

Create a Residual Plot

Excel Step-by-Step How-to for Windows and Excel for Mac 2016 (v.16) or later

Instructions: Use this guide to generate a residual plot in an Excel spreadsheet. This will be achieved by using the Data Analysis toolkit.

Data requirement: One dependent variable and two or more independent variables, quantitative data

Step Windows Instructions + Screen Shot 1. Arrange the data so Α В C that the first column Υ X1 X2 holds your independent variable 5045 9 66 and the dependent 16348 22 126 variables are to the right of it. 85 4 4712 7 5092 14 21 6 5499 12 45 10562 17 135

2. Use the Data Analysis toolkit to run a regression on this data.

Navigate to the Data Analysis toolkit, select Regression, and click OK.

3. Select the residual plot options in the Analysis Tool.

Click in the input box for Input Y Range and select the data for the dependent variable ("Y" in this example). Then click in the input box for the Input X Range and select the data for one or more independent variables. All dependent variables will need to be in adjacent columns to be selected. If you included labels in your range then check the Labels box. Check the Residuals and Residuals Plots boxes. Click OK.

R	Regression Output										
A	Α	В	С	D	E	F	G	Н	I		
1	SUMMARY OUTPUT										
2											
3	Regression Statistics										
4	Multiple R	0.952507									
5	R Square	0.90727									
6	Adjusted R Sq	0.905358									
7	Standard Error	1024.968									
8	Observations	100									
9											
10	ANOVA										
11		df	SS	MS	F	gnificance	F				
12	Regression	2	9.97E+08	4.99E+08	474.5248	8.13E-51					
13	Residual	97	1.02E+08	1050559							
14	Total	99	1.1E+09								
15											
16	(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%		
17	Intercept	-2248.81	357.4137	-6.2919	9.06E-09	-2958.18	-1539.44	-2958.18	-1539.44		
18	X1	574.9542	20.58956	27.92456	3.64E-48	534.0897	615.8188	534.0897	615.8188		
19	X2	36.27332	2.762302	13.13156	3.04E-23	30.79092	41.75573	30.79092	41.75573		
20							·				

Residual Plots

4. Create a composite residual plot.

Copy the residual output from beneath the regression output and paste it into a new sheet.

23	RESIDUAL OUT			
24				
25	Observation	Predicted Y	Residuals	
26	1	5319.815727	-274.816	
27	2	14970.62018	1377.38	
28	2	4859 100342	-1/17 1	

Highlight the Predicted Y and Residuals columns, navigate to the Insert tab and click on the Scatter Plot chart.

