Engineering Mathematics

Real Analysis Functions Part 5

One Sided Limits

We know that the deleted neighborhood of α can be written as,

$$(a - \delta, a + \delta) - \{a\} = (a - \delta, a) \cup (a, a + \delta)$$

- \triangleright $(a \delta, a)$ is the left hand side of the deleted neighborhood of a.
- \triangleright $(a, a + \delta)$ is the right hand side of the deleted neighborhood of a.

Definition of the left hand side limit

f(x) is a real valued function and $a \in R$. We say that the left limit of f(x) as x approaches a is L if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } a - \delta < x < a \Rightarrow |f(x) - L| < \varepsilon.$$

We write this fact as $\lim_{x\to a^-} f(x) = L$

Definition of the right hand side limit

f(x) is a real valued function and $a \in R$. We say that the right limit of f(x) as x approaches a is L if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } a < x < a + \delta \Rightarrow |f(x) - L| < \varepsilon.$$

We write this fact as $\lim_{x\to a^+} f(x) = L$

Theorem 9

Let f be a real valued function. Then $\lim_{x\to a} f(x)$ exists & $\lim_{x\to a} f(x) = L$ if and only if both $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exists & $\lim_{x\to a^+} f(x) = L = \lim_{x\to a^-} f(x)$

Exercise 2

1. $f: R \to R$ is a real valued function defined as

$$f(x) = \begin{cases} x & \text{; } x \ge 1 \\ -x + 1 & \text{; } x < 1 \end{cases}$$
 Show that $\lim_{x \to 1} f(x)$ does not exists.

2. $f(x) = \frac{|x|}{x}$; $x \neq 0$ Plot the y = f(x) graph. Show that $\lim_{x\to 0} f(x)$ does not exists using the definition of limits.

- 3. f(x) = |x| + |x 1|; $x \in R$ Find $\lim_{x \to 1^{-}} f(x)$ and $\lim_{x \to 1^{+}} f(x)$. Show that $\lim_{x \to 1} f(x)$ exists.
- 4. Prove the following limits using the definition.

i.
$$\lim_{x \to 1^+} \frac{1}{x+1} = \frac{1}{2}$$

ii.
$$\lim_{x \to -2^-} \frac{2x}{x-2} = 1$$

iii.
$$\lim_{x \to 3^{-}} \frac{2x-1}{x-1} = \frac{5}{2}$$

iv.
$$\lim_{x \to 1^+} x^3 = 1$$

v.
$$\lim_{x \to 1^+} \frac{x^3}{x^2 + 1} = \frac{1}{2}$$

Limits As x tends to infinity

In here we define a definition of the existence of a finite limit of a real valued function when *x* tends to positive or negative infinity.

Definition

We say that the limit of f(x) as x tends to ∞ is L if $\forall \varepsilon > 0, \exists a > 0$ such that $x > a \Rightarrow |f(x) - L| < \varepsilon$

When this happen we write $\lim_{x\to\infty} f(x) = L$

We will define the limit as x tends to $-\infty$ in similar manner.

Definition

We say that the limit of f(x) as x tends to $-\infty$ is L if $\forall \varepsilon > 0, \exists b < 0$ such that $x < b \Rightarrow |f(x) - L| < \varepsilon$

When this happen we write $\lim_{x\to-\infty} f(x) = L$

Infinity as a limit

There are some functions which tend to a infinity when *x* tends to a finite value.

Definition

We say that f(x) tends to ∞ as x approaches a if $\forall M > 0, \exists \delta > 0$, such that $0 < |x - a| < \delta \Rightarrow f(x) > M$. We can write this fact as $\lim_{x \to a} f(x) = \infty$

Definition

We say that f(x) tends to $-\infty$ as x approaches a if $\forall N < 0, \exists \delta > 0$, such that $0 < |x - a| < \delta \Rightarrow f(x) < N$

We can write this fact as $\lim_{x\to a} f(x) = -\infty$

Infinity as a Limit When x Tends To Infinity

Definition

We say that f(x) tends to ∞ as x tends to ∞ if $\forall M > 0, \exists a > 0$, such that $x > a \Rightarrow f(x) > M$

We can write this fact as $\lim_{x\to\infty} f(x) = \infty$

Definition

We say that f(x) tends to ∞ as x tends to $-\infty$ if $\forall M > 0$, $\exists b < 0$, such that $x < b \Rightarrow f(x) > M$

We can write this fact as $\lim_{x\to-\infty} f(x) = \infty$

Definition

We say that f(x) tends to $-\infty$ as x tends to ∞ if $\forall N < 0, \exists a > 0$, such that $x > a \Rightarrow f(x) < N$

We can write this fact as $\lim_{x\to\infty} f(x) = -\infty$

Definition

We say that f(x) tends to $-\infty$ as x tends to $-\infty$ if $\forall N < 0, \exists b < 0$, such that $x < b \Rightarrow f(x) < N$

We can write this fact as $\lim_{x\to-\infty} f(x) = -\infty$

Exercise 3

- Try to solve following limits using definition
 - 1. $\lim_{x\to 2} \frac{3}{(x-2)^2} = \infty$
 - 2. $\lim_{x \to -3} \frac{1}{(x+3)^2} = \infty$
 - 3. $\lim_{x\to\infty} \frac{x+3}{x-2} = 1$
 - 4. $\lim_{x\to\infty} \frac{2x+5}{x+9} = 2$
 - $5. \quad \lim_{x \to \infty} \frac{7}{x-2} = 0$
 - 6. $\lim_{x\to\infty} 4x + 3 = \infty$
 - 7. $\lim_{x \to -\infty} -3x + 1 = \infty$
 - 8. $\lim_{x\to\infty} -5x = -\infty$
 - 9. $\lim_{x\to-\infty} x+1=-\infty$
 - $10.\lim_{x\to\infty}x^2+4x+1=\infty$
 - $11.\lim_{x\to 2^+} x^2 + 4x + 1 = 13$
 - $12.\lim_{x\to 1^{-}} 2x^2 + 3 = 5$

----End of the Tutorial----

Dasun Madushan

University of Moratuwa

B.Sc. Eng. (Hons) -1^{st} Class Electronic & Telecommunication Engineering