Analyse II

Louis Merlin

February 22, 2016

Contents

1	Équations différentielles ordinaires	2
	1.1 Définitions et exemples	2

Chapitre 1

Équations différentielles ordinaires

1.1 Définitions et exemples

Exemple 1

$$y' = 0 \Rightarrow y(x) = C$$
 où $C \in \mathbb{R}$

y(x)=2 est une solution, et $y(x)=C,\,\forall C\in\mathbb{R}$ est une solution plus générale.

Définition Une équation différentielle ordinaire est une expression

$$E(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$

où $E:\mathbb{R}^{n+2} \to \mathbb{R}$ une fonction donnée, $n \in \mathbb{R}^*$

On cherche un intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y: I \to \mathbb{R}$ de classe C^n telle que l'équation soit satisfaite pour tout $x \in I$.

Applications

 $EDO \rightarrow croissance$ de la population, désintegration radioactive.

 $\mathrm{EDP} \to \mathrm{prévisions}$ météo, marché financier.

Exemple 2

$$y'' = 0 \Rightarrow y'(x) = C_1 \text{ pour } C_1 \in \mathbb{R}, x \in \mathbb{R}$$

 $y' = C \Rightarrow y(x) = C_1 x + C_2 \text{ pour } C_1, C_2 \in \mathbb{R}, x \in \mathbb{R}$

Exemple 3

$$y + y' = 0 \Rightarrow y = y'$$

Rappel: $(a^x)' = a^x \log a, \forall a \in \mathbb{R}$

$$\log a = -1 \Rightarrow a = \frac{1}{e} \Rightarrow \left(\left(\frac{1}{e} \right)^x \right)' = -\left(\frac{1}{e} \right)^x$$

 $(e^{-x})'=-e^{-x}$ est une solution pour tout $x\in\mathbb{R}$. Plus généralement, $(Ce^{-x})'=-Ce^{-x}$ pour $C\in\mathbb{R},\,x\in\mathbb{R}$.

Exemple y' = -y "Équation à variables séparées"

Si on écrit $y' = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = -y$

$$\frac{dy}{y} = -dx \qquad \qquad \int \frac{dy}{y} = -\int dx$$
 variables séparées — les primitives

$$\Rightarrow \log |y| = -x + C_1$$

$$\Rightarrow |y| = e^{-x+C_1} = e^{C_1} \times e^{-x}$$

$$\Rightarrow |y| = C_2 e^{-x}, C_2 > 0$$

$$\Rightarrow y(x) = \pm C_2 e^{-x}, C_2 > 0$$

Mais y(x) = 0 est aussi une solution.

Finalement on a : $y(x) = Ce^{-x}, \forall C \in \mathbb{R}, \forall x \in \mathbb{R}.$