Results of tests performed on MEBDF.m

We follow the same testing as was done for the original MEBDF code, further details of these problems may be found at www.imperial.ac.uk/~jcash. Among these problems are some selected DAEs from the Amsterdam Test set (http://pitagora.dm.uniba.it/~testset//).

Here the computed solution y^{comp} , the true solution y^{true} , the error $abs(y^{comp} - y^{true})$ and a plot of the numerical solution (where appropriate) are given. We will work our way through the test set beginning first with the Van Der Pol equation.

1.1 I.V.P Tests.

Problem 1: Van Der Pol equation of dimension 2.

Numerical results at the end of range of integration ([0,11]).

 $h_0 = 1E-8$.

RTOL = ATOL = 1E-7.

CPU Time: 11.5867s

n	${\cal Y}_n^{comp}$	\mathcal{Y}_{n}^{true}	error
1	-1.590154210734571	-1.590150544829062	3.665906E-6
2	1.0402738448255782	1.040279389212485	5.544387E-6

Plot:

<u>Problem 2:The Robertson problem of Dimension 3.</u>

Numerical results at the end of range of integration ([0,1E11]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = 10E-4*RTOL

CPU Time: 1.5022s

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_{n}^{true}	error
1	.20833423783730993e-7	0.2083340149701284E-7	3.962506E-017
2	.83333696850181525e-13	0.8333360770334744E-13	1.585015E-022
3	.99999997916650452	0.9999999791665152	2.309264E-014

Problem 3: Hires problem of dimension 8.

Numerical results at the end of the range of integration ([0, 421.8122]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = 10E-3*RTOL

CPU Time: 1.0215s

n	${\cal Y}_n^{comp}$	\mathcal{Y}_n^{true}	error
1	.67030550358598677e-3	.670305503581864E-3	4.469011E-12
2	.13099684698717200e-3	.130996846986347E-13	8.943264E-13
3	.46862231598435660e-4	.46862231597733E-4	7.621378E-13
4	.10446680205605289e-2	.1044668020551705E-2	9.549031E-12
5	.59488383104042413e-3	.594883830951485E-3	9.661749E-11
6	.13996288341347543e-2	.1399628833942774Ee-2	2.085274E-10
7	.10144927578447629e-2	.1014492757718480e-2	1.370960E-10
8	.46855072421554071e-2	.4685507242281520e-2	1.370960E-10

Plots on the rang [0,5]:

Problem 4: Cusp catastrophe model of dimension 96.

Selected numerical results at the end of range of integration ([0,1.1]).

 $h_0 = 1E-8.$

RTOL = 1E-7.ATOL = RTOL

CPU Time: 7.1703s

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_{n}^{true}	error
1	-1.3350382458480710	-1.335038235173363825	1.067471E-8
13	92255149594056229	-0.922551477213655165	1.872691E-8
25	19267159762159494	-0.192671593795137051	3.826458E-9
38	1.3798048023657081	1.379804789392094260	1.297361E-8
50	.16998127433462953	0.169981336507011738	6.217238E-8
62	-1.2692402304318338	-1.269240297385074114	6.695324E-8
74	-1.6950676417198314	-1.695067644864453216	3.144622E-9
86	-1.4558605334458385	-1.455860565434940201	3.198910E-8

<u>Problem 5: Elastic beam problem of dimension 80.</u>

Selected numerical results at the end of range of integration ([0,5]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL

CPU Time: 22.8428s

n	${\cal Y}_n^{comp}$	\mathcal{Y}_n^{true}	error
1	57923576629327405e-2	-1.335038235173363825	8.928362E-9
10	91191340397807130e-1	-0.922551477213655165	6.148639E-9
20	14835962931091259	-0.192671593795137051	8.206466E-8
30	17258205517919159	1.379804789392094260	1.295670E-7
40	17672038610916155	0.169981336507011738	2.100017E-7
50	.59874648570712630	-1.269240297385074114	1.448454E-5
60	.98688427446686833	-1.695067644864453216	9.492317E-6
70	1.1567853566355060	-1.455860565434940201	6.775331E-6

Plots:

<u>Problem 6: Movement of a rectangular plate of dimension 80.</u> Selected numerical results at the end of range of integration ([0,7]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL

CPU Time: 1.1116s

n	\mathcal{Y}_n^{comp}	${\cal Y}_n^{true}$	error
1	.49014379881524373e-3	0.000490143813851336	1.503609E-11
10	.16978849525463367e-2	0.001697885005625757	5.307942E-11
20	.38316448519552034e-2	0.003831644928823870	7.686867E-11
30	.43202316301815718e-2	0.004320231736082990	1.059014E-10
40	.14383125580403806e-2	0.001438312591933600	3.389322E-11
50	41748293677851102e-2	-0.004174829877953482	5.101684E-10
60	10157559985999431e-1	-0.010157560112096413	1.260970E-10
70	12352388017072103e-1	-0.012352389570141255	1.553069E-9

Problem 7: Brusselator problem with 1D diffusion of dimension 1000.

Selected numerical results at the end of range of integration ([0,10]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL

CPU Time: 16.8642s

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_{n}^{true}	error
1	.99491970009316177	0.9949197002317599	1.385981E-10
204	3.4157106717145100	3.4157099395342736	7.321802E-7
400	3.5175260238761230	3.5175249049438184	1.118932E-6
603	.45630388178269371	0.4563039400688689	5.828618E-8
806	3.4187569653313088	3.4187562033108012	7.620205E-7
995	.98483673026147256	0.9848367306701233	4.086508E-10

<u>Problem 8: Oregonator, Belusov-Zhabotinskii reaction of dimension 3.</u>

Numerical results at the end of range of integration ([0,360]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

 $ATOL = 10^{-4}RTOL$

CPU Time: 3.3648s

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_{n}^{true}	error
1	1.0008148702143438	1.000814870318523	1.041791E-010
2	1228.1785946893915	1228.178521549889	7.313950E-005
3	132.05553211189832	132.0554942846513	3.782725E-005

Plots:

 $\begin{tabular}{ll} {\it Problem 9: E5 of dimension 4.}\\ {\it Numerical results at the end of range of integration ([0,1E13]).}\\ \end{tabular}$

$$h_0 = 1E-8.$$

RTOL = 1E-7.

ATOL = 1.7E-4

CPU Time: 2.4035s

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_n^{true}	error
1	.83187938179125541316e-58	0	8.318794E-059
2	.88356773097319198572e-22	8.8612334976263783420E-23	2.555619E-025
3	.88842038543680930950e-22	8.8612334976263783421E-23	2.297036E-025
4	.50343603019680743340e-71	0	5.034360E-072

Problem 10: The B5 (50, 200, 500, 800, 1000) equations.

B550 equation:

Numerical results at the end of range of integration ([0, 20.5108]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 0.8012s.

n	\mathcal{Y}_{n}^{comp}	${\cal Y}_n^{true}$	error
1	.10934913663539676e-19	.97879969570047458e-89	1.093491E-20
2	10716885037297267e-21	66506274552447790e-89	1.071689E-22
3	.76010191183159531e-15	.23390622114965014e-35	7.601019E-16
4	.12544492784601787e-8	.12366888442931234e-8	1.776043E-11
5	.35167029604437110e-4	.35166587043571965e-4	4.425609E-10
6	.12859558081464298	.12859558081436012	2.828571E-13

Plots:

B5200 equation:

Numerical results at the end of range of integration ([0, 20.0569]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 2.1331s.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_n^{true}	error
1	.68729964784255835e-33	37890586590763557e-87	6.872996E-034
2	.37983687258443411e-34	10412565145233292e-86	3.798369E-035
3	48325577705061128e-14	.14375350757823458e-34	4.832558E-015
4	.19630270224630655e-8	.19471733303215571e-8	1.585369E-011
5	.44127148821387145e-4	.44126786992954255e-4	3.618284E-010
6	.13456758586381776	.13456758586375031	6.744605E-014

B5500 equation:

Numerical results at the end of range of integration ([0, 20.1286]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 4.9872s.

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_{n}^{true}	error
1	.57053138551032796e-40	29585464813493674e-87	5.705314E-41
2	.43271824592207074e-40	.45283123549263000e-87	4.327182E-41
3	.17694775140229357e-13	.10790578762337460e-34	1.769478E-14
4	.18436053422768319e-8	.18124297604681010e-8	3.117558E-11
5	.42572945926378166e-4	.42572640985357028e-4	3.049410E-10
6	.13360604815525093	.13360604815545910	2.081668E-13

B5800 equation:

Numerical results at the end of range of integration ([0, 20.5243]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 7.6180s.

n	\mathcal{Y}_n^{comp}	${\cal Y}_n^{true}$	error
1	10502687569879855e-41	.80013811820795525e-89	1.050269E-042
2	66478283238687150e-42	65538203269721579e-89	6.647828E-043
3	63371678994333107e-14	.22164104300721623e-35	6.337168E-015
4	.12564521304486922e-8	.12201480952966386e-8	3.630404E-011
5	.34931337028875465e-4	.34930618306818423e-4	7.187221E-010
6	.12842253979000834	.12842253978978405	2.242928E-013

B51000 equation:

Numerical results at the end of range of integration ([0, 20.3574]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 9.3935s.

n	${\cal Y}_n^{comp}$	\mathcal{Y}_n^{true}	error
1	.12979403074040256e-46	.32632621594482051e-88	1.297940E-047
2	22043916594925028e-46	.44149098021382395e-88	2.204392E-047
3	71957691733912372e-14	.43213907646656742e-35	7.195769E-015
4	.14813075555073207e-8	.14418028672951908e-8	3.950469E-011
5	.37971798504003979e-4	.37971079353834423e-4	7.191502E-010
6	.13058418668522187	.13058418668348123	1.740635E-012

<u>Problem 11: Ring Modulator problem with CS=1e-9.</u>

Selected numerical results at the end of range of integration ([0,1E-3]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 22.2720s.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_{n}^{true}	error
1	170799076e-1	-0.170799033E-1	4.302054E-009
3	.275319290	0.27531919	1.000075E-007
5	388517208	-0.38851731	1.021335E-007
7	.111460030	0.1114600281	1.463807E-009
9	314277291e-7	-0.31427403E-7	3.261369E-013
11	.852075230e-3	0.85207538E-3	1.496000E-010
13	776319784e-3	-0.77631967E-3	1.141251E-010
15	.252322745e-4	0.252322784E-4	3.860995E-012

Plots:

Problem 12: Ring Modulator problem with CS=2e-12.

Selected numerical results at the end of range of integration ([0,1E-3]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 598.6809s.

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_n^{true}	error
1	233905741736391663e-1	-0.233905735842070174E-01	5.894321E-010
3	.258300694357122107	0.258295670891733276	5.023465E-006
5	403940542939079550	-0.403945566551075719	5.023612E-006
7	.110676186098624132	0.110676186126208484	2.758435E-011
9	284001803414159398e-7	-0.284002993248608379E-07	1.189834E-013
11	.792948883138238562e-3	0.792948719688146885E-03	1.634501E-010
13	794140033064962914e-3	-0.794140196849026266E-03	1.637841E-010
15	.239005908164041839e-4	0.239005907525775679E-04	6.382662E-014

1.2 DAE Tests.

Problem 13: The pendulum problems with index 0,1,2,3.

Pendulum index 0:

Numerical results at the end of range of integration ([0, 1]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 0.1402s.

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_{n}^{true}	error
1	.86734863936873641	0.867348640604551746	1.235815E-9
2	.49770105161037403	0.497701050476373918	1.134000E-9
3	33748020028971148e-1	-0.337480180329866458E-1	1.995985E-9
4	.58813013428716400e-1	0.588130114660715686E-1	1.962645E-9
5	49310315258438886	-0.493103151528274442	1.056114E-9

Pendulum index 1:

Numerical results at the end of range of integration ([0, 1]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 0.2103s.

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_{n}^{true}	error
1	.86734864007552426	0.867348640604551746	5.290275E-10
2	.49770105032220918	0.497701050476373918	1.541647E-10
3	33748013494383701e-1	-0.337480180329866458E-1	4.538603E-9
4	.58813010360391126e-1	0.588130114660715686E-1	1.105680E-9
5	49310314335838673	-0.493103151528274442	8.169888E-9

Pendulum index 2:

Numerical results at the end of range of integration ([0, 1]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 0.1903s.

n	${\cal Y}_n^{comp}$	\mathcal{Y}_{n}^{true}	error
1	.86734862981951477	0.867348640604551746	1.078504E-008
2	.49770107507424621	0.497701050476373918	2.459787E-008
3	33748042763088071e-1	-0.337480180329866458E-1	2.473010E-008
4	.58813051113324410e-1	0.588130114660715686E-1	3.964725E-008
5	49310307500331796	-0.493103151528274442	7.652496E-008

Pendulum index 3:

Numerical results at the end of range of integration ([0, 1]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 0.1702s.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_n^{true}	error
1	.86735096133969158	0.867348640604551746	2.320735E-006
2	.49769701430385954	0.497701050476373918	4.036173E-006
3	33744202174102567e-1	-0.337480180329866458E-1	3.815859E-006
4	.58808191999897015e-1	0.588130114660715686E-1	4.819466E-006
5	49308579822923737	-0.493103151528274442	1.735330E-005

<u>Problem 14: The stiff pendulum problem of index 3.</u>

Numerical results at the end of range of integration ([0, 10]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 0.8713s.

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_{n}^{true}	error
1	81152787673403559	-0.811576367657398601	4.849092E-005
2	58431672138550228	-0.584249351678194584	6.736971E-005
3	63165535463144651	-0.631552659557417462	1.026951E-004
4	.87728019110692801	0.877289510510234183	9.319403E-006
5	1.7530861750015949	1.75273357180425515	3.526032E-004

<u>Problem 15: Chemical Akzo Nobel problem of index 1.</u>

Numerical results at the end of range of integration ([0, 180]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 0.3405s.

n	\mathcal{Y}_{n}^{comp}	\mathcal{Y}_{n}^{true}	error
1	.11507949065400548	0.1150794920661702	1.412165E-009
2	.12038314735231025e-2	0.1203831471567715E-2	1.955387E-012
3	.16115628941475876	0.1611562887407974	6.739614E-010
4	.36561562029902386e-3	0.3656156421249283E-3	2.182590E-011
5	.17080110187003967e-1	0.1708010885264404E-1	1.334360E-009
6	.48735302093874805e-2	0.4873531310307455E-2	1.100920E-009

Plots:

<u>Problem 16: Transistor Amplifier problem of index 1.</u>

Numerical results at the end of range of integration ([0, 0.2]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 11.0259s.

n	${\cal Y}_n^{comp}$	\mathcal{Y}_n^{true}	error
1	55621450122049056e-2	-0.556214501E-02	2.204906E-012
2	3.0065224719040282	0.3006522473125E+01	1.220972E-009
3	2.8499587886096669	0.284995878984E+01	1.230333E-009
4	2.9264225356303744	0.29264225362E+01	5.696257E-010
5	2.7046178644491681	0.27046178656E+01	1.150832E-009
6	2.7618377766282980	0.2761837776452E+01	1.762981E-010
7	4.7709275534170743	0.4770927631E+01	7.758293E-008
8	1.2369957885749647	0.1236995867E+01	7.842504E-008

Problem 17:Fekete problem of index 2.

Selected numerical results at the end of range of integration ([0, 1E3]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 8.5924.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_{n}^{true}	error
20	43108335416872606	-0.4310833259390688	2.822966E-008
40	23478973710756401	-0.2347897778700538	4.076249E-008
60	90828464611594051	-0.9082846503446250	4.228685E-009
80	.17006645913349788e-13	-0.5940734725324115E-16	1.706605E-014
100	.21877169993046868e-13	-0.2234188557495892E-15	2.210059E-014
120	18256356708100815e-13	-0.1229326332276474E-15	1.813342E-014
140	-4.75000000000000000	-0.4750000000000000E+01	8.881784E-016
160	12371556105219603e-18	0.6255426995473074E-19	1.862698E-019

Selected plots on the range [0,20]:

Problem 18: Slider crank problem of index 2.

Selected numerical results at the end of range of integration ([0, 0.1]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 39.5469s.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_n^{true}	error
3	.16973733343082337	1.697373326718410E-01	7.589824E-010
6	53241711884344371e-5	-5.323907988763734E-06	2.631997E-010
9	60.253463564641756	6.025346682645789E+01	3.261816E-006
12	55008185903216034e-2	-5.500488291932075E-03	3.302984E-007
15	21185737064506258e-16	0	2.118574E-017
18	33.972121068812768	3.391435115267547E+01	5.776992E-002
21	.72742423075763762	9.903251655235532E-01	2.629009E-001
24	25.297623097210234	2.529853213732781E+01	9.090401E-004

Problem 19: Water tube problem of index 2.

Selected numerical results at the end of range of integration ([0, 43200]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL and 1E-6*RTOL.

CPU Time: 17.5853s.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_n^{true}	error
7	.34003290756955719e-2	0.3243571480903489e-002	1.567576E-004
14	.23983878778872161e-2	0.2397639310739395e-002	7.485671E-007
21	.47519404529185287e-1	0.4751940452918529e-001	4.320118E-007
28	.47519404529185287e-1	0.4751940452918529e-001	0.000000E+000
35	.47519404529185287e-1	0.4751940452918529e-001	0.000000E+000
42	109604.31689877754	0.1111269322658045e+006	1.522615E+003
49	109607.15338208279	0.1111298338971779e+006	1.522681E+003

Problem 20: Wheel set problem of index 2.

Selected numerical results at the end of range of integration ([0, 10]).

 $h_0 = 1E-8$.

RTOL = 1E-7 and 1E10

ATOL =RTOL and 1E10

CPU Time: 146.2203s.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_{n}^{true}	error
1	.86354905929706890e-2	0.86355386965811E-02	4.810361E-008
8	.20541509116415355e-2	0.20541188079539E-02	3.210369E-008
15	.14173219914692131	0.14173214964613	4.950079E-008
22	10124021959238982e-1	-0.10124044903201E-01	2.294396E-008

<u>Problem 21: Andrews squeezing mechanism of index 3.</u>

Selected numerical results at the end of range of integration ([0, 10]).

 $h_0 = 1E-8.$

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 1.4821.

n	\mathcal{Y}_n^{comp}	\mathcal{Y}_n^{true}	error
5	.52440988867555405	0.5244099658805304	7.720498E-008
10	10.988972809781801	0.1103291221937134E+2	4.393941E-002
15	-24805.941152141244	-0.2463176316945196E+5	1.741780E+002
20	-566765.56956600794	-0.5667493645176222E+6	1.620505E+001
25	31.458016800693656	0.3145271365475927E+2	5.303146E-003

Problem 22: Car axis problem of index 3.

Selected numerical results at the end of range of integration ([0, 3]).

 $h_0 = 1E-8$.

RTOL = 1E-7.

ATOL = RTOL.

CPU Time: 2.2933s.

n	\mathcal{Y}_{n}^{comp}	${\cal Y}_n^{true}$	error
2	.49699175326640116	0.4969894602303324	2.293036E-006
4	.37391182580045856	0.3739110272652214	7.985352E-007
6	.72806849513280007e-2	0.7446866596327776	1.661816E-004
8	.77043601732882094	0.7703410437794031	9.497355E-005
10	11047622712061936e-2	-0.1104680411345730	8.185986E-008

1.3 Work Precision Diagrams.

The following Work Precision diagrams compare the performance of MEBDF.m and ODE15s (the equivalent inbuilt MATLAB solver) on selected problems from the I.V.P tests above. For these experiments we have followed the method from the book by Hairer and Wanner¹. Each diagram is a plot of CPU time against number of correct digits achieved for the tolerances,

$$RTOL = 10^{-2-m/4}, m = 0,1,2,...,32,$$

with ATOL set accordingly with the above corresponding experiments with respect to RTOL. We give both the complete graphs and the graphs where only every other four solutions are displayed.

The problems presented here are:

- Van Der Pol equation.
- Robertson problem.
- Hires problem.
- Movement of a rectangular plate.
- Oregonator, Belusov-Zhabotinskii reaction.
- E5 equation.
- Ring Modulator problem with CS=1e-9 (easy ring).
- B5 equations (50, 200 & 500).

¹ Hairer, E and Wanner, G (1996) Solving Ordinary Differential Equations 2. Springer-Verlag Berlin Heidelberg.

Van Der Pol equation.

Robertson Problem.

Hire Problem.

Movement of a rectangular plate.

Oregonator, Belusov-Zhabotinskii reaction.

E5 equation.

Ring Modulator problem with CS=1e-9 (easy ring).

B5 equations.

B550

B5200

1.3 Remarks.

- We notice good, accurate results for the test problems above, but MEBDF.m is a lot slower then MEBDF.f, which was always going to be the case. However more work on MEBDF.m is still possible in order to reduce run time.
- For any given tolerance MEBDF.m consistently achieves more correct digits than ODE15s but generally takes more time to do so.
- For many experiments there exists a 'cut off' point where MEBDF.m begins to perform better then ODE15s both in time and number of correct digits. Example: The Hires problem at about 11 correct digits (see above).
- On the B5 equations, which are a severe test for A-Stability, MEBDF.m consistently out performs ODE15s.
- ODE15s cannot solve DAEs with index greater then 1. MEBDF.m can solve DAEs for index up to 3.