Discrete Time Cohort Markov Modelling in R

Multistate cohort Markov Models

- Are useful for repeated events over time
 - Modelling disease progression over time
- A special form of a state transition model

- Manageable number of health states
 - Mutually exclusive
 - Discrete
 - Absorbing state or else equilibrium

Cohort Markov Models

- Markov property process depends only on present state and not on any previous state
 - Strictly a Markov model has this memory-less property but can get around assumptions!
- Movements between health states using transition probabilities
 - From a state must sum to 1
 - Movement in a time period is called a cycle (often 1 year)
- Evaluate the Markov trace
 - How individuals move over each cycle of the model

Health states

- Arrows show what movements are possible in each cycle
- Health state associated with parameters such as costs & QALYs

Health states

- Transition probabilities add up to one from each health state
- Transition probabilities may be in a matrix form
- Repeatedly apply these probabilities to a cohort of patients over time

Health states

	Year	Healthy	Disease	Dead	Total
	1	1000			
	2	1 800	150	50	1000
	3	√ 640	210	150	1000
	4	512	222	266	1000
	5	410	210	380	1000
	6	328	187	485	1000
	7 /	262	162	576	1000
	8/	210	136	654	1000
	9	168	113	719	1000
	10	134	93	773	1000
	11	107	76	817	1000
	12	86	62	852	1000
	13	69	50	881	1000
	14	55	40	905	1000
	15	44	32	924	1000

1000 * 0.8 = 800

1000 * 0.15 = 150

1000 * 0.05 = 50

800 * 0.8 = 640

800 * 0.15 + 150 * 0.6 = 210

800 * 0.05 + 150 * 0.4 + 50 * 1 = 150

A Model in Excel – Drug A

Drug B

The Model in R

```
# Firstly, let's define the number of treatments we are looking at and their names
n.treatments<-2
t.names<-c("Drug A","Drug B")</pre>
# Let's also define the number of states we are looking at and their names
n.states<-2
s.names<-c("Disease","No Disease")</pre>
# In a Markov model we want to specify the number of cycles
n.cycles<-12
```

Costs

QALYs

Transition Probabilities

```
# Let's add in the probabilities
p.matrix<-array(NA,dim=c(n.treatments,n.states,n.states),
                 dimnames=list(t.names,s.names,s.names))
# The matrix containing transition probabilities for Drug A
p.matrix["Drug A", "Disease", "No Disease"] <-0.85
p.matrix["Drug A", "Disease", "Disease"] <-1-p.matrix["Drug A", "Disease", "No Disease"]
p.matrix["Drug A","No Disease","No Disease"]<-0.95</pre>
p.matrix["Drug A", "No Disease", "Disease"] <-1-p.matrix["Drug A", "No Disease", "No Disease"]
# The matrix containing transition probabilities for Drug B
p.matrix["Drug B","Disease","No Disease"]<-0.95</pre>
p.matrix["Drug B","Disease","Disease"]<-1-p.matrix["Drug B","Disease","No Disease"]</pre>
p.matrix["Drug B", "No Disease", "No Disease"]<-0.975
p.matrix["Drug B", "No Disease", "Disease"] <-1-p.matrix["Drug B", "No Disease", "No Disease"]
```

Cycles

```
# We want to store the information for each cycle
cycle.info<-array(NA,dim=c(n.treatments,n.cycles,n.states),
                      dimnames=list(t.names, NULL, s.names))
# Everyone starts without the disease
cycle.info[,1,"No Disease"]<-1
cycle.info[,1,"Disease"]<-0
# We add up the costs and QALYs for each cycle at a time for each drug
cycle.costs<-array(NA,dim=c(n.treatments,n.cycles),
                   dimnames=list(t.names,NULL))
cycle.QALYs<-array(NA,dim=c(n.treatments,n.cycles),
                   dimnames=list(t.names,NULL))
# The total costs and QALYs need to also be stored
total.costs<-array(NA,dim=c(n.treatments),
                   dimnames=list(t.names))
total.QALYs<-array(NA,dim=c(n.treatments),
                   dimnames=list(t.names))
```

Loop over cycles

```
for(i.treatment in 1:n.treatments)
   for(i.cycle in 2:n.cycles)
     cycle.info[i.treatment,i.cycle,]<-
       cycle.info[i.treatment,i.cycle-1,]%*%
       p.matrix[i.treatment,,]
    cycle.QALYs[i.treatment,]<-
     cycle.info[i.treatment,,]%*%q.matrix[i.treatment,]
    cycle.costs[i.treatment,]<-
     cycle.info[i.treatment,,]%*%c.matrix[i.treatment,]
    total.costs[i.treatment]<-sum(cycle.costs[i.treatment,])
   total.QALYs[i.treatment]<-sum(cycle.QALYs[i.treatment,])
```

Results

```
# Let's look at the results
# Incremental costs and QALYs of Drug B compared to Drug A
incremental.costs<-total.costs["Drug B"]-total.costs["Drug A"]
incremental.QALYs<-total.QALYs["Drug B"]-total.QALYs["Drug A"]
# Calculate the incremental cost effectiveness ratio</pre>
```

ICER<-incremental.costs/incremental.QALYs</pre>