Algorithmen und Komplexität

Robin Rausch, Florian Maslowski 23. Juni 2022

Inhaltsverzeichnis

1	Komplexitaet						
	1.1 \mathcal{O} -Notation	2					
	1.1.1 Landau-Symbole	2					
	1.2 Logarithmen	3					
	1.3 Dynamisches Programmieren	3					
	1.4 Rekurrenzen	3					
	1.5 Divide & Conquer	3					
2	Einfache Sortierverfahren	3					
	2.1 Insertionsort	3					
	2.1.1 Indirektes Sortieren	3					
	2.2 Bubblesort	3					
	2.3 Quicksort	3					
3	Divide & Conquer Sortierverfahren	3					
	3.1 Mergesort	3					
4	Heap Sortierverfahren						
5	Binäre Suchbäume						
6	AVL-Bäume						
7	Hashing und Hashtabellen						
8	Master-Theorem						
9	Master-Theorem nach Landau						

1 Komplexitaet

Der Begriff Komplexität beschreibt die Frage:

Wie teuer ist ein Algorithmus?

Genauergesagt wird hierfür ermittelt, wie viele elementare Schritte eine Algorithmus im Durchschnitt und schlimmstenfalls braucht. Diese beiden Werte spiegeln die Komplexität wieder.

1.1 \mathcal{O} -Notation

Die \mathcal{O} -Notation ist eine obere Grenze einer Funktion. $\mathcal{O}(f)$ ist die Menge aller Funktionen, die langfristig nicht wesentlich schneller wachsen als f. Einige Beispiele sind zum Beispiel:

- $n^2 \in \mathcal{O}(n^3)$
- $3n^3 + 2n^2 + 17 \in \mathcal{O}(n^3)$
- $n\sqrt{n} \in \mathcal{O}(n^2)$

Rechenregeln für \mathcal{O} -Notation:

$$\begin{array}{lll} \text{F\"ur jede Funktion } f & f & \in \mathcal{O}(f) \\ & g \in \mathcal{O}(f) & \Rightarrow & c \cdot g & \in \mathcal{O}(f) & \text{Konstanter Faktor} \\ g \in \mathcal{O}(f) \wedge h \in \mathcal{O}(f) & \Rightarrow & g+h & \in \mathcal{O}(f) & \text{Summe} \\ g \in \mathcal{O}(f) \wedge h \in \mathcal{O}(g) & \Rightarrow & h & \in \mathcal{O}(f) & \text{Transivit\"at} \\ & \lim_{n \to \infty} \frac{g(n)}{f(n)} \in \mathbb{R} & \Rightarrow & g & \in \mathcal{O}(f) & \text{Grenzwert} \end{array}$$

1.1.1 Landau-Symbole

$g\in\Omega(f)$	g wächst mindestens so schnell wie f	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \in \mathbb{R}$
$g\in\Theta(f)$	g wächst genau so schnell wie f	$\lim_{x \to \infty} \frac{g(x)}{f(x)} = c \in \mathbb{R}^{>0}$
$g \sim f$	g wächst genau so schnell wie f	$\lim_{x \to \infty} \frac{g(x)}{f(x)} = 1$

Betrachten Sie folgende Funktionen:

$$h_1(x) = x^2 + 100x + 3$$

$$h_2(x) = x^2$$

$$h_3(x) = \frac{1}{3}x^2 + x$$

$$h_4(x) = x^3 + x$$

$$g \in \mathcal{O}(f)$$
: $\lim_{x \to \infty} \frac{g(x)}{f(x)} = c \in \mathbb{R}$ $g \in \Omega(f)$: $\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \in \mathbb{R}$ $g \in \Theta(f)$: $\lim_{x \to \infty} \frac{g(x)}{f(x)} = c \in \mathbb{R}^{>0}$ $g \sim f$: $\lim_{x \to \infty} \frac{g(x)}{f(x)} = 1$

Vervollständigen Sie die Tabelle. Zeile steht in Relation ... zu Spalte:

	<i>h</i> ₁	h ₂	h ₃	h ₄
h ₁	$\mathcal{O},\Omega,\Theta,\sim$	$\mathcal{O}, \Omega, \Theta, \sim$	$\mathcal{O}, \Omega, \Theta$	0
h_2	$\mathcal{O},\Omega,\Theta,\sim$	$\mathcal{O}, \Omega, \Theta, \sim$	$\mathcal{O}, \Omega, \Theta$	0
h_3	$\mathcal{O}, \Omega, \Theta$	$\mathcal{O}, \Omega, \Theta$	$\mathcal{O}, \Omega, \Theta, \sim$	O
h_4	Ω	Ω	Ω	$\mathcal{O}, \Omega, \Theta, \sim$

Zur ⊖-Notation gibt es auch ein eigenes *Master-Theorem*.

1.2 Logarithmen

1.3 Dynamisches Programmieren

- 1.4 Rekurrenzen
- 1.5 Divide & Conquer

2 Einfache Sortierverfahren

Selectionsort

In-place Stabil

2. Vertausche a_{min} mit a_0

3. finde kleinstes Element in Folge $(a_1, ... a_{k-1})$

4. Vertausche a_{min} mit a_1

5. ...

2.1 Insertionsort

- 2.1.1 Indirektes Sortieren
- 2.2 Bubblesort
- 2.3 Quicksort

3 Divide & Conquer Sortierverfahren

3.1 Mergesort

Out-of-place Stabil

- 4 Heap Sortierverfahren
- 5 Binäre Suchbäume
- 6 AVL-Bäume
- 7 Hashing und Hashtabellen
- 8 Master-Theorem
- 9 Master-Theorem nach Landau