undirected edges (from \mathcal{M}) are to be interpreted as two directed edges.

$$E(C) = \mathcal{A}(C) \cup \mathcal{M}(C)$$

$$V(C) = V(E(C))$$

$$G(C) = (V(C), E(C))$$

color of component is color of some term in it (all the same)
per resolution step: oppositely colored components are not unifiable

Components

nodes: max col term occurrences and variables in grey occurrences.

- 1. components initially: for every variable, all grey occurrences and all colored occurrences
- 2. resolution: components of C_1 and C_2 are carried over, some are merged.

$$l\sigma = l'\sigma$$

For each max col term t in $l\sigma$: merge component of t and t'.

quantifier ordering: Build condensation of G(C). If in the condensation there is a path from a node containing a term containing u_i to a node containing term containing u_j , then $u_i <_{\hat{\mathcal{A}}(C)} u_j$.

graph components visualised

initially

Note: initially, all colored terms are in one component

in the derivation, single color

Note: Γ - and Δ -terms can not be merged (unified). All other combinations are possible.

in the derivation

C with x unified with a Δ -term, say g[y]:

random notes

1. if two variable-nodes in the condensation are connected when disregarding the arrow direction, they occur in the same clause.