Competitive Programmer's CodeBook

 ${\bf MIST_EaglesExpr}$

Syed Mafijul Islam, 202214105 Md. Tanvin Sarkar Pallab, 202214062 Shihab Ahmed, 202314049

October 13, 2024

Contents

1	Useful Tips	3
2	Formula 2.1 Area Formula 2.2 Perimeter Formulas 2.3 Volume Formula 2.4 Surface Area Formula 2.5 Triangles 2.6 Summation Of Series	3 3 3 3 3 3
3	Graph Theory 3.1 BFS 3.2 DFS 3.3 Dijkstra-Algorithm 3.4 Bellman-Ford 3.5 Floyed-Warshall Algorithm 3.6 Kruskal-Algorithm (MST) 3.7 Prims-Algorithm (MST) 3.8 Strongly-Connected-Components	4 4 4 4 5 5 5
4	3.9 LCA	7 8 8
	4.1 Segment Tree 4.2 Segment Tree Lazy 4.3 Fenwick Tree 4.4 DisjointSet 4.5 TRIE	8 9 9 10 10
5	Algorithms 5.1 KMP	11 11 11
6	Number Theory/Math 6.1 nCr 6.2 Power 6.3 Miller Rabin 6.4 Sieve 6.5 Inverse Mod 6.6 Bitset Sieve 6.7 Divisors	12 12 12 12 12 13 13
	5.8 Euler's Totient Phi Function	14 14

1 Useful Tips

Big Integer C++ __int128_t

C++ FastIO

ios::sync_with_stdio(false);
cin.tie(nullptr);

Python FastIO

import sys; input = sys.stdin.readline

2 Formula

2.1 Area Formula

Rectangle Area = length * width

 $\mathbf{Square}\ \mathit{Area} = \mathit{Side} * \mathit{Side}$

Triangle $Area = \frac{1}{2} * length * width$

Circle $Area = \pi * radius^2$

Parallelogram Area = base * height

Pyramid Base $Area = \frac{1}{2} * base * slantHeight$

Polygon

a $Area = \frac{1}{2} |\sum_{n=1}^{n-1} (x_i y_{i+1})|$

b $Area = a + \frac{b}{2} - 1$ (for int coordinates). Here a = int points inside polygon and b = int points outside polygon.

2.2 Perimeter Formulas

 $\begin{array}{cccc} \textbf{Rectangle} \ Perimeter & = & 2 & * \\ & (length + width) & & & \end{array}$

 $\mathbf{Square}\ Perimeter = 4*side$

Triangle Perimeter = 4 * side

Circle $Perimeter = 2 * \pi * radius$

2.3 Volume Formula

Cube $Volume = side^3$

 $\begin{array}{rcl} \mathbf{Rect} \ \mathbf{Prism} \ Volume &= \ length \ * \\ width * height \end{array}$

Cylinder $Volume = \pi * radius^2 * height$

Sphere $Volume = \frac{4}{3} * \pi * radius^3$

 $\begin{array}{l} \textbf{Pyramid} \ \ Volume = \frac{1}{3}*baseArea*\\ height \end{array}$

2.4 Surface Area Formula

Cube $SurfaceArea = 6 * side^2$

Rectangle Prism SurfaceArea = 2 * (length * width + length * height + width * height)

Cylinder $SurfaceArea = 2 * \pi * radius * (radius + height)$

Sphere $SurfaceArea = 4 * \pi * radius^2$

 $\begin{array}{ll} \textbf{Pyramid} \ SurfaceArea &= \\ basearea + \frac{1}{2}*perimeterOfBase* \\ slantHeight \end{array}$

2.5 Triangles

Side Lengths a, b, c

Semi Perimeter $p = \frac{a+b+c}{2}$

Area $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumstance $R = \frac{abc}{4A}$

In Radius $r = \frac{A}{p}$

2.6 Summation Of Series

•
$$c^k + c^{k+1} + \dots + c^n = c^{n+1} - c^k$$

•
$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

$$\bullet \ \, \frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{\frac{n(n+1)(2n+1)}{6}} = \\$$

•
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

3 Graph Theory

All about graph.

3.1 BFS

```
void bfs(int start, int
   target = -1) {
  queue < int > q;
 q.push(start);
 vis[start] = true;
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    for (int i : adj[u]) {
      if (!vis[i]) {
        vis[i] = true;
        q.push(i);
      }
    }
 }
}
```

3.2 DFS

3.3 Dijkstra-Algorithm

```
void Dijkstra(int start) {
   // vector<pair<int, int>>
        adj[N];
   priority_queue<pair<int,
        int>, vector<pair<int,
        int>>, greater<pair<int
        , int>>> pq;
```

```
pq.push({0, start});
  while (!pq.empty()) {
    auto it = pq.top();
    pq.pop();
    int wt = it.first;
    int u = it.second;
    if (vis[u])
      continue;
    vis[u] = 1;
    for (pair<int, int> i :
        adj[u]) {
      int adjWt = i.second;
      int adjNode = i.first;
      if (dist[adjNode] > wt
           + adjWt) {
        dist[adjNode] = wt +
             adjWt;
        pq.push({dist[
            adjNode], adjNode
            });
      }
    }
 }
}
```

3.4 Bellman-Ford

```
vector<int> dist;
vector<int> parent;
vector < vector < pair < int , int</pre>
   >>> adj;
// resize the vectors from
   main function
void bellmanFord(int
   num_of_nd, int src) {
  dist[src] = 0;
  for (int step = 0; step <</pre>
      num_of_nd; step++) {
    for (int i = 1; i <=</pre>
        num_of_nd; i++) {
      for (auto it : adj[i])
           {
        int u = i;
        int v = it.first;
        int wt = it.second;
        if (dist[u] != inf
             ((dist[u] + wt)
                 < dist[v])) {
          if (step ==
              num_of_nd - 1)
              {
```

3.5 Floyed-Warshall Algorithm

```
typedef double T;
typedef vector<T> VT;
typedef vector < VT > VVT;
typedef vector < int > VI;
typedef vector < VI > VVI;
bool FloydWarshall(VVT &w,
   VVI &prev) {
  int n = w.size();
 prev = VVI(n, VI(n, -1));
  for (int k = 0; k < n; k
      ++) {
    for (int i = 0; i < n; i</pre>
        ++) {
      for (int j = 0; j < n;</pre>
           j++) {
        if (w[i][j] > w[i][k
            ] + w[k][j]) {
           w[i][j] = w[i][k]
               + w[k][j];
          prev[i][j] = k;
        }
      }
    }
 }
  for (int i = 0; i < n; i</pre>
      ++)
    if (w[i][i] < 0)</pre>
      return false;
 return true;
```

3.6 Kruskal-Algorithm (MST)

```
vector<pair<int, pair<int,</pre>
   int>>> Krushkal(vector<</pre>
   pair<int, pair<int, int</pre>
   >>> &edges, int n) {
  sort(edges.begin(), edges.
      end());
  vector < pair < int , pair < int ,</pre>
       int>>> ans;
  DisjointSet D(n);
  for (auto it : edges) {
    if (D.findUPar(it.second
        .first) != D.findUPar
        (it.second.second)) {
      ans.push_back({it.
          first, {it.second.
          first, it.second.
          second}});
      D.unionBySize(it.
          second.first, it.
          second.second);
    }
  }
  return ans;
```

3.7 Prims-Algorithm (MST)

```
void Prims(int start) {
  // map < int, vector < pair <
      int, int >>> adj, ans;
  priority_queue < pair < int ,</pre>
      pair<int, int>>, vector
      <pair<int, pair<int,</pre>
      int>>>, greater<pair<</pre>
     int, pair<int, int>>>>
     pq;
  pq.push({0, {start, -1}});
  while (!pq.empty()) {
    auto it = pq.top();
    pq.pop();
    int wt = it.first;
    int u = it.second.first;
    int v = it.second.second
    if (vis[u]) continue;
    vis[u] = 1;
    if (v != -1) ans [u].
        push_back({v, wt});
```

```
for (pair < int, int > i :
        adj[u]) {
    int adjWt = i.second;
    int adjNode = i.first;
    if (!vis[adjNode]) pq.
        push({adjWt, {
        adjNode, u}});
    }
}
```

3.8 Strongly-Connected-Components

```
vector < bool > visited; //
   keeps track of which
   vertices are already
   visited
// runs depth first search
   starting at vertex v.
// each visited vertex is
   appended to the output
   vector when dfs leaves it
void dfs(int v, vector<</pre>
   vector<int>> const &adj,
   vector<int> &output) {
 visited[v] = true;
 for (auto u : adj[v])
    if (!visited[u])
      dfs(u, adj, output);
  output.push_back(v);
// input: adj -- adjacency
   list of G
// output: components -- the
    strongy connected
   components in G
// output: adj_cond --
   adjacency list of G^SCC (
   by root vertices)
void scc(vector<vector<int>>
    const &adj, vector<</pre>
   vector < int >> & components ,
    vector < vector < int >> &
   adj_cond) {
  int n = adj.size();
  components.clear(),
     adj_cond.clear();
```

```
vector<int> order; // will
   be a sorted list of G'
   s vertices by exit time
visited.assign(n, false);
// first series of depth
   first searches
for (int i = 0; i < n; i</pre>
   ++)
  if (!visited[i])
    dfs(i, adj, order);
// create adjacency list
   of G^T
vector < vector < int >>
   adj_rev(n);
for (int v = 0; v < n; v
   ++)
  for (int u : adj[v])
    adj_rev[u].push_back(v
       );
visited.assign(n, false);
reverse (order.begin(),
   order.end());
vector < int > roots(n, 0);
   // gives the root
   vertex of a vertex's
   SCC
// second series of depth
   first searches
for (auto v : order)
  if (!visited[v]) {
    std::vector<int>
        component;
    dfs(v, adj_rev,
        component);
    components.push_back(
        component);
    int root = *
        min_element(begin(
        component), end(
        component));
    for (auto u :
        component)
      roots[u] = root;
  }
// add edges to
    {\it condensation} \ {\it graph}
adj_cond.assign(n, {});
```

```
for (int v = 0; v < n; v</pre>
                                       }
                                     }
     ++)
    for (auto u : adj[v])
      if (roots[v] != roots[
                                     void dfs(vector<vector<int</pre>
                                         >> &adj, int node, int
        adj_cond[roots[v]].
                                         h = 0) \{
            push_back(roots[u
                                       visited[node] = true;
            ]);
                                       height[node] = h;
}
                                       first[node] = euler.size
                                           ();
                                       euler.push_back(node);
3.9
    LCA
                                       for (auto to : adj[node
                                           ]) {
                                         if (!visited[to]) {
struct LCA {
                                           parent[to] = node;
  vector<int> height, euler,
                                            dfs(adj, to, h + 1);
      first, segtree, parent
                                            euler.push_back(node
                                               );
  vector < bool > visited;
                                         }
  vector < vector < int >> jump;
                                       }
                                     }
  int n;
                                     void build(int node, int b
  LCA(vector<vector<int>> &
                                         , int e) {
     adj, int root = 0) {
                                       if (b == e) {
    n = adj.size();
                                         segtree[node] = euler[
    height.resize(n);
    first.resize(n);
                                       } else {
    parent.resize(n);
                                         int mid = (b + e) / 2;
    euler.reserve(n * 2);
                                         build(node << 1, b,</pre>
    visited.assign(n, false)
                                             mid);
                                         build(node << 1 | 1,
    dfs(adj, root);
                                             mid + 1, e);
    int m = euler.size();
                                         int 1 = segtree[node
    segtree.resize(m * 4);
                                             << 1], r = segtree[
    build(1, 0, m - 1);
                                             node << 1 | 1];
                                         segtree[node] = (
    jump.resize(n, vector<</pre>
                                             height[1] < height[
        int > (32, -1));
                                             r]) ? 1 : r;
                                       }
    for(int i=0;i<n;i++) {</pre>
                                     }
        jump[i][0] = parent[
            il:
                                     int query(int node, int b,
                                          int e, int L, int R) {
                                       if (b > R || e < L)</pre>
    for(int j=1; j<20; j++) {</pre>
                                         return -1;
        for(int i=0;i<n;i++)</pre>
                                       if (b >= L && e <= R)</pre>
                                         return segtree[node];
             int mid = jump[i
                                       int mid = (b + e) >> 1;
                ][j-1];
             if (mid != -1)
                                       int left = query(node <<</pre>
                 jump[i][j] =
                                            1, b, mid, L, R);
                 jump[mid][j
                                       int right = query(node
```

<<1 | 1, mid + 1, e,

-1];

}

```
L, R);
    if (left == -1)
      return right;
    if (right == -1)
      return left;
    return height[left] <</pre>
        height[right] ? left
        : right;
  }
  int lca(int u, int v) {
    int left = first[u],
        right = first[v];
    if (left > right)
      swap(left, right);
    return query(1, 0, euler
        .size() - 1, left,
        right);
  int kthParent(int u, int k
     ) {
      for(int i=0;i<19;i++)</pre>
          {
          if(k & (1LL<<i)) u</pre>
               = jump[u][i];
      return u;
 }
};
```

3.10 Max Flow

```
const int N = 505;
int capacity[N][N];
int vis[N], p[N];
int n, m;
int bfs(int s, int t) {
 memset(vis, 0, sizeof vis)
     ;
  queue < int > qu;
  qu.push(s);
 vis[s] = 1;
  while (!qu.empty()) {
    int u = qu.front();
    qu.pop();
    for (int i = 0; i <= n +</pre>
        m + 2; i++) {
      if (capacity[u][i] > 0
           && !vis[i]) {
        p[i] = u;
        vis[i] = 1;
```

```
qu.push(i);
     }
   }
 }
 return vis[t] == 1;
int maxflow(int s, int t) {
 int cnt = 0;
 while (bfs(s, t)) {
    int cur = t;
    while (cur != s) {
      int prev = p[cur];
      capacity[prev][cur] -=
          1;
      capacity[cur][prev] +=
          1;
      cur = prev;
    }
    cnt++;
 }
 return cnt;
```

4 Data Structures

Different Data Structures.

4.1 Segment Tree

```
constexpr int N = 100005;
int arr[N], seg[N];
void build(int ind, int low,
    int high) {
  if (low == high) {
    seg[ind] = arr[low];
    return;
 }
 int mid = (low + high) /
     2;
  build(2 * ind + 1, low,
     mid);
  build(2 * ind + 2, mid +
     1, high);
  seg[ind] = seg[2 * ind +
     1] + seg[2 * ind + 2];
int query(int ind, int low,
   int high, int 1, int r) {
 if (low >= 1 && high <= r)</pre>
      return seg[ind];
```

```
if (low > r || high < 1)</pre>
     return 0;
  int mid = (low + high) /
     2;
  int left = query(2 * ind +
                                 }
      1, low, mid, l, r);
  int right = query(2 * ind
     + 2, mid + 1, high, 1,
     r);
 return left + right;
void update(int ind, int low
   , int high, int node, int
    val) {
  if (low == high) {
    seg[ind] = val;
    return;
  int mid = (low + high) /
     2;
  if (low <= node && node <=</pre>
      mid) update(2 * ind +
     1, low, mid, node, val)
  else update(2 * ind + 2,
     mid + 1, high, node,
     val);
  seg[ind] = seg[2 * ind +
     1] + seg[2 * ind + 2];
}
     Segment Tree Lazy
constexpr int N = 100005;
int arr[N];
```

```
struct {
  int sum, prop;
} seg[4 * N];
void build(int ind, int low,
    int high) {
  if (low == high) {
    seg[ind].sum = arr[low];
    seg[ind].prop = 0;
    return;
 }
  int mid = (low + high) /
     2:
  build(2 * ind + 1, low,
     mid);
  build(2 * ind + 2, mid +
     1, high);
```

```
seg[ind].sum = seg[2 * ind]
      + 1].sum + seg[2 * ind
      + 2].sum;
 seg[ind].prop = 0;
void update(int ind, int low
   , int high, int 1, int r,
    int val) {
  if (1 > high || r < low)</pre>
     return;
  if (low >= 1 && high <= r)</pre>
      {
    seg[ind].sum += (high -
       low + 1) * val;
    seg[ind].prop += val;
    return;
  int mid = (low + high) /
  update(2 * ind + 1, low,
     mid, 1, r, val);
  update(2 * ind + 2, mid +
     1, high, 1, r, val);
  seg[ind].sum = seg[2 * ind]
      + 1].sum + seg[2 * ind]
      + 2].sum + (high - low
      + 1) * seg[ind].prop;
int query(int ind, int low,
   int high, int 1, int r,
   int carry = 0) {
  if (1 > high || r < low)</pre>
     return 0;
  if (low >= 1 && high <= r)</pre>
    return seg[ind].sum +
       carry * (high - low +
        1);
 }
 int mid = (low + high) /
  int q1 = query(2 * ind +
     1, low, mid, l, r,
     carry + seg[ind].prop);
  int q2 = query(2 * ind +
     2, mid + 1, high, 1, r,
      carry + seg[ind].prop)
 return q1 + q2;
```

4.3Fenwick Tree

```
int fenwick[N];
                                    public:
                                     int EoW;
void update(int ind, int val
                                     Node* child[N];
                                     Node() {
   ) {
  while (ind < N) {
                                       EoW = 0;
    fenwick[ind] += val;
                                       for (int i = 0; i < N; i</pre>
    ind += ind & -ind;
                                           ++) child[i] = NULL;
  }
                                     }
}
                                  };
int query(int ind) {
  int sum = 0;
                                   void insert(Node* node,
  while (ind > 0) {
                                      string s) {
    sum += fenwick[ind];
                                     for (size_t i = 0; i < s.</pre>
    ind -= ind & -ind;
                                         size(); i++) {
  }
                                       int r = s[i] - A;
                                       if (node->child[r] ==
  return sum;
                                           NULL) node->child[r]
                                           = new Node();
                                       node = node->child[r];
     DisjointSet
4.4
                                     node \rightarrow EoW += 1;
                                  }
class DisjointSet {
  vector < int > parent, sz;
                                   int search(Node* node,
                                      string s) {
 public:
                                     for (size_t i = 0; i < s.</pre>
  DisjointSet(int n) {
                                        size(); i++) {
    sz.resize(n + 1);
                                       int r = s[i] - 'A';
    parent.resize(n + 2);
                                       if (node->child[r] ==
    for (int i = 1; i <= n;</pre>
                                           NULL) return 0;
        i++) parent[i] = i,
                                     }
        sz[i] = 1;
                                     return node -> EoW;
  int findUPar(int u) {
     return parent[u] == u ?
                                   void print(Node* node,
      u : parent[u] =
                                      string s = "") {
      findUPar(parent[u]); }
                                     if (node->EoW) cout << s</pre>
  void unionBySize(int u,
                                         << "\n";
     int v) {
                                     for (int i = 0; i < N; i</pre>
    int a = findUPar(u);
                                        ++) {
    int b = findUPar(v);
                                       if (node->child[i] !=
    if (sz[a] < sz[b]) swap(</pre>
                                           NULL) {
       a, b);
                                         char c = i + 'A';
    if (a != b) {
                                         print(node->child[i],
      parent[b] = a;
                                             s + c);
      sz[a] += sz[b];
                                       }
                                     }
  }
};
                                   bool isChild(Node* node) {
4.5
     TRIE
                                     for (int i = 0; i < N; i</pre>
                                         ++)
                                       if (node->child[i] !=
const int N = 26;
                                           NULL) return true;
class Node {
```

```
return false;
bool isJunc(Node* node) {
 int cnt = 0;
  for (int i = 0; i < N; i</pre>
     ++) {
    if (node->child[i] !=
       NULL) cnt++;
 }
 if (cnt > 1) return true;
 return false;
int trie_delete(Node* node,
   string s, int k = 0) {
  if (node == NULL) return
     0;
  if (k == (int)s.size()) {
    if (node -> EoW == 0)
       return 0;
    if (isChild(node)) {
      node -> EoW = 0;
      return 0;
    }
    return 1;
 }
 int r = s[k] - 'A';
  int d = trie_delete(node->
     child[r], s, k + 1);
  int j = isJunc(node);
  if (d) delete node->child[
     r];
 if (j) return 0;
  return d;
void delete_trie(Node* node)
  for (int i = 0; i < 15; i</pre>
     ++) {
    if (node->child[i] !=
       NULL) delete_trie(
       node->child[i]);
 }
 delete node;
```

5 Algorithms

All about algorithms.

5.1 KMP

```
vector<int> prefix_function(
   string s) {
    int n = (int)s.length();
    vector < int > pi(n);
    for (int i = 1; i < n; i</pre>
        ++) {
        int j = pi[i - 1];
        while (j > 0 \&\& s[i]
             != s[j]) j = pi[
            j - 1];
        if (s[i] == s[j]) j
            ++;
        pi[i] = j;
    }
    return pi;
vector<int> find_matches(
   string text, string pat)
    int n = pat.length(), m
       = text.length();
    string s = pat + "$" +
       text;
    vector<int> pi =
       prefix_function(s),
       ans;
    for (int i = n; i <= n +</pre>
        m; i++) {
        if (pi[i] == n) {
            ans.push_back(i
                -2 * n);
        }
    }
    return ans;
```

5.2 Monotonic Stack (Immediate Small)

```
for (int i = n - 1; i >= 0;
    i--) {
    while (!stk.empty() && v[i
      ] >= v[stk.top()]) stk.
      pop();
    ind[i] = stk.empty() ? -1
            : stk.top();
    stk.push(i);
}
// 3 1 5 4 10
// 2 2 4 4 -1
```

\mathbf{Number} Theory/-Math

All about math.

6.1 nCr

```
int inverseMod(int a, int m)
    { return power(a, m - 2)
int nCr(int n, int r, int m
   = mod) {
   if(r==0) return 1;
   if(r>n) return 0;
   return (fact[n] *
      inverseMod((fact[r] *
      fact[n-r]) % m , m)) %
       m:
}
```

6.2 Power

```
int power(int base, int n,
   int m = mod) {
 if (n == 0) return 1;
 if (n & 1) {
   int x = power(base, n /
       2);
    return ((x * x) % m *
       base) % m;
 }
  else {
    int x = power(base, n /
       2);
   return (x * x) % m;
 }
```

6.3 Miller Rabin

```
using u64 = uint64_t;
using u128 = __uint128_t;
u64 binpower(u64 base, u64 e
   , u64 mod) {
 u64 result = 1;
 base %= mod;
 while (e) {
```

```
if (e & 1) result = (
       u128)result * base %
       mod;
    base = (u128)base * base
        % mod;
    e >>= 1;
  }
  return result;
bool check_composite(u64 n,
   u64 a, u64 d, int s) {
  u64 x = binpower(a, d, n);
  if (x == 1 | | x == n - 1)
     return false;
  for (int r = 1; r < s; r</pre>
     ++) {
    x = (u128)x * x % n;
    if (x == n - 1) return
       false;
  }
  return true;
};
bool MillerRabin(u64 n, int
   iter = 5) { // returns
   true if n is probably
   prime, else returns false
  if (n < 4) return n == 2
     | | n == 3;
  int s = 0;
  u64 d = n - 1;
  while ((d & 1) == 0) {
    d >>= 1;
    s++;
  for (int i = 0; i < iter;</pre>
     i++) {
    int a = 2 + rand() % (n
        - 3);
    if (check_composite(n, a
       , d, s)) return false
  }
  return true;
6.4 Sieve
const int N = 1e7 + 3;
```

```
vector<int> primes;
```

```
int notprime[N];
void sieve() {
  primes.push_back(2);
  for (int i = 2; i < N; i</pre>
      += 2) {
    notprime[i] = true;
  }
  for (int i = 3; i < N; i</pre>
     += 2) {
    if (!notprime[i]) {
      primes.push_back(i);
      for (int j = i * i; j
          < N; j += 2 * i) {
        notprime[j] = true;
      }
    }
  }
}
```

6.5 Inverse Mod

```
int modInverse(int a, int m)
    {
    int m0 = m, t, q;
    int x0 = 0, x1 = 1;
    if (m == 1) return 0;
    while (a > 1) {
        q = a / m;
        t = m;
        m = a % m, a = t;
        t = x0;
        x0 = x1 - q * x0;
        x1 = t;
    }
    if (x1 < 0) x1 += m0;
    return x1;
}</pre>
```

6.6 Bitset Sieve

```
const int sieve_size =
   10000006;
bitset < sieve_size > sieve;

void Sieve() {
   sieve.flip();
   int finalBit = sqrt(sieve.
        size()) + 1;
   for (int i = 2; i <
        finalBit; ++i) {
        if (sieve.test(i))</pre>
```

6.7 Divisors

```
constexpr int N = 1000005;
int Prime[N + 4], kk;
bool notPrime[N + 5];
void SieveOf() {
  notPrime[1] = true;
  Prime[kk++] = 2;
  for (int i = 4; i <= N; i</pre>
     += 2) notPrime[i] =
     true;
  for (int i = 3; i <= N; i</pre>
     += 2) {
    if (!notPrime[i]) {
      Prime[kk++] = i;
      for (int j = i * i; j
          <= N; j += 2 * i)
          notPrime[j] = true;
    }
 }
void Divisors(int n) {
  int sum = 1, total = 1;
  int mnP = INT_MAX, mxP =
      INT_MIN, cntP = 0,
      totalP = 0;
  for (int i = 0; i <= N &&</pre>
      Prime[i] * Prime[i] <=</pre>
     n; i++) {
    if (n % Prime[i] == 0) {
      mnP = min(mnP, Prime[i
          ]);
      mxP = max(mnP, Prime[i
          1);
      int k = 0;
      cntP++;
      while (n % Prime[i] ==
           0) {
        k++;
        n /= Prime[i];
      sum *= (k + 1); //
         NOD
      totalP += k;
```

```
int s = 0, p = 1;
      while (k-- \ge 0) {
       s += p;
       p *= Prime[i];
      total *= s; // SOD
 }
  if (n > 1) {
    cntP++, totalP++;
    sum *= 2;
    total *= (1 + n);
    mnP = min(mnP, n);
   mxP = max(mnP, n);
  cout << mnP << "" << mxP
     << "" << cntP << ""
     << totalP << "" << sum
      << "u" << total << "\n
}
```

6.8 Euler's Totient Phi Function

```
const int N = 5000005;
int phi[N];
unsigned long long phiSum[N
];
```

```
void phiCalc() {
  for (int i = 2; i < N; i</pre>
     ++) phi[i] = i;
  for (int i = 2; i < N; i</pre>
     ++) {
    if (phi[i] == i) {
      for (int j = i; j < N;
           j += i) {
        phi[j] -= phi[j] / i
      }
    }
  }
  for (int i = 2; i < N; i</pre>
      ++) {
    phiSum[i] = (unsigned
        long long)phi[i] * (
        unsigned long long)
        phi[i] + phiSum[i -
        1];
}
```

6.9 Log a base b

```
int logab (int a, int b){
  return log2(a) / log2(b);
}
```