Central Forces: Effective Potential (Chapter 8.1 - 8.4)

Help:

i Properties of a zero-curl force

- **4.43** In Section 4.8, I claimed that a force $\vec{F}(\vec{r})$ that is central and spherically symmetric is automatically conservative. Here are two ways to prove it:
- (a) Since $\vec{\mathbf{f}}(\vec{\mathbf{r}})$ is central and spherically symmetric, it must have the form $\vec{\mathbf{f}}(\vec{\mathbf{r}}) = f(r)\hat{r}$. Using Cartesian coordinates, show that this implies that $\nabla \times \vec{\mathbf{f}} = 0$.
- (b) Even quicker, using the expression given inside the back cover for $\nabla \times \vec{\mathbf{F}}$ in spherical polars, show that $\nabla \times \vec{\mathbf{F}} = 0$.

- ii Two particles joined by a massless spring
- **8.3** Two particles of masses m_1 and m_2 are joined by a massless spring of natural length L and force constant k. Initially, m_2 is resting on a table and I am holding m_1 vertically above m_2 at a height L. At time t=0, I project m_1 vertically upward with initial velocity v_0 . Find the positions of the two masses at any subsequent time t (before either mass returns to the table) and describe the motion. [*Hints*: See problem 8.2. Assume that v_0 is small enough that the two masses never collide.]

iii Effective potential for Hooke's law

- **8.13** Two particles whose reduced mass is μ interact via a potential energy $U = \frac{1}{2}kr^2$, where r is the distance between them.
- (a) Make a sketch showing U(r), the centrifugal potential energy $U_{cf}(r)$, and the effective potential energy $U_{eff}(r)$. (Treat the angular momentum l as a known, fixed constant.)
- (b) Find the "equilibrium" separation r_0 , the distance at which the two particles can circle each other with constant r. [Hint: This requires that dU_{eff}/dr be zero.]
- (c) By making a Taylor expansion of $U_{eft}(r)$ about the equilibrium point r_0 and neglecting all terms in $(r r_0)^3$ and higher, find the frequency of small oscillations about the circular orbit if the particles are disturbed a little from separation r_0 .

iv Effective potential for closed orbits. Hint: you should be able to show that

$$U''(r_0) = \frac{(n+2)l^2}{\mu r_0^4}$$

8.14 Consider a particle of reduced mass μ orbiting in a central force with $U = kr^n$ where kn > 0.

- (a) Explain what the condition kn > 0 tells us about the force. Sketch the effective potential energy U_{eff} for the cases that n = 2, -1, and -3.
- (b) Find the radius at which the particle (with given angular momentum *l*) can orbit at a fixed radius. For what values of *n* is this circular orbit stable? Do your sketches confirm this conclusion?
- (c) For the stable case, show that the period of small oscillations about the circular orbit is $\tau_{osc} = \tau_{orb}/\sqrt{n+2}$. Argue that if $\sqrt{n+2}$ is a rational number, these orbits are closed. Sketch them for the cases that n=2,-1, and 7.