📊 Breast Cancer Prediction using Logistic Regression

★ Introduction

This project aims to build a machine learning model that predicts whether a tumor is malignant or benign using the Breast Cancer Wisconsin dataset from Kaggle. The model is built using **Logistic Regression**, and the focus is on proper data preprocessing, exploratory data analysis (EDA), and thorough evaluation using multiple metrics.

Dataset Description

The dataset consists of **569 instances** and **32 columns**, including:

- **ID column** (unique identifier, already removed during preprocessing)
- Diagnosis column (target: M = Malignant, B = Benign)
- 30 numeric features describing characteristics of the cell nuclei (e.g., radius, texture, perimeter)

Exploratory Data Analysis (EDA)

Basic insights from the dataset:

- df.info() confirms that all features are numerical, and there are no missing values.
- df.describe() gives a summary of statistics across the dataset.
- df.shape returns (569, 33) indicating 33 columns including ID and target.
- df.isnull().sum() confirms there are no null values.
- df['diagnosis'].value_counts() shows the distribution of benign and malignant cases.
- **Encoded** the target column diagnosis as binary labels:
 - \circ 'M' → 1 (Malignant)
 - \circ 'B' \rightarrow 0 (Benign)

This encoding is needed for correlation analysis and modeling.

 df.corr() was used to compute correlations between numeric features and the target.

Plot: Diagnosis Distribution

This bar chart visualizes the number of malignant vs. benign diagnoses in the dataset.

Plot: Top 10 Correlated Features Heatmap

This bar helps identify which features are most relevant for the prediction task.

Data Preprocessing

Steps taken:

- 1. **Dropped the id column** as it holds no predictive value.
- 2. Separated features and target variable (X, y)
- 3. Train-test split using train_test_split() with 80/20 ratio.
- 4. **Standardized features** using StandardScaler() to normalize the data before model training:
 - fit_transform() was applied to X_train
 - o transform() was used on X_test

Modeling with Logistic Regression

The logistic regression model was trained using:

from sklearn.linear_model import LogisticRegression

• The model was fitted to the training data and used to predict test values.

Evaluation Metrics

After training the logistic regression model, the following evaluation metrics were computed on the test set:

- Accuracy: 0.9737
 - \rightarrow The model correctly classified **97.37**% of the cases.
- Precision, Recall, F1-Score:

```
precision recall f1-score

0 0.97 0.99 0.98

1 0.98 0.95 0.96
```

(The exact numbers will be taken from the classification_report() output)
These metrics provide insight into how well the model performs on both benign (0) and malignant (1) classes, especially in imbalanced datasets.

• Confusion Matrix:

```
Confusion Matrix:
[[70 1]
[ 2 41]]
```

Gives a breakdown of true positives, true negatives, false positives, and false negatives — useful for visualizing the model's performance.

Classification Report

Classification	Report: precision	recall	f1-score	support
0	0.97	0.99	0.98	71
1	0.98	0.95	0.96	43
accuracy			0.97	114
macro avg	0.97	0.97	0.97	114
weighted avg	0.97	0.97	0.97	114

- **Precision**: Proportion of positive identifications that were actually correct.
- **Recall**: Proportion of actual positives that were correctly identified.
- **F1 Score**: Harmonic mean of precision and recall balances both.

ROC Curve & AUC Score

The **AUC score** is **0.9974**, which indicates excellent model performance in distinguishing between classes across all thresholds.

Conclusion

- The logistic regression model performs strongly on this dataset with high accuracy, balanced precision/recall, and excellent AUC.
- Only minor misclassifications occurred (1 false positive, 2 false negatives).
- This model can serve as a solid baseline for breast cancer prediction tasks.