Content

- Probability
- Event
 - Types of Events
 - Independent, Dependent, Mutually Exclusive events
- Probability
 - Types of probabilities
 - Conditional probability
- Bayes Theorem
- Confusion Matrix
- Introduction to R Programming

Probability:

- Probability is the measure of how much likelihood that an event will occur.
- Probability is qualified between 0 & 1
- Higher the probability of an event, more certain that the event will occur
- 0 Impossibility of an event
- 1 highly certain that even will occur

Eg: Weather condition: "80% chances that it would rain today"

Perspectives on Probability

- Classical (A priori or Theoretical)
- Empirical (Posterior or Frequentist)
- Subjective Probability

Classical Probability (A priori):

Probability can be determined theoretically prior to conducting any experiment

•
$$P(E) = \frac{No \ of \ Outcomes}{Total \ possible \ Outcomes}$$

•
$$P(4) = 1/6$$

Empirical Probability (A posterior or Frequentist):

• It defines the probability via conducting experiments

•
$$P(E) = \frac{\text{No of times event occured}}{\text{Total no of time exp is carried out}}$$

• Eg: Out of 5 fair coin tosses, Heads appeared 2 times

•
$$P(H) = 2/5$$

Subjective Probability:

- Its an individual person's measure of belief that an event will occur based on the feeling, insights, knowledge etc of a person.
- It differs from person to person

Events:

- Events are nothing but one or more outcome of an experiment
- Eg: Getting heads when a fair coin is tossed
- P(H) = 1/2

Types of Events

- Independent
- Dependent
- Mutually Exclusive

Independent Event:

- An event which is not effected by any other events
- Eg: Toss 3 fair coins, event of getting heads at one coin does not effect any other coin tosses
- P(A & B) = P(A) * P(B)

Dependent Event:

- An event that is affected by previous event
- P(A and B) = P(A).P(A|B)

Mutually exclusive events:

- Consider two events, If an event 'A' happened than event 'B' cannot happen.
- P(A or B) = P(A) + P(B) P(A & B)

Contingency table summarizing 2 variables, Loan Defaulters vs Age.

			Age		
		Young	Middle-aged	Old	Total
Loan	No	10,503	27,368	259	38,130
Default	Yes	3,586	4,851	120	8,557
	Total	14,089	32,219	379	46,687

			Age		
	-14	Young	Middle-aged	Old	Total
Loan	No	0.225	0.586	0.005	0.816
Default	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

Types of Probabilities

Marginal Probability

		Age			
		Young	Middle-aged	Old	Total
Loan	No	0.225	0.586	0.005	0.816
Default	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

Probability describing a single attribute. —

$$P(No) = 0.816$$

$$P(Old) = 0.008$$

Joint Probability

		Age			
		Young	Middle-aged	Old	Total
Loan	No	0.225	0.586	0.005	0.816
Default	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

Probability describing a combination of attributes.

P(Yes and Young) = 0.077

Union Probability

		Age			
		Young	Middle-aged	Old	Total
Loan	No	0.225	0.586	0.005	0.816
Default	Yes	0.077	0.104	0.003	0.184
	Total	0.302	0.690	0.008	1.000

$$P(Yes or Young) = P(Yes) + P(Young) - P(Yes and Young) = 0.184 + 0.302 - 0.077 = 0.409$$

Conditional probability:

 Probability that event B will occur given that event A has already occurred is called as conditional probability.

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

Bayes' Theorem

A way of finding a probability when you know certain other probabilities

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

- Where P(B) != 0
- P(A) Probability of event 'A'
- P(B) Probability of event 'B'
- P(B|A) conditional probability of event 'B' when event 'A' has occurred

Confusion Matrix

		Predicted		
		Positive	Negative	
	Positive	True +ve	False –ve	Recall/Sensitivity/True Positive Rate (Minimize False –ve)
Actual	Negative	False +ve	True –ve	Specificity/True Negative Rate (Minimize False +ve)
		Precision		Accuracy, F ₁ score

$$Recall = \frac{True + ve}{Actual\ Total + ve}$$

$$Precision = \frac{True + ve}{Predicted + ve}$$

$$Specificity = \frac{True - ve}{Actual Total - ve}$$

$$F_1Score = \frac{2 * Precession * Recall}{(Precession + Recall)}$$

$$Accuracy = \frac{(True + ve) + (True - ve)}{(True + ve) + (False + ve) + (False - ve) + (True - ve)}$$

Problem 1: Spam Filter

Spam filtering		Pre	Predicted		
Spam IIIu	ering	Positive	Negative	Total	
	Positive	952	526	1478	
Actual	Negative	167	3025	3192	
Total		1119	3551	4670	

$$Recall (Sensitivity) = \frac{952}{1478} = 0.644$$

$$Precision = \frac{952}{1119} = 0.851$$

$$Accuracy = \frac{952 + 3025}{952 + 3025 + 526 + 167} = \frac{3977}{4670} = 0.852$$

$$Specificity = \frac{3025}{3025 + 167} = \frac{3025}{3192} = 0.948$$

$$F_1 = 2 * \frac{Precision * Recall}{Precision + Recall} = \frac{2 * 0.851 * 0.644}{0.851 + 0.644} = \frac{1.096}{1.495} = 0.733$$

Problem 2: Breast Cancer

Breast cancer detection		Pre	Predicted		
		Positive	Negative	Total	
Actual	Positive	852	126	978	
	Negative	67	1025	1092	
Total		919	1151	2070	

$$Recall (Sensitivity) = \frac{852}{978} = 0.871$$

$$Precision = \frac{852}{919} = 0.927$$

$$Accuracy = \frac{852 + 1025}{852 + 1025 + 126 + 67} = \frac{1877}{2070} = 0.907$$

$$Specificity = \frac{1025}{1025 + 67} = \frac{1025}{1092} = 0.939$$

$$F_1 = 2 * \frac{Precision * Recall}{Precision + Recall} = \frac{2 * 0.871 * 0.927}{0.871 + 0.927} = \frac{1.615}{1.798} = 0.898$$

Interview Question:

Q. You have been tasked to build a classifier for cancer diagnosis. It is of high importance that patients with cancer can be diagnosed wrongly as negative but patients without cancer should NEVER be diagnosed as positive.

Which of the following classification models would you prefer? (Assuming: Positives = Cancer, Negatives = Not cancer)

Options:

- True Positive Rate [which is = True Positive / Actual Positive]
- True Negative Rate [which is = True Negative / Actual Negative]
- Precision [which is = True Positive / Predicted Positive]
- Total Accuracy [which is = (True Positive + True Negative) / Total Population]

Answer – Precision

REFERENCES

Probability & statistics

http://www.mathsisfun.com/data/index.html#stats

Short definition & terms in probability and statistics

http://stattrek.com

Conditional probability explained visually

https://www.khanacademy.org/video/conditional-probability2

Bayes Theorem:

- https://youtu.be/E4rlJ82CUZI
- Confusion Matrix
 - http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

