Lesson 45: Practice Problems Method of Undetermined Coefficients

ODE 1 with Prof. Adi Ditkowski

Tel Aviv University

Part A: Basic Non-Resonant Cases (5 problems)

- 1. Solve: y'' 5y' + 6y = 12
- 2. Solve: y'' + y' 2y = 4t 6
- 3. Solve: $y'' 4y = 3e^{-t}$
- 4. Solve: $y'' + 9y = 5\cos(2t)$
- 5. Solve: $y'' 2y' + y = t^2 + 1$

Part B: Resonance Cases (5 problems)

- 6. Solve: $y'' 4y = e^{2t}$
- 7. Solve: $y'' + 4y = \sin(2t)$
- 8. Solve: $y'' 6y' + 9y = e^{3t}$
- 9. Solve: $y'' + y = \cos(t) + \sin(t)$
- 10. Solve: $y''' y' = e^t$

Part C: Products and Combinations (5 problems)

- 11. Solve: $y'' 3y' + 2y = te^t$
- 12. Solve: $y'' + 4y = e^{-t}\sin(t)$
- 13. Solve: $y'' y = t^2 e^t$
- 14. Solve: $y'' + 2y' + 5y = e^{-t}\cos(2t)$
- 15. Solve: $y''' y'' = t^2 + e^t$

Part D: Superposition Problems (5 problems)

16. Solve:
$$y'' - 4y' + 3y = 2e^t + 3e^{2t}$$

17. Solve:
$$y'' + y = t + \sin(t)$$

18. Solve:
$$y'' - y' - 6y = 8e^{3t} - 5\sin(t)$$

19. Solve:
$$y'' + 4y = 3\cos(2t) + 4\sin(3t)$$

20. Solve:
$$y''' - y' = 2t + 3e^{-t} + \cos(t)$$

Part E: Initial Value Problems (5 problems)

21. Solve:
$$y'' - 3y' + 2y = e^{3t}$$
, $y(0) = 1$, $y'(0) = 2$

22. Solve:
$$y'' + 4y = 8t$$
, $y(0) = 0$, $y'(0) = 1$

23. Solve:
$$y'' + y = \sin(2t)$$
, $y(0) = 0$, $y'(\pi/4) = 1$

24. Solve:
$$y'' - 4y' + 4y = t^2 e^{2t}$$
, $y(0) = 0$, $y'(0) = 0$

25. Solve:
$$y''' - y' = 4$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 2$

Part F: Exam-Style Problems (5 problems)

- 26. (Prof. Ditkowski style) Consider y'' + 2y' + y = f(t).
 - (a) If $f(t) = e^{-t}$, explain why standard undetermined coefficients fails.
 - (b) Find the particular solution using the modified approach.
 - (c) What physical phenomenon does this represent?
- 27. A mass-spring system satisfies $y'' + \omega_0^2 y = F_0 \cos(\omega t)$.
 - (a) Find the general solution when $\omega \neq \omega_0$.
 - (b) Find the general solution when $\omega = \omega_0$ (resonance).
 - (c) Describe the behavior as $\omega \to \omega_0$.
- 28. Find all values of a for which $y'' 4y' + 4y = e^{at}$ has a particular solution of the form $y_p = Ae^{at}$.
- 29. For the equation $y'' + py' + qy = e^{rt}$, derive conditions on p, q, and r that determine whether resonance occurs.
- 30. Solve $y^{(4)} + 2y'' + y = \cos(t)$ and explain why this represents a doubly resonant system.

Solutions

Part A: Basic Non-Resonant Cases

- 1. Homogeneous: $r^2 5r + 6 = 0 \Rightarrow r = 2, 3$ $y_h = c_1 e^{2t} + c_2 e^{3t}$
 - Trial: $y_p = A$ (constant)
 - Substitute: $6A = 12 \Rightarrow A = 2$
 - General solution: $y = c_1 e^{2t} + c_2 e^{3t} + 2$
- 2. Homogeneous: $r^2 + r 2 = 0 \Rightarrow r = 1, -2$
 - $y_h = c_1 e^t + c_2 e^{-2t}$
 - Trial: $y_p = At + B$
 - $y_p' = A, y_p'' = 0$
 - Substitute: 0 + A 2(At + B) = 4t 6
 - -2At + (A 2B) = 4t 6
 - A = -2, B = 2
 - General solution: $y = c_1 e^t + c_2 e^{-2t} 2t + 2$
- 3. Homogeneous: $r^2 4 = 0 \Rightarrow r = \pm 2$
 - $y_h = c_1 e^{2t} + c_2 e^{-2t}$
 - Trial: $y_n = Ae^{-t}$

 - $y'_p = -Ae^{-t}, y''_p = Ae^{-t}$ Substitute: $Ae^{-t} 4Ae^{-t} = 3e^{-t}$
 - $-3A = 3 \Rightarrow A = -1$
 - General solution: $y = c_1 e^{2t} + c_2 e^{-2t} e^{-t}$
- 4. Homogeneous: $r^2 + 9 = 0 \Rightarrow r = \pm 3i$
 - $y_h = c_1 \cos(3t) + c_2 \sin(3t)$
 - Trial: $y_p = A\cos(2t) + B\sin(2t)$
 - $y_n'' = -4A\cos(2t) 4B\sin(2t)$
 - Substitute: $5A\cos(2t) + 5B\sin(2t) = 5\cos(2t)$
 - A = 1, B = 0
 - General solution: $y = c_1 \cos(3t) + c_2 \sin(3t) + \cos(2t)$
- 5. Homogeneous: $(r-1)^2 = 0 \Rightarrow r = 1$ (double)
 - $y_h = (c_1 + c_2 t)e^t$
 - Trial: $y_p = At^2 + Bt + C$
 - $y'_{p} = 2At + B, y''_{p} = 2A$
 - Substitute: $2A 2(2At + B) + (At^2 + Bt + C) = t^2 + 1$
 - $At^{2} + (B 4A)t + (2A 2B + C) = t^{2} + 1$
 - A = 1, B = 4, C = 7
 - General solution: $y = (c_1 + c_2 t)e^t + t^2 + 4t + 7$

Part B: Resonance Cases

6. Homogeneous: $r = \pm 2$, so $y_h = c_1 e^{2t} + c_2 e^{-2t}$

Resonance! Trial: $y_p = Ate^{2t}$

- $y_p' = Ae^{2t} + 2Ate^{2t}$
- $y_p'' = 4Ae^{2t} + 4Ate^{2t}$

Substitute: $4Ae^{2t} = e^{2t} \Rightarrow A = 1/4$

General solution: $y = c_1 e^{2t} + c_2 e^{-2t} + \frac{t}{4} e^{2t}$

7. Homogeneous: $r = \pm 2i$, so $y_h = c_1 \cos(2t) + c_2 \sin(2t)$

Resonance! Trial: $y_p = t[A\cos(2t) + B\sin(2t)]$

After substitution: $-4A\sin(2t) + 4B\cos(2t) = \sin(2t)$

A = -1/4, B = 0

General solution: $y = c_1 \cos(2t) + c_2 \sin(2t) - \frac{t}{4} \cos(2t)$

8. Homogeneous: $(r-3)^2 = 0$, so $y_h = (c_1 + c_2 t)e^{3t}$

Double resonance! Trial: $y_p = At^2e^{3t}$

After substitution: $2Ae^{3t} = e^{3t} \Rightarrow A = 1/2$

General solution: $y = (c_1 + c_2 t)e^{3t} + \frac{t^2}{2}e^{3t}$

9. Homogeneous: $r = \pm i$, so $y_h = c_1 \cos(t) + c_2 \sin(t)$

Resonance! Trial: $y_p = t[A\cos(t) + B\sin(t)]$

After substitution: $-2A\sin(t) + 2B\cos(t) = \cos(t) + \sin(t)$

A = -1/2, B = 1/2

General solution: $y = c_1 \cos(t) + c_2 \sin(t) + \frac{t}{2} [-\cos(t) + \sin(t)]$

10. Homogeneous: $r(r^2 - 1) = 0 \Rightarrow r = 0, \pm 1$

 $y_h = c_1 + c_2 e^t + c_3 e^{-t}$

Resonance at r = 1! Trial: $y_p = Ate^t$

After substitution: $2Ae^t = e^t \Rightarrow A = 1/2$

General solution: $y = c_1 + c_2 e^t + c_3 e^{-t'} + \frac{t}{2} e^t$

Part C: Products and Combinations

11. Homogeneous: r = 1, 2, so $y_h = c_1 e^t + c_2 e^{2t}$

Resonance! Trial: $y_p = t(At + B)e^t = (At^2 + Bt)e^t$

After substitution: A = -1, B = -2

General solution: $y = c_1 e^t + c_2 e^{2t} - t(t+2)e^t$

12. Homogeneous: $r^2 + 4 = 0 \Rightarrow r = \pm 2i$

Trial: $y_p = e^{-t} [A\cos(t) + B\sin(t)]$

After substitution: A = -1/6, B = 1/6

General solution: $y = c_1 \cos(2t) + c_2 \sin(2t) + \frac{e^{-t}}{6} [-\cos(t) + \sin(t)]$

13. Homogeneous: $r = \pm 1$

Resonance! Trial: $y_p = t(At^2 + Bt + C)e^t$

After substitution: A = 1/6, B = 0, C = 0

General solution: $y = c_1 e^{t} + c_2 e^{-t} + \frac{t^3}{6} e^{t}$

14. Homogeneous: $r = -1 \pm 2i$

Resonance! Trial: $y_p = te^{-t}[A\cos(2t) + B\sin(2t)]$

After substitution: A = 0, B = 1/4

General solution: $y = e^{-t}[c_1 \cos(2t) + c_2 \sin(2t)] + \frac{t}{4}e^{-t}\sin(2t)$

15. Homogeneous: $r^2(r-1) = 0 \Rightarrow r = 0$ (double), r = 1

For t^2 : Trial $t^2(At^2 + Bt + C)$ due to double root at 0

For e^t : Trial Dte^t due to simple root at 1

Combined: $y_p = At^4 + Bt^3 + Ct^2 + Dte^t$

After substitution: A = -1/12, B = 0, C = -1, D = -1

General solution: $y = c_1 + c_2 t + c_3 e^t - \frac{t^4}{12} - t^2 - t e^t$

Part D: Superposition Problems

16. Homogeneous: r = 1, 3

For $2e^{t}$: resonance, use $y_{p1} = Ate^{t} \Rightarrow A = -1$

For $3e^{2t}$: no resonance, use $y_{p2} = Be^{2t} \Rightarrow B = -3$

General solution: $y = c_1 e^t + c_2 e^{3t} - t e^t - 3e^{2t}$

17. Homogeneous: $r = \pm i$

For $t: y_{p1} = At + B \Rightarrow A = 1, B = 0$

For $\sin(t)$: resonance, $y_{p2} = t[C\cos(t) + D\sin(t)] \Rightarrow C = 0, D = -1/2$

General solution: $y = c_1 \cos(t) + c_2 \sin(t) + t - \frac{t}{2} \sin(t)$

18. Homogeneous: r = 3, -2

For $8e^{3t}$: resonance, $y_{n1} = Ate^{3t} \Rightarrow A = 8/5$

For $-5\sin(t)$: $y_{p2} = B\cos(t) + C\sin(t) \Rightarrow B = -1/2, C = 1/2$

General solution: $y = c_1 e^{3t} + c_2 e^{-2t} + \frac{8t}{5} e^{3t} - \frac{1}{2} \cos(t) + \frac{1}{2} \sin(t)$

19. Homogeneous: $r = \pm 2i$

For $3\cos(2t)$: resonance, $y_{p1} = t[A\cos(2t) + B\sin(2t)] \Rightarrow A = 0, B = 3/4$

For $4\sin(3t)$: $y_{p2} = C\cos(3t) + D\sin(3t) \Rightarrow C = 0, D = -4/5$

General solution: $y = c_1 \cos(2t) + c_2 \sin(2t) + \frac{3t}{4} \sin(2t) - \frac{4}{5} \sin(3t)$

20. Homogeneous: $r = 0, \pm 1$

For 2t: double resonance at 0, $y_{p1} = At^3 \Rightarrow A = -1/3$

For $3e^{-t}$: resonance, $y_{p2} = Bte^{-t} \Rightarrow B = -3/2$

For cos(t): $y_{p3} = C cos(t) + D sin(t) \Rightarrow C = -1/2, D = 0$

General solution: $y = c_1 + c_2 e^t + c_3 e^{-t} - \frac{t^3}{3} - \frac{3t}{2} e^{-t} - \frac{1}{2} \cos(t)$

Part E: Initial Value Problems

21. General: $y = c_1 e^t + c_2 e^{2t} + e^{3t}$

$$y(0) = c_1 + c_2 + 1 = 1 \Rightarrow c_1 + c_2 = 0$$

 $y'(0) = c_1 + 2c_2 + 3 = 2 \Rightarrow c_1 + 2c_2 = -1$

Solving: $c_2 = -1, c_1 = 1$

Solution: $y = e^t - e^{2t} + e^{3t}$

22. General:
$$y = c_1 \cos(2t) + c_2 \sin(2t) + 2t$$

 $y(0) = c_1 = 0$
 $y'(0) = 2c_2 + 2 = 1 \Rightarrow c_2 = -1/2$
Solution: $y = -\frac{1}{2}\sin(2t) + 2t$

23. General:
$$y = c_1 \cos(t) + c_2 \sin(t) - \frac{1}{3} \sin(2t)$$

 $y(0) = c_1 = 0$
 $y'(t) = -c_1 \sin(t) + c_2 \cos(t) - \frac{2}{3} \cos(2t)$
 $y'(\pi/4) = c_2/\sqrt{2} = 1 \Rightarrow c_2 = \sqrt{2}$
Solution: $y = \sqrt{2} \sin(t) - \frac{1}{3} \sin(2t)$

24. General:
$$y = (c_1 + c_2 t)e^{2t} + \frac{t^4}{12}e^{2t}$$

 $y(0) = c_1 = 0$
 $y'(0) = c_2 + 2c_1 = 0 \Rightarrow c_2 = 0$
Solution: $y = \frac{t^4}{12}e^{2t}$

25. General:
$$y = c_1 + c_2 e^t + c_3 e^{-t} - 2t^2$$

 $y(0) = c_1 + c_2 + c_3 = 0$
 $y'(0) = c_2 - c_3 = 0$
 $y''(0) = c_2 + c_3 - 4 = 2 \Rightarrow c_2 + c_3 = 6$
Solving: $c_2 = c_3 = 3$, $c_1 = -6$
Solution: $y = -6 + 3e^t + 3e^{-t} - 2t^2$

Part F: Exam-Style Problems

- 26. (a) $(r+1)^2 = 0$, so r = -1 is a double root. Standard trial Ae^{-t} is already in y_h .
 - (b) Use $y_p = At^2e^{-t}$. After substitution: A = 1/2.
 - (c) This represents critical damping with resonant forcing.
- 27. (a) Non-resonant: $y = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{F_0}{\omega_0^2 \omega^2} \cos(\omega t)$
 - (b) Resonant: $y = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{F_0 t}{2\omega_0} \sin(\omega_0 t)$
 - (c) As $\omega \to \omega_0$, amplitude $\to \infty$ (beats phenomenon)
- 28. $(r-2)^2 = 0$ gives double root at r = 2. $y_p = Ae^{at}$ works only if $a \neq 2$. All values except a = 2.
- 29. Characteristic: $r^2 + pr + q = 0$ Resonance occurs when r satisfies this, i.e., $r^2 + pr + q = 0$.

30.
$$(r^2+1)^2=0$$
 gives $r=\pm i$ with multiplicity 2. For $\cos(t)$: double resonance! $y_p=t^2[A\cos(t)+B\sin(t)]$ After substitution: $A=0,\ B=1/8$ $y=(c_1+c_2t)\cos(t)+(c_3+c_4t)\sin(t)+\frac{t^2}{8}\sin(t)$