Review of Lecture 1

Learning is used when

- A pattern exists
- We cannot pin it down mathematically
- We have data on it

Focus on supervised learning

- Unknown target function $y=f(\mathbf{x})$
- Data set $(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$
- Learning algorithm picks $g \approx f$ from a hypothesis set ${\mathcal H}$

Example: Perceptron Learning Algorithm

• Learning an unknown function?

- Impossible ⊙. The function can assume any value outside the data we have.
- So what now?

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 2: Is Learning Feasible?

Feasibility of learning - Outline

- Probability to the rescue
- Connection to learning
- Connection to real learning
- A dilemma and a solution

Learning From Data - Lecture 2 2/17

A related experiment

- Consider a 'bin' with red and green marbles.

$$\mathbb{P}[\text{ picking a red marble }] = \mu$$

$$\mathbb{P}[$$
 picking a green marble $]=1-\mu$

- The value of μ is <u>unknown</u> to us.
- We pick N marbles independently.
- The fraction of red marbles in sample =
 u

Learning From Data - Lecture 2 3/17

of red marbles

Does ν say anything about μ ?

No!

Sample can be mostly green while bin is mostly red.

Yes!

Sample frequency u is likely close to bin frequency μ .

possible versus probable

Learning From Data - Lecture 2 4/17

What does ν say about μ ?

In a big sample (large N), ν is probably close to μ (within ϵ).

Formally,

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2e^{-2\epsilon^2N}$$

This is called Hoeffding's Inequality.

In other words, the statement '' $\mu=
u$ '' is P.A.C.

$$\mathbb{P}\left[\left|\nu - \mu\right| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

ullet Valid for all N and ϵ

- ullet Bound does not depend on μ
- ullet Tradeoff: N, ϵ , and the bound.
- $\bullet \quad \nu \approx \mu \implies \mu \approx \nu \quad \odot$

Learning From Data - Lecture 2 6/17

Connection to learning

Bin: The unknown is a number μ

Learning: The unknown is a function $f:\mathcal{X} \to \mathcal{Y}$

Each marble ullet is a point $\mathbf{x} \in \mathcal{X}$

- : Hypothesis got it right $h(\mathbf{x}) = f(\mathbf{x})$
- : Hypothesis got it wrong $h(\mathbf{x}) \neq f(\mathbf{x})$

Back to the learning diagram

The bin analogy:

Learning From Data - Lecture 2 8/17

Are we done?

Not so fast! h is fixed.

For this h, u generalizes to μ .

'verification' of h, not learning

No guarantee u will be small.

We need to **choose** from multiple h's.

Multiple bins

Generalizing the bin model to more than one hypothesis:

Learning From Data - Lecture 2 10/17

Notation for learning

Both μ and u depend on which hypothesis h

u is 'in sample' denoted by $E_{\mathsf{in}}(h)$

 μ is 'out of sample' denoted by $E_{ ext{out}}(h)$

The Hoeffding inequality becomes:

$$\mathbb{P}\left[|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon \right] \leq 2e^{-2\epsilon^2 N}$$

Notation with multiple bins

Learning From Data - Lecture 2 12/17

Are we done already? ©

Not so fast!! Hoeffding doesn't apply to multiple bins.

What?

Learning From Data - Lecture 2 13/17

Coin analogy

Question: If you toss a fair coin 10 times, what is the probability that you will get 10 heads?

Answer: $\approx 0.1\%$

Question: If you toss 1000 fair coins 10 times each, what is the probability that <u>some</u> coin will get 10 heads?

Answer: $\approx 63\%$

From coins to learning

Learning From Data - Lecture 2 15/17

A simple solution

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \leq \mathbb{P}[|E_{\mathsf{in}}(h_1) - E_{\mathsf{out}}(h_1)| > \epsilon$$

$$\mathbf{or} |E_{\mathsf{in}}(h_2) - E_{\mathsf{out}}(h_2)| > \epsilon$$

$$\cdots$$

$$\mathbf{or} |E_{\mathsf{in}}(h_M) - E_{\mathsf{out}}(h_M)| > \epsilon]$$

$$\leq \sum_{m=1}^{M} \mathbb{P}[|E_{\mathsf{in}}(h_m) - E_{\mathsf{out}}(h_m)| > \epsilon]$$

The final verdict

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \leq \sum_{m=1}^{M} \mathbb{P}[|E_{\mathsf{in}}(h_m) - E_{\mathsf{out}}(h_m)| > \epsilon]$$

$$\leq \sum_{m=1}^{M} 2e^{-2\epsilon^2 N}$$

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$