

Regressão Linear Simples Modelos com desfecho contínuo

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

_ _

Regressão

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- 2 Modelagem
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

viouelagelli

Regressão

Sumário

- 🕦 Discussão da aula passada
 - Discussão da aula passada
- 2 Modelagem
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

passada Modelagem

Regressão

Discussão da aula passada

Regressão Linear Simples

Felipe Figueiredo

aula passada

Discussão da aula

passada

Modelagem

Regressão

Aprofundament

Discussão da leitura obrigatória da aula passada

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- 2 Modelagem
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Modelos em geral

Trailer

Regressão

Modelos

Definição

Versão simplificada da realidade, adequada ao fim pretendido.

Modelos servem para:

- representar fenômenos, experimentos, dados, etc. de forma tratável;
- avaliar cenários controlados, menos complexos que a realidade;
- extrapolar resultados e conclusões.

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Modelos em geral

Regressão

Modelos

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem Modelos em geral Trailer

Regressão

Modelos animais

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem Modelos em geral Trailer

Regressão

Modelos animais

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem
Modelos em geral
Trailer

Regressão

Sumário

- 🕦 Discussão da aula passada
 - Discussão da aula passada
- 2 Modelagem
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem Modelos em geral Trailer

Regressão

Modelos estatísticos

- Distribuições de probabilidade servem como modelo para a distribuição dos dados (teórico x empírico)
- Modelos de regressão servem como um framework para testar hipóteses específicas sobre a relação presumida entre variáveis

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Modelos em geral

Trailer

Regressão

profundament

Modelo de regressão

Formulação explícita de uma hipótese sobre a associação entre o desfecho (contínuo, neste contexto) e o preditor

Modelos estatísticos

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Modelos em geral

Trailer

Regressão

Aprofundament

Modelo explicativo/explanatório

Verificação ou teste de hipóteses sobre a relação entre as variáveis avaliadas.

Modelo preditivo

Estimativa do resultado esperado, mesmo para dados que não foram testados...

... restrito ao intervalo testado.

Para todos os gostos...

Regressão
Linear
Simples

Felipe Figueiredo

Modelos em geral Trailer

TABLE 1				
Regression models				
	Application	Dependent variables	Independent variables	
Linear regression	Description of a linear relationship	Continuous (weight, blood pressure)		
Logistic regression	Prediction of the probability of belonging to groups (outcome: yes/no)	Dichotomous (success of treat- ment: yes/no)		
Proportional hazard regression (Cox regression)	Modeling of survival data	Survival time (time from diagnosis to event)	Continuous and/or categorical	
Poisson regression	Modeling of counting processes	Counting data: whole numbers re- presenting events in temporal se- quence (e.g., the number of times a woman gave birth over a certain period of time)		

Decaimento de anticorpos de neonatos recebidos da mãe

Felipe Figueiredo

Discussão da aula passada

Modelagem

Modelos em geral

Trailer

Regressão

Tese Doutorado Ana Claudia Duarte - IOC/Fiocruz 2017

E você pensando...

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem Modelos em geral Trailer

Regressão

Modelos dose-resposta

Modelo de regressão logística 4 parâmetros

$$\hat{Y} = a + \frac{b - a}{\left[1 + \left(\frac{c}{X}\right)\right]}$$

Gadagkar, Call, 2015; J. Pharmacol. Toxicol. Methods

Aplicações (EC50, IC50, ED50, TD50, LD50, ...)

[1] Gupta, Lee, 2013; [2] Jelic, et al., 2016

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Modelos em geral

Trailer

Regressão

Regressão Linear Simples Felipe

Figueiredo

Discussão da

aula passada Modelagem

Modelos em geral Trailer

Regressão

Aprofundamento

Vamos começar pelo modelo mais simples

(Hoje, apenas desfecho contínuo!)

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Modelagen
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- 4 Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão

Introdução

A regressão

Exercício Bônus: predito

categórico Resumo

Modelo de regressão linear simples

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Regressão

Introdução

A regressão

Exercício Bônus: predit

Bônus: predito ≿ategórico Resumo

Aprofundamen

Quando os dados indicam uma relação linear, um modelo de regressão pode ser utilizado para quantificar esta relação com uma **reta de regressão**.

Exemplo: Algumas aplicações

- Tendência ("Níveis de insulina em jejum tendem a aumentar com a idade?")
- Ajuste de curva ("Qual é o EC₅₀ de uma nova droga?")
- Predição ("Como predizer o risco de infarto do miocárdio, sabendo-se a idade, pressão e nível de colesterol?")

Depois dos comerciais...

JOURNAL OF WOMEN'S HEALTH Volume 15, Number 9, 2006 © Mary Ann Liebert, Inc.

> The Association between Body Mass Index and Osteoporosis in Patients Referred for a Bone Mineral Density Examination

KOFI ASOMANING, M.B.Ch.B., M.S., ¹ ELIZABETH R. BERTONE-JOHNSON, Sc.D., ² PHILIP C. NASCA, Ph.D., ² FREDERICK HOOVEN, Ph.D., ³ and PENELOPE S. PEKOW, Ph.D. ²

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão Introdução

A regressão

Exercício Bônus: predito categórico

Depois dos comerciais...

Regressão Linear

ABSTRACT

Purpose: Osteoporosis affects 4–6 million (13%–18%) postmenopausal white women in the United States. Most studies to date on risk factors for osteoporosis have considered body mass index (BMI) only as a possible confounder. In this study, we assess the direct relationship between BMI and osteoporosis.

Methods: We conducted a cross-sectional study among women aged 50–84 years referred by their physicians for a bone mineral density (BMD) examination at Baystate Medical Center between October 1998 and September 2000. BMI was determined prior to the BMD examination in the clinic. Information on other risk factors was obtained through a mailed questionnaire. Ordinal logistic regression was used to model the association between BMI and osteoporosis, controlling for confounding factors.

Results: BMI was inversely associated with BMD status. After adjustment for age, prior hormone replacement therapy (HRT) use, and other factors, odds ratios (OR) for low, high, and obese compared with moderate BMI women were 1.8 (95% CI 1.2-2.7), 0.46 (95% CI 0.29-0.71), and 0.22 (95% CI 0.14-0.36), respectively, with a significant linear trend (p < 0.0001) across BMI categories. Evaluating BMI as a continuous variable, the odds of bone loss decreased 12% for each unit increase in BMI (OR = 0.88, 95% CI 0.85-0.91).

Conclusions: Women with low BMI are at increased risk of osteoporosis. The change in risk associated with a 1 unit change in BMI (\sim 5–8 lb) is of greater magnitude than most other modifiable risk factors. To help reduce the risk of osteoporosis, patients should be advised to maintain a normal weight.

Na prática...

 Dados simulados, inspirados no paper.

- Existe uma tendência?
 Ela é linear?
- Podemos estimar BMD sabendo o IMC?

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem

Regressão Introdução

A regressão

Exercício

Bônus: preditor categórico

Quais são as variáveis?

Dependente: BMD (contínua)

Sinônimos: desfecho, resposta

Independente: BMI (contínua)

Sinônimos¹: preditor, fator

Esta relação pode ser expressa como

 $\mathsf{BMD} \sim \mathsf{BMI}$

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem

Regressão

Introdução

A regressão

Exercício

Bônus: predito
categórico

¹Em alguns contextos também covariável/cofator (quando há mais de uma V.l.) . .

Revisão: equação da reta

A equação de uma reta é definida pela fórmula

$$BMD = a \times BMI + b$$

- Duas "variáveis" e dois parâmetros
 - BMD é a variável dependente (dados)
 - BMI é a variável independente (dados)
 - b é o intercepto (intercept)
 - a é a inclinação (slope)

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Regressão

Introdução

r² Exercício

Bônus: preditor ategórico Resumo

Revisão: equação da reta

A equação de uma reta é definida pela fórmula

$$BMD = a \times BMI + b$$

- Duas "variáveis" e dois parâmetros
 - BMD é a variável dependente (dados)
 - BMI é a variável independente (dados)
 - b é o intercepto (intercept)
 - a é a inclinação (slope)

Inversão, em relação à matemática básica

- Note que aqui os "dados" já foram coletados (fixos)
- Nosso objetivo é estimar os parâmetros da reta b e a

Regressão Linear Simples

Felipe Figueiredo

oiscussão da ula passada

_ ~

Regressão

Introdução A regressão

> Exercício Bônus: preditor categórico

Interpretação dos parâmetros da reta

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

/lodelagem

Regressão

Introdução

A regressão r²

Exercício

Bônus: preditor
categórico

Resumo

Aprofundamen

O intercepto é o valor (hipotético) de BMD quando BMI = 0

 A inclinação é quanto BMD altera² quando aumentamos o BMI em 1 unidade

Atenção

Para estas interpretações serem válidas, a relação deve ser linear (proporcional).

²na média!

Reta de regressão

Definição

Uma reta de regressão é a reta para a qual a soma dos erros quadráticos dos resíduos (ε) é o mínimo.

Regressão Linear Simples

Felipe Figueiredo

aula passada

Modelagem

Regressão

Introdução

Exercício Bônus: preditor

Bönus: preditor categórico Resumo

Aprofundament

Formulação

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

³Método dos mínimos quadrados

Reta de regressão

Definição

Uma reta de regressão é a reta para a qual a soma dos erros quadráticos dos resíduos (ε) é o mínimo.

- Também chamada de reta de melhor ajuste
- Minimiza os resíduos (erros aleatórios ε)³
- ullet Erros aleatórios ε em torno de zero
- Dados observados: Y (desfecho contínuo) e X (preditor)
- Parâmetros estimados (β_0 e β_1)

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem (

legressão

Introdução

A regressão

Exercício Bônus: predito

Bônus: preditor categórico Resumo

Aprofundament

Formulação

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

³Método dos mínimos quadrados

Resíduos

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão

Introdução

A regressão

Bônus: preditor categórico

Aprofundament

Definição

Resíduos são a distância entre o dado observado e a reta.

Atenção

Regressão Linear Simples

Felipe Figueiredo

aula passada

Modelagem

Regressão

Introdução A regressão

r Exercício Bônus: preditor

Resumo

Aprofundamen

 Para muitos testes presume-se que os dados vem de uma distribuição normal

- Neste caso, não é necessário que os dados sejam normais
- É necessário que os resíduos sejam normais

Análise de Regressão

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

viouelageiii

Regressão

Introdução

A regressão

Exercício

Bônus: preditor

categórico

Resumo

Aprofundamen

Para determinar a inclinação e o intercepto, usamos:

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- 2 Modelagem
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão Introdução

A regressão

Exercício

Bônus: preditor
categórico

Resumo

Exemplo 17.1

Regressão Linear **Simples**

Felipe Figueiredo

Introdução

A regressão

Exemplo 17.1

Voltemos ao exemplo de associar a composição lipídica com a sensibilidade a insulina.

Pergunta

Podemos explicar o "comportamento" e a variabilidade da insulina sabendo a composição lipídica?

Quais são as variáveis?

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

/lodelagem

Regressão Introdução

A regressão

Exercício Bônus: preditor categórico

Aprofundamen

Dependente: insulina (contínua)

Independente: conteúdo lipídico (contínua)

Esta relação pode ser expressa como

insulina ~ conteúdo lipídico

Componentes da regressão linear simples

Versão simplificada (apenas variáveis)

insulina \sim conteúdo lipídico

Modelo completo

insulina = $\beta_0 + \beta_1$ (conteúdo lipídico) + ε

. . . .

Hipótese: ε é um erro aleatório 4 normalmente distribuído e centrado em zero – a incerteza que não pode ser controlada.

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

trodução

A regressão

ixercício lônus: preditor ategórico

⁴residual – não é explicado pela relação entre as variáveis do modelo

Exemplo 17.1

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão Introdução

A regressão

Exercício Bônus: preditor categórico

Aprofundamen

Fonte: Motulsky, 1995

Exemplo 17.1

Regressão Linear

Linear	Regression
--------	------------

Number of points = 13

Parameter	Expected Value	Standard Error	95% CI	95% CI
Slope	37.208	9.296	16.747	57.668
Y intercept	-486.54	193.72	-912.91	-60.173
X intercept	13.076			

r squared = 0.5929

Standard devaition of residuals from line (Sy.x) = 75.895

Test: Is the slope significantly different from zero?

F = 16.021

The P value is 0.0021, considered very significant.

Interpretação

Regressão Linear **Simples**

Felipe Figueiredo

Introdução

A regressão

- O p-valor é significativo.
- A inclinação é ≈ 37.2
- Isto significa que:

Interpretação da inclinação

para cada unidade aumentada no %C20-22...

teremos um aumento proporcional de aproximadamente 37.2 mg/m²/min na sensibilidade à insulina

Análise de Regressão

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão Introdução

A regressão

Exercício Bônus: preditor categórico Resumo

Aprofundamen:

Uma forma simplista de aferir a qualidade do ajuste do modelo⁵ é o Coeficiente de Determinação r^2 .

 $(r^2$ corresponde ao quadrado de r!)

⁵Também chamada de Goodness of Fit (GoF)

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- 2 Modelagem
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão

ntrodução A regressão

2 Exercício

Bônus: predito categórico Resumo

Coeficiente de Determinação r²

Regressão Linear **Simples**

Felipe Figueiredo

Introdução

Definição

O coeficiente de determinação r² é a razão entre variância explicada e a variância total observada.

$$r^2 = \frac{\text{variância explicada}}{\text{variância total}}$$

• Lembrando: r^2 é o quadrado de r!

Coeficiente de Determinação r²

 Qual é a porcentagem da variância dos dados pode ser explicada pela reta regressora?

 O coeficiente r² é a fração da variância que é compartilhada entre X e Y.

Obs: Como r está sempre entre -1 e 1

- |r| está sempre entre 0 e 1
- r² está sempre entre 0 e 1

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão Introdução A regressão

Exercício

Bônus: predito
categórico

Coeficiente de Determinação r^2

Além disso, $r^2 \leq |r|$

Por que?

Compare os seguintes números entre 0 e 1:

$$\frac{1}{2} e \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \leq \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \leq \frac{1}{3}$$

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

vioaciagoiii

Introdução

A regressão

Exercício Bônus: predito categórico

Exemplo 17.1

Exemplo 17.1

Na aula de correlação linear produto-momento de Pearson, vimos que para o exemplo 17.1, r = 0.77.

$$r^2 = 0.77^2 = 0.59$$

Interpretação do Coeficiente de Determinação r^2

Podemos explicar 59% da variância da insulina considerando apenas o conteúdo lipídico.

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão
Introdução
A regressão

Exercício

Bônus: preditor categórico Resumo

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Modelagen
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão

A regressão

Exercício

3ônus: preditor :ategórico Resumo

JOURNAL OF WOMEN'S HEALTH Volume 15, Number 9, 2006 © Mary Ann Liebert, Inc.

> The Association between Body Mass Index and Osteoporosis in Patients Referred for a Bone Mineral Density Examination

KOFI ASOMANING, M.B.Ch.B., M.S., ELIZABETH R. BERTONE-JOHNSON, Sc.D., PHILIP C. NASCA, Ph.D., FREDERICK HOOVEN, Ph.D., and PENELOPE S. PEKOW, Ph.D.

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão Introdução

A regressão

Exercício Bônus: predito

Bônus: predito categórico Resumo

Regressão Linear

ABSTRACT

Purpose: Osteoporosis affects 4–6 million (13%–18%) postmenopausal white women in the United States. Most studies to date on risk factors for osteoporosis have considered body mass index (BMI) only as a possible confounder. In this study, we assess the direct relationship between BMI and osteoporosis.

Methods: We conducted a cross-sectional study among women aged 50–84 years referred by their physicians for a bone mineral density (BMD) examination at Baystate Medical Center between October 1998 and September 2000. BMI was determined prior to the BMD examination in the clinic. Information on other risk factors was obtained through a mailed questionnaire. Ordinal logistic regression was used to model the association between BMI and osteoporosis, controlling for confounding factors.

Results: BMI was inversely associated with BMD status. After adjustment for age, prior hormone replacement therapy (HRT) use, and other factors, odds ratios (OR) for low, high, and obese compared with moderate BMI women were 1.8 (95% CI 1.2-2.7), 0.46 (95% CI 0.29-0.71), and 0.22 (95% CI 0.14-0.36), respectively, with a significant linear trend (p < 0.0001) across BMI categories. Evaluating BMI as a continuous variable, the odds of bone loss decreased 12% for each unit increase in BMI (OR = 0.88, 95% CI 0.85-0.91).

Conclusions: Women with low BMI are at increased risk of osteoporosis. The change in risk associated with a 1 unit change in BMI (~5–8 lb) is of greater magnitude than most other modifiable risk factors. To help reduce the risk of osteoporosis, patients should be advised to maintain a normal weight.

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão
Introdução
A regressão

r² Exercício

Bônus: preditor categórico Resumo

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão
Introdução
A regressão

r² Exercício

Bônus: preditor categórico
Resumo

 Se o modelo é adequado, podemos substituir isto...

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Introdução
A regressão

Exercício Bônus: preditor

Resumo

 Se o modelo é adequado, podemos substituir isto...

... por isto

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem

Introdução
A regressão

Exercício Bônus: preditor

Resumo

 Se o modelo é adequado, podemos substituir isto...

... por isto

Como saber se o modelo representa bem os dados?

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem

Introdução A regressão

Exercício

categórico Resumo

Diagnosticando a regressão

 A dispersão em torno da reta é aprox. aleatória?

 Observe o formato faixa de confiança em torno da reta

A dispersão do desfecho pode ser explicada pela variável independente?

Toda? Parte? Quanta?

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem

Regressão Introdução A regressão

Exercício Bônus: pred

Diagnosticando a regressão

- A dispersão em torno da reta é aprox. aleatória?
- Observe o formato faixa de confiança em torno da reta
- A dispersão do desfecho pode ser explicada pela variável independente?
- Toda? Parte? Quanta?

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem

Regressão
Introdução
A regressão

Exercício Bônus: pred

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão
Introdução
A regressão

r²
Exercício

Bônus: preditor categórico

Diagnosticando a regressão

Perguntas

- Os resíduos são aprox. normais?
- Quantos % de variância podem ser explicados pelo modelo?
- Qual é o BMD predito para um hipotético BMI = 0?
- Quanto o BMD muda, para cada unidade de BMI?

Saída típica de um programa de análise

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão

Introdução A regressão

Exercício Bônus: predit

Bônus: preditor categórico Resumo

Análise de resíduos

 Como vimos, os resíduos são erros aleatórios (em torno da reta)

• Erros que não podem ser explicados pelo modelo

 Devem ser normalmente distribuídos em torno de zero (reta como referência)

Saída típica de um programa de análise

Residuals:

Min	1Q	Median	3Q	Max
-52.097	-13.864	0.762	10.707	58.730

Regressão Linear Simples

Felipe Figueiredo

Discussão da ula passada

Modelagem

Regressão
Introdução
A regressão

A regressão

Exercício

Bônus: preditor
categórico

onus: preditor ategórico lesumo

Análise de resíduos

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão
Introdução
A regressão

Exercício

lônus: preditor ategórico

Anrofundamen

Podemos também verificar esta premissa visualmente

Análise de resíduos - gráfico de regressão

A distribuição dos resíduos é aprox. Normal?

- A dispersão em torno da reta é aprox. aleatória?
- A dispersão dos resíduos aumenta ou diminui ao longo da faixa considerada?

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagen

Regressão
Introdução
A regressão

Exercício Bônus: pred

A ()

Análise de resíduos - gráfico de resíduos

A distribuição dos resíduos é aprox. Normal?

- A dispersão em torno de 0 é aprox. aleatória?
- A dispersão dos resíduos aumenta ou diminui ao longo da faixa considerada?

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelager

Regressão Introdução A regressão

Exercício Bônus: predito

Hesumo

Análise de resíduos - distribuição dos resíduos

A distribuição dos resíduos é aprox. Normal?

- A dispersão em torno de 0 é aprox. aleatória?
- A dispersão dos resíduos aumenta ou diminui ao longo da faixa considerada?

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagen

Regressão
Introdução
A regressão

Exercício Bônus: pred

A ()

Diagnosticando a regressão

Perguntas

Os resíduos são aprox. normais?

Resposta

• Sim (probably...)

Saída típica de um programa de análise

Residuals:

Min 1Q Median 3Q Max -52.097 -13.864 0.762 10.707 58.730 Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

/lodelagem

Regressão
Introdução

A regressão r²

Exercício Bônus: predit

Bônus: preditor categórico Resumo

Diagnosticando a regressão

Perguntas

Quantos % de variância podem ser explicados pelo modelo?

Resposta

- Podemos explicar r² = 57% da variância observada no BMD (considerando apenas o BMI)
- 43% são devidos a outros fatores

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão Introdução A regressão

r²
Exercício

Bônus: predito categórico

Aprofundament

Saída típica de um programa de análise

Multiple R-squared: 0.5691, Adjusted R-squared: 0.5669

Regressão Linear Simples

Felipe Figueiredo

Introdução A regressão

Exercício Bônus: preditor

E os parâmetros da reta estimados a partir dos dados?

Diagnosticando a regressão⁶

Perguntas

Qual é o BMD predito para um hipotético BMI = 0?

Resposta

BMD = 99 unidades (IC = [89.69, 107.94])

Saída típica de um programa de análise

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.8176 4.6281 21.35 <2e-16 ***
```

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

/lodelagem

Regressão Introdução A regressão

r² Exercício

Bônus: predito categórico Resumo

⁶Ha: Intercepto não é igual a 0 (modelo nulo)

Diagnosticando a regressão⁷

Perguntas

Quanto o BMD muda, para cada unidade de BMI?

Resposta

Decréscimo de 3 unidades de BMD (IC = [-3.35, -2.62])

(para cada incremento unitário de BMI)

Saída típica de um programa de análise

```
Coefficients:
```

Estimate Std. Error t value Pr(>|t|)
BMI -2.9845 0.1846 -16.17 <2e-16 ***

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão Introdução

A regressão r² Exercício

ônus: predito ategórico lesumo

Regressão Linear **Simples**

Felipe Figueiredo

Introdução

Exercício Bônus: preditor

Vamos agora fazer predições sobre valores não observados

$E \circ BMI = 28$?

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão
Introdução
A regressão

Exercício

Bônus: preditor categórico
Resumo

$E \circ BMI = 28$?

 o valor predito pelo modelo é 15.25169

• P: O que isto significa?

Regressão Linear Simples

Felipe Figueiredo

Discussão da

Modelagem

Introdução
A regressão

Exercício Bônus: preditor

E quando os resíduos não são aleatórios em torno da reta?

Linear Simples Felipe

Regressão

Figueiredo

Introdução

Exercício Bônus: preditor

(casos extremos)

Dispersão em torno da reta **cresce** ao longo da faixa ($r^2 = 42\%$)

Regressão Linear Simples

Felipe Figueiredo

Discussão da Iula passada

Modelagen

Regressão Introdução A regressão

Exercício

Bônus: preditor categórico Resumo

Dispersão em torno da reta **varia** ao longo da faixa ($r^2 = 29\%$)

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Regressão Introdução A regressão

Exercício

Bônus: preditor categórico

Análise de resíduos dos 2 últimos exemplos

Lembre-se: Ao ler um artigo, você não terá acesso a estas visualizações!

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressão
Introdução
A regressão

Exercício Bônus: preditor

Bônus: predito categórico Resumo

Regressão linear simples x múltipla⁸

Outros fatores

Nesses casos, não podemos explicar a variância do BMD apenas com o BMI.

É evidente que algum outro fator deveria ter sido considerado no modelo

Isto permite ajustar a heterogeneidade da variância observada com outros cofatores (além do BMI).

(sai a regressão linear **simples** e entra a **múltipla** – Cap 31)

Regressão Linear **Simples**

Felipe Figueiredo

Introdução

Exercício

⁸Ajustar para outros fatores: como visto no abstract do exercíciol

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- 2 Modelagem
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

egressão

Introdução A regressão

Exercício Bônus: preditor

categórico Resumo

Exercício da aula de teste t

Queremos avaliar a eficiência de uma nova dieta reduzida em gordura no tratamento de obesidade.

Selecionamos aleatoriamente 100 pessoas obesas para o grupo 1, que receberão a dieta com pouca gordura. Selecionamos outras 100 pessoas obesas para o grupo 2 que receberão a mesma quantidade de comida, com proporção normal de gordura. O estudo durou 4 meses.

A perda de peso média no grupo 1 foi de 9.33 lbs (s=4.72) e no grupo 2 foi de 7.58 lbs (s=3.90).

Essa nova dieta é eficaz na perda de peso?

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagen

Introdução
A regressão

r²

Bônus: preditor categórico

Aprofundamento

Fonte: Khan Academy

Resolução com Regressão linear simples

Saída típica de um programa

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelagem

Regressã Introdução A regressão

r[±] Exercício

Bônus: preditor categórico Resumo

Aprofundament

Interpretação (assumindo pareamento)

- Perda média do grupo 1 (referência): 9.33 lbs (IC=[8.48, 10.19]).
- Perda média do grupo 2 em relação à referência: -1.76 lbs (IC=[-2.97, -0.55]).

Sumário

- - Discussão da aula passada
- - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício

 - Resumo
- - Aprofundamento

Regressão Linear **Simples**

Felipe Figueiredo

Resumo

Resumo

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

Modelager

Regressão
Introdução
A regressão

r Exercício Bônus: predito

Resumo

Aprofundamen

• Quão bem a reta regressora se ajusta aos dados?

O que pode explicar a relação observada?

 Qual proporção (porcentagem) da variância pode ser explicada pelas variáveis analisadas?

• É necessário investigar a relação entre as variáveis!

 O modelo de RLS permite preditor categórico (com qualquer número de níveis!)

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Modelagen
 - Modelos em geral
 - Trailer
- Regressão Linear Simples
 - Introdução
 - A regressão
 - Coeficiente de Determinação r²
 - Exercício
 - Bônus: preditor categórico
 - Resumo
- 4 Aprofundamento
 - Aprofundamento

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

viodelagelli

Regressão

Aprofundamento

Aprofundamento

Aprofundamento

Leitura obrigatória

- Capítulo 18
- Capítulo 19, pular as seções:
 - regressão linear como método de mínimos quadrados
 - calculando a regressão linear

Exercícios selecionados

Capítulo 19, problemas: todos menos o problema 5.

Leitura recomendada

- Capítulo 31 fortemente recomendado para a aula que vem!
- Schneider A, Hommel G, Blettner M, 2010.
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992018/

Regressão Linear Simples

Felipe Figueiredo

Discussão da aula passada

.

Regressão

Aprofundamento

Aprofundamento