In [53]:

- 1 #sampling
- 2 import numpy as np
- 3 import pandas as pd

In [60]:

1 df=pd.read_csv("sampling.csv")

In [61]:

1 df.head()

Out[61]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distanc of hous from \ institutio
0	1	М	22	4	100000	3.30	6.0	100	
1	2	М	18	4	60000	3.20	1.5	80	1
2	3	М	16	4	50000	3.43	2.0	90	
3	4	М	16	5	80000	2.58	1.0	90	
4	5	М	16	4	200000	2.99	1.0	90	
<									>

In [62]:

1 df.describe()

Out[62]:

	ID \n Number	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	i
cour	t 49.00000	49.000000	49.000000	49.000000	49.000000	49.000000	49.000000	2
mea	n 25.00000	16.571429	4.632653	105306.122449	3.260204	2.346939	89.061224	Ę
st	d 14.28869	1.080123	1.481748	51310.007179	0.337259	1.287779	10.749822	1(
mi	n 1.00000	16.000000	2.000000	30000.000000	2.580000	1.000000	60.000000	
259	6 13.00000	16.000000	4.000000	70000.000000	3.100000	1.000000	85.000000	
509	6 25.00000	16.000000	4.000000	100000.000000	3.200000	2.000000	90.000000	1
759	6 37.00000	17.000000	5.000000	140000.000000	3.430000	3.000000	97.000000	3
ma	x 49.00000	22.000000	10.000000	200000.000000	4.190000	6.000000	100.000000	5(
6								3

In [63]:

Out[63]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distanc of hous from \ institutio
0	1	М	22	4	100000	3.30	6.0	100	_
1	2	М	18	4	60000	3.20	1.5	80	1
2	3	М	16	4	50000	3.43	2.0	90	
3	4	М	16	5	80000	2.58	1.0	90	
4	5	М	16	4	200000	2.99	1.0	90	
<									>

In [73]:

```
1 Stratum_1=df[df['Strata']=='Stratum_1']
2 Stratum_1
```

Out[73]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
1	2	М	18	4	60000	3.20	1.5	80	_
2	3	М	16	4	50000	3.43	2.0	90	
11	12	М	18	5	70000	3.45	3.5	99	
14	15	М	16	5	70000	3.58	5.0	95	
15	16	М	16	5	70000	3.42	2.0	90	
16	17	М	16	2	60000	4.19	4.0	90	
18	19	М	16	4	50000	2.72	2.0	90	2
20	21	F	18	6	60000	3.19	2.0	98	
21	22	М	16	5	30000	2.86	2.0	97	
25	26	М	17	5	50000	3.11	3.0	85	1
31	32	М	16	4	50000	2.97	1.0	60	
33	34	М	16	4	50000	3.93	4.0	85	
35	36	М	16	4	50000	3.02	1.0	60	
38	39	F	16	4	70000	3.50	4.0	98	1
43	44	М	16	4	50000	2.70	2.0	97	
<									>

In [76]:

- 1 Stratum_2=df[df['Strata']=='Stratum_2']
 2 Stratum_2

Out[76]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
0	1	М	22	4	100000	3.30	6.0	100	
3	4	М	16	5	80000	2.58	1.0	90	
7	8	М	16	4	100000	3.28	3.5	95	3
8	9	М	16	5	80000	3.16	4.5	90	5
9	10	М	16	10	100000	3.10	3.0	90	
10	11	М	16	4	100000	3.26	4.5	100	2
12	13	М	18	4	100000	3.14	1.5	99	
19	20	М	18	5	110000	3.10	2.0	100	
22	23	М	16	5	80000	2.69	2.0	90	
24	25	М	17	4	80000	3.22	1.0	90	1
29	30	М	17	3	80000	3.14	1.0	70	
36	37	М	16	4	75000	2.80	2.0	70	
37	38	М	17	2	80000	3.10	2.0	75	
39	40	F	16	5	100000	3.60	3.0	99	
40	41	F	16	6	80000	3.40	2.0	97	1
41	42	М	17	4	100000	3.10	2.0	98	
45	46	М	16	6	100000	3.40	2.0	95	
46	47	М	16	5	75000	3.10	1.0	95	
47	48	М	16	4	100000	3.40	1.0	90	
<									>

In [77]:

```
Stratum_3=df[df['Strata']=='Stratum_3']
Stratum_3
```

Out[77]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
5	6	М	16	6	140000	3.25	1.0	70	
17	18	М	18	4	150000	3.42	2.0	98	
23	24	М	18	5	120000	3.48	4.0	97	
28	29	М	16	4	130000	2.90	1.0	80	
30	31	М	16	4	150000	3.80	1.0	90	2
<									>

In [78]:

- 1 Stratum_4=df[df['Strata']=='Stratum_4']
- 2 Stratum_4

Out[78]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
4	5	М	16	4	200000	2.99	1.0	90	
6	7	М	16	3	170000	3.15	1.0	80	
13	14	М	16	3	200000	3.43	4.0	98	
26	27	М	17	4	200000	3.96	3.0	95	
27	28	М	17	6	180000	3.12	1.0	80	
32	33	М	16	10	200000	3.20	2.0	65	
34	35	М	16	4	160000	3.21	1.0	90	
42	43	М	16	5	200000	3.70	3.0	95	
44	45	М	17	4	200000	3.20	2.0	90	
48	49	М	16	7	200000	3.80	4.0	99	
<									>

```
In [105]:
    #exporting file
    Stratum_4.to_excel(r'Stratum_1.xlsx', index=False)
 3 Stratum_4.to_excel(r'Stratum_2.xlsx', index=False)
 4 Stratum_4.to_excel(r'Stratum_3.xlsx', index=False)
    Stratum_4.to_excel(r'Stratum_4.xlsx', index=False)
In [81]:
 1 df['Strata'].value_counts()
Out[81]:
             19
Stratum_2
Stratum_1
             15
Stratum_4
             10
Stratum_3
              5
Name: Strata, dtype: int64
In [29]:
 1 population_size=49
 2 sample_size=10
 3 sample_propotion=sample_size/population_size
 4 sample_propotion
Out[29]:
0.20408163265306123
In [30]:
 1 Stratum_2=19
 2 | Stratum_1=15
 3 | Stratum 4=10
 4 Stratum_3=5
In [34]:
    stratum_1=round(Stratum_1*sample_propotion)
    stratum_2=round(Stratum_2*sample_propotion)
    stratum 3=round(Stratum 3*sample propotion)
 4 | stratum_4=round(Stratum_4*sample_propotion)
In [82]:
 1 print(f"**Propotional Allocation**\nstratum_1= {stratum_1}\nstratum_2= {stratum_2}\r
**Propotional Allocation**
stratum_1= 3
stratum_2 = 4
stratum_3= 1
```

 $stratum_4 = 2$

In [90]:

```
# random sampling in Stratum_1
stratum_1=Stratum_1.sample(n = 3,random_state = 0)
stratum_1
```

Out[90]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
-:	2 3	М	16	4	50000	3.43	2.0	90	
1	8 19	М	16	4	50000	2.72	2.0	90	2
2	1 22	М	16	5	30000	2.86	2.0	97	
<									>

In [112]:

```
# random sampling in Stratum_2
stratum_2=Stratum_2.sample(n =4,random_state = 2)
```

3 stratum_2

Out[112]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
24	25	М	17	4	80000	3.22	1.0	90	1
9	10	М	16	10	100000	3.10	3.0	90	
40	41	F	16	6	80000	3.40	2.0	97	1
0	1	М	22	4	100000	3.30	6.0	100	
<									>

In [92]:

```
# random sampling in Stratum_3
stratum_3=Stratum_3.sample(n =1,random_state = 2)
stratum_3
```

Out[92]:

		ID \n Number	Gender	Highest Years of schooling	Family	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
-	23	24	М	18	5	120000	3.48	4.0	97	
	<									>

In [93]:

```
# random sampling in Stratum_4
stratum_4=Stratum_4.sample(n =2,random_state = 2)
stratum_4
```

Out[93]:

	ID \n Number	Gender	Highest Years of schooling	Family	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distan of hou from instituti
27	28	М	17	6	180000	3.12	1.0	80	
6	7	М	16	3	170000	3.15	1.0	80	
<									>

In [116]:

```
#sample Dataframe
sample=pd.DataFrame()

sample=sample.append([stratum_1,stratum_2,stratum_3,stratum_4], ignore_index=True)
sample
```

C:\Users\User\AppData\Local\Temp\ipykernel_4104\3917195880.py:4: FutureWar ning: The frame.append method is deprecated and will be removed from panda s in a future version. Use pandas.concat instead.

sample=sample.append([stratum_1,stratum_2,stratum_3,stratum_4], ignore_i
ndex=True)

Out[116]:

	ID \n Number	Gender	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	Distanc of hous from \ institutio
0	3	М	16	4	50000	3.43	2.0	90	
1	19	М	16	4	50000	2.72	2.0	90	25
2	22	М	16	5	30000	2.86	2.0	97	
3	25	М	17	4	80000	3.22	1.0	90	12
4	10	М	16	10	100000	3.10	3.0	90	
5	41	F	16	6	80000	3.40	2.0	97	15
6	1	М	22	4	100000	3.30	6.0	100	
7	24	М	18	5	120000	3.48	4.0	97	
8	28	М	17	6	180000	3.12	1.0	80	1
9	7	М	16	3	170000	3.15	1.0	80	
<									>

In [117]:

1 sample.describe()

Out[117]:

	ID \n Number	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	
count	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	
mean	18.000000	17.000000	5.100000	96000.000000	3.178000	2.400000	91.100000	
std	12.605114	1.885618	1.969207	49710.271686	0.245348	1.577621	6.951419	
min	1.000000	16.000000	3.000000	30000.000000	2.720000	1.000000	80.000000	
25%	7.750000	16.000000	4.000000	57500.000000	3.105000	1.250000	90.000000	
50%	20.500000	16.000000	4.500000	90000.000000	3.185000	2.000000	90.000000	
75%	24.750000	17.000000	5.750000	115000.000000	3.375000	2.750000	97.000000	
max	41.000000	22.000000	10.000000	180000.000000	3.480000	6.000000	100.000000 2	:
<							>	

In [122]:

freq_table_1 = pd.crosstab(sample['Highest Years of schooling'], sample['Monthly Fam')
freq_table_2

Out[122]:

Monthly Family Income	30000	50000	80000	100000	120000	170000	180000
Highest Years of schooling							
16	1	2	1	1	0	1	0
17	0	0	1	0	0	0	1
18	0	0	0	0	1	0	0
22	0	0	0	1	0	0	0

In [127]:

```
freq_table_2 = pd.crosstab(sample['Total Family Member'], sample['Monthly Family Inc
freq_table_2
freq_table_2
```

Out[127]:

Monthly Family Income	30000	50000	80000	100000	120000	170000	180000
Total Family Member							
3	0	0	0	0	0	1	0
4	0	2	1	1	0	0	0
5	1	0	0	0	1	0	0
6	0	0	1	0	0	0	1
10	0	0	0	1	0	0	0

In [126]:

```
freq_table_3 = pd.crosstab(sample['Daily hour studied'],sample['GPA in Graduation'])
freq_table_3
```

Out[126]:

GPA in Graduation	2.72	2.86	3.10	3.12	3.15	3.22	3.30	3.40	3.43	3.48
Daily hour studied										
1.0	0	0	0	1	1	1	0	0	0	0
2.0	1	1	0	0	0	0	0	1	1	0
3.0	0	0	1	0	0	0	0	0	0	0
4.0	0	0	0	0	0	0	0	0	0	1
6.0	0	0	0	0	0	0	1	0	0	0

In [130]:

```
freq_table_4 = pd.crosstab(sample['% of attendance'],sample['GPA in Graduation'])
freq_table_4
freq_table_4
```

Out[130]:

GPA in Graduation 2.72 2.86 3.10 3.12 3.15 3.22 3.30 3.40 3.43 3.48 % of attendance

70 OI attoria	uncc										
	80	0	0	0	1	1	0	0	0	0	0
	90	1	0	1	0	0	1	0	0	1	0
	97	0	1	0	0	0	0	0	1	0	1
	100	0	0	0	0	0	0	1	0	0	0

In [161]:

```
freq1=sample['Total Family Member'].value_counts()
freq1
freq1=pd.DataFrame(freq1)
freq1
```

Out[161]:

	Total Family Member
4	4
5	2
6	2
10	1
3	1

In [158]:

```
freq2=sample['Monthly Family Income'].value_counts()
freq2=pd.DataFrame(freq2)
freq2
```

Out[158]:

Monthly Family Income

50000	2
80000	2
100000	2
30000	1
120000	1
180000	1
170000	1

In [162]:

```
freq3=sample['Highest Years of schooling'].value_counts()
freq3=pd.DataFrame(freq3)
freq3
```

Out[162]:

Highest Years of schooling

16	6
17	2
22	1
18	1

In [163]:

```
freq4=sample['Daily hour studied'].value_counts()
freq4=pd.DataFrame(freq4)
freq4
```

Out[163]:

Daily hour studied

2.0	4
1.0	3
3.0	1
6.0	1
4.0	1

In [167]:

```
freq5=sample['% of attendance'].value_counts()
freq5=pd.DataFrame(freq5)
freq5
freq5
```

Out[167]:

% of attendance

90	4
97	3
80	2
100	1

In [168]:

```
freq6=sample['Working status (Yes/No)'].value_counts()
freq6=pd.DataFrame(freq6)
freq6
```

Out[168]:

Working status (Yes/No)

Υ	8
N	2

In [182]:

```
freq7=sample['Gender'].value_counts()
freq7=pd.DataFrame(freq7)
freq7
```

Out[182]:

	Gender
M	9
F	1

In [172]:

```
freq8=sample['Distance of house from \n institution'].value_counts()
freq8=pd.DataFrame(freq8)
freq8
```

Out[172]:

Distance of house from \n institution

5	2
1	2
8	1
250	1
122	1
150	1
10	1
2	1

In [174]:

```
1 sample.columns
```

Out[174]:

In [195]:

```
#graphs
import matplotlib.pyplot as plt
import seaborn as sns
```

In [212]:

```
Columns=[ 'Gender', 'Highest Years of schooling',
           'Total Family Member', 'Monthly Family Income', 'GPA in Graduation',
2
           'Daily hour studied', '% of attendance', 'Working status (Yes/No)']
 3
4
   for name in Columns:
 5
       fig=sns.countplot(data=sample, x=name)
 6
       if name=='Working status (Yes/No)':
7
           name='working status'
           plt.savefig("fig{name}.png".format(name=name),transparent=False)
8
9
       else:
           plt.savefig("fig{name}.png".format(name=name),transparent=False)
10
```


In [220]:

```
Variance of Highest Years of schooling=3.5555555555555554
Variance of Total Family Member=3.877777777777778
Variance of Monthly Family Income=2471111111.111111
Variance of GPA in Graduation=0.06019555555555544
Variance of Daily hour studied=2.4888888888888
Variance of % of attendance=48.3222222222222
Variance of Distance of house from institution=7712.488888888888
```

```
In [223]:
```

```
Standard Deviation of Highest Years of schooling=87.82077709112399
Standard Deviation of Total Family Member=87.82077709112399
Standard Deviation of Monthly Family Income=87.82077709112399
Standard Deviation of GPA in Graduation=87.82077709112399
Standard Deviation of Daily hour studied=87.82077709112399
Standard Deviation of % of attendance=87.82077709112399
Standard Deviation of Distance of house from institution=87.82077709112399
```

In [228]:

```
Coeficient Variance of Highest Years of schooling=87.82077709112399
Coeficient Variance of Total Family Member=87.82077709112399
Coeficient Variance of Monthly Family Income=87.82077709112399
Coeficient Variance of GPA in Graduation=87.82077709112399
Coeficient Variance of Daily hour studied=87.82077709112399
Coeficient Variance of % of attendance=87.82077709112399
Coeficient Variance of Distance of house from
institution=87.82077709112399
```

```
In [232]:
```

institution are: [[1.

]]

[-0.3948552 1.

```
olumns=['Highest Years of schooling',
     'Total Family Member', 'Monthly Family Income', 'GPA in Graduation',
      'Daily hour studied', '% of attendance', 'Distance of house from \n institution']
or4name in Columns:
  5pearsons coefficient = np.corrcoef(sample['Monthly Family Income'], sample[name])
  6print(f"The pearson's coeffient of the Monthly Family Income and {name} are: {pearson
The pearson's coeffient of the Monthly Family Income and Highest Years of
schooling are: [[1.
                            0.16595321]
 [0.16595321 1.
                       ]]
The pearson's coeffient of the Monthly Family Income and Total Family Mem
                      0.04994276]
ber are: [[1.
 [0.04994276 1.
                       ]]
The pearson's coeffient of the Monthly Family Income and Monthly Family I
ncome are: [[1. 1.]
 [1. 1.]
The pearson's coeffient of the Monthly Family Income and GPA in Graduatio
n are: [[1.
                    0.24342523]
 [0.24342523 1.
                       ]]
The pearson's coeffient of the Monthly Family Income and Daily hour studi
ed are: [[ 1.
                      -0.10484321]
 [-0.10484321 1.
                         ]]
The pearson's coeffient of the Monthly Family Income and % of attendance
are: [[ 1.
                   -0.62572101]
 [-0.62572101 1.
                         ]]
The pearson's coeffient of the Monthly Family Income and Distance of hous
e from
```

-0.3948552]

In [237]:

- sample_corr=sample.corr()
 sample_corr.to_excel(r'sample_correlation.xlsx', index=False)
- 3 sample_corr

Out[237]:

	ID \n Number	Highest Years of schooling	Total Family Member	Monthly Family Income	GPA in Graduation	Daily hour studied	% of attendance	in
ID \n Number	1.000000	-0.341256	0.174576	-0.005320	-0.000719	-0.391116	0.090032	(
Highest Years of schooling	-0.341256	1.000000	-0.209464	0.165953	0.317026	0.821720	0.449269	-1
Total Family Member	0.174576	-0.209464	1.000000	0.049943	-0.029437	0.092990	0.047890	-1
Monthly Family Income	-0.005320	0.165953	0.049943	1.000000	0.243425	-0.104843	-0.625721	-1
GPA in Graduation	-0.000719	0.317026	-0.029437	0.243425	1.000000	0.303709	0.229452	-(
Daily hour studied	-0.391116	0.821720	0.092990	-0.104843	0.303709	1.000000	0.705165	-(
% of attendance	0.090032	0.449269	0.047890	-0.625721	0.229452	0.705165	1.000000	(
Distance of house from \n institution	0.449768	-0.277784	-0.164093	-0.394855	-0.393214	-0.276358	0.067816	

In [241]:

1 sns.heatmap(sample_corr,annot=True)

Out[241]:

<AxesSubplot:>

In [257]:

fig=sns.regplot(data=sample,x='Monthly Family Income',y='Highest Years of schooling'
plt.savefig("Regression_HighestYear.png",transparent=False)

In [255]:

```
fig=sns.regplot(data=sample,x='Monthly Family Income',y='GPA in Graduation')
plt.savefig("Regression_GPA.png",transparent=False)
```


In [256]:

```
fig=sns.regplot(data=sample,x='Monthly Family Income',y='% of attendance')
plt.savefig("Regression_attendance.png",transparent=False)
```


In [260]:

fig=sns.regplot(data=sample,x='Monthly Family Income',y='Distance of house from \n i
plt.savefig("Regression_Distance.png",transparent=False)

In []:

1