

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

ПРАКТИЧЕСКАЯ РАБОТА №2

по дисциплине «Теория принятия решений» Метод Электра II

Студент группы: ИКБО-15-22	Оганнисян Г.А.		
	(Ф.И.О. студента)		
Преподаватель	<u>Железняк Л.М.</u>		
	(Ф.И.О. преподавателя)		

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 МЕТОД ЭЛЕКТРА II	4
1.1 Выбор лучшего варианта	4
1.2 Веса предпочтений	6
1.3 Вывод	13
1.4 Результат работы программы	13
ЗАКЛЮЧЕНИЕ	14
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	15
ПРИЛОЖЕНИЯ	16

ВВЕДЕНИЕ

Целью практической работы является освоение метода многокритериальной оптимизации Электра II, а также изучение специфических подходов к сужению оптимального множества альтернатив, применяемых в рамках данного метода. Это включает в себя понимание принципов построения матрицы сравнения, принципов отсечения и концепции ядра решений.

Метод Электра II представляет собой развитие метода Электра I и предназначен для решения задач многокритериальной оптимизации. Основное отличие Электра II заключается в более детальном учете интенсивности предпочтений и возможности рассматривать нечеткие отношения предпочтения между альтернативами.

На первом этапе работы с методом Электра II формируется матрица предпочтений, в которой каждый критерий сравнивается с каждым по степени предпочтения одного варианта перед другим. Для каждой пары альтернатив оценивается, насколько одна альтернатива предпочтительнее другой по каждому критерию. В методе Электра II используются пороговые значения (пороги безразличия и пороги предпочтения), которые помогают определить, когда различия между альтернативами становятся существенными. Эти пороги позволяют перейти от количественной оценки к качественному сравнению. На основе матрицы предпочтений и пороговых значений строятся отношения предпочтения, безразличия и непревосходства. Эти отношения используются для выявления доминирующих и доминируемых альтернатив.

Метод Электра II позволяет эффективно работать с большим количеством критериев и альтернатив, обеспечивая глубокий анализ предпочтений и возможность выявления наиболее приемлемых вариантов решений в условиях многокритериальности и неопределенности.

1 МЕТОД ЭЛЕКТРА II

1.1 Выбор лучшего варианта

Таблица 1 – Таблица критериев для оценки альтернатив

№	Вариант	Критерии					
	решений				Рейтин		
		Средний	Удалённость	Количество	Γ		
		чек (руб.)	локации (км)	услуг	(от 1 до		
		(-)	(-)	(+)	5) (+)		
A1	OldBoy	2 300	4,30	16	4,80		
A2	Метод	1 800	2,30	17	5		
A3	FIDEL	1 700	2,70	20	4,90		
	Чёрная						
A4	кость	1 200	1,60	13	4,40		
A5	Бритый Ёж	800	9,30	8	3,80		
A6	БородаВайб	1 950	2	16	5		
A7	Чёлочка	500	11,10	4	2,70		
A8	Бритва	2 600	2,30	22	4,90		
A9	Baradach	1 400	5,80	16	4,80		
A10	BomboKlak	3 500	3,20	19	4,70		

Составлена таблица критериев, по которым оцениваются проекты (Таблица 2).

Таблица 2 – Таблица критериев для оценки альтернатив

Критерии	Вес критерия	Шкала	Код	Стремление	
Средний чек (руб.)	5	Дорого Средне Дешево	15 10 5	min	
Количество услуг	4	Много Средне Мало	15 10 5	max	
Удалённость локации (км)	4	Далеко 4 Нормально Близко		min	
Рейтинг (от 1 до 5)	5	Очень большой Большой Средний Маленький	5 4 3 2	max	

Составлена таблица оценок выбора лучшего детейлинг-центра. Для 10-ти альтернатив заполненяем Таблицу 3.

Таблица 3 – Таблица оценок по критериямнет

No	Вариант	Критерии					
	решений	Средний чек (руб.) (-)	Удалённость локации (км) (-)	Количество услуг (+)	Рейтинг (от 1 до 5) (+)		
A1	OldBoy	15	15	10	5		
A2	Метод	10	5	10	5		
A3	FIDEL	10	10	15	5		
	Чёрная						
A4	кость	5	5	10	4		
A5	Бритый Ёж	5	15	5	3		
A6	БородаВайб	15	5	10	5		
A7	Чёлочка	5	15	5	2		
A8	Бритва	15	5	15	5		
A9	Baradach	10	15	10	5		
A10	BomboKlak	15	10	15	4		
	Bec	5	4	4	5		
C	тремление	min	min	max	max		

1.2 Веса предпочтений

P16=0+0+4+0=4	P61= 0+4+0+0=4
N16=0+4+0+0=4	N61= 0+0+4+0=4
Q=4/4=151-	D61= 414=1<1 —
P17 = 0+0+4+5=9	P7 1=5+0+0+0=5
N17=5+0+0+0=5	N7 1=0+0+4+5=9
D17=9/5=18	D7 1=5/9 <1 -
P18=0+0+0+0=0	P81 = 0 + 4 + 4 + 0 = 8
N18=0+4+4+6=8	N81 = 0 + 0 + 0 + 0 = 0
D18=0/8=0<1-	$P81 = 8/0 = \infty$
P19=0+0+0+0=0	Pg1=5+0+0+0=5
N19=5+0+0+0=5	Ng1=0+0+0+0=0
D19=0/5=0≤1 -	Dg1=5/0=∞
P110 = 0+0+0+5=5	P101=0+4+4+0=8
N110= 0+4+4+0=8	N401=0+0+0+5=5
0110= 5/8 < 1 -	D101=8/5=1.6
P23=0+4+0+0=4	P32=0+0+4+0=4
N23=0+0+4+0=4	N31=0+4+0+0=4
D23=444 <1 -	D32=444<1 -
P24= 0+ 0+0+ 5=5	P ₄₂ =5+0+0+0=5
N24 = 5+ 0+0+0=5	N ₄₂ =0+0+0+5=5
D24=5/5 <1 -	D ₄₂ =5/5 < 1—
$P_{25} = 0 + 4 + 4 + 5 = 13$ $N_{25} = 5 + 0 + 0 + 0 = 5$ $D_{25} = 13/5 = 2.6$	P52=5+0+0+0=5 N52=0+4+4+5=13 D52=5/13 <1 —
P26=5+0+0+0=5	P62=0+0+0+0=0
N26=0+0+0+0=0	N62=5+0+0+0=5
D26=510=∞	D62=0/5 \le 1

P26=5+0+0+0=5	P62=0+0+0+0=0
N26=0+0+0+0=0	N62=5+0+0+0=5
D26=510=00	D62=0/5 < 1 —
P27=0+4+4+5=13	P72=5+0+0+0=5
N27=5+0+0+0=5	N72=0+4+4+5=13
P27=13/5=2.6	D72=5/13<1 -
P28=5+0+0+0=5	P82=0+0+4+0=4
N28=0+0+4+0=4	N82=5+0+0+0=5
D28=5/4=125	D82=4/5 <1-
P ₂₉ =0+4+0+0=4	P92=0+0+0+0=0
N ₂ 9=0+0+0+0=0	N92=0+4+0+0=4
D ₂₉ =4/0= \$\infty\$	O92=0/4 <1 -
P ₂₁₀ =5+4+0+5=14	P102=0+0+4+0=4
N ₂₁₀ = 0+0+4+0=4	N402=5+4+0+5=14
D ₂₁₀ =14/4=3.5	D102=4/14<1
P34=0+0+4+5=9	$P_{43} = 5 + 4 + 0 + 0 = 9$
N34=5+4+0+0=9	$N_{43} = 0 + 0 + 4 + 5 = 9$
D34=9/9≤1 —	$D_{43} = 9/9 \le 1$
P ₃₅₌ 0+4+4+5=13	P53=5+0+0+0=5
V ₃₅₌₅₊₀₊₀₊₀₌₅	N53=0+4+4+5=13
D ₃₅ =13/5=2.6	D53=5/13 < 1 -
P36=5+0+4+0=9	P63=0+4+0+0=4
N36=0+4+0+0=4	N63=5+0+4+0=9
D36=9/4=2.25	D63=4/9 < 1 -
P37=0+4+4+5=13	P=3=5+0+0+0=5
V37=5+0+0+0=5	N=3=0+4+4+5=13
O37=13/5=2.6	D=3=5/13<1 —

P38=5+0+0+0=4	P83=0+4+0+0=4
N38=0+4+0+0=4	N83=5+0+0+0=5
D38=5/4=1.25	D83= 4/5 <1 -
P39 = 0+4+4+0=8	P93= 0+0+0+0=0
N ₃₉ = 0+0+0+0=0	Ng3=0+4+4+0=&
D39= 8/0= ∞	D93=0/8<1 -
B10=5+0+0+5=10	P103 = 0+0+0+0=0
No=0+0+0+0=0	N403=5+0+0+5=10
D310= 10/0= ∞	D403= 0/10 <1 -
P45=0+4+4+5=13	P53=0+0+0+0=0
N45=0+0+0+0=0	N53=0+4+4+5=13
D45=13/0= ∞	D ₅₃ = 0/13 < 1 -
P46=5+0+0+0=5	P63 = 0+0+0+5=5
N46=0+0+0+5=5	N63 = 5+ 0+0+0=5
D46=5/5<1-	D63=5/5<1-
P47 = 0 + 4+ 4+0=8	P=4= 0+0+0+5=5
$N_{47} = 0 + 0 + 0 + 5 = 5$	N=4=0+4+4+0=8
D47= 8/5= 1.6	D74 = 5/8 < 1 -
P48=5+0+0+0=5	P84=0+0+4+5=9
N48=0+0+4+5=9	N84=5+0+0+0=5
D48=5/9 <1 -	D84= 9/5= 1.8
P43=5+4+0+0=9	P94=0+0+0+5=5
N49=0+0+0+5=5	Ng4=5+4+0+0=9
D49=9/5=18	D94=5/9 ≤1-
-	

P410=5+4+0+0=9	P104= 0+0+4+0=4
N410= 0+0+4+0= 4	$N_{104} = 5 + 4 + 0 + 0 = 9$
D410= 9/4= 2.25	D104=4/9<1 -
P56=5+0+0+0=5	P65 = 0+4+4+5= 13
N56=0+4+4+5=13	N65=5+0+0+0=5
Ds=5/13 <1 -	D65=13/5=2.6
P57= 0+0+0+5=5	P75 =0+0+0+0=0
Ns7= 0+0+0+0=0	N75=0+0+0+5=5
Ds7= 5/0=00	Das=015 <1-
B= 5+0+0+0=5	P85=0+4+4+5=13
Ns8=0+4+ 4+5=13	Na5=5+0+0+0=5
Dsa = 5/13 < 1 -	D85=13/5=2.6
Ps=5+0+0+0=5	P95 = 0+ 0+4+5=9
N59=0+0+4+5=9	N95=5+0+0+0=5
D59=5/9 < 1 -	D95=9/5=18
P540 = 5+0+0+0=5	P105=0+4+4+5=13
Ns10= 0+4+4+5=13	N405= 5+0+0+0=5
D510≈5/13≤1—	Daos = 13/5= 2.6
P67=0+4+4+5=+	P76=5+0+0+0=5
NG=5+0+0+0=5	$N_{76} = 0 + 4 + 4 + 5 = 13$
D67=13/5=2.6	D76 = 5/13 < 1-
P68 = 0+0+0+0=0	P86=0+0+4+0=4
N68=0+0+4+0=4	N86 = 0+0+0+0=0
D68=0/4 <1-	D86 = 4/0 = 00

PB=0+4+0+0=4	Pg6 = 5+0+0+0=5
N63=5+0+0+0=5	N96=0+4+0+0=4
D69= 4/5 < 1 -	D96=5/4=1.25
P610 = 0+4+0+5=9	Page=0+0+4+0=4
N610=0+0+4+0=4	$N_{406} = 0 + 4 + 0 + 5 = 9$
$D_{\epsilon_{10}} = 9/4 = 2.25$	D106=4/9 < 1 -
P18 = 5+0+0+0=5	P87=0+4+4+5=13
N+8=0+4+4+5=13	N==5+0+0+0=5
D78=5/13 < 1 -	D87= 13/5=2.6
Pag=5+0+0+0=5	P97= O+ O+4+5=9
Nzg = 0+0+4+5=9	Ng= 5+0+0+0=5
Dag = 5/9 < 1-	Dg7= 9/5=18
P710 =5+ 0+ 0+0 = 5	P10==0+4+4+5= 13
N710= 0+4 +4 +5 =13	Non= 5+0+0+0=5
Da10= 5/13 < 1 -	Dio= 13/5=2.
P89 = 0+4+4+0=8	Pos=5+0+0+0=5
N89 = 5 + 0 + 0 + 0 = 5	N38 = 0 + 4+4+0=8
D89= 8/5 = 1.6	Dgg = 5/3 <1 -
P8+0 = 0+4+0+5=9	Prog=0+0+0+0=0
N810=0+0+0+0=0	N108=0+4+0+5=9
D810=9/0=0	D108=0/9 <1-
P910=5+0+0+5=10	P109=0+4+4+0=8
No 10 = 0 + 4+4+0=8	N109=5+0+0+5=10
D910=10/8=1.25	D109= 8/10 <1-

Составлена матрица предпочтений с внесенными и принятыми значениями D (Таблица 4).

Таблица 4 – Полная матрица предпочтений альтернатив.

	1	2	3	4	5	6	7	8	9	10
1	X	-	ı	-	1.8	-	1.8	ı	-	-
2	inf	X	ı	-	2.6	inf	2.6	1.25	inf	3.5
3	inf	-	X		2.6	2.25	2.6	1.25	inf	inf
4	1.8	-	-	X	inf	-	inf	-	1.8	2.25
5	-	-	-	-	X	-	inf	-	_	_
6	inf	-	ı	-	2.6	X	2.6	ı	-	2.25
7	-	-	-	-	-	-	X	-	-	-
8	inf	-	-	1.8	2.6	inf	2.6	X	1.6	inf
9	inf	-	-	-	1.8	1.25	1.8	-	X	1.25
10	1.6	-	_	_	2.6	-	2.6	-	-	X

По матрице построен граф предпочтений (Рисунок 1).

Рисунок 1 – Вид графа предпочтений

1.3 Вывод

Петель в графе нет, при этом граф остался целостным.

1.4 Результат работы программы

Рисунок 3 – Результат работы программы. Вывод матрицы предпочтений.

ЗАКЛЮЧЕНИЕ

В результате выполненной работы была выявлена лучшая альтернатива с помощью метода Электра II. Одним из преимуществ этого метода является возможность упорядочить альтернативы и представить их наглядно на графе, что облегчает принятие решения.

Субъективная часть метода заключается в определении весов критериев и их шкалировании, что может быть субъективным процессом, зависящим от предпочтений принимающего решение.

Однако у метода Электра II есть и минусы. Например, для успешного применения метода необходимо эмпирически подобрать порог С, веса критериев и сами критерии таким образом, чтобы граф предпочтений не содержал петель и имел единственный исток. Это может потребовать дополнительного времени и усилий для настройки параметров метода под конкретную задачу.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Болотова Л. С. Многокритериальная оптимизация. Болотова Л. С., Сорокин А. Б. [Электронный ресурс] / Метод. указания по вып. курсовой работы М.: МИРЭА, 2015.
- 2. Сорокин А. Б. Методы оптимизации: гибридные генетические алгоритмы. Сорокин А. Б. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2016.
- 3. Сорокин А. Б. Линейное программирование: практикум. Сорокин А. Б., Бражникова Е. В., Платонова О. В. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2017.

приложения

Приложение А

Код реализации метода Электра II на языке Python

Листинг А.1. Реализация метода Электра II.

```
[15, 15, 10, 5],
    [10,5,10,5],
    [10,10,15,5],
    [5,5,10,4],
    [5, 15, 5, 3],
    [15,5,10,5],
    [5, 15, 5, 2],
    [15,5,15,5],
    [10, 15, 10, 5],
    [15,10,15,4]]
b = [' x '] * 10
c = [5, 4, 4, 5]
for i in range(10):
    b[i] = [' x '] * 10
countdominant = 0
countdominanted = 0
res = []
for i in range(10):
    for m in range(i + 1, 10):
        for j in range(4):
             if j == 0 or j == 1:
                 if a[i][j] < a[m][j]:
                     countdominant += c[j]
                 elif a[i][j] > a[m][j]:
                     countdominanted += c[j]
             else:
                 if a[i][j] > a[m][j]:
                     countdominant += c[j]
                 elif a[i][j] < a[m][j]:
                     countdominanted += c[j]
        if countdominant != 0 and countdominanted == 0:
            b[i][m] = 'inf'
            b[m][i] = ' - '
        elif countdominant == 0 and countdominanted != 0:
            b[m][i] = 'inf'
            b[i][m] = ' - '
        else:
             if countdominanted == 0:
                 b[i][m] = ' - '
                 b[m][i] = ' - '
             elif countdominant / countdominanted == 1:
                 b[i][m] = ' - '
                 b[m][i] = ' - '
             elif countdominant / countdominanted < 1:</pre>
```

Продолжение листинга А.1.

```
b[i][m] = ' - '
                b[m][i] = str(round(countdominanted / countdominant, 2))
            else:
                b[i][m] = str(round(countdominant / countdominanted, 2))
                b[m][i] = ' - '
        countdominant = 0
        countdominanted = 0
# Выравнивание
max_length = max(len(str(x))) for row in b for x in row)
# Вывод
for row in b:
   print(" ".join(str(x).rjust(max_length) for x in row))
# Определяем, сколько раз каждая альтернатива входит в другие альтернативы
alternative counts = [0] * 10
for i in range(10):
    for j in range(10):
        if b[i][j] == ' - ':
            alternative counts[i] += 1
# Сортировка по количеству вхождений
sorted alternatives = sorted(range(len(alternative counts)), key=lambda k:
alternative_counts[k])
print("\nBest alternatives:")
for i in range(10):
   if i == \tilde{0}:
       print(f"Alternative {sorted_alternatives[i] + 1}", end="")
    else:
        print(f" -> Alternative {sorted alternatives[i] + 1}", end="")
print()
```