Computational Graphics: Lecture 7

Alberto Paoluzzi

Mon, Mar 17, 2014

Outline: LAR1

- Solid Modeling
- Space decompositions
- Cellular complex
- Simplicial mapping
- References

Solid Modeling

Representation scheme: definition

mapping $s: M \to R$ from a space M of mathematical models to a space R of computer representations

The M set contains the mathematical models of the class of solid objects the scheme aims to represent

A. Requicha, Representations for Rigid Solids: Theory, Methods, and Systems, ACM Comput. Surv., 1980.

V. Shapiro, Solid Modeling, In Handbook of Computer Aided Geometric Design, 2001

Representation scheme: definition

mapping $s: M \to R$ from a space M of mathematical models to a space R of computer representations

- The M set contains the mathematical models of the class of solid objects the scheme aims to represent
- The R set contains the symbolic representations, i.e. the proper data structures, built according to a suitable grammar

A. "Requicha, Representations for Rigid Solids: Theory, Methods, and Systems, ACM Comput. Surv., 1980.

V. Shapiro, Solid Modeling, In Handbook of Computer Aided Geometric Design, 2001

Representation schemes

Most of such papers introduce or discuss one or more representation schemes ...

- 🚺 Requicha, ACM Comput. Surv., 1980 [?]
- Requicha & Voelcker, PEP TM-25, 1977, [?]
- Rossignac & Requicha, Comput. Aided Des., 1991, [?]
- Bowyer, SVLIS, 1994, [?]
- Baumgart, Stan-CS-320, 1972, [?]
- Braid, Commun. ACM, 1975, [?]
- Dobkin & Laszlo, ACM SCG, 1987, [?]
- Guibas & Stolfi, ACM Trans. Graph., 1985, [?]
- Woo, IEEE Comp. Graph. & Appl., 1985, [?]
- 🔟 Yamaguchi & Kimura, Comp. Graph. & Appl., 1995, [?]
- Gursoz & Choi & Prinz, Geom.Mod., 1990, [?]
- S.S.Lee & K.Lee, ACM SMA, 2001, [?]
- Rossignac & O'Connor, IFIP WG 5.2, 1988, [?]
- Weiler, IEEE Comp. Graph. & Appl., 1985, [?]
- Silva, Rochester, PEP TM-36, 1981, [?]

- Shapiro, Cornell Ph.D Th., 1991, [?]
- Paoluzzi et al., ACM Trans. Graph., 1993, [?]
- Pratt & Anderson, ICAP, 1994, [?]
- Bowyer, Djinn, 1995, [?]
- 20 Gomes et al., ACM SMA, 1999, [?]
- 21 Raghothama & Shapiro, ACM Trans. Graph., 1998, [?]
- Shapiro & Vossler, ACM SMA, 1995, [?]
- Hoffmann & Kim, Comput. Aided Des., 2001, [?]
- Raghothama & Shapiro, ACM SMA, 1999, [?]
- 25 DiCarlo et al., IEEE TASE, 2008, [?]
- Bajaj et al., CAD&A, 2006, [?]
- Pascucci et al., ACM SMA, 1995, [?]
- 23 Paoluzzi et al., ACM Trans. Graph., 1995, [?]
- Paoluzzi et al., Comput. Aided Des., 1989, [?]
- 30 Ala, IEEE Comput. Graph. Appl., 1992, [?]

and much more . . .

Space decompositions

Join of pointsets

The join of two sets $P, Q \subset \mathbb{E}^n$ is the convex hull of their points:

$$PQ = join(P, Q) := \{ \gamma p + \lambda q, \ p \in P, \ q \in Q \}$$
$$\gamma, \lambda \in \mathbb{R}, \ \gamma, \lambda \ge 0, \ \gamma + \lambda = 1$$

The join operation is associative and commutative.

Join of pointsets: examples

VIEW(STRUCT(AA(SKELETON(1))(S)))
VIEW(H)

Figure : (a) 1-skeleton of pointsets in S; (b) convex hull H of pointset P

Simplex

A simplex $\sigma \subset \mathbb{E}^n$ of order d, or d-simplex, is the join of d+1 affinely independent points, called vertices.

The n+1 points p_0, \ldots, p_n are affinely independent when the n vectors $p_1 - p_0, \ldots, p_n - p_0$ are linearly independent.

A *d*-simplex can be seen as a *d*-dimensional triangle: 0-simplex is a point, 1-simplex is a segment, 2-simplex is a triangle, 3-simplex is a tetrahedron, and so on.

Simplex: examples

```
s0,s1,s2,s3 = [SIMPLEX(d) for d in range(4)]  # array of standard d-simplices
VIEW(s1); VIEW(s2); VIEW(s3);

points = [[1,1,1],[0,1,1],[1,0,0],[1,1,0]]  # coords of 4 points
tetra = JOIN(AA(MK)(points))  # 3-simplex
VIEW(tetra)
```


Figure: (a,b,c) 1-, 2-, and 3-standard simplex; (d) 3-simplex defined by 4 points

Any subset of s+1 vertices $(0 \ge s \ge d)$ of a d-simplex σ defines an s-simplex, which is called s-face of σ .

Any subset of s+1 vertices $(0 \ge s \ge d)$ of a d-simplex σ defines an s-simplex, which is called s-face of σ .

A simplicial complex is a set of simplices Σ , verifying the following conditions:

1 if $\sigma \in \Sigma$, then any *s*-face of σ belongs to Σ ;

Any subset of s+1 vertices $(0 \ge s \ge d)$ of a d-simplex σ defines an s-simplex, which is called s-face of σ .

A simplicial complex is a set of simplices Σ , verifying the following conditions:

- **1** if $\sigma \in \Sigma$, then any *s*-face of σ belongs to Σ ;
- ② if $\sigma, \tau \in \Sigma$, then $\sigma \cap \tau \in \Sigma$.

Any subset of s+1 vertices $(0 \ge s \ge d)$ of a d-simplex σ defines an s-simplex, which is called s-face of σ .

A simplicial complex is a set of simplices Σ , verifying the following conditions:

- **1** if $\sigma \in \Sigma$, then any *s*-face of σ belongs to Σ ;
- ② if $\sigma, \tau \in \Sigma$, then $\sigma \cap \tau \in \Sigma$.

Any subset of s+1 vertices $(0 \ge s \ge d)$ of a d-simplex σ defines an s-simplex, which is called s-face of σ .

A simplicial complex is a set of simplices Σ , verifying the following conditions:

- **1** if $\sigma \in \Sigma$, then any *s*-face of σ belongs to Σ ;
- ② if $\sigma, \tau \in \Sigma$, then $\sigma \cap \tau \in \Sigma$.

Geometric carrier $|\Sigma|$ is the pointset union of simplices in Σ .

Simplicial complex: examples

```
from larcc import *
V,CV = larSimplexGrid([5,5,5])  # structured simplicial grid
FV = larSimplexFacets(CV)  # 2-simplicial grid
EV = larSimplexFacets(FV)  # 1-simplicial grid
VIEW(EXPLODE(1.5,1.5,1.5) (MKPOLS((V,CV))))
VIEW(EXPLODE(1.5,1.5,1.5) (MKPOLS((V,FV))))
VIEW(EXPLODE(1.5,1.5,1.5) (MKPOLS((V,EV))))

BV = [FV[t] for t in boundaryCells(CV,FV)]  # boundary 2-simplices
VIEW(EXPLODE(1.5,1.5,1.5) (MKPOLS((V,BV))))
```


Figure: (a) 3-complex; (b) 2-subcomplex; (c) 1-subcomplex; (d) 2-boundary.

Simplicial complex: examples

(see Disk Point Picking)

```
from larcc import *; from random import random as rand
points = [[2*PI*rand(),rand()] for k in range(1000)]
V = [[SQRT(r)*COS(alpha),SQRT(r)*SIN(alpha)] for alpha,r in points]
cells = [[k+1] for k,v in enumerate(V)]
VIEW(MKPOL([V,cells,None]))

from scipy.spatial import Delaunay
FV = Delaunay(array(V)).vertices
VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,FV))))
VIEW(SKELETON(1)(STRUCT(MKPOLS((V,FV)))))
```


Figure: (a) Points; (b) Delaunay triangulation; (c) 1-skeleton.

13 / 26

Simplicial complex: examples

(see Disk Point Picking)

```
from larcc import *; from random import random as rand
points = [[2*rand()-1,2*rand()-1,2*rand()-1] for k in range(30000)]
V = [p for p in points if VECTNORM(p) <= 1]</pre>
VIEW(STRUCT(MKPOLS((V,AA(LIST)(range(len(V)))))))
from scipy.spatial import Delaunay
CV = Delaunay(array(V)).vertices
def test(tetra): return AND([v[-1] < 0 for v in tetra])</pre>
CV = [cell for cell in CV if test([V[v] for v in cell]) ]
VIEW(STRUCT(MKPOLS((V,CV))))
```


Cellular complex

• Roughly speaking, a CW-complex is made of basic building blocks called cells.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.
- \bigcirc An *n*-dimensional closed cell is the image of an *n*-disk under an attaching map.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.
- \bigcirc An *n*-dimensional closed cell is the image of an *n*-disk under an attaching map.
- A simplex is a closed cell, and more generally, a convex polytope is a closed cell.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.
- \bigcirc An *n*-dimensional closed cell is the image of an *n*-disk under an attaching map.
- A simplex is a closed cell, and more generally, a convex polytope is a closed cell.
- 4 An *n*-dimensional open cell is a topological space that is homeomorphic to the open disk.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.
- \bigcirc An *n*-dimensional closed cell is the image of an *n*-disk under an attaching map.
- A simplex is a closed cell, and more generally, a convex polytope is a closed cell.
- An n-dimensional open cell is a topological space that is homeomorphic to the open disk.
- 4 A 0-dimensional open (and closed) cell is a singleton space.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.
- **1** An n-dimensional closed cell is the image of an n-disk under an attaching map.
- A simplex is a closed cell, and more generally, a convex polytope is a closed cell.
- ② An *n*-dimensional open cell is a topological space that is homeomorphic to the open disk.
- 4 A 0-dimensional open (and closed) cell is a singleton space.

- Roughly speaking, a CW-complex is made of basic building blocks called cells.
- The C stands for closure-finite, and the W for weak topology.
- Closure-finite means that each closed cell is covered by a finite union of open cells.
- An n-dimensional closed cell is the image of an n-disk under an attaching map.
- A simplex is a closed cell, and more generally, a convex polytope is a closed cell.
- An n-dimensional open cell is a topological space that is homeomorphic to the open disk.
- 4 A 0-dimensional open (and closed) cell is a singleton space.

n-Dimensional disk:

$$D^n = \{x \in \mathbb{R}^n : |x| \le 1\}$$

Interior of $D^n \subset \mathbb{R}^n$:

$$int(D^n) = \{x \in \mathbb{R}^n : |x| \le 1\}$$

Boundary of $D^n \subset \mathbb{R}^n$:

$$S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$$

Let X be a topological space.

Let $\Lambda(X) = \bigcup_p X_{p \in \mathbb{N}}$ be a partition of X, with X_p the set of p-cells.

Let X be a topological space.

Let $\Lambda(X) = \bigcup_p X_{p \in \mathbb{N}}$ be a partition of X, with X_p the set of p-cells.

Definition (CW-structure)

A CW-structure on the space X is a filtration

$$\emptyset = X^{-1} \subset X_0 \subset X_1 \subset \cdots \subset X_n = \Lambda(X),$$

such that, for each n, the space X_n is homeomorphic to a space obtained from X_{n-1} by attachment of n-cells.

Let X be a topological space.

Let $\Lambda(X) = \bigcup_p X_{p \in \mathbb{N}}$ be a partition of X, with X_p the set of p-cells.

Definition (CW-structure)

A CW-structure on the space X is a filtration

$$\emptyset = X^{-1} \subset X_0 \subset X_1 \subset \cdots \subset X_n = \Lambda(X),$$

such that, for each n, the space X_n is homeomorphic to a space obtained from X_{n-1} by attachment of n-cells.

Definition (Cellular complex)

A cellular complex is a space endowed with a CW-structure.

Let X be a topological space.

Let $\Lambda(X) = \bigcup_p X_{p \in \mathbb{N}}$ be a partition of X, with X_p the set of p-cells.

Definition (CW-structure)

A CW-structure on the space X is a filtration

$$\emptyset = X^{-1} \subset X_0 \subset X_1 \subset \cdots \subset X_n = \Lambda(X),$$

such that, for each n, the space X_n is homeomorphic to a space obtained from X_{n-1} by attachment of n-cells.

Definition (Cellular complex)

A cellular complex is a space endowed with a CW-structure.

A cellular complex is finite when it contains a finite number of cells.

Politopal, simplicial, cuboidal complexes

Cellular complexes characterised by different types of cells:

1 In polytopal complexes cells are polytopes, i.e. bounded convex sets;

Politopal, simplicial, cuboidal complexes

Cellular complexes characterised by different types of cells:

- In polytopal complexes cells are polytopes, i.e. bounded convex sets;
- ② In simplicial complexes cells are simplices, i.e. $^{\sim}d$ -polyedra with d+1 facets ((d-1)-faces) and d+1 vertices.

Politopal, simplicial, cuboidal complexes

Cellular complexes characterised by different types of cells:

- In polytopal complexes cells are polytopes, i.e. bounded convex sets;
- ② In simplicial complexes cells are simplices, i.e. \tilde{d} -polyedra with d+1 facets ((d-1)-faces) and d+1 vertices.
- In cuboidal complexes cells are cuboids, (in general, sets homeomorphic to) Cartesian products of intervals, i.e. d-polyedra with 2d facets and 2d vertices.

A *d*-simplex, or *d*-dimensional simplex, has d+1 extremal points called vertices and d+1 facets.

• a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;
- a triangle (2-simplex) has 2 + 1 = 3 vertices and 3 facets;

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;
- a triangle (2-simplex) has 2 + 1 = 3 vertices and 3 facets;
- a tetrahedron (3-simplex) has 3+1=4 vertices and 4 facets, etc.

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;
- a triangle (2-simplex) has 2 + 1 = 3 vertices and 3 facets;
- a tetrahedron (3-simplex) has 3+1=4 vertices and 4 facets, etc.

A *d*-simplex, or *d*-dimensional simplex, has d+1 extremal points called vertices and d+1 facets.

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;
- a triangle (2-simplex) has 2 + 1 = 3 vertices and 3 facets;
- a tetrahedron (3-simplex) has 3 + 1 = 4 vertices and 4 facets, etc.

A d-cuboid has conversely 2^d vertices and 2d facets:

• a point (0-cuboid) has $2^0 = 1$ vertices and 0 facets;

A *d*-simplex, or *d*-dimensional simplex, has d+1 extremal points called vertices and d+1 facets.

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;
- a triangle (2-simplex) has 2 + 1 = 3 vertices and 3 facets;
- a tetrahedron (3-simplex) has 3 + 1 = 4 vertices and 4 facets, etc.

A d-cuboid has conversely 2^d vertices and 2d facets:

- a point (0-cuboid) has $2^0 = 1$ vertices and 0 facets;
- an edge (1-cuboid) has $2^1 = 2$ vertices and 2 facets;

A *d*-simplex, or *d*-dimensional simplex, has d+1 extremal points called vertices and d+1 facets.

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;
- a triangle (2-simplex) has 2 + 1 = 3 vertices and 3 facets;
- a tetrahedron (3-simplex) has 3 + 1 = 4 vertices and 4 facets, etc.

A d-cuboid has conversely 2^d vertices and 2d facets:

- a point (0-cuboid) has $2^0 = 1$ vertices and 0 facets;
- an edge (1-cuboid) has $2^1 = 2$ vertices and 2 facets;
- a quadrilateral (2-cuboid) has $2^2 = 4$ vertices and 4 facets;

A *d*-simplex, or *d*-dimensional simplex, has d+1 extremal points called vertices and d+1 facets.

- a point (0-simplex) has 0 + 1 = 1 vertices and 1 facet (\emptyset) ;
- an edge (1-simplex) has 1 + 1 = 2 vertices and 2 facets;
- a triangle (2-simplex) has 2 + 1 = 3 vertices and 3 facets;
- a tetrahedron (3-simplex) has 3 + 1 = 4 vertices and 4 facets, etc.

A d-cuboid has conversely 2^d vertices and 2d facets:

- a point (0-cuboid) has $2^0 = 1$ vertices and 0 facets;
- an edge (1-cuboid) has $2^1 = 2$ vertices and 2 facets;
- a quadrilateral (2-cuboid) has $2^2 = 4$ vertices and 4 facets;
- a hexahedron (3-cuboids) has $2^3 = 8$ vertices and 8 facets, etc.

Cellular complex: other definitions

Support |K| of a cellular complex K is the union of points of its cells

A triangulation of a polytope P is a simplicial complex K whose support is |K|=P

For example, a triangulation of a polygon is a subdivision in triangles Simplices and cuboids are polytopes.

A polytope is always triangulable;

For example, a quadrilateral by be divided in two triangles, and a cube in either 5 or 6 tetrahedra without adding new vertices

Simplicial mapping

Simplicial mapping: definition

Definition

A simplicial map is a map between simplicial complexes with the property that the images of the vertices of a simplex always span a simplex.

Remarks

Simplicial maps are determined by their effects on vertices for a precise definition of Simplicial Map look at Wolfram MathWorld

MAP operator in plasm

Map operator

MAP(fun)(domain)

Semantics

1 domain (HPC value) is decomposed into a simplicial complex

MAP operator in plasm

Map operator

MAP(fun)(domain)

Semantics

- domain (HPC value) is decomposed into a simplicial complex
- 2 fun (a simplicial function) is applied to the domain vertices

MAP operator in plasm

Map operator

MAP(fun)(domain)

Semantics

- domain (HPC value) is decomposed into a simplicial complex
- fun (a simplicial function) is applied to the domain vertices
- the mapped domain is returned

MAP examples: 1-sphere (S^1) and 2-disk (D^2)

```
def sphere1(p): return [COS(p[0]), SIN(p[0])] # point function
def domain(n): return INTERVALS(2*PI)(n) # generator of domain decomp
VIEW( MAP(sphere1)(domain(32)) ) # geometric value (HPC type)

def disk2D(p): # point function
    u,v = p
    return [v*COS(u), v*SIN(u)] # coordinate functions
domain2D = PROD([INTERVALS(2*PI)(32), INTERVALS(1)(3)]) # 2D domain decompos
VIEW( MAP(disk2D)(domain2D) )
VIEW( SKELETON(1)(MAP(disk2D)(domain2D)))
```


Figure : (a) sphere S^1 (b) disk D^2 ; (c) 1-skeleton.

References

References

A. DiCarlo, V. Shapiro, and A. Paoluzzi, Linear Algebraic Representation for Topological Structures, Computer-Aided Design, Volume 46, Issue 1, January 2014, Pages 269-274 (doi:10.1016/j.cad.2013.08.044)