

-	٠.	
In	di	CP

ംക്ക	8

Indice

Indice

1	Spazio di Probabilità	3
	1.1 Cenni di Teoria della Misura	3

1 Spazio di Probabilità

Per poter studiare Probabilità e statistica possiamo immaginare di fare un parallelismo con l'analisi:

Probabilità e Statistica	Analisi Matematica
Spazio di Probabilità	Numeri reali
Variabile Aleatoria	Variabile reale
Convergenza per successioni di variabili aleatorie	Successioni
(M) Processo Stocastico	Funzioni
(M) Calcolo Stocastico	Calcolo differenziale e integrale
(M) Equazioni Differenziali Stocastiche	Equazioni Differenziali

Il (M) sta indicare che non sono argomenti trattati in questo corso, ma saranno approfonditi alla magistrale

1.1 Cenni di Teoria della Misura

Definizione 1.1.1: Spazio Misurabile

Si definisce **Spazio Misurabile** una coppia (Ω, \mathcal{F}) , dove Ω è un insieme non vuoto e \mathcal{F} è una σ -algebra, cioè una famiglia non vuota di sottoinsiemi di Ω che soddisfa due proprietà:

- 1. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, cioè \mathcal{F} è chiuso rispetto al complementare
- 2. Se $(A_n)_{n\in\mathbb{N}}$ è una successione in \mathscr{F} , allora

$$\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{F}$$

cioè F è chiusa rispetto all'unione numerabile

Il prefisso " σ -" davanti a queste parole sta ad indicare che si tratta di una proprietà <u>numerabile</u>. Quindi le due proprietà sopra elencate possono essere scritte come " \mathscr{F} è σ - \cup -chiuso"

Osservazione. Sottolineiamo che Ω può essere un insieme qualunque (un esempio, forse il più facile da tenere a mente è quello della Teoria della Misura di Lebesgue, un esempio può essere $(\Omega, \mathcal{F}) = (\mathbb{R}^n, \mathcal{M}(\mathbb{R}^n))$) Quindi possiamo prendere insiemi qualunque, che siano numerici, come \mathbb{N}, \mathbb{C} , vettoriali \mathbb{R}^n , oppure qualcosa di totalmente diverso, come l'insieme delle funzioni continue $C(\mathbb{R})$, l'insieme dei polinomi $\mathbb{R}[x]$ addirittura l'insieme delle sedie in una stanza.

Osservazione (σ -algebre banali). Esistono due tipi di σ -algebre particolari, dette **Banali** in quanto sono definite come:

$$\mathscr{F} = \{\varnothing, \Omega\}$$
 e $\mathscr{F} = \mathscr{P}(\Omega)$

In particolare abbiamo che valgono:

$$\{\emptyset, \Omega\} \subseteq \mathscr{F} \subseteq \mathscr{P}(\Omega) \qquad \forall \mathscr{F} \ \sigma - algebra$$

Proposizione 1.1.2

Se \mathscr{F} è una σ -algebra, allora è \cup -chiusa (cioè l'unione finita è chiusa)

Dimostrazione. Siano $A_1,...,A_n \in \mathcal{F}$ e siano:

$$\bigcup_{k=1}^{n} A_n = \bigcup_{k=1}^{+\infty} \overline{A}_k \qquad \text{dove } \overline{A}_k = \begin{cases} A_k & k \le n \\ A_n & k > n \end{cases}$$

Tuttavia, sappiamo che \mathscr{F} è una σ -algebra, quindi il secondo elemento sta in \mathscr{F} . Tuttavia, essendo il secondo uguale al primo abbiamo che anche il primo sta in \mathscr{F} . Per l'arbitrarietà degli A_k , segue che \mathscr{F} è \cup -chiuso

Osservazione. Per, definizione di σ -algebra, \mathscr{F} è non vuoto. Sia $A \in \mathscr{F}$ vale che:

$$A^c \in \mathscr{F} \implies A \cup A^c = \Omega \in \mathscr{F} \in \mathscr{F} = \Omega^c \in \mathscr{F}$$

questo implica che \varnothing e Ω appartengono a ogni \mathscr{F} σ -algebra.

Osservazione. Prendiamo $(A_n)_{n\in\mathbb{N}}$ successione in \mathscr{F} allora dalla definizione vale che:

$$\bigcap_{n\in\mathbb{N}}A_n=\left(\bigcup_{n\in\mathbb{N}}A^c\right)^c\in\mathcal{F}$$

Definizione 1.1.3: Misura su (Ω, \mathcal{F})

Definiamo una **Misura** su uno spazio misurabile come una funzione $\mu: \mathcal{F} \to [0, +\infty]$ tale che:

- 1. $\mu(\emptyset) = 0$
- 2. μ è σ -additiva ovvero:

Se (A_n) è una successione in $\mathscr F$ i cui elementi sono disgiunti $\implies \mu(\bigcup_{n\geq 1}A_n)=\sum_{n\geq 1}\mu(A_n)$

$$\mu\left(\biguplus_{k=1}^{n} A_{k}\right) = \mu\left(\biguplus_{k=1}^{+\infty} A_{k}\right) = \sum_{k=1}^{+\infty} \mu(A_{k}) = \sum_{k=1}^{n} \mu(A_{k})$$

Definizione 1.1.4: Spazio di Probabilità

Definiamo uno **Spazio di Probabilità** come una tripla (Ω, \mathcal{F}, P) , ovvero uno spazio misurabile (Ω, \mathcal{F}) con misura P tale che:

$$P(\Omega) = 1$$

Definizione 1.1.5: Spazio Campionario

Manu è bello e qui ci scrive quello che vuole :3

Definizione 1.1.6: Spazio Discreto

Uno spazio si dice **Discreto** se Ω è finito o numerabile in questo caso prendiamo:

$$\mathscr{F} = \mathscr{P}(\Omega)$$
 e scriviamo $(\Omega, \mathscr{F}, P) = (\Omega, P)$

Esempio 1 (Lancio di un dado). In questo caso abbiamo: $\Omega = \{1, ..., 6\}$, $\mathscr{F} = famiglia degli eventi dove <math>A \in \mathscr{F}$ è un evento ovvero "un affermazione relativa all'esito dell'esperimento", P = Misura di probabilità è la funzione $P : \mathscr{F} \to [0,1]$ che manda A nella probabilià che l'esito sia positivo.

Per esempio sia $A = \{1,3,5\} \subseteq \Omega$ ovvero le possibili facce che lanciando il Dado diano un esito positivo, allora $P(A) = \frac{1}{2}$. Notiamo inoltre che lanciando il dado uscirà sempre almeno una faccia questo equivale a dire che $P(\varnothing) = 0$ e $P(\Omega) = 1$.

Osservazione. Possiamo fare un parallelismo tra gli insiemi misurabili e la probabilità aiutandoci con la "terminologia":

Analisi e Insiemistica	Probabilità e statistica
$A \cup B$	Evento A "oppure" Evento B
$A \cap B$	Evento A "e" Evento B
A^c	"Non Evento A"
$\mu(\mathbb{Q}) = 0$	$P(A) = 0 \Rightarrow A$ è "non misurabile"
$\mu(\mathbb{R}\setminus\mathbb{Q})=+\infty$	$P(A) = 1 \Rightarrow A$ è "quasi certo"