Support Vector Machines

전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Optimization Objective
- Large margin intuition
- Mathematics behind large margin classification
- Kernel I
- Kernel II
- Using an SVM

Outline

- Optimization Objective
- Large margin intuition
- Mathematics behind large margin classification
- Kernel I
- Kernel II
- Using an SVM

Supervised Learning Algorithms

- A range of different algorithms
 - With supervised learning algorithms performance is pretty similar
 - What matters more often is;
 - The amount of training data
 - Skill of applying algorithms
- Other supervised learning algorithm widely used
 - Support vector machine (SVM)
 - Compared to both logistic regression and neural networks,
 a SVM sometimes gives a cleaner way of learning non-linear functions

Logistic Regression

Logistic regression

- If y = 1, we want $h_{\theta}(x) \approx 1$, $\theta^T x \gg 0$
- If y = 0, we want $h_{\theta}(x) \approx 0$, $\theta^T x \ll 0$

Alternative View of Logistic Regression

Contribution of each example to the overall cost function

$$y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right)$$

$$= -y^{(i)} \log \frac{1}{1 + \exp(-\theta^T x^{(i)})} - (1 - y^{(i)}) \log \left(1 - \frac{1}{1 + \exp(-\theta^T x^{(i)})} \right)$$

Overall cost function

$$\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{i}^{2}$$

Alternative View of Logistic Regression

Cost contribution of each example

$$y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right)$$

$$= -y^{(i)} \log \frac{1}{1 + \exp(-\theta^T x^{(i)})} - (1 - y^{(i)}) \log \left(1 - \frac{1}{1 + \exp(-\theta^T x^{(i)})} \right)$$

- If y = 1, (want $\theta^T x \gg 0$)
 - Only $-\log \frac{1}{1 + \exp(-\theta^T x)}$ term
 - Cost contribution
 - Low for large $z = \theta^T x$
 - High for small z

→ This is why when logistic regression sees a positive example(y = 1), it tries to set $\theta^T x$ to be a very large term ($\theta^T x \gg 0$)

Alternative View of Logistic Regression

Cost contribution of each example

$$y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right)$$

$$= -y^{(i)} \log \frac{1}{1 + \exp(-\theta^T x^{(i)})} - (1 - y^{(i)}) \log \left(1 - \frac{1}{1 + \exp(-\theta^T x^{(i)})} \right)$$

- If y = 0, (want $\theta^T x \ll 0$)
 - Only $-\log\left(1-\frac{1}{1+\exp(-\theta^T x)}\right)$ term
 - Cost contribution
 - Low for small z
 - High for large z

SVM Cost Function

- To build a SVM, redefine our cost functions
 - When y = 1
 - Take the (y = 1) function and create a new cost function, Cost₁(z)
 - \triangleright Approximation to the logistic regression (y = 1) function
 - two straight lines
 - New (y = 1) cost function gives
 - SVM a computational advantage and an easier optimization problem

SVM Cost Function

- Redefine our cost functions
 - When y = 0
 - Take the (y = 0) function and create a new cost function, $Cost_0(z)$
 - \triangleright Approximation to the logistic regression (y = 0) function
 - two straight lines
 - New (y = 0) cost function gives
 - SVM a computational advantage and an easier optimization problem

Support Vector Machine

Logistic regression

$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Support Vector Machine

Logistic regression

$$min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left(-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Support vector machine

$$min_{\theta} \ C \sum_{i=1}^{m} \left[y^{(i)} cost_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) cost_{0}(\theta^{T} x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

Unlike logistic regression, (in SVM) $h_{\theta}(x)$ does not give us a probability, but instead we get a direct prediction of 1 or 0

$$\mathbf{h}_{\theta}(x) = \begin{cases} 1 & \text{if } \theta^T x \ge 0 \\ 0 & \text{if } \theta^T x < 0 \end{cases}$$

Outline

- Optimization Objective
- Large margin intuition
- Mathematics behind large margin classification
- Kernel I
- Kernel II
- Using an SVM

Support Vector Machine

- Support vector machine
 - Large margin classifiers

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$

If
$$y = 1$$
, we want $\theta^T x \ge 1$ (not just ≥ 0)

If
$$y = 0$$
, we want $\theta^T x \le -1$ (not just < 0)

SVM Property

- If we have a positive example,
 - we only really need $\theta^T x \geq 0$
 - If $\theta^T x \ge 0$, then we predict 1

- SVM wants a bit more than that
 - It does not want to "just" get it right, but have the value be quite a bit bigger than zero
 - → Throws in an extra safety margin factor

SVM Property

- Consider a case of huge C
 - For example, *C*= 100,000
 - Considering the minimization of CA + B,
 - pick the zero A value for huge C
 - How do we make A = 0?
 - - - We need to find a value of θ s.t $\theta^T x \ge 1$ in order to make A = 0
 - - We need to find a value of θ s.t $\theta^T x \le -1$ in order to make A = 0

SVM Property

- If we think of our optimization problem min(CA + B) a way to ensure that this first " A" term = 0,
 - we re-factor our optimization problem into just minimizing the "B" (regularization) term, because A*C=0 when A=0
- \blacksquare That is, try to miminize B, under the following constraints

$$min_{\theta} \left(\frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

such that
$$\theta^T x \ge 1$$
 if $y^{(i)} = 1$
 $\theta^T x \le -1$ if $y^{(i)} = 0$

Decision Boundaries of Linearly Separable Case

- Decision boundaries of Logistic regression: blue and red
 - They may not generalize too well
- Decision boundary of SVM: black
 - More robust separator

Decision Boundaries

- Decision boundary of SVM
 - More robust separator
 - Mathematically, the black line has a larger minimum distance (margin) from any of the training examples
 - By separating with the largest margin,we incorporate robustness into our decision making process

- Data points that lie closest to the decision surface (or hyperplane)
- They are the data points most difficult to classify
- They have direct effect on the optimum location of the decision surface

- The decision function
 - is fully specified by a (usually very small) subset of training samples, the support vectors.

- Moving a support vector
 - moves the decision boundary

- Moving a support vector
 - moves the decision boundary

- Moving the other vector
 - Does not have any effect

- Moving the other vector
 - Does not have any effect

- Moving the other vector
 - Does not have any effect
- → Only the support vectors determine the weights and thus the boundary

Large Margin Classifier without Outliers

- When C is very large,
 - Without outliers

Outlier

Outlier

- Property of one person
 - Two billion dollars
- Average property of 299 persons
 - 3 million dollars
- Average property of 300 persons
 - 7

Outlier

- Outlier (in statistics)
 - An observation point that is distant from other observations
- Outlier occurrence
 - Measurement error
 - One wishes to discard them or use statistics that are robust to outliers,
 - The population has a heavy-tailed distribution
 - they indicate that the distribution has high skewness
 - one should be very cautious in using tools or intuitions that assume a normal distribution
- Frequent cause of outliers
 - A mixture of two distributions
 - which may be two distinct sub-populations
 - or may indicate 'correct trial' versus 'measurement error'

Large Margin Classifier in Presence of Outliers

- When C is very large,
 - SVM is very sensitive to outliers with using large margin ONLY

Large Margin Classifier in Presence of Outliers

- When C is very large,
 - SVM is very sensitive to outliers with using large margin ONLY
 - A single example might not represent a good reason to change an algorithm

- If C is very large, then we do use this quite naive max the margin approach
- But if C is reasonably small, or a not too large, then we stick with the black decision boundary

SVM

- What about non-linearly separable data?
 - Then SVM still does the right thing for a normal size C
- Idea of SVM of a large margin classifier
 - only really relevant with no outliers and linearly separable data

Outline

- Optimization Objective
- Large margin intuition
- Mathematics behind large margin classification
- Kernel I
- Kernel II
- Using an SVM

Vector Inner Product

Vector Inner Product

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Norm of
$$u = ||u|| = \sqrt{u_1^2 + u_2^2}$$

p: the length of projection of v onto u

$$|u^T v = p||u|| = u_1 v_1 + u_2 v_2$$

= $v^T u$

Negative p

u

$$min_{\theta} \left(\frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

such that
$$\theta^T x \ge 1$$
 if $y^{(i)} = 1$
 $\theta^T x \le -1$ if $y^{(i)} = 0$

- Assume $\theta_0 = 0$ and n = 2.
 - Then the SVM is minimizing the squared norm.

$$min_{\theta}\left(\frac{1}{2}\|\theta\|^2\right)$$

such that
$$\theta^T x \ge 1$$
 if $y^{(i)} = 1$
 $\theta^T x \le -1$ if $y^{(i)} = 0$

SVM

$$min_{\theta}\left(\frac{1}{2}\|\theta\|^{2}\right)$$

such that
$$p^{(i)}\|\theta\| \ge 1$$
 if $y^{(i)} = 1$
$$p^{(i)}\|\theta\| \le -1$$
 if $y^{(i)} = 0$

- Given the following training examples,
 - What is the appropriate boundary?
- Assumption of $\theta_0 = 0$
 - The boundary has to pass through the origin (0,0)

- The following red line
 - Small margins
 - Decision boundary comes very clos to examples.
 - SVM does not choose the line

- The following red line
 - Small margins
 - Decision boundary comes very clos to examples.
 - SVM does not choose the line
 - why?

 \blacksquare θ is always at 90 degrees to the decision boundary.

- \blacksquare θ is always at 90 degrees to the decision boundary.
- Select the first example.
 - Project a line from $x^{(1)}$ onto the θ vector

- \blacksquare θ is always at 90 degrees to the decision boundary.
- Select the first example.
 - Project a line from $x^{(1)}$ onto the θ vector
- Select the 2nd example.

- Need $p^{(1)} ||\theta|| \ge 1$ for positive examples
 - If $p^{(1)}$ is small
 - Means that $\|\theta\|$ must be pretty large
- Need $p^{(2)} \|\theta\| \le -1$ for negative examples
 - If $p^{(2)}$ is a small negative number
 - Means that $\|\theta\|$ must be pretty large

- Considering the optimization objective of finding a set of parameters where ||θ|| is small,
 - Not good parameter vector
 (because smaller p values bring larger ||θ||

Choose another boundary

- Choose another boundary
 - $ightharpoonup p^{(1)}$ becomes larger
 - Means that $\|\theta\|$ can be small
 - $p^{(2)}$ becomes larger-magnitude and negative
 - Means that $\|\theta\|$ can be small
 - \rightarrow can make $\|\theta\|$ smaller
 - → Which is why the SVM chooses this boundary as better

- Large margin effect
 - Margin magnitude is a function of the p values
 - By maximizing these p values → minimizing ||θ||

- If this is the case, we are entertaining only decision boundaries which pass through (0,0)
- For nonzero θ_0 ,
 - Decision boundaries cross through the x and y values at points other than (0,0)
 - Similar discussion for SVM (when C is very large)
 - SVM is looking for a large margin separator btw the classes

Outline

- Optimization Objective
- Large margin intuition
- Mathematics behind large margin classification
- Kernel I
- Kernel II
- Using an SVM

Given a training set, we want to find a non-linear boundary

- Given a training set, we want to find a non-linear boundary
 - SVM can handle such situations by using a kernel function
 - which maps the data to a different space
 - where a linear hyperplane can be used to separate classes
 - This is known as the kernel trick

where the kernel function transforms the data into
the higher dimensional feature space
so that a linear separation is possible.

Given a training set, we want to find a non-linear boundary

if
$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots \ge 0$$

if
$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots \ge 0$$

- $h_{\theta}(x) = \theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 + \theta_4 f_4 + \theta_5 f_5$ where $f_1 = x_1$, $f_2 = x_2$, $f_3 = x_1 x_2$, $f_4 = x_1^2$, $f_5 = x_2^2$

if
$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots \ge 0$$

- $h_{\theta}(x) = \theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 + \theta_4 f_4 + \theta_5 f_5$ where $f_1 = x_1$, $f_2 = x_2$, $f_3 = x_1 x_2$, $f_4 = x_1^2$, $f_5 = x_2^2$
- Is there a better choice of feature f_1 , f_2 , f_3 than the high order polynomials?

Kernel

New features

- Define three features in this example (ignore x_0)
- Have a graph of x_1 vs. x_2
- Pick three points in that space
 - These points $m{l^{(1)}}$, $m{l^{(2)}}$, and $m{l^{(3)}}$, were chosen manually and are called landmarks
 - \triangleright Given x, define f_1 as the similarity btw $(x, l^{(1)})$

Kernel

 \blacksquare Given x,

compute new feature depending on proximity to landmarks $m{l^{(1)}}$, $m{l^{(2)}}$, and $m{l^{(3)}}$

$$f_1 = similarity(x, l^{(1)}) = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

$$f_3 = similarity(x, l^{(3)}) = \exp\left(-\frac{\|x - l^{(3)}\|^2}{2\sigma^2}\right)$$

kernel $k(x, l^{(3)})$

Gaussian kernel

 $l^{(1)}$

 $l^{(3)}$

 X_1

 $l^{(2)}$

> KK

 X_2

Kernel and Similarity

- $f_1 = similarity(x, l^{(1)}) = \exp\left(-\frac{\|x l^{(1)}\|^2}{2\sigma^2}\right)$
 - If $x \approx l^{(1)}$, $f_1 \approx \exp\left(-\frac{0^2}{2\sigma^2}\right) = 1$
 - If x is far from $l^{(1)}$, $f_1 = \exp\left(-\frac{(large\ num)^2}{2\sigma^2}\right) \approx 0$

Example

Predict y = 1

if
$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$$

Suppose that we get $\theta_0 = -0.5$, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$ after training

if
$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$$

- Suppose that we get $\theta_0 = -0.5$, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$ after training
 - \blacksquare Given the following x,

Predict y = 1if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$

- Suppose that we get $\theta_0 = -0.5$, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$ after training
 - \blacksquare Given the following x,

 X_1

if
$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$$

- Suppose that we get $\theta_0 = -0.5$, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$ after training
 - \blacksquare Given the following x,

if
$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$$

- Suppose that we get $\theta_0 = -0.5$, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$ after training
 - We may get the following a nonlinear decision boundary

- How do we choose the landmarks?
- Can we use other kernels?

Outline

- Optimization Objective
- Large margin intuition
- Mathematics behind large margin classification
- Kernel I
- Kernel II
- Using an SVM

Choosing The Landmarks

Given x:

$$f_1 = similarity(x, l^{(1)}) = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

Predict y = 1 if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$ Where to get $l^{(1)}$, $l^{(2)}$, $l^{(3)}$, ...?

SVM with Kernels

- Given $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)}),$
 - Choose $l^{(1)} = x^{(1)}$, $l^{(2)} = x^{(2)}$, ..., $l^{(m)} = x^{(m)}$
- \blacksquare Given one example x,
 - $f_1 = similarity(x, l^{(1)})$

$$f = \begin{bmatrix} f_0 \\ f_1 \\ \dots \\ f_m \end{bmatrix} \in \mathbb{R}^{m+1}, \ f_0 = 1$$

. . .

 $f_m = similarity(x, l^{(m)})$

SVM with Kernels

- Given $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)}),$
 - Choose $l^{(1)} = x^{(1)}$, $l^{(2)} = x^{(2)}$, ..., $l^{(m)} = x^{(m)}$
- For one training example $x^{(i)}$,
 - $f_1^{(i)} = similarity(x^{(i)}, l^{(1)})$
 - $f_2^{(i)} = similarity(x^{(i)}, l^{(2)})$

. . .

$$f_i^{(i)} = similarity(x^{(i)}, l^{(i)}) = \exp\left(-\frac{0}{2\sigma^2}\right) = 1$$

. . .

$$f_m^{(i)} = similarity(x^{(i)}, l^{(m)})$$

SVM with Kernels

- Hypothesis: Given x, compute features $f = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_m \end{bmatrix} \in \mathbb{R}^{m+1}$, $f_0 = 1$
 - Predict y = 1 if $\theta^T f \ge 0$, (where $\theta \in \mathbb{R}^{m+1}$ and $f \in \mathbb{R}^{m+1}$)
 - How do we get θ ?
- SVM learning algorithm

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$

If we ignore θ_0 , $\sum_{j=1}^n \theta_j^2 = \theta^T \theta$

SVM with Kernels

Many implementations use

 $\theta^T M \theta$

where the matrix M depends on the kernel they use

- Gives a slightly different minimization
 - It means we determine a rescaled version of θ
- Allows more efficient computation, and scale to much bigger training sets
- If there is a training set with 10,000 values, it means there are 10,000 features
 - It can be expensive to solve for all these parameters
 - So by adding this,
 - we avoid one for loop and use one matrix multiplication algorithm instead

SVM Parameters

$$C = \frac{1}{\lambda}$$

- Large C
 - Lower bias, high variance
- Small C
 - Higher bias, low variance
- Large σ^2
 - **EXECUTE:** Features f_i vary more smoothly.
 - Higher bias, lower variance.

- Features f_i vary less smoothly.
- Lower bias, higher variance.

Outline

- Optimization Objective
- Large margin intuition
- Mathematics behind large margin classification
- Kernel I
- Kernel II
- Using an SVM

- SVM implementation
 - Use SVM software packages (e.g. liblinear, libsvm) to solve parameters θ
 - Need to specify
 - Choice of parameter C
 - Choice of kernel (similarity function)
 - Example
 - No kernel
 - "linear kernel"
 - Gaussian kernel

$$F_i = \exp\left(-\frac{\|x-l^{(i)}\|^2}{2\sigma^2}\right)$$
, where $l^{(i)} = x^{(i)}$

- No kernel linear kernel
 - Predict y = 1 if $\theta^T x \ge 0$
 - So no f vector
 - Get a standard linear classifier
 - Why do this?
 - For large n (lots of features) and small m (few examples)
 - Not enough data
 - risk overfitting in a high dimensional feature-space

Gaussian kernel

- $f_i = \exp\left(-\frac{\|x-l^{(i)}\|^2}{2\sigma^2}\right)$, where $l^{(i)} = x^{(i)}$
 - Need to choose σ^2
- When would we choose a Gaussian?
 - For small n (few features) and large m (lots of examples)
 - e.g. 2D training set that is large

Gaussian kernel

When using a Gaussian kernel, implement the kernel function

function f = kernel(x1,x2)

$$f = exp\left(\frac{\|x1 - x2\|^2}{2\sigma^2}\right)$$

return

- f returns a real number
- Some SVM packages will expect you to define kernel
 - Some SVM implementations include the Gaussian and a few others
 - Gaussian is probably most popular kernel
- Make sure you perform feature scaling before using a Gaussian kernel
 - Otherwise, features with a large value will dominate the f value

$$||x - l||^2 = (x_1 - l_1)^2 + (x_2 - l_2)^2 + \dots + (x_n - l_n)^2$$

1000 feet² 1-5 bedrooms

- Other choice of kernel
 - Linear and Gaussian are most common
 - Not all similarity functions make valid kernels
 - Must satisfy Mercer's Theorem
 - to make sure SVM packages' optimizations run correctly, and do not diverge
 - SVM use numerical optimization tricks
 - Mean certain optimizations can be made, but they must follow the theorem

Mercer's Theorem

- $K: [a,b]^2 \to R$
 - A symmetric, non-negative definite, continuous function.

- Then there exists
 - \blacksquare a countable sequence of functions $\{\emptyset_i\}_{i\in\mathbb{N}}$ and
 - **a** sequence of positive real numbers $\{\lambda_i\}_{i \in \mathbb{N}}$ such that,

$$K(s,t) = \sum_{i=1}^{\infty} \lambda_i \, \emptyset_i(s) \emptyset_i(t)$$

Mercer's Condition

 \blacksquare A real-valued function K(x,y) fulfills Mercer's condition

if for all square-integrable functions g(x) one has

$$\iint g(x)K(x,y)g(y)dxdy \ge 0$$

Other choice of kernel

Polynomial Kernel

- Measure the similarity of x and l by doing one of
 - $(x^T l)^2$, $(x^T l)^3$, $(x^T l + 1)^3$, $(x^T l + 5)^4$, ...
 - \triangleright General form: $(x^T l + Const)^D$
 - → If they are similar, then the inner product tends to be large
- Not used that often
- Two parameters
 - Degree of polynomial (D)
 - Number you add to (Const)
- Usually performs worse than the Gaussian kernel
- Used when x and l are both non-negative

- Other choice of kernel
 - String kernel
 - Used if input is text strings
 - Use for text classification
 - Chi-squared kernel
 - Histogram intersection kernel

Multi-Class Classification

$$y \in \{1, 2, \dots, K\}$$

- Many SVM packages have built-in multi-class classification functionality
- Otherwise, use one-vs all method
 - Train K SVMs, one to distinguish y = i from the rest, for i = 1, 2, ..., K,
 - Get $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)}$ y = K

$$y = 1$$

Pick class *i* with largest $(\theta^{(i)})^T x$

$$y = 2$$

Logistic Regression vs. SVM

- n: # features ($x \in R^{n+1}$), m: # of training examples
 - If n is large (relative to m),
 - e.g. text classification problem
 - > Feature vector dimension is 10,000
 - ➤ Training set is 10 1,000
 - Use logistic regression, or SVM without a kernel("linear kernel")
 - If n is small and m is intermediate
 - $n = 1 \sim 1,000, m = 10 \sim 10,000$
 - Use SVM with Gaussian kernel
 - If n is small and m is large
 - $n = 1 \sim 1,000, m \geq 50,000$
 - Create/add more features,

then use logistic regression or SVM without a kernel

Neural network likely to work well for most of these settings, but may be slower to train.

Logistic Regression vs. SVM

- Logistic regression and SVM with a linear kernel are pretty similar
 - Do similar things
 - Get similar performance
- A lot of SVM's power is using different kernels to learn complex non-linear functions
- SVM has a convex optimization problem
 - We get a global minimum
- SVM is widely perceived a very powerful learning algorithm

References

- https://www.coursera.org/learn/machine-learning
- http://www.holehouse.org/mlclass/12_Support_Vector_Machines.html
- R. Berwick, An Idiot's guide to Support vector machines (SVMs)
- https://www.hackerearth.com/blog/machine-learning/simple-tutorial-svm-parameter-tuning-python-r/