PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1107 - Introducción al Cálculo

Solución Interrogación N° 5

1. Demuestre que la función $f:[1,+\infty)\to\mathbb{R}$ definida por

$$f(x) = x + \frac{1}{x}$$

es estrictamente creciente.

Solución. Sean $x_1, x_2 \in [1, +\infty)$ tales que $x_1 < x_2$. Queremos ver que $f(x_1) < f(x_2)$, o, equivalentemente, que $f(x_2) - f(x_1)$ es positivo. Notemos que

$$f(x_2) - f(x_1) = (x_2 - x_1) + \left(\frac{1}{x_2} - \frac{1}{x_1}\right) = (x_2 - x_1) - \frac{x_2 - x_1}{x_1 x_2} = (x_2 - x_1) \left(1 - \frac{1}{x_1 x_2}\right).$$

Notemos que $x_2 - x_1 > 0$, pues $x_1 < x_2$. Por otro lado, como $x_1, x_2 \in [1, +\infty)$, tenemos que tanto x_1 como x_2 son mayores o iguales a 1, por lo que también $x_1x_2 \ge 1$. Entonces $\frac{1}{x_1x_2} < 1$, y $1 - \frac{1}{x_1x_2} > 0$. Concluimos que $f(x_2) - f(x_1) > 0$, como queríamos probar.

Criterio de Corrección (CC) Pregunta 1.

CC 1. 2 puntos por verificar que
$$f(x_2) - f(x_1) = (x_2 - x_1) \left(1 - \frac{1}{x_1 x_2} \right)$$
.

CC 2. 2 puntos por mostrar que
$$1 - \frac{1}{x_1 x_2} > 0$$

CC 3. 2 puntos por justificar que $x_2 - x_1 > 0$ y concluir que f es creciente.

2. Demuestre algebraicamente que la siguiente función es inyectiva en su mayor dominio posible:

$$f(x) = \frac{x+3}{x-1} \, .$$

Solución. El dominio de f es $\mathbb{R} \setminus \{1\}$. Notemos que

$$f(x) = 1 + \frac{4}{x - 1}.$$

Sean $x_1, x_2 \in \mathbb{R} \setminus \{1\}$ tales que $f(x_1) = f(x_2)$. Queremos ver que $x_1 = x_2$. Notemos que

$$f(x_1) = f(x_2) \implies 1 + \frac{4}{x_1 - 1} = 1 + \frac{4}{x_2 - 1}$$

$$\implies \frac{4}{x_1 - 1} = \frac{4}{x_2 - 1}$$

$$\implies \frac{1}{x_1 - 1} = \frac{1}{x_2 - 1}$$

$$\implies x_2 - 1 = x_1 - 1$$

$$\implies x_2 = x_1.$$

Criterio de Corrección (CC) Pregunta 2.

CC 1. 2 puntos por determinar el dominio de f.

 ${\bf CC}$ 2. 4 puntos por demostrar que f es inyectiva.