LA DÉRIVATION E02

Preuve pour la fonction dérivée de $x \mapsto \sqrt{x}$ (à retenir)

Soit $x \in \mathbb{R}_{+}^{*}$ (autrement dit: x est un nombre réel (\mathbb{R}), positif (+), non nul (*)) et soit $h \in \mathbb{R}^*_+$.

Nous allons simplifier l'écriture $\frac{\sqrt{x+h}-\sqrt{x}}{h}$ en utilisant une expression conjuguée (une technique à retenir : $\sqrt{x+h} - \sqrt{x}$ a pour expression conjuguée $\sqrt{x+h} + \sqrt{x}$

- Justifier que $\sqrt{x+h} + \sqrt{x}$ ne s'annule pas.
- 2) Simplifier l'expression : $\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$
- 3) En déduire le nombre dérivé en x de la fonction racine carrée.
- 4) À quoi servait la question 1)?

EXERCICE N°2 Preuve de la deuxième ligne du tableau de la propriété n°5

Soit u une fonction définie sur un intervalle I de \mathbb{R} . Soit $k \in \mathbb{R}$, soit $x \in I$ et soit $x+h \in I$. Soit f la fonction définie pour tout $x \in I$ par $h \in \mathbb{R}$ tel que $f(x) = k \times u(x)$

- 1) Pourquoi impose-t-on $x+h \in I$?
- 2) Simplifier l'expression $\frac{f(x+h)-f(x)}{h}$.
- En déduire le nombre dérivé en x de la fonction $f: x \mapsto k \times u(x)$.

EXERCICE N°3 Preuve pour la dérivée du produit (pour la culture)

Préliminaires

Soit a, b, c et d quatre réels, démontrer que |ab-cd| = d(a-c)+a(b-d)|.

La preuve

Soit f et g deux fonctions définies sur un intervalle I de $\mathbb R$. Soit $x \in I$ et soit $h \in \mathbb{R}$, tel que $x+h \in I$.

- 1) Pourquoi impose-t-on $x+h \in I$?

2) En utilisant les préliminaires, montrer que :
$$\frac{(fg)(x+h)-fg(x)}{h} = g(x)\frac{f(x+h)-f(x)}{h} + f(x)\frac{g(x+h)-g(x)}{h}$$

3) En déduire le nombre dérivé en x de la fonction $fg: x \mapsto (fg)(x) = f(x)g(x)$.

EXERCICE N°4 Déterminer la fonction dérivée d'une fonction

Pour chaque fonction, préciser le domaine de définition, le domaine de dérivabilité et déterminer sa fonction dérivée.

1)
$$f_1: x \mapsto 5$$
 ; $f_2: x \mapsto \frac{15}{7}$; $f_3: x \mapsto \sqrt{3}$; $f_4: x \mapsto 2\pi$; $f_5: x \mapsto -3\pi + 5\sqrt{3}$

- $g_1: x \mapsto x+2 : g_2: x \mapsto x+3\pi\sqrt{7}$ 2)
- 3) $g_3: x \mapsto 4x + 5$; $g_4: x \mapsto \sqrt{7}x + 8.5$;
- $h_1: x \mapsto 3x^2 4$; $h_2: x \mapsto 4x^2 + 5x 1$; $h_3: x \mapsto -2.5x^2 + 6x + \sqrt{3}$ 4)
- $h_4: x \mapsto \frac{5}{2}x^3 4x^2 + 3x 7\sqrt{11}$; $h_5: x \mapsto -\pi x^3 + \sqrt{5}x^2 \frac{14}{3}x + 33$ 5)

7)
$$h_9: x \mapsto (3x+4)(2x-7)$$
 ; $h_{10}: x \mapsto (7-2x)^2$

LA DÉRIVATION E02

Preuve pour la fonction dérivée de $x \mapsto \sqrt{x}$ (à retenir)

Soit $x \in \mathbb{R}_{+}^{*}$ (autrement dit: x est un nombre réel (\mathbb{R}), positif (+), non nul (*)) et soit $h \in \mathbb{R}^*_+$.

Nous allons simplifier l'écriture $\frac{\sqrt{x+h}-\sqrt{x}}{h}$ en utilisant une expression conjuguée (une technique à retenir : $\sqrt{x+h} - \sqrt{x}$ a pour expression conjuguée $\sqrt{x+h} + \sqrt{x}$

- Justifier que $\sqrt{x+h} + \sqrt{x}$ ne s'annule pas.
- 2) Simplifier l'expression : $\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$
- 3) En déduire le nombre dérivé en x de la fonction racine carrée.
- 4) À quoi servait la question 1)?

EXERCICE N°2 Preuve de la deuxième ligne du tableau de la propriété n°5

Soit u une fonction définie sur un intervalle I de \mathbb{R} . Soit $k \in \mathbb{R}$, soit $x \in I$ et soit $x+h \in I$. Soit f la fonction définie pour tout $x \in I$ par $h \in \mathbb{R}$ tel que $f(x) = k \times u(x)$

- 1) Pourquoi impose-t-on $x+h \in I$?
- 2) Simplifier l'expression $\frac{f(x+h)-f(x)}{h}$.
- En déduire le nombre dérivé en x de la fonction $f: x \mapsto k \times u(x)$.

EXERCICE N°3 Preuve pour la dérivée du produit (pour la culture)

Préliminaires

Soit a, b, c et d quatre réels, démontrer que |ab-cd| = d(a-c)+a(b-d)|.

La preuve

Soit f et g deux fonctions définies sur un intervalle I de \mathbb{R} . Soit $x \in I$ et soit $h \in \mathbb{R}$, tel que $x+h \in I$.

- 1) Pourquoi impose-t-on $x+h \in I$?

2) En utilisant les préliminaires, montrer que :
$$\frac{(fg)(x+h)-fg(x)}{h} = g(x)\frac{f(x+h)-f(x)}{h} + f(x)\frac{g(x+h)-g(x)}{h}$$

3) En déduire le nombre dérivé en x de la fonction $fg: x \mapsto (fg)(x) = f(x)g(x)$.

EXERCICE N°4 Déterminer la fonction dérivée d'une fonction

Pour chaque fonction, préciser le domaine de définition, le domaine de dérivabilité et déterminer sa fonction dérivée.

1)
$$f_1: x \mapsto 5$$
 ; $f_2: x \mapsto \frac{15}{7}$; $f_3: x \mapsto \sqrt{3}$; $f_4: x \mapsto 2\pi$; $f_5: x \mapsto -3\pi + 5\sqrt{3}$

- $g_1: x \mapsto x+2 : g_2: x \mapsto x+3\pi\sqrt{7}$ 2)
- 3) $g_3: x \mapsto 4x + 5$; $g_4: x \mapsto \sqrt{7}x + 8.5$;
- $h_1: x \mapsto 3x^2 4$; $h_2: x \mapsto 4x^2 + 5x 1$; $h_3: x \mapsto -2.5x^2 + 6x + \sqrt{3}$ 4)
- $h_4: x \mapsto \frac{5}{2}x^3 4x^2 + 3x 7\sqrt{11}$; $h_5: x \mapsto -\pi x^3 + \sqrt{5}x^2 \frac{14}{3}x + 33$ 5)

7)
$$h_9: x \mapsto (3x+4)(2x-7)$$
 ; $h_{10}: x \mapsto (7-2x)^2$

