# ♣ Reino Nematoda Uma Introdução

Explorando os vermes invertebrados: suas características, habitats e importância

Biodiversidade e Ecologia

## Características Gerais dos Nematoides

Os nematóides, também conhecidos como nematelmintos, são um grupo de vermes invertebrados pertencentes ao filo Nematoda, caracterizados por:

#### Corpo Cilíndrico e Não Segmentado

Apresentam um corpo alongado, com extremidades afiladas, e sem segmentação visível.

#### **Triblásticos**

Doconyoly

Desenvolvem-se a partir de três folhetos germinativos (ectoderme, mesoderme e endoderme).

#### **Pseudocelomados**

**==** 

Possuem uma cavidade corporal preenchida por líquido (pseudoceloma) que atuando como um esqueleto hidrostático.

#### Simetria Bilateral

Ocorpo pode ser dividido em duas metades semelhantes por um único plano.

#### Cutícula Resistente

Apa

Aparece do corpo é externamente revestida por uma cutícula complexa, acelular e resistente, que oferece proteção e deve ser mudada para o crescimento (ecdises).



Nematoide microscópico

# Classificação e Habitat

## Classificação

Os nematóides são ecologicamente muito bem-sucedidos, com mais de 25.000 espécies descritas, e podem ser classificados em duas categorias principais com base em seu modo de vida:



#### Vida I ivre

Muitas espécies vivem livremente no ambiente, contribuindo para a decomposição da matéria orgânica e o ciclo de nutrientes.



#### **Parasitas**

Uma parcela significativa é parasita de outros organismos, incluindo plantas, animais e seres humanos, causando doenças e prejuízos.

## **Importância**

- Alguns nematóides são benéficos, decompondo matéria orgânica
- Outros causam danos significativos a plantas e animais
- Alguns são transmissores de doenças (vectores)
- Seu ciclo de vida pode ser direto ou indireto, dependendo da espécie

#### **Habitats**



#### **Ambiente Terrestre**

Abundantes no solo, onde algumas espécies podem ser microscópicas, enguanto outras atingem tamanhos maiores.



#### Água Doce e Marinha

Presentes em diversos corpos d'água, desde rios e lagos até oceanos, onde desempenham papéis importantes na decomposição.



#### **Plantas (Fitonematóides)**

Como parasitas, habitam o interior ou a superfície de plantas, causando danos à agricultura.



#### **Animais e Humanos**

Parasitas de animais (incluindo insetos) e humanos, causando doenças e prejuízos significativos à saúde pública.

# Morfologia e Anatomia

## **Estrutura** Corporal

"Tubo dentro de um tubo": Os nematóides apresentam um tubo externo (parede corpórea) e um tubo interno (digestivo).

Cutícula: Camada externa resistente e acelular que protege o animal e necessita de mudas para o crescimento.

Pseudoceloma: Cavidade entre as paredes corporal e digestivo,

🦲 preenchida por líquido e funciona como esqueleto hidrostático.



Nematodes microscópicos

## Sistemas Orgânicos



#### Sistema Digestivo

Completo, iniciando-se com a boca e terminando no ânus. A boca pode apresentar placas cortantes. A faringe é musculosa e auxilia na ingestão. Os nutrientes são distribuídos pelo pseudoceloma.



#### Sistema Nervoso

Parcialmente centralizado, com anel nervoso ao redor da faringe e cordões nervosos longitudinais. Há gânglios adicionais na extremidade anterior, mas sem formar um cérebro verdadeiro. Órgãos sensoriais reduzidos atuam como mecanorreceptores.



#### Sistema Circulatório

Ausente. O transporte de nutrientes ocorre através do líquido do pseudoceloma, impulsionado pela movimentação da musculatura longitudinal.



#### Sistema Respiratório

Ausente. As trocas gasosas ocorrem por difusão através do tegumento. Nematóides de vida livre são aeróbicos, enquanto muitos parasitas são anaeróbicos e realizam fermentação.



#### Sistema Excretor

Os resíduos são excretados do pseudoceloma por meio de dois tubos longitudinais (renetes) conectados por um transversal, formando um sistema em "H".

# Nematoides de Importância Agrícola

Os fitonematóides representam um grupo de nematóides que causam impactos econômicos significativos na agricultura global e brasileira, sendo responsáveis por perdas bilionárias anualmente.



#### Meloidogyne (Nematóide-das-galhas)

- **Mecanismo de Dano:** Juvenis J2 penetram diretamente nas raízes e formam células gigantes e galhas.
- Sintomas: Galhas visíveis nas raízes, nanismo, murcha, clorose, deficiência nutricional.
- Espécies Relevantes: M. incognita, M. javanica, M. hapla.



#### Pratylenchus (Nematóide das lesões radiculares)

- Mecanismo de Dano: Alimentam-se de células vivas, injetando secreções tóxicas que levam à morte celular.
- Sintomas: Lesões escuras e necróticas nas raízes, redução do sistema radicular.
- Impacto: *P. brachyurus* afeta soja, arroz, cana-de-açúcar, trigo, causando perdas de até 50% na produtividade.



#### Heterodera (Nematóide de cisto)

- Mecanismo de Dano: Fêmeas adultas com corpo em formato de limão retêm ovos dentro de seus corpos, formando cistos resistentes.
- Sintomas: "Nanismo amarelo" com clorose, raízes raquíticas, presença dos cistos.
- Longevidade: Ovos dentro dos cistos podem permanecer viáveis no solo por até 10 anos.

Outros Gêneros Relevantes

Rotylenchulus (Nematóide Reniforme): Causa

grandes prejuízos em culturas como algodão e soja



Raízes com galhas causadas por nematode-das-galhas

#### **Impacto Econômico**

Os nematóides causam perdas bilionárias anualmente na agricultura global e brasileira.



Principais culturas afetadas: soja, arroz, canade-açúcar, trigo, milho e algodão.

# Manejo e Controle

O controle de nematoides requer uma abordagem integrada, pois a erradicação completa desses organismos é praticamente impossível. O objetivo principal é reduzir ou manter as densidades populacionais em níveis que não causem perdas econômicas significativas.

### Princípios de Manejo



#### **Abordagem Integrada**

Combinação de várias estratégias para obter resultados mais eficazes e duradouros.





#### **Práticas Agrícolas**

Rotacionamento de culturas, uso de variedades resistentes, controle de pragas e doenças associadas.



#### Ciclo de Vida

Alvos diferentes fases do ciclo de vida para interromper a reprodução e dispersão.





Uso de nematicidas e fumigantes para controle do nematofauna. Várias opções estão disponíveis, com diferentes modos de ação.



#### Diversificação

Variação de métodos ao longo do tempo e entre culturas para evitar resistência.

#### **Agentes Biológicos**



Uso de predadores naturais, antagonistas microbianos e biocontrole para reduzir as populações de nematoides.

## Conclusão



#### Importância Ecológica

Os nematóides desempenham um papel crucial na decomposição da matéria orgânica e no ciclo de nutrientes em diversos ecossistemas, contribuindo para a fertilidade do solo e equilíbrio ambiental.



#### Impacto Econômico

Arelevância econômica dos nematóides é igualmente proeminente, dada a grande quantidade de espécies parasitas que afetam plantas, animais e seres humanos, causando desde perdas agrícolas bilionárias até doenças debilitantes.



#### Necessidade de Pesquisas

Acapacidade de daptação e os ciclos de vida variados desses vermes cilíndricos reforçam a necessidade contínua de pesquisa e desenvolvimento de estratégias de manejo inovadoras e sustentáveis.



#### Compreensão e Valorização

Ao mesmotempo em que se busca mitigar seus impactos negativos, é fundamental compreender e valorizar o papel dos nematóides nos ecossistemas, desenvolvendo abordagens integradas de manejo que equilibrem controles eficazes com preservação ambiental.



Cistos de nematode em raízes de plantas