Vorlesung Elektronik II

1. Motivation

Schaltungsfamilien

2. Transistoren in analogen Schaltungen

- Inverter
- Kleinsignalverhalten
- Differenzstufe
- Transistor als Widerstand
- Stromquellen
- Inverter und Differenzstufe mit Stromspiegel
- Ausgangsstufen
- Kapazitäten eines Transistors
- Frequenzgang

3. Verstärker

- Aufbau einstufiger Verstärker
- Wirkung der Kapazitäten
- Aufbau zweistufige Verstärker
- Pole und Nullstellen
- CMRR
- PSRR
- Slew Rate

4. Anwendungen des OPV

- Invertierender Verstärker
- Übertragungsfunktion
- Frequenzgang (Bode-Diagramm)
- Verstärkungs-Bandbreite-Produkt
- Bandbreite eines gegengekoppelten OPV
- Summierer/ Subtrahierer
- Logarithmierer/ Integrierer
- Aktiver Tiefpass/ Hochpass 1.Ordnung
- Integrierer/ Differenzierer
- Komparator mit Hysterese

5. Gegen- und Mittkopplung

- Einfluss auf Eingangswiderstand
- Einfluss auf Ausgangswiderstand
- Frequenzgang
- Astabile Kippschaltung

Schaltungsfamilien

Grundlagen

- Wie können Grundgatter implementiert werden?
- Schaltungsfamilien
- Der Transistor als Schalter: Schaltermodell
- Inverter mit Widerstand
- Kennlinienfeld des MOS-Transistors
- TTL-Pegel

- Störabstand
- Digitale Bipolar-Schaltungstechnik
- Digitale MOS-Schaltungstechnik
- CMOS-Komplementär MOS

Schaltungsfamilien

- Digitale Schaltungen (Bipolar, MOS)
- Abbildung der Wahrheitswerte (positive Logik)
 - 1: große/ positive Spannung
 - 0: null/ kleine Spannung
- Transistor als Schalter

Aber:

3

Diese Schalter sind Transistoren und haben eine Schwellenspannung.

Diese Schalter haben einen Widerstand

Schalter geschlossen: $U_{Ein} > U_T$ Schalter geöffnet: $U_{Ein} < U_T$

Schalter geschlossen: Spannungsteiler $U_{Aus} = ?$

NAND und **NOR** Gatter

Schaltermodell

Inverter mit Widerstand

Stromkennlinie des Widerstands

Stromkennlinie des Widerstands

Kennlinienfeld des MOS-Transistor

Ausgangskennlinie des Transistors

Annahme:

$$U_{DD} = 5.0V$$

$$U_T = 1.0V$$

Annahme:

$$U_{DD} = 5.0V$$

$$U_T = 1.0V$$

TTL-Pegel

Transistor-Transistor-Logic (TTL)

- Gatteraufbau mit bipolaren Transistoren
- Pegelbereiche:

FH MÜNSTER University of Applied Sciences

Noise Margin

Störabstand

Der Eingang des einen ist der Ausgang des anderen Inverters

Ein- und Ausgangskennlinie eines Inverters

NML: Noise Margin Low : $U_{EinLow} - U_{AusLow}$

NMH: Noise Margin High : $U_{AusHigh} - U_{EinHigh}$

Digitale Bipolar-Schaltungstechnik

- Digitale Diodenschaltungen
- Digitale Transistorschaltungen
- RTL (Resistor-Transistor-Logic)
- TTL (Transistor-Transistor-Logic)
- ECL (Emitter-Coupled-Logic)

Digitale Diodenschaltungen

Aufbau einfacher Gatter

Lassen sich nicht so gut kaskadieren!

Digitale Transistorschaltungen

Einfacher Inverter

RTL integrated circuits in **Apollo Guidance Computer** and DSKY, 1966

- liegt Masse (0, L) am Eingang an, Transistor sperrt
 - → Am Ausgang liegt fast vollständige Versorgungsspannung an (1, H)
- liegt Versorgungsspannung (1, H) am Eingang an, Transistor schaltet durch
 - → Am Ausgang liegt nur geringe Spannung an (0, L)

RTL

RTL-Gatter

Ausgangspegel des RTL-NOR-Gatters

DTL

Diode-Transistor-Logic

Gatter mit Dioden Eingängen

- einer von x, y auf Masse
- \rightarrow Transistoren $T_{1,2}$ abgeschaltet
- → z hat hohe Spannung
- beide x & y auf U_{cc}
- \rightarrow Transistoren $T_{1,2}$ schalten durch
- → z hat nur geringe Spannung

Funktion: DTL-NAND

Multi-Emitter Transistor

Multi-Emitter Transistoren

- je eine Basis- und Kollektor-Zone
- mehrere Emitterzonen
- Kompakte Implementierung von drei Transistoren mit gemeinsamen Basis- und Kollektoranschlüssen

TTL

Transistor-Transistor-Logic

Gatter mit Multi-Emitter-Transistor

- einer von x, y auf Masse
- \rightarrow Transistor $T_{4.5}$ schaltet durch
- \rightarrow Transistoren $T_{1,2}$ abgeschaltet
- \rightarrow Transistor T_3 schaltet durch
- → z hat hohe Spannung
- beide x & y auf U_{DD}
- \rightarrow Transistor $T_{4,5}$ abgeschaltet
- \rightarrow Transistoren $T_{1,2}$ schalten durch
- \rightarrow Transistor T_3 abgeschaltet
- → z hat nur geringe Spannung
- Totem-Pole-Ausgang

Funktion: TTL-NAND

TTL-Schaltkreise

- meist als Dual-in-Line-Gehäuse
- Beispiel Baustein 7400

vier NAND-Gatter mit je zwei Eingängen

	TTL	LS-TTL	ALS-TTL	F-TTL	AS-TTL
Bezeichnung	74xx	74LSxx	74ALSxx	74Fxx	74ASxx
Spannung	5V				
Leistung pro Gatter	10mW	2mW	1mW	4mW	22mW
Schaltzeit	10ns	9,5ns	4ns	2,5ns	1,7ns
max. Frequenz	40MHz	50MHz	100MHz	125MHz	230MHz

Problem:

- Erhöhung der Schaltgeschwindigkeit führt zu höherer Leistungsaufnahme
- Spezielle "Low-power" Transistoren und Schaltungen im Einsatz

Differenzverstärker

Prinzipschaltbild

ECL NOR/OR

Digitale MOS-Schaltungstechnik

Inverter mit Widerstand

Je nach Lastelement verschiedene Schaltungstechniken

- n-MOS
- n-MOS Depletion
- (p-MOS)
- CMOS

NMOS-Transistor als Last

$$\bigcap_{G} D$$

$$D \qquad U_{DS} > U_{GS} - U_T \text{ Sättigungsgrenze}$$

$$U_{GS} = U_{DS} > U_T$$

$$I_D = \frac{\beta}{2}(U_{GS} - U_T)^2 = \frac{\beta_0}{2}\frac{W}{L}(U_{GS} - U_T)^2$$

NMOS-Inverter

Übertragungskennlinie des NMOS-Inverters

NMOS/ n-Kanal Depletion Last

Depletion
$$U_T < 0$$

$$I_D = \frac{\beta}{2}(U_{GS} - U_T)^2$$

$$U_{GS} = 0 \Rightarrow I_{D0} = \frac{\beta}{2}(U_T)^2$$

NMOS-n-Kanal Depletion Inverter

Enhancement/ Depletion Inverter

Realisierung der Gatter

NAND-Gatter

NOR-Gatter

"70er Jahre": Prozessoren, Speicher in NMOS Sehr kompakte und einfache Fertigungstechnologie!

Erst 1985 fertigt Intel den 80386 in CMOS. Bis dahin konnten in CMOS die NMOS Schaltzeiten nicht erreicht werden!

CMOS-Komplementär MOS

NMOS-Inverter: Spannungsteilereffekt (Stromfluss)

CMOS-Inverter

Schaltermodell des CMOS-Inverters (Wechselschalter)

CMOS-Komplementär MOS

NAND-CMOS

x	у	z
0	0	1
0	1	1
1	0	1
1	1	0

Schaltermodell

In CMOS nur invertierende Gatter möglich

Betrachte vom Ausgang z aus die möglichen Wege zu U_{DD} bzw. GND

- Einstellen von z = 1 nur über p-Teil der Schalter möglich
- Einstellen von z=0 nur über n-Teil der Schaltung möglich

Es sind nur INVERTIERENDE logische Funktionen darstellbar

Ein AND-Gatter z.B. kann in dieser Weise nur durch ein NAND mit nachgeschalteten Inverter realisiert werden – (oder durch ein NOR mit jeweils einem Inverter vor jedem Eingang).

NOR-Gatter

X	у	z
0	0	1
0	1	0
1	0	0
1	1	0

Kennlinie des CMOS-Inverters

CMOS-Inverter

 $I_{Dn} = I_{Dv}$

32

$$\begin{split} U_{GSn} + U_{SGp} &= U_{DD} \\ U_{DSn} + U_{SDp} &= U_{DD} \\ \\ U_{GSn} &= U_{Ein} & U_{SGp} &= U_{DD} - U_{Ein} \\ U_{DSn} &= U_{Aus} & U_{SDp} &= U_{DD} - U_{Aus} \end{split}$$

Übertragungskennlinie

Definition der Verzögerungszeiten

Umladen einer Last (Kapazität) über den Inverter

Fan-Out/ Fan-In

Eine zur Charakterisierung des Gatters sehr wichtige Größe ist seine Treiberfähigkeit, d.h. der max. Ausgangsstrom, der zur Ansteuerung nachgeschalteter Gattereingänge zur Verfügung steht. Maß dafür:

 <u>Fan-Out (Ausgangslastfaktor)</u>: Gibt an, mit welcher maximalen Anzahl von Schaltkreiseingängen der gleichen Schaltkreisserie, (die alle den Eingangslastfaktor 1 haben), einen Schaltkreisausgang belastet werden darf, wenn der Ausgangspegel innerhalt der festgelegten H- bzw. L-Pegelbereiche bleiben soll.

 <u>Fan-In (Eingangslastfaktor)</u>: Jeder Gattereingang belastet den vorhergehenden Schaltkreisausgang, weil ein bestimmter Strom durch die Eingangsklemme des Gatters fließt. Man definiert als Fan-In 1 diejenigen Belastung, die ein Eingang eines einfachen Grundgatters darstellt.

Lastfaktor

Typische Daten der wichtigsten Schaltkreisfamilien

Kurz- zeichen	Betriebsspannung in V	Leistungsaufnahme je Element in mW	Signallaufzeit in ns	typ. Schaltfrequenz in MHz
TTL H-TTL L-TTL AS-TTL LS-TTL ALS-TTL	5 5 5 5 5	10 22 1 22 2 1	10 6 33 1,7 9,5 4	20 30 3 150 40 40
ECL I ² L	-5, 5 0 bis 8	20 bis 60 1nW bis 0,1mW	1 10 (veränderbar)	150 5
CMOS	3 bis 15 2 bis 6	0,001 bis 0,02 < 2MHz 0,001 bis 1 >2MHz 1 bis 10	25 bis 60 8 bis 10	10 60
HCTMOS	5	< 2MHz 0,001 bis 1 > 2MHz 1 bis 10	8 bis 10	60

Spannungspegel, Störabstand

- Für jede digitale Schaltkreisfamilie gibt es genau festgelegte Spannungsbereiche für die binären logischen Pegel Low und High der Ein- und Ausgangsspannungen. Die Spannungsbereiche sind für die Ein- und Ausgangspegel typisch unterschiedlich. Eine besondere Rolle spielt dabei der sog. TTL-Pegel als Standard- bzw. Vergleichsgröße.
- Die Differenz der minimalen H-Pegel und der maximalen L-Pegel von Ein- und Ausgangsspannungen ist ein Maß für den statischen (worst-case) Störabstand (Noise Margin) NM_H bzw. NM_L für Lowbzw. High-Pegel:

```
NM_H = U_{AusHmin} - U_{EinHmin},

NM_L = U_{EinLmax} - U_{AusLmax}.
```

 Der statische Störabstand gibt die maximale zulässige Spannungsänderung an den Eingängen eines Gatters an, die den Ausgang noch nicht umschaltet.

Logikpegel verschiedener Schaltkreisfamilien

74HC

74HCT

74

74LS

74AS

74ALS

74F

Kombination unterschiedlicher Schaltkreisfamilien

- Bauelemente gleicher Schaltkreisfamilien sind miteinander kombinierbar.
- Bauelemente aus unterschiedlichen Schaltkreisfamilien sind dann kompatibel, falls:
 - Betriebsspannung
 - Signalpegel
 - (Pinbelegung)

zueinander passen, z.B. TTL und HCTMOS