

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 305/14, A61K 31/335, C07D 405/04		A1	(11) International Publication Number: WO 96/14309 (43) International Publication Date: 17 May 1996 (17.05.96)
(21) International Application Number: PCT/EP95/04303		(81) Designated States: JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 2 November 1995 (02.11.95)		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(30) Priority Data: 9422246.0 4 November 1994 (04.11.94) GB 9505805.3 22 March 1995 (22.03.95) GB			
(71) Applicant: PHARMACIA S.P.A. [IT/IT]; Via Robert Koch, 1.2, I-20152 Milan (IT).			
(72) Inventors: MENICHINCHERI, Maria; Via Lecco, 10, I-20124 Milan (IT). CECCARELLI, Walter; Via Cavour, 59, I-20094 Corsico (IT). CIOMEI, Marina; Via Molinetto di Lorenteggio, 15, I-20094 Corsico (IT). FUSAR BASSINI, Domenico; Piazza XXV Aprile, 7, I-26010 Montodine (IT). MONGELLI, Nicola; Via Tertulliano, 38, I-20137 Milan (IT). VANOTTI, Ermes; Via Giovanni Cimabue, 4, I-20148 Milan (IT).			

(54) Title: TAXANE DERIVATIVES

(57) Abstract

Taxane derivatives modified at 7-position of the taxane derivative skeleton (taxol numbering) of formula (I) wherein R₁ is N₃, CN, 1H-tetrazol-5-yl, or -NR₇R₈ and R₂, R₃, R₄, R₇ and R₈ are organic residues, are endowed with anti-tumor activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RÜ	Russian Federation
CP	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Larvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

TAXANE DERIVATIVES

The present invention is directed to new taxane derivatives endowed with antitumor activity, to a process for their preparation and to pharmaceutical compositions containing them.

The taxane family of diterpenes includes Paclitaxel (also named taxol in several publications), isolated and characterized from an extract of bark of *Taxus brevifolia* L., and Cephalomannine (see J.Chem.Soc. Chem.Comm. 102, 1979); other taxane analogues are also known and were prepared by semisynthesis starting from 10-deacetyl baccatin III, extracted from the needles of *Taxus baccata* L. (see Wani et al., J.Am.Chem.Soc. 93, 2325, 1971; Lovelle et al., Proc.Am.Assoc.Cancer Res. 31, 417, 1990). Particularly, taxol is a very potent anticancer drug and is already applied with success to the treatment of platinum-resistant ovarian cancer. Nevertheless there is a continuous need for more potent compounds having the broadest possible spectrum of activity on different cancer types.

The present invention provides taxane derivatives modified at the 7-position of the taxane skeleton (taxol numbering). More especially, the invention provides taxane derivatives of formula I:

I

- 2 -

wherein R₁ represents azido, cyano, 1H-tetrazol-5-yl or a residue of formula NR₇R₈ wherein R₇ and R₈ independently represent hydrogen or a C₁-C₆ alkyl, C₁-C₈ alkanoyl or C₁-C₁₁ aroyl group;

R₂ represents a hydrogen atom, hydroxy group or a group of
5 formula -OCOR', -OR', -OSO₂R', -OCONR'R'', -OCONHR, or -OCOOR'
wherein R' and R'' each independently represent C₁-C₆ alkyl,
preferably methyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₂-C₆ alkynyl or
a phenyl group, optionally substituted with one, two or three
substituents which may be the same or different and which are
10 selected from a halogen atom, C₁-C₆ alkyl, C₁-C₆ alkoxy and -CF₃
groups;

R₃ is -COR''' or -COOR''' wherein R''' represents C₁-C₆
alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₂-C₆ alkynyl or a phenyl
group, optionally substituted with one, two or three substituents
15 which may be the same or different and which are selected from a
halogen atom, C₁-C₆ alkyl, C₁-C₆ alkoxy and -CF₃ groups; and

R₄ is C₁-C₆ alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl or a radical
of the formula -W-R_x in which W is a bond, C₂-C₆ alkenediyl or
-(CH₂)_n- where n is from 1 to 6 such as from 2 to 4 and R_x is
20 naphthyl, phenyl or heteroaryl optionally substituted with one,
two or three substituents which may be the same or different and
which are selected from C₁-C₆ alkyl, C₁-C₆ alkoxy, halogen and -CF₃
groups, or a pharmaceutically acceptable salt thereof.
Preferably, R''' represents phenyl, tert-butyl, 1-methyl- 1-
25 propenyl or n-pentyl; more preferably phenyl.
Preferably R₄ is phenyl.

The wavy lines indicate that the hydroxy group at the

- 3 -

2'-position and the substituent at the 7-position may be in the α or β configuration, or both, i.e. a mixture of stereoisomers is present.

A C₁-C₆ alkyl group is a straight or branched alkyl group, 5 preferably a C₁-C₄ alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl. A C₂-C₆ alkenyl group is a straight or branched alkenyl group, preferably a C₂-C₅ alkenyl group e.g. vinyl, allyl, crotyl, 2-methyl-1-propenyl, 1-methyl-1-propenyl, butenyl or pentenyl. A C₃-C₆ 10 cycloalkyl group is a saturated carbocyclic group of 3 to 6 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, preferably cyclohexyl.

A halogen is preferably fluorine, chlorine, bromine or iodine.

15 A heteroaryl group is preferably a 3- to 6-membered, saturated or unsaturated heterocyclyl ring which contains at least one, for example 1, 2 or 3, heteroatoms selected from O, S and N and which is optionally fused to a second 5- or 6-membered, saturated or unsaturated heterocyclyl group containing one or 20 more, for example 1, 2 or 3, heteroatoms or to a cycloalkyl group or to an aryl group. The 3- to 6- membered heterocyclyl ring may be a 3-, 4-, 5- or 6- membered such ring. A cycloalkyl group is generally a said C₃-C₆ cycloalkyl group. An aryl group is generally phenyl (Ph) or naphthyl.

25 Examples of heterocyclyl groups are pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, thiienyl, furyl, aziridinyl,

- 4 -

oxiranyl, azetidinyl, pyridinyl, pyrazinyl, pyrimidinyl, pyranyl, pyridazinyl, benzothienyl, benzothiazolyl, benzoxazolyl, isobenzofuranyl, benzofuranyl, chromenyl, indolyl, indolizinyl, isoindolyl, cinnolinyl, indazolyl and purinyl.

5 A C₂-C₆ alkenediyl chain can be a straight or branched alkenediyl preferably a C₂-C₄ alkenediyl chain such as -CH=CH-, -CH=CH-CH₂- or -CH(CH₃)-CH=CH-. A C₂-C₆ alkynyl group can be a straight or branched alkynyl group preferably a C₂-C₄ alkynyl group such as ethynyl, propargyl, 1-propynyl, 1-butynyl or 2-
10 butynyl. A C₇-C₁₁ aroyl group is intended to include benzoyl or naphthoyl residues.

A C₁-C₆ alkoxy group can be a straight chain or branched alkoxy group, preferably a C₁-C₄ alkoxy group such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy or tert-butoxy. A C₁-C₈ 15 alkanoyl group can be a straight chain or branched alkanoyl group, preferably a C₁-C₅ alkanoyl group such as methanoyl (Ac), ethanoyl, n-propanoyl, isopropanoyl, n-butanoyl, tert-butanoyl or n-pentanoyl. The pharmaceutically acceptable salts include the hydrochloride salt, the hydrobromide salt and the sulphate salt.

20 Preferred compounds of the invention are the taxane derivatives of formula I wherein R₁ represents azido, cyano, 1H-tetrazol-5-yl or a residue of formula NR₇R₈ wherein R₇ and R₈ independently represent hydrogen or a C₁-C₄ alkyl, C₁-C₅ alkanoyl, benzoyl or naphthoyl group;

25 R₂ represents a hydrogen atom, hydroxy group or a group of formula -OCOR', -OR', -OSO₂R', -OCONR'R'', -OCONHR, or -OCOOR' wherein R' and R'' each independently represent C₁-C₄ alkyl, C₂-C₅

- 5 -

alkenyl, C₃-C₆ cycloalkyl, C₂-C₄ alkynyl or a phenyl group optionally substituted with one, two or three substituents which may be the same or different and which are selected from a halogen atom, C₁-C₆ alkyl, C₁-C₄ alkoxy and -CF₃ groups;

5 R₃ is -COR''' or -COOR''' wherein R''' represents C₁-C₄ alkyl, preferably methyl, C₂-C₅ alkenyl, C₃-C₆ cycloalkyl, C₂-C₄ alkynyl or a phenyl group optionally substituted with one, two or three substituents which may be the same or different and which are selected from a halogen atom, C₁-C₄ alkyl, C₁-C₄ alkoxy and -

10 CF₃ groups; and

R₄ is C₁-C₄ alkyl, C₂-C₅ alkenyl, C₃-C₆ cycloalkyl or a radical of the formula -W-R_x in which W is a bond, C₂-C₄ alkenediyl or -(CH₂)_n- where n is from 2 to 4 and R_x is naphthyl, phenyl or heteroaryl optionally substituted with one, two or three substituents which may be the same or different and which are selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen and -CF₃ groups;

15 or a pharmaceutically salt thereof.

Preferably R' and/or R" is methyl in a taxane derivative of formula I. Preferably R''' is phenyl, tert-butyl, 1-methyl-1-propenyl or n-pentyl. Preferred compounds of the invention are:
20 7-deoxy-7-epi-azido-taxol, 7-deoxy-7-epi-amino-taxol,
7-deoxy-7-cyano-taxol and 7-deoxy-7-(1H-tetrazol-5-yl)-taxol.

The present invention also provides a process for the preparation of taxane derivatives of formula I, as above defined, 25 or a pharmaceutically acceptable salt thereof. In fact, structures of formula I can be obtained by a substitution process from a taxane derivative having a suitable leaving group at the

- 6 -

7-position (like triflate, mesylate, tresylate, etc.) and with an optional hydroxy protecting group at the 2'-position (like the acetyl group).

Accordingly, the present invention provides a process for
5 preparing a taxane derivative of formula I or a pharmaceutically acceptable salt thereof, the process comprising

(a) carrying out a substitution reaction with an azide or cyanide salt or a derivative thereof on a taxane derivative of formula II:

10 wherein R₂, R₃ and R₄ are as defined above, R'₅ is a hydrogen atom or a hydroxy protecting group R₅ and R₆ is a leaving group, thereby to form a taxane derivative having at the 7-position an azido, cyano or 1H-tetrazol-5-yl group;

(b) optionally reducing the said 7-azido derivative and, if 15 desired, derivatizing the resultant 7-amino taxol to give thereby a taxane derivative of formula II where the leaving group R₆ is replaced by a residue of formula NR₇R₈ where R₇ and R₈ are as defined above;

(c) optionally reacting the said 7-cyano derivative with an

- 7 -

appropriate azide to give the corresponding 7-(1H-tetrazol-5-yl) derivative;

(d) removing, if necessary, the said hydroxy protecting group R₅; and

5 (e) optionally salifying the resulting taxane derivative of the formula I to form a pharmaceutically acceptable salt thereof.

The leaving group R₆ can for example be CH₃SO₂O-, CF₃SO₂O-, CF₃CH₂SO₂O- or another suitable leaving group. R₅ may be -COCH₃, -COCH₂Ph, -COCH₂CH=CH₂, Et₂Si-, (i-Pr)₂Si-, t-BuMe₂Si-, t-BuPh₂Si-
10 or another suitable hydroxy protecting group.

The substitution reaction at the 7-position is typically achieved by reacting a compound of formula II with an azide or cyanide ion. The azide is typically sodium azide. The cyanide is typically potassium cyanide. The reaction may be performed in
15 aprotic dipolar solvents, e.g. dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and the like, as well as in phase-transfer catalysis conditions in the presence of a quaternary ammonium salt (for example tricaprylylmethylammonium chloride (Aliquat 336)) and in an apolar organic solvent (for example toluene,
20 benzene, dichloromethane, chloroform, etc). The reaction temperature may vary from 0°C to 120°C.

The reduction of the 7-azido group may be carried out by heterogeneous catalytic hydrogenation (using for example palladium on charcoal) or by means of the Staudinger reaction
25 (triphenyl phosphine in a solvent mixture like tetrahydrofuran (THF)/water). The amino derivatization may be carried out using literature methods; for example reductive alkylation or acylation.

- 8 -

The reaction of the 7-cyano derivative to give a tetrazolyl derivative can be performed using literature methods, for example with trialkyltin azide in toluene.

The removal of the hydroxy protecting group R₅ can be
5 carried out under standard conditions such as hydrolysis or hydrogenolysis or utilizing tetrabutylammonium fluoride for silyl groups. When the protecting group is acetyl, it may be removed by treatment with sodium bicarbonate in MeOH/H₂O or with diethylamine in methanol. The separation of the isomers which
10 are α and β configuration at the 2'- and 7-positions may be carried out by analogy with known methods.

Taxane derivatives of formula III wherein R₁, R₂, R₃, R₄ and R₅ are as defined above are novel and within the scope of the present invention.

15 A process for the preparation of taxane derivatives of formula III comprises:

(a) carrying out a substitution reaction with an azide or cyanide salt or a derivative thereof on a taxane derivative of

- 9 -

formula II as defined above, thereby to form a taxane derivative having at the 7-position an azido, cyano or 1H-tetrazole-5-yl group;

(b) optionally reducing the said 7-azido derivative and if 5 desired, derivatizing the resultant 7-amino taxol to give thereby a taxane derivative of formula II where the leaving group R₆ is replaced by a residue of formula NR₇R₈ where R₇ and R₈ are defined as above;

(c) optionally reacting the said 7-cyano derivative with an 10 appropriate azide to give the corresponding 7-(1H-tetrazol-5-yl) derivative.

The taxane derivatives of formula II are either known compounds (for example the mesylate of formula II, where R₃ is -CO-phenyl, R₄ is phenyl, R₆ is -OSO₂CH₃, R₂ is O-acetyl and R₅ is acetyl [see J.Nat.Prod.51,298 (1988)]), or may be prepared from known compounds using established methods. For instance compounds of formula II can be used as starting materials where R₃ is -CO-phenyl, R₄ is phenyl, R₆ is hydroxy, R₂ is O-acetyl and R₅ is acetyl [see Bioch.Bioph.Res.Comm.124,329 (1984) or Journal.Nat. 20 Prod.49,665-9(1986)], or where R₃ is -CO-phenyl, R₄ is phenyl, R₆ is hydroxy, R₂ is O-acetyl and R₅ is COCH₂Ph [see Tetrahedron 49,2805(1993) or Tetr.Lett. 34,6845 (1993)] or trimethylsilyl. These known starting compounds can be activated, for example, using mesyl or tresyl chloride or triflic anhydride, in bases 25 such as pyridine at reflux temperature, and then deprotected to give compounds of the formula II wherein R'₁ is a hydrogen atom.

- 10 -

BIOLOGICAL ACTIVITY

The cytotoxic activity of the compounds has been evaluated on B16-F10 murine melanoma cell line which was responsive to taxol. The mode of action of the compound was also tested on the 5 tubulin assembly-disassembly assay in comparison with taxol.

In vitro drug sensitivity assay.

Exponentially growing B16-F10 murine melanoma cells were seeded (2×10^4 /ml) in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum and 2mM glutamine in 24-well 10 plates (Costar). Scaled concentrations of tested compounds were added immediately after seeding. The inhibition of cell growth was evaluated by counting cells with a Coulter counter after 24hrs incubation. For each tested compound concentration triplicate cultures were used. The antiproliferative activity of 15 the tested compounds was calculated from dose-response curves and expressed as IC₅₀ (dose causing 50% inhibition cell growth in treated cultures relative to untreated controls).

The results are shown in Table 1.

Microtubule assembly-disassembly assay.

20 Calf brain tubulin was prepared by two cycles of assembly-disassembly (Shelanski M.L., Gaskin F. and Cantor C.R., Proc.Natl.Acad.Sci. U.S.A. 70, 765-768, 1973) and stored in liquid nitrogen in MAB (0.1 M MES, 2.5 mM EGTA, 0.5 mM MgSO₄ 0.1 mM EDTA, 0.1 mM DTT pH 6.4). All the experiments were carried out 25 on protein stored for less than 4 weeks. Before each experiment, tubulin was kept 30 min at 4°C. Assembly was monitored by the

- 11 -

method of Gaskinet al. (Gaskin F., Cantor C.R. and Shelanski M.L., J.Molec.Biol. 89, 737-758, 1974).

The cuvette (1 cm path) containing tubulin (1mg/ml) and 1 mM GTP was shifted to 37°C and continuous turbidity measurements were made at 340 nm on a Perkin-Elmer 557 double wavelength, double beam spectrophotometer equipped with an automatic recorder and a thermostatically regulated sample chamber. After 30 minutes, 4 mM CaCl₂ was added and depolymerisation was measured for 10 minutes as decreased turbidity. At regular intervals of 15 minutes scaled doses of the tested compounds were added and variations in the turbidity were monitored. Data are expressed as percentage of repolymerization induced by the tested compounds. The results are shown in Table I.

TABLE I

EXAMPLE	TUBULIN ASSEMBLY (%)		CYTOTOXICITY	
	0.5 μ M	5 μ M	IC ₅₀ (nM)	B16F10
2	n.d.	n.d.		26
3	74	169		33
Paclitaxel (reference compound)	39	93		36

n.d.=not determined

The taxane derivatives of formula I are thus antitumor

- 12 -

agents. A human or animal suffering from a tumor may thus be treated by a method which comprises the administration thereto of an effective amount of a taxane derivative of formula I or II according to the invention. The condition of the human or animal
5 may thereby be improved.

Examples of tumors that can be treated are sarcomas, carcinomas, lymphomas, neuroblastomas, melanomas, myelomas, Wilms tumor, leukemias and adenocarcinomas. The taxane derivatives of formulae I and II can be used to treat ovarian cancer,
10 platinum-resistant ovarian cancer, metastatic breast cancer, non-small cell lung cancer, and head and neck cancer.

The invention also provides a pharmaceutical composition which comprises, as active ingredient, a compound of formula I or II according to the invention and a pharmaceutically acceptable
15 carrier or diluent. The composition of the invention is usually prepared following conventional methods and is administered in a pharmaceutically suitable form. Administration can be made by any of the accepted ways for administration of antitumor agents such as intravenous, intramuscular or subcutaneous injection or
20 topical application. For systemic injection the active compound may be, e.g., dissolved in a vehicle consisting of a mixture of polyoxyethylated castor oil (Chremophor EL) 50% and ethanol 50% and then diluted with glucose 5% solution at the desired concentration, or in other pharmaceutically suitable carriers.

25 The amount of the active compound administered depends on the treated subject, for example on age, weight, sex etc., and also on the severity of the affliction. The method of administration depends on the judgement of the prescribing

- 13 -

physician. A suitable dosage for an average 70 kg person may range from about 0.01g to about 1g per day.

The following Examples illustrate the invention but they are not intended to limit it thereto.

5 **PREPARATION A**

7-O-trifluoromethanesulphonyl-2'-O-triethylsilyl-taxol

To a solution of 2'-O-triethylsilyl-taxol (4.32 g, 4.46 mmole), in freshly distilled pyridine (75 ml), cooled at -5°C, trifluoromethanesulphonic anhydride (3.8 ml) was added dropwise.

10 After 1 hour at 0°C, the reaction mixture was kept at room temperature for 3 hours.

The reaction mixture was poured into cold 0.1 N HCl and extracted with ethyl acetate. The organic layer was washed with NaCl (saturated solution), water and dried over Na₂SO₄.

15 After concentration, the product was isolated as a whitish solid (4.7 g, 96% yield).

PREPARATION B

7-O-trifluoromethanesulphonyl-taxol.

A solution of 7-O-trifluoromethanesulphonyl-2'-O-triethylsilyl-taxol (4.7 g, 4.27 mmole) in tetrahydrofuran (100 ml) and 1N HCl (7.7 ml) was stirred at room temperature for 30'. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with NaCl (saturated solution), water, dried over Na₂SO₄ and concentrated to yield the title 25 product as a whitish solid in quantitative yield.

- 14 -

PREPARATION C

7-O-trifluoromethanesulphonyl-2'-O-acetyl-taxol

To a solution of 2'-O-acetyl taxol (4.3 g, 4.8 mmoles) in pyridine (40 ml) at 0°C, trifluoromethanesulphonic anhydride (4.5 ml, 23.8 mmole) was added dropwise. The reaction mixture was warmed to room temperature and stirred for 1 hour. The reaction mixture was washed (x3) with 1N HCl, then with water and NaCl (saturated solution), dried over Na₂SO₄, and concentrated. The desired product (4.46 g) was obtained as a whitish solid.

- 15 -

Example 1

2'-Acetyl,7-deoxy,7-epi-azido taxol

(III, R₁=α-N₃, R₂=OAc, R₃=-CO-phenyl, R₄=phenyl, R₅=Ac)

A mixture of 2'-acetyl-7-trifluoromethanesulfonyl taxol (84.5mg, 0.082mmol), sodium azide (84.5mg, 1.3mmol), tricaprylylmethylammonium chloride (Aliquat 336) (3 drops) in toluene (6ml) and water (6ml) was heated at 80°C for 4hrs. The reaction mixture was cooled to room temperature, the two layers separated and the aqueous phase extracted twice with toluene. The combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated to dryness under vacuum. The crude material was purified by flash chromatography on silica gel (eluant: dichloromethane/ethyl acetate 15:1), yielding 37mg (0.04mmol, 50% yield).

TLC (CH₂Cl₂/EtOAc 6:1), R_f=0.34

¹H NMR (CDCl₃, 400MHz):

1.13 (s, 3H, CH₃-16), 1.18 (s, 3H, CH₃-17), 1.76 (s, 3H, CH₃-19), 1.99 (d, J=1.2Hz, 3H, CH₃-18), 2.15, 2.19 (two singlets, 6H, CH₃CO-2' + CH₃CO-10), 2.48 (s, 3H, CH₃CO-4), 2.1-2.6 (m, 4H, CH₂-6+CH₂-14), 3.77 (dd, J=2.0Hz, J=5.1Hz, 1H, H-7), 3.91 (d, J=7.0Hz, 1H, H-3), 4.36, 4.44 (d, J=8.2Hz, 2H, CH₂-20), 5.08 (dd, J=3.8Hz, J=10.0Hz, 1H, H-5), 5.56 (d, J=3.2Hz, 1H, H-2'), 5.73 (d, J=7.0Hz, 1H, H-2), 6.00 (dd, J=3.2Hz, J=9.4Hz, 1H, H-3'), 6.24 (m, 1H, H-13), 6.91 (d, J=9.4Hz, 1H, NH-4'), 6.92 (s, 1H, H-10), 7.3-8.2 (m, 15H, three phenyls).

- 16 -

Example 2

7-deoxy, 7-epi-azido taxol

(I, R₁= α -N₃, R₂=OAc, R₃=-CO-phenyl, R₄=phenyl, R₅=H)

A mixture of 2'-acetyl, 7-deoxy, 7-epi-azido taxol (50mg, 5.054mmoles), methanol (1ml) and diethylamine in methanol (1ml of 1% solution) was stirred at room temperature for 2hrs, then concentrated under vacuum and dissolved in ethyl acetate. The organic solution was washed (x2) with 0.5N hydrochloric acid, with brine, dried over sodium sulfate and concentrated under vacuum. The crude product was purified by flash chromatography, eluting with n-hexane/ethyl acetate 1:1. Obtained 15mg (0.017mmoles, 30% yield) of pure product.

TLC (n-hexane/EtOAc 1:1), R_f=0.35

¹H NMR (CDCl₃, 400MHz) :

15 1.13 (s, 3H, CH₃-16), 1.19 (s, 3H, CH₃-17), 1.75 (s, 3H, CH₃-19), 1.85 (d, J=1.2Hz, 3H, CH₃-18), 2.20 (s, 3H, CH₃CO-10), 2.43 (s, 3H, CH₃CO-4), 2.2-2.6 (m, 4H, CH₂-6+CH₂-14), 3.50 (bs, 1H, OH-2'), 3.75 (dd, J=2.1Hz, J=5.0Hz, 1H, H-7), 3.93 (d, J=7.0Hz, 1H, H-3), 4.34, 4.45 (two doublets, J=8.0Hz, 2H, CH₂-20), 4.82 (d, J=2.6Hz, 1H, H-2'), 5.02 (dd, J=3.8Hz, J=9.4Hz, 1H, H-5), 5.73 (d, J=7.0Hz, 1H, H-2), 5.84 (dd, J=2.6Hz, J=9.1Hz, 1H, H-3'), 6.21 (m, 1H, H-13), 6.88 (s, 1H, H-10), 7.00 (d, J=9.1Hz, 1H, NH-4'), 7.3-8.2 (m, 15H, three phenyls).

- 17 -

Example 3

7-Deoxy-7-epi-amino-taxol

7-Deoxy-7-epi-azido-taxol (mg. 30, 0.034 mmole) was dissolved in ethylacetate (2 ml)

5 Catalyst 5% Pd/C (35 mg) was added and the reaction mixture subdued to hydrogen atmosphere (48 psi) at room temperature for 72 hours under shaking.

After the filtration and concentration the crude product (27 mg) was purified on preparative silica gel TLC, eluating with
10 n-hexane/ethylacetate 1/1.

The title compound (10 mg, 0.012 mmole, 34% yield) was isolated as a white solid.

R.f ~ 0.16 (n-hexane/ethylacetate 1/1)

¹H-NMR (400MHz, CDCl₃)

15 1.15 (s, 3H, 16), 1.18 (s, 3H, 17), 1.70 (s, 3H, 19), 1.76 (s, 1H, OH-1), 1.79 (d, J=1.5Hz, 3H, 18), 2.1-2.5 (m, 4H, CH₂-14+CH₂-6), 2.19 (s, 3H, CH₃CO-10), 2.46 (s, 3H, CH₃CO-4), 2.89 (d, J=2.9Hz, 1H, 7), 3.45 (bs, 1H, OH-2'), 3.92 (d, J=7.3Hz, 1H, 3) 4.32, 4.52 (two doublets, J=8.5Hz, 2H, CH₂-20), 4.80 (d, J=2.6Hz, 20 1H, 2'), 4.95 (dd, J=5.0 Hz, J=9.5 Hz, 1H, 5), 5.74 (d, J=7.3 Hz, 1H, 2), 5.83 (dd, J=2.6 Hz, J=9.1 Hz, 1H, 3'), 6.21 (m, 1H, 13) 7.02 (d, J=91HZ, 1H, NH-4'), 7.24 (s, 1H, 10), 7.3-8.2 (m, 15H, 3 Ph)

- 18 -

Example 4

7-deoxy-7-epi-azido taxol

(I, R₁= α -N₃, R₂=OAc, R₃=-CO-phenyl, R₄=phenyl, R₅=H)

A solution of 7-O-trifluoromethanesulphonyl taxol (4.3 g), sodium azide (4.3 g) and Aliquat 336 (registered mark) (5.18 g) in toluene (360 ml) and water (360 ml) was vigorously stirred at 80°C for 2 hours. The reaction mixture was cooled to room temperature, the organic layer was washed with NaCl (saturated solution), water, dried over Na₂SO₄ and concentrated. The crude product was purified by flash chromatography on silica gel, eluant CH₂Cl₂/EtOAc 4:1. There were obtained 1.52 g (1.7 mmole, 40% yield) of the title compound, having the same physico-chemical data of that prepared in Example 2.

- 19 -

CLAIMS

1. A taxane derivative of formula I:

wherein:

R₁ represents azido, cyano, 1H-tetrazol-5-yl or a residue of
5 formula NR₇R₈ wherein R₇ and R₈ each independently represent
hydrogen or a C₁-C₆ alkyl, C₁-C₈ alkanoyl or C₇-C₁₁ aroyl group;

R₂ represents a hydrogen atom, hydroxy group or a group of
formula -OCOR', -OR', -OSO₂R', -OCONR'R'', -OCONHR' or -OCOOR'
wherein R' and R'' each independently represent C₁-C₆ alkyl, C₂-C₆
10 alkenyl, C₃-C₆ cycloalkyl, C₂-C₆ alkynyl or a phenyl group
optionally substituted with one, two or three substituents which
may be the same or different and which are selected from a
halogen atom, C₁-C₆ alkyl, C₁-C₆ alkoxy and -CF₃ groups;

R₃ is -COR''' or -COOR''' wherein R''' represents C₁-C₆
15 alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₂-C₆ alkynyl or a phenyl
group, optionally substituted with one, two or three substituents
which may be the same or different and which are selected from a
halogen atom, C₁-C₆ alkyl, C₁-C₆ alkoxy and -CF₃ groups; and
R₄ is C₁-C₆ alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl or a radical of

- 20 -

the formula $-W-R_x$ in which W is a bond, C_2-C_6 alkenediyl or $-(CH_2)_n-$ where n is from 1 to 6 and R_x is naphthyl, phenyl or heteroaryl optionally substituted with one, two or three substituents which may be the same or different and which are selected from C_1-C_6 alkyl, C_1-C_6 alkoxy, halogen and $-CF_3$ groups, or a pharmaceutically acceptable salt thereof.

2. A compound according to claim 1 wherein R_1 represents azido, cyano, 1H-tetrazol-5-yl or a residue of formula NR_7R_8 wherein R_7 and R_8 independently represent hydrogen or a C_1-C_4 alkyl, C_1-C_5 alkanoyl, benzoyl or naphthoyl group;

R_2 represents a hydrogen atom, hydroxy group or a group of formula $-OCOR'$, $-OR'$, $-OSO_2R'$, $-OCONR'R''$, $-OCONHR$, or $-OCOOR'$ wherein R' and R'' each independently represent C_1-C_4 alkyl, C_2-C_5 alkenyl, C_3-C_6 cycloalkyl, C_2-C_4 alkynyl or a phenyl group optionally substituted with one, two or three substituents which may be the same or different and which are selected from a halogen atom, C_1-C_4 alkyl, C_1-C_4 alkoxy and $-CF_3$ groups;

R_3 is $-COR'''$ or $-COOR'''$ wherein R''' represents C_1-C_4 alkyl, C_2-C_5 alkenyl, C_3-C_6 cycloalkyl, C_2-C_4 alkynyl or a phenyl group optionally substituted with one, two or three substituents which may be the same or different and which are selected from a halogen atom, C_1-C_4 alkyl, C_1-C_4 alkoxy and $-CF_3$ groups; and

R_4 is C_1-C_4 alkyl, C_2-C_5 alkenyl, C_3-C_6 cycloalkyl or a radical of the formula $-W-R_x$ in which W is a bond, C_2-C_4 alkenediyl or $-(CH_2)_n-$ where n is from 2 to 4 and R_x is naphthyl, phenyl or heteroaryl optionally substituted with one, two or three substituents which may be the same or different and which are

- 21 -

selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen and -CF₃ groups, or a pharmaceutically acceptable salt thereof.

3. A compound according to claim 1 or 2 wherein R' and/or R'' is methyl.

5 4. A compound according to any one of the preceding claims wherein R''' is phenyl, tert-butyl, 1-methyl-1-propenyl or n-pentyl.

5. A compound according to claim 1 which is selected from 7-deoxy-7-epi-azido-taxol, 7-deoxy-7-epi-amino-taxol,
10 7-deoxy-7-cyano-taxol, 7-deoxy-7-(1H-tetrazol-5-yl)-taxol.

6. A process for preparing a taxane derivative of formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof, which process comprises:

(a) carrying out a substitution reaction with an azide or cyanide salt or a derivative thereof on a taxane derivative of
15 formula II:

wherein R₂, R₃ and R₄ are as defined in claim 1, R', is hydrogen or a hydroxy protecting group R, and R₆ is a leaving group, thereby to form a taxane derivative having at the 7-position an azido, cyano or 1H-tetrazol-5-yl group;

(b) optionally reducing the said 7-azido derivative and,

- 22 -

if desired, derivatizing the resultant 7-amino taxol to give thereby a taxane derivative of formula II where the leaving group R₆ is replaced by a residue of formula NR₇R₈ where R₇ and R₈ are defined in claim 1;

5 (c) optionally reacting the said 7-cyano derivative with an appropriate azide to give the corresponding 7-(1H-tetrazol-5-yl) derivative;

 (d) removing, if necessary, the said hydroxy protecting group R₃ from the resulting intermediate of formula III:

10

wherein R₁ is as defined in claim 1 and R₂, R₃, R₄ and R'₅, are as defined above; and

15 (e) optionally salifying the resulting taxane derivative of the formula I to form a pharmaceutically acceptable salt thereof.

7. A compound of the formula III as defined in claim 6.

8. A process for preparing a compound of the formula III as defined in claim 6, which process comprises

20 (a) carrying out a substitution reaction with an azide or cyanide salt or a derivative thereof on a taxane derivative of formula II as defined in claim 6, thereby to form a taxane

- 23 -

derivative having at the 7-position an azido, cyano or 1H-tetrazol-5-yl group;

5 (b) optionally reducing the said 7-azido derivative and, if desired, derivatizing the resultant 7-amino taxol to give thereby a taxane derivative of formula II where the leaving group R₆ is replaced by a residue of formula NR₇R₈ where R₇ and R₈ are defined in claim 1.

10 (c) optionally reacting the said 7-cyano derivative with an appropriate azide to give the corresponding 7-(1H-tetrazol-5-yl) derivative.

9. A pharmaceutical composition which comprises a taxane derivative of the formula I as defined in any one of claims 1 to 5 or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable diluent or carrier.

15 10. A taxane derivative of formula I as defined in any one of claims 1 to 5 or a pharmaceutically acceptable salt thereof for use as an antitumor agent.

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C07D305/14 A61K31/335 C07D405/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,94 13655 (UPJOHN) 23 June 1994 see page 60 - page 107; claims; example 20 ---	1,2,6-10
P,X	WO,A,95 20582 (UPJOHN) 3 August 1995 see claims 1,14 ---	1,2,6-10
P,X	TETRAHEDRON LETTERS, vol. 36, no. 17, 24 April 1995 OXFORD GB, pages 2901-2904, XIAN LIANG ET AL. 'SYNTHESIS AND BIOLOGICAL EVALUATION OF PACLITAXEL ANALOGS MODIFIED IN RING C.' see page 2901 - page 2903 -----	1,2

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*'&' document member of the same patent family

Date of the actual completion of the international search

1 March 1996

Date of mailing of the international search report

11.03.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentstaan 2
 NL - 2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+ 31-70) 340-3016

Authorized officer

Francois, J

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9413655	23-06-94	AU-B-	5741194	04-07-94
		CA-A-	2149021	23-06-94
		CZ-A-	9501437	15-11-95
		EP-A-	0674630	04-10-95
		FI-A-	952920	14-06-95
		NO-A-	952351	14-08-95
		PL-A-	309392	02-10-95
		AU-B-	7138894	03-01-95
		CA-A-	2161328	22-12-94
		WO-A-	9429288	22-12-94
		CN-A-	1095377	23-11-94
WO-A-9520582	03-08-95	AU-B-	1680695	15-08-95