Thesis Plan

Nick Walkden

- 1 Titles
- 2 Chapters
- 2.1 Introduction
- 2.2 Experimental Review
- 2.3 Theoretical Review

2.4 Ball Pen Probe

This chapter will be a description of the design, modelling and experimental results from the ball pen probe. It will include the following work:

1. A description of the ball pen probe implementation on MAST

Completion status:	Ready for writeup
Time required:	N/A
Tasks:	Write up section

2. Present modelling work towards understanding the BPP collection mechanism

Completion status:	Finished analytics, need to solve numerically
Time required:	2 Weeks
Tasks:	Write integrator for I^+/I^-
	Complete analysis of probe impedance
	Attempt to compare probe impedance to experiment

3. Potential Profile measurements

Completion status:	Ready for writeup
Time required:	N/A
Tasks:	Write up section

 $4.\ \,$ Temperature profile measurements and assessment of BPP technique for measurement

Completion status:	etion status: Temperature profiles available	
	Need to conduct assessment of α	
Time required:	2 Weeks	
Tasks:	Refine Thomson comparison	
	Critically asses α	

5. Radial electric field measurements

Completion status:	Figures available, awaiting comparison data
Time required:	2 Weeks
Tasks:	Compare BPP E-field to DBS and ECELESTE

6. Fluctuation measurements in shear layer region

Completion status:	Not yet started
Time required:	3 Weeks
Tasks:	Write PDF and moment calculator
	Perform analysis of PDF in shear layer

2.5 Two-Dimensional Blob Modelling

2.6 Three-Dimensional MAST Modelling

This chapter will be a description of 3D filament using Angus's work as a starting point. It will include the following work:

1. 3D filament simulations in a slab with the basic model as an introduction and to recreate Angus's work in MAST.

Completion status:	Not yet started
Time required:	2 Weeks
Tasks:	Set up slab simulation with MAST parameters
	Run over a range of Δ and δ

2. 3D filament simulations in a slab with hot-ions

Completion status:	Initial work implementing hot ions complete
	Need to carry out simulations
Time required:	4 Weeks
Tasks:	Go through Angus drift wave work including effects of hot ions
	Complete symmetry breaking analysis
	determine parameters for simulations
	Run simulations

3. 3D filament simulations in a slab with parallel streaming

Completion status:	Parallel streaming implemented and under testing
Time required:	4 Weeks
Tasks:	Apply linear analysis to system
	Apply symmetry analysis to system
	Finish testing and carry out simulations

4. 3D flux tube simulations with the basic model

Completion status:	Nearly Completed
Time required:	$\sim 3 \text{ days}$
Tasks:	Re-run with shadowing
	Write up section

5. 3D flux tube simulatations with the full isothermal model

Completion status:	Not yet started
Time required:	4 Weeks
Tasks:	Finish stability checking of hot-ion parallel streaming model
	Decide on correct starting conditions
	Carry out simulations

6. 3D slab simulations with divertor tilt boundary conditions

Completion status:	Not yet started
Time required:	4 Weeks
Tasks:	Implement Loizu boundary conditions in BOUT++
	Carry out simulations varying δ

7. 3D full SOL simulations with the full isothermal model and divertor plate tilt

Completion status:	Started on grid generator
Time required:	4 Weeks
Tasks:	Continue to develop FWA grid generator
	Carry out simulations in a realistic scenario

- 2.7 Three-Dimensional MAST-Upgrade Modelling
- 2.8 Zero-Dimensional Predictive Modelling
- 2.9 Conclusions
- 2.10 References
- 2.11 Appendix: The BOUT++ Code