math 436 week 2 Week 2.1 thm 1.16 Steinitz Exchange Lemma let U be an F-vector space and T= {t, ..., +m3 a finite set of vectors that spans V. let 5. {eq, ... en} be a linearly independent subset of V of size in. Then, there is a subset T' contained in T, also of sizen, such that (TIT') US gives a spanning set =) allows us to define dimension - size of base PROOF Since T spans V, and e, & V, we can write e, as a linear combo of elements of T = e,= 2 liti where \\ \chi ∈ F let j be minimal st $\lambda_j \neq 0$... $e_i = \lambda_j t_j + \sum_{i=j+1}^{m} \lambda_i t_j$ so we get $t_j = \frac{1}{\lambda_j} \left(e_i - \sum_{i=j+1}^{N} \lambda_i t_i \right)$... continue this w each ei until Th corollary 1.7 Let V be a vector space with a basis B of sin: k size n & a second basis B' of size m. Then m=n (proof by contradiction & use Steinitz Exchange lemma) def 1.18 finite dimensional - an 17-vector space V is finite dimensional if it has a finite basis B def 1.19 for a sinite dimensional IF-vector space V, the dimension of V is the size of any IF-basis remark 1.20 1 the field matters! C is dim 1 as a C vector space but dim 2 as an R-vector space 2- Linear Maps def (a) Given F-vector spaces vand W, a function $\alpha: V \to W$ is a linear map if both hold: LI) Scaling - for any LEFF and any VEV a(2.1) = 2.a(V) La) Additivity - for any u, vey x(u+v)= a(u) - a(v)

es the identity map Id	\ .ν⇒ν
le,,, enj is a basis	for y
has basis $\{e_1,, e_n\}$ an where $\alpha(e_i) \in \mathcal{Z}_{j=1}^m$	
and Im(a) is a subspace	of W
ullity is n(d) = dlm(Ker (a	())
v	nullity is n(a) = dlm(Ker (a

def			diw	m(V)= , the at U,W	dim	m(ker(s uge is e subsp	Sinite	dim([Im(o	es and (et Im(d)) mensional then Vi	is a	l→w	be a	. linea	maj	p. Th	en,		
	d. 1a													sum of U		and W, (written V=	= (J &)
he j				space								V= (X-	·W	if eve	evy v	can	be u	ritten	as