Computational Physics

Spring, 2010

Instuctor: Dr. Drake Mitchell

Contact: <u>drakem@pdx.edu</u>, 5-9876

Office Hours: Wednesday 9:00-10:00 and by appointment; B1 50 Science Building 2 (1

floor down from the ground floor)

Required text: N. Giordano and H. Nakanishi – "Computational Physics" 2nd edition

Also see: http://www.physics.purdue.edu/~hisao/book/ and material

handed out as needed

Other books that might be useful:

Numerical Recipes-Press, Teukolsky, etc. Old version:

http://www.nr.com/oldverswitcher.html

Similar to Giordano: A first course in computational physics – DeVries

Similar to Giordano: Computational Physics – Landau and Paez

Grader: Xiaohua Wang (xiaohuaw@pdx.edu)

Homework: Emailed: format: DCM (that is **YOUR** 3 initials)_(number of homework

assignment).7z, each exercise should execute after input from the grader. **Send** your homework to the grader. No late homework accepted. The lowest

homework grade will not be counted. Language: Python

Plagiarism: Collaboration is encouraged; wholesale copying from someone else is not. A

grade of zero for the assignment is certain; further sanctions are possible.

<u>Pre-class Warm Ups</u>: This means short homework assignments due before class. These assignments will consist of three questions; 2 taken from the reading assigned for that day's class and a final question about what you found difficult in the day's reading. <u>These assignments will be graded on effort and coherence rather than correctness</u>. These assignments will not include problems or derivations. Ideally I would like pre-class Warm Ups turned in <u>via email as a plain email (not an attachment)</u> by 8am on the day of class, if this is not possible they can be turned in on paper at the start of class.

Grading Component	<u>%</u>	
Homework; 9 assigned; will toss the lowest 1	30	
Pre-class Warm Ups (14)	10	
In-class quizzes (6)	20	
Project; due day of final exam	20	
Final exam	20	

No late pre-class reading homework will be accepted, since it will be pointless after the corresponding class is over.

Final grades will NOT be evaluated in terms of a 'curve'. This means 2 things:

- 1) It is possible for the entire class to earn A's & B's (I've had it happen)
- 2) If another person in the class is doing well it has no effect on your grade

Syllabus (subject to revision)

Week	Tuesday/Thursday - Reading	WarmUp	Assignments (due Thursday, by email)
3/30	Ch 1, Appendix A	Thur	Quiz 0: today and Quiz 1: Thursday, Ch 1.
4/6	Ch 2, Appendix D	Tue	1: 1, 4, 6, Quiz 2: Thursday, Python
4/13	Ap. B, Ch. 3 to 3.4	Tue	2: 2, 6, 9; Quiz 3: Thursday
4/20	Rest of Ch. 3 and Ap. C	Tue/Thur	2 : 14, 18, and two problems below (3_3 and 3_4)
4/27	Ch. 4	Tue	4_1 and 4_2 (below), and 3 : 2, 12. Quiz 4.
5/4	Ch. 5	Tue/Thur	3 : 22, 34, 37, and 4 : 4, 8
5/11	Ch. 6 and Ap. E	Tue	4 : 10, 17, 19, and 5 : 4. Quiz 5 .
5/18	Ap. F & G	Tue/Thur	5: 9, and 6: 1, 9. Presentation of project proposals
5/25	Ch7	Tue/Thur	F: 1 & 3 and two problems below: 8_3 and 8_4. Quiz 6.
6/1	Ch. 8	Tue	E: 2, 5, 7, and 7 : 2, 12
6/9	Final 6/9: 1015-1205		Project due: send to me (zipped: named <i>DCM_project.7z</i> with YOUR 3 initials replacing ESB!)

- 3_3: Find the root of $f(x) = \cos(x) x = 0$ by the method of bisection. How many iterations are necessary to determine the root to eight significant figures?
- 3_4: Repeat 3_3 by using Newton-Raphson and the secant method. Compare the effort to find the roots with 3_3.
- 4_1: Use N-R to solve $x^{2/3}$ -169 = 0.
- 4_2: Find an extremum of $2x^4-x^3-x^2+17$ between: -10 and 10. There might be multiple extrema, find at least one.
- 8_3: Evaluate the integral $\int_0^{\pi} \sin^3 x dx$ using approximations to the integrand that are piecewise linear, quadratic and quartic. With *N* intervals, and hence *N*+1 points, evaluate the integral for *N*= 4, 8, 16, ..., 1024, and compare the accuracy of the methods.
- 8_4: Numerically integrate the Fresnel integrals: $C(v) = \int_0^v \cos(\pi w^2/2) dw$ and $S(v) = \int_0^v \sin(\pi w^2/2) dw$ and evaluate: $I/I_0 = 0.5 \{|C(v) + 0.5|^2 + |S(v) + 0.5|^2\}$ and plot the results. This is the pattern of diffraction at a knife-edge.

Warm Up for Thur. 4/1/10

- 1. What is pseudocode? Give an example.
- 2. What are 3 numerical methods for evaluating differential equations?
- 3. What did you find confusing/frustrating/counter-intuitive in this section? If nothing fits those categories, what did you find interesting?