

EMPIRICAL AND
MOLECULAR
FORMULA

Sketch the Lewis-Dot Diagram for Magnesium
 Oxide

WARM-UP

Magnesium oxide

MgO

DIFFERENCE BETWEEN C₂H₂ VS. C₆H₆?

Notice that in these structures, the subscripts in the chemical formulas are NOT in their simplest form. For instance, both compounds could be written as: <u>CH</u> (reduced)

EMPIRICAL FORMULAS

- Empirical or Simplest Formula
 - The formula of a compound that represents a mole ratio in the smallest whole number ratio of the atoms present.
 - Which compounds from the warm-up contain empirical formulas? MgO and CH

✓ Ionic Compounds are ALWAYS empirical

MOLECULAR FORMULAS

Molecular Formula

- The actual formula/ratio of the number of atoms of each type bonded to form a molecule
- Molecular Compounds can be represented with empirical OR molecular formulas
- $ightharpoonup C_2H_2 = Molecular Formula$
- ✓ CH = Empirical Formula
- Sometimes the molecular formula IS the empirical formula. Such as: H₂O cannot be reduced any further.

DIFFERENCE BETWEEN C2H2 VS. C6H6?

C_2H_2	C ₆ H ₆
$% C = 24.0g \times 100\% = 92.3\%$ 26.0g	$%C = 72g \times 100\% = 92.3\%$ $78g$
% H = 100 – 92.3% = 7.7%	% H = 100 – 92.3% = 7.7%

Determine the mass in grams of each element present, if necessary.

- Calculate the number of moles of each element.
 - 3. Divide each by the smallest number of moles to obtain the simplest whole number ratio.
- 4. If whole numbers are not obtained* in step 3, multiply through by the smallest number that will give all whole numbers
 - ☐ If a mole ratio is 1.5, then multiply mole ratio by 2 to get 3.
 - ☐ If a mole ratio is 1.25, then multiply mole ratio 4 to get 5.
 - □ If a mole ratio is 1.33, then multiply mole ratio by 3 to get 4
- * Be careful! Do not round off numbers prematurely

EMPIRICAL FORMULA

TO OBTAIN AN

CALCULATING EMPIRICAL FORMULA FROM % COMPOSITION

A compound of carbon, chlorine and fluorine was analyzed and found to contain 16.3% carbon, 32.1% chlorine, 51.6% fluorine by MASS. Determine the simple formula of the compound.

Element	Assume 100 g sample	# of moles (n = m/M)	Ratio (÷ by lowest # of moles)	WHOLE # ratio	
С			2		
Cl					
F					
		17.			8

Therefore, empirical (simple) formula is $C_3Cl_2F_6$

DETERMINING MOLECULAR FORMULA

- To determine molecular formula you must know
 - Simple formula
 - Molar mass of compound
- Sample Problem #1: A student has determined that the empirical formula for a compound of sulphur and chlorine is SCI. The molar mass of this compound is 135.0 g/mol. Determine its molecular formula.
- 1. Find M of empirical formula. $M_{SCI} = 32.1 + 35.5 = 67.6 \text{ g/mol}$
- 2. Divide M of compound by M of empirical formula to get the # of units.

of units =
$$\frac{135.0 \text{ g/mol}}{67.6 \text{ g/mol}} = 2$$

Simple formula = SCI S_2CI_2 = molecular formula

- For some questions, you must determine the simple formula first then do the 2 steps in the previous problem.
- Sample Problem #2: Determine the molecular formula of a compound containing 85.7% carbon and 14.3% hydrogen by mass. The molar mass of the compound is 84.0 g/mol

Element	Assume 100 g sample	# of moles (n = m/M)	Ratio (÷ by lowest # of moles)	
С	85.7 g			En foi
Н	14.3 g			is

Empirical formula is <mark>CH</mark>2

of units = $\frac{84.0 \text{ g/mol}}{14.0 \text{ g/mol}}$

$$M(CH_2) = 2(1.0) + 12.0 = 14.0 \text{ g/mol}$$

$$M_{compound} = 84.0 g/mol$$

$$\blacksquare$$
 molecular formula is 6 x (CH₂) = C₆H₁₂