PERTURBATION OF ORTHOGONALIZATIONS

JAN DE LEEUW

1. Introduction

Suppose X is a given $n \times m$ matrix with $n \ge m$ and $\mathbf{rank}(X) = m$. Suppose Z is an *orthogonalization* of X, i.e. Z = XS with Z'Z = I. We also write this as $Z = \mathbf{orth}(X)$. If $Z_1 = XS_1$ and $Z_2 = XS_2$ are two orthogonalizations of X, then there is a square orthonormal (rotation) matrix R such that $Z_1 = Z_2R$ and $S_2 = S_1R'$.

Three particular choices for orthogonalization obtained from QR-decomposition, in which S is upper-triangular, from LS-decomposition, in which S is symmetric, and from SV-decomposition in which S is orthogonal. In all three cases we want to study the effect of small perturbation of X on Z and S.

2. Perturbation Equations

Perturbing X to $X + \Delta$ will perturb Z to $Z + \Xi$ and S to $S + \Sigma$. Equating first order terms on both sides of $[X + \Delta][S + \Sigma] = Z + \Xi$ gives

(1a)
$$\Delta S + X\Sigma = \Xi.$$

Equating first order terms on both sides of $[Z + \Xi]'[Z + \Xi] = I$ gives

$$(1b) Z'\Xi + \Xi'Z = 0.$$

Let $M \stackrel{\triangle}{=} Z'\Delta$ and $N \stackrel{\triangle}{=} Z'X$. Then, from Z = XS, we see that I = NS and thus $N = S^{-1}$. We also see

$$MS + N\Sigma = Z'\Xi$$
.

Date: April 23, 2005.

2000 Mathematics Subject Classification. 62H25.

Key words and phrases. Multivariate Analysis, Correspondence Analysis.

2

and thus

(2)
$$N\Sigma + \Sigma'N' = -(MS + S'M').$$

Define $U \stackrel{\Delta}{=} -(MS + S'M')$.

3. Triangular Case

If S is upper-triangular, then N and Σ are upper triangular too. Suppose **upp**() is the upper-triangular part of a matrix (including the diagonal) From Equation (2)

$$N\Sigma + \operatorname{diag}(N\Sigma) = \operatorname{upp}(U),$$

 $2\operatorname{diag}(N\Sigma) = \operatorname{diag}(U).$

and thus

$$N\Sigma = \mathbf{upp}(U) - \frac{1}{2}\mathbf{diag}(U).$$

We use V for the upper-triangular matrix on the right hand side of this equation. Clearly V + V' = U, and

$$\Sigma = N^{-1}V = SV.$$

This implies

$$\Xi = \Delta S + ZV$$

.

4. Symmetric Case

If S is symmetric, then N and Σ are symmetric too. Suppose $X = K\Lambda L'$ is the singular value decomposition of X. Then $S = L\Lambda^{-1}L'$ and $N = S^{-1} = L\Lambda L'$. Define $\Gamma \stackrel{\Delta}{=} L'\Sigma L$ and $\Phi \stackrel{\Delta}{=} K'\Delta L$. Equation (2) gives

$$\Lambda\Gamma+\Gamma\Lambda=-[\Phi\Lambda^{-1}+\Lambda^{-1}\Phi'],$$

and thus

$$\gamma_{ij} = -\frac{\lambda_i \phi_{ij} + \lambda_j \phi_{ji}}{\lambda_i \lambda_j (\lambda_i + \lambda_j)}$$

Now define $A \stackrel{\Delta}{=} K' \Xi L$ and $B \stackrel{\Delta}{=} K'_{\perp} \Xi L$, where K_{\perp} is an orthonormal basis for the complement of K. From Equation (1a)

$$a_{ij} = \frac{\phi_{ij} - \phi_{ji}}{\lambda_i + \lambda_j},$$

and

$$b_{ij}=\frac{\psi_{ij}}{\lambda_i},$$

where $\Psi \stackrel{\Delta}{=} K'_{\perp} \Delta L$. Now $\Xi = KAL' + K_{\perp}BL'$, and thus

(3a)
$$\xi_{pq} = \sum_{i=1}^{m} \sum_{j=1}^{m} \left[\frac{\phi_{ij} - \phi_{ji}}{\lambda_i + \lambda_j} \right] k_{pi} l_{qj} + \sum_{i=1}^{n-m} \sum_{j=1}^{m} \left[\frac{\psi_{ij}}{\lambda_j} \right] k_{pi}^{\perp} l_{qj}.$$

Also $\Sigma = L\Gamma L'$ and thus

(3b)
$$\sigma_{pq} = -\sum_{i=1}^{m} \sum_{j=1}^{m} \left[\frac{\lambda_i \phi_{ij} + \lambda_j \phi_{ji}}{\lambda_i \lambda_j (\lambda_i + \lambda_j)} \right] l_{pi} l_{pj}.$$

- 5. ORTHOGONAL CASE
- 6. Partial Derivatives
 - 7. RANK DEFICIENCY
- 8. Application to Simultaneous Power Iterations

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu