Finite Dimensional Normed Vector Spaces are Banach Spaces

Dallas Foley

March 2023

1 Introduction

We will show that all finite dimensional vector spaces equipped with a norm are complete with respect to the metric induced by the norm, that is, all Cauchy sequences in a finite dimensional vector space converge to a vector in the space. We will first prove a lemma stating all norms on a finite dimensional vector space are equivalent. We then will show any Cauchy sequence in a finite dimensional vector space converges.

2 All norms on a finite dimensional vector space are equivalent

Let V be a finite dimensional vector space over \mathbb{R} such that dim(V) = k and $||\cdot|| : V \to \mathbb{R}$ be an arbitrary norm on V. Two norms on V, $||\cdot||_a$, $||\cdot||_b : V \to \mathbb{R}$, are equivalent if there exists real numbers C, D > 0 such that $C||x||_b \le ||x||_a \le D||x||_b$ for all $x \in V$. Let $x \in V$ and e_1, \ldots, e_k be a basis of V, then x can be written $x = x_1e_1 + \ldots + x_ke_k$. Note that $|x_i| \le ||x||_\infty = \max_i |x_i|$ for each $1 \le i \le k$. Using the triangle inequality k-1 times we see that,

$$||x|| = ||\sum_{i=1}^{k} x_i e_i|| \le \sum_{i=1}^{k} ||x_i e_i|| = \sum_{i=1}^{k} |x_i| \cdot ||e_i|| \le ||x||_{\infty} \sum_{i=1}^{k} ||e_i||$$

Setting $D = \sum_{i=1}^k ||e_i||$, we see that $\exists D > 0$ such that $||x|| \le D||x||_{\infty}$ for all $x \in V$. Now consider set $S = \{x \in X : ||x||_{\infty} = 1\}$ and $f : S \to \mathbb{R}$ defined by f(x) = ||x||. We proceed using a couple theorems in Analysis by first proving f is continuous with respect to $||\cdot||_{\infty}$, S is compact by the Heine-Borel Theorem, then finding our value for C with the Extreme Value Theorem. Let $\varepsilon > 0$ and choose $\delta = \varepsilon/D$. Then if $||x - y||_{\infty} < \delta$, we have for all $x, y \in S$

$$|f(x) - f(y)| = |||x|| - ||y||| = |||x - y + y|| - ||y||| \le ||x - y|| \le D||x - y||_{\infty} < \varepsilon$$

Thus f is continuous on S with respect to $|\cdot|_{\infty}$ by definition. Note that S, the unit ball with respect to $|\cdot|_{\infty}$, is a closed and bounded set, so S is compact by the Heine-Borel Theorem. Since f is a continuous function on a compact set, it attains a minimum value by the Extreme Value Theorem. That is, there exists real number C>0 such that $C\leq ||x||\ \forall x\in S$. Then for $v=\frac{x}{||x||_{\infty}}\in V$, $||v||=||\frac{x}{||x||_{\infty}}||=\frac{1}{||x||_{\infty}}\cdot\frac{||x||}{1}=||x||\geq C, \forall x\in V$ implying $C||x||_{\infty}\leq ||x||$ for some C>0 and all $x\in V$. Thus all norms on V are equivalent to the ℓ_{∞} norm: $\exists C,D>0$ such that $C||x||_{\infty}\leq ||x||\leq D||x||_{\infty}\ \forall x\in V$.

Let $||\cdot||_a$ and $||\cdot||_b$ be two arbitrary norms on V. Since they're both equivalent to $||\cdot||_{\infty}$, it is clear that there exists real numbers $C_1, C_2, D_1, D_2 > 0$ such that $C_1||x||_{\infty} \le ||x||_a \le D_1||x||_{\infty}$ and $C_2||x||_{\infty} \le ||x||_b \le D_2||x||_{\infty}$ $\forall x \in V$. Thus $\frac{C_1}{D_2}||x||_b \le ||x||_a \le \frac{C_2}{D_1}||x||_b \ \forall x \in V$, hence it is clear $||\cdot||_a$ and $||\cdot||_b$ are equivalent so all norms on a finite dimensional vector space are equivalent.

3 All Cauchy sequences in a normed vector space converge

Let V be a finite dimensional vector space over \mathbb{R} such that dim(V) = k, equipped with a norm $||\cdot||: V \to \mathbb{R}$, let d(x,y) = ||x-y|| be the metric induced by the norm and let (x_n) be a Cauchy sequence in V. Using the definition of a Cauchy sequence, $\forall \varepsilon > 0, \exists M \in \mathbb{N}$ such that positive integers n, m > M implies $d(x_n, x_m) < C\varepsilon$. Thus $\forall \varepsilon > 0$ and n, m > M, using equivalence of norms with the ℓ_{∞} norm,

$$C\varepsilon > d(x_n, x_m) = ||x_n - x_m|| \ge C||x_n - x_m||_{\infty} = C \max_i |x_{n,i} - x_{m,i}| \ge C|x_{n,i} - x_{m,i}|$$

for all $1 \leq i \leq k$ and some real C > 0. Thus each $(x_{n,i})$ is a Cauchy sequence in \mathbb{R} for all $1 \leq i \leq k$. Since \mathbb{R} is complete, there exists $x_i \in \mathbb{R}$ such that $(x_{n,i})$ converges to x_i for each $1 \leq i \leq k$. Let $y = (x_1, \ldots, x_k)$ and let us show (x_n) converges to y in V. Let $\varepsilon' > 0$ and using equivalence of norms with the ℓ_1 norm, $||x_n - y|| \leq D||x_n - y||_1$ for some D > 0. Since $(x_{n,i})$ converges to x_i , there exists $N_i \in \mathbb{N}$ such that $n > N_i$ implies $|x_{n,i} - x_i| < \frac{\varepsilon'}{kD}$ for each $1 \leq i \leq k$. Set $N = \max\{N_1, \ldots, N_k\}$, then we have $\forall \varepsilon' > 0, \exists N \in \mathbb{N}$ such that n > N implies

$$d(x_n, y) = ||x_n - y|| \le D||x_n - y||_1 = D\sum_{i=1}^k |x_{n,i} - x_i| < D\sum_{i=1}^k \frac{\varepsilon'}{kD} = kD\frac{\varepsilon'}{kD} = \varepsilon'$$

Thus, (x_n) converges to y in V and it follows V is complete.

4 Reference

Johnson, S. G. (2020, October 28). Notes on the equivalence of norms - Massachusetts Institute of Technology. Notes on the equivalence of norms. Retrieved April 4, 2023, from https://math.mit.edu/stevenj/18.335/norm-equivalence.pdf