《基础物理实验》实验报告

学号 00000000 姓名 我是谁 实验日期 2025.04.15 星期 二 下午

半导体热敏电阻特性的研究(平衡电桥)

一、实验目的

- 1. 了解热敏电阻的电阻-温度特性和测温原理
- 2. 掌握惠斯通电桥的原理和使用方法

二、实验原理

1. 半导体热敏电阻的电阻-温度特性

半导体热敏电阻的基本特性是它的温度特性,而这种特性又是与半导体材料的导电机制密切相关的。由于半导体中的载流子数目随温度升高而按指数规律迅速增加。温度越高,载流子的数目越多,导电能力越强,电阻率也就越小。因此热敏电阻随着温度的升高,它的电阻将按指数规律迅速减小。

实验表明,在一定温度范围内,半导体材料的电阻 R_T 和绝对温度 T 的关系可表示为

$$R_T = ae^{\frac{b}{T}} \tag{1}$$

其中常数 a 不仅与半导体材料的性质而且与它的尺寸均有关系,而常数 b 仅与材料的性质有关,T 取绝对温度。 定义电阻温度系数为:

$$\alpha = \frac{1}{R_T} \frac{dR_T}{dT} \tag{2}$$

按照温度系数不同分为和负温度系数,正温度系数热敏电阻在温度越高时电阻值越大,负温度系数热敏电阻在温度越高时电阻值越低。

(1) 式中常数 $a \ b$ 可通过实验方法测得。常利用多个 T 和 R_T 的组合测量值,通过作图的方法(或用回归法最好)来确定常数 $a \ b$,为此取 (1) 式两边的对数。变换成直线方程:

$$\ln R_T = \ln a + \frac{b}{T} \tag{3}$$

或写作 Y=A+BX 的形式,其中 $Y=\ln R_T$, $A=\ln a$, B=b, $X=\frac{1}{T}$ 。,然后取 X、Y 分别为横、纵坐标,对不同的温度 T 测得对应的 R_T 值,经过变换后作 X-Y 曲线,它应当是一条截距为 A、斜率为 B 的直线。根据斜率求出 b,又由截距可求出 $a=e^A$ 。

确定了半导体材料的常数 a 和 b 后,便可计算出这种材料的电阻温度系数

$$\alpha = \frac{1}{R_T} \frac{dR_T}{dT} = -\frac{b}{T^2} \times 100\% \tag{4}$$

显然,半导体热敏电阻的温度系数是负的,并与温度有关。

2. 用惠斯顿电桥测量半导体热敏电阻

惠斯顿电桥的原理图如图 1 所示,四个电阻 R_0 , R_1 , R_2 , R_x 组成一个四边形,即电桥的四个臂,其中 R_x 就是待测电阻。在四边形的一对对角 A 和 C 之间连接电源,而在另一对对角 B 和 D 之间接入检流计 G。当 B 和 D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。平衡时必有

$$R_x = \frac{R_1}{R_2} R_0 \tag{5}$$

 R_1 、 R_2 和 R_0 都已知, R_x 即可求出。

图 1: 实验原理图

三、实验仪器

箱式惠斯通电桥、控温仪、热敏电阻、直流电稳压电源。

四、实验内容

1. 求电桥灵敏度

本实验中为测量电桥灵敏度,可以先调电桥至平衡, $R_x=R_0=3000\Omega$, $\frac{R_1}{R_2}=1$,改变 R_x 至 $R_x+\Delta R_x$,使检流计偏转 15 格;再将 R_x 改变为 $R_x-\Delta R_x$,使检流计向反方向偏转 15 格,取两次 ΔR_x 的平均值 $\overline{\Delta R_x}$,带入公式 $s=\frac{\Delta n}{\overline{\Delta R_x}}$ 得到电桥灵敏度。

2. 测量热敏电阻的温度特性

接好电路,安置好仪器。

将热敏电阻放入加热铜管,温度由自动温控仪控制。热敏电阻的两条引出线连接到惠斯通电桥的待测电阻 R_x 的接线柱上。

测试的温度从 $30^{\circ}C$ 开始,每增加 $2.5^{\circ}C$,测量温度点的 R_t ,直到 $70^{\circ}C$ 止。绘制热敏电阻 R_T-T 特性曲线。由电阻的温度系数定义式,在 $T=50^{\circ}C$ 的点作切线,求出该点切线的斜率、 $T=50^{\circ}C$ 点的电阻温度系数。作 $\ln R_T-\frac{1}{T}$ 曲线,确定式 (1) 中常数 a 和 b,再由 (4) 式求 $T=50^{\circ}C$ 时的电阻温度系数 α $(\alpha=-\frac{b}{T^2})$,并将两次求得的 α 进行对比。

五、数据记录

原始数据见附录。

六、数据处理

1. 求电桥灵敏度

$$\overline{\Delta R_x} = \frac{\Delta R_{x_1} + \Delta R_{x_2}}{2} = \frac{23.7 + 23.3}{2} \Omega = 22.5\Omega$$

$$s = \frac{\Delta n}{\frac{\overline{\Delta R_x}}{R_x}} = \frac{15}{\frac{22.5\Omega}{3000\Omega}} = 2000$$

2. 热敏电阻温度特性

将摄氏温标转换为开氏温标,对正向与反向的电阻取平均值,见图 2。

	A(X)	В(У)	C(Y)	D(Y)	E(Y)
长名称	温度	温度	正向电阻	反向电阻	电阻
单位	$^{\circ}$	K	Ω	Ω	Ω
注释					平均
F(x) =		A+273. 15			(C+D)/2
1	30	303. 15	4098	4095	4096. 5
2	32. 5	305. 65	3728	3741	3734. 5
3	35	308. 15	3413	3424	3418. 5
4	37. 5	310. 65	3127	3128	3127. 5
5	40	313. 15	2861	2870	2865. 5
6	42. 5	315. 65	2623	2630	2626. 5
7	45	318. 15	2406	2412	2409
8	47. 5	320. 65	2216	2218	2217
9	50	323. 15	2037	2040	2038. 5
10	52. 5	325. 65	1887	1888	1887. 5
11	55	328. 15	1741	1738	1739. 5
12	57. 5	330. 65	1607	1608	1607. 5
13	60	333. 15	1486	1483	1484. 5
14	62. 5	335. 65	1374	1372	1373
15	65	338. 15	1272	1267	1269. 5
16	67. 5	340. 65	1176	1176	1176
17	70	343. 15	1092	1092	1092

图 2: 数据表

绘制热敏电阻 R_T-T 散点图,并用 $y=Ae^{\frac{B}{x}}$ 作拟合曲线,然后再 $50^{\circ}C$ 处作切线,如图 3 所示。

图 3: 热敏电阻 R_T-T 特性曲线及其指数拟合与 $T=50^{\circ}C$ 处的切线

得到拟合曲线方程为 $y=0.05129e^{\frac{3422.40066}{x}}$, $T=50^{\circ}C$ 处的切线方程为 y=-66.83341x+23636.89121,故斜率为 -66.83341。通过带入 (2) 式可得到电阻温度系数为 $\alpha_1=\frac{-66.83341}{2038.5}=-0.03279$ / $^{\circ}C$

将 R_T 取对数,T 取倒数,作 $\ln(R_T)-rac{1}{T}$ 散点图以及线性拟合曲线,如图 4 所示。

图 4: 热敏电阻 $\ln(R_T) - \frac{1}{T}$ 特性曲线及其线性拟合

得到拟合直线方程为 y=3434.58059x-3.00849。根据 (4) 式可知得到 $\alpha_2=-\frac{k}{T^2}=-\frac{3434.58059}{323.15^2}=-0.03289$ /°C

对比 α_1 与 α_2

$$\left| \frac{\alpha_2 - \alpha_1}{\alpha 1} \right| = \left| \frac{-0.03289 + 0.03279}{-0.03279} \right| = 3.049 \times 10^{-3} = 0.3049\%$$

$$\left| \frac{\alpha_1 - \alpha_2}{\alpha 2} \right| = \left| \frac{-0.03279 + 0.03289}{-0.03289} \right| = 3.040 \times 10^{-3} = 0.3040\%$$

故可以得出 $\alpha_1 \approx \alpha_2$, 故该热敏电阻在 $50^{\circ}C$ 时的电阻温度系数为

$$\alpha = \frac{\alpha_1 + \alpha_2}{2} = \frac{-0.03279 - 0.03289}{2} = -0.03284 \, / ^{\circ}C = -3.284\% / ^{\circ}C$$

七、误差分析

- 1. 自动温控仪控温会在 $0.1^{\circ}C$ 内波动,使得电阻读数不准;
- 2. 电桥的电阻调节最小刻度为 1Ω ,不够精确;
- 3. 开关与导线本身有电阻,使得结果不准确;

4. 使用时间久导致电桥电阻会发热而阻值不准确。

八、思考题

1. 在多次测量灵敏度的时候,试分析每次需要重测初始电阻吗?

答: 本实验中的 R_0 , R_x 为固定值 3000Ω ,比例臂 $\frac{R_1}{R_2}$ 固定为 1:1,故无需重新测量,重新测量反而会带来更多的系统误差。但若按照正常流程,即通过调节 R_0 测量计算初始电阻 R_x ,并且改变 R_0 来使检流记偏转,需要重新测量初始电阻,因为电阻或电桥内部元件受温度影响,阻值可能发生微小漂移;电桥开关或接线端子接触不良会导致初始平衡条件改变;电源电压波动可能影响电桥平衡点。导致初始电阻未校准,后续测量的 ΔR_x 和灵敏度 s 将偏离真实值,导致结果不可靠。

2. 测量热敏电阻的阻值,如果没有等温度稳定就记录实验结果,试分析对结果的影响?

答: 会导致误差。 热敏电阻的阻值随温度动态变化。 若温度未稳定时记录数据,测得的 R_T 对应的是瞬时温度下的而非设定温度下的,导致 R_T-T 曲线偏离真实特性。 若温度波动剧烈,数据点会分散,降低拟合精度。 若每个点测量温度都比设定温度略低,则导致测得 R_T 偏高,使得对数法拟合得到的斜率偏大而使温度系数的绝对值偏大,温度未稳定会导致切线斜率不准确,进一步影响 α 的计算。

九、实验结论

实验所用的惠斯特电桥灵敏度为 s=2000,此热敏电阻在 $50^{\circ}C$ 时的电阻温度系数为 $\alpha=-0.03284$ / $^{\circ}C=-3.284\%$ / $^{\circ}C$