Introdução à Teoria dos Grafos

Prof. Alexandre Noma

Aula passada...

```
Dijkstra(G, w, s):
 1 para cada vértice v; em G.V faça
 v_i.d = INFINITO
 3 \quad v_i \cdot p = NIL
 4 \text{ s.d} = 0
 5 \mathbf{Q} = G.V
 6 enquanto Q != VAZIO faça
        u_i = ExtraiMinimo(Q)
 9
        para cada v<sub>i</sub> em G.Adj[u<sub>i</sub>] faça
10
              se u_i.d + w(u,v) < v_i.d
11
12
                entao v_i \cdot d = u_i \cdot d + w(u, v)
13
                        v_i \cdot p = u
```

Aula passada...

```
Dijkstra(G, w, s):
                                                      Consumo
                                                      de tempo:
 1 para cada vértice v<sub>i</sub> em G.V faça
                                                          O(n)
        v_i.d = INFINITO
                                                          O(n)
  v_i \cdot p = NIL
                                                          O(n)
 4 \text{ s.d} = 0
                                                          0(1)
 5 \mathbf{Q} = G.V
                                                         555
 6 enquanto Q != VAZIO faça
                                                         0(n)
                                                     O(n) * ???
 9
        u_i = ExtraiMinimo(Q)
        para cada v<sub>i</sub> em G.Adj[u<sub>i</sub>] faça
10
                                                         O (m)
              se u_i.d + w(u,v) < v_i.d
11
                                                         O (m)
                entao v_i.d = u_i.d + w(u,v)
12
                                                         O (m)
13
                                                          O(m)
                        v_i \cdot p = u
```

Total:

T(n,m) = ???

Exercício Programa

09-filaDePrioridade.py
 (implementação simples e ineficiente com vetor de índices)

• Ex. Implementação eficiente com HEAP

Fila de prioridade (Heap)

- ConstroiHeap(Q)
 - Constrói um Heap em um vetor
- ExtraiMínimo(Q)
 - remove e devolve o elemento de Q com a menor chave
- Vazio(Q)
 - devolve verdadeiro se fila vazia, falso caso contrário
- DiminuiChave(Q, x, k)
 - diminui o valor da chave de x para o novo valor k.

Fila de prioridade (Heap)

- ConstroiHeap(Q) consome O(n) unidades de tempo.
 - Constrói um Heap em um vetor
- ExtraiMínimo(Q) consome O(log n) unidades de tempo.
 - remove e devolve o elemento de Q com a menor chave
- Vazio(Q) consome O(1) unidades de tempo.
 - devolve verdadeiro se fila vazia, falso caso contrário
- DiminuiChave(Q, x, k) consome O(log n) unidades de tempo.
 - diminui o valor da chave de x para o novo valor k.

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

0	1	2	3	4	5	6	7	8	9
1	5	7	8	7	9	9	16	14	14

0	1	2	3	4	5	6	7	8	9	
16	14	9	8	14	9	7	1	5	7	

0	1	2	3	4	5	6	7	8	9	
16	14	9	8	14	9	7	1	5	7	

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

- Propriedade
 - Chave do pai é menor ou igual a dos seus filhos

0	1	2	3	4	5	6	7	8	9	
1	5	7	8	7	9	9	16	14	14	

Exemplo: extraiMinimo?

0	1	2	3	4	5	6	7	8	9
1	5	7	8	7	9	9	16	14	14

Exemplo: extraiMinimo?

Exemplo: extraiMinimo?

0	1	2	3	4	5	6	7	8	9
5	7	7	8	14	9	9	16	14	

Exemplo: extraiMinimo?

Exemplo: extraiMinimo?

0	1	2	3	4	5	6	7	8	9
7	8	7	14	14	9	9	16		

Exemplo: extraiMinimo?

Desce chave

Desce chave

Desce chave

Exemplo: diminuiChave?

0	1	2	3	4	5	6	7	8	9
1	5	7	8	7	9	9	16	14	14

Exemplo: diminuiChave?

_					5			_	
1	5	7	8	7	9	9	1	14	14

Consumo de Tempo

• constroiMinHeap() consome O(n) unidades de tempo.

• extraiMinimo() consome $O(\log n)$ unidades de tempo.

• diminuiChave() consome $O(\log n)$ unidades de tempo.

```
Dijkstra(G, w, s):
                                                Consumo
                                                de tempo:
 1 para cada vértice v; em G.V faça
                                                   O(n)
 v_i.d = INFINITO
                                                    O(n)
 3 \quad v_i \cdot p = NIL
                                                    O(n)
 4 \text{ s.d} = 0
                                                    0(1)
 5 \mathbf{Q} = G.V
                                                   O(n)
 6 enquanto Q != VAZIO faça
                                                   O(n)
 9
        u_i = ExtraiMinimo(Q)
                                              O(n) *O(log n)
10
       para cada v; em G.Adj[u;] faça
                                                   O(m)
             se u_i \cdot d + w(u, v) < v_i \cdot d
11
                                                   O(m)
12
               entao v_i.d = u_i.d + w(u,v)
                                                   O(m)
13
                      DiminuiChave (\mathbf{Q}, \mathbf{v}_i) O (\mathbf{m}) *O (\log n)
14
                                                    O(m)
                      v_i \cdot p = u
```

Total:
$$T(n,m) = 5*O(n) + O(n log n) + 4*O(m) + O(m log n)$$

= $O(n log n + m log n)$

= O((n + m) * log n)

Hoje

- Algoritmo de Floyd-Warshall
 - Cálculo da matriz de distâncias

- Pré-requisitos:
 - Grafo ponderado
 - Matriz W

Hoje

- Algoritmo de Floyd-Warshall
 - Cálculo da matriz de distâncias

Grafo ponderado

	1	2	3	4	5	6
1	0	12	0	14	0	0
2	0	0	0	0	25	0
3	0	0	0	0	35	36
4	0	42	0	0	0	0
5	0	0	0	54	0	0
6	0	2 12 0 0 42 0 0	0	0	0	0

Hoje

- Algoritmo de Floyd-Warshall
 - Cálculo da matriz de distâncias

Matriz W

	1	2	3	4	5	6
1	0	12	∞	-14	∞	8
2	∞	0	∞	∞	25	<u>5</u> ∞
3	∞	∞	0	∞	35	36
4	∞	42	∞	0	∞	∞
5	∞	∞	∞	54	0	∞
6	8	∞	∞	∞	∞	0

Entrada: matriz W

Saída: matriz de distâncias

```
FLOYD-WARSHALL(W)
1 n = W.rows
2 D^{(0)} = W
3 for k = 1 to n
         let D^{(k)} = (d_{ii}^{(k)}) be a new n \times n matrix
          for i = 1 to n
               for j = 1 to n
                    d_{ii}^{(k)} = \min \left( d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)} \right)
```

Floyd-Warshall

Matrizes

$$para k \coloneqq 1 até n$$

$$D^{(0)} \to D^{(1)} \to D^{(2)} \to D^{(3)} \to \dots \to D^{(n)}$$
(W)

Matriz de distâncias

Entrada: matriz W

Saída: matriz de distâncias

```
FLOYD-WARSHALL(W)
  1 \quad n = W.rows
2 D^{(0)} = W
  3 for k = 1 to n
           let D^{(k)} = (d_{ii}^{(k)}) be a new n \times n matrix
            for i = 1 to n
                 for j = 1 to n
                      d_{ii}^{(k)} = \min \left( d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)} \right)
```


Entrada: matriz W

Saída: matriz de distâncias

```
FLOYD-WARSHALL(W)
 1 n = W.rows
 2 D^{(0)} = W
3 for k = 1 to n
          let D^{(k)} = (d_{ii}^{(k)}) be a new n \times n matrix
          for i = 1 to n
                for j = 1 to n
                     d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)
```

```
FLOYD-WARSHALL(W)
1 n = W.rows
2 D^{(0)} = W
3 for k = 1 to n
         let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix
         for i = 1 to n
              for j = 1 to n
                  d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)
```


$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$k = 1 \qquad d_{42}^{(1)} = min\left(d_{42}^{(0)}, d_{41}^{(0)} + d_{12}^{(0)}\right)$$

$$\infty \qquad 2 \qquad + 3$$

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$k = 1 \qquad d_{45}^{(1)} = min\left(d_{45}^{(0)}, d_{41}^{(0)} + d_{15}^{(0)}\right)$$

$$\infty \qquad 2 \qquad + \qquad -4$$

Floyd-Warshall

Matrizes

$$D^{(0)} \to D^{(1)} \to D^{(2)} \to D^{(3)} \to D^{(4)} \to D^{(5)}$$
(W)

		1	2	3	4	5
	1	0	3	8	4	-4
$D^{(2)}$.	2	8	0	∞	1	7
D^{+} .	3	8	4	0	5	11
	4	2	5	-5	0	-2
	5	8	∞	∞	6	0

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$D^{(1)}: \frac{1}{0} = \min \left(d_{14}^{(k-1)}, d_{14}^{(k-1)} + d_{24}^{(k)} \right)$$

$$\frac{1}{0} = \min \left(d_{14}^{(1)}, d_{14}^{(1)} + d_{24}^{(1)} \right)$$

$$\frac{1}{0} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{4} = \frac{1}{5} = \frac{1}{3} = \frac{1}{4} = \frac{1}{5} = \frac{1}{3} = \frac{1}{4} = \frac{1}{5} = \frac{1}{3} = \frac{1}{4} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{4} = \frac{1}{3} = \frac{1}{3}$$

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$\underline{k} = 2 \qquad d_{14}^{(2)} = min\left(d_{14}^{(1)}, d_{12}^{(1)} + d_{24}^{(1)}\right)$$

$$\infty \qquad 3 \qquad + 1$$

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$\underline{k} = 2$$

$$d_{34}^{(2)} = min\left(d_{34}^{(1)}, d_{32}^{(1)} + d_{24}^{(1)}\right)$$

$$\infty \quad 4 \quad + 1$$

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$\underline{k} = 2$$

$$d_{35}^{(2)} = min\left(d_{35}^{(1)}, d_{32}^{(1)} + d_{25}^{(1)}\right)$$

$$\infty \quad 4 \quad + \quad 7$$

Matrizes

$$D^{(0)} \to D^{(1)} \to D^{(2)} \to D^{(3)} \to D^{(4)} \to D^{(5)}$$
(W)

$$D^{(2)}: \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 4 & 2 & 5 & -5 & 0 & -2 \\ 5 & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$D^{(3)} : \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 5 & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$k = 3$$

$$d_{42}^{(3)} = min\left(d_{42}^{(2)}, d_{43}^{(2)} + d_{32}^{(2)}\right)$$

$$5 -5 + 4$$

Matrizes

$$D^{(0)} \to D^{(1)} \to D^{(2)} \to D^{(3)} \to D^{(4)} \to D^{(5)}$$
(W)

$$D^{(3)} : \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 3 & 8 & 4 & -4 \\ 2 & \infty & 0 & \infty & 1 & 7 \\ 3 & \infty & 4 & 0 & 5 & 11 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 5 & \infty & \infty & \infty & 6 & 0 \end{bmatrix} D^{(4)} : \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 3 & 7 & 4 & 0 & 5 & 3 \\ 4 & 2 & -1 & -5 & 0 & -2 \\ 5 & \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$d_{ij}^{(k)} = min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

$$k = 4 \qquad d_{13}^{(4)} = min\left(d_{13}^{(3)}, d_{14}^{(3)} + d_{43}^{(3)}\right)$$

$$8 \qquad 4 + -5$$

Matriz de caminhos mínimos:

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 \\ \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \end{pmatrix}$$

Exercício Programa

11-floydWarshall.py

Exercício

Simule o algoritmo de Floyd-Warshall:

