# Tmax - Tstop

## Instrukcja

## Spis treści

| 1. INTiBS  | Folder           | 2 |
|------------|------------------|---|
| 2. Analysi | s                | 7 |
| ·          | rania do analizy |   |



### 1. INTiBS Folder

Funkcja INTiBS pozwala uporządkować dane otrzymywane w procesie procedury Tmax-Tstop oraz wyciąga i zapisuje do Excela istotne dane pomiarowe (temperatura, intensywność). Funkcja ta pozwala zaoszczędzić czas przy wyborze odpowiednich danych pomiarowych.

Użycie tej opcji jest możliwe tylko na folderze z danymi utworzonymi poprzez software i aparaturę znajdującą się w INTiBS PAN we Wrocławiu.

#### 1. Wybieramy opcję INTiBS



2. Po kliknięciu konieczne jest wskazanie folderu z danymi a następnie wybranie folderu



3. Wpisujemy numer pliku pierwszego pomiaru temperatury i numer pierwszego pomiaru intensywności.



4. W tym przypadku są to pomiary 5 (Intensywność) i 7 (Temperatura). Po wpisaniu wartości klikamy "Start"



5. Po kilku sekundach okno programu zostanie automatycznie zamknięte a w wybranym wcześniej folderze utworzy się nowy folder "Sequence Position X"



6. Dane pomiarowe rozdzielane są na folder dotyczący sequence position (miejsca próbki w aparaturze) oraz czasu naświetlnia (Irradiation).



7. Po wejściu w folder "Irradiation". Ukazuje się nowy folder "Excel files" oraz nowy plik Excela Data set



→ Excel\_files: w tym folderze zapisywane są dane dotyczące temperatury, a nazwy plików odpowiadają temperaturze Tstop



Każdy plik posiada 3 kolumny (Czas wykonania pomiaru, temperaturę oraz zmierzoną intensywność)

→ 2. Data\_set to plik w którym zapisane są wszystkie dane pomiarowe dla każdej temperatury Tstop. W nagłówkach znajduję się Tstop, a poniżej dane o temperaturze i intensywności.



## 2. Analysis

Funkcja analizy pozwala na wykonanie procedury Tmax – Tstop. Program zgodnie z tą procedurą najpierw znajduje pierwszą maksymalną intensywność a następnie przystępuje do wykonania IRM (Initial Rise Method) dla każdej temperatury Tstop. Po wykonanej analizie program przedstawia rezultaty w postaci raportu zapisanego w formacie pdf, plików excela z danymi oraz zapisuje wszystkie potrzebne wykresy.

1. Wybieramy funkcję "Analysis"



2. Wybieramy plik Excela ze wszystkimi danymi (patrz rozdział 3. Wymagania do analizy)



3. Po załadowaniu pliku z danymi, wprowadzamy współczynnik heating rate, następnie klikamy przycisk 'Start".



4. Analiza trwa około 30 sekund. Spowodowane jest to tworzeniem wykresów, plików z pomiarami IRM oraz utworzeniem raportu z podsumowaniem.



- → Folder IRM\_results: zawiera pliki z danymi, które zostały przetransformowane na (1/kT i log(Int)) transformacja ta wynika z zastosowania metody IRM. W folderze każdy plik ma nazwę temperatury Tstop.
- → Folder Charts: zawiera następujące wykresy:



Każde z nich mają na początku nazwę Tstop (dla szybszego odnalezienia wybranego wykresu)

a) (tstop) TSTOP: Wykres z zaznaczoną temperaturą Tmax



### b) (tstop)\_IRM\_TI: Zaznaczone dane brane pod uwagę przy analizie IRM



 c) (tstop)\_IRM\_lnKT: Transformowane dane wraz z funkcją najlepszego dopasowania dla wymaganego odcinka metodą IRM (15% max int)



d) T\_max - T\_stop: Wykres z podsumowaniem T\_max, T\_stop i energii aktywacji.



→ Plik summary\_data\_frame: zawiera wszystkie dane o obliczonych parametrach.

| $\Delta$ | Α  | В           | С              | D          | E           | F           | G           | Н           |
|----------|----|-------------|----------------|------------|-------------|-------------|-------------|-------------|
| 1        |    | T_stop [°C] | T_stop (value) | T_max [°C] | Energy [ev] | u(E) [eV]   | s           | u(E)/E [%]  |
| 2        | 0  | T_stop: 30  | 30             | 56.15      | 0.507711229 | 0.044181746 | 1600688.002 | 8.70214088  |
| 3        | 1  | T_stop: 40  | 40             | 61.03      | 0.622713308 | 0.0273551   | 79630905.29 | 4.392888341 |
| 4        | 2  | T_stop: 50  | 50             | 67.21      | 0.610349705 | 0.021751391 | 33332527.08 | 3.563758714 |
| 5        | 3  | T_stop: 60  | 60             | 74.4       | 0.598231122 | 0.021224893 | 13592666.64 | 3.547942027 |
| 6        | 4  | T_stop: 70  | 70             | 83.38      | 0.52620042  | 0.015314855 | 658769.6287 | 2.910460419 |
| 7        | 5  | T_stop: 80  | 80             | 94.72      | 0.572895014 | 0.01899956  | 1733331.172 | 3.316412166 |
| 8        | 6  | T_stop: 90  | 90             | 104.17     | 0.486455392 | 0.015747214 | 62329.7669  | 3.23713433  |
| 9        | 7  | T_stop: 100 | 100            | 111.16     | 0.382942811 | 0.014965196 | 1582.037448 | 3.907945537 |
| 10       | 8  | T_stop: 110 | 110            | 119.73     | 0.322785242 | 0.014737053 | 167.729326  | 4.565590805 |
| 11       | 9  | T_stop: 120 | 120            | 130.38     | 0.460173299 | 0.086061868 | 9161.701523 | 18.70205596 |
| 12       | 10 | T_stop: 130 | 130            | 212.99     | 0.247442223 | 0.008355355 | 2.232357926 | 3.376689412 |
| 13       | 11 | T_stop: 140 | 140            | 217.52     | 0.583157142 | 0.173038617 | 13725.79232 | 29.67272532 |
| 14       | 12 | T_stop: 150 | 150            | 216.19     | 0.233372052 | 0.008525652 | 1.432037968 | 3.65324484  |
| 15       | 13 | T_stop: 160 | 160            | 215.07     | 0.458565742 | 0.060539334 | 604.5496489 | 13.20188755 |
| 16       | 14 | T_stop: 170 | 170            | 217.06     | 0.331497666 | 0.017994638 | 20.48296707 | 5.428285121 |
| 17       | 15 | T_stop: 180 | 180            | 219.62     | 0.30104437  | 0.022724598 | 8.626882945 | 7.548587756 |
| 18       | 16 | T_stop: 190 | 190            | 217.96     | 0.225239324 | 0.008014708 | 1.109923622 | 3.558307696 |
| 19       | 17 | T_stop: 200 | 200            | 231.74     | 0.459000789 | 0.085078264 | 398.7788878 | 18.53553766 |
| 1        |    |             |                |            |             |             |             |             |

→ Plik Report: Plik pdf z podsumowaniem. Znajdują się w nim wykresy wraz z tablą z parametrami.



## 3. Wymagania do analizy

Plik do analizy, który nie został stworzony poprzez algorytm "INTiBS folder". Musi mieć szczególną postać:



1. W wierszu nr. 1 muszą zostać zapisane temperatury Tstop dla każdego pomiaru. Może to być po prostu napisana temperatura np. 30 lub dodać dodatkowy tekst "t stop 50" ważne, aby została zawarta liczba. Preferowany format dla Tstop = 60 to np. : 60 lub Tstop 60.

#### UNIKAĆ ZNAKÓW SPECJALNYCH!

- 2. Kropka jako symbol dziesiętny
- 3. Obowiązuje struktura Temperatura/Intensywność/Temperatura/Intensywność dla każdej z kolumn
- 4. Ilość danych dla każdej kolumny musi być taka sama.