CORRIGÉ DU DS°1

EXERCICE

1. L'étude et le tracé n'auraient pas du poser de problème ni prendre plus de quelques minutes...

La résolution de l'équation du second degré f(x)=x donne $\ell_1=\frac{1-\sqrt{5}}{2}$ et $\ell_2=\frac{1+\sqrt{5}}{2}$.

2. a) L'étude précédente montre que $f(]-\infty,-1[)=]-\infty,-1[$, c'est-à-dire que $]-\infty,-1[$ est stable par f.

Par conséquent, si $u_0 \in]-\infty, -1[$, on aura $u_n \in]-\infty, -1[$ pour tout n.

Rem: on pouvait aussi procéder par récurrence sur n puisque

$$u_n < \ell_1$$
 et f strictement croissante sur $]-\infty, \ell_1[\Longrightarrow f(u_n) < f(\ell_1)$ i.e $u_{n+1} < \ell_1$

b) On a le tableau de signe suivant (signe d'un trinôme, cours de 1ère...) :

х	$-\infty$		ℓ_1		ℓ_2	+∞
f(x)-x		-	0	+	0	

Pour $x < \ell_1$, on a f(x) < x donc, puisque $u_n < \ell_1$, on aura $f(u_n) < u_n$ soit $u_{n+1} < u_n$: la suite est strictement décroissante.

c) Si (u_n) était convergente, ce serait vers un réel ℓ tel que $f(\ell) = \ell$ puisque f est continue (en passant à la limite dans l'égalité $u_{n+1} = f(u_n)$).

De plus, la suite étant décroissante, on devrait avoir $\ell \leqslant u_n$ pour tout n, et en particulier $\ell \leqslant u_0 < \ell_1$. Or il n'existe pas de point fixe de f qui est $< \ell_1$, d'où la contradiction.

 (u_n) étant décroissante non convergente, on a, d'après le cours : $\lim_{n \to +\infty} u_n = -\infty$.

3. a) L'étude des variations de f a montré que $f(]1,\ell_2[=]\ell_2,2[$. Donc directement

$$1 < u_0 < \ell_2 \Longrightarrow \ell_2 < u_1 < 2.$$

b) Pour tout $x \in \mathbb{R}$:

$$f \circ f(x) - x = -(-x^2 + 2x + 1)^2 + 2(-x^2 + 2x + 1) + 1 - x$$

$$= -(x^4 + 4x^2 + 1 - 4x^3 - 2x^2 + 4x) - 2x^2 + 4x + 2 + 1 - x$$

$$= -x^4 + 4x^3 - 4x^2 - x + 1 = (x - 1)(x - 2)(-x^2 + 2x + 1)$$

$$= -(x - 1)(x - 2)(x - \ell_1)(x - \ell_2)$$

Rem: Ce n'était quand même pas compliqué: en effet, 1 et 2 sont racines évidentes, et vous auriez du savoir que le polynôme f(x)-x divise le polynôme $f\circ f(x)-x$, pour des raisons qui ont été mentionnées en cours...

Les 4 racines sont simples, donc le polynôme change de signe à chaque racine, et puisque $\lim_{x\to\infty} f\circ f(x)-x=-\infty$, on a facilement le tableau de signes :

Х	$-\infty$		ℓ_1		1		ℓ_2		2		+∞
$f \circ f(x) - x$		_	0	+	0	-	0	+	0	_	

 $\textbf{c)} \ \ \text{Puisque} \ f(]1,\ell_2[)=]\ell_2,2[\ \text{et} \ f(]\ell_2,2[)=]1,\ell_2[\ , \text{on aura} \ f\circ f(]1,\ell_2[)=]1,\ell_2[\ \text{et} \ f\circ f(]\ell_2,2[)=]\ell_2,2[\ .$

Ainsi les intervalles $]1,\ell_2[$ et $]\ell_2,2[$ sont des intervalles stables par $f\circ f$, sur lesquels $f\circ f$ est croissante (comme composée de deux fonctions décroissantes).

Les suites (v_n) et (w_n) vérifient la récurrence $v_{n+1} = f \circ f(v_n)$ et $w_{n+1} = f \circ f(w_n)$, donc, d'après le cours, elles sont monotones, de sens de variations contraires.

Puisque $v_0=u_0\in]1, \ell_2[$, $v_1-v_0=f\circ f(v_0)-v_0$ est négatif, d'après le tableau de signes précédent.

Donc $v_1 < v_0$ et la suite (v_n) est décroissante, donc la suite (w_n) est croissante.

Puisque (ν_n) reste dans l'intervalle]1, ℓ_2 [, elle est minorée par 1, donc elle converge ; sa limite ℓ doit vérifier $f \circ f(\ell) = \ell$ puisque $f \circ f$ est continue, doit appartenir à [1, ℓ_2] et doit être inférieure à ν_0 , donc différente de ℓ_2 ; cette limite ne peut donc être que 1.

On a donc $\lim_{n \to +\infty} v_n = 1$ et de la même façon, $\lim_{n \to +\infty} w_n = 2$.

d) Puisqu'il existe deux suites extraites de (u_n) qui ont des limites différentes la suite (u_n) diverge.

PROBLÈME I : Méthode de Newton (ENSI 1986, option TA, Maths appliquées, 2h30)

Première partie

- 1. On a bien ici:
 - f de classe \mathscr{C}^1 sur]0,+∞[
 - *f* possède un seul zéro $x = +\sqrt{\alpha}$ ∈]0,+∞[
 - $-f': x \mapsto 2x$ ne s'annule pas sur $]0, +\infty[$
 - Pour tout x > 0, $F(x) = x \frac{x^2 \alpha}{2x} = \frac{x}{2} + \frac{\alpha}{2x} > 0$, donc $F(x) \in]0, +\infty[$ et $]0, +\infty[$ est stable par F.

Les hypothèses du préambule sont satisfaites sur l'intervalle $I =]0, +\infty[$.

2. a) Pour tout x > 0:

$$F(x) - \sqrt{\alpha} = \frac{1}{2x}(x^2 + \alpha - 2x\sqrt{\alpha}) = \frac{1}{2x}(x - \sqrt{\alpha})^2$$

et

$$F(x) + \sqrt{\alpha} = \frac{1}{2x}(x^2 + \alpha - 2x\sqrt{\alpha}) = \frac{1}{2x}(x + \sqrt{\alpha})^2$$

donc
$$\frac{F(x) - \sqrt{\alpha}}{F(x) + \sqrt{\alpha}} = \left(\frac{x - \sqrt{\alpha}}{x + \sqrt{\alpha}}\right)^2$$
.

En appliquant ce résultat à $x = u_n$, on obtient

$$\frac{u_{n+1} - \sqrt{\alpha}}{u_{n+1} + \sqrt{\alpha}} = \left(\frac{u_n - \sqrt{\alpha}}{u_n + \sqrt{\alpha}}\right)^2$$

d'où par récurrence immédiate :

$$\forall n \in \mathbb{N} , \frac{u_n - \sqrt{\alpha}}{u_n + \sqrt{\alpha}} = \left(\frac{u_0 - \sqrt{\alpha}}{u_0 + \sqrt{\alpha}}\right)^{2^n}.$$

b) Posons
$$k = \frac{u_0 - \sqrt{\alpha}}{u_0 + \sqrt{\alpha}}$$
; de $\frac{u_n - \sqrt{\alpha}}{u_n + \sqrt{\alpha}} = k^{2^n}$, on tire $u_n = \sqrt{\alpha} \frac{1 + k^{2^n}}{1 - k^{2^n}}$.

Or
$$-(u_0 + \sqrt{\alpha}) < u_0 - \sqrt{\alpha} < u_0 + \sqrt{\alpha} \text{ donc } -1 < k < 1 \text{ et } \lim_{n \to +\infty} k^{2^n} = 0 \text{ donc } :$$

Pour tout $u_0 > 0$, la suite $(u_n)_{n \in \mathbb{N}}$ converge vers $\ell = \sqrt{\alpha}$.

c) Si
$$u_0 > 0$$
 et $u_0 \neq \alpha$, on a $k \neq 0$ donc $u_n \neq \sqrt{\alpha}$ pour tout $n \in \mathbb{N}$.

On a vu que
$$F(x) - \sqrt{\alpha} = \frac{1}{2x}(x - \sqrt{\alpha})^2$$
 d'où, pour $x = u_n$:

$$y_n = \frac{|u_{n+1} - \sqrt{\alpha}|}{|u_n - \sqrt{\alpha}|^2} = \frac{1}{2u_n}$$
 et $\lim_{n \to +\infty} y_n = \frac{1}{2\sqrt{\alpha}} \neq 0$. Cela signifie que :

La convergence de la suite $(u_n)_{n\in\mathbb{N}}$ est quadratique.

3. a) $F(x) - \sqrt{\alpha} = \frac{1}{2x}(x - \sqrt{\alpha})^2 \ge 0$ donc, en prenant $x = u_{n-2}$ on aura, pour tout $n \ge 2$: $0 \le u_{n-1} - \sqrt{\alpha}$.

On a également:

$$2(x - F(x)) - x + \sqrt{\alpha} = -\frac{\alpha}{x} + \sqrt{\alpha} = \frac{\sqrt{\alpha}}{x}(x - \sqrt{\alpha}) \ge 0 \text{ pour les } x \ge \sqrt{\alpha}.$$

En appliquant cela à $x=u_{n-1}\geqslant\sqrt{\alpha}$, on obtient : $2(u_{n-1}-u_n)-(u_{n-1}-\sqrt{\alpha})\geqslant0$.

On a donc bien:

Pour tout
$$n \ge 2$$
: $0 \le u_{n-1} - \sqrt{\alpha} \le 2(u_{n-1} - u_n)$.

b) D'une part : $0 \le u_n - \sqrt{\alpha}$ est vraie pour $n \ge 1$ d'après ce qui précède.

D'autre part, l'inégalité $u_{n-1}-\sqrt{\alpha}\leqslant 2(u_{n-1}-u_n)$ (pour $n\geqslant 2$) implique, en additionnant u_n-u_{n-1} des deux côtés, $u_n-\sqrt{\alpha}\leqslant u_{n-1}-u_n$.

On a donc bien:

$$\forall n \geq 2$$
, $0 \leq u_n - \sqrt{\alpha} \leq u_{n-1} - u_n$.

Dans la pratique, lorsqu'on calcule les termes successifs de (u_n) à l'aide de la relation de récurrence $u_{n+1} = F(u_n)$, on aura directement une estimation de l'erreur commise en approchant $\sqrt{\alpha}$ par u_n à l'aide de la différence des deux derniers termes calculés.

4. a)
$$\circ$$
 Si $p=2k$, on a $\sqrt{\alpha}=2^k\sqrt{\beta}$ et $u_0=2^k:\frac{u_0-\sqrt{\alpha}}{u_0+\sqrt{\alpha}}=\frac{1-\sqrt{\beta}}{1+\sqrt{\beta}}\geqslant 0$.

Et puisque $\frac{1}{\sqrt{2}} \le \sqrt{\beta} < 1$, on aura :

$$0 < 1 - \sqrt{\beta} \le 1 - \frac{1}{\sqrt{2}}$$
 et $1 + \frac{1}{\sqrt{2}} \le 1 + \sqrt{\beta} < 2$

d'où l'on tire
$$\left| \frac{u_0 - \sqrt{\alpha}}{u_0 + \sqrt{\alpha}} \right| = \frac{1 - \sqrt{\beta}}{1 + \sqrt{\beta}} \leqslant \frac{1 - \frac{1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}} = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} = \frac{(\sqrt{2} - 1)^2}{2 - 1} = (\sqrt{2} - 1)^2.$$

• Si
$$p = 2k + 1$$
, on a $\sqrt{\alpha} = 2^k \sqrt{2} \sqrt{\beta}$ et $u_0 = 2^k : \frac{u_0 - \sqrt{\alpha}}{u_0 + \sqrt{\alpha}} = \frac{1 - \sqrt{2} \sqrt{\beta}}{1 + \sqrt{2} \sqrt{\beta}}$

Puisque
$$1 \leqslant \sqrt{2}\sqrt{\beta} \leqslant \sqrt{2}$$
, on a $1 - \sqrt{2}\sqrt{\beta} \leqslant 0$ donc $\left|\frac{u_0 - \sqrt{\alpha}}{u_0 + \sqrt{\alpha}}\right| = \frac{\sqrt{2}\sqrt{\beta} - 1}{\sqrt{2}\sqrt{\beta} + 1}$.

Or
$$\sqrt{2}\sqrt{\beta}-1 \leqslant \sqrt{2}-1$$
 et $1+\sqrt{2}\leqslant 1+\sqrt{2}\sqrt{\beta}$ donc $\left|\frac{u_0-\sqrt{\alpha}}{u_0+\sqrt{\alpha}}\right|\leqslant \frac{\sqrt{2}-1}{\sqrt{2}+1}=(\sqrt{2}-1)^2$.

Finalement dans tous les cas on a bien : $\left| \frac{u_0 - \sqrt{\alpha}}{u_0 + \sqrt{\alpha}} \right| \le (\sqrt{2} - 1)^2$.

b) Puisque $(\sqrt{2}-1)^2 \leqslant \frac{1}{5}$ et que $\frac{u_n-\sqrt{\alpha}}{u_n+\sqrt{\alpha}}=\left(\frac{u_0-\sqrt{\alpha}}{u_0+\sqrt{\alpha}}\right)^{2^n}$, on déduit de la majoration précédente :

$$\left|\frac{u_n-\sqrt{\alpha}}{u_n+\sqrt{\alpha}}\right| \leqslant \left(\frac{1}{5}\right)^{2^n}.$$

Or, pour
$$n \ge 1$$
, $u_n \ge \sqrt{\alpha}$, d'où $0 \le u_n - \sqrt{\alpha} \le (u_n + \sqrt{\alpha}) \left(\frac{1}{5}\right)^{2^n}$.

Or $\sqrt{\alpha} \le u_1$ et comme la suite est décroissante à partir du rang 1, $u_n \le u_1$.

Donc $u_n + \sqrt{\alpha} \le 2u_1$ pour $n \ge 1$ et finalement :

$$0 \le u_n - \sqrt{\alpha} \le 2u_1 \left(\frac{1}{5}\right)^{2^n}.$$

- c) Cette estimation de l'erreur permet d'avoir dès le départ une idée du nombre de termes qu'il faudra calculer pour obtenir $\sqrt{\alpha}$ à une précision donnée. Personnellement, je ne trouve pas cela plus intéressant que l'estimation obtenue auparavant...
- 5. Voir TD d'info.

Seconde partie

6. a) Pour
$$x > 0$$
, $f'(x) = -1/x^2$ d'où $F(x) = 2x - \alpha x^2$.

 $F'(x) = 2(1 - \alpha x)$, et on a facilement le tableau de variations de F:

х	0	$\frac{1}{\alpha}$	$\frac{2}{\alpha}$	$+\infty$
F(x)	0	$\frac{1}{\alpha}$	0	$-\infty$

On remarque que pour $x \in]0, \frac{2}{\alpha}[, F(x) > 0 \text{ et } F(x) \le 0 \text{ sinon.}]$

Donc, si I \subset]0, + ∞ [est tel que F(I) \subset I, il faut que pour tout $x \in I$, F(x) > 0 donc que I \subset]0, $\frac{2}{a}$ [.

D'autre part, $F(]0, \frac{2}{\alpha}[) =]0, \frac{1}{\alpha}] \subset]0, \frac{2}{\alpha}[$, c'est-à-dire que l'intervalle $0, \frac{2}{\alpha}[$ est bien stable par F. Ainsi :

 $]0, \frac{2}{\alpha}[$ est le plus grand intervalle contenu dans $]0, +\infty[$ et stable par F.

b) On a bien ici f de classe \mathscr{C}^1 sur $]0, \frac{2}{\alpha}[$, f possède un seul zéro $x = \frac{1}{\alpha} \in]0, \frac{2}{\alpha}[$, f' ne s'annule pas sur $]0, \frac{2}{\alpha}[$ et enfin $]0, \frac{2}{\alpha}[$ est stable par F.

Toutes les hypothèse du préambule sont donc satisfaites.

7. **a)** On a vu que pour $x \in]0, \frac{2}{\alpha}[$, $F(x) \in]0, \frac{1}{\alpha}[$. Comme $v_0 \in]0, \frac{2}{\alpha}[$, on aura $v_1 \in]0, \frac{1}{\alpha}[$ puis par récurrence, pour $n \in \mathbb{N}^*$, $v_n \in]0, \frac{1}{\alpha}[$.

Pour $x \in]0, 1/\alpha]$, $F(x) - x = x - \alpha x^2 = x(1 - \alpha x) \ge 0$ donc $v_{n+1} = F(v_n) \ge v_n$.

La suite $(v_n)_{n \le 1}$ est croissante et majorée par $\frac{1}{\alpha}$: elle converge.

b) Notons $\ell = \lim_{n \to +\infty} v_n$. On sait que $v_1 \le \ell \le 1/\alpha$. Donc $\ell > 0$.

Et comme F est continue en ℓ , par passage à la limite dans la relation $\nu_{n+1} = F(\nu_n)$, on a $F(\ell) = \ell$.

 $F(\ell) = \ell$ équivaut à $\ell(1 - \alpha \ell) = 0$ donc finalement : $\ell = \frac{1}{\alpha}$.

c) Si $v_0 \in]0, \frac{2}{\alpha}[$ et $v_0 \neq \frac{1}{\alpha}$ alors $v_1 \in]0, \frac{1}{\alpha}[$ puis par récurrence $v_n \in]0, \frac{1}{\alpha}[$. En particulier $v_n \neq \frac{1}{\alpha}$.

$$F(x) - \frac{1}{\alpha} = 2x - \alpha x^2 - \frac{1}{\alpha} = -\frac{1}{\alpha} (1 + \alpha^2 x^2 - 2\alpha x) = -\frac{1}{\alpha} (1 - \alpha x)^2 \text{ donc } \frac{|F(x) - 1/\alpha|}{|x - 1/\alpha|^2} = \alpha.$$

Pour $x = v_n$, on obtient $y_n = \frac{|v_{n+1} - \frac{1}{\alpha}|}{|v_n - \frac{1}{\alpha}|^2} = \alpha$ donc (y_n) converge vers $\alpha > 0$. Cela signifie que:

La convergence de la suite $(v_n)_{n\in\mathbb{N}}$ est quadratique.

8. La question n'était pas très claire... Voir TD d'info.

Troisième partie

9. a) F est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et on a $\mathrm{F}'(x) = \frac{k-1}{k} \left(1 - \frac{\alpha}{x^k}\right)$. On obtient facilement le tableau de variations suivant :

х	0		$\alpha^{1/k}$		$+\infty$
F(x)	+∞	<u></u>	$\alpha^{1/k}$	<i></i>	+∞

On envisage donc deux cas:

• Si $w_0 \in [\alpha^{1/k}, +\infty[$: l'intervalle $[\alpha^{1/k}, +\infty[$ étant stable par F, on aura alors $w_n \in [\alpha^{1/k}, +\infty[$ pour tout n.

Pour tout $x \in [\alpha^{1/k}, +\infty[$, on a $F(x) - x = \frac{1}{k} \left(\frac{\alpha - x^k}{x^{k-1}} \right) \le 0$, donc (w_n) est décroissante

(car $w_{n+1} - w_n = F(w_n) - w_n \le 0$); étant minorée par $a^{1/k}$, elle converge, nécessairement vers un point fixe de F puisque F est continue, donc vers $\alpha^{1/k}$.

∘ Si $w_0 \in]0, \alpha^{1/k}[$, alors $w_1 \in [\alpha^{1/k}, +\infty[$ et on est ramené au cas précédent.

En conclusion, dans tous les cas : (w_n) converge vers $\alpha^{1/k}$.

b) \circ Pour $n \ge 1$, $w_n = F(w_{n-1})$ donc $w_n \ge \alpha^{1/k}$. On a donc bien :

$$\forall n \ge 2$$
, $0 \le w_{n-1} - \alpha^{1/k}$.

• Pour tout x > 0 on a

$$k(x - F(x)) - (x - \alpha^{1/k}) = \frac{x^k - \alpha}{x^{k-1}} - (x - \alpha^{1/k}) = \alpha^{1/k} \frac{x^{k-1} - \alpha^{\frac{k-1}{k}}}{x^{k-1}}$$

Si $x \ge \alpha^{1/k}$, on aura $x^{k-1} \ge \alpha^{\frac{k-1}{k}}$ donc $k(x - F(x)) \ge (x - \alpha^{1/k})$.

En appliquant cette relation à w_{n-1} , qui est bien $\ge \alpha^{1/k}$ pour $n \ge 2$ d'après ce qui précède, on en déduit

$$k(w_{n-1} - F(w_{n-1})) \ge w_{n-1} - \alpha^{1/k}$$
 soit $k(w_{n-1} - w_n) \ge w_{n-1} - \alpha^{1/k}$

ce qu'il fallait démontrer.

o À partir de l'inégalité

$$0 \le w_{n-1} - a^{1/k} \le k(w_{n-1} - w_n)$$

valable pour $n \ge 2$, on obtient, en ajoutant $w_n - w_{n-1}$ aux deux membres :

$$w_n - w_{n-1} \le w_n - a^{1/k} \le (k-1)(w_{n-1} - w_n)$$

et l'inégalité cherchée résulte du fait que (w_n) est décroissante à partir du rang 1 au moins d'après l'étude faite à la question précédente.

c) Je vous laisse le soin de vérifier que la suite (w_n) est bien celle fournie par la méthode de Newton pour la fonction $f: x \mapsto x^k - \alpha$ (ne pas oublier de vérifier les hypothèses du préambule).

PROBLÈME II : Accélération de convergence (ENSAE 1998, Maths appliquées, 2h)

Partie préliminaire

f est de classe \mathscr{C}^1 sur [a,b] donc f' est continue sur [a,b]. Or toute fonction continue sur un segment y est bornée et atteint ses bornes. Donc $\sup_{y\in[a,b]}\left|f'(y)\right|=\mathrm{K}$ existe.

De plus, f est dérivable sur [a,b] et $\forall x \in [a,b], |f'(x)| \leq K$; d'après l'inégalité des accroissements finis, on a donc :

$$\forall (x, x') \in [a, b]^2, |f(x) - f(x')| \leq K|x - x'|$$

Partie I: Théorème du point fixe

1. • Nous savons que $f(a) \ge a$ et $f(b) \le b$, puisque l'on a par hypothèse $f([a,b]) \subset [a,b]$. Dès lors, la fonction f(x) - x change de signe; étant continue, elle s'annule sur [a,b] (théorème des valeurs intermédiaires), c'est-à-dire qu'il existe au moins un $x \in [a,b]$ tel que f(x) = x.

Mais si x et x' étaient deux points fixes distincts de f , on aurait $|f(x)-f(x')|=|x-x'|\leqslant K|x-x'|$, d'où $K\geqslant 1$: impossible.

En conclusion, f possède un et un seul point fixe c.

- ∘ La suite (x_n) est bien définie puisque $f([a,b]) \subset [a,b]$. On a aussi, pour tout $x \in [a,b]$, $|f(x)-f(c)| \leq K|x-c|$, d'où $|x_{n+1}-c| \leq K|x_n-c|$ puis par récurrence $|x_n-c| \leq K^n|x_0-c|$ pour tout entier n, ce qui implique la convergence de la suite (x_n) vers c puisque $\lim_{n \to +\infty} K^n = 0$.
- 2. D'après l'inégalité triangulaire $|x_0-c| \le |x_0-x_1| + |x_1-c|$, et on vient de voir que $\left|x_1-c\right| \le K\left|x_0-c\right|$ donc $\left|x_0-c\right| \le |x_0-c| + K\left|x_0-c\right|$, d'où l'on tire, puisque $1-K>0: \left|x_0-c\right| \le \frac{1}{1-K}\left|x_1-x_0\right|$. Il ne reste plus qu'à remplacer dans l'inégalité $|x_n-c| \le K^n|x_0-c|$ pour obtenir le résultat.

Partie II: Procédure diagonale d'Aitken.

1. f' étant continue sur [a, b) et ne s'y annulant pas, elle garde un signe constant (d'après le théorème des valeurs intermédiaires). Ainsi, f est strictement monotone sur [a, b] et, en particulier, elle est injective.

Si $e_0 \neq 0$, alors $x_0 \neq c$ donc $f(x_0) \neq f(c)$ puisque f injective, c'est-à-dire $x_1 \neq c$ soit $e_1 \neq c$. Par récurrence triviale, on aura bien $e_n \neq 0$ pour tout n.

- **2.** Dire que $x_{n+1} = x_n$ signifie que $f(x_n) = x_n$ donc que x_n est un point fixe de f donc que $x_n = c$ donc que $x_n = 0$: impossible.
- 3. $\frac{e_{n+1}}{e_n} = \frac{f(x_n) f(c)}{x_n c}$. Puisque x_n tend vers c, ce rapport tend vers f'(c) par définition du nombre dérivé et d'après la caractérisation séquentielle de la limite.
- **4.** x'_n existe si et seulement si $x_{n+2} x_{n+1} \neq x_{n+1} x_n$. Or, d'après la question préliminaire :

$$|x_{n+2} - x_{n+1}| = |f(x_{n+1}) - f(x_n)| \le K |x_{n+1} - x_n| < |x_{n+1} - x_n|$$

puisque K < 1 et $x_{n+1} \neq x_n$. On ne peut donc pas avoir $x_{n+2} - x_{n+1} = x_{n+1} - x_n$, d'où l'xistence de x'_n .

• On calcule :
$$x'_n - c = e_n - \frac{(e_{n+1} - e_n)^2}{e_{n+2} - 2e_{n+1} + e_n}$$
 puis

$$\frac{x_n'-c}{x_n-c} = 1 - \frac{\left(\frac{e_{n+1}}{e_n}-1\right)^2}{\frac{e_{n+2}}{e_n}-2\frac{e_{n+1}}{e_n}+1} = \frac{\frac{e_{n+2}}{e_n}-\frac{e_{n+1}^2}{e_n^2}}{\frac{e_{n+2}}{e_n}-2\frac{e_{n+1}}{e_n}+1}.$$

En écrivant $\frac{e_{n+2}}{e_n} = \frac{e_{n+2}}{e_{n+1}} \times \frac{e_{n+1}}{e_n}$, et en utilisant le résultat de la question précédente, on voit que le dénominateur de la dernière fraction tend vers $f'(c)^2 - 2f'(c) + 1 = (f'(c)^2 - 1)^2 \neq 0$ (car $|f'(c)| \leq K < 1$). Le numérateur, lui, tend vers $f'(c)^2 - f'(c)^2 = 0$, ce qui démontre le résultat voulu.

Interprétation : La suite (x'_n) converge plus vite vers c que la suite (x_n) .

Partie III: Méthode de Steffenson.

Notons d'abord que g est convexe et strictement décroissante. De plus, g est minorée par a, donc $\lim_{x \to +\infty} g(x)$ existe et est finie.

1. Posons h(x) = g(x) - x; h est continue et strictement décroissante sur $[a, +\infty[$. On a $h(a) = g(a) - a \ge 0$ puisque $g([a, +\infty[) \subset [a, +\infty[$, et $\lim_{x \to +\infty} h(x) = -\infty$ d'après la remarque ci-dessus. Donc h réalise une bijection de $[a, +\infty[$ sur $]-\infty, h(a)]$, et s'annule donc une et une seule fois sur $[a, +\infty[$.

2. \circ Soit $x \in [a, +\infty[$. Supposons d'abord x différent de d.

Le théorème des accroissements finis, appliqué à la fonction h précédente entre x et d, montre qu'il existe y_1 compris strictement entre x et d tel que $h(x) - h(d) = h'(y_1)(x - d)$, ce qui s'écrit $g(x) - x = (g'(y_1) - 1)(x - d)$ puisque h(d) = 0.

C'est le résultat voulu ; si x = d, on peut choisir n'importe quoi pour y'_1 .

• En appliquant maintenant le théorème des accroissements finis à h entre d et g(x), on obtient de la même façon l'existence d'un y_2' compris entre g(x) et d tel que

$$g(g(x)) - g(x) = (g'(y_2) - 1)(g(x) - d)$$

Donc:

$$N(x) = g(g(x)) - g(x) - [g(x) - x] = (g'(y_2) - 1)(g(x) - x + x - d) - [g(x) - x]$$
 (astuce!)

$$= [g(x) - x][g'(y_2) - 2] + [g'(y_2) - 1](x - d)$$

$$= (g'(y_1) - 1)(x - d)[g'(y_2) - 2] + [g'(y_2) - 1](x - d)$$

$$= [(g'(y_1) - 1)(g'(y_2) - 2) + (g'(y_2) - 1)](x - d)$$

$$= [(g'(y_1) - 1)^2 + (g'(y_2) - g'(y_1))g'(y_1)](x - d).$$

3. On a évidemment : $x = d \Longrightarrow N(x) = 0$.

D'autre part, N est dérivable et

$$N'(x) = g'(x).g'(g(x)) - 2g'(x) + 1$$

donc N'(x) > 0 puisque g'(x) est strictement négative.

N est donc strictement croissante ; elle ne peut donc s'annuler qu'une fois, et c'est forcément en d.

4. \circ D'après les théorèmes usuels, puisque N ne s'annule qu'en d, la fonction G est déjà continue sur $[a, +\infty[\setminus \{d\}]]$. Il reste à prouver sa continuité en d.

Pour $x \neq d$, on a

$$G(x) = x - (x - d) \frac{(g'(y_1) - 1)^2}{[(g'(y_1) - 1)^2 + (g'(y_2) - g'(y_1))g'(y_1)]}$$
(1)

avec y_1 compris entre x et d et y_2 compris entre g(x) et d.

Lorsque x tend vers d, y_1 tend vers d et, puisque g(x) tend vers g(d) = d (g continue), y_2 tend aussi vers d.

g' étant continue, $g'(y_1)$ et $g'(y_2)$ tendent alors vers g'(d) et les numérateur et dénominateur de la fraction dans (1) tendent tous deux vers $(g'(d)-1)^2$, qui n'est pas nul puisque g' est à valeurs strictement négatives. On a donc $\lim_{x\to d} G(x) = G(d)$, ce qui prouve la continuité de G en d.

∘ Pour $x \in [a, +\infty[\setminus \{d\}, \text{ on a}]$

$$G(x) - d = (x - d) \left(1 - \frac{(g'(y_1) - 1)^2}{[(g'(y_1) - 1)^2 + (g'(y_2) - g'(y_1))g'(y_1)]} \right)$$
$$= \frac{(g'(y_2) - g'(y_1))g'(y_1)}{g'(y_1)g'(y_2) - 2g'(y_1) + 1}$$

avec y_1 compris entre x et d et y_2 compris entre g(x) et d.

- Si x < d: on a g(x) > g(d) = d puisque g et strictement décroissante, d'où $x \le y_1 \le d \le y_2 \le g(x)$ d'où $g'(y_2) - g'(y_1) \ge 0$ puisque g' croissante. On a alors $(x - d)(g'(y_2) - g'(y_1))g'(y_1) \ge 0$ puisque g' est négative.

Enfin, le dénominateur $g'(y_1)g'(y_2) - 2g'(y_1) + 1$ est positif puisque g' négative.

Finalement, on trouve dans ce cas : $G(x) - d \ge 0$.

– Dans le cas x>d, reprenez les inégalités ci-dessus pour montrer qu'on aboutit au même résultat.

On a donc, pour tout $x \in [a, +\infty[\setminus \{d\}, G(x) \ge d]$, cette inégalité restant vraie pour x = d. Puisque $d \ge a$, on a bien :

G est une application continue de $[a, +\infty[$ dans $[a, +\infty[$.

5. G étant définie sur $[a, +\infty[$ et à valeurs dans cet intervalle, la définition de la suite (x_n'') a bien un sens.

On vient de voir que $G(x) \ge d$ pour tout $x \ge a$, donc, pour tout $n \in \mathbb{N}^*$, $x_n'' = G(x_{n-1}'') \ge d$. Enfin, on a vu que la fonction N est croissante; donc si $x \ge d$, $N(x) \ge N(d) = 0$, d'où $G(x) \le x$. On aura donc, pour $n \ge 1$: $x_{n+1}'' = G(x_n'') \le x_n''$, et la suite $(x_n'')_{n \ge 1}$ est décroissante.

Étan minorée par d, elle converge vers un point fixe de G puisque G est continue, c'est-à-dire vers d (en effet, l'équation G(x) = x pour $x \neq d$ équivaut à $\frac{(g(x) - x)^2}{N(x)} = 0$ soit à g(x) = x soit à x = d...).

Partie IV: Application.

Voir TD d'info.

* * * * * * *