CSX4202_ITX4202: Data Mining Lecture 4

Asst. Prof. Dr. Rachsuda Setthawong Computer Science Department Assumption University

Outlines

- Classification: Basic Concepts
- Decision Trees and Issues
- Model Evaluation

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a *model* for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model.

Classification Techniques

- Decision Tree
- Rule-based Methods
- Memory based reasoning
- Naïve Bayes
- K-Nearest Neighbors (kNN)
- Linear Regression
- Neural Network
- Support Vector Machine
- Ensemble Classifiers (Vote)
- Etc.

Face recognition and suggested tag

Facial expression classification

Ron Harry Hermione

Finger print identification and classification

Speech recognition

Spam e-mail

□ ~	Delete Move V	Not Spam ••• More ∨	View 🗸
	noozilla@yahoo.com	Medicine\$ Buy Here Be\$t Onlline Sohp Hree http://bestherbsreward.ru	25 Jan
	viagra_cialis@email.com	TODAY DISCOUNT 35%	24 Jan
	研华(中国)	[5850512]传递价值●《远程IO解决方案》资料(70页,5.5MB,PDF)免费 如	23 Jan
	Thaifly	โปรโมชั่น ! ตั๋ว ท	22 Jan
	viagra_cialis@email.com	TODAY DISCOUNT 37%	20 Jan
	ROLEX-REPLICA-WATCH	Swiss Rolex Replica Watches 2014 Models Sale Buy a Rolex, Omega, B	19 Jan

Try This...

- Determine the spam folder in your email account.
- What kind of pattern(s) do you observe?

Classification Example: Spam E-mail - 1

ID	Header	Content	Туре
1	Medicine\$ Buy Here	Be\$t Onlline Sohp Hree http://bestherbsreward.ru/?asc1wubobwd	?
2	TODAY DISCOUNT 35%	Click Here [ONLINE PHAMARCY]	?
3	[5850512]传递价值●《远程IO解决方案》 资料(70页,5.5MB,PDF)免费下载[b586ow	如果无法正常显示,请点 <u>击此</u>	?
4	โปรโมชั่น ! ตั๋ว ท	Show Images	?
5	TODAY DISCOUNT 37%	Click Here [ONLINE PHAMARCY]	?
6	Swiss Rolex Replica Watches 2014 Models Sale	Buy a Rolex, Omega, Breitling at only a fraction of the price! SAVE AN ADDITIONAL 15% ON PURCHASES OF \$250 OR MORE	?
7	Apress Android, Swift, and iOS New Book Alert!	Show Images	?
8	My dtac e-service - Quick Payment Confirmation: Mobile No. 081XXXXXXX	Thank you for paying your bill via Quick Payment.	?

Classification Example: Spam E-mail - 2

ID	Header	Content	Туре
1	Medicine\$ Buy Here	Be\$t Onlline Sohp Hree http://bestherbsreward.ru/?asc1wubobwd	Spam
2	TODAY DISCOUNT 35%	Click Here [ONLINE PHAMARCY]	Spam
3	[5850512]传递价值●《远程IO解决方案》 资料(70页,5.5MB,PDF)免费下载[b586ow	如果无法正常显示,请点 <u>击此</u>	Spam
4	โปรโมชั่น ! ตั๋ว ท	Show Images	Normal
5	TODAY DISCOUNT 37%	Click Here [ONLINE PHAMARCY]	Spam
6	Swiss Rolex Replica Watches 2014 Models Sale	Buy a Rolex, Omega, Breitling at only a fraction of the price! SAVE AN ADDITIONAL 15% ON PURCHASES OF \$250 OR MORE	Spam
7	Apress Android, Swift, and iOS New Book Alert!	Show Images	Normal
8	My dtac e-service - Quick Payment Confirmation: Mobile No. 081XXXXXXX	Thank you for paying your bill via Quick Payment.	Normal

Asst. Prof. Dr. Rachsuda Setthawong

Classification Example: Spam E-mail – Transform Data

ID	Header	Content	Туре
1	Medicine\$ Buy Here	BeSt Colline Solip Free http://bestherbsreward.ru/?asc1wubobwd	Spam
2	TODAY DISCOUNT 35%	Click Here [ONLINE PHAMAR][Y]	Spam
3	[5850512]传递价值 ● 《远程IO解决方案》资料(70页,5.5MB,PDF)免费下载 [b586ow	如果无法正常显示,请点击此	Spam
4	โปรโมชั่น ! ตั๋ว ท	Show Images	Normal
5	TODAY SISCOUNT 37%	Click Here [ONLINE PHAMARCY]	Spam
6	Swiss Rolex Replica Watches 2014 Models Sale	Buy a Rolex, Omega, Breitling at only a fraction of the price! SAVE AN ADDITIONAL 50% ON PURCHASES OF \$250 OR MORE	Spam
7	Apress Android, Swift, and iOS New Book Alert!	Show Images	Normal
8	My dtac e-service - Quick Payment Confirmation: Mobile No. 081XXXXXXX	Thank you for paying your bill via Quick Payment.	Normal

ID	Link?	Discount	Non- Thai/Non -English?	Туре
1	Υ	N	N	Spam
2	Υ	Υ	N	Spam
3	N	N	Υ	Spam
4	N	N	N	Normal
5	Υ	Υ	N	Spam
6	N	N	N	Spam
7	N	N	N	Normal
8	N	N	N	Normal

Classification Example: Spam E-mail – Learn a Model (Induction)

ID	Link?	Discount	Non- Thai/Non -English?	Туре
1	Υ	N	N	Spam
2	Υ	Υ	N	Spam
3	N	N	Υ	Spam
4	N	N	N	Normal
5	Υ	Υ	N	Spam
6	N	N	N	Spam
7	N	N	N	Normal
8	N	N	N	Normal

Training Dataset

Classification Example: Spam E-mail – Apply the Model (Deduction)

Test Dataset

Classification Example: Spam E-mail - Apply the Model (Deduction)

Test Dataset

Summary:

Classification Steps

- 1. Prepare a training dataset
- 2. Build a classification model (classifier) using a learning algorithm.
- 3. Apply the model on the test dataset

Try This

- Let's go through the process of creating another useful classification model in real life.
- Create a simple classification model that will predict whether
 a student will be interested to take this course or not based on
 their historical background.
 - What are the relating non-class attributes that should be included in a dataset?
 - What is the class attributes of this dataset?
 - How to apply a classification model for prediction?

Classification vs Regression

	Classification	Regression
Build a model from a training dataset with class label?	Yes	Yes
Type of class label	Nominal	Numeric
Examples	Spam e-mailRainfall or not	 Predicted sale amount for the next quarter Weather forecast

ecure https://www.accuweather.com/en/th/samut-prakan/320620/weather-forecast/320620

How to build a Decision Tree?

"Which model is the best?"

Outlines

- Classification: Basic Concepts
- Decision Trees and Issues
- Model Evaluation

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5, C5.0
 - SLIQ, SPRINT

"Divide and Conquer Approach" (Data splitting)

"Look for purity"

General Structure of Hunt's Algorithm

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 Recursively apply the procedure to each subset.
- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.

Recursively apply the procedure to each subset.

Age	Gender	PlaySport	PassCourse?
16	Male	No	No
17	Female	No	Yes
20	Male	Yes	No
20	Male	No	No

Age	Gen der	Play- Sport	Pass- Course?
16	Male	No	No
20	Male	Yes	No
20	Male	No	No

Sport Cou	is- urse?
17 Female No	Yes ₂₂

General Structure of Hunt's Algorithm

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.

Recursively apply the procedure to each subset.

Age	Gen der	Play- Sport	Pass- Course?
16	Male	No	No
17	Fem ale	No	Yes
20	Male	No	No

Age	Gender	PlaySport	PassCourse?
16	Male	No	No
17	Female	No	Yes
20	Male	Yes	No
20	Male	No	No

General Structure of Hunt's Algorithm

ale

Male

No

No

20

 Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test (e.g., Gender) to split the data into smaller subsets.

Recursively apply the procedure to each subset.

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

Depends on attribute types

Ordinal

Depends on number of ways to split

- Nominal Multi-way split
- Continuous _______
 2-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

• What about this split?

hild: Asst. Prof. Dr. Rachstda fetthawon

Splitting Based on Continuous Attributes

Multi-way split:

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

Binary split:

- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

(ii) Multi-way split

(i) Binary split

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Asst. Prof. Dr. Rachsuda Setthawong

How to Determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to Determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Finding the Best Split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node
 - M is the weighted impurity of children
- 3. Choose the attribute test condition that produces *the highest gain*

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

Measures of Node Impurity

- Gini Index
- Entropy

Misclassification error

For a 2-class problem

Goal of Splitting

 $Gini_{Parent} > \Sigma Gini_{Split}$

GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Minimum (0.0) when <u>all records belong to one class</u>, implying most interesting information
- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information

Gini_{Split} (M)

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,

n_i = number of records at child i,

n = number of records at node p.

Examples: Computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Examples: Computing GINI_{Split}

 $GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$

(M: weighted aggregation)

Revisit Goal of Splitting:

Gain = P - M

Gain if Gini_{Parent} > Gini_{Split}

$$Gini_{Split} = 0.166$$

Gain =
$$P - M = 0.5 - 0.166 = 0.334$$

Alternative Splitting Criteria Based on INFO

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Minimum (0.0) when all records belong to one class, implying most information
 - Maximum ($\log n_c$) when records are equally distributed among all classes implying least information

Entropy_{Split}

$$Entropy_{split} = \sum_{k=1}^{n} \frac{n_i}{n} Entropy (i)$$

where, n_i = number of records at child i, n = number of records at node p.

Splitting Based on INFO:

Information Gain

$$Gain_{split} = Entropy(parent) - Entropy_{split}(child)$$

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

$$Entropy(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

Entropy_{Family} =
$$-(1/4) \log_2 (1/4) - (3/4) \log_2 (3/4) = 0.81$$

Entropy_{Sport} =
$$-(8/8) \log_2(8/8) - (0/8) \log_2(0/8) = 0 - 0 = 0$$

Entropy_{Luxury} =
$$-(1/8) \log_2 (1/8) - (7/8) \log_2 (7/8) = 0.29$$

$$Entropy_{split} = \sum_{k=1}^{n} \frac{n_i}{n} Entropy(i)$$

Entropy_{CarType}= (4/20)*0.81 + (8/20)*0 + (8/20)*0.29 = 0.28

$$Gain_{split} = Entropy(parent) - Entropy_{split}(child)$$

Entropy_{Parent} =
$$-(10/20) \log_2 (10/20) - (10/20) \log_2 (10/20)$$

= $-(-0.5) - (-0.5) = 1$

$$Gain_{CarType} = 1 - 0.28 = 0.72$$

Car
Type?

Family Luxury

Sports

C0: 1
C1: 0

C0: 1
C1: 7

Solve Proposition (Car)

Type?

Family Luxury

Solve Proposition (Car)

Type?

C1: 7

Solve Proposition (Car)

Family Luxury

Solve Proposition (Car)

Type?

Family Luxury

Solve Proposition (Car)

Solve Proposition (Car)

Family Luxury

Family Lux

44

Splitting Based on INFO:

Gain Ratio

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition I

- Higher entropy partitioning is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

Example

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

SplitInfo = $-(4/20) \log_2 (4/20) - (8/20) \log_2 (8/20) - (8/20) \log_2 (8/20) = 1.52$

$$GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO}$$

$$Gain_{CarType} = 0.72$$

 $GainRATIO_{Split} = 0.72 / 1.52 = 0.47$

Which test condition is the best?

Entropy_{StudentID} =
$$(1/20) * [- (1/1) \log_2 (1/1) - 0/1 \log_2 (0/1)] * 20 = 0$$

GainRATIO_{StudentID} = $(1 - 0) / [[- (1/20) \log_2 (1/20)] * 20] = 0.23$

$$GainRATIO_{CarType} > GainRATIO_{StudentID}$$

= 0.47 = 0.23

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Minimum (0.0) when all records belong to one class, implying most interesting information
 - Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Binary, Categorical, Continuous Attributes
 - Determine when to stop splitting

Asst. Prof. Dr. Rachsuda Setthawong

How to Determine the Best Split?

Categorical Attributes

Multi-way split

	CarType						
	Family	Sports	Luxury				
C1	1	2	1				
C2	4	1	1				
Gini	0.393						

Two-way split

(find best partition of values)

	CarType				
	{Sports, Luxury}	{Family}			
C1	3	1			
C2	2	4			
Gini	0.400				

	CarType					
	{Sports}	{Family, Luxury}				
C1	2	2				
C2	1	5				
Gini	0.419					

Note: ID3 and C4.5 allows Categorical Attributes

How to Determine the Best Split?

Continuous Attributes – 1

For each attribute,

- 1. Sort the attribute on values
- 2. Linearly scan these values, each time updating the count matrix and computing gini index
- 3. Choose the split position that has the least Gini index

sst. Prof. Dr. Rachsuda Setthawon

How to Determine the Best Split?

Continuous Attributes - 2

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

	Cheat		No		No)	N	0	Ye	s	Ye	s	Υe	es	N	0	N	lo	N	lo		No	
	Taxable Income																						
Sorted Values	\longrightarrow	(60		70		7!	5	85	;	90)	9	5	10	00	12	20	12	25		220	
Split Positions		5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	0
		<=	^	<=	>	<=	>	<=	>	<=	>	\=	^	<=	>	<=	>	<=	^	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	100	0.3	75	0.3	43	0.4	117	0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	75	0.4	00	0.4	20

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have <u>similar</u> attribute values
- Early termination (to be discussed later)

Advantages of Decision Tree Based Classification

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant or irrelevant attributes
- Accuracy is comparable to other classification techniques for many simple data sets

Disadvantages

of Decision Tree Based Classification

- Space of possible decision trees is exponentially large. Greedy approaches are often unable to find the best tree.
- Does not take into account interactions between attributes
- Each decision boundary involves only a single attribute

Examples of Infeasible Datasets for Decision Tree

Both positive (+) and negative (o) classes generated from skewed Gaussians with centers at (8,8) and (12,12) respectively.

Circular points:

$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2+x_2^2) > 0.5 \text{ or}$$

 $sqrt(x_1^2+x_2^2) < 1$

Practical Issues of Classification

- Underfitting and Overfitting
- Costs of Classification
- Missing Values

Underfitting and Overfitting

Overfitting due to Noise

Overfitting due to Insufficient Examples

- x Training examples
 - Test examples

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary.
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records.
- Need new ways for estimating errors.

Estimating Generalization Errors

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)

For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 0.01 = 1%

- Pessimistic approach:
 - For each leaf node: e'(t) = e(t) + 0.5
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%

Generalization_error_{pessimistic} = $(10 + 30 \times 0.5)/1000 = 0.025 = 2.5\%$

- Reduced error pruning (REP):
 - Uses validation data set to estimate generalization error

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data

How to Address Overfitting

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Evaluate number of instances wrt. a user-specified threshold
 - Evaluate independency of the available features of instances' class distribution (e.g., using χ^2 test)
 - Evaluate Impurity measures (e.g., Gini or information gain).

How to Address Overfitting

Post-pruning

- Grow decision tree to its entirety.
- Trim the nodes of the decision tree in a bottom-up fashion.
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Example of Post-Pruning

A?

A3

Error = 10/30

Optimistic approach:

Training Error (Before splitting) = 10/30

Training Error (After splitting) = 9/30

Pessimistic approach:

Pessimistic error (Before splitting)

$$= (10 + 0.5)/30 = 10.5/30$$

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

Class = Yes	3
Class = No	4

A2

A1

A4

Class = Yes	5
Class = No	1

Effects of Missing Values on Decision Tree

- Training phase:
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes

- Testing phase:
 - Affects how a test instance with missing value is classified

: Rachsuda Setthawong

Computing Impurity Measure with Missing Value Exists Way 1: Ignore the missing value

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	?	Single	90K	Yes

Missing value

(Ignore Tid 10 for the calculation)

Before Splitting:

Entropy(Parent)

$$= -0.3 \log(0.3) - (0.7) \log(0.7) = 0.8813$$

	Class = Yes	
Refund=Yes	0	3
Refund=No	2	4
Refund=?	1	0

Split on Refund:

fund:
$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

$$Entropy(Refund=Yes) = 0$$

Entropy(Refund=No)
=
$$-(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$$

$$= 0.3(0) + 0.6(0.9183) = 0.551$$

$$Gain = 0.8813 - 0.551 = 0.3303$$

68

Asst. Prof. Dr. Rachsuda Setthawong

Computing Impurity Measure with Missing Value Exists Way 2: Include the instance with missing by distributing the instance

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Class=Yes	0	Cheat=Yes	2
Class=No	3	Cheat=No	4

Missing value

(Distribute it proportionally to both classes)

Tid	Re	fund		Taxable Income	Class
10	?		Single	90K	Yes

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Outlines

- Classification: Basic Concepts
- Decision Trees and Issues
- Model Evaluation

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

∇
ت
ര
>
>
=
9
4-
=

<u>.au</u>
<u>—</u>
1
S

	Metrics	Description / Example
	Speed (Computational Time)	How fast does it take to classify or build models?
	Scalability	How large is a dataset can it be applied?
	Predictive capability of a model	e.g., Accuracy, Cost, Precision, Recall, F-measure, Weighted-accuracy

Predictions on Test Datasets

Two actual classes or observed labels

Predicted classes of a classifier Positive prediction A classifier Predicted as positive predicted as negative Negative prediction

Metrics for Performance Evaluation: Confusion Matrix

Four outcomes of a classifier

	PREDICTED CLASS							
		Class=Yes	Class=No					
ACTUAL CLASS	Class=Yes	TP (true positive)	FN (false negative)					
	Class=No	FP (false positive)	TN (true negative)					

- True positive (TP): correct positive prediction
- False positive (FP): incorrect positive prediction
- True negative (TN): correct negative prediction
- False negative (FN): incorrect negative prediction

Metrics for Performance Evaluation Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{n}$$

n: number of records in a dataset

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	TP (true positive)	FN (false negative)				
	Class=No	FP (false positive)	TN (true negative)				

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

Cost Matrix	PREDICTED CLASS						
	C(i j)	Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(Yes No)				
	Class=No	C(No Yes)	C(No No)				

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

 $Ct(M) = c(Yes|Yes) \times TP + \\ c(No|No) \times TN + \\ c(No|Yes) \times FP + \\ c((Yes|No) \times FN$

Cost Matrix	PREDICTED CLASS					
ACTUAL CLASS	C(i j)	+	-			
	+	-1	100			
	-	1	0			

Model M ₁	PREDICTED CLASS					
		+	-			
ACTUAL CLASS	+	150	40			
02,100	-	60	250			

Model M ₂	PREDICTED CLASS					
		+	-			
ACTUAL CLASS	+	250	45			
OLAGO	-	5	200			

Accuracy_{M1} = 80%
$$Cost_{M1} = (-1 * 150) + (0 * 250) + (1 * 60) + (100 * 40)$$
= 3910

Accuracy_{M2} = 90%
$$Cost_{M2} = (-1 * 250) + (0 * 200) + (1 * 5) + (100 * 45)$$

$$= 4255$$

Cost-Sensitive Measures

$$Precision(p) = \frac{TP}{TP + FP}$$

$$Recall(r) = \frac{TP}{TP + FN}$$

$$F - measure(F) = \frac{2rp}{r + p}$$

$$Weighted\ Accuracy = \frac{w_1TP + w_4TN}{w_1TP + w_2FN + w_3FP + w_4TN}$$

Precision determines the fraction of records that actually turns out to be positive in the group the classifier has declared as a positive class.

Recall measures the fraction of **positive examples correctly predicted** by the classifier.

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?

Methods for Performance Evaluation How to obtain a reliable estimate of performance?

- Performance of a model depends on several factors
 - E.g.,
 - Learning algorithm
 - Class distribution (balance/imbalance dataset)
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Effect of small sample size:
 - Bias in the estimate
 - Variance of estimate

Maximizing the Utilization of Instances in the (Small) Dataset

Holdout

Reserve 2/3 for training and 1/3 for testing

Cross validation

- Partition data into k disjoint subsets
- k-fold (repetitive process): train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n

Stratified sampling

- Split the data into several partitions;
- then draw random samples from each partition

Bootstrap

Sampling with replacement

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

How to Construct an ROC curve

_		
InstanceID	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces predicted result (posterior probability for each test instance P(+|A))
- 2. Sort the instances according to P(+|A) in decreasing order
- 3. Apply threshold at each unique value of P(+|A)
- 4. Count the number of TP, FP, TN, FN at each threshold and plot it
 - TP rate, TPR = TP/(TP+FN)
 - FP rate, FPR = FP/(FP+TN)

How to construct an ROC curve

The instances sorted according to P(+|A) in decreasing order

0.9

/												
Ir	stance	ID 10	9	8	7	6	5	4	3	2	1	
True	Class	+	-	+	-		-	+	-	+	+	
Classification Thresh	old >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
(P(+ A))	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1 🔻	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	8.0	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

P: 0.7
0.6
0.5
TPR 0.4
0.3
0.2
0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FPR

- TPR = TP/(TP+FN)
- FPR = FP/(FP+TN)

The Performance of a Classifier Indicated in ROC Curve

- Above diagonal line:
 - The larger area under ROC curve (AUC) the better performance of an algorithm is.
- Diagonal line:
 - Random guessing
 - 50/50
- Below diagonal line:
 - Worst than random guessing
 - prediction is opposite of the true class

Using ROC for Model Comparison

- Typical usage:
 - Compare performance of classification models
- Results of ROC in the example:
 - Classifier A clearly outperforms classifier B.

References

- Slides: Lecture Notes for Chapter 4, Introduction to Data Mining by Tan, Steinbach, Kumar
- Practical Data Mining with RapidMiner Studio 6 by Eakasit P.,
 Data Cube (Thailand)