

机器视觉测量与建模

Machine vision based surveying and modelling

李明磊

南京航空航天大学 电子信息工程学院

E-mail: minglei_li@nuaa.edu.cn

课后学习: Feature tracking

- Identify features and track them over video
 - Small difference between frames
 - potential large difference overall
- Standard approach:
 KLT (Kanade-Lukas-Tomasi)

Good features to track

Use same window in feature selection as for tracking itself

with
$$\mathbf{M} = \iint_W \left[\begin{array}{c} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{array} \right] \left[\begin{array}{cc} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{array} \right] w(x,y) \mathrm{d}x \mathrm{d}y$$

Compute motion assuming it is small

$$\begin{aligned} \min \iint_W (I + \left[\begin{array}{cc} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{array} \right] \Delta - J)^2 w(x,y) \mathrm{d}x \mathrm{d}y \\ \mathrm{differentiate:} & \iint_W 2 \left[\begin{array}{cc} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{array} \right] (I + \left[\begin{array}{cc} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{array} \right] \Delta - J) w(x,y) \mathrm{d}x \mathrm{d}y \\ \iint_W \left[\begin{array}{cc} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{array} \right] \left[\begin{array}{cc} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{array} \right] w(x,y) \mathrm{d}x \mathrm{d}y \Delta = \iint_W \left[\begin{array}{cc} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{array} \right] (J - I) w(x,y) \mathrm{d}x \mathrm{d}y \\ \mathrm{Affine is also possible, but a bit harder (6x6 in stead of 2x2)} \end{aligned}$$

Example

Simple displacement is sufficient between consecutive frames, but not to compare to reference template

Example

Synthetic example

Good features to keep tracking

Perform affine alignment between first and last frame Stop tracking features with too large errors

Optical flow

Brightness constancy assumption

$$I(x+\Delta_x,y+\Delta_y,t+1)=I(x,y,t)$$

$$I(x+u,y+v,t+1)=I(x,y,t)+\mathrm{I}_x\Delta_x+\mathrm{I}_y\Delta_y+\mathrm{I}_t \text{ (small motion)}$$

$$I_x\Delta_x+I_y\Delta_y+I_t=0$$

• 1D example I_{t} $I_{x}\Delta_{x}+I_{t}=0$ I_{x}

possibility for iterative refinement

Optical flow

Brightness constancy assumption

$$I(x+\Delta_x,y+\Delta_y,t+1)=I(x,y,t)$$

$$I(x+u,y+v,t+1)=I(x,y,t)+\mathrm{I}_x\Delta_x+\mathrm{I}_y\Delta_y+\mathrm{I}_t \text{ (small motion)}$$

$$I_x\Delta_x+I_y\Delta_y+I_t=0$$

isophote I(t)=I

2D example

$$I_x\Delta_x+I_y\Delta_y+I_t=0$$
 (1 constraint) Δ_x,Δ_y (2 unknowns) isophote I(t+1)=I

Optical flow

How to deal with aperture problem?

$$R_x \Delta_x + R_y \Delta_y + R_t = 0$$
 $G_x \Delta_x + G_y \Delta_y + G_t = 0$ $B_x \Delta_x + B_y \Delta_y + B_t = 0$

(3 constraints if color gradients are different)

Assume neighbors have same displacement

$$I_x(\mathbf{x})\Delta_x + I_y(\mathbf{x})\Delta_y + I_t(\mathbf{x}) = 0$$
 $I_x(\mathbf{x}')\Delta_x + I_y(\mathbf{x}')\Delta_y + I_t(\mathbf{x}') = 0$...

Lucas-Kanade

Assume neighbors have same displacement least-squares:

$$\begin{bmatrix} I_x(\mathbf{x}) & I_y(\mathbf{x}) \\ I_x(\mathbf{x}) & I_y(\mathbf{x}) \\ I_x(\mathbf{x}) & I_y(\mathbf{x}) \end{bmatrix} \Delta = \begin{bmatrix} -I_t(\mathbf{x}) \\ -I_t(\mathbf{x}') \\ -I_t(\mathbf{x}'') \end{bmatrix} \qquad \mathbf{A}\Delta = \mathbf{b}$$

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Gaussian pyramid of image I_{t-1}

Gaussian pyramid of image I