ME-474 Numerical Flow Simulation

Exercise: 1D steady diffusion

Fall 2021

Implement a FVM code in Matlab to solve a 1D steady-state heat conduction problem. Equation:

$$\frac{\partial}{\partial x} \left(k(x) \frac{\partial T}{\partial x} \right) + S(x) = 0$$

Domain: $x \in [0, L], L = 1 \text{ m}.$

Assume the thermal conductivity is constant: k = 400 W/(K.m).

- 1. Consider Dirichlet boundary conditions: $T(0) = T_a = 300 \text{ K}$, $T(L) = T_b = 320 \text{ K}$. Assume the source term is constant: $S = S_c = 5000 \text{ W/m}^3$.
 - Define a uniform grid of n nodes: $x_1 = 0$, $x_2 = \Delta x = L/(n-1)...$, $x_n = L$. Start with n = 21.
 - Recall the discretized equation

$$a_P T_P = a_W T_W + a_E T_E + b,$$

or in vectorial form $\mathbf{AT} = \mathbf{b}$. Define the $n \times n$ matrix \mathbf{A} , and the $n \times 1$ right-hand side vector \mathbf{b} . Implement boundary conditions in equations 1 and n.

- Solve for **T** and plot T(x).
- Compare with the theoretical solution $(T'' = -S/k = cst \rightarrow quadratic T(x))$:

$$T_{theo}(x) = \left(-\frac{S_c}{2k}\right)x^2 + \left(\frac{T_b - T_a}{L} + \frac{S_c L}{2k}\right)x + T_a.$$

• Check that the mean error

$$\frac{1}{n} \sum_{i} |T_i - T_{theo,i}|$$

is exactly zero whatever the value of n. Why?

- 2. Consider now the same Dirichlet boundary condition on the left, $T(0) = T_a = 300$ K, but a Neumann boundary condition on the right, $q_b = -k(\partial T/\partial x)_{x=L} = -5000$ W/m².
 - Modify the implementation of the boundary conditions. (It may be a good idea to save two different versions of your code.)
 - Solve for **T** and plot T(x).
 - Compare with the theoretical solution:

$$T_{theo}(x) = \left(-\frac{S_c}{2k}\right)x^2 + \left(\frac{S_cL - q_b}{k}\right)x + T_a.$$

- Check that the mean error per control volume is exactly zero whatever the value of n. Why?
- 3. Finally, come back to Dirichlet boundary conditions on both ends like in Q1, but assume now that the source term varies linearly with temperature:

$$S = S_c + S_l T.$$

Take for instance $S_c = 5000$ for the constant component, and $S_l = -100$ for the linear coefficient. Note that the integration of this source term over a control volume yields

$$\int_{x_{vv}}^{x_e} S \, dx \approx \overline{S} \Delta x = (S_c + S_l T_P) \Delta x,$$

so now the constant right-hand side is $b = S_c \Delta x$, while the solution-dependent term $S_l T_P \Delta x$ goes into the diagonal coefficient $a_P T_P$.

- Modify the matrix **A** accordingly.
- Solve for **T** and plot T(x).
- Compare with the theoretical solution, that can be obtained as the sum of (i) a particular solution of the full equation $kT'' + S_lT = -S_c$, i.e. $T = -S_c/S_l$, and (ii) the general solution of the homogeneous equation $kT'' + S_lT = 0$, which is $T = c_1e^{\mu x} + c_2e^{-\mu x}$, with $\mu = \sqrt{-S_l/k}$, and c_1 and c_2 such that boundary conditions are satisfied, which yields:

$$T_{theo}(x) = -\frac{S_c}{S_l} + c_1 e^{\mu x} + c_2 e^{-\mu x}, \quad c_1 = \frac{T_b - \left(\frac{S_c}{S_l} + T_a\right) e^{-\mu L} + \frac{S_c}{S_l}}{e^{\mu L} - e^{-\mu L}}, \quad c_2 = T_a + \frac{S_c}{S_l} - c_1.$$

• Observe that the mean error per control volume is not zero. Why? How does it decrease with n? (Plot the mean error as a function of n in log-log scale.)

