Linear Algebra

Warren Alphonso

May 18, 2019

A very reductionist summary of key Linear Algebra concepts from *Linear Algebra and its Applications* by Lay, Lay, and McDonald.

1 Systems of Linear Equations

Definition 1.1. A **linear equation** is an equation that can be written in the form

$$a_1 x_1 + ... + a_n x_n = b$$

where b and the coefficients a_k are real or complex numbers.

We can record the important information of a system of linear equations in a matrix. Given the system

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$5x_1 - 5x_3 = 10$$

we place the coefficients of each variable aligned in columns

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix}$$

This is called the **coefficient matrix** and

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

is called the **augmented matrix**. The size of a matrix is described as $\mathbf{m} \times \mathbf{n}$ where m denotes the number of rows and n the number of columns.

Definition 1.2. Elementary Row Operations:

- 1. (Replacement) Replace one row by the sum of itself and a multiple of another row.
- 2. (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

Definition 1.3. Row Echelon form denotes a matrix with:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in column below a leading entry are zeros.

Reduced Row Echelon form means the leading entry in nonzero rows is 1.

Parallelogram Rule for Addition: If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points on the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are 0, \mathbf{u} , and \mathbf{v} .

Definition 1.4. Span $\{v_1,...,v_p\}$ denotes the set of all vectors formed by $c_1v_1 + ... + c_pv_p$.

Definition 1.5. A set of vectors $\{v_1,...,v_p\}$ is said to be **linearly independent** if the equation

$$c_1 v_1 + \dots + c_p v_p = 0$$

has only the trivial solution.

Theorem 1. If a set contains more vectors than there are entries in each vector, then the set is linearly independent. That is, the set $\{v_1,...,v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

Proof. Let $A = [v_1 \cdots v_p]$. Then A is $n \times p$, and the equation Ax = 0 corresponds to a system of n equations in p unknowns. In Ax = b, the x vector must have dimension p, so if p > n, then there are more variables than equations, so Ax = 0 has a nontrivial solution, and the columns of A are linearly dependent.

An alternate way to conceptualize matrix multiplication: A **transformation** (or **function** or **mapping**) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T and \mathbb{R}^m is called the **codomain** of T. The set of all images T(x) is called the **range** of T.

Definition 1.6. A transformation *T* is **linear** if they preserve vector addition and scalar multiplication. That is:

- 1. T(u + v) = T(u) + T(v)
- 2. T(cu) = cT(u) for all scalars c

Every matrix transformation is a linear transformation. These two requirements mean that T(0) = 0 for linear transformations.

Theorem 2. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(x) = Ax$$

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(e_j)$, where e_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(e_1) \cdots T(e_n)]$$

Proof. Write $x = I_n x = [e_1 \cdots e_n] x = x_1 e_1 + \cdots + x_n e_n$, and use the linearity of T to compute

$$T(x) = T(x_1e_1 + \cdots + x_ne_n) = x_1T(e_1) + \cdots + x_nT(e_n)$$

$$\begin{bmatrix} T(e_1)\cdots T(e_n) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Ax$$

Definition 1.7. A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** \mathbb{R}^m if each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n .

Definition 1.8. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if each b in \mathbb{R}^m is the image of at most one x in \mathbb{R}^n .

2 Matrix Algebra

Definition 2.1. If *A* is an $m \times n$ matrix and *B* is an $n \times p$ matrix, then

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

Definition 2.2. Let A be an $m \times n$ matrix and let B and C have sizes for which the indicated sums and products are defined.

- 1. A(BC) = (AB)C
- 2. A(B+C) = AB + AC
- 3. (B + C)A = BA + CA
- 4. r(AB) = (rA)B = A(rB)
- 5. $I_m A = A = A I_n$

Warnings:

- 1. In general, $AB \neq BA$
- 2. If AB = AC, then it is **not true** in general that B = C
- 3. If AB = 0, then it is **not true** always that A = 0 or B = 0

Definition 2.3. The **transpose** of A is the matrix whose columns are formed from the corresponding rows of A, denoted by A^T .

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$
- $(cA)^T = rA^T$
- $(AB)^T = B^T A^T$

Definition 2.4. An $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix A^{-1} such that $A^{-1}A = I$.

- $(A^{-1})^{-1} = A$
- If *A* and *B* are $n \times n$ invertible matrices then so is *AB*. And $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$

To compute the inverse, solve the equation AB = I, by row-reducing the augmented matrix [A I], until you get [I B].

3 Determinants

Definition 3.1. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The quantity ad - bc is the **determinant** of the matrix. If the determinant is 0, the matrix A is not invertible.

Definition 3.2. To generalize, the determinant of an $n \times n$ matrix A can be computed using a **cofactor expansion** across any row or down any column. The expansion across the ith row is

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$$

where $C_{ij} = (-1)^{i+j} det(A_{ij})$

Theorem 3. If A is an upper triangular matrix, then det(A) is the product of the entries on the main diagonal.

Proof. Cofactoring an upper triangular matrix by using the first column ultimately leads to continuously multiplying the upper left item by the determinant of the smaller matrix. For example,

$$A = \begin{bmatrix} 3 & 2 & 9 \\ 0 & 4 & -1 \\ 0 & 0 & -8 \end{bmatrix}$$

Then,

$$det(A) = 3 \cdot det\begin{pmatrix} 4 & -1 \\ 0 & -8 \end{pmatrix} = 3 \cdot -32 = -96 = 3 \cdot 4 \cdot -8$$

Definition 3.3. Determinants after Row Operations

- 1. If a multiple of a row in matrix A is added to another row to produce matrix B, then det(B) = det(A)
- 2. If two rows in A are swapped to produce B, then det(B) = -det(A)
- 3. If one row in *A* is multiplied by *k* to produce *B*, then $det(B) = k \cdot det(A)$

These identities can be used to easily find determinants of square matrices. Once we reduce a matrix A to upper triangular form B, we know $det(B) = (-1)^r det(A)$ if r is the number of row swaps we performed. If we cannot reduce to row echelon form, we know the determinant must be 0 since A must not be invertible.

Theorem 4. If A is an $n \times n$ matrix, then $det(A^T) = det(A)$.

Proof. We proceed by induction. The theorem is trivially true for n = 1. Assume the theorem is true for $k \times k$ matrices. We will show it holds for n = k + 1. The cofactor of a_{1j} in A equals the cofactor of a_{j1} in A^T because it is a $k \times k$ determinant. Thus, the cofactor of $det(A^T)$ down the first *column* equals the cofactor of det(A) across the first row, so A and A^T have equal determinants. Thus, the statement is true for all n.

Theorem 5. If A and B are $n \times n$ matrices, then det(AB) = det(A)det(B).

Theorem 6. Cramer's Rule: Let A be an invertible $n \times n$ matrix. For any b in \mathbb{R}^n , the unique solution x of Ax = b has entries given by

$$x_i = \frac{det(A_i(b))}{det(A)}$$
 for $i = 1, 2, ..., n$

where $A_i(b)$ denotes the matrix obtained by replacing A's ith column with b.

Proof. Denote the columns of A by $a_1,...,a_n$ and the columns of the $n \times n$ identity matrix by $e_1,...,e_n$. If Ax = b, the definition of matrix multiplication tells us

$$A \cdot I_i(x) = A \begin{bmatrix} e_1 & \cdots & x & \cdots & e_n \end{bmatrix} = \begin{bmatrix} Ae_1 & \cdots & Ax & \cdots & Ae_n \end{bmatrix}$$

= $\begin{bmatrix} a_1 & \cdots & b & \cdots & a_n \end{bmatrix} = A_i(b)$

Using the multiplicative property of determinants,

$$(det(A))(det(I_i(x))) = det(A_i(b))$$

Since $det(I_i(x))$ is x, we just divide by det(A).

4 Vector Spaces

Some of this is from Chapter 1, but I think it makes more sense to define these concepts here.

Definition 4.1. A **subspace** of \mathbb{R}^n is any set H in \mathbb{R}^n that is closed under addition and scalar multiplication. That is:

- 1. The zero vector is in H
- 2. For each u and v in H, the sum u + v is in H
- 3. For each *u* in *H* and each scalar *c*, the vector *cu* is in *H*

Definition 4.2. The **column space** of an $m \times n$ matrix A is the set of all linear combinations of the columns of A, denoted by Col(A). Since the columns of A are in \mathbb{R}^m , the columns space is in \mathbb{R}^m .

Definition 4.3. The **null space** of a matrix A is the set of all solutions for Ax = 0, denoted by Nul(A). When Nul(A) contains nonzero vectors, the number of vectors in the nullspace equals the number of free variables in Ax = 0.

Definition 4.4. A **basis** for a subspace H in \mathbb{R}^n is a linearly independent set in H that spans H.

Using the basis for a subspace H is preferable because any vector in H can only be written in one way as a linear combination of the basis vectors.

Proof. Suppose $\mathbb{B} = \{b_1, ..., b_p\}$ is a basis for H, and suppose a vector x in H can be generated in two ways:

$$x = c_1 b_1 + \dots + c_p b_p$$
 and $x = d_1 b_1 + \dots + d_p b_p$

Subtracting gives us:

$$0 = (c_1 - d_1)b_1 + \dots + (c_p - d_p)b_p$$

Since $\mathbb B$ is linearly independent, the weights must all be zero, so $c_j=d_j$ so the two representations are really just the same.

Theorem 7. The pivot columns of a matrix A form a basis for Col(A).

Proof. Let B be the reduced echelon form of A. The set of pivot columns of B is linearly independent, since no vector is a linear combination of the vectors that precede it. Since A is *row equivalent* to B, the pivot columns of A are linearly independent as well. Thus, the nonpivot columns of A can be discarded from the spanning set of Col(A).

Warning: The pivot columns of A are only evident when A has been reduced to *echelon* form. After reducing, make sure to use the **pivot columns of** A **itself** for the basis of Col(A). The columns of an echelon form of A are often not in the column space of A.

Theorem 8. Unique Representation Theorem: Let $\mathbb{B} = \{b_1,...,b_n\}$ be a basis for a vector space V. Then for each x in V, there exists a unique set of scalars $c_1,...,c_n$ such that

$$x = c_1 b_1 + \dots + c_n b_n$$

Proof. Since $\mathbb B$ spans V, we know there exist scalars such that we can form x. Assume x also has the representation

$$x = d_1 b_1 + \dots + d_n b_n$$

Then, after subtracting we have

$$0 = (c_1 - d_1)b_1 + \dots + (c_n - d_n)b_n$$

Since \mathbb{B} is linearly independent, these weights must all be zero so $c_i = d_i$.

Because of the unique representation of each vector x in a basis, we can define the coordinates of x relative to the basis \mathbb{B} as the weights $c_1,...,c_n$.

Definition 4.5. Changing coordinates:

$$x = \mathbb{B}[x]_{\mathbb{B}}$$

where $\mathbb B$ denotes the matrix whose columns are basis vectors, and $x_{\mathbb B}$ denotes the x vector represented by basis coordinates.

To understand this, let $b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, and $\mathbb{B} = \{b_1, b_2\}$. To find $[x]_{\mathbb{B}}$ of x relative to \mathbb{B} ,

$$c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

or

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

Since we know the columns of \mathbb{B} are linearly independent, it must be invertible so we can multiply x by \mathbb{B}^{-1} to get $[x]_{\mathbb{B}}$.

Definition 4.6. Change of basis: We can generalize the above further. Let $\mathbb{B} = \{b_1, ..., b_n\}$ and $\mathbb{C} = \{c_1, ..., c_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathbb{C} \to \mathbb{B}}{P}$ such that

$$[x]_{\mathbb{C}} = \underset{\mathbb{C} \to \mathbb{B}}{P}[x]_{\mathbb{B}}$$

The columns of $\underset{\mathbb{C}\to\mathbb{B}}{P}$ are the \mathbb{C} -coordinate vectors of the vectors in the basis \mathbb{B} , that is

$$\underset{\mathbb{C}\to\mathbb{B}}{P} = \left[[b_1]_{\mathbb{C}} \cdots [b_n]_{\mathbb{C}} \right]$$

Definition 4.7. An **isomorphism** from V to W is a one-to-one linear transformation.

Definition 4.8. The **dimension** of a nonzero subspace H is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

Definition 4.9. The **rank** of a matrix A is the dimension of the column space of A.

Theorem 9. If a matrix A has n columns, then Rank(A) + Dim(Nul(A)) = n.

Proof. An intuitive understanding for this can be achieved by restating the theorem as follows:

(num of pivot columns) + (num of nonpivot columns) = (num of columns)

Definition 4.10. If A is an $m \times n$ matrix, each row has n entries and can be understood as a vector in \mathbb{R}^n . The set of all linear combinations of the row vectors is called the **row space** of A, denoted by Row(A). Note that $Row(A) = Col(A^T)$.

5 Eigenvalues and Eigenvectors

Definition 5.1. An **eigenvector** of an $n \times n$ matrix A is a nonzero vector x such that $Ax = \lambda x$. The scalar λ is called an **eigenvalue** of A if and only if the equation

$$(A - \lambda I)x = 0$$

has a nontrivial solution. The set of all solutions to this equation is the null space of the matrix $A - \lambda I$; this subspace of \mathbb{R}^n is called the **eigenspace** of A.

Theorem 10. The eigenvalues of a triangular matrix are the entries on its main diagonal.

Proof. Consider the 3×3 case. If A is upper triangular, then

$$A - \lambda I = \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}$$

The scalar λ is an eigenvalue if and only if $(A - \lambda I)x = 0$ has a nontrivial solution, which means the equation must have a free variable, which would only occur if at least one of the values on the diagonal is zero.

Theorem 11. The eigenvectors of A, v_1 ,..., v_r , that correspond to distinct eigenvalues, λ_1 ,..., λ_r , are linearly independent.

Proof. Suppose $\{v_1,...,v_r\}$ is linearly dependent. Let p be the least index such that v_{p+1} is a linear combination of the preceding linearly independent eigenvectors. Then there exist scalars such that

$$c_1v_1 + \dots + c_pv_p = v_{p+1}$$

Multiply both sides by A, using the fact that $Av_k = \lambda_k v_k$, to get

$$c_1 \lambda_1 v_1 + \dots + c_p \lambda_p v_p = \lambda_{p+1} v_{p+1}$$

We can also multiply both sides of our first equation by λ_{p+1} and then subtract to get

$$c_1(\lambda_1 - \lambda_{p+1})v_1 + \dots + c_p(\lambda_p - \lambda_{p+1})v_p = 0$$

Because we assumed v_{p+1} was the first linearly dependent eigenvector, the set $\{v_1,...,v_p\}$ must be linearly independent. That means all $(\lambda_k - \lambda_{p+1})$ should be 0, but because the eigenvalues are distinct they cannot be. Thus, we arrive at a contradiction.

Remember that to find eigenvalues, we need to find scalars λ such that

$$(A - \lambda I)x = 0$$

has a nontrivial solution. This is equivalent to the matrix $A - \lambda I$ being not invertible, which is equivalent to $det(A - \lambda I) = 0$. Writing the determinant as a polynomial involving only λ is called the characteristic equation of a matrix.

Theorem 12. Diagonalization Theorem: An $n \times n$ matrix A is **diagonalizable** if and only if A has n linearly independent eigenvectors. If this condition is met, we can write

$$A = PDP^{-1}$$

where P is a matrix whose columns are n linearly independent eigenvectors of A, and D is a diagonal matrix whose diagonal entries are corresponding eigenvalueus of A.

Proof. Right multiplying both sides by P gives us AP = PD.

$$AP = A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} Av_1 & \cdots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \cdots & \lambda_n v_n \end{bmatrix}$$

$$PD = P \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \cdots & \lambda_n v_n \end{bmatrix}$$

Since these are equal and P has an inverse because its columns are linearly independent eigenvectors, $A = PDP^{-1}$.

6 Orthogonality and Least Squares

Definition 6.1. The **inner product** of u and v is

$$u \cdot v = \begin{bmatrix} u_1 \cdots u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + \cdots + u_n v_n$$

Properties of inner products: Let u, v, and w be vectors in \mathbb{R}^n . Then

- 1. $u \cdot v = v \cdot u$
- 2. $(u+v)\cdot w = u\cdot w + v\cdot w$
- 3. $u \cdot u \ge 0$

Definition 6.2. The **norm** of v is ||v|| defined by

$$||v|| = \sqrt{v \cdot v}$$

The distance between v and u is ||u - v||.

Definition 6.3. Two vectors u and v are **orthogonal** if $u \cdot v = 0$.

Note the zero vector is orthogonal to every other vector.

The Pythagorean Theorem tells us that if u and v are orthogonal then

$$||u + v||^2 = ||u||^2 + ||v||^2$$

.

The set of all vectors z that are orthogonal to W is called the **orthogonal complement** of W, denoted by W^{\perp} .

Theorem 13. Let A be an $m \times n$ matrix. Then

$$(Row(A))^{\perp} = Nul(A)$$
 and $(Col(A))^{\perp} = Nul(A^{T})$

Proof. If x is in Nul(A), then $\begin{bmatrix} Ax_1 & Ax_2 & \cdots & Ax_n \end{bmatrix}$, which implies that x is orthogonal to all the rows in A. Conversely, if x is orthogonal to Row(A), then clearly Ax = 0. A similar proof can be shown for the second statement.

Definition 6.4. In \mathbb{R}^2 or \mathbb{R}^3 , $u \cdot v = ||u||||v|| cos(\theta)$. To see this, we can use the law of cosines,

$$||u-v||^2 = ||u||^2 + ||v||^2 - 2||u||||v||cos(\theta)$$

Definition 6.5. The set of vectors $\{u_1,...,u_p\}$ is called an **orthogonal set** if each pair of distinct vectors is orthogonal.

Theorem 14. If $S = \{u_1, ..., u_p\}$ is an orthogonal set of nonzero vectors, then S is linearly independent.

Proof. We know

$$0 = c_1 u_1 + \dots + c_p u_p$$

Multiplying by u_1 ,

$$0 = (c_1 u_1 + \dots + c_p u_p) \cdot u_1$$
$$0 = (c_1 u_1) \cdot u_1 + (c_2 u_2) \cdot u_1 + \dots + (c_p u_p) \cdot u_1$$
$$0 = c_1 (u_1 \cdot u_1)$$

Since u_1 is nonzero, $(u_1 \cdot u_1)$ must be nonzero, so c_1 must be 0. A similar proof can be used to show $c_2,...,c_p$ must be zero. Thus, S is linearly independent.

Definition 6.6. An **orthogonal basis** for subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 15. Let $\{u_1,...,u_p\}$ be an orthogonal basis for subspace W of \mathbb{R}^n . For each y in W, the weights c_k in

$$y = c_1 u_1 + \dots + c_p u_p$$

are given by

$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j} \text{ for } (j = 1, ..., p)$$

Proof. Taking the dot product of u_1 on both sides,

$$y \cdot u_1 = (c_1 u_1 + c_2 u_2 + \cdots + c_p u_p) \cdot u_1 = c_1 (u_1 \cdot u_1)$$

Since u_1 is nonzero, we can divide by $(u_1 \cdot u_1)$ to solve for c_1 . The same proof can be used to solve $c_2,...,c_p$.

Definition 6.7. An set is **orthonormal** if all its vectors are unit vectors and are orthogonal to one another. Let U be an $m \times n$ matrix with orthonormal columns. Then,

- 1. ||Ux|| = ||x||
- 2. $(Ux) \cdot (Uy) = x \cdot y$

An orthonormal basis can be constructed from an orthogonal basis $\{v_1,...,v_p\}$ by simply normalizing all the v_k .

Theorem 16. An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$. If U is a square matrix, then it is called an **orthogonal matrix** and has $U^{-1} = U^T$.

Proof. We will prove with a simpler version of U with only three columns, but the proof can generalize. Let $U = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$. Then

$$U^{T}U = \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ u_{3}^{T} \end{bmatrix} \begin{bmatrix} u_{1} & u_{2} & u_{3} \end{bmatrix} = \begin{bmatrix} u_{1}^{T}u_{1} & u_{1}^{T}u_{2} & u_{1}^{T}u_{3} \\ u_{2}^{T}u_{1} & u_{2}^{T}u_{2} & u_{2}^{T}u_{3} \\ u_{3}^{T}u_{1} & u_{3}^{T}u_{2} & u_{3}^{T}u_{3} \end{bmatrix}$$

By definition of orthonormal vectors, only the diagonal entries simplify to 1 and all other entries simplify to 0.

Definition 6.8. Orthogonal projection: Consider representing a nonzero vector u in \mathbb{R}^n as the sum of two vectors, one a multiple of some vector y and the other orthogonal to y. That is,

$$u = \alpha y + (u - \alpha y)$$

This means $u - \alpha y$ is orthogonal to y if and only if

$$0 = (u - \alpha y) \cdot y = u \cdot y - \alpha (y \cdot y)$$

That is, in order for $(u - \alpha y)$ to be orthogonal to y,

$$\alpha = \frac{u \cdot y}{y \cdot y}$$
 and $y = \frac{u \cdot y}{y \cdot y}y$

The vector y is called the **orthogonal projection of** u **onto** y.

$$y = proj_L y = \frac{y \cdot u}{y \cdot y} y$$

Definition 6.9. Orthogonal Decomposition We can extend projections to subspaces. Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written

$$y = \hat{y} + z$$

where \hat{y} is in W and z is in W^{\perp} . If $\{u_1,...,u_p\}$ is an orthogonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$

and $z = y - \hat{y}$.

The vector \hat{y} is called the **orthogonal projection of** y **onto** W and is written as $proj_W y$.

Note the denominator $u_k \cdot u_k = 1$ if W is an orthonormal basis. It follows that for orthonormal bases of W,

$$proj_W y = (y \cdot u_1)u_1 + (y \cdot u_2)u_2 + \dots + (y \cdot u_p)u_p = UU^T y$$

Theorem 17. The Gram-Schmidt Process: The Gram-Schmidt process is an algorithm for producing an orthogonal or orthonormal basis for a nonzero subspace of \mathbb{R}^n .

Given a basis $\{x_1,...,x_p\}$ for nonzero subspace W of \mathbb{R}^n , define

$$v_1 = x_1$$

6 ORTHOGONALITY AND LEAST SQUARES

$$\begin{aligned} v_2 &= x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 \\ v_3 &= x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2 \\ & \vdots \\ v_p &= x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \dots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1} \end{aligned}$$

Then $\{v_1,...,v_p\}$ is an orthogonal basis for W. In addition

$$Span(\{v_1,...,v_k\}) = Span(\{x_1,...,x_k\}) \text{ for } 1 \le k \le p$$

Proof. We proceed by induction. If we set $v_1 = x_1$, then $Span(\{v_1\}) = Span(\{x_1\})$. Suppose for some k < p, we construct $v_1, ..., v_k$ so that $\{v_1, ..., v_k\}$ is an orthogonal basis for W_k . Define

$$v_{k+1} = x_{k+1} - proj_{W_k} x_{k+1}$$

By Orthogonal Decomposition, v_{k+1} is orthogonal to W_k . Since $proj_{W_k}x_{k+1}$ is in W_k , it is also in W_{k+1} , which means v_{k+1} is also in W_{k+1} since W_{k+1} is a subspace which must be closed under subtraction. $v_{k+1} \neq 0$ because x_{k+1} is not in $W_k = Span(\{x_1,...,x_k\})$. Thus, $\{v_1,...,v_k\}$ is an orthogonal set of nonzero vectors in k+1-dimensional subspace W_{k+1} , so they must be a basis for W_{k+1} . Thus, the Gram-Schmidt algorithm yields an orthogonal basis by induction.

Theorem 18. If A is an $m \times n$ matrix with linearly independent columns, then we can factor A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for Col(A) and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Proof. The column of A form a basis $\{x_1,...,x_n\}$ for Col(A). We can use Gram-Schmidt to construct an orthogonal basis for W = Col(A) and then scale this basis to get an orthonormal basis for Col(A)

$$Q = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$

For $1 \le k \le n$, $x_k \in Span(Q)$, that is, there are constants such that

$$x_k = r_{1k}u_1 + \dots + r_{kk}u_k + 0 \cdot u_{k+1} + \dots + 0 \cdot u_n$$

We can assume $r_{kk} \ge 0$, if it isn't, just multiply both r_{kk} and u_k by -1. Thus,

$$r_k = \begin{bmatrix} r_{1k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

So,
$$x_k = Qr_k$$
. Let $R = \begin{bmatrix} r_1 & \cdots & r_n \end{bmatrix}$. Finally,

$$A = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} Qr_1 & \cdots & Qr_n \end{bmatrix} = QR$$

Definition 6.10. If *A* is an $m \times n$ matrix and *b* is in \mathbb{R}^m , a **least-squares solution** of Ax = b is an \hat{x} in \mathbb{R}^n such that

$$||b - A\hat{x}|| \le ||b - Ax||$$

for all x in \mathbb{R}^n . This should hold even if b is outside Col(A).

Theorem 19. Let A be an $m \times n$ matrix. The following are logically equivalent:

- 1. Ax = b has a unique least-squares solution for each b in \mathbb{R}^m .
- 2. The columns of A are linearly independent.
- 3. The matrix $A^T A$ is invertible

When these are true, the least-squares solution \hat{x} is given by

$$\hat{x} = (A^T A)^{-1} A^T b$$

Proof. To get the best approximation of b on A, we can take the projection

$$\hat{b} = proj_{Col(A)}b$$

Now we know the equation $A\hat{x} = \hat{b}$ is consistent, and that \hat{x} would be the least-squares solution. We know $b - \hat{b}$ is orthogonal to Col(A), so $b - A\hat{x}$ is orthogonal to each column of A, that is

$$A^T(b - A\hat{x}) = 0$$

Simplifying

$$A^{T}b - A^{T}A\hat{x} = 0$$
$$A^{T}A\hat{x} = A^{T}b$$
$$\hat{x} = (A^{T}A)^{-1}A^{T}b$$

Theorem 20. When the columns of A are orthogonal, as they often are in linear regression problems, then we can use QR factorization to produce a computationally easier calculation.

Given an $m \times n$ matrix A with linearly independent columns, let A = QR be the QR factorization. For any b in \mathbb{R}^m , the least-squares solution is given by

$$\hat{x} = R^{-1} O^T b$$

Proof. Let $\hat{x} = R^{-1}Q^Tb$. Then

$$A\hat{x} = QR\hat{x} = QRR^{-1}Q^Tb = QQ^Tb$$

Since the columns of Q form an orthonormal basis for Col(A), QQ^Tb is the orthogonal projection of b onto Col(A) by Definition 6.9. Hence, it is a least-squares solution.

Definition 6.11. Inner product: **Inner products** on a vector space V is a function that, to each pair of vectors u and v, associates a real number $\langle u, v \rangle$ and satisfies the following for vectors u, v, w in V and scalar c:

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- 3. $\langle cu, v \rangle = c \langle u, v \rangle$
- 4. $\langle u, u \rangle \geq 0$

A vector space with an inner product is called an **inner product space**.

Theorem 21. The Cauchy-Schwartz Inequality: For all u, v in V,

$$|\langle u, v \rangle| \le ||u|| \, ||v||$$

7 SYMMETRIC MATRICES AND QUADRATIC FORMS

Proof. If u = 0, both sides are zero, so the inequality is true. If $u \neq 0$, let W be the subspace spanned by u, then

$$\|proj_W v\| = \|\frac{\langle v, u \rangle}{\langle u, u \rangle} u\| = \frac{|\langle v, u \rangle|}{\|u\|^2} \|u\| = \frac{|\langle u, v \rangle|}{\|u\|}$$

Since $||proj_W v|| \le ||v||$, we simplify the above to

$$\frac{|\langle u, v \rangle|}{\|u\|} \le \|v\|$$

, which proves the theorem.

Theorem 22. The Triangle Inequality: For all u, v in V,

$$||u + v|| \le ||u|| + ||v||$$

Proof.

$$||u + v||^{2} = \langle u + v, u + v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle$$

$$\leq ||u||^{2} + 2 |\langle u, v \rangle| + ||v||^{2}$$

$$\leq ||u||^{2} + 2||u|| ||v|| + ||v||^{2}$$

$$= (||u|| + ||v||)^{2}$$
(1)

where the second to last step follows from the Cauchy-Schwartz Inequality.

7 Symmetric Matrices and Quadratic Forms