Nayak's Tutorials

Year: 2024-25 Std:- X ICSE

Practice Paper - 1 Physics

Marks - 80
Duration :- 2 Hrs

Attempt **all** questions from **Section A** and **any four** questions from **Section B**. The intended marks for question or parts of questions are given in brackets [].

0.1.	[Attempt all questions.] Choose the correct answers to the questions from the given options.							
Q	i)	The point at which entire weight of the body can be supposed to be concentrated is						
	-,	a) end point	b) centroid	c) centre of gravity	d) central point			
	ii)	Solar cell converts						
		a) heat energy to mechanical energy b) electrical energy to light energy						
		c) chemical energy to heat energy d) solar energy to electrical energy						
	iii)	A pendulum is oscillating on either side of its rest position. The correct statement is						
		a) It has only the kinetic energy at its each position.						
		b) It has maximum kinetic energy at its extreme position.						
		c) It has the maximum potential energy at its mean position.						
		d) The sum of its kinetic energy and potential energy remain constant throughout the motion.						
	iv)	Which is used in cu	are of cancer and dete	cting brain tumour?				
		a) Na-24	b) Fe-59	c) Co-60	d) None of these			
	v)	When angle of incidence is more, then						
		a) lateral displacement is less						
		b) lateral displacement is more						
		c) lateral displacement is independent of incidence angled) Zero						
	vi)	A ray of light suffers refraction through an equilateral prism. The deviation						
	,	produced by the prism does not depend on the						
		a) angle of inciden	ce	b) colour of light				
		c) material of prism	n d) size of prism					
	vii)	A ray of light incident at an angle of 48 on a prism of refracting angle 60, suffers minimum deviation. The angle of minimum deviation would be						
		a) 12	b) 24	c) 36	d) 48			
	viii)	What is the magnification of the image when a lens of focal length 10 cm and						
		object distance fro	m the lens is 15 cm?					
		a) 2	b) 1	c)	d) 4			
	ix)	The sensation of sound persists in our brain for about						
		a) 0.001s	b) 0.2s	c) 0.1s	d) 10s			
	x)	•	· ·	h a unit area held perpe				
		a) intensity	b) frequency	c) amplitude	d) quality			
	xi)	A 9V battery has an internal resistance of 12 Ω . The potential difference across						

its terminals when it is supplying a current of 50 mA is

		a) 8.94 V	b) 8.4 V	c) 9.06 V	d) 9.6 V		
	xii)	Fuse wire used in power circuit is of					
		a) 5A	b) 220 A	c) 15 A	d) 10 A		
	xiii)	iii) On reversing the direction of current in a wire, the magnetic field produced by it					
		a) get reversed in direction					
		b) increases in strength					
		c) decreases in strengthd) remains unchanged in strength and direction					
	xiv)	At which temperature molecular motion ceases?					
	λι•,	a) 273 K	b) -273 K	c) 0 K	d) 0 C		
	xv)	Latent heat of fus	•		u, c c		
	,	a) 436 x 10 ⁵ Jkg ⁻¹		b) 236 x 10 ⁵ Jkg ⁻¹			
		c) L36 x 10 ⁵ Jkg ⁻¹		d) 336 x 10 ⁵ Jkg ⁻¹			
		_		_			
Q.2.	i)	(a) A pulley canno	ot have 100% efficiency	. Explain why ?		1	
		(b) What is the nu	clear energy ?			1	
		(c) Write the two	uses of radioactivity.			1	
	ii)	A girl weighing 40 kg skips 8 cm high 10 times, sufficient to stop a thief weighing					
		60 kg. Find the speed at which thief is running.					
	iii)	A uniform meter	scale is in equilibrium	as shown in the figure of	jiven below	2	
			5cm	30cm			
				_			
			Ocm 🗸 🗸				
			40gf				
			ght of the meter scale.				
	iv)			creased by a factor of 3.	How is magnitude of	2	
		gravitational force	e between them affect	eu ?		2	
v) vi)	v)	•	oosition of centre of gr	•		2	
		a) parallelogram		b) hollow cone ?			
	vi)	a) Name the colour code of wire which is connected to the metallic body of an					
		appliance acco	rding to new convection	on.			
		b) Which part of the electrical appliance is earthed?					
vi	vii)	a) Name the two major parts of a SONAR.					
		b) Name the type of vibrations produced in the given case A freely suspended					
		pendulum vibrating about its mean position.					
Q.3.	i)	A concave lens of	focal length 20 cm fo	rms an image at a dista	nce of 10 cm		
		from the lens. Wh	at is the distance of th	ne object from the lens ?	•	2	
	ii)	Derive an expression for equivalent resistance in the following case					

Decide, which resistances are in series and parallel. Solve for series and then for parallel. combine both the results to get the equivalent resistance.

- iii) 10125 J of heat energy boils off 4.5 g of water at 100 C to steam at 100 C. Find the specific latent heat of steam.
- iv) A wire is dropped freely towards earth. Will any emf be induced across the ends of wire, if wire is initially in
 - a) North-South direction?
 - b) East-West direction ?
- v) Complete the following nuclear changes.
 - a) $_{11}Na^{24} \rightarrowX + _{-1}\beta^0$
 - b) $_{92}U^{238} \rightarrow _{90}Th^{234} + \dots + Energy.$

Section - B

[Attempt any four questions.]

- Q.4. i) a) What is dispersion?
 b) Explain a natural phenomenon involving dispersion.
 ii) a) Write a note on total reflecting prism.
 b) State three actions that it can produce.
 c) With the help of a diagram, show one action of total reflecting prism.
 1
 - iii) a) A coin placed at the bottom of a beaker appears to be raised by 4.0 cm.

 If the refractive index of water is 4/3, then find the depth of the water in the beaker.
 - beaker. 2
 b) Write the factors on which lateral displacement depends. 1
 - c) How does the value of angle of deviation produced by a prism change with the increase in the value of angle of incidence?
- **Q.5.** i) A virtual, diminished image is formed when an object is placed between the optical centre and the principal focus of a lens.
 - a) Name the type of lens which forms the above image.
 - b) Draw a ray diagram to show the formation of the image with the above stated characteristics.
 - ii) a) Define EM spectrum.

 b) Write two uses of ultraviolet rays.
 - b) Write two uses of ultraviolet rays. c) Calculate the speed of EM wave in a glass slab in which its frequency is 4×10^{14}
 - and wavelength is 500 nm.

 iii) a) One-half of a convex lens of focal length 10 cm is covered with a black paper.

 can such a lens produce an image of a complete object placed at a distance
 - b) Write two uses of concave lens.
- Q.6. i) a) Explain, when can an object be in stable equilibrium.
 - b) A pulley system has four pulleys in all and is 95% efficient. Calculate

of 30 from the lens? Draw a ray diagram to justify your answer.

1

1

3

1

2

		I. MA II. Effort required to lift a load of 1000 N.	
	ii)	A uniform meter scale of mass 60 g, carries masses of 20 g, 30 g and 80 g from	
		points 10 cm, 20 cm and 90 cm marks. Where must be the scale hanged with string	
		to balance the scale ?	3
	iii)	If a man raises a box of 50 kg mass to a height of 2m in 2min, while the other man	
		raises the same box to a same height in 5 min. Compare	4
		a) the work done. b) the power developed by them.	
Q.7.	i)	a) Explain, why echoes cannot be heard in a small room.	1
	,	b) An iron rod was gently touched by the hammer and then was hit harder.	2
		I. When will be the sound created louder ?	
		II. Which characteristic of sound here is responsible for change in sound?	
	ii)	A nucleus $_{11}$ Na 24 emits a β particle to change into magnesium (Mg).	
		a) Write the symbolic equation for the process.	1
		b) What are numbers 24 and 11 called ?	1
		c) what is the general name of with respect to ?	1
	iii)	Explain, how can you produce deviation with dispersion?	4
	,	Explain, now can you produce deviation that dispersion :	•
Q.8.	i)	An electric iron consumes energy at a rate of 640 W when heating is at the	
Q.O.	•,	maximum rate and 260 W when the heating is at the minimum rate. The applied	
		voltage is 220 V. What is the value of current and the resistance in each case? 3	
	ii)	A certain nucleus P has a mass number 16 and atomic number 8.	
	,	a) Find the number of neutrons.	1
		b) The nucleus P losses I. one proton and II. one β - particle.	1
		Write the symbol of the new nucleus in each case and express each change by	•
		reaction.	2
	iii)	a) Draw a schematic diagram of main circuit.	1
	111)	b) Define conductivity.	1
		c) Of the three connecting wires in a household circuit, which two of the three	•
		wires are at the same potential?	1
		wifes are at the same potential:	•
Q.9.	i١	a) The melting point of naphthalene, a crystalline solid is 80C and the room	
Q.J.	1)	temperature is 20C. Liquid naphthalene at 90C is cooled in room temperature.	
		Draw the temperature-time graph to represent this cooling.	2
		b) It takes a much longer time to boil off (change to steam) a certain quantity of	_
		water rather than bring it to its boiling point from room temperature, say 25C.	
			2
	::\	Explain the reason for this.	2
	ii)	a) What is a reason of spraying of water on the roads in the evening in the hot summer?	2
			2
		b) Explain the benefits of high specific heat capacity of water.	2
	iii)	a) A coil of insulated copper wire is connected to a galvanometer. What will happen,	_
		if a bar magnet is	2
		I. pushed into the coil,	
		II. withdrawn from inside the coil and	
		III. held stationary inside the coil?	
		IV. Name the phenomenon involved.	