12.1 inch SVGA Color TFT LCD Module

Specification Summary

♦ Screen Diagonal

♦ Active Area

Pixel Format

Pixel Pitch

♦ Typical White Luminance

◆ Power Consumption (VDD + VL)

Weight

Physical Size

Contrast Ratio

♦ Supported Colors

30.8cm(12.1")

246.0mm(H) x 184.5mm(V)

800 x RGB x 600

0.3075(per one triad)mm x 0.3075mm

70 cd/m^2 Typ.

1.9W Typ.

450 grams Typ. (w/o inverter)

272mm x 195mm x 7.5mm

100:1 Typ.

262k colors (6bit/color)

30.8cm(12.1 inch)SVGA(800x600) Color TFT LCD Module

ITSV51X is a TFT LCD color module to be designed to realize the largest screen on A4 size notebook style personal computer. In addition to its large screen, the characteristics of this module are light weight, slim/thin outline, low power consumption and high resolution of SVGA(800x600) capability.

Features

- 30.8cm(12.1 inch) diagonal
- Native 262k colors (R/G/B 6bit each)
- SVGA 800 x 600 pixels
- Low Reflection (Black Matrix)
- Size: 272mm x 195mm x 7.5mm typ.
- Weight: 450 g typ.
- Power Consumption: 2.1 W typ.

Applications

- Notebook PCs
- Monitors

IBM Corporation 1996

Version 3.0

(1)

Characteristics Summary

Screen Diagonal	30.8cm(12.1")
Active Area	246.0mm(H) x 184.5mm(V)
Pixel Format	800(x3) x 600
Pixel Pitch	0.3075(per one triad) x 0.3075
Pixel Arrangement	R,G,B Vertical Stripe
Display Mode	Normally White
White Luminance	70 cd/m² Typ.
	(CFL Discharge Current = 2.8 mA _{RMS})
Contrast Ratio	100 : 1 Typ.
Optical Rise Time/Fall Time	35 msec. Typ. at 25 degC
Nominal Input Voltage	
VDD	+3.3V Typ.
Power Consumption	
(VDD line + Lamp input line)	2.1W typ.
Weight	450 grams typ.
Physical Size	272mm x 195mm x 7.5mm typ.
Electrical Interface	Digital Video Signals(6-bit for each color R/G/B)
	Sync. Signal (x4)
Supported Colors	Native 262k colors
Temperature Range	
Operating	+0 to +50 degC
Storage	-20 to +60 degC

Absolute Maximum Ratings

Rating	Symbol	Value	Unit	Conditions
Supply Voltage	VDD	-0.3 to +3.9	V	
	Vcfl	1300	Vrms	Lamp Ignition Voltage at 0 degC
Lamp Current	Icfl	6.5	mArms	Exclude inrush current
Input Voltage	VINI	-0.3 to Vdd+0.3	V	
Shock		50	G	18ms
Vibration		1.5	G	10-200Нz
Storage Temperature	TST	-20 to + 60	degC	At the glass surface
Operation Temprautre	ТОР	0 to +50	degC	At the glass surface
Operation Humidity		8 to 95	%RH	Max wet bulb temp. 29 degC
				No condensation

Block Diagram

Signal Interface

			Supplier's Part Number
LCD Drive	Connector	JAE	IL-FHR-B40S-HF(for 0.5mm pitch FPC)
Correspondi	Corresponding Connector		0.5mm pitch FPC
Pin No.	Signal Name	Description	
15	+RED5	Red Data 5	(MSB)
14	+RED4	Red Data 4	
13	+RED3	Red Data 3	
11	+RED2	Red Data 2	
10	+RED1	Red Data 1	
9	+RED0	Red Data 0	(LSB)
		Red-Pixel-Data	Each red pixel's data consists of these 6 bits
			pixel data
25	+GREEN5	Green Data 5	(MSB)
24	+GREEN4	Green Data 4	
23	+GREEN3	Green Data 3	
21	+GREEN2	Green Data 2	
20	+GREEN1	Green Data 1	
19	+GREENO	Green Data 0	(LSB)
		Green-Pixel-Data	Each green pixel's data consists of these 6
			bits pixel data
35	+BLUE5	Blue Data 5	(MSB)
34	+BLUE4	Blue Data 4	
33	+BLUE3	Blue Data 3	
31	+BLUE2	Blue Data 2	
30	+BLUE1	Blue Data 1	
29	+BLUE0	Blue Data 0	(LSB)
		Blue-Pixel-Data	Each blue pixel's data consists of these 6
			bits pixel data

2	-DTCLK	Data Clock	The typical frequency is 40.00MHz. The signal is used to strobe the pixel data and +DSPTMG signals. All pixel data shall be valid at the falling edge when the +DSPTMG signal is high.
37	+DSPTMG	Display Timing	This signal strobed at the falling edge of -DTCLK. When the signal is high, the pixel data shall be valid to be displayed.
5	VSYNC	Vertical Sync	The signal is synchronized to -DTCLK.
4	HSYNC	Horizontal Sync	The signal is synchronized to -DTCLK.
38,39	VDD	+3.3V	
1,3,6,7,8,12,16,17 18,22,26,27,28,32 36	GND	Signal Ground	
40		Reserved	No connection (Signal reserved for test)

Note: Output signals from system shall be low or Hi-Z state when VDD is off.

Signal Interface for Lamp

***		Supplier Name	Supplier's Part Number
Lamp Co	onnector	JST	BHR-03VS-1
Pin No.	Signal Name	Description	
1	Lamp High		
3	Lamp Low		

Signal Specification

/G/B,DTCLK,DSPTMG,H/VSYNC signal specification							
Parameter	Condition	Min.	Max.	Unit			
Vih	High level input voltage	2.0	Vdd+0.3	V			
Vil	Low level input voltage	0	0.8	V			
Iih	High level input current	_	50	uA			
Iil	Low level input current	_	-50	uA			

Lamp Interface Specification

1) Absolute Maximum Rating

Parameter Name	Symbol	Value	Unit	Note
CFL Discharge Current	I _{CFL}	6.5 Max	[mA _{RMS}]	Exclude inrush current
CFL Inrush Current	IR_{CFL}	30 Max	[mA _{0-P}]	T = 50 Max. [mSec]

2) Parameter Guideline for CFL Inverter

Parameter Name	Symbol	Min.	Тур.	Max.	Unit	Note
CFL Kick-off Voltage	V _s	-	-	900	[V _{RMS}]	T _{amb} =25 degC *4
		_	-	1,300		T _{amb} = 0 degC *4
CFL Discharge Current	I _{CFL}	2.0 *6	-	6.0	[mA _{RMS}]	Total operating range
		-	2.8	-		Screen 70 [cd/m²],25degC
CFL Discharge Voltage	V_{CFL}	-	500	-	[V _{RMS}]	Screen 70 [cd/m²], T _{amb} =25 degC
CFL Power Consumption	P_{CFL}	-	1.4	-	[W]	Screen 70 [cd/m²], T _{amb} =25 degC
CFL Discharge Frequency	F _{CFL}	30	40	60* ⁶	[kHz]	Reference*5

Note

- *1 All of characteristics listed 2) are measured under the condition using the IBM Test inverter.
- *2 It is recommended to check the inverter carefully. Sometimes, interfering noise stripes appear on the screen, and substandard luminance or flicker at low power happen.
- *3 It is suggested to check safety circuit very carefully. Impedance of CFL, for instance, becomes more than 1 [M ohm] when CFL is damaged.
- *4 Generally, CFL has some amount of delay time after applying kick-off voltage. It is recommended to keep on applying kick-off voltage for 1 [Sec] until dischargement.
- *5 CFL discharge frequency must be carefully chosen so as not to produce interfering noise stripes on the screen.
- *6 Reducing CFL current increases CFL discharge voltage and generally increses CFL discharge frequency. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current fromhigh-voltage output of the inverter.

Interface Timing

Basically ,interface timings should match the VESA $\,800\,x\,600\,60$ Hz manufacturing guideline timing.

Symbol	Signal Description	MIN	TYP	MAX	UNIT
f _{dck}	DTCLK frequency	36.00	40.00	40.20	MHz
t _{ck}	DTCLK cycle time	27.77	25.00	24.88	nsec
t _{wel}	DTCLK low width	5.00			nsec
t _{wch}	DTCLK high width	5.00			nsec
t _{rck}	DTCLK rise time			3.00	nsec
t _{fck}	DTCLK fall time			3.00	nsec
t _{ds}	Data set up time	5.00			nsec
t _{dh}	Data hold time	5.00			nsec
t _{rdt}	DSPTMG rise time	5.00			nsec
t _{fdt}	DSPTMG fall time	5.00			nsec
t _{dts}	DSPTMG set up time	5.00			nsec
t _{dth}	DSPTMG hold time	5.00			nsec
t _x	X total time	848	1056	1088	t _{ck}
t _{acx}	X active time		800		t _{ck}
t _{bkx}	X blank time	48	256	288	t _{ck}
H _{sync}	H-sync frequency	35.16	37.88	38.46	kHz
H _w	H-sync width	16	128	152	t _{ck}
t y	Y total time	611	628	1025	t _x
t _{acy}	Y active time		600		t _x
V _{sync}	Frame rate	56.25	60.00	61.00	Hz
\mathbf{v}_{w}	V-sync width	1	4	7	t _x
$oldsymbol{v}_{ ext{fp}}$	V-sync front porch	1	1	415	t _x
V _{bp}	V-sync back porch	9	23	29	t _x

Horizontal Timing

Vertical Timing

Preliminary

IBM Corporation 1996

Version 3.0

(9)

Power Requirement

SYMBOL	PARAMETER	Min.	Тур.	Max.	Unit	CONDITION
VDD	Logic/LCD Drive Voltage	+3.0	+3.3	+3.6	V	Load Capacitance
						40uF
PDD	VDD Power		0.7		W	VDD=+3.3V
PL	Lamp Power(w/o inverter)		1.4		W	
PDD+PL	Total Power(w/o inverter)		2.1		W	
VDDrp	Allowable Logic/LCD Drive			100	mVp-p	
	Ripple Voltage					
VDDns	Allowable Logic/LCD Drive			100	mVp-p	
	Ripple Noise					

Note: This requirements shall be met with both 'All black pattern'.

Power ON/OFF sequence

Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately.Long contact with water may cause discoloration or spots.

ITSV51X

- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or creak if dropped or bumped on hard surface.
 - 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
 - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by IBM for any infringements of patents or other right of the third partied which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of IBM or others.
 - The information contained herein may be changed without prior notice. It is therfore advisable to contact IBM before proceeding with the design of equipment incorporating this product.

(12)

Reference Drawing without inverter

Dimensions shown in this Drawing are Reference Only.

Preliminary

They are subject to change without notifications.