Very Deep ConvNets for large-scale Image Recognition (VGGnet)

工程科学学院 邱凯

Summary of VGG Submissions

- Localisation task
 - 1st place, 25.3% error
- Classification task
 - 2nd place, 7.3% error

- Key component: very deep ConvNets
 - up to 19 weight layers

Effect of Depth

How does ConvNet depth affect the performance?

- Comparison of ConvNets
 - same generic design
 - increasing depth
 - from 11 to 19 weights layers

Network Design

Key design choices:

- 3*3 conv. kernels very small
- conv. stride 1 no loss information

Other details:

- ReLU
- 5 max-pool layers
- no normalisation
- 3 fully-connected layers

Discussion

Why 3*3 kernels?

- Stacked cone. layers have a large receptive field
 - two 3*3 layers 5*5 receptive field
 - three 3*3 layers 7*7 receptive field
- More non-linearity
- Less parameters to learn
 - ~140M per net

- number of parameters in 7*7 kernel
 - $7*7*C*C = 49C^2 7*7*C*7$
- number of parameters in three 3*3 kernel
 - $3*3*C*C + 3*3*C*C + 3*3*C*C = 27C^2$
 - $3*3*C*5*5*C + 3*3*C*3*3*C + 3*3*C*1*1*C = 9*25 + 81 + 9 = 315C^2$
 - 3*3*C*7*7*C*3 =

7*7 v.s 3*3

- Benefits of 3*3:
 - First, we incorporate three non-linear rectification layers instead of a single one, which makes the decision function more discriminative.
 - Second, we decrease the number of parameters.

1*1

The incorporation of 1 x 1 conv. layers
 (configuration C, Table 1) is a way to increase the
 non- linearity of the decision function without
 affecting the receptive fields of the conv. layers.

ConvNet Configuration								
A	A-LRN	В	С	D	Е			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224 \times 224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
	maxpool							
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
	maxpool							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
	maxpool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
		max	pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
	maxpool							
FC-4096								
FC-4096								
FC-1000								
soft-max								

Training

• batch size: 256

• iterations: 370K

• epochs: 74

dropout and weight decay regularization

Training

- in spit of the larger number of parameters and the greater depth of VGGNet compared to AlexNet, VGGNet required less epochs to converge
 - implicit regularisation imposed by greater depth and smaller conv.
 filter size
 - pre-initialisation of certain layers
 - most shallow net (11 layers) uses Gaussian initialization
 - deeper nets
 - top 4 cone. and FC layers initialized with 11 layer net
 - other layers random Gaussian

Training

- Multi-scale training
 - randomly-cropped ConvNet input
 - fixed-size 224*224
 - different training image size
 - 256*N
 - 384*N
 - [256; 512]*N random image size (scale jittering)
- Standard jittering
 - random horizontal flips
 - random RGB shift

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)	
	train(S)	test (Q)			
A	256	256	29.6	10.4	
A-LRN	256	256	29.7	10.5	
В	256	256	28.7	9.9	
	256	256	28.1	9.4	
C	384	384	28.1	9.3	
	[256;512]	384	27.3	8.8	
	256	256	27.0	8.8	
D	384	384	26.8	8.7	
	[256;512]	384	25.6	8.1	
	256	256	27.3	9.0	
E	384	384	26.9	8.7	
	[256;512]	384	25.5	8.0	

Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Table 5: Multiple ConvNet fusion results. Combined models are denoted as "(configuration name/train image size/test image sizes)" (see Table 4 for individual model results).

Combined ConvNet models		Error		
		top-5 val	top-5 test	
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512)	24.0	7.1	7.0	
(D/256/224,256,288), (D/384/352,384,416), (D/[256;512]/256,384,512)				
(C/256/224,256,288), (C/384/352,384,416)	24.7	7.5	7.3	
(E/256/224,256,288), (E/384/352,384,416)				

Implementation

- Heavily-modified Caffe C++ toolbox
- Multiple GPU support
 - 4 NVIDIA Titan, off-the-shelf workstation
 - data parallelism for training and testing
 - ~3.75 times speed-up, 2 3 weeks for training

Comparison – Fixed Training Size

16 or 19 layers trained on 384*N images are the best

Comparison – Random Training Size

Training scale jittering is better than fixed scales

Final Results Top-5 Classification Error (Test Set) 12 11.7 11 10 better 9.1 8 multiple nets 8.4 8.1 7.9 single net 6.7 6

- 2nd place with 7.3% error
 - combination of 7 models: 6 fixed-scale, 1multi-scale
- single model: 8.4% error