Robotics and AI Department

Task 1(robot-arm-ros)

The steps below uses ROS melodic, 1.14.11 version which runs on ubuntu 18.04.5.

Installing ROS melodic

The following steps assumes that the user have Ubuntu 18.04 installed.

Setup the system to accept software from packages.ros.org.

```
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -
sc) main" > /etc/apt/sources.list.d/ros-latest.list'
```

Setup the keys:

```
$ curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc |
sudo apt-key add -
```

Before the installation, first check whether the Debian package index is up-to-date:

```
$ sudo apt update
Desktop-Full Installation command:
```

```
$ sudo apt install ros-melodic-desktop-full
```

To automatically add ROS environment variables to your bash session every time a new shell is launched:

```
$ echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc
$ source ~/.bashrc
Install and initialize system dependencies in ROS:
```

```
$ sudo apt install python-rosdep
$ sudo rosdep init
```

\$ rosdep update

To start the ROS (master node)

\$ roscore

Preparing ROS

Setup the workspace which is where ROS projects are built and stored:

```
$ mkdir -p ~/catkin_ws/src
```

- \$ cd ~/catkin_ws/
- \$ catkin make

Where catkin_ws is the name of the workspace, and catkin_make is used to the build the project and packages inside the source folder.

\$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

\$ source ~/.bashrc

Robot arm package

Adding arduino_robot_arm package to src folder:

- \$ cd ~/ catkin_ws /src
- \$ sudo apt install git
- \$ git clone https://github.com/smart-methods/arduino_robot_arm

Dependencies

```
$ cd ~/ catkin ws
```

- \$ rosdep install --from-paths src --ignore-src -r -y
- \$ sudo apt-get install ros-melodic-moveit
- \$ sudo apt-get install ros-melodic-joint-state-publisher ros-melodic-joint-state-publisher-gui
- \$ sudo apt-get install ros-melodic-gazebo-ros-control joint-state-publisher
- \$ sudo apt-get install ros-melodic-ros-controllers ros-melodic-ros-control

Compilation

\$ catkin_make

Controlling the robot arm using joint_state_publisher:

\$ roslaunch robot_arm_pkg check_motors.launch

Arduino IDE Ubuntu

- 1- Install rosserial for Arduino:
- \$ sudo apt-get install ros-melodic-rosserial-arduino
- \$ sudo apt-get install ros-melodic-rosserial
- 2- Install ros_lib into the Arduino environment:
- \$ cd ~/Arduino/libraries
- \$ rm -rf ros_lib
- \$ rosrun rosserial_arduino make_libraries.py .

Arduino is the directory where the Linux Arduino environment saves the sketches.

3- Upload the Arduino code.

Start simulating the robot arm using RViz and Gazebo; the motors are controlled via joint_state_publisher, as can be seen below:

- \$ roslaunch robot_arm_pkg check_motors.launch
- \$ roslaunch robot_arm_pkg check_motors_gazebo.launch
- \$ rosrun robot_arm_pkg joint_states_to_gazebo.py

Movelt in RViz

Movelt Used for kinematics, motion planning, trajectory processing and controlling the robot

\$ roslaunch moveit_setup_assistant setup_assistant.launch

To run the robot arm using Movelt package:

\$ roslaunch moveit_pkg demo.launch
To launch Movelt with Gazebo simulator use the following command:

\$ roslaunch moveit_pkg demo_gazebo.launch

Connecting with Arduino:

\$ roslaunch moveit_pkg demo.launch
\$ rosrun rosserial_python serial_node.py _port:=/dev/ttyUSB0 _baud:=115200