Nickel

From Wikipedia, the free encyclopedia

Nickel is a chemical element with symbol **Ni** and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel belongs to the transition metals and is hard and ductile. Pure nickel, powdered to maximize the reactive surface area, shows a significant chemical activity, but larger pieces are slow to react with air under standard conditions because an oxide layer forms on the surface and prevents further corrosion (passivation). Even so, pure native nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks, [4][5] and in the interiors of larger nickel-iron meteorites that were not exposed to oxygen when outside Earth's atmosphere.

Meteoric nickel is found in combination with iron, a reflection of the origin of those elements as major end products of supernova nucleosynthesis. An iron-nickel mixture is thought to compose Earth's inner core.^[6]

Use of nickel (as a natural meteoric nickel-iron alloy) has been traced as far back as 3500 BCE. Nickel was first isolated and classified as a chemical element in 1751 by Axel Fredrik Cronstedt, who initially mistook the ore for a copper mineral. The element's name comes from a mischievous sprite of German miner mythology, Nickel (similar to Old Nick), that personified the fact that copper-nickel ores resisted refinement into copper. An economically important source of nickel is the iron ore limonite, which often contains 1–2% nickel. Nickel's other important ore minerals include garnierite, and pentlandite. Major production sites include the Sudbury region in Canada (which is thought to be of meteoric origin), New Caledonia in the Pacific, and Norilsk in Russia.

Nickel oxidizes slowly at room temperature and is considered corrosion-resistant. Historically, it has been used for plating iron and brass, coating chemistry equipment, and manufacturing certain alloys that retain a high silvery polish, such as German silver. About 6% of world nickel production is still used for corrosion-resistant purenickel plating. Nickel-plated objects sometimes provoke nickel allergy. Nickel has been widely used in coins, though its rising price has led to some replacement with cheaper metals in recent years.

Nickel, 28Ni

General properties

Name, symbol	nickel, Ni
--------------	------------

Appearance lustrous, metallic, and silver with a gold tinge

Nickel in the periodic table

Atomic number (Z) 28

Group, block group 10, d-block

Period period 4

Element category

| transition metal

Standard atomic weight (\pm) (A_r)

58.6934(4)^[1]

Electron configuration

[Ar] 3d⁸ 4s² or

[Ar] 3d⁹ 4s¹

per shell 2, 8, 16, 2 *or* 2, 8, 17,

1

Nickel is one of four elements (iron, cobalt, nickel, and gadolinium)^[7] that are ferromagnetic around room temperature. Alnico permanent magnets based partly on nickel are of intermediate strength between iron-based permanent magnets and rareearth magnets. The metal is valuable in modern times chiefly in alloys; about 60% of world production is used in nickel-steels (particularly stainless steel). Other common alloys and some new superalloys comprise most of the remainder of world nickel use, with chemical uses for nickel compounds consuming less than 3% of production.^[8] As a compound, nickel has a number of niche chemical manufacturing uses, such as a catalyst for hydrogenation. Nickel is an essential nutrient for some microorganisms and plants that have enzymes with nickel as an active site.

Properties

Atomic and physical properties

TEM image of a Ni nanocrystal inside a single wall carbon nanotube segment; scale bar 5 nm.^[9]

Nickel is a silvery-white metal with a slight golden tinge that takes a high polish. It is one of only four elements that are magnetic at or near room temperature, the others being iron, cobalt and gadolinium. Its Curie temperature is 355 °C (671 °F), meaning that bulk nickel is non-magnetic above this temperature. [10] The unit cell of nickel is a face-centered cube with the lattice parameter of 0.352 nm, giving an atomic radius of 0.124 nm. This crystal structure is stable to pressures of at least 70 GPa. Nickel belongs to the transition metals and is hard and ductile.

Electron configuration dispute

The nickel atom has two electron configurations, [Ar] $3d^8 4s^2$ and [Ar] $3d^9 4s^1$, which are very close in

energy – the symbol [Ar] refers to the argon-like core structure. There is some disagreement on which configuration has the lowest energy. [11] Chemistry textbooks quote the electron configuration of nickel as [Ar] $4s^2 \ 3d^8$, [12] which can also be

Physical properties

Phase solid

Melting point 1728 K (1455 °C,

2651 °F)

Boiling point 3003 K (2730 °C,

4946 °F)

Density near r.t. 8.908 g/cm³

when liquid, at m.p. 7.81 g/cm³

Heat of fusion 17.48 kJ/mol

Heat of 379 kJ/mol

vaporization

Molar heat 26.07 J/(mol·K)

capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	1783	1950	2154	2410	2741	3184

Atomic properties

Oxidation states $4^{[2]}$ 3, **2**, $1^{[3]}$ -1, -2

(a mildly basic oxide)

Electronegativity Pauling scale: 1.91

Ionization energies

1st: 737.1 kJ/mol 2nd: 1753.0 kJ/mol

3rd: 3395 kJ/mol

(more)

Atomic radius empirical: 124 pm

Covalent radius 124±4 pm

Van der Waals 163 pm

radius

Miscellanea

Crystal structure face-centered cubic

(fcc)

written [Ar] $3d^8 4s^2$.^[13] This configuration agrees with the Madelung energy ordering rule, which predicts that 4s is filled before 3d. It is supported by the experimental fact that the lowest energy state of the nickel atom is a $3d^8 4s^2$ energy level, specifically the $3d^8(^3F) 4s^2 ^3F$, J = 4 level.^[14]

However, each of these two configurations gives rise to several energy levels, $^{[14]}$ and the two sets of energy levels overlap. The average energy of states with configuration [Ar] $3d^9$ $4s^1$ is actually lower than the average energy of states with configuration [Ar]

 $3d^8$ $4s^2$. For this reason, the research literature on atomic calculations quotes the ground state configuration of nickel as [Ar] $3d^9$ $4s^1$.[11]

Isotopes

The isotopes of nickel range in atomic weight from 48 u (⁴⁸Ni) to 78 u (⁷⁸Ni).

Naturally occurring nickel is composed of five stable isotopes; 58 Ni, 60 Ni, 61 Ni, 62 Ni and 64 Ni, with 58 Ni being the most abundant (68.077% natural abundance). Isotopes heavier than 62 Ni cannot be formed by nuclear fusion without losing energy.

Nickel-62 has the highest nuclear binding energy of any nuclide, at 8.7946 MeV/nucleon. [15] Its binding energy is greater than both 56 Fe, often incorrectly cited as the most tightly-bound nuclide, and it is also more tightly bound than 58 Fe. [16]

Stable isotope nickel-60 is the daughter product of the extinct radionuclide ⁶⁰Fe, which decays with a half-life of 2.6 million years. Because ⁶⁰Fe has such a long half-life, its persistence in materials in the solar system may generate observable variations in the isotopic composition of ⁶⁰Ni. Therefore, the abundance of ⁶⁰Ni present in extraterrestrial material may provide insight into the origin of the solar system and its early history.

Speed of sound 4900 m/s (at r.t.)

thin rod

Thermal 13.4 μ m/(m·K)

expansion (at 25 °C)

Thermal conductivity

Electrical 69.3 nΩ·m (at 20 °C)

90.9 W/(m·K)

resistivity

Magnetic ordering ferromagnetic

Young's modulus 200 GPa

Shear modulus 76 GPa

Bulk modulus 180 GPa

Poisson ratio 0.31

Mohs hardness 4.0

Vickers hardness 638 MPa

Brinell hardness 667-1600 MPa

CAS Number 7440-02-0

History

Discovery and Axel Fredrik Cronstedt

first isolation (1751)

Most stable isotopes of nickel

Some 18 nickel radioisotopes have been characterised, the most stable being ⁵⁹Ni with a half-life of 76,000 years, ⁶³Ni with 100.1 years, and ⁵⁶Ni with 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has one meta state.^[17]

Radioactive nickel-56 is produced by the silicon burning process and later set free in large quantities during type la supernovae. The shape of the light curve of these supernovae at intermediate to late-times corresponds to the decay via electron capture of nickel-56 to cobalt-56 and ultimately to iron-56. Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. Ni has found many applications in isotope geology. Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.

iso	NA	half-life	DM	DE (MeV)	DP
⁵⁸ Ni	68.077%	is stable	with	30 neutro	ons
⁵⁹ Ni	trace	7.6×10 ⁴ y	ε	0.0506	⁵⁹ Co
⁶⁰ Ni	26.223%	is stable	with	32 neutr	ons
⁶¹ Ni	1.140%	is stable	with	33 neutr	ons
⁶² Ni	3.635%	is stable	with	34 neutr	ons
⁶³ Ni	syn	100.1 y	β-	0.0669	⁶³ Cu
⁶⁴ Ni	0.926%	is stable	with	36 neutr	ons

Nickel-78's half-life was recently measured at 110 milliseconds, and is believed an important isotope in supernova nucleosynthesis of elements heavier than iron.^[19] The nuclide ⁴⁸Ni, discovered in 1999, is the most proton-rich heavy element isotope known. With 28 protons and 20 neutrons ⁴⁸Ni is "double magic" (like ²⁰⁸Pb) and therefore unusually stable.^{[17][20]}

External links

Wikipedia: Nickel (https://en.wikipedia.org/wiki/Nickel)