Домашнее задание

- 1. Найдите остаток от деления:
- а) 3^{102} на 101, б) 7^{120} на 143, в) $2007^{2008^{2009}}$ на 11.
 - а) по м.т. Ферма $3^{100} \equiv 1 \pmod{101}$, тогда $3^{102} \equiv 9 \pmod{101}$.
 - б) По т. Эйлера: $7^{\varphi(143)} \equiv 1 \pmod{143}$, $\varphi(143) = 120$.
 - в) $2007^{2008^{2009}}\equiv 5^{2008^{2009}}\pmod{11}$. По м.т. Ферма $5^{10}\equiv 1\pmod{11}$. Найдем $2008^{2009}\pmod{10}=8^{2009}\pmod{10}$. Осталось выяснить, на какую цифру оканчивается число 8^{2009} . Выпишем последние цифры степеней 8: $8,4,2,6,8,4,2,6,\ldots$ Видим, что период равен 4. Так как 2009 $\pmod{4}=1$, число 8^{2009} оканчивается на 8. Находим $5^8\pmod{11}=4$.
- 2. Докажите, что кольцо \mathbb{Z}_n не содержит подполей.

Пусть $A \subset \mathbb{Z}_n$ — подкольцо в \mathbb{Z}_n , тогда оно содержит единицу и замкнуто относительно сложения. Но порядок единицы по сложению равен n. Следовательно, складывая единички, мы перечислим все элементы \mathbb{Z}_n .

3. Может ли кольцо $\mathbb{Z}_m \times \mathbb{Z}_n$ содержать подполе?

Да, при m=n=p, где p—простое. Например, $\mathbb{Z}_3 \times \mathbb{Z}_3$ содержит подполе, изоморфное \mathbb{Z}_3 : $\{(0,0),(1,1),(2,2)\}$. При $m \neq n$ ответ: нет. Пусть m < n, тогда если существует подполе, то оно содержит единицу: (1,1), сложив ее с собой m раз получим, что в поле появится элемент (0,m), который является делителем нуля. Противоречие.

4. Докажите, что кольцо \mathbb{Z}_{12} не изоморфно кольцу $\mathbb{Z}_2 \times \mathbb{Z}_6$.

Порядок еденицы по сложению в \mathbb{Z}_{12} равен 12, а в $\mathbb{Z}_2 \times \mathbb{Z}_6$: 6.

5. Найдите элемент максимального порядка в кольце \mathbb{Z}_{56} .

Разложим \mathbb{Z}_{56} в произведение колец и найдем максимальный порядок: $\mathbb{Z}_{56} \cong \mathbb{Z}_7 \times \mathbb{Z}_8$. Максимальные порядки в кольцах \mathbb{Z}_7 и \mathbb{Z}_8 равны 6 и 2 соответственно. Максимальный порядок в \mathbb{Z}_{56} равен НОК(6,2) = 6.

Перебором находим, что ответ: 3.

6. Изоморфны ли группы \mathbb{Z}_{10}^* и \mathbb{Z}_{12}^* ?

Нет, в группе \mathbb{Z}_{10}^* элемент 3 имеет порядок 4, а в группе \mathbb{Z}_{12}^* элементов порядка 4 нет.

7. Разложите на множители многочлен $x^4 + 2$ в кольце \mathbb{Z}_3 .

$$x^4 + 2 = x^4 - 1 = (x - 1)(x + 1)(x^2 + 1)$$

8. Разложите на множители многочлен $x^7 + x^6 + 4x^5 + x^2 + x + 4$ в кольце \mathbb{Z}_5 .

 $x^7+x^6+4x^5+x^2+x+4=x^5(x^2+x+4)+x^2+x+4=(x^2+x+4)(x^5+1)=(x^2-4x+4)(x+1)^5=(x-2)^2(x+1)^5$. Тут мы воспользовались любопытным фактом: в поле \mathbb{Z}_p (p- простое) выполняется равенство $(a+b)^p=a^p+b^p$. Докажите его в следующей домашней работе.