Masters Bridge Program

Summer 2021

Session 6: Dependence between random variables

Instructor: Bryan Liu Contact: runjing_liu@berkeley.edu

Supplemental reading: Pitman, Probability Chapter 6.

6.1 Conditional densities

Recall that for a discrete random variable X, the conditional distribution of Y given X = x is

$$\mathbb{P}(Y = y | X = x) = \frac{\mathbb{P}(Y = y, X = x)}{\mathbb{P}(X = x)}.$$

However, if X is a continuous random variable, then the denominator X=x has probability 0, which results in an undefined expression.

In order to define conditional distributions for continuous random variables X and Y, we express the conditional distribution in terms of densities.

Conditional density of Y **given** X=x. For random variables X and Y with joint density f(x,y), for each x with marginal density $f_X(x)>0$, the conditional density of Y given X=x is the probability density function

$$f_Y(y|X=x) = \frac{f(x,y)}{f_X(x)}.$$
 (6.1)

Then for any set B,

$$\mathbb{P}(g(Y)|X=x) = \int_{B} f_{Y}(y|X=x) \ dy$$

Exercise 1 (Uniform on a triangle). Let X,Y uniformly distribution on the region $\{(x,y): x \ge 0, y \ge 0, x+y \le 2\}$. Find $\mathbb{P}(Y>1|X=x)$.

We can re-arrange Equation (6.1) to arrive at the multiplication rule for densities,

$$f(x,y) = f_X(x)f_Y(y|X=x).$$

Exercise 2 (Gamma and uniform). Suppose X has a $Gamma(2, \lambda)$ distribution, and that given X = x, Y is uniform on (0, x).

Here, the Gamma density is

$$f_X(x) = \lambda^2 x e^{-\lambda x}$$

if x > 0 and 0 otherwise.

- (a) Find the joint density of (X, Y).
- (b) Find marginal density of Y.

6.2 Conditional expectations

Let g be a function that maps $\mathbb{R} \to \mathbb{R}$. The **conditional expectation of** g(Y) **given** X = x is

$$\mathbb{E}(g(Y)|X=x) = \int g(y)f_Y(y|X=x) \ dx.$$

Exercise 3. Show,

(a) Average conditional probability:

$$\mathbb{P}(Y \in B) = \int \mathbb{P}(Y \in B | X = x) f_X(x) \ dx$$

(b) The tower property:

$$E(Y) = \int \mathbb{E}(Y|X=x) f_X(x) \ dx.$$

We can succinctly write the tower property as $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|X))$.

Exercise 4 (Expectation of a product). Let X and Y be random variables, and h a function of X. Show that

$$\mathbb{E}(h(X)Y) = \mathbb{E}(h(X)\mathbb{E}(Y|X)).$$

Exercise 5 (Predictions). In a previous session, we saw that if we want to predict Y by a constant b, in order to minimize the MSE

$$MSE(b) = \mathbb{E}((Y - b)^2),$$

we should set $b = \mathbb{E}(Y)$.

Now suppose the data come in pairs (X, Y), and we get to observe X in order to predict Y. We want to construct a predictor g, which is a function that takes input X and uses g(X) to predict Y.

If we again want to minimize the MSE,

$$MSE(g(X)) = \mathbb{E}((Y - g(X))^2), \tag{6.2}$$

argue that the optimal g is $g(x) = \mathbb{E}(Y|X=x)$.

6.3 Covariance and correlation

Given two random variables X and Y, their *covariance* measures how these variables move together.

For random variables X and Y, their **covariance** is defined as

$$Cov(X, Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y)),$$

where $\mu_X = \mathbb{E}(X)$ and $\mu_Y = \mathbb{E}(Y)$.

Exercise 6 (Alternative formula for covariance). Show that we can compute the covariance as $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

Generally, Cov(X,Y) is positive if above-average values of X tend to be associated above values of Y. Cov(X,Y) is negative if above-average values tend to be associated with below-average values of Y, and vice-versa.

The magnitude of the covariance may be hard to interpret. We can normalize the covariance as follows:

For random variables X and Y, their **correlation** is defined as

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X),\operatorname{Var}(Y)}}.$$
 (6.3)

We can apply the Cauchy-Schwartz inequality to check that the correlation is always between -1 and 1.

Exercise 7 (Empirical correlations). Suppose we observe data pairs $(x_1, y_1), ..., (x_n, y_n)$. Use the plug-in principle, plugging in the empirical distribution for the correlation formula (6.3), to give a formula for the sample correlation.

When two random variables X and Y have zero correlation (or equivalently, zero covariance), we say that the random variables are *uncorrelated*.

Exercise 8 (Independence implies uncorrelated). Show that if random variables X and Y are independence, then X and Y are uncorrelated.

Exercise 9 (Uncorrelated does not imply independence). Let X take values $\{-1,0,1\}$ with equal probability. Let $Y=X^2$. Argue that X and Y are not independent but have Cov(X,Y)=0.

More generally, the correlation (or covariance) measures the *linear* relationship between two random variables. Two variables may have some other, nonlinear relationship, and using the correlation as a metric to measure their dependence may not be appropriate. See Figure 6.1 for an illustration.

Exercise 10 (Best linear predictor). As in Exercise 5, suppose data comes in pairs (X, Y). In the previous exercise, we saw that the best predictor g(X) was the conditional expectation $\mathbb{E}(Y|X)$.

Figure 6.1: Plotted are scatter points of (x,y) pairs, with their empirical correlations (Exercise 7). Correlation measures the linear relationship between two random variables; however, zero correlation does not rule out other, nonlinear relationships. Figure taken from https://en.wikipedia.org/wiki/Correlation.

Here, we restrict ourselves to letting g be a linear function, that is, predictors of the form

$$g(X) = \beta X + \gamma$$

for $\beta, \gamma \in \mathbb{R}$.

We again want to minimize the MSE (6.2).

- (a) Show that for fixed β , the unique γ which minimizes the MSE if $\gamma^*(\beta) = \mathbb{E}(Y) \beta \mathbb{E}(X)$.
- (b) Now plug in $\gamma = \gamma^*(\beta)$, and show that the optimal β is $\beta^* = \text{Cov}(X, Y)/\text{Var}(X)$.
- (c) Apply the plug in principle by computing the variance/covariance under the empirical distribution, and find the sample formula for the best linear predictor. (In contrast, the solutions in (a) and (b) are *population* formulas).