Uczenie Maszynowe

Wprowadzenie do Reinforcement Learning 2, 4/24/2017

Wprowadzenie

 W momencie gdy znamy graf stanów przejścia w naszym środowisku i odpowiadające im nagrody, problem da się rozwiązać używając klasycznych algorytmów

Notacje

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, a_0 = a \right]$$

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s \right]$$

= $\mathbb{E}_{a \sim \pi} \left[Q^{\pi}(s, a) \right]$

$$A^{\pi}(s,a)=Q^{\pi}(s,a)-V^{\pi}(s)$$

Równanie Bellmana

$$egin{aligned} Q^{\pi}(s_0, a_0) &= \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma V^{\pi}(s_1)
ight] \ &= \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q^{\pi}(s_1, a_1)
ight]
ight] \end{aligned}$$

Można pokazać, że jeśli zaczniemy od dowolnej inicjalizacji funkcji ${\bf Q}$ to wartości zbiegną do poprawnych wartości ${\bf Q}$ dla naszej funkcji π

Q-Learning

Zauważmy, że podobne rozumowanie powinno zadziałać nawet gdy nie znamy π , a zamiast tego będziemy wybierać najlepsze akcje zgodnie z funkcją Q!

$$Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q^{\pi}(s_1, a_1) \right] \right]$$

zamieni się na:

$$Q^*(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \max_{a_1} Q^*(s_1, a_1) \right]$$

(W praktyce możemy zignorować oczekiwaną wartość po s₁ i wciąż dostajemy niezbiasowany estymator prawej strony równania mając tylko pojedynczą próbkę)

Q-learning - algorytm dla problemów ze skończoną liczbą stanów

until terminated

initialize $Q[num_states, num_actions]$ arbitrarily observe initial state srepeat

select and carry out an action aobserve reward r and new state s' $Q[s,a] = Q[s,a] + \alpha(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])$ s = s'

Przykład działania algorytmu

Dlaczego używamy Q zamiast V?

- Możemy obliczyć max_a Q(s₀, a) nie znając P(s₁ | s₀, a)
- Możemy wykonać update Q mając tylko (s, a, r, s')
- Możemy również wykonać update Q mając wcześniej zebrane dane!

Co z problemami z ogromną liczbą stanów?

Użyjmy sieci neuronowych do aproksymacji Q(s, a)!

Funkcja kosztu:

$$L = \frac{1}{2} \left[\underbrace{r + max_{a'}Q(s',a')}_{ ext{target}} - \underbrace{Q(s,a)}_{ ext{prediction}} \right]^2$$

Co z problemami z ogromną liczbą stanów?

Użyjmy sieci neuronowych do aproksymacji Q(s, a)!

Funkcja kosztu:

$$L = rac{1}{2} [\underbrace{r + max_{a'}Q(s',a')}_{ ext{target}} - \underbrace{Q(s,a)}_{ ext{prediction}}]^2$$

Niestety to nie działa w praktyce. Optymalizacja Q zmienia funkcję kosztu co powoduje, że trening jest bardzo niestabilny się rozbiega dość szybko. Będziemy potrzebowali kilku usprawnień.

DQN - architektura

Layer	Input	Filter size	Stride	Num filters	Activation	Output
conv1	84x84x4	8x8	4	32	ReLU	20x20x32
conv2	20x20x32	4x4	2	64	ReLU	9x9x64
conv3	9x9x64	3x3	1	64	ReLU	7x7x64
fc4	7x7x64			512	ReLU	512
fc5	512			18	Linear	18

DQN - algorytm

Initialize replay memory \mathcal{D} to capacity N Zapamiętujemy ostatnie N interakcji Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t=1,T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; heta)$ Zamrożona wersja sieci Q Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ according to equation 3

end for

end for

Funkcja Q po zakończeniu treningu

Triki usprawniające DQN - Double Q-learning

Operator max powoduje, że wartości Q są przeszacowane:

$$\mathbb{E}_{X_1,X_2} \left[\max(X_1,X_2) \right] \ge \max(\mathbb{E}_{X_1,X_2} \left[X_1 \right], \mathbb{E} \left[X_2 \right] \right)$$

Triki usprawniające DQN - Double Q-learning

Operator max powoduje, że wartości Q są przeszacowane:

$$\mathbb{E}_{X_1,X_2}\left[\max(X_1,X_2)\right] \geq \max(\mathbb{E}_{X_1,X_2}\left[X_1\right],\mathbb{E}\left[X_2\right])$$

Rozwiązanie - użyj 2 sieci neuronowych szacujących Q:

$$Q_A(s,a) \leftarrow r + \gamma Q(s', \arg\max_{a'} Q_B(s',a'))$$

$$Q_B(s, a) \leftarrow r + \gamma Q(s', \arg\max_{a'} Q_A(s', a'))$$

Double DQN

Standard DQN:

$$Q(s, a) \leftarrow r + \gamma \max_{a'} Q^{(\text{target})}(s', a')$$

$$Q(s, a) \leftarrow r + \gamma Q^{(\text{target})}(s', \arg \max_{a'} Q^{(\text{target})}(s', a'))$$

Double DQN:

$$Q(s, a) \leftarrow r + \gamma Q^{(\text{target})}(s', \arg\max_{a'} Q(s', a'))$$

Dueling Networks

Można rozbić estymację do V i A:

- Mają one inna skalę wartości
- A nam wystarczy do podejmowania decyzji

$$Q(s,a;\theta,\alpha\,\beta) = \hat{V}\left(s;\theta,\beta\right) + \left(\hat{A}(s,a;\theta,\alpha) - \frac{1}{|A|}\sum_{a'}\hat{A}(s,a';\theta,\alpha)\right),\,$$

Prioritized Replay

- Można dodatkowo przyspieszyć trening przez wybieranie danych do optymalizacji w trochę sprytniejszy sposób
- Pomysł jest taki, żeby częściej losować przypadki, które miały duże wartości pochodnych

Prioritized Replay

- Można dodatkowo przyspieszyć trening przez wybieranie danych do optymalizacji w trochę sprytniejszy sposób
- Pomysł jest taki, żeby częściej losować przypadki, które miały duże wartości pochodnych
- W praktyce patrzymy na ostatnią wartość błędu estymacji $\delta_i = Q_{\theta}(s_i, a_i) \hat{Q}_t$ i użyjemy kolejki priorytetowej do wyciągania kandydatów

Ewaluacja na Atari

	30 n	o-ops	Human Starts		
	Mean	Median	Mean	Median	
Prior. Duel Clip	591.9%	172.1%	567.0%	115.3%	
Prior. Single	434.6%	123.7%	386.7%	112.9%	
Duel Clip	373.1%	151.5%	343.8%	117.1%	
Single Clip	341.2%	132.6%	302.8%	114.1%	
Single	307.3%	117.8%	332.9%	110.9%	
Nature DQN	227.9%	79.1%	219.6%	68.5%	

Inne warianty - Bootstrapped DQN

- W tej wersji trenujemy K funkcji Q na różnych podzbiorach danych
- W każdym epizodzie wybieramy sobie jedną z nich i używamy do interakcji ze środowiskiem
- Takie podejście pozwala nam na szacowanie niepewności modelu (przez głosowanie)
- Funkcje Q reprezentują inne strategie i pozwalają na lepszą eksplorację

Bootstrapped DQN - demo

