• blog site: https://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html

edit date: 2017.06.15

[Input Sequence X]

At time step t, x_{t} in x has a 50% chance of being 1 (and a 50% chance of being 0). E.g., $X:[x_1, x_2, x_3, x_4, x_5...]$ might be [1, 0, 0, 1, 1, ...].

[Output sequence (Y)]

General Situation: At time step t, y_t has a base 50% chance of being 1 (and a 50% base chance to be 0).

- RULE 1: The chance of y_t being 1 is increased by 50% (i.e., 50% to 100%) if X_{t-3} is 1,
- RULE2: The chance of y_t being 1 decreased by 25% (i.e., 50% to 25%) if X_{t-8} is

E.g., If both Xt-3 and Xt-8 are 1, the chance of Yt being 1 is 50% + 50% - 25% = 75%.

[Training Result]

There will be three situations.

Scenario one: Learn nothing: the model only has the probability distribution of Y, ignore all the information between Y and X.

Scenario two: Learn RULE 1: model learn the information between y_t and x_{t-3}

Scenario three: Learn RULE1 & RULE2: model learn the information between y_t and (x_{t-3} , x_{t-8})

CROSS ENTROPY

Definition: suppose there are n events in space

- cross entropy: Σ P(event)*log(Q(event))
- Real distribution: P
- Model distribution:Q
- P(event): the probability of event happens in P

IDEA: we use cross entropy as our loss function, the less the better. Therefore, the model is trying make the distribution of Q fit Y. As a result, the least of cross entropy happens when P(Y)=Q(Y). The least: - Σ $P(\text{event})^*\log(P(\text{event}))$

Scenario one: consider two events

REAL DISTRIBUTION

• Event 1: $P(y_t=1) = P(y_t=1 \mid x_{t-3}=1, x_{t-8}=1) * P(x_{t-3}=1,) * P(x_{t-8}=1)$ + $P(y_t=1 \mid x_{t-3}=1, x_{t-8}=0) * P(x_{t-3}=1) * P(x_{t-8}=0)$

+ P(y_t=1 |
$$x_{t-3} = 0$$
, $x_{t-8} = 1$)*P($x_{t-3} = 0$)*P($x_{t-8} = 1$)
+ P(y_t=1 | $x_{t-3} = 0$, $x_{t-8} = 0$)*P($x_{t-3} = 0$)*P($x_{t-8} = 0$)

• P(y_t=1) = 0.75 * 0.25 + 1 * 0.25 + 0.25 * 0.25 + 0.5 *0.25 = 0.625

• Event 2:
$$P(y_t=0) = P(y_t=0 \mid x_{t\cdot3}=1, x_{t\cdot8}=1) * P(x_{t-3}=1) * P(x_{t-8}=1)$$

+ $P(y_t=0 \mid x_{t\cdot3}=1, x_{t\cdot8}=0) * P(x_{t-3}=1) * P(x_{t-8}=0)$
+ $P(y_t=0 \mid x_{t\cdot3}=0 x_{t\cdot8}=1) * P(x_{t-3}=0) * P(x_{t-8}=1)$
+ $P(y_t=0 \mid x_{t\cdot3}=0, x_{t\cdot8}=0) * P(x_{t-3}=0) * P(x_{t-8}=0)$
• $P(y_t=0) = 0.25 * 0.25 + 0 * 0.25 + 0.75 * 0.25 + 0.5 * 0.25 = 0.375$

owing to the reason that the distribution of Q tries to fit with Y
 cross entropy = -(0.625 * np.log(0.625) + 0.375 * np.log(0.375))

Scenario two: consider four events REAL DISTRIBUTION

- Event 1: $P(y_t=1 \mid x_{t-3}=1) = P(y_t=1 \mid x_{t-3}=1, x_{t-8}=1) * P(x_{t-8}=1) + P(y_t=1 \mid x_{t-3}=1, x_{t-8}=0)$ * $P(x_{t-8}=0) = 0.75 * 0.5 + 1 * 0.5$
- Event 2: $P(y_t=1 \mid x_{t-3}=0) = P(y_t=1 \mid x_{t-3}=0, x_{t-8}=1) * P(x_{t-8}=1) + P(y_t=1 \mid x_{t-3}=0, x_{t-8}=0) * P(x_{t-8}=0) = 0.25 * 0.5 + 0.5 * 0.5$
- Event 3: $P(y_t=0 \mid x_{t-3}=1) = P(y_t=0 \mid x_{t-3}=1, x_{t-8}=1) * P(x_{t-8}=1) + P(y_t=0 \mid x_{t-3}=1, x_{t-8}=0) * P(x_{t-8}=0) = 0.25 * 0.5 + 0 * 0.5$
- Event 4: $P(y_t=0 \mid x_{t-3}=0) = P(y_t=0 \mid x_{t-3}=0, X_{t-8}=1) * P(X_{t-8}=1) + P(y_t=0 \mid x_{t-3}=0, X_{t-8}=0) * P(X_{t-8}=0) = 0.75 * 0.5 + 0.5 * 0.5$
- cross entropy = -0.5 * (0.875 * np.log(0.875) + 0.125 * np.log(0.125) 0.5 * (0.625 * np.log(0.625) + 0.375 * np.log(0.375)))
 0.5 stands for P(x_{t-3} = 1) and P(x_{t-3} = 0)

Scenario three: consider eight events REAL DISTRIBUTION

- Event 1: $P(y_t=1 \mid X_{t-3}=1, X_{t-8}=1) = 0.75$
- Event 2: $P(y_t=1 \mid X_{t-3}=1, X_{t-8}=0)=1$
- Event 3: $P(y_t=1 \mid X_{t-3}=0, X_{t-8}=1)=0.25$
- Event 4: $P(y_t=1 \mid X_{t-3}=0, X_{t-8}=0) = 0.5$
- Event 5: $P(y_t=0 \mid X_{t-3}=1, X_{t-8}=1) = 0.25$
- Event 6: $P(y_t=0 \mid X_{t-3}=1, X_{t-8}=0)=0$
- Event 7: $P(y_t=0 \mid X_{t-3}=0, X_{t-8}=1) = 0.75$
- Event 8: $P(y_t=0 \mid x_{t-3}=0, x_{t-8}=0) = 0.5$
- cross entropy = -0.25 * (2 * 0.75 * np.log(0.75) + 2 * 0.25 * np.log(0.25) + 2 * 0.50 * np.log (0.50)) 0.25 * (0 * np.log(0)) -0.25 * (1 * log(1))

 $0.25 \text{ stands for P}(x_{t-3}=1,)*P(x_{t-8}=1) , P(x_{t-3}=1)*P(x_{t-8}=0), P(x_{t-3}=0)*P(x_{t-8}=0)$ $0.25 \text{ stands for P}(x_{t-3}=1,)*P(x_{t-8}=1) , P(x_{t-8}=0)$