Real word examples of using Active Learning in Materials design and discovery

Lecture 19, Feb 22

On-the-fly closed-loop materials discovery via Bayesian active learning

- an autonomous materials discovery methodology for functional inorganic compounds which allows scientists to fail smarter, learn faster, and spend fewer resources in their studies
- CAMEO is implemented at the synchrotron beamline to accelerate the interconnected tasks of phase mapping and property optimization

The materials problem

- Explore the Ge–Sb–Te ternary system to identify an optimal phasechange memory (PCM) material for photonic switching devices
- have been used in DVD-RAM and nonvolatile phase-change randomaccess memory.
- find a compound with the highest optical contrast between amorphous and crystalline states in order to realize multi-level optical switching with a high signal-to-noise ratio.
- CAMEO is tasked to find the **composition** with **the largest difference** in the optical bandgap ΔEg and hence optical contrast between amorphous and crystalline states.

CAMEO Algorithm

First tries to figure out a phase map then switches to find optimal compositions maximizing the band gap

$$g(\mathbf{x}) = \begin{cases} P(\mathbf{x}), & c < 80\% \\ F(\mathbf{x}_r) = \mu(\mathbf{x}_r) + \beta \sigma(\mathbf{x}_r) + \gamma d(bfx_r), & else \end{cases}$$

- \triangleright Optimization balances exploitation and exploration through the mean $\mu(xr)$ and weighted variance $\beta\sigma(xr)$ much like the UCB algorithm
- The optimization acquisition function also allows the user to target points closer or further from phase boundaries via $\gamma d(xr)$, where d(xr) is the distance from point xr to the nearest phase boundary and γ is a user-defined parameter—negative (positive) to emphasize points near the edge (center) of the phase region.

CAMEO Algorithm

- > A phase map is learned and fine-tuned using active learning
- ➤ Black star iteration where a known optimal was found using the algorithm; rest are mean and std over 100 runs showing the CAMEO algorithm outperforms the optimization wrto UCB and random mean

Active Search

- we seek to sequentially inspect data to discover as many members of a desired class as possible with a limited budget
- The identities of the targets are unknown a priori but can be determined by querying an expensive oracle that can compute
- Given a budget T on the number of queries we can provide the oracle, we wish to design a policy that sequentially queries items to maximize the number of targets identified

A rough explanation of utility

- Given locations X and a label to denote whether something is a target in Y, we can define utility to be the number of targets found u(Y)
- When we maintain a probabilistic distribution for where the target locations can be found, we can "estimate" the expected utility

$$\mathbb{E}\left[u(\mathcal{D}_t \setminus \mathcal{D}_{t-1}) \mid X, \mathcal{D}_{t-1}\right] = \mathbb{E}_{Y \mid X, \mathcal{D}_{t-1}}\left[u(Y)\right] = \sum_{x \in X} \Pr(y = 1 \mid x, \mathcal{D}_{t-1}),$$

When only one iteration is left, it is best to choose a location with a high likelihood of being a target based on the posterior

$$\mathbb{E}\big[u(\mathcal{D}_t \setminus \mathcal{D}_i) \mid X, \mathcal{D}_i\big] = \sum_{x \in X} \Pr(y = 1 \mid x, \mathcal{D}_i) + \mathbb{E}_{Y \mid X, \mathcal{D}_i} \Big[\max_{X'} \mathbb{E}\big[u(\mathcal{D}_t \setminus \mathcal{D}_{i+1}) \mid X', \mathcal{D}_{i+1}\big]\Big],$$

The above thinking can be extended using what is called a Bellman's equation

Application to finding bulk metallic glasses

- The goal here is to find novel alloys capable of forming bulk metallic glasses (BMGs).
- Compared to crystalline alloys, BMGs have many desirable properties, including high toughness and good wear resistance.
- This dataset consists of 118 678 known alloys from the materials literature among which 4 746 (about 4%) are known to exhibit glass-forming ability, which we define as positive/targets.
- Or in **virtual screening** for drug discovery -- of a large database of compounds searching for those that show binding activity against some biological target.

T-test based evaluation of the proposed method

Table 3: Results for 10 drug discovery datasets in batch setting: Average number of positive compounds found by the baseline uncertain-greedy batch, greedy-batch, sequential simulation and batch-ENS policies. Each column corresponds to a batch size, and each row a policy. Each entry is an average over 200 experiments (10 datasets by 20 experiments). The budget T is 500. Highlighted are the best (bold) for each batch size and those that are not significantly worse (blue italic) than the best under one-sided paired t-tests with significance level $\alpha = 0.05$.

	1	5	10	15	20	25	50	75	100
UGB	-	257.6	257.9	258.3	250.1	246.0	218.8	206.2	172.1
greedy	269.8	268.1	264.1	261.6	258.2	257.0	240.1	227.2	208.2
ss-one-1	269.8	260.7	254.6	245.2	233.6	223.4	200.8	182.9	178.9
ss-one-m	269.8	264.5	257.7	250.0	244.4	236.5	211.7	195.4	179.4
ss-one-s	269.8	266.8	261.3	256.7	248.7	244.1	214.9	202.4	181.3
ss-one-0	269.8	268.1	264.1	261.6	258.2	257.0	240.1	227.2	208.2
ss-two-1	281.1	237.1	219.8	210.8	212.1	196.2	172.1	158.8	152.9
ss-two-m	281.1	252.6	246.4	237.2	232.9	225.1	200.2	181.6	167.2
ss-two-s	281.1	248.9	242.5	235.3	226.6	219.2	196.7	175.3	158.3
ss-two-0	281.1	252.5	247.6	247.9	244.4	240.4	225.6	213.8	199.1
ss-ENS-1	295.1	269.4	247.9	227.2	223.1	210.3	185.3	152.6	148.7
ss-ENS-m	<i>295.1</i>	293.8	290.2	285.3	281.6	274.4	249.4	217.2	203.1
ss-ENS-s	295.1	289.9	278.3	269.8	262.6	255.0	220.8	185.5	161.2
ss-ens-0	<i>295.1</i>	293.6	289.1	288.1	287.5	280.7	269.2	257.2	241.0
batch-ENS-16	295.1	300.8	296.2	293.9	292.1	288.0	275.8	272.3	252.9
batch-ENS-32	<i>295.1</i>	<i>300.8</i>	295.5	297.9	<i>290.6</i>	288.8	281.4	275.5	263.5

Different decision policies

Application to data-driven discovery of bifunctional catalysts

The goal is to find catalyst(s) that can work the best in both Oxygen evolution and reduction reaction for Hydrogen based or Metal-air batteries

Roughly, any catalysts that result in this shape of a CV curve are desired as it is a signature of a high catalytic activity

Application to data-driven discovery of bifunctional catalysts

Application to data-driven discovery of bifunctional catalysts

Null covariance for all CV's

We represent each CV curve as a function of time and voltage thus x has two dimensions.

covariance for S-shaped CV's

$$k(x, x') = \sigma_f^2 \sin^{-1} \left(\frac{x^\top \Lambda^{-2} x'}{\sqrt{h(x)h(x')}} \right)$$
 $h(x) = 1 + x^\top \Lambda^{-2} x$

covariance for S-shaped CV's

1000 labels roughly correspond to 6% of the total possible query locations where the targets are less than 1%