Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm

MiniMax without $\alpha\beta$ -pruning

MiniMax with $\alpha\beta$ -pruning

Reordering, MiniMax with $\alpha\beta$ -Pruning

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm for 3 Players

MiniMax For 3 Players

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: The 4 Houses problem

Constraint Processing

Problem representation:

Constraint Processing: Backtracking

Constraint Processing: Backjumping

Constraint Processing: Backmarking

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

Constraint Processing: Backmarking

Constraint Processing: Backmarking

Constraint Processing: No-goods

- {A=1}: No-good
 - No value for D such that A = D + 1
- {A=2,B=2}: No-good
 - A and B should have different houses
- {A=2,B=3}: Not a no-good: {A=2,B=3,C=4,D=1}
- {A=2,B=3,C=1}: No-good
 - A = D + 1, thus D = 1, but C = 1
- {A=2,B=4}: No-good
 - -A = D + 1, thus D = 1, thus C = 3, but C cannot be 3

Constraint Processing: Intelligent Backtracking

Efficiency

All (One solution)	Opened Nodes	Checks
Standard Backtracking	28 (13)	142 (56)
Backjumping	21 (8)	93 (30)
Backmarking	28 (13)	79 (34)
Intelligent Backtracking	6 (4)	16 (9) + NG