Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа «Компьютерные технологии и информационные системы»

Пояснительная записка к курсовой работе

по теме «Исследование методов решения дифференциальных уравнений»

по дисциплине «Вычислительная математика»

Выполнил: студент гр. 35130902/20001	<подпись>	Рязанцев Д.Л.	
Руководитель: ст. преподаватель		Кузнецова Л. В.	
		«»2	2024 г.

Реферат

Пояснительная записка к курсовой работе 23 с., 5 рис., 5 источников, 4 прил. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ, АНАЛИТИЧЕСКОЕ РЕШЕНИЕ, ЧИСЛЕННОЕ РЕШЕНИЕ, МАТLAB, ПОГРЕШНОСТЬ, ГРАФИК, МЕТОДЫ, АДАМС-БАШФОРТ, РУНГЕ-КУТ

Объектом исследования является решение ОДУ различными методами о использованием программы Matlab.

Цель работы – решить ОДУ различными методами с использованием программы Matlab.

Для достижения цели в процессе работы решались следующие задачи: Решение ОДУ следующими методами:

- 1. Аналитически;
- 2. Методом из семейства методов Адамса-Башфорта 1 порядка;

При выполнении данного метода, также необходимо для заданного в соответствии ОДУ:

- 2.1. Привести ОДУ к виду $\frac{dX}{dt} = f(X)$
- 2.2. Построить разностную схему для решения ОДУ заданным методом
- 2.3. Разработать алгоритм для решения ОДУ в соответствии с построенной разностной схемой и написать соответствующую программу в программном продукте MatLAB. Шаг сетки разностной схемы h установить таким образом, чтобы разностная схема сходилась (т.е. чтобы метод решения ОДУ был устойчив). В случае невозможности отыскания такого шага h (т.е. при неустойчивости заданного метода для конкретного ОДУ) необходимо подробно разъяснить причину и предложить вариант изменения условий таким образом, чтобы заданный метод для ОДУ стал устойчивым.
- 3. Методом Рунге-Кутта 4 порядка.

В результате исследования произвести построение графиков решений, сравнение полученных результаты и исследование зависимости погрешности от выбора шага.

Оглавление:

Введ	цение		4
1.	Поста	новка задачи	5
2.		дение ДУ к требуемому виду	
3.		ие ДУ аналитически	
4.		ие ДУ численными методами	
	4.1.	Метод Адамса-Башфорта 1-го порядка	9
	4.2.	Метод Рунге-Кутты	11
5.	Сравн	ение полученных решений	15
	5.1.	Расчет погрешностей	15
	5.2.	Исследование зависимости погрешности от шага	17
Закл	ючение	÷	18
Спис	сок лит	ературы	19
Прил	пожени	e 1	20
Прил	пожени	e 2	21
Прил	пожени	e 3	22
Прил	пожени	e 4	23

Введение

В наши дни люди часто сталкиваются с решением дифференциальных уравнений, например, при расчетах в электротехнике или радиотехнике. Обычно, это линейные дифференциальные уравнения (ЛДУ). Одним из частных случаев линейных дифференциальных уравнений являются ЛДУ с постоянными коэффициентами.

Все численные методы для решения линейных дифференциальных уравнений связаны с переходом от дифференциальной системы к разностной схеме и вычислением приближенных решений в форме сеточных функций.

Метод Адамса-Башфорта 2-го порядка был предложен английским астрономом математиком Джоном Курием Адамсом в 1855 году. Метод является экстраполяционным, и, в отличие от методы Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.

Метод Рунге-Кутты 4-го порядка относится к группе явных методов. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой. Наиболее часто используется и реализован в различных математических пакетах классический метод Рунге-Кутты, имеющий четвертый порядок точности. Решение систем дифференциальных уравнений методом Рунге — Кутты является одним из самых распространённых численных методов решений в технике.

1. Постановка задачи

Необходимо решить ОДУ

$$a_0 y^{"}(t) + a_1 y^{"}(t) + a_2 y^{'}(t)$$

 $+ a_3 y(t) = u;$
 $y(0) = y^{'}(0) = y^{"}(0) = 0;$
 $ha_{\square} uhmepbane_{\square} t \in [t_0, \square t_n];$ (1.1)

различными методами:

- 1. аналитически (или с использованием стандартной процедуры MATLAB dsolve);
- 2. методом из семейства методов Адамса в соответствии с вариантом;
- 3. методом Рунге-Кутта (стандартная процедура MATLAB ode45).

Построить графики решений. Сравнить полученные результаты.

Исследовать зависимость погрешности от выбора шага.

Вариант № 1:

$$a_0 = 12;$$
 $a_1 = 53.2;$
 $a_2 = 4.4;$
 $a_3 = 1;$
 $u = 10;$
 $t_0 = 0;$
 $t_n = 160$

Из семейства методов Адамса требуется использовать метод Адамса-Мултона 2-го порядка.

2. Приведение ДУ к требуемому виду

Для применения численных методов решения ОДУ, необходимо от ЛДУ третьего порядка (1.1) перейти к системе из ЛДУ первого порядка.

Введем новые переменные, чтобы представить исходное уравнение в виде системы уравнений.

Пусть

$$x_1(t) = y(t)$$

$$x_2(t) = y'(t)$$

$$x_3(t) = y''(t)$$
(2.1)

Тогда мы можем представить исходное ЛДУ третьего порядка (1.1) в виде системы из трех уравнений первого порядка:

$$\begin{cases} x_1'(t) = x_2(t) \\ x_2'(t) = x_3(t) \\ x_3'(t) = -\frac{53.2}{12}x_3(t) - \frac{4.4}{12}x_2(t) - \frac{1}{12}x_1(t) + \frac{1}{12}u \end{cases}$$
 (2.2)

Получаем дифференциальное уравнение вида:

$$\frac{dX(t)}{dt} = A \cdot X(t) + B \cdot u \tag{2.3}$$

где A — матрица состояния, а B — матрица управления.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{1}{12} & -\frac{4.4}{12} & -\frac{53.2}{12} \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{12} \end{bmatrix}$$
 (2.4)

3. Решение ДУ аналитически

Для решения ОДУ (1.1) применяем программу (Приложение 1) с использованием стандартных методов MatLAB: *dsolve() u simplify()*.

Получаем следующий результат:

```
>>> dsolve
y(t) = (5*exp(-t*((2185507 - 135*6574182^{(1/2)})^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/90} + (135*6574182^{(1/2)} + 2185507)^{(1/2)} + (135
133/90))*(749201668572542458338930491643302*6574182^(1/2)*(2185507 - 135*6574182^(1/2))^(1/3) -
6938374584283346081145876634108*6574182^{(1/2)}*(2185507 - 135*6574182^{(1/2)})^{(2/3)} +\\
 280853725488590703749865416*6574182^(1/2)*(4896255313999 - 590086890*6574182^(1/2))^(2/3) +
2441145363094201270882831590617535318*(2185507 - 135*6574182^(1/2))^(1/3) -
2817610987138985441533414355659080*(2185507 - 135*6574182^(1/2))^(2/3) +
1267865584848260390454597344274*(4896255313999 - 590086890*6574182^(1/2))^(2/3) +
1099331119996202664286380*6574182^(1/2)*(62525239344919562283616951170307 -
16174236393902949280782750675*6574182^(1/2))^(1/3) +
17797006356070673305307655516*(62525239344919562283616951170307 -
16174236393902949280782750675*6574182^(1/2))^(1/3) -
1246225703525838708076818336074940901896))/1869338555288758062115227504112411352844 -
 (5*cos((3^{(1/2)}*t*((2185507 - 135*6574182^{(1/2)})^{(1/3)} - (135*6574182^{(1/2)}) + (135*6574182^{(1/2)})^{(1/3)})
2185507)^{\circ}(1/3)))/180)*exp(t*((2185507 - 135*6574182^{\circ}(1/2))^{\circ}(1/3)/180 + (135*6574182^{\circ}(1/2) + (135*6574182^{\circ}(1/2))^{\circ}(1/3)))/180)*exp(t*((2185507 - 135*6574182^{\circ}(1/2))^{\circ}(1/3)))/180)*exp(t*((2185507 - 135*6574182^{\circ}(1/2))^{\circ}(1/3))/180) + (135*6574182^{\circ}(1/2))^{\circ}(1/3))/180) + (135*6574182^{\circ}(1/2))^{\circ}(1/3)/180) + (135*6574182^{\circ}(1/2)/180) + (135*6574182^{\circ}(1/2)/180) + (135*6574182^{\circ}(1/2)/180) + (135*6574182^{\circ}(1/2)/1
2185507)^(1/3)/180 - 133/90))*(4896255313999*6574182^(1/2) +
3879338610673980)*(554031763214072977*6574182^{(1/2)}*(2185507 - 135*6574182^{(1/2)})^{(1/3)} +
92038157301060*6574182^(1/2)*(2185507 - 135*6574182^(1/2))^(2/3) + 85606402100256099944*6574182^(1/2) -
183071053505*6574182^(1/2)*(4896255313999 - 590086890*6574182^(1/2))^(2/3) -
285948148578078992842*(2185507 - 135*6574182^(1/2))^(1/3) - 1490000274433835092*(2185507 -
135*6574182^{(1/2)}^{(2/3)} + 117837847722104*(4896255313999 - 590086890*6574182^{(1/2)}^{(2/3)} +
581344862*6574182^(1/2)*(62525239344919562283616951170307 -
16174236393902949280782750675*6574182^(1/2))^(1/3) -
67826573511986064062880))/1869338555288758062115227504112411352844 + (\sin((3^{(1/2)}*t^*((2185507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 128507 - 12
135*6574182^{(1/2)}^{(1/3)} - (135*6574182^{(1/2)} + 2185507)^{(1/3)}))/180)*exp(t*((2185507 - 2185507)^{(1/3)})))
135*6574182^{(1/2)}^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} - 133/90))*(4896255313999*3^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} - 133/90))*(4896255313999*3^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} - 133/90))*(4896255313999*3^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} - 133/90))*(4896255313999*3^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} - 133/90))*(4896255313999*3^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/3)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/180} + (135*6574182^{(1/2)} + 2185507)^{(1/2)/180} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^{(1/2)} + (135*6574182^
1770260670*2191394^{(1/2)}*(97242211192072351*6574182^{(1/2)}*(2185507 - 135*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 135*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)}*(2185507 - 2185*6574182^{(1/2)})^{(1/3)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)} - 125*6574182^{(1/2)
1146624459805274*6574182^(1/2)*(2185507 - 135*6574182^(1/2))^(2/3) -
37087927933*6574182^{(1/2)}*(4896255313999 \ -\ 590086890*6574182^{(1/2)})^{(2/3)} \ -\ 104840458907090110478*(2185507)^{(2/3)}
 -\ 135*6574182^{(1/2)}^{(1/3)} +\ 465633793163581740*(2185507\ -\ 135*6574182^{(1/2)}^{(2/3)} +
58555424504384*(4896255313999 - 590086890*6574182^(1/2))^(2/3) +
581344862*6574182^(1/2)*(62525239344919562283616951170307 -
```

Этому решению соответствует график y(t) (см. рис. 1)

Рисунок 1 — Решение заданного ОДУ аналитически с использованием функции *dsolve* Код программы и результат выполнения приведены в приложении 1.

4. Решение ДУ численными методами

4.1. Метод Адамса-Башфорта 1-го порядка

Из литературы известна расчетная формула для группы методов Адамса-Мултона:

$$x_{k+1} = x_k + h \sum_{r=0}^{m} \beta_{mr} f_{k-r}$$
(3.1)

Следовательно, для метода 1-го порядка расчетная формула имеет вид:

$$x_{k+1} = x_k + h * f(t_k, x_k)$$
(3.2)

где:

- x_{k+1} значение искомой функции в следующей точке сетки,
- x_k значене искомой функции в текущей точке,
- h шаг сетки,
- $f(t_k, x_k)$ значение правой части ОДУ в текущей точке.

Выбор шага (h) для метода Адамса-Башфорта 1 порядка имеет важное значение, так как он влияет на точность и устойчивость решения. Слишком большой шаг приведет к уменьшению точности решения, а слишком маленький – к увеличению времени вычислений.

Алгоритм применения метода Адамса-Башфорта 1 порядка к уравнению:

- 1. Определение параметров: начального времени t_{begin} и t_{end} , начальных условий y_0 и шага сетки h.
- 2. Создание векторов для хранений значений времени и функции.
- 3. Определение функции f(X), которая преобразует ОДУ к виду $\frac{dX}{dt} = f(X)$
- 4. Применение метода для вычисления значений функции y(t) на каждом шаге сетки.
- 5. Вывод результатов в виде графика.

Данному решению соответствует график y(t) (см. рис. 1) и код программы (см. Приложение 2).

Рисунок 1 — Решение заданного ОДУ методом Адамса-Башфорта 1-го порядка

4.2. Метод Рунге-Кутты

Разностная схема метода Рунге-Кутты 4-го порядка описывается формулами:

$$X_{i+1} = X_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4), \text{ and } 2\partial e$$

$$k_1 = f(t_i, X_i),$$

$$k_2 = f(t_i + \frac{h}{2}, X_i + \frac{h}{2}k_1),$$

$$k_3 = f(t_i + \frac{h}{2}, X_i + \frac{h}{2}k_2),$$

$$k_4 = f(t_i + h, X_i + hk_3)$$

$$(4.1)$$

Решение методом Рунге-Кутты 4-го порядка реализовано программой в Приложении 3.

Получено численное решение (см. таб. 1)

0	0	0	0
6.0285e-05	3.0428e-14	1.5142e-09	5.0231e-05
0.00012057	2.4341e-13	6.0561e-09	0.00010045
0.0011454	2.0845e-10	5.4574e-07	0.0009521
0.0014468	4.1999e-10	8.7037e-07	0.0012018
0.022547	1.5531e-06	0.00020493	0.01788
0.030082	3.6582e-06	0.00036083	0.023468
0.08227	7.0819e-05	0.0025057	0.057424
0.1046	0.00014209	0.0039272	0.069701
0.12692	0.00024806	0.0056095	0.080808
0.3187	0.0032638	0.027749	0.14135
0.35429	0.004342	0.032897	0.14777
0.65216	0.021223	0.081667	0.17331
0.71354	0.026564	0.092356	0.17499
0.77491	0.032562	0.10313	0.176
1.1267	0.079758	0.16516	0.17527
2.0752	0.31314	0.32442	0.15951
2.2218	0.3624	0.3476	0.15673
3.5538	0.95677	0.53884	0.13016

3.7981	1.0922	0.56999	0.1251
4.0423	1.2351	0.59993	0.11986
4.2866	1.3852	0.62859	0.11463
4.9136	1.8009	0.69633	0.10133
5.0703	1.9113	0.71194	0.097991
5.227	2.0241	0.72704	0.094638
5.3838	2.1392	0.74161	0.091264
6.3395	2.8865	0.81904	0.070768
6.5703	3.0774	0.83479	0.065907
6.8011	3.2718	0.84943	0.061033
7.0319	3.4694	0.86296	0.056105
8.1754	4.4877	0.91358	0.032586
8.3276	4.6271	0.9183	0.029539
9.6797	5.8877	0.94048	0.0036512
9.897	6.0922	0.94085	-0.00030497
10.114	6.2966	0.94036	-0.0041873
11.164	7.2778	0.92655	-0.021853
11.9	7.9529	0.90624	-0.033151
12.101	8.1342	0.89929	-0.036074
12.302	8.3141	0.89176	-0.038919
13.628	9.4572	0.82861	-0.055742
14.162	9.8915	0.79726	-0.061564
14.34	10.032	0.78614	-0.063366
15.104	10.614	0.7349	-0.070406
15.309	10.763	0.72034	-0.072112
16.594	11.626	0.62176	-0.080733
17.886	12.361	0.51358	-0.08622
18.051	12.444	0.49928	-0.086651
19.11	12.924	0.40644	-0.088418
19.297	12.999	0.38985	-0.088535
20.801	13.485	0.25725	-0.08726
22.068	13.742	0.14884	-0.083494

22.229	13.765	0.1354	-0.082878
23.281	13.862	0.050699	-0.077963
24.331	13.873	-0.02808	-0.071855
25.726	13.767	-0.12192	-0.062386
26.698	13.62	-0.179	-0.055014
32.934	11.764	-0.36356	-0.0047511
33.614	11.516	-0.36512	0.00012849
37.895	10.036	-0.30896	0.023978
38.104	9.9727	-0.30388	0.024778
38.312	9.91	-0.29864	0.025551
39.279	9.6334	-0.2723	0.028756
39.46	9.5846	-0.26705	0.029278
39.641	9.5368	-0.26171	0.029755
44.188	8.6821	-0.11097	0.034081
44.362	8.6634	-0.10507	0.033962
44.543	8.6449	-0.09892	0.033836
46.094	8.5316	-0.047769	0.031931
47.655	8.4947	-0.00021155	0.02883
47.828	8.4951	0.004744	0.028434
48.001	8.4964	0.009633	0.02801
48.174	8.4985	0.014449	0.027578
50.036	8.5703	0.061189	0.022491
50.243	8.5835	0.065778	0.021861
50.45	8.5975	0.070237	0.021229
51.606	8.6921	0.092718	0.01764
51.783	8.7089	0.095797	0.017065
52.291	8.7596	0.10405	0.015438
52.456	8.7771	0.10656	0.014901
52.622	8.7949	0.10898	0.014364
54.743	9.0532	0.13221	0.0075671

Таблица 1 - Вывод программы при решении ОДУ методом Рунге-Кутты

Классический метод Рунге-Кутты имеет четвёртый порядок точности. Из полученных результатов по решению можно сделать вывод о том, что шаг в основном так же не сильно зависит от точности вычислений.

Данному решению соответствует график y(t) (см. рис. 2) и код программы (см. Приложение 3)

Рисунок 2 – Решение заданного ОДУ методом Рунге-Кутты 4-го порядка

Сравнение полученных решений

4.3. Расчет погрешностей

Для методов Рунге-Кутты и Адама-Башфорта с использованием программы для расчета погрешностей (см. Приложение 4) были построены графики отличия от аналитического решения. Были сделаны следующие выводы:

На рисунке 4 и рисунке 5 изображены графики погрешностей методов Рунге-Кутты 4 порядка, метода Адамса-Башфорта 1 порядка с h=0.4, метода Адамса-Башфорта 1 порядка с h=0.2 и метода Адамса-Башфорта с h=0.1. Как следует из графиков, метод Рунге-Кутты имеет наименьшую погрешность на всем выбранном интервале. Уменьшение коэффициента h в методе Адамса-Башфорта 1 порядка приводит к уменьшению погрешности.

Рисунок 4 – Динамика погрешностей численных методов

Рисунок 5 – Динамика погрешностей численных методов (увеличенный масштаб)

4.4.Исследование зависимости погрешности от шага (для метода Адамса-Башфорта)

Исследование влияния шага вычислений на погрешность решения системы ЛДУ (2.3), продемонстрированное на рисунках 4 и 5, приводит к тем выводам, что для метода Адамса-Башфорта 1-го порядка увеличение шага приводит к увеличению погрешности.

Заключение

В ходе данной работы:

- Закреплены знания по решению ЛДУ численными методами: методом Адамса-Башфорта 1-го порядка, стандартной процедурой ode45 и при помощи встроенной в MATLAB функции аналитического решения *dsolve*;
- реализована корректно работающая программа, которая строит графики
 решений (3мя способами) и необходимых погрешностей;
- Проведено исследование метода Адамса-Башфорта 1-го порядка с точки зрения влияния выбора шага на погрешность решения.

Метод Рунге-Кутта 4-го порядка показал себя лучше по сравнению с методом Адамса-Башфорта 1-го порядка, а у метода Адамса-Башфорта 1-го порядка сильное соотношения с размером шага, где при большом значении h график начинает сильно расходиться от аналитического.

Подробное рассмотрение зависимости погрешности от шага в методах Ругне-Кутта 4 порядка и Адамса-Башфорта 1 порядка показало, что увеличение шага увеличивает погрешность и при достаточно большом значении уменьшает устойчивость алгоритма.

В заключение, проведенное исследование показало, что метод Рунге-Кутта 4-го порядка является наиболее точным среди рассмотренных численных методов решения обыкновенных дифференциальных уравнений. Однако следует учитывать, что выбор метода зависит от специфики решаемой задачи, требуемой точности и доступных вычислительных ресурсов. В некоторых случаях может быть целесообразным использовать комбинацию аналитических и численных методов для достижения наилучших результатов.

Список литературы

- 1. Кирсяев А.Н., Куприянов В.Е. Вычислительная математика: конспект лекций. СПб.: СПбГПУ, 2011.-173 с.
- 2. Устинов С.М., Зимницкий В.А. Вычислительная математика. СПб.: БХВ, 2009.- 336 с.
 - 3. Формалев В.Ф., Ревизников Д.Л. Численные методы. М.: ФИЗМАТЛИТ, 2004.
 - 4. Вержбицкий В.М. Численные методы. М.: Высшая школа, 2002.
- 5. Борзенков А. В. Обыкновенные дифференциальные уравнения в MATLAB: Конспект лекций для студентов всех специальностей БГУИР дневной формы обучения. Минск: БГУИР, 2010.

Приложение 1.

Код программы для решения ОДУ аналитически:

```
% 12y'''(t) + 53.2y''(t) + 4.4y'(t) + y(t) = 10
% y(0) = y'(0) = y''(0) = 0
% on interval t \in [0, 160]
%% Аналитическое решение
syms y(t)
dy = diff(y, t);
d2y = diff(y, t, t);
d3y = diff(y, t, t, t);
ode = 12 * d3y + 53.2 * d2y + 4.4 * dy + y == 10;
% Начальные условия
conditions = [y(0) == 0, dy(0) == 0, d2y(0) == 0];
Y = dsolve(ode, conditions);
YSimplified = simplify(Y);
% График
t_range = linspace(0, 160, 1000);
YNumeric = double(subs(YSimplified, t, t_range));
figure(1);
plot(t_range, YNumeric);
title("Аналитическое решение ЛДУ");
xlabel("t");
ylabel("y(t)");
grid on;
disp("[1] y(t) = " + string(Y));
disp("[1.1] y(t) = " + string(YSimplified));
```

Приложение 2.

Код программы для решения ОДУ методом Адамса-Башфорта 1-го порядка:

```
%% Метод Адамса-Башфорта 1-го порядка
adams_bashforth_1(0.01);
%% Определения функций
function res = adams bashforth 1(h)
    ibegin = 0;
                             % Начало интервала
   iend = 160;
                            % Конец интервала
    n = (iend - ibegin) / h; % Количество шагов
    t = ibegin:h:iend; % Вектор времени
    disp ("h = " + string(h));
    disp ("n = " + string(n));
   y1 = zeros(1, n + 1);
   y2 = zeros(1, n + 1);
   y3 = zeros(1, n + 1);
   % Начальные условия
   y1(1) = 0;
   y2(1) = 0;
   y3(1) = 0;
    % Метод Адамса-Башфорта по вычисленной разностной схеме
    for i = 1:n
       y1(i + 1) = y1(i) + h * y2(i);
       y2(i + 1) = y2(i) + h * y3(i);
       y3(i + 1) = y3(i) + h * ((10 - y1(i) - 4.4 * y2(i) - 53.2 * y3(i)) / 12);
    end
    figure(2);
    plot(t, y1, 'r-', t, y2, 'b', t, y3, 'g');
    legend("y(t)", "y''(t)", "y'''(t)");
    title("Решение ЛДУ методом Адамса-Башфорта 1-го порядка");
    xlabel("t");
    ylabel("y(t)");
    grid on;
    %disp("[2] y(t) = " + string(y3(end)));
   res = y1(end);
end
```

Приложение 3.

Код программы для решения ОДУ методом Рунге-Кутты 4-го порядка:

```
%% Метод Рунге-Кутты (ode45)
runge_kutta();
%% Определения функций
function [t, res] = runge_kutta()
    [t, y] = ode45(@odefunction, [0 160], [0, 0, 0]);
   % График
    figure(3);
    plot(t, y(:,1), 'r-', 'LineWidth', 2)
    plot(t, y(:,2), 'b--', 'LineWidth', 2);
    plot(t, y(:,3), 'g-.', 'LineWidth', 2);
    hold off;
    legend("y(t)", "y''(t)", "y'''(t)");
    title('Решение ЛДУ методом Рунге-Кутты с использованием функции ode45');
    xlabel('t');
   ylabel('y(t)');
   grid on;
   % Вывод решения
   %disp('The solution y(t), y''(t), and y''''(t) at the specified time
points:');
    %disp(table(t, y(:,1), y(:,2), y(:,3), 'VariableNames', {'Time', 'y',
'dy/dt', 'd2y/dt2'}));
   res = y(end, 1);
    function dydt = odefunction(t, y)
        dydt = zeros(3, 1);
        dydt(1) = y(2);
        dydt(2) = y(3);
        dydt(3) = (10 - y(1) - 4.4 * y(2) - 53.2 * y(3)) / 12;
    end
end
```

Приложение 4.

Код программы для отслеживания разницы между численными методами и аналитическим решением (с шагом $h=1,\frac{h}{2}$ и 2h):

```
%% Сравнение погрешностей
t_start = 0;
t_end = 160;
h = 0.2;
y_h = adams_bashforth_1(h);
y_2h = adams_bashforth_1(2 * h);
y halfh = adams bashforth 1(0.5 * h);
[t_rk, y_rk] = runge_kutta();
y_{analytic} = dsolve('12 * D3y + 53.2 * D2y + 4.4 * Dy + y = 10', 'y(0) = 0',
Dy(0) = 0', D2y(0) = 0', 't');
tvec = linspace(t_start, t_end, n);
y_fn = matlabFunction(y_analytic);
y_a = y_fn(tvec);
diff_h = y_h - interp1(tvec, y_a, t_start:h:t_end);
diff_2h = y_2h - interp1(tvec, y_a, t_start:h * 2:t_end);
diff_halfh = y_halfh - interp1(tvec, y_a, t_start:h / 2:t_end);
diff_rk = y_rk - interp1(tvec, y_a, t_rk);
figure(4);
subplot(1, 1, 1);
plot(t_start:h * 2:t_end, diff_2h, 'r-', 'LineWidth', 2);
hold on;
plot(t start:h / 2:t end, diff halfh, 'b--', 'LineWidth', 2);
plot(t_rk, diff_rk, 'g-.', 'LineWidth', 2);
plot(t_start:h:t_end, diff_h, 'y-', 'LineWidth', 2);
hold off:
title("Сравнение относительно аналитического решения");
legend('Адамс-Башфорт 1-го порядка, h = 0.4', 'Адамс-Башфорт 1-го порядка, h =
0.1', 'Рунге-Кутты', 'Адамс-Башфорт 1-го порядка, h = 0.2');
grid on;
```