Euclid Preparation 1

Logarithms, Exponents, Functions, and Equations

Vincent Macri

William Lyon Mackenzie C.I. Math Club

© Caroline Liu, Vincent Macri, and Samantha Unger, 2018

Part I

Logarithms and Exponents

Table of Contents

1 Exponents review

2 Exponents examples

Formulas Exponents review

When $a, b, x, y \in \mathbb{R}$ and $n \in \mathbb{R} \mid n \neq 0$:

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{0} = 1 \text{ if } a \neq 0$$

$$a^{-x} = \frac{1}{a^{x}} \text{ if } a \neq 0$$

$$\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x} \text{ if } b \neq 0$$

 0^0 is not defined.

$$\frac{a^x}{a^y} = a^{x-y} \text{ if } a \neq 0$$

$$(a^x)^y = a^{xy}$$

$$a^x \cdot b^x = (ab)^x$$

$$a^x a^y = a^{x+y}$$

Table of Contents

1 Exponents review

2 Exponents examples

Exponents problem 1 Exponents examples

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Exponents problem 1 Exponents examples

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Solution

$$9(1+7^2)k^2 = 5^m(5^3+1)$$

1 Exponents review

2 Exponents examples

