# Challenge Machine Learning



### Sommaire :

- 1. Contexte du challenge
- 2. Pre-processing
- 3. Choix du modèle
- 4. Hyper-paramétrage
- 5. Résultats

# Contexte du challenge :

REAL ESTATE



→ Principe: Réaliser un modèle pour prédire le prix d'un bien immobilier.

## Contexte du challenge :

#### Données à disposition :

#### <u>x\_train</u>

variables explicatives pour l'entraînement

#### <u>y\_train</u>

*variable(s) cible(s) pour l'entraînement* 

#### x\_test

variables explicatives pour le test

#### Structure des résultats:

Fichier csv:

- → Colonne id\_annonce
- → Colonne Price

# Analyse des données :

#### Features:

| id_annonce                               | int64   |
|------------------------------------------|---------|
| property_type                            | object  |
| approximate_latitude                     | float64 |
| approximate_longitude                    | float64 |
| city                                     | object  |
| postal_code                              | int64   |
| size                                     | float64 |
| floor                                    | float64 |
| land_size                                | float64 |
| energy_performance_value                 | float64 |
| energy_performance_category              | object  |
| ghg_value                                | float64 |
| ghg_category                             | object  |
| exposition                               | object  |
| nb_rooms                                 | float64 |
| nb_bedrooms                              | float64 |
| nb_bathrooms                             | float64 |
| nb_parking_places                        | float64 |
| nb_boxes                                 | float64 |
| nb_photos                                | float64 |
| has_a_balcony                            | float64 |
| nb_terraces                              | float64 |
| has_a_cellar                             | float64 |
| has_a_garage                             | float64 |
| has_air_conditioning                     | float64 |
| last_floor                               | float64 |
| upper_floors                             | float64 |
| F1 100 100 100 100 100 100 100 100 100 1 |         |

#### Répartition des prix :



# Valeurs manquantes :

#### Pourcentage de valeurs manquantes :

| 12-61-11                    |           |
|-----------------------------|-----------|
| id_annonce                  | 0.000000  |
| has_air_conditioning        | 0.000000  |
| has_a_garage                | 0.000000  |
| has_a_cellar                | 0.000000  |
| nb_terraces                 | 0.000000  |
| has_a_balcony               | 0.000000  |
| nb_photos                   | 0.000000  |
| nb_boxes                    | 0.000000  |
| nb_parking_places           | 0.000000  |
| last_floor                  | 0.000000  |
| upper_floors                | 0.000000  |
| price                       | 0.000000  |
| property_type               | 0.000000  |
| approximate_latitude        | 0.000000  |
| approximate_longitude       | 0.000000  |
| postal_code                 | 0.000000  |
| city                        | 0.000000  |
| nb_rooms                    | 0.355940  |
| size                        | 0.648319  |
| nb_bedrooms                 | 7.131507  |
| nb_bathrooms                | 37.310113 |
| floor                       | 38.994470 |
| energy_performance_category | 50.746838 |
| energy_performance_value    | 50.746838 |
| ghg_value                   | 51.840081 |
| ghg_category                | 51.840081 |
| exposition                  | 71.766351 |
| land_size                   | 95.893981 |
|                             |           |



# Preprocessing:

- 1) Quelles **colonnes** prendre en compte ?
- 2) Comment gérer les valeurs manquantes ?
- 3) Comment gérer les valeurs catégorielles ?
- 4) Quelles modifications supplémentaires apporte-t-on aux données?

### Choix des colonnes :

#### Suppression de certains features :

- postal\_code → On a déjà l'information de la ville
- energy\_performance
- ghg
- exposition

| energy_performance_category | 48.972383 |
|-----------------------------|-----------|
| energy_performance_value    | 48.972383 |
| ghg_value                   | 50.412117 |
| ghg_category                | 50.412117 |
| land_size                   | 58.303896 |
| floor                       | 73.926889 |
| exposition                  | 75.663669 |

#### <u>Pourcentages de valeurs manquantes</u> <u>les plus élevés</u>

### Valeurs manquantes :

Pour chaque colonne avec des valeurs manquantes il a fallu trouver une solution

En effet, même le X\_test.csv contient des valeurs manquantes.

→ On ne pouvait pas se permettre de supprimer les lignes avec des NaN.

On merge donc les 2 set X\_train.csv et X\_test.csv pour le preprocessing

| id_annonce                  | 0.00000   |
|-----------------------------|-----------|
| has_air_conditioning        | 0.000000  |
| has_a_garage                | 0.000000  |
| has_a_cellar                | 0.000000  |
| nb_terraces                 | 0.000000  |
| has_a_balcony               | 0.000000  |
| nb_photos                   | 0.000000  |
| nb_boxes                    | 0.000000  |
| nb_parking_places           | 0.000000  |
| last_floor                  | 0.000000  |
| upper_floors                | 0.000000  |
| price                       | 0.000000  |
| property_type               | 0.000000  |
| approximate_latitude        | 0.000000  |
| approximate_longitude       | 0.000000  |
| postal_code                 | 0.000000  |
| city                        | 0.000000  |
| nb_rooms                    | 0.355940  |
| size                        | 0.648319  |
| nb_bedrooms                 | 7.131507  |
| nb_bathrooms                | 37.310113 |
| floor                       | 38.994470 |
| energy_performance_category | 50.746838 |
| energy_performance_value    | 50.746838 |
| ghg_value                   | 51.840081 |
| ghg_category                | 51.840081 |
| exposition                  | 71.766351 |
| land size                   | 95.893981 |

### Valeurs manquantes :

- Colonne *floor* :
- → On fixe l'étage à O pour les biens autres que des appartements
  - Colonne land\_size :
- → On fixe le land\_size de certains biens à la valeur 0.
  - Colonne *nb\_bathrooms* :
- → On choisit, le nombre de salles de bains à 1 ou 0. (et 5 pour les hôtels)



# Encodage des valeurs catégorielles :

→ On encode les valeurs de type de propriété via la méthode *one-hot-encoding*.

| id | color |                  | id | color_red | color_blue | color_green |
|----|-------|------------------|----|-----------|------------|-------------|
| 1  | red   |                  | 1  | 1         | 0          | Θ           |
| 2  | blue  | One Hot Encoding | 2  | 0         | 1          | 0           |
| 3  | green | £                | 3  | 0         | 0          | 1           |
| 4  | blue  |                  | 4  | 0         | 1          | Θ           |

→ On encode les villes par fréquence



# Dernières valeurs manquantes :

L'idée est de remplir les données manquantes par des valeurs que l'on impose:

→ Utilisation de la moyenne, cependant pas adaptée à toutes les

données, exemple :

données pour floor :



→ Solution : Utilisation d'un modèle de ML pour prédire les dernières valeurs manquantes. Utilisation de KNN-Imputer

### Dernières modifications :

→ On applique le log à la colonne des prix :



→ On normalise les données, on prend la fonction RobustScaler : Il s'agit d'une normalisation de type z-score :

$$z = \frac{x - \mu}{\sigma}$$

$$\mu=$$
 Mean

$$\sigma =$$
 Standard Deviation

### Choix du modèle :

- On procède d'abord à un **train\_test\_split**, avec 20 % des données dans le validation set
- Notre métrique est la mean\_absolute\_percentage\_error (x100)

$$\frac{prix_{predit} - prix_{reel}}{prix_{reel}} * 100$$

On a un problème de régression :

→ On entraîne donc plusieurs modèles de régression et on les teste. (Sans hyperparamétrage)

### Choix du modèle :

Résultats (pourcentage d'erreur absolue moyen) :

- Error for LR = 118.5 %
- Error for Ridge = 119.8 %
- Error for Lasso = 79.0 %
- Error for ElasticNet = 79.0 %
- Error for CART = 47.2 %
- Error for RF = 31.6 %
- Error for ADA = 51.2 %
- Error for GBM = 40.8 %
- Error for XGBoost = 30.7 %
- Error for Deep Learning > 60 %

# Hyper-paramétrage :

model = XGBoost(hyperparamètres)

#### GridSearchCV

- Overfitting : Cross-Validation Test

- Convergence : itératif.



Hyperparameter 1



#### Hyper-paramètres :

- learning\_rate
- max\_depth
- lambda
- ..

# Résultat au challenge

| Rang | Date                   | Participant(s)                      | Score public |
|------|------------------------|-------------------------------------|--------------|
| 1    | 27 février 2022 12:26  | pednt                               | 21,0161      |
| 2    | 22 janvier 2023 13:34  | Clem1 & FélixD                      | 22,0982      |
| 3    | 15 décembre 2022 20:09 | ArnaudMARECHAL                      | 22,4500      |
| 4    | 6 décembre 2022 16:48  | ulrich777                           | 23,0190      |
| 5    | 3 février 2023 18:51   | anasstheone123 & Abdellah.Laassairi | 23,1294      |
| 6    | 13 février 2022 20:25  | aho                                 | 23,6855      |
| 7    | 5 février 2023 17:24   | zheng_zixuan & xlsf                 | 24,5563      |
| 8    | 28 mars 2023 12:32     | valentinIhote Groupe E              | 24,8739      |
| 9    | 9 mars 2023 09:16      | VictorHoffmann                      | 25,0579      |
| 10   | 25 mars 2023 13:54     | msoric & OmarMousteau               | 25,4371      |

8/170

R2= 0.803

# Résultat: Feature importance



⇒ Importance de la ville/zone géographique

### Conclusion

- ⇒ Résultats satisfaisants : jeu de donné initial assez complet + préprocessing
  - ⇒ Score très sensible au préprocessing.

#### <u>Axes d'amélioration :</u>

- ⇒ Réduction de dimension en sélectionnant des variables pour exploiter plus de modèles
  - ⇒ Prise en compte des photos (luminosité)
- ⇒Meilleur prise en compte de la géographie (API Google Maps)

### Annexes



Corrélation entre les variables

### Annexes



Exemple de convergence d'un système Itératif : Réseaux de Neurones (Deep Learning)

### Annexes



