

\$%^STN;HighlightOn= ***;HighlightOff=*** ;

1

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: ssspta1756mj a

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * * * * * Welcome to STN International * * * * * * * * * * * * *

NEWS 1 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 "Ask CAS" for self-help around the clock
NEWS 3 DEC 05 CASREACT(R) - Over 10 million reactions available
NEWS 4 DEC 14 2006 MeSH terms loaded in MEDLINE/LMEDLINE
NEWS 5 DEC 14 2006 MeSH terms loaded for MEDLINE file segment of TOXCENTER
NEWS 6 DEC 14 CA/CAplus to be enhanced with updated IPC codes
NEWS 7 DEC 21 IPC search and display fields enhanced in CA/CAplus with the
IPC reform
NEWS 8 DEC 23 New IPC8 SEARCH, DISPLAY, and SELECT fields in USPATFULL/
USPAT2
NEWS 9 JAN 13 IPC 8 searching in IFIPAT, IFIUDB, and IFICDB
NEWS 10 JAN 13 New IPC 8 SEARCH, DISPLAY, and SELECT enhancements added to
INPADOC
NEWS 11 JAN 17 Pre-1988 INPI data added to MARPAT
NEWS 12 JAN 17 IPC 8 in the WPI family of databases including WPIFV
NEWS 13 JAN 30 Saved answer limit increased
NEWS 14 JAN 31 Monthly current-awareness alert (SDI) frequency
added to TULSA

NEWS EXPRESS JANUARY 03 CURRENT VERSION FOR WINDOWS IS V8.01,
CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005.
V8.0 USERS CAN OBTAIN THE UPGRADE TO V8.01 AT
<http://download.cas.org/express/v8.0-Discover/>

| | |
|------------|---|
| NEWS HOURS | STN Operating Hours Plus Help Desk Availability |
| NEWS INTER | General Internet Information |
| NEWS LOGIN | Welcome Banner and News Items |
| NEWS PHONE | Direct Dial and Telecommunication Network Access to STN |
| NEWS WWW | CAS World Wide Web Site (general information) |

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 15:28:14 ON 31 JAN 2006

=> file reg

COST IN U.S. DOLLARS

| SINCE FILE
ENTRY | TOTAL
SESSION
0.21 |
|---------------------|--------------------------|
|---------------------|--------------------------|

FILE 'REGISTRY' ENTERED AT 15:28:19 ON 31 JAN 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file

provided by InfoChem.

STRUCTURE FILE UPDATES: 30 JAN 2006 HIGHEST RN 873057-98-8
DICTIONARY FILE UPDATES: 30 JAN 2006 HIGHEST RN 873057-98-8

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH JULY 14, 2005

Please note that search-term pricing does apply when conducting SmartSELECT searches.

*
* The CA roles and document type information have been removed from *
* the IDE default display format and the ED field has been added, *
* effective March 20, 2005. A new display format, IDERL, is now *
* available and contains the CA role and document type information. *
*

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

```
=> s ex-841
      2241 EX
      3145 841
L1      6 EX-841
          (EX(W) 841)

=> d all

L1  ANSWER 1 OF 6  REGISTRY  COPYRIGHT 2006 ACS on STN
RN  361181-83-1  REGISTRY
ED  Entered STN: 09 Oct 2001
CN  2-Propenoic acid, 2-hydroxyethyl ester, polymer with 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane and .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)poly(oxy-1,2-ethanediyl) homopolymer 2-propenoate (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN  Cyclohexane, 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethyl-, polymer with 2-hydroxyethyl 2-propenoate and .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)poly(oxy-1,2-ethanediyl) homopolymer 2-propenoate (9CI)
CN  Poly(oxy-1,2-ethanediyl), .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)-, homopolymer, 2-propenoate, polymer with 2-hydroxyethyl 2-propenoate and 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane (9CI)
OTHER NAMES:
CN  ***Denacol EX 841 acrylate-2-hydroxyethyl acrylate-isophorone***
*** diisocyanate copolymer***
MF  (C12 H18 N2 O2 . C5 H8 O3 . C3 H4 O2 . x ((C2 H4 O)n C6 H10 O3)x)x
CI  PMS
PCT Epoxy resin, Polyacrylic, Polyether, Polyother
SR  CA
LC  STN Files: CA, CAPLUS
DT.CA  CAPplus document type: Patent
RL.P  Roles from patents: BIOL (Biological study); PREP (Preparation); PRP (Properties); USES (Uses)
```

Ring System Data

| Elemental Analysis | Elemental Sequence | Size of the Rings | Ring System Formula | Ring Identifier | RID Occurrence Count |
|--------------------|--------------------|-------------------|---------------------|-----------------|----------------------|
| EA | ES | SZ | RF | RID | Count |

| | | | | | |
|-----|-----|---|-----|----------|---------|
| C6 | C6 | 6 | C6 | 46.150.1 | 1 in CM |
| C2O | OC2 | 3 | C2O | 1.30.1 | 2 in CM |
| | | | | 5 | |

CM 1

CRN 4098-71-9
 CMF C12 H18 N2 O2

/ Structure 1 in file .gra /

CM 2

CRN 818-61-1
 CMF C5 H8 O3

/ Structure 2 in file .gra /

CM 3

CRN 104220-34-0
 CMF C3 H4 O2 . x ((C2 H4 O)n C6 H10 O3)x

CM 4

CRN 79-10-7
 CMF C3 H4 O2

/ Structure 3 in file .gra /

CM 5

CRN 58782-18-6
 CMF ((C2 H4 O)n C6 H10 O3)x
 CCI PMS

CM 6

CRN 26403-72-5
 CMF (C2 H4 O)n C6 H10 O3
 CCI PMS

/ Structure 4 in file .gra /

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 135:238616 CA
 TI Manufacture of polyurethane granules for immobilization of enzymes and
 microorganisms
 IN Yoshitake, Junya; Seko, Kenji
 PA Kansai Paint Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 8 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM C12N011-08
 CC 7-7 (Enzymes)
 Section cross-reference(s): 16, 38
 FAN.CNT 1

PATENT NO.

KIND DATE

APPLICATION NO. DATE

PI JP 2001252073 A2 20010918 JP 2000-70372 20000314

PRAI JP 2000-70372 20000314

AB The granules are manufd. by dropping aq. liq. compns. contg. (a) hydrophilic polyurethanes having .gtoreq.2 ethylenically unsatd. bonds (prepd. by reaction of polyisocyanates with addn. products from diepoxides and ethylenically unsatd. carboxylic acids), (b) polymn. initiators, and (c) water-sol. polysaccharides capable of forming gels with alkali metal ions or polyvalent metal ions on aq. media contg. alkali metal ions or polyvalent metal ions and photochem. or thermally polymg. the resulting granular gels for curing of the hydrophilic polyurethanes. Denacol EX 821 (diepoxide) was treated with acrylic acid in the presence of hydroquinone and then with isophorone diisocyanate to give a hydrophilic polyurethane, which was mixed with benzoin Bu ether, Na alginate, and H₂O and UV-irradiated to give granules showing compressive strength 37 kg/cm² and good adhesion of Zymomonas mobilis.

ST enzyme microorganism immobilization polyurethane granule manuf; epoxide acrylate polyurethane polysaccharide microorganism immobilization; alginate gel granule polyurethane immobilization enzyme microorganism

IT Polyurethanes, biological studies

RL: BUU (Biological use, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses) (acrylic-polyester-polyoxyalkylene-, manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Polyoxyalkylenes, biological studies

RL: BUU (Biological use, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses) (acrylic-polyester-polyurethane-, manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Polyesters, biological studies

RL: BUU (Biological use, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses) (acrylic-polyoxyalkylene-polyurethane-, manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Immobilization, biochemical

Microorganism

Zymomonas mobilis
(manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Polysaccharides, biological studies

RL: BUU (Biological use, unclassified); PRP (Properties); BIOL (Biological study); USES (Uses)
(manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Enzymes, uses

RL: CAT (Catalyst use); USES (Uses)
(manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Polymerization catalysts

(photopolymn.; manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Polyurethanes, biological studies

RL: BUU (Biological use, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses)
(polyoxyalkylene-, acrylic; manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT Polymerization catalysts

(redox, thermal; manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT 9005-38-3, Sodium alginate

RL: BUU (Biological use, unclassified); PRP (Properties); BIOL (Biological study); USES (Uses)
(manuf. of hydrophilic polyurethane granules contg. gel-forming polysaccharides for immobilization of enzymes and microorganisms)

IT 361181-82-0P 361181-83-1P 361181-85-3P

RL: BUU (Biological use, unclassified); PRP (Properties); SPN (Synthetic

preparation); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (manuf. of hydrophilic polyurethane granules contg. gel-forming
 polysaccharides for immobilization of enzymes and microorganisms)
 IT 7631-90-5, Sodium hydrogen sulfite 7727-54-0 22499-11-2, Benzoin butyl
 ether
 RL: CAT (Catalyst use); USES (Uses)
 (polymn. initiator; manuf. of hydrophilic polyurethane granules contg.
 gel-forming polysaccharides for immobilization of enzymes and
 microorganisms)

=> d all 2-6

L1 ANSWER 2 OF 6 REGISTRY COPYRIGHT 2006 ACS on STN
 RN 218956-63-9 REGISTRY
 ED Entered STN: 04 Feb 1999
 CN 2-Propenoic acid, 2-methyl-, polymer with 2-methyl-2-[(1-oxo-2-
 propenyl)amino]-1-propanesulfonic acid and .alpha.- (oxiranylmethyl)-
 .omega.- (oxiranylmethoxy)poly(oxy-1,2-ethanediyl), sodium salt (9CI) (CA
 INDEX NAME)
 OTHER CA INDEX NAMES:
 CN 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-, polymer
 with 2-methyl-2-propenoic acid and .alpha.- (oxiranylmethyl)-.omega.-
 (oxiranylmethoxy)poly(oxy-1,2-ethanediyl), sodium salt (9CI)
 CN Poly(oxy-1,2-ethanediyl), .alpha.- (oxiranylmethyl)-.omega.-
 (oxiranylmethoxy)-, polymer with 2-methyl-2-[(1-oxo-2-propenyl)amino]-1-
 propanesulfonic acid and 2-methyl-2-propenoic acid, sodium salt (9CI)
 OTHER NAMES:
 CN ***Denacol EX-841-methacrylic acid-2-acrylamido-2-methylpropanesulfonic***
 *** acid copolymer sodium salt***
 MF (C₇ H₁₃ N O₄ S . C₄ H₆ O₂ . (C₂ H₄ O)_n C₆ H₁₀ O₃)_x . x Na
 PCT Epoxy resin, Polyacrylic, Polyether
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL
 DT.CA CAPplus document type: Patent
 RL.P Roles from patents: PREP (Preparation)

Ring System Data

| Elemental Analysis | Elemental Sequence | Size of the Rings | Ring System Formula | Ring Identifier | RID Occurrence |
|--------------------|--------------------|-------------------|---------------------|-----------------|----------------|
| EA | ES | SZ | RF | RID | Count |
| C ₂ O | O C ₂ | 3 | C ₂ O | 1.30.1 | 2 in CM
2 |

CM 1

CRN 137323-93-4
 CMF (C₇ H₁₃ N O₄ S . C₄ H₆ O₂ . (C₂ H₄ O)_n C₆ H₁₀ O₃)_x
 CCI PMS

CM 2

CRN 26403-72-5
 CMF (C₂ H₄ O)_n C₆ H₁₀ O₃
 CCI PMS

/ Structure 5 in file .gra /

CM 3

CRN 15214-89-8
 CMF C₇ H₁₃ N O₄ S

/ Structure 6 in file .gra /

/ Structure 7 in file .gra /

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 130:99461 CA
 TI Additives for hydraulic compositions, preparation of the additives, and cement compositions containing the additives
 IN Tahara, Hideyuki; Ito, Hiroshi; Mori, Yasuhiro; Mizushima, Makoto
 PA Nippon Shokubai Kagaku Kogyo Co, Ltd., Japan
 SO U.S., 47 pp., Cont. of U.S. Ser. No. 498,704, abandoned.
 CODEN: USXXAM
 DT Patent
 LA English
 IC ICM C08K003-00
 ICS C04B028-00; C08F220-00
 NCL 524005000
 CC 58-2 (Cement, Concrete, and Related Building Materials)
 Section cross-reference(s): 38

FAN.CNT 2

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|----------------|----------|----------|-----------------|----------|
| PI | US 5854318 | A | 19981229 | US 1996-759435 | 19961205 |
| | US 5476885 | A | 19951219 | US 1991-668513 | 19910325 |
| PRAI | JP 1989-190656 | 19890725 | | | |
| | JP 1989-262242 | 19891009 | | | |
| | JP 1989-297455 | 19891117 | | | |
| | US 1991-668513 | 19910325 | | | |
| | US 1995-498704 | 19950703 | | | |
| | JP 1998-228313 | 19980905 | | | |
| | JP 1989-228313 | 19890905 | | | |
| | WO 1990-JP946 | 19900723 | | | |

AB The hydraulic compns. comprise a hydraulic material, water, and an additive comprising a crosslinked polymer in which, between main chains having water-sol. polymer structure of wt.-av. mol. wt. 500-100,000, a bond having as a structural unit .gtoreq.1 divalent groups having general formula R1CO2R2 [independently, R1, R2 is selected from CH2, CH(R) p-Ph, CR(R1), and CH2CH(OH), with the proviso that R1 is not required if R2 is CH2CH(OH) (independently, R, R1 = C2-5-alkyl)], and in which the main chains comprise .gtoreq.1 members selected from CO2M, CO2(R50)mSO3M, CONHR7SO3M, (CH2)nSO3M, and p-Ph-SO3M (m = 0 or integral no. of 1-50; n = 0 or 1; M is .gtoreq.1 selected from H, mono-, di-, or trivalent metal, NH4, and org. amine; independently, R1, R6 = C2-4-alkylene; R7 = C1-5-alkylene; with the proviso that when m .gtoreq.2, many of R50 may be the same or different, and, when many of R50 are different from one another, their arrangement may be regular or irregular), and in which the crosslinked polymer is capable of forming a water-sol. polymer by cleavage of the divalent group in an alk. medium. The additive are prep'd. by obtaining a crosslinked polymer by a polymg. a monomer contg. .gtoreq.2 polymerizable double bonds and has as structural unit .gtoreq.1 divalent groups as above, with a monomer having one polymerizable double bond capable of copolymg. with the double bonds and capable to form a main chain structure capable of leading to a water-sol. polymer as above. Into a reactor, contg. N-stirred boiling water 164.2 were introduced a soln. contg. NK-ester M-9G (methoxypolyethylene glycol monomethacrylate; av. added ethylene oxide mole no. is 9) 62.9, methacrylic acid 16.7, and water 125.5, and, in addn., 2.5% aq. (NH4)S2O8 soln. 24.6 wt. parts over 4 h. Then, 6.1 wt. parts 2.5% aq. (NH4)S2O8 soln. were added over 1 h, and the mixt. was maintained at the b.p. for 1 h to complete the polymn. reaction, whereby a water-sol. polymer was obtained. To this polymer were added 3.2 wt. parts Denacol EX-721 (o-phthalic acid diglycidyl ester) and the mixt. maintained at the b.p. for 3 h, and neutralized with aq. NaOH to obtain a hydrophilic resin. A concrete mix contg. portland cement 320, water 173, fine aggregate (sand) 934, and coarse aggregate (crushed stone) 876 kg/m³,

and 0.12 wt.% hydrophilic resin as above had initial, and 60-, 90, and 120-min slump an air content 17.7 and 4.9, 19.3 and 5.2, 18.5 and 5.1, and 17.8 cm and 4.8%, and 28-day condensation strength 352 kg/cm² and beginning and ending setting time 5:25 and 7 h and 18 min, vs. 18.2 and 4.8, 16.8 and 4.9, 14.2 and 4.6, and 10.4 and 4.2, and 338 and 5:24 and 7:19, resp.

ST copolymer dispersant cement concrete; NK ester M 9G 23G methacrylic acid copolymer; hydroxyethyl methacrylate copolymer; crosslinking agent Denacol EX acrylic copolymer; acrylic copolymer sodium salt dispersant; ethylene oxide propylene oxide copolymer; Blenmer 70PEP 350B copolymer; methoxypolyethyleneglycol methacrylate copolymer; Denacol EX 202 611 701 721 810 841 861; acrylamidomethylpropanesulfonic acid copolymer; sulfoethylmethacrylate acrylic acid copolymer; sulfopropoxyethyleneglycol acrylate copolymer; Kayarad R 526 Manda HX 202 copolymer; formaldehyde naphthalenesulfonate dispersant; lignosulfonic acid sodium salt dispersant; dimethylaminoethyl methacrylate copolymer; polyethyleneoxide monoallyl ether copolymer; maleic acid copolymer Denacol 830; ethyleneimine ethylene copolymer; styrenesulfonate olefin copolymer; vinylsulfonic acid copolymer; diethylaminoethylmethacrylamide copolymer; DA 721 sulfoethylmethacrylate copolymer; DM 832 copolymer dispersant

IT Epoxy resins, preparation
Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(acrylic, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Polyoxyalkylenes, preparation
Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(acrylic-epoxy, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Epoxy resins, preparation
Epoxy resins, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(acrylic-polyoxyalkylene-, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(allyl group-contg., polymers with Denacol EX 202 and maleic acid, sodium salts, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Cement (construction material)
(crosslinked acrylic copolymer dispersants for)

IT Concrete
(crosslinked acrylic copolymer dispersants for cement in)

IT Dispersing agents
Plasticizers
(crosslinked acrylic copolymer dispersants; manuf. of, for concrete, for slump loss prevention)

IT Polyoxyalkylenes, preparation
Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(epoxy, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Epoxy resins, preparation
Epoxy resins, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(polyoxyalkylene-, dispersants, manuf. of; for concrete, for slump loss prevention)

IT 110-16-7DP, Maleic acid, polymers with Denacol EX-202 and polyalkylene glycol monoallyl ethers, sodium salts 2867-47-2DP, N,N-Dimethylaminoethyl methacrylate, quaternized, polymers with Denacol EX-721 and sodium acrylate 7446-81-3DP, Sodium acrylate, polymers with Denacol EX-721 and quaternized dimethylaminoethyl methacrylate 37099-12-0DP, Denacol EX-721, polymers with quaternized dimethylaminoethyl methacrylate and sodium acrylate 54590-60-2DP, Denacol EX-202, polymers with maleic acid and polyalkylene glycol monoallyl ethers, sodium salts 80833-82-5P, Acrylic acid-Denacol EX-841 copolymer sodium salt 136673-67-1P, Denacol EX-721-methacrylic acid-polyethyleneglycol polypropyleneglycol methacrylate copolymer 137112-16-4P, Acrylic acid-ethyleneimine-Denacol EX-202-sodium acrylate copolymer 137112-17-5P, Denacol EX-202-ethyleneimine-methacrylic acid copolymer 137112-19-7P, Denacol EX-721-ethyleneimine-maleic anhydride-styrene copolymer 137112-2-7-7P, Denacol EX-861-methacrylic acid-polyethyleneglycol

polypropyleneglycol methacrylate copolymer 137213-43-5P, Denacol
EX-202-polyethyleneglycol monoallyl ether-sodium acrylate copolymer
218956-35-5P 218956-37-7P 218956-39-9P 218956-41-3P 218956-43-5P
218956-45-7P 218956-47-9P 218956-49-1P 218956-51-5P 218956-53-7P
218956-55-9P 218956-57-1P 218956-59-3P 218956-61-7P 218956-63-9P
218956-65-1P 218956-67-3P 218956-69-5P 218956-71-9P 218956-73-1P
218956-75-3P 218956-77-5P 218956-78-6P 218956-79-7P 218956-82-2P
218956-83-3P 218956-89-9P, Denacol EX-202-polyethyleneglycol monoallyl ether-sodium methacrylate copolymer 218956-91-3P, Denacol
EX-830-polyethyleneglycol monoallyl ether-sodium methacrylate copolymer
218956-97-9P 218957-02-9P 218957-05-2P 218957-08-5P 218957-11-0P
218957-14-3P 218957-17-6P 218957-19-8P 218957-20-1P 218957-22-3P
218957-24-5P 218957-26-7P 218957-28-9P 219316-95-7P 219320-31-7P
219320-37-3P 219320-39-5P 219320-40-8P 219478-34-9P

RL: IMF (Industrial manufacture); PREP (Preparation)

(dispersant, manuf. of; for concrete, for slump loss prevention)

IT 8061-51-6, Sodium lignosulfonate 9008-63-3, Formaldehyde-sodium naphthalenesulfonate copolymer
RL: NUU (Other use, unclassified); USES (Uses)
(dispersants contg. crosslinked acrylic polymers and; for concrete, for slump loss prevention)

RE.CNT 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD

- (1) Anon; DE 1948755 1970 CAPLUS
- (2) Anon; FR 2377421 1978 CAPLUS
- (3) Anon; JP 54139929 1979 CAPLUS
- (4) Anon; JP 5452196 1979
- (5) Anon; FR 2525121 1983 CAPLUS
- (6) Anon; JP 60161365 1985 CAPLUS
- (7) Anon; JP 6016851 1985
- (8) Anon; EP 0240586 1986 CAPLUS
- (9) Anon; EP 0256144 1986 CAPLUS
- (10) Anon; JP 6131497 1986
- (11) Anon; JP 6131498 1986
- (12) Anon; JP 62119147 1987 CAPLUS
- (13) Anon; JP 62216950 1987 CAPLUS
- (14) Anon; JP 62241855 1987 CAPLUS
- (15) Anon; JP 62292664 1987 CAPLUS
- (16) Anon; JP 6230648 1987
- (17) Anon; EP 0291590 A 1988 CAPLUS
- (18) Anon; JP 63162562 1988 CAPLUS
- (19) Anon; JP 63291840 1988 CAPLUS
- (20) Anon; JP 63305199 1988 CAPLUS
- (21) Anon; JP 63305200 1988 CAPLUS
- (22) Anon; EP 0377448 1990 CAPLUS
- (23) Anon; Polymer Preprints 1989, V38(3)
- (24) Boeckh; US 4980088 1990 CAPLUS
- (25) Dammann; US 4338239 1982 CAPLUS
- (26) Emmons; US 4120839 1978 CAPLUS
- (27) Herron; US 5183707 1993 CAPLUS
- (28) Hsu; US 4758641 1988 CAPLUS
- (29) Ito; US 4743301 1988 CAPLUS
- (30) Khoshdel; US 5159041 1992 CAPLUS
- (31) Patzschke; US 4857580 1989 CAPLUS
- (32) Pettit; US 4727111 1988 CAPLUS
- (33) Seelmann-Eggbert; US 5104951 1992 CAPLUS
- (34) Tahara; US 5298570 1994 CAPLUS
- (35) Tahara; US 5476885 1995 CAPLUS
- (36) Tonge; US 4764554 1988 CAPLUS
- (37) Tsubakimoto; US 4666983 1987 CAPLUS
- (38) Tsubakimoto; US 4870120 1989 CAPLUS
- (39) Vaughn; US 3687909 1972 CAPLUS
- (40) Yamaguchi; US 5064563 1991 CAPLUS
- (41) Yamaguchi; US 5135677 1992 CAPLUS

L1 ANSWER 3 OF 6 REGISTRY COPYRIGHT 2006 ACS on STN

RN 149011-48-3 REGISTRY

ED Entered STN: 30 Jul 1993

CN Chitosan, polymer with .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)poly(oxy-1,2-ethanediyl) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Poly(oxy-1,2-ethanediyl), .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)-, polymer with chitosan (9CI)

OTHER NAMES:

CN ***Chitosan-Denacol EX 841 copolymer***
 CN Chitosan-nonaethylene glycol diglycidyl ether copolymer
 DR 388603-21-2
 MF ((C2 H4 O)n C6 H10 O3 . Unspecified)x
 CI PMS
 PCT Epoxy resin, Manual component, Polyether, Polyether
 SR CA
 LC STN Files: CA, CAPLUS, TOXCENTER, USPATFULL
 DT.CA CAplus document type: Journal; Patent
 RL.P Roles from patents: BIOL (Biological study); PREP (Preparation); USES (Uses)
 RL.NP Roles from non-patents: PREP (Preparation); PROC (Process); PRP (Properties); USES (Uses)

Ring System Data

| Elemental Analysis | Elemental Sequence | Size of the Rings | Ring System Formula | Ring Identifier | RID Occurrence Count |
|--------------------|--------------------|-------------------|---------------------|-----------------|----------------------|
| EA | ES | SZ | RF | RID | |
| C2O | OC2 | 3 | C2O | 1.30.1 | 2 in CM
1 |

CM 1

CRN 26403-72-5
 CMF (C2 H4 O)n C6 H10 O3
 CCI PMS

/ Structure 8 in file .gra /

CM 2

CRN 9012-76-4
 CMF Unspecified
 CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 8 REFERENCES IN FILE CA (1907 TO DATE)
 8 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 136:406913 CA
 TI Method for restoring a damaged or degenerated intervertebral disk
 IN Desrosiers, Eric Andre; Chenite, Abdellatif; Berrada, Mohammed; Chaput, Cyril
 PA Bio Syntech Canada Inc., Can.
 SO PCT Int. Appl., 46 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM A61L027-00
 CC 63-7 (Pharmaceuticals)
 FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|---------------|---|----------|-----------------|----------|
| PI | WO 2002040070 | A2 | 20020523 | WO 2001-CA1623 | 20011115 |
| | WO 2002040070 | A3 | 20021003 | | |
| | W: | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, US, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM | | | |
| | RW: | GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,
BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG | | | |

| | | | |
|---------------|-------------|-----------------|----------|
| CA 2429168 | AA 20020523 | CA 2001-2429168 | 20011115 |
| AU 2002021370 | A5 20020527 | AU 2002-21370 | 20011115 |
| US 2004091540 | A1 20040513 | US 2003-416947 | 20031215 |

PRAI US 2000-248226P 20001115
US 2000-248568P 20001116
WO 2001-CA1623 20011115

AB The present invention relates to a minimally-invasive method for restoring a damaged or degenerated intervertebral disk at an early stage. The method comprises the step of administering an injectable in situ setting formulation in the nucleus pulposus of the damaged or degenerated disk of a patient. The formulation once injected combines with nucleus matters and host cells, and becomes viscous or gels in situ within the annulus fibrosus of the disk for increasing the thickness and vol. of the damaged or degenerated disk. The formulation is retained within the disk for providing restoration of the damaged or degenerated disk. An acidic soln. made of a water/acetic acid was prep'd. for all expts. The pH of this acidic soln. was adjusted to 4.0. High mol. wt. chitosan powder was added and dissolved in a vol. of the acidic soln. so as to produce chitosan solns. having chitosan proportions ranging from 0.5 to 2.0%. Glycerophosphate was added to the chitosan solns. and induced a pH increase. Chitosan and .beta.-glycerophosphate components individually influenced the pH increase within the aq. solns., and consequently influenced the sol to gel transition.

ST intervertebral disk degeneration chitosan

IT Prosthetic materials and Prosthetics

(bioactive glass; method for restoring damaged or degenerated intervertebral disk)

IT Drug delivery systems

(gels; method for restoring damaged or degenerated intervertebral disk)

IT Drug delivery systems

(granules; method for restoring damaged or degenerated intervertebral disk)

IT Polyesters, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(hydroxycarboxylic acid-based; method for restoring damaged or degenerated intervertebral disk)

IT Drug delivery systems

(injections; method for restoring damaged or degenerated intervertebral disk)

IT Spinal column, disease

(intervertebral disk hernia; method for restoring damaged or degenerated intervertebral disk)

IT Spinal column

(intervertebral disk; method for restoring damaged or degenerated intervertebral disk)

IT Monosaccharides

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(ketoses, monophosphate esters, salts; method for restoring damaged or degenerated intervertebral disk)

IT Polyesters, biological studies

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(lactic acid-based; method for restoring damaged or degenerated intervertebral disk)

IT Analgesics

Anti-inflammatory agents

Chondrocyte

Crosslinking

Gelation

Human

Sol-gel transition

Solvent effect

Stem cell

Viscosity

(method for restoring damaged or degenerated intervertebral disk)

IT Collagens, biological studies

Cytokines

Fatty acids, biological studies

Gelatins, biological studies

Growth factors, animal

Peptides, biological studies

Polyanhydrides

Polycarbonates, biological studies

Polyesters, biological studies
 Polymers, biological studies
 Polyoxyalkylenes, biological studies
 Polysaccharides, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (method for restoring damaged or degenerated intervertebral disk)
 IT Drug delivery systems
 (microparticles; method for restoring damaged or degenerated
 intervertebral disk)
 IT Drug delivery systems
 (microspheres; method for restoring damaged or degenerated
 intervertebral disk)
 IT Polyethers, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (ortho ester group-contg.; method for restoring damaged or degenerated
 intervertebral disk)
 IT Polymers, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (water-sol.; method for restoring damaged or degenerated intervertebral
 disk)
 IT 56-81-5, Glycerol, uses 64-17-5, Ethanol, uses 102-76-1, Triacetin
 RL: NUU (Other use, unclassified); USES (Uses)
 (method for restoring damaged or degenerated intervertebral disk)
 IT 78274-32-5 92451-01-9 135649-01-3
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (method for restoring damaged or degenerated intervertebral disk)
 IT 9004-74-4, MPEG
 RL: RCT (Reactant); THU (Therapeutic use); BIOL (Biological study); RACT
 (Reactant or reagent); USES (Uses)
 (method for restoring damaged or degenerated intervertebral disk)
 IT 126683-27-0P 135649-01-3DP, reaction product with chitosan
 149011-48-3P
 RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological
 study); PREP (Preparation); USES (Uses)
 (method for restoring damaged or degenerated intervertebral disk)
 IT 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid,
 biological studies 112-80-1, Oleic acid, biological studies 373-49-9,
 Palmitoleic acid 471-34-1, Calcium carbonate, biological studies
 544-63-8, Myristic acid, biological studies 693-72-1, Vaccenic acid
 926-43-2D, salts 4220-97-7D, salts 9004-34-6, Cellulose, biological
 studies 9004-61-9, Hyaluronic acid 9004-62-0, Hydroxyethyl cellulose
 9004-65-3, HPMC 9004-67-5, Methyl cellulose 9007-28-7, Chondroitin
 sulfate 9012-76-4, Chitosan 9012-76-4D, Chitosan, salts with
 glucose-1-glycerophosphate and fructose-6-glycerophosphate 10103-46-5,
 Calcium phosphate 17181-54-3D, salts 17989-41-2D, salts 25322-68-3,
 Polyethylene glycol 25680-11-9D, salts 26009-03-0, Poly(glycolic acid)
 26023-30-3, Poly[oxy(1-methyl-2-oxo-1,2-ethanediyl)] 26100-51-6,
 Poly(lactic acid) 26124-68-5, Poly(glycolic acid) 27120-62-3D, salts
 29010-57-9D, salts 29033-02-1D, salts 29691-42-7D, salts
 29758-38-1D, salts 34346-01-5, Glycolic acid-lactic acid copolymer
 34922-55-9D, salts 36119-15-0D, salts 37647-43-1D, salts
 39698-83-4D, salts 40529-38-2D, salts 47341-71-9D, salts
 64913-51-5D, salts 73714-92-8D, salts 99632-97-0D, salts 105182-27-2
 D, salts 136291-32-2D, salts 136291-38-8D, salts 136332-80-4D, salts
 136332-86-0D, salts 220715-54-8D, salts 220715-55-9D, salts
 220715-56-0D, salts 220715-57-1D, salts 220715-60-6D, salts
 220715-61-7D, salts 220715-62-8D, salts 220715-63-9D, salts
 220715-65-1D, salts 220715-66-2D, salts 428861-86-3 428861-87-4
 429660-94-6D, salts 429660-95-7D, salts 429660-96-8D, salts
 429660-97-9D, salts 429660-98-0D, salts 429660-99-1D, salts
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (method for restoring damaged or degenerated intervertebral disk)

REFERENCE 2

AN 136:104099 CA
 TI Modification of chitin-chitosan-cellulose compositions with crosslinking
 agents
 AU Rogovina, S. Z.; Akopova, T. A.; Vikhoreva, G. A.; Zelenetskii, S. N.;
 Gorbacheva, I. N.; Suslova, N. V.
 CS Inst. Khim. Fiz. im. N. N. Semenova, Ross. Akad. Nauk, Moscow, 117977,
 Russia

SO Vysokomolekulyarnye Soedineniya, Seriya A i Seriya B (2001), 43(9),
1582-1585
CODEN: VSSBEE; ISSN: 1023-3091
PB MAIK Nauka/Interperiodica Publishing
DT Journal
LA Russian
CC 44-5 (Industrial Carbohydrates)
AB Solid-phase deacetylation of chitin in the presence of cellulose and crosslinking agent, diglycidyl ether of oligo(ethylene oxide) under shear deformation was studied. Cellulose-chitosan compn. insol. in alkali and acidic aq. solns. were obtained. The resulting products were investigated by potentiometric titrn., elemental anal., and IR spectroscopy. The presence of cellulose in the reaction mixt. favors an increase in both the system homogeneity and the degree of chitin deacetylation.
ST solid state deacetylation chitin chitosan crosslinked cellulose;
IT Deacetylation
 (solid-phase; modification of chitin-chitosan-cellulose compns. with crosslinking agents)
IT 149011-48-3P, Chitosan-nonaethylene glycol diglycidyl ether copolymer
RL: SPN (Synthetic preparation); PREP (Preparation)
 (crosslinking agent; modification of chitin-chitosan-cellulose compns. with crosslinking agents)
IT 9004-34-6, Cellulose, properties
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
 (modification of chitin-chitosan-cellulose compns. with crosslinking agents)
IT 1398-61-4DP, Chitin, deacetylated
RL: POF (Polymer in formulation); SPN (Synthetic preparation); PREP
 (Preparation); USES (Uses)
 (modification of chitin-chitosan-cellulose compns. with crosslinking agents)

REFERENCE 3

AN 135:372445 CA
TI Solid state production of cellulose-chitosan blends and their modification with the diglycidyl ether of oligo(ethylene oxide)
AU Rogovina, S. Z.; Akopova, T. A.; Vikhoreva, G. A.; Gorbacheva, I. N.
CS Semenov Institute of Chemical Physics, Russian Academy of Sciences,
Moscow, 117977, Russia
SO Polymer Degradation and Stability (2001), 73(3), 557-560
CODEN: PDSTDW; ISSN: 0141-3910
PB Elsevier Science Ltd.
DT Journal
LA English
CC 37-6 (Plastics Manufacture and Processing)
Section cross-reference(s): 43, 44
AB Blends of naturally occurring polysaccharides, i.e., cellulose and chitosan, were obtained in the solid phase under high pressure and shear deformation. The IR-spectra indicate that the system of hydrogen bonds between hydroxyl and amino groups of the polysaccharides changed, indicating that blending occurs at the mol. level. A mechanism is proposed for formation of cellulose-chitosan blends in the presence of diglycidyl ether of oligo(ethylene oxide) diepoxide as crosslinking agent. The crosslinking agent reacts predominantly at the amino groups of chitosan with formation of a three-dimensional network, cellulose macromols. being located within and partially bound with this network by the crosslinks. The formation of the network structures results in insol. of cellulose-chitosan compns. in acidic and alk. aq. media.
ST cellulose chitosan blend hydrogen bond network structure; diepoxide crosslinker cellulose chitosan blend network solv
IT Crosslinking
Hydrogen bond
Mixing
Polymer networks
Solubility
 (prepn. of hydrogen-bonded cellulose-chitosan blends and crosslinking with PEO-diglycidyl ether to obtain 3D insol. networks)
IT Polymer blends
RL: PRP (Properties)
 (prepn. of hydrogen-bonded cellulose-chitosan blends and crosslinking

IT with PEO-diglycidyl ether to obtain 3D insol. networks)
9004-34-6, Cellulose, properties 9012-76-4, Chitosan
RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT
(Reactant); PROC (Process); RACT (Reactant or reagent)
(prep. of hydrogen-bonded cellulose-chitosan blends and crosslinking
with PEO-diglycidyl ether to obtain 3D insol. networks)
IT 149011-48-3P 192131-37-6P 357334-03-3P
RL: PNU (Preparation, unclassified); PRP (Properties); PREP (Preparation)
(prep. of hydrogen-bonded cellulose-chitosan blends and crosslinking
with PEO-diglycidyl ether to obtain 3D insol. networks)
RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD
(1) Bikales, N; Cellulose and cellulose derivatives 1971
(2) Nakanishi, K; Infrared absorption spectroscopy 1962
(3) Rogovina, S; Polym Sci Ser A 1994, V36(4), P487
(4) Zhbankov, R; Fizika tsellyulozy' ee proiyodnykh 1983

REFERENCE 4

AN 135:197038 CA
TI Study of cellulose-chitosan composites. Solid-phase modification,
rheology, films
AU Vikhoreva, G. A.; Kil'deeva, N. R.; Gorbacheva, I. N.; Shablykova, E. A.;
Rogovina, S. Z.; Akopova, T. A.
CS Moscow State Textile University, Russia
SO Fibre Chemistry (Translation of Khimicheskie Volokna) (2000), 32(6),
402-406
CODEN: FICYAP; ISSN: 0015-0541
PB Consultants Bureau
DT Journal
LA English
CC 43-3 (Cellulose, Lignin, Paper, and Other Wood Products)
Section cross-reference(s): 38, 44
AB A method is proposed for processing of exptl. data which would allow
adequately describing the rheol. behavior of systems whose disperse phase
contains swelling particles of anisometric shape. Polysaccharide films
with a high degree of swelling were obtained from dispersions of powd.
cellulose in chitosan solns. The high sorption capacity of the films,
good adhesion to skin, lack of toxicity, and possibility of immobilizing
drugs in them allow considering these films as promising materials for
healing wounds and burns.
ST polyethylene oxide diglycidyl ether crosslinking cellulose chitosan
swelling sorption
IT Sorption
(Cu²⁺; solid-phase modification, rheol., films of cellulose-chitosan
composites)
IT Size distributions
(cellulose particles; solid-phase modification, rheol., films of
cellulose-chitosan composites)
IT Diffusion activation energy
Elongation, mechanical
Shear stress
Swelling, physical
Tensile strength
Viscosity
(solid-phase modification, rheol., films of cellulose-chitosan
composites)
IT Polysaccharides, processes
RL: PEP (Physical, engineering or chemical process); PRP (Properties); SPN
(Synthetic preparation); PREP (Preparation); PROC (Process)
(solid-phase modification, rheol., films of cellulose-chitosan
composites)
IT 149011-48-3P 192131-37-6P 357334-03-3P
RL: PEP (Physical, engineering or chemical process); PRP (Properties); SPN
(Synthetic preparation); PREP (Preparation); PROC (Process)
(solid-phase modification, rheol., films of cellulose-chitosan
composites)
RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
(1) Akopova, T; Vysokomolek Soedin 1995, V37B(10), P1797
(2) Kuleznev, V; Polymer Blends [in Russian] 1980, P197
(3) Lipatov, Y; Physicochemical Principles of Filling of Polymers [in Russian]
1991
(4) Mills, N; J Appl Polym Sci 1975, V15, P2791

- (5) Rogovina, S; J Appl Polym Sci 1998, V70, P927 CAPLUS
 (6) Sagalaev, G; Fillers for Polymeric Materials [in Russian] 1969, P18
 (7) Vikhoreva, G; Vysokomolek Soedin 1996, V38B(10), P1731

REFERENCE 5

AN 124:263322 CA
 TI Finishing polynosic rayon fabrics for antibacterial odor-absorbing prints with improved print brightness on the nonprinted side
 IN Yabe, Hiroaki; Yoshikawa, Kingo; Okabayashi, Kenichi; Okuda, Isamu
 PA Fuji Spinning Co Ltd, Japan
 SO Jpn. Kokai Tokkyo Koho, 24 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM D06M015-55
 ICS D06M015-03
 CC 40-6 (Textiles and Fibers)
 FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE | |
|----------------|---|----------|-----------------|----------|--|
| PI JP 08027675 | A2 | 19960130 | JP 1994-183860 | 19940713 | |
| | JP 2800094 | B2 | 19980921 | | |
| PRAI | JP 1994-183860 | 19940713 | | | |
| AB | In the title process, fabrics of chitosan-coated polynosic rayon or chitosan-contg. polynosic rayon are treated with epoxy compds. as alkylating agents or crosslinking agents. The prints are useful for handkerchiefs and scurfs. A woven fabric polynosic rayon was immersed in an aq. soln. contg. chitosan acetate, squeezed, dried, treated with a coagulating soln., washed, dried, treated with an aq. soln. contg. Denacol EX -841 for 30 s, squeezed to pickup 80%, heat treated 2 min under steam at 100.degree., printed, heat treated under steam for 10 min at 102-103.degree., washed, and dried to give a printed handkerchief exhibiting good print brightness on the back side and good antibacterial and odor absorption properties. | | | | |
| ST | polynosic rayon print antibacterial; handkerchief antibacterial polynosic rayon print; scurf antibacterial polynosic rayon print; chitosan antibacterial finish polynosic rayon print; odor absorption polynosic rayon print; epoxy resin finish antibacterial rayon print | | | | |
| IT | Odor and Odorous substances
(absorbents, chitosan; for finishing polynosic rayon fabrics for antibacterial odor-absorbing prints) | | | | |
| IT | Bactericides, Disinfectants, and Antiseptics
(chitosan; for finishing polynosic rayon fabrics for antibacterial odor-absorbing prints) | | | | |
| IT | Rayon, uses
RL: PEP (Physical, engineering or chemical process); PRP (Properties); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
(fabrics; finishing for antibacterial prints with improved print brightness on the nonprinted side) | | | | |
| IT | Epoxy resins, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(finishing agents; for finishing polynosic rayon fabrics for antibacterial prints with improved print brightness on the nonprinted side) | | | | |
| IT | Wearing apparel
(handkerchiefs or scurfs; finishing polynosic rayon fabrics for antibacterial odor-absorbing prints with improved print brightness on the nonprinted side) | | | | |
| IT | Textile printing
(on polynosic rayon fabrics; finishing for antibacterial prints with improved print brightness on the nonprinted side for) | | | | |
| IT | 149011-48-3 175342-78-6 175414-54-7
RL: TEM (Technical or engineered material use); USES (Uses)
(finish; for finishing polynosic rayon fabrics for antibacterial prints with improved print brightness on the nonprinted side) | | | | |

REFERENCE 6

AN 122:83560 CA
 TI Breakthrough curve for adsorption of acid dye on crosslinked chitosan fiber

AU Yoshida, Hiroyuki; Okamoto, Akihide; Yamasaki, Haruo; Kataoka, Takeshi
 CS Dep. Chem. Eng., Univ. Osaka Prefect., Sakai, 593, Japan
 SO Studies in Surface Science and Catalysis (1993), 80(Fundamentals of Adsorption), 767-74
 CODEN: SSCTDM; ISSN: 0167-2991
 DT Journal
 LA English
 CC 40-6 (Textiles and Fibers)
 AB 1He recovery of univalent anionic dye by adsorption on crosslinked chitosan fiber, which was developed, appeared feasible tech. Equil. isotherms for adsorption of Acid Orange II (acid dye) on crosslinked chitosan fibers were correlated by B.E.T. equation for finite no. of layers at pH 6.9 and were almost rectangular at pH .ltoreq. 4. The satn. capacities of the dye adsorbed on ChF-A and ChF-B at pH .ltoreq. 4 were 2 and 1.6 times larger than activated carbon fiber, resp. When pH .ltoreq. 4, the breakthrough curve was independent of pH of the soln. The exptl. breakthrough curves for pH .ltoreq. 4 were well correlated by the anal. soln. for rectangular isotherm system.
 ST crosslinked chitosan fiber dye removal; acid dye removal textile wastewater
 IT Synthetic fibers
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (chitosan-Denacol EX841; removal of acid dyes from textile industry wastewaters by adsorption on crosslinked chitosan fibers)
 IT Adsorption
 Wastewater
 (removal of acid dyes from textile industry wastewaters by adsorption on crosslinked chitosan fibers)
 IT Dyes
 (acid, removal of acid dyes from textile industry wastewaters by adsorption on crosslinked chitosan fibers)
 IT 149011-48-3P, Chitosan-Denacol EX 841 copolymer
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (removal of acid dyes from textile industry wastewaters by adsorption on crosslinked chitosan fibers)
 IT 633-96-5, Acid orange II
 RL: REM (Removal or disposal); PROC (Process)
 (removal of acid dyes from textile industry wastewaters by adsorption on crosslinked chitosan fibers)

REFERENCE 7

AN 121:181545 CA
 TI Chitosan, poly(vinyl alcohol) or alginic acid-based semipermeable membranes and their manufacture
 IN Mizusawa, Atsushi
 PA Daikin Ind Ltd, Japan
 SO Jpn. Kokai Tokkyo Koho, 8 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM G01N027-40
 ICS C08G059-40; C08L005-08; C08L029-04; C12Q001-00; G01N027-327
 CC 38-3 (Plastics Fabrication and Uses)
 FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|----------------|------|----------|-----------------|----------|
| PI | JP 06102229 | A2 | 19940415 | JP 1992-275453 | 19920918 |
| PRAI | JP 1992-275453 | | 19920918 | | |

AB The membranes, with good strength, are prep'd. by crosslinking polyethylene glycol diglycidyl ether (I) with polyvinyl alc., alginic acid, and/or chitosan. A membrane was prep'd. by heating a chitosan soln. with I and casting.
 ST polyethylene glycol glycidyl ether copolymer membrane; chitosan copolymer semipermeable membrane; vinyl alc copolymer semipermeable membrane; alginic acid copolymer semipermeable membrane
 IT Molding of plastics and rubbers
 (casting, of polyethylene glycol glycidyl ether copolymer, for semipermeable membranes)
 IT Membranes

(semipermeable, polyethylene glycol glycidyl ether copolymer, prepn. of)

IT 557-75-5DP, Vinyl alcohol, crosslinked 26403-72-5DP, Polyethylene glycol diglycidyl ether, crosslinked 149011-48-3P 157723-27-8P
RL: PREP (Preparation)
(semipermeable membranes, prepn. of)

REFERENCE 8

AN 119:74584 CA
TI Adsorption of acid dye on crosslinked chitosan fibers: equilibria
AU Yoshida, Hiroyuki; Okamoto, Akihide; Kataoka, Takeshi
CS Dep. Chem. Eng., Univ. Osaka Prefect., Sakai, 593, Japan
SO Chemical Engineering Science (1993), 48(12), 2267-72
CODEN: CESCAC; ISSN: 0009-2509

DT Journal

LA English

CC 41-3 (Dyes, Organic Pigments, Fluorescent Brighteners, and Photographic Sensitizers)

Section cross-reference(s): 44

AB Two different Denacol EX841-crosslinked chitosan fibers (A and B) were developed for use as adsorbents for the recovery of acid dyes. The concn. of NH₂ groups in the adsorbent phase was 3-5 times larger than that of com. weak-base ion exchangers and decreased with increasing degree of crosslinking. For pH = 6.9, the exptl. equil. isotherms for adsorption of Acid Orange II were correlated by the BET equation for a finite no. of layers. The max. amts. of the dye adsorbed on noncrosslinked chitosan fiber, A, and B were about 10, 6, and 3.2 mol/kg, resp., for initial dye liq.-phase concn. (C₀) 1 mol/m³ and 298 K. These values were much larger than the corresponding values for activated carbon fiber. The amt. of the dye adsorbed increased with increasing C₀ and decreased with increasing temp. The presence of NaCl also increased the amt. of the dye adsorbed. For pH \leq 4, the selectivity of adsorption of the dye was extremely high and the isotherm was almost rectangular. The satn. capacities of the dye on A and B at pH \leq 4 were 4.8 and 3.5 mol/kg, resp., almost the same as the concns. of the NH₂ groups in the solid phase of A and B, resp.

ST acid dye chitosan adsorption

IT Adsorption

(of acid azo dyes, on chitosan fibers)

IT Fibrous materials

(adsorbents, crosslinked chitosan, for acid azo dyes)

IT Synthetic fibers, polymeric

RL: USES (Uses)

(chitosan, adsorbents, for acid azo dyes)

IT Adsorbents

(fibrous, crosslinked chitosan, for acid azo dyes)

IT 633-96-5, Acid Orange II

RL: PEP (Physical, engineering or chemical process); PROC (Process)

(adsorption of, on crosslinked chitosan fibers)

IT 149011-48-3

RL: USES (Uses)

(fiber, acid azo dye adsorption on)

L1 ANSWER 4 OF 6 REGISTRY COPYRIGHT 2006 ACS on STN

RN 123011-96-1 REGISTRY

ED Entered STN: 06 Oct 1989

CN Formaldehyde, polymer with .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)poly(oxy-1,2-ethanediyl) and phenol (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Phenol, polymer with formaldehyde and .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)poly(oxy-1,2-ethanediyl) (9CI)

CN Poly(oxy-1,2-ethanediyl), .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)-, polymer with formaldehyde and phenol (9CI)

OTHER NAMES:

CN ***Denacol EX 841-formaldehyde-phenol copolymer***

MF (C₆ H₆ O . (C₂ H₄ O)_n C₆ H₁₀ O₃ . C H₂ O)x

CI PMS

PCT Epoxy resin, Phenolic resin, Polyether

SR CA

LC STN Files: CA, CAPLUS

DT.CA CAPplus document type: Patent

RL.P Roles from patents: PREP (Preparation); PRP (Properties); USES (Uses)

Ring System Data

| Elemental Analysis | Elemental Sequence | Size of the Rings | Ring System Formula | Ring Identifier RID | RID Occurrence Count |
|--------------------|--------------------|-------------------|---------------------|---------------------|----------------------|
| EA | ES | SZ | RF | RID | |
| C6 | C6 | 6 | C6 | 46.150.18 | 1 in CM
2 |
| C2O | OC2 | 3 | C2O | 1.30.1 | 2 in CM
1 |

CM 1

CRN 26403-72-5
CMF (C2 H4 O)n C6 H10 O3
CCI PMS

/ Structure 9 in file .gra /

CM 2

CRN 108-95-2
CMF C6 H6 O

/ Structure 10 in file .gra /

CM 3

CRN 50-00-0
CMF C H2 O

/ Structure 11 in file .gra /

3 REFERENCES IN FILE CA (1907 TO DATE)
3 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 142:377473 CA
TI Modified phenolic resins and their manufacture for shell molds

IN Saneto, Toru

PA Sumitomo Bakelite Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM B22C001-22

ICS C08G008-28

CC 56-2 (Nonferrous Metals and Alloys)
Section cross-reference(s): 38

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

| | | | | |
|------------------|----|----------|----------------|----------|
| PI JP 2005095931 | A2 | 20050414 | JP 2003-332784 | 20030925 |
|------------------|----|----------|----------------|----------|

PRAI JP 2003-332784 20030925
AB The resins are manufd. by copolymerg. novolak phenolic resins having wt.-av. mol. wt. (Mw) 800-5000 with aliph. epoxy resins at reaction ratio 1-30 mol% so that epoxy groups of the epoxy resins are addn.-reacted to a part of phenolic OH groups of the phenolic resins. The molds made of resin-coated sand using the above resins have high cold strength and improved disintegration after casting metals.

ST epoxy resin modified phenolic resin shell mold; resin coated sand shell mold metal casting; aliph epoxy resin modified novolak phenolic resin manuf

IT Phenolic resins, preparation
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (epoxy, hexamethylenetetramine-crosslinked, mold; aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

IT Phenolic resins, preparation
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (epoxy; aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

IT Epoxy resins, preparation
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (phenolic, hexamethylenetetramine-crosslinked, mold; aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

IT Epoxy resins, preparation
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (phenolic; aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

IT Molding sand
 (resin-coated; aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

IT Molds (forms)
 (shell; aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

IT 92717-76-5P, Denacol EX 211-formaldehyde-phenol copolymer 92717-77-6P,
 Denacol EX 212-formaldehyde-phenol copolymer 123011-96-1P, Denacol EX
 841-formaldehyde-phenol copolymer 194866-40-5P, Denacol EX
 810-formaldehyde-phenol copolymer
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

IT 849660-69-1P 849660-70-4P 849660-71-5P 849660-72-6P
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (mold; aliph. epoxy resin-modified novolak phenolic resins and their manuf. for shell molds)

REFERENCE 2

AN 127:266524 CA
 TI Binder compositions for carbon dioxide-hardening molds with high strength
 IN Yoshida, Akira; Mizuno, Wataru
 PA Kao Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 15 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM B22C009-12
 ICS B22C001-22
 CC 56-2 (Nonferrous Metals and Alloys)
 Section cross-reference(s): 38

FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|--|------|----------|-----------------|----------|
| PI | JP 09206885 | A2 | 19970812 | JP 1996-15237 | 19960131 |
| | JP 3453469 | B2 | 20031006 | | |
| | CN 1171991 | A | 19980204 | CN 1997-110004 | 19970131 |
| | CN 1108207 | B | 20030514 | | |
| PRAI | JP 1996-15237 | | 19960131 | | |
| AB | Title binder compns. comprise (A) epoxy compds. 0.1-60, (B) alk. aq. solns. of phenolic resins 15-99.7, (C) crosslinking accelerators 0.1-20, and (D) silane coupling agents 0.1-10 parts in 100 parts of total. Resin kits contg. the binder compns. for CO ₂ -hardened molds, are also claimed. Molds are manufd. by kneading 100 parts refractory particles and 0.1-10 parts the binder compns. or the resin kits, followed by hardening of the kneaded materials with 0.1-30 parts CO ₂ in a mold. | | | | |
| ST | carbon dioxide hardening mold binder strength; epoxy phenolic resin binder | | | | |

mold; borax crosslinking accelerator epoxy phenolic resin; silane coupler
epoxy phenolic resin binder

IT Binders

Crosslinking catalysts

Molds (forms)

(epoxy phenolic resin binder compns. contg. boron compd. crosslinking
accelerators for carbon dioxide-hardening molds)

IT Sand

RL: PRP (Properties); TEM (Technical or engineered material use); USES
(Uses)

(hardening of; epoxy phenolic resin binder compns. contg. boron compd.
crosslinking accelerators for carbon dioxide-hardening molds)

IT Phenolic resins, preparation

RL: IMF (Industrial manufacture); POF (Polymer in formulation); PRP
(Properties); TEM (Technical or engineered material use); PREP
(Preparation); USES (Uses)

(polyglycidyl ethers, polymers; epoxy phenolic resin binder compns.
contg. boron compd. crosslinking accelerators for carbon
dioxide-hardening molds)

IT Phenolic resins, preparation

RL: IMF (Industrial manufacture); POF (Polymer in formulation); PRP
(Properties); TEM (Technical or engineered material use); PREP
(Preparation); USES (Uses)
(polymers with phenolic resin polyglycidyl ethers; epoxy phenolic resin
binder compns. contg. boron compd. crosslinking accelerators for carbon
dioxide-hardening molds)

IT Epoxides

RL: IMF (Industrial manufacture); POF (Polymer in formulation); PRP
(Properties); TEM (Technical or engineered material use); PREP
(Preparation); USES (Uses)
(polymers with phenolic resins; epoxy phenolic resin binder compns.
contg. boron compd. crosslinking accelerators for carbon
dioxide-hardening molds)

IT Cement (construction material)

(portland, binders contg.; epoxy phenolic resin binder compns. contg.
boron compd. crosslinking accelerators for carbon dioxide-hardening
molds)

IT 128801-08-1P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); PRP
(Properties); TEM (Technical or engineered material use); PREP
(Preparation); USES (Uses)

(binders contg.; epoxy phenolic resin binder compns. contg. boron
compd. crosslinking accelerators for carbon dioxide-hardening molds)

IT 139-12-8, Aluminum acetate 373-02-4, Nickel acetate 555-31-7,
Triisopropoxyaluminum 688-37-9, Aluminum oleate 1305-62-0, Calcium
hydroxide, uses 1309-42-8, Magnesium hydroxide 1344-28-1, Alumina,
uses 4180-12-5, Copper acetate 7646-85-7, Zinc chloride, uses
11138-49-1, Sodium aluminate 12604-53-4, Ferromanganese 12673-69-7,
Potassium titanate 14025-21-9, Disodium zinc EDTA 15086-27-8, Aluminum
phenolate 18917-91-4, Aluminum lactate 21645-51-2, Aluminum hydroxide,
uses 39322-04-8, Chromium potassium oxide 60328-44-1, Sodium zirconium
oxide 63465-09-8, Vanadium acetate

RL: MOA (Modifier or additive use); USES (Uses)

(binders contg.; epoxy phenolic resin binder compns. contg. boron
compd. crosslinking accelerators for carbon dioxide-hardening molds)

IT 1303-96-4, Borax

RL: CAT (Catalyst use); USES (Uses)

(crosslinking accelerators; epoxy phenolic resin binder compns. contg.
boron compd. crosslinking accelerators for carbon dioxide-hardening
molds)

IT 9003-35-4DP, Formaldehyde-phenol copolymer, polymers with phenolic resin
polyglycidyl ethers 25085-75-0DP, Bisphenol A-formaldehyde copolymer,
polymers with phenolic resin polyglycidyl ethers 25134-86-5P 30622-72-
1DP, Bisphenol A-formaldehyde-phenol copolymer, polymers with phenolic
resin polyglycidyl ethers 52736-36-4P, Bisphenol A diglycidyl
ether-formaldehyde-phenol copolymer 55340-95-9P 69453-32-3P
71212-53-8P 107087-88-7P 123011-96-1P 125395-70-2P 194866-38-1P
194866-39-2P 194866-40-5P 194866-41-6P 194866-43-8P 194866-46-1P
194866-48-3P 194866-50-7P 194866-53-0P 194866-56-3P 194866-60-9P
194866-63-2P 194866-65-4P 194866-67-6P 194866-69-8P 194866-71-2P
194866-73-4P 194866-74-5P 194866-75-6P 194866-76-7P 194866-77-8P
194866-78-9P 194866-79-0P 194866-80-3P 194866-81-4P 194866-82-5P

194866-83-6P 194866-84-7P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(epoxy phenolic resin binder compns. contg. boron compd. crosslinking accelerators for carbon dioxide-hardening molds)

IT 124-38-9, Carbon dioxide, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(epoxy phenolic resin binder compns. contg. boron compd. crosslinking accelerators for carbon dioxide-hardening molds)

IT 919-30-2, .gamma.-Aminopropyltriethoxysilane

RL: MOA (Modifier or additive use); USES (Uses)

(silane coupling agents, binders contg.; epoxy phenolic resin binder compns. contg. boron compd. crosslinking accelerators for carbon dioxide-hardening molds)

REFERENCE 3

AN 111:155047 CA

TI Glycidyl ether-modified phenolic resins

IN Kawamura, Nobuyuki

PA Matsushita Electric Works, Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM C08G008-28

CC 37-3 (Plastics Manufacture and Processing)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---------------------|------|----------|-----------------|----------|
| PI JP 01074212 | A2 | 19890320 | JP 1987-230515 | 19870914 |
| PRAI JP 1987-230515 | | 19870914 | | . |

AB The title resins are prep'd. with good flexibility. Heating PhOH 2545, 47% HCHO 1400, polyethylene glycol diglycidyl ether 1346 g, and oxalic acid 8.4 g at 105.degree. for 3 h and dehydrating in vacuo gave a copolymer, 50 parts of which was mixed with powd. wood 30, glass fibers 15, hexamine 4, and Zn stearate 1 part. Curing this compn. at 165.degree. for 2 min gave a product with flexural strength 13 kg/mm², flexural modulus 520 kg/mm², Charpy impact strength 5.6 kg-cm/cm², du Pont impact strength 25 kg-cm, and good crack resistance; vs. 12, 961, 2.6, 9, and poor, resp., for an unmodified phenolic resin.

ST phenolic resin blend glycidyl ether; crack resistance phenolic resin; polyoxyethylene glycidyl ether blend

IT 123011-96-1P

RL: PREP (Preparation)

(manuf. of, with good flexibility)

L1 ANSWER 5 OF 6 REGISTRY COPYRIGHT 2006 ACS on STN

RN 80833-82-5 REGISTRY

ED Entered STN: 16 Nov 1984

CN 2-Propenoic acid, polymer with .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)poly(oxy-1,2-ethanediyl), sodium salt (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Poly(oxy-1,2-ethanediyl), .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)-, polymer with 2-propenoic acid, sodium salt (9CI)

OTHER NAMES:

CN ***Acrylic acid-Denacol EX-841 copolymer sodium salt***

MF (C₃ H₄ O₂ . (C₂ H₄ O)_n C₆ H₁₀ O₃)_x . x Na

PCT Epoxy resin, Polyacrylic, Polyether

LC STN Files: CA, CAPLUS, USPATFULL

DT.CA CAplus document type: Patent

RL.P Roles from patents: PREP (Preparation); PRP (Properties); USES (Uses)

Ring System Data

| Elemental Analysis | Elemental Sequence | Size of the Rings | Ring System Formula | Ring Identifier | RID Occurrence Count |
|--------------------|--------------------|-------------------|---------------------|-----------------|----------------------|
| EA | ES | SZ | RF | RID | Count |
| C2O | OC2 | 3 | C2O | 1.30.1 | 2 in CM |

CM 1

CRN 80833-81-4
 CMF (C₃ H₄ O₂) . (C₂ H₄ O)_n C₆ H₁₀ O₃)_x
 CCI PMS

CM 2

CRN 26403-72-5
 CMF (C₂ H₄ O)_n C₆ H₁₀ O₃
 CCI PMS

/ Structure 12 in file .gra /

CM 3

CRN 79-10-7
 CMF C₃ H₄ O₂

/ Structure 13 in file .gra /

8 REFERENCES IN FILE CA (1907 TO DATE)
 8 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 141:72772 CA
 TI Water-blocking tapes for optical or electric cable
 IN Izutsu, Kaori; Takahara, Yutaka; Amako, Naotake; Ikegami, Koichi
 PA Awa Paper Mfg. Co., Ltd., Japan; Gohh Chemical Industry Co., Ltd.
 SO Jpn. Kokai Tokkyo Koho, 16 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM H01B007-282
 ICS C08J005-24; C09K003-10; H01B007-17; C08L033-00
 CC 38-3 (Plastics Fabrication and Uses)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------|------|----------|-----------------|----------|
| PI JP 2004192922 | A2 | 20040708 | JP 2002-358602 | 20021210 |

PRAI JP 2002-358602 20021210

AB The tapes comprise a (non)woven fabric and an impregnated crosslinked resin layer, where the resin is derived by partially neutralizing a (meth)acrylic acid monomer component, followed by polymn. or polymg. the monomer component first, followed by partial neutralization. A polyester nonwoven fabric was soaked in a compn. contg. polyacrylic acid Na salt and polyethylene glycol diglycidyl ether and crosslinked to give a highly water absorbent sheet.

ST water blocking tape optical elec cable; polyacrylic acid sodium salt water blocking tape

IT Materials

(tapes; water-blocking tapes for optical or elec. cable)

IT Absorbents

(water, tapes; water-blocking tapes for optical or elec. cable)

IT Electric cables

Optical cables

(water-blocking tapes for optical or elec. cable)

IT 80833-82-5P

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (water-absorbent resin; water-blocking tapes for optical or elec. cable)

IT 7631-86-9, Silica, uses 39290-68-1, Gohsefimer Z200

RL: TEM (Technical or engineered material use); USES (Uses)
 (water-blocking tapes for optical or elec. cable)

AN 139:324697 CA
 TI Adhesion of poly(carboxylic acid)-type compounds to fibers for washfast hydrophilic and temperature retention properties, by adhering mixtures comprising poly(carboxylic acid) compounds, polyfunctional group-containing crosslinking agents and binders to fibers and heat-treating the fibers and adhered materials therefrom

IN Yamagata, Tamiji
 PA Daiwa Chemical Industries Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM D06M015-263

ICS C08K005-29; C08L033-00; C08L035-00; C08L061-00; C08L061-28;
 C08L063-00; C08L101-00; D06M015-39; D06M015-423; D06M015-53;
 D06M015-564

CC 40-9 (Textiles and Fibers)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------|-------|----------|-----------------|----------|
| ----- | ----- | ----- | ----- | ----- |
| PI JP 2003301380 | A2 | 20031024 | JP 2002-134700 | 20020403 |

PRAI JP 2002-134700 20020403

AB The finished fibers are prep'd. by the steps comprising the steps of (a) adhering mixts. comprising poly(carboxylic acid) compds. (A), crosslinking agents (B) contg. polyfunctional groups, and binders and (b) heat-treating the fibers, or the finished fibers are prep'd. by the above steps using A compds. having one or whole portions of the carboxylic groups of A compds. substituted with metals, or the finished fibers are prep'd. by the above steps using .gt;req.1 type of compds. form melamine resins, glyoxal resins, blocked polyisocyanate derivs. and polyglycidyl derivs. as B crosslinking agents. A polyester fabric was immersed in an aq. compn. contg. poly(acrylic acid) 5, polyethylene glycol diglycidyl ether 0.5, and acrylic polymer binder 1% to pickup 100%, dried, heat-treated 1 min at 180.degree., and treated with an aq. soln. contg. 2 g/L NaOH for 20 min at 60.degree., and washed to give a fabric showing H2O content (temp. retention degree) 2.46% initially and 2.33% after 30 washings.

ST polyester fabric finish acrylic acid copolymer heat retention enhancement; textile finish acrylic acid copolymer heat retention property enhancement; hydrophilization fiber acrylic acid copolymer finish

IT Fabric finishing

Thermal insulators

(adhesion of poly(carboxylic acid) compds. to fibers for washfast hydrophilic and temp. retention properties, by adhering mixts. of poly(carboxylic acid) compds., polyfunctional crosslinking agents and binders to the fibers)

IT Fibers

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(adhesion of poly(carboxylic acid) compds. to fibers for washfast hydrophilic and temp. retention properties, by adhering mixts. of poly(carboxylic acid) compds., polyfunctional crosslinking agents and binders to the fibers)

IT Acrylic polymers, uses

Polyurethanes, uses

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(binders; adhesion of poly(carboxylic acid) compds. to fibers for washfast hydrophilic and temp. retention properties, by adhering mixts. of poly(carboxylic acid) compds., polyfunctional crosslinking agents and binders to the fibers)

IT Hydrophilicity

(enhancement of; adhesion of poly(carboxylic acid) compds. to fibers for washfast hydrophilic and temp. retention properties, by adhering mixts. of poly(carboxylic acid) compds., polyfunctional crosslinking agents and binders to the fibers)

IT Polyester fibers, uses

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC

(Process); USES (Uses)

(fabrics; adhesion of poly(carboxylic acid) compds. to fibers for washfast hydrophilic and temp. retention properties, by adhering mixts. of poly(carboxylic acid) compds., polyfunctional crosslinking agents and binders to the fibers)

IT 80833-82-5P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(finish; adhesion of poly(carboxylic acid) compds. to fibers for washfast hydrophilic and temp. retention properties, by adhering mixts. of poly(carboxylic acid) compds., polyfunctional crosslinking agents and binders to the fibers)

REFERENCE 3

AN 138:239370 CA

TI Highly water-absorbing nonwoven fabrics

IN Tokuhiro, Toshiya

PA Kurashiki Textile Mfg. Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM B32B027-30

ICS A01G007-00; B32B027-12; D04H001-40

CC 40-10 (Textiles and Fibers)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

| | | | | |
|------|----------------|----|----------|----------------|
| PI | JP 2003089174 | A2 | 20030325 | JP 2001-283113 |
| PRAI | JP 2001-283113 | | 20010918 | |

AB The nonwoven fabrics, useful for water retention materials for horticulture, construction works, etc., are prep'd. by allowing (meth)acrylate salt resins contg. thermal crosslinking agents to adhere to fiber materials of nonwoven fabrics and heating to cure to form highly water-absorbing resin layers. Thus, acrylic acid was polymd. in an aq. soln. contg. Me₂CHOH and acetoacetyl group-modified poly(vinyl alc.), neutralized with NaOH, mixed with 1% (to solids content) polyethylene glycol diglycidyl ether, impregnated into a rayon/polyester nonwoven fabric, and heated to 160.degree. for 5 min to give a water-absorbing fabric, which was needle-punched with another rayon/polyester fabric to give a sample, showing water absorption capacity 660%, gel drop-out ratio after water absorption 3.2%, and good diffusion of water.

ST crosslinked sodium polyacrylate water absorbing nonwoven

IT Absorbents

Nonwoven fabrics

(highly water-absorbing nonwoven fabrics contg. crosslinked (meth)acrylate salt resins)

IT Rayon, uses

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(polyester-, fabrics, nonwoven; highly water-absorbing nonwoven fabrics contg. crosslinked (meth)acrylate salt resins)

IT Polyester fibers, uses

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(rayon-, fabrics, nonwoven; highly water-absorbing nonwoven fabrics contg. crosslinked (meth)acrylate salt resins)

IT 80833-82-5P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(highly water-absorbing nonwoven fabrics contg. crosslinked (meth)acrylate salt resins)

REFERENCE 4

AN 130:99461 CA

TI Additives for hydraulic compositions, preparation of the additives, and cement compositions containing the additives

IN Tahara, Hideyuki; Ito, Hiroshi; Mori, Yasuhiro; Mizushima, Makoto

PA Nippon Shokubai Kagaku Kogyo Co, Ltd., Japan

SO U.S., 47 pp., Cont. of U.S. Ser. No. 498,704, abandoned.

CODEN: USXXAM

DT Patent

LA English

IC ICM C08K003-00

ICS C04B028-00; C08F220-00

NCL 524005000

CC 58-2 (Cement, Concrete, and Related Building Materials)

Section cross-reference(s): 38

FAN.CNT 2

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|----------------|----------|----------|-----------------|----------|
| PI | US 5854318 | A | 19981229 | US 1996-759435 | 19961205 |
| | US 5476885 | A | 19951219 | US 1991-668513 | 19910325 |
| PRAI | JP 1989-190656 | 19890725 | | | |
| | JP 1989-262242 | 19891009 | | | |
| | JP 1989-297455 | 19891117 | | | |
| | US 1991-668513 | 19910325 | | | |
| | US 1995-498704 | 19950703 | | | |
| | JP 1998-228313 | 19980905 | | | |
| | JP 1989-228313 | 19890905 | | | |
| | WO 1990-JP946 | 19900723 | | | |

AB The hydraulic compns. comprise a hydraulic material, water, and an additive comprising a crosslinked polymer in which, between main chains having water-sol. polymer structure of wt.-av. mol. wt. 500-100,000, a bond having as a structural unit .gtoreq.1 divalent groups having general formula R1CO2R2 [independently, R1, R2 is selected from CH2, CH(R) p-Ph, CR(R1), and CH2CH(OH), with the proviso that R1 is not required if R2 is CH2CH(OH) (independently, R, R1 = C1-5-alkyl)], and in which the main chains comprise .gtoreq.1 members selected from CO2M, CO2(R50)mSO3M, CONHR7SO3M, (CH2)nSO3M, and p-Ph-SO3M (m = 0 or integral no. of 1-50; n = 0 or 1; M is .gtoreq.1 selected from H, mono-, di-, or trivalent metal, NH4, and org. amine; independently, R1, R6 = C2-4-alkylene; R7 = C1-5-alkylene; with the proviso that when m .gtoreq.2, many of R50 may be the same or different, and, when many of R50 are different from one another, their arrangement may be regular or irregular), and in which the crosslinked polymer is capable of forming a water-sol. polymer by cleavage of the divalent group in an alk. medium. The additive are prep'd. by obtaining a crosslinked polymer by a polymg. a monomer contg. .gtoreq.2 polymerizable double bonds and has as structural unit .gtoreq.1 divalent groups as above, with a monomer having one polymerizable double bond capable of copolymg. with the double bonds and capable to form a main chain structure capable of leading to a water-sol. polymer as above. Into a reactor, contg. N-stirred boiling water 164.2 were introduced a soln. contg. NK-ester M-9G (methoxypolyethylene glycol monomethacrylate; av. added ethylene oxide mole no. is 9) 62.9, methacrylic acid 16.7, and water 125.5, and, in addn., 2.5% aq. (NH4)S2O8 soln. 24.6 wt. parts over 4 h. Then, 6.1 wt. parts 2.5% aq. (NH4)S2O8 soln. were added over 1 h, and the mixt. was maintained at the b.p. for 1 h to complete the polymn. reaction, whereby a water-sol. polymer was obtained. To this polymer were added 3.2 wt. parts Denacol EX-721 (o-phthalic acid diglycidyl ester) and the mixt. maintained at the b.p. for 3 h, and neutralized with aq. NaOH to obtain a hydrophilic resin. A concrete mix contg. portland cement 320, water 173, fine aggregate (sand) 934, and coarse aggregate (crushed stone) 876 kg/m3, and 0.12 wt.% hydrophilic resin as above had initial, and 60-, 90, and 120-min slump an air content 17.7 and 4.9, 19.3 and 5.2, 18.5 and 5.1, and 17.8 cm and 4.8%, and 28-day condensation strength 352 kg/cm2 and beginning and ending setting time 5:25 and 7 h and 18 min, vs. 18.2 and 4.8, 16.8 and 4.9, 14.2 and 4.6, and 10.4 and 4.2, and 338 and 5:24 and 7:19, resp.

ST copolymer dispersant cement concrete; NK ester M 9G 23G methacrylic acid copolymer; hydroxyethyl methacrylate copolymer; crosslinking agent Denacol EX acrylic copolymer; acrylic copolymer sodium salt dispersant; ethylene oxide propylene oxide copolymer; Blenmer 70PEP 350B copolymer; methoxypolyethyleneglycol methacrylate copolymer; Denacol EX 202 611 701 721 810 841 861; acrylamidomethylpropanesulfonic acid copolymer; sulfoethylmethacrylate acrylic acid copolymer; sulfopropoxyethyleneglycol acrylate copolymer; Kayarad R 526 Manda HX 202 copolymer; formaldehyde naphthalenesulfonate dispersant; lignosulfonic acid sodium salt dispersant; dimethylaminoethyl methacrylate copolymer; polyethyleneoxide monoallyl ether copolymer; maleic acid copolymer Denacol 830; ethyleneimmine ethylene copolymer; styrenesulfonate olefin copolymer; vinylsulfonic acid copolymer; diethylaminoethylmethacrylamide copolymer; DA 721 sulfoethylmethacrylate copolymer; DM 832 copolymer dispersant

IT Epoxy resins, preparation
Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(acrylic, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Polyoxyalkylenes, preparation
Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(acrylic-epoxy, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Epoxy resins, preparation
Epoxy resins, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(acrylic-polyoxyalkylene-, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(allyl group-contg., polymers with Denacol EX 202 and maleic acid, sodium salts, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Cement (construction material)
(crosslinked acrylic copolymer dispersants for)

IT Concrete
(crosslinked acrylic copolymer dispersants for cement in)

IT Dispersing agents
Plasticizers
(crosslinked acrylic copolymer dispersants; manuf. of, for concrete, for slump loss prevention)

IT Polyoxyalkylenes, preparation
Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(epoxy, dispersants, manuf. of; for concrete, for slump loss prevention)

IT Epoxy resins, preparation
Epoxy resins, preparation
RL: IMF (Industrial manufacture); PREP (Preparation)
(polyoxyalkylene-, dispersants, manuf. of; for concrete, for slump loss prevention)

IT 110-16-7DP, Maleic acid, polymers with Denacol EX-202 and polyalkylene glycol monoallyl ethers, sodium salts 2867-47-2DP, N,N-Dimethylaminoethyl methacrylate, quaternized, polymers with Denacol EX-721 and sodium acrylate 7446-81-3DP, Sodium acrylate, polymers with Denacol EX-721 and quaternized dimethylaminoethyl methacrylate 37099-12-0DP, Denacol EX-721, polymers with quaternized dimethylaminoethyl methacrylate and sodium acrylate 54590-60-2DP, Denacol EX-202, polymers with maleic acid and polyalkylene glycol monoallyl ethers, sodium salts 80833-82-5P, Acrylic acid-Denacol EX-841 copolymer sodium salt 136673-67-1P, Denacol EX-721-methacrylic acid-polyethyleneglycol polypropyleneglycol methacrylate copolymer 137112-16-4P, Acrylic acid-ethyleneimine-Denacol EX-202-sodium acrylate copolymer 137112-17-5P, Denacol EX-202-ethyleneimine-methacrylic acid copolymer 137112-19-7P, Denacol EX-721-ethyleneimine-maleic anhydride-styrene copolymer 137112-27-7P, Denacol EX-861-methacrylic acid-polyethyleneglycol polypropyleneglycol methacrylate copolymer 137213-43-5P, Denacol EX-202-polyethyleneglycol monoallyl ether-sodium acrylate copolymer 218956-35-5P 218956-37-7P 218956-39-9P 218956-41-3P 218956-43-5P 218956-45-7P 218956-47-9P 218956-49-1P 218956-51-5P 218956-53-7P 218956-55-9P 218956-57-1P 218956-59-3P 218956-61-7P 218956-63-9P 218956-65-1P 218956-67-3P 218956-69-5P 218956-71-9P 218956-73-1P 218956-75-3P 218956-77-5P 218956-78-6P 218956-79-7P 218956-82-2P 218956-83-3P 218956-89-9P, Denacol EX-202-polyethyleneglycol monoallyl ether-sodium methacrylate copolymer 218956-91-3P, Denacol EX-830-polyethyleneglycol monoallyl ether-sodium methacrylate copolymer 218956-97-9P 218957-02-9P 218957-05-2P 218957-08-5P 218957-11-0P 218957-14-3P 218957-17-6P 218957-19-8P 218957-20-1P 218957-22-3P 218957-24-5P 218957-26-7P 218957-28-9P 219316-95-7P 219320-31-7P 219320-37-3P 219320-39-5P 219320-40-8P 219478-34-9P
RL: IMF (Industrial manufacture); PREP (Preparation)
(dispersant, manuf. of; for concrete, for slump loss prevention)

IT 8061-51-6, Sodium lignosulfonate 9008-63-3, Formaldehyde-sodium naphthalenesulfonate copolymer
RL: NUU (Other use, unclassified); USES (Uses)

(dispersants contg. crosslinked acrylic polymers and; for concrete, for
slump loss prevention)

RE.CNT 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD

- (1) Anon; DE 1948755 1970 CAPLUS
- (2) Anon; FR 2377421 1978 CAPLUS
- (3) Anon; JP 54139929 1979 CAPLUS
- (4) Anon; JP 5452196 1979
- (5) Anon; FR 2525121 1983 CAPLUS
- (6) Anon; JP 60161365 1985 CAPLUS
- (7) Anon; JP 6016851 1985
- (8) Anon; EP 0240586 1986 CAPLUS
- (9) Anon; EP 0256144 1986 CAPLUS
- (10) Anon; JP 6131497 1986
- (11) Anon; JP 6131498 1986
- (12) Anon; JP 62119147 1987 CAPLUS
- (13) Anon; JP 62216950 1987 CAPLUS
- (14) Anon; JP 62241855 1987 CAPLUS
- (15) Anon; JP 62292664 1987 CAPLUS
- (16) Anon; JP 6230648 1987
- (17) Anon; EP 0291590 A 1988 CAPLUS
- (18) Anon; JP 63162562 1988 CAPLUS
- (19) Anon; JP 63291840 1988 CAPLUS
- (20) Anon; JP 63305199 1988 CAPLUS
- (21) Anon; JP 63305200 1988 CAPLUS
- (22) Anon; EP 0377448 1990 CAPLUS
- (23) Anon; Polymer Preprints 1989, V38(3)
- (24) Boeckh; US 4980088 1990 CAPLUS
- (25) Dammann; US 4338239 1982 CAPLUS
- (26) Emmons; US 4120839 1978 CAPLUS
- (27) Herron; US 5183707 1993 CAPLUS
- (28) Hsu; US 4758641 1988 CAPLUS
- (29) Ito; US 4743301 1988 CAPLUS
- (30) Khoshdel; US 5159041 1992 CAPLUS
- (31) Patzschke; US 4857580 1989 CAPLUS
- (32) Pettit; US 4727111 1988 CAPLUS
- (33) Seelmann-Eggbert; US 5104951 1992 CAPLUS
- (34) Tahara; US 5298570 1994 CAPLUS
- (35) Tahara; US 5476885 1995 CAPLUS
- (36) Tonge; US 4764554 1988 CAPLUS
- (37) Tsubakimoto; US 4666983 1987 CAPLUS
- (38) Tsubakimoto; US 4870120 1989 CAPLUS
- (39) Vaughn; US 3687909 1972 CAPLUS
- (40) Yamaguchi; US 5064563 1991 CAPLUS
- (41) Yamaguchi; US 5135677 1992 CAPLUS

REFERENCE 5

AN 129:331856 CA
TI (Meth)acrylic acid salt-based polymer solutions, water-absorbing
composites and fabrics, and their manufacture
IN Amako, Naotake; Ikegami, Koichi
PA Gooh Chemical Industry Co., Ltd., Japan
SO Jpn. Kokai Tokkyo Koho, 8 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
IC ICM C08F220-06
 ICS A01G001-00; C08F002-44; C08F008-00; C08F008-44; D06M014-14;
 D06M015-27; D21H019-20
CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 40

FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|-------------|-------|----------|-----------------|----------|
| | ----- | ----- | ----- | ----- | ----- |
| PI | JP 10287714 | A2 | 19981027 | JP 1997-97243 | 19970415 |
| | JP 3650506 | B2 | 20050518 | | |

PRAI JP 1997-97243 19970415

AB Title polymer solns. are prepn. by soln. polymg. the (meth)acrylic acid monomers in the presence of poly(vinyl alc.) (I) and partially neutralizing (meth)acrylic acid monomers or polymers with basic compds. before or after polymn. The composites, useful for water-absorbing fabrics, are manufd. by adding thermal crosslinking agents to the solns.,

applying the mixts. (A) onto substrates, and heating the substrates to form a water-absorbing resin layer. Thus, acrylic acid was polymd. in the presence of Gohsefimer Z 200 (modified I), neutralized with NaOH, mixed with polyethylene glycol diglycidyl ether to form a compn., which was sprayed on polyester nonwoven fabric and heated at 180.degree. to give a sheet showing water absorption 158 g/g.

ST polyacrylic acid salt water absorbing fabric; polyethylene glycol glycidyl ether crosslinking agent; polyvinyl alc blend water absorbing composite

IT Polyoxyalkylenes, uses
Polyoxyalkylenes, uses

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(acrylic-epoxy; compns. contg. poly(meth)acrylic acid salts and poly(vinyl alc.) for water-absorbing materials)

IT Epoxy resins, uses
Epoxy resins, uses

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(acrylic-polyoxyalkylene-; compns. contg. poly(meth)acrylic acid salts and poly(vinyl alc.) for water-absorbing materials)

IT Polyester fibers, uses

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
(fabrics, nonwoven, polyester fibers, substrate; compns. contg. poly(meth)acrylic acid salts and poly(vinyl alc.) for water-absorbing materials)

IT Absorbents

(for water absorption; compns. contg. poly(meth)acrylic acid salts and poly(vinyl alc.) for water-absorbing materials)

IT Textiles

(water-absorbing; compns. contg. poly(meth)acrylic acid salts and poly(vinyl alc.) for water-absorbing materials)

IT 26403-72-5DP, Polyethylene glycol diglycidyl ether, copolymer with poly(acrylic acid) sodium salt and poly(vinyl alc.) acetoacetate
39290-68-1DP, copolymer with poly(acrylic acid) sodium salt and polyethylene glycol diglycidyl ether 80833-82-5P 216690-03-8DP,
copolymer with polyethylene glycol diglycidyl ether and poly(vinyl alc.) acetoacetate 216690-14-1DP, copolymer with acrylic acid, polyethylene glycol diglycidyl ether and poly(vinyl alc.) acetoacetate

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(compns. contg. poly(meth)acrylic acid salts and poly(vinyl alc.) for water-absorbing materials)

IT 9002-89-5, Gohsenol GH 17

RL: TEM (Technical or engineered material use); USES (Uses)
(compns. contg. poly(meth)acrylic acid salts and poly(vinyl alc.) for water-absorbing materials)

REFERENCE 6

AN 127:191215 CA

TI Preparation of super-absorbent polymers from water-soluble vinyl monomers

IN Igarashi, Tadashi

PA Kao Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM C08F002-44

ICS C08F002-32

CC 35-4 (Chemistry of Synthetic High Polymers)

Section cross-reference(s): 38

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

| | | | | |
|-------|-------|-------|-------|-------|
| ----- | ----- | ----- | ----- | ----- |
|-------|-------|-------|-------|-------|

| | | | | |
|----------------|----|----------|--------------|----------|
| PI JP 09194514 | A2 | 19970729 | JP 1996-4511 | 19960116 |
|----------------|----|----------|--------------|----------|

PRAI JP 1996-4511 19960116

AB Title polymers with high water absorption rate and stable and strong gel structure are prepnd. by polymg. water-sol. vinyl monomers in the presence of alkoxytitanium. Thus, a mixt. of acrylic acid 102.0, H₂O 25.5, 30% aq. NaOH 140, K₂S2O₈ 0.153, Denacol EX 512 (polyglycerol polyglycidyl ether) 0.010, and TLA-A-50 (dihydroxybislactatotitanium monoammonium) 0.9 g was

treated with a mixt. of 400 mL cyclohexane and 0.625 g N-100 (Et cellulose) at 75.degree. to obtain super absorbent polymer showing water absorption 54.4 g/g, water absorption rate 0.9 mL/0.3-g, physiol. salt water permeation rate 141.3 mL/min., and stable gel structure.

ST super absorbent vinyl polymer prep; water absorbent vinyl polymer prep; strong gel structure vinyl polymer; alkoxytitanium vinyl monomer polymn super absorbent; polyacrylic acid prep dihydroxytitanium bilactate; reverse phase suspension polymn super absorbent

IT Dispersing agents

(for prepn. of vinyl polymers as super absorbents by reverse phase suspension polymn. in presence of alkoxytitanium)

IT Polymerization

(reverse-phase, suspension; prepn. of vinyl polymers as super absorbents in presence of alkoxytitanium)

IT Absorbents

(water; prepn. of vinyl polymers as super absorbents in presence of alkoxytitanium)

IT 9004-57-3, Ethyl cellulose

RL: MOA (Modifier or additive use); USES (Uses)
(N 100, dispersing agents; prepn. of vinyl polymers as super absorbents by reverse phase suspension polymn. in presence of alkoxytitanium)

IT 79110-90-0, Orgatix TC 315

RL: MOA (Modifier or additive use); USES (Uses)
(Orgatix TC 315; prepn. of vinyl polymers as super absorbents in presence of alkoxytitanium)

IT 36673-16-2, TEAT

RL: MOA (Modifier or additive use); USES (Uses)
(TEAT; prepn. of vinyl polymers as super absorbents in presence of alkoxytitanium)

IT 160047-67-6

RL: MOA (Modifier or additive use); USES (Uses)
(TLA-A 50; prepn. of vinyl polymers as super absorbents in presence of alkoxytitanium)

IT 9004-82-4, Emal E 27C 37318-31-3, Ryoto Sugar Ester S 570 38517-37-2,

Amisoft MS 11

RL: MOA (Modifier or additive use); USES (Uses)
(dispersing agents; prepn. of vinyl polymers as super absorbents by reverse phase suspension polymn. in presence of alkoxytitanium)

IT 80833-80-3P 80833-82-5P 124701-97-9P 194475-57-5P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(prepn. of vinyl polymers as super absorbents in presence of alkoxytitanium)

IT 5593-70-4, B-1 80778-56-9, TAT

RL: MOA (Modifier or additive use); USES (Uses)
(prepn. of vinyl polymers as super absorbents in presence of alkoxytitanium)

REFERENCE 7

AN 112:160374 CA

TI Hygroscopic fibers for medical and agricultural materials

IN Kawame, Toshimitsu; Nozawa, Hiroshi; Kono, Naotake

PA Kuraray Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM D01F006-52

ICS A41B013-02; D01D005-04

ICA A61F013-18; C08L033-02; D04H001-42

CC 40-2 (Textiles and Fibers)

Section cross-reference(s): 19, 63

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

| | | | | |
|----------------|-------|----------|---------------|----------|
| ----- | ----- | ----- | ----- | ----- |
| PI JP 01260014 | A2 | 19891017 | JP 1988-86714 | 19880407 |

PRAI JP 1988-86714 19880407

AB The title fibers are prepd. by forming fibers from mixts. comprising (meth)acrylic polymers with the degree of neutrality 0.2-0.95 and polyepoxy compds. or polyamines and then heat treating the fibers. Thus, acrylic acid homopolymers 100, NaOH 41.6, and H₂O 1274 parts were mixed to

give a polymer with the degree of neutrality 0.75. Glycerol diglycidyl ether (0.3 part) was added, and the mixt. was dried in a compact spray drier for 20-305 at 30,000 rpm and heat treated 1 h at 120.degree. to give hygroscopic short fibers with water absorption ratio 220.

ST acrylic fiber hygroscopic manuf; acrylic acid copolymer fiber hygroscopic

IT Synthetic fibers, polymeric

RL: USES (Uses)

(acrylic acid-aziridine, sodium salts, hygroscopic, manuf. of)

IT Synthetic fibers, polymeric

RL: USES (Uses)

(acrylic acid-glycerol diglycidyl ether, sodium salts, hygroscopic, manuf. of)

IT Synthetic fibers, polymeric

RL: USES (Uses)

(acrylic acid-polyethylene glycol diglycidyl ether, sodium salts, hygroscopic, manuf. of)

IT Medical goods

(sanitary napkins, hygroscopic (meth)acrylic acid copolymer fibers for)

IT 80833-82-5P 125193-57-9P 126142-89-0P

RL: PREP (Preparation)

(fiber, hygroscopic, manuf. of)

REFERENCE 8

AN 96:105407 CA

TI Cooling agents

PA Showa Denko K. K., Japan

SO Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC C09K005-00

CC 38-3 (Plastics Fabrication and Uses)

Section cross-reference(s): 17

FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|-------------|------|----------|-----------------|----------|
| PI | JP 56090881 | A2 | 19810723 | JP 1979-166925 | 19791224 |
| | JP 61004867 | B4 | 19860213 | | |

PRAI JP 1979-166925 19791224

AB Cooling agents contg. H₂O and Na salt of a copolymer of (meth)acrylic acid with polyethylene glycol diglycidyl ether (I), bisphenol A-epichlorohydrin copolymer, or epichlorohydrin-phthalic acid copolymer and optionally with an ethylenic monomer do not freeze at < 0.degree. and useful for preservation of food. Thus, 10 g acrylic acid was polymd. with 0.05 g I in the presence of 21.8 mL 7N NaOH to give a polymer salt (II) [80833-82-5] with water absorption ratio 166. A compn. contg. H₂O 100, ethylene glycol [107-21-1] 17.6, and II 1 part was stored in a refrigerator at -20.degree. to give a soft nonsolid compn., whereas solidification occurred for a similar compn. contg. polyacrylic acid Na salt instead of II at -10.degree..

ST acrylic polymer antifreeze coolant; polyoxyethylene ether antifreeze coolant; coolant nonfreezing food preservation

IT Food

(preservation of, cooling agents for)

IT Antifreeze substances

(sodium salts of (meth)acrylic copolymers with difunctional epoxy compds., for coolants)

IT 80833-82-5

RL: USES (Uses)

(antifreeze agents, for coolants for food preservation)

IT 107-21-1, uses and miscellaneous

RL: USES (Uses)

(antifreeze compns. contg., for coolants)

L1 ANSWER 6 OF 6 REGISTRY COPYRIGHT 2006 ACS on STN

RN 58782-18-6 REGISTRY

ED Entered STN: 16 Nov 1984

CN Poly(oxy-1,2-ethanediyl), .alpha.- (oxiranylmethyl)-.omega.- (oxiranylmethoxy)-, homopolymer (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Denacol 821

CN Denacol EX 821
 CN Denacol EX 830
 CN Denacol EX 831
 CN Denacol EX 832
 CN ***Denacol EX 841***
 CN Denacol EX 850
 CN Denacol EX 861
 CN Epikote YED 205
 CN Epiol E 1000
 CN Epiol E 400
 CN Epiol PE 06
 CN Epolite 1000E
 CN Epolite 200E
 CN Epolite 400E
 CN NER 010
 CN Nonaethylene glycol diglycidyl ether polymer
 CN PEGE 400
 CN Poly(nonaethylene glycol diglycidyl ether)
 CN Polyethylene glycol diglycidyl ether homopolymer
 CN Polyethylene glycol diglycidyl ether polymer
 CN Polyethylene oxide diglycidyl ether homopolymer
 CN SR 8EG
 CN SR 8EGS
 CN UE 101
 CN YD 716
 CN YED 205
 CN Yukikoto E 1080
 CN Yukikoto E 394
 CN Yukikoto E 587
 DR 59976-18-0, 105808-78-4, 70644-81-4, 70852-30-1, 148499-22-3, 82446-93-3
 MF ((C₂ H₄ O)_n C₆ H₁₀ O₃)_x
 CI PMS, COM
 PCT Epoxy resin, Polyether
 LC STN Files: AGRICOLA, CA, CAPLUS, CASREACT, PIRA, TOXCENTER, USPAT2,
 USPATFULL
 DT.CA CAplus document type: Conference; Journal; Patent
 RL.P Roles from patents: ANST (Analytical study); BIOL (Biological study);
 PREP (Preparation); PROC (Process); PRP (Properties); RACT (Reactant or
 reagent); USES (Uses)
 RLD.P Roles for non-specific derivatives from patents: BIOL (Biological
 study); PREP (Preparation); PRP (Properties); USES (Uses)
 RL.NP Roles from non-patents: BIOL (Biological study); PREP (Preparation);
 PROC (Process); PRP (Properties); RACT (Reactant or reagent); USES
 (Uses)

Ring System Data

| Elemental Analysis | Elemental Sequence | Size of the Rings | Ring System Formula | Ring Identifier | RID Occurrence Count |
|--------------------|--------------------|-------------------|---------------------|-----------------|----------------------|
| EA | ES | SZ | RF | RID | Count |
| C2O | OC2 | 3 | C2O | 1.30.1 | 2 |

CM 1

CRN 26403-72-5
 CMF (C₂ H₄ O)_n C₆ H₁₀ O₃
 CCI PMS

/ Structure 14 in file .gra /

217 REFERENCES IN FILE CA (1907 TO DATE)
 30 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 217 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 144:43269 CA
 TI Manufacture of electrophoretic display microcapsule in aqueous medium in
 the presence of ion-exchange resin

IN Miyazaki, Atsushi; Ito, Akio; Kushino, Mitsuo
 PA Seiko Epson Corp., Japan; Nippon Shokubai Co., Ltd.
 SO Jpn. Kokai Tokkyo Koho, 15 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM G02F001-167
 ICS B01J013-20; G02F001-17
 CC 74-12 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
 Section cross-reference(s): 38
FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|---|------|----------|-----------------|----------|
| PI | JP 2005338190 | A2 | 20051208 | JP 2004-153791 | 20040524 |
| PRAI | JP 2004-153791 | | 20040524 | | |
| AB | Disclosed is a process comprising a step of forming an electrophoretic display microcapsule in an aq. medium in the presence of ion-exchange resin. As the ion-exchange resin, a strong acid-type pos. ion-exchange resin and a strong base-type neg. ion-exchange resin are used together. The microcapsule has a polyethylene glycol chain bonded on the surface. | | | | |
| ST | electrophoresis electrophoretic display microcapsule ion exchange resin | | | | |
| IT | Optical imaging devices
(electrophoretic; manuf. of electrophoretic display microcapsule in aq. medium in presence of ion-exchange resin) | | | | |
| IT | Ion exchangers
Microcapsules
(manuf. of electrophoretic display microcapsule in aq. medium in presence of ion-exchange resin) | | | | |
| IT | Electrophoresis apparatus
(optical imaging; manuf. of electrophoretic display microcapsule in aq. medium in presence of ion-exchange resin) | | | | |
| IT | 58782-18-6, Denacol EX 841 465538-53-8, Diaion TSA 1200 870778-30-6,
Duolite SC 100
RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(manuf. of electrophoretic display microcapsule in aq. medium in presence of ion-exchange resin) | | | | |

REFERENCE 2

AN 143:441307 CA
 TI Incombustible composition and synthetic resin foam premixes prepared thereby
 IN Tamai, Ryoichi; Okamoto, Satoru; Hibino, Yasuo
 PA Central Glass Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 9 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM C09K003-00
 ICS C08G018-00; C08J009-14; C09K005-06; C11D007-50; C08G101-00;
 C08L075-04
 CC 37-6 (Plastics Manufacture and Processing)
 Section cross-reference(s): 38
FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|---|------|----------|-----------------|----------|
| PI | JP 2005307062 | A2 | 20051104 | JP 2004-127615 | 20040423 |
| PRAI | JP 2004-127615 | | 20040423 | | |
| AB | An incombustible compn. comprises 30-80 wt.% 1,1,2,2-tetrafluoroethyl Me ether, 20-70 wt.% 1,1,1,3,3-pentafluoropropane, glycidyl ether-type stabilizer, such as N-methylpyrrolidone. Premix to produce polyurethane and/or polyisocyanate foams comprises blowing agent, polyols, catalysts, and other additives, and the blowing agent is the above incombustible compn. Polyols and polyisocyanate react in the presence of blowing agents to produce polyurethane or polyisocyanate foams. Thus, 1,1,2,2-tetrafluoroethyl Me ether and 1,1,1,3,3-pentafluoropropane were mixed at a wt. ratio of 20/80 to obtain a incombustible blowing agent that can be used in the prodn. or polyester-polyurethane foams from ester polyols and isocyanate (Cosmonate M 200) in the presence of polysiloxane (SH 193) and allyl glycidyl ether stabilizer. | | | | |

ST tetrafluoroethylmethyl ether pentafluoropropane blowing agent polyester
 polyurethane polyisocyanate foam
 IT Polyoxyalkylenes, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (di-Me polysiloxane-, SH 193; incombustible compn. as blowing agent for
 synthetic resin foam premixes prodn.)
 IT Polysiloxanes, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (di-Me, polyoxyalkylene-, SH 193; incombustible compn. as blowing agent
 for synthetic resin foam premixes prodn.)
 IT Ethers, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (glycidyl; incombustible compn. as blowing agent for synthetic resin
 foam premixes prodn.)
 IT Blowing agents
 Stabilizing agents
 (incombustible compn. as blowing agent for synthetic resin foam
 premixes prodn.)
 IT Plastic foams
 RL: PEP (Physical, engineering or chemical process); PYP (Physical
 process); PROC (Process)
 (incombustible compn. as blowing agent for synthetic resin foam
 premixes prodn.)
 IT Polyurethanes, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material
 use); USES (Uses)
 (incombustible compn. as blowing agent for synthetic resin foam
 premixes prodn.)
 IT Polyurethanes, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material
 use); USES (Uses)
 (polyester-; incombustible compn. as blowing agent for synthetic resin
 foam premixes prodn.)
 IT 9016-87-9D, Cosmonate M 200, reaction products with ester polyols
 RL: PEP (Physical, engineering or chemical process); POF (Polymer in
 formulation); PYP (Physical process); TEM (Technical or engineered
 material use); PROC (Process); USES (Uses)
 (incombustible compn. as blowing agent for synthetic resin foam
 premixes prodn.)
 IT 75-13-8D, Isocyanic acid, esters, polymers
 RL: POF (Polymer in formulation); TEM (Technical or engineered material
 use); USES (Uses)
 (incombustible compn. as blowing agent for synthetic resin foam
 premixes prodn.)
 IT 67-68-5, Dimethylsulfoxide, uses 96-48-0, .gamma.-Butyrolactone
 106-92-3, Allyl glycidyl ether 127-19-5, Dimethylacetamide 425-88-7,
 1,1,2,2-Tetrafluoroethyl methyl ether 460-73-1,
 1,1,1,3,3-Pentafluoropropane 872-50-4, NMP, uses 930-37-0, Epiol M
 2461-15-6, Epiol EH 54847-49-3, Epiol NPG 100 55126-81-3, Epiol E 100
 58782-18-6, Epiol E 400 62528-51-2, Epiol L 41 140841-73-2, Epiol BE
 200
 RL: TEM (Technical or engineered material use); USES (Uses)
 (incombustible compn. as blowing agent for synthetic resin foam
 premixes prodn.)

REFERENCE 3

AN 143:435356 CA
 TI Cell culture carrier consisting of crosslinked collagen
 IN Mitsutaka, Toshihiro; Takamatsu, Minoru
 PA Japan Science and Technology Agency, Japan; Ihara & Co., Ltd.
 SO Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM C12M003-00

CC 9-11 (Biochemical Methods)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---------------------|------|----------|-----------------|----------|
| ----- | ---- | ----- | ----- | ----- |
| PI JP 2005312338 | A2 | 20051110 | JP 2004-133006 | 20040428 |
| PRAI JP 2004-133006 | | 20040428 | | |

AB A cell culture carrier excellent in stability is provided, which is prep'd. by crosslinking collagen derived from marine organism with a low mol. wt. polyglycidyl ether (e.g., ethyleneglycol diglycidyl ether, propyleneglycol diglycidyl ether, polyethyleneglycol diglycidyl ether, polypropyleneglycol diglycidyl ether). The cell culture carrier can take a form of film or else.

ST carrier cell culture collagen crosslinking EGDE

IT Animal tissue culture
Carriers
Crosslinking
(cell culture carrier consisting of crosslinked collagen)

IT Collagens, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(cell culture carrier consisting of crosslinked collagen)

IT Ethers, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(glycidyl; cell culture carrier consisting of crosslinked collagen)

IT 2224-15-9, Ethyleneglycol diglycidyl ether 16096-30-3, Propyleneglycol diglycidyl ether 26142-30-3, Polypropyleneglycol diglycidyl ether 26403-72-5, Polyethyleneglycol diglycidyl ether 39409-92-2, Epiol P-200 58782-18-6, Epiol E-400
RL: RCT (Reactant); RACT (Reactant or reagent)
(cell culture carrier consisting of crosslinked collagen)

REFERENCE 4

AN 143:348566 CA
TI Oily solution for carbon fiber precursor and production of carbon fibers
IN Tanaka, Fumihiro; Yamasaki, Katsumi
PA Toray Industries, Inc., Japan
SO Jpn. Kokai Tokkyo Koho, 17 pp.
CODEN: JKXXAF

DT Patent
LA Japanese
IC ICM D06M015-53
ICS D01F009-22
CC 40-2 (Textiles and Fibers)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------|------|----------|-----------------|----------|
| PI JP 2005264361 | A2 | 20050929 | JP 2004-75824 | 20040317 |

PRAI JP 2004-75824 20040317
AB An oily soln. for carbon fiber precursor contg. <2 wt.% silicon has a logarithmic decrément of 0.15-2 at 100-145.degree., and the soln. comprises >10 wt.% compds. contg. functional groups selected from radical reactive groups, such as vinyl group, isocyanate, and epoxy groups, and radical generators. Carbon fiber precursor adheres 0.1-5 wt.% of the above oily soln., heat-treated at 200-300.degree. in air, and then carbonized at 300-3000.degree. in inert atm. to produce carbon fibers. Thus, polyacrylonitrile fibers were immersed in polyethylene glycol diglycidyl ether soln. and then heat treated to provide carbon fibers.

ST polyoxyethylene diglycidyl ether polyacrylonitrile carbon fiber
IT Acrylic fibers, preparation
RL: CPS (Chemical process); IMF (Industrial manufacture); PEP (Physical, engineering or chemical process); PREP (Preparation); PROC (Process)
(oily soln. for carbon fiber precursor and carbon fiber prodn.)

IT Polyoxyalkylenes, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(oily soln. for carbon fiber precursor and carbon fiber prodn.)

IT Carbon fibers, processes
RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
(polyacrylonitrile-based; oily soln. for carbon fiber precursor and carbon fiber prodn.)

IT Polysiloxanes, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(polyether-; oily soln. for carbon fiber precursor and carbon fiber prodn.)

IT Polyethers, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(siloxane-; oily soln. for carbon fiber precursor and carbon fiber

prodn.)
IT 26570-48-9, Blemmer ADE 600
RL: TEM (Technical or engineered material use); USES (Uses)
(Blemmer ADE 150, Blemmer ADE 400; oily soln. for carbon fiber
precursor and carbon fiber prodn.)
IT 25852-47-5, Blemmer PDE 200 58782-18-6, Epolite 400E 99734-09-5
RL: TEM (Technical or engineered material use); USES (Uses)
(oily soln. for carbon fiber precursor and carbon fiber prodn.)
IT 94-36-0, Benzoyl peroxide, uses 25322-68-3D, acetyl-terminated
RL: TEM (Technical or engineered material use); USES (Uses)
(radical generator; oily soln. for carbon fiber precursor and carbon
fiber prodn.)

REFERENCE 5

AN 143:307858 CA
TI Manufacture of mold-release films for aqueous ceramic slurry coating
process and the mold-release films therefrom
IN Hatta, Akio
PA Takemoto Oil and Fat Co., Ltd., Japan
SO Jpn. Kokai Tokkyo Koho, 22 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
IC ICM C08J007-04
ICS B05D005-00; B05D007-24; B32B027-00; C09D005-00; C09D183-06;
C09D183-10; C09D201-00; C08L101-00
CC 42-13 (Coatings, Inks, and Related Products)
Section cross-reference(s): 57

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--------------------|------|----------|-----------------|----------|
| PI JP 2005255870 | A2 | 20050922 | JP 2004-70284 | 20040312 |
| PRAI JP 2004-70284 | | 20040312 | | |

AB Title films are prep'd. by applying polymer film surfaces with 0.01-0.5 g/m² (solid content) aq. resin solns. contg. crosslinked organopolysiloxanes consisting of R1b(OH)cSiOa/2 units (A1) 80-99, XeR2f(OH)gSiOd/2 units (A2) 0.5-15, and (Y - Z)iR3j(OH)kSiOh/2 units (A3) 0.5-5 mol% with 1-75% Y component at [R1-R3 = C1-6 alkyl or Ph; X = nonradical polymerizable org. group or epoxy-contg. org. group; Y = vinyl polymer block; Z = Si- and Y-connecting divalent org. group; a, d, h = 1-3 integer; b, e, i = 1 or 2; c, g, k = 0-2 integer; f, j = 0 or 1, with (a + b + c) = 4, (d + e + f + g) = 4, (h + i + j + k) = 4]. A polyester film was coated with an aq. soln. contg. 30% Nikalac MX 035 and 70% polysiloxanes (prep'd. from octamethylcyclotetrasiloxane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, Et acrylate, Me methacrylate, and glycidyl methacrylate; 90:7:3 A1/A2/A3 units with 50% acrylic polymer block) to form a spot-free uniform film resulting good wetting ability to aq. ceramic slurry and the ceramic layer peeling strength of <5 g/100 mm.

ST acrylic polysiloxane mold release film aq ceramic slurry process; ceramic layer wettability acrylic polysiloxane mold release film

IT Alkyd resins
RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(Watersol S 123, in solns. for mold-release film formation; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT Polysiloxanes, uses
RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(acrylic, graft; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT Slurries
(ceramic, process for coating of, mold-release films for; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT Acrylic polymers, uses
Aminoplasts
Epoxy resins, uses
RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(in solns. for mold-release film formation; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT Parting materials

(mold-release agents; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT Ceramics

(slurries, process for coating of, mold-release films for; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT 9003-08-1, Nikalac MX 035

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(Nikalac MS 17, Nikalac MX 035 and Cymel 303, in solns. for mold-release film formation; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT 58782-18-6, Denacol EX 850

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(Watersol S 123; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT 18191-00-9, Sumitex NS 11 150139-20-1, Watersol S 751

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(in solns. for mold-release film formation; manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

IT 171609-52-2P, Ethyl acrylate-glycidyl methacrylate-3-

glycidoxypropyltrimethoxysilane-octamethylcyclotetrasiloxane-methyl methacrylate-3-(trimethoxysilyl)propyl methacrylate graft copolymer

864861-21-2P 864861-22-3P, Acrylic acid-ethyl acrylate-2-(3,4-

epoxycyclohexyl)ethyltrimethoxysilane-octaethylcyclotetrasiloxane-styrene-

3-(trimethoxysilyl)propyl methacrylate graft copolymer 864861-24-5P,

Acrylic acid-N,N-dimethylacrylamide-ethyl acrylate-hexylphenylsilanediol-3-

glycidoxypropyltrimethoxysilane-methyl methacrylate-methylvinylsilanediol-

octamethylcyclotetrasiloxane graft copolymer 864861-26-7P, Ethyl

acrylate-glycidyl methacrylate-3-glycidoxypropyltrimethoxysilane-

octamethylcyclotetrasiloxane-methyl methacrylate-methylvinylsilanediol

graft copolymer 864861-27-8P 864861-28-9P, Acrylic acid-ethyl

acrylate-2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane-

octamethylcyclotetrasiloxane-styrene-methylvinylsilanediol graft copolymer

864861-29-0P, Acrylic acid-N,N-dimethylacrylamide-ethyl

acrylate-3-glycidoxypropyltrimethoxysilane-octamethylcyclotetrasiloxane-

methyl methacrylate-3-(trimethoxysilyl)propyl methacrylate graft copolymer

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(manuf. of acrylic grafted polysiloxane-based mold-release films for aq. ceramic slurry coating process)

REFERENCE 6

AN 143:307451 CA

TI Edge barriers comprising liquid absorbent thermoplastics for absorbent articles

IN Toro, Carlo; Digiocomantonio, Marco; Pompei, Enzo; Salone, Fiorello; Carlucci, Giovanni

PA The Procter & Gamble Company, USA

SO Eur. Pat. Appl., 20 pp.

CODEN: EPXXDW

DT Patent

LA English

IC ICM A61F013-15

CC 38-3 (Plastics Fabrication and Uses)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

| | | | | |
|-------|-------|-------|-------|-------|
| ----- | ----- | ----- | ----- | ----- |
|-------|-------|-------|-------|-------|

PI EP 1579831 A1 20050928 EP 2004-6923 20040323
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK

EP 1579832 A1 20050928 EP 2004-18581 20040805
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR
US 2005215967 A1 20050929 US 2005-87475 20050323
WO 2005094748 A1 20051013 WO 2005-US10012 20050323
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,
RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG

PRAI EP 2004-6923 20040323

AB Absorbent articles, typically for feminine protection, comprise a topsheet, a backsheet, an absorbent element positioned between the topsheet and the backsheet, .gt;req.1 fluid acquisition/distribution layer and edge barrier elements comprising a polymeric base material having particles of water-insol. water-swellable absorbent material. Estane T5410 (polyurethane-hydrophilic thermoplastic polymer) 18%, PEG E400 17%, CR00 (adhesive hotmelt) 19%, Aquakeep 10 SH-NF (superabsorbent) 45% and Irgnox B 225 1% were mixed to give a hot-melt adhesive for forming the edge barrier elements.

ST polyurethane rubber sodium polyacrylate hotmelt adhesive

IT Urethane rubber, uses

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(Estane T5410; edge barriers comprising liq. absorbent thermoplastics for absorbent articles)

IT Absorbents

(edge barriers comprising liq. absorbent thermoplastics for absorbent articles)

IT Epoxy resins, uses

RL: MOA (Modifier or additive use); USES (Uses)

(edge barriers comprising liq. absorbent thermoplastics for absorbent articles)

IT Medical goods

(sanitary napkins; edge barriers comprising liq. absorbent thermoplastics for absorbent articles)

IT 9003-04-7, Poly(acrylic acid), sodium salt

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(crosslinked; edge barriers comprising liq. absorbent thermoplastics for absorbent articles.)

IT 85595-35-3, Aqua Keep 10SH 675129-39-2, CR 00

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(edge barriers comprising liq. absorbent thermoplastics for absorbent articles)

IT 58782-18-6, PEGE400

RL: MOA (Modifier or additive use); USES (Uses)

(plasticizer; edge barriers comprising liq. absorbent thermoplastics for absorbent articles)

RE.CNT 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD

- (1) Ahmed, S; US 6534572 B1 2003 CAPLUS
- (2) Decowski, S; US 4718898 A 1988
- (3) Koslow, E; US 6015608 A 2000
- (4) Leptick, S; US 6403857 B1 2002
- (5) McNeil Ppc Inc; EP 1013291 A 2000 CAPLUS
- (6) Petryk, T; US 2004127883 A1 2004
- (7) Procter & Gamble; WO 9734557 A 1997
- (8) Procter & Gamble; WO 03049777 A 2003
- (9) Procter & Gamble; WO 03053314 A 2003

REFERENCE 7

AN 143:238759 CA

TI Multicolor thermal printing materials giving images with high gloss and optical density

IN Tsurumi, Mitsuyuki

PA Fuji Photo Film Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 52 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
IC ICM B41M005-26
CC 74-10 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
Section cross-reference(s): 38

FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|---------------|------|----------|-----------------|----------|
| PI | JP 2005231184 | A2 | 20050902 | JP 2004-42914 | 20040219 |
| PRAI | JP 2004-42914 | | 20040219 | | |

AB The materials, having thermal printing layers on substrates, include .gtoreq.1 layers contg. binders and epoxy compds. except for undercoating layers on the thermal printing layer side.

ST thermal printing material binder epoxy resin crosslinking; binder gelatine thermal printing material diazo

IT Gelatins, uses

RL: TEM (Technical or engineered material use); USES (Uses)
(Nitta 750, crosslinked; multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT Polyethers, reactions

Polyoxyalkylenes, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(epoxy, crosslinking agent; multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT Binders

Crosslinking agents

Thermal printing materials

(multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT Epoxy resins, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(polyether-, crosslinking agent; multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT Epoxy resins, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(polyoxyalkylene-, crosslinking agent; multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT 58782-18-6

RL: RCT (Reactant); RACT (Reactant or reagent)
(Denacol EX 832, Denacol EX 861, crosslinking agent; multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT 184348-36-5 557104-88-8

RL: TEM (Technical or engineered material use); USES (Uses)
(coupler; multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT 29317-04-2, Denacol EX 811 54140-67-9, Denacol EX 145

RL: RCT (Reactant); RACT (Reactant or reagent)
(crosslinking agent; multicolor thermal printing materials including layers contg. binders and epoxy resins)

IT 67928-21-6 159526-16-6 473910-87-1

RL: TEM (Technical or engineered material use); USES (Uses)
(diazonium compd.; multicolor thermal printing materials including layers contg. binders and epoxy resins)

REFERENCE 8

AN 143:194744 CA

TI Thermoplastic elastomer compositions with good melt fluidity, heat, weather, chemical, and wear resistance, adhesion, and flexibility for molded articles

IN Taniguchi, Akio; Chiba, Takeshi

PA Kaneka Corporation, Japan

SO PCT Int. Appl., 57 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

IC ICM C08G059-42

ICS B29C041-18; B60R013-02; B29K021-00; B29L031-58

CC 37-6 (Plastics Manufacture and Processing)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|----------|
| PI WO 2005073270 | A1 | 20050811 | WO 2005-JP824 | 20050124 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,
RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG | | | | |

PRAI JP 2004-23898 20040130

AB Title compns. comprises (A) an acrylic block copolymer composed of a methacrylic polymer block and an acrylic polymer block and (B) a compd. having .gtoreq.11.1 functional groups, wherein .gtoreq.1 of the methacrylic polymer block and acrylic polymer block has a functional group. Thus, 1664 g Bu acrylate was polymd. in the presence of copper bromide, di-Et 2,5-dibromoadipate, and pentamethyldiethylenetriamine, tert-Bu methacrylate 82.8, Me methacrylate 927, Bu acrylate 202, copper chloride 9.4, pentamethyldiethylenetriamine 1.98 g were added therein when the polymn. conversion was reached 94.6% and polymd. to give a block copolymer with Mn 72,200 and polydispersity 1.42, 45 g of which was mixed with 0.09 g Iranox 1010 and kneaded at 240.degree. for 20 min, 100 parts of the resulting acid anhydride and carboxy group-contg. block copolymer was mixed with Epikote 828 10, carbon black 0.5, and Irganox 1010 0.3 parts, kneaded, and heat-pressed at 200.degree. to give a test piece with good ethanol, oil, and heat resistance, adhesion to polyurethanes, moldability, insolubles content 0% before molding and 64% after molding.

ST thermoplastic elastomer compn melt fluidity adhesion; heat weather chem wear resistance molded article; butyl acrylate butyl methacrylate methyl methacrylate block copolymer cyclization; block copolymer Epikote compn

IT Heat-resistant materials

(abrasion-resistant; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Polyoxyalkylenes, preparation

RL: IMF (Industrial manufacture); POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(acrylic; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Acrylic polymers, uses

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(block; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Heat-resistant materials

(chem. resistant; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Polyoxyalkylenes, uses

RL: MOA (Modifier or additive use); USES (Uses)

(epoxy; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Abrasion-resistant materials

Chemically resistant materials

(heat-resistant; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Automobiles

(interior parts; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Epoxy resins, uses

RL: MOA (Modifier or additive use); USES (Uses)
 (polyoxyalkylene-; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Molded plastics, properties
 RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
 (thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT Thermoplastic rubber
 RL: TEM (Technical or engineered material use); USES (Uses)
 (thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT 741269-97-6P, Butyl acrylate-tert-butyl methacrylate-methyl methacrylate triblock copolymer 862012-15-5P 862012-16-6P
 RL: CPS (Chemical process); IMF (Industrial manufacture); PEP (Physical, engineering or chemical process); PREP (Preparation); PROC (Process)
 (precursor; thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

IT 112-27-6DP, Triethylene glycol, reaction products with epoxy-contg. acrylic block copolymers 25068-38-6DP, Epikote 828, reaction products with acid anhydride and carboxy group-contg. acrylic block copolymers 58782-18-6DP, Epiol E 400, reaction products with acid anhydride and carboxy group-contg. acrylic block copolymers 741269-97-6DP, Butyl acrylate-tert-butyl methacrylate-methyl methacrylate triblock copolymer, cyclized, reaction products with epoxy compds. 862012-15-5DP, cyclized, reaction products with epoxy compds. 862012-16-6DP, cyclized, reaction products with triethylene glycol 862090-40-2DP, Epiol E 200, reaction products with acid anhydride and carboxy group-contg. acrylic block copolymers
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (thermoplastic elastomer compns. with good melt fluidity, heat, weather, chem., and wear resistance, adhesion, and flexibility for molded articles)

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD

- (1) Kaneka Corp; JP 2000169665 A 2000 CAPLUS
- (2) Kaneka Corp; EP 1398353 A1 2002 CAPLUS
- (3) Kaneka Corp; JP 200260449 A 2002
- (4) Kaneka Corp; WO 200292696 A1 2002

REFERENCE 9

AN 143:8810 CA
 TI Manufacture of microcapsules with controlled shell thickness
 IN Kushino, Mitsuo; Kikuta, Teruo; Matsumoto, Makoto
 PA Nippon Shokubai Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 18 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM B01J013-06
 CC 38-3 (Plastics Fabrication and Uses)
 FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|---------------|------|----------|-----------------|----------|
| PI | JP 2005131513 | A2 | 20050526 | JP 2003-369539 | 20031029 |

PRAI JP 2003-369539 20031029
 AB In manuf. of the microcapsules by dispersing hydrophobic core substances in aq. media contg. H₂O-sol. surfactants and adding H₂O-sol. compds. to the media, R₁(CH₂CH₂O)_nR₂ (I; R₁ = C₅-25 aliph. or arom. hydrophobic group; R₂ = 300-100,000-Mw polyamine or polycarboxylic acid group; n = 3-85; X = direct link, group derived from amino-, imino-, and/or carboxy-reactive group) are used as the H₂O-sol. surfactants, compds. having epoxy or episulfide group are used as the H₂O-sol. compds., and the shells are formed by reaction between I and the H₂O-sol. compds. Thus, 14.5 g polyethylenimine (Epomin SP 006) was treated with 97.2 g of 25% aq. lauryl polyoxyethylene glycidyl ester (sic) in H₂O to give a 25% solid dispersant

(A1). Then, an aq. soln. contg. 10 g polyglycerol polyglycidyl ether (Denacol EX 521) was added dropwise to an aq. suspension of hydrophobic blue dye contg. 40 g A1, mixed with Na diethyldithiocarbamate trihydrate, kept at 30.degree. for 2 h, aged at 70.degree., and cooled to give a microcapsule dispersion showing particle size 65.0 .mu.m, shell thickness 3.12 .mu.m, and good capsule strength.

- ST polyoxyethylene polyethylenimine surfactant epoxide microcapsule formation
- IT Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
(acrylic, graft, reactive dispersant; manuf. of microcapsules with controlled shell thickness)
- IT Polyoxyalkylenes, uses
RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(acrylic-epoxy; manuf. of microcapsules with controlled shell thickness)
- IT Epoxy resins, uses
RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(acrylic-polyoxyalkylene-; manuf. of microcapsules with controlled shell thickness)
- IT Polyoxyalkylenes, uses
RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(epoxy-polyamine-; manuf. of microcapsules with controlled shell thickness)
- IT Polyamines
RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(epoxy-polyoxyalkylene-; manuf. of microcapsules with controlled shell thickness)
- IT Microcapsules
(manuf. of microcapsules with controlled shell thickness)
- IT Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
(polyamine-, graft, reactive dispersant; manuf. of microcapsules with controlled shell thickness)
- IT Epoxy resins, uses
RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(polyamine-polyoxyalkylene-; manuf. of microcapsules with controlled shell thickness)
- IT Polyamines
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
(polyoxyalkylene-, graft, reactive dispersant; manuf. of microcapsules with controlled shell thickness)
- IT Dispersing agents
(reactive; manuf. of microcapsules with controlled shell thickness)
- IT 71228-86-9DP, Denacol 614B, reaction products with polyoxyalkylene-contg. polyamines or polycarboxylic acids
RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(Denacol 614B; manuf. of microcapsules with controlled shell thickness)
- IT 9002-98-6DP, reaction products with lauryl or Ph polyoxyethylene glycidyl ether and epoxides
RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(Epomin SP 006, Epomin SP 018; manuf. of microcapsules with controlled shell thickness)
- IT 197646-52-9P, Acrylic acid-ethylene oxide graft copolymer phenyl ether
851952-56-2P, Aziridine-oxirane graft copolymer lauryl ether
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
(comprised of actual and assumed monomers, reactive dispersant; manuf. of microcapsules with controlled shell thickness)
- IT 9003-01-4DP, Aqualic HL 415, reaction products with Ph polyoxyethylene glycidyl ether and epoxides
39409-92-2DP, Denacol EX 920, reaction products with polyoxyalkylene-contg. polyamines or polycarboxylic acids
54140-67-9DP, Polyethylene glycol phenyl glycidyl ether, reaction products

with poly(acrylic acid) and epoxides 58782-18-6DP, Denacol EX 841, reaction products with polyoxyalkylene-contg. polyamines or polycarboxylic acids 86630-59-3DP, Polyethylene glycol glycidyl lauryl ether, reaction products with polyethylenimine and epoxides 121630-71-5DP, Denacol EX 521, reaction products with polyoxyalkylene-contg. polyamines or polycarboxylic acids
 RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (manuf.. of microcapsules with controlled shell thickness)

REFERENCE 10

AN 142:483707 CA
 TI Recording sheet for image recording with good resistance to curling and cockling and method of recording
 IN Ogino, Takashi; Hosoi, Kiyoshi; Koga, Chizuru; Matsuda, Tsukasa
 PA Fuji Xerox Co., Ltd., Japan
 SO U.S. Pat. Appl. Publ., 26 pp.
 CODEN: USXXCO
 DT Patent
 LA English
 IC ICM B41J002-01
 NCL 347105000
 CC 43-7 (Cellulose, Lignin, Paper, and Other Wood Products)
 FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|---------------|------|----------|-----------------|----------|
| PI | US 2005104947 | A1 | 20050519 | US 2004-971788 | 20041025 |
| | JP 2005171472 | A2 | 20050630 | JP 2004-206848 | 20040714 |

PRAI JP 2003-386591 20031117
 JP 2004-206848 20040714
 AB The recording sheet comprises a cellulose pulp, and has a water retention value C of 50-100% and a wet tensile strength residual ratio R in transverse direction of 5-20%, where C and R are the products of $[(A-B)/B] \times 100$ and of $(Sw/S) \times 100$, resp., provided that A represents a wt. (g) of the sheet in wet state after the sheet is subjected to centrifugal dehydration, B represents an abs. dry wt. (g) of the sheet, Sw represents a wet tensile strength (kN/m) of the sheet and S represents a tensile strength (kN/m) of the sheet in dry state. The above properties can be attained through controlling the role of H bonds in paper, e.g., through selective sizing for enhancing the moisture independence.

ST curling cockling resistance recording paper manuf
 IT Coating materials
 Electrophotographic paper
 Sizes (agents)
 (manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT Polyesters, uses
 Polyurethanes, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT Surfactants
 (nonionic; manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT Ink-jet recording sheets
 (paper; manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT Paper
 (printing, ink-jet; manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT Paper
 (printing; manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT 22829-17-0, Ammonium zirconium carbonate
 RL: TEM (Technical or engineered material use); USES (Uses)
 (Caltabond; manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT 124671-41-6, Fibran 81
 RL: TEM (Technical or engineered material use); USES (Uses)
 (internal size; manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT 9005-25-8D, Starch, oxidized 9014-85-1D, Surfynol 440, nonionic surfactant 58782-18-6D, Epiol E 1000, oxidized 82200-41-7, Vylonal MD 1200 140841-73-2, Epiol BE 200 288073-11-0, Carbodilite V 02L2 851959-11-0, Emalex GMS-B 851959-14-3, Emalex SPIS 100 851959-17-6, Emalex RWL 150 851959-46-1, Resamine W 100
RL: TEM (Technical or engineered material use); USES (Uses)
(manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

IT 9002-89-5, PVA 102 100359-21-5, Ace A
RL: TEM (Technical or engineered material use); USES (Uses)
(surface size; manuf. of paper for image recording with good resistance to curling and cockling and method of recording)

=> s mh-7210
377 MH
14 MHS
391 MH
(MH OR MHS)
193 7210
0 MH-7210
(MH(W) 7210)

=> s sd-101
1339 SD
50 SDS
1389 SD
(SD OR SDS)
24562 101
3 SD-101
(SD(W) 101)

=> d all 1-3

L3 ANSWER 1 OF 3 REGISTRY COPYRIGHT 2006 ACS on STN
RN 203460-65-5 REGISTRY
ED Entered STN: 01 Apr 1998
CN ***SD 101 (9CI)*** (CA INDEX NAME)
ENTE An acrylic Latex (Sanyo Chemical Co.)
MF Unspecified
CI PMS, MAN
PCT Manual registration
SR CA
LC STN Files: CA, CAPLUS, USPATFULL
DT.CA CAplus document type: Patent
RL.P Roles from patents: USES (Uses)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
3 REFERENCES IN FILE CA (1907 TO DATE)
3 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 139:330083 CA
TI Multilayer mirror for organic electroluminescent device and its production
method of luminous device
IN Lu, Tung-kuei; Wang, Wei-hsiang
PA Laite Science and Technology Co., Ltd., Taiwan
SO Jpn. Kokai Tokkyo Koho, 5 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
IC ICM H05B033-10
ICS H05B033-02; H05B033-14; H05B033-22; H05B033-24
CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
FAN.CNT 1
PATENT NO. KIND DATE APPLICATION NO. DATE
----- ----- ----- -----
PI JP 2003297571 A2 20031017 JP 2003-89737 20030328
CN 1484349 A 20040324 CN 2002-142925 20020916
CN 1484330 A 20040324 CN 2002-142926 20020916

DE 10310341 A1 20031023 DE 2003-10310341 20030310
 NL 1022900 A1 20030930 NL 2003-1022900 20030312
 PRAI TW 2002-91106448 20020329

AB The invention relates to a multilayer mirror, suited for use as a components of a microcavity structure in an org. electroluminescent device, wherein the buffer layer is fabricated between the transparent substrate and the multilayer mirror for enhancing the adhesion.
 ST multilayer mirror org electroluminescent device
 IT Optical resonators
 (microcavity structure; multilayer mirror for org. electroluminescent device of luminous device)
 IT Coating materials
 (multilayer mirror for org. electroluminescent device of luminous device)
 IT Mirrors
 (multilayer; multilayer mirror for org. electroluminescent device of luminous device)
 IT Electroluminescent devices
 (org.; multilayer mirror for org. electroluminescent device of luminous device)
 IT 203460-65-5, SD 101
 RL: TEM (Technical or engineered material use); USES (Uses)
 (buffer layer; multilayer mirror for org. electroluminescent device of luminous device)
 IT 7631-86-9, Silica, uses 12033-89-5, Silicon nitride, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (multilayer mirror for org. electroluminescent device of luminous device)

REFERENCE 2

AN 129:21522 CA
 TI Optical disk with improved durability and its manufacture
 IN Harada, Mitsuru; Menya, Kazunori; Oobayashi, Takashi
 PA Matsushita Electric Industrial Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 7 pp..
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 IC ICM G11B007-24
 ICS B29C065-48; G11B007-26; B29L017-00
 CC 74-12 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|-------------|------|----------|-----------------|----------|
| PI | JP 10112072 | A2 | 19980428 | JP 1996-266906 | 19961008 |

PRAI JP 1996-266906 19961008
 AB The title disk consists successively of a 1st substrate, a 1st recording layer, an interlayer, a silicone adhesive layer, an interlayer, a 2nd recording layer, and a 2nd substrate. The disk shows improved durability at tropical conditions.
 ST optical disk silicone adhesive layer; compact disk silicone adhesive layer
 IT Polysiloxanes, uses
 RL: DEV (Device component use); USES (Uses)
 (KE 1820, NWV 37, Three Bond 3165; optical disk with improved durability)
 IT Optical ROM disks
 Optical disks
 (optical disk with improved durability)
 IT 144046-69-5, Daicure Clear SD 17 203460-65-5, SD 101
 RL: DEV (Device component use); USES (Uses)
 (optical disk with improved durability)

REFERENCE 3

AN 128:198649 CA
 TI Thermal recording body and production method thereof
 IN Wakamatsu, Kiichiro
 PA Mitsubishi Paper Mills Limited, Japan
 SO PCT Int. Appl., 27 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

IC ICM B41M005-30

ICS B41M005-40

CC 74-6 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

Section cross-reference(s): 39

FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|---|--------------------------|--|---|--|
| PI | WO 9806589
W: DE, JP, US
DE 19780794
DE 19780794
JP 3565564
US 6071851 | A1
T
C2
B2
A | 19980219
19990311
20010613
20040915
20000606 | WO 1997-JP2761
DE 1997-19780794
JP 1997-540750
US 1998-43150 | 19970807
19970807
19970807
19980313 |

PRAI JP 1996-209654 19960808
WO 1997-JP2761 19970807

AB A thermal recording body has high sensitivity and high whiteness. In a thermal recording body including an intermediate layer disposed between a support and a recording layer, a high sensitivity thermal recording body can be produced by using a latex having a heat-sensitive gelling property as a bonding agent of the intermediate layer and setting the pH value of a soln. of the intermediate layer at 7.0 or more and the liq. temp. at the time of adjustment and prodn. at not higher than 20.degree. of the gelling temp. A thermal recording body having high whiteness and extremely high printability can be obtained by adding a non-crosslinking type acrylic alk. tackifier to the coating soln. of the intermediate layer.

ST thermal recording intermediate layer; acrylic alk tackifier thermal recording

IT Thermal printing

Thermographic copying

(acrylic alk. tackifier in intermediate layer of thermal recording body)

IT Acrylic polymers, uses

RL: DEV (Device component use); USES (Uses)
(latex;tackifier; acrylic alk. tackifier in intermediate layer of thermal recording body)

IT 170427-79-9, SN thickener 920 174593-64-7, SN thickener 922 203460-65-5, SD 101

RL: DEV (Device component use); USES (Uses)
(tackifier; acrylic alk. tackifier in intermediate layer of thermal recording body)

RE.CNT 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD

(1) Mitsubishi Paper Mills Ltd; JP 06-340174 A 1994

(2) Ricoh Co Ltd; JP 05-139035 A 1993 CAPLUS

L3 ANSWER 2 OF 3 REGISTRY COPYRIGHT 2006 ACS on STN

RN 66770-70-5 REGISTRY

ED Entered STN: 16 Nov 1984

CN ***Rhodopas SD 101 (9CI)*** (CA INDEX NAME)

ENTE An acrylate-styrene copolymer latex

MF Unspecified

CI PMS, MAN

PCT Manual registration

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Journal

RL.NP Roles from non-patents: USES (Uses)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 89:112511 CA

TI The problems posed by the use of glossy paints based on aqueous dispersions of synthetic polymers

AU Sebban, Guy

CS Cent. Rech. Aubervilliers, Rhone-Poulenc Ind., Aubervilliers, Fr.

SO Double Liaison - Chimie des Peintures (1976), 23(248), 153-60

CODEN: DLCPDY; ISSN: 0291-8412

DT Journal

LA French

CC 42-7 (Coatings, Inks, and Related Products)

AB The influence of formulation parameters on the properties of glossy paints based on aq. dispersions is discussed. Pigment vol. concn., dispersing agent, solvent, particle size and min. film-forming temp. of the binder affect the gloss in aq. latex paints. Two glossy latex paint formulations based on Rhodopas AV 501 (vinyl acetate-vinyl versatate copolymer) [66770-71-6] and Rhodopas SD 101 [66770-70-5] (acrylate-styrene copolymer) are presented.

ST gloss aq latex paint; vinyl compd polymer latex paint; styrene acrylate latex paint

IT Coating materials

(aq. latex paints, formulation of, with high gloss)

IT 79-10-7D, esters, polymers with styrene 66770-70-5 66770-71-6

RL: TEM (Technical or engineered material use); USES (Uses)
(coatings, aq. latex paints, with high gloss)

L3 ANSWER 3 OF 3 REGISTRY COPYRIGHT 2006 ACS on STN

RN 9003-07-0 REGISTRY

ED Entered STN: 16 Nov 1984

CN 1-Propene, homopolymer (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Propene, polymers (8CI)

OTHER NAMES:

CN 001PF

CN 03P10/01

CN 04P10/01

CN 05P10-040

CN 1-Propene polymer

CN 1001A

CN 100GA02

CN 100GA03

CN 105PT

CN 1080F

CN 1100NK

CN 1148TC

CN 1184L

CN 1200FH

CN 120SPW-L

CN 1304F1

CN 13T10A

CN 1501F

CN 150AG3

CN 1640P

CN 1947H

CN 19MN10

CN 1EPP

CN 2000C

CN 2000C (polyolefin)

CN 202E

CN 215H

CN 219D

CN 21E953E866

CN 230M4

CN 243.4A

CN 24MB200

CN 25AT

CN 260LLG202

CN 260LLG302

CN 2K93K

CN 3030BN1

CN 3030FN1

CN 3050BN1

CN 3050MNI

CN 30AT

CN 31S07A

CN 31S3A

CN 31U18A

CN 3289MZ

CN 3355Z

CN 33MW247
CN 3435RG
CN 3501F
CN 3502L
CN 3522G
CN 3701T
CN 4017H
CN 4048PP
CN 40AT
CN 40RL01
CN 413S
CN 4200E
CN 4352E1
CN 4500J
CN 4506JP
CN 4700JG
CN 4800JG
CN 500GA20
CN 50RXC7
CN 51S07A
CN 550P
CN 5824S
CN 598A
CN 5A08
CN 5A15
CN 5A64
CN 5B04Z
CN 5C08
CN 5C13
CN 5C39F
CN 5C64
CN 610A
CN 6216E
CN 6301F
CN 6323PM
CN 6462HR
CN 6631FB
CN 701WC
CN 704NP
CN 7064wf1
CN 70SPW-L
CN 744NP
CN 7C49
CN 8004ZR
CN 8080GW
CN 8100B
CN 8755HK
CN 90SPW-L
CN A 1600
CN A 1600 (polyolefin)
CN A 2627-101
CN A 5012
CN A-Fax 900CP
CN AA 25
CN Accpro 10-9433
CN Accpro 10-9934
CN Accpro 9965
CN Accpro ET
CN Acctuf 3234X
CN Acctuf 3434
CN Accurel 1E-PP
CN Accurel 2E-HF-PP
CN Accurel 2E-PP
CN Accurel 2E0.2
CN Accurel EG 100
CN Accurel EP 100
CN Accurel EP 100SR
CN Accurel MP 100
CN Accurel MP 1000
CN Accurel MP 1002
CN Accurel MP 1003
CN Accurel MP 1004

CN Accurel PP
CN Accurel PP 1E
CN Accurel PP 2E
CN Accurel PP 2E-HF
CN Accurel PP-V 8/2
CN Ace Polypro E 401ET
CN Ace Polypro J 205
CN Ace Polypro M 1600
CN Ace Polypro PY 02
CN Achieve 1635
CN Achieve 1635E1
CN Achieve 3844
CN Adiox
CN Adstif 680ADXP
CN Adstif 699ADXP
CN Adstif V 2400G
CN Adstiff 770ADXP
CN AET 75B523
CN AETTM 523
CN AF-PP 150
CN AG 3521
CN AH 661V
CN Alfon
CN Allomer U
CN Alphan
CN Alphan CE 01
CN Alphan CH 11
CN Alphan CHW 01
CN Alphan CN 01
CN Alphan GPF 01
CN Alphan GSF 01
CN Alphan H 101
CN Alphan MA 410
CN Alphan MS 231
CN Alphan NH 101
CN Alphan NHW 101
CN Alphan PD 001
CN Alphan PF 001
CN Alphan PM 001
CN Alphan PP 40PU002
CN Alphan PP 50
CN Alphan PY 001
CN Alphan PY 001-20
CN Alphan PY 101
CN Alphan PY 202-20
CN Alphan RL 01
CN ***Alphan SD 101***
CN Alphan SF 001
CN Alphan SG 001
CN Alphan SO 101
CN Alphan SS 121
CN Alphan SS 221
CN Alphan SY 001
CN Alphan SY 101
CN Alphan SY 201
CN Alphan UHWZ 001
CN AM 3
CN Amberlite RF 14
CN Amoco 10-1046
CN Amoco 10-5219
CN Amoco 10-6016
CN Amoco 10-6352
CN Amoco 10-7944
CN Amoco 10-8178
CN Amoco 1010
CN Amoco 1011
CN Amoco 1046
CN Amoco 1088
CN Amoco 109961
CN Amoco 29-5240
CN Amoco 50112
CN Amoco 62-3463

CN Amoco 6371
CN Amoco 6400P
CN Amoco 6490
CN Amoco 7200P
CN Amoco 7239
CN Amoco 7634
CN Amoco 7644
CN Amoco 9009
CN Amoco 9012
CN Amoco 9013
CN Amoco 9119
CN Ampacet 110617
CN Ampacet LP 20882
CN Ampol C 20
CN Ampol C 60
CN Amtuff 103463
CN APP
CN APP-B 6A
CN APP-D
CN APP-M 5K
CN APP-S 660-220
CN APP-S-H 500
CN Appryl 3020BNI
CN Appryl 3020GN23
CN Appryl 3020SN3
CN Appryl 3030
CN Appryl 3030FN1
CN Appryl 3030P
CN Appryl 3050BN1
CN Appryl 3120
CN Appryl 3120MN1
CN Appryl 3130
CN Appryl 3131MU7
CN Appryl 3400MA1
CN Appryl HVL 0230
CN Appryl HX 0320
CN Appryl MVI 3
CN Appryl PP 3050NMI
CN Aptra AP 3
CN Aquacer 593
CN Arco 106-4
CN Arco 8600
CN Arco 8670
CN Aristech CP 350J
CN Aristech D 008M
CN Aristech D 044L
CN Aristech D 080A2
CN Aristech D 115
CN Aristech D 115A
CN Aristech FP 200F
CN Armlen PP-SV 2T
CN Armlen PP-SV 30
CN Aroma TC 160
CN Aroma U
CN Arterit C 600
CN AS 640V
CN AS 821
CN Asahitak TD 3-148
CN Asahitak TD 3-176
CN AT 36
CN Atactic polypropylene
CN ATF 133
CN Atofina 3181
CN Atofina 3289MZ
CN Atofina 3365
CN Atofina 3429
CN Atofina 3480Z
CN Atofina 3622
CN Avisun
CN Avisun 101
CN Avisun 1014
CN Avisun 12-270A

CN Avisun 12-407A
CN Avisun GP
CN AW 630V
CN Axia AX 201A
CN Axon 6178
CN AZ 161C1
CN Azdel
CN Azdel P 100
CN Azdel P 1037LK
CN Azdel P 1137BK
CN Azdel PD 1-3010
CN Azdel PM 10300
CN Azdel PM 10400
CN Azdel Superlite
CN B 101H
CN B 101P
CN B 101PT
CN B 101W
CN B 101WA
CN B 101WAT
CN B 150K
CN B 1530
CN B 1530 (polyolefin)
CN B 200
CN B 200P
CN B 229T
CN B 246ZT
CN B 2700
CN B 278
CN B 3050
CN B 380J
CN B 40
CN B 40 (polypropylene)
CN B 503
CN B 523
CN B 901T
CN BA 110CF
CN Balen
CN Bapolan 4063N
CN Barial PP 200
CN Bariera PGS 25
CN Basell HP 400N
CN Basell PDC 1274
CN BASF 1325
CN BC 03D
CN BC 056C
CN ***BC 06***
CN BC 145M
CN BC 2
CN BC 2 (polyolefin)
CN BC 245MO
CN BC 3AW
CN BC 3LS
CN BC 4Q
CN BCA 150
CN BCB 95
CN BCO 3BSW
CN BD 310MO
CN BD 801F
CN BE 182B
CN BE 50
CN BE 677MO
CN BE-C 50
CN Beablock
CN Berwick 500
CN BG-G
CN Bicolene P
CN Bicor 240B
CN Bicor 278T
CN Bicor 306IG
CN Bicor 310AB
CN Bicor 400S

CN Bicor 90OP550S
CN Bicor 98PXS
CN Bicor CSR 2
CN Bicor MB 400
CN Bio Stage
CN Bio Stage RK 04Z098
CN Bistalon
CN BJ 309V
CN BJ 3H-MF
CN BJ 501
CN BJ 5H-MF
CN BJ 6H-MFS
CN BJ 730
CN BJHH 2283
CN BJHH-P
CN BJHH-US
CN BJHH-US (N)
CN BJHSA 20
CN BK 1604102
CN BL 03B
CN BO 2535
CN BO-S 645
CN BO-YT 42
CN Bodon
CN Boltaron 5500/5501
CN Boltaron Pro 5500
CN BOPP 157GD02
CN Borclean HB 300BF
CN Bormod HC 905TF
CN BP 10-6014
CN BP 101
CN BP 101 (polyolefin)
CN BP 105
CN BP 115
CN BP 6015PP
CN BP 6219
CN BP 7200
CN Bras-Fax 6331
CN BT 2006
CN Buplen 6531
CN Buplen 7823
CN BX 02LS
CN BX 310
CN BX 310 (polyolefin)
CN BY 011F
CN BYE 62
CN C 1400
CN C 1400 (polyolefin)
CN C 140Y
CN C 1557
CN C 200
CN C 200 (polypropylene)
CN C 234
CN C 314
CN C 31PS
CN C 322
CN C 418B
CN C 4220
CN C 4420
CN C 50E
CN C 520XKD
CN C 60
CN C 60 (polymer)
CN C 8010N
CN Cabelec 3140
CN Cabelec 736
CN CAP 2880
CN CAP 355Y
CN CAP Sheet
CN Capilene E 50E
CN Capilene G 86E
CN Capilene R 40

CN Capilene R 50
CN Capilene SU 75AV
CN Capilene T 50E
CN Caprez DPP
CN Carlona GMT 67
CN Carlona H 61
CN Carlona HY 61
CN Carlona HY 61/1090/1324
CN Carlona K 571
CN Carlona KM 61
CN Carlona KMT 6100
CN Carlona P
CN Carlona P 61
CN Carlona PM 61 naturel
CN Carlona PPLZ 074
CN Catalloy KS 0810P
CN CC-PP 60
CN CCU
CN CD 100
CN CD 263
CN CD 316
CN CD 419
CN CEC 4412
CN Celgard 2200
CN Celgard 2300
CN Celgard 2400W
CN Celgard 2402
CN Celgard 2502
CN Celgard 3400
CN Celgard 3401
CN Celgard 3500
CN Celgard 3501
CN Celgard 4400
CN Celgard 4410
CN Celgard 4500
CN Celgard 4510
CN Celgard 5501
CN Celgard 5511
CN Celgard K 273
CN Celgard K 292
CN Celgard KXK 2
CN Cellofilm U 1
CN Celmar
CN Celpore 3NW-O1
CN Celpore NW 01
CN Celpore NW 07
CN Celpore NW 07H
CN Celpore NW 11
CN Celpore NW 9
CN Celpore W 1
CN Celstran PP-GF 40
CN Celstran PP-GF 40-04
CN Celstran PPG 040-01
CN Celstran PPG 40
CN Celstran PPLSG 30-4
CN Celstran PPLSG 40-4
CN Celstran PPLSG 50-4
CN Cenessy C 153-40
CN Cenessy CPP 146
CN Cenessy POP
CN Cenessy WOP-W 2
CN Ceraflour 430RC836
CN Ceraflour 914
CN Ceraflour 915
CN Ceridust F 3910
CN Ceridust VP 6071
CN CF 3001
CN CF 3013
CN CF 501
CN CG 210
CN CG 730
CN Chemipearl WP 100

CN Chemipearl WP 250
CN Chemipearl XEP 100H
CN Chisso 2038
CN Chisso 2654
CN Chisso 5078
CN Chisso 8377
CN Chisso K 4017
CN Chisso Polypro 1014
CN Chisso Polypro HT 6004
CN Chisso Polypro K 1016
CN Chisso Polypro XF 7553
CN Chisso Polypro XF 9250
CN CJ 102
CN CJ 104
CN CJ 950
CN CJS 700
CN CJS 700G
CN Clysar 50EHC-F
CN Coathylene PB 0580
CN Coathylene PF 0548
CN Coathylene PY 0787F
CN Colcolor
CN Correx
CN Corton PDR 1054/2HS Natural
CN Corton PDR 1701
CN Cosden 8670
CN Cosmoplene FS 3011P
CN Cosmoplene Y 101
CN Cotene PP 9800
CN CP 106
CN CP 106 (polyolefin)
CN CP-FG
CN CP-GHC
CN CP-RXC 18
CN CP-S
CN CPP 25S
CN CPPor 4540
CN CPSC
CN CR 50
CN CR 50 (polyolefin)
CN Crownfilm 112
CN CS 3230
CN CT-P 1128
CN CTS 700
CN Curphane 4640
CN Cuyolen 1102
CN Cuyolen 1102HX
CN D 008M
CN D 015C2
CN D 022D
CN D 038S
CN D 040W6
CN D 101
CN D 101WB
CN D 137
CN D 151
CN D 151 (film)
CN D 501
CN Daiapolymer 4800JG
CN Daiapolymer MA 2A
CN Daiapolymer MA 3
CN Daicel PB 2N1
CN Dampla-Ace
CN Danplate
CN Danpra S
CN Danpureto
CN Daplen 708C/D30
CN Daplen AD
CN Daplen AD 10 Natur
CN Daplen AD 50
CN Daplen APP
CN Daplen APP 17

CN Daplen AS 50
CN Daplen AT 10K92
CN Daplen ATK 92
CN Daplen CF 501
CN Daplen CS 10
CN Daplen CS 100
CN Daplen D 2XMOD
CN Daplen DM 55U
CN Daplen DSC 1011
CN Daplen E 1166
CN Daplen E 260
CN Daplen FM 553NA
CN Daplen FS 65T40
CN Daplen KF 201
CN Daplen KF 201SB
CN Daplen KF 20SB
CN Daplen KF 211SB
CN Daplen KFC 2004SB
CN Daplen KFC 201
CN Daplen KS 10S
CN Daplen PT 551
CN Daplen QT 551
CN Daplen RS 103
CN Daplen TC-F 30
CN Daplen TC-FSC 65T30
CN Daplen TC-U 30
CN Daplen US 10
CN Daplen US 105A
CN Daplen XS 80
CN Daploy HMS 110F
CN Daploy WB 130HMS
CN DE 20004GP
CN Dexon E 117
CN DF 202K
CN DG 687
CN DGF 4400.00
CN DH 109
CN Dow 5D98
CN Drizit
CN DS 5D45
CN DS 8620
CN DSM 1020T
CN Duon 830
CN Duraguard
CN Duraguard 2400
CN Duraguard 2402
CN Duraguard 2500
CN Duraguard 2502
CN Duraguard 3401
CN Duraguard 3501
CN Durro 8938
CN DV 001PF
CN DWU
CN DX 5088
CN DX 5E66
CN DX 5E766
CN Dypco 3275
CN Dypco 3576
CN Dypco 8485
CN Dypco 8619
CN Dypco 8938
CN E 100G
CN E 100GM
CN E 101MA
CN E 101P
CN E 102
CN E 102D
CN E 102GP
CN E 103
CN E 103 (polymer)
CN E 105
CN E 105 (polyolefin)

CN E 105GK
CN E 111G
CN E 1130
CN E 120G5
CN E 121WA
CN E 130G
CN E 150K
CN E 150K (polyolefin)
CN E 170GM
CN E 200
CN E 200 (polypropylene)
CN E 2000GV
CN E 200C
CN E 200G
CN E 200GP
CN E 200H
CN E 200N
CN E 200T
CN E 200X
CN E 203G
CN E 203GK
CN E 203GV
CN E 239
CN E 2600
CN E 300A
CN E 304G
CN E 333GV
CN E 4
CN E 401ETX
CN E 409TS
CN E 43
CN E 43 (polymer)
CN E 43N
CN E 500F
CN E 5D47
CN E 620G
CN E 620G (polyolefin)
CN E 7000
CN E 7100
CN E 7100 (polyolefin)
CN EA 040T
CN EA 110
CN EA 130-1
CN EA 6A
CN EA 7
CN EA 8
CN EA 9
CN EA 9A
CN Eastobond D 7682-109S
CN Eastobond G 92
CN Eastobond L 8080-270A
CN Eastobond M 3
CN Eastobond M 5
CN Eastobond M 500S
CN Eastobond M 5C
CN Eastobond M 5H
CN Eastobond M 5W
CN Eastoflex 1023
CN Eastoflex P 1010
CN Eastoflex P 1023
CN EB 4237
CN EB 4476
CN EB-G
CN EBI 0830
CN EC 09
CN EC 98
CN EC 9B
CN EC 9EV
CN Ecolo Sheet N 4096
CN EF 401
CN EFL 200
CN EHPP

CN EL 80F1
CN El Rexene PP 11S
CN Elastopreg B 100F30
CN Elex 358HV200
CN Elpon
CN Eltex HL 001
CN Eltex HL 001PF
CN Eltex HP 405
CN Eltex HV 001
CN Eltex HV 200PF
CN Eltex HY
CN Eltex KL 177
CN Eltex P-HF 100
CN Eltex P-HL 001PF
CN Eltex P-HL 011
CN Eltex P-HL 200P
CN Eltex P-HL 518
CN Eltex P-HV 001
CN Eltex P-HV 001PF
CN Eltex P-HV 100P
CN Eltex P-HW 206
CN Eltex P-KW 276
CN Eltex P-PV 001P
CN Eltex P-RP 210
CN Eltex PHL
CN Eltex RCW 284
CN EM 490
CN Embryon HG 770J
CN Enjay CD 392
CN Enjay CD 460
CN Enjay CD 490
CN Enjay E 115
CN Enjay E 117
CN Enpla
CN EOD 00-07
CN EOD 96-36
CN EOD 9601
CN EOD 97-06
CN EOD 97-18
CN EP 100
CN EP 2629EB
CN EP 3T46F
CN EP 548N
CN EPA 2
CN EPB 2
CN Eperan PP
CN Eperan PP 45
CN Eperan PP-LBS 13
CN EPF 30M
CN Epolene M 5H
CN Epolene M 5K
CN Epolene M 5W
CN Epolene M 85
CN Epolene N 15
CN Epolene N 15M
CN Epolene N 34P
CN Eppor EA
CN EPPOR EA 190
CN EPPOR EA 480
CN Equistar 31S3A
CN Equistar 51S07A
CN Equistar 51S12A
CN Equistar FP 800-00
CN Escon 622
CN Escon CD 44A
CN Escon EX 375
CN Escorene 1304EI
CN Escorene 3014
CN Escorene 3145
CN Escorene 3505G
CN Escorene 3746
CN Escorene 3746G

CN Escorene 3860
CN Escorene 4092
CN Escorene 4193
CN Escorene 5012F2
CN Escorene 5141G
CN Escorene 5232
CN Escorene 8224
CN Escorene 9074MED
CN Escorene PD 050
CN Escorene PD 3345-88
CN Escorene PD 3345E
CN Escorene PD 3345E5
CN Escorene PD 3435G
CN Escorene PD 3495G
CN Escorene PD 4062E7
CN Escorene PD 4182E3
CN Escorene PD 4193
CN Escorene PD 4222E1
CN Escorene PD 4323
CN Escorene PD 4443
CN Escorene PD 5291
CN Escorene PP 1159
CN Escorene PP 1403F
CN Escorene PP 2032
CN Escorene PP 292E1
CN Escorene PP 3445
CN Escorene PP 3456G
CN Escorene PP 3495G
CN Escorene PP 3505G
CN Escorene PP 4062E7
CN Escorene PP 4152
CN Escorene PP 4193
CN Escorene PP 4292E1
CN Escorene PP 4352F1
CN Escorene PP 4403
CN Escorene PP 5022
CN Escorene PP 9222F1
CN Escorene PP 9505
CN Escorene PP 9524
CN Escorene XPP 323
CN Esudassyu PG 6010
CN ET 20
CN ET 6000
CN Eticourt ETM
CN EUH 75
CN EX 108
CN EX 880X3
CN EXP 127-32-6
CN EXPP 157
CN EXPP 170
CN Extron 3011
CN Extron 3011PP-GF45
CN Exxelor PO 1015TA
CN Exxon 3014
CN Exxon 3684
CN Exxon 4612
CN F 080PP
CN F 1002
CN F 1002B
CN F 1013WH
CN F 102
CN F 102WC
CN F 103
CN F 103WB
CN F 103WH
CN F 107BV
CN F 107DV
CN F 1088
CN F 109
CN F 109B
CN F 109BA
CN F 109BB

CN F 109D
CN F 109K
CN F 1188
CN F 122
CN F 122 (polymer)
CN F 122B
CN F 1300
CN F 132
CN F 132 (polyolefin)
CN F 142Z
CN F 150J
CN F 1566
CN F 180A
CN F 200GP
CN F 200S
CN F 200SP
CN F 200ST1
CN F 205SR
CN F 2062
CN F 209C
CN F 229BA
CN F 25G
CN F 300S
CN F 300SP
CN F 305-12MF
CN F 30S
CN F 3122
CN F 327P
CN F 350HC
CN F 3900
CN F 3900 (polyolefin)
CN F 3990
CN F 400
CN F 400 (polyolefin)
CN F 400H
CN F 401
CN F 4016
CN F 409B
CN F 5101A
CN F 569R
CN F 600
CN F 600HC
CN F 631
CN F 658D
CN F 701WC
CN F 704
CN F 704NP
CN F 704NT
CN F 707V
CN F 730NV
CN F 734NP
CN F 744
CN F 774M
CN F 8098
CN F 812A
CN F 8298
CN F 8298A
CN F 8577
CN F 9750D
CN F 975D
CN FA 112
CN FA 122
CN FA 122 (polyolefin)
CN FA 235-1
CN FA 3D
CN FA 410
CN FA 440
CN FA 465
CN FA 520
CN Fancy Wrap PSH 30
CN Fankuron EPA 2
CN FB 3

CN FB 3 (polyolefin)
CN FB 3C
CN FB 3GT
CN FB 3T
CN FB 99A
CN FC 240
CN FC 540
CN FC 9412
CN FCMSO
CN FCZK
CN FD 141C
CN FD 30
CN Ferro NPP 00GC16NA
CN Ferro TPP 40AC52BK
CN FF 020T
CN FF 020Y
CN FF 038A2
CN FFF 8175
CN FG 3DF
CN FG 3Y
CN FG 431
CN FG 5-1
CN FH 1015
CN FH 300
CN FH 3400
CN FH 3500
CN FHBK
CN FHK 2
CN FHK 20
CN FHK 2L
CN Fiberstran G 60/50Nat1
CN Fina 1071
CN Fina 3181
CN Fina 3181X
CN Fina 3230
CN Fina 3270
CN Fina 3272
CN Fina 3277
CN Fina 3362U
CN Fina 3365U
CN Fina 3371T
CN Fina 3374X
CN Fina 3376
CN Fina 3429
CN Fina 3445
CN Fina 3571
CN Fina 3576
CN Fina 3622
CN Fina 3661
CN Fina 3662
CN Fina 3761
CN Fina 3824
CN Fina 3892
CN Fina 3900
CN Fina 3925
CN Fina 3960
CN Fina 4060
CN Fina 4180
CN Fina 5042
CN Fina 5042S
CN Fina 5060
CN Fina 5060S
CN Fina 6573
CN Fina 828
CN Fina 98035
CN Fina EOD 97-18
CN Fina PP 3376
CN Fina PP 3445
CN Finacene 98-09
CN Finapro 7060
CN Finapro P 3660
CN Finapro PPh 110112

CN Finapro PPH 7060S
CN Finapro PPH 9096
CN Finaprop PP 150
CN FL 100
CN FL 25
CN FL 25HA
CN FL 25T
CN FL 60
CN FL 6315G
CN FL 7
CN FL 7 (polyolefin)
CN FL 8012
CN FL 8013
CN FL 80F1
CN FL 8115
CN FL 821
CN Flo-Beads PJ
CN Flo-Blen B 200
CN Flo-blen Q
CN Flo-blen QB 200
CN Flozwc
CN FLX 80E4
CN FM 101
CN FM 101A
CN FM 103B
CN FM 113
CN FM 121
CN FM 121A
CN FM 121B
CN FM 131
CN FM 133
CN FM 201B
CN FM 201C
CN FM 202B
CN FM 3552
CN FM 414
CN FM 831B
CN FO 200H
CN FO 2186
CN FO 50F
CN FOA-BT
CN Foam Ace PP
CN FOF 40
CN FOH-F
CN FOK
CN FOK (polyolefin)
CN FOR
CN FOR 30
CN FOR-MP
CN Fortilene
CN Fortilene 12
CN Fortilene 1602
CN Fortilene 2104
CN Fortilene 3907
CN Fortilene 4101
CN Fortilene 9000
CN Fortilene 9101
CN Fortilene 9200
CN Fortilene 9300
CN Fortilene 9600
CN Fortilene HB 1602
CN Fortilene HB 9200
CN FOS-BT
CN FP 230
CN FP 230 (polyolefin)
CN FP 300F
CN FP 80
CN FPG 80
CN FPG 95
CN FPO-W 101
CN FPO-WL 102
CN FPO-WL 107

CN FPO-WL 111
CN FPO-WL 118
CN FPP-D 1810
CN FPU 60
CN FRPP-E 7000
CN FS 2011
CN FS 2011C
CN ***FS 2011DG***
CN FS 3011
CN FS 4012
CN FS 65T20
CN FS 861
CN FT 021N
CN FTA 2530
CN FTH 4379
CN Funcster LR 23C
CN Funcster LR 25Z
CN FW 163
CN FW 363A
CN FX 270
CN FX 4Q
CN FY 3VE
CN FY 4
CN FY 6
CN FY 6C
CN FY 6HA
CN G 1
CN G 1 (polyolefin)
CN G 101
CN G 86E
CN Gapex RPP 30EA36HBNA
CN Garblene
CN Garlaply
CN GB 130
CN GB 130 (polyolefin)
CN GB 220
CN GB 230
CN GE 7100
CN GE 71200
CN GF 2APP
CN GF 60N11
CN GFL 921
CN GH 1
CN GH 1 (polyolefin)
CN GH-I
CN GH-I (polyolefin)
CN GHC
CN GHC 25
CN GK 0375
CN GK 8000
CN GLC
CN GM 15M
CN GM 300B
CN GM 40PP-RWT
CN GMT Symalit 40
CN GMW 213
CN GND 20
CN GPCD 398
CN Grand Polypro B 761QD
CN Grand Polypro BEBG
CN Grand Polypro E 111
CN Grand Polypro E 121WA
CN Grand Polypro F 103
CN Grand Polypro F 109BB
CN Grand Polypro F 109D
CN Grand Polypro F 122B
CN Grand Polypro F 133
CN Grand Polypro F 701WC
CN Grand Polypro G 101
CN Grand Polypro J 101
CN Grand Polypro J 105
CN Grand Polypro J 105W

CN Grand Polypro J 106W
CN Grand Polypro J 106WB
CN Grand Polypro J 300
CN Grand Polypro J 707
CN Grand Polypro J 709W
CN Grand Polypro J 802H
CN Grand Polypro S 13B
CN GRPB 221
CN GSE 111
CN GSE 18
CN GW 522
CN GW 8080
CN GWE 27
CN GX 543
CN GXE 35
CN GYM 45
CN GZF 62
CN H 030SG
CN H 100EY
CN H 103
CN H 103-00
CN H 1050
CN H 110MA
CN H 12054P41
CN H 150F
CN H 2000
CN H 2000 (polyolefin)
CN H 200NS
CN H 230W
CN H 302-09RSB
CN H 304
CN H 306
CN H 32GA
CN H 337
CN H 377
CN H 400
CN H 400 (polyolefin)
CN H 430
CN H 430 (polyolefin)
CN H 483
CN H 5000
CN H 501
CN H 501N
CN H 540
CN H 540 (polyolefin)
CN H 543
CN H 603
CN H 605
CN H 670
CN H 700
CN H 700 (polyolefin)
CN H 700-12
CN H 701-12
CN H 701-20A
CN H 702-35
CN H 702-35NA
CN H 704-04
CN H 715-12
CN H 800V
CN H-TD 045
CN HA 100E
CN HA 125J
CN HA 20
CN HA 20 (polyolefin)
CN HA 507MO
CN HA 507P
CN HB 121J
CN HB 1301
CN HB 1602
CN HB 300P
CN HB 9000
CN HB 9000 (polyolefin)

CN HB 9600
CN HC 1000
CN HC 100F
CN HC 100M
CN HC 115J
CN HC 115M
CN HC 115MO
CN HC 205P
CN HC 210P
CN HC 318BF
CN HC-OP
CN HC-OP 25
CN HCPP-K 5016
CN HCPPK 5019
CN HCPPK 5030
CN HCPPK 5130
CN HCPPXF 1932
CN HD 100G
CN HD 100G2
CN HD 120M
CN HD 810MO
CN HD 822CF
CN HE 125MO
CN HE 6104
CN Hercoflat 1135
CN Hercoflat 1150
CN Hercoflat 135
CN Hercotuf 101A
CN Hercotuf 110A
CN Hercotuf 115A
CN Hercotuf 210A
CN Hercotuf PB 681
CN Hercules 6501
CN HET 6100
CN HF 100
CN HF 135
CN HF 135M
CN HF 135MO
CN HF 136MO
CN HF 3122
CN HF 36
CN HF 36 (polyolefin)
CN HF 445FB
CN HF 461X
CN HF 5003
CN HF 500N
CN HF 6100
CN HG 20U
CN HG 235J
CN HG 30U
CN HG 430MO
CN HGV 04-01
CN HGX 030
CN HGZ 08002
CN HH 100
CN HH 3150MO
CN HH 315MO
CN HH 420J
CN HH 422H
CN HHP 3
CN HI 520
CN HI Pront
CN Hidisper 326
CN Hidisper 7020
CN Hifax 7320XEP
CN Hifax CA 131G
CN Hifax SP 98F94
CN Highmass Polymer
CN Highstar
CN HiGlass PF 062-2
CN Higlass PF 072-3
CN Higran F 501

CN Higran F 502
CN Higran F 503
CN Higran SD 817
CN Himer 200P
CN Himer 550P
CN Himer 660P
CN Himer TP 32
CN Himont 6323PM
CN Himont 6331
CN Himont 66.1
CN Himont HOXP 621
CN Himont PP 6601
CN Himont X 10054-12-1
CN HIP 145
CN Hipol B 200
CN Hipol B 200P
CN Hipol B 278
CN Hipol F 300
CN Hipol F 401
CN Hipol F 600
CN Hipol F 601
CN Hipol F 651
CN Hipol F 657
CN Hipol F 657P
CN Hipol J 106
CN Hipol J 108
CN Hipol J 200
CN Hipol J 300
CN Hipol J 300P
CN Hipol J 400P
CN Hipol J 440
CN Hipol J 600
CN Hipol J 600P
CN Hipol J 657Y
CN Hipol J 700
CN Hipol J 800
CN Hipol J 800P
CN Hipol J 840F
CN Hipol J 858Y
CN Hipol J 900
CN Hipol J 900P
CN Hipol L 840
CN Hipol LA 211
CN Hipol LA 221
CN Hipol X 20
CN Hipol X 25
CN Hipol X 440
CN Hipolen FY 6
CN Hipolen MA 3
CN Hipolen PMA 6
CN Hipore 3000
CN Hiprene H 320
CN Hitalex L 3355
CN Hivalloy G 7155
CN Hivalloy GXPA 018
CN Hiwax NP 055
CN Hiwax NP 056
CN Hiwax NP 105
CN Hiwax NP 505
CN Hiwax NP 605
CN Hiwax NP 705
CN Hiwax NP 805
CN HJ 220
CN HJ 240
CN HJ 500
CN HJ 700
CN HLM 020
CN HM 060
CN HM 1
CN HM 1 (polyolefin)
CN HM 520J
CN HM 6100

CN HMS-PD PF 611
CN HMS-PF 814
CN HMS-PP
CN Hoechst 160
CN Hoprene J 150
CN Hostacom G 3N01L
CN Hostacom G 3N01
CN Hostacom HC-M 4U42
CN Hostacom M 1U03
CN Hostacom M 2U01
CN Hostacom M 4U02
CN Hostacom P 873F
CN Hostacom PPU 2090L
CN Hostalen 1050
CN Hostalen 1060
CN Hostalen 1070
CN Hostalen 1080F
CN Hostalen 1780S2AST
CN Hostalen 5216
CN Hostalen HH 1414
CN Hostalen LP 290
CN Hostalen N 1060
CN Hostalen PP 1070
CN Hostalen PP 1780F
CN Hostalen PP 6200
CN Hostalen PP YD 50G
CN Hostalen PP-U
CN Hostalen PP-VP 7790GV2/30
CN Hostalen PPG 0150
CN Hostalen PPH 0150
CN Hostalen PPH 1050
CN Hostalen PPH 2150
CN Hostalen PPH 2250
CN Hostalen PPH-VP 7350FL
CN Hostalen PPK
CN Hostalen PPK 0160
CN Hostalen PPK 1060F
CN Hostalen PPK-VP 1018
CN Hostalen PPN
CN Hostalen PPN 0160
CN Hostalen PPN 1060F
CN Hostalen PPN 1060F3
CN Hostalen PPN 1075
CN Hostalen PPN 1075F
CN Hostalen PPN 1076F
CN Hostalen PPN 1080
CN Hostalen PPN-VP 1009
CN Hostalen PPN-VP 7790GV2/30
CN Hostalen PPT VP 7090A
CN Hostalen PPU 0180P
CN Hostalen PPU 1080
CN Hostalen PPU 1734
CN Hostalen PPU 1780
CN Hostalen PPU 1780F
CN Hostalen PPU 1789
CN Hostalen PPU-VP 1770F
CN Hostalen PPV 1780F Natur
CN Hostalen PPW 1780
CN Hostalen PPW 1780S1
CN Hostalen PPX 694
CN Hostalen VP 7780GV
CN Hostaprop
CN HOXP 621
CN HP 1078
CN HP 400N
CN HP 425J
CN HP 456H
CN HP 500U
CN HP 501H
CN HP 502L
CN HP 502N
CN HP 524J

CN HPP 9433
CN HS 01
CN HS 200XG4
CN HT 0013
CN HT 022
CN HT 1050
CN HT 121
CN HT 340
CN HT 441
CN HT 6004
CN HU 100G
CN Huntsman 4011
CN Huntsman 5520
CN Huntsman 5824
CN Huntsman P 4G2Z073AX
CN HV 206
CN HW 160GR30
CN HW 1925
CN HW 25
CN HW 525M
CN HWM 25
CN HY 001
CN HY 200
CN HY 6100N
CN Hydrocer ER 77
CN Hyosung C
CN Hyosung T
CN Hypron ASC
CN Hytec E 4333N
CN Hytec P 5060BN
CN Hytec P 5060S
CN I 703
CN ICI 543
CN Icorene 9013P
CN Icorene 9184B-P
CN Idemitsu Polypro E 170GM
CN Idemitsu Polypro F 205S
CN Idemitsu Polypro F 700N
CN Idemitsu Polypro J 3000GP
CN Idemitsu PP F 704
CN Idemitsu PP F 744
CN Idemitsu PP-B 3050
CN IF 1SOA
CN IH 10
CN IML 333
CN Inspire C 704-07
CN Inspire C 705-44NAHP
CN Inspire D 207-01
CN Inspire D 404-01
CN Inspire H 100-01
CN Inspire H 110-02N
CN Inspire H 301-02AS
CN Inspire H 512-52RNA
CN Inspire H 700-12
CN Inspire H 701-20NA
CN Inspire H 704-04
CN Inspire H 715-12
CN Inspire H 716
CN IO 6417
CN IP 305
CN IP 407
CN IR 20
CN IR 20 (polyolefin)
CN Irapol 11H30S
CN IS 9-62
CN ISO-FM-PP 40
CN ISO-FSM-PP 40
CN Isopor
CN Isopor (polypropylene)
CN Isplen
CN Isplen 020
CN Isplen D 50

CN Isplen PB 170U
CN Isplen PP 040
CN Isplen PP 044W3f
CN Isplen PP 070
CN Isplen PP 080
CN J 101
CN J 101W
CN J 102
CN J 102WAT
CN J 103
CN J 103WA
CN J 103WB
CN J 104
CN J 104W
CN J 104WC
CN J 104WT
CN J 105
CN J 105F
CN J 105H
CN J 105P
CN J 105PPT
CN J 105W
CN J 106
CN J 106M
CN J 106P
CN J 106PT
CN J 106W
CN J 106WB
CN J 108
CN J 108P
CN J 115
CN J 115G
CN J 120G
CN J 140WA
CN J 150
CN J 150 (polyolefin)
CN J 150G
CN J 160F
CN J 2000G
CN J 2000GP
CN J 2003G
CN J 2003GP
CN J 2004G
CN J 201
CN J 201 (polyolefin)
CN J 2021R
CN J 2041GA
CN J 205
CN J 209
CN J 220
CN J 226E
CN J 240
CN J 240F
CN J 247TW
CN J 300
CN J 3000G
CN J 3000GP
CN J 3000GV
CN J 300P
CN J 3053HP
CN J 3056HP
CN J 30S
CN J 340
CN J 340 (Chinese polyolefin)
CN J 340W
CN J 400P
CN J 420G
CN J 440
CN J 466H
CN J 466HP
CN J 4H2187
CN J 5010B

CN J 5050B
CN J 5053H
CN J 5100
CN J 5200A
CN J 5350A
CN J 5700
CN J 604P
CN J 6083H
CN J 6083HP
CN J 620M
CN J 626
CN J 626E
CN J 630G
CN J 650M
CN J 700
CN J 700 (polyolefin)
CN J 7000
CN J 700G
CN J 700GP
CN J 700M
CN J 700P
CN J 701
CN J 701PT
CN J 702L
CN J 702LB
CN J 704MA
CN J 705Z
CN J 707Z
CN J 708UG
CN J 709
CN J 7090
CN J 709W
CN J 713M
CN J 723
CN J 723G
CN J 726HP
CN J 728
CN J 740F
CN J 750
CN J 750H
CN J 751HP
CN J 762H
CN J 780M
CN J 800
CN J 900
CN J 900G
CN J 900P
CN J 901H
CN J 903GP
CN J 915HK
CN J 920
CN J-Allomer
CN J-Allomer 150G
CN J-Allomer C 4302Y
CN J-Allomer F 120K
CN J-Allomer FA 235-1
CN J-Allomer FA 462
CN J-Allomer FA 465
CN J-Allomer FD 332
CN J-Allomer LR 510
CN J-Allomer LR 711-5
CN J-Allomer M 1500
CN J-Allomer M 1600
CN J-Allomer M 1700
CN J-Allomer MA 421B
CN J-Allomer MA 710
CN J-Allomer MA 810B
CN J-Allomer MK 122
CN J-Allomer PC 600S
CN J-Allomer PC 630S
CN J-Allomer PF 540B
CN J-Allomer PM 600A

CN J-Allomer PS 201A
CN J-Allomer PX 600A
CN J-Allomer SA 510
CN J-REX LS 712
CN J-REX PP-FA 235-1
CN J-REX PP-FA 465
CN J8 30HV
CN JF 300
CN JF 6100
CN JGD 1800
CN JHH
CN JHH-M
CN JI 350
CN JMD 4500
CN Jonwax 39
CN JP 900GP
CN JS 1429
CN JS 38
CN JS-UHM
CN JSC 70
CN JWE 4A
CN JY 600
CN K 1000
CN K 1008
CN K 1016
CN K 2401
CN K 299
CN K 300
CN K 300 (polyolefin)
CN K 4017
CN K 5016
CN K 5019
CN K 5020
CN K 5108
CN K 5360
CN K 7020
CN K 7030R
CN K 7750
CN K 8250T
CN K 9920
CN K-Tac 100A
CN K-TAC 2015
CN Kaplen 01/30
CN Kaplen 01003
CN Kaplen 01030
CN Kaplen 35
CN Kastilene M 260
CN KFC 201
CN Kimdura FPG 110
CN Kimdura ITE 105
CN Kimdura KPK 80
CN KJ 209
CN KM 210
CN KM 5100
CN Kohjin Korap
CN Kohjin Polyset
CN Koplene J 370
CN Koylene
CN Koylene CP-MI 3530
CN Koylene E 0035
CN Koylene M 5630
CN Koylene S 1730
CN Koylene XF 30
CN KP 010
CN KP Sheet
CN KS 10-4095D-II
CN L 840
CN LA 221
CN LA 333
CN LA 335
CN Lacqten 3020FD1
CN Lacqten 3050FNI

CN Lacqten 3120MN1
CN Lacqten P 3030FN1
CN Ladene 520L
CN Ladene PP 512P
CN Ladene PP 520L
CN Ladene PP 570P
CN Lanco Wax PP 1362D
CN Latene 3G30
CN Latene AG 3H2W-G30VO
CN Latene AG 7H-G30
CN Latene AG 7H-G40
CN LBW
CN LBW 240
CN LCF 5000
CN LCMW
CN LE 3300
CN Levelite 260LL
CN LF 25R
CN Licowax PP 230
CN Licowax VP 220
CN Licowax VP-PP 220
CN Linopor
CN Lipol
CN Lipol A 4-70
CN LOF 2
CN Lofolen
CN Lonply XG 200
CN LR 510
CN LTW 8101
CN Lupareen
CN LY 6100
CN LYM 42
CN LZM 60CR
CN M 1
CN M 1 (polyolefin)
CN M 12
CN M 12 (polyolefin)
CN M 1300
CN M 1500
CN M 1510
CN M 1600
CN M 1700
CN M 180R
CN M 2
CN M 2 (polyolefin)
CN M 2170T
CN M 530
CN M 530 (polyolefin)
CN M 5H
CN M 5W
CN M 700R
CN M 7686
CN M 8619
CN M 90
CN M 90 (polyolefin)
CN MA 03HS
CN MA 1
CN MA 2A
CN MA 2P
CN MA 3
CN MA 3H
CN MA 3N
CN MA 3U
CN MA 4A
CN MA 5Q
CN MA 610H
CN MA 6B
CN MA 7
CN MA 710
CN MA 8
CN MA 810B
CN MA 8Q

CN MAC 3
CN Malen 66NX23D022
CN Malen B 202
CN Malen J 300
CN Malen J 450
CN Malen P 401
CN Malen P 5-202
CN Malen P-B 200
CN Malen P-F 402
CN Malen P-PP-J 400
CN Malen PJ
CN Malen PJ 300
CN Malen PJ 430
CN Malen PJ 601
CN Malen PS 202
CN MAO 6
CN MAP
CN Marlex 9400
CN Marlex GP
CN Marlex HGH 050-01
CN Marlex HGL 120-01
CN Marlex HGN 120-01
CN Marlex HGX 010
CN Marlex HGX 030
CN Marlex HGX 330
CN Marlex HGZ 08002
CN Marlex HGZ 120-02
CN Marlex HGZ 350
CN Marlex HGZ 50
CN Marlex RMN 020
CN Maurylene
CN MB 200
CN MB 230
CN MB 400
CN MB 666
CN MB 777
CN MBO 6B
CN MC 01C
CN MC 3B
CN MCA 389
CN MD 020TP2N
CN MD 105
CN MD 105 (polyolefin)
CN MD 632
CN ME 210U
CN ME 230
CN ME 240
CN ME 311
CN Membrane 1222
CN Merchant Powder
CN Metocene X 50081
CN Metocene X 50109
CN Metocene X 50116
CN Metocene X 50131
CN Metocene X 50149
CN Metocene X 50182
CN Metocene X 50212
CN Metrigard
CN MF 20
CN MF 20 (polypropylene)
CN MF 21
CN MF 70
CN MF 70 (polyolefin)
CN MFI 12
CN MFI 25
CN MFI 3
CN MFI 50
CN MFX 700-10HS
CN MFX 7006HS
CN MG 03B
CN MG 05BS
CN MG 05DS

CN MG 3C
CN MG-H 57541
CN MGF 1650
CN MH 113Y
CN MH 493
CN MH 6
CN MH 8
CN MI 60
CN Michem 43040
CN Michem Emulsion 43040
CN Micro-M
CN Microlen
CN Micropro 400
CN Micropro 600
CN Micropro 600VF
CN Microspersion 31-40
CN Microthene FP 80000
CN Millephane
CN Miradrene
CN Mirayphane
CN Mitsui NP 055
CN MixFilm
CN MJ 145
CN MJ 170
CN MK 1
CN MK 1 (polyolefin)
CN MK 411B
CN MK 413A
CN MK 812B
CN MK 852
CN MK 852 (polyolefin)
CN ML-HC-OP 30
CN MLOP 102
CN MM 2A
CN MN 250
CN Montell 5C39F
CN Montell 6323NT
CN Montell 6331
CN Montell MH 113Y
CN Montell PH 920S
CN Moplefan BT
CN Moplefan OT
CN Moplen 20
CN Moplen 2005HEXP
CN Moplen 30CS
CN Moplen 3400MN1
CN Moplen 340N
CN Moplen 456H
CN Moplen 60R
CN Moplen 7073XOP
CN Moplen AD 50N
CN Moplen AS 50
CN Moplen BT 20
CN Moplen C
CN Moplen C 30
CN Moplen C 30S
CN Moplen C 50J
CN Moplen D 505
CN Moplen D 50G
CN Moplen D 50S
CN Moplen D 60
CN Moplen D 60R
CN Moplen E1X 94J
CN Moplen EP 1Q3OB
CN Moplen EP 1X35AF
CN Moplen EP 2629EB
CN Moplen EP 301K
CN Moplen EP 501L
CN Moplen EPN 31MA
CN Moplen EPQ 30RNPP
CN Moplen EPQ 57PY
CN Moplen F 020

CN Moplen F 30F
CN Moplen FH 20
CN Moplen FL 20F
CN Moplen FL-X 020
CN Moplen FLD 50S
CN Moplen FLP 20
CN Moplen FLS 20
CN Moplen FLT 30S
CN Moplen FLX 30S
CN Moplen H 32GA
CN Moplen HF 500N
CN Moplen HP 1078
CN Moplen HP 400R
CN Moplen HP 456H
CN Moplen HP 483R
CN Moplen HP 500H
CN Moplen HP 500U
CN Moplen HP 502L
CN Moplen HP 502N
CN Moplen HP 510M
CN Moplen HP 522H
CN Moplen I 30
CN Moplen I 30G
CN Moplen M 24EAC
CN Moplen MD
CN Moplen PM-HP 502L
CN Moplen Q 30
CN Moplen Q 30G
CN Moplen Q 30P
CN Moplen Q 51C
CN Moplen RP 320H
CN Moplen S 28F
CN Moplen S 30
CN Moplen S 30U
CN Moplen S 38FT
CN Moplen S 50G
CN Moplen SP 98E
CN Moplen Spheripol YD 50G
CN Moplen SSF
CN Moplen Type MD
CN Moplen VS 6100K
CN Moplen X 35F
CN Moplen Z 305
CN Moplen Z 30S
CN Mosten
CN Mosten 52512
CN Mosten 55.237
CN Mosten 55211
CN Mosten 55302900
CN Mosten 58400
CN Mosten 58432
CN Mosten 59-496
CN Mosten 59306
CN Mosten MT 230
CN Mostron L
CN MP 1000
CN MP 1002
CN MR 05
CN MR 2002
CN MR 6
CN MR 6 (polyolefin)
CN MRP 220M4
CN MRP 230LL2
CN MRP-PP 240H2B
CN MS 170
CN MS 230
CN MS 231
CN MS 231-30
CN MS 620
CN MS 620 (polyolefin)
CN MS 660
CN MS 664

CN MS 791
CN MT 42
CN MT 450
CN Multiflex A 8502
CN MW 846
CN MX 164
CN MX 201
CN MX 3A
CN N 00-2085GW
CN N 600
CN N 600 (polyolefin)
CN N 8100AE20
CN Naltex 3408
CN Naltex 75-3719
CN Naltex LWS
CN Naphtachimie 61130
CN Naphtachimie 62100
CN Naphtachimie 62180
CN Napryl
CN Napryl 62040AP
CN Napryl 6204I
CN Napryl 62130AG
CN Napryl 62200AP
CN Napryl 62600
CN Napryl 63200AG
CN Neftohim
CN Neopolen P
CN Neopolen P 9225K
CN Neopolen P 9240
CN Netring
CN Newfoamer FH 2400
CN Newfoamer FH 300
CN Newfoamer FH 3400
CN NF
CN NF (polyolefin)
CN NF Sheet NG
CN NF Sheet NS
CN NF-SB 100
CN NFR 190H
CN Nida
CN Nisseki Polypro F 120K
CN Nisseki Polypro J 160F
CN Noblen 100
CN Noblen 2VH501
CN Noblen 440GF
CN Noblen 5020
CN Noblen 795
CN Noblen AH 620V
CN Noblen AH 661V
CN Noblen AM 3
CN Noblen AS 171
CN Noblen ASCM
CN Noblen AW 131
CN Noblen AX 901
CN Noblen AX 961
CN Noblen AY 864
CN Noblen AZ 161
CN Noblen AZ 161C1
CN Noblen AZ 164E4
CN Noblen AZ 630V4
CN Noblen AZ 664E4
CN Noblen BC 03A
CN Noblen BC 4Y
CN Noblen BJ 3H
CN Noblen BJ 4H-MF
CN Noblen BJ 5H-MF
CN Noblen BJ 5H-NF
CN Noblen BJ 5H-UKT
CN Noblen BJ 5HG
CN Noblen BJH-M
CN Noblen BJHH-MC 20
CN Noblen BJS-C 10

CN Noblen BPW 5044E
CN Noblen BPZ 5077
CN Noblen BTA 51E1
CN Noblen BUE 81E6
CN Noblen BWH 42
CN Noblen BWH 44
CN Noblen BY 011F
CN Noblen BYA 81
CN Noblen D 101
CN Noblen D 501
CN Noblen E 3542
CN Noblen EA 7A
CN Noblen EB
CN Noblen EB-J
CN Noblen EBG
CN Noblen EFL-G
CN Noblen EL 80F1
CN Noblen EP
CN Noblen EP-A 2
CN Noblen F 0850H
CN Noblen F 631
CN Noblen F 6411
CN Noblen FA 3
CN Noblen FA 8011
CN Noblen FC 240
CN Noblen FG 3B
CN Noblen FH 1015
CN Noblen FH 2011
CN Noblen FK 145
CN Noblen FL
CN Noblen FL 100
CN Noblen FL 200
CN Noblen FL 25
CN Noblen FL 25B
CN Noblen FL 25F
CN Noblen FL 25HA
CN Noblen FL 25K
CN Noblen FL 331G
CN Noblen FL 4
CN Noblen FL 6
CN Noblen FL 600
CN Noblen FL 6314
CN Noblen FL 6315
CN Noblen FL 6315G
CN Noblen FL 6411
CN Noblen FL 6411A
CN Noblen FL 6C
CN Noblen FL 7013
CN Noblen FL 800
CN Noblen FL 8013
CN Noblen FL-G
CN Noblen FLX 80E4
CN Noblen FO 100
CN Noblen FO 200H
CN Noblen FO 50F
CN Noblen FO 850
CN Noblen FP
CN Noblen FS 101
CN Noblen FS 1012
CN Noblen FS 200
CN Noblen FS 2011
CN Noblen FS 2011C
CN Noblen FS 2011DG
CN Noblen FS 2911D
CN Noblen FW 363A
CN Noblen FY 3
CN Noblen FY 4
CN Noblen FY 6C
CN Noblen G 20201
CN Noblen GFL 100
CN Noblen GHH 43
CN Noblen GHH 53

CN Noblen H
CN Noblen H 501
CN Noblen H 501N
CN Noblen HD 100
CN Noblen HD 100DG2
CN Noblen HD 100G2
CN Noblen HH 100
CN Noblen HR 100XG
CN Noblen HS
CN Noblen HS 200A
CN Noblen HU 100G
CN Noblen HW 100
CN Noblen HY 100
CN Noblen HZ 100A
CN Noblen IF 150A
CN Noblen J 101TA
CN Noblen J 3H3
CN Noblen JH
CN Noblen JH 1501
CN Noblen JH-SA 20
CN Noblen JHH
CN Noblen JHH 791
CN Noblen JHH-M
CN Noblen JHHG
CN Noblen JK-M
CN Noblen JMH-G
CN Noblen JS
CN Noblen JS 1429
CN Noblen JS 2871
CN Noblen JS 4793
CN Noblen JS-M
CN Noblen JS-UHM
CN Noblen KST 1W60
CN Noblen KST 2W100
CN Noblen KST 2W60
CN Noblen MA 3
CN Noblen MA 7
CN Noblen MA 8
CN Noblen MA 8A
CN Noblen MH 6
CN Noblen MH 8
CN Noblen MK 3HK
CN Noblen MM 2A
CN Noblen MX 3A
CN Noblen NP 58
CN Noblen NX 076
CN Noblen P 002
CN Noblen P 8836J
CN Noblen PY 220
CN Noblen PY 230
CN Noblen S 101
CN Noblen S 131DG
CN Noblen S 501
CN Noblen SB-E 3
CN Noblen SHG
CN Noblen SR 6K
CN Noblen SS 20
CN Noblen STFL-M
CN Noblen SV-E 3
CN Noblen TA 8
CN Noblen TJ 1
CN Noblen U 501E1
CN Noblen W 100
CN Noblen W 101S
CN Noblen W 501
CN Noblen W 501E
CN Noblen W 502
CN Noblen W 900
CN Noblen WF 299B
CN Noblen WF 464
CN Noblen WF 727F
CN Noblen WF 727H

CN Noblen WF 836D
CN Noblen WF 842B
CN Noblen WF 900
CN Noblen WF 942
CN Noblen WF 949C
CN Noblen WFD 5073
CN Noblen WFS 5072
CN Noblen WP 834A
CN Noblen WP 974-1F
CN Noblen X 668
CN Noblen X 701E1
CN Noblen Y 101
CN Noblen Y 101C
CN Noblen Y 501
CN Noblen YE 101
CN Noblen YP 220
CN Noblen Z 101
CN Noblen Z 101B
CN Nonskid 5389
CN Norchem NPP 2000GJ
CN Norchem NPP 2085GW
CN Norchem NPP 8020GU
CN Norchem NPP 8080
CN Norsopryl MM 4030
CN NOV 1400
CN Novamont 2030
CN Novatec 4100B
CN Novatec AP 030P
CN Novatec BC 03LS
CN Novatec BC 056C
CN Novatec BC 5D
CN Novatec EA 7
CN Novatec EA 9
CN Novatec FA 3DA
CN Novatec FB 3GT
CN Novatec FY 6C
CN Novatec H 57541
CN Novatec MA 1
CN Novatec MA 2
CN Novatec MA 2H
CN Novatec MA 3
CN Novatec MA 8
CN Novatec MG 05BS
CN Novatec N 4100B
CN Novatec P 1220F
CN Novatec P 4100B
CN Novatec P 4100Y
CN Novatec P 4200E
CN Novatec P 4200Y
CN Novatec P 4500J
CN Novatec P 6500
CN Novatec P 8826J
CN Novatec PP 4400F
CN Novatec PP-BC 5D
CN Novatec PP-EA 7
CN Novatec PP-EA 8
CN Novatec PP-EA 8A
CN Novatec PP-EA 9
CN Novatec PP-FA 3D
CN Novatec PP-FA 3DA
CN Novatec PP-FB 3GT
CN Novatec PP-FB 3T
CN Novatec PP-FG 3DF
CN Novatec PP-FL 25HA
CN Novatec PP-FL 25T
CN Novatec PP-FL 4D
CN Novatec PP-FY 3
CN Novatec PP-FY 6C
CN Novatec PP-FY 6H
CN Novatec PP-MA 1
CN Novatec PP-MA 2
CN Novatec PP-MA 2HA

CN Novatec PP-MA 3
CN Novatec PP-MA 3Q
CN Novatec PP-MA 3U
CN Novatec PP-MA 4D
CN Novatec PP-MA 4U
CN Novatec PP-MA 8
CN Novatec PP-MG 03B
CN Novatec PP-MG 05BS
CN Novatec PP-MG 2T
CN Novatec PP-TA 3
CN Novatec PP-TA 8
CN Novatec PP-TX 1810A
CN Novatec TX 1810A
CN Novolen
CN Novolen 1100NX
CN Novolen 1100RC
CN Novolen 1100T
CN Novolen 1100UC
CN Novolen 1100UCX
CN Novolen 1100VC
CN Novolen 1102H
CN Novolen 1102J
CN Novolen 1102K
CN Novolen 1102M
CN Novolen 1106
CN Novolen 1106H
CN Novolen 1111LX
CN Novolen 1111LX-GA6
CN Novolen 1120NX
CN Novolen 1125N
CN Novolen 1127
CN Novolen 1127MX
CN Novolen 1127N
CN Novolen 1128MC
CN Novolen 1142PCX-GA6
CN Novolen 1160L
CN Novolen 1184L
CN Novolen 120NX
CN Novolen 1300
CN Novolen 1300E
CN Novolen 1300M
CN Novolen 1300ZX
CN Novolen 1320HX
CN Novolen 1320LX
CN Novolen 1325L
CN Novolen 1325M
CN Novolen 2300K
CN Novolen 2348TC
CN Novolen 2512HX
CN Novolen 2862JX
CN Novolen 3225MC
CN Novolen 3300HX
CN Novolen 3340PC
CN Novolen HP 501H
CN Novolen KR 1300P
CN Novolen KR 1318
CN Novolen KR 1682
CN Novolen N 1102M
CN Novolen N-Q 619
CN Novolen PP 1104K
CN Now 8024
CN NP 055
CN NP 056
CN NP 105
CN NP 105 (polyolefin)
CN NP 500
CN NP 500 (polypropylene)
CN NP 505
CN NP 800
CN NP 800 (polypropylene)
CN NP 805
CN NPP 2004MR

CN NPP 2085GW
CN NPP 8755
CN NRD 5-1234
CN NS 3450
CN NS 3451
CN NS 5521
CN NS 670
CN NWP 1060-62
CN NX 1100
CN NX 280AK
CN NX 671M2
CN NX 801
CN O 521-48FR
CN OA 25
CN Oleace 2211
CN Oleform GCS 30
CN Oleform XK 3324ZW163
CN Oletac 100
CN ON 5340
CN OP 20U1
CN OP 4
CN OP 4 (polyolefin)
CN OP Shiyurin Y
CN OP-P 2261
CN OP-U 0
CN OP-U 1
CN OP-Z 102
CN OPL-W
CN OPM 1
CN OPP Tape
CN OPP-HM 1-25
CN Oppalyte 350ASW
CN Oppera PP 6102
CN OPU 2-20
CN OW
CN OW 9025
CN OW Clear
CN OWCS 20
CN P 061F
CN P 1010
CN P 1023
CN P 1111
CN P 1120
CN P 1128
CN P 1128AG
CN P 112MN40
CN P 1143
CN P 1146
CN P 1153
CN P 1156
CN P 120UA04F
CN P 15M00
CN P 16M10
CN P 1700
CN P 1700 (polyolefin)
CN P 200
CN P 200 (wax)
CN P 2102
CN P 2108
CN P 2161
CN P 2241
CN P 2261
CN P 243L
CN P 260
CN P 260 (polyolefin)
CN P 2601
CN P 2761
CN P 300
CN P 300 (polyolefin)
CN P 3155
CN P 36D
CN P 400S

CN P 403B
CN P 4C5B076
CN P 4C5B080
CN P 4C5K123A
CN P 4C5N046
CN P 4C5Z027
CN P 4C6Z054
CN P 4C6Z059
CN P 4G2Z011
CN P 4G2Z026
CN P 4G2Z073AX
CN P 4G2Z159
CN P 4G3Z039
CN P 4G4B
CN P 4G4K038
CN P 4G4Z001
CN P 4G4Z001 Natural
CN P 4G4Z011
CN P 528
CN P 530
CN P 530 (polyolefin)
CN P 5M4K046
CN P 6-30FG0153
CN P 6035
CN P 68
CN P 68 (polyolefin)
CN P 7000
CN P 7000 (polypropylene)
CN P 700J
CN P 8045
CN P 8400
CN P 9030
CN P Matto
CN P-Block
CN P-HL 001PF
CN P-HV 001
CN P-Plus 160
CN PA 164V
CN PA 189V
CN PA 20
CN PA 20 (polypropylene)
CN PA 954
CN Paisley 750
CN Paisley polymer
CN Patorosen 291A
CN PB 0580
CN PB 120A
CN PB 260
CN PB 260 (polyolefin)
CN PB 262
CN PB 264
CN PB 264 (polyolefin)
CN PC 203
CN PC 336
CN PC 366-3
CN PC 410A
CN PC 600S
CN PC 630S
CN PC 802A
CN PC 973
CN PD 064
CN PD 191
CN PD 3443
CN PD 3505G
CN PD 4062E7
CN PD 4252
CN PD 5132
CN PD 8062
CN PD 888
CN PDC 1120
CN PDC 1194
CN PDC 1267

CN PDC 1274
CN PDC 1277
CN PE 015
CN PE 503C
CN Peach 80
CN Peachcoat SPB 70
CN Pellon 2505
CN Pellon 2506
CN Pellon FT 2140
CN Pemex 120
CN Petrothene 31S3A
CN Petrothene 51S12A
CN Petrothene PP 1002NF
CN Petrothene PP 2004MR
CN PF 100
CN PF 100 (polyolefin)
CN PF 101
CN PF 20
CN PF 20 (polyolefin)
CN PF 21
CN PF 22
CN PF 250B
CN PF 304
CN PF 305
CN PF 341
CN PF 3521
CN PF 540B
CN PF 611
CN PF 623
CN PF 633
CN PF 716
CN PF 716 (polyolefin)
CN PF 814F
CN PF 815
CN PG 4003
CN PGR 25
CN PH 020
CN PH 350
CN PH 6201
CN PH 6301
CN PH 821S
CN PH 920S
CN PHA 943
CN Pistac CC
CN Pistac L
CN PJ 24C
CN PJS
CN PJX 2135
CN PL 400A
CN PL 500
CN PL 500 (polyolefin)
CN PL 504A
CN PL 600L
CN PL-F 3N
CN PLA 00C
CN Plasmaflux P 2
CN Plastron PP-GF 30
CN Plastron PP-GF 40-02
CN PLTD 1542
CN PLTD 713
CN Plyen OT-P 2261
CN PLZ 860
CN PLZ 937
CN PM 600A
CN PM 761W
CN PM 801Z
CN PM 802
CN PM 802A
CN PM 870L
CN PMA 6000
CN PMA 60Z
CN PMB 60A

CN PN 100G
CN PN 150
CN PN 150 (polyolefin)
CN PN 150G
CN PN 18HG
CN PN 230
CN PN 240
CN PN 240A
CN PN 260
CN PN 440
CN PN 640
CN PN 640 (polyolefin)
CN PO 51F
CN Poly one
CN Polyace 25H
CN Polyace NR
CN Polyfill TS 20020UV
CN Polyflam RPP 371
CN Polyfort FPP 20T
CN Polyfort PP 1329
CN Polypac 3286
CN Polyplac
CN Polypol 19
CN Polypro 1014
CN Polypro 1016
CN Polypro 101B
CN Polypro 1220F
CN Polypro 2024
CN Polypro 2129
CN Polypro 3115G
CN Polypro 4100M
CN Polypro 4100Y
CN Polypro 4300J
CN Polypro 4500J
CN Polypro 4700J
CN Polypro 4806J
CN Polypro 5014
CN Polypro 5078
CN Polypro 6200E
CN Polypro 8100E
CN Polypro 8800J
CN Polypro A 4141
CN Polypro A 5013
CN Polypro B 101H
CN Polypro B 101WAT
CN Polypro B 221WA
CN Polypro B 230
CN Polypro B 246
CN Polypro B 761QD
CN Polypro BC 2A
CN Polypro BC 3E
CN Polypro BEBG
CN Polypro BJH-G
CN Polypro C 031
CN Polypro CF 3013
CN Polypro CJ 207
CN Polypro E 100
CN Polypro E 100G
CN Polypro E 100GM
CN Polypro E 102
CN Polypro E 103D
CN Polypro E 110G
CN Polypro E 111
CN Polypro E 1200
CN Polypro E 120G
CN Polypro E 120G2
CN Polypro E 120G5
CN Polypro E 121WA
CN Polypro E 170GM
CN Polypro E 200G
CN Polypro E 4201
CN Polypro E 610

CN Polypro E 7100
CN Polypro EA 7
CN Polypro EA 8
CN Polypro EA 9
CN Polypro EFL 200
CN Polypro F 102LA
CN Polypro F 103
CN Polypro F 107DV
CN Polypro F 109BB
CN Polypro F 109D
CN Polypro F 109K
CN Polypro F 113
CN Polypro F 1177
CN Polypro F 120K
CN Polypro F 122B
CN Polypro F 133
CN Polypro F 150J
CN Polypro F 155J
CN Polypro F 1566
CN Polypro F 200S
CN Polypro F 205S
CN Polypro F 3021
CN Polypro F 401
CN Polypro F 600
CN Polypro F 651
CN Polypro F 700N
CN Polypro F 701WC
CN Polypro F 704N
CN Polypro F 704NP
CN Polypro F 704NU
CN Polypro F 707V
CN Polypro F 740M
CN Polypro F 794
CN Polypro F 794N
CN Polypro FL 100
CN Polypro FL 25T
CN Polypro FM 101
CN Polypro FM 101A
CN Polypro FM 321
CN Polypro FM 414
CN Polypro FS 4012
CN Polypro FY 4
CN Polypro FY 6C
CN Polypro G 100G
CN Polypro G 101
CN Polypro G 400P
CN Polypro GCS 20
CN Polypro GFB 8050
CN Polypro H 100G
CN Polypro H 2000G
CN Polypro H 700
CN Polypro H 700G
CN Polypro H 900
CN Polypro Hipol J 600
CN Polypro HT 0004
CN Polypro HT 0011
CN Polypro HT 0020
CN Polypro HT 1050
CN Polypro HT 6001
CN Polypro HT 6004
CN Polypro IP 407
CN Polypro J 101
CN Polypro J 101PT
CN Polypro J 103
CN Polypro J 104W
CN Polypro J 105
CN Polypro J 105W
CN Polypro J 106W
CN Polypro J 106WB
CN Polypro J 107W
CN Polypro J 108
CN Polypro J 109

CN Polypro J 109A
CN Polypro J 115G
CN Polypro J 120
CN Polypro J 120M
CN Polypro J 130M
CN Polypro J 136
CN Polypro J 150G
CN Polypro J 160G
CN Polypro J 180Y
CN Polypro J 2000
CN Polypro J 2000G
CN Polypro J 2000GP
CN Polypro J 2003GP
CN Polypro J 200G
CN Polypro J 226F
CN Polypro J 240F
CN Polypro J 2G
CN Polypro J 300
CN Polypro J 3000GP
CN Polypro J 3003GV
CN Polypro J 309GL
CN Polypro J 312HA
CN Polypro J 385
CN Polypro J 400
CN Polypro J 400MP
CN Polypro J 400P
CN Polypro J 420G
CN Polypro J 440W
CN Polypro J 465HBP
CN Polypro J 4H-G
CN Polypro J 4H100
CN Polypro J 5010B
CN Polypro J 5040B
CN Polypro J 5050B
CN Polypro J 5200A
CN Polypro J 600
CN Polypro J 609
CN Polypro J 630
CN Polypro J 700
CN Polypro J 700G
CN Polypro J 700GP
CN Polypro J 700P
CN Polypro J 702LB
CN Polypro J 7050J
CN Polypro J 707ZB
CN Polypro J 709W
CN Polypro J 713M
CN Polypro J 730
CN Polypro J 755H
CN Polypro J 802H
CN Polypro J 802HK
CN Polypro J 815HIC
CN Polypro J 880G
CN Polypro J 9000GP
CN Polypro J 900G
CN Polypro J 901H
CN Polypro J 90H
CN Polypro J 950HK
CN Polypro JS 500T
CN Polypro K 0286P
CN Polypro K 1008
CN Polypro K 1011
CN Polypro K 1016
CN Polypro K 1140
CN Polypro K 4017
CN Polypro K 4017H
CN Polypro K 5016
CN Polypro K 5019F
CN Polypro K 7000
CN Polypro K 7030R
CN Polypro K 7750
CN Polypro K 8140T

CN Polypro K 8250T
CN Polypro KS 245
CN Polypro L 5791
CN Polypro M 1500
CN Polypro M 1600
CN Polypro M 1700
CN Polypro M 4800
CN Polypro M 7200
CN Polypro MA 2P
CN Polypro MA 3
CN Polypro ME 140
CN Polypro ME 180
CN Polypro ME 230
CN Polypro ME 240
CN Polypro MH 6
CN Polypro MH 8
CN Polypro MS 230
CN Polypro MS 240
CN Polypro MS 670C
CN Polypro MS 674
CN Polypro MS 870
CN Polypro NT 2002
CN Polypro OLGCS 10
CN Polypro OL TW
CN Polypro P 1000
CN Polypro P 6000
CN Polypro P 6000M
CN Polypro P 9005
CN Polypro PF 250B
CN Polypro PN 140G
CN Polypro PN 150
CN Polypro PN 150G
CN Polypro PN 150G
CN Polypro PN 180G
CN Polypro PN 240A
CN Polypro PN 510T
CN Polypro PY 220
CN Polypro PY 320H
CN Polypro RJ 385
CN Polypro RS 1250
CN Polypro S 1014
CN Polypro S 115M
CN Polypro S 13B
CN Polypro S 205
CN Polypro S 5048
CN Polypro SJ 310
CN Polypro SJ 313
CN Polypro SJ 810
CN Polypro SJ 810D
CN Polypro SSJ 410
CN Polypro SSJ 920
CN Polypro T 4430
CN Polypro TA 8
CN Polypro TF 905
CN Polypro TX 1088
CN Polypro X 109-10
CN Polypro X 4141
CN Polypro X 440
CN Polypro X 50
CN Polypro XF 1509
CN Polypro XF 1932
CN Polypro XF 7553
CN Polypro XF 8270
CN Polypro XF 9250
CN Polypro XF 9520
CN Polypro XK 6004
CN Polypro Y 101J
CN Polypro Y 3002
CN Polypro Y 3005GT
CN Polypro YE 101
CN Polypro YE 140
CN Polypro Z 101

CN Polypropene
CN Polypropylene
CN PolySep
CN Polysteen PBO-HST
CN PolySyn M 501
CN Polytac 500
CN Polytac R 500
CN Polytiff RD 3292
CN Poprolin
CN Porex X 4908
CN PP
CN PP 045
CN PP 045-1
CN PP 057-2
CN PP 1003
CN PP 1020
CN PP 11000N
CN PP 1120
CN PP 1126NK
CN PP 1151
CN PP 124
CN PP 1303
CN PP 1304E1
CN PP 1329
CN PP 1374F1
CN PP 1386
CN PP 13S10A
CN PP 1400
CN PP 1600
CN PP 1740
CN PP 186
CN PP 189V
CN PP 1947
CN PP 196
CN PP 1KB662
CN PP 2
CN PP 2 (polymer)
CN PP 2032
CN PP 22-01-3C
CN PP 22-01-5C
CN PP 2400
CN PP 251
CN PP 2600
CN PP 30
CN PP 3000
CN PP 3000 (polyolefin)
CN PP 301
CN PP 3014
CN PP 3050
CN PP 305GE1
CN PP 3085L
CN PP 310HG
CN PP 3154A
CN PP 31S07A
CN PP 333
CN PP 333 (polyolefin)
CN PP 3376
CN PP 3400MA1
CN PP 3401
CN PP 3505GE1
CN PP 352
CN PP 3907
CN PP 4
CN PP 4 (polymer)
CN PP 401
CN PP 4092
CN PP 41
CN PP 4107
CN PP 4152
CN PP 41E2
CN PP 41E4cs215
CN PP 41E4cs278

CN PP 4292E1
CN PP 4420
CN PP 4608B
CN PP 5
CN PP 5 (polyolefin)
CN PP 5004
CN PP 5028S
CN PP 5088
CN PP 51S30V
CN PP 520
CN PP 52512
CN PP 5384
CN PP 5524
CN PP 5820
CN PP 5944
CN PP 5A15H
CN PP 5C08
CN PP 5CO8
CN PP 6331
CN PP 6524NT
CN PP 70218
CN PP 7790GV2/30
CN PP 7C12N
CN PP 8001LK
CN PP 8462HR
CN PP 8619
CN PP 8771
CN PP 8800GK
CN PP 990101-21
CN PP Type PT
CN PP-B 3050
CN PP-CF 30-01
CN PP-DWU
CN PP-F 1004EF
CN PP-F 109K
CN PP-H 201
CN PP-J 109K
CN PP-L 101
CN PP-L 1120
CN PP-L 1600
CN PP-L 320
CN PP-L 462
CN PP-L 550
CN PP-L 833
CN PP-N-AN
CN PP-N-BN
CN PP-P 4G4B036
CN PP-PT 100
CN PP-XD 045A
CN PPAM 1503
CN PPC 3640
CN PPC 3660
CN PPC 4008B
CN PPC 8750
CN PPD 0008
CN PPE 20
CN PPF 101
CN PPF 20030
CN PPF 25030
CN PPF 401
CN PPF 680
CN PPF 800E
CN PPG 40-02-4
CN PPG 50
CN PPH 0150
CN PPH 1050
CN PPH 11012
CN PPH 223
CN PPH 310MN1
CN PPH 3410
CN PPH 5042
CN PPH 5060

CN PPH 7060
CN PPH 7062
CN PPH 9069
CN PPH-F 022S38F
CN PPH-M 105B
CN PPH-PD 943
CN PPH-XD 006
CN PPH-XD 045
CN PPJ 400
CN PPJ 620G
CN PPK 7250
CN PPm 800E
CN PPN 1106
CN PPS 401
CN PPS 700
CN PPSD 30
CN PPSM
CN PPSM 15030
CN PPT 1070
CN PPT 30S
CN PPT 680
CN PPT 770
CN PPTG
CN PPU 1780
CN PPVC 2082C
CN PPW 5
CN PQR 01
CN PR 144
CN Pramin 2
CN Pramin 4
CN Preglon L 15N
CN Preglon LF 15
CN Procom GC 20H250
CN Procom GC 30H25-001
CN Procom GC 30H251
CN Profax
CN Profax 6071
CN Profax 6100
CN Profax 6131
CN Profax 613D
CN Profax 6201
CN Profax 626
CN Profax 6300
CN Profax 6301NT
CN Profax 6323PM
CN Profax 6329
CN Profax 6330
CN Profax 6331
CN Profax 6331-8
CN Profax 6401
CN Profax 6423
CN Profax 6433
CN Profax 6501-14
CN Profax 65011
CN Profax 6501PM
CN Profax 6501S
CN Profax 6523F
CN Profax 6523PM
CN Profax 6524PM
CN Profax 65F4
CN Profax 6601
CN Profax 6801S
CN Profax 6824
CN Profax 68F5-4
CN Profax 6901
CN Profax 7101
CN Profax 7801
CN Profax 8263
CN Profax H 700-12
CN Profax HMS-PF 814
CN Profax N 400-42
CN Profax PC 072-3

CN Profax PC 973
CN Profax PD 064
CN Profax PD 161
CN Profax PD 191
CN Profax PD 195
CN Profax PD 702
CN Profax PD 888
CN Profax PD 899
CN Profax PD 970
CN Profax PDC 1272
CN Profax PDC 1274
CN Profax PDC 1280
CN Profax PF 101
CN Profax PF 441
CN Profax PF 444
CN Profax PF 623
CN Profax PF 633
CN Profax PH 020
CN Profax PH 060
CN Profax PH 131
CN Profax PH 180
CN Profax PH 350
CN Profax PH 6331NW
CN Profax PV 202
CN Profax R 6301
CN Profax SB 642
CN Profax SB 803
CN Profax SM 240
CN Profax Z 30S
CN Profil G 60/30
CN Proflow 1000
CN Proflow 5000
CN Prolen KM 6100
CN Prolen VM 6100K
CN Propafilm
CN Propafilm MVG
CN Propafilm RGP
CN Propafilm RHX
CN Propathene 101/24
CN Propathene 112/00/Grey9897
CN Propathene 22/44
CN Propathene D 714
CN Propathene GMX 43
CN Propathene GS 608E
CN Propathene GSE 18
CN Propathene GSE 180
CN Propathene GSE 52
CN Propathene GSE III
CN Propathene GSM 10
CN Propathene GW 521E
CN Propathene GW 522M
CN Propathene GWE 26
CN Propathene GXM 22
CN Propathene GY 702M
CN Propathene GYM 45
CN Propathene HF 100
CN Propathene HF 20
CN Propathene HF 200CV170
CN Propathene HF 22
CN Propathene HF 23
CN Propathene HF 32
CN Propathene HF 85
CN Propathene HM 100
CN Propathene HM 20
CN Propathene HW 607M
CN Propathene HW 60GR/20/001
CN Propathene HW 60GR30-001
CN Propathene HW 60GRWO
CN Propathene HW 60SF30
CN Propathene HW 70GR
CN Propathene HWM 25
CN Propathene LWF 31

CN Propathene LY 542M
CN Propathene O
CN Propathene PXC 3391
CN Propathene PXC 3830
CN Propathene PXC 3906
CN Propathene PXC 4515
CN Propathene PXC 4717
CN Propathene PXC 6528
CN Propathene PXC 8069
CN Propathene PXC 8639
CN Propathene PXC 9617
CN Propene homopolymer
CN Propene polymer
CN Propilenas 600G
CN Propolin
CN Proponite ANS 100
CN Propophane
CN Propylene polymer
CN Propylene-p-quinone dioxime copolymer
CN Propylex
CN PropylMatte 31
CN Propyloil
CN Propyloil K 1000
CN Propyloil K 150
CN Propyloil K 300
CN Propyloil Z 800
CN Propyltex 100
CN Propyltex 140
CN Propyltex 20
CN Propyltex 200S
CN Propyltex 325S
CN Propylux
CN Protec X 104
CN Protolube 3974
CN Proxil 45 Low L 35H630
CN Prylene
CN Prylene MR 1852
CN PS 107A
CN PS 2011
CN PS 201A
CN PS 735
CN PT 110-20
CN PT 12
CN PT 181
CN PT 25E
CN PT 55-3040ED
CN PT 551
CN PTK 1100
CN PU 102
CN PU 102 (polyolefin)
CN PU 112
CN Pure Softy
CN Pure Softy H-R 111
CN Pure Softy HD 111
CN Purelay
CN Purelay FG 100
CN Purelay FG 200
CN PV 314
CN PV 940M
CN PVC 20M
CN PW 201N
CN PW 583
CN PW 600N
CN PW-A
CN PWB 02N
CN PX 2252
CN PX 600A
CN PX 600N
CN PXC 31649
CN PXC 3391
CN PXC 4602
CN PXC 4717

CN PXC 81604
CN PXC 8639
CN PY 001
CN PY 0787
CN PY 0787F
CN PY 101
CN PY 102
CN PY 220
CN PY 230
CN PY 240B
CN PY 6100
CN Pylen CT
CN Pylen CT-P 1120
CN Pylen CT-P 1128
CN Pylen CT-P 1128E
CN Pylen CT-P 1146
CN Pylen Film CT
CN Pylen Film OT
CN Pylen Film OT-F&G-P 5567
CN Pylen Film OT-P 2002
CN Pylen Film OT-P 2161
CN Pylen Film OT-P 2282
CN Pylen OT
CN Pylen OT-P 2002
CN Pylen OT-P 2102
CN Pylen OT-P 2161
CN Pylen OT-P 2165
CN Pylen OT-P 2241
CN Pylen OT-P 2261
CN Pylen OT-P 2282
CN Pylen OT-P 6183
CN Pylen P 1120
CN Pylen P 1128
CN Pylen P 1129
CN Pylen P 1145
CN Pylen P 1153
CN Pylen P 1503
CN Pylen P 1523
CN Pylen P 2102
CN Pylen P 2108
CN Pylen P 2126
CN Pylen P 2161
CN Pylen P 2241
CN Pylen P 2261
CN Pylen P 2264
CN Pylen P 2761
CN Pylen P 4166
CN Pylen P 4256
CN Q 30P
CN Q/HZS 001-2000
CN Q/SH C 100-1998
CN Q/SMCL 4-2002
CN QDE 2-3-4
CN QH 1
CN QH 1 (polymer)
CN QHH
CN QPR 01
CN Quickform
CN Quickpack
CN R 06
CN R 06 (polyolefin)
CN R 101
CN R 101 (polyolefin)
CN R 120MK
CN R 401
CN R 401 (polyolefin)
CN R 50
CN R 724J
CN Radil T
CN Radil T 25NT
CN Rayoface C 50
CN Rayoface C 58

CN Rayopp RGP 100
CN Rayoweb CR 200
CN Rayoweb CR 50
CN RB 121D
CN RB 501F
CN RC 0006
CN RD 121D
CN RE 1205
CN Repol 350FG
CN Repol H 030SG
CN Repol H 100EY
CN Repol H 200MA
CN Resinex 225
CN ResinKit 27
CN ResinKit 38
CN ResinKit 44
CN ResinKit 45
CN ResinKit 46
CN Rexene 32M2
CN Rexene 41E2
CN Rexene 41E4CS215
CN Rexene 51S07A
CN Rexene 51S07A
CN Rexene 54H5
CN Rexene FD-D 1700
CN Rexene PP 31S4A
CN Rexene W 101
CN Rexflex 2330
CN Rexflex FP-D 100
CN Rexflex FP-D 1700
CN Rexflex FP-D 1720
CN Rexflex FP-D 2300
CN Rexflex FPO-D 100
CN Rexflex FPO-D 1720
CN Rexflex FPO-W 101
CN Rexflex FPO-W 108
CN Rexflex FPO-WL 101
CN Rexflex FPO-WL 113
CN Rexflex RT 2180
CN Rexflex W 101
CN Rexflex W 102
CN Rexflex W 104
CN Rexflex W 107
CN Rexflex W 108
CN Rexflex W 110
CN Rexflex W 111
CN Rexflex W 112
CN Rexflex W 121
CN Rexflex W 304
CN Rexflex WL 101
CN Rexflex WL 105
CN Rexflex WL 111
CN Rexflex WL 125
CN Rexflex WL 313
CN Rextac 2535
CN Rextac RT 2180
CN RF 1310
CN RF 1342
CN RF 395
CN RF 825MO
CN RMO
CN RMO 45
CN RN 2020E
CN ROSO-LR 400
CN RR 03-4-0
CN RR 3
CN RS 103
CN RS 140XG
CN RS 2502
CN RS 503C
CN RS 512C
CN RT 2115

CN RT 2180
CN RT 2180A
CN RT 2316
CN RTC-C 3000-35B
CN RTC-C 3000-40B
CN RTC-C 4000-20B
CN RTP 0199
CN RTP 0199A
CN RTP 0199D
CN RTP 100
CN RTP 100GB30
CN RTP 102M25
CN RTP 107
CN RTP 128
CN RV 421
CN RW 110
CN RXC 1
CN RXC 11
CN RXC 18
CN S 100
CN S 100 (polyolefin)
CN S 1003
CN S 1003 (polypropylene)
CN S 1018
CN S 105
CN S 105 (polyolefin)
CN S 107WA
CN S 115
CN S 115 (polyolefin)
CN S 115M
CN S 1300
CN S 1300 (polyolefin)
CN S 130M
CN S 13B
CN S 28C
CN S 28C (polyolefin)
CN S 6100
CN S 651
CN SA 10F
CN SA 3025
CN SA 4020G
CN SA 40HM
CN SA 510
CN SA 847
CN Safe-FR 4299
CN San Orient PB 262
CN Sanataku
CN Sanorient 20
CN Sanorient FOA
CN Sanwax 330P
CN Sasolen 1102H
CN SB 006
CN SB 150
CN SB 150 (polyolefin)
CN SB 210
CN SB 382
CN SB 52S
CN SB 823
CN SB-E 3
CN Scolefin PP 32G60-1
CN Scolefin PP 33G10-2
CN SD 5220
CN SD 619
CN SE 1000
CN Selex 20
CN Sepa YL 01
CN SFC 750
CN SFR 170G
CN SG 802
CN SGS 80
CN SH 1
CN SH 1 (polyolefin)

CN SHD 50
CN Shell 5220
CN Shell 5384
CN Shell 5820
CN Shell 6300
CN Shell Pol-A
CN Shoallomer
CN Shoallomer 413
CN Shoallomer AT
CN Shoallomer EA 110
CN Shoallomer FA 112
CN Shoallomer FA 120
CN Shoallomer FA 130
CN Shoallomer FA 210
CN Shoallomer FA 432
CN Shoallomer FA 465
CN Shoallomer FA 523
CN Shoallomer Fa 530
CN Shoallomer FA 531
CN Shoallomer FG 461
CN Shoallomer FG 531
CN Shoallomer FK 114C
CN Shoallomer FZ 410
CN Shoallomer LR 510
CN Shoallomer LR 710-3
CN Shoallomer LS 710
CN Shoallomer M 1700
CN Shoallomer MA 610
CN Shoallomer MA 610H
CN Shoallomer MA 710
CN Shoallomer MA 810
CN Shoallomer MA 810B
CN Shoallomer MK 110
CN Shoallomer MK 310
CN Shoallomer PM 091
CN Shoallomer PM 150
CN Shoallomer PM 152
CN Shoallomer SA 510
CN Shoallomer SMA 410
CN Shoallomer SSA 510
CN Shoallomer ZP
CN Shorko M
CN Shrink-Rite
CN Silfan ML 2
CN Silfan MT
CN Silfan MTO
CN Silpon 4
CN Silprob B 50
CN SJ 310
CN SK 111A
CN SK 11A
CN SK 11C
CN SK 500
CN SK 500 (polyolefin)
CN SK 712
CN Slovnaft HPF
CN SM 17506
CN SM 17507
CN SM 17558
CN SM 85N
CN SMA 210-3
CN SMA 410
CN SMA 710
CN SMA 810
CN SMA 810B2
CN SMLPP
CN SND BDH
CN Softlon PP
CN Softlon SP
CN Softlon SP 1003
CN Softlon SP 1004
CN Softlon SPH 2703

CN Softlon SPV 2502
CN Softon SP-V
CN Softrex EL 6D21
CN Solmed 200
CN Soltex 3651
CN Soltex 3907
CN Soltex 6C44
CN Solvay 1602
CN Solvay 1901
CN SP 850
CN SP 850 (polyolefin)
CN Spheripol
CN Spheripol KP 010
CN Spinnlon
CN SPOP-BL
CN SPV 2502
CN SS 12
CN SS 12 (polyolefin)
CN SS 121
CN SSA 510-3
CN SSA 510B
CN ST 611
CN StaMax P 30YM240/10010
CN Stamylan 112Mn10
CN Stamylan 112MN40
CN Stamylan 14E10
CN Stamylan A-PP 10
CN Stamylan CX 02
CN Stamylan P 10E13
CN Stamylan P 112MN40
CN Stamylan P 11E10
CN Stamylan P 12E62
CN Stamylan P 14E10
CN Stamylan P 15E10FB
CN Stamylan P 15EK10
CN Stamylan P 15M00
CN Stamylan P 15M10
CN Stamylan P 16M10
CN Stamylan P 17M10
CN Stamylan P 19MN10
CN Stamylan P 22E10
CN Stamylan P 312MNX40
CN Stamylan P 43T1030
CN Stamylan P 46M10
CN Stamylan P 48M10
CN Stamylan P 83E00
CN Stamylan P 83M18
CN Stamylan P-PHC 22/20
CN Stamylan PP 48MN40
CN Stamylan PPH 10
CN Stamyroid 43C
CN Stamyroid APP
CN Stat-Tech PP-NX
CN Statoil 151
CN Statoil MF 4
CN Statoil P 061F
CN Statoil P 401H
CN Statoil PP 401H
CN STC Pearl Film
CN Steplon
CN STH 300BS
CN Stilan BS 20
CN Strandfoam
CN Sumiceller
CN Sumiceller 3030
CN Sumiceller 4030
CN Sumiceller 5050
CN Sumidic SK 11
CN Sumikagel GRC-PPM 3
CN Sumikon FM
CN Sumilit NS 3450
CN Sumilit NS 3480UV

CN Sumilit NS 7450
CN Sumilon MS
CN Sumilon MS 56150
CN Sumilon MS 63160G
CN Sumistran PG 4003
CN Sumistran PG 5001
CN Sumitic SK 11A
CN Sumitic SK 11C
CN Sumitic SS 30B
CN Sun Atac
CN Sun Atac P
CN Sun-Allomer 933S
CN Sun-Allomer PB 671A
CN Sun-Allomer PC 600S
CN Sun-Allomer PHA 03A
CN Sun-Allomer PL 300A
CN Sun-Allomer PL 400A
CN Sun-Allomer PM 600A
CN Sun-Allomer PM 802A
CN Sun-Allomer PM 863V
CN Sun-Allomer PS 201A
CN Sun-Allomer PX 400A
CN Sun-Allomer PX 600A
CN Sun-Tox CP-KT
CN Sun-Tox MP-RS 02
CN Sun-Tox OP-DP 30-20
CN Sun-Tox OP-DP 30-40
CN Sun-Tox OP-PA 20W
CN Sun-Tox OP-PA 30-60
CN Sun-Tox PA 30
CN Sun-Tox PF 21-60
CN Sunlet TT 7030
CN Sunloid SG
CN Sunply
CN Super Purelay
CN Superchlon E 403
CN Supersofty
CN SY 61
CN SY 6500
CN Symalit GM 40PP
CN Syntape
CN T 022
CN T 060
CN T 090
CN T 101
CN T 101 (polyolefin)
CN T 2372
CN T 2545
CN T 28C
CN T 30
CN T 30 (polyolefin)
CN T 300PPH-T022-4
CN T 3054
CN T 30S1
CN T 30SPP
CN T 3401
CN T 40H550
CN T 46F
CN T 46F-M
CN T 50E
CN T 523
CN T-T 300
CN T-TC
CN TA 3
CN TA 3 (polyolefin)
CN TA 8
CN TA 899
CN Taboren PC 51C40
CN Taboren PH 31C70
CN TAF 502C
CN TAF 511
CN TAF 513

CN Taiko FC
CN Taiko FC-FHK 2
CN Taiko FC-FPK
CN Taiko FL-FHK 2
CN Taiko FO-FOR-BT
CN Taiko FOA-BT
CN Taiko FOR
CN Takiron P 310
CN Tatrafan 15
CN Tatrafan R
CN Tatren
CN Tatren 141
CN Tatren FD 142
CN Tatren FD 620
CN Tatren FE 143
CN Tatren FF
CN Tatren FF 500
CN Tatren FF 520
CN Tatren HPD
CN Tatren HPF 411
CN Tatren ME 311
CN Tatren PD 140
CN Tatren TE 430
CN Tatren TE 451
CN Technopolymer 3119
CN Tenite 1550
CN Tenite 423
CN Tenite 4231
CN Tenite 4235
CN Tenite 423DF
CN Tenite 423S
CN Tenite 428S
CN Tenite 4E31
CN Tenite 4G7DP
CN Tenite 612F
CN Tenite 625
CN Tenite P 4-026
CN Tenite P 4039
CN Tenite P 4G3Z039
CN Tenite P 5-029
CN Tenite P 7673-079F
CN Terfilm E
CN Texture 5378
CN Texture 5380
CN Texture 5382
CN Texture 5382D
CN Texture-Ultrafine
CN TF 850H
CN Thermocomp MFX 1006HS
CN ThermoStran PP 50G
CN TI 4007G
CN Tipplen 535
CN Tipplen APP-A
CN Tipplen APP-C
CN Tipplen H 173
CN Tipplen H 176F
CN Tipplen H 263FU
CN Tipplen H 301
CN Tipplen H 304
CN Tipplen H 327
CN Tipplen H 331
CN Tipplen H 337
CN Tipplen H 377
CN Tipplen H 384F
CN Tipplen H 431F
CN Tipplen H 531
CN Tipplen H 534F
CN Tipplen H 535
CN Tipplen H 536
CN Tipplen H 536F
CN Tipplen H 543
CN Tipplen H 543F

CN Tipplen H 601
CN Tipplen H 723
CN Tipplen H 791
CN Tipplen H 791S
CN Tipplen K 299
CN Titanpro 6331
CN Titanpro 6431
CN Titanpro PM 255
CN Titanpro PM 383
CN TK 1180
CN TK 1330
CN TM 100K
CN TM 101
CN TM 101 (polyolefin)
CN TM 1600K
CN Tohcello 500T-T
CN Tohcello CP
CN Tohcello CP-GHC
CN Tohcello CP-PXC 11
CN Tohcello CP-RXC 11
CN Tohcello CP-RXC 3
CN Tohcello CPP-S
CN Tohcello CPS 30
CN Tohcello ME 1
CN Tohcello OP-U 1
CN Tohcello RXC 7
CN Tohcello T 300
CN Tohcello U 2
CN Tokuso PN 110
CN Tokuyama Polypro ME 230
CN Topilene J 700
CN Torayfan 2445
CN Torayfan 2535
CN Torayfan 2545
CN Torayfan 2575
CN Torayfan 3429
CN Torayfan 3501
CN Torayfan 352
CN Torayfan 3529T
CN Torayfan 3931
CN Torayfan 3X
CN Torayfan 40-2545
CN Torayfan 645
CN Torayfan BO
CN Torayfan BO 2400
CN Torayfan BO 2500
CN Torayfan BO 2535
CN Torayfan BO 2545
CN Torayfan BO 2570
CN Torayfan BO 40
CN Torayfan BO 40T2745
CN Torayfan BO 8
CN Torayfan BO-T 2535
CN Torayfan BO-YB 22
CN Torayfan BO-YM 11
CN Torayfan BO-YT 42
CN Torayfan BOS 645
CN Torayfan BOYP
CN Torayfan F 61W
CN Torayfan M 114
CN Torayfan NO
CN Torayfan NO 2545
CN Torayfan NO 3401
CN Torayfan NO 3701T
CN Torayfan NO 3931
CN Torayfan NO-ZK 20
CN Torayfan NO-ZK 93FM
CN Torayfan NO-ZK 93K
CN Torayfan ON
CN Torayfan T 2300
CN Torayfan T 2362
CN Torayfan T 2400

CN Torayfan T 2535
CN Torayfan T 3701
CN Torayfan YB 22
CN Torayfan YK 92
CN Torayfan YL 10
CN Torayfan YM 11
CN Torayfan YP 22
CN Torayfan YR 72
CN Torayfan YS 42
CN Torayfan YT 22
CN Torayfan ZK 93
CN Toraypef 10020AP66
CN Toraypef 20030AP66
CN Toraypef 25020AP66
CN Toraypef 25030AP66
CN Toraypef 3004PP
CN Toraypef AQ 60
CN Toraypef PP-JP 61
CN Toraypef PPAM
CN Toraypef PPAM 20030
CN Toraypef PPAM 25030
CN Toraypef PPSM 15030
CN Toraypef PPX-AW 60-2503
CN Toyopearl P 4257
CN Toyopearl P 6035
CN Toyopearl SS-P 4255
CN TP 32
CN TP Licocene PP 1602
CN TPO-F 3900
CN TR 165
CN Transprop OL
CN Trespaphan
CN Trespaphan CEA
CN Trespaphan EPH
CN Trespaphan FND 15
CN Trespaphan FND 20
CN Trespaphan FND 30
CN Trespaphan GND 20
CN Trespaphan GND 50
CN Trespaphan N 12
CN Trespaphan NNA
CN Trespaphan NNA 30
CN Trespaphan SHD
CN Trespaphan ZSD
CN Trovidur PP
CN TS 20020UV
CN TS 30
CN TS 30 (polyolefin)
CN TSOP-GP 5
CN TSOP-SC 1
CN TV 059
CN TVK-K 501
CN Twintex PP 60
CN Twintex PP 60-710AB100
CN Twintex T-PP 60-650C
CN TX 1088
CN TX 1170
CN TX 1180
CN TX 1498T
CN TX 1810A
CN TX 1849
CN TX 1950
CN TX 1977X
CN TX 200-2C
CN TX 933
CN TX 933A
CN TX 970
CN TY 6500
CN U 1
CN U 101
CN U 101 (polyolefin)
CN U 101E9

CN U 10P
CN U 2
CN U 501E1
CN U-Pore PF 5500
CN Ube Polypro FM 101A
CN UBE Polypro J 109
CN Ube Polypro J 609
CN Ube Polypro J 950HK
CN UBE Polypro ME 230
CN Ube PP-F 109K
CN Ube PP-J 109K
CN Ubetac APAO-UT 2180
CN Ubetac UR 079
CN Ubetac UT 2115
CN Ubetac UT 2180
CN UC 1057
CN UCC-WRD 5-1254
CN Unilax RS 503C
CN Unilax RS 510C
CN Unilax RS 512
CN Unilax RS 512C
CN Unilax RS 595C
CN Unipol 5CO4Z
CN Unipoly YK 121
CN Unistole R 100
CN UP Polypyro FM 101
CN UP Polypyro ME 230
CN UP Polypyro YD 101B
CN UPP
CN Uprene 730F
CN USI 11-4-0047
CN UT 2104
CN UT 2115
CN UT 2180
CN UV 47-88S
CN V 30G
CN V 30S
CN V 64-19K
CN V-PP
CN Valmic
CN Valtec HL 003
CN Valtec HS 008
CN Valtec MH 113Y
CN VB 19-43D
CN VB 19-50K
CN VB 3542
CN VB 40
CN VB 40-06C
CN VB 65-06C
CN VB 65-11B
CN VB 6512H
CN VB 8050B
CN VB 8052C
CN VC 12-33B
CN VC 1235B
CN VC 15-15P
CN VC 18
CN VC 18-12H
CN VC 2082C
CN VC 2512H
CN VC 2535D
CN VC 3247C
CN VC 3512H
CN VC 3535H
CN VC 37-34B
CN VC 5076ENA
CN VD 2001
CN Veepro
CN Verton MFX 70
CN Verton MFX 700-10
CN Verton MFX 700-10EM
CN Verton MFX 700-11HS

CN Verton MFX 700-13EM
CN Verton MFX 70012
CN Verton MFX 7006HS
CN Verton MFX 7008
CN Vestolen 17M10
CN Vestolen P
CN Vestolen P 4000
CN Vestolen P 5200
CN Vestolen P 6000
CN Vestolen P 6000F
CN Vestolen P 6040
CN Vestolen P 6200
CN Vestolen P 7032G
CN Vestolen P 8400
CN Vestolen PP 7000
CN Vestolen PP 7032
CN Vestolen PP 7052
CN Vestolen PV 7216
CN Vestoplast 620
CN Vestopren P 6200
CN VHD 40
CN Vifan BT
CN Viscol 151P
CN Viscol 220P
CN Viscol 330P
CN Viscol 350P
CN Viscol 440P
CN Viscol 500P
CN Viscol 605P
CN Vispol 3000
CN Vistac
CN Vistac G
CN Vistac L
CN Vistalon R
CN VM 6100H
CN Volen O
CN VP 103
CN VS 6100K
CN Vumapol E 70
CN W 101
CN W 110
CN W 1H
CN W 472
CN W 501
CN Walothen CM 20
CN Walothen O 25E
CN Wax PP 230
CN WB 060
CN WB 130
CN WB 130HMS
CN WB 617
CN WC-X
CN WDHAEC 94
CN WEX 1242
CN WF 464N
CN WF 836DG3
CN WF 900
CN White Refstar
CN WL 111
CN WL 113
CN WL 313
CN WN 1135
CN WP 100
CN WP 547
CN WP 602
CN WP 708
CN WRD 5-1057
CN WRD 5-981
CN WRS 5-144
CN WRS 5-579
CN WRS 5-660
CN WRS 6-148

CN WRS 7-327
CN WS 201E
CN WT 503
CN WT 6048
CN WTL
CN X 10
CN X 10 (polyolefin)
CN X 101
CN X 101 (polyolefin)
CN X 1780
CN X 24113-125-10
CN X 4141
CN X 440
CN X 6
CN X 708
CN X-IA
CN XAF 2331
CN XBPP 133
CN XBPP 15.2
CN XBPP 234.0
CN XBPP 4.0
CN XF 1391
CN XF 1810
CN XF 1893
CN XF 1932
CN XF 1935
CN XF 7553
CN XF 9239
CN XF 9246
CN XFP 1210H
CN XH 535
CN XHC 101F
CN XJ 20001B
CN XK 0-8044
CN XK 154
CN XK 3262
CN XK 4157V
CN XM 6170S
CN XN 3301
CN XNB 2011
CN XP 1800
CN XP 500
CN XPD 888-34
CN Y 101
CN Y 109K
CN Y 1200
CN Y 1600
CN Y 201
CN Y 203
CN Y 3000GV
CN Y 3500
CN Y 400G
CN Y 400GP
CN Y 600
CN Y 600 (Chinese polymer)
CN Yanshan 1300
CN YB 22
CN YD 50G
CN YH 11-60
CN YK 121A
CN YK 51
CN YM 11
CN YM 141
CN YP 22
CN YR 12
CN YT 22
CN Yukatack B
CN Yukatack B 3
CN Yukatack K 4
CN Yungsox
CN Yuplene H 380F
CN Yupo DFG 65

CN Yupo FGS 95
CN Yupo FP 80
CN Yupo FPG 110
CN Yupo FPG 200
CN Yupo FPG 80
CN Yupo FPG 95
CN Yupo FPU 50
CN Yupo FPU 60
CN Yupo GFG 95
CN Yupo GS 80
CN Yupo GWG 140
CN Yupo SGS 110
CN Yupo SGS 60
CN Yupo SGS 80
CN YX 37F
CN Z 101S
CN Z 2
CN Z 2 (polyolefin)
CN Z 800
CN ZC 100
CN ZK 93FM
CN ZK 93K
CN ZKP 3
CN ZMA 6170P
CN ZT 1259
CN ZT 772
DR 868670-76-2, 457057-49-7, 9044-59-1, 162731-35-3, 171903-39-2,
122933-37-3, 53664-32-7, 58318-95-9, 131801-18-8, 123243-04-9, 60440-68-8,
132823-57-5, 133757-66-1, 95751-29-4, 104625-25-4, 37329-03-6, 37370-57-3,
112024-68-7, 112327-42-1, 112821-10-0, 139465-75-1, 73989-50-1,
144855-91-4, 76560-78-6, 148464-77-1, 143710-36-5, 52440-18-3, 52622-64-7,
156680-70-5, 169741-70-2, 178535-67-6, 186777-48-0, 220286-70-4,
223461-98-1, 262610-59-3, 268745-65-9, 286465-97-2, 301161-99-9,
313378-44-8, 313471-92-0, 343259-03-0, 349655-63-6, 368887-79-0,
391599-57-8, 399509-34-3, 582300-70-7
MF (C3 H6)x
CI PMS, COM
PCT Polyolefin
LC STN Files: ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, ASMDATA*, BIOSIS,
BIOTECHNO, CA, CABA, CAPLUS, CASREACT, CBNB, CHEMCATS, CHEMLIST,
CHEMSAFE, CIN, CSCHEM, CSNB, DDFU, DETHERM*, DIOGENES, DRUGU, EMBASE,
ENCOMPLIT, ENCOMPLIT2, ENCOMPPAT, ENCOMPPAT2, HSDB*, IFICDB, IFIPAT,
IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NIOSHTIC, PDLCOM*, PIRA,
PLASPEC*, PROMT, RTECS*, TOXCENTER, TULSA, ULIDAT, USAN, USPAT2,
USPATFULL, VTB
(*File contains numerically searchable property data)
Other Sources: DSL**, TSCA**
(**Enter CHEMLIST File for up-to-date regulatory information)
DT.CA CAplus document type: Book; Conference; Dissertation; Journal; Patent;
Preprint; Report
RL.P Roles from patents: ANST (Analytical study); BIOL (Biological study);
CMBI (Combinatorial study); FORM (Formation, nonpreparative); MSC
(Miscellaneous); OCCU (Occurrence); PREP (Preparation); PROC (Process);
PRP (Properties); RACT (Reactant or reagent); USES (Uses); NORL (No role
in record)
RLD.P Roles for non-specific derivatives from patents: ANST (Analytical
study); BIOL (Biological study); MSC (Miscellaneous); OCCU (Occurrence);
PREP (Preparation); PROC (Process); PRP (Properties); RACT (Reactant or
reagent); USES (Uses); NORL (No role in record)
RL.NP Roles from non-patents: ANST (Analytical study); BIOL (Biological
study); CMBI (Combinatorial study); FORM (Formation, nonpreparative);
MSC (Miscellaneous); OCCU (Occurrence); PREP (Preparation); PROC
(Process); PRP (Properties); RACT (Reactant or reagent); USES (Uses);
NORL (No role in record)
RLD.NP Roles for non-specific derivatives from non-patents: ANST (Analytical
study); BIOL (Biological study); CMBI (Combinatorial study); FORM
(Formation, nonpreparative); MSC (Miscellaneous); OCCU (Occurrence);
PREP (Preparation); PROC (Process); PRP (Properties); RACT (Reactant or
reagent); USES (Uses); NORL (No role in record)

CRN 115-07-1
CMF C3 H6

/ Structure 15 in file .gra /

Experimental Properties (EPROP)

| PROPERTY (CODE) | VALUE | CONDITION | NOTE |
|--------------------|----------------------|-----------------|----------|
| Boiling Point (BP) | 220-228 deg C | | (1) CAS |
| Boiling Point (BP) | 175-260 deg C | | (2) CAS |
| Boiling Point (BP) | 100-120 deg C | Press: 1.5 Torr | (3) CAS |
| Boiling Point (BP) | 85-115 deg C | | (4) CAS |
| Boiling Point (BP) | 80-100 deg C | | (5) CAS |
| Boiling Point (BP) | 55-235 deg C | | (6) CAS |
| Density (DEN) | 9.17 g/cm***3 | | (7) CAS |
| Density (DEN) | 1.6 g/cm***3 | | (8) CAS |
| Density (DEN) | 0.94 g/cm***3 | Temp: 40 deg C | (9) CAS |
| Density (DEN) | 0.921 g/cm***3 | | (10) CAS |
| Density (DEN) | 0.92 g/cm***3 | Temp: 40 deg C | (9) CAS |
| Density (DEN) | 0.92 g/cm***3 | | (11) CAS |
| Density (DEN) | 0.92 g/cm***3 | | (12) CAS |
| Density (DEN) | 0.917 g/cm***3 | | (13) CAS |
| Density (DEN) | 0.916 g/cm***3 | Temp: 23 deg C | (14) CAS |
| Density (DEN) | 0.915-0.940 g/cm***3 | | (15) CAS |
| Density (DEN) | 0.915 g/cm***3 | | (16) CAS |
| Density (DEN) | 0.914 g/cm***3 | Temp: 20 deg C | (17) CAS |
| Density (DEN) | 0.914 g/cm***3 | | (18) CAS |
| Density (DEN) | 0.913 g/cm***3 | Temp: 145 deg C | (17) CAS |
| Density (DEN) | 0.913 g/cm***3 | | (19) CAS |
| Density (DEN) | 0.913 g/cm***3 | | (20) CAS |
| Density (DEN) | 0.912 g/cm***3 | | (21) CAS |
| Density (DEN) | 0.912 g/cm***3 | | (22) CAS |
| Density (DEN) | 0.912 g/cm***3 | Temp: 20 deg C | (17) CAS |
| Density (DEN) | 0.911 g/cm***3 | Temp: 50 deg C | (17) CAS |
| Density (DEN) | 0.9103 g/cm***3 | | (24) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (25) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (26) CAS |
| Density (DEN) | 0.910 g/cm***3 | | (27) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (28) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (29) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (30) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (31) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (32) CAS |
| Density (DEN) | 0.91 g/cm***3 | | (33) CAS |
| Density (DEN) | 0.909 g/cm***3 | Temp: 145 deg C | (17) CAS |
| Density (DEN) | 0.909 g/cm***3 | Temp: 20 deg C | (17) CAS |
| Density (DEN) | 0.909 g/cm***3 | | (19) CAS |
| Density (DEN) | 0.9081 g/cm***3 | | (34) CAS |
| Density (DEN) | 0.908 g/cm***3 | | (19) CAS |
| Density (DEN) | 0.908 g/cm***3 | Temp: 23 deg C | (35) CAS |
| Density (DEN) | 0.907 g/cm***3 | Temp: 145 deg C | (17) CAS |
| Density (DEN) | 0.906 g/cm***3 | Temp: 230 deg C | (36) CAS |
| Density (DEN) | 0.905-0.915 g/cm***3 | | (37) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (38) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (39) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (40) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (41) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (42) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (43) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (44) CAS |
| Density (DEN) | 0.905 g/cm***3 | | (45) CAS |
| Density (DEN) | 0.904 g/cm***3 | | (46) CAS |
| Density (DEN) | 0.903 g/cm***3 | Temp: 50 deg C | (17) CAS |
| Density (DEN) | 0.903 g/cm***3 | | (47) CAS |
| Density (DEN) | 0.903 g/cm***3 | | (48) CAS |
| Density (DEN) | 0.901-0.907 g/cm***3 | | (49) CAS |
| Density (DEN) | 0.90-0.92 g/cm***3 | | (50) CAS |

| | | | | |
|-----------------------------------|------------------------|----------------|------|-----|
| Density (DEN) | 0.90 g/cm***3 | Temp: 40 deg C | (9) | CAS |
| Density (DEN) | 0.90 g/cm***3 | | (51) | CAS |
| Density (DEN) | 0.9 g/cm***3 | | (52) | CAS |
| Density (DEN) | 0.900 g/cm***3 | | (53) | CAS |
| Density (DEN) | 0.900 g/cm***3 | Temp: 20 deg C | (54) | CAS |
| Density (DEN) | 0.90 g/cm***3 | | (55) | CAS |
| Density (DEN) | 0.90 g/cm***3 | | (56) | CAS |
| Density (DEN) | 0.90 g/cm***3 | | (57) | CAS |
| Density (DEN) | 0.9 g/cm***3 | | (58) | CAS |
| Density (DEN) | 0.899 g/cm***3 | | (59) | CAS |
| Density (DEN) | 0.898 g/cm***3 | | (60) | CAS |
| Density (DEN) | 0.897 g/cm***3 | | (61) | CAS |
| Density (DEN) | 0.897 g/cm***3 | | (62) | CAS |
| Density (DEN) | 0.896 g/cm***3 | | (63) | CAS |
| Density (DEN) | 0.896 g/cm***3 | | (64) | CAS |
| Density (DEN) | 0.896 g/cm***3 | Temp: 50 deg C | (17) | CAS |
| Density (DEN) | >0.89 g/cm***3 | | (65) | CAS |
| Density (DEN) | 0.89 g/cm***3 | | (25) | CAS |
| Density (DEN) | 0.89 g/cm***3 | | (66) | CAS |
| Density (DEN) | 0.89 g/cm***3 | | (67) | CAS |
| Density (DEN) | 0.89 g/cm***3 | | (68) | CAS |
| Density (DEN) | 0.88 g/cm***3 | Temp: 80 deg C | (9) | CAS |
| Density (DEN) | 0.87 g/cm***3 | Temp: 40 deg C | (9) | CAS |
| Density (DEN) | 0.87 g/cm***3 | | (69) | CAS |
| Density (DEN) | 0.86-0.91 g/cm***3 | | (70) | CAS |
| Density (DEN) | 0.85-0.90 g/cm***3 | | (71) | CAS |
| Density (DEN) | 0.85 g/cm***3 | Temp: 80 deg C | (9) | CAS |
| Density (DEN) | 0.83-0.90 g/cm***3 | Temp: 25 deg C | (72) | CAS |
| Density (DEN) | 0.820-0.880 g/cm***3 | | (73) | CAS |
| Density (DEN) | 0.820-0.840 g/cm***3 | Temp: 20 deg C | (74) | CAS |
| Density (DEN) | 0.8060-0.8727 g/cm***3 | | (75) | CAS |
| Density (DEN) | 0.80 g/cm***3 | Temp: 20 deg C | (76) | CAS |
| Density (DEN) | 0.75-0.89 g/cm***3 | | (76) | CAS |
| Density (DEN) | 0.53 g/cm***3 | | (77) | CAS |
| Density (DEN) | 0.50 g/cm***3 | | (78) | CAS |
| Density (DEN) | 0.49 g/cm***3 | | (79) | CAS |
| Density (DEN) | 0.43 g/cm***3 | | (80) | CAS |
| Density (DEN) | 0.43 g/cm***3 | | (81) | CAS |
| Density (DEN) | 0.42 g/cm***3 | | (82) | CAS |
| Density (DEN) | 0.42 g/cm***3 | | (80) | CAS |
| Density (DEN) | 0.42 g/cm***3 | | (81) | CAS |
| Density (DEN) | 0.42 g/cm***3 | | (83) | CAS |
| Density (DEN) | 0.42 g/cm***3 | | (84) | CAS |
| Density (DEN) | 0.385 g/cm***3 | | (85) | CAS |
| Density (DEN) | 0.35 g/cm***3 | | (86) | CAS |
| Density (DEN) | 0.3 g/cm***3 | | (87) | CAS |
| Density (DEN) | 0.28 g/cm***3 | | (88) | CAS |
| Density (DEN) | 0.27 g/cm***3 | | (88) | CAS |
| Glass Transition | 97 deg C | | (89) | CAS |
| Glass Transition Temperature (TG) | | | | |
| Glass Transition Temperature (TG) | 28 deg C | | (90) | CAS |
| Glass Transition Temperature (TG) | 10.0 deg C | | (14) | CAS |
| Glass Transition Temperature (TG) | 10.0 deg C | | (91) | CAS |
| Glass Transition Temperature (TG) | 4.8 deg C | | (92) | CAS |
| Glass Transition Temperature (TG) | 2 deg C | | (93) | CAS |
| Glass Transition Temperature (TG) | -1.3 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -2.2 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -3.9 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -5.6 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -7.2 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -8.35 deg C | | (95) | CAS |

| | | | | |
|-----------------------------------|-----------------------|--|-------|-----|
| Glass Transition Temperature (TG) | -8.58 deg C | | (95) | CAS |
| Glass Transition Temperature (TG) | -9.37 deg C | | (95) | CAS |
| Glass Transition Temperature (TG) | -9.65 deg C | | (95) | CAS |
| Glass Transition Temperature (TG) | -10 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -10.5 deg C | | (96) | CAS |
| Glass Transition Temperature (TG) | -11.1 deg C | | (95) | CAS |
| Glass Transition Temperature (TG) | -12 deg C | | (97) | CAS |
| Glass Transition Temperature (TG) | -12 deg C | | (98) | CAS |
| Glass Transition Temperature (TG) | -13 deg C | | (98) | CAS |
| Glass Transition Temperature (TG) | -14 deg C | | (98) | CAS |
| Glass Transition Temperature (TG) | -14.4 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -14.6 deg C | | (100) | CAS |
| Glass Transition Temperature (TG) | -15--3 deg C | | (101) | CAS |
| Glass Transition Temperature (TG) | -15 deg C | | (98) | CAS |
| Glass Transition Temperature (TG) | -16.4 deg C | | (94) | CAS |
| Glass Transition Temperature (TG) | -18 deg C | | (98) | CAS |
| Glass Transition Temperature (TG) | -25-55 deg C | | (73) | CAS |
| Glass Transition Temperature (TG) | -120 deg C | | (89) | CAS |
| Melting Point (MP) | 467 deg C | | (102) | CAS |
| Melting Point (MP) | 280-335 deg C | | (103) | CAS |
| Melting Point (MP) | 183 deg C | | (104) | CAS |
| Melting Point (MP) | 183 deg C | | (105) | CAS |
| Melting Point (MP) | 180 deg C | | (106) | CAS |
| Melting Point (MP) | 175 deg C
(approx) | | (107) | CAS |
| Melting Point (MP) | 175 deg C | | (54) | CAS |
| Melting Point (MP) | 174 deg C | | (99) | CAS |
| Melting Point (MP) | 172.5 deg C | | (14) | CAS |
| Melting Point (MP) | 171.5 deg C | | (14) | CAS |
| Melting Point (MP) | 170 deg C
(approx) | | (108) | CAS |
| Melting Point (MP) | 170 deg C | | (109) | CAS |
| Melting Point (MP) | 170 deg C | | (110) | CAS |
| Melting Point (MP) | 170 deg C | | (111) | CAS |
| Melting Point (MP) | 169 deg C | | (112) | CAS |
| Melting Point (MP) | 168 deg C
(approx) | | (107) | CAS |
| Melting Point (MP) | 168 deg C | | (113) | CAS |
| Melting Point (MP) | 168 deg C | | (114) | CAS |
| Melting Point (MP) | 168 deg C | | (115) | CAS |
| Melting Point (MP) | 168 deg C | | (116) | CAS |
| Melting Point (MP) | 168 deg C | | (117) | CAS |
| Melting Point (MP) | 168 deg C | | (118) | CAS |
| Melting Point (MP) | 167.5 deg C | | (119) | CAS |
| Melting Point (MP) | 167 deg C | | (120) | CAS |
| Melting Point (MP) | 167 deg C | | (121) | CAS |
| Melting Point (MP) | 167 deg C | | (46) | CAS |
| Melting Point (MP) | 166 deg C | | (122) | CAS |
| Melting Point (MP) | 165 deg C | | (123) | CAS |
| Melting Point (MP) | 165 deg C | | (124) | CAS |
| Melting Point (MP) | 165 deg C | | (125) | CAS |
| Melting Point (MP) | 165 deg C | | (104) | CAS |

| | | | |
|--------------------|---------------|-------|-----|
| Melting Point (MP) | 164.0 deg C | (126) | CAS |
| Melting Point (MP) | 164 deg C | (40) | CAS |
| Melting Point (MP) | 163.5 deg C | (119) | CAS |
| Melting Point (MP) | 163.5 deg C | (60) | CAS |
| Melting Point (MP) | 163.2 deg C | (127) | CAS |
| Melting Point (MP) | 163 deg C | (39) | CAS |
| Melting Point (MP) | 162.7 deg C | (126) | CAS |
| Melting Point (MP) | 162.0 deg C | (127) | CAS |
| Melting Point (MP) | 162.0 deg C | (128) | CAS |
| Melting Point (MP) | 162.0 deg C | (83) | CAS |
| Melting Point (MP) | 161.7 deg C | (128) | CAS |
| Melting Point (MP) | 161.6 deg C | (129) | CAS |
| Melting Point (MP) | 161.4 deg C | (130) | CAS |
| Melting Point (MP) | 161.3 deg C | (131) | CAS |
| Melting Point (MP) | 161.2 deg C | (132) | CAS |
| Melting Point (MP) | 161 deg C | (133) | CAS |
| Melting Point (MP) | 161.0 deg C | (128) | CAS |
| Melting Point (MP) | 161 deg C | (77) | CAS |
| Melting Point (MP) | 161 deg C | (134) | CAS |
| Melting Point (MP) | 160.3 deg C | (130) | CAS |
| Melting Point (MP) | 160-168 deg C | (135) | CAS |
| Melting Point (MP) | 160 deg C | (133) | CAS |
| Melting Point (MP) | 160 deg C | (136) | CAS |
| Melting Point (MP) | 160 deg C | (119) | CAS |
| Melting Point (MP) | 159.0 deg C | (130) | CAS |
| Melting Point (MP) | 158.7 deg C | (130) | CAS |
| Melting Point (MP) | 158.2 deg C | (130) | CAS |
| Melting Point (MP) | 158-170 deg C | (11) | CAS |
| Melting Point (MP) | 158-164 deg C | (49) | CAS |
| Melting Point (MP) | 158.0 deg C | (130) | CAS |
| Melting Point (MP) | 157.4 deg C | (130) | CAS |
| Melting Point (MP) | 157-162 deg C | (63) | CAS |
| Melting Point (MP) | 157-162 deg C | (64) | CAS |
| Melting Point (MP) | 157 deg C | (137) | CAS |
| Melting Point (MP) | 157 deg C | (133) | CAS |
| Melting Point (MP) | 156 deg C | (137) | CAS |
| Melting Point (MP) | 156 deg C | (133) | CAS |
| Melting Point (MP) | 155-165 deg C | (138) | CAS |
| Melting Point (MP) | 154.9 deg C | (130) | CAS |
| Melting Point (MP) | 154.7 deg C | (130) | CAS |
| Melting Point (MP) | 154 deg C | (133) | CAS |
| Melting Point (MP) | 153.7 deg C | (130) | CAS |
| Melting Point (MP) | 152 deg C | (95) | CAS |
| Melting Point (MP) | 151.6 deg C | (139) | CAS |
| Melting Point (MP) | 151 deg C | (133) | CAS |
| Melting Point (MP) | 150 deg C | (95) | CAS |
| Melting Point (MP) | 149-204 deg C | (70) | CAS |
| Melting Point (MP) | 149 deg C | (95) | CAS |
| Melting Point (MP) | 148.3 deg C | (139) | CAS |
| Melting Point (MP) | 148.1 deg C | (139) | CAS |
| Melting Point (MP) | 148 deg C | (137) | CAS |
| Melting Point (MP) | 147 deg C | (140) | CAS |
| Melting Point (MP) | 147 deg C | (95) | CAS |
| Melting Point (MP) | 146.1 deg C | (127) | CAS |
| Melting Point (MP) | 146.1 deg C | (139) | CAS |
| Melting Point (MP) | 146 deg C | (137) | CAS |
| Melting Point (MP) | 146 deg C | (140) | CAS |
| Melting Point (MP) | 145.9 deg C | (139) | CAS |
| Melting Point (MP) | 145.8 deg C | (127) | CAS |
| Melting Point (MP) | 145 deg C | (137) | CAS |
| Melting Point (MP) | 145 deg C | (141) | CAS |
| Melting Point (MP) | 145 deg C | (140) | CAS |
| Melting Point (MP) | 145 deg C | (95) | CAS |
| Melting Point (MP) | 144 deg C | (137) | CAS |
| Melting Point (MP) | 143 deg C | (137) | CAS |
| Melting Point (MP) | 143 deg C | (141) | CAS |
| Melting Point (MP) | 143 deg C | (140) | CAS |
| Melting Point (MP) | 143 deg C | (94) | CAS |
| Melting Point (MP) | 142.7 deg C | (139) | CAS |
| Melting Point (MP) | 142.3 deg C | (139) | CAS |
| Melting Point (MP) | 142.2 deg C | (142) | CAS |
| Melting Point (MP) | 142 deg C | (137) | CAS |

| | | | |
|--------------------|---------------|-------|-----|
| Melting Point (MP) | 142 deg C | (140) | CAS |
| Melting Point (MP) | 142 deg C | (94) | CAS |
| Melting Point (MP) | 141.1 deg C | (142) | CAS |
| Melting Point (MP) | 141 deg C | (137) | CAS |
| Melting Point (MP) | 141 deg C | (141) | CAS |
| Melting Point (MP) | 141 deg C | (140) | CAS |
| Melting Point (MP) | 140 deg C | (137) | CAS |
| Melting Point (MP) | 140.0 deg C | (142) | CAS |
| Melting Point (MP) | 140 deg C | (140) | CAS |
| Melting Point (MP) | 139.7 deg C | (9) | CAS |
| Melting Point (MP) | 139 deg C | (137) | CAS |
| Melting Point (MP) | 139 deg C | (140) | CAS |
| Melting Point (MP) | 138.2 deg C | (127) | CAS |
| Melting Point (MP) | 138 deg C | (137) | CAS |
| Melting Point (MP) | 138.0 deg C | (142) | CAS |
| Melting Point (MP) | 137.5 deg C | (142) | CAS |
| Melting Point (MP) | 137.5 deg C | (127) | CAS |
| Melting Point (MP) | 137.4 deg C | (130) | CAS |
| Melting Point (MP) | 137 deg C | (137) | CAS |
| Melting Point (MP) | 137 deg C | (141) | CAS |
| Melting Point (MP) | 137 deg C | (140) | CAS |
| Melting Point (MP) | 136.7 deg C | (130) | CAS |
| Melting Point (MP) | 135.9 deg C | (142) | CAS |
| Melting Point (MP) | 135.5 deg C | (130) | CAS |
| Melting Point (MP) | 135.4 deg C | (130) | CAS |
| Melting Point (MP) | 135.4 deg C | (142) | CAS |
| Melting Point (MP) | 135.1 deg C | (130) | CAS |
| Melting Point (MP) | 135 deg C | (137) | CAS |
| Melting Point (MP) | 135 deg C | (141) | CAS |
| Melting Point (MP) | 135 deg C | (140) | CAS |
| Melting Point (MP) | 134.9 deg C | (9) | CAS |
| Melting Point (MP) | 134.3 deg C | (9) | CAS |
| Melting Point (MP) | 134.2 deg C | (130) | CAS |
| Melting Point (MP) | 134 deg C | (140) | CAS |
| Melting Point (MP) | 133.6 deg C | (142) | CAS |
| Melting Point (MP) | 133 deg C | (143) | CAS |
| Melting Point (MP) | 132.4 deg C | (142) | CAS |
| Melting Point (MP) | 132 deg C | (140) | CAS |
| Melting Point (MP) | 131.7 deg C | (130) | CAS |
| Melting Point (MP) | 131 deg C | (143) | CAS |
| Melting Point (MP) | 131 deg C | (140) | CAS |
| Melting Point (MP) | 130.5 deg C | (130) | CAS |
| Melting Point (MP) | 130-140 deg C | (71) | CAS |
| Melting Point (MP) | 130 deg C | (137) | CAS |
| Melting Point (MP) | 130.0 deg C | (9) | CAS |
| Melting Point (MP) | 129.8 deg C | (130) | CAS |
| Melting Point (MP) | 129.2 deg C | (130) | CAS |
| Melting Point (MP) | 129 deg C | (137) | CAS |
| Melting Point (MP) | 128.7 deg C | (142) | CAS |
| Melting Point (MP) | 128 deg C | (137) | CAS |
| Melting Point (MP) | 128 deg C | (140) | CAS |
| Melting Point (MP) | 127 deg C | (143) | CAS |
| Melting Point (MP) | 127 deg C | (140) | CAS |
| Melting Point (MP) | 125-155 deg C | (144) | CAS |
| Melting Point (MP) | 125-150 deg C | (144) | CAS |
| Melting Point (MP) | 125 deg C | (145) | CAS |
| Melting Point (MP) | 123.4 deg C | (142) | CAS |
| Melting Point (MP) | 123 deg C | (137) | CAS |
| Melting Point (MP) | 121 deg C | (137) | CAS |
| Melting Point (MP) | 120-155 deg C | (144) | CAS |
| Melting Point (MP) | 120-150 deg C | (144) | CAS |
| Melting Point (MP) | 120 deg C | (137) | CAS |
| Melting Point (MP) | 119 deg C | (137) | CAS |
| Melting Point (MP) | 118.1 deg C | (142) | CAS |
| Melting Point (MP) | 116 deg C | (137) | CAS |
| Melting Point (MP) | 115-155 deg C | (144) | CAS |
| Melting Point (MP) | 114 deg C | (137) | CAS |
| Melting Point (MP) | 111 deg C | (137) | CAS |
| Melting Point (MP) | 110-150 deg C | (144) | CAS |
| Melting Point (MP) | 110 deg C | (137) | CAS |
| Melting Point (MP) | 109 deg C | (137) | CAS |
| Melting Point (MP) | 105-170 deg C | (31) | CAS |

| | | | | |
|-----------------------|---------------------|-------------------|-------|-----|
| Melting Point (MP) | 105-140 deg C | | (144) | CAS |
| Melting Point (MP) | 103 deg C | | (137) | CAS |
| Melting Point (MP) | 100-140 deg C | | (144) | CAS |
| Melting Point (MP) | 93 deg C | | (137) | CAS |
| Melting Point (MP) | 90-125 deg C | | (144) | CAS |
| Melting Point (MP) | 90-110 deg C | | (144) | CAS |
| Melting Point (MP) | 90-105 deg C | | (144) | CAS |
| Melting Point (MP) | 87.0 deg C | | (9) | CAS |
| Melting Point (MP) | 85 deg C | | (146) | CAS |
| Melting Point (MP) | 84 deg C | | (137) | CAS |
| Melting Point (MP) | 83 deg C | | (137) | CAS |
| Melting Point (MP) | 81 deg C | | (137) | CAS |
| Melting Point (MP) | 81 deg C | | (147) | CAS |
| Melting Point (MP) | 80-155 deg C | | (144) | CAS |
| Melting Point (MP) | 80 deg C | | (137) | CAS |
| Melting Point (MP) | 74 deg C | | (137) | CAS |
| Melting Point (MP) | 73.3 deg C | | (9) | CAS |
| Melting Point (MP) | -45 deg C | | (74) | CAS |
| Refractive Index (RI) | 1.497 | Wavlen: 164600 nm | (148) | CAS |
| Refractive Index (RI) | 1.495 | Wavlen: 118834 nm | (148) | CAS |
| Refractive Index (RI) | 1.494 | Wavlen: 163034 nm | (148) | CAS |
| Refractive Index (RI) | 1.490 | Wavlen: 170576 nm | (148) | CAS |
| Refractive Index (RI) | 1.487 | Wavlen: 251140 nm | (148) | CAS |
| Tensile Strength (TS) | 1015 MPa | | (131) | CAS |
| Tensile Strength (TS) | 217.18 MPa | | (149) | CAS |
| Tensile Strength (TS) | 137.90 MPa | | (150) | CAS |
| Tensile Strength (TS) | 99.285 MPa | | (151) | CAS |
| Tensile Strength (TS) | 96.72 MPa | | (152) | CAS |
| Tensile Strength (TS) | 90.71 MPa | | (152) | CAS |
| Tensile Strength (TS) | 90.27 MPa | | (152) | CAS |
| Tensile Strength (TS) | 79.93 MPa | | (152) | CAS |
| Tensile Strength (TS) | 62.05 MPa | | (149) | CAS |
| Tensile Strength (TS) | 48.6 MPa | | (153) | CAS |
| Tensile Strength (TS) | 43.6 MPa | | (131) | CAS |
| Tensile Strength (TS) | 40.3 MPa | | (154) | CAS |
| Tensile Strength (TS) | 38.61 MPa | | (155) | CAS |
| Tensile Strength (TS) | 38 MPa | Temp: 25 deg C | (156) | CAS |
| Tensile Strength (TS) | 37.92-48.26 MPa | | (157) | CAS |
| Tensile Strength (TS) | 37.92-44.82 MPa | | (104) | CAS |
| Tensile Strength (TS) | 37.92 MPa | | (155) | CAS |
| Tensile Strength (TS) | 37.8 MPa | | (153) | CAS |
| Tensile Strength (TS) | 37 MPa | Temp: 25 deg C | (156) | CAS |
| Tensile Strength (TS) | 36 MPa | Temp: 25 deg C | (156) | CAS |
| Tensile Strength (TS) | 35.51 MPa | | (158) | CAS |
| Tensile Strength (TS) | 35.4 MPa | | (126) | CAS |
| Tensile Strength (TS) | 35.14 MPa | | (158) | CAS |
| Tensile Strength (TS) | 35.03 MPa | | (159) | CAS |
| Tensile Strength (TS) | 34.56 MPa | | (158) | CAS |
| Tensile Strength (TS) | 34 MPa | | (160) | CAS |
| Tensile Strength (TS) | 34 MPa | Temp: 25 deg C | (156) | CAS |
| Tensile Strength (TS) | 33.78 MPa | | (155) | CAS |
| Tensile Strength (TS) | 32.96 MPa | | (19) | CAS |
| Tensile Strength (TS) | 32.6 MPa | | (131) | CAS |
| Tensile Strength (TS) | 31 MPa | | (161) | CAS |
| Tensile Strength (TS) | 30.47 MPa | | (19) | CAS |
| Tensile Strength (TS) | 30.34 MPa | | (162) | CAS |
| Tensile Strength (TS) | 30.27 MPa | | (104) | CAS |
| Tensile Strength (TS) | 29.85 MPa | | (19) | CAS |
| Tensile Strength (TS) | 28.82 MPa | | (159) | CAS |
| Tensile Strength (TS) | 28.2 MPa | | (163) | CAS |
| Tensile Strength (TS) | 23.1 MPa | | (164) | CAS |
| Tensile Strength (TS) | 11.5 MPa | Temp: 80 deg C | (156) | CAS |
| Tensile Strength (TS) | 11.2 MPa | Temp: 80 deg C | (156) | CAS |
| Tensile Strength (TS) | 11 MPa | Temp: 80 deg C | (156) | CAS |
| Tensile Strength (TS) | 10.8 MPa | Temp: 80 deg C | (156) | CAS |
| Tensile Strength (TS) | 10.5 MPa | Temp: 80 deg C | (156) | CAS |
| Tensile Strength (TS) | 10.1 MPa | Temp: 80 deg C | (156) | CAS |
| Tensile Strength (TS) | 9.28 MPa
(Break) | | (95) | CAS |
| Tensile Strength (TS) | 7.87 MPa
(Break) | | (95) | CAS |
| Tensile Strength (TS) | 7.61 MPa | | (95) | CAS |

| | | | | |
|-----------------------|---------------------|-----------------|-------|-----|
| Tensile Strength (TS) | (Break)
6.58 MPa | | (95) | CAS |
| Tensile Strength (TS) | (Break)
5.20 MPa | | (95) | CAS |
| Tensile Strength (TS) | 4 MPa | Temp: 120 deg C | (156) | CAS |
| Tensile Strength (TS) | 3.8 MPa | Temp: 120 deg C | (156) | CAS |
| Tensile Strength (TS) | 3.7 MPa | Temp: 120 deg C | (156) | CAS |
| Tensile Strength (TS) | 3.6 MPa | Temp: 120 deg C | (156) | CAS |
| Tensile Strength (TS) | 3.4 MPa | Temp: 120 deg C | (156) | CAS |
| Tensile Strength (TS) | 2.3 MPa | Temp: 150 deg C | (156) | CAS |

- (1) GB 988628 1965 CAPLUS
(2) Potolovskii, L. A.; Tr. Vses. Nauchn.-Issled. Inst. po Pererabotke Nefti 1963 VNo. 9, P110-69 CAPLUS
(3) Kluge, Herman D.; US 2671117 1954 CAPLUS
(4) NL 281308 1964 CAPLUS
(5) Trieschmann, Hans O.; DE 1155235 1963 CAPLUS
(6) Butler, John M.; US 2661335 1953 CAPLUS
(7) Cash, George O., Jr.; US 2996494 1958 CAPLUS
(8) Mousa, Ahmad; International Journal of Polymeric Materials 2005 V54(7) P619-631 CAPLUS
(9) Hwu, Jyh-Ming; Journal of Applied Polymer Science 2005 V95(5) P1228-1236 CAPLUS
(10) Takashima, Naoichi; JP 41007345 1966 CAPLUS
(11) Natta, Giulio; Chimica e l'Industria (Milan, Italy) 1955 V37, P888-900 CAPLUS
(12) Zimmerman, Daniel; CA 994972 1976 CAPLUS
(13) Coover, Harry W., Jr.; US 3284427 1966 CAPLUS
(14) Halasz, L.; Rheologica Acta 2005 V44(4) P427-433 CAPLUS
(15) GB 1009783 1965 CAPLUS
(16) Heilman, Paul D.; GB 1139887 1969 CAPLUS
(17) Savin, A. G.; Vysokomolekulyarnye Soedineniya, Seriya B: Kratkie Soobshcheniya 1967 V9(7) P496-7 CAPLUS
(18) NL 6411938 1965 CAPLUS
(19) Hagemeyer, Hugh J., Jr.; US 3412078 1968 CAPLUS
(20) Coover, Harry W., Jr.; US 3149097 1964 CAPLUS
(21) Coover, Harry W., Jr.; US 3315014 1967 CAPLUS
(22) NL 6610951 1967 CAPLUS
(23) Kawamoto, Keiji; JP 60163990 A2 1985 CAPLUS
(24) Isaka, Tsutomu; JP 47030616 B4 1972 CAPLUS
(25) Ramaraj, B.; Popular Plastics & Packaging 2004 V49(11) P85-94 CAPLUS
(26) Son, Jungil; Journal of Thermoplastic Composite Materials 2004 V17(6) P509-522 CAPLUS
(27) Coover, Harry W., Jr.; US 3415801 1968 CAPLUS
(28) Tholstrup, Clarence E.; GB 943771 1963 CAPLUS
(29) Tholstrup, Clarence E.; DE 1180516 1964 CAPLUS
(30) Coover, Harry W., Jr.; US 3287340 1966 CAPLUS
(31) Morita, Mikio; JP 48052866 1973 CAPLUS
(32) Ito, Masakazu; JP 60171148 A2 1985 CAPLUS
(33) Funaki, Akira; JP 60255834 A2 1985 CAPLUS
(34) Domiciano, V. G.; Ceramica (Sao Paulo, Brazil) 2003 V49(312) P251-256 CAPLUS
(35) Baum, Bernard O.; US 3098057 1963 CAPLUS
(36) Akiyama, Yoshikuni; JP 2004047146 A2 2004 CAPLUS
(37) ZA 6706648 1968 CAPLUS
(38) Bledzki, Andrzej K.; Holz als Roh- und Werkstoff 2005 V63(1) P30-37 CAPLUS
(39) Majer, Josef; Kunststoff-Rundschau 1961 V8, P529-82 CAPLUS
(40) Schmidt, Heinz; DE 1153894 1963 CAPLUS
(41) NL 6510082 1966 CAPLUS
(42) Dew, Jimmy S.; US 3352946 1967 CAPLUS
(43) Hughes, James K.; DE 1925608 1969 CAPLUS
(44) Mayer, Wilhelm; DE 2024342 1971 CAPLUS
(45) Schlumpf, Hans Peter; DE 3404456 A1 1985 CAPLUS
(46) Kuzura, Tadahiko; JP 61195140 A2 1986 CAPLUS
(47) Atarashi, Yuji; JP 42010606 B4 1967 CAPLUS
(48) Czerny, Jiri; CS 236983 B1 1986 CAPLUS
(49) Kuehne, Guenther; DE 3601175 A1 1987 CAPLUS
(50) Joyner, Frederick B.; GB 976302 1964 CAPLUS
(51) Rachtanapun, P.; Journal of Applied Polymer Science 2004 V93(1) P364-371 CAPLUS

- (52) Palacio, J. F.; Zeitschrift fuer Metallkunde 2004 V95(5) P335-339
CAPLUS
- (53) Crenna, Vincent; FR 2596402 A1 1987 CAPLUS
- (54) Dzhagatspanyan, R. V.; Vysokomolekulyarnye Soedineniya 1966 V8(10)
P1745-53 CAPLUS
- (55) Sakata, Rikita; JP 43006287 B4 1968 CAPLUS
- (56) Makino, Kenya; JP 61016943 A2 1986 CAPLUS
- (57) Klaar, Karlo; DE 3520106 A1 1986 CAPLUS
- (58) Masuko, Toru; Journal of Polymer Science, Polymer Physics Edition 1970
V8(9) P1565-74 CAPLUS
- (59) Iida, Makoto; JP 62256837 A2 1987 CAPLUS
- (60) Fujii, Junji; JP 61130018 A2 1986 CAPLUS
- (61) Trieschmann, Hans G.; DE 1813651 1970 CAPLUS
- (62) Trieschmann, Hans G.; DE 1813649 1970 CAPLUS
FR 2000868 1969 CAPLUS
- (63) FR 2000867 1969 CAPLUS
- (64) Jayne, William M., Jr.; US 3256367 1966 CAPLUS
- (65) Horn, Christian F.; US 3256363 1966 CAPLUS
- (66) Yagyu, Hideki; JP 60170651 A2 1985 CAPLUS
- (67) BE 616420 1962 CAPLUS
- (68) Robinson, Ivan M.; FR 1418884 1965 CAPLUS
- (69) Boyer, Jackson S.; US 3380882 1968 CAPLUS
- (70) Gabris, Tibor; GB 1104108 1968 CAPLUS
- (71) Reinert, Andrew J.; US 3306817 1967 CAPLUS
- (72) Fulop, Janos; HU 34530 A2 1985 CAPLUS
- (73) Macak, Jan; CS 226473 B 1985 CAPLUS
- (74) Ashurly, Z. I.; Doklady - Akademiya Nauk Azerbaidzhanskoi SSR 1966
V22(4) P29-33 CAPLUS
- (75) Rumberger, George G.; US 3284279 1966 CAPLUS
JP 58091704 A2 1983 CAPLUS
- (76) Bailly, Jean Claude Andre; EP 238345 A2 1987 CAPLUS
JP 57055906 A2 1982 CAPLUS
- (77) Asanuma, Tadashi; JP 60235805 A2 1985 CAPLUS
- (78) Asanuma, Tadashi; JP 60235806 A2 1985 CAPLUS
- (79) Hull, David C.; FR 1451854 1966 CAPLUS
- (80) Asanuma, Tadashi; JP 63037104 A2 1988 CAPLUS
- (81) Albizzati, Enrico; EP 434082 A2 1991 CAPLUS
FR 2108766 1972 CAPLUS
- (82) Trieschmann, Hans G.; ZA 6805083 1969 CAPLUS
- (83) Kamaishi, Tadami; JP 43015622 B4 1968 CAPLUS
- (84) Van der Bend, Herman T.; DE 2342416 1974 CAPLUS
- (85) Wang, Ke; Polymer International 2004 V53(7) P838-843 CAPLUS
- (86) Tsunashima, Kenji; JP 61203140 A2 1986 CAPLUS
- (87) Sirisinha, Kalyanee; Journal of Applied Polymer Science 2005 V97(4)
P1476-1483 CAPLUS
- (88) Tweedie, Catherine A.; Materials Research Society Symposium Proceedings
2005 V841(Fundamentals of Nanoindentation and Nanotribology III)
P205-210 CAPLUS
- (89) Tsunashima, Kenji; JP 61235445 A2 1986 CAPLUS
- (90) Heuer, Bjoern; Macromolecules 2005 V38(8) P3054-3059 CAPLUS
- (91) Rajan, Guru S.; European Polymer Journal 2003 V40(1) P63-71 CAPLUS
- (92) Smolensky, Elena; Organometallics 2005 V24(13) P3255-3265 CAPLUS
- (93) Wilkinson, Raymond W.; Journal of Polymer Science 1962 V58, P1089-1106
CAPLUS
- (94) Zakin, Jacques L.; Journal of Applied Polymer Science 1966 V10(10)
P1455-73 CAPLUS
- (95) Passaglia, Elio; Journal of Applied Physics 1963 V34, P90-7 CAPLUS
- (96) Chen, Jean-Hong; Polymer 2005 V46(15) P5680-5688 CAPLUS
- (97) Schneider, Hans Adam; Polymer 2005 V46(7) P2230-2237 CAPLUS
- (98) Lewis, J. R.; BE 638643 1964 CAPLUS
BE 642278 1964 CAPLUS
- (99) Coover, Harry W., Jr.; GB 921635 1963 CAPLUS
- (100) Coover, Harry W., Jr.; GB 997353 1965 CAPLUS
- (101) Coover, Harry W., Jr.; US 3072629 1963 CAPLUS
- (102) Dzhagatspanyan, R. V.; Vysokomolekulyarnye Soedineniya 1966 V8(6)
P1103-8 CAPLUS
- (103) Schmelzle, Ambrose F.; FR 1435221 1966 CAPLUS
- (104) Lehane, Jeremiah P., Jr.; DE 1204820 1965 CAPLUS
GB 881374 1961 CAPLUS
- (105) Atarashi, Yuji; JP 42016052 B4 1967 CAPLUS
- (106) Isaka, Tsutomu; JP 52135100 1977 CAPLUS
- (107) Breslow, David S.; US 3058944 1962 CAPLUS

- (114) Matlack, Albert S.; US 3074909 1963 CAPLUS
 (115) Soeder, Mary L.; US 3102107 1963 CAPLUS
 (116) GB 994260 1965 CAPLUS
 (117) GB 996109 1965 CAPLUS
 (118) GB 1043076 1966 CAPLUS
 (119) Maeda, Katsuhiro; Kogyo Kagaku Zasshi 1970 V73(7) P1407-13 CAPLUS
 (120) Kutner, Abraham; US 3056643 1962 CAPLUS
 (121) Kirpichnikov, P. A.; Plasticheskie Massy 1965(1) P8-12 CAPLUS
 (122) Watanabe, Masamoto; JP 37018392 1962 CAPLUS
 (123) Kiefer, R. L.; Materials Research Society Symposium Proceedings 2005 V851(Materials for Space Applications) P205-210 CAPLUS
 (124) Dharia, Dhawal; Polymer 2005 V46(23) P10139-10147 CAPLUS
 (125) Mertes, Thomas S.; US 3043793 1962 CAPLUS
 (126) Zhang, Manli; Polymer 2002 V43(19) P5133-5138 CAPLUS
 (127) Proto, Antonio; Macromolecules 2003 V36(16) P5942-5946 CAPLUS
 (128) Chen, Linfeng; WO 2003106512 A2 2003 CAPLUS
 (129) Moeller, Hans; BE 654964 1965 CAPLUS
 (130) Sano, Tsuneji; Catalysis Surveys from Asia 2004 V8(4) P295-304 CAPLUS
 (131) Tang, Ming; Hecheng Shuzhi Ji Suliao 2003 V20(4) P34-38 CAPLUS
 (132) Liu, Yonggang; International Journal of Polymer Analysis and Characterization 2003 V8(4) P225-243 CAPLUS
 (133) Iwama, Naoshi; Journal of Organometallic Chemistry 2005 V690(9) P2220-2228 CAPLUS
 (134) Aoyanagi, Yoshikuni; JP 03155919 A2 1991 CAPLUS
 (135) Iwamoto, Masao; JP 66/17670 B4 1963 CAPLUS
 (136) Burns, John Thomas; EP 186108 A2 1986 CAPLUS
 (137) Resconi, Luigi; Macromolecular Chemistry and Physics 2005 V206(14) P1405-1438 CAPLUS
 (138) Mirabile, Frank A.; GB 938069 1963 CAPLUS
 (139) Fujita, Masayuki; Macromolecules 2004 V37(26) P9676-9680 CAPLUS
 (140) Franceschini, Fernando C.; Macromolecular Chemistry and Physics 2004 V205(11) P1525-1529 CAPLUS
 (141) De Rosa, Claudio; Macromolecules 2003 V36(10) P3465-3474 CAPLUS
 (142) Pombo, Carla C.; Annual Technical Conference - Society of Plastics Engineers 2002 V60th(Vol. 3) P4033-4038 CAPLUS
 (143) Marques, Maria De Fatima V.; Journal of Polymer Science, Part A: Polymer Chemistry 2003 V41(10) P1478-1485 CAPLUS
 (144) Losio, Simona; Macromolecules 2005 V38(17) P7231-7240 CAPLUS
 (145) Matsuo, Sachiko; JP 61148251 A2 1986 CAPLUS
 (146) Savu, Constantin; RO 77648 B 1981 CAPLUS
 (147) Taniguchi, Kouichirou; WO 2004018203 A1 2004 CAPLUS
 (148) Flores-Mijangos, Jesus; Applied Optics 2003 V42(3) P592-596 CAPLUS
 (149) Kies, Joseph A.; US 3507941 1970 CAPLUS
 (150) Clarke, Kenneth; ZA 7005128 1972 CAPLUS
 (151) JP 61157545 A2 1986 CAPLUS
 (152) Goulas, A. E.; Food Additives & Contaminants 2002 V19(12) P1190-1199 CAPLUS
 (153) Wang, Yong; Chinese Journal of Polymer Science 2005 V23(1) P103-111 CAPLUS
 (154) Ota, W. N.; Composites Science and Technology 2005 V65(6) P873-881 CAPLUS
 (155) Shearer Newton, H., Jr.; GB 1014393 1965 CAPLUS
 (156) Lin, Jeng-Shyong; Polymers & Polymer Composites 2003 V11(5) P369-381 CAPLUS
 (157) Coover, Harry W., Jr.; US 3549608 1970 CAPLUS
 (158) Harban, Arthur A.; US 3317502 1967 CAPLUS
 (159) Shepherd, Thomas H.; US 3278499 1966 CAPLUS
 (160) Dasari, A.; Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 2003 VA354(1-2) P67-81 CAPLUS
 (161) Brach, Bronislaw; PL 140796 B1 1987 CAPLUS
 (162) GB 1097129 1967 CAPLUS
 (163) Pospisil, Ladislav; CS 233523 B1 1986 CAPLUS
 (164) Pickering, K. L.; Journal of Reinforced Plastics and Composites 2004 V23(18) P2011-2024 CAPLUS

Experimental Property Tags (ETAG)

| PROPERTY | NOTE |
|-------------------|---------|
| Adhesive Strength | (1) CAS |

| | |
|---|----------|
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Bending Strength | (2) CAS |
| 3 more tags shown in the MAX or ETAGFULL formats | |
| Birefringence | (3) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Boiling Point | (4) CAS |
| 9 more tags shown in the MAX or ETAGFULL formats | |
| Carbon-13 NMR Spectra | (5) CAS |
| 12 more tags shown in the MAX or ETAGFULL formats | |
| Cloud Point | (6) CAS |
| Compressive Strength | (7) CAS |
| Contact Angle | (1) CAS |
| 6 more tags shown in the MAX or ETAGFULL formats | |
| Crystal Structure | (8) CAS |
| Crystallization Temperature | (9) CAS |
| 8 more tags shown in the MAX or ETAGFULL formats | |
| Density | (10) CAS |
| 10 more tags shown in the MAX or ETAGFULL formats | |
| Dielectric Constant | (11) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Dielectric Loss | (12) CAS |
| Dielectric Strength | (13) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Diffusion Coefficient | (14) CAS |
| Ductility | (15) CAS |
| Electric Conductance and Electric Resistance | (16) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Elongation at Break | (7) CAS |
| 8 more tags shown in the MAX or ETAGFULL formats | |
| Elongation at Yield | (17) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Enthalpy | (18) CAS |
| Flash Point | (19) CAS |
| Flexural Modulus | (7) CAS |
| 5 more tags shown in the MAX or ETAGFULL formats | |
| Fracture Toughness | (20) CAS |
| 5 more tags shown in the MAX or ETAGFULL formats | |
| Freezing Point | (19) CAS |
| Friction Coefficient | (21) CAS |
| Fusion Enthalpy | (22) CAS |
| 10 more tags shown in the MAX or ETAGFULL formats | |
| Glass Transition Temperature | (23) CAS |
| Hardness | (24) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Haze | (25) CAS |
| Heat Capacity | (26) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Impact Strength | (27) CAS |
| 15 more tags shown in the MAX or ETAGFULL formats | |
| IR Absorption Spectra | (28) CAS |
| 38 more tags shown in the MAX or ETAGFULL formats | |
| IR Emission/Luminescence Spectra | (29) CAS |
| IR Reflectance Spectra | (30) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| IR Spectra | (31) CAS |
| 5 more tags shown in the MAX or ETAGFULL formats | |
| Loss Modulus | (32) CAS |
| 3 more tags shown in the MAX or ETAGFULL formats | |
| Mass Spectra | (33) CAS |
| 7 more tags shown in the MAX or ETAGFULL formats | |
| Melt Flow Index | (34) CAS |
| 32 more tags shown in the MAX or ETAGFULL formats | |
| Melting Point | (22) CAS |
| 48 more tags shown in the MAX or ETAGFULL formats | |
| Microhardness | (35) CAS |
| Molecular Weight (Polymers) | (22) CAS |
| 79 more tags shown in the MAX or ETAGFULL formats | |
| Molecular Weight Distribution | (36) CAS |
| 53 more tags shown in the MAX or ETAGFULL formats | |
| NMR Spectra | (37) CAS |
| 7 more tags shown in the MAX or ETAGFULL formats | |
| Optical Rotatory Power | (38) CAS |

| | |
|---|---|
| 3 more tags shown in the MAX or ETAGFULL formats | |
| Particle Size | (39) CAS |
| 11 more tags shown in the MAX or ETAGFULL formats | |
| Partition Coefficient | (40) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Permeability | (41) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Photoelectron Spectra | (42) CAS |
| Piezoelectric Coefficient | (43) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Poisson Ratio | (44) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Pore Size | (45) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Porosity | (46) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Proton NMR Spectra | (47) CAS |
| 8 more tags shown in the MAX or ETAGFULL formats | |
| Radius of Gyration | (48) CAS |
| Raman Spectra | (49) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Refractive Index | (50) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Residual Stress | (51) CAS |
| Shear Strength | (52) CAS |
| Softening Point | (53) CAS |
| 2 more tags shown in the MAX or ETAGFULL formats | |
| Specific Surface Area | (54) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Storage Modulus | (55) CAS |
| 5 more tags shown in the MAX or ETAGFULL formats | |
| Surface Tension | (56) CAS |
| 3 more tags shown in the MAX or ETAGFULL formats | |
| Tear Strength | (57) CAS |
| Tensile Strength | (58) CAS |
| 19 more tags shown in the MAX or ETAGFULL formats | |
| Thermal Analysis | (59) CAS |
| 12 more tags shown in the MAX or ETAGFULL formats | |
| Thermal Conductivity | (60) CAS |
| 3 more tags shown in the MAX or ETAGFULL formats | |
| Thermal Expansion Coefficient | (61) CAS |
| UV and Visible Absorption Spectra | (62) CAS |
| 9 more tags shown in the MAX or ETAGFULL formats | |
| UV and Visible Emission/Luminescence Spectra | (32) CAS |
| 1 more tag shown in the MAX or ETAGFULL formats | |
| Viscosity | (1) Mikula, Milan; Journal of Adhesion Science and Technology 2003 V17(15)
P2097-2110 CAPLUS |
| Wear Rate | (2) Zhang, Manli; Polymer 2002 V43(19) P5133-5138 CAPLUS |
| X-Ray Diffraction Pattern | (3) Hisa, Kenzo; Japanese Journal of Applied Physics, Part 1: Regular
Papers, Short Notes & Review Papers 2003 V42(5B) P3080-3083 CAPLUS |
| X-Ray Reflectance Spectra | (4) Kondo, Kazuo; JP 63000071 A2 1988 CAPLUS |
| X-Ray Scattering | (5) Matos, Valter; Journal of Applied Polymer Science 2002 V86(13)
P3226-3245 CAPLUS |
| X-Ray Spectra | (6) Behme, Stefan; AIChE Journal 2003 V49(1) P258-268 CAPLUS |
| Young's Modulus | (7) Tang, Ming; Hecheng Shuzhi Ji Suliao 2003 V20(4) P34-38 CAPLUS |
| | (8) Koike, Yutaka; Polymer 2003 V44(15) P4249-4260 CAPLUS |
| | (9) Liu, Yonggang; International Journal of Polymer Analysis and |

- (1) Mikula, Milan; *Journal of Adhesion Science and Technology* 2003 V17(15)
P2097-2110 CAPLUS
- (2) Zhang, Manli; *Polymer* 2002 V43(19) P5133-5138 CAPLUS
- (3) Hisa, Kenzo; *Japanese Journal of Applied Physics, Part 1: Regular
Papers, Short Notes & Review Papers* 2003 V42(5B) P3080-3083 CAPLUS
- (4) Kondo, Kazuo; *JP 63000071 A2 1988 CAPLUS*
- (5) Matos, Valter; *Journal of Applied Polymer Science* 2002 V86(13)
P3226-3245 CAPLUS
- (6) Behme, Stefan; *AIChE Journal* 2003 V49(1) P258-268 CAPLUS
- (7) Tang, Ming; *Hecheng Shuzhi Ji Suliao* 2003 V20(4) P34-38 CAPLUS
- (8) Koike, Yutaka; *Polymer* 2003 V44(15) P4249-4260 CAPLUS
- (9) Liu, Yonggang; *International Journal of Polymer Analysis and*

- Characterization 2003 V8(4) P225-243 CAPLUS
(10) Natta, G.; Chimica e l'Industria (Milan, Italy) 1955 V37, P927-32
CAPLUS
- Brown, Beverley Anne; WO 2002045184 A1 2002 CAPLUS
(11) Kazakov, Yu. M.; Kauchuk i Rezina 2002(2) P46 CAPLUS
- Zaamout, Mahmoud S.; Umm Al-Qura University Journal of Science, Medicine, Engineering 2004 V16(2) P33-45 CAPLUS
(13) Abboud, M.; DECHEMA Monographien 2004 V138(8th International Workshop on Polymer Reaction Engineering, 2004) P197-210 CAPLUS
- Lezcano, R. Gonzalez; Journal de Physique IV: Proceedings 2003 V110(7th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading, 2003) P565-570 CAPLUS
(15) Ildstad, Erling; Proceedings of the IEEE International Conference on Solid Dielectrics, 7th, Eindhoven, Netherlands, June 25-29, 2001 2001 P137-140 CAPLUS
- Zeng, Lin; Shihua Jishu Yu Yingyong 2002 V20(2) P112-113 CAPLUS
(17) Hwu, Jyh-Ming; Journal of Applied Polymer Science 2005 V95(5) P1228-1236 CAPLUS
- Matkovskii, P. E.; RU 2212935 C2 2003 CAPLUS
(19) Tjong, Sie Chin; Journal of Applied Polymer Science 2002 V86(5) P1303-1311 CAPLUS
- Chen, Linfeng; WO 2003106512 A2 2003 CAPLUS
(21) Marques, Maria De Fatima Vieira; Journal of Polymer Science, Part A: Polymer Chemistry 2002 V40(17) P2979-2986 CAPLUS
- Privalko, V. P.; Journal of Macromolecular Science, Physics 2002 VB41(3) P539-557 CAPLUS
(23) Zhang, Xiangfu; Journal of Applied Polymer Science 2002 V85(14) P2862-2866 CAPLUS
- Masukawa, Tokifumi; Seikei Kako 2003 V15(9) P646-650 CAPLUS
(25) dos Santos, W. N.; Ceramica (Sao Paulo, Brazil) 2003 V49(309) P29-35 CAPLUS
- Wu, Ting-lu; Suliao Keji 2002(2) P59-61 CAPLUS
(27) Sirisinha, Kalyanee; Journal of Applied Polymer Science 2005 V97(4) P1476-1483 CAPLUS
- Atia, K. S.; Journal of Applied Polymer Science 2003 V90(1) P155-167 CAPLUS
(29) Yousefi, H. R.; Surface and Interface Analysis 2003 V35(12) P1015-1017 CAPLUS
- Kirov, Kiril R.; Macromolecules 2004 V37(3) P894-904 CAPLUS
(31) Rajan, Guru S.; European Polymer Journal 2003 V40(1) P63-71 CAPLUS
- Hert, Marius; FR 2630123 A1 1989 CAPLUS
(33) Tamagawa, Shigehisa; JP 2002365826 A2 2002 CAPLUS
- Budnitskii, Yu. M.; Khimicheskaya Promyshlennost (Moscow, Russian Federation) 2002(8) P17-23 CAPLUS
(35) Losio, Simona; Macromolecules 2005 V38(17) P7231-7240 CAPLUS
- Ewen, John A.; EP 284708 A1 1988 CAPLUS
(37) Balloni, Riccardo; EP 273680 A2 1988 CAPLUS
- Bartke, Michael; DECHEMA Monographien 2004 V138(8th International Workshop on Polymer Reaction Engineering, 2004) P181-187 CAPLUS
(39) Wiech, Raymond E., Jr.; US 4661315 A 1987 CAPLUS
- Jansen, Andrew N.; JOM 2002 V54(3) P29-32, 54 CAPLUS
(41) Wei, Q. F.; Materials Characterization 2004 V52(3) P231-235 CAPLUS
- Kacprzyk, R.; Journal of Electrostatics 2002 V56(1) P111-119 CAPLUS
(43) Tang, B.; Journal of Materials Research 2003 V18(5) P1141-1148 CAPLUS
- Khayet, M.; International Journal of Nuclear Desalination 2005 V1(4) P435-449 CAPLUS
(45) Hughes, Shannon K.; WO 2002081557 A1 2002 CAPLUS
- Brant, Patrick; WO 2004026921 A1 2004 CAPLUS
(47) Vyorykka, J.; Applied Spectroscopy 2002 V56(6) P776-782 CAPLUS
- Coelho, Joao M. P.; Polymer Testing 2004 V23(3) P307-312 CAPLUS
(49) Vincent, Michel; Materials Science Forum 2002 V404-407(ECRS 6, Proceedings of the 6th European Conference on Residual Stresses, 2002) P587-596 CAPLUS
- Santulli, C.; Plastics, Rubber and Composites 2002 V31(6) P270-277 CAPLUS
(51) Dharaiya, Dhawal; Polymer 2005 V46(23) P10139-10147 CAPLUS
- Chien, Rean Der; Journal of Reinforced Plastics and Composites 2004 V23(4) P429-444 CAPLUS
(53) Ota, W. N.; Composites Science and Technology 2005 V65(6) P873-881 CAPLUS
- Zhang, X.; International Journal of Thermophysics 2002 V23(4) P1077-1090 CAPLUS
(55)

- (56) Barucci, M.; Proceedings of the International Conference on Advanced Technology & Particle Physics, 7th, Como, Italy, Oct. 15-19, 2001 2002
P668-676 CAPLUS
- (57) Park, Hee C.; US 4741957 A 1988 CAPLUS
- (58) Ito, Toshihide; Proceedings of the IEEE International Conference on Solid Dielectrics, 7th, Eindhoven, Netherlands, June 25-29, 2001 2001
P319-323 CAPLUS
- (59) De Rosa, Claudio; Macromolecules 2003 V36(10) P3465-3474 CAPLUS
- (60) Tsuchiya, Katsuhiro; JP 02122915 A2 1990 CAPLUS
- (61) Schrauwen, B. A. G.; Macromolecules 2004 V37(23) P8618-8633 CAPLUS
- (62) Wang, Yong; Polymer 2004 V45(1) P207-215 CAPLUS

See HELP PROPERTIES for information about property data sources in REGISTRY.

103621 REFERENCES IN FILE CA (1907 TO DATE)

7357 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

103756 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

AN 144:99369 CA
 TI Microwave plasma discharge apparatus with improved discharge efficiency
 IN Nishimura, Shinobu
 PA Canon Inc., Japan
 SO Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

CC 76-11 (Electric Phenomena)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------|-------|----------|-----------------|----------|
| ----- | ----- | ----- | ----- | ----- |
| PI JP 2006012963 | A2 | 20060112 | JP 2004-184818 | 20040623 |

PRAI JP 2004-184818 20040623

AB The invention relates to a microwave plasma discharge app. with an improved discharge efficiency, wherein the dielec. material between the slot antenna and the microwave guide reduces the standing wave ratio.

ST plasma discharge app wave guide microwave plasma

IT Electric discharge devices

Plasma

Waveguides

(microwave plasma discharge app. with improved discharge efficiency)

IT Acetate fibers, uses

Fluoropolymers, uses

Polyamides, uses

Polycarbonates, uses

Polyimides, uses

Polysiloxanes, uses

RL: DEV (Device component use); USES (Uses)

(microwave plasma discharge app. with improved discharge efficiency)

IT 1317-82-4, Sapphire 1344-28-1, Alumina, uses 9002-84-0, Teflon

9002-86-2, PVC 9003-07-0, Polypropylene 9003-53-6, Polystyrene

24304-00-5, Aluminum nitride

RL: DEV (Device component use); USES (Uses)

(microwave plasma discharge app. with improved discharge efficiency)

REFERENCE 2

AN 144:99270 CA
 TI Precision-sealed electronic devices provided in automotives
 IN Abe, Ken; So, Isamu
 PA Furukawa Electric Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

CC 76-3 (Electric Phenomena)

Section cross-reference(s): 38, 39

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------|-------|----------|-----------------|----------|
| ----- | ----- | ----- | ----- | ----- |
| PI JP 2006012931 | A2 | 20060112 | JP 2004-184396 | 20040623 |

- AB The title sealed device comprises built-in electronic components on a flexible printed circuit board, a potting elastomer material coated over the components on the circuit board, and a thermoplastic foamed polymer protective layer coated over the components and the potting material on the substrate where heat-ink plate as a heat-releasing plate laminated on the rear side of the substrate may be exposed from the protective layer. The arrangement gives the devices shape precision, thermal insulation to the internal components, and economical manufg.
- ST potting elastomer coating electronic device protection flexible circuit board; thermoplastic foamed polymer protective coating electronic device flexible circuit
- IT Butyl rubber, properties
RL: PRP (Properties)
(coating materials; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT Potting compositions
(elastomer; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT Printed circuit boards
(flexible; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT Automobiles
Electric apparatus
(foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT Thermal insulators
(for electronic components; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT Coating materials
(potting elastomer and protective polymer; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT Synthetic rubber, properties
RL: PRP (Properties)
(potting materials; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT Plastics, properties
RL: PRP (Properties)
(thermoplastics, foaming; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT 9010-85-9
RL: PRP (Properties)
(butyl rubber, coating materials; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT 124-38-9, Carbon dioxide, properties
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(polymer foaming gas; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)
- IT 9003-07-0, Polypropylene
RL: PRP (Properties)
(thermoplastic CO₂-foaming polymer protective layer; foamed thermoplastic-protected precision-sealed electronic devices provided in automotives)

REFERENCE 3

AN 144:98868 CA
 TI Press connectors provided with water-proofing and impact-resistance
 IN Ide, Takehisa; Terunuma, Ichiro
 PA Fujikura Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 22 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 CC 76-2 (Electric Phenomena)
 Section cross-reference(s): 38, 39

FAN.CNT 1

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|----------------|------|----------|-----------------|----------|
| PI | JP 2006012744 | A2 | 20060112 | JP 2004-192234 | 20040629 |
| PRAI | JP 2004-192234 | | 20040629 | | |

AB The title press connector comprises a polar polymer connector housing, a

retainer, and a press contact terminal, wherein the cable support for the retainer supports has non-polar polymer insulator coated flat cable to be supported in parallel to the perpendicular plane to the connecting direction. The polymer mold for sealing the press connection port provided between the wire and the connector is a hot melt polymer compn. contg. maleic acid-reformed polyolefin and C9 hydrogenated petroleum resins, amorphous polyolefins, and ethylene-propylene-styrene copolymer rubber.

- ST sealing mold
- IT Electric insulators
(coating layer; press connectors provided with water-proofing and impact-resistance)
- IT Electric insulators
(coatings; press connectors provided with water-proofing and impact-resistance)
- IT Synthetic rubber, properties
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(ethylene-propylene-styrene copolymer sealing mixt.; press connectors provided with water-proofing and impact-resistance)
- IT Isoprene-styrene rubber
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(hydrogenated, block, triblock, styrene-ethylene-propylene rubber;
press connectors provided with water-proofing and impact-resistance)
- IT Petroleum resins
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(hydrogenated, sealing mixt.; press connectors provided with
water-proofing and impact-resistance)
- IT Polyolefins
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(maleic acid-reformed and amorphous, sealing mixt.; press connectors provided with water-proofing and impact-resistance)
- IT Sealing
(polymer mold; press connectors provided with water-proofing and
impact-resistance)
- IT Molds (forms)
(polymer, for sealing; press connectors provided with water-proofing
and impact-resistance)
- IT Water-resistant materials
(press connectors provided with water-proofing and impact-resistance)
- IT Interconnections, electric
(press; press connectors provided with water-proofing and
impact-resistance)
- IT 110-16-7D, Maleic acid, polymers with polypropylene 9003-07-0D,
Polypropylene, polymers with maleic acid
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(Polybond, insulator compn.; press connectors provided with
water-proofing and impact-resistance)
- IT 25895-47-0, Vestoplast 828
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(amorphous polypropylene, insulator compn.; press connectors provided
with water-proofing and impact-resistance)
- IT 700836-36-8D, hydrogenated, block, triblock
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(isoprene-styrene rubber, styrene-ethylene-propylene rubber; press
connectors provided with water-proofing and impact-resistance)
- IT 827311-00-2, Auroren 150S
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(maleic acid-reformed polyethylene, insulator compn.; press connectors
provided with water-proofing and impact-resistance)
- IT 110-16-7, Maleic acid, properties
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(reforming agent, for polyolefins, sealing mixt.; press connectors
provided with water-proofing and impact-resistance)
- IT 25608-79-1, Ethylene-propylene-styrene copolymer
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(rubber, coating mixt.; press connectors provided with water-proofing
and impact-resistance)

REFERENCE 4

AN 144:98171 CA

TI Polymers in electronics: plastics applications expand, keeping pace with

AU industry needs
 Stewart, Richard
 CS USA
 SO Plastics Engineering (Brookfield, CT, United States) (2005), 61(8), 18-26
 CODEN: PLEGBB; ISSN: 0091-9578
 PB Society of Plastics Engineers
 DT Journal; General Review
 LA English
 CC 76-0 (Electric Phenomena)
 AB A review, with no refs. Engineering thermoplastics and other high-performance polymers play an increasingly vital role in the prodn. of electronic components and microelectronic devices. New resins, additives, and fillers have been developed to meet thin wall and high temp. requirements for molded parts, while innovative uses of conductive polymers are expanding the role of plastics in electronics even further.
 ST review electronics application thermoplastic polymers antenna; printed circuit board microelectronic device conducting polymer review; polyurethane polyamide fluoropolymer polyimide plastic electronics review
 IT Antennas
 Conducting polymers
 Electronic packaging process
 Liquid crystals, polymeric
 Microelectronic devices
 Nanotubes
 Printed circuit boards
 Semiconductor devices
 (expansion of plastics application in electronics industry)
 IT Fluoropolymers, uses
 Plastics, uses
 Polyamide fibers, uses
 Polyamides, uses
 Polymers, uses
 Polyurethanes, uses
 Synthetic rubber, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (expansion of plastics application in electronics industry)
 IT Polyimides, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polyether-; expansion of plastics application in electronics industry)
 IT Polyethers, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polyimide-; expansion of plastics application in electronics industry)
 IT Plastics, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (thermoplastics; expansion of plastics application in electronics industry)
 IT 9003-07-0, Polypropylene
 RL: TEM (Technical or engineered material use); USES (Uses)
 (expansion of plastics application in electronics industry)

REFERENCE 5

AN 144:97659 CA
 TI Electrophotographic toner containing color toner and transparent toner, and multicolor image formation
 IN Mori, Yukihiro; Miyatake, Takamori
 PA Kyocera Mita Industrial Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 18 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|-------|-----------------|-------|
| ----- | ----- | ----- | ----- | ----- |

PI JP 2006011218 A2 20060112 JP 2004-191043 20040629

PRAI JP 2004-191043 20040629
 AB The toner, for multicolor image formation, comprises (A) color toners free from wax and (B) transparent toner contg. wax for the outermost layer formation. Multicolor image is formed by the A, B layer is formed thereon, and fixed with roller. Clear multicolor image without offset is

ST obtained even on oil-less fixing system.
IT electrophotog color toner wax free; transparent toner wax electrophotog
IT Electrophotographic toners
(multicolor electrophotog. toner comprising color toner free from wax
and transparent toner contg. wax)
IT Polyoxyalkylenes, preparation
RL: IMF (Industrial manufacture); TEM (Technical or engineered material
use); PREP (Preparation); USES (Uses)
(polyester-, transparent toner binder; multicolor electrophotog. toner
comprising color toner free from wax and transparent toner contg. wax)
IT Polyesters, preparation
RL: IMF (Industrial manufacture); TEM (Technical or engineered material
use); PREP (Preparation); USES (Uses)
(polyoxyalkylene-, transparent toner binder; multicolor electrophotog.
toner comprising color toner free from wax and transparent toner contg.
wax)
IT 95890-94-1P, Divinylbenzene-2-ethylhexyl methacrylate-styrene copolymer
RL: IMF (Industrial manufacture); TEM (Technical or engineered material
use); PREP (Preparation); USES (Uses)
(color toner binder; multicolor electrophotog. toner comprising color
toner free from wax and transparent toner contg. wax)
IT 96360-62-2P, Polyoxyethylene(2.2)-2,2-bis(4-hydroxyphenyl)propane-
polyoxypropylene(2.2)-2,2-bis(4-hydroxyphenyl)propane-terephthalic
acid-trimellitic anhydride copolymer
RL: IMF (Industrial manufacture); TEM (Technical or engineered material
use); PREP (Preparation); USES (Uses)
(transparent toner binder; multicolor electrophotog. toner comprising
color toner free from wax and transparent toner contg. wax)
IT 9003-07-0D, Polypropylene, derivs. 202484-10-4, Youmex 100TS
RL: TEM (Technical or engineered material use); USES (Uses)
(wax; multicolor electrophotog. toner comprising color toner free from
wax and transparent toner contg. wax)

REFERENCE 6

AN 144:97639 CA
TI Magnetic toner and conductive developer compositions
IN Grande, Michael L.; Hollenbaugh, William H.
PA Xerox Corporation, USA
SO U.S. Pat. Appl. Publ., 6 pp.
CODEN: USXXCO
DT Patent
LA English
NCL 430106200
CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other
Reproductive Processes)
FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---------------------|------|----------|-----------------|----------|
| PI US 2006003244 | A1 | 20060105 | US 2004-879117 | 20040630 |
| PRAI US 2004-879117 | | 20040630 | | |

AB Magnetic toner compns., conductive developer compns., and methods for
producing images in a hybrid jumping development system, more
specifically, in a magnetic ink character recognition system, are
disclosed. The developer compns. contain coated magnetic toner particles
and coated carrier particles. The toner compns. include a resin,
colorant, wax, magnetic component, and surface additives of coated silica,
titania, and zinc stearate.
ST electrophotog toner magnetic conductive developer
IT Carbon black, uses
Polyanilines
RL: TEM (Technical or engineered material use); USES (Uses)
(coating for carrier particles; magnetic toner and conductive developer
compns.)
IT Polysiloxanes, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(coating for silica particles; magnetic toner and conductive developer
compns.)
IT Polyesters, uses
RL: POF (Polymer in formulation); TEM (Technical or engineered material
use); USES (Uses)
(crosslinked; magnetic toner and conductive developer compns.)

IT Electrophotographic developers
 (magnetic toner and conductive developer compns.)

IT Electrophotographic developers
 (magnetic toners; magnetic toner and conductive developer compns.)

IT 25233-30-1, Polyaniline 30604-81-0, Polypyrrole
 RL: TEM (Technical or engineered material use); USES (Uses)
 (coating for carrier particles; magnetic toner and conductive developer compns.)

IT 3069-40-7, Octyltrimethoxysilane 9016-00-6, Dimethylsilanediol homopolymer, sru 31900-57-9, Dimethylsilanediol homopolymer
 RL: TEM (Technical or engineered material use); USES (Uses)
 (coating for silica particles; magnetic toner and conductive developer compns.)

IT 5575-48-4, Decyltrimethoxysilane
 RL: TEM (Technical or engineered material use); USES (Uses)
 (coating for titania particles; magnetic toner and conductive developer compns.)

IT 12597-69-2, Steel, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (core of carrier particles; magnetic toner and conductive developer compns.)

IT 557-05-1, Zinc stearate 1309-38-2, Magnetite, uses 7631-86-9, Silica,
 uses 9002-88-4 13463-67-7, Titania, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (magnetic toner and conductive developer compns.)

IT 26061-90-5, Ethylene-glycidyl methacrylate copolymer
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (wax compatibilizer; magnetic toner and conductive developer compns.)

IT 9003-07-0, Polypropylene
 RL: TEM (Technical or engineered material use); USES (Uses)
 (wax; magnetic toner and conductive developer compns.)

REFERENCE 7

AN 144:97486 CA

TI Reflective surface materials having specific 3D patterns and automobile interior parts therewith

IN Shibukawa, Akiya; Harada, Hiroaki; Nagayama, Hiroki

PA Nissan Motor Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 36 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

CC 73-12 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 38

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------|-------|----------|-----------------|----------|
| ----- | ----- | ----- | ----- | ----- |
| PI JP 2006011177 | A2 | 20060112 | JP 2004-190338 | 20040628 |

PRAI JP 2004-190338 20040628

AB The materials, attached to such parts as car instrument panels, door trims, and/or rear parcel shelves to suppress them from getting hot under sun beams, form 3D patterns made up with units having depressed cross-section and being arranged on substrates so that their reflective (e.g., metalized) and absorptive side oriented unidirectionally for each. The substrates may comprise PVC, thermoplastic polyolefins, acrylic resins, PP, or polyesters. The materials may be planarized on surface with transparent materials to have flat surface.

ST three dimensionally patterned reflector automobile interior; aluminum deposited polyolefin reflective unit light reflector; summertime temp elevation prevention vehicle interior reflector

IT Optical reflectors
 (3D-patterned reflective surface materials for car interior parts suppressing temp. elevation)

IT Doors
 (automotive, door trims; 3D-patterned reflective surface materials for car interior parts suppressing temp. elevation)

IT Automobiles
 (interior parts, instrument panels, rear parcel shelves; 3D-patterned reflective surface materials for car interior parts suppressing temp.)

IT elevation)
Acrylic polymers, uses
Polyesters, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(substrates; 3D-patterned reflective surface materials for car interior parts suppressing temp. elevation)
IT Polyolefins
RL: TEM (Technical or engineered material use); USES (Uses)
(thermoplastic, substrates; 3D-patterned reflective surface materials for car interior parts suppressing temp. elevation)
IT 9002-86-2, Vinyl chloride resin 9003-07-0, Polypropylene
RL: TEM (Technical or engineered material use); USES (Uses)
(substrates; 3D-patterned reflective surface materials for car interior parts suppressing temp. elevation)

REFERENCE 8

AN 144:94510 CA
TI Pharmaceutical containers with low adsorption/absorption of drugs
IN Baker, David Stephen; Bandyopadhyay, Paramita; Pesheck, Carolyn Verna;
Singh, Satish Kumar; Thompson, Brian Edward
PA Pharmacia & Upjohn Company, USA
SO U.S. Pat. Appl. Publ., 11 pp.
CODEN: USXXCO

DT Patent
LA English

IC ICM B65D001-00

NCL 428036600

CC 63-8 (Pharmaceuticals)

FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---------------------|------|----------|-----------------|----------|
| PI US 2005287325 | A1 | 20051229 | US 2004-877155 | 20040625 |
| PRAI US 2004-877155 | | 20040625 | | |

AB The present invention relates to a container comprising, 1 or more polyolefins exhibiting <20% sorption of drugs as detd. by a suitably acceptable method; and a compn. comprising these drugs. The invention also provides a method of detg. whether a package material will provide a desired stability of an active ingredient of a pharmaceutical compn.; a method of maintaining the concn. of a drug in the dosage form, upon storage in a container; and a method of manufg. a storage container. Packages for prostaglandin compns. were prep'd. by using the materials, e.g., Atofina 3020 PP.

ST pharmaceutical container adsorption absorption; polyolefin container adsorption absorption pharmaceutical

IT Drug delivery systems
(ophthalmic; pharmaceutical containers with low adsorption/absorption of drugs)

IT Adsorption
Bottles
Containers
Drug delivery systems
Flexural modulus
Glaucoma (disease)
Packaging materials
Sorption
Stability
Surface area
(pharmaceutical containers with low adsorption/absorption of drugs)

IT Polymer blends
Polyolefins
RL: DEV (Device component use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(pharmaceutical containers with low adsorption/absorption of drugs)

IT Prostaglandins
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(pharmaceutical containers with low adsorption/absorption of drugs)

IT 25213-02-9, Marlex HHM 5502
RL: DEV (Device component use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(HDPE; pharmaceutical containers with low adsorption/absorption of drugs)

IT 9002-88-4, Du Pont 20
 RL: DEV (Device component use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (LDPE; pharmaceutical containers with low adsorption/absorption of drugs)

IT 9010-79-1, Appryl 3020
 RL: DEV (Device component use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (Z 9450; pharmaceutical containers with low adsorption/absorption of drugs)

IT 9003-07-0, Appryl 3030 872130-33-1, Appryl 6253
 RL: DEV (Device component use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (pharmaceutical containers with low adsorption/absorption of drugs)

IT 38315-48-9D, 16-Phenyl-17,18,19,20-tetranorprostaglandin F2. α ,
 derivs. 38344-08-0D, 17-Phenyl-18,19,20-trinorprostaglandin F2. α ,
 derivs. 41639-83-2D, derivs. 51705-19-2D,
 16-Phenoxy-17,18,19,20-tetranorprostaglandin F2. α , derivs.
 120373-24-2, Isopropyl Unoprostone 130209-82-4, Latanoprost 157283-68-
 6, Travoprost 872130-34-2, Appryl 7231X 872130-47-7, Appryl 8473
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (pharmaceutical containers with low adsorption/absorption of drugs)

REFERENCE 9

AN 144:94496 CA
 TI Drug packaging papers having heat-sealed portions
 IN Ishii, Hiroshi
 PA Elquest Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 6 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 CC 63-7 (Pharmaceuticals)
 FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---------------|------|----------|-----------------|----------|
| JP 2006006377 | A2 | 20060112 | JP 2004-183644 | 20040622 |

PRAI JP 2004-183644 20040622

AB The invention relates to a medicine paper for packaging prescription drugs, consisting of a folded polypropylene sheet having vertical heat-welded portions for dividing spaces to make pouches, and horizontal heat-welded portions for sealing the openings of the pouches after filling drugs therein, wherein the horizontal heat-welding portion has pores which induce shear to the longitudinal direction, so that the pouches are easily opened.

ST polypropylene sheet heat sealed drug packaging material
 IT Medical goods
 Packaging materials
 (drug packaging papers having heat-sealed portions)
 IT Drug delivery systems
 (oral; drug packaging papers having heat-sealed portions)
 IT 9002-88-4, Polyethylene 9003-07-0, Polypropylene
 RL: DEV (Device component use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (drug packaging papers having heat-sealed portions)

REFERENCE 10

AN 144:94489 CA
 TI Absorbent cotton covered with net-shaped synthetic resin films, and its manufacture
 IN Iwamoto, Masataka
 PA Kakui Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 CC 63-7 (Pharmaceuticals)
 FAN.CNT 1

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

PI JP 2006006637 A2 20060112 JP 2004-188244 20040625

PRAI JP 2004-188244 20040625

AB A rolled absorbent cotton sheet is cut into pieces having rectangular shape, the cut pieces are placed at a fixed interval, covered with net-shaped synthetic resin films from both sides, and the films are heat-sealed at film ends to give absorbent cotton covered all over the surface with the net-shaped synthetic resin films. The covering prevents loosening of the absorbent cotton before use in surgery. Absorbent cotton covered with polyethylene films was manufd. in a fully automated process.

ST absorbent cotton covering plastic film net; medical absorbent cotton polyethylene film net

IT Cotton fibers

(absorbent; manuf. of medical absorbent cotton covered with net-shaped synthetic resin films)

IT Medical goods

(absorbents; manuf. of medical absorbent cotton covered with net-shaped synthetic resin films)

IT Packaging materials

(films, heat-sealable; manuf. of medical absorbent cotton covered with net-shaped synthetic resin films)

IT Absorbents

(medical; manuf. of medical absorbent cotton covered with net-shaped synthetic resin films)

IT Plastic films

(net-shaped; manuf. of medical absorbent cotton covered with net-shaped synthetic resin films)

IT Nets

(plastic film; manuf. of medical absorbent cotton covered with net-shaped synthetic resin films)

IT 9002-88-4, Polyethylene 9003-07-0, Polypropylene

RL: DEV (Device component use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(manuf. of medical absorbent cotton covered with net-shaped synthetic resin films)

=> s artresin un-1100

0 ARTRESIN

1075 UN

2451 UNS

3525 UN

(UN OR UNS)

3258 1100

0 ARTRESIN UN-1100

(ARTRESIN(W)UN(W)1100)

L4

=> s artresin un-9000

0 ARTRESIN

1075 UN

2451 UNS

3525 UN

(UN OR UNS)

274 9000

0 ARTRESIN UN-9000

(ARTRESIN(W)UN(W)9000)

L5

=> s allonix m-1100

0 ALLONIX

567564 M

3258 1100

0 ALLONIX M-1100

(ALLONIX(W)M(W)1100)

L6

=> d his

(FILE 'HOME' ENTERED AT 15:28:14 ON 31 JAN 2006)

FILE 'REGISTRY' ENTERED AT 15:28:19 ON 31 JAN 2006

L1 6 S EX-841

L2 0 S MH-7210

L3 3 S SD-101

L4 0 S ARTRESIN UN-1100

L5
L6

0 S ARTRESIN UN-9000
0 S ALLONIX M-1100

=> log y

| | | |
|--|---------------------|------------------|
| COST IN U.S. DOLLARS | SINCE FILE
ENTRY | TOTAL
SESSION |
| FULL ESTIMATED COST | 121.45 | 121.66 |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE
ENTRY | TOTAL
SESSION |
| CA SUBSCRIBER PRICE | -6.39 | -6.39 |

STN INTERNATIONAL LOGOFF AT 15:32:27 ON 31 JAN 2006