Tema 7.2

Sistema Operativos (SSOO)

Gestión de ficheros II

Índice

- Permisos extendidos UNIX
- Compartir ficheros
- Sistema FAT

¿Qué son?

 Caso particular de un esquema general de permisos de listas de acceso

¿Para qué sirven?

- Para especificar permisos de lectura, escritura y/o ejecución a usuarios concretos de la máquina y/o grupos de usuarios concretos:
 - Mayor flexibilidad para configurar permisos
 - Coste adicional (un fichero o directorio tiene asociado un fichero adicional).

Formato de un fichero de permisos extendidos:

```
atributes: (SUID | SGID | SVTX)
base permissions:
       owner (castano):
                             rwg
       roup (icc):
       others:
Extended permissions:
       enabled
       deny
                      rw- u:juan
       permit -w- u:pepe g:ii
       specify r-x u:pedro.
```


Comandos del shell relacionados:

aclget [-o Outfile] File

- Muestra por la salida estándar la información del control de acceso del
- fichero File
- -o Outfile redirecciona la salida estándar del comando al fichero Outfile

aclput [-i Infile] File

- Asigna al fichero File la información de control de acceso que se especifique por la entrada estándar
- -i Infile asigna al fichero File la información de control de acceso contenida en el fichero Infile

acledit File

 Edita (con el editor definido por defecto para el usuario) la lista de permisos del fichero File y permite modificarlos

Ejemplos:

- \$ aclget fichero > perm; aclput -i perm fichero2
- \$ aclget -o perm fichero; aclput -i perm fichero2
- \$ aclget fichero | aclput fichero2

¿Qué hace cada línea?

Compartir ficheros

Necesidad de compartir ficheros entre usuarios Aspectos implicados:

- Permisos de acceso
- Gestión de accesos simultáneos

Semántica de coutilización

Especifica el efecto de varios procesos accediendo de forma simultánea al mismo archivo y cuándo se hacen efectivas las modificaciones.

Compartir ficheros

Tipos de semántica de coutilización:

Semántica de archivos inmutables:

 Una vez creado el archivo sólo puede ser compartido para lectura y no cambia nunca.

Semántica UNIX (POSIX):

- Cada proceso independiente tiene una imagen del fichero y no comparten puntero → Mecanismos de sincronización necesarios.
- Si existe relación de parentesco entre procesos comparten el puntero y las escrituras son inmediatamente visibles para todos los procesos con el archivo abierto. La coutilización afecta también a los metadatos.

Compartir ficheros

Tipos de semántica de coutilización:

Semántica de archivos inmutables:

Una vez creado el archivo sólo puede ser compartido para lectura y no cambia nunca.

Semántica UNIX (POSIX):

- Cada proceso independiente tiene una imagen del fichero y no comparten puntero → Mecanismos de sincronización necesarios.
- Si existe relación de parentesco entre procesos comparten el puntero y las escrituras son inmediatamente visibles para todos los procesos con el archivo abierto. La coutilización afecta también a los metadatos.

Semántica de sesión:

- Las escrituras que hace un proceso no son inmediatamente visibles para los demás procesos con el archivo abierto.
- Cuando se cierra el archivo los cambios se hacen visibles para las futuras sesiones.
- Un archivo puede tener temporalmente varias imágenes (versiones).
- Sincronización explícita necesaria si se requiere actualización inmediata.

Sistema de fichero: FAT

- Una entrada en la tabla por cada bloque del disco
- Cada entrada apunta al siguiente bloque del fichero
- Inconveniente:
 - Hace falta toda la FAT en memoria aunque sólo haya un fichero abierto.
 - Si no está toda la FAT en memoria hay que acceder a disco para seguir la lista de bloques (localización lenta).
- Viable para PC's pero no para ordenadores con grandes SF.

Sistema de fichero: FAT

Sistema de fichero: FAT

Bibliografía

- Germán Fabregat Llueca, Arquitectura y Tecnología de Computadores (ATC). Departamento de Ingeniería y Ciencia de los Computadores. Universitat Jaume I (UJI).
- FCO. MANUEL MARQUEZ, UNIX Programación avanzada, 2da edición.
- CARRETERO, Jesús, GARCÍA, Félix, DE MIGUEL, Pedro, PÉREZ, Fernando. Sistemas Operativos: una visión aplicada. McGraw-Hill, 2001.
- STALLINGS, William. Sistemas operativos: aspectos internos y principios de diseño. 5ª Edición. Editorial Pearson Educación. 2005. ISBN: 978-84-205-4462-5.
- **TANENBAUM**, Andrew S. Sistemas operativos modernos. 3ª Edición. Editorial Prentice Hall. 2009. ISBN: 978-607- 442-046-3.

marlon.cardenas@ufv.es

