

FACULTAD DE INGENIERIA EN MECÁNICA Y CIENCIAS DE LA PRODUCCIÓN – FIMCP LABORATORIO DE TERMOFLUIDOS PRÁCTICA N°1

Calor específico de un sólido

OBJETIVO

• Calcular experimentalmente el calor específico de un cuerpo desconocido mediante el método de las mezclas.

MARCO TEÓRICO

La temperatura es un parámetro que permite determinar si dos cuerpos están en equilibrio térmico. Los instrumentos diseñados para medir la temperatura se los conoce con el nombre de "termómetros". Para elevar la temperatura de un cuerpo se le debe añadir calor, que es una forma de energía. El calor requerido en joule para que 1 kg de una sustancia aumente (o disminuya) en un kelvin (o lo que es lo mismo 1 °C) su temperatura inicial, es lo que se conoce como calor específico de esa sustancia (c), así:

$$c = \frac{Q}{m\Delta T} \tag{1}$$

La unidad del calor específico de una sustancia en el sistema internacional de medidas es el $\frac{J}{kg*K}$, equivalente a $\frac{cal}{gr*^{\circ}C}$; pudiéndose también utilizar el sistema inglés $\frac{BTU}{lb*^{\circ}F}$.

Siendo el calor una forma de energía, se debe conservar en sistemas cerrados. El calor perdido por una parte del sistema debe ser ganado por otra, este principio puede expresarse como:

$$\sum Q_i = 0 \qquad (2)$$

Donde *Q* representa el calor cedido o ganado por las partes que constituyen el sistema. De la definición de caloría se tiene que el calor cedido o ganado puede medirse con la ecuación:

$$Q = mc(T_E - T) \tag{3}$$

Donde T_E representa la temperatura de equilibrio térmico, T la temperatura inicial, m la masa del objeto y c el calor específico.

MATERIALES

- Calorímetro
- Termómetro
- Botella térmica
- Muestra sólida
- Receptor metálico

www.espol.edu.ec

in espol

f @espol

.....

@espol1

- Agua
- Agitador

Figura 1.

PROCEDIMIENTO

- 1. Una muestra de sólido de 50 gramos en la forma de gránulos finamente divididos se calienta en un recipiente acondicionado para el efecto con una camisa térmica y una compuerta de escape para la salida de la muestra.
- 2. Una vez calentada la muestra hasta la temperatura de ebullición del agua, se la traslada (mediante una compuerta para el efecto) al calorímetro, el cual contiene una masa de agua (m = 60 gramos) a temperatura ambiente.
- 3. Se mantiene la muestra dentro del calorímetro (m = 200 gr, c = $0.200 \frac{cal}{gr*^{\circ}C}$) hasta que

llegue a la temperatura de equilibrio (ver figura 2).

4. A partir de las masas conocidas, la temperatura inicial y la temperatura de equilibrio del agua, del sólido desconocido y de la mezcla, se puede calcular el calor específico del mismo. De la ecuación (3) de balance de calor se despeja el calor específico del material, como se detalla a continuación:

$$Q_1 + Q_2 + Q_3 = 0$$

De donde despreciaremos el calor cedido al calorímetro Q_2 , así:

$$m_1c_1(T_E - T_1) + m_3c_3(T_E - T_3) = 0$$
$$c_3 = \frac{(m_1c_1)(T_E - T_1)}{m_3(T_3 - T_E)}$$

Figura 2.

Tabla de Calores Específicos de algunas sustancias

	Calor específico (c)		
Sustancias	J/(kg · C°)	kcal/(kg · C°) o cal/(g · C°)	
Sólidos			
Aluminio	920	0.220	
Cobre	390	0.0932	
Vidrio	840	0.201	
Hielo (−10°C)	2100	0.500	
Hierro o acero	460	0.110	
Plomo	130	0.0311	
Suelo (valor promedio)	1050	0.251	
Madera (valor promedio)	1680	0.401	
Cuerpo humano (valor promedio)	3500	0.84	
Líquidos			
Alcohol etílico	2450	0.585	
Glicerina	2410	0.576	
Mercurio	139	0.0332	
Agua (15°C)	4186	1.000	
Gases			
Vapor de agua (H ₂ O)	2000	0.48	

FACULTAD DE INGENIERIA EN MECÁNICA Y CIENCIAS DE LA PRODUCCIÓN – FIMCP LABORATORIO DE TERMOFLUIDOS PRÁCTICA N°2

Calor específico de un sólido

1. Observaciones y datos

- 1.1. Medición de calor específico de un sólido.
 - 1.1.1. Complete la tabla mostrada:

	Agua	Calorímetro	Sustancia
Masa			
Calor específico			
Temperatura inicial			
Temperatura final			

1.1.2. Obtenga el calor específico (c $\pm \Delta c$) de la muestra sólida utilizada en esta práctica.

2. Análisis

- 2.1. De acuerdo con los resultados obtenidos, ¿de qué material está hecha la muestra? Explique.
- 2.2. Encuentre la diferencia relativa entre el valor teórico y el valor experimental del calor específico de la muestra. Utilice la diferencia:

$$\% = \frac{|Teo - Exp|}{Teo} * 100$$