Лабораторная работа 2.3.1 : Получение и измерение вакуума

Сидорчук Максим Б01-204

18 мая 2023 г.

1 Теоретические сведения

Производительность насоса определяется скоростью откачки $W(\pi/c)$: W – это объём газа, удаляемого из сосуда при заданном давлении за единицу времени. Скорость откачки форвакуумного насоса равна ёмкости воздухозаборной камеры, умноженной на число оборотов в секунду.

Обозначим количество газа, которое приходит в трубку в процессе откачки за Q. Тогда мы можем записать уравнение:

$$-VdP = (PW - Q)dt$$

Но при предельном давлении $\frac{dP}{dt}=0 \Rightarrow Q=PW$. Подставим это в начальное уравнение и проинтегрируем. Учитывая, что $P_0\gg P$:

$$P - P_{\rm np} = P_0 e^{-Wt/V}$$

Постоянная времени откачки $\tau = V/W$ является мерой эффективности откачанной системы. Для течения газа через трубу при высоком вакууме справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{L}$$

Если пренебречь давлением P_1 у конца, обращенного к насосу, получаем формулу для пропускной способности трубы:

$$C = \frac{dV}{dt} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}}$$

Для пропускной способности отверстия (например в кранах) имеем формулу:

$$C = S\frac{\bar{v}}{4}$$

2 Экспериментальная установка

Установка изготовлена из стекла и состоит из форвакуумного баллона (ΦB), высоковакуумного диффузионного насоса (BH), высоковакуумного баллона (BB), масляного (M) и ионизационного (M) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ΦH) и соединительных кранов (M1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1: Схема экспериментальной установки.

3 Ход работы

Измерение объёмов форвакуумной и высоковакуумной частей установки

1. Проверяем, что K_4 открыт, впускаем в установку атмосферный воздух через краны K_1 и K_2 . «Запираем» в капилляре атмосферный воздух кранами K_5 и K_6 . Объем капилляра в используемой установке:

$$V_{\rm K} = 50 \, \, {\rm cm}^3$$
.

- 2. Закрываем K_1 и K_2 , включаем форвакуумный насос и даём ему откачать себя. Подключаем установку к насосу краном K_2 . Откачиваем установку до 10^{-2} торр. Отсоединяем установку краном K_2 , и оставляем насос работать «на себя». Перекрываем K_3 , отделяя высоковакуумною часть установки. Закрываем K_4 , чтобы привести в готовность масляный манометр.
- 3. Открываем K_5 , чтобы «запертый» ранее воздух заполнил форвакуумную часть установки, снимаем давление с помощью вакуумного манометра, измерив разность высот столбиков масла (приводим результаты и повторного измерения):

$$\Delta h_1 = (26.2 \pm 0.1)$$
 MM;

Погрешность измерения величин определяется ценой деления шкалы манометра и способностью разглядеть показания.

4. Имея в виду, что плотность масла в манометре равна $885 \, \Gamma/\pi$, и считая, что установившееся давление много больше форвакуумного, получаем:

$$P_1 = (2.31 \pm 0.01) \text{ }\Pi \text{a};$$

Пользуясь законом Бойля-Мариотта (т.к. расширение газа изотермическое), используя среднее значение измеренного давления, получаем

$$V_{\Phi B} = (2.18 \pm 0.02)$$
 л

5. Аналогично, открыв кран K_3 , получив значения разности высот на манометре, получаем объем высоковакуумной части установки:

$$V_{\rm BB} = (1.28 \pm 0.06) \text{ cm}^3$$

6. Тогда общий объём установки равен (погрешности складываются):

$$V_{\Sigma} = (3.46 \pm 0.08) \text{ cm}^3$$

7. Открываем кран K_4 .

Получение высокого вакуума

- 1. Откачиваем установку ФВ насосом.
- 2. Включаем термопарные манометры, устанавливаем их токи согласно паспортам. Переключаем прибор в режим измерения ЭДС и определяем давление в установке по градуировочной кривой
- 3. По достижении форвакуума закрываем K_5 и начинаем откачку высоковакуумного баллона с помощью диффузионного насоса, для этого:
 - 3.1. На передней панели источника питания, с помощью которого подогревается масло в насосе, все четыре ручки переводим на ноль.
 - 3.2. Включаем источник, ручками 2 и 4 устанавливаем ток I=0.6A. Ждём 5 минут, чтобы масло прогрелось, после чего устанавливаем ток 1.15A.
 - 3.3. По термопаре M_2 контролируем откачку. По достижении ЭДС в 10mV смотрим на кипение масла и считаем капли, стекающие из сопла второй ступени. Убеждаемся в готовности, т.к. насчитали 11 капель в минуту.
- 4. При выключенной ионизационной лампе, вставив предохранитель, ставим переключатель «Род работы» в положение «Обезгаживание» на 10 минут.
- 5. Переключатель «Множитель шкалы» ставим в положение «Установка нуля», «Род работы» в положение «Установка эмиссии», и ручку «Установка эмиссии» ставим в крайнее левое положение.
- 6. Приступаем к включению ионизационной лампы.
- 7. Измеряем давление с помощью микроамперметра. Так как переключатель «Множитель шкалы» в положении 10^{-1} , а постоянная ионизационного манометра = 100 мм.рт.ст., то давление будет определяться как $P = 10^{-5} \cdot I$, где I показания микроамперметра в делениях.

$$P_{\rm np} = 0.83 \cdot 10^{-4} \text{ Topp}$$

Измерение скорости по ухудшению и улучшению вакуума

1. Закрываем кран K_3 , отключая тем самым откачку вакуума и записываем на видео изменения показаний микроамперметра, пока вакуум не ухудшится до $6 \cdot 10^{-4}$ торр. Затем открываем K_3 и так же записываем улучшение вакуума. Приводим результаты повторных измерений в таблице 1 и на графиках (рис. 2, 3 и 4).

Ухудшение 1		Ухудшение 2		Ухудение 3		Улучшение 1		Улучшение 2	
$10^{-4}, \text{ ropp}$	t, c								
0.54	0	0.33	0	0.37	0	6.0	0.0	8.6	0.0
0.82	5	0.54	5	0.41	5	5.8	0.16	8.2	0.16
1.3	10	0.73	10	0.58	10	5.5	0.33	7.7	0.33
2.1	15	0.89	15	0.76	15	5.4	0.5	6.6	0.5
2.4	20	1.1	20	0.93	20	5.2	0.75	5.5	0.75
2.9	25	1.2	25	1.1	25	5.0	1	4.3	1
3.2	30	1.4	30	1.2	30	4.7	1.25	3.5	1.25
3.6	35	1.5	35	1.4	35	4.3	1.5	3.0	1.5
4.0	40	1.7	40	1.6	40	4.0	2	2.6	2
4.3	45	1.8	45	1.8	45	3.2	3	2.3	3
4.7	50	2.0	50	1.9	50	2.7	4	2.0	4
5.0	55	2.2	55	2.2	55	2.0	6	1.6	6
5.5	60	2.4	60	2.3	60	1.5	9	1.2	9
5.8	65	2.5	65	2.5	65	1.2	12	0.9	12
6.0	70	2.6	70	2.6	70	0.9	15	0.8	15

Рис. 2: Зависимость $ln(P-P_{\rm np})$ от времени по улучшении вакуума.

Рис. 3: Зависимость давления от времени по ухудшению вакуума.

Рис. 4: Зависимость давления от времени по ухудшению вакуума.

2. Рассчитав коэффициенты наклона графиков 2(a) и 2(b) и зная объем высоковакуумной части установки, получим скорость откачки W диффузионного насоса, сравнив графики с зависимостью (4). Считаем

$$W = -\bar{a} \cdot V, \quad \varepsilon_W^2 = \varepsilon_{\bar{a}}^2 + \varepsilon_V^2$$

, где \bar{a} — среднее коэффициентов наклона из зависимостей 2(a) и 2(б). Имеем:

$$W = (0.461 \pm 0.016) \text{ n/c}$$

3. Имея в виду соотношения (1) для случая ухудшения вакуума (без откачки), оценим $Q_{\rm H}$ с помощью полученных зависимостей $3({\rm a},\,6)$ и 4. Считаем

$$\frac{dP}{dt} = \bar{a}$$

где \bar{a} — среднее коэффициентов наклона из зависимостей 3 (a, б) и 4. Имеем:

$$Q_{\text{H}} + Q_{\text{д}} = (1.26 \pm 0.04) \cdot 10^{-5} \text{ торр} \cdot \text{л/c}$$

 $Q_{\rm д}$ обычно порядка $10^{-8},$ поэтому можно считать $Q_{\rm h} + Q_{\rm д} \approx Q_{\rm h}.$ Таким образом,

$$Q_{\rm H} + Q_{\rm J} \approx 1.26 \cdot 10^{-5} \ {
m Topp} \cdot {
m J/c}$$

4. Оценим пропускную способность трубы от вакуумного баллона, имея в виду порядки её диаметра и длины и размерного множителя

$$d\sim 10^{-2}$$
 m, $L\sim 1$ m, $\sqrt{\frac{RT}{\mu}}\sim 500$ m/c,

используя формулу (6) имеем:

$$C_{\mathrm{TP}} \sim 1 \mathrm{ \ J/c},$$

что отлично согласуется с полученным ранее значением W.

5. Рассчитаем производительность насоса ещё одним способом: создав искусственную течь. Открываем кран K_6 при включённом насосе и измеряем давление, установившееся при течи. Оно равно

$$P_{\rm ycr} = 1.9 \cdot 10^{-4} \text{ ropp.}$$

Запишем (2) для данного случая:

$$P_{\text{пр}}W = Q_1, \quad P_{\text{уст}}W = Q_1 + \frac{(PV)_{\text{капилляр}}}{dt}$$

С учётом (6) получаем

$$(P_{\text{yct}} - P_{\text{пр}})W = \frac{4}{3}(d/2)^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\Phi B}}{L},$$

где d и L — диаметр и длина капилляра, равные

$$d = 9 \text{ mm}, \quad L = 63 \text{ mm}$$

Получаем:

$$W = 0.38 \; \pi/c$$

4 Вывод

В данной работе была измерена производительность насоса с точностью $\epsilon=0.03$, проверены теоретические зависимости, связанные с течением газа (рис. 2, 3 и 4). Было вычисленно предельное значение давления $P_{\rm np}=0.83\cdot 10^{-4}$ торр, а также скорость откачки, среднее значение которой равно $W\approx 0.43~{\rm n/c}$.