Applied Analysis, WS 2021 - Problem Sheet 2

- **P. 4** Consider a quadratic equation, with 2 ways to perturb it by a small term with $\varepsilon = 0.001$:
 - (1) $x^2 + 2\varepsilon x 1 = 0$
 - (2) $\varepsilon x^2 + 2x 1 = 0$
 - (a) Which of the perturbations is regular, which singular?
 - (b) For a regular case, compute an asymptotic expansion up to $O(\varepsilon^2)$. How many digits are correct in second order, how many in first order?
- **P. 5** Classify the following initial value problems into regularly and singularly perturbed problems and, if applicable, calculate asymptotic expansions up to second order:
 - (a) $\varepsilon y' + y = x$, y(0) = 1
 - (b) $\varepsilon y' + y = x$, y(0) = 0
 - (c) $\varepsilon y' + y = x$, $y(0) = \varepsilon$
 - (d) $\varepsilon^2 y' + y = x$, $y(0) = \varepsilon$
 - (e) $y' + \varepsilon y = x$, y(0) = 1
 - (f) $y' + y = \varepsilon x$, y(0) = 1
- P. 6 Calculate the first three terms of the asymptotic expansion of the solution of

$$y' = -y + \varepsilon y^2, \qquad t > 0, \quad 0 < \varepsilon \ll 1,$$

$$y(0) = 1$$

in two ways:

- (a) as in the lecture (inserting the expansion ansatz into the ODE)
- (b) by expanding the exact solution in a power series in ε . (Hint for the exact solution: use the substitution z=1/y.)
- **P. 7** Take the following initial boundary value of a PDE with a small perturbation ($0 < \varepsilon \ll 1$):

$$\begin{array}{ll} \frac{\partial}{\partial t}u(x,t)+\frac{\partial^2}{\partial x^2}u(x,t)-\varepsilon u(x,t)^2=0, & x\in(0,1),\ t>0,\\ u(x,0)=u_0(x), & x\in(0,1),\\ u(0,t)=u(1,t)=0, & t>0 \end{array}$$

- (a) Why to you expect this problem to be "regular"?
- (b) Find the equations for the first three terms of the formal asymptotic expansion of the solution of this problem.
- (c) Calculate the reduced solution for $u_0(x) = \sin(\pi x)$. (Hint: separation)