

Software Lab Computational Engineering Science

Group 12, Pusher Mechanism

Aaron Floerke, Arseniy Kholod, Xinyang Song and Yanliang Zhu

Informatik 12: Software and Tools for Computational Engineering (STCE) RWTH Aachen University

Contents

Visualization

User Requirements

System Requirements

Prototype

Project Management
For this Presentation
For the Project

Summary and Conclusion

The Four-Bar/Pusher Mechanism

▶ Online Demo: https://www.geogebra.org/m/BueCG9ch

User Requirements

- Simulate the motion of the pusher mechanism.
- Implement all motion types for the four-bar linkage with one bar fixed (8 cases according to https://en.wikipedia.org/wiki/Four-bar_linkage).
- Implement GUI with motion animation and the ability to choose geometrical parameters.
- Solve an optimization problem.

User Requirements

Optimization problem

- ► Find suitable parameters for the pusher mechanism to meet requirements:
 - Push box with size 80×60 from x = 220 to x = 0
 - ▶ Do not cross the area of the labelling machine (Area with x < 80 and y > 70).
 - Pass above points (120, 80) and (220, 80)
- Provide the following data for the designed four-bar mechanism:
 - Position of the two fixed pivot positions
 - Lengths of the three moving links and of the fourth base link
 - ▶ The position of the couple offset point relative to the coupler

^{*}all coordinates and length are in cm

System Requirements

Functional

► Four-bar linkage model:

- System simulates the motion of the four-bar linkage.
- System distinguishes between all different motion cases.
- System does not crash with any input of geometrical configuration.
- System provides asserts or/and exception mechanisms to validate input data.

► Tests:

- Implement test cases to cover all motion cases.
- Provide reference data to compare results with.
- Implement test cases with bad input to test system stability.

Graphical User Interface:

- GUI provides the four-bar linkage visualization.
- User can input geometrical data by moving a point on a slide bar or/and using a keyboard.
- GUI reacts to new input data by changing the four-bar linkage visualization accordingly.
- GUI provides animation of the four-bar linkage motion.
- User can choose parameters of this motion, e.g. restrict rotation angles.
- User can move linkage by pulling an input bar using a computer mouse.
- GUI is coupled with the four-bar linkage model to use implemented motion cases for animation.

Optimization problem:

- It should be possible to find a solution (manually) for the optimization problem using the four-bar linkage model.
- GUI visualizes the solution.

System Requirements

Non-Functional

Performance:

- The four-bar linkage model is fast enough to provide smooth GUI animations.
- ► GUI animations are not slower than 30 frames per second.

Usability:

- Every essential part of the four-bar linkage model is well documented.
- GUI is easy to operate.
- ► GUI functionalities are well documented.
- All changeable parameters are explained.
- GUI animation displays trajectories of bar connection points.

Locality:

- GUI and the four-bar linkage model both can run on a local machine.
- Additionally: Local GUI should be able to connect to a remote four-bar linkage model.
- Additionally: It should be possible to provide a web GUI.

Prototype

Software and Tools for Computational Engineering

Sequence diagram for animation

Parameter

Ground link length Input link length Output link length Floating link length Coupler position Ground link angle ...

Function

- \square Animation
- Reset
- □Trace trajectory
- \square Show Labels, pivots...

Project Management for this Presentation

- ► Aaron Floerke:
 - User Requirements.
- ► Arseniy Kholod::
 - System Requirements.
- ► Xinyang Song::
 - Visualization and Prototype.
- ► Yanliang Zhu::
 - Project Management.

Project Management for the Project

- Biweekly in-person or online group meetings.:
- ► Use Gantt Chart for time management and more detailed task assignment.:
- ► Tasks to be assigned::
 - Design classes, interfaces, functions.
 - Design detailed use-cases.
 - Choose languages and environment to implement Four-bar linkage model and GUI.
 - Implementation and documentation.
 - ▶ Implement tests and use-cases.
 - Solve the optimization problem.

Summary and Conclusion

- User requirements
- **▶** Optimization problem
- System requirements
- Prototype:
 - Sequence diagram for communication between user, GUI, and Four-bar linkage model.
 - Graphical user interface visualization.
- Project Management