Distance Based Classification Algorithms

# Nearest Neighbor Classifier (Cover and Hart, 1967)

- Let  $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$  be set of labeled patterns (Training set), where  $x_i$  is a pattern and  $y_i$  be its class label. Let x be a pattern with unknown class label (test pattern).
- NN Rule is :
- Let  $x' \in \mathcal{T}$  be the pattern nearest to a test pattern x.
- I(x) = I(x')

#### Complexity:

- Time:  $O(|\mathcal{T}|)$
- Space:  $O(|\mathcal{T}|)$



### Condensed NNC (Hart, 1968)

INPUT: Training Set  $\mathcal{T}$  OUTPUT: A condenced Set  $\mathcal{S}$ .

- **①** Start with a condensed set  $S = \{x\}$ .
- **2** For each  $x \in \mathcal{T} \setminus \mathcal{S}$ 
  - Classify x using NN considering S as training set.
  - ② if x is misclassified then  $S = S \cup \{x\}$
- 3 Repeat Step 2 until no change found in Condensed Set

# Modified CNN(Devi and Murthy, 2003)

- Start with condensed set S. S contains one pattern from each class.
- $\mathcal{G} = \emptyset$
- **3** For each  $x \in \mathcal{T}$ 
  - Classify x using NN considering S as training set.
  - **②** if x is misclassified then  $\mathcal{G} = \mathcal{G} \cup \{x\}$
- Find a representative pattern from each class in G; Let representative set is R.
- $\mathfrak{G} = \emptyset$
- Repeat Step 2 to Step 6 until there is no misclassification.

MCNN is an order independent algorithm

Many Iterations.

# K-Nearest Neighbor Classifier

- Let  $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$  be a Training set.
- Let x be a pattern with unknown class label (test pattern).
- Algorithm:
- KNN = ∅
- For each  $t \in \mathcal{T}$ 

  - $KNN = KNN \cup \{t\}$
  - else
    - Find a  $x' \in KNN$  such that dis(x, x') > dis(x, t)
    - **2**  $KNN = KNN \{x'\}; KNN = KNN \cup \{t\}$
- The pattern x belongs to a Class in which most of the patterns in KNN belong to.



### How to find the value of K

#### r-fold Cross Validation

- Partition the training set into r blocks. Let these are  $\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_r$
- For i = 1 to r do
  - **①** Consider  $T T_i$  as the training set and  $T_i$  as the validation set.
  - For a range of K values (say from 1 to m) find the error rates on the validation set.
  - 3 Let these error rates are  $e_{i1}, e_{i2}, \ldots, e_{im}$
- Take  $e_i = \text{mean of } \{e_{1i}, e_{2i}, \dots, e_{ri}\}$ , for i = 1 to m.
- The value of  $K = \underset{i}{\operatorname{argmin}} \{e_1, e_2, \dots, e_m\}$

# Weighted k-NNC(Dudani, 1976)

- k-NNC gives equal importance to the first NN and to the last NN.
- Weight is assigned to each nearest neighbor of a quary pattern.
- Let  $\mathcal{X} = \{x_{i_{=1..k}}^{C_j} \mid x_i^{C_j} \in \mathcal{T}\}$  be the set of k-NN of q, whose class label is to be determined.
- Let  $D = \{d_1, d_2, \dots, d_k\}$  be an ordered set, where  $d_i = ||x_i q||, d_i \le d_j, i < j$
- The weight  $w_j$  is assigned to  $j^{th}$  nearest neighbor as follows.

$$w_j = \begin{cases} \frac{d_k - d_j}{d_k - d_1} & \text{if } d_j \neq d_1\\ 1 & \text{if } d_j = d_1 \end{cases}$$

- Calculate weighted sums of patterns belong to each class.
- Classify q to a class for which weighted sum is maximum.



# **Editing Techniques**

- Larger the training set, more the computational cost.
- Another technique eliminates (edit) training prototypes (pattern) erroneously labeled, commonly outliers, and at the same time, to "clean" the possible overlapping between regions of different classes.

### **Editing Techniques**

- Larger the training set, more the computational cost.
- Another technique eliminates (edit) training prototypes (pattern) erroneously labeled, commonly outliers, and at the same time, to "clean" the possible overlapping between regions of different classes.
- Wilsons editing relies on the idea that, if a prototype is erroneously classified using the k-NN, it has to be eliminated from the training set.

# <u>E</u>dited <u>N</u>earest <u>N</u>eighbor (Willson, 1976)

INPUT: T is a training set OUTPUT: S is an edited set

- for each  $x \in \mathcal{T}$  do
  - classify x using k-NN Classifier (break the ties randomly)
  - if x is misclassified then mark x
- ② Delete all marked paterns from  $\mathcal{T}$ ; let the reduced training set be S.
- Output S

# Repeated ENN (Tomek, 1976)

ullet Apply ENN method repeatedly until there is no chnage in the training set  ${\mathcal T}$