2020年2月4日

 ε 項とクラスの導入による具

目次

推論の公理

1 導入

1.1 ε 計算について

• 式 $\varphi(x)$ に対して

・量化∃,∀を使う証明を命題論理の証明に埋め

 $\mathcal{E}X$

という形のオブジェクトを作り, *ε* 項と呼ぶ や∀の付いた式を ZF集合論では集合というオブジェクトが用

ない. たとえば

 $\exists x \, \forall y$

 $\forall y (y \notin \varepsilon x)$

は定理であり「空集合は存在する」と読むか

が成り立つ つまりょ項は「存在」を「実在

• ε 項を使えば, \exists の公理と空集合の存在定理

1.2 クラスについて

• ブルバキ[]や島内[]でもarepsilon項を使った集合論

・ ところで、「arphiである集合の全体」の意味の

 $\{x \mid$

` ' というオブジェクトも取り入れたい.

• **ZF**集合論では定義による拡大 or インフォー

定義 1.1(クラス). 式 φ に χ のみが自由に η

$$\varepsilon x \varphi(x)$$
,

- の形のオブジェクトをクラス(class)と呼ぶ

• 集合でないクラスもある. たとえば $\{x \mid x = x = x\}$

クラスであるε項は集合である。

2 言語

- クラスという新しいオブジェクトを導入した。 問題になる.

• 妥当性は, \mathbf{ZF} 集合論の式 φ に対して

ZF集合論で φ が証明される \longleftarrow

が成り立つかどうかで検証する.

精密な検証のためには、集合論の言語と証明

2.1 言語 \mathcal{L}_{\in}

言語
$$\mathcal{L}_{\in}$$

矛盾記号 \bot

論理記号 \neg , \lor , \land , \rightarrow

量化子 \forall , \exists

述語記号 $=$, \in

変項 x , y , z , \cdots など.

また \mathcal{L}_{C} の項(term)と式(formula)は次の規則で

2.2 言語の拡張

- クラスを正式に導入するには言語を拡張した
- 拡張は二段階に分けて行う. 始めにarepsilon項のた めに拡張する.
- 始めの拡張により得る言語を $\mathcal{L}_{\mathcal{E}}$ と名付ける

言語 £ε — 矛盾記号 ⊥

u $\mathcal{L}_{\mathcal{E}}$ の項と式の定義・

- 変項は項である.
 - 」は式である.
- ・ エは八 (のる.
- 項 τ と項 σ に対して $\tau \in \sigma$ と $\tau = \sigma$ は式で
- 式 φ に対して $\rightarrow \varphi$ は式である.
- 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と φ
- 式 φ と変項xに対して $\exists x \varphi$ と $\forall x \varphi$ は式で
- 式 φ と変項xに対して $\varepsilon x \varphi$ は項である.
- これらのみが項と式である.

言語£

ℒの項と式の定義 変項は項である.

3 推論の公理

3.1 3の導入

$$\mathcal{L}_{\mathcal{E}}$$
の式 φ に x のみが自由に現れているとき,

推論公理 3.1 (\exists の導入). φ を \pounds の式とし、 ているとし、 τ を主要 ε 項とするとき、

とくに、任意のs項ェに対して

 $\varphi(\tau) \rightarrow$

3.2 3の除去

推論公理 3.2 (∃の除去(NG版)). φ を \pounds のに現れているとするとき、

$$\exists x \varphi(x) \rightarrow$$

$$\varphi$$
が $\mathcal{L}_{\mathcal{E}}$ の式でない場合

εχφ

式の書き換え 3.3

.可能(構造	べて $\mathcal{L}_{\mathcal{E}}$ の式に書き換え	上 の式はすべ
	元の式	
$\overline{\hspace{1cm}}$	$a = \{z \mid \psi\}$	
A	$ \{y \mid \varphi\} = b $	
An		
	$a \in \{z \mid \psi\}$	

 $\exists s \ (\forall u \)$

 $\{y \mid \varphi\} \in b$

 $\{ y \mid \varphi \} \in \{ z \mid \psi \}$ $\exists s \ (\forall u \ ($ \mathcal{L} の式 φ を $\mathcal{L}_{\mathcal{E}}$ の式に書き換えたものを $\hat{\varphi}$ と書

推論公理 3.3 (日の除去). φ を \mathcal{L} の式とし, ているとするとき,

 $\exists x \varphi(x) \rightarrow$

定理 3.4 (集合は主要 ε 項に等しい). φ を φ 自由に現れているとするとき,

3.4 ∀の導入

推論公理 3.5 (∀の導入). φを£の式とし, ているとするとき,

ているとするとき,
$$\varphi(\varepsilon x \to \hat{\varphi}(x))$$

推論公理 3.6 (\forall の除去). φ を \pounds の式とし、ているとし、 τ を主要 ϵ 項とするとき、

3.5 その他の公理

推論公理 3.7.
$$\varphi, \psi, \chi \mathcal{E} \mathcal{L}$$
の文とするとき

• $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) - \varphi \to (\psi \to \varphi).$

• $\varphi \to (\psi \to \varphi).$

• $\varphi \to (\neg \varphi \to \bot).$

 $\bullet \varphi \to (\varphi \lor \psi).$

 $\bullet \neg \varphi \rightarrow (\varphi \rightarrow \bot).$

• $(\varphi \to \bot) \to \neg \varphi$.

成り立つこと

次の定理は他の公理および構造的帰納法と併t

次の定理は他の公理および構造的帰納法と併せ
定理 4.1 (書き換えの同値性).
$$\varphi$$
を \mathcal{L} の文

証明が容易になる例 φ をxのみ自由に現れる式とし、yを φ の引るとき、

$$\vdash \exists x \varphi(x) -$$

略証. 公理と演繹定理より

 $\exists x \varphi(x) \vdash \alpha$

$$\exists x \varphi(x) \rightarrow \exists y \varphi(y)$$
を**HK**で証明すると、
公理より

$$\vdash_{\mathsf{HK}} \varphi(x)$$
 -

$$\vdash_{\mathsf{HK}} \varphi(x)$$
が成り立つので、汎化によって

が成り立つので, 汎化によって

となり、公理

 $\vdash_{\mathsf{HK}} \forall x \, (\varphi(x))$

 $\forall x (\phi(x) \rightarrow \exists u \phi(u))$

証明が容易になる例
$$\varphi$$
 を x のみ自由に現れる式とし、 y を φ の中るとき、

$$\varphi$$
を x のみ自由に現れる式とし、 y を φ の中るとき、 $+\exists y\,(\exists x \varphi(x))$

 $\vdash \exists x \varphi(x)$

 $\exists y (\exists x \varphi(x) \rightarrow \varphi(y))$ を**HK**で証明すると

$$\exists y (\exists x \varphi(x) \rightarrow \varphi(y))$$
を**可**に で証明 9 ると

 $\exists x \varphi(x) -$

 $(\exists x \varphi(x) \rightarrow \exists y \varphi(y)) \rightarrow$