Rossman Sales Prediction

Name: Sai Charan Desireddy

Date: 2/12/2024

Problem Statement

The Challenge:

Rossman stores need accurate sales forecasts to:

- Optimize inventory levels.
- Allocate staff effectively.
- Plan promotions and marketing campaigns.

The Goal:

• Build a predictive model to forecast daily sales using historical and store-level data.

Approach

- 1. Data Collection and Understanding:
 - Analyzed historical sales (train.csv).
 - Incorporated store-level features (store.csv).
- 2. Data Preprocessing:
 - Cleaned and enhanced data quality.
- 3. Exploratory Data Analysis (EDA):
 - Identified trends, patterns, and anomalies.
- 4. Modeling:
 - Applied machine learning for sales prediction.
- 5. Evaluation and Recommendations:
 - Assessed model performance and suggested improvements.

Data Overview

train.csv:

- ~1,000,000 records, spanning multiple years.
- Features: Date, store ID, sales, customers, and promotions.

store.csv:

• Store-specific attributes like size, type, and competition.

Key Challenges:

- Missing values in store.csv for competition and promotion data.
- High variance in sales patterns across stores.

Actions Taken:

- Imputed missing values.
- Removed irrelevant columns.
- Applied Transformations on columns.

Exploratory Data Analysis

1. Seasonality:

- Significant sales increase during holiday seasons.
- Weekly sales spikes observed on Saturdays.

2. Store Performance:

• Larger stores with Type A show consistently higher sales.

3. Customer Behavior:

• Positive correlation between customer count and sales.

4. Visuals include:

- Time series plot (sales vs. time).
- Bar chart (average sales by store type).
- Correlation heatmap (relationships between features).

Modeling Strategy

Initial Model: Decision Tree Regressor

• Challenge: High RMSE, despite good accuracy.

Model Enhancement: Box-Cox Transformation

• Effect: Improved data distribution, reducing RMSE.

Final Model: Random Forest Regressor

- 1. Performance:
 - RMSE: 15.034 (improved after Box-Cox).
 - R² Score: 98% (indicating excellent model fit).
- 2. Why Random Forest?

Handles non-linearity, overfitting, and provides feature importance.

Model Evaluation

1. RMSE:

- Before Box-Cox: High RMSE.
- After Box-Cox: RMSE reduced to 15.034, improving predictions.

2. R² Score:

- 98%, indicating the model explains most of the variance in sales.
- Feature Importance (Random Forest):

Conclusion

Key Insights:

- Random Forest with Box-Cox transformation significantly improved prediction accuracy.
- The model explains 98% of the variance in sales data (\mathbb{R}^2 = 98%).

Future Steps:

- Explore further feature engineering and model optimization.
- Implement the model in real-time systems for operational use at Rossman.

GitHub Repository

GitHub Repository: [Insert GitHub link here]

Contents:

- Jupyter notebook with the full analysis and model code.
- Data files and preprocessing steps.
- Model evaluation and recommendations.