Topic Modeling

Generative probabilistic models of textual corpora

- In order to introduce automatic processing of natural language, a language model is needed.
- One of the main goals of language modeling is to assign a probability to a document: $P(D) = P(w_1, w_2, w_3, ..., w_m)$
- It is assumed that documents in a corpus were **randomly generated** (it is, of course, only a theoretical assumption; in reality, in most cases, they are created by humans)
- There are two types of generative language models:
 - those that generate each word on the basis of some number of preceding words
 - those that generate words based on latent topics

n-gram language models

- N-gram a contiguous sequence of n items from a given document
 - When n==m, where m is a total number number of words in a document:

$$P(D) = P(W_1)P(W_2|W_1)P(W_3|W_1,W_2)...P(W_m|W_1,...,W_{m-1})$$

- **Unigram** Words are independent. Each word in a document is assumed to be randomly generated in the independent way
 - $P(D) = P(W_1)P(W_2)P(W_3, ...P(W_m)$
- Bigram words are generated with probability condition on the previous word
- In reality, language has long-distance dependencies
 - Skip-gram is one of the solutions to this problem

Document Representations in Vector Space

- Each document is represented by an **array of features**
- Representation types:
 - Bag-of-words (a.k.a. unigram count, term frequencies)
 - A document is represented by a sparse vector of the size equals to dictionary size
 - TF-IDF (term frequency—inverse document frequency)
 - Similar to BoW but term frequencies are weighted, to penalize frequent words
 - Topic Models (a.k.a. concept models, latent variable models)
 - A document is represented by a low-rank dense vector
- Similarity between documents (or between document and a query) can be expressed in a cosine distance

Topic Modeling

- Topic Modeling is a set of techniques that aim to discover and annotate large archives of documents with thematic information.
- TM is a set of methods that analyze the words (or other fine-grained features) of the original documents to **discover** the themes that run through them, how those themes are **connected** to each other, and how they **change** over time.
- Often, the number of topics to be discovered is predefined.
- Topic modeling can be seen as a dimensionality reduction technique
- Topic modeling, like clustering, do not require any prior annotations or labeling, but in contrast to clustering, can assign document to multiple topics.
- Semantic information can be derived from a word-document co-occurrence matrix
- Topic Model types:
 - Linear algebra based (e.g. LSA)
 - Probabilistic modeling based (e.g. pLSA, LDA, Random Projections)

Latent semantic analysis

- a.k.a. Latent Semantic Indexing
- A **low-rank** approximation of document-term matrix (typical rank 100-300)
 - In contrast, The British National Corpus (BNC) has 100-million words
- LSA downsizes the co-occurrence tables via Singular Value Decomposition

- C normalized co-occurrence matrix
- **D** a diagonal matrix, all cells except the main diagonal are zeros, elements of the main diagonal are called 'singular values'

Probabilistic Latent Semantic Analysis

pLSA models the probability of each co-occurrence as a mixture of **conditionally independent multinomial distributions**:

$$P(w,d) = \sum_{c} P(c)P(d|c)P(w|c)$$

P(d|c) relates to the V matrix from the previous slide

P(w|c) relates to the U matrix from the previous slide

In contrast to classical LSA, words representation in topics and topic representations in documents will be **non-negative** and will **sum up to one**.

pLSA – Graphical Model

- A graphical model is a probabilistic model for which a graph denotes the conditional dependence structure between random variables.
- Only a shaded variable is observed.
 All the others have to be inferred.
- We can infer hidden variable using maximum likelihood estimation.
- D total number of documents
- N total number of words in a document (it fact, it should be N_d)
- T total number of topics

Latent Dirichlet allocation

- LDA is similar to pLSA, except that in LDA the topic distribution is assumed to have a
 Dirichlet prior
- Dirichlet distribution is a family of continuous multivariate probability distributions
- This model assumes that documents are generated randomly
- Topic is a distribution over a fixed vocabulary, each topic contains each word from the dictionary, but some of them have very low probability
- Each word in a document is randomly selected from randomly selected topic from distribution of topics.
- Each documents exhibit multiple topics in different proportions.
 - In fact, all the documents in the collection share the same set of topics, but each document exhibits those topics in different proportions
- In reality, the topic structure, per-document topic distributions and the per-document perword topic assignments are latent, and have to be inferred from observed documents.

The intuitions behind latent Dirichlet allocation

Real inference with LDA

A 100-topic LDA model was fitted to **17,000 articles from the** *Science* journal. At right are **the top 15 most frequent words** from the most frequent topics. At left are the **inferred topic proportions** for the example article from previous slide.

"Genetics"	"Evolution"	"Disease"	"Computers"
human	evolution	$\operatorname{disease}$	$\operatorname{computer}$
genome	evolutionary	host	models
${ m dna}$	species	bacteria	information
$\operatorname{genetic}$	organisms	diseases	data
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	$\operatorname{network}$
molecular	groups	strains	$\operatorname{systems}$
sequencing	phylogenetic	$\operatorname{control}$	model
map	living	infectious	parallel
information	diversity	$_{ m malaria}$	$\operatorname{methods}$
genetics	group	parasite	networks
$\mathbf{mapping}$	new	parasites	software
$\operatorname{project}$	two	united	new
sequences	common	tuberculosis	$\operatorname{simulations}$

The graphical model for latent Dirichlet allocation.

K – total number of topics

 β_k – topic, a distribution over the vocabulary

D – total number of documents

 Θ_{d} – per-document topic proportions

N – total number of words in a document (it fact, it should be N_d)

 Z_{dn} – per-word topic assignment

W_{d n} – observed word

 α , η – Dirichlet parameters

- Several inference algorithms are available (e.g. sampling based)
- A few **extensions** to LDA were created:
 - Bigram Topic Model

Matrix Factorization Interpretation of LDA

Tooling

gensim: topic modeling for humans

- Free python library
- Memory independent
- Distributed computing

http://radimrehurek.com/gensim

Stanford Topic Modeling Toolbox

http://nlp.stanford.edu/software/tmt

MAchine **L**earning for **L**anguag**E T**oolkit (MALLET) is a Java-based package for:

- statistical natural language processing
- document classification
- Clustering
- topic modeling
- information extraction
- and other machine learning applications to text.

http://mallet.cs.umass.edu

Topic modeling applications

- Topic-based text classification
 - Classical text classification algorithms (e.g. perceptron, naïve bayes, k-nearest neighbor, SVM, AdaBoost, etc.) are often assuming **bag-of-words representation** of input data.
 - Topic modeling can be seen as a pre-processing step before applying supervised learning methods.
 - Using topic-based representation it is possible to gain ~0,039 in precision and ~0,046 in F1 score [Cai, Hofmann, 2003]
- Collaborative filtering [Hofmann, 2004]
- Finding patterns in genetic data, images, and social networks

Word Representations in Vector Space

- Notion of similarity between words
- Continuous-valued vector representation of words
- Neural network language model
- Prediction semantic of the word based on the context
- Ability to perform simple algebraic operations on the word vectors:
 vector("King") vector("Man") + vector("Woman") will yield Queen
- word2ved: https://code.google.com/p/word2vec

Topic Modeling in Computer Vision

- Bag-of-words model in computer vision (a.k.a. bag-of-features)
 - Codewords ("visual words") instead of just words
 - Codebook instead of dictionary
- It is assumed, that documents exhibit multiple topics and the collection of documents exhibits the same set of topics
- TM in CV has been used to:
 - Classify images
 - Build image hierarchies
 - Connecting images and captions
- The main advantage of this approach it its unsupervised training nature.

Codebook example

Obtained from 650 training examples from 13 categories of **natural scenes** (e.g. highway, inside of cities, tall buildings, forest, etc) using **k-means** clustering algorithm.

Bibliography

- D. Blei, **Probabilistic topic models**, Communications of the ACM, 2012
- M. Steyvers, T. Griffiths, **Probabilistic Topic Models**, *Handbook of latent semantic analysis*, 2007
- S. Deerwester, et al. **Indexing by latent semantic analysis**, *JASIS*, 1990
- D. Blei, A. Ng, M. Jordan, Latent dirichlet allocation, Journal of machine Learning research, 2003
- H. Wallach, Topic modeling: beyond bag-of-words, International conference on Machine learning, 2006
- T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, ICLR, 2013
- L. Fei-Fei, P. Perona, A Bayesian Hierarchical Model for Learning Natural Scene Categories,
 Computer Vision and Pattern Recognition, 2005
- X. Wang, E. Grimson, **Spatial Latent Dirichlet Allocation**, *Conference on Neural Information Processing Systems*, 2007

Thank you!