

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

Lecture 16

Chapter 3. The Fundamentals

- 3.3 Complexity of Algorithms
- 3.4 The Integers and Division

- An algorithm must always produce the correct answer, and should be efficient.
- How can the efficiency of an algorithm be analyzed?
- The algorithmic complexity of a computation is, most generally, a measure of how difficult it is to perform the computation.
- That is, it measures some aspect of the cost of computation (is a general sense of "cost").
 - Amount d(response realize to the same and the same and
- Some of the most common complexity measures:
 - "Time" complexity: # of operations or steps required
 - "Space" complexity: # of memory bits required

Complexity Depends on Input

- Most algorithms have different complexities for inputs of different sizes.
 - E.g. searching a long list typically takes more time than searching a short one.
- Therefore, complexity is usually expressed as a function of the input size.
 - This function usually gives the complexity for the worst-case input of any given length.

Worst-, Average- and Best-Case Complexity

- A worst-case complexity measure estimates the time required for the most time consuming input of each size.
- An average-case complexity measure estimates the average time required for input of each size.
- An best-case complexity measure estimates the least time consuming input of each size.

Example 1: Max algorithm

Problem:

Find the *simplest form* of the *exact* order of growth (Θ) of the *worst-case* time complexity of the *max* algorithm, assuming that each line of code takes some constant time every time it is executed (with possibly different times for different lines of code).

Complexity Analysis of max

procedure
$$max(a_1, a_2, ..., a_n)$$
: integers)

 $v := a_1$ t_1

for $i := 2$ to n t_2

if $a_i > v$ then $v := a_i$ t_3

return v t_4

- First, what is an expression for the exact total worst-case time? (Not its order of growth.)
 - t_1 : once
 - t_2 : n 1 + 1 times
 - t_3 (comparison): n-1 times
 - t_{4} : once

Complexity Analysis (cont.)

Worst-case time complexity

$$t(n) = t_1 + t_2 + t_3 + t_4$$

$$= 1 + (n - 1 + 1) + (n - 1) + 1$$

$$= 2n + 1$$

In terms of the number of comparisons made

$$t(n) = t_2 + t_3$$

$$= (n-1+1) + (n-1)$$

$$= 2n-1$$

Now, what is the simplest form of the exact (Θ) order of growth of t(n)?

Example 2: Linear Search

In terms of the number of comparisons

```
procedure linear_search (x: integer,
                     a_1, a_2, ..., a_n: distinct integers)
  i := 1
  while (i \le n \land x \ne a_i)
                                   t_{11} \& t_{12}
      i := i + 1
  if i \le n then location := i
  else location := 0
  return location
```


Linear Search Analysis

Worst case time complexity:

$$t(n) = t_{11} + t_{12} + t_2$$
 # of
$$= (n+1) + n + 1 = 2n + 2 = \Theta(n)$$
 comparisons

- Best case: $t(n) = t_{11} + t_{12} + t_2 = 1 + 1 + 1 = \Theta(1)$
- Average case, if item is present:

$$t(n) = \frac{3+5+7+\dots+(2n+1)}{n} = \frac{2(1+2+\dots+n)+n}{n}$$
$$= \frac{2[n(n+1)/2]}{n} + 1 = n+2 = \Theta(n)$$

University of Hawaii

Example 3: Binary Search

procedure binary_search (x:integer, a_1 , a_2 , ..., a_n : distinct integers, sorted smallest to largest)

```
i := 1
                               Key question:
                          How many loop iterations?
i := n
while i < j begin
    m := |(i + j)/2|
    if x > a_m then i := m + 1 else j := m
end
if x = a_i then location := i else location := 0
return location
```


niversity of Hawa

Binary Search Analysis

- Suppose that *n* is a power of 2, *i.e.*, $\exists k$: $n = 2^k$.
- Original range from i = 1 to j = n contains n items.
- Each iteration: Size j i + 1 of range is cut in half.
 - Size decreases as 2^k , 2^{k-1} , 2^{k-2} ,...
- Loop terminates when size of range is $1 = 2^0$ (i = j).
- Therefore, the number of iterations is: $k = \log_2 n$

$$t(n) = t_1 + t_2 + t_3$$

= $(k+1) + k + 1 = 2k + 2 = 2\log_2 n + 2 = \Theta(\log_2 n)$

• Even for $n \neq 2^k$ (not an integral power of 2), time complexity is still the same.

Analysis of Sorting Algorithm's

Check out

Rosen 3.3 Example 5 and Example 6 for worst-case time complexity of bubble sort and insertion sort algorithms in terms of the number of comparisons made.

Bubble Sort Analysis

```
procedure bubble_sort (a_1, a_2, ..., a_n): real numbers with n \ge 2)

for i := 1 to n - 1

for j := 1 to n - i

if a_j > a_{j+1} then interchange a_j and a_{j+1}

\{a_1, a_2, ..., a_n \text{ is in increasing order}\}
```

• Worst-case complexity in terms of the number of comparisons: $\Theta(n^2)$

Insertion Sort

```
procedure insertion_sort (a_1, a_2, ..., a_n: real numbers; n \ge 2)
   for j := 2 to n
   begin
        i := 1
        while a_i > a_i
                 i := i + 1
        m := a_i
        for k := 0 to i - i - 1
                a_{i-k} := a_{i-k-1}
         a_i := m
   end \{a_1, a_2, ..., a_n \text{ are sorted in increasing order}\}
```

Worst-case complexity in terms of the number of comparisons: Θ(n²)

Common Terminology for the University of Hawaii Complexity of Algorithms

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1	Commonly Used	Terminology
for the Complexity of Algorithms.		

Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta(n \log n)$	n log n complexity
$\Theta(n^b)$	Polynomial complexity
$\Theta(b^n)$, where $b > 1$	Exponential complexity
$\Theta(n!)$	Factorial complexity

Computer Time Examples

■ Assume that time = 1 ns (10^{-9} second) per operation, problem size = n bits, and #ops is a function of n.

	(1.25 bytes)	(125 kB)
#ops(n)	n = 10	$n=10^6$
$\log_2 n$	3.3 ns	19.9 ns
n	10 ns	1 ms
$n \log_2 n$	33 ns	19.9 ms
n^2	100 ns	16 m 40 s
2^n	1.024 μs	$10^{301,004.5}$
n!	3.63 ms	Ouch!

- Algorithmic complexity = cost of computation.
- Focus on time complexity for our course.
 - Although space & energy are also important.
- Characterize complexity as a function of input size:
 - Worst-case, best-case, or average-case.
- Use orders-of-growth notation to concisely summarize the growth properties of complexity functions.
- Need to know
 - Names of specific orders of growth of complexity.
 - How to analyze the order of growth of time complexity for simple algorithms.

- A problem that is solvable using an algorithm with <u>at most polynomial time complexity</u> is called *tractable* (or *feasible*).
 P is the set of all tractable problems.
- A problem that cannot be solved using an algorithm with worst-case polynomial time complexity is called *intractable* (or *infeasible*).
- Note that $n^{1,000,000}$ is *technically* tractable, but really very hard. $n^{\log \log \log n}$ is *technically* intractable, but easy. Such cases are rare though.

- NP is the set of problems for which there exists a tractable algorithm for checking a proposed solution to tell if it is correct.
- We know that P⊆NP, but the most famous unproven conjecture in computer science is that this inclusion is *proper*.
 - *i.e.*, that $P \subset NP$ rather than P = NP.
- Whoever first proves this will be famous!

(or disproves it!)

3.4 The Integers and Division University of Hawaii

- Of course, you already know what the integers are, and what division is...
- But: There are some specific notations, terminology, and theorems associated with these concepts which you may not know.
- These form the basics of number theory.
 - Number theory is vital in many today important algorithms (hash functions, cryptography, digital signatures,...).

Divides, Factor, Multiple

- Let $a,b \in \mathbf{Z}$ with $a \neq 0$.
- **Definition**: $a|b \Leftrightarrow "a \ divides \ b" \Leftrightarrow (\exists c \in \mathbb{Z}: b = ac)$ "There is an integer c such that c times a equals b."
 - Example: 3|-12 (True), but 3|7 (False).
- If a divides b, then we say a is a factor or a divisor of b, and b is a multiple of a.
- E.g.: "b is even" \Leftrightarrow 2|b.

The Divides Relation

- Theorem: $\forall a,b,c \in \mathbf{Z}$:
 - 1. *a*|0
 - 2. $(a|b \wedge a|c) \rightarrow a|(b+c)$
 - 3. $a|b \rightarrow a|bc \ \forall c \in \mathbf{Z}$
 - 4. $(a|b \wedge b|c) \rightarrow a|c$

- **Corollary**: $\forall a,b,c \in \mathbf{Z}$
 - $(a|b \land a|c) \rightarrow a|(mb + nc), m,n \in \mathbf{Z}$

Proof of (2)

- Show $\forall a,b,c \in \mathbf{Z}$: $(a|b \land a|c) \rightarrow a|(b+c)$.
 - Let a, b, c be any integers such that
 a|b and a|c, and show that a|(b + c).
 - By definition of |, we know ∃s∈Z: b = as, and ∃t∈Z: c = at. Let s, t, be such integers.
 - Then b + c = as + at = a(s + t), so $\exists u \in \mathbb{Z}$: b + c = au, namely u = s + t. Thus a|(b + c).

The Division "Algorithm"

- It's really just a theorem, not an algorithm...
 - Only called an "algorithm" for historical reasons.
- Theorem: For any integer dividend a and divisor d∈Z⁺, there are unique integers quotient q and remainder r∈N such that a = dq + r and 0 ≤ r < d. Formally, the theorem is:</p>

 $\forall a \in \mathbb{Z}, d \in \mathbb{Z}^+: \exists !q,r \in \mathbb{Z}: 0 \le r < d, a = dq + r$

• We can find q and r by: $q = \lfloor a/d \rfloor$, r = a - dq