SdI30 LABORATORIUM 04

Zestaw zadań W03 Rozkład normalny i jego zastosowania

1. Przykład projektu zaliczeniowego cz. 1

Uwaga. Należy przytaczać wzory i składnie funkcji wykorzystywanych w rozwiązaniach. Udzielać pełnych odpowiedzi. Sporządzić tabelę ocen według wzoru.

Etap	1	2	3	4	5	6	7	Łącznie
do uzyskania	8	5	4	2	4	5	12	40
uzyskano								

Długość X (w [mm]) detalu produkowanego na pewnym automacie jest zmienną losową o gęstości prawdopodobieństwa

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-x^2 + 40x - 400}{0.08}\right), x \in \mathbb{R}$$

- 1. Rozpoznać rozkład długości detalu i jego parametry, wyznaczyć drugi moment zwykły długości detalu, sporządzić krzywą gęstości i dystrybuantę.
- 2. Obliczyć prawd. zdarzeń: $|X 19,98| \ge 0,02$, $|X \mathbb{E}X| < \mathbb{D}X$.
- 3. Dla jakiej wartości stałej b zachodzi równość $P(x_{0.05} < X < b) = 0.90$?
- 4. Wyznaczyć kwartyle długości detalu oraz obliczyć wartości gęstości dla nich.
- 5. Wyznaczyć przedział, w którym mieści się 95% produkowanych detali po złomowaniu 5% detali o największej odchyłce długości od wymiaru przeciętnego.
- 6. Co wynika z faktu, że łączna długość 180 wyprodukowanych detali będzie mniejsza od 358[cm]?
- 7. Detal spełnia normę długości, jeśli jego długość mieści się w dopuszczalnym przedziale (19,6; 20,4) [mm]. W celu sprawdzenia dokładności produkcji zmierzona zostanie długość 180 losowo wybranych detali.
- a) Wprowadzić zmienną losową opisującą wynik sprawdzania normy długości badanej partii detali. Podać jej rozkład i sporządzić wykresy PMF i CDF.
- b) Obliczyć prawd. zdarzenia, że w badanej partii detali, co najmniej 175 z nich spełni normę długości.
- c) Wyznaczyć wartość oczekiwaną, odchylenie standardowe oraz modę liczby detali, które spełnią normę długości i prawdopodobieństwo dla mody.
- **2.** Z partii produkowanych wyrobów, wśród których jest 10% extra, pobierzemy próbę o liczności n=12, w celu sprawdzenia frakcji wyrobów extra w próbie.
 - a) Jaki jest rozkład liczby wyrobów extra w próbie, tj. zm. l. T_n ?
 - b) Czy rozsądne jest aproksymowanie zm. l. T_n rozkładem normalnym?
 - c) Obliczyć prawd. zdarzenia $T_n \ge 2$.
 - d) Obliczyć wartości oczekiwane i wariancje zm. losowych T_n i $\overline{P_n}$.

- 3. Przypuśćmy, że w pewnej populacji ludzi wysokość kobiety: $X \sim \mathcal{N}(168; 5)$ [cm], a mężczyzny: $Y \sim \mathcal{N}(187; 7)$ [cm]. Z populacji tej wylosowani zostaną jedna kobieta i jeden mężczyzna. Obliczyć prawd., że
 - a) mężczyzna będzie wyższy od kobiety o ponad 10[cm];
 - b) kobieta będzie wyższa od mężczyzny.

- c) średnia arytmetyczna ich wysokości będzie w przedziale (170; 175) [cm].
- d) niższa z wylosowanych osób będzie niższa niż 160[cm].
- e) wyższa z wylosowanych osób będzie wyższa niż 180[cm].
- **4.** Opór R pewnego typu oporników elektrycznych można opisać rozkładem normalnym $\mathcal{N}(\mu,\sigma)$. Koszt produkcji jednego opornika wynosi k, jego cena rynkowa zaś równa jest 5k, gdy $R \in (\mu \sigma, \mu + \sigma)$ i 2k, jeżeli $R \in (\mu 2\sigma, \mu \sigma)$ lub $R \in (\mu + \sigma, \mu + 2\sigma)$. Oporniki, które nie spełnią podanych kryteriów, nie mogą być sprzedawane. Oblicz dochód na jeden opornik.
- **5.** Waga netto *X* [tony] towarów wysyłanych w kontenerach określonych wymiarów jest normalną zm. l. o nieznanych parametrach. Wiadomo, że 65% kontenerów wykazuje wagę netto ponad 4,9 ton, a 25% kontenerów wagę netto mniejszą niż 4,2 tony.
 - a) Wyznacz nieznane parametry rozkładu wagi netto towarów wysyłanych w tych kontenerach.
 - b) Oblicz procent kontenerów, które mają wagę w przedziale od 4 do 5 ton?

Odp.: a) $\mathbb{E}X = 5.83$ tony; $\mathbb{D}X = 2.41$ tony.

K.A. 01.03.2021