MATEMATIČNO-FIZIKALNI PRAKTIKUM 2021/22

7. naloga: Newtonov zakon

Gibanje masne točke v polju sil v eni dimenziji opišemo z diferencialno enačbo drugega reda, z Newtonovim zakonom

$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F .$$

Enačba je seveda enakovredna sistemu enačb prvega reda

$$m\frac{\mathrm{d}x}{\mathrm{d}t} = p$$
, $\frac{\mathrm{d}p}{\mathrm{d}t} = F$

in tako jo tudi rešujemo: kot sistem dveh enačb prvega reda.

Seveda morajo biti na voljo tudi ustrezni začetni pogoji, tipično $x(t=0) = x_0$ in $dx/dt = v(t=0) = v_0$. Splošnejše gre tu za sistem diferencialnih enačb drugega reda:

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = f(x, y, y', y'', \dots),$$

ki ga lahko prevedemo na sistem enačb prvega reda z uvedbo novih spremenljivk v slogu gibalne količine pri Netwonovi enačbi (y'=v,y''=z,...).

Z nekaj truda se da eksplicitno dokazati, mi pa lahko privzamemo, da so metode za reševanje enačb hoda (Runge-Kutta 4. reda, prediktor-korektor...) neposredno uporabne za reševanje takšnih sistemov enačb in torej aplikabilne v poljubno dimenzijah, kar naj bi v principu zadovoljilo večino naših zahtev.

Obstaja še posebna kategorija tako imenovanih simplektičnih metod, za enačbe, kjer je f le funkcija koordinat, f(y), ki (približno) ohranjajo tudi Hamiltonian, torej energijo sistema. Najbolj znana metoda je Verlet/Störmer/Encke metoda, ki je globalno natančna do drugega reda in ki točno ohranja tudi vrtilno količino sistema (če je ta v danem problemu smiselna). Rešujemo torej za vsak diskretni korak n velikosti h, $x_n = x_0 + n \cdot h$:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f(y)$$

in pri diskretizaciji dobimo recept za korak y_n in $v_n = y'_n$:

$$y_{n+1} = y_n + h \cdot v_n + \frac{h^2}{2} \cdot f(y_n)$$

$$v_{n+1} = v_n + \frac{h}{2} \cdot [f(y_n) + f(y_{n+1})].$$

Alternativno lahko to shemo zapišemo tudi s pomočjo dodatnih vmesnih točk in preskakujemo med lego in hitrostjo z zamikom h/2 (od tod angleško ime 'leapfrog' za ta zapis):

$$y_{n+1} = y_n + h \cdot v_{n+1/2}$$

 $v_{n+3/2} = v_{n+1/2} + h \cdot f(y_{n+1}).$

V še enem drugačnem zapisu je metoda poznana tudi kot metoda "Središčne razlike" (Central Difference Method, CDM), če nas hitrost ne zanima:

$$y_{n+1} - 2y_n + y_{n-1} = h^2 \cdot f(y_n),$$

kjer prvo točko y_1 izračunamo po originalni shemi. Metodo CDM lahko uporabljamo tudi za primere, ko je f tudi funkcija 'časa' x, f(x,y), le da tu simplektičnost ni zagotovljena (in tudi verjetno ne relevantna). Za simplektične metode višjih redov je na voljo na primer Forest-Ruth metoda ali Position Extended Forest-Ruth Like (PEFRL) metoda, ki sta obe globalno četrtega reda in enostavni za implementacijo.

Naloga: Čim več metod uporabi za izračun nihanja matematičnega nihala z začetnim pogojem $\vartheta(0) = \vartheta_0 = 1, \dot{\vartheta}(0) = 0$. Poišči korak, ki zadošča za natančnost na 3 mesta. Primerjaj tudi periodično stabilnost shem: pusti, naj teče račun čez 10 ali 20 nihajev in poglej, kako se amplitude nihajev sistematično kvarijo. Pomagaš si lahko tudi tako, da občasno izračunaš energijo $E \propto 1 - \cos \vartheta + \frac{\dot{\vartheta}^2}{2\omega_0^2}$.

Nariši tudi ustrezne fazne portrete!. Z analitično rešitvijo dobimo za nihajni čas $\frac{4}{\omega_0}K\left(\sin^2\frac{\vartheta_0}{2}\right)$, kjer je K(m) popolni eliptični integral prve vrste, ki je v SciPy knjižnici in v članku na spletni učilnici podan z:

$$K(m) = \int_{0}^{1} \frac{dz}{\sqrt{(1-z^{2})(1-mz^{2})}} = \int_{0}^{\frac{\pi}{2}} \frac{du}{\sqrt{(1-m\sin^{2}u)}}$$

Previdno, obstaja tudi definicija z m^2 v integralu - potem je prav $K\left(\sin\frac{\vartheta_0}{2}\right)$, brez kvadrata (npr že v Wikipediji)!

(Dodatno lahko tudi sprogramirate eliptični integral, ki je analitična rešitev dane enačbe ali pa ga vzamete iz ustreznih programskih knjižnjic).

Dodatna naloga: Razišči še resonančno krivuljo vzbujenega dušenega matematičnega nihala

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \beta \frac{\mathrm{d}x}{\mathrm{d}t} + \sin x = v \cos \omega_0 t ,$$

kjer je β koeficient dušenja, v in ω_0 pa amplituda in frekvenca vzbujanja. Opazuj obnašanje odklonov in hitrosti nihala pri dušenju $\beta=0.5$, vzbujevalni frekvenci $\omega_0=2/3$ in amplitudo vzbujanja na območju 0.5 < v < 1.5. Poskusi opaziti histerezno obnašanje resonančne krivulje pri velikih amplitudah vzbujanja (Landau, Lifšic, CTP, Vol. 1, Mechanics).

Dodatna dodatna naloga: če ti gre delo dobro od rok, si oglej še odmike in hitrosti (fazne portrete) van der Polovega oscilatorja

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \lambda \frac{\mathrm{d}x}{\mathrm{d}t} \left(1 - x^2 \right) + x = v \cos \omega_0 t$$

s parametri $\omega_0 = 1$, v = 10 ter $\lambda = 1$ ali 100. Tu se ne trudi s preprostimi diferenčnimi shemami: problem je nelinearen in tog, zato uporabi neko preverjeno metodo (na primer iz družine Runge-Kutta ali ekstrapolacijsko metodo) s prilagajanjem velikosti koraka.