Álgebra I. Hoja de ejercicios 10: Factorización de polinomios Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ejercicio 1. El contenido puede ser definido de otra manera más transparente. Denotemos por *A* un dominio de factorización única y por *K* el cuerpo de fracciones de *A*.

- a) Demuestre que para $f = a_n X^n + \dots + a_1 X + a_0 \in A[X]$ se tiene cont $(f) = \text{mcd}(a_0, a_1, \dots, a_n)$.
- b) Demuestre que todo polinomio $f \in K[X]$ puede ser escrito como $\frac{1}{d}g$, donde $d \in A$ y $g \in A[X]$, y luego $\operatorname{cont}(f) = \frac{\operatorname{cont}(g)}{d}$.

Ejercicio 2. Sean A un dominio de factorización única, y $f,g \in A[X]$. Demuestre que

$$cont(mcd(f,g)) = mcd(cont(f), cont(g)).$$

Ejercicio 3. Sean k un cuerpo, $f \in k[X_1,...,X_n]$ un polinomio en n variables y $f = f_1^{m_1} \cdots f_s^{m_s}$ una factorización de f, donde $f_1,...,f_s$ son polinomios irreducibles no asociados entre sí y $m_1,...,m_s \ge 1$. Demuestre que para cualquier otro polinomio $g \in k[X_1,...,X_n]$ las siguientes condiciones son equivalentes:

- a) $f^r | g$ para algún r = 1, 2, 3, ...;
- b) $f_1 \cdots f_s \mid g$.

Sugerencia: factorice f^r y g en polinomios irreducibles.

Ejercicio 4 (Teorema de las raíces racionales). Sea $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ un polinomio con coeficientes enteros. Demuestre que si $\frac{a}{b}$ es una raíz racional de f tal que mcd(a, b) = 1, entonces $a \mid a_0$ y $b \mid a_n$.

Sugerencia: extraiga el factor lineal (bX - a) de f.

Ejercicio 5. Sea *c* un entero no nulo.

- a) Demuestre que el polinomio $X^3 + nX + c$ es irreducible en $\mathbb{Q}[X]$ para todo $n \in \mathbb{Z}$, salvo un número finito de excepciones.
- b) En particular, para c = 2 encuentre las factorizaciones del polinomio $f = X^3 + nX + 2$ para todo n.

Sugerencia: use el ejercicio anterior.

Ejercicio 6. Demuestre que el polinomio $f := X^3 + 2X + 1$ es irreducible en $\mathbb{Q}[X]$ usando

- a) el lema de Gauss y la reducción módulo algún primo p;
- b) el teorema de las raíces racionales.

Ejercicio 7. Consideremos el polinomio $f = X^3 + 8X^2 + 6 \in \mathbb{Z}[X]$.

- a) Demuestre que f es irreducible en $\mathbb{Q}[X]$ usando el criterio de Eisenstein.
- b) Demuestre que f es irreducible en $\mathbb{Q}[X]$ usando el teorema de las raíces racionales.
- c) Factorice \overline{f} en $\mathbb{F}_p[X]$ para p=2,3,5,7. Con ayuda de PARI/GP encuentre un primo p tal que \overline{f} es irreducible en $\mathbb{F}_p[X]$.

Ejercicio 8. Demuestre que el polinomio $X^n - p$ es irreducible en $\mathbb{Q}[X]$ para todo primo $p = 2, 3, 5, 7, \dots$ y todo $n = 1, 2, 3, \dots$

Ejercicio 9. Factorice el polinomio $X^n + Y^n$ en polinomios lineales en $\mathbb{C}[X,Y]$.

Ejercicio 10. Para un número primo p, factorice el polinomio ciclotómico Φ_{n^k} en $\mathbb{F}_p[X]$.