Υπολογισμός stress-tests με χρήση γενετικών αλγορίθμων - Υπολογισμός φόρτου εργασίας μέγιστης κατανάλωσης ισχύος

Vasileios Tenentes
University of Ioannina

Έχουμε τελειώσει με τη δυναμική κατανάλωση;

Μπορούμε να υπολογίσουμε σε ένα λογικό σχεδιασμό:

- το switching activity γνωστού φόρτου εργασίας
- το average switching activity άγνωστου φόρτου εργασίας
 - Μέσω Monte Carlo
 - Μέσω Signal Probabilities

Πολλές φορές όμως είναι πρακτικό να ξέρουμε το **μέγιστο switching activity**, λέγεται και worst switching activity, ενός κυκλώματος. Πως μπορούμε να το υπολογίσουμε;

Υπολογισμός μέγιστης δυναμικής κατανάλωσης

Δεν είναι εύκολος στόχος γιατί:

Χρειαζόμαστε έναν συστηματικό τρόπο να εντοπίσουμε το workload που προκαλεί τη μέγιστη δυναμική κατανάλωση ισχύος. Συγκεκριμένα αυτό το workload ονομάζεται power stress-test.

Η αυτοματοποιημένη μεθοδολογία παραγωγής stress-tests βασίζεται σε γενετικούς αλγορίθμους.

Η τεχνική μπορεί να εφαρμοστεί σε επεξεργαστές και λογικά κυκλώματα.

Βήμα 1°: Αρχικός πληθυσμός (σπόρος – seed)

Υπενθυμίζουμε ότι το workload είναι μια χρονοσειρά από τιμές στις εισόδους του κυκλώματος.

Παράμετροι του αλγορίθμου

- Μήκος φόρτου εργασίας L (workload length): είναι το μέγεθος μιας χρονοσειράς και το μετράμε σε πλήθος διανυσμάτων εισόδου.
- **Μέγεθος πληθυσμού N (population size)**: το πλήθος των ξεχωριστών φόρτων εργασίας που θα εξερευνάει ο αλγόριθμος σε κάθε του βήμα.

Αρχικά ξεκινάμε με έναν πληθυσμό από Ν τυχαία workloads. Κάθε ξεχωριστό workload (individual workload) είναι μια χρονοσειρά μήκους L. π.χ. αρχικός πληθυσμός για L=3, N=4

Individual workload 1

t	а	b	С
t1	1	0	1
t2	0	0	1
t3	1	1	0

Individual workload 2

t	а	b	С
t1	0	0	1
t2	0	1	0
t3	1	0	1

Individual workload 3

t	а	b	С
t1	0	1	1
t2	1	1	1
t3	0	0	1

Individual workload 4

t	а	b	С
t1	1	1	1
t2	0	0	0
t3	1	0	1

Βήμα 2°: Μέτρηση της κατανάλωσης κάθε individual

Πρέπει να μετρήσουμε πόσο ένας individual πετυχαίνει **τον στόχο**. **ΜΕΤΡΑΜΕ ΤΟΝ ΣΤΟΧΟ**

Στο στάδιο αυτό για κάθε individual στον πληθυσμό θα πρέπει να γίνει υπολογισμός της **δυναμικής κατανάλωσης ισχύος**.

Μπορεί να γίνει με υπολογισμό μέσω προσομοίωσης του switching activity κάθε individual.

π.χ. αρχικός πληθυσμός για L=3, N=4

Individual workload 1

t	а	b	С
t1	1	0	1
t2	0	0	1
t3	1	1	0

Individual workload 2

t	а	b	С
t1	0	0	1
t2	0	1	0
t3	1	0	1

Individual workload 3

t	а	b	С
t1	0	1	1
t2	1	1	1
t3	0	0	1

Individual workload 4

t	а	b	С
t1	1	1	1
t2	0	0	0
t3	1	0	1

Βήμα 3°: Φυσική επιλογή

Στο στάδιο αυτό επιλέγουμε από τον πληθυσμό ως **γονείς** τα δύο individuals που πετυχαίνουν το καλύτερο αποτέλεσμα στον στόχο που έχουμε θέσει.

Στην προκειμένη περίπτωση επιλέγουμε τα 2 individual workloads με το μεγαλύτερο switching activity και τα ονομάζουμε γονείς (parents).

Individual workload 1

t	а	b	С
t1	1	0	1
t2	0	0	1
t3	1	1	0

Ας υποθέσουμε ότι αυτοί είναι οι 2 γονείς που επιλέγουμε

Individual workload 2

t	а	b	С
t1	0	0	1
t2	0	1	0
t3	1	0	1

Individual workload 3

t	а	b	С
t1	0	1	1
t2	1	1	1
t3	0	0	1

Individual workload 4

t	а	b	С
t1	1	1	1
t2	0	0	0
t3	1	0	1

Βήμα 4°: Διασταύρωση

Από τους 2 γονείς παράγουμε έναν νέο πληθυσμό. Σίγουρα στο νέο πληθυσμό κρατάμε τους γονείς γιατί

- ως την ώρα δίνουν το καλύτερο αποτέλεσμα
- δεν είμαστε ακόμα βέβαιοι ότι τα παιδιά τους θα έχουν καλύτερο

αποτέλεσμα

Individual workload 1

2nd generation

t	a	b	C
t1	0	0	1
t2	0	1	0
t3	1	0	1

Individual workload 2

2nd generation

t	а	b	С
t1	0	1	1
t2	1	1	1
t3	0	0	1

Τα υπόλοιπα «παιδιά» παράγονται με διασταύρωση. Μπορεί να γίνει με διάφορους τρόπους. Εμείς θα χρησιμοποιήσουμε τη τυχαία πρόσμιξη με διαίρεση. Για κάθε individual/παιδί που θα παράγουμε, θα επιλέγουμε μια τυχαία γραμμή διαχωρισμού R από 1 έως L. Οι πρώτες R γραμμές θα επιλέγονται από τον έναν γονέα και οι υπόλοιπες L-R θα επιλέγονται από τον άλλον. Επίσης μπορούμε να αλλάζουμε τυχαία από ποιον γονέα θα επιλέγουμε τις αρχικές γραμμές ρίχνοντας ένα νόμισμα C.

Παράμετροι R,C του αλγορίθμου

C=1, R=2 (όταν C=1, τότε 1^{ος} γονέας ο A) Individual workload 3 2nd generation

2 Scheration				
t	а	b	С	
t1	0	0	1	
t2	0	1	0	
t3	0	0	1	

C=2, R=1
(όταν C=2, τότε 1^{ος} γονέας ο Β)
Individual workload 4
2nd generation

t	а	b	С
t1	0	1	1
t2	0	1	0
t3	1	0	1

Βήμα 5°: Μετάλλαξη

Με μια πολύ μικρή πιθανότητα που ονομάζεται συντελεστής μετάλλαξης (mutation rate) m αλλάζουμε τα bits των παιδιών που προήλθαν από διαίρεση στο προηγούμενο βήμα. Δεν μεταλλάσσουμε τους δύο γονείς της γενιάς. Το m μπορεί να είναι πολύ μικρό π.χ. m=0.01

Individual workload 1

2nd generation

E Scholation			
t	a	b	С
t1	0	0	1
t2	0	1	0
t3	1	0	1

Individual workload 2

2nd generation

	- Scheration				
t	a	b	С		
t1	0	1	1		
t2	1	1	1		
t3	0	0	1		

C=1, R=2 Individual workload 3 2nd generation

t	а	b	С
t1	0	0	1
t2	0	1	0
t3	0	0	1

C=2, R=1
Individual workload 4
2nd generation

t	а	b	С
t1	0	1	1
t2	0	1	0
t3	1	0	1

Δεν μεταλλάσσονται

Individual workload 1

2nd generation

7	IICI G	CIOII
а	b	С
0	0	1
0	1	0
1	0	1
	a 0	0 0 0 1

Individual workload 2

2nd generation

Scheration				
t	a	b	С	
t1	0	1	1	
t2	1	1	1	
t3	0	0	1	

Mutated individual 3 2nd generation

t	а	b	С
t1	0	0	1
t2	0	0	0
t3	0	0	1

Mutated individual 4 2nd generation

Μεταλλάσσονται

t	а	b	С
t1	0	1	0
t2	0	1	0
t3	1	1	1

Παράμετρος του αλγορίθμου m

Σύνοψη παραμέτρων

Παράμετροι του αλγορίθμου

- **Μήκος φόρτου εργασίας L (workload length)**: είναι το μέγεθος μιας χρονοσειράς και το μετράμε σε πλήθος διανυσμάτων εισόδου.
- **Μέγεθος πληθυσμού N (population size)**: το πλήθος των ξεχωριστών φόρτων εργασίας που θα εξερευνάει ο αλγόριθμος σε κάθε του βήμα.
- **Ρυθμός μεταλλάξεων m (mutation rate):** είναι μια πιθανότητα κάποια bits από κάποια παιδιά να αλλάξουν.

Τυχαίες μεταβλητές

- Τυχαία γραμμή διαχωρισμού R διασταυρώσεων: είναι το πλήθος των γραμμών που θα επιλεγούν από τον πρώτο γονέα κατά τη διαδικασία της κατασκευής νέων παιδιών.
- Τυχαία νόμισμα C επιλογής πρώτου γονέα: από τον γονέα αυτών θα επιλέγονται οι πρώτες γραμμές κάποιου παιδιού. Σε κάθε παιδί αλλάζει ο πρώτος τυχαία ο πρώτος γονέας.

Συνεχίζουμε έως ότου δεν υπάρχει βελτίωση

- Στον αλγόριθμο που δείξαμε μπορούμε να βάλουμε διάφορες μετρικές στόχους (objective functions) στο βήμα measure για να βελτιστοποιήσει.
- Δουλεύει όχι μόνο για λογικά κυκλώματα αλλά και για προγράμματα μικροεπεξεργαστών, δηλαδή εντολές assembly
 - Μπορείτε να σκεφτείτε εφαρμογές με άλλες objective functions σε επεξεργαστές;

Εφαρμογές των stress-tests

Κατά την κατασκευή των πρωτοτύπων επεξεργαστών, stress-tests που μεγιστοποιούν το **θόρυβο** πάνω σε κυκλώματα, χρησιμοποιούνται για τον υπολογισμό της **ελάχιστης τάσης τροφοδοσία**ς.

Stress-tests που μεγιστοποιούν τη **θερμοκρασία** που εκλύεται από τον επεξεργαστή χρησιμοποιούνται για τον υπολογισμό του **συστήματος ψύξης**.

Stress-tests που μεγιστοποιούν την κατανάλωση ενέργειας/ισχύος του επεξεργαστή χρησιμοποιούνται για τον σχεδιασμό του συστήματος τροφοδοσίας.

Έχουν εφαρμογές επίσης στον χώρο της ασφάλειας.

Assembly Stress-tests

