MATHS

- If $f(x) = \int_{0}^{1} |x t| dt, x \in [0,1]$, then $\int_{0}^{1} f(x) dx =$
 - 1) 1
- 2) $\frac{1}{2}$

- If f(x) is monotonic and differentiable function, then $\int_{f(a)}^{f(b)} 2x (b f^{-1}(x)) dx =$ 62.
 - $1) \int_{a}^{b} f^{2}(x) dx$

2) $\int_{a}^{b} (f^{2}(x) - f^{2}(a)) dx$ 4) $\int_{a}^{b} (f^{2}(x) + f^{2}(b)) dx$

3) $\int_{a}^{b} (f^{2}(x) - f^{2}(b)) dx$

- Let f(x) be differentiable function such that $f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$ then f(1) =63.
 - 1) 1
- 2) 2
- 3) $\frac{1}{3}$

- 64. $\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{3 + \sin 2x} dx =$
 - 1) ln3
- 2) $\frac{1}{2} \ln 3$
- 3) $\frac{1}{3} \ln 3$
- 4) $\frac{1}{4} \ln 3$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

65.
$$\int_{1}^{e} \frac{(1+\ln x)^{2} dx}{1+\ln x^{x+1} + (\ln x^{\sqrt{x}})^{2}} =$$

- 1) e
- 2) $\ln(e-1)$ 3) $\ln(e+1)$
- 4) $\frac{\pi}{2}$

$$66. \qquad \int_{0}^{\pi} \frac{dx}{(5 + 4\cos x)^{2}} =$$

- 1) $\frac{3\pi}{7}$ 2) $\frac{5\pi}{17}$
- 3) $\frac{5\pi}{27}$
- 4) $\frac{5\pi}{26}$

67.
$$\int_{-1}^{1} \frac{(x+2)dx}{(2x^2+4x+3)^2} =$$

1) $\frac{1}{2\sqrt{2}} + \frac{1}{3} \tan^{-1} (2\sqrt{2})$

2) $\frac{1}{2\sqrt{2}} - \frac{1}{3} \tan^{-1} \left(2\sqrt{2} \right)$

3) $\frac{1}{2\sqrt{2}} \tan^{-1}(2\sqrt{2}) + \frac{1}{3}$

4) $\frac{1}{3} - \frac{1}{2\sqrt{2}} \tan^{-1}(2\sqrt{2})$

68.
$$\int_{0}^{\frac{\pi}{2}} \sec\left(x - \frac{\pi}{6}\right) \sec\left(x - \frac{\pi}{3}\right) dx =$$

- 1) $\ln \sqrt{3}$ 2) $\ln 3$
- 3) 2 ln 3
- 4) 3ln3

Sr.IPLCO JEE-MAIN Q.P

space for rough work

69.
$$\int_{0}^{\pi} \frac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x} =$$

(a > 0 and b > 0)

1)
$$\frac{\pi^2}{a^2+b^2}$$

1)
$$\frac{\pi^2}{a^2+b^2}$$
 2) $\frac{\pi^2}{2(a^2+b^2)}$ 3) $\frac{\pi^2}{ab}$

3)
$$\frac{\pi^2}{ab}$$

4)
$$\frac{\pi^2}{2ab}$$

70.
$$\int_{0}^{\frac{\pi}{2}} \frac{1 + 2\cos x}{(2 + \cos x)^{2}} dx =$$

- 1) 2
- 2) $\frac{1}{2}$
- 3) $\frac{\pi}{4}$

71.
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^4 x - \cos^2 x \sin^2 x + \sin^4 x} =$$

- 1) 2π
- $2) \pi$
- 3) $\frac{\pi}{2}$
- A cubic polynomial function f(x) vanishes at x = -2 and has local extrema at 72.

$$x = -1$$
 and $x = \frac{1}{3}$. If $\int_{-1}^{1} f(x) dx = \frac{14}{3}$, then $f(1) =$

- 1)1
- 2)2
- 3)3
- 4)4

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- 73. If $f(x) = \sin x + \int_{0}^{2} \sin x \cos t f(t) dt$, then $\int_{0}^{2} f(x) dx =$
- 2) 2
- $(3)\frac{\pi}{2}$ 4) $\frac{1}{2}$
- let f(x) be a function such that f'(x) = f(x), f(0) = 1 and g(x) be a function such 74. that $f(x)+g(x)=x^2$. Then $\int_{-\infty}^{\infty} f(x)g(x)dx=$

- 1) $e \frac{e^2}{2} \frac{5}{2}$ 2) $e + \frac{e^2}{2} \frac{3}{2}$ 3) $e \frac{e^2}{2} \frac{3}{2}$ 4) $e + \frac{e^2}{2} + \frac{5}{2}$
- 75. If $I_n = \int_0^1 x^n \tan^{-1} x dx$, then $5I_4 + 3I_2 =$

- 1) $\frac{\pi}{2}$ 2) $\frac{\pi}{2}$ -1 3) $\frac{\pi}{2} \frac{1}{2}$ 4) $\frac{\pi}{2} \frac{1}{4}$
- $76. \qquad \int_{0}^{\frac{\pi}{4}} e^{\sec x} \frac{\sin\left(x + \frac{\pi}{4}\right)}{\cos x (1 \sin x)} dx =$
 - 1) $\frac{1}{\sqrt{2}} (e^{\sqrt{2}} e)$

 $2)\left(1+\frac{1}{\sqrt{2}}\right)e^{\sqrt{2}}-\frac{e}{\sqrt{2}}$

3) $\left(1 - \frac{1}{\sqrt{2}}\right)e^{\sqrt{2}} + \frac{e}{\sqrt{2}}$

4) $\frac{1}{\sqrt{2}} \left(e^{\sqrt{2}} + 1 \right)$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

77. Let $f(x) = \int_{0}^{x} \frac{dr}{\sqrt{1+r^3}}$ and g(x) be the inverse function of f(x). Then

1)
$$2g'' = g^2$$

1)
$$2g'' = g^2$$
 2) $2g'' = 3g^2$ 3) $3g'' = 2g^2$ 4) $g'' = g^2$

3)
$$3g'' = 2g^2$$

4)
$$g'' = g^2$$

78. Let $S_n = \sum_{k=1}^n \frac{n}{n^2 + kn + k^2}$ and $T_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + kn + k^2}$. Then

1)
$$S_n < \frac{\pi}{3\sqrt{3}}$$

2)
$$S_n > \frac{\pi}{3\sqrt{3}}$$

3)
$$T_n < \frac{\pi}{3\sqrt{3}}$$

1)
$$S_n < \frac{\pi}{3\sqrt{3}}$$
 2) $S_n > \frac{\pi}{3\sqrt{3}}$ 3) $T_n < \frac{\pi}{3\sqrt{3}}$ 4) $S_n = \frac{\pi}{3\sqrt{3}}$

79. $f(x) = \int_{-\infty}^{x} t(e^{t} - 1)(t - 1)(t - 2)^{3}(t - 3)^{5} dt$ has a local maximum at x = 1

 $\lim_{x \to +\infty} (1+x) \int_{0}^{x} e^{t^{2}-x^{2}} dt =$ 80.

2)
$$\frac{1}{2}$$

1) 1 2)
$$\frac{1}{2}$$
 3) $\frac{1}{3}$

 $\lim_{n \to \infty} \frac{\left(\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}\right) \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}\right)}{1 + 2 + 3 + \dots + n} =$ 81.

2) 3 3)
$$\frac{7}{3}$$

4)
$$\frac{8}{3}$$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

- The minimum value of $f(x) = \int_{0}^{4} e^{|x-t|} dt$, $0 \le x \le 4$, is 82.
 - 1) 1

- 3) e^2-1 4) $2(e^2-1)$

([p] denotes greatest integer not exceeding p)

- 1) 1-cot 2 2) 1+cot 2
- 3) $2(1+\cot 2)$ 4) $2(1-\cot 2)$

- 84. $\int_{0}^{1} \sin^{-1}\left(2x\sqrt{1-x^{2}}\right) dx =$
- 1) $\pi 2$ 2) $\pi + 2$ 3) $2(\sqrt{2} 1)$ 4) $2\sqrt{2}$
- 85. If $f(x) = ax^2 + bx + c$, $\int_{0}^{4} f(x) dx = 1$, $\int_{0}^{4} x f(x) dx = 2$, $\int_{0}^{4} x^2 f(x) dx = 3$, then in the interval [0,4]

the equation f(x) = 0 has

1) No root

2) Exactly one root

3) atmost one root

4) atleast one root

Sr.IPLCO JEE-MAIN Q.P

space for rough work

- Let f(x) be a differentiable function. If f(0) = 0, f(1) = 1, then the minimum value of $\int_{1}^{1} (f'(x))^2 dx$ is
- 2) $\frac{1}{2}$
- 3) 1
- 4) 2

- 87. $\int_{0}^{1} \tan^{-1}(1-x+x^{2}) dx =$

 - 1) $\frac{\pi}{2}$ 2) $\frac{\pi}{4}$
- 3) ln 2
- 4) $\frac{\pi}{2} \ln 2$

- 88. $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx =$
 - 1) $\frac{\pi}{2}$ 2) π^2
- 3)0
- Let f(x) be an even function, $I_1 = \int_0^2 f(\cos 2x) \cos x dx$, $I_2 = \int_0^4 f(\sin 2x) \cos x dx$. Then $\frac{I_1}{I_2} = \frac{I_2}{I_2}$ 89.
 - 1) 1
- 2) $\frac{1}{2}$ 3) $\frac{1}{\sqrt{2}}$
- 4) $\sqrt{2}$
- If $\int \frac{\cos 9x + \cos 6x}{2\cos 5x 1} dx = A\sin 4x + B\sin x + C$, (where A,B are constants and C is the 90. constant of integration) then A+B =
 - 1)
- 2)
- $\frac{3}{4}$ 3) $\frac{5}{4}$ 4) $\frac{7}{4}$

Sr.IPLCO JEE-MAIN Q.P

space for rough work