wi]	চৌদ্বকক্ষেত্রে ঋজু পরিবাহীর গতি যে তড়িচ্চালক বলের উদ্ভব করে তা	র অভিমুখ ফ্রেমিং-এর বামহস্ত নিয়ম হতে
[42]	काना यात्र।	
- Lave		
- [5]]	ণতিক প্ৰশ্ন	क्रिकार्य होस्क क्रिका जिल्हा निया
1.	2 m দীর্ঘ একটি পরিবাহী দশুকে 50 cms ⁻¹ বেগে 6 × 10 ⁻⁵ Wbm ⁻²	MANUAL CHOIN FOOM HEN PICK
	যাওয়া হচ্ছে। দণ্ডের প্রান্তে কত তড়ি চালক বলের উম্ভব হবে ? দণ্ডের রোধ ?	1.2 × 10 ° 12 e(o), 4(o 24) e alla e al
		[Ans. 6 × 10 ⁻⁵ volt; 5A]
2.	একটি বিমানের ডানার দৈর্ঘা 30 m এবং তা একটি অঞ্চল দিয়ে অনুভূ	মভাবে 100 ms । বেগে ডড়ে যাজে। এ
	অৰলে ভূ-চৌম্বক ক্ষেত্ৰের উ লম্ব উপাংশ 5 × 10 ⁻⁵ Wbm ⁻² হলে চ	দানার প্রান্তবয়ে কত বিভব প্রভেদ উৎপন্ন
	হবে ৮	[Ans. 0.15 V]
3.	30 cm দীর্ঘ একটি পরিবাহী তার এক প্রান্তকে কেন্দ্র করে প্রতি মিনিটে 1	1000 বার আবর্তন করছে এরূপ এক তলে
	যার ওপর অভিলম্বভাবে 5000 Oe চৌম্বক ক্ষেত্র কাজ করছে। পরিবাহী	র দুই প্রাত্তের ভিতর উৎপন্ন তাড়চ্চালক বল
	ভোল্ট এককে নির্ণয় কর।	[Ans. 2.36 V]
4.	একজোড়া সন্নিহিত কুঙলীর পারম্পরিক আবেশাঙ্ক 1.5 henry. যদি মু	খা কুওলীতে তড়িৎ-প্রবাহ 0.05 সেকেও
	0 হতে 20 A হয়, ভাহলে গৌণ কুঙলীতে অবিশ্ট তড়িচ্চালক বলের	পরিমাণ কত ? যদি গৌণ কুঙলীর পাব
	সংখ্যা ৪০০ হয় তাহলে এতে ফ্লাম্বের কী পরিবর্তন হবে ?	[Ans. 600 V, 24000 Wb]
E	মুখা কৃতলী এবং গৌণ কৃতলীর ভিতর পারস্পরিক আবেশাঞ্চ 4 হেনরী	
Э.	4 সেকেন্ডের মধ্যে বন্ধ হলে গৌণ কুঙলীতে আবিষ্ট ওড়িচ্চালক বলেং	ন সাম নিৰ্ণয় কৰে।
	. (अप्केप्टिय अप्र) यन्त्र इत्य भाव केल्व्यात व्यायक ठाकेल्याच वत्या	[Ans. $6.4 \times 10^4 \text{ V}$]
6.	একটি পরিনতী প্রবাহকে। = 50 ain 400 nu এই সমীকরণ ছারা প্রকাশ	क्ता यात्र । ज्ञायाद्वत क्रमाच्या, नायमान व्यय
	গড় বর্গের বর্গানুলমান কত ?	[Ans. 200; 50 A; 35 36 A
7.	একটি পরিবর্ত্ত হড়িচালেক বলকে $E=200~{ m sin}~(100~m-\phi)$ ভোলী-	- এই সমাকরণ দারা প্রকাশ করা ধার। এ।
	তড়িচ্চালক বলের কম্পাঙক, শীর্ষমান ও গড় বর্গের বর্গমূল মান কত গ	Ans. 50 , 200 volt , 141 4 volt
8.	100 m × 5 cm ক্ষেত্রফল এবং 1000 পাক বৃত্ত একটি আয়তকার বৃ	ভनी 100 gauss প্রাবলের একটি চৌশ্ব
	Child his Dr. ages without on the cally his 2000 cm.	ত্ৰ বোৰ আৱৰ্জন কৰে। কণ্ডলীতে আবি

র্ভিচালক বলেব গরিষ্ট মান কন্ত ? চৌম্বক ক্ষেত্রের সাথে কুন্ডলী যখন 45° কোলে আনত সেই মুহূর্তে তড়িজালক

ব্যুলর মান কং ? 1 gauss = 10 4 tesla

[Ans. 15 7V: 11 2VI

- 9. $10.8 \times 0.2 \,\mathrm{m}^2$ জেরফল এবং 200 পাক যুস্ত একটি কৃজনীর ভিতর দিয়ে অভিজ্ঞান্ত চৌম্বক ক্ষেত্রের মান যদি 2×10^{-2} সেকেন্ডে সুধমভাবে 0.1 tesla হতে 0.5 tesla.তে পরিবর্ভিত হয় তবে কুজনীতে কত তড়িজালক বল জাবিন্ট হবে ?
- 10. 100 cm² প্রস্থাঞ্জনের একটি কুঙলীতে 100 পাক আছে। কুঙলীর তলের সাথে লম্বভাবে 0.1 Wbm⁻² টেম্বক প্রবাহ ঘনতের চৌম্বক ক্ষেব্র প্রয়োগ করা হল। 0.1 সেকেন্ড সময়ে চৌম্বক ক্ষেব্র সরিয়ে নিলে কুঙলীতে আবিষ্ট ইড়িচালক বলের মান নির্ণয় কর।

 [Jt. Entrance 2005] [Ans. 1 volt]

সেংকেড ঃ কুভলীর সাথে জড়িত ফ্রান্সের পরিবর্তন = $rac{0.1 imes 100 imes 100}{100 imes 100}$

ফ়াকা পরিবর্তনের হার = $\frac{0.1 \times 100 \times 100}{0.1 \times 100 \times 100}$ = 1 volt]

	_			□ M.€	.Q. e	শের উত্তর	.0				
(A)											
(i)		(vi)	D	(xi)	D	(xvl)	C	(xxi)	C	(xvi)	1
(ii)		(vii)		(xii)	D	(xvii)	Α	(xxii)		(xvii)	
(iii)		(viii)	В	(xiii)	В	(xviii)	В	(xxiii)		(xviii)	
(iv)		(ix)	C	(xiv)	A.C	(xix)	D	(xxiv)		(xvix)	
(v)	A	(x)	C	(xv)	A	(xx)	Α	(xxv)		(2000)	
								, , , ,		(xxxi)	

(B) [i] $4.9~{\rm mH}$, [ii] $45~{\rm mV}$: [iii] 0.5 , [iv] $4{\rm mS}^{-1}$; [v] নিস্নমুখী : [vi] 1.257×10^{-23} , (C) [i] নির্ভুল, [ii] নির্ভুল, [iii] ভূল, [v] ভূল, [v] নির্ভুল, [vi] ভূল।

আধুনিক পদার্থ বিজ্ঞান Modern Physics

তড়িৎ চুম্বকীয় তরঙা

ELECTROMAGNETIC WAVES

ানা তড়িংচম্বলীয় তরঙ্গ (Electromagnetic waves) :

1678 খ্রিস্টান্দে হাইগেনস মত প্রকাশ করেন যে, আলো তরজোর আকারে চলাচল করে। পরবর্তীকালে, ইয়ং, ফ্রেনেল প্রমুখ বিজ্ঞানীরা হাইগেনসের তরজা তত্ত্বকে দৃঢ়ভাবে প্রতিষ্ঠিত করেন। এই তত্ত্ব অনুযায়ী শব্দের ন্যায় আলোকেও ৬রজাধর্মী বলে মনে করা হয়। আলোকীয় মাধ্যমে কোনো আন্দোলন (disturbance) সৃষ্টি করলে, ঐ আন্দোলন তরজোর আকারে চতুর্দিকে ছড়িয়ে পড়ে ঠিক যেমন, কোনো স্থির জলাশয়ে চিল ফেললে, জলের ওপরতলে তরজোর উদ্ভব হয় যা কালক্রমে জলাশয়ের চতুর্দিকে বিশুত হয়ে পড়ে। হাইগেন্স ও ফ্রেনেল মনে করেছিলেন য়ে আলোক তরজোর মাধ্যমে য়দ্ভিক শক্তি একস্থান থেকে অন্যত্থানে সন্ধালিত হয় এবং আলোকের সজো চৃষ্ণকত্ব বা তড়িতের কোনো সম্পর্ক নেই। তরজা তত্ত্বের সাহায়েয় হাইগেনস প্রতিফলন, প্রতিসরণ প্রভৃতি আলোকীয় ঘটনাবলির সচার ব্যাখ্যা দেন।

আলোর তড়িৎ চুম্বনীয় প্রকৃতি সম্বন্ধে প্রথম ইজিত পাওয়া যায় 1845 খ্রিস্টান্দে যখন ফ্যারাডে লক্ষ্ণ করেন যে একটি সমতল সমর্বার্ভত (পরবর্তী অনুচ্ছেদ দ্রুটবা) আলোক রশ্মিকে তীব্র চৌম্বকক্ষেত্রের ভিতর দিয়ে ক্ষেত্রের সমান্তরালে পাঠালে, রশ্মির সমবর্তন তলের ঘূর্ণন হয়। এই ঘটনা থেকে ফ্যারাডের মনে এই ধারণা জন্মে যে আলোর সাথে তড়িৎ ও চৌম্বকক্ষেত্রের নিকট সম্বন্ধ আছে। পরবর্তীকালে ম্যাক্সওয়েল আলোর প্রকৃতি সম্বন্ধে এক ভিন্ন ধারণার প্রবর্তন করেন। তিনি বলেন যে আলোক রশ্মির মাধ্যমে যান্ত্রিক

শক্তি সম্বালনের পরিবর্গে তড়িৎ চুম্বকীয় শক্তির সম্বালন ঘটে। ম্যাক্সওয়েলের এই তত্ত্ব তর্গোর তড়িৎ চুম্বকীয় তত্ত্বপে খ্যাতি লাভ করে।

মাজিওয়েলের তত্তান্সারে যখন মাধামের ভিতর দিয়ে গতিশীল টোম্বক ও ওডিৎক্ষেত্রের দুও পর্যাবৃত্ত (periodic) পরিবর্তন গটে তখন দৃশা ও অদৃশা বিকিরণের উত্তব হয়। এই দুই ক্ষেত্র মাধামের যে কোনো বিন্দান্ত এক সমাওলে থেকে পরক্ষারের অভিনম্নভাবে কিমা করে এবং তার নর্ন উৎপর্যা বিকিরণ ঐ ওলেব ছাল্লিম্বভাবে সঞ্জালিত হয় এই তথান্যার্থী অবলা ওল চীম্বক ব্লের ৪ এর

মাঝোওলেন হারুন প্রাক্তয়ান্ত প্রাণে পাওয়া শ্রুল 1৪৪4 হিন্দাকে সভার হার্কস স্পন্ধনালীন (instillatory) হ'বি প্রাক্ত হিবুল হুরুলীয় হরজা স্কিট্ট কর্মেন প্রাক্তর সভায়ে হার্কস প্রয়াল করলেন যে এই তরজা আলোর মতো প্রতিফলন, প্রতিসরণ, ব্যাতিচার ইত্যাদি বিভিন্ন আলোকীয় ধর্মাবলি মেনে চলে। ম্যাক্সপ্রয়েল তন্ত্রীয় আলোচনা করে প্রমাণ করেন যে তড়িৎ চুম্বকীয় তরজা যে গতিবেগে

চলাচল করে তা $V=\frac{c}{\sqrt{\mu\ k}}$ যেখানে $\mu=$ মাধ্যমের ভেদ্যতা ; k= মাধ্যমের পরা বৈদ্যুতিক ধ্বক এবং c= তড়িতাধানের e.m.u. এবং e.s.u. এককের অনুপাত। শূন্য মাধ্যমের $k=\mu=1$ এবং $c=3\times 10^8$ । অভএব, তড়িৎ-চুম্বকীয় তরজোর গতিবেগ $3\times 10^8\ \mathrm{ms}^{-1}$ । এটা আলোর গতিবেগের সমান।

তড়িৎ চুম্বকীয় তরজোর প্রধান বৈশিষ্ট্য এই যে এই তরজোর চলাচলের জন্য কোনো মাধ্যমের প্রয়োজন হয় না। তাছাড়া এই তরজা প্রকৃতিতে তির্থক (transverse)। এই তরজোর তির্থকরূপ প্রতিষ্ঠিত হয় আলোর সমবর্তন ঘটনায়। শব্দতরজোর সমবর্তন হয় না বলে শব্দতরজা তির্থক নয়— অনুদৈর্ঘ্য। আমরা এখন আলোর সমবর্তন সম্বন্ধে আলোচনা করব।

☐ EXAMPLE ☐

একটি তড়িচ্চুম্বকীয় তরশো তড়িংক্ষেত্র $2 \times 10^{10} \ Hz$ কম্পান্ধের সাইনীয় (sinusoidal) আন্দোলন সম্পন্ন করছে। আন্দোলনের বিস্তার $48 \ Vm^{-1}$ ঐ তরগোর তরগা দৈর্ঘ্য কত ? আন্দোলিত চৌম্বক্ষেত্রের বিস্তার কত ?

উঃ। (i) তরজাদৈর্ঘ্য
$$\lambda=\frac{c}{v}$$
 [তরজোর গতিবেগ $=c$]
$$=\frac{3\times10^8}{2\times10^{10}}=1.5\times10^{-2}~\mathrm{m}=1.5~\mathrm{cm}$$
 (ii) চৌম্বক ক্ষেত্রের বিস্তার $B_0=\frac{\mathrm{obsect}$ করের বিস্তার C
$$=\frac{48}{3\times10^8}=1.6\times10^{-8}~\mathrm{T}.$$

1.2. আলোর সমবর্তন (Polarisation of light):

আলোর ব্যতিচার এবং অপবর্তন ঘটনাবলি প্রমাণ করে যে আলো তরজাধর্মী। কিন্তু কোন্ ধরনের তরজা ? তির্যক না অনুদৈর্ঘ্য ? ব্যতিচার বা অপবর্তন ঘটনাবলির ব্যাখ্যায় এ প্রশ্ন ওঠে না কারণ উভয় প্রকার তরজাই ব্যতিচার এবং অপবর্তন ঘটনাবলি প্রদর্শন করে। এই প্রশ্নের সমাধান হবে আলোর সমবর্তন দারা।

আলোর সমবর্তন সর্বপ্রথম লক্ষ করেন হাইগোনস 1690 খ্রিস্টাব্দে। আমরা পরে দেখতে পাব যে সমবর্তন একমাত্র তির্যক তরগোর বেলাতেই সন্তব। এই কারণে আমরা তড়িৎ চুগলীয় তরজাকে তির্যক তরজা বলি। প্রসঞ্জাক্রমে উল্লেখ করা যায়, শব্দও তরজাধর্মী কিছু গ্যাস মাধ্যমে শব্দতর্বশা অনুদৈর্ঘ্য বলে এর সমবর্তন হয় না।

টুরাম্যালিন কেলাসের দারা পরীক্ষা (Experiments with tourmaline crystal): ট্রাম্যালিন কেলাস অনেকগুলি ধাত্র অঝাইডের রাসায়নিক সংমিশ্রণে তৈরি। এটা ক্ষচ এবং উসং সনুক্র বর্ণের মড়ভ্জনিশিন্ট (hexagonal) কেলাস। ঐ কেলাসের প্রস্থাচেদের সর্বনৃহৎ কর্ণকে (1.2 নং চিত্রে ab) বলা হয় তার আলোকীয় অক্ষ (optic axis)।

1.2নং চিত্রে T_1 ঐরুপ একটি কেলাসের পাঙলা ফালি। একগৃচ্চ সর আলোকর্ণনা XY রেখা বরাবর ঐ কেলাসের সমঙল ওলে (flat surface) অভিলম্বভাবে আপতিও হয়েছে। আপতিও অপুলব কিয়াদংশ

কেলাসের ভিতর দিয়ে অপরপার্গে নিৰ্গত হবে। খালি চোখে ঐ নিৰ্গত আলো-কে দেখলে, আলোর তীব্রতার কোনো হেরফের হবে না. তবে কেলাসের প্রকতির ওপর নির্ভর করে সামান্য একট রঙিন হবে। এইবার XY রেখাকে অক্ষ করে T_1 কেলাসকে যদি থীরে থীরে ঘরানো হয় তাহলেও নির্গত আলোর তীবতা বা বৈশিক্ষার কোনো পরিবর্তন দেখা যাবে না। নির্গত আলো-কে এখন ঐরপ আর একটি

কেলাস To -এর ওপর ফেলা হল। দ্বিতীয় কেলাসের আলোকীয় অক্ষ a'b' প্রথম কেলাসের আলোকীয় অক্ষের (ab) সমান্তরাল থাকলে, দেখা যাবে আলো দ্বিতীয় কেলাসের ভিতর দিয়ে পরিপর্ণভাবে নির্গত হয়ে এসেছে [চিত্র 1.2(a)]। তার তীব্রতার কোনো পরিবর্তন হয়নি। কিন্ত T1 কেলাসকে প্থির রেখে এবং XY রেখাকে অক্ষ করে T₂ কেলাসকে ধীরে ধীরে ঘোরালে, নির্গত আলোকরশ্মির তীব্রতা ধীরে ধীরে ক্ষীণ হতে দেখা যাবে। যখন কেলাস দটির আলোকীয় অক্ষ পরস্পরের অভিলম্ব হবে তখন দ্বিতীয় কেলাস দিয়ে আর কোনো আলোই নিৰ্গত হবে না [চিত্ৰ 1.2(b)]। এই অবস্থায় বলা হয় কেলাস দৃটি আড়াআড়ি (crossed) ভাবে আছে ৷

যদি T_2 কেলাসকে একই দিকে আরও ঘুরানো হয়, তবে তাদের আলোকীয় অক্ষ আবার পরস্পরের সমান্তরাল হতে থাকবে এবং আলোও দ্বিতীয় কেলাস দিয়ে একট একট করে নির্গত হবে। ${
m T}_2$ কেলাসকে পূর্ণ 180° ঘোরালে অক্ষদ্বয় পুনরায় পরস্পরের সমান্তরাল হবে এবং আলোও প্রারম্ভিক তীব্রতায় নির্গত হবে।

টুরম্যালিন কেলাসের উপরিউন্ত সহজ পরীক্ষা হতে আমরা এই কথা জানতে পারি যে, প্রথম কেলাসের ভিতর দিয়ে নির্গত আলো এমন একটি বৈশিষ্ট্যের অধিকারী হয় যার ফলে, দ্বিতীয় কেলাসের এক বিশেষ অবস্থানে ঐ আলো সম্পূর্ণরূপে রুখ হয়; আবার অন্য এক বিশেষ অবস্থানে আলো সম্পূর্ণরূপে নির্গত হয়। আলোর এই বৈশিন্ট্যকে সমবর্তন (polarisation) বলে।

টুরম্যালিন কেলাসের সাপেকে আলোর উপরিউক্ত বিচিত্র বাবহার সহজে বোঝার জন্য আমরা একটি যান্ত্রিক উদাহরপের সাহায়া নেব।

S1 এবং S2 দৃটি কাওবোরে লয়ালাম সব ছিত্র করা হল এবং ছিত্ত দৃটিকে প্রস্পারের সমান্ত্রবাল রিখে ভাদের ভিতর দিয়ে একটি সতে CD গলিয়ে (১৬য়া হল ১৯র 13)। স্তের D প্রাপ্ত আলব্ধ রেখে C

প্রান্তকে সূতোর দৈর্ঘ্য বরাবর সামনে-পিছনে নাড়ালে সূতো বরাবর একটি অনুদৈর্ঘ্য তরঙ্গা চলে যাবে। ছিদ্র দুটিকে পরস্পরের সমান্তরাল অথবা লম্বভাবে অথবা অন্য যে-কোনো অবস্থাতেই রাখা হোক না কেন, দেখা যাবে অনুদর্য্য তরঙ্গা সকল অবস্থাতেই ছিদ্র দুটি দিয়ে নির্গত হয়ে সূতার S2 D অংশে চলে এসেছে।

এইবার মনে করো, C প্রান্তকে বৃদ্তাকারে CD রেখার অভিলম্বভাবে এলোমেলোভাবে নাড়ানো হচছে। দেখা যাবে, সুতোর C হতে S_1 অংশ বৃত্তাকারে ঘুরছে কিন্তু S_1 ছিদ্রের পরের অংশ ছিদ্রের সমান্তরালে রৈখিক গতি পেরেছে। অর্থাৎ S_1 ছিদ্র অন্য সকল রৈখিক গতিকে বুন্থ করে কেবলমাত্র নিজের দৈর্ঘ্যের সমান্তরাল রৈখিক গতিকে প্রেরণ (transmit) করেছে। S_1 ছিদ্রের সমান্তরালে ঐ রৈখিক গতি S_2 ছিদ্র দিয়ে নির্গত হয়ে স্তোর S_2D অংশে পৌছোবে যখন S_1 এবং S_2 ছিদ্রদর পরস্পরের সমান্তরাল হবে [চিত্র 1.3(a)]। কিন্তু ছিদ্রদর পরস্পরের অভিলম্বে থাকলে, উক্ত রৈখিক গতি S_2 ছিদ্র দিয়ে নির্গত হতে পারবে না। ফলে, সুতোর S_2D অংশ কোনো গতি না পেয়ে স্থির অবস্থায় থাকবে (চিত্র 1.3(b))।

এইবার পূর্ববর্ণিত ট্রম্যালিন কেলাসের পরীক্ষার কথায় আসা যাক। দ্বিতীয় কেলাস T_2 এক বিশেষ অবস্থানে থাকলে আলো সম্পূর্ণরূপে রুখ হয়—এই ঘটনা প্রমাণ করে যে আলোক-তরঙা অনুদর্ঘ্য তরঙা নয় কারণ অন্দর্ঘ্য তরঙা হলে, দ্বিতীয় কেলাসের কোনো অবস্থাতেই ঐ আলো অবরুখ হত না, যেমন S_1 এবং S_2 চিদ্রদ্নয়ের কোনো অবস্থাতেই সুতো বরাবর অনুদর্ঘ্য তরঙাকে অবরোধ করা যায় না। অতএব, সাধারণ আলোক তরঙাকে আমরা তির্থক বলে গণ্য করতে পারি—যে তরঙাের ফলে মাধ্যমের

কণাগুলি তর্জোর গতির অভিমুখের অভিলম্বতলে অবস্থান করে সকল প্রকার অভিমুখেই আন্দোলিত হবে (চিত্র 1.4)। এই আলো-কে সাধারণ আলো বা অসমবর্তিত আলো (unpolarised light) বলা হয়। যখন এরূপ অসমবর্তিত আলোকরশ্মি প্রথম কেলাসের (T1) ভিতর দিয়ে নির্গত হয় তখন এ কেলাস নিজের আলোকীয় অক্ষ ab-এর সমান্তরাল আন্দোলন ছাড়া অন্য সকল প্রকার আন্দোলনকে শোষণ করে নেয় [চিত্র 1.3(a)]। ফলে নির্গত আলোকরশ্মিতে যে আন্দোলন থাকবে তা রশ্মির গতির অভিমথে অভিলম্বতলে একটি

বিশেষ দিকে সীমাবন্দ্ধ থাকবে। **আলোর এই ধরনের একপেলে ধর্মকে** (one-sided property) বঙ্গা হয় সমবর্তন এবং রশ্মিকে বলা হয় সমতল সমবর্তিত আলোকরশ্মি (plane polarised ray)। এই সমবর্তিত আলোকরশ্মি T_2 কেলাস ভেদ করে নির্গত হবে যদি ঐ কেলাসের আলোকীয় অক্ষ T_1 কেলাসের আলোকীয় অক্ষের সমান্তরাল অথবা সমবর্তিত আলোক তরজোর আন্দোলনের সমান্তরাল হয়। আর T_2 —কেলাসের আলোকীয় এক্ষের সালোকীয় এক্ষের আলোকীয় অক্ষের আলোকীয় এক্ষের আলোকীয় ওক্ষের অভিলম্ন হলে, ঐ আলোক তরজা দিতীয় কেলাস কর্তৃক সম্পূর্ণ অবরুদ্ধ হবে। 1.3(b) নং চিত্রে দেখালো যাদ্মিক উদাহরণে S_1 এবং S_2 চিদ্রদ্বয় পরম্পারের লম্ব অবস্থালে থাকাকালীন, যেমন স্তোর তির্যক ওরজা S_1 চিদ্র দিয়ে এসে S_2 চিদ্রারা অবরুদ্ধ হয়, T_2 কেলাসের সাপেক্ষে আলোকরশ্মিত ব্যবহারত ঐরুপ।

টুরম্যালিন কেলাসের এই পরীক্ষা হতে আমরা নিম্নলিখিত বিষয়গুলি ভানতে পারি ঃ—

- (j) ৩ড়িৎ চ্সকীয় বা আলোক তরজা তির্যক তরজা। আলোক তরজোর গতির অভিম্যোর আভিলস্তলে মাধ্যমের কলাগুলির আন্দোলনের ফলে ঐ তরজোর সৃষ্টি হয়। ঐ আলো-কে সাধানণ আলো বা অসমবর্তিত আলো বলা হয়।
- (ii) অসমবর্তিও আলো ট্রমালিন কেলাসের ওপর আপতিও হলে, ঐ কেলাসের একটি বিশেষ অভিমুখে আন্দোলন চাড়া আলোক ওরজোর অনানা আন্দোলনকে কেলাস শোষণ করে নেয়: ফলে,

নির্গত আলো একপেশে ধর্ম লাভ করে যার জন্য ঐ আলো-কে সমবর্তিত আলো বলা হয়। 1.3 (a) নং চিত্রে T_1 কেলাস সমবর্তিত আলো উৎপন্ন করে বলে তাকে সমবর্তক (polariser) বলে।

(iii) আলোকরশ্মি সমবর্তিত কিনা তা T_1 -এর ন্যায় আর একটি টুরম্যালিন কেলাসের (T_2) সাহায়ে পরীক্ষা করা যেতে পারে। আলোকরশ্মি সমবর্তিত হলে T_2 কেলাসের এক বিশেষ অবস্থানে আলো সম্পূর্ণরূপে অবরুপ হবে। এই কারণে 1.3 (a) নং চিত্রে T_2 কেলাসকে বলা হয় বিশ্লেষক (analyser)।

(iv) প্রথম কেলাস হতে নির্গত আলো (সমবর্তিত) যখন দ্বিতীয় কেলাস কর্তৃক সম্পূর্ণ অবরুন্ধ হয় তথন বলা হয় সমবর্তৃক ও বিশ্লোষক আডাআডি (crossed) অবস্থানে আছে।

1.3. তড়িৎচুম্বকীয় বৰ্ণালী (Electromagnetic spectrum) :

তরঙা দৈর্ঘ্য অথবা কম্পাঙক অনুযায়ী সকল প্রকার তড়িৎ চুম্বকীয় বিকিরণকে ক্রমায়য়ে সাজালে, তাকে তড়িৎ চুম্বকীয় বর্ণালী বলা হয়। 1.5 নং চিত্রে ঐ বর্ণালীর সজ্জা দেখানো হয়েছে।

তড়িৎ চুপনীয় তরজোর কম্পাঞ্চ বা তরজাদৈর্ঘ্য বহু বিস্তৃত। এই সকল তরজোর শ্রেণি বিভাগ সৃতীফু (sharp) সীমারেখায় বিভক্ত নয়। এর কারণ এই যে শ্রেণি বিভাগ করা হয়েছে মূল উৎস অনুযায়ী ;

আবার বিভিন্ন উৎস সমাপতিত (overlapping) কম্পান্তেকর বিকিবণ উৎপাদন করে।

সৌর বর্ণালী এবং বিভিন্ন বন্ধ কর্তৃক সৃষ্ট বর্ণালীর অন্তর্গত বিভিন্ন তরজা দৈর্ঘ্যের বিকিরণ পর্যালোচনা করে দেখা গিয়েছে যে দৃশামান কর্ণালী বা অবলোচিত ও অতিবেগুনি বর্ণালী অভিক্রম করেও ছোটো-বড়ো নানারকমের তরজা দৈর্ঘায়ন্ত বিকিরণ আছে, যাদের ধর্মাবলি সাধারণ আলোর ধর্মাবলির মতো। এদের বলা হয় তড়িচ্চুম্বকীয় তরগোর গতিবেগের সমান: গদের প্রতিফলন, প্রতিসরণ, ব্যতিচার প্রভৃতি সকল ধর্মাবলিই বর্তমান।

বৈতার তর্কা (Radio waves): এই তর্গোর তর্কান্দ্র্যা করোক কিলোমিটার থেকে 0.3 মিটার পর্যন্ত বিস্তৃত। এর কম্পাক্ষের বিস্তৃত্বর করেক হাৎস থেকে 10⁹ ইংৎস পর্যন্ত। দুরদর্শন, বৈতার প্রভূতির করে এই তর্কা বাবহার করা হয়। অসকলাশীল (oscillating) ইলেক্ট্রনিক বর্তনী ছারা এই তর্কা উৎপন্ন করা হয়।

মাইক্রোওয়েভস (Micro waves), একেই এরফালেরের বিস্তুর 0.3 ফিলে গ্রেক 10 ³ ফিলে

ভবগ্লেদেখ্য (cm) उत्रक्षा 1-1×10-10 (01A°) सराधा विद्या 1.4×10.8(1.4A°) এক্স-ব্ৰশ্যি 4×10-5 (1,4000A°) অভিবেগ্নী 4×10-5 (4000A°) দশামান 8×10-5 (8000A°) অস্পের্ভ ব भाकेरका स्टास स 5×10^{2} cm 10 × 102 cm 27.812 25 × 10 cm डिंड 1.5

পর্যন্ত কম্পাঙ্গের বিশ্বার 10^9 হাৎস (থাকে 3×10^{11} হাৎস পর্যন্ত রাভার এবং অনানা সোণাস্থার বাক্সায় (communication system) এই ভবজা ক্রেখার করা হয়। ভাষাভূ পাক্সার্থক ও আগরিক গঠনের সন্মু প্রস্কোত্ত মান্ত্রিক তেওঁ ক্রিখার সন্মু প্রস্কোত্ত মান্ত্রিক তেওঁ ক্রিখার সন্মু

দুশামান বৰ্ণনাৰ ভিতৰ সৰ্বাপেক্ষা বৃহৎ তবজা- দৈৰ্ঘেৰে ল'ল মানোৰ তবজা দৈৰ্ঘে $7\times 10^{-7}\,\mathrm{m}$ মধ্যে $7000\,\mathrm{A}$ এবং সৰ্বাপেক্ষা বৃহৎ তবজা- দৈৰ্ঘেৰে ল'ল মানোৰ তবজা দৈৰ্ঘ $4\times 10^{-7}\,\mathrm{m}$

অথবা 4000 A° ।চিত্র 1.51। বেগনি আলো অপেক্ষা ক্ষদ্রতর তরজা-দৈর্ঘ্যের আলো হল অতিবেগনি আলো। অতিবেগনি অঞ্চলের তরজা-দৈর্ঘ্যে 4000 A° হতে প্রায় 1000 A° পর্যন্ত বিস্তত। এথেকে ক্ষদ্রতর তরজা দৈর্ঘ্যের রশ্মি হল এক্সরশ্মি (X-ravs)। এর তরজা দৈর্ঘ্য 1400 A° হতে 0.06 A° পর্যন্ত বিস্তত। তেজস্কিয় বস্ত (radioacitive substance) হতে নির্গত গামা রশ্মির (Gamma rays) তরজা-দৈর্ঘ্য আরও ছোটো। 1.4 A° হতে 0.01A° তরজা দৈর্ঘ্যের গামা রশ্মি পাওয়া গিয়েছে।

দশমোন বর্ণালীর সর্ববহৎ তরজা দৈর্ঘেরে লাল আলো অপেক্ষা দীর্ঘতর তরজা হল অবলোহিত আলো (infra red rays)। এই আলোর তরজা দৈর্ঘ্যের পাদা 7000 A° থেকে 0.04 cm পর্যন্ত।

আরও বহুৎ দৈর্ঘ্যের তড়িৎ চম্বকীয় বিকিরণকে সাধারণভাবে হার্টজীয় তর্জা (Hertzian waves) বলা হয়। এদের ভিতর আছে বেতার তরজা ও দরদর্শন (বা টেলিভিশন) তরজা। এদের তরজাদৈর্ঘ্যের পালা 4×10^{-4} থেকে 2.5×10^4 পর্যন্ত।

				The street was	
্ৰগুনি	3.9-34 55×10 1	7.69-6.39×10 ¹⁴	<i>इल्</i> टुल	5.77-5.97	5.20- 5.03
নীল	4.55-4.92	6.59-6.10	45/10/1	5.97-6.22	5.03-4 82
সবৃঞ	4.92-5.77	6.10-5.2	ক্ষান্ত্ৰ	6.22-7.8	4.82-3.84

প্রশাবলি

- 1. তড়িৎ চম্বকীয় তরজা কাকে বলে ? এর বৈশিষ্টা কী ?
- 2. আলোর সমবর্তন বলতে কি বোঝ? এই ঘটনা দ্বারা আলোর প্রকৃতি সম্বন্ধে কী জানা যায়? শব্দ তর্জোর সমবর্তন হয় না কেন ?
- 3. তডিৎ-চম্বকীয় বর্ণালী জী ?
- 4. নিম্নলিখিত তড়িৎ চুম্বনীয় তর্জাণুলিকে কুমবর্ধমান তর্জাদৈর্ঘ্য অন্যায়ী সাজাও : রেডিও তর্জা, অভিবেগুনি তরজা, গামা রশ্মি, মাইক্রোতরজা, এক্সরশ্মি।
- 5. দৃশামান বর্ণালীর ভিতর সর্বাপেক্ষা বৃহৎ এবং সর্ব্পেক্ষা ক্ষুদ্র তরজা দৈর্ঘ্যের তরজা কী কী ?
- আমাদের চোখে যে তরকা দৈর্ঘ্যের পালা ধরা পড়ে তা
- (A) 400 nm (오선호 900 nm (B) 700 nm (외전호 800 nm
- (C) 0 (8/7 0
- (1)) ~ (SITA < +~

[Ans. (A)]

7. আলোর যে-ধর্ম প্রমাণ করে আলো তির্যক তর্ম্চা তা হল

(A) প্রতিফলন (B) ব্যতিচার (C) অপবর্তন

SEMICONDUCTOR AND ELECTRONICS

পরিবাহী, অন্তরক ও অর্থপরিবাহী (Conductor, insulator and semi-conductor):

যে সকল পদার্থ খুব সহজে তড়িৎ পরিবহন করে তাদের বলা হয় পরিবাহী। তামা, সোনা, রূপা ইত্যাদি তড়িতের সপরিবাহী।

আবার যে সকল পদার্থ সহজে তডিৎ পরিবহন করে না তাদের বলা হয় অন্তরক: যেমন, কোয়ার্টজ, অন্ত্র, গশ্বক ইত্যাদি। প্রমাণুর ইলেকট্রনীয় গঠনতত্ত্ব দ্বারা পদার্থের তড়িৎ পরিবাহিতা বা অপরিবাহিতা ব্যাখা। করা যায়। তড়িতের সুপরিবাহী পদার্থগুলির কেলাসিত গঠন (crystalline structure) এরপ যে, কোনো প্রমাণ্র অপূর্ণ খোলকের ভ্যালেন্স ইলেকট্রনগুলি পাশ্ববর্তী প্রমাণ্গুলিতে চলে এসে তাদের অপূর্ণ খোলক পূর্ণ করতে পারে। এভাবে পরমাণু হতে পরমাণুতে এদের চলাফেরা করার স্বাধীনতা আছে। অভান্তরস্থ পূর্ণ খোলকের ইলেকট্রনগুলি, অবশ্য ঐ পরমাণুর নিউক্রীয়াসের আকর্ষণে দঢ়ভাবে আবন্ধ থাকে। অপূর্ণ খোলকের ভ্যালেন্স ইলেকট্রনগুলি উত্ত পশ্বতিতে স্বাধীনভাবে পদার্থের ভিতর চলাফেরা করে তড়িৎ পরিবহন করে এবং পদার্থটিকে তড়িতের সুপরিবাহী করে। সুপরিবাহীর ওপর তড়িৎক্ষেত্র প্রায়োগ করলে, স্বাধীন ইলেকট্র-াগুলি ক্ষেত্রের অভিমুখে অণুপ্রবাহ বেগ (drift velocity) পায় ; ফলে সুপরিবাহীর ভিতর দিয়ে তড়িৎপ্রবাহ ঘটে। অপরপক্ষে, তড়িতের অপরিবাহী পদার্থগুলির প্রমাণ্ডে ঐ ধরনের বিশেষ কোনো স্বাধীন ইলেকট্রন নেই —ইলেকট্রনগুলি প্রমাণুতেই দৃঢ়ভাবে আবন্ধ থাকে। এপরিবাহী পদার্থের ওপর তড়িংক্ষেএ প্রয়োগ করলে ইলেকট্রনের কোনো অণুপ্রবাহ ঘটে নাঃ ফলে ঐ পদার্থের ভিতর কোনো তডিৎপ্রবাহ দেখা যায় না।

আবার এমন কতকগুলি পদার্থ আছে যারা ভালো পরিবাহী নয় কিন্তু উত্তম অন্তর্গকও নয়। এদের পরিবাঠিতা স্পরিবাটা পদার্থ এবং অন্তরক পদার্থের মাঝামাঝি। যেমন, সিলিকন একটি অর্ধপরিবাচা। এর পরিবাহিতা তামা (স্পরিবাহী)র পরিবাহিতার ভূলনায় 10¹¹ গুণ কম আবার গলিত কোয়াটজ (অপরিবাহী) এর ভুলনায় 10¹³ গুল বেশি। এই সকল পদার্থকে বলা হয় **অর্ধপরিবাহী** (semiconductor)

এর্ধপরিবাহী পদার্থের ইলেকটুনগলিকে তাপীয় উত্তেজনা, আলোকসম্পাত, তড়িংকেত্র প্রভৃতি প্রয়োগে গতিশীল করা যায়। নানাপ্কার অর্ধপরিবাহী সম্পর্কে আজকাল গবেষণা চলছে। একের মধ্যে জারতে নয়াম এবং সিলিকন খুন্ট ইন্মেখ্যোগ্য কারণ এই দৃটি অর্ধপরিবাহী দারা ট্রানজিস্টার (transistor) তৈরি করা ইয়া। ট্রালাজিন্তার প্রাব্দ্রার এবং ইলেকট্রাকস বিজ্ঞানের ক্ষয়ে অভ্তপন আলোড়ানেন সৃষ্টি করেছে। আয়েরিকার বেল টেলিফের্ন লেন্টেরির ভিনন্তন বিজ্ঞানী ছে, বার্ডিন, সকলে এবং ৬বল্ট প্রাটেন ভারমেনিয়াত্ম এবং সিলিকানের ওপর গ্রমেণা করে ট্রানজিস্টার উদ্বাধনের জনা 1956 খ্রিস্টাব্দে শেবেল পুরস্কার পান।

●পটি তবু (Band theory) : বর্তমানে পরিবার্তী, অর্ধান্সবিধারী এবং অন্তবক পদার্থের ভিতর পার্থক। করা হয় পটি ওল্লের সাহায়ে।। পটি হন্ত গান্ত্রক দিক হতে খুবই জটিল। এব বিস্তারিত দিননত এই স্তার সম্ভাব নাম। এটি এই এণ্ডেব সংখায়ো ক্রীভাবে উপাবোন্ত পার্থকা করা হয় কবল সে সম্বাধ্ব সংক্ষেপ আলোচনা করা হল।

্রার ৩ন্ত আমরা জান য়ে কোনো বিচ্ছিন্ন প্রমাণ্য ইলেকটুনর্গুল নিউর্ন্নাসকে খিরে করেকটি নির্দ্দিট শক্তিনে (discrete energy state) বিশিষ্ট কক্ষপথে আবর্তন করে এখন, কোনো কেলাসিত

পদার্থের (crystalline substance)
প্রমাণগুলি খুব কাডাকাডি থেকে একটি
ধারাকাহিক সভ্চায় সভিত থাকে। একে
কেলাসের 'জাফরি-গঠন' (lattice
structure) বলা হয়। এর্প জাফরিগঠনে যদি দৃটি পরস্পর সংকল্প প্রমাণুর
কথা বিবেচনা করা যায় তাহলে প্রতিটি
প্রমাণুর জন্য কতকগুলি অবিচ্ছিন্ন
শক্তিরের থাকবে। কিবু প্রমাণু দুটির
পারস্পরিক কিয়া-প্রতিক্রিয়ার ফলে,
শক্তিরেরের সংখ্যা বন্ধি পায় এবং

ন্তর্বার শক্তিও ভিন্ন হয়। কোনো কেলাসে যদি N সংখ্যক পরমাণু থাকে তাহলে তাদের পারম্পিরিক কিয়া-প্রতিক্রিয়ায় প্রতিটি পরমাণুর জন্য বোর তত্ত্ব হতে প্রাপ্ত যে-কোনো শক্তিম্বর N সংখ্যক বিভিন্ন স্তরে বিভাজিত হয়ে যাবে। বিভাজিত শক্তিম্বরগুলি এত ঘন সন্নিবিষ্ট থাকে যে তাদের আর পৃথক শক্তিম্বর বলে মনে হয় না; বম্বৃত, সেগুলিকে একটি নিরবচ্ছিন্ন (continuous) শক্তিপটি (energy band) বলে মনে হয়। সাধারণত এরুপ দুটি শক্তিপটি পরস্পর হতে একটি অস্থল দ্বারা বিচ্ছিন্ন থাকে—যে অস্থলকে বলা হয় নিষিশ্ব অস্থল (forbidden zone) (চিত্র 2.1)।

পাউলির বর্জন নীতি হতে দেখা যায় যে প্রমাণুর অভ্যন্তরীণ ইলেকট্রনগুলি নিম্নতর শক্তিপটিতে অকথান করে। স্বাভাবিক অকথায় নিম্নতর শক্তিসম্পন্ন এই পটিকে বলা হয় 'সংযোজী পটি" (valence band)। সংযোজী পটি অপেক্ষা অধিক শক্তিসম্পন্ন পটিকে বলা হয় 'পরিবাহী পটি' (conduction band)।

যে পদার্থের বেলায় নিষিন্ধ অশ্বল বিলুপ্ত হয়ে সংযোজী পটি এবং পরিবাহী পটি পরস্পরের ওপর সমাপতিত হয় তাকে বলা হয় পরিবাহী পদার্থ (চিত্র 2.1)। যদি সংযোজী পটি এবং পরিবাহী পটি পরস্পর হতে $3\ eV$ অপেক্ষা বেশি শক্তি সমন্বিত নিষিন্ধ অশ্বল দ্বারা পৃথক হয়ে থাকে, তবে সেই পদার্থ হয় অন্তরক। নিষিন্ধ অশ্বলের শক্তি $(E_g)\ 2\ eV$ অপেক্ষা কম হলে, পদার্থ অর্ধপরিবাহী হয়।

জার্মেনিয়াম এবং সিলিকন মৌলের নিষিশ্ব অশ্বলের শন্তির মান ($E_{\rm g}$) যথাক্রমে $0.7~{\rm eV}$ এবং $1.1~{\rm eV}$. এই কারণে ঐ দুটি পদার্থ উত্তম অর্ধপরিবাহী। নিম্নতাপমাব্রায় এই প্রমাণুর ইলেকট্রনগুলি উপরোক্ত শক্তি সংগ্রহ করতে পারে না বলে সংযোজী পটিতেই থেকে যায়। কিন্তু অল্প উত্তপ্ত করলেই কিছু কিছু ইলেকট্রন প্রয়োজনীয় শক্তি সংগ্রহ করে নিষিশ্ব অশ্বল অতিক্রম করে সংযোজী পটি হতে পরিবাহী পটিতে চলে যায় এবং পদার্থটি তথন তড়িৎ পরিবাহী হয়ে পড়ে। এই কারণে অর্ধপরিবাহী বভুর উন্মতা বৃশ্বি করলে, তার তড়িৎ-পরিবাহিতা বৃশ্বি পায় অথবা রোধ হাস পায়। লক্ষ্ক কর তড়িৎপরিবাহী বতুর বেলায় ঠিক উল্টো ঘটনা ঘটে।

2.2.

অর্ধপরিবাহীতে তড়িৎবাহকের গতি (Motion of charge carrie in a semi-conductor) :

সিলিকন, জার্মেনিয়াম প্রভৃতি অন্তরক পদার্থের পরমাণুগুলিতে 0° C উশ্পতায় পরিবাহী পটি সম্পূর্ণ থালি থাকে এবং সংযোজী পটি সম্পূর্ণভাবে ভ্যালেন্স ইলেকট্রন দারা ভর্তি থাকে। জার্মেনিয়াম বা সিলিকন পরমাণুতে চারটি ভ্যালেন্স ইলেকট্রন আছে। প্রত্যেক পরমাণুর ভ্যালেন্স ইলেকট্রনগুলি পার্শ্ববর্তী পরমাণুর সাথে সমযোজী গ্রন্থি (covalent bond) স্থাপন করে জার্মেনিয়াম কেলাস (crystal) গঠন করে। বিশৃষ্ধ

জার্মেনিয়াম পদার্থে কোনো স্বাধীন ইলেকট্রন না থাকায় নিম্ন-তাপমাত্রায় এর কোনো ওড়িং পরিবাহী ধর্ম থাকে না। এই ধরনের বিশব্দ জার্মেনিয়াম পদার্থে নিম্ন-তাপমাত্রায় কোনো ভড়িং পরিবাহী ধর্ম থাকে না।

এই ধরনের বিশৃষ্ধ জার্মেনিয়াম কেলাসকে বলা হল বিশৃষ্ধ কেলাস (intrinsic crystal) কিন্তু তাপমাত্রা বৃদ্ধি করে জার্মেনিয়ামকে ঘরের তাপমাত্রায় আনলে, তাপীয় উত্তেজনায় পরমাণ্র কিছু প্রন্থি (bond) ভেঙে পড়ে। ফলে কিছু ইলেকট্রন মূন্ত হয়ে কেলাসের ভিতর বিচরণ করে এবং প্রয়োজনীয় শক্তি সংগ্রহ করে সংযোজী পটি হতে পরিবাহী পটিতে চলে যায়। এভাবে প্রনিঘাই পটিতে উন্নীত হয় তথন ঐ প্রন্থিতে একটি ইলেক্ট্রনের ঘাটতি ঘটে। সংযোজক পটিতে এর্প ইলেক্ট্রনের ঘাটতিতে একটি গহুর বা গর্তের (hole)

উদ্ভব হয় [2.2 নং চিত্তের দক্ষিণ দিকের ওপরাংশ] যা একটি পজিটিভ তড়িতের সমত্লা।

তাপীয় উন্তেজনার ফলে, ঐ গর্তের ঠিক পরবর্তী একটি বন্ধ ইলেকট্রন ঐ গর্ত ভর্তি করার জন্য চলে আসতে পারে: আবার, সে যে 'গর্ত' সৃষ্টি করবে তা ভর্তি করার জন্য পার্শ্বনর্তী কন্ধ ইলেকট্রন চলে আসবে। অর্থাৎ এক বন্ধ অবস্থান হতে নেগেটিভ তড়িতের অপর বন্ধ অবস্থানে স্থানান্তর হবে। আবার এই স্থানান্তরের ঘটনাকে বিপরীত দিকে 'গর্তের' স্থানান্তর বলেও মনে করা যেতে পারে। কিন্তু গর্তের স্থানান্তরের অর্থ হল পজিটিভ তড়িতের স্থানান্তর। এটা 2.2 নং চিত্রের নিম্নাংশে দেখানো হয়েছে। এই স্থানে ইলেকট্রন বামদিকে সরে যাচ্ছে কিন্তু গর্ত দক্ষিণ দিকে সরে যাচ্ছে। এভাবে তাপীয় উত্তেজনায় সমযোজী প্রন্থি ভেঙে যখন একটি ইলেকট্রন সংযোজী পটি হতে পরিবাহী পটিতে উন্নীত হয়, তখন যুগপৎ একটি পরিবহন ইলেকট্রন ও একটি পজিটিভ গহুর বা গর্তের সৃষ্টি হয়। বাইরে থেকে কোনো তড়িৎক্ষেত্র প্রয়োগ করলে, পরিবহন ইলেকট্রন ও পজিটিভ গহুর বিপরীত দিকে গতিশীল হয় এবং উভয়েই পৃথকভাবে তড়িৎ পরিবহনে অংশ প্রহণ করে। তাই এদের তড়িৎবাহক (charge carriers) বলা হয়।

অর্ধপরিবাহীর ক্ষেত্রে দেখা যাচ্ছে যে, তাপমাত্রা বৃদ্ধিতে ভ্যালেন্স ইলেক্ট্রনের তাপজ শক্তি বৃদ্ধি পায়। এর ফলে সময়োজী গ্রন্থিছিন্ন করে বন্ধ ইলেকট্রন স্বাধীন ইলেকট্রনে পরিণত হয়। এতে বেশি পরিমাণে 'ইলেকট্রন-গর্ড' যুগ্মের সৃষ্টি হয়ে বেশি পরিমাণে তড়িং-বাহকের সৃষ্টি করে এবং অর্ধপরিবাহীর ভিতর দিয়ে তড়িং-পরিবহনের সুবিধা করে দেয়। অতএব, বলা যায় তাপমাত্রা বৃদ্ধিতে বিশৃশ্ব অর্ধপরিবাহীর রোধ ব্রাম পায়। এই সম্পর্কে বিশৃন্ধ ধাতব পরিবাহীর বাবহার সম্পূর্ণ বিপরীতঃ কারণ আমরা জানি তাপমাত্রা বৃদ্ধিতে বিশৃন্ধ ধাতব পরিবাহীর রোধ বৃদ্ধি পায়। এই ঘটনা দ্বারা সহক্রেই বিশৃন্ধ ধাতু এবং বিশৃন্ধ অর্ধপরিবাহীর ভিতর কোন্টি কী তা শনান্ত করা যায়। এ কথা মনে রাখা দরকার যে তাপমাত্রা যাই হোক না কেন, বিশৃন্ধ অর্ধপরিবাহীতে সর্বদা সমান সংখ্যক ইলেকট্রন ও 'গর্ড' থাকে।

2-3 বিশুখ ও অবিশুখ অর্থপরিবাহী (Intrinsic and extrins?) semiconductors):

বিশুন্ধ অবস্থায় প্রাপ্ত অর্ধপরিবাহীকে ম্বকীয় বা বিশুন্ধ (intrinsic) অর্ধপরিবাহী বলে। স্পর্যন্ত এই ধরনের অর্ধপরিবাহীতে কোনো অপদ্রব্য মিশানো থাকে না। বিশুন্ধ অর্ধপরিবাহীতে পরিবাহী পটি (conduction band) এবং সংযোজী পটি প্রায় 1 eV শক্তিম্বর দ্বারা পৃথক অবস্থায় থাকে। যেমন বিশুন্ধ সিলিকন অর্ধপরিবাহীর বেলায় এই পার্থক্য 1.1 eV এবং জার্মেনিয়ামের বেলায় 0.74 eV। বিশুন্ধ অর্ধপরিবাহীতে তিডিৎ-বাহক সৃষ্টি হয় তাপীয় কারণে। Eg-এর মান কম হওয়ায় সাধারণ উশ্মতায় কিছু ইলেকট্রন নিষিপ্ধ অশ্বল অতিক্রম করে সংযোজী পটি থেকে পরিবাহী পটিতে চলে যেতে পারে। ফলে সংযোজী পটিতে সমসংখ্যক গর্ত (hole) সৃষ্টি হয়। বিশৃষ্ধ অর্ধপরিবাহীতে তাপীয় কারণে সৃষ্ট ইলেকট্রন সংখ্যা এবং গর্তের সংখ্যা সমান হয়।

বলাবাহুল্য বিশব্ধ অর্ধপরিবাহীর তড়িৎ পরিবাহিতা খুব সামান্য। এটা যে তড়িৎপ্রবাহ উৎপন্ন করে তা ব্যাবহারিক প্রয়োগের ক্ষেত্রে যথেন্ট নয়। দেখা গেছে যে বিশৃত্ব অর্ধপরিবাহীর সজো সামান্য পরিমাণ (দশ লক্ষ ভাগের এক ভাগ। উপযন্ত অপদ্রব্য মেশানো হলে প্রচুর সংখ্যক তড়িৎ-বাহক পাওয়া যায়। অপদ্রব্য মিশ্রণের ফলে যে নতুন ধরনের অর্ধপরিবাহী সৃষ্টি হয়, তাকে অবিশৃন্ধ (extrinsic) অর্ধপরিবাহী বলে এবং অপদ্রব্য মিশ্রণ পন্ধতিকে বলা হয় ডোপিং (doping)।

সংজ্ঞা ঃ যে পন্ধতিতে বিশন্ধ অর্ধপরিবাহীর সাথে ইচ্ছাক্তভাবে সামান্য পরিমাণ অপদ্রব্য মিশ্রিত करत অর্ধপরিবাহীর তড়িৎ পরিবাহিতা বহুল পরিমাণে বৃষ্ধি করা হয়, তাকে ডোপিং বলে। ঐ অপদ্রবাকে বলা হয় ডোপ্যান্ট (dopant)।

বিশব্ধ জার্মেনিয়াম বা সিলিকন কেলাসের সাথে উপযুক্ত পরিমাণ বিশেষ ধরনের অপদ্রব্য ডোপিং করে N-টাইপ অথবা P-টাইপ অবিশব্দ অর্ধপরিবাহী তৈরি করা যায়। N-টাইপ কেলাসে শুধু ইলেকট্রন তড়িৎ পরিবহন করে, আবার P-টাইপ কেলাসে শুধু গহুর বা 'গর্ড' (hole)-গুলি তড়িৎ পরিবহন করে। এদের পরিবহন ক্ষমতা বিশব্ধ অর্ধপরিবাহী থেকে অনেক বেশি।

N-টাইপ এবং P-টাইপ কেলাস (N-type and P-type crystals):

N-টাইপ কেলাস : N-টাইপ কেলাস তৈরি করতে বিশব্দ জার্মেনিয়াম বা সিলিকনের সাথে অল্প পরিমাণ পশ্বযোজী (pentavalent) মৌল, যেমন আর্সেনিক মেশানো হয়। আন্সেনিক পরিমাণুর পাঁচটি

ভ্যালেন্স ইলেকট্রন আছে। আর্সেনিকের পরিমাণ এরপভাবে নিয়ন্ত্রিত করা হয় যে তার পরমাণুগুলি জার্মেনিয়াম কেলাসের (Ge) মূল গঠনকে অব্যাহত রেখে তার কেলাস-জাফরির (crystal lattice) অন্তর্গত হয়ে পড়ে এবং তার চারটি ইলেকট্রন পার্শ্ববর্তী চারটি জার্মেনিয়াম প্রমাণর সাথে যোজতো গ্রন্থিতে আবন্ধ হয়ে পড়ে। এর ফলে প্রত্যেক আর্মেনিক পরমাণুর (As) অতিরিক্ত পশ্বম ইলেকট্রন স্বাধীন হয়ে পড়ে এবং কেলাসের ভিতর বিচরণ করার ক্ষমতা লাভ করে পরিবাহী পটিতে উন্নীত হয়। এভাবে প্রত্যেকটি আর্সেনিক প্রমাণ একটি করে স্বাধীন পরিবাহী ইলেকট্রন দান করে বলে [চিত্র 2.3] আর্মেনিক-কে এক্ষেত্রে দাতা (donor) বলা হয়। হিসাব করে দেখা যায় এভাবে গঠিত কেলাসে প্রতি ঘন সেন্টিমিটারে 10¹⁷ স্বাধীন ইলেকট্রন উপস্থিত থাকে। অপদ্রবার প্রিমাণ নিয়ন্তিত করে পরিবাহী ইলেকট্রনের সংখ্যা এবং

সেই সজো কেলাসের তড়িৎ-পরিবাহিতা নিয়ন্ত্রণ করা সম্ভব। এখন তাপীয় উত্তেজনায় ঐ কেলাসের কিছু কিছু বন্ধ (bound) ইলেকট্রন প্রন্থিমুক্ত হয়ে পড়লে সমসংখ্যক 'গর্ড' তৈরি হবে এবং স্বাধীন ইলেকটুনগুলি ঐ 'গর্ন্ত' প্রনের জনা ছুটে যাবে। একেরে 'গর্তের' সংখ্যার ভূজনায় স্বাধীন উলেকট্রনের সংখ্যা আনক বেশি বালে ৩ভিং পরিবহনের নেগেটিভ ইলেকট্রনের (অথবা তড়িভাধানের) ভূমিকাই বেশি অভ্যব, N টাইপ কেলাসে নেগেটিভ তড়িংবাহী ইলেকট্রন সংখ্যাগুরু তড়িংবাহক (majority charge carrier)। এই কার্ণে এই কেলাসকে N-টাইপ কেলাস বলে। মনে রাখা মরকার যে N-টাইপ কেলাস তৈরি করতে হলে জার্মেনিয়াম বা সিলিকনের সাথে উপযুক্ত পরিমাণ কোনো পশুযোজী (pentavalent) মৌলপদার্থ যেমন আর্সেনিক, অ্যান্টিমনি, ফসফরাস ইত্যাদি মেশাতে হবে।

P-টাইপ কেলাস : বিশৃশ জার্মেনিয়াম কেলাসের সাথে উপযুক্ত পরিমাণ ত্রিযোজী (trivalent) পরমাণু, যেমন অ্যালুমিনিয়াম, বোরন, ইপ্ডিয়াম ইত্যাদি মেশালে P-টাইপ

কেলাস তৈরি হয়। আলুদিনিয়াম প্রভৃতি ত্রিয়োজী পরমাণুর তিনটি ভ্যালেন্স ইলেকট্রন আছে। সূতরাং আলুমিনিয়াম পরমাণু (AI) জার্মেনিয়াম কেলাসের সাথে মিশে এমন কেলাস-জাফরি গঠন করবে যার যোজাতা প্রন্থিতে একটি ইলেকট্রনের ঘাটতি, অথবা 'গর্তের' উন্তব হবে। ঐ জাফরির প্রতাক আলুমিনিয়াম পরমাণু একটি করে 'গর্ত' সৃষ্টি করবে যা ইলেকট্রন গ্রহণ করার জন্য উন্মুখ থাকবে ।চিত্র 2.4।। এজন্য আলুমিনিয়ামকে এস্থলে বলা হয় 'প্রহিতা' (acceptor)। এখন তাপীয় উত্তেজনায় ঐ কেলাসের কিছু কিছু কথা ইলেকট্রন গ্রন্থিম্ভ হয়ে পঙলে, সমসংখ্যক 'গর্ত' সৃষ্টি হবে। যেহেতু এক্ষেত্রে 'গর্তের' সংখ্যা প্রথিম্ভ ইলেকট্রনের সংখ্যার তুলনায় অনেক র্বেশ, সেইহেতু

তড়িৎ পরিবহনে 'গর্ত' অথবা পজিটিভ তড়িতাধানের ভূমিকাই বেশি। অতএব, P টাইপ কেলাসে পজিটিভ তড়িৎবাহী 'গর্ত' সংখ্যাগৃরু তড়িৎ-বাহক। এই কারণে এই কেলাসকে P-টাইপ কেলাস বলে। এখানেও অপদ্রব্যের পরিমাণ নিয়ন্ত্রিত করে কেলাসের তড়িৎ-পরিবাহিতা নিয়ন্ত্রণ করা সম্ভব।

একথা মনে রাখা প্রয়োজন যে N অথবা P-টাইপ কেলাসের কোনেটাই ৩ড়িত হিত নয়। N-টাইপ কেলাসের অতিরিক্ত ইলেক্ট্রনের নেগেটিভ তড়িৎ আর্সেনিক পরমণ্র নিউক্লিয়াসের পজিটিভ ৩ড়িৎ দারা প্রশমিত হয়, আবার P-টাইপ কেলাসের অতিরিক্ত 'গর্তের' পজিটিভ ৩ড়িৎ আল্মিনিয়াম পরমাণ্র নিউক্লিয়াসের পজিটিভ তড়িতের ঘাটাত পরণ করে নিজিয় হয়।

25. বিশৃষ্ধ ও অবিশৃষ্ধ অর্ধপরিবাহীর তুলনা (Comparison between intrinsic and extrinsic semiconductors):

- বিশুন্ধ অর্ধপরিবাই। পর্যায় সারণার IV নং শ্রেণির অন্তর্গত মোল পদার্থ (তেইন জার্মেনিয়ায়: সিলিকন ইত্যাদি): অবিশৃন্ধ অর্ধপরিবাইতে ডেপিং স্থারা III এবং V নং শ্রুণি হতে বেলে মৌলকে মিশ্রিত করা হয় (য়য়য়য়, বোরয়য়, ইভিয়য়য়, আর্লিয়য়য় ইত্যাদি)।
- 2. বিশুন্ধ অর্থপরিবাহীর ভড়িৎ-পরিবাহিতা খ্র সামানা। ডোপিং কররে ফলে অবিশৃন্ধ অর্থপরিবাহীর উড়িং-পরিবাহিতা জনেক বেশি।
- ভাপমাত্রা বন্ধিতে বিশ্বন্ধ ভার্পরিবাতীর তিছিং সরিবাতিতা বৃদ্ধি পায়। অবিশ্বন অবপরিবাতীর
 পরিবাহিতা ডোপান্টের সরিমাণের ওপর নি ওর করে।
- 4. বিশৃষ্ণ অর্ধপরিবাইটা, ইলেকট্রল সংখ্যা গাইর সংখ্যার সমাল। কিন্তু N বিউপ আবশুলা অর্ধপরিবাইটা, গাঁঠের সংখ্যার ভ্রলনার ইলেকট্রের সংখ্যা আনক বেশি: আবার P বিউপ অবিশৃষ্ণ অর্ধপরিবাইটা, ইলেকট্রল সংখ্যার ভ্রলনাম গাইর সংখ্যা আনত বেশি।

2.6. P.-N সংযোগ বা অর্থপদিবাহী ভারেটড (P-N junction semiconductor diode):

প্রথা P-৪৪৯ কেলাস করে সংগারের বছক গ্রহণ বা কেই। তথ্য তদন কলে করে হল করে। বিশ্বং P-৪৪৯ কেলাস করে সংগারের বছক গ্রহণ বা কেই। তথ্য তদন কলে করে ইল করে প্রান্তধয়ে বিভবপ্রভেদ প্রয়োগ করলে N-টাইপ অথবা P-টাইপ উভয়েই একটি সাধারণ রোধকের মতো ব্যবহার করে—অর্থাৎ প্রবাহমাত্রা বিভবপ্রভেদের সমানুপাতিক হয় এবং বিভবপ্রভেদের অভিমুখ অনুযায়ী

প্রবাহ চলতে থাকে। বিভবপ্রভেদের অভিমুখ উপ্টে দিলে, প্রবাহের অভিমুখও উল্টে যায় কিন্তু প্রবাহমাত্রা অপরিবর্তিত থাকে। কিন্ত P-N সংযোগের ক্ষেত্রে এরকম ঘটনা ঘটে ला।

যখন একটি P-টাইপ এবং একটি N-টাইপ অর্ধপরিবাহীকে পরস্পরের সংস্পর্শে আনা যায় যাতে সংযোগস্থলে কেলাসের গঠনাকৃতি অব্যাহত থাকে তখন তারা P-N সংযোগ বা অর্ধপরিবাহী ভায়োভ গঠন করে।

ঐ সংযোগের ফলে, তড়িং পরিবহনের জন্য N-অপলে প্রভূত ইলেকট্রন এবং P-অপলে প্রভূত 'গর্ত' পাওয়া যায় [চিত্র 2.5]। এদের সাধারণতভাবে 'সংখ্যাগুরু বাহক' (majority carriers) বলা হয় কারণ N-অশ্বলে 'গর্তের' তুলনায় ইলেকট্রনের সংখ্যা অনেক বেশি; অবার P-অশ্বলে ইলেক্ট্রনের তুলনায় 'গর্তের' সংখ্যা অনেক বেশি।

নিঃশেষিত তার গঠন ঃ

এই ধরনের জাংশান বা সংযোগ গঠন করলে এবং ঐ সংযোগে কোনো বিভবপ্রভেদ প্রয়োগ না

করলে, N -অপ্রলের অপদ্রব্য প্রমাণুর (দাতা প্রমাণু) অতিরিক্ত ইলেকট্রন পরমাণ হতে বিচ্ছিন্ন হয়ে P-অপ্রলের দিকে চলে যায় এবং দাতা পরমাণুগুলি ইলেকট্রন পরিত্যাগ করে পজিটিভ আয়নে পরিণত হয়। যেহেত কেলাস জার্ফারতে এই পরমাণুগুলি নিজম্ব অবস্থানে দঢ়ভাবে স্থাপিত, তাই সংযোগের কাছাকাছি N-অপ্রলে এই পজিটিভ আয়নগুলি নিজস্ব অবস্থানে স্থির থাকে [চিত্র 2.6]। এভাবে সংযোগের কাছাকাছি N-অপুল কিছু ইলেকট্রন হারায় এবং ঐ অপ্সল পজিটিভ তড়িংগ্রস্ত হয়। একইভাবে, P-অপ্সলের অপদ্রব্য প্রমাণুর (গ্রহিতা প্রমাণ্) গর্তগুলি সংযোগের দিকে অগ্রসর হয়ে নেগেটিভ আয়নের উৎপত্তি করে। ফলে, সংযোগের কাছাকাছি P-অপ্তল আর তডিৎ-নিরপেক (electrical neutrality) থাকে নাঃ সেখানে নেগেটিভ তড়িতের উৎপত্তি হয়।

অতএব, জাংশানের নিকটবর্তী P-অন্থলে শৈখিতিক (static) নেগেটিভ আধানের সমাবেশ এবং অপর দিকের N-অপ্তলে, সামান্য ফাঁক রেখে শৈথতিক পজিটিভ আধানের অনুরূপ সমাবেশ ঘটে। জাংশানের দুই দিকে এরপ বিপরীত স্থৈতিক আধানের সমাবেশ একটি তড়িৎক্ষেত্রের সন্থি করে যাকে বলা হয় **বিভব** প্রতিবশ্বক (potential barrier)। জাংশানের দুই পাশের বিভবপার্থকাকে বলা হয় বিভব প্রতিবশ্বক উচ্চতা (height of potential barrier)। সিলিকন P – N জাংশানের বেলায় এই উচ্চতা প্রায় 0.7 volt এবং জার্মেনিয়ামের বেলায় প্রায় 0.3 volt ৷ শীঘ্রই বিভব প্রতিবন্দকের মান এরপ হয় যে আর কোনো ইলেকট্রন N-অপুল থেকে P-অপুলের দিকে অথবা কোনো 'গর্ভ' P-অপুল থেকে N-অপুলের দিকে আসে না। এই বিভব প্রতিবন্ধক-কে 2.6 নং চিত্রে একটি কার্মনিক তড়িৎ কোশের অন্তিত্ব (কাটা কাটা রেখা দ্বারা) দ্বারা বঝানো হয়েছে। লক্ষ কর যে, ঐ কার্মনিক কোশের নেগেটিভ মের P - মধলের সাথে এবং প্রভিটিভ মের N-অপ্রের সাথে যুত্ত দেখানো হয়েছে। সংযোগের দুই পালে যে সরু তর $m (\sim 10^{-4}~cm$ (থকে $10^{-6}~cm)$ পজিটিভ ও নেগেটিভ আধানকে পৃথক করে রাখে সেখানে গতিশীল আধান নিঃশেব হয়ে যার এবং কোনো গতিশীল আধান বাহকের অভিত্ব থাকে নাঃ ভাই এই স্তর-কে বলা হয় নিঃশেষিত তব (depletion layer)।

একটি ব্যাটারির সাহায়্যে P-N সংযোগের P-অপ্থলকে পজিটিভ এবং N-অপ্থলকে নেগেটিভ বিভব দিলে (চিত্র 2.7) বর্তনী দিয়ে তড়িৎপ্রবাহ হবে। এর কারণ নিম্নরূপ \circ

ব্যাটারির পজিটিভ মেরু দ্বারা P-অন্থলের 'গর্ত' গুলি (০) বিকর্ষিত হয়ে সংযোগের দিকে অগ্রসর হবে, আবার নেগেটিভ মেরু দ্বারা N-অশ্বলের ইলেকট্রনগুলি (–) বিকর্ষিত হয়ে সংযোগের দিকে অগ্রসর হবে। এতে নিঃশেষিত গুর খুব সরু হয়ে পড়ে এবং বিভব প্রতিবন্ধকের উচ্চতাও অনেক হ্রাস পায়। বাাটারির তড়িংচালক বল দ্বারা নিঃশেষিত স্তর সম্পূর্ণ বিলীন হয়ে গেলে কিছু ইলেকট্রন এবং গর্ভ সংযোগস্থল অভিক্রম করে পরস্পরের সাথে মিলিত হয়ে তড়িং পরিবহনের ক্ষমতা হারায়। সংযোগের নিকট অশ্বলে এভাবে প্রতি ইলেকট্রন-

গর্ত সন্মিলনের সঞ্চো সঞ্চো ব্যাটারির পজিটিভ মেরুর নিকট একটি সমযোজী গ্রন্থি ভেঙে পড়ে এবং একটি ইলেকট্রন মুক্ত হয়ে ব্যাটারির পজিটিভ মেরুতে প্রবেশ করে। এতে যে 'গর্তের' সৃষ্টি হয়, তা আবার সংযোগস্থালের দিকে অগ্রসর হয়।

এদিকে N-অশ্বলের নেগেটিভ মেরুর নিকট ঐ মেরু থেকে আর কিছু ইলেকট্রন ঐ অশ্বলে প্রবেশ করে গর্তের সাথে সদ্মিলনে যে ইলেকট্রনের ঘাটিত ইচ্ছিল সেই ঘাটিত পূরণ করে। এই ইলেকট্রনগুলি ব্যাটারির তড়িৎচালক বল কর্তৃক চালিত হয়ে সংযোগস্থালের দিকে অগ্রসর হয়। যতক্ষণ পর্যন্ত বাটারির বিভবপ্রভেদ কাজ করে তভক্ষণ সংযোগ অতিকম করে ইলেকট্রন ও গর্তের চলাচল হয় এবং বর্তনীতে P থেকে N-অশ্বলের দিকে তড়িৎপ্রবাহ চালু থাকে। এই অবস্থায় বলা হয় P-N সংযোগ 'সম্পুর্বর্তী বায়াস' (forward bias) যুক্ত। তখন সংযোগ তড়িৎ প্রবাহের বিরুদ্ধে খুব কম রোধের স্থিট করে। লক্ষ করার বিষয় যে এই অবস্থায় যে অশ্বলে 'গর্তের' আধিক্য (দক্ষিণ দিকে) সেখান থেকে গর্তকে সরিয়ে আনা হচ্ছে। ববং যে অশ্বলে ইলেকট্রনের আধিক্য (বাম দিকে) সেখান থেকে ইলেকট্রনকে সরিয়ে আনা হচ্ছে। ফলে, প্রবল তড়িৎপ্রবাহ পাওয়া যায়।

ভায়োডের V-I বৈশিখ্য লেখ:

P-N সংযোগে সম্মুখবর্তী বায়াস প্রয়োগ করে ডায়োডের দুই প্রান্তে প্রযুক্ত বিভিন্ন বিভব পার্থকোর

সক্তো আনুবজাক বর্তনী প্রবাহমান্তার দেখ আঁকলে, ঐ লেখকে সম্বুখবর্তী বায়াসের জন্য V-I বৈশিন্টা লেখ বলা হয় (2.8 নং চিত্র)। লেখ হতে দেখা যায় যে বিভবপার্থকা খুব কম হলে বর্তনীর প্রবাহও খুব কম হয়। এর কারণ এই যে বাইরের ভোন্টেক্ত ডায়োডের বিভব প্রতিবশ্বক ডাড়িয়ে না যাওয়া পর্যস্ত ডায়োড পরিবাহী হয় না। বিভবপ্রভেদ 0.7 ভোন্ট-এর কাছাকাছি হলে কুমশ বেশি সংখ্যক মৃত্ত ইলেকট্টন ও গর্ত জাংশান অভিকম করতে শুরু করে এবং ডায়োডও কুমশ পরিবাহী হয়ে ওসে। 0.7 V বিভবপ্রভেদের পর, বিভবপার্থকা সামান্য বৃশ্বি করলেই প্রবাহমাত্রা বিশেষভাবে বৃশ্বি পায়। যে বিভবপ্রভেদে প্রবাহমাত্রা প্রত বৃশ্বি

সিলিকন ভারেণ্ডের ক্ষেত্র cut- in voltage প্রায় 0.7 V এবং জণুর্মন্মণ্যের ক্ষেত্রে 0.3V।

সন্থ্যতী বায়াসের বৈশিকা :

मध्यावहीं नामाप्रत विश्वनिष्ठ देशीयो। जक कता भाष :

(i) জাংশান ভারোডের আভান্তরে উভযপ্রকার সংখ্যাণুরু বাহাকের দারা ৩ড়িংপ্রবাহ উৎপন্ন হয় কিছু

বহিবত্নীতে প্রশত উৎপল্ল হয় ক্রেলমাত্র ইলেকট্রের দ্বরে।

- (ii) সম্মাখ্য ত্রী বাংলাসে যে ওডিংপ্রবাহ পাওয়া যায় তা করেক মিলি-আনম্পিয়ার মাত্র।
- (iii) বাইনে মেকে প্রসূত্র বিভব প্রকৃতিদ বৃদ্ধি করলে, প্রবাহমাত্রা বৃদ্ধি পায়। প্রবাহমাত্রা এবং বিভবপ্রভেলেব (; ভাল্টে) প্রথচিত্র সরপরেখা নয় [চিত্র 2.8]।
 - (iv) সম্মাথবার্ট বায়াসে ভায়োডের নিঃশেষিত স্তরের বেধ ক্রমশ হ্রাস পায়।

বিপরীত বায়াস (Reverse bias):

অপরপক্ষে, যদি ব্যাটারির অভিমুখ উল্টে দেওয়া হয় — অর্থাৎ P-অপলকে নেগেটিভ বিভব এবং N- আগলকে পজিটিভ বিভব দেওয়া হয় ভবে, ইলেকট্রন এবং 'গঠ' উভয়েই পারস্পরিক তডিদ্ধারের দিকে আকৃষ্ট হবে এবং সংযোগ হতে দুৱে সরে যাবে। এতে **নিঃশেষিত ন্তরের বেধ বৃশ্বি পায়** এবং বিভব প্রতিবন্ধকের উচ্চতাও বৃদ্ধি পায়। লক্ষ করার বিষয় যে এই বাবস্থায় যে অশ্বলে 'গর্তের' সংখ্যা কম সেখান থেকে গর্তকে তাকর্ষণ করার চেন্টা হচ্ছে আবার যে অগ্রলে ইলেকট্রনের সংখ্যা কম সেখান থেকে ইলেকট্রনকে আকর্ষণ করার চেম্বা হচ্ছে। ফলে, বর্তনীতে তডিৎপ্রবাহ খব কম হবে অথবা P-N সংযোগ তড়িৎপ্রবাহের পথে উচ্চ রোধের সন্টি করবে। এই অবস্থায় বলা হয় সংযোগ 'বিপরীত বায়াস' (backward bais) যুক্ত। (চিত্র 2.10 বাঁদিকের অংশ)।

দেখা গোল যে, এর্ধপরিবাহী P-N সংযোগ একটি বিশেষ দিকে প্রবল তড়িৎপ্রবাহ উৎপন্ন করে কিন্তু বিপরীত দিকে বিশেষ করে না। এই কারণে P-N সংযোগকে অর্ধপরিবাহী ডায়োড বা সংযোগ ডায়োড বলা হয়। P-N সংযোগের কার্যপ্রণালীর সঙ্গো ডায়োড ভালভের একমুখীকরণ (diode rectification) কার্যের সাদৃশ্য আছে; তাই আজকাল একমুখীকরণের জনা P-N সংযোগের বহুল ব্যবহার হচ্ছে।

> P-N সংযোগকে যে প্রতীক চিত্রের সাহাযো প্রকাশ হয় তা 2.9 নং চিত্রে দেখানো হল।

• বিপরীত বায়াসের বৈশিক্য ঃ

বিপরীত বায়াসের নিম্নলিখিত বৈশিষ্ট্য আছে :

- (i) জাংশান ডায়োডের অভান্তরে উভয় প্রকার সংখ্যাপুর বাহকের দারা তড়িৎপ্রবাহ উৎপন্ন হয় কিন্ত বহির্বর্তনীতে প্রবাহ উৎপন্ন হয় কেবলমাত্র ইলেকট্রনের দ্বারা ৷
- (ii) বিপরীত বায়াসে যে তডিৎপ্রবাহ পাওয়া যায় তা অতি সামান। –কয়েক মাইক্লো আদিপয়ার মাত্র।
- (iii) বাইরে থেকে প্রযক্ত বিভবপ্রভেদ বন্ধি করলে. প্রবাহমাত্রার বিশেষ পরিবর্তন হয় না। বিভবপভেদ-প্রবাহমাত্রা লেখচিত্র 2.10 নং ছবিতে দেখানো হল।
- (iv) বিপরীত বায়াসে ডায়োডের নিঃশেষিত স্তরের বেধ ক্রমশ বৃদ্ধি পায়

অর্ধপরিবাহী ভায়োডের বৈশিষ্টা লেখ (Characteristic curv of a semi-conductor diode):

পূৰ্ব এনডেড্ড অঅব' দুখলান যে P–N সংযোগে 'সমুখবতী বায়াস' প্ৰয়োগ কৱলে বৰ্তনীতে প্ৰবল তিহিংপ্রকার পাওয়া যায়। যদি আল্লা P–N সংযোগে বিভিন্ন বিভবপ্রভেদ প্রয়োগ করি এবং প্রভোকবার তড়িৎপ্রবাহমাত্রা পরিমাপ করি তবে আমরা 2.10 নং চিত্রের মতো একটি লেখ পাব। একে 'অর্ধপরিবাহী ডায়োডের বৈশিক্টা লেখ' বলা হয়।

এই লেখ হতে স্পন্ট বোঝা যায় যে একটি বিশেষদিকে (সম্মুখবতী বায়াসে) সামানা ভোশ্টেজ বৃদ্ধিতেই প্রবাহমাত্রা দুত বৃদ্ধি পায় কিন্তু বিপরীত দিকে (বিপরীত বায়াসে) প্রবাহমাত্রা খ্বই সামান্য হয় এবং ভোল্টেজ বৃদ্ধি করলেও প্রবাহমাত্রার বিশেষ কোনো বৃদ্ধি হয় না। এই বৈশিষ্টোর জন্য পরিবতী প্রবাহকে (alternating current) একমুখীকরণের কাজে P-N সংযোগ ব্যবহৃত হয়। পরীক্ষা করে দেখা গেছে যে সম্মুখবতী বায়াসের বেলায়, প্রবাহমাত্রা বৃদ্ধি পেয়ে কোনো কোনো ক্ষেত্রে কয়েক অ্যাম্পিয়ার পর্যন্ত হয় কিন্তু বিপরীত বায়াসের বেলায় প্রবাহমাত্রা হয় মাত্র কয়েক মাইক্রোজ্যাম্পিয়ার।

● জেনার ডায়োড (Zener diode): দেখা যায় যে P-N জাংশানে বিপরীত বায়াস ভোপ্টেজ ধীরে ধীরে বৃদ্ধি করলে, একটি বিশেষ ভোপ্টেজে (2.10 নং চিত্রে জেনার বিভব) হঠাৎ বিপরীত প্রবাহমাত্রা বিশেষ বৃদ্ধি পায়। এই ঘটনাকে ডায়োডের বৈকল্য (breakdown) বলা হয় এবং যে ভোপ্টেজে এ ঘটনা ঘটে তাকে বৈকল্য ভোপ্টেজে (breakdown voltage) বলে। এই ভোপ্টেজে 'গর্ত-ইলেকট্রন যুশ্ম' তৈরি বিশেষভাবে বৃদ্ধি পায় যার ফলে, তড়িংপ্রবাহও হঠাৎ খুব বৃদ্ধি পায়।

বৈকল্য দুটি পন্ধতিতে সংঘটিত হতে পারে। বিপরীত বায়াস ভোন্টেজ পেয়ে ডায়োডের N-অশ্বলের গর্তগুলি এবং P-অশ্বলের পরিবাহী ইলেকট্রনগুলি খুব ত্বরান্বিত হয়। তড়িৎক্ষেত্রের দ্বারা ত্বরান্বিত হয়ে যখন উপরোক্ত সংখ্যালঘূ বাহকগুলি যথেন্ট গতিশক্তির অধিকারী হয় তখন তারা ভ্যালেন্স ইলেকট্রনের সাথে সংঘাত সৃষ্টি করে ভ্যালেন্স বন্ধন (bond) ছিন্ন করে এবং ভ্যালেন্স ইলেকট্রন তখন পরিবাহী পটিতে উনীত হয়। এইভাবে একটি 'গর্ত-ইলেকট্রন' জোড় সৃষ্টি হয়। এই ধরনের বৈকল্যাকে বলা হয় সম্প্রপাত বৈকল্য (avalanche breakdown)। বৈকল্য আর এক পন্ধতিতেও হতে পারে। উচ্চ বিপরীত বায়াস ভোন্টেক্তের জন্য ভ্যালেন্স বন্ধন সরাসরি ছিন্ন হয়ে বৈকল্য ঘটাতে পারে। এই ধরনের বৈকল্যকে বলা হয় ক্ষেনার বৈকল্য (Zener breakdown)।

বৈকলা অশ্বলে কার্য করার জন্য যে ডায়োড ব্যবহার করা হয়, বৈকল্য ঘটার পশ্বতি অনুযায়ী তাকে সম্প্রপাত ভায়োড (avalanche diode) অথবা জেনার ভায়োড (Zener diode) বলা হয়। 2.10 নং চিত্রে জেনার ডায়োডের I–V বৈশিষ্ট্য লেখচিত্র দেখানো হয়েছে।

2.৪) অর্থপরিবাহী ডায়োড দারা একমুখীকরণ (Rectification by semiconductor diode):

(ক) অর্ধতরণা একমুখীকরণ : আমরা ইতিপূর্বে দেখেছি যে, P-N সংযোগে সম্মুখবর্তী বায়াস

দিলে প্রবল তড়িং-প্রবাহ উৎপন্ন হয় কিছু বিপরীত বায়াস দিলে বিশেষ কোনো প্রবাহ পাওয়া যায় না। অর্থপরিবাহী ডায়োডের এই ধর্মকে পরিবর্তী প্রবাহের একমুখীকরণ কার্যে ব্যবহার করা হয়। একটি ডায়োড ব্যবহার করলে অর্ধতরজ্ঞা একমুখীকরণ (halfwave rectification) করা যাবে। এজনা প্রয়োজনীয় বর্ডনী-ব্যবস্থা 2.11 নং চিত্রে দেখানো হল। P-N সংযোগের সাথে পরিবর্তী প্রবাহ-উৎস ইনপুট (A.C.) হিসাবে যুক্ত করা আছে। ধরো, পরিবর্তী উৎসের প্রথম অর্ধচক্তে S1 বিন্দু পজিটিভ এবং S2 বিন্দু নোগেটিভ বিভব পেল। এই অবস্থায় P-

N সংযোগ সম্মুখনতী বায়াস পাবে এবং বর্তনীতে প্রবল তড়িৎপ্রবাহ পাঠাবে। এই প্রবাহ লোভ R_L - এর ভিতর দিয়ে A থেকে B অভিমুখে যাবে। পরবর্তী অর্ধচক্রে S_1 বিন্দু নেগেটিভ এবং S_2 বিন্দু পদ্মিটিভ বিভব

পারে। তখন P-N সংযোগ বিপরীত বায়াস পেয়ে বর্তনীতে কোনো তড়িৎপ্রবাহ পাঠাবে না। সুতরাং

উৎসের যে অর্ধে S_1 বিন্দু পজিটিভ হয় কেবলমাত্র সেই অর্ধেই লোড R_L –এর প্রান্তে বিভবপ্রভেদ উৎপন্ন হয় এবং তড়িৎপ্রবাহ সর্বদা A হতে B অভিমুখে প্রবাহিত হয়। প্রযুক্ত এ. সি. ভোপ্টেজকে (ইন্পূট) 2.12 নং চিত্র দারা প্রকাশ করলে R_L –এর প্রান্তে উৎ পন্ন ভোপ্টেজ (আউটপুট) ঐ চিত্রের নিম্নাংশের মতো হবে। চিত্র থেকে বোঝা যায় যে এ. সি. সরবরাহের ওপরার্ধের দরুন R_L লোডের মধ্য দিয়ে প্রবাহ যায় কিন্তু নিম্নার্ধের দরুন কোনো প্রবাহ যায় না। এইভাবে P–N সংযোগের সাহায্যে পরিবর্জী প্রবাহের একমুখীকরণ সম্ভব। ইনপুটের মাত্র এক অর্ধের জন্য আউটপুট

প্রবাহ পাওয়া যায় বলে একে অর্ধতরক্ষা একমুখীকরণ বলা হয়।

(খ) পূর্ণতরশা একমুখীকরণঃ

দৃটি P-N সংযোগ ব্যবহার করলে পূর্ণতরঙ্গা একমুখীকরণ সম্ভব। এজন্য প্রয়োজনীয় বর্তনী-ব্যবস্থা 2.13 নং চিত্রে দেখানো হয়েছে। ডায়োডদ্বয়ের P- অন্ধল (P_1 এবং P_2) রূপান্তরক T-এর গৌণ কুগুলীর দৃই প্রান্ত S_1 এবং S_2 এর সঙ্গো যুন্ত। গৌণ কুগুলীর মধ্যবিন্দু O ডায়োডদ্বয়ের N- অন্ধল N_1 এবং N_2- এর সংযোগস্থল M-এর সাথে লোড রোধ R-এর মাধ্যমে যুন্ত। রূপান্তরকের মুখ্য কুগুলীর দুই প্রান্তের ভিতর এ. সি. ইনপুট প্রয়োগ করা হয়।

এ. সি ইনপুটের যে অর্ধচক্রে O বিন্দুর সাপেক্ষে S_1 পজিটিভ এবং S_2 নেগেটিভ তখন উপরের ডায়োড সম্মুখবর্তী বায়াস পায় কিয়ু নীচের ডায়োড পায় পশ্চাৎবর্তী বায়াস। ফলে, কেবলমাত্র উপরের ডায়োডের ভিতর দিয়ে তিরচিহের দিকে তড়িং-প্রবাহ ঘটে; নিচের ডায়োড কোনো প্রবাহ দেয় না।

্র দি ইনপটের অপর অর্ধাচকে 0 বিন্দুর সাপেকে S_1 হয় নেগেটিভ এবং S_2 হয় পঞ্চিটিভ তথন নীচের চ্যানেগ্রেস ভিত্তর দিয়ে তির চিকের দিকে তড়িংপ্রবাহ পাওয়া যায়ঃ গুপরের ভায়োভ কোনো প্রবাহ দেয়

না। লক্ষ করার বিষয় যে, পূর্ণ চক্রের উভয়অর্ধেই লোড-রোধের ভিতর দিয়ে তড়িৎপ্রবাহ একমুখী। রূপান্তরকের মুখ্য কুণ্ডলীতে প্রযুক্ত ইনপুট ভোল্টেজ 2.14 (a) নং চিত্র দ্বারা প্রকাশ করলে, লোড-রোধের প্রবাহমাত্রা (একমুখী) 2.14 (b) নং চিত্র দ্বারা প্রকাশিত হবে। এক্ষেত্রে যেহেতু, ইনপুট তরজোর উভয়অর্ধেই একমুখী হল, সেহেতু এই ব্যবস্থাকে পূর্ণতর্জা একমুখীকরণ বলা হয়।

পূর্ণতরজ্ঞা একমুখীকরণ ব্যবস্থার দক্ষতা প্রায় 80%; এটা অর্ধতরজ্ঞা একমুখীকরণ ব্যবস্থার প্রায় দ্বিগুণ।

দুটি অর্ধপরিবাহী ডায়োডকে যুক্ত করে অর্ধপরিবাহী ট্রায়োড বা ট্রানজিস্টার গঠন করা হয়। Transfer এবং resistor এই দুটি শব্দের সংযোগে transistor কথাটি তৈরি হয়েছে। ট্রানজিস্টারে তৃতীয় একটি

ভূ–সংলগ্ন ধাতব তড়িদ্ধার থাকে। একে বলা হয় ভূমি (base)। ট্রানজিস্টার দুই রকমের হতে পারে :-(i) N—P—N টাইপ এবং (ii) P—N—P টাইপ (চিত্র 2.15)।

টানজিন্টারে তড়িংপ্রবাহ: N—P—N টাইপ ট্রানজিন্টারের বেলায় তড়িংবর্তনী যেরপ হয় তা 2.15(a) নং চিত্রে দেখানো হয়েছে। বাম দিকের N—P সংযোগ যে ডায়োড গঠন করে তাকে সম্বাধবতী বায়াসযুত্ত করলে [2.15(a) নং চিত্রানুযায়ী তড়িচচালক বল প্রয়োগ করে।] N—অপলে থেকে ইলেকট্রনগুলি সহজেই P স্তরের 'গর্ভ সমুন্ধ ভূমি (base) অপলে চলে আসে। N-শুর এক্ষেত্রে উত্তপ্ত ফিলামেন্টের নাায় ইলেকট্রন নিঃসরণ করে বলে একে ট্রানজিন্টারের নিঃসারক (emitter) বলা হয়। P—অপলে প্রবেশ করে কিছু ইলেকট্রন সেখানকার 'গর্ভ' পূরণ করে কিছু বেশির ভাগ ইলেকট্রন দিক্ষণ দিকের N—P সংযোগের পজিটিভ বায়াসযুত্ত N স্তরের দ্বারা আকৃষ্ট হয়ে সেইদিকে চলে যায়। এই কারণে দক্ষিণ দিকের N-শুরকে সংগ্রাহক (collector) বলা হয়। মেতে ই 'গর্ভ সম্বাধ্ব P-শুর খবই পাতলা (প্রায় 2.5 × 10 ট্র লে পুর) সেত্রেই ইলেকট্রনের সামানা এংশ ট্র যুলের 'গর্ভ' পূরণ করে। শতকরা (প্রায় 2.5 × 10 ট্র লে পুর) সেত্রেই ইলেকট্রনের সামানা এংশ ট্র যুলের 'গর্ভ' পূরণ করে। শতকরা (প্রায় হিল্পার) যায়। এক্ষেত্রে লক্ষণীয় যে (া) নিঃসাবককে সর্বান সম্বাহার এবং স গ্রাহক্ষকে বিপরীত্র্যো বায়াসমূত্র করা হল। এবং নে এবং না লুটি অধ্যা বায়াসমূত্র করা হল। ছল।

P - N - P টাইল ট্রান্ডিস্টারের ,রলায় তড়িং সংযোগ উল্টোকর হব চিত্র 5 15-bil এক্ষেত্রে

বার্মানকের P—N স বাংশা বিপার এমখা বায়াসমূত থাকে, যাতে তার P-ন্তর নিঃসারকের কাজ করে এবং দক্ষিণ দক্ষে P-N সংখ্যাগ বিপার এমখা বায়াসমূত হয় যাতে তার P-ন্তর সংগ্রাহকের কাজ করেতে পারে পরিজ্ঞা ভালালক P-শ্ব N-ভালালক পরতা পরিজ্ঞান করে। অথবা ভালি হতে ইলেকট্রন আকর্ষণ করে। এতে একটি তড়িৎপ্রবাহ সংগ্রাহক বতে ভালিক দিকে প্রবাহিত হয়। মের্ম্ধের পরিবর্তন এবং তড়িৎ প্রবাহের অভিমুখের পরিবর্তন হাণ্ P—N—P ব্লিভিস্টারে গলা কোনো প্রভেদ নেই।

পর্বের আলোচনা থতে বোঝা যায় যে ট্রানজিস্টারে তিনটি মুখা অংশ আছে—(i) নিঃসারক (emitter) E (n) সংগ্রাহক (collector) C এবং (iii) ভূমি (base) B। নিঃসারক-ভূমি অস্কলে তড়িৎবাহক

P N -P টাইপ গর্ভ এবং N-P-N টাইপে ইলেকট্রন) প্রেরণ করে ট্রান্সেভ ভালাভের ফিলামেন্টের ভ্রমিকা পালন করে। সংগ্রাহক ভূমি অবল হতে এড়িংবাহককে আকর্ষণ করে ট্রান্ডিস্টারের ভিতর দিয়ে এড়িংপ্রবাহ সৃষ্টি করে: সৃতরাং এটা ট্রান্সোভ ভালাভের প্লেটের ভূমিকা পালন করে। আর, ভূমি অবল যথোপযুক্ত বায়াস পেয়ে ট্রান্ডিস্টারের ওড়িংপ্রবাহ দিয়ান্ত্রিভ করে: স্তরাং এটা ট্রান্সোভ ভালাভের গ্রিভের ভূমিকা পালন করে। অতএব, ট্রান্ডিস্টার ট্রান্সোভ ভালাভের সকল রকম কার্যই সম্পাদন করতে সক্ষম।

প্রতীক চিত্রের সাহায়ে N—P—N এবং P—N—P ট্রানজিস্টারকে 2.16 নং চিত্রের মতো দেখানো হয়। তিরচিক্ত শ্বারা দুই ক্ষেত্রে তভিংপ্রবাহের অভিমুখ বুঝানো হয়েছে।

● ভালভের তুলনায় ট্রানজিস্টারের স্বিধা (Advantages of a transistor over a valve):
ভালভের তুলনায় ট্রানজিস্টারের অনেক সুবিধা থাকায় প্রায় সব ইলেক্ট্রনিক যন্ত্রপাতিতে আজকাল
ভালভের পরিবর্তে ট্রানজিস্টার বাবহৃত হচ্ছে। আকারে ট্রানজিস্টার অতি ক্ষুদ্র; তাই এটা বেশি জায়গা
অধিকার করে না। ট্রানজিস্টার নির্মিত ইলেকট্রনিক যন্ত্রপাতি সাইজে খুব ছোটো হয়। ট্রানজিস্টারে কোন
ফিলামেন্ট না থাকায়, ফিলামেন্টকে উত্তপ্ত করার জন্য ভালভে যেমন পৃথক বন্দোবন্তের প্রয়োজন
হয়, ট্রানজিস্টারে তার কোনো প্রয়োজন হয় না। ট্রানজিস্টারের গঠনশৈলি বেশ মজবৃত এবং অতি
দীর্ঘকাল যাবৎ কর্মক্ষম থাকে। ভালভের কর্মক্ষম সময় ট্রানজিস্টারের তুলনায় অনেক কম। ভালভে
ইলেকট্রনগুলি শূন্য মাধ্যমের ভিতর দিয়ে অথবা কোনো গ্রাস মাধ্যমের ভিতর দিয়ে চলে কিন্তু
ট্রানজিস্টারে তড়িৎবাহকগুলি কঠিন পদার্থের ভিতর দিয়ে চলাচল করে। ভালভ্কে চালু রাখার জন্য
উচ্চ ভোল্টেজ বাাটারি বা তড়িৎ-উৎস প্রয়োজন। কিন্তু ট্রানজিস্টার চালু রাখতে খুব সামান্য ভোল্টেজ
দরকার হয়।

ট্রানজিস্টারের উপরোক্ত সুবিধা সত্ত্বেও যে সকল ইলেকট্রনিক যন্ত্রপাতিতে উচ্চ ভোপ্টেজ বা উচ্চপ্রবাহ বর্তনী ব্যবহার করতে হয় সেখানে ভালভের বদলে ট্রানজিস্টার এখনও উপযোগী প্রমাণিত হয়নি।

2-10. ট্রানজিস্টারের স্থৈতিক বৈশিষ্ট্য লেখ (Transistor static characteristics) :

বর্তনীতে ট্রানজিস্টার যুক্ত করার দুটি পন্ধতি আছে—(i) সাধারণ নিঃসারক সংযোগ (common emitter connection অথবা CE mode) যেখানে ভূমি (B) এবং সংগ্রাহক (C) বর্তনী উভয়ই নিঃসারকের (E) সাথে যুক্ত এবং নিঃসারক নিজে ভূসংলগ্ন (ii) সাধারণ ভূমি সংযোগ (common

base connection অথক CB model ক্রখনে নিঃসারক (E) বর্তনী এক সংগ্রাহক (C) বর্তনী উভয়ই ভূমির (B) সাতে মৃত্ত এবং ভূমি নিজে ভূ-সংলক্ষ।

উভয় সংযোগ (CE এবং CB) বাবস্থাতে ট্রানভিস্টারের বিভিন্ন প্রবাহমাত্র এবং ভোপ্টেকের মাধ্রা পারস্পরিক সম্পুক লেখচিত্রের সাহায়ে। দেখানো যায়। এই লেখচিত্রণালকে ট্রানছিস্টারের স্থৈতিক বৈশিখ্যা লেখ বলা হয়।

আমরা এখানে সাধারণ নিঃসারক সংযোগ (C-E mode) বাবস্থায় PNP এবং NPN ট্রানজিস্টারের বৈশিষ্ট্য লেখ আালোচনা করব।

(i) PNP ট্রানজিস্টারের বৈশিষ্ট্য লেখ:

আমরা সাধারণ নিঃসারক সংযোগ (CE mode) বাকস্থায় একটি PNP টুর্নাজস্টার বিকেচনা করছি।

এর স্থৈতিক লেখ আঁকার জন্য 2.17 নং চিত্রে প্রদর্শিত বর্তনী ব্যবস্থা প্রয়োজন। লক্ষ করো ট্রানজিস্টারের ভূমি (B) এবং সংগ্রাহক (C) বর্তনী উভয়ই নিঃসারকের সাথে যুক্ত এবং নিঃসারক ভূ-সংলগ্ন। এখানে নিঃসারক-ভূমি বর্তনীকে বলা হয় ইনপুট বর্তনী (input circuit) এবং এটি সম্মুখবর্তী বায়াস যুক্ত ; আর সংগ্রাহক-ভূমি বর্তনীকে বলা হয় আউটপুট বর্তনী (output circuit) এবং এটি বিপরীতবায়াস যুক্ত।

(a) ইনপূট বৈশিষ্ট্য লেখ (Input characteristic) : সংগ্রাহক ভোন্টেজ (V_c) অপরিবার্তিত রেখে বিভিন্ন ভূমি ভোক্টেজ (V_R) এবং ভূমি প্রবাহের (I_R) ভিতর লেখ আঁকলে সেটি হবে CE সংযোগ ব্যবস্থায় ইনপ্ট বৈশিষ্টা লেখ। 2.18 নং চিত্রে ইনপট বৈশিষ্ট্য লেখ দেখানো হল। এই বৈশিষ্ট্য লেখগুলি সন্মুখ বায়াসযুক্ত ডায়োডের বৈশিষ্ট্য লেখচিত্রের অনুরূপ [5.10(a)] চিত্র দেখ]। 2.18 নং চিত্র লক্ষ করলে দেখা যায় যে ভূমি ভোক্টেজ (V_B) স্থির রাখলে সংগ্রাহক ভোন্টেজের $(V_{
m C})$ মান বৃন্ধির সঙ্গো ভূমিপ্রবাহ $(I_{
m B})$ কমে

(b) আউটপ্ট বৈশিষ্ট্য লেখ (Output characteristics):

যায়।

ভূমি প্রবাহমাত্রা (IB) অপরিবতিত রেখে বিভিন্ন সংগ্রাহক

ভোল্টোর্জ (V_C) এবং সংগ্রাহক প্রবাহমাত্রা (I_C) ভিতর লেখ আঁকলে সেটি হবে CE সংযোগ ব্যবস্থায় আউটপুট বৈশিষ্ট্য লেখ। 2.19 নং চিত্রে আউটপুট বৈশিষ্ট্য লেখ। 2.19 নং চিত্রে আউটপুট বৈশিষ্ট্য লেখ দেখানো হল। লক্ষ কর যে $V_C=0$ হলেও I_C শূন্য হয় না। এর কারণ এই যে নিঃসারক ও সংগ্রাহক অঞ্চল দুটি পরস্পারের অত্যন্ত নিকটবতী হলে কিছু সংখ্যক 'গর্ত' সংগ্রাহক ভোল্টেজ (V_C) শূন্য হলেও সংগ্রাহকে পৌছে যায়। একমাত্র V_C বিপরীত মেরু যুম্ভ করলে $I_C=0$ হবে।

(ii) NPN ট্রানজিস্টারের বৈশিষ্ট্য

NPN ট্রানজিস্টারের স্থৈতিক বৈশিষ্ট্য লেখ আঁকার জনা নং 2.20 চিত্রে প্রদর্শিত বর্তনী ব্যবস্থা প্রয়োজন।

জন্য নং 2.20 চিত্রে প্রদাশত বতনা ব্যবস্থা প্রয়োজন। ব্যাটারির মেরুমুখ উল্টে দেওয়া ছাড়া এই বর্তনীর সংগে PNP বর্তনীর অন্য কোনো পার্থক্য নেই। কার্যপশ্বতি এবং লেখচিত্র সবই একরকম।

🔾 দ্বিক সংখ্যা এবং লন্ধিক গেট 🔾 (Binary numbers and Logic gates)

2.11) দশমিক ও দ্বিক সংখ্যা (Decimal and binary numbers)

দশমিক সংখ্যা পন্ধতির সঙ্গো আমরা অভি পরিচিত। এই পন্ধতিতে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, এই দশটি অঙক (digit) ব্যবহার করা হয়। প্রতোকটি অঙ্কর অবস্থানের তাৎপর্য আছে। দশমিক সংখ্যা পন্ধতিতে 10 কে ভূমি (base) ইসাবে ব্যবহার করা হয়। যেমন, 3256 (তিন হাজার দুলো চাপ্লার) এই সংখ্যাকে দশমিক পন্ধতিতে নির্মালখিতভাবে প্রকাশ করা যায় :

 $3256 = 3 \times 10^3 + 2 \times 10^2 + 5 \times 10^1 + 6 \times 10^\circ$

3, 2, 5, 6 আক্ষণুলিকে বলা হয় সহগ (coefficient) এবং 10কে বলা হয় ভূমি (base)। 10- এর শক্তি চিহ্ন (power) গুলিকে (3, 2, 1, 0) বলা হয় ভূমির ঘাত (power)।

একইভাবে ভগ্নাংশ সংখ্যাকেও আমরা দশমিক পশ্বতিতে নিম্নলিখিতভাবে প্রকাশ করতে পারি। যেমন,

$$0.5821 = 5 \times 10^{-1} + 8 \times 10^{-2} + 2 \times 10^{-3} + 1 \times 10^{-4}$$

এবং
$$58.21 = 5 \times 10^1 + 8 \times 10^\circ + 2 \times 10^{-1} + 1 \times 10^{-2}$$
 ইত্যাদি।

দ্বিক সংখ্যা পন্ধতিতে ভূমি 2 এবং সহগ 1 অথবা 0 (ভূমি 2 থেকে 1 কম) । 1 এবং 0 অঙ্ক দুটির প্রত্যেকটিকে 'বিট' (bit) বলা হয়।

2.12.

দশমিক সংখ্যাকে দ্বিক সংখ্যায় রূপান্তর (Decimal to bina. conversion) :

দশমিক সংখ্যাকে দ্বিক সংখ্যায় রূপান্তর করতে হলে সংখ্যাকে 2 দিয়ে ভাগ করো এবং ভাগশেষ লিখে রাখ। ভাগফলকে আবার 2 দিয়ে ভাগ করো এবং ভাগশেষ লিখে রাখে। এইভাবে ক্রমান্বয়ে 2 দিয়ে ভাগফলকে ভাগ করে যেতে হবে যতক্ষণ না ভাগফল শূন্য (0) হয়। তারপর তলার দিক থেকে ভাগশেষ সংখ্যাগুলিকে পরপর লিখে গেলে নির্দেষ দ্বিক সংখ্যা পাওয়া যাবে।

উদাহরণ :

দশমিক সংখ্যা 27 কে বিক সংখ্যায় পরিণত করো।

ভাগফল শুনা হওয়ায় আর ভাগ দেবার প্রয়োজন নেই। এবার তিরচিহ্ন অনুযায়ী তলার দিক থেকে ভাগশেষগুলিকে পর পর লিখলে পাই 11011; অতএব, নির্পেয় দ্বিক সংখ্যা = 11011 (2) দশমিক সংখ্যা (125)10 কে বিক সংখ্যায় মৃপান্তর কর।

দ্রিঃ সংখ্যার তলায় ছোটো অক্ষরে 10 বোঝায় যে সংখ্যাটি দশমিক সংখ্যা। তেমনি দ্বিক সংখ্যার তলায় ছোটো অক্ষরে 2 লেখা থাকলে বোঝাবে যে সংখ্যাটি দ্বিক সংখ্যা।

∴ নির্দেয় সংখ্যা = (1111101)₂

দশমিক ভ্যাংশ রাশিকে দিক ভ্যাংশে বৃপান্তরিত করতে হলে ভ্যাংশকে 2 দিয়ে গুণ করতে হরে। গুণফালের ভ্যাংশকে আবার 2 দিয়ে গুণ করতে হবে। এইভাবে কুমাগত ভ্যাংশকে 2 দিয়ে গুণ করে যেতে হবে যতক্ষণ না গুণফলের ভ্যাংশ অংশ শূন্য (0) বা পূর্ণমান 1 হয়। তারপর পূর্ণ মানগুলি (1 অথবা 0) ওপর থেকে নীচের দিকে পরপর লিখলে এবং সর্ববামে দশমিক বিন্দু বসালে দ্বিক ভ্যাংশ পাওয়া যাবে।

উদাহরণ: (1) 0.625 কে দ্বিক ভগ্নাংশে পরিণত করো।
উঃ।

0.625 × 2 = 1.250 = 1 + .250

0.250×2 = 0.500 = 0 + .500

0.500×2 = 1.000 = 1 + .000

গুলফলের ভন্নাংশ অংশ শ্না (0) এবং পূর্ণমান 1 হওয়ায় আর গুল করার প্রয়োজন নেই।

এবার পূর্ণমানগুলিকে (1 এবং 0) ওপর থেকে নীচে পরপর লিখলে এবং সর্ববামে দশমিক বিন্দু বসালে নির্ণেয় দ্বিকভ্যাংশ (0.101)2 পাওয়া যাবে।

(2) 27.125 দশমিক ভয়াংশকে দ্বিক ভয়াংশ সংখ্যায় রূপান্তরিত করো।

উঃ। প্রদত্ত সংখ্যাটির পূর্ণমান 27-এর তুল্য দ্বিক সংখ্যা = (11011)2 [1 নং উদাহরণ দেখো] ভগ্নাংশ 0.125 এর তুল্য দ্বিক ভগ্নাংশ নিম্নলিখিতভাবে পাওয়া যাবে ঃ

		পূৰ্ণমান		ভন্নাংশ
$0.125 \times 2 = 0.250$	\rightarrow	0	+	0.250
$0.250 \times 2 = 0.500$	\rightarrow	0	+ .	0.500
$0.500 \times 2 = 1.000$	\rightarrow	1	+ -	0.000

ওপর থেকে নীচে পূর্ণমানগুলি পরপর লিখে সর্ববামে দশমিক বিন্দু বসালে পাই 0.001; সূতরাং $(27.125)_{10}$ দশমিক সংখ্যার তুলা দ্বিক সংখ্যা হবে = $(11011.001)_2$

স্ত্রিঃ দশমিক ভগ্নাংশের শেষ অঙ্ক (digit) 5 হলে তাকে যথাযথ দ্বিক ভগ্নাংশে পরিণত করা যায়; কিন্তু শেষ অঙ্ক 5 ছাড়া অনা কিছু হলে, তাকে যথাযথ দ্বিক ভগ্নাংশে পরিণত করা যায় না।]

2.13) দ্বিক সংখ্যাকে দশমিক সংখ্যায় রূপান্তর (Binary to decimal conversion) :

এই রূপান্তর বোঝার আগে আমরা জেনে নেব যে দর্শাত্রক পন্ধতিতে কোনো সংখ্যা গঠনে যে অন্তকগুলি (digits) ব্যবহার করা হয় তাদের প্রত্যেকটির গুরুত্ব (weightage) কতটা। উদাহরণস্বরূপ একটি সংখ্যা 4352 নেওয়া যাক। এই সংখ্যার অংকগুলির গুরুত্ব কীরপ তা নীচের তালিকায় দেওয়া হল।

অংক	গুরুহ	
2	10°	<i>শ</i> পাট্ট ভ
5	101	$4352 = 4 \times 10^3 + 3 \times 10^2 + 5 \times 10^1 + 2 \times 10^1$
3	102	1 4710
4	103	

উপরের তালিকা থেকে বোঝা যায় যে এককের স্থানের (unit place) অংকটির গুরুত্ব দশকের স্থানের (ten's place) অঙ্কের গুরুত্ব অপেক্ষা কম; আবার দশক স্থানের অঙ্কটির গুরুত্ব শতকের স্থানের অংকের গুরুত্ব অপেক্ষা কম, ইত্যাদি।

এবার আমরা দ্বিক সংখ্যা গঠনের অক্ষর্গুলির পূর্ত্ব বিবেচনা করব। দ্বিক সংখ্যায় আমরা যত ডান দিক থেকে বাঁদিকে যাই, দশমিক পর্শাতিতে রপাগুররিত অক্ষর্গুলির মান পর পর 2 করে বেড়ে যায়। যেমন, দ্বিক সংখ্যা 10111 বিবেচনা করো। এর অর্থ $1\times 2^- + 1\times 2^1 + 1\times 2^2 + 0\times 2^3 + 1\times 2^4$

কাজেই এটা হবে $1+2+4+0+16=(23)_{10}$ (ভূমি 10 ব্যবহার করলে)। $\therefore (10111)_2=(23)_{10}$

উদাহরণ (1) (11011)₂ দ্বিক সংখ্যাকে দশমিক সংখ্যায় প্রকাশ করো।

উ:। $(11011)_2 = 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3 + 1 \times 2^4$ = 1 + 2 + 0 + 8 + 16 = (27)₁₀.

(2) (111011)₂ দ্বিক সংখ্যাকে দশমিক সংখ্যায় প্রকাশ কর।

ቼ : $(111011)_2 = 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3 + 1 \times 2^4 + 1 \times 2^5$ = 1 + 2 + 0 + 8 + 16 + 32 = $(59)_{10}$

2.14 পঞ্জিক গেট (Logic gates) :

আমরা অনেক সময় এমন এমন প্রশ্নের সম্মুখীন হই যাদের উত্তর হতে পারে দুটি—হয় YES অথবা NO. আবার এমন সব বস্তু পাওয়া যায় যারা দুটি সম্ভাব্য অবস্থার যে-কোনো একটিতে থাকতে পারে। যেমন, একটি বৈদ্যুতিক বাল্ব হয় ON অবস্থায়, না হয় OFF অবস্থায় থাকে। কোনো উত্তি হয় সত্যি না হয় মিখ্যা হতে পারে।

যে সকল ইলেকট্রনিক বর্তনী দ্বিক সুইচ প্রক্রিয়া অর্থাৎ, OFF এবং ON অথবা YES এবং NO সম্পন্ন করার জন্য ব্যবহৃত হয় তাদের বলা হয় লজিক গেট বা লজিক বর্তনী। এই বতনীগুলিকে লজিক বর্তনী বলা হয় কারণ 1850 খ্রিস্টাব্দে জর্জ বুল প্রবর্তিত বুলিয়ান বীজগণিত (Boolean algebra) দ্বারা এদের বিশ্লেষণ করা যায়। লজিক গেট বর্তনীতে সাধারণত একাধিক ইনপ্ট থাকে কিন্তু আউটপুট থাকে মাত্র একটি। প্রধানত তিনটি মুখা লজিক গেট আছে যাদের বলা হয় AND, OR এবং NOT গেট।

(i) AND গেট:

AND গেট বর্তনীতে একাধিক ইনপুট সিগনাল (signal) থাকতে পারে কিন্তু আউটপুট সিগনাল পাওয়া যায় একটি এবং তাও যখন সবকটি ইনপুট সিগনাল একসঙ্গো ON অথবা 1 অবস্থায় থাকে। AND গেটে নিম্নলিখিত সংজ্ঞা অনুযায়ী আউটপুট কাজ করে।

AND গেটের আউটপুট ON অবস্থা অথবা 1 অবস্থা পাবে কেবলমাত্র তথনই যখন সব কটি ইনপুট একসংজ্ঞা ON অবস্থা অথবা 1 অবস্থায় থাকবে। এই কারণে অনেক সময় AND গেটকে সমাপতিত (coincidence) গেটও বলা হয় কারণ সব কটি ইনপুট একই সজো অথবা সমাপতিত হলেই আউটপুট পাওয়া যায়। AND গেটের কার্যপ্রণালী বোঝার জন্য একটি সরল তড়িৎবর্তনীর সাহায্য নেওয়া যেতে পারে।

2.21 নং চিত্রে তিনটি সুইচ A, B এবং C শ্রেণি সমবায়ে একটি বাটারি E এবং একটি গালভানোমিটার Y-এর সঞ্জো যুক্ত আছে। বলা বাহুলা যে তিনটি সুইচকে একসংজ্ঞা ON করলে, তবেই গালভানোমিটার ON অবস্থা পাওয়া যাবে অথবা গালভানোমিটার ON অবস্থা পাবে। বিক্ষেপকে আউটপুট ধরলে, সুইচ ভিনটিকে ভিনটি ইনপুট ধরা যায়: সহছেই শ্রোঝা যায় গালভাকে ভিন্টি ব

OFF অনম্পায় থাকরে অথবা কোনো বিক্লেপ পাওয়া যাবে না) যদি একট বা দুটি স্ইচ OFF রেখে তৃতীয়টি ON করা হয়। কাভেই এই বর্গনী AND গোটের হুলা। AND প্রকিয়াকে বুলিয়ান বীজগণিতে (.) ফুটাক দ্বারা বোঝানো হয়। লেখা হয় ABC = Y

ON water A = 1 and OFF water A = 1 by A = 1 and A = 1 and

কোনো আউটপূট পাওয়া যাবে না-Y থাকবে OFF অবস্থায়। লেখা যাবে 1.1.0=0; ON এবং OFF অবস্থার বিভিন্ন সমন্বয় বিবেচনা করলে ফলাফলকে নিম্নলিখিতভাবে তালিকাবন্দ্ধ করা যায়। এই

ধরনের তালিকাকে বলা হয় 'টুথ টেবল' (truth table)

रेनशूर		াড়িটপুট
A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

2-ইনপুট AND গেটের টুথ টেবল

2.22 নং চিত্রে দুই ইনপ্টবিশিষ্ট AND গে<mark>টের প্রতীক চিহ্ন দেখোনো হয়েছে। দুটি অর্ধপরিবাহী</mark> ডায়োডের সাহায়্যে AND গেটের বাড়ুবরূপ দেওয়া যায়।

(ii) OR গেট:

OR গেটে একাধিক ইনপুট থাকে এবং যে কোনো ইনপুট ON অবস্থায় থাকলেই আউটপুট ON অবস্থায় থাকে। নিম্নলিখিত সংজ্ঞা অনুযায়ী OR গেটের আউটপুট ক্রিয়া করে।

OR গেটের অউটপুট ON অথবা 1 অবস্থায় থাকে যখন এর একাধিক ইনপুটের যে–কোনো একটি ON অথবা 1 অবস্থায় থাকে। এই গেটের কার্যপ্রণালী বোঝার জন্য নিম্নলিখিত সরল তড়িৎ

বর্তনী বিবেচনা করা যাক। 2.23 নং চিত্রে A, B এবং C তিনটি সুইচ সমান্তরাল সমবায়ে একটি ব্যাটারি E এবং একটি গ্যালভ্যানোমিটারে Y-এর সঞ্চো যুক্ত। গ্যালভ্যানোমিটারে বিক্ষেপ পাওয়া যাবে (অর্থাৎ, আউটপুট ON অথবা 1 অবস্থায় থাকবে) যখন সুইচ A অথবা সুইচ B অথবা সুইচ C অথবা তিনটি সুইচই

ON অবস্থা বা 1 অবস্থায় থাকরে। কিন্তু সুইচ তিনটি একসজো OFF অথবা 0 অবস্থায় থাকলে, কোনো আউটপুট থাকরে না (অথবা আউটপুট OFF অথবা 0 অবস্থায় থাকরে)। এই তড়িৎবর্তনী ব্যবস্থা OR গেটের সমতৃক্য।

বুলিয়ান বীজগণিতে OR গেটের উপরোক্ত প্রক্রিয়া নিম্নলিখিতভাবে প্রকাশ করা হয়:

$$A + B + C + + X = Y$$
.

দুই ইনপ্ট প্রতীক চিহ্নের (A এবং B) মাঝে + চিহ্ন OR গোট বুঝায়। উপরোক্ত সমীকরণ থেকে আমরা বুঝি যে, যখন A=1 এবং B=C=...X=0, তখন Y=1 অর্থাৎ A যখন 1 অবস্থায় তখন Y আউটপ্ট পাওয়া যাবে। অনুরূপভাবে A=1,B=1,C=1,.....X=1, হলে, Y=1+1+1...+1=1 অর্থাৎ, যখন A,B,C প্রভৃতি সব ইনপুট ON অবস্থায় তখন আউটপুট Y ON অবস্থায় থাকে। একইভাবে, A=0,B=0,C=0...X=0 হলে, Y=0+0+0+0=0 হবে। তিন ইনপুটবিশিষ্ট OR গেটের টুথটেবল হবে নিম্নর্প :

Literatura Contration		ر. ۱۹۹۱ و دیاری	
A	P	('	Y
()	()	0	()
()	0	1	1
()	1	0	}
0	1	1	1

		Michigan	्र जीकडीकी जिल्ला
A	B		Y
1	0	0	1
1	0	1	1
1	1	0	1
1			1

2.24 নং চিত্রে চার ইনপুটবিশিষ্ট OR গেটের প্রতীক চিহ্ন দেখানো হল।

(iii) NOT গেটঃ

NOT গেটে আউটপুট পাওয়া যায় কেবলমাত্র তখনই যখন ইনপুট অনুপপ্থিত। এই বর্তনীতে একটি

ইনপুট এবং একটি আউটপুট থাকে। নিম্নলিখিত সংজ্ঞা অনুযায়ী NOT গেট নঞৰ্থক লজিক (logic negation) প্ৰক্ৰিয়া সম্পন্ন করে।

NOT গেটে আউটপুট ON অথবা 1 অবস্থা পায় তখনই যখন ইনপুট OFF অথবা 0 অবস্থায় থাকে। যেমন, ইনপুট A = 0 হলে আউটপুট Y = 1 এবং ইনপুট A = 1 হলে আউটপুট Y = 0; লক্ষ কর NOT গেট ইনপুট সংকেতের প্রকৃতিকে (nature) বিপরীত আউটপুটে রুপান্তরিত করে বলে একে 'ইনভারটার' (inverter) নাম দেওয়া হয়েছে।

2.25 নং চিত্রে তড়িং-বর্তনীর সাহায্যে NOT গেটের কার্যপ্রণালী পরিস্কার বোঝা যাবে। চিত্র থেকে বোঝা যায় যে সুইচ A OFF অবস্থায় থাকলে ব্যাটারি (E) প্রদন্ত প্রবাহ গ্যালভ্যানোমিটার Y দিয়ে যাবে এবং গ্যালভ্যানোমিটারে বিক্ষেপ পাওয়া যাবে। বলা যায় যখন A=0 (অথবা OFF) তখন Y=1 (অথবা ON)। আবার সুইচ A ON অবস্থায় থাকলে, সমস্ত প্রবাহ সুইচের ভিতর দিয়ে যাবে। কোনো প্রবাহ গ্যালভ্যানোমিটারে যাবে না। ফলে গ্যালভ্যানোমিটারে কোনো বিক্ষেপ পাওয়া যাবে না। বলা যায় যখন A=1 (অথবা ON), তখন Y=0 (অথবা OFF)।

NOT গেটের টুথটেবল নিম্নরূপ:

2.26 नः (a) এবং (b) हित्र NOT लिकित श्रीक हिट्ट (मिल्गाना श्राह्म) श्रीक हित्र नक्ष्यंक

লভিক-কৈ (logic negation) ছোটো বৃত্ত (০) বারা বোঝানো হয়. (৪) নং চিত্র বোঝায় যে A = 1 এবং Y = 0 কারণ বৃত্ত আওওপুত্রর নিকে আছে। এই প্রতীক চিক্র N()T প্রতীব প্রতীক। (b) নং চিত্র বোঝায় A = 0 এবং Y = 1 কারণ বৃত্ত ইনপুটের দিকে আছে।

*(iv) NAND এবং NOR গেট:

অনেক সময় দুই বা ততোধিক গেট শ্রেণি সমবায়ে যুক্ত করে গেট সমধ্য় গঠন করা হয়। NAND এবং NOR গেট ঐ রকম দৃটি গেটের শ্রেণি সমন্বয়। অভিকত বর্তনীতে (digital circuits) গেট সমন্বয় প্রায়ই ব্যবহার করা হয়।

NAND গেট তৈরি করা হয় একটি AND গেট এবং একটি NOT গেট পরপর যুক্ত করে। কোন ফাংশান Y = NOT (A AND B) হলে তাকে A এবং B লজিক চলরাশির (logic variables) NAND ফাংশান বলা হয়। প্রতীকের সাহায্যে লেখা হয় $Y = \overline{A.B}$ অথবা $Y = A\overline{B}$ (A এবং B এর ভিতর ডট্ না দিয়ে)। একে A NAND B রূপেও লেখা হয়। নিচের তালিকায় AB এর মূল্যায়ন (evaluation) ও ট্রথটেবল দেখানো হল।

pledening Lin Visitation of	manta,	to the same of the same of			a diagram	
A	В	Y'= A AND B	AB =Y= NOT (A AND B)	Α	В	A.B
0	0	0	1	0	0	1
0	1	0	1	0	1	1
1	0	0	1	1	()	1
1	1	1	0	1	1	0

NAND গেটের গঠন 2.27(a) নং চিত্রে দেখানো হল। 2.27(b) চিত্রে NANI) পেটের প্রতীক

দেখানো হয়েছে। লক্ষ্য কর এই প্রতীক AND গেটের প্রতীকের মত; তঞ্চাৎ এই যে আউটপুটে গেট বৃত্ত (০) আছে। ছোট বৃত্ত ি NOT অথ বা ইনভারটার প্রক্রিয়া বোঝায়। লক্ষা কর যে AND গেটের আউট পুট (Y') NOT গেটের ইনপুটরূপে বাবহুত হয়ে সম্পূর্ণ NAND গেটের হলেছে। আরও লক্ষা কর যে, NAND গেটের সবকটি ইনপুট্ যখন উচ্চমানের অবস্থায় (1 অবস্থায়) থাকে তখন আউটপুট উচ্চমানের অবস্থায় থাকে না (উপরোক্ত টুথ টেবিলের শেষ লাইন দ্রন্টব্য)।

(v) NOR পেট :

একট বন্দ্ৰ ভাগে NOR গেট ভৈগি করা হয় একটি OR গেট ও একটি NOT গোট গ্ৰাপ্ত যান্ত করে। কেন্দ্র স্থানে স্বাস্থ্য $Y=NOT\cdot AORB$) হলে ভাকে A এবং B লভিক চন্দ্রন ন NOR ফাংশাম বলা হয় সত্ত্বের সভাগে। সহা ২য় Y=A NORB; একে Y=A+B রুগেন ভ্রান কর হয়।

[°] কেবলমাত্র J.E.E. পরীকার জন্য

minimes ones				l.			
A	В	Y' (A + B)	$\overline{A+B}$ (=Y)		A	В	A+B
0	0	0	1	В	0	0	1
0	1	1	0	н	0	1	0
1	0	1	0		1	0	0
1	1	1	0		1	1	0

NOR গেটের জন্য যে প্রতীক ব্যবহার করা হয় তা 2.28 নং চিত্রে দেখানো হয়েছে। লক্ষ্য কর যে OR গেটের আউটপুট NOT গেটের ইনপুট হিসাবে ব্যবহৃত হয়েছে। আরও লক্ষ্য কর যে NOR গেটের সব কটি ইনপুট নিম্নমানের অবস্থায় (অর্থাৎ, 0-অবস্থায়) না থাকলে আউট পুট সকল ক্ষেত্রে 0-অবস্থায় থাকে। (ট্রুথটেবল দ্রুভীরা)।

🐺 ্প্রশাবলি 🛣

বচনামূলক প্রশ্ন

- ইলেকট্রন তত্ত্ব অনুযায়ী পরিবাহী, অন্তরক ও অর্ধপরিবাহীর ভিতর পার্থকা কী? N-টাইপ এবং P-টাইপ অর্ধপরিবাহী
 কাকে বলে? এদের একটি করে উদাহরণ দাও।
- 2. অর্ধপরিবাহী কাকে বলে ? একটি অর্ধপরিবাহী ডায়োড একমুখীকারক হিসাবে কীভাবে কার্য করে তা ব্যাখা। করোঁ।
- 3. N-শ্রেণি ও P-শ্রেণি অর্ধপরিবাদীর মধ্যে পার্থকা কি? P-N সংযোগের ক্ষেত্রে 'সম্মুখ বায়াস' ও 'বিপরীত বায়ার্স বলতে কী বোঝায়?
- 4. একটি p n সংযোগ ডায়োড়ের হাঁড়ৎপ্রবাহ বনাম ভোকৌকের কেখচিত্র একে দেখোও ও ব্যাখ্যা করো।
- 5. একটি অর্ধপরিবাহীর বেশ্ব ভাপমাত্রা বৃদ্ধির ফলে কীরূপ পরিবর্ভিত হয় ?
- 6. ভার্মোনিয়াম কেলাসে উপযুক্ত পরিমাণ আর্সেনিক প্রতিস্থাপিত করলে কোনো জাতীয় অর্ধপরিবাহী পাওয়া যায়?

[Jt. Entrance 1987]

- 7. P N ভারোতে নিংশেষিত অন্ধল কীভাবে গঠিত হয় ? এই অন্ধলের ওপর সম্মুখবতী ও বিপরীত বায়াসের প্রভাব কি? [Jt. Entrance 1983]
- সখ্যখনতী ও বিপরীত বায়াসের ক্ষেত্রে একটি p-n সংযোগ ভায়োভের বৈশিন্টা লেখ অঞ্জন করো এবং ব্যাখ্যা
 করো।
- একটি p-n-p সংযোগ ট্রানজিন্টারের ক্রিয়া সংক্ষেপে বর্ণনা করো। CE mode এ এই ট্রানজিন্টারের স্থৈতিক বৈশিন্টা লেখ অঞ্চল করো।
- 10. দশমিক পত্রতি ও বিক্ত পত্রতির ভিতর পাথর্কা কি?
- কোনো সংখ্যা পশ্চতির ভূমি (base) বলতে কি বোঝায় ? দশমিক পশ্চতি এবং দিক পশ্চতির ক্ষেত্রে ভূমি কত ?
- 12. OR এবং AND ্পট বলতে কি বোঝায় গ এই পেট দুটির কার্যপ্রণালী সরল তড়িৎ-বর্তনীর সাহাযো বয়খা করে। এদের টুথ টেবল লেখো।

⇒ সংক্রিপ্ত উন্তরের প্রশা

- 1. N ব্রুপ রেল p ব্রুপ অঞ্চলতিলালী কেলান্স প্রভিত্তবিক্তান মধ্য ক্ষিকা কাব স
- 2. P-N জালোন প্রায়েত্র কোনে ভাষার পরিশীক ইর্লকট্টন বা পার্র নারী ৮
- [Jt. Entrance 1987]
- 3. इंकी कामान अपूर्ण अर्थ वर्षा इक्फोलानावन नहीं। देख प्रणात
- [Jt. Entrance 1999]

- 4. উম্মতা বন্ধিতে পরিবাহীর বেধ বন্ধি পায় কিন্তু অর্ধপরিবাহীর রোধ হ্রাস পায়। কেন?
- 5. ত্রমি বিশব্দ সিলিকন নিয়েত এবং ফসফরাসকে অপদ্রব্য <mark>হিসাবে প্রবেশ করিয়েত্ব। সেন্দেত্তে</mark> তুমি কী ধরনের অপদ্রব্য ্র অর্ধপরিবাহী লাভ করবে? বস্তি সহ লেখো।

[Jt. Entrance 1999]

- দশমিক পত্থতি ও দ্বিক পত্থতি বলতে কী বোঝায় ?
- 7. সজিক বর্তনী বা গেট কিং
- 8. নিম্নলিখিত গোটগুলির প্রতীক চিহ্ন অঙ্কন করো : (a) AND (b) OR (c) NOT
- 9. Inverter কাকে বলে? এর এই নাম কেন?
- 10. একটি AND গেটের আউটপ্টকে NOT গেটের ইনপুটে প্রয়োগ করা হল। A এবং B হল AND গেটের দুই ইনপট এবং Y গেটের অন্তিম আউটপট। এই গেট সমন্বয়ের ট্রথ টেবল লেখো। এই সমন্বয় গেটকে কি বলা হয় ?
- 11. বুলিয়ান বীজগণিতে AND এবং OR গেটকে কীভাবে প্রকাশ করা হয়?

⇒ वहस्यी পছদের প্রশ [Multiple choice type (MCO)]

(A) নির্ভুগ উত্তরটি √চিহিন্ত করো:

- [i] নিজের উত্তিগুলির মধ্যে কোনটি নির্ভল 🔊
 - (A) তাড়িং উৎসকে ভোলেড উৎস অথবা প্রবাহী উৎস যেকোনটি ধরে বর্তনী বিশ্লেষণ করলে, একই ফলাফল
 - (B) পরিবাহী পটিতে থাকা একটি ইলেকট্রনের শত্তি ভ্যালেঙ্গ পটিতে থাকা ইলেকট্রনের শত্তি অপেক্ষা বেশী।
 - (C) নিম্নতাপমাত্রায় একটি বিশৃষ্ণ অর্ধপরিবাহী অন্তরকের ন্যায় আচরণ করে।
 - (D) N-টাইপ অর্ধপরিবাহিতে সংখ্যালঘু তড়িৎবাহকের ঘনত (concentration) তাপমাত্রার উপর নির্ভর করে না।
- একটি তড়িৎনিরপেক অর্গপরিবাহিতে
 - (A) সমপরিমাণ নেগেটিভ ও পজিটিভ আধান থাকে.
 - (B) কোন সংখ্যালঘু তড়িংবাহক থাকে না.
 - (C) কোন সংখ্যাগুরু তড়িৎবাহক থাকে না,
 - (D) কোন মুক্ত আধান থাকে না:
- [iii] P-N সংযোগে বিভব প্রতিবন্দক গঠিত হয়---
 - (A) সংযোগের দৃইপাশে থির গ্রহিতা ও দাতা আয়নে সমাবেশের ফলে,
 - (B) সংযোগের দুই পাশে সংখ্যালঘু বাহকের সমাবেশের ফলে,
 - (C) সংযোগের দৃই পাশে সংখ্যাগুরু বাহকের সমাবেশের ফলে,
 - (D) সংযোগের দৃই পাশে সংখ্যা লঘু ও সংখ্যাগুরু উভর ধরনের বাহকের সমাবেশের ফলে।
- (iv) অর্ধপরিবাহী ডায়োড়ে উপর বিভব প্রতিবন্ধক কেবল মাত্র-
 - (A) N-অপ্রদের সংখ্যাগুর বাহকের বিরুখতা করে.
 - (B) P-অপলের সংখ্যাগুর বাহকের প্রতিক্থকতা করে,
 - (C) উভয় অস্থলের সংখ্যাগুর বাহকের প্রতিবন্ধকতা করে.
 - (D) উভগ অপুলের সংখ্যালঘ্ বাহকের প্রতিবশক্তা করে।
- [v] P-N সংযোগ ভারোভ নির্নলিগিও ক্লেত্রে ব্যবহার করা যায় না--
 - (A) একমখীকরণ কাড়ে

- (B) আলোকশন্তিকে তড়িংশন্তিকে বুপান্তরগের কাজে
- (C) আলোক বিকিরণ উ:পন্ন ক্রাভ
- (D) এ.সি. সংকেতের বিস্তার বৃশ্বি করতে।
- [vi] খ্রীনজিস্টারকে বিবর্ধকর্পে কাজ করাতে হলে-
 - (A) নিঃসানক- ভূমি সংযোগকে স্থাখনতী নায়াস এবং সংগ্রাহক ভূমি সংযোগকে বিপরীত নায়াস দিতে হবে,
 - (B) উভয় সংযোগকেই সন্মুখবতী বায়াস দিতে হবে.
 - (C) উভয় সংযোগকে বিপরীত বায়াস দিতে হবে।
- [vii] অর্থপরিবাহিতে তড়িং পরিবহন করে—
 - (A) কেবলমাত্র ইলেকটন

- (B) কেবলমার পর্ত
- (C) हेर्क्ष्यक्रीय ७ ९५ई डेस्पाई
- (D) ইলেকট্রন বা গর্ত কেউট নয়।
- (viii) একটি অধপরিবর্তির উপর ওতিংকের প্রয়োগ করা হল। ধর, আধান বাহকের সংখ্যা n এবং গড় অনুপ্রবাহ (druft) বেশ v। তালমারা বৃদ্ধি করা হলে-

		The state of the s	-		
	(A) n এবং u উভয় বৃদ্ধি পাবে	(B) n বৃদ্ধি পারে কিন্তু u হাস পা	ব		
	(C) n হ্রাস পাবে কিন্তু υ বৃদ্ধি পাবে	(D) n এবং p উভয়ই হাস পাবে			
[ix]	একটি বিশৃষ্ধ পরিবাহিতে গর্তের সংখ্যা n_p এবং	পরিবাহী ইলেকট্রনের সংখ্যা 👊 🔞	াহলে		
	(A) $n_p > n_a$	(B) $n_p = n_e$			
	(C) $n_p < n_e$	(D) $n_n \neq n_a$,			
[x]	একটি অবিশৃন্ধ পরিবাহীকে গর্ডের সংখ্যা n_p এব	ং পরিবাহী ইলেকট্রনের সংক্যা n,।	তাহলে	_	
	(A) $n_p > n_e$	(B) $n_p = n_e$			
	(C) $n_p < n_e$	(D) $n_p \neq n_e$.			
(xi)	P-type অর্থপরিবাহী—				
	(A) ধনাত্মক তড়িংগ্ৰন্ত	(B) ঋণাত্মক তড়িংগ্ৰন্থ			
	(C) নিম্বড়িৎ	(D) 0K উন্নতায় নিস্তজ্তি কিন্তু উচ্চ	তাপঃ	যাত্রায় তা	ড়িংগ্ৰন্থ।
[mai]	বিশৃষ্ধ অর্ধপরিবাহিতে অপদ্রবা 'ডোপ' করলে, ব				
	(A) বৃদ্ধি পায় ব্যালাগেলন্ ব্				
	(C) किष्टुर वस ना	(D) পরিবাহিতা লোপ পায়।			
[XIII]	সিলিকনের সঙ্গো যে অপদ্রব্য পরমাণু ডোপ কর		তাহল		
	(A) क्लक्ज़िल्ल १	(B) বোরন			
	(C) জ্যাতিমনি	(D) খ্যালুমিনিয়াম।			
[xiv]	জারমেনিয়াম কেলাসের সাথে যে অপদ্রবা পরমাণ	্ডোপ করলে N-type অর্ধপরিবাহী	পাওয়া	यांग्न, ख	গহলে—
	(A) चार्रामिक	(B) ইতিয়াম ·			
	(C) আগুমিনিয়াম	(D) সোডিরাম।	10.	3. 1	· 13
[xv]	বিশৃত্য জারমেনিয়ামের পরিবাহিতা বৃত্যি করা যায়				
		(B) গ্রহিতা অপদ্রবা ডে'প করে			
	(C) দাতা অপদ্রবা ডোপ করে	(D) কেলাসের উপর অভিবেগুনি আ	লো যে	(জা	
[xvi]	একটি বিশৃষ্থ অর্ধপরিবাহির ক্ষেত্রে কোন্ উর্ভিটি নি	र्जून ?			
	(A) 0°K উশ্বভার এটি বিশুপ্ত অন্তর্নক,	Att. 11 1 1	4		
	(B) আধান বাহকের সংখ্যা উন্ধতার সাথে সূচকীয়	ভাবে (exponentially) বৃদ্ধি পায়	9		
	(C) ইলেকট্রন ঘনত্ব সর্বদা গর্ভের ঘনত্ব অপেকা				
f	(D) ইলেকট্রনের সচলতা (mobility) গর্তের তুল	নায়_বেশী।			
(XVII)	দশমিক পশ্যতিতে 11 সংখ্যাটিকে দিক্ সংখ্যায় রু				
		(D) 1100.			
[XVIII] বিক পত্ধতিতে 11011 সখ্যাটিকে দশমিক সংখ	ার রূপান্তরিঙ করনে, সংখ্যাটি হবে			
		(D) 27			
	নির্মালখিত গেটগুলির কোন্টির বার বার বাবহার ক		Α Τ	В	1 2
	(Fit STARRE)	(B) ()R (গট	A	В	Y
		(D) NOR (११७।	1	1	0
LAAJ	পার্ষে প্রদর্শিত টুথটোবল নিম্নলিখিত গেটগুলির কো		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	
	(A) NAND (B) AND (C	O) XOR (D) NOT.	0	0	î
	NOR গেট গান্তন করতে কি কি গেট প্রায়োজন ?				
favill	(A) OR, AND (B) OR, NOT	(C) NOT, AND DO OF	R. NA	ND	
favill	অর্গপরিবাহীর পরিবাহিত কেবলমাত্র সময়োজী প্রথ	(covalent fond জিল হকান সকুন।	2764. (महे जात्व	শর বাদীৰে
	বলা হয়	- 0			
[wwitte	(A) দাড়া (B) অনিশূৰ	(C) বিশুৰ (D) ব্যবিতা।			
	P-type অর্থপরিবাহীতে প্রতিতা অপদ্রব্য যে পত্তি				
		B. जीवनाष्ट्री जिल्ला है जिल्ला			
[xxiv]	(C) अश्याकी भवित क्रिक डिट्स	D) भवित्रको भीत प्रेट ५ (प्र			
. ~ ~ 1 /)	P-type धर्मनाकान उपावना क्यांनी १				
	(A) বিশুখ জানমেনিয়াম (B) বিশুশ্ব সিচিব্রুন			

(B) विमुख जिलिका

D প্রবিদ ভাগে দলা সাক্রিক

(' আর্মেনিক ,ডাল করা সিলিকন

550 🔳 1	পদার্থ বিজ্ঞান পরিচয়
(B) ज् ना	স্থান প্রণ করো (Fill up the blanks):
[i]	P_N সংযোগকে বায়াস দিলে সংযোগ দিয়ে তড়িৎপ্রবাহ উচ্চ রোধের সম্মুখীন হয়। এই বায়াস দেওয়া হয় সংযোগের P-অঞ্চলকে ব্যাটারির প্রান্তে যুক্ত করে।
(iii)	P-N সংযোগের সন্মুখবতী বায়াসের বেলায় P অস্থলকে ব্যাটারির প্রান্তে যুক্ত করতে হবে এবং
	প্রবাহ থেকে দিকে যাবে।
fiiil	ট্রানজিস্টারে প্রবাহ ভূমি প্রবাহ ও প্রবাহের সমন্টি।
[iv]	P-N সংযাগে বিপরীত প্রবাহের মাত্রা সাধারণত কয়েক কিন্তু সন্মুখবতী প্রবাহ
[]	পর্যায়ের।
[v]	দ্বিক পশ্ধতিতে ভূমি ; দশমিক পশ্ধতি ভূমি :
	NOT গেট ইনপুট সংকেতের প্রকৃতিকে বিপরীত প্রকৃতির আউটপুটে রূপান্তরিত করে বলে একে
(6)	वर्षा।
	া কি নির্ভুল বিচার করো (True or false type questions) ঃ N-টাইপ অবিশৃষ্ণ অর্ধপরিবাহীতে গতৈর সংখ্যার তুলনায় ইলেকট্রনের সংখ্যা অনেক বেশী ; আবার P-টাইপ
[1]	· ·
****	অর্থপরিবাহীতে এর ঠিক উপ্টো। · · দূ P–N সংযোগ ডায়োডে নিঃশেষিত স্তরে কোন গতিশীল আধান বাহকের অন্তিত্ব নেই।
	P-10 সংযোগ ভারোতে নিঃশোবত তরে ভোন গাওনাল আবান বাহতের আতত্ত্ব নেহ। বিপরীত বায়াসে প্রবাহমাত্রা P-N সংযোগ ভায়োতে প্রযুক্ত ভোল্টেক্কের উপর নির্ভর করে।
	NOT গেট বর্তনীতে আউটপূট পাওয়া যায় কেবলমাত্র তথন যথন ইনপূট অনুপশ্বিত।
	NOT গোট বভনতে আভচনুত শান্তরা বার কেবলমাত্র তবন ববন হন দুট অনুশান্ত। NOR গোট তৈরি করা হয় OR গোট ও NOT গেটের সমান্তরাল সমবায়ের দ্বারা।
ागा न	তিক প্ৰশ্ন
1.	নিৰ্ম্ললিখিত দশমিক সংখ্যাগুলিকে দ্বিক সংখ্যায় বুপান্তরিত করো: A
	(i) 125 (ii) 53 (iii) 36 (iv) 129
	[Ana, (i) 1111101 (ii) 110101 (iii) 100100 (iv) 1000001] নিম্নলিখিত দ্বিক সংখ্যাগুলির তুলা দশমিক সংখ্যা নির্ণয় করো : B
Z.	নিম্নলিখিত দ্বিক সংখ্যাগুলির তুল্য দশমিক সংখ্যা নির্ণিয় করো: B
3.	2.29 নং চিত্রে যে লজিক গেটের প্রতীক চিহ্ন দেখানো হয়েছে তার চিত্র 2.29
	নাম উল্লেখ করো। [Ans. AND]
4.	निम्नमिथिण উन्दिश्मि व्याधा करता :
	(a) 可用 A = 1, B = 1, C = 1 破域 Y = 1 + 1 + 1 = 1 小型
	(b) যদি A = 1, B = 1, C = 0 তবে Y = 1.1.0 = 0 Ans. (i) OR গেট (ii) AND গেট
	. a M.C.Q. প্রমের উত্তর 🗅 🔻
(A)	
(i)) D (v) D (ix) B (xiii) B,D (xvii) A (xxi) B
) A (vi) A (x) D (xiv) A (xviii) D (xxii) C
) A (vil) C (xi) C (xv) A.B.C.D (xix) C.D (xxiii) B
(iv) C (viii) B (xii) A (xvi) A B (xx) A (xxiv) D
	[i] বিপাৰীত, নেগোটিভঃ [ii] পজিটিভ, P-প্ৰান্ত, N-প্ৰান্ত, [iii] নি সংবক্ষ, সংস্থাতক [iv] μΑ, mΑ · [v] 2, 10 [vi] ইনভারটার
	[i] high (ii) high (iii) go, (iv) high (v) go
(6)	film 3 or full ake, clind 3 or feet a 3 or (a) 3.

♦ সূচনা (Introduction) :====

তাপ বিকিরণ (heat radiation) সম্পর্কিত সমস্যা সমাধানের উদ্দেশ্যে 1905 খ্রিস্টান্কে জার্মান বিজ্ঞানী ম্যান্ত্র প্রাণ্ড করের ক্ষরান্ত্রীম তন্ত্বের অবতারণা করেন। তিনি বলেন যে, বন্তু থেকে যখন শন্তি (তাপ) নির্গত হয় এখন তা নিরবচ্ছিরভাবে হয় না—বিচ্ছিরভাবে এক একটি শন্তি পাাকেটর্পে নির্গত হয়। এই প্যাকেটগুলির তিনি নাম দেন 'কোয়ান্টা' (quanta)। এই কোয়ান্টাগুলির শন্তি সব সমান নয়; প্রতােক কোয়ান্টার শন্তি বিকিরণের কম্পান্তেকর সমানুপাতিক। বিকিরণ সম্পর্কে প্রান্তেকর এই নতুন ধারণা (concept) সনাতন ধারণা থেকে এতই পৃথক এবং বিপ্লবাত্মক যে তখনকার বিজ্ঞানীরা প্র্যাঞ্চের এই তবুকে শ্বীকার করেনিন। আইনস্টাইন সর্বপ্রথম বিজ্ঞানী যিনি এই তন্ত্বের সারবন্তা উপলব্দি করেছিলেন। তিনি তাঁর অসামান্য প্রতিভা দ্বারা বুঝতে পেরেছিলেন যে, বিকিরণ সম্পর্কিত যেসব সমাস্যা সনাতন তরজাতত্ত্ব সমাধান করতে পারেনি, কোয়ান্টাম তন্ত্বের প্রয়োগে তাদের সমাধান সম্ভব। প্রবৃত্তপক্ষে আইনস্টাইন সর্বপ্রথম আলোকতড়িৎ (photo-electric) ঘটনাবলিতে কোয়ান্টাম তন্ত্বে প্রয়োগ করে দেখান যে তরজাতত্ত্ব আলোকতড়িৎ সম্বন্ধে যে সকল প্রশ্নের উত্তর দিতে পারেনি কোয়ান্টাম তত্ত্ব প্রয়োক তাদের সন্তেবজনক উত্তর পাওয়া যাবে। এখন, আমরা আলোক-তড়িৎ ক্রিয়া সম্বন্ধে আলোচনী করব।

3.1. আলোকতড়িতের **আবিষ্কার (Discovery of photoelectricity)**

কোনো ধাতব বস্তুর পুষ্ঠে যথোপযুক্ত তরজাদৈর্ঘ্যের আলো (যেমন, এক্সরন্মি, মতি-বেগুনি রন্মি, দৃশামান আলোক রন্মি উভাদি) ফেললে দেখা যায় যে, যতক্ষণ আলো পড়ছে তভক্ষণ ঐ পৃষ্ঠ থেকে ইলেকট্রন নিঃস্ত হচ্চে। এই ঘটনাকে বলা হয় আলোকতড়িৎ (photoelectricity)। তড়িংচ্ম্বকীয় তরজোর সাথে পদার্থের মিথস্কিয়া (interaction) হবার ফলে যে-সকল ঘটনা ঘটে, আলোকতড়িং ঘটনা তাদের অন্যতম।

এই গটনা প্রথম লক্ষ করেন ভার্মান বিজ্ঞানী হার্ৎস 1887 খ্রিস্টান্দে। তিনি দটি তড়িদ্ধারের ভিতর প্রবিজ্ঞা (spark) সৃষ্টি করে তড়িংচ্চুস্করার ওরজ্ঞা উৎপন্ন করছিলেন। তিনি লক্ষ করেন যে, তডিদ্ধারের উপর অতিব্রেগ্নি গ্রালো পড়লে সহজে দ্বালিক্ষা সৃষ্টি হয়। আলোকপাত না করলে অত সহজে দ্বালিক্ষা সৃষ্টি হয়। আলোকপাত না করলে অত সহজে দ্বালিক্ষা সৃষ্টি হয়। গালোকপাত না করলে অত সহজে দ্বালিক্ষা সৃষ্টি হয়। গালোকপাত না করলে অত সহজে দ্বালিক্ষা সৃষ্টি হয়। গালোকপাত না করলে অত সহজে দ্বালিক্ষা করেন। একটি ব্যংশনা এলস্টার, এবং গালারেল এই তিন বিজ্ঞানী এই সম্বন্ধে কিছু পরীক্ষানিরীক্ষা করেন। একটি ব্যংশনা ক্রের্যাটিভ নালা দৃটি দ্বার প্রেটি চিক্সে একটিকে ব্যাটারির পজিটিভ নেরের স্বাহ্ম এবং অপরটিকে নোণ্টেভ প্রেটিটিভে অতি রেগুনি আলো কেললে বর্তনী দিয়ে একটি তিন্তপুরত গাল করেন এবং দ্বালা লা ক্রের্যাটিভ স্বাটিটিভে অতি রেগুনি আলো কেললে বর্তনী দিয়ে একটি তিন্তপুরত গাল করেন হয়। আরও লক্ষ করেন হয়। তাল করে করা মাজ প্রবাহন্ড বন্ধ হয়।

1900 খ্রিস্টার্কে লেনার্ড প্রমাণ করেন যে, ধাতবপৃষ্ঠে অতি-বেগুনি আলো পড়লে, ঐ পৃষ্ঠ থেকে ইলেকট্রনের নিঃসরণ হয়ে উত্ত প্রবাহ সৃষ্টি করে। আলোর সাহাযো তড়িংপ্রবাহ সৃষ্টি হচ্ছে বলে এই ঘটনাকে বলা হয় আলোকতড়িং, ইলেকট্রনগুলিকে আলোকজ ইলেকট্রন (photo-electrons) এবং প্রবাহকে বলা হয় আলোকতড়িংপ্রবাহ (photoelectric current)।

লিথিয়াম, সোডিয়াম, পটাশিয়াম প্রভৃতি উচ্চ ধনাত্মক তড়িংধর্মী (electro-positive) ক্ষারধাতুগুলি আলোকতড়িং সম্পর্কে খুবই সংবেদনশীল। এদের ওপর সাধারণ দৃশ্যমান আলো (visible light) পড়লেই আলোকজ ইলেকট্রন নির্গত হয়। বর্তমানে দেখা গেছে যে, উপযুক্ত তরজাদৈর্ঘোর আলো ব্যবহার করলে (গ্যামারশ্মি, এক্সরশ্মি, অথবা অতি-বেগুনি রশ্মি) সব ধাতুই আলোকতড়িং ঘটনা প্রদর্শন করে।

আলোকতড়িৎ সম্পর্কে পরীক্ষামূলক পর্যালোচনা (Experiment study of photoelectricity) :

আলোকতড়িং সম্পর্কে পরীক্ষামূলক পর্যালোচনা করতে হলে 3.1 নং চিত্রে প্রদর্শিত ব্যবস্থা অবলম্বন করা যেতে পারে। K এবং A দৃটি ধাতব প্লেট বায়ুশূন্য কোয়ার্টজ কুন্ডে ঢুকানো আছে। একটি ব্যাটারি এবং রোধকের সাহায্যে A এবং K প্লেটের ভিতর বিভবপ্রভেদ প্রয়োগ করা হয়। K শ্লেট নেগেটিভ বিভব এবং

A প্লেট পজিটিভ বিভব পায়। বিভব বিভাজকের সাহায্যে ঐ বিভবপ্রভেদ ইচ্ছামতো বাড়ানো-কমানো — এমনকী উল্টোমুখীও করা যায়। বর্তনীর সাথে একটি সুবেদী গ্যালভ্যানোমিটার G যুক্ত আছে।

(i) K শ্লেটে ক্ষারধাতুর প্রলেপ লাগিয়ে তার ওপর দৃশ্যমান আলো ফেললে ইলেকট্রনের নির্গমন হবে এবং ইলেকট্রনগুলি পজিটিভ বিভবযুক্ত A শ্লেট দ্বারা আকর্ষিত হয়ে A-প্লেটে পৌছাবে। তখন গ্যালভ্যানোমিটারে বিক্ষেপ হবে—অর্থাৎ বর্তনী দিয়ে তড়িৎপ্রবাহ যাবে। বিভবপ্রভেদ একটু একটু করে বাড়ালে প্রবাহমাত্রাও একটু একটু করে বাড়ে এবং অবশেষে প্রবাহমাত্রা থির মান পায়।

(ii) প্লেট দুটির ভিতর বিভবপ্রভেদ নির্দিষ্ট মানে স্থিব রেখে যদি আপতিত আলোর তীব্রতা (intensity) বৃদ্ধি করা যায় তবে আলোকতড়িৎ প্রবাহমাত্রা বৃদ্ধি পায়; আবার তীব্রতা গ্রাস করলে প্রবাহমাত্রা হ্রাস পায়। সূতরাং বলা যায় আলোকতড়িৎ প্রবাহমাত্রা ধাতব বস্তুর ওপর আপতিত আলোর তীব্রতার সমানুপাতিক।

(iii) আবার, আপতিত আলোক তরজোর কম্পাঙ্ক হ্রাস করতে থাকলে দেখা যায় যে, তীব্রতা যাই হোক না কেন, একটি নিম্নতম কম্পাঙ্কে ঐ ধাতু কোনো ইলেকট্রনই নির্গত করে না। ঐ ধাতুর বেলায় উত্ত কম্পাঙ্ককে প্রারম্ভ-কম্পাঙ্ক (thereshold frequency) এবং আনুযজ্ঞাক তরজাদৈর্ঘ্যকে প্রারম্ভ তরঙ্গাদৈর্ঘ্য (thereshold wave length) বলা হয়। বিভিন্ন ধাতুর বেলায়, অবশ্য, প্রারম্ভ কম্পাঙ্কের বা প্রারম্ভ তরজাদৈর্ঘ্যের মান বিভিন্ন।

(iv) আলোর তীব্রতা অপরিবর্তিত রেখে যদি আপতিত আলোর কম্পাঙ্ক ক্রমশ বৃদ্ধি করা যায়, তাহলে আলোকজ ইলেকট্রনগুলি বেশি গতিবেগ নিয়ে নির্গত হয়।

• নিবৃত্তি-বিভব (Stopping potential):

যদি A প্লেটকে অল্প নেগেটিভ বিভব এবং K প্লেটকে অল্প পজিটিভ বিভব দেওয়া যায় এবং উপযুক্ত তরজাদৈর্ঘ্যের আলো K প্লেটে আপতিত হয় তবে নির্গত ইলেকট্রনগুলির মধ্যে যেগুলি ধীর গতিসম্পন্ন তারা নেগেটিভ A প্লেট দারা বিকর্ষিত হবে এবং A প্লেটে পৌছাতে পারবে না। যেগুলি যুক্তগতি সম্পন্ন তারাই

A-শ্লেটে পৌছাবে। ফলে তড়িৎপ্রবাহ বিশেষভাবে হ্রাস পাবে। এবার A শ্লেটের নেগেটিভ বিভব বৃদ্ধি করলে আলোকতড়িৎপ্রবাহ দুত হ্রাস পাবে এবং A শ্লেটের একটি বিশেষ নেগেটিভ বিভবে প্রবাহ শূন্য হবে। A-শ্লেটের উক্ত বিভবকে ঐ ধাতুর নিবৃত্তি বিভব বলা হয়। বলা বাহুল্য, নিবৃত্তি বিভবে সর্বাপেক্ষা দুতগতিসম্পন্ন ইলেকট্রনও A শ্লেটে পৌছাতে সক্ষম হবে না। নিবৃত্তি বিভব পরিমাপ করে আলোকজ ইলেকট্রনের সর্বোচ্চ গতিবেগ বা সর্বোচ্চ গতিশন্তি পরিমাপ করা হয়।

নিবৃত্তি বিভব অথবা নির্গত আলোকজ ইলেকট্রনের গতিবেগ আপতিত আলোর তীব্রতার ওপর নির্ভর করে না।

সংজ্ঞাঃ ক্যাথোড প্লেটের সাপেকে অ্যানোড প্লেটে যে ন্যুনতম নেগেটিভ বিভব দিলে, আলোকতড়িৎ প্রবাহমাত্রা সদ্য বশ্ব হয়ে যায়, সেই বিভব-কে বলা হয় নিবৃত্তি বিভব।

কোনো ধাতব বস্তুর নিবৃত্তি বিভব V_s হলে, $e.V_s=rac{1}{2}\ mv^2{}_{max}$ মেখানে e= আলোকজ ইলেকট্রনের তড়িতাধান এবং $v_{max}=$ ঐ ইলেকট্রনের সর্বাধিক গতিরেগ।

• আলোকতড়িৎ ঘটনাবলির বৈশিষ্ট্য:

উপরিউন্ত পরীক্ষা হতে আলোকতড়িৎ ঘটনার নিম্নলিখিত বৈশিষ্ট্য লক্ষ করা যায় ঃ

- (i) আলোক-তড়িৎ প্রবাহমাত্রা আপতিত আলোর তীব্রতার সমানুপাতিক। কম্পাঙ্ক থির রেখে আপতিত আলোর তীব্রতা দ্বিগুণ করলে, প্রবাহমাত্রা দ্বিগুণ হবে। আলোর তীব্রতা শূন্য করলে প্রবাহমাত্রাও শূন্য হবে। তীব্রতার সাথে প্রবাহমাত্রার এই পরিবর্তন লেখচিত্রের সাহায্যে প্রকাশ করলে তা 3.2 (a) নং চিত্রের মতো মূলবিন্দু দিয়ে গত একটি সরলরেখা OA হবে।
- (ii) আলোকজ ইলেকট্রনগুলির সর্বোচ্চ প্রাথমিক গতিবেগ (initial velocity) তথা সর্বোচ্চ গতিশক্তি আপতিত আলোর তীব্রতার ওপর নির্ভরশীল নয় কিন্তু

কম্পাঙ্কের ওপর নির্ভরশীল। কম্পাঙ্ক বৃদ্ধি পেলে (অথবা তরঞ্চাদৈর্ঘ্য হ্রাস পেলে) ইলেকট্রনগুলির সর্বোচ্চ গতিবেগ বা গতিশক্তি বৃদ্ধি পায়, কম্পাঙ্ক কমলে (তরঙ্চাদৈর্ঘ্য বৃদ্ধি পেলে) ইলেকট্রনগুলির গতিবেগ বা গতিশক্তি হ্রাস পায়।

3.2 (b) নং চিত্রে লেখ'র সাহায্যে দেখানো হয়েছে যে কারপে সর্গোচ্চ গতিশন্তি আপতিত আলোর

কম্পাঙ্কের ওপর নির্ভর করে। 3.2 (c) নং চিত্রে লেখ'র সাহায়েয়ে দেখানো হয়েছে যে সর্বোচ্চ গতিশন্তি আপতিত আলোর তীবুতার ওপর নির্ভরশীল নয়। ঐ লেখ তীবুতা আক্ষের সমান্তরাল একটি সরলরেখা AB অর্থাৎ তীবুতা কম-বেশি যাই হোক না কেন, নির্গত ইলেকট্রনের সর্বোচ্চ গতিশন্তি একই থাকছে।

- (iii) প্রত্যেক ধাতুর বেলায় একটি নিম্নতম কম্পান্ধ্ক আছে যার কম কম্পান্ধ্ক বিশিষ্ট কোনো আলো ঐ ধাতু থেকে ইলেকট্রন নির্গত করতে পারে না। ঐ নিম্নতম কম্পান্ধ্ক-কে ঐ ধাতুর প্রারম্ভ কম্পান্ধ্ক বলে। বিভিন্ন ধাতুর বেলায় এই কম্পান্ধের মান বিভিন্ন। 3.2 (b) নং চিত্রে A, B, C ধাতু তিনটি লেখ OX অক্ষ-কে যে সকল বিন্দুতে ছেদ করে, তাই তাদের প্রারম্ভ কম্পান্ধক নির্দেশ করে।
- (iv) **আলোকতড়িং ঘটনা একটি তাৎক্ষণিক** (instantaneous) **ঘটনা** অর্থাৎ, আলো পড়ার সজো সজো ইলেকট্রনের নিঃসরণ শূর্ হয়। আবার, আলো বন্ধ হওয়ামাত্র নিঃসরণও বন্ধ হয়। আলোর আপতন এবং আলোকজ ইলেকট্রনের নির্গমনের ভিতর যে সময় অবকাশ দেখা যায় তাহা প্রায় 3×10^{-9} সেকেন্ড মাত্র।
- (v) নির্দিষ্ট কম্পাঙ্কের আলোর বেলায় ইলেকট্রনগুলি যে প্রাথমিক গতিবেগ নিয়ে নির্গত হয় তা শূন্য হতে একটি সর্বোচ্চ মান পর্যন্ত বিভিন্ন মান পায়।
- (vi) **আলোকতড়িৎ ক্রিয়ার দক্ষতা 1**%—**এর কম** অর্থাৎ আপতিত ফোটন সংখ্যার 1%–এর কম সংখ্যক ফোটন ইলেকট্রন নিঃসরণে সক্ষম হয়।

3.3. আলোকতড়িৎ কোশ (Photoelectric cells) :

আলোকতড়িৎ ঘটনাকে অবলম্বন করে আলোক শক্তিকে তড়িৎশক্তিতে রূপান্তরিত করার ব্যবস্থাকে আলোকতড়িৎ কোশ বলা হয়। এই কোশ নানারকম হতে পারে — যথা (i) বায়ুশূন্য আলোক নিঃসরণ কোশ (vacuum photo-emission cell) (ii) গ্যাসভর্তি আলোক নিঃসরণ কোশ (gas-filled photo-emission cell) (iii) আলোক ভোলীয় কোশ (photo-voltic cell) ইত্যাদি।

(i) বায়ুশূন্য আলোক নিঃসরণ কোলঃ এটি কোয়ার্টজ অথবা কাচের তৈরি একটি বায়ুশূন্য বাল্ব

(চিত্র 3.3)। অতি-বেগুনি আলো ব্যবহার করলে কোয়াটজ বাল্ব এবং দৃশ্যমান আলো ব্যবহার করলে কাচের বাল্ব ব্যবহার করা হয়। এর ভিতর বৃহৎ ক্ষেত্রফলয়ক্ত অর্ধ-চোণ্ডাকৃতি একটি প্লেট (K) থাকে। এটি কোশের কাথোড। আনোড হিসাবে একটি ঋজু তার অথবা তারের ফ্লেম (A) নেওয়া হয়়। দৃশ্যমান আলো ব্যবহার করলে কাথোড প্লেটে সোডিয়াম, পটাশিয়াম অথবা সিজিয়ামের প্রলেপ দিয়ে নিতে হয় কারণ ঐ ক্ষার ধাড়গুলি সাধারণ দৃশ্যমান আলোক সাপেক্ষে আলোকতড়িৎ সংবেদনশীল। প্রচ্ব পরিমাণ ইলেকট্রন পাবার জন্য আজকাল কাথোড হিসাবে মিশ্র পদার্থ ব্যবহার করা যায়। এই মিশ্র পদার্থ নানারক্মের হতে পারে। যেমন, সিলভার অক্সাইডের ওপর সিজিয়াম প্রলেপ, আন্টিমনি-সিজয়াম সংকর ধাতৃ এবং অতি সাম্প্রতিক কালে উদ্বাবিত বিসমাথ, সিলভার, আক্রিজন এবং সিজিয়ামের মিশ্রণ। সর্বশেষ মিশ্রণটি দৃশ্যমান আলোর বেলাতে খ্বই সংবেদশীল। কাথোড পাতে আলো পড়লে, আলোর তীব্রতা অন্যায়ী ইলেকট্রন প্লেভ নির্গত হয়

এবং কাথোড সাপেকে পজিটিভ বিভবে রাখা আনোড কর্তৃক আকৃষ্ট হয়ে ৩ড়িংপ্ররাহের সৃষ্টি করে।
সাধারণ ক্ষেত্রে আলোকওড়িং প্রবাহ খ্ব ক্ষাণ - করেক মাইক্রো- আন্দিব্যার মাত্র বাবহাবিক ক্ষেত্রে
কাজে লাগণতে গোলে এই প্রবাহমাত্রর বিবর্ধন প্রয়োজন। এই উদ্দেশ্যে আলোকতভিং কেশ্যের সাথে ভাল্ভ বিবর্ষক (valve amplifier) যুক্ত করা হয়।

ा। গ্যাসভার্ত আলোক নিঃসরণ কোশ (Gas-filled photo-emission cell অপুলকে গ্রভিং-

কোশ থেকে প্রাপ্ত প্রবাহমাত্রা বৃদ্ধি করার জন্য অনেক সময় গ্যাসভর্তি কোশ ব্যবহার করা হয়। এই কোশের বাল্বটি নিম্নচাপে (কয়েক মিলিমিটার পারদ) নিয়ন, আর্গন, প্রভৃতি নিষ্কিয় গ্যাস দারা পূর্ণ থাকে। অ্যানোড ও ক্যাথোডের ভিতর বিভবপ্রভেদ বৃদ্ধি করলে, ক্যাথোড থেকে নির্গত আলোকজ ইলেকট্রনগুলি প্রচন্ড গতিবেগে অ্যানোডের দিকে ধাবিত হয় এবং গ্যাসের অণু-পরমাণুর সাথে সংঘাত সৃষ্টি করে আয়নয়ন (ionisation) ঘটায়। তখন অকম্মাৎ প্রচুর পরিমাণ ইলেকট্রন তৈরি হয় এবং প্রবাহমাত্রাও যথেন্ট বৃদ্ধি পায়।

বায়ুশূন্য কোশ হতে প্রাপ্ত আলোকতড়িং-প্রবাহমাত্রা আপতিত আলোর তীব্রতার সাথে ঠিক সমানুপাতিক কিন্তু গাাসভর্তি কোশ হতে প্রাপ্ত প্রবাহমাত্রা ঠিক ঐরপ সমানুপাতিক সম্পর্ক মেনে চলে না কারণ ঐ প্রবাহমর সব ইলেকট্রনগুলিই আলোকজ ইলেকট্রন নয়। এই কারণে প্রমিতকরণ (standardisation) বা পরিমাণমূলক কাজে বায়ুশূন্য কোশ ব্যবহৃত হয় এবং অন্যান্য কাজে গ্যাসভর্তি কোশ ব্যবহার করা হয়।

(iii) **আলোক ভোল্টীয় কোশ** (Photo-voltaic cell) : আলোক নিঃসরণ কোশের বেলায় অ্যানোড এবং ক্যাথোডের ভিতর একটি বিভবপ্রভেদ প্রয়োগ করতে হয় কারণ ঐ বিভবপ্রভেদই ইলেকট্রনকে অ্যানোডের দিকে চালিত করে। বর্তনীতে তখন প্রবাহ চালু হয়। বিভবপ্রভেদ প্রয়োগ করার জন্য ঐ কোশের সাথে একটি ব্যাটারি যুক্ত করতে হয়। কিন্তু আলোক-ভোল্টীয় কোশে ঐ ধরনের কোনো

সহায়ক ব্যাটারির প্রয়োজন হয় না। ধাতবপৃষ্ঠ হতে মুস্ত আলোকজ ইলেকট্রনগুলিই এক্ষেত্রে দুই প্লেটের ভিতর বিভবপ্রভেদ সৃষ্টি করে এবং ঐ বিভবপ্রভেদ বহির্বর্তনীতে প্রবাহ পাঠায়।

এই কোশ গঠিত হয় তামার একখনি চাকতির একপৃষ্ঠে জারক পন্ধতিতে কিউপ্রাস অক্সাইডের একটি পাতলা স্তর (film) গঠন করে (চিত্র 3.4)। চাকতির যে পৃষ্ঠে কিউপ্রাস অক্সাইড প্তর আছে তার ওপর আবার খুব পাতলা সোনা বা রূপার প্রলেপ থাকে। আলো ঐ পাতলা প্রলেপ ভেদ করে অক্সাইড স্তরের ওপর পড়লে, ঐ স্তর হতে আলোকজ ইলেকট্রন নির্গত হয়। কিয়ু এই ইলেকট্রনগুলি চতুম্পার্শ্বথ বায়ু মাধ্যমে নির্গত হয়। কিয়ু এই ইলেকট্রনগুলি চতুম্পার্শ্বথ বায়ু মাধ্যমে নির্গত হয়। — এরা সোনা বা রুপার প্রলেপের দিকে চলে আসে। ফলে, ঐ প্রলেপ ও তামার চাকতির ভিতর একটি বিভবপ্রভেদের স্থিট হয়। এক্ষেত্রে প্রলেপ নেগেটিভ বিভব

এবং চাকতি পভিটিভ বিভব পায়। ঐ দৃটির ভিতর গ্যালভানোমিটার G সহ একটি বহির্নতনী R অন্তর্ভ জ করলে বর্তনী দিয়ে একটি ক্ষীণ প্রবাহ যাবে এবং গ্যালভানোমিটারে বিক্ষেপ দেখা যাবে। বলা বাহুলা, এই প্রবাহমাত্রা আপতিত আলোর তীব্রতার সমানুপাতিক।

আলোর তীবৃত্তামাপক (lightmeter) যন্ত্র হিসাবে এবং একম্খীকারক (rectifier) হিসাবে মালোক ভোলীয় কোশের খব ব্যবহার আছে।

আলোকতড়িৎ কোশের ব্যাবহারিক প্রয়োগ (Practical applications of photoelectric cells):

ব্যাবহারিক ক্ষেত্রে আলোকতভিং কোশকে বহুবিধ কলেও লাগানো হয় নিয়ে কা ক্রি ব্রহস্থ প্রয়োগের কথা উদ্ধেষ করা হল ঃ

(ক) ফটোমিতি সম্পর্কিত পরিমাপে (Photometric measurement)। সংস্কৃতি সাক্তরণান্তি (luminous intensity) পরিমাপে অথবা দৃষ্টি আলোক-উৎসের নিপনার্গান্তব তুলা নাক বিচারে এই কোশ প্রযুক্ত হয়। তখন একে বলা হয় প্রতাক্ষ প্রতা (direct reading) ফটোমিটার।

- ্খ) আলোকতড়িৎ নিয়ন্ত্রকরূপে (Photo-electric control): আলোকতড়িৎ কোশ হতে প্রাপ্ত তড়িৎপ্রবাহের সাহায়ে। একটি রিলে-কে (realy) কান্ত করিয়ে বহু রকম নিয়ন্ত্রণমূলক কার্য সম্পন্ন করা যেতে পারে। যেমন, স্বরংক্রিয় গণক যন্ত্র, তম্করসতর্কভামূলক যন্ত্র বা অগ্নিসংকেত যন্ত্র, স্বয়ংক্রিয়ভাবে বাতি জ্বালানো বা নিভানো, কুয়াশাচ্ছন্ন দিনে ট্রেনের স্বয়ংক্রিয় সংকেত-আলো প্রভৃতি নিয়ন্ত্রণে এই কোশ ব্যবহৃত হয়।
- গে) সৌর ব্যাটারিতে: আলোকতড়িৎ কোশে সূর্যের আলো ফেলে যে তড়িৎপ্রবাহ পাওয়া যায় সেই ব্যবস্থাকে সৌর ব্যাটারি বলে। কৃত্রিম উপগ্রহে ও মহাকাশ্যানে এই ধরনের ব্যাটারির ব্যবহার আছে। এই উদ্দেশ্যে সিলিকন নির্মিত আলোকবিতর কোশ (photo-voltaic cell) ব্যবহৃত হয়।
- ্ঘ) সবাক চলচিত্রে (Talking films) : সবাক চলচিত্রে শব্দগ্রহণ ও পুনরুৎপাদনের কাজে আজকাল আলোকতড়িৎ কোশ ব্যবহৃত হচ্ছে।
- (৪) **দূরদর্শনে** (Television) : দূরদর্শন প্রেরক যন্ত্রে অর্থাৎ আইকনোস্কোপে আলোকতড়িৎ কোশ ব্যবহার করা হয়।
- (চ) বেলিনোপ্রাম পশ্বতিতে (Belinogram): অতি অল্প সময়ে এক দেশ থেকে অন্য দেশে ছবি টেলিগ্রাম মারফত প্রেরণ করার পশ্বতিকে বেলিনোগ্রাম বলে। এতে আলোকতড়িৎ কোশ ব্যবহৃত হয়।

3.5. বিকিরণের কণা প্রকৃতি ঃ কোয়ান্টাম তত্ত্ব (Particle nata of radiation; Quantum theory) :

উপরিউত্ত গুরুত্বপূর্ণ ব্যাবহারিক প্রয়োগ ছাড়া আলোকতড়িৎ সম্পর্কিত ঘটনা আধুনিক পদার্থ বিজ্ঞানের একটি অভিনব অবদানকে প্রতিষ্ঠিত করেছে। এই অবদান হল বিকিরণ সম্পর্কিত কোয়ান্টাম তত্ত্ব। এই পরিচ্ছেদের সূচনাতে কোয়ান্টাম তত্ত্বের উল্লেখ করা হয়েছে।

এই তত্ত্ব প্রচারের পূর্বে প্রাচীন তরজা-তত্ত্ব অনুযায়ী মনে করা হত যে এক বন্তু হতে অন্য বন্তুতে যখন শব্তির হস্তান্তর হয় তখন তা ধারাবাহিক পন্ধতি (continuous process) অনুযায়ী হয় কারণ তরজাগতি সর্বদা ধারাবাহিক — বিচ্ছিন্ন নয়। কিছু পরিমাণ তরলকে যেমন ধারাবাহিকভাবে একস্থান হতে অন্যান্থানে নেওয়া যায় এবং তা যেমন পরিমাপসাধা তেমনি নির্দিষ্ট পরিমাণ শব্তিও পরিমাপসাধ্য এবং ধারাবাহিকভাবে একস্থান হতে অন্যান্থানে স্থানান্তরযোগা। কিন্তু একটি উত্তপ্ত কঠিন বন্তু হতে তাপ বিকিরণ সম্পর্কিত ঘটনাবলি ব্যাখ্যা করতে গিয়ে বর্তমান শতাব্দীর প্রথমভাগে জার্মান বিজ্ঞানী ম্যাক্ত্ম প্রঢাজক একটি অসাধারণ সিন্ধান্তে উপনীত হলেন। তিনি দেখলেন যে বন্তু হতে যখন শব্তি নির্গত হয় তখন তা নিরবচ্ছিন্ন ভাবে হয় না — বিচ্ছিন্নভাবে এক একটি প্যাকেটর্পে নির্গত হয়। এই প্যাকেটগুলির তিনি নাম দেন 'কোয়ান্টা'। এই কোয়ান্টাগুলির শব্তি সব সমান নয়—প্রত্যেক কোয়ান্টায় যে পরিমাণ শব্তি থাকে তা বিকিরণের কম্পাঙ্কের সমান্পাতিক।

কোনো উত্তপ্ত বন্ধু হতে বিকীর্ণ শক্তির (তাপ) কম্পাঙ্ক যদি ν হয় তবে ঐ বিকিরণের প্রতোক কোয়ান্টাতে যে পরিমাণ শক্তি থাকবে তা $h\nu$ -এর সমান। এক্ষেত্রে h একটি ধ্রবক। একে বলা হয় প্ল্যাঙ্ক (Planck's constant)। এর মান 6.62×10^{-34} joule-second; বিকিরণের শক্তি E এবং কম্পাঙ্ক ν হলে, $E=h\nu$

আলোকতড়িৎ ক্রিয়ার ব্যাখ্যায় প্রাচীন তরকা-তত্ত্বের ব্যর্থতা (Failure of classical wave theory in explaining photoelectric phenomena):

আলোকতড়িৎ ক্রিয়া আবিষ্কারের পর বিজ্ঞানীরা আলোর প্রাচীন তরজাতত্ত্বের সাহায়্যে তার বৈশিষ্ট্যগুলির (3.2 অনুচেচ্চদ উল্লিখিত) ব্যাখ্যা করতে গিয়ে বিফল হন।

(i) তরজাতত্ত্ব অনুযায়ী আলোকতর্জোর শক্তি তার তরজামুখের (wave front) ওপর সমভাবে

বিশিত থাকে। এই অবস্থায় সহসা শক্তি কীভাবে ইলেকট্রনের ক্ষুদ্র প্রস্থাচ্চেদে কেন্দ্রীভত হয় তার কোনো ব্যাখা। মেলে না। যেহেতু ইলেকট্রনগুলি আয়তনে অতি ক্ষুদ্র, তাই ভরজামুখের অতি অল্প অংশ ইলেক্ট্রনের ওপর আপতিত হয়। সূতরাং ইলেকট্রনিটি তরজোর শক্তির অতি সামান্য অংশ এককালে সংগ্রহ করে। হিসাব করে দেখা যায় যে পরমাণু হতে বিচাত হবার প্রয়োজনীয় শক্তি ইলেকট্রন যদি এরুপ তরজামুখ হতে সংগ্রহ করে তবে তার জন্য বেশ কিছু সময়ের প্রয়োজন—কোনো কোনো ক্ষেত্রে তা কয়েকদিনও হতে পারে। কিছু কার্যত আলোকপাতের সজ্যে সঞ্চো ইলেকট্রন ধাতবপৃষ্ঠ হতে বিচ্যুত হয়।

- (ii) আলোকতড়িৎ ব্রিয়ায় তরজা-তত্ত্ব প্রয়োগ করলে এই সিন্ধান্তে আসতে হয় যে নির্গত ফটো-ইলেকট্রনের প্রাথমিক গতিবেগ আপতিত আলোর হীব্রতার ওপর নির্ভর করা উচিত। কিন্তু কার্যত দেখা যায়, আপতিত আলোর তরজাদৈর্ঘ্য (অথবা কম্পাঙ্ক) অপরিবর্তিত থাকলে, আলোর হীব্রতার ব্রাস-বৃন্ধিতে ইলেকট্রনের প্রাথমিক গতিবেগের কোনো পরিবর্তন হয় না।
- (iii) প্রতি ধাতুর বেলায় একটি প্রারম্ভ কম্পাঙ্কের অন্তিত্বও তরজা তত্ত্বের দ্বারা ব্যাখ্যা করা যায় না। উচ্চ কম্পাঙ্কের ন্দ্রীণ আলোকধারা ধাতব পৃষ্ঠ হতে ইলেকট্রন নিঃসরণ করে অথচ কম কম্পাঙ্কের তীব্র আলোকধারা ইলেকট্রন নিঃসরণে অঞ্চম এই ঘটনারও কোনো সদুত্তর তরজাতত্ত্ব দিতে পারে না।
 - কোরান্টাম তত্ত্বের অবতারণা (Introduction of Quantum theory) ঃ

আলোর প্রাচীন তরজ্ঞাতত্ত্ব আলোকতড়িৎ ক্রিয়ার ব্যাখ্যায় অপারগ হলে, 1905 খ্রিস্টাব্দে প্রখ্যাত বিজ্ঞানী আইনস্টাইন কোয়ান্টাম তত্ত্বের শরণাপন্ন হন।

কোয়ান্টাম তত্ত্বানুযায়ী যে-কোনো বিকিরণ ঝাঁক ঝাঁক কোয়ান্টার সমন্টি। আইনস্টাইন কোয়ান্টার সাধারণ নাম দেন ফোঁটন (photon); প্রতিটি ফোটনের শক্তি hv। এরা শূন্য মাধ্যমে আলোর গতিবেগে চলাচল করে। একটি পদার্থখণ্ড যেমন অসংখ্য বিচ্ছিন্ন পরমাণু কণা দ্বারা গঠিত, আলো, তাপ প্রভৃতি যে-কোনো বিকিরণও তেমনি অসংখ্য বিচ্ছিন্ন ফোটন দ্বারা গঠিত। আইনস্টাইনের মতে যখন কোনো তড়িৎ চুম্বকীয় বিকিরণ ধাতব বস্তুর ওপর আপতিত হয় তখন বিকিরণের কিছু ফোটনের সাথে ধাতব বস্তুর কিছু পরমাণুর সংঘাত হয়। এই সংঘাতকে আইনস্টাইন স্থিতিস্থাপক সংঘাতরূপে কল্পনা করে বলেছিলেন যে এতে পরমাণু ফোটনের সকল শক্তি শোষণ করে অথবা কোনো শক্তিই শোষিত না হয়ে ফোটন পরমাণু দ্বারা প্রতিফলিত হয়। এইরূপ ধারণা নিয়ে আইনস্টাইন একটি সমীকরণ প্রতিষ্ঠা করেন (পরবর্তী অনুচ্ছেদ দ্রুম্টব্য) যার সাহায্যে তিনি আলোকতড়িৎ সম্পর্কিত সকল ঘটনার মতি সন্তোষজনক ব্যাখ্যা করেন এবং কোয়ান্টাম তত্ত্বকে সুপ্রতিষ্ঠিত করেন।

পরবর্তীকালে কিছু উপ-পারমাণবিক (sub-atomic) ঘটনাবলি আবিষ্কৃত হল যার সুষ্ঠু ব্যাখ্যার জন্য বিজ্ঞানীরা কোয়ান্টাম তত্ত্বের সাহায্য গ্রহণ করলেন। এইভাবে নানা ঘটনার ভিতর দিয়ে ম্যাক্স প্লাঙ্ক প্রবর্তিত কোয়ান্টাম তত্ত্ব সাধারণভাবে সকল প্রকার বিকিরণের বেলায় প্রযুক্ত হল এবং আধুনিক বিজ্ঞানের একটি স্বীকৃত তত্ত্বে বলে গণ্য হল।

- কোটনের ধর্মাবলি (Properties of photons): ফোটনের নিম্নলিখিত ধর্মাবলি আছে :
- (i) শূন্য মাধ্যমে প্রতিটি ফোটন আলোর গতিরেগে—অর্থাৎ $3 \times 10^8 \, \mathrm{ms}^{-1}$ গতিবেগে চলাচল করে।
- (ii) প্রতিটি ফোটনের নির্দিষ্ট শক্তি ও নি:িষ্ট রৈথিক ভরবেগ আছে।
- (iii) ফোটনের স্থির ভর (rest mass) শুন্য।
- (iv) কোনো ফোটনের শক্তি E এবং রেখিক ভরবেগ p হলে এবং ট্র আলোর কম্পাঙ্ক v এবং তরজ্ঞাদৈর্ঘ্য λ হলে, (ফোটন যখন আলোক তরজোর মত ব্যবহার করে), E=h.v.=h. $\frac{c}{\lambda}$ এবং p h E

$$=rac{h}{\lambda}=rac{E}{c}$$

যেখানে $c=$ ফোটন বা আলোর গতিবেগ এবং $h=$ প্ল্যান্ডক ধ্রসংখা :

ওপারের সম্পর্ক হতে বোঝা যায় যে, বিশেষ তরজাদৈর্ঘ্য (λ) যুক্ত সকল প্রকার ফোটনের শক্তি $(E=hc_l\lambda)$ সমান এবং রৈখিক ভরবেগও $(p=h/\lambda)$ সমান।

(iv) ফোটন কোনো পদার্থ কণার সজো সংঘর্ষ ঘটাতে পারে। ঐ সংঘর্ষ সর্বদা পূর্ণ ফ্থিতিস্থাপক সংঘর্ষ বলে বিবেচিত হয় এবং ঐ সংঘর্ষে মোট শব্তি ও মোট ভরবেগ সংরক্ষিত থাকে।

(v) কোনো বিশেষ তরঙ্গাদৈর্ঘ্যের আলোর তীব্রতা বৃন্ধির অর্থ বেশি সংখ্যক ফোটন নির্দিষ্ট সময়ে নির্দিষ্ট ক্ষেত্রফল অতিক্রম করে কিন্তু প্রত্যেকটি ফোটনের শক্তি (hc/λ) অপরিবর্তিত থাকে।

Q EXAMPLES Q

একটি ফোটনের শক্তি $5\,\mathrm{eV}$. ঐ ফোটনের তরস্পাদৈর্ঘ্য এবং ভরবেগ কত $?~1\,\mathrm{eV}=1.6$ $\times~10^{-19}$ joule; $h=6.62\times10^{-34}$ J.s.

উঃ ৷ ফোটনের শক্তি $E=5~{\rm eV}=5\times1.6\times10^{-19}~{\rm joule}=8\times10^{-19}~{\rm joule}$

$$4.2\%$$
, $\lambda = \frac{h.c}{E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{8 \times 10^{-19}} = 2.48 \times 10^{-7} \text{ m} = 2480 \text{ A}^{\circ}.$

মাবার ভরবেগ
$$p = \frac{E}{c} = \frac{8 \times 10^{-19}}{3 \times 10^8} = 2.66 \times 10^{-27} \text{ kg. ms}^{-1}.$$

 $2950 \, \text{A}^{\circ}$ তরজ্গদৈর্ঘ্যের ফোটনের শক্তি ইলেক্ট্রন ভোল্ট এককে নির্ণয় কর। $1 \, \text{A}^{\circ}$ = $10^{-8} \, \text{cm}$ এবং $h = 6.62 \times 10^{-27} \, \text{erg-s}$. [Jt. Entrance 1981]

উঃ। সোচিনারে শান্তি
$$E=\frac{h.c}{\lambda}=\frac{6.62\times 10^{-27}\times 3\times 10^{10}}{4950\times 10^{-8}}$$
 erg.

কারেছেই, ইলোকটন ভোল্ট এককে ফোটানের শক্তি
$$E=rac{6.62 imes10^{-27} imes3 imes10^{10}}{4950 imes10^{-8} imes1.6 imes10^{-12}}$$
 eV

 $=2.5\,\mathrm{eV}$

 $m{3}$ কত তাপমাত্রায় কোনো গ্যাস অণুর গতিশক্তি $6000~{
m \AA}$ তরশ্গদৈর্ঘ্যের ফোটনের শক্তির সমান হবে ? দেওয়া আছে বোলজ্ম্যান ধুবক $k=1.38 \times 10^{-23}~{
m Jdegree}^{-1}$ এবং প্রাম্ক ধুবক $k=6.625 \times 10^{-34}~{
m J.s}$ ।

উঃ † ফোলের পান্ত
$$E = \frac{hc}{\lambda} = \frac{6.665 \times 10^{-34} \times 3 \times 10^8}{6000 \times 10^{-10}}$$
 [6000 Å = 6000 × 10 10 m]

$$= \frac{6.625}{2} \times 10^{-19} \,\mathrm{J}.$$

গবাব, গানের গভীয় ৩৪ থেকে পাই, গ্যাস খণুর গতিশক্তি $E_1=rac{3}{2}\;kT$

$$\therefore \frac{3}{2} kT = \frac{6.625}{2} \times 10^{-19}$$
 weld, $\frac{3}{2} \times 1.38 \times 10^{-23} \times T = \frac{6.625}{2} \times 10^{-19}$

$$T = \frac{6.625}{3 + 1.38} \times 10^4 \,\mathrm{K} = 1.6 \times 10^4 \,\mathrm{K}.$$

3.6. আইনস্টাইনের সমীকরণ (Einstien's equation):

কোয়ান্টাম তত্ত্ব অনুযায়ী কোনো শক্তির বিকিরণ ঝাঁক ঝাঁক ফোটনের সমষ্টি বলে মনে করা হয় এবং প্রত্যেকটি ফোটন hv শক্তি নিয়ে আলোকের বেগে ধাবমান হয় বলে গণ্য করা হয়।

কোনো ধাতুর ওপর আলো ফেললে, আপতিত কয়েকটি ফোটনের সঙ্গো ধাতুমধ্যপ কতকণ্লি ইলেকট্রনের সংঘাত হয়। একটি ফোটন এবং একটি ইলেকট্রনের ভিতর এইরূপ প্রিতিস্থাপক সংঘর্ষ হলে ইলেকট্রন ফোটনের সমস্ত শক্তি শোষণ করে নেয় ধরে নিয়ে আইনস্টাইন আলোক তড়িৎ সম্পর্কে একটি সমীকরণ প্রতিষ্ঠা করেন যাকে বলা হয় **আলোকতড়িৎ সমীকরণ** (photo-electric equation)। এই সমীকরণের সাহায্যে আইনস্টাইন আলোকতড়িৎ সম্পর্কিত সকল ঘটনার সন্তোষজনক ব্যাখ্যা দিয়েছিলেন।

কোনো ধাতবপৃষ্ঠ (metal surface) হতে একটি ইলেকট্রনকে পৃষ্ঠের পজিটিভ আয়নগুলির আকর্ষণকে প্রতিহত করে মুক্ত করতে ফোটনের কিছু নানতম শক্তির প্রয়োজন; এই নানতম শক্তিকে বলা হয় এ ধাতুর আলোক তড়িৎ কার্য অপেক্ষক (photoelectric work function)। সাধারণত ৫ অক্ষর দারা একে প্রকাশ করা হয়। কার্য অপেক্ষক ধাতব পদার্থের প্রকৃতির ওপর নির্ভর করে। যথেন্ট উচ্চ কম্পাঞ্চযুক্ত আলোকতরজা যখন কোনো ধাতবপৃষ্ঠে পড়ে, তখন একটি ফোটনের শক্তি hv থেকে খানিকটা অংশ (৫) বায় হয় ইলেকট্রনকে ধাতবপৃষ্ঠ হতে মুক্ত করতে এবং বাকিটা (hv – ৫) মুক্ত ইলেকট্রনকে গতিশক্তি সরবরাহ করে।* কাজেই মুক্ত ইলেকট্রনের স্বাধিক গতিশক্তি E_{max} ধরলে, আইনস্টাইনের তত্তানুযায়ী,

$$E_{max} = \frac{1}{2} m v^2_{max} = h v - \phi$$

এই সমীকরণকেই বলা হয় **আলোকতড়িৎ সম্পর্কিত আইনস্টাইনের সমীকরণ**। সমীকরণ থেকে জানা যায় যে **শোষিত শক্তি hv কার্য অপেক্ষক \phi অপেক্ষা কম হলে, অর্থাৎ hv < \phi হলে, \Delta তল থেকে কোনো ইলেকট্রন নিঃসরণ হবে না। hv > \phi হলে একটি ফোটন একটি ইলেকট্রন নিগত করবে এবং ঐ ইলেকট্রনর গতিশক্তি হবে শোষিত শক্তি (hv) এবং কার্য অপেক্ষক (\phi) – এই দুটি রাশিব অধ্যবফলের সমান।**

আইনস্টাইনের সমীকরণ দ্বারা আলোক-তড়িৎ সম্পর্কিত বৈশিক্ট্যগুলির ব্যাখ্যা :

পূর্বে উল্লেখ করা হয়েছে যে আলো সম্পর্কিত প্রাচীন তরজাত ও 3.2 অন্চেজনে উল্লিখিত আলোক তড়িছ ঘটনার বেশিষ্টাপুলির কোনটিরত সন্তোষজনক ব্যাখ্যা করতে পারেনি। কোয়ান্টাম তত্ত্ব হতে যে সমাকরণ প্রতিষ্ঠিত হল আইনসন্তাহন সেই সমাকরণের সাহায়ে পরবভীকালে ঐ বৈশিষ্টাপুলির ব্যাখ্যা দেন এই ব্যাখ্যা নিম্নরূপ ঃ

(i) কোনো ধাত্র বেলায় ϕ ধুবরণি হওয়ায়, আইনস্টাইনের স্মাকরণ হতে জানা যায় যে ঐ ধাত্ হতে ইলোকটনের হিল্ফা গতিবেল (v_{max}) এথবা গতিশান্তি ($\frac{1}{2} mv^2_{max}$) অপতিত তালোর কম্পত্তি v এর সমানগাতিক।

(ii) যদি আপতিত কোপেনের কম্পান্ধ ও কাশ কলানো সায় তবে ফটো ইলেকত্নের পতিরেগত কর্মশ কমে এবং একটি লনতম কম্পাঙ্কের (v n) রকায় যথন $\hbar v_0 = 6 হয় তথন পতিরেপ শন। হয় তবং$ কোনো এপ্লোক্ত ইলেকট্নের নিগম্ম হয় না এই অবস্থায় যতক্ষণ্ট অপ্লোকপতে এবং যাক না কন,

ত প্ৰতিপুদ্ধত ভিতৰৰ স্তুৰ্বলয়ে আপত্তি হয়। তথ্য কৰি আছি সংসাদৰ সংগ্ৰাহ ৰাখ্য এ নামৰ বিশ্ব বিভাগ কৰি বিশ্ব বিভাগ বিশ্ব বিশ্ব

কখনই ফটো-ইলেকট্রন নির্নাত থবে না সূত্রাং প্রভাকে ধাতৃর বেলায় একটি প্রারম্ভ কম্পান্তক থাকবে এবং তার মান থবে $v_0=rac{\phi}{h}$; মানুষ্ণিজ্যক তরজ্ঞানৈখ্যকে প্রারম্ভ তরজ্ঞানৈখ্য (λ_0) বলে এবং $\lambda_0=rac{c}{v_0}=rac{ch}{\phi}$.

এই অক্থায় আইনস্টাইনের সমীকরণ হবে, $\frac{1}{2}mv^2_{max}=hv-hv_0=h(v-v_0)$:

প্রারম্ভ তরজ্ঞাদৈর্ঘ্য λ_0 এবং আপতিত আলোর তরজ্ঞাদৈর্ঘ্য λ হলে $rac{1}{2} \, m v^2_{max} = hc \left(rac{1}{\lambda} - rac{1}{\lambda_0}
ight)$

 $\left[v = \frac{c}{\lambda} \quad \text{এবং} \quad v_0 = \frac{c}{\lambda_0} \right]$

(iii) আপতিত আলোর তীব্রতার ওপর নির্গত আলোকজ ইলেকট্রনের গতিবেগ নির্ভর করবে না কারণ কোয়ান্টাম তত্ত্বানুযায়ী আলোর তীব্রতাবৃন্ধির অর্থ ফোটনের সংখ্যা বৃন্ধি। আলোর কম্পাঙক v অপরিবর্তিত থাকলে প্রতি ফোটনের শক্তি (hv) অপরিবর্তিত থাকবে এবং সেহেতু নির্গত ইলেকট্রনের প্রারম্ভিক গতিবেগ বা গতিশক্তি অপরিবর্তিত থাকবে। তবে ফোটনের সংখ্যা বৃন্ধি পাওয়ায়, প্রতি সেকেন্ডে নির্গত ইলেকট্রনের সংখ্যা বৃন্ধি পাবে। পরীক্ষালব্ধ ফলাফলও তাই।

(iv) ফোটন এবং পরমাণ্র ভিতর সংঘাত স্থিতিস্থাপক সংঘাতরূপে কল্পনা করা হয়েছে বলে শব্তির হস্তান্তর তাৎক্ষণিক হবে; অর্থাৎ সংঘাত হবার সঞ্জো সজো ইলেকট্রন ফোটনের সমস্ত শব্তি শোষণ করে ধাতুপৃষ্ঠ হতে নির্গত হবে। ফলে আলোকরশ্মির আপতন ও ইলেকট্রনের নির্গমন — এই দুইয়ের ভিতর কোনো সময়-বিলম্বন (time-lag) ঘটবে না।

J.EXAMPLES D

 $m{1}$ 3000° A তরজাদৈর্ঘ্যের অভিবেগুনি আলো এমন একটি বন্তুর পৃষ্ঠে আপভিত হল্ যার কার্য অপেক্ষক $2.28\,\mathrm{eV}$ । ঐ পৃষ্ঠ হতে নির্গত ইলেকট্রনের গতিবেগ কত হবে ? $m=9.1\, imes\,10^{-31}\,\mathrm{kg}$; $h=6.56\, imes\,10^{-34}\,\mathrm{j.s.}\,1\,\mathrm{eV}=1.61\, imes\,10^{-19}\,\mathrm{J.}$

উঃ। ইলেকট্রনের গতিশব্তি $\frac{1}{2}mv^2_{max} = hv - \phi$

এক্ষেত্রে কার্য অপেক্ষক $\phi = 2.28 \text{ eV} = 2.28 \times 1.61 \times 10^{-19} \text{ J} = 3.67 \times 10^{-19} \text{ J}.$

$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{3000 \times 10^{-10}} = 10^{15}$$
 [1 A° = 10⁻¹⁰ m]

কাজেই,
$$\frac{1}{2}mv^2_{max} = 6.56 \times 10^{-34} \times 10^{15} - 3.67 \times 10^{-19}$$

= $(6.56 - 3.67) \times 10^{-19}$ joule.
= 2.89×10^{-19} joule.

:.
$$v^2_{max} = \frac{2 \times 2.89 \times 10^{-19}}{9.1 \times 10^{-31}} = 64 \times 10^{10} \text{ (প্রায়) }$$

or, $v_{max} = 8 \times 10^5 \, \text{ms}^{-1}$ (對羽) |

থে সর্বোচ্চ তরঙাদৈর্ঘ্যের আলোকতরঙা লিথিয়াম থেকে আলোকজ ইলেকট্রন

নিঃসরণ করতে পারে তার মান হিসাব করো। লিখিয়ামের কার্য অপেক্ক = $2.5~{
m eV}$ এবং গ্রাহ্ম ধুবক = $6.6 \times 10^{-34}~{
m Js.}$ [$1~{
m eV}=1.6 \times 10^{-19}~{
m J}$][Jt. Entrance 2004]

উঃ। সর্বোচ্চ তরজানৈর্ঘ্য হল প্রারম্ভ তরজানৈর্ঘ্য (λ_0) । আমারা জানি, $\lambda_0=\frac{h(c)}{Q}$ রখ্যানে $\phi=\phi$ ই

 $4500 \text{ Per} h = 6.6 \times 10^{-34} \text{ J.s.}$; $c = 3 \times 10^8 \text{ ms}^{-1}$. $44\% \phi = 2.5 \text{ eV} = 2.5 \times 1.6 \times 10^{-19} \text{ J.}$

মানগুলি উপরোক্ত সমীকরণে বসালে পাই
$$\lambda_0 = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{2.5 \times 1.6 \times 10^{-19}} = 4.95 \times 10^{-7} \, \mathrm{m}.$$

ক্রি কোনো আলোক উৎস হতে সোডিয়াম ধাতুর ওপর আলো আপতিত হলে নিঃসৃত ইলেকট্রনের সর্বোচ্চ গতিশক্তি হয় 0.73 eV। সোডিয়ামের কার্য অপেক্ষক 1.82 eV হলে আপতিত ফোটনের শক্তি eV-এককে কত ? আপতিত আলোর তরজাদৈর্ঘ্য নির্ণয় করো।

উঃ। আইনস্টাইনের সমীকরণ হতে পাই, $E_{max}=$ ফোটনের শক্তি – ϕ [ϕ = কার্য অপেক্ষক] $\therefore 0.73=$ ফোটনের শক্তি – 1.82

অথবা, ফোটনের শক্তি E = 1.82 + 0.73 = 2.55 eV.

আবার ফোটনের তরজাদৈর্ঘ্য λ হলে ফোটনের শক্তি $E=h.rac{c}{\lambda}$

এখানে $E=2.55~{
m eV}=2.55\times 1.6\times 10^{-19}~{
m joule}$; $h=6.62\times 10^{-34}~{
m J-s}$; $c=3\times 10^8~{
m ms}^{-1}$. এই মানগুলি বসাইলে পাই,

$$2.55 \times 1.6 \times 10^{-19} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$$

$$\therefore \lambda = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{2.55 \times 1.6 \times 10^{-19}} \text{ m}$$

$$= 4.87 \times 10^{-7} \text{ m}.$$

 $m{4}$ 6000 \mathbf{A}° তরশ্গদৈর্ঘ্যের আলোকরশ্বি একটি ধাতুর ওপর পড়ল। একটি ইলেকট্রনকে ধাতু হতে নির্গত করতে $\mathbf{1.77}$ eV শক্তি প্রয়োজন হয়। সর্বাপেকা দুতগতির ইলেকট্রনের গঙিশক্তি নির্গয় করো। ধাতুর সূচনা কম্পাধ্ক কত ? [$m{h}=6.62 imes 10^{-27} \, \mathrm{erg-s}$; $\mathbf{1}$ eV $\mathbf{1.6} imes 1.6 imes 1.6 imes 1.6 imes 1.6 <math>\mathbf{1.6} imes 1.6 \, \mathbf{1.6} \,$

উঃ । ধা হুর কার্য-অপেক্ষক $\phi=1.77\,\mathrm{eV}=1.77\times1.6\times10^{-12}\mathrm{erg}=2.83\times10^{-12}\,\mathrm{erg}$

থাপতিত আলো শত্তি =
$$\frac{h.c}{\lambda} = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{6000 \times 10^{-8}}$$
 erg = 3.31×10^{-12} erg

 \therefore ইলেকট্নের গতিশন্তি $E=rac{h.c}{\lambda}$ $-\phi=(3.31-2.83) imes 10^{-12}\,\mathrm{erg}=0.48 imes 10^{-12}\,\mathrm{erg}$

$$= \frac{0.48 \times 10^{-12}}{1.6 \times 10^{-12}} \text{ eV} = 0.3 \text{ eV}$$
 প্রোয়) ৷

মাবার, সূচনা কম্পাক্ত
$$v_0=rac{\phi}{h}=rac{2.83 imes 10^{-12}}{6.62 imes 10^{-27}}=4.3 imes 10^{14}\,{\rm Hz}$$
 (প্রায়):

5) একটি খাতব পাতকে প্রোরম্ভ কম্পাচ্চ = 1.5×10^{15}) 32×10^{-9} কুলম্ব নেগেটিভ তড়িতাধান দেওয়া হল। পাতকে সম্পূর্ণ তড়িংবিহীন করতে তার ওপর অভিবেগুনি রশ্মির কটি ফোটন ফেলতে হবে ? এই তড়িংবিহীনকরশে ন্যুনতম কত শক্তি ধাতবপাত কর্তৃক শোবিত হবে ? $e=1.6 \times 10^{-19}$ কুলম্ব এবং $h=6.625 \times 10^{-34}$ J.s.

উঃ। আমরা জানি, ধাতবপৃষ্ঠ একটি ফোটন শোষণ করলে, পৃষ্ঠ হতে একটি ইলেকট্রন 1.6×10^{-19} কুলম্ব প্রভিত্যধনে নিয়ে নিগত হয়। কাজেই, ধাতবপাতের 32×10^{-9} কুলম্ব অতিরিস্ত নের্গেটিভ আধান

সরিয়ে নিয়ে পাতকে তড়িংবিটীন করতে যে–সংখ্যক ফোটন প্রয়োজন, তা
$$=rac{32 imes10^{-19}}{1.6 imes10^{-19}}=2 imes10^{11}$$
 ;

একটি ইলেকট্রন নির্গন্ত করন্তে একটি ফোটনের ন্যুনতম শক্তি = $h v_{min}$ = $6.625 \times 10^{-34} \times 1.5 \times 10^{15}$ erg = 9.94×10^{-19} joule.

∴ প্রয়োজনীয় ন্যুনতম শব্দি = 9.94 × 10⁻¹⁹ × 2 × 10¹¹ = 1.98 × 10⁻⁷ joule.

ঞ কোনো ধাতুর আলোক তড়িৎ প্রারম্ভ তর্ম্পাদৈর্ঘ্য $3000~{\rm A}^\circ$; ঐ ধাতুপৃষ্ঠে $1000~{\rm A}^\circ$ তর্ম্পাদৈর্ঘ্যের আলো পড়লে বে ইলেকটন নির্গত হবে, তার শক্তি কৃত ? $h=6.56\times 10^{-34}$ J. s. ; $1~{\rm eV}=1.61\times 10^{-19}$ joule.

উ:। প্রারম্ভ ভরজালৈর্ঘ্য
$$\lambda_0$$
 হলে, ইলেকট্রনের শত্তি $E=hc\left(\frac{1}{\lambda}-\frac{1}{\lambda_0}\right)$ এখন, $c=3\times 10^8\,\mathrm{ms^{-1}}$; $\lambda=1000\times 10^{-10}=10^{-7}\,\mathrm{m}$; $\lambda_0=3000\times 10^{-10}=3\times 10^{-7}\,\mathrm{m}$. কান্দেই, $E=6.56\times 10^{-34}\times 3\times 10^8\left(\frac{1}{10^{-7}}-\frac{1}{3\times 10^{-7}}\right)$
$$=6.56\times 10^{-34}\times 3\times 10^8\times 10^7\times \left(\frac{1}{1}-\frac{1}{3}\right)$$

$$=6.56\times 10^{-34}\times 3\times 10^8\times 10^7\times \frac{2}{3}$$

$$=13.1\times 10^{-19}\,\mathrm{joule}.$$

$$=\frac{13.1\times 10^{-19}}{1.61\times 10^{-19}}\,\mathrm{eV}=8.1\,\mathrm{eV}$$
 (প্রায়)।

 $m{Q}$ সিজিয়ামের আলোকতড়িৎ কার্য অপেক্ষক $1.9~{\rm eV}$ । $4.5 \times 10^{-5}~{\rm cm}$ তরজাদৈর্ঘ্যের আলো সিজিয়ামের ওপর পড়লে, (i) মুক্ত ইলেকটনের সর্বাধিক শক্তি এবং (ii) সিজিয়ামের প্রারম্ভ তরজাদৈর্ঘ্য নির্ধারণ করো। $1~{\rm eV}=1.6 \times 10^{-12}~{\rm erg}$ এবং $h=6.56 \times 10^{-27}~{\rm erg}$ -s.

উঃ। আইনস্টাইনের সমীকরণ অনুযায়ী, $E_{max}=h v - \phi$

এখানে,
$$\nu = \frac{c}{\lambda} = \frac{3 \times 10^{10}}{4.5 \times 10^{-5}} = 66 \times 10^{13}$$
 এবং $\phi = 1.9 \times 1.6 \times 10^{-12}$ erg ভাতএব, (i) $E_{max} = 6.56 \times 10^{-27} \times 66 \times 10^{13} - 1.9 \times 1.6 \times 10^{-12}$ erg
$$= (4.32 \times 10^{-12} - 3.04 \times 10^{-12}) \text{ erg}$$
$$= 1.28 \times 10^{-12} \text{ erg} = \frac{1.28 \times 10^{-12}}{1.6 \times 10^{-12}} \text{ eV} = \textbf{0.8 eV}.$$

(ii) প্রারম্ভ তরজ্ঞানৈর্ঘ্য
$$\lambda_0=\frac{c}{v_0}=\frac{c.h}{\phi}=\frac{3\times 10^{10}\times 6.56\times 10^{-27}}{1.9\times 1.6\times 10^{-12}}~{\rm cm}$$
 = $6.4736\times 10^{-5}~{\rm cm}=6473~{\rm A}^\circ$ (প্রায়)।

জিঃ c.g.s. পশ্বতিতে অঙ্কটি করা হল।

उथन একটি ধাতবপৃষ্ঠকে 4950 A° তরজাদৈর্ঘ্য বিশিষ্ট আলো ধারা উদ্ধাসিত করা হয়
তখন যে তড়িংপ্রবাহ পাওরা যায় তা 0.6 volt -এর সামান্য কিছু বেশি নিবৃত্তি বিভব

নারা সম্পূর্ণরূপে বন্ধ করা যায়। অন্য একটি আলোক উৎস ব্যবহার করে দেখা যায় যে
নিবৃত্তি বিভব পরিবর্তন করে 1.1 volt করতে হল। ঐ পৃষ্ঠের কার্য-অপেক্ষক এবং দিতীয়
আলোক উৎসের তরজাদৈর্ঘ্য নির্দর করো। পৃষ্ঠ হতে নির্গত হবার পর যদি আলোকতড়িং
ইলেক্ট্রনগুলিকে 10 tesla মানের চৌছক-ক্ষেত্রের ভিতর দিয়ে পাঠানো হয় তবে উপরোজ

শৃই ক্ষেত্রে নিবৃত্তি বিভবের কী পরিবর্তন হবে ?

জ্ববা,
$$\phi = \frac{h.c}{\lambda_1} - e.V_s$$

$$\left[\upsilon_1 = \frac{c}{\lambda_1} \right]$$
$$= \frac{(6.6 \times 10^{-34}) \times (3 \times 10^8)}{4950 \times 10^{-10}} - (1.6 \times 10^{-19}) (0.6)$$

= 3.04×10^{-19} joule = 1.9 eV . [1 eV = 1.6×10^{-19} J] ছিট্যে ক্ষেত্রে, $hv_2 = eV_s + \phi$

অথবা,
$$\frac{h.c}{\lambda_2} = e.V_s + \phi$$

$$\frac{h.c}{\lambda_2} = (1.6 \times 10^{-19}) \times (1.1) + 3.04 \times 10^{-19} = 4.8 \times 10^{-19}$$

$$\lambda_2 = \frac{h.c}{4.8 \times 10^{-19}} = \frac{(6.6 \times 10^{-34}) \times (3 \times 10^8)}{4.8 \times 10^{-19}} = 4.125 \times 10^{-7} \text{ m} = 4125 \text{ A}^{\circ}$$

চৌধক ক্ষেত্রের ভিতর দিয়ে গেলে, আলোকতড়িৎ ইলেকট্রনগুলির গতিবেগের কোনো পরিবর্তন হয় না বলে নির্বান্ত বিভবেরও কোনো পরিবর্তন হবে না।

 $m{\odot}$ সিজিয়াম থাতুর শ্রেটের ওপর $1~\mathrm{mW}$ কমতা সম্পন্ন এবং $4560~\mathrm{A}^\circ$ তরজাদৈর্ঘ্যের আলো আপতিত হল। আপতিত আলোর আলোকতড়িৎ কর্মদক্ষতা 5% হলে, আলোকতড়িৎ প্রবাহমাত্রা নির্ণয় করো। সিজিয়ামের কার্য অপোকক = $1.93~\mathrm{eV}$; গ্রাহ্ম ধুবক = 6.2×10^{-34} $\mathbf{J} - \mathbf{s} : e = 1.6 \times 10^{-19}~\mathrm{C}$.

উঃ। প্রভ্যেক ফোটনের শত্তি $h.v=h.rac{c}{\lambda}=rac{(6.6 imes10^{-34}) imes(3 imes10^8)}{4560 imes10^{-10}}=4.35 imes10^{-19}
m J.$

 $1 \text{ milli-watt } (10^{-3} \text{ J/s})$ ক্ষমতাযুক্ত উৎসে ফোটন সংখ্যা $n = \frac{10^{-3}}{4.35 \times 10^{-10}} = 2.29 \times 10^{15}$

কর্মজ্জ চা 0.5% হওয়ায় নির্গত ইলেকট্রন সংখ্যা $(n_1)=2.29 imes 10^{15} imes \frac{0.5}{100}$ চ $1.145 imes 10^{13}$ প্রতি সেকেন্ডে।

অতএব, আলোক-তড়িৎ প্রবাহমাত্রা $i=n_1\times e$ $=1.145\times 10^{13}\times 1.6\times 10^{-19}$ $=1.832\times 10^{-6}\,\mathrm{A}.$ $=1.832\,\mu\,\mathrm{A}.$ ② V_s নিবৃত্তি বিভব হলে দেখাও যে V_s-v লেখচিত্রের নতি এবং ইলেক্ট্রনের তড়িভাষানের (e)
গুণফল প্র্যাক্ষ ধুবক h-এর সমান।
উ : । আমরা জানি, $\frac{1}{2}mv_{\mathrm{max}}^2=hv-\phi$ কিন্তু $\frac{1}{2}mv_{\mathrm{max}}^2=eV_s=hv-\phi$ (i) $V_s\,\mathrm{এবং}\,\,v\,\,\mathrm{এর ভিতর লেখ একটি সরলেরেখা [bির 3.5] ।}$ ধর, কম্পাঙ্ক সামান্য Δv বাড়ালে, নিবৃত্তি বিভব $\Delta V_s\,\,\mathrm{বাড়ে}\,\,:\,\,\,\mathrm{তাহলে},\,\,e\,(V_s+\Delta V_s)=h(v+\Delta v)-\phi$ (ii)
(ii) নং থেকে (i) নং বিশোগ করলে, $e.\,\Delta V_s=h.\Delta v$ অথবা, $e.\,\frac{\Delta V_s}{\Delta v}=h.\,\,$ কিন্তু, $\frac{\Delta V_s}{\Delta v}=h.\,\,$ কিন্তু, $\frac{\Delta V_s}{\Delta v}=h.\,\,$ কিন্তু, $\frac{\Delta V_s}{\Delta v}=h.\,\,$

বস্তু কণিকার দৈত সত্ত্বা (Dual nature of material particle)

ব্যভিচার, অপবর্তন (diffraction) প্রভৃতি আলোকীয় ঘটনা থেকে আমরা আলোর তরঙ্গারূপের পরিচয় পাই। আলোর সমবর্তন (polarisation) আলোর তির্যক তরঙ্গারূপ প্রকাশ করে। এই সকল ঘটনা থেকে বিজ্ঞানীদের মনে আলোর তরঙ্গারূপ সম্বন্ধে দৃঢ় প্রত্যয় জন্মে। হাইগেন্স্, ফ্রেনেল প্রমুখ বিজ্ঞানীদের প্রচেন্টায় আলোর তরঙ্গাতত্ত্ব (wave theory of light) উপরোক্ত ঘটনাবলির সূচারু ব্যাখ্যা করে আলোর তরঙ্গা তত্ত্বকে সুপ্রতিষ্ঠিত করেছিলেন।

পরবর্তীকালে আলোকতড়িং ক্রিয়া, কম্পটন ক্রিয়া, রমন ক্রিয়া প্রভৃতি ঘটনাবলি আবিষ্কৃত হওয়ায় আলোর তরজাতত্ত্ব সম্বাধ্যে সন্দেহের উদ্রেক হয় কারণ তরজাতত্ত্ব ঐ সকল ঘটনার কোনো সন্ভোষজনক ব্যাখ্যা দিতে পারেনি।

জার্মান বিজ্ঞানী ম্যাক্স প্ল্যান্ডক প্রবর্তিত কোয়ান্টাম তত্ত্ব প্রয়োগ করে আইনস্টাইন দেখান যে আলোক প্রবাহকে ঝাঁক ঝাঁক কোয়ান্টা বা ফোটন (photon) -এর সমষ্টি মনে করলে উপরোক্ত নবাবিদ্ধুত ঘটনাগুলির সুন্দর ব্যাখ্যা পাওয়া যায়। কম্পটন ক্রিয়ার ব্যাখ্যা থেকে আলোক ফোটনের ভরবেণের (p) যে রাশিমালা পাওয়া যায় তা ২ল % $p=\frac{h.v}{c}=\frac{h}{2}$

যেখানে h= প্লাপ্ক ধুব সংখ্যা এবং $\lambda=$ আলোর তরজাদৈর্ঘ্য।

ভরবেগ নিঃসন্দেতে পদার্থ কণিকার একটি গভীয় ধর্ম ; গতি না থাকলে ভরবেগ থাকে না। সুতরাং কম্পটন ক্রিয়া থেকে আমরা জানতে পারি যে আলোর কণিকা সন্তা বর্তমান। এইবুপ আলোকতড়িৎ ক্রিয়া, রামন ক্রিয়া প্রভৃতি ঘটনাও আলোর কণিকারপ প্রকাশ করে। কিন্তু বাভিচার, অপবর্তম প্রভৃতি ঘটনার ব্যাখায় একমাএ আপোর তরজা ও এই সফল। প্রকৃতপক্ষে একস্থান থেকে অন্য স্থানে আলোর বিস্তার (propagation) লাভের সময় আলো: তরজারপে আচরণ করে: আবার বন্তুর সজো আলোকের ক্রিয়াকালে (interaction) আলো কলবেপে আচরণ করে। আলোর (সাধারণভাবে গ্রন্থভুক্তিয়া ভরকোর) এই দ্বৈত্রপ (dual nature) বর্তমানে একটি স্পীকৃত ঘটনা।

আলোর এই দৈও সভা লক্ষ করে 1924 খিস্টান্দে ফরাসি বিজ্ঞানী লুই দা বয় (Louise de Broglie)

একটি অভিনব তত্ত্বের প্রস্তাব করেন। তিনি বলেন যে, বিকিরণ যেমন কোনো কোনো ক্ষেত্রে তরঙ্গোর ন্যায় আচরণ করে, আবার কোনো কোনো ক্ষেত্রে কণা বা ফোটনের নায় আচরণ করে তেমনি বস্তুকণাও সূবিধামতো অবস্থায় কণাসত্ত্বা পরিত্যাগ করে তরজা সত্ত্বা গ্রহণ করতে পারে। প্রকৃতি প্রতিসাম্য (symmetry) পছন্দ করে। তরজোর বেলায় ভর-শক্তি (mass -energy) প্রতিসাম্য বজায় থাকলে বন্তু কণিকার ক্ষেত্রেও একই প্রতিসাম্য বজায় থাকবে। আলোর যেমন একটি তরজাদৈর্ঘ্য থাকে দ্য ব্রয়ের মত অনুসারে পদার্থ কণিকারও একটি তরজ্ঞাদৈর্য্য থাকবে। মনে রাখতে হবে পদার্থ কণিকার সাথে সংশ্লিফ তরজা তড়িৎচম্বকীয় তরজা নয়। এই তরজাকে বন্তুতরকা (matter waves) বলা হয় এবং পদার্থ কণিকার তরজা দৈর্ঘ্য-কে দা ব্রয় তরজাদৈর্ঘ্য বলা হয়।

1927 সালে ডেভিসন ও গার্মার এবং 1928 সালে জি.পি.টমসন পদার্থকণিকার (ইলেকট্রন) তরঙ্গা সত্ত্বার পরীক্ষামূলক প্রমাণ উপস্থিত করেন। প্রকৃতপক্ষে ইলেকট্রনের তরজা সত্ত্বাকে ভিত্তি করে ইলেক<mark>ট্রন</mark> মাইক্রস্কোপ যন্তু উদ্ভাবিত হয়েছে।

3.8. দ্য-ব্রয় তরঙাদৈর্ঘ্য (De-Broglie wave length) :

u কম্পাঙ্ক বিশিষ্ট তরজোর ক্ষেত্রে, আমরা জানি, ফোটনের শক্তি E=h
u আবার m ভরের একটি গতিশীল কণিকার শক্তি $E=mc^2$ (ii) যেখানে c= আলোর গতিবেগ।

আলো এবং কণার দ্বৈত সত্ত্বা স্বীকার করে নিলে দুই সমীকরণ পরস্পরের তুল্য। অতএব $E = hv = mc^2$

শূন্য দেশে ফোটনের গতিবেগ আলোর গতিবেগের সমান বলে, তার ভরবেগ

$$p = mc = \frac{mc^2}{c} = \frac{hv}{c} = \frac{h}{\lambda} \dots \text{ (iii)} \quad [v.\lambda = c]$$

বন্তু কণিকার তরঙ্গারূপ আছে মনে করলে v গতিবেগ যুস্ত m ভরের কণিকার ভরবেগ হবে

 $p=mv=rac{h}{\lambda}$ [(iii) নং সমীকরণ থেকে] এক্ষেত্রে λ হবে বস্তুকণিকার তরজারূপের তরজাদৈর্ঘ্য

$$\lambda = \frac{h}{p} = \frac{h}{mv} \dots (iv)$$

এটাই হবে পদার্ঘ কলিকার দ্য ব্রয় তরজাদৈর্ঘা। সকল মূল কলিকা (ইলেকট্রন, প্রোটন, নিউট্রন ইত্যাদি) গতিশীল হলে, তাদের যে তর্জা ধর্ম প্রকাশ পাবে তার তর্গাদৈর্ঘ্য উপরোক্ত সমীকরণ থেকে পাওয়া যাবে। ঐ সমীকরণকে দ্য ব্রন্ন তরন্স সমীকরণ (de Broglie wave equation) বলা হয়।

- (iv) নং সমীকরণ থেকে জানা যায় বে,
- (Φ) m অথবা v বৃহৎ হলে, কণার দা ব্রয় তরজ্ঞাদৈর্ঘ্য খ্ব ছোটো হয়;
- (খ) কণা স্থির থাকলে যে (v = 0) তার কোনো তরজারপ থাকে না:
 - (গ) কণার দ্য ব্রয় তরজা কণার সাথে সংশ্লিষ্ট তড়িতাধানের ওপর নির্ভর করে না:
- (ঘ) দ্য ব্রয় উপপাদ্য কেবলমাত্র ইলেকট্রন, প্রোটন, নিউট্রন প্রভৃতি মৌল কণার বেলায় প্রয়োজ্য তা নয়; যে-কোনো গতিশীল ভরযুক্ত কণার বেলাতেই প্রয়োজ্য।

D EXAMPLE D

500 V ঘারা স্বরাশিত একটি ইলেক্ট্রন গুড়েছর সাথে সংশ্লিক তরপোর দা রয় তরজাদৈর্ঘ্য নির্ণা করো। ইলেকটনের $e/m=1.7\times 10^{11}~{\rm C~kg^{-1}};~h=6.63\times 10^{-94}~{\rm J}{-\rm s}$ এবং m= 9.11×10^{-31} kg.

উঃ। এখানে,
$$\frac{1}{2} m v^2 = eV$$
 জহাবা $v = \sqrt{\frac{2eV}{m}} = \sqrt{2 \times 1.7 \times 10^{11}} \times 500$
= $1.32 \times 10^7 \, \mathrm{ms}^{-1}$

এখন, দ্য ব্রয় তরজাদৈর্ঘ্য
$$\lambda=\frac{h}{mv}=\frac{6.63\times 10^{-34}}{9.11\times 10^{-31}\times 1.32\times 10^7}$$

$$=0.55\times 10^{-10}\,\mathrm{m}=0.55\,\mathrm{A}^\circ.$$

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. কোটনের শক্তি $E=h\nu$ সমীকরণ থেকে পাওয়া যায়। কম্পাৎক ν -এর উপস্থিতি বুঝিয়ে দেয় যে আলো তরভাধর্মী। অথচ কোটন ক্পাধর্মী। এই বৈষম্য কীভাবে ব্যাখ্যা করবে ?
- আলোকতড়িৎ ক্রিয়ার ব্যাখ্যায় কোয়ান্টাম তত্ত্ব খুব সপ্তোষজনক ফল দেয়। তেমনি, কম্পটন ক্রিয়া, রমন ক্রিয়া প্রভৃতি ব্যাখ্যা করতেও কোয়ান্টাম তত্ত্বের প্রয়োজন হয়। এই সকল বিশেষ ক্রিয়া কোয়ান্টাম তত্ত্বকে সুপ্রতিষ্ঠিত করেছে। কোয়ান্টাম তত্ত্ব যে-কোনো বিকিরণকে কণাম্বরূপ গণ্য করে যে-কণাগুলির শিস্তি E = hv সমীকরণ হতে পাওয়া যায়। অর্থাৎ, আলোকতড়িৎ ক্রিয়া, রমন ক্রিয়া প্রভৃতি বিশেষ বিশেষ ক্রিয়ায় আলোর কণাধর্ম প্রকট হতে দেখা যায়। কিন্তু ব্যতিচার, অপবর্তন, সমবর্তন প্রভৃতি আলোকীয় ক্রিয়া নিঃসন্দেহে আলোর তরজা প্রকৃতি প্রমাণিত করে। এই সকল বিশেষ ঘটনায় আলোর কণাধর্ম প্রকট নয়। এই কারণে বিজ্ঞানীয়া আলোর তরজা ও কণা এই দ্বৈতধর্ম স্বীকার করে নিয়েছেন। পরবর্তীকালে প্রমাণিত হয়েছে, আলোক তরজোর য়েয়ন কণাধর্ম আছে বয়ুকণারও তেমনি তরজাধর্ম আছে। এই দ্বৈত আচরণ প্রতিষ্ঠা করেন ফরাসি বিজ্ঞানী দ্য' বয়ু।
- 2. আলোকতড়িৎ ক্রিয়ায় প্রারম্ভ কম্পান্স্কের অন্তিত্ব কোটনতত্ত্বের সপক্ষে এবং তর্ম্পা-তন্ত্বের বিরূপে সাক্ষ্য দের। কারণ কী ?
- তরজাতত্ত্ব অনুযায়ী হিসাব করলে দেখা যায় তীব্রতা যথেই হলে যে কোনো কম্পাঙ্কের আলোকতরজা কোনো ধাতবপৃষ্ঠে আলোকতড়িং ক্রিয়া উৎপন্ন করতে সক্ষম হবে। কিন্তু ফোটনতত্ত্ব হতে জানা যায় যে প্রত্যেক ধাতুর বেলায় একটি ন্যুনতম কম্পাঙ্ক আছে যার কম কম্পাঙ্কের কোনো আলো—তীব্রতা যাই হোক না কেন—এ ধাতুতে আলোক-তড়িং ক্রিয়া সৃষ্টি করতে পারবে না। পরীক্ষা করে দেখা গেছে যে আলোকতড়িং ক্রিয়া বাস্তবিকই কম্পাঙ্ক নির্ভর: তীব্রতা নির্ভর নয়। প্রত্যেক ধাতুর বেলাতেই একটি প্রারম্ভ কম্পাঙ্কের অন্তিত্ব পরীক্ষামূলকভাবে প্রতিষ্ঠিত হওয়ায়, প্রারম্ভ কম্পাঙ্ক হতে ফোটন তত্ত্বের সত্যতার সাক্ষ্য পাওয়া যায়।
- 3. "যে ধাতু সবৃন্ধ আলোর আলোকতড়িৎ ক্রিয়া প্রদর্শন করে, লাল আলোতে সেই ধাতু ঐ ক্রিয়া প্রদর্শনে অসমর্থ হতে পারে।" ব্যাখ্যা করো।
- প্রত্যক ধাতৃরই আলোকতড়িৎ ক্রিয়া প্রদর্শনের ক্ষেত্রে একটি নিম্নতম কম্পাঙক থাকে। ঐ কম্পাঙককে
 ঐ ধাতৃর প্রারম্ভ কম্পাঙক বলে। প্রারম্ভ কম্পাঙক অপেক্ষা কম কম্পাঙকর আলো ঐ ধাতৃপৃষ্ঠ হতে
 ইলেকট্রন নিঃসরণ করবে না। এখন, সবুজ আলোর তুলনায় লাল আলোর কম্পাঙক কম। আলোচা
 ধাতৃর বেলায় সবুজ আলোর কম্পাঙক প্রারম্ভ কম্পাঙক হলে, তা সবুজ আলোয় আলোক ওড়িং ক্রিয়া
 প্রদর্শন করবে কিন্তু তদপেক্ষা কম কম্পাঙকমুক্ত লাল আলোতে করবে না।
- 4. আলোকতড়িং কার্য অপেক্ষক বলতে কী বুঝার ? তাপীর নিঃসরশের ক্ষেত্রেও এই কার্য-অপেক্ষক একই হবে কী ?
- শাতববস্তুর পরমাণুর ইলেকট্রনগুলি পরমাণুর কেন্দ্রকের আকর্ষণী বলের প্রভাবে পরমাণুর মধ্যে আবন্ধ থাকে। পরমাণু দেই হতে তাদের বিচ্চিয় করতে হলে একটি ন্যুনতম শক্তি ইলেকট্রনগুলিকে দিতে হয়। বস্তুকে উত্তপ্ত করে অথবা বস্তুর ওপর আলোকপাত করে এই শক্তি সরবরাহ করা যায়।

কোনো পদার্থের উপরিতল হতে ইলেকট্রন নিঃসৃত করতে নূানতম প্রয়োজনীয় শক্তিকে ঐ পদার্থের কার্যঅপেক্ষক বলা হয়। কার্যঅপক্ষেককে সাধারণত ইলেকট্রন—ভোল্ট (eV) এককে প্রকাশ করা হয়। এটা বস্তুর প্রকৃতির ওপর নির্ভর করে। যেমন, সিজিয়াম থাতুর কার্যঅপেক্ষক 1.99 eV, তামার 4.5 eV ইত্যাদি। আলোকতড়িৎ প্রক্রিয়ায় যদি উত্ত নূানতম শক্তি সরবরাহ করে থাতব পৃষ্ঠ হতে ইলেকট্রন নিঃসরণ করা হয়, তবে ঐ শক্তিকে আলোকতড়িৎ কার্যঅপেক্ষক বলা হয়। আর যদি থাতব পৃষ্ঠকে উত্তপ্ত করে ঐ নূানতম শক্তি সরবরাহ করা হয়, তবে তাকে বলে তাপীয় আয়নিক কার্য অপেক্ষক। কার্যঅপেক্ষক যেহেতু থাতব বস্তুর প্রকৃতির ওপর নির্ভর করে তাই কোনো থাতব পৃষ্ঠের বেলায় উত্ত

- 5. দুটি ধাতু A এবং B -এর কার্য অপেক্ষক $3\,eV$ এবং $6\,eV$ । আলোকতড়িৎ সম্পর্কে কোন্ ধাতুর প্রারম্ভকম্পাক্ষ কম ?
- প্রারম্ভ কম্পাঙ্ক v_0 হলে কার্য-অপেক্ষক $\phi=h.v_0$; অথবা $v_0 \propto \phi$; B ধাতুর কার্য-অপেক্ষক Aধাতুর দ্বিগুণ হওয়ায়, A ধাতুর প্রারম্ভ কম্পাঙ্ক B ধাতু অপেক্ষা নিম্নতর হবে।
- 6. সোডিয়াম ধাতুর ওপর 6800 A° তরজাদৈর্ঘ্যের কমলা রংয়ের আলো ফেললে কী আলোকতড়িৎ ক্রিয়া দেখা যাবে ? সোডিয়ামের কার্যঅপেক্ক = 2.3 eV।
- ullet কার্যঅপেক্ষক ϕ এবং প্রারম্ভ তরজাদৈর্ঘ্য λ_0 হলে $\lambda_0=rac{h.c}{\phi_0}$

সোডিয়ামের ক্ষেত্রে,
$$\lambda_0=\frac{6.62\times 10^{-34}\times 3\times 10^8}{2.3\times 1.6\times 10^{-19}}=5.3967\times 10^{-7}~\mathrm{m}=5396~\mathrm{A}^\circ$$

অতএব, সোডিয়ামের প্রারম্ভ তরজ্ঞাদৈর্ঘ্য 5396 A°; যেহেতু আপতিত আলোর তরজ্ঞাদৈর্ঘ্য (6800 A°) প্রারম্ভ তরজ্ঞাদৈর্ঘ্য অপেক্ষা বেশি তাই আপতিত আলো সোডিয়াম ধাতুতে আলোক–তড়িৎ ক্রিয়া প্রদর্শন করবে না।

- একটি ধাতুর ওপর আপতিত আলোর তীব্রতা হাস করলে, নিবৃত্তি বিভবের ওপর কী
 প্রভাব পদ্ধবে ?
- নিবৃত্তি বিভব আপতিত আলোর তীব্রতার ওপর নির্ভর করে না। অতএব, আপত্তিত আলোর তীব্রতা
 হাস বা বন্ধি করলে নিবৃত্তি বিভবের ওপর কোনো প্রভাব পড়বে না।.
- 8. একটি ধাত্র বন্ধুর ওপর আপতিত আলোর তরষ্পদৈর্ঘ্য ক্রমাগত বাড়িয়ে গেলে নির্গত ইলেকটনের সংখ্যা এবং শশুর কী পরিবর্তন দেখা যাবে ?
- আপতিত আলোর তরজাদৈর্ঘ্য ক্রমশ বাড়িয়ে গেলে, প্রথমত নির্গত ইলেকট্রন সংখ্যা কমতে
 থাকবে এবং শক্তিও কমতে থাকবে। যখন তরজাদৈর্ঘ্য প্রারম্ভ তরজাদৈর্ঘ্য (threshold wave
 length) অপেক্ষা বেশি হবে, তখন আর কোনো ইলেকট্রন নির্গত হবে না এবং আলোকতড়িৎ ক্রিয়া

 বন্ধ হয়ে যাবে।
- 9. দুটি ধাতৃ A অথবা B'-এর কার্য অপেক্সক যথাক্রমে $1~{\rm eV}$ এবং $4~{\rm eV}$ । দৃশ্যমান আলো ব্যবহৃত হচ্ছে এরূপ একটি আলোকতড়িৎ কোশের পক্ষে কোন ধাতৃটি ব্যবহারযোগ্য ?
- A ধাতৃর কার্যঅপেক্ষক দৃশামান আলোক ফোটনের শান্তি অপেক্ষা কম বলে, A -ধাতৃ আলোকভড়িৎ কোশের পক্ষে ব্যবহার যোগ্য।
- কোনো ধাতুর আলোকতড়িৎ 'প্রারম্ভ কম্পাধ্ক' ও 'কার্য অপেক্ষকের' সংজ্ঞা দাও।
 উভয়ের মধ্যে সম্পর্ক কী ? [Jt. Entrance 1994]
- প্রতাক গাঙ্র বেলায় একটি নিম্নতম কম্পান্তক আছে যার কম কম্পান্তর্গালিক আলো ঐ গাঙ্
 থেকে ইলেকট্রন নির্গত করতে পারে না অর্থাৎ আলোকতড়িং ক্রিয়া উৎপন্ন করতে পারে না . একেই

ঐ ধাতুর প্রারম্ভ কম্পাঙ্ক বলে।

কোনো ধাতবপ্র থেকে একটি ইলেকট্রনকে পৃষ্ঠের ধনাম্বক আয়নগুলির আকর্ষণকৈ প্রতিহত করে মৃত্ত করতে যে শত্তির প্রয়োজন, তাকে ঐ ধাতৃর আলোক তড়িৎ কার্য আপেক্ষক বলা হয়।

প্রারম্ভ কম্পাঙ্ক v_0 এবং কার্য অপেক্ষক ϕ হলে, $\phi=hv_0$ – এটাই হল প্রারম্ভ কম্পাঙ্ক ও কার্য অপেক্ষক-এর সম্পর্ক।

11. আলোকতরশা ও বতুতরশোর ভিতর পার্থক্য কী ?

শ্ন্য মাধ্যমে আলোর গতিবেগ ধ্রুবক; কিন্তু শ্ন্য মাধ্যমে বকুতরজোর গতিবেগ তার তরজাদৈর্ঘ্য ওপর
নির্ভরশীল।

12. বভুতরশা কি তড়িংচুম্বকীয় তরশা ?

না। তড়িতাধান বুড়িতগতিতে (accelerated motion) গতিশীল হলে, তড়িৎচুম্বকীয় তরজোর উদ্ভব
হয়। বয়ৣতরজো তড়িতাধানের কোনো ভূমিকা নেই।

थनारणि *

⇒ বচনামূলক প্রশ

- 1. আলোকতড়িৎ ক্রিয়া কী? এই ক্রিয়া কীভাবে আবিষ্কৃত হল?
- 2. আলোকতড়িং নিঃসরণ সম্পর্কে প্রধান প্রধান বৈশিন্ট্যগুলি উল্লেখ করো। তাদের প্রদর্শনের উপযুক্ত পরীক্ষা বর্ণনা করো। প্রারম্ভ কম্পান্তক কাকে বলে?
- 3. আলোকভড়িং কোশ কয় প্রকার ? এদের বিবরণ ও বাবহার লেখা।
- 4. কোয়ান্টাম তত্ত্ব সম্বশ্বে যা জান সংক্ষেপে লেখো। প্ল্যাঙকধুবক বলতে কী বোঝ?
- আলোকভড়িৎ ক্রিয়ার মূল তথাগৃলি কোয়ান্টাম তত্ত্বের সাহায়ের কীর্পে ব্যাখ্যা করা যায় বৃঝিয়ে দাও।
- 6. আলোকর্তাড়ং প্রক্রিয়া এবং ফটো ইলেক্ট্রন বলতে কী বোঝ? ফটো ইলেক্ট্রন নিঃসরণ কোয়ান্টাম তন্ত্বের সাহায্যে কীর্পে ব্যাখ্যা করা যায়?
- কোনো ধাতুর আলোকভড়িং 'প্রারম্ভ কম্পাঙ্ক' ও 'কার্যঅপেক্ষকের' সংজ্ঞা দাও। উভয়ের মধ্যে সম্পর্ক কী?
- 8. আলোক-তড়িৎ ক্রিয়া সম্পর্কিত আইনস্টাইনের সমীকরণ ব্যাখ্যা কর। আলোকতড়িৎ কার্যঅপেক্ষক বলতে কী বোঝ?
- 9. আইনস্টাইন কীভাবে আলোকতড়িৎ নিঃসরণ ব্যাখ্যা করেছিলেন?
- 10. ধাতবপৃষ্ঠ থেকে নির্গত ইলেকট্রনের সর্বাধিক গতিশন্তি এবং সংখ্যা নিম্নলিখিত বিষয়গুলির ওপর কীভাবে নির্ভর করে (ii) আপতিত আলোর তীব্রতা বৃদ্ধি করলে (ii) ধাতব পৃষ্ঠ পরিবর্তন করলে (iii) আপতিত আলোর তরজাদৈর্ঘ্য বৃদ্ধি করলে।
- আপতিত আলোকের শত্তি কোন ধাতুর আলোক তড়িংকার্য অপেক্ষক অপেক্ষা কম হলে ঐ ধাতুর তল থেকে কোন ইলেকট্রন নির্গত হতে পারে না। গাণিতিকভাবে উত্তিটির সতাতা যাচাই কর।

⇒ সংক্ষিপ্ত উত্তরের প্রশ্ন

- 1. নিবৃত্তিবিভব ও প্রারম্ভ কম্পাঙ্ক কাকে বলে ?
- আলোকতড়িং বিষয়ে নিম্নলিখিত সম্পর্কগুলির মধ্যে লেখ আঁকো—(ক) আপতিত আলোর তীব্রতা এবং প্রবাহমাত্রা
 (খ) আপতিত আলোর কম্পাঙক ও ইলেকট্রনের সর্বোচ্চ গতিশন্তি (গ) আপতিত আলোর তীব্রতা ও ইলেকট্রনের
 সর্বোচ্চ গতিশন্তি।
- 3. প্রারম্ভ কম্পাঙ্ক কাকে বলে? কোনো ধাতুর আলোকতড়িৎ প্রারম্ভকম্পাঙ্ক কার ওপর নির্ভর করে?
- একটি বায়শুনা কাচের কৃণ্ডের ভিতর দৃটি খাতব শ্লেট আছে। একটি শ্লেটের ওপর অভিবেগুনি আলো ফেলা হল এবং অপর প্লেটের সাপেক্ষে তাকে পজিটিভ বিভব দেওয়া হল। এই অবস্থায় কোনো তড়িৎপ্রবাহ পাওয়া যাবে কি?
- 5. 2000 A° তরজাদৈর্ঘ্যের আলো নিকেল শ্লেটো পড়লে, শ্লেট পজিটিভ তড়িতাহিত হয়। তরজাদৈর্ঘ্য বৃদ্ধি করা হলে দেখা যায় যে 3400 A° তরজাদৈর্ঘ্যে ওইরূপ কোনো ফলাফল পাওয়া যায় না—আলোর তীব্রতা যাই হোক না কেন। ব্যাখ্যা করো।
- ভালোক- তড়িৎ কোশের ক্রিয়া এক হিসাবে এক্সরশ্মি নলের ক্রিয়ার বিপরীত এই উত্তি ব্যাখ্যা করে।
- 7. একটি স্বম তড়িংক্ষেত্রে অন্তরিত সুতোর সাহাযো একটি ধাতব বল ঝুলানো আছে। যদি ঐ বলের ওপর

উক্তর্শান্তসম্পন্ন এক্সরশ্বি আপতিত হয়, তাহলে বলটি গ্রাড়হক্ষেত্রের অভিমুখে বিক্লিপ্ত হবে। জীবটি নির্ভুল কিনা যুদ্তি সহকারে উল্লেখ করো।

- 8. A এবং B দুটি আলোক উৎস। A কর্তৃক সৃষ্ট আলোর তরজাদৈর্ঘা ৪০০০ A° হতে 11000 A° পর্যন্ত বিস্তৃত। B-এর বিয়তি 3000 A° হতে 6000 A° পর্যন্ত। A উৎসের জীবতা B-এর তিনগুণ। একটি ধাতবপৃষ্ঠ হতে B উৎস ইলেকট্রন নির্গত করতে পারে কিন্তু A উৎস পারে না। কারণ ব্যাখ্যা করো।
- 9. ইলেকটুন দারা ফোটন উৎপন্ন করা এবং ফোটন দারা ইলেকট্রন উৎপন্ন করার স্বপক্ষে দৃটি ঘটনার উদ্রেখ করে। (সংকেত : প্রথমটি এক্সরশ্মি এবং বিতীয়টি আলোকতড়িৎ ঘটনা।
- 10. কোন যন্তি বলে দ্যু' বুয়ের মনে বন্ত কণার ভরক্ষধর্ম ধারণা গঠিত হল? এই তরক্ষা এবং আলোক ভরক্ষোর মধ্যে পার্থকা কী গ
- 11. কোনো বিকিরণের তরজাদৈর্ঘ্য ও ঐ বিকিরণের ফোটনের তরজাদৈর্ঘ্য কী সমান ? $\{$ সংকেত : \vee কম্পাঙ্কের ফোটনের ভরবেগ $p=\frac{h \vee}{c}=\frac{h \vee}{\vee,\lambda}=\frac{h}{\lambda}$ $\therefore \lambda=\frac{h}{p}$ ফোটনের দ্য ব্যয় তরজা দৈর্ঘ্য $\lambda'=rac{h}{m}=rac{h}{p}$; অতএব $\lambda=\lambda'$]

⇒ অভিসংকিও উত্তরের প্রশ্

- 1. দেখা গেল যে একটি ধাতু থেকে হলুদ বর্ণের আলো কোন ফোটো ইলেকট্রন নির্গত করে না। এ অবস্থায় কমলা বর্ণের আলো ব্যবহার করা কি যুত্তিযুক্ত হবে ? সবুজ বর্ণের আলো ?
- 2. আলোকতড়িং সংক্রান্ত এক পরীক্ষায় দেখা গেল যে ফোটন যে দিক থেকে এসে আপতিত হল ফটো ইলেকট্রন প্রায় তার বিপরীত দিকে নির্গত হল। এটা কি ভরবেগ সংরক্ষণ সূত্রের পরিপন্থী ?
- 3. ফোটনকে কি তড়িৎক্ষেত্র বা চৌম্বক ক্ষেত্র দ্বারা বিক্ষিপ্ত করা যায় ?
- 4. সমান তীব্রতার দৃটি উংস কোন নির্দিন্ট সময়ে সমান সংখ্যক ফোটন নির্গত করবে—এই উব্ভি কি সর্বদা ঠিক ?
- 5. তামার কার্য অপেক্ষক 4.4 eV ; দৃশ্যমান আলো দ্বারা তামাকে উদ্ভাসিত করলে, ফটো ইলেকট্রন নির্গত হবে ?
- 6. কার্য অপেক্ষকের ব্যবহারিক একক কি ?
- 7. আলোক তড়িং প্রক্রিয়ার সমন্ত বৈশিক্যগুলিকে ব্যাখ্যা করার জন্য আলোকের কোন ধর্মকে ব্যবহার করা হয় ?
- 8. ফটো ইলেকট্রিক প্রবাহের উপর আপতিত আলোর তীব্রতা বৃশ্বির ফল কি ?
- একটি ইলেকট্রন ও একটি প্রোটনের দাব্রয় তরজা দৈর্ঘ্য বিবেচনা কর। কশা দৃটির (i) দৃতি সমান এবং (ii) ভরবেগ সমান হলে, কার তরকা দৈর্ঘ্য ক্ষুদ্রতর হবে ?
- 10. ইলেকট্রনের তরজাদৈর্ঘা থাকলে, তার কি কোন বর্ণ থাকবে ? |Hints: না ; ইলেকটনের তরঞ্চাদৈর্ঘ্য দৃশ্যমান বর্ণান্সীর ভিতর পড়ে না।]
- 11. প্রারম্ভ কম্পাঙ্ক কাকে বলে ?

बहुम्यी शहरणत क्षत्र [Multiple choice type (MCQ)]

(A) নির্ভুল উত্তরটি √চিহ্নিত করো:

- [i] ধাতব পৃষ্ঠে অতি বেগুনি আলো পড়লে যে কণাগুলি নির্গত হয় তারা—
 - (A) পজিটিভ তড়িৎগ্রস্ত প্রোটন

(B) নিম্তড়িং কণা নিউট্রন

(C) নেগেটিভ তড়িৎগ্রন্ত ইলেকট্রন

(D) নিম্বডিং ফোটন।

- [ii] উপরোক্ত প্রশ্নে নির্গত কণাগুলির গতিশক্তি নির্ভর করে—
 - (A) আপতিত আলোর তীব্রতার উপর

(B) আপতিত আলোর কম্পাঙ্কের উপর

(C) নির্গত কণার ভরের উপর

(D) নির্গত কণার গতিবেগের উপর।

[iii] আলোক তড়িৎ ঘটনা আলোর প্রকৃতির কোন তত্ত্বের সমর্থক ?

(A) তরজা তত্ত (B) কণিকা তত্ত্ব

(C) কোয়ান্টাম তত্ত্

(D) কোনটাই না।

- [iv] আলোকতড়িৎ প্রক্রিয়ায় নির্গত ইলেকট্রনের সর্বাধিক গতিবেগ,
 - (A) আপতিত আলোর তীব্রভার বৃষ্ণির সঞাে বৃষ্ণি পার,
 - (B) আপতিত আলোর কম্পাঙ্ক বৃষ্ণির সঞ্চো পায়,
 - (C) আপতিত আলোর তরঙ্গাদৈর্ঘ্য বৃশ্বির সঙ্গো বৃশ্বি পায়,
 - (D) এদের কোনটাই নয়।

প্রয়োজন। আপতিত আলোর শক্তি—

	(A) 3.5 eV (B) 4.7 eV (C) 1.2	eV (D) 2.3 eV.	
[vi]	একটি ধাতব প্লেটের প্রারম্ভকম্পাঙ্ক যুক্ত ফোটনের শা		লোর বেলায় নিবৃত্তি বিভব 5V ;
	আপতিত আলোর একটি কোটনের শব্তি—		• .
	(A) 6.2 eV (B) 5 eV (C) 1.2 eV	(D) 11.2 eV.	
[vii]	যে ফোটনের শক্তি 75 eV তার কম্পাক্ত		2 42 +
	(A) $1.8 \times 10^{15} \text{ HZ}$ (B) $18 \times 10^{15} \text{ HZ}$	(C) $18 \times 10^{14} \text{ HZ}$	(D) 3.6×10^{15} HZ.
[viii]] প্রারম্ভ কম্পাঙ্কের থেকে বেশী কম্পাঙকবিশিশ্ট কে	न वात्नाक तन्त्र এकि धार	ত্তব পাতের <mark>উপর আ</mark> পতিত হ ল ।
	আলোক তড়িং ক্রিয়ায় নিগর্ত ইলেকট্রনের গৃতিশক্তি		
	(A) আলোকের তীব্রতার সমানুপাতিক ও কম্পাঙ্কের	উপর নির্ভরশীল নয়,	
	(B) আলোকের কম্পাড়েকর সমানুপাতিক ও তীব্রতাব	উপর নির্ভরশীল নয়,	
	(C) আলোকের তীব্রতা ও কম্পান্কের সমানুপাতিক,		
	(D) তীব্রতা ও কম্পাঞ্চের উপর নির্ভরশীল নয়।		
[ix]		তা দ্বিগুণ করলে কি ঘটবে ?	
	(A) নির্গত ফোটনের কম্পান্তক দ্বিগুণ হবে, 🦠 -		
	(B) নির্গত ফোটনের কম্পাঞ্চ ভিনগুণ হবে,		
	(C) নির্গত ফটোইলেক্টনের সংখ্যা দ্বিগুণ হবে,	•	
	(D) নির্গত ফটো ইলেকটনের সংখ্যা তিনগুণ হাবে।		
[x]	একটি ধাতুর কার্য অপেক্ষক hvol v কম্পাঞ্জের ত	ালো ঐ ধাতুর উপর এসে প	ড়িল। ফটো-ইলেকট্রিক ফলাফল
	পাওয়া যাবে যদি—		
	(A) $v \ge v_0$ (B) $v > 2v_0$ (C) $v < v_0$	(D) $v < \frac{v_0}{2}$.	
[xi]	λ তরকা দৈর্ঘ্যের আলো এসে পড়ল এরূপ এক ধাতৃ	র উপর যার কার্য অপেক্ষক	<u>hc</u> । ফটো ইলেকট্রিক ফলাফল
	পাওয়া বাবে বনি		``0
	CAN D 1 32	λο	
	(A) $\lambda \ge \lambda_0$ (B) $\lambda \ge 2\lambda_0$ (C) $\lambda \le \lambda_0$	(D) λ < → .	
(xii)	(A) $\lambda \ge \lambda_0$ ' (B) $\lambda \ge 2\lambda_0$ ' (C) $\lambda \le \lambda_0$ ' ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঙ্ক	জিগণ করা <i>হালে</i> নির্বন্ধি বিভ	sa
[xii]	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোব কম্পাঙ্ক	জিগণ করা <i>হালে</i> নির্বন্ধি বিভ	তব,
(xii)	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোব কম্পাঙ্ক	জিগণ করা <i>হালে</i> নির্বন্ধি বিভ	ज्व,
	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঙ্গ (A) ন্বিগুল হয় (C) ন্বিগুলেরও বেশী হয়	ছিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দ্বিগুণের কম হয়।	
	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঞ্চ (A) দ্বিগুণ হয় (C) দ্বিগুণেরও বেশী হয় (আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার	'দ্বিগৃণ করা হলে নিবৃত্তি বিভ B) অর্থেক হয় D) দ্বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস	কে ধাতবপ্লেট থেকে দুরে সরিয়ে
	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঞ্চ (A) দ্বিগুণ হয় (C) দ্বিগুণেরও বেশী হয় (আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার	'দ্বিগৃণ করা হলে নিবৃত্তি বিভ B) অর্থেক হয় D) দ্বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস	
(xiii)	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) দ্বিগুল হয় (C) দ্বিগুলেরও বেশী হয় (আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিঙ্গে নিবৃদ্ধি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে	ি দ্বিগুণ করা হলে নিবৃত্তি বিভ B) অর্ধেক হয় D) দ্বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস B) দ্রাস পাবে D) বাড়ডেও পারে; কমডেও	কে ধাতবশ্লেট থেকে দুরে সরিয়ে ও পারে।
(xiii)	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) দ্বিপুণ হয় (C) দ্বিপুণেরও বেশী হয় (আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিজে নিবৃত্তি বিভব, (A) বৃত্তি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো ব্যবহার ব	ি দ্বিগুণ করা হলে নিবৃত্তি বিভ B) অর্ধেক হয় D) দ্বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস B) দ্রাস পাবে D) বাড়ডেও পারে; কমডেও	কে ধাতবশ্লেট থেকে দুরে সরিয়ে ও পারে।
(xiii)	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) দ্বিপুণ হয় (C) দ্বিপুণেরও বেশী হয় (আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিজে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো বাবহার ব	দ্বিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দিগুণের কম হয়। জন্য বাবহার করা হল। উৎস ১) দ্রাস পাবে D) বাড়তেও পারে; কমতেও করা হল। এতে নিবৃত্তি বিভব	কে ধাতবশ্লেট থেকে দুরে সরিয়ে ও পারে।
(xiii)	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) ন্বিপূল্ হয় (C) নিগুলেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিজে নিবৃত্তি বিশুব, (A) বৃত্তি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্শের আলো ব্যবহার বি. (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত	দ্বিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস : ৪) ফ্লাস পাবে : কমতেও চরা হল। এতে নিবৃত্তি বিভব	কে ধাতবশ্লেট থেকে দুরে সরিয়ে ও পারে।
(xiii)	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) ন্বিগুণ হয় (C) ন্বিগুণেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিলে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্গের আলো ব্যবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত বি (C) সর্বাপেক্ষা ক্ষুদ্র তরজাদৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে,	দ্বিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস : ৪) ফ্লাস পাবে : কমতেও চরা হল। এতে নিবৃত্তি বিভব	কে ধাতবশ্লেট থেকে দুরে সরিয়ে ও পারে।
[xiii]	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) ন্বিগুণ হয় (C) ন্বিগুণেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিলে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো ব্যবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (C) সর্বাপেক্ষা ক্ষুদ্র তরজাদৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবা,	ত্বিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) ত্বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস : ৪) দ্রাস পাবে : কমতেও স্বাহল। এতে নিবৃত্তি বিভব হবে,	কে ধাতবপ্লেট থেকে দূরে সরিয়ে র পারে।
[xiii] [xiv]	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) ন্বিগুণ হয় (C) ন্বিগুলেরও বেশী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিজে নিবৃত্তি বিশুব, (A) বৃন্দ্বি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো বাবহার ব (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত (C) সর্বাপেক্ষা ক্ষুদ্র তরজাদৈর্ঘ্যের সজো সম্পর্কযুক্ত (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত নায়। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রভে	ত্বিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) ত্বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস : ৪) দ্রাস পাবে : কমতেও স্বাহল। এতে নিবৃত্তি বিভব হবে,	কে ধাতবপ্লেট থেকে দূরে সরিয়ে র পারে।
[xiti] [xiv]	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঙ্গ (A) দ্বিগুল হয় (C) দ্বিগুলেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিজে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রক পরীক্ষায় একবর্ণের আলো ব্যবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (C) সর্বাপেক্ষা দুর্ঘ্য তরজাদৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত না। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রতে দৈর্ঘ্য। এক্কেন্তে—	দ্বিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দ্বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস এ) দ্রাস পাবে চ) বাড়ভেও পারে; কমতেও করা হল। এতে নিবৃত্তি বিভব হবে, বে,	কে ধাতবপ্লেট থেকে দূরে সরিয়ে র পারে।
(xiv)	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঙ্গ (A) দ্বিগুল হয় (C) দ্বিগুলেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিজে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো ব্যবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (C) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত না। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রভে দৈর্ঘ্য। এক্ষেত্রে— (A) $\lambda_c = \lambda_p$ (B) $\lambda_c < \lambda_p$ (C) $\lambda_c > \lambda_p$	দ্বিগুণ করা হলে নিবৃত্তি বিভ B) অর্থেক হয় D) বিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস B) ফ্রাস পাবে D) বাড়ভেও পারে; কমতেও করা হল। এতে নিবৃত্তি বিভব হবে, বে, দ ঘারা ত্বরান্বিত করা হল। ম	কে ধাতবপ্লেট থেকে দূরে সরিয়ে র পারে।
[xiv] [xv]	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঞ্চর (A) দ্বিপূর্ণ হয় (C) দ্বিপূর্ণেরও বেশী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিঙ্গে নিবৃদ্ধি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো বাবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (C) সর্বাপেক্ষা ক্ষুদ্র তরজাদৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত না। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রভে দর্ঘ্য। এক্ষেত্রে— (A) $\lambda_e = \lambda_p$ (B) $\lambda_e < \lambda_p$ (C) $\lambda_e > \lambda_p$ আলোক তড়িৎ পরীক্ষায় আলোক তড়িৎপ্রবাহমাত্রা বৃদ্ধি	ি দিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস : 3) ফ্লাস পাবে : কমতেও সরা হল। এতে নিবৃত্তি বিভব হবে, বে, দ দ্বারা তুরান্বিত করা হল। ম (D) কোনটাই লয়। ধ পায় যদি—	কে ধাতবঙ্গেট থেকে দূরে সরিয়ে ও পারে। ১ ১ ১ ১ ৩ এবং মু ভাদের দ্য ব্রয় ভরকা
[xiii] [xiv] [xv]	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঙ্গ (A) দ্বিগুণ হয় (C) দ্বিগুণেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিলে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্গের আলো ব্যবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (C) সর্বাপেক্ষা ক্ষুদ্র তরজাদৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত না। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রান্থে দৈর্ঘ্য। এক্কেন্ত্রে (A) মু = মু (B) মু < মু (C) মু > মু আলোক তড়িৎ পরীক্ষায় আলোক তড়িৎপ্রবাহমান্ত্রা বৃদ্ধি (A) আলোক উৎসের তীব্রতা বাড়ানো হয়	া দিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস : : : : : : : : : : : : : : : : : : :	কে ধাতবশ্লেট থেকে দূরে সরিয়ে পারে। , এবং মু ভাদের দ্য ব্রয় ভরজা বাড়ানো হয়
[xiv] [xv] [xvi]	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঙ্গ (A) দ্বিগুণ হয় (C) দ্বিগুলেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিলে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো বাবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (C) সর্বাপেক্ষা ক্রন্থ তরজাদর্য্যের সজো সম্পর্কযুক্ত হ (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত না। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রভে দৈর্ঘ্য। এক্চেন্তে— (A) $\lambda_e = \lambda_p$ (B) $\lambda_e < \lambda_p$ (C) $\lambda_e > \lambda_p$ আলোক তড়িৎ পরীক্ষায় আলোক তড়িৎপ্রবাহমাত্রা বৃদ্ধি (A) আলোক উৎসের তীব্রতা বাড়ানো হয় (C) আলোক উৎসের তীব্রতা কমানো হয়	া দিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস ক্রী ফ্লাস পাবে : ট) বাড়ভেও পারে; কমতেও করা হল। এতে নিবৃত্তি বিভব হবে, বে, দ দ্বারা ত্বরান্বিত করা হল। ম (D) কোনটাই লয়। ধ পায় যদি— ৪) আলোক আপতনের সময় D) আলোক আপতনের সময়	কে ধাতবশ্লেট থেকে দুরে সরিয়ে পারে। পারে। কু এবং মু তাদের দ্য ব্রয় তরক্ষা বাড়ানো হয় কমানো হয়।
[xii] [xv] [xvi] [xvii]	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঙ্গ (A) দ্বিগুণ হয় (C) দ্বিগুলেরও বেশী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিলে নিবৃত্তি বিশুব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রিক পরীক্ষায় একবর্ণের আলো বাবহার ব (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত (C) সর্বাপেক্ষা ক্ষুদ্র তরজাদর্য্যের সজো সম্পর্কযুক্ত (D) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত নার। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রভে দৈর্ঘ্য। এক্ষেত্রে— (A) মূ = মূ (B) মূ < মূ (C) মূ > মূ আলোক তড়িৎ পরীক্ষায় আলোক তড়িৎপ্রবাহমাত্রা বৃদ্ধি (A) আলোক উৎসের তীব্রতা বাঢ়ানো হয় (C) আলোক উংসের তীব্রতা কমানো হয় কোন, অবস্থায় দুই ধরনের কণার মধ্যে অপেক্ষাকৃত	া দিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস ৪) ছ্রাস পাবে - চ) বাড়তেও পারে; কমতেও করা হল। এতে নিবৃত্তি বিভব হবে, বে, দ দারা ত্বরান্বিত করা হল। ম (D) কোনটাই নার। ধ পায় যদি— ৪) আলোক আপতনের সময় ভারী কণার দ্র ব্রয় তরজা দৈ	কে ধাতবশ্লেট থেকে দুরে সরিয়ে ও পারে। ক এবং মু ভাদের দ্য ব্রয় তরক্ষা বাড়ালো হয় কমানো হয়। ব্য অপেক্ষাকৃত কম হবে প
[xiii] [xiv] [xvi] [xvi] (xvii)	ফটো ইলেকট্রক পরীক্ষায় আপতিত আলোর কম্পাঙ্গ (A) দ্বিগুল হয় (C) দ্বিগুলেরও বেলী হয় আলোকের একটি বিন্দু উৎস আলোক তড়িৎ প্রক্রিয়ার নিজে নিবৃত্তি বিভব, (A) বৃদ্ধি পাবে (C) একই থাকবে ফটো ইলেকট্রক পরীক্ষায় একবর্ণের আলো ব্যবহার বি (A) গড় তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (B) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (C) সর্বাপেক্ষা দীর্ঘ তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হ (C) সর্বাপেক্ষা দ্বিঘ্য বরজা সম্পর্কযুক্ত হবে, (B) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (C) সর্বাপেক্ষা ক্রি তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত হবে, (A) তরজা দৈর্ঘ্যের সজো সম্পর্কযুক্ত না। একটি প্রোটন ও একটি ইলেকট্রনকে একই বিভবপ্রান্তে (দর্ঘ্য। এক্ষেত্রে— (A) মূল মূল (B) মূল ২ মূল (C) মূল ২ মূল আলোক তড়িৎ পরীক্ষায় আলোক তড়িৎপ্রবাহমাত্রা বৃদ্ধি (A) আলোক উৎসের তীব্রতা ক্যানো হয় (C) আলোক উৎসের তীব্রতা ক্যানো হয় (ম) ক্যান্থ্য একই বেগে চললে	া দিগুণ করা হলে নিবৃত্তি বিভ ৪) অর্থেক হয় D) দিগুণের কম হয়। জন্য ব্যবহার করা হল। উৎস ক্রী ফ্লাস পাবে : ট) বাড়ভেও পারে; কমতেও করা হল। এতে নিবৃত্তি বিভব হবে, বে, দ দ্বারা ত্বরান্বিত করা হল। ম (D) কোনটাই লয়। ধ পায় যদি— ৪) আলোক আপতনের সময় D) আলোক আপতনের সময়	কে ধাতবশ্লেট থেকে দুরে সরিয়ে ও পারে। ক এবং মু তাদের দ্য ব্রয় তরজা বাড়ানো হয় কমানো হয়। যি অপেক্ষাকৃত কম হবে য়ে চললে

[v] একসি ধাতৃৰ কাৰ্য অপেকক 35eV; ঐ ধাতৃর প্লেট থেকে নিৰ্ণাত ইলেকট্রনকে বন্ধ করতে −1.2 V নিৰ্ণাধ বিভব

[xviii] আল্মিনিয়াম ধাতৃ এবং সোভিয়াম ধাতৃর কার্য-অপেঞ্চক বথাক্রমে 4 2eV এবং 2 0 eV , যথোপযুগ্ধ আলো				
ফেলে তাদের থেকে ফটোনিঃসরণ করা হল। এক্ষেত্রে,				
	(A) দুয়েরই প্রারম্ভ কম্পাক্ত সমান হবে,			
	(B) আলুমিনিয়ামের প্রারম্ভ কম্পাঞ্চ সোভিয়াম	থেকে বেশী হরে,		
	(C) আলুমিনিয়ামের প্রারম্ভ কম্পাঞ্চ সোভিয়াম	থেকে কম হবে,		
	(D) আলুমিনিয়ামের প্রারম্ভ তরজা দৈর্ঘ্য সোডিয়		d d	
[xix] a	কটি ফটো ইলেকট্রক ধাতুর উপর নির্দিষ্ট গ্রীব্রতার	त এবং निर्मिन्छे कम्लाहकत् आहाः ।	্রাসে পড়ন। আলোর তীব্রতা	
4	ক তৃতীয়াংশ কমালে এবং কম্পাঙ্ক তিনগৃণ বাড়	ाल, ফটো ইলেকট্রনের গতিরেগ,		
		গা রুবে (D) বাড়াইও প		
[xx] \(\lambda\)	তরজাদৈর্ঘ্যের এক বর্ণের আলো দারা কোন ধা	তব তলকে উন্থাসিত করলে নিবৃত্তি	विভव व्या 3V0। यथन औ	
ধা	াতব তলের তলকে 2ম তরজাদৈর্ঘোর আলো দ্বারা	আলোকিত করা হয় তখন নিবৃত্তি বি	বভব হয় V ₀ । ধাতৰ তলের	
প্র	ারম্ভ তরঞ্চাদৈর্ঘা,			
(4	A) $\frac{4\lambda}{3}$ (B) 4λ (C) 6λ	(D) 8λ.		
	ফোটন ধাতবতলে পড়ার কতক্ষশ পরে ফটোইট			
[EXI]	(A) 10 10 s (B) 3 × 10 9 s		A LE E Evam. 20061	
[mull]		ह ६२ au १तर ते जान खाशिक ।	বৈতিব্যাণৰ নিবুদ্ধি বিভাব 5V	
[xxii]	আপতিত আলো	5 0.2 EV 41 4 0C-1 4 100)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	1	(B) দশ্যমান অস্থলে অবস্থিত		
	144)	(D) অতিবেগুনি অপ্তলে অবস্থিত।[A I E.E.Evam. 20061	
f		(D) 410011 11 4 601 4 1 10 11	I I I I I I I I I I I I I I I I I I I	
[xxiii]	(A) ফোটন কণার ম্পির ভর শূন্য,			
	(B) ফোর্টন কণার ভরবেগ শূন্য,			
	(C) শুন্য মাধ্যমে ফোটন কণা আলোর সমান (্ বেশে সাজিসাকি কৰে	•	
mar. I	(D) ফোটন ৰূপা মহাকর্ষ বল অনুভব করে।	GACA ALOINIO AGN		
[www.l.	• 1000 g ভরের একটি ইম্পাত বল 1 ms ⁻¹ গমি	মবোগ চলাল তাব সংশ্লিষ্ট দা বয়	তরজা দৈর্ঘ্য	
	(A) 6.626 × 10 ⁻³¹ m	(B) 6.626×10^{-37} m		
213	(C) 6.626×10^{-34} m	(D) 6.626×10^{-34} m (h =	$6.626 \times 10^{-34} \text{ J-s}$	
[www]	আলোকতড়িৎ ক্রিয়া থেকে প্রমাণিত হয়			
	(A) ইলেক্ট্রের তরজাধর্ম	(B) আলোর ঋণাত্মক আধান	A ()	
	(C) আলোর তরজা ধর্ম	(D) আলোর কণা ধর্ম।		
[xxvi]				
[WXA1]	है(नक्कुलित छत्र व्यवः १) वे करों। है(नक्कुलित	त्या आकरम साहित्योहेरात काही-	ইলেকটিক সমীকবণ হাব	
	र्लक्ष्रिभित्र क्षेत्र वर्तर १) व क्ष्मा रह्मक्ष्रिभित्र	CAN OISTA AISTA AISTA	(Co. 1410) 4 a lat 4.4 1 x 6.4	
	$(A) hv + W = \frac{1}{2} mv^2$	(B) $hv + hW = \frac{1}{2}mv^n$		
	(C) $hv - W = \frac{1}{2} mv^2$	(D) $hv - hW = \frac{\lambda}{2}mv^2$.	[Jt. Entrance 2006]	
[xxvii]	v ₁ এবং v ₂ দৃটি কম্পান্তক (v ₁ > v ₂) একটি	ধাতবপৃষ্ঠ থেকে আলোঁকতড়িৎ নিঃ	দরণ করে এবং ইলেকট্রনের	
	সর্বোচ্চ গতিশত্তি দ্বিতীয় ক্ষেত্রে (যেমন কম্পার্থ	ক v2) 4 গুণ হয়। ধাতুর সূচনা কা	ম্পাঙ্ক কত ?	
* 1 17 . 19			[Jt. Entrance 2006]	
	(A) $(4v_1 - v_2)/3$	(B) (4V1 + V2)/3		
4	(C) $(v_1 - v_2)/3$	(D) $(v_1 + v_2)/4$.		
Hints	: $\mathbf{E}_{\text{max}} = h \mathbf{v}_1 - h \mathbf{v}_0$ এবং $4 \mathbf{E}_{\text{max}} = h \mathbf{v}_2$	$-hv_0$; So $4 = (v_2 - v_0)/(v_1)$	- v ₀)	
(B) र्मुनाग	ম্পান প্রণ করো (Fill up the blanks) :			
[i] 3	ফটো ইলেকট্রনগুলির গতিশক্তি নির্ভর করে	উপর কিন্তু	উপর নয়।	
[ii] :	সংপ্ত ফটো ইলেকট্রিক প্রবাহমাত্রা	এর সমানুপাতে বৃদ্ধি পায় ; নিব	্তি বিভব রৈখিকভাবে বৃশ্বি	
	পার আলোর উপর।			
	ফটো-ইলেকট্রিক প্রক্রিয়ার ভিত্তি স	শংরক্ষণ সূত্রের উপর ।		
	ফটে। ইলেকট্রিক প্রক্রিয়ায় নির্গত ইলেকট্রনে সর্বাদ		উপর।	
	m ভর এবং গতিশক্তি k যুক্ত একটি কণার দা			

[vi] দৃটি ধাতু A এবং B এর কার্য অপেক্ষ 3 eV এবং 6 eV। A ধাতুর প্রারম্ভ কম্পাঙ্ক B-ধাতু অপেকা

- (C) फुन कि निर्जुन विठात करता (True or false type):
 - [1] ফোটনের কোন সসীম (finite) স্থির ভর নেই।
 - [ii] আলোকতড়িৎ নিৎসরণ তখনই সম্ভব যখন আপতিত রশ্মির কম্পাঙ্ক প্রারম্ভ কম্পাঙ্কের কম হয়।
 - [iii] আলোক তড়িৎ ধাতবপৃষ্ঠ থেকে নির্গত ফটো ইলেকট্রনের গতিশান্ত আপতিত আলোর তীব্রতার উপর নির্ভরশীল নয়।
 - [iv] কণার দা ব্রয় তরঙ্গা দৈর্ঘ্য কণার সাথে সংশ্লিষ্ট তড়িত আধানের উপর নির্ভর করে।
 - [v] কণা স্থির থাকলে তার কোন দ্য ব্রয় তরজারপ থাকে না।
 - [vi] আইনন্টাইন সর্বপ্রথম ফটো ইলেকট্রিক ঘটনাবলীর কোয়ান্টাম ব্যাখা। দেন।

🖦 গাণিতিক প্রশ

- 1. (a) $3.3 \times 10^{-20}\,\mathrm{J}$ শক্তি সম্পন্ন একটি ফোটনের কম্পাঙক কত ? [Ans. $5 \times 10^{13}\,\mathrm{Hz}$]
 - $[1 \text{ e.V.} = 1.6 \times 10^{-12} \text{ erg are } h = 6.57 \times 10^{-27} \text{ erg}]$
 - (b) একটি অভিবেগুনি আলোকের ভরজা দৈর্ঘ্য $3 \times 10^{-6} \, \mathrm{cm}$; ফোটন কণার সংশ্লিষ্ট শক্তি ইলেকট্রন-ভোগ্ট এককে কি হবে ? $c=3 \times 10^{10} \, \mathrm{cms}^{-1}$.
- 2. $5000~{\rm A}^\circ$ তরজাদৈর্ঘ্যে আলো কোনো ধাতৃতে আপতিত হলে যে ইলেকট্রন নির্গত হয় তার সর্বাধিক গতিশক্তির মান $0.3~{\rm eV}$; ঐ ধাতৃর কার্য অপেক্ষক নির্ণয় করো। $1~{\rm eV}=1.6\times10^{-12}$ আর্গ ; $h=6.640\times10^{-27}~{\rm erg.s.}$ [Ans. $2.19~{\rm eV}$]

[সংক্রেড: $hv = \frac{hc}{\lambda} = \frac{6.640 \times 10^{27} \times 3 \times 10^{-10}}{5000 \times 10^{-8}} \text{ erg} = 2.49 \text{ eV}$; এখন $E_{\text{max}} = hv - \phi$ সমীকরণ প্রয়োগ করো।]

- 3. মলিবভিনামের কার্য অপেক্ষক $4.2~{
 m volt}$; $1000\times10^{-8}~{
 m cm}$ তরজ্ঞাদৈর্ঘ্যের অভিবেগুনি রশ্মি মলিমভিনামের ওপর আপতিত হলে, মুন্ত ইলেকট্রনের সর্বাধিক গতিবেগ কড ? $h=6.62\times10^{-27}~{
 m erg}$ -s; $e=4.8\times10^{-10}$ e.s.u. এবং $m=9.12\times10^{-28}~{
 m g}$. [Ans. $1.78\times10^8~{
 m cms}^{-1}$ (প্রায়)]
- 4. (a) পটাশিয়ামের প্রারম্ভ কম্পান্তক 3×10^{14} হলে, তার কার্য অপেক্ষক কত ? $h = 6.62 \times 10^{-27} \, \mathrm{erg}$ -s.

[Ans. $1.98 \times 10^{-12} \text{ erg}$]

- 5. দত্তার কার্য অপেক্ষক $3.6~{\rm eV}$ । দত্তার প্রারম্ভ কম্পাক্ষক $9\times 10^{-14}~{\rm cps}$. হলে প্লাক্ষের ধ্রুবক নির্ণয় করে।। $[1~{\rm eV}=1.6\times 10^{-12}~{\rm erg}]$ [Ans. $6.4\times 10^{-27}~{\rm erg}$ -s]
- 6. কোনো ধাতুর ক্ষেত্রে আলোক তড়িৎ ক্রিয়ার জন্য প্রারম্ভ তরজাদৈর্ঘ্য $7000~{
 m A}^\circ$ । এর কার্য অপেক্ষক ভোল্ট এককে প্রকাশ করো। $(h=6.60 imes 10^{-27}~{
 m erg-s}~; 1~{
 m eV}=1.6 imes 10^{-12}~{
 m erg}]$ [Ans. 1.76 ${
 m eV}$ (প্রায়)]
- 7. কোনো ধাতুর প্রারম্ভ তরজাদৈর্ঘ্যে $4000~{
 m A}^\circ$ । এর ওপর $2000~{
 m A}^\circ$ তরজাদৈর্ঘ্যের আলো পড়লে নির্গত ইলেকট্রনের সর্বাধিক গতিশক্তি কত হবে ? $h=6.62\times 10^{-27}~{
 m erg}$ -s এবং $1~{
 m eV}=1.6\times 10^{-12}~{
 m erg}$.

[Ans. 3.1 eV]

- 8. একটি খাড় থেকে আলোকডড়িৎ নিঃসরণের প্রারম্ভ তরজাদৈর্ঘ্য $3800~{\rm A}^\circ$; $2600~{\rm A}^\circ$ তরজাদৈর্ঘ্যের অতিবেগুনি আলো ঐ ধাড়র ওপর ফেলা হল। ঐ ধাড়র আলোকডড়িৎ কার্য অপেক্ষক এবং নিঃসৃত ফটো-ইলেকট্রনের সর্বোচ্চ গতিশক্তি নির্ণয় করো। $(h=6.63\times 10^{-27}~{\rm erg.s})$ [Ans. (i) $3.25~{\rm eV}$ (ii) $1.5~{\rm eV}$]
- 9. $7.5 \times 10^{14} \, \mathrm{Hz}$ কম্পাঙ্কের বিকিরণ কোনো ধাতবপৃষ্ঠে আপতিত হলে সর্বাধিক গতিশন্তি $1.6 \times 10^{-19} \, \mathrm{J}$ সহ ইলেকট্রন নির্গত হয়। ঐ ধাতবপৃষ্ঠ হতে ইলেকট্রন নির্গমনের উপযুক্ত বিকিরণের সর্বনিম্ন কম্পাঙ্ক কত হবে ? $h=6.6 \times 10^{-34} \, \mathrm{J}$ -s. [Ans. $5.1 \times 10^{14} \, \mathrm{Hz}$]
- 10. সোডিয়াম ধাকুপৃষ্ঠ থেকে ইলেকট্রন নিঃসরণের জন্য প্রয়োজনীয় শব্তি $2.3~{
 m eV}$; কমলাবর্ণের অলো $(\lambda=6800~{
 m A}^\circ)$ কী সোডিয়াম ধাকুতে আলোকতড়িৎ ক্রিয়া সৃষ্টি করবে ? $h=6.6\times10^{27}~{
 m erg}$ -s এবং $1~{
 m eV}=1.6\times10^{-12}~{
 m erg}$. [Ans. সৃষ্টি করবে ন]

[সংকেড: কমলা বর্ণের আলোক ফোটনের শক্তি = $\frac{hc}{\lambda} = \frac{6.6 \times 10^{-27} \times 3 \times 10^{10}}{6800 \times 10^{-8}} \text{ erg} = 1.826 \text{ eV}$]

 $11.5500 {
m A}^\circ$ তরকাদৈর্ঘ্যের আলোর বেলায় একটি ধাতুর কার্য অপেক্ষক $1.2~{
m eV}$. ই ধাতুর নিপৃত্তি বিভব নির্ণয় করে। $h=6.6\times 10^{-34}~{
m J}$ -s ; $e=1.6\times 10^{-19}~{
m C}$, $1~{
m eV}=1.6\times 10^{-19}~{
m J}$. [Ans. 1.05. V]

3(1014Hz)

- $12.3 imes 10^{-8}\,\mathrm{m}$ তরজ্ঞাদৈর্ঘেরে অতিবেগুনি আলো সোভিয়াম ধাতু থেকে আলোকজ্ঞ ইলেকট্রন নির্গত করে। সোভিয়ামের কার্য-অপেক্ষক অতি সামান্য হলে নির্গত ইলেকট্রনের গতিবেগ নির্ণয় করে। ইলেকট্রনের ভর = $9.1 imes 10^{-31} \, \mathrm{kg}$; $h = 6.6 \times 10^{-34} \text{ J-s}.$ [Ans. $3.8 \times 10^8 \text{ ms}^{-1}$]
- 13.একটি ধাতব তলকে পরপর 0.35 μm এবং 0.54 μm তরজাদৈর্ঘের আলো দারা উদ্ধানত করলে যে ইলেকট্রন প্রবাহ পাওয়া যায় তাদের সর্বাধিক গতিবেগের অনুপাত 2:1. ঐ তলের কার্য অপেক্ষক ইলেক্ট্রন-ভোন্টে নির্ণয় [Ans. 1.875 eV] করো ৷

[সংকেত :
$$\frac{1}{2}m{v_1}^2 = h{v_1} - \phi$$
 এবং $\frac{1}{2}m{v_2}^2 = h.v_2 - \phi$
$$\therefore \frac{{v_1}^2}{{v_2}^2} = \frac{h{v_1} - \phi}{h{v_2} - \phi}$$
 অথবা, $4 = \frac{(hc/\lambda_1) - \phi}{(hc-\lambda_2) - \phi}$ $\therefore \phi = \frac{h}{3} \left(\frac{4c}{\lambda_2} - \frac{c}{\lambda_1}\right)$]

14. একটি আলোকরশ্মিগুছের ভিতর 4144A°, 4972A° এবং 6216A° তরজাদৈর্ঘ্যের তিনটি তরজা আছে। গুছের

মোট তীব্রতা $3.6 imes 10^{-3} \; \mathrm{Wm}^{-2}$ তিনটি তরজোর ভিতর সমভাবে বন্টিত। ঐ রশ্মিগুচ্ছ 2.3 eV কার্য-অপেক্ষকযুক্ত একটি পরিষ্কার ধাত্তব তলের 1 cm² ক্ষেত্রফলে সম্বভাবে আপতিত হল। প্রত্যেক ফোটন একটি ইলেকট্রন নিঃসরণের উপযন্ত শক্তি সমন্বিত ধরে নিলে 2 সেকেন্ডে ঐ তল থেকে নিঃসত ইলেকট্রন সংখ্যা নির্ণয় করো। প্রতিফলন দ্বারা আলো নন্ট হয়নি ধরে নাও।

[Ans. 1.1 × 10¹² (প্রায়)]

 $15.2.2 imes 10^{15}$ কম্পাঙকযন্ত আলো কোনো ধাতব প্লেটে পড়লে, যে ইলেকট্রন নিঃসরণ হয় তাকে সম্পূর্ণরূপে বাধা দিতে 6.6V নিবৃত্তি বিভব প্রয়োজন। আবার, $4.6 imes 10^{15}$ কম্পাঙ্কের আলো বাবহার করলে, প্রয়োজনীয় নিবতি বিভব হয় 16.5 V: এ থেকে ম্যাঙ্ক ধ্রবক h-এর মান নির্ণয় করো। $e=1.6\times 10^{-19}$ C.

[Ans.
$$6.6 \times 10^{-34}$$
J-s]

সিংকেড $*e. (V_e) = hv_1 - \phi$; এবং $e. (V_e)_2 = hv_2 - \phi$;

16. একটি আলোর তড়িৎ পরীক্ষায় ব্যবহৃত আলোর কম্পাঙ্ক এবং নিবৃত্তি বিভবের লৈখিক সম্পর্ক দেখানো হয়েছে

Ans. 4.14×10⁻¹⁵; 0.414 eV [চিত্র 3.6]। $\frac{h}{a}$ অনুপাত এবং কার্য অপেক্ষক নির্ণয় কর। ্ৰ M.C.Q. প্ৰয়ের উত্তর 🗅 (A) (xxi) B (xxvi) C (i) C (vi) D (xi) ((xvi) A (xxvii) A (ii) B (vii) C (xvii) A.C.D (xxii) D (vii) B (iii) C (xxiii) B (viii) B xiii) C (aviii) B (xxiv) C (iv) B (xix) A IXIVI C (ix) D (xxx) D (v) B (XV) ((xx) B (x) A (B) [i] কম্পান্তক, তীব্তা, [ii] জীব্রতা, কম্পান্তক, [iii] শব্রির : [iv] কম্পান্তকর : [v] $\frac{\hbar}{\sqrt{2mk}}$

(C) [i] 뉴널터, [ii] 늘어, [iii] '파널어, [iv] 우리, [v] 뉴널어, [vi] 뉴널어

বোর তত্ত্ব ও এক্সরশ্মি

BOHR'S THEORY AND X-RAY

4.1. পদার্থের পারমাণবিক গঠন (Atomic structure of ma

বর্তমান বৈজ্ঞানিক ধারণা অনুযায়ী কোনো মৌল অসংখ্য পরমাণু ছারা গঠিত। কোনো বিশেষ মৌলের পরমাণুগুলি সবই একই রকমের কিন্তু বিভিন্ন মৌলের পরমাণুগুলি সর্ব বিষয়ে বিভিন্ন। 1897 খ্রিস্টান্দে বিশিষ্ট পদার্থবিজ্ঞানী জে. জে. টমসন যখন ইলেকট্রন আবিদ্ধার করেন তখন থেকেই পারমাণবিক গঠন সম্পর্কে আধুনিক মতবাদ দানা বাঁধতে শুরু করেছিল। সাধারণ অবস্থায় একটি গোটা পরমাণু সর্বদা নিঅড়িত অথচ পারমাণবিক গঠনের মূল উপাদান ইলেকট্রন ঋণাদ্দক তড়িৎযুক্ত-এই তথা থেকে টমসন প্রথম পারমাণবিক গঠনের একটি প্রতিরুপ (model) প্রস্তাব করেন। এই প্রতিরুপ অনুযায়ী পরমাণুকে একটি ধনাত্মক তড়িতাধানের গোলক বলে মনে করা হয়, যে-গোলকের ব্যাসার্ধ পরমাণুর ব্যাসার্ধের সমান। এই ব্যাসার্ধের মাত্রা 10^{-10} m-এর মতো। এই গোলকের ভিতরে ইলেকট্রনগুলি এমনভাবে সাজানো আছে যে তাদের পারম্পরিক বিকর্ষণ বল তাদের ঋণাদ্মক তড়িত এবং পরমাণুর ধনাত্মক তড়িতের ভিতর আকর্ষণ বলের সমান। ইলেকট্রনগুলি অবশ্য স্থির থাকে না। তারা নির্দিষ্ট কম্পাত্কে ম্পন্দিত হতে থাকে। পরমাণু গঠনের এই প্রতিরুপকে বলা হয় টমসন মডেল।

পরবর্তীকালে লর্ড রাদারফোর্ড তেজস্কিয় বন্তু নিঃসৃত আলফা কশার বিক্ষেপ (scattering)সংক্রান্ত যে পরীক্ষা করেন সেই পরীক্ষার ফলাফল থেকে দেখা যায় যে পরমাণুর সমব্যাসার্ধযুক্ত যে ধনাত্মক তড়িতের গোলক টমসন অনুমান করেছিলেন তা গ্রহণযোগ্য নয়। রাদারফোর্ডের পরীক্ষার ফলাফল নির্দেশ করে যে ধনাত্মক তড়িৎ পরমাণুর কেন্দ্রে খুব অল্প পরিসরে জমা করা আছে—সমগ্র পরমাণুর আয়তনে ছড়ানো নেই। ধনাত্মক আধানবাহী অংশের ব্যাসার্ধের মান $10^{-14}\,\mathrm{m}$ অথবা আরও কম। অর্থাৎ সমগ্র পরমাণুর ব্যাসার্ধের দশ হাজার ভাগের এক ভাগ।

এই কারণে 1911 খ্রিস্টাব্দে রাদারফোর্ড পারমাণরিক গঠনের আর একটি প্রতিরূপ প্রস্তাব করেন। এই প্রতিরূপে পারমাণরিক গঠনেক সৌরজগতের গঠনের সজো তুলনা করে বলা হল যে, পরমাণুর কেন্দ্রস্থলে যে অল্পপরিসরে ধনাত্মক তড়িৎ জমা করা আছে—যার নাম তিনি দিলেন কেন্দ্রক বা নিউক্লিয়াস-তা সৌরজগতের সূর্যের ভূমিকা পালন করে। সূর্যের চতুর্দিকে যেমন গ্রহগুলি নিজম্ব কক্ষপথে আবর্তন করে, পরমাণুর ইলেকট্রনগুলিও তেমনি নিউক্লিয়াসের চতুর্দিকে একটি বিশেষ সজ্জায় সজ্জিত কক্ষপথে আবর্তন করে। এইভাবে রাদারফোর্ড পারমাণবিক গঠনের যে প্রতিরূপ প্রস্তাব করেন তাকে নিউক্লিয় প্রতিরূপ (nuclear model) বলা হয়। এর দুটি অংশ (i) পরমাণুর নিউক্লিয়াস যার আয়তন সমগ্র পরমাণুর আয়তনের তুলনায় অতি নগণ্য এবং যার ভিতর পরমাণুর পজিটিভ তড়িৎ ও প্রায় সমস্ত ভর কেন্দ্রীভূত আছে এবং (ii) নিউক্লিয়াসের চতুর্দিকে নেগোটিভ তড়িৎযুক্ত আবর্তনশীল ইলেকট্রন।

4.2. বোর তত্ত্বের সূত্রপাত (Introduction of Bohr's theory

রাদারফোর্ডের পরীক্ষা হতে জানা যায় যে পরমাণুর অভ্যন্তরে একটি অতি ক্ষুদ্র আয়তনযুক্ত নিউক্লিয়াসের অন্তিত্ব আছে যার ভিতর পরমাণুর সমস্ত ভর এবং পঞ্জিটিভ তড়িৎ কেন্দ্রীভূত। এছাড়া পরমাণুর ভিতর বেশির ভাগ জায়গাই শূন্য এবং ঐ শূন্যের মধ্যে ইলেকট্রনগুলি নিউক্লিয়াসের চর্ডুর্দকে আবর্তন করে। কিছু রাদারফোর্ডের এই পারমাণবিক মডেলে কতকগুলি মারাশ্বাক দুর্বলতা ধরা পড়ল। ম্যাশ্বাপ্তয়েলের তড়িৎ চুম্বলীয় তত্ত্ব অনুসারে যখন কোনো তড়িভাধান ইরিংগতিতে গতিশীল হয় তখন তা থেকে তড়িচ্চুম্বলীয় তরজা নিঃসৃত হতে থাকে। পরমাণুর ইলেকট্রনগুলি নিউক্লিয়াসের চর্ডুর্দিকে আবর্তিত হতে থাকলে, নিউক্লিয়াসের অভিমুখে এদের যে অভিকেন্দ্রিক জ্বন উৎপন্ন হবে তার ফলে, এই ইলেকট্রনগুলি কুমাগত শক্তি বিকিরণ করবে। এই বিকিরণের দর্ম কুমাগত শক্তিক্ষয় হতে থাকলে, ইলেকট্রন-কক্ষপথের ব্যাসার্ধ কুমশ হ্রাস পাবে এবং শেষপর্যন্ত ইলেকট্রনগুলি নিউক্লিয়াসের ওপর এসে পড়বে এবং বিলীন হয়ে যাবে। ফলে পারমাণবিক গঠন নন্ট হয়ে যাবে। তাছাড়া নিরবচ্ছিন্নভাবে শক্তি বিকিরণ করলে তা যে-বর্ণালী সৃষ্টি করবে তা নিরবছিন্ন বর্ণালী (continuous spectrum) হবে। কিছু পরীক্ষা করে দেখা যায় যে পরমাণুগুলি রেখা বর্ণালী (line spectrum) তৈরি করে এবং ঐ রেখাগুলি বিচ্ছিন্ন। রাদারফোর্ড প্রস্তাবিত পারমাণবিক গঠনপ্রকল্পকে সনাতন পদার্থ বিজ্ঞান অনুযায়ী বিচার করলে উক্ত দুটি সমস্যার সম্মুখীন হতে হয়। এই সমস্যার সম্মুখান করেন ডেনমার্কের বিশিষ্ট বিজ্ঞানী নীলস্ বোর।

• বোরের বীকার্য (Bohr's postulates) :

পারমাণবিক গঠন সম্পর্কিত উপরোক্ত সমস্যা সমাধানের জন্য বোর তিনটি স্বীকার্যের (postulate) সহায়তা নিলেন। স্বীকার্যগুলি নিম্নরূপ:

- (i) পরমাণুর ভিতর ইলেকট্রন শক্তি বিকিরণ না করেও বিশেষ শর্তাধীন কয়েকটি বন্ধ কক্ষপথে পরিভ্রমণ করতে সক্ষম, যদিও ঐ সকল কক্ষপথে তার গতি সনাতন বলবিদ্যা এবং স্থির তড়িৎ-বিজ্ঞানের সাধারণ নিয়ম দ্বারাই নিয়ন্ত্রিত হবে।
- (ii) পরমাণুর ইলেকট্রন কতকগুলি মঞ্চুরীকৃত (permissible) অথবা বিশেষ শর্ডাধীন কক্ষপথে পরিভ্রমণ করবে অর্থাৎ পরমাণুগুলি কয়েকটি বিশেষ অবস্থায় থাকবে যে অবস্থাগুলিকে বলা হয় 'স্থায়ী' অবস্থা (stationary state)। যে সকল মঞ্চুরীকৃত বা বিশেষ সুবিধাযুক্ত (privileged) কক্ষপথে ইলেকট্রন শক্তি বিকিরণ না করে পরিভ্রমণ করতে পারে সেই সকল স্থায়ী কক্ষপথে ইলেকট্রনের কৌণিক ভরবেগ হবে $h/2\pi$ সংখ্যাটির পূর্ণ গুণিতক। h প্ল্যাঙ্ক প্রবসংখ্যা।
- (iii) কোনো স্থায়ী কক্ষপথ হতে অপর কোনো স্থায়ী কক্ষপথে যদি ইলেকট্রনের সংক্রমণ (transition)ঘটে তবেই পরমাণু শক্তি বিকিরণ বা শোষণ করবে। এই শক্তির পরিমাণ হবে $h \lor$; v = বিকিরণের কম্পাঙ্ক।

शैकार्यगृनित्र गाभा :

বোরের তত্ত্বানুযায়ী নিউক্রিয়াসকে বেন্টন করে ইলেকট্রন ইচ্ছামত যে-কোনো কক্ষপথে আবর্তন করতে পারে না। সনাতন বলবিদ্যা অনুযায়ী ইলেকট্রন নিউক্রিয়াসকে কেন্দ্র করে যে-কোনো বৃত্তাকার কক্ষপথে আবর্তিত হতে পারে। অর্থাৎ সনাতন পদার্থ বিজ্ঞানের নিয়মকানুন ক্ষুদ্রাতিক্ষুদ্র পারমাণবিক জগতে প্রয়োজ্য নয়। কতকগুলি নির্দিষ্ট কক্ষপথ আছে যেগুলিতে ইলেকট্রন আবর্তন করলে ইলেকট্রনের শক্তি অক্ষুয় থাকবে—শক্তির কোনো বিকিরণ হবে না। বোরের এই মতবাদকে বলা হয় 'কোয়ান্টাম শর্ভ'।

চিত্ৰ 4.1

পরমাণুর রাজ্যে সর্বাপেক্ষা সহজতম পরমাণু হল হাইড্রোজেন

পরমাণু। এতে আছে একটি মাত্র ইলেকট্রন এবং একটি পজিটিভ তড়িৎবাহী প্রোটন দ্বারা গঠিত নিউক্লিয়াস। হাইড়োজেন পরমাণু ক্ষেত্রে বোর তাঁর দ্বিতীয় স্বীকার্য প্রয়োগ করে বললেন যে, শক্তি অক্ষুণ্ণ রেখে হাইড়োজেন পরমাণুর ইলেকট্রনটি যে সকল নির্বাচিত কক্ষপথে আবর্তন করবে ঐ সকল কক্ষপথে আবর্তনকালে ইলেকট্রনের কৌলিক ভরবেগ একটি ধ্রুবসংখ্যার পূর্ণ গুণিতক হবে। কোনো একটি কক্ষপথের ব্যাসার্ধ r, ঐ কক্ষপথে ইলেকট্রনের গতিবেগ υ এবং ইলেকট্রনের ভর m হলে, (চিন্তে 4.1)বোরের দিতীয় প্রভাব অনুযায়ী, $m\upsilon r=n\frac{h}{2\pi}\left[h=$ প্রাঙ্ক ধ্রুবক] n=1,2,3, ইত্যাদি হতে পারে। এরা প্রথম, দিতীয়, তৃতীয় ইত্যাদি স্থায়ী কক্ষপথগুলি নির্দেশ করে। n-কে বলা হয় কক্ষপথের মুখ্য কোয়ান্টাম সংখ্যা। এই শর্ভ প্রয়োগ করে কোনো একটি কক্ষপথে ইলেকট্রনের মোট শব্তি হিসাব করলে দেখা যায় এই শব্তিও কতকগুলি সুনির্দিশ্ট মান পায়; ধারাবাহিক মান পায় না।

বোর তাঁর তৃতীয় স্বীকার্যে বললেন যে, বহিস্থ শন্তি প্রয়োগের দ্বারা পরমাণুর ইলেকট্রনকে উদ্দীপিত (excite) করা সম্ভব। এইরূপ উদ্দীপনার ফলে একটি ইলেকট্রন অপেক্ষাকৃত স্বন্ধ শন্তিবিশিষ্ট কক্ষপথে সংক্রমিত হবে। এই প্রক্রিয়ায় পরমাণু বাইরের শন্তি-উৎস হতে ঐ অতিরিক্ত পরিমাণ শত্তি শোষণ (absorption) করে সংক্রমিত হয়। আবার, বিপরীত প্রক্রিয়াও ঘটতে পারে—অর্থাৎ, একটি উদ্দীপিত পরমাণুর ইলেকট্রন কোনো অধিক শক্তিসমন্বিত কক্ষপথে হতে কোনো স্কাতর শত্তি সমন্বিত কক্ষপথেও সংক্রমিত হতে পারে। তথন, ঐ পরমাণু অতিরিক্ত শন্তি তড়িৎ চুম্বকীয় শত্তির আকারে বিকিরণ করবে। তরজাদৈর্ঘ্য অনুযায়ী ঐ বিকিরণ দৃশ্যমান আলোকরশ্মি, অতিবেগুনি এমনকি এক্সরশ্মিও হতে পারে। বোরের তৃতীয় প্রস্তাবানুসারে শোষিত বা বিকীর্ণ শন্তির কম্পাঙক নিম্নলিখিত সমীকরণ হতে পাওয়া যাবেঃ

 $\boldsymbol{E}_2 - \boldsymbol{E}_1 = h \mathbf{v}.$

এম্বলে, E_1 এবং E_2 হবে কক্ষপথ দুটিতে ইলেকট্রনের মোটশন্তির পরিমাণ, ν শোষিত বা বিকীর্ণ শিত্তির কম্পাঙ্ক এবং h প্ল্যাঙ্ক ধুবক। একে বোরের কম্পাঙ্ক শর্ত (frequency condition) বলা হয়।

হাইড়োঞ্জেন বর্ণালী সম্পর্কিত বোর তন্তঃ

আমরা বোরের স্বীকার্যগুলি হাইড়োজেন পরমাণুর ক্ষেত্রে প্রয়োগ করে দেখব কীভাবে বোর হাইড়োজেন

পরমাণু কর্তৃক গঠিত রেখাবর্ণালীর তরজাদৈর্ঘ্য নির্ণয় করেছিলেন। ধরো, আমরা একটি পরমাণুর কথা বিবেচনা করি যার পারমাণবিক সংখ্যা Z অর্থাৎ ঐ পরমাণুর নিউক্লিয়াসে Ze পরিমাণ পজিটিভ ভড়িতাধান আছে এবং তাকে কেন্দ্র করে r_n ব্যাসার্ধের $n^{\rm th}$ বৃত্তাকার কক্ষপথে e পরিমাণ নেগেটিভ ভড়িৎগ্রস্ত একটি ইলেকট্রন পরিভ্রমণ করছে (চিত্র 4.2)। এই পরমাণুটি হাইড্রোজেন সদৃশ পরমাণু কারণ হাইড্রোজেনের ক্ষেত্রে Z=1 এবং হাইড্রোজেন পরমাণুরও একটি ইলেকট্রন আছে। এইরূপ হিলিয়াম পরমাণুর দুটি ইলেকট্রনের একটিকে পরমাণু থেকে বিচ্ছিন্ন করলে যে ধনাত্মক হিলিয়াম আয়ন (He^+) পাওয়া যাবে তার Z=2 কিন্তু ইলেকট্রন একটি। একেও হাইড্রোজেন সদৃশ পরমাণু বলা যাবে।

এখন হাইড়োজেন পরমাণুর ইলেকট্রনের ওপর ক্রিয়াশীল অভিকেন্দ্র বল $=\frac{mv^2}{r_n}$; এই বল আসে নিউক্লিয়াস কর্তৃক ইলেকট্রনের ওপর ক্রিয়াশীল স্থির তাড়িতিক আকর্ষণ (electrostatic attraction)

থেকে। এই আকর্ষণ বল =
$$\frac{Ze.e}{4\pi \in_0 r_n^2} = \frac{Z.e^2}{4\pi \in_0 r_n^2}$$

$$\therefore \frac{mv_n^2}{r_n} = \frac{Ze^2}{4\pi \in_0 r_n^2} \quad \text{অথবা} \quad mv_n^2 = \frac{Ze^2}{4\pi \in_0 r_n} \quad \dots (i)$$

বোরের দিন্তীয় স্থীকার্য অনুযায়ী $m \upsilon_n r_n = \frac{nh}{2\pi}$ অথবা $\upsilon_n = \frac{nh}{2\pi m r_n}$ $[\upsilon_n = n^{\rm th}]$ কক্ষপথে ইলেকট্রনের গতিবেগ]

(i) নং সমীকরণে এই মান বসালে পাই,
$$m\left(\frac{nh}{2\pi m r_n}\right)^2 - \frac{Ze^2}{4\pi \epsilon_0 r_n}$$
 অথবা $r_n = \frac{\epsilon_0 n^2 h^2}{\pi m Ze^2}$ (ii)

এই সমীকরণে n-এর 1,2,3 ইতাদি পূর্ণসংখারে মান বসালে আমরা বিভিন্ন কোরান্টারিত (quantised) কক্ষপথের ব্যাসার্ধ পাব। হাইড়োজেনের ক্ষেত্রে Z=1 এবং n=1 বসালে আমরা হাইড়োজেন পর্মাণুর প্রথম বোর কক্ষপথের ব্যাসার্ধ (r_1) পাই। $r_1=53\times 10^{-12}~{\rm m}$ । এই দৈর্ঘাকে বোর ব্যাসার্ধ (Bohr radius) বলা হয়। এটাকে সাধারণত $r_{\rm B}$ প্রতীক দ্বারা বোঝানো হয়। তাছাড়া, উল্লিখিত হিসাব হতে আমরা nth কোয়ান্টায়িত কক্ষপথে পরিভ্রমণরত ইলেকট্রনের গতিবেগও নির্ণয় করিতে পারি। এই গতিবেগ

$$\upsilon_n$$
 ধনকো $\upsilon_n = \frac{nh}{2\pi m r_n} = \frac{nh}{2\pi m} \times \frac{\pi m Z e^2}{\epsilon_0 \ n^2 h^2} = \frac{Z e^2}{2 \epsilon_0 \ nh}$

বিকিরণের তর্গাদৈর্ঘ্য:

এবার আমরা বোরের তৃতীয় স্বীকার্য প্রয়োগ করে পরমাণু কর্তৃক বিকীর্ণ বর্ণালী রেখার তরজ্ঞাদৈর্ঘ্য হিসাব করব।

 r_n ব্যাসার্ধের কক্ষপথে পরিভ্রমণ করার সময় ইলেকট্রনের অংশত স্থিতিশক্তি এবং অংশত গতিশক্তি থাকে। স্থিতিশক্তির সংজ্ঞা হতে আমরা লিখতে পারি

$$E_p=\int\limits_{r_-}^\infty rac{Ze^2}{4\pi \in_0 \ x^2} \ dx=-rac{Ze^2}{4\pi \in_0 \ r_n} \ ;$$
 নেগোটিভ চিহ্ন হতে বোঝা যায় যে ইলেকট্রনকে

নিউক্লিয়াস থেকে বহুদূরে শূন্য শক্তি স্তরে নিয়ে যেতে গেলে পরমাণুকে শক্তি সরবরাহ করতে হবে।

ইলেকট্রনের গতিশক্তি
$$E_k=rac{1}{2}m{v_n}^2=rac{Ze^2}{8\pi\,\epsilon_0\,r_n}\,\,[({
m i})\,\,$$
 সমীকরণ থেকে $]$

অতএব r_n ব্যাসার্ধের কক্ষপথে ইলেকট্রনের মোট শক্তি

$$E_n = E_p + E_k = -\frac{Ze^2}{4\pi \epsilon_0 r_n} + \frac{Ze^2}{8\pi \epsilon_0 r_n} = -\frac{Ze^2}{8\pi \epsilon_0 r_n}$$

(ii) নং সমীকরণ থেকে
$$r_n$$
-এর মান বসালে পাই, $E_n = -\frac{me^4\mathbf{Z}^2}{8\epsilon_0^2 n^2 h^2} \dots$ (iii)

যখন ইলেকট্রন n_2 কোয়ান্টাম সংখ্যার কক্ষপথ থেকে n_1 কোয়ান্টাম সংখ্যার $(n_2>n_1)$ কক্ষপথে সংক্রমণ করে তখন বোরের ভৃতীয় স্বীকার্য অনুসারে দুই কক্ষপথের শক্তির অন্তরফল একটি $h\nu$ শক্তির ফোটন হিসাবে বিকীর্ণ হয়। অতএব, $E_{n2}-E_{n1}=h\nu$

অথবা,
$$\frac{me^4Z^2}{8\epsilon_0^2 h^2} \left[\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2} \right] = h.v.$$

অথবা,
$$\frac{1}{\lambda} = \frac{me^4Z^2}{8 \in_0^2 ch^3} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \left[\therefore v = \frac{c}{\lambda} \right]$$

হাইড়োজেন প্রমাণুর বেলায় Z=1; কাজেই,

$$\frac{1}{\lambda} = \frac{me^4}{8 \epsilon_0^2 ch^3} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \dots \dots (iv)$$

এখানে
$$R_H=rac{me^4}{8{\it \in_0}^2 {\it ch}^3}=$$
 একটি ধ্রুবসংখ্যা। একে বলে বিভবার্গ ধ্রুবসংখ্যা।

বর্ণালী শ্রেণির উৎপত্তি (Origin of spectal lines)

(iv) নং সমীকরণ থেকে আমরা হাইড্রোজেন কর্তৃক উৎপন্ন বর্ণালী শ্রেণির ব্যাখ্যা পেতে পারি। বোরতত্ত্ব প্রতিষ্ঠার বহু পূর্বে কয়েকজন বিজ্ঞানী পরীক্ষার মাধ্যমে দেখেছিলেন যে হাইড্রোজেন বর্ণালীরেখার তরজাদৈর্ঘ্যগুলিকে কয়েকটি শ্রেণিতে (series) সাজানো যায়। বিভিন্ন শ্রেণির আবিষ্কর্তার নাম অনুযায়ী এই শ্রেণিগুলির নামকরণ করা হয়েছে। শ্রেণিগুলি নিম্নরূপ:

$$1.$$
 লাইম্যান শ্রেণি $ightarrow rac{1}{\lambda} = R_H \left(rac{1}{1^2} - rac{1}{n^2}
ight)$ $[n=2,\,3,\,4\,....]$ [অতিবেগুনি অশ্বলো

$$2.$$
 বামার শ্রেণি $ightarrow rac{1}{\lambda} = R_H \left(rac{1}{2^2} - rac{1}{n^2}
ight) \left[n = 3, 4, 5
ight]$ [দৃশ্যমান অপ্রলে]

$$3.$$
 পাশেন শ্রেণি $ightarrow rac{1}{\lambda} = R_H \left(rac{1}{3^2} - rac{1}{n^2}
ight)$ ইত্যাদি $[n=4,\,5\,....]$ [অবলোহিত অশ্বলো

 R_H ধ্রুবসংখ্যাকে বলা হয় রিডবার্গ ধ্রুবসংখ্যা (Rydberg constant) এবং n একটি অখন্ড সংখ্যা (integer)। বোর সমীকরণ [(iv) নং সমীকরণ] হতে দেখা যায় যে $n_1=1,2,3$ ইত্যাদি এবং $n_2=n$ হলে, আমরা বোর সমীকরণ থেকে হাইড়োজেন বর্ণালীর বিভিন্ন শ্রেণির তরজাদৈর্ঘ্য পাই। অর্থাৎ এক কক্ষপথ হতে অন্য কক্ষপথে হাইড্যোজেন পরমাণুর ইলেকট্রনের সংক্রমণ হলে বিভিন্ন শ্রেণির রেখা বর্ণালীর উৎপত্তি হয় [চিত্র 4.3]। তা ছাড়া, তরজাদৈর্ঘ্যগুলির পরীক্ষালক্ষ্ম মান এবং বোর সমীকরণ থেকে প্রাপ্ত তর্গত (theoretical) মান সুন্দর মিলে যায়। দ্বিতীয়ত

থেকে পাওয়া রিডবার্গ ধুবকের মান এবং বোর সমীকরণ থেকে পাওয়া তন্ত্রগত মানও $\left(R_H = rac{me^4}{8 \,{\epsilon_0}^2 \, ch^3}
ight)$ অবিকল মিলে যায়। রিডবার্গ ধুবসংখ্যার মান $1.0973 imes 10^7 \, {
m m}^{-1}$.

পরমাণ সম্পর্কিত বোরের এই তন্ত্র থেকে হাইটোকেন পরমাণ কর্তুক বিকাশ রেখা বর্ণালী (line spectrum) এবা অন্যান্য আনুষ্যালিক ঘটনাবলির ব্যাখ্যা পাওয়ার সজো সজো এই ওব্ধ বিজ্ঞানীদের দারা গৃহীত হল।

এস্থলে উদ্লেখযোগ্য যে, যদিও হাইড়োজেন পরমাণুতে মাত্র একটি ইলেকট্রন আছে তথাপি হাইড়োজেন পরমাণুকে উদ্দীপিত করলে আমরা একটির পরিবর্তে অনেকগুলি বর্ণালী রেখা দেখতে পাই। এর কারণ কী? একথা মনে রাখা প্রয়োজন যে, আমরা যখন কিছু পরিমাণ হাইড়োজেন গ্যাস নিয়ে উদ্দীপিত (excited) করি তখন ঐ গ্যাসের কোটি কোটি পরমাণু উদ্দীপিত হয়; এই পরমাণুগুলির সব ইলেকট্রন উদ্দীপনার উৎস (source of excitement) হতে সমপরিমাণ শন্তি শোষণ করে না। শোষিত শন্তি অনুযায়ী তারা বিভিন্ন শন্তি সমন্বিত কক্ষপথে চলে যায় এবং পুনরায় স্বাভাবিক কক্ষপথে ফিরে আসার সময় বিভিন্ন পরিমাণ শন্তি বিকিরণ করে। তাছাড়া উদ্দীপিত পরমাণুর সব ইলেকট্রনগুলি বিভিন্ন শন্তি সমন্বিত কক্ষপথে হতে সরাসরি স্বাভাবিক কক্ষপথে না ফিরে প্রথমে নিম্নতর শন্তির কক্ষপথে এসে পরে স্বাভাবিক কক্ষপথে আসতেও পারে। এই সকল কারণে আমরা হাইড়োজেন বর্ণালীতে বিভিন্ন কম্পাঙ্কের বা তরজাদৈর্ঘ্যের একাধিক রেখা দেখতে পাই।

• বোর তত্ত্বের সীমাবন্ধতা (Limitations of Bohr theory):

বর্ণালী রেখার উৎপত্তি এবং পরমাণুর স্থায়িত্ব ব্যাখ্যা করায় চমকপ্রদ সাফল্য অর্জন করলেও বোর তত্ত্বের কিছু সীমাবন্ধতা লক্ষ্য করা যায়। প্রথমত, উপবৃত্তাকার পথে পরিভ্রমণের সন্তাবনা থাকা সত্ত্বেও কেন ইলেকট্টন বৃত্তাকার পথে পরিভ্রমণ করে, তার কোন সন্তোষজনক উত্তর বোর তত্ত্ব থেকে পাওয়া যায় না। এথেকে বোঝা যায়, তত্ত্বিট সার্বিক এবং স্বয়ংসম্পূর্ণ নয়। দ্বিতীয়ত, হাইড্রোজেন পরমাণুর কয়েকটি বর্ণালী রেখা একক রেখা নয়; শন্তির সামান্য তফাৎসহ কয়েকটি রেখার ঘন সন্নিবেশ। বোর তত্ত্ব হাইড্রোজেন পরমাণু বর্ণালীর উত্ত 'সূক্ষ্ম গঠন' (fine structure) ব্যাখ্যা করতে সমর্থ হয়নি।

- (i) বোর তত্ত্বের নিম্নলিখিত আরও কয়েকটি অসঙ্গাতি দেখতে পাওয়া যায় : (i) এই তত্ত্ব কেবলমাত্র হাইড়োজেনের ন্যায় সরল পরমাণু বর্ণালী ব্যাখ্যা করে ; পরমাণুতে একাধিক ইলেকট্রন থাকলে তার বর্ণালী ব্যাখ্যতে বোরতত্ত্ব সম্পূর্ণ অপারগ।
- (ii) পরমাণু নি : সৃত বর্ণালী রেখাগুলির তুলনামূলক তীব্রতা (intensity) কত তা বোর তত্ত্ব থেকে জানা যায় না।
 - (iii) ইলেকট্রনের তরজ্ঞাধর্ম সম্বন্ধে কোন কারণ বোরতত্ত্ব দেখাতে পারে না।
- (iv) ইলেকট্রন কোনো শক্তিস্তারে কভক্ষণ যাবং অতিবাহিত করবে তার কোন ধারণা বোর তত্ত্ব থেকে পাওয়া যায় না।

হাইড়োজেন পরমাণুর শক্তিতর (Energy levels in hydrogen atom):

পূর্বে উল্লেখ করা হয়েছে যে হাইড়োছেন পরমাণুতে বিভিন্ন শক্তিস্তরের কক্ষপথ থাকতে পারে 4.2 অনুচ্ছেদের (iii) নং সমীকরণ থেকে nth কোন্টায়িত কক্ষপথের শক্তির যে রাশিমালা আমরণ পাই তা

$$E_n = -rac{m e^4}{8 c_0^2 \ h^2 . n^2}$$
 (হাইড়োরেনের বেলায় ${f Z}=1$)

ইলেকট্রনের ভর (m), তড়িতাধান (e) প্রভৃতি ধ্বরাশিগুলর মান বসালে এবং শক্তিকে ইলেকট্রন-ের্ভার্ট এককে প্রকাশ করলে, প্রথম কোষান্টায়িত কক্ষপথের (n=1) শক্তি হয় $E_1=-13.6~{\rm eV}$ n=2,3, ইত্যাদি বস্পতের আমরা অন্যান্য কোয়ান্টায়িত কক্ষপথের শক্তি নির্দ্ধ করতে পারি। নিমে বিভিন্ন কক্ষপথের শক্তির মান দেওয়া হল।

Andreas de la Companya del companya della companya			
	1	-13.6 eV	
	2	-3.4 ,,	
	3	-1.5 ,,	
	4	- 0.85	
	5	-0.54	
	6	-0.38 ,,	
		0 ,,	

এই তালিকা থেকে বোঝা যায় যে ইলেকট্রনকে যদি (13.6 – 3.4) = 10.2eV শন্তি সরবরাহ করা যায় তবে ইলেকট্রন প্রথম কক্ষপথ থেকে দ্বিতীয় কক্ষপথে সংক্রমণ করবে। অনুরূপভাবে যদি (13.6 – 0) = 13.6 eV শন্তি সরবরাহ করা হয় তবে এ ইলেকট্রন পরমাণু থেকে বিমৃত্ত হবে এবং ধনাত্মক তড়িৎ যুক্ত নিউক্লিয়াস অর্থাৎ, প্রোটন পড়ে থাকবে। ঐ অবস্থায় পরমাণুকে বলা হয় আয়নিত পরমাণু (ionised atom)।

বর্ণালী গঠন করার জন্য এক কক্ষপথ থেকে জন্য কক্ষপথে কিভাবে ইলেকট্রনের সংক্রমণ হয় তা শক্তিন্তরের চিত্র দ্বারাও বোঝানো যেতে পারে। এই চিত্রে (4.4 নং) প্রমাণর বিভিন্ন শক্তিপ্রকৃত্ব কতকগুলি

অনুভূমিক রেখা দারা বোঝানো হয়েছে। যে দুই স্তরের ভিতর ইলেকট্রনের সংক্রমণ হয়ে কোনো বিশেষ বর্ণালী রেখা উৎপন্ন হয় তা ঐ দুই প্ররের ভিতর মিছিকত একটি উল্লম্ব রেখা দারা প্রকাশ করা হয়। উল্লম্ব রেখার তলায় তির চিহ্ন দিয়ে বোঝানো হয় কোন্ শক্তিয়র থেকে কোন্ শক্তিয়র সংক্রমণ ঘটছে। যেমন, বামার প্রেণির বর্ণালীর প্রথম রেখাটি 1.51 eV শক্তিয়র থেকে অথবা ৪ নং কোয়ালীয় সংখ্যার কক্ষপথে ইলেকট্রনের সংক্রমণ হলে গঠিত হবে। বলা বাহলা সর্বনিম্ন শক্তিয়রটি পরমাণর স্বাভাবিক অবস্থা অথবা অন্দৌপ্তি (unexcited or ground state) অবস্থা বোঝায়। উচ্চ শক্তিয়র পোকে এই স্বভাবিক স্তরে সংক্রমণ হলে লাইমান্য শ্রেণির বর্ণালী রেখা সৃষ্টি হবে। ব.ব.ব.ব. চিত্র

থেকে দেখা যায় কোষান্ত্র সংখ্যা n যাত বৃদ্ধি পায়, শক্তি স্তরগুলি ৩৩ উপরের দিকে কো প্রক্রপারের খ্ব কাচাকাচি চলে আদে। n এর মান যখন খব উচ্চ, তখন শক্তিরর্গালর বাবধান বিদ্যান কচিন হয়ে পড়ে। যখন $n=\alpha$, তখন শক্তির মান হয় শুল। স্পেটিও ইলেকট্রন তখন নিউক্রিয়াস থেকে এসান দরত্বে চলে যায় অথ বা প্রমাণু তখন আয়নিত (ionised) ইয়।

তাইড়েজেন প্রনাণর আয়নয়ন শক্তি ও আয়নয়ন সিত্র (Ionisation energy and ionisation potential of hydrogen atom):

হাইট্রেণ্ডেন প্রমাণতে একনি লাগে ইলেকট্র আছে। বাইরে থেকে শান্তি সরবরত করে ঐ ইন্দেকট্রকে যদি প্রমাণ হতে অপদারণ তবা এই এপাং অসম দর্শন্ধ নিয়ে যাওয়া এম এব প্রমাণ হতে হয়। ঐ শান্তিকে বলা এই প্রমাণক আয়ানয়ন শান্তি। যে বিভবপ্রভানের ভিতর নিয়ে বিশ্ব করে। তবা একনি ইন্দেকট্রন উপ্রোক্ত লাভ করে। তবা এই আয়ানয়ন বিভব Homisation potential। তবা এই।

এখন, n_1 কোয়ান্টাম সংখ্যার কক্ষপথ থেকে n_2 কোয়ান্টাম সংখ্যার কক্ষপথে ইলেকট্রনের সংক্রমণ হতে যদি E পরিমণে শক্তির প্রয়োজন হয় তবে, বোরতত্ত থেকে আমরা লিখতে পারি,

$$E = \frac{me^4}{8 \epsilon_0^2 h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

যদি $n_2=\omega$ এবং n=1 ধরা যায় তাহা হলে E হরে আয়নয়ন শক্তি। অতএব আয়নয়ন শক্তি

$$E = \frac{me^4}{8 \epsilon_0^2 h^2}$$
; $m = 9.1 \times 10^{-31} \text{ kg}$; $e = 1.6 \times 10^{-19} \text{C}$ and $h = 6.63 \times 10^{-34} \text{ Js}$.

এবং $\epsilon_0=8.854 imes 10^{-12}$. অতএব, $E=2.17 imes 10^{-18}\,\mathrm{J}=13.6\,\mathrm{eV}$ প্রায়। অতএব, হাইন্ডোজেন প্রমাণ্র আয়নয়ন শক্তি $13.6\,\mathrm{eV}$ এবং আয়নয়ন বিভব $=13.6\,\mathrm{V}$.

উপরোক্ত পরিমাণ শক্তিকে অনেক সময় শক্তির একক হিসাবে গণ। করা হয়। এই একক-কে বলা হয় "রিডবার্গ" (প্রভীক R_v)। $1R_v=2.17 imes 10^{-18} \, \mathrm{J}$ (প্রায়)।

। দুষ্টব্য : মনে রাখনে রিডবার্গ ধ্রুবসংখ্যা এবং শক্তির একক রিডবার্গ পৃথক রাশি।

উদ্দীপন বিভব (Excitation potential):

হাইড়েগ্রেল পরমাণর ইলেকট্রনটি একাধিক স্থায়ী কক্ষপথে পরিপ্রমণ করতে পারে। এক কক্ষপথ হতে অন্য কক্ষপথে সংক্রমণ করতে হলে ইলেকট্রনকে বাইরে থেকে শক্তি সরবরাহ করতে হয়। সাধারণ বা অনুদ্দীপিত অকথায় ইলেকট্রন যে কক্ষপথে থাকে তাকে বলা হয় ভৌমস্তর (ground level)। ভৌমস্তরে থাকা হাইড়োক্রেন পরমাণুকে অনা কোন উদ্দীপিত স্তরে (excited state) পাসতে হলে যে নৃনেতম শক্তির প্রয়োজন তাকে ঐ স্তরের উদ্দীপন শক্তি বলে। যে বিভবপ্রভেদের ভিতর দিয়ে একটি ইলেকট্রনকে পাসলে ইলেকট্রন উত্ত শক্তি কর্বের তাকে উদ্দীপন বিভব বলে। যেহেত্ ইলেকট্রন ভৌমস্তর হতে বিভিন্ন উদ্দীপিত স্তরে সংক্রমণ করতে পারে তাই উদ্দীপন বিভবত বিভিন্ন হতে পারে। যেমন হাইড়োজন পরমাণু ভৌমস্তর হতে প্রথম উদ্দীপিত স্তরে গেলে উদ্দীপন বিভব হবে 10.2V. দিহীয় উদ্দীপিত স্তরে গেলে হবে 12.07 V ইত্যাদি।

4.5. এক্সরশ্যির আবিদ্ধার (Discovery of X-rays):

1895 খ্রিস্টান্দে জার্মান বিজ্ঞানী উইলহেল্ম রন্ট্রেন মোঞ্চণ নলে খ্র নিম্নচাপ সৃষ্টি করে বামুমধ্যে তড়িছ মোঞ্চণের পরাঞ্চা করতে লিয়ে এক অভাবনীয় ঘটনা লক্ষ্ণ করেন। মোঞ্চণজনিত আভা ভালোভাবে লক্ষ্ণ করবার জন্য তিনি মোক্ষণনলের চঙুদিকে কালো রায়ের প্রত্যা করেই নোক্ষণনল হতে কিছ্দুরে নির্নেচিলেন। তিনি লক্ষ্ণ করেন যে যতবারই তড়িছমোক্ষণ পাসানো হঙ্গে ততবারই নোক্ষণনল হতে কিছ্দুরে রাখ্য একটি ব্রিয়াম প্রাচিনোসায়ানাইছ প্লেট উজ্জ্বল হয়ে উঠাছ কিনি আকা করতে যে আক্ষণনল এবং বেরিয়াম প্রাচিনোসায়ানাইছ প্লেটের মার্কখনে মোটা ধাতর চার্কাত রাখলে প্রেটে এ চার্কাতর ছায়া প্রত্যা কিন্তু হালালারইছ প্লেটের মার্কখনে মোটা ধাতর চার্কাত রাখলে প্রেটে এ চার্কাতর ছায়া প্রত্যা কিন্তু হালালার বিজ্ঞাত লালারকা হালালিক হালা তিনি মানে মানে মিনি আন মানে মিনি বিজ্ঞাত কলা। তিনি মানে মানে মিনি হালালার করিছেল করেন করেলেন হালালার স্বাচনার করিছেল করেন হালালার স্বাচনার স্বাচনার উল্লেচ্ছ যা কোলোলালালার হালালার স্বাচনার করিছেল করেন ইন্সানার স্বাচনার উল্লেচ্ছ হালালার স্বাচনার মানি মানে বিজ্ঞাত করেন বিজ্ঞাত করেন করেলের জালা না আকা হালালার স্বাচনার স্বাচনার করিছেল করেন হালালার মানি স্বাচনার স্বাচনার স্বাচনার বিজ্ঞান স্বাচনার স্বাচনার স্বাচনার করিছেল করেন আলা না আকা হালালার মানি বিজ্ঞানার করিছেল করেন করা হালার করিছে বিজ্ঞান করেন হালা করিছেল বালার হালার করা হালার করা হালার করিছেল স্বাচনার হালা স্বাচনার হালার করা হালার করা হালার হালার হালা স্বাচনার হালা স্বাচনার করা হালার করা হালার হালার হালার বালার বালার বালার বালহার করা হয়।

4.6. এক্সরশাির বৈশিক্টা (Characteristics of X-rays):

বিজ্ঞানীদের সমবেত প্রক্রেন্টায় নানারকম পরীক্ষানিরীক্ষার মাধ্যমে এক্সরশ্মির নির্মালখিত বৈশিষ্ট্য আবিষ্কৃত হয়েছে।

- (i) এক্সরশ্মি তড়িৎক্ষেত্র বা টৌম্বকক্ষেত্র দ্বারা বিক্ষিপ্ত হয় না। এথেকে বোঝা যায় যে এক্সরশ্মি তড়িৎ
 চুম্বকীয় তরজা; তড়িদ্বাহী কণিকা নয়।
- (ii) আলোর মতো এক্সরশ্মি সরল রেখায় চলাচল করে। শূন্য মাধ্যমে এর গতিবেগ আলোর গতিবেগের সমান—অর্থাৎ $3\times 10^8\,{
 m ms}^{-1}$ ।
 - (iii) একারশ্মির ভেদনশক্তি আছে।
 - (iv) বেরিয়াম প্লাটিনোসায়ানাইড, জিঙক সালফাইড প্রভৃতি বস্তুতে এক্সরশ্মি প্রতিপ্রভা সৃষ্টি করে।
 - (v) এক্সরশ্মি গ্যাসকে আয়নিত করে।
 - (vi) ফোটোগ্রাফী শ্লেটের ওপর এক্সরশ্মির প্রতিক্রিয়া আছে।
- (vii) এক্সরশ্মি আলোকতড়িৎ ক্রিয়া, ব্যতিচার, অপবর্তন, সমবর্তন ইত্যাদি সকলপ্রকার আলোকীয় ধর্ম প্রদর্শন করে।

4.7. বৈশিষ্ট্যমূলক এক্সরশ্মি (Characteristic X-rays) :

এক্সরশ্মি নল থেকে যে এক্সরশ্মি পাওয়া যায় তাতে বিভিন্ন তরজ্ঞা দৈর্ঘ্যের রশ্মি বর্তমান। বৈশিষ্ট্যমূলক এক্সরশ্মির তরজ্ঞাদৈর্ঘ্য প্রাথমিক এক্সরশ্মির তরজ্ঞাদের্ঘ্যের সমান অথবা কম হয়। উচ্চ পারমাণবিক ভরযুক্ত

বন্তু থেকে আগত বৈশিন্টমূলক এক্স-রশ্মির তরজাদৈর্ঘ্য নিম্নপারমাণবিক ভর যুক্ত বন্তু থেকে আগত রশ্মির তরজাদৈর্ঘ্য অপেক্ষা হ্রস্বতর। প্রত্যেক বন্তুই একগুচ্ছ বৈশিন্ট্যমূলক এক্সরশ্মি উৎপন্ন করে এবং এদের K, L, M প্রভৃতি বিভিন্ন শ্রেণিতে বিভন্ত করা হয়। এক্সরশ্মি নল থেকে নির্গত বিভিন্ন তরজা দৈর্ঘ্যের রশ্মির তীব্রতা পরিমাপ করে তরজাদৈর্ঘ্যের সজো তীব্রতার পরিবর্তন লেখচিত্রের সাহায্যে দেখানো যায়। একে বর্ণালী চিত্র বলা হয়। বৈশিষ্ট্যমূলক এক্সরশ্মি বর্ণালী গঠিত হয় কয়েকটি বিশেষ বিশেষ তরজাদৈর্ঘ্যের বর্ণালী রেখা ঘারা। এরা অবিচিছন বর্ণালীর ওপর সমাপাতিত থাকে। মলিবতিনাম ধাতৃ নির্মিত টার্গেট যে বৈশিষ্ট্যমূলক

এক্স রশ্মি বর্ণালী তৈরি করে তা 4.5 নং চিত্রে দেখানো হল। চিত্র থেকে দেখা যায় যে অঙ্ক তীব্রতার অবিচ্ছিন্ন বর্ণালীর ওপর উচ্চ তীব্রতার দুটি তীক্ষ্ণ চূড়া সমাপতিত হয়েছে। এই চূড়া দুটি 0.71\AA এবং 0.63\AA মানের দুটি বিশেষ তরজাদৈর্ঘ্য দ্বারা সৃষ্টি হয়েছে। সাধারণভাবে চূড়া দুটিকে টার্গেটি ধাতুর বৈশিষ্ট্যমূলক রেখা বলা হয়। বৈশিষ্ট্যমূলক বর্ণালীর তরজাদৈর্ঘ্য নির্ভর করে এক্সরশ্মি নলে ব্যবহৃত টার্গেটি ধাতুর ওপর।

● বৈশিষ্ট্যমূলক এক্সরশ্মির উৎপত্তি (Origin of characteristic x-rays): মনে করো আমরা Z পারমাণবিক সংখার একটি মৌলের কথা বিকেনা করছি। মৌলের পরমাণতে Ze পরিমাণ ধনাত্মক তড়িৎযুক্ত নিউক্রিয়াস থাকবে এবং নিউক্রিয়াসের চতুর্দিকে Z-সংখাক ইলেকট্রন থাকবে। এই ইলেকট্রনগুলি একটি রীতি অনুযায়ী সাজানো থাকে এবং এক একটি সজ্জাকে বলা হয় খোলক (shell)। দেখা গোছে য়ে নিউক্রিয়াসের সর্বাপেক্ষা নিকটবতী য়ে খোলক তাতে মাত্র দৃটি ইলেকট্রন থাকে। পরের খোলকটিতে থাকে আটিটি। তৃতীয় খোলকে 18টি—এইরকম বিভিন্ন খোলকে বিভিন্ন সংখক ইলেকট্রন সজ্জিত থাকে। এই খোলকগুলির নামকরণ করা হয়েছে K, L, M ইত্যাদি।

এমন মনে করো, বাইরে থেকে একটি শক্তিশালী ইলেকট্রন এসে প্রমাণুর অন্তরতম K-খোলক

থেকে দুটি ইলেকট্রনের একটিকে ছিটকে বার করে দিল [চিত্র 4.6]। ফলে, K খোলকে একটি শূন্যস্থান তৈরি হবে [চিত্র 4.6(b)]। উচ্চতর খোলক থেকে একটি ইলেকট্রন সংক্রামিত হয়ে ঐ শূন্য স্থান পূরণ করতে পারে। ঐরকম ইলেকট্রন সংক্রমণ ঘটলে দুই খোলকের শক্তির পার্থক্য একটি এক্সরশ্মি ফোটন রূপে নির্গত হবে। 4.6(c) নং চিত্রে L খোলক থেকে K খোলকে একটি ইলেকট্রনের ওইরূপ সংক্রমণ দেখানো হয়েছে। নির্গত এক্সরশ্মিকে তখন K_{α} এক্সরশ্মি বলা হবে। ঐ রশ্মির কম্পাঙ্ক v_1 হলে $hv_1=W_K-W_L$; এক্ষেত্রে W_K এবং W_L যথাক্রমে K এবং L খোলকের শক্তির পরিমাণ।

একইরকম ভাবে M খোলক থেকে একটি ইলেকট্রন K খোলকের শূন্যস্থান পূরণ করলে, K-শ্রেণির

দ্বিতীয় তরজাদৈর্ঘ্যের এক্সরশ্মি (K_{eta}) উৎপন্ন হবে।

আবার একটি ইলেকট্রন L খোলক ছেড়ে চলে এলে ওই খোলকে যে শূন্য স্থান তৈরি হবে তা M অথবা N খোলকের কোনো ইলেকট্রন পূরণ করবে। এ অবস্থায় L শ্রেণির বৈশিষ্ট্যমূলক এক্সরশ্মি উৎপশ্ন হবে।

এইভাবে বিভিন্ন মৌল K, L, M ইত্যাদি শ্রেণির বৈশিষ্ট্যমূলক এক্সরশ্মি বর্ণালী গঠন করে।

4.8. মোজলে সূত্ৰ (Moseley's laws) :

1913-14 খ্রিস্টাব্দে বিটিশ বিজ্ঞানী মোজলে বৈশিন্টামূলক এক্সরশ্যির বর্ণালী সম্বন্ধে বিস্তারিত অনুসন্ধান করেন। হালকা অ্যালুমিনিয়াম থেকে শুরু করে ভারী মৌল সোনা পর্যন্ত 38 টি বিভিন্ন মৌলকে অ্যান্টিক্যাথোডরূপে ব্যবহার করে তিনি তাদের বৈশিন্ট্যমূলক এক্সরশ্মি উৎপন্ন করেন এবং নির্ভুলভাবে তাদের তরজাদৈর্ঘ্য পরিমাপ করেন। পরীক্ষার ফলাফল থেকে তিনি কোনো একটি বিশেষ বর্ণালী রেখার কম্পাঙ্ক V

এবং যোসকল যৌল ঐ বর্ণালা রুখা উৎপন্ন করে গণের প্রবাদানিক সংখ্যা Z-এর ভিতর একটি সরল সম্পর্ক প্রতিষ্ঠা করেন। তিনি দখাতে পান কম্পান্তক পার্যাণানিক সংখ্যার বর্ণের স্মান্পর্ণতক অর্থাৎ, $v \propto Z^2$ । একে **মোজলে সূত্র** বলা হয়। গণিণ্ডর সাথানো এই সূত্রকে নির্মালিখিতভাবে প্রকাশ করা যায় : $\sqrt{v} = a(Z-b)$ রোখানো a এবং b দুটি ধ্বুবর্নালা।

মোজনে উপরোপ্ত পর্যবেক্ষণ থেকে দৃটি লেখচিত খাঁকেন (চিত্র 4.7) ঃ (i) বিভিন্ন মৌলের পারমাণবিক ভর এবং তাদের বৈশিষ্টামূলক একারশার কম্পান্তক এবং (ii) বিভিন্ন মৌলের পারমাণবিক সংখ্যা এবং তাদের বৈশিষ্টামূলক একারশার কম্পান্তক। তিনি যে-কোন একটি বিশেষ প্রেণির (K, L ইতাদি) বেলায় দেখতে পান যে প্রথম ক্ষেত্রে বিন্দৃগুলি প্রায় একটি সরল রেখার ওপর অবস্থান করে কিন্তু দ্বিতীয় ক্ষেত্রে বিন্দৃগুলি সব ঠিক ঠিক সরল রেখার ওপর অবস্থান করে। এথেকে তিনি এই গুরুত্বপূর্ণ সিন্ধান্ত করেন যে, একটি মৌলের প্রকৃত পরিচয় তার পারমাণবিক সংখ্যাতেই নিহিত, পারমাণবিক ভর বা ভারেন নয়। মোজনে সূত্র থেকে পারমাণবিক সংখ্যা সন্ধন্ধে বিজ্ঞানীদের ধারণা দৃঢ় হয়।

• বোর তত্ত্বান্যায়ী মোজলে সূত্রের ব্যাখ্যা (Explanation of Moseley's law according to Bohr's theory):

এঞ্চারশ্মির কোন একটি বিশেষ বর্ণালী রেখার কম্পাড়ক v এবং যে মৌল ঐ বর্ণালী রেখা উৎপন্ন করে তার পারমাণবিক সংখ্যা Z—এ দুয়ের ভিতর যে সম্পর্ক মোজলে নির্ণয় করেন তা নিম্নরুপ :

$$\sqrt{v} \propto (Z-b)$$
 অথবা $\sqrt{v} \propto a \, (Z-b)$ য়েখানে a এবং b দৃটি ধ্রবরাশি।

পূর্বে উল্লেখ করা হয়েছে যে বৈশিষ্টামূলক এক্সর্রাশ্য বর্ণালীতে K,L,M প্রভৃতি প্রেণিতে ভাগ করা হয়। যেকোনো প্রেণিতে আবার একাধিক বর্ণালী রেখা দেখতে পাওয়া যায়। যেমন, K প্রেণিতে চারটি রেখা আছে। এদের বলা হয় $K_{\alpha},K_{\beta},K_{\gamma}$ এবং K_{α} রেখা। এখন K_{α} রেখার বেলায় দেখা যায় যে ধুবক $a=\frac{3}{4}\,c\,R_H$ এবং b=1; এম্থালে R_H বোর তত্ত্বে উল্লিখিত রিডবার্গ ধুবসংক্যা এবং c= আলোর গতিবেগ। অতএব K_{α} রেখার বেলায় মোজলে সূত্র দাঁড়ায়, $v=\frac{3}{4}\,c\,R_H$ $(Z-1)^2$

=
$$cR_H (Z-1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right) \dots (i) \left[\frac{3}{4} = \left(\frac{1}{1^2} - \frac{1}{2^2}\right)\right]$$

বোরতত্ত্ব আলোচনা করার সময় আমরা দেখেছি যে হাইড্রোজেন সদৃশ পরমাণুর বর্ণালী রেখাগুলির তরজাদৈর্ঘ্য নিম্নলিখিত সমীকরণ থেকে পাওয়া যায়

$$rac{1}{\lambda} = R_H Z^2 \Biggl(rac{1}{{n_1}^2} - rac{1}{{n_2}^2}\Biggr) \ \ [4.2$$
 অনুচ্ছেদের (iv) নং সমীকরণ]

অথবা,
$$v = \frac{c}{\lambda} = Z^2 c R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 (ii)

(i) এবং (ii) নং সমীকরণ তুলনা করলে দেখা যায় যে $n_1=1$ এবং $n_2=2$ এথেকে আমরা বুঝতে পারি যে হাইড্রোজেন (Z=1) পরমাণুর ক্ষেত্রে যেমন n=2 (অর্থাৎ, L খোলক) হতে n=1 (অর্থাৎ, K খোলক) কক্ষপথে ইলেকট্রনের সংক্রমণ হলে লাইম্যান শ্রেণির বর্ণালী রেখা উৎপন্ন হয় তেমনি ভারী কোনো মৌলের ক্ষেত্রে (পারমাণবিক সংখ্যা =Z) ইলেকট্রনের ঐরকম সংক্রমণের ফলে এক্সরন্থি বর্ণালীর K_n রেখা উৎপন্ন হয়।

প্রশ্ন উঠতে পারে যে বোরতত্ত্বে হাইড্রোজেন বেলায় $\mathbf{Z}=1$ আসে কিন্তু মোজলে সূত্রে \mathbf{Z} এর পরিবর্তে

(Z-1) আসছে। এই পার্থকোর হেও কি १ একথা মানে রাখা দরকার যে বারওও একটি ইলেকট্রন যুঙ্গ হাইড্রেডেন বা হাইড্রেডেন সদশ পরমাণ্র রেলায় প্রয়োজন হাইড্রেডেন পরমাণ্র ইলেকট্রনটি নিউক্রিয়াসের সমগ্র অধান +Ze কঠুক উৎপন্ন ওড়িংক্ষেত্রে এক কক্ষপথ থোকে জন্ম কক্ষপথে সংক্রমিও হয়। কিছু ওারী মৌলের বেলায় K খোলকে দটি ইলেকট্রন থাকে, তাদের একটি খোলকচ্যও খলে অন্যটি K খোলকেই থোকে যায়। ফলে, এক্সবিদ্ধা বিকিরণকারী L খোলকের ইলেকট্রনের উপর নিউক্রিয়াসের সমগ্র আধান +Ze কিয়া করতে পারে না। K খোলকে অবস্থানরত ইলেকট্রনেটি নিউক্রিয়াস ঘিরে খাকে বলে L -খোলকে ইলেকট্রনের সংক্রমণ (Z-1)০ ওড়িতাধান কর্তৃক সৃষ্ট ওড়িৎক্ষেত্রে সংঘটিত হয়। এই কারণে মোজলে সূত্রে Z-এর পরিবর্তে (Z-1) রাশি আসে।

□ Examples □

 $m{0}$ (a) হাইড়োজেন পরমাণুর প্রথম বোর কক্ষণথের ব্যাসার্থ নির্ণয় করে। $h=6.63 imes 10^{-81}~\mathrm{J}\cdot\mathrm{s}$; ইলেকট্রনের ভর = $9.1 imes 10^{-13}~\mathrm{kg}$; ইলেকট্রনের ভড়িভাধান = $1.6 imes 10^{-19}\mathrm{C}$.

উ ঃ। হাইড়োজেন প্রমাণুর
$$n$$
th কক্ষপথের ব্যাসার্ধ $r_n = \frac{\epsilon_0 \; n^2 h^2}{\pi m e^2}$

প্রথম কক্ষপথের বেলায় n=1; অতএব,

$$r_1 = \frac{8.854 \times 10^{-12} \times 1^2 \times (6.63 \times 10^{-34})^2}{3.14 \times (9.1 \times 10^{-31}) \times (1.6 \times 10^{-19})^2} = \mathbf{53} \times \mathbf{10}^{-12} \, \mathbf{m} \quad \text{(প্রায়)} \, \mathbf{I}$$

[দ্রং হাইটোজেন পরমাণুর ক্ষেত্রে r_1 -কে বোর ব্যাসার্ধ $(r_{_B})$ বলা হয়। উপরোক্ত সম্পর্ক হতে লেখা যায় $r_n=n^2.r_{_D}$]

(h) হাইড়োজেন পরমাণুতে তৃতীয় কক্ষপথে আবর্তনশীল ইকেলট্রনের কৌণিক ভরবেগ কত ? $h=6.6\times 10^{-27}~{
m erg\cdot s.}$

উ ঃ। $n^{ ext{th}}$ কক্ষপথে ইলেকট্রনের কৌণিক ভরবেগ $= nh/2\pi$; অতএব, তৃতীয় কক্ষপথে কৌণিক

ভাবেগ =
$$\frac{3h}{2\pi}$$
 = $\frac{3 \times 6.6 \times 10^{-27}}{2 \times 3.14}$ = 3.153 × 10⁻²⁷ gcms⁻¹.

2 হাইড়োজেন পরমাণুর ইলেকট্রনের n=4 থেকে n=3 কক্ষপথে সংক্রমণ হলে নিঃসৃত ফোটনের তরঙ্গাদৈর্ঘ্য কত হবে ? রিডবার্গ ধ্রুবসংখ্যা = 109737 cm^{-1} .

উ :। বোর তত্ত্ব অনুযায়ী নিঃসৃত ফোটনের তরজাদৈর্ঘ্য

$$\frac{1}{\lambda} = R_H \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2} \right) [R_H =$$
 রিডবার্গ ধ্রুবসংখ্যা]

প্রমান্যায়ী, $R_H = 109737 \text{ cm}^{-1}$; $n_2 = 4$ এবং $n_1 = 3$.

$$\therefore \frac{1}{\lambda} = 109737 \left(\frac{1}{9} - \frac{1}{16} \right) = 109737 \times \frac{7}{144}$$

অভএব, $\lambda = \frac{144}{109737 \times 7}$ cm = 1874×10^{-7} cm. = 18740 Å.

হাইড়োজেনের রীডবার্গ ধুবাঙ্কের মান 109737 cm⁻¹ হলে, বামার শ্রেণির
দীর্ঘতম ও হুস্বতম তরুগাদৈর্ঘ্য নির্ণয় করো।
 [Jt. Entrance 1995]

🕏 🛾 বেপে তারু অন্যায়ী বামার শ্রেলির তরজাদৈহ। নিম্নলিখিত সমীকরণ হতে পাওয়া যায় ।

$$\frac{1}{\lambda} - R_{,t} = \frac{1}{2^2} - \frac{1}{n^2} \ln n = 3, 4, 5 \dots$$
 Early)

িছ ছম ভ্রজনৈর্থার বেলায় n=3 : অভএব, $\frac{1}{\lambda_{max}}=109737\left(\frac{1}{2^2}-\frac{1}{3^2}\right)=109737 imes \frac{5}{36}$

$$\lambda_{max} = \frac{36}{5 \times 109737} = 6561 \times 10^{-8} \text{ cm} = 6561 \text{ Å}.$$

প্রস্কার বেলায়, $n=\infty$; অতএব, $\frac{1}{\lambda_{\min}}=109737\left(\frac{1}{2^2}-\frac{1}{2}\right)=109737 imes \frac{1}{4}$

$$\lambda_{min} = \frac{4}{109737} = 3645 \times 10^{-8} \text{ cm} = 3645 \text{Å}.$$

বি হাইড়োঞ্জেন পরমাণুর প্রথম বোর কক্ষপথে আবর্তনশীল ইলেকট্রনের শক্তি -13.6 ইলেকট্রন ভোল্ট হলে এর বিতীয় বোর কক্ষপথ হতে প্রথম কক্ষপথে ইলেকট্রন সংক্রমণের ফলে নিঃসৃত ফোটনের শক্তি কত হবে ?

উ ঃ। n th কক্ষপথে পরিভ্রমণশীল হাইড়োজেন পরমাণুর ইলেকট্রনের শক্তি $E_n = -\frac{me^4}{8 \, {\epsilon_0}^2 \, n^2 h^2}$

অতএব, প্রথম বোর কক্ষপথে (n=1) আবর্তনশীল ইলেকেট্রনের শক্তি $E_1=-rac{me^4}{8{\,\in_{\scriptstyle 0}}^2\,h^2}$

প্রসামী
$$E_1 = -13.6 \text{ eV.}$$
 : $\frac{me^4}{8 \in_0^2 h^2} = 13.6 \text{ eV}$

এখন, n_2 কক্ষপথ থেকে n_1 কক্ষপথে ইলেকট্রনের সংক্রমণ হলে, নির্গত ফোটনের শক্তি

$$E_2 - E_1 = \frac{me^4}{8 \in_0^2 h^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = 13.6 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
প্রসানুষায়ী, $n_2 = 2$ এবং $n_1 = 1$;

অতএব,
$$E_2 - E_1 = 13.6 \left[\frac{1}{1} - \frac{1}{(2)^2} \right] = 13.6 \times \frac{3}{4} = 10.2 \text{ eV}.$$

বোরত বান্যায়ী নিঃমৃত ফোটনের শক্তি $=E_2-E_1=10.2~{
m eV}$.

এই পরিচ্ছেদের বিষয়বন্তু সম্পর্কে কয়েকটি প্রশ্ন (Some typical problems of this chapter)

- 1. বোর কক্ষপথগুলিকে "স্থায়ী কক্ষপথ" বলা হয় কেন ?
- বোর কক্ষপথগুলিকে স্থায়ী কক্ষপথ বলা হয় কারণ এই কক্ষপথগুলিতে প্রদক্ষিণ করার সময়
 ইলেকট্রন কোনো শক্তি বিকিরণ করে না। যদিও প্রদক্ষিণ কালে এদের গতিতে তুরণ থাকে তথাপি বোরের স্বীকার্য অনুযায়ী ইলেকট্রনগুলি শক্তি ক্ষয় না করে কক্ষপথে আবর্তন করে।

- হাইডোজেন পরমাণু সংক্রান্ত বোরতত্ত্বে ইলেকট্রনের স্থিতিশক্তি নেগেটিত। তাছাড়া স্থিতিশক্তির মান এর গতিশক্তির মান অপেকা বেশি। এই ঘটনা দুটির ভৌত তাৎপর্য কি ?
- স্পিতিশক্তি নেগেটিভ-এর ভৌত তাৎপর্য এই যে পরমাণুর ইলেকট্রন পরমাণুর নিউরিয়ানের সাথে
 আবন্ধ (bound)। স্থিতিশক্তির মান গতিশক্তির মান অপেক্ষা বেশি এর ভোত তাৎপর্য এই যে
 ইলেকট্রন ক্ষেছায় পরমাণু ছেড়ে মুক্ত হতে পারে না। মুক্ত হতে গেলে বাইরে থেকে ইলেকট্রনকে শক্তি
 সরবরাহ করতে হবে।

3. হাইড্রোজেন পরমাণুর বর্ণালীতে 911Å অপেকা কুদ্রতর তরখাদৈর্ঘ্যের বর্ণালী রেখা পাওয়া যার না। এর কারণ কী ?

 হাইড্রোজেন প্রমাণু যে সকল বর্ণালী শ্রেণি উৎপন্ন করে, তাদের মধ্যে লাইম্যান শ্রেণির বর্ণালী রেখাগুলির তরজাদৈর্ঘ্য স্বচাইতে কম। বোর তত্ত্ব থেকে জানা যায় যে লাইম্যান শ্রেণির বর্ণালী

রেখাগুলির তরজাদৈর্ঘ্য নিম্নলিখিত সমীকরণ থেকে পাওয়া যায় :
$$\frac{1}{\lambda} = R_H \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$$

এই শ্রেণির সর্বনিম্ন তরজ্ঞাদৈর্ঘ্য নির্ণয় করতে হলে $n=\infty$ বসাতে হবে।

$$\therefore \frac{1}{\lambda_{min}} = R_H$$
 অথবা $\lambda_{min} = \frac{1}{R_H} = \frac{1}{10.97 \times 10^6} \text{ m} = 911\text{Å}$

এথেকে বলা যায় যে হাইড়োজেন বর্ণালীতে 911Å অপেক্ষা ক্ষুদ্রতর তরজাদৈর্ঘ্য পাওয়া যায় না।

4. হাইড়োজেন পরমাণুতে মাত্র একটি ইলেকট্রন আছে, তথাপি হাইড়োজেন বর্ণালীতে বহুসংখ্যক রেখা থাকে কেন, ব্যাখ্যা করো।

- যখন কিছু পরিমাণ হাইড্রোজেন গ্যাস নিয়ে উদ্দীপিত (excited) করা হয় তখন ঐ গ্যাসের অসংখ্য পরমাণু উদ্দীপিত হয়; এই পরমাণুর সব ইলেকট্রনগুলি উদ্দীপনার উৎস থেকে (source of excitement) থেকে সমপরিমাণ শক্তি শোষণ করে না। শোষিত শক্তি অনুযায়ী তারা বিভিন্ন শক্তি সমন্বিত কক্ষপথে সংক্রামিত হয়; আবার স্বাভাবিক কক্ষপথে অথবা বিভিন্ন নিয়তর শক্তির কক্ষপথে ফিরে আসার সময় বিভিন্ন পরিমাণ শক্তি বিকিরণ করে। তাই হাইড্রোজেন পরমাণুতে একটি ইলেকট্রন থাকলেও, হাইড্রোজেন বর্ণালীতে বিভিন্ন তরজাদৈর্য্যের একাধিক রেখা দেখা যায়।
- 5. যদি হাইড়োজন প্রমাণুর ইলেকটনটিকে তৃতীয় কক্ষপথে তৃলে দেওয়া হয়, তাহলে বিভিন্ন
 শক্তি সম্পন্ন কতরকমের কোয়ান্টা বেরিয়ে আসতে পারে ? যুক্তি সহ উত্তর দাও।
 [Jt. Entrance 1989]
- ইলেকট্রন সংক্রমণ 3 নং কক্ষপথ থেকে 2 নং কক্ষপথে $(n=3 \to n=2)$ হলে একটি, 3 নং কক্ষপথ থেকে 1 নং কক্ষপথে $(n=3 \to n=1)$ হলে একটি এবং 2 নং কক্ষপথে পড়া ইলেকট্রনটি 1 নং কক্ষপথে $(n=2 \to n=1)$ সংক্রমণ করলে 1 টি—অর্থাৎ, মোট তিনটি কোয়ান্টা বেরিয়ে আসতে পারে।

6. সোডিয়াম অণুর বর্ণালীর সঙ্গে হাইড়োজেন অণুর বর্ণালীর সাদৃশ্য আছে। কী অর্থে তা সভা १

- হাইড়োজেন প্রমাণুর একটি মাত্র ইলেকট্রন এবং সেটি K-খোলকে অবস্থান করে। সোডিয়াম
 পরমাণুর 11 টি ইলেকট্রন। এর মধ্যে K-খোলকে 2টি এবং L-খোলকে ৪টি ইলেকট্রন অবস্থান
 করে। বাকি 1টি ইলেকট্রন M-খোলকে স্থান পায়। কাজেই হাইড়োজেন ও সোডিয়াম উভয়
 পরমাণুতেই অপূর্ণ খোলকে (K এবং M) 1টি করে ইলেকট্রন আছে। এই কারণে সোডিয়াম অণুর
 বর্ণালীর সঞ্চো হাইড়োজেন অণুর বর্ণালীর কিছু সাদৃশ্য দেখা যায়।
- 7. হাইডোজেন পরমাণুতে ঘূর্ণমান তড়িং আধানের ক্লাসিকাল তত্ত্বের অস্বিধা কি ?
 [Jt. Entrance 1993]

- ক্রাসিকাল ওটের নিম্নলিখিত অস্বিধা বর্তমান ঃ
 - (i) এই তত্ত্ব অনুসারে যখনই কোনো তড়িওাধানের ত্বরণ হয় তখনই তা তড়িংচুদ্ধনীয় শত্তি বিকিরণ করে। প্রমাণ্র ইলেকট্রনগৃলি নিউক্নিয়াসের ৮ চুর্দিকে আবর্তিত হতে থাকলে নিউক্নিয়াসের অভিমুখে এদের যে অভিকেন্দ্রিক ত্বরণ উৎপক্ষ হরে তার ফলে এই ইলেকট্রনগৃলি ক্রমাণত শক্তি বিকিরণ করে। এই ভাবে ক্রমাণত শক্তিক্ষা হতে থাকলে, ইলেকট্রনের কক্ষপথের ব্যাসার্ধ ক্রমণ হ্রাস পারে এবং এক সময় ইলেকট্রনগুলি নিউক্নিয়াসের ওপর এসে পড়বে এবং পারমাণবিক গঠন নন্ট হয়ে যাবে। অর্থাৎ, ক্রাসিকাল তন্ত্বরারা প্রমাণ্র স্থায়িত্ব ব্যাখ্যা করা যাবে না।
 - (ii) নিরবচ্ছিপ্পভাবে শক্তি বিকিরণ করলে, প্রমাণু যে বর্ণালী সৃষ্টি করবে তা নিরবচ্ছিপ্প বর্ণালী (continuous spectrum) হবে। কিন্তু পরীক্ষার ফলে দেখা যায় পরমাণুগুলি রেখা বর্ণালী (line spectrum) তৈরি করে এবং ঐ রেখাগুলি সব বিচ্ছিপ্প। সূতরাং ক্লাসিকাল তত্ত্ব পরমাণুর রেখা বর্ণালীর উৎপত্তিও ব্যাখ্যা করতে পারে না।
- 8. একটি হাইড়োজেন পরমাণুর মধ্যে ইলেকট্রনটি তৃতীয় কক্ষপথে শ্রমণশীল। এর কৌণিক ভরবেগ কত ? $h=6.6\times 10^{-27}\,\mathrm{Js.}$ [Jt. Entrance 1994]
- বোরতত্ত্ব থেকে জানা যায় যে ইলেকট্রনের ভরবেগ = $nh/2\pi$ যেখানে n=0,1,2,3...বর্তমান ক্ষেত্রে n=3 হওয়ায়, ভরবেগ = $\frac{3\times6.6\times10^{-27}}{2\times3.14}=3.15\times10^{-27}\,\mathrm{g\cdot cms^{-1}}$.
- একটি ইলেকটন হাইডোজেন পরমাণুর প্রথম বোর কক্ষপথে এক সেকেন্ডে কতবার প্রদক্ষিণ করবে?
 [Jt. Entrance 1996]
- ullet প্রথম বোর কক্ষের ব্যাসার্থ $=0.528 imes 10^{-10}~\mathrm{m}$ এবং ঐ কক্ষপথে ইলেকট্রনের গতিবেগ $=2.19 imes 10^6~\mathrm{ms}^{-1}$.

সূতরাং ইলেক্ট্রনের প্রদক্ষিণ সংখ্যা
$$=rac{$$
গতিবেগ}{2\pi imes ব্যাসার্ধ} $=rac{2.19 imes10^6}{2 imes3.14 imes0.528 imes10^{-10}}=66 imes10^{14}$

10. একটি হাইড়োজেন পরমাণুর ইলেকট্রনকে n-তম স্তরে উদ্দীপ্ত করা হয়েছে। ভূমিস্তরে যাওয়ার জন্য এই পরমাণু থেকে কতগুলি সম্ভাব্য বর্ণালী রেখা বের হতে পারে ?

[Jt. Entrnace 2000]

 $m{n}$ -তম কক্ষপথে অবন্থিত ইলেকট্রনটি প্রথমে যে–কোনো স্তরে নেমে তারপরে ভূমিস্তরে পৌছাতে পারে। $m{u}$ রূপ প্রতিটি সংক্রমণের জন্য একটি করে বর্ণালী রেখা পাওয়া যাবে। যেহেতু n সংখ্যক স্তরের মধ্যে যে–কোনো দুটি স্তরকে বাছা যায় ${}^n C_{\gamma}$ উপায়ে তাই সম্ভাব্য রেখা বর্ণালীর সংখ্যা হবে

$${}^{n}C_{2} = \frac{2!}{2!(n-2)!} = \frac{n \times (n-1) \times (n-2)!}{2! \times (n-2)!} = \frac{1}{2} n(n-1)$$

- 11.একটি X-রশ্মির তরশাদৈর্ঘ্য 3Å হলে তরশাটির কম্পাচ্চ কত ?
- আমরা জানি, $\mathbf{v} \times \hat{\lambda} = c$ অথবা $\mathbf{v} = \frac{c}{\hat{\lambda}} = \frac{3 \times 10^8}{3 \times 10^{-10}} = 10^{18} \,\mathrm{Hz}$ {3Å = $3 \times 10^{-10} \,\mathrm{m}$ }
- 12. এক্সরশ্মি নলে ইলেকট্রন টার্গেটে আঘাত করে গতিহীন হয় এবং টার্গেটে থেকে যায়। তাহলে কি যত সময় যায় তত টার্গেট ঋণাশ্মক তড়িংগ্রন্ত হয় ?
- ইলেকট্রনের শক্তি X রশ্মিতে রূপন্তরিত হয়। ইলেকট্রনটি প্রযুক্ত বিভববর্তনীর ভিতর দিয়ে
 ক্যাথোডে ফিরে আসে। টার্গেট ঝণায়ক তড়িংগ্রন্থ হয় না।

ে প্রশাবলি

রচনামূলক প্রশ

- পরমণের ইলেকট্রীয় গঠন সম্পরেক হা জান (শাহেশ রাদাবরেয়র্ভ কীভারে নিউরিয়ণ্মের অবভারণা করেন? तामात्रत्यार्ध शर्रनशकरमञ्ज खि की?
- 2. প্রমাণ্র ইলেকটুন গঠন সম্পর্কে কোবের অবদান বী ৮ `ভাবেলদ ইলেকটুন' কাকে প্রদেও
- 3. (a) বেল-রাদারফোর্ড কল্পিত প্রমাণ্চিত্রের বর্ণনা করে: বোর কল্পিত ফ্লিডের্লে কেলো বেরোর তন্ত দ্বারা বর্ণালীরেখার উৎপত্তি কীভাবে ব্যাখ্যা করা যায়?
 - (b) গইড়োজেন প্রমাণু সংক্রান্ত বোব তদ্ভেব মূল অঞ্জীকাবগুলি কেন্টো:
- 5. একারশ্যি বর্গালী সম্পর্কে মোজলে সত্র বিবৃত্ত করে। এব একটি গাণিতিক রপ লেখে। বার মন্তর্লর সাহায়ে। এটি কীভাবে ব্যাখ্যা করা যায় ? সংক্রেপে বলো।

সংক্রিপ্ত উত্তরের প্রশ্ন

- 1. পরমাণ্র গঠন ও সৌরজগতের গঠনের ভিতর কি সাদৃশ্য আছে ?
- 2. হাইড়োজেন প্রমণ্র বর্ণালীতে 911Å অপেক্ষা ক্ষুত্রতর তরঙ্গাদৈর্ঘ্য পাওয়া যায় না এর কারণ কী? সিংকেত: লাইম্যান শ্রেণিতে n = ∞ বসাও।]
- 3. হাইড়োজেন প্রমাণ্র আয়নয়ন বিভব 13.6 volt : এর অর্থ এই যে (i) প্রথম কক্ষপথে আবর্তনশীল ইলেকট্রনের র্শান্ত –13.6 eV (ii) হাইড়োজেন পরমাণুর প্রোটন ও ইলেকট্রনের ভর-পার্থকা 13.6 eV (iii) এদের কোনোটিই নয়। [Ans. (i)]
- 4. হাইড়োজেন পরমাণুতে ইলেকট্রনের চতুর্থ কক্ষের ব্যাসার্ধ দ্বিতীয় কক্ষের ব্যাসার্ধের কতগুণ ? |Ans. চারগণ] (i) তিনগুণ, (ii) চারগুণ (iii) পাঁচগুণ
- 5. দৃশ্যমান আলো এবং এক্সরশ্মির ভিতর পার্থকা কী?

অতিসংক্ষিপ্ত উত্তরের প্রশ্ন

- 1. যখন n = ∞ তখন ইলেকট্রনের শব্তি কত ?
- 2. ইলেকটন যখন nth কোয়ান্টাম কক্ষপথে পরিভ্রমণ করে তখন তার মোট শক্তি কত ?
- 3. nth কোয়ান্টাম কক্ষপথের ব্যাসার্ধ কত ?
- 4. বোর কক্ষপথে ইলেকট্রনের স্থিতিশক্তি ধনাত্মক না ঝণাত্মক ?
- 5. কোমল এবং কঠিন একা রশ্মির মধ্যে কোনটির তরজা দৈর্ঘ্য বেশী ?
- 6. উপরোত্ত প্রশ্নে কোনটির ভেদনক্ষমতা বেশী ?
- 7. এক্সরশ্মি কি চৌম্বক বা তডিৎক্ষেত্র দ্বারা বিক্ষিপ্ত হয় ?
- 8. এক্সরশ্মি কে আবিষ্কার করেন १
- 9. একারশার কি অপবর্তন বা সমবর্তন হয় ?
- 10. পরমাণর নিউক্রিয় গঠন কে প্রবর্তন করেন ?
- 11. হাইড্রোজেন প্রমাণর আয়নয়ন বিভব এবং উদ্দীপন বিভব কাকে বলে ?

বহুমুখী পছন্দের প্রন্ন [Multiple choice type (MCQ)]

(A) নির্ভুগ উত্তরটি √চিহ্নিত করো:

- [i] হাইড্রোজেন ও আয়নিত হিলিয়ামের বামার শ্রেণির বর্ণালীর তর্জাদৈর্ঘার অনুপাত হবে-
- (A) 1:2 (B) 1:4 (C) 4:1 (D) 2:1.
- [ii] হাইড্রোক্তেন পরমাণুর বোর মডেল সংকান্ত নিম্নলিখিত বিষয়গুলির কোন্টি ঠিক ?
 - (A) nth কক্ষপথের ব্যাসার্ধ n² এর সমানপাতিক,
 - (B) nth কক্ষপথে ইলেকট্রনের মোট শক্তি n-এর বান্তানুপাতিক,
 - (C) যে কোন কক্ষপথে ইলেকট্রনের কেটি র ভরবেগ $\frac{h}{2\pi}$ এর পূর্ণগণিতকের সমান,
 - (D) যে কোন কক্ষপথে ইলেকটুনের স্থিতিশক্তির মান তার গতিশক্তির মান অপেক্ষা বেশী।
- [iii] হাইড্রোজেন নিউক্নিয়াস প্রোটনের চতুর্দিকে nth বোর কক্ষপথে আবর্তনশীল ইলেকট্রনের কম্পাঞ্জ,
 - (A) n-এর বান্তানপাতিক
- (B) n² এর ব্যস্তানৃপাতিক
- $(C) n^3$ এর ব্যস্তানুপাতিক n (D) \sqrt{n} এর ব্যস্তানুপাতিক।

- [xv] বিকিরণের সনাতন তত্ত্ব অনুযায়ী ইলেকট্রন নিউক্লিয়াসের চতুর্দিকে বৃত্তাকার কক্ষপথে পরিভ্রমণ করলে—
 - (A) বিকিরণ নিঃসূত হবে এবং ব্যাসার্ধ অপরিবর্তিত থাকবে,
 - (B) কোন বিকিরণ নিঃসূত হবে না,
 - (C) বিকিরণ নিঃসৃত হবে এবং ব্যাসার্ব বেডে যাবে.
 - (D) বিকিরণ নিঃসৃত হবে এবং ব্যাসার্ব কমে যাবে।
- [xvi] X রাশ্মি নল থেকে নির্গত X-রশ্মির ক্ষুদ্রতম তরক্সদৈর্ঘা 0.2475Å। নলে কার্যকর বিভব প্রভেদ—
- (A) 5 KV (B) 25 KV (C) 50 KV (D) 100 KV.
- [xvii]একটি X-রাশ্ম ফোটনের তরজাদৈর্ঘ্য 0.02Å। এর ভরবেগ— (A) 3.3×10 22 kgms 1
 - (B) 6.626×10 21 kgms-1
 - (D) 1.65×10-22 kgms 1. (C) 6.626×10 4 kgms 1

[xviii] X-র্বাশ্ম নাল প্রায়ুক্ত বিভবপাথকা দ্বিগুল করা হলে, উৎপন্ন X-র্বাশ্বের নান্তম ত্রুপট্নমা, হয
(A) দ্বিল্ল (B) আর্থক (C) চাবলুল (D) একট খাতে (Jt. Entrance 2006)
$[{f xix}]$ হাইন্তোতেন প্রমাণ্র ইলেকট্রন $n=3$ থেকে $n=2$ কক্ষপ্তে সংক্ষিত হলে, শিকীর্ণ ভ্রাপের ভ্রমণের্যে
<u> श्र्</u> त—
(A) $\lambda = \frac{R}{6}$ (B) $\lambda = \frac{36}{5R}$ (C) $\lambda = \frac{6}{R}$ (D) $\lambda = \frac{5R}{36}$.
[xx] নির্মালখিত অবস্থা পরিবর্তনের ক্ষেত্রে কেন্টোর বেলায় হাইড্রোডেন প্রয়াণ্র শান্তি পবিবর্তন স্বাধিক ধরে ৪
(A) $n = 2 \to n = 1$ (B) $n = 3 \to n = 2$
(C) $n = 4 \to n = 3$ (D) $n = 5 \to n = 4$.
$[\mathbf{x}\mathbf{x}\mathbf{i}]$ n th বোরকক্ষপথে হাইড্রেণ্ডেন পরমাণুর ইলেকটুনের শক্তি $E_{_{1}}=-rac{13.6}{n^{2}}$ e V ইলেকটুন প্রথম ,থেক দ্বিতীয়ক
কক্ষপথে সংক্রমণ করলে, প্রয়োজনীয় শক্তি—
(A) 10.2 eV (B) 13.6 eV (C) 3.4 eV (D) 12.1 eV.
[xxii] হাইড্রোক্তেন বোর মডেলে ইলেকটুন চতুর্থ কক্ষপথে পরিস্তমণ করলে, কৌণিক ভরবেণ ধ্বে
h - 2h
(A) $\frac{h}{2\pi}$ (B) $\frac{2h}{\pi}$ (C) h (D) $\frac{h}{4\pi}$.
$\{{f xxiii}\}$ $n_2=1,5,6\dots$ থেকে $n_1=3$ কক্ষপথে ইলেকটুনের সংক্রমণ হলে কোন শ্রেণির বর্ণালী পাওয়া যাবে
(A) লাইমাান শ্রেণি (B) পাশেন শ্রেণি (C) বামার শ্রেণি (D) কোনটাই না :
[xxiv] হাইড্রোজেন পরমাণুর ভৌমন্তর শন্তি -13.6 eV। ইলেকটুনের ঐ তরে স্থৈতিক শত্তি কত ?
(A) -27.2 eV (B) -13.6 eV (C) +13.6 eV (D) 0 eV.
B) শূন্যপান পূরণ করো (Fill up the blanks):
[i] বৈশিন্ট্যমূলক X-রশ্মি K, রেখার তরজাদৈর্ঘা 0.32Å। ঐ মৌলের K, রেখার তরজা দৈর্ঘা
[ii] এক্সর্রাথা নলে ইলেকট্রন 15000 volt বিভব প্রভেদ দ্বারা ত্বরান্বিত হচ্ছে নলের অভান্তরে নির্গত এক্সর্রাথার গতিবেগ ms ⁻¹ .
(iii) হাইড্রোজেন প্রমাণ্র বোর মডেলে, nth কোয়ান্টাম স্তবে ইলেকট্রনের গতিশক্তি ও মোটশক্তির অনুপাত।
[iv] এক্সবশ্যি নলের অ্যানোড়ে আঘাতকারী ইলেকট্রন সংখ্যা বৃদ্ধি পেলে নিঃস্ত এক্সরশ্মির বৃদ্ধি পায়।
[v] হাইড্রোজেন পরমাণুর ইলেকট্রনের নিম্নতম কৌণিক ভরবেগ
[vi] ভৌমন্তরে হাইড্রোক্তেন প্রমাণ্ 10.2 eV শব্তি শোষণ করলো। ইলেকট্রনের কান্ধীয় কোঁণিক ভরবেগ পরিমাণ বৃদ্ধি পাবে।
· ·
ে) जून कि निर्जून विठात करता (True or false type) है
[i] সূর্বের চতুর্দিকে পৃথিবীর গতি $L=rac{nh}{2\pi}$ সূত্রানুযায়ী কোয়ান্টিত হলে, পৃথিবীর কোয়ান্টাম সংখ্যা হবে $2.5 imes10^{74}$
[Hints: $mr^2\omega = \frac{n\hbar}{2\pi}$: $n = \frac{2\pi mr\omega^2}{\hbar}$]
[ii] কোন মৌলের বেলায় রীডবার্গ ধ্রবসংখ্যা ঐ মৌলের ভরসংখ্যার সাথে পরিবর্তন করে।
[iii] দৃশামান আলোকীয় বর্ণালীর তুলনায় এক্সর্রাখ্য বৈশিষ্ট্য বর্ণালী খুবই জটিল।
[iv] কোন এক্সর্রাশ্ম নলে, নির্গত এক্সর্রাশ্মর ন্যাত্ম তরজ্ঞাদৈর্ঘ্য নলে তড়িৎপ্রবাহের উপর নির্ভর করে। [v] X-রাশ্ম তড়িৎচুদ্বকীয় তরজা : চৌদ্বক বা তড়িংক্ষেত্র এক্সর্রাশ্মর বিক্ষেপ তৈরি করে না।
[vi] হাইড্রোক্তেন বর্ণালীর বামার শ্রেণিতে সর্বনিম ও সর্বোচ্চ তরজাদৈর্ঘের অনুপতি হয় 1:4.
গাণিতিক প্ৰস্তা
1. 20 eV শক্তিশালী একটি ইলেকট্রনের সঙ্গে একটি হাইড্যোজেন প্রমাণ্র ধাকা লাগার ফলে প্রমাণ্টি উচ্চত্র
** 20 eV শান্তশালা একাচ হলেকার্ডার সক্ষে একত হারত্যাক্তম শর্মাশুর বান্ধা লাগার কলে শর্মাশ্য তিত্তর শ্তিকার উদ্ধিক্তি কর এক ইন্দেক্ত্রীটোর গতি করে। পেলা প্রস্তাতকি প্রয়োগ হলে 1916 Å ত্রকাটার্টার বিশিষ্ট

একটি ফোটন বের হল। ধাঞ্জা লাগার পর ইলেকট্রনের গতিবেগ কত হল?

[Jt. Entrance 1991] [Ans. 1.86×10⁶ ms⁻¹]

িসংকেত ঃ কোটনের শত্তি =
$$\frac{hc}{\lambda} = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{1216 \times 10^{-8}} \text{ erg} = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{1216 \times 10^{-8} \times 1.6 \times 10^{-12}} = 10.2 \text{ eV}$$

$$\frac{1}{2}mv^2 = 20 - 10.2 = 9.8 \text{ eV}$$

- 2. হাইড়োজেন প্রমাণুব একটি ইলেকট্রন 10.2 eV শক্তি শোষণ করে প্রার্থামক কক্ষপথ থেকে প্রবর্তী কক্ষপথে স্থানাশ্ররিত হল ইলেকট্রনটি পুনরায় প্রথম কক্ষপথে ফিরে এলে যে আলো নিঃসৃত হবে তার তরজাদৈর্ঘ্য নির্ণয় করো। দেওয়া আছে : $h=6.55 \times 10^{-27}\,\mathrm{erg}$ -s; $c=3 \times 10^{10}\,\mathrm{cms}^{-1}$; $1\,\mathrm{eV}=1.6 \times 10^{-12}\,\mathrm{erg}$. $1\mathrm{\AA}=$ [Ans. 1200Å] 10-8 cm.
- 3. হাইন্টোজেন প্রমাণ্র বর্ণালীতে যে রেখাটি ইলেকট্রনের $n=6 \to n=4$ -এ সংক্রমণের ফলে উৎপন্ন হয় তার [Ans. 26244 Å] তরজাদৈর্ঘ্য কত ? রিডবার্গ ধ্রবসংখ্যা = 109737 cm⁻¹
- 4. একটি উদ্দীপিত হাইড়োজেন প্রমাণ্র ইলেকট্রনের শক্তি 3.4 eV । বোর তত্ত্বানুযায়ী ঐ ইলেকট্রনের কৌণিক ভরবেগ নির্পয় করো, রিডবার্গ ধ্রবক $(R_H)=1.09737\times 10^7$ per metre ; $h=6.62676\times 10^{-34}$ joule-s [Ans. $2.11 \times 10^{-34} \text{ kg-ms}^{-1}$] এবং c = 3 × 10⁸ ms⁻¹]

[সংকেড ঃ
$$E=rac{R_H h.c}{n^2}$$
 এবং কৌশিক ভরবেগ $=rac{nh}{2\pi}$]

5. 800 Å এবং 700Å ভরজাদৈর্ঘ্যের অভিবেগুনি আলো যখন ভৌমন্তরে (ground state) অবস্থিত ছাইড়েণ্ডান প্রমাণুর ওপর আপতিত হয় তখন ঐ প্রমাণু হতে যথাক্রমে 1.8 eV এবং 4 eV গতিশত্তিসম্পন্ন ইলেকট্রন নির্গত [Ans. 6.57×10 27 erg-s] হয়। এথেকে গ্লাঙক ধ্রসংখ্যার মান নির্ধারণ করো।

[সংকেত ঃ
$$\frac{hc}{\lambda} = W + E$$
 ; $W =$ আয়নয়ন শক্তি এবং $E =$ গতিশক্তি]

- 6. হাইড্রোজেনের বর্ণালীর বামার শ্রেণির প্রথম রেখার তরঙ্গাদৈর্ঘ্য 6563Å. ওই শ্রেণির দ্বিতীয় রেখার তরঙ্গাদৈর্ঘ্য [Ans. 4861Å]
- 7. -e একটি ইলেকট্রনের তড়িতের পরিমাণ এবং m তার ভর। এটি r-ব্যাসার্ধের একটি কক্ষপথে নিউক্রিয়াসের চারিদিকে ঘুরছে। +E নিউক্লিয়াসেব তড়িতের পরিমাণ। প্রমাণ করো যে ইলেকট্রনের শস্তি $=-\frac{me^*E^*}{m^2}$;

L=mvr হল ইলেকট্রনের কৌণিক ভরবেগ।

|সংকেত: ইলেকট্রনের অভিকেন্দ্র বল = $\frac{mv^2}{2}$ এবং ইলেকট্রনের ওপর

নিউক্লিরাসের আকর্ষণ বল
$$=\frac{Ee}{r^2}$$
 (c.g.s.)]

$$\therefore \frac{mv^2}{r} \cdot \frac{E e}{r^2} \quad \text{(i) SPF } mv^2 := \frac{Ee}{r} \quad \text{(ii)}$$

এখন, ইলেকট্রনের শন্তি = গতিশন্তি + স্থিতিশন্তি

$$= \frac{1}{2}mv^2 - \frac{Ee}{r} - \frac{Ee}{2r} - \frac{Ee}{r} - \frac{1}{2}\frac{Ee}{r}$$

ক্রিক্তিশান্তি নেলেটিভ করের উলোকইনের ওপর আকর্ষণ বল কিয়া করে।

. From Eq. ,
$$\frac{e^{C_g}}{2} = \frac{1}{2} \cdot \frac{Ee}{r} - \frac{1}{2} \cdot \frac{Ee}{L} \cdot mv$$
 [$\because L = mvr$]

হাবোর
$$\alpha$$
 নে সমীকলন হয়ে কোনো সাম, লব্ডি $= \frac{1}{2} \cdot \frac{\textit{Ee.Ee}}{\textit{Lour}} = \frac{1}{2} \cdot \frac{\textit{E}^2 e^2}{\textit{L}} \cdot \frac{\textit{m}}{\textit{L}} = \frac{1}{2} \cdot \frac{\textit{E}^2 e^2}{\textit{L}}$

8, হাউট্টোট্ডন সদল একটি প্রমাণ্ n +2 n +1 কোয়ালীয়ে কক্ষপথে সংক্রমে কক্স্, 2467 × 101 Hz ক্ষতবাহে করে বিক্রের বিক্রের করে। ই প্রায়ণ মখন n +3 হতে n +1 ক্রমণ্ডির ক্ষেণ্ডে স ব্যব কর্তে este trong transpira demines de estas IAns. 2 92 × 101 Hz1

9. হাইড়োজেন সদৃশ একটি পরমাণ (পারমাণবিক সংখ্যা =z) উদ্দীপিত অবস্থায় n কোয়ান্টাম সংখ্যার কক্ষপথে অবস্থান করছে। এ উদ্দীপিত পরমাণুটি প্রথম উদ্দীপিত কক্ষপথে সংক্রমণ করতে পারে পর পর দুটি ফোটন নির্গত করে ফোটন দৃটির শক্তি যথাক্রমে 10.20 eV এবং 17.00 eV; অপর পক্ষে পরমাণ্টি প্রাথমিক উদ্দীপিত অবস্থা হতে উদ্দীপিত কক্ষপথে সংক্রমণ করতে পারে আবার দৃটি ফোটন নির্গত করে, যাদের শক্তি যথাক্রমে 4.25 eV এবং 5.59 eV ; কোয়ান্টাম সংখ্যা n এবং পারমাণবিক সংখ্যা z নির্ণয় করো। হাইড্রোজেন প্রমাণুর আয়নয়ন শক্তি = [Ans. n = 6; z = 3]

[সংকেতঃ
$$E_n=-rac{13.6 z^2}{n^2} eV$$

প্রথম কেরে,
$$10.20 = 13.6 \ z^2 \left(\frac{1}{x^2} - \frac{1}{n^2}\right)$$
 এবং $17.00 = 13.6 \ z^2 \left(\frac{1}{2z^2} - \frac{1}{x^2}\right)$

যোগ করলে,
$$27.20 = 13.6 z^2 \left(\frac{1}{4} - \frac{1}{n^2}\right) \dots \dots (i)$$

ছিডীয় ক্লেব্ৰে,
$$4.25=13.6~z^2\left(\frac{1}{y^2}-\frac{1}{n^2}\right)$$
 এবং $5.95=13.6~z^2\left(\frac{1}{3^2}-\frac{1}{y^2}\right)$

যোগ করলে, $10.20 = 13.6 z^2 \left(\frac{1}{9} - \frac{1}{n^2} \right)$ (ii) (i) এবং (ii) ভাগ দাও]

্চ M.C.O. প্রমের উত্তর 🖂

1	A		
١	18	ŀ	

- (v) B (ii) A.C.D (vi) A
- (ix) C
- (xiii) D
- (xvii) A
- (xxi) A

- (iii) C
- (vii) B
- (x) C
- (xiv) C
- (xviii) B
- (xxii) B

- (viii) D
- (xi) C (xii) B
- (xx) D (xvi) C
- (xix) B (xx) A
- (xxiii) D (xxiv) B
- (B) [i] 0.27A: [ii] 3×10^8 , [iii] 1. [iv] 33%; [v] $\frac{h}{2\pi}$, [vi] 1.05×10^{24} J-s1
- (C) [i] নির্ল, [ii] নির্ল, [iii] ভূল, [iv] ভূল, [v] মির্ল, [vi] ভূল।

পরিশি**য** – I

करमकि সर्वक्रमीन धुवসংখ্যा

রাশি	প্রতীক	মান	একক
1. Gravitational constant	G	6.6726×10^{-11}	$N - m^2/kg^2$
2. Speed of light	c	2.9979×10^8	ms ⁻¹
3. Avogadro constant	N_A	6.0221×10^{23}	mol ⁻¹
4. Universal gas constant	R	8.315	Jk ⁻¹ mol ⁻¹
5. Boltzmann constant	K	1.3806×10^{-23}	Jk^{-1}
6. Stefan constant	σ	5.671×10^{-8}	$\mathrm{Wm}^{-2}\mathrm{k}^{-4}$
7. Charge of proton	e	1.6022×10^{-19}	С
8. Mass of electron	m_e	9.1093×10^{-31}	kg
9. Atomic mass unit	u	1.6598×10^{-27}	kg
		931.2	MeV/c ²
10. Mass of neutron	m_n	1.67493×10^{-27}	kg
		1.00866	u
11. Mass of proton	m_p	1.67262×10^{-27}	kg
12. Permeability of			
vacuum	μο	$4\pi \times 10^{-7}$	Hm^{-1}
13. Permittivity of		19	G227-1 -2
vacuum	€0	8.85×10^{-12}	$C^2N^{-1}m^{-2}$
14. Faraday constant	F	96485.3	C mol ⁻¹
15. Planck constant	h	6.62007×10^{-34}	J-s
16. Rydberg constant	R_H	1.09737×10^7	m ⁻¹
17. Bohr radius	a_0	5.2917×10^{-11}	m.

বহুমুখী পছন্দের প্রশ্ন [Multiple Choice type (MCQ)]

2007 সাল থেকে নতুন সিলেবাস অন্যায়ী জয়েন্ট এ•ট্রাস পরীক্ষায় কেবলমাত্র MCQ ধরনের প্রশ্ন থাকরে। 100 টি প্রশ্নের *উত্তর 2 ঘণ্টা সময়ে শেষ করতে হরে*। ছাত্রছাত্রীদের MCO প্রশ্নের সঞ্চো পরিচিত করবার জনা নীচে 20 টি প্রশ্নপত্রের (প্রত্যেকটিতে 50 টি প্রশ্ন) সন্নিবেশ করা হল। প্রশ্নগুলি ্রুয়েণ্ট এন্ট্রান্স কাউন্সিলের নির্দেশিত কাঠায়ো অন্যায়ী দ্বাদশ শ্রেণির পাঠোর ওপর করা হয়েছে। ভ্রমেন্ট এন্ট্রান্স পরীক্ষার্থীরা এই প্রশ্নগুলি অনশীলন করলে উপকত হবে বলেই মনে করি।

	O SET 1 1 O
0	একটি পাত্রে হাইড্রোজেন ও অক্সিজেন গ্যাসের মিশ্রণ আছে। অক্সিজেন অণুগুলির গড় বর্গবেশের বর্গমূল
	(A) হাইড়োজেনের একই রাশির 4 গুণ হবে, (B) হাইড়োজেনের একই রাশির 16 গুণ হবে
	(C) হাইড়োজেনের একই রাশির $\frac{1}{4}$ গুণ হবে, (D) হাইড়োজেনের একই রাশির $\frac{1}{16}$ গুণ হবে
2	EOOg ভরের একটি বস্তুকে 5ms । গতিবেগ দিয়ে খাড়া উর্ধের্ব নিক্ষেপ করা হল। যে সময় ব্যাপী বস্তু উর্ধের্ব আরোহণ করল সেই সময়ে মহাকর্ষ বল কর্তৃক কৃত কার্য
3	(A) -1.25 J (B) 1.25 J (C) 0.5 J (D) -0.5 J. \bigcirc একটি ফাঁপা পরিবাহী গোলকের কেন্দ্রে বিন্দু আধান $+q$ রাখা হল। গোলকটিকে তাৎক্ষণিক ভাবে
	ভূমিসংলগ্ন করা হল এবং তারপর $+q$ আধানকে সরিয়ে নেওয়া হল। R যদি গোলকের ব্যাসার্থ হয়, তবে $r_1 < R$ এবং $r_2 > R$ বিন্দুতে তড়িৎ ক্ষেত্রের প্রাবল্য যথাক্রমে E_1 এবং E_2 হলে
	_

(A)
$$E_1 = 0$$
, $E_2 = \frac{q}{r_2^2}$
(B) $E_1 = 0$; $E_2 = -\frac{q}{r_2^2}$
(C) $E_1 = \frac{q}{r_1}$; $E_2 = \frac{q}{r_2^2}$
(D) $E_1 = -\frac{q}{r_1}$; $E_2 = -\frac{q}{r_2^2}$

একটি অসম তড়িৎ ক্ষেণ্ডের সঙ্গো 30° কোণ করে একটি তড়িৎ-দ্বিমের রাখা হল। নিম্নলিখিত গুলির মধ্যে দিমের কোনটি অন্ভব করবে?

(A) কেবলমাত্র ক্ষেত্রের অভিমুখের সঙ্গে অভিলম্বভাবে রৈখিক বল,

(B) টর্ক এবং রৈথিক বল,

(C) কেবলমাত্র টর্ক,

(D) ক্ষেত্রের অভিমায়ে কেবলমাত্র রৈখিক বল।

রুশতাপ প্রক্রিয়ায় দিপরমাণক গাদের আপেক্ষিক তাপ

(C) 6.3 (A) 8.4 (B) 12.6 95(N) H/ অপেক্ষা বেশি কম্পাকের শব্দ তরঙ্কা উৎপন্ন করতে করতে একটি উৎস স্থির 6 পর্যক্ষেত্রের ছিকে p.ms । গতিবের অহাসর হচ্চে। বায়ুত্তে শকের বেগ 300 ms । পর্যবেক্ষক সর্বাধিক 10 000 কম্পণ্ডেকর শব্দ কলে শুনাতে পায়। চ এর সর্বাধিক মান কি হলে পর্যবেক্ষক ঐ শব্দ শুনতে পাবে?

(A) $\frac{15}{2}$ ms⁻¹ (B) 15 ms⁻¹ (C) $30 \,\mathrm{ms}^{-1}$ (D) $15\sqrt{2} \,\mathrm{ms}^{-1}$

একটি ঘূর্ণঘটনে ব্যুর উপর অপ্রেক্ত বল উৎপশ্ন হওমার জনা দায়ী (४) इंदरक्या इ. तसुत ध्रवंत धर्म.

(B) निर्मित श्राप्त ५ जना.

(C) পথিকা ও কন্তুর মধ্যে, মহাক্রীয় আকর্ষণ, (D) নির্দেশ ভ্রমুক ঘর্ণন

8	$\frac{1}{2}mv^2$ শন্তির একটি $lpha$ কণা Ze আধানযুক্ত ভারী নিউক্রিয়াসকে আঘাত করল। $lpha$ — কণার
	অগ্রগমনের ক্ষেত্রে স্বাপেক্ষা ন্যুনতম দূরত্ব (closest apporoach) সমানুপাতিক হবে
	(A) $\frac{1}{m}$ (B) $\frac{1}{v^4}$ (C) $\frac{1}{Ze}$ (D) v^2 .
9	একটি পাত্রে গাাস থাকলে তার দেওয়ালে চাপ পড়ে; কারণ,
	(A) গ্যাসের অণুগুলি পাত্রের দেওয়ালে গতিশক্তি জোগান দেয়,
	(B) গ্যানের অণুগুলি পাত্রের দেওয়ালের সাথে সংঘর্ষের সময় আটকে যায়,
	(C) গ্যানের অণুগুলি পাত্রের দেওয়ালের সাথে সংঘর্ষের সময় ভরবেগের পরিবর্তন হয়,
	(D) গামের অণুগুলি দেওয়ালের দিকে ত্বরান্বিত হয়।
10	একটি ফোটন ধাত্রব প্লেটকে আঘাত করার কতক্ষণ পর আলোকজ ইলেকট্রন প্লেট থেকে নির্গত
	হয়?
	(A) 10^{-10} s (B) 10^{-16} s (C) 10^{-1} s (D) 10^{-4} s.
0	চুম্বক পর্দা তৈরি করতে যে ধরনের পদার্থ ব্যবহার করা হয় তা
	(A) নিম্ন চুম্বক ভেদ্যতা যুক্ত পদার্থ (B) উচ্চ চুম্বক ভেদ্যতা যুক্ত পদার্থ
-	(C) উচ্চ চুম্বক প্রবণতা যুক্ত পদার্থ (D) উচ্চ চুম্বক ধারণ ক্ষমতা যুক্ত পদার্থ।
12	আান্টিমনি ও বিসমাথ ধাতৃদ্ধরের দ্বারা একটি তাপযুগ্ম তৈরি করা হল। যুগ্মের এক প্রান্ত উত্তপ্ত করলে এবং অপর প্রান্ত শীতল করলে, তড়িৎপ্রবাহ
	(A) শীতল প্রান্তে বিসমাথ থেকে অ্যান্টিমনিতে যাবে,
	(B) युग्र जित्स त्कात्म उिष्ट श्रेतार यात्र ना.
	(C) শীতল প্রান্তে আণ্টিমনি থেকে বিসমাথে যাবে,
	(D) উন্ধ প্রান্তে জ্যান্টিমনি থেকে বিসমাথে যাবে।
13	10 cm ব্যাসার্ধের একটি পরিবাহী গোলককে একটি মাধ্যমে রাখা হল যার পরাবৈদ্যুতিক ধ্রুবক 8 ;
	এর ধারকত্ব
	(A) 80 esu (B) 10 esu (C) $\frac{1}{9} \times 10^{-10}$ F (C) 80 F.
14	
•	होनक वन
	(A) -10V (B) 10V (C) 190V (D) -190V.
15	পৃথিবীপৃষ্ঠ থেকে পৃথিবীর ব্যাসার্ধের সমান উচ্চতায় অভিকর্ষজ ত্বরণের মান হবে
•	$(g = 10 \text{ ms}^{-2})$
_	(A) 5 ms^{-2} (B) 3ms^{-2} (C) 8 ms^{-2} (D) 2.5 ms^{-2} .
16	একটি ধাতব পৃষ্ঠের প্রারম্ভ কম্পাঙ্ক 6.2 eV শক্তির উপযুক্ত। যে পৃষ্ঠে ঐ রশ্মি আপতিত হল তার
	নিবৃত্তি বিভব 5V ; আপতিত রশ্মি
	(A) অবলোহিত অশ্বলে অবস্থিত (B) দৃশ্যমান অশ্বলে অবস্থিত
	(C) এক্সরশ্মি অস্কলে অবস্থিত (D) অতি-বেগুনি অস্থলে অবস্থিত।
17	একটি কণা সুষম বৃত্তীয় গতিতে আছে। নিম্নলিখিতদের মধ্যে কোন্টি অসত্য?
	(A) কণাটির বেগ ধ্রুবক,
	(B) কণাটির রৈখিক দুতি ধ্বক,
	(C) কণাটির ত্বরণ বৃত্তের কেন্দ্র অভিমূখে ক্রিয়া করে,
	(D) কণণ্টির গতিবেগ ও স্বরণ পরস্পরের সঙ্গো লম্ব।

রোধ R । কণ্ডলীটি Β টৌম্বকক্ষেত্রে ω কম্পাঙ্কে ঘুরছে । কণ্ডলীতে আবিষ্ট তড়িৎচালক বলের সর্বাধিক মান (C) N.A.B. ω (D) N.A.B.R.ω. (A) N.A.B (B) N.A.B.R একটি 10cm লম্বা চুম্বকের মেরুশক্তি 10 একক। চুম্বকটিকে একটি সুষম চৌম্বকক্ষেত্রের সাথে 60° 19 কোণ করে রাখলে উৎপন্ন টর্কের মান 639 dyne-cm। চৌম্বক ক্ষেত্রটির প্রাবল্য হল (B) 6 ওরস্টেড (A) 4 ওরস্টেড (C) 9 ওরন্টেড (D) 7.4 ওরন্টেড। দুটি অপ্তরিত প্লেটকে এরূপ সুষমভাবে আহিত করা হল যে তাদের ভিতর বিভব প্রভেদ হল 20 V2-V1=20V (2নং প্লেটের বিভব উচ্চতর)। প্লেট দুটির ব্যবধান = 0.1 m। প্লেট দৃটি খুব বৃহৎ বলে গণ্য করা যেতে পারে।। নং প্লেটের ভিতর দিক থেকে একটি ইলেকট্রনকে স্থিরাক্থা থেকে ছেড়ে দেওয়া হল। ইলেকট্রনটি যখন 2 নং প্লেটকে আঘাত করবে তখন তার গতিবেগ কত? (e = 0.1m 1.6×10^{-19} C; $m_e = 9.11 \times 10^{-31}$ kg) (A) 7.02×10^{12} ms⁻¹ (B) 1.8 (B) $1.87 \times 10^6 \,\mathrm{ms}^{-1}$ (A) $7.02 \times 10^{12} \text{ ms}^{-1}$ (B) $1.87 \times 10^{6} \text{ ms}^{-1}$ (C) $32 \times 10^{-19} \text{ ms}^{-1}$ (D) $2.65 \times 10^{6} \text{ ms}^{-1}$. যদি 125টি ফোঁটা যাদের প্রত্যেকটির ধারকত্ব 1µF একত্রিত চিত্ৰ = 1 হয়ে একটি বড় ফোঁটা তৈরি করে, তবে বড় ফোঁটাটির ধারকত্ব হবে (D) $(125)^2 \mu F$. (B) 25 µF $(C)5 \mu F$ (A) 125 µF একটি ট্রানজিস্টারে সাধারণ ভূমি বিন্যাস ব্যবস্থায় সংগ্রাহক প্রবাহ 5.488 mA হয় যখন নিঃসারক প্রবাহ 5.60 mA। ভূমি প্রবাহ বিবর্ধক গুণক (β) হবে (D) 49. (B) 51 (A) 50 [Hints: $\beta = \frac{I_c}{I_b} = \frac{5.488}{I_b}$; আবার $I_e = I_b + I_c$ অথবা $5.60 = 5.488 + I_b$] 23) $I=15\sin{(60\pi t)}$ A দ্বারা একটি পরিবর্তী প্রবাহ প্রকাশিত হয় যেখানে t সেকেন্ড এককে আছে। প্রবাহমাত্রার শীর্ষমান, r.m.s মান এবং কম্পাঙক যথাক্রমে (B) 15A, $\frac{15}{\sqrt{2}}$ A, 60 Hz (A) 15 $\sqrt{2}$ A, 15A, 60Hz (D) 15A, $\frac{15}{\sqrt{2}}$ A, 30Hz. (C) 15A, $15\sqrt{2}$ A, 30Hz সূর্যকে R ব্যাসার্ধের গোলকাকার বস্তু রূপে ধরে নিয়ে পৃথিবীর উপর আপতিত মোট সৌরবিকিরণ কত হবে ? বলা আছে : সূর্যের তাপমাত্রা $= TK : r = সূর্য থেকে পৃথিবীর দূরত্ব। <math>r_0 = পৃথিবীর$ ব্যাসার্ধ এবং o = স্টিফান ধ্রবসংখ্যা। (B) $r_0^2 R^2 \sigma T^4 / 4\pi r^2$ (A) $\pi r_0^2 R^2 \sigma T^4 / r^2$ (C) $R^2 \sigma T^4/r^2$ (D) $4\pi r_0^2 R^2 \sigma T^4/r^2$. [Hints : প্রতি সেকেণ্ডে সূর্য কর্তৃক বিকীর্ণ শক্তি = σ . $T^{-4} 4\pi R^2$ । পৃথিবীর প্রতি একক ক্ষেত্রফলে প্রতি সেকেন্ডে আপতিত শক্তি = $\frac{\sigma T^4 .4\pi R^2}{4\pi r^2} = \frac{\sigma .R^2 .T^4}{2}$ ∴ পৃথিবীর উপর মোট আপতিত শক্তি = $\pi r_0^2 \times \frac{\sigma R^2 T^4}{r_0^2} = \frac{\pi r_0^2 R^2 \sigma T^4}{r_0^2}$]

একটি A.C জেনারেটারের ক্ওলীর পাক-সংখ্যা N; প্রত্যেক পাকের ক্ষেত্রফল A এবং মোট

25	আলোর যে ধর্ম প্রমাণ করে যে আলোক তরম	গ তিৰ্যক তা হল		
	(A) প্রতিফলন (B) বাতিচার	(C) অপবর্তন	(D) সমবর্তন।	
26	75.0 cm ব্যবধানের দৃটি স্থির বিন্দুর মধ্যে এক দেখা গেল 420 Hz এবং 315 Hz : এর মধ্যে তারের সর্বনিম্ন অনুনাদী কম্পাঙ্ক হবে		*	
	(A) 1.05 Hz (B) 1050 Hz		(D) 105 Hz.	
	[Hints: $\frac{n}{2l}$ v=31.5; $\frac{n+1}{2l}$.v=420; $\sqrt[3]{2}$			
27	যদি h উচ্চতা ও d গভীরতায় g—এর মান সমান d উভয়ই পৃথিবীর ব্যাসার্ধের তুলনায় ছোটো)	ন হয়, তবে h ও d এ	র সম্পর্ক হবে (h এবং	
	(A) $h = d$ (B) $h = 2d$	(C) $2h = d$	(D) $3h = d$.	
28	একটি অর্ধপরিবাহীতে ইলেকট্রন ঘনত্ব এবং গ অনুপাত $\frac{7}{4}$, তাদের অনুপ্রবাহ গতিবেগের (dr	•	,	
	(A) $\frac{4}{5}$ (B) $\frac{5}{4}$		(D) $\frac{5}{8}$.	
	[Hints : অনুপ্রবাহ গতিবেগ $v_d = \frac{I}{nAe}$ অথ	বা $v_d \propto \frac{I}{n}$.		
	দেওয়া আছে : $\frac{n_e}{n_h} = \frac{7}{5}$; $\frac{I_e}{I_h} = \frac{7}{4}$; $\therefore \frac{(v_d)}{(v_d)}$	$\frac{e}{h} = \frac{I_c}{I_h} \times \frac{n_h}{n_e} = \frac{7}{4} \times \frac{5}{7}$	$=\frac{5}{4}$]	
29	একই উপাদানে প্রস্তুত দুটি তার A এবং B এর দৈর্ঘ্যের অনুপাত 1:2 এবং তাদের ব্যাসের অনুপাত 2:1; যদি তার দুটিকে একই বল প্রয়োগ করে টানা হয় তবে তাদের মূলস্রের অনুপাত হবে			
	(A) 4 · . (B) 1:4 · · .	(C) 2	(D) 1:2.	
30	W		~	
(A) হেনরি (H) (B) H/m ² (C) ওয়েবার (Wb) (D) ম				
	[Hints : স্বাবেশ গুণাঙ্কের মাত্রা সূত্র [L] = N	$\int dL^2 T^{-2} A^{-2} = \frac{ML^2}{Q^2} [$	Q = A.T	
	স্বাবেশ গুণাঙেকর S.I. একক হল হেনরি ; অ	তএব প্রদত্ত মাত্রা সূত্রটি	হবে হেনরিরা	
31	সৌর বর্ণালীর ফ্রনহফার রেখাগুলি			
	(A) নিঃসরণ বর্ণালী	(B) শোষণ বর্ণালী		
	(C) निরবচ্ছিন্ন বর্ণালী		ও শোষণ বৰ্ণালী উভয়ই	
32	1mm এবং 2mm ব্যাসার্ধের দুটি গোলকাকার প সুষমভাবে তড়িংগ্রস্ত করে একটি পরিবাহী তার			
	গোলকদ্বয়ের পৃষ্ঠে তড়িৎক্ষেত্রের অনুপাত হবে			
	(A) 1:2 (B) 2:1	(C) 1:4	(D) 4:1.	

[Hints: তার দিয়ে যুক্ত করলে পরিবাহীদটির একটি সাধারণ বিভব \ হবে। A গেলকের প্রে

তিড়িংক্ষেত্ৰ
$$E_A = \frac{1}{4\pi \epsilon_0} - \frac{Q_A}{R_A^2} = \frac{1 \times ($$
 ধারক হ C_A) $\times V$ $-\frac{3\pi \epsilon_0}{4A \epsilon_0} \frac{R_A \times V}{R_A^2} = \frac{V}{R_A}$

একই ভাবে,
$$E_B = \frac{V}{R_B}$$
 $\therefore \frac{E_A}{E_B} = \frac{R_B}{R_A} = \frac{2}{1}$]

- একটি 5 লিটার পারে কোন গ্যাসের 10^{26} সংখ্যক অণু আছে। প্রতিটি অণুর ভর $2.4 \times 10^{-25} \mathrm{g}$ এবং গড় বর্গবেগের বর্গমূল হল 3.5 x 10⁴ cm/s । গান্সের চাপ হরে প্রায়
 - (A) 2×10^6 dyne/cm²

(B) 10⁶ dyne/cm²

(C) 3×10^6 dyne/cm²

(D) $5 \times 10^6 \text{dyne/cm}^2$.

m ভর এবং R ব্যাসার্ধের একটি সরু গোলাকার রিং নিজ অক্ষের চ্ চুর্দিকে স্থির কৌণিক বেগ 34 ω নিয়ে ঘুরছে। রিংয়ের ব্যাসের দুই বিপরীত প্রান্তে প্রতোকটি M ভরের শুটি বস্তু যৃত্ত করা হল। রিংটি এখন ω' কৌশিক বেগে ঘূরলে

(A)
$$\omega' = \frac{\omega(m-2M)}{(m+2M)}$$

(B)
$$\omega' = \frac{\omega.m}{(m+M)}$$

(C)
$$\omega' = \frac{\omega m}{(m+2M)}$$

(D)
$$\omega' = \frac{\omega(m+2M)}{m}$$

- 35 1.6×10⁻²⁷ kg ভরের একটি প্রোটন 0.1 m ব্যাসার্ধের বৃত্তপথে পরিভ্রমণ করে যখন অভিকেন্দ্র বল ছিল 10¹³ N । এই সময়ে প্রোটনের আবর্তন কম্পাঙ্ক হরে
 - (A) 8 × 10⁸ প্রতি সেকেন্ড

(B) 4 × 10⁸ প্রতি সেকেন্ড

(C) 2.5 × 10⁸ প্রতি সেকেন্ড

(D) 16 × 10⁸প্রতি সেকেন্ড.

নীচের চিত্রগুলির মধ্যে (চিত্র 2)কোনটি বিপরীত বায়াসযুক্ত?

[Hints: অর্ধপরিবাহী ডায়োড়ে n-অঞ্চলকে উচ্চবিভব এবং p-অঞ্চলকে নিম্ন বিভব দেওয়া হয়]

যদি E পরিবর্তি বিভবের শীর্ষমান হয় তবে r.m.s. মান বা কার্যকর মান হবে 37

(A) $\frac{E}{\pi}$ (B) $\frac{E}{\sqrt{2}}$

(D) $\frac{E}{2}$.

- 3নং চিত্রে প্রদর্শিত বর্তনীতে দটি আদর্শ অর্ধপরিবাহী ডায়োড বিপরীতম্খী সমান্তরাল সমবায়ে যক্ত আছে। বর্তনীর তড়িৎপ্রবাহ মাত্রা হবে
 - (A) 2.0 A
- (B) 2.31 A
- (C) 1.33A
- (D) 1.71 A.

[Hints: D] ডায়েড বিপরীত বায়াসযুত্ত। অতএব, ঐ 12V পথে কোন প্রবাহ যাবে না। বর্তনীর মোট রোধ = 4+

 $2 = 6\Omega$. অতএব, প্রবাহমাত্রা = $\frac{12}{6}$ = 2A].

- নিম্নলিখিত ধর্মগুলির মধ্যে কোনটি ক্যাথোড রশ্মির জন্য নির্ভুল? 39
 - (A) ক্যাথোড রশ্মি ক্ষুদ্র তরজাদৈর্ঘ্যের তড়িচ্চুম্বকীয় তরজা,
 - (B) ফটোগ্রাফী প্লেটের উপর ক্যাথোড রশ্মির কোনো বিক্রিয়া নেই,
 - (C) ক্যাথোড রশ্মি ঋণাত্মক আদান যক্ত কণার স্রোত,
 - (D) ক্যাথোড রশ্মি মোটা ধাতব পাত ভেদ করতে পারে।
- প্রত্যেকটি m ভরের চারটি বিন্দু আধান ABCD বর্গের চার কোণে রাখা আছে। বর্গের প্রতিটি বাহুর 40 দৈর্ঘ্য । A বিন্দুর ভিতর দিয়ে গত এবং BD কর্ণের সমান্তরাল এক অক্ষ সাপেক্ষে সমগ্র সংস্থার জাড়া শ্রামক হবে
 - (A) $\sqrt{3.ml^2}$ (B) $3ml^2$ (C) ml^2 (D) $2ml^2$.

- একটি ক্ষুদ্র দণ্ড-চুম্বকের মধ্যবিন্দু থেকে সমান দুরত্বের প্রান্ত ও পার্শ্ব বিন্দুরয়ের চৌম্বক ক্ষেত্রের প্রাবল্যের অনুপাত হবে
 - (A) 2:1
- (B) 1:2
- (C) 2:3
- (C) 1:1.
- একটি আলোক-তড়িৎ কোশের আনোড বিভব প্থির রাখা আছে। ক্যাথোড়ের উপর আপতিত আলোর তরজা দৈর্ঘ্য ১ ক্রমান্বয়ে পরিবর্তন করা হল। প্লেট প্রবাহ 1 তরজা দৈর্ঘ্যের সাথে কোন চিত্রান্যায়ী পরিবর্তিত হবে ?

- যদি K বোলজম্যান ধ্রুবক ও T পরম তাপমাত্রা হয় তাহলে গ্যামের প্রতি অণুর গড় গতিশক্তি হবে

- (A) $\frac{2}{3}$ KT (B) $\sqrt{\frac{2}{3}}$ KT (C) $\frac{3}{2}$ KT (D) $\sqrt{\frac{3}{2}}$ KT.
- একটি সলিনয়েতে প্রতি সেল্টিমিটারে 200 পাক এবং প্রতি পাকে i প্রবাহ আছে। সলিনয়েতের কেন্দ্রে চৌম্বক ক্ষেত্রের মান 6.28×10^{-2} weber/m². আর একটি সলিনয়েডে প্রতি সেণ্টিমিটারে

1(X) পাক এবং প্রতি পাকে ½ প্রবাহ আছে। দ্বিতীয় সলিনয়েডের কেন্দ্রে চৌম্বক ক্ষেত্রের মান হবে

- (A) 1.05×10^{-5} Wb m⁻²
- (B) 1.05×10^{-3} Wb m²

 $(C) 1.05 \times 10^{-4} \text{ Wb m}^{-2}$

(D) 1.05×0^{-2} Wb m⁻².

6.5টি স্রশলাকাকে এমনভাবে সাজানো হল যে প্রত্যেকটি তার আগের শলাকার সঙ্গো সেকেন্ডে 10 3টি স্বরকম্প তৈরি করে। শেষ সুরশলাকার কম্পাঙ্ক প্রথম সুর শলাকার এক অষ্টক উধের। প্রথম ও শেষ শলাকার কম্পাঙক হবে

(A) 384, 192 (B) 192, 384

(C) 184, 392 (D) 392, 184.

একটি সনোমিটারে দুটি অভিন্ন উপাদানের তার লাগানো আছে ও এদের গানও আভন্ন তার দুটির
দৈর্ঘা ও ব্যাসার্ধের অনুপাত 2:1 এবং 1:4 হলে, এদের কম্পাজের অনুপাত ২বে
(A)2:1 (B)1:2 (C)1:1 (D) $\sqrt{2}$:1.
তাপগতিবিদ্যার প্রথম সূত্রের প্রস্তাবনা থেকে জানা যায় যে
(A) সংস্থায় কোন তাপ প্রবেশ করে না, বা নিগত হয়ে যায় না,
(B) তাপমাত্রা প্রির থাকে,
(C) শক্তি সংরক্ষিত থাকে, (D) সব কার্যই যান্ত্রিক
$4\mu C$ এবং $-2\mu C$ এর দুটি বিন্দু তড়িতাধান পরস্পর থেকে $1m$ দূরে বায়ুমধো রাখা আছে। ঐ
দুই আধানের সংযোগ রেখার ওপর যে বিন্দুতে লব্ধ গুড়িৎক্ষেত্র শূনা থবে তার দূরত্ব
(A) $0.58 \mathrm{m}$ (B) $2.42 \mathrm{m}$ (C) $0.67 \mathrm{m}$ (D) $0.81 \mathrm{m}$.
বোর হাইড্রোজেন মড়েলে চতুর্থ কক্ষপথে ইলেকট্রনের কৌণিক গতিবেগ হবে
(A) $\frac{h}{2\pi}$ (B) $\frac{2h}{\pi}$ (C) h (D) $\frac{h}{4\pi}$
দুটি তরজা যাদের সমীকরণ হল $y_1=a\sin\frac{2\pi}{\lambda}$ $(\upsilon t-x)$ এবং $v_2=a\sin\frac{2\pi}{\lambda}(\upsilon t+x)$
উপরিপাতন ঘটানো হল . উপরিপাতিত তরজোর বিস্তার হবে
(A) $2a \cos 2\pi x v$ (B) $2a \cos \left(\frac{2\pi x}{\lambda}\right)$
(C) $2a\cos\left(2\pi x\lambda\right)$ (D) $2a\cos\left(\frac{2\pi x}{v}\right)$.
চৌষ্বক বলরেখাগুলি (B) কখনও ছেদ করে না
(A) এসীয়ে ছেদ করে (B) কথনত ছেদ করে। (C) চৃষ্কের অভ্যন্তরে ছেদ করে (D) উদাসীন বিন্দৃতে ছেদ করে।
- THIP OF THE PRINCE OF THE PR
বায়ুন্তন্তের মূলসুরের কম্পান্তক হবে
কোনো আধানযুক্ত পরিবাহীকে সূতো দ্বারা ঝোলানো অন্য একটি আধানহীন পরিবাহী গোলকের
খুব কাছে আনা হল। ঝোলানো পরিবাহীটি
(A) আকর্ষিত হয়ে আধানযুত্ত পরিবাহীর গায়ে লেগে থাকবে,
(B) আকর্ষিত বা বিকর্ষিত হবে না, (C) প্রথমে আকর্ষিত হবে এবং আধানযুক্ত পরিবাহীকে স্পর্শ করেই বিকর্ষিত হবে,
In the section will be seen to
স্ট্রেরের ও স্থান্তির হিলিয়ায়ের বামার শ্রেণির বর্ণালীর তর্জাদৈয়ের অনুপতি ইবে
(C) 4:1 (D) 2:1.
প্রাক্ত ক্রম্পান্তক থোকে বেশি কম্পান্তক বিশিষ্ট কোন আলোকরাশ্য একটি ধাতব পাতের উপর
হার্থান্ত হল চালোক - ডিও কিয়ায় নিগত ইলোকট্রনের গতিশাও
ের মালোকের নীর্বার সমানপাতিক ও কম্পার্কের উপর নিভর্শাল লর,
(B) আলোকের কম্পাঞ্জের সমান্পাতিক কিন্তু তীব্রতার তপর নিতরশাল নয়,
(C) আলোকের তীব্রতা ও কম্পাঞ্জের সমানুপাতিক,
(D) তীব্রতা কম্পাঙেকর উপর নির্ভরশীল নয়।

2	একটি দণ্ড চুম্বকে প্রণবল্যের অনুপাত	র দৈর্ঘ্যের মধাবিন্দু 18 : দণ্ডের চৌম্বক	থেকে 10 cm এবং 200) cm দূরের দুই বিন্দুতে ক্ষেত্র
	(A) 24.9 cm	(B) 12.65 cm	(C) 29.3 cm	(D) 22.65 cm.
2:	M চৌম্বক ভ্রামক হ চৌম্বক ভ্রামক হবে	া বিজ্ঞানিক চুম্বক	কে সমান দুই টুকরোতে ভ	াগ করা হল। প্রত্যেক টুকরোর
	(A) M	(B) 2M	(C) M/2	(D) শূন্য।
23	একটি সমবিভবযুত্ত হল। তাতে	তলের উপর এক ি	বন্দু থেকে অপর বিন্দুতে	একক তড়িতাধান নিয়ে যাওয়া
	(A) আধান কার্য স	ম্পিন্ন করল	(B) আধানের উ	পর কার্য করা হল
	(C) আধানের উপর	া কৃত কাৰ্য ধ্ৰুবক	(D) কোন কার্য	করা হল না।
24	একটি চুম্বুকের চৌষ কুগুলীর দিকে। দ	ক্রভামক একটি গোল ভকে নিজের সমান্ত	নাকার তারকুগুলীর অক্ষ	বরাবর প্রসারিত এবং অভিমূখ সরিয়ে নেওয়া হল। এতে
	(A) শূন্য		(B) ঘড়ির কাঁটার	বিপরীতমুখী
	(C) ঘড়ির কাঁটার য		(D) কোনটাই না	
25	দুটি সমান্তরাল দীর্ঘ রাখলে তারা পরস্প	তারে 100A এবং 2 শরকে 0.08 Nm ⁻¹ ব	0A প্রবাহ যাচ্ছে। তার দুর্ণ বলে বিকর্ষণ করবে তা	টকে পরম্পর থেকে যত দূরে
	(A) 1mm	(B) 5 mm	(C) 10 mm	(D) 15 mm.
26	n ₂ = 5, 6	পথ থেকে $n_1=4$ ব	ক্ষপথে ইলেকট্রনের সংব	মণ হলে পাওয়া যায়
	(A) ফান্ড শ্ৰেণি বৰ্ণ	ांनी	(B) লাইম্যান শ্রে	
	(C) পাশেন শ্রেণি ব		(D) ব্রাকেট শ্রোণি	वर्गानी।
27	একটি ট্যানজেট গ্যা	লভ্যানোমিটারে 1A	তড়িৎপ্রবাহ গেলে 30° বিদে	ক্ষপ হয়। 60° বিক্ষেপের জন্য
	থে তাড়ৎপ্রবাহ প্রয়ে	াজন তা		
	(A) 3A	(B) 2A	(C)4A	(D) 1A.
28	টেম্বক ক্ষেত্র 'B' এ উপর মোট বল হ	বং তড়িৎক্ষেত্র E এর ব	যুগপৎ উপস্থিতিতে, এক	টি গতিশীল তড়িতাধানের (q)
	$(A) \overrightarrow{F} = \overrightarrow{v} \left[\left(-\frac{1}{q} \right) \right]$	$(\times \times \xrightarrow{B}) + \xrightarrow{E};$	$(\mathbf{B}) \stackrel{\rightarrow}{\mathbf{F}} = q \left[\left(\frac{1}{1} \right)^{\frac{1}{2}} \right]$	$\stackrel{\rightarrow}{\rightarrow} \times \stackrel{\rightarrow}{E} + \stackrel{\rightarrow}{B} ;$
	£ .	$\times \xrightarrow{B} + \xrightarrow{E}$;	(D) $\overrightarrow{F} = \overrightarrow{B} \left[\left(\right. \right. \right]$	$\overrightarrow{q} \times \overrightarrow{E} + \overrightarrow{v}$.
29	40 m m ব্যাসার্ধের যাচ্ছে। কুণ্ডলীর কে	এবং 250 পাকবিশি ক্রে চৌম্বক ক্ষেত্রের	ষ্ট একটি বৃত্তাকার কুঙলী	দিয়ে 20 mA তড়িৎ প্রবাহ
	(A) 0.785 G	(B) 0.525 G	(C) 0.629 G	(D) 0.900 G.
30	পরিবর্তি প্রবাহে r.m.			27.00
	(A) 7%	(B) 7.7%	(C) 70% ·	(D) 70.7%,
31	০.১ সেকেন্ড সময় এ	। কটি ছোট ধাতব তা	রকে একটি চৃত্বকের মেরুদ্ব	য়ের ফাঁক দিয়ে টেনে নেওয়া
	२०। (भत्भतात कै।	‡ চৌম্বকক্ষেত্রের মা	ন 8 × 10 ⁴ Wb ৷ তারে	আবিষ্ট ভড়িচ্চালক বল
	(A) 16mV		(C) 1.6 V	(D) 16V

32	হাইড়োজেন পরমাণুর	ভৌমন্তরের শান্ত –13.6	en l বার রথে রথেকারণ	পর স্থাতশাস্ত কত ?
	(A) -27.2eV	(B) -13.6 eV	(C) + 13.6 eV	(D) 0eV.
33	নিম্নলিখিত ধর্মগুলির	মধ্যে কোন্টি অসতা ?		
	(A) শুনা থির ভরে	র একটি কণিকা হল ফো	টন,	
	(B) ফোটন শূন্য ভর	বেগ যুক্ত একটি কণিকা,		
	(C) ফোটন শ্ন্যদেশে	া আলোর গতিবেগে চলাচ	ল করে,	
		জনিত টান অনুভব করে।		
34	1000g ভর ও 1ms	⁻¹ গতিবেগযুক্ত একটি ইম্প	ণাত বলের সঙ্গে জড়িত	मा तुरा তরজা দৈর্ঘা হবে
	$(h = 6.626 \times 10^{-34})$	J-s)		
	(A) 6.626×10^{-31} i	n · ·	(B) 6.626×10^{-37} m	
	(C) 6.626×10^{-34} n	1	(D) 6.626 × 10° m.	
	[Hints: $\lambda = \frac{h}{mv}$	$=\frac{6.626\times10^{-34}}{100\times1}$		
35	দশ্মিক পদ্ধানিতে 1	। সংখাটিকে দ্বিক্ সংখ্যা	র রপান্তরিত করলে, স	१थािि
00	(A) 1101		(C) 1110	(D) 1100.
26	্রকটি কম্পাঙ্কর ট	নুটি সুর দুটি ভিন্ন বাদ্যযন্ত্র		
36	(A) শব্দের প্রাবল্য ।		(B) শব্দের তীক্ষ্ণতা দ্ব	ারা
	(C) শব্দের জাতি দ্ব		(D) শব্দের সুরধারা (
07	নিম্নিখিত বসগলিব	মধ্যে কোন্টি দ্বারা স্থার		
37	(A) তিরশ্রৌম্বক		(C) অয়শ্চৌম্বক	(D) নরম লোহা।
	(A) रिश्त ग्राव प	ল কোণায ±1 ±2. ±3 es	u তডিতাধান রাখা আছে	। চতুর্থ কোণে কত আধান
38	वाशाल वर्षत (क्ष	বিন্দুতে বিভব শূন্য হবে :	বর্গের প্রতি বাহুর দৈঘ	$f_1 = \sqrt{2}$ cm
	(A) + 6 esu	(B) + 4 equ	(C) - 6 esu	(D) - 4esu.
39	(A) + 0 esu	ক্রতের অনপাত 1:2:3	3 : এদের প্রথমে সমান্তর	বাল সমবায়ে, পরে শ্রেণি
29	10-10 413643 413	120	প্রকার দিকীয় ক্ষেত্র য	সপেক্ষা 2 8 । দ বেশি।
	সমবায়ে যুক্ত করা	হল। ব্রৱস ক্রেণে ঠ্লা	বারকর বিতাম দেব	মপেকা 2 <u>8</u> µF বেশি।
	প্রত্যেকটি পৃথক ধা	রকের ধারকত্ব		
	(A) 1μF, 1μF, 3μ		(B) 0.5 μF, 1.0 μF,	
	(C) 0.2 μF, 0.4 μF	. 0.6 μF	(D) 0.3μF, 0.6μF,	৩.সμε. πন জাসের মিশিয়ে একটি
40	কুদ্ৰ কুদ্ৰ 64 টি জল	াবন্দু যাদের প্রত্যেকাণর ব	ক্রেড়ে ও ভাল্ডাবান গ	ান, তাদের মিশিয়ে একটি ধারকত্বের অনুপাত হবে
			(C) 2:1	(D) 1:2.
	(A) 4:1			উপর রাখা হল এবং তার
41	একটি সর্ ও নমনী	য় ভারকে একাচ আয়তাব গাহ পাঠানো হল। তারের	নম মূশ ।শরে তোমকোয় বর্তমান আকার <i>হা</i> র	
			(C) ষড়ভুজাকার	(D) আয়তাকার।
	(A) ত্রিভূজাকৃতি	(B) বৃত্তাকার		
42		গুলির মধ্যে কোন্টি পরি		ে (D) সব কটি।
	(A) রাসায়নিক	(B) তাপীয়	(C) চৌদ্বক	(1))

- নিম্নলিখিতদের মধ্যে কোনটি p-type অর্ধপরিবাহীর দৃষ্টান্ত? 43
 - (A) বিশব্ধ জারমেনিয়াম

- (B) বিশৃন্ধ সিলিকন
- (C) আর্সেনিক অপদ্রব্য সহ সিলিকন
 - (D) বোরন অপদ্রব্য সহ সিলিকন।
- ফটো-ইলেকট্রন তলের উপর আপতিত আলোর তীব্রতা দ্বিগুণ করলে 44
 - (A) নিঃসৃত ফোটনের কম্পাঙক দ্বিগুণ হয় (B) নিঃসৃত ফোটনের কম্পাঙক তিনগুণ হয়

 - (C) নিঃসৃত ফোটনের সংখ্যা দ্বিগুণ হয় (D) নিঃসৃত ফোটনের সংখ্যা তিনগুণ হয়।
- একটি কণার ভর স্থির ভরের দ্বিগুণ হবে যে গতিবেগ υ হলে, তার মান 45

(A)
$$v = c$$

(B)
$$v = \sqrt{\frac{3}{4}}c$$
 (C) $v = \sqrt{\frac{3}{2}}c$ (D) $v = 2c$.

(C)
$$v = \sqrt{\frac{3}{2}}c$$

- $2 {
 m kg}$ ভর সম্পূর্ণরূপে শক্তিতে রূপান্তরিত হলে যে শক্তি পাওয়া যাবে তা $(c=3 imes 10^8 {
 m \, ms}^{-1})$ (A) 9×10^{16} J (B) 11×10^{16} J (C) 15×10^{16} J (D) 18×10^{16} J.
- নিউক্লিয়াসের প্থির ভর এবং নিউক্লিয়াসের অন্তর্ভুক্ত নিউক্লিয়নগুলির ভরের সমষ্টির পার্থক্যকে বলা হয়
 - (A) সমাবেশ ভগ্নাংশ (packing fraction). (B) ভর ঘাটতি (mass-defect),

(C) বন্ধন শন্তি,

- (D) সমস্থানিক ভর।
- রেডিয়াম-∧ পদার্থের অর্ধায় 3 মিনিট। এর গড় আয়

 - (A) 1.5 মিনিট (B) 3 মিনিট (C) 6 মিনিট
- (D)(3×0.6931)মিনিট।

- যুগ্ম উৎপাদনে (pair production) আমরা পাই
 - (A) নিউট্রন-ইলেকট্রন যুগ্ম
 - (B) পজিট্রন-নিউট্রন যুগ্ম
 - (C) ইলেকট্রন-প্রোটন যগ্ম
 - (D) ইলেক্ট্রন পজিট্রন যুগ্ম।
- একটি ত্রিভ্জের তিন কোণায় যথাক্রমে q_1,q_2 , এবং q_3 তড়িতাধান রাখা আছে। (চিত্র 7) গ্রিভুজের ভূমির মধ্যবিন্তে (P) তড়িং বিভব হবে

$$\left(\frac{1}{4\pi \in} = 9 \times 10^9 \,\mathrm{Nm}^2\mathrm{c}^{-2}\right)$$

- (A) 55 kV
- (B) 45 kV
- (C)63 kV
- (D) 49 kV.

SET 3 0

- এক কিলোমোল গাসকে বুল্ব ভাপ প্রকিষ্টা সংগ্রিত করতে 146kJ কর্ম করতে হয় একং এই পুরিসার রাজ্যের রাজ্যারে র C বৃদ্ধি পার (R - 8 U mol ¹ K ¹) গলেনী
 - 111 200 W. Parties

(B) এক পদরালক ও দিপ্রভালকের মিশ্রল

(C) এক প্রমাণক

(D) বি পরমাণক।

	$[$ Hints : $\Delta Q = \Delta U + \Delta W$; বুন্ধতাপ প্রক্রিয়ায়	$\Delta Q =$	0 ; অতএব ∆U – A	$\Delta W = -(-146) \text{ kJ} = 146$
	kJ. আবার $\Delta U = nC_v\Delta T$ অথবা $C_v = \frac{\Delta}{n.2}$	$\frac{v}{\Delta T} = \frac{1}{2}$	$\frac{146 \times 10^3}{1 \times 10^3 \times 7}$	$[\Delta T = 7^{\circ}C = 7K]$
	$= 20.8 \text{J mol}^{-1} \text{ K}^{-1}$; দ্বি পরমাণুক গ্যাসের	ক্ষেত্রে,	$C_v = \frac{5}{2}R = \frac{5}{2} \times 8$	$3.3 = 20.8 \mathrm{J mol}^{-1} \mathrm{K}^{-1}$
2	ভুল উত্তিটি চিহ্নিত করো : (A) পরিবর্তী তড়িৎ প্রবাহ ছাড়া চুম্বকের (B) একটি স্থানের চৌম্বক মধ্যতল হল সেই অবস্থিত,	নীম্বকত্ব ই তল ফ	নাশ করা সম্ভব, াার উপর ঐ তল	ও পৃথিবীর চৌম্বক মেরুদ্বয়
	(C) চৌম্বক রক্ষক ছারা চুম্বকের চৌম্বকত্ব (D) এক মেরু চুম্বক নির্মাণ সম্ভব নয়।	নাশ ব	রা হয়,	
3	$_{92}\mathrm{U}^{238}$ থেকে $_{92}\mathrm{U}^{234}$ তে রূপান্তরের অন্যবার হবে	সময় দু	বার নিঃসরণের ম	ধ্যে একবার α কণা হলে
	(A) দটি ৪ [–] কণা	(I	3) দৃটি β [−] এবং ।	একটি β+
	(C) একটি β ⁺ এবং একটি γ ফোটন	(I)) একটি β+ এবং	একটি β ⁻¹ .
4	একটি ধাত্র ক্ষেত্রে প্রারম্ভ তরজাদৈর্ঘ্য 3800 ধাত্র উপর আপতিত হলে, নির্গত ফটো ই	A° L	2000 A° তরজাদৈ	র্ঘার অতিবেগুনি আলো ঐ
5	J-s) (A) 4.0 × 10 ¹⁹ J (B) 4.2 × 10 ¹⁹ J একটি ইলেট্রন 4 × 10 ⁷ ms ¹ বেগে গতিশী	ন। ইলে	কট্রন ভোল্টে ইলে	কট্রনের শক্তি হবে (দেওয়
	আছে : ইলেকট্রনের ভর = $9 \times 10^{-31} \text{kg}$	এবং হ	।थान = 1.6 × 10	coulomb)
6	(A)4keV (B)4.5keV একটি তামা ভোল্টামিটারে 1.5 A তড়িৎ প্র পরিমাণ তামা উৎপক্ষ হবে তা (তামার E.C	বাহ 5	মিনিট প্রবাহিত হা	ল, ঋণা গ্ৰক তাড়দ্বারে ফে
	(A) 1.5 g (প্রায়) (B) 2.0 g (প্রায়)	(1	C) 2.4 g (প্রায়)	(D) 1.0 g (2間) I
V	আলোক তড়িৎ ক্রিয়া থেকে প্রমাণিত হয় (A) ইলেকট্রনের তরজা ধর্ম	(1	B) আলোর ঋণাত্ম	ক আধান
			D) আলোর কণা ধ	
8	M ভরের এবং r ব্যাসার্ধের স্বম এবং প তালের অভিলম্বভাবে গত অক্ষের সাপেক্ষে	শাতলা	গোলাকার পাতের	কেন্দ্র দিয়ে এবং পাতের
	$(A)Mr^2 \qquad (B) \frac{1}{2}Mr^2$			(D) $\frac{2}{5} Mr^2$.
9	পৃথিবীর গড় ঘনস্থ		-	
	(A) ৫-এর সমান্পাতিক		এর বাস্তান্পাতিক	
	((') _৫ -এর উপর নির্ভর করে না			(complex function)
10	16 g তিলিয়াম এবং 16 g মান্সিছেন মেশা	ুনা এল	। মিরালের C,	থনুপাত থকে
	(A) 1.4 (B) 1.54	(C) 1.59	(D) 1.62.

- একটি ফাপা পরিবাইট গোলক কিছ পরিমাণ আধান বহন করে গোলকের অভান্তরম্ব কোনো বিন্দুতে বিভব
 - (A) अर्वभ भूगा

- (B) সর্বদা একটি ধনাস্থক প্রবক
- (C) সর্বদা একটি ঋণাশ্বাক প্রবক (D) প্রবক যার চিহ্ন আধানের চিহ্নের অনুরপ।
- একটি আলোকতড়িৎ কোল Im দূরে রাখা একটি ক্ষুদ্র এবং উজ্জ্বল আলোক উৎস দ্বারা আলোকিত উৎসটি m দুরে থাকলে, ফটো-কোশ কর্তৃক নিঃসৃত ইলকট্রকের সংখ্যা
 - (A) 2 গুণ হ্লাস পাবে

(B) 2 গুণ বৃন্ধি পাবে

(C) 4 গুণ হ্রাস পাবে

(D) 4 গুণ বৃশ্বি পাবে।

[Hints:
$$I \propto \frac{1}{r^2}$$
; ∴ $I' \propto \frac{1}{(1/2)^2}$ অথবা $I' \propto 4$]

একটি তাপণতীয় সংস্থা A অবস্থা থেকে B অবস্থায় গেল ৪ নং প্রদর্শিত I এবং II পর্ন্ধতিতে। ঐপন্ধতি দৃটিতে অভান্তরীণ শক্তির পরিবর্তন AU, এবং ΔU_2 হলে

- (A) $\Delta U_2 > \Delta U_1$ (B) $\Delta U_2 < \Delta U_1$
- $(C) \Delta U_1 = \Delta U_2$ (D) ΔU_1 এবং ΔU_2 সম্পর্ক নির্ণয় করা যাবে না।
- 14 X-রশ্মি নলে প্রযুক্ত বিভব-পার্থকা দ্বিগুণ করা হলে উৎপন্ন X-রশ্মির ন্যুনতম তরজা দৈর্ঘ্য হয় (A) দ্বিগণ (B) অর্ধেক (C) চারগুণ (D) একই থাকে।
- পূর্ণ একমুখী করণের জন্য নীচের কোন পর্ম্বার্তি ব্যবহার করা হয়?
 - (A) একটি P-N সংযোগ অর্ধপরিবাহী ডায়োড ব্যবহার করা হয়.
 - (B) দুটি P-N সংযোগ ডায়োড অবশ্যই ব্যবহার করতে হবে.
 - (C) ট্রান্সফর্মার সহযোগে একটি P-N সংযোগ ভায়োড ব্যবহার করা যায়,
 - (D) উপরের যে-কোন পন্ধতি ব্যবহার করা যায়।
- 16 একটি সিল্কের দড়ি (s) দিয়ে একটি তড়িতাহিত বল B-কে ঝুলানো আছে [চিত্র 9]। দড়িটি একটি বড়ো তডিতাহিত পাত P এর সঞ্জো A কোণ করে আছে। পাতের আধানের তলমাত্রিক ঘনত o হবে

4 Tcosθ

†mg

हिंड **⇒** 10

(A) sin θ-র সমানপাতিক

(B) tan θ -র সমানপাতিক

(C) cos θ-র সমানপাতিক

(D) cot θ-র সমানপাতিক।

+ 8q এবং -2q আধান যুক্ত দুটি বিন্দু আধান যথাক্রমে x = 0 এবং x = L বিন্দতে স্থাপিত আছে। যে বিন্দৃতে উভয়ের দর্ন ৩ডিৎ ক্ষেত্র শন্য x-অক্ষের ওপর তার অবস্থান হবে

- (A) 8L
- (B)4L
- (C) 2L
- $(D) \frac{L}{4}$

একটি দন্ড চুম্বকের দৈর্ঘ্য 10 cm এবং প্রস্পক্ষেদ 2 cm²। এর স্রামক 100 cgs একক। দন্তের 18 চম্বকনের পরিমাত্রা

(A) 50 의 季季

- (B)5 의季奉
- (C) 2.5 9季季
- (D) 10 9441
- যদি ৮ কোন ধাত্র তলের ফটো-ইলেকট্রিক কার্য-অপেকা হয়, ৮ হয় প্রযন্ত আলোর কম্পাঙ্ক m নির্গত ফটো-ইলেকট্রনের ভর, এবং চহয় ঐ ফটো ইলেকট্রনের বেগ ভাহলে আইনস্টাইনের ফোটো ইলেকট্রক সমীকরণটি হবে

$$(A) hv + \omega = \frac{1}{2}mv^2$$

(B)
$$hv + h\omega = \frac{1}{2}mv^2$$

(C)
$$hv-\omega = \frac{1}{2}mv^2$$

(D)
$$hv - h\omega = \frac{1}{2}mv^2$$

20 প্রত্যেকটির ব্যাসার্ধ R এরপ দুটি সর তারের রিং সমাক্ষীয় ভাবে d দূরত্বে রাখা আছে (চিত্র 11)। রিং দৃটিতে আধান + q এবং - q : রিংদৃটির কেন্দ্রবিন্দুর ভিতর বিভব-পার্থক্য

(B)
$$\frac{q}{4\pi \in_0} \left(\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right)$$

$$(C) \frac{qR}{4\pi \in_0 d^2}$$

(D)
$$\frac{q}{2\pi \in_0} \left(\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right)$$

[Hints: O বিন্দুতে বিভব = A-র দর্ন বিভব + B এর দর্ন বিভব =
$$\frac{K(q)}{R} - \frac{Kq}{\sqrt{R^2 + d^2}}$$

$$O'$$
 বিন্দুতে বিভব = $-\frac{K.q}{R} + \frac{K.q}{\sqrt{R^2 + d^2}}$

$$\therefore$$
 বিভব-প্রভেদ = $\frac{q}{2\pi \in_0} \left[\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right] \left[K = \frac{1}{4\pi \in_0} \right]$

21 সমদূরত্বে রাখা n সংখ্যক প্লেট দ্বারা একটি ধারক তৈরি করা হল। প্লেট গুলি একটি অন্তর একটি যুক্ত। পরপর দৃটি প্লেটের ভিতর ধারকত্ব েহলে মোট ধারকত্ব হবে

- একটি উত্তাপক কুণ্ডলীকে দু'টুকরো করে এক টুকরোকে উত্তাপক হিসাবে ব্যবহার করা হল। এতে উৎপন্ন তাপ

(A) এক চতুর্থাংশ হবে (B) অর্ধেক হবে (C) দ্বিগুণ হবে (D) চারগুণ হবে।

- 23 কোন একটি রোধক কুঙলীর উপর স্থির বিভবপ্রভেদ আরোপ করলে প্রতি সেকেণ্ডে w_i তাপের উদ্ভব হয়। দ্বিতীয় একটি কুণ্ডলীর ক্ষেত্রে ঐ তাপ উদ্ভবের হারের মান ৮৮2; কুণ্ডলী দুটিকে

সমান্তরালে যক্ত করলে ঐ মান w এবং শ্রেণি সমবায়ে যুক্ত করলে w' হয়। যদি সমবায়ের দু-পাশে এ একই বিভব-প্রভেদ আরোপ করা হয় তবে

(A)
$$\frac{w'}{w} = \frac{w_1 + w_2}{\sqrt{w_1 w_2}}$$
 (B) $\frac{w'}{w} = \frac{w_1}{w_2} + \frac{w_1}{w_2}$

(C)
$$\frac{w'}{w} = \frac{\left(w_1 + w_2\right)^2}{w_1 w_2}$$
 (D) $\frac{w'}{w} = \frac{w_1 w_2}{\left(w_1 + w_2\right)^2}$

- 24 একটি স্থানু তরজোর সমীকরণ দেওয়া আছে $y=10 \sin \frac{\pi x}{4} \cos 2\pi t \, \mathrm{cm}$; দুটি পাশাপাশি নিম্পন্দ বিন্দুর দ্রত্ব হবে
- (A) 2cm (B) 4cm (C) 1cm (D) 8cm. দুটি সরু ও লম্বা তার d ব্যবধানে পরম্পরের সমান্তরালে রাখা আছে। তাদের ভিতর একই 25 অভিমথে প্রবাহ i। তারা
 - (A) পরস্পরকে $\frac{{\mu_o i}^2}{\left(2\pi d^2\right)}$ বলে আকর্ষণ করবে, (B) পরস্পরকে $\frac{{\mu_o i}^2}{\left(2\pi d^2\right)}$ বলে বিকর্ষণ করবে
 - (C) পরস্পর্কে $\frac{{\mu_0}i^2}{2\pi d}$ বলে আকর্ষণ করবে, (D) পরস্পরকে $\frac{{\mu_0}i^2}{2\pi d}$ বলে বিকর্ষণ করবে।
- একটি তামা ও একটি রপা ভোল্টামিটার সমান্তরাল সমবায়ে যুক্ত আছে। যখন ভোল্টামিটার দিয়ে মোট q পরিমাণ তড়িংধান যায়, তখন ভোল্টামিটার দুটিতে সমপরিমাণ ধাতু জমা হয়। তামা ও রপার তড়িং-রাসায়নিক তুল্যাঙ্ক যথাক্রমে 2, এবং 2, হলে, রপা ভোল্টামিটারে যে পরিমাণ তড়িৎ প্রবাহিত হল তা

(A)
$$\frac{z_1}{z_2} \cdot q$$
 (B) $\frac{z_2}{z_1} \cdot q$ (C) $\frac{q}{1 + z_1/z_2}$ (D) $\frac{q}{1 + z_2/z_1}$

- নিম্নলিখিত গুলির মধ্যে কোন্টি অসত্য? একটি রুপান্তরকে
 - (A) গৌণ কৃঙলীর বিভব মুখাকৃঙলীর বিভব থেকে অধিক,
 - (B) গৌণ কৃঙলীতে প্রবাহমাত্রা মুখ্যকৃঙলীর প্রবাহমাত্রার কম,
 - (C) গৌণ কঙলীতে ক্ষমতা মুখ্যকঙলীর ক্ষমতার অধিক,
 - (D) গৌণ কুঙলীতে পাকের সংখ্যা মুখ্যকুঙলীর পাকের সংখ্যার অধিক।
- একটি 220 voit 40 watt বাতির রোধের মান হবে 28
 - (B) 1000Ω (C) 800Ω (D) 500Ω . (A) 1210 Ω
- একটি অসম চৌম্বক ক্ষেত্রে একটি চৌম্বক শলাকা রাখা আছে। শলাকা 29

 - (A) বল ও টর্ক অনুভব করবে (B) বল অনুভব করবে কিন্তু টর্ক নয়
 - (C) টর্ক অনুভব করবে বল নয়
- (D) কিছুই অনুভব কর্বে না।
- একটি নিরেট গোলক শুনা দেশে আবর্তন করছে। গোলকের ভর অপরিবর্তিত রেখে ব্যাসার্ধ 30 বাঙালে নিম্নলিখিত ধর্মগুলির মধ্যে কোনটি অপরিবর্তিত থাকরে?
 - (A) জাড়া গ্রামক
- (B) কৌণিক ভরবেগ (C) কৌণিক বেগ
- (D) আবর্ত গতিশব্তি।

(D) $8\pi \times 10^{-7}$.

32		রার জনা চুষক রক্ষক ব	। पराव क्या रस, कासन	
	(A) চুম্বক রক্ষক চুম্বৰ	ককে শক্তিশা লী করে,		
	(B) চুম্বক রক্ষক বাব	হার করলে মুক্ত মেরু থা	रक ना,	
	(C) চুম্বক রক্ষকগুলি	চুম্বকে পরিণত হওয়ার ভ	ন্য চুম্বক প্রাবল্য বৃদ্ধি	পায়,
	(D) সমন্ত ব্যাখ্যাগুলি	সত্য।		
33	ভূপষ্ঠ থেকে h উচ্চতা	য় m ভরের এবং R ব্যাসা	র্ধের একটি কৃত্রিম উপগ্রহ	্ ভূপ্রদক্ষিণ করছে। ভূ-
	পৃষ্ঠে অভিকর্ষজ ত্বরণ	। g হলে, উপগ্রহের কক্ষ	ोग्न पुष्टि शत	
				1
	(A) g. h	(B) $\frac{g\mathbf{R}}{\mathbf{R} - h}$	$(C) \frac{gR^2}{R+h}$	$(D) \left(\frac{gR^2}{R+h} \right)^2$
34	ভূপৃষ্ঠে অভিকর্ষজ ত্বর	वन g হলে, m ভরের বে	চান বস্তুকে ভূপৃষ্ঠ থেকে	পৃথিবীর ব্যাসার্ধ R এর
		তার স্থিতিশক্তি লাভ হবে		
	(A) 2mgR	(B) $\frac{1}{2}mgR$	(C) $\frac{1}{4}mgR$	(D) mgR.
25		ত্বের n th ঘাতের সঞ্চো		
33	চতুর্দিকে R ব্যাসার্ধের	বৃত্তপথে পরিভ্রমণরত গ্র	হের পর্যায়কাল সমানুপা	তিক হবে
	$(A) \propto R^{(n+1)/2}$	$(\mathbf{B}) \propto \mathbf{R}^{(n-1)/2}$	$(C) \propto R^n$	(D) $\propto R^{(n-2)/2}$
36	E মানের একটি সুষম	া তড়িৎ ক্ষেত্রে একটি ইরে	লক্ট্রন, যার আধান – e	এবং ভর m অবস্থিত
	আছে। E-এর মান এ	ামনই যে ইলেকট্রনের উপ	ার তড়িৎ ক্ষেত্রের জন্য ব	বল এর ওজনের সমান।
	তাহলে,			
	mg mg		(C) F = 8	$e^2.g$
	(A) $E = \frac{1}{e}$	(B) E=mge	(C) = mg	m^2
37		মোল পরিমাণের একটি	গ্যাসের আন্তর্গন্তির পরি	বৈৰ্তন হল 100 joule।
	গ্যাসটি কি পরিমাণ ব			
	(A) - 100J	(B) 100J	(C) 1000 J	(D) -1000 J.
38	ν ₁ ও ν ₂ দুটি কম্পাতে	sক (v ₁ > v ₂) একটি ধাৰ	চবপৃষ্ঠ থেকে আলোকত	নড়ং নিঃসরণ হয় এবং
		গতিশক্তি দ্বিতীয় ক্ষেত্রে	(যথন কম্পাঙ্ক ৮2) 4	সুণ হয়। বাতুর সূচনা
	কম্পাডক হবে		(C) () /2	(D) (n + n) M
	(A) $(2v_1 - v_2)/3$	(B) $(2v_1 + v_2)/3$	(C) (V ₁ - V ₂)/3	(D) (V ₁ + V ₂)/4.
39	একই ব্যাসাধ এবং	একই তড়িতাধান বিশিষ্ট	পুটি গোলাকার সারবাং ত্রমান কামান	ধ B অবং C বিষ্ণু পূরে।
	থেকে পরম্পরকে F	বলে বিকর্ষণ করে।B এর ক (A) B-এর সাথে স্প	গ খ্যাসাথের সন্ধন খ্যাসা পর্শ করিয়ে Cএর সা	থে স্পর্গ করানো হল।
	নোলাকার সারবাহার	ক (A) B-এর সাবে দরিয়ে নেওয়া হল। B এ	বং ে এব ভিতৰ এবার	বিকর্ষণ বল হবে
	_			
	$(A) \frac{F}{4}$	$(B) \frac{3F}{4}$	(C) 8	(D) $\frac{3}{8}$.

31 শূন্য দেশে S.I এককে চৌম্বক ভেদাতার মান

(A) $\pi \times 10^{-7}$ (B) $2\pi \times 10^{-7}$ (C) $4\pi \times 10^{-7}$

41 ধারকত্বের একক হল

(A) পিকো-ফ্যারাড (B) কলম্ব (C) মাইক্লো-ভোল্ট

📭 a পরিমাণ তডিতাহিত একটি কণা υ গতিবেগে অপর একটি স্থির কিন্ত Ο তডিতাহিত বস্তর দিকে অগ্রসর হচ্ছে। r দূরত্ব গিয়ে কণাটি আগের পথে ফিরে গেল। q তড়িতাহিত কণাকে 2υ গতিবেগ দিলে কত সর্বাধিক দূরত্ব যেতে পারবে?

(A)
$$r$$
 (B) $2r$ (C) $\frac{r}{2}$ (D) $\frac{r}{4}$.

[Hints: কণার গতিশক্তি = কণার স্থিতিশক্তি অথবা $\frac{1}{2}mv^2 = \frac{k.qQ}{r}$;

দ্বিতীয় বার
$$\frac{1}{2} m(2v)^2 = \frac{k \cdot qQ}{r'}$$
 $\therefore \frac{1}{4} = \frac{r'}{r}$

43 প্রত্যেকটি – Q তড়িতাধান একটি বর্গক্ষেত্রের চারকোণায় স্থাপিত। বর্গক্ষেত্রের কেন্দ্র বিন্দতে a তড়িতাধান রাখা হল। সমগ্র সংস্থা সাম্য অবস্থায় থাকলে, q এর মান হবে

$$(A) - \frac{Q}{4} \left(1 + 2\sqrt{2} \right);$$

(B) $\frac{Q}{4} \left(1 + 2\sqrt{2} \right)$

$$(C) - \frac{Q}{2} \left(1 + 2\sqrt{2} \right)$$

(D) $\frac{Q}{2}(1+2\sqrt{2})$.

44 একটি পরিবর্তি প্রবাহের সমীকরণ ঃ $I=10\cos{(100\,\pi\,t)}$ । অর্ধচক্রে প্রবাহের গড় মান হবে (A) 6.37 A (B) 10 A (C) 5A (D) 0.

[HInts : অর্বচক্রে I_{av} = 0.637 I₀]

নিম্নলিখিত মন্তব্যগুলির মধ্যে একটি মন্তব্য বিকীর্ণ তাপের ক্ষেত্রে খাটে না। সেটি হল

- (A) বিকীর্ণ তাপ শুন্য মাধ্যমে চলতে পারে.
- (B) বিকীর্ণ তাপ চতর্দিকে ছডিয়ে পড়ে.
- (C) আলোর মত বিকীর্ণ তাপ সরল রেখায় চলে,
- (D) বিকীর্ণ তাপের বেগ আলোর বেগের চেয়ে কম।

46 D.C. আমমিটার দিয়ে পরিবর্তি প্রবাহ মাপা যায় না কারণ (A) D.C. আামমিটার দিয়ে A.C. যেতে পারে না, (B) A.C তার অভিমুখ পরিবর্তন করে. (C) সম্পর্ণ চক্রে গড় প্রবাহমাত্রা শুন্য, (D) D.C. অ্যামমিটার ক্ষতিগ্রস্ত হবে। 836 W হিটার । লিটার জলকে 10°C থেকে 40°C এ উত্তপ্ত করতে সময় নেবে (B) 100s (C) 150 s একটি ধাতর তডিৎ রাসায়নিক তল্যাঙ্ক 3.3 × 10⁻⁷ kg C 1; 3A প্রবাহ 2 সেকেন্ড ব্যাপী চললে ক্যাথোড়ে যে পরিমাণ ধাত মন্ত হবে তা (A) 19.8×10^{-7} kg (B) 9.9×10^{-7} kg (C) 6.6×10^{-7} kg (D) 1.1×10^{-7} kg. 3 cm ব্যাসার্ধের একটি তারের লুপে প্রবাহ গেলে লুপের কেন্দ্র থেকে 4 cm দূরের বিন্দুতে 54 μT চৌম্বক ক্ষেত্র উৎপন্ন হয়। লুপের কেন্দ্রে চৌম্বক ক্ষেত্রের মান (A) $250 \mu T$ (b) $150 \mu T$ (C) $125 \mu T$ ফ্লেমিং-এর বাম হস্ত নিয়ম বাবহার করা হয় কোনটি নির্ণয়ের জনা? (A) তড়িং প্রবাহের উপর তড়িং প্রবাহের ক্রিয়া, (B) চুম্বকের উপর তড়িং প্রবাহের ক্রিয়া, (C) তড়িৎ প্রবাহের উপর চুম্বকের ক্রিয়া, (D) চুম্বকের উপর চুম্বকের ক্রিয়া। 0 SET | 4 0 27°C উম্বতায় হিলিয়াম গ্যাসের প্রতিগ্রাম–অণুতে গতিশক্তি (R_0 = 8.3 × 10^7 erg/mole K) (D) 1500 J. (C) 2000 J (A) 1000 J (B) 3735 J ভূপৃষ্ঠ থেকে 20m উচু থেকে 2kg ভরের একটি বস্তুকে আবাধে পড়তে দেওয়া হল। ভূপৃষ্ঠ স্পর্শ করার পূর্ব মুহূর্তে বস্তুর গতিশক্তি (g = 10 ms⁻²) (B) 40 J (C) 200 J (D) 400 J. (A) 20 J একটি তিরটৌম্বক পদার্থের দণ্ডকে একটি সুবেদী চৌম্বক ক্ষেত্রে ঝুলিয়ে রাখা হয়েছে। এ সম্পর্কে নিম্নলিখিত উত্তিগুলির মধ্যে কোন্টি নির্ভুল? (A) দণ্ড ক্ষেত্রের সমান্তরাল ও লম্ব অভিমুখের ভিতর আন্দোলিত হবে, (B) দণ্ডের উপর চৌম্বক ক্ষেত্রের কোনো প্রভাব নেই, (C) দণ্ড চৌম্বক ক্ষেত্রের অভিলম্বভাবে নিজেকে স্থাপিত করবে. (D) দণ্ড চৌম্বক ক্ষেত্রের সমান্তরালে নিজেকে স্থাপিত করবে। বায়ুতে 27°C উশ্পতায় শব্দের বেগের তুলনায় যে তাপমাত্রায় বেগ দ্বিগুণ হবে তা (C) 927°C (D) -123° C. (B) 327°C (A) 54°C কোনো ধাতুর আলোকতড়িৎ কার্য-অপেক্ষক 1eV ; 300 Å তরজাদৈর্ঘ্যের আলো ঐ ধাতুর উপর পড়লে যে গতিবেগ নিয়ে ইলেকট্রন নির্গত হবে, তা (C) 10^4 ms^{-1} (D) 10^6 ms^{-1} . (A) $10 \,\mathrm{ms}^{-1}$ (B) $10^3 \,\mathrm{ms}^{-1}$ একটি সরুশলাকা A 32 cm দীর্ঘ কশ্বনলের বায়ুস্তন্তের সাথে সমসূর। বায়ুস্তন্তের দৈর্ঘ্য 1cm বাড়ালে, তা আর একটি সুরশলাকা B-এর সাথে সমসুর হয়। A এবং B উভয়ে 10 সেকেন্ডে 80টি ম্বরকম্প তৈরি করে। B শলাকার কম্পাঙ্ক হবে, (C) 384 Hz (D) 256 Hz. (A) 284 Hz (B) 360 Hz

u अवश un इरन

X-বশার ভেদন-ক্ষমতা বৃদ্ধি পায় যদি আমরা

(A) তরজাদৈর্ঘা বৃদ্ধি করি এবং ভোশেউজ হ্রাস করি,

(B) তরজাদৈর্ঘা এবং ভোশেউজ উভয়ই বুদ্ধি করি,

(C) তরজা দৈর্ঘা ও ভোশেউজ উভয়ই হ্রাস করি,

(D) তরজা দৈর্ঘা হ্রাস করি কিন্তু ভোশেউজ বৃদ্ধি করি।
একটি বেতার প্রেরক যন্ত্র 10kW ক্ষমতার 880kHz কম্পা

	থেকে প্রতি সেকেন্ডে যে–কটি ফোটন নির্গত ক	রে, তা
	(A) 1.7×10^{31} (B) 1327×10^{34}	
	[Hints: ক্ষমতা = ফোটন সংখ্যা ×/n অথবা	
10	m ভারের একটি কণা স্থির ব্যাসার্ধ r এর বৃত্তপণ্	u এরপভাবে আবর্তন করছে যে তার অভিকে ন্ দ্র
	ত্বরণ a_r সময় t -এর সাথে $a_r = k^2.r.t^2$ স	
	ধ্রবসংখ্যা। কণার উপর ক্রিয়ারত বল যে ক্ষমত	া প্রয়োগ করছে তা
	(A) $2\pi mk^2r^2t$ (B) mk^2r^2t	(C) $\frac{1}{3}mk^4r^2t^5$ (D) $\sqrt[4]{4}$
	[Hints: $a_r = k^2 . r t^2$ অথবা $\frac{v^2}{r} = k^2 . r t^2$	অথবা $v = k.r.t$: $\frac{dv}{dt} = kr$ । ক্রিয়ারত বল F
	$= m. \frac{dv}{at} = mk.r;$ ক্ষমতা $= F. v = mkr \times kr$	$rt = mk^2r^2t$
0	একটি বস্তুকণা r ব্যাসার্ধের উল্লম্ব বৃত্তপথে ঠিক গতিবেগ	সম্পূর্ণ ঘুরে আসে। বৃত্তের শীর্ষবিন্দুতে তার
	(A) $\sqrt{5gr}$ (B) $\sqrt{2gr}$	
	$(C)\sqrt{g.r}$ (D) কোনোটাই নয়।	
12	বায়ুশাঁস যুক্ত একটি সলিনয়েডের দৈর্ঘ্য 2m এবং 10 cm ² । সলিনয়েডের কেন্দ্রে আলগা ভাবে সলিনয়েডের পারস্পরিক আবেশ গুণাঙ্ক (M) খ	1000 পাকের গৌণ কুণ্ডলী জড়ানো আছে।
	(A) 10.7 mH (B) 11.5 mH [Hints: $M = \mu_0 n_1 n_2 \alpha / l$; $\mu_0 = 4\pi \times 1$	
13	দুটি চুম্বকদন্তের দৈর্ঘ্য এবং মেরুশন্তি সমান: বি অবস্থায়	কিন্তু একটির কেন্দ্রস্থালে ক্ষুদ্র ছিদ্র আছে। এ
	(A) দুটির চৌম্বক ভামক সমান	(B) ছিদ্রযুক্ত দক্তের ভ্রামক বেশি
	(C) ছিদ্রযুক্ত দণ্ডের ভামক কম	(D) কোনোটাই নয়।
14	10 ⁻² m ² ক্ষেত্রফল যুক্ত একটি বর্গাকার তারকুং	ভলীকে 10 ³ Wbm² প্রাবলোর চৌম্বকক্ষেত্রের
	অভিলম্ব ভাবে স্থাপন করা হল , কুগুলীর ভিত	
	(A) 10 Wb (B) 10 ⁻⁵ Wb	(C) 10^5 Wb (D) 100 Wb.

R বাস্পর্ধর বৃত্তপথে প্রামামাণ একটি কৃতিম উপগ্রহের মৃত্তিবেগ এবং কক্ষায় গতিবেগ যথাক্রমে

(A) $v_e = \frac{v_0}{\sqrt{2}}$ (B) $v_e = \frac{v_0}{2}$ (C) $v_e = v_o$ (D) $v_e = \sqrt{2}$. v_o .

16	দৃটি গ্যাস A এবং B এর প্রাথমিক উন্মতা ও চাপ	সমান IA গ্যাসকৈ সমোশ্ব প্রণালীতে চাপ দিয়ে
	আয়তন V থেকে $\frac{V}{2}$ এবং B গাসকে বৃষ্ধতাপ	প্রক্রিয়ায় চাপ দিয়ে আয়তন V থেকে $\frac{V}{2}$ করা
	হল। এক্ষেত্রে চূড়ান্ত চাপ	
	(A) A অপেক্ষা B-এর বেলায় বেলি	(B) A অপেক্ষা B-এর বেলায় কম
	(C) উভয় ক্ষেত্রেই সমান	(D) B-অপেক্ষা A-এর বেলায় দ্বিপুণ।
17	কোন অবস্থানে ৪ এর মান সর্বনিম্ন?	
	(A) ভূকেন্দ্রে (B) সুউচ্চ পর্বত শৃঙ্গো	(C) গভীর কয়লাখনির নীচে (D) গৃপুষ্ঠে।
18	600 পাকযুক্ত একটি বৃত্তাকার কুঙলীর স্বাবেশগুণা	🏍 108 mH; 500 পাক যু 🖲 অপর একটি সদৃশ
	কুঙলীর স্বাবেশ গুণাঙক	
	((C) 76 mH (D) 77 mH.
19	আলো ও শব্দ তরজোর ভিতর একটি গুরুত্বপূর্ণ	
	(A) শূন্য মাধ্যমে প্রসার লাভ করতে পারে,	(B) উভয়ই তির্যক তরঙ্গা,
	(C) বায়ুতে উভয়ের গতিবেগ সমান,	(D) উভয়ই ব্যাতিচার প্রদর্শন করে।
20	A এবং B সরশলাকা দটিকে একই সঞ্চো কম্পি	ত করলে সেকেন্ডে 🛽 সংখ্যক স্বরকম্প শোনা
	যায়। A সুরশলাকার কম্পাঙ্ক n; যখন B সুর	শলাকাকে মোম লাগিয়ে ভারী করা হল তখন
	স্বকম্পের সংখ্যা হ্রাস পায়। B সুরশলাকার	कम्भाङ्क
	$(A) n + x \qquad (B) n - x$	(C) $n-x^2$ (D) $n-2x$.
21	একটি দরবর্তী নক্ষত্র থেকে আসা $\lambda = 4861 \text{Å}$	তরজা দৈর্ঘ্যের আলোক তরজা ক্রমশ দাঘতর
	তরজোর আলো হয়ে চোখে ধরা পড়ল। তরজ	দৈখ্য বৃদ্ধ 12.05 A হলে
	(A) নক্ষত্রটি $3 \times 10^5 {\rm ms}^{-1}$ বেগে দূরে চলে	याटिष्ट,
	(B) $7.5 \times 10^5 \text{ ms}^{-1}$ বেগে দূরে চলে যাচ্ছে,	
	$(C) 4 \times 10^6 \text{ms}^{-1}$ বেগে এগিয়ে আসছে,	
	(D) 10 ⁵ ms ⁻¹ বেগে দূরে চলে যাচছে।	
22	নিম্নলিখিত কাজগুলির মধ্যে কোন্টিতে পরিবর্তি	প্রবাহ প্রবাহ প্রযোজ্য হবে না ?
	(A) তাপীয় কাজে	(B) আলোক উৎপাদনে
	(C) ভোশ্টেজ রূপান্তরণে	(D) তড়িং বিশ্লেষণে।
23	তিনটি একই রকমের (প্রত্যেকটির ধারকত্ব C)	ধারককে শ্রেণি সমবায়ে যুক্ত করে তার সাথে
	একই রকম আর একটি ধারক সমান্তরাল সমব	ায়ে যুক্ত করা হল। সমগ্র সংস্থার ধারকত্ব হবে
	(A) 3C (B) $\frac{4C}{3}$	(C) 3C
24	একটি অ্যামামিটারের রোধ G এবং পঠন সীম অ্যামমিটারে পরিণত করতে যে রোধ সমান্তরাক	া আ্যাম্পিয়ার। এই যন্ত্রকে ni পর্যন্ত পঠনক্ষ্য ল সমবায়ে যুক্ত করতে হবে তা
		(C) $\frac{G}{n}$ (D) $\frac{G}{(n-1)}$
		()

গভীর ক্য়লাখনির তলদেশে, সমুদ্র সমতলে এবং পর্বতশ্ঞো একটি বধুর ওজন যথাক্রমে พา.

(A) $w_1 < w_2 > w_3$ (B) $w_1 = w_2 = w_3$ (C) $w_1 < w_2 < w_3$ (D) $w_1 > w_2 > w_3$.

w2 এবং w3 । তাহলে

প্রান্তের মধ্যে বিভব-পার্থক্য হবে

	(A)0	(B) $\frac{1}{8}\omega Bl^2$	(C) $\frac{1}{2}\omega Bl^2$	(D) $B.\omega.l^2$
26	_	ন্তল্লামকযুক্ত একটি হুইল প্র ন। হুইলের কৌণিক মন্দ		াবির্তন করছে। একে 20
27	R ব্যাসার্ধের বৃত্তাকার	(B) 2π radian / s² া কক্ষপথে পরিভ্রমণতর অন্য একটি উপগ্রহের গ	একটি উপশ্রহের পর্যায়	
	(A) $\frac{T}{4}$	(B) $\frac{T}{8}$	(C) 4T The property (C)	(D) 8T.
28	একটি বৃত্তের পরিসীম অংশ পরে বিমানের	া বরাবর একটি বিমান 10 গতিবেগ পরিবর্তন	0 km h ¹ সুষম গতিবেগ	নিয়ে ঘুরছে। চক্রের $\frac{1}{4}$
	(B) 200 km h ⁻¹ 21	থমিক অভিমুখের সজো থমিক অভিমুখের সজো থমিক অভিমুখের সজো	90° কোণে,	
29	(D) 200 km h ⁻¹ 앱	াথমিক অভিমুখের সঞ্জো ৬ একপ্রান্ত মাটিতে ঠেকিয়ে	45° কো ণে ।	যাছে। হঠাৎ দক্ষের উপর
		থান থেকে উল্টে (topple		
30		(B) √5gL		*
30	পাওয়া যাবে তা	25000 volt বিভবপ্রভেদ		
31	10 ⁵ ms ⁻¹ গতিবেগ যু	(B) 0.5 A° মুক্ত প্রোটনের ডি-ব্রগলি ব (B) 7.355 A°	তরজা দৈর্ঘা (m = 9× 10) ⁻³¹ kg)
32	l kg ভরের একটি প হচ্ছে। সৃতোয় সর্বোচ্চ খণ্ডের গতিবেগ হবে	থেরখণ্ডকে $\frac{10}{3}$ m দীর্ঘ ও টাল এবং সর্বনিম্ন টানে ($g = 10$ m ⁻²)	াকটি সুতোয় বেঁধে উল্লম্ব র অনুপাত 4 হলে বৃত্তে	ঙলে বৃত্তপথে ঘোরানো র সর্নোচ্চ বিন্দৃত্তে পাথর
33	একটি সৃষ্ম চক্রাকার	(B) $10\sqrt{3} \text{ m s}^{-1}$ ব হুইলের উপর প্রির $4J_0$ করলো। টর্কের মা	यात्नत वैर्क किया कर्त	(D) 10 m s ¹ . তার কৌলিক ভগবেগ
	(A) $\frac{3}{4}$ J ₀	(B) 4J ₀	(C) J ₀	(D) 12J ₀
Hin	its : १,क ^{िल} क अहाराङ	রে পরিবর্তন ३৮ _{॥ :} পরিব	তিনের হার $=\frac{3}{4}\mathrm{J}_0$; অ	$4 36 = \frac{3}{4} \mathbf{J}_0$

25 । দৈর্ঘোর একটি দশু (i) সমকৌণিক বেগ নিয়ে নিজের লম্ব দ্বিখণ্ডকের সাপেক্ষে যুরছে। ঘূর্ণন অক্ষের সমান্তরাল ভাবে একটি সুষম চৌম্বক ক্ষেত্র B কাজ করছে। দণ্ডের মধ্যবিন্দু এবং এক

	পরিশিফী 🔳 619
34	পৃথিবীর ব্যাসার্ধ 1% কমে গেলে (ভর অপরিবর্তিত থেকে), ভূপৃষ্ঠে অভিকর্ষজ ত্বরণের মান (A) 1% বেড়ে যাবে (B) 2% কমে যাবে (C) 1% কমে যাবে (D) 2% বেড়ে যাবে।
[Hin	ts: $g = \frac{GM}{R^2}$; $g' = \frac{GM}{\left(R - \frac{R}{100}\right)^2}$; $\therefore \frac{g'}{g} = \left(1 - \frac{1}{100}\right)^{-2}$ where $g' = g\left(1 + \frac{2}{100}\right)$
	$=g\left(1+\frac{1}{50}\right)$ অথবা $\frac{g'-g}{g} \times 100 = \frac{1}{50} \times 100 = 2\%$
35	নিম্নলিখিত সমীকরণগুলির মধ্যে কোন্টি আইনস্টাইনের আলোকতড়িৎ সমীকরণ ?
	(A) $E = mc^2$ (B) $E = h.v$ (C) $\frac{1}{2} mv^2 = hv - \omega$ (D) কোনোটাই নয়।
36	ধর, হাইড্রোজেন পরমাণুর মত $-3e$ তড়িতাধান যুক্ত একটি কণা প্রোটনের চতুর্দিক পরিভ্রমণ করছে। হাইড্রোজেন পরমাণুর ইলেকট্রনের প্রথম মঞ্জুরীকৃত কক্ষপথের ব্যাসার্ধ r_0 হলে, উক্ত কণার প্রথম মঞ্জুরীকৃত কক্ষপথের ব্যাসার্ধ হবে
	(A) $3r_0$ (B) r_0 (C) $\frac{1}{3}r_0$ (D) $\frac{1}{9}r_0$
37	হাইড্রোজেন পরমাণুর বোর মড়েল সংক্রান্ত নিম্নালাখত বিষয়গুলির কোন্ত তিক ?
	$(A) n^{ ext{th}} $ কক্ষপথের ব্যাসার্থ n^2 -এর সমানুপাতিক,
	(B) n th কক্ষপথে ইলেকট্রনের মোট শ ন্ত n-এর ব্যস্তানুপাতিক,
	(C) যে-কোনো কক্ষপথে ইলেকট্রনের কৌণিক ভরবেগ $\frac{h}{2\pi}$ এর পূর্ণ গুণিতকের সমান,
	(D) যে-কোনো কক্ষপথে ইলেকট্রনের স্থিতিশক্তির মান তার গতিশক্তির মান অপেক্ষা বোশ।
38	विकास कराति है जिस्सा विकास कराति है जिस्सा कर
	পথে পরিশ্রমণ করে, তথন ইলেকট্রন
	(A) বিকিরণ নির্গত করে কিন্তু তার বৃত্তপথের ব্যাসার্ধের পরিবর্তন হয় না,
	(B) কোন বিকিরণ নির্গত করে না,
	(C) বিকিরণ নির্গত করে কিবু তার ব্যাসার্ধ বৃদ্ধি পায়,
	(D) বিকিরণ নির্গত করে কিছু ব্যাসার্থ ক্রমাগত হাস পায়।
39	Μ ভরের একটি বস্তু ω কৌণিক বেগ নিয়ে একটি অক্ষের চভূদিকে ঘুরছে। ঐ অক্ষ সাপেকে বস্তুর চক্রগতির-ব্যাসার্ধ Κ হলে, বস্তুর কৌণিক ভরবেগ হবে
	(A) $Mk^2 \omega^{\frac{1}{2}}$ (B) $Mk\omega^2$ (C) $Mk\omega$ (D) $Mk^2 \omega$.

অনুপাত (A) $r_1d_2: r_2d_1$ (B) $r_1^2d_1: r_2^2d_2$ (C) $r_1d_1: r_2d_2$ (D) $r_1d_1^2: r_2d_2^2$ (II) দৃটি গোলকের একটি নিরেট, অপরটি ফাঁপা। প্রভোকের ভর সমান এবং প্রভোকের ব্যাস

40 দুটি গ্রহের ব্যাসার্থ যথাক্রমে r_1 এবং r_2 ; ঘনত্ব ho_1 এবং ho_2 । তাদের প্রেট অভিকর্মজ ত্বরণের

সাপেকে ভাডাপ্রামক সমান। তাদের বাাসার্ধের অনুপাত (A) 5:3 (B) √3:√5 (C) √5:√3 (D) 1:1.

42	্ভার্ন্টাম্টারের পরিবর্তে আমেমিটার ব্যবহার	করলে, আমমিটারের সঞ্চো অবশাই
	(A) নিম্নমানের রোধ সমান্তরাল সমবায়ে লা	
	(B) উচ্চমানের রোধ সমান্তরাল সমবায়ে ল	ागार्ड हर्त,
	(C) উচ্চমানের রোধ শ্রেণি সমবায়ে লাগাতে	
	(D) নিম্নমানের রোধ শ্রেণি সমবায়ে লাগাতে	ं रत्।
43		6 eV শক্তি প্রয়োজন হয়। তাহলে n = 2 কক্ষপথ
	থেকে ইলেকট্রন অপসারণ করতে কত শব্তি	
	(A) 10.2eV (B)0eV	(C) 3.4eV (D) 6.8eV.
44		াসার্ধের বৃত্তপথে ঘুরছে। তারা একই সময়ে সম্পূর্ণ
		/ \
	বৃত্তপথ একবার ঘুরে এলে তাদের কৌদিক	গতিবেগের অনুপাত $\left(\frac{1}{\omega_2}\right)$ হবে
	m_1 m_1	m_1r_1
	(A) $\frac{m_1}{m_2}$ (B) $\frac{r_1}{r_2}$	(C) $\frac{1}{m_2 r_2}$ (D) 1.
45	R ব্যাসার্ধের একটি ওভারব্রীজ দিয়ে একটি	গাড়ি যাচ্ছে। চালক স্থির গতিবেগ বজায় রেখে
	চলছে। গাড়ি ব্রীজের উপর উঠতে শুরু করে	ল, ব্রীজের উপর অভিলম্ব বল
	(A) বৃদ্ধি পায় (B) হ্রাস পায়	(C) একই থাকে (D) পরিবর্তন করে।
46		সমান অবকাশে সমান ক্ষেত্রফল আবর্তন করে।
	কণার	
	(A) গতিবেগ স্থির	
_		(D) স্পর্শকীয় ত্বরণ স্থির।
47		গতিশীল আছে। মূলবিন্দু সাপেক্ষে তার কৌণিক
	ভরবেগ	
	(A) শূন্য	(B) ম্পির থাকে
_		(D) ক্রমশ হাস পায়।
48		র একটির ব্যাসার্ধ 4r। প্রথম চাকতিটি (A) t পুরু
		পুরু লোহার প্লেট থেকে কাটা হয়েছে। এদের
	জাড্যভ্রামক $I_{ m A}$ এবং $I_{ m B}$ নিম্নলিখিতভাবে সং	পর্কযুক্ত
	$(A) I_A > I_B$	(B) $I_A = I_B$
	$(C)I_A < I_B$	(D) । এবং r-এর মানের উপর নির্ভর করে।
49	220 V A.C. বর্তনীতে শীর্ষ ভোক্টেজ হবে	
	(A) 220 V (B) 對於 160 V	(C) প্রায় 310 V (D) 440 V.
50	p এবং E যথাক্রমে একটি ফোটনের ভরবেগ	ও শক্তি বোঝায়। তরজা দৈর্ঘ্য কমালে
	(A) p এবং E উভয়ই বৃদ্ধি পায়	(B) p বৃশ্বি পায় কিন্তু Eহ্রাস পায়
	(C) p ব্রাস পায় কিন্তু E বৃদ্ধি পায়	(D) p এবং E উভয়ই হ্রাস পায়।

0 SET | 5 0

(A) -3 (B) -2 (B) -2 (C) $-\frac{1}{2}$ (D) $\frac{1}{3}$.

- 2 একটি ঘূর্ণায়মান টেবিলে একটি কণা দৃঢ়ভাবে আবম্ধ আছে। ভূমি থেকে দেখলে মনে হয় কণাটি বৃত্তাকার পথে ঘুরছে। তার দুতি 20 cm s⁻¹ এবং তুরণ 20 cm s⁻²। কণাটি এবার অন্য এক স্থানে নেওয়া হল যাতে বৃত্তপথের ব্যাসার্ধ অর্ধেক হল। কণার দুতি এবং তুরণের নতুন মান হবে
 - (A) $10 \,\mathrm{cm} \,\mathrm{s}^{-1}$; $10 \,\mathrm{cm} \,\mathrm{s}^{-2}$

(B) $10 \,\mathrm{cm}\,\mathrm{s}^{-1}$; $80 \,\mathrm{cm}\,\mathrm{s}^{-2}$

(C) 40 cm s^{-1} ; 10 cm s^{-2}

(D) 40 cm s^{-1} ; 40 cm s^{-2} .

- পৃথিবীর ঘূর্ণন গতি সহসা স্তব্ধ হলে, ভূপ্ষে ৪-এর আপাত মান
 - (A) সর্বত্র বৃদ্ধি পাবে
 - (B) সর্বত্র হ্রাস পাবে
 - (C) সর্বত্র অপরিবর্তিত থাকবে
 - (D) কোন কোন স্থানে বৃদ্ধি পাবে এবং কোন কোন জায়গায় একই থাকবে।
- একজন খেলোয়াড় দিল্লিতে গোলাকে (shot) 16.2 m দূরে নিক্ষেপ করতে পারে। কলকাতায় ঐ খেলোয়াড় একই প্রাথমিক বেগ দিয়ে এবং অনুভূমের সঞ্চো একই কোণে গোলা নিক্ষেপ করলে তা যে দূরত্ব যাবে, তা
 - (A) $16.2 g_1 m/g_2$ (B) $16.3 g_2 m/g_1$ (C) $8.1 g_1 m/g_2$ (D) $8.1 g_2/g_1$ [m = গোলার ভর, $g_1 =$ দিল্লিতে অভিকর্ষজ ত্বরণ, $g_2 =$ কলকাতায় অভিকর্ষজ ত্বরণ]
- ত্র প্রত্যেকটি m ভরের এরূপ তিনটি কণাকে একটি সমবাহু ত্রিভুজের (ABC) তিন শীর্ষবিন্দুতে রাখা আছে [চিত্র 12]। ত্রিভুজের প্রত্যেক বাহুর দৈর্ঘ্য L; ABC সমতলে স্থাপিত কিন্তু AB বাহুর লম্ব AX রেখার সাপেক্ষে সমগ্র সংস্থার জাত্য

 একটি কলা সমবেগে সরল রেখা বরাবর গতিশীল আছে। কণার কৌণিক ভরবেগ

- (B) সরল রেখার উপর অবস্থিত একটি বিন্দু সাপেকে শূন্য,
- (C) সরলরেখার থেকে দ্রের কোন বিন্দু সাপেকে শূনা নয়,
- (D) কোনো নির্দিষ্ট বিন্দু সাপেক্ষে স্থির থাকে।
- আদর্শ গ্যাসের ক্ষেত্রে রুখ তাপ প্রসারণে গ্যাস
 (A) শীতল হয়,
 - ' (B) উ**ন্ধ** হয়,
 - (C) তাপমাত্রার কোন পরিবর্তন হয় না,
 - (D) শীতল হতে পারে আবার উশ্পও হতে পারে।

8	1 kg ভরের একটি গর্ভাড় 50 ms ⁻¹ গতিবেগে 200 g ভরের একটি লোহার গোঁজাকে আঘাত করল। হাত্তির শক্তির অর্থেক গোঁজাকে উত্তপ্ত করতে ব্যয়িত হলে, গোঁজার উন্নতা বৃদ্ধি হবে (লোহার আপেক্ষিক তাপ = 0.105)
	(A) 5.1°C (B) 6.1°C (C) 7.1°C (D) 8.1°C.
10	গাসে সংক্রান্ত চাপের সূত্র কে প্রতিষ্ঠা করেন ? (A) বয়েল (B) রেনো (C) সেলসিয়াস (D) চার্লস। m ভরের একটি বস্তুকে ভূপৃষ্ঠ থেকে অসীমে ছুড়ে দিতে যে গতিশক্তির প্রয়োজন তা {R = পৃথিবীর ব্যাসার্য]
	(A) $\frac{1}{4} mgR$ (B) $\frac{1}{2} mgR$ (C) mgR (D) $2 mgR$.
0	$y=a\sin{(\omega t-kx)}$ এবং $y=a\cos{(\omega t-kx)}$ দৃটি তরজা উপরিপাতিত হল। লব্দ তরজোর বিস্তার হবে
	(A) a (B) $\sqrt{2} a$ (C) $2a$ (D) 0 .
12	
	(A) মাধ্যমের সকল কণা একই দশায় কম্পিত হয়, (B) সকল নিম্পন্দ বিন্দুর দশা এক,
	(C) একটি অন্তর একটি নিম্পন্দ বিন্দুর দশা এক,
	(D) পর পর দৃটি দৃটি সৃস্পন্দ বিন্দুর ভিতরকার সকল কণা সমদশায় কম্পিত হয়।
13	একটি চলতরক্ষোর কম্পান্ধা 500 এবং গতিবেগ 350 ms ⁻¹ ; তরক্ষোর উপর দুটি বিন্দুর দশাপার্থক্য 60° হলে, বিন্দুদ্বয়ের ভিতর দূরত্ব হবে
	(A) 0.1166 m (B) 1.116 m (C) 11 m (D) 11.6 m.
14	480 Hz কম্পাঙ্কের একটি সুরশলাকাকে সনোমিটার তারের কম্পন সৃষ্টি করার জন্য ব্যবহার করা হচ্ছে। তারের স্বাভাবিক কম্পাঙ্গা 410 Hz. তারটি কি কম্পাঙ্গেক কম্পিত হবে ?
	(A) 410 Hz (B) 480 Hz (C) 820 Hz (D) 960 Hz.
15	
	(A) 1 kg (B) 2 kg (C) 8 kg (D) 16 kg.
16	যখন আলোক উৎস থেকে তরজামুখ বহু দূরে চলে যায় তখন তার আকৃতি হয়
7	(A) গোলীয় (B) চোণ্ডাকৃতি (C) সমতল (D) কোনটাই না। এক বর্ণের আলো বায়ু থেকে কাচে প্রতিসৃত হল। কাচের প্রতিসরাঙ্ক μ। আপতিত ও প্রতিসৃত আলোর তরজ্ঞাদৈর্ঘ্যের অনুপাত
	(A) 1:1 (B) 1: μ (C) μ :1 (D) μ^2 :1.
18	ভপলার প্রভাবের দর্ন কম্পাঞ্জের পরিবর্তন
	(A) শব্দ উৎসের গতিবেগের উপর নির্ভর করে না,
	(B) পর্যবেক্ষকের গতিবেগের উপর নির্ভর করে না,
	((') উৎসের কম্পাঞ্জের উপর নির্ভর করে না,
	(D) পর্যবেক্ষক ও উৎসের ভিতরকার দূর ত্বের উপর নির্ভর করে না ।

	467
	(A) $4.0 \times 10^{-10} \text{ Wm}^{-2}$: (B) $5.0 \times 10^{-10} \text{ Wm}^{-2}$
	(C) $8.0 \times 10^{-10} \mathrm{Wm}^{-2}$ (D) $16 \times 10^{-10} \mathrm{Wm}^{-2}$
20	খোলা অগান নলে পর পর সমসুর কম্পান্ত (resonance frequencies) 1944 Hz এবং 2592
	Hz. বায়ুতে শব্দের বেগ 324 ms ¹ হলে নলের দৈর্ঘা হবে
	(A) 20 cm (B) 22 cm (C) 25 cm (D) 30 cm.
21	দৃটি ট্রেন পরস্পারের দিকে 90 Km । বেগে এচিয়ে অসকে। একটি টেন 500 Hz কম্পাঙ্কের শব্দ
	উৎপন্ন করলে অপর ট্রেনে যে আপতে কম্পাঞ্জের শব্দ শোনা যাবে তা বেয়তে শব্দের বেগ
	$=350 \text{ms}^{-1}$)
	(A) 580 Hz (B) 500 Hz (C) 560 Hz (D) 577 Hz.
22	ভিনটি বিন্দু ভড়িভাধান $4q$. Q এবং q একটি সরলরেখা (দৈর্ঘ্য $=1$) বরাবর, $0.\frac{1}{2}$ এবং 1 দূরত্বে
	বসানো আছে। q আধানের উপর নীট বল শূন্য q-এর মান থবে
	(A) $-2q$ (B) $-\frac{1}{2}q$ (C) $4q$ (D) $-q$.
23	একটি বন্ধ তলের অভ্যন্তরে q তড়িতাধান আছে। গ্যসের উপপাদ্য অনুযায়ী বন্ধতলের উপর মোট অভিলম্ব আবেশ
	$(A) \frac{q}{\epsilon_0} \qquad (B) \epsilon_0 q \qquad (C) \frac{\epsilon_0}{q} \qquad (D) \frac{4\pi \epsilon_0}{q}.$
	⊆ ₀ একটি সুষম তড়িৎক্ষেত্রে একটি প্রোটন ও একটি ইলেকট্রন আছে।
24	(A) তাদের উপর ক্রিয়ারত তড়িংবল সমান,
	(A) তালের ভগর জেলারত তাড়ংখন সমাল, (B) ক্রিয়ারত তড়িংবলের মান সমাল,
	(B) প্রেরারত অভ্যার নাল প্রনাল, (C) এদের ত্বরণের মান ও অভিমুখ সমান,
	(C) এদের ত্বরণের মান সমান।
25	$4.00 \times 10^5 \text{NC}^{-1}$ মানের একটি উল্লম্ব তড়িংক্ষেত্র একটি $1.00 \times 10^4 \text{kg}$ ভরের জলবিন্দুকে
25	খাড়া নীচু দিকে পড়তে বাধা দিচেছ। বিন্দুটি ঝুলে থাকলে তার তড়িতাধান হবে
	(A) 2.00×10^{-9} C (B) 2.45×10^{-9} C (C) 3.00×10^{-9} C (D) 3.45×10^{-9} C
26	ব্যাটারির সাহায্যে একটি সমান্তরাল প্লেট ধারক-কে আহিত করার পর ব্যাটারি খুলে ফেলা হল।
9	অন্তরক হাতল দিয়ে প্লেট দুটিকে দূরে সরিয়ে নিলে,
	(A) ধারকের আধান বৃদ্ধি পাবে
	(B) ধারকের ধারকত্ব বৃদ্ধি পাবে
	(C) ধারকের দুই প্লেটের বিভব–পার্থকা বৃধ্বি পাবে
	(D) ধারকের শন্তি বৃশ্বি পাবে।
27	C_1 এবং C_2 ধারকত্বের দৃটি ধাতব গোলক সমান তড়িতাধান বহন করে। তাদের পরস্পারের
	সংস্পর্গে এনে, পরে পৃথক করে রাখা হল। গোলক দৃটিতে বর্তমান তড়িতাধান Q_1 এবং Q_2

(A) $\frac{Q_1}{Q_2} > \frac{C_1}{C_2}$. . (B) $\frac{Q_1}{Q_2} = \frac{C_1}{C_2}$ (C) $\frac{Q_1}{Q_2} < \frac{C_1}{C_2}$. (D) $\frac{Q_1}{Q_2} = \frac{C_2}{C_1}$

19 শব্দ উৎস থেকে 5.0 m দূরে শব্দের প্রাবলা 1 x 10 8 Wm 2 । উৎস থেকে 25 m দূরে প্রাবলা

28		1.00		
	mm। ধারককে 60V বাটারির সঞ্জে যুক্ত করলে ব্যাটারি দিয়ে যে তড়িং যাবে তা			
	(A) 1.30×10^{-10} C (B) 1.33×10^{-10} C (C) 1.4×10^{-10} C (D) 1.43×10^{-10}	O C		
29	ু দৃটি সর্ ও দীর্ঘ তার সমাধ্রালভাবে b দূরত্বে থেকে প্রত্যেকে 1A প্রবাহ বহন করছে।	একটি		
	তারের দর্ন অপর তারের একক দৈর্ঘ্যে প্রযুক্ত বল			
	(A) $\frac{{\mu_0}i^2}{b^2}$ (B) $\frac{{\mu_0}i^2}{2\pi b}$ (C) $\frac{{\mu_0}i}{2\pi b}$ (D) $\frac{{\mu_0}i}{2\pi b^2}$			
30	B চৌম্বক ক্ষেত্রে q গুড়িতাধানের আবর্তবেগের কম্পাঞ্জ			
	(A) $\frac{2\pi m}{B \cdot q}$ (B) $\frac{B \cdot q}{2\pi m}$ (C) $\frac{B \cdot q}{m}$ (D) $\frac{m \cdot B \cdot q}{\pi}$.			
_	ap serve	_		
31	"	। প্রাত		
	ঘন্টায় যে পরিমাণ বরফ গলবে তা ($L = 80 \text{ cal g}^{-1}$)			
	(A) 0.84 kg (B) 8.4 kg (C) 84 kg (D) 2.25 kg			
32		নসের		
	সজো যুক্ত করলে প্রথম বাতিতে ব্যয়িত ক্ষমতা হবে			
	(A) 4 W (B) 25 W (C) 20 W (D) 16 W.			
33	3 কোন সংস্থায় উৎপন্ন তাপ সংস্থা দিয়ে প্রবাহিত তড়িৎপ্রবাহের সমানুপাতিক। এই তাপ			
	(A) টমসন প্রভাবের জন্য হতে পারে না,			
	(B) পেলটিয়ার প্রভাবের জন্য হতে পারে না,			
	(C) জুল প্রভাবের জন্য হতে পারে না,			
	(D) উক্ত তিনটির যে-কোনো একটির প্রভাবে হতে পারে।			
34	 কোনো রাসায়নিক পদার্থের তড়িৎ-রাসায়নিক তুল্যাঙ্ক নির্ভর করে 			
	(A) পদার্থের প্রকৃতির উপর,			
	(B) পদার্থ সমন্বিত তড়িৎ-বিশ্লেষকের ভিতর দিয়ে প্রবাহিত তড়িৎপ্রবাহের উপর,			
	(C) তড়িং-বিশ্লেষকের ভিতর দিয়ে প্রবাহিত তড়িং-আধানের উপর,			
	(D) তড়িৎ-বিশ্লেষকে উপস্থিত পদার্থের পরিমাণের উপর।			
35	একটি তড়িৎবিশ্লেষক কোষে 5.0A প্রবাহ প্রমাণ তাপমাত্র ও চাপে 1.0 litre হাইড্রোভে	ন মুড		
	क तन । প্রয়োজনী য় সম য়			
	(A) 30 মিনিট (B) 29 মিনিট (C) 28 মিনিট (D) 32 মিনিট।			
36	s প্রোটন ও ইলেকট্রনের একটি রশ্মিগৃচ্ছ একই বেগে <mark>একটি অভিলম্ব চৌম্বকক্ষেত্রে</mark> ভিত	त फिर		
	চলে গেল। প্রোটন ও ইলেকট্রনগুলি			
	(A) বিচ্যুত না হয়ে চলে যাবে,			
	(B) একই কোণে বিচাত হবে এবং পরম্পর থেকে বিচ্ছিপ্ন হবে না,			
	(C) বিভিন্ন কোণে বিচ্যুত হবে এবং পরম্পর থেকে বিচ্ছিন্ন হবে,			
	(D) একই কোণে বিচাত হবে কিন্তু পরস্পর থেকে বিচ্ছিপ্প হবে।			
37	তড়িদাতী পরিবাহীকে চৌদ্দকক্ষেত্রে রাখলে, পরিবাহীর গতির অভিমুখ পাওয়া যায়			
	(A) ফ্রেমিং-এর বামহস্ত নিয়ম থেকে (B) ফ্রেমিং-এর ডান হাত নিয়ম থে	ক		
	(C) ল্যাপলানের নিয়ম থেকে (D) আাম্পিয়ারের সন্তরণ নিয়ম থেবে			

38	1 cm² (ऋज्ञक्लय्ड अकिए वृ	ভাকার তার ক্ভলীতে 10 A প্র	বাহ যায়েছ। কুণ্ডলার গ্রন্থ
	অভিলম্ব ভাবে (). ৷ T চৌম্বক ্	দত্র কিয়া করছে। চৌশ্বক ক্ষেত্রের	দর্ন কুণ্ডলীর উপর বিমারত
	क		
	(A) *[*] (B) 1()	4 N m (C) 10^{-2} N-m	(D) 1 N -m
39	স্থির তড়িং ক্ষেত্র ও চৌধক ক্ষে	দরের ভিতর দিয়ে একটি তড়িতাহি	ं कवा वृह्लाए। घात (शन
	এক্ষেত্রে নির্মালিখিঙগুলির মধ্যে		
	(A) $E = 0$, $B = 0$ (B) $E =$	$(C) E \neq 0, B = 0$	$(D)E\neq 0, B\neq 0$
40			
	(A) 何事 (B) ফার	াড়ে (C) হার্ৎস	(D) উমসন।
41	নিম্নলিখিত সংরক্ষণ সূত্রের কো	ন্টি থেকে লেঞ্ছের সূত্র পাওয়া য	ां १
	(A) ভর সংরক্ষণ সূত্র	(B) আধান সংরু	
	(C) ভরবেগ সংরক্ষণ সূত্র	(D) শব্তি সংরক্ষ	ণ সূত্র।
42	20 cm দীর্ঘ ডানাযুক্ত একটি বিমা	ন ভূচৌম্বক ক্ষেত্রের ভিতর দিয়ে নৃ	নতম কত বেগে উডে গেলে
		नक वन आविष्ठ शत ? अक्रोन्नक	
	(A) $10 \mathrm{ms}^{-1}$ (B) 10^3	ms^{-1} (C) $10^4 ms^{-1}$	(D) $10^5 \mathrm{ms}^{-1}$.
43	মানুষের চোখে দর্শনানুভৃতি সৃষি	করে	
	(A) X-রশ্মি (B) গাাহ	ারশিম (C) U-V রশিম	(D) দৃশ্যমান রশ্মি।
44	μ-পদার্থের সর্বাধিক চৌম্বক ভো	গতার মান 0.126 T – mA ⁻¹ . ঐ	পদার্থের সর্বাধিক আপেক্ষিক
	টৌম্বক ভেদ্যতা হবে (µ0 = 4π	$\times 10^{-7} \text{ T-mA}^{-1}$	
	(A) 10^5 (B) 10^6	(C) 10 ⁴	(D) 10.
	[Hints : আপেক্ষিক ভেদ্যতা μ,	$=\frac{\mu}{\mu} = \frac{0.126}{10.126}$	
45			
	(A) তিরশ্চৌম্বক পদার্থে	(B) অচৌম্বক পদ	ार्थ
	(८) नत्राध्यावक नवादव	(D) নরম লোহা	
46		নগেটিভ বিভব ও N-অ গুল কে প	
		পায় কিন্তু বিভব-প্রতিবন্দকের উ	,
		পায় কিন্তু বিভব-প্রতিবন্ধকের উ	
	to the second se	বিভব-প্রতিবন্ধকের উচ্চতা উভয়	ই বৃদ্ধি পায়,
	(D) উভয়ই হ্রাস পায়।		
47		-সংখ্যায় প্রকাশ করলে মান হবে	
		$(C) (1110111)_2$	
48		f -অপেক্ষক hv_0 । v কম্পাঙ্কের	আলোকতরজা ঐ ধাতৃপ্রে
	আপতিত হলে, আলোক ৩ড়িৎ	ক্রিয়া দেখা যাবে যখন	
	$(A) v > v_{\alpha}$ $(B) v > 0$	v_0 (C) $v < v_0$	(D) 11 V ₀
			2
49		তড়িৎ কাৰ্য অপেক্ষক 4 eV। ঐ উ	পাদানের পক্ষে প্রারম্ভ তরজা
	र्मिर्चा श्रव		
	(A) 310×10^{-9} m (B) 309	$\times 10^{-9} \text{m}$ (C) 311 × 10 ⁻⁹ n	(D) 312×10^{-9} m.

0	হাইড্রোজেন প্রমাণুর ইলেকট্রন তৃতীয় কন্ধ আলোর তরজা দৈর্ঘ্য হবে,	পথ থেকে দ্বিতীয় কক্ষপথে লাফ দিলে, বিকীৰ্ণ
	$(A) \frac{5}{36} R$	(B) $\frac{1}{9}$ R
	(C) $\frac{36}{5}$ R	(D) 9/R . [R = রীডবার্গ ধ্রবসংখ্যা]
2	একটি তার কুঙলীতে 3 x 10 ⁻² সেকেঙ স কুঙলীতে 2V তড়িচ্চালক বল আবিষ্ট হয়।	ময়ে তড়িৎপ্রবাহ 8A থেকে 2A-এ হ্রাস পেলে, কুগুলীর স্বাবেশ গুণাঙ্ক
3	(A) 1 mH (B) 5 mH	(C) 40 mH (D) 10 mH. ব্রপথে υ গতিবেগ নিয়ে ঘুরছে। এর তুল্য তড়িৎ
	প্রবাহ হবে	
•		(C) <u>e.u</u> (D) কোনোটাই না।
4	ফোটন সম্বন্ধে নিম্নলিখিত তথ্যগুলির মধ্যে।	কান্ট ঠিক নয় ?
		(B) ফোটনের শক্তি = hv
5	 (C) ফোটন কোন চাপ প্রয়োগ করে না সমদৈর্ঘ্যের দুটি হিটার তারকে প্রথমে শ্রেণি : উদ্ভূত তাপের অনুপাত, 	(D) ফোটনের প্থির ভর শূন্য। দমবায়ে, পরে সমান্তরাল সমবায়ে যুক্ত করা হল।
6	(A) 1:4 (B) 4:1 m ভর এবং / জাড়া ভ্রামক সম্পন্ন কোনো গড়িয়ে পড়লে, তার মোট গতিশক্তি	(C) 2:1 (D) 1:2. গোলক স্থিরাবস্থা থেকে মসৃণ নততল বরাবর
	(A) $\frac{1}{2}I\omega^2$	(B) $\frac{1}{2}mv^2$
	(C) Iω+ <i>m</i> υ	(D) $\frac{1}{2}I\omega^2 + \frac{1}{2}m\upsilon^2$.
7	তড়িৎক্ষেত্রের কোন বিন্দৃতে ক্ষেত্রপ্রাবলা (E)	এবং বিভবের (V) এর সম্পর্ক হবে
	(A) $E = \frac{dV}{dx}$ (B) $E = -\frac{dV}{dx}$	(C) $V = \frac{dE}{dx}$ (D) $E = V \times x$.
8	অ্যান্টিমনি-বিসমাথ তাপযুদ্মের ক্ষেত্রে তড়িৎপ্র	
	 (A) উয় সংযোগে আন্টিমনি থেকে বিসমাথে 	,
	(B) শীতল সংযোগে আটিমনি থেকে বিসমাং	,
	((') শীতল সংহ্যাগে বিসমাথ থেকে আান্টিমা	নর দিকে,
	(D) कात्ना প्रवाहर द्य ना।	

50 V ভোল্ট দ্বারা ত্বর্যাদ্বত একটি প্রোটনের দা বুয় তরজা দৈর্ঘ্য ম। একটি আলোক কণার তরজা

(D) $\frac{1}{8}$ V ভোল্ট।

দৈর্ঘাকে λ হতে গেলে তাকে যে বিভব-পার্থকা দারা ত্বরান্থিত করতে হয় তা

O SET & O

(A) V (평현 (B) 4V (평현 (C) 2V (평현

9	দিতীয় বোর কক্ষপথে ইলেকট্রনের আয়নয়ন শ	া্ত্রির মান	
	(A) 54.4 eV	(B) 13.6eV	
	(C) 1.5 eV	(D) 3.4 eV.	Ao Y
10	13 নং চিত্রে প্রদর্শিত লব্জিক গেটটির প্রকৃতি ২০		Во
	(A) OR 1	(B) AND	চিত্ৰ 🗢 13
	(C) NOT	(D) NAND.	
1	জেনার ডায়োড ব্যবহৃত হয়		
	(A) ভোশ্টেজ সুস্থিতকরণে	(B) প্রবাহ একমুখীক	तरन
	(C) বিবর্ধনে	(D) বাহক তরজা উৎ	পাদনে।
12	একটি গতিশীল শব্দউৎস একজন শ্রোতার দি কম্পাঙ্কের শব্দ শুনতে পাবে তা প্রকৃত কম্পা		হলে, শ্রোতা যে আপা
	(A) 332 ms ⁻¹ (B) 83 ms ⁻¹	(C) 249 ms ⁻¹	(D) $166 \mathrm{ms}^{-1}$.
13	27 টি একই রকম পারদবিন্দুকে একই সঙ্গে এক বিন্দুগুলি মিশে গিয়ে একটি বড় বিন্দু গঠন কর মনে করো।		
	(A)45V (B)90V (C)	(C)·120 V	(D) 180 V.
14	5 A ফিউজ লাইনে 220 volt এ নিরাপদে কটি	100 watt বাল্ব ব্যবং	হার করা যাবে ?
	(A) 11 (B) 22	(C) 10	(D) 5.
15	একটি ধাতব প্লেটকে 40 keV ইলেকট্রন আঘাও	ত করলে যে সকল X-	রশ্মি পাওয়া যায় তাদে
	ভিতর সর্বাপেক্ষা শক্তিশালী রশ্মির তরজাদৈর্ঘ্য		
	(A) 10 Å , (B) 300 Å	(C) 4Å	(D) 0.31 Å.
16	কৌণিক ভরবেগের মাত্রা হল		
	(A) $[ML^2T^{-1}]$ (B) $[MLT^{-1}]$	$(C) [M^2LT^{-2}]$	(D) $[ML^3T^{-2}].$
17	তরল বিন্দুর পৃষ্ঠদেশ সর্বদা গোলাকার। কারণ		
	(A) তরল বিন্দুর উপর ক্রিয়াশীল বায়ুমণ্ডলীয়	চাপ,	
	(B) গোলাকার তরল বিন্দুর আয়তন সর্বনিম,		
	(C) পৃষ্ঠটানের দরুন তরল পৃষ্ঠ সর্বনিম্ন ক্ষেত্রফ	ল লাভ করার প্রবণতা	পায়,
_	(D) অভিকৰ্ষ বল ৷	5	
18	একটি অক্সিজেন অণু একটি হাইড্রোজেন অণু অ বেগের অনুপাত	পক্ষা 16 গুণ ভারী। এব	হই উম্বতায় তাদের r.m.s
	()	\ - <i>y</i>	(D) 1 : 4.
19	r ব্যাসার্ধের একটি পরিবাহী গোলককে q তড়ির বিন্দুতে তড়িংক্ষেত্র প্রাবল্য ও বিভব	ত আহিত করা হল। ('	গালকের অভাস্তরে কৌ
	(4) 0.0	(B) 1 4 0	
	(A) 0,0	$(B) \ \frac{1}{4\pi \in_0} \cdot \frac{q}{r^2} \ ; 0$	

(D) $\frac{1}{4\pi \in_0} \cdot \frac{q}{r^2}$; $\frac{1}{4\pi \in_0} \cdot \frac{q}{r}$.

(C) $0, \frac{1}{4\pi \in_0} \cdot \frac{q}{r}$

20 তডিৎ বলরেখা কোন সমবিভব তলকে যে কোণে ছেদ করে তার মান

(B) 60° (C) 90° (D) 45°.

- একটি অনভমিক তলের উপর অভিলম্বভাবে উপর থেকে নীচের দিকে 0.08T মানের এক চৌম্বক ক্ষেত্র কাজ করছে। ঐ তলের উপর 0.01 m² ক্ষেত্রের তারের একটি লপ পড়ে আছে। চৌম্বক ক্ষেত্রটি $3.0 \times 10^{-4} \, \mathrm{Ts}^{-1}$ স্থির হারে কমছে। এ অবস্থায় আবিস্ট তডিচ্চালক বলের মান ও অভিমুখ হবে
 - (A) 3µV : ঘড়ির কাঁটার বিপরীত দিকে, (B) 3µV ঘড়ির কাঁটার অভিমুখে,

(C) 8uV ঘড়ির কাঁটার অভিমথে.

(D) 8uV ঘড়ির কাঁটার বিপরীত দিকে।

চিত্ৰ 🖚 14

একট সুষম চৌম্বকক্ষেত্রে ইলেকট্রন $(4\hat{i} + 3\hat{j}) \times 10^{-13}\,\mathrm{N}$ বল অনুভব করে যখন তার বেগ $2.5 \, \hat{k} \times 10^7 \, \mathrm{ms}^{-1}$. যখন তার বেগ $(1.5 \, \hat{i} - 2 \, \hat{j}) \times 10^7 \, \mathrm{ms}^{-1}$ তখন ইলেকট্রনের উপর চৌম্বক বল শূন্য। চৌম্বক ক্ষেত্র B-এর মান

(A) $0.1 \hat{i} - 0.075 \hat{j}$

(B) $0.1\hat{i} + 0.075\hat{i}$

(C) $0.075\hat{i} - 0.1\hat{i} + \hat{k}$

(D) $(0.075\,\hat{i} - 0.1\,\hat{i})$.

পুটি এককেন্দ্রিক রিংয়ের ব্যাসার্ধ যথাক্রমে a এবং b। তাদের তড়িতাধান যথাক্রমে a এবং

 $-\left(\frac{2}{5}\right)^{-3/2}$. q [চিত্র 14]। z=a দূরত্বে একটি তড়িৎগ্রস্ত কণা স্থিরাকস্থায় থাকে যদি b/a

অনপাত হয়

(A) 1

(B)2

(C) $\frac{1}{2}$

(D) $\frac{1}{\sqrt{2}}$.

[Hints: ধর z বিন্দৃতে রাখা তড়িতাধান = O : a ব্যাসার্ধের তড়িতাধানের জন্য Q বিন্দুর উপর বল

$$= \frac{1}{4\pi \in_0} \cdot \frac{q \cdot Q}{(a^2 + a^2)^{3/2}} = \frac{1}{4\pi \in_0} \cdot \frac{q \cdot Q}{2^{3/2} \cdot a^3};$$

অনুরূপভাবে b ব্যাসার্ধের তড়িতাধানের জন্য বল = $-\frac{1}{4\pi \epsilon_0} \cdot \frac{q \cdot Q}{(a^2 + b^2)^{3/2}}$

$$= -\frac{1}{4\pi \epsilon_0} \left(\frac{2}{3}\right)^{-3/2} \frac{q \cdot Q}{2^{3/2} \cdot (a^2 + b^2)^{3/2}}$$

যেহেত 🔾 তড়িতাধান স্থির তাই

$$\frac{1}{4\pi \in_0} \cdot \frac{q \cdot Q}{2^{3/2} \cdot a^3} - \frac{1}{4\pi \in_0} \cdot \frac{\left(\frac{2}{3}\right)^{-3/2} \cdot qQ}{2^{3/2} \cdot \left(a^2 + b^2\right)^{3/2}} = 0$$
 অথবা $b/a = 2$]

- 15 নং চিত্রে প্রদর্শিত বর্তনীতে 10V তড়িচ্চালক বলের (E) ব্যাটারি এবং দৃটি ধারক 🖰 এবং 🦶 যুক্ত আছে। $C_1 = 1.0 \,\mu\text{F}$ এবং $C_2 = 2.0 \,\mu\text{F}$ । $(V_A - V_B)$ হল 5 volt। এ অবস্থায়
 - $(A) C_1$ ধারকের ভোণ্টেজ = 5V.
 - $(B) C_2$ ধারকের ভোগ্টেজ = 10V,
 - (C) C, ধারকে সন্থিত শক্তি C, ধারকে সন্থিত শক্তির দ্বিগণ,
 - (D) C, ধারকে সম্ভিত শক্তি C, ধারকে সম্ভিত শক্তির সমান।
- একটি হালকা গ্রহ একটি বৃহৎ ভরের নক্ষত্রের চতুর্দিকে R ব্যাসার্ধের বৃত্তপথে T পর্যায়কাল সহ পরিভ্রমণ করছে। নক্ষত্র ও গ্রহের মধ্যে মহাক্ষীয় বল R⁺¹⁵⁷⁷ এর সমানপাতিক হলে, T হবে
 - (A) $R^{22/14}$

(B) $R^{3/2}$

 $(C) R^{7/2}$

(D) R^{24/15} এর সমানুপাতিক।

[Hints:
$$\frac{mv^2}{R} = \frac{G.m.M}{R^{15/7}}$$
 :: $v = \sqrt{\frac{GM}{R^{8/7}}}$;

এখন
$$T = \frac{2\pi R}{\upsilon} = \frac{2\pi R}{\sqrt{GM}} \cdot R^{8/14} = \frac{2\pi}{\sqrt{GM}} \cdot R^{22/14}$$
]

- 26 কোন তাপযুগোর ক্ষেত্রে তাপ তড়িচ্চালক বল $e=2164 t-6.21 t^2 \mu V$ । তাপযুগোর শীতল সংযোগের তাপমাত্রা 0°C। ঐ তাপযুগ্মের নিরপেক্ষ ও উৎক্রম উম্বতা যথাক্রমে
 - (A) 174.5°C:349°C

(B) 349°C; 174.5°C

(C) 349°C:698°C

- (D) 698°C: 349°C.
- ধাতবপৃষ্ঠ থেকে নির্গত ফটো-ইলেকট্রনের সংখ্যা নির্ভর করে 27
 - (A) আপতিত আলোর তরজা দৈর্ঘ্যের উপর.
 - (B) আপতিত আলোর তীব্রতার উপর.
 - (C) আপতিত আলোর কম্পাঙ্কের উপর,
 - (D) ধাতবপর্চের প্রারম্ভ কম্পাডেকর উপর।
- P-N সংযোগ ডায়োড বিপরীত বায়াস বৃদ্ধি করতে থাকলে, প্রবাহমাত্রা এক সময়
 - (A) धीरत धीरत उन्धि भाग्न

(B) ধ্রবক থাকে

(C) হঠাৎ বৃন্ধি পায় - - । (D) শূন্য হয়।

- 29 চন্দ্রে কোনো বায়ুম্তর নেই। এর কারণ
 - (A) চন্দ্র পৃথিবীর খুব নিকটে অবস্থিত
- (B) চন্দ্র পৃথিবীর চতুর্দিকে পরিভ্রমণ করে
- (C) চন্দ্রপৃষ্ঠে মুক্তিবেগের মান খুব কম (D) চন্দ্রপৃষ্ঠে মুক্তিবেগের মান খুব বেশি।
- ফ্যারাডে দৃটি গুরুত্বপূর্ণ সূত্র উপস্থাপিত করেন। সূত্র দুটি 30
 - (A) তড়িংবিশ্লেষণ সূত্র ; সমান্তরাল তড়িং প্রবাহের আকর্ষরেণ বিকর্ষণ সম্পর্কিত সূত্র,
 - (B) তড়িংবিশ্লেষণ সূত্র ; তড়িং-চুম্বকীয় আবেশ সংক্রান্ত সূত্র,
 - (C) তড়িং প্রবাহের দরুন তাপ উৎপত্তির সূত্র ; তড়িং-চুম্বকীয় আবেশ সংক্রান্ত সূত্র,
 - (D) তড়িৎ প্রবাহের দরুন তাপ উৎপত্তির সূত্র ; পরিবতী প্রবাহের সূত্র।
- R ব্যাসার্ধের একটি বৃত্তাকার তারে (A)I প্রবাহমাত্রা যাচ্ছে। 2R ব্যাসার্ধের অপর একটি বৃত্তাকার তারে (B) 2/ প্রবাহ যাচ্ছে। উভয় তার কুঙলীর কেন্দ্রে উৎপন্ন চৌম্বক ক্ষেত্রের প্রাবল্য B_A এবং Ba অনুপাত হবে
 - (A) 1
- (B) 2
- (C) $\frac{1}{2}$
- (D) 4.

-		THE RESERVE AND ADDRESS OF THE PARTY NAMED IN		
32				ব্যাসার্ধের কক্ষপথে সংক্রমিত
	করতে বে নাও মাও	াজন তা (নিউক্লিয়াকে	র ভর = M)	
	(A) $\frac{GmM}{12R^2}$	(B) $\frac{GMm}{3R^2}$	(C) $\frac{GmM}{8R}$	(D) $\frac{GMm}{6R}$.
33		তি বৰ্তনীতে অপচিত	ক্ষমতা (power	R
	dissipation) 150 V	V হলে, R এর মান		
	(A) 2Ω		(B)6Ω	
	(C)5Ω : ::	** · · · · · · · · · · · · · · · · · ·	(D)4Ω	
34	তড়িৎ-চুম্বকীয় তরজ	া তির্যক তা বোঝা যা	য় নিম্নলিখিত ঘটনা	15V
	থেকে			চিত্ৰ 🗢 16
	(A) সমবর্তন	1 4	(B) ব্যাতিচার	104 - 10
	(C) প্রতিফলন		(D) অপবর্তন।	
35	' '	ৰ মধ্যে কোনটি <i>ত</i> ড়িৎ		
•			(C) বিটা রশ্মি	
36	(८) बराजागाजक आ	भ (D) गामा शास	(C) বিচা রাশ্ম	(D) X-計劃 I
36	रभाग पजूरा मुख्रिय	ା ତାର ଓର m ଏର ଓ	পর নিম্নলিখিতভাবে নি	_
			(C) m ²	
37		W বৈদ্যাতক বাতিকে	110V মেইনসে যুক্ত	করলে ব্যয়িত ক্ষমতা
	(A) 250 W	(B) 500 W	(C) 100 W	(D) 750 W.
38	0.4mH স্বাবেশাঙ্ক f	বিশিষ্ট কোনো তার ক্	ঙলীতে ().। সেকেন্ড স	ময়ে 250 mA পরিমাণ তড়িৎ
	প্রবাহ বৃদ্ধি পেলে ত	গবিষ্ট তড়িচ্চালক বৰে	লর মান	
	(A) +1V	(B) -1V	(C) -1mV	(D) + 1mV
39	একটি X-রশ্মি নলে '	50 kV বিভবপার্থাকা	প্রয়োগ ক্রমলে টেওপন	X-রশ্মির ক্ষুদ্রতম তরজা দৈর্ঘ্য
	হবে	30 R V 1 T O V 11 T V 1	16214 A.M.C. O. C. W.	A-রামর সুপ্রতম তরজা (দঘ)
	(A) 0.25 Å	(B) 0.5 Å	(C) 0.75 Å	(D) 1.0 Å
40	P-শ্রেণির অর্ধপরিবাই	ীতে আধান পরিবাহী	(charge carrier) হল	(2) 1011
			(C) গ্রোটন	(D) Commercial
41	চাবটি পদাংশয়ক শ্বে	জন প্রতিপ্রি খ্যাতে স	rm officered with	ম দূরত্ব হবে (বায়ুতে শব্দের
•	বেগ = 330 ms ⁻¹)			
	(A) 122 m	(B) 130 m	(C) 132 m	(D) 150 m.
42	n সংখ্যক ধারক-কে	সমান্তরাল সমবায়ে য	ত্ত রেখে V ভোল্ট বিভ	ব-প্রভেদ দেওয়া হল। সন্ধিত
	শক্তি হবে	,4		
	(A)CV	(B) $\frac{1}{2}$ nCV^2	(C) C V ²	(D) $\frac{1}{2n}$ CV ² .
43	मुरे पृष् अवलम्रात्नत र	गर्था 40 cm मीर्घ এर	চটি সভা আটকানো ভ	নাছে। ঐ তারে উৎপন্ন স্থান
	তরজোর সর্বাপেক্ষা বৃ	হৎ তরজাদৈর্ঘার মান	न श्रुव	जार न जाज जर निय रेवी मू
	(A) 20 cm	(B) 80 cm	(C)40cm	(D)120cm
44	প্রচর পরিমাণ সংখ্যাগ			অংশকে খুব বেশি "ডোপ"
	করতে হয় তা	The state of the state of	" CENTRAL CONTRACT CO	जर गरु युव ग्वान १,७१४
	(A) নিঃসারক	(B) ভূমি	(C) সংগ্রাহক	(D) য়ে-কোনো একটি।

	() #((2) - 01111 - 111	
	(C) আধানের উপর		(D) চৌম্বক ক্ষেত্রের উ	পর।
46	একটি রূপান্তরকের (transfe	ormer) भूशा कुडनी	র পাক সংখ্যা 14() এব	ং গৌণ কুগুলীর 280।
	মুখা কুঙলীর প্রবাহমাত্রা 4	A হলে গৌণুভলীর	প্রবাহমাত্রা হবে	
	(A) 4A (B) 2	2A	(C)6A	(D) 10A.
47				
	ভ্ৰামক হবে			
	(A) $\frac{1}{2}Mr^2$ (B) 1	Mr ²	(C) 2Mr ²	(D) $\frac{1}{4}mr^2$.
48	A এবং B দুটি সুরশলাকা	একসজো কম্পিত	করলে সেকেন্ডে ১টি	স্বরকম্প উৎপন্ন হয়।
	সুরশলাকাদ্বয় যথাক্রমে 36 এ	em এবং 37 cm দ	বির্ঘ বন্ধ নলের বায়ুস্তন্তে	র সাথে অনুনাদী হলে,
	তাদের কম্পাঙ্কের মান			
	(A) 175, 180 (B) 1	80, 185	(C) 185, 190	(D) 195, 200.
49	31.4 N-m প্থির মানের টব	কোনো ঘূর্ণায়মান	হুইলের উপর ক্রিয়া কর	লে তার কৌণিক ত্বরণ
	হয় 4π rads ⁻² । বস্তুটির জা	ড্য শ্রামক		
	(A) 3.5 kg m^2 (B) 4	l.5 kgm ²	$(C) 1.5 \mathrm{kgm}^2$	(D) $2.5 \mathrm{kgm}^2$.
50	শ্রেণি সমবায়ে যুক্ত দুটি ট্যান	নজেন্টে গ্যালভ্যানে	ামিটারে (সমান ব্যাসার্ধ	যুক্ত) তড়িৎপ্রবাহ গেলে
	যথাক্রমে 60° এবং 45° বিক্রে	চপ সৃষ্টি হয়। গ্যাল	ভ্যানোমিটারের তারের পা	কসংখ্যার অনুপাত হবে
	(A) 4:3 (B)	$1:\sqrt{3}$	(C) $(\sqrt{3}+1):(\sqrt{3}-$	1) (D) $\sqrt{3}:1$.
	(11) 7.0	. , 43	() ()	, (-, (5).11
		O SET 1	7 0	
		0 021		
0	একটি সরল রেখার দুইপ্রারে	s Q পরিমাণ তড়িত	চাধান রাখা আছে। সর	ন রেখার মধ্যবিন্দুতে q
	তড়িতাধান রাখলে সমগ্র সং	স্থা স্থিতাবস্থায় থ	াকে। তাহলে,	
	$(A) q = \frac{Q}{2} $ (B) q	$r = -\frac{Q}{r}$	$(C) a = \frac{Q}{C}$	(D) $a = -\frac{Q}{A}$.
				4
2	1 m ব্যাসার্ধের একটি বৃত্তাব (A) 1.1 × 10 ⁻¹⁰ . (B) 1			(D) 10-3
	সোডিয়াম এবং তামার কা			
3	দৈর্ঘ্যের অনুপাত (প্রায়)	4 46144 14194	4 2.3 6 4 4 1 4.3 6 1	1 4014 4140 6401
	(A)1:2 (B)4	. 1	(C)2 · 1	(D) 1 · 4
	গ্যানের গতীয় তত্ত্ব থেকে গ্		(0)2.1	(6) 1.4.
•	(A) কেবল বয়েল সূত্র		(B) কেবল চার্লস সূত্র	
	(C) কেবল আ্রোভাগাড়ো উ		~	
5	আদর্শ গ্যামের বেলায় চাপ			াক্ষে প্রতি লিটারে মোল
9	ज्ञास्य । भारत्यस्य । प्रशास्त्र । भारत्यस्य	d. d.	2 3447 3179	
	Ph. 693	D (5)	P	RT
	$(A) \frac{P.T}{R} \tag{B} F$	R.T	(C) $\frac{P}{RT}$	(D) \overline{P} .

45 ব্রপথে পরিভ্রমণরত একটি তড়িৎগ্রম্ভ কণিকা চৌম্বক ক্ষেত্রে থাকলে, তার আবর্তনের পর্যাকলে

(B) ভরের উপর

নির্ভর করে না তার (A) দতির উপর

	{Hints: $PV = n.R.T.$ $\therefore \frac{n}{V} = \frac{P}{RT}$]		
6		State of the state	art man
-	ঐ পদার্থ অবিঘটিত থাকরে ?	পদার্থের প্রাথমিক ভর 64 g : 15 বছরের কত	পারমা
	(A) 16 g . (B) 2g	(C) 32 g (D) 8 g.	
7	M ভর এবং Q আধানযুক্ত একটি কণা B	টোম্বক ক্ষেত্রের অভিলম্বভাবে R ব্যাসার্ধের ব	ব্ৰত্তপণ্
		বৃত্ত একবার ঘুরে এলে চৌম্বক ক্ষেত্র কর্তৃক ব	
	$(A)\left(\frac{Mv^2}{R}\right) \times 2\pi R$	(B) appli	
	(C) B.Q.2πR	(D) B.Q. $\upsilon \times 2\pi R$.	
8	−16 × 10 ¹⁸ coulomb তড়িভাধানগ্রস্ত এ	।কটি কণা .1-অক্ষ বরাবর 10 ms ⁻¹ গতিবেশ্বে	গ নিয়ে
	এর্প এক অশ্বলে প্রবেশ করলো যেখানে	V-আক্ষ বরাবর চৌম্বক ক্ষেত্র B এবং - স্থ আক্ষ	বরাব
	তড়িৎক্ষেত্র 10 ⁴ Vm ⁻¹ কাজ করছে। কণার্গি	ট বিচ্যুত না হয়ে :-অক্ষ বরাবর চলতে থাক্য	ल. B
	এর মান হবে		
	(A) 10^3 Wbm ⁻² (B) 10^5 Wbm ⁻²	(C) 10^{16} Wbm^{-2} (D) 10^{-3} Wbm	n^{-2} .
	[Hints: $v = \frac{E}{B}$ অথবা $10 = \frac{10^4}{B}$:: F	$B = 10^3 \text{ Wbm}^{-2}$]	
9	$y = 10 \sin \frac{\pi \alpha}{4} \cos 20 \pi i$ সমীকণরটি ে	কানো স্থাণুতরঙ্গা প্রকাশ করলে ঐ তরঙ্গোর	টেপব
	পরপর দুটি নিষ্পন্দ বিন্দুর দূরত্ব হবে	K	0 1.
	(A) 2 একক (B) 8 একক	(C) 4 একক (D) 16 একক।	
10	R ব্যাসাধের এবং 600 পাক বিশিষ্ট একটি	তারকুণ্ডলীর স্বাবেশাঙ্ক 108 mH · একট বাা	সার্ধের
	এবং ১০০ পাক বিশেষ্ট অন্য এক কুণ্ডলীর	র স্বাবেশাঙ্ক হবে	
	(A) 75 mH (B) 108 mH	(C) 90 mH (D) 80 mH.	
(II)	এক জোড়া সন্নিহিত কুণ্ডলীর পারস্পরিক	आदिगाङ्क 1.5 henry र यात्र प्रशास्त्रक्षतीत्व	প্রবাহ
	0.05 সেকেন্ডে 0 থেকে 20A হয় তাহলে	গৌণকুণ্ডলীতে আবিষ্ট তড়িচ্চালক বল হবে	
	(A) 500 V (B) 600 V	(C)650V (D)550V	
12		্য ব্রয় তরজা দৈর্ঘ্য সব থেকে কম হয় ?	
	(A) 2(可から (B) α- 本町	(C) প্রোটন (D) নিটাল।	
13	সাধারণ ভূমি সংযোগের ক্ষেত্রে কোন্ ট্রানজি	স্টারের প্রবাহ বিবর্ধন 0.99 : নিঃসারক প্রবাহেন	র মান
	5 mA পারবতন ঘটাতে সংগ্রাহক প্রবাহের	যে পরিবর্তন প্রয়োজন তা	
	(A) 0.196 mA (B) 2.45 mA	(C) 4.95 mA (D) 5.1 mA.	
14	মঞ্চালগ্রহের ভর পৃথিবীর ভরের $\frac{1}{10}$ ভাগ অবাধে পতনশীল বস্তুর ত্বরণ হবে	এবং ব্যাস পৃথিবীর ব্যাসের অর্ধেক মঞ্চাল	় গ্ৰহে
	3	(5) 2.02 2	
15	i m मिर्च आलाव तांशा कती वावानाम ।	(C) 3.92 ms^{-2} (D) 4.9 ms^{-2}	
	য়ে শানে সুতোয় টান 52N হবে তা	ms ¹ পিথর বেগে উলম্ব বৃত্ত বরাবর ঘোরানো	२(छ्र
	(A) বৃত্তের সর্বোচ্চ বিন্দু	(B) অর্ধবৃত্ত নীচে	
	(C) বৃত্তের সর্বনিম্ন বিন্দুতে	(D) কোনোটাই না।	
	OL.	1 10 10 10 1	

	(A) ii Mildi
	$(C) u \frac{\Delta m}{\Delta t} + (\Delta m) \frac{du}{dt} $ (D) *[A]
18	জলভর্তি একটি বালতিকে উল্লম্ব বৃত্তপথে ঘোরালে বালতি থেকে জল পড়ে যায় না যখন
	(A) বালতির সর্বাধিক দুতি = $\sqrt{5gR}$
	(B) বালতির সর্বনিম্ন দ্র্তি = \sqrt{gR}
	(C) বালতি প্রতি মিনিটে n বার ঘুরে আসে যেখানে $n=\sqrt{900g/\pi^2R}$
	(D) বালতি প্রতি মিনিটে n বার ঘুরে আসে যেখানে $n=\sqrt{3600 g/\pi^2 R}$.
19	নিম্নলিখিত উত্তিগুলির মধ্যে কোন্টি ঠিক ?
	(A) কোন গ্যাসের গড় আণবিক গতিশক্তি সকল তাপমাত্রাতে সমান,
	(B) গ্যাসের গড় আণবিক গতিশন্তি তাপমাত্রার উপর নির্ভর করে না,
	(C) 1g গ্যানের গড় গতিশত্তি সমান তাপমাত্রায় সকল গ্যাসের বেলায় সমান,
	(D) lg গ্যাসের গড় গতিশক্তি সকল গ্যাসের বেলায় তাপমাত্রার উপর নির্ভর করে না।
20	27°C উশ্বতায় কোনো গ্যাস অণুর গড় গতিশক্তি 6.2 × 10 ·21 J; 227°C উশ্বতায় গড় গতিশক্তি
	र (व
	(A) 9.35×10^{-21} J (B) 10.35×10^{-21} J (C) 11.35×10^{-21} J (D) 12.35×10^{-21} J.
21	5 cm ব্যাসার্ধের একটি ধাতব গোলককে এরূপ তড়িতাধান দেওয়া হল যে তার পৃষ্ঠে বিভব হল
-	10V ; গোলকের কেন্দ্রে বিভব হবে
	(A) *[n] (B) 10V
	(C) পৃষ্ঠ থেকে 5 cm দূরে যে বিভব তার সমান,
	(D) কেন্দ্র থেকে 25 cm দূরে যে বিভব তার সমান।
22	4μF ধারকত্বের একটি ধারককে 400V বিভবে আহিত করার পর তার প্রেট দুটিকে একটি রোধ
22	দারা যুক্ত করা হল। রোধে যে তাপ উৎপন্ন হবে তা
	(A) 0.64 J (B) 0.32 J (C) 0.16 J (D) 0.28 J.
	[Hints : ধারকে সন্ধিত শত্তি = $\frac{1}{2}$ CV ² = $\frac{1}{2}$ × 4 × 10 ⁻⁶ × (400) ² = 0.32 J
	∴ 0.32 J তাপ উৎপন্ন হবে}
23	বায়ুধারক সমান্তরাল প্লেট ধারকের ধারকত্ব 10 ⁻¹² F। ধারকের প্লেট দুটির ব্যবধান দ্বিগুল করা
	হল। তাদের ভিতর মোম ভর্তি করলে ধারকত্ব হয় 2 × 10 ⁻¹² F. মোমের পরাবৈদ্যুতিক ধ্রবক হবে
	(A) 2.0 (B) 3.0 (C) 4.0 (D) 8.0.

বালি ভর্তি একটি ট্রাক u বেগে অনুভূমিক মসৃণ তলে গতিশীল আছে। Δt সময়ে Δm পরিমাণ

বালি ট্রাক থেকে পড়ে গেলে যে বল ট্রাককে একই গতিবেগে গতিশীল রাখবে তা

16 স্থির দুতিতে কোনো বস্তু বৃত্তপথে পরিভ্রমণ করলে তার

(C) ব্যাসার্ধ বরাবর কেন্দ্রমূখী ত্বরণ থাকে,
(D) ব্যাসার্ধ বরাবর বহির্মুখী ত্বরণ থাকে।

(A) প্রির গতিবেগ থাকে, (B) কোনো ত্বরণ থাকে না,

24	12 এবং ১৯২৮ কেন্দ্রের নৃটি বিন্দু এড়িভাধান 10 cm দূরত্বে বায়ুমধ্যে স্থাপিত আছে। তাদে 4 cm কাছে আনতে কৃতকার্য
25	(A) শূন্য (B) 3.8 J (C) 4.8 J (D) 5.8 J.) একটি আহিত সমাধ্রণল প্লেট ধারকের প্লেট দ্টির মধ্যে কোন k পরাবৈদ্যুতিক ধুবকের পদার্থ ঢোকালে, প্লেট দ্টির মাধ্যে কোন বিন্দৃতে তড়িৎক্ষেত্র
26	(A) বৃদ্ধি পায় (B) খ্রাস পায় (C) একই থাকে (D) অসীম হয়।
	(B) যে রোধের প্রাপ্তীয় বিভব প্রভেদ মাপা হবে তার সমান,(C) যথা সম্ভব কম,(D) অসীম।
27	
28	করলে কেটলির জল 10 মিনিটে ফুটতে শুরু করে। অপরটিকে যুক্ত করলে একই পরিমাণ জল 45 মিনিটে ফুটতে শুরু করে। কুগুলী দুটিকে সমান্তরাল সমবায়ে লাগালে একই পরিমাণ জল হে
29	তিড়িৎপ্রবাহ পাঠানো হচ্চে। প্রত্যেক কোশের তড়িচ্চালক বল 1.5V এবং অভ্যন্তরীণ রোধ 0.25Ω। n এর মান কি হলে বাল্বগুলি রেটিং অনুযায়ী ক্ষমতা পাবে ?
30	(A) 6 (B) 8 (C) 12 (D) 16. একটি সুষম পরিবাহী তারের দুই প্রান্তে প্থির তড়িচ্চালক বল প্রয়োগ করা হল। তারের দৈর্ঘ্য এবং ব্যাসার্ধ একই সঞ্চো দ্বিগুল করা হল। এতে
31	(A) পরিবাহীতে উৎপন্ন তাপ দ্বিগ্ণ হবে (C) পরিবাহীতে একই তাপ উৎপন্ন হবে (D) তারের দুই প্রান্তে তড়িৎক্ষেত্র দ্বিগুণ হবে (টৌম্বক নিরক্ষরেখা বরাবর অগ্রসর্ হলে, নতি কোণ
32	(A) ক্রমশ বৃদ্ধি পায় (C) একই থাকে (D) গতির অভিমুখ অনুযায়ী বৃদ্ধি পায় বা হ্রাস পায় তড়িংগ্রস্ত কণার উপর চৌদ্ধক ক্ষেত্র (A) সর্বদা বল প্রয়োগ করে,
33	(B) কখনও বল প্রয়োগ করে না, (C) বলপ্রয়োগ করে যদি কণা ঢৌম্বক ক্ষেত্রের অভিমুখে গতিশীল হয়, (D) বল প্রয়োগ করে যদি কণা ঢৌম্বক ক্ষেত্রের অভিলম্ব দিকে গতিশীল হয়। একটি টৌম্বক দ্বিমেরুর লম্বদ্বিখন্ডকের ওপর কোন বিন্দৃতে টৌম্বক
	(A) বিভব 1 সংগ্রা পরিবর্তিত হয় (B) বিভব শূন্য হয়
	(A) বিভব ¹ / _r সজো পরিবর্তিত হয় (B) বিভব শূন্য হয় (C) প্রাবল্য ¹ / _r সজো পরিবর্তিত হয় (D) প্রাবল্য দ্বিমেরু অক্ষের সমান্তরাল হয়।

(D) 100 kV.

(C) 50 kV

34 0.5g ভরের একটি কণাতে 2.5 x 10 °C আধান আছে, কলকে 6 x 10⁴ ms ! প্রাথমিক অনুভূমিক বেগ দেওয়া হল। কণাটির অনুভূমিক বেগ অবাহত রখতে (A) চৌম্বক ক্ষেত্র বেগের অভিমুখের অভিলম্ব হওয়া প্রয়োজন (B) ট্রৌম্বক ক্ষেত্র বেগের অভিমুখের দিকে হওয়া প্রয়োজন (C) চৌম্বক ক্ষেত্রের ন্যুনতম মান হবে 3.27 T (D) কোনো চৌম্বক ক্ষেত্রের প্রয়োজন হবে না। 35 Y-অক্ষের সমান্তরাল একটি ঋজু তারে তড়িৎপ্রবাহ যাক্ষে (চিত্র 17) প্রবাহের দর্ভ চৌম্বক ক্ষেত্র (A) কোন বিন্দ P-তে X-অক্ষের সমান্তরাল, (B) Z-অকের সমন্তরাল, (C) होम्बक वलात्र्या जात्रक क्लू कात व्खाकात शत्, (D) তারের দক্ষিণ ও বাম দিকে বলরেখা বিপরীতম্খী। নিম্নলিখিত ঘটনাগলির কোনটিকে আলোর তরজা তত্ত্ব ব্যাখ্যা করতে পারে না (B) পূর্ণ অভান্তরীণ প্রতিফলন (A) প্রতিসরণ (D) আলোক তড়িংফলাফল। (C) অপবর্তন ইয়ং-এর দ্বি-ছিদ্র (double slit) পরীক্ষায় প্রাপ্ত ব্যতিচার ঝালরের কি রকম পরিবর্তন হরে যদি श्लुम तर्रात आत्नात পतिवर्रा लाल वर्रात आत्ना वावशत कता श्र? (A) বাতিচার ঝালর অদৃশ্য হয়ে যাবে (B) ঝালর উজ্জ্বলতর হবে (D) ঝালর প্রস্থ রেড়ে যাবে। (C) यालत প्रम्थ करम गाउन [Hints : ঝালর প্রস্থ $= \frac{D}{2d}$. λ : লালবর্ণের আলোর তরঞ্চা দৈর্ঘ্য হলুদ বর্ণের আলোর চাইতে বেশি। দুটি ইলেকট্রন গুচেছর গতিবেগের অনুপাত 1 : 2 ; এরা পৃথকভাবে একই চৌম্বক ক্ষেত্রের ভিতর দিয়ে গতিশীল হল। এদের বিক্ষেপের অনুপাত (C)1:4 (B)1:2এক অশ্বলে খাড়া নিম্নমুখী সুষম চৌম্বক ক্ষেত্র কাজ করছে। একটি ইলেকট্রন অনুভূমিক ভাবে বাম থেকে দক্ষিণে এসে চৌম্বক ক্ষেত্রে প্রবেশ করল। ইলেকট্রন প্থির দুতি নিয়ে (A) উল্লম্ব তলে ঘড়ির কাঁটার দিকে বৃত্তপথে ঘুরে যাবে, (B) অনুভূমিক তলে ঘড়ির কাঁটার দিকে ঘুরে যাবে, (C) অনুভূমিক তলে ঘড়ির কাঁটার বিপরীত দিকে ঘুরে যাবে, (D) উল্লম্ব তলে ঘড়ির কাঁটার বিপরীত দিকে ঘুরে যাবে। লাইম্যান শ্রেণির বর্ণালীর ক্ষুদ্রতম তরজাদৈর্ঘ্য 911.6 Å। ঐ শ্রেণির দীর্ঘতম তরজাদৈর্ঘ্য হবে (A) 1215 Å (B) cc (C) 2430 Å হাইড্রোজেন প্রমাণুর ইলেকট্রন প্রথম বোর কক্ষপথ সেকেন্ডে ক'বার ঘুরে আসে? (A) $\frac{4\pi^2 mr^2}{h}$ (B) $\frac{h}{4\pi^2 mr^2}$ (C) $\frac{h}{2\pi mr}$ (D) $\frac{2\pi mr}{h}$ একটি x-ray নল থেকে যে সব রশ্মি নির্গত হচ্ছে তাদের মধ্যে সর্বনিম্ন তরজাদৈর্ঘ্য ().2475 A। নলে কার্যকর ভোণ্টেজ হবে

(A) 5 kV (B) 25 kV

(A) $3.3 \times 10^{-22} \text{ kg ms}^{-1}$

	(C) 6.626 × 10 - kgms . (D) 1.65 × 10 kg ms .
45	একটি বিশুন্ধ অর্ধপরিবাহীর ক্ষেত্রে কোন্ উক্তিটি যথার্থ ?
	(A) 0K উন্নতায় এটি উন্তম অন্তরক,
	(B) তড়িৎ বাহকের সংখ্যা উষ্মতার সাথে সূচকীয় (exponential) ভাবে পরিবর্তিত হয়,
	(C) ইলেকট্রন ঘনত্ব সর্বদা গহুর ঘনত্ব অপেক্ষা বেশি,
	(D) ইলেকট্রনের সচলতা (mobility) গহুরের সচলতা অপেক্ষা বেশি।
46	p-type অর্ধপরিবাহী তৈরি করতে বিশুন্ধ সিলিকনকে যে অপদ্রব্য দ্বারা "ডোপ" করতে হয় তা
	(A) ফসফরাস (B) বোরন (C) অ্যাল্টিমনি (D) অ্যালুমিনিয়াম।
47	একটি N-P-N ট্রানজিস্টার বর্তনীতে সংগ্রাহক প্রবাহ ($I_{\rm c}$) $10~{ m mA}$ । নির্গত ইলেকট্রনের 90% সংগ্রাহকে পৌছালে
	(A) নিঃসারক প্রবাহ (I_E) হবে প্রায় $9mA$ (B) নিঃসারক প্রবাহ (I_E) হবে প্রায় $11\ mA$
	(C) ভূমি প্রবাহ (I _B) হবে প্রায় 1 mA (D) ভূমি প্রবাহ হবে প্রায় −1 mA.
	[Hints: $I_C = \frac{90}{100}$. $I_E = 0.9 I_E$; খেছেডু $I_c = 10 \text{ mA}$ তাই $I_E = 10 \times \frac{10}{9} = 11 \text{ mA}$
	তাছাড়া $I_B - I_E = I_C = (11.1 - 10) = 1 \text{ mA}$
48	
49	(A) 1200 volt cm ⁻¹ (B) 1200 volt m ⁻¹ (C) 600 volt m ⁻¹ (D) 2400 volt cm ⁻¹ . দুটি আবেশকুঙলীকে সমান্তরাল সমবায়ে যুক্ত করলে তারা 8H স্বাবেশাঙ্কের তুল্য হয় কিছু শ্রেদি সমবায়ে যুক্ত করলে তুল্য স্বাবেশাঙক হয় 1.5 H. কুঙলীদ্বয়ের পৃথক আবেশ হবে (A) 2H, 6H (B) 3H, 2H (C) 4H, 1H (D) 6H, 2H.
	$[Hints: সমান্তরাল সমবায়ে তুল্য আবেশ = L_1 + L_2; শ্রেণি সমবায়ে = \frac{1}{L_1} + \frac{1}{L_2}]$
50	একটি নিরেট গোলাকার বল টেবিলের উপর দিয়ে গড়াচেছ। বলটির মোট গতিশন্তির যে অংশ আবর্ত গতিশন্তি তা হল
	(A) $\frac{3}{7}$ (B) $\frac{2}{7}$ (C) $\frac{4}{7}$ (D) $\frac{5}{7}$.
	O SET # 8 O
0	$2 kg$ ভরের একটি বস্তু $0.8 m$ ব্যাসার্ধের বৃত্তপথে $44 \ rads^{-1}$ কৌণিক গতিবেগ নিয়ে ঘুরছে। বৃত্তপথের ব্যাসার্ধ $1 m$ হলে নভুন কৌণিক গতিবেগ হবে
	(A) 28.16 rads^{-1} (B) 19.28 rad s^{-1} (C) 8.12 rad s^{-1} (D) 35.26 rad s^{-1} .

/ পারুমার্ণবিক সংখ্যার কোন উৎস থেকে নির্গত K, রেখার কম্পাঙ্ক

 $(D) \propto z$

(B) 6.626×10^{-21} kg ms⁻¹

 $(A) \propto z^2$ $(B) \propto (z-1)^2$ $(C) \propto \frac{1}{z^2}$

একটি 1-ray ফোটনের তরজাদৈর্ঘা 0.02 Å। এর ভরবেগ হবে

(D) $M/\sqrt{2}$.

	(A) $\frac{7}{5}$ (B) $\frac{7}{5}$ (C) $\frac{7}{9}$ (D) $\frac{7}{2}$.	
3	কোনো এক অক্ষ সাপেক্ষে এক বন্ধুর জাড্য ভ্রামক 1.2 kg.m ² । বন্ধুর বৃঞ্জীয় গতিশান্তি ।	500 J
	করতে যে সময় ব্যাপী 25 rad s ² কৌণিক ত্বরণ প্রয়োগ করতে হবে তা (বস্তু প্রাথমিক অ	বস্থায়
	পির ছিল)	
	(A) 8 s (B) 2 s ' (C) 1 s (D) 10 s.	
4	পৃথিবীর উত্তর ও দক্ষিণ মেরু অঞ্চল একটু চাপা এবং বিষুব অঞ্চল একটু স্ফীত। এর	কারণ
	(A) সূর্যের চতুর্দিকে উপবৃত্তাকার কক্ষপথে পৃথিবীর পরিভ্রমণ,	
	(B) পৃথিবীর নিজ অক্ষের চতুর্দিকে ঘূর্ণনের কৌণিক বেগ বিষুব অশ্বলে বেশি,	
	(C) পৃথিবীর অপকেন্দ্র বল মেরু প্রদেশ অপেক্ষা বিষুব অন্তলে বেশি,	
	(D) কোনোটাই নয়।	
5	বিযুব অপ্তল থেকে মেরুর দিকে নিয়ে গেলে একটি বন্তুর ওজন	
	(A) क्रमन वार्ड	
	(B) ক্রমশ কমে	
	(C) বাড়েও না, কমেও না	
	(D) উত্তর মেরুতে বাড়ে কিন্তু দক্ষিণ মেরুতে কমে।	
6	6μF ধারকত্বের একটি পরিবাহীর বিভব 10V থেকে 20V বাড়ালে তার শক্তি বৃদ্ধি হবে	
•	(A) 9×10^{-4} J (B) 4×10^{-6} J (C) 4×10^{-4} J (D) 12×10^{-6} J	
7	220V A.C. মেইন্স্-এর শীর্ষমান হবে	
	(A) $\frac{220}{\sqrt{2}}$ V (B) $220\sqrt{2}$ V (C) $200\sqrt{2}$ V (D) $240\sqrt{2}$ V.	
8	শ্রেণি সমবায়ে না লাগিয়ে অ্যামমিটারকে সমান্তরাল সমবায়ে লাগালে, যন্ত্রটি নন্ট হয়ে	וכווכ
	कृत्व	4134
	(A) অতিরিক্ত রোধ (B) অতিরিক্ত ভোল্টেজ (C) অতিরিক্ত প্রবাহ (D) কোনোটাই	না।
9	শ্বির আয়ন্তনে আদর্শ গ্যাসের আপেক্ষিক তাপ (C_{ν}) এবং শ্বির চাপে ($C_{\rm p}$) হলে	., .
•	$(A) C_v > C_p$ $(B) C_v = C_p$ $(C) C_v < C_p$ (D) কোনোটাই	গুৱা ।
10	r r	
	$0.09 \mathrm{gcm}^{-3}$ । প্রমাণ চাপ = $1.01 \times 10^6 \mathrm{dyne} \mathrm{cm}^{-2}$ । দুই আপেঞ্চিক তাপের মান	4.18
	(A) $C_p = 3.43 \text{ cal/gK}$; $C_v = 2.4 \text{ cal/gK}$,	
	(B) $C_p = 2.4 \text{ cal/gK}$; $C_v = 3.43 \text{ cal/gK}$,	
	(C) $C_0 = 2.43 \text{ cal/gK}$; $C_v = 3.1 \text{ cal/gK}$.	
	(D) $C_p = 3.1 \text{ cal/gK}$; $C_v = 2.43 \text{ cal/gK}$.	
0	প্রত্যেকটির চৌম্বক প্রামক M এরূপ দৃটি চুম্বক দশুকে পারস্পরিক লম্বভাবে রাখা আছে :	এদের
	চৌম্বক প্ৰামক হবে	

(A) $\frac{M}{2}$

(B) $M\sqrt{2}$

(C) 2M

2 একটি গোলকের বৃত্তীয় গতিশন্তি ও রৈখিক গতিশন্তির অনুপাত

12 0.02 μΕ ধারকংখ্র একটি সমান্তরাল প্রেট ধারক নির্মাণ করতে হবে। প্রেট দুটির ভিতর প্রাংরিদ্ভিক ধুবক k=6 যুগু () 02 mm পুরু অন্ত পাত রাখতে হবে। এ অবস্থায় ধারকের

প্রেটের ক্ষেত্রেল খবে ($\epsilon_0 = 8.85 \times 10^{-12} - \frac{c^2}{N_{\rm Pl}^2}$)

(A) $7.5 \times 10^{-3} \text{ m}^2$ (B) $3.8 \times 10^{-3} \text{ m}^2$ (C) $2.6 \times 10^{-2} \text{ m}^2$ (D) $9.8 \times 10^{-6} \text{ m}^2$.

- 13 সাইক্রোট্রান এমন একটি যন্ত্র যা ব্যবহার করা হয়
 - (A) প্রোটন কণা ত্বর্রান্বিত করতে (B) ভোল্টেজ পরিমাপে

(C) আধান পরিমাপে

- (D) ইলেকট্রন ত্বান্বিত করতে।
- 3μF, 10μF এবং 15μF ধারকত্বের তিনটি ধারককে শ্রেণি সমবায়ে যুক্ত করে 100 V বিভব প্রভেদ 14 দেওয়া হল। 15µF ধারকের আধান হবে (D) 280 µC.
- (A) 200 uC (B) 100 µC 18নং চিত্রে প্রদর্শিত বর্তনীর A এবং B 15 বিন্দর ভিতর ধারকত্ব হবে
 - (A) 2µF
- (B) 3µF
- (C) 4µF
- (D) 1µF.
- 16 একটি আদর্শ গ্যাসের চাপ P এবং আয়তন প্রতি গতিশন্তি E: নিম্নলিখিত সম্পর্কগলির মধ্যে কোন্টি নির্ভুল?

- (A) P = E (B) $P = \frac{2}{3}E$ (C) $P = \frac{1}{2}E$ (D) $P = \frac{3}{2}E$.
- $10^5 \; \rm Nm^{-2}$ চাপে বায়ুর ঘনত্ব $1.2 \; \rm kg \; m^{-3}$; বায়ুর অণুগুলির r.m.s. গতিবেগ হবে 17 (A) $500 \,\mathrm{ms^{-1}}$ (B) $1000 \,\mathrm{ms^{-1}}$ (C) $1500 \,\mathrm{ms^{-1}}$ (D) $3000 \,\mathrm{ms^{-1}}$.

- স্থির আয়তনে আদর্শ গ্যাসকে উত্তপ্ত করে চাপ দ্বিগণ করা হল। নিম্নলিখিত উত্তিগুলির মধ্যে কোনটি নির্ভল হ
 - (A) অণুগুলির গড় গতিবেগ দ্বিগুণ হবে,
 - (B) গ্যাস অণুর r.m.s গতিবেগ দ্বিগুণ হবে,
 - (C) গ্যাস অণুগুলির গড় বর্গ বেগ দ্বিগুণ হবে,
 - (D) কোনোটাই না।
- ভূটৌস্বক ক্ষেত্রে অনুভূমিক উপাংশ (H), উল্লম্ব উপাংশ (V) এবং মোট ক্ষেত্রেপ্রাবল্য (I) হলে 19 নিম্নলিখিত সম্পর্কগলির মধ্যে কোনটি নির্ভুল?
 - (A) $V = I^2 + H^2$ (B) I = V + H
- (C) $I^2 = V^2 + H^2$ (D) $V^2 = I + H$.
- নিম্নলিখিত ঘটনাগলির মধ্যে কোনটি আলোর দ্বৈত সত্তা প্রদর্শন করে? 20
 - (A) অপবর্তন ও প্রতিফলন
- (B) প্রতিসরণ ও ব্যাতিচার
- (C) আলোকতড়িৎ ঘটনা

- (D) অপবর্তন ও আলোকর্তড়িৎ ঘটনা।
- একটি নলের প্রস্থাক্ষেদ দিয়ে ডান দিক থেকে বাঁ দিকে 3.13 x 1015 ইলেকট্রন যাচেছ এবং বাঁ দিক থেকে ডান দিকে 3.12×10^{15} প্রোটন যাচ্ছে। নলের তড়িৎ প্রবাহের মান ও অভিমুখ হবে
 - (A) 2mA मिक्न मिक्न

(B) 1 mA বাঁ দিকে

(C) 1 mA मिक्न मित्क

(D) 2mA বাঁ দিকে।

	(Hints : গড়ং প্রবাহ × 10 ⁻¹⁹) = 1 mA]	$I = m_e q_e + n_p q_p = (3$	$.13 \times 10^{18}$) (1.6 × 10	(3.12×10^{15}) (1
22	$\xi(x)d_{x}^{2}(Ad) (m = 9 : 10^{-34} \text{ J-s})$	× 10 11 kg) % 5% es	80 PKI 0.315 A 20:	কুমুনার প [্] তরেল (h = h
	(A) 6.335×10^9 ms (C) 2.335×10^7 ms		(B) 4.335×10^8 ms (D) 8.335×10^{10} n	
23	5(ম) Hz কম্পণ্ডকর ভরকা সংখ্যা	শক্তরকার সেক্রেন্ড	100 m দুৱৰ অভিক্ৰম	is : করল। ওই পুরঞ্জের মার্
24	(A) 500 · . 50 Hz. 44% 100 H	(B) 1000 ৴ কম্পা জাবিশিক্ট ৮টি ১	(C) 2500	(D) 5000 . ঘ্রক্থায় পৃথকভারে জ্বং
	তর্জোর বেগের অনু	শ 0.06 m এবং 0.36 n পিতি হবে	n এরজানৈটোর ওরজ	ঘ্রকথায় পৃথকভারে জর সুষ্টি হয়। এই দৃটি পৃ
25	গ্যাসের অদ্রেতা বৃদ্ধ	(B)5:12 পেলে ওই গাাসে শব্দে	র গতিবেগ	(D) 1 : 13.
	(C) 4 118 4100 416		(D) কোনটাই না	
26	নেগত হয়। দৃঢ়ভাবে ফোটনগুলির নিম্নতম	টি ধাতব পৃষ্টে আপতিত হ আবন্ধ <i>ইলেকট্রনকে</i> মুস্ত	রেল () থেকে 2.6eV পা করতে 4.2 eV শক্তি	মার গতিশন্তিযুক্ত ইলেকটুক প্রয়োজন হলে, আপতিং
	[Hints: $hv = \frac{1}{2}n$	$mv^2 + \phi_0 : \frac{1}{2} mv^2 =$	$\Delta E = 2.6 \text{eV} : \phi_0 =$	4.2 eV]
27	একই উপাদানে তৈরি একই টানে টান করা	া দুটি তারের দর্য্যৈ। এব আছে।। দৈর্ঘ্যের তারের	তং 21 এবং ব্যাসার্গ সহ	াক্রমে 2r এবং r। তাদের । হলে অন্যাটির কম্পাঙ্ক
	v_2 । এ অবস্থায় $\frac{v}{v}$	4		
28	একটি ট্রেন 34 ms	(B) 4 ¹ গতিবেগ নিয়ে একজন বেক্ষক তার কম্পাঙ্ক শু	স্থির পর্যবেক্ষকের টি	(D) 1. নকে অগ্রসর হচ্ছে। ট্রেন বগ কমে 17 ms ⁻¹ হলে
	কম্পাঙক শোনা গেল	া f_2 । বায়ুতে শব্দের গতি	বেগ 340 ms ¹ হলে	$\frac{f_1}{f_2}$ অনুপাত হবে
	27	(B) $\frac{1}{2}$		(D) $\frac{19}{18}$.
29	q তড়িতাধানের জন্য বিভব হবে	r দূরে তড়িৎ বিভব V ; ব	্যাধানের পরিবর্তে 44	আধান নিলে ঐ বিন্দুতে
	(A) $\frac{1}{2}V$	(B) 2V	(C) 4V	(D) 0.
30	4 বায়্মগুলীয় চাপে	এবং ৷ বায়ুমণ্ডলীয় চাপে	বায়ুতে শক্তের গতিরে	গের অনুপাত হবে

(A)1:1

(B)4:1

(C)1:4 (D)3:1.

31	নির্মালখিত ধাতুগুলির মধ্যে কোনটি অয়শ্চৌম্বক ?			
	(A) আলুমিনিয়াম (B) কোয়ার্টজ	(C) নিকেল	(D) বিসমাথ।	
32				
	কম্পাড়েকর শব্দ শুনলো হর্নের শব্দের প্রকৃত	কম্পাঙ্ক থেকে তার পা	র্থক্য 10%। বায়তে শব্দে	
	বেগ $300~{ m ms}^{-1}$ হলে গাড়ির গতিবেগ হবে			
	(A)36.7 ms ⁻¹ (B) 40 ms^{-1}	(C) 30ms^{-1}	(D) 33 ms ⁻¹ .	
33 একটি তড়িতাহিত প্লেটের (আধানের ঘনত্ব = σ) নিকটবর্তী বিন্দুর ত				
	(A) $4\pi\sigma$ (B) $\frac{4\pi\sigma}{k}$			
34	W ওজনের একটি বস্তুকে সুতোয় বেঁধে উল্ল	ৰ পৃত্তপথে ঘোৱানো হচ্ছে	। বস্তু যখন বৃত্তের সর্বনিঃ	
	বিন্দুতে তখন সুতোর টান বস্তু যখন বৃত্তের সর্বোচ্চ বিন্দুতে তখনকার টানের চাইতে			
	(A) 6W রেশি হবে (B) 2W বেশি হবে	(C) 3W বেশি হবে	(D) W বেশি হবে।	
35	স্থানু তরজোর সুম্পন্দ বিন্দুতে নিম্নলিখিত রাশিগুলির মধ্যে কোন্টির পরিবর্তন হয়?			
		(B) কেবলমাত্র চাপে		
		(D) চাপ বা ঘনত্ব বে		
36	নিম্নলিখিত রাশিগুলির মধ্যে কোন্টি প্রগামী তরজা এবং স্থানুতরজ্ঞার মধ্যে পার্থক্য বু			
	দেয় ?			
	(A) বিস্তার (B) কম্পাঙক	(C) শক্তির পরিবহন	(D) তর্গোর দশা।	
37	একটি শব্দ উৎস 100 Hz কম্পাঙ্কের অপর	একটি উৎসের সঞ্চো প্রতি	ত সেকেণ্ডে ১ টি স্বরকম্প	
	তোর করে। ঐ শব্দ উৎসের দ্বিতীয় সমমেল 215 Hz কম্পঙ্কের একটি উৎসের সঞ্চো প্রতি			
	সেকেন্ডে 5 টি স্বরকম্প তৈরি করে। শব্দ উ	ৎসের কম্পাঙ্ক হবে		
	(A) 105 Hz (B) 205 Hz	(C) 95 Hz	(D) 262 Hz.	
38	কোনো মাধ্যমে তরজোর সমীকরণ $y(x,t) = 0.02 \cos(50\pi t + \frac{\pi}{2})$ যেখানে x এবং y মিটারে এবং t সেকেন্ডে পরিমাপ করা হয়েছে। (A) $x = 0.15 \mathrm{m}$ অবস্থানে একটি নিম্পন্দ বিন্দু পাওয়া যাবে, (B) $x = 0.3 \mathrm{m}$ অবস্থানে একটি সুস্পন্দ বিন্দু পাওয়া যাবে, (C) তরজাদৈর্ঘ্য হবে $0.2 \mathrm{m}$,			
	(D) সবকটি ঠিক।	D) সবকটি ঠিক।		
39	দুটি তড়িৎগ্রস্ত বস্তুর ভিতর একটি কাচ প্লেট ঢোকালে তাদের ভিতর বল			
	(A) বৃদ্ধি পায় (B) হ্রাস পায় (C) একই থাকে (D) শূন্য হয়।			
40	পৃথিবী অপেক্ষা সূর্য 330 গুণ ভারী এবং ব্যসার্থ 100 গুণ বেশি। ফলে সূর্যের গড় ঘনত			
	পৃথিবীর গড় ঘনত্ব অপেক্ষা হবে	A)4114 100 Å4 CALATI	কলে ব্রের স্ট রশস্ত	
	(A) 3.3 গুণ (B) 3.3 × 10 ⁴ গুণ	(C) 3.3 × 10 ⁻⁶ stet	(D) 3.2 × 10.2 set	
41	2 cm বাহযন্ত একটি বৰ্গক্ষেত্ৰ ARCD-এব	চার কোগায় ১০০০ ৪ ০০০	(D) 5.5 × 10 - 79	
	2 cm বাহ্যুত্ত একটি বর্গক্ষেত্র ABCD-এর চার কোণায় 2esu, 8 esu এবং 5esu এবং –। esu আধান রাখা আছে। বর্গক্ষেত্রের কেন্দ্রবিন্দুতে বিভব হবে			
	(A) $\frac{5}{\sqrt{2}}$ esu (B) $10\sqrt{2}$ esu	(C) $\frac{42}{\sqrt{2}}$ esu	$(D)-10\sqrt{2}$ esu.	

	(A) λ_0	(B) $\frac{1}{2}\lambda_0$	$(C) \frac{\lambda_0}{2\sqrt{2}}$	(D) $\frac{1}{4}\lambda_0$.	
44		র্থান্থ্য একটি বাটের্গরর স একই সময়ে একই গ্রাহ	জো পর পর r_1 এবং r_2 া উৎপন্ন হলে,	রোধযুত্ত দুটি ত	গর যুন্ত
45	(A) $r = r_1 r_2$ 100 volt সরবরাহ জ ক্ষমতা ব্যয় করে। ব	াইনে পৃথক ভাবে যুক্ত ক	$(C) r r_1 = r_2$ রলে, পুটি বাতি <mark>যথাক্রমে</mark>		
	(A) $166\frac{2}{3}\Omega$; 133	$\frac{1}{3}\Omega$;	(B) 160Ω, 140Ω		17
46	(C) 120Ω. 180Ω একটি আলোকতভ়িং ' হল। আলোর তীবুভা		(D) 100Ω, 200Ω . র ভরজাদৈর্ঘ্য 6000Å থো	কে কমিয়ে 4000	ু A করা
	(A) বিভবের ছেদ ম (B) বিভবের ছেদমা	ান (cùt-off) ব্রাস পাবে, ন বৃদ্ধি পাবে, বোহমাত্রা বৃদ্ধি পাবে,		· (
•	সংযোগের তাপমাত্রা।	তাহলে	্য = নিরপেক্ষ তাপমাত্র	় এবং φ, =	শীতল
	(A) $\phi_t + \phi_c = \phi_n$ (C) $\frac{\phi_i + \phi_c}{2} = \phi_n$,	(B) $\phi_i - \phi_c = \phi_n$ (D) $\phi_c - \phi_i = 2\phi_n$.		
48	(A) অয়শ্চৌম্বক পদা (B) পরাচৌম্বক পদা (C) অয়শ্চোম্বক পদা	তাপমাত্রা বোঝায় যার বে থ্র্থ পরাচুম্বকে পরিণত হয় র্য় তিরন্দোদ্ধক পদার্থে প্র থ্য তিরন্দৌদ্ধক পদার্থে প	য়, গুণিত ২ফ, গুনিপত হয়,	* 4	, · · · · · · · · · · · · · · · · · · ·
49	একটি গ্যালভ্যানোনা 1000 (১২। এই গ্যালভ করতে হবে। এই উটে	গনোমিটারকৈ সর্বাধিক 1() দশ্যে	হ পূর্ণ শ্লেল বিক্ষেপ প্র A পর্যন্ত প্রবাহমাত্রা পঠনদ		
		সাথে শ্রেণি সমবায়ে যুক্ত সাথে সমান্তরাল সমবায়ে			
		এর সমান্তরালে যুক্ত কর			
	(D) 10 000 0 C	ত্য আছো কেন্দ্র ম্যানাতা	ST # # # # # # # # # # # # # # # # # # #		

42 2μF এবং 3μF ধারকাপ্তর দৃটি ধারককে প্রাণি সমবায়ে আবন্ধ করে, তাদের সাজো সমান্তরাল

(A) $\frac{29}{20} \mu F$ (B) $\frac{20}{29} \mu F$ (C) $2\mu F$ (D) $4\mu F$.

ব্রয় তরজাদৈর্ঘ্য হবে

সমবায়ে $\frac{4}{5}\,\mu F$ ধারকারের আর এনটি ধারক যুক্ত করা হল। সমবায়ের মোট ধারকত্ব হবে

100V দ্বারা জ্রাদ্বিত প্রেটিনের দা ব্রয় তরকা দৈয় 💫। একইভাবে ধুরাদ্বিত আলফাকশার দা

		The same of the sa
50	একটি তামু ভোল্টামিটারের ভিতরের প্রবাহ	
	(A) বাইরের প্রবাহের সমান	(B) বাইরের প্রবাহের দ্বিগুণ
	(C) বাইরের প্রবাহের অর্থেক	(D) CUSO ₄ দ্রবণের গাঢ়ত্বের ওপর নির্ভর করে।
	© SET	<u>* 9 🕒 </u>
0	যদি একটি স্থাম দণ্ডের তাপমাত্রা 🐠 বন্ধি	করা যায় তবে তার দৈর্ঘ্যের সমান্তরাল এক অক্ষের
	সাপেকে দঙ্কের জাড্যপ্রামক (1)	
	(A) M eri	(B) α/Δι বৃশ্বি পাবে
	(C) 2a 1. वि विश्व शहर	(D) 3 α /. Δι বৃদ্ধি পায়।
2	অক্সিজেন অণুর r.m.s গতিবেগ บ। তাপমাত্র	া দ্বিগুণ করলে এবং অক্সিজেন অণু ভেঙে অক্সিজেন
	পরমাণু হলে r.m.s. গতিবেগ হবে	
	(A) υ (B) $\sqrt{2} \cdot \upsilon$	(C) 2v (D) 4v.
3		তাপমাত্রায় সকল গ্যাসের অণুর বেলায় সমান?
	(A) ভর (B) দুতি	
4	প্রমাণ চাপ ও তাপমাত্রায় 1000 cm ³ আদ র্ শ	গ্যাসের ভর 0.177 g। গ্যাস অণুর r.m.s গতিবেগ
	(A) $1000 \mathrm{m s^{-1}}$ (B) $1300 \mathrm{m s^{-1}}$	(C) $1500 \mathrm{m s^{-1}}$ (D) $150 \mathrm{m s^{-1}}$.
5	পিন্টনযুক্ত একটি ধাতব চোঙে কিছু গ্যাস আ	বন্ধ আছে। হঠাৎ <mark>পিষ্টনটি</mark> নামিয়ে গ্যা সকে সংকচিত
	করা হল এবং পিফনকে ঐ স্থানেই রেখে (দওয়া হল। যত সময় আতিবাহিত হবে তত গ্যাসের
	हां	
	(A) বৃন্ধি পাবে	
	(B) হ্রাস পাবে	
	(C) একই থাকবে	
	(D) গ্যাসের প্রকৃতির ওপর নির্ভর করে বৃ	খ পেতে পারে বা হ্রাস পেতে পারে।
6	একটি দৃঢ় পাত্রে আবন্ধ গ্যাসে 100 J তা	প সরবারহ করা হল। গ্যাসের অভ্যন্তরীণ শক্তির
	পরিবর্তন হবে	
7	(A) 200 J (B) 300 J	(C)0 (D)100 J.
•	द्यांत्र श्रूपणा यावनात त्वात्म गात्त्रत (४	= 1.4) চাপ 0.5% বৃদ্ধি করা হল। গ্যাসের আয়তন
	(A) 0.36% (B) 0.5%	(0)0.7%
8	A এবং B দটি বস্তর তলক্ষেত্র সমান। তা	(C) 0.7% (D) 1%. নর তাপমাত্রা যথাক্রমে 10°C এবং 20°C। কোনো
	নির্দিন্ট সময়ে A এবং B কর্তৃক বিকির্ণ তাত	পর অনপাত হবে
	(A) 1:1.15 (B) 1:2	(C) 1:4 (D) 1.16.
91	কৃষা বন্তু	(=,1)
	(A) বিকিরণ নির্গত করে না	(B) বিকিরণ শোষণ করে না
	(C) বিকিরণ প্রতিফলন করে না	(D) বিকিরণ প্রতিসরণ করে না।
10	দুটি তড়িতাধানের ভিতরকার দূরত্ব বাড়ালে,	তড়িতাধান দুটির তড়িৎ স্থিতিশক্তি
	(A) বৃশ্বি পায় (E) হাস পায়
	(C) একট খাকে (L)) বৃদ্ধি পেতে পারে, আনার হ্রাস পেতে পারে।

	(C) V गृना रूत ना यमि E ≠ 0,		
	(D) কোনোটাই নয়।		
13	ঘর্ষণ দ্বারা কোনো বস্তুকে ভড়িতাহিত করলে	, বন্তুর ওজন	
	(A) ঠিক ঠিক একই থাকে	(B) সামান্য বৃশ্বি প	ায়
	(C) সামান্য কমে যায়	(D) সামান্য বাড়তে	পারে বা কমতে পারে।
14	দুটি তড়িতাধানের প্রত্যেকটির আধান 1.0C	: এদের ব্যবধান কি হরে	ন, তাদের ভিতরকার বল
	50 kg ওজনের সমান হবে?		
		$(C) 5.5 \times 10^3 \mathrm{m}$	
15	2.0 × 10 -8C তড়ি তাধান যুক্ত দুটি কণাকে এ	কটি সুতো দ্বারা যুক্ত কর	া হল। সুতোটি lm দীর্ঘ।
	সুতোয় টান পড়বে $\left(\frac{1}{4\pi \epsilon_0} = 9 \times 10^9\right)$		
16	(A) 3.6 × 10 ⁻⁶ N (B) 4.6 × 10 ⁻⁷ N নিম্নলিখিত উদ্ভিগুলির কোন্টি ঠিক ?	(C) 3.6×10^{-7} N	(D) 10 ⁻⁷ N.
	(A) গসের সূত্র প্রয়োজা হবে একমাত্র প্রতি	সম আধান বন্টনের ক্ষে	<u>.</u>
	(B) গদের সূত্র প্রয়োজা হবে, একমাত্র শূন		
	(C) গসের সূত্রের সাহায়ো নিগীত তড়িৎ		
	তড়িতাধানের জন্য,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(D) আধানের দর্ন বন্ধ তলক্ষেত্রের ভিতর । তড়িতাধানের জুন্য।	দিয়ে তড়িৎ ফ্লাক্স একমার	ৰ উন্ত ক্ষেত্ৰ কৰ্তৃক আবন্ধ
17		লৰ বিৰেচনা কৰ। তাৰে	ন মৈন ছিপাল করলে এবং
•	প্রস্থাচ্ছেদের ক্ষেত্রফল অর্থেক করলে, তারে		N 014 14 7 1 4464 01 41
	(A) দ্বিগুণ (B) অর্ধেক	(C) চতুৰ্গুণ	(D) আটগুণ।
18	একমুখ ক্ব একটি নল (P ₁) প্রথম সমমেল উ		
	নল (P2) তৃতীয় সমমেল উৎপন্ন করে কম্পি		
	নলের দৈর্ঘ্যের অনুপাত হবে		
	(A) $\frac{8}{3}$ (B) $\frac{3}{8}$	(C) 1	m 1
19	এক ম্য কথ দুটি আগান নল এক সঙ্গো মূ	- for	-
	्यांना यात्र । नल पुष्टित क्रिस्ट्रांत अनुभाउ 50		
	() . 0 . 0		(D) 265, 270.
		(0) 2000	

একটি বিন্দু আধান কর্তুক সূত্র্য প্রতিং ক্ষেত্রে একটি তড়িং-দ্বিমেরু রাখা হল।

(A) দিমেল্র উপর বিষারত নাট বল শ্না,

(C) দিসের্র উপর ক্রিয়ারত টক শুনা,

(A) V অবশাই শূন্য হবে যদি E=0 হয়, (B) E অবশাই শূন্য হবে যদি V=0 হয়,

(B) দ্বিমেরর উপর জিয়ারত নীট বল শুনা হওয়া সম্ভব,

(D) দ্বিমের উপর ক্রিয়ারত টর্ক শূনা ২ওয়া সম্ভব। কোনো বিন্দুর তড়িং ক্ষেত্র E এবং তড়িং বিভব V হলে

	ধারকত্ব			
	(A) বাড়ে	(B) 4%	(C) ६५३ थारक	(D) শুনা হয়।
21	একটি সমান্তরাল প্রেট	ধারককে ব্যাটারির সাহে	্যুত্ত করা হল ত্র প	ংলা একটি ধাত্তব পাতকে
		প্রেট দৃটির সমান্তরজভণ		
	(A) ব্যাটারি আরও	আধান সরবরাহ করবে,		
	(B) ধারকের ধারকত্ব	বেড়ে যাবে.	r er n	- 10 + 20 60
	(C) প্রেট দুটির ভিতর	বিভব-পার্থকা বেছে ফ	गर्द.	
		ই পূঞ্চে সমান ও বিপরী		1
22				র ধারক ভৈরি করবে। দুটি
		mm হলে, চাকতির বাা		7.00
		(B)6km son		.(D) 0.1 km.
23	দুটি আলোক উৎস সূ	সিঙ্গাঁত (choerent) হ	ব যখন তাদের	
				(D) তরজাদৈর্ঘ্য সমান।
24		র মধো কোনটি তির্যক?		
	(A) টানা দেওয়া তা	রর তরজা	(B) গ্যাস মাধ্যমে শ	ব্দ তর্জা
	(C) দৃশামান আলোর	ত্রজা	(D) X-রাশ্ম তরজা।	
25	নিম্নলিখিতদের মধ্যে	কোনটি ভড়িৎ চুম্বকীয় ভ	রেগা সৃষ্টি করে?	
	(A) প্থির তড়িতাধান		(B) গতিশীল তড়িতা	ধান
	(C) জুরায়িত তড়িতাধ	वि	(D) আধানবিহীন কণ	भा ।
26	তড়িৎ চুম্বকীয় তরজো	র গতিবেগ সমান		
	(A) সকল তরজাদৈ	র্বার ক্ষেত্রে	(B) সকল প্রকার মা	ধ্যমে
	(C) সকল প্রকার তী	বুতার ক্ষেত্রে	(D) সকল প্রকার ক	ম্পাঙেকর ক্ষেত্র।
27	নিম্নলিখিতগৃলির মধ্যে	কোনটি ৩ড়িৎ-চুম্বকীয়	হরজা নয় ?	
	(A) দৃশ্যমান অংলাব	তরজা	(B) ইলেকট্রনের দা	বয় ৩রজা
	(C) গ্যাসে শব্দ তরঞ	গ(D) X-রশ্মি তরঞা।		
28	যে বস্তু বহুক্ষণ যাবৎ	৩ড়িতাধান ধরে রাখবে	তার আকার হওয়া উ	Be
	(A) আয়তক্ষেত্রিক	(B) ত্রিভুজাকৃতি	(C) গোলাকার	(D) চোঙাকতি।
29	একটি নিরেট গোলাব	গর তড়িৎগ্রস্ত গোলকের	(বাসার্ধ = ৮) পৃষ্ঠ ব	ারাবর ব্যাসের এক বিন্দু
	থেকে বিপরীত বিদ্যুত	ত ৭ তড়িতাধান নিয়ে ৫	ালে কৃত কাৰ্য	
		(B) πr.q		(d) 0.
30.				$V(x) = 5 + 4x^2$ সমীকরণ
	অনুযায়ী সংশ্লিউ।		the state of the s	A (Y) - D 4-4Y A MINAUL
	01	বি-দৃদ্বয়ের ভিতর বিভব	পাৰ্থকা = 32 V	
		C তড়িতাধানের উপর <		
	(C) উত্ত বল + x অগ			
	. ,	ক্ষ বরাবর সুষম তড়িংশ	ক্ষত্র কিয়া করে।	
31				ুতে রাখলে 10 ³ N বল
9		তে শেত্র প্রাবল্য হবে		120 MINON IO IN ANI
		(B) 330 volt m ⁻¹	(C) 300 volt m ⁻¹	(D)0.
				(2)0.

একটি অর্থারত সমান্তরাল প্লেট ধারকের প্লেটদৃতির মধ্যে পর্যাবন্যুতের ম্ল্যাব ঢোকালে ধারকের

32	কোনো ভড়িংবর্তনাতে দটি বোধ R এবং 2R শেলি সমাবারে আক্রম আছে। R এবং 2R রোধে
	উৎপন্ন তাপশন্তির অনুপাত
	(A)1:2 (B)2:1 (C)1:4 (D)4:1
33	উপরোও প্রশ্নে রোধ দৃটি সমান্তরাল সমবায়ে আবদ্ধ থাকলে, উৎপন্ন তাপশক্তির অনুপাত
	(A)1:2 (B)2:1 (C)1:4 (D)4:1
43	পরাবৈদ্যতিক উপাদান বিহান একটি ধারককো। = 0 সময়ে একটি বাত্যরির সাথে যুক্ত করা হল।
	সংযোগী তারের উপর একটি বিন্দু \Lambda এবং ধারকের প্লেডদুটির মারখানে এ কটি বিন্দু B বি রেচনা
	করো।
	(A) A বিশ্ব ভিতর দিয়ে কোনো ওড়িং প্রবাহ নেই,
	(B) B বিন্দর ভিতর দিয়ে কোনো তড়িং প্রবাহ নেই,
	(C) চাজিং সম্পূর্ণ না ২৬য় পর্যন্ত A বিন্দু দিয়ে তড়িৎ প্রবাহ যাবে,
	(D) চাজিং সম্পূর্ণ না ২ওয়া পর্যন্ত B বিন্দু দিয়ে তড়িং প্রবাহ যাবে।
35	একটি ভোণ্টমিটারের রোধ খুব উচ্চ ২ওয়া প্রয়োজন যাতে
	(A) কুঙলী খুব বেশি উত্তপ্ত না হয়,
	(B) যদ্ভ খুব বেশি তড়িৎপ্রবাহ না নেয়,
	(C) যন্ত্র উচ্চ বিভবপ্রভেদ মাপতে সক্ষম হয়,
	(D) পরিমেয় বিভব-প্রভেদের বিশেষ কোনো পরিবর্তন না হয়।
36	বৈদ্যুতিক সুইচ অন করলে একটি কেটলির জল 15 মিনিটে ফ্টাতে শ্রু করে। একই তড়িৎ
	উৎস ব্যবহার করে কেটলির জলকে 10 মিনিটে ফোটাতে হলে কেটলির কণ্ডলীর তারের কি
	পরিবর্তন প্রয়োজন ?
	(A) দৈর্ঘ্য হ্রাস করতে হবে (B) দৈর্ঘ্য বৃদ্ধি করতে হবে
	(C) কোনো পরিবর্তন প্রয়োজন নেই (D) কোনোটাই নয়।
37	দৃটি বৈদ্যুতিক বাতির ফিলামেন্ট সমান দৈর্ঘ্যের টাংস্টেন তার দিয়ে তৈরি। একটির ক্ষমতা 60 watt
	এবং অন্যাটর 100 watt 🕟 ⊱ ⊱ 🦰 🥴 🕬
	(A) 100 watt বাতির ফিলামেন্ট তার অপেক্ষাকৃত মোটা,
	(B) 60 watt বাতির তার অপেক্ষাকৃত মোটা,
	(C) দৃটি ফিলামেন্ট তারই সমান মোটা,
	(D) তার দুটির দৈর্ঘ্য সমান।
38	নিম্নলিখিত প্রক্রিয়াগুলির মধ্যে কোনটি অপ্রভ্যবর্তক (irreversible)
	(A) জুল প্রক্রিয়া (B) পেলটিয়ার প্রক্রিয়া (C) সিবেক প্রক্রিয়া (D) টমসন প্রক্রিয়া
39	ফ্যারাড়ে কিসের একক?
	(A) ধারকত্বের (B) তড়িতাধানের (C) তড়িৎপ্রবাহের (D) সাবেশ গুণাঞেকর।
40	ফাারাডে ধ্রক্সংখ্যা নির্ভর করে
	(A) তড়িদ্বিশ্লেয়ের পরিমাণের উপর,
	(B) তড়িংপ্রবাহের উপর , সাল্লিক বিশ্ব কর্ম কর্ম ক্রিটার ক্রিটার ক্রিটার ক্রিটার ক্রিটার ক্রিটার ক্রিটার ক্রিটার
	(C) এটি একটি সর্বজনীন ধ্বসংখ্যা,
	(D) তড়িদ্বিশ্লেষোর ভিতর দিয়ে প্রবাহিত তড়িতাধানের উপর।
41	220 volt সরবরাহ লাইনে একটি বৈদ্যুতিক বাল্ব রাখলে 60 W ক্ষমতা ব্যয় হয়। সরবরাহ হ্রাস

পেয়ে 180 volt হলে বায়িত ক্ষমতা হবে

(B) 50 watt

(C) 30 watt

(D) 35 watt.

(A) 40 watt

পারমাণবিক ভার = 107.9 g mole⁻¹)

	(A) 40 মিনিট (B) 41 মিনিট	(C) 42 মিনিট (D) এক ঘণ্টা।		
43	সুতোয় বেঁধে একটি আহিত কণাকে ঘর্ষণবিহীন	টেবিলের উপর অন্ভূমিক বৃত্তকার পথে ঘোরানো		
	হচ্ছে। বৃত্তপথের উপর উল্লম্বভাবে একটি চৌ	স্বক ক্ষেত্র প্রয়োগ করলে, সূতোয় টান		
	(A) বৃন্ধি পাবে	(B) হ্রাস পাবে		
	(C) এकर थाकरव	(D) রাড়তে পারে, কমতেও পারে।		
44	0·50 T মানের একটি চৌম্বক ক্ষেত্রের অভিন	প্দ তলে lm ব্যাসার্ধের বৃত্তপথে একটি ইলেক্ট্রন		
	আবর্তন করছে। ইলেকট্রনের দ্রুতি হবে	,		
		(C) $8.8 \times 10^{10} \mathrm{m s^{-1}}$ (D) $8 \times 10^9 \mathrm{m s^{-1}}$.		
45	2m বাহুযুক্ত একটি তারের বর্গাকৃতি ফ্রেমে 2	A তড়িৎপ্রবাহ যাচেছ। একই প্রবাহ 2m পরিধির		
	একটি वृद्धाकात कूडनी मित्रा यात्रह । कूडन	নীর কেন্দ্রে এবং ফ্রেমের কেন্দ্রে উৎপন্ন চৌশ্বক		
	ক্ষেত্রের প্রাবল্যের অনুপাত			
	2	o /o		
	(A) $\frac{32}{\pi^2}$ (B) $\frac{\pi^2}{8\sqrt{2}}$	(C) $\frac{8\sqrt{2}}{2}$ (D) $\left(\frac{\pi}{2}\right)^2$		
46	চিম্বিক ক্ষেত্রে কোনো পরিবাহীকে স্থানান্তর	করিয়ে তড়িচ্চালক বল আবিষ্ট করা হয় আবার		
	পরিবাহীর উপর চৌম্বক ক্ষেত্রের পরিবর্তন ক			
		(B) প্রথমটি নির্ভুল ক্বিতু দ্বিতীয়টি ভুল		
	(C) প্রথমটি ভুল কিন্তু দ্বিতীয়টি নির্ভুল			
47	একটি খাড়া উল্লম্ব তারে উর্ব্বমুখী তড়িৎপ্রবাহ য	াচ্ছে। একটি ইলেকট্রনকে অনুভূমিক ভাবে তারের		
	দিকে পাঠানো হল। তারটি সালিক সালিক সং	· ·		
	(A) ডান দিকে বিক্ষিপ্ত হবে			
	(C) উপরের দিকে বিক্ষিপ্ত হবে	(D) নীচের দিকে বিক্ষিপ্ত হবে		
48	े क्रिक्स अकी। अविवासी एक अध्या	→ গ নিয়ে B চৌম্বক ক্ষেত্রে গতিশীল। দণ্ডের দুই		
	প্রান্তের ভিতর বিভব-প্রভেদ আবিষ্ট হবে যদি	। দেয়ে D Colsto কেটো সাত্নাআ। মতেই মুঁহ		
	(A) 1) 1 ₹₹ (B) 1) R ₹₹	(C) $l \mapsto B$ হয় (D) কোনোটাই নয়।		
40	কোন্ ক্ষেত্রে ধারক অসীম রোধের সৃষ্টি করে			
-		(B) A.C		
	(C) D.C 의학 A.C	(D) D.C বা A.C কোনো (李(এই নয়।		
Ξ0	•	12.2 × 10 ⁻⁸ m তরজাদৈর্ঘ্যের একটি ফোটনকে		
9	्यार्थ कवरल श्रवधानव श्रकि सब्ध इल । १० व	র মান হবে (হাইড্রোজেন প্রমাণুর ভর = 1.67		
	× 10 ⁻²⁷ kg)	त मान रहर (सारह्याह्यम न्यूबानूत छत्र = 1.67		
		(C) $3.25 \mathrm{m s^{-1}}$ (D) $4 \mathrm{m s^{-1}}$.		
Hi	[Hints: ফোটনের রৈখিক ভরবেগ = $\frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{12.2 \times 10^{-8}} = 5.43 \times 10^{-27} \text{ kgm/s}$			
ভরত	ৰণ সংরক্ষণ সূত্রানুযায়ী (1.67 × 10 ²⁷) υ=5.4	3×10°2′]		

একটি পিতলের প্লেটের এর পিঠের ক্ষেত্রফল 200cm²। প্লেটের উভয় পিঠে 0.1 mm পুরু রুপা জমাতে 15A প্রবাহমাত্রা ব্যবহার করা হল। এজন্য সময় লাগল (রুপার আঃ গুরুত্ব=10.5 এবং

○ SET + 10 ○

প্রভেদের ভিতর দিয়ে চলে গেল। ইলেকট্রনের চূড়ান্ত শত্তি এবং গতিবেগ থবে

M ভরের এবং ৮ তড়িতাধানযুক্ত একটি ইলেকট্রন স্থির করে থাকে শুরু করে V ভোল্ট বিভব-

	(A) M e V J; 2MV \sqrt{e} ms	(B) $eVJ: \sqrt{2} \sqrt{Me}$	·V ms ⁻¹
	(C) $\frac{e}{V}$ J: 2 $\frac{\sqrt{eV}}{M}$ ms ⁻¹	(D) $eV J$: $\frac{\sqrt{2}eV}{M}$	ms ¹ .
2	চারটি অধায়ু পরে কোন তেভস্ক্রিয় পদার্থের ব	তটা অবিঘটিত থাকৰে ?	
	(A) 5% (B) 6% · · · ·	(C) 6.25%	(D) 7%.
3	একটি উদ্ধা বস্তু খুব দুত তাপ বিকিরণ করবে	যদি তার পৃষ্ঠ	
	(A) সাদা এবং পালিশ করা থাকে	(B) সাদা এবং অমসৃণ	হয়
	(C) কালো এবং পালিশ করা থাকে	(D) কালো এবং অমস্	ণ হয়।
4	যখন ধাতব টার্গেটিকে 40 keV ইলেকট্রন আঘ নির্গত হয় তার তরঙ্গা দৈর্ঘা	াত করে তখন সর্বাপেক্ষা	শক্তিশালী যে X-রশ্মি
	(A) 10 Å (B) 30 Å	(C) 4 Å	(D) 0.31 Å.
5	কোন তেজস্কিয় পদার্থের অধায়ু নির্ভর করে		
	(A) চাপের উপর	(B) উন্মতার উপর	: 3
	(C) রাসায়নিক পরিবেশের উপর	(D) কোনটিই নয়।	
6	কোন তেজস্ক্রিয় পদার্থের অর্ধায়ু 1000 সেকেং	ছ। তার বিঘটন ধ্বক	
	(A) $6.93 \times 10^2 \mathrm{s}^{-1}$ (B) $6.93 \times 10^{-4} \mathrm{s}^{-1}$	(C) $6.93 \times 10^{-4} \text{s}^{-1}$	(D) 6.93×10^3 s.
7	প্রমাণ চাপ ও তাপমাত্রায় তড়িবিদ্ধেষণের সাং	शस्या 112 cm. ³ शरेरङ्गार	নন গ্যাস মুক্ত করতে যে
	পরিমাণ তড়িতাধান প্রয়োজন তা	-60 612 628 -200	100
	(A) 0.1 ফ্যারাডে (B) 96500 কুলম্ব		(D) 1 ফ্যারাডে।
8	হাইডোজেন পরমাণুর ইলেকট্রন যখন উচ্চতর তখন আমরা এক শ্রেণির বর্ণালী পাই। এই	শ্রেণিকে বলা হয়	
	(A) ব্রাকেট শ্রেণি (B) পাশেন শ্রেণি	(C) বামার শ্রেণি	(D) লাইম্যান শ্রেণি।
9	नूष द्वार रहा	To a describe a service	Su m 1 diff
	(A) $\sqrt{\frac{3}{2}}$, v_e (B) $\sqrt{\frac{2}{3}}$, v_e		
10			তার দুটি পরস্পরকে
	1/	(B) বিকর্ষণ করে	
	(C) আকর্ষণ বা বিকর্ষণ করে না	(D) ভড়িচ্চালক বল গ	।াবিস্ট করে।
0	কোন ধাতুর আলোকভড়িৎ কার্য অপেক্ষা 2.0	eV হলে, ঐ ধাতুর ক্ষেত্রে	সূচনা তরজাদৈর্ঘোর মান
	२ (व		
	(A) 6200 Å (B) 6000Å	(C) 5700A	(D) 5900 Å

- 150 kV বিভব-প্রভেদে কার্যরত একটি X-ray নল 10 mA প্রবাহ নেয়। নলের টার্গেট বস্তুটির ভর $0.3 \, \text{kg}$ এবং আপেক্ষিক তাপ $148.5 \, \text{kJ} \, \text{kg}^{-1} \, \text{K}^{-1}$ । সরবরাহ করা বৈদ্যতিক ক্ষমতার 1%X-ray-তে বুপান্তরিত হয় এবং বাকি শক্তি সম্পূর্ণরূপে টার্গেটকে উত্তপ্ত করতে বায়িত হয়। তাহলে.
 - (A) টার্গেটের গড় তাপমাত্রা বৃদ্ধি হবে 33 K s 1
 - (B) নির্গত X-রশ্মির ভিতর ন্যুন্তম তর্জাদৈর্ঘ্য হবে 0.08A
 - (C) টার্গেটে উত্তপ্ত করণের হার হবে 1485 Js-1
 - (D) সব কটি ঠিক।
- সূতোয় বাঁধা 0.1kg ভরের একটি বলকে মঁসুণ টেনিলের উপর 1 m ব্যসার্ধের অনুভূমিক বৃত্তপথে 13 1ms - পির বেগে ঘোরানো হচ্ছে। স্তোর মুস্ত প্রান্ত টেবিলের একটি ছিদ্র দিয়ে নীচে ঝুলছে। স্তোটি টেনে ব্রের ব্যাসার্ধ 0.5 m করা হলে

 - (A) বলের নতুন বেগ হবে 2ms ¹
 (B) বলের নতুন বেগ হবে 1ms ¹
 - (C) সূতোয় টান হবে 0.3 N
- (D) টান হবে 1.6 N.
- $2.5 \times 10^{-4}~W~m^{-1}~k^{-1}$ তাপ পরিবাহিতাঙ্ক যুক্ত উপাদানে গঠিত একটি কব্দ প্রকোষ্ঠের দৈর্ঘ্য 14 $l=1~\mathrm{m}$; প্রস্থা $b=0.5~\mathrm{m}$; উচ্চতা $h=0.5~\mathrm{m}$ । দেওয়াল $1\times10^{-5}~\mathrm{m}$ পুর । প্রকোসের ভিতর একটি হিটার কুঙলী রেখে ভিতরের তাপমাত্রা 40°C থিবর রাখতে হবে। হিটার কুঙলী 100V বিভব-প্রভেদ যুক্ত। প্রকোষ্ঠের বাইরের তাপমাত্রা 20°C হলে, হিটার কুণ্ডলীর রোধ হবে
 - $(A) 2k \Omega$
- $(B)4k\Omega$
- (C)8kQ
- C^{12} পরমাণুর ক্ষেত্রে নিউক্রিয়ন প্রতি বিশ্বনশক্তি $= E_1$ এবং C^{13} এর বেলায় $= E_2$ । C¹³ থেকে একটি নিউট্রন অপসারণ করতে প্রয়োজনীয় শক্তি
 - (A) $E_2 E_1$ (B) $13 E_2 12 E_1$ (C) $12 (E_2 E_1)$ (D) একটাও না i $[Hints : C^{12}$ এর মোট কথন শক্তি = $E_1 \times 12 = 12 \, E_1 : C^{13}$ এর মোট কথন শক্তি = $E_2 \times 13$ = 13E₂ :: প্রয়োজনীয় শক্তি = 13E₂ 12E₁]
- আয়তাকার একটি তারের লুপে i1 প্রবাহ যাঞে। ল্পটিকে 12 প্রবাহী ঋজু এবং দীর্ঘ তারের কাছে রাখা হল এবং তারটি লুপের একটি বাহুর সমান্তরাল (চিত্র 19)। এ অবস্থায় তারের লপটি

- (A) খজু তার থেকে দুরে সরে বাবে
- (B) খাজু তারের দিকে এগিয়ে যাবে
- (C) একই জায়গায় থাকবে
- (D) ঋজ তারের সমান্তরাল এক অক্ষের চতদিকে গ্রবে।
- 20 নং চিত্রে প্রদর্শিত বর্তনীতে তড়িং প্রবাহ। এর মান
 - (A) 2 A
- (B) 1 A
- (C) 0 ·
- (D) 0.5 A.
- , १ में भी निमालित हो अर्थात है। कला নিৰ্গত হবে তা

(B)
$$d + \frac{a-b}{2} + c$$


```
[Hints: X^A \longrightarrow_{z_1} Y^{A_1} \alpha X^a \to \alpha Y^b; \alpha = \frac{A - A_1}{4} : \alpha = \frac{a - b}{4}
      \beta = z_1 + 2d - z; \beta = d + 2. \frac{a - b}{4} - c = d + \frac{a - b}{2} - c
     298 \text{ K} উন্নতায় নাইট্রোজেন অণুর r.m.s. গতিবেগ 5.15 \text{ ms}^{-1} হলে, যে উন্নতায় গতিবেগ হবে
      10.30 ms<sup>-1</sup> তা
                 . (B) 172.6K (C) 596K (D) 1192K.
      (A) 149 K
     দটি বস্তুর নিজস্ব ঘূর্ণাক্ষ বরাবর জাড়া খামকের অনুপাত 1:2। তাদের আবর্ত গতি সমান। বস্তু
20
      দুটির কৌণিক ভরবেগের অনপাত
      (A) 1:2
                         (B) 1: \sqrt{2} (C) 2:1 (D) \sqrt{2}:1.
21 দুই প্রান্তে দৃঢ়ভাবে আবন্ধ টানা দেওয়া তারের যে–কোনো প্রান্ত থেকে তার দৈর্ঘ্যের 🗼 অংশ
     দুরে আঘাত করলে উৎপন্ন সুরটি হবে
     (A) প্রথম সমমেল (B) তৃতীয় সমমেল (C) দ্বিতীয় সমমেল (D) চৃত্র্থ সমমেল।
22 0.4 m দীর্ঘ একটি ঋজু পরিবাহী 7 ms - বৈগে 0.9 Wbm - টৌম্বক ক্ষেত্রের সজে সমকোণে
     গতিশীল হলে তাতে আবিষ্ট তড়িচ্চালক বলের মান হয়
     (A) 2.52 volt (B) 5.04 volt (C) 25.2 volt
                                                             (D) 1.26 volt.
    কোন দশমিক সংখ্যা 23 হলে, দ্বিক সংখ্যাটি হবে
     (A) 11011- year (B) 10111 - -- (C) 111011 - -- (D) 1101.
     (111011), দ্বিক সংখ্যাকে দশমমিক সংখ্যায় রূপান্তরিত করলে, সংখ্যাটি হবে
                                            (C) 59
                        (B) 58 ,.
25 P-N জাংশনের যে অপ্তলে স্বাধীন ইলেকট্রন বা গহুর থাকে না, তাকে বলা হয়
     (A) নিঃশেষিত অপ্বল (B) P-অপ্বল
                                            (C) N-의생이
                                                                  (D) জাংশান।
     ট্রানজিস্টারের যে-অম্বল সবচাইতে কম ডোপ করা থাকে সেটি হল
26
     (A) নিঃসারক
                      (B) সংগ্রাহক
                                             (C) ভূমি
                                                                  (D) কোনোটাই না।
    +5 esu এবং -15 esu তড়িতাধানগ্রস্ত দৃটি ক্ষুদ্র ধাতব বস্তুকে পরম্পরের কাছে এনে ম্পর্শ
     क्तारमा ६न : পরে তাদের আগের মতো ব্যবধানে রাখা হল। দই ক্ষেত্রে কার্যরত দুই বলের
     অনুপাত হবে
     (A) 1:3 (B) 1:9 : (C) -3:1 (D) -9:1.
    একটি সমান্তরাল প্রেট বায়ু ধারকের ধারকজ্ব 10 12 F; ধারকের প্রেট দ্টিকে সরিয়ে বাবধান
     দিগুণ করা হল এবং তাদের অভান্তরস্থ জায়গা 4.0 পরাবৈদ্যতিক ধ্রবক সম্পন্ন উপাদানে ভর্তি
     করা হল। ধারকের বর্তমান ধারকত্ব
     (\Delta)4 \times 10^{-12} \text{ F} (B) 3 \times 10^{-12} \text{ F}
                                                                  (D) 0.5 \times 10^{-12} F.
                                            (C) 2 \times 10^{-12} F
    গোলায় ক্ষা বস্তু কর্তক বিকীর্ণ শক্তি দ্বিগুল হবে যদি এর
     (A) বাসের্য প্রায় এ1,5% বৃদ্ধি করা হয় (B) বাসের্য ছিল্ল করা হয়
     (C) গুপথা গ্রপ্তা বুলা বুলা করা হয় (D) A এবং ( উদ্ভি দটি স্টিক
    একনি হাইব্রেণ্ডেন সদশ প্রমাণ্ড , উমান্তরে কধন শক্তি 1224 eV প্রথাক প্রমাণ্ডির
     পারমাণবিক সংখ্যা
                                                                  (D) কোনোটাই নয়।
    (A) 3
                                             (C) 4
                        (B) 2
```

- N-type অর্পপরিবাহী পাওয়া যায় 31
 - (A) জারমেনিয়ামকে আর্সেনিক ডোপ করলে.
 - (B) জার্মেনিয়ামকে ইন্ডিয়াম ডোপ করলে.
 - (C) জারমেনিয়ামকে অ্যালমিনিয়াম ডোপ করলে,
 - (D) সিলিকনকে ইন্ডিয়াম ডোপ করলে।
- 32 নিউক্রিয় রিয়াার্ট্ররে
 - (A) ক্যাড্মিয়াম দন্ড ব্যবহার করা হয় শৃত্বাল বিক্রিয়া চাল রাখতে,
 - (B) পুরু কংক্রীট দেওয়াল ব্যবহার করা হয় নিউট্রনের গতি মন্দীভূত করতে,
 - (C) সাধারণ জল রিয়াাক্টরের সক্রিয়তা পরিবর্তন করে.
 - (D) জালানি রপে ব্যবহৃত হয় প্রাকৃতিক ইউরেনিয়াম।
- পরমাণুর নিউক্লিয়াসের চতুর্দিকে বতুকার পথে পরিভ্রমণ রত ইলেকট্রনের 33
 - (A) চৌম্বক দিমের ভ্রামক আছে,
 - (B) নিউক্রিয়াসের উপর যে বল প্রযন্ত হয় নিউক্রিয়াস ইলেক্ট্রনের উপর একই বল প্রয়োগ করে.
 - (C) নিউক্রিয়াসে চৌম্বক আবেশ সম্ভি হয়
 - (D) সব কটি ঠিক।
- M ভরের এবং R ব্যাসার্ধের একটি ফাঁপা গোলক (i) কৌণিক কম্পাঙ্ক নিয়ে ঘরছে। হঠাৎ গোলকের আবর্তন বন্ধ হলে, তার গতিশক্তির 75% তাপ শক্তিতে পরিণত হল। গোলকের উপাদানের আপেক্ষিক তাপ s JK⁻¹ হলে, গোলকের তাপমাত্রা বৃদ্ধি হবে

(A)
$$\frac{R^2 \omega^2}{4.s}$$

(B)
$$\frac{3R^2.\omega^2}{20.s}$$

(C)
$$\frac{R^2 \omega^2}{2s}$$

(A)
$$\frac{R^2 \omega^2}{4.s}$$
 (B) $\frac{3R^2 \omega^2}{20.s}$ (C) $\frac{R^2 \omega^2}{2s}$ (D) $\frac{2R^2 \omega^2}{3s}$

[Hints: K.E. = $\frac{1}{2} \times \frac{2}{3} \text{ MR}^2 \omega^2$; $\text{QPF} Q = \frac{75}{100} \times \frac{1}{3} \text{ MR}^2 \omega^2 = \frac{1}{4} \text{ MR}^2 \omega^2$

আবার,
$$Q = M.S.\Delta t$$
; $\Delta t = \frac{Q}{M.S} = \frac{MR^2\omega^2}{4MS} = \frac{R^2\omega^2}{4.S}$] ৷

- ভূপৃষ্ঠ থেকে মুদ্রিবেগ 11.2 kms⁻¹। কোনো বস্তুকে উল্লন্থের সজো 45° কোণে উৎক্রেপ করলে মন্তিবেগ হবে
 - (A) 11.2×2 kms⁻¹ (B) 11.2 kms⁻¹

- (C) $\frac{11.2}{\sqrt{2}}$ kms⁻¹ ... (D) $11.2 \times \sqrt{2}$ kms⁻¹
- একটি শব্দ উৎস ও একজন পর্যনেক্ষক পরস্পারের দিকে 40 ms । বেগে এলিয়ে আসছে। 36 উৎস কর্তক উৎপর একটি শক্তের আপাত কম্পাক্ত এ(XI) Hz. শক্তের প্রকৃত কম্পাক্ত (বায়তে শব্দের গতিবেগ = 360 ms⁻¹)
 - (A) 320 (B) 400
- (C) 360
- (D) 420.
- সনোমিটার তারের কম্পমান আংশের দৈখা 10 বৃদ্ধি করলে কম্পান্থেকর শতকরা পরিবর্তন তার
 - (A)2
- (B) 1

- (C) $\frac{100}{101}$
- (D) $\frac{99}{100}$.

38	C ₁ , C ₂ , C ₃ ধারকত্বের বি 12 F; C ₁ , C ₂ , C ₃ = 481			
	মোট ধারকত্ব হয় 6 F। ত	ारल, C _{1.} C ₂ व	ৰং C ₃ এর মান হবে	
	(A) 2, 4, 6 (B)	1,5,6	(C) 1.5, 2.5,8	(D) 2, 3, 7.
39	$0.3 \mathrm{m}$ দীর্ঘ একটি তারের অসহ ভার $4.8 \times 10^7 \mathrm{Nm}$,	
	বেগে বস্তুকে অনুভূমিক বৃ	ত্তপথে ঘোরানো য	বৈ ?	
	(A) 4 rad s^{-1} (B)	8 rad s ⁻¹	(C) 16 rad s^{-1}	(D) 32 rad s^{-1} .
40	স্থির তাপমাত্রায় একটি পা	ত্রে A এবং B দুটি	গ্যাসের মিশ্রণ রাখা অ	াছে। A গাাস দ্বি-পরমাণুর
	এবং B এক প্রমাণুক। A গতিবেগের অনুপাত হবে	এবং B গ্যান্সের ত	াণবিক ভরের অনুপাত	4; A এবং B-এর r.m.s.
	(A)1:1 (B)	$1:\sqrt{2}$	(C) √2 :1	(D) 1:2.
	[Hints: r.m.s. গতিবেগ			
41	স্থির আয়তনে 5 মোল গা			
•	শক্তির পরিবর্তন দেখা গে			
	(A) 8 joule K^{-1} (B)			
	Hints: তাপগতিবিদ্যার			
	$= \Delta U + P. \ \Delta V = \Delta U$			
	$\frac{\Delta Q}{\Delta T} = \frac{80}{20} = 4J \text{ K}^{-1}$			
42	দৃটি সমকেন্দ্রিক ফাঁপা গো তলমাত্রিক ঘনত্ব সমান। ৫	নকে Q তড়িতাধান কন্দ্ৰে বিভব হবে	ত্য এরূপভাবে বন্টন কর (গোলকদুটির ব্যাসার্ধ	া হল যে তাদের আধানের R এবং r ; R > r)
	(A) $\frac{Q(R+r^2)}{4\pi\epsilon_0(R+r)}$	ń	(B) $\frac{Q}{R+r}$ R^{λ_0} .	×
	(C)************************************	,	(D) $\frac{Q(R+1)}{4\pi \epsilon_2 (R^2+1)}$	r) $+ r^2$)
43	একটি সমান্তরাল প্রেট ধারব ধারকের প্রেট দুডির বাবধা	চকে V বিভবপ্রভো ন বাড়ানো হল। ব	দে আহিত করা হল। ত মতে প্রেট দৃটির বিভবং	ারপর ব্যটারি সংযোগ খুলে প্রভেদ
	(A) হ্রাস পাবে (B)	বন্দি পাবে	(C) একই থাকবে	(D) শূনা হবে।
44	ABCD একটি গোলাকার	ভারক ভ লীর A এ	বং C বিন্দুর ভিতর এ	कि ।
•	কেশ যুক্ত আছে (চিত্র 21)	$12 \text{ AOC} = 60^{\circ} \text{ I}$	ABC এবং ADC অং	रुगाङ्ग i ₁
	सन्दर्भ पत्न (कन्द्र विकृत	ত চৌধক ক্ষেত্ৰ য	থাকুমে B ₁ এবং B ₂ ই	লো ০
	R			A) Com
	B ₂ অনুপাত হবে,			1:
	4			
	(A)1 , (B)6	$(C)\frac{1}{5}$	(D) 5.	658 € 21

47	নিজলিখিত পদার্থগুলির মধ্যে কোনটির চৌমুক	্ডেলতা নেগেটিভ এব	१ উक्रमात्नत ?
	(A) অয়ন্টোম্বক পদার্থ	(B) পরাচৌম্বক পদার্থ	
	(C) তির শ্চৌ ম্বক পদার্থ	(D) কোনোটাই না।	
48	কোন কুঙলীর সাথে জড়িত চৌম্বক ফ্লাক্স ৫ ক্	ওলীর পাক্সংখ্যার (n)	নাথে কীভাবে সংশ্লিষ্ট ?
	$(A) \phi \propto n^2 \qquad (B) \phi \propto n^{-2}$	(C) $\phi \propto n^{-1}$	(D) $\phi \propto n$.
49	দৃটি পারস্পরিক অভিলম্ব তড়িৎক্ষেত্র E =6.6 এর ভিতর দিয়ে একগৃচ্ছ α−কণা বিচৃতে না		
	(A) $1.8 \times 10^5 \mathrm{m s^{-1}}$ (B) $5.5 \times 10^6 \mathrm{m s^{-1}}$	(C) $7.8 \times 10^6 \mathrm{ms}^{-1}$	(D) $1.1 \times 10^6 \mathrm{ms}^{-1}$.
50	একটি ধাতব পৃষ্ঠ থেকে নিম্নলিখিত অবস্থায় হয়	ইলেকট্রনের নির্গমনকে	আলোকতড়িৎ ক্রিয়া বলা
	(A) যখন ধাতব পৃষ্ঠ উচ্চ তাপমাত্রায় উত্তপ্ত,	,	
	(B) উপযুক্ত গতিবেগ সহ ইলেকট্রন ধাতব প্র	ষ্ঠ আপতিত হয়,	
	(C) উপযুক্ত তরঞ্চাদৈর্ঘ্যের আলো ধাতব পৃষ্ঠে	আপতিত হয়,	
	(D) ধাতব পৃষ্ঠ শক্তিশালী চৌম্বক ক্ষেত্রে রাখ	লে।	
	○ SET N	11 0	
0	যে মৌলের পারমাণবিক সংখ্যা 43, তার ${ m K}_{lpha}$ পারমাণবিক সংখ্যা 29, তার ${ m K}_{lpha}$ বর্ণালী রেং		গ দৈর্ঘ্য ম। যে মৌলের
	(A) $\frac{43}{29}\lambda$ (B) $\frac{42}{28}\lambda$	(C) $\frac{9}{4}\lambda$	(D) $\frac{4}{9}\lambda$.
	[Hints: $\frac{1}{\lambda_1} = (43)^2 \left(\frac{1}{1^2} - \frac{1}{5^2} \right) = (43)^2$	$\frac{2}{25} \cdot \frac{24}{25} \cdot \dots (i) = 43; n_j$	=5
	$\frac{1}{\lambda_2} = (29)^2 \left(\frac{1}{2^2} - \frac{1}{4^2} \right) = (29)^2 \cdot \frac{15}{16}$	(ii) $z = 29, n_f = 4$	Same R
	$\therefore \frac{\lambda_2}{\lambda_1} = \frac{24 \times 16}{25 \times 15} \times \left(\frac{43}{29}\right)^2 \text{ or } \lambda_2 = \frac{9}{4} \lambda_1$]	
2	v কম্পাভেকর ফোটনের ভর		
	$hv = hv^2$	io hv	m h

100 to রোধ্যত্ত একটি গালে ভানেশিফ্টারের সাথে শ্রেণি সমনায়ে R রোধ যুক্ত করলে, পালভানেনিটারেটি () V পাল্লার ভোলটিমিটার রূপে কান্ড করে। মন্ত্রের পালা ছিগুণ করতে R এর

ে। কেনারেটর (B) ভারানামো (C) মাটর (D) আবেশ কুগুলী।

(Δ)1000Ω (B)900Ω (C)1100Ω (D)800Ω.

সঙ্গে শ্রেলি সমবায়ে 1000 Ω বোধ যৃত্তি করতে হয়। R-এর মান

র্ণতিং শক্তিকে যান্ত্রিক শক্তিতে বুপান্তরিত করার যন্ত্র

3	আলোকতড়িং পরীক্ষায় ফরে ইলেক্সনের পতিশাক্ত এবং গ্রাপে,৩৩ আলোর কম্পাড়ের ভিড লেখচিত্র একটি সরল রেখা বার ন'ং (slope)				
	(A) $\frac{h}{\epsilon}$ (B) h	iC) কাই মাঞ্জেক (D) নিবার বিভব			
4	= u _{max} ; এদুয়ের ভিতর সম্পর্ক	F=V্ এবং নির্লিভ ইলেকসুনের সর্বাধিক গতিরেগ			
	(A) $V_v \ll v_{\text{max}}$ (B) $V_v \approx \frac{1}{v_{\text{max}}}$	$\left(C_{j},V_{s},\sum_{i=1}^{\infty}\frac{1}{\left(\upsilon_{max}\right)^{2}},\left(D_{j},V_{s},-\left(\upsilon_{max}\right)^{2}\right).$			
-5	no কম্পাতেকর একটি শব্দ উৎস যথন পশ্চা	e দিকে গদলশাল শ্রোতার অভিযুক্তে অগসর হয়			
	তখন (বায়ুতে শব্দের গতিবেগ = 00)	. 31			
	(A) শ্রোতা no কম্পাতেকর নাল নাতে পারে				
	(B) বায়ুতে শব্দ তরজোর ৩রজ দৈর্ঘা অবশা	U() FIFORM AN REA			
	(B) वाबुद्ध । म चत्रद्वनात्र उत्तर कृति। अरमा	$n_0 \rightarrow n_0$			
	(C) বায়ুতে শব্দ তরজোর গতিবেগ হবে v_0				
	(D) সব কটি ঠিক।				
6	উদ্দীপিত হাইড্রোজেন পরমাণুর ইলেকট্রনের উ কটি বর্ণালী রেখা পাওয়া যাবে ?	দ্দীপনার সর্বাধিক লেভেল n হলে , বামার শ্রে <mark>ণির</mark>			
	(A) $\frac{n(n-1)}{2}$ (B) $(n-2)$	(C) n^2-2 (D) $2n-1$.			
7	তাপগতিবিদ্যায় সেই প্রক্রিয়াকে সম-আয়তন	(isochronic process) বলা হয় যেখানে			
	(A) চাপের কোনো পরিবর্তন হয় না	(B) তাপের কোনো বিনিময় হয় না			
	(C) আয়তনের কোনো পরিবর্তন হয় না	(D) কোনো কার্য করা হয় না।			
8	নিম্নলিখিত যৌগগুলির মধ্যে কোনটি পরাচৌষ	ক ধর্ম বিশিষ্ট?			
9	(A) N ₂ O ₃ (B) N ₂ O ₄ । নিম্নলিখিত উত্তিগুলির মধ্যে কোনটি ঠিক ?	(C) N ₂ O (D) NO ₂ .			
	(A) সব সমস্থানিক তেজস্ক্রিয়	(B) α-রশ্মি সর্বদা ঋণাঞ্চক তড়িৎগ্রন্ত			
	(C) β-রশ্যি সর্বদা ধনাত্মক তড়িংগ্রন্ত	(D) γ-রশ্মির ভেদনক্ষমতা সর্বাপেক্ষা বেশি।			
10	ভূপৃষ্ঠের নিকটবর্তী একটি বৃতাকার কক্ষপথে ভূপৃষ্ঠে মৃদ্ভি বেগ ৩০ হলে এদের সম্পর্ক হয়ে	একটি কৃত্রিম উপগ্রহের গতিবেগ ৩ ₀ হলে এবং ব			
		(C) $v_e = \sqrt{2} \cdot v_0$ (D) $v_e = \sqrt{3} \cdot v_0$			
0	আলোর তরঙ্গা তত্ত্ব অনুযায়ী আলোর গতিবে	গ			
	(A) মাধ্যমের উপর নির্ভর করে না,				
	(C) পঘু মাধ্যমে অপেক্ষাকৃত বেশি,	(D) মাধ্যমের বেধের ওপর নির্ভরশীল।			
12		0^{-5} । দণ্ডটিকে 9×10^3 প্রাবল্যের চৌম্বক ক্ষেত্রে			
	ঝলানো আছে। ঝলন অক্ষ সাপেকে দণ্ডের	জাডান্রামক 4 × 10 ⁻³ হলে, দঙের দোলনের			

(C) 5.2 s

(D) 3.0 s.

কম্পাঙ্ক হবে (সব S.I. এককে) (A) 1.05 s (B) 2.1 s

13	একটি A.C. বর্তনীতে কোনো মৃহূর্তে প্রদন্ত ভোল		$V = V_0 \sin(\omega t - 10^{\circ})$
	এবং $i = i_0 \sin(\omega t - 55^\circ)$ । এক্ষেত্রে ভোগে		00
	(A) প্রবাহ অপেক্ষা 65° এগিয়ে (lead)		
	(C) প্রবাহ অপেক্ষা 45° এগিয়ে	(D) প্রবাহ অপেক্ষা 45°	পিছিয়ে।
	[Hints : $i = i_0 \sin(\omega x - 55^\circ)$; $V = V_0 \sin(\omega x - 55^\circ)$		
14	300 পাকের একটি চ তুষ্কোণ কুণ্ডলীর ক্ষেত্রফল 2 ক্ষেত্রে স্থাপিত আছে। চৌম্বকক্ষেত্রের অভিলম্ব আবর্তন করলে, আবিষ্ট তড়িচ্চালক বলের ^র	। এক অক্ষের চতুর্দিকে কু	
	(A) 3π volt (B) 30π volt		(D) $3000 \pi \text{volt.}$
	[Hints: আবিন্ট তড়িচ্চালক বলের শীর্ষমান	$= \mathbf{B} \omega \mathbf{A} n$	
15	একটি কুন্ডলীতে 0.1 সেকেন্ডে প্রবাহ মাত্রা 44	১ থেকে শুন্য হল। কুডল	ীতে আবিষ্ট তড়িচ্চালক
	বল 100 volt হলে কুণ্ডলীর স্বাবেশ গুণাঙক		
	(A) 4 H (B) 0.4 H	(C) 2.5 H	(D) 0.25 H.
16	দুই মুখ বন্ধ এবং আংশিক তরল পূর্ণ একটি	নলকে একটি উলম্ব ত	ক সাপেকে অনুভূমিক
	বৃত্তপথে ঘোরানো হচ্ছে। অক্ষ নলের কেন্দ্রগ		
	(A) সर्वमा क्त्र यात		
	(B) একই থাকবে		
	(C) সর্বদা বেড়ে যাবে		
	(D) নলের অর্ধেক তরলপূর্ণ হলে বেড়ে যা	ব, অন্যথায় কমে যাবে।	
17	নিম্নলিখিত যন্ত্রগুলির মধ্যে কোনটির দ্বারা দুর্গি	ট চুম্বক দণ্ডের স্রামক তু	লনা করা যায় ?
	(A) ভোল্টমিটার (B) আামমিটার	(C) মাাগনেটোমিটার	(D) ভোল্টামিটার।
18	A এবং B দুটি শব্দ উৎস 680 Hz কম্পান্তের	া সেকেন্ডে 10 চি ধরক	
	(A) 2ms^{-1} (B) 2.5 ms^{-1}	(C) 3 ms^{-1}	(D) 3.5 ms^{-1} .
19	একটি দণ্ডের উপাদানের ইয়ং গুণাঙ্ক 2 x l lm দৈর্ঘ। অতিক্রম করতে শব্দের যে সময় ব		3×10³ kgm ³ । দক্ডের
	(A) 10^{-4} s (B) 2×10^{-4} s	(C) 10 ⁻² s	(D) 2×10^{-2} s.
20	নিকেল-তামা তাপযুগ্মের এক সংযোগ 0°C এ	বং অপর সংযোগ 100°	C উশ্বাভায় আছে। যুগোর
	$a = +16.2 \mu \text{V}^{\circ}\text{C}^{-1}$ and $b = -0.02 \mu \text{V}^{\circ}\text{C}^{-1}$	C ² । যুদ্মের নিবপেক্ষ তাপ	মাগ্র
	(A) 324°C (B) 810°C	(C) 405°C	(1)) अक्षांख न'।
21	নির্মালখিত তরজাগুলির মধ্যে কার তরজাদৈ	ৰ্যা সৰ চাইতে কম ?	
	(A) অভি বেগুনি রশ্মি (B) অবলোহত রা	শ্ম (C) এপ্সর্রাশ্ম	(D) মাইক্রোওয়েভস।
22		ব মধাবিন্দু থেকে দুরস্ক	d श्ल, हेगानर्छन्छ-B
	অবস্থানে টোম্বক ক্ষেম্ব হবে,		
	(A) H tun θ (B) $\frac{2M d}{(d^2 - l^2)^2}$	(C) $\frac{M}{(d^2+l^2)^{\frac{3}{2}}}$	(1)) কেনেনিট না

23	m ভরের একটি বস্তু	r ব্যাসার্ধের বৃত্তপথে ঘুর	নছে। বস্তুর অভিকেন্দ্র ত্বর	াণ <u>ুঁ</u> । কণার ভরবেণ
	ट रव			,
	(A) $\frac{2m}{r}$	(B) $\frac{2m}{\sqrt{r}}$	(C) $\frac{4m}{r}$	(D) $\frac{4m}{\sqrt{r}}$
24	আলোকতড়িৎ পরীশ্ব	ণয় একটি ক্ষেত্রে নিবৃত্তি	বিভব হল 9 volt। ই	লক্ট্রনের $\frac{\ell'}{m}$ অনুপাও
	$1.8 \times 10^{11} \mathrm{C kg^{-1}}$	হলে, নিৰ্গত ইলেকট্ৰন	সর্বাধিক গতিবেগ হবে	
25	হাইড্রোজেন পরমাণুর		(C) 10 × 10 ⁵ ms ⁻¹ নর শক্তি E _n = – 13.6/n ² ফল্য প্রয়োজনীয় শক্তি	
	(A) 10.2 eV	(B) 13.6 eV	(C) 10.2J	(D) 13.6 J
26	ভর অপরিবর্তিত রে	খ পথিবীর সাইজ অক্স	ঘাৎ সংকুচিত হয়ে পূর্বের	সাইজের 1 হয়, তে
9	দিনের 'দৈর্ঘ্য' হবে			n
	(A) $\frac{24}{n}$ hours	(B) 24 n hours	(C) $\frac{24}{n^2}$ hours.	(D) $24 n^2$ hours
27	একটি চৌম্বক মেরু ও	पदक 2 cm मृद्रत फৌश्वक (ক্ষত্ৰ প্ৰাবল্য 0.2 orested	। ঐ মেরুর দ্বিমেরু ভ্রামব
	হবে			
_			(C) 1.8 cgs একক	(D) 0.8 cgs 의 季 季
28		কটি p-type অর্ধপরিবাহী		
	,	ধীন ইলেকট্রন ও গহুর :		
		ইলেকট্রন এবং সামান্য		
	' '	ধীন ইলেকট্রন কিন্তু বেশি	া সংখ্যক গহুর খাকে	
_	(D) ইলেকট্রন বা গ	, ,		
29		=0.98 ; β-র মান হবে (B)2.0		(D) 49.
30	(A) 0.5		বস্তার যথাক্রমে ৩ এবং	1 /
30			ৰ্ভি = V T এবং V এর	
	$(A) \frac{\delta^2}{a^2 - \delta^2}$	$(B) \frac{a^2 - \delta^2}{\delta^2}$	(C) $\frac{\delta^2 \omega^2}{a^2 - \delta^2 \omega^2}$	(D) $\frac{a^2 - \delta^2 \omega^2}{\delta^2 \omega^2}$
	_	$o^2(a^2-\delta^2)$ and $V=$		
31	200g ভরের একটি ব হবে	কল 5mh ⁻¹ বেগে গতিশী	ল হলে তার সঙ্গে সংগ্রি	ঘন্ট দ্য ব্রয় তরজাদৈর্ঘ
	(A) 10 ⁻¹⁰ m	(B) 10 ⁻²⁰ m	$(C) 10^{-30} \mathrm{m}$	(D) 10 ⁻⁴⁰ m পর্যায়ের
32	তড়িৎচুম্বকীয় এরজো আনত থাকে তা	তরজোর গাঁহে জভিমুখ	ভড়িংক্ষেত্র এবং চৌদ্বক	ক্ষেত্রের সঞ্চো যে কো
	(A) 90°, 45	(B) 45°, 45°	(C) 90° 90°	(D) 45°, 75°.
33		র মধ্যে কোনটি তিরপ্রে		(5) 10 1 10 1
	(A) ভাষা	(B) ,#*\$!		(D) আলুমিনিয়াম।

00 =	אווי ויופטין אוויאי
34	একটি আহিত ধারকের দুই প্লেটের মাঝে একটি তড়িৎগ্রস্ত কণা রাখলে তার উপর F বল ক্রিয়া করে। ধারকের একটি প্লেটকে সরিয়ে নিলে, ঐ কণার উপর বল হবে
	(A) 0 (B) $\frac{F}{2}$ (C) F (D) 2F.
35	তড়িংগ্রন্ত বন্ধ তলের ভিতর মোট অভিলম্ব আবেশ (normal induction) হবে
	(A) পৃষ্ঠতথ মোট আধানের $\frac{4\pi}{Q}$ গুণ
	(Β) বন্ধতলের অভান্তরস্থ মোট আধানের 4π গুণ (C) পৃষ্ঠস্থ মোট আধানের 2π গুণ
	(D) বন্ধ তলের অভান্তরঙ্খ মোট আধানের $rac{2\pi}{Q}$ গুণ।
36	, ,
	ধাতব পাত প্লেট দুটির ভিতর প্রবেশ করালে, ধারকত্ব (pF এককে) হবে
	(A) 3×100 (B) $\frac{3}{2} \times 100$ (C) 100 (D) $\frac{2}{3} \times 100$
37	হল। কুডলীর কেন্দ্রে প্রবাহ কর্তৃক উৎপন্ন চৌধক ক্ষেত্র ভূচৌধক ক্ষেত্রের অনুভূমিক উপাংজ্বের
	সমান হল। কুণ্ডলীর বিক্ষেপ (A) 0° (C) 45° (D) 60°
38	পন্ন তাপীয় তড়িচ্চালক বল হয়
39	(A) সর্বানিম (B) সর্বাধিক (C) শৃন্য (D) অসীম। 5F এবং 10F ধারকত্বের দৃটি ধারককে শ্রেণি সমবায়ে যুক্তি করা হল। আবার 2 F এবং 4F ধারকের অন্য দৃটি ধারককেও পৃথকভাবে শ্রেণি সমবায়ে যুক্ত করা হল। এবার এই দুই
	সমবায়কে সমাওরালে যুক্ত করলে মোট ধারকত্ব হবে
	(A) $\frac{13}{3}$ F (B) $\frac{14}{3}$ F (C) $\frac{3}{14}$ F (D) $\frac{3}{13}$ F.
40	
	(A) $L_3 = 2L_2 = 4L_1$ (B) $L_3 = \frac{5}{3} L_2 = 5L_1$
4	(C) $(L_3-L_2)=(L_2+L_1)$ (D) $(L_3-L_2)=2(L_2-L_1)$ তিনটি সমান রোধের রোধককে শেলি সমবায়ে যুও করে তভিচ্চাকক বলের উৎসেব সাজে যুও
	কবলে, এরা মেট 10 watt ক্ষমতা বায় করে বেংকে ভিনীতিক সমান্তরতেল লাগালে, (এক
	্র্ডিস্বালক বল) ভারা যে ক্ষমতা বায় করবে ভা
	(A) 10 watt (B) 90 watt (C) 30 watt (D) 45 watt.
Q	এক ফ্যারা ডে কত কুলম্বের সমান ? (১)69400 (B) 96500 (C) 9640 (D) 6950
0	्राहर् क्रिया व्यक्ति क्रिया
G	b এর সম্পর্ক হবে
	(X a = b) (B) $a = 4b$ (C) $a = 16b$ (D) $a = 8b$

45	একটি প্রবাহ একটি ট্যানজেন্ট গ্যালভানোমটারে এবং একটি তামু-ভোল্টামটারে প্রথাহত হতেই। 50 মিনিটে ভোল্টামিটারে 1.98 g তামা জমা হল এবং ট্যানজেন্ট গ্যালভ্যানোমিটারে 45° বিক্ষেপ
	পাওয়া গেল। তামার E.C.E = $0.33 \times 10^{-5} \mathrm{gC^{-1}}$ হলে, গ্যালভ্যানোমিটারের লঘুগুণক হবে
	(A) 10 A (B) 5A (C) 2A (D) 1A.
46	একটি বৈদ্যুতিক বাতি 230 volt এর উপযোগী। একে 220 V সরাবরাহ করলে, বাতি
•	(A) কম আলো দেবে এবং কম দিন টিকবে,
	(B) কম আলো দেবে এবং বেশ দিন টিকবে,
	(C) বেশি আলো দেবে এবং বেশি দিন টিকবে,
	(D) উত্তরের জন্য আরও কিছু তথ্য প্রয়োজন
47	একটি আলোক উৎস একজন স্থার পর্যবেক্ষকের দিকে শব্দের গতিবেগের $\frac{1}{10}$ ভাগ গতিবেগ
	নিয়ে অগ্রসর হচ্ছে। আপাত কম্পাঙ্ক ও প্রকৃত কম্পাঙ্কের অনুপাত হবে
	(A) $\frac{10}{9}$ (B) $\frac{11}{10}$ (C) $\left(\frac{11}{10}\right)^2$ (D) $\frac{81}{100}$ I
48	একটি আদর্শ গ্যাসের তাপমাত্রা 27°C থেকে বৃদ্ধি করে 927°C করা হল। এতে গ্যাস অণুগুলির
40	* প্রতিবিশ্ব
	(A) দ্বিগুণ হবে (B) অর্ধেক হবে (C) চারগুণ হবে (D) এক চতুর্থাংশ হবে।
49	আলোক তড়িৎ ঘটনায় নিবন্তি বিভব নির্ভর করে
	(A) জাপতিত আলোর কম্পাঙ্কের উপর (B) ধাতব পৃষ্ঠের প্রকৃতির উপর
	(C) A এবং B দুয়ের উপর (D) আপতিত আলোর তীব্রতার উপর।
50	নিম্নলিখিত উদ্ভিগুলির মধ্যে কোন্টি ঠিক নয় ?
00	(A) α-রশ্মি অপেক্ষা γ-রশ্মির ভেদনক্ষমতা বেশি,
	(B) α-রশ্মির আয়নয়ন ক্ষমতা সবচাইতে বেশি,
	(C) X-রশ্মির আয়নয়ন ক্ষমতা সব চাইতে কম,
	(D) β-রশ্মির ভেদন ক্ষমতা সর্বাধিক।
	(D) P 11 40 5 1
	© SET 1 12 ©
0	2kg ভারের একটি বস্তু 2 m ব্যাসার্ধের বৃত্তপথে 10 r.p.m বেগে আবর্তন করছে। বস্তুর উপর
	ক্রিয়ারত অভিকেন্দ্র বল
	(A) 4.38 N (B) 503 N (C) 50 N (D) 5 N.
2	একটি বস্তুকণা কোনো অক্ষ সাপেক্ষে সমকৌণিক বেগে ঘুরতে থাকলে বস্তুকণার
	(A) বেগ ও ত্বরণ ধ্রবক হবে
	(B) দুভি ও ধুরণ ধুবক কিন্ত বেগ ধুবক নয়
	((') বেগ ও ধ্বল ধ্বনক লয় কিন্তু দুভি ধ্বনক
	(D) ত্বল ও দুতি প্রবক।
2201.4	17

 2×10^{-6} কুলম্ব মানের দুটি বিপরীত আধান পরস্পর থেকে $3\,\mathrm{cm}$ দূরে থেকে একটি তড়িৎ দ্বিমেরু গঠন করেছে। এটিকে $2\times 10^3\,{
m NC}^{-1}$ তড়িৎক্ষেত্রে রাখলে এর উপর সর্বাধিক টর্ক হবে (A) 12×10^{-1} Nm (B) 12×10^{-3} Nm (C) 24×10^{-1} Nm (D) 24×10^{-3} Nm

 $(B) 2\pi$

(A) #

	(A) বস্তুটি ইলেকট্রন বর্জন করে	(B) বস্তুটি ইলেকট্রন গ্রহণ করে
	(C) বম্ভুটি প্রোটন বর্জন করে	(D) বস্তুটি নিউট্রন গ্রহণ করে।
16	$y = y_0 \sin 2\pi (ft - x\lambda)$ তির্যক তরজোর তর	জা দৈর্ঘ্য $\lambda = \frac{\pi y_0}{2}$; ঐ তরজো কোনো কণার
	সর্বোচ্চ বেগ তরঙ্গ বেগের	
	(A) 4 গুণ (B) 2 গুণ	(C) ৪ পুণ (D) 3 পুণ।
7	কোনো প্রগামী তরজাকে $y = 0.25 \cos(2\pi)$ দিক থেকে আগত অপর একটি প্রগামী তরজ্ঞে সমীকরণ হবে	 π.κ) সমীকরণ দ্বারা প্রকাশ করা যায়। বিপরীত ার বিস্তার দ্বিগুণ এবং কম্পাজা অর্ধেক হলে তার
	$(A) y = 0.5 \cos (\pi . t - \pi x)$	$(B) v = 0.5 \cos(\pi \beta + \pi x)$
	(C) $y = 0.5 \cos(\pi x + 2\pi x)$	(D) $y = 0.5 \cos(\pi t + 2 \pi x)$
18	একটি পাহাডের দিকে অগ্রসর হবার সময় গ	জাহাজ থেকে সাইরেন বাজানো হল। 6s পরে
	প্রতিধ্বনি শোনা গেল। 3 মিনিট পরে আবার ই	নাইরেন বাজালে 4s পরে প্রতিধ্বনি শোনা গেল।
	জাহাজের গতিবেগ ছিল (বায়ুতে শব্দের গতি	বেগ = 1120 fts ⁻¹)
	(A) 6.00 fts ⁻¹	(B) 5.00 fts ⁻¹
	(C) 6.26 fts ⁻¹	(D) 5.26fts^{-1} .
19	$\sqrt{\frac{\gamma.P}{\rho}}$ এই ফর্মুলার মাত্রা হবে	
	(A) চাপের মাত্রার সমান	(B) গতিবেগের মাত্রার সমান
		(D) ঘনত্বের মাত্রার সমান।
20	জলের তুলনায় ইম্পাত আয়তন বিকৃতি গুণা জলে শব্দের বেগের অনুপাত হয়	জা ও ঘনত্ব যথাক্রমে ৪০ এবং ৪ হলে ইম্পাত ও
	(A) $1:\sqrt{5}$ (B) $1:\sqrt{10}$	$(0,\sqrt{5}:1)$ $(0)\sqrt{10}:1$
	(B) 1: VI	পাথরটি জলস্পর্শ করার শব্দ। সময় পরে শোনা
21	একাচ পাতকুয়োর মধ্যে পাথর বেলা তলা । গেল। কুয়োটির গভীরতা d হবে (d² অগ্রাহ	া করো)
	$(A) d = \frac{vt^2}{2} \left(\frac{v}{s} + t \right)$	$(B) \frac{1}{vt^2} \left(\frac{v}{g} + t \right)$
	$(C) v_t ^2 \left(\frac{v}{g} + t \right)$	(D) $v^2 \left(\frac{v}{g} + t \right)$.
22	দটি সূরশলাকাকে এক সংস্থা বাজালে ৪টি : এক মুখ যোলা নলের বায়ুপ্তম্ভের সংস্থা এবং	স্থিকম্প শোনা যায়। প্রথম শলাকাটি 32cm দীর্ঘ ডি টায় শলাকাটি 33cm দীর্ঘ এক মুখ খোলা নলের
	বাসমুক্তের সক্তো অন্থান সন্ধি করে। শলাক	म भारति कम्प्राङ्क
		(C) 200, 208 (D) 210, 218.

14 দুটি রেখাছিদ্র থেকে 120cm দূরে রাখা একখানি পর্দায় 1.5 mm প্রন্থের ব্যতিচার ঝালর পাওয়া গেল। রেখাছিদ্র দুটির পারস্পরিক দূরত্ব ().45mm হলে আপতিত আলোর তরজা দৈর্ঘ্য হবে

(A) 5625×10^{-10} cm

(C) 55000×10^{-10} cm

15 কোনো পরিবাহী বস্তু ঋণাত্মক তড়িতে আহিত হয় যখন

(B) 5000×10^{-10} cm

(D) 5.0×10^{-10} cm.

হবে

	(A) 3 ms^{-1} (B) 30 ms^{-1}	(C) 0.33 ms^{-1}	(D) 660 ms ⁻¹ .
24	একটি টানা দেওয়া তার ৪০ কম্পাঙ্কের সূর উৎ দৈর্ঘ্য 1 : 2 অনুপাতে বৃদ্ধি করলে নতুন সূরে:		ান 1:9 অনুপাতে এবং
	(A) 100 (B) 110		(D) 130.
25	n সংখ্যক বাহুবিশিষ্ট একটি ঘনকের সকল বিশ	দুতে q পরিমাণ আধান	রাখলে ঘনকের কেন্দ্রে
	তড়িৎ বিভব হবে		
	(A) $\frac{4}{\sqrt{3}\pi \epsilon_0} \cdot \frac{q}{n}$ (B) $\frac{2}{\sqrt{3}\pi \epsilon_0} \cdot \frac{q}{n}$.	$(C) \frac{1}{\sqrt{3}\pi \in_0} \cdot \frac{q}{n}$	(D) $\frac{4}{\sqrt{3}\pi \in_0} \cdot \frac{q}{n}$.
26	বায়ুপূর্ণ একটি সমাস্তরাল প্লেট ধারকের ধারকত্ব তাদের ভিতর মোম ভর্তি করা হল। এতে আপেক্ষিক আবেশিক ধারকত্ব হবে		
	(A) 2. 0 (B) 3.0	(C)4.0	(D) 8.0.
27	C ধারকত্বের একটি ধারকে আধান Q. প্লেট দুটি: α। প্লেট দুটির ভিতর আকর্ষণ বল		প্রত্যেক প্লেটেরে ক্ষেত্রফল
	$(A) \frac{Q^2}{4\pi\epsilon_0 d^2}$	$(B) \frac{Q^2}{\epsilon_0.\alpha}$	
	$(C) \frac{Q^2}{2 \in_0 \alpha}$	(D) $\frac{CV^2}{2d}$ [$d = C^2$	টে দুটির ব্যবধান].
28	দৃটি ধারককে সমান্তরাল সমবায়ে 20 esu বিভব erg: কিন্তু শ্রেণি সমবায়ে একই বিভব পার্থবে ধারকত্ব		
29	(A) 30; 10 esu (B) 20 esu; 30 esu একটি ধনাত্বক তড়িৎধান পূর্বদিক যেতে যেতে ১ চৌম্বক ক্ষেত্রের অভিমুখ		
	(A) পূব দিকে (B) দক্ষিণ দিকে	(C) উধর্বমুখী	(D) নিম্নমুখী।
30	টোশ্বক ক্ষেত্র এবং তড়িৎ ক্ষেত্রের ভিতর পিরা	কথায় থাকা একটি আহি	ত কণা যদি কোনো তড়িৎ
	চুম্বকীয় বল অনুভব না করে তবে		
	(A) তড়িং ক্ষেত্র হবে শূন্য,		
	(B) চৌম্বক ক্ষেত্ৰ হবে শূন্য,		
	((') তড়িৎ ক্ষেত্র শ্না হতে পারে আবার না	ও হতে পারে,	
	(D) চৌস্বক ক্ষেত্র শূন্য হতে পারে আবার ন		
31	একটি দীর্ঘ ফাঁপা নলের ভিতর দিয়ে তড়িৎ প্র	বাহ গেলে তার দরুন ট্রে	ীমক ক্ষেত্র তৈরি হবে
	(A) কেবল নলের অভান্তরে	(B) কেবল নালের বা	है । त

23 একটি ইঞ্জিন যখন একজন স্থির পর্যবেক্ষকে অতিক্রম করে চলে যায় তখন ইঞ্জিনের হুইশেলের আপান্ত কম্পান্ডক 6·5 অনুপাতে পরিবর্তিত হয়। শব্দের বেগ 330ms । হলে ইঞ্জিনের গতিবেগ

	(C) अভाधति । वाक्ति ।	(D) অভান্তরে এবং বাইরে দ্	So inchie
32	U.Im দীর্ঘ একটি অনু ভূমিক তার দিয়ে 5A ত	फ़िर প্রবাহ যা ছে । যে চৌশ্বক	क्षा ७३ थातत
	ওপর তারের ওজনের সমান কিন্তু বিপরী ৩মৃ	য়া বল প্রয়োগ করবে তার ম	ান (আরের ভর
	$=3\times10^{-3}$ kgm ⁻¹)		
	$(A)5.0 \times 10^{-3} T$ $(B)5.89 \times 10^{-3} T$	$(C)5.1 \times 10^{-3}T$ (D) 6	5.1×10^{-3} T.
33	কোনো পরিবর্তি প্রবাহের r.m.s. মান inns এব		
			_
	(A) $i_{rms} = \frac{1}{2}i_0$ (B) $l_{rms} = \frac{1}{\sqrt{2}}l_0$	(C) $t_{rms} = \sqrt{2} t_0$ (D)	$n_n = \frac{\sqrt{2}}{i_{(1)}}.$
34	একটি আবেশ কুঙলীর পারস্পরিক আবেশাঙ্ক	5H , মুখ্য কৃঙলীতে 10 ' সে	কেঙে প্রবাহমাত্রা
	5A থেকে শূনা হলে, গৌণ ক্ওলীতে আৰ্বি	ট তড়িচালক বলের মান হয়	
	(A) $2.5 \times 10^3 \text{V}$ (B) $2.5 \times 10^4 \text{V}$	(C) $2.5 \times 10^2 \text{V}$ (D)	क्रिं।
35	100 cm² প্রস্থাকেরে একটি ক্ওনীতে 100	পাক আছে। কুওলীর তলের	সাথে লম্বভাবে
	0.1 Wbm ² চৌম্বক প্রবাহ ঘনত্নের চৌম্বক শে	কত্র প্রয়োগ করা হল। 0.1 সের	কন্ড সময় চৌম্বক
	ক্ষেত্র সরিয়ে নিলে কৃশুলীতে আবিষ্ট গ্র্ডিচাল	কে বলের মান হবে	
	(A) 2 volt (B) 3 volt .	(C) 2.5 volt (D) 1	volt.
36	অর্ধপরিবাহী ডায়োডের যে অশ্বলে গতিশীল ভ	মাধানের অপ্রিত্ব থাকে না, তা	কে বলা হয়
	(A) P- 직용ল (B) N- 직용 ল	(C) নিঃশেষিত অশ্বল (D)	কানোটাই নয়।
37	অর্ধপরিবাহী ডায়োডে সম্মুখবর্তী বায়াস (forv	vard bias) দিলে নিঃশোষিত	ন্তরের বেধ এবং
	বিভব প্রতিবশ্বকতা		
	(A) উভয়েই হ্রাস পায়,		
	(B) উভয়েই বৃদ্ধি পায়,		
	(C) বেধ বৃদ্ধি পায় কিন্তু বিভব প্রতিবশ্বকতা	হ্রাস পায়,	
	(D) বেধ হ্রাস পায় কিন্তু বিভব প্রতিবশ্বকতা ব্	ন্ধি পায়।	
38	অর্ধপরিবাহী ডায়োডে বিপরীত বায়াস (revese	e bias) দিলে তড়িৎ প্রবাহ মাত্র	হয়
		(C) খুব বেশি (D)	কোনোটাই নয়।
39	অপরিবাহী পদার্থের ওপর তড়িৎক্ষেত্র প্রয়োগ	করলে ওই পদার্থের ভিতর	
	(A) কোনো তড়িৎ প্রবাহ হয় না,		
	(B) খুব বেশি তড়িং প্রবাহ হয়,		
	(C) যে তড়িং প্রবাহ হয় তা ওহম সূত্র মেনে	ह त्न ना,	
	(D) খুব সামান্য তড়িৎ প্রবাহ হয়।	: (}	
40	একটি বিশৃষ্ধ অর্ধপরিবাহীতে গর্তের সংখ্যা n	,, এবং পরিবাহী ইলেকট্রনের।	A R ĀR
	 (D) খুব সামান্য তাড়ৎ প্রবাহ হয়। একটি বিশৃষ্ধ অর্ধপরিবাহীতে গর্তের সংখ্যা n সংখ্যা n_e। তাহলে 	, T 1.	0 0 1
	(A) $n_p > n_e$	(B) $n_p = n_e$	0 1 1
	A-1	(D) $n_p \neq n_e$.	1 0 1
	$(C) n_p < n_e$		
41	পার্শ্বে প্রদর্শিত ট্রুথটেবল নিম্নলিখিত গেটগুলির	,	ton
	(A) NOT (B) OR		NOR.
42	দুটি বাল্ব সমান্তরাল সমবায়ে আবন্ধ আছে। বা	ল্ব A বালব্ B অপেক্ষা উজ্জ	ণতর আলো দেয়।

যদি তাদের ফিলামেন্ট রোধ R_A এবং R_B হয়, তবে

	(A) z=c	(B) $z = \frac{c}{96490}$	
	(C) $z = c \times 96490$	(D) কোনো সম্পর্ক নেই	
44			
	$(A) R_A = R_v$	(B) R _A খুব ছোটো: I	২, খুব বড়ো
	(C) RA খুব বড়ো ; Rv খুব ছোটো	(D) দৃটি কাছাকাছি।	
45	আলোর একটি বিন্দু উৎসকে আলোকতভিৎ প্র	ক্রিয়ার জন্য ব্যবহার করা হয	ল। উৎসকে ধাতৰ প্লেট
	থেকে দূরে সরিয়ে নিলে নিবৃত্তি বিভব		
	(A) বৃন্ধি পাবে	(B) হ্রাস পাবে	
	(C) একই থাকরে	(D) বাড়তেও পণ্রে কমট	তেও পারে।
46	একটি ধাত্র তলকে প্রপ্র ().35 μm এব	ে 0.54 μm তরজা দৈর্ঘার	া আলো দারা উদ্যাসিত
	করা হল। ওই তলের কার্য অপেক্ষক 1.875	eV। তল থেকে যে ইলেক	টুন প্রবাহ পাওয়া যাবে
	তাদের সর্বাধিক গতিবেগের অনুপাত হবে		
	(A) 4:1 (B) 2:1	(C)3:4	(D) 4:3.
47	হাইড়োজেন পরমাণু ইলেকট্রন প্রথম বোর ব	ক্ষপথে সেকেন্ডে কতবার	আবর্তন করে ?
	1-22 h	h	2π mr
	(A) $\frac{4\pi^2 mr^2}{h}$ (B) $\frac{h}{4\pi^2 mr^2}$	$(C) \frac{\pi}{2\pi mr}$	(D) $\frac{2hh}{h}$.
48	X- রশ্মি নল থেকে নির্গত X- রশ্মির ক্ষ্দ্রতম	তরজাদৈর্ঘ্য ().247A । নঙ্গে	কার্যকর বিভব প্রভেদ
		(C) 50 kV	
•	একটি কণা বক্রপথে গতিশীল। বক্রপথের কে		
49			
	বিন্দু সাপেকে P বিন্দুর স্থান ভেক্টর 📝 হতে	তই নিৰ্দিষ্ট বিন্দু সাপেক্ষে	কণার কৌণিক ভরবেগ
	L হ বে		
		→	
	(A) $\overrightarrow{L} = \overrightarrow{r^2} \times \overrightarrow{p}$ (B) $\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$	$(C) \stackrel{L}{\Rightarrow} = \stackrel{\rightarrow}{r}$	$(D) \rightarrow = \rightarrow \rightarrow$
	CT L r p C L r p	P	(E, p L r.
50	একটি গোলচাকতির ব্যাস 0.3m এবং ভর	া ().09 kg । চাকাতিটি সম	তল ভমির ওপর দিয়ে
	6 ms ⁻¹ বেগে গড়াতে গড়াতে অগ্রসর হতে		L.
	(A) 2.5 J (B) 2.56 J		
			(- /
	© SET	13 🔘	
0	একটি বায়্স্তম্ভে স্থানু তরজা উৎপন্ন করা হ		0 ms ' এবং তরজের
	কম্পাঙ্ক 165 HZ। দুটি নিম্পন্দ বিন্দুর ভি		200
	(A) 2m (B) 1 m		(D) 4m.
2	100 HZ কম্পারেকর একটি শব্দ উৎস থের		' গতিবেগে দূরে চলে
	যাচেছ। বায়ুতে শব্দের বেগ 33ms ⁻¹ হলে		
	(A) 90 HZ (B) 100 HZ	(C) 91 HZ	(D) 110 HZ.

 $(A)R_A=R_B$ $(B)R_A>R_B$ $(C)R_A< R_B$ (D) ,কালোটাই নয়: কোনো মৌলের রাসায়নিক তুলাকে e এবং ওড়িং রাসায়নিক তুলাকে; কলে, ওাদের সম্পর্ক

3			া শানের পরন্ধ 5 cm । প্র	্ত টেশকৈল 'স-কেন্দ্ৰ
		পূর্ তর্মা চলে গেলে		.D. 16
			(C) 10 cms 1	
4			विक्री सुद्धाः , त्रश्राक्षेत्रः हें ह	
	नृष्टित वावधान 1 mm ।	ব্যাত্রের ঝালরে ভজ্জ্ব	न विन्तुर्रालय मृतद्व थात (ाँचडा।इस <i>नेदर्भेक प्र</i> माय
	দূরত্ব 2m)			
	(A)O Imm	(B) 0,25 mm	(C) 6.4 mm	(D) 1mm.
	[Hints : ঝালর প্র	$\frac{\lambda D}{d} = \frac{5 \times 10^{-3}}{10^{-3}}$	2 1	
5	একটি খোলা নল	230 HZ কম্পাড়েকর	মূলসূর উৎপল্ল করছে	বায়ুতে লাকের বেগ
	330ms ⁻¹ হলে বায়ুर	ছন্তের দৈর্ঘা হবে		\$ 100
	(A) 0.25m	(B) 0.5m	(C) 0.75m	(D) 2.0m.
6	200g ভর এবং 10er	n ব্যাসার্ধের একটি গোহ	নাকার পাতলা চাকতি তা	ার কেন্দ্রগত উল্লম্ব এক
		। তার জাডা ভ্রামক (k		
			(C) 10 ⁻² ······	(D) 2.
7	ভুপুষ্ঠ থেকে একটি রা	কটকে 19.6ms ² জুরণ	দিয়ে উর্থে ছোড়া হল।	১ পরে রকেটের ইঞ্জিন
			চ্চ উচ্চতা আরোহণ করে	
			(C) 980 m	
8	প্রত্যেকটির ব্যাস 2a	এবং ভর m এরপ চারটি	গোলককে একটি বর্গের চ	চার কোণায় রাখা আছে।
	বর্গের বাহুর দৈর্ঘ্য b।	বর্গের যে–কোনো বাহুরে	ক অক্ষ করে সংস্থার আ	বৰ্তন হলে, জাভা শ্ৰামক
	হবে			
	(A) $\frac{8}{5}ma^2 + 4mb^2$	4 t 7 t mo 4	(B) $\frac{8}{5}ma^2 + 16mb^2$	
	(C) $\frac{8}{5}ma^2 + 2mb^2$		(D) $\frac{16}{5}ma^2 + 8mb^2$	
9	একটি সমান্তরাল প্লেট	ধারকের প্লেট দুটির ম	ধ্য K আপেক্ষিক আবেশি	ক ধারকত্বের একটি বস্তু
	রাখলে ধারকের ধার	কত্ব		
	(A) K গুণ বেড়ে যা	ব	(B) K গুণ কমে যাবে	EVI.
	(C) K ² গুণ কমে যাত	₹	(20) 9	
10	একটি তাপগতিবিদ্যা	সংক্রান্ত প্রক্রিয়ায় নির্দিষ্ট	পরিমাণ গ্যাসের চাপ এ	রূপভাবে পরিবর্তিত করা
	হল যে গ্যাস 20 J ভ	গপ মুক্ত করল এবং গ্য	াসের উপর ৪্য কার্য কর	হল। গ্যাসের প্রাথমিক
		থাকলে চূড়ান্ত অভ্যন্তরী	াণ শক্তি হবে	
	(A) 2 J	(B) 18J	(C)42J	(D) 58 J.
	[Hints: $\Delta O = -20$]		$\Delta Q - \Delta W = -20 - (-8)$	
	$\therefore U_f = U_i = -12 =$			
0	একজন লোক 20 ms	-1 বেগে 20 m ব্যাসার্থে	র একটি বৃত্ত বরাবর সাই	ইকেল চালাচ্ছে। ব্যক্তি ও
	সাইকেলের মোট ভর	90 kg। সাইকেল না	পড়ে, উল্লম্বের সাথে স	াইকেল কত কোণ করে
	চলবে ? (g = 9.8 mg			
	(A) 60.25°	(B) 63.90°	(C) 26.12°	(D) 30°.
	(1700.20	(-)		

_				
12	•		ন । A প্রবাহ যায়। যখন বহু হয় 0.5 A। কুণ্ডলীর	
	(A) 100 Ω	(B) 200 Ω	(C) 300 Ω	(D) একটাও না।
13	6		উষ্ণতায় থাকলে তাপীয় উষ্ণতায় পেলটিয়ার গুণাঙ্গ	
	(A) 0.71 mV		(C) $\frac{7.1}{e}$ mV	
	[Hints : পেলটিয়ার	গুণাঙক $\pi = T \left(\frac{de}{dt} \right)_T$	এখানে T = (0 + 273) k]
14		ঠ বৃত্তের কেন্দ্রে 10 এক এক পাক ঘুরিয়ে আন	ক তড়িতাধান রাখা আছে লে কৃতকার্য	।
- 3			(C) 100 একক	
15			5 volt সরবরাহ লাইনে যু চলিক বল (back c.m.f.)	
			(C) 11.5 V	
16	একটি তড়িৎগ্রস্ত প্লেট্র বিকর্ষণ বল অনুভব	র সম্মুখে একটি নির্দিষ্ট করে। এদের মধ্যবতী	দ্রত্থে একটি স্থির মানে প্থান মোম দারা ভর্তি ক	র আধান রাখলে আধান
		বৰ্তিত হয়ে আকৰ্ষণ ক	ল কাজ করবে,	
	(B) বিকর্ষণ বল বৃদ্ধি			
	(C) বিকর্ষণ বল কমে			
		ধ পাবে অথবা হ্রাস পা		
T	একটি নমুনায় 27() দি তেজস্ক্রিয় বন্তু পড়ে থ		ধ্বিয় বস্তু আ ঙে (54()দিন গ	বরে ঐ নম্নায় যে ভরের
	(A) 5 mg	(B) 2.5 mg	(C) 1.25 mg	(D) #J•II I
18	চলকুঙলী গ্যালভাা	নামিটারের সুবেদিতা বৃদি	ধ করা য়েতে পারে	
	(A) কুঙলীর পাক স	ংখ্যা বৃদ্ধি করে	(B) পাক সংখ্যা হ্রাস	করে
	(C) কৃঙলীর ক্ষেত্রফ			
19	একটি আধানগ্রস্ত পরি	ानादीत एकत्व, विভन र	বর্বত্র সমান হাবে	
	(A) পরিবাহীর ঠিক	অভান্তরে	(B) পরিবাহীর ঠিক বা	ই রে
	(C) পরিবাহীর ভিতরে		(D) পরিবাহীর বাইরে	
20	ह्यानह क्के शाक्स्यात	মিটারের লঘু গুণক		
	(A) সর্বগ্র সমান		(B) ভাটে সক ক্ষেত্রের	সমানুপাতিক
	(C) इंफ्रेंचक क्लाइत	বাস্তানুপাত্তিক	(D) क्वात्वाकेष्ट अहा,	
21			च এकी बखु 3 rads-1	
	হত্তে এব প্রত্তর্গান্ত 🕽	27 kg ভারের একটি বস্থু	র পতিশাস্ত্র সমান হাকে	७३ वस्त भी छात्रम छात्
	1 /	(D) () 5 m;	(C) 1 5 m. 1	15.3-1

	0.75 d হবে ? চাপ ^ব	প্রপারবাতত আছে।		
	(A) 30°C	(B) 127°C	(C) 20°C	(D) 36°C.
23	`	ত্তপথে 2 kg ভরের এক ্যাসার্ধ 1 m হলে কৌণিক		s ⁻¹ কৌণিক বেগে আবৰ্ত
	(A) 28.16 rads ⁻¹	(B) 19.28 rads ⁻¹	(C) 8.12 rads ⁻¹	(D) 35.26 rads ⁻¹ .
24				রীণ শক্তির পরিবর্তন হবে
	(A) 300%	(B) 200%	(C) 100%	(D) 400%.
	[Hints : অভ্যন্তরীণ	শিক্তি $U = \frac{3}{2} KT$; য	J∝ T]	
25	হাইড্রোজেন পরমাণুর ইলেকট্রনের শক্তির ত		শক্তি এবং Be ²⁺ পরমা	ণুর প্রথম উদ্দীপিত কক্ষপণ্
	(A) 1 : 4 [Hints : Be এর 2	(B)1:8	(C)1:6	(D) 16:1.
26	দুটি বস্তুর ব্যবধান =			নুপাতী। এই ধরনের বলে তবেগ হবে
	$(A) \propto \frac{1}{R^2}$	(B) ∝ R°	(C) ∝ R ¹	$(D) \propto \frac{1}{R}$
27	ক্ষুদ্র তরলবিন্দু গোল	নাকার ধারণ করে কারণ	ì	
	(A) তরলের পৃষ্ঠটান	আছে,		
	(B) তরলবিন্দু অসং	খ্য অণুর সমন্টি, '		
	(C) निर्मिखे आंग्रज्ज	র বেলায় গোলকের শে	চত্রফল সর্বনিম্ন,	
	(D) কোনোটাই নয়।			
28	কোয়ান্টাম তত্ত্ব অনুয	য়ী ফোটনের ভরবেগ (p)	, কম্পাঙক (ʃ), তরজাট	দর্ঘ্য (ম) কীভাবে সম্পর্কযুত্ত
	$(A) p = \frac{h}{\lambda}$	(B) $p = h\lambda$	(C) $p = hf$	(D) $p = \frac{h}{f}$.
29	N-type অর্ধপরিবাই	তৈরি করতে জার্মেনিয়া	ম অথবা সিলিকনকে	ডোপ করতে হবে
		য় পস্তযোজী পরমাণু দ্বার		
	(B) P. As এর ন্যায়	ত্রিজোযী পরমাণু দ্বারা,		
	(C) P, As এর ন্যায়	পৰ্যোজী প্রমাণু দ্বার	,	
		য় ত্রিয়োজী পরমাণু দ্বারা		
30		ক্ষেত্রের উদাসীন বিন্দুতে		
	(A) উত্তর-দক্ষিণ মু			
	(B) পূৰ্ব-পশ্চিম মুখ			
	(C) উত্তর-গশ্চিম মূ			
		ক মঞ্চ কৰে স্থাদেয়।		

22 27°C উশ্বতা এবং 1 বায়ুমগুলীর চাপে একটি গ্যাসের ঘনত্ব d। কোন্ তাপমাত্রায় গ্যাসের ঘনত্ব

(A) শূনা

	একটি তারে হিথর প্রবাহ যাচ্ছে। তারটিকে বাঁ	কিয়ে এক পাকের কৃণ্ডলী করা হল। পরে একই
0	তারকে ক্ষুদ্রতর ব্যাসার্ধের দুই পাকের কুঙলী	করা হল। একই প্রবাহ যে চৌম্বক ক্ষেত্র কুণ্ডলীর
	কেন্দ্রে সৃষ্টি করবে তাতে	
	(A) দ্বিতীয় ক্ষেত্রে হবে প্রথম ক্ষেত্রের এক।	চতুর্থাংশ,
	(B) একই হবে,) ** - 1 (
	(C) দ্বিতীয় ক্ষেত্রে হবে প্রথম ক্ষেত্রের চারগু	ৰ ,
	(D) দ্বিতীয় ক্ষেত্রে হবে প্রথম ক্ষেত্রের অর্ধেক	
33		াইনসের সঙ্গো শ্রেণি সমবায়ে যুক্ত আছে। যে বাতিটি
0	সর্বাপেক্ষা উজ্জ্বলতম হয়ে জ্বলবে সেটি হল	
	,	(B) 40 W বাতি
	(C) 100 W বাতি	(D) সব কটি বাতি সমান উজ্জ্বল হয়ে জ্বলবে।
34	5 g ভরের একটি কণা X()Y তল থেকে v=	1+4 (तथा वतावत 3 🗸 em 🗎 भ्रथन शिल्प्यरा
	যাচ্ছে। মূলবিন্দু সাপেক্ষে কণার কৌণিক ভ	রনেগ হরে,
		(C) 19-11 (D) 7.5 gcms
	[Hints : মৃল বিন্দু সাপেক্ষে সরল রেখার সহ	মীকরণ ৮ - ৮ + 4 = 0 । সূলবিন্দ্ থেকে সরল রেখার
	দূরত্ব $\frac{0-0+4}{\sqrt{1^2+1^2}} = \frac{4}{\sqrt{2}}$	K. T. TY W. AM MAY
	$\sqrt{1^2+1^2}$ $\sqrt{2}$	
	sc4	
4.	কৌণিক ভরবেগ = $m.v.r. = 5 \times 3\sqrt{2} \times \sqrt{2}$	= 60 gcms '
35		2 ং ৮ৢ ব্যাসার্ধের বৃত্তপথে ঘ্রতে তাদের অভিকেশ্র
	সমান ভরের দৃটি কণা একট বেগে r_1 এবং বলের অনুপাত হবে	ং 👝 ব্যাসার্ধের বৃভ্পথে ঘ্রড়ে তাদের অভিকেন্দ্র
	সমান ভরের দৃটি কণা একট বেগে r_1 এবং বলের অনুপাত হবে	ং 👝 ব্যাসার্ধের বৃভ্পথে ঘ্রড়ে তাদের অভিকেন্দ্র
	সমান ভরের দৃটি কণা একট বেগে 👣 এব	ং 👝 ব্যাসার্ধের বৃভ্পথে ঘ্রড়ে তাদের অভিকেন্দ্র
35	সমান ভরের দৃটি কণা একট বেগে r_1 এবং বলের অনুপাত হবে $ (A) \ r_2/r_1 \qquad (B) \ \sqrt{r_1} $	ং 👝 ব্যাসার্ধের বৃভ্পথে ঘ্রড়ে তাদের অভিকেন্দ্র
	সমান ভরের দৃটি কণা একট বেগে r_1 এবং বলের অনুপাত হবে $ (A) \ r_2/r_1 \qquad (B) \ \sqrt{r_1} $ $ 60 \ \mathrm{kg} \ \ \mathrm{exact} \ \ \mathrm{and} \ \ \ \mathrm{and} \ \ \ \ \mathrm{and} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ং r_2 ব্যাসার্ধের বৃভপথে ঘ্রকে এ গদের অভিকেন্দ্র Γ_2 Γ_1/r_2 Γ_2 Γ_3/r_3
35	সমান ভরের দৃটি কণা একট বেগে r_1 এবং বলের অনুপাত হবে $ (A) \ r_2/r_1 \qquad (B) \ \sqrt{r_1} $ $ 60 \ \mathrm{kg} \ \ \mathrm{exact} \ \ \mathrm{and} \ \ \ \mathrm{and} \ \ \ \ \mathrm{and} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ে r_2 ব্যাসার্ধের বৃভপথে ঘ্রছে . গুদের অভিকেশ্র $(C) r_1/r_2$ $(D) \binom{r_2}{r_1}^2$. (D) $\binom{r_2}{r_1}$. গুলির গভিশান্ত মানে ওপর ফেলা গল সমগ্র সংস্থার বর্তমান
35	সমান ভরের দুটি কণা একট বেগে r_1 এবং বলের অনুপাত হবে $ (A) \ r_2/r_1 \qquad (B) \ \sqrt{r_1} $ $ 60 \ \mathrm{kg} \mathrm{erad} \ \mathrm{and} \ \mathrm{erad} \ \mathrm{and} \ \mathrm{erad} \ \mathrm{and} \ \mathrm{erad} \ \mathrm{and} \ \mathrm{erad} \ erad$	ে r_2 ব্যাসার্ধের বৃভপথে ঘ্রকে এ গদের অভিকেন্দ্র $(C) r_1/r_2$ $(D) \left(\frac{r_2}{r_1}\right)^2$ $(D) \left(\frac{r_2}{r_1}\right)^2$ গৃহিশীল আছে। লরির গৃহিশুন্ত 120 J 140 kg ভরের নিচে লরির উপর ফেলা হল সমগ্র সংস্থারে বর্তমান (C) 72 J (D) কংকেটাই লা।
35	সমান ভরের দৃটি কলা একট বেলে r; এবল বলের অনুপাত হবে (A) r₂/r₁ (B) √r₁ 60) kg ভরের একটি লরি অনুভূমিক রাস্তর গ একটি বড়ুকে ধীরে ধীরে উপর থেকে খাড়া বি গতিশতি (A) 60 l (B) 120 J শুন্য দেশে (free space) আলোর গতিবেং	ি r_2 ব্যাসার্ধের বৃভপথে ঘ্রকে এগদের অভিকেন্দ্র r_2 ব্যাসার্ধের বৃভপথে ঘ্রকে এগদের অভিকেন্দ্র $(C) r_1/r_2$ r_3 r_4 r_5 r_6
35	সমান ভরের দুটি কলা একট বেলে r_1 এবং বলের অনুপাত হবে (A) r_2/r_1 (B) $\sqrt{r_2}$ 60 kg ভরের একটি লরি অনুভূমিক রাস্তরে ও একটি বসুকে ধীরে ধীরে উপর একে খাড়া গিতিশন্তি (A) 60 l (B) 120 J শুন্য দেশে (free space) আলোর গতিবেং (A) প্রস্তার কম্পাত্তের উপর জিউবলী	ে r_2 ব্যাসার্ধের বৃভপথে ঘ্রকে এ গদের অভিকেন্দ্র r_2 ব্যাসার্ধের বৃভপথে ঘ্রকে এগদের অভিকেন্দ্র r_2 r_1 r_2 r_3 r_4 r_5 r_5 r_6
35	সমান ভরের দৃটি কলা একট বেলে r₁ একা বলের অনুপাত হবে (A) r₂/r₁ (B) √ r₁ 60 kg ভরের একটি লরি অন্ভূমিক রাজ্যর গ একটি বস্থকে ধীরে ধীরে উপর প্রেকে খাড়া বিভিন্তি (A) 60 l (B) 120 J শুনা দেশে (free space) আলোর গতিবেং (A) প্রস্তার কম্পাত্তের উপর বিভ্রমীর	ি r_2 ব্যাসার্ধের বৃভপথে ঘ্রছে তাদের অভিকেশ্র r_2 ব্যাসার্ধের বৃভপথে ঘ্রছে তাদের অভিকেশ্র $(C) r_1/r_2$ r_3 r_4 r_5 r_6 $r_$
35	সমান ভরের দুটি কলা একট বেলে r_1 এবং বলের অনুপাত হবে (A) r_2/r_1 (B) $\sqrt{r_1}$ (B) $\sqrt{r_1}$ 60 kg ভরের একটি লরি অনুভূমিক রাজ্যা গ একটি বসুকে ধীরে ধীরে উপর প্রকে খাড়া গিতিশন্তি (A) 60 I (B) 120 J শুন্য দেশে (free space) আলোর গতিবেশ (A) প্রস্কার কম্পান্তের উপর জিউবেশ (A) প্রস্কার কম্পান্তের উপর জিউবেশ (A) সম্পূর্ণ কম্পান্তের জ্বান্তির সম্পূর্ণ কমিন কম্পান্তের সম্পূর্ণ কমিন কম্পান্ত কমিন কমিন কমিন কমিন কমিন কমিন কমিন কমিন	ে r_2 ব্যাসার্থের বৃভপথে ঘ্রকে এ গদের অভিকেশ্র r_2 ব্যাসার্থের বৃভপথে ঘ্রকে এগদের অভিকেশ্র r_3 r_4 r_5 r_6 $r_$
35	সমান ভরের দুটি কলা একট বেলে r_1 একল বলের অনুপাত হবে (A) r_2/r_1 (B) $\sqrt{r_1}$ 60 kg ভরের একটি লরি অনুভূমিক রাজ্যা গ একটি বস্থুকে ধীরে ধীরে উপর প্রকে খাড়া বি গতিশতি (A) 60 I (B) 120 J শূল্য দেশে (free space) আলোর গতিবেগ (A) সংক্রম উপর উপর ভিত্তমান (C) সংক্রম উর্জ্য উপর ভিত্তমান (C) সংক্রম উর্জ্য উপর ভিত্তমান (C) সংক্রম উর্জ্য উপর ভিত্তমান (C) সংক্রম উর্জ্য উপর ভিত্তমান	ে দু ব্যাসার্ধের বৃভপথে ঘ্রকে এ এদের অভিকেশ্র (C) r_1/r_2 (D) $\binom{r_2}{r_1}^2$ (E) $\binom{r_2}{r_1}^2$ (E) তিশীল আছে। লারির গতিশান্ত 120 J I 40 kg ভারের নিচে লারির উপর ফেলা হল সমগ্র সংস্থার বর্তমান (C) 72 J (D) কেলোটাই লা।
35	সমান ভরের দুটি কলা একট বেলে r_1 এবং বলের অনুপাত হবে (A) r_2/r_1 (B) $\sqrt{r_1}$ (B) $\sqrt{r_1}$ 60 kg ভরের একটি লরি অনুভূমিক রাজ্যা গ একটি বসুকে ধীরে ধীরে উপর প্রকে খাড়া গিতিশন্তি (A) 60 I (B) 120 J শুন্য দেশে (free space) আলোর গতিবেশ (A) প্রস্কার কম্পান্তের উপর জিউবেশ (A) প্রস্কার কম্পান্তের উপর জিউবেশ (A) সম্পূর্ণ কম্পান্তের জ্বান্তির সম্পূর্ণ কমিন কম্পান্তের সম্পূর্ণ কমিন কম্পান্ত কমিন কমিন কমিন কমিন কমিন কমিন কমিন কমিন	ে দু ব্যাসার্ধের বৃভপথে ঘ্রকে এ এদের অভিকেশ্র (C) r_1/r_2 (D) $\binom{r_2}{r_1}^2$ (E) $\binom{r_2}{r_1}^2$ (E) তিশীল আছে। লারির গতিশান্ত 120 J I 40 kg ভারের নিচে লারির উপর ফেলা হল সমগ্র সংস্থার বর্তমান (C) 72 J (D) কেলোটাই লা।

+2C এবং +6C দুটি বিন্দু আধান পরস্পারকে 12N বলে বিকর্ষণ করে। প্রভোকটি বিন্দু আধানকে

(B) 8 N (আকর্ষণ) (C) 8 N (বিকর্ষণ) (D) একটাও না।

অতিরিক্ত –2° আধান দিলে, তাদের ভিতর বিকর্ষণ বল হবে

_		7
	[Hints: শাঁসে টৌম্বকক্ষেত্র $B = \mu_0 \mu_r I(S.I)$:	$\mu_r = 800, \mu_0 = 4\pi \times 10^{-7}, I = 1.2 \text{ A}$
39	P-N সংযোগে প্রবাহ খুব ক্ষীণ হয় যখন	
	(A) সংযোগে সম্মুখবতী বায়াস থাকে,	
	(C) ধনাত্মক বায়াস থাকে,	(D) ঋণাত্মক বায়াস থাকে।
40	তেজস্ক্রিয় সমস্থানিকের অর্ধায়ু কমানো যেতে প	ারে
	(A) ভর হ্রাস করে (B) তাপমাত্রা হ্রাস করে	
41	বিভিন্ন স্থানে বিভিন্ন ব্যাস এরূপ একটি অসম	
	(A) সর্বনিম্ন হবে যেখানে গতিবেগ সর্বাধিক	(B) সর্বাধিক হবে যেখানে গতিবেগ সর্বনিম্ন
	(C) সর্বাধিক যেখানে গতিবেগ সর্বাধিক	(D) কোনোটাই না।
42	অনুভূমিক তলে একটি বন্দকের সর্বাধিক প্রক্ষেপ	সীমা 16 km : g = 10 ms ² হলে, নল থেকে
	বেরোবার মুহূর্তে গুলির গতিবেগ হবে	
	(A) 100 ms ⁻¹ (B) 400 ms ⁻¹	(C) $200 \sqrt{2} \text{ ms}^{-1}$ (D) $160 \sqrt{10} \text{ ms}^{-1}$.
43	একটি বৈদ্যতিক পাখার ব্রেডের দৈর্ঘ্য ঘূর্ণাক্ষ থে	
60	ব্রেডের শেষ প্রান্তের কোনো বিন্দুর ত্বরণ হবে	AL OUT FOR
	(A) $120 \pi^2 \text{ms}^{-2}$ (B) $240 \pi^2 \text{ms}^{-2}$	(C) $360 \pi^2 \text{ms}^{-2}$ (D) $480 \pi^2 \text{ms}^{-2}$.
44	A . C	কটি পাথর খন্ডকে ঐ ছিদ্রে ফেলা হল। পাথর
W	খণ্ড যখন ভূকেন্দ্রে পৌছাবে তখন বস্তুর কিছু	
	(A) ভর থাকরে (B) ওজন থাকরে	(C) ধুরণ থাকরে (D) স্থিতিশক্তি থাকরে।
45	-C-2	
-	(A) কেবল তড়িৎ ক্ষেত্র সৃষ্টি করে,	
	(B) কেবল চৌম্বক ক্ষেত্র সৃষ্টি করে,	
	(C) তড়িং এবং চৌম্বক দুই ক্ষেত্র তৈরি করে,	
	(D) হয় গ্র্ভিৎক্ষেত্র না হয় চৌশ্বক ক্ষেত্র সৃষ্টি	
46		চান ইলেকট্রন নির্গত হল না। অন্য একটি রশ্মি
•	ঐ ধাতৃপ্রে আলোকতড়িৎ ক্রিয়া প্রদর্শন করলে	
	(A) নিশ্চয়ই বেতার তরজা রশ্মি,	(B) নিশ্চয়ই অবলোহিত রশ্মি,
	(C) নিশ্চই দৃশামান আলোকরশ্মি,	(D) নিশ্চয়ই X-রশ্মি।
47	তেজস্ক্রিয়তার কারণ	
		(B) প্রমাণ্র ভাঙন
	(C) মহাজাগতিক রশ্মি কর্তৃক নিউক্লিয় বিক্রিয়া	(D) নিউক্লিয়াসের সংযোজন।
48	c cc C com con the south	
	(A) বেতার তরজা (B) X- রশ্মি তরজা	(C) শব্দ তর্জা (D) গামা-রশ্মি।
49		তরজা দৈর্ঘ্য প্রকাশ করে ?
	(A) এবলোভিত তরক্ষা, বেতার তরক্ষা, X-র্যা	च, मुनाबान वार्ला ध्रेका
	(B) বেতার তবজা, অব্লেতিত তরজা, দৃশাম	ন আলোক ওরজা, X- রাশ্ম ওরজা
	(ে) বেরার রুবজা, ফশামার মালো রুবজা, আ	বেলোহিত তর্কা, X-রব্যি তর্কা
	(D) X-রাজ্ম তর্কা, দুশারার আলোক তর্কা,	অবলোহিত তরজা, বেতার তরজা।

অভিবিক্ত চাপ

(A) 10 Nm =

| Hints: $2^{2} \cdot 5^{10} \cdot 5^{10} = \frac{4T}{r}$; $T = 0.05 \text{ N-m}^{-2}$; r = 1 mm| O SET 1 14 O 🖰 কোণে আনত একটি নতভলের শার্ষবিন্দু থেকে একটি গোলককে ছেড়ে দেওয়া হল। গোলকটি না পিছলে, কেবল গড়িয়ে নামলে গোলকণী যখন নততালের পাদদেশে পৌছারে তখন তার গতিবেগ হবে (নতঙলের দৈর্ঘ্য =!) (A) $\sqrt{\frac{10}{7}} g.l.\sin\theta$ (B) $\sqrt{\frac{10}{7}} \frac{l\sin\theta}{g}$ (C) $\sqrt{\frac{10}{7}} \frac{l\sin\theta}{e^2}$ (D) $\frac{l\sin\theta}{g}$. কোনো বন্তুর জাডা-শ্রামক নির্ভর করে (A) ঘুর্ণাক্ষের অবস্থানের উপর, (B) চক্রগতির ব্যাসার্ধের উপর, (C) বন্তুর ওজনের উপর, (D) কোনোটাই নয়। ঘূর্বয়মান বন্তুর মভিকেন্দ্র বল, অপকেন্দ্র বল ও অভিকেন্দ্র প্রতিক্রিয়া বিশ্লেষণ করলে পাই (A) অভিকেন্দ্র বল ও অপকেন্দ্র বল একই বস্তুর উপর ক্রিয়া করে না, (B) অভিকেন্দ্র বল ও অপ্যাকন্দ্র বল একই বস্তুর ওপর ক্রিয়া করে, (C) অভিকেন্দ্র বল ও অপকেন্দ্র বল পরস্পরের সমান কিন্তু বিপরীতমুখী, (D) অভিকেন্দ্র বলের মান অভিকেন্দ্র প্রতিক্রিয়ার সমান। অপকেন্দ্র বলকে অলীক বলা হয় ; কারণ (A) ত্ররিত নির্দেশভন্ত্রের বাইরে এর কোনো অস্তিত্ব নেই, (B) এই বলের প্রয়োগ কর্তাকে চিহ্নিত করা যায় না, (C) এই বল দৃটি বস্তুর ব্রিয়া-প্রতিক্রিয়ার জনা উদ্ভব হয়, (D) কোনোটাই নয়। υ বেগে গতিশীল একটি ট্রাকের চালক সহসা a দুরে একটি দেওয়াল দেখতে পেল। দেওয়ালের সাথে সংঘর্ষ এড়াবার জন্য চালক (A) ব্রেক কবে গাড়ি থামাবে, া (B) ব্রেক না কমে বৃত্ত পথে ঘুরে দেওয়াল এড়িয়ে যাবে, (C) কোনো ভাবেই সংঘর্ষ এড়ানো সম্ভব না, (D) কোনোটাই না। একই কক্ষপথে রেখে একটি উপগ্রহের ভর দ্বিগুণ করলে, তার পরিভ্রমণ কাল (B) অর্ধেক হবে (A) দ্বিগুণ হবে (D) অন্য কক্ষপথে চলে যাবে। (C) একই থাকবে তিনটি স্যম গোলকের প্রত্যেকটির ভর m এবং ব্যাসার্ধ r । গোলকগুলিকে এরপভাবে বসানো হল যাতে প্রত্যেক গোলক অপর দুটি গোলক-কে স্পর্শ করে। প্রত্যেকটি গোলকের উপর অপর দটি গোলকের দর্ন অভিকর্ষীয় বল হবে (A) $\frac{\sqrt{3}}{4} \cdot \frac{G.m}{r}$ (B) $\frac{\sqrt{3}}{4} \cdot \frac{Gm^2}{r^2}$ (C) $\frac{Gm^2}{r^2}$ (D) $\frac{\sqrt{3}}{4} \cdot \frac{Gm}{2}$

50 সারান ভলের পৃষ্টান () 05 Nm 🤚 1 mm ব্যাসার্থের একটি সাবান ভলের বৃদ্বুদের অভাওরস্থ

(B) $100 \,\mathrm{Nm}^{-2}$ (C) $200 \,\mathrm{Nm}^{-2}$

(D) 300 Nm².

8	য়ে সংস্থা পরিপার্শ্বের সাথে শব্বি বা পদার্থ	त (कार्गकानम सामजसूमाः	र कर्त् भा शाक रका धर
	(A) কল্ব সংস্থা (B) মৃত্ত সংস্থা		
9	দ্বিপরমাণ্ক গাদের C, এবং C, -র মান		
	(A) $\frac{3}{2}$ R; $\frac{5}{2}$ R (B) $\frac{7}{2}$ R; $\frac{5}{2}$ R	(C) $\frac{5}{2}$ R. $\frac{7}{2}$ R	(D) $\frac{R}{2} \cdot \frac{3}{2} R$.
10	44 8 lure পির আয়তনের একটি চেণ্ডে প্রমণ	ন দাপ ও হাপখারায় হিলিব	য়াম গাসে ভর্তি করা হল ,
	ট্র গ্যান্সের উশ্বভা 15°C বৃদ্ধি করতে যে তার		
		(C) 373.95 J	
0			(= / 1000.
	(A) একই গাাসের সকল অণ্গুলি সদৃশ কিন্তু	বিভিন্ন গণেকের অগগলি	প্রক্রার থেকে বিভিন্ন
	(B) একই গ্যানের সকল অণুগুলি সদশ নয়		
	(C) গাাসের অণ্গুলি পরস্পরের প্রতি অথবা		
	প্রয়োগ করে না,		
	(D) গাাসের অণ্গুলি পরস্পরের প্রতি অংবা	দেওয়ালের প্রতি আকর্ষ	ণ বন্ধ প্রয়োগ করে
12	নির্দিষ্ট পরিমাণ গ্যাসে যে অসংখ্য অণ্ থাকে	ভাদের ভিতর নির্দিষ্ট ট	মূতায় সর্বাধিক সংখাক
	অণু যে রেগে গতিশীল থাকে সেই রেগকে	বলা ইয়	
	(A) r.m.s. গতিবেগ	(B) সর্বাপেক্ষা সম্ভাব্য	গতিবেল
	(C) গড় গতিবেগ	(D) গড় বর্গ গভিবেগ।	* *
13			
	গড় বর্গবেগের বর্গমূল মান $4 \times 10^2 \; \mathrm{ms}^{-1}$	্ফ্রাক্সের চাপ হরে	
	(A) $14.4 \times 10^4 \mathrm{Nm}^{-2}$	(B) $15.4 \times 10^4 \text{ Nm}^{-2}$	
	(C) $16.4 \times 10^4 \mathrm{Nm}^{-2}$		
14	একটি পাত্র A-তে হাইড়োজেন গ্যাস এবং দ্বিগ্		
	অক্সিজেন গ্যাস আছে। গ্যাস দুটির তাপমাত্রা স	মোন। গাাস অণু দুটির r.n	a.s. গতিবেগের অনুপাত
	र त		
	(A) 1:4 (B) 4:1	(C) 1:2	(D)2:1.
15	শব্দ তরজোর ক্ষেত্রে কোন্ ঘটনা ঘটে না ?		
	(A) প্রতিসরণ (B) স্থানুতরজা উৎপাদন		
16	দুটি সরল দোলতরজোর সমীকরণ নিম্নরূপ (i) y		(x) এবং (ii) y ₂ = 0.10
	sin (314t – 1.57 x + 1.57)। তরজা দুটির দশ		(D) (O)
17	(A) 30° (B) 90°	* /	(D) 60°.
W	কোনো জড় পদার্থের সাহায্য না নিয়ে শূন্য মা- পারে। এই উত্তি	ব্যক্তির বিজয় তার্ভুপু ব্যবং	d other pellon with
	(A) প্রায় সত্য (B) প্রায় অসত্য	(८) काञ्चल	(1) अल्ह
18	তীক্ষাগ্র পরিবাহীকে তড়িৎগ্রস্ত করলে পরিবাহী		
•	(A) তড়িং মোক্ষণ ক্রিয়া		
	(C) তড়িৎ সংগ্রাহক ক্রিয়া		
19	(C) তাড়ৎ সংখ্যাহক ক্রিরা আহিত পরিবাহীর আধান ধরে রাখতে হলে প		
	(A) তীক্ষাণ্ড প্রান্ত সমন্বিত অসম আকার		
	(C) সম্পূর্ণ গোলাকার	(D) আয়তাকার।	
	(C) -1 - J.J. CARAILANN	ואויייוטאוויי (עב)	

20

একটি তড়িতাহিত ফাঁপা পরিবাহীর অভ্যন্তরে

B) ক্ষেত্রপ্রাবলা শূনা কিন্তু বিভব অভ্যন্তরের সকল বিন্দুতে সমান, (C) বিভব শূনা কিন্তু ক্ষেত্র প্রাবল্য অভ্যন্তরের সকল বিন্দুতে সমান,

(A) ক্ষেত্র প্রাবলা ও বিভব উভয়ই শুনা,

(D) অভান্তরে সকল বিন্দুতে প্রাবল্য ও বিভব পরম্পরের সমান। দৃটি ফাঁপা পরিবাহীকে ধনাত্মক তড়িতে আহিত করা হল। ছোটটির বিভব 50 V এবং বড়োটির বিভব 100 V । ছোটো পরিবাহীকে বড়োটির অভান্তরে রেখে তার দিয়ে যুক্ত করলে কোনদিকে তডিৎ প্রবাহ হবে ? (A) বডোটি থেকে ছোটোটিতে, (B) ছোটোটি থেকে বডোটিতে, (C) কোনো প্রবাহ হবে না, (D) একবার বড়োটি থেকে ছোটোটিতে পরে ছোটোটি থেকে বড়োটিতে। কোনো তড়িংক্ষেত্রে তড়িংবিভব (V_x) কেবলমাত্র x-এর উপর নির্ভর করে এবং $V(x)=ax-b.x^3$ यथाति a এवः b धुवक। x-अएकत रा म्थाति छिए श्रावलात मान नुना रत्व छा (A) $x = \sqrt{\frac{a}{3b}}$ (B) $x = \sqrt{\frac{3b}{a}}$ (C) $x = \sqrt{\frac{a}{b}}$ (D) $x = \left(\frac{a}{b}\right)^2$. নিম্নলিখিত বৈশিষ্টাগলির মধ্যে কোনটি তড়িৎ বলরেখার বেলায় প্রয়োজ। নয় ? (A) বলরেখাগুলি প্রসারিত ম্থিতিস্থাপক সূতোর মতো দৈর্ঘ্য বরাবর সংকৃষ্ঠিত হবার চেন্টা করে (B) বলরেখাগুলি পরস্পরকে ছেদ করে, (C) বলরেখাগুলি পরিবাহীকে সমকোণে স্পর্শ করে, (D) বন্ধ পরিবাহীর অভান্তরে বলরেখা থাকে না। দটি আধানের ভিতরকার দূরত্ব বৃদ্ধি করলে তাদের তড়িৎ স্থিতিশক্তি (A) বৃষ্ধি পায় (B) ছাস পায় (C) একই থাকে (D) বাড়তেও পারে কমতেও পারে। একটি পরিবাহীর তড়িতাধান Q, বিভব-বৃদ্ধি V এবং ধারকত্ম C । গ্রহলে (A) $C = \frac{Q}{V}$ (B) $Q = \frac{C}{V}$ (C) $V = \frac{Q}{C}$ একটি গোলকের ব্যাসার্ধ 1 cm : ঐ গোলকের ধারকত্ব 1 ফ্যারাড করতে হলে ভার ব্যাসার্ধ (A) 9×10^{11} cm (B) 9×10^{10} cm (C) 9 m (D) 9×10^{2} m. পৃথিবীর 6400 km ব্যাসার্ধের একটি সম্পূর্ণ গোলক মনে করলে ওর ধারক মু মাউব্রেম্থারাড এককে হবে $(4\pi \in 0 = \frac{1}{9 \times 10^9})$ (A) 70 mF (B) 75 mF (C)71.1 mF (D) 72 mF. এনটি সাবলে জানের ব্যব্দারে তড়িতাহিত করা হল বাসতে ভাসমাল অবস্থান ব্যব্দটি আয়তলৈ প্রসাবিত হতে থাকলে তার তড়িংবিভর এবং ধারকল্পের কি পরিবর্তন হতে ৮ (A) ধারকত্ব বৃশ্বি পায় : বিভব হ্রাস পায়, (B) ধারকত্ব হ্রাস পার ; বিভব বৃশ্বি পার, (() भारत इ.स. प्रजातन एक्शना भारत हैन हम ना (D) ধারকত্ব ও বিভব উভয়ই বৃশ্বি পায়।

	যে তাদের আধানের তলমাত্রিক ঘনত্ব (σ) সমান : গোলক দুটিকে সরু তার দিয়ে যুক্ত করলে বড়ো গোলকটির আধানের তলমাত্রিক ঘনত্ব হবে			
	(A) $\frac{1}{3} \sigma$ (B) $\frac{2}{3} \sigma$ (C) $\frac{6}{5} \sigma$ (D) $\frac{5}{6} \sigma$,			
31	R রোধের তারের ভিতর দিয়ে i আাম্পিয়ার তড়িৎ প্রবাহ গেলে, উদ্ভূত তাপের হার নির্ভর করে			
	$(A) R^2$ –এর সমানুপাতে, $(B) R$ –এর সমানুপাতে,			
	(C) i^2 -এর সমানুপাতে, (D) i -এর সমানুপাতে।			
32	প্রবাহমাত্রা এবং সময় অপরিবর্তিত থাকলে, পরিবাহীতে উদ্ভূত তাপ			
	(A) দৈর্ঘ্যের সমানুপাতিক কিন্তু প্রস্থাচ্ছেদের ব্যস্তান্পাতিক,			
	(B) দৈর্ঘোর ব্যস্তানুপাতিক কিন্তু প্রস্থচ্ছেদের সমানুপাতিক,			
	(C) দৈর্ঘ্য ও প্রস্থচ্ছেদ উভয়ের সমানুপাতিক,			
	(D) দৈর্ঘ্য ও প্রস্থাচ্ছেদ উভয়ের ব্যস্তানুপাতিক।			
33	দুটি এরের উপাদান ও ভর সমান কিছু একটির দৈর্ঘ। অপর্টির দিগুণ। সমভোল্টেজে ঐ দুই তারে			
	৬ংপন্ন তাপের অনুপাত হবে			
	(A) 4:1 (B) 1:4 (C) 2:3 (D) 3:2			
34	বিভিন্ন তাপতড়িৎ ক্রিয়ার মধ্যে কোন্টিতে একটি মাএ ধাত বাবহার করা হয় ?			
	(A) সীবেক ক্রিয়া (B) পেলটিয়ার ক্রিয়া (C) টমসন ক্রিয়া (D) জুল ক্রিয়া।			
35	একটি 220V 60 W কার্বন ফিলামেন্ট বাল্বকে একটি 220V-60W ধাত নির্মিত ফিলামেন্ট			
	বাল্ববের সাথে শ্রেণি সমবায়ে যুক্ত করে সমবায়ের প্রান্তদয়কে 220V মেইনসের সাথে যুক্ত করা			
	হল। এ অবস্থায়			
	(A) প্রথমে কিছ্ সময় দুটি বাতিই সমান উজ্জ্বলতায় জ্বলবে কিন্তু পরে ধাতব ফিলামেন্ট বাল্ব			
	অধিকতর উজ্জ্বলভাবে জুলবে			
	(B) প্রথমে কিছু সময় দৃটি বাতিই সমান উজ্জ্বলতায় জ্বলবে কিছু পরে কার্বন ফিলামেন্ট বাল্ব			
	অধিকতর উজ্জ্বপভাবে জ্বলবে			
	(C) প্রথম থেকেই দৃটি বাল্ব সমান উজ্জ্ব হয়ে জ্বারে			
(ID) প্রথম থেকেই দটির বালবের একটি জ্বলবে না।				
36	একটি তপস্থ্যে শাঁতল প্রন্তের তাপনাত্র হ্লাস করলে তাপস্থাের নিরপ্রেক্ষ তাপনাত্র এবং উৎক্রম			
	তাপামাত্রার কি পরিবর্তন হবে ?			
	(A) উভয়ত হাস পারে, (B) উভয়ত বৃদ্ধি পারে,			
	(() নির্পেক্ষ প্রপল্প ঠিক থাকার উৎকুল প্রপল্প র কেনি ধরে,			
	(D) নির্পক্ষ তাপনাত্র বিশি হরে, উৎকুম তাপনাত্র চিক থাকরে।			
37	একটি উল্পেক মন্ত্রক 250 volt এ কাজ কবালে 1000 watt ক্ষমতা বাই জয়। ই সভুনা 200			
	volt अन्दर्भ के कहिला कर्ण हैं। इसके खुर मार कर्माड मासून विख्य हैं दिन बाहकर। सीद्रय			
	পরিবর্তন প্রয়োজন ?			
	(1) 36', 35 (B) 36', 154 (C) 40', 35 (D) 40', 154			

29 দুটি একই রকম ধাতব প্লেটকে Q_1 এবং $Q_2(Q_1>Q_2)$ ধনাত্মক আধান দেওয়ার পর তাদের খুব কাছাকাছি এনে, C ধারকত্বের একটি সমান্তরাল প্লেট ধারক গঠন করা হল। প্লেট দুটির

(A) $(Q_1+Q_2)/2C$ (B) $(Q_1+Q_2)/C$ (C) $(Q_1-Q_2)/2C$ (D) পূন্য . 30 দুটি অপ্তরিত ধাতব গোলুকের বাাসার্ধ r এবং 2r । এদের এমনভাবে ওড়ি তাধান দেওয়া হল

বিভপ্রভেদ

তুঁতের দ্রবণের (CuSO₄ soln.) তড়িৎ বিশ্লেষণ করলে
 (A) অ্যানোড থেকে তামা ক্যাথোডে জমা হয়,
 (B) ক্যাথোড থেকে তামা অ্যানোডে জমা হয়,

(C) উভয় প্রেটেই তামা জমা হয়,

	(D) কোনো প্লেটেই তামা জমা হয় না।		
39	নিম্নলিখিত কার্যগুলির মধ্যে কোন্টিতে	চড়িৎবিশ্লেষণ প্রক্রিয়া প্রযোজ্য নয়	?
	(A) ধাতব পদার্থের অ্যানোডাইজ করণ	(B) আকরিক থেকে ধাতু নি	क्षान्त
	(C) স্টোরেজ কোশকে আহিত করণ	(D) তড়িৎ প্রলেপন।	
40	নির্মালখিত নিয়মগুলির মধ্যে কোন্টিকে	মোটর নিয়ম বলা হয় ?	
	(A) আম্পিয়ারের সন্তরণ নিয়ম	(B) ফ্লেমিং-এর বাম হন্ত বি	নয়ম
	(C) ফ্রেমিং-এর দক্ষিণ হস্ত নিয়ম	-	
41	দুটি সমান্তরাল ঋজু তার দিয়ে প্রবাহ ও		
	(A) দুটি প্রবাহ একমুখী,	(B) দুটি প্রবাহ বিপরীত মু	गे,
	(C) पृष्टि প্রবাহ সমান্তরাল,	(D) কোনোটি নয়।	
42	একটি তড়িংগ্ৰস্ত কণা একটি সুষম চৌম্বক	ক্ষেত্রে প্রবেশ করল। নিম্নলিখিত বে	চান্ ক্ষেত্রে কণা বল
	অনুভব করবে ?		
	(A) কণার প্রাথমিক গতিপথ চৌম্বকক্ষে	ত্রের সমান্তরাল হলে,	
	(B) প্রাথমিক গতিপথ চৌম্বক ক্ষেত্রের		
	(C) প্রাথমিক গতিপথ চৌম্বক ক্ষেত্রের	সজো কোনো কোণে আনত হলে,	
	(D) কোন অবস্থাতেই বল অনুভব করবে না।		
43			
	(A) অভান্তরে চৌম্বকক্ষেত্র সৃষম কিন্তু শূন্য নয়,		
	(B) বাইরে ক্ষেত্র অসম কিন্তু শূন্য নয়	,	
	(C) অভান্তরে ক্ষেত্র সুষম নয়,		
	(D) বাইরে ক্ষেত্র সূক্ষ।		
44			
	দিয়ে কত তড়িৎপ্রবাহ পাঠালে কেন্দ্রে	ওই উপাংশের কোনো প্রভাব থাকা ,	না ? কৃঙলীর পাক
	সংখ্যা 100 এবং ব্যাসার্ধ 5 cm.	(C) 15 A	
	(A) 20 mA (B) 10 mA ্কানে' কণ্ডলীতে তড়িংপ্রবাহের পরিব		D) 15 9 mA.
45	(A) কঙলীর স্বাবেশাঙ্কের সমান,	তে,শের ধার অকক হলে, আণাডি	शक्रिक्काक्ष तथा सरस
	(B) কড়লীর সাহে জড়িত টেম্বর ফু	TALE THE	
	(C) ক্ওলীর পাক সংখ্যার সমান,	Wast woller	
	(D) কুওলীর বেধের সমান। । ১০০ ১ ১৫টি কচ্চেড চ গতিবেগ	SIGN D CONTRACTOR	et a situal patern in the
46	গ্রন্থ তড়িংচালক বল হবে	ार्थ के कि नाम एक्स्ट्राच ८ ००	, , , , , , , , , , , , , , , , , , ,
	(A) B.l.v (B) Bl/v	$(C) B^2 l^2 / v$	(D) "]ना ।
	A) B.I.U	(0)0010	1

- 47 অর্ধপরিবাহী বন্ধুর উশ্বাতা বৃন্ধি করলে, তার
 - (A) তড়িং পরিবাহিতা বৃদ্ধি পায় অথবা রোধ হ্রাস পায়,
 - (B) তড়িৎ পরিবাহিতা হ্রাস পার এথবা রোধ বৃদ্ধি পায়,
 - (C) তড়িং পরিবাহিতা অথবা রোধ একই থাকে,
 - (D) पूर्विर अकर সজ्গ वृष्धि भारा।
- জেনার ডায়োড ব্যবহৃত হয়
 - (A) পরিবর্তি প্রবাহের একমুখীকরণ কালে, (B) ভোণ্টেজ সুস্থিতকরণ কালে,
 - (C) সংকেত বিবর্ধন কাজে,
- (D) কোনোটাই নয়।
- সাধারণ নিঃসারক সংযোগ (CE mode) ব্যবস্থায় PNP ট্রানজিস্টারে
 - (A) ইনপুট বর্তনী সম্মুখবর্তী বায়াস যুক্ত কিন্তু আউটপুট বর্তনী বিপরীত বায়াস যুক্ত,
 - (B) ইনপুট বর্তনী বিপরীত বায়াস যুত্ত কিন্তু আউটপুট বর্তনী সমুখবর্তী বায়াস যুত্ত,
 - (C) উভয় বর্তনী সম্মুখবতী বায়াস যুক্ত,
 - (D) উভয় বর্তনী বিপরীত বায়াস যুত।
- 50 P-N সংযোগে বিভব প্রতিবন্ধক গঠিত হয়
 - (A) সংযোগের দ্-পাশে গ্রহিতা ও দাতা আয়ন সমাবেশের ফলে,
 - (B) সংযোগের দু-পাশে সংখ্যালঘ্ বাহকের সমাবেশের ফলে,
 - (C) সংযোগের দু-পালে সংখ্যাগুরু বাহকের সমাবেশের ফলে,
 - (D) কোনোটাই নয়।

@ SET : 15 @

- হাইন্ডোজেন পরনাধুর বোর মডেলে ইলেকট্রন নিমন্তরের লেভেল থেকে উচ্চন্তরে গেলে তার
 - (A) স্থাতশত্তি হ্রাস পার কিন্তু গতিশত্তি বৃদ্ধি পায়,
 - (B) চিথাতৰাত্তি বুদ্ধি পায় কিও গতিৰাত্তি ছাস পায়,
 - (C) স্থিতিশক্তি ও গতিশক্তি উভয়ই হাস পায়,
 - (D) স্থিতিশক্তি ও গতিশক্তি উভাই বৃদ্ধি পায়।
- 2 নিউক্লিয় সংযোজনের উদাহরণ
 - (A) ২৬রেন্ড্রান হেনে ক্রিন্ডা, এর বিন্তুন উদ্ধার,
 - (B) হাইড্রোজেন থেকে হিলিয়াম উন্তব,
 - (C) U-235 থেকে পুটোনিয়াম 235 উত্তব,
 - (D) 258(\$ (See, & 2) \$ (See, 18) ... See By 18 18...
- 🕥 পৃথিধীর চৌদ্ধক মেরুতে একটি মৃত টোধক শল তা
 - (A) উল্লখ **২**বে
- (৪) য কোনো দিকে মুখ করে থাকরে
- (০) উল্লেখ্য সংখ্যা এই জ্বাল কৰবে
- (I)) চসমান্তরাল **ধরে।**
- ে বোর মড়েকে। শার্কার প্রত্যান করিব এই তাল এই নের সংক্রমণ হলে বিকিরণের অস্পাধক হরে
 - CAME, THE CONTRACTOR
- $\frac{2\pi(E_f E_i)}{h} \quad (D_1(E_f + E_i))f.$

/4 = '	1414 (400)4 11404	the second to the local section with the second section of the party of the second				
(3)	তিরন্দৌম্বক পদার্থের চৌম্বক গ্রহিতা		0			
	(A) উন্নতা বৃন্ধিতে হ্রাস পায়, '	9 4				
	(B) উন্মতা পরিবর্তনে পরিবর্তিত হয় না,					
	(C) উম্মতা বৃদ্ধিতে প্রথমে ব্লাস পায় ; পরে	(C) উন্মতা বৃদ্ধিতে প্রথমে ব্লাস পায় ; পরে বৃদ্ধি পায়,				
	(D) উন্ধতা বৃন্ধিতে বৃন্ধি পায়।					
	জুল x সেকেন্ড কিসের একক ?		100 mm 19			
	(A) শত্তি (B) ভরবেগ	(C) কৌণিক ভরবেগ	(D) ক্ষমতা।			
63	তাপমাত্রাার 10% বৃদ্ধিতে কোন আর্দশ গা	াসের ঘনজের হ্রাস হবে ।	(চাপ অপরিবর্তিত আছে)			
	(A) 10% (B) 9.1%					
40	ভূপৃষ্ঠ থেকে মৃত্তি পাবার জন্য কৃত্রিম উপগ্র	হের প্রয়োজনীয় গতিশক্তি	এবং পৃথিবীর নিকটবতী			
	বৃত্তপথে আবর্তন করার জন্য প্রয়োজনীয় গ	তিশন্তির অনুপাত হবে				
	(A) 1 (B) 2	(C) $\frac{1}{2}$	্ (D) অসীম i			
453	5 × 10 ³ kg m² জাভ্য প্ৰামক যুক্ত একটি চ					
•	থাখানো হল। চক্রের কৌণিক মন্দন					
	(A) $\pi \text{ rad s}^2$ (B) $2\pi \text{ rad s}^2$	(C) 4π rad s ²	(D) $8\pi \text{ rad s}^{-2}$.			
(6)		র্ক প্রয়োগ করায় তার বে	টাণিক ভরবেগ 4 সেকেন্ডে			
	J ₀ থেকে 4J ₀ হল। টর্কের মান					
	(A) $\frac{3}{4} J_0$ (B) $4 J_0$	(C) J ₀	(D) 12 J ₀ .			
63	জলের সান্দ্রতাঙ্ক = 0.01 পইজ। 0.05 cm					
#3°	জল ধারারেখ প্রবাহে প্রবাহিত হতে পারত					
	(A) 2 cm s^{-1} (B) 20 cm s^{-1}	(C) 200 cm s ⁻¹	(D) $2000 \mathrm{cm}\mathrm{s}^{-1}$.			
	1).k					
	Hints: $v = \frac{\eta \cdot k}{\rho \cdot r}$; $k = \frac{1}{2} $	= 1000]				
\$12	একটি নঞ্চত্র 100 km ১ ¹ বেরে পৃথিবী থে	কে দূরে সরে যাঞ্চে আরে	নার গতিবেশ 3 × 10 ⁸ ms ¹			
	থলে, ভপলার প্রভাবের দর্ল 5700 A ও					
		(C) 3 80 A				
13		র অংহক করতে এবং ভি	দু থেকে পদার দ্রন্ধ দিগ্ণ			
	করলে, ঝালর প্রস্থ					
	(A) অপরিবর্তিত থাকবে	(B) অর্বেক হবে				
	(C) দ্বিগুণ হবে	(D) চারগুণ হবে।	· · · · · · · · · · · · · · · · · · ·			
60	্রক্রি স্থান ওবজোর স্মীকরণ । । = 0.					
0	भिर्वाल । यद यद पूर्व शिरमक विकास ह					
		(C) 40 cm	(D) 30 cm			
1	 (A) 20cm (B) 10cm 교회 및 전 조수를 4명한 3점 및 30성을 					
(III)	क्त्रल क्तून गाउंभध घटन					
	(A) 246	1500000	(i)) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	(W) 200					

16	একটি ক্ষুদ্র হৈল বিন্দ্র বায় মধ্যে $4 \times 10^{-4}~{ m ms}^{-1}$ প্রান্তিক বেগ নিয়ে নিচে পড়ছে। তীয়ুর					
	সাদ্রভাপ্ত $1.8 \times 10^{-5} \mathrm{Ns} \mathrm{m}^{-2}$; ভেলের ঘনত্ব = $900 \mathrm{kg} \mathrm{m}^{-3} \mathrm{ad}^2 \mathrm{g} = 10 \mathrm{ms}^{-2} \mathrm{e}$ লে, তৈল					
	বিন্দুর ব্যাসার্ধ হবে (বায়্র ঘনত্ব গ্রাহ্যের মধ্যে নয়)					
-	$(A) 0.95 \times 10^{-6} \text{ m}$ $(B) 1.9 \times 10^{-6} \text{ m}$ $(C) 19 \times 10^{-6} \text{ m}$ $(D) 95 \times 10^{-6} \text{ m}$.					
17	M ভরের একটি বস্তু 🛪 কৌণিক বেগ নিয়ে একটি অক্ষের চতুর্দিকে ঘুরছে। ওই অক্ষ সাপেক্ষে					
	বস্তুর চক্রগতির ব্যাসার্থ K। বস্তুর কৌণিক ভরবেগ					
adfit die	(A) $MK^2\omega^{1/2}$ (B) $MK\omega^2$ (C) $MK\omega$ (D) $MK^2\omega$.					
18						
	জাভ্য প্রামক সমান। তাদের ব্যাসার্ধের অনুপাত					
	(A) 5:3 (B) $\sqrt{3}:\sqrt{5}$ (C) $\sqrt{5}:\sqrt{3}$ (D) 1:1.					
19	$2 \mathrm{m}$ দীর্ঘ ও $20,000 $ পাক্যুন্ত একটি বায়ুপূর্ণ সলিনয়েডের প্রস্থাচ্ছেদ $10 \mathrm{cm}^2$ । সলিনয়েডের					
	মধ্যস্থালে আলগাভাবে 10,000 পাকের গৌণকুণ্ডলী জড়ানো আছে। সলিনয়েডের পারস্পরিক					
	আবেশগুণাঙক M এর মান হবে					
	(A) 10.7 mH (B) 11.5 mH (C) 12 mH (D) 12.5 mH.					
-	[Hints: $M = (\mu_0 n_1 n_2 \alpha)/l$]					
20	একটি তেজ্ঞাঞ্জয় মৌলের বিঘটনে 2 টি α-কণা এবং 3 টি β-কণা নির্গত হয়। নতুন মৌলের A					
	এবং Z-এর মান (A)(A+5),(Z-1) (B)(A-5),(Z+1) (C)(A-8),(Z-1) (D)(A-8),(Z+1).					
21	$_{2}$ He 4 + $_{7}$ N 14 \rightarrow X + $_{1}$ H 1 유통화 বিক্রিয়া নিউক্লিয়া স X হবে					
20	(A) $_{8}N^{16}$ (B) $_{8}N^{17}$ (C) $_{8}O^{16}$ (D) $_{8}O^{17}$					
22	নিউব্লিম রিমান্টরে ক্যাডানিয়ম দণ্ড ব্যবহার করা হয়					
	(A) নিউট্রনের গতি বৃদ্ধির জন্য (B) নিউট্রনের গতি হ্রাস করার জন্য					
	(C) কিছু নিউটুন শোষণের জনা (D) নিউক্লিয় শক্তি নির্গত করার জনা।					
23	'পর্মাণ্র যে-,কালো দৃটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যাই এক হতে পারে নাইএই					
	উত্তিকে বলা হয়					
	(A) বৰ্জন নাতি					
	(C) इंडम में डि (D) मान्ध्र अस्तालत में डि।					
24	একটি সাধারণ বেদাতিক হিনারের কণ্ডলীর দৈর্ঘ্য আর্শ্নক করলে, নির্দিষ্ট পরিমাণ জল ফুটাতে					
	(A) বেশি সময় লাগবে (B) কম সময় লাগবে 🦾					
	((') একং সময় লাগবে (D) তারের রোধান্ডেকর ওপর সময় নিভর করে।					
25	বৃষ্ঠির হ'ল ৬পঞ্জে পৌত্রণ আলেই ফিবে প্রনিত্তক রেল পেয়ে যায় : কারণ					
	(১) ফ্রাণ ন এতই হালকা য়ে অভিকয়ত ত্বণ তাদের বেগকে প্রভাবিত করে না					
	(B) কোসগ্রির উপর বায়্র বাধার্জনিত বল ফোঁটাগ্রির বেগ বাড়ার সজো বৃদ্ধি প ্রি বং					
	থবেশেরে তা মতাক্রীয় বলকে সামো রাখে,					
	((') বৃষ্ণির ক্রেটাগ্রালর সৃষ্টি হয় মহাশ্রে (যেখারে মহাক্ষীয় বল খুব নগণা,					
-	(D) বাহার বার্ণজনত বল স্থির মানের এবং মহাক্ষীয়ে বলকে তেলি (balance) করে।					
26	শুর্থসূত্র প্রস্তুর প্রার্থনের ভিয়নীয়া 10 ¹² Wm ² । এক স্থানে শক্তের প্রারল 10 ⁹ Wm ² ।					
	ভেসিবেলে প্রকাশ করলে দাঁড়াবে (A) 10 ⁹ (B) 30 (C) 60 (D) log _e (10 ⁹).					
	[Hints: L = $10 \log_{10} \frac{I}{I_0} dB$]					
	1.7					

	1 Å ভরজাদৈর্ঘোর X-রশ্মি কোনো কেলাসে	র তল ,থাকে প্রতিফলিত হাল, প্রথম	পর্যায়ে			
•	glancing কোণ ও হবে ্কলাসের দুই আণ	বিক তলের ব্যবহাল = 2 মা				
	(A) $\sin \theta = \frac{1}{6}$ (B) $\sin \theta = \frac{1}{4}$		3 .			
	[Hints: $2d \sin \theta = n\lambda$; $d = 2$; $n = 1$; $\lambda =$					
20	কোন চৌত্বক পদার্থ হিস্টারিসিস ঘটনা প্রদর্শন					
•	(A) ভিরন্তেগিত্বক	(B) পরাটোম্বক				
	(C) অয়ন্টোধক	(D)(A) এবং (C) দুই- ই।				
20	वक स्माद (थरक आंश्रान कराएं) यश्ररक					
•	(A) সৌহ পাত্রের অভান্তরে রাখতে হবে,					
	ড়িৎ প্রবাধ পাঠাতে হবে,					
	(C) সৃদ্ধ তামার জাল দিয়ে ঘিরে রাখতে হবে					
	(D) অ্যালুমিনিয়াম পাত্রের অভ্যন্তরে রাখতে ই					
1	2.0 μF ধারকত্বের একটি ধারককে 200 volt বিভবে আহিত করার পর তার প্রেট দৃটি					
	দিয়ে যক্ত করা হল। যে তাপ উৎপন্ন হবে ত	र्ग				
	$(A)4 \times 10^4 J$ $(B)4 \times 10^{10} J$	(C) $4 \times 10^{-2} \text{ J}$ (D) 2×10^{-2}	J.			
a'	একটি আদর্শ অ্যামমিটারের রোধ					
	(A) শূন্য (B) অল্প	(C) খুব বেশি (D) অসীম।				
33	সমস্থানিক পরমাণুগুলির					
	(A) প্রোটন সংখ্যা সমান কিন্তু নিউট্রন সংখ্যা ভিন্ন,					
(B) প্রোটন সংখ্যা ভিন্ন কিন্তু নিউট্রন সংখ্যা সমান,						
	(C) প্রোটন ও নিউট্রন সংখ্যা সমান,					
	(D) কোনোটাই না।					
3.	কোনও স্থানের বিনতি কোণ হল					
	(A) ভূটোম্বক প্রাবল্যের অভিমূখ ও চৌম্বক মধ্যরেখার ভিতরকার কোণ,					
(B) ভূচৌম্বক প্রাবল্যের অভিমুখ ও অনুভূমিক রেখার ভিতরকার কোণ,						
	(C) ভূচৌম্বক প্রাবল্যের অভিমুখ ও ভৌগোর্					
	(D) ভূটোম্বক প্রাবল্যের অভিমুখ ও উল্লম্বরে		4.			
🚳 দুহাত ছড়িয়ে এক ব্যক্তি একটি ঘূর্ণায়মান টেবিলের কেন্দ্রে দাঁড়িয়ে আছে। ব্যক্তি ত						
	নিলে তার জাডা ভ্রামক k গুণ কমে যায়।					
	(A) পরিবর্তন করে না	(B) k গুণ বেড়ে যায়				
	(C) k গুণ करम यात्र	(D) k ² গুণ কমে যায়।				
3k	উত্তম পরিবাহীর ক্ষেত্রে পরিবাহী পটি ও ভ		gap)			
	(A) অসীম (B) প্রশন্ত					
38	একটি নিরেট গোলক এবং একটি ফাঁপা গে	ালকের ব্যাস সমান। তাদের সমান বিভা	বে আহি			
	করা হলে					
	(A) ফাঁপা গোলকে বেশি আধান থাকবে,					
	(B) উভয়ের সমান আধান থাকবে,					
	তে ক্ষেত্ৰ কাঁপা গোলকে আধান থাকৰে					

(D) নিরেট গোলকে বেশি আধান থাকবে।

(D) 327°C.

(C) 54°C

(A) 600°C

(B) 237°C

37	একটি বৈদ্যতিক বা ততে 60 W 230 V লেখা	আছে। এক কিলে ওয়াট	ক্ষমতার মূল্য Rs 1.25
	৪ ঘণ্টা বাতিকে জ্বালালে খরচ হবে		
	(A) Rs 1.20 (B) Rs 4		(D) Rs 0.60.
38	লঘ সালফিউরিক আচিত মিশ্রিত জলের ভি দৃটিতে যে গাসে জমা হয় তা	তর দিয়ে ১ ড়ংপ্রবাহ পাস	ালে, প্রাচনাম ভাড়দুর
		andersel a sustant sufac	EE-17
	(A) কাথোড়ে 1 আয়তন হাইড্রোকেন এবং		
	(B) কাপ্থাড়ে 2 আয়তন হাইড্রোজেন এবং এ		
	(C) কাা্থাড়ে । আয়তন হাইড্রাজেন এবং ।		
	(D) কাথোড়ে 1 আয়তন প্রক্রিন এবং আ		
39	কোনো ধাত্র আলোকতড়িং প্রারম্ভ তরজা টৈ ধাত্র উপর পড়লে	र्ष्या 3000 A । 2000 A ।	হরজাদৈর্ঘ্যের আলো ঐ
	(A) ইলেকটুন নির্গত হবে	(B) পজিট্রন নির্গত হবে	
	(C) প্রোটন নির্গত হবে	(D) ইলেকট্রন নির্গত হা	ব না।
40	একটি সমম চৌদ্বক ক্ষেত্রে একটি চূম্বক শলা		
	W কার্য করতে হয়। ঐ অকথায় চৃষ্ণক শলা	াকাকে ধরে রাখতে যে টা	ক্র প্রয়োজন তা
	(A) $\sqrt{3}$ W (B) $\frac{\sqrt{3}}{2}$ W	(C)W	W W
	$(A) \sqrt{3} W \qquad (B) \frac{1}{2} W$	(C) W	(1) 2.
41	কোন্ অবস্থানে g এর মান সবচাইতে কম		
	(A) পৃথিবীর কেন্দ্রে	(B) ভূপৃষ্ঠ থেকে 2 km	উর্ধ্বে
	(C) 3 km গভীর খনির নীচে	(D) ভূগুছে।	
42	একটি তার কুণ্ডলীর পাক সংখ্যা 600 এবং স্বা	বেশাঙক 108 mH । 500 °	াক সংখ্যার <mark>আর এক</mark> টি
	অনুরূপ কুওলীর স্বাবেশাব্দ হবে		
	(A) 74 mH (B) 75 mH	(C) 76 mH	(D) 77 mH.
43	কুরি তাপমাত্রায়		
	(A) অয়শ্চৌম্বক পদার্থ তিরশ্চৌম্বক পদার্থে গ	পরিণত হয়,	
	(B) অয়ন্টোম্বক পদার্থ অচৌম্বক পদার্থে পরি	াণত হয়,	
	(C) অয়ন্টোম্বক পদার্থ পরাচৌম্বক পদার্থে প	রিণত হয়,	
	(D) পরাচৌম্বক পদার্থ অয়ন্ <u>নেটাম্বক পদার্থে</u> প	রিণত হয়।	
44	220 V, 50 Hz A.C. উৎসকে $\frac{7}{22}$ H স্বাবেশ প	ও 20 Ωে রোধের সজো শ্রে	ৃণি সমবায়ে আক্ শ করা
	হল। বর্তনীর প্রবাহমাত্রা		
	(A) 11 A (B) 3.5 A		
	(A)11A (B)3.3A	(C) \square 5 A	(D) दशक्ताणर गा।
	[Hints: $i = \frac{E}{\sqrt{R^2 + (2\pi f L)^2}} = 2.15 \text{ A}$]		2 6
	$\sqrt{R^2 + (2\pi f L)^2}$		
45	27°C উশ্বতায় একটি অয়শ্চৌম্বক পদার্থের		
	0.5 1/270 9		

Hints: & ×	1 T	; T = ^{श्र} हास	ট্যাতা
------------	--------	--------------------------	--------

Q আধানকে q এবং (Q-q) আধানে ভাগ করতে হবে যাতে দৃই অংশ একটি নির্দিষ্ট দবত্তে থেকে পরস্পারের উপর সর্বাধিক বিকর্ষণ বল প্রয়োগ করতে পারে। এ অবস্থায় Q এবং q এব ভিতর সম্পর্ক হবে—

(A) Q = 3q (B) Q = 1.5q (C) Q = 2q (D) Q = 4q.

m ভারের এবং Q তড়ি তাধান যুক্ত একটি কলা দ্বিরাক্তথা থেকে V বিভব-প্রভেদ অতিক্রম করল কশার চুড়ান্ত ভরবেগ হবে

(A) $\frac{mV}{Q}$ (B) $2Q\sqrt{mV}$ (C) $\sqrt{2mQV}$ (D) $\sqrt{\frac{2QV}{m}}$.

(D) 180°

(A) 60° (B) 90° (C) 120°C থারকত্ব সন্থশ্থে নিম্নলিখিত সম্পর্কগুলির মধ্যে কোনটি ঠিক ?

(A) ধারকত্ব = আধান × বিভব-প্রভেদ

(B) আধান = ধারকত্ব x বিভব-প্রভেদ

(C) বিভব-প্রভেদ = আধান × ধারকত্ব

(D) বিভব-প্রভেদ = ধারকত্ব x পরা বৈদ্যুতিক ধ্রুবক।

মোজলে সূত্রানুযায়ী বৈশিষ্ট্যমূলক X-রশ্মির কম্পাঙ্ক v বিভিন্ন মৌলের পারমাণবিক সংখ্যার (Z) সাথে নিম্নলিখিতভাবে সম্পর্কয়ন্ত।

(A) $v^2(Z-b) = k$ (B) $\sqrt{v} = k(Z-b)$ (C) (Z-b) = k.v (D) $v = \sqrt{\frac{k-b}{2}}$

O SET | 16 O

- পৃথিবী এবং পৃথিবীর চতুর্দিক আবর্তনকারী একট উপশ্রহের ভিতর মহাকর্ষীয় আকর্ষণ আক্স্মাৎ
 লুপ্ত হলে, উপশ্রহটি
 - (A) একই বেগে একই কক্ষপথে ঘুরতে থাকবে,
 - (B) একই বেগে কক্ষপথের স্পর্শক বরাবর ছুটে যাবে,
 - (C) কক্ষপথে স্থির হয়ে দাঁড়াবে,
 - (D) পৃথিবীর দিকে ছুটে আসবে i

সমতলে 150 m ব্যাসার্ধের একটি বৃত্তপথে না পিছলে একটি গাড়ি কত সর্বনিম বেগে ঘুরতে পারবে ? ঘর্ষণ গুণাঙ্গক = 0.6

(A) 60 ms^{-1} (B) 30 ms^{-1} (C) 25.5 ms^{-1} (D) 5 ms^{-1} .

া পুরু একটি লোহার প্লেট থেকে R ব্যাসার্ধের একটি গোলাকার চার্কান্ত X কেটে নেওয়া হল।

4R ব্যাসার্ধের আর একটি গোলাকার চার্কিন্ত থেকে কাটা হল $\frac{1}{4}$ পূর্ লোহার প্লেট। তাদের জাড্য-ভ্রামক I_x এবং I_y এর সম্পর্ক হবে,

(A) $I_Y = 32I_x$ (B) $I_Y = 16I_x$ (C) $I_r = I_x$ (D) $I_r = 64I_x$.

(Q	একাট ওপগ্রহ একটি প্রতির খ্রানিকটবিট কক্ষিপ্তি আবৈটন করতে আহের পাও ঘনার চাত্রবার উপগ্রহের আবর্তনের পর্যায়কাল T:Gমহাকর্ষীয় ধ্রবক হলে, The গ্রাফল স্ফানি হরে,
	(A) $\frac{1}{G}$ (B) $\frac{3\pi}{G}$ (C) $\frac{4\pi^2}{G}$ (D) $4\pi^2 \cdot G$.
	[Hints: $\frac{GMm}{R^2} = mR\omega^2$: $M = \frac{4}{3}\pi R^3 \cdot \rho \cdot \Phi^2 \approx \omega = \frac{2\pi}{T}$]
(1)	সদেশ্বে প্রবাহার গান্তের কিছ্ তাপ সরবরাহ করলে
	(A) কিছু বাহ্য কার্য সম্পন্ন হবে, (B) তাপমাত্রার বৃন্ধি হবে,
	(B) অগনাভার স্থাপ ধ্যে, (C) কিছু বাহা কার্য সম্পন্ন হরে এবং ভাস্মাঞার পরিবর্তন হরে,
	(D) গ্যাসের অভ্যন্তরীণ শক্তি বৃন্ধি পাবে।
	The first should be a first to the first to
6	কত উচ্চতা থেকে একট বরফখন্ড ক্রোর মধ্যে পড়লে তার 100 জংল গলে যাবে ? ক্রোর
	জলের উম্মতা ()°C ; বরফ গলনের লীনতাপ = 80 cal g 1; J = 4.2 Jcal 1.
	(A) 34.28 m (B) 342.86 m (C) 3.428 m (D) 3428 m.
Zer	একটি প্রক্রিয়ার 100 cal তাপ একটি সংস্থায় সরবরাহ করা হল এবং পরিপার্শ্বের উপর 20 J কার্য
	করা হল। সংস্থার অভান্তরীণ শক্তি (A) 400 J বৃদ্ধি পারে (B) 120 J বৃদ্ধি পারে (C) 120 cal বৃদ্ধি পারে (D) 400 J করে যারে।
0	
8	যখন দুটি সুসজ্ঞাত (coherent) তরজা ব্যাতিচার করে তখন ্ত্র ক্র ক্র ক্র ক্র ক্র ক্র ক্র ক্র ক্র ক
	(A) কিছু শাস্ত লাভ হয়, ্ৰাজ কৰাভ হয়,
	(C) শক্তির পুনর্বন্টন হয় যা সময়ের সাথে পরিবর্তন করে,
	(D) শক্তির পুনর্বন্টন হয় যা সময়ের সাথে পরিবর্তন করে না।
9	56 টি সরশলাকা ক্রমবর্ধমান কম্পাঙ্ক অনুযায়ী সাজানো হল। প্রতােকটি তার আলােকার
	সুরশলাকার সাথে সেকেন্ডে 4টি স্বরকম্প তৈরি করে। শেষ শলাকা প্রথম শলাকার এক অফ্টক
	উর্ব্বে। প্রথম শলাকার কম্পাঙ্ক বেলিকের বাবের বাবের বিভাগের বিদ্যালয় ব
	(A) 220 Hz (B) 224 Hz (C) $\frac{220}{7}$ Hz (D) 110 Hz.
10	একটি অনুনাদী বায়ুস্তন্তের সম্মৃথে 500 Hz কম্পাঙ্কের সুরশলাকা রেখে প্রথম ও দ্বিতীয় অনুনাদী
Sie.	দৈর্ঘ্য হল 17 cm এবং 52 cm। বায়ুতে শব্দের বেগ
	(A) $170 \mathrm{ms}^{-1}$ (B) $350 \mathrm{ms}^{-1}$ (C) $520 \mathrm{ms}^{-1}$ (D) $850 \mathrm{ms}^{-1}$ (E)
12	পৃথিবীর একটি উপশ্রহের পর্যায়কাল 5 ঘণ্টা। পৃথিবী এবং উপশ্রহের, ভিতরকার দূরত্ব পূর্বের
	দূরত্বের 4 গুণ করলে, নতুন পর্যায়কাল হবে
	(A) 10 ঘটা (B) ৪০ ঘটা (C) 40 ঘটা ,(D) 20 ঘটা।
13	সুষম বৃত্তীয় গতি সম্পন্ন করছে এরপ একটি কণার কৌণিক ভরবেগ L; কণার কৌণিক
	কম্পাঙক দ্বিগুণ এবং গতিশস্তি অর্ধেক করলে, নতুন কৌণিক ভরবেগ হবে
	(A) $\frac{L}{2}$ (B) 2L (C) 4L $\frac{1}{2}$ (D) $\frac{L}{2}$

নির্ভর করে

| Hints : L = I.w. ; গতিশতি $k = \frac{1}{2} l\omega^2$; $\therefore L = \frac{2k}{\omega}$

solution, $\frac{L_1}{L_2} = \frac{k_1 \omega_2}{k_2 \omega_1} 2 \times 2 = 4 \therefore L_2 = \frac{L_1}{4}$

অভান্তরে তড়িতাধানের পরিমাণ

	(A) বৃত্তপথের ব্যাসার্ধের উপর (B) কেবলমাত্র বস্তুর ভরের উপর
	(C) বন্ধুর দ্বুতির উপর (D) সব কটির উপর।
6	ট্রানজিস্টার প্রয়োগের সাধারণ ক্ষেত্রে
	(A) সংগ্রাহক-ভূমি সংযোগে সম্মুখবতী বায়াস দেওয়া হয়,
	(B) নিঃসাৰক ভূমি সংযোগে বিপরীত বায়াস দেওয়া হয়,
	(C) কোনোটাই ঠিক নয়,
	(D) দুটিই ঠিক।
16	10 cm ব্যাসার্ধের একটি পরিবাহী গোলককে 10 মাইক্রোকুলম্ব আধান দেওয়া হল। এর সাথে
	20 cm ব্যাসার্ধের আর একটি অনাহিত গোলককে স্পর্শ করিয়ে দুটিকে পৃথক করে রাখা হল।
	গোলক দুটির আধানের তলমাত্রিক ঘনত্ত্বের অনুপাত হবে
_	(A)2:1 (B)1:1 (C)4:1 (D)3:1.
17	$C_1 = 2\mu F$ এবং $C_2 = 3\mu F$ ধারকত্বের দুটি ধারককে শ্রেণি সমবায়ে আবন্ধ করে 10 V বিভব-
	প্রভেদ দেওয়া হল। C ₁ ধারকের প্লেট দুটির ভিতর বিভব প্রভেদ হবে
	(A)2V (B)3V (C)6V (D)4V.
18	7 cm এবং 10 cm ব্যাসার্ধের দুটি এককেন্দ্রিক বৃত্তাকার লুপ উল্লম্ব তলে রাখা আছে। এদের
	ভিতর এর্প তড়িংপ্রবাহ যাচেছ যে কেন্দ্রে নীট চৌম্বক ক্ষেত্র শূনা। বাইরের ল্পে তড়িংপ্রবাহ
	7 A দক্ষিণাবর্তী হলে, ভিতরের লুপে তড়িৎপ্রবাহ হবে
	(A) I A দক্ষিণাবতী (B) 4.9 A বামাবতী (C) I() A দক্ষিণার্বতী (D) 49 A বামাবতী।
19	$0-20\mathrm{mA}$ পাল্লার একটি অ্যামমিটারের রোধ 20Ω । একে $0-10\mathrm{V}$ পাল্লার ভোল্টমিটারে পরিণত
	করতে এর সাথে যে রোধ শ্রেণি সমবায়ে লাগাতে হবে তা
	(A) 480Ω (B) 580Ω (C) 280Ω (D) 380Ω .
56	গতিশীল তরল প্রবাহের
	(A) চাপের জন্য চাপ শব্তি থাকে,
	(B) গতির জন্য কেবলমাত্র গতি শক্তি থাকে,
	(C) অবস্থানের জন্য কেবলমাত্র স্থিতিশন্তি থাকে,
	(D) সব রকম শ ত্তি থাকে।
0	দৃটি টানা দেওয়া তার A এবং B এর বাাস, টান এবং ঘনত্ব A-র চাইতে B-এর দিগুণ। B এবং
	A-র কম্পাড়েকর অনুপাত
	(A) 1:2 (B) 2:1 (C) 4:1 (D) 1:4.

একটি কর্ম পর্চে φ₁ তড়িৎফ্রাক্স প্রবেশ করলে এবং φ₂ ফ্রাক্স বেরিয়ে গেলে, বন্ধ প্রের

(A) $(\phi_2 - \phi_1) \in_0$ (B) $(\phi_1 + \phi_2) / \in_0$ (C) $(\phi_2 - \phi_1) / \in_0$ (D) $(\phi_1 + \phi_2) \in_0$. কোনো বস্তুকে বস্তুকার পথে সুষম গতিতে পরিভ্রমণ করাতে যে অভিকেন্দ্র বল প্রয়োজন তা

	(A) $\frac{\varepsilon}{r}$	(B) $\frac{\kappa \cdot \varepsilon}{r}$	(C) $\frac{r^2}{r^2}$	$(D) \frac{1}{r^3}$.
24	বায়ুপূর্ণ একটি সমান্তর পোর্সিলেন দিয়ে ভর্তি	াল পাত ধারকের ধারক করলে ধারকত্ব হয় 60	জ্ব 5µF। ধারকের প্লেট µF। পরাবিদ্যুতের আগে	দ্টির ভিতরকার জায়গ শক্ষিক ভেদ্যতা
	(A) $\frac{1}{6}$	(B)6	$(C) 9 \times 10^9$	(D) কোনোটাই না।
25	কোনো কুঙলীতে আৰ্	বৈষ্ট তড়িচ্চালক বল নিং	র্ভর করে না	
	(A) বর্তনীর রোধের উ	টপর	(B) কুঙলীর পাক সং	খ্যার উপর
	(C) চৌম্বক ফ্লাক্সের প	রিবর্তনের উপর	(D) সময়ের উপর।	
26	একটি বিমানের ডানার	দের্ঘ্য 35 m। বিমানটি	সোজা উত্তর মুখী 90।	ns ⁻¹ বেগে উড়ে যাচ্ছে
		ল ডানার দুই প্রান্ত বিন্দুর		
	(A) 1.26 V	(B) 0.103 V	(C) 0.126 V	(D) 12.6 V.
27		–চৌম্বক ক্ষেত্রের অনুভূ		যথাক্রমে 4.5 × 10 ⁻⁵ 7
	এবং 6 x 10 ⁻⁵ T। ঐ	স্থানের চৌম্বক ক্ষেত্রে	র মোট প্রাবল্য	5
	$(A) 9 \times 10^{-5} T$	(B) $10.5 \times 10^{-5} \mathrm{T}$	(C) 1.5×10^{-5} T	(D) 7.5×10^{-5} T.
28	10 μF ধারকত্বের ধার	ককে বাাটারির সাহায্যে	100 volt বিভবে আহিত	করা হল। ধারকে সাঞ্ জ
	শক্তি			m> 0.0 X
	(A) 0.05 J	(B)0	(C) 0.1 J	(D) 0.2 J.
29	হাইড্রোজেন প্রমাণুর	ইলেকট্রন $n=2$ কম	চপথ থেকে n = 1 ক	ক্ষমধ্যে মংক্রশ্বন ক্ষতে
	ইলেক্ট্রনের গতিশাস্ত	ও স্থিতিশক্তির নিম্নলিখি	ত সারবতন হবে	তিগতিকাতি মারগণ
	(A) গতিশক্তি দ্বিগুণ ;	ন্থিতিশক্তিও দ্বিগুণ,	(B) গাতশাস্ত চারগুণ ব	ি তিন্তি ক্রিক্তি চারগুণ।
	(C) গতিশক্তি চারগুণ	; স্থিতিশক্তি দ্বিগুণ,	(D) গাওনাত্ত থিগুণ ;	্যবাভশাও দায়পুণ। ভিন্ন আফারিকাকে কর
30	ভারতে গৃহস্থ বাড়িতে	বিদ্যুৎ সরবরাহ করা হ	য় 220 V বিভব-প্রভেগ	বোধ চ কলে এ বাল
		ভেদে। ভারতে বাবহৃত	অকাণ 00 M বার্নের	CHIA K KCall of Mail
	আমেরিকাতে ব্যবহার			
	$(A) \frac{R}{A}$	(B) $\frac{\mathbf{R}}{2}$	(C) R 5 ((D) 2 R.
•		জন ! N : পৃথিবী 6400		
31	ভূপতে ৫০০ km ফুস্ত	छ निता शास खे वखुत ।	ওজন হবে,	
	(A) $\frac{3}{32}$ N	$(B)\left(\frac{3}{35}\right)^2 N$	$(C)\left(\frac{32}{35}\right) N$	(D) 1 N.
32	একটি ভারের প্রস্থান্তে	ছদ 0.5 mm² এবং রোধ	15 T 2.5 × 10 7 Ω -m	। 12 V তড়িচ্চালক ব
	কাজ করার উপযোগী	72 W হিটার তৈরি ক	রতে ঐ ত্যরের দৈর্ঘ্য হ	त् व
		(B) 40 cm	(C)4m	(D) 40 m.

22 ডপলার নীতির দরুন কম্পানেকর পরিবর্তন নির্ভর করে না

(A) শব্দ উৎসের গতির উপর (B) শ্রোভার গতির উপর

23 r ব্যবধানে থাকা দৃটি ইলেকট্রনের (তড়িতাধান = e) স্থির তডিং বিভব

(C) উৎস কর্তৃক নির্গত কম্পান্দের উপর (D) শ্রোভা এবং উৎসের ভিতর দূরত্বের উপর।

বল হবে

BilSOV

(A)1201

		$\frac{\Pi_{p}}{dt}$; M = 0 09 H, dl _p :	=(20-0)=20 A	,
9		'' চহ তিনটি সমান রোধক ' বায় হয় বেধক তিনী যিত ক্ষমতা হবে		
35	(A) 9 W একটি ক্ডলীতে ().() 8 V তড়িচ্চালক বল (A) 0.2 H দুটি একই রকম ফটো	(B) 10 W 15 সেকেন্ডে প্রবাহমারা + আবিফ হয় : কৃজনীর : (B) 0.4 H 11 - ক্যাথোড়ে v ₁ এবং v ₂ m) গতিবেগ v ₁ এবং v	2 A থেকে -2 A-এ ? থারেশ গুণাঞ্চ (C)0.8 H : লাজে কম্পাঞ্চের আলো আ	'রিবর্তিত হলে কৃণ্ডলী', '(D)0.1 H.
	(A) $v_1^2 - v_2^2 = \frac{2}{n}$	$\frac{h}{n}(v_1 - v_2)$	(B) $v_1 + v_2 = \left[\frac{2h}{m}\right]$	$(v_1 + v_2)^{1/2}$
37		$\frac{h}{l}(v_1 + v_2)$ পাতলা গোল খোলকে (s	F '''	
	একটি আধান Q রাখ (A) $\frac{2Q}{4\pi \in_0 R}$	া হল। খোলকের কেন্দু।	থেকে $\frac{R}{2}$ দূরত্বের এক f $(B) \frac{2Q}{4\pi \in_0 R} - \frac{2}{4\pi \in_0 R}$	
38	$(C) \frac{1}{4\pi \in_0 \mathbb{R}} (2\mathbb{Q})$ হাইড্রোজেন পরমাণ্র	+q) া বামার শ্রেণির বর্ণালীতে	 (D) (q + Q) 2/4π ∈ 0 R ΦΕ ΣΑ ΣΑΣΙΡΕΊΙ (ΔΙΕ 	বার্গ ধ্বক সংখ্যা 🎗 এ
	পরিপ্রেক্ষিতে হবে $(A) \frac{1}{R}$		$(C) \frac{3}{2R}$	(D) $\frac{9}{4R}$.
39 40	দশমিক সংখ্যা 53 ছি (A) 11 11 11 একটি দীর্ঘ সলিনায়ে	**	(C) 10 11 01 (C) 10 11 01	(D)110101. ্ প্রলিনয়েডের দৈর্ঘ্য দ্বিপু
	(A)B	(B)2B	(C) $\frac{\mathbf{B}}{2}$	$(D) \frac{B}{4}$.
41	সন্ভ রণ্য়র কাঁচের (১) ইলাদ	ভিত্র দিয়ো দেখালো ল (B) লালা	(C) সব্ভ	(D) ক্লো :

র্ফার কণ্ডলার পরেম্পরিক, আর্মণান্দ $0.09\,\mathrm{henry}$ প্রাহ্মারে কণ্ডলাতে 6×10^{-3} , সর্বেশ্রে ও ওঁড়াই পরত মারে 0.02কে $20.\mathrm{A}$ এ পরিবর্গিউত হলে, সেকেন্ডারি ক্ওলাতে আবিটি গড় ওডিসালক

(C)200 V

(D)300V

(12)	हर्मी कृष्ण (वाक्षाकात र्राट्टावर महिनाडीन मतुर ८,४८१कर मर्गाधक इस	
	(A) গোলকের বাইরে (B) গোলকের পৃষ্ঠে	
	(C) একন্ত্র প্রভারে (D) ভিতরত প্রভারের কেন্দ্রে।	
43	্রাম্বক ক্ষেত্রের অভিনামত র প্রাণিত তড়িংবাতা তারের ওপর ক্রিয়ারত বলের অভিমুখ পাওয় যায়	
	(A) ফ্রেমিং-এর বামহস্ত হিম ৬কে (B) ফ্রেমং-এর দক্ষিণ হস্ত নিয়ম থেকে	
	(C) মাাক্সওয়োলের কক জু নিয়ম থেকে (D) আর্শপ্রাারের সম্ভরণ নিয়ম থেকে।	
44	মুখন একটি উল্লেকটুন ও একটি পজিটন সংগতি করে তখন	
	(A) মোট ভর শব্তিতে রূপান্তরিত হয়	
	(B) মোট ভরের কিছু অংশ শ [্] কুতে রূপার্ডাবত হয়	
	((') ভর শক্তিতে রূপান্তরিত হয় না	
	(D) তারা পরস্পরকে বিকর্ষণ করে।	
45	তরলের ভিতর দিয়ে পতনশীল ক্ষুদ্র বস্তুর প্রান্তিক বেগ উপস্থিত হয় ; কারণ	
	(A) সান্দু বল এবং বন্তুর ওজন তরলের উর্ধুঘাত দ্বারা প্রশমিত হয়,	
	(B) বস্তুর ওজন প্রশমিত হয় তরলের উর্ধুঘাত এবং সান্দ্রবল দ্বারা,	
e	(C) $g = 0$,	
	(D) বস্তুর উর্ধ্বঘাত সান্দ্রবল ও বস্তুর ওজন অপেক্ষা রেশি।	
46	সুতোর এক প্রান্তে বাঁধা একটি পাথরখন্ডকে অনুভূমিক তলে প্থির দুতিতে ঘোরানো হচ্ছে।	
	(A) পাথরখন্ডের গতিশক্তি ক্রমাগত বৃন্ধি পাবে,	
	(B) গতিশক্তি ক্রমাগত হ্রাস পাবে,	
	(C) গতিশক্তি স্থির থাকবে,	
	(D) অভিকেন্দ্র বল পাথরখণ্ডের উপর কার্য করবে।	
47	পৃথিবীর উধের্ব কোনো কক্ষপথে পরিভ্রমণ করার জনা উপগ্রহ প্রয়োজনীয় অভিকেন্দ্র বল পা	
	(A) পৃথিবী উপগ্রহের উপর যে মহাক্ষীয় আকর্ষণ বল প্রয়োগ করে তা থেকে,	
	(B) উপশ্রহের সঞ্চো যে রকেট ইঞ্জিন থাকে তা থেকে,	
	(C) সূর্য উপগ্রহের উপর যে মহাকর্ষীয় বল প্রয়োগ করে তা থেকে,	
	(D) পৃথিবী থেকে উপগ্রহে যে রেডিও তরঙ্গা পাঠানো হয় তা থেকে।	
48	$0.05 \times 10^{-3}~{ m kg}$ ভরের একটি বার্নিবিন্দু স্থির বেগ $10~{ m ms}^{-1}$ নিয়ে পড়ছে। বারিবিন্দুর উপ	
	ক্রিয়ারত সান্দ্রবল হবে প্রায়	
	(A) 49×10^{-5} N (B) * N (C) 49×10^{-4} N (D) 98×10^{-3} N.	
49	নিম্নলিখিতগুলির মধ্যে স্বরকম্প কোন্টির ছারা গঠিত হয় ?	
	(A) অনুনাদ (B) ব্যাভিচার (C) প্রতিক্রণ (D) উপরিপাতন i	
50	নিম্নালখিত নিউরিয় বিক্রিয়াং Y-এর নির্ভুল প্রতাক কা হবে ং $_{13}$ Al 2 + $_{2}$ He 4 \rightarrow $_{15}$ P 30 + Y(A) $_{-1}$ e 0 (B) $_{1}$ H 1 (C) $_{0}$ n 1 (D) $_{+1}$ e 0 .	

© SET 17 ♥

তডিৎক্ষেত্রে একটি একক ধনাত্মক আধান যে বল অনুভব করে তাকে বলা হয়

(A) ধারকত্ব

(B) প্রাবল্য

(C) তড়িৎ বিভব

(D) কোনোটা না।

10 cm ব্যাসার্শ্বর একটি গোলাকার পরিবাহীর কেন্দ্র থেকে 5 cm দুরে তড়িৎ বিভব হবে (গোলকের তডিতাধান 25 esu)

(A) 2 esu

(B) 5 esu

(C) 2.5 esu

(D) 0.5 esu.

10 10 m তরজা দৈর্ঘ্যের X-রশ্মি, 6800 Å তরজা দৈর্ঘ্যের লাল আলো এবং 500 m তরজাদৈর্ঘ্যের রেডিওতরজোর মধ্যে কোন প্রাকৃতিক রাশি সমান ?

(A) কম্পাঙক

(B) শুন্য মাধ্যমে গতিবেগ

(C) শত্তি

(D) ভরবেগ।

হাইড্রোজেন পরমাণর ভৌমস্তরে শক্তি –13.6eV। ঐ স্তরে ঐ ইলেকট্রনের গতিশক্তি ও স্থিতিশক্তি

(A) 13.6 eV: -27.2 eV

(B) 27.2 eV :-13.6 eV

(C) 10.6 eV :-27.0 eV

(D) 27.0 eV. -10.6 eV.

- একটি তেজম্ব্রিয় মৌলের অর্ধায় 28 বছর। ওই মৌলের 15 mg পরিমাণের বিঘটনের হার (A) $7.11 \times 10^{10} \,\mathrm{s}^{-1}$ (B) $7.88 \times 10^{10} \,\mathrm{s}^{-1}$ (C) $7.58 \times 10^{10} \,\mathrm{s}^{-1}$ (D) $10^{10} \,\mathrm{s}^{-1}$.
- 6 ধরো, একটি হালকা গ্রহ খব ভারী একটি নক্ষত্রের চারিদিকে R ব্যাসার্ধের বত্তপথে ঘরছে। গ্রহের আবর্তনের পর্যায়কাল T: যদি গ্রহ এবং নক্ষত্রের ভিতর মহাকর্ষীয় আকর্ষণ বল $R^{-5/2}$ এর সক্ষো সমানপাতিক হয় তবে (A) $T^2 \propto R^3$ (B) $T^2 \propto R^{7/2}$ (C) $T^2 \propto R^{3/2}$ (D) $T^2 \propto R^{3.75}$

[Hints: m = গ্রহের ভর এবং v = গ্রহের বেগ হলে $\frac{mv^2}{R} = k \cdot \frac{1}{p^{5/2}} [k =$ ধুবক]।

$$\therefore \upsilon = \sqrt{\frac{k}{mR^{3/2}}}$$
 অথবা $T = \frac{2\pi R}{\upsilon} = 2\pi \sqrt{\frac{M}{k} \cdot R^{3/2}}$ $\therefore T^2 \propto R^{7/2}$.]

- পৃথিবীর সজো সংশ্লিষ্ট কোনো নির্দেশতঃ
 - (A) সংজ্ঞা অন্যায়ী জড়তীয় নির্দেশতর.
 - (B) জড়ত্বীয় নির্দেশতম হতে পারে না কারণ পৃথিবী সূর্যের চতর্দিক পরিভ্রমণ করছে,
 - (C) জড়বীয় নির্দেশতম কারণ এই নির্দেশতমে নিউটনের গতিসূত্রগলি প্রয়োজা হয়,
 - (D) জড় থ্রীয় নির্দেশগুর হতে পারে না কারণ পৃথিধী নিক্ত অক্ষের চঙ্গিকে ঘরছে।
- ভূসমলয় উপগ্ৰহ
 - (A) যে-কোনো অঞ্চ সাপেকে ঘ্রতে পারে না,
 - (B) মের অক্ষ সাপেক্ষে ঘরবে,
 - (C) বিষ্বতালে অবস্থিত এক সাপেকে ঘরাব,
 - (D) বিষব অবস্থানে থাকবে।
- একটি নিরেট এবং একটি ফাঁপা গোলক দৃটির ভর, আকৃতি এবং সাইজ সমান। ভাদের একই সাজা একটি নতভল ববাবর গাঁচায়ে পড়তে দেওয়া হল। ভাতাল,
 - (A) ফাঁপা গোলকটি নতভালের নীচ্চ আলে পৌছাবে,
 - (B) ित्ती वालकी नड्डालत नेपूर आव क्षेत्रात.
 - ((१६%) व्यक्ति शतकाका ने एक व्यक्तित्त,
 - (D) फ्रेंग्ल (गलकी जिल्हों (गलाकत मांबाबा खार्ग बीफ (क्रेफार्व

রিংয়ের আকারের একটি ফ্লাই হুইলের ভর 100 kg এবং ব্যাস 2 m। হুইলটি প্রতি মিনিটে বার আবর্তন করছে। তার (A) জাড়া ভ্রামক 100 kg-m², (B) বঞ্জীয় গতিশক্তি 5 kJ. (C) তার উপর 200 N-m মন্দন টর্ক প্রয়োগ করলে হইল 5 ১ সময়ে দিথর হবে. (D) তার কৌণিক ভরবেগ 10³ kgm²s⁻¹. ্ব একটি প্রসারিত (stretched) স্প্রিং-য়ের স্থিতিশক্তি সমানুপাতিক হবে (A) স্প্রিংয়ের বল ধ্রকের বর্গের সঞ্জে (B) প্রসারণের বর্গের সঞ্জো (D) প্রসারণের সংজা। (C) বলধুবকের সঞ্চো একটি প্রগামী তরজোর সমীকরণ $v=0.25\,\mathrm{cal}\,(2\pi u-\pi x)$ । বিপরীতগামী আর একটি তরজা যার বিস্তার প্রদত্ত তরজোর দ্বিগুণ এবং কম্পাঙ্ক প্রদত্ত তরজোর কম্পাঙ্কের অর্ধেক তার সমীকরণ হবে (B) $y = 0.5 \cos(\pi t + \pi x)$ $(A) y = 0.5 \cos (\pi t - \pi x)$ (D) $y = 0.5 \cos (2\pi t - 2\pi x)$ (C) $y = 0.25 \cos(\pi t + 2\pi x)$ 1 m উঁচু একটি চোঙাকৃতি নলের খোলা মুখের সম্মুখে 340 Hz কম্পাঙেকর একটি সুরশলাকা কম্পিত হচেছ। ধীরে ধীরে নলে জল ঢালা হল। শব্দের গতিবেগ 340 ms⁻¹ হলে, জলের কোন কোন লেভেলে শলাকার শব্দ জোর শোনা যাবে ? (D) 17 cm; 83 cm. (C) 15 cm : 85 cm (A) 25 cm; 75 cm (B) 20 cm; 80 cm 14 যখন কোনো তরজা ঘন মাধ্যম দ্বারা প্রতিফলিত হয় তখন তার কোন্টি পরিবর্তিত হয় ? (C) তরজা দৈর্ঘ্য (D) দশা। (B) কম্পাঙক (A) বিস্তার খুব উচ্চ তাপমাত্রা পরিমাপে কোন্ যন্ত্র ব্যবহৃত হয় ? (B) গ্যাস থার্মোমিটার (A) পারদ থার্মোমিটার (D) পাইরোমিটার। (C) প্রাটিনাম - রেজিস্ট্যান্স থার্মোমিটার সৌর পুষ্ঠের প্রতি বর্গ সেন্টিমিটার থেকে $1.5 \times 10^3 \, \mathrm{cal} \, \mathrm{s}^{-1}$ হারে শক্তি বিকিরণ হয়। স্টীফান সূত্র প্রয়োজ্য ধরে নিলে, সৌর পৃষ্ঠের গড় তাপমাত্রা হবে (স্টীফান ধ্রসংখ্যা = $5.7 \times 10^{-5}\,\mathrm{erg}$ cm⁻² K⁻⁴ s⁻¹) (D) 4050 K. (C) 5000 K (A) 5492 K (B) 5500 K 17) আদর্শ গ্যানের বেলায় আয়তন V, চাপ P এবং পরম তাপমাত্রা T-এর সম্পর্ক হল P.V = x.T. যেখানে 🛽 একটি ধ্রুব সংখ্যা। ३-এর মান নির্ভর করে (B) গ্যাস অণুর গড় গতিশান্তর উপর (A) গ্যাস অণ্র ভরের উপর (I)) V আয়তন গ্যানের অণুর সংখ্যার উপর। (C) P. V এবং T এর উপর 3(x) K তাপামাত্রায় হাইড্রোজেন অণুর গড় গতিশান্তি E : একই তাপমাত্রায় অক্সিজেন অণুর গড় গতিশক্তি হবে (C)E (B) E/4 (A) E/16একটি সমন্দরতে পাত ধারকের পাত তির বাবধান 10 cm এবং প্রভ্যেকের ক্ষেত্রফল 2 m²। প্রত্যেক পাতে 8.85×10^{-10} ে আধান থাকলে, (A) প্রেট দটির ভিতর য়ে কেলে বিক্সতে তড়িংকের বানা, (B) প্রেট দটির বাইরে তড়িং ক্ষেত্র শুনা, (C) প্রেট দটির ভিতর যে-কেলো বিশ্ব তডিংক্ষেত্রে বিশ্ব অবস্থানের ওপর নির্ভরশীল,

(D) প্রেট নটির ভিতর সর্বত্র ত্তিপ্রেছ সর্বাধ্য

_	THE THEORY
20	নিম্নলিখিত প্রক্রিয়াগুলির মধ্যে কোন্টি প্রত্যাবর্তন নয় ?
	(A) পেলটিয়ার ক্রিয়া (B) জুল ক্রিয়া (C) সীবেক ক্রিয়া (D) টমসন ক্রিয়া।
21	অক্সিজেনের পারমাণবিক সংখ্যা ৪। অক্সিজেনের যে সমস্থানিকের ভরসংখ্যা 15 তাতে আছে
	(A) 15 টি প্লোটন (B) ৪ টি ইলেকট্রন (C) 7 টি প্লোটন (D) ৪ টি নিউট্রন।
22	
	(A) এইতা (B) দাতা (C) n-type (D) p-type.
23	পুন্য মাধ্যমে একটি নিরেট গোলক আবর্তন করছে। গোলকের ভর ঠিক রেখে ব্যাসার্ফ্রিন্দি
	করলে, নির্মালখিতদের মধ্যে কোনটি পরিবর্তন করবে ?
dille	(A) জাডাম্রামক (B) কৌণিক ভরবেগ (C) কৌণিক বেগ (D) বৃত্তীয় গতিশক্তি।
24	2 10 2 10 10 10 10 1
	(A) সকল প্রক্রিয়ায় অভ্যন্তরীণ শক্তি পরিবর্তিত হয়,
	(B) এনট্রাপ একটি অবস্থার অপেক্ষক (state function),
	(C) এনট্রটি পরিবর্তন শূন্য হবে না,
a100 to	(D) সমোশ্ব প্রক্রিয়ায় কৃতকার্য সর্বদা শূনা।
25	कर्म कार्या व स्थान क्षेत्र कार्या क्षेत्र व व व व व व व व व व व व व व व व व व व
	চাকার জাড়্য প্রামকের মান
60	(A) 1 kgm^2 (B) 0.7 kgm^2 (C) 1.7 kgm^2 (D) 2 kgm^2 .
26	भारतात का प्राप्त का जिल्ला का
27	(A) 41.4% (B) 100% (C) 50% (D) 60%.
-	একটি সমান্তরাল পাত বায়ু ধারকের ধারকত্ব 50 µP। কোন তরলে নির্মান্ত্রত অবস্থায় ব্যক্তির হ 105 mP। তরলের পরাবৈদ্যতিক ধুবকের মান
ik	(A) $\frac{10}{21}$ (B) $\frac{21}{10}$ (C) ∞ (D) 3.1.
28	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	বৎসর পরে সন্তিয়তা হবে
	(A) $\frac{I_0}{6}$ (B) I_0 (C) $\frac{2}{3}I_0$ (D) $\frac{I_0}{20}$
	3 0
29	31.4 cm দীঘ একটি চুম্বিত উম্পাত তাবের মর্শতি 5 ছেও একক। তারণিকে অপবডের আকারে
	বীকালে তার ঢৌম্বক স্রামক হবে
30	(A) 150 cgs (B) 100 cgs (C) 200 cgs (D) 250 cgs
30	টোম্বক ক্ষেত্রে উনাসাল বিন্দু এবস এক বিন্দু যার ভিত্র দিয়ে (A) প্রচুর বলবেখা চলে যায় (B) ক কো বলবেখা মাম না
	(A) প্রচুর বলারেখা ১লৈ খায় (B) .ব.কে বলারেখা মায় বা
3	(C) মধ্য সংখ্যক বলরেখা হার (D) বলবেখাপুলি ক্ষেত্রেশ মহিলম্ বরাবর মায়। মহাকর্ম বল এবং স্থির তাড়িতিক বলের নির্মালখন্ত ধর্ম আছে।
1	
	(A) মহাক্ষী বল সর্বলা আক্ষাক বলা : স্থির তাড়িত্ব বলা ত কর্মক বা বিক্ষাক দৃষ্ট হতে পারে,
	(B) উত্তর্গু নির্পার বার্ণের বাস্থানাপার্শিক সূত্র (মান চালে না)
	(C) উভয়ই কেন্দ্ৰণ বল (central force) নয়,
	(D) উठ्य वनडे সংরক্ষী वन।

32	একটি ধাতুখণ্ডকে 0.1 µC তভ়িতাধান দিয়ে 0. বসানো হল। গোলকের বিভব হবে	2 m ব্যাসার্ধের ফাঁপা ধাতব গোলকের কেন্দ্রে
	(A) 4500 V (B) 4000 V	(C) 5000 V (D) 100 V.
(33)	দৃটি একই রকম ধাতব প্লেটকে Q ₁ এবং Q ₂ (C খুব কাভাকাছি এনে C ধারকত্নের একটি সমান্তরা বিভবপ্রভেদ হবে	Q ₁ > Q াধনাত্মক আধান দেওয়ার পর তাদের লে প্রেট ধারক গঠন কর। হল । প্রেট দৃটির ভিতর
34	(A)(Q ₁ + Q ₂)/2C (B)(Q ₁ + Q ₂)/C সমান ব্যাসার্ধের দৃটি ভাষার গোলকের একটি নির তড়িতাহিত করা হল। কোন্ গোলকে রেশি আ	রেট এবং অপরটি ফাঁপা। <mark>উভয়কে সমান</mark> বিভবে
	(A) নিরেট গোলকে	(B) ফাঁপা গো লকে
	(C) দুই গোলকে সমান আধান থাকবে	(D) ফাঁপা গোলকে কোনো আধান থাকবে না।
35	একটি তারে কিছু সময়বাাপী তড়িৎপ্রবাহ যাচে	8,52 ⁴¹ 12.2 3
•	(A) তারের প্রস্থাচ্ছেদের ব্যন্তান্পাতে পরিবর্তিত	
	(B) প্রস্থাচ্চেদের সমানুপাতে পরিবর্তিত হবে,	,
	(C) প্রস্থাক্ষেদের বর্গের বাস্থান্পাতে পরিবর্তিত ই	£74
	(D) প্রস্থাক্তাদের উপর নির্ভর করবে না।	N'2 19
60	(D) প্রস্কার্কের ওপর দেওর কর্মের বাং। দৃটি পাত্রে সমভারের দৃটি তরল A এবং B আছে।	্ত্ৰত নাত্ৰি আপুৰ্ণাক্ষক ভাপ মহাক্ৰিম () এ এবং
36	081 V হয়লে 10 খোরের তক্ত বৈন্ত্রিক	উল্লেপক এবং B ভরলে 2 Q রোধের একটি
	বৈশ্তিক উত্তাপক নিম্ভিত আছে। উত্তাপক দুর্গি	টিকে শ্রেণি সমবায়ে যুক্ত করে প্রবাহ পাঠালে দুই
	তরলের তাপ্রমাণা বৃদ্ধির হারের অনুপাত হবে	
	(A)1:2 (B)2:1 , - :	(C) 1: 1 . (D) 1: 3.
(b)	একটি তাসমুগোর সংযোগসক দটির উন্ধতা স্থি তাত্তকালক বল নুসা, অসিড্ডিটার দিয়ে মেপে ৫ ভোলামতার কে সরাসার ভাপযুগোর সাথে যুৱ	নখা গেল 30 mV i একটি 60 Ω রোধের মিল
		(C) 3.0 mV (D) 3.5 mV.
60:1	একটি ধারব তারের কৃত্তলী একটি অসম চৌধ্ব	ক ক্ষেত্রে স্থার অকথায় রাখা আছে। কুডলীতে
	তড়িচ্চালক বল .	* * *0
	(A) আবিন্ট হবে না	(B) আবিষ্ট হবে · · · · · ·
	((') ५%, ९ ५५ मत वर्ष ६ महे अत	(D) এ বিক্ট হতেও পারে নাও হতে পারে।
(29)	व्यान्यात्र शहर कांच्य व्याप्तात १०४१ ७ वर्ष	
	(১) গ্রাকোর একটি নিমতের ক্রাপ্সান্য আরু যার	ংকঃ, কম্পাঞ্জের আলো ফটো-ইলেকট্রন নির্গত
	করতে পারে না	
	(B120) Property of markets of a granter	ক্ষুপ্রক্রের উপর নির্ভির করে : তীব্রতার উপর
	नवू,	/
	(C) 11 (14) 14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14)	्रामा । अरक्षा व्यक्तिकोत्तान किर्णाम इस.
	appear of the species of the problem.	

6	M ভর এবং R ব্যাসার্ধের একটি সৃষম পাতল	া চাকতি তার কেন্দ্রগত উল্লম্ব অঞ্চ বর'বর ω	
	কৌণিক বেগে ঘ্রছে। একই মাত্রার কিন্তু $\frac{M}{4}$	্র ভরের আর একটি চাকভিকে সমাক্ষীয় ভাবে	
	প্রথম চাকতির উপর আন্তে বসানো হল। সমগ্র	সংস্থার বর্তমান কৌণিক গতিবেগ	
	E		
	1/1	(C) $\sqrt{5} \omega$ (D) $\frac{1}{2} \omega$.	
49	নিউট্রনের অর্ধায়ু 700 সেকেন্ড। একটি নিউট্রন	স্রোত 0.327 eV গতিশক্তি নিয়ে চলছে। নিউট্টন	Ĭ
	সোত 10 cm দরত্ব থাকার মধ্যে যে অংশ বি	বঘটিত হবে তা	
	(A) 1.72×10^{-6} (B) 1.70×10^{-6}	(C) 1.6×10^{-6} (D) 1.71×10^{-7} .	
50	প্রমাণুর বোর মডেলে, nth কোয়ান্টাম কক্ষ	পথে ইলেকট্রনের গতিরেগ	
	$(A) n^2$ এর সঞ্চো ব্যম্ভানুপাতিক		
	(C) n-এর সমানুপাতিক	(D) h-এর সমানুপাতিক।	
	O SET +	19 0	
	একটি মোটর গাড়ি একটি উত্তল সেতুর উপর ই	দাঁড়িয়ে আছে। ঐ একই সেতুর উপর দিয়ে গাড়িটি	3
	গতিশীল হলে,		
	(A) তার ওজন পূর্বের ওজন অপেক্ষা কম হ	ৰে,	
	(B) বেশি হবে,		
	(C) ওজনের কোনো পরিবর্তন হবে না,		
	(D) তার ওজন শূন্য হবে।	— ভিলেক্স পোকে হুইলটি : সোকান্ড n বা	র
2	একটি হুইলের উপর স্থির মানের টক ক্রিয়া ক	রছে। স্থিরাক্থা থেকে হুইলটি t সেকেন্ডে n বা	
	আবর্তন করছে। তার কৌণিক ত্বরণ	4-4	
	(A) $\frac{4\pi}{nt^2}$ rad s ⁻² (B) $\frac{4\pi n}{t^2}$ rad s ⁻²	(C) $\frac{4\pi u}{n}$ rad s ⁻² (D) 0.	-
3	০ ০ কৰি বৰ্গকাৰ ফেটোৰ চাৰ বে	काराय अवः (क्लु यथाक्राय ८ ६६, ३ ६६, ० ६,	3
	THE PARTY OF THE P	तलत जाललक्षणाय वयर एकरवन । वयर	
	এক অক্ষের সাপেকে 0.45 Nm টর্ক প্রয়োগ ক	নুরে ফ্রেমকে ঘোরানো হচ্ছে। ফ্রেমের কৌণিক ত্বর	Ì
	হ্যান		
	(A) $\frac{\pi}{9}$ rad s ⁻² (B) $\frac{\pi}{3}$ rad s ⁻²	(C) $\frac{2\pi}{9}$ rad s ⁻² (D) $\frac{5\pi}{9}$ rad s ⁻² .	-
4	/ - /	से चात्रता जिल्ला कार्य जिल्ला जान देन्द्र ज	7
	বেগে আবর্তন করানো হচ্ছে। রিংয়ের বিস্তৃতির	র (extension) জন্য যে অতিরিক্ত টান ক্রিয়া কর	
	তা	110 7 7	
	(A) $\rho . r^2 \omega^2$ (B) $\rho . r \omega^2$		15
5	একটি বক্রপথ ৩ গতিবেগের জন্য r ব্যাসার্ধের	বকে ব্যাকিং করা আছে। কোনো গাড়ি ৩ গতিবে	
	ত orrest cerem নামান মাজিলার পাতাক্যা ই	SI KI MINA GOLD IN COLD	
	(A) অভিকেন্দ্র বল হবে W এবং R-এর ল	ধিধর সমান, (B) অভিনেক বাতারের সমান, (B) অভিনেক বল = W.	
	((') অভিকেন্দ্র বল = ().	(D) আভক্তেশ্ব বল = **.	

6	ভূকেন্দ্র থেকে x দূরে থেকে একটি কৃত্রিম উপগ্রহ ভূ-প্রদক্ষিণ করছে। তার বৃত্তাকার কক্ষপথের ব্যাসার্ধ 1% হ্রাস করলে, তার বেগ
	(A) 0.5% বৃদ্ধি পাবে (B) 1% বৃদ্ধি পাবে (C) 2% বৃদ্ধি পাবে (D) 3% বৃদ্ধি পারে।
7	4
8	(A) R (B) 2 R (C) 3 R (D) 4 R. পৃথিবী R ব্যাসার্ধের এবং M ভরের একটি সম্পূর্ণ গোলক। পৃথিবীর নিজ অক্ষের চতুর্দিকে পরিভ্রমণের পর্যায়কাল Τ : ঐ অক্ষের সাপেক্ষে পৃথিবীর কৌণিক ভরবেগ (A) 4π MR²/5Τ (B) 2π × MR²/Τ (C) MR²Τ/2π (D) πMR²/Τ.
9	কোনো তরল বিন্দুর (drop) উপর সকল প্রকার বাহ্য বল অপসারণ করলে বিন্দুর আকার নির্ভর করে
	(A) সান্দ্রতার উপর (B) পৃষ্ঠটানের উপর
	(C) অন্তর্নিহিত তাপের উপর (D) আপেক্ষিক গুরুত্বের উপর।
10	The state of the s
	= ৩। একই গ্রাপামত্রায় m ভরের একই গ্যাস পারে ঢোকানো হল। এতে চাপ হল 2P। গ্যাস অণুর নতুন r.m.s. বেগ হবে
	(A) v (B) 2v (C) $\sqrt{2}$ v (D) $\frac{v}{\sqrt{2}}$.
0	ি স্থির আয়তনে নির্দিষ্ট পরিমাণ আদর্শ গ্যাসে তাপ প্রয়োগে চাপ দ্বিগুণ করা হল। এর ফলে
	(A) গ্যাস অণুর গড় দ্বৃতি দ্বিগ্ণ হরে (B) গ্যাস অণ্র সংখ্যা দ্বিগ্ণ হরে
	(C) গ্যাস অণুর r.m.s. বেগ দ্বিগুণ হবে (D) গ্যাসের অভান্তরীণ শক্তি বৃদ্ধি পাবে।
12	The state of the s
	(A) গ্যাসের তাপমাত্রা দ্বিগুণ করতে হবে,
	(B) চাপ ঠিক রেখে উন্মতা চারগুল বৃদ্ধি করতে হবে,
	(C) গ্রন্থা চিক রেখে চাপ চারগুণ করতে হরে,
13	(D) চাপ ও তাপমাত্রা দ্বিগুণ করতে হবে।
	আবর্ত প্রক্রিয়ায় (cyclic process) পূর্ণ চক্রে কোন সংস্থার ঘণ্ডান্তরীণ শক্তি (A) পথের উপর নির্ভর করে (B) আয়তন পরিবর্তনের উপর নির্ভর করে
	(C) চাপ পরিবর্তনের উপর নির্ভর করে (D) উশ্বাতা পরিবর্তনের উপর নির্ভর করে।
14	এক মোল আদর্শ গাসে স্থির চাপে 10 K উন্মতা পরিবর্ত্তনের জন্য তাপ দেবে
	(A) 198.7 J (B) 215.3 J (C) 124 J (D) 24 J.
15	কেন্দো একটি ন্যাসের বেলায় γ = 1.5 , এই ন্যাসের ক্ষেত্রে
	(A) $C_v = 3R$ (B) $C_p = 3R$ (C) $C_p = 5R$ (D) $C_v = 5R$
16	একটি অস্তাক্তর কৃষ্ণ তেলের ক্ষেত্রন ৪ cm × 4 cm 127 (উন্নতম্ভ ই তল সেকেন্ড ই
	পরিমাণ শত্তি বিকিরণ করে। এর দৈখা এবং প্রথা প্রাথমিক মানের অদের করলে এবং এয়তা
	327° করণে, শত্তি বিকিরণের হার হবে
	$(A) \frac{3}{8} F$ $(B) \frac{81}{16} F$ $(C) \frac{9}{16} F$ $(D) \frac{81}{64} F$
	[Hints: I = σ × , 中 ενν σ × Γ 1 d (0 €) 2

W	(চার্ক কেরে থারা হার্লবারা মাধ্বারা মব	।विक याञ्चक वन अनुख्य कर्ड ययम गानवार।
	(A) ক্লেত্রের সমান্তরালে থাকে	(B) ক্ষেত্রের সজো 45° কোণে থাকে
	(C) ক্ষেত্রের সঞ্চো লম্বভাবে থাকে	(D) কোনোটাই না।
18	আইনস্টাইন আলোক-তড়িৎ ঘটনার ব্যাখ্যা ব	ন্রেন নিম্নলিখিত ভিত্তি অনুযায়ী
	(A) হাইগেনস্ প্রবর্তিত আলোর তরজা তত্ত্ব,	
	(B) ম্যাক্সওয়েলের তড়িং-চুম্বকীয় তত্ত্ব,	
	(C) প্র্যাঙ্ক প্রবর্তিত আলোর কোয়ান্টাম তত্ত্ব,	
	(D) নিউটনের আলোক সম্পর্কিত কণা তত্ত্ব।	
19	একটি ট্রান্সফর্মারে মুখ্য কুণ্ডলীতে 600 পাক অ	াছে এবং 220 volt সরবরাহের সাথে যুক্ত। গৌ
	কুঙলী 6.3 V উৎপন্ন করলে, তার পাক সংখ	
	(A)2 (B)4	(C) 19 (D) 57.
20	একই কম্পাঙ্কের দৃটি শব্দের তীব্রতা যথাক্রয়ে	য় 10 ⁻¹¹ এবং 10 ⁻⁷ Wm ² । dB এককে এদে
	পার্থক্য হবে 😗	
	(A) 10^{-4} (B) 10^4	
21	ধারকের প্রেণি সমবায়ে প্রভাক ধারকে সমান	
		(C) ধারকত্ব থাকে (D) কোনোটাই না।
22	বিন্দু আধান q থেকে r দূরে তড়িৎক্ষেত্র প্রাব	ना
	ar ar^2	a a
	(A) $\frac{qr}{4\pi \in_0}$ (B) $\frac{q \cdot r^2}{4\pi \in_0}$	$(C) \frac{4\pi \epsilon_0 r}{4\pi \epsilon_0 r^2}.$
22	নির্মালখিত সূত্রগালির মধ্যে কোন্টি দূরত্বের	
20	(A) কুলম্বের তড়িৎ আকর্ষণ-বিকর্ষণ সূত্র,	4) 04 4 1 1 1 1 2 1 2 1 2 1 1 1 1
	(B) নিউটনের মহাকবীয় আকর্ষণ সূত্র,	
	(C) বিন্দু আধানের জনা দূরের কোনো বিশ্ব	· fama va
	(D) বায়ো-সাভার্ট সূত্র।	र विश्व मृथ,
6	bলক্ওলী গ্যালভানোমিটার কোন নিয়ম মান	t 374 6
24	(A) আভিপয়ারের নিয়ম	। করে ? (B) ফ্রেমিং-এর বাম হস্ত নিয়ম
•	((') লাপলাসের নিয়ন	(D) ফ্রেমিং-এর দক্ষিণ হস্ত নিয়ম।
25	पश्चित्र विशेष्ट्रा	চ্চালক বলের পরিমাণ ও অভিমুখ পাওয়া যায় ্
	(A) আদ্বিয়ার সূত্র : ল্যাপলাসের সূত্র	
•	((') ফালেড়ে সত্র: কেন্দ্র সত্র	(I)) ব্যক্ত থক : ক্রাটেন মল।
26	ট্রানাজিস্টার গঠিত হয়	reduced a set the
	(A) deal , show He p type &d n type	
	(B) নট n type এইপার্নটোর মার্নাল্য এর	
	(C) নটি p type পরিবার্ডার মাঝ্যযানে একটি ম	্র n type অধপারবার, বাবে,
	(D) কোনোটাই না।	

27 একটি সমবিভব রেখা এবং একটি চৌম্বক বলরেখা

(A) সর্বদা পরস্পরের লম্ব (B) সর্বদা পরস্পরের সমান্তরাল

	(C) পরস্পরের সঞ্চো 45° কোণে আনত	(D) পরস্পরকে ছেদ করে না।					
28		ার্ধের ভূ-সংলগ্ন গোলক B দারা সম্পূর্ণ আবৃত					
	করা হল। B গোলকের ব্যাসার্ধ এবং A গোল	কর ব্যাসার্ধের অনুপাত $\frac{n}{(n-1)}$; এ অবস্থায়					
	A-গোলকের ধারকত্ব						
	(A) n গুণ হাস পায়	(B) (n−1) গুণ হ্বাস পায়					
	(C) n-গুণ বৃদ্ধি পায়	(D) (n − 1) গুণ বৃদ্ধি পায়।					
29	, ,	লি মিলিত হয় তাদের বীজগাণিতিক সমষ্টি শূন্য।					
9	এই উদ্ভিকে বলা হয়						
	(A) কার্সফের দ্বিতীয় সূত্র	(B) ফ্যারাডের দ্বিতীয় সত্র					
	(C) তড়িদ্বিশ্লেষদের প্রথম সূত্র						
30	•	লের একটি আয়তাকার তারকুঙলী তার তলের					
30		ক্লেত্রে 50 cps দুতিতে ঘুরছে। কুণ্ডলীতে আবিষ্ট					
	তড়িচ্চালক বলের সর্বোচ্চ মান হবে	that steps gloss gate i goshto sili to					
	(A) 3π volt (B) 30π volt	(C) 300m volt (D) 3000m volt.					
31							
9	(A) বৃদ্ধি পায় ; হ্রাস পায়						
		(D) কোনো পরিবর্তন হয় না।					
32	একটি ধারককে আহিত করলে, তার শব্তি	(D) (4164) 1114404 (A 41)					
32	(A) বিভব-প্রভেদ V-এর সমানুপাতিক হয়	(D) Maste C or minorities an					
-	(C) V ² – এর সমানুপাতিক হয়						
33	একটি সমান্তরাল পাত বায়ু ধারকে দুই প্লেটের দূরত্ব $= d$; এদের মধ্যে x বেধের একটি পরাবৈদ্যুতিক স্ল্যাব ঢোকাবার ফলে ধারকত্ব দ্বিগুণ হল। পরাবৈদ্যুতিক ধ্রবৃক k হবে						
	-						
	(A) $k = \frac{x}{x - d}$ (B) $k = \frac{2x}{2x - d}$	(C) $k = \frac{2x}{x - 2d}$ (D) $k = \frac{x}{x - 2d}$.					
34		্য 7 টি স্বরকম্প হৈরি করে। তাপমাত্রা বৃদ্ধি পেয়ে					
	10°C হলে, স্বরকম্পের সংখ্যা হবে						
	(A) = 7 $(B) < 7$ (C)	') > 7 ([)) আরও তথা প্রয়োজন।					
35		নাইরেন প্রতি মিনটে 420 বার আবর্তন করছে					
	সাইরেনের শব্দের কম্পাঙ্ক হবে						
	(A) 210 Hz (B) 420 Hz	$(C)42 \times 10^3 \text{ Hz}$ (D)0042 Hz.					
36	এकिंड डेबिएनव इंटेर्निलित नार्य्य कण्या ५० ६	5 অনুপাত্ত পরিবাহিত হয় মুখন ইবিনটি একজন					
	চিথার প্রোণ্ডাকে অভিক্রম করে চালে যায় বায়াং	ह महिल्ल (तहा ३३0 ms । हाल हो महिल्ल (नहां हार					
	$(A) 3 \text{ ms}^{-1}$ (B) 30 ms^{-1}	(C)() 13 ms ⁻¹ (D) 660 ms ⁻¹					
37		+ M will's alive has I sim have thinking					
	भवकण्य সংখ্যा হবে						
	V	V V					
	(A) $\frac{V}{4I}$ (B) $\frac{V}{2I}$	$(C) \frac{V}{v^2} \Delta U$ $(D) \frac{V}{2l^2} \Delta U$					

	(C) একই থাকে (D) ভর	সংখ্যার মানের ওপর। নভর করে।
39	তেজব্লিয় পদার্থের এক গড় আয়ু সময়ে	
	(A) অর্ধেক নিউক্লিয়াস বিঘটিত হয়,	
	(B) অর্ধেক নিউক্লিয়াসের কম বিঘটিত হয়,	
	(C) অর্ধেক নিউক্লিয়াসের বেশি বিঘটিত হয়,	
	(D) সব নিউক্লিয়াস বিঘটিত হয়।	
40	একটি p-type অর্ধপরিবাহী	
	(A) ধনাত্মক তড়িৎগ্ৰন্ত,	
	(B) ঋণাত্মক তড়িৎগ্ৰন্ত,	
	(C) তড়িৎবিহীন,	
	(D) 0K উশ্বতায় নিন্তড়িৎ কিন্তু উচ্চতাপমাত্রায় তড়িৎগ্রস্ত।	
41	P–N জাংসানে নিঃশেষিত স্তর গঠিত হয়	
	(A) জাংশানের দু-পাশে ধনাত্মক তড়িৎবাহী গহুরের স	गरवरना,
	(B) জাংশানের দু-পাশে ঋণাত্মক তড়িৎবাহী ইলেকট্রনের	া সমাবেশে,
	(C) জাংশানের একপাশে গহুর এবং অন্যপাশে ইলেক্ট্র	নের সমাবেশে,
	(D) দু-পাশেই গহুর এবং ইলেকট্রনের সমাবেশে।	
42	2 ট্রানজিস্টারের C-E mode-এ ভূসংলগ্ন করা হয়	
	(A) সংগ্রাহককে (B) ভূমিকে (C) নিঃস	ারককে (D) কোনোটাই না।
43	ট্রানজিস্টার গঠনে	
	(A) দু-পাশে থাকে N টাইপ ; মাঝখানে থাকে P-typ	e কেলাস
	(B) দু-পাশে থাকে P-টাইপ ; মাঝখানে থাকে N-টাইপ	েকলাস,
	(C) দু-পাশেই থাকে N-type ও P-type ; মাঝখানে থ	で P-type,
	(D) দু-পালে N-type ও P-type ; মাঝখানে P type	কেলাস।
44		
	(A) বিশুন্ধ অর্ধপরিবাহী (B) আর	নিক কঠিন পদার্থ
	(C) P-type অর্থপরিবাহী (D) ধাতু	T .
45		
	(A) ভাপমাত্রা বৃদ্ধিতে বিশুদ্ধ অর্ধপরিবাহীর রোধ হাস	
	(B) বিশৃশ্ব সিলিকনকে ত্রিয়োজী অপদ্রব্য শ্বারা ভোপ ক	
	(C) n-type অর্ধপরিবাহীতে সংখ্যাগুর আধান বাহক হ	
	(D) p-n জাংশান অর্ধপরিবাহী ভারোভরূপে কার্য করতে	大郷以
46		
	(A) কৃণ্ডলীর পাক সংখ্যা বৃদ্ধিতে বৃদ্ধি পায়,	
	(B) কুওলীর পাক সংখ্যা বৃদ্ধিতে হ্রাস পায়,	
	(C) পাক সংখ্যার উপর নির্ভর করে না,	

(D) কুওলার পাক সংখ্যা ব্রাস করলে বৃদ্ধি পায়

38 নিউক্লিয়াসের ভরসংখ্যা বৃদ্ধি পেলে, নিউক্লিয়ন প্রতি বন্ধন শস্তি

(B) হ্রাস পায়

(A) বৃদ্ধি পায়

	প্রবাহ () বেকে 20 A বারবাহন করালে, তাল	र राज्यारं वार्य वार्यक वर्ष	क राज आराम्य शांच डा
	(A) 120 V (B) 180 V	(C) 200 V	(D) 300 V.
49	নিম্নলিখিত দৃটি উদ্ভি বিবেচনা করো: (1) চৌম্বন	ক্র <i>ক্ষেত্র</i> কোন পরিবাহী।	গতিশাল হলে তড়িচ্চালক
	বল আবিষ্ট হয় (ii) টেম্বক ক্ষেত্রের পরিবর্ত	নের ধারা তড়িচ্চালক ব	লে আবিষ্ট হয়।
	(A) উভয়ই চিক	(B)(1) নং উঙ্ভি ঠিক (11) बंद भंग
	(C)(ii) নং উত্তি ঠিক (i) নং নয়।	(D) উভয়ই ঠিক লা:	
50	I T প্রবিলোর সুষম চৌম্বক ক্ষেত্রে একট ছোট		trivoted) আছে। আর
•	একটি √3T প্রাবলোর চৌম্বক ক্ষেত্রে প্রথম দ		·
	করা হল। এতে শলাকা θ কোণে বিক্ষিপ্ত হ	,	4. 14.14.18 0.13 7021.1
			(D) (000
	(A) 60° (B) 30° · · · ·	(C)43	(D) 90°.
	O SET)	19 🔘	
0	তড়িৎ-চুম্বকীয় তরঙোর অস্তিত্ব সর্বপ্রথম কে	প্ৰিটিত কাৰ্বন হ	
•	(A) নিউটন (B) ম্যাক্সওয়েল		(1)) প্রান্থক।
2	8 cm ব্যানের একটি ফাঁপা ধাতব বলকে - 4 x		
•	रत	(10) (4)(4)(4)(4)	1 1 40-14 100 1404
	(A)-900V (B)-9000V	(C)-90 V	(D) শ্বা
3	বহির্বিশ্ব থেকে এক ঝাঁক প্রোটন এসে পৃথিব		
•	করল। ফলে উভয়ের ভিতর তড়িৎ বিকর্ষণ ব		,
	করল। g-এর মান হবে		
	(A) $4\pi \in_0 \sqrt{GM_e M_m}$	(B) $\sqrt{4\pi \in_0 GM_e N}$	<u> </u>
	(11) TO CO VOITE I'M	(B) VANCO CIATON	*m
	$(C) \frac{4\pi \in_0 GM_m}{M}$	$(D) \frac{\pi \in_0 GM_e}{M_{}}.$	
_		· · · · · · · · · · · · · · · · · · ·	
4	5 cm এবং 8 cm ব্যাসার্ধের দুটি গোলককে য		
	করা হল। তারপর এক গাছা তার দিয়ে তা	দর যুক্ত করা হল। গোল	লক দুটির সাধারণ বিভব
	হবে		
	(A) $\frac{50}{13}$ esu (B) $\frac{13}{50}$ esu	(C) $\frac{34()}{12}$ esu	(D) $\frac{10}{5}$ esu.
•	নিম্নলিখিতদের মধ্যে কোনটি সমান্তরাল পাত		
5			
	(A) $\frac{1}{4\pi \in_0} \cdot \frac{K.\alpha}{d}$ (B) $\frac{4\pi \in_0 \cdot K.\alpha}{d}$	$(C) \stackrel{\epsilon_0. K. \alpha}{d}$	(D) $\frac{K.\alpha}{\epsilon_0 d}$.
6	4 µF ধারকত্বের একটি সমান্তরাল প্রেট ধার	ক আছে। প্লেট দুটির দু	রত্ব দ্বিগুণ করলে নভুন
	ধারকত্ব হবে		
	(A) 8μF (B) 4μF	(C) 2µF	(D) 0.

বিষয় বিষয় প্রতিবর্গান্তকে মান্ত্রিক শান্তিতে পরিণত করে তাকে বলা হয়

(A) ভেনারেটার (B) ভায়নামো (C) আবেশ ক্ডলী (D) বৈদ্যতিক মেটির দটি বর্তনীর পারস্পরিক আবেশ গুণাঙ্ক 0.09 henry মুখ্য বর্তনীতে 6 x 10 ইসক্তেও তড়িং

0	একটি তাপষ্যা দিয়ে তড়িংপ্রবাহ পাসপুল এক	THE POST COLUMN
9	সংযোগস্থলে ভাপের শোষণ হল এই ঘটনাকে	া কোন প্রায়ে তালের উত্তর হল এবং হল। বেলা ইয়
	(A) উমসন ক্রিয়া (B) জুল ক্রিয়া (
8	কোনো তাপযুগ্মে উছুত তড়িস্ঠালক বল সর্বাধিক	Wild (Mill The Transport and Antonio Action of the Control of the
	হয় .	कर्म विकास विकास वार्क कर्म
	(A) নিরপেক্ষ তাপমাত্রা (B) উৎক্রম তাপমাত্রা	(C) সংকট প্রসাধ্যে (D) হল লগ্নাধ্য
9	সম রোধের দুটি তারকে শ্রেণি সমবায়ে আবন্ধ	
	निर्मिचे সময়ে	
	(A) দুটি তারেই সমান পরিমাণ তাপ উদ্ভূত হবে	7
	(B) দটি তারে অসমান তাপ উদ্বত হতে পারে,	
	(C) দৃটি তারেই সমান তাপমাত্রা বৃশ্বি হবে,	
	(D) দৃটি তারে সমান তাপমাত্রা বৃদ্ধি না হতেও	পারে।
10		
	বাতি দুটিকে শ্রেণি সমবায়ে যুক্ত করে 200 volt ও	
	যে ক্ষমতা ব্যয় করবে তা	
	(A) 200 W; 40 W (B) 22.2; 44.4 W (C) 25 W; 50 W (D) 22 W; 44 W.
11	গতিশীল আধান	
	(A) কেবলমাত্র তড়িৎক্ষেত্র সৃষ্টি করে (B) কেবলমাত্র চৌম্বক ক্ষেত্র সৃষ্টি করে
	(C) উভয়ক্ষেত্র সৃষ্টি করে (D) কোনো ক্ষেত্র সৃষ্টি করে না।
12	বৃত্তাকার তার দিয়ে তড়িৎপ্রবাহ হলে বৃত্তের কো	ন্দ্রে উৎপন্ন চৌম্বক ক্ষেত্র হবে
	(A) সুষম (B) সুষম হবে না (C) गूना (D) (कात्नाणिर ना ।
13	চলকুঙলী গ্যালভ্যানোমিটারের নীতি হল	
	(A) চুম্বকের উপর তড়িৎপ্রবাহের ক্রিয়া,	
	(B) তড়িৎপ্রবাহের উপর চুম্বকের ক্রিয়া,	
	(C) তড়িৎ প্রবাহের উপর তড়িৎ প্রবাহের ক্রিয়া,	
	(D) চুম্বকের উপর চুম্বকের ব্রুয়া।	
14	100 Ω রোধের গ্যালভ্যানোমিটারের সঞ্চো R	Ω রোধ শ্রেণি সমবায়ে আবন্ধ করলে এটি
	0–V পালার ভোল্টমিটার রূপে কাজ করে। এর প	
	সমবায়ে লাগাতে হয়। এ অবস্থায়ক R-এর মা	
	(A) 900 Ω (B) 1000 Ω (B)	C) 1100Ω (D) 800Ω .
15	। দৈর্ঘোর একটি ভারকে বৃত্তাকারে বাঁকিয়ে । १	
	চৌদক ক্ষেত্রে রাখা হল। কুগুলী সর্বাধিক যে ট	কি অন্ভব করবে তা
	$A \cdot B \cdot L^2 = B \cdot L^2 \cdot L$	$\alpha B^2 iI$
	(A) $\frac{B.i.l^2}{4\pi}$ (B) $\frac{B.i^2.l}{4\pi}$	$(D) 4\pi B.i.F.$
16	তৃ- চৌম্বক ক্ষেত্রের উল্লম্ব উপাংশ পাওয়া যায়	না কেবলমাত্র
	(A) চৌম্বক বিষুব রেখায় (B) ভৌগোলিক মেনুদ্ধয়ে
		D) 45° অকাংশে।

অনুপাত (A) 1 : 2

-	ा कर या चार जा क्याब्रिक देश क्षेत्रकाणाद		
	(A) অয়ন্টোম্বক পদার্থের ক্ষেত্রে	(B) পরাচৌম্বক পদার্থে	রি ক্ষেত্রে
	(C) তিরন্ডৌম্বক পদার্থের ক্ষেত্রে	(D) পরা এবং অয়ন্টে	ীম্বক পদার্থের ক্ষেত্রে।
19	চৌম্বক ক্ষেত্রে যে পদার্থ রাখলে চৌম্বক ব	লরেখা ঐ পদার্থকে এড়ি	ন্য়ে যায় তা
	(A) পরাচৌম্বক (B) তিরন্টোম্বক	(C) অয়ন্ <u>ে</u> চীম্বক	(D) নরম লোহা।
20	অভিকেন্দ্র বল = $-\frac{k}{R^2}$ এর অধীনে m ভরে	র একটি বস্তু R ব্যাসার্ধের	বৃত্তপথে ঘুরছে। k একটি
	ধ্রবসংখা। বন্ধুর গতিশক্তি		
	<u>, 2</u> , <u>, 2</u>	L	2.
	(A) $\frac{k^2}{R}$ (B) $\frac{k^2}{2R}$		A
21	, A		
	(A) মহাকর্ষ বল (B) স্থিতিস্থাপক বল		
22	একটি বস্তুর সুষম বৃত্তীয় গতি বজায় রাখতে উপর প্রয়োগ করা প্রয়োজন। ঐ বলকে বলা		ভিমুখী একটি বল বস্তুর
	(A) ঘর্ষণ বল (B) অপকেন্দ্র বল	(C) তড়িৎ বল	(D) অভিকেন্দ বল।
23	একটি বস্তুর গতিশক্তি 50% বৃদ্ধি পেল। তার		
	(A) 20% (B) 23%		(D)0.
24	পৃথিবীর বিষুবরেখায় একটি বস্তুকে (ভর = m যথাক্রমে পৃথিবীর ব্যাসার্ধ এবং ভর হলে এই হলে, সুতায় টান হবে) সূতোয় কেঁধে খাড়া ঝে	লোনো হল। R এবং M
		CV4	
	(A) $\frac{GMm}{2R^2}$ (B) $\frac{GMm}{R}$ (C)	$\frac{GMm}{R^2}$ (D) $\frac{GR}{R}$	$\frac{Mm}{R^2} + m\omega^2 R$.
25	ভূকেন্দ্র থেকে r দূরের কোনো বিন্দু থেকে এ এবং R যথাক্রমে পৃথিবীর ভর এবং ব্যাসার্ধ হবে	কটি বস্তু স্থিরাবস্থা থেচ হলে, বম্তু যখন ভূপৃষ্ঠে (ক যাত্রা শুরু করলো। M পীছাবে তখন তার বেগ
	(A) $\sqrt{\frac{2GM}{R}}$ (B) $\sqrt{\frac{2GM}{R-r}}$	(C) $\sqrt{2GM\left(\frac{1}{R} - \frac{1}{r}\right)}$	(D) भृगः।
26	2 cm ব্যাসের একটি বায়ু বুদ্বুদ জলের ভিতর উঠছে। জলের সান্দ্রতাব্ধ হবে		
	(A) 1.09×10^3 poise (B) 1.09×10^4 pois	e (C) 2×10^3 poise	(D) 2×10^4 poise.
27	একটি থার্মোমিটারে একটি স্কেল কাটা আছে।	বরফ বিন্দু ঐ স্কেল অনুযা	য়ী –20° এবং স্টিম বিন্দু
	180°। ঐ থার্মোমিটারে যখন 5° পাঠ পাওয়া	গেল তখন সেলসিয়াস	শ্বেলে পাঠ হবে
	(A) 7.5° (B) 12.5°	(C)-7.5°	(D)-12.5°.

্যেত্থানে চৌম্বক নতি কোন 15° সেখানে ভূ-চৌম্বক ক্ষেত্রের অন্ভূমিক ও উল্লম্ব উপাংশদ্বয়ের

(B)1:1

(C)2:1

(D) 1:3.

28 কোনো নিৰ্দিশ্ট উন্মতায় বাষ্পচাপ (A) সর্বদা ঐ উন্মতায় সংপত্ত বাষ্প চাপ অপেকা কম, (B) সর্বদা ঐ উম্মতায় সংপৃত্ত বাষ্প চাপ অপেক্ষা বেশি, (C) ঐ উশ্বতায় সংপত্ত বাষ্প চাপের সমান, (D) তরলের প্রকৃতি অনুযায়ী সংপৃত্ত বাষ্প চাপ অপেক্ষা বেশি বা কম হতে পারে। 29 যে সকল পদার্থ গলনের ফলে আয়তনে প্রসারিত হয়, চাপ বৃদ্ধি করলে তাদের গলনাজ্ঞ (B) বেড়ে যায় (A) क्ट्रम यांग्र (C) অপরিবর্তিত থাকে (D) পদার্থের প্রকৃতি অনুযায়ী বাড়তেও পারে, কমতেও পারে। 30 রাত্রে আকাশ মেঘমুন্ত ও পরিষ্কার থাকলে শিশির (B) কম পড়ে (A) বেশি পডে (D) একটিও না। (C) বেশিও পড়ে না কমও পড়ে না একটি গ্যাসকে $10^6~
m dyne~cm^{-2}$ প্থির চাপে 20~
m felbiaর থেকে 10~
m felbiaরে সংকৃচিত করা হল। এতে যে তাপের উদ্ভব হল তা (A) 10^3 cal (B) 0.24×10^3 cal (C) 0.3×10^3 cal (D) 0.34×10^3 cal. 32 উম্ম পৃষ্ঠ যে তাপীয় বিকিরণ নির্গত করে তা (A) পর্তের তাপমাত্রার ওপর নির্ভর করে, (B) চতুস্পার্শস্থ তাপমাত্রার ওপর নির্ভর করে না, (C) পৃষ্ঠের প্রকৃতির ওপর নির্ভর করে না, (D) যে সময় ব্যাপী বিকিরণ নির্গত হয় তার ওপর নির্ভর করে। 33 প্রকৃত কৃষ্ণ বস্তু (black body) (A) সব রকম বিকিরণ শোষণ করে, (B) কোনো বিকিরণ প্রতিফলিত করে না. (C) উত্তপ্ত হলে সব রকম বিকিরণ নির্গত করে না, (D) সर्वमा काला प्रथाय। 34 বায়য়ড়লে কোন গ্যাসের আধিক্য হলে বিশ্বের উশ্বীকরণ বেড়ে যায় ? (B) হাইড্রোজেন (C) নাইট্রোজেন (D) নাইট্রাস অক্সাইড। (A) অক্সিজেন একটি অর্গান পাইপ 200 Hz মৃলসুর উৎপন্ন করে কম্পিত হচছে। পাইপের (A) প্রথম উপসুরের কম্পাঙ্ক 400 Hz (B) প্রথম উপসুরের কম্পাঙ্ক 400 Hz হতে পারে (C) প্রথম উপসুরের কম্পান্তক 600 Hz (D) প্রথম উপসুরের কম্পাঙ্ক 600 Hz হতে পারে। 36 R ব্যাসার্ধের একটি গোল লুপ তারে i প্রবাহ যাচ্ছে। তারটি x-y তলে আছে এবং লুপের কেন্দ্র মূলবিন্দুতে অবস্থিত। x-y তল দিয়ে গত মোট চৌশ্বক ফ্লাক্স হবে (A) প্রবাহমাত্রা i–এর সমানুপাতিক (B) R-এর সমানুপাতিক (D) শূন্য I (C) R²-এর সমানুপাতিক রাবেশাঙেকর S.I. একক হেনরিকে লেখা যেতে পারে (B) ভোল্ট-সেকেন্ড / অ্যাম্পিয়ার (A) ওয়েবার / অ্যাম্পিয়ার (D) ওহম-সেকেড। (C) জুল / (আ্যাম্পিয়ার)²

38	া আ্যাংস্ট্রম একক কার সমান ?		
	(A) 10 ⁻¹⁰ cm (B) 10 ⁻¹⁰ m	(C) 10 ⁻¹⁰ km	(D) 10 m.
39	'রাদারফোর্ড' কিসের একক ?		
	(A) শব্দি	(B) তেজন্পিয়তা	
	(C) আলোক তড়িৎ প্রবাহ	(D) চৌম্বক ক্ষেত্র।	
40	যখন হিলিয়াম পরমাণ তার সব কটি ইলেক্	নুন হারায়, তখন তাকে	বলা হয়
	(A) (21% (B) (등 55년	(C) হিলিয়াম আয়ন	(D) আলাফা কণা .
41	একটি গতিশীল ইকেলটুনকে 2() V বিভব দ্বা	রা গতিহীন করলে, ইলে	কটুনের গতিশক্তি
	(A) 20 eV (B) 20 J	(C) 20 MeV 8 7.	(D) 20 kW.
42	আলোর গভিবেগ = ে: কি বেগে ,কানো বন্ধু গ	াতিযুক্ত হলে তার আপেশি	<u> কি ভর তার স্থির ভরে</u>
	তিনগুণ হবে ?		
	(A) $\frac{2\sqrt{2}}{3}c$ (B) $\frac{3\sqrt{2}c}{3}$	(C) 2c	30
	$(A) {3}c$ $(B) {3}$	$(C) \frac{1}{\sqrt{3}} + \cdots + \cdots$	$(D) \frac{\Delta}{2\sqrt{2}}$.
43	একটি ধাতৰ বস্তুর কার্য আপেক্ষক ৫০১ এই	ই ধাতৰ ৩ল থেকে ইলে	কটুন নিৰ্গত করার মতে
	আলোর দীর্ঘতম তরজাদৈর্ঘ্য হবে প্রায়		
	$(A)540 \times 10^{-9} \text{m}$ $(B)400 \times 10^{-9} \text{m}$		
44	যখন 6 eV শক্তির ফোটন একটি ধাতব তলে		াধিক গতিশক্তিযুক্ত নিৰ্গৎ
	ইলেকট্রনের শক্তি হয় 4 eV। এক্ষেত্রে নিবৃত্তি		(5) 40
45	(A) 2 volt (B) 4 volt ফটো-ইলেকটুনের সর্বাধিক গতিশন্তি এবং অ		
45	তা একটি সরল রেখা হয়। ঐ সরলরেখার		কর ।ভতর লেখ আক্তে
		(C) $\frac{h}{c}$	
46	কোনো ধাত্র নিবৃত্তি বিভব V_S এবং ফটো	ইলেকট্রনের সর্বাধিক গতি	ত্রেগ ប _{max} এর সম্প্র
	२ , त		
	(A) $V_S \propto v_{max}$ (B) $V_S \propto \frac{1}{v_{max}}$	$(C) V_S \propto \frac{1}{2}$	(D) V _s ∝ v ² .
		,	
47	কোন ধাতব পুষ্ঠে অতিবেগুনি আলো আপতি		হয় তা
	(A) ধনায়ক তড়িৎবাহী প্রোটন	(B) তড়িৎবিহীন কণা	
	(C) ঝণাত্মক তড়িৎবাহী ইলোকট্রন	(D) কোনো কণাই নিগ	
00	V ভেলেজে কাজ করছে এরূপ একটি x-রশি	া নল থেকে যে সকল ম	-রশ্মি পাওয়া যায় তাদে
	মধ্যে ক্ষুদ্রতম তরজাদৈর্ঘ্য হবে		
	(A) $\lambda_{\min} = \frac{h.e}{V.c}$ (B) $\lambda_{\min} = \frac{h.c}{eV}$	$^{\circ}$ (C) $\lambda_{min} = V.h$	(D) $\lambda_{\min} = \frac{eV}{h}$
0	একটি ১-রশ্বি ভরক্ষার ভরক্ষাদৈর্ঘা 3A : ত		n.
-	(A) 10^{18} HZ (B) 10^{19} Hz (C) 0.5		5 × 10 ¹⁹ Hz
00	থাইড়োড়েন প্রমাণুর ইলেকট্রনের সর্বনিম্ন ক		
	(A) h (b) $\frac{n}{2}$	(C) $\frac{h}{2\pi}$	(D) $\frac{h}{\lambda}$.

◎ SET 20 ◎

কোনো বস্তু সমদ্ভিতে বৃত্তাকার পথে পরিভ্রবণ করলে, তার ধুরণের অভিমুখ হবে

ভিমুখ হয়

(A) ব্যাসার্ধ বরাবর

(C) বৃত্তের স্পর্শক বরাবর

যখন কোনো বস্তু সমতলে থেকে এক বিন্দু সাপেক্ষে বৃত্তপথে ঘেরে তখন কোলিক ভরবেণের

(D) ঘুর্ণাক্ষ বরাবর

(B) 의짜 게(연(짜 45° (소리(역

(A) 1:2

(C) ধারকের ধারকত্ব ব্রাস পায়, (D) ধারকের বিভব-প্রভেদ হয় অসীম।

10

123	10 cm वाजात्वत्र अवाव वाजात्वत्र अवाव वाजात्वत्र द्वाच वाजात्वत्र द्वाच वाजात्वत्र द्वाच
	থেকে 4 cm দূরে তড়িৎপ্রাবল্য হবে
	(A) 2.88 (B) 288 (C) 9×10^{-9} (D) 0.
13	যখন কয়েকটি ধারককে শ্রেণি সমবায়ে যুক্ত করা হয়, তখন সমবায়ের মোট ধারকত্ব
	(A) সমবায়ের সর্বাধিক ধারকত্ব যুক্ত ধারক অপেক্ষা বেশি হয়,
	(B) সমবায়ের সর্বনিম্ন ধারকত্ব যুক্ত ধারক অপেক্ষা কম হয়,
	(C) সবকটি ধারকের ধারকত্বের সমষ্টির সমান হয়,
	(D) শূন্য হয়।
14	পৃথিবীর তড়িৎ বিভব মনে করা হয়
	(A) শূন্য (B) ঝণাত্মক (C) অসীম (D) ঝনাত্মক।
15	ightarrow $ ightarrow$ গতিবেগ নিয়ে একটি ধনাত্মক তড়িংগ্রস্ত কণা একটি চৌম্বক ক্ষেত্র B -এর মধ্যে প্রবেশ
	O MONTH FINA CHAIN THE SOUTHS AT COMO POLICE THE DECEMBER OF THE CONTRACT OF T
	ightarrow করার চ্যাতি সর্বাধিক হবে যখন $ ightarrow$ এবং B -এর ভিতর কোণ
	(A)0° (B)45° (C)90° (D)180°.
16	একটি দীর্ঘ ফাঁপা তামার নলে সম তড়িৎ প্রবাহ (d.c.) গেলে, প্রবাহের দর্ম টৌপকক্ষেত্র
	(A) কেবল পাইপের অভান্তরে অবস্থান করবে,
	(B) কেবল পাইপের বাইরে অবস্থান করবে,
	(C) বাইরে ও (ভঙরে কোথাও অকথান করবে না,
	(D) বাইরে এবং ভেতরে অবস্থান করবে।
17	একটি প্রেটন (ভর = m ; আধান = e) এবং একটি আলফা কলা (ভর = $4m$ · আধান = $2e$)
	একই গতিশন্তি দিয়ে একটি স্থম সৌদক ক্ষেত্রের অভিলন্ধের অভিমূখে ছেড়ে দেওয়া হল। নিম
	লিখিত উত্তিগুলির মধ্যে কোন্টি সভ্য ?
	(A) আলফা কণা প্রোটনের চাইতে কম বাসোধের বৃত্ত পথে বেঁকে মারে,
	(B) অভায়া কলা প্রোটনের চাইতে বেলি ব্যাসার্ধের বৃত্ত পথে বেঁকে যাবে,
	(C) छिच्छा এकरे वाप्मार्थत वृद्ध लाग्ना (वैदक गादव,
	(D) উভয় চীম্বক ক্ষেত্রের ^{ভি} ভতর দিয়ে সোভা পথে চলে যাবে
13	9 x 10 ³¹ kg ভর এবং 1.6 x 10 ¹⁹ (* অপনে মৃত্ত একটি উপেকটুন 10 ⁶ ms ¹ বেল নিয়ে
	একটি টেমক ক্ষরে পরেশ করল ইলেকটুনটি টেম্বক ক্ষেত্রে () 1 m বাসের্ধের বৃত্ত পথে
	গেলে, চৌম্বক ক্ষেত্রের মান
	(A) 1.8×10^{-4} T (B) 5.6×10^{-5} T (C) 14.4×10^{-5} T (D) 1.3×10^{-6} T

একটি সমান্তরাল পাত ধারককে স্থির বিভব প্রভেদের উৎসের সাথে যুক্ত করলে

দুটি সমান ভরের কণা A এবং B-এর আধানের পরিমাণ q এবং +4q। এরা স্থিরাবস্থা থেকে যদি একই বিভব প্রভেদের ভিতর দিয়ে যায় তবে গতিবেগের অনুপাত $V_A:V_B$ হবে

(C) 1:4

(A) উৎস থেকে সংগৃহীত মোট আধান ধারকে সঞ্চিত থাকে, (B) উৎস থেকে সংগৃহীত মোট শক্তি ধারকে সঞ্চিত থাকে,

(B) 2:1

- ্রকটি স্বম ধাত্তব তারের দই প্রান্তে স্থির ভোল্টেজ প্রয়োগ করা হল। ফলে কিছু তাপের উদ্ভব 27 হল। উদ্ভত তাপ দ্বিগুণ হবে যদি (A) তারের দৈর্ঘা এবং ব্যাসার্ধ দুই-ই অর্ধেক করা যায়, (B) তারের দৈর্ঘ্য এবং ব্যাসার্ধ দুইই দ্বিগুণ করা যায়, (C) কেবল মাত্র ব্যাসার্ধ দ্বিগুণ করা যায়, (D) কেবল মাত্র দৈর্ঘ্য দ্বিগুণ করা যায়। একটি তারের দৈর্ঘ্য 50 cm । তারটিকে ব্যাটারির সঞ্চো লাগালে তাপের উদ্ভব হয়। সর্বাধিক পরিমাণ তাপ উৎপন্ন হলে কীভাবে তারকে সংযন্ত করতে হবে ?
 - (A) তারকে সরাসরি ব্যাটারির সাথে যুক্ত করা
 - (B) তারকে দু-টুকরো করে টুকরো দুটি সমান্তরালভাবে ব্যাটারির সাথে যুক্ত করা,
 - (C) তারকে চারটুকরো করে টুকরোগুলিকে সমান্তরালভাবে ব্যাটারির সাথে যুক্ত করা,
 - (D) কেবল তারের অর্ধেক ব্যাটারির সাথে যুক্ত করা।
 - কোনো কণ্ডলীতে তড়িৎ প্রবাহ পরিবর্তনের হার একক হলে আবিষ্ট তড়িচ্চালক বল সমান হবে 29 (A) সাবেশ গুণাঞ্চের (B) কুগুলীর সাথে জড়িত চৌধক ফ্লাক্সের
 - (C) কুণ্ডলীর পাক সংখ্যার
- (D) কু গুলীর বেধের।
- চৌম্বক ক্ষেত্রে রাখা একটি পরিবাহীকে চৌম্বক ক্ষেত্রের সমান্তরালে গতিশীল করা হল। 30 পরিবাহীতে
 - (A) তড়িচ্চালক বল আবিষ্ট হবে
- (B) কোনো তডিৎচালক বল আবিষ্ট হবে না
- (C) পরিবতী তড়িচ্চালক বল আবিষ্ট হবে (D) কোনোটাই না
- ব্রা অনুভূমিক তলে বৃভকার পথে একটি বন্তু সমুদ্রতিতে আবর্তন করছে
 - (A) বস্তুর অভিকেন্দ্র বল বুত্তের স্পর্শক বরাবর ক্রিয়া করছে,
 - (B) অভিকেন্দ্র বল ব্যাসার্ধ বরাবর বর্হির্মখী ক্রিয়া করছে,
 - (C) অভিকেন্দ্র বল ব্যাসার্ধ বরাবর বৃত্তের কেন্দ্রের দিকে ক্রিয়া করছে,
 - (D) অভিকেন্দ্র বল ব্রত্তের স্পর্শক বরাবর ওপর-মীচে লম্বভাবে ক্রিয়া করছে।
- একটি গোলককে একটি অমসন অনুভূমিক ভলে গড়িয়ে দেওয়া হলে গোলকটির গতি কুমশ কমে আসে এবং শেষে স্থির হয়। এ ক্ষেত্রে ঘর্ষণ বল
 - (A) গোলকের রৈখিক বেগ হ্রাস করতে চেম্ট করে,
 - (B) কৌণিক বেগ বৃন্ধি করে,
 - (C) রৈখিক ভরবেগ বৃষ্ণি করে.
 - (D) কৌণিক বেগ হ্রাস করে।
- একটি সহায় গোল চাকতির ওলের অভিলম্বভাবে গত একটি রেখাকে অঞ্চ করে চাকতি ঘ্রাল उन्हें दर्भंडर कामार्थ अर्थांडत काएमत मधान कर अएकद्व आर्थंडत एक्क एक्ट्र अट्रक्त नवड़ अर्
 - $(A) \frac{r}{2}$
- (B) $\frac{r}{\sqrt{2}}$ (C) $\frac{r}{2\sqrt{2}}$ (D) $\sqrt{2} r$.
- बबुभाषा भविस्तान वर भिष्योगात कीहार हेम्मण्डव भगाग काल
 - । 👣 উপাছের ছারের ওপর নিষ্টর করে না, । 🔞। বাছের রাজার্টর ওপর নিষ্টর করে না,
 - (C) কোনোটাই না.

(D) महों है किया

34	কৃত্রিম উপগ্রহের অভান্তরে দণ্ডায়মান কোনো ব্যক্তি নিজেকে ভারশূন্য মনে করে কারণ
	(A) উপগ্রহের অভান্তরস্থ কোনো বস্তুকে পৃথিবী আকর্ষণ করে না,
	(B) ব্যক্তি কর্তৃক প্রদন্ত অভিলম্ব বল পৃথিবীর আকর্ষণকে টোল (balance) করে,
	(C) অভিলম্ব বল শূন্য,
	(D) উপগ্রহের ভিতর ব্যক্তির কোনো ত্বরণ নেই।
35	কঠিন বস্তুর তুলনায় তরল আকৃতি পরিবর্তিন করতে পারে কারণ
	(A) কঠিনের তুলনায় তরলের ঘনত্ব কম,
	(B) তরলের তুলনায় কঠিন পদার্থের অণুগুলির ভিতর বল বেশি,
	(C) কঠিন পদার্থে পর্মাণুগুলি একস্ঞো মিলে অপেক্ষাকৃত বড়ো অণ্ গঠন করে,
	(D) কঠিন পদার্থের অণুগুলির পারস্পারিক গড় দুরত্ব তরলের তুলনায় বেশি।
36	তরলপূর্ণ একটি বীকারকে একটি বড়ো কন্ধ জারের ভিতর রাখা আছে। জারের ভিতরকার বায়
	পাম্প করে বার করে নিতে থাকলে ৩রলের তলায় তরল কর্তৃক প্রদন্ত চাপ
	(A) বেড়ে যাবে ' (B) কমে যাবে
	(C) একই থাক্রে (D) প্রথমে কম্বে, পরে বাড়রে।
37	একটি লিফটের ভিতর রাখা বাারোমিটারের পাঠ 76 cm যখন লিফট প্থির। লিফট ক্রমবর্ধমান
	দ্রতিতে ওপরে উঠতে থাকলে ব্যারোমিটার পাঠ থবে
	(A) 可可 (B)76cm (C) < 76cm (D) > 76cm.
38	দুটি অবিকল একইরকম নল A এবং B দিয়ে ভাল প্রবাহ হচ্চে। A নল দিয়ে কোনো এক সময়
00	$ m V_0$ আয়তনের জল প্রবাহিত হল এবং একট সময়ে $ m B$ নল দিয়ে $2 m V_0$ আয়তনের জল প্রবাহিত
	হল। নির্মালিখিত উভিগুলির মধ্যে কোন্টি ঠিক ৩ওয়া সম্ভব,
	(A) দৃটি নালেই জল প্রবাহ স্থির (steady). (B) দৃটি নালেই জল প্রবাহ অস্থির (turbulent).
	(C) A নলে প্রবাহ স্থির B নলে অস্থির, (D) A নলে প্রবাহ অস্থির ও B নলে স্থির,
39	পারদের পরিবর্তে জল ব্যবহার করে ব্যারোমিটার তৈরি করলে, প্রমাণ বায়্চাপে (76 cm
9	পারন্ত ভ্র) জলন্তত্তের দৈর্ঘ্য হবে
	(A) 1033.6cm (B) 76cm (C) 0.76cm (D) 76 m.
40	20 cm দীর্ঘ একটি কৈশিক নলকে জলে ডোবানো হল নলে জল ৪ cm উচ্চে উঠল। সমস্ত
-	ব্যবস্থাকে এব্যায়ে পত্নশীল একটি লিফটে রাখলে, নলে জলস্তস্তের উচ্চত হ' হ'ব
	(A) 8 cm (B) 6 cm (C) 10 cm (D) 20 cm.
41	একটি সলিনায়েছের ভিতর দিয়ে স্থির প্রবাহ। যাক্ষে। সলিনায়েছের জক্ষ বরণবর একটি লোহার
	দ্ভ সলিনয়েডের ভিতর টেকানো হল নিজলিখিত রাশিশুলির মধ্যে কোনটি বুদ্ধি পারে
	(A) ক্রেড টোম্বক ক্ষেত্র (B) সলিলস্থেরে সাথে জড়িত চৌম্বক ফ্রাম্ব
	(C) সন্তিন্তান্ত্রের স্থাবেশ (D) জল তাপ উৎপাদকোর করি
42	এনটি ধাতৰ মিটাৰ এমল মিজ নৈপেৰ অভিলক্ষ ভাবে এবং ০০ চিত্ৰাক্তিৰ চাইৰ ক্ষেত্ৰে
	অভিনাম ভাবে 2 ms 1 প্রিরোগ প্রিশাল ক্ষালের দাই প্রায় ও ভিল্পোলক বল ভাবেষ হবে ত
	(A) 0.8 V (B) 0.4 V (C) 0.6 V (D) 1.0 V.
44	ট্রান্সফর্মার ব্যবহৃত হয়
	(A) কেবল D.C. বৰ্তনীতে
	(B) code A C addice

(C) উভয় বর্তনীতে

(D) D) (450 4 \ (450 4 450 150 00

45	्राहेद्रवैश्वकांत इसक्याय गाल्या स्कानामण्ड ग	4 lad
	(A) সকল তরজা দৈর্ঘ্যের বেলায়	(B) সকল মাধ্যমে
	(C) সকল তীব্ৰতায়	(D) সকল কম্পাঙেকর বেলায়।
46	ফটো ইলেকট্রিক পরীক্ষায় আপতিত আলোর	কম্পাঙক দ্বিগুণ করলে নিবৃত্তি বিভব
	(A) बिशृण হবে	(D) and Test
	(C) দ্বিগুণের বেশি হবে	(D) দ্বিগুণের কম হবে।
47	নিম্নলিখিত অবস্থার ভিতর কোন্টিতে দুটি	কণার মধ্যে ভারী কণার দ্য ব্রয় তরজাদৈর্ঘ্য
	অপেক্ষাকৃত কম হবে ? কণাদ্বয় যখন	
	(A) একই দ্রতিতে গতিশীল	(B) একই রৈখিক ভরবেগ সহ গতিশীল
	(C) একই গতিশক্তি নিয়ে গতিশীল	(D) একই উচ্চতা থেকে পড়ছে।
48	নিম্নলিখিত সংক্রমণগুলির মধ্যে কোন্টিতে ত	तका দৈর্ঘ্য সর্বাপেক্ষা কম ?
	(A) $n = 5$ (NTF $n = 4$	(B) $n = 4$ (शदक $n = 3$
	(C) n = 3 (8) (6 n = 2	(D) $n = 2$ (S) $\Phi n = 1$.

নিম্নলিখিত রাশিগুলির মধ্যে কোন্টি ভৌমস্তরে হাইড়োজেন সদৃশ পরমাণু এবং আয়নের বেলায়

সমান ? (A) কক্ষপথের ব্যাসার্ধ

(C) পরমাণুর শক্তি অর্ধপরিবাহীতে তড়িং পরিবহন করে

(A) কেবল ইলেকট্রন

(C) ইलেক্ট্রন এবং গহুর দুই-ই

(B) ইলেকট্রনের দুতি

(D) ইলেকট্রনের কক্ষীয় কৌণিক ভরবেগ।

(B) কেবল গহুর

(D) ইলেকট্রন বা গহুর কেউ না।

MCQ প্রশ্নপত্রের উত্তর

_				Set	irofor .				_
1.	A	B	©		26.	A	B	C	
2.		B	0	D	27.	A	В		(D)
3.	A		©	D	28.	A		©	(D)
4.	A		©	D	29.	A		©	(D)
5.	A		©	D	30.		В	©	(D)
6.	A		©	0	31.	A	B	0	
7.	A	В	©		32.	A		©	D
8.		В	©	D	33.		В	©	(b)
9.	A	В		D	34.	A	B		D
10.		B	C	D	35.	A	B		0
115	A		©	(D)	36.	A	B		0
12.	A	B		(a)	37.	A	(B)		(D)
13.		B	©	0	38.		B	C	(D)
14.		B	©	0	39.	A	B	Ŏ	(D)
15.	A	B	©		40.	A		©	0
16.	A	B	(C)		41.	Ŏ	B	©	(D)
17,			C	0	42.		B	©	D
18.	A	В		0	43.	A	B	Ŏ	D
19,	A	B	©		44.	A	B	C	
20.	(A)	B	C		45.	A	B	C	
21.	A	B		0	46.	Ŏ	B	$\widetilde{\mathbb{C}}$	D
22.	(A)	B	©	ŏ	47.	A	B	C	
23.	A	(B)	©		48.	A	B	$\widetilde{\mathbf{c}}$	0
24.	A	B	C	0	49.	A		C	D
25.	A	(B)	C		50.	A		C	D

				600					
				: Set					
1.		B)	C	D	26.	A	B	C	
2.	(A)		C	D	27.		B	(C)	D
3.	A	B		D	28.	A	8		D
4.	A	B		D	29.		B	C	0
5.	A		C	D	30.	A	B	C	
6.	A		C	0	31.	A		C	D
7.	A		C	D	32.	A		C	0
8.	A	B	C		33.	A	B	C	
9.	A	B	C		34.		B	C	D
10.	A		C	D	35.	A		C	0
11.		B	C	D	36.	A	B		D
12.	A	B		D	37.	A		C	D
13.	A		C	D	38.	A	B		0
14.	A		C	D	39.	A		C	0
15.	A		©	D	40.	A	B		0
16.	A		C	D	41.	A		C	0
17.	A	B		D	42.	A		C	0
18.	A	B	•	0	43.	A	B	©	
19.	A	B	•	0	44.	A	B		D
20.	A		C	0	45.	A		C	0
21.	A		©	0	46.	A	B	C	
22.	A	B	0	0	47.	A		C	0
23.	A	B	©	•	48.	A		C	D
24.	A	B	•	D	49.	A	В	C	
25.	A	0	C	D	50.	A		C	D

_				-Se	k~ 3:				
1.					00				
	A	B B	(C)		26.	A	B		0
2.	A	6		0	27.	A	B		0
3.	(A)		C	D	28.	0	8	©	0
4.	A	B		0	29.		В	C	0
5.	A		C	0	30.	A		C	(D)
6.		B	C	D	31.	A	B		(D)
7.	A	B	C		32.	A		© ©	D
8.	A		©	0	33.	A	В	_	
9.		B	©	0	34.	A		©	0
11.	A	B	C		35.		B	© ©	(D)
12.	A	B	C	9	36.			(C)	
13.	A	B	C		37.		B	©	0
14.	A	В		D	38.		В	©	0
15.	A		C	0	39.	A	B	©	D
16.	A	0	C	0	40.		B	©	0
17.	A		©	0	41.	A	B	©	
18.	A	В		0	43.	A		©	1
19.	A		©	0	44.		В	©	0
20.	A	B	C		45.	(A)	В	©	
21.	A	В	©		46.	A	B		0
22.	A	B		0	47.	A	B		0
23.	A	8			48.		B	(C)	0
24.		B		(D)	49.		B	©	0
25.	A	B		(D)	50.	A		C	(D)
23.	A	B		0	50.				

_				Set	media.				
1.	A		C	D	26.	A		C	(D)
2.	A	В	©		27.	A	В		0
3.	A	B	Ŏ.	D	28.		B	©	(0)
4.	A	B		0	29.	A	В		(D)
5.	A	B	©	Ŏ	30.	A		(C)	(D)
6.	A	B	<u>C</u>		31.		(B)	C	0
7.	A	B	C		32.	A	B	C	
8	A	B	C		33.	ŏ	B	C	D
9.		B	C	D	34.	A	B	C	ŏ
10.	A	•	C	D	35.	A	B		D
11.	A	B		0	36.	•	B	©	D
12.	A	B	C		37.	0	B		D
13.		B	C	0	38.	A	B	©	
14.		B	C	D	39.	A	B	C	
15.		B	C	D	40.	A	B		D
16.	A		C	D	41.	A		C	D
17.		B	C	<u>D</u>	42.	A	B		D
18.	A		C	D	43.	A	B		D
19.	A	B	C		44.	A	B	C	
20.		B	C	0	45.		B	C	D
21.	A		C	0	46.	A		C	
22.	A	B	C		47.	A		C	D
23.	A		©	D	48.	A	B		D
24.	A	В	<u>C</u>		49.	A	B	•	D
25.	A		C	0	50.	•	B	C	D

				Se	m:51:				_
1.		B	(C)	(D)	26.	A	B		D
2.		B	C	<u>•</u>	27.	A		(C)	0
3.	A	B	<u>C</u>		28.	A		©	D
4.		B	(C)	0	29.	A	•	C	0
5.	A		©	(D)	30.	A		(C)	(D)
6.	A				31.	A	B	©	
7.		В	(C)	D	32.	A	(B)	C	
8.	A	B		D	33.	A	B		(D)
9.	A		©	0	34.		B	C	(D)
10.	A	B		D	35.	(A)		(C)	(D)
11.	A		(C)	(D)	36.	A	B		0
12.	A	B		0	37.		B	(C)	(D)
13.		B	C	<u>D</u>	38.	•	8	C	(D)
14.	A		C	D	39.	A		C	0
15.	A	В	C		40.	A		C	0
16.	(A)	B		0	41.	A	B	C	
17:	A	B	•	D	42.	A		C	D
18.	A	B	C		43.	A	B	C	
19.		B	C	0	44.		B	©	D
20.	A	B		0	45.	A	B		D
21.	A	B	C		46.	A	B		D
22.	A	B	C		47.		B	C	0
23.		B	C	D	48.		B	C	D
24.	A		C	0	49.		B	C	D
25.	A		C	D	50.	A	B	C	

				Set	-6-				
1	(A)	(B)		(D)	26.		B	(C)	(D)
1.		B	©		27.	A		<u>C</u>	0
2.	A	В	©	(D)	28.	A	В		(D)
3.					29.	A	B		(D)
4.	A	B		0	30.	A		(C)	(D)
5.		B	©	(D)			(B)	©	D
6.	A	В	©		31.				
7.	A		©	0	32.	A	В	C	
8.	A		©	D	33.	A		©	(D)
9.	A	B	©		34.	0	B	C	D
10.	A	0	©	0	35.	A	В		0
11.	0	B	©	(D)	36.	A		C	D
12.	A	В	©		37.	0	B	C	D
13.	A		<u>C</u>	(D)	38.	A	B		0
14.		B	<u>C</u>	0	39.	•	B	C	D
15.	A	B	C		40.	A	•	C	D
16.		B	C	D	41.	A	B		D
17.	A	B		D	42.	A		©	D
18.	A	B	C		43.	A		©	D
19.	A	B	•	0	44.		B	(C)	0
20.	A	B		D	45.		B	(C)	D
21.	A		C	D	46.	A		(C)	0
22.	A	B	©		47.	A		C	D
23.	A		C	0	48.	A	0	©	D
24.	A	B		0	49.	A	B	C	
25.	•	B	©	D	50.	A	B)	(C)	•

_				Set	-7				
1.	A	B)	(C)		26.		B	(C)	(D)
2.		(B)	C	D	27.	A		(C)	(D)
3.	A	B		D	28.	A		(C)	(D)
4.	A	(B)	©		29.	A	В		
5.	A	(B)		(D)	30.		(B)	(C)	(D)
		(B)	(C)		31.	A	(B)		_
6.	A	В	_	D	32.	A	B		(D)
7.	(A)		C	_			(B)	C	
8.	0	B	C	(D)	33.		(B)		
9.	A	B		(D)	34.				D
10.		В	C	(D)	35.	A	В		8
11.	A	0	C	(D)	36.	A		C	
12.	A		C	(D)	37.	A	В	©	Н
13.	A	B	0	(D)	38.	(A)	В	C	
14.	A	B		0	39.	A		C	D
15.	(A).	B)	•	0	40.		B	C	(D)
16.	A	B	•	0	41.	(A)		C	(D)
17.	A	B	C	•	42.	A	В		(D)
18.	A			0	43.	A		©	D
19.		B	C	D	44.	•	В	©	0
20.	A		C	0	45.	•	•	©	
21.	A		C	D	46.	A		(C)	
22.	A	•	C	0	47.	A	•		0
23.	A	B		0	48.	0	B	C	D
24.	A	B	C		49.	A	B	C	
25.	A		C	D	50.	A		©	D

				Set					
1.		B	C	D	26.		B	©	D
2.	A		©	D	27.	A	B	©	
3.	A		©	D	28.	A	B	C	
4.0	A	B		D	29.	A	B		D
5.		B	C	0	30.		B	C	D
6		B	C	D	31.	A·	B		D
75"	A		©	D	32.	A	B		0
8.	A	B		D	33.	A		C	0
9.	A	B		D	34.		B	C	D
10.		B	C	D	35.	A	B	C	
11.	A		C	D	36.	A	B		D
12.		B	C	D	37.		B	C	D
13.		B	C	D	38.		B	C	D
14.	•	В	C	D	39.	A		C	D
15.	A	B	C		40.	A		C	D
16.	A	B		(D)	41.		B	C	D
17.		B	C	D	42.	A	B		D
18.	A	B	C		43.	A	B		0
19.	(A)	В	0	0	44.	A		C	D
20.	A	В	C		45.		B	C	D
21.	A	B	•	0	46.	A		C	
22.	A	B	0	(D)	47.	A	B		D
23.	A	B	0	0	48.		B	C	D
24.	0	В	C	0	49.	A		C	D
25.	A		C	D	50.		B	C	D
					_				

_				Set					
1.	(A)	B)	•	(D)	26.	A	B	•	(D)
2.	A	B	0	<u>o</u>	27.	A		0	0
3.	A	(B)	(C)		28.	A	(B)	Ŏ	(D)
4.	A		(C)	(D)	29.	A	B	(C)	
5.	A		(C)	<u>D</u>	30.				(D)
6.	A	(B)	(C)	•	31.	A	(B)	•	D
7.		B	(C)	0	32.	0	B	C	D
8.		B	C	D	33.	A		C	D
9.	A	B	C		34.	A	•		D
10.	A	В	C		35.	A	B	C	0
11.	A	B	C		36.		B	C	(D)
12.	A	B	C		37.		B	C	0
13.	A	B	C		38.		B	C	0
14.	A	B	C		39.	A		C	0
15.		B	C	0	40.	A	B		0
16.	A	B	C		41.		B	©	(D)
17.		B	C	D	42.	A	B		(D)
18.	A		C	D	43.	A	8	©	
19.		B	C	0	44.	A	B	0	(D)
20.		B	C	D	45.	A		©	0
21.	A	B	C		46.		B	C	(D)
22.	A		C	D	47.	A	В	0	0
23.	A	B	C		48.	A	B	C	
24.	A	B	•		49.	0	B	C	(D)
25.	A	B		D	50.	A	B)		0

	_	_		Sot	10			_	
1.	A	В	(C.		26.	(A)	(B)		(D)
2.	A	В		· D)	27.	(A)	(B)		(D)
3.	A	В	(C)		28.	(A)	(B)	•	(D)
4.	A	В	(C)		29.	(A)		(c)	(D)
5.	A	B)	C)		30.		(B)	(C)	D
6.	A	. B .		(D)	31.	•	(B)	C	(D)
7.	Al	⟨B ⟩		(D)	32.		(B)	(C)	(D)
8.	A	(B)		(D)	33.	(A)	(B)	(C)	0
9.	A	(B)		(D)	34.		B	(C)	(D)
10.	(A)		(c)	(D)	35.	(A)		©	0
11.		(B)	(c)	(D)	36.		(B)	C	D
12.	(A)	(B)	(c)		37.	A		©	0
13.		(B)	(c)	(D)	38.		B)	©	0
14.	(A)	(B)	•	D	39.		B	C	0
15.	(A)	•	(C)	D	40.	A	B	©	
16.	A	•	C	0	41.	A	B		D
17.	A	(B)	(C)	•	42.	A	B	C	
18.	A	B	0	0	43.	A		C	D
19.	A	B	©	0	44.	A	B	C	
20.	A		©	(D)	45.	A		C	0
21.	A	B	0	0	46.	A	B		0
22.		B	C	(D)	47.	A	B	©	
23.	A		C	D	48.	A	B	C	
24.	A	B		0	49.	A		C	0
25.		B	(C)	(D)	50.	A	B		D

		_		Set	-41-	-			
1.	(A)	(B)	•	(D)	26.	(A)	В		D
2.		(B)	(c)	(D)	27.	(A)	В	C.	
3.		(B)	(c)	(D)	28.	(A .	B)		
4.	(A)	(B)	(C,		29.	(A)	B)	CO	
5,	(A)	(B)	(c)		30.	A		/ C	(D)
6.	•	(B)	(c)	(D)	31.	(A)	(B)		D
7.	(A)	(B)		(a)	32.	(A)	. B)		(D)
8.	(A)	(B)	(c)		33.		B)	(C)	(D)
9.	(A)	(B)	(c)		34.	(A)	•	(C)	D
10.	(A)	(B)		(D)	35.	(A),		(C)	D
11.	$(\widehat{\mathbf{A}})$			(D)	36.	(A		(C)	D
12.		(B)	(c)	(<u>D</u>)	37.	(A)	(B)		(D)
13.	(A)	(B)		D	38.	(A)	(B)		D
14.	A		(C)	D	39.	(A)		(c)	, D
15.	(A)	B		D	40.	(A)	(B)		(D)
16.	A	B	©		41.	A	•	(c)	D
17.	A	B		(D)	42.	(A)		(C)	(D)
18.	A		C	0	43.		(B)	(C)	(D)
19.	A		C	0	44.	(A)		(C)	(D)
20.	A	B		0	45.	A	(B)		(D)
21.	A	B		0	46.	A	0	(c)	0
22.	A	B		0	47.		B	(C)	(D)
23.	A		C	0	48.		B	©	(D)
24.	A	B	C		49.	A	B	0	(D)
25.		B	C	0	50.	A	B	©	

_	_			Set	-12				_
1.		B	(C)	0	26.	A	(B)		(D)
2.	A	B		<u>o</u>	27.	A	B	0	D
3.	A	B	C		28.		B	C	(D)
4.	A		C	D	29.	A	B	C	
5.	A	B	©		30.	•	B	(C)	
6.	A	B		D	31.	•	B	C	D
7.	A	B		D	32.	A		C	(D)
8.		B	C	D	33.	A		C	D
9.	A	B	C		34.		B	C	D
10.		B	C	D	35.	A	B	©	
11.		B	<u>C</u>	D	36.	A	B		0
12.	A	B		D	37.		B	(C)	(D)
13.	A		C	D	38.	A		C	D
14.		B	C	D	39.		B	©	D
15.	A		C	D	40.	A	•	C	D
16.		B	C	D	41.	A	B		D
17.	A		C	D	42.	A	B		D
18.	A	В	0	0	43.	A		C	D
19.	A	0	<u>C</u>	D	44.	A		C	D
20.	A	B	C	•	45.	A	B)		D
21.		В	C	D	46.	A		C	(D)
22.	A	•	C	D	47.	A	B	C	
23.	A		(C)	D	48.	A	B		D
24.	A	B	0	D	49.	A		(C)	D
25.		B	C	D	50.	A	B		D

				Set	13				
1.	A		©	D	26.	(A)		(C)	(D)
2.	A	B		D	27.		В	(C)	D
3.	A	B.		D	28.	•	B	C	(D)
4.	A	B	C		29.	A	B	•	(D)
5.	A	B		D	30.	A	B	©	Ŏ
6.		B	©	D	31.		B	C	D
7.	A	B	C		32.	A	B		D
8.	A	B		D	33.		B	C	D
9.		B	C	D	34.		B	C	D
10.	A		C	D	35.		B	C	0
11.	A		C	D	36.	A	B		(0)
12.	A		C	D	37.	A	B	C	
13.	A		C	D	38.	A	B	C	
14.		B	C	D	39.	A		C	D
15.		B	C	D	40.	A	B	C	
16.	A	B		D	41.	A		C	D
17.	A		C	0	42.	A		C	D
18.		B	C	D	43.	A	B	c	
19.	A		©	0	44.		B	©	D
20.	A		C	D	45.	A	B		D
21.		B	©	D	46.	A	B	C	
22.	A		C	0	47.		B	C	0
23.		B	©	D	48.	A	B		(D)
24.	A	B		0	49.	A	B	(c)	
25.		B	(C)	D	50.	A	B	•	(D)

				Set	14				-
1.		B)	c)	D	26.		(B)	(c)	(D)
2.		В	(c)	(D)	27.	(A)	(B)		(D
3.	A	В			28.		(B)	(c)	(D)
4.			(c)	(D)	29.	(A)		(C)	(D)
5.		(B)	(c)	(D)	30.	(A)	(B)	(C)	
6.	A	В		(D)	31.	(<u>A</u>)			(D)
7.	(A)		(c)	(D)	32.		(B)	(c)	D
8.	(A)	B		(D)	33.		B	(C)	D
9.	(A)	(B)		(D)	34.	A	(B)		
10.	(A)	(B)		(D)	35.		B	(c)	0
11.	(A)	•	(c)		36.	(A)	B		D
12.	(A)		(C)	(D)	37.		B	(C)	D
13.		(B)	(C)	0	38.		B	C	D
14.	(A)	0	<u>C</u>	D	39.	A	B		D
15.	(A)	(B)		D	40.	A		(C)	0
16.	(A)	•	C	(D)	41.	A		C	0
17.	A	(B)	<u>C</u>		42.	A		C	D
18.	A	B	©	0	43.	•	B	C	(D)
19.	(A)	В	0	0	44.	A	B	C	
20.	A	0	©	D	45.	0	B	©	0
21.	A		©	D	46.	A	B	©	
22.	0	B	©	D	47.	0	B	©	D
23.	0	B	©	0	48.	A	•	©	0
24.	A	B	©		49.	0	B	C	D
25.		B	©	D	50.		B	C	D

				Set	×15				_
									(2)
1.	A	B	(C)		26.	A		(C)	0
2.	A	0	(C)	(D)	27.	A		(c)	(D)
3.	•	B	<u>C</u>	(0)	28.	(A)	(B)		(D)
4.	•	B	C	(D)	29.		(B)	(C)	0
5.	A	•	C	D	30.	A	(B)	•	0
6.	(A)	B		0	31.	•	B	(c)	(D)
7.	(A)		C	D	32.	•	(B)	(C)	(D)
8.	A	•	C	0	33.	A		(C)	D
9.	A		©	D	34.	A		(C)	(D)
10.		B	(C)	D	35.	A	(B)	(C)	0
11.	A	B		D	30.	A		(C)	(D)
12.		B	C	D	37.	A	(B)	(<u>c</u>)	
13.	A	B	C		38.	A		(C)	(0)
14.		B	C	D	39.		B	(C)	(D)
15.		B	c	D	40.		B	(C)	0
16.	A		©	(D)	41.		B	(C)	0
17.	A	(B)	C		42.	A		(C)	0
18.	A		©	D	43.	A	B		0
19.	A	B	C		44.	A	B	C	
20.	A	B		D	45.	A	B	C	
21.	A	B	C		46.	A	B	C	0
22.	A	B		0	47	A	B		0
23.		B	C	D	48.	A	B		0
24.	A		©	D	49.	A		C	0
25.	A		C	D	50.	A		C	D
-									

				Set	16				_
				0	26.	(A)	B		D
1.	A	B		0	27.	A	В	(C)	
2.	A		C		28.		(B)	©	D
3.	(A)	В	C				0	©	(D)
4.	A		C	0	29.	A			0
5.		В	©	0	30.		B	C	0
6.	(A)		C	0	31.	A	B		
7.	0	B	(C)	D	32.	A	B		D
8.	A	В	©		33.	A	B	C	
9.		B	C	0	34.	A	B		D
10.	A		C	0	35.	A	B	©	
11.	A	B		(D)	36.		В	C	D
12.		B	C	D	37.	A	B		0
13.	•	В	(C)	0	38.	A		C	(D)
14.	A	B	C		39.	A	В	C	
15.	A	В		D	40.	A	В	0	(D)
16.		В	C	0	41.	A	B	C	
17.	A	В	•	D	42.	A		C	D
18.	A		C	D	43.		B	C	D
19.		B	C	0	44.		B	©	D
20.	A	B	C		45.	A		C	0
21.		B	C	0	46.	A	B	•	D
22.	A	B	C		47.		B	C	D
23.	A		C	0	48.		B	C	D
24.	A		C	0	49.	A		C	0
25.		B	C	0	50.	A	B		D

				Set	17				_
1.	A		C	(D)	26.		B	(C)	(D)
2.	A		C	D	27,	A		C	<u>D</u>
3.	A		C	D	28.	A	В	C	•
4.		B	C	D	29.	A		©	D
5.	A		C	D	30.	A		©	D
6.	A		C	D	31,	A	B	C	
7.	A		C	D	32.		B	C	D
8.	A		C	D	33.	A	B	©	
9.	A		C	D	34.	A	B		D
10.	A		C	D	35.		B	©	0
11.	A		©	D	36.	A	B		D
12.	A		C	D	37,	•	B	C	0
13.		B	C	D	38.	A		C	0
14.		B	C	D	39.				D
15.	A	B	C		40.	A	B		D
16.		B	C	D	41.	A		C	D
17.	A	B	C		42.		B	C	D
18.	A	B		D	43.	A		C	
19.	A	B	C		44.	A			D
20.	A		©	D	45.		B	C	D
21.	A		C	D	46.	A		C	D
22.	A	B		0	47.	A	B	©	
23.	A	B			48.	•	B	C	D
24.	A		©	D	49.		B	©	D
25.	A	•	C	D	50.	A		©	D

-	-			Set	- 18 /	-			
1.		B	©	0	26.	A			(D)
2.	A	•	0	D	27.	•	B	0	D
3.	•	B	0	0	28.	A		0	D
4.		B	©	0	29.	A	B	(C)	
5.	•	B	C	0	30.	•	B	C	D
6.		B	0	0	31.	A	•	C	D
7.		B	©	0	32.	A	•	•	D
8.	0	B	©	0	33.	A		0	D
9.	A	•	©	0	34.	A	B	•	D
10.	0	B	©	0	35.	A		©	0
11.	A	B	0	0	36.	A	0	C	0
12.	A		0	0	37.	A	B	0	0
13.	A	B	0	0	38.	A	B	0	
14. 15.	A	B	0	0	39.	A	B		0
16.	A	0	©	(D)	40.	A	B	0	0
17.	A	B	0	0	41.	A	B	0	0
18.	A	B	8	0	42.	A	B		0
19.	A	(B)	6	0	43.		0	©	0
20.	A	B		0	44.	0	B	0	(D)
21.		B	©	(D)	46.	A	B	0	(D)
22.	A	B	0		47.	A	B	0	0
23.	A	B	0	0	48.	A	(B)	0	8
24.	A	Ö	0	(b)	49.	-	B	0	D
25.	A	(B)	0	(b)	50.	0	B	0	0
							-		

-		-		Set	- 19				
10	(A)	0	(C)	(D)	26.		(B)	(C)	(D)
2.	A	0	0	0	27.	A		0	0
3.	A	0	(C)	(D)	28.		(B)	0	(D)
4.0	(A)	B		0	29.	0	B	0	(D)
5.	A		(C)	0	30.		B	0	0
6.	A	B		0	31.	A	•	0	0
70	A	B		(D)	32.		B	0	•
8.		B	(C)	(D)	33.	0	0	0	(D)
9.	0	B	(C)	(D)	34.	(A)	(B)	0	
10.	A	-	(C)	0	35.	A		(0)	
19	A	B		(D)	36.	A	B	0	0
12.		B	0	0	37.	0		(C)	(1)
13.	A		0	0	38.	A	3	0	(D)
14.	A	0	0	0	39.	A	0	0	0
15.	0	B	0	(D)	40.	A	B		0
16.	0	B	(C)	(D)	41.	0	(B)	(0)	0
17.	A		0	0	42.	0	B	0	(D)
18.	A	B	0	0	43.	(A)	B		(D)
19.	A		©	(D)	44.	A	0	0	0
20.	A	B	Ö	0	45.	A	B		(D)
21.	A	B	6	(D)	46.	A	B	0	
22.	(A)	(B)	(C)		47.	A	B		0
23.	A		0	0	48.	A		(C)	
24.	A	B		0	49.		B	0	(D)
25.	A	0	0	0	50.	(A)	B		0
	-				30.	(0		

				Set	- 20		_		
10	(A)	B	(C)	0	26,		B	©	(D)
2.	A	Ŏ	©	0	27.	A	Ŏ	C	(D)
3.	A	B		0	28.	A	B	•	(D)
4.	A	B		0	29.		B	©	0
5.	A		0	0	30.	A		(C)	0
6.	A	B		(D)	31.	A	(B)	Ŏ	0
7.	•	B	0	0	32.	Ŏ	Ŏ	0	D
8.	A	•	C	D	33.	A		0	D
9.	A	•	C	0	34.		(B)	C	D
10.		B	©	0	35.	A	B	•	D
11.	•	B	0	D	36.	A	•	C	D
12.	A	B	0	•	37.	A	•	C	D
13.	A	•	©	D	38.	A	B	•	D
14.	•	B	C	D	39.			•	D
15.	A	B		0	40.	•	B	C	D
16.	A	•	(C)	0	41.	A	B	C	
17.	A	B		0	42.	•			0
18.	A		©	0	43.	A		0	D
19.	•	B	0	D	44.	A	0	©	0
20.	A	B	©		45.	A	B		D
21.	A	B	C		46.	A	B	•	0
22.	A	B	©	•	47.			©	0
23.		B	©	0	48.	A	B	©	•
24.	A	•	C	(D)	49.	A	B	0	
25.	•	B	C	(D)	50.	A	B	•	0
						-	COLUMN TO THE REAL PROPERTY.		

Book Syndicate (P) Ltd.

Kolkata 1 2201