Definicja Definicja Rozkład gamma Rozkład chi kwadrat (parametry, gęstość, MGF) (parametry, gęstość, MGF) Teoria statystyki Teoria statystyki Definicja TWIERDZENIE Rozkład beta Zależności między rozkładami beta, (parametry, gęstość) gamma, chi kwadrat Teoria statystyki Teoria statystyki Definicja Definicja Rozkład normalny Wielowymiarowy rozkład normalny (parametry, gęstość, MGF) (parametry, gęstość, MGF) Teoria statystyki TEORIA STATYSTYKI TWIERDZENIE TWIERDZENIE Przekształcenie liniowe Rozkłady brzegowe w wielowymiarowego rozkładu wielowymiarowym rozkładzie normalnego normalnym Teoria statystyki Teoria statystyki Definicja TWIERDZENIE Rozkład t-Studenta Twierdzenie Studenta (parametry, i otrzymywanie z innych rozkładów) Teoria statystyki Teoria statystyki

Parametry:
$$r > 0$$

$$f(x) = \begin{cases} \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2-1} e^{-x/2}, x \in (0, \infty) \\ 0, \text{w p.p.} \end{cases}$$

$$M_X(t) = (1 - 2t)^{-r/2}, t < \frac{1}{2}$$

Parametry:
$$\alpha > 0, \beta > 0$$

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, & x \in (0, \infty) \\ 0, & \text{p.p.} \end{cases}$$

$$M_X(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}, t < \frac{1}{\beta}$$

•
$$\Gamma(r/2,2) \stackrel{d}{=} \chi^2(r)$$

•
$$\Gamma(1, \frac{1}{\lambda}) \stackrel{d}{=} \mathcal{E}(\lambda)$$

•
$$\sum_{i=1}^{n} \Gamma(\alpha_i, \beta) \stackrel{d}{=} \Gamma(\sum_{i=1}^{n} \alpha_i, \beta)$$

•
$$\sum_{i=1}^n \chi^2(r_i) \stackrel{d}{=} \chi^2(\sum_{i=1}^n r_i)$$

Parametry: $\alpha > 0, \beta > 0$

$$f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, x \in (0,1) \\ 0, \text{ w p.p.} \end{cases}$$

Parametry: $\mu \in \mathbb{R}^n$, $\Sigma \in M_{n \times n}(\mathbb{R})$ symetryczna, dodatnio określona

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
$$M_x(\mathbf{t}) = \exp\{\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{t}^T \mathbf{\Sigma} \boldsymbol{t}\}$$

Parametry: $\mu \in \mathbb{R}, \, \sigma^2 > 0$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Niech **X** ma rozkład
$$\mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, gdzie $\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}$, $\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$.

Wtedy $\mathbf{X_1}$ ma rozkład $\mathcal{N}_m(\boldsymbol{\mu_1}, \boldsymbol{\Sigma}_{11})$. Ponadto X_1 , X_2 są niezależne wtw., gdy $\Sigma_{12} = 0$.

Niech X ma rozkład $\mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Niech $\mathbf{A} \in M_{m \times n}(\mathbb{R}), \ \mathbf{b} \in \mathbb{R}^m$. Wtedy $\mathbf{AX} + \mathbf{b}$ ma rozkład $\mathcal{N}_m(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$.

Niech X_1, X_2, \ldots, X_n będą i.i.d. zmiennymi z rozkładu $\mathcal{N}(\mu, \sigma^2)$. Oznaczmy $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Wtedy:

- \overline{X} ma rozkład $\mathcal{N}(\mu, \frac{\sigma^2}{\pi})$.
- \overline{X} i S^2 sa niezależne.
- $(n-1)S^2/\sigma^2$ ma rozkład $\chi^2(n-1)$.
- Zmienna $T=\frac{\overline{X}-\mu}{S/\sqrt{n}}$ ma rozkład Studenta z n-1 stopniami swobody.

Parametr: r > 0Niech $W \sim \mathcal{N}(0,1), V \sim \chi^2(r)$. Wtedy

$$T = \frac{W}{\sqrt{V/r}}$$

ma rozkład Studenta z r stopniami swobody.

DEFINICJA	Definicja
Rozkład F -Snedecora (parametry i otrzymywanie z innych rozkładów)	Zbieżność wg prawdopodobieństwa
Teoria statystyki	Teoria statystyki
TWIERDZENIE	Definicja
Słabe prawo wielkich liczb	Estymator zgodny
Teoria statystyki	Teoria statystyki
Definicja	Definicja
Zbieżność wg rozkładu Teoria statystyki	Ograniczenie w prawdopodobieństwie Teoria statystyki
I EURIA SIAI ISI IKI	TEORIA STATYSTYKI
Twierdzenia o Δ -metodzie	Zbieżność MGF a zbieżność wg rozkładu
Teoria statystyki	Teoria statystyki
TWIERDZENIE	TWIERDZENIE
Centralne twierdzenie graniczne	Rozkład łączny i brzegowy statystyk porządkowych
Teoria statystyki	Teoria statystyki

Mówimy, że ciąg zmiennych losowych $\{X_n\}$ zbiega wg prawdodpobieństwa do X, jeżeli dla każdego $\epsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0.$$

Parametry: $r_1, r_2 > 0$ Niech $U \sim \chi^2(r_1), \ V \sim \chi^2(r_2)$. Wtedy zmienna

$$W = \frac{U/r_1}{V/r_2}$$

ma rozkład Snedecora z r_1 stopniami swobody w liczniku i r_2 w mianowniku.

Niech zmienna X ma gęstość $f(x,\theta), \theta \in \Omega$. Niech X_1, X_2, \ldots, X_n będzie próbką z rozkładu X i niech T_n oznacza statystykę. T_n nazywamy zgodnym estymatorem θ , jeżeli

$$T_n \xrightarrow{P} \theta$$
.

Niech $\{X_n\}$ będzie ciągiem i.i.d. zmiennych losowych o średniej μ i wariancji $\sigma^2 < \infty$. Wtedy

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \mu.$$

Mówimy, że ciąg zmiennych losowych $\{X_n\}$ jest ograniczony w prawdopodobieństwie, jeżeli dla każdego $\epsilon > 0$ istnieją $B_{\epsilon} > 0$ i indeks N_{ϵ} takie, że

$$n \ge N_{\epsilon} \Rightarrow P(|X_n| \le B_{\epsilon}) \ge 1 - \epsilon$$

Mówimy, że ciąg zmiennych losowych $\{X_n\}$ zbiega wg rozkładu do X, jeżeli dla każdego punktu ciągłości x dystrybuanty F_X mamy

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x).$$

Niech $\{X_n\}$ będzie ciągiem zmiennych losowych takich, że $M_{X_n}(t)$ istnieją dla $t\in (-h,h)$. Niech X będzie zmienną losową taką, że $M_X(t)$ istnieje dla $t\in [-h_1,h_1]\subseteq [-h,h]$. Jeżeli dla $t\in [-h_1,h_1]$ mamy $\lim_{n\to\infty} M_{X_n}(t)=M_X(t)$, to $X_n\stackrel{D}{\longrightarrow} X$.

- Niech $\{Y_n\}$ będzie ciągiem zmiennych losowych ograniczonych w prawdopodobieństwie. Załóżmy, że $X_n = o_p(Y_n)$. Wtedy $X_n \stackrel{P}{\longrightarrow} 0$.
- Niech $\{X_n\}$ będzie ciągiem zmiennych losowych takich, że $\sqrt{n}(X_n \theta) \xrightarrow{D} \mathcal{N}(0, \sigma^2)$. Załóżmy, że g(x) jest różniczkowalna w θ i $g'(\theta) \neq 0$. Wtedy $\sqrt{n}(g(X_n) g(\theta)) \xrightarrow{D} \mathcal{N}(0, \sigma^2(g'(\theta))^2)$.

$$g(y_1, y_2, ..., y_n) = \begin{cases} n! \prod_{i=1}^n f(y_i), y_i \text{ rosnaco} \\ 0, \text{ w p.p.} \end{cases}$$

$$g_k(y_k) = \int_a^{y_2} \cdots \int_a^{y_k} \int_{y_k}^b \cdots \int_{y_{n-1}}^b n! \prod f(y_i)$$
$$dy_n \dots dy_{k+1} dy_{k-1} \dots dy_1.$$

Niech $\{X_n\}$ będzie ciągiem i.i.d. zmiennych losowych z rozkładu o średniej μ i wariancji $0 < \sigma^2 < \infty$.

Wtedy

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{D} \mathcal{N}(0, 1).$$

Definicja	TWIERDZENIE
Estymator największej wiarogodności (MLE)	MLE funkcji parametru
TEORIA STATYSTYKI	TEORIA STATYSTYKI
TWIERDZENIE	Definicja
Warunki na zgodność MLE	Warunki regularności rodziny $f(x; \theta)$
TEORIA STATYSTYKI	TEORIA STATYSTYKI
DEFINICJA	DEFINICJA
Informacja Fishera (dodatkowe założenia)	Estymator wydajny
Teoria statystyki	Teoria statystyki
TWIERDZENIE	TWIERDZENIE
Nierówność Craméra-Rao	Asymptotyczny rozkład różnicy estymatorów
Teoria statystyki	TEORIA STATYSTYKI
DEFINICJA	DEFINICJA
Wydajność asymptotyczna	Estymator nieobciążony o minimalnej wariancji
Teoria statystyki	Teoria statystyki

Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu o gęstości $f(x; \theta), \theta \in \Omega$. Załóżmy że $\hat{\theta}$ jest MLE parametru θ . Wtedy $g(\hat{\theta})$ jest MLE parametru $\eta = g(\theta)$.

Mówimy, że $\hat{\theta} = \hat{\theta}(\mathbf{X} \text{ jest estymatorem największej}$ wiarygodności θ , jeżeli

$$\hat{\theta} = ArgmaxL(\theta; \mathbf{X}),$$

gdzie $L(\theta; \mathbf{X}) = \prod_{i=1}^n f(x_i; \theta), \theta \in \Omega$ (funkcja wiarygodności).

- 0. Funkcje gęstości są rozróżnialne, tzn. $\theta \neq \theta' \Rightarrow f(x_i; \theta) \neq f(x_i, \theta')$.
- 1. Funkcje gęstości mają ten sam nośnik dla wszystkich θ .
- 2. θ_0 (faktyczna wartość θ) leży wewnątrz Ω .
- 3. $f(x;\theta)$ jest dwukrotnie różniczkowalna po θ .
- 4. $\int f(x;\theta)dx$ jest dwukrotnie różniczkowalna pod całką.
- 5. $f(x;\theta)$ jest trzykrotnie różniczkowalna po θ . Dla każdej $\theta \in \Omega$ istnieje stała c i funkcja M(x) taka, że $\left|\frac{\partial^3}{\partial \theta^3}\log f(x;\theta)\right| \leq M(x), \ E_{\theta_0}[M(x)] < \infty$ dla $\theta \in (\theta_0-c,\theta_0+c).$

Załóżmy, że rodzina $f(x;\theta)$ jest różna dla różnych θ , ma wspólny nośnik i faktyczny parametr θ_0 jest we wnętrzu Ω . Wtedy $\frac{\partial}{\partial \theta} L(\theta) = 0$ ma rozwiązanie θ_n będące zgodnym estymatorem θ .

Mówimy, że Y - zgodny estymator θ jest wydajny, jeżeli wariancja Y osiąga dolne ograniczenie w nierówności Craméra-Rao.

Założenia: warunki regularności (R0)-(R4) Dla rozkładu $f(x;\theta)$ określamy

$$\begin{split} I(\theta) &= \mathbb{E}\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2\right] = \\ &= Var\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right) = \int_{-\infty}^{\infty} \frac{\partial^2 \log f(x;\theta)}{\partial \theta^2} f(x;\theta) dx \end{split}$$

Niech zachodzą warunki regularności (R0)-(R5). Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu $f(x; \theta_0)$ o niezerowej i skończonej informacji Fishera. Jeżeli g(x) jest funkcją ciągłą i różniczkowalną w θ_0 , to ciąg zgodnych MLE spełnia

$$\sqrt{n}(g(\hat{\theta}) - g(\theta_0)) \stackrel{D}{\to} \mathcal{N}\left(0, \frac{g'(\theta_0)^2}{I(\theta_0)}\right).$$

Niech zachodzą warunki regularności (R0)-(R4). Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu o gęstości $f(x; \theta)$, $\theta \in \Omega$. Niech $Y = u(X_1, X_2, \ldots, X_n)$ będzie statystyką o średniej $\mathbb{E}[Y] = k(\theta)$. Wtedy

$$Var(Y) \ge \frac{[k'(\theta)]^2}{nI(\theta)}.$$

W szczególności, dla Y - zgodnego estymatora θ mamy

$$Var(Y) \ge \frac{1}{nI(\theta)}.$$

Estymator nieobciążony o wariancji mniejszej niż dowolny inny estymator nieobciążony.

Niech $\hat{\theta}_{1n}$ będzie zgodnym estymatorem θ_0 takim, że $\sqrt{n}(\hat{\theta}_{1n}-\theta_0) \xrightarrow{D} \mathcal{N}(0,\sigma_{\hat{\theta}_{1n}}^2)$. Wydajnością asymptotyczną nazywamy stosunek $e(\hat{\theta}_n) = \frac{1/I(\theta_0)}{\sigma_{\hat{\theta}_{1n}}^2}$. Estymator jest asymptotycznie wydajny, jeżeli ten stosunek wynosi 1.

Asymptotyczna wydajność względna $\hat{\theta}_{1n}$ względem $\hat{\theta}_{2n}$ to stosunek tych wartości.

DEFINICJA	TWIERDZENIE
Statystyka dostateczna Teoria statystyki	Twierdzenie Neymana Teoria statystyki
Twierdzenie Rao-Blackwella	Zależność MLE od statystyki dostatecznej
Teoria statystyki	Teoria statystyki
Definicja	TWIERDZENIE
Zupełna rodzina rozkładów Teoria statystyki	Twierdzenie Lehmanna-Scheffégo Teoria statystyki
Definicja Dostateczna statystyka zupełna	Regularna klasa wykładnicza
Teoria statystyki	Teoria statystyki
Własności statystyki z regularnej klasy wykładniczej	Twierdzenie Zupełna statystyka z regularnej klasy wykładniczej
Teoria statystyki	Teoria statystyki

Statystyka $Y_1 = u_1(X_1, X_2, \dots, X_n$ z próby o rozkładzie (dyskretnym lub ciągłym) $f(x; \theta)$ jest dostateczna wtw., gdy istnieją dwie nieujemne funkcje k_1 , k_2 takie, że

$$\prod_{i=1}^{n} f(x_i; \theta) = k_1[u_1(x_1, x_2, \dots, x_n); \theta] k_2(x_1, x_2, \dots, x_n),$$

gdzie k_2 nie zależy od θ .

Statystyka $Y_1 = u_1(X_1, X_2, ..., X_n$ z próby o rozkładzie (dyskretnym lub ciągłym) $f(x; \theta)$ jest dostateczna wtw., gdy

$$\frac{f(x_1;\theta)f(x_2;\theta)\dots f(x_n;\theta)}{f_{Y_1}[u_1(x_1,x_2,\dots,x_n);\theta]} = H(x_1,x_2,\dots,x_n),$$

gdzie funkcja H nie zależy od θ .

Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu o gęstości (dyskretnej lub ciągłej) $f(x;\theta), \theta \in \Omega$. Jeżeli dla θ istnieją statystyka dostateczna Y_1 oraz jedyny estymator największej wiarogodności $\hat{\theta}$, to $\hat{\theta}$ jest funkcją Y_1 .

Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu o gęstości (dyskretnej lub ciągłej) $f(x;\theta), \theta \in \Omega$. Niech Y_1 będzie statystyką dostateczną dla θ i niech Y_2 będzie nieobciążonym estymatorem θ , który nie jest funkcją samego Y_1 .

Wtedy statystyka $\varphi(Y_1)$ dana przez funkcję $\varphi(y_1) = \mathbb{E}[Y_2|Y_1=y_1] \text{ jest statystyką dostateczną,}$ nieobciążonym estymatorem θ i ma wariancję mniejszą niż $Var(Y_2)$.

Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu o gęstości (dyskretnej lub ciągłej) $f(x,\theta)$. Niech Y_1 będzie statystyką dostateczną dla θ i niech rodzina $\{f_{Y_1}(y_1,\theta):\theta\in\Omega\}$ będzie zupełna. Jeżeli istnieje funkcja od Y_1 , która jest nieobciążonym estymatorem θ , to jest też jedynym ENMW.

Niech zmienna losowa Z będzie ciągła lub dyskretna o rozkładzie z rodziny $\{h(z;\theta):\theta\in\Omega\}$. Jeżeli z faktu, że dla każdej $\theta\in\Omega$, $\mathbb{E}[u(Z)]=0$ można wnioskować, że u(z)=0 wszędzie poza punktami o prawdopodobieństwie zerowym dla każdego $h(z;\theta)$ z tej rodziny, to rodzinę $h(z;\theta)$ nazywamy zupełną rodziną rozkładów.

Mówimy, że rozkład jest w regularnej klasie wykładniczej, jeżeli jest postaci

$$f(x; \theta) = \begin{cases} \exp[p(\theta)K(x) + S(x) + q(\theta)], x \in \mathcal{S} \\ 0, \text{ w p.p.}, \end{cases}$$

Jeżeli S nie zależy od θ , $p(\theta)$ jest ciągłą, nietrywialną funkcją θ , S jest ciągłą funkcją x oraz $K'(x) \not\equiv 0$.

Statystyka $Y_1 = u_1(X_1, X_2, \dots, X_n$ z próby o rozkładzie (dyskretnym lub ciągłym) $f(x; \theta), \theta \in \Omega$ jest dostateczna i zupełna wtw., gdy jest dostateczna i rodzina $\{f_{Y_1}(y_1, \theta) : \theta \in \Omega\}$ jest zupełna.

Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu o gęstości $f(x;\theta), \, \theta \in (\gamma,\delta)$ z regularnej klasy wykładniczej. Wtedy statystyka $Y_1 = \sum_{i=1}^n K(X_i)$ jest dostateczną statystyką zupełną.

Niech X_1,X_2,\ldots,X_n będzie próbą z rozkładu z regularnej klasy wykładniczej. Wtedy statystyka $Y_1=\sum_{i=1}^n K(X_i) \text{ ma własności:}$

- 1. $f_{Y_1}(y_1;\theta) = R(y_1) \exp[p(\theta)y_1 + nq(\theta)],$ gdzie nośnik i $R(y_1)$ nie zależą od θ ,
- 2. $\mathbb{E}[Y_1] = -n \frac{q'(\theta)}{n'(\theta)}$
- 3. $Var(Y_1) = n \frac{1}{p'(\theta)^3} \{ (p''(\theta)q'(\theta) q''(\theta)p'(\theta) \}.$

TWIERDZENIE	DEFINICJA
Dostateczny warunek na niezależność statystyki	Błąd I i II rodzaju
Teoria statystyki	TEORIA STATYSTYKI
Definicja Poziom istotności (i jego interpretacja)	Definicja Moc testu statystycznego
Teoria statystyki	Teoria statystyki
Definicja	DEFINICJA
Obszar krytyczny Teoria statystyki	Wielkość obszaru krytycznego Teoria statystyki
Definicja	TWIERDZENIE
Najlepszy obszar krytyczny (rozmiaru α)	Twierdzenie Neymana-Pearsona
Teoria statystyki	Teoria statystyki
Definicja Test jednostajnie najmocniejszy Teoria statystyki	

Błąd I rodzaju: odrzucenie hipotezy zerowej, gdy jest poprawna.

Błąd II rodzaju: przyjęcie hipotezy zerowej, gdy jest błędna.

Niech X_1, X_2, \ldots, X_n będzie próbą z rozkładu $f(x;\theta), \theta \in \Omega$, gdzie Ω jest przedziałem. Niech Y_1 będzie zupełną statystyką dostateczną dla θ i niech Z będzie inną statystyką, która nie jest funkcją samego Y_1 . Jeżeli rozkład Z nie zależy od θ , to Z jest niezależne od Y_1 .

Mocą testu nazywamy prawdopodobieństwo niepopełnienia błędu II rodzaju.

Poziom istotności α to liczba z przedziału [0, 1]. Interpretujemy to jako akceptowalne ryzyko popełnienia błędu I rodzaju.

Obszar krytyczny C ma wielkość α , jeżeli

$$\alpha = \max_{\theta \in \omega_0} P_{\theta}[(X_1, X_2, \dots, X_n) \in C].$$

Zatem jest to też prawdopodobieństwo popełnienia błędu I rodzaju.

Niech X_1, X_2, \ldots, X_n będzie testowaną próbą. Obszarem krytycznym C nazywamy taki podzbiór przestrzeni próbek \mathcal{D} , że hipotezę zerową odrzucamy wtedy i tylko wtedy, gdy $(X_1, X_2, \ldots, X_n) \in C$.

Niech X_1, X_2, \ldots, X_2 będzie próbą z rozkładu $f(x; \theta)$. Niech $\Omega = \{\theta', \theta''\}$ i niech C będzie takim podzbiorem przestrzeni próbek, że:

- $\frac{L(\theta';x)}{L(\theta'';x)} \le k$, dla wszystkich $x \in C$,
- $\frac{L(\theta';x)}{L(\theta'';x)} \ge k$, dla wszystkich $x \in C^C$,
- $\alpha = P_{H_0}[X \in C].$

Wtedy C jest najlepszym obszarem krytycznym wielkości α dla testowania hipotezy $H_0: \theta = \theta'$ przeciw hipotezeie $H_1: \theta = \theta''$.

Mówimy, że C jest najlepszym obszarem krytycznym rozmiaru α dla prostej hipotezy $H_0: \theta = \theta'$ przeciw prostej hipotezie $H_1: \theta = \theta''$, jeżeli

- $P_{\theta'}[X \in C] = \alpha$,
- $P_{\theta''}[X \in C] \ge P_{\theta''}[X \in A]$ dla każdego innego pozbioru A wielkości α z przestrzeni próbek.

Obszar krytyczny C jest obszarem jednostajnie najmocniejszym wielkości α do testowania prostej hipotezy H_0 przeciw złożonej hipotezie H_1 , jeżeli C jest najlepszym obszarem do testowania hipotezy H_0 przeciw każdej pojedynczej hipotezie spośród H_1 . Test zdefiniowany takim obszarem nazywamy testem jednostajnie najmocniejszym o poziomie istotności α .