PEULLIZAÇÃO EXTERNA

REF: MARTÍNEZ OTIMIZAÇÃO PRÁTICA USANDO O LAGRANGIANO AVMENTADO (CAP 2).

P: min f(x)s.a. h(x) = 0 $g(x) \le 0$ $\chi \in \Omega$ RESTRIÇÕES "FÁCEIS"

EXEMPLOS DE RESTRIÇÕES FACEIS:

1)
$$\Omega = \mathbb{R}^m$$
.

2)
$$\Omega = \frac{1}{2} \times e \mathbb{R}^m$$
; $l_i \leq x_i \leq m_i$, $\forall i \in (RESTRIPTES)$

IIPOTESE: f,g,h SÃO DE CLASSE C1.

IPEIA DA PENALIZAÇÃO EXTERNA: RESOLVER UMA SEQUÊNCIA

DE SUBPROBLEMAS GOMENTE COM AS RESTRIÇÕES FACEIS

X ∈ Ω, CASTIGANDO A INVIABILIDADE EM RELAÇÃO ÀS

RESTRIÇÕES DIFÍCEIS.

MEDIDA DE INVIABILIDADE:

$$\phi(x) = \|h(x)\|^2 + \|g(x)_+\|^2$$

ONDE

$$g(x)_{+} = max 30, g(x)$$

SUBPROBLEMA:

$$SP(p)$$
: min $f(x) + p \phi(x)$
s.o. $x \in \Omega$.

· LOTE QUE
$$\phi(\alpha) = 0 \iff h(\alpha) = 0 \in g(\alpha) \le 0$$

· $\rho > 0$. FAZER $\rho \to \infty$ IMPLICA QUE $\phi(\alpha) \to 0$ (RECUPERA VIABILIDADE LO LIMITE").

EXERCÍCIO: ARLIQUE O ESQUENA PE RENALIZAÇÃO EXTERNA AO PROBLEMA min χ 8.0. $-\chi < 0$. ARLIQUE $\chi = 0$ $\chi = 0$

PROBLEMA COM ESSE ESQUEMA:

É DUMERICAMENTE INSTAUEL (P PODE CRESCER MLITO)

VANTAGENS:

- BOA TEORÍA DE CONVERCÊNCIA (MESMO QUE 7' SEJA

 APENAS PONTO ESTACIONARIO DE $SP(p_K)$ ANUCA O CRADIENTE $PE \ p(x) + p\phi(x)$)
- · A IDEIA DE PENALIZAR INSPIRA VÁRIOS METODOS.

RESULTADOS PA CONVERGÊNCIA

SUPONHA QUE O SEJA FECHAPO.

FECHADO (CONTÉM SUA FRONTE/RA)

EXEMPLOS:

Q=R, Q=3zeR, liexiemit $\Omega_3 = 3 \times eR^m$; $A_{x=b}$, $C_{x \leq d}$ São FECHADOS.

OBS: SEJA $\chi^{k} \leq \Omega$ UMA SEQUÊNCIA TAL QUE $\lim_{\lambda \to \infty} \chi^{k} = \chi^{*}$. SE Ω É FECHADO ENTÃO $\chi^{*} \in \Omega$

EYEMPLOS:

[0,1] $\subset \mathbb{R}$ & FECHADO; $(0,1] \subset \mathbb{R}$ NAU & FECHADO, POIS $X = 1 \times \{ \subset (0,1] \}$ MAS $\lim_{x \to \infty} x^{k} = \lim_{x \to \infty} 1 \times x^{k} = 0 \notin (0,1]$. PAPA UMA SEQUÊNCIA 3xx4 CR", DIZEMOS QUE X*

É PONTO DE ACCMULAÇÃO DE 3xx4 SE EXISTE

UMA SUBSEQUÊNCIA 3xxxeK CONVERGINDO À X*.

NOTAGED: $\lim_{K \in K} \chi^K = \chi^*$

EXEMPLOS:

1)
$$\chi^{k} = (-1)^{k}$$

 $\chi^* = 1$ E $\tilde{\chi}^* = -1$ SAD POLTOS DE ACUMULAÇÃO DESTA SEQUÊLCIA, POIS

 $\lim_{K \to R} \chi^{K} = 1$ E $\lim_{K \to R} \chi^{K} = -1$.

SEJA BRYS A SEQUÊNCIA GERADA PELO ESQUEMA DE PENALIZAÇÃO.

TEO SE Z" É PTO DE ACUMULAÇÃO DE 3ZX 6 O PROBLEMA
ORIGINAL P É VIÁVEZ, ELTÃO Z" É MINIMIZATOR
CLOBAL DE P.

PERALIZAÇÃO EXTERNA COM CONTROLE DE VIABILIDADE

ADMISSIBILIDADE

OBJETIVO: EVITAR QUE P CRESÇA DESNESSARIAMENTE

I DE iA: SE EM UMA ITERAÇÃO DO ESQUEMA A VIABILIDADE
MECHOROU, NOU ALMENTAMOS P...

Como PECIDIR SE χ^{κ} É MAIS VIÁVEL" QUE $\chi^{\kappa-1}$?

PARÂMETRO $G \in [0,1)$.

 $\max \left\{ \| h(x^{*}) \|_{\infty}, \| g(x^{*})_{+} \|_{\infty} \right\} \leq G \max \left\{ \| h(x^{*-1}) \|_{\infty}, \| g(x^{*-1})_{+} \|_{\infty} \right\}$

 $\underline{\text{obs.:}} \quad \|\mathbf{z}\|_{\infty} = \min\{\mathbf{z}, |\mathbf{z}, |\mathbf{z},$

SE ISTO OCORRE, χ^* É MAIS VIÁVEL QUE χ^{*-1} , E LOGO FAZERMOS $\rho_{k+1} = \rho_{\kappa}$.

ESQUEMA (COM CONTROLE DE VIABILIDADE)

DATOS
$$z^{\circ} \in \mathbb{R}^{M}$$
, $\rho_{o} > 0$, $\rho > 1$, $\mathcal{E} \in [0,1]$, $\kappa = 0$

$$|\kappa \leftarrow \kappa + 1|$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa + 1$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa + 1$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa \leftarrow \kappa$$

$$|\rho_{\kappa} \leftarrow \kappa$$

$$|\rho_{\kappa}$$

CONVERGENCIA DO ESQUEMA COM CONTROLE PE VIABILIDADE

- . SE Pr → ∞ , CAÍMOS NO ESQUEMA PADRÃO (TEO. ALTERIOR).
- · CASO RESTANTE:

TEO: SUPONHA QUE O ESQUEMA GERE $3x^{\kappa}$ & x^{*} SEJA

UM PONTO DE ACUMULAÇÃO SEU. SUPONHA AINDA QUE $p_{\kappa} = p_{\kappa}$, $\forall \kappa > K_{o}$. ENTÃO x^{*} & MIN. GLOBAL DE P

(PASO P SEJA VIÁVEL).

PROVA: EXERCÍCIO (VEJA O TEO. 26 DA REFERÊNCIA).