Theorem 2. Sei $s \in \mathbb{C}$. Falls Re(s) > 1, so konvergiert die Reihe

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

absolut. Des Weiteren ist die Abbildung $s \mapsto \zeta(s)$ auf $\{s \in \mathbb{C} \mid \text{Re}(s) > 1\}$ holomorph. Diese Abbildung wird Riemannsche Zetafunktion genannt.

Theorem 4. Die Riemannsche Zetafunktion ist eindeutig zu einer holomorphen Funktion auf $\mathbb{C}\{1\}$ fortsetzbar, und sie besitzt einen einfachen Pol bei s=1 mit Residuum 1.

Theorem 5. (Euler-Identität). Für Re(s) > 1 gilt

$$\zeta(s) = \prod_{\text{p ist Primzahl}} \frac{1}{1 - p^{-s}}.$$

Sei nun K ein Zahlkörper und s eine komplexe Zahl. Falls Re(s) > 1, so konvergiert die Reihe

$$\zeta_K(s) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \frac{1}{\mathfrak{N}(\mathfrak{a})^s}$$

absolut, wobei $\mathfrak{a} \neq 0$ ein ganzes Ideal von \mathcal{O}_K ist. Wir nennen die Abbildung $s \mapsto \zeta_K(s)$ die Dedekindsche Zetafunktion.

Theorem 6. Die Dedekindsche Zetafunktion ist eindeutig zu einer holomorphen Funktion auf $\mathbb{C}\setminus\{1\}$ fortsetzbar, und sie besitzt einen einfachen Pol bei s=1.

Bsp
$$S=2$$
 Basler-Problem
 $\zeta(2) = \frac{2}{2} \frac{1}{n^2} = \frac{\pi^2}{6}$

Ben: Ans der Enler-Identität folgt, class 7 keine NS fir Re(s) > 1 desitet. Ns von der Form - 2n, neIN, nehnen wir trivialen NS der Remannschen Etafunktion. Die nichthivialen NS sind § SEC 1 0 S Re(S) S 1? Riemannsche Vermutung nichthivialen NS Realteil 1/2

Absolutnoin n(q) = [Ok: 9], 9 +0 Ideal

Verallgeneinerte R. Vernutny NS welche in knitischen Streifen sind, haben Realteil & **Definition 8.** Sei $n \in \mathbb{N}$. Ein Dirichlet-Charakter modulo n ist ein Gruppenhomomorphismus $\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\}.$

Wir bezeichnen mit dem trivialen Dirichlet-Charakter χ_0 modulo n, den Charakter, der konstant eins ist. Der triviale Charakter modulo 1 wird auch Hauptcharakter genannt.

Wir können eine Dirichlet-Charakter χ modulo n zu einer Funktion auf ganz $\mathbb Z$ ausweiten. Wir definieren $\chi: \mathbb{Z} \to \mathbb{C}$ durch

$$\chi(m) = \begin{cases} \chi(m \mod n) & \text{ggT}(n, m) = 1\\ 0 & \text{ggT}(n, m) \neq 1. \end{cases}$$

Bsw: 1) $\chi_{4}(7) = \Lambda$, $\chi_{4}(3) = -\Lambda$ $\frac{Beh}{Beh} \frac{\chi(a)}{\chi(a)} = \left(\frac{a}{p}\right) \frac{D - Char. \, modulo \, p}{falls \, a = 0 \, mod \, p}$ $\frac{Ben}{Beh} \left(\frac{a}{p}\right) = \int_{-\Lambda}^{\Lambda} \frac{falls \, a = b^2 \, mod \, p}{falls \, sonst}$ $\frac{\overline{a},\overline{b}\in(\mathbb{Z}/p\mathcal{X})^{\times}}{\mathcal{X}(\overline{a}.\overline{b})}=\left(\frac{\overline{a}}{p}\right)\cdot\left(\frac{\overline{b}}{p}\right)=\mathcal{X}(\overline{a})\cdot\mathcal{Z}(\overline{b})$

Beh
$$\chi(\overline{a}) = (\overline{a})$$
 D-Char. modulo p

Bau $(\underline{a}) = \int 0$ falls $a = 0$ mod p

fulls $a = b^2$ mod p, $d \in C$
 $(\overline{a}) \in S^A$
 $a_1 \overline{b} \in (Z(pX)^X)^X$
 $\chi(\overline{a} \cdot \overline{b}) = (\overline{a}) \cdot (\overline{b}) = \chi(\overline{a}) \cdot \chi$

NEW ungerade

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \int \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$) = 1

 $(\underline{a}) = \chi(a \text{ mod } n)$ ggT($a_1 n$)

Sei a eine quadratfreie Zahl in $\mathbb{Z}\setminus\{0,1\}$. Für einen quadratischen Zahlkörper $\mathbb{Q}(\sqrt{a})$ ist der Dirichlet-Charakter von der Form $\binom{d}{a}$, wobei d die Diskriminante ist. Die Diskriminante ist gegeben durch

$$d = \begin{cases} a & \text{falls } a \equiv 1 \mod 4 \\ 4a & \text{falls } a \equiv 2 \text{ oder } 3 \mod 4. \end{cases}$$

Definition 14. Die Dirichletsche L-Reihe ist definiert durch

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},$$

wobei $\chi: \mathbb{Z} \to \mathbb{C}$ ein Dirichlet-Charakter. Falls $\operatorname{Re}(s) > 1$ konvergiert die Dirichletsche L-Reihe absolut, da $|\chi(n)| \leq 1$. Wir nennen diese holomorphe Funktion die Dirichletsche L-Funktion zu χ .

Theorem 16. (Euler-Identität) Sei $\chi: \mathbb{Z} \to \mathbb{C}$ ein Dirichlet-Charakter. Sei $s \in \mathbb{C}$ und $\delta > 0$. Falls $\text{Re}(s) \geqslant 1+\delta$, so konvergiert die Reihe $L(s,\chi)$ absolut und gleichmässig. Des Weiteren ist die Abbildung $s \mapsto L(s,\chi)$ auf $\{s \in \mathbb{C} \mid \text{Re}(s) > 1\}$ holomorph. Es gilt folgende Produktdarstellung:

$$L(s, \chi) = \prod_{\text{p ist Primzahl}} \frac{1}{1 - \chi(p)p^{-s}}$$

Bsp:
$$a = -1$$
, $Q(\sqrt{n}) = Q(\bar{n})$
 $a \equiv 3 \mod 4$
 $Q = 4(-1) = -4$
 $\chi_{y}(x) = (\frac{-4}{n})$

Bem:
$$\gamma \in \mathcal{E}$$
 Hauptchasalter
 $L(S, \mathcal{E}) = TS$ $\Lambda - SpS = TT$ $\Lambda - p^{-S} = \mathcal{E}(S)$
 $p \text{ prim}$ $\Lambda - p^{-S} = \mathcal{E}(S)$
BSp: $S = \Lambda$, $2y \ln 1 = (-\frac{4}{N})$
 $L(\Lambda, 2y) = \frac{2}{N-\Lambda} = \Lambda - \frac{4}{3} + \frac{4}{J} - \frac{4}{J}$...
 $\alpha(\text{ctau}(X) = X - \frac{X^{3}}{3} + \frac{X^{J} - X^{J}}{J}$...
 $L(\Lambda, 2y) = \text{arctau}(\Lambda) = \frac{T}{y}$

Theorem 21. Sei $K = \mathbb{Q}(\sqrt{d})$ ein quadratischer Zahlkörper, dann ist die Dedekindsche Zetafunktion von der Form

 $\zeta_K(s) = \zeta(s)L(s,\chi),$

wobei der Dirichlet-Character χ von der Form $\chi(n) = \left(\frac{d}{n}\right)$ ist.

Box: Falls
$$k = Q$$
 $T_{K}(s) = 3(s)$

BSp: $k = (Q(i))$ $U_{K} = ZIJ$

Bis auf Associatheit hader wir folgode Prindeale in ZIJ :

• $A+i$, $M(A+i) = A^{2} + A^{2} = 2$

• $a+ib$, $a>1b1>0$, $a^{2}+b^{2}=p$, $p\in Z$ prin $p\equiv A \mod Y$

• $P=A \mod Y$

• $PA \mod Y$

•

Theorem 23. (Dirichletsche Klassenzahlformel) Sei $K=\mathbb{Q}(\sqrt{d})$ eine quadratische Zahlkörper dann gilt

$$h = \begin{cases} \frac{w\sqrt{|d|}}{2\pi}L(1, \ \chi) & \text{falls } d < 0 \\ \frac{\sqrt{d}}{\ln \epsilon}L(1, \ \chi) & \text{falls } d > 0, \end{cases}$$

wobei h die Klasenzahl, w die Anzahl Einheitswurzeln und ϵ gegeben ist durch

$$\epsilon = \frac{1}{2}(t + u\sqrt{d}).$$

Hier sind t, u die Fundamentaleinheit der Pell Gleichung.

Bemerkung 24. Der Körper K hat Klassenzahl h=1 genau dann, wenn \mathcal{O}_K ein Haupitdeal ist. Des Weiteren existieren nur neun imaginär-quadratische Zahlkörper $\mathbb{Q}(\sqrt{d})$ die Klassenzahl h=1 besitzen. Diese neun Werte sind:

$$d = -1, -2, -3, -7, -11, -19, -43, -67, -163.$$

Es wird vermutet, dass unendlich viele reell-quadratischen Zahlkörper $\mathbb{Q}(\sqrt{d})$ die Klassenzahl h=1 besitzen.

 $\textbf{Definition 28. }\textit{Sei K ein Zahlk\"{o}rper und M eine Menge von Primidealen von K. Dann heisst}$

$$\delta(M) = \lim_{x \to \infty} \frac{\left| \left\{ \mathfrak{p} \in M \mid \mathfrak{N}(\mathfrak{p}) \leqslant x \right\} \right|}{\left| \left\{ \mathfrak{p} \mid \mathfrak{N}(\mathfrak{p}) \leqslant x \right\} \right|}$$

die natürliche Dichtigkeit von M, falls der Limes existiert.

Bsp:
$$k = \Phi(i)$$
, $\sigma_k = \pi \text{TiJ}$ Harpidealing $h = \Lambda$

$$0 = -4$$
, $\omega_k = 4$, $L(\Lambda, \chi_4) = \overline{4}$

$$h = \frac{4 \pi \text{TiJ}}{\chi_{\text{T}}} = \Lambda \text{J}$$

BSp:
$$A = d \ln |n \in \mathbb{N}^d$$
 $J(A) = \frac{1}{2}$
Ben: $0 \le J(M) \le n$
Eight endlike Mange von Prinzahlen
hat Dikte 0

Chebotarev's Dichtigkeitssat

Sei L eine endliche Galoissche Erweiterung über dem Körper $K=\mathbb{Q}$. Sei $G=L/\mathbb{Q}$ die dazugehörende Galoisgruppe. Sei $C\subset G$ Konjugationsinvariant. Des Weiteren sei die Menge aller unverzweigten Primideale von \mathbb{Q} gegeben durch

$$A_C \ = \ \Big\{(p) \subset \mathbb{Z} \ \big| \ (p) \ \text{unverzweigt in} \ L \ \text{und} \ \left(\frac{L/\mathbb{Q}}{\mathfrak{p}}\right) \in C \ \text{für ein Primideal ""ber"} (p) \Big\}, \qquad \longleftarrow$$

wobei $\left(\frac{L/\mathbb{Q}}{\mathfrak{p}}\right)$ der Frobeniusautomot
phismus von \mathfrak{p} über \mathbb{Q} . Dann hat die Menge A_C die natürliche Dichtigkeit

$$\delta(A_C) = \lim_{x \to \infty} \frac{\left| \left\{ (p) \in A_C \mid \mathfrak{N}(p) \leqslant x \right\} \right|}{\left| \left\{ (p) \subset \mathbb{Z} \mid \mathfrak{N}(p) \leqslant x \right\} \right|} = \frac{|C|}{|G|}.$$

Theorem 31. (Dirichletscher Primzahlsatz). Seien $a \in \mathbb{Z}$ und $n \in \mathbb{N}$ teilerfremd. Dann existieren unendlich viele Primzahlen die kongurent zu a modulo n sind. Die Menge der Primzahlen, die kongurent zu a modulo n sind, besitzen die natürliche Dichte $\delta(\{p \text{ ist Primzahl} \mid p \equiv a \mod n\}) = \frac{1}{\varphi(n)}$, wobei $\varphi(n) = |\{b \in \mathbb{N} \mid 1 \le b \le n \text{ und } ggT(b,n) = 1\}|$ die Eulersche Phi-Funktion ist.

Bew: L= (D(3n), In prinitive into Fisheitswurted (≈ (7//₂/₂/₂/₂) × G - (7/2/272) X ({ n + 4 9 } ~ (a mod n) Heye aller restrucisten Prinideale endlich prinded (p), pm $\left(\frac{1/Q}{P}\right)^{\frac{1}{2}} = \frac{1}{2} = \frac{1}{2}$ a belsch => Konjugationsklasse hat en Element C= dag Konjugationsklasse von a, ICI=1 Ac = g(p) < Z/(p) unvertweigt in L und - SQ = p mod n? $\delta(A_C) = \lim_{X \to \infty} \frac{|\{a \le p \mod N \mid p \le X\}|}{|\{p \le X\}|}$ $= \frac{|C|}{|G|} = \frac{1}{|\mathbb{Z}/n\mathbb{Z}|^{X}} = \frac{1}{|p|}$ Fquivalentrelation $f(x) \sim g(x) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$ $\lim_{X\to\infty} \frac{|\mathcal{L}_{\alpha} = \mathcal{P} \mod \mathcal{N}| \mathcal{P} \leq X}{|\mathcal{L}_{\alpha}|} = 1$ $| Sa = p \mod n | p \leq x$

- 1) Was ist ein Dirichlet-Charakter und wie können wir damit die Dirichletsche L- Funktion definieren?
- 2) Wie ist die Dedekindsche Zetafunktion definiert?
 Wie sieht die Dedekindsche Zetafunktion für einen
 Quadratischen Zahlkörper, wie zum Beispiel (2(1-31), aus?
- 3) Wie hilft uns Chebotareu's Dichtigkeitssatz den Dinichletschen Primzahlsatz zu beweisen?