contree

Phonetice

SHM

Soun

Phase

motion

Addition

Spectrogran

Source-Filte Model

Summary

Introduction to Acoustic Phonetics

G. Moroz

3 February, 2018

About course

course

Phonetics

SHM

Soun

rnas

motion

Addition o

Spectrogran

Source-Filte Model

- · Here is a course website.
- · Here is a course program.
- · We expect some theoretical knowledge
 - · read 2. chapter from [Gussenhoven, Jacobs 2011]
 - · be able to use IPA symbols
- · We expect some basic R skills:
 - · import .csv files to R
 - · dplyr, ggplot2

Phonetics?...

Phonetics from http://specgram.com/CLIII.1/09.parenchyma.cartoon.e.html Phonology

rom http://specgram.com/CLIII.1/09.parenchyma.cartoon.e.html

Phonetics is generally assumed to be a subfield that deals with **articulatory**, **acoustic** and **perceptional** aspects of phonological units. Phonology and phonetics together are supposed to describe organization of sounds in languages.

This course is about acoustic phonetics.

Phonetics

презентация доступна: https://goo.gl/RSz84p

Simple Harmonic Motion

Periodic Motion is any type of motion that repeats itself after successuve equal time intervals.

Simple Harmonic Motion is specific type of periodic motion that arises from

- · existence of some **equilibrium position** for a described object;
- **linear restoring force** that tending to pull the described object back to its equilibrium position.

Graph of Simple Harmonic Motion

SHM

Simple Harmonic Motion

Amplitude is the maximum displacement of the equilibrium position.

Period (T) is the duration of time of one cycle in a repeating event. (s)

Frequency (f) is the number of period (cycles) per second. (Hz)

$$f = \frac{1}{T} \qquad \qquad T = \frac{1}{f}$$

course

Phonetics

SHM

Phase

Harmoni motion

Addition o waves

Spectrogran

Source-Filte Model

Sound as SHM

We can correlate the physical properties of sound waves with our perception:

- $\cdot\,$ We perceive changes in frequency as pitch
- · We perceive changes in amplitude as loudness

comse

Phonetics

SHM

Sound

Harmor

Addition

Spectrogran

Source-Filte Model

Phase of SHM

One period of SHM can be devided into 360^0 of **phase** φ .

course

Dhonotica

SHM

Sound

Phase

Harmon

Addition of waves

Spectrogram

Source-Filte Model

SHMs comparison

course

Dhonotica

SHM

Soun

Phase

Harmo

Addition o

Spectrogran

Source-Filte Model

Summary

These SHM curves are out of phase

Solid SHM curve is in 90° phase ahead

Wave representation

course

Phonetics

SHM

Soun

Phase

motion

waves

opectrogram

Source-Filte Model

Summary

Waves can be represented by formula:

$$s(t) = A \times \cos(2\pi f t + \phi)$$

- \cdot *A* amplitude
- \cdot f— is the fundamental frequency
- $\cdot \phi$ phase
- · *t* time

Harmonic motion

course

Phonotics

CLIM

Sound

Phase

Harmonic motion

Addition of waves

Spectrogram

Source-Filte Model

Harmonic motion

Harmonic motions are closely related with the phenomena of **resonance** and **antiresonance**.

Resonance is a phenomenon in which a vibrating system or external force drives another system to oscillate with greater amplitude at specific frequencies.

Antiresonance is a phenomenon in which a vibrating system or external force drives another system to oscillate with smaller amplitude at specific frequencies.

course

Phonetics

011111

Phase Harmonic

motion Addition

Spectrogran

o pile

Model

Phonetics

SHM

Soun

Phase

Harmon motion

Addition of waves

Spectrogran

Source-Filte Model

Phonetics

SHM

Sonn

Phas

Harmon

Addition of waves

Spectrogran

Source-Filte Model

Phonetics

SHM

Sound

Phase

Harmon motion

Addition of waves

Spectrogram

Source-Filte Model

Phonotics

SHM

Soun

Phase

Harmon motion

Addition of waves

Spectrogram

Source-Filte Model

Beats

Beats is a phenomenon of the change in amplitude of the sum of two waves with slightly different frequencies.

Phase Harmoni

Addition of waves

Spectrogran

Source-Filte Model

Fourier Transform allows to extract components of the complex wave.

Phonetics

SHM

301111

Phase

motion

Addition of waves

Spectrogram

Source-Filte Model

Fourier Transform allows to extract components of the complex wave.

conrea

Phonetics

SHM

Com

Phas

Harmo

Addition

Spectrogram

Source-Filte

Model

Summar

smoothie complex wave

the state of the stat

Spectrogram

Dhonotica

SHM

Soun

Phase

Harmon motion

Addition of waves

Spectrogram

Source-Filte Model

Summai

Spectral slices

course

Dhonotics

SHM

Carre

Phas

Harmon

Addition

Spectrogram

Source-Filter Model

Summai

Spectrograms are differ in window length

Spectrograms

course

Phonetics

SHM

Soun

Phase

Harmon

Addition waves

Spectrogram

Source-Filte Model

Summar

Syllable [ka]

Not by Fourier alone

Conventional spectrogram and Zhao-Atlas-Marks distribution of the English word *had*, computed using a Kaiser tapering function.

Spectrogram

from [Fulop 2011: 119]

Not by Fourier alone

Conventional and reassigned spectrograms of the English word *right*

Spectrogram

from [Fulop 2011: 142]

презентация доступна: https://goo.gl/RSz84p

Source-Filter Model of Speech Production

The output energy (at the mouth) for a given frequency is equal to the amplitude the source harmonic, multiplied by the magnitude of the filter function for that the frequency.

презентация доступна: https://goo.gl/RSz84p

Source-Filter

Model

- Summary

- · sounds are waves (with amplitude, frequency and phase)
- · simple waves can be combined to the complex one
- Fourier transform allows to extract components of the complex wave
- · It is not only Fourier transform that allows to extract components of the complex wave
- · Source-Filter Model: vocal tract is a resonator that filters some frequencies of the wave produced by vocal folds vibration.

course

Phonetics

SHM

30 till

rnase

motion

Addition of

Spectrogram

Source-Filte Model

Summary

Thank you!

Please, don't hesitate to write me agricolamz@gmail.com

Reference

course

Phonetics

SHM

Carre

Phas

Harmo

Addition

Spectrogram

Source-Filte Model

C

Berg, R. E., Stork D. G. (2005). The physics of sound. Pearson Education.

Fulop, S. (2011). Speech spectrum analysis. Springer Science & Business Media.

Gussenhoven, Carlos, Haike Jacobs (2011). <u>Understanding Phonology Hodder Education.</u> USA.