

实验与创新实践教育中心

实验报告

课程名称:	模拟电子技2	<u> 大实验</u>	实验名称:	实验三:	射极跟随器	
专业-班级: _<	动似到王	学号: <u>[190</u>	410102	姓名: _	放	
实验日期: <u>20</u>						
教师评语:						
			助教签	字:		
			教师签	字:		
			日	期:	<u> </u>	

实验预习

实验预习和实验过程原

原始数据记录	263
原始数据审核:	5

预习结果审核:

(包括预习时,计算的理论数据)

注意: 所有的波形都必须拍照保存, 用于课堂检查和课后分析。

表 3-2 射极跟随器静态工作点数据表

The De District of the Control of th									
	测量值		计算值						
$V_{\rm E}/{ m V}$	$V_{\rm E}/{ m V}$ $V_{\rm B}/{ m V}$ $V_{\rm C}/{ m V}$		V _{BE} /V	V _{CE} /V	<i>I</i> _E /mA	I _B /mA			
6.886	7,380	11.993	£ 0.474	5.107	3,443	0.014			

表 3-3 射极跟随器放大倍数测量数据表

1.51

		计算值			
	U;/V	U₅/V	$U_{\rm o}/{\rm V} \ (R_{\rm L}=1{\rm k}\Omega)$	A_{u}	$A_{ m us}$
A点	7 1,4965	1.4916	1.4632	0.98	0.8316
B点	1,4977	1.7651	1,4678	2.978	0.981

表 3-4 射极跟随器跟随特性测量数据表

U _i /V	0.3	0.3	0.7	0.9	1.1	13	1.5	1.70
U _L /V	0,275	0.485	0.680	0.878	1.07	1125	1.45	1.64

表 3-5 射极跟随器输出电阻测量数据表

	<i>U₅</i> /mV	II loo V	R_i /k Ω		
		<i>U</i> _i /mV	测量值	理论值	
空载	1.4968V	1.35738	194,59	180.82.	
$R_{L}=1k\Omega$	1.4965V	1,26990	112.08	95.64	

表 3-6 射极跟随器输出电阻测量数据表

	<i>U</i> _L /V	77.57	$R \mathcal{J} \mathbf{k} \Omega \mathcal{L}$		
1		<i>U₀</i> /V	测量值	理论值	
A 点接入	1,2472	1,3150	186,43	99.59	
B 点接入	14902	1,4902	18.3	10	
	LUZZV.		No.		

1.4634

表 3-7 射极跟随器幅频特性测量数据表 🗸 0.7 🔻

次5·7 为依欧姆福福州(10 区场里从增长 51 <u></u>									
		f_{L}			fo		or head	fн	
f	10Hz	50Hz	100Hz	1kHz	10kHz	100kHz	1MHz	2MHz	3MHz
U _i /V	0.688	0.683	0.685	0.638	01699	0.698	2696	0.707	0.755
U _o /V	0.671	0.667	0.670	0.673	0.671	0.691	0.688	2,700	0.699
$A_{\rm u} = U_{\rm o} / U_{\rm i}$	0.97t	0.9766	0,978	01978	0.989	0,990	0.9885	0.991	0.926

实验目的

- 1. 等握射相段随路的特性及侧试方法.
- 2. 世一步学习的大器各项卷数测试方法。

实验设备及元器件

直流移压原

国组

桥加惠

爾里爾 三都管

手持万用東

信号发生器

ÆE接桥 导线

示世器

实验用邻方板

三、实验原理(重点简述实验原理,画出原理图) 与抽象银箔电路厚如图析示.

3.1 静态工作点

当Ui=O,ipil Va. Vc. VE, it 開始後後: UBE=VB-VE; Ica IE=(HB) IB; IB= Vcc-VB

UCE = VCC-VE

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表

2、沉隆Au.

接入凡=1月1、B点为内以,河屋,代表3-3中,A点加入信号Us,河骨数据, 计录表子子中

3.2动态性的指标

U)编入电阻Ri.

 $R_i = \frac{U_i}{7} = \frac{U_i}{U_i - U_i} R_s$

(2)新知中图息

Ro = The IIRE 2 Kbel(HB) (RS HEIN)

Ro = RB//Rs + Troe/LRE & RB//Rs + Troe

河试、龙河腔教输出山、再测堆处教几后输出儿、兄。二(1)尺

13 电压放大倍数Au

Au = (1+B)(KE11RL) <1

3. 测试跟随特性.

接入凡IKA、BODA信号以、用示波器又吸吸以和此记录以和此计解从表了一件。

4.加屋端入中国Ri

空载, A点加入Us, 测定Us和Ui, 记题据, 凡二IFIZ,重复上述过程,记入表了一种,

5. 测量输出中班R。

A.B份准入以,从,分别心量空载和带载时输出电压、记录来3-6中.

6.1见过线车响应.

B点接入Ui,中面在场级值 a7V. 以于=10kHZ的别上下图节频率,用交流或伏装, 沉怀哪座车车的的电压 Uo. 填水表的3-7中, 绘制Au=FG)

这点的点。BFTIDING,四层代发系列,ALTONOSOG、四角设定

17 表 1 23 5 P

五、实验数据分析

(按指导书中实验报告的要求用图表或曲线对实验数据进行分析和处理,并对实验结果做出 判断,如需绘制曲线请在**坐标纸**中进行)

1. 测定静态工作点

根据表 3-2 的测量数据,和理论计算值比较,分析误差产生的原因。

 实例VE=6.886V, VB=7.38V.

送产生的原因:

①西岭岛后周园南岸系产生变化,

② 电图图值与标价值不符.

③测量仪器本系在测量差、

2. 测量输出电阻 R。和输入电阻 Ri

根据表 3-4 和 3-5, 测量的输入电阻和输出电阻,与理论计算值比较,分析误差产生的原因。

3. 根据表 3-7,在坐标纸中,绘制幅频响应曲线图 $A_u = F(f)$ 。

六、问题思考

(回答指导书中的思考题)

1. 测量放大器静态工作点时,如果测得 $U_{CE} < 0.5V$,说明晶体管处于什么工作状态? 如果测得 $U_{CE} \approx U_{CC}$ 。晶体管又处于什么工作状态?

UCE < 0.5V 说明晶体管处于放大工作状态:

UCE~UCE 晶体管处于截止工作状态

- 2. 在图 3-2 所示的实验电路中,偏置电阻 Ro 起什么作用? 管设置新参工作点,使 Ust > Usn, 上拉电阻 Ro 至 Vcc, 使 B极电势的 行高,设置合适静态工作点。
- 3. 在测试表 3-6 时,当频率达到 100kHz 以上时,为什么不能使用 F287C 测量,而需要使用电子毫伏表,请在网络上搜索两个设备的资料来回答问题。

万用表面和当里开来的工频电压有效值的,积50H2,高频交流电压频率高度 有条样车要求也较高,万用来满足不了,对万用表来说,高频信号变化的大快了。 多期信号有的混铸设的。

电子毫伏表即可以有足够高的举择频率,效能的约例高频电压信号

七、实验体会与建议

- 小等握了射极跟随器的特性
- 2.进一步扫了放大器各顶新数测试方法。