Пояснительная записка

Вычислительные техники решения задач линейного программирования в частично-целочисленной постановке и приемы работы с решателем SCIP

Подвойский А.О., Глазунова Е.В.

Содержание

1	Кл	ючевы	е термины и определения	2
2	Кл	ючевы	е компоненты платформы SCIP	2
	2.1	Решат	сель SCIP. Общие сведения	2
		2.1.1	Установка решателя SCIP	2
		2.1.2	Приемы работы с решателем SCIP в интерактивной оболочке scip	3
		2.1.3	Приемы работы с решателем SCIP через обертку PySCIPOpt	3
	2.2	Деком	позиционный решатель GCG. Общие сведения	3
		2.2.1	Установка решетеля GCG	3
		2.2.2	Приемы работы с решателем GCG в интерактивной оболочке gcg	3
		2.2.3	Приемы работы с решателем GCG через обертку PyGCGOpt	4
3	Вы	явленн	ные баги SCIP и тонкости процедуры поиска решения	4
	3.1	Недоп	устимое решение для релаксированной постановки задачи	4
	3.2	Нееди	нственность релаксированного решения	4
	3.3	Замеч	ание о стабильности работы решателя SCIP на различных операционных си-	
		стемах	x	4
4	Пр	иемы г	поиска решения	5
	4.1	Прием	фиксации бинарно-целочисленных переменных в релаксированном решении	5
	4.2	Прием	подавления подгруппы первичных эвристик низкой эффективности	6
	4.3	Прием	и подбора порога бинаризации для бинарных переменных в релаксированном	
		решен	ии	7
5	Оп	исание	вычислительных экспериментов на сценариях группы ИКП	9
	5.1	Общи	е замечания по процедуре поиска решения на сценариях без бинарных пере-	
		менны	IX	9
		5.1.1	Сценарий F398266В без бинарных переменных	9
		5.1.2	Сценарий 50197DF7 без бинарных переменных	10
		5.1.3	Сценарий 7FAC4231 без бинарных переменных	12
		5.1.4	Сценарий СА485А55 без бинарных переменных	13
		5.1.5	Сценарий 276 без бинарных переменных	15
		5.1.6	Сценарий 337 без бинарных переменных	15
		5.1.7	Сценарий 13D686AB без бинарных переменных	17

		5.1.8	Сценарий А78СВЕАD без бинарных переменных	18
	5.2	Общи	е замечания по процедуре поиска решения на сценариях $\it c$ бинарными пере-	
		меннь	ими	19
		5.2.1	Сценарий А78СВЕАО с бинарными переменными	21
		5.2.2	Сценарий 7FAC4231 с бинарными переменными	22
		5.2.3	Сценарий 50197DF7 с бинарными переменными	24
		5.2.4	Сценарий F398266B с бинарными переменными	25
		5.2.5	Сценарий 337 с бинарными переменными	26
6	Опі	исание	вычислительных экспериментов на сценариях группы МВО	33
7	Опі	исание	вычислительных экспериментов	
	на	сценар	риях MIPLIB 2017	33
	7.1	Сцена	арии со статусом «open»	33
		7.1.1	Сценарий DLR2	33
		7.1.2	Сценарий CVRPA-N64K9VRPI	33
	7.2	Сцена	арии со статусом «hard»	33
		7.2.1	Сценарий CRYPTANALYSISKB128N50BJ14	33
	7.3	Сцена	арии со статусом «easy»	33
		7.3.1	Сценарий NEOS-4332801-seret	33
Сп	исо	к иллі	остраций	34
Сп	исо	к табл	иц	35
Сп	исо	к лите	ературы	35
1.	\mathbf{K}_{J}	іючеі	вые термины и определения	
	Зад	ача лиі	нейного программирования (LP-задача) – это	
	Зад	ача лиі	нейного программирования в частично-целочисленной постановке (MILP-зада	ча) –

это ...

2. Ключевые компоненты платформы SCIP

2.1. Решатель SCIP. Общие сведения

SCIP (Solving Constraint Integer Programs) https://www.scipopt.org/-решатель, предназначенный для решения задач линейного и нелинейного программирования в частично-целочисленной постановке.

2.1.1. Установка решателя SCIP

Решатель проще всего установить вместе с оберткой PySCIPOpt https://github.com/scipopt/ PySCIPOpt с помощью менеджеров pip или conda

```
$ pip install pyscipopt
```

\$ conda install -c conda-forge pyscipopt

2.1.2. Приемы работы с решателем SCIP в интерактивной оболочке scip

2.1.3. Приемы работы с решателем SCIP через обертку PySCIPOpt

Работа над задачей начинается с создания пустого экземпляра модели

```
import pyscipopt
model = pyscipopt.Model()
```

На созданном экземпляре можно вызывать методы чтения модели, конфигурационного файла параметров решателя и т.д.

```
model.readProblem("./problem.lp")
model.readParams("./scip.set")
...
```

2.2. Декомпозиционный решатель GCG. Общие сведения

GCG https://gcg.or.rwth-aachen.de/#about – это универсальный декомпозиционный решатель для задач линейного программирования в частично-целочисленной постановке, расширающий возможности базового решателя SCIP.

Он выявляет структуры в модели, к которым могут быть применены *переформулировка Данцига-*Вольфе или декомпозиция Бендера.

Модфицированная постановка задачи (после переформулировки Данцига-Вольфе) решается с помощью обобщения метода ветвей-и-границ, а именно с помощью метода ветвей-штрафовсекущих (branch-price-and-cut), включающего различные механизмы поиска решения – превичные эвристики, стратегии ветвления, стратегии стабилизации, стратегии назначения штрафов и пр.

2.2.1. Установка решетеля GCG

Проще всего решатель установить вместе с обреткой PyGCGOpt https://github.com/scipopt/ PyGCGOpt с помощью мендежера пакетов conda

```
$ conda install -c conda-forge pygcgopt
```

2.2.2. Приемы работы с решателем GCG в интерактивной оболочке gcg

Прочитать постановку задачи

```
GCG> read problem.lp
```

Запустить процедуру редуцированния размерности

```
GCG> presolve
```

Запустить процедуру поиска структур в матрице ограничений

GCG> detect

Записать постановку задачи сниженной размерности для gnuplot

```
GCG> write problem problem_reduced.gp
```

Фрагмент др-файла

```
set encoding utf8
set terminal pdf
set output "problem_reduced.pdf"
set xrange [-1:506441]
set yrange[347788:-1]
set object 1 rect from 0,0 to 506441,183384 fc rgb "#1340C7"
set object 3 rect from 163304,183384 to 163306,183385 fc rgb "#718CDB"
set object 4 rect from 163306,183385 to 163308,183386 fc rgb "#718CDB"
set object 5 rect from 163308,183386 to 163310,183387 fc rgb "#718CDB"
set object 6 rect from 163310,183387 to 163312,183388 fc rgb "#718CDB"
set object 7 rect from 163312,183388 to 163314,183389 fc rgb "#718CDB"
set object 8 rect from 163314,183389 to 163316,183390 fc rgb "#718CDB"
set object 10 rect from 163318,183391 to 163320,183392 fc rgb "#718CDB"
set object 11 rect from 163320,183392 to 163322,183393 fc rgb "#718CDB"
set object 11 rect from 163320,183392 to 163322,183393 fc rgb "#718CDB"
```

Создать pdf-файл декомпозиции задачи после шага снижения размерности

```
$ gnuplot problem_reduced.gp
```

2.2.3. Приемы работы с решателем GCG через обертку PyGCGOpt

3. Выявленные баги SCIP и тонкости процедуры поиска решения

3.1. Недопустимое решение для релаксированной постановки задачи

По состоянию на 18.06.2022 г. решатель SCIP версии 8.0.0 с оберткой PySCIPOpt версий 4.0.0 и 4.2.0 для операционной системы Windows 10 релаксированную постановку задачи (т.е. при снятых ограничениях на целочисленность переменных) оценивает как неспособную привести к допустимому решению.

SCIP версии 7.0.3 (PySCIPOpt 3.4.0) как на операционной системе Windows 10, так и на Unix-подобных операционных системах (в частности, MacOS Monterey 12.1 и Linux Centos 7) решает задачу в релаксированной постановке корректно.

3.2. Неединственность релаксированного решения

Если эвристические приемы строятся на базе релаксированного решения задачи, важно помнить, что релаксированные решения, полученные с помощью различных решателей с точки зрения распределения значений переменных могут существенно различаться¹, не смотря на то, что во всех случах зазор будет нулевым и целевая функция будет имееть одно и тоже значение (с оговоркой на допуск точности решателя).

3.3. Замечание о стабильности работы решателя SCIP на различных операционных системах

• Вычислительные эксперименты проводились на трех версиях решателя SCIP (7.0.0, 7.0.3, 8.0.0) и трех платформах: Windows 10, MacOS (Monterey 12), Linux (Centos 7). Разброс времени поиска решения для каждой конфигурации решателя оценивается минимум по 3 запускам сценария

 $^{^{1}}$ Потому как гиперплоскость целевой функции может касаться политопа не в вершине, а по грани

- На текущий момент наиболее стабильные и наиболее адекватные результаты получаются
 - -для OC Linux (Centos 7) и OC MacOS (Monterey12) на решателе SCIP версии 7.0.3 (обертка PySCIPOpt 3.4.0) и платформе Ecole версии 0.7.3 , собранных для однопоточной реализации
 - -для ОС Windows 10 на решателе SCIP версии 8.0.0 (обертка PySCIPOpt 4.0.0), собранном для однопоточной реализации
- Последняя доступная версия решателя SCIP 8.0.0 (PySCIPOpt 4.1.0) на MacOS (Monterey 12.1) и Linux (Centos 7) при тех же настройках, что и для SCIP версии 7.0.3, как правило, работает значительно медленнее (2.5-2.85 раза) и в большинстве случаев либо не успевает найти решение за отведенное время, либо «просаживает» целевую функцию

4. Приемы поиска решения

4.1. Прием фиксации бинарно-целочисленных переменных в релаксированном решении

Часто фиксация целочисленных переменных² в релаксированном решении приводит к приемлемому допустимому целочисленному решению, которое потом можно использовать как «теплый старат» или как базовое решение для других схем фиксации.

```
ZERO = 0.0
relax_sol: pd.Series = read_relax_sol(path_to_relax_sol)
model = pyscipopt.Model()
model.readProblem(path_to_lp_file)
model.readParams(path_to_set_file)
all_vars: t.List[pyscipopt.scip.Variable] = model.getVars()
bin_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, BINARY)
int_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, INTEGER)
all_zero_bin_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
 relax_sol,
 sub_group_vars=bin_vars,
all_zero_int_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
 relax sol.
 sub_group_vars=int_vars,
for var in all_zero_bin_vars + all_zero_int_vars:
 model.fixVar(var, ZERO)
model.optimize()
```

²Вообще говоря, фиксировать можно не только бинарные и целочисленные переменные

4.2. Прием подавления подгруппы первичных эвристик низкой эффективности

В некоторых случаях отдельные первичные эвристики могут оказаться не способными справится со своей задачей, не оказывая никакого влияния на процедуру поиска решения, и все же потреблять предоставленные ресурсы.

Такие эвристики – условимся их называть первичными эвристиками низкой эффективности (ПЭНЭ) – можно выявить путем анализа статистической сводки stat-файла в разделе Primal Heuristics

Фрагмент файла статистической сводки 337 bin default.stat

• • •							
Primal Heuristics :	:	ExecTime	SetupTime	Calls	Found	Best	
LP solutions :	:	0.00	-	-	0	0	
relax solutions :	:	0.00	_	_	0	0	
pseudo solutions :	:	0.00	_	_	0	0	
conflictdiving :	:	0.00	0.00	0	0	0	
crossover :	:	0.00	0.00	0	0	0	
dins :	:	0.00	0.00	0	0	0	
distributiondivin:	:	0.00	0.00	0	0	0	
dualval :		0.00	0.00	0	0	0	
farkasdiving :	:	2032.89	0.00	1	0	0	# <- NB
feaspump :	:	882.12	0.00	1	0	0	# <- NB
fixandinfer :	:	0.00	0.00	0	0	0	
intdiving :	:	0.00	0.00	0	0	0	
intshifting :	:	52.99	0.00	1	1	1	

В данном случае ПЭНЭ являются farkasdiving и feaspump. Чтобы подавить эти эвристики при следующем запуске SCIP, достаточно включить следующие строки в конфигурационный файл $scip.set^3$

scip.set

```
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
...
```

Доступ к статистической сводке можно получить либо в сессии SCIP, либо через одну из оберток над решателем (например, с помощью PySCIPOpt)

Фрагмент сессии scip. Получение статистической сводки

```
...
SCIP> read file.lp
SCIP> opt
SCIP> display stat
```

Получение статистической сводки через обертку PySCIPOpt

```
import pyscipopt
```

 $^{^3}$ При запуске интерактивной сесии через утилиту командной строки **scip**, решатель ищет этот файл в текущей директории и, если находит, автоматически вычитывает. При работе через PySCIPOpt требуется явно передавать путь до файла методу модели **readParams**()

```
model = pyscipopt.Model()
model.readProblem("...")
model.readParams("...")
model.optimize()
model.printStatistics()
```

4.3. Прием подбора порога бинаризации для бинарных переменных в релаксированном решении

Условимся фиксацией называть стратегию инициализации подгруппы переменных x_k (вещественных, бинарных или целочисленных), значения которых задаются на основе каких-либо эврестических соображений, например, касающихся специальных свойств матрицы ограничений, и способных в результате привести к такой постановке задачи, которую, используя механизмы первичных эвристик, сепараторов, пропагаторов и пр. можно развить в допустимое целочисленное решение.

Базовая идея построения ϕ иксации на бинарных переменных заключается в том, чтобы значения бинарных переменных в релаксированном решении ${rx_k^{(b)}}_{k=1,...}$ интерпретировать как степень уверенности решателя в том, что рассматриваемую бинарную переменную можно выставить в единицу.

Если значение k-ой бинарной переменной ${}^rx_k^{(b)}$ превосходит некоторый $nopor\ \theta$, то переменная выставляется в единицу, в противном случае – в ноль. Порог подбирается итерационно, начиная с некоторого нижнего значения θ_l (по умолчанию $\theta_l=0$), увеличивая текущее значение порога на величину шага $\Delta\theta$ и заканчивая верхним значением порога θ_u (по умолчанию $\theta_u=1$).

Для практических целей достаточно остановится на наименьшем значении порога θ , который отвечает такой фиксации, которую решатель SCIP не отклоняет как неспособную привести к допустимому целочисленному решению.

Фрагмент лога решателя SCIP для случая фиксации, которую невозможно развить в допустимое целочисленное решение

После того как порог θ подобран, бинарные переменные разбиваются на две подгруппы: подгруппу бинарных переменных, выставленных в ноль $\{x_k^{(b_0)}\}$, и подгруппу бинарных переменных, выставленных в единицу $\{x_k^{(b_1)}\}$. Долю бинарных переменных, выставленных в ноль обозначим через δ_{b_0} , долю бинарных переменных, выставленных в единицу – через δ_{b_1} , а целевую функцию, найденную при заданных долях – через $f_{\theta}(\delta_{b_0}, \delta_{b_1})$.

 $^{^4}$ Верхний левый индекс «r» указывает на релаксированное значение, а верхний правый «(b)» – на то, что речь идет о бинарной переменной

В результате получаем исследовательский инструмент, который дает возможность управлять решением через подбор долей δ_{b_0} и δ_{b_1} при найденном пороге θ . Часто оказывается эффективным прием управления решением через подбор доли нулевых бинарных переменных δ_{b_0} .

Целевая функция, вычисленная при единичной доле нулевых бинарных переменных $f_{\theta}(\delta_{b_0}=1)$, как правило, значительно уступает целевой функции релаксированного решения f_r . Но тем неменее это решение может быть улучшено, сокращением доли δ_{b_0} (см. рис. 1 и рис. 2).

Рис. 1. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий a78cbead

Рис. 2. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий **337**

Как видно из графиков, на кривой изменения верхней границы решения существует точка с наименьшим значением целевой функции $f_{\theta}(\delta_{b_0})$ допустимого целочисленного решения. Эта точка и будет «оптимальной» для рассматриваемого сценария.

5. Описание вычислительных экспериментов на сценариях группы ИКП

На всех сценариях группы ИКП (как с бинарными переменными, так и без них) решения удавалось найти с помощью *метаконфигурации* (см. раздел 5.2), включающей прием подавления подгруппы первичных эвристик низкой эффективности и процедуру построения частично-заданного решения на фиксациях (для нулевых бинарных и целочисленных переменных).

5.1. Общие замечания по процедуре поиска решения на сценариях *без* бинарных переменных

Метаконфигурация 5 SUH (Suppress Useless Heuristics) процедуры поиска решения сводится к приему подавления подгруппы первичных эвристик низкой эффективности.

Замечание

Решение получено без доменно-ориентированных эвристик, «теплого» старта и подбора параметров решателя

Конфигурация решателя SCIP для всех сценариев группы ИКП (без бинарных переменных) имеет вид

scip.set. Сценарии группы ИКП без бинарных переменных

```
# критерии останова и перезапуска
limits/time = 7200
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# подавление подгруппы первичных эвристик низкой эффективности
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
heuristics/randrounding/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shifting/freq = -1
```

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

5.1.1. Сценарий F398266В без бинарных переменных

Статистика

Общее количество переменных: 774901

Количество целочисленных переменных: 172449

Количество бинарных переменных: 0 Количество ограничений: 650263

lp-файл: https://disk.yandex.ru/d/o_eAb9475u5ueg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

o INTSHIFING.

 $^{^{5}}$ Под метаконфигурацией понимается совокупность конфигурации решателя и набора эвристических приемов

• RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/URRnZ8soTaJEgQ

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/N2tfhj1N6RczzA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/-y7p5FyJyYirkw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/1JaMC9aFjubDbA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 1.063% лучше в смысле целевой функции и на 10.20% – в смысле временных издержек (рис. 3).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.155% лучше в смысле целевой функции и на 65.27% – в смысле временных издержек (табл. 1).

Синим цветом обозначен выигрыш в процентах.

Таблица 1. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий f398266b без бинарных переменных

$Cnoco\delta$	Полное время рас-	1 ,
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	21.38	5.905048
SCIP+SUH	19.27 + 9.87%	5.842154 + 1.065%
SCIP+FZB	9.43 +55.89%	5.836815 +1.155%

5.1.2. Сценарий 50197DF7 без бинарных переменных

Статистика

Общее количество переменных: 718464

Количество целочисленных переменных: 159332

Количество бинарных переменных: 0

Количество ограничений: 595797

lp-файл: https://disk.yandex.ru/d/KO_xj9dkgUdcog

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/R4B1fkTx-nE3tg

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/BLvUmZ43vtMFKg

Сценарий input f398266b-093b-ec11-a2d4-005056a5ee74.json

Общее количество переменных: 774901 Количество целочисленных переменных: 172449 Количество бинарных переменных: 0 Количество ограничений: 650263

Рис. 3. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий f398266b без бинарных переменных

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/yMFLr-6mLfdPAw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/XiRSvteL9xC4pg

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.25% лучше в смысле целевой функции и на 46.43% — в смысле временных издержек (рис. 4).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.191% лучше в смысле целевой функции и на 82.13% – в смысле временных издержек (табл. 2).

Синим цветом обозначен выигрыш в процентах.

Таблица 2. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 50197df7 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	18.35	3.585532
SCIP+SUH	9.83 +46.43%	3.540567 + 1.252%
SCIP+FZB	3.28 + 82.13%	3.542843 +1.191%

Общее количество переменных: 718464 Количество целочисленных переменных: 159332 Количество бинарных переменных: 0 Количество ограничений: 595797

Рис. 4. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 50197df7 без бинарных переменных

5.1.3. Сценарий 7FAC4231 без бинарных переменных

Статистика

Общее количество переменных: 737585

Количество целочисленных переменных: 147789

Количество бинарных переменных: 0 Количество ограничений: 540018

lp-файл: https://disk.yandex.ru/d/qiZAmraUNK1Peg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex. ru/d/20NeMuQ7NF_ccA

Файл статистической сводки (метаконфигурация SUH) доступен по ссылке https://disk. yandex.ru/d/QxE0HoREHzgHQQ

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk. yandex.ru/d/FHZGj_Kyg8dDiw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https: //disk.yandex.ru/d/8H1vw6zkQS7DAg

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 5.22% лучше в смысле целевой функции и на 27.10% – в смысле временных издержек (рис. 5).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 5.452% лучше в смысле целевой функции и на 90.16% – в смысле временных издержек (табл. 3).

Синим цветом обозначен выигрыш в процентах.

Таблица 3. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 7fac4231 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	16.05	1.087609
SCIP+SUH	11.67 + 27.29%	1.030866 + 5.222%
SCIP+FZB	3.58 +77.69%	1.028349 + 5.452%

Сценарий input_7fac4231-5951-ec11-a2d7-005056a5ee74.json

Общее количество переменных: 737585 Количество целочисленных переменных: 147789 Количество бинарных переменных: 0 Количество ограничений: 540018 1e10 SCIP 8.0.0 Windows 10 1.30 Отклонение ЦФ=-16.81% БРН=95.6047% SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-14.94% БРН=95.6788% 1.25 целевой функции SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-13.16% БРН=96.0402% 1.20 1.15 CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-1.38% л 3начение 1.10 5PH=97.8625% CBC+DOH БРН=97.9338% SCIP 7.0.3+SUH Linux (Centos 7) SCIP без "теплого" старта, Отклонение ЦФ=+5.22% доменно-ориентированных эвристик и 1.00 БРН=97.9048% подбора параметров решателя! 0.95 3 ġ 15 18 21 24 6 12 Полное время расчета t, мин

Рис. 5. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 7fac4231 без бинарных переменных

5.1.4. Сценарий СА485А55 без бинарных переменных

Статистика

Общее количество переменных: 718601

Количество целочисленных переменных: 140858

Количество бинарных переменных: 0 Количество ограничений: 514229

lp-файл: https://disk.yandex.ru/d/iSP6xrh4K_wHEQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/_WzkmgoueNb2Bg

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/sLUW5IxmpMBpcw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/3Ls6QrAWVUMdZw

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 0.683% лучше в смысле целевой функции и на 46.48% – в смысле временных издержек (рис. 6).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.244% лучше в смысле целевой функции и на 88.53% – в смысле временных издержек (табл. 4).

Синим цветом обозначен выигрыш в процентах.

Таблица 4. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий са485а55 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	20.05	4.597048
SCIP+SUH	10.73 +46.48%	4.565579 + 0.683%
SCIP+FZB	4.34 + 78.35%	4.539819 + 1.244%

Сценарий input_ca485a55-0485-ec11-a2db-005056a5ee74.json

Общее количество переменных: 718601 Количество целочисленных переменных: 140858 Количество бинарных переменных: 0 Количество ограничений: 514229 1e10 SCIP 8.0.0 Windows 10 Отклонение ЦФ=-5.70% БРН=92.8286% SCIP без "теплого" старта, 4.9 доменно-ориентированных эвристик и подбора параметров решателя! Значение целевой функции 9. 2. 8. 8. 8. SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-4.97 БРН=93.036% CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение Ц Φ =-0.65% БРН=94.3883% CBC+DOH БРН=94.8141% SCIP 7.0.3 MacOS (Monterey 12) SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+0.34% БРН=94.6821% Отклонение ЦФ=+0.683% БРН=94.7174% 4.5 15 35 5 10 20 25 30 40 45 Полное время расчета t, мин

Рис. 6. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий **ca485a55** без бинарных переменных

5.1.5. Сценарий 276 без бинарных переменных

Статистика

Общее количество переменных: 809224

Количество целочисленных переменных: 162562

Количество бинарных переменных: 0 Количество ограничений: 602190

lp-файл: https://disk.yandex.ru/d/QaS5kd7VRZQ66A

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/M2V88djiiGM5PA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/G0ustAVT619CeA

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/YBXB5GCECJiBIA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 3.67% лучше в смысле целевой функции и на 51.56% – в смысле временных издержек (рис. 7).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 4.86% лучше в смысле целевой функции и на 78.35% – в смысле временных издержек (табл. 5).

Синим цветом обозначен выигрыш в процентах.

Таблица 5. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 276 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	29.87	1.430789
SCIP+SUH	14.47 + 51.56%	1.378299 + 3.669%
SCIP+FZB	3.95 + 78.35%	1.361368 + 4.857%

5.1.6. Сценарий 337 без бинарных переменных

Статистика

Общее количество переменных: 859075

Количество целочисленных переменных: 173622

Количество бинарных переменных: 0 Количество ограничений: 624327

Сценарий input 276.json

Общее количество переменных: 809224 Количество целочисленных переменных: 162562 Количество бинарных переменных: 0 Количество ограничений: 602190 1e10 Отклонение ЦФ=-28.64% ВРН=94.885% SCIP 8.0.0 Windows 10 1.9 SCIP без "теплого" старта, доменно-ориентированных эвристик и подбора параметров решателя! 1.8 SCIP 7.0.3 Linux (Centos 7) 3начение целевой функции 1.1 1.€ SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-26.73% 5PH=94.9826% Отклонение ЦФ=-24.11% БРН=94.9386% CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-0.92% БРН=96.5865% CBC+DOH ■ 6PH=96.6934% 1.4 SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+3.67% БРН=96.7882% 1.3 35 40 10 15 20 25 30 45

Рис. 7. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276 без бинарных переменных

Полное время расчета t, мин

lp-файл: https://disk.yandex.ru/d/keyQLAagsD7Sbw

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/ZUIEo3dDq77FjA

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/0nUXIrIKuzqZlw

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/U0NCnMQN1akHUA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 22.12% лучше в смысле целевой функции и на 18.32% – в смысле временных издержек (рис. 8).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 22.59% лучше в смысле целевой функции и на 70.84% – в смысле временных издержек (табл. 6).

Синим цветом обозначен выигрыш в процентах.

Таблица 6. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 337 без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	20.85	3.825042
SCIP+SUH	17.03 +18.32%	2.978782 + 22.123%
SCIP+FZB	6.08 + 70.84%	2.961019 + 22.588%

Сценарий input 337.json

Общее количество переменных: 859075

Количество целочисленных переменных: 173622 Количество бинарных переменных: 0 4.0 1e10 Количество ограничений: 624327 CBC+DOH (USE RECAL ON FLOW=false) SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-0.11% БРН=91.413% SCIP 8.0.0 Windows 10 Отклонение ЦФ=+1.73% БРН=89.8608% Отклонение ЦФ=+1.92% БРН=89.894% 3.8 CBC+DOH БРН=91.4849% Значение целевой функции SCIP 7.0.3 MacOS (Monterey 12) Отклонение $\Box \Phi = +2.23\%$ 3.6 БРН=89.8154% SCIP без "теплого" старта, 3.4 доменно-ориентированных эвристик и подбора параметров решателя! SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+22.12% 3.0 БРН=92.1124%

Рис. 8. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337 без бинарных переменных

25

Полное время расчета t, мин

30

35

40

45

5.1.7. Сценарий 13D686AB без бинарных переменных

15

20

Статистика

Общее количество переменных: 786020

10

Количество целочисленных переменных: 168857

Количество бинарных переменных: 0

Количество ограничений: 598414

lp-файл: https://disk.yandex.ru/d/3KkYKzNl3PjGdg

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/EXylMeX6Ytz4tg

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/dXUMVbSWRbqeDQ

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/Knavj89muxGw-w

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 9.40% лучше в смысле целевой функции и на 33.03% — в смысле временных издержек (рис. 9).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 10.44% лучше в смысле целевой функции и на 75.82% – в смысле временных издержек (табл. 7).

Синим цветом обозначен выигрыш в процентах.

Таблица 7. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий 13d686ab без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшения, \times 10^9$
CBC+DOH	28.82	8.774743
SCIP+SUH	19.30 +33.03%	7.949568 + 9.403%
SCIP+FZB	6.97 +75.82%	7.858548 + 10.441%

Сценарий input_13d686ab-9e77-ec11-a2da-005056a5ee74.json

Рис. 9. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 13d686ab без бинарных переменных

5.1.8. Сценарий А78СВЕАD без бинарных переменных

Статистика

Общее количество переменных: 795400

Количество целочисленных переменных: 180160

Количество бинарных переменных: 0

Количество ограничений: 658339

lp-файл: https://disk.yandex.ru/d/vTPPa1H3VFD7tA

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING.
- RENS.

Файл решения задачи (метаконфигурация SUH) доступен по ссылке https://disk.yandex.ru/d/fARVcHb66ToHxQ

Файл решения задачи (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/0XC17sTce8feHQ

Файл статистической сводки (метаконфигурация FZBIVSUHPB) доступен по ссылке https://disk.yandex.ru/d/vn1K834mY5MEng

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 1.57% лучше в смысле целевой функции и на 23.30% — в смысле временных издержек (рис. 10).

Метаконфигурация FZBIVSUHPB (подробнее в разделе 5.2) по отношению к тому же результату на доменно-ориентированных эвристиках дает решение задачи, которое на 1.39% лучше в смысле целевой функции и на 81.04% – в смысле временных издержек (табл. 8).

Синим цветом обозначен выигрыш в процентах.

Таблица 8. Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB. Сценарий a78cbead без бинарных переменных

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	26.05	3.801546
SCIP+SUH	19.98 + 23.30%	3.741685 + 1.576%
SCIP+FZB	4.94 +81.04%	3.748890 +1.386%

5.2. Общие замечания по процедуре поиска решения на сценариях c бинарными переменными

На ранних стадиях изучения проблемы высокоразмерных сценариев с бинарными переменными, поиск решения осуществлялся в семь шагов:

- 1. Подавить подгруппу первичных эвристик низкой эффективности (см. раздел 4.2),
- 2. При разрешении конфликтов и ветвлении⁶ отдавать предпочтение бинарным переменным,
- 3. Найти релаксированное решение задачи,
- 4. Подобрать порог бинаризации на релаксированном решении для бинарных переменных (см. раздел 4.3),
- 5. Зафиксировать *нулевые* 0-bin и *единичные* 1-bin *бинарные переменные*; подать фиксацию решателю,

 $^{^6}$ К сожалению, на сценариях группы ИКП с бинарными переменными решателю SCIP не удается найти решение в корне дерева

4 15 Tel0

4.10

4.05

4.00

3.85

3.80

3.75

БРH=95.9525%

10

функции

3.95 3.90 3.90

Значение

Общее количество переменных: 795400
Количество целочисленных переменных: 180160
Количество бинарных переменных: 0
Количество ограничений: 658339

SCIP без "теплого" старта,
доменно-ориентированных эвристик и
подбора параметров решателя!

SCIP 7.0.3 MacOS (Monterey 12)
Отклонение ЦФ=-6.70%
БРН=93.7089%

SCIP 8.0.0 Windows 10
Отклонение ЦФ=-5.44%
БРН=93.8405%

CBC+DOH БРН=96.0087%

25

30

20

Полное время расчета t, мин

SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+1.57% БРН=96.0739%

15

- 6. В решении, найденном на предыдущей итерации, зафиксировать *нулевые целочисленные* 0-int и *единичные бинарные* 1-bin *переменные*; полученную фиксацию подать на вход решателю.
- 7. В решении, полученном на предыдущей итерации, зафиксировать *нулевые бинарные* 0-bin и *целочисленные* 0-int *переменные*; фиксацию подать на вход решателю.

Процедура поиска оказалась чувствительной к параметру autorestartnodes. Графическая интерпретация результатов вычислительных экспериментов с разверткой процедуры поиска верхней границы решения во времени приведена на рис. 11, 12, 13 и 14.

Позже описанную процедуру удалось упростить и свести к следующей метаконфигурации FZBIVSUHPB (Fixed Zero Binary and Integer Variables, Suppress Useless Heuristics, Prefer Binary):

- 1. Подавить подгруппу первичных эвристик низкой эффективности,
- 2. При разрешении конфликтов и ветвлении отдавать предпочтение бинарным переменным,
- 3. Зафиксировать *нулевые бинарные* 0-bin и *нулевые целочисленные* 0-int *переменные* в релаксированном решении (см. раздел 4.1).

Конфигурация решателя SCIP для всех сценариев группы ИКП (с бинарными переменными) имеет вид

scip.set. Сценарии группы ИКП с бинарными переменными

```
# критерии останова и перезапуска
limits/time = 7200
limits/autorestartnodes = -1
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# управление стратегиями анализа конфликтов и ветвления
conflict/preferbinary = True
branching/preferbinary = True

# подавление подгруппы первичных эвристик низкой эффективности
```

```
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
heuristics/randrounding/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shifting/freq = -1
```

Все эксперименты проводились на виртуальной машине Linux (Centos 7) Intel Core[™] i7 (8 CPUs), $3.6 \mathrm{GHz}$, RAM $16 \mathrm{Gb}$.

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

Кодовая база решения доступна по ссылке https://gitdp.zyfra.com/ds_and_math_users/ml-dl-in-operations-reaseearches.git

5.2.1. Сценарий А78СВЕАО с бинарными переменными

Статистика

Общее количество переменных: 797818

Количество целочисленных переменных: 180160

Количество бинарных переменных: 2418

Количество ограничений: 663175

lp-файл: https://disk.yandex.ru/d/JbT3KR5Yi1ZomQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING,
- o ONEOPT,
- o GINS.

Фргамент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
    dualbound
               | primalbound | gap
                                      | compl.
d1790s | 1881 | 1668 | 1010k | 296.9 | distribu | 93 | 50k | 43k | 43k |
                                                                       0 | 1 | 385 | 3585 |
                                          7.70%
   3.757279e+10 | 3.894342e+10 |
                                 3.65%|
d1790s| 1881 | 1668 | 1010k| 296.9 |distribu| 93 | 50k|
                                                                       0 | 1 | 385 | 3585 |
                                                          43k|
                                                                43k|
   3.757279e+10 | 3.894341e+10 | 3.65%|
                                         7.70%
                                                                43k|8612 | 0 | 385 |3585 |
i1792s| 1882 | 1667 | 1011k| 297.0 | oneopt| 93 |
                                                    50k|
                                                          43k|
   3.757279e+10 | 3.893993e+10 | 3.64%|
                                          7.70%
1796s| 1900 | 1687 | 1016k| 297.0 | 3669M | 93 | 50k| 43k| 43k|8644 | 1 | 387 | 3585 |
   3.757279e+10 | 3.893993e+10 |
                                 3.64%|
                                          2.82%
L1902s| 1982 | 1769 | 1090k| 313.4 |
                                        gins| 93 | 50k| 43k| 43k|8935 | 1 | 398 |3590 |
   3.757279e+10 | 3.875897e+10 | 3.16%|
                                          2.83%
                                       gins| 93 | 50k| 43k| 43k|8935 | 1 | 398 |3590 |
L1912s| 1982 | 1769 | 1090k| 313.4 |
                                          2.83%
   3.757279e+10 | 3.864257e+10 | 2.85%|
                                                          43k| 43k|8935 | 1 | 398 |3590 |
i1920s| 1982 | 1769 | 1099k| 316.2 | oneopt| 93 | 50k|
   3.757279e+10 | 3.864241e+10 |
                                 2.85%|
                                          2.83%
1954s | 2000 | 1787 | 1133k | 325.5 | 3731M | 93 | 50k | 43k |
                                                               43k|9004 | 1 | 398 |3591 |
   3.757279e+10 | 3.864241e+10 |
                                  2.85%|
                                          2.83%
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/6FPE-S5VupA6iw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 2.46% лучше в смысле целевой функции и на 19.64% – в смысле временных издержек (табл. 9).

В табл. 9 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее *первому* допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее *последнему* допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 9. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий a78cbead с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, ×10 ¹⁰
CBC+DOH	39.82	3.961502
SCIP+MC (a)	29.83 + 25.09%	3.894342 +1.70%
SCIP+MC(b)	32.00 +19.64%	3.864241 + 2.46%

5.2.2. Сценарий 7FAC4231 с бинарными переменными

Статистика

Общее количество переменных: 740251

Количество целочисленных переменных: 147789

Количество бинарных переменных: 2666

Количество ограничений: 545350

lp-файл: https://disk.yandex.ru/d/3NbbjfLW5zhejQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- ONEOPT,
- o GINS.
- CROSSOVER,
- ALNS.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
    dualbound | primalbound | gap | compl.

r 454s| 372 | 341 | 91171 | 102.3 | intshift| 309 | 41k| 33k| 34k|2788 | 5 | 57 |3711 |
    1.053077e+10 | 1.309195e+10 | 24.32%| 0.78%

i 454s| 373 | 340 | 91171 | 102.0 | oneopt| 309 | 41k| 33k| 34k|2788 | 0 | 57 |3711 |
    1.053077e+10 | 1.308634e+10 | 24.27%| 0.78%

463s| 400 | 369 | 93623 | 101.3 | 2493M | 309 | 41k| 33k| 34k|2950 | 1 | 57 |3761 |
    1.053077e+10 | 1.308634e+10 | 24.27%| 0.29%

L 507s| 473 | 442 | 106991 | 113.9 | gins| 309 | 41k| 33k| 34k|3084 | 1 | 57 |3813 |
    1.053077e+10 | 1.297515e+10 | 23.21%| 0.29%
```

```
L 512sl
         473 l
                 442 | 106991 | 113.9 |
                                          gins | 309 | 41k|
                                                             33k|
                                                                   34k|3084 | 1 | 57 |3813 |
    1.053077e+10 | 1.292548e+10 | 22.74%|
                                            0.29%
                                          gins| 309 |
L 522s|
         473 |
                 442 | 106991 | 113.9 |
                                                       41k|
                                                             33k|
                                                                   34k|3084 | 1 | 57 |3813 |
    1.053077e+10 | 1.289283e+10 | 22.43%|
                                            0.29%
                                          gins| 309 |
L 525s|
          473 |
                 442 | 106991 | 113.9 |
                                                       41k|
                                                             33k|
                                                                   34k|3084 | 1 | 57 |3813 |
    1.053077e+10 | 1.286340e+10 | 22.15%|
                                            0.29%
          473 |
                 442 | 112279 | 125.1 | oneopt | 309 |
                                                             33k|
                                                                   34k|3084 | 1 | 57 |3813 |
                                                       41k|
    1.053077e+10 | 1.285668e+10 | 22.09%|
                                            0.29%
                 443 |120630 | 142.5 |intshift| 309 |
                                                             33k|
                                                                   34k|3084 | 1 | 58 |3813 |
r 531sl
          474 |
                                                       41k|
    1.053077e+10 | 1.197786e+10 | 13.74%|
                                            0.29%
                 373 | 124926 | 151.6 | oneopt | 309 | 41k | 33k | 34k | 3084 | 1 | 58 | 3813 |
i 532s|
         474 |
    1.053077e+10 | 1.197230e+10 | 13.69%|
                                            0.29%
                399 | 126496 | 146.9 | 2579M | 309 |
                                                    41k| 33k|
                                                                 34k|3181 | 1 | 58 |3822 |
536s|
        500 |
    1.053077e+10 | 1.197230e+10 | 13.69%|
                                            0.29%
567s|
        600 |
               499 | 158520 | 175.8 | 2613M | 309 |
                                                     41k| 33k|
                                                                 34k|3641 | 1 | 60 |3933 |
    1.053095e+10 | 1.197230e+10 | 13.69%|
                                            0.29%
         659 |
                 554 | 189783 | 207.6 |
                                          gins | 309 | 41k|
                                                             33k|
                                                                   34k|4060 | 1 | 62 |3978 |
    1.053095e+10 | 1.191898e+10 | 13.18%|
                                            0.29%
                 555 | 198453 | 220.4 | oneopt | 309 |
                                                             33k| 34k|4060 | 1 | 62 |3981 |
          660 l
                                                       41k|
    1.053095e+10 | 1.191889e+10 | 13.18%|
                                            0.30%
794s|
        700 |
                595 | 236166 | 261.7 | 2689M | 309 |
                                                     41k|
                                                           33k|
                                                                 34k|4418 | 1 | 62 |4010 |
    1.053095e+10 | 1.191889e+10 | 13.18%|
                                            0.32%
836s|
       800 |
               695 | 277232 | 280.4 | 2728M | 309 | 41k | 33k |
                                                                 34k|4757 | 1 | 64 |4027 |
    1.053219e+10 | 1.191889e+10 | 13.17%|
                                            0.32%
                 693 | 295017 | 281.5 | crossove | 309 | 41k | 33k | 34k | 5000 | 1 | 64 | 4059 |
         860 |
L 967sl
    1.053219e+10 | 1.154287e+10 |
                                   9.60%|
                                            0.32%
                                                            33k|
                                                                   34k|5000 | 1 | 64 |4059 |
                 693 | 300734 | 288.1 | oneopt | 309 | 41k |
    1.053219e+10 | 1.154284e+10 |
                                   9.60%|
                                            0.32%
                                                    41k| 33k| 34k|5288 | 1 | 64 |4139 |
              733 |312921 | 288.9 | 2793M | 309 |
990sl
        900 |
                                            0.33%
    1.053219e+10 | 1.154284e+10 |
                                   9.60%|
1042sl 1000 l
                823 |346085 | 293.2 | 2816M | 309 |
                                                     41k| 33k|
                                                                 34k|5725 | 1 | 65 |4281 |
    1.053219e+10 | 1.154284e+10 |
                                   9.60%
                                            0.33%
L1083s| 1003 |
                 826 | 347173 | 293.4 |
                                          alns| 309 |
                                                       41k|
                                                             33k|
                                                                  34k|5747 | 2 | 65 |4284 |
    1.053219e+10 | 1.153273e+10 |
                                   9.50%
                                            0.33%
i1084s| 1004 |
                 827 | 352908 | 298.8 | oneopt | 309 | 41k | 33k | 34k | 5747 | 1 | 65 | 4284 |
    1.053219e+10 | 1.118743e+10 |
                                   6.22%
                                            0.33%
                                                            33k|
                                                                  34k | 6055 | 3 | 65 | 4323 |
1113s| 1100 |
               699 | 373504 | 291.4 | 2860M | 309 | 41k |
                                   6.22%|
    1.053219e+10 | 1.118743e+10 |
                                            0.44%
1140s|
           1 |
                  0 |419115 |
                                  - | 3039M |
                                                 0 |
                                                      41k|
                                                            34k|
                                                                  34k|
                                                                         0 | 0 | 65 | 4323 |
    1.053219e+10 | 1.118743e+10 |
                                   6.22% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/TmA6hqFV87eGTg
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/CsGV_oal40Tx0Q

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 3.38% лучше в смысле целевой функции и на 33.07% — в смысле временных издержек (табл. 10).

В табл. 10 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepвomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 10. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 7fac4231 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшeния, \times 10^{10}$
CBC+DOH	27.00	1.157865
$\overline{\text{SCIP+MC }(a)}$	18.05 +33.15%	1.153273 +0.40%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 33.07%	1.118743 + 3.38%

5.2.3. Сценарий 50197DF7 с бинарными переменными

Статистика

Общее количество переменных: 720954

Количество целочисленных переменных: 159332

Количество бинарных переменных: 2490

Количество ограничений: 600777

lp-файл: https://disk.yandex.ru/d/qWeSKb2WEs6kQA

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- o ONEOPT.
- o GINS.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
                | primalbound | gap
                                       | compl.
    dualbound
                 948 | 155676 | 53.5 | intshift | 409 | 41k | 34k | 35k | 4367 | 1 | 69 | 7354 |
r 836s|
         963 |
   3.554610e+10 | 3.676991e+10 |
                                  3.44% unknown
         964 |
                947 | 155676 | 53.5 | oneopt | 409 | 41k | 34k | 35k | 4367 | 0 | 69 | 7354 |
   3.554610e+10 | 3.676497e+10 |
                                  3.43%| unknown
846s| 1000 |
             985 | 157559 | 53.4 | 2577M | 409 | 41k | 34k | 35k | 4396 | 1 | 69 | 7444 |
   3.554610e+10 | 3.676497e+10 | 3.43% | unknown
                                          gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7484 |
L 885s | 1064 | 1049 | 157869 | 50.5 |
   3.554610e+10 | 3.659894e+10 |
                                   2.96% | unknown
L 931s | 1064 | 1049 | 157869 | 50.5 |
                                          gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7484 |
    3.554610e+10 | 3.656967e+10 |
                                   2.88%| unknown
i 962s| 1064 | 1049 | 161589 | 54.0 | oneopt| 409 | 41k| 34k| 35k|4397 | 1 | 69 | 7484 |
   3.554610e+10 | 3.656967e+10 | 2.88% unknown
969s | 1100 | 1085 | 161769 | 52.4 | 2620M | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7532 |
   3.554610e+10 | 3.656967e+10 | 2.88% | unknown
L 988s | 1164 | 1149 | 161992 | 49.7 |
                                          gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7557 |
   3.554610e+10 | 3.630031e+10 | 2.12% | unknown
                                          gins | 409 | 41k | 34k | 35k | 4397 | 1 | 69 | 7557 |
L 993s| 1164 | 1149 | 161992 | 49.7 |
   3.554610e+10 | 3.625804e+10 | 2.00% | unknown
                                          gins| 409 | 41k| 34k| 35k|4397 | 1 | 69 |7557 |
L1000s| 1164 | 1149 | 161992 | 49.7 |
    3.554610e+10 | 3.623675e+10 |
                                   1.94% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/2_FDqS70q0UBqA
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/SkRLoRYzQDI-Aw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для по-

следнего решения из пула допустимых целочисленных решений на 2.87% лучше в смысле целевой функции и на 36.08% – в смысле временных издержек (табл. 11).

В табл. 11 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее *первому* допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее *последнему* допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 11. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 50197df7 с бинарными переменными

$Cnoco\delta$	Полное время рас-	1 ,
	чета, мин	$peшения, \times 10^{10}$
CBC+DOH	28.27	3.730552
SCIP+MC (a)	13.93 +50.73%	3.676991 + 1.44%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 36.08%	3.623675 + 2.87%

5.2.4. Сценарий F398266В с бинарными переменными

Статистика

Общее количество переменных: 777271

Количество целочисленных переменных: 172449

Количество бинарных переменных: 2370

Количество ограничений: 655003

lp-файл: https://disk.yandex.ru/d/4YFYJSB1I1wsmQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING,
- ONEOPT,
- CROSSOVER.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
                | primalbound | gap
    dualbound
                                       | compl.
d1163s|
         433 |
                 434 |462507 | 790.8 |distribu| 51 | 59k|
                                                           48k|
                                                                 49k|
                                                                        0 | 1 | 17 | 1387 |
   5.857793e+10 | 6.054807e+10 |
                                  3.36% unknown
d1164s|
         433 |
                434 |462644 | 791.1 |distribu| 51 |
                                                     59k|
                                                           48k|
                                                                 49k|
                                                                        0 | 1 | 17 | 1387 |
   5.857793e+10 | 6.054779e+10 |
                                  3.36% unknown
               434 |462746 | 791.3 |distribu| 51 |
                                                           48k|
                                                                 49k|
                                                                        0 | 1 | 17 | 1387 |
d1164s|
         433 |
                                                      59k|
   5.857793e+10 | 6.054778e+10 |
                                  3.36% unknown
         433 | 434 |462780 | 791.4 |distribu| 51 |
                                                                        0 | 1 | 17 | 1387 |
                                                      59k|
                                                           48k|
                                                                 49k|
d1164s|
   5.857793e+10 | 6.054776e+10 |
                                  3.36% unknown
         433 | 434 |462801 | 791.4 |distribu| 51 |
                                                     59k|
                                                           48k|
                                                                 49k|
                                                                        0 | 1 | 17 | 1387 |
d1164s1
   5.857793e+10 | 6.054776e+10 |
                                  3.36% unknown
                                                                        0 | 1 | 17 | 1387 |
d1165s| 433 | 434 |462836 | 791.5 |distribu| 51 | 59k|
                                                           48k|
                                                                 49k|
   5.857793e+10 | 6.054776e+10 |
                                  3.36% unknown
         433 | 434 |462856 | 791.6 |distribu| 51 | 59k|
                                                           48k|
                                                                 49k|
                                                                        0 | 1 | 17 | 1387 |
d1165s|
   5.857793e+10 | 6.054774e+10 | 3.36% | unknown
```

```
| i1167s| 434 | 433 | 463020 | 790.1 | oneopt| 51 | 59k| 48k| 49k|4333 | 0 | 17 | 1387 | 5.857793e+10 | 6.053918e+10 | 3.35%| unknown | 1250s| 500 | 501 | 531180 | 822.2 | 3321M | 51 | 59k| 48k| 49k|4529 | 1 | 26 | 1402 | 5.857793e+10 | 6.053918e+10 | 3.35%| unknown | 1579s| 600 | 601 | 663342 | 905.6 | 3398M | 51 | 59k| 48k| 49k|5175 | 1 | 36 | 1426 | 5.857932e+10 | 6.053918e+10 | 3.35%| unknown | 1892s| 634 | 635 | 704819 | 922.5 | crossove| 55 | 59k| 48k| 49k|5448 | 2 | 41 | 1433 | 5.858028e+10 | 6.021605e+10 | 2.79%| unknown | 1895s| 634 | 635 | 715376 | 939.1 | oneopt| 55 | 59k| 48k| 49k|5448 | 2 | 41 | 1433 | 5.858028e+10 | 6.021603e+10 | 2.79%| unknown | 1952s| 700 | 701 | 770566 | 929.4 | 3457M | 63 | 59k| 48k| 49k|5644 | 1 | 50 | 1442 | 5.858050e+10 | 6.021603e+10 | 2.79%| unknown | 2095s| 800 | 801 | 879949 | 950.0 | 3489M | 65 | 59k| 48k| 49k|5964 | 1 | 62 | 1476 | 5.858065e+10 | 6.021603e+10 | 2.79%| unknown |
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/KXzdrUx6TZbXEw
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/FERoaFsr5zbkjA

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 0.97% лучше в смысле целевой функции и на 56.24% – в смысле временных издержек (табл. 12).

В табл. 12 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepвomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnedhemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 12. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий f398266b с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, ×10 ¹⁰
CBC+DOH	72.17	6.080841
$\overline{\text{SCIP+MC}(a)}$	19.38 + 73.15%	6.054807 + 0.43%
$\overline{\text{SCIP+MC}(b)}$	31.58 + 56.24%	6.021603 + 0.97%

5.2.5. Сценарий 337 с бинарными переменными

Статистика

Общее количество переменных: 859230

Количество целочисленных переменных: 173622

Количество бинарных переменных: 155

Количество ограничений: 624637

lp-файл: https://disk.yandex.ru/d/Kc11p9v7D-kxYA

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

• INTSHIFTING,

- RENS,
- o ONEOPT.

Фрагмент лога сессии SCIP

```
time | node
             | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
    dualbound
                | primalbound |
                                         | compl.
                                   gap
                                                                                               0 |
r 107s|
            1 |
                     0 | 55407 |
                                     - |intshift|
                                                     0 | 56k|
                                                                43k|
                                                                      45k|1799 | 13 |
                                                                                         0 1
    2.947544e+10 | 4.344720e+10 | 47.40% | unknown
            1 |
                                                                      45k|1799 | 13 |
                                                                                               0 1
                     0 | 55407 |
                                     - 1
                                            rens
                                                     0 |
                                                          56k|
                                                                43k|
    2.947544e+10 | 3.022206e+10 |
                                     2.53% unknown
          1 |
                  0 | 55407 |
                                   - | 2785M |
                                                   0
                                                        56k|
                                                              43k|
                                                                    45k|1799 | 13 |
    2.947544e+10 | 3.022206e+10 |
                                     2.53% unknown
                                                                      45k|1799 | 13 |
i 250sl
            1 |
                    0 | 58839 |
                                     - | oneopt|
                                                     0 |
                                                         56k|
                                                                43k|
    2.947544e+10 | 3.022205e+10 |
                                     2.53% | unknown
250sl
          1 |
                  0 | 58839 |
                                   - 1
                                        2809M |
                                                   0 |
                                                        56k l
                                                              43k|
                                                                    45k|1799 | 13 |
                                                                                       0 |
    2.947544e+10 | 3.022205e+10 |
                                     2.53% | unknown
                                   - |
                                                        56k|
                                                              43k|
                                                                    45k|1820 | 14 |
                                                                                             0 |
251sl
          1 |
                  0 | 58891 |
                                        2813M |
                                                   0 1
    2.947544e+10 | 3.022205e+10 |
                                     2.53% | unknown
251s|
          1 |
                  0 | 58900 |
                                   - |
                                        2813M |
                                                   0 |
                                                        56k|
                                                              43k|
                                                                    44k|1824 | 15 |
                                                                                       0 |
                                                                                             0 |
    2.947544e+10 | 3.022205e+10 |
                                     2.53% | unknown
                                                                    44k|1824 | 15 |
253s|
          1 |
                  0 | 59074 |
                                   - | 2816M |
                                                   0 |
                                                        56k|
                                                              43k|
                                                                                            12 |
    2.947544e+10 | 3.022205e+10 |
                                     2.53% unknown
                                                              43k|
                                                                    44k|1918 | 16 |
                                                                                       0 |
                                                                                            12 l
254s|
          1 |
                  0 | 59236 |
                                   - | 2821M |
                                                   0 |
                                                        56k|
    2.948327e+10 | 3.022205e+10 |
                                     2.51% unknown
                  0 | 59300 |
                                                        56k l
                                                              43kl
                                                                    44k|1945 | 17 |
                                                                                       0 |
                                                                                            12 l
254s1
          1 I
                                   - | 2821M |
                                                   0 1
    2.948327e+10 | 3.022205e+10 |
                                     2.51% unknown
                                                              43k|
                                                                    44k|1945 | 17 |
                                                                                            19 |
255sl
          1 l
                  0 | 59321 |
                                   - |
                                        2821M |
                                                        56k|
                                     2.51%| unknown
    2.948327e+10 | 3.022205e+10 |
256s1
          1 |
                  0 | 59349 |
                                        2825M |
                                                   0 |
                                                        56k|
                                                              43k|
                                                                    44k|1959 | 18 |
                                                                                       0 |
                                                                                            19 I
                                   - |
    2.948327e+10 | 3.022205e+10 |
                                     2.51% | unknown
256s|
          1 |
                  0 | 59352 |
                                  - |
                                        2825M |
                                                   0 |
                                                        56k|
                                                              43k|
                                                                    44k|1964 | 19 |
                                                                                       0 |
                                                                                            19 |
    2.948327e+10 | 3.022205e+10 |
                                     2.51% unknown
258s|
          1 |
                  0 | 59368 |
                                   - |
                                        2825M |
                                                   0 |
                                                        56k|
                                                              43k|
                                                                    44k|1964 | 19 |
                                                                                       0 1
                                                                                            35 I
    2.957927e+10 | 3.022205e+10 |
                                     2.17% unknown
259s|
                                        2829M |
                                                              43k|
                                                                    44k|2014 | 20 |
                  0 | 59451 |
                                                   0 |
                                                        56k|
                                                                                       0 |
                                                                                            35 I
          1 |
                                   - |
    2.957927e+10 | 3.022205e+10 |
                                     2.17% | unknown
259sl
          1 |
                  0 | 59466 |
                                   - |
                                        2829M |
                                                   0
                                                        56k|
                                                              43k|
                                                                    44k|2024 | 21 |
                                                                                            35 I
    2.957927e+10 | 3.022205e+10 |
                                     2.17% unknown
259s|
                                                   0 |
                                                              43k|
                                                                    44k|2024 | 21 |
                                                                                            35 I
          1 |
                  2 | 59466 |
                                   - |
                                       2829M |
                                                        56k l
    2.957927e+10 | 3.022205e+10 |
                                     2.17% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/zwVhKYKEM1M1Qw Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/T9sAbRH6uWh4Uw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на ...% лучше в смысле целевой функции и на ...% – в смысле временных издержек (табл. 13).

В табл. 13 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepsomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 13. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 337 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, ×10 ¹⁰
CBC+DOH	18.00	4.047865
$\overline{\text{SCIP+MC}(a)}$	4.12 +77.11%	3.022206 +25.34%
$\overline{\text{SCIP+MC}(b)}$	4.30 + 76.11%	3.022205 +25.34%

от значения параметра autorestartnodes. Сценарий input_a78cbead. Первая и вторая фазы поиска решения Рис. 11. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости

Сценарий input_a78cbead-073b-ec11-a2d4-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 12. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья фаза поиска решения

Сценарий input_50197df7-ff50-ec11-a2d7-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 13. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья фаза поиска решения

Сценарий input_7fac4231-5951-ес11-a2d7-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 14. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий 7fac4231. Третья фаза поиска решения

- 6. Описание вычислительных экспериментов на сценариях группы MBO
- 7. Описание вычислительных экспериментов на сценариях MIPLIB 2017
- 7.1. Сценарии со статусом «open»
- 7.1.1. Сценарий DLR2

https://miplib.zib.de/WebData/instances/dlr2.mps.gz

7.1.2. Сценарий CVRPA-N64K9VRPI

https://miplib.zib.de/WebData/instances/cvrpa-n64k9vrpi.mps.gz

- 7.2. Сценарии со статусом «hard»
- 7.2.1. Сценарий CRYPTANALYSISKB128N50BJ14

https://miplib.zib.de/WebData/instances/cryptanalysiskb128n5obj14.mps.gz

- 7.3. Сценарии со статусом «easy»
- 7.3.1. Сценарий NEOS-4332801-seret

https://miplib.zib.de/WebData/instances/neos-4332801-seret.mps.gz

Список иллюстраций

1	Оабисимость верхней границы решения от доли ойнарных переменных, выставлен-
	ных в ноль. Сценарий a78cbead
2	Зависимость верхней границы решения от доли бинарных переменных, выставлен-
	ных в ноль. Сценарий 337
3	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	f398266b без бинарных переменных
4	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	50197df7 без бинарных переменных
5	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	7fac4231 без бинарных переменных
6	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	са485а55 без бинарных переменных
7	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276
	без бинарных переменных
8	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337
	без бинарных переменных
9	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	13d686ab без бинарных переменных
10	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	a78cbead без бинарных переменных
11	Динамика изменения верхней границы решения и числа конфликтов во времени в
	зависимости от значения параметра autorestartnodes. Сценарий input_a78cbead.
	Первая и вторая фазы поиска решения
12	Динамика изменения верхней границы решения и числа конфликтов во времени в
	зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья
	фаза поиска решения
13	Динамика изменения верхней границы решения и числа конфликтов во времени в
	зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья
	фаза поиска решения
14	Динамика изменения верхней границы решения и числа конфликтов во времени в
	зависимости от значения параметра autorestartnodes. Сценарий 7fac4231. Третья
	фаза поиска решения
Спис	сок таблиц
1	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.
	Сценарий f398266b без бинарных переменных
2	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.
	Сценарий 50197df7 без бинарных переменных
3	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.
	Сценарий 7fac4231 без бинарных переменных
4	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.
	Сценарий са485а55 без бинарных переменных

5	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 276 без бинарных переменных	15
6	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 337 без бинарных переменных	17
7	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий 13d686ab без бинарных переменных	18
8	Сводка результатов анализа эффективности метаконфигураций SUH и FZBIVSUHPB.	
	Сценарий a78cbead без бинарных переменных	19
9	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий a78cbead с бинарными переменными	22
10	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 7fac4231 с бинарными переменными	24
11	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 50197df7 с бинарными переменными	25
12	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий f398266b с бинарными переменными	26
13	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-	
	нарий 337 с бинарными переменными	28

Список литературы

1. Иванов Конспект по обучению с подкреплением, 2022