Hugo Marquerie 25/03/2025

Propiedades de la función de distribución

Proposición 1 (Propiedades de F_X). Sea F_X fn de distribución de X, entonces

(1)
$$\lim_{t \to \infty} F_X(t) = 1 \, \underset{t \to -\infty}{\lim} F_X(t) = 0.$$

(1)
$$\lim_{t \to \infty} F_X(t) = 1$$
 $\lim_{t \to -\infty} F_X(t) = 0.$ (3) $\forall t \in \mathbb{R} : \lim_{\substack{s \to t \\ s < t}} F_X(s) = \mathbb{P}(X < t)$

(2)
$$\forall t \in \mathbb{R} : \lim_{\substack{s \to t \\ s > t}} F_X(s) = F_X(t).$$

(4)
$$\forall t \in \mathbb{R} : \mathbb{P}(X = t) = F_X(t) - \lim_{\substack{s \to t \\ s < t}} F_X(s).$$

Demostración: Recordamos la definición: $F_X(t) = \mathbb{P}\left(\{\omega \in \Omega : X(\omega) \leq x\}\right)$

1. Sea $(t_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ tal que $t_n\to\infty$, definimos $\forall n\in\mathbb{N}:A_n:=\{\omega\in\Omega:X(\omega)\leq t_n\}$ y la sucesión de funciones medibles $(f_n)_{n\in\mathbb{N}}$ dada por $f_n:=\mathbbm{1}_{A_n}$. Entonces, como $\forall \omega \in \Omega : f_n(\omega) \leq 1 \text{ y } \int_{\Omega} 1 \, d\mathbb{P} = \mathbb{P}(\Omega) = 1 \text{ (luego } 1 \in \mathcal{L}^1(\mathbb{P})), \text{ podemos aplicar el}$ teorema de la convergencia dominada a $(f_n)_{n\in\mathbb{N}}$ y obtenemos

$$\lim_{n \to \infty} F_X(t_n) = \lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} \int_{\Omega} \mathbb{1}_{A_n} d\mathbb{P} = \lim_{n \to \infty} \int_{\Omega} f_n d\mathbb{P} \stackrel{\text{TCD}}{=} \int_{\Omega} \lim_{n \to \infty} f_n d\mathbb{P}$$
$$= \int_{\Omega} \lim_{n \to \infty} \mathbb{1}_{A_n} d\mathbb{P} = \mathbb{P}\left(\lim_{n \to \infty} A_n\right) = \mathbb{P}(\Omega) = 1.$$

Análogamente, si $(t_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ cumple que $t_n\to-\infty$, podemos definir A_n y f_n como antes y aplicar el teorema de la convergencia dominada de igual manera:

$$\lim_{n \to \infty} F_X(t_n) = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mathbb{P} \stackrel{\text{TCD}}{=} \int_{\Omega} \lim_{n \to \infty} f_n \, d\mathbb{P} = \mathbb{P}\left(\lim_{n \to \infty} A_n\right) = \mathbb{P}\left(\varnothing\right) = 0.$$

2. Sea $t \in \mathbb{R}$ y $(t_n)_{n \in \mathbb{N}}$ tal que $t_n \to t$ con $\forall n \in \mathbb{N} : t_n > t$. Definimos A_n y f_n como antes y aplicamos el teorema de la convergencia dominada de nuevo:

$$\lim_{n \to \infty} F_X(s_n) = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mathbb{P} \stackrel{\text{TCD}}{=} \int_{\Omega} \lim_{n \to \infty} f_n \, d\mathbb{P} = \mathbb{P} \left(\lim_{n \to \infty} A_n \right)$$
$$= \mathbb{P} \left(\{ \omega \in \Omega : X(\omega) \le t \} \right) = \mathbb{P} \left(X \le t \right) = F_X(t).$$

3. Sea $t \in \mathbb{R}$ y $(t_n)_{n \in \mathbb{N}}$ tal que $t_n \to t$ con $\forall n \in \mathbb{N} : t_n < t$.

Referenciado en

• Prop-fn-exists-var-aleatoria