SPRINT - 1 PROJECT DOCUMENT

Date	16 November 2022
Team ID	PNT2022TMID46686
Project Name	Developing a Flight Delay Prediction using
	Machine Learning

DEVELOPMENT PHASE:

SPRINT-1:

Outline:

- Data Pre-processing
- Data Analysis
- Feature Engineering
- Model Building
- Random Forest Classification

Required Libraries:

• Pandas - Data Pre-processing

• Numpy - Data Pre-processing, Analysis

Matplotlib - Visualization
 Seaborn - Visualization
 Imblearn - Balancing Data
 Sklearn - Model Buildling

Software/Tool:

- Anaconda- Jupyter Notebook
- Used Language Python

Data Pre-processing:

Data Collection:

Dataset is collected from the available website.

Dataset description:

Out[9]:	YEAR	0
	MONTH	0
	DAY	0
	DAY_OF_WEEK	0
	AIRLINE	0
	FLIGHT_NUMBER	0
	TAIL_NUMBER	277
	ORIGIN_AIRPORT	0
	DESTINATION_AIRPORT	0
	SCHEDULED_DEPARTURE	0
	DEPARTURE_TIME	1477
	DEPARTURE_DELAY	1477
	TAXI_OUT	1538
	WHEELS_OFF	
	SCHEDULED_TIME	1
	ELAPSED_TIME	1803
	AIR_TIME	1803
	DISTANCE	0
	WHEELS_ON	
	TAXI_IN	1596
	SCHEDULED_ARRIVAL	0
	ARRIVAL_TIME	1596
	ARRIVAL_DELAY	1803
	DIVERTED	0
	CANCELLED	0
	CANCELLATION_REASON	98449
	AIR_SYSTEM_DELAY	81864
	SECURITY_DELAY	81864
	AIRLINE_DELAY	81864
	LATE_AIRCRAFT_DELAY	81864
	WEATHER_DELAY	81864
	dtype: int64	

Data Analytics:

	YEAR	MONTH	DAY	DAY_OF_WEEK	AIRLINE	FLIGHT_NUMBER	TAIL_NUMBER	ORIGIN_AIRPORT	DESTINATION_AIRPORT	SCHEDULED_DEPARTUR
5126156	2015	11	17	2	MQ	3125	N646MQ	BMI	ORD	6
301985	2015	1	20	2	AA	2482	N505AA	DFW	AUS	18
4886973	2015	11	1	7	EV	2828	N629AE	DFW	LAW	21
1589374	2015	4	12	7	WN	1371	N368SW	BNA	CLE	14
4545902	2015	10	11	7	DL	1370	N917DN	10397	14576	9

Data Analysis And Visualization:

sns.countplot(x='CANCELLATION_REASON',data=flights)

<AxesSubplot:xlabel='CANCELLATION_REASON', ylabel='count'>

Reason for Cancellation of flight: A - Airline/Carrier; B - Weather; C - National Air System; D - Security

We can observe from graph easily that mostly weather is responsible for delays of flight.

sns.countplot(x="MONTH",hue="CANCELLATION_REASON",data=flights)

<AxesSubplot:xlabel='MONTH', ylabel='count'>


```
In [13]: axis = plt.subplots(figsize=(10,14))
Name = flights["AIRLINE"].unique()
size = flights["AIRLINE"].value_counts()
plt.pie(size,labels=Name,autopct='%5.0f%%')
plt.show()
```


Feature Engineering:

Very High Correlation Between Arrival Delay and Departure Delay It shows that maximum of the Arrival Delays are due to the Departure Delays.

<pre>If=pd.DataFrame(flights) If['DAY_OF_WEEK']= df['DAY_OF_WEEK'].apply(str) If['DAY_OF_WEEK'].replace({"1":"SUNDAY", "2": "MONDAY", "3": "TUESDAY", "4":"WEDNESDAY", "5":"THURSDAY", "6":"FRIDAY", "7":"SATI Flights</pre>											
	MONTH	DAY	DAY_OF_WEEK	AIRLINE	ORIGIN_AIRPORT	DESTINATION_AIRPORT	SCHEDULED_DEPARTURE	DEPARTURE_DELAY	DISTANCE	ARF	
4330572	9	27	SATURDAY	B6	BOS	PIT	1515	7.0	496		
2153991	5	17	SATURDAY	B6	LAX	FLL	1430	4.0	2343		
2268611	5	24	SATURDAY	AS	SEA	SNA	1655	-9.0	978		
5344954	12	1	MONDAY	VX	LAX	FLL	1025	53.0	2343		
1728777	4	21	MONDAY	UA	MCO	EWR	800	-8.0	937		
3542391	8	8	FRIDAY	AS	LAX	SEA	1955	82.0	954		
3777973	8	23	SATURDAY	00	SLC	BUR	838	-1.0	574		
4002231	9	6	SATURDAY	WN	LAS	PIT	1010	1.0	1910		
1143520	3	16	SUNDAY	DL	SFO	ATL	730	-2.0	2139		
5414693	12	5	FRIDAY	AA	CLT	DFW	1855	-7.0	936		

98197 rows × 10 columns

Data Balancing:

```
print(flights.ORIGIN_AIRPORT.nunique())
print(flights.DESTINATION_AIRPORT.nunique())
print(flights.AIRLINE.nunique())

321
320
14

flights=flights.dropna()
flights
```

Model Buliding:

pp=pd.DataFrame({'Actual':y_test,'Predicted':y_pred}) pp Actual Predicted 5648606 5.0 -0.08 1190313 89.0 78.74 177785 -3.0 -1.34 225285 0.0 1.88 **2814995** -16.0 -0.17 3071475 -5.0 -5.51 378775 -7.0 -3.29 8.0 31.97 2913785 3023908 -4.0 -3.49 1468738 -5.0 -2.38 12000 rows × 2 columns

Random Forest Classification:

```
# Random search of parameters, using 5 fold cross validation, search across 100 different combinations
rf_random = RandomizedSearchCV(estimator = reg_rf, param_distributions = random_grid,scoring='neg_mean_squared_error', n_iter
rf_random.fit(X_train,y_train)
Fitting 5 folds for each of 10 candidates, totalling 50 fits
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=148; total time=
                                                                                                                         4.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=148; total time=
                                                                                                                         4.85
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=148;
                                                                                                          total time=
                                                                                                                         4.55
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=148; total time=
                                                                                                                         4.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=148; total time=
                                                                                                                         5.2s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=182; total time=
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=182; total time=
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=182; total time=
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=182; total time=
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=182; total time=
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=44; total time=
                                                                                                                         38.5s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=44; total time= [CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=44; total time=
                                                                                                                         36.6s
                                                                                                                         36.7s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=44; total time=
                                                                                                                         37.7s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=44; total time=
                                                                                                                         38.7s Activate
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=61; total time= 55.5s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=61; total time=
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=61; total time=
```

Conclusion:

In this sprint, we builded our model, evaluated and saved. In next sprint, we deploy ourmodel IBM cloud using IBM Watson and building Dashboard.