Geometrie – pentru pregătirea Evaluării Naționale la Matematică

(Cls. a V a , a VI a, a VII a)

UNITĂŢI DE MĂSURĂ

Timp - secundă, minut, ora, ziua, saptamana, luna, anul, deceniul, secol (veac), mileniu

1 deceniu = 10 ani ; 1 secol = 100 ani ; 1 mileniu = 1000 ani

Unghi - gradul, minutul, secunda

$$1^0 = 60', 1' = 60'', 1^0 = 3600''$$

UNGHIUL - Tipuri de unghiuri

Unghi nul

$$m(AOB) = 0^0$$
.

Unghiuri adiacente

$$m(AOC) = m(AOB) + m(BOC)$$

Unghi ascuțit

$$0^0 < m(AOB) < 90^0$$

Unghiuri complementare

$$m(\angle AOB) + m(\angle BOC) = 90^{\circ}$$

Unghi drept

$$m(\angle AOB) = 90^{\circ}$$

Unghiuri suplementare

$$m(\angle AOB) + m(\angle BOC) = 180^{\circ}$$

Unghi obtuz

$$90^{\circ} < m(< AOB) < 180^{\circ}$$

Unghiuri opuse la vârf

$$\sphericalangle AOC \equiv \blacktriangleleft BOD$$

$$\angle BOC \equiv \angle AOD$$

Unghi alungit

$$m(<\!\!\!< AOB) = 180^{\circ}$$

Unghiuri în jurul unui punct

Suma măsurilor unghiurilor formate în jurul unui punct este de 360°

TRIUNGHIUL

1. Clasificare:

Proprietati:

- 1) $\triangleleft B \equiv \triangleleft C$
- 2) [AD] bisectoarea unghiului de la varf ⇒ [AD] mediană, înălțimea și mediatoarea bazei

Proprietăți:

1)

 $m(A) = m(B) = m(C) = 60^{\circ}$ 2)Bisectoarea oricărui unghi este mediană, înălțime și mediatoare

2. Linii importante in triunghi

- a) Înăltimea = segmentul determinat de un vârf al triunghiului și proiecția acestuia pe latura opusă
 - Intersecția înălțimilor este *ortocentrul* triunghiului (H)

- b) Mediana = segmentul determinat de un vârf al triunghiului și mijlocul laturii opuse.
 - Intersecția medianelor este centrul de greutate al triunghiului

- c) Bisectoarea (unui unghi propriu) = semidreapta cu originea în vârful unghiului, situata în interiorul lui, astfel încât cele două unghiuri formate de ea cu laturile unghiului inițial să fie congruente.
 - intersectia bisectoarelor este centrul cercului înscris în triunghi

$$r = \frac{S}{p}$$
 $\begin{array}{c} S - \text{aria triunghiului} \\ p - \text{semiperimetrul} \\ r - \text{raza cercului înscris în triunghi} \end{array}$

d) Mediatoarea (unui segment) = dreapta perpendiculară dusă prin mijlocul segmentului dat

- Intersecția mediatoarelor laturilor unui triunghi este centrul cercului circumscris triunghiului

$$OA = OB = OC = R$$

$$R = \frac{a \cdot b \cdot c}{4S}$$

R – raza cercului circumscris triunghiului a,b,c – laturile triunghiului S – aria triunghiului

- 3. Criterii de congruență pentru triunghiul oarecare L.U.L, U.L.U, L.L.L. , L.U.U.*
- 4. Cazurile de congruență pentru triunghiurile dreptunghice C.C., C.U., I.U., I.C.

ARII

1. Arie triunghiul oarecare 2. Arie triunghiul dreptunghic $A_{\Delta oarecare} = \frac{b \cdot h}{2} = \frac{l_1 \cdot l_2 \cdot \sin u}{2}$ Formula lui Heron $A_{\Delta oarecare} = \sqrt{p(p-a)(p-b)(p-c)},$ $unde \ p = \frac{a+b+c}{2}$

5. Arie dreptunghi	6. Arie patrat
D C B	D C
$A_{dreptunghi} = L \cdot l$ $P_{dreptunghi} = 2(L+l)$	$A_{patrat} = l^2$ $P_{patrat} = 4l$ $d_{patrat} = l\sqrt{2}$

7. Arie romb	8. Arie trapez
A O D	D C B
$A_{romb} = \frac{d_1 \cdot d_2}{2} = b \cdot h$ $A_{romb} = l^2 \cdot \sin A$ $P_{romb} = 4l$	$A_{trapez} = \frac{(B+b) \cdot h}{2} = l_m \cdot h$ $l_m = \frac{B+b}{2} (linia mijlocie)$ $P_{trapez} = AB + BC + CD + AD$

9. Arie patrulater ortodiagonal	10. Arie patrulater convex
D C	D C
$A_{patrulater ortodiagonal} = \frac{d_1 \cdot d_2}{2}$	$A_{patrulater convex} = \frac{d_1 \cdot d_2 \cdot \sin \alpha}{2}, \alpha = m(\widehat{d_{1,d_2}})$
$P_{patrulater ortodiagonal} = AB + BC + CD + AD$	$A_{patrulaterconvex} = A_{ABD} + A_{BDC}$
	$P_{patrulater ortodiagonal} = AB + BC + CD + AD$

RELAȚII METRICE ÎN TRIUNGHI

1. Teorema lui Thales

$$\begin{vmatrix}
\triangle ABC \\
FG \parallel BC
\end{vmatrix} \Rightarrow \frac{FA}{FB} = \frac{GA}{GC}$$

$$\begin{vmatrix}
\triangle ABC \\
DE \parallel BC
\end{vmatrix} \Rightarrow \frac{EA}{EB} = \frac{DA}{DC}$$

Reciproca Teoremei lui Thales

$$Daca \frac{FA}{FB} = \frac{GA}{GC} \Rightarrow FG \parallel BC$$

$$Daca \frac{EA}{EB} = \frac{DA}{DC} \Rightarrow DE \parallel BC$$

2. Teorema fundamental a asemanarii

$$\begin{vmatrix}
\triangle ABC \\
FG \parallel BC
\end{vmatrix} \Rightarrow \triangle AFG \sim \triangle ABC$$

$$\begin{vmatrix}
\triangle ABC \\
DE \parallel BC
\end{vmatrix} \Rightarrow \triangle AED \sim \triangle ABC$$

3. Triunghiuri asemenea

$$\triangle ABC \sim \triangle A'B'C' \Leftrightarrow \qquad 1) \text{ U.U.}$$

$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'},$$

$$A = AB = AC = BC = AC'$$

$$A'B' = AC = AC'$$

$$A'B' = AC = AC'$$

$$A'B' = AC = BC = BC'$$

$$A'B' = AC = BC = BC'$$

$$A'B' = AC = BC = BC'$$

4. Cazuri de asemanare

3)
$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$$

5. Teorema catetei

$$\Delta ABC$$

$$m(< A) = 90^{\circ}$$

$$AD \perp BC$$

$$T.Catetei \begin{cases} AB^{2} = BD \cdot BC \\ AC^{2} = CD \cdot CB \end{cases}$$

6. Teorema înălțimii

$$\triangle ABC \\ m(\not A) = 90^{\circ} \begin{cases} T.Inaltimii \\ \Rightarrow AD^{2} = BD \cdot DC \end{cases}$$

$$AD \perp BC$$

7. Teorema lui Pitagora

$$\Delta ABC \atop m(\not < A) = 90^{\circ}$$
 $\Rightarrow BC^2 = AB^2 + AC^2$

Reciproca Teorema lui Pitagora

Dacă în
$$\triangle ABC$$
 avem BC > AC > AB si
 $BC^2 = AB^2 + AC^2 \Rightarrow_\triangle ABC$ dreptunghic, $m(\blacktriangleleft A) = 90^\circ$

8. Teorema bisectoarei

ELEMENTE DE TRIGONOMETRIE

TEOREMA UNGHIULUI DE 30^o

Într-un triunghi dreptunghic cateta opusă unghiului de 30⁰ este jumatate din ipotenuză

TEOREMA – Mediana in triunghiul dreptunghic

Într-un triunghi dreptunghic mediana dusă din vârful unghiului drept este jumatate din ipotenuză

TEOREMA COSINUSURILOR (se aplica în triunghiul oarecare)

$$a^{2} = b^{2} + c^{2} - 2bc \cdot \cos \hat{A}$$
$$b^{2} = a^{2} + c^{2} - 2ac \cdot \cos \hat{B}$$
$$c^{2} = a^{2} + b^{2} - 2ab \cdot \cos \hat{C}$$

TEOREMA SINUSURILOR (se aplică în triunghiul oarecare)

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$

Material realizat de Andrei Octavian Dobre- www.mateinfo.ro

(Profesor de matematică - Ploiești)

Contact: office@mateinfo.ro; dobre.andrei@yahoo.com