

# Chapter 2. Prolog Syntax and Semantics

- April 20 , 2011 -

Syntax

Model-theoretic semantics ("Logical Consequence")
Operational semantics ("Derivation / Resolution")
Negation
Incompleteness of SLD-Resolution
Practical implications
Recursive Programming with Lists
Relations versus Functions
Operators

## **Prolog**

- Prolog stands for "Programming in Logic".
- It is the most common logic program language.

#### Bits of history

- 1965
  - John Alan Robinson develops the resolution calculus the formal foundation of automated theorem provers
- 1972
  - Alain Colmerauer (Marseilles) develops Prolog (first interpreter)
- mid 70th
  - David D.H. Warren (Edinburg) develops first compiler
    - ⇒ Warren Abstract Machine (WAM) as compilation target → like Java byte code
- 1981-92
  - "5th Generation Project" in Japan boosts adoption of Prolog world-wide



# **Prolog Syntax**

Predicates
Clauses, Rules, Facts
Terms, Variables, Constants, Structures



## Predicates, Clauses, Rules, Facts



## Predicates, Clauses, Rules, Facts



### Clauses and Literals

- Prolog programs consist of clauses
  - Rules, facts, queries (see previous slide)
- Clauses consist of literals separated by logical connectors.
  - Head literal
  - Zero or more body literals

```
isGrandfatherOf(G,C) :-
   isFatherOf(X,C) ; isMotherOf(X,C) ).
```

- Logical connectors are
  - implication (:-), conjunction (,) and disjunction (;)
- Literals consist of a predicate symbol, punctuation symbols and arguments
  - Punctuation symbols are the comma "," and the round braces "(" and ")"

```
isGrandfatherOf(G,C)
isFatherOf(peter,hans)
fieldHasType(FieldName, type(basic,TypeName,5) )
```



## Rules

Rules consist of a head and a body.



Facts are just syntactic sugar for rules with the body "true".

```
isFatherOf(peter, hans).
                                            these clauses are equivalent
isFatherOf(peter,hans) :- true.
```

### **Terms**

#### Terms are the arguments of literals. They may be

- VariablesX,Y, Father, Method, Type, \_type, \_Type, . . .
- ConstantsNumbers, Strings, ...
- Function terms person(stan, laurel), +(1,\*(3,4)), ...

#### Terms are the only data structure in Prolog!

The only thing one can do with terms is unification with other terms!

→ All computation in Prolog is based on unification.

## Variables: Syntax

Variables start with an upper case letter or an underscore '\_'.



- Anonymous Variables ('\_')
  - For irrelevant values
  - "Does Peter have a father?" We neither care whether he has one or many fathers nor who the father is:

```
?- isFatherOf(_,peter).
```

## Variables: Semantics

- The scope of a variable is the clause in which it appears
- Variables that appear only once in a clause are called singletons.
  - Mostly results of typos
  - SWI Prolog warns about singletons,
  - ... unless you suppress the warnings
- All occurrences of the same variable in the same clause must have the same value!
  - Exception: the "anonymous variable" (the underscore)

```
isGrandfatherOf(G,C) :-
    isFatherOf(G,F),
    isFatherOf(F,C).
isGrandfatherOf(G,Child) :-
    isFatherOf(G,M),
    isMotherOf(M,Chil).

loves(romeo,juliet).
loves(john,eve).
loves(jesus,Everybody).
```

Everybody

Intentional singleton variable, for which singleton warnings should be supressed.



## Constants

- Numbers -17 -2.67e+021 0 1 99.9 512
- sequences of letters, digits or underscore characters '\_' that Atoms
  - start with a lower case letter

#### OR

are enclosed in simple quotes ( ' ). If simple quotes should be part of an atom they must be doubled.

#### OR

only contains special characters

```
'I don"t know!'
ok:
                 'Fritz'
                           new york
        peter
                           new-york
wrong:
                 Fritz
                                                   123
                                        _xyz
```

- Remember: Prolog has no static typing!
  - So it is up to you to make sure you write what you mean.



## Function Terms ('Structures')

Function terms (structures) are terms that are composed of other terms

akin to "records" in Pascal (or objects without any behavior in Java)



- Arbitrary nesting allowed
- No static typing: person(1,2,'a') is legal!
- Function terms are not function calls! They do not yield a result!!!

Notation for function symbols: Functor/Arity, e.g. person/3, date/3

## **Using Function Terms as Data Types**

- Function terms are the only "data constructor" in Prolog
- In conjunction with recursive predicates, one can construct arbitrarily deep structures

```
binary_tree(empty).
binary_tree(Left,Element,Right)):-
   binary_tree(Left),
   binary_tree(Right). recursive definition of "binary tree" data type

?- binary_tree( Any ).
?- binary_tree( tree(empty,1,Right) ).
```

# Lists – Recursive Structures with special Syntax

Lists are denoted by square brackets "[]"

```
[] [1,2,a] [1,[2,a],c]
```

The pipe symbol "|" delimits the initial elements of the list from its "tail"

```
[1 [2,a]] [1,2 [a]] [Head Tail]
```

Lists are just a shorthand for the binary functor '.'

```
[1,2,a] = .(1,.(2,.(a,[])))
```

You can define your own list-like data structure like this:

```
mylist( nil ).
mylist( list(Head, Tail) ) :- mylist( Tail ).
```

# **Strings**

- Strings are enclosed in double quotes (")
  - "Prolog" is a string
  - ◆ 'Prolog' is an atom
  - Prolog (without any quotes) is a variable
- A string is just a list of ASCII codes

```
"Prolog" = [80,114,111,108,111,103]
= .(80,.(114,.(111,.(108,.(111,.(103,[])))))
```

- Strings are seldom useful → Better use atoms!
  - There are many predefined predicates for manipulating atoms the same way as Java uses strings.
  - Prolog strings are useful just for low level manipulation
  - Their removal from the language has often been suggested



## Terms, again

Terms are constanten, variables or structures

```
peter
[europa, asien, afrika | Rest]
person(peter, Nachname, date(27, MM, 2007))
```

A ground term is a variable free term

```
person(peter, mueller, date(27, 11, 2007))
```

## **Terms: Summary**

#### Relations between the four different kinds of term



## Unification – the only operation on terms

Equality
Variable bindings, Substitutions, Unification
Most general unifiers



# Equality (1)

Testing equality of terms

europe = europe. yes 🤜 no no 2 + 3 = +(2, 3).yes

- Terms are not evaluated!
- Terms are equal if they are structurally equal!!
- Structural equality for ground terms:
  - ◆ functors are equal and ... ←
  - ... all argument values in the same position are structurally equal.

**Constants are just** 

functors with zero arity!

# Equality (2)

Testing equality of terms with variables:

These terms are obviously not equal. However, ...

#### Idea

- A variable can take on any value
  - ◆ For instance, mueller for Name and 11 for MM
  - After applying this substitution, the two person/3 terms will be equal.
- Equality = terms <u>are</u> equal
- Unifiability = terms <u>can be made</u> equal via a substitution.
- Prolog doesn't test equality but unifiability!



## Unifiability

Testing equality of terms with variables:

 Terms T1 and T2 are unifiable if there is a substitution that makes them equal!

#### Bindings, substitutions and unifiers

- A binding is an association of a variable to a term
  - ◆ Two sample bindings: Name ← mueller and MM ← 11
- A substitution is a set of bindings
  - ◆ A sample substitution: {Name ← mueller, MM ← 11}
- A unifier is a substitution that makes two terms equal
  - The above substitution is a unifier for the two person/3 terms above



# Unifiability (2)

Can you find out the unifiers for these terms?

```
date(1, 4, 1985) = date(1, 4, Year)
date(Day, Month, 1985) = date(1, 4, Year)
a(b,C,d(e,F,g(h,i,J))) = a(B,c,d(E,f,g(H,i,j)))
          [[the, Y]|Z] = [[X, dog], [is, here]]
                     X = Y + 1
```

```
{Year ← 1985}
\{ \text{Year} \leftarrow 1985, \text{Month} \leftarrow 4 \}
\{B \leftarrow b, C \leftarrow c, ..., J \leftarrow j\}
\{Y \leftarrow dog, X \leftarrow the,
                    z \leftarrow [is, here]
\{x \leftarrow y+1\}
```

What about

$$p(X) = p(q(X))$$



produces a cyclic substitution



# Application of a Substitution to a Term (1)

- Substitutions are denoted by greek letters:  $\gamma$ ,  $\sigma$ ,  $\tau$ 
  - ♦ For instance:  $\gamma = \{ \text{Year} \leftarrow 1985, \text{ Month} \leftarrow 4 \}^{<-}$
- Application of a substitution  $\tau = \{ \mathbf{v}_1 \leftarrow \mathbf{t}_1, \dots, \mathbf{v}_n \leftarrow \mathbf{t}_n \}$  to a term T
  - $\bullet$  is written  $T_{\tau}$

```
date(Day, Month, 1985) \( \gamma \)
            X=Y+1\{X\leftarrow Y+1\}
 f(X,1){Y\leftarrow2,X\leftarrow g(Y)}
```

• replaces all the occurrences of  $V_i$  in T by  $t_i \tau$ , for i = 1..n.

```
date(Day, Month, 1985)\gamma \equiv date(Day, 4, 1985)
           X=Y+1\{X \leftarrow Y+1\} \equiv Y+1=Y+1
 f(X,1)\{Y\leftarrow 2,X\leftarrow g(Y)\} \equiv f(g(2),1)
```



# Application of a Substitution to a Term (2)

#### **Important**



Application of cyclic substitutions creates infinite terms

$$p(X)\{X \leftarrow q(X)\} \equiv p(q(q(q(q(q(q(\dots)\dots))$$

- Prevention: Don't create cyclic substitutions in the first place!
  - "Occurs Check" verifies whether unification would create cyclic substitutions

## "Occurs Check" (1)

#### **Theory**

Unification must fail if it would create substitutions with cyclic bindings

```
p(X) = p(q(X)) // must fail
```

#### **Problem**

- Unification with "occurs-check" has exponential worst-case run-time
- Unification without "occurs-check" has linear worst-case run-time

#### Practical Prolog implementations

Prolog implementations do not perform the occurs check

```
p(X) = p(q(X)) // succeeds
```

... unless you explicitly ask for it

```
unify_with_occurs_check(p(X), p(q(X))) // fails
```



## "Occurs Check" (2)

No occurs check when binding a variable to another term

```
?- X=f(X).

X = f(**).
```

Circular binding is flagged (\*\*)

```
?- X=f(X), write(X).
... printing of infitinte term never terminates ...
```

Printing of infinite term never terminates

```
?- X=f(X), X=a. fail.
```

- Circular reference is checked by second unification, so the goal fails gracefully
- SWI-Prolog has an occurs-check version of unification available

```
?- unify_with_occurs_check(X,f(X)).
fail.
```



## Unification (2)

- Unification of terms T1 and T2
  - ♦ finds a substitution of for the variables of T1 and T2 such that ...
  - → ... if σ is applied to T1 and T2 then the results are equal
- Unification satisfies equations
- ... but only if possible

#### Question

- How to unify two variables?
  - Problem: Infinitely many unifying substitutions possible!!!

#### **Solution**

- Unification finds the most general unifying substitution
  - "most general unifier" (mgu)

```
?- p(X,f(Y),a) = p(a,f(a),Y).
X = a, Y = a.
?- p(X,f(Y),a) = p(a,f(b),Y).
fail.
```

```
?- p(X) = p(Y).

X = a, Y = a;

X = b, Y = b;

...
```

```
?- p(X) = p(Z).

X = _{G800}, Y = _{G800};

true.
```

# Unification yields Most General Unifier (MGU)

- Unification of terms T1 and T2
  - ♦ finds a substitution of for the variables of T1 and T2 such that ...
  - → ... if σ is applied to T1 and T2 then the results are equal
  - $\bullet$  if  $\sigma$  is a most general substitution

<u>Theorem (Uniqueness of MGU)</u>: The most general unifier of two terms T1 and T2 is uniquely determined, up to renaming of variables.

- If there are two different most general unifiers of T1 and T2, say  $\sigma$  and  $\tau$ , then there is also a renaming substitution  $\gamma$  such that  $\mathbf{T1}\sigma\gamma \equiv \mathbf{T2}\tau$
- A renaming substitution only binds variables to variables

$$f(A)\{A\leftarrow B, B\leftarrow C\} \equiv f(C)$$

# Computing the Most General Unifier mgu(T1,T2)

- Input: two terms,  $T_1$  and  $T_2$
- Output:  $\sigma$ , the most general unifier of  $T_1$  and  $T_2$  (only if  $T_1$  and  $T_2$  are unifiable)
- Algorithm
  - 1. If  $T_1$  and  $T_2$  are the same constant or variable then  $\sigma = \{\}$
  - 2. If  $T_1$  is a variable not occurring in  $T_2$  then  $\sigma = \{T_1 \leftarrow T_2\}$
  - 3. If  $T_2$  is a variable not occurring in  $T_1$  then  $\sigma = \{T_2 \leftarrow T_1\}$
  - 4. If  $T_1 = f(T_{11},...,T_{1n})$  and  $T_2 = f(T_{21},...,T_{2n})$  are function terms with the same functor and arity
    - 1. Determine  $\sigma_1 = \text{mgu}(T_{11}, T_{21})$
    - 2. Determine  $\sigma_2 = \text{mgu}(T_{12}\sigma_1, T_{22}\sigma_1)$
    - 3. . . .
    - 4. Determine  $\sigma_n = \text{mgu}(T_{1n}\sigma_1, \sigma_{n-1}, T_{2n}\sigma_1, \sigma_{n-1})$
    - 5. If all unifiers exist then  $\sigma = \sigma_{1...}\sigma_{n-1}\sigma_{n}$  (otherwise  $T_1$  and  $T_2$  are not unifiable)
  - 5. Occurs check: If σ is cyclic fail, else return σ

## **Semantics**

How do we know what a goal / program means?

→ Translation of Prolog to logical formulas

How do we know what a logical formula means?

- → Models of logical formulas (Declarative semantics)
- → Proofs of logical formulas (Operational semantics)



### Question

#### **Question**

What is the meaning of this program?

```
bigger(elephant, horse).
bigger(horse, donkey).
is_bigger(X, Y) :- bigger(X, Y).
is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).
```

#### Rephrased question: Two steps

- 1. How does this program translate to logic formulas?
- 2. What is the meaning of the logic formulas?



## **Semantics: Translation**

How do we translate a Prolog program to a formula in First Order Logic (FOL)?

→ Translation Scheme

Can any FOL formula be expressed as a Prolog Program?

→ Normalization Steps



## **Translation of Programs (repeated)**

 A Prolog program is translated to a set of formulas, with each clause in the program corresponding to one formula:

```
bigger( elephant, horse ),
bigger( horse, donkey ),
∀x.∀y.( bigger(x, y) → is_bigger(x, y) ),
∀x.∀y.( ∃z.(bigger(x, z) ∧ is_bigger(z, y)) → is_bigger(x, y) )
```

 Such a set is to be interpreted as the conjunction of all the formulas in the set:

```
bigger( elephant, horse ) \land
bigger( horse, donkey ) \land
\forall x. \forall y. (bigger(x, y) \rightarrow is\_bigger(x, y) ) \land
\forall x. \forall y. (\exists z. (bigger(x, z) \land is\_bigger(z, y)) \rightarrow is\_bigger(x, y) )
```

## **Translation of Clauses**

- Each predicate remains the same (syntactically).
- Each comma separating subgoals becomes ∧ (conjunction).
- Each :- becomes ← (implication)
- Each variable in the head of a clause is bound by a ∀ (universal quantifier)
  - ◆ son(X,Y):-father(Y,X), male(X)
- Each variable that occurs only in the body of a clause is bound by a ∃
   (existential quantifier)
  - grandfather(X):- father(X,Y), parent(Y,Z).
  - $\bullet$   $\forall x. (grandfather(x) \leftarrow \exists y. \exists z. father(x, y) \land parent(y, z))$

## **Translating Disjunction**

Disjunction is the same as two clauses:

```
disjunction(X) :-
   ( ( a(X,Y), b(Y,Z) )
   ; ( c(X,Y), d(Y,Z) )
   ).
```



```
disjunction(X) :-
    a(X,Y), b(Y,Z).

disjunction(X) :-
    c(X,Y), d(Y,Z) .
```

- Variables with the same name in different clauses are different
- Therefore, variables with the same name in different disjunctive branches are different too!
- Good Style: Avoid accidentally equal names in disjoint branches!
  - Rename variables in each branch and use explicit unification

```
disjunction(X) :-
   ( (X=X1, a(X1,Y1), b(Y1,Z1) )
   ; (X=X2, c(X2,Y2), d(Y2,Z2) )
   ).
```



```
disjunction(X1) :-
    a(X1,Y1), b(Y1,Z1).
disjunction(X2) :-
    c(X2,Y2), d(Y2,Z2).
```

## Declarative Semantics - in a nutshell



## Meaning of Programs (in a nutshell)

#### Meaning of a program

Meaning of the equivalent formula.

Meaning of a formula

Set of logical consequences



## **Meaning of Programs**

Model = Set of logical consequences = What is true according to the formula

#### Meaning of a program

Meaning of the equivalent formula.

```
bigger( elephant, horse )
```

bigger( horse, donkey )

 $\forall x. \forall y. (bigger(x, y) \rightarrow$ is\_bigger(x, y) )

 $\forall x. \forall y. (\exists z. (bigger(x, z) \land$ is\_bigger(z, y))  $\rightarrow$ is\_bigger(x, y) )

## Meaning of a for

Set of logical consequences

```
bigger( elephant, horse )
```

bigger( horse, donkey )

is\_bigger(elephant, horse)

is\_bigger(horse, donkey)

is\_bigger(elephant, donkey)

 $\wedge$ 

 $\wedge$ 

Λ

## **Semantics of Programs and Queries** (in a nutshell)

#### <u>Program</u>

#### bigger(elephant, horse). bigger(horse,donkey). is bigger(X,Y) :bigger(X,Y). is\_bigger(X,Y) :bigger(X,Z), is\_bigger(Z,Y).

#### **Formula**

```
bigger( elephant, horse )
bigger( horse, donkey )
\forall x. \forall y. (is\_bigger(x, y) \leftarrow
            bigger(x, y) )
\forall x. \forall y. (\exists z. (is\_bigger(x, y) \leftarrow
                  bigger(x, z) \wedge
                  is_bigger(z, y)))
```

#### Model

```
bigger( elephant, horse )
bigger( horse, donkey )
is_bigger(elephant, horse)
is_bigger(horse, donkey)
is_bigger(elephant, donkey)
```

#### Query

```
?-
bigger( elephant, X )
is_bigger(X, donkey)
```





(logical consequence)



**Matching** 

### **Declarative Semantics – the details**

 $\rightarrow$  Interpretations of formulas

→ Herbrand Interpretations

→ Herbrand Model

→ Logical Consequence











#### What does this tell us?

#### **Observations**

- Formulas only have a meaning with respect to an interpretation
- An interpretation maps formulas to elements of an interpretation domain
  - constants to constant in the domain
    - ⇒ "john" to
  - function symbols to functions on the domain
    - ⇒ no example
  - predicates to relations on the domain
    - ⇒ "loves/2" to "targetOf: Spy × Secret → Bool"
  - formulas to truth values
    - "loves(john,mary)" to "true"

#### What does this tell us?

#### **Dilemma**

- Too many possible interpretations!
- Which interpretation to use for proving truth?

#### **Solution**

- For universally quantified formulas there is a "standard" interpretation, the "Herbrand interpretation" that has two nice properties:
  - If any interpretation <u>satisfies</u> a given set of clauses S then there is a Herbrand interpretation that satisfies them
    - It suffices to check satisfiability for the Herbrand interpretation!
  - If S is unsatisfiable then there is a finite unsatisfiable set of ground instances from the Herbrand base defined by S.
    - Unsatisfiability can be checked finitely

## **Herbrand Interpretations**



## Herbrand Interpretations of Formulas with Variables



## **Herbrand Models (1)**

- The Interpretation Domain (D) of a program P consists of three sets:
  - Const contains all constants occurring in P
  - Func contains all function symbols occurring in P
  - ◆ Pred contains a predicate p: HU x ... x HU → true

for each predicate symbol p of arity n occurring in the program P

- The Herbrand Universe (HU) of a program P is the set of all ground terms that can be constructed from the function symbols and constants in P
- The Herbrand Base of a program P is the set of all positive ground literals that can be constructed by applying the predicate symbols in P to arguments from the Herbrand Universe of P



## **Herbrand Models (2)**

- A Herbrand Interpretation maps each formula in P to the elements of the Herbrand Base that are its logical consequences
  - Each ground fact is mapped to true.
  - Each possible ground instantiation of a non-ground fact is mapped to true.
  - Each instantiation of the head literal of a rule that is a logical consequence of the rule body is mapped to true
- The Herbrand Model of a program P is the subset of the Herbrand Base of P that is true according to the Herbrand Interpretation.
  - It is the set of all logical consequences of the program
- The Herbrand Model can be constructed by fixpoint iteration:
  - Initialize the model with the ground instantiations of facts in P
  - Add all new facts that follow from the intermediate model and P
  - until the model does not change anymore (= fixpoint is reached)



## Constructing Models by Fixpoint Iteration



## **Declarative Semantics** → **Algorithm**

- Model-based semantics
  - Herbrand interpretations and Herbrand models
  - Basic step: "Entailment" (Logical consequence)
  - ◆ A formula is true if it is a logical consequence of the program



- Algorithm = Logic + Control
  - ◆ Logic = Clauses
  - Control = Bottom-up fixpoint iteration to build the model
  - Control = Matching of queries to the model

#### **Declarative Semantics Assessed**

#### Pro

- Simple
  - Easy to understand
- Thorough formal foundation
  - implication (entailment)

Perfect for understanding the meaning of a program

#### **Contra**

- Inefficient
  - Need to build the whole model in the worst case
- Inapplicable to infinite models
  - Never terminates if the query is not true in the model

Bad as basis of a practical interpreter implementation



## **Operational Semantics**

Horn clauses
Normalization
SLD-Resolution
Negation as failure



## **Translation of Programs (repeated)**

 A Prolog program is translated to a set of formulas, with each clause in the program corresponding to one formula:

```
bigger( elephant, horse ),
bigger( horse, donkey ),
\forall x. \forall y. (bigger(x, y) \rightarrow is\_bigger(x, y)),
\forall x. \forall y. (\exists z. (bigger(x, z) \land is\_bigger(z, y)) \rightarrow is\_bigger(x, y))
```

Such a set is to be interpreted as the conjunction of all the formulas in the set:

```
bigger( elephant, horse ) ^
bigger(horse, donkey) ^
\forall x. \forall y. (bigger(x, y) \rightarrow is\_bigger(x, y)) \land
\forall x. \forall y. (\exists z. (bigger(x, z) \land is\_bigger(z, y)) \rightarrow is\_bigger(x, y))
```

#### **Horn Clauses**

The formula we get when translating a Prolog clause has the structure:

$$a_1 \wedge a_2 \wedge \cdots \wedge a_n \rightarrow B$$

Such a formula can be rewritten as follows:

$$a_1 \wedge a_2 \wedge \cdots \wedge a_n \rightarrow B$$
 by law  $a \rightarrow B \equiv \neg a \vee B$  we get  $\neg (a_1 \wedge a_2 \wedge \cdots \wedge a_n) \vee B$  by law  $\neg (a \wedge B) \equiv \neg a \vee \neg B$  we get  $\neg a_1 \vee \neg a_2 \vee \cdots \vee \neg a_n \vee B$ 

- Hence, every Prolog clause can be translated as a disjunction of negative literals with at most one positive literal.
- This is called a Horn clause.

#### Horn Clauses: Relevance

#### Expressiveness

- Every (closed) first order logic formula can be translated to Horn clause form.
- This translation preserves (un)satisfiability: If the original formula is (un)satisfiable, the translated one is (un)satisfiable too and vice versa.

#### Efficiency

- Satisfiability is the problem of determining if the variables of a Boolean formula can be assigned in such a way as to make the formula true.
  - ⇒ Satisfiability is an NP-complete problem. ⊗
- ◆ There exists an efficient automated way to prove the unsatisfiability of a set of Horn clauses: SLD-Resolution.
- This is the basis for practical implementations of Prolog interpreters and compilers.
- SLD-Resolution is only applicable to Horn Clauses

## Normalization: Translation of Formulas to Horn Clauses

#### **Start**: Closed First Order Formula (FOF)

- "Closed" means that each variable is in the scope of a quantifier
  - ⇒ "in the scope of" a quantifier = "bound by" a quantifier.
- Disjunct Variable Form (VDF)
  - Rename variables bound by quantifiers so that they are unique!
- 2. Elementary Junctor Form (EJF)
  - Reduce ⇒, ⇔, etc. to ∨, ∧ and ¬ according to the following rules:

| $\phi \Longrightarrow \psi$     | $\rightleftharpoons$ | $\neg \phi \lor \psi$                               |
|---------------------------------|----------------------|-----------------------------------------------------|
| $\phi \Longleftrightarrow \psi$ | $\rightleftharpoons$ | $\phi \lor \neg \psi$                               |
| $\phi \iff \psi$                | $\rightleftharpoons$ | $(\neg \phi \lor \psi) \land (\phi \lor \neg \psi)$ |
|                                 |                      | oder $(\phi \land \psi) \lor \neg (\phi \lor \psi)$ |
| $\phi \not\iff \psi$            | $\rightleftharpoons$ | $\neg(\phi \Longleftrightarrow \psi)$               |

- 3. Negation form (NF)
  - EJF and all negations in front of atomic formulas (= literals) according to the following rules:

| $\neg \neg \phi$        | $\rightleftharpoons$ | $\phi$                      |
|-------------------------|----------------------|-----------------------------|
| $\neg(\phi \lor \psi)$  | $\rightleftharpoons$ | $\neg \phi \land \neg \psi$ |
| $\neg(\phi \land \psi)$ | $\rightleftharpoons$ | $\neg \phi \lor \neg \psi$  |
| $\neg \forall_x \phi$   | $\rightleftharpoons$ | $\exists_x \neg \phi$       |
| $\neg \exists_x \phi$   | $\rightleftharpoons$ | $\forall_x \neg \phi$       |

We illustrate the previous steps on a formula from our translated program:

A formula in Disjunct Variable Form

$$\forall x. \forall y. (\exists z. (bigger(x, z) \land is\_bigger(z, y)) \rightarrow is\_bigger(x, y))$$

Its Elementary Junctor Form is

$$\forall x. \forall y. (- \exists z. (bigger(x, z) \land is\_bigger(z, y)) \lor is\_bigger(x, y))$$

Its Negation Form is

$$\forall x. \forall y. (\forall z. \neg (bigger(x, z) \land is\_bigger(z, y)) \lor is\_bigger(x, y)) \Leftrightarrow \forall x. \forall y. (\forall z. (\neg bigger(x, z) \lor \neg is\_bigger(z, y)) \lor is\_bigger(x, y))$$

#### 4. Prenex Normal Form (PNF):



- ◆ Move all quantifiers to the prefix(= the left-hand-side)
- ◆ The matrix (= remaining right-hand-side part of formula) is quantifier-free
- ◆ Each formula in VDF can be translated to PNF using the following rules:

| Introduction:  | $\forall_x \phi \rightleftharpoons \phi$                                                          | $\exists_x \phi \rightleftharpoons \phi$                                                                     |
|----------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                | if x not free in $\Phi$                                                                           | if x not free in $\Phi$                                                                                      |
| Negation:      | $\forall_x \neg \phi \rightleftharpoons \neg \exists_x \phi$                                      | $\exists_x \neg \phi \rightleftharpoons \neg \forall_x \phi$                                                 |
| Conjunction:   | $\forall_x (\phi \land \psi) \rightleftharpoons (\forall_x \phi) \land (\forall_x \psi)$          | $\exists_x (\phi \land \psi) \rightleftharpoons (\exists_x \phi) \land \psi$                                 |
|                |                                                                                                   | if x not free in $arPhi$                                                                                     |
|                |                                                                                                   | $\exists_x (\phi \land \psi) \rightleftharpoons \phi \land (\exists_x \psi)$                                 |
|                |                                                                                                   | if x not free in $arPsi$                                                                                     |
| Disjunction:   | $\forall_x (\phi \lor \psi) \rightleftharpoons (\forall_x \phi) \lor \psi$                        | $\exists_x (\phi \lor \psi) \rightleftharpoons (\exists_x \phi) \lor (\exists_x \psi)$                       |
|                | if x not free in $\Phi$                                                                           |                                                                                                              |
|                | $\forall_x (\phi \lor \psi) \rightleftharpoons \phi \lor (\forall_x \psi)$                        |                                                                                                              |
|                | if x not free in $arPsi$                                                                          |                                                                                                              |
| Implication:   | $\forall_x (\phi \Longrightarrow \psi) \rightleftharpoons (\exists_x \phi) \Longrightarrow \psi)$ | $\exists_x (\phi \Longrightarrow \psi) \rightleftharpoons (\forall_x \phi) \Longrightarrow (\exists_x \psi)$ |
|                | if x not free in $\Phi$                                                                           |                                                                                                              |
|                | $\forall_x (\phi \Longrightarrow \psi) \rightleftharpoons \phi \Longrightarrow (\forall_x \psi)$  |                                                                                                              |
|                | if x not free in $arPsi$                                                                          |                                                                                                              |
| Commutativity: | $\forall_x \forall_y \phi \rightleftharpoons \forall_y \forall_x \phi$                            | $\exists_x \exists_y \phi \rightleftharpoons \exists_y \exists_x \phi$                                       |

We illustrate the PNF by continuing our example:

Its Negation Form was

```
    ∀x.∀y.( ∀z.(¬bigger(x, z) ∨ ¬is bigger(z, y)) ∨ is_bigger(x, y) )
    Its Prenex Normal Form is
    ∀x.∀y.( ∀z.(¬bigger(x, z) ∨ ¬is_bigger(z, y) ∨ ∀z.is_bigger(x, y) )
    ∀x.∀y.( ∀z.(¬bigger(x, z) ∨ ¬is_bigger(z, y) ∨ is_bigger(x, y)) )
    ∀x.∀y.∀z.(¬bigger(x, z) ∨ ¬is_bigger(z, y) ∨ is_bigger(x, y))
```

#### 4. Skolem Form (SF)

- Replace in PNF formula all occurrences of each existential variable by a unique constant
- Skolemization does not preserve truth but preserves satisfiability.
- ◆ This is sufficient since resolution proves truth of F by proving unsatisfiability of ¬F.

#### 5. Conjunctive Normal Form (CNF)

- Transform quantor-free matrix of formulas in PNF into a conjunction of disjunctions of atoms or negated atoms
- A formula can be translated to CNF if and only if it is quantor-free.

#### 6. Clausal Form

- A formula in PNF, SF and with matrix in CNF is said to be in clausal form.
- Each conjunct of a formula in clausal form is one clause.



Our previous example already was in Skolem form (no existential quantifiers).

Here is another formula, which is in Prenex but not Skolem form:

$$\exists x \exists v \forall y \forall w. (R(x,y) \land \neg R(w,v))$$

Its Skolem Form is

$$\forall y \forall w. (R(c_1, y) \land \neg R(w, c_2))$$

 Skolem form is often written without quantifiers, abusing the implicit knowledge that all variables are universally quantified

$$R(\mathbf{c}_1, y) \wedge \neg R(\mathbf{w}, \mathbf{c}_2)$$



#### **Translation of Queries: Basics**

- Undecidability of first order logic
  - ◆ There is no automated proof system that always answers yes if a goal is provable from the available clauses and answers no otherwise.
- Semi-decidability of first order logic
  - It is possible to determine unsatisfiability of a formula by showing that it leads to a contradiction (an empty clause)

#### **Implication of Semi-Decidability**

• We cannot prove a goal directly but must show that adding the negation of the goal to the program  $\mathscr P$  makes  $\mathscr P$  unsatisfiable

$$\mathscr{S} \models G$$
 is proven by showing that  $(\mathscr{S} \cup \neg G) \models \{\}$ 

 Proving a formula by showing that its negation is wrong is called proof by refutation.

#### **Translation of Queries**

#### The query

?- is\_bigger(elephant, X), is\_bigger(X, donkey).

corresponds to the rule

fail:-is\_bigger(elephant, X), is\_bigger(X, donkey).

and to the formula

 $\forall x. \neg (is\_bigger(elephant, x) \land is\_bigger(x, donkey) \rightarrow false$ 

## **Operational Semantics**

- Equality <
- Variable bindings, Substitutions, Unification ✓
  - Most general unifiers 🗸
    - Clause translation ✓
      - Normalization <
      - SLD-Resolution





## **Proof by Refutation via Resolution**

- Formula that we want to prove
- Its negation
- Variable Disjunct Form
- Elementary Junctor Form
- Prenex Normal Form
- Skolemized Form (implicit ∀)
- (Horn) Clause Form (implicit ∀)
- $\neg \Big( \big( \exists x \forall y. \, R(x,y) \big) \to \forall y \exists x. \, R(x,y) \Big)$   $\neg \Big( \big( \exists x \forall y. \, R(x,y) \big) \to \forall v \exists w. \, R(w,v) \Big)$   $\exists x \exists v \forall y \forall w \ R(x,y) \land \neg R(w,v)$   $R(c_0,y) \land \neg R(w,c_1)$   $\{ \{ R(c_0,y) \}, \{ \neg R(w,c_1) \} \}$

 $(\exists x \forall y. R(x,y)) \rightarrow \forall y \exists x. R(x,y)$ 

- Unification with mgu  $\{w \leftarrow c_0, y \leftarrow c_1\}$
- Resolution of clause 2 with clause 1

$$\{\{R(c_0,c_1)\}\ \{\neg R(c_0,c_1)\}\}$$

## Why is unification so important?

# Unification is the basic operation of any Prolog interpreter.

- Resolution is the process by which Prolog derives answers (successful substitutions) for queries
- During resolution, clauses that can be used to prove a goal are determined via unification

```
?- isFatherOf(paul,Child).

isFatherOf(F,M), isMotherOf(M,C).
```

#### Resolution

#### Resolution Principle

```
The proof of the goal G ?- P, L, Q. if there exists a clause L_0:- L_1, ..., L_n (n \ge 0) such that \sigma = mgu(L, L_0) can be reduced to prooving ?- P\sigma, L_1\sigma, ..., L_n\sigma, Q\sigma.
```

Informal "resolution algorithm"

```
To proof of the goal G ?- P, L, Q. select one literal in G, say L, select a <u>copy</u> of a clause L_0:-L_1, ..., L_n (n\geq 0) such that there exists \sigma = mgu(L,L_0) apply \sigma to the goal apply \sigma to the clause L_0\sigma:-L_1\sigma, ..., L_n\sigma replace L_\sigma by the clause body ?- P\sigma, L_1\sigma, ..., L_n\sigma, Q\sigma
```

#### Resolution

#### Resolution Principle

```
The proof of the goal G = P, L, Q.
    if there exists a clause L_0:-L_1, ..., L_n (n\geq 0)
                   such that \sigma = mgu(\mathbf{L}, \mathbf{L}_0)
can be reduced to prooving ?- Po, L_1\sigma, ..., L_n\sigma, Qo.
```

Graphical illustration of resolution by "derivation trees"

```
Initial goal → ?- P, L, Q.
  Copy of clause with renamed variables (different from variables in goal!) \longrightarrow L_0:-L_1, L_2, \ldots, L_n
        (different from variables in goal!)
Unifier of selected literal and clause head --> \sigma = mgu(L, L_0)
                             Derived goal -\rightarrow ?- P\sigma, L_1\sigma, ..., L_n\sigma, Q\sigma.
```

## Resolution reduces goals to subgoals

For "Goal<sub>2</sub> results from Goal<sub>1</sub> by resolution"

we also say "Goal<sub>2</sub> is derived from Goal<sub>1</sub>"

or "Goal<sub>1</sub> is reducible to Goal<sub>2</sub>"

and write "Goal<sub>1</sub> |-- Goal<sub>2</sub>"

 $Goal/Goal_1 \longrightarrow \begin{tabular}{llll} ?- & P, L, Q. \ \hline Derivation/reduction step & --> \ \hline Subgoal/Goal_2 & --> \end{tabular} \begin{tabular}{lllll} ?- & P\sigma, L_1\sigma, & \dots, L_n\sigma, Q\sigma. \ \hline \end{tabular}$ 

## Resolution Example: Program and Goal

#### Program

```
isMotherOf(maria, klara).
                                               maria
isMotherOf(maria, paul).
isMotherOf(eva, anna).
                                          klara
isMarriedTo(paul, eva).
                                                       anna
```

```
isGrandmaOf(G, E) :- isMotherOf(G, M), isMotherOf(M, E).
isGrandmaOf(G, E) := isMotherOf(G, V), isFatherOf(V, E).
isFatherOf(V, K) := isMarriedTo(V, M), isMotherOf(M, K).
. . .
```

#### Goal

?- isGrandmaOf(maria,Granddaughter).



## **Resolution Example: Derivation**



```
?- isGrandmaOf(maria,Granddaughter).
   isGrandmaOf(G1, E1) := isMotherOf(G1, V1), isFatherOf(V1, E1).
   \sigma_1 = \{G1 \leftarrow \text{maria}, E1 \leftarrow \text{Granddaughter}\}
?- isMotherOf(maria, V1), isFatherOf(V1, Granddaughter).
   isMotherOf(maria, paul).
   \sigma_2 = \{ V1 \leftarrow paul \}
?- isFatherOf(paul, Granddaughter).
   isFatherOf(V2, K2) := isMarriedTo(V2, M2), isMotherOf(M2, K2).
   \sigma_3 = \{V2 \leftarrow \text{paul}, K2 \leftarrow \text{Granddaughter}\}
?- isMarriedTo(paul,M2),isMotherOf(M2,Granddaughter).
   isMarriedTo(paul, eva).
   \sigma_4 = \{M2 \leftarrow eva\}
?- isMotherOf(eva, Granddaughter).
   isMotherOf(eva, anna).
   \sigma_5 = \{Granddaughter \leftarrow anna\}
```

## Resolution Example: Result



#### ?- isGrandmaOf(maria,Granddaughter).

$$\sigma_1 = \{G1 \leftarrow maria, E1 \leftarrow Granddaughter\}$$

$$\sigma_2 = \{ V1 \leftarrow paul \}$$

$$\sigma_3 = \{V2 \leftarrow \text{paul}, K2 \leftarrow \text{Granddaughter}\}$$

$$\sigma_4 = \{M2 \leftarrow eva\}$$

$$\sigma_5 = \left\{ \left\{ \text{Granddaughter} \leftarrow \text{anna} \right\} \right\}$$

#### So what is the result?

- → the last substitution?
- → the substitution(s) for the variable(s) of the goal?

## **Resolution Example: Derivation** with different variable bindings



```
?- isGrandmaOf(maria,Granddaughter).
    isGrandmaOf(G1, E1) := isMotherOf(G1, V1), isFatherOf(V1, E1).
   \sigma_1 = \{G1 \leftarrow \text{maria}, Granddaughter} \leftarrow E1\}
?- isMotherOf(maria, V1), isFatherOf(V1, E1).
   isMotherOf(maria, paul).
   \sigma_2 = \{ V1 \leftarrow paul \}
?- isFatherOf(paul,E1).
    isFatherOf(V2, K2) := isMarriedTo(V2, M2), isMotherOf(M2, K2).
   \sigma_3 = \{ V2 \leftarrow \text{paul}, E1 \leftarrow K2 \}
?- isMarriedTo(paul, M2), isMotherOf(M2, K2).
    isMarriedTo(paul, eva).
   \sigma_{\Delta} = \{M2 \leftarrow \text{eva}\}
?- isMotherOf(eva,K2).
    isMotherOf(eva, anna).
   \sigma_5 = \{ K2 \leftarrow anna \}
```

## Resolution Example: Result revisited



#### ?- isGrandmaOf(maria,Granddaughter).

$$\sigma_{1} = \{G1 \leftarrow maria, Granddaughter \leftarrow E1\}$$

$$\sigma_{2} = \{V1 \leftarrow paul\}$$

$$\sigma_{3} = \{V2 \leftarrow paul, E1 \leftarrow K2\}$$

$$\sigma_{4} = \{M2 \leftarrow eva\}$$

$$\sigma_{5} = \{K2 \leftarrow anna\}$$

#### **Observation**

The result is not

- → the last substitution
- → the substitution(s) for the variable(s) of the goal

→ We need to "compose" the substitutions!

## Resolution Example: Result



 The result is the composition of all substitutions computed along a derivation path

```
\begin{split} &\sigma_1 = \{\text{G1}\leftarrow\text{maria, E1}\leftarrow\text{Granddaughter}\} \\ &\sigma_2 = \{\text{V1}\leftarrow\text{paul}\} \\ &\sigma_3 = \{\text{V2}\leftarrow\text{paul, K2}\leftarrow\text{Granddaughter}\} \\ &\sigma_4 = \{\text{M2}\leftarrow\text{eva}\} \\ &\sigma_5 = \{\text{Granddaughter}\leftarrow\text{anna}\} \\ &\sigma_5 \sigma_3 \sigma_4 \sigma_5 = \{\text{G1}\leftarrow\text{maria, E1}\leftarrow\text{Granddaughter, V1}\leftarrow\text{paul, V2}\leftarrow\text{paul, K2}\leftarrow\text{Granddaughter, M2}\leftarrow\text{eva, Granddaughter}\leftarrow\text{anna}\} \end{split}
```

... restricted to the bindings for variables from the initial goal

```
\begin{split} & \sigma = \ \sigma_1 \ \sigma_2 \ \sigma_3 \ \sigma_4 \ \sigma_5 \ | \ \textit{Vars}(\ \texttt{isGrandmaOf}(\ \texttt{maria,Granddaughter}) \ ) \\ & = \ \sigma_1 \ \sigma_2 \ \sigma_3 \ \sigma_4 \ \sigma_5 \ | \ \{\ \texttt{Granddaughter} \ \} \\ & = \ \{\ \texttt{Granddaughter} \leftarrow \texttt{anna} \ \} \end{split}
```

## Note: One can also bind differently!



The result is the composition of all substitutions computed along a derivation path

```
\sigma_1 = \{G1 \leftarrow maria, Granddaughter \leftarrow E1\}
\sigma_2 = \{ V1 \leftarrow paul \}
\sigma_3 = \{ V2 \leftarrow paul, E1 \leftarrow K2 \}
                                                                Different bindings than
                                                                                                             No, because during
                                                                on the previous page!
                                                                                                              composition, later
\sigma_4 = \{M2 \leftarrow eva\}
                                                                                                          substitutions are applied
                                                                Does that mean we get
                                                                                                            to the previous ones!
\sigma_5 = \{ \underline{K2} \leftarrow \underline{anna} \}
                                                                 a different result???
\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 = \{G1 \leftarrow \text{maria, Granddaughter} \leftarrow \text{anna, V1} \leftarrow \text{paul, V2} \leftarrow \text{paul,}
                             E1\leftarrow anna, M2\leftarrow eva, K2\leftarrow anna
```

... restricted to the bindings for variables from the initial goal

```
\sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 | Vars(isGrandmaOf(maria,Granddaughter))
  = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \mid \{ Granddaughter \} \}
  = {Granddaughter ← anna}-
                                                       Same result substitution
                                                      as on the previous page!
```

## **Composition Defined**

Let  $\sigma_1 = \{ \mathbf{V}_1 \leftarrow \mathbf{t}_1, ..., \mathbf{V}_n \leftarrow \mathbf{t}_n \}$  and  $\sigma_2 = \{ \mathbf{w}_1 \leftarrow \mathbf{u}_1, ..., \mathbf{w}_m \leftarrow \mathbf{u}_m \}$  be two substitutions.

- Then  $\sigma_1 \sigma_2 = \{ \mathbf{V_1} \leftarrow \mathbf{t_1} \sigma_2, \dots, \mathbf{V_n} \leftarrow \mathbf{t_n} \sigma_2, \mathbf{w_1} \leftarrow \mathbf{u_1}, \dots, \mathbf{w_m} \leftarrow \mathbf{u_m} \}$
- Terminology:  $\sigma_1 \sigma_2$  is called the composition of  $\sigma_1$  and  $\sigma_2$
- Informally: The composition  $\sigma_1 \sigma_2$  is obtained by
  - a) applying  $\sigma_2$  to the right-hand-side of  $\sigma_1$
  - b) and appending  $\sigma_2$  to the result of step a)
- Note the difference
  - $\bullet$   $t_1 \sigma_2$  is the application of a substitution to a term
  - $\bullet$   $\sigma_1\sigma_2$  is the composition of two substitutions



#### **Restriction Defined**

Let  $\sigma = \{ \mathbf{V_1} \leftarrow \mathbf{t_1}, ..., \mathbf{V_n} \leftarrow \mathbf{t_n} \}$  be a substitution and  $\vee$  be a set of variables.

- Then  $\sigma | V = \{ V_i \leftarrow t_i \mid V_i \leftarrow t_i \land V_i \in V \}$
- Terminology:  $\sigma | V$  is called the restriction of  $\sigma$  to V
- Informally: The restriction  $\sigma V$  is obtained by eliminating from  $\sigma$  all bindings for variables that are not in V

#### **Resolution Result Defined**

Let  $\sigma_1$ , ...,  $\sigma_n$  be the mgus computed along a successful derivation path for the goal G and let Vars(G) be the set of variables in G.

- Then the result substitution is  $\sigma_1 \dots \sigma_n / Vars(G)$
- Informally: The result substitution for a successful derivation path (= a proof) of goal G is obtained by
  - a) Composing all substituions computed during the proof of the goal
  - b) ...and restricting the composition result to the variables of the goal.

# **Operational Semantics: Resolution** (cont.)

OK, we've seen how resolution finds one answer. But how to find more answers?

→ Backtracking!



## **Derivation with Backtracking**

```
\sqrt{f(a)}. \sqrt{g(a)}.
 f(b). g(b).
                      h(b).
```

```
?- f(Y), g(Y), h(Y).
```

```
?-f(X), g(X), h(X).
           choicepoint: #2
#1, X=a
   ?- g(a), h(a).
            choicepoint: #2
      #1
      ?- h(a).
```

- → The subgoal h(a) fails because there is no clause whose head unifies with it.
- The interpreter backtracks to the last
  - "choicepoint" for g(a)

## **Derivation with Backtracking**





?-f(X), g(X), h(X).#1, X=a choicepoint: #2 ?- g(a), h(a).

- → The subgoal g(a) fails because there is no remaining clause (at the choicepoint or after it) whose head unifies with it.
- The interpreter backtracks to the last "choicepoint" for f(X)

## **Derivation with Backtracking**

```
f(a). g(a).
\sqrt{f(b)}. \sqrt{g(b)}. \sqrt{h(b)}.
```

```
?- f(Y), g(Y), h(Y).
Y=b;
no
```

```
?-f(X), g(X), h(X).
          choicepoint: ---
#2, X=b
   ?- g(b), h(b).
            choicepoint: ---
      #2
      ?- h(b).
            choicepoint: ---
      #1
      ?- true.
```

- → The derivation is successful (it derived the subgoal "true").
- The interpreter reports the successful substitutions

## SLD-Resolution with Backtracking: Summary

- SLD-Resolution always selects the
  - the leftmost literal in a goal as a candidate for being resolved
  - the topmost clause of a predicate definition as a candidate for resolving the current goal
- If a clause's head is not unifiable with the current goal the search proceeds immediately to the next clause
- If a clause's head is unifiable with the current goal
  - the goal is resolved with that clause
  - the interpeter remembers the next clause as a choicepoint
- If no clause is found for a goal (= the goal fails), the interpreter undoes the current derivation up to the last choicepoint.
- Then the search for a candidate clause continues from that choicepoint

## **Box-Model of Backtracking**

A goal is a box with four ports: call, succeed, redo, fail



- A conjunction is a chain of connected boxes
  - the "succeed" port is connected to the "call" port of the next goal
  - the "fail" port is connected to the "redo" port of the previous goal



## **Box-Model of Backtracking**

- Subgoals of a clause are boxes nested within the clause box, with outer and inner ports of the same kind connected
  - clause's call to first subgoal's call
  - last subgoal's suceed to clause's suceed
  - clause's redo to last subgoal's redo
  - first subgoal's fail to the fail of the clause



## Viewing Backtracking in the Debugger (1)



## Viewing Backtracking in the Debugger (2)

The debugger visualizes the port of the current goal according to the box model.

```
mplify compr( X-Y, Result) :-
       not(X=Y),
       not (x-( + )),
       simplify aexpr(X, XS),
       simplify aexpr(Y, YS),
       continue if simplified (X, XS,
No selected variable
```



```
simplify aexpr( (Z+Y)-Y, RestZ )
      simplify aexpr(Z, RestZ).
      lify acmpr ( X-Y, Result) :-
      not (X=Y),
      simplify aexpr(X,XS),
      simplify aexpr(Y,YS),
      continue if simplified (X, XS,
Fail: not/1
```

```
simplify_aexpr( X-X, 0).
  simplify_dexpr( (Z+T)-T, RestZ ) :-
      simplify aexpr(Z, RestZ).
  simplify aexpr( X-Y, Result) :-
      not (X=Y),
      not (X=(_+_)),
      simplify aexpr(X,XS),
Redo: simplify aexpr/2
```

#### Recursion

- Prolog predicates may be defined recursively
- A predicate is recursive if one or more rules in its definition refer to itself.

```
descendant(C,X):- child(C,X).
descendant(C,X):- child(C,D), descendant(D,X).
```

- What does the descendant/2 definition mean?
  - 1. if C is a child of X, then C is a descendant of X
  - 2. if C is a child of D, and D is a descendant of X, then C is a descendant of X

#### Recursion: Derivaton Tree for "descend"

```
child(martha, charlotte).
child(charlotte, caroline).
child(caroline, laura).
child(laura, rose).

descend(X,Y):- child(X,Y).
descend(X,Y):-
    child(X,Z),descend(Z,Y).
```

```
?- descend(martha, laura)
yes
```



## **Example: Derivation and Recursion**

A program (List membership: Arg1 is a member of the list Arg2)

A query, its successful substitutions ...

```
?- member(E,[a,b,c]).
E = a ; E = b ; E = c ; fail.
```

... and its derivation tree

#### **Recursion: Successor**

- Suppose we want to express that
  - 0 is a numeral
  - If X is a numeral, then succ(X) is a numeral

```
numeral(0).
numeral(succ(X)) :- numeral(X).
```

Let's see how this behaves:

```
?- numeral(X).
X = 0;
X = succ(0);
X = succ(succ(0));
X = succ(succ(succ(0)));
```

## Two different ways to give meaning to logic programs

#### Operational Semantics

- Proof-based approach
  - Algorithm to find a proof
  - Refutation proof using SLD resolution
  - Basic step: Derivation
- To prove a goal prove each of its subgoals
- Algorithm = Logic + Control
  - ◆ Logic = Clauses
  - Control = Top-down resolution process

#### **Declarative Semantics**

- Model-based semantics
  - Mathematical structure
  - Herbrand interpretations and Herbrand models
  - Basic step: Entailment (Logical consequence)
- A formula is true if it is a logical consequence of the program
- Algorithm = Logic + Control
  - ◆ Logic = Clauses
  - Control = Bottom-up fixpoint iteration

Page 2-104

## Semantics (cont.): Negation

OK, we've seen how to prove or conclude what is true. But what about negation?

→ Closed world assumption

→ Negation as failure

→ "Unsafe negation" versus existential variables



## **Closed World Assumption**

- We cannot prove that something is false.
- We can only show that we cannot prove its contrary.

```
isFatherOf(kurt,peter).
?- isFatherOf(adam,cain).
      ← means: we cannot prove that "isFatherOf(adam,cain)" is true
```

- If we assume that everything that is true is entailed by the program, we may then conclude that what is not entailed / provable is not true.
- This assumption is known as the "Closed World assumption" (CWA)
- The conclusion is known as "Negation by Failure" (NF)

```
?- not( isFatherOf(adam,cain) ).
yes.
← means: we conclude that "not(isFatherOf(adam,cain))" is true because we
cannot prove that "isFatherOf(adam,cain)" is true
```



## **Negation with Unbound Variables (1)**

#### **Deductive Databases**

```
isFatherOf(kurt,peter).
?- \forall X. is Father Of (adam, X).
no.
?- ∀x.not(isFatherOf(adam, X)).
      ← unsafe, infinite result set!
```

- Deductive databases consider all variables to be universally quantified.
- However, the set of values for X for which isFatherOf/2 fails is infinite and unknown because it consists of everything that is not represented in the program.
- So it is impossible to list all these values!
- Therefore, the above negated query with universal quantification is unsafe



## Negation with Unbound Variables (2)

#### **Prolog**

```
isFatherOf(kurt, peter).
?- isFatherOf(adam, X).
no.
?- not( isFatherOf(adam,X) ).
        ← no substitution for X returned!
yes.
```

#### **Prolog (behind the scenes)**

```
isFatherOf(kurt,peter).
?- \forall x.isFatherOf(adam, x).
no.
?- \(\frac{1}{2}\)X.not(isFatherOf(adam,\)X)).
       ← safe
yes.
```

- Prolog treats free variables in negated goals as existentially quantified. So it does not need to list all possible values of X.
- It shows that there is some value for which the goal G fails, by showing that G does not succeed for any value

$$\exists x.\neg G \Leftrightarrow \neg \forall x.G$$

This is precisely negation by failure!



## Negation with Unbound Variables (3)

Existential variables can also occur in clause bodies:

- The clause
- means

```
single(X) := human(X), not(married(X,Y)).
\forall X.\exists Y. \text{ human}(X) \land \text{not}(\text{married}(X,Y)) \rightarrow \text{single}(X)
```

Take care: The following is different from the above:

- The clause
- is the same as
- Both mean

```
single(X) := not(married(X,Y)) human(X).
 single(X) := not(married(X1,Y)), human(X).
\forall x.\exists x1.\exists Y \text{ human}(x) \land \text{not}(\text{married}(x1,Y)) \rightarrow
single(X).
```

Remember: Free variables in negated goals are existentially quantified.

- They do not "return bindings" outside of the scope of the negation.
- They are different from variables outside of the negation that accidentally have the same name.



## **Negation with Unbound Variables (4)**

#### Explanations for the previous slide

- The clause
- means

```
single(X) := human(X), not(married(X,Y)).
\forall X.\exists Y. human(X) \land not(married(X,Y)) \rightarrow single(X)
```

 because X is is already bound by human(X) when the negation is entered.

- The clause
- is the same as
- Both mean

```
single(X) := not(married(X,Y)) human(X).
single(X) := not(married(X1,Y)), human(X).
\forall X.\exists X1.\exists Y human(X) \land not(married(X1,Y)) \rightarrow ...(X)
```

• because the red X in the first clause is not bound when the negation is reached. So it is existentially quantified, whereas the blue X is universally quantified. Thus both are actually different variables since the same variable cannot be quantified differently in the same scope.

## Eliminate accidentally equal names! Last slide shown on 10.5.2010

Remember: Free variables in negated goals are existentially quantified.

- They do not "return bindings" outside of the scope of the negation.
- They are different from variables outside of the negation that accidentally have the same name.

```
nestedneq1(Y) :-
                                       nestedneq1(Y) :-
                          % INST
                                                                  % INST
   q(Y),
                                           q(Y),
   not((p(X,Y),
                                           not((p(X,Y),
          not((f(X,Z),
                                                  not( (f(X,Z), % +-
                 q(Z)
                          응 +
                                                         q(Z)
                                                  q(X,Z1)
          q(X,Z)
                                          q(X1).
                                                                  왕 -
  q(X).
```

#### A Test

#### Predict what this program does!

```
f(1,a).
f(2,b).
f(2,c).
f(4,c).
q(1).
q(2).
q(3).
```

```
negation(X) : -
  not(
      (f(X,C),
         output(X),
        q(X)
  ),
  q(X).
```

```
output(X) :-
  format('Found f(\sim a,c)', [X]).
output(X) :-
  format('but no q(\sim a) \sim n', [X]).
```

#### This is what it does (try it out):

```
?- negation(X).
Found f(2,c) but no g(2)
Found f(4,c) but no g(4)
X=1 ;
X=2:
X=3:
fail.
```

#### Homework:

If you don't understand the result reread the slides about negation (and eventually also those about backtracking if you do not understand why output/1 has two clauses).



## **Operational Semantics (cont.)**

Can we prove truth or falsity of <u>every</u> goal?

→No, unfortunately!



## Incompleteness of SLD-Resolution

#### Provability

◆ If a goal can be reduced to the empty subgoal then the goal is provable.

#### Undecidability

- ◆ There is no automated proof system that always answers yes if a goal is provable from the available clauses and answers no otherwise.
- Prolog answers yes, no or does not terminate.



## Incompleteness of SLD-Resolution

- The evaluation strategy of Prolog is incomplete.
  - Because of non-terminating derivations, Prolog sometimes only derives a subset of the logical consequences of a program.
- Example
  - r, p, and q are logical consequences of this program

```
      p:-q.
      % 1

      q:-p.
      % 2

      p:-r.
      % 3

      r.
      % 4
```

 However, Prolog's evaluation strategy cannot derive them. It loops indefinitely:

```
?- p.
|--- 1st clause
q
|--- 2nd clause
p
... etc.
```

## **Practical Implications**

- Need to understand both semantics
  - The model-based (declarative) semantics is the "reference"
    - ⇒ We can apply bottom-up fixpoint iteration to understand the set of logical consequences of our programs
  - The proof-based (operational) semantics is the one Prolog uses to prove that a goal is among the logical consequences
    - ⇒ SLD-derivations can get stuck in infinite loops, missing some correct results
- Need to understand when these semantics differ
  - When do Prolog programs fail to terminate?
    - ⇒ Order of goals and clauses
    - Recursion and "growing" function terms
    - ⇒ Recursion and loops in data
  - Which other problems could prevent the operational semantics match the declarative semantics?
    - ⇒ The cut!
    - ⇒ Non-logical features



## **General Principles**

- Try to match both semantics!
  - Your programs will be more easy to understand and maintain
- Write programs with the model-based semantics in mind!
  - If they do not behave as intended change them so that they do!

# **Practical Implications (Part 1)**

Order of goals and clauses
Recursion and cyclic predicate definitions
Recursion and cycles in the data
Recursion and "growing" function terms



#### Order of Clauses in Predicate Definition

Ensure termination of recursive definitions by putting non-recursive clauses before recursive ones!

Loops infinitely for ?-p:

```
      p:-q.
      % 1

      p:-r.
      % 2

      q:-p.
      % 3

      r.
      % 4
```





?-p succeeds (infinitely often):

```
      p:- r.
      % 1

      p:- q.
      % 2

      q:- p.
      % 3

      r.
      % 4
```

Traces:

```
?- p.
... nothing happens
...
```

```
?- p.

true ;

true ;
```

#### Order of Literals in Clause

Ensure termination of recursive definitions by putting non-recursive goals before recursive ones!

Succeeds twice (and then loops infinitely) for ?-p(X):

```
p(0).
p(X) := p(Y), a(X,Y).
a(1,0).
```

Traces:

```
?-p(X).
X = 0;
X = 1;
ERROR: Out of local
stack
```

In spite of same Herbrand Model:

```
p(0).
p(1).
a(1,0).
```

Succeeds exactly twice for ?-p(X):

```
p(0).
p(X) := a(X,Y), p(Y).
a(1,0).
```

```
?-p(X).
X = 0;
X = 1;
false.
```

# Cycles in the data (1)

Given: The following floor plan



• ... or its graph representation



- A possible Prolog representation:
   ... for a directed graph
  - door(a,b). door(b,c). door(b,d). door(c,e).



# Cycles in the data (2)



• Question: How to represent symmetry of doors?

```
door(a,b).
door(b,c).
door(b,d).
door(c,e).
```



1. Attempt: Recursive definition

$$door(X, Y) :- door(Y, X).$$



• 2. Attempt: Split definition into two predicates

connected(
$$\mathbf{X}$$
,  $\mathbf{Y}$ ) :- door( $\mathbf{X}$ ,  $\mathbf{Y}$ ).  
connected( $\mathbf{Y}$ ,  $\mathbf{X}$ ) :- door( $\mathbf{X}$ ,  $\mathbf{Y}$ ).





# Cycles in the data (3)



- Question: Is there a path from room X to room Y?
- 1. Attempt:

```
connected(X, Y) := door(X, Y).
connected(X, Y) := door(Y, X).
path(X, Y) := connected(X, Y).
path(X, Y) := connected(X, Z), path(Z, Y).
```

- Declaratively OK, but will loop on cycles induced by definition of connected/2!
- Derives the same facts infinitely often:

```
?- path(X,Y).
X = a, Y = b;
X = a, Y = b;
```



### Cycles in the data (4)



- Question: Is there a path from room X to room Y?
- 2. Attempt: Avoid looping through cycles in data by "remembering"

- Remember each visited room in additional list parameter
- Never visit the same node twice





### Cycles in the data (5)



- Question: Is there a path from room X to room Y?
- 2. Attempt: Avoid looping through cycles in data by "remembering"

```
connected(X, Y) := door(X, Y).
connected(X, Y) := door(Y, X).
path(X, Y) :- assert(visited(X)), // don't visit start node again
                 path_{\underline{}}(X, Y).
path (X, Y) := connected(X, Y),
                   not( visited(Y) ).
path_{\underline{\underline{}}}(X, Y) := connected(X, Z),
                                                  Constant time check
                   not( visited(Z) ),
                    assert( visited(Z)
                                                     'assert' adds a clause
                   path(Z, Y).
                                                    at run-time
```

Remember visited rooms in dynamically created facts

Never visit the same node twice







### Keep in Mind!

#### Prolog predicates will loop infinitely if

- there is no matching non-recursive clause before a recursive one
- there is no non-recursive literal before a recursive invocation.
- there are cycles in the data traversed by a recursive definition
  - either cycles in the data itself
  - or cycles introduced by rules
- there is divergent construction of terms
  - We'll see examples of this in the following section about lists!

# **Recursive Programming with Lists**

List notation
Head and Tail
Recursive list processing



# **Lists in Prolog**

Prolog lists may be heterogeneous: They may contain elements of different "types"

Example: Homogeneous lists

```
List of integers
                             List of characters
                             Empty list
                             List of lists
[[1,2], [], [5]]
```

Example: Homogeneous only at the top level

```
[[1,2], [ ], ['a']] List of lists but the element types differ
```

Example: Fully heterogeneous

```
[[1,2], 'a', 3]
```



# List are Binary Trees Encoded as Terms (1)

Internally, lists are binary trees whose leaves are the lists elements:



# List are Binary Trees Encoded as Terms (2)

The functor '.' is the list constructor:



- The first element is the "head" the second is the "tail".
- The "tail" is the list of all the other elements.

### **Accessing Head and Tail**

#### Notation [ Head | Tail ]

?- 
$$X = [Y,2,3,4], Y=1.$$
 ----->  $X=[1,2,3,4], Y=1$   
?-  $T = [2,3,4], X=[1|T].$  -----> ???

#### Length of a List

Usually predefined:

```
/**
 * The predicate length(List, Int) suceeds iff Arg2 is
 * the number of elements in the list Arg1.
 */
length([],0).
length([X|Xs],N) :- length(Xs,N1), N is N1+1.
Head
Tail
```

Tracing an invocation of 'length' with input on first argument:

#### Length of a List

Usually predefined:

```
/**
 * The predicate length(List, Int) suceeds iff Arg2 is
 * the number of elements in the list Arg1.
 */
length([],0).
length([X|XS],N) :- length(XS,N1), N is N1+1.
Head
Tail
```

Tracing an invocation of 'length' without input on first argument:

```
?- length(X,N).
    Exit lenght([],0)

X=[], N=0;
    Call length(X1,N1)
    Exit lenght([],0)
    Creep N1 = 0
    Creep N is N1+1

X=[G100], N=1;
    ... produces infinitely many results ...
```

#### **Concatenating Lists**

#### Predicate definition

```
/ * *
 * The predicate append(L1, L2, L12) suceeds iff Arg3 is
 * the list that results from concatenating Arg2 and Arg1.
append([], L, L).
append([H|T], L, [H|TL]) :- append(T, L, TL).
```

#### Execution trace

```
?- append([a, b], [c, d], L).
                                                                    \sigma_1 = \{ L \leftarrow [a|TL1] \}
      -> append([b], [c, d], TL1]).
                                                                    \sigma_2 = \{ \text{TL1} \leftarrow [b | \text{TL2}] \}
                  -> append([], [c, d], TL2).
                                                                     \sigma_2 = \{\text{TL2} \leftarrow [\text{c, d}]\}
                   -> true
```

The result is the composed substitution  $\sigma_1 \sigma_2 \sigma_3 = \sigma_3(\sigma_2(\sigma_1))$  restricted to the bindings for L:

```
L = [a | [b | [c, d]]] = [a, b, c, d]
```



### Testing List Membership (1)

#### Predicate definition:

```
/ * *
 * The predicate member(Elem, List) suceeds iff Argl is an element
 * of the list Arg2 or unifiable with an element of Arg2.
member(H, [H ]).
member(E, [_|T]) :- member(E, T).
```

#### Execution trace

```
?-member(2,[12, 2, 2, 3]).
     Call member(2, [2, 2, 3]).
     Exit member(2, [2, 2, 3]).
     Redo member(2, [2, 2, 3]).
                                            backtracking inititated by entering;
     Call member(2, [2, 3]).
     Exit member(2, [2, 3]).
     Redo member(2, [2, 3]).
                                            backtracking inititated by entering;
     Call member(2, [3]).
     Call member(2, []).
     Fail
```

# Testing List Membership (2)

The member/2 predicate can be used in many differen "input modes":

?- member(a, [a,b,c,d]).

Is a an element of [a,b,c,d]?

?-member(X, [a,b,c,d]).

Which elements does [a,b,c,d] have?

?- member(a, Liste).

Which lists contain the element a?

?- member(X, Liste).

Which lists contain the variable X?

### **Accessing List Elements**

First element of a list

```
first([X | _],X).
```

Last element of a list:

```
last([X],X).
last([\_|Xs],X) := last(Xs,X).
```

N-th element of a list:

```
nth(1,[X|_{-}],X).
nth(N,[\_|Xs],X) := N1 is N-1, nth(N1,Xs,X).
```

# **Splitting Lists**

```
/**
 * The split/4 predicate succeeds if
* Arg3 is a list that contains all elements of Arg2
* that are smaller than Arg1
 * and
 * Arg4 is a list that contains all elements of Arg2
* that are bigger or equal to Arg1
* /
split(_, [], [], []).
split(E, [H|T], [H|S], B):-H < E, split(E,T,S,B).
split(E, [H|T], S, [H|B]):-H>=E, split(E,T,S,B).
```

### **Sorting Lists**

- Naïve test for list membership via member/3 has linear complexity: O(n)
  - But if lists are sorted, membership testing is faster on the average
  - So sorting is very useful
- Quicksort-Algorithm in Prolog

```
/ * *
 * Quicksort/2 suceeds if the second argument is a sorted
 * version of the list in the first argument. Duplicates
 * are kept.
 * /
quicksort([], []).
quicksort([Head | Tail], Sorted) :-
      split(Head, Tail, Smaller, Bigger),
      quicksort(Smaller, SmallerSorted),
      quicksort(Bigger, BiggerSorted),
      append(SmallerSorted,[Head|BiggerSorted], Sorted).
```

### **Doing Something with all Elements**

Sum of list elements:

```
sum([],0).
sum([H| T], S) :- sum(T, ST), S is ST+H.
```

Normal Execution:

```
?- sum([12, 4], X).
    Call sum([4], ST])
    Call sum([],ST1)
    Exit sum([],0)
    Exit ST is 4+0=4
    Exit X is 12+ST=16
```

Goals with illegal modes or type errors:

```
?- sum(X,3).
ERROR: is/2: Arguments are not sufficiently instantiated
?- sum(X,Y).
X = [],
Y = 0;
ERROR: is/2: Arguments are not sufficiently instantiated
?- sum([1,2,a],Res).
ERROR: is/2: Arithmetic: `a/0' is not a function
```

#### **Relations versus Functions**

Difference of relations and functions

How to document relations?

How to document predicates that have different "input modes"?



#### Relations versus Functions (1)

In the functional programming language Haskell the following definition of the **isFatherOf** relation is illegal:

```
isFatherOf x | x==frank = peter
isFatherOf x x==peter
                        = paul
isFatherOf x x==peter
                        = hans
              otherwise = dummy
```

In a functional language relations must be modeled as boolean functions:

```
isFatherOf x y | x==frank y==peter = True
isFatherOf x y | x==peter y==paul
                                  = True
isFatherOf x y | x==peter y==hans = True
           x y otherwise
                                  = False
```

#### Relations versus Functions (2)

- Function application in **Haskell** must not contain any variables!
- Only the following "checks" are legal:

```
isFatherOf frank peter
                                   True
isFatherOf kurt peter
                                   False
```

- In Prolog each argument of a goal may be a variable!
- So each predicate can be used / queried in many different input modes:

```
?- isFatherOf(kurt,peter).
                                  → Yes
                                  → Yes
?- isFatherOf(kurt,X).
                                    X = paul;
                                    X = hans
?- isFatherOf(paul,Y).
                                   No
                                   Yes
?- isFatherOf(X,Y).
                                   X = frank, Y = peter;
                                   X = peter, Y= paul;
                                   X = peter, Y=hans;
                                   No
```

#### Relations versus Functions (3)

- Haskell is based on functions
  - Length of a list in Haskell

```
length([ ]) = 0
length(x:xs) = length(xs) + 1
```

- Prolog is based on relations
  - Length of a list in Prolog:

```
length([ ], 0).
length([X|Xs],N) :- length(Xs,M), N is M+1.
```

```
?- length([1,2,a],Length).
                                           List with 3 arbitrary
   Length = 3
                                           (variable) elements
?- length(List,3).
   List = [G330, G331, G332]
```

#### **Documenting Predicates Properly**

- Predicates are more general than functions
  - There is not one unique result but many, depending on the input
- So resist temptation to document predicates as if they were functions!
  - Don't write this:

```
/**

* The predicate length(List, Int) returns in Arg2

* the number of elements in the list Arg1.

*/
```

Better write this instead:

```
/**

* The predicate length(List, Int) succeeds iff Arg2 is

* the number of elements in the list Arg1.

*/
```



#### **Documenting Invocation Modes**

- Documenting the behaviour of a predicate thoroughly, including behaviour of special "invocation modes":
  - "—" means "always a free variable at invocation time"
  - "+" means "not a free variable at invocation time"
    - ⇒ Note: This is weaker than "ground at invocation time"
  - "?" means "don't care whether free or not at invocation time"

```
/ * *
* length(+List, ?Int) is deterministic
* length(-List, -Int) has infinite success set
* The predicate length(List, Int) succeeds iff Arg2 is
* the number of elements in the list Argl.
* /
length([ ],0).
length([X|Xs],N) :- length(Xs,N1), N is N1+1.
```

#### **Operators**

Operators are part of the syntax but the examples used here already use "unification", which is explained in the next subsection. So you might want to fast forward to "Equality" / "Unification" if you do not understand something here.



#### **Operators**

#### Operators are just syntactic sugar for function terms:

- is the infix notation for +(1,\*(3,4))1+3\*4
- head :- body is the infix notation for ':-'(head,body)
- is the prefix notation for '?-'(goal) ?- goal

#### Operator are declared by calling the predicate

op(precedence, notation\_and\_associativity, operatorName)

```
'?-' has
higher precedence
than '+'

than '+'
```

- indicates position of functor (→ prefix, infix, postfix)
- indicates non-associative side
  - ⇒ argument with precedence strictly lower than the functor
- indicates associative side
  - argument with precedence equal or lower than the functor



### **Operator Associativity**

In Java, the assignment operator is right-associative. That is, the statement "a = b = c;" is equivalent to "(a = (b = c));". It first assigns the value of c to b, then assigns the value of b to a.

#### Left associative operators

are applied in left-to-right order 1+2+3 = ((1+2)+3)

Declaration

:- op(500, 
$$yfx$$
, '+').

Effect

Structure of term



#### Right associative operators

are applied in right-to-left order a,b,c = (a,(b,c))

**Declaration** 

:- op(1000, 
$$xfy$$
, ',').

Effect

Structure of term / ,



### **Operator Associativity**

#### Non-associative operators

must be explicitly bracketed

#### Declaration

:- op( 700, 
$$xfx$$
, '=').  
:- op(1150,  $fx$ , dynamic).

#### Effect

```
?- A=B=C.
Syntax error:
Operator priority clash
```

$$?-A=(B=C).$$
 $A=(B=C).$ 

#### Associative prefix operators may be cascaded

#### **Declaration**

```
:- op(700, f_y, '+').
:- op(1150, f_y, '-').
```

#### **Effect**

```
anything(_).
?- anything(+ - + 1).
true.
                             Three
                           associative
                             prefix
anything(_).
                           operators!
?- anything(+-+ 1).
Syntax error: 🥄
                           One atom,
Operator expected
                            not three
                           operators!
```

# **Example from page 5 rewritten using infix operators**

```
% Declare infix operators:
:- op(500,xfy,isFatherOf).
:- op(500,xfy,isMotherOf).
:- op(500,xfy,isGrandfatherOf).
% Declare predicates using the operator notation:
kurt isFatherOf peter.
peter isFatherOf paul.
peter isFatherOf hans.
G isGrandfatherOf C :- G isFatherOf F, F isFatherOf C.
G isGrandfatherOf C :- G isFatherOf M, M isMotherOf C.
% Ask goals using the operator notation:
?- kurt isGrandfatherOf paul.
?- kurt isGrandfatherOf C.
?- isGrandfatherOf(G,paul).
?- isGrandfatherOf(G,paul), X isFatherOf G.
                   any combination of function term notation
                       with operator notation is legal
```

#### **Chapter Summary**

- Prolog Syntax
  - Programs, clauses, literals
  - Terms, variables, constants
- Semantics: Basics
  - Translation to logic
- Operational / Proof-theoretic
   Semantics
  - Unification, SLD-Resolution
  - Incompleteness because of non-termination
  - Dealing with non-terminating programs:
    - ⇒ Order of literals / clauses
    - ⇒ shrinking terms

- Declarative / Model-based
   Semantics
  - Herbrand Universe
  - Herbrand Interpretation
  - Herbrand Model
- Negation as Failure
  - Closed World Assumption
  - Existential Variables
- Disjunction
  - Equivalence to clauses
  - Variable renaming