Методы оптимизации KP-1, определения

Основано на учебно-методическом пособии "Методы оптимизации. Линейное программирование" Файл создан Заблоцким Данилом

1 Линейное программирование

1.1 Основные понятия и постановки задач

Определение 1.1. Задачей линейного программирования (ЛП) называется задача поиска \min / \max линейной функции на множестве, описываемом линейными ограничениями.

Общая задача ЛП имеет вид:

$$f(x) = c_0 + \sum_{j=1}^{n} c_j x_j \to \max \text{ (min)}$$
(1)

$$\sum_{j=1}^{n} a_{ij} x_j \leqslant b_i, \quad i = \overline{1, k}, \tag{2}$$

$$\sum_{i=1}^{n} a_{ij} x_{j} \geqslant b_{i}, \quad i = k + \overline{1, l}, \tag{3}$$

$$\sum_{j=1}^{n} a_{ij} x_j \geqslant b_i, \quad i = l + \overline{1, m}, \tag{4}$$

$$x_j \geqslant 0, \quad j \in J \subseteq \{1, \dots, n\},$$
 (5)

где $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ – вектор переменных. Функция f(x) называется *целевой*, а условия (2)-(5) – *ограничениями задачи*, причем в одной задаче ЛП не обязаны присутствовать ограничения всех трех типов.

Определение 1.2. Вектор $x \in \mathbb{R}^n$, удовлетворяющий ограничениям задачи, называется допустимым решением задачи ЛП.

Множество всех допустимых решений будем обозначать через \mathfrak{D} .

Определение 1.3. Вектор $x^* \in \mathfrak{D}$ называется оптимальным решением задачи ЛП, если $\forall x \in \mathfrak{D} \ f(x^*) \geqslant f(x)$ в задаче максимизации или $f(x^*) \leqslant f(x)$ в задаче минимизации.

Определение 1.4. Задача (1)-(5) называется *разрешимой*, если она имеет оптимальное решение, иначе — *неразрешимой*.

Определение 1.5. Две задачи ЛП P_1 и P_2 называются *эквивалентными*, если любому допустимому решению задачи P_1 соответствует некоторое допустимое решение задачи P_2 и наоборот; причем оптимальному решению одной задачи соответствует некоторое оптимальное решение другой задачи.

Теорема 1.1. Для любой задачи ЛП существует эквивалентная ей κa ноническая задача ЛП.

Теорема 1.2. Для любой задачи ЛП существует эквивалентная ей cman-dapmhas задача ЛП.

Теорема 1.3. Если целевая функция задачи ЛП ограничена сверху (снизу) на непустом множестве допустимых решений, то задача максимизации (минимизации) имеет оптимальное решение.

1.2 Графическое решение задач линейного программирования

Теорема 1.4. Если задача ЛП разрешима, и ее многонранное множество имеет хотя бы одну вершину, то существует вершина этого множества, в которой целевая функция достигает своего оптимального значения.

2 Симплекс-метод решения задач линейного программирования

2.1 Необходимые теоретические сведения

Рассмотрим каноническую задачу ЛП (КЗЛП):

$$f(x) = c_0 + \sum_{j=1}^{n} c_j x_j \to \max$$
 (6)

$$\sum_{i=1}^{n} a_{ij} x_j = b_i, \quad i = \overline{1, m}, \tag{7}$$

$$x_j \geqslant 0, \quad j = \overline{1, n}.$$
 (8)

Определение 2.1. Система линейный уравнений (7) называется *системой с базисом*, если в каждом уравнении имеется переменная, которая входит в него с коэффициентом +1 и отсутствует в остальных уравнениях. Такие переменные называются *базисными*, а остальные – *пебазисными*.

Определение 2.2. Каноническая задача ЛП называется *приведенной* задачей ЛП (ПЗЛП), если:

- 1. Система уравнений (7) есть система с базисом.
- 2. Целевая функция f(x) выражена только через небазисные переменные.

Введем обозначения для вектор-столбцов, составленных из коэффициентов системы (7):

$$A_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \quad A_2 = \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix}, \quad \dots, \quad A_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Определение 2.3. Решение $x=(x_1,\ldots,x_n)$ системы линейных уравнений (7) называется *базисным*, если система вектор-столбцов A_j , соответствующих ненулевым компонентам x_j , линейно независима.

Определение 2.4. Неотрицательное базисное решение системы линейных уравнений (7) называется *базисным* решением канонической задачи ЛП.

Определение 2.5. Базисное решение канонической задачи ЛП называется *невыроженным*, если значения всех базисных переменных отличны от нуля.

Если все базисные решения канонической задачи ЛП являются невырожденными, то задача также называется невыроженной.

Теорема 2.1. Если каноническая задача ЛП разрешима, то существует ее оптимальное базисное решение.

2.2 Метод искусственного базиса

Теорема 2.2. Если множество допустимых решений канонической задачи ЛП непусто, то существует эквивалентная ей приведенная задача ЛП, обладающая начальным базисным решением.

3 Двойственность в линейном программировании

3.1 Двойственные задачи и теоремы двойственности

Рассмотрим пару задач ЛП следующего вида:

$$(I) \qquad (II) \qquad ($$

Определение 3.1. Задачи (I) и (II) называются *взаимно двойственными*, а ограничения задач, соответствующие друг другу, назваются *сопряжеенными* (они отмечены стрелками).

Далее через $\mathfrak{D}_{\mathrm{I}}$ и $\mathfrak{D}_{\mathrm{II}}$ обозначим множества допустимых решений задач (I) и (II) соответственно.

Теорема 3.1 (Первая теорема двойственности). Если одна из пары двойственных задач (I),(II) разрешима, то разрешима и другая задача, причем оптимальные значения целевых функций совпадают, то есть $f(x^*) = g(y^*)$, где x^*, y^* – оптимальные решения задач (I) и (II) соответственно.

Определение 3.2. Говорят, что решения $x \in \mathfrak{D}_{\mathrm{I}}$, $y \in \mathfrak{D}_{\mathrm{II}}$ удовлетворяют условиям дополняющей нежесткости (УДН), если при подстановке этих векторов в любую пару сопряженных неравенств хотя бы одно из них обращается в равенство.

Это означает, что если вектора x,y удовлетворяют УДН, то следующие $xapa\kappa mepucmuчecкие$ npouseedeнus равны нулю:

$$\left(\sum_{j=1}^{n} a_{ij}x_j - b_i\right)y_i = 0, \quad i = \overline{1,k}, \qquad x_j\left(\sum_{i=1}^{m} a_{ij}y_i - c_j\right) = 0, \quad j = \overline{1,l}.$$

Теорема 3.2 (Вторая теорема двойственности). Решения $x \in \mathfrak{D}_{\mathrm{I}}, \ y \in \mathfrak{D}_{\mathrm{II}}$ оптимальны в задачах (I),(II) \iff они удовлетворяют УДН.