МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ОТНОШЕНИЕ ЭКВИВАЛЕНТНОСТИ И ОТНОШЕНИЕ ПОРЯДКА

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы	
направления 10.05.01 — Компьютерная безопасность	
факультета КНиИТ	
Токарева Никиты Сергеевича	
Проверил	
аспирант	В. Н. Кутин

1 Постановка задачи

Цель работы - изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Разобрать определения отношения эквивалентности, фактор-множества. Разработать алгоритмы построения эквивалентного замыкания бинарного отношения и системы представителей фактор-множества.
- 2. Разобрать определения отношения порядка и диаграммы Хассе. Разработать алгоритмы вычисления минимальных (максимальных) и наименьших (наибольших) элементов и построения диаграммы Хассе.
- 3. Разобрать определения контекста и концепта. Разработать алгоритм вычисления решетки концептов.

2 Теоретические сведения по рассмотренным темам с их обоснованием

2.1 Определение отношения эквивалентности и фактор-множества

Бинарное отношение ε на множестве A называется отношением эквивалентности (или просто эквивалентностью), если оно рефлексивно, симметрично и транзитивно.

Для любого подмножества $X\subset A$ множество $\rho(X)=\{b\in B: (x,b)\in \rho$ для некоторого $x\in X\}$ называется образом множества X относительно отношения ρ .

Образ одноэлементного множества $X=\{a\}$ относительно отношения ρ обозначается символом $\rho(a)$ и называется также образом элемента a или **срезом** отношения ρ через элемент a.

Срезы $\varepsilon(a)$ называются классами эквивалентности по отношению ε и сокращенно обозначаются символом [a]. Множество всех таких классов эквивалентности $\{[a]:a\in A\}$ называется фактор-множеством множества A по эквивалентности ε и обозначается символом A/ε .

Лемма 1. О замыканиях бинарных отношений.

На множестве $P(A^2)$ всех бинарных отношений между элементами множества A следующие отображения являются операторами замыканий:

- 1. $f_r(\rho)=\rho\cup\triangle_A$ наименьшее рефлексивное бинарное отношение, содержащее отношение $\rho\subset A^2$,
- 2. $f_s(\rho) = \rho \cup \rho^{-1}$ наименьшее симметричное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 3. $f_t(\rho) = \bigcup_{n=1}^{\infty} \rho^n$ наименьшее транзитивное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 4. $f_{eq}(\rho) = f_t f_s f_r(\rho)$ наименьшее отношение эквивалентности, на содержащее отношение $\rho \subset A^2$.

2.2 Определение отношения порядка

Бинарное отношение ω на множестве A называется отношением порядка (или просто порядком), если оно рефлексивно, антисимметрично и транзитивно.

Множество A с заданным на нем отношением порядка \leq называется упорядоченным множеством и обозначается $A = (A, \leq)$ или просто (A, \leq) .

Элемент a упорядоченного множества (A,\leq) называется:

- 1. минимальным, если $(\forall x \in A) \ x \leq a \implies x = a$,
- 2. максимальным, если $(\forall x \in A) \ a \leq x \implies x = a$,
- 3. наименьшим, если $(\forall x \in A) \ a \leq x$,
- 4. наибольшим, если $(\forall x \in A) \ x \leq a$.

2.3 Определение диаграммы Хассе

Упорядоченное множество $A=(A,\leq)$ наглядно представляется диаграммой Хассе, которая представляет элементы множества A точками плоскости и пары $a<\cdot b$ представляет линиями, идущими вверх от элемента a к элементу b.

Алгоритм построения диаграммы Хассе конечного упорядоченного множества $A=(A,\leq)$.

- 1. В упорядоченном множестве $A = (A, \leq)$ найти множество A_1 всех минимальных элементов и расположить их в один горизонтальный ряд (это первый уровень диаграммы).
- 2. В упорядоченном множестве $A \setminus A_1$, найти множество A_2 всех минимальных элементов и расположить их в один горизонтальный ряд над первым уровнем (это второй уровень диаграммы). Соединить отрезками элементы этого ряда с покрываемыми ими элементами предыдущего ряда.
- 3. В упорядоченном множестве $A\setminus (A_1\cup A_2)$ найти множество A_3 всех минимальных элементов и расположить их в один горизонтальный ряд над вторым уровнем (это третий уровень диаграммы). Соединить отрезками элементы этого ряда с покрываемыми ими элементами предыдущих рядов.
- 4. Процесс продолжается до тех пор, пока не выберутся все элементы множества A.

2.4 Определение контекста и концепта

Контекстом называется алгебраическая система $K=(G,M,\rho)$, состоящая из множества объектов G, множества атрибутов M и бинарного отношения $\rho\subset G\times M$, показывающего $(g,m)\in \rho$, что объект g имеет атрибут m.

Упорядоченная пара (X,Y) замкнутых множеств $X\in Z_{f_G},Y\in Z_{f_M}$, удовлетворяющих условиям $\varphi(X)=Y,$ $\psi(Y)=X,$ называется концептом контекста $K=(G,M,\rho).$ При этом компонента X называется объемом и компонента Y - содержанием концепта (X,Y).

Множество всех концептов C(K) так упорядочивается отношением $(X,Y) \leq (X_1,Y_1) \Leftrightarrow X \subset X_1$ (или равносильно $Y_1 \subset Y$), что $(C(K),\leq)$ яв-

ляется полной решеткой, которая изоморфна решетке замкнутых подмножеств множества G.

Алгоритм вычисления системы замыканий на множестве G:

- 1. Рассматриваем множество $G \in Z_{f_G}$.
- 2. Последовательно перебираем все элементы $m \in M$ и вычисляем для них $\psi(\{m\}) = \rho^{-1}(m).$
- 3. Вычисляем все новые пересечения множества $\psi(\{m\})$ с ранее полученными множествами и добавляем новые множества к Z_{f_G} . Аналогично вычисляется система замыканий на множестве M.

3 Результаты работы

3.1 Описание алгоритма построения эквивалентного замыкания бинарного отношения и системы представителей фактор-множества

Алгоритм 1 - Построение эквивалентного замыкания

Вход: Матрица бинарного отношения $A = (a_{ij})$ размерности $n \times n$.

Bыход: Матрица бинарного отношения $A'=(a'_{ij})$ с построенным на нем эквивалентным замыканием.

<u>Шаг 1.</u> Построить рефлексивное замыкание на бинарном отношении с матрицей $A=(a_{ij})$. Полученную матрицу бинарного отношения обозначить как $A_1=(a_{ij})$.

<u>Шаг 2.</u> Построить симметричное замыкание на бинарном отношении с матрицей $A_1=(a_{ij})$. Полученную матрицу бинарного отношения обозначить как $A_2=(a_{ij})$.

<u>Шаг 3.</u> Построить транзитивное замыкание на бинарном отношении с матрицей $A_2 = (a_{ij})$. Полученную матрицу бинарного отношения обозначить как $A' = (a'_{ij})$.

<u>Шаг 4.</u> Согласно пункту 4 леммы 1 о замыканиях бинарных отношений, построенное замыкание на данном бинарном отношении, определяемым матрицей, является эквивалентным. Далее вернуть полученную матрицу $A' = (a'_{ij})$.

Трудоемкость алгоритма $O(n^3)$.

Алгоритм 2 - Построение системы представителей фактор-множества

 $Bxo\partial$: Матрица бинарного отношения $A=(a_{ij})$ размерности $n\times n$.

Bыход: Система представителей T фактор-множества A/ε бинарного отношения на множестве A.

Шаг 1. Получить фактор-множество A/ε бинарного отношения для множества A. Для этого нужно получить классы эквивалентности $\varepsilon(a)$, которые являются срезами по элементам множества A. Срезом по каждому элементу $a \in A$ является совокупность таких элементов множества A, значения которых в строке матрицы, определяющей связи между элементом a и другими элементами множества A, равны единице. Для этого проверим элементы a_{ij} матрицы A, и если $a_{ij}=1$, где $0 \le i,j \le n-1$, то добавить значение j в список, определяющий срез по элементу i. В результате полученная совокупность всех таких срезов,

являющихся классами эквивалентности $\{[a]:a\in A\}$, будет определять фактормножество A/ε бинарного отношения A.

<u>Шаг 2.</u> Отсортировать фактор-множество по возрастанию количества элементов в классах эквивалентности.

<u>Шаг 3.</u> Проходясь по каждому элементу a каждого класса эквивалентности [a] проверять: если элемент a класса эквивалентности не находится в системе представителей - добавить элемент в систему представителей как представителя класса эквивалентности [a], иначе - пропустить элемент.

Шаг 4. Вернуть полученную систему представителей.

Трудоемкость алгоритма $O(n^2)$.

3.2 Описание алгоритмов вычисления минимальных (максимальных) и наименьших (наибольших) элементов и построения диаграммы Хассе

Алгоритм 3 - Вычисление минимального элемента множества

Вход: Матрица бинарного отношения $A = (a_{ij})$ размерности $n \times n$.

Bыход: Список минимальных элементов L упорядоченного множества (A, \leq) .

<u>Шаг 1.</u> Получить срезы по элементам с помощью способа, описанного в алгоритме 2: проверить элементы a_{ij} матрицы A, и если $a_{ij} = 1$, где $0 \le i, j \le n - 1$, то добавить значение j в список, определяющий срез по элементу i. В результате получить список срезов $S = \{s_i = [a] : a \in A\}$, размер которого будет n.

<u>Шаг 2.</u> Добавить в список минимальных элементов L первый по счету элемент a_0 множества A, а в качестве максимальной возможной длины среза max(|s|) указать длину среза s_0 .

<u>Шаг 3.</u> Проверить элементы s_i списка срезов S, где $1 \le i, j \le n-1$: если $max(|s|) < |s_i|$, то max(|s|) сделать равным длине среза $|s_i|$ по элементу a_i , а список минимальных элементов очистить и добавить в него элемент $a_i \in A$. Иначе, если $max(|s|) = |s_i|$, то добавить в список минимальных элементов L элемент $a_i \in A$.

<u>Шаг 4.</u> Вернуть список минимальных элементов L упорядоченного множества (A, \leq) .

Трудоемкость алгоритма $O(n^2)$.

Алгоритм 4 - Вычисление максимального элемента множества

Вход: Матрица бинарного отношения $A = (a_{ij})$ размерности $n \times n$.

Выход: Список максимальных элементов L упорядоченного множества (A, \leq) .

<u>Шаг 1.</u> Получить срезы по элементам с помощью способа, описанного в алгоритме 2: проверить элементы a_{ij} матрицы A, и если $a_{ij} = 1$, где $0 \le i, j \le n-1$, то добавить значение j в список, определяющий срез по элементу i. В результате получить список срезов $S = \{s_i = [a] : a \in A\}$, размер которого будет n.

<u>Шаг 2.</u> Добавить в список максимальных элементов L первый по счету элемент a_0 множества A, а в качестве минимальной возможной длины среза min(|s|) указать длину среза s_0 .

<u>Шаг 3.</u> Проверить элементы s_i списка срезов S, где $1 \le i, j \le n-1$: если $min(|s|) > |s_i|$, то min(|s|) сделать равным длине среза $|s_i|$ по элементу a_i , а список максимальных элементов очистить и добавить в него элемент $a_i \in A$. Иначе, если $min(|s|) = |s_i|$, то добавить в список максимальных элементов L элемент $a_i \in A$.

<u>Шаг 4.</u> Вернуть список максимальных элементов L упорядоченного множества (A, \leq) .

Трудоемкость алгоритма $O(n^2)$.

Алгоритм 5 - Вычисление наименьшего элемента множества

 Bxod : Матрица бинарного отношения $A=(a_{ij})$ размерности $n \times n$.

Bыход: Наименьший элемент a_{min} упорядоченного множества (A, \leq) или "Ничего".

<u>Шаг 1.</u> Получить список L минимальных элементов упорядоченного множества (A, \leq) с помощью алгоритма 3.

<u>Шаг 2.</u> Если длина L не равна 1, вернуть "Ничего", иначе - вернуть единственный элемент $a_{min} = l \in L$, являющийся наименьшим элементом множества A.

Трудоемкость алгоритма $O(n^2)$.

Алгоритм 6 - Вычисление наибольшего элемента множества

Вход: Матрица бинарного отношения $A = (a_{ij})$ размерности $n \times n$.

 $\mathit{Bыхоd}$: Наибольший элемент a_{max} упорядоченного множества (A,\leq) или "Ни-

чего".

<u>Шаг 1.</u> Получить список L максимальных элементов упорядоченного множества (A, \leq) с помощью алгоритма 4.

<u>Шаг 2.</u> Если длина L не равна 1, вернуть "Ничего", иначе - вернуть единственный элемент $a_{max} = l \in L$, являющийся наибольшим элементом множества A.

Трудоемкость алгоритма $O(n^2)$.

Алгоритм 7 - Построение диаграммы Хассе

 $Bxo\partial$: Матрица бинарного отношения порядка $A=(a_{ij})$ размерности $n\times n$.

Bыход: Список H длиной n, характеризующий диаграмму Хассе: каждый элемент в списке представляет собой три значения: элемент $a \in A$, значение его уровня l на диаграмме, список V элементов множества A, находящихся на уровне l+1 и связанных с элементом a.

<u>Шаг 1.</u> Определить копию матрицы $A=(a_{ij})$ как $A'=(a'_{ij})$ и копию множества A как A', а также список L, в котором будут храниться значения уровня l для каждого элемента $a\in A$. Изначально присвоить всем элементам $l\in L$ уровень 1. Также определить счетчик уровней i=1.

<u>Шаг 2.</u> Получить список L_{min} минимальных элементов множества A с помощью алгоритма 3, отправив ему на вход матрицу бинарного отношения порядка $A=(a_{ij}).$

<u>Шаг 3.</u> Для каждого элемента a в L_{min} соответствующее ему значение списка $l \in L$ сделать равным i. После чего удалить a из множества A' (и удалить строку матрицы $A' = (a'_{ij})$, которая соответствует элементу a). Затем увеличить значение i на 1.

<u>Шаг 4.</u> Если множество A' не пустое, перейти на шаг 2.

<u>Шаг 5.</u> Определить пустой список V. Проходясь по элементам списка L, где $0 \le k \le n-1$, определять для каждого значения l_k пустой список v_k связанных с элементом a_k элементов множества A. Определяя такой список, далее проходить по элементам a_{ij} матрицы A, где $0 \le i, j \le n-1$: если значение $a_{ij}=1$ и уровень $l_i \in L$ элемента $a_i \in A$ равен l_k+1 , то добавить элемент a_i в список v_k . После этого отсортировать список v_k и добавить его в V.

<u>Шаг 6.</u> Создать список H и поместить в него в качестве элемента $h_i \in H$ тройку значений: $a_i \in A, l_i \in L, v_i \in V$, где $0 \le i \le n-1$. После этого вернуть список H.

Трудоемкость алгоритма $O(n^3)$.

3.3 Описание алгоритма построения решетки концептов

Алгоритм 8 - Построение системы замыканий

 $Bxo\partial$: Контекст $K = (G, M, \rho)$ с множеством объектов G, множеством атрибутов M и отношением $\rho \subset G \times M$, заданного матрицей $A = (a_{ij})$ размерности $n \times k$ (где n - количество объектов, k - количество атрибутов).

Bыход: Система замыканий Z_{f_G} на множестве G.

<u>Шаг 1.</u> Определить список Z_{f_G} и положить туда G.

<u>Шаг 2.</u> Получить срезы по атрибутам $m \in M$ с помощью способа, описанного в алгоритме 2: необходимо предварительно транспонировать матрицу $B = A^T = (a_{ij})^T = b_{ij}$, затем проверить элементы b_{ij} матрицы B, и если $b_{ij} = 1$, где $0 \le i \le k-1$ и $0 \le j \le n-1$, то добавить значение объекта g_j в список, определяющий срез по атрибуту m_i . В результате получить список срезов $S_G = \{s_i = [g] : g \in G\}$, размер которого будет k.

<u>Шаг 3.</u> Для каждого атрибута $m_i \in M$: определить список T, в который поместить $s_i \in S_G$. Далее для каждого замыкания z_j из системы замыканий Z_{f_G} : получить пересечение множеств s_i и z_j и обозначить его как $X = s_i \cap z_j$. Если X не содержится в списке T: добавить X в список T (всё это осуществляется при $0 \le i \le k-1$). Если $T \notin Z_{f_G}$, то положить T в Z_{f_G} .

 $\underline{\text{Шаг 4.}}$ Вернуть систему замыканий Z_{f_G} на множестве G.

Трудоемкость алгоритма $O(n^2 + n \cdot k)$.

Алгоритм 9 - Построение решетки концептов

 $Bxo\partial$: Контекст $K=(G,M,\rho)$ с множеством объектов G, множеством атрибутов M и отношением $\rho\subset G\times M$, заданного матрицей $A=(a_{ij})$ размерности $n\times k$ (где n - количество объектов, k - количество атрибутов).

Выход: Решетка концептов $(C(K), \leq)$.

<u>Шаг 1.</u> Построить систему замыканий Z_{f_G} с помощью алгоритма 8, отправив ему на вход контекст $K = (G, M, \rho)$.

<u>Шаг 2.</u> Определить пустой список $(C(K), \leq)$.

Шаг 3. Построить список P следующим образом: если $z_i = \emptyset$, то P = M, иначе

- получить среды по объектам G с помощью способа, описанного в алгоритме 2: проверить элементы a_{rt} матрицы A, и если $a_{rt}=1$, где $0 \le t \le k-1$ и $0 \le r \le n-1$, то добавить значение m_t в список, определяющий срез по объекту g_r . В результате получить список срезов $S_M=\{s_i=[m]: m\in M\}$, размер которого будет n. Определить пустой список Y. Далее для каждого объекта в замыкании z_i : добавить срез s_i , соответствующий конкретному объекту, в список Y. После этого осуществить пересечение всех срезов s, находящихся в списке S, и поместить результат пересечения в список S. После построения S добавить пару значений S и S в качестве элемента в список S после построения S добавить пару значений S для всех элементов S после этого вернуть построенную решетку концептов S0.

Трудоемкость алгоритма $O(n^2 + n \cdot k + n^3)$.

3.4 Оценки сложности рассмотренных алгоритмов

Алгоритм эквивалентного замыкания.

В силу применения поочередно рефлексивного, симметричного и транзитивного замыкания, и с учетом результатов вычисления асимптотики для первой лабораторной работы, алгоритм эквивалентного замыкания имеет асимптотику $O(n^3)$.

Алгоритм системы представителей.

С учетом наличия одного вложенного цикла, алгоритм системы представителей имеет асимптотику $O(n^2)$.

Алгоритм нахождения минимальных (максимальных) и наименьших (наибольших) элементов множества.

С учетом наличия одного вложенного цикла, а также сходства между алгоритмами нахождения минимального и максимального элемента множества, а также взаимосвязи с алгоритмами нахождения наименьшего и наибольшего элемента множества, каждый из этих алгоритмов имеет асимптотику $O(n^2)$.

Алгоритм построения диаграммы Хассе.

С учетом наличия двух вложенных циклов, алгоритм построения диаграммы Хассе имеет асимптотику $O(n^3)$.

Алгоритм построения решетки концепта.

С учетом наличия двух пар вложенных циклов, где у одной пары 1-ый цикл

осуществляется по множеству атрибутов (размерности n), а 2-ой - по множеству объектов (размерности k), а у другой пары два цикла по множеству размерности n, асимптотика составляет $O(n^2+n\cdot k)$. Помимо этого, а также с учетом двух вложенных циклов, алгоритм построения диаграммы Хассе имеет асимптотику $O(n^2+n\cdot k+n^3)$.

ЗАКЛЮЧЕНИЕ

В данной лабораторной работе были рассмотрены теоретические сведения об отношении эквивалентности, разобраны определения фактор-множества, отношения порядка и диаграммы Хассе, контекста и концепта. На их основе были составлены алгоритмы построения эквивалентного замыкания бинарного отношения и системы представителей фактор-множества, алгоритмы вычисления минимальных (максимальных) и наименьших (наибольших) элементов и построения диаграммы Хассе, а также алгоритмы построения решетки концептов. Была произведена оценка сложности созданных алгоритмов. Они послужили фундаментом для программной реализации, которая впоследствии успешно прошла тестирование, результаты которого были прикреплены к отчету вместе с листингом программы, написанной на языке Руthon с использованием библиотеки Numpy для работы с большими массивами данных.