МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №6

по дисциплине "Основы профессиональной деятельности" вариант №65156

Выполнил:

студент группы Р3119 Бардин Петр Алексеевич

Преподаватель:

Осипов Святослав Владимирович

Содержание

1	Задание	2
2	Анализ 2.1 Текст программного комплекса на ассемблере БЭВМ	
	2.3 Область допустимых значений и область представления $F(X)$	7
3	Трассировка	8
4	Вывод	10

1 Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BY (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BY модифицированное значение X в соответствии C0 вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна декрементировать содержимое X (ячейки памяти с адресом 03716) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=4X-8 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'И' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Введите номер варианта 65156

- 1. Основная программа должна декрементировать содержимое X (ячейки памяти с адресом 037₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=4X-8 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'И' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

2 Анализ

Вся информация по лабораторной размещена в системе контроля версий Git на сервисе Github: https://github.com/BardinPetr/itmo-labs/tree/main/opd/year_1/lab_6.

2.1 Текст программного комплекса на ассемблере БЭВМ

```
ORG 0x0
V0: WORD $OUTPUT INT, 0x180
V1: WORD $AND INT, 0x180
V2: WORD $DEFAULT_INT, 0x180
V3: WORD $DEFAULT_INT, 0x180
V4: WORD $DEFAULT_INT, 0x180
V5: WORD $DEFAULT INT, 0x180
V6: WORD $DEFAULT INT, 0x180
V7: WORD $DEFAULT INT, 0x180
ORG 0x37
X: WORD?
START:
  DI
  ; disable ints for dev 0,3,4
  {\rm CLA}
  OUT 1
  OUT 5
  OUT 7
         ; enable | interrupt vector #0 (OUTPUT INT)
  OUT 0x3 ; dev 1
         ; enable | interrupt vector #1 (AND INT)
  OUT 0x5; dev 2
  \mathbf{EI}
; func MAIN: decreases X by 1 and sets it to 65 when not in range of [-62, 65]
; X = X-1 in \begin{bmatrix} -62, & 65 \end{bmatrix} ? X-1 : 65
; begin func MAIN
MAIN:
  LD #65
  ST $X
MAIN LOOP:
  ; disable interrupts to make sure
  ; that interrupt for IOdev 2 won't change X value before it is saved here
  ; otherwise will lose value updated by user
  DI
  LD $X
  DEC
  CALL WRITE CHECKED; check X bounds and write
  EI; restore interrupts
  BR MAIN LOOP
; begin func MAIN
; func DEFAULT INT: for no-operation int vector
; begin func
DEFAULT INT:
  IRET
; end func OUTPUT INT
```

```
; func OUTPUT INT: outputs value of f(AC) to IOdev #1
; begin func
OUTPUT_INT:
  DI; disable interrupts to prevent X being changed in progress
  PUSH ; save AC
  \_dbg\_intv0\_begin:\ NOP
  ; calculate formula and output
  LD $X
  CALL CALC
   dbg intv0 calc: NOP
  OUT 2
  POP ; restore AC
  EI ; restore interrupts
  IRET
; end func OUTPUT_INT
; func AND INT: reads value from IOdev 2 and sets X to (X & io)
; affects: AC
 begin func
AND INT:
  ; disable interrupts to prevent X from being changed
  ; somewhere else after it is loaded but not updated
  DΙ
  PUSH ; save AC
  \_dbg\_intv1\_begin:\ NOP
  ; clear AC reading is only to lower byte
  CLA
  ; read from device 1 data byte to lower byte of AC and extend sign
  IN 4
  SXTB
  ; update X
  AND $X
  CALL WRITE_CHECKED; check X bounds and write
  dbg intv1 end: NOP
  POP ; restore AC
  EI; restore interrupts
  IRET
; end func AND INT
; func CALC: f(x) = 4*x-8
; params: AC: X
; return: AC: f(X)
; begin func CALC
CALC:
  ASL
  ASL
  SUB #8
  RET
; end func CALC
; func WRITE_CHECKED: checks that AC in range [-62, 65] and writes it to X
```

```
; params: AC: input X
; return: mem(X)
; begin func
\label{eq:write_checked:} WRITE\_CHECKED:
  ; begin if
  CMP #66
  {\tt BGE\ INVALID\_VAL}
  CMP \#-62
  BLT INVALID_VAL
  {\tt JUMP\ WRITE}
  ; begin branch AC not in [-62, 65]
  INVALID_VAL:
    LD~\#65
  ; begin branch AC in [-62, 65]
  WRITE:
    ST $X
  ; end if
  RET
; end func WRITE_CHECKED
```

2.2 Описание алгоритма

• MAIN

В основном цикле загружаем значение X, декрементируем, затем проверяем, что оно в требуемом диапазоне и записываем. На время этой операции придется отключить прерывания, так как если в любой момент от чтения до записи обновленного значения пользователь запросит изменение X, то при возвращении X будет восстановлен на состояние до прерывания, а следовательно, значение обновленное пользователем будет потеряно. Аналогично придется запретить прерывания в AND_INT, так как иначе сразу после операции IN пользователь сможет снова установить готовность ВУ2, а значит произойдет прерывание и аналогично его результат затрется результатом прерывания, вызванного первым по очереди.

• OUTPUT INT

Прерывание на вывод значения X в ВУ-1.

• AND INT

Прерывание по вводу с ВУ-2. Реализует функцию X = X & D, где D - введенное пользователем значение в ВУ-2. Производится расширение знака, так как вся программа оперирует однобайтовыми числами. На время выполнения блокирует прерывания.

• WRITE CHECKED

Производит проверку переданного значения на принадлежность ОДЗ, затем записывает в X. Если проверка не пройдена, записывает в X константу 65 по условию.

• CALC - реализация функции по заданию

2.3 Область допустимых значений и область представления F(X)

Входные данные:

- 1. Х 1 байт знаковое число в 2 байтовом слове
- $2. \ 4X 8 \in [-256, 255] \\ 4X \in [-248, 263] \\ X \in [-62, 65]$

Выходные данные:

- 1. 2 байт знаковое число
- $F(X) \in [-256, 252]$

2.4 Область допустимых значений и область представления на главную программу

- Вывод значения на ВУ-1: 1 байт, знаковое число [-256, 252]
- Ввод значение в ВУ-2:

8 бит логических значений. Перед применением логического И с числом X производится расширение знака.

3 Трассировка

Последовательность действий:

- 1. Ожидание до начала цикла декремента (в трассировке с адр 046)
- 2. Готовность ВУ-1
- 3. Точка останова dbg intv0 begin c AC=X (в обработчике прерывания OUTPUT INT)
- 4. Точка останова _dbg_intv0_end с AC=4*X-8
- 5. Ввод ВУ-2 + готовность
- 6. Точка останова dbg intv1 begin c AC=IO2 DR (в обработчике прерывания AND INT)
- 7. Точка останова $\,$ dbg $\,$ intv1 $\,$ end $\,$ c $\,$ AC= $\,$ X $\,$ & $\,$ IO2 $\,$ DR
- 8. Готовность ВУ-1
- 9. Точка останова _dbg_intv0_begin c AC=X (в обработчике прерывания OUTPUT_INT)
- 10. Точка останова dbg intv0 end c AC=4*X-8

» Выполнение трассировки

Выпол	пняемая	Значения регистров после исполнения								Ячейки памяти		
Адрес	Код	Команда	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
038	1000	DI	039	1000	038	1000	000	0038	0000	0000		
039	0200	CLA	03A	0200	039	0200	000	0039	0000	0100		
03A	1301	OUT	03B	1301	03A	1301	000	003A	0000	0100		
03B	1305	OUT	03C	1305	03B	1305	000	003B	0000	0100		
03C	1307	OUT	03D	1307	03C	1307	000	003C	0000	0100		
03D	AF08	LD	03E	AF08	03D	0008	000	0008	0008	0000		
03E	1303	OUT	03F	1303	03E	1303	000	003E	0008	0000		
03F	AF09	LD	040	AF09	03F	0009	000	0009	0009	0000		
040	1305	OUT	041	1305	040	1305	000	0040	0009	0000		
041	1100	EI	042	1100	041	1100	000	0041	0009	0000		
042	AF41	LD	043	AF41	042	0041	000	0041	0041	0000		
043	E037	ST	044	E037	037	0041	000	0043	0041	0000	037	0041
045	1000	DI	046	1000	045	1000	000	0045	0041	0000		

Выполняемая команда			Значения регистров после исполнения								Ячейки памяти	
Адрес	Код	Команда	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
			04E	0100	04D	0100	7FD	004D	003E	0000	7FF	004A
dh	_dbg_intv0_begin	037									003E	
_ ub		7FE									01E0	
		7FD									003E	
_dl	_dbg_intv0_calc			0100	051	0100	7FD	0051	00F0	0001	7FC	0050
	_dbg_intv1_begin		059	0100	058	0100	7FD	0058	000F	0000	7FF	004A
dh		bogin									037	003B
_ ub		_pegin									7FE	01E0
											7FD	003B
_dl	bg_intv	1_end	05B	0100	05A	0100	7FD	005A	000B	0000		
	$_dbg_intv0_begin$		begin 04E	1E 0100	04D	0100	7FD	004D	0009	0000	7FC	005C
											037	0009
_db		_begin									7FF	004A
										7FE	01E0	
											7FD	0009
dl	\log{intv}	O_calc	052	0100	051	0100	7FD	0051	001C	0001	7FC	0050

4 Вывод

В ходе работы были рассмотрены принципы работы с управляемым по прерыванию вводом-выводом. Изучены возможности по управлению прерываниями, настройке контроллеров ВУ и процессора, а также рассмотрены схемы устройства части прерываний в подсистеме ввода-вывода. Изучены принципы оформления векторов прерывания, и решения основных сложностей при работе с множественными прерываниями.