فصل ششم

چند جمله ای ها و توابع ماتریسی

۶–۱ مقدمه

این فصل به بیان قضیه کیلی- هامیلتون و کاربردهای آن در محاسبه توابع ماتریسی به خصوص توابع نمایی ماتریسی می پردازد. در ادامه به مسئله تحقق فضای حالت سیستم های خطی تغییرناپذیر با زمان که یکی از مهمترین مباحث کنترل مدرن است پرداخته شده و نحوه حل معادلات فضای حالت و روش های بدست آوردن ماتریس انتقال حالت همراه با مثال های کاربردی و کدنویسی های انجام شده در MATLAB بیان گردیده است.

۶-۲ توابع و چند جمله ای های ماتریسی

n ساده ترین تابع یک ماتریس مربعی توانهای آن می باشد. ماتریس A^n را می توان بصورت بار حاصلضرب ماتریس A در خودش تعریف کرد. در حالت کلی یک چند جمله ای ماتریسی از یک ماتریس مربع بدین صورت نوشته می شود،

$$f(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_n A^n$$
 (1-9)

که در آن α_i ها مقادیر اسکالر هستند. چند جمله ای های ماتریسی را می توان همانند چند جمله ای های اسکالر به عوامل مختلف تجزیه کرد.

مثال ۶-۱

با توجه به تابع و ماتریس داده شده مقدار f(A) را محاسبه نمایید.

$$f(x) = 2x^{3} - x^{2} + 3x - 4 \quad , \quad A = \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}$$
$$f(A) = 2A^{3} - A^{2} + 3A - 4I$$
$$f(A) = 2\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}^{3} - \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}^{2} + 3\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -42 & -4 \\ 6 & -40 \end{bmatrix}$$

همانند متغیرهای اسکالر یک سری بینهایت برای ماتریس A بصورت زیر تعریف می شود،

$$f(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots = \sum_{k=0}^{\infty} \alpha_k A^k$$
 (Y-8)

همگرایی سری بینهایت ماتریسی f(A) منوط بر آن است که سری اسکلر $f(\lambda_i)$ همگرا باشد، که در آن λ_i مقدار ویژه ماتریس A می باشد.

مثال ۶-۲

نمونه ای از یک سری بینهایت تابع نمایی ماتریسی ${
m e}^A$ است که بصورت زیر می باشد،

$$e^{A} = I + A + \frac{1}{2!}A^{2} + \dots + \frac{1}{n!}A^{n} + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}A^{k}$$

تابع اسکالر e^{λ} به ازای تمامی مقادیر λ همگرا می باشد، لذا تابع ماتریسی e^{λ} مستقل از اینکه مقادیر ویژه آن چه باشند همواره همگرا است.

یکی از مهمترین و پرکاربردترین قضایا در مبحث توایع ماتریسی قضیه کیلی - هامیلتون ا است که از اهمیت ویژه ای برخوردار است.

قضیه کیلی – هامیلتون: هر ماتریس مربعی $A_{n \times n}$ در معادله مشخصه خود صدق می کند.

اثبات: برای ماتریس مربعی $A_{n\times n}$ داریم،

$$\left|\lambda I - A\right| = \alpha_0 + \alpha_1 \lambda + \dots + \alpha_{n-1} \lambda^{n-1} + \lambda^n \tag{T-9}$$

در اینصورت ماتریس $\mathrm{Adj}(\lambda I-A)$ که یک ماتریس با عناصری از چندجمله ای های با درجه کوچکتر یا مساوی n-1 است، بصورت زیر تعریف می شود،

$$\operatorname{Adj}(\lambda I - A) = B_0 + B_1 \lambda + \dots + B_{n-1} \lambda^{n-1}$$
 (f-f)

که در آنn imes n می باشند. B_0, B_1, \dots, B_{n-1} می باشند.

از طرفی می توان نشان داد که برای هر ماتریس مربعی مانند $B_{n \times n}$ رابطه زیر برقرار است، $(\mathrm{Adj}(B))B = B(\mathrm{Adj}(B)) = |B|I_n$

با توجه به این مسئله می توان نوشت،

$$(\lambda I - A) \operatorname{Adj}(\lambda I - A) = |\lambda I - A| I_n$$
 (\Delta - \Sigma)

با قرار دادن رابطه((8-7)) و ((8-7)) در رابطه ((8-6)) عبارت زیر بدست می آید،

$$(\lambda I - A)(B_0 + B_1\lambda + \dots + B_{n-1}\lambda^{n-1}) = (\alpha_0 + \alpha_1\lambda + \dots + \alpha_{n-1}\lambda^{n-1} + \lambda^n)I_n$$

از رابطه اخیر می توان تساوی های زیر را نتیجه گرفت،

$$-AB_0 = \alpha_0 I_n$$

$$B_0 - AB_1 = \alpha_1 I_n$$

$$B_1 - AB_2 = \alpha_2 I_n$$

$$\vdots$$

$$B_{n-2} - AB_{n-1} = \alpha_{n-1}I_n$$

$$B_{n-1} = I_n$$

با پیش ضرب کردن معادلات بالا به ترتیب در $A^n, A^{n-1}, \dots, A^2, A, I$ و جمع کردن طرفین آنها عبارت زیر بدست می آید،

$$\mathbf{0} = \alpha_0 I + \alpha_1 A + \dots + \alpha_{n-1} A^{n-1} + A^n$$

بنابراین ماتریس مربعی $A_{n imes n}$ در معادله مشخصه خود صدق می کند.

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU

Cayley - Hamilton Theorem

مثال ۶-۳

صحت قضیه کیلی- هامیلتون را برای ماتریس A بررسی کنید.

$$A = \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}$$

معادله مشخصه برای ماتریس A بصورت زیر بدست می آید،

$$\left|\lambda I_2 - A\right| = \begin{vmatrix} \lambda - 6 & -16 \\ 1 & \lambda + 4 \end{vmatrix} = 0 \longrightarrow \lambda^2 - 2\lambda - 8 = 0$$

حال ماتریس A را در این معادله قرار داده و حاصل را محاسبه می کنیم،

$$A^{2} - 2A - 8I_{2} = \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}^{2} - 2\begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix} - 8\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 20 & 32 \\ -2 & 0 \end{bmatrix} - \begin{bmatrix} 12 & 32 \\ -2 & -8 \end{bmatrix} - \begin{bmatrix} 8 & 0 \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

بدين ترتيب صحت قضيه كيلي- هاميلتون تصديق مي شود.

۶-۲-۲ محاسبه ماتریس معکوس

یکی از کاربردهای قضیه کیلی- هامیلتون محاسبه ماتریس معکوس است،

$$A^{n} + \alpha_{n-1}A^{n-1} + \dots + \alpha_{1}A + \alpha_{0}I = \mathbf{0}$$

$$A^{n} + \alpha_{n-1}A^{n-1} + \dots + \alpha_{1}A = -\alpha_{0}I$$

$$A(A^{n-1} + \alpha_{n-1}A^{n-2} + \dots + \alpha_{1}I) = -\alpha_{0}I$$

$$\frac{-1}{\alpha_{0}}A(A^{n-1} + \alpha_{n-1}A^{n-2} + \dots + \alpha_{1}I) = I = AA^{-1}$$

لذا ماتریس معکوس به کمک قضیه کیلی- هامیلتون با استفاده از چندجمله ای مشخصه ماتریس بدست می آید،

$$A^{-1} = \frac{-1}{\alpha_0} (A^{n-1} + \alpha_{n-1} A^{n-2} + \dots + \alpha_1 I)$$
 (8-8)

برای اجرای این روش می توان برنامه ای بصورت زیر در نرم افزار MATLAB نوشت،

Matrix inverse by Cayley Hamilton method

function Ainv = AinvCH(A)

n = size(A,1);

AA = zeros(size(A));

cp = poly(A);

for i = 1:n

 $AA = AA + cp(i)*A^{(n-i)};$

end

Ainv = (-1/cp(n+1))*AA;

با استفاده از قضیه کیلی- هامیلتون مقدار A^{-1} را بدست آورید.

$$A = \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}$$

معادله مشخصه برای ماتریس
$$A$$
 بصورت زیر بدست می آید،
$$\left|\lambda I_2 - A\right| = \begin{vmatrix} \lambda - 6 & -16 \\ 1 & \lambda + 4 \end{vmatrix} = 0 \quad \to \quad \lambda^2 - 2\lambda - 8 = 0$$

برای محاسبه A^{-1} می توان بصورت زیر عمل کرد،

$$A^{2} - 2A - 8I_{2} = 0 \rightarrow \frac{1}{8}(A^{2} - 2A) = I = AA^{-1} \rightarrow \frac{1}{8}A(A - 2I) = AA^{-1}$$

$$A^{-1} = \frac{1}{8}(A - 2I) \rightarrow A^{-1} = \frac{1}{8}\begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix} - \frac{1}{4}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 2 \\ \frac{-1}{8} & \frac{-3}{4} \end{bmatrix}$$

با اجراي برنامه AinvCH(A) نيز چنين پاسخي بدست مي آيد،

 $A = [6 \ 16; -1 \ -4];$

Ainv = AinvCH(A)

Ainv =

0.5000 2.0000

-0.7500 -0.1250

با محاسبه ماتریس معکوس بوسیله نرم افزار می توان صحت جواب را بررسی نمود،

 $A = [6 \ 16; -1 \ -4];$

inv(A)

ans =

0.5000 2.0000

-0.1250 -0.7500

۶-۲-۲ محاسبه چندجمله ای های ماتریسی

در حالت کلی یک چندجمله ای مرتبه m ماتریسی از یک ماتریس مربعی بدین صورت وشته می شود،

$$P(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_m A^m$$
 (Y-9)

حاصل این چند جمله ای را می توان با جایگذاری مستقیم ماتریس و توان رسانی های متوالی محاسبه نمود، که برای چندجمله ای های مرتبه بالا مستلزم محاسبات فراوانی است. یکی از کاربردهای قضیه کیلی- هامیلتون محاسبه چندجمله ای های ماتریسی است، که انجام کار بسیار ساده تر می گردد.

فرض کنید $P(\lambda)$ یک چندجمله ای مرتبه m و $Q(\lambda)$ چندجمله ای مشخصه ماتریس

مربعی $A_{n imes n}$ باشد. حاصل تقسیم $rac{P(\lambda)}{Q(\lambda)}$ را می توان بصورت زیر بیان کرد،

$$\frac{P(\lambda)}{O(\lambda)} = F(\lambda) + \frac{R(\lambda)}{O(\lambda)} \rightarrow P(\lambda) = F(\lambda)Q(\lambda) + R(\lambda)$$

که در آن، $F(\lambda)$ خارج قسمت و $R(\lambda)$ باقیمانده تقسیم می باشند. حال اگر $\lambda=\lambda_i$ یک مقدار ویژه ماتریس A باشد، $Q(\lambda_i)=0$ خواهد بود و رابطه بالا بصورت زیر قابل نوشتن است،

$$P(\lambda_i) = F(\lambda_i)Q(\lambda_i) + R(\lambda_i) \rightarrow P(\lambda_i) = R(\lambda_i)$$

و با توجه به قضیه کیلی- هامیلتون می توان نوشت،

$$P(A) = R(A) \tag{A-9}$$

R(A) لذا می توان به جای محاسبه چند جمله ای P(A) با مرتبه m می توان حاصل چندجمله ای n-1 است.

مثال ۶-۵

ماتریس A را در نظر بگیرید و چند جمله ای P(A)را برای آن بدست آورید.

$$A = \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix} , \quad P(A) = A^5 + 16A^4 + 32A^3 + 16A^2 + 4A + I$$

روش اول: جایگذاری مستقیم،

با قرار دادن ماتریس A در چندجمله ای مذکور جواب را بدست می آوریم،

$$P(A) = \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}^{5} + 16 \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}^{4} + 32 \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}^{3} + 16 \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}^{2} + 4 \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1376 & 2816 \\ -176 & -384 \end{bmatrix} + \begin{bmatrix} 5376 & 10240 \\ -640 & -1024 \end{bmatrix} + \begin{bmatrix} 2816 & 6144 \\ -384 & -1024 \end{bmatrix} + \begin{bmatrix} 320 & 512 \\ -32 & 0 \end{bmatrix} + \begin{bmatrix} 24 & 64 \\ -4 & -16 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P(A) = \begin{bmatrix} 9913 & 19776 \\ -1236 & -2447 \end{bmatrix}$$

همانطور که مشخص است این روش مستلزم توان رسانی های متعدد برای ماتریس A است و استفاده از آن برای چند جمله ای های مرتبه بالا بسیار دشوار می باشد.

روش دوم: استفاده از قضیه کیلی- هامیلتون،

R(A) را یا توان از چند جمله ای مرتبه بالای P(A) می توان از چند جمله ای Aاستفاده کرد که به مراتب درجه کمتری دارد. حال با این مقدمه حاصل چند جمله ای P(A) را بدست می آوریم، برای این منظور دو راه کار وجود دارد،

۱- با انجام تقسیم چندجمله ای،

در این روش ابتدا تقسیم $\frac{P(\lambda)}{O(\lambda)}$ را انجام داده و چند جمله ای باقیمانده $R(\lambda)$ را بدست می آوریم،

$$P(\lambda) = \lambda^5 + 16\lambda^4 + 32\lambda^3 + 16\lambda^2 + 4\lambda + I \qquad , \qquad Q(\lambda) = \lambda^2 - 2\lambda - 8$$
$$R(\lambda) = \frac{P(\lambda)}{Q(\lambda)} = 1236\lambda + 2497$$

با توجه قضیه کیلی- هامیلتون داریم،P(A)=R(A)

$$P(A) = R(A)$$

$$P(A) = 1236A + 2497I = 1236 \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix} + 2497 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 9913 & 19776 \\ -1236 & -2447 \end{bmatrix}$$

در این روش تقسیم $\frac{P(\lambda)}{O(\lambda)}$ انجام نمی شود. با توجه به مرتبه چند جمله ای مشخصه، بدیهی است که

پندجمله ای باقیمانده $R(\lambda)$ از مرتبه یک می باشد. لذا آن را بصورت کلی زیر در نظر می گیریم، $R(\lambda) = c_1 \lambda + c_0$

حال مقدار c_0 و c_0 را بدست می آوریم،

$$\begin{split} \lambda_1 &= 4 \to R(\lambda_1) = P(\lambda_1) = c_0 + c_1 \lambda_1 \to 7441 = c_0 + 4c_1 \\ \lambda_2 &= -2 \to R(\lambda_2) = P(\lambda_2) = c_0 + c_1 \lambda_2 \to 25 = c_0 - 2c_1 \\ \text{.i.i.} \\ \text{.i.i.} \\ R(\lambda) &= 1236 \lambda + 2497 \end{split}$$
 بدست می آید.

و با توجه قضیه کیلی - هامیلتون می توان نوشت،

$$P(A) = R(A)$$

$$P(A) = 1236A + 2497I = 1236 \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix} + 2497 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 9913 & 19776 \\ -1236 & -2447 \end{bmatrix}$$

8-8 مثال

ماتریس A را در نظر بگیرید،

$$A = \begin{bmatrix} -2 & 0 \\ 1 & 8 \end{bmatrix}$$

با استفاده از قضیه کیلی- هامیلتون معکوس ماتریس A و تابع ماتریسی زیر را بدست آورید،

$$P(A) = A^5 + 2A^3 + 4A + 8I$$

، A^{-1} محاسبه ماتریس

$$|\lambda I - A| = \lambda^2 - 6\lambda - 16$$

با توجه به قضیه کیلی- هامیلتون داریم،

$$A^{2} - 6A - 16I = 0 \rightarrow \frac{1}{16}(A^{2} - 6A) = I = AA^{-1} \rightarrow \frac{1}{16}A(A - 6I) = AA^{-1}$$

$$A^{-1} = \frac{1}{16}(A - 6I) = \frac{1}{16}\begin{bmatrix} -2 & 0\\ 1 & 8 \end{bmatrix} - \frac{3}{8}\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{-1}{2} & 0\\ \frac{1}{16} & \frac{1}{8} \end{bmatrix}$$

P(A) محاسبه چندجمله ای

$$P(\lambda) = \lambda^5 + 2\lambda^3 + 4\lambda + 8$$
 , $Q(\lambda) = |\lambda I - A| = \lambda^2 - 6\lambda - 16$

پندجمله ای باقیمانده تقسیم $\dfrac{P(\lambda)}{Q(\lambda)}$ از مرتبه یک می باشد.

$$R(\lambda) = c_1 \lambda + c_0$$

حال مقدار c_0 و c_0 را بدست می آوریم،

$$\lambda_1 = 8 \rightarrow R(\lambda_1) = P(\lambda_1) = c_0 + c_1 \lambda_1 \rightarrow 33832 = c_0 + 8c_1$$

 $\lambda_2 = -2 \rightarrow R(\lambda_2) = P(\lambda_2) = c_0 + c_1 \lambda_2 \rightarrow -48 = c_0 - 2c_1$

. با حل این دستگاه معادلات مقدار 3388 م $c_{\rm l} = 3388$ و معادلات معادلات مقدار

$$R(\lambda) = 3388\lambda + 6728$$

و با توجه قضیه کیلی- هامیلتون می توان نوشت،

$$P(A) = R(A)$$

$$P(A) = 3388A + 6728I = 3388 \begin{bmatrix} -2 & 0 \\ 1 & 8 \end{bmatrix} + 6728 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -48 & 0 \\ 3388 & 33832 \end{bmatrix}$$

مثال۶-۷

ماتریس A را در نظر بگیرید و چندجمله ای P(A) را به کمک قضیه کیلی- هامیلتون بدست آورید.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} , \quad P(A) = A^5 + 16A^4 + 32A^3 + 16A^2 + 4A + I$$

ابتدا معادله مشخصه و مقادير ويژه ماتريس را بدست مي آوريم،

$$|\lambda I - A| = Q(\lambda) = (\lambda - 2)^3$$
 \rightarrow $\lambda_1 = \lambda_2 = \lambda_3 = 2$

با توجه به اینکه $Q(\lambda)$ مرتبه سه است، چندجمله ای باقیمانده تقسیم $Q(\lambda)$ بر $Q(\lambda)$ بر توجه به اینکه و خواهد بود،

$$R(\lambda) = c_2 \lambda^2 + c_1 \lambda + c_0$$

-ال مقدار c_1,c_2 و c_0 را بدست می آوریم،

$$\lambda_1 = 2 \rightarrow R(\lambda_1) = P(\lambda_1) = c_0 + c_1\lambda_1 + c_2\lambda_1 \rightarrow P(2) = c_0 + 2c_1 + 4c_2$$

چون مقادیر ویژه تکراری هستند برای دو مقدار ویژه بعدی معادله جدیدی بدست نمی آید. در این مواقع از مشتقات $R(\lambda)$ کمک می گیریم. در این مسئله دو معادله دیگر باید بدست آوریم لذا از مشتق مرتبه اول و دوم $R(\lambda)$ استفاده می کنیم،

$$\dot{R}(\lambda) = 2c_2\lambda + c_1$$

$$\ddot{R}(\lambda) = 2c_2$$

حال داريم،

$$\begin{split} \lambda_1 &= 2 \rightarrow \dot{R}(\lambda_1) = \dot{P}(\lambda_1) = c_1 + 2c_2\lambda_1 \rightarrow \dot{P}(2) = c_1 + 4c_2 \\ \lambda_1 &= 2 \rightarrow \ddot{R}(\lambda_1) = \ddot{P}(\lambda_1) = 2c_2 \end{split}$$

لذا مقدار c_{0} و c_{0} از حل دستگاه معادلات زیر بدست می آید،

$$\begin{cases} c_0 + 2c_1 + 4c_2 = P(2) = 617 \\ c_1 + 4c_2 = \dot{P}(2) = 1044 \end{cases} \rightarrow c_0 = -4159, \quad c_1 = -1644, \quad c_2 = 672$$

$$2c_2 = \ddot{P}(2) = 1344$$

بنابراین داریم،

$$R(\lambda) = 672\lambda^2 - 1644\lambda - 4159$$

و با توجه قضیه کیلی- هامیلتون می توان نوشت،

$$P(A) = 672A^{2} - 1644A - 4159I = \begin{bmatrix} -4759 & 1044 & 672\\ 0 & -4759 & 1044\\ 0 & 0 & -4759 \end{bmatrix}$$

۶-۲-۳ محاسبه توابع ماتریسی

گاهی در تحلیل مسائل نیاز به محاسبه برخی از توابع ماتریسی داریم. از جمله پرکاربردترین این توابع عبارتند از،

$$e^{At}$$
, $\sin(At)$, $\cos(At)$, ...

برای محاسبه حاصل این توابع می توان بسط آنها بصورت یک چند جمله ای نامتناهی در نظر گرفت،

$$e^{At} = I + At + \frac{1}{2!}A^{2}t^{2} + \frac{1}{3!}A^{3}t^{3} + \dots + \frac{1}{n!}A^{n}t^{n} + \dots = \sum_{n=0}^{\infty} \frac{(At)^{n}}{n!}$$

$$\sin(At) = At - \frac{1}{3!}A^{3}t^{3} + \frac{1}{5!}A^{5}t^{5} - \dots + \frac{1}{n!}A^{n}t^{n} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!}(At)^{2n+1} \quad (9-9)$$

$$\cos(At) = I - \frac{1}{2!}A^{2}t^{2} + \frac{1}{4!}A^{4}t^{4} - \dots + \frac{1}{n!}A^{n}t^{n} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!}(At)^{2n}$$

لیکن محاسبه فرم بسته این توابع از روی سری بینهایت کار دشواری است. لذا افراد همواره به دنبال روش هایی هستند که بتواند فرم بسته ای از توابع ماتریسی را ارائه دهد. یکی از کاربردهای قضیه کیلی – هامیلتون در محاسبه پاسخ بسته توابع ماتریسی است. صورت کلی توابع ماتریسی را می توان به شکل زیر نمایش داد،

$$f(A) = I + \alpha_1(t)A + \alpha_2(t)A^2 + \alpha_3(t)A^3 + \dots + \alpha_n(t)A^n + \alpha_{n+1}(t)A^{n+1} + \dots$$

حال اگر از قضیه کیلی- هامیلتون برای محاسبه حاصل این توابع استفاده نماییم، نامتناهی بودن این چندجمله ای می تواند مشکل ساز گردد، لیکن در ادامه نشان می دهیم که این سری بینهایت را می توان بصورت یک چند جمله ای محدود بر حسب توان های A^{n-1} تا A^{n-1} نمایش داد و به راحتی از قضیه کیلی- هامیلتون برای محاسبه آن استفاده نمود.

$$A^{n} = -c_{0}I - c_{1}A - \dots - c_{n-2}A^{n-2} - c_{n-1}A^{n-1} = g(A^{0}, \dots, A^{n-1})$$

$$A^{n+1} = -c_{0}A - c_{1}A^{2} - \dots - c_{n-2}A^{n-1} - c_{n-1}A^{n} = h(A^{0}, \dots, A^{n-1})$$

یعنی تمام جملات مرتبه بالاتر از nرا می توان برحسب توان هایی از A^0 تا A^{n-1} نمایش داد. لذا در حالت کلی می توان f(A) را بصورت زیر بیان کرد،

$$f(A) = I + \beta_1(t)A + \beta_2(t)A^2 + \beta_3(t)A^3 + \dots + \beta_{n-1}(t)A^{n-1}$$

به این ترتیب R(A) هم یک چندجمله ای محدود خواهد بود و می توان نوشت، f(A) = R(A)

مثال8-۸

ماتریس A را در نظر بگیرید،

$$A = \begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix}$$

با استفاده از قضیه کیلی- هامیلتون ماتریس A^k تابع ماتریسی P(A) و فرم بسته $\sin(A)$ را بدست $\sin^2(A) + \cos^2(A) = I$ است.

$$P(A) = A^5 + 2A^3 + 4A + 8I$$

 A^k محاسبه ماتریس -

حال مقدار c_0 و c_0 را بدست می آوریم،

$$\begin{array}{lll} \lambda_1 = -1 & \to & R(\lambda_1) = f(\lambda_1) = c_0 + c_1 \lambda_1 & \to & (-1)^k = c_0 - c_1 \\ \lambda_2 = -4 & \to & R(\lambda_2) = f(\lambda_2) = c_0 + c_1 \lambda_2 & \to & (-4)^k = c_0 - 4c_1 \\ c_0 = \frac{1}{3} \left(4(-1)^k - (-4)^k \right), c_1 = \frac{1}{3} \left((-1)^k - (-4)^k \right),$$

و با توجه قضیه کیلی- هامیلتون می توان نوشت،

$$f(A) = R(A)$$

$$f(A) = c_1 A + c_0 I = c_1 \begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix} + c_0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2c_1 + c_0 & 2c_1 \\ c_1 & -3c_1 + c_0 \end{bmatrix}$$

$$A^k = \begin{bmatrix} \frac{1}{3}(2(-1)^k + (-4)^k) & \frac{2}{3}((-1)^k - (-4)^k) \\ \frac{1}{3}((-1)^k - (-4)^k) & \frac{1}{3}((-1)^k + 2(-4)^k) \end{bmatrix}$$

P(A) ای عندجمله ای - محاسبه

-حال مقدار c_0 و c_0 را بدست می آوریم،

$$\sin^2(A) + \cos^2(A) = I$$
 - نشان دهید
با توجه به قضیه کیلی - هامیلتون،

$$\begin{aligned} \cos(A) &= R(A) = c_0 I + c_1 A \\ \lambda_1 &= -1 & \rightarrow & \cos(\lambda_1) = c_0 + c_1 \lambda_1 & \rightarrow & \cos(-1) = c_0 - c_1 \\ \lambda_2 &= -4 & \rightarrow & \cos(\lambda_2) = c_0 + c_1 \lambda_2 & \rightarrow & \cos(-4) = c_0 - 4 c_1 \end{aligned}$$
 با حل دستگاه داریم،

$$c_0 = -\frac{1}{3}[\cos(-4) - 4\cos(-1)], \quad c_1 = -\frac{1}{3}[\cos(-4) - \cos(-1)]$$

به این ترتیب

$$\cos(A) = c_0 I + c_1 A = \frac{1}{3} \begin{bmatrix} \cos(-4) + 2\cos(-1) & -2\cos(-4) + 2\cos(-1) \\ -\cos(-4) + \cos(-1) & 2\cos(-4) + \cos(-1) \end{bmatrix}$$

حال مقدار
$$\sin^2(A) + \cos^2(A)$$
 را بدست می آوریم،

$$\sin^2(A) = \frac{1}{9} \begin{bmatrix} 3\sin^2(-4) + 6\sin^2(-1) & -6\sin^2(-4) + 6\sin^2(-1) \\ -3\sin^2(-4) + 3\sin^2(-1) & 6\sin^2(-4) + 3\sin^2(-1) \end{bmatrix}$$

$$\cos^{2}(A) = \frac{1}{9} \begin{bmatrix} 3\cos^{2}(-4) + 6\cos^{2}(-1) & -6\cos^{2}(-4) + 6\cos^{2}(-1) \\ -3\cos^{2}(-4) + 3\cos^{2}(-1) & 6\cos^{2}(-4) + \cos^{2}(-1) \end{bmatrix}$$

$$\text{لذا } I = \frac{1}{9} \begin{bmatrix} 3\cos^{2}(-4) + 6\cos^{2}(-1) & -6\cos^{2}(-4) + 6\cos^{2}(-1) \\ -3\cos^{2}(-4) + 3\cos^{2}(-1) & 6\cos^{2}(-4) + \cos^{2}(-1) \end{bmatrix}$$

در نرم افزار MATLAB از دستور F = funm(A, 'fun') برای محاسبه توابع ماتریس در نرم افزار MATLAB از دستور به جای عبارت fun نام تابع نوشته می شود. بطور مثال برای محاسبه تابع ماتریسی $\sin(A)$ می نوایسیم $\sin(A, '\sin')$ می نوایسیم $\sin(A)$ می $\sin(A)$ و $\sin(A)$ می نوایسیم $\sin(A)$ و $\sin(A)$ و $\sin(A)$ و $\sin(A)$ و $\sin(A)$ دارد.

به اجرای دستور توجه نمایید،

0.0000

1.0000

مثال ۶-۹

اگر ماتریس سیستمی بشکل زیر باشد،

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

ماتریس e^A و $\ln(A)$ را با روش کیلی- هامیلتون بیابید.

$$Q(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0 \quad \Rightarrow \quad \lambda_1 = \lambda_2 = \lambda_3 = 2$$

بدین ترتیب چندجمله ای مشخصه و مقادیر ویژه ماتریس حالت را بدست می آوریم، که یک مقدار ویژه تکراری با مرتبه سه دارد. با توجه اینکه چندجمله ای مشخصه مرتبه سه است، باقیمانده حاصل از تقسیم بسط تابع کلی f(A) بر $Q(\lambda)$ مرتبه دو خواهد بود،

$$R(\lambda) = c_2 \lambda^2 + c_1 \lambda + c_0$$

حال مقدار c_1 ، c_0 و c_1 را بدست می آوریم،

$$\lambda_1 = 2 \rightarrow R(\lambda_1) = f(\lambda_1) = c_0 + c_1 \lambda_1 + c_2 \lambda_1^2 \rightarrow f(2) = c_0 + 2c_1 + 4c_2$$

 $R(\lambda)$ از آنجاییکه مقادیر ویژه تکراری هستند لذا برای بدست آوردن معادلات دیگر از مشتقات استفاده می نماییم.

$$\begin{split} \dot{R}(\lambda) + 2c_2\lambda + c_1 &\rightarrow \dot{R}(\lambda_1) = 2c_2\lambda_1 + c_1 \rightarrow \dot{f}(2) = 4c_2 + c_1 \\ \ddot{R}(\lambda) + 2c_2 &\rightarrow \ddot{R}(\lambda_1) = 2c_2 \rightarrow \ddot{f}(2) = 2c_2 \end{split}$$

 c_0 و c_1 ، c_2 مقدار عادلات معادلات مقدار c_1 و معادلات مقدار c_2 و معادلات مقدار و بصورت زیر خواهد بود،

$$\begin{cases} f(2) = c_0 + 2c_1 + 4c_2 \\ \dot{f}(2) = 4c_2 + c_1 \\ \ddot{f}(2) = 2c_2 \end{cases} \Rightarrow \begin{cases} c_0 = f(2) - 2\dot{f}(2) + 2\ddot{f}(2) \\ c_1 = \dot{f}(2) - 2\ddot{f}(2) \\ c_2 = \frac{1}{2}\ddot{f}(2) \end{cases}$$

با توجه قضیه کیلی- هامیلتون می توان نوشت،

$$f(A) = c_0 I + c_1 A + c_2 A^2 = \begin{bmatrix} c_0 & 0 & 0 \\ 0 & c_0 & 0 \\ 0 & 0 & c_0 \end{bmatrix} + \begin{bmatrix} 2c_1 & c_1 & 0 \\ 0 & 2c_1 & c_1 \\ 0 & 0 & 2c_1 \end{bmatrix} + \begin{bmatrix} 4c_2 & 4c_2 & c_2 \\ 0 & 4c_2 & 4c_2 \\ 0 & 0 & 4c_2 \end{bmatrix}$$

$$f(A) = \begin{bmatrix} f(2) & \dot{f}(2) & \frac{1}{2}\ddot{f}(2) \\ 0 & f(2) & \dot{f}(2) \\ 0 & 0 & f(2) \end{bmatrix}$$

حال که صورت کلی ماتریس f(A) را بدست آوردیم می توانیم تک تک توابع ماتریسی خواسته شده را به راحتی محاسبه نماییم،

$$f(A) = e^{A} = \begin{bmatrix} e^{2} & e^{2} & \frac{1}{2}e^{2} \\ 0 & e^{2} & e^{2} \\ 0 & 0 & e^{2} \end{bmatrix}$$

با استفاده از نرم افزار MATLAB می توان صحت جواب را بررسی نمود،

A = [2 1 0; 0 2 1; 0 0 2];

expm(A)

ans =

$$f(A) = \ln(A) = \begin{bmatrix} \ln(2) & \frac{1}{2} & \frac{-1}{8} \\ 0 & \ln(2) & \frac{1}{2} \\ 0 & 0 & \ln(2) \end{bmatrix}$$

با استفاده از نرم افزار MATLAB داریم،

A = [2 1 0; 0 2 1; 0 0 2];

logm(A)

ans =

لازم به ذکر است استفاده از دستور F = funm(A, 'fun') در مواردی که ریشه تکراری وجود دارد ممکن است پاسخ دستی ارائه ندهد.

П

مثال ۶-۱۰

ماتریس A را در نظر بگیرید،

$$A = \begin{bmatrix} -2 & 0 \\ 1 & 8 \end{bmatrix}$$

با استفاده از قضیه کیلی- هامیلتون توابع ماتریسی $\sin(At)$ و e^{At} را بدست آورید،

ابتدا معادله مشخصه ماتریس را بدست می آوریم،

$$Q(\lambda) = |\lambda I - A| = \lambda^2 - 6\lambda - 16$$

-محاسبه تابع $\sin(At)$ -

با توجه به قضیه کیلی - هامیلتون،

$$\sin(At) = R(A) = c_0 I + c_1 A$$

$$\begin{array}{ccccccc} \lambda_1 = 8 & \rightarrow & \sin(\lambda_1 t) = c_0 + c_1 \lambda_1 & \rightarrow & \sin(8t) = c_0 + 8c_1 \\ \lambda_2 = -2 & \rightarrow & \sin(\lambda_2 t) = c_0 + c_1 \lambda_2 & \rightarrow & \sin(-2t) = c_0 - 2c_1 \end{array}$$

با حل دستگاه داریم،

$$c_0 = \frac{1}{5}[\sin(8t) + 4\sin(-2t)], \quad c_1 = \frac{1}{10}[\sin(8t) - \sin(-2t)]$$

ه ادر ترتیب

$$\sin(At) = c_0 I + c_1 A = \begin{bmatrix} \sin(-2t) & 0\\ \frac{1}{10} [\sin(8t) - \sin(-2t)] & \sin(8t) \end{bmatrix}$$

 $\cdot e^{At}$ عاسبه تابع –

با توجه به قضیه کیلی- هامیلتون،

$$e^{At} = R(A) = c_0 I + c_1 A$$

$$\lambda_1 = 8 \rightarrow e^{\lambda_1 t} = c_0 + c_1 \lambda_1 \rightarrow e^{8t} = c_0 + 8c_1$$
 $\lambda_2 = -2 \rightarrow e^{\lambda_2 t} = c_0 + c_1 \lambda_2 \rightarrow e^{-2t} = c_0 - 2c_1$

با حل دستگاه داریم

$$c_0 = \frac{1}{5} [e^{8t} + 4e^{-2t}], \quad c_1 = \frac{1}{10} [e^{8t} - e^{-2t}]$$

به این ترتیب،

$$e^{At} = c_0 I + c_1 A = \begin{bmatrix} e^{-2t} & 0\\ \frac{1}{10} [e^{8t} - e^{-2t}] & e^{8t} \end{bmatrix}$$

در نرم افزار MATLAB برای محاسبه تابع نمایی ماتریسی از دستور MATLAB استفاده می شود و برای بدست آوردن فرم پارامتری e^{At} می توان بصورت زیر عمل کرد،

 $A = [-2 \ 0; 1 \ 8];$

t=sym('t');

expm(A*t)

ans =

$$[exp(-2*t), 0]$$

 $[1/10*\exp(8*t)-1/10*\exp(-2*t),$ exp(8*t)]

لازم به ذکر است استفاده از دستور F = funm(A, 'fun') برای متغیرهای از نوع sym مجاز نیست.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$$

ماتریس e^{At} را با استفاده از روش کیلی – هامیلتون بدست آورید.

برای این منظور ابتدا معادله مشخصه سیستم را بدست آورده و مقادیر ویژه را تعیین می کنیم،
$$Q(\lambda) = \left|\lambda I_n - A\right| = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 6 & 11 & \lambda + 6 \end{vmatrix} = \lambda^3 + 6\lambda^2 + 11\lambda + 6 = 0$$

A سه مقدار ویژه متمایز A=-1 ، A=-2 و A=-3 و دارد. از آنجائیکه ماتریس الخا ماتریس الخا مرتبه سوم است، لذا چند جمله ای باقیمانده $R(\lambda)$ در این حالت درجه دو خواهد بود،

$$R(\lambda) = c_0 + c_1 \lambda + c_2 \lambda^2$$

حال می دانیم برای یک مقدار ویژه مانند λ_i می توان نوشت،

$$f(\lambda_i) = R(\lambda_i) = c_0 + c_1 \lambda_i + c_2 \lambda_i^2$$

با جایگذاری $f(\lambda_i) = \exp[\lambda_i t]$ و سه تا مقادیر ویژه $f(\lambda_i) = \exp[\lambda_i t]$ و رمعادله اخیر یک دستگاه معادلات سه معادله سه مجهول بدست می آید،

$$e^{-t} = c_0 - c_1 + c_2$$

$$e^{-2t} = c_0 - 2c_1 + 4c_2$$

$$e^{-3t} = c_0 - 3c_1 + 9c_2$$

با حل این معادلات ضرایب c_k ها بدست می آیند،

$$c_0 = 3e^{-t} - 3e^{-2t} + e^{-3t}$$

$$c_1 = \frac{5}{2}e^{-t} - 4e^{-2t} + \frac{3}{2}e^{-3t}$$

$$c_2 = \frac{1}{2}e^{-t} - e^{-2t} + \frac{1}{2}e^{-3t}$$

حال می توان ماتریس e^{At} را بصورت زیر بدست آورد،

 $\exp[At] = c_0 I + c_1 A + c_2 A^2$

$$= \begin{bmatrix} c_0 & 0 & 0 \\ 0 & c_0 & 0 \\ 0 & 0 & c_0 \end{bmatrix} + \begin{bmatrix} 0 & c_1 & 0 \\ 0 & 0 & c_1 \\ -6c_1 & -11c_1 & -6c_1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & c_2 \\ -6c_2 & -11c_2 & -6c_2 \\ 36c_2 & 60c_2 & 25c_2 \end{bmatrix}$$

لذا داريم،

$$e^{At} = \begin{bmatrix} 3e^{-t} - 3e^{-2t} + e^{-3t} & \frac{3}{2}e^{-3t} - 4e^{-2t} + \frac{5}{2}e^{-t} & \frac{1}{2}e^{-3t} - e^{-2t} + \frac{1}{2}e^{-t} \\ -3e^{-3t} + 6e^{-2t} - 3e^{-t} & -\frac{5}{2}e^{-t} + 8e^{-2t} - \frac{9}{2}e^{-3t} & -\frac{3}{2}e^{-3t} + 2e^{-2t} - \frac{1}{2}e^{-t} \\ -12e^{-2t} + 3e^{-t} + 9e^{-3t} & \frac{27}{2}e^{-3t} - 16e^{-2t} + \frac{5}{2}e^{-t} & \frac{1}{2}e^{-t} + \frac{9}{2}e^{-3t} - 4e^{-2t} \end{bmatrix}$$

۶–۳ مدلسازی فضای حالت سیستمهای خطی

در روش های مبتنی بر کنترل کلاسیک، مدلسازی و تحلیل سیستم ها بر اساس تابع تبدیل اسیستم می گیرد. تابع تبدیل ارتباط بین ورودی و خروجی سیستم را بیان می دارد. سیستم یک ورودی - یک خروجی زیر را در نظر بگیرید،

$$T(s)$$
 $T(s)$

ابع تبدیل این سیستم بصورت زیر بیان می کردد،

$$T(s) = \frac{Y(s)}{R(s)} \tag{1.-5}$$

برای بدست آوردن نمایش تابع تبدیل می توان از معادلات دیفرانسیل سیستم استفاده کرد. اگر معادله دیفرانسیل سیستمی به فرم زیر باشد،

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_1\dot{y}(t) + a_0y(t) = b_{n-1}u^{(n-1)}(t) + b_{n-2}u^{(n-2)}(t) + \dots + b_1\dot{u}(t) + b_0u(t)$$

با تبديل لاپلاس گرفتن از طرفين اين معادله مي توان تابع تبديل آن را بصورت زير بدست آورد،

[\] Transfer Function

$$T(s) = \frac{Y(s)}{R(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$
(11-8)

در تحلیل سیستم ها چندجمله ای مخرج تابع تبدیل را **معادله مشخصه سیستم** و ریشه های چندجمله ای مشخصه را قطب های سیستم و ریشه های چند جمله ای صورت تابع تبدیل را صفرهای سیستم می نامند.

مثال ۶-۱۲

در مدار الکتریکی زیر اگر برای زمان های $t \leq 0$ ولتاژ دو سر خازن $v(t) = V_0$ باشد، و در لحظه t = 0 کلید سمت باز شده و کلید سمت چپ بسته شود ، ولتاژ دو سر خازن و تابع تبدیل بست باز کار در تر آم بد

با اعمال قوانين مدارهاي الكتريكي معادلات ديفرانسيل مربوطه را بدست مي آوريم،

$$V_{S} - v(t) = Ri(t) \rightarrow V_{S} - v(t) = RC \frac{dv(t)}{dt}$$

$$\frac{dv(t)}{dt} = -\frac{1}{RC}v(t) + \frac{1}{RC}V_{S} \rightarrow v(t) = \begin{cases} (V_{0} - V_{S})e^{-t/RC} + V_{S} & t > 0\\ V_{0} & t \le 0 \end{cases}$$

در این مثال برای بدست آوردن ولتاژ دو سر خازن نیاز به حل یک معادله دیفرانسیل مرتبه اول غیر همگن داریم. تابع تبدیل سیستم با توجه به ورودی خروجی تعیین شده بصورت زیر بدست می آید،

$$\dot{v}(t) = -\frac{1}{RC}v(t) + \frac{1}{RC}V_S \rightarrow \qquad sV(s) - v(0) = -\frac{1}{RC}V(s) + \frac{1}{RC}V_S(s)$$
 note that $v(t) = -\frac{1}{RC}v(t) + \frac{1}{RC}V_S(s) + \frac{1}{RC}V_S(s)$ note that $v(t) = -\frac{1}{RC}v(t) + \frac{1}{RC}V_S(s)$ note that $v(t) = -\frac{1}{RC}v(t) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v(s)$ note that $v(t) = -\frac{1}{RC}v(s) + \frac{1}{RC}v(s) + \frac{1}{RC}v($

^{&#}x27;System Poles

System Zeros

در روش های مبتنی بر کنترل مدرن، مدلسازی سیستم برپایه فضای حالت می باشد، از جمله مزایای این روش مدلسازی، قابلیت استفاده از آن برای سیستم های چند ورودی – چند خروجی و سیستم های خطی، غیر خطی و متغیر با زمان می باشد. صورت کلی معادلات فضای حالت بشکل زیر است،

$$\dot{\mathbf{x}}(t) = f[\mathbf{x}(t), \mathbf{u}(t), t]$$

$$\mathbf{y}(t) = g[\mathbf{x}(t), \mathbf{u}(t), t]$$
(17-9)

 $\mathbf{u}_{m\times 1}(t)$ می نامند. $\mathbf{x}_{n\times 1}(t)$ را متغیرهای حالت می نامند. $\mathbf{x}_{n\times 1}(t)$ بردار ورودی و $\mathbf{y}_{k\times 1}(t)$ بردار خروجی هستند. در حالت کلی $\mathbf{z}_{n\times 1}(t)$ و $\mathbf{z}_{n\times 1}(t)$ بردار فرودی و مستند. در حالت کلی و خروجی را نشان می دهند. برای سیستم های خطی تغییر نایذیر با زمان معادلات بصورت زیر قابل ساده سازی هستند،

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

$$\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$$
(18-8)

که در آن، $A_{n\times n}$ ماتریس حالت، $B_{n\times m}$ ماتریس ورودی، $C_{k\times n}$ ماتریس خروجی و ماتریس که ارتباط مستقیم بین ورودی و خروجی را نشان می دهد. نمودار بلوکی نمایش یک سیستم خطی تغییر ناپذیر با زمان بوسیله فضای حالت در شکل زیر نشان داده شده است،

شکل(۶-۱) - نمودار بلوکی سیستم خطی تغییر ناپذیر با زمان با نمایش فضای حالت

متغیرهای حالت می تواند تعبیر فیزیکی داشته باشد و قابل اندازه گیری با حسگر باشد، مانند ولتاژ، جریان، دما، سرعت، فشار و جابجایی و نیز می تواند کاملاً ریاضی باشد و تعبیر فیزیکی نداشته باشد و علت استفاده از آنها فقط برای ساده سازی محاسبات ریاضی است. از آنجاییکه نمایش فضای حالت بستگی به انتخاب متغیرهای حالت انتخاب شده دارد، لذا بر خلاف تابع تبدیل که یک نمایش منحصربفرد از یک سیستم می توان بدست آورد.

^{&#}x27;State Space

مثال ۶-۱۳

مدار الکتریکی زیر را در نظر بگیرید، معادلات دیفرانسیل این سیستم بصورت زیر است،

$$V = Ri(t) + L\frac{di(t)}{dt} + V_C(t) = Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int i(t)dt$$

جریان سلف i(t) و ولتاژ خازن $V_C(t)$ را به عنوان متغیرهای حالت انتخاب می کنیم. معادله دیفرانسیل مرتبه دوم بالا را می توان بصورت دو معادله دیفرانسیل مرتبه اول تفکیک نمود،

$$\begin{cases} L\frac{di(t)}{dt} + Ri(t) + V_C(t) = V \\ C\frac{dV_C(t)}{dt} = i(t) \end{cases} \rightarrow \begin{cases} \frac{di(t)}{dt} = -\frac{R}{L}i(t) - \frac{1}{L}V_C(t) + V \\ \frac{dV_C(t)}{dt} = \frac{1}{C}i(t) \end{cases}$$

لذا نمایش فضای حالت سیستم بصورت زیر خواهد بود،

$$\begin{bmatrix} \dot{i}(t) \\ \dot{V}_C(t) \end{bmatrix} = \begin{bmatrix} -R/L & -1/L \\ 1/C & 0 \end{bmatrix} \begin{bmatrix} i(t) \\ V_C(t) \end{bmatrix} + \begin{bmatrix} 1/L \\ 0 \end{bmatrix} V(t)$$

اگر ولتاژ دو سر خازن را به عنوان خروجی در نظر بگیریم، معادله خروجی نیز بصورت زیر نوشته می شود،

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i(t) \\ V_C(t) \end{bmatrix}$$

مثال ۶-۱۴

اگر متغیرهای حالت را بصورت $x_1(t)$ جریان سلف و $x_2(t)$ ولتاژ دو سر خازن در نظر بگیریم، معادلات فضای حالت سیستم زیر را بدست آورید.

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU

ابتدا معادلات حاکم بر مدار را می نویسیم،

$$\begin{cases} E = R_{1}i_{1} + L\frac{di_{L}}{dt} = R_{1}(i_{L} + i_{2}) + L\dot{i}_{L} \\ R_{2}i_{2} + V_{C} - L\frac{di_{L}}{dt} = 0 & \rightarrow i_{2} = -\frac{1}{R_{2}}V_{C} + \frac{L}{R_{2}}\dot{i}_{L} \\ i_{2} = C\frac{dV_{C}}{dt} = C\dot{V}_{C} \end{cases}$$

$$\begin{cases} \dot{i}_{L} = \frac{-R_{1}R_{2}}{L(R_{1} + R_{2})} i_{L} + \frac{R_{1}}{L(R_{1} + R_{2})} V_{C} + \frac{R_{2}}{L(R_{1} + R_{2})} E \\ \dot{V}_{C} = \frac{-R_{1}}{C(R_{1} + R_{2})} i_{L} + \frac{-1}{C(R_{1} + R_{2})} V_{C} + \frac{1}{C(R_{1} + R_{2})} E \\ V_{O} = V_{C} \end{cases}$$

متغیرهای حالت $x_1(t) = i_L(t)$ جریان سلف و $x_2(t) = V_C(t)$ ولتاژ خازن هستند،

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} \frac{-R_1 R_2}{L(R_1 + R_2)} & \frac{R_1}{L(R_1 + R_2)} \\ \frac{-R_1}{C(R_1 + R_2)} & \frac{-1}{C(R_1 + R_2)} \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \frac{R_2}{L(R_1 + R_2)} \\ \frac{1}{C(R_1 + R_2)} \end{bmatrix} E \\ \mathbf{y}(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}(t) \end{cases}$$

مثال ۶-۱۵

با توجه به متغیرهای حالت x_1, x_2, x_3 یک تحقق فضای حالت برای سیستم زیر بدست آورید.

با توجه به نمایش بلوکی سیستم داده شده می توان معادلات زیر را استخراج نمود،

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU

$$\frac{X_1(s)}{X_2(s)} = \frac{2}{s+4} \rightarrow sX_1(s) + 4X_1(s) = 2X_2(2) \rightarrow \dot{x}_1(t) = -4x_1(t) + 2x_2(t)$$

$$\frac{X_3(s)}{X_1(s)} = \frac{1}{s+1} \rightarrow sX_3(s) + X_3(s) = X_1(s) \rightarrow \dot{x}_3(t) = x_1(t) - x_3(t)$$

$$\frac{X_2(s)}{R(s) - X_3(s)} = \frac{3}{s} \rightarrow sX_2(s) = 3R(s) - 3X_3(s) \rightarrow \dot{x}_2(t) = -3x_3(t) + 3r(t)$$

حال با توجه به متغیرهای حالت تعریف شده، معادلات حاصل را به فرم معادلات فضای حالت مرتب می نماییم،

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t) \end{cases} \rightarrow \begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -4 & 2 & 0 \\ 0 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} r(t) \\ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

در حالت کلی معادلات فضای حالت سیستم را می توان از روی معادلات دیفرانسیل سیستم بدست آورد. معادله دیفرانسیل یک سیستم تک ورودی - تک خروجی را در نظر بگیرید، $v^{(n)}(t) + a_{n-1} v^{(n-1)}(t) + \cdots + a_1 \dot{v}(t) + a_0 v(t) = b_0 u(t)$

حال می توان با تعریف n متغیر جدید این معادله دیفرانسیل را به n معادله دیفرانسیل مرتبه اول ساده تبدیل نمود،

$$\begin{cases} x_{1}(t) = y(t) \\ x_{2}(t) = \dot{y}(t) \\ x_{3}(t) = \ddot{y}(t) \\ \vdots \\ x_{n-1}(t) = y^{(n-2)}(t) \\ x_{n}(t) = y^{(n-1)}(t) \end{cases} \qquad \begin{cases} \dot{x}_{1}(t) = x_{2}(t) \\ \dot{x}_{2}(t) = x_{3}(t) \\ \dot{x}_{3}(t) = x_{4}(t) \\ \vdots \\ \dot{x}_{n-1}(t) = x_{n}(t) \\ \dot{x}_{n}(t) = y^{(n)}(t) \end{cases} \qquad \vdots \\ \dot{x}_{n-1}(t) = x_{n}(t) \\ \dot{x}_{n}(t) = y^{(n)}(t) \end{cases}$$

$$\dot{x}_{n}(t) = y^{(n)}(t) = -a_{n-1}y^{(n-1)}(t) - \cdots - a_{1}\dot{y}(t) - a_{0}y(t) + b_{0}u(t)$$

$$= -a_{n-1}x_{n}(t) - \cdots - a_{1}x_{2}(t) - a_{0}x_{1}(t) + b_{0}u(t)$$

در اینجا تعداد n معادله دیفرانسیل مرتبه اول داریم که می توان آنها را به فرم معادلات فضای حالت نمایش داد،

$$\begin{cases}
\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{x}_{3}(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ \vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix}$$

$$\vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix}$$

به چنین طرز نمایشی فرم همبسته گویند و متغیرهای حالت $x_1,...,x_n$ را متغیرهای فاز می نامند. در صورتیکه متغیرهای فاز را عکس این حالت در نظر بگیریم، معادلات فضای حالت حاصل به فرم زیر بدست می آید،

$$\begin{aligned} & \underbrace{\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_n(t) \end{bmatrix}}_{\mathbf{x}_1(t)} = \begin{bmatrix} -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix}}_{\mathbf{x}_1(t)} + \begin{bmatrix} b_0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} u(t) \end{aligned}$$

$$\begin{aligned} & \mathbf{y}(t) = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ \vdots \\ x_{n-1}(t) \\ x_2(t) \\ x_3(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix}$$

[†] Phase Variables

^{&#}x27;Companion Form

مثال8-18

معادله دیفرانسیل مرتبه دوم زیر را در نظر بگیرید،

$$\ddot{y}(t) + 2\dot{y}(t) - 3y(t) = u(t)$$

با تعریف متغیرهای فاز فرم همبسته آن را بدست آورید.

واضح است که در اینجا دو متغیر فاز خواهیم داشت،

$$\begin{cases} x_1(t) = y(t) \to \dot{x}_1(t) = \dot{y}(t) \\ x_2(t) = \dot{y}(t) \to \dot{x}_2(t) = \ddot{y}(t) \end{cases} \Rightarrow \begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = 3x_1(t) - 2x_2(t) + u(t) \end{cases}$$

حال معادلات فضاى حالت سيستم بصورت زير بدست مى آيد،

$$\begin{cases}
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

مثال. 8-14

نابع تبدیل : یا در نظ یگ بد،

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{s^2 + 3s + 3}$$

نمایش فضای حالت سیستم را به فرم همبسته بدست آورید.

معادلات دیفرانسیل چنین سیستمی بصورت زیر بدست می آید،

$$s^{2}Y(s) + 3sY(s) + 3Y(s) = R(s)$$
 \rightarrow $\ddot{y}(t) + 3\dot{y}(t) + 3y(t) = r(t)$

حال با انتخاب متغیرهای فاز فرم ماتریسی معادلات را بدست می آوریم،

$$\begin{cases} x_1(t) = y(t) \to \dot{x}_1(t) = \dot{y}(t) \\ x_2(t) = \dot{y}(t) \to \dot{x}_2(t) = \ddot{y}(t) \end{cases} \Rightarrow \begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -3x_1(t) - 3x_2(t) + r(t) \end{cases}$$

نمایش فضای حالت چنین خواهد بود،

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t)$$

با توجه به ارتباط خروجی سیستم با متغیرهای فاز می توان چنین رابطه ای را بدست آورد،

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

توانستیم معادلات فضای حالت سیستم مذکور را از روی تابع تبدیل آن بدست آوریم. حال اگر مقادیر ویژه ماتریس A را بدست آوریم خواهیم دید که مقادیر ویژه بدست آمده همان قطب های تابع تبدیل سیستم مذکور است.

$$\left|\lambda I - A\right| = \begin{vmatrix} \lambda & -1 \\ 3 & \lambda + 3 \end{vmatrix} = 0 \rightarrow \lambda^2 + 3\lambda + 3 = 0 \rightarrow \lambda = \frac{-3}{2} \pm j\frac{\sqrt{3}}{2}$$

مشخص است قطب های این سیستم بصورت زیر بدست می آیند،

$$s^2 + 3s + 3 = 0 \rightarrow s = \frac{-3}{2} \pm j \frac{\sqrt{3}}{2}$$

در نرم افزار MATLAB می توان با استفاده از دستور (tf(num,den فرم تابع تبدیل را مشاهده کرد num و den ضرایب چندجمله ای های صورت و مخرج تابع تبدیل هستند.

از دستور [A,B,C,D] = tf2ss(num,den) برای تبدیل نمایش تابع تبدیل به نمایش فضای حالت استفاده می شود. به اجرای این دستورها توجه نمایید،

num = [1];

 $den = [1 \ 3 \ 3];$

tf(num,den)

Transfer function:

1

 $s^2 + 3s + 3$

[A,B,C,D] = tf2ss(num,den)

A =

- 3 - 3

1 0

B =

1

0

C =

0 1

D =

O

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{s^2 + 3s + 3}$$

با توجه به متغیرهای حالت تعریف شده یک نمایش فضای حالت جدید برای سیستم مذکور بیابید.

$$\frac{X_1(s)}{X_2(s)} = \frac{1}{s+2}$$
, $\frac{X_2(s)}{R(s) - X_1(s)} = \frac{1}{s+1}$

با فرض اینکه شرایط اولیه صفر است،

$$\begin{cases} sX_1(s) + 2X_1(s) = X_2(s) \\ sX_2(s) + X_2(s) = R(s) - X_1(s) \end{cases}$$
 \Rightarrow $\begin{cases} \dot{x}_1(t) = -2x_1(t) + x_2(t) \\ \dot{x}_2(t) = -x_1(t) - x_2(t) + r(t) \\ y(t) = x_1(t) \end{cases}$

نمایش معادلات حالت بصورت زیر بدست می آید،

$$\begin{cases}
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) \\
y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

حال اگر مقادیر ویژه ماتریس حالت را بدست آوریم همانند قبل خواهد بود،

$$\left|\lambda I - A\right| = \begin{vmatrix} \lambda + 2 & -1 \\ 1 & \lambda + 1 \end{vmatrix} = 0 \to \lambda^2 + 3\lambda + 3 = 0 \to \lambda = \frac{-3}{2} \pm j\frac{\sqrt{3}}{2}$$

مشخص است که نمایش بدست آمده با مثال قبل تفاوت دارد، لیکن هر دو نمایش متعلق به یک سیستم واحد هستند، لذا این دو نمایش هم مرتبه و معادل هستند، لذا قابل تبدیل به یکدیگر هستند و برای تبدیل آنها به یکدیگر می توان از تبدیل های همانندی استفاده نمود.

از روی نمایش های فضای حالت بدست آمده می توان به راحتی تابع تبدیل سیستم را بدست آورد. برای این منظور بصورت زیر عمل می کنیم،

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t) \end{cases} \rightarrow \begin{cases} sX(s) = AX(s) + BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases}$$

با توجه معادلات بدست آمده داريم،

$$(sI - A)X(s) = BU(s) \to X(s) = (sI - A)^{-1}BU(s)$$
$$Y(s) = C(sI - A)^{-1}BU(s) + DU(s)$$

لذا تابع تبديل سيستم بصورت زير بدست مي آيد،

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D \tag{(14-8)}$$

بدست آوردن تابع تبدیل از روی تحقق فضای حالت سیستم را **بازسازی** می گویند.

مثال8-19

تابع تبدیل سیستمی با نمایش فضای حالت زیر را بیابید.

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t) \end{cases}$$

$$sI - A = \begin{bmatrix} s & 2 \\ -1 & s+3 \end{bmatrix} \rightarrow (sI - A)^{-1} = \frac{Adj(sI - A)}{|sI - A|} = \frac{1}{s^2 + 3s + 2} \begin{bmatrix} s+3 & -2 \\ 1 & s \end{bmatrix}$$
$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{s+3}{s^2 + 3s + 2} & \frac{-2}{s^2 + 3s + 2} \\ \frac{1}{s^2 + 3s + 2} & \frac{s}{s^2 + 3s + 2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{s+3}{s^2 + 3s + 2}$$

در نرم افزار MATLAB برای بدست آوردن ضرایب تابع تبدیل از روی تحقق فضای حالت می توان [num,den] = ss2tf(A,B,C,D) از دستور

$$A = [0 - 2; 1 - 3];$$

B = [1;0];

 $C = [1 \ 0];$

D = 0;

[num,den] = ss2tf(A,B,C,D)

num =

0 1 3

den =

1 3 2

tf(num,den)

Transfer function:

s + 3

 $s^2 + 3s + 2$

$$\begin{cases}
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) \\
y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}
\end{cases}$$
(4)

$$sI - A = \begin{bmatrix} s+2 & -1 \\ 1 & s+1 \end{bmatrix} \rightarrow (sI - A)^{-1} = \frac{Adj(sI - A)}{|sI - A|} = \frac{1}{s^2 + 3s + 3} \begin{bmatrix} s+1 & 1 \\ -1 & s+2 \end{bmatrix}$$

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{s+1}{s^2 + 3s + 3} & \frac{1}{s^2 + 3s + 3} \\ \frac{-1}{s^2 + 3s + 3} & \frac{s+2}{s^2 + 3s + 3} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{s^2 + 3s + 3}$$

با استفاده از نرم افزار MATLAB داریم،

A = [-2 1; -1 -1];

B = [0;1];

 $C = [1 \ 0];$

D = 0;

Transfer function:

1 -----s^2 + 3 s + 3

۶-۳-۳ تبدیل های همانندی و تحقق های فضای حالت

فرض کنید معادلات زیر دو تحقق فضای حالت هم مرتبه از تابع تبدیل T(s) باشند،

$$\begin{cases} \dot{\mathbf{z}}(t) = A_2 \mathbf{z}(t) + B_2 \mathbf{u}(t) \\ \mathbf{y}(t) = C_2 \mathbf{z}(t) + D_2 \mathbf{u}(t) \end{cases} \qquad \begin{cases} \dot{\mathbf{x}}(t) = A_1 \mathbf{x}(t) + B_1 \mathbf{u}(t) \\ \mathbf{y}(t) = C_1 \mathbf{x}(t) + D_1 \mathbf{u}(t) \end{cases}$$

می توان نشان داد که ماتریس حالت در این دو تحقق بوسیله تبدیل همانندی به یکدیگر قابل تبدیل هستند. فرض کنید متغیرهای حالت $\mathbf{z}(t)$ را تحت تبدیل همانندی T به متغیرهای حالت $\mathbf{z}(t)$ تبدیل نماییم،

$$\mathbf{x}(t) = T\mathbf{z}(t) \tag{1A-8}$$

با اعمال این تبدیل در معادلات اول تحقق اول داریم،

$$\begin{cases} T\dot{\mathbf{z}}(t) = A_1 T \mathbf{z}(t) + B_1 \mathbf{u}(t) \\ \mathbf{y}(t) = C_1 T \mathbf{z}(t) + D_1 \mathbf{u}(t) \end{cases} \rightarrow \begin{cases} \dot{\mathbf{z}}(t) = T^{-1} A_1 T \mathbf{z}(t) + T^{-1} B_1 \mathbf{u}(t) \\ \mathbf{y}(t) = C_1 T \mathbf{z}(t) + D_1 \mathbf{u}(t) \end{cases}$$
(19-8)

حال با مقایسه معادلات بدست آمده با معادلات تحقق دوم می توان به تساوی های زیر دست یافت،

$$A_2 = T^{-1}A_1T$$

$$B_2 = T^{-1}B_1$$

$$C_2 = C_1T$$

$$D_2 = D_1$$

$$(\Upsilon \cdot - \mathcal{F})$$

بنابراین همواره می توان تحقق هم مرتبه و معادل را با استفاده از یک تبدیل همانندی به هم مرتبط نمود. حال نشان می دهیم که تابع تبدیل سیستم تحت این تبدیل همانندی بدون تغییر باقی می ماند. تابع تبدیل تحقق دوم بصورت زیر بدست می آید،

$$T_2(s) = C_2(sI - A_2)^{-1}B_2 + D_2$$

حال تبدیل همانندی را اعمال می نماییم،

$$\begin{split} T_2(s) &= (C_1 T)(sI - T^{-1}A_1 T)^{-1}(T^{-1}B_1) + D_1 \\ &= (C_1 T)(sT^{-1}T - T^{-1}A_1 T)^{-1}(T^{-1}B_1) + D_1 \\ &= (C_1 T)(T^{-1}(sI - A_1)T)^{-1}(T^{-1}B_1) + D_1 \\ &= (C_1 T)T^{-1}(sI - A_1)^{-1}T(T^{-1}B_1) + D_1 \\ &= C_1(sI - A_1)^{-1}B_1 + D_1 \\ &= T_1(s) \end{split}$$

لذا تابع تبدیل دو سیستم که با تبدیل همانندی به هم مرتبط باشند یکسان است و از آنجاییکه تبدیل های همانندی معادله مشخصه سیستم را تغییر نمی دهند داریم،

$$\lambda I - A_1 = \lambda I - A_2$$

لذا مقادیر مشخصه ماتریس های حالت و نتیجتاً قطب های تابع تغییر نمی یابند و چون خود تابع تبدیل نیز ثابت است، لذا صفرها نیز بدون تغییر باقی می مانند.

مثال ۶-۲۰

نابع تبدیل زیر را در نظر بگیرید،

$$T(s) = \frac{1}{s^2 + 3s + 3}$$

دو تحقق هم مرتبه برای این تابع تبدیل بدست آمده است،

$$(2) \begin{cases} \dot{\mathbf{z}}(t) = \begin{bmatrix} 0 & 1 \\ -3 & -3 \end{bmatrix} \mathbf{z}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{r}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{z}(t) \end{cases}$$

$$(1) \begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} -2 & 1 \\ -1 & -1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{r}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$$

یک تبدیل همانندی بین این دو تحقق بصورت $\mathbf{x}(t) = T\mathbf{z}(t)$ بدست آورید.

مثال ۶-۲۱

معادلات دینامیکی سیستمی بصورت زیر می باشد،

$$\ddot{y}(t) + 3\ddot{y}(t) + 3\dot{y}(t) + y(t) = u(t)$$

الف) با فرض اینکه $x_1(t)=y(t)$ و $x_2(t)=\dot{y}(t)$ و $x_1(t)=y(t)$ باشد، فرم معادلات را بصورت $\dot{\mathbf{x}}(t)=x_1(t)=y(t)$ بنویسید.

ب) اگر $z_1(t)=\dot{y}(t)$ و $z_2(t)=\dot{y}(t)+y(t)$ و $z_1(t)=y(t)$ باشد، فرم معادلات را بصورت غرر $\dot{z}(t)=G\mathbf{z}(t)+H\mathbf{u}(t)$

 $\dot{\mathbf{z}}(t) = G\mathbf{z}(t) + H\mathbf{u}(t)$ ۽ $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ ۽ يک تبديل همانندي $\mathbf{x} = T\mathbf{z}$ بين نمايش

الف) با متغیرهای حالت $x_1(t)=\dot{y}(t)$ و $x_2(t)=\dot{y}(t)$ و $x_1(t)=y(t)$ معادلات حالت به فرم همبسته زیر بدست می آید،

$$\begin{cases} x_1(t) = y(t) \to \dot{x}_1(t) = \dot{y}(t) \\ x_2(t) = \dot{y}(t) \to \dot{x}_2(t) = \ddot{y}(t) \Rightarrow \begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = x_3(t) \\ \dot{x}_3(t) = \ddot{y}(t) \to \dot{x}_3(t) = \ddot{y}(t) \end{cases}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t) \end{cases} \rightarrow \begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

ب) با متغیرهای حالت $z_1(t)=y(t)+y(t)+y(t)$ و $z_1(t)=y(t)+y(t)$ معادلات حالت به فرم زیر بدست می آید،

$$\begin{cases} z_{1}(t) = y(t) \rightarrow \dot{z}_{1}(t) = \dot{y}(t) \\ z_{2}(t) = \dot{y}(t) + y(t) \rightarrow \dot{z}_{2}(t) = \ddot{y}(t) + \dot{y}(t) \Longrightarrow \begin{cases} \dot{z}_{1}(t) = z_{2}(t) - z_{1}(t) \\ \dot{z}_{2}(t) = z_{3}(t) + z_{2}(t) - z_{1}(t) \\ \dot{z}_{3}(t) = \ddot{y}(t) \rightarrow \dot{z}_{3}(t) = \ddot{y}(t) \end{cases}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = G\mathbf{x}(t) + H\mathbf{u}(t) \\ \mathbf{y}(t) = E\mathbf{x}(t) + F\mathbf{u}(t) \end{cases} \rightarrow \begin{cases} \begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 1 \\ 2 & -3 & -3 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

ج) با مقایسه ارتباط بین متغیرهای حالت ${f x}$ و ${f z}$ می توان به راحتی ماتریس تبدیل همانندی T را

$$y(t) = x_1(t) y(t) = z_1(t)$$
 $\rightarrow x_1(t) = z_1(t)$
$$x_2(t) = \dot{y}(t) = \dot{z}_1(t) = z_2(t) - z_1(t)$$

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

$$x_3(t) = \ddot{y}(t) = z_3(t)$$

به راحتی می توان نشان داد که $E=CT,H=T^{-1}B,G=T^{-1}AT$ است \Box

به راحتی می توان نشان داد که
$$E = CT, H = T^{-1}B, G = T^{-1}AT$$
 است.
$$\begin{aligned}
\mathbf{YY-9} & \text{Diag} \\
\mathbf{x}(t) &= \begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix} \mathbf{z}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t) \\
\mathbf{y}(t) &= \begin{bmatrix} 59 & 12 \end{bmatrix} \mathbf{z}(t)
\end{aligned}$$

$$\begin{aligned}
\mathbf{x}(t) &= \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 2 \\ 5 \end{bmatrix} \mathbf{u}(t) \\
\mathbf{y}(t) &= \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}(t)
\end{aligned}$$
(الف)
$$\begin{aligned}
\mathbf{y}(t) &= \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}(t)
\end{aligned}$$
(آیا می توان یک تبدیل همانندی بین این دو نمایش بدست آورد؟

الف) ابتدا تابع تبدیل سیستم اول را بدست می آوریم،
$$sI - A_1 = \begin{bmatrix} s+5 & 1 \\ -3 & s+1 \end{bmatrix}$$

$$(sI - A_1)^{-1} = \frac{Adj(sI - A_1)}{\left| sI - A_1 \right|} = \frac{1}{s^2 + 6s + 8} \begin{bmatrix} s+1 & -1 \\ 3 & s+5 \end{bmatrix}$$

Applied Linear Algebra with MATLAB S. Sedghizadeh, Systems and Control Dept., KNTU

$$\frac{Y(s)}{U(s)} = C_1(sI - A_1)^{-1}B_1 = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \frac{s+1}{s^2 + 6s + 8} & \frac{-1}{s^2 + 6s + 8} \\ \frac{3}{s^2 + 6s + 8} & \frac{s+5}{s^2 + 6s + 8} \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \frac{12s + 59}{s^2 + 6s + 8}$$

ب) حال تابع تبدیل سیستم دوم را بدست می آوریم،
$$sI - A_2 = \begin{bmatrix} s & -1 \\ 8 & s+6 \end{bmatrix}$$

$$(sI - A_2)^{-1} = \frac{Adj(sI - A_2)}{\left| sI - A_2 \right|} = \frac{1}{s^2 + 6s + 8} \begin{bmatrix} s+6 & 1 \\ -8 & s \end{bmatrix}$$

$$\frac{Y(s)}{U(s)} = C_2(sI - A_2)^{-1}B_2 = \begin{bmatrix} 59 & 12 \end{bmatrix} \begin{bmatrix} \frac{s+6}{s^2 + 6s + 8} & \frac{1}{s^2 + 6s + 8} \\ -8 & \frac{s}{s^2 + 6s + 8} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{12s + 59}{s^2 + 6s + 8}$$

از آنجاییکه هر دو تحقق مربوط به یک تابع تبدیل و هم مرتبه هستند، لذا می توان یک تبدیل همانندی بین این دو بدست آورد. با توجه به ارتباط بین متغیرهای حالت چنین ماتریس تبدیلی بدست می آید،

$$y = x_1 + 2x_2 y = 59z_1 + 12z_2$$
 \rightarrow $x_1 + 2x_2 = 59z_1 + 12z_2$ (1)

از طرفین رابطه (1) مشتق می گیریم و به جای مشتقات از معادلات فضای حالت مربوطه جایگذاری می کنیم،

$$\dot{x}_1 + 2\dot{x}_2 = 59\dot{z}_1 + 12\dot{z}_2$$

$$(-5x_1 - x_2 + 2u) + 2(3x_1 - x_2 + 5u) = 59(z_2) + 12(-8z_1 - 6z_2 + u)$$

$$x_1 - 3x_2 = -96z_1 - 13z_2 \qquad (2)$$

حال از روی رابطه (1) و (2) می توان ماتریس تبدیل همانندی را بدست آورد،

$$A_{2} = T^{-1}A_{1}T \longrightarrow \begin{bmatrix} 0 & 1 \\ -8 & 6 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 31 & 5 \end{bmatrix}^{-1} \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 31 & 5 \end{bmatrix}$$

$$B_{2} = T^{-1}B_{1} \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 31 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$C_{2} = TC_{1} \rightarrow \begin{bmatrix} 59 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 31 & 5 \end{bmatrix}$$

۶-۳-۳ حل معادلات فضاي حالت

صورت کلی معادلات فضای حالت را در نظر بگیرید،

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t) \end{cases}$$

برای حل این معادلات لازم است تا بردار $\mathbf{x}(t)$ را از معادله اول بدست آورد و با جایگذاری آنها در معادله دوم خروجی سیستم، $\mathbf{y}(t)$ را محاسبه نمود. معادله اول را در نظر بگیرید،

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

پاسخ کلی چنین معادله ای بصورت زیر بدست می آید،

$$\mathbf{x}(t) = e^{A(t-t_0)}\mathbf{x}(t_0) + e^{At} \int_{t_0}^t e^{-A\tau} Bu(\tau) d\tau$$
 (Y\-\nable\)

تابع نمایی ماتریسی است که به آن **ماتریس انتقال حالت** می گویند و با نماد $\Phi(t)$ نیز و با نماد $\Phi(t)$ نیز نمایش می دهند،

$$\mathbf{x}(t) = \Phi(t - t_0)\mathbf{x}(t_0) + \int_{t_0}^t \Phi(t - \tau)B\mathbf{u}(\tau)d\tau$$

در صورتیکه معادلات را بصورت همگن در نظر بگیریم،

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t)$$

در اینصورت جواب معادله همگن به شکل زیر خواهد بود،

$$\mathbf{x}(t) = e^{A(t-t_0)}\mathbf{x}(t_0) = \Phi(t-t_0)\mathbf{x}(t_0)$$
(YY-F)

ماتریس انتقال حالت در واقع بیان کننده پاسخ طبیعی یا بدون ورودی سیستم می باشد. برخی از خواص ماتریس انتقال حالت عبارتند از،

$$\Phi(0) = I - 1$$

$$\Phi(0) = e^{A \times 0} = I$$

$$\Phi(t_2-t_1)\Phi(t_1-t_0)=\Phi(t_2-t_0)$$
 برای هر مقدار t_1 ، t_2 و t_1 ، t_0 و داریم، $e^{A(t_2-t_1)}e^{A(t_1-t_0)}=e^{At_2}e^{-At_1}e^{At_1}e^{-At_0}=e^{At_2}e^{-At_0}=e^{A(t_2-t_0)}$

١

State Transition Matrix

$$\Phi(t)\Phi(t)\cdots\Phi(t)=\Phi^{lpha}(t)=\Phi(lpha t)$$
 -۳ اگر $lpha$ عدد صحیح باشد، $e^{At}e^{At}\cdots e^{At}=(e^{At})^{lpha}=e^{A(lpha t)}$

۴- ماتریس انتقال حالت برای کلیه مقادیر محدود t یک ماتریس غیرمنفرد، لذا معکوس پذیر است، $\Phi^{-1}(t) = \Phi(-t)$ یا $(\mathrm{e}^{At})^{-1} = \mathrm{e}^{A(-t)}$

مثال ۶-۲۳

کدامیک از ماتریس های زیر می تواند یک ماتریس انتقال حالت باشد؟

$$\begin{bmatrix} -e^{-t} & 0 \\ 0 & 1-e^{-t} \end{bmatrix}$$
 (الف

خواص ماتریس انتقال حالت را بررسی می نماییم،

 $e^{A\times 0}=I$ -1

$$\begin{bmatrix} -e^{-t} & 0 \\ 0 & 1 - e^{-t} \end{bmatrix} \xrightarrow{t=0} \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \neq I$$

در شرط اول صدق نمى كند، لذا ماتريس انتقال حالت نيست.

$$\begin{bmatrix} e^{-2t} & te^{-2t} & t^2e^{-2t}/2\\ 0 & e^{-2t} & te^{-2t}\\ 0 & 0 & e^{-2t} \end{bmatrix} (\cdot)$$

خواص ماتریس انتقال حالت را بررسی می نماییم،

 $\Phi(0) = I - 1$

$$\begin{bmatrix} e^{-2t} & te^{-2t} & t^2e^{-2t}/2 \\ 0 & e^{-2t} & te^{-2t} \\ 0 & 0 & e^{-2t} \end{bmatrix} \xrightarrow{t=0} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$\Phi(t_2 - t_1)\Phi(t_1 - t_0) = \Phi(t_2 - t_0)$$
 -Y

$$\begin{bmatrix} e^{-2(t_2-t_1)} & (t_2-t_1)e^{-2(t_2-t_1)} & (t_2-t_1)^2e^{-2(t_2-t_1)}/2 \\ 0 & e^{-2(t_2-t_1)} & (t_2-t_1)e^{-2(t_2-t_1)} \end{bmatrix} \begin{bmatrix} e^{-2(t_1-t_0)} & (t_1-t_0)e^{-2(t_1-t_0)} & (t_1-t_0)^2e^{-2(t_1-t_0)}/2 \\ 0 & e^{-2(t_2-t_1)} & (t_1-t_0)e^{-2(t_1-t_0)} \\ 0 & 0 & e^{-2(t_1-t_0)} \end{bmatrix} = 0$$

$$\begin{bmatrix} e^{-2(t_2-t_0)} & (t_2-t_0)e^{-2(t_2-t_0)} & (t_2-t_0)e^{-2(t_2-t_0)}/2 \\ 0 & e^{-2(t_2-t_0)} & (t_2-t_0)e^{-2(t_2-t_0)} \end{bmatrix}$$

$$0 & 0 & e^{-2(t_2-t_0)} \end{bmatrix}$$

$$\Phi(t)\Phi(t)\cdots\Phi(t) = \Phi^{\alpha}(t) = \Phi(\alpha t) - \nabla t$$

$$\alpha = 2 \rightarrow \Phi(2t) = \begin{bmatrix} e^{-4t} & 2te^{-4t} & 2t^2e^{-4t} \\ 0 & e^{-4t} & 2te^{-4t} \\ 0 & 0 & e^{-4t} \end{bmatrix}$$

$$\Phi^2(t) = \begin{bmatrix} e^{-2t} & te^{-2t} & t^2e^{-2t}/2 \\ 0 & e^{-2t} & te^{-2t} \end{bmatrix} \begin{bmatrix} e^{-2t} & te^{-2t} & t^2e^{-2t}/2 \\ 0 & e^{-2t} & te^{-2t} \end{bmatrix}$$

$$= \begin{bmatrix} e^{-4t} & 2te^{-4t} & 2t^2e^{-4t} \\ 0 & 0 & e^{-2t} \end{bmatrix} = \Phi(2t)$$

$$\alpha = 3 \rightarrow \Phi(3t) = \begin{bmatrix} e^{-6t} & 3te^{-6t} & 9t^2e^{-6t}/2 \\ 0 & e^{-6t} & 3te^{-6t} \\ 0 & 0 & e^{-2t} \end{bmatrix}$$

$$\Phi^3(t) = \begin{bmatrix} e^{-4t} & 2te^{-4t} & 2t^2e^{-4t} \\ 0 & 0 & e^{-4t} \end{bmatrix} \begin{bmatrix} e^{-2t} & te^{-2t} & t^2e^{-2t}/2 \\ 0 & e^{-6t} & 3te^{-6t} \\ 0 & 0 & e^{-2t} \end{bmatrix}$$

$$= \begin{bmatrix} e^{-6t} & 3te^{-6t} & 9t^2e^{-6t}/2 \\ 0 & e^{-4t} & 2te^{-4t} \\ 0 & 0 & e^{-4t} \end{bmatrix} = \Phi(3t)$$

$$= \begin{bmatrix} e^{-6t} & 3te^{-6t} & 9t^2e^{-6t}/2 \\ 0 & e^{-6t} & 3te^{-6t} \\ 0 & 0 & e^{-2t} \end{bmatrix} = \Phi(3t)$$

$$= \begin{bmatrix} e^{-6t} & 3te^{-6t} & 9t^2e^{-6t}/2 \\ 0 & e^{-6t} & 3te^{-6t} \\ 0 & 0 & e^{-2t} \end{bmatrix} = \Phi(-1) + \nabla t$$

$$= \Phi(-t) = \begin{bmatrix} e^{2t} & -te^{2t} & t^2e^{2t}/2 \\ 0 & e^{2t} & -te^{2t} \\ 0 & 0 & e^{2t} \end{bmatrix}$$

$$t) = \begin{bmatrix} e^{-2t} & te^{-2t} & t^2e^{-2t}/2 \\ 0 & e^{-2t} & te^{-2t} \end{bmatrix} = \frac{1}{0} \begin{bmatrix} e^{-4t} & -te^{-4t} & t^2e^{-4t}/2 \\ 0 & e^{-4t} & -te^{-4t}/2 \end{bmatrix}$$

$$\Phi^{-1}(t) = \begin{bmatrix} e^{-2t} & te^{-2t} & t^2 e^{-2t} / 2 \\ 0 & e^{-2t} & te^{-2t} \end{bmatrix}^{-1} = \frac{1}{e^{-6t}} \begin{bmatrix} e^{-4t} & -te^{-4t} & t^2 e^{-4t} / 2 \\ 0 & e^{-4t} & -te^{-4t} \\ 0 & 0 & e^{-4t} \end{bmatrix}$$

$$= \begin{bmatrix} e^{2t} & -te^{2t} & t^2 e^{2t} / 2 \\ 0 & e^{2t} & -te^{2t} \\ 0 & 0 & e^{2t} \end{bmatrix} = \Phi(-t)$$

بنابراین این ماتریس می تواند یک ماتریس انتقال حالت باشد.

$$\frac{1}{2} \begin{bmatrix} e^{2t} + 1 & e^{2t} - 1 \\ e^{2t} - 1 & e^{2t} + 1 \end{bmatrix} (\varepsilon$$

خواص ماتریس انتقال حالت را بررسی می نماییم،

 $\Phi(0) = I - 1$

$$\frac{1}{2} \begin{bmatrix} e^{2t} + 1 & e^{3t} - 1 \\ e^t - 1 & e^{5t} + 1 \end{bmatrix} \quad \stackrel{t=0}{\longrightarrow} \quad \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$\Phi(t_2 - t_1)\Phi(t_1 - t_0) = \Phi(t_2 - t_0)$$
 -Y

$$\frac{1}{4} \begin{bmatrix} e^{2(t_2-t_1)} + 1 & e^{3(t_2-t_1)} - 1 \\ e^{(t_2-t_1)} - 1 & e^{5(t_2-t_1)} + 1 \end{bmatrix} \begin{bmatrix} e^{2(t_1-t_0)} + 1 & e^{3(t_1-t_0)} - 1 \\ e^{(t_1-t_0)} - 1 & e^{5(t_1-t_0)} + 1 \end{bmatrix} \neq \frac{1}{2} \begin{bmatrix} e^{2(t_2-t_0)} + 1 & e^{3(t_2-t_0)} - 1 \\ e^{(t_2-t_0)} - 1 & e^{5(t_2-t_0)} + 1 \end{bmatrix}$$

در شرط دوم صدق نمى كند، لذا ماتريس انتقال حالت نيست.

مثال ۶-۲۴

گر سری تابع ماتریسی e^{At} به شکل زیر باشد،

$$e^{At} = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$$

مقدار $\int_0^t \mathrm{e}^{A au}d au$ و $\int_0^t \mathrm{e}^{A au}d au$ را بدست آورید.

$$\frac{d}{dt}\left[e^{At}\right] = A + \frac{2A^2t}{2!} + \frac{3A^3t^2}{3!} + \cdots$$

$$= A(I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots) = (I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots)A = Ae^{At} = e^{At}A$$

قابل ذکر است که ماتریس A را هم از سمت راست و هم از سمت چپ می توان فاکتور گیری کرد.

$$\int_0^t e^{A\tau} d\tau = \int_0^t I d\tau + A \int_0^t \tau d\tau + \frac{A^2}{2!} \int_0^t \tau^2 d\tau + \dots = It + \frac{At^2}{2} + \frac{A^2 t^3}{3!} + \dots$$

بنابراین با ضرب A از سمت چپ در رابطه بالا داریم،

$$A\int_0^t e^{A\tau} d\tau + I = e^{At}$$

و در صورتیکه A^{-1} وجود داشته باشد،

$$\int_0^t e^{A\tau} d\tau = A^{-1} [e^{At} - I] = [e^{At} - I]A^{-1}$$

۶-۳-۳ روش های محاسبه ماتریس انتقال حالت

روشهای زیادی برای محاسبه فرم بسته ماتریس انتقال حالت معرفی شده است که متداول ترین آنها عبارتند از، روش سری ها، روش کیلی- هامیلتون، روش تبدیل لاپلاس و روش قطری سازی. در ادامه به شرح این روش ها می پردازیم.

در این روش از تعریف سری e^{At} برای محاسبه استفاده می شود،

$$e^{At} = \sum_{n=0}^{\infty} \frac{1}{n!} (At)^n$$
 (YT-9)

این روش با وجود سادگی، برای ماتریس هایی با ابعاد بزرگ نیازمند حجم محاسبات دستی بسیار بالایی است و در نهایت بدست آوردن فرم بسته ماتریس کار دشواری است. از این روش می توان برای برنامه نویسی کامپیوتری استفاده نمود.

مثال ۶-۲۵

برای ماتریس های زیر ماتریس ${
m e}^{At}$ را با استفاده از روش سری ها بدست آورید. $A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 0 \\ \end{bmatrix}$ الف)

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
 (الف)

$$e^{At} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} -t & 0 & t \\ 0 & -2t & 0 \\ 0 & t & 2t \end{bmatrix} + \begin{bmatrix} t^2/2 & t^2/2 & t^2/2 \\ 0 & 2t^2 & 0 \\ 0 & 0 & 2t^2 \end{bmatrix} + \begin{bmatrix} -t^3/6 & -t^3/6 & t^3/2 \\ 0 & -4t^3/3 & 0 \\ 0 & 2t^3/3 & 4t^3/3 \end{bmatrix} + \cdots$$

$$e^{At} = \begin{bmatrix} 1 - t + t^2/2 - t^3/6 + \cdots & t^2/2 - t^3/6 + \cdots & t + t^2/2 + t^3/2 + \cdots \\ 0 & 1 - 2t + 2t^2 - 4t^3/3 + \cdots & 0 \\ 0 & t + 2t^3/3 + \cdots & 1 + 2t + 2t^2 + 4t^3/3 + \cdots \end{bmatrix}$$

^{&#}x27; Series Method

بدست آوردن صورت بسته ماتریس انتقال حالت در این روش کار پیچیده ای است. لذا این روش به غیر از موارد خاص برای محاسبات دستی توصیه نمی شود.

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} (\rightarrow$$

$$e^{At} = I + At + \frac{1}{2!}(At)^{2} + \frac{1}{3!}(At)^{3} + \cdots$$

$$e^{At} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & t & t \\ 0 & 0 & t \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{2!} \begin{bmatrix} 0 & 0 & t^{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{3!} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} 1 & t & \frac{t^2}{2!} + t \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix}$$

در این مثال به علت سادگی ماتریس فرم بسته ماتریس انتقال حالت به راحتی بدست آمد.

۶-۳-۳-۲ روش کیلی – هامیلتون

در این روش از کاربرد قضیه کیلی- هامیلتون در محاسبه توابع ماتریسی استفاده کرده و ماتریس انتقال حالت را بدست می آوریم.

مثال ۶-۲۶

برای ماتریس زیر ماتریس انتقال حالت را با روش کیلی- هامیلتون بدست آورید.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

لتدا مقادير ويژه ماتريس را محاسبه مي كنيم،

$$Q(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & -1 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0 \quad \to \quad \lambda_1 = \lambda_2 = \lambda_3 = 2$$

این ماتریس یک مقدار ویژه تکراری با مرتبه سه دارد. با توجه اینکه چندجمله ای مشخصه مرتبه سه است، باقیمانده حاصل از تقسیم بسط e^{At} بر $Q(\lambda)$ مرتبه دو خواهد بود،

$$R(\lambda) = c_2 \lambda^2 + c_1 \lambda + c_0$$

حال مقدار c_1 ، و c_0 و ابدست مى آوريم،

$$\lambda_{1} = -1 \to R(\lambda_{1}) = P(\lambda_{1}) = c_{0} + c_{1}\lambda_{1} + c_{2}\lambda_{1}^{2} \to e^{2t} = c_{0} + 2c_{1} + 4c_{2}$$

 $R(\lambda)$ از آنجاییکه مقادیر ویژه تکراری هستند، لذا برای بدست آوردن معادلات دیگر از مشتقات استفاده می نماییم.

$$\begin{split} \dot{R}(\lambda) &= 2c_2\lambda + c_1 \rightarrow \dot{R}(\lambda_1) = 2c_2\lambda_1 + c_1 \rightarrow te^{2t} = 4c_2 + c_1 \\ \ddot{R}(\lambda) &= 2c_2 \rightarrow \ddot{R}(\lambda_1) = 2c_2 \rightarrow t^2e^{2t} = 2c_2 \end{split}$$

 c_0 و c_1 ، c_2 معادلات معادلات معادلات می آید که با حل این دستگاه معادلات مقدار و بدست می آید که با حل این دستگاه معادلات بصورت زیر خواهد بود،

$$\begin{cases} e^{2t} = c_0 + 2c_1 + 4c_2 \\ te^{2t} = c_1 + 4c_2 \\ t^2 e^{2t} = 2c_2 \end{cases} \Rightarrow \begin{cases} c_0 = e^{2t} - 2te^{2t} + 2t^2 e^{2t} \\ c_1 = te^{2t} - 2t^2 e^{2t} \\ c_2 = \frac{1}{2}t^2 e^{2t} \end{cases}$$

با توجه قضیه کیلی- هامیلتون می توان نوشت،

$$\mathbf{e}^{At} = c_0 I + c_1 A + c_2 A^2 = \begin{bmatrix} c_0 & 0 & 0 \\ 0 & c_0 & 0 \\ 0 & 0 & c_0 \end{bmatrix} + \begin{bmatrix} 2c_1 & c_1 & 0 \\ 0 & 2c_1 & c_1 \\ 0 & 0 & 2c_1 \end{bmatrix} + \begin{bmatrix} 4c_2 & 4c_2 & c_2 \\ 0 & 4c_2 & 4c_2 \\ 0 & 0 & 4c_2 \end{bmatrix}$$

$$\mathbf{e}^{At} = \begin{bmatrix} \mathbf{e}^{2t} & \mathbf{t}\mathbf{e}^{2t} & \frac{\mathbf{t}^2}{2}\mathbf{e}^{2t} \\ 0 & \mathbf{e}^{2t} & \mathbf{t}\mathbf{e}^{2t} \\ 0 & 0 & \mathbf{e}^{2t} \end{bmatrix}$$

با استفاده از نرم افزار MATLAB مي توان صحت جواب را بررسي نمود،

$$\mathbf{x}(t) = \begin{bmatrix} -2 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & -4 \end{bmatrix} \mathbf{x}(t)$$
 ماتریس انتقال حالت را با استفاده از روشهای کیلی- همیلتون بدست

ماتریس انتقال حالت را با استفاده از روشهای کیلی- همیلتون بدست آورید. پاسخ سیستم ها را بر حسب شرایط اولیه $x_1(0)$ ، $x_1(0)$ و محاسبه کنید.

معادله مشخصه و مقادیر ویژه را بدست می آوریم،
$$Q(\lambda) = \left| \lambda I - A \right| = \begin{vmatrix} \lambda + 2 & 2 & 0 \\ 0 & \lambda & -1 \\ 0 & 3 & \lambda + 4 \end{vmatrix} = 0 \quad \rightarrow \quad \lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3$$

لذا سه مقدار ویژه حقیقی و متمایز داریم. چندجمله ای مشخصه مرتبه سه است، پس چند جمله ای

باقیمانده
$$R(\lambda)=c_0+c_1\lambda+c_2\lambda^2$$
 $R(\lambda)=c_0+c_1\lambda+c_2\lambda^2$
$$\begin{cases} e^{-t}=c_0-c_1+c_2\\ e^{-2t}=c_0-2c_1+4c_2\\ e^{-3t}=c_0-3c_1+9c_2 \end{cases}$$
 با حل دستگاه معادلات بالا مقدار ضرایب $c_0=3e^{-t}-3e^{-2t}+e^{-3t}$ $c_1=\frac{5}{2}e^{-t}-4e^{-2t}+\frac{3}{2}e^{-3t}$ $c_2=\frac{1}{2}e^{-t}-e^{-2t}+\frac{1}{2}e^{-3t}$ $c_3=\frac{1}{2}e^{-t}-e^{-2t}+\frac{1}{2}e^{-3t}$ $c_4=\frac{1}{2}e^{-t}-e^{-2t}+\frac{1}{2}e^{-3t}$ $c_5=\frac{1}{2}e^{-t}-e^{-2t}+\frac{1}{2}e^{-3t}$ $c_5=\frac{1}{2}e^{-t}-e^{-2t}+\frac{1}{2}e^{-3t}$ $e_5=\frac{1}{2}e^{-t}-e^{-2t}+\frac{1}{2}e^{-3t}$

$$\Phi(t) = \exp[At] = c_0 I + c_1 A + c_2 A^2$$

$$\Phi(t) = \begin{bmatrix} c_0 & 0 & 0 \\ 0 & c_0 & 0 \\ 0 & 0 & c_0 \end{bmatrix} + \begin{bmatrix} -2c_1 & -2c_1 & 0 \\ 0 & 0 & c_1 \\ 0 & -3c_1 & -4c_1 \end{bmatrix} + \begin{bmatrix} 4c_2 & 4c_2 & -2c_2 \\ 0 & -3c_2 & -4c_2 \\ 0 & 12c_2 & 13c_2 \end{bmatrix}$$

$$\Phi(t) = \begin{bmatrix} e^{-2t} & -e^{-3t} + 4e^{-2t} - 3e^{-t} & -e^{-3t} + 2e^{-2t} - e^{-t} \\ 0 & \frac{1}{2}e^{-3t} + \frac{3}{2}e^{-t} & \frac{1}{2}e^{-3t} + \frac{1}{2}e^{-t} \\ 0 & \frac{3}{2}e^{-3t} - \frac{3}{2}e^{-t} & \frac{3}{2}e^{-3t} - \frac{1}{2}e^{-t} \end{bmatrix}$$

با استفاده از نرم افزار MATLAB داریم،

$$A = [-2 - 2 \ 0; 0 \ 0 \ 1; 0 - 3 - 4];$$

t = sym('t');

expm(A*t)

ans =

$$[\exp(-2^*t), -\exp(-3^*t) + 4^*\exp(-2^*t) - 3^*\exp(-t), -\exp(-t) + \exp(-3^*t) + 2^*\exp(-2^*t)]$$

[0,
$$-1/2*\exp(-3*t)+3/2*\exp(-t)$$
, $1/2*\exp(-t)+1/2*\exp(-3*t)$]

[0,
$$3/2*\exp(-3*t)-3/2*\exp(-t)$$
, $-1/2*\exp(-t)*3/2*\exp(-3*t)$]

- پاسخ سیستم بر حسب شرایط اولیه
$$x_1(0)$$
 ، $x_1(0)$ و $x_1(0)$ بصورت زیر بدست می آید،

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) = \begin{bmatrix} e^{-2t} & -e^{-3t} + 4e^{-2t} - 3e^{-t} & -e^{-3t} + 2e^{-2t} - e^{-t} \\ 0 & \frac{-1}{2}e^{-3t} + \frac{3}{2}e^{-t} & \frac{-1}{2}e^{-3t} + \frac{1}{2}e^{-t} \\ 0 & \frac{3}{2}e^{-3t} - \frac{3}{2}e^{-t} & \frac{3}{2}e^{-3t} - \frac{1}{2}e^{-t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix}$$

$$\mathbf{x}(t) = \begin{bmatrix} x_1(0)[e^{-2t}] + x_2(0)[-e^{-3t} + 4e^{-2t} - 3e^{-t}] + x_3(0)[-e^{-3t} + 2e^{-2t} - e^{-t}] \\ x_2(0)[\frac{-1}{2}e^{-3t} + \frac{3}{2}e^{-t}] + x_3(0)[\frac{-1}{2}e^{-3t} + \frac{1}{2}e^{-t}] \\ x_2(0)[\frac{3}{2}e^{-3t} - \frac{3}{2}e^{-t}] + x_3(0)[\frac{3}{2}e^{-3t} - \frac{1}{2}e^{-t}] \end{bmatrix}$$

مثال 8-۲۸

معادلات سیستمی بصورت زیر می باشد،

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t)$$

$$\mathbf{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$$

$$\mathbf{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$$

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
باگر (**u**) پله واحد و $\mathbf{u}(t)$ باشند، $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

ابتدا با استفاده از روش کیلی- هامیلتون ماتریس انتقال حالت سیستم را پیدا می کنیم،

$$Q(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 3 & \lambda + 4 \end{vmatrix} = \lambda^2 + 4\lambda + 3 = 0 \quad \rightarrow \quad \lambda_1 = -1, \lambda_2 = -3$$

بدین ترتیب چندجمله ای مشخصه و مقادیر ویژه ماتریس حالت را بدست می آوریم، که دو مقدار ویژه متمایز و حقیقی دارد. با توجه اینکه چندجمله ای مشخصه مرتبه دو است، باقیمانده حاصل از تقسیم

بسط
$$\Phi(t) = \mathrm{e}^{At}$$
 بسط بود، $\Phi(t) = \mathrm{e}^{At}$

$$R(\lambda) = c_1 \lambda + c_0$$

حال مقدار c_0 و c_0 را بدست می آوریم،

$$\begin{split} \lambda_1 &= -1 \to R(\lambda_1) = P(\lambda_1) = c_0 + c_1 \lambda_1 \to e^{-t} = c_0 - c_1 \\ \lambda_2 &= -3 \to R(\lambda_2) = P(\lambda_2) = c_0 + c_1 \lambda_2 \to e^{-3t} = c_0 - 3c_1 \\ \text{لذا با حل این دستگاه معادلات مقدار } c_0 &= \frac{1}{2} (3e^{-t} - e^{-3t}) \; , \; c_1 = \frac{1}{2} (e^{-t} - e^{-3t}) \end{split}$$
 بدست می

آید. با توجه قضیه کیلی- هامیلتون می توان نوشت،

$$P(A) = R(A)$$

$$\Phi(t) = e^{At} = c_0 I + c_1 A = \begin{bmatrix} c_0 & 0 \\ 0 & c_0 \end{bmatrix} + \begin{bmatrix} 0 & c_1 \\ -3c_1 & -4c_1 \end{bmatrix} = \begin{bmatrix} c_0 & c_1 \\ -3c_1 & c_0 -4c_1 \end{bmatrix}$$

$$\Phi(t) = e^{At} = \frac{1}{2} \begin{bmatrix} 3e^{-t} - e^{-3t} & e^{-t} - e^{-3t} \\ -3e^{-t} + 3e^{-3t} & -e^{-t} + 3e^{-3t} \end{bmatrix}$$

حال مقدار $\mathbf{x}(t)$ و $\mathbf{y}(t)$ را بدست می آوریم،

$$e^{A(t-t_0)}\mathbf{x}(t_0) = e^{At}\mathbf{x}(0) = \frac{1}{2} \begin{bmatrix} 4e^{-t} - 2e^{-3t} \\ -4e^{-t} + 6e^{-3t} \end{bmatrix}$$
$$\int_{t_0}^t e^{-A\tau} B\mathbf{u}(\tau) d\tau = \int_0^t \frac{1}{2} \begin{bmatrix} e^{\tau} - e^{3\tau} \\ -e^{\tau} + 3e^{3\tau} \end{bmatrix} d\tau = \frac{1}{2} \begin{bmatrix} \frac{-2}{3} + e^t - \frac{1}{3}e^{3t} \\ -e^t + e^{3t} \end{bmatrix}$$

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) + e^{At} \int_0^t e^{-A\tau} B\mathbf{u}(\tau) d\tau = \begin{bmatrix} \frac{1}{3} + \frac{3}{2}e^{-t} - \frac{5}{6}e^{-3t} \\ -\frac{3}{2}e^{-t} + \frac{5}{2}e^{-3t} \end{bmatrix}$$
$$\mathbf{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t) = \frac{1}{3} + \frac{3}{2}e^{-t} - \frac{5}{6}e^{-3t}$$

۶-۳-۳-۳ روش تبدیل لاپلاس

این روش مناسبی است که برای ماتریس هایی با مقادیر ویژه متمایز و مکرر، حقیقی و مختلط کاربرد دارد. معادله فضای حالت را در نظر بگیرید،

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

با تبديل لاپلاس گرفتن از طرفين أن معادله زير بدست مي آيد،

$$s\mathbf{X}(s) - \mathbf{x}(0) = A\mathbf{X}(s) + B\mathbf{U}(s)$$

اگر معادله اخیر را برای $\mathbf{X}(s)$ حل کنیم و از طرفین عکس لاپلاس بگیریم داریم،

$$\mathbf{X}(s) = (sI - A)^{-1}\mathbf{x}(0) + (sI - A)^{-1}B\mathbf{U}(s)$$
 (YF-9)

$$\mathbf{X}(s) = \Phi(s)\mathbf{x}(0) + \Phi(s)B\mathbf{U}(s)$$

$$\mathbf{x}(t) = L^{-1}[(sI - A)^{-1}\mathbf{x}(0)] + L^{-1}[(sI - A)^{-1}B\mathbf{U}(s)]$$
 (Y\D-9)

با شرط $t_0=0$ می توان نوشت،

$$\Phi(t) = \mathbf{e}^{At} = \mathbf{L}^{-1} \left[(sI - A)^{-1} \right]$$
 (79-8)

در رابطه بالا ماتریس $\Phi(s)=(sI-A)^{-1}$ یک ماتریس $n\times n$ است که عناصر آن توابعی از اپراتور لاپلاس S می باشند. لازم به ذکر است که $(sI-A)^{-1}$ همواره وجود دارد، چون SI-A در حوزه ماتریس های چند جمله ای است و SI همیشه رتبه کامل است، پس مستقل از SI ماتریس همیشه معکوس پذیر است.

مثال 8-٢٩

ماتریس زیر را در نظر بگیرید،

$$A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$$

ماتریس انتقال حالت آن را با استفاده از روش تبدیل لاپلاس بدست آورید.

نخست $(sI-A)^{-1}$ نخست می آوریم،

$$(sI - A)^{-1} = \begin{bmatrix} s & -1 \\ 3 & s+4 \end{bmatrix}^{-1} = \frac{1}{s(s+4)+3} \begin{bmatrix} s+4 & 1 \\ -3 & s \end{bmatrix}$$

برای محاسبه \mathbf{e}^{At} باید عکس تبدیل لایلاس هر یک از عناصر ماتریس اخیر را بدست آوریم،

$$e^{At} = \begin{bmatrix} \frac{3}{2}e^{-t} - \frac{1}{2}e^{-3t} & \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t} \\ \frac{-3}{2}e^{-t} + \frac{3}{2}e^{-3t} & \frac{-1}{2}e^{-t} + \frac{3}{2}e^{-3t} \end{bmatrix}$$

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -4 & 4 \\ 0 & -1 & 0 \end{bmatrix} \mathbf{x}(t)$$
ابتدا ماتہ سے انتقال حالت را یا استفادہ از روش تبدیل لابلاس بدس

ابتدا ماتریس انتقال حالت را با استفاده از روش تبدیل لاپلاس بدست آورید، سپس پاسخ سیستم را برحسب شرایط اولیه $x_1(0)$ ، $x_1(0)$ ، محاسبه کنید.

نخست
$$(sI - A)^{-1} = \begin{bmatrix} s+1 & 0 & 0 \\ 0 & s+4 & -4 \\ 0 & 1 & s \end{bmatrix}^{-1}$$

$$= \frac{1}{(s+1)(s+2)^2} \begin{bmatrix} (s+2)^2 & 0 & 0 \\ 0 & s(s+1) & 4(s+1) \\ 0 & -(s+1) & (s+4)(s+1) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{s+1} & 0 & 0 \\ 0 & \frac{1}{(s+2)} + \frac{-2}{(s+2)^2} & \frac{4}{(s+2)^2} \\ 0 & \frac{-1}{(s+2)^2} & \frac{1}{(s+2)} + \frac{2}{(s+2)^2} \end{bmatrix}$$

باید عکس تبدیل لاپلاس هر یک از عناصر ماتریس
$$(sI-A)^{-1}$$
 را بدست آوریم، $e^{At}=egin{bmatrix} \mathrm{e}^{-t}&0&0\\0&\mathrm{e}^{-2t}-2t\mathrm{e}^{-2t}&4t\mathrm{e}^{-2t}\\0&-t\mathrm{e}^{-2t}&\mathrm{e}^{-2t}+2t\mathrm{e}^{-2t} \end{bmatrix}$

پاسخ سیستم را بر حسب شرایط اولیه $x_1(0)$ ، $x_1(0)$ و $x_1(0)$ بصورت زیر بدست می اید، –

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) = \begin{bmatrix} e^{-t} & 0 & 0 \\ 0 & e^{-2t} - 2te^{-2t} & 4te^{-2t} \\ 0 & -te^{-2t} & e^{-2t} + 2te^{-2t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix}$$
$$\mathbf{x}(t) = \begin{bmatrix} x_1(0)e^{-t} \\ x_2(0)[e^{-2t} - 2te^{-2t}] + 4x_3(0)te^{-2t} \\ -x_2(0)te^{-2t} + x_3(0)[e^{-2t} + 2te^{-2t}] \end{bmatrix}$$

۶-۳-۳-۴ روش قطری سازی

در این روش از ایده قطری سازی ماتریس A استفاده می شود. برای تبدیل یک ماتریس به فرم قطری روش هایی مبتنی بر تبدیل های همانندی استفاده می گردد. همانطور که بیان گردید تبدیل های همانندی تابع تبدیل، قطب ها و صفرهای سیستم را تغییر نمی دهند، لذا باید به دنبال ماتریس تبدیلی بود که بتواند ماتریس حالت را به فرم قطری تبدیل نمایدو این همان ماتریس مُدال خماهد بود.

$$\begin{cases} \dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \\ \mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t) \end{cases} \rightarrow \begin{cases} \dot{\mathbf{z}}(t) = \Lambda \mathbf{z}(t) + B_n \mathbf{u}(t) \\ \mathbf{y}(t) = C_n \mathbf{z}(t) + D\mathbf{u}(t) \end{cases}$$

$$\Lambda = T^{-1}AT$$

$$B_n = T^{-1}B$$

$$C_n = CT$$

$$(YY-9)$$

طریقه بدست آوردن ماتریس مُدال در فصل قبل به تفصیل توضیح داده شده است.

حال با استفاده از روش قطری سازی ماتریس انتقال حالت بصورت زیر محاسبه می شود،

$$e^{At} = I + At + \frac{1}{2!} (At)^{2} + \frac{1}{3!} (At)^{3} + \cdots$$

$$= I + (T\Lambda T^{-1})t + (T\Lambda T^{-1})(T\Lambda T^{-1})\frac{t^{2}}{2!} + (T\Lambda T^{-1})(T\Lambda T^{-1})(T\Lambda T^{-1})\frac{t^{3}}{3!} + \cdots (\Upsilon \Lambda^{-9})$$

$$= T(I + \Lambda t + \Lambda^{2} \frac{t^{2}}{2!} + \Lambda^{3} \frac{t^{3}}{3!} + \cdots)T^{-1} = Te^{\Lambda t} T^{-1}$$

لذا ابتدا ماتریس مُدال T را بدست آمده سپس به ترتیب ماتریس های Λ ، Λ و فرد. T محاسبه می گردد.

- ماتریس با مقادیر ویژه متمایز و حقیقی

اگر مقادیر ویژه یک ماتریس $\mathbf{V}_1,\mathbf{V}_2,\dots,\mathbf{V}_n$ متمایز باشند، بردارهای ویژه یک ماتریس متمایز اشند، متمایز ا خطی هستند. در اینصورت ماتریس مُدال T را بصورت زیر تعریف می کنیم، $T = [\mathbf{v}_1 \mid \mathbf{v}_2 \mid \cdots \mid \mathbf{v}_n]$

و فرم قطری سازی شده ماتریس $A_{n imes n}$ بصورت زیر نمایش داده می شود،

$$\Lambda = T^{-1}AT = egin{bmatrix} \lambda_1 & & & 0 \ & \lambda_2 & & \ & & \ddots & \ 0 & & & \lambda_n \end{bmatrix}$$

$$e^{\Lambda t} = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ e^{\lambda_2 t} & \\ \vdots & \vdots \\ 0 & e^{\lambda_n t} \end{bmatrix}$$
 (۲۹-۶)

مثال ۶-۳۱

ماتریس انتقال حالت را با استفاده از روش قطری سازی بدست آورید،

$$A = \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix}$$

معادله مشخصه ماتریس
$$A$$
 بصورت زیر بدست می آید،
$$|\lambda I_3 - A| = \begin{vmatrix} \lambda - 4 & 0 & -1 \\ 1 & \lambda + 6 & 2 \\ -5 & 0 & \lambda \end{vmatrix} = 0 \quad \rightarrow \quad \lambda^3 + 2\lambda^2 - 29\lambda - 30 = 0$$

 $\lambda^3 + 2\lambda^2 - 29\lambda - 30 = (\lambda + 6)(\lambda + 1)(\lambda - 5) = 0 \rightarrow \lambda_1 = -6, \lambda_2 = -1, \lambda_3 = 5$ لذا ماتریس A سه مقدار ویژه متمایز و حقیقی دارد. حال می توان سه بردار ویژه مستقل خطی متناظر با هریک از مقادیر ویژه بدست آورد.

$$\lambda_{1} = -6 \to A\mathbf{v}_{1} = \lambda_{1}\mathbf{v}_{1} \to \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{21} \\ v_{31} \end{bmatrix} = -6 \begin{bmatrix} v_{11} \\ v_{21} \\ v_{31} \end{bmatrix} \to \mathbf{v}_{1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda_{2} = -1 \to A\mathbf{v}_{2} = \lambda_{2}\mathbf{v}_{2} \to \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{12} \\ v_{22} \\ v_{32} \end{bmatrix} = -1 \begin{bmatrix} v_{12} \\ v_{22} \\ v_{32} \end{bmatrix} \to \mathbf{v}_{2} = \begin{bmatrix} \frac{-1}{5} \\ \frac{-9}{25} \\ 1 \end{bmatrix}$$

$$\lambda_{3} = 5 \to A\mathbf{v}_{3} = \lambda_{3}\mathbf{v}_{3} \to \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{13} \\ v_{23} \\ v_{33} \end{bmatrix} = 5 \begin{bmatrix} v_{13} \\ v_{23} \\ v_{33} \end{bmatrix} \to \mathbf{v}_{3} = \begin{bmatrix} 1 \\ \frac{-3}{11} \\ 1 \end{bmatrix}$$

توجه کنید، از آنجائیکه $A(lpha \mathbf{v}_i) = \lambda_i(lpha \mathbf{v}_i)$ می باشد، یعنی مضارب اسکالر یک بردار ویژه نیز خود یک بردار ویژه است، لذا می توان مقدار lpha را چنان انتخاب کرد که ماتریس مُدال T حدالامکان ساده باشد. لذا ماتریس مُدال $\,T\,$ بصورت زیر بدست می آید،

$$T = [\mathbf{v}_1 \mid \mathbf{v}_2 \mid \mathbf{v}_3] = \begin{bmatrix} 0 & \frac{-1}{5} & 1 \\ 1 & \frac{-9}{25} & \frac{-3}{11} \\ 0 & 1 & 1 \end{bmatrix}$$

$$\Lambda = T^{-1}AT = \begin{bmatrix} \frac{-4}{55} & 1 & \frac{19}{55} \\ \frac{-5}{6} & 0 & \frac{5}{6} \\ \frac{5}{6} & 0 & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{-1}{5} & 1 \\ 1 & \frac{-9}{25} & \frac{-3}{11} \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -6 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$e^{At} = Te^{\Lambda t}T^{-1} = \begin{bmatrix} \frac{-1}{5} & 0 & 1\\ \frac{-9}{25} & 1 & \frac{-3}{11}\\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 & 0\\ 0 & e^{-6t} & 0\\ 0 & 0 & e^{5t} \end{bmatrix} \begin{bmatrix} \frac{-5}{6} & 0 & \frac{5}{6}\\ \frac{-4}{55} & 1 & \frac{19}{55}\\ \frac{5}{6} & 0 & \frac{1}{6} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} \frac{1}{6}e^{-t} + \frac{5}{6}e^{5t} & 0 & \frac{1}{6}e^{5t} - \frac{1}{6}e^{-t}\\ \frac{-4}{55}e^{-6t} + \frac{3}{10}e^{-t} - \frac{5}{22}e^{5t} & e^{-6t} & \frac{-1}{22}e^{5t} + \frac{19}{55}e^{-6t} - \frac{3}{10}e^{-t}\\ \frac{-5}{6}e^{-t} + \frac{5}{6}e^{5t} & 0 & \frac{5}{6}e^{-t} + \frac{1}{6}e^{5t} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} \frac{1}{6}e^{-t} + \frac{5}{6}e^{5t} & 0 & \frac{1}{6}e^{5t} - \frac{1}{6}e^{-t} \\ \frac{-4}{55}e^{-6t} + \frac{3}{10}e^{-t} - \frac{5}{22}e^{5t} & e^{-6t} & \frac{-1}{22}e^{5t} + \frac{19}{55}e^{-6t} - \frac{3}{10}e^{-t} \\ \frac{-5}{6}e^{-t} + \frac{5}{6}e^{5t} & 0 & \frac{5}{6}e^{-t} + \frac{1}{6}e^{5t} \end{bmatrix}$$

مثال ۶-۲۲

ماتریس زیر را در نظر بگیرید،

$$A = \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix}$$

ماتریس انتقال حالت آن را با استفاده از روش قطری سازی بدست آورید.

مقادیر ویژه ماتریس A عبارتند از $\lambda_1=-6$ ، $\lambda_2=-1$ ، $\lambda_1=-6$ و $\lambda_2=-1$ ، حال ماتریس مُدال را بدست می آوریم،

$$\lambda_{1} = -1 \to A\mathbf{v}_{1} = \lambda_{1}\mathbf{v}_{1} \to \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{21} \\ v_{31} \end{bmatrix} = -1 \begin{bmatrix} v_{11} \\ v_{21} \\ v_{31} \end{bmatrix} \to \mathbf{v}_{1} = \begin{bmatrix} \frac{-1}{5} \\ \frac{-9}{25} \\ 1 \end{bmatrix}$$

$$\lambda_{2} = -6 \to A\mathbf{v}_{2} = \lambda_{2}\mathbf{v}_{2} \to \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{12} \\ v_{22} \\ v_{32} \end{bmatrix} = -6 \begin{bmatrix} v_{12} \\ v_{22} \\ v_{32} \end{bmatrix} \to \mathbf{v}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda_{3} = 5 \to A\mathbf{v}_{3} = \lambda_{3}\mathbf{v}_{3} \to \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{13} \\ v_{23} \\ v_{33} \end{bmatrix} = 5 \begin{bmatrix} v_{13} \\ v_{23} \\ v_{33} \end{bmatrix} \to \mathbf{v}_{3} = \begin{bmatrix} 1 \\ \frac{-3}{11} \\ 1 \end{bmatrix}$$

لذا ماتریس مُدال T بصورت زیر بدست می آید،

$$T = [\mathbf{v}_1 \mid \mathbf{v}_2 \mid \mathbf{v}_3] = \begin{bmatrix} \frac{-1}{5} & 0 & 1\\ \frac{-9}{25} & 1 & \frac{-3}{11}\\ 1 & 0 & 1 \end{bmatrix}$$

فرم قطری سازی شده ماتریس A بصورت زیر می باشد،

$$\Lambda = T^{-1}AT = \begin{bmatrix} \frac{-5}{6} & 0 & \frac{5}{6} \\ \frac{-4}{55} & 1 & \frac{19}{55} \\ \frac{5}{6} & 0 & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{-1}{5} & 0 & 1 \\ \frac{-9}{25} & 1 & \frac{-3}{11} \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

لذا ماتریس انتقال حالت بصورت زیر بدست می آید،

$$e^{At} = Te^{\Lambda t}T^{-1} = \begin{bmatrix} \frac{-1}{5} & 0 & 1\\ \frac{-9}{25} & 1 & \frac{-3}{11}\\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 & 0\\ 0 & e^{-6t} & 0\\ 0 & 0 & e^{5t} \end{bmatrix} \begin{bmatrix} \frac{-5}{6} & 0 & \frac{5}{6}\\ \frac{-4}{55} & 1 & \frac{19}{55}\\ \frac{5}{6} & 0 & \frac{1}{6} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} \frac{1}{6}e^{-t} + \frac{5}{6}e^{5t} & 0 & \frac{1}{6}e^{5t} - \frac{1}{6}e^{-t} \\ \frac{-4}{55}e^{-6t} + \frac{3}{10}e^{-t} - \frac{5}{22}e^{5t} & e^{-6t} & \frac{-1}{22}e^{5t} + \frac{19}{55}e^{-6t} - \frac{3}{10}e^{-t} \\ \frac{-5}{6}e^{-t} + \frac{5}{6}e^{5t} & 0 & \frac{5}{6}e^{-t} + \frac{1}{6}e^{5t} \end{bmatrix}$$

مثال ۶-۳۳

سیستم نمایش داده شده با معادلات حالت زیر را در نظر بگیرید،

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -18 & -27 & -10 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t) \end{cases}$$

لف) معادله مشخصه و مقادير ويژه ماتريس حالت آن را بدست آوريد.

$$|\lambda I - A| = \begin{vmatrix} \lambda & -1 & 8 \\ 0 & \lambda & -1 \\ 18 & 27 & \lambda + 10 \end{vmatrix} = 0 \quad \Rightarrow \quad \lambda^3 + 10\lambda^2 + 27\lambda + 18 = 0$$

مقادیر ویژه عبارتند از، $\lambda_1=-1$ و $\lambda_2=-3$ و $\lambda_1=-1$ ماتریس سه مقدار ویژه حقیقی و متمایز دارد پس می توان ماتریس حالت را بصورت قطری کامل تبدیل کرد.

ب) فرم قطری سازی شده معادلات حالت را بدست آورید. برستید

برای قطری سازی باید ماتریس مدال را بدست آوریم، از آنجاییکه ماتریس حالت فرم همبسته دارد، لذا ماتریس مُدال به فرم وندرمند است،

$$T = \begin{bmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -6 \\ 1 & 9 & 36 \end{bmatrix}$$

فرم قطری سازی شدہ ماتریس حالت A بصورت زیر می باشد،

$$\Lambda = T^{-1}AT$$

$$\Lambda = \frac{-1}{30} \begin{bmatrix} -54 & -27 & -3 \\ 30 & 35 & 5 \\ -6 & -8 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -18 & -27 & -10 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -6 \\ 1 & 9 & 36 \end{bmatrix}$$

$$\Lambda = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -6 \end{bmatrix}$$

$$B_n = T^{-1}B = \frac{-1}{30} \begin{bmatrix} -54 & -27 & -3\\ 30 & 35 & 5\\ -6 & -8 & -2 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = \frac{-1}{30} \begin{bmatrix} -3\\ 5\\ -2 \end{bmatrix}$$

$$C_n = CT = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -6 \\ 1 & 9 & 36 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
معادلات قطری سازی شده به فرم زیر می باشد،

$$\begin{cases} \dot{\mathbf{z}}(t) = \Lambda \mathbf{z}(t) + B_n \mathbf{u}(t) \\ \mathbf{y}(t) = C_n \mathbf{z}(t) \end{cases}$$

د) ماتریس انتقال حالت e^{At} ماتریس انتقال حالت e^{At}

$$e^{At} = Te^{\Lambda t}T^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -6 \\ 1 & 9 & 36 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 & 0 \\ 0 & e^{-3t} & 0 \\ 0 & 0 & e^{-6t} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -6 \\ 1 & 9 & 36 \end{bmatrix}^{-1}$$

$$e^{At} = \begin{bmatrix} \frac{9}{5}e^{-t} - e^{-3t} + \frac{1}{5}e^{-6t} & \frac{9}{10}e^{-t} - \frac{7}{6}e^{-3t} + \frac{4}{15}e^{-6t} & \frac{1}{10}e^{-t} - \frac{1}{6}e^{-3t} + \frac{1}{15}e^{-6t} \\ \frac{-9}{5}e^{-t} + 3e^{-3t} - \frac{6}{5}e^{-6t} & \frac{-9}{10}e^{-t} + \frac{7}{2}e^{-3t} + \frac{-8}{5}e^{-6t} & \frac{-1}{10}e^{-t} + \frac{1}{2}e^{-3t} + \frac{-2}{5}e^{-6t} \\ \frac{9}{5}e^{-t} - 9e^{-3t} + \frac{36}{5}e^{-6t} & \frac{9}{10}e^{-t} - \frac{21}{2}e^{-3t} + \frac{48}{5}e^{-6t} & \frac{1}{10}e^{-t} - \frac{3}{2}e^{-3t} + \frac{12}{5}e^{-6t} \end{bmatrix}$$

- ماتریس با مقادیر ویژه متمایز و مختلط مزدوج

برای ماتریس T با مقادیر ویژه متمایز و مختلط ماتریس تبدیل T و فرم قطری سازی شده بصورت زیر بدست می آید،

$$T = [Re\{\mathbf{v}_1\} \mid Im\{\mathbf{v}_1\} \mid Re\{\mathbf{v}_3\} \mid Im\{\mathbf{v}_3\} \mid \dots \mid Re\{\mathbf{v}_m\} \mid Im\{\mathbf{v}_m\} \mid \mathbf{v}_{m+2} \mid \dots \mid \mathbf{v}_n]$$

$$\Lambda = T^{-1}AT$$

$$\begin{bmatrix}
\sigma_1 & \omega_1 \\
-\omega_1 & \sigma_1
\end{bmatrix}$$

$$\begin{bmatrix}
\sigma_3 & \omega_3 \\
-\omega_3 & \sigma_3
\end{bmatrix}$$

$$\vdots$$

$$\begin{bmatrix}
\sigma_m & \omega_m \\
-\omega_m & \sigma_m
\end{bmatrix}$$

$$\lambda_{m+2}$$

$$\lambda_n$$

در اینصورت ماتریس $e^{\Lambda t}$ بصورت زیر بدست می آید،

$$\mathbf{e}^{\Lambda t} = \begin{bmatrix} e^{\begin{bmatrix} \sigma_1 & \omega_1 \\ -\omega_1 & \sigma_1 \end{bmatrix} t} & & & & & & & \\ & \ddots & & & & & & \\ & & e^{\begin{bmatrix} \sigma_1 & \omega_1 \\ -\omega_1 & \sigma_1 \end{bmatrix} t} & & & & & \\ & & e^{\lambda_{m+2} t} & & & \\ & & & \ddots & & \\ & & & & e^{\lambda_n t} \end{bmatrix}$$

$$(\Upsilon \cdot - \mathcal{S})$$

مثال ۶-۳۴

برای ماتریس های زیر ماتریس تبدیل قطری سازی و ماتریس انتقال حالت را بدست آورید،

$$A = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$
 (bi)

معادله مشخصه ماتریس A بصورت زیر بدست می آید،

$$|\lambda I_3 - A| = \begin{vmatrix} \lambda + 1 & 2 & 1 \\ 0 & \lambda + 2 & 0 \\ -1 & 0 & \lambda + 2 \end{vmatrix} = 0 \longrightarrow \lambda^3 + 5\lambda^2 + 9\lambda + 6 = 0$$

پس از حل معادله مشخصه مقادیر ویژه بصورت زیر بدست می آیند،

$$\lambda^{3} + 5\lambda^{2} + 9\lambda + 6 = (\lambda + 2)(\lambda^{2} + 3\lambda + 3) = 0 \qquad \to \qquad \lambda_{1} = -2, \lambda_{2,3} = \frac{-3}{2} \pm j \frac{\sqrt{3}}{2}$$

بنابراین ماتریس A یک مقدار ویژه حقیقی و دو مقدار ویژه مختلط مزدوج دارد. بردارهای ویژه متناظر با این مقادیر ویژه را بدست می آوریم،

$$\lambda_{1} = -2 \to A\mathbf{v}_{1} = \lambda_{1}\mathbf{v}_{1} \to \begin{bmatrix} -1 & 2 & -1 \\ 0 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{21} \\ v_{31} \end{bmatrix} = -2 \begin{bmatrix} v_{11} \\ v_{21} \\ v_{31} \end{bmatrix} \to \mathbf{v}_{1} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\lambda_2 = \frac{-3}{2} + j \frac{\sqrt{3}}{2}$$

$$A\mathbf{v}_{2} = \lambda_{2}\mathbf{v}_{2} \rightarrow \begin{bmatrix} -1 & 2 & -1 \\ 0 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} v_{12} \\ v_{22} \\ v_{32} \end{bmatrix} = \left(\frac{-3}{2} + j\frac{\sqrt{3}}{2}\right) \begin{bmatrix} v_{12} \\ v_{22} \\ v_{32} \end{bmatrix} \rightarrow \mathbf{v}_{2} = \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} - j\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$\lambda_3 = \frac{-3}{2} - j \frac{\sqrt{3}}{2}$$

$$A\mathbf{v}_{3} = \lambda_{3}\mathbf{v}_{3} \rightarrow \begin{bmatrix} -1 & 2 & -1 \\ 0 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} v_{13} \\ v_{23} \\ v_{33} \end{bmatrix} = (\frac{-3}{2} - j\frac{\sqrt{3}}{2}) \begin{bmatrix} v_{13} \\ v_{23} \\ v_{33} \end{bmatrix} \rightarrow \mathbf{v}_{3} = \begin{bmatrix} 1 \\ 0 \\ \frac{1}{2} + j\frac{\sqrt{3}}{2} \end{bmatrix}$$

لذا ماتریس تبدیل T بصورت زیر بدست می آید،

$$T = [\mathbf{v}_1 \mid \text{Re}\{\mathbf{v}_2\} \mid \text{Im}\{\mathbf{v}_2\}] = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & \frac{1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix}$$

حال ماتریس قطری- بلوکی شده Λ را بدست می آوریم،

$$\Lambda = T^{-1}AT = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{1}{\sqrt{3}} & \frac{4}{\sqrt{3}} & \frac{-2}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} -1 & 2 & -1 \\ 0 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & \frac{1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & \frac{-3}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{-\sqrt{3}}{2} & \frac{-3}{2} \end{bmatrix}$$

حال بابد ماتریس انتقال حالت را بیابیم،

$$\Lambda = T^{-1}AT = \begin{bmatrix} -2 & 0 & 0 \\ 0 & \frac{-3}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{-\sqrt{3}}{2} & \frac{-3}{2} \end{bmatrix} \rightarrow e^{\Lambda t} = \begin{bmatrix} e^{-2t} & 0 \\ & & 0 \\ & & e^{-2t} & 0 \end{bmatrix}_{t=0}^{t=0}$$

ورای محاسبه $e^{\left[rac{-3}{2} \, rac{\sqrt{3}}{2}
ight]_t}$ می توان از روش تبدیل لاپلاس استفاده نمود، $e^{\left[rac{-3}{2} \, rac{-3}{2}
ight]_t}$

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} \frac{-3}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{-3}{2} \end{bmatrix}^{-1} = \begin{bmatrix} s + \frac{3}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & s + \frac{3}{2} \end{bmatrix}^{-1} = \frac{1}{(s + \frac{3}{2})^2 + \frac{3}{4}} \begin{bmatrix} s + \frac{3}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & s + \frac{3}{2} \end{bmatrix}$$

حال از یک یک درایه ها معکوس لاپلاس می گیریم،

$$L^{-1}\left(\begin{bmatrix} \frac{s+\frac{3}{2}}{(s+\frac{3}{2})^2+\frac{3}{4}} & \frac{\frac{\sqrt{3}}{2}}{(s+\frac{3}{2})^2+\frac{3}{4}} \\ \frac{-\sqrt{3}}{2} & \frac{s+\frac{3}{2}}{(s+\frac{3}{2})^2+\frac{3}{4}} \end{bmatrix}\right) = \begin{bmatrix} e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) & e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) \\ -e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) & e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) \end{bmatrix}$$

$$e^{\Lambda t} = \begin{bmatrix} e^{-2t} & 0 & 0\\ 0 & e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) & e^{\frac{-3}{2}t}\sin(\frac{3}{2}t)\\ 0 & -e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) & e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) \end{bmatrix}$$

هایتاً مقدار e^{At} بدست می آید،

$$e^{At} = Te^{\Lambda t}T^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & \frac{1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} e^{-2t} & 0 & 0 \\ 0 & e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) & e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) \\ 0 & -e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) & e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{1}{\sqrt{3}} & \frac{4}{\sqrt{3}} & \frac{-2}{\sqrt{3}} \end{bmatrix}$$

$$\mathbf{e}^{At} = \begin{bmatrix} e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) + \frac{1}{\sqrt{3}}e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) & \frac{4}{\sqrt{3}}e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) & \frac{-2}{\sqrt{3}}e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) \\ 0 & e^{-2t} & 0 \\ \frac{2\sqrt{3}}{3}e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) & 2e^{-2t} + \frac{2}{\sqrt{3}}e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) - 2e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) & \frac{-1}{\sqrt{3}}e^{\frac{-3}{2}t}\sin(\frac{3}{2}t) + e^{\frac{-3}{2}t}\cos(\frac{3}{2}t) \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$
 (ب

ابتدا مقادیر ویژه، بردارهای ویژه و سپس فرم قطری سازی شده ماتریس A را بدست می آوریم،

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & 2 & 0 \\ -1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 6 \end{vmatrix} = \lambda^3 - 12\lambda^2 + 46\lambda - 60 = 0 \to \lambda_1 = 6, \lambda_2, 3 = 3 \pm j$$

از آنجاییکه یک مقدار ویژه حقیقی و دو مقدار ویژه مختلط مزدوج دارد، باید به فرم قطری بلوکی تبدیل گردد. فرم قطری بلوکی به صورت زیر است،

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \sigma_2 & \omega_2 \\ 0 & -\omega_2 & \sigma_2 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & -1 & 3 \end{bmatrix}$$

حال ماتریس تبدیل همانندی را می یابیم که رابطه $\Lambda = T^{-1}AT$ را برآورده سازد. برای این منظور بردارهای ویژه نظیر هر یک از مقادیر ویژه را بدست می آوریم،

$$A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \rightarrow \begin{bmatrix} \lambda - 4 & 2 & 0 \\ -1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 6 \end{bmatrix} \mathbf{v}_{i} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\lambda_{1} = 6 \rightarrow \begin{bmatrix} 2 & 2 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{cases} 2x_{1} + 2x_{2} = 0 \\ -x_{1} + 4x_{2} = 0 \end{cases} \rightarrow \mathbf{v}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_3 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\mathbf{v}_2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda_2 = 3 + j \rightarrow \begin{bmatrix} -1 + j & 0 \\ 0 & 0 & -3 + j \end{bmatrix} \begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\mathbf{v}_3} \mathbf{v}_2 = \begin{bmatrix} 1 + j \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda_{3} = 3 - j \rightarrow \begin{bmatrix} -1 - j & 2 & 0 \\ -1 & 1 - j & 0 \\ 0 & 0 & -3 - j \end{bmatrix} \begin{bmatrix} x_{7} \\ x_{8} \\ x_{9} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \mathbf{v}_{3} = \begin{bmatrix} 1 - j \\ 1 \\ 0 \end{bmatrix}$$

لذا ماتریس تبدیل T به شکل زیر خواهد بود،

$$T = [\mathbf{v}_1 \quad \text{Re}\{\mathbf{v}_2\} \quad \text{Im}\{\mathbf{v}_2\}] = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

حال ماتریس انتقال حالت را بدست می آوریم،

$$\Lambda = T^{-1}AT = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & -1 & 3 \end{bmatrix} \quad \rightarrow \quad e^{\Lambda t} = \begin{bmatrix} e^{6t} & 0 \\ 0 & e^{\begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} t} \end{bmatrix}$$

برای محاسبه
$$e^{\begin{bmatrix} s & 1 \\ -1 & 3 \end{bmatrix}^{t}}$$
 می توان از روش تبدیل لاپلاس استفاده نمود،
$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} s-3 & -1 \\ 1 & s-3 \end{bmatrix}^{-1} = \frac{1}{(s-3)^2 + 1} \begin{bmatrix} s-3 & 1 \\ -1 & s-3 \end{bmatrix}$$

حال از یک یک درایه ها معکوس لایلاس می گیریم،

$$L^{-1} \left(\begin{bmatrix} \frac{s-3}{(s-3)^2 + 1} & \frac{1}{(s-3)^2 + 1} \\ \frac{-1}{(s-3)^2 + 1} & \frac{s-3}{(s-3)^2 + 1} \end{bmatrix} \right) = \begin{bmatrix} e^{3t} \cos(t) & e^{3t} \sin(t) \\ -e^{3t} \sin(t) & e^{3t} \cos(t) \end{bmatrix}$$

$$e^{\Lambda t} = \begin{bmatrix} e^{6t} & 0 & 0 \\ 0 & e^{3t} \cos(t) & e^{3t} \sin(t) \\ 0 & -e^{3t} \sin(t) & e^{3t} \cos(t) \end{bmatrix}$$

نهایتاً مقدار e^{At} بدست می آید،

$$e^{At} = Te^{\Lambda t}T^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} e^{6t} & 0 & 0 \\ 0 & e^{3t}\cos(t) & e^{3t}\sin(t) \\ 0 & -e^{3t}\sin(t) & e^{3t}\cos(t) \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} e^{3t}\cos(t) + e^{3t}\sin(t) & -2e^{3t}\sin(t) & 0 \\ e^{3t}\sin(t) & e^{3t}\cos(t) - e^{3t}\sin(t) & 0 \\ 0 & 0 & e^{6t} \end{bmatrix}$$

با استفاده از نرم افزار MATLAB داریم،

- ماتریس با مقادیر ویژه تکراری

زمانیکه ماتریس آوردن ماتریس تبدیل مقدار ویژه تکراری باشد، برای بدست آوردن ماتریس تبدیل نیاز به بردارهای ویژه تعمیم یافته وجود دارد. با استفاده از این روش ماتریس به فرم کانونیکال جردن تبدیل می گردد،

که هر یک از $J_{\scriptscriptstyle P}$ ها بلوک های جردن به فرم زیر هستند،

$$J_{P_i} = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}_{P_i \times P_i}$$

در اینصورت ماتریس انتقال حالت سیستم به شکل زیر محاسبه می شود، $e^{At} = Te^{Jt}T^{-1}$

و هر یک از $\mathbf{e}^{J_{pi}t}$ ها بصورت زیر محاسبه می شوند،

$$e^{J_{Pi}t} = e^{\lambda_i t} \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{Pi-1}}{(P_i - 1)!} \\ 0 & 1 & t & \cdots & \frac{t^{Pi-2}}{(P_i - 2)!} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & t \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$(\Upsilon\Upsilon - \mathcal{S})$$

$$A=9$$
 مثال $A=9$ مثال $A=1$ مثال $A=1$ مثال $A=1$ مثاریس زیر را در نظر بگیرید، $A=\begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & -2 \end{bmatrix}$ ماتریس انتقال حالت آن را با استفاده از روش قطری سازی بدست آوری مقادیر ویژه ماتریس A عبارتند از $A=1$ عبارتند ویژه ماتریس $A=1$ عبارتند از $A=1$ مقادیر ویژه ماتریس $A=1$ عبارتند از $A=1$ مقادیر ویژه ماتریس $A=1$ عبارتند از $A=1$ مقادیر ویژه ماتریس $A=1$ مقادیر ویژه ماتریس $A=1$ مبارتند از $A=1$ مقادیر ویژه ماتریس $A=1$ مبارتند از $A=1$ مبارتند از

ماتریس انتقال حالت آن را با استفاده از روش قطری سازی بدست آورید.

مقادیر ویژه ماتریس A عبارتند از $0=1, \lambda_4=0$ و فرم کانونیکال جردن آن بصورت زیر است،

$$J = T^{-1}AT = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{e}^{At} = T\mathbf{e}^{Jt}T^{-1} = \begin{bmatrix} 2 & -1 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{e}^{-t} & t\mathbf{e}^{-t} & 0 & 0 \\ 0 & \mathbf{e}^{-t} & 0 & 0 \\ 0 & 0 & \mathbf{e}^{-t} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 - e^{-t} & -2 + 2e^{-t} + 2te^{-t} & 1 - e^{-t} + 2te^{-t} \\ 0 & e^{-t} & te^{-t} & te^{-t} \\ 0 & 0 & e^{-t} + te^{-t} & te^{-t} \\ 0 & 0 & -te^{-t} & e^{-t} - te^{-t} \end{bmatrix}$$

در نرم افزار MATLAB داریم،

$$A = [0 \ 1 \ 0 \ 3; 0 \ -1 \ 1 \ 1; 0 \ 0 \ 0 \ 1; 0 \ 0 \ -1 \ -2];$$

t = sym('t');

expm(A * t)

ans =

[1,
$$-\exp(-t)+1$$
, $2*t*\exp(-t)+2*\exp(-t)-2$, $2*t*\exp(-t)-\exp(-t)+1$]

$$[0, exp(-t), t*exp(-t), t*exp(-t)]$$

[0, 0,
$$t * exp(-t) + exp(-t)$$
, $t * exp(-t)$]

$$A = \begin{bmatrix} 4 & 2 & 1 \\ 0 & 6 & 1 \\ 0 & -4 & 2 \end{bmatrix}$$

ماتریس انتقال حالت آن را با استفاده از روش قطری سازی بدست آورید.

ابتدا مقادیر ویژه، بردارهای ویژه و سپس فرم قطری سازی شده ماتریس
$$A$$
 را بدست می آوریم، ابتدا مقادیر ویژه، بردارهای ویژه و سپس فرم قطری سازی شده ماتریس A را بدست می آوریم، $|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -2 & -1 \\ 0 & \lambda - 6 & -1 \\ 0 & 4 & \lambda - 2 \end{vmatrix} = (\lambda - 4)^3 = 0$ \rightarrow $\lambda_{1,2}, 3 = 4$

ماتریس یک مقدار ویژه حقیقی تکراری مرتبه سه دارد، باید به فرم قطری بلوکی جردن تبدیل گردد.

$$v(\lambda_1 I - A) = n - \text{rank}(\lambda_1 I - A) = 3 - \text{rank}\begin{bmatrix} 0 & -2 & -1 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \end{bmatrix} = 3 - 1 = 2$$

بعد فضای پوچی $(\lambda_1 I - A)$ برابر با ۲ است، پس دو بردار ویژه مستقل خطی متناظر با مقدار ویژه تکراری $\lambda_{1,2} = \lambda_{1,2}$ داریم. پس دو بلوک جردن در فرم قطری بلوکی جردن خواهیم داشت که به صورت زیر است،

$$J = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ \hline 0 & 0 & \lambda_1 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 4 & 0 \\ \hline 0 & 0 & 4 \end{bmatrix}$$

حال ماتریس تبدیل همانندی را می یابیم که رابطه $J = T^{-1}AT$ را برآورده سازد. لذا باید دو بردار ویژه مستقل خطی و یک بردار ویژه تعمیم یافته برای مقدار ویژه تکراری $\lambda_{1,2,3} = 4$ بدست آوریم،

$$A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \rightarrow \begin{bmatrix} \lambda - 4 & -2 & -1 \\ 0 & \lambda - 6 & -1 \\ 0 & 4 & \lambda - 2 \end{bmatrix} \mathbf{v}_{i} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

ابتدا دو بردار ویژه مستقل خطی $\mathbf{v}_1, \mathbf{v}_2$ را بدست می آوریم،

$$\lambda_{1,2,3} = 4 \to \begin{bmatrix} 0 & -2 & -1 \\ 0 & -2 & -1 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \to \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$$

سپس بردار ویژه تعمیم یافته $arphi_1$ را محاسبه می کنیم،

$$(A - \lambda_1 I)\varphi_1 = \mathbf{v}_1 \to \begin{bmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \quad \to \quad \varphi_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

لذا ماتریس تبدیل T به شکل زیر خواهد بود،

$$T = \begin{bmatrix} \mathbf{v}_1 & \boldsymbol{\varphi}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ -2 & 1 & 0 \end{bmatrix}$$

، ماتریس انتقال حالت با استفاده از فرم قطری بلوکی به شکل زیر بدست می آید، ${
m e}^{At}=T{
m e}^{Jt}T^{-1}$

$$e^{At} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} e^{4t} & te^{4t} & 0 \\ 0 & e^{4t} & 0 \\ 0 & 0 & e^{4t} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ -2 & 1 & 0 \end{bmatrix}^{-1}$$

$$e^{At} = \begin{bmatrix} e^{4t} & 2te^{4t} & te^{4t} \\ 0 & 2te^{4t} + e^{4t} & te^{4t} \\ 0 & -4te^{4t} & -2te^{4t} + e^{4t} \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 1 \\ -2 & 2 \end{bmatrix}$$
ب ب $A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ الف

۲-۶- نشان دهید که یک تحقق فضای حالت برای تابع تبدیل داده شده بصورت زیر است،

$$\frac{Y(s)}{U(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) = \begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_{n-1} \end{bmatrix} \mathbf{x}(t) \end{cases}$$

حال با استفاده از این تحقق یک نمایش فضای حالت برای توابع تبدیل زیر بدست آورید.

$$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 4}{s^4 + s^2 + 2} \quad (4) \qquad \qquad \frac{Y(s)}{U(s)} = \frac{s^2 + 1}{s^3 + 6s^2 + 11s + 5} \quad (10)$$

$$A = \begin{bmatrix} 0 & -3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 برای ماتریس های زیر $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & -3 \end{bmatrix}$ الف)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & 4 \end{bmatrix}$$
 دی
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 ج

۶-۴- پاسخ زمانی سیستم زیر را به دست آورید،

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t)$$

که در آن u(t) تابع یله واحد است.

۶-۵- تابع تبدیل سیستمی زیر را بدست آورید،

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 2 \\ 5 \end{bmatrix} \mathbf{u}(t)$$

$$\mathbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}(t)$$

8-8- برای نمودار بلوکی زیر ابتدا با توجه به متغیرهای حالت تعریف شده معادلات فضای حالت سیستم را بیابید، سپس تابع سیستم را بدست آورید.

$$\dot{\mathbf{x}}(t) = egin{bmatrix} -2 & 1 & 0 & 3 \\ 0 & -3 & 1 & 1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & -1 & -4 \end{bmatrix} \mathbf{x}(t)$$

۹-۶- با استفاده از روش کیلی- هامیلتون حاصل چند جمله ای P(A) را برای ماتریس A بدست آوريد.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & 4 \end{bmatrix}$$
$$P(A) = A^{4} + 2A^{3} + A^{2} - A + 3I$$

ورید،
$$\ddot{y}(t)+3\ddot{y}(t)+4\dot{y}(t)+2y(t)=7u(t)$$
 3 $\ddot{y}(t)+\ddot{y}(t)+\dot{y}(t)+2y(t)=6\dot{u}(t)+9u(t)$

