

A Level · OCR · Physics

Structured Questions

Longitudinal & **Transverse Waves**

Progressive Waves: Longitudinal & Transverse / Calculating Frequency / The Wave Equation / Graphical Representations of Transverse & Longitudinal Waves / Intensity of a Wave

Scan here to return to the course

or visit savemyexams.com

Total Marks /10

1 (a)	The normal frequency range of hearing for young people is from 20 Hz to 20 kHz.
	i) The speed of sound in air is 340 m s^{-1} .
	Calculate the shortest wavelength a young person can hear.
	wavelength = m [2]
	ii) Describe how you can use an oscilloscope, and other additional laboratory equipment, to determine the actual upper limit of the frequency range for a young person.
	[3]
	(5 marks)
(b)	State one difference and one similarity between the oscillations of a stationary sound wave and a progressive sound wave.
	Difference:
	Similarity:
	(2 marks)
(c)	You are provided with a ray-box, a semi-circular block of plastic and other normal laboratory equipment.

The outline of the block is shown below.

Describe how you could measure the refractive index n of the block using the critical angle method. Draw on the diagram and label it to make your answer clear.	
(3 mark	(S)