RFID: Technology and Applications

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications
 - Reader/Tag protocols
 - Middleware architecture
- RFID Business Aspects
- Security and Privacy
- Conclusion

Effect on Manufacturing

- Need to ensure error-free, custom assembly
- Need inventory of components for the various customization options
- Critical Issues
 - Assembly process control
 - Inventory management
 - Supply chain integration
 - Customer insight
- One solution: RFID

What is RFID?

- RFID = Radio Frequency IDentification
- An ADC (Automated Data Collection) technology that:
 - Uses radio-frequency waves to transfer data between a reader and a movable item to identify, categorize, track
 - Is fast and does not require physical sight or contact between reader/scanner and the tagged item
 - Performs the operation using low cost components
 - Attempts to provide unique identification and backend integration that allows for wide range of applications
- Other ADC technologies: Bar codes, OCR

RFID System Components

RFID Systems: Logical View

RFID Tags: Smart Labels

Some RFID Tags

RFID Tags

- Tags can be attached to almost anything:
 - Items, cases or pallets of products, high value goods
 - Vehicles, assets, livestock or personnel

Passive Tags

- Do not require power Draws from Interrogator Field
- Lower storage capacities (few bits to 1 KB)
- Shorter read ranges (4 inches to 15 feet)
- Usually Write-Once-Read-Many/Read-Only tags
- Cost around 25 cents to few dollars

Active Tags

- Battery powered
- Higher storage capacities (512 KB)
- Longer read range (300 feet)
- Typically can be re-written by RF Interrogators
- Cost around 50 to 250 dollars

Tag Block Diagram

RFID Tag Memory

- Read-only tags
 - Tag ID is assigned at the factory during manufacturing
 - Can never be changed
 - No additional data can be assigned to the tag
- Write once, read many (WORM) tags
 - Data written once, e.g., during packing or manufacturing
 - Tag is locked once data is written
 - Similar to a compact disc or DVD
- Read/Write
 - Tag data can be changed over time
 - Part or all of the data section can be locked

RFID Readers

- Reader functions:
 - Remotely power tags
 - Establish a bidirectional data link
 - Inventory tags, filter results
 - Communicate with networked server(s)
 - Can read 100-300 tags per second
- Readers (interrogators) can be at a fixed point such as
 - Entrance/exit
 - Point of sale
- Readers can also be mobile/hand-held

Some RFID Readers

Reader Anatomy

RFID Application Points

Handheld Applications

Shipping Portals

RFID Applications

- Manufacturing and Processing
 - Inventory and production process monitoring
 - Warehouse order fulfillment
- Supply Chain Management
 - Inventory tracking systems
 - Logistics management
- Retail
 - Inventory control and customer insight
 - Auto checkout with reverse logistics
- Security
 - Access control
 - Counterfeiting and Theft control/prevention
- Location Tracking
 - Traffic movement control and parking management
 - Wildlife/Livestock monitoring and tracking

Smart Groceries

- Add an RFID tag to all items in the grocery
- As the cart leaves the store, it passes through an RFID transceiver
- The cart is rung up in seconds

Smart Cabinet

- 1. Tagged item is removed from or placed in "Smart Cabinet"
- 2. "Smart Cabinet" periodically interrogates to assess inventory
- 3. Server/Database is updated to reflect item's disposition
- 4. Designated individuals are notified regarding items that need attention (cabinet and shelf location, action required)

Smart Fridge

- Recognizes what's been put in it
- Recognizes when things are removed
- Creates automatic shopping lists
- Notifies you when things are past their expiration
- Shows you the recipes that most closely match what is available

Smart Groceries Enhanced

 Track products through their entire lifetime

Some More Smart Applications

- "Smart" appliances:
 - Closets that advice on style depending on clothes available
 - Ovens that know recipes to cook pre-packaged food
- "Smart" products:
 - Clothing, appliances, CDs, etc. tagged for store returns
- "Smart" paper:
 - Airline tickets that indicate your location in the airport
- "Smart" currency:
 - Anti-counterfeiting and tracking
- "Smart" people ??

RFID Advantages over Bar-Codes

- No line of sight required for reading
- Multiple items can be read with a single scan
- Each tag can carry a lot of data (read/write)
- Individual items identified and not just the category
- Passive tags have a virtually unlimited lifetime
- Active tags can be read from great distances
- Can be combined with barcode technology

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications
 - Reader/Tag protocols
 - Middleware architecture
- RFID Business Aspects
- Security and Privacy
- Conclusion

RFID Communications

Tags

Power from RF field

Reader->Tag Commands

Tag->Reader Responses

RFID Communication Channel

RFID Communication

- Host manages Reader(s) and issues Commands
- Reader and tag communicate via RF signal
- Carrier signal generated by the reader
- Carrier signal sent out through the antennas
- Carrier signal hits tag(s)
- Tag receives and modifies carrier signal
 - "sends back" modulated signal (Passive Backscatter also referred to as "field disturbance device")
- Antennas receive the modulated signal and send them to the Reader
- Reader decodes the data
- Results returned to the host application

Antenna Fields: Inductive Coupling

- Inductive coupling is a near field effect
- Normally used on the lower RFID frequencies often LF, i.e. below 135 kHz or at 13.56 MHz

Antenna Fields: Propagation Coupling

Operational Frequencies

Frequency Ranges	LF 125 KHz	HF 13.56 MHz	UHF 868 - 915 MHz	Microwave 2.45 GHz & 5.8 GHz
Typical Max Read Range (Passive Tags)	Shortest 1"-12"	Short 2"-24"	Medium 1'-10'	Longest 1'-15'
Tag Power Source	Generally passive tags only, using inductive coupling	Generally passive tags only, using inductive or capacitive coupling	Active tags with integral battery or passive tags using capacitive storage, E-field coupling	Active tags with integral battery or passive tags using capacitive storage, E-field coupling
Data Rate	Slower	Moderate	Fast	Faster
Ability to read near metal or wet surfaces	Better	Moderate	Poor	Worse
Applications	Access Control & Security Identifying widgets through manufacturing processes or in harsh environments Ranch animal identification Employee IDs	Library books Laundry identification Access Control Employee IDs	supply chain tracking Highway toll Tags	Highway toll Tags Identification of private vehicle fleets in/out of a yard or facility Asset tracking

Reader->Tag Power Transfer

Q: If a reader transmits Pr watts, how much power Pt does the tag receive at a separation distance d?

A: It depends-

UHF (915MHz) : Far field propagation : Pt $\propto 1/d^2$

HF (13.56MHz) : Inductive coupling : Pt $\propto 1/d^6$

Limiting Factors for Passive RFID

- Reader transmitter power Pr (Gov't. limited)
- Reader receiver sensitivity Sr
- Reader antenna gain Gr (Gov't. limited)
- Tag antenna gain Gt (Size limited)
- 5. Power required at tag Pt (Silicon process limited)
- Tag modulator efficiency Et

Implications

- Since Pt

 ¹/d² , doubling read range requires 4X the transmitter power.
- Larger antennas can help, but at the expense of larger physical size because G{t,r} ∝ Area.
- More advanced CMOS process technology will help by reducing Pt.
- At large distances, reader sensitivity limitations dominate.

RF Effects of Common Materials

Material	Effect(s) on RF signal	
Cardboard	Absorption (moisture) Detuning (dielectric)	
Conductive liquids (shampoo)	Absorption	
Plastics	Detuning (dielectric)	
Metals	Reflection	
Groups of cans	Complex effects (lenses, filters) Reflection	
Human body / animals	Absorption, Detuning, Reflection	

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications
 - Reader/Tag protocols
 - Middleware architecture
- RFID Business Aspects
- Security and Privacy
- Conclusion

Reader Collision Problem

Tag collision

Reader collision

Probability-based

Deterministic-based (Prefix-based)

Centralized
Distributed

Taxonomy of Tag Anti-Collision Protocols

by Dong-Her Shih et. al., published in Computer Communications, 2006

SDMA

- SDMA (Space Division Multiple Access)
 - Reuse a certain resource, such as channel capacity in spatially separated area
 - Reduce the reading range of readers and forms as an array in space
 - Electronically controlled directional antenna
 - Various tags can be distinguished by their angular positions

Disadvantage: the relatively high implementation cost of the complicated antenna system

FDMA

- FDMA (Frequency Division Multiple Access)
 - Several transmission channels on various carrier frequencies are simultaneously available
 - Tags respond on one of several frequencies

Broadcast/synchronization Tag1 Tag2 Tag3 Reader Tag4 Tag5 Tag6 Interrogation zone of reader

Disadvantage: the relatively high cost of the readers, since a dedicated receiver must be provided for every reception channel

CDMA

- CDMA (Code Division Multiple Access)
 - Too complicate and too computationally intense for RFID tags as well

 CDMA uses spread spectrum modulation techniques based on pseudo random codes, to spread the data over the entire spectrum

TDMA

- TDMA (Time Division Multiple Access)
 - The largest group of RFID anti-collision protocols
 - Tag driven (tag talk first, TTF)
 - Tag transmits as it is ready
 - Aloha
 - SuperTags
 - Tags keep retransmit ID with random interval until reader acknowledges
 - Tag-driven procedures are naturally very slow and inflexible
 - Reader driven (reader talk first, RTF)
 - Polling, splitting, I-code, contactless

Polling

Polling

- Master node invites the slave nodes to transmit data in turn
- Reader must have the complete knowledge (database) of tags
- Reader interrogates the RFID tags by polling "whose serial number starts with a 1 in the first position?"
- Those tags meet this test reply "yes" while others remain
- Similar question about the next digit in their binary serial number continues
- Slow, inflexible

- Splitting or tree-search
 - Nodes transmit packets in time slots, if there is more than one node transmitting in a time slot then a collision occurs at the receiver
 - Collision resolution split the set of colliding nodes into two subsets
 - Nodes in the first subset transmit in the first time slot. Nodes in the other subset wait until the collision between the first subset of nodes is completely resolved
 - If the first subset of nodes encounters another collision, then further splitting takes place
 - This is done recursively till all the collisions have been resolved
 - Once all the collisions in the first subset of nodes are resolved, then a similar procedure is followed for the second subset

- Tree algorithm
 - Based on binary search tree algorithm
 - Each collided tag generates a random number by flipping an unbiased B-sided coin (splitting the colliding tags into B disjoint subsets)
 - B = 2, each collided tag would generate a number 0 or 1
 - The reader always sends a feedback informing the tags whether 0 packet, 1 packet, or more than 1 packet is transmitted in the previous slot
 - Each tag needs to keep track of its position in the binary tree according to the reader's feedback

R set responds first

L: set generates 1

R: set generates 0

S: single reply

Z: zero reply

C: collision

First Tag Identified: 0, 0, 0

Second Tag Identified: 001

Third Tag Identified: 1

- Query Tree (QT)
 - Prefix based
 - Tags match the prefix respond

Communication between the reader and the tags with the QT algorithm

ID: {000, 001, 101, 110}									
Step	1	2	3	4	5	6	7	8	9
Query	Empty String	0	1	00	01	10	11	000	001
Response	С	C	C	C	Z	S (101)	S (110)	S (000)	S (001)

To identify 4 tags in this case the reader has to send the prefixes 9 times

I-Code

- I-Code
 - Stochastic passive tag identification protocol based on the framed-slotted Aloha concept
 - Each tag transmits its information in a slot that it chooses randomly based on the seed sent by the reader
 - The reader can vary the frame size N, the actual size of a slot is chosen according to the amount of data requested

I-Code

- Approximation of N
 - The reader detects the number of slots by a triple of numbers c = (c0, c1, ck), where c0 stands for the number of slots in the read cycle in which 0 tags have transmitted, c1 denotes the number of slots in which a single tag transmitted and ck stands for the number of slots in which multiple tags are transmitted
 - Lower bound method
 - Minimum Distance method: distance between read result c and the expected value vector of n

I-Code

Various N values corresponding to specific ranges have been found from experiments and tabulated

\sim			C	C	•
()1	ntimality	intervals	tor	trame	S1Zes
\sim	Cillication	micor vars	101	manne	SIZUS

N slots	1	4	8	16	32	64	128	256
n_low	_	_	_	1	10	17	51	112
n_high	_	_	_	9	27	56	129	∞

```
int adaptFrameSize (N, n_est){

while (n_est < low(I(N))) \{N = \frac{N}{2}\}

while (n_est > high(I(N))) \{N = 2*N\}
}
```

Fig. 10. Choosing a frame size.

If $n \in [17, 27]$, both 32 and 64 are appropriate choices for N

Contact-less

- Contact-less
 - Is based on the tree splitting methodology to identify one bit of the ID in every arbitration step
 - The tag uses the modulation scheme which identifies "0" in the specified bit position with 00ZZ (Z stands for no modulation) and "1" as "ZZ00"
 - In this way, the reader can recognize the responses from all the tags and divide the unidentified tags into 2 groups
 - One had O's in the requested bit position and the other had
 1's. This is termed as the BitVal step

Contact-less

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications
 - Reader/Tag protocols
 - Middleware architecture
- RFID Business Aspects
- Security and Privacy
- Conclusion

How Much Data?

Consider a supermarket chain implementing RFID:

- 12 bytes EPC + Reader ID + Time = 18 bytes per tag
- Average number of tags in a neighborhood store = 700,000
- Data generated per second = 12.6 GB
- Data generated per day = 544 TB
- Assuming 50 stores in the chain,
 - data generated per day = 2720 TB
- Stanford Linear Accelerator Center generates 500 TB

RFID Middleware

Middleware Framework: PINES™

Retail Case Study: Enabling Real-Time Decisions

PINES™ Architecture Overview

Layout Management Framework

Site Layout Configuration and Location Management

Device Management Framework

Remote Monitoring and Configuration of RF Sensor Network Elements – Readers and Antennas

Sophisticated Query Processing

Stream based Event Store for Incessant,

High Performance Querying

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications
 - Reader/Tag protocols
 - Middleware architecture
- RFID Business Aspects
- Security and Privacy
- Conclusion

Business Implications of RFID Tagging

RFID Deployment Challenges

- Manage System costs
 - Choose the right hardware
 - Choose the right integration path
 - Choose the right data infrastructure
- Handle Material matters
 - RF Tagging of produced objects
 - Designing layouts for RF Interrogators
- Tag Identification Scheme Incompatibilities
 - Which standard to follow?
- Operating Frequency Variances
 - Low Frequency or High Frequency or Ultra High Frequency
- Business Process Redesign
 - New processes will be introduced
 - Existing processes will be re-defined
 - Training of HR
- Cost-ROI sharing

Using Tags with Metal

 Tags placed directly against metal will negatively affect readability

Getting Ready for RFID

- Identify business process impacts
 - Inventory control (across the supply chain)
 - Manufacturing assembly
- Determine optimal RFID configuration
 - Where am I going to tag my components/products?
 - Surfaces, metal environment and handling issues
 - Where am I going to place the readers?
 - Moving from the lab environment to the manufacturing or distribution center can be tricky
 - When am I going to assemble the RFID data?
- Integrate with ERP and other systems

RFID Services Value Chain

Management

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications
 - Reader/Tag protocols
 - Middleware architecture
- RFID Business Aspects
- Security and Privacy
- Conclusion

RFID Underpins Essential Infrastructure

PAYMENT DEVICES

MATERIEL

INDUSTRIAL & MEDICAL PARTS

PHYSICAL SECURITY

BORDER CONTROL

FOOD SUPPLY

CONSUMER GOODS

The Privacy Problem

Bad readers, good tags

Privacy: The Flip Side of RFID

- Hidden placement of tags
- Unique identifiers for all objects worldwide
- Massive data aggregation
- Unauthorized development of detailed profiles
- Unauthorized third party access to profile data
- Hidden readers

Content privacy: Protection against unauthorized scanning of data stored on tag

The Capabilities of Basic RFID Tags

- Little memory
 - Static 64-to-128-bit identifier in current ultra-cheap generation (five cents/unit)
 - Hundreds of bits soon
- Little computational power
 - A few thousand gates
 - No cryptographic functions available
 - Static keys for read/write permission

Simple Approaches to Consumer Privacy

Method 1: the Faraday Cage approach

 Place RFID-tags in protective mesh or foil

 Shield from radio signals Problem: makes locomotion difficult... perhaps useful for wallets

Simple Approaches to Consumer Privacy

Method 2: the Kill Tag approach

 Kill the tag while leaving the store

Problem:
RFID tags are
much too useful

Content Privacy via "Blocker" Tags

The "Blocker" Tag

"Blocker" Tag

Blocker simulates all (billions of) possible tag serial numbers!!

1,2,3, ..., 2023 pairs of sneakers and...
1800 books and a washing machine and...(reading fails).

"Tree-walking" Anti-Collision Protocol for RFID Tags

In a Nutshell

- "Tree-walking" protocol for identifying tags recursively asks question:
 - "What is your next bit?"
- Blocker tag always says both '0' and '1'!
 - Makes it seem like all possible tags are present
 - Reader cannot figure out which tags are actually present
 - Number of possible tags is huge (at least a billion billion), so reader stalls

Blocker tag system should protect privacy but still avoid blocking un-purchased items

Consumer Privacy + Commercial Security

- Blocker tag can be selective:
 - Privacy zones: Only block certain ranges of RFID-tag serial numbers
 - Zone mobility: Allow shops to move items into privacy zone upon purchase
- Example:
 - Blocker blocks all identifiers with leading '1' bit
 - Items in supermarket carry leading '0' bit
 - On checkout, leading bit is flipped from '0' to '1'
 - PIN required, as for 'kill' operation

Blocking with Privacy Zones

Polite Blocking

- We want reader to scan privacy zone when blocker is not present
 - Aim of blocker is to keep functionality active when desired by owner
- But if reader attempts to scan when blocker is present, it will stall!
 - Polite blocking: Blocker informs reader of its presence

More about Blocker Tags

- Blocker tag can be cheap
 - Essentially just a 'yes' tag and 'no' tag with a little extra logic
 - Can be embedded in shopping bags, etc.
- With multiple privacy zones, sophisticated,
 e.g., graduated policies are possible

An Example: The R_XA Pharmacy

RFID-Tagged Bottle + "Blocker" Bag

RFID-Tagged Bottle + "Blocker" Bag

"Soft" Blocking

- Blocker tags are special-purpose devices enhanced with a non-compliant protocol variant
- Idea: Implement polite blocking only no hardware blocking
 - A little like P3P...
- External audit possible: Can detect if readers scanning privacy zone (enforce reader respect for soft blockers' preferences)
- Advantages:
 - 'Soft blocker' tag is an ordinary RFID tag
 - Flexible policy:
 - 'Opt-in' now possible
 - e.g., 'Medical deblocker' now possible
- Weaker privacy, but can combine with 'hard' blocker

Smart Blocking Approach: Personal Simulator or Proxy for RFID

- Nokia mobile-phone RFID kit available in 2004
 - Those phones with NFC could someday get more general-purpose radios...
 - Readers will be compact, available in personal devices
- We might imagine a simulation lifecycle:
 - Mobile phone 'acquires' tag when in proximity
 - Mobile phone deactivates tags or imbues with changing pseudonyms
 - Mobile phone simulates tags to readers, enforcing user privacy policy
 - Mobile phone 'releases' tags when tags about to exit range

Outline

- Overview of RFID
 - Reader-Tag; Potential applications
- RFID Technology Internals
 - RF communications; Reader/Tag protocols
 - Middleware architecture; EPC standards
- RFID Business Aspects
- Security and Privacy
- Conclusion

RFID: The Complete Picture

- Technology which today is still more expensive than barcode
- Lost of efforts made around the price of the tag which is the tip of the iceberg
- What else need to be considered when one want to deploy a RFID system?

- Identifying Read Points
- Installation & RF Tuning
- RFID Middleware
- Connectors & Integration
- Process Changes
- Cross Supply-Chain View

Points to Note about RFID

- RFID benefits are due to automation and optimization
- RFID is not a plug & play technology
- "One frequency fits all" is a myth
- Technology is evolving but physics has limitations
- RFID does not solve data inconsistency within and across enterprises
- Management of RFID infrastructure and data has been underestimated

RFID Summary

Strengths	Weaknesses
 Advanced technology Easy to use High memory capacity Small size 	 Lack of industry and application standards High cost per unit and high RFID system integration costs Weak market understanding of the benefits of RFID technology
Opportunities	Threats
 Could replace the bar code End-user demand for RFID systems is increasing Huge market potential in many businesses 	 Ethical threats concerning privacy life Highly fragmented competitive environment

Some Links

- http://www.epcglobalinc.com/
- http://www.rfidjournal.com/
- http://rfidprivacy.com/
- http://www.rfidinc.com/
- http://www.buyrfid.com/