1.2: Multiplication Principle: If an operation can be performed in n_1 ways, and if for each of these ways a second operation can be performed in n_2 ways, then the two operations can be performed together in n_1n_2 ways.

Example: If a **22**-member club needs to elect a chair and a treasurer, how many different ways can these two to be elected?

Sol: For the chair position, there are **22** total possibilities. For each of those **22** possibilities, there are **21** possibilities to elect the treasurer. Using the multiplication rule, we obtain $n_1 \times n_2 = 22 \times 21 = 462$ different ways.

Example: Sam is going to assemble a computer by himself. He has the choice of chips from two brands, a hard drive from four, memory from three, and an accessory bundle from five local stores. How many different ways can Sam order the parts?

Sol: Since, $n_1 = 2$, $n_2 = 4$, $n_3 = 3$, and $n_4 = 5$, there are $n_1 \times n_2 \times n_3 \times n_4 = 2 \times 4 \times 3 \times 5 = 120$ different ways to order the parts.

Permutation: A permutation is an arrangement of all or part of a set of objects.

Eg. Consider the three letters a, b, and c. The possible permutations are abc, acb, bac, bca, cab, and cba. Thus, we see that there are 6 distinct arrangements. There are $n_1 = 3$ choices for the first position. No matter which letter is chosen, there are always $n_2 = 2$ choices for the second position. No matter which two letters are chosen for the first two positions, there is only $n_3 = 1$ choice for the last position, giving a total of $n_1 \times n_2 \times n_3 = (3)(2)(1) = 6$ permutations.

Definition: For any non-negative integer n, n!, called "n factorial," is defined as

$$n! = n(n - 1) \cdots (2)(1)$$
, with special case $0! = 1$.

Theorem: The number of permutations of n distinct objects taken r at a time is $n_{P_r} = \frac{n!}{(n-r)!}$.

Eg. In one year, three awards (research, teaching, and service) will be given to a class of **25** graduate students in a statistics department. If each student can receive at most one award, how many possible selections are there?

Sol: Since the awards are distinguishable, it is a permutation problem. The total number of sample points is $25_{P_3} = \frac{25!}{(25-3)!} = \frac{25!}{22!} = (25)(24)(23) = 13,800$.

Theorem: The number of permutations of n objects arranged in a circle is (n-1)!

Theorem: The number of distinct permutations of n things of which n_1 are of one kind, n_2 of a second kind, ..., n_k of a k-th kind is $\frac{n!}{n_1! n_2! \dots n_k!}$.

Eg. How many different letter arrangements can be made from the letters in the word *STATISTICS*?

Sol: Here we have 10 total letters, with 2 letters (S,T) appearing 3 times each, letter I appearing twice, and letters A and C appearing once each. So, the different arrangement of the letters are $\frac{10!}{3!3!2!1!1!} = 50,400$.

Combinations: In many problems, we are interested in the number of ways of selecting r objects from n without regard to order. These selections are called **combinations**. A combination is actually a partition with two cells, the one cell containing the r objects selected and the other cell containing the (n-r) objects that are left. In combinations, you can select the items in any order.

Theorem: The number of combinations of n distinct objects taken r at a time is $n_{C_r} = \frac{n!}{r! (n-r)!}$

Eg. A boy asks his mother to select **5** balls from his collection of **10** red and **5** blue balls. How many ways are there that his mother can select **3** red and **2** blue balls?

Sol: The number of ways of selecting 3 red balls from 10 is $10_{C_3} = \frac{10!}{3!(10-3)!} = 120$.

The number of ways of selecting **2** red balls from **5** is $\mathbf{5}_{c_2} = \frac{5!}{2!(5-2)!} = \mathbf{10}$.

Using the multiplication rule with $n_1=120$ and $n_2=10$, we have (120)(10)=1200 ways.

Eg. A bag contains **10** white, **6** red, **4** black & **7** blue balls. **5** balls are drawn at random. What is the probability that **2** of them are red and one is black?

Sol: Total no. of balls = 10 + 6 + 4 + 7 = 27

 ${f 5}$ balls can be drawn from these ${f 27}$ balls = ${f 27}_{{f C}_{f 5}}$ ways = ${f 80730}$ ways,

 ${f 2}$ red balls can be drawn from ${f 6}$ red balls = ${f 6}_{{\cal C}_2}$ ways = ${f 15}$ ways

and, 1 black balls can be drawn from 4 black balls = 4_{c_1} ways = 4 ways

 \therefore No. of favourable cases = $15 \times 4 = 60$

So, probability =
$$\frac{\text{Number of favourable cases}}{\text{Total number of exhaustive cases}} = \frac{60}{80730} = \frac{6}{80730}$$

Exercise:

- 1. Find the probability that a hand at bridge will consist of 3 spades, 5 hearts, 2 diamonds & 3 clubs? Ans: $\frac{13c_3 \times 13c_5 \times 13c_2 \times 13c_3}{52c_{13}}$
- 2. In a committee of 4 persons from a group of 10 persons, what is the probability that a particular person is on the committee? Ans: $\frac{9c_3}{10c_4}$, For not committee Ans: $\frac{9c_4}{10c_4}$
- **1.3:** CONDITIONAL PROBABILITY: The conditional probability of an event A, given that event B has occurred, is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
; provided that $P(B) > 0$

The probability that two events, A and B, both occur is given by the multiplication rule,

$$P(A \cap B) = P(B)P(A|B)$$
; provided that $P(B) > 0$

Or,

$$P(A \cap B) = P(A)P(B|A)$$
; provided that $P(A) > 0$

Sometimes, after considering the nature of the random experiment, one can make reasonable assumptions so that it is easier to assign P(B) and P(A|B) rather than $P(A \cap B)$. Then $P(A \cap B)$ can be computed with these assignments.

Problems:

1. A bag contains **3** red & **4** white balls. Two draws are made **without replacement**. What is the probability that both the balls are **red**?

Solution: Here, total no. of balls = 3 + 4 = 7

 $P(\text{drawing a red ball in the first draw}) = P(A) = \frac{3}{7}$

P(drawing a red ball in the second draw given that first ball drawn is red) = $P(B \setminus A) = \frac{2}{6} = \frac{1}{3}$ So, the probability that both the balls are red, $P(A \cap B) = P(A)P(B|A) = \frac{3}{7} \times \frac{1}{3} = \frac{1}{7}$

2. A bag contains 3 red & 4 white balls. Two draws are made without replacement. What is the probability that both the balls are different color?

Solution: Here, total no. of balls = 3 + 4 = 7

 $P(\text{drawing a red ball in the first draw}) = P(A) = \frac{3}{7}$

 $P(\text{drawing a white ball in the second draw given that first ball drawn is red}) = P(B \setminus A) = \frac{4}{6} = \frac{2}{3}$ So, the probability that first ball is red and second ball is white,

$$P(A \cap B) = P(A)P(B|A) = \frac{3}{7} \times \frac{2}{3} = \frac{2}{7}$$

Similarly,

 $P(\text{drawing a white ball in the first draw}) = P(C) = \frac{4}{7}$

 $P(\text{drawing a red ball in the second draw given that first ball drawn is white}) = P(D \setminus C) = \frac{3}{6} = \frac{1}{2}$ So, the probability that first ball is white and second ball is red,

$$P(C \cap D) = P(C)P(D|C) = \frac{4}{7} \times \frac{1}{2} = \frac{2}{7}$$

Thus, the probability that both the balls are different color, $\frac{2}{7} + \frac{2}{7} = \frac{4}{7}$.

3. Find the probability of drawing a queen and a king from a pack of cards in two consecutive draws, the cards drawn **not being replaced**.

Solution: $P(\text{drawing a queen card}) = P(A) = \frac{4}{52}$

 $P(\text{drawing a king after a queen has been drawn}) = P(B \setminus A) = \frac{4}{51}$

So, the probability of drawing a queen and a king from a pack of cards in two consecutive draws, $P(A \cap B) = P(A)P(B|A) = \frac{4}{52} \times \frac{4}{51} = \frac{4}{663}$

4. In a box, there are **100** resistors having resistance and tolerance as shown in the following table. Let a resistor be selected from the box and assume each resistor has the same likelihood of being chosen. Define three events A as draw a 47Ω resistor, B as draw a resistor with 5% tolerance and C as draw a 100Ω resistor. Find $P(A \setminus B)$, $P(A \setminus C)$ and $P(B \setminus C)$.

Resistance Ω	5%	10%	Total
22	10	14	24
47	28	16	44
100	24	8	32
Total	62	38	100

Solution:
$$P(A) = P(47\Omega) = \frac{44}{100}$$
, $P(B) = P(5\%) = \frac{62}{100}$ and $P(C) = P(100\Omega) = \frac{32}{100}$. The joint probabilities are,

$$P(A \cap B) = P(47\Omega \cap 5\%) = \frac{28}{100}, P(A \cap C) = P(47\Omega \cap 100\Omega) = 0$$
 and $P(B \cap C) = P(5\% \cap 100\Omega) = \frac{24}{100}$.

$$\therefore P(A \setminus B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{28}{100}}{\frac{62}{100}} = \frac{28}{62} = \frac{14}{31}, P(A \setminus C) = \frac{P(A \cap C)}{P(C)} = \frac{0}{\frac{32}{100}} = 0 \text{ and,}$$

$$P(B \cap C) = \frac{24}{100} = \frac$$

$$P(B \setminus C) = \frac{P(B \cap C)}{P(C)} = \frac{\frac{24}{100}}{\frac{32}{100}} = \frac{24}{32} = \frac{3}{4}$$

5. The Hindu newspaper publishes three columns entitled politics (**A**), books (**B**), cinema (**C**). Reading habits of a randomly selected reader with respect to three columns are,

Read Regularly	A	В	С	A∩B	Anc	B∩C	$A \cap B \cap C$
Probability	0.14	0.23	0.37	0.08	0.09	0.13	0.05

B

0.07

0.20

C

0.02

Find $P(A \backslash B)$, $P(A \backslash B \cup C)$, $P(A \backslash C)$ at least one), $P(A \cup B \backslash C)$.

Solution: Here,
$$P(A \setminus B) = \frac{P(A \cap B)}{P(B)} = \frac{0.08}{0.23} = \frac{8}{23}$$

$$P(A \setminus B \cup C) = \frac{P(A \cap (B \cup C))}{P(B \cup C)} = \frac{0.04 + 0.05 + 0.03}{0.04 + 0.05 + 0.03 + 0.08 + 0.07 + 0.20} = \frac{11}{47}$$

$$P(A \mid P(A \mid B \cup C)) = \frac{P(A \cap (A \cup B \cup C))}{P(A \cup B \cup C)}$$

$$P(A \mid B \cup C) = \frac{P(A \cap (A \cup B \cup C))}{P(A \cup B \cup C)}$$

$$= \frac{P(A)}{P(A \cup B \cup C)} = \frac{0.14}{0.49} = \frac{14}{49}$$

and,
$$P(A \cup B \setminus C) = \frac{P((A \cup B) \cap C)}{P(C)} = \frac{0.04 + 0.05 + 0.08}{0.37} = \frac{17}{37}$$

Formula: P(A'|B) = 1 - P(A|B)

Examples: 1.3-1 to 1.3-12 (See yourself)

The multiplication rule for the events A, B & C is

$$P(A \cap B \cap C) = P[(A \cap B) \cap C] = P(A \cap B)P(C|A \cap B)$$

Since,
$$P(A \cap B) = P(A)P(B|A)$$
, so $P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$

Example: 1.3-10: A grade school boy has *five* blue and *four* white marbles in his left pocket and *four* blue and *five* white marbles in his right pocket. If he transfers *one* marble at random from his **left** to his **right** pocket, what is the probability of his then drawing a blue marble from his **right** pocket?

Solution: Let **BL**, **BR**, and **WL** denote drawing blue from left pocket, blue from right pocket, and white from left pocket, respectively. Then,

$$P(BR) = P(BL \cap BR) + P(WL \cap BR) = P(BL)P(BR \mid BL) + P(WL)P(BR \mid WL)$$
$$= \frac{5}{9} \times \frac{5}{10} + \frac{4}{9} \times \frac{4}{10} = \frac{41}{90}$$

Exercises: 1.3-1 to 1.3-4 & 1.3-9. (Try yourself)