Análisis de señales Transformada de Fourier de tiempo continuo (CTFT)

Escuela de Ciencias exactas e Ingeniería Código: 2018II TTQ11

> **Profesor:** Marco Teran Deadline: 15 de noviembre de 2018

1. Encontrar la transformada de Fourier de tiempo continuo (CTFT) para cada una de las siguientes señales, dibujar la magnitud de la CTFT de los ejercicios pares:

(a)
$$x(t) = 3\cos^2(60\pi t)$$

(f)
$$\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$$
 (l) $x(t) = 2\cos(2\pi t + 4\pi)\left[u(t) - u(t-1)\right].$

(1)
$$x(t) = 2\cos(2\pi t + 4\pi) [u(t) - u(t-1)]$$

(b)
$$x(t) = 2 \frac{\sin(2\pi t)}{\pi t}$$

(g)
$$x(t) = \delta(t - t_0)$$
.

(m)
$$x(t) = e^{-|t|}$$
.

(c)
$$x(t) = \begin{cases} 1, & \text{si } |t| \leq 2\\ 0, & |t| > 2 \end{cases}$$

$$(1) \quad x(t) = a(t \quad t_0).$$

(a)
$$x(t) = 3\cos^{2}(60\pi t)$$

(b) $x(t) = 2\frac{\sin(2\pi t)}{\pi t}$
(c) $x(t) = \begin{cases} 1, & \text{if } t > 0 \\ -1, & t < 0 \end{cases}$
(d) $x(t) = e^{-\frac{\sqrt{3}}{2}|t|} u(t)$
(e) $x(t) = \frac{1}{2}$
(f) $sgn(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$
(g) $x(t) = \delta(t - t_{0})$.
(h) $x(t) = u(t - t_{0})$.
(i) $x(t) = e^{-6t}u(t)$.
(j) $x(t) = e^{-2t}[u(t) - u(t - 5)]$.
(k) $x(t) = e^{-3t}u(t) + e^{3t}u(-t)$.
(n) $x(t) = e^{-\alpha t}\cos(\omega_{0}t)u(t)$, donde $a > 0$.
(j) $x(t) = e^{-2t}[u(t) - u(t - 5)]$.

(d)
$$x(t) = e^{-\frac{\sqrt{3}}{2}|t|} u(t)$$

(i)
$$x(t) = -e^{-6t}u(t)$$

doing
$$a > 0$$
.

(e)
$$x(t) = \frac{1}{0+t^2}$$

(k)
$$x(t) = e^{-3t}u(t) + e^{3t}u(-t)$$
. (o) $x(t) = 2\cos^2(t)$

(o)
$$x(t) = 2\cos^2(t)$$

2. Si $x(t) = X(\omega)$, determine la transformada de Fourier de

(a)
$$x(1-t)$$

(b)
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t}\cos t$$
 (c) $x\left(\frac{t}{2}-2\right)$

(c)
$$x\left(\frac{t}{2}-2\right)$$

(d)
$$\frac{d[x(-2t)]}{dt}$$

3. Mediante las diversas propiedades de la transformada de Fourier de tiempo continuo (CTFT), encuentre la transformada de Fourier de las siguientes señales de la transformada original de $u\left(t\right)$:

- (a) $x(t) = \delta(at)$. (Entienda la función $\delta(t)$ y su (d) $x(t) = te^{-at}u(t)$. relación con la derivada de u(t))

(b) x(t) = 3tu(t).

(e) $x(t) = e^{-5\pi t} \cos(\omega_0 t) u(t)$.

(c) $x(t) = -e^{-6t}u(t)$.

 $\begin{array}{ll} \text{(f)} & x\left(t\right) &= \\ & \frac{1}{2}e^{-j2t}u\left(-t\right). \end{array} \qquad \left(e^{-t}\cos\left(2t\right)-5e^{-3t}\right)u\left(t\right) \quad + \quad \\ \end{array}$

4. Determine la transformada de Fourier de la señal

$$x(t) = e^{-t}u(t) * e^{-2t}u(t)$$

5. Consideremos la señal Campana de Cauchy dada por

$$x(t) = \frac{1}{1+t^2}$$

(a) Encuentre la transformada de Fourier de x(t).

Tenga en cuenta que
$$\int \frac{\mathrm{d}x}{a^2 + b^2x} = \frac{1}{ab} \operatorname{atan} \left(\frac{bx}{a}\right)$$

6. Obtenga la transformada de Fourier de la secuencia de impulsos de peso unitario, que se ilustra en la figura.

7. Considere el sistema que se ilustra en la siguiente Figura

- El sistema A tiene relación entrada salida $x_2(t) = \frac{1}{2}x_1(\frac{t}{2})$.
- El sistema B es lineal e invariante con respuesta impulso h(t).
- (a) Determine la transformada de Fourier de $x_1(t)$, $x_2(t)$ y $x_3(t)$ en función de $X(\omega)$.
- (b) Si la señal de entrada tiene la transformada de Fourier $X(\omega)$ que se presenta en la Figura, dibuje las transformadas de $x_1(t)$, $x_2(t)$ y $x_3(t)$.

