

Chapter Objectives

- To understand the importance of databases in Internet Web applications and smartphone apps
- To understand the nature and characteristics of databases
- To survey some important and interesting database applications
- To gain a general understanding of tables and relationships
- To describe the components of a Microsoft Access database system and explain the functions they perform
- To describe the components of an enterprise-class database system and explain the functions they perform

Chapter Objectives

- To define the term database management system (DBMS) and describe the functions of a DBMS
- To define the term database and describe what is contained within the database
- To define the term metadata and provide examples of metadata
- To define and understand database design from existing data
- To define and understand database design as new systems development
- To define and understand database design in database redesign

1-3

Chapter Objectives

To understand the history and development of database processing

Databases in the Internet and Mobile Device World

- Databases are important because they are everywhere and are used daily:
 - Facebook
 - Posts
 - Likes
 - Twitter
 - Tweets
 - Online shopping
 - Amazon.com [Do an actual search]

How Did We Get Here? The Internet World I

Personal Computers

– 1977: Apple II– 1981: IBM PC

- Local Area Networks
 - Ethernet networking technology
 - Early 1970s: Xerox Palo Alto Research Center
 - 1893: US National Standard

1-7

How Did We Get Here? The Internet World II

- The Internet
 - 1969: ARPANET
- World Wide Web (WWW)
 - 1993: First Web browser (Netscape) available
 - Mid 1990's: Online retail sites
 - 1995: Amazon.com
- Early 2000's: Web 2.0

How Did We Get Here? The Smartphone World

• Mid 1970s: Mobile Phone (Cell Phone)

Smartphone

- 2007: Apple iPhone

- 2008: Google Android Operating System

Tablets

- 2010: Apple iPad

Apps

1-9

The Characteristics of Databases

- The purpose of a **database** is to help people track things of interest to them.
- Data is stored in tables, which have rows and columns like a spreadsheet. A database may have multiple tables, where each table stores data about a different thing.
- Each row in a table stores data about an occurrence or instance of the thing of interest.
- A database stores data and relationships.

Naming Conventions in this Textbook

- Table names are written with all capital letters:
 - STUDENT, CLASS, GRADE, COURSE_INFO
- Column names are written with an initial capital letter, and compound names are written with a capital letter on each word:
 - Term, Section, ClassNumber, StudentName

Databases Create Information

- Data = recorded facts and figures
- Information = knowledge derived from data
- Databases record data, but they do so in such a way that we can produce information from the data.
 - The data on STUDENTs, CLASSes, and GRADEs could produce information about each student's GPA.

1-15

Database Examples

Application	Example Users	Number of Users	Typical Size	Remarks
Sales contact manager	Salesperson	1	2,000 rows	Products such as GoldMine and Act! are database centric.
Patient appointment (doctor, dentist)	Medical office	15 to 50	100,000 rows	Vertical market software vendors incorporate databases into their software products.
Customer relationship management (CRM)	Sales, marketing, or customer service departments	500	10 million rows	Major vendors such as Microsoft and Oracle PeopleSoft Enterprise build applications around the database.
Enterprise resource planning (ERP)	An entire organization	5,000	10 million+ rows	SAP uses a database as a central repository for ERP data.
E-commerce site	Internet users	Possibly millions	1 billion+ rows	Drugstore.com has a database that grows at the rate of 20 million rows per day!
Digital dashboard	Senior managers	500	100,000 rows	Extractions, summaries, and consolidations of operational databases.
Data mining	Business analysts	25	100,000 to millions+	Data are extracted, reformatted, cleaned, and filtered for use by statistical data mining tools.

Applications, the DBMS, and SQL

- Applications are the computer programs that users work with.
- The Database Management System (DBMS) creates, processes, and administers databases.
- Structured Query Language (SQL) is an internationally recognized standard database language that is used by all commercial DBMSs.

1-19

Database Applications

Basic Functions of Application Programs

Create and process forms

Process user queries

Create and process reports

Execute application logic

Control the application itself

e Grade
3.7
3.7
3.1
3.5
3.0

Functions of a DBMS Create database Create tables Create supporting structures (e.g., indexes) Modify (insert, update, or delete) database data Read database data Maintain database structures Enforce rules Control concurrency Perform backup and recovery

The Database

- A database is a self-describing collection of integrated tables.
- The tables are called integrated because they store data about the relationships between the rows of data.
- A database is called self-describing because it stores a description of itself.
- The self-describing data is called metadata, which is data about data.

1-25

Typical Metadata Tables

TableName	NumberColumns	PrimaryKey
STUDENT	4	StudentNumber
CLASS	4	ClassNumber
GRADE	3	(StudentNumber, ClassNumber)

ColumnName	TableName	DataType	Length (bytes)
StudentNumber	STUDENT	Integer	4
LastName	STUDENT	Text	25
FirstName	STUDENT	Text	25
EmailAddress	STUDENT	Text	100
ClassNumber	CLASS	Integer	4
Name	CLASS	Text	25
Term	CLASS	Text	12
Section	CLASS	Integer	4
StudentNumber	GRADE	Integer	4
ClassNumber	GRADE	Integer	4
Grade	GRADE	Decimal	(2, 1)

Microsoft Access

- Microsoft Access is a low-end product intended for individual users and small workgroups.
- Microsoft Access tries to hide much of the underlying database technology from the user.
- A good strategy for beginners, but not for database professionals.
- NOTE: Microsoft Access 2013 is discussed in detail in Appendix A.

1-29

What Is Microsoft Access?

- Microsoft Access is a DBMS plus an application generator:
 - The DBMS creates, processes, and administers Microsoft Access databases.
 - The application generator includes query, form, and report components.
- The Microsoft Access DBMS engine is called the Access Data Engine (ADE).
- Microsoft Access 2000 thru 2010 can be used as an application generator for the Microsoft SQL Server DBMS.

Prominent DBMS Products

- Microsoft Access 2013
- Microsoft SQL Server 2014
 - -Microsoft SQL Server 2014 Express
- Oracle Corporation Oracle Database 12c
 - Oracle Database Express Edition 11gRelease 2
- MySQL 5.6
- IBM DB2

Operating System (OS)

- Microsoft Windows
 - Microsoft Access 2013
 - Microsoft SQL Server 2014
 - Oracle Database
 - MySQL 5.6
- Linux
 - Oracle Database
 - MySQL
- · Apple OS X
 - MySQL 5.6

Three Types of Database Design **Types of Database Design Process** • From existing data (Chapters 3 and 4) Analyze spreadsheets and other data tables Extract data from other databases Design using normalization principles • New systems development (Chapters 5 and 6) Create data model from application requirements Transform data model into database design • Database redesign (Chapter 8) Migrate databases to newer databases Integrate two or more databases Reverse engineer and design new databases using normalization principles and data model transformation Note: Chapter 7 discusses database implementation using SQL. You need that knowledge before you can understand database redesign. 1-35

Knowledge Priorities

Topic	Chapter	Importance to Database Administrator	Importance to Knowledge Worker and Programmer
Basic SQL	Chapter 2	1	2
The relational database model	Chapter 3	2	2
Design via normalization	Chapter 4	2	1
Data models	Chapter 5	2	1
Data model transformation	Chapter 6	2	1
SQL DDL and constraint enforcement	Chapter 7	3	1
Database redesign	Chapter 8	3	1
Database administration	Chapter 9	3	1.
SQL Server, Oracle, MySQL specifics	Chapters 10, 10A, 10B, 10C	3	1
Database application technology	Chapters 11, 12	1	3

1 = Very important; 2 = Important; 3 = Less important

Warning: Opinions vary, ask your instructor for his or hers.

1-41

A Brief History of Database Processing

Era	Years	Important Products	Remarks	
Predatabase Before 1970 File		File managers	All data were stored in separate files. Data integration was very difficult. File storage space was expensive and limited.	
Early database	1970-1980	ADABAS, System2000, Total, IDMS, IMS	First products to provide related tables. CODASYL DBTG and hierarchical data models (DL/I) were prevalent.	
Emergence of relational model	1978-1985	DB2, Oracle	Early relational DBMS products had substantial inertia to overcome. In time, the advantages weighed out.	
Microcomputer DBMS products	1982-1992+	dBase-II, R:base, Paradox, Access	Amazing! A database on a micro. All micro DBMS products were eliminated by Microsoft Access in the early 1990s.	
Object-oriented DBMS	1985-2000	Oracle ODBMS and others	Never caught on. Required relational database to be converted. Too much work for perceived benefit.	

A Brief History of

Database

Processing

II

Web databases

| 1995- present | III | Stateless characteristic of HASP.NET, and Java | H

The Relational Database Model

- The dominant database model is the relational database model—all current major DBMS products are based on it.
- It was created by IBM engineer E. F. Codd in 1970.
- It was based on mathematics called relational algebra.
- This text examines and explains the relational database model.

The NoSQL Movement and Big Data

- Recent developments in Internet and mobile computing have resulted in the development of non-relational DBMSs.
 - NoSQL movement
 - Big Data
- These do not replace the relational model, but rather complement it.
- These topics are discussed in Chapter 12 and Appendix K.

1-45

David Kroenke and David Auer Database Processing

Fundamentals, Design, and Implementation (14th Edition, Global Edition)

End of Presentation: Chapter One