Introduction

François HU - 13/10/2020

Data Scientist au DataLab de la Société Générale Assurances Doctorant à l'ENSAE-CREST

Les cours se trouvent ici : https://curiousml.github.io/

Sommaire

1. Quelques prérequis

- Machine Learning
- Deep Learning

2. Définitions et préprocessing

- Tokenization
- Normalisation des tokens
- Stop-words

3. Vectorisation des données textuelles

- Données textuelles en données tabulaires
- Modèles de vectorisation des textes

Programme

Introduction

Représentations vectorielles

Deep Learning pour NLP

Active Learning

1. Quelques prérequis

Machine Learning (ML) (Apprentissage machine ou automatique) : la science de programmer les ordinateurs de sorte qu'ils puissent apprendre à partir des données (que nous notons X)

Machine Learning (ML) (Apprentissage machine ou automatique) : la science de programmer les ordinateurs de sorte qu'ils puissent apprendre à partir des données (que nous notons X)

Apprentissage supervisé: apprentissage machine où les données d'entraînement sont étiquetées -> (X, y)

- Classification (régression logistique, régression softmax, ...)
- Régression, ...

Apprentissage non-supervisé: apprentissage machine où les données d'entraînement **ne** sont **pas** étiquetées -> X

- Partitionnement (clustering)
- Réduction de la dimensionalité, ...

Machine Learning (ML) (Apprentissage machine ou automatique) : la science de programmer les ordinateurs de sorte qu'ils puissent apprendre à partir des données (que nous notons X)

Apprentissage supervisé: apprentissage machine où les données d'entraînement sont étiquetées -> (X, y)

- Classification (régression logistique, régression softmax, ...)
- Régression, ...

Apprentissage non-supervisé: apprentissage machine où les données d'entraînement **ne** sont **pas** étiquetées -> X

- Partitionnement (clustering)
- Réduction de la dimensionalité, ...

Phase d'un système de Machine Learning : phase d'apprentissage, phase de prédiction

Machine Learning (ML) (Apprentissage machine ou automatique) : la science de programmer les ordinateurs de sorte qu'ils puissent apprendre à partir des données (que nous notons X)

Apprentissage supervisé: apprentissage machine où les données d'entraînement sont étiquetées -> (X, y)

- Classification (régression logistique, régression softmax, ...)
- Régression, ...

Apprentissage non-supervisé : apprentissage machine où les données d'entraînement ne sont pas étiquetées -> X

- Partitionnement (clustering)
- Réduction de la dimensionalité, ...

Phase d'un système de Machine Learning : phase d'apprentissage, phase de prédiction

Comment entraîner un modèle ML?

choisir un modèle prédictif puis calibrer ses paramètres (souvent via minimisation d'une métrique par descente de gradient)

Machine Learning (ML) (Apprentissage machine ou automatique) : la science de programmer les ordinateurs de sorte qu'ils puissent <u>apprendre à partir des données</u> (que nous notons X)

Apprentissage supervisé: apprentissage machine où les données d'entraînement sont étiquetées -> (X, y)

- Classification (régression logistique, régression softmax, ...)
- Régression, ...

Apprentissage non-supervisé : apprentissage machine où les données d'entraînement ne sont pas étiquetées -> X

- Partitionnement (clustering)
- Réduction de la dimensionalité, ...

Phase d'un système de Machine Learning : phase d'apprentissage, phase de prédiction

Comment entraîner un modèle ML?

choisir un modèle prédictif puis calibrer ses paramètres (souvent via minimisation d'une métrique par descente de gradient)

Natural Language Processing (NLP)?

La science de programmer les ordinateurs à comprendre le langage humain

Deep Learning (1/3)

Quelques fonctions d'activation

Deep Learning (2/3)

Réseau de neurones ReLU softmax $W^{[1]}$ $W^{[2]}$ x_2 couche d'entrée couche cachée couche de sortie

Deep Learning (3/3)

Deep Learning

Natural Language Processing

Natural Language Processing (NLP)

La science de programmer les ordinateurs à comprendre le langage humain

2. Définitions et Préprocessing

Intuitions:

- formater les textes pour se rapprocher des données tabulaires (structurer)
- rendre les textes simple à traiter pour les modèles ML (normaliser et/ou supprimer des mots)

Tokenization: définition

Texte : séquence de mots

Mot : séquence logique de caractères

Tokenization : processus qui sépare une séquence (texte) en une liste de tokens (mots)

Question: comment trouver les limites d'un mot?

Tokenization: définition

Texte : séquence de mots

Mot : séquence logique de caractères

Tokenization : processus qui sépare une séquence (texte) en une liste de tokens (mots)

Question: comment trouver les limites d'un mot?

Réponse : En français / anglais, nous pouvons séparer les mots par les **espaces** et les **ponctuations**

Input : 'Devons-nous, mon collègue et moi, vous recontacter ?'

Tokenization

Output: ['Devons', 'nous', 'mon', 'collègue', 'et', 'moi', 'vous', 'recontacter']

Tokenization: définition

Texte : séquence de mots

Mot : séquence logique de caractères

Tokenization : processus qui sépare une séquence (texte) en une liste de tokens (mots)

Question: comment trouver les limites d'un mot?

Réponse : En français / anglais, nous pouvons séparer les mots par les **espaces** et les **ponctuations**

Input: 'Devons-nous, mon collègue et moi, vous recontacter?'

Tokenization

Output: ['Devons', 'nous', 'mon', 'collègue', 'et', 'moi', 'vous', 'recontacter']

implémentation python

from nltk.tokenize import WhitespaceTokenizer, WordPunctTokenizer, word_tokenize
text = "J'ai une question : devons-nous, mon collègue et moi, vous recontacter?"

• exemple 1: tokenization par les espaces

```
tokenizer = WhitespaceTokenizer()
print(tokenizer.tokenize(text))

["J'ai", 'une', 'question', ':', 'devons-nous,', 'mon', 'collègue', 'et', 'mo
i,', 'vous', 'recontacter?']
```

• exemple 2: tokenization par les ponctuations

```
tokenizer = WordPunctTokenizer()
print(tokenizer.tokenize(text))

['J', "'", 'ai', 'une', 'question', ':', 'devons', '-', 'nous', ',', 'mon', 'c ollègue', 'et', 'moi', ',', 'vous', 'recontacter', '?']
```

• exemple 3 : tokenization par un ensemble de règles

```
print(word_tokenize(text, language='french'))
["J'ai", 'une', 'question', ':', 'devons-nous', ',', 'mon', 'collègue', 'et', 'moi', ',', 'vous', 'recontacter', '?']
```

Normalisation: Racinisation et lemmatisation

Stemming (Racinisation): garder la racine d'un terme (souvent, couper à partir d'un caractère)

• exemple: continua, continuait, continuant, continuation, continuation, continue → continu

implémentation python

```
from nltk.stem import SnowballStemmer
fr = SnowballStemmer('french')
" ".join(fr.stem(token) for token in word_tokenize(text))

"j ' ai une question : devon - nous , mon collègu et moi , vous recontact ?"
```

Lemmatisation : processus qui sépare une séquence (texte) en une liste de tokens (mots)

exemple: continua, continuait, continuant → continuer continuation, continuation → continuation continue → continue / continuer (adjectif / verbe)

implémentation python

```
import spacy
nlp = spacy.load('fr_core_news_md')
" ".join(token.lemma_ for token in nlp(text))

'je avoir un question : devoir - nous , mon collègue et moi , vous recontacter
?'
```

Autres types de normalisation

Les **expressions régulières** en Python nécessitent d'importer le module natif **re** : **import re** voir **https://fr.wikibooks.org/wiki/Programmation_Python/Regex** pour la documentation.

Exemple de texte :

```
<br/><b>j'ai une question : devons-nous, mon collègue et moi, vous recontacter?</b>
```

• supprimer les balises : <...> ... </...>

implémentation python

```
text_b = re.sub("<.*?>", " ", text_b) # balises <...>
print(text_b)

j'ai une question : devons-nous, mon collègue et moi, vous recontacter?
```

• supprimer les **ponctuations** et les grands espaces : -, !, ?, ...

implémentation python

```
import string
text_b = re.sub(r"[" + string.punctuation + r"]", " ", text_b) # ponctuations
text_b = re.sub(r"\s+", " ", text_b) # grands espaces
print(text_b)

j ai une question devons nous mon collègue et moi vous recontacter
```

Stop-words

Les **stop-words** : ensemble de mots fréquemment utilisés dans une langue et qui n'apportent pas de signification importante

- exemple: a, à, des, de, et, est, un, ...
- → objectif : supprimer ces stop-words

implémentation python

```
from nltk.corpus import stopwords
# Chargement des stopwords pour la langue française avec NLTK
stopwords_lst = list(stopwords.words("french"))
re.sub(r"(\s+|^)(" + r"|".join(stopwords_lst) + r")(\s+|$)", " ", text)

"J'ai question : devons-nous, collègue moi, recontacter?"
```

Résumé

Tokenizer

Raciniser et lemmatiser

Stop-words

3. Vectorisation des données textuelles

Intuitions:

- Transformer des documents textuels en données tabulaires (partir des données textuelles <u>tokenizées</u> et <u>normalisées</u>)
- Données textuelles => données séquentielles (tenir compte de l'ordre des mots)

Données textuelles en données tabulaires

processus d'apprentissage pour des données tabulaires

processus d'apprentissage pour des données textuelles

Problèmes

• approches: (section suivante) TF-IDF et (cours 1) word embedding

Vectorisation des textes : principe

corpus

$d_{_1}$	trouver bonne assurance
$d_{_2}$	contrat satisfaisant
d_{λ}	changement contrat assurance

Vectorisation des textes : principe

corpus

définir le vocabulaire

 $egin{array}{c} d_1 & ext{trouver bonne assurance} \ d_2 & ext{contrat satisfaisant} \ d_3 & ext{changement contrat assurance} \end{array}$

```
V = {
    'assurance' : 1,
    'bonne' : 2,
    'changement' : 3,
    'contrat' : 4,
    'satisfaisant' : 5,
    'trouver' : 6
}
```


Vectorisation des textes : principe

corpus

définir le vocabulaire

one-hot encoding

 $egin{array}{c} d_1 & ext{trouver bonne assurance} \ d_2 & ext{contrat satisfaisant} \ d_3 & ext{changement contrat assurance} \ \end{array}$

V = {
 'assurance' : 1,
 'bonne' : 2,
 'changement' : 3,
 'contrat' : 4,
 'satisfaisant' : 5,
 'trouver' : 6
}

Vectorisation des textes : approche bag-of-words

• vectorise un document en comptant le **nombre d'occurences** d'un token t dans le document $d:f_{t,d}$

• exemple : méthode de comptage

trouver bonne assurance		trouver	contrat	assurance	
controt catiofology		1	0	1	
contrat satisfaisant		0	1	0	
changement contrat assurance		0	1	1	

• problème : pas d'ordre entre les mots

• **solution**: approache n-grammes

Vectorisation des textes : approche n-grammes

- vectorise un document en comptant le **nombre d'occurences** des paires de tokens (2-grams), des triplets de tokens (3-grams), ...
- exemple : méthode de comptage (1,2)-grammes

- problème : trop de variables
- solution : supprimer les stop-words et qq n-grammes (très hautes et très basses fréquences)

Vectorisation des textes : approche TF-IDF (1/2)

- Term Frequency: nombre d'occurrences d'un token / n-grams t dans le document d $tf(t,d)=f_{t,d}$
- variantes: $\frac{f_{t,d}}{\sum\limits_{t'\in d}f_{t',d}}$ ou $\mathbb{1}(t\in d)$ ou $(1+\log f_{t,d}),...$
- Inverse Document Frequency: mesure l'importance du token / n-grams dans l'ensemble du corpus

$$idf(t, D) = log \frac{|D|}{|\{d \mid t \in d\}|} = log \frac{\# documents}{\# documents contenant le terme t}$$

• Term Frequency - Inverse Document Frequency (TF-IDF): $tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$

Vectorisation des textes : approche TF-IDF (2/2)

• **exemple**: approache TF-IDF (1,2)-grammes

trouver bonne assurance		trouver	assurance	contrat assurance	
controt actiofaicant	-	0.10	0.41	0	
contrat satisfaisant		0	0	0	
changement contrat assurance		0	0.41	0.10	

implémentation python

```
from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer(min_df=2, max_df=0.5, ngram_range=(1,2))

features = tfidf.fit_transform(texts)
```

• voir **cours 1** pour des techniques de vectorisation plus avancées

Résumé

trouver bonne assurance
contrat satisfaisant
changement contrat assurance

trouver	contrat	assurance	
1	0	1	
0	1	0	
0	1	1	

trouver bonne assurance
contrat satisfaisant
changement contrat assurance

trouver	assurance	contrat assurance	
1	1	0	
0	0	0	
0	1	1	

trouver bonne assurance	
contrat satisfaisant	
changement contrat assurance	

trouver	assurance	contrat assurance	
0.10	0.41	0	
0	0	0	
0	0.41	0.10	

Méthode 1 : vectorisation par comptage + bag-of-words

Méthode 2 : vectorisation par comptage + n-grammes

Méthode 3 : vectorisation par TF-IDF