REPORTE DE RESULTADOS: REGRESIÓN LINEAL SIMPLE Y MULTIPLE

- Evaluar cómo distintas variables afectan el tiempo de reacción de los pacientes.
- Ver si existen patrones asociados al rendimiento en los juegos terapéuticos.

```
\bigcirc
```

class="col-md-6 col-lg-8"> <!- id="nav" role="navigation"> Home Hom class="has-children"> <a href=' <l <a href="tall-button-he li><a href="image-logo.htm class="active"> <a hre 11-2 href="variable-width <l

Pre-procesamiento de los datos

Las columnas "Administrador", "Usuario", "mini juego", "color presionado", "dificultad" y "Juego" se convirtieron a númericas según la frecuencia.

```
Dificultad
    df5 = df.groupby(["dificultad"])["dificultad"].count()
dificultad
             2357
Episodio 1
             1493
Episodio 2
Episodio 3
             1292
Episodio 4 723
Name: dificultad, dtype: int64
   df("dificultad")= df("dificultad").replace({"Episodio 1":"1"}, regex=False)
   df["dificultad"]= df["dificultad"].replace({"Episodio 2":"2"}, regex=False)
   df["dificultad"] = df["dificultad"].replace({"Episodio 3":"3"}, regex=False)
   df["dificultad"]= df["dificultad"].replace({"Episodio 4":"4"}, regex=False)
   dfs = df.groupby(["dificultad"])["dificultad"].count()
dificultad
     1292
     723
Name: dificultad, dtype: int64
```

```
df1 = df.groupby(["color presionado"])["color presionado"].count()
color presionado
           762
blue
          1182
          1298
green
            29
red
          1361
violet
          1233
Name: color presionado, dtype: int64
   df["color presionado"] = df["color presionado"].replace({"violet":"1"}, regex=False)
   df["color presionado"]= df["color presionado"].replace({"green":"2"}, regex=False)
   df["color presionado"] = df["color presionado"].replace({"yellow":"3"}, regex=False)
   df["color presionado"] = df["color presionado"].replace({"blue":"4"}, regex=False)
   df["color presionado"] = df["color presionado"].replace({"red":"5"}, regex=False)
   df["color presionado"]= df["color presionado"].replace({"99":"99"}, regex=False)
   df1 = df.groupby(["color presionado"])["color presionado"].count()
color presionado
      1361
      1298
      1233
      1182
       29
99
       762
```


Usuario como variable objetivo

Heatmap con la variable "usuario" como objetivo

En el heatmap podemos obvservar que la correlación entre nuestra variable objetivo, "usuario", y la variable "Juego" es la más alta

MODELO DE REGRESIÓN SIMPLE

MODELO DE REGRESIÓN SIMPLE

```
Vars_Indep= df[['Juego']]
Var_Dep= df['Usuario']

from sklearn.linear model import LinearRegression
model= LinearRegression()
```

```
model.fit(X=Vars Indep, y=Var Dep)
  LinearRegression 0 0
LinearRegression()
   coef_DeterS=model.score(Vars_Indep,Var_Dep)
   coef_DeterS
0.12283515754211238
   #Coeficiente de correlacion
   coef_CorrelS=np.sqrt(coef_DeterS)
   coef Correls
np.float64(0.3504784694415798)
```

INTERPRETACIÓN:

COEFICIENTE DE DETERMINACIÓN DE 0.12:

• SE CONSIDERA UNA CORRELACIÓN DÉBIL A MODERADA POSITIVA. ES UN INDICADOR DE BAJO PODER PREDICTIVO O EXPLICATIVO.

COEFICIENTE DE CORRELACIÓN DE 0.35:

- UN R² DE 0.12 SIGNIFICA QUE SOLO EL 12% DE LA VARIABILIDAD EN LOS USUARIOS SE EXPLICA POR LA CANTIDAD DE JUEGOS.
- EL 88% RESTANTE SE DEBE A OTROS FACTORES NO INCLUIDOS EN EL MODELO.

MODELO DE REGRESIÓN MULTIPLE

SELECCIONAMOS LAS VARIABLES CON MAYOR CORRELACIÓN SEGÚN EL HEATMAP PARA AUMENTAR LA CORRELACION Y AL DETERMINACIÓN

MODELO DE REGRESIÓN MULTIPLE

```
Vars_Indep= df[['Juego', 'número de interacción','botón correcto']]
Var_Dep= df['Usuario']

from sklearn.linear_model import LinearRegression
model= LinearRegression()
```

```
model.fit(X=Vars_Indep, y=Var_Dep)
 ✓ 0.0s

    LinearRegression 0 0

LinearRegression()
   coef_Deter=model.score(Vars_Indep,Var_Dep)
   coef_Deter
 ✓ 0.0s
0.15891171123791037
   coef_Correl=np.sqrt(coef_Deter)
   coef_Correl

√ 0.0s

np.float64(0.3986373179193217)
```

INTERPRETACIÓN:

COEFICIENTE DE DETERMINACIÓN DE 0.15:

- UN R² DE 0.1589 SIGNIFICA QUE EL 15.89% DEL COMPORTAMIENTO DE LOS USUARIOS SE PUEDE EXPLICAR POR EL JUEGO, INTERACCIÓN Y BOTÓN CORRECTO.
- EL 84.11% RESTANTE SE DEBE A OTROS FACTORES QUE EL MODELO NO ESTÁ CAPTURANDO.

COEFICIENTE DE CORRELACIÓN DE 0.39:

- UN R DE 0.39 INDICA UNA CORRELACIÓN DÉBIL A MODERADA POSITIVA.
- ES DECIR, CUANDO AUMENTAN LOS VALORES DE JUEGO, INTERACCIÓN O BOTÓN CORRECTO, TAMBIÉN TIENDE A AUMENTAR EL NÚMERO DE USUARIOS, AUNQUE LA RELACIÓN NO ES MUY FUERTE.

CONCLUSIONES GENERALES:

- HAY UNA MEJORA LIGERA RESPECTO AL MODELO ANTERIOR (QUE SOLO INCLUÍA JUEGO), PERO LA RELACIÓN SIGUE SIENDO DÉBIL.}
- AUNQUE LAS NUEVAS VARIABLES (INTERACCIÓN Y BOTÓN CORRECTO) AYUDAN UN POCO, LA MAYORÍA DE LA VARIACIÓN EN LOS USUARIOS DEPENDE DE OTRAS COSAS QUE AÚN NO SE ESTÁN CONSIDERANDO.

EN EL SIGUIENTE PASO SE FILTRARON A 5 PACIENTES ESPECIFICOS PARA ENCONTRAR INFORMACIÓN QUE PUDIESE SER RELEVANTE

LEONARDO

Heatmap

Hallazgos

LA VARIABLE TIEMPO DE INTERACCIÓN TUVO UNA CORRELACIÓN DE ALTA EN TODOS LOS PACIENTES CON NÚMERO DE INTERACCIÓN. POR LO QUE SE CREÓ UN MODELO DE REGRESIÓN SIMPLE USANDO ESAS VARIABLES.

LEONARDO

LEONARDO

```
Vars Indep= df filtrado1[['color presionado']]
   Var Dep= df_filtrado1['tiempo de interacción']

√ 0.0s

   from sklearn.linear_model import LinearRegression
   model= LinearRegression()
 ✓ 0.0s
   model.fit(X=Vars_Indep, y=Var_Dep)

√ 0.0s

    LinearRegression 0 0

LinearRegression()
   coef_Deter_Leonardo=model.score(Vars_Indep,Var_Dep)
   coef_Deter_Leonardo

√ 0.0s

0.522752304516322
   coef_Correl_Leonardo=np.sqrt(coef_Deter_Leonardo)
   coef_Correl_Leonardo

√ 0.0s

np.float64(0.7230161163600173)
```

INTERPRETACIÓN:

- COEFICIENTE DE DETERMINACIÓN: 0.52
- ES UN VALOR MODERADO A ALTO, LO CUAL SUGIERE QUE EL COLOR INFLUYE BASTANTE EN CÓMO REACCIONAN LOS USUARIOS.
- EL OTRO 48% DEPENDE DE OTROS FACTORES, COMO ATENCIÓN, FATIGA, EDAD, CONTEXTO VISUAL, ENTRE OTROS.
- COEFICIENTE DE CORRELACIÓN: 0.72
- ESO SIGNIFICA QUE EL COLOR QUE SE PRESIONA SÍ TIENE UN IMPACTO IMPORTANTE EN EL TIEMPO QUE TARDA UNA PERSONA EN REACCIONAR.
- A MEDIDA QUE CAMBIA EL COLOR, TAMBIÉN CAMBIA EL TIEMPO DE REACCIÓN DE MANERA BASTANTE CONSISTENTE.

Regresión Multiple

LEONARDO

Regresión Multiple

LEONARDO

```
Vars_Indep= df_filtrado1[['botón correcto', 'número de interacción', 'color presionado']]
   Var Dep= df filtrado1['tiempo de interacción']
 ✓ 0.0s
   from sklearn.linear_model import LinearRegression
   model= LinearRegression()

√ 0.0s

   model.fit(X=Vars_Indep, y=Var_Dep)

√ 0.0s

    LinearRegression 0 0

LinearRegression()
   coef_Deter_Leonardo=model.score(Vars_Indep,Var_Dep)
   coef_Deter_Leonardo
 ✓ 0.0s
0.899249276638887
   coef_Correl_Leonardo=np.sqrt(coef_Deter_Leonardo)
   coef_Correl_Leonardo

√ 0.0s

np.float64(0.9482875495538718)
```

INTERPRETACIÓN:

- COEFICIENTE DE DETERMINACIÓN: 0.89
- ESTE VALOR INDICA UNA RELACIÓN MUY FUERTE Y POSITIVA ENTRE LAS VARIABLES INDEPENDIENTES (EN CONJUNTO) Y EL TIEMPO DE INTERACCIÓN.
- COEFICIENTE DE CORRELACIÓN: 0.94
- HAY UNA RELACIÓN MUY CLARA Y FUERTE ENTRE LAS VARIABLES (BOTÓN CORRECTO, NÚMERO DE INTERACCIÓN Y COLOR PRESIONADO) Y EL TIEMPO DE INTERACCIÓN.

MA DEL ROSARIO

MA DEL ROSARIO

HEAT MAP

MA DEL ROSARIO SE CREÓ UN MODELO CON LAS MISMAS VARIABLES USADAS CON EL PACIENTE ANTERIOR

TIEMPO DE REACCIÓN COMO DEPENDIENTE

MA DEL ROSARIO

```
Vars_Indep= df_filtrado2[['color presionado']]
   Var_Dep= df_filtrado2['tiempo de interacción']

√ 0.0s

   from sklearn.linear_model import LinearRegression
   model= LinearRegression()
 0.0s
   model.fit(X=Vars_Indep, y=Var_Dep)

√ 0.0s

    LinearRegression 0 0

LinearRegression()
   coef_Deter_Ma_Del_Rosario=model.score(Vars_Indep,Var_Dep)
   coef_Deter_Ma_Del_Rosario
 ✓ 0.0s
0.986480456906192
   coef_Correl_Ma_Del_Rosario=np.sqrt(coef_Deter_Ma_Del_Rosario)
   coef_Correl_Ma_Del_Rosario

√ 0.0s

np.float64(0.9932172254377146)
```

INTERPRETACIÓN:

COEFICIENTE DE DETERMINACIÓN (R²): 0.98

EL 98.03% DEL TIEMPO DE INTERACCIÓN DE ROSARIO PUEDE EXPLICARSE ÚNICAMENTE POR EL NÚMERO DE INTERACCIONES QUE HA REALIZADO. ESTO INDICA UNA RELACIÓN MUY FUERTE Y CONSISTENTE ENTRE AMBAS VARIABLES.

COEFICIENTE DE CORRELACIÓN (R): 0.99

EXISTE UNA CORRELACIÓN POSITIVA EXTREMADAMENTE FUERTE.
ES DECIR, A MEDIDA QUE AUMENTA EL NÚMERO DE INTERACCIONES, TAMBIÉN LO HACE EL TIEMPO DE INTERACCIÓN, CASI DE FORMA PROPORCIONAL.

Regresión multiple

MA DEL ROSARIO

Regresión multiple

MA DEL ROSARIO

```
Vars_Indep= df_filtrado2[['botón correcto', 'número de interacción', 'color presionado']]
   Var_Dep= df_filtrado2['tiempo de interacción']

√ 0.0s

   from sklearn.linear_model import LinearRegression
   model= LinearRegression()

√ 0.0s

   model.fit(X=Vars_Indep, y=Var_Dep)
 ✓ 0.0s

    LinearRegression 0 0

LinearRegression()
   coef_Deter_Ma_Del_Rosario=model.score(Vars_Indep,Var_Dep)
   coef_Deter_Ma_Del_Rosario
 ✓ 0.0s
0.9869989145568099
   coef_Correl_Ma_Del_Rosario=np.sqrt(coef_Deter_Ma_Del_Rosario)
   coef_Correl_Ma_Del_Rosario
 ✓ 0.0s
np.float64(0.9934781902773758)
```

INTERPRETACIÓN:

• COEFICIENTE DE DETERMINACIÓN (R²): 0.9867

EL MODELO MÚLTIPLE EXPLICA EL 98.67% DEL TIEMPO DE INTERACCIÓN, LO QUE REPRESENTA UNA MEJORA LEVE RESPECTO AL MODELO SIMPLE.

• CORRELACIÓN MÚLTIPLE (R): 0.9933

LA COMBINACIÓN DE LAS TRES VARIABLES INDEPENDIENTES TIENE UNA RELACIÓN MUY FUERTE CON EL TIEMPO DE INTERACCIÓN.
ESTO CONFIRMA QUE ESTOS FACTORES EXPLICAN CASI POR COMPLETO EL COMPORTAMIENTO TEMPORAL DE ROSARIO EN LA ACTIVIDAD.

HEATMAPS

LEONARDO

MA DE LOS ANGELES

NICOLAS

RENE

SERGIO

Hallazgos

LA VARIABLE TIEMPO DE INTERACCIÓN TUVO UNA CORRELACIÓN DE ALTA EN TODOS LOS PACIENTES CON COLOR PRESIONADO POR LO QUE SE CREÓ UN MODELO DE REGRESIÓN SIMEPLE USANDO ESAS VARIABLES.

MODELO DE REGRESIÓN SIMPLE

```
Vars_Indep= df_filtrado1[['color presionado']]
  Var_Dep= df_filtrado1['tiempo de interacción']
   0.0s
  from sklearn.linear_model import LinearRegression
  model= LinearRegression()
   0.0s
  model.fit(X=Vars_Indep, y=Var_Dep)
   0.0s
  LinearRegression ① ②
LinearRegression()
```

RESULTADOS DE REGRESIÓN SIMPLE

```
#Coeficiente de determinacion
coef_Deter_Sergio=model.score(X=Vars_Indep, y=Var_Dep)
coef_Deter_Sergio

✓ 0.0s

0.9357466041432032

#Corroboramos cual es el coeficiente de Correlación de nuestro modelo
coef_Correl_Sergio=np.sqrt(coef_Deter_Sergio)
coef_Correl_Sergio

✓ 0.0s

np.float64(0.9673399630653141)
```

MODELO DE REGRESIÓN MULTIPLE

```
Vars_Indep= df_filtrado1[['botón correcto', 'número de interacción','color presionado']]
  Var_Dep= df_filtrado1['tiempo de interacción']
✓ 0.0s
  from sklearn.linear_model import LinearRegression
  model= LinearRegression()
✓ 0.0s
  model.fit(X=Vars_Indep, y=Var_Dep)
✓ 0.0s
  LinearRegression 0 0
LinearRegression()
```

RESULTADOS DE REGRESIÓN MULTIPLE


```
coef_Deter_Rene=model.score(Vars_Indep,Var_Dep)
coef_Deter_Rene

0.8347855215948432

coef_Correl_Rene=np.sqrt(coef_Deter_Rene)
coef_Correl_Rene

np.float64(0.9136659792259112)
```


EJEMPLO DE USO DEL MODELO

LEONARDO

Predicciones	tiempo de interacción
3.321580	10.558070
3.739423	1.249828
2.300622	1.866516
1.904927	10.099820
2.207986	17.817100
****	****
12.113270	3.650664
13.229866	3.916507
99.058414	99.000000
99.058414	99.000000
99.058414	99.000000

MA DEL ROSARIO

Predicciones	tiempo de interacción
8.802128	19.303690
6.766576	6.267806
6.454829	5.766922
7.191890	7.450372
6.880142	7.564992
***	•••
4.847196	2.782771
4.535448	2.316111
5.372903	3.616160
98.987395	99.000000
98.987395	99.000000

NICOLAS

Predicciones	tiempo de interacción
8.608516	5.399169
9.862741	1.283400
10.763358	2.700226
9.871684	3.050262
10.233806	4.750256
•••	***
99.014899	99.000000
99.014899	99.000000
10.754415	0.983153
99.014899	99.000000
99.014899	99.000000

EJEMPLO DE USO DEL MODELO

RENE

Predicciones	tiempo de interacción
29.291442	29.307090
34.206405	27.907880
29.107530	19.051010
26.870221	16.306860
24.632365	9.367180
29.547327	9.383972
28.740254	10.959300
27.933180	11.343060
27.126106	12.142600
26.319032	12.859410
25.511959	19.192930
16.121831	19.326270
15.314757	19.943110
24.521520	11.981560
22.283664	8.197347
18.615572	11.847620
17 808/198	13 031260

SERGIO

tiempo de interacción
2.946720
2.066744
2.600328
3.249712
99.000000
v***
3.250430
3.315942
2.516372
99.000000
99.000000

CONCLUSIÓN

DESPUÉS DE REALIZAR EL ANÁLISIS Y GENERAR LAS GRÁFICAS CORRESPONDIENTES UTILIZANDO DISTINTAS VARIABLES COMO OBJETIVO, SE OBSERVARON CIERTAS INCONSISTENCIAS EN LOS RESULTADOS. ESTAS INCONGRUENCIAS SUGIEREN QUE EL MODELO ACTUAL NO TIENE LA SUFICIENTE INFORMACIÓN PARA IDENTIFICAR PATRONES CONFIABLES O RELACIONES IMPORTANTES ENTRE LAS VARIABLES. UNA DE LAS PRINCIPALES LIMITACIONES DETECTADAS FUE LA CANTIDAD REDUCIDA DE DATOS DISPONIBLES, LO CUAL PERJUDICA DIRECTAMENTE EL MODELO EN CUESTIÓN, LA PRECISIÓN DE LOS CÁLCULOS Y LA CALIDAD DE LAS VISUALIZACIONES. UN CONJUNTO DE DATOS PEQUEÑO GENERA RESULTADOS SESGADOS.

POR LO TANTO, CONCLUIMOS QUE ES IMPORTANTE TENER UNA BASE DE DATOS MÁS AMPLIA Y EQUILIBRADA PARA MEJORAR EL MODELO, OBTENER ANÁLISIS MÁS SÓLIDOS Y GENERAR VISUALIZACIONES QUE REFLEJEN EL COMPORTAMIENTO REAL DE LOS USUARIOS ESTUDIADOS. CON MÁS DATOS, NO SOLO SE MEJORARÍA LA CAPACIDAD PREDICTIVA DEL MODELO, SINO QUE TAMBIÉN SE PODRÍAN IDENTIFICAR CON MAYOR CLARIDAD LOS PATRONES DE INTERACCIÓN O LA RESPUESTA DE LOS PARTICIPANTES ANALIZADOS.

Home

About

Content

Others

