Association Analysis Part 2

Sanjay Ranka
Professor
Computer and Information Science and Engineering
University of Florida

FP Growth (Pei et al 2000)

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses recursive divide and conquer approach to mine frequent itemsets

FP-Tree Construction

TID	Items		
1	{A,B}		
2	{B,C,D}		
3	{A,C,D,E}		
4	$\{A,D,E\}$		
5	{A,B,C}		
6	${A,B,C,D}$		
7	{B,C}		
8	{A,B,C}		
9	{A,B,D}		

 $\{B,C,E\}$

10

After reading TID=1:

A:1

B:1

After reading TID=2:

FP-Tree Construction

A:7

Transaction Database

Header table

Item	Pointer		
Α			
В			
С			
D			
Е			

C:1 D:1 C:3 D:1 E:1 Pointers are used to assist

D:1

frequent itemset generation

null

B:3

C:3

Data Mining Sanjay Ranka Spring 2011

B:5

FP-Tree Growth

Conditional Pattern base for D:

Recursively apply FP-growth on P

Frequent Itemsets found (with sup > 1):
AD, BD, CD, ACD, BCD

Tree Projection (Agrawal et al 1999)

Tree Projection

- Items are listed in lexicographic order
- Each node P stores the following information:
 - Itemset for node P
 - List of possible lexicographic extensions of P:
 E(P)
 - Pointer to projected database of its ancestor node
 - Bit vector containing information about which transactions in the projected database containing the itemset

Projected Database

Original Database:

TID	Items		
1	{A,B}		
2	{B,C,D}		
3	$\{A,C,D,E\}$		
4	$\{A,D,E\}$		
5	{A,B,C}		
6	$\{A,B,C,D\}$		
7	{B,C}		
8	{A,B,C}		
9	{A,B,D}		
10	{B,C,E}		

Projected Database for node A:

TID	Items
1	{B}
2	{}
3	{C,D,E}
4	{D,E}
5	{B,C}
6	{B,C,D}
7	{}
8	{B,C}
9	{B,D}
10	{}

For each transaction T, projected transaction at node A is $T \cap E(A)$

ECLAT (Zaki 2000)

 For each item, store a list of transaction ids (tids) Horizontal

Data Layout

TID	Items		
1	A,B,E		
2	B,C,D		
3	C,E		
4	A,C,D		
5	A,B,C,D		
6	A,E		
7	A,B		
8	A,B,C		
9	A,C,D		
10	В		

Vertical Data Layout

Α	В	C	D	Е
1	1	2	2	1
4	2		4 5	3
4 5 6	5	4	5	6
6	7	8	9	
7	8	9		10
8	10			
9				

TID-list

ECLAT

• Determine support of any k-itemset by intersecting tidlists of two of its (k-1) subsets.

Α		В		AB
1		1		1
4		2		5
5	A	5	\rightarrow	7
6	\	7		8
7		8		
8		10		
9				

- 3 traversal approaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Interestingness Measures

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D}
 have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Application of Interestingness Measure

Computing Interestingness Measure

• Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Y	Y	
X	f ₁₁	f_{10}	f ₁₊
X	f_{01}	f_{00}	f _{o+}
	f ₊₁	f_{+0}	T

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of X and Y f_{00} : support of X and Y

Can apply various Measures

 Support, Confidence, Lift, Gini, J-measure, etc.

Drawback of Confidence

Tea	Cqffee	Coffee	20
<u>Tea</u>	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee | Tea) = 0.75

but P(Coffee) = 0.9

⇒ Although confidence is high, rule is misleading

 \Rightarrow P(Coffee | Tea) = 0.9375

Other Measures

$$Lift = \frac{P(Y|X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

$$IS = \frac{P(X,Y)}{\sqrt{P(X)P(Y)}}$$

Other Measures

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_j, B_k) + \sum_{k} \max_{j} P(A_j, B_k) - \max_{j} P(A_j) - \max_{k} P(B_k)}{2 - \max_{j} P(A_j) - \max_{k} P(B_k)}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
6	Kappa (ĸ)	$\frac{P(A,B)+P(\overline{A}B)+\sqrt{P(A,B)P(A,B)}}{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(\overline{B}_{j})}$
7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}) P(B_{j})}{P(A_{i}) P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
8	J-Measure (J)	$\max\left(\overline{P(A,B)}\log(rac{P(B A)}{P(B)}) + P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}), ight.$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B A)^2 + P(\overline{B} A)^2] \right)$
		$-P(B)^2-P(\overline{B})^2$,
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2-P(\overline{A})^2\Big)$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{P(A)P(B)} = \frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Properties of a Good Measure

- Piatetsky-Shapiro:
 Three properties a good measure M should satisfy:
 - M(A,B) = 0 if A and B are statistically independent
 - M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
 - M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

Lift and Interest

	Y	Y	
X	10	0	10
X	0	90	90
	10	90	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

	Y	Y	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If
$$P(X,Y)=P(X)P(Y) \implies Lift = 1$$

Comparing Different Measures

10 examples of contingency tables:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

Rankings of contingency tables using various measures:

#	φ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	\boldsymbol{F}	AV	s	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Property Under Variable Permutation

	В	$\overline{\mathbf{B}}$		A	Ā
A	p	q	В	р	r
$\overline{\mathbf{A}}$	r	S	$\overline{\mathbf{B}}$	q	S

Does
$$M(A,B) = M(B,A)$$
?

Symmetric measures:

support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

confidence, conviction, Laplace, J-measure, etc

Property Under Row / Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	2	3	5
Low	1	4	5
	3	7	10

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76

 $\begin{array}{c} \downarrow \\ 2x & 10x \end{array}$

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Property Under Inversion Operation

Example: ϕ -Coefficient

 φ-coefficient is analogous to correlation coefficient for continuous variables

	Y	Y	
X	60	10	70
X	10	20	30
	70	30	100

	Y	Y	
X	20	10	30
X	10	60	70
	30	70	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238$$

$$\phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238$$

φ Coefficient is the same for both tables

Property Under Null Addition

	В	$\overline{\mathbf{B}}$
A	p	q
$\overline{\mathbf{A}}$	r	S

	В	В
A	р	q
$\overline{\mathbf{A}}$	r	s + k

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

• correlation, Gini, mutual information, odds ratio, etc

Different Measures Have Different Properties

Symbol	Measure	Range	P1	P2	Р3	01	02	03	03'	04
Ф	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
К	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
S	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
- 1	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	0 1	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	0 1	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$\left(\sqrt{\frac{2}{\sqrt{3}}-1}\right)\left(2-\sqrt{3}-\frac{1}{\sqrt{3}}\right)\dots 0\dots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

Support Based Pruning

- Most of the association rule mining algorithms use support measure to prune rules and itemsets
- Study effect of support pruning on correlation of itemsets
 - Generate 10000 random contingency tables
 - Compute support and pairwise correlation for each table
 - Apply support-based pruning and examine the tables that are removed

All Itempairs

Correlation

Support < 0.01

Support < 0.03

Support < 0.05

Support-based pruning eliminates mostly negatively correlated itemsets

- Investigate how support-based pruning affects other measures
- Steps:
 - Generate 10000 contingency tables
 - Rank each table according to the different measures
 - Compute the pair-wise correlation between the measures

Without Support Pruning (All Pairs)

- ◆ Red cells indicate correlation between the pair of measures > 0.85
- ◆ 40.14% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

• $0.5\% \le \text{support} \le 50\%$

♦ 61.45% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure:

• $0.5\% \le \text{support} \le 30\%$

◆ 76.42% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

Subjective Interestingness Measure

- Objective measure:
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
 - Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Interestingness vs. Unexpectedness

• Need to model expectation of users (domain knowledge)

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- **±** Expected Patterns
- Unexpected Patterns

 Need to combine expectation of users with evidence from data (i.e., extracted patterns)

Interestingness vs. Unexpectedness

- Web Data (Cooley et al 2001)
 - Domain knowledge in the form of site structure
 - Given an itemset $F = \{X_1, X_2, ..., X_k\}$ (X_i : Web pages)
 - L: number of links connecting the pages
 - If $actor = L / (k \times k-1)$
 - cfactor = 1 (if graph is connected), 0 (disconnected graph)
 - Structure evidence = cfactor × lfactor

- Usage evidence =
$$\frac{P(X_1 \cap X_2 \cap ... \cap X_k)}{P(X_1 \cup X_2 \cup ... \cup X_k)}$$

 Use Dempster-Shafer theory to combine domain knowledge and evidence from data

- Is it sufficient to use only a single minimum support threshold?
 - In practice, each item has different frequency
 - If minimum support is set too high, we could miss rules involving the rare items
 - If minimum support is set too low, it is computationally intensive and tends to produce too many rules

- How to apply multiple minimum supports?
 - MS(i): minimum support for item i
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
 - MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli)) = 0.1%
 - Challenge: Support is no longer anti-monotone
 - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
 - {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

Itom	MC(I)	Cum/l)	AB	ABC
Item	MS(I)	Sup(I)		
			AC	ABD
Α	0.10%	0.25%	A	
			AD	ABE
			AE AE	ACD
В	0.20%	0.26%	B	
			BC	ACE
С	0.30%	0.200/	C	
C	0.30%	0.29%	BD	ADE
				DOD
D	0.50%	0.05%	BE	BCD
			CD	BCE
			E	
Е	3%	4.20%	CE	BDE
	Data Mining	g Sanjay Ranka	DE OFFING 2011	CDE
	Data Milling	5 Carijay Karik	2011 2011	

				AB	ABC			
Item	MS(I)	Sup(I)						
			A	AC	ARD			
Α	0.10%	0.25%		AXO	ABE			
В	0.20%	0.26%	В	AE	ACO			
				BC	ACE			
С	0.30%	0.29%	C	BO	ADE			
D	0.50%	0.05%		BE	BOO			
				CO CO	BCE			
Е	3%	4.20%	E	X	BEE			
				DE	CDE			
	Data Mining Sanjay Ranka Spring 2011							

Multiple Minimum Support (Liu 1999)

- Order the items according to their minimum support (in ascending order)
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
 - Ordering: Broccoli, Salmon, Coke, Milk
- Need to modify Apriori such that:
 - L_1 : set of frequent items
 - F_1 : set of items whose support is \geq MS(1) where MS(1) is min_i(MS(i))
 - C₂: candidate itemsets of size 2 is generated from F₁ instead of L₁

Multiple Minimum Support (Liu 1999)

- Modifications to Apriori:
 - In traditional Apriori,
 - A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k
 - The candidate is pruned if it contains any infrequent subsets of size k
 - Pruning step has to be modified:
 - Prune only if subset contains the first item
 - e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to minimum support)
 - {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent
 - Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli

Other Types of Association Patterns

- Maximal and Closed Itemsets
- Negative Associations
- Indirect Associations
- Frequent Subgraphs
- Cyclic Association Rules
- Sequential Patterns

Closed Itemset

- An itemset X is closed if there exists no itemset X' such that:
 - X' is a superset of X
 - All transactions that contain X also contains X'

Number of Frequent itemsets:

$$= 3 \times \sum_{k=1}^{10} \binom{10}{k}$$

Number of Closed Itemsets = 3

$$\{A_1,...,A_{10}\}, \{B_1,...,B_{10}\}, \{C_1,...,C_{10}\}$$

Number of Maximal Itemsets = 3

Maximal vs. Closed Itemset

Maximal vs. Closed Frequent Itemsets

