Syntactic unification

Julio Mariño

Theory of Programming Languages MASTER IN FORMAL METHODS FOR SOFTWARE ENGINEERING Universidad (Politécnica | Complutense | Autónoma) de Madrid

December 14, 2021

prelude: first order syntax

- We will be considering first order terms just like the ones considered in the lectures on rewriting. These terms are made of variables, constants and (k-ary) functors.
- example: $f(x, g(z)), x^2 x$, 42, $employee(pepe, janitor), a \rightarrow (a \rightarrow b)$, etc.
- Generally speaking, a unification problem is finding some variable substitution that
 makes two terms equal.
- example: If we consider arithmetic expressions under the standard arithmetic interpretation for constants and functions, then the terms $x^2 x$ and 42 are unified by the substitution $\{x \mapsto 7\}$.
- In a syntactic unification problem terms are just interpreted literally, i.e. as its syntactic appearance the *free* algebra.
- example: employee(pepe, y) and employee(x, janitor) can be unified by $\{x \mapsto pepe, y \mapsto janitor\}$. $a \to (a \to b)$ and $c \to c$ cannot be unified syntactically.

substitutions and unifiers

- Substitutions on first order terms are defined in the usual recursive way. As there
 are no *scoping* constructs such as quantifiers there are no such issues as variable
 capture, etc.
- Substitutions can be composed. Composition is associative, as usual, but generally not commutative. The composition of substitutions σ and σ' is another substitution $\sigma \circ \sigma'$ such that for every term t, $(\sigma \circ \sigma')(t) = \sigma(\sigma'(t))$.
- A term *s* is *more general* than *t* when there is some substitution σ such that $t = \sigma(s)$.
- A substitution σ is *more general* than τ when for every term t, $\sigma(t)$ is *more general* than $\tau(t)$. Corollary: A substitution σ is *more general* than τ iff there is some substitution σ' such that $\tau = \sigma \circ \sigma'$
- A substitution σ is a unifier of two terms s and t when $\sigma(s) = \sigma(t)$. A most general unifier (mgu for short) of two terms is a unifier that is more general than any other unifier for those terms.
- The question now is: given two first order terms, is there a way of finding an syntactic mgu for them, if it exists?

Martelli & Montanari

- Main idea: transform a system of (syntactic) equations into an equivalent one which is either contradictory or trivially satisfiable.
- The rules:

$$S \cup \{t = t\} \quad \rightsquigarrow \quad S \qquad \qquad \qquad \qquad \qquad \\ S \cup \{f(s_1, \ldots, s_k) = f(t_1, \ldots, t_k)\} \quad \rightsquigarrow \quad S \cup \{s_1 = t_1, \ldots, s_k = t_k\} \qquad \qquad \\ S \cup \{f(s_1, \ldots, s_k) = g(t_1, \ldots, t_m)\} \quad \rightsquigarrow \quad \bot \qquad \qquad \qquad \\ f \neq g \lor k \neq m \quad (\texttt{CONFLICT}) \qquad \qquad S \cup \{f(s_1, \ldots, s_k) = x)\} \quad \rightsquigarrow \quad S \cup \{x = f(s_1, \ldots, s_k))\} \qquad \qquad \\ S \cup \{x = f(t_1, \ldots, t_k)\} \quad \rightsquigarrow \quad \bot \qquad \qquad \\ x \in \texttt{vars}(f(t_1, \ldots, t_k)) \quad (\texttt{OCCURS CHECK}) \qquad \\ S \cup \{x = t\} \quad \rightsquigarrow \quad S\{x \mapsto t\} \cup \{x = t\} \qquad \qquad x \notin \texttt{vars}(t) \quad (\texttt{ELIMINATE}) \qquad \qquad \\ \end{cases}$$

$$f(x, h(x)) = f(g(y), z)$$

$$f(x, h(x)) = f(g(y), z)$$

DECOMPOSE:

$$\begin{array}{rcl} x & = & g(y) \\ h(x) & = & z \end{array}$$

$$f(x, h(x)) = f(g(y), z)$$

DECOMPOSE:

$$x = g(y)$$

$$h(x) = z$$

SWAP:

$$x = g(y)$$

$$z = h(x)$$

$$f(x,h(x)) = f(g(y),z)$$

DECOMPOSE:

$$\begin{array}{rcl} x & = & g(y) \\ h(x) & = & z \end{array}$$

SWAP:

$$\begin{array}{rcl}
x & = & g(y) \\
z & = & h(x)
\end{array}$$

ELIMINATE:

$$x = g(y)$$

 $z = h(g(x))$

$$f(x,h(x)) = f(g(y),z)$$

DECOMPOSE:
 $x = g(y)$
 $h(x) = z$

SWAP:
 $x = g(y)$
 $z = h(x)$

ELIMINATE:
 $x = g(y)$
 $z = h(g(x))$

 $\mathsf{mgu} \mathsf{ is } \{x \mapsto g(y), z \mapsto h(g(y))\}$

5/6

$$f(x,h(x)) = f(g(z),z)$$

$$f(x,h(x)) = f(g(z),z)$$

DECOMPOSE:

$$x = g(z)$$

$$h(x) = z$$

$$f(x,h(x)) = f(g(z),z)$$

DECOMPOSE:

$$\begin{array}{rcl}
x & = & g(z) \\
h(x) & = & z
\end{array}$$

SWAP:

$$x = g(z)$$

$$f(x,h(x)) = f(g(z),z)$$

DECOMPOSE:

$$\begin{array}{rcl} x & = & g(z) \\ h(x) & = & z \end{array}$$

SWAP:

$$\begin{array}{rcl} x & = & g(z) \\ z & = & h(x) \end{array}$$

ELIMINATE:

$$\begin{array}{rcl}
x & = & g(y) \\
z & = & h(g(z))
\end{array}$$

$$f(x,h(x)) = f(g(z),z)$$

DECOMPOSE:

$$\begin{array}{rcl} x & = & g(z) \\ h(x) & = & z \end{array}$$

SWAP:

$$\begin{array}{rcl} x & = & g(z) \\ z & = & h(x) \end{array}$$

ELIMINATE:

$$x = g(y)$$

 $z = h(g(z))$

OCCURS CHECK:

 \perp

$$f(x,h(x)) = f(g(z),z)$$

DECOMPOSE:

$$\begin{array}{rcl} x & = & g(z) \\ h(x) & = & z \end{array}$$

SWAP:

$$x = g(z)$$

 $z = h(x)$

ELIMINATE:

$$x = g(y)$$

 $z = h(g(z))$

OCCURS CHECK:

December 14, 2021