https://youtu.be/IDhTATTGGaE

LSH

- LSH 구조
 - Initialization
 - 입력 메시지 패딩, IV 값을 CV에 저장

Step 함수

- Compression
 - MsgExp
 - MsgAdd
 - Mix
 - WordPerm ___
- Finalization
 - n 비트 길이의 해시 값 h를 생성

LSH

- Compression
 - MsgExp : 메시지 확장 함수
 - 32 워드 배열 → 16 워드 배열
 - $\mathbf{M}^{(i)} = (\mathbf{M}^{(i)}[0], \dots, \mathbf{M}^{(i)}[31])$ $\mathbf{M}_{0}^{(i)} \leftarrow (M^{(i)}[0], \dots, M^{(i)}[15]), \mathbf{M}_{1}^{(i)} \leftarrow (M^{(i)}[16], \dots, M^{(i)}[31])$ $\mathbf{M}_{j}^{(i)} \leftarrow (M_{j}^{(i)}[0], \dots, M_{j}^{(i)}[15])_{j=2}^{N_{s}}$ $M_{j}^{(i)}[l] \leftarrow M_{j-1}^{(i)}[l] \boxplus M_{j-2}^{(i)}[\tau(l)] \ for \ 0 \le l \le 16$

LSH

- Step
 - MsgADD
 - msg와 CV 값 xor 연산
 - $MsgADD(X,Y) = (X[0] \oplus Y[0], \cdots X[15] \oplus Y[15])$
 - Mix
 - $(T[l], T[l + 8]) \leftarrow Mix_{j,l} (T[l], T[l + 8]) \text{ for } 0 \le l < 8$
 - 3개의 덧셈과 xor, rotation 사용
 - WordPerm
 - $WordPerm(X) = X[\sigma(0)], \dots, X[\sigma(15)]$

- LSH 양자 회로
 - Initialization
 - → not 연산만을 사용 (IV constant값을 CV 큐비트에 저장, 패딩)
 - Compression
 - → add, rotation, not (SC constant xor) 연산 사용
 - → rotation 연산은 logical 로 구현 → 자원 추정 x
 - Finalization
 - → xor 연산 사용

덧셈기와 병렬처리가 최적화하는데 중요함

Draper adder

- Carry-lookahead adder(CLA)
 - 각 자리수의 캐리를 미리 계산
 - → 이전 자리의 캐리 값이 구해질 때까지(RCA) 기다리지 않아도 됨.

→많은 큐비트 수, 낮은 depth

Table 1: Comparison of quantum resources required for adder (32-bit).

Adder	Adder Operation		#Toffoli	Toffoli depth	#Qubit (reuse)	Depth
Cuccaro [2]	Cuccaro [2] in-place		61	61	65	66
Draper [3]	in-place	123	254	22	117 (53)	28
	out-of-place	94	127	11	118 (22)	14

*****: Estimation of undecomposed resources

Parallel in Addition

- MsgExp
 - on-the-fly 형태로 연산, 16개의 덧셈이 사용

$$\begin{split} \mathbf{M}_{0}^{(i)} &\leftarrow (M^{(i)}[0],...,M^{(i)}[15]),\, \mathbf{M}_{1}^{(i)} \leftarrow (M^{(i)}[16],...,M^{(i)}[31]) \\ \mathbf{M}_{j}^{(i)} &\leftarrow (M_{j}^{(i)}[0],...,M_{j}^{(i)}[15])_{j=2}^{N_{s}} \\ M_{j}^{(i)}[l] &\leftarrow M_{j-1}^{(i)}[l] \boxplus M_{j-2}^{(i)}[\tau(l)] \ for \ 0 \leq l \leq 16 \end{split}$$

- →초기에 53개의 안실라 큐비트 할당만 필요,
- →높은 depth
- 병렬 덧셈 연산
 - → 초기에 848 (16 × 53)개의 안실라 큐비트 할당
 - → 낮은 depth

Parallel in Addition

- Mix
 - 24 (8 × 3) 개의 덧셈 사용
 - $(T[l], T[l + 8]) \leftarrow Mix_{j,l} (T[l], T[l + 8])$
 - 8개씩 병렬 덧셈 가능
 - → 424 (8 × 53) 개의 안실라 큐비트 필요
 - → MsgExp에서 사용한 안실라 큐비트 재사용 가능

Table 2: Comparison of quantum resources required for each component.

Function	Operation	# CNOT	#Toffoli	Toffoli depth	$\# \mathrm{Qubit}$	Depth
MsgExp	Sequential	1,968	4,064	352	1,077	433
	Parallel	1,968	4,064	22	1,872	28
Mix	Sequential	2,952	6,096	528	565	649
	Parallel	2,952	6,096	66	936	84

*: Estimation of undecomposed resources

- Parallel in Compression
 - MsgExp와 Mix 함수는 각각 독립적으로 수행 가능
 - 정확하게는 i번째 Mix와 i+1번째 MsgExp이 독립적 \rightarrow 병렬 연산 가능
 - → But, Mix 함수에서 MsgExp에서 사용한 안실라 재사용할 경우 불가능
 - → Mix 와 MsgExp에서 사용할 안실라 큐비트를 각각 할당

Parallel in Compression

```
Algorithm 1: Quantum circuit implementation.
Input: M_{even}, M_{odd} CV, \alpha, \beta, SC, ancilla_0, ancilla_1
Output: M_{even}, M_{odd}, CV, ancilla_0, ancilla_1
 1: CV \leftarrow \text{MsgAdd}(M_{even}, CV)
 2: CV \leftarrow \text{Mix}(CV, \alpha_{even}, \beta_{even}, SC, ancilla_0)
 3: CV \leftarrow \text{WordPerm}(CV)
 4: CV \leftarrow \text{MsgAdd}(M_{odd}, CV)
 5: CV \leftarrow \text{Mix}(CV, \alpha_{odd}, \beta_{odd}, SC, ancilla_0)
 6: CV \leftarrow \text{WordPerm}(CV)
 7: for 1 < i < 13 do
         M_{even} \leftarrow \text{MsgExp}(M_{even}, M_{odd}, ancilla_1)
        CV \leftarrow \text{MsgAdd}(M_{even}, CV)
        CV \leftarrow \text{Mix}(CV, \alpha_{even}, \beta_{even}, SC, ancilla_0)
10:
         CV \leftarrow \text{WordPerm}(CV)
11:
12:
        M_{odd} \leftarrow \text{MsgExp}(M_{even}, M_{odd}, ancilla_1)
         CV \leftarrow \operatorname{MsgAdd}(M_{odd}, CV)
14:
         CV \leftarrow \text{Mix}(CV, \alpha_{odd}, \beta_{odd}, SC, ancilla_0)
         CV \leftarrow \text{WordPerm}(CV)
15:
16: end for
17: M_{even} \leftarrow \text{MsgExp}(M_{even}, M_{odd}, ancilla_1)
18: CV \leftarrow MsgAdd(M_{even}, CV)
19: return CV
```

- $ancilla_0$
 - Mix에 사용되는 424 (8 × 53)개의 안실라 큐비트
- ancilla₁
 - MsgExp에 사용되는 848 (16 × 53)개의 안실라 큐비트
- Mix 함수는 병렬 덧셈이 3번 반복됨
 - → MsgExp의 depth는 생략되고 Mix의 depth가 추정됨

Table 3: Comparison of quantum resources required for the Compression function.

Function	Operation	#CNOT	#Toffoli	Toffoli depth	$\# \mathrm{Qubit}$	Depth
Compression	Sequential	139,776	260,096	2,266	2,384	2,873
	Parallel	139,776	260,096	1,716	2,808	2,198

*: Estimation of undecomposed resources

Evaluation

Evaluation

- 이전 연구, Ours-CDKM(이전 연구 + 병렬 최적화), Ours (병렬 + Draper) 비교
- Ours가 게이트 수와 큐비트는 가장 많이 사용
- TD, FD 가장 좋은 성능. + trade-off 메트릭 모두에서 더 좋은 성능을 보임
- Grover 공격 비용도 G-FD는 Ours-CDKM이 조금 더 좋은 성능이지만 다른 메트릭 Depth 관련 메트릭은 Ours가 가장 좋은 성능을 보임

Table 4: Quantum resources required for implementations of LSH.

	•				•		-				
Cipher	Source	#CNOT	#1qCliff	#T	Toffoli depth	# Qubit	Full depth	TD- M	$FD ext{-}M$	TD^2 - M	FD^2 - M
					(TD)	(M)	(FD)			1 D -W	I D -W
LSH-256-256	[12]	$545,\!536$	187,813	437,248	6,283	1,552	50,758	$1.16\cdot 2^{23}$	$1.17\cdot 2^{26}$	$1.78 \cdot 2^{35}$	$1.82\cdot 2^{41}$
	Ours-CDKM	$545,\!536$	187813	437,248	4,758	1,560	38,483	$\boldsymbol{1.77\cdot 2^{22}}$	$\boldsymbol{1.79\cdot 2^{25}}$	$\boldsymbol{1.03\cdot 2^{35}}$	$1.05 \cdot 2^{41}$
	Ours	1,700,608	306,947	1,820,672	1,716	2,808	13,647	$\bf 1.15 \cdot 2^{22}$	$1.14 \cdot 2^{25}$	$1.93 \cdot 2^{32}$	$1.90 \cdot 2^{38}$
LSH-512-512	[12]	1,203,760	418,369	966,000	13,875	3,088	111,532	$1.28\cdot 2^{25}$	$1.28\cdot 2^{28}$	$1.08\cdot 2^{39}$	$1.09\cdot 2^{45}$
	Ours-CDKM	1,203,760	418,369	966,000	10,500	3,096	84,451	$\boldsymbol{1.94\cdot 2^{24}}$	$1.95 \cdot 2^{27}$	$1.24 \cdot 2^{38}$	$1.26 \cdot 2^{44}$
	Ours	4,030,000	$736,\!569$	2,614,473	2,028	5,832	17,385	$1.41 \cdot \mathbf{2^{23}}$	$1.51 \cdot \mathbf{2^{26}}$	$\mathbf{1.40\cdot 2^{34}}$	$1.60 \cdot 2^{40}$

Table 5: Costs of the Grover's collision search for LSH.

Cipher	Source	$\# { m Gate}$	Full depth	T-depth	# Qubit	G- FD	FD- M	Td- M	FD^2 - M	Td^2 - M
	Source	(G)	(FD)	(Td)	(M)	G-I D	I' D-W	1 u-w	I D -W	
	[12]	$1.35\cdot 2^{107}$	$1.53\cdot 2^{101}$	$1.51\cdot 2^{100}$	$1.51\cdot 2^{10}$	$1.03\cdot 2^{209}$	$1.16\cdot 2^{112}$	$1.15\cdot 2^{111}$	$1.78\cdot 2^{213}$	$1.74\cdot 2^{211}$
LSH-256-256	${\bf Ours\text{-}CDKM}$	$1.10\cdot 2^{106}$	$1.16\cdot 2^{101}$	$1.14\cdot 2^{100}$	$1.52\cdot 2^{10}$	$\boldsymbol{1.28\cdot 2^{207}}$	$1.77\cdot 2^{111}$	$1.75\cdot 2^{110}$	$1.02\cdot 2^{213}$	$1.00\cdot 2^{211}$
	Ours	$1.81\cdot 2^{107}$	$1.64\cdot 2^{99}$	$1.65\cdot 2^{98}$	$1.37\cdot 2^{11}$	$\boldsymbol{1.48\cdot 2^{207}}$	$1.13\cdot 2^{111}$	$1.13\cdot 2^{110}$	$1.86\cdot 2^{210}$	$1.88\cdot 2^{208}$
LSH-512-512	[12]	$1.22\cdot 2^{107}$	$1.68\cdot 2^{102}$	$1.67\cdot 2^{101}$	$1.51\cdot 2^{11}$	$1.02\cdot 2^{210}$	$1.27\cdot 2^{114}$	$1.26\cdot 2^{113}$	$1.06\cdot 2^{217}$	$1.05\cdot 2^{215}$
	${\bf Ours\text{-}CDKM}$	$1.22\cdot 2^{107}$	$1.27\cdot 2^{102}$	$1.26\cdot 2^{101}$	$1.02\cdot 2^{11}$	$\boldsymbol{1.55\cdot2^{209}}$	$1.92\cdot 2^{113}$	$1.91\cdot 2^{112}$	$1.22\cdot 2^{216}$	$1.21\cdot 2^{214}$
	Ours	$1.74\cdot 2^{108}$	$1.04\cdot 2^{100}$	$1.95\cdot 2^{98}$	$1.42\cdot 2^{12}$	$1.82 \cdot 2^{208}$	$1.49\cdot 2^{112}$	$1.39\cdot 2^{111}$	$1.56\cdot 2^{212}$	$1.36\cdot 2^{210}$

Q&A