1 Корректность программы

1.1 Проблема корректности программы

Предположим, что нам дана некоторая программа π (написанная на некотором языке программирования).

Проблема

Корректна ли π , т.е. соответствует ли она нашим *ожиданиям*?

Такая постановка задачи носит неформальный характер, и обычно наши ожидания также неформальны и приводятся, например, в виде набора технических требований к программе на естественном языке.

Решение

Чтобы проверить корректность π относительно множества технических спецификаций S обычно используется набор **тестов**, т.е. набор предопределенных начальных состояний программы (представленный, например, в виде набора входных параметров) вместе с набором соответствующих ответов, которые ожидаются от π .

НО: можем ли мы быть уверены, что набор тестов является исчерпывающим, т.е. программа не содержит ошибок?....

1.2 Математическая природа программ

Существуют ли другие способы переформулировать проблему корректности?

Информационная природа π

Существует фундаментальное наблюдение, что программа π , в действительности, скорее является $un\phi opmauuonnum$ объектом, нежели физическим.

Существует очень важное следствие. этого наблюдения: любая программа π подчиняется законам $mamemamu\kappa u$ u $noru\kappa u$, так же, как физические объекты подчиняются физическим законам. Следовательно, мы можем переформулировать природу программы:

Математическая природа π

Любая программа π может рассматриваться как **математический** объект, к которому могут быть применены все математические методы.

1.3 Формальная корректность

Итак, мы можем переформулировать проблему корректности программы, используя понятия математической логики. Но сначала разделим программы на два класса:

- завершающиеся (такие как компилятор, конвертер любых данных и т. д.)
- не завершающиеся (такие как OC, IDE и т. д.)

Далее будем говорить только о завершающихся программах.

Проблема: формальная корректность

Дана программа π , и некоторое множество входных данных, соответствующее формуле ϕ (предусловие), будут ли выходные данные соответствовать формуле ψ (постусловие)?

Отметим, что здесь мы формализовали технические требования к программе, используя формулы логики предикатов. В сокращённых обозначениях проблема корректности записывается как:

$$\{\phi\}\pi\{\psi\}$$

и называется тройка Хоара или условие частичной корректности.

1.4 Пример условия частичной корректности: целочисленный квадратный корень

Представим, что нам дана программа π_{sqr} , вычисляющая целую часть квадратного корня натурального числа. Пусть n - целочисленный входной параметр этой программы,, а m - возвращаемое значение. Тогда мы можем формализовать требования к этой программе путем явного представления соответствующих предусловий и постусловий.

• $\phi = n \geq 0$ - предусловие для π_{sqr}

•
$$\psi = (m^2 \le n) \wedge ((m+1)^2 > n)$$
 - постусловие для π_{sqr}

Отметим, что мы можем указать другое постусловие с тем же значением. Например, мы могли бы использовать формулу с кванторами:

$$\psi' = (m^2 \le n) \land \forall x ((x^2 \le n) \to (x \le m))$$

1.5 Выполнение условий корректности

Теперь мы можем ввести понятие *выполнения* или *истичности* тройки Хоара (частичной корректности).

Определение

Дана тройка Хоара $\{\phi\}\pi\{\psi\}$ (или условие частичной корректности), будем говорить, что оно **истинно** или **выполнено**, тогда и только тогда, когда для любых входных данных, соответствующих ϕ , программа π либо не завершается, либо, в случае её завершения, возвращаемое значение соответствует ψ .

Отметим, что это определение допускает, что π не завершается на входных данных, соответствующих предусловиям. Если мы хотим установить более строгое ограничение на корректность, и потребовать, чтобы для любых данных, соответствующих предусловиям, программа π завершалась, то эти ограничения называются условиями полной корректности и обозначаются как:

$$[\phi]\pi[\psi]$$

2 Неформальная верификация

2.1 Метод Флойда - определение частичной корректности

Итак, дана тройку Хоара $t=\{\phi\}\pi\{\psi\}$, как мы можем проверить, является ли она истинной? Процесс определения истинности тройки Хоара называется **верификацией** программы. Существуют различные способы верификации. Например, мы можем использовать $ne \phi op man b hu ii$ метод $sepu \phi u kauu t$.

Метод Флойда (определение частичной корректности)

- 1. построить блок-схему π
- 2. определить множество **контрольных точек** внутри блок-схемы. Вход и выход π должны входить в это множество. Внутри любого цикла блок-схемы должна быть хотя бы одна контрольная точка..
- 3. определить **инвариант** (некоторую формулу) для каждой контрольной точке. Инвариант для входа предусловие, а для выхода постусловие.
- 4. для любой **пары контрольных точек**, связанных в блок-схеме и не имеющих контрольных точек между ними, **доказать**, что если инвариант первой контрольной точки выполняется, то инвариант последующей точки также будет выполняться.

2.2 Пример: корректность программы для вычисления целочисленного квадратного корня

Рассмотрим следующую программу для вычисления целочисленного квадратного корня. Напомним, что n:int является входным параметром, а x:int - выходным. Также нам потребуется локальная переменная y:int.

```
sqr(n : int) : int {
    x : int; y : int;
    x := 0; y := 0;
    while (y <= n) {
        y := y + x + x + 1;
        x := x + 1
    }
    x: = x - 1;
    return x;
}</pre>
```

2.3 Блок-схема с инвариантами

Применим к программе sqr метод Флойда. Здесь $x \div y = x - y$ в случае, если $y \le x$ и 0 во всех остальных случаях.

2.4 Доказательство частичной корректности

Теперь проанализируем все пары контрольных точек..

- (1) \Rightarrow (2). На входе: $n \geq 0$, на выходе: $(y = x^2) \land (x \div 1 \leq n)$ очевидно, что оба условия выполняются.
- $(2) \Rightarrow (2)$. Обозначим значения x и y на входе как a и b, а значения x и y на выходе как a' и b' соответственно. Тогда

$$(b = a^2) \wedge ((a \div 1)^2 \le n)$$

В точке выхода (2) будет выполняться:

- 1. $b \le n$ (по условию)
- 2. a' = a + 1
- 3. $b' = b + a + a + 1 = a^2 + 2a + 1 = (a+1)^2 = (a')^2$

следовательно, $b'=(a')^2$ и $(a'\div 1)^2=a^2=b\le n$ - инвариант в точке выхода выполняется.

• (2) \Rightarrow (3). Обозначим значения x и y на входе как a и b, а значения x и y на выходе как a' и b' соответственно. Тогда

$$(b = a^2) \wedge ((a \div 1)^2 \le n)$$

В точке выхода (3) будет выполняться:

- 1. $a' = a 1 \Rightarrow a = a' + 1$
- 2. $a^2 = b > n$, т.е. $(a'+1)^2 > n$ (по условию)
- 3. $(a')^2 = (a-1)^2 = (a \div 1)^2 \le n$

Следовательно, $(a')^2 \le n$ и $(a'+1)^2 > n$ - инвариант в точке выхода выполняется.

3 Формальная верификация

3.1 Формальная верификация частичной корректности

Использование неформальной верификации - трудоемкий и не очень надежный процесс, потому что имеет место человеческий фактор. Можно

ли как-либо автоматизировать этот процесс и использовать компьютеры для поиска доказательства корректности? Ответ "да и такой способ называется формальной верификацией программ.

Аксиоматическая семантика

Дан язык программирования l, его **аксиоматическая семантика** - это множество аксиом и правил вывода, действующих на формулы и тройки Хоара и адекватных семантике l.

Аксиомы и правила для основных операторов

- $\{(\phi)_e^x\}x := e\{\phi\}$ аксиома присваивания
- $\frac{\{\phi\}\sigma\{\chi\}-\{\chi\}\tau\{\psi\}}{\{\phi\}\sigma;\tau\{\psi\}}$ правило композиции
- $\frac{\{\phi \land \chi\}\sigma\{\psi\} \quad \{\phi \land \neg \chi\}\tau\{\psi\}}{\{\phi\}if \ \chi \ then \ \sigma \ else \ \tau\{\psi\}}$ условное правило
- $\frac{\{\phi \land \chi\}\sigma\{\phi\}}{\{\phi\}while\ \chi\ do\ \sigma\ \{\phi \land \neg \chi\}}$ итеративное правило, здесь ϕ **инвариант** цикла.

Правило следствия

Существует специальное правило, операндами которого могут быть не только тройки Хоара, но и обычные формулы:

$$\frac{\phi \to \phi' \ \{\phi'\}\sigma\{\psi'\} \ \psi' \to \psi}{\{\phi\}\sigma\{\psi\}}$$

Это правило помогает извлекать формальные математические вопросы, не зависящие от каких-либо объектов языка программирования, из программы и спецификации. Этот процесс известен как **генерация** условий корректности.

3.2 Пример формальной верификации

Рассмотрим простую программу swap, меняющую местами значения двух целочисленных переменных x и y, используя только арифметические операции:

```
swap {
  x := x + y;
  y := x - y;
  x := x - y;
}
```

Тогда спецификация будет выглядеть следующим образом:

$$\{(x=a) \land (y=b)\} swap\{(x=b) \land (y=a)\}$$

Используя аксиоматическую семантику, мы можем построить дерево вывода для этой тройки Хоара:

$$(x = a \land y = b) \to ((x + y) - ((x + y) - y) = b \land (x + y) - y = a)$$

Таким образом, вопрос о корректности *swap* сводится к вопросу о тождественной истинности некоторой формулы логики первого порядка.