TD SUPPLÉMENTAIRE

† Groupes abéliens finis

Exercice 1.

- 1. Calculer toutes les partitions de l'entier 9.
- 2. En déduire les groupes abéliens (à isomorphisme près) d'ordre 512. Combien y en a-t-il?

(À titre de comparaison, il y a 10494183 groupes non abéliens d'ordre 512...)

Exercice 2. Classifier tous les groupes abéliens d'ordre 23716, en donner à chaque fois les facteurs invariants et les facteurs indécomposables.

† Méthode de calculs pour les invariants de similitude

Proposition 1. Soit $M \in \mathcal{M}(\mathbb{k})$ une matrice. Les invariants de similitudes de M sont les facteurs invariants de la matrice $M - XId \in \mathcal{M}(\mathbb{k}[X])$.

Donc on applique les transformations ligne/colonne légales (cf correction du td5), ou les coefficients se trouvent dans $\mathbb{k}[X]$ (on peut par exemple faire $L_3 := L_3 - XL_2...$)

Exercice 3. Calculer les invariants de similitude de la matrice

$$M := \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Exercice 4. Considérons (pour $m \in \mathbb{R}$), la matrice

$$A_m := \begin{pmatrix} 2 & m-1 & -1 \\ 1-m & m & m-1 \\ 1 & m-1 & 0 \end{pmatrix}$$

- 1. Montrer que le polynôme caractéristique de A_m est $(X-m)(X-1)^2$.
- 2. Calculer $(A_m mId)(A_m Id)$, en déduire la valeur du polynôme minimal de m suivant la valeur de m.
- 3. En déduire les invariants de similitude de A_m en fonction de m.