1. 제목: IoT 기반 모바일 스마트 태양광 발전 모니터링 시스템

2. 초록

핵심 결과	 일정시간마다 스스로 태양광시스템 및 구조물 상태를 안전진단 관점에서 측정할 수 있음 자동으로 측정한 데이터를 재가공하여 데이터베이스화 함 현장에 가지않고 원격지에서 구조물의 상태를 안전진단 할 수 있음 장치에 관계없이 웹에서 접속 가능 		
동기(기존 문제)	원격지에서 태양광발전소의 발전여부, 구조물 안전등의 문제를 알 수 없음		
나의 방법	- 센서를 사용하지않고 태양광모듈의 상태를 알 수 있음 - RS485등의 통신규격을 사용하지 않음		
논문의 결과	각종 센서를 이용하여 발전소의 상태를 감시하고 수집한 결과값을 원격지의 서버로 보내 서버에서 D/B를 구축하고 이를 모니터링할 수 있게함		
일반적 응용	D2D/M2M개념을 사용한 사례를 연구 전송 패킷의 구조를 검토		

3. 서론

분야 소개	D2D(Divice to Divice)/M2M(Machine to Machine)를 바탕으로 하는 사물인터넷 통신
기존 문제	원격지에서 태양광발전소의 발전여부, 구조물 안전등의 문제를 알 수 없음
논문의 목적	관리자와 소유자가 원거리에 있는 태양광발전소의 상태를 측정하기 위하여 직접 현장으로 이동하지 않고 관제센터나 웹페이지를 통하여 태양광발전 구조물의 상태를 모니터링 가능한 시스템을 제작하기 위함
나의 방법	센서등을 이용하여 건축물의 상태를 감시하지않고 각 어레이 또는 모듈의 발전 상태를 감시하여 주변 발 전량과 비교 및 기존 빅데이터와의 비교를 통하여 이상 유무를 판정
결과	센서를 이용하여 데이터를 수집하고 이를 인터넷을 이용하여 관제센터 서버로 전송하고 전송된 데이터를 데이터베이스화하여 웹을 통해 상태를 언제든지 모니터링 할 수 있게함

4. 본론

(풀고자 하는) 문제의 가정	-일사량이 많으면 발전량이 비례해서 많아질까, 주변 변수는 없을까 -다른 발전에 미치는 문제점은 없을까
(풀고자 하는) 문제 정의	-일사량이 풍부한 여름날 발전이 적은 경우 원인 파악이 힘듬 -화재발생 유무 확인
방법론	1. 온도센서를 부착하여 온도가 발전에 미치는 경우수를 대입한다
	2. CO2센서를 부착하여 화재의 유무를 확인한다

5. 실험 결과

실험 환경	구분	내용
	Collecting Server OS	Ubuntu 16.04.1 LTS
	Transmission Rate	115200bps
	Serial Protocol	RS-485
	Mode	ASCII code
	Data Base	Mysql 14.14
	Web Server	Tomcat 7.0
	Transmission Interval	30second
결과 소개	Florizoniai solar ilradiance illi siope 49 40 40 40 40 40 40 40 40 40	Solar irradiance

5. 실험 결과

6. 결론

개별적 결과	- 모바일 및 데스크탑등에서 결과물 확인 가능 - D2D/M2M개념을 태양광발전에 적용하여 원거리에서 안전진단이 가능함을 증명
학문적 의의	- 수집된 정보를 바탕으로 구조물의 형태와 예상수명을 예측 가능
응용 분야	- 각종 센서에서 응용한 결과물을 다수의 건축물이 존재하는경우 모니터링 시스템으로 사용 가능

