

Linear Algebra - Distance, Hyperplanes and Halfspaces, Eigenvalues, Eigenvectors

Linear Algebra

Data science for Engineers

Representation of line and plane

Point X¹ lies on the line $\Rightarrow n^TX^1 + b = 0 - (1)$ Point X² lies on the line $\Rightarrow n^TX^2 + b = 0 - (2)$ Subtracting (2) from (1) $n^T(X^2 - X^1) = 0$. Thus n is perpendicular to $(X^2 - X^1)$

Projections

• We can define the projection (\hat{X}) of a vector (X) onto a lower dimension (two dimensions in the picture) mathematically as 2, , 22

· Using vector addition

 $X = \underbrace{c_1 v_1 + c_2 v_2}_{\bullet \bullet} + \underbrace{n}$

Linear Algebra

Data science for Engineers

Projections

Projections onto general orthogonal directions (two dimensions in this case)

$$v_{1}^{T} \underbrace{(X - (c_{1}v_{1} + c_{2}v_{2}))}_{v_{1}^{T} X - c_{1}v_{1}^{T} v_{1} = 0} = 0$$

$$\hat{X} = \underbrace{v_{1}^{T} X}_{v_{1}^{T} v_{1}} \underbrace{v_{1}^{T} x}_{v_{1}^{T} v_{1}} \underbrace{v_{1}^{T} x}_{v_{2}^{T} v_{2}} \underbrace{v_{2}^{T} x}_{v_{2}^{T} v_{2}^{T} v_{2}} \underbrace{v_{2}^{T} x}_{v_{2}^{T} v_{2}} \underbrace{v_{2}^{T} x}_{v_{2}$$

Data science for Engineers

Projections: Example

$$X = [1 \ 2 \ 3]^T \checkmark$$

- Projecting this vector onto the space spanned by the vectors $v_1 = \begin{bmatrix} 1 & -1 & -2 \end{bmatrix}^T$ and $v_2 = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}^T$
- Thus, finding the projection onto the plane defined by

Linear Algebra

Data science for Engineers

Projections: Example

$$\hat{X} = \frac{-7}{6} \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

$$\hat{X} = \begin{bmatrix} 5/6 \\ 7/6 \\ 20/6 \end{bmatrix}$$

Linear Algebra

Projection -Generalization

• Consider the problem of projection of X onto a space spanned k linearly independent vectors

$$\widehat{\hat{X}} = \sum_{j=1}^{k} c_j v_j$$

$$\widehat{\hat{X}} = \sum_{j=1}^{k} c_j v_j \qquad \varsigma_j \widehat{v}_j + \varsigma_j \widehat{v}_j + \varepsilon_k \widehat{v}_k$$

$$\widehat{X} = \begin{bmatrix} v_1 \\ \vdots \\ v_k \end{bmatrix} \dots \begin{bmatrix} v_k \\ \vdots \\ v_k \end{bmatrix}_{\mathbf{K}_{\mathbf{K}^{\mathbf{A}}}}$$

Linear Algebra

Data science for Engineers

Projection -Generalization

· Projections onto general directions

• Consider the problem of projection of X onto a space spanned k linearly independent vectors

$$\widehat{\widehat{X}} = \sum_{j=1}^{k} c_j v_j$$

$$\vec{x} = \begin{bmatrix} v_1 & \dots & v_k \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix}$$

$$\hat{X} = Vc$$

$$= c_1 \lambda_1 + c_1 \lambda_2 + \cdots$$

Projection -Generalization

· Using orthogonality idea

$$V^{T}(X - \widehat{X}) = V^{T}(X - \underline{V}c) = 0$$

$$V^{T}(X - \underline{V}c) = 0$$

$$C = (\underline{V}^{T}\underline{V})^{-1}\underline{V}^{T}X$$

$$\widehat{X} = \underline{V}(\underline{V}^{T}\underline{V})^{-1}\underline{V}^{T}X$$

Linear Algebra