MATH 5591H HOMEWORK 2

BRENDAN WHITAKER

Section 10.2 Exercises

6. Prove that $Hom_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n, m)\mathbb{Z}$.

Proof. Let $H = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}_m)$, and let $K = \mathbb{Z}/(n, m)$. Also, let $l = \gcd(n, m)$. Then $K = \mathbb{Z}_l$. So let $\phi \in H$. Then $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$. We note here that ϕ is completely determined by where it sends $1 \in \mathbb{Z}_n$, since we must have $\phi(n \cdot 1) = \phi(0) = 0$ by the definition of a group homomorphism, thus we must have that $n\phi(1) = 0 \in \mathbb{Z}_m$. In order to have $n\phi(1) = 0$, we need $\phi(1)$ to be a multiple of m. So we need $\phi(1)$ to be a multiple of m/l, since every prime factor in l is also in the factorization of n, so we need only the prime factors of m which are not in l, hence $\phi(1)$ must be a multiple of m/l. Now note there are exactly l multiples of m/l in \mathbb{Z}_m . We denote these $a_0, ..., a_{l-1}$. So we have exactly l distinct homomorphisms in H, so we denote these $\phi_0, ..., \phi_{l-1}$, where $\phi_i(1) = a_i = im/l \in \mathbb{Z}_m$. Then let $\Phi : H \to K$ be given by:

$$\Phi(\phi_i) = i \in \mathbb{Z}_l$$
.

We prove this map is an isomorphism. Homomorphism: Observe:

$$\Phi(\phi_i + \phi_j) = \Phi(\phi_{i+j \mod l}) = i + j = \Phi(\phi_i) + \Phi(\phi_j) \in \mathbb{Z}_l.$$

The first equality is by the additive operation on the \mathbb{Z} -module H, and the other equalities follow from the definition of Φ and the additive operation on \mathbb{Z}_l . Since ϕ_i is a homomorphism of R-modules, it preserves multiplication by scalars, so we have $z\phi_i(1) = \phi_i(z) = za_i$, and since $\{a_i\} \cong \mathbb{Z}_l$ as a group, we know $za_i = a_{zi \mod l}$. So we have:

$$\Phi(z\phi_i) = zi = z\Phi(\phi_i) \in \mathbb{Z}_l$$
.

So Φ preserves scalar mult, and hence it is a homomorphism.

Surjectivity: Let $i \in \mathbb{Z}_l$. Then consider $\psi \in H$ s.t. $\psi(1) = im/l$, but this is exactly how we defined ϕ_i , so we know $\phi_i = \psi$, and then $\Phi(\psi) = \Phi(\phi_i) = i$. So Φ is surjective.

Injectivity: Let:

$$\Phi(\psi) = \Phi(\xi),$$

then since we enumerated all the elements of H, we know we must have $\psi = \phi_i$ and $\xi = \phi_j$ for some $0 \le i, j \le l - 1$. Then we have:

$$\Phi(\phi_i) = i = j = \Phi(\phi_i) \in \mathbb{Z}_l$$

so $i \equiv j \mod l$, but since both these numbers are between 0 and l-1, we know i=j, so $\psi=\xi$, and Φ is injective. Hence it is an isomorphism.

11. Let $A_1, A_2, ..., A_n$ be R-modules and let B_i be a submodule of A_i for each i = 1, 2, ..., n. Prove that:

$$(A_1 \times \cdots \times A_n)/(B_1 \times \cdots \times B_n) \cong (A_1/B_1) \times \cdots \times (A_n/B_n).$$

Proof. So let $A = (A_1 \times \cdots \times A_n)$, $B = (B_1 \times \cdots \times B_n)$, and $C = (A_1/B_1) \times \cdots \times (A_n/B_n)$. Note that:

$$A/B = \{ (a_1, ..., a_n) + B \}.$$

We know B is a submodule of A since it is clearly a subset since each component b_i of $(b_1, ..., b_n)$ is also in A_i . Also:

$$(b_1, ..., b_n) + r(d_1, ..., d_n) = (b_1, ..., b_n) + (rd_1, ..., rd_n) = (b_1 + rd_1, ..., b_n + rd_n),$$

Date: SP18.

because of how we defined add. and mult. by R in the R-module B, and because each B_i is a submodule of A_i . Then we know A/B is an R-module since we may factorize by any submodule of A., so we let $\phi: A/B \to C$ be given by

$$\phi((a_1, a_2, ..., a_n) + B) = (a_1 + B_1, a_2 + B_2, ..., a_n + B_n).$$

We prove that ϕ is an isomorphism.

Homomorphism: Let $(x_1, x_2, ..., x_n) + B, (y_1, y_2, ..., y_n) + B \in A/B$, then $\phi(((x_1, x_2, ..., x_n) + B) + ((y_1, y_2, ..., y_n) + B)) = \phi(((x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n)) + B)$ $= \phi((x_1 + y_1, x_2 + y_2, ..., x_n + y_n) + B)$ $= (x_1 + y_1 + B_1, x_2 + y_2 + B_2, ..., x_n + y_n + B_n)$ $= (x_1 + B_1, x_2 + B_2, ..., x_n + B_n)$ $+ (y_1 + B_1, y_2 + B_2, ..., y_n + B_n)$ $= \phi((x_1, x_2, ..., x_n) + B) + \phi((y_1, y_2, ..., y_n) + B),$ (1)

by the direct product operation on A/B and C. And for multiplication, we have:

$$\phi(r((x_1, ..., x_n) + B)) = \phi(r(x_1, ..., x_n) + B)$$

$$= \phi(rx_1, ..., rx_n) + B)$$

$$= (rx_1 + B, ..., rx_n + B)$$

$$= r(x_1 + B, ..., x_n + B)$$

$$= r\phi((x_1, ..., x_n) + B),$$
(2)

so ϕ is a homomorphism.

Injection: Let $(x_1, x_2, ..., x_n) + B, (y_1, y_2, ..., y_n) + B \in A/B$, and let $\phi((x_1, x_2, ..., x_n) + B) = \phi((y_1, y_2, ..., y_n) + B)$ $\Rightarrow (x_1 + B_1, x_2 + B_2, ..., x_n + B_n) = (y_1 + B_1, y_2 + B_2, ..., y_n + B_n).$ (3)

So then we have that $x_i + B_i = y_i + B_i$ for all i, thus

$$(y_1, y_2, ..., y_n) + B = (y_1, y_2, ..., y_n) + (B_1 \times B_2 \times ... \times B_n) = (y_1 + B_1 \times y_2 + B_2 \times ... \times y_n + B_n)$$

$$= (x_1 + B_1 \times x_2 + B_2 \times ... \times x_n + B_n) = (x_1, x_2, ..., x_n) + B$$
(4)

by the direct product operation, so ϕ is in injective.

Surjection: Let $(a_1 + B_1, a_2 + B_2, ..., a_n + B_n) \in C$. Then we must have that $a_i \in A_i$ for all i by definition of C and the quotient modules A_i/B_i , so $(a_1, a_2, ..., a_n) \in A \Rightarrow (a_1, a_2, ..., a_n) + B \in A/B$, and $\phi((a_1, a_2, ..., a_n) + B) = (a_1 + B_1, a_2 + B_2, ..., a_n + B_n)$, so ϕ is surjective by definition. Hence ϕ is an isomorphism, and $A/B \cong C$.

Section 10.3 Exercises

15. An element $e \in R$ is called a **central idempotent** if $e^2 = e$ and er = re for all $r \in R$. If e is a central idempotent in R, prove that $M = eM \oplus (1 - e)M$.

Proof. So we wish to show that M is the direct sum of the two specified submodules. Note that we know that these sets are both submodules by Exercise 14 of Section 1, which tells us that zM is a submodule for any z in the center of R. We know e is in the center since it is a central idempotent. And (1-e)r=r-er=r-re=r(1-e). So it is also in the center. Now we need only show that M=eM+(1-e)M, and that $eM\cap (1-e)M=0$.

Let $m \in M$. Then m = em + (1-e)m = em + m - em, where $em \in eM$, and $(1-e)m \in (1-e)M$, so $m \in eM + (1-e)M$. Now let $em + (1-e)n \in eM + (1-e)M$. Then we have em + n - en = n + e(m-n). So we know M = eM + (1-e)M. So let $m \in eM \cap (1-e)M$. Then $m = en_1 = (1-e)n_2$ for some $n_1, n_2 \in M$. Then we have:

$$m = en_1 = (1 - e)n_2 = e^2n_1 = e(1 - e)n_2 = (e - e^2)n_2 = (e - e)n_2 = 0,$$

so we have shown that if $m \in eM \cap (1-e)M$, m=0, so $eM \cap (1-e)M=0$. And thus $M=eM \oplus (1-e)M$ by definition.

- 22. Let R be a Principal Ideal Domain, let M be a torsion R-module, and let p be a prime in R (do not assume M is finitely generated, hence it need not have a nonzero annihilator). The **p-primary** component of M is the set of all elements of M that are annihilated by some positive power of p.
 - (a) Prove that the p-primary component is a submodule.

Proof. Let N denote the p-primary component of M. Note that:

$$N = \left\{ m \in M : \exists k \in \mathbb{N}, p^k m = 0 \right\}.$$

We apply the submodule criterion. Note that $N \neq \emptyset$ since $0 \in N$. Let $x, y \in N$, and let $r \in R$. Then we know $\exists k, l \in \mathbb{N}$ s.t. $p^k x = p^l y = 0$. Observe:

$$p^{k}p^{l}(x+ry) = p^{l}p^{k}x + rp^{k}p^{l}y = p^{l}0 + rp^{k}0 = 0,$$

so we know $x + ry \in N$, hence by the submodule criterion, N is a submodule of M.

(b) Prove that this definition of p-primary component agrees with the one given in Exercise 18 when M has a nonzero annihilator.

Proof. Assume M has a nonzero annihilator a, and this is the minimal such element. Then let p^{α} be a prime power factor in the prime factorization of a. Let:

$$N = \left\{ m \in M : \exists k \in \mathbb{N}, p^k m = 0 \right\}.$$

In Exercise 18, the definition given for the annihilator of p^{α} is:

$$A = Ann_M(p^{\alpha}) = \{ m \in M : p^{\alpha}m = 0 \}.$$

So clearly any element of A is in N; just let $k=\alpha$. So let $m\in N$. Then $\exists k\in \mathbb{N}$ s.t. $p^km=0$. Suppose $k>\alpha$. Then since am=0, we must have some other product of primes $r=r_1\cdots r_l\mid a$ s.t. $r\nmid p^\alpha$. But since we proved that N is a submodule in part (a), we know $Ann(N)=\{\,r\in R: rm=0, \forall m\in N\,\}$ is an ideal in R. Note then that $r,p^k\in Ann(N)$. But since $p^k\nmid r$ since otherwise we would have $p^k\mid a$, which is impossible since we said $r>\alpha$. So then $r\notin Rp^k$, hence Ann(N) is not a principal ideal, but this is impossible, since we are in a PID, so we must have $k\leq \alpha$. Hence $m\in A$, and thus $N\subseteq A$, and the definitions are equivalent, because the sets are equal.

(c) Prove that M is the (possibly infinite) direct sum of its p-primary components $\{M_i\}$, as p runs over all primes of R.

Proof. Let $\{p_i\}$ be all the primes in R. $\forall i$, let $a_i = \prod_{j \neq i} p_j^{r_j}$. Then $a_i M \subseteq M_i$, since $p_i^{r_i}(a_i M) = \prod_{j=1}^{\infty} p_j^{r_j} M = 0$ (since M is a torsion module, and hence $\forall m \in M$ there exists a nonzero $r \in R$ s.t. rm = 0, and the prime decomposition of r is in $\prod_{j=1}^{\infty} p_j^{r_j}$). Then:

$$gcd(a_1, a_2, ...) = 1,$$

so there exists $c_1, c_2, ... \in R$ not necessarily all nonzero s.t. $c_1a_1 + \cdots = 1$. So $\forall u \in M$,

$$u = \sum_{i=1}^{\infty} c_i a_i \in M_1 + M_2 + \cdots.$$

Now let $u \in M_i \cap (\sum_{j \neq i} M_j)$. Then $p_i^{r_i}, a_i \in Ann(u)$. So, $(p_i^{r_i}) = (1) \subseteq Ann(u)$, so u = 0. So $\forall i, M_i \cap (\sum_{j \neq i} M_j) = 0$. So since we know $M = M_1 + M_2 + \cdots$, and the pairwise intersection of each of these is 0, we know that $M = M_1 \oplus M_2 \oplus \cdots$.

- 0. Let M be an R-module and let I, J be ideals in R.
 - (a) Prove that $Ann(I + J) = Ann(I) \cap Ann(J)$.

Proof. Let $m \in Ann(I+J)$. Then (i+j)m = 0 for all $i \in I, j \in J$. Then letting i = 0, we know $m \in Ann(J)$, and letting j = 0, we know $m \in Ann(I)$. So $Ann(I+J) \subseteq Ann(I) \cap Ann(J)$. Now let $m \in Ann(I) \cap Ann(J)$. Then $im = 0, \forall i \in I$, and $jm = 0, \forall j \in J$. Then we have:

$$(i+j)m = im + jm = 0 + 0 = 0,$$

by he definition of an R-module. So $Ann(I) \cap Ann(J) \subseteq Ann(I+J)$. Hence they are equal. \square

(b) Prove that $Ann(I) + Ann(J) \subseteq Ann(I \cap J)$.

Proof. Let $m \in Ann(I) + Ann(J)$. Then m = n + k for some $n \in Ann(I), k \in Ann(J)$. Let $i \in I \cap J$. Then we know:

$$im = i(n + k) = in + ik = 0 + 0 = 0,$$

by the distributivity of the action of R on M, and since $i \in I$, and $i \in J$, and since n, k are in the respective annihilators. Thus $m \in Ann(I \cap J) \Rightarrow Ann(I) + Ann(J) \subseteq Ann(I \cap J)$.

- (c) Give an example where the inclusion in part (b) is strict.
 - Let R be the ring of continuous functions $f:[0,1]\to\mathbb{R}$. Note this is not an integral domain since we can construct zero divisors in the form of a pair piecewise functions, one of which is zero on half the interval, and the other being zero on the other half. We consider the R-module of R over itself. Then let I be the ideal of functions which are zero on [0,1/2], and J be the ideal of functions which are zero on [1/2,1]. Now note that $I+J\neq R$ since f(x)=1 is in R, but not in I+J, since all functions in I+J are zero at 1/2. But $I\cap J=0$, since these functions must be zero across both halves, and so $Ann(I\cap J)=R$, and so $Ann(J)+Ann(I)=I+J\subsetneq R=Ann(I\cap J)$.
- (d) If R is commutative and unital and I, J are comaximal, prove that $Ann(I \cap J) = Ann(I) + Ann(J)$.

Proof. Assume R is commutative and unital, and I, J are comaximal. Let $m \in Ann(I+J) = Ann((1)) = Ann(R)$ since I, J are comaximal, and R is commutative and unital. So rm = 0 for all $r \in R$. So then $m \in Ann(I)$, and since $0 \in Ann(J)$, we may write m = m + 0, so $m \in Ann(I) + Ann(J)$. And thus $Ann(I+J) \subseteq Ann(I) + Ann(J)$. So they are equal by the result of part (b).