Notes of binius

Jade Xie

2024年5月15日

目录

1 TO-DO

- 多项式 $X^2 + X_{\iota-2} \cdot X + 1$ 在 $\mathcal{T}_{\iota-1}[X_{\iota-1}]$ 上是不可约的(见 [?]Thm. 1).
- 两个大数相乘并作算法复杂度的分析.

2 介绍

3 Background

- 3.1 Polynomials
- 3.2 Binary Towers

3.2.1 子域与扩张

在具体深入 binius 论文 [?] 2.3 Binary Towers 细节之前,先给出数学上关于域扩张的知识.

首先看看什么是扩域. 下面参考《抽象代数》[?] 中的描述. 设 E 是域,F 是其**子域**(即 $F \subset E$ 且 F 按照 E 中的运算成为域,二者乘法单位元同一),则称 E 是 F 的**扩张**或**扩域**(extension field),记为 E/F. 理解一下,意思是域 F 是域 E 的子域就构成一个扩域 E/F,F 是 E 的子域表示的意思是保持 F 中的两个二元运算,它们在两个域中是同样的两个二元运算,并且两个域的乘法单位元是同一个. 扩域也可以用线性空间的角度来看,由 E 是 F 的扩域,特别可知 E 是 F 上的**线性空间**.

定义 1. 如果一个代数系统 $(V:+,\cdot;\mathbb{P})$ 满足下列性质,那么就称为数域 \mathbb{P} 上的一个线性空间.

- (1) 向量加法的交换律: $\forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha$.
- (2) 向量加法的结合律: $\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$
- (3) 向量加法有零元: $\exists \theta \in V, \forall \alpha \in V, \alpha + \theta = \alpha$.
- (4) 向量加法有负元: $\forall \alpha \in V, \exists \alpha i \in V, \alpha + \alpha i = \theta$.
- (5) 标量乘法对向量加法有分配律: $\forall \alpha, \beta \in V, \forall k \in \mathbb{P}, k \cdot (\alpha + \beta) = k \cdot \alpha + k \cdot \beta$.
- (6) 标量乘法对域加法有分配律: $\forall \alpha \in V, \forall k, l \in \mathbb{P}, (k+l) \cdot \alpha = k \cdot \alpha + k \cdot \alpha$.

3 BACKGROUND 2

- (7) 标量乘法与标量的域乘法相容: $\forall \alpha \in V, \forall k, l \in \mathbb{P}, (kl) \cdot \alpha = k \cdot (l \cdot \alpha).$
- (8) 标量乘法有单位元: $\forall \alpha \in V, 1 \cdot \alpha = \alpha$.

满足以上八条性质便可称其为线性空间,在不引起混淆的情况下也可记为 $V.k\cdot\alpha$ 也可沿用几何空间中向量数乘的习惯为 $k\alpha$.

根据线性空间的定义,这里 E/F, E 是 F 的线性空间,也就是说:

- (1) E 是一个加法阿贝尔群.
- (2) F 中的元素与 E 中的元素之间有(数乘)运算且满足:对任意 $c, o \in F$, α , $\alpha \in E$ 有
 - (i) $c\alpha \in E$
 - (ii) $c(\alpha + \alpha \prime) = c\alpha + c\alpha \prime$
 - (iii) $(c + ct)\alpha = c\alpha + ct\alpha$
 - (iv) $(cc')\alpha = c(c'\alpha)$
 - (v) $1 \cdot \alpha = \alpha$

扩域 E 作为 F 上的线性空间,其维数称为扩张次数,记为 [E:F];此线性空间的基称为扩张 E/F 的基,或 E 的 F-基. 当 [E:F] 有限时,称 E/F 为有限扩张. 而 [E:F]=1 意味着 E=F. 这里扩域 E 作为 F 上的线性空间,还可以这样来表述: 设 $\{\alpha_1,\alpha_2,\ldots,\alpha_n\}$ 是 E/F 的基,则对于 E 中的任意一个元素 $v\in E$,都可以表示为

$$v = \sum_{j} \omega_{j} \alpha_{j} = \omega_{0} \alpha_{0} + \omega_{1} \alpha_{1} + \dots + \omega_{n} \alpha_{n}, \omega_{j} \in F, j = 0, 1, \dots, n.$$

意思就是 E 中的所有元素都可以用 F 中的元素通过 E 的 F-基进行线性表出. 不将基显式地写出来,也可以将 E 看作是 F 上的向量空间 (vector space,其实向量空间就是线性空间 [?]),例如上述的 v 就能用一个向量来表示

$$v = (\omega_0, \omega_1, \omega_2, \dots, \omega_n)$$

- 定义 2. (1) 设 E/F 为域的扩张, $\alpha \in E$,称 $\alpha \in F$ 上的代数元素 (algebraic element) 是指: $\alpha \in F$ 上的某多项式 $f(x) \in F[x]$ 的根,即 $f(\alpha) = 0$,也就是说存在正整数 n 和不全为 0 的 c_0 , c_1 , \cdots , $c_n \in F$ 使得 $c_n a^n + \cdots + c_1 a + c_0 = 0$ (称 f(x) 是 α 的化零多项式).
- (2) 如果 E 中所有元素都是 F 上的代数元素,则称 E/F 是代数扩张 (algebraic extension). 非代数元素为超越元素,非代数扩张为超越扩张 (transcendent extension).
- (3) 若复数 α 是 \mathbb{Q} 上的代数元素,则称 α 为代数数,否则称为超越数.

在域扩张中,有很重要的一个定理,是域扩张的有力工具,定理如下.

定理 1 (单代数扩张). 设 F 是任一域, $p(x) \in F[x]$ 是任一个 n(>1) 次不可约多项式,则存在 F 的 n 次单扩张 $E=F(\alpha)$,且 α 是 p(x) 的根. 事实上,商环 E=F[x]/(p(x)) 为域. 视同构 $F\simeq \bar{F}$ 为相等(对 $b\in F$ 视为 $b=\bar{b}$),则 E 是 F 的 n 次扩域, $\alpha=\bar{x}$ 是 p(X) 的根,且

$$E = F(\alpha) = \{b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1} | b_0, b_1, \dots, b_{n-1} \in F\},\$$

(这里 $\overline{g(x)}$ 表示 g(x) 的模 (p(x)) 同余类, $\overline{F} = {\overline{b} : b \in F}$).

3 BACKGROUND 3

例 1 (复数域的引入). 设 $F = \mathbb{R}$ 是实数域, $p(X) = X^2 + 1$ 不可约, n = 2. 则商环

$$E = \mathbb{R}[x]/(x^2 + 1) = \{\bar{a} + \bar{b}\bar{x}|a, b \in \mathbb{R}\} = \{a + bi|a, b \in \mathbb{R}\}\$$

(其中 $i=\bar{x}$, 且对实数 b 记 $\bar{b}=b$). 于是 $0=x^2+1=\bar{x}^2+1=i^2+1$, $i^2=-1$, 故常记 $i=\sqrt{-1}$, $E=\{a+bi\}$ 就是复数域 \mathbb{C} . 这是引入复数域的最严格途径.

论文 [?] 中的域扩张构造就是按照这个定理思路进行扩张的. 先选定第一个域 $\mathcal{T}_0 := \mathbb{F}_2$ (第一个域也可以选择大一些的域 $\mathbb{F}_{2^{2^k}}$,例如 \mathbb{F}_{16} ,最后计算结果都可以递归到第一个域 $\mathbb{F}_{2^{2^k}}$ 中的计算,可以用查表的方法直接得到结果 [?]),接着基于 \mathbb{F}_2 进行单代数扩张,考虑在 \mathbb{F}_2 上的不可约多项式 $p(x) = x^2 + x + 1$,即 p(x) 在 \mathbb{F}_2 上找不到一个数 x_0 使得 $p(x_0) = x_0^2 + x_0 + 1 = 0$,但是在需要扩的域上 \mathbb{F}_{2^2} 上能够找到一个根,记这个根为 $X_0 \in \mathbb{F}_{2^2}$,即 $X_0^2 + X_0 + 1 = 0$ 在 \mathbb{F}_{2^2} 上成立. 设 $\mathcal{T}_1 := \mathbb{F}_2[X_0]/(X_0^2 + X_0 + 1)$ 为 \mathbb{F}_2 的扩域. 考虑到能够进行递归的域扩张,对于 $\forall t > 1$,

$$\mathcal{T}_{\iota} := \mathcal{T}_{\iota-1}[X_{\iota-1}]/(X_{\iota-1}^2 + X_{\iota-2} \cdot X_{\iota-1} + 1), \qquad X_{\iota-2} \in \mathcal{T}_{\iota-1}, X_{\iota-1} \in \mathcal{T}_{\iota}. \tag{1}$$

对于多项式 $X_{\iota-1}^2 + X_{\iota-2} \cdot X_{\iota-1} + 1$,将 $X_{\iota-1}$ 看作自变量 X,多项式 $X^2 + X_{\iota-2} \cdot X + 1$ 在 $\mathcal{T}_{\iota-1}[X_{\iota-1}]$ 上是不可约的(见 [?]Thm. 1). 下面写一些具体的例子来理解这个域扩张的过程。从 \mathbb{F}_2 开始:

$$\mathcal{T}_0 := \mathbb{F}_2 = \{0, 1\}$$

对 \mathbb{F}_2 进行扩张,引入新的元素 X_0 , $\mathcal{T}_1 := \mathbb{F}_2[X_0]/(X_0^2 + X_0 + 1)$, \mathcal{T}_1 的 \mathcal{T}_0 -基为 $1, X_0$,根据扩域的线性空间角度理解, \mathcal{T}_1 中的元素都能写成 $a + bX_0(a, b \in \mathbb{T}_{t-1})$ 的形式,则

$$\mathcal{T}_1 := \mathbb{F}_2[X_0]/(X_0^2 + X_0 + 1) = \{0, 1, X_0, 1 + X_0\}.$$

实际 $T_1 \cong \mathbb{F}_{2^2}$. 接着扩域在 T_1 上扩域

$$\mathcal{T}_2 := \mathcal{T}_1[X_1]/(X_1^2 + X_0X_1 + 1)$$

要计算 \mathcal{T}_2 中的元素,可以用一个表格来计算,见表**??**,因为 \mathcal{T}_2 中的元素都可以用 \mathcal{T}_2 的 \mathcal{T}_2 -基为 $\{1, X_1\}$ 线性表出,即写成 $a+bX_1, a, b \in \mathcal{T}_1$. 继续扩域的过程是类似的. 那么最后形成一个扩张塔 $\mathcal{T}_0 \subset \mathcal{T}_1 \subset \cdots \mathcal{T}_t$. 那么

次 1. 72 F17/6次				
a/bX_1	0	$1 \cdot X_1$	$X_0 \cdot X_1$	$(1+X_0)\cdot X_1$
0	0	X_1	X_0X_1	$X_1 + X_0 X_1$
1	1	$1 + X_1$	$1 + X_0 X_1$	$1 + X_1 + X_0 X_1$
X_0	X_0	$X_0 + X_1$	$X_0 + X_0 X_1$	$X_0 + X_1 + X_0 X_1$
$1 + X_0$	$1 + X_0$	$1 + X_0 + X_1$	$1 + X_0 + X_0 X_1$	$1 + X_0 + X_1 + X_0 X_1$

表 1: 72 中的元素

最后得到一个相同的环, $\forall \iota \geq 0$,

$$\mathcal{T}_{\iota} = \mathbb{F}_2[X_0, \cdots, X_{\iota-1}]/(X_0^2 + X_0 + 1, \cdots, X_{\iota-1}^2 + X_{\iota-2} \cdot X_{\iota-1} + 1).$$

这里的表示意思是可以从 \mathbb{F}_2 直接扩到 \mathcal{T}_{ι} ,且 $\mathbb{F}_2(X_0,\ldots,X_{\iota-1})\cong \mathbb{F}_2[X_0,\cdots,X_{\iota-1}]/(X_0^2+X_0+1,\ldots,X_{\iota-1}^2+X_{\iota-2}\cdot X_{\iota-1}+1)$.

扩域中一次性添加多个元素: 在对域 F 扩张时,可以向域 F 中陆续添加多个元素 α , β , \cdots , γ , 得到扩域 $F(\alpha, \beta, \cdots, \gamma)$. 即先向 F 添加 α , 再向 $F(\alpha)$ 添加 β , 等等. 易知 $F(\alpha, \beta, \cdots, \gamma)$ 即是 α , β , \cdots , γ 和 F 的元素多次加减乘除得到的结果集合,是含 F 和 α , β , \cdots , γ 的最小域. 例如

$$\mathbb{Q}(\sqrt{2},\sqrt{3})=(\mathbb{Q}(\sqrt{2}))(\sqrt{3})=\{a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}|a,b,c,d\in\mathbb{Q}\}.$$

参考文献 4

那就可以这样来理解 $\mathbb{F}_2(X_0,\ldots,X_{\iota-1})\cong \mathbb{F}_2[X_0,\cdots,X_{\iota-1}]/(X_0^2+X_0+1,\ldots,X_{\iota-1}^2+X_{\iota-2}\cdot X_{\iota-1}+1)$,是对 \mathbb{F}_2 一次性添加了 ι 个元素 $X_0,\ldots,X_{\iota-1}$,也可以看成逐个去添加元素. 扩张之后形成的域与上述的商环是同构的.

现在考虑在 \mathcal{T}_{ι} 中的两个元素 a 和 b 做乘法运算,那么 a 与 b 都能用 \mathcal{T}_{ι} 的 $\mathcal{T}_{\iota-1}$ -基线性表示,由域扩张构造方程(??) $\mathcal{T}_{\iota} := \mathcal{T}_{\iota-1}[X_{\iota-1}]/(X_{\iota-1}^2 + X_{\iota-2} \cdot X_{\iota-1} + 1)$ 知 $\mathcal{T}_{\iota}/\mathcal{T}_{\iota-1}$ 的基为 $\{1, X_{\iota-1}\}$,则

$$a = a_0 + a_1 X_{\iota-1}, \quad a_0, a_1 \in \mathcal{T}_{\iota-1}$$

 $b = b_0 + b_1 X_{\iota-1}, \quad b_0, b_1 \in \mathcal{T}_{\iota-1}$

因此 a 与 b 相乘可以写为:

$$\begin{split} &(a_0+a_1X_{\iota-1})(b_0+b_1X_{\iota-1})\\ =&a_0b_0+(a_0b_1+a_1b_0)X_{\iota-1}+a_1b_1X_{\iota-1}^2\\ &(由于在\mathcal{T}_{\iota}中 X_{\iota-1})$$
不可约多项式 $X_{\iota-1}^2+X_{\iota-2}\cdot X_{\iota-1}+1$ 的根,因此 $X_{\iota-1}^2+X_{\iota-2}\cdot X_{\iota-1}+1=0$,,则 $X_{\iota-1}^2=-X_{\iota-2}\cdot X_{\iota-1}-1$.在 \mathbb{F}_{2^k} 中,特征为 2,则 $1+1=0$,因此 $X_{\iota-1}^2=X_{\iota-2}\cdot X_{\iota-1}+1$)
$$=&a_0b_0+a_1b_1+(a_0b_1+a_1b_0+a_1b_1X_{\iota-2})X_{\iota-1} \end{split}$$

这样在 \mathcal{T}_t 中比较大的两个数就能有效的转换为在比较小的 \mathcal{T}_{t-1} 中的数相乘,这个过程利用了 Karatsuba 算法 [?],能够比直接在 \mathcal{T}_t 中进行计算更有效. 利用算法复杂度分析中的主定理,可以得到这里的乘法复杂度为 $\mathcal{O}(2^{\log 3 \cdot t})$ [?].

参考文献

- [1] Benjamin E. Diamond and Jim Posen, Succinct Arguments over Towers of Binary Fields, Cryptoglogy ePrint Archive, 2023.
- [2] 张贤科, 抽象代数, 2022.
- [3] John L. Fan and Christof Paar, On efficient inversion in tower fields of characteristic two, Proceedings of IEEE International Symposium on Information Theory, 1997.
- [4] 向量空间, Wikipedia.
- [5] Doug Wiedemann, An Iterated Quadratic Extension of GF(2), The Fibonacci Quarterly, 1988.
- [6] Karatsuba Algorithm, Wikipedia.