

COMP 5 - 6 (RC)

T.E. (Comp.) (Semester - V) (RC) Examination, May/June 2014 OPERATING SYSTEMS

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any five questions by selecting at least one from each Module.

2) Assume appropriate data wherever necessary.

MODULE-I

1.	a)	Explain the process state transition diagram with 2 suspended states? Draw the diagram clearly.	8
	b)	Briefly explain the process control block information.	5
	c)	Give the advantages of a Microkernel organization.	4
	d)	What do you mean by multithreading?	3
2.	a)	Explain the producer consumer problem and give a solution to infinite buffer producer consumer problem using Binary Semaphore.	8
	b)	Differentiate between preemptive and non-preemptive scheduling.	4
	c)	How does synchronization take place in communication of a message?	4
	d)	Explain UNIX SVR4 scheduling	4
		MODULE-II	
3.	a)	How can deadlock be prevented?	5
	b)	With a help of an example explain FIFO page replacement algorithm.	5
	c)	Give any 3 mechanisms to recover from a deadlock.	6
	d)	What is Internal Fragmentation?	4
4.	a)	What is Demand Paging?	3
	b)	Explain the following terms: i) Prepaging ii) Page table iii) Segment table iv) Fetch policy.	8
	c)	Explain Multilevel Paging and inverted page table.	6
	d)	What is Associative Mapping?	3
		P	TO

COMP 5 - 6 (RC)

MODULE-III

5.	a)	Explain the tree-structured directory.	5
	b)	Discuss file allocation in UNIX File Management.	6
	c)	Differentiate between Indexed file and Hashed file.	5
	d)	Explain contiguous file allocation.	4
6.	a)	List various disk scheduling algorithms. Differentiate them with examples.	8
	b)	With a neat diagram explain the UNIX i-node structure.	6
	c)	Discuss logical I/O and device I/O.	4
	d)	What is transfer time?	2
		MODULE-IV	
7.	a)	Explain UNIX password protection technique.	5
	b)	Differentiate between access control list and capability list.	4
	c)	Explain the various categories of attack.	6
	d)	Discuss intruders.	5
8.	a)	Write a shell program to find Fibonacci of numbers.	5
	\$25 200 200 200 200 200 200 200 200 200 2	Explain the following commands: i) echo ii) cat iii) pwd iv) wc v) /s chap.	5
	c)	Write a program to print the following pattern: 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 5	6
	d)	Write a program to display "HELLO WORLD".	4