Einfluss der Dauer der Propofol-Therapie

Fortgeschrittenes Praxisprojekt WS 24/25 LMU - München

Projektmitglieder: Cong Hung Eißrig, Martin Kandlinger, Ramish Raseen, Lukas Stank

Projektpartner: Prof. Dr. Wolfgang Hartl

Betreuende: Mona Niethammer, Dr. Andreas Bender

Inhalt

- Einführung Was ist Propofol?
- Fragestellung
- Daten
- Methodik
- Ergebnisse
- Fazit

Einführung – Was ist Propofol?

- Narkosemittel
- Nicht wasserlöslich → wird in Fett-Emulsion verabreicht
- Verwendungen:
 - Einleitung und Aufrechterhaltung einer Narkose
- Schnelle, gut kontrollierbare Wirkung
 - → Weltweit akzeptiertes Mittel in der Anästhesie
- Kontroverse: Möglicherweise unerwünschte Nebenwirkungen, insbesondere bei Patienten über 65 Jahren

Fragestellung

- Assoziation zwischen Einnahme von Propofol und der Zeit bis zur Entlassung oder dem Tod des Patienten?
- Wie stark ist die Assoziation, in welche Richtung wirkt sie?
- Ändert sich die Assoziation wenn nur Subgruppen betrachtet werden?

Daten

Datenerhebung

- Quelle der Daten: Kanadische Patientendatenbank
- Rohdaten: ca. 21.000 Patienten, Zeitraum 2007 bis 2014
- Filtern der Patienten nach folgenden Kriterien:
 - Alter von mindestens 18
 - BMI von über 13 $\frac{kg}{m^2}$
 - Aufenthaltsdauer auf der Intensivstation von mindestens 7 Tagen
- Gesäuberter Datensatz: ca. 12.500 Patienten
- Beobachtungszeitraum von 60 Tagen Rechtszensierung

Datenstruktur

Variable	Тур	Beschreibung
Apache II Score	Numerisch	Schwere einer Erkrankung
Mechanische Beatmung	Binär	Künstliche Beatmung des Patienten
Parenterale Ernährung	Binär	Nährstofflösungen in Blutbahn
Orale Ernährung	Binär	Ernährung durch Mund
Aufnahmekategorie	Kategorisch	Klassifiziert Eingriff
Aufnahmediagnose	Kategorisch	Hauptdiagnose bei Aufnahme
Propofol	Binär / Numerisch	Einnahme von Propofol in Tagen oder Mengen (2 Variablen)

Propofol Einnahme

Verteilung der Propofol-Kalorien

Patientenverteilung

Sterbe- und Entlassungswahrscheinlichkeit

Methodik

Überlebenszeitanalyse

- Verwendung in Medizin, Maschinenbau, etc.
- Zielgröße: Zeit bis ein Event eintritt
 - Events in unseren Daten: Tod oder Entlassung
- Hazardrate:
 - Risiko, im nächsten Moment zu sterben, falls man bis Zeitpunkt t überlebt hat
- Hazard Ratio:
 - Verhältnis der Hazardraten zwischen zwei Gruppen
- Cox-Modell:
 - Regressionsmethode zur Analyse von Überlebensdaten
 - Einfluss von verschiedenen Variablen auf Überlebenszeit
 - Kann mit rechtszensierten Daten umgehen

Methodik unsere Modelle

- Verwendung des R-Pakets: Pammtools
 - Analyse und Visualisierung von Überlebensdaten
 - Modellierung der Zeit bis zum ersten Event
- PAMMs
 - Ermöglichen die flexible Modellierung von Zeit bis Event Daten
 - Können als Generalisierte Additive Modelle formuliert werden
- Vorteile von PAMMs gegenüber klassischem Cox-Modell
 - Flexibler bei Modellierung von nichtlinearen Effekten
 - Unterstützung für zeitabhängige Effekte

Umwandlung ins PED-Format

Daten im "Standard" Zeit-bis-Event Format

ID	Event	Days	Age	Propofol Days	
123	Death	2.8	43	3	
456	Discharge	5.7	64	2	
789	Discharge	4.2	23	0	

Daten im PED-Format

ID	tstart	tend	interval	offset	status	Event	Age	Propofol Days
123	0	1	(0,1]	0	0	Death	43	3
123	1	2	(1,2]	0	0	Death	43	3
123	2	3	(2,3]	-0.097	1	Death	43	3
456	0	1	(0,1]	0	0	Discharge	64	2

Vorgehensweise

- Datensatz in Piecewise Exponential Data (PED) umwandeln
 - Intervall: Unterteilung der Beobachtungszeit in Intervalle
 - Status 0/1: Event in Intervall eingetreten (1) oder nicht (0)
- Modellberechnung
 - Einsatz von Splines für nichtlineare Effekte
- Auswertung der Modelle anhand von Forest Plots
 - Berechnung der Hazard Ratios

Ergebnisse

Modell - Zielgröße Tod

Modell - Zielgröße Tod

Modell - Zielgröße Entlassung

Modell - Zielgröße Entlassung

Subgruppenanalyse

Subgruppen - Zielgröße Entlassung

Fazit

- Propofol verringert das Risiko in der ICU zu sterben
- Propofol Kalorien keinen signifikanten Einfluss auf das Entlassungsrisiko
- Wirkung von Propofol auf Tod / Entlassung unterscheidet sich nicht bei
 - Patienten mit Alter > 65 Jahre und Alter ≤ 65
 - Weiblichen und männlichen Patienten

Anhang

Deskriptive Plots

Sterbe- und Entlassungswahrscheinlichkeit

Erklärung für Berechnung von HR

Wie werden die Hazard Ratios berechnet?

Interpretation of covariate effects

The interpretation of covariate effects can be done directly via Hazard Ratios:

$$\frac{h(t|complications = "yes")}{h(t|complications = "no")} = \exp(\beta_1)$$

```
exp(coef(cph1))
```

```
## complicationsyes
## 2.031328
```

• Compared to a patient without complications, the hazard of a patient with complications increases on average by a factor of ≈ 2

Weiteres zu vorgestellten Modellen

Spline Alter – Modell Tod

Spline Apachell – Modell Tod

Spline Alter – Modell Entlassung

Spline Apachell – Modell Entlassung

Zusammenfassung Modell Ergebnisse

Zusammenfassung Modell Tod

- Mechanische Beatmung: Die Hazardrate für Patienten mit mechanischer Beatmung ist im Durchschnitt 2.25-mal höher im Vergleich zu Patienten ohne Beatmung (c.p.)
- **Parenterale Ernährung**: Die Hazardrate für Patienten mit parenteraler Ernährung ist im Durchschnitt **1.3-mal höher** im Vergleich zu Patienten ohne parenterale Ernährung (c.p.).
- **Selbsternährung**: Die Hazardrate für Patienten, die sich selbst ernähren können, ist im Durchschnitt **0.43-mal** so hoch wie für Patienten, die sich nicht selbst ernähren können (c.p.).
- **Propofol**: Die Hazardrate für Patienten, die Propofol erhalten, ist im Durchschnitt **0.73-mal** so hoch wie für Patienten, die kein Propofol erhalten (c.p.).

Zusammenfassung Modell Tod

- Mechanische Beatmung: Erhöhtes Risiko für Tod
- Parenterale Ernährung: Erhöhtes Risiko für Tod
- Orale Ernährung: Verringertes Risiko für Tod
- **Propofol**: Verringertes Risiko für Tod

Zusammenfassung Modell Entlassung

- **Mechanische Beatmung:** Die Hazardrate für Patienten mit mechanischer Beatmung ist im Durchschnitt **0.08-mal** so hoch im Vergleich zu Patienten ohne Beatmung (c.p.)
- **Parenterale Ernährung:** Die Hazardrate für Patienten mit parenteraler Ernährung ist im Durchschnitt **0.9-mal** so hoch im Vergleich zu Patienten ohne parenterale Ernährung (c.p.).
- Orale Ernährung: Die Hazardrate für Patienten, die sich selbst ernähren können, ist im Durchschnitt 1.2-mal höher wie für Patienten, die sich nicht selbst ernähren können (c.p.).
- **Propofol-Kalorien:** Die Hazardrate steigt im Durchschnitt um den Faktor **1** pro zusätzliche Kalorien (c.p.).

Zusammenfassung Modell Entlassung

- Mechanische Beatmung: Verringertes Risiko für Entlassung
- Parenterale Ernährung: Verringertes Risiko für Entlassung
- Orale Ernährung: Erhöhtes Risiko für Entlassung
- Propofol: keinen Einfluss für Entlassung

Weitere Modelle

Modell (Tod, Propofol Kalorien)

Modell (Entlassung, Propofol Tage)

Subgruppenmodelle

Interaktion - Zielgröße Tod

Interaktion Alter

$$\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1}) \approx 0.0024$$

$$\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Age}>65} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Age}>65:\text{Propofol}=1}) \approx 0.004$$

$$\frac{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Age}>65} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Age}>65:\text{Propofol}=1})}{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1})} \approx 1.66$$

→ Patient älter 65 mit Propofol-Einnahme hat c.p. 66% höheres Sterberisiko als Patient jünger 66 mit Propofol-Einnahme

Interaktion - Zielgröße Tod

Interaktion Geschlecht

$$\begin{split} &\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1}) \approx 0.0024 \\ &\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Sex}=\text{Male}} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Sex}=\text{Male}:\text{Propofol}=1}) \approx 0.0024 \\ &\frac{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Sex}=\text{Male}} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Sex}=\text{Male}:\text{Propofol}=1})}{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1})} \approx 1 \end{split}$$

→ Männliche Patienten mit Propofol-Einnahme haben c.p. das identische Sterberisiko zu weiblichen Patienten mit Propofol-Einnahme

Interaktion - Zielgröße Entlassung

Interaktion Alter

$$\begin{split} &\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1}) \approx 0.058 \\ &\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Age}>65} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Age}>65:\text{Propofol}=1}) \approx 0.050 \\ &\frac{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Age}>65} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Age}>65:\text{Propofol}=1})}{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1})} \approx 0.86 \end{split}$$

→ Älter Patient mit Propofol-Einnahme hat c.p. ein 14% kleineres Entlassungsrisiko als jüngerer Patient mit Propofol-Einnahme

Interaktion - Zielgröße Entlassung

Interaktion Geschlecht

$$\begin{split} &\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1}) \approx 0.0024 \\ &\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Sex}=\text{Male}} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Sex}=\text{Male:Propofol}=1}) \approx 0.061 \\ &\frac{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Sex}=\text{Male}} + \hat{\beta}_{\text{Propofol}=1} + \hat{\beta}_{\text{Sex}=\text{Male:Propofol}=1})}{\exp(\hat{\beta}_0 + \hat{\beta}_{\text{Propofol}=1})} \approx 1.05 \end{split}$$

→ Männliche Patienten mit Propofol-Einnahme haben c.p. ein 5% höheres Entlassungsrisiko als weiblichen Patienten mit Propofol-Einnahme

Subgruppe Alter - Zielgröße Tod

Subgruppe Frauen - Zielgröße Tod

Subgruppe Frauen - Zielgröße Tod

