HW 06 - Maticové počty

Termín odevzdání	30.11.2024 23:59 PST HW06B 11.01.2025 23:59 CET
Povinné zadání	2b kontrola Coding Stylu [/wiki/courses/b0b36prp/resources/tessun/start]
Volitelné zadání	3b kontrola Coding Stylu [/wiki/courses/b0b36prp/resources/tessun/start]
Bonusové zadání	3b
Počet uploadů	20
Podpůrné soubory	b0b36prp-hw06.zip [/wiki/_media/courses/b0b36prp/hw/b0b36prp-hw06.zip] b0b36prp-hw06b.zip [/wiki/_media/courses/b0b36prp/hw/b0b36prp-hw06b.zip]

U této úlohy bude cvičící ručně hodnotit dodržení Coding Stylu [/wiki/courses/b0b36prp/resources/tessun/start]. Hodnocení je popsáno zde [/wiki/courses/b0b36prp/hw/start].

V této úloze budete mít za úkol implementovat maticové operace sčítání, odčítání a násobení. Všechny prvky všech matic (i v průběhu výpočtu) se vejdou do 32-bitového znaménkového typu integer.

Pokud nebude vstup ve správném formátu nebo nepůjde provést příslušnou maticovou operaci, tak vypiště " Error: Chybny vstup! " a konec řádku na standardní chybový výstup a ukončete program s návratovou hodnotou 100. Není třeba kontrolovat bílé znaky (mezery a nové řádky); stačí tedy ověřit, že jsou na vstupu dvě celá čísla reprezentující velikost matice a následně správný počet celých čísel odpovídající velikosti matice (například pomocí scanf()).¹⁾.

Pokud budete používat dynamickou alokaci paměti (malloc() , calloc()), tak doporučujeme použít program Valgrind [http://valgrind.org/] ještě před nahráním do odevzdávacího systému pro kontrolu práce s pamětí.

Velikost vstupních matic (povinného a volitelného zadání) je přesně specifikována vstupním formátem, proto je doporučeno načítat vstup postupně po celých číslech a nikoliv po řádcích např. funkcí getline(). V případě bonusového zadání se může použití funkce getline() zdát výhodné, ale ani tady to není nutné. Opět můžete načítat první řádek postupně po celých číslech a tím identifikovat počet sloupců. Následně můžete již alokovat potřebnou velikost paměti, např. funkcí realloc() a postupovat identicky s povinným/ volitelným zadáním.

Pro testování funkčnosti program před jeho odevzdáním lze využít přiložené vstupní a referenční výstupní soubory. Dále je možné testovat také generátorem a referečním řešení viz <u>Testování HW programů před odevzdáním [/wiki/courses/b0b36prp/tutorials/testing]</u>. Pro generování volitelného zadání použijte dodatečný přepínač -optional.

Povinné zadání

Na standardním vstupu jsou pouze dvě matice s jednou operací (+,-,*). Vaším úkolem je provést zadanou operaci a vypsat na standardní výstup výslednou matici.

Formát vstupu

Na standardním vstupu jsou dvě nebo i více matic oddělených jedním řádkem se znakem operace (+,-,*). Každá matice má na prvním řádku nejprve svoji velikost (n, m) a následuje n řádků vždy s m hodnotami matice. Jednotlivé hodnoty jsou oddělené mezerami (whitespaces).

Formát výstupu

Formát výstupu je stejný, ale obsahuje pouze jednu matici. Nezapomeňte, že na konci řádku není mezera a i za posledním řádkem je znak nového řádku.

Příklad 1 - pub01-m

$$\begin{pmatrix} 76 & 98 & -31 \\ 30 & 30 & 32 \end{pmatrix} - \begin{pmatrix} 89 & 25 & 38 \\ 1 & -32 & -38 \end{pmatrix} = \begin{pmatrix} -13 & 73 & -69 \\ 29 & 62 & 70 \end{pmatrix}$$

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
		žádný	0
2 3	2 3		
76 98 -31	-13 73 -69		
30 30 32	29 62 70		
-			
2 3			
89 25 38			
1 -32 -38			

Příklad 2 - pub02-m

$$\begin{pmatrix} -59 & 78 & -85 \end{pmatrix} imes \begin{pmatrix} 78 \\ -28 \\ -97 \end{pmatrix} = \begin{pmatrix} 1459 \end{pmatrix}$$

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
1 3 -59 78 -85 * 3 1 78 -28 -97	1 1 1459	žádný	0

Příklad 3 - pub03-m

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
2 3 16 41 -98 * 3 1 96 -67 49	žádný	Error: Chybny vstup!	100

Příklad 4 - pub04-m

$$\begin{pmatrix} 81 & -96 & -56 & -9 \\ -19 & 66 & 37 & -21 \\ 20 & 49 & -71 & -49 \\ 45 & -96 & 20 & 8 \end{pmatrix} \times \begin{pmatrix} -89 & -96 \\ 76 & 75 \\ 65 & 2 \end{pmatrix}$$

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
4 4	žádný	Error: Chybny vstup!	100
81 -96 -56 -9		Error. Chybhy Vstup:	
-19 66 37 -21			
20 49 -71 -49 45 -96 20 8			
*			
3 2			
-89 -96			
76 75 65 2			

Volitelné zadání

Na vstupu je sekvence matic o maximální délce 100 spolu se zadanými operacemi. Operace vyhodnocujte podle jejich priority a vypište až výslednou matici. To odpovídá tomu, jako kdyby byl následující výraz s maticemi A až F:

$$A + B * C + D * E - F$$

ozávorkován následujícím způsobem:

$$A + (B * C) + (D * E) - F$$

Příklad 1 - pub01-o

$$(6 \ 4) + (-6 \ 7) + (-6 \ -4) = (-6 \ 7)$$

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
		žádný	0
1 2	1 2	3	
6 4	-6 7		
+			
1 2			
-6 7			
+			
1 2			
-6 -4			

Příklad 2 - pub02-o

$$\begin{pmatrix} 0 & 4 & -9 \\ -9 & 6 & -4 \\ 3 & 5 & -2 \\ -1 & 7 & 5 \end{pmatrix} \times \begin{pmatrix} -10 & -9 & -8 & 9 \\ -4 & 0 & -9 & 1 \\ 4 & 6 & -9 & 5 \end{pmatrix} + \begin{pmatrix} 0 & -9 & 3 & -6 \\ 10 & -9 & 8 & -7 \\ -1 & 0 & 5 & 1 \\ 3 & 2 & -9 & 9 \end{pmatrix} = \begin{pmatrix} -52 & -63 & 48 & -47 \\ 60 & 48 & 62 & -102 \\ -59 & -39 & -46 & 23 \\ 5 & 41 & -109 & 32 \end{pmatrix}$$

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
		žádný	0
4 3	4 4	,	
0 4 -9	-52 -63 48 -47		
-9 6 -4	60 48 62 -102		
3 5 -2	-59 -39 -46 23		
-1 7 5	5 41 -109 32		
*			
3 4			
-10 -9 -8 9			
-4 0 -9 1			
4 6 -9 5			
+			
4 4			
0 -9 3 -6			
10 -9 8 -7			
-1 0 5 1			
3 2 -9 9			

Příklad 3 - pub03-o

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
2 2	žádný	Error: Chybny vstup!	100
3 x10		Error. Chybhy vacup.	
-9 5			
+ 2 2			

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
8 -5			
1 8			
+			
2 2			
-4 6			
-2 8			

Příklad 4 - pub04-o

$$\begin{pmatrix} -1 \\ 4 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 8 & 5 \\ 10 & -8 \end{pmatrix} \times \begin{pmatrix} 5 \\ 5 \end{pmatrix} = \begin{pmatrix} 63 \\ 14 \end{pmatrix}$$

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
		žádný	0
2 1	2 1		
-1	63		
4	14		
+			
2 1			
-1			
0			
+			
2 2			
8 5			
10 -8			
*			
2 1			
5			
5			

Bonusové zadání

Na vstupu jsou matice zadány ve formátu ná $zev = [x11 \ x12 \dots \ x1n; x21 \ x22 \dots \ x2n; \dots; xm1 \ xm2 \dots \ xmm]$ a maticová operace je poté zadána pomocí názvů jednotlivých matic.

- názvy matic jsou velká písmena, přičemž seznam matic předchází zadané operaci
- definice jedné matice zabírá jeden řádek
- členy matice se zapisují do hranatých závorek
- jednotlivé členy na řádku jsou odděleny mezerou, jednotlivé řádky jsou odděleny středníkem
- výpočet je oddělen od definic matic volným řádkem
- výpočetní operace se skládá z libovolného množství operandů.
- operandy jsou pouze +,-,* přičemž operace se vyhodnocují podle priority stejně jako u volitelného zadání
- výstupem programu je výsledek maticové operace formátovaný podle pravidel popsaných výše
- počet matic je omezen počtem písmen v abecedě, ale délka výrazu není nijak omezena

Příklad 1 - pub01

$$B = \begin{pmatrix} 5 & 2 & 4 \\ 0 & 2 & -1 \\ 3 & -5 & -4 \end{pmatrix}, \quad E = \begin{pmatrix} -6 & -5 & -8 \\ -1 & -1 & -10 \\ 10 & 0 & -7 \end{pmatrix}, \quad R = \begin{pmatrix} -1 & -7 & 6 \\ -2 & 9 & -4 \\ 6 & -10 & 2 \end{pmatrix}$$
$$R + E + B = \begin{pmatrix} -2 & -10 & 2 \\ -3 & 10 & -15 \\ 19 & -15 & -9 \end{pmatrix}$$

Standardní vstup Očekávaný výstup Očekávaný Návratová chybový výstup hodnota

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
B=[5 2 4; 0 2 -1; 3 -5 -4] E=[-6 -5 -8; -1 -1 -10; 10 0 -7] R=[-1 -7 6; -2 9 -4; 6 -10 2] R+E+B	[-2 -10 2; -3 10 -15; 19 -15 -9]	žádný	0

Příklad 2 - pub02

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
K=[-10 0 2; -6 10 -6; -9 2 0] D=[0 6 7] M=[10 -5 -4] D*K+M	[-89 69 -40]	žádný	0

Příklad 3 - pub03

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
R=[6 9; -3 9; -9 10] K=[2 -8 8; -1 2 -4]	[-96 332 -384; 78 -252 312]	žádný	0
K+K*R*K			

Příklad 4 - pub04

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
M=[-9 5 9; -7 8 7; 10 -3 3]	[136 -32 -19; 77 8 14; -39 17 78]	žádný	0
M*M+M-M			

...

Příklad 10 - pub10

Poslední veřejný příklad je inspirován jedním ze způsobů výpočtu Fibonacciho čísla [https://cs.wikipedia.org/wiki/Fibonacciho_posloupnost]. Výsledná matice bude obsahovat sumy prvních 24, 25 ²⁾ a 26 Fibonacciho čísel.

$$\sum_{i=1}^{25} A^i = \sum_{i=1}^{25} \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}^i$$

Standardní vstup	Očekávaný výstup	Očekávaný chybový	Návratová hodnota	
		výstup		

Standardní vstup	Očekávaný výstup	Očekávaný chybový výstup	Návratová hodnota
A=[1 1; 1 0]	[317809 196417; 196417 121392]	žádný	0
A+A*A+A*A*A+A*A*A*A*A*A*A*A*A*A*A*A*A*A			

Odevzdání a hodnocení

Veřejné příklady + Makefile:

- Povinné (man) a volitelné (opt) zadání: b0b36prp-hw06.zip [/wiki/_media/courses/b0b36prp/hw/b0b36prp-hw06.zip]
- Bonusové zadání: b0b36prp-hw06b.zip [/wiki/_media/courses/b0b36prp/hw/b0b36prp-hw06b.zip]

	Povinné zadání	Volitelné zadání	Bonusové zadání
Název v BRUTE	HW06		HW06B
Odevzdávané soubory	main.c		
Argumenty při spuštění	žádné		
Návratová hodnota	0 100 ; "Error: Chybny vstup!" → stderr		
Kompilace pomocí	clang -pedantic -Wall -Werror -std=c99		
Procvičované oblasti	pole variabilní délky indexování v poli	dynamická alokace paměti	dynamická alokace paměti práce s pointry

1)

Upřesněno 24. 11. 2017 na základě studentského dotazu.

2)

Možno ověřit na WolframAlpha [http://www.wolframalpha.com/input/?i=sum+Fibonacci%5Bx%5D+from+1+to+25]

courses/b0b36prp/hw/hw06.txt · Last modified: 2024/09/15 13:17 by faiglj

Copyright © 2025 CTU in Prague | Operated by <u>IT Center of Faculty of Electrical Engineering</u> | Bug reports and suggestions <u>Helpdesk</u>
CTU