

				Sub	ject	C00	ie: r	CE	403
Roll No:									

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 HYDRAULIC ENGINEERING AND MACHINES

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10 X2=20)			
Q1(a)	Define spe	ecific energy and total energy.		1		
Q1(b)	Distinguis	sh between pipe flow and open channel flow.		1		
Q1(c)	Distinguish between most economical and most efficient channel.					
Q1(d)	Explain G	VF.		2		
Q1(e)	Explain h	ydraulic jump with the help of a diagram.		3		
Q1(f)	Define sur	rges in open channel.		3		
Q1(g)	Explain S	peed ratio and Jet ratio of a Pelton turbine.		4		
Q1(h)	Define pu	mps.		4		
Q1(i)	Define rea	action turbine with the help of a suitable example.		5		
Q1(j)	Define spe	ecific speed of a turbine.		5		

SECT	ION-B	Atter	npt ANY THREE	Ес	of the following Questions	Marks (3X10=30)	
Q2(a)	Illustrate 1	the co	ndition under wh	hic	ch the rectangular and triang	ular section of an open	1
	channel is	s most	economical and	de	erive these conditions.		
Q2(b)	Q2(b) Explain and sketch the GVF profiles produced on					2	
	i. Mild Slo	ope	ii. Steep Slope		iii. Critical Slope		
Q2(c)					rectangular channel of 3 m	width, discharge is 7.8	3
	m^3/s and c	depth 1	before the jump i	is	0.28 m. Calculate:		
	i. Sequent	t Deptl	h				
	ii. Energy	loss d	luring the jump				
Q2(d)	Illustrate of	centrif	ugal pump? Desc	scr	ibe the principle and working	g of a centrifugal pump	4
	with a nea	at sket	ch.				
Q2(e)	Illustrate 1	the ph	enomenon of cav	vit	tation? What is its effect on t	turbine? How it can be	5
	avoided?	_					

SECT	ION-C Attempt ANY ON	E following Question	Marks (1X10=10)	
Q3(a)	Explain the concept of sp	ecific energy depth curve and p	rove the critical flow	1
	condition for all types of cha	annels.		
Q3(b)	A flow of 5 m^3/s is passing a	at a depth of 1.5 m through a rectar	ngular channel of 2.5 m	1
		prrection factor α is found to be 1.2		
	energy of the flow? What is	the value of the depth alternate to	the existing depth if α	
	= 1.0 is assumed for the alte	rnate flow?		

SEC	TION-C	Attempt ANY ONE following Question	Marks (1 X10=10)				
Q4(a) A rectang	ular channel has a width of 2 m and carries a discha	rge of 4.8 m ³ / sec with	2			
	a depth of 1.6 m. At a certain section a small smooth hump with a flat top and of height						
	0.5 m is p	0.5 m is proposed to be built. Neglect energy loss.					
		i. Calculate the water surface elevation on the hump.					
	ii. Calcula	te the minimum size of hump to cause critical flow	over the hump.				
Q4(b) A rectang	ular channel is 3.5 m wide and conveys a discharge	of 15 m ³ /s at a depth of	2			
	2 m. It is	proposed to reduce the width of the channel at	a hydraulic structure.				
	Assuming	the transition to be horizontal and the flow to be fric	ctionless, determine the				
	water sur	water surface elevation upstream and downstream of the constriction when the					
	constricte	d width is: (i) 2.5 m, (ii) 2.2 m.					

				Sub	ject	Coc	le: ŀ	CE	<u> 403</u>
Roll No:									

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 HYDRAULIC ENGINEERING AND MACHINES

SECT	ION-C Attempt ANY ONE following Question	Marks (1 X10=10)		
Q5(a)	Derive an expression for sequent depth ratio and energy loss	in a hydraulic jump for a	3	
	rectangular channel.			
Q5(b)	A horizontal rectangular channel 4 m wide carries a discharge of 16m ³ /s. Determine			
	whether a jump may occur at an initial depth of 0.5 m of	or not. If a jump occurs,		
	determine the sequent depth to this initial depth. Also determ	nine the energy loss in the		
	jump.			

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	
Q6(a)	Explain in detail the working of a reciprocating pump wi	th the help of a suitable	4
	diagram.		
Q6(b)	A nozzle of 50 mm diameter delivers a stream of water at 2	20 m/s perpendicular to a	4
	plate that moves away from the jet at 5 m/s. Calculate:		
	i. Force on the plate		
	ii. Work done		
	iii. Efficiency of the jet		

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)	
Q7(a)	Illustrate draft tubes and its types with the help of a suitable diagram. Prove that the			5
	pressure a	t the inlet of the draft tube is less than atmospheric p	ressure.	
Q7(b)	A Pelton v	wheel is to be designed for the following specification	n. Shaft Power =11722	5
	KW, Head	d = 380 m, Speed = 750 rpm, Overall Efficiency = 86	5%, Jet diameter (d) not	
	to exceed	one-sixth of wheel diameter (D). Determine:		
	i. Wheel d	liameter		
	ii. No. of .	Jets required		
	iii. Diame	ter of Jets.		
	Take Kv ₁	$= 0.985$ and $Ku_1=0.45$.		