

Étude et réalisation d'un modèle de suivi multi-objets et application au comptage des véhicules sur l'autoroute

Projet de Fin d'etude Génie Mathématique et Informatique

Troisième année (GMI 3)

Chaanani Youness

Encadrant: Prof. Omar Khadir **Jury:** Prof. Omar Khadir

Prof. Omar Khadir Prof. Jilali Abouir 19 janvier 2024

Prof. Brahim Benouahmane

Sommaire

Introduction

- 1 L'organisme d'accueil
- 2 Analyse comparative des algorithmes utilisés
- 3 Le suivi des objets
- 4 Développemment du modèle DeepSort
- 5 Réalisation

Conclusion

Indatacore

Introduction

L'organisme

Indatacore

Les équipes d'indatace

Le planning du pr

Analyse comparative des

comparative de algorithmes utilisés

Dataset

Les algorithmes utilise

Le modèle SSD

Architecture du 551

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation Les technologies utilisées

Réalisation du modèle de classification

INDATA CORE

Big Data Analytics & Data Science

Les équipes d'indatacore

Introduction

L'organisme d'accueil

. . .

Les équipes d'indatacore

Le planning du proi

Analyse comparative des

algorithmes utilisés

Datasets

Les algorithmes utilis

Assistant on d. CC

La madàla Eastar BC

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation du modèle de classification

- L'équipe Big data
- L'équipe business-intelligence
- L'équipe RD (Research and Developement)

Problématique

Introduction

L'organisme d'accueil

Les équipes d'indatacore

Analyse comparative des

algorithmes utilisés

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO

Le suivi des obiets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées classification

Comment compter les nombres des véhicules ?

Introduction

L'organisme d'accueil

Indatacore Les équipes d'indatacore

Le planning du projet

Analyse comparative des

algorithmes utilisés

Datasets

Le modèle SSD

Architecture du SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation Les technologies utilisées

- Collecter les images des véhicules.
- Le choix du modèle de détection et classification.
- Le choix du modèle de suivi multi-objets.
- Réalisation du modèle qui combine le modèle de détection et le modèle Suivi.
- Exécution le modèle sur vidéo reél.

Introduction

L'organisme

- Indatacore
- Le planning du projet

co planning as p

Analyse comparative des algorithmes

utilisés

Los planithmos utilis

Le modèle SSD

Architecture du SSD

Le modèle Faster-RCNN Le modèle YOLO

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

- Collecter les images des véhicules.
- Le choix du modèle de détection et classification.
- Le choix du modèle de suivi multi-objets.
- Réalisation du modèle qui combine le modèle de détection et le modèle Suivi.
- Exécution le modèle sur vidéo reél.

Introduction

L'organisme d'accueil

Le planning du projet

Analyse comparative des algorithmes

utilisés

Le modèle Faster-RCNN Le modèle YOLO

Le suivi des obiets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

classification

- Collecter les images des véhicules.
- Le choix du modèle de détection et classification.
- Le choix du modèle de suivi multi-objets.

Introduction

L'organisme d'accueil

Le planning du projet

Analyse comparative des algorithmes utilisés

Le suivi des obiets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

- Collecter les images des véhicules.
- Le choix du modèle de détection et classification.
- Le choix du modèle de suivi multi-objets.
- Réalisation du modèle qui combine le modèle de détection et le modèle Suivi.

Introduction

L'organisme

Les équines d'indatac

Le planning du projet

Le planning du pr

Analyse comparative des algorithmes utilisés

Datasets Les algorithmes utilis

Le modèle SSD Architecture du SSD

Le modèle Faster-RCNN
Le modèle YOLO
Résultat de comparision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation du modèle de classification

- Collecter les images des véhicules.
- Le choix du modèle de détection et classification.
- Le choix du modèle de suivi multi-objets.
- Réalisation du modèle qui combine le modèle de détection et le modèle Suivi.
- Exécution le modèle sur vidéo reél.

Analyse des algorithmes utilisés

Introduction

L'organisme d'accueil

Indatacor

Les équipes d'indatacore

Le planning du p

Analyse comparative des algorithmes

algorithmes utilisés

Datasets

Les algorithmes utilisés Le modèle SSD

A coloite atoms alor

Architecture du SSD

Le modèle Faster-RCNN Le modèle YOLO

Résultat de comparisi

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Introduction

L'organisme

. . .

Les équipes d'indatace

Analyse comparative des

algorithmes utilisés

Datasets

Les algorithmes utilis Le modèle SSD

Architecture du SSD Le modèle Faster-RCNN Le modèle YOLO

Résultat de comparision

Le suivi des objets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées Réalisation du modèle de classification

■ 81 catégories d'objets.

- 120k images dans l'entraînement, 20k images dans le test et validation.
- Coco peut être utilisé pour de multiples fonctions : détection d'objets, détection de points clés,segmentation.
- L'annotation est dans un fichier JSON tandis que les images originales sont conservées dans des répertoires en tant qu'images PNG/JPEG/TIF.

Introduction

L'organisme

Indatacore

Les équipes d'indatac

Le planning du proj

Analyse comparative des algorithmes

algorithmes utilisés

Les algorithmes ut

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

- 81 catégories d'objets.
- 120k images dans l'entraînement, 20k images dans le test et validation.
- Coco peut être utilisé pour de multiples fonctions : détection d'objets, détection de points clés,segmentation.
- L'annotation est dans un fichier JSON tandis que les images originales sont conservées dans des répertoires en tant qu'images PNG/JPEG/TIF.

Introduction

L'organisme

Indatacore

Le planning du projet

Analyse comparative des algorithmes utilisés

Datasets

Les algorithmes uti

Architecture du SSD

Le modèle Faster-RCNN
Le modèle YOLO
Résultat de comparision

Le suivi des objets

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées Réalisation du modèle de classification

■ 81 catégories d'objets.

- 120k images dans l'entraînement, 20k images dans le test et validation.
- Coco peut être utilisé pour de multiples fonctions : détection d'objets, détection de points clés,segmentation.
- L'annotation est dans un fichier JSON tandis que les images originales sont conservées dans des répertoires en tant qu'images PNG/JPEG/TIF.

Introduction

L'organisme d'accueil

Indatacore

Le planning du proiet

Analyse comparative des algorithmes

utilisés Datasets

Les algorithmes ut

Le modèle SSD

Architecture du SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de companision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

nealisati

Réalisation du modèle de classification

■ 81 catégories d'objets.

- 120k images dans l'entraînement, 20k images dans le test et validation.
- Coco peut être utilisé pour de multiples fonctions : détection d'objets, détection de points clés,segmentation.
- L'annotation est dans un fichier JSON tandis que les images originales sont conservées dans des répertoires en tant qu'images PNG/JPEG/TIF.

Les algorithmes utilisés

Introduction

L'organisme d'accueil

Les équipes d'indatacore

Analyse comparative des

algorithmes utilisés

Les algorithmes utilisés

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO Résultat de comparision

Le suivi des obiets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées classification

Le modèle SSD

Introduction

L'organisme d'accueil

Les équipes d'indatac

Le planning du proiel

Analyse comparative des algorithmes utilisés

Datasets

Les algorithmes utilisé

Le modèle SSD

Architecture du SSD

Le modèle Faster-RCN

Le modèle YOLO

Le suivi des objets

e filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation du modèle de classification

Définition

Single Shot MultiBox Détector est un modèle d'apprentissage en profondeur utilisé pour détecter des objets dans une image ou à partir d'une source vidéo. Le SSD à deux composants : le modèle Backbone et la tête SSD.

Architecture du SSD

Introduction

L'organisme d'accueil

Analyse comparative des

algorithmes utilisés

Le modèle SSD

Architecture du SSD

Le modèle Faster-RCNN

Le modèle YOLO Résultat de comparision

Le suivi des obiets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées classification

FIGURE 3.1 – Architecture du SSD

Avantages et inconvénients du SSD

Introduction

L'organisme

. . . .

Les équines d'indata

Le planning du pro

Analyse comparative des

algorithmes utilisés

Datase

Les algorithmes utilis

Architecture du SSD

Le modèle Faster-RCNN

Résultat de comparisio

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisatio

Réalisation du modèle de classification

Les avantages

- SDD fonctionne jusqu'à 59 images par seconde
 - SSD offre des taux de chargement plus rapides pour les jeux de données

Les inconvénients

- SSD ne peut pas détecter les petits objets
- SSD donne mauvais précision de prédiction

Le modèle faster-RCNN

Introduction

L'organisme d'accueil

Analyse comparative des

algorithmes utilisés

Le modèle Faster-RCNN Le modèle YOLO

Le suivi des obiets

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

classification

Définition

Faster-RCNN c'est une architecture de détection d'objets présente par Ross Girshick en 2015 et l'une des célébres architectures de détection d'objets et classification qui utilise des résaux de neurones de convolutions.

Architecture du modèle Faster-RCNN

Introduction

L'organisme

Les équipes d'indatac

Le planning du pro

Analyse comparative des

algorithmes utilisés

Datasets

Les algorithmes util

Ambitantura du CCD

Le modèle Faster-RCNN Le modèle YOLO

Résultat de comparision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

FIGURE 3.2 - Architecture du Faster-RCNN

Avantages et inconvénients du Faster-RCNN

Introduction

L'organisme d'accueil

Analyse comparative des algorithmes

utilisés

Le modèle Faster-RCNN

Le modèle YOLO

Le suivi des obiets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Les avantages

Faster-RCNN donne de bon résultats du prédiction par rapport aux autres.

Les inconvénients

- Faster-RCNN peut fonctionner entre 5 et 7 images par seconde
- Prende beaucoup du temps dans l'apprentissage

Le modèle YOLO

Introduction

L'organisme d'accueil

Les équines d'indats

Le planning du pro

Le planning du pre

Analyse comparative des algorithmes

algorithmes utilisés

Les algorithmes u

Architecture du SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des obiets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation du modèle de classification

Définition

YOLOv3 (You Only Look Once, Version 3) est un algorithme de détection d'objets en temps réel qui identifie des objets spécifiques dans des vidéos, des flux en direct ou des images. Les versions 1 à 3 de YOLO ont été créées par Joseph Redmon et Ali Farhadi. La première version de YOLO a été créée en 2016, et la version 3 en 2018.

Architecture de YOLO

Introduction

L'organisme d'accueil

Indatacore Les équipes d'indatacore

Le planning du projet

Analyse comparative des

algorithmes utilisés

Datasets

Le modèle SSD

Architecture du SSI

Le modèle Faster-RCNN

Le modèle YOLO

Bésultat de compari

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées Réalisation du modèle de classification

YOLO v3 network Architecture

Avantages et inconvénients du YOLO

Introduction

L'organisme

Indatacore

Les equipes d'indatac

Analyse comparative

comparative des algorithmes utilisés

Datasets

Les algorithmes utilis

Architecture du SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation du modèle de classification

Les avantages

- YOLO fonctionne sur 45 images par seconde
- YOLO permet de détecter les petits objets.

Les inconvénients

 Difficultés à détecter les objets proches car chaque grille ne peut proposer que 2 cadres de délimitation.

Résultat de comparision

Introduction

L'organisme d'accueil

Les équines d'indatan

Le planning du projet

Analyse comparative des

comparative des algorithmes utilisés

Les algorithmes uti

Le modèle SSD

Architecture du SSE

Le modèle Faster-RCN Le modèle YOLO

Résultat de comparision

Le suivi des objets

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Ν	Recall moyenne		
	SSD	YOLO	FRCNN
1	0.232	0.279	0.782
2	0.341	0.432	0.754
3	0.362	0.460	0.792
4	0.102	0.357	0.567
5	0.401	0.494	0.653
6	0.577	0.768	0.893

- SSD fonctionne jusqu'à 56 FPS.
- Faster-RCNN peut fonctionner entre 5 et 7 FPS.
- YOLO fonctionne sur 45 FPS.

Le suivi des objets

Le filtre de kalman

Introduction

L'organisme d'accueil

Analyse comparative des

algorithmes utilisés

Le suivi des obiets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

classification

Définition

Le filtre de Kalman est un algorithme de traitement de données récursif qui estime l'état d'un objet à l'aide de mesure imprécise (bruité). L'algorithme utilise deux étapes majeures.

- Étape de prédiction.
- Etape de correction.

Le filtre de kalman

Introduction

L'organisme d'accueil

Indatacore

Les equipes d'indata

Analyse comparative des

comparative des algorithmes utilisés

Datasets

Les algorithmes utili

Le modèle SSD

Architecture du SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation du modèle de classification

État prédit

$$E_t = A.E_{t-1} + q_{t-1}$$

E :vecteur d'état

A :matrice de transition

q :bruit gaussien (matrice de cova-

riance Q)

$$\mathsf{E}_{t} = \begin{pmatrix} x_{t} \\ y_{t} \\ v_{xt} \\ v_{yt} \end{pmatrix} \quad \mathsf{A} = \begin{pmatrix} 1 & 0 & dt & 0 \\ 0 & 1 & 0 & dt \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Le filtre de Kalman

Introduction

L'organisme d'accueil

Indatacore

La alamaina di masiat

Analyse comparative des

algorithmes utilisés

Datasets

Les algorithmes utili

Le modele SSD

Architecture du SSD

Le modèle Faster-RCNN Le modèle YOLO

Résultat de comparision

Le suivi des objets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation du modèle classification

Mesure du processus à l'instant k

$$Z_t = H.E_t + r_t$$

Z :vecteur contenant les mesures

H:matrice d'observation

r :bruit gaussien (matrice de cova-

riance R)

$$\mathsf{E}_{t} = \begin{pmatrix} x_{t} \\ y_{t} \\ v_{xt} \\ v_{yt} \end{pmatrix} \quad \mathsf{H} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Le filtre de kalman

Introduction

L'organisme d'accueil

Analyse comparative des

algorithmes

utilisés

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO Résultat de comparision

Le suivi des obiets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées classification

Prédiction et estimation

Prédiction de l'état :

$$\hat{E}_{t+1} = A.\hat{E}_t$$

$$\mathsf{P}_{t+1}^- = A_t P_t A_t^T + Q_t$$

Mises à jour

$$K_{t+1} = P_t.H_t^T.(H_t.P_t.H_t^T + R_t)^{-1}$$

$$\hat{E}_{t+1} = \hat{E}_t + K_{\cdot}(Z_t - H_t \hat{E}_t)$$

$$P_{t+1} = (I - K_t.H_t).P_t^-$$

Le filtre de kalman

Introduction

L'organisme

Indutacore

Le nlanning du projet

Analyse comparative des

algorithmes utilisés

Datase

Les algorithmes uti

Les algoritimes u

LO MODOIO GOD

Architecture du SSI

Le modèle Faster-RCNN

Le modèle YOLO Résultat de comparision

Le suivi des objets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées

Réalisation du modèle de classification

Prédiction et estimation

Prédiction de l'état :

$$\hat{E}_{t+1} = A.\hat{E}_t$$

Estimation de la covariance de l'erreur

$$\mathsf{P}_{t+1}^- = A_t P_t A_t^T + Q_t$$

Mises à jour

Gain de Kalman :

$$K_{t+1} = P_t.H_t^T.(H_t.P_t.H_t^T + R_t)^{-1}$$

Correction de innovation :

$$\hat{E}_{t+1} = \hat{E}_t + K.(Z_t - H_t \hat{E}_t)$$

$$P_{t+1} = (I - K_t.H_t).P_t^-$$

Le modèle du deepsort

Introduction

L'organisme d'accueil

Indatacore

Les équipes d'indatacore

Analyse

comparative des algorithmes utilisés

Datasets

Les algorithmes utilisés Le modèle SSD

A coloite at use at u.C.C.C

Le modèle Faster-RCNN

Le modèle YOLO

Hesultat de comparision

Le suivi des objets

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Réalisation

Les technologies utilisées

Introduction

L'organisme d'accueil

Analyse comparative des algorithmes

utilisés

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des obiets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

Les technologies utilisées classification

FIGURE 6.1 - Python

FIGURE 6.2 - Opency

FIGURE 6.3 – Tensorflow

FIGURE 6.4 – Keras

Le modèle de classification

Introduction

L'organisme d'accueil

u accue

Les équipes d'indatac

Le planning du pr

Analyse comparative des algorithmes

algorithmes utilisés

Loc planrithm

Les algorithmes utilis

Architecture du SS

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

FIGURE 6.5 – Le résultat de détection et classification

Le modèle de suivi

Introduction

L'organisme d'accueil

Les équipes d'indatacore

Analyse comparative des

algorithmes utilisés

Les algorithmes utilisés

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO

Le suivi des obiets

Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation Les technologies utilisées

classification Dántination du modèle de

FIGURE 6.6 – Le résultat du suivi

Le modèle deepsort

Introduction

L'organisme d'accueil

Les équipes d'indatacore

Analyse comparative des

algorithmes utilisés

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO

Le suivi des obiets Le filtre de Kalman

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation Les technologies utilisées

classification Dántination de modèle de

FIGURE 6.7 – Le résultat du suivi multi-objets

Le stockage de données

Introduction

L'organisme

Indataco

Les équipes d'indat

Le planning du projet

Analyse comparative des algorithmes

algorithmes utilisés

Les algorithmes util

Le modèle SSD

Le modèle Faster-RCNN

Le modèle YOLO

Résultat de comparision

Le suivi des objets

Le filtre de Kalman

.e tittre de Kalmai

Développemment du modèle DeepSort

Le modèle du deepsort

Réalisation

FIGURE 6.8 – Le résultat du stockage

Conclusion

Merci de votre attention.