Numerical Analysis

established about 4'000 years ago

- 2. Методи розв'язання нелінійних рівнянь
 - 2.1. Метод ділення навпіл
 - 2.2. Метод простої ітерації
 - 2.3. Метод релаксації
 - 2.4. Метод Ньютона (метод дотичних)
 - 2.5. Збіжність методу Ньютона

2. Методи розв'язання нелінійних рівнянь

Постановка задачі. Нехай маємо рівняння f(x)=0, ar x — його розв'язок, тобто f(ar x)=0.

Задача розв'язання цього рівняння розпадається на етапи:

- Існування та кількість коренів.
- Відділення коренів, тобто розбиття числової вісі на інтервали, де знаходиться один корінь.
- Обчислення кореня із заданою точністю ε .

Для розв'язання перших двох задач використовуються методи математичного аналізу та алгебри, а також графічний метод. Далі розглядаються методи розв'язання третього етапу.

2.1. Метод ділення навпіл

Література:

- Самарский, Гулин, стор. 191: djvu, pdf;
- Волков, стор. 189-190: djvu, pdf.

Припустимо на [a,b] знаходиться лише один корінь рівняння

$$f(x) = 0 (1)$$

для $f(x) \in C[a,b]$, який необхідно визначити. Нехай $f(a) \cdot f(b) < 0$.

Припустимо, що f(a)>0, f(b)<0. Покладемо $x_1=\frac{a+b}{2}$ і підрахуємо $f(x_1)$. Якщо $f(x_1)<0$, тоді шуканий корінь \overline{x} знаходиться на інтервалі (a,x_1) . Якщо ж $f(x_1)>0$, то $\overline{x}\in(x_1,b)$. Далі з двох інтервалів (a,x_1) і (x_1,b) вибираємо той, на границях якого функція f(x) має різні знаки, знаходимо точку x_2 — середину вибраного інтервалу, підраховуємо $f(x_2)$ і повторюємо вказаний процес.

В результаті отримаємо послідовність інтервалів, що містять шуканий корінь \bar{x} , причому довжина кожного послідуючого інтервалу вдвічі менше попереднього.

Цей процес продовжується до тих пір, поки довжина отриманого інтервалу (a_n,b_n) не стане меншою за $b_n-a_n<2\varepsilon$. Тоді x_{n+1} , як середина інтервалу (a_n,b_n) , пов'язане з \overline{x} нерівністю

$$|x_{n+1} - \bar{x}| < \varepsilon. \tag{2}$$

Ця умова для деякого n буде виконуватись за теоремою Больцано-Коші. Оскільки

$$|b_{k+1} - a_{k+1} = \frac{|b_k - a_k|}{2},\tag{3}$$

TO

$$|x_{n+1} - \bar{x}| \le \frac{b-a}{2^{n+1}} < \varepsilon. \tag{4}$$

Звідси отримаємо нерівність для обчислення кількості ітерацій n для виконання умови (2):

$$n = n(\varepsilon) \ge \left\lceil \log\left(\frac{b-a}{\varepsilon}\right) \right\rceil + 1.$$
 (5)

Степінь збіжності — лінійна, тобто геометричної прогресії з знаменником q=1/2.

- Переваги методу: простота, надійність.
- Недоліки методу: низька швидкість збіжності; метод не узагальнюється на системи.

2.2. Метод простої ітерації

Література:

- Самарский, Гулин, стор. 191–193: djvu, pdf;
- Волков, стор. 172-184: djvu, pdf.

Спочатку рівняння

$$f(x) = 0 (6)$$

замінюється еквівалентним

$$x = \varphi(x). \tag{7}$$

Ітераційний процес має вигляд

$$x_{n+1} = \varphi(x_n), \quad n = 0, 1, \dots$$
 (8)

Початкове наближення x_0 задається.

Для збіжності велике значення має вибір функції $\varphi(x)$. Перший спосіб заміни рівняння полягає в відділенні змінної з якогось члена рівняння. Більш продуктивним є перехід від рівняння (6) до (7) з функцією $\varphi(x)=x+\tau(x)\cdot f(x)$, де $\tau(x)$ — знакостала функція на тому відрізку, де шукаємо корінь.

Означення: Кажуть, що ітераційний метод збігається, якщо $\lim_{k o\infty}x_k=ar{x}.$

Далі $U_r = \{x: |x-a| \le r\}$ відрізок довжини 2r з серединою в точці a.

З'ясуємо умови, при яких збігається метод простої ітерації.

Теорема 1: Якщо

$$\max_{x \in [a,b] = U_r} |\varphi'(x)| \le q < 1 \tag{9}$$

то метод простої ітерації збігається і має місце оцінка

$$|x_n - \bar{x}| \le \frac{q_n}{1 - q} \cdot |x_0 - x_1| \le \frac{q^n}{1 - q} \cdot (b - a).$$
 (10)

 \mathcal{L} оведення: Нехай $x_{k+1}, x_k \in U_r$. Тоді

$$|x_{k} - x_{k-1}| = |\varphi(x_{k}) - \varphi(x_{k-1})| =$$

$$= |\varphi'(\xi_{k}) \cdot (x_{k} - x_{k-1})| \le$$

$$\le |\varphi'(\xi_{k})| \cdot |x_{k} - x_{k-1}| \le$$

$$\le q \cdot |x_{k} - x_{k-1}| = \dots$$

$$= q^{k} \cdot |x_{1} - x_{0}|,$$
(11)

де $\xi_k = x_k + heta_k \cdot (x_{k+1} - x_k)$, а у свою чергу $0 < heta_k < 1$. Далі

$$|x_{k+p} - x_k| = |x_{k+p} - x_{k+p-1} + \dots + x_{k+1} - x_k| =$$

$$= |x_{k+p} - x_{k+p-1}| + \dots + |x_{k+1} - x_k| \le$$

$$\le (q^{k+p-1} + q^{k+p-2} + \dots + q^k) \cdot |x_1 - x_0| =$$

$$= \frac{q^k - q^{k+p-1}}{1 - q} \cdot |x_1 - x_0| \xrightarrow[k \to \infty]{} 0.$$
(12)

Бачимо що $\{x_k\}$ — фундаментальна послідовність. Значить вона збіжна. При $p o \infty$ в (12) отримуємо (10). \square

Визначимо кількість ітерацій для досягнення точності arepsilon. З оцінки в теоремі 1 отримаємо

$$|x_n - \bar{x}| \le \frac{q^n}{1 - q} \cdot (b - a) < \varepsilon, \tag{13}$$

звідки безпосередньо маємо

$$n(\varepsilon) = n \ge \left\lceil \frac{\ln\left(\frac{\varepsilon(1-q)}{b-a}\right)}{\ln q} \right\rceil + 1.$$
 (14)

Практично ітераційний процес зупиняємо при: $|x_n-x_{n-1}|<\varepsilon$. Але ця умова не завжди гарантує, що $|x_n-\overline{x}|<\varepsilon$.

Зауваження: Умова збіжності методу може бути замінена на умову Ліпшиця

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad 0 < q < 1. \tag{15}$$

- **Переваги методу:** простота; при q < 1/2 швидше збігається ніж метод ділення навпіл; метод узагальнюється на системи.
- **Недоліки методу:** при q>1/2 збігається повільніше ніж метод ділення навпіл; виникають труднощі при зведенні f(x)=0 до x=arphi(x).

2.3. Метод релаксації

Література:

• Самарский, Гулин, стор. 192–193: djvu, pdf.

Якщо в методі простої ітерації для рівняння $x=x+ au\cdot f(x)\equiv \varphi(x)$ вибрати $au(x)= au=\mathrm{const}$, то ітераційний процес приймає вигляд

$$x_{n+1} = x_n + \tau \cdot f(x_n), \tag{16}$$

де $k=0,1,2,3\ldots$, а x_0 — задано. Метод можна записати у вигляді

$$\frac{x_{k+1} - x_k}{\tau} = f(x_k), \quad k = 0, 1, \dots$$
 (17)

Оскільки $arphi'(x) = 1 + au \cdot f'(x)$, то метод збігається при умові

$$|\varphi'(x)| = |1 + \tau \cdot f'(x)| \le q < 1.$$
 (18)

Нехай f'(x) < 0, тоді (8) запишеться у вигляді: $-q \leq 1 + au \cdot f'(x) \leq q < 1$. Звідси

$$f'(x) \le 1 + q < 2k\tau,\tag{19}$$

i

$$0 < \tau < \frac{2}{|f'(x)|}.\tag{20}$$

Поставимо задачу знаходження au, для якого $q=q(au) o \min$. Для того, щоб вибрати оптимальний параметр au, розглянемо рівняння для похибки $z_k=x_k-ar x$.

Підставивши $x_k = x + z_k$ в (16), отримаємо

$$z_{k+1} = z_k + \tau \cdot f(x + z_k). \tag{21}$$

В припущені $f(x) \in C^1([a,b])$ з теореми про середнє маємо

$$f(\bar{x} + z_k) = f(\bar{x}) + z_k \cdot f'(\bar{x} + \theta \cdot z_k) =$$

$$= z_k \cdot f'(\bar{x} + \theta \cdot z_k) = z_k \cdot f'(\xi_k),$$
(22)

тобто

$$z_{k+1} = z_k + \tau \cdot f'(\xi_k) \cdot z_k. \tag{23}$$

Звідси

$$|z_{k+1}| \le |1 + \tau \cdot f'(\xi_k)| \cdot |z_k| \le \max_{II} |1 + \tau \cdot f'(\xi_k)| \cdot |z_k|.$$
 (24)

А тому

$$|z_{k+1}| \le \max\{|1 - \tau M_1|, |1 - \tau m_1|\} \cdot |z_k|,\tag{25}$$

де

$$m_1 = \min_{[a,b]} |f'(x)|, \quad M_1 = \max_{[a,b]} |f'(x)|$$
 (26)

Таким чином, задача вибору оптимального параметра зводиться до знаходження au, для якого функція

$$q(\tau) = \max\{|1 - \tau M_1|, |1 - \tau m_1|\}$$
(27)

приймає мінімальне значення: $q(au) o \min$.

З графіка видно, що точка мінімуму визначається умовою $|1-\tau M_1|=|1-\tau m_1|.$ Тому

$$1 - \tau_0 m_1 = \tau_0 M_1 - 1 \implies \tau_0 = \frac{2}{M_1 - m_1} < \frac{2}{|f'(x)|}.$$
 (28)

При цьому значенні au маємо

$$q(\tau_0) = \rho_0 = \frac{M_1 - m_1}{M_1 + m_1}. (29)$$

Тоді для похибки вірна оцінка

$$|x_n - \bar{x}| \le \frac{\rho_0^n}{1 - \rho_0} \cdot (b - a) < \varepsilon. \tag{30}$$

Кількість ітерацій

$$n = n(\varepsilon) \ge \left\lceil \frac{\frac{\ln(\varepsilon(1-\rho_0))}{b-a}}{\ln \rho_0} \right\rceil + 1.$$
 (31)

Задача 1: Дати геометричну інтерпретацію методу простої ітерації для випадків:

$$0 < \varphi'(x) < 1; \quad -1 < \varphi'(x) < 0; \quad \varphi'(x) < -1; \quad \varphi'(x) > 1.$$
 (32)

Задача 2: Знайти оптимальне $au= au_0$ для методу релаксації при f'(x)>0.

2.4. Метод Ньютона (метод дотичних)

Література:

- Самарский, Гулин, стор. 193–194: djvu, pdf.
- Березин, Жидков, том. II, стор. 135-140: djvu, pdf.

Припустимо, що рівняння f(x)=0 має простий дійсний корінь ar x, тобто f(ar x)=0, f'(x)
eq 0. Нехай виконуються умови: $f(x) \in C^1([a,b])$, $f(a) \cdot f(b) < 0$. Тоді

$$0 = f(\bar{x}) = f(x_k + \bar{x} - x_k) = f(x_k) + f'(\xi_k) \cdot (x - x_k), \tag{33}$$

де $\xi_k=x_k+ heta_k\cdot(ar x-x_k)$, $0< heta_k<1$, $\xi_kpprox x_k$. Тому наступне наближення виберемо з рівняння

$$f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k) = 0. (34)$$

Звідси маємо ітераційний процес

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},\tag{35}$$

де $k = 0, 1, 2, \ldots$; x_0 — задане.

Метод Ньютона ще називають методом лінеаризації або методом дотичних.

Задача 3: Дати геометричну інтерпретацію методу Ньютона.

Метод Ньютона можна інтерпретувати як метод простої ітерації з

$$\varphi(x) = x - \frac{f(x)}{f'(x)},\tag{36}$$

тобто

$$\tau(x) = -\frac{1}{f'(x)}. (37)$$

Тому

$$\varphi'(x) = 1 - \frac{f'(x) \cdot f'(x) - f(x) \cdot f''(x)}{(f'(x))^2} = \frac{f(x) \cdot f''(x)}{(f'(x))^2}.$$
 (38)

Якщо ar x — корінь f(x), то arphi'(x)=1. знайдеться окіл кореня, \end{equation}

$$|\varphi'(x)| = \left| \frac{f(x) \cdot f''(x)}{(f'(x))^2} \right| < 1.$$
 (39)

Це означає, що збіжність методу Ньютона залежить від вибору x_0 .

Недолік методу Ньютона: необхідність обчислювати на кожній ітерації не тільки значення функції, а й похідної.

Модифікований метод Ньютона позбавлений цього недоліку і має вигляд:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)}, \quad k = 0, 1, 2, \dots$$
 (40)

Цей метод має лише лінійну збіжність: $|x_{k+1} - x = O(|x_k - \bar{x}|)$.

Задача 4: Дати геометричну інтерпретацію модифікованого методу Ньютона.

В методі Ньютона, для якого $f'(x_k)$ замінюється на

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \tag{41}$$

дає метод січних:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \cdot f(x_k), \tag{42}$$

Задача 5: Дати геометричну інтерпретацію методу січних.

2.5. Збіжність методу Ньютона

Література:

• Самарский, Гулин, стор. 199-202: djvu, pdf.

Теорема 1: Нехай $f(x) \in C^2([a,b])$; $ar{x}$ простий дійсний корінь рівняння

$$f(x) = 0. (43)$$

і f'(x)
eq 0 при $x \in U_r = \{x: |x - ar{x}| < r\}$. Якщо

$$q = \frac{M_2 \cdot |x_0 - \bar{x}|}{2m_1} < 1,\tag{44}$$

де

$$m_1 = \min_{U_r} |f'(x)|, \quad M_2 = \max_{U_r} |f''(x)|,$$
 (45)

то для $x_0 \in U_r$ метод Ньютона

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{46}$$

збігається і має місце оцінка

$$|x_n - \overline{x}| \le q^{2^n - 1} \cdot |x_0 - \overline{x}|. \tag{47}$$

3 (46) маємо

$$x_{k+1} - \bar{x} = x_k - \frac{f(x_k)}{f'(x_k)} - \bar{x} =$$

$$= \frac{(x_k - \bar{x}) \cdot f'(x_k) - f(x_k)}{f'(x_k)} = \frac{F(x_k)}{f'(x_k)},$$
(48)

де $F(x)=(x-ar{x})f'(x)-f(x)$, така, що

- $F(\bar{x}) = 0;$
- $F'(x) = (x \bar{x}) \cdot f''(x)$

Тоді

$$F(x_k) = F(\bar{x}) + \int_{x}^{x_k} F'(t) dt = \int_{x}^{x_k} (t - \bar{x}) \cdot f''(t) dt.$$
 (49)

Так як $(t-ar{x})$ не міняє знак на відрізку інтегрування, то скористаємося теоремою про середнє значення:

$$F(x_k) = f''(\xi_k) \int_{x}^{x_k} (t - \bar{x}) dt = \frac{(x_k - x)^2}{2} \cdot f''(\xi_k),$$
 (50)

де $\xi_k=ar x+ heta_k\cdot(x_k-ar x)$, де $0< heta_k<1$. З (48), (50) маємо

$$x_{k+1} - \bar{x} = \frac{(x_k - \bar{x})^2}{2f'(x_k)} \cdot f''(\xi_k). \tag{51}$$

Доведемо оцінку (46) за індукцією. Так як $x_0 \in U_r$, то

$$|\xi_0 - \bar{x}| = |\theta_0 \cdot (x_0 - \bar{x})| < |\theta_0| \cdot |x_0 - \bar{x}| < r \tag{52}$$

звідси випливає $\xi_0 \in U_r$.

Тоді $f''(\xi_0) \leq M_2$, тому

$$|x_1 - ar{x}| \leq rac{(x_0 - ar{x})^2 \cdot M_2}{2m_1} = \qquad = rac{M_2 \cdot |x_0 - ar{x}|}{2m_1} \cdot |x_0 - ar{x}| = q \cdot |x_0 - ar{x}| < r,$$

тобто $x_1 \in U_r$.

Ми довели твердження (47) при n=1. Нехай воно справджується при n=k

$$|x_k - \bar{x}| \le q^{2^k - 1} \cdot |x_0 - \bar{x}| < r, |\xi_k - \bar{x}| = |\theta_k \cdot (x_k - \bar{x})| < r.$$
(54)

Тоді $x_k, \xi_k \in U_r$.

Доведемо (47) для n=k+1. З (51) маємо

$$egin{aligned} |x_{k+1}-ar{x}| & \leq rac{|x_k-ar{x}|^2 \cdot M_2}{2m_1} \leq \ & \leq \left(q^{2^{k}-1}
ight)^2 \cdot rac{|x_0-ar{x}|^2 \cdot M_2}{2m_1} = \ & = q^{2^{k+1}-2} \cdot rac{|x_0-ar{x}| \cdot M_2}{2m_1} \cdot |x_0-ar{x}| = \ & = q^{2^{k+1}-1} \cdot |x_0-ar{x}|. \end{aligned}$$

Таким чином (47) справджується для n=k+1. Значить (47) виконується і для довільного n. Таким чином $x_n \xrightarrow[n \to \infty]{} x$. \square

З (47) маємо оцінку кількості ітерацій для досягнення точності arepsilon

$$n \ge \left[\log_2 \left(1 + \frac{\ln\left(\frac{\varepsilon}{b-a}\right)}{\ln q} \right) \right] + 1. \tag{55}$$

Кажуть, що ітераційний метод має степінь збіжності т, якщо

$$|x_{k+1} - \bar{x}| = O(|x_k - \bar{x}|^m). (56)$$

Для методу Ньютона

$$|x_{k+1} - \bar{x}| = \frac{|x_k - \bar{x}|^2 | \cdot f''(\xi_k)|}{2|f'(x_k)|}.$$
 (57)

Звідси випливає, що

$$|x_{k+1} - \bar{x}| = O(|x_k - \bar{x}|^2). \tag{58}$$

Значить степінь збіжності методу Ньютона m=2. Для методу простої ітерації і ділення навпіл m=1.

Теорема 2: Нехай $f(x) \in C^2([a,b])$ та x простий корінь рівняння f(x) = 0 ($f'(x) \neq 0$). Якщо $f'(x) \cdot f''(x) > 0$ ($f'(x) \cdot f''(x) < 0$) то для методу Ньютона при $x_0 = b$ послідовність наближень $\{x_k\}$ монотонно спадає (монотонно зростає при $x_0 = a$).

Задача 6: Довести теорему 2 при

- $f'(x) \cdot f''(x) > 0$;
- $f'(x) \cdot f''(x) < 0$.

Задача 7: Знайти степінь збіжності методу січних [Калиткин Н.Н., Численные методы, с. 145–146]

Якщо $f(a)\cdot f''(a)>0$ та f''(x) не міняє знак, то потрібно вибирати $x_0=a$; при цьому $\{x_k\}\uparrow \bar x.$

Якщо $f(b)\cdot f''(b)>0$, то $x_0=b$; маємо $\{x_k\}\downarrow ar x$. Пояснення на рисунку 2:

Зауваження 1: Якщо $\bar{x}-p$ -кратний корінь тобто

$$f^{(m)}(\bar{x}) = 0, \quad m = 0, 1, \dots, p - 1; \quad f^{(p)}(x) \neq 0,$$
 (59)

то в методі Ньютона необхідна наступна модифікація

$$x_{k+1} - x_k - p \cdot \frac{f(x_k)}{f'(x_k)}$$
 (60)

i

$$q = \frac{M_{p+1} \cdot |x_0 - \bar{x}|}{m_p \cdot p \cdot (p+1)} < 1. \tag{61}$$

Зауваження 2: Метод Ньютона можна застосовувати і для обчислення комплексного кореня

$$z_{k+1} = z_k - \frac{f(z_k)}{f'(z_k)} \tag{62}$$

В теоремі про збіжність

$$q = \frac{|x_0 - \bar{x}|M_2}{2m_1},\tag{63}$$

де

$$m_1 = \min_{U_r} |f'(z)|, \quad M_2 = \max_{U_r} f''(z)|.$$
 (64)

Тут |z| — модуль комплексного числа.

Переваги методу Ньютона:

- висока швидкість збіжності;
- узагальнюється на системи рівнянь;

• узагальнюється на комплексні корені.

Недоліки методу Ньютона:

- ullet на кожній ітерації обчислюється не тільки $f(x_k)$, а і похідна $f'(x_k)$;
- збіжність залежить від початкового наближення x_0 , оскільки від нього залежить умова збіжності

$$q = \frac{M_2|x_0 - \bar{x}|}{2m_1} < 1; (65)$$

ullet потрібно, щоб $f(x) \in C^2([a,b]).$

Назад до лекцій

Назад на головну

numerical-analysis is maintained by csc-knu.

© 2019 Київський національний університет імені Тараса Шевченка, Андрій Риженко, Скибицький Нікіта