TEMA 2: APLICACIONES CONTINUAS

Manuel Bolaños Quesada

${\bf \acute{I}ndice}$

1.	Continuidad	3
2.	Espacios cociente	12

1. Continuidad

Notación. $f: X \to Y$ denota una aplicación entre conjuntos. f^{-1} puede referirse a la imagen inversa, o a la aplicación inversa de f, si f es biyectiva. Nosotros usaremos la primera excepto cuando se indique lo contrario. Así pues, si $V \subset Y$:

$$f^{-1}(V) = \{ x \in X : f(x) \in V \}$$

Son de comprobación inmediata las siguientes afirmaciones:

- 1. $f^{-1}(\bigcup_{i \in I} V_i) = \bigcup_{i \in I} f^{-1}(V_i)$
- 2. $f^{-1}(\bigcap_{i \in I} V_i) = \bigcap_{i \in I} f^{-1}(V_i)$
- 3. $f^{-1}(Y \setminus V) = X \setminus f(V)$
- 4. $y \in f(f^{-1}(V)) \implies \exists x \in f^{-1}(V) \text{ tal que } y = f(x) \in V.$

Definición 1.1. Diremos que $f:(X,T)\to (Y,T')$ es continua si $\forall V\in T',$ se tiene que $f^{-1}(V)\in T$

Definición 1.2. Sea $x_0 \in X$. Diremos que $f:(X,T) \to (Y,T')$ es continua en x_0 si $\forall V' \in N'_{f(x_0)}, \exists V \in N_{x_0}$ tal que $f(V) \subset V'$.

Proposición 1.1. Sea $f: X \to Y$ una aplicación entre dos espacio topológicos (X,T) y (Y,T'). Son equivalentes:

- 1. $f:(X,T)\to (Y,T')$ es continua
- 2. $f:(X,T)\to (Y,T')$ es continua en $x_0 \ \forall x_0\in X$.

Demostración.

■ 1) \Longrightarrow 2) Fijamos $x_0 \in X$. Veamos que f es continua en x_0 . Tomamos $V' \in N'_{f(x_0)}$. Por definición de entorno, $\exists U' \in T'$ tal que $f(x_0) \in U' \subset V'$. Como f es continua por hipótesis y $U' \in T'$ (es abierto) $\Longrightarrow f^{-1}(U') \in T$.

$$x_0 \in f^{-1}(U') \iff f(x_0) \in U' \\ f^{-1}(U') \in T \end{cases} \implies V = f^{-1}(U') \in N_{x_0}$$

 $f(V) = f(f^{-1}(U')) \subset U' \subset V'$. Así que f es continua en $x_0 \ \forall x_0 \in X$, ya que fijados x_0 y un entorno de $f(x_0)$, V', hemos encontrado un entorno de x_0 , V tal que $f(V) \subset V'$.

■ 2) \implies 1) Sea $U' \in T'$. Consideramos el conjunto $f^{-1}(U')$. Queremos ver que $f^{-1}(U') \in T$. Para ello, probamos que todo punto $x_0 \in f^{-1}(U')$ es un punto interior.

$$\left. \begin{array}{l} U' \in T' \\ f(x_0) \in U' \end{array} \right\} \implies U' \in N'_{f(x_0)}$$

Por hipótesis, como f es continua en x_0 , existe $V \in N_{x_0}$ tal que $f(V) \subset U' \implies f^{-1}(f(V)) \subset f^{-1}(U') \implies V \subset f^{-1}(f(V)) \subset f^{-1}(U') \implies x_0 \in \operatorname{int}(f^{-1}(U')).$

Veamos ahora varios ejemplos de funciones continuas: *Ejemplos*.

1. $\mathrm{Id}_X:(X,T)\to(X,T)$ es continua: sea $V\in T$

$$(\mathrm{Id}_X)^{-1}(V) = \{x \in X : \mathrm{Id}_X(x) \in V\} = \{x \in X : x \in V\} = V \in T$$

2. $\operatorname{Id}_X:(X,T_1)\to (X,T_2)$ es continua $\iff \forall V\in T_2, (\operatorname{Id}_X)^{-1}(V)\in T_1 \iff \forall V\in T_2, V\in T_1\iff T_2\subset T_1\iff T_2$ es más fina que T_1 .

3. Sean $f_1:(X_1,T_1)\to (X_2,T_2), \quad f_2:(X_2,T_2)\to (X_3,T_3)$ funciones continuas. Entonces, $f_2\circ f_1:(X_1,T_1)\to (X_3,T_3)$ es continua: sea $V\in T_3$. Entonces

$$(f_2 \circ f_1)^{-1}(V) = f_1^{-1}(\underbrace{f_2^{-1}(V)}_{\in T_2}) \in T_1$$

4. Ejercicio: si $f_1:(X_1,T_1)\to (X_2,T_2)$ es continua en $x_1\in X_1$, y $f_2:(X_2,T_2)\to (X_3,T_3)$ es continua en $f_1(x_1)\Longrightarrow f_2\circ f_1:(X_1,T_1)\to (X_3,T_3)$ es continua en x_1 .

Proposición 1.2. Sea $f: X \to Y$ una aplicación entre dos espacios topológicos. Sea $x_0 \in X$, y sean $\mathcal{B}_{x_0}, \mathcal{B}'_{f(x_0)}$ bases de entornos de x_0 en (X,T) y de $f(x_0)$ en (Y,T'), respectivamente. Son equivalentes:

- 1. f es continua en x_0
- 2. $\forall B' \in \mathcal{B}'_{f(x_0)}, \exists B \in \mathcal{B}_{x_0} \ tal \ que \ f(B) \subset B'.$

Demostración.

- 1) \Longrightarrow 2) Tenemos que $\mathcal{B}'_{f(x_0)} \subset N'_{f(x_0)}$ y $\mathcal{B}_{x_0} \subset N_{x_0}$. Sea $B' \in \mathcal{B}'_{f(x_0)} \subset N'_{f(x_0)}$. Por 1), existe $V \in N_{x_0}$ tal que $f(V) \subset B'$, y como \mathcal{B}_{x_0} es base de entornos de x_0 , entonces existe $B \in \mathcal{B}_{x_0}$ tal que $B \subset V \Longrightarrow f(B) \subset f(V) \subset B'$.
- 2) \Longrightarrow 1) Sea $V' \in N'_{f(x_0)}$. Como $\mathcal{B}_{f(x_0)}$ es base de entornos de $f(x_0)$, existe $B' \in \mathcal{B}'_{f(x_0)}$ al que $B' \subset V'$. Por 2), existe $B \in \mathcal{B}_{x_0}$ tal que $f(B) \subset B' \subset V'$.

Como $\mathcal{B}_{x_0} \subset N_{x_0}$, podemos tomar $V = B \in N_{x_0}$. Por tanto, $f(V) = f(B) \subset B' \subset V'$. \square

Ejemplos. Sean (X, d), (Y, d') espacios métricos, $f: X \to Y, x_0 \in X$. Tomamos las siguientes bases de entornos:

$$\mathcal{B}_{x_0} = \{ B(x_0, r) : r > 0 \}$$

$$\mathcal{B}'_{f(x_0)} = \{ B'(f(x_0), r) : r > 0 \}$$

 $f:(X,T_{\rm d})\to (Y,T_{\rm d'})$ es continua en $x_0\in X$ si y solo si $\forall B'\in \mathcal{B}'_{f(x_0)},\exists B\in \mathcal{B}_{x_0}$ tal que $f(B)\subset B'.$

Tenemos entonces que dar un elementos de $\mathcal{B}'_{f(x_0)}$ o de \mathcal{B}_{x_0} es equivalente a dar el radio de la bola. Entonces

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ tal que } f(B(x_0, \delta)) \subset B'(f(x_0), \varepsilon) \iff \\ \forall \varepsilon > 0, \exists \delta > 0 \text{ tal que } d(x_0, x') < \delta \implies d'(f(x_0), f(x')) < \varepsilon$$

Observación. Todas las aplicaciones $f: \mathbb{R} \to \mathbb{R}$ continuas en x_0 en el sentido de Cálculo I $(\forall \varepsilon > 0, \exists \delta > 0$ tal que $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon)$ son continuas como aplicaciones de (\mathbb{R}, T_u) en (\mathbb{R}, T_u) .

Proposición 1.3. Sean (X,T),(Y,T') dos espacios topológicos y $f:X\to Y$ una aplicación. Son equivalentes:

- 1. f es continua $(f^{-1}(U') \in T \ \forall U' \in T')$
- 2. $f^{-1}(C') \in C_T \ \forall C' \in C_{T'}$
- 3. $f(\bar{A}) \subset \overline{f(A)} \ \forall A \subset X$

Demostración.

1) \implies 2). Sea $C' \in C_{T'}$. Queremos ver que $f^{-1}(C') \in C_T$, que es equivalente a que $X \setminus f^{-1}(C') \in T$. Pero

$$X\backslash f^{-1}(C')=f^{-1}(\underbrace{Y\backslash C'}_{\in T'})\in T$$

- 2) \implies 1). Parecida a la anterior.
- 1) \Longrightarrow 3). Suponemos que f es continua. Veamos que $f(\bar{A}) \subset \overline{f(A)}$. Sea $y \in f(\bar{A}) \Longrightarrow \exists x \in \bar{A} \text{ tal que } f(x) = y$. Sabemos que f es continua en x. Elegimos $V' \in N_y'$. Entonces existe $V \in N_x$ tal que $f(V) \subset V'$.

$$\left. \begin{array}{l} V \in N_x \\ x \in \bar{A} \end{array} \right\} \implies \emptyset \neq V \cap A \implies$$

 $\implies \emptyset \neq f(V \cap A) \subseteq f(V) \cap f(A) \subset V' \cap f(A) \implies \emptyset \neq V' \cap f(A)$

Por tanto, $y \in \overline{f(A)}$, y entonces $f(\overline{A}) \subset \overline{f(A)}$.

- 3) \Longrightarrow 1). Sea $U' \in T'$. Queremos ver que $f^{-1}(U') \in T$, que es equivalente a que $X \setminus f^{-1}(U') \in C_T$. Para ello vamos a comprobar que $X \setminus f^{-1}(U') \subset X \setminus f^{-1}(U')$.
- Si $A = X \setminus f^{-1}(U')$. Como suponemos que (3) se verifica, sabemos que $f(\bar{A}) \subset \overline{f(A)}$. Por tanto,

$$f(\overline{X\backslash f^{-1}(U')})\subset \overline{f(X\backslash f^{-1}(U'))}\subset \overline{Y\backslash U'}=Y\backslash U'$$

De aquí, obtenemos $\overline{X \setminus f^{-1}(U')} \subset f^{-1}(Y \setminus U') = X \setminus f^{-1}(U')$, tal y como queríamos ver. \square

Ejemplos.

- 1. $f:(X,T)\to (Y,T')$
 - Si T es la topología discreta, entonces f es continua: si $U' \in T' \implies f^{-1}(U') \subset X \stackrel{T \text{ discreta}}{\Longrightarrow} f^{-1}(U') \in T$.
 - Si T' es la topología trivial, entonces f es continua: $T' = \{\emptyset, Y\}$. Entonces $f^{-1}(\emptyset) = \emptyset \in T$, y $f^{-1}(Y) = X \in T$.
- 2. $f:(X,T)\to (Y,T')$. Supongamos que f es constante (existe $y_0\in Y$ tal que $f(x)=y_0\ \forall x\in X$). Entonces f es continua: si $U\in T'$, entonces

$$f^{-1}(U') = \{x \in X : f(x) \in U'\} = \left\{ \begin{array}{cc} \emptyset & \text{si } y_0 \notin U' \\ X & \text{si } y_0 \in U' \end{array} \right\} \implies f \text{ continua}$$

3. Sea (X,T) un espacio topológico, $A \subset X, A \neq \emptyset$. Sea $T_A = \{U \cap A : U \in T\}$. Entonces, si $i_A : A \to X$ denota la aplicación inclusión, tenemos que $i_A : (A,T_A) \to (X,T)$ es continua:

$$U \in T \implies i_A^{-1}(U) = \{a \in A : i_A(a) \in U\} = \{a \in A : a \in U\} = U \cap A \in T_A$$

4. Sea $f:(X,T)\to (Y,T')$ continua, $A\subset X, A\neq\emptyset$. Entonces, la restricción de f al conjunto A es la aplicación $f_{|A}:A\to Y$ definida por $f_{|A}(a)=f(a)$. Veamos que $f_{|A}$ es continua. Para demostrarlo, observamos que $f_{|A}=f\circ i_A$. En efecto,

$$a \in A \implies f_{|A}(a) = f(a) = f(i_A(a)) = (f \circ i_A)(a).$$

- Si $f: X \to Y$ es continua, como sabemos que $i_A: A \to X$ es continua, entonces la composición $f \circ i_A: A \to Y$ es continua $\Longrightarrow f_{|A} = f \circ i_A$ es continua.
- 5. Sea $f:(X,T)\to (Y,T')$ una aplicación. Supongamos que $X=\bigcup_{\alpha\in I}U_\alpha,\ U_\alpha\in T\ \forall \alpha\in I.$ Entonces,

 $f_{|U_{\alpha}}$ es continua $\forall \alpha \in I \iff f$ es continua

- ←) ejemplo anterior.
- \Longrightarrow) Sea $V \in T'$. Por hipótesis, $f_{|U_{\alpha}}^{-1}(V) \in T_{U_{\alpha}} \ \forall \alpha \in I$. Además,

$$f_{|U_{\alpha}|}^{-1}(V) = \{x \in U_{\alpha} : f(x) \in V\} = \{x \in U_{\alpha} : x \in f^{-1}(V)\} = U_{\alpha} \cap f^{-1}(V)$$

Entonces $U_{\alpha} \cap f^{-1}(V) \in T_{|U_{\alpha}} \subset T \ \forall \alpha \in I \ (\text{si } A \text{ es abierto, entonces } T_A \subset T)$, de donde $U_{\alpha} \cap f^{-1}(V) = U_{\alpha} \cap W_{\alpha}$, donde $W_{\alpha} \in T$. De aquí, obtenemos que $U_{\alpha} \cap f^{-1}(V) \in T \implies$

$$f^{-1}(V) = f^{-1}(V) \cap X = f^{-1}(V) \cap \left(\bigcup_{\alpha \in I} U_{\alpha}\right) = \bigcup_{\alpha \in I} \left(f^{-1}(V) \cap U_{\alpha}\right) \in T.$$

6. Sea $f:(X,T)\to (Y,T')$ una aplicación. Supongamos que $X=C_1\cup\cdots\cup C_k,\ k\in\mathbb{N},\ C_i\in C_T\ \forall i\in\{1,\ldots,k\}$. Entonces

$$f_{|C_i}$$
 es continua $\iff f$ es continua

cierta siempre.

 \Longrightarrow) f continua $\iff f^{-1}(C') \in C_T \ \forall C' \in C_{T'}$. Sea $C' \in C_{T'}$. Entonces

$$f^{-1}(C') = f^{-1}(C') \cap X = f^{-1}(C') \cap \left(\bigcup_{i=1}^k C_i\right) = \bigcup_{i=1}^k \left(f^{-1}(C') \cap C_i\right) = \bigcup_{i=1}^k \overbrace{f^{-1}_{|C_i|}(C')}^{\in C_T}$$

Este último conjunto es cerrado en (C_i, T_{C_i}) , y entonces $\bigcup_{i=1}^k f_{|C_i}^{-1}(C') = F_i \cap C_i \in C_T$, ya que $F_i \in C_T$ (propiedad siguiente). Acabamos de probar también que si A es cerrado, entonces $C_{T_A} \subset C_T$.

Observación. En el ejemplo 5, no podemos cambiar $U_{\alpha} \in T$ por la hipótesis $U_{\alpha} \in C_T$. Si eso fuera cierto, y $f : \mathbb{R} \to \mathbb{R}$. Tenemos que $\mathbb{R} = \bigcup_{x \in \mathbb{R}} \{x\}, \ \{x\} \in C_{T_u} \implies f_{|\{x\}} : (\{x\}, (T_u)_{\{x\}}) \to (\mathbb{R}, T_u)$ es continua por ser constante, por lo que f siempre sería constante, lo que es claramente falso.

Propiedad. Si $A \subset X$, entonces $C_{T_A} = \{F \cap A : F \in C_T\}$

Sea ahora $G \in \{F \cap A : F \in C_T\} \implies \exists F \in C_T : G = F \cap A \implies A \backslash (F \cap A) \stackrel{\text{ejercicio}}{=} (X \backslash F) \cap A \in T_A \implies G \in C_{T_A}.$

Definición 1.3. Una aplicación $f:(X,T)\to (Y,T')$ entre dos espacios topológicos es:

- 1. abierta si $f(U) \in T' \ \forall U \in T$
- 2. cerrada si $f(C) \in C_{T'} \ \forall C \in C_T$

Definición 1.4. Una aplicación $f:(X,T)\to (Y,T')$ entre dos espacios topológicos es un homeomorfismo si es biyectiva, continua y f^{-1} (la aplicación inversa) es continua.

Ejemplos. Sea X un conjunto, T_1 y T_2 topologías en X, con $T_1 \subset T_2$, $T_1 \neq T_2$. Entonces:

- $\operatorname{Id}_X:(X,T_2)\to (X,T_1)$ es biyectiva y continua $(T_1\subset T_2)$.
- $\operatorname{Id}_X^{-1}:(X,T_1)\to (X,T_2)$ no es continua $(T_2\not\subset T_1).$

Definición 1.5. Un invariante topológico es una propiedad que se preserva por homeomorfismos. Dos espacios topológicos tales que exista un homeomorfismo entre ellos tienen los mismo invariantes topológicos.

Observación. Si f es biyectiva y continua, entonces f^{-1} es continua \iff $(f^{-1})^{-1}(U) \in T' \ \forall U \in T \iff f$ es abierta. Por tanto, f es homeomorfismo si f es biyectiva, continua y abierta.

Definición 1.6. Diremos que (X,T) es homeomorfo a (Y,T') si existe un homeomorfismo $(X,T) \to (Y,T')$. Lo indicaremos por $(X,T) \approx (Y,T')$.

Proposición 1.4. "Ser homeomorfo a" es una relación de equivalencia en el conjunto de los espacios topológicos:

- Reflexiva: $(X,T) \approx (X,T)$. La aplicación $\mathrm{Id}_X : (X,T) \to (X,T)$ es homeomorfismo
- Simétrica: $(X,T) \approx (Y,T') \implies (Y,T') \approx (X,T)$. Si $\exists f: (X,T) \rightarrow (Y,T')$ homeomorfismo, entonces $f^{-1}: (Y,T') \rightarrow (X,T)$ es homeomorfismo
- Transitiva: $(X,T) \approx (Y,T')$, $(Y,T') \approx (X,T'') \implies (X,T) \approx (Z,T'')$. Si $\exists f:(X,T) \rightarrow (Y,T'),g:(Y,T') \rightarrow (Z,T'')$ homeomorfismos, entonces $g \circ f:(X,T) \rightarrow (Z,T'')$ es un homeomorfismo.

Definición 1.7. Dos conjuntos tienen el mismo cardinal si existe una aplicación biyectiva entre ellos

Ejemplos.

- 1. "Tener el mismo cardinal" es un invariante topológico.
- 2. La propiedad Hausdorff es un invariante topológico: si (X,T) es T_2 y $(X,T)\approx (Y,T')$, entonces (Y,T') es T_2 .

Ejercicio: Si $f:(X,T)\to (Y,T')$ es homeomorfismo, entonces f es cerrada.

Como consecuencia, las propiedades AN-I y AN-II son invariantes topológicas. Recordemos que un espacio topológico es AN-I si todo punto admite una base de entornos numerable. Sea (X,T) AN-I, y supongamos que $(X,T)\approx (Y,T')$. Sea $y\in Y$, entonces $\exists x\in X:y=f(x)$. Como (X,T) es AN-I, existe una base numerable de entornos \mathcal{B}_x de x, por lo que $f(\mathcal{B}_x)$ es base de entornos de y, numerable. Por tanto, (Y,T') es AN-I.

Cabe ahora preguntarse lo siguiente: dada $f:X\to Y$ una aplicación, y (X,T) un espacio topológico, ¿cuál es la topología más fina en Y que hace continua a f? Más aún: dada una familia $f_i:X\to Y,\ i\in I$ de aplicaciones y (X_i,T_i) espacio topológico para todo $i\in I$, ¿cuál es la topología más fina en Y que hace continua a todas las aplicaciones f_i ?

Proposición 1.5. Sea $f_i: X \to Y$, $i \in I$, una familia de aplicaciones. Supongamos que (X_i, T_i) es un espacio topológico $\forall i \in I$. Entonces,

$$T' = \{ V \subset Y : f_i^{-1}(V) \in T_i, \ \forall i \in I \}$$

es una topología en Y. Además, se verifican los siguientes enunciados:

- 1. $f_i:(X_i,T_i)\to (Y,T')$ es continua $\forall i\in I$
- 2. Si T'' es otra topología en Y tal que $f_i:(X_i,T_i)\to (Y,T'')$ es continua $\forall i\in I$, entonces $T''\subset T'$. Es decir, T' es la topología más fina que hace continuas a las aplicaciones f_i .

Demostración. Comprobemos primero que T' es una topología:

- 1. $f_i^{-1}(\emptyset) = \emptyset \in T_i \ \forall i \in I, \quad f_i^{-1}(Y) = X_i \in T_i, \forall i \in I \implies \emptyset, Y \in T'$
- 2. Sea $\{V_j\}_{j\in J}\subset T'\implies f_i^{-1}(V_j)\in T_i\ \forall i\in I,\ \forall j\in J.$ Consideremos ahora un $i\in I,$ fijo. Entonces,

$$f_i^{-1}\left(\bigcup_{j\in J} V_j\right) = \bigcup_{j\in J} f_i^{-1}(V_j) \in T_i \implies \bigcup_{j\in J} V_j \in T'$$

3. Sean $V_1, \ldots, V_k \in T' \implies f_i^{-1}(V_j) \in T_i \ \forall i \in I, \ \forall j \in \{1, \ldots, k\}$. Entonces,

$$f_i^{-1}(V_1 \cap \dots \cap V_k) = f_i^{-1}(V_1) \cap \dots \cap f_i^{-1}(V_k) \in T_i \ \forall i \in I \implies V_1 \cap \dots \cap V_k \in T'$$

Demostremos ahora las otras dos afirmaciones:

- 1. Sea $V \in T'$, entonces es claro que $f_i^{-1}(V) \in T_i$, por definición.
- 2. Sea T'' otra topología en Y tal que $f_i:(X_i,T_i)\to (Y,T'')$ es continua $\forall i\in I$. Sea $V\in T''\implies f_i^{-1}(V)\in T_i\; \forall i\in I\implies V\in T'\implies T''\subset T',$ tal y como queríamos.

Definición 1.8. En la anterior proposición, se dice que T' es la topología final asociada a la familia de aplicaciones $\{f_i\}_{i\in I}$

Definición 1.9. Si (X,T) es un espacio topológico, y R es una relación de equivalencia en X, entonces la topología cociente T/R es la topología final para la aplicación $\pi:(X,T)\to X/R$

$$T/R = \{V \subset X/R : \pi^{-1}(V) \in T\}$$

Proposición 1.6 (Propiedad universal de la topología final). Sea $f_i: X_i \to X$ una familia de aplicaciones $(i \in I)$. Supongamos que T_i es una topología en X_i , $\forall i \in I$, y sea T es la topología final inducida por $f_i: (X_i, T_i) \to X$. Sea (Y, T') otro espacio topológico, y $g: X \to Y$ una aplicación. Entonces

 $g:(X,T)\to (Y,T')$ es continua $\iff g\circ f_i:(X_i,T_i)\to (Y,T')$ es continua $\forall i\in I$

Demostración.

- ⇒). g continua ⇒ $g \circ f_i : (X_i, T_i) \to (Y, T') \ \forall i \in I$ es continua por ser composición de funciones continuas.
- ←). Suponemos que $g \circ f_i$ es continua $\forall i \in I$. Sea $V \in T'$. Queremos ver que $g^{-1}(V) \in T \iff f_i^{-1}(g^{-1}(V)) \in T_i \ \forall i \in I \iff (g \circ f_i)^{-1}(V) \in T_i \ \forall i \in I$, que es cierta por hipótesis.

Volviendo entonces a las preguntas anteriores a la Proposición 1.5, supongamos que $I = \{1\}$. Llamemos $f = f_1$. Entonces, tenemos la aplicación $f: X \to (X_1, T_1)$. Para que f sea continua, debe verificarse $\{f^{-1}(V): V \in T_1\} \subset T$. Como estamos buscando la topología con la mayor cantidad posible de abiertos que haga continua a la aplicación f, tomamos $T = \{f^{-1}(V): V \in T_1\}$. La llamaremos la topología inicial para $f: X \to (X_1, T_1)$.

Consideremos ahora el problema general (I arbitrario). Cualquier topología T en X que haga continua a las aplicaciones f_i , tiene que verificar que $V_i \in T_i \implies f_i^{-1}(V_i) \in T$. Es fácil de comprobar que $S := \{f_i^{-1}(V_i) : V_i \in T_i \text{ para algún } i \in I\} \subset T$, no es una topología. Sea $T(S) = \bigcap_{S \subset T} T$ la topología más gruesa en X que contiene a S. La llamaremos topología inicial para la familia de aplicaciones $f_i : X \to (X_i, T_i)$.

Recordemos que si $A \subset \mathcal{P}(X)$ y $\bigcup_{U \in A} U = X$, entonces

$$\mathcal{B}(A) = \{ U_1 \cap \dots \cap U_k : k \in \mathbb{N}, \ U_i \in A \ \forall i \in \{1, 2, \dots, k\} \}$$

es base de T(A).

Como, en nuestro caso, $X = f_i^{-1}(X_i) \implies X \in S \implies \bigcup_{U \in S} U = X$. Por tanto,

$$\mathcal{B} = \mathcal{B}(S) = \{ f_{i_1}^{-1}(V_{i_1}) \cap \dots \cap f_{i_k}^{-1}(V_{i_k}) : k \in \mathbb{N}, \ i_1, \dots, i_k \in I, \ V_{i_j} \in T_{i_j} \ \forall j \in \{1, \dots, k\} \}$$

es una base de T(S).

Ejemplo (Espacio producto). Sea $k \geq 2$, y sean $(X_1, T_1), \ldots, (X_k, T_k)$ espacios topológicos. Entonces, se define el producto cartesiano $X_1 \times X_2 \times \cdots \times X_k$ como el conjunto

$$X_1 \times \cdots \times X_k = \{(x_1, \dots, x_k) : x_i \in X_i \ \forall i \in \{1, \dots, k\}\}$$

Decimos que la aplicación $p_i: X_1 \times \cdots \times X_k \to X_i$ es la proyección *i*-ésima o proyección sobre el *i*-ésimo factor, y viene dada por $(x_1, \ldots, x_k) \mapsto x_i$.

Definición 1.10. La topología inicial para las aplicaciones $p_i: X_1 \times \cdots \times X_k \to (X_i, T_i)$, donde $i \in \{1, \dots, k\}$, es la topología producto en $X_1 \times \cdots \times X_k$, y la denotaremos por $T_1 \times \cdots \times T_k$.

Observación. Si $A_i \subset X_i$, entonces

$$p_i^{-1}(A_i) = \{(x_1, \dots, x_k) : p_i((x_1, \dots, x_k)) \in A_i\} = X_1 \times \dots \times A_i \times \dots \times X_k$$

Propiedad. $A_1 \times \cdots \times A_k = p_1^{-1}(A_1) \cap \cdots \cap p_k^{-1}(A_k)$

$$(x_1, \dots, x_k) \in A_1 \times \dots \times A_k \iff x_i \in A_i \ \forall i \in \{1, \dots, k\}$$
$$\iff (x_1, \dots, x_k) \in p_i^{-1}(A_i) \ \forall i \in \{1, \dots, k\}$$
$$\iff (x_1, \dots, x_k) \in p_1^{-1}(A_1) \cap \dots \cap p_k^{-1}(A_k)$$

Propiedad. Una base de la topología producto $(T_1\times\cdots\times T_k)$ es:

$$\mathcal{B} = \{ p_1^{-1}(U_1) \cap \dots \cap p_k^{-1}(U_k) : U_i \in T_i \ \forall i \in \{1, \dots, k\} \} = \{ U_1 \times \dots \times U_k : U_i \in T_i \ \forall i \in \{1, \dots, k\} \}$$

Como resumen a todo lo anterior, tenemos la siguiente proposición:

Proposición 1.7. Dados $(X_1, T_1), \ldots, (X_k, T_k)$, espacios topológicos, la topología producto $T_1 \times \cdots \times T_k$ es la topología inicial para la familia de aplicaciones $p_i : X_1 \times \cdots \times X_k \to X_i$, dadas por $p_i(x_1, \ldots, x_k) = x_i$. Además, se verifican las siguientes afirmaciones:

- 1. Las aplicaciones $p_i: (X_1 \times \cdots \times X_k, T_1 \times \cdots \times T_k) \to (X_i, T_i)$ son continuas para todo $i \in \{1, \dots, k\}$
- 2. Si T' es otra topología en $X_1 \times \cdots \times X_k$ que hace continuas a las aplicaciones $p_i : (X_1 \times \cdots \times X_k, T_1 \times \cdots \times T_k) \to (X_i, T_i)$, entonces $T_1 \times \cdots \times T_k \subset T'$
- 3. $\mathcal{B} = \{U_1 \times \cdots \times U_k : U_i \in T_i \ \forall i \in \{1, \dots, k\}\}\ es\ una\ base\ de\ T_1 \times \cdots \times T_k$
- 4. $g:(Z,T')\to (X_1\times\cdots X_k,T_1\times\cdots\times T_k)$ es continua $\iff p_i\circ g:(Z,T')\to (X_i,T_i)$ es continua $\forall i\in\{1,\ldots,k\}$

Proposición 1.8 (Propiedad universal de la topología inicial). Sean $\{(X_i, T_i)\}_{i \in I}$ una familia de espacios topológicos, X un conjunto, y $f_i: X \to X_i$, con $i \in I$ una familia de aplicaciones. Supongamos que T es la topología inicial para la familia $f_i: X \to (X_i, T_i)$. Si (Z, T') es otro espacio topológico, y $g: Z \to X$ es una aplicación, entonces

$$g:(Z,T') \to (X,T)$$
 es continua $\iff f_i \circ g:(Z,T') \to (X_i,T_i)$ es continua $\forall i \in I$

Demostración.

- \implies). Si g es continua, como $f_i:(X,T)\to (X_i,T_i)$ es continua, entonces $f_i\circ g:(Z,T')\to (X_i,T_i)$ es continua por ser la composición de dos funciones continuas
- ← Supongamos ahora que $f_i \circ g$ es continua $\forall i \in I$. Tomamos $U \in T$, y veamos que $g^{-1}(U) \in T'$. Sea $\{B_j\}_{j \in J} \subset \mathcal{B} : U = \bigcup_{j \in J} B_j$. Entonces, $g^{-1}(U) = \bigcup_{j \in J} g^{-1}(B_j)$. Si probamos que $g^{-1}(B_j) \in T'$, tendríamos que $g^{-1}(U) \in T'$, por ser la unión de abiertos de T'.

Sea pues $B \in \mathcal{B}$. Comprobemos que $g^{-1}(B) \in T'$. Tenemos que, por ser $B \in \mathcal{B}$, existen $k \in \mathbb{N}$ y $i_1, \ldots, i_k \in I$ tales que $U_{i_j} \in T_{i_j} \ \forall j \in \{1, \ldots, k\}$, tales que $B = f_{i_1}^{-1}(U_{i_1}) \cap \cdots \cap f_{i_k}^{-1}(U_{i_k})$. Entonces, $g^{-1}(B) = g^{-1}(f_{i_1}^{-1}(U_{i_1}) \cap \cdots \cap f_{i_k}^{-1}(U_{i_k})) = g^{-1}(f_{i_1}^{-1}(U_{i_1})) \cap \cdots \cap g^{-1}(f_{i_k}^{-1}(U_{i_k})) = (f_{i_1} \circ g)^{-1}(U_{i_1}) \cap \cdots \cap (f_{i_k} \circ g)^{-1}(U_{i_k}) \in T'$, tal y como queríamos.

Proposición 1.9. Sean $(X_1, d_1), \ldots, (X_k, d_k)$ espacios métricos. Se definen en $X \times X$, donde $X = X_1 \times \cdots \times X_k$, las aplicaciones $d_{\infty}, d_1, d_2 : X \times X \to \mathbb{R}$, dadas, para $x = (x_1, \ldots, x_k)$ e $y = (y_1, \ldots, y_k)$ por:

$$d_{\infty}(x,y) = \max_{1 \le i \le k} \{d_i(x_i, y_i)\}, \qquad d_1(x,y) = \sum_{i=1}^k d_i(x_i, y_i), \qquad d_2(x,y) = \left(\sum_{i=1}^k d_i(x_i, y_i)^2\right)^{1/2}$$

Entonces, d_{∞}, d_1, d_2 son distancias en X, y son equivalentes. Además, $T_{d_{\infty}} = T_{d_1} \times \cdots \times T_{d_k}$.

<u>Demostración.</u> Para la demostración de que son distancias, y además son equivalentes, ver tema de Análisis. Veamos aquí que $T_{\rm d_{\infty}} = T_{\rm d_1} \times \cdots \times T_{\rm d_k}$.

Una base de $T_{\rm d_{\infty}}$ está formada por todas las bolas abiertas en X con la distancia $\rm d_{\infty}$:

$$\mathcal{B}_{\infty} = \{ B_{\infty}(x, r) : x \in X, r > 0 \}$$

Entonces, tenemos que

$$y \in B_{\infty}(x,r) \iff d_{\infty}(x,y) < r \iff \max\{d_{i}(x_{i},y_{i})\} < r$$

$$\iff d_{i}(x_{i},y_{i}) < r \ \forall i \in \{1,\dots,k\}$$

$$\iff y_{i} \in B_{i}(x_{i},r) \ \forall i \in \{1,\dots,k\}$$

$$\iff y \in B_{1}(x_{1},r) \times \dots \times B_{k}(x_{k},r)$$

$$\implies B_{\infty}(x,r) = B_{1}(x_{1},r) \times \dots \times B_{k}(x_{k},r)$$

Ahora, sabemos que una base \mathcal{B} de $T_{d_1} \times \cdots \times T_{d_k}$ está formada por productos de abiertos:

$$\mathcal{B} = \{U_1 \times \cdots \times U_k : U_i \in T_{d_i} \ \forall i \in \{1, \dots, k\}\}$$

Para probar que las topologías son iguales, hay que comprobar:

- 1. $\forall B \in \mathcal{B}, \ \forall x \in B, \ \exists B' \in \mathcal{B}_{\infty} : x \in B' \subset B$
- 2. $\forall B' \in \mathcal{B}_{\infty}, \ \forall x \in B', \ \exists B \in \mathcal{B} : x \in B \subset B'$

La primera es clara, así que probemos la segunda: sea $B' \in \mathcal{B}_{\infty}$. Entonces $B' = B_{\infty}(y, r)$, con $y \in X_1 \times \cdots \times X_k$ y r > 0. Sea $x \in B' \iff x \in B_{\infty}(y, r) = B_1(y_1, r) \times \cdots \times B_k(y_k, r) \implies x_i \in B_i(y_i, r) \iff d(x_i, y_i) < r$. Como

$$x_i \in B_i(y_i, r) \in T_{d_i} \implies \exists s_i > 0 : B_i(x_i, s_i) \subset B_i(y_i, r) \ \forall i \in \{1, \dots, k\},\$$

si tomamos $U_i = B_i(x_i, s_i) \in T_{d_i}$, $\forall i \in \{1, \dots, k\}$, entonces $x \in U_1 \times \dots \times U_k \in \mathcal{B}$, y además, $U_1 \times \dots \times U_k \subset \mathcal{B}'$. Además, como d_1, d_2, d_∞ son métricamente equivalentes, hemos probado que $T_{d_1} = T_{d_2} = T_{d_\infty} = T_{d_1} \times \dots \times T_{d_k}$.

Ejemplo. Consideramos (\mathbb{R} , d), donde d es la distancia usual, y \mathbb{R}^2 , con $T_u = T_{d_2}$. Tenemos que, dados $x, y \in \mathbb{R}^2$:

$$d_2(x,y) = \left(\sum_{i=1}^2 |x_i - y_i|^2\right)^{1/2} = \left(\sum_{i=1}^2 d(x_i, y_i)^2\right)^{1/2}$$

así que d₂ es la distancia d₂ tal y como se definió para producto de espacios métricos. Acabamos de ver que $T_{\rm d_2} = T_{\rm d} \times T_{\rm d}$. Entonces, $T_{\rm d_2}$ es una topología producto, y tiene todas las propiedades de una topología producto. En particular, una aplicación $f:(X,T)\to(\mathbb{R}^2,T_u)$ es continua si, y solo si, $p_i\circ f:(X,T)\to(\mathbb{R},T_{\rm d})$ es continua para i=1,2.

Por ejemplo, $f:(\mathbb{R},T_u)\to(\mathbb{R}^2,T_u)$, dada por $f(x)=(\cos(x),\sin(x))$ es continua, porque $(p_1\circ f)(x)=\cos(x)$ y $(p_2\circ f)(x)=\sin(x)$, que son aplicaciones continuas de (\mathbb{R},T_u) en (\mathbb{R},T_u) .

Proposición 1.10. Las aplicaciones $p_i: (X_1 \times \cdots \times X_k, T_1 \times \cdots \times T_k) \to (X_i, T_i)$, para $i = 1, \dots, k$, son abiertas.

<u>Demostración.</u> Sabemos que $\mathcal{B} = \{U_1 \times \cdots \times U_k : U_i \in T_i, i = 1, \dots, k\}$ es base de $T_1 \times \cdots \times T_k$. Tenemos que $p_i(U_1 \times \cdots \times U_k) = U_i \in T_i$. Hemos probado entonces que $p_i(B) \in T_i \ \forall B \in \mathcal{B}$.

Sea ahora $U \in T_1 \times \cdots \times T_k$, entonces $\exists \{B_j\}_{j \in J}$ tales que $U = \bigcup_{j \in J} B_j$. Entonces

$$p_i(U) = p_i \left(\bigcup_{j \in J} B_j\right) = \bigcup_{j \in J} p_i(B_j) \in T_i$$

por ser la unión arbitraria de elementos de T_i .

Observación. Las proyecciones en un espacio producto no son cerradas, en general. Para ello, tenemos este ejemplo: consideramos (\mathbb{R}^2 , $T_{\rm d} \times T_{\rm d}$), con d la distancia usual en \mathbb{R} , y el conjunto $C = \{(x,y) \in \mathbb{R}^2 : xy = 1\}$. Veamos que C es cerrado, pero $p_1(C) = \mathbb{R} \setminus \{0\}$ no es cerrado en (\mathbb{R} , $T_{\rm d}$).

Veamos que C es cerrado. Solo hace falta ver que la aplicación $h: (\mathbb{R}^2, T_{\rm d} \times T_{\rm d}) \to (\mathbb{R}, T_{\rm d})$ definida por h(x,y) = xy es continua. En este caso, $C = h^{-1}(\{1\})$. Como $\{1\}$ es cerrado en $(\mathbb{R}, T_{\rm d}), h^{-1}(\{1\}) = \{(x,y) \in \mathbb{R}^2 : h(x,y) = 1\} = \{(x,y) \in \mathbb{R}^2 : xy = 1\} = C$, es cerrado.

Veamos que h(x,y) = xy es continua. Tenemos que $h(x,y) = xy = p_1(x,y) \cdot p_2(x,y) = (p_1 \cdot p_2)(x,y)$. Que h es continua se sigue del siguiente lema:

Lema 1.1. Sean $f, g: (X, T) \to (\mathbb{R}, T_d)$ aplicaciones continuas de un espacio topológico (X, T) en (\mathbb{R}, T_d) . Definimos $f + g: X \to \mathbb{R}$ y $f \cdot g: X \to \mathbb{R}$ (suma y producto de f y g) por las igualdades:

$$(f+g)(x) = f(x) + g(x),$$
 $(f \cdot g)(x) = f(x) \cdot g(x) \ \forall x \in X$

Entonces, f + q y $f \cdot q$ son continuas

<u>Demostración</u>. Se deja la demostración de la continuidad de f+g como ejercicio. Demostremos que $f \cdot g$ es continua. Fijamos $x_0 \in X$. Veamos que $f \cdot g$ es continua en x_0 . Sea $x \in X$, entonces

$$|(fg)(x) - (fg)(x_0)| \le |f(x)||g(x) - g(x_0)| + |g(x_0)||f(x) - f(x_0)|$$

Sea $V \in N_{(fg)(x_0)}$, entonces, $\exists \varepsilon \in (0,1)$ tal que $((fg)(x_0) - \varepsilon, (fg)(x_0) + \varepsilon) \subset V$. Sea $M = \max\{|f(x_0)|, |g(x_0)|\} + 1 \ge 1 > 0$. Usamos ahora que $f \neq g$ son continuas en x_0 . Tomando

$$\varepsilon' = \frac{\varepsilon}{2(M+1)}, \quad V_1 = (f(x_0) - \varepsilon', f(x_0) + \varepsilon') \in N_{f(x_0)}, \quad V_2 = (g(x_0) - \varepsilon', g(x_0) + \varepsilon') \in N_{g(x_0)}$$

Por la continuidad de f en x_0 , existe $U_1 \in N_{x_0}$ tal que $f(U_1) \subset V_1$ ($x \in U_1 \Longrightarrow f(x) \in V_1 = (f(x_0) - \varepsilon', f(x_0) + \varepsilon') \Longrightarrow |f(x) - f(x_0)| < \varepsilon'$). Por la continuidad de g en x_0 , existe $U_2 \in N_{x_0}$ tal que $g(U_2) \subset V_2$. Tomamos entonces $U = U_1 \cap U_2 \in N_{x_0}$.

Entonces, dado $x \in U$ tenemos que

$$\begin{split} |(fg)(x)-(fg)(x_0)| &\leq |f(x)||g(x)-g(x_0)|+|g(x_0)||f(x)-f(x_0)|\\ &<|f(x)|\frac{\varepsilon}{2(M+1)}+|g(x_0)|\frac{\varepsilon}{2(M+1)}\\ &<|f(x)|\frac{\varepsilon}{2(M+1)}+M\frac{\varepsilon}{2(M+1)}\\ &<\left(M+\frac{\varepsilon}{2(M+1)}\right)\frac{\varepsilon}{2(M+1)}+M\frac{\varepsilon}{2(M+1)}\\ &\leq \left(M+\frac{1}{2}\right)\frac{\varepsilon}{2(M+1)}+\frac{\varepsilon}{2}\\ &<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{split}$$

por lo que $(fg)(U) \subset ((fg)(x_0) - \varepsilon, (fg)(x_0) + \varepsilon) \subset V$. Por tanto, fg es continua en x_0 .

Propiedad. Sean $(X_1, T_1), \ldots, (X_k, T_k)$ espacios topológicos. Sea \mathcal{B}_i base de $T_i \ \forall i \in \{1, \ldots, k\}$. Entonces

$$\mathcal{B}_1 \times \cdots \times \mathcal{B}_k = \{B_1 \times \cdots \times B_k : B_i \in \mathcal{B}_i \ \forall i \in \{1, \dots, k\}\}$$

es una base de $T_1 \times \cdots \times T_k$.

<u>Demostración.</u> Sea $U \in T_1 \times \cdots \times T_k$, y sea $x \in U$. Para probar que $\mathcal{B}_1 \times \cdots \times \mathcal{B}_k$ es base basta encontrar $B \in \mathcal{B}_1 \times \cdots \times \mathcal{B}_k$ tal que $x \in B \subset U$. Como

$$\{U_1 \times \cdots \times U_k : U_i \in T_i, i = 1, \dots, k\}$$

es base de $T_1 \times \cdots \times T_k$, existen $U_1 \in T_1, \ldots, U_k \in T_k$ tales que $x \in U_1 \times \cdots \times U_k \subset U$. Supongamos que $x = (x_1, \ldots, x_k)$, donde $x_i \in U_i \ \forall i \in \{1, \ldots, k\}$. Como \mathcal{B}_i es base de T_i , existe $B_i \in \mathcal{B}_i$ tal que $x_i \in B_i \subset U_i$. Entonces

$$x = (x_1, \dots, x_k) \in B_1 \times \dots \times B_k \subset U_1 \times \dots \times U_k \subset U$$

lo que demuestra lo afirmado.

Propiedad. Sean (X_i, T_i) , i = 1, ..., k espacios topológicos, y $A_i \subset X_i$, i = 1, ..., k. Entonces

$$\overline{A_1 \times \cdots \times A_k} = \overline{A_1} \times \cdots \times \overline{A_k}$$

<u>Demostración.</u> Sea $x \in X_1 \times \cdots \times X_k$. Sabemos que $\{U_1 \times \cdots \times U_k : U_i \in T_i \ \forall i \in \{1, \dots, k\}\} = \mathcal{B}$ es base de $T_1 \times \cdots \times T_k$, y que

$$\mathcal{B}(x) = \{ U \in \mathcal{B} : x \in U \}$$

es base de entornos de x. Sabemos también que $x \in \overline{A_1 \times \cdots \times A_k}$ si, y solo si, $B \cap (A_1 \times \cdots \times A_k) \neq \emptyset \ \forall B \in \mathcal{B}(x)$.

$$x = (x_1, \dots, x_k) \in \overline{A_1 \times \dots \times A_k} \iff (U_1 \times \dots \times U_k) \cap (A_1 \times \dots \times A_k) \neq \emptyset \ \forall U_i \in T_i : x_i \in U_i$$

$$\iff (U_1 \cap A_1) \times \dots \times (U_k \cap A_k) \neq \emptyset \ \forall U_i \in T_i : x_i \in U_i$$

$$\iff U_i \cap A_i \neq \emptyset \ \forall i \in \{1, \dots, k\}, \ \forall U_i \in T_i : x_i \in U_i$$

$$\iff x_i \in \overline{A_i} \ \forall i \in \{1, \dots, k\}$$

$$\iff x = (x_1, \dots, x_k) \in \overline{A_1} \times \dots \times \overline{A_k}$$

2. Espacios cociente

Definición 2.1. Sea $f:(X,T)\to (Y,T')$ una aplicación entre dos espacios topológicos. Diremos que f es una identificación si T' es la topología final para f y f es sobreyectiva.

Ejemplo. Si (X,T) es un espacio topológico, y R es una relación de equivalencia, entonces la aplicación proyección $\pi:(X,T)\to (X/R,T/R)$ es una identificación.

Observación. Si $f:(X,T)\to (Y,T')$ es una aplicación y T' es la topología final para f, entonces

$$V \in T' \iff f^{-1}(V) \in T$$

Definición 2.2 (Conjunto f-saturado). Sea $f: X \to Y$ una aplicación. Diremos que $U \subset X$ es f-saturado si $U = f^{-1}(f(U))$.

Observación. Si U es f-saturado, entonces $U = f^{-1}(f(U)) = f^{-1}\left(\bigcup_{x \in U} f\left(\{x\}\right)\right) = \bigcup_{x \in U} f^{-1}(f(\{x\}))$.

De estas igualdades deducimos que si $x \in U$, entonces todos los puntos de X con la misma imagen que x también pertenecen a U. Equivalentemente, $U \subset X$ es saturado si $\forall x \in U, \ \forall x' \in X: f(x) = f(x') \implies x' \in U$. Así pues, si existen $x \in U, \ x' \in X$ tales que f(x) = f(x'), entonces, si $x' \notin U$, deducimos que U no es f-saturado.

Definición 2.3. Sea $f:(X,T)\to (Y,T')$ una aplicación. Diremos que f es casi-abierta (casi-cerrada) si f(A) es abierto (cerrado) para todo A abierto (cerrado) que sea f-saturado.

Proposición 2.1. Sea $f:(X,T)\to (Y,T')$ una aplicación sobreyectiva. Entonces f es una identificación $\iff f$ es continua y casi-abierta (casi-cerrada).

Demostración.

- ⇒). Supongamos que f es identificación. Entonces f es continua, ya que T' es la topología final. Veamos que f es casi-abierta. Sea $U \in T$ f-saturado (esto es, $U = f^{-1}(f(U))$). Queremos ver que $f(U) \in T'$. Como T' es la topología final para f, $f(U) \in T'$ \iff $f^{-1}(f(U)) \in T$. Como U es f-saturado, $U = f^{-1}(f(U)) \in T$.
- ←). Supongamos ahora que f es continua y casi-abierta. Para comprobar que f es identificación, tenemos que ver que f es sobreyectiva (lo es por hipótesis), y que $T' = \{V \subset Y : f^{-1}(V) \in T\}$. Como $\{V \subset Y : f^{-1}(V) \in T\}$ es la topología final para f (la más fina que hace continua a $f: (X,T) \to Y)$, y $f: (X,T) \to (Y,T')$ es continua, entonces $T' \subset \{V \subset Y : f^{-1}(V) \in T\}$. Veamos ahora que $\{V \subset Y : f^{-1}(V) \in T\} \subset T'$. Sea $V \subset Y$, con $f^{-1}(V) \in T$. El conjunto $f^{-1}(V)$ es f-saturado (hay que comprobar que $f^{-1}(V) \subset f^{-1}(f(f^{-1}(V)))$). Como f es casi-abierta, $f(f^{-1}(V)) \in T'$. Pero $V = f(f^{-1}(V))$ por ser f sobreyectiva, por lo que $V \in T'$. Así pues, $T' = \{V \subset Y : f^{-1}(V) \in T\}$, y entonces T' es la topología final para f, y concluimos que f es una identificación.

Si $f:X\to Y$ es una aplicación, podemos definir en X la relación de equivalencia R_f , dada por

$$xR_fx' \iff f(x) = f(x')$$

Podemos definir entonces $\tilde{f}: X/R_f \to Y$ por $\tilde{f}([x]) = f(x)$ (bien definida porque si [x] = [x'], entonces $xR_fx' \Longrightarrow f(x) = f(x')$. Tenemos entonces que la aplicación \tilde{f} es siempre inyectiva (ya que si $\tilde{f}([x]) = \tilde{f}([x']) \Longrightarrow f(x) = f(x') \Longrightarrow xR_fx' \Longrightarrow [x] = [x']$). Además, f es sobreyectiva si, y solo si, \tilde{f} es sobreyectiva (ya que $f(X) = \tilde{f}(X/R_f)$). En particular, si $f: X \to Y$ es sobreyectiva, $\tilde{f}: X/R_f \to Y$ es biyectiva.

Teorema 2.4. Sea $f:(X,T) \to (Y,T')$ una aplicación sobreyectiva entre espacios topológicos. Entonces $\tilde{f}:(X/R_f,T/R_f) \to (Y,T')$ es un homeomorfismo si, y solo si, $f:(X,T) \to (Y,T')$ es una identificación.

<u>Demostración.</u> Recordemos primero que la aplicación $\pi: X \to X/R_f$ es la aplicación dada por $\pi(x) = [x] \equiv \bar{x}$. Además, $\tilde{f}(\bar{x}) = f(x) \implies \tilde{f} \circ \pi = f$.

• (a). Suponemos que f es identificación, y veamos que \tilde{f} es homeomorfismo. Tenemos que \tilde{f} es sobreyectiva, porque f lo es, y siempre es inyectiva, por tanto, \tilde{f} es una biyección. Sabemos también que $\tilde{f}: (X/R_f, T/R_f) \to (Y, T')$ es continua si, y solo si, $\tilde{f} \circ \pi: (X, T) \to (Y, T')$ lo es, pero $\tilde{f} \circ \pi = f$, que es continua por ser identificación. Por tanto, queda ver que \tilde{f} es abierta. Sea $V \in T/R_f \implies \pi^{-1}(V) \in T$. Entonces

$$f(\pi^{-1}(V)) = \{f(x) : x \in \pi^{-1}(V)\} = \{\tilde{f}(\pi(x)) : \pi(x) \in V\} = \tilde{f}(V)$$

Si probamos que $\pi^{-1}(V)$ es f-saturado, como f es casi-abierta por ser identificación, tendríamos que $\tilde{f}(V) = f(\pi^{-1}(V)) \in T' \implies f$ es abierta, y por tanto, \tilde{f} sería homeomorfismo.

Sean entonces $x \in \pi^{-1}(V), x' \in X$ tales que $f(x) = f(x') \implies xR_fx' \implies \pi(x) = \pi(x')$. Como $\pi(x) \in V$, tenemos que $x' \in \pi^{-1}(V)$, y por tanto $\pi^{-1}(V)$ es f-saturado.

 \Longrightarrow). Supongamos ahora que \tilde{f} es homeomorfismo, y veamos que f es continua y casiabierta. Como $\tilde{f} \circ \pi = f$, f es continua por ser composición de aplicaciones continuas (un homeomorfismo es continuo, y la proyección al espacio cociente también lo es). Queremos ver que, si V es f-saturado, entonces $f(V) \in T'$. Como $f(V) = \tilde{f}(\pi(V))$. Si comprobamos que $\pi(V) \in T/R_f$ habremos terminado, ya que \tilde{f} es un homeomorfismo y $\tilde{f}(\pi(V)) \in T'$. Tenemos que

$$\pi(V) \in T/R_f \iff \pi^{-1}(\pi(V)) \in T$$

Como V es f-saturado, veamos que $V = \pi^{-1}(\pi(V))$. Para ello, solo hay que verificar que $\pi^{-1}(\pi(V)) \subset V$. Sea $x \in \pi^{-1}(\pi(V)) \implies \pi(x) \in \pi(V) \implies \exists x' \in V : \pi(x) = \pi(x') \implies$

 $xR_fx' \implies f(x) = f(x') \implies x \in V$, donde, en la última implicación, hemos usado que V es f-saturado.

Ejemplo. Consideremos el espacio topológico $([0,1],(T_n^1)_{[0,1]})$, y el conjunto

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \subset \mathbb{R}^2$$

Definimos la aplicación $f:([0,1],(T_u^1)_{[0,1]})\to (S^1,(T_u^1)_{S^1})$ por

$$f(x) = (\cos(2\pi x), \sin(2\pi x)) \quad \forall x \in [0, 1]$$

Pongamos, para simplificar la notación, $T=(T_u^1)_{[0,1]}$ y $T'=(T_u^1)_{S^1}$. Vamos a ver que f es identificación (sobreyectiva, continua y casi-cerrada). Primero, veamos una consecuencia de esto. Si f es identificación, entonces, por el teorema anterior, tendríamos que la aplicación $\tilde{f}:([0,1]/R_f,T/R_f)\to (S^1,T')$ es homeomorfismo, o, equivalentemente, $[0,1]/R_f\approx S^1$. Veamos quién es R_f .

Si $x, x' \in [0, 1] : f(x) = f(x')$, tenemos que

$$f(x) = f(x') \implies (\cos(2\pi x), \sin(2\pi x)) = (\cos(2\pi x'), \sin(2\pi x')) \implies \begin{cases} \cos(2\pi x) = \cos(2\pi x') \\ \sin(2\pi x) = \sin(2\pi x') \end{cases}$$
$$\implies \exists k \in \mathbb{Z} : 2\pi x - 2\pi x' = 2k\pi$$
$$\iff \exists k \in \mathbb{Z} : x - x' = k$$

Como $x, x' \in [0, 1]$, las únicas posibilidades son que x = x', o bien x = 0, x' = 1, o bien x = 1, x' = 0.

Veamos entonces que f es:

- 1. Sobrevectiva
- 2. Continua
- 3. Casi-cerrada (de hecho es cerrada)

.....

- 1. Si $(x,y) \in S^1 \iff x^2 + y^2 = 1$, entonces $\exists t \in [0,2\pi) : x = \cos(t), \ y = \sin(t)$. Definimos entonces $z = \frac{t}{2\pi} \implies z \in [0,1]$ y $f(z) = (\cos(2\pi z), \sin(2\pi z)) = (x,y)$
- 2. $f:([0,1],T)\to (S^1,T')\subset (\mathbb{R}^2,T_u^2)$. Tenemos que T es la topología inicial para la aplicación inclusión $i_{S^1}:(S^1,T')\to (\mathbb{R}^2,T_u^2)$.
 - Por la propiedad universal de la topología inicial, f es continua si, y solo si, $i_{S^1} \circ f$: $([[0,1],T) \to (\mathbb{R}^2,T_u^2)$ es continua. Otra vez, por la propiedad universal de la topología inicial, $i_{S^1} \circ f$ es continua si, y solo si, $p_1 \circ (i_{S^1} \circ f)$, $p_2 \circ (i_{S^1} \circ f)$ son continuas. Pero es claro que $_1 \circ (i_{S^1} \circ f)(z) = \cos(2\pi z)$ y que $p_2 \circ (i_{S^1} \circ f)(z) = \sin(2\pi z)$, que son aplicaciones continuas de (\mathbb{R}, T_u) en (\mathbb{R}, T_u) . Por tanto, al restringirlas al intervalo [0,1] siguen siendo continuas. Queda así probado que f es continua.
- 3. Veamos que f es cerrada. Sea $A \subset [0,1]$ cerrado, y veamos que f(A) es errado en S^1 . Sea $p \in f(A)$. Tenemos que $(S^1, (T_u^2)_{S^1})$ es AN-I (ya que (\mathbb{R}^2, T_u^2) es AN-I por ser un espacio métrico, y cualquier subconjunto de un espacio AN-I es AN-I). Entonces, existe una sucesión $\{p_i\} \subset f(A)$ tal que $\{p_i\} \to p$. Por ser $p_i \in f(A)$ para todo $i \in \mathbb{N}$, existe $\{a_i\} \subset A$ tal que $f(a_i) = p_i$ para todo $i \in \mathbb{N}$. Como $\{a_i\} \subset [0,1]$, tenemos que tiene una parcial convergente, $\exists \{a_{\sigma(i)}\} \to a \in [0,1]$, por tanto, $a \in \overline{A} = A$ (por ser A cerrado). Como f es continua y $\{a_{\sigma(i)} \to a$, tenemos que $\{p_{\sigma(i)}\} \to f(a)$.
 - Como $(S^1, (T_u^2)_{S^1})$ es Hausdorff, p = f(a) (los límites de sucesiones son únicos), y entonces $p \in f(A)$. Por tanto, $\overline{f(A)} \subset f(A) \Longrightarrow f(A)$ cerrado.