

División de tareas

Figura 1.1: División de tareas

N^o tarea	Descripción	Recursos
1	Hacer funcionar el analizador lógico	M. L.
2	Decodificar el código I2C, entenderlo y aprender	M. L., M. T.
	a enviar comandos	
3	Probar si los comandos enviados producen el efec-	
	to deseado sobre los motores	
4	Investigar en papers u otros documentos si	TODOS
	será necesario incluir algún otro sensor	
5	Interconectar todos los sensores, armar los con-	M. T.
	versores de niveles lógicos necesarios	

6	Investigar e implementar alguna manera de mejo-	S. P.
	rar la presición del GPS	
7	Definir la forma de realizar el switcheo entre el	TODOS
	control remoto y el control automático. Definir el	
	hardware necesario para ello	
8	Programar el firmware necesario para una buena	M. L.
	comunicación entre los ESC's y los motores, ya	
	sea mediante protocolo I2C o PWM	
9	Programar el firmware necesario para una buena	R. R.
	comunicación entre la BeagleBoard y la IMU.	
10	Programar el firmware necesario para una buena	RR
	comunicación entre la BeagleBoard y el GPS .	
11	Programar el firmware necesario para una buena	M. T.
	comunicación entre la BeagleBoard y el dispos-	
	itivo Wi-Fi .	
12	Definir criterios para integrar los sensores: algo-	S. P., R. R.
	ritmo base, interrogación periódica a los sensores,	
	cada cuanto tiempo, en que orden, etc.	
13	Simular los algoritmos y corroborar el buen fun-	S. P., R. R.
	cionamiento teórico.	
14	Programar los algoritmos definitivos y probarlos	S. P., R. R.
15	Definir la actitud de vuelo del cuadricóptero.	TODOS
16	Simular vuelo en MatLab.	M. T.
17	Programar algoritmos definitivos y testearlos.	R. R.
18	Definir el esquema general de los algoritmos de	TODOS
1.0	control	mon oc
19	Programar los distintos bloques de control y su	TODOS
20	interrelación	TODOG
20	Simular algoritmos de control	TODOS
21	Testear algoritmos de control	TODOS
22	Realizar los ajustes necesarios y reprogramar si	TODOS
00	es necesario	TODOG
23	Programar el software necesario para la con-	TODOS
24	mutación entre el control automático y el remoto. Testear el switcheo del mando automático al	TODOS
24	manual y realizar los ajustes necesarios.	TODOS
25	Desarrollo del modelo físico y contrastación con	S. P.
20	papers existentes	D. 1.
26	Simular el comportamiento del cuadricóptero	S. P.
20	según el modelo físico.	D. I.
27	Desarrollar el simulador en MatLab	S. P., M. T.
28	Identificar las no idealidades de los sensores	S. P., M. T.
29	Implementar un modelo de ajuste de las medi-	S. P., M. T.
	das tomadas por los sensores, diseñar pruebas y	~. 1., 1,1. 1.
	en función de estas hallar los parámetros de los	
	modelos propuestos para finalmente calibrar de	
	la mejor forma los sensores.	
	1 .1.	

Cuadro 1.1: Descripción de las tareas y asignación de recursos