Infiniti e Infinitesimi.

<u>Definizione</u> Una funzione f(x) si dice infinita per $x \to x_0$, x_0 punto di accumulazione per il dominio di f(x), (o per $x \to \infty$) se $\lim_{x \to x_0} f(x) = \infty$, (oppure $\lim_{x \to \infty} f(x) = \infty$).

<u>Definizione</u> Una funzione f(x) si dice infinitesima per $x \to x_0$, x_0 punto di accumulazione per il dominio di f(x), (o per $x \to \infty$) se $\lim_{x \to x_0} f(x) = 0$, (oppure $\lim_{x \to \infty} f(x) = 0$).

Esempi di infiniti e infinitesimi.

$$f(x) = 3^x$$
 è un infinito per $x \to +\infty$ infatti $\lim_{x \to +\infty} 3^x = +\infty$,

$$f(x) = 3^x$$
 è un infinitesimo per $x \to -\infty$ infatti $\lim_{x \to -\infty} 3^x = 0$,

$$f(x) = tgx$$
 è un infinito per $x \to \frac{\pi}{2}$ infatti $\lim_{x \to \frac{\pi}{2}} tgx = \infty$,

$$f(x) = \frac{1}{x}$$
 è un infinitesimo per $x \to \infty$ infatti $\lim_{x \to \infty} \frac{1}{x} = 0$.

Definizione: Ordine di infinito (o di infinitesimo).

Siano f(x) e g(x) infiniti (o infinitesimi) per $x \to x_0$ o per $x \to \infty$, con

$$g(x) \neq 0$$
. Se $\exists \alpha \in \Re^+$ e $l \in \Re$, $l \neq 0$ tale che

$$\lim_{x \to x_0} \frac{f(x)}{[g(x)]^{\alpha}} = l \quad \text{(o per } x \to \infty\text{)},$$

allora, si dice che per $x \to x_0$ o per $x \to \infty$, f(x) è un infinito (o infinitesimo) di ordine α rispetto all'infinito campione (o infinitesimo campione nel caso degli infinitesimi) g(x).

Esempio

Stabilire l'ordine di infinitesimo di f(x) = tgx rispetto all'infinitesimo campione g(x) = x per $x \to 0$,

$$\lim_{x\to 0} \frac{tgx}{x^{\alpha}} = 1 \text{ se } \alpha = 1, \text{ quindi } ord(tgx) = 1 \text{ rispetto a } g(x) = x.$$

Allo stesso modo:

 $1-\cos x$ è un infinitesimo di ordine 2, per $x \to 0$, rispetto a x; $\sin x$ è un infinitesimo di ordine 1, per $x \to 0$, rispetto a x; $x^2 + x^3$ è un infinitesimo di ordine 2, per $x \to 0$, rispetto a x; $x^2 + x^3$ è un infinito di ordine 3, per $x \to \infty$, rispetto a x.

Non sempre è possibile determinare l'ordine di infinito (o di infinitesimo) rispetto alla funzione campione usuale.

Per esempio, $\lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = +\infty$, $\forall a > 1$, $\alpha > 0$, cioè per nessun $\alpha > 0$, a^x ha lo stesso ordine di infinito di x^{α} .

$$\lim_{x \to +\infty} \frac{(\log_a x)^{\beta}}{x^{\alpha}} = 0, \quad \forall a > 1, \ \alpha, \beta > 0, \text{ per nessun } \alpha, \beta > 0 \quad (\log_a x)^{\beta} \text{ ha lo stesso}$$
ordine di x^{α} .

CONFRONTO TRA INFINITI

Siano f(x) e g(x) infinite per $x \to x_0$ si ha

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \begin{cases} l \neq 0 & ord(f) = ord(g) \\ \pm \infty & ord(f) > ord(g) \\ 0 & ord(f) < ord(g) \\ non \ esiste & non \ confrontabili \end{cases}$$

Stesso risultato se f(x) e g(x) sono infinite per $x \to \infty$.

Esempio.

$$\lim_{x \to 0} \frac{\frac{1}{\sin x}}{\frac{1}{x}} = 1, \quad ord\left(\frac{1}{\sin x}\right) = ord\left(\frac{1}{x}\right)$$

$$\lim_{x \to +\infty} \frac{\sqrt{x} + x}{x^2} = 0, \quad \text{infatti } 1 = ord(\sqrt{x} + x) < ord(x^2) = 2$$

Nel caso di polinomi, l'ordine di infinito è dato dal grado del polinomio e si ha

$$\lim_{x \to +\infty} \frac{a_0 x^h + a_1 x^{h-1} + \dots + a_h}{b_0 x^k + b_1 x^{k-1} + \dots + b_k} = \begin{cases} \frac{a_0}{b_0} & \text{se } h = k \\ \pm \infty & \text{se } h > k \\ 0 & \text{se } h < k \end{cases}.$$

In generale, nel calcolo $\lim_{x\to x_0} \frac{f_1+f_2}{g_1+g_2}$, (f_1,f_2,g_1,g_2) infiniti per $x\to x_0$ si possono trascurare gli infiniti di ordine inferiore, infatti se per esempio $ord(f_1)>ord(f_2)$ e $ord(g_1)>ord(g_2)$ si ha

$$\lim_{x \to x_0} \frac{f_1 + f_2}{g_1 + g_2} = \lim_{x \to x_0} \frac{f_1}{g_1} \frac{1 + \frac{f_2}{f_1}}{1 + \frac{g_2}{g_1}} = \lim_{x \to x_0} \frac{f_1}{g_1}, \quad \text{(in quanto } \frac{f_2}{f_1} \to 0, \qquad \frac{g_2}{g_1} \to 0 \text{)}.$$

CONFRONTO TRA INFINITESIMI

Siano f(x) e g(x) infinitesime per $x \to x_0$ si ha

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \begin{cases} l \neq 0 & ord(f) = ord(g) \\ \pm \infty & ord(f) < ord(g) \\ 0 & ord(f) > ord(g) \\ non \ esiste & non \ confrontabili \end{cases}$$

Stesso risultato se f(x) e g(x) sono infinitesime per $x \to \infty$.

Esempio.

$$\lim_{x \to 0^{+}} \frac{x + x^{3} + \sqrt{tgx}}{(e^{x} - 1)^{2} + \sin x} = +\infty$$

infatti
$$\frac{1}{2} = ord(x + x^3 + \sqrt{tgx}) < ord \left[\left(e^x - 1 \right)^2 + \sin x \right] = 1$$

Nel caso di polinomi, l'ordine di infinitesimo è dato dal grado più piccolo del monomio che lo compone.

Per esempio il polinomio $P(x) = x^2 + x^3 + x^5$ per $x \to 0$, è un infinitesimo di ordine 2.

In generale, nel calcolo $\lim_{x\to x_0} \frac{f_1+f_2}{g_1+g_2}$, (f_1,f_2,g_1,g_2) infinitesime per $x\to x_0$ si possono trascurare gli infinitesimi di ordine superiore, infatti se per esempio $ord(f_1)>ord(f_2)$ e $ord(g_1)>ord(g_2)$ si ha

$$\lim_{x \to x_0} \frac{f_1 + f_2}{g_1 + g_2} = \lim_{x \to x_0} \frac{f_2}{g_2} \frac{\frac{f_1}{f_2} + 1}{\frac{g_1}{g_2} + 1} = \lim_{x \to x_0} \frac{f_2}{g_2}, \quad \text{(in quanto } \frac{f_1}{f_2} \to 0, \quad \frac{g_1}{g_2} \to 0 \text{)}.$$

Nell'esempio precedente l'ordine di infinitesimo (per $x \rightarrow 0$) del numeratore

$$x + x^3 + \sqrt{tgx}$$
 è $\frac{1}{2}$, in quanto $ord(x) = 1$, $ord(x^3) = 3$, $ord(\sqrt{tgx}) = \frac{1}{2}$,

l'ordine di infinitesimo (per $x \to 0$) del denominatore $\left[\left(e^x - 1 \right)^2 + \sin x \right]$ è 1,

in quanto
$$ord \left[\left(e^x - 1 \right)^2 \right] = 2$$
, $ord (\sin x) = 1$.

Si ha:
$$\lim_{x \to 0^+} \frac{x + x^3 + \sqrt{tgx}}{(e^x - 1)^2 + \sin x} = \lim_{x \to 0^+} \frac{\sqrt{tgx}}{\sin x} = +\infty.$$

REGOLE ARITMETICHE

Siano $f(x) = o(x^{\alpha})$ (si legge *o piccolo di* x^{α}) cioè un infinitesimo di ordine superiore ad α per $x \to 0$,

 $g(x) = o(x^{\beta})$ cioè un infinitesimo di ordine superiore a β per $x \to 0$,

allora

$$cf(x) = o(x^{\alpha}) \quad \forall c \in \Re,$$

$$x^{\lambda} f(x) = o(x^{\lambda + \alpha})$$

$$f(x)g(x) = o(x^{\alpha + \beta})$$

$$f(x) + g(x) = o(x^{\gamma}), \quad \gamma = \min\{\alpha, \beta\}$$

Se invece f(x) e g(x) sono infinite di ordine rispettivamente α e β ,

allora

$$ord(f(x) + g(x)) = max\{\alpha, \beta\}.$$

Esempi.

 $1-\cos\frac{1}{x^2}$ infinitesimo per $x\to\infty$, di ordine 4, rispetto a $\frac{1}{x}$., $\sqrt{x}+x^2+3x^{\frac{5}{2}}$ infinitesimo per $x\to0^+$, di ordine $\frac{1}{2}$, rispetto a x, $\sqrt{x^2+x}$ infinito per $x\to\infty$, di ordine 1, rispetto a x,

 $\sqrt{x} + x^2 + 3x^{\frac{5}{2}}$ infinito per $x \to +\infty$, di ordine $\frac{5}{2}$, rispetto a x,