SBML Model Report

Model name: "DellOrco2009_phototransduction"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Daniele Dell'Orco² at April first 2011 at 12:40 a.m. and last time modified at April first 2014 at 10:23 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	71
events	0	constraints	0
reactions	91	function definitions	0
global parameters	96	unit definitions	0
rules	33	initial assignments	0

Model Notes

This a model from the article:

Network-level analysis of light adaptation in rod cells under normal and altered conditions. Dell'Orco D, Schmidt H, Mariani S, Fanelli F Mol Biosyst 2009 Oct; 5(10):1232-46 19756313, Abstract:

¹EMBL-EBI, viji@ebi.ac.uk

 $^{^2} University \ of \ Oldenburg, \ Institute \ of \ Biology \ and \ Environmental \ Sciences, \ {\tt daniele.dellorco@gmail.com}$

Photoreceptor cells finely adjust their sensitivity and electrical response according to changes in light stimuli as a direct consequence of the feedback and regulation mechanisms in the phototransduction cascade. In this study, we employed a systems biology approach to develop a dynamic model of vertebrate rod phototransduction that accounts for the details of the underlying biochemistry. Following a bottom-up strategy, we first reproduced the results of a robust model developed by Hamer et al. (Vis. Neurosci., 2005, 22(4), 417), and then added a number of additional cascade reactions including: (a) explicit reactions to simulate the interaction between the activated effector and the regulator of G-protein signalling (RGS); (b) a reaction for the reformation of the G-protein from separate subunits; (c) a reaction for rhodopsin (R) reconstitution from the association of the opsin apoprotein with the 11-cis-retinal chromophore; (d) reactions for the slow activation of the cascade by opsin. The extended network structure successfully reproduced a number of experimental conditions that were inaccessible to prior models. With a single set of parameters the model was able to predict qualitative and quantitative features of rod photoresponses to light stimuli ranging over five orders of magnitude, in normal and altered conditions, including genetic manipulations of the cascade components. In particular, the model reproduced the salient dynamic features of the rod from Rpe65(-/-) animals, a well established model for Leber congenital amaurosis and vitamin A deficiency. The results of this study suggest that a systems-level approach can help to unravel the adaptation mechanisms in normal and in disease-associated conditions on a molecular basis.

Note:

Figure 7 of the reference is reproduced here. Each plot is obtained by increasing flash strength. More details about generating the plots can be obtained from the comments in the curation figure (go to curation tab).

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytosol	cytosol	0000290	3	1	litre	Ø	

3.1 Compartment cytosol

This is a three dimensional compartment with a constant size of one litre.

Name cytosol

SBO:0000290 physical compartment

4 Species

This model contains 71 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Arr	Arr	cytosol	$\text{mol} \cdot 1^{-1}$		
Ca2_buff	Ca2_buff	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
Ca2_free	Ca2_free	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	
G_GTP	$G_{-}GTP$	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	
Ga_GDP	Ga_GDP	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	
Ga_GTP	Ga_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
Ga_GTP_PDE_a_Ga- _GTP	Ga_GTP_PDE_a_Ga_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$		
Ga_GTP_a_PDE_a_Ga- _GTP	Ga_GTP_a_PDE_a_Ga_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$		
Gbg	Gbg	cytosol	$\operatorname{mol} \cdot 1^{-1}$		
Gt	Gt	cytosol	$\text{mol} \cdot 1^{-1}$		
0ps	Ops	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
Ops_G	Ops_G	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	
Ops_G_GTP	Ops_G_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$		
Ops_Gt	Ops_Gt	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	
PDE	PDE	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	
PDE_Ga_GTP	PDE_Ga_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
PDE_a_Ga_GTP	PDE_a_Ga_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$		
R	R	cytosol	$\operatorname{mol} \cdot 1^{-1}$		
RO	R0	cytosol	$\text{mol} \cdot 1^{-1}$	\Box	
RO_G	R0₋G	cytosol	$\text{mol} \cdot l^{-1}$	\Box	\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
RO_G_GTP	$R0_GGTP$	cytosol	$\text{mol} \cdot l^{-1}$		
RO_Gt	R0_Gt	cytosol	$\text{mol} \cdot 1^{-1}$		
RO_RKpre	R0_RKpre	cytosol	$\operatorname{mol} \cdot 1^{-1}$		
R1	R1	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
R1_Arr	R1_Arr	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
R1_G	R1₋G	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
$R1_G_GTP$	R1_G_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
$R1_Gt$	R1_Gt	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
$R1_RKpost$	R1_RKpost	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
R1_RKpre	R1_RKpre	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
R2	R2	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
R2_Arr	R2_Arr	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
R2_G	R2_G	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
$R2_G_GTP$	R2_G_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
R2_Gt	R2_Gt	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
$R2_RKpost$	R2_RKpost	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
R2_RKpre	R2_RKpre	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
R3	R3	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
R3_Arr	R3_Arr	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
R3_G	R3_G	cytosol	$\operatorname{mol} \cdot 1^{-1}$		\Box
$R3_G_TP$	R3_G_GTP	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
R3_Gt	R3_Gt	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
$R3_RKpost$	R3_RKpost	cytosol	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
$R3_RKpre$	R3_RKpre	cytosol	$\text{mol} \cdot 1^{-1}$	\Box	
R4	R4	cytosol	$\text{mol} \cdot 1^{-1}$	\Box	
$R4_Arr$	R4_Arr	cytosol	$\text{mol} \cdot 1^{-1}$	\Box	\Box
$R4_G$	R4_G	cytosol	$\text{mol} \cdot l^{-1}$	\Box	

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
R4_G_GTP	R4_G_GTP	cytosol	$\text{mol} \cdot 1^{-1}$	\Box	
R4_Gt	R4_Gt	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
$R4_RKpost$	R4_RKpost	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
R4_RKpre	R4_RKpre	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
R5	R5	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
R5_Arr	R5_Arr	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
R5_G	R5_G	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
R5_G_GTP	R5_G_GTP	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
R5_Gt	R5_Gt	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
R5_RKpost	R5_RKpost	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
R5_RKpre	R5_RKpre	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
R6	R6	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
R6_Arr	R6_Arr	cytosol	$\text{mol} \cdot l^{-1}$		
R6_G	R6₋G	cytosol	$\text{mol} \cdot l^{-1}$		
$R6_G_GTP$	R6_G_GTP	cytosol	$\text{mol} \cdot l^{-1}$		\Box
R6_Gt	R6_Gt	cytosol	$\text{mol} \cdot l^{-1}$		
R6_RKpost	R6_RKpost	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
R6_RKpre	R6_RKpre	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
RGS	RGS	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
RGS_Ga_GTP_a_PDE- _a_Ga_GTP	RGS_Ga_GTP_a_PDE_a_Ga_GTP	cytosol	$\text{mol} \cdot l^{-1}$		
RGS_PDE_a_Ga_GTP	RGS_PDE_a_Ga_GTP	cytosol	$\text{mol} \cdot l^{-1}$		
RK	RK	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
Rec_wCa2_RK	Rec_wCa2_RK	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
cGMP	cGMP	cytosol	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box

5 Parameters

This model contains 96 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Rtot	Rtot		3.6 · 10	0^9	
PDEtot	PDEtot		1.335 · 10	0^{7}	$\overline{\mathbf{Z}}$
Gtot	Gtot		3.6 · 10	0_8	$\overline{\mathbf{Z}}$
Rectot	Rectot		35.000		$ \overline{\checkmark} $
RGStot	RGStot		3000000.000		$ \overline{\checkmark} $
ArrTot	ArrTot		3.13 · 10	0^{7}	
flashBG	flashBG		0.000		
flash0Dur	flash0Dur		0.001		
flash0Mag	flash0Mag		0.000		
flashDel	flashDel		0.000		
flashDur	flashDur		0.001		
${ t flashMag}$	flashMag		0.000		
otherstimulus	otherstimulus		0.000		
$kRK1_0$	$kRK1_{-}0$		0.008		
omega	omega		0.600		
kRK2	kRK2		250.000		
RKdark	RKdark		10838.000		
kRK3_ATP	kRK3_ATP		400.000		
kRK4	kRK4		20.000		
$omega_arr$	omega_arr		0.813		
kArr	kArr		$6.0918 \cdot 10^{-}$	10	
kA2	kA2		0.003		
kA3	kA3		0.045		
k0ps	kOps		$6.1172 \cdot 10^{-}$		
kRrecyc	kRrecyc		$7 \cdot 10^{-1}$		
$kG1_0$	kG1_0	3	.0586111111 · 10	-5	
kG2	kG2		2250.340		
kG3	kG3		2000.000		
$kG4_GDP$	kG4_GDP		600.000		
$kG5_GTP$	kG5_GTP		750.000		\square
kG6	kG6		2000.000		\square
kG7	kG7		200.000		
kGrecyc	kGrecyc		2.000		\square
kGshutoff	kGshutoff		0.050		
kP1	kP1		0.055		
kP1_rev	kP1_rev		0.000		
kP2	kP2		940.706		

Id	Name	SBO	Value	Unit	Constant
kP3	kP3		1.49834 · 10	1 -9	\checkmark
kP4	kP4		21.088		
kPDEshutoff	kPDEshutoff		0.033		$\overline{\mathbf{Z}}$
kRGS1	kRGS1		$1.57 \cdot 10$	- 7	
kRGS2	kRGS2		256.070		$\overline{\mathbf{Z}}$
kRec3	kRec3		9.688		$\overline{\mathbf{Z}}$
kRec4	kRec4		0.610		$\overline{\mathbf{Z}}$
Кр	Kp		0.425		$\overline{\mathbf{Z}}$
W	W		2.000		$\overline{\mathbf{Z}}$
Vcyto	Vcyto		1.000		$\overline{\mathbf{Z}}$
Kc	Kc		0.170		✓
m	m		2.500		Ĭ.
betadark	betadark		1.200		✓
betasub	betasub		4.3 · 10) -4	$\overline{\mathbf{Z}}$
fCa	fCa		0.200		✓
Jdark	Jdark		29.778		\mathbf{Z}
F	F		96485.342		Z
cGMPdark	cGMPdark		4.000		$\overline{\mathbf{Z}}$
ncg	ncg		3.000		Ĭ.
gammaCa	gammaCa		47.554		Ĭ.
Ca2dark	Ca2dark		0.600		$\overline{\mathbf{Z}}$
Ca2_0	Ca2_0		0.010		$\overline{\mathbf{Z}}$
k1	k1		0.382		Ĭ.
k2	k2		1.909		$\overline{\mathbf{Z}}$
eT	eT		400.000		$\overline{\mathbf{Z}}$
ktherm	ktherm		0.024		$\overline{\mathbf{Z}}$
background	background		0.000		
premag	premag		0.000		
mag	mag		0.000		
predur	predur		0.000		
dur	dur		0.000		
del	del		0.000		
preflash	preflash		0.000		
testflash	testflash		0.000		
stimulus	stimulus		0.000		
numConcFactor			0.000		
kRK1_1	kRK1 ₋ 1		0.000		
kRK1_2	kRK1_2		0.000		
kRK1_3	kRK1_3		0.000		
kRK1_4	kRK1_4		0.000		
kRK1_5	kRK1_5		0.000		
kRK1_6	kRK1_6		0.000		

Id	Name	SBO	Value	Unit	Constant
kA1_1	kA1_1		0.000		
$kA1_2$	$kA1_2$		0.000		\Box
$kA1_3$	$kA1_{-}3$		0.000		\Box
$kA1_4$	$kA1_{-}4$		0.000		\Box
$kA1_5$	kA1_5		0.000		\Box
$kA1_6$	kA1_6		0.000		\Box
$kG1_1$	$kG1_{-}1$		0.000		\Box
$kG1_2$	$kG1_2$		0.000		\Box
$kG1_3$	$kG1_3$		0.000		\Box
$kG1_4$	$kG1_{-}4$		0.000		\Box
$kG1_5$	kG1_5		0.000		\Box
$kG1_6$	kG1_6		0.000		\Box
E	E		0.000		\Box
Rec_wCa2	Rec_wCa2		0.000		
alfamax	alfamax		0.000		\Box
J	J		0.000		
deltaJ	deltaJ		0.000		

6 Rules

This is an overview of 33 rules.

6.1 Rule background

Rule background is an assignment rule for parameter background:

$$background = flashBG (1)$$

6.2 Rule premag

Rule premag is an assignment rule for parameter premag:

$$premag = \frac{flash0Mag}{flash0Dur}$$
 (2)

6.3 Rule mag

Rule mag is an assignment rule for parameter mag:

$$mag = \frac{flashMag}{flashDur}$$
 (3)

6.4 Rule predur

Rule predur is an assignment rule for parameter predur:

$$predur = flash0Dur$$
 (4)

6.5 Rule dur

Rule dur is an assignment rule for parameter dur:

$$dur = flashDur (5)$$

6.6 Rule del

Rule del is an assignment rule for parameter del:

$$del = flashDel$$
 (6)

6.7 Rule preflash

Rule preflash is an assignment rule for parameter preflash:

$$preflash = \begin{cases} premag & \text{if time } \leq predur \\ 0 & \text{otherwise} \end{cases}$$
 (7)

6.8 Rule testflash

Rule testflash is an assignment rule for parameter testflash:

$$testflash = \begin{cases} mag & if \ (time \ge del) \land (time \le del + dur) \\ 0 & otherwise \end{cases} \tag{8}$$

6.9 Rule stimulus

Rule stimulus is an assignment rule for parameter stimulus:

$$stimulus = background + preflash + testflash + otherstimulus$$
 (9)

6.10 Rule numConcFactor

Rule numConcFactor is an assignment rule for parameter numConcFactor:

$$numConcFactor = \frac{1}{602200.0 \cdot Vcyto}$$
 (10)

6.11 Rule kRK1_1

Rule kRK1_1 is an assignment rule for parameter kRK1_1:

$$kRK1_{-}1 = kRK1_{-}0 \cdot exp (omega)$$
 (11)

6.12 Rule kRK1_2

Rule kRK1_2 is an assignment rule for parameter kRK1_2:

$$kRK1_2 = kRK1_0 \cdot exp(omega \cdot 2)$$
 (12)

6.13 Rule kRK1_3

Rule kRK1_3 is an assignment rule for parameter kRK1_3:

$$kRK1_3 = kRK1_0 \cdot exp(omega \cdot 3)$$
 (13)

6.14 Rule kRK1_4

Rule kRK1_4 is an assignment rule for parameter kRK1_4:

$$kRK1_4 = kRK1_0 \cdot exp(omega \cdot 4) \tag{14}$$

6.15 Rule kRK1_5

Rule kRK1_5 is an assignment rule for parameter kRK1_5:

$$kRK1_{5} = kRK1_{0} \cdot exp(omega \cdot 5)$$
(15)

6.16 Rule kRK1_6

Rule kRK1_6 is an assignment rule for parameter kRK1_6:

$$kRK1_{-}6 = 0 \tag{16}$$

6.17 Rule kA1_1

Rule kA1_1 is an assignment rule for parameter kA1_1:

$$kA1_{-}1 = kArr \cdot expomega_arr$$
 (17)

6.18 Rule kA1_2

Rule kA1_2 is an assignment rule for parameter kA1_2:

$$kA1_2 = kArr \cdot exp(omega_arr \cdot 2)$$
 (18)

6.19 Rule kA1_3

Rule kA1_3 is an assignment rule for parameter kA1_3:

$$kA1_3 = kArr \cdot exp(omega_arr \cdot 3)$$
 (19)

6.20 Rule kA1_4

Rule kA1_4 is an assignment rule for parameter kA1_4:

$$kA1_4 = kArr \cdot exp (omega_arr \cdot 4)$$
 (20)

6.21 Rule kA1_5

Rule kA1_5 is an assignment rule for parameter kA1_5:

$$kA1_5 = kArr \cdot exp(omega_arr \cdot 5)$$
 (21)

6.22 Rule kA1_6

Rule kA1_6 is an assignment rule for parameter kA1_6:

$$kA1_{-}6 = kArr \cdot exp(omega_arr \cdot 6)$$
 (22)

6.23 Rule kG1_1

Rule kG1_1 is an assignment rule for parameter kG1_1:

$$kG1_{-}1 = kG1_{-}0 \cdot \exp(\text{omega}) \tag{23}$$

6.24 Rule kG1_2

Rule kG1_2 is an assignment rule for parameter kG1_2:

$$kG1_2 = kG1_0 \cdot \exp(\text{omega} \cdot 2) \tag{24}$$

6.25 Rule kG1_3

Rule kG1_3 is an assignment rule for parameter kG1_3:

$$kG1_3 = kG1_0 \cdot \exp(\text{omega} \cdot 3) \tag{25}$$

6.26 Rule kG1_4

Rule kG1_4 is an assignment rule for parameter kG1_4:

$$kG1_4 = kG1_0 \cdot \exp(\text{omega} \cdot 4) \tag{26}$$

6.27 Rule kG1_5

Rule kG1_5 is an assignment rule for parameter kG1_5:

$$kG1_5 = kG1_0 \cdot \exp(\text{omega} \cdot 5) \tag{27}$$

6.28 Rule kG1_6

Rule kG1_6 is an assignment rule for parameter kG1_6:

$$kG1_6 = kG1_0 \cdot \exp(\text{omega} \cdot 6) \tag{28}$$

6.29 Rule E

Rule E is an assignment rule for parameter E:

$$E = [PDE_a_Ga_GTP] + 2 \cdot [Ga_GTP_a_PDE_a_Ga_GTP]$$
 (29)

6.30 Rule Rec_wCa2

Rule Rec_wCa2 is an assignment rule for parameter Rec_wCa2:

$$Rec_wCa2 = \frac{Rectot - [Rec_wCa2_RK] \cdot numConcFactor}{1 + \left(\frac{Kp}{[Ca2_free]}\right)^w}$$
(30)

6.31 Rule alfamax

Rule alfamax is an assignment rule for parameter alfamax:

$$alfamax = betadark \cdot cGMPdark \cdot \left(1 + \left(\frac{Ca2dark}{Kc}\right)^{m}\right)$$
 (31)

6.32 Rule J

Rule J is an assignment rule for parameter J:

$$J = \frac{2}{2 + fCa} \cdot \left(\frac{[cGMP]}{cGMPdark}\right)^{ncg} \cdot Jdark + \frac{\frac{fCa}{fCa + 2} \cdot ([Ca2_free] - Ca2_0)}{Ca2dark - Ca2_0} \cdot Jdark \qquad (32)$$

6.33 Rule deltaJ

Rule deltaJ is an assignment rule for parameter deltaJ:

$$deltaJ = Jdark - J (33)$$

14

7 Reactions

This model contains 91 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	v_r1	v_r1	$R \longrightarrow R0$	
2	v_r2_0	v_r2_0	$R0 + RK \Longrightarrow R0_RKpre$	
3	v_r2_1	v_r2_1	$R1 + RK \Longrightarrow R1_RKpre$	
4	v_r2_2	v_r2_2	$R2 + RK \Longrightarrow R2_RKpre$	
5	v_r2_3	v_r2_3	$R3 + RK \Longrightarrow R3_RKpre$	
6	v_r2_4	v_r2_4	$R4 + RK \Longrightarrow R4_RKpre$	
7	v_r2_5	v_r2_5	$R5 + RK \Longrightarrow R5_RKpre$	
8	v_r2_6	v_r2_6	$R6 + RK \Longrightarrow R6_RKpre$	
9	v_r3_0	v_r3_0	$R0_RKpre \longrightarrow R1_RKpost$	
10	v_r3_1	v_r3_1	$R1_RKpre \longrightarrow R2_RKpost$	
11	v_r3_2	v_r3_2	$R2_RKpre \longrightarrow R3_RKpost$	
12	v_r3_3	v_r3_3	$R3_RKpre \longrightarrow R4_RKpost$	
13	v_r3_4	v_r3_4	$R4_RKpre \longrightarrow R5_RKpost$	
14	v_r3_5	v_r3_5	$R5_RKpre \longrightarrow R6_RKpost$	
15	v_r4_1	v_r4_1	$R1_RKpost \longrightarrow R1 + RK$	
16	$v_r_4_2$	v_r4_2	$R2_RKpost \longrightarrow R2 + RK$	
17	$v_r_4_3$	v_r4_3	$R3_RKpost \longrightarrow R3 + RK$	
18	$v_r_4_4$	v_r4_4	$R4_RKpost \longrightarrow R4 + RK$	
19	$v_r_{4_5}$	v_r4_5	$R5_RKpost \longrightarrow R5 + RK$	
20	v_r4_6	v_r4_6	$R6_RKpost \longrightarrow R6 + RK$	
21	v_r5_1	v_r5_1	$Arr + R1 \Longrightarrow R1_Arr$	
22	v_r5_2	v_r5_2	$Arr + R2 \Longrightarrow R2_Arr$	
23	v_r5_3	v_r5_3	$Arr + R3 \Longrightarrow R3_Arr$	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N⁰	Id	Name	Reaction Equation	SBO
26 v.r5.6 v.r5.6 v.r5.6 Arr+R6 \rightleftharpoons R6.Arr 27 v.r6.1 v.r6.1 R1.Arr → Arr+Ops 28 v.r6.2 v.r6.2 R2.Arr → Arr+Ops 29 v.r6.3 v.r6.3 R3.Arr → Arr+Ops 30 v.r6.4 v.r6.4 R4.Arr → Arr+Ops 31 v.r6.5 v.r6.5 R5.Arr → Arr+Ops 32 v.r6.6 v.r6.6 R6.Arr → Arr+Ops 33 v.r7.0 v.r7.0 R0 → Ops 34 v.r7.1 v.r7.1 R1 → Ops 35 v.r7.2 v.r7.2 R2 → Ops 36 v.r7.3 v.r7.3 v.r7.3 R3 → Ops 37 v.r7.4 v.r7.4 R4 → Ops 38 v.r7.5 v.r7.5 R5 → Ops 39 v.r7.6 v.r7.6 R6 → Ops 40 v.r8 v.r8 Gr+Ops \rightleftharpoons Ops.Gr 40 v.r9 v.r9 Ops.Gr \rightleftharpoons Ops.Gr 41 v.r9 v.r9 Ops.Gr \rightleftharpoons Ops.Gr \rightleftharpoons Ops.Gr 42 v.r10 v.r10 Ops.Gr \rightleftharpoons Ops.	24	v_r5_4	v_r5_4	$Arr + R4 \Longrightarrow R4_Arr$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	v_r5_5	v_r5_5	$Arr + R5 \Longrightarrow R5_Arr$	
28 $v.r6.2$ $v.r6.3$ $v.r6.3$ $v.r6.3$ $v.r6.3$ $v.r6.3$ $v.r6.4$ $v.r6.4$ $v.r6.5$ $v.r6.5$ $v.r6.5$ $v.r6.5$ $v.r6.5$ $v.r6.6$ $v.r$	26	v_r5_6	v_r5_6	$Arr + R6 \Longrightarrow R6_Arr$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	v_r6_1	v_r6_1	$R1_Arr \longrightarrow Arr + Ops$	
30 $v.r6.4$ $v.r6.5$ $R4_Arr \rightarrow Arr + Ops$ 31 $v.r6.5$ $v.r6.5$ $R5_Arr \rightarrow Arr + Ops$ 32 $v.r6.6$ $v.r6.6$ $R6_Arr \rightarrow Arr + Ops$ 33 $v.r7.0$ $v.r7.0$ $v.r9$ 34 $v.r7.1$ $v.r7.1$ $v.r9$ 35 $v.r7.2$ $v.r7.2$ $v.r9$ 36 $v.r7.3$ $v.r7.3$ $v.r9$ 37 $v.r7.4$ $v.r7.4$ $v.r9$ 38 $v.r7.5$ $v.r7.5$ $v.r9$ 39 $v.r7.6$ $v.r8$ $v.r8$ 40 $v.r8$ $v.r8$ $v.r9$ 40 $v.r8$ $v.r9$ $v.r9$ 41 $v.r9$ $v.r9$ $v.r9$ 42 $v.r10$ $v.r10$ $v.r10$ $v.r10$ 43 $v.r11$ $v.r11$ $v.r11$ 45 $v.r13.0$ $v.r13.0$ $v.r13.0$ 46 $v.r13.1$ $v.r13.1$ $v.r13.2$ 48 $v.r13.3$ $v.r13.3$ $v.r13.4$ $v.r13.4$ <td< td=""><td>28</td><td>v_r6_2</td><td>v_r6_2</td><td>$R2_Arr \longrightarrow Arr + Ops$</td><td></td></td<>	28	v_r6_2	v_r6_2	$R2_Arr \longrightarrow Arr + Ops$	
31 v.r6.5 v.r6.5 v.r6.6 R5.Arr → Arr + Ops 32 v.r6.6 v.r6.6 R6.Arr → Arr + Ops 33 v.r7.0 v.r7.0 R0 → Ops 34 v.r7.1 v.r7.1 R1 → Ops 35 v.r7.2 v.r7.2 R2 → Ops 36 v.r7.3 v.r7.3 R3 → Ops 37 v.r7.4 v.r7.4 R4 → Ops 38 v.r7.5 v.r7.5 R5 → Ops 39 v.r7.6 v.r7.6 R6 → Ops 40 v.r8 v.r9 v.r9 Ops.Gr → Ops.Gr 41 v.r9 v.r9 Ops.Gr → Ops.Gr 42 v.r10 v.r10 Ops.Gr → Ops.Gr 43 v.r11 v.r11 Ops.GrTP → GrTP + Ops 44 v.r12 v.r12 Ops → R 45 v.r13.0 v.r13.0 Gt + R0 \rightleftharpoons R0.Gt 46 v.r13.1 v.r13.1 Gt + R1 \rightleftharpoons R1.Gt 47 v.r13.2 v.r13.2 Gt + R2 \rightleftharpoons R2.Gt 48 v.r13.3 v.r13.4 Gt + R3 \rightleftharpoons R3.Gt 49 v.r13.4 v.r13.5 Gt + R4 \rightleftharpoons R4.Gt 50 v.r13.5 v.r13.5 v.r13.5	29	v_r6_3	v_r6_3	$R3_Arr \longrightarrow Arr + Ops$	
32 $v.r6.6$ $v.r6.6$ $v.r7.0$ $v.r$	30	v_r6_4	v_r6_4	$R4_Arr \longrightarrow Arr + Ops$	
33 v.r7.0 v.r7.0 R0 → Ops 34 v.r7.1 v.r7.1 R1 → Ops 35 v.r7.2 v.r7.2 R2 → Ops 36 v.r7.3 v.r7.4 v.r7.4 R4 → Ops 37 v.r7.4 v.r7.5 v.r7.5 R5 → Ops 39 v.r7.6 v.r7.6 v.r8 Gt + Ops \rightleftharpoons Ops.Gt 40 v.r8 v.r9 v.r9 Ops.Gt \rightleftharpoons Ops.GTP 41 v.r9 v.r10 V.r10 Ops.GGTP → G_GTP + Ops 44 v.r12 v.r12 Ops \rightleftharpoons R1 \rightleftharpoons R1. \rightleftharpoons R2. \rightleftharpoons R3. \rightleftharpoons R4. \rightleftharpoons R3. \rightleftharpoons R3. \rightleftharpoons R4. \rightleftharpoons R5. \rightleftharpoons R6. \rightleftharpoons R7. \rightleftharpoons R1.	31	v_r6_5	v_r6_5	$R5_Arr \longrightarrow Arr + Ops$	
34 $v.r7.1$ $v.r7.2$ $v.r7.2$ 35 $v.r7.2$ $v.r7.2$ $v.r7.3$ 36 $v.r7.3$ $v.r7.3$ $v.r7.3$ 37 $v.r7.4$ $v.r7.4$ $v.r7.5$ 38 $v.r7.5$ $v.r7.5$ $v.r7.5$ 39 $v.r7.6$ $v.r7.6$ $v.r7.6$ 40 $v.r8$ $v.r8$ $v.r8$ 41 $v.r9$ $v.r9$ $v.r1.0$ 42 $v.r10$ $v.r10$ $v.r10$ 43 $v.r11$ $v.r11$ $v.r11$ 43 $v.r11$ $v.r11$ $v.r12$ 44 $v.r12$ $v.r12$ $v.r13.0$ 45 $v.r13.0$ $v.r13.0$ $v.r13.0$ $v.r13.0$ 46 $v.r13.1$ $v.r13.2$ $v.r13.2$ $v.r13.2$ 48 $v.r13.3$ $v.r13.3$ $v.r13.4$ $v.r13.4$ 49 $v.r13.4$ $v.r13.4$ $v.r13.5$ $v.r13.5$ 50 $v.r13.6$ $v.r13.6$ $v.r13.6$ $v.r13.6$	32	v_r6_6	v_r6_6	$R6_Arr \longrightarrow Arr + Ops$	
35 $v.r7.2$ $v.r7.3$ $v.r7.3$ 36 $v.r7.3$ $v.r7.4$ $v.r7.4$ $v.r7.4$ 38 $v.r7.5$ $v.r7.5$ $v.r7.5$ $v.r7.5$ 39 $v.r7.6$	33	v_r7_0	v_r7_0	$R0 \longrightarrow Ops$	
36 $v.r7.3$ $v.t7.4$ $v.t7.4$ $v.t7.4$ $v.t7.4$ $v.t7.5$ $v.t$	34	v_r7_1	v_r7_1	$R1 \longrightarrow Ops$	
37 $v.x7.4$ $v.x7.4$ $v.x7.5$ $v.x7.5$ $v.x7.5$ $v.x7.6$ $v.x7.6$ $v.x8$ $v.x8$ $v.x8$ $v.x8$ $v.x8$ $v.x9$ v	35	v_r7_2	v_r7_2	$R2 \longrightarrow Ops$	
38 $v.r7.5$ $v.r7.6$ $R6 \rightarrow Ops$ 39 $v.r7.6$ $R6 \rightarrow Ops$ 40 $v.r8$ $v.r8$ $Gt + Ops \rightleftharpoons Ops_Gt$ 41 $v.r9$ $v.r9$ $Ops_Gt \rightleftharpoons Ops_G$ 42 $v.r10$ $v.r10$ Ops_G_GTP 43 $v.r11$ $v.r11$ $Ops_G_GTP \rightarrow G_GTP + Ops$ 44 $v.r12$ $v.r12$ $Ops \rightarrow R$ 45 $v.r13.0$ $v.r13.0$ $Gt + R0 \rightleftharpoons R0_Gt$ 46 $v.r13.1$ $v.r13.1$ $Gt + R1 \rightleftharpoons R1_Gt$ 47 $v.r13.2$ $v.r13.2$ $Gt + R2 \rightleftharpoons R2_Gt$ 48 $v.r13.3$ $v.r13.3$ $Gt + R3 \rightleftharpoons R3_Gt$ 49 $v.r13.4$ $v.r13.4$ $Gt + R4 \rightleftharpoons R4_Gt$ 50 $v.r13.5$ $v.r13.5$ $Gt + R5 \rightleftharpoons R5_Gt$ 51 $v.r13.6$ $v.r13.6$ $Gt + R6 \rightleftharpoons R6_Gt$	36	v_r7_3	v_r7_3	$R3 \longrightarrow Ops$	
39 $v.r7.6$ $R6 \longrightarrow Ops$ 40 $v.r8$ $v.r8$ $Gt + Ops \Longrightarrow Ops_Gt$ 41 $v.r9$ $v.r9$ $Ops_Gt \Longrightarrow Ops_G$ 42 $v.r10$ $v.r10$ $ops_G \longrightarrow Ops_G_GTP$ 43 $v.r11$ $v.r11$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 44 $v.r12$ $v.r12$ $ops \longrightarrow R$ 45 $v.r13_0$ $v.r13_0$ $ops \longrightarrow R$ 45 $v.r13_0$ $ops \longrightarrow R$ 46 $v.r13_1$ $ops \longrightarrow R$ 47 $v.r13_2$ $ops \longrightarrow R$ 48 $v.r13_2$ $ops \longrightarrow R$ 49 $v.r13_3$ $ops \longrightarrow R$ 49 $v.r13_4$ $ops \longrightarrow R$ 50 $v.r13_5$ $ops \longrightarrow R$ 51 $v.r13_6$ $ops \longrightarrow R$ 61 $ops \longrightarrow R$ $ops \longrightarrow R$ 61 $ops \longrightarrow R$ $ops \longrightarrow R$ 61	37	v_r7_4	v_r7_4	$R4 \longrightarrow Ops$	
40 $v.r8$ $v.r9$ $Gt + Ops \rightleftharpoons Ops_Gt$ 41 $v.r9$ $v.r10$ $Ops_Gt \rightleftharpoons Ops_G$ 42 $v.r10$ $v.r10$ $Ops_G \rightarrow Ops_G_GTP$ 43 $v.r11$ $v.r11$ $Ops_G_GTP \rightarrow G_GTP + Ops$ 44 $v.r12$ $v.r13_0$ $Ops \rightarrow R$ 45 $v.r13_0$ $v.r13_0$ $Ops \rightarrow R$ 45 $v.r13_1$ $v.r13_1$ $Ops \rightarrow R$ 46 $v.r13_1$ $Ops \rightarrow R$ 47 $v.r13_1$ $Ops \rightarrow R$ 48 $v.r13_1$ $Ops \rightarrow R$ 49 $v.r13_2$ $v.r13_3$ 49 $v.r13_3$ $Ops \rightarrow R$ 49 $v.r13_3$ $Ops \rightarrow R$ 48 $v.r13_3$ $Ops \rightarrow R$ 49 $v.r13_3$ $Ops \rightarrow R$ 48 $v.r13_3$ $Ops \rightarrow R$ 49 $v.r13_4$ $Ops \rightarrow R$ 49 $v.r13_4$ $Ops \rightarrow R$ 50 $v.r13_4$ $Ops \rightarrow R$ 60 $Ops \rightarrow R$ $Ops \rightarrow R$ 60 $Ops \rightarrow R$ $Ops \rightarrow R$	38	v_r7_5	v_r7_5	$R5 \longrightarrow Ops$	
41 $v.r9$ $v.r9$ $ops_Gt \rightleftharpoons ops_G$ 42 $v.r10$ $v.r10$ $ops_G \multimap ops_G_GTP$ 43 $v.r11$ $v.r11$ $ops_G_GTP \multimap G_GTP + ops$ 44 $v.r12$ $v.r12$ $ops \multimap R$ 45 $v.r13_0$ $v.r13_0$ $ops_G_GTP \multimap G_GTP + ops$ 46 $v.r13_0$ $ops_G_GTP \multimap G_GTP + ops$ 46 $v.r13_1$ $ops_G_GTP \multimap G_GTP + ops$ 46 $v.r13_1$ $ops_G_GTP \multimap G_GTP + ops$ 46 $v.r13_1$ $ops_G_GTP \multimap G_GTP + ops$ 47 $v.r13_1$ $ops_G_GTP \multimap G_GTP + ops$ 48 $v.r13_2$ $ops_G_GTP \multimap G_GTP + ops$ 49 $v.r13_2$ $ops_G_GTP \multimap G_GTP + ops$ 49 $v.r13_4$ $ops_G_GTP \multimap G_GTP + ops$ 49 $v.r13_4$ $ops_G_GTP \multimap G_GTP + ops$ 50 $v.r13_4$ $ops_G_GTP \multimap G_GTP + ops$ 60 $ops_G_GTP \multimap G_GTP + ops$ 60 $ops_G_GTP \multimap G_GTP + ops$ 61 $ops_G_GTP \multimap G_GTP + ops$ 61 $ops_G_GTP \multimap G_GTP + ops$ 61 $ops_G_GTP \multimap G_GTP + ops$ 61<	39	v_r7_6	v_r7_6	$R6 \longrightarrow Ops$	
42 $v.r10$ $v.r10$ $ops.G \rightarrow ops.G.GTP$ 43 $v.r11$ $v.r11$ $ops.G.GTP \rightarrow G.GTP + ops$ 44 $v.r12$ $ops \rightarrow R$ 45 $v.r13.0$ $ops.G.GTP \rightarrow G.GTP + ops$ 46 $v.r13.0$ $ops.G.GTP \rightarrow G.GTP + ops$ 45 $v.r13.0$ $ops.G.GTP \rightarrow G.GTP + ops$ 46 $v.r13.0$ $ops.G.GTP \rightarrow G.GTP + ops$ 47 $v.r13.0$ $ops.G.GTP \rightarrow G.GTP + ops$ 48 $v.r13.0$ $ops.G.GTP \rightarrow G.GTP + ops$ 49 $v.r13.0$	40	v_r8	v_r8	$Gt + Ops \Longrightarrow Ops_Gt$	
43 $v.r11$ $v.r12$ $v.r12$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 44 $v.r12$ $ops \longrightarrow R$ 45 $v.r13_0$ $v.r13_0$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 46 $v.r13_0$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 47 $v.r13_0$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 48 $v.r13_1$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 49 $v.r13_1$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 49 $v.r13_2$ $ops_G_GTP \longrightarrow G_GTP + Ops$ 40 $v.r13_2$ $ops_G_GTP \longrightarrow G_G$ 49 $v.r13_4$ $ops_G_GTP \longrightarrow G_G$ 49 $v.r13_4$ $ops_G_GTP \longrightarrow G_G$ 49 $v.r13_4$ $ops_G_GTP \longrightarrow G_G$ 50 $v.r13_4$ $ops_G_GTP \longrightarrow G_G$ 49 $v.r13_4$ $ops_G_GTP \longrightarrow G_G$ 49 $v.r13_4$ $ops_G_GTP \longrightarrow G_G$ 50 $v.r13_6$ $ops_G_GTP \longrightarrow G_G$ 60 $v.r13_4$ $ops_G_GTP \longrightarrow G_G$	41	v_r9	v_ r 9	$Ops_Gt \Longrightarrow Ops_G$	
44 v_r12 v_r12 $ops \rightarrow R$ 45 $v_r13.0$ $v_r13.0$ $ops \rightarrow R$ 46 $v_r13.1$ $v_r13.1$ $ops \rightarrow R$ 47 $v_r13.1$ $ops \rightarrow R$ 47 $v_r13.1$ $ops \rightarrow R$ 48 $v_r13.1$ $ops \rightarrow R$ 47 $v_r13.1$ $ops \rightarrow R$ 48 $v_r13.2$ $ops \rightarrow R$ 48 $v_r13.2$ $ops \rightarrow R$ 48 $v_r13.2$ $ops \rightarrow R$ 49 $v_r13.2$ $ops \rightarrow R$ 49 $v_r13.3$ $ops \rightarrow R$ 49 $v_r13.4$ $ops \rightarrow R$ 50 $v_r13.4$ $ops \rightarrow R$ 50 $v_r13.4$ $ops \rightarrow R$ 60 $ops \rightarrow R$ </td <td>42</td> <td>v_r10</td> <td>v_r10</td> <td>$Ops_G \longrightarrow Ops_G_GTP$</td> <td></td>	42	v_r10	v_r10	$Ops_G \longrightarrow Ops_G_GTP$	
45 $v.r13.0$ $v.r13.0$ $Gt + R0 \rightleftharpoons R0.Gt$ 46 $v.r13.1$ $v.r13.1$ $Gt + R1 \rightleftharpoons R1.Gt$ 47 $v.r13.2$ $v.r13.2$ $Gt + R2 \rightleftharpoons R2.Gt$ 48 $v.r13.3$ $v.r13.3$ $Gt + R3 \rightleftharpoons R3.Gt$ 49 $v.r13.4$ $v.r13.4$ $Gt + R4 \rightleftharpoons R4.Gt$ 50 $v.r13.5$ $v.r13.5$ $Gt + R5 \rightleftharpoons R5.Gt$ 51 $v.r13.6$ $v.r13.6$ $Gt + R6 \rightleftharpoons R6.Gt$	43	v_r11	v_111	$Ops_G_GTP \longrightarrow G_GTP + Ops$	
46 v_r13_1 v_r13_1 $Gt + R1 \rightleftharpoons R1_Gt$ 47 v_r13_2 v_r13_2 $Gt + R2 \rightleftharpoons R2_Gt$ 48 v_r13_3 v_r13_3 $Gt + R3 \rightleftharpoons R3_Gt$ 49 v_r13_4 v_r13_4 $Gt + R4 \rightleftharpoons R4_Gt$ 50 v_r13_5 $Gt + R5 \rightleftharpoons R5_Gt$ 51 v_r13_6 $Gt + R6 \rightleftharpoons R6_Gt$	44	v_r12	v_r12	$\operatorname{Ops} \longrightarrow R$	
47 $v_r13.2$ $v_r13.2$ $Gt + R2 \rightleftharpoons R2_Gt$ 48 $v_r13.3$ $Gt + R3 \rightleftharpoons R3_Gt$ 49 $v_r13.4$ $Gt + R4 \rightleftharpoons R4_Gt$ 50 $v_r13.5$ $Gt + R5 \rightleftharpoons R5_Gt$ 51 $v_r13.6$ $Gt + R6 \rightleftharpoons R6_Gt$	45	v_r13_0	v_r13_0	$Gt + R0 \Longrightarrow R0_Gt$	
48 v_r13_3 v_r13_3 $Gt + R3 \rightleftharpoons R3_Gt$ 49 v_r13_4 $Gt + R4 \rightleftharpoons R4_Gt$ 50 v_r13_5 $Gt + R5 \rightleftharpoons R5_Gt$ 51 v_r13_6 $Gt + R6 \rightleftharpoons R6_Gt$	46	v_r13_1	v_r13_1	$Gt + R1 \Longrightarrow R1_Gt$	
49 v_r13_4 v_r13_4 $Gt + R4 \rightleftharpoons R4_Gt$ 50 v_r13_5 $Gt + R5 \rightleftharpoons R5_Gt$ 51 v_r13_6 $Gt + R6 \rightleftharpoons R6_Gt$	47	v_r13_2	v_r13_2	$Gt + R2 \Longrightarrow R2_Gt$	
50 v_r13_5 v_r13_5 Gt + R5 \rightleftharpoons R5_Gt 51 v_r13_6 Gt + R6 \rightleftharpoons R6_Gt	48	v_r13_3	v_r13_3	$Gt + R3 \Longrightarrow R3_Gt$	
51 v_r13_6 v_r13_6 $Gt + R6 \rightleftharpoons R6_Gt$	49	v_r13_4	v_r13_4	$Gt + R4 \Longrightarrow R4_Gt$	
	50	v_r13_5	v_r13_5	$Gt + R5 \Longrightarrow R5_Gt$	
52 v_r14_0 v_r14_0 R0_Gt \rightleftharpoons R0_G	51	v_r13_6	v_r13_6	$Gt + R6 \Longrightarrow R6 Gt$	
	52	v_r14_0	v_r14_0	$R0_Gt \Longrightarrow R0_G$	

N₀	Id	Name	Reaction Equation	SBO
53	v_r14_1	v_r14_1	$R1_Gt \rightleftharpoons R1_G$	
54	v_r14_2	v_r14_2	$R2_Gt \Longrightarrow R2_G$	
55	v_r14_3	v_r14_3	$R3_Gt \Longrightarrow R3_G$	
56	v_r14_4	v_r14_4	$R4_Gt \rightleftharpoons R4_G$	
57	v_r14_5	v_r14_5	$R5_Gt \Longrightarrow R5_G$	
58	v_r14_6	v_r14_6	$R6_Gt \rightleftharpoons R6_G$	
59	v_r15_0	v_r15_0	$R0_G \longrightarrow R0_G_GTP$	
60	v_r15_1	v_r15_1	$R1_G \longrightarrow R1_G_GTP$	
61	v_r15_2	v_r15_2	$R2_G \longrightarrow R2_G_GTP$	
62	v_r15_3	v_r15_3	$R3_G \longrightarrow R3_G_GTP$	
63	v_r15_4	v_r15_4	$R4_G \longrightarrow R4_G_GTP$	
64	v_r15_5	v_r15_5	$R5_G \longrightarrow R5_G_GTP$	
65	v_r15_6	v_r15_6	$R6_G \longrightarrow R6_G_GTP$	
66	v_r16_0	v_r16_0	$R0_G_GTP \longrightarrow G_GTP + R0$	
67	v_r16_1	v_r16_1	$R1_G_GTP \longrightarrow G_GTP + R1$	
68	v_r16_2	v_r16_2	$R2_G_GTP \longrightarrow G_GTP + R2$	
69	v_r16_3	v_r16_3	$R3_G_GTP \longrightarrow G_GTP + R3$	
70	v_r16_4	v_r16_4	$R4_G_GTP \longrightarrow G_GTP + R4$	
71	v_r16_5	v_r16_5	$R5_G_GTP \longrightarrow G_GTP + R5$	
72	v_r16_6	v_r16_6	$R6_G_GTP \longrightarrow G_GTP + R6$	
73	v_r17	v_r17	$G_GTP \longrightarrow Ga_GTP + Gbg$	
74	v_r18	v_r18	$Ga_GTP + PDE \Longrightarrow PDE_Ga_GTP$	
75	v_r19	v_r19	$PDE_Ga_GTP \longrightarrow PDE_a_Ga_GTP$	
76	v_r20	v_r20	$Ga_GTP+PDE_a_Ga_GTP \longrightarrow Ga_GTP_PDE_a_Ga_Ga_Ga$	GTP
77	v_r21	v_r21	$Ga_GTP_PDE_a_Ga_GTP \longrightarrow Ga_GTP_a_PDE_a_Ga_Ga_Ga_GTP_a_PDE_a_Ga_Ga_GTP_a_PDE_a_Ga_Ga_GTP_a_PDE_a_Ga_Ga_GTP_a_PDE_a_Ga_Ga_GTP_a_PDE_a_Ga_Ga_GTP_a_PDE_a_Ga_Ga_GTP_a_PDE_a_Ga_Ga_Ga_GTP_a_PDE_a_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_Ga_G$	GTP
78	v_r22	v_r22	$Ga_GTP_a_PDE_a_Ga_GTP$ + RGS \longrightarrow RGS_Ga_GTP_a_PDE_a_Ga_GTP	
79	v_r23	v_r23	$RGS_Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE_a_Ga_GTP + RGS$	

No	Id	Name	Reaction Equation	SBO
80	v_r24	v_r24	$PDE_a_Ga_GTP + RGS \longrightarrow RGS_PDE_a_Ga_GTP$	
81	v_r25	v_r25	$RGS_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE + RGS$	
82	v_r26	v_r26	$PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE$	
83	v_r27	v_r27	$Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP$ +	
			PDE_a_Ga_GTP	
84	v_r28	v_r28	$Ga_GTP \longrightarrow Ga_GDP$	
85	v_r29	v_r29	$Ga_GDP + Gbg \longrightarrow Gt$	
86	v_r30	v_r30	RK <u>Ca2_free</u> Rec_wCa2_RK	
87	v_r31	v_r31	Ca2_free ← Ca2_buff	
88	v_r32	v_r32	$Ca2_free \longrightarrow \emptyset$	
89	v_r33	v_r33	$\emptyset \xrightarrow{\text{cGMP}} \text{Ca2_free}$	
90	v_r34	v_r34	$\emptyset \xrightarrow{\text{Ca2_free}} \text{cGMP}$	
91	v_r35	v_r35	cGMP Ga_GTP_a_PDE_a_Ga_GTP, PDE_a_Ga_GTP	Ø

7.1 Reaction v_r1

This is an irreversible reaction of one reactant forming one product.

Name v_r1

Reaction equation

$$R \longrightarrow R0$$
 (34)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
R	R	

Product

Table 7: Properties of each product.

Id	Name	SBO
RO	R0	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \frac{\text{stimulus} \cdot [R]}{\text{Rtot}}$$
 (35)

7.2 Reaction v_r2_0

This is a reversible reaction of two reactants forming one product.

Name v_r2_0

Notes Rn and RK binding before phospohorylation occurs

Reaction equation

$$R0 + RK \Longrightarrow R0 RKpre$$
 (36)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
RO	R0	
RK	RK	

Product

Table 9: Properties of each product.

Id	Name	SBO
RO_RKpre	R0_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = kRK1_0 \cdot [RK] \cdot [R0] - kRK2 \cdot [R0_RKpre]$$
(37)

7.3 Reaction v_r2_1

This is a reversible reaction of two reactants forming one product.

Name v_r2_1

Notes Rn and RK binding before phospohorylation occurs

Reaction equation

$$R1 + RK \Longrightarrow R1 RKpre$$
 (38)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
R1	R1	
RK	RK	

Product

Table 11: Properties of each product.

Id	Name	SBO
R1_RKpre	R1_RKpre	

Derived unit contains undeclared units

$$v_3 = kRK1_1 \cdot [RK] \cdot [R1] - kRK2 \cdot [R1_RKpre]$$
(39)

7.4 Reaction v_r2_2

This is a reversible reaction of two reactants forming one product.

Name v_r2_2

Notes Rn and RK binding before phospohorylation occurs

Reaction equation

$$R2 + RK \Longrightarrow R2 RKpre$$
 (40)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
R2	R2	
RK	RK	

Product

Table 13: Properties of each product.

Id	Name	SBO
R2_RKpre	R2_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = kRK1_2 \cdot [RK] \cdot [R2] - kRK2 \cdot [R2_RKpre]$$
(41)

7.5 Reaction v_r2_3

This is a reversible reaction of two reactants forming one product.

Name v_r2_3

Notes Rn and RK binding before phospohorylation occurs

Reaction equation

$$R3 + RK \Longrightarrow R3 RKpre$$
 (42)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
R3	R3	
RK	RK	

Product

Table 15: Properties of each product.

Id	Name	SBO
R3_RKpre	R3_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = kRK1_3 \cdot [RK] \cdot [R3] - kRK2 \cdot [R3_RKpre]$$
 (43)

7.6 Reaction v_r2_4

This is a reversible reaction of two reactants forming one product.

Name v_r2_4

Notes Rn and RK binding before phospohorylation occurs

Reaction equation

$$R4 + RK \rightleftharpoons R4_RKpre$$
 (44)

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
R4	R4	
RK	RK	

Product

Table 17: Properties of each product.

Id	Name	SBO
R4_RKpre	R4_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = kRK1_4 \cdot [RK] \cdot [R4] - kRK2 \cdot [R4_RKpre]$$
(45)

7.7 Reaction v_r2_5

This is a reversible reaction of two reactants forming one product.

Name v_r2_5

Notes Rn and RK binding before phospohorylation occurs

Reaction equation

$$R5 + RK \Longrightarrow R5_RKpre$$
 (46)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
R5	R5	
RK	RK	

Product

Table 19: Properties of each product.

Id	Name	SBO
R5_RKpre	R5_RKpre	

Derived unit contains undeclared units

$$v_7 = kRK1_5 \cdot [RK] \cdot [R5] - kRK2 \cdot [R5_RKpre]$$
 (47)

7.8 Reaction v_r2_6

This is a reversible reaction of two reactants forming one product.

Name v_r2_6

Notes Rn and RK binding before phospohorylation occurs

Reaction equation

$$R6 + RK \Longrightarrow R6 RKpre$$
 (48)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
R6	R6	
RK	RK	

Product

Table 21: Properties of each product.

Id	Name	SBO
R6_RKpre	R6_RKpre	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = kRK1_6 \cdot [RK] \cdot [R6] - kRK2 \cdot [R6_RKpre]$$
 (49)

7.9 Reaction v_r3_0

This is an irreversible reaction of one reactant forming one product.

Name v_r3_0

Notes Phosphorylation of Rn to Rn+1. In these reactions ATP (left) and ADP (right) are included in the rate constants

Reaction equation

$$R0_RKpre \longrightarrow R1_RKpost$$
 (50)

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
RO_RKpre	R0_RKpre	

Product

Table 23: Properties of each product.

Id	Name	SBO
R1_RKpost	R1_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = kRK3_ATP \cdot [R0_RKpre]$$
 (51)

7.10 Reaction v_r3_1

This is an irreversible reaction of one reactant forming one product.

Name v_r3_1

Notes Phosphorylation of Rn to Rn+1. In these reactions ATP (left) and ADP (right) are included in the rate constants

Reaction equation

$$R1_RKpre \longrightarrow R2_RKpost$$
 (52)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
R1_RKpre	R1_RKpre	

Product

Table 25: Properties of each product.

Id	Name	SBO
R2_RKpost	R2_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = kRK3_ATP \cdot [R1_RKpre]$$
 (53)

7.11 Reaction v_r3_2

This is an irreversible reaction of one reactant forming one product.

Name v_r3_2

Notes Phosphorylation of Rn to Rn+1. In these reactions ATP (left) and ADP (right) are included in the rate constants

Reaction equation

$$R2_RKpre \longrightarrow R3_RKpost$$
 (54)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
R2_RKpre	R2_RKpre	

Product

Id	Name	SBO
R3_RKpost	R3_RKpost	

Derived unit contains undeclared units

$$v_{11} = kRK3_ATP \cdot [R2_RKpre]$$
 (55)

7.12 Reaction v_r3_3

This is an irreversible reaction of one reactant forming one product.

Name v_r3_3

Notes Phosphorylation of Rn to Rn+1. In these reactions ATP (left) and ADP (right) are included in the rate constants

Reaction equation

$$R3_RKpre \longrightarrow R4_RKpost$$
 (56)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
R3_RKpre	R3_RKpre	

Product

Table 29: Properties of each product.

Id	Name	SBO
R4_RKpost	R4_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = kRK3_ATP \cdot [R3_RKpre]$$
 (57)

7.13 Reaction v_r3_4

This is an irreversible reaction of one reactant forming one product.

Name v_r3_4

Notes Phosphorylation of Rn to Rn+1. In these reactions ATP (left) and ADP (right) are included in the rate constants

Reaction equation

$$R4_RKpre \longrightarrow R5_RKpost$$
 (58)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
R4_RKpre	R4_RKpre	

Product

Table 31: Properties of each product.

Id	Name	SBO
R5_RKpost	R5_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = kRK3_ATP \cdot [R4_RKpre]$$
 (59)

7.14 Reaction v_r3_5

This is an irreversible reaction of one reactant forming one product.

Name v_r3_5

Notes Phosphorylation of Rn to Rn+1. In these reactions ATP (left) and ADP (right) are included in the rate constants

Reaction equation

$$R5_RKpre \longrightarrow R6_RKpost$$
 (60)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
R5_RKpre	R5_RKpre	

Product

Table 33: Properties of each product.

Id	Name	SBO
R6_RKpost	R6_RKpost	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = kRK3_ATP \cdot [R5_RKpre]$$
 (61)

7.15 Reaction v_r4_1

This is an irreversible reaction of one reactant forming two products.

Name v_r4_1

Notes Dissociation of Rn and RK

Reaction equation

$$R1_RKpost \longrightarrow R1 + RK$$
 (62)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
R1_RKpost	R1_RKpost	

Products

Table 35: Properties of each product.

Id	Name	SBO
R1	R1	
RK	RK	

Derived unit contains undeclared units

$$v_{15} = kRK4 \cdot [R1_RKpost]$$
 (63)

7.16 Reaction v_r4_2

This is an irreversible reaction of one reactant forming two products.

Name v_r4_2

Notes Dissociation of Rn and RK

Reaction equation

$$R2_RKpost \longrightarrow R2 + RK$$
 (64)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
R2_RKpost	R2_RKpost	

Products

Table 37: Properties of each product.

Id	Name	SBO
R2	R2	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = kRK4 \cdot [R2_RKpost]$$
 (65)

7.17 Reaction v_r4_3

This is an irreversible reaction of one reactant forming two products.

Name v_r4_3

Notes Dissociation of Rn and RK

Reaction equation

$$R3_RKpost \longrightarrow R3 + RK$$
 (66)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
R3_RKpost	R3_RKpost	

Products

Table 39: Properties of each product.

	_	
Id	Name	SBO
R3	R3	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = kRK4 \cdot [R3_RKpost] \tag{67}$$

7.18 Reaction v_r4_4

This is an irreversible reaction of one reactant forming two products.

Name v_r4_4

Notes Dissociation of Rn and RK

Reaction equation

$$R4_RKpost \longrightarrow R4 + RK$$
 (68)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
R4_RKpost	R4_RKpost	

Products

Table 41: Properties of each product.

Id	Name	SBO
R4	R4	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = kRK4 \cdot [R4_RKpost]$$
 (69)

7.19 Reaction v_r4_5

This is an irreversible reaction of one reactant forming two products.

Name v_r4_5

Notes Dissociation of Rn and RK

Reaction equation

$$R5_RKpost \longrightarrow R5 + RK$$
 (70)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
R5_RKpost	R5_RKpost	

Products

Table 43: Properties of each product.

Id	Name	SBO
R5	R5	
RK	RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = kRK4 \cdot [R5_RKpost] \tag{71}$$

7.20 Reaction v_r4_6

This is an irreversible reaction of one reactant forming two products.

Name v_r4_6

Notes Dissociation of Rn and RK

Reaction equation

$$R6_RKpost \longrightarrow R6 + RK$$
 (72)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
R6_RKpost	R6_RKpost	

Products

Table 45: Properties of each product.

Id	Name	SBO
R6	R6	
RK	RK	

Derived unit contains undeclared units

$$v_{20} = kRK4 \cdot [R6_RKpost] \tag{73}$$

7.21 Reaction v_r5_1

This is a reversible reaction of two reactants forming one product.

Name v_r5_1

Notes Binding of activated R to Arrestin

Reaction equation

$$Arr + R1 \rightleftharpoons R1_Arr$$
 (74)

Reactants

Table 46: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R1	R1	

Product

Table 47: Properties of each product.

Id	Name	SBO
R1_Arr	R1_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = kA1_{-1} \cdot [Arr] \cdot [R1] - kA2 \cdot [R1_{-}Arr]$$
 (75)

7.22 Reaction v_r5_2

This is a reversible reaction of two reactants forming one product.

Name v_r5_2

Notes Binding of activated R to Arrestin

Reaction equation

$$Arr + R2 \Longrightarrow R2_Arr \tag{76}$$

Reactants

Table 48: Properties of each reactant.

Name	SBO
Arr R2	
	Arr

Product

Table 49: Properties of each product.

Id	Name	SBO
R2_Arr	R2_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = kA1.2 \cdot [Arr] \cdot [R2] - kA2 \cdot [R2_Arr]$$
 (77)

7.23 Reaction v_r5_3

This is a reversible reaction of two reactants forming one product.

Name v_r5_3

Notes Binding of activated R to Arrestin

Reaction equation

$$Arr + R3 \Longrightarrow R3_Arr$$
 (78)

Reactants

Table 50: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R3	R3	

Product

Table 51: Properties of each product.

Id	Name	SBO
R3_Arr	R3_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = kA1_3 \cdot [Arr] \cdot [R3] - kA2 \cdot [R3_Arr]$$

$$(79)$$

7.24 Reaction v_r5_4

This is a reversible reaction of two reactants forming one product.

Name v_r5_4

Notes Binding of activated R to Arrestin

Reaction equation

$$Arr + R4 \Longrightarrow R4_Arr$$
 (80)

Reactants

Table 52: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R4	R4	

Product

Table 53: Properties of each product.

Id	Name	SBO
R4_Arr	R4_Arr	

Derived unit contains undeclared units

$$v_{24} = kA1_4 \cdot [Arr] \cdot [R4] - kA2 \cdot [R4_Arr]$$
 (81)

7.25 Reaction v_r5_5

This is a reversible reaction of two reactants forming one product.

Name v_r5_5

Notes Binding of activated R to Arrestin

Reaction equation

$$Arr + R5 \Longrightarrow R5_Arr$$
 (82)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
Arr R5	Arr R5	

Product

Table 55: Properties of each product.

Id	Name	SBO
R5_Arr	R5_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{kA1}_5 \cdot [\text{Arr}] \cdot [\text{R5}] - \text{kA2} \cdot [\text{R5}_\text{Arr}]$$
(83)

7.26 Reaction v_r5_6

This is a reversible reaction of two reactants forming one product.

Name v_r5_6

Notes Binding of activated R to Arrestin

Reaction equation

$$Arr + R6 \Longrightarrow R6_Arr$$
 (84)

Reactants

Table 56: Properties of each reactant.

Id	Name	SBO
Arr	Arr	
R6	R6	

Product

Table 57: Properties of each product.

Id	Name	SBO
R6_Arr	R6_Arr	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = kA1_6 \cdot [Arr] \cdot [R6] - kA2 \cdot [R6_Arr]$$
(85)

7.27 Reaction v_r6_1

This is an irreversible reaction of one reactant forming two products.

Name v_r6_1

Notes Arrestin mediated R -> ops

Reaction equation

$$R1_Arr \longrightarrow Arr + Ops$$
 (86)

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
R1_Arr	R1_Arr	

Products

Table 59: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = kA3 \cdot [R1_Arr] \tag{87}$$

7.28 Reaction v_r6_2

This is an irreversible reaction of one reactant forming two products.

Name v_r6_2

Notes Arrestin mediated $R \rightarrow ops$

Reaction equation

$$R2_Arr \longrightarrow Arr + Ops \tag{88}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
R2_Arr	R2_Arr	

Products

Table 61: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Derived unit contains undeclared units

$$v_{28} = kA3 \cdot [R2_Arr] \tag{89}$$

7.29 Reaction v_r6_3

This is an irreversible reaction of one reactant forming two products.

Name v_r6_3

Notes Arrestin mediated $R \rightarrow ops$

Reaction equation

$$R3_Arr \longrightarrow Arr + Ops$$
 (90)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
R3_Arr	R3_Arr	

Products

Table 63: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

$$v_{29} = kA3 \cdot [R3_Arr] \tag{91}$$

7.30 Reaction v_r6_4

This is an irreversible reaction of one reactant forming two products.

Name v_r6_4

Notes Arrestin mediated R -> ops

Reaction equation

$$R4_Arr \longrightarrow Arr + Ops \tag{92}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
R4_Arr	R4_Arr	

Products

Table 65: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = kA3 \cdot [R4_Arr] \tag{93}$$

7.31 Reaction v_r6_5

This is an irreversible reaction of one reactant forming two products.

Name v_r6_5

Notes Arrestin mediated R -> ops

Reaction equation

$$R5_Arr \longrightarrow Arr + Ops \tag{94}$$

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
R5_Arr	R5_Arr	

Products

Table 67: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = kA3 \cdot [R5_Arr] \tag{95}$$

7.32 Reaction v_r6_6

This is an irreversible reaction of one reactant forming two products.

Name v_r6_6

Notes Arrestin mediated $R \rightarrow ops$

Reaction equation

$$R6_Arr \longrightarrow Arr + Ops$$
 (96)

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
R6_Arr	R6_Arr	

Products

Table 69: Properties of each product.

Id	Name	SBO
Arr	Arr	
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = kA3 \cdot [R6_Arr] \tag{97}$$

7.33 Reaction v_r7_0

This is an irreversible reaction of one reactant forming one product.

Name v_r7_0

Notes Thermal decay of R's catalytic active form MetaII. Rate constant from Xu et al. We assume that the rate constant is independent of the phosphorylation state. See Mitchell DC, Kibelbek J, Litman BJ. (Biochemistry, 1992) for further detail

Reaction equation

$$R0 \longrightarrow Ops$$
 (98)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
RO	R0	

Product

Table 71: Properties of each product.

Id	Name	SBO
0ps	Ops	

Derived unit contains undeclared units

$$v_{33} = \text{ktherm} \cdot [R0] \tag{99}$$

7.34 Reaction v_r7_1

This is an irreversible reaction of one reactant forming one product.

Name v_r7_1

Notes Thermal decay of R's catalytic active form MetaII. Rate constant from Xu et al. We assume that the rate constant is independent of the phosphorylation state. See Mitchell DC, Kibelbek J, Litman BJ. (Biochemistry, 1992) for further detail

Reaction equation

$$R1 \longrightarrow Ops$$
 (100)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
R1	R1	

Product

Table 73: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{ktherm} \cdot [R1] \tag{101}$$

7.35 Reaction v_r7_2

This is an irreversible reaction of one reactant forming one product.

Name v_r7_2

Notes Thermal decay of R's catalytic active form MetaII. Rate constant from Xu et al. We assume that the rate constant is independent of the phosphorylation state. See Mitchell DC, Kibelbek J, Litman BJ. (Biochemistry, 1992) for further detail

Reaction equation

$$R2 \longrightarrow Ops$$
 (102)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
R2	R2	

Product

Table 75: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{ktherm} \cdot [R2] \tag{103}$$

7.36 Reaction v_r7_3

This is an irreversible reaction of one reactant forming one product.

Name v_r7_3

Notes Thermal decay of R's catalytic active form MetaII. Rate constant from Xu et al. We assume that the rate constant is independent of the phosphorylation state. See Mitchell DC, Kibelbek J, Litman BJ. (Biochemistry, 1992) for further detail

Reaction equation

$$R3 \longrightarrow Ops$$
 (104)

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
R3	R3	

Product

Table 77: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{ktherm} \cdot [R3] \tag{105}$$

7.37 Reaction v_r7_4

This is an irreversible reaction of one reactant forming one product.

Name v_r7_4

Notes Thermal decay of R's catalytic active form MetaII. Rate constant from Xu et al. We assume that the rate constant is independent of the phosphorylation state. See Mitchell DC, Kibelbek J, Litman BJ. (Biochemistry, 1992) for further detail

Reaction equation

$$R4 \longrightarrow Ops$$
 (106)

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
R4	R4	

Product

Table 79: Properties of each product.

Id	Name	SBO
0ps	Ops	

Derived unit contains undeclared units

$$v_{37} = \text{ktherm} \cdot [\text{R4}] \tag{107}$$

7.38 Reaction v_r7_5

This is an irreversible reaction of one reactant forming one product.

Name v_r7_5

Notes Thermal decay of R's catalytic active form MetaII. Rate constant from Xu et al. We assume that the rate constant is independent of the phosphorylation state. See Mitchell DC, Kibelbek J, Litman BJ. (Biochemistry, 1992) for further detail

Reaction equation

$$R5 \longrightarrow Ops$$
 (108)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
R5	R5	

Product

Table 81: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

$$v_{38} = \text{ktherm} \cdot [R5] \tag{109}$$

7.39 Reaction v_r7_6

This is an irreversible reaction of one reactant forming one product.

Name v_r7_6

Notes Thermal decay of R's catalytic active form MetaII. Rate constant from Xu et al. We assume that the rate constant is independent of the phosphorylation state. See Mitchell DC, Kibelbek J, Litman BJ. (Biochemistry, 1992) for further detail

Reaction equation

$$R6 \longrightarrow Ops$$
 (110)

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
R6	R6	

Product

Table 83: Properties of each product.

Id	Name	SBO
0ps	Ops	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{ktherm} \cdot [R6] \tag{111}$$

7.40 Reaction v_r8

This is a reversible reaction of two reactants forming one product.

Name v_r8

Notes We assume the reverse reaction to occur with the same rate as v_r13_*

Reaction equation

$$Gt + Ops \Longrightarrow Ops_Gt$$
 (112)

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
0ps	Ops	

Product

Table 85: Properties of each product.

Id	Name	SBO
Ops_Gt	Ops_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = kOps \cdot [Ops] \cdot [Gt] - kG2 \cdot [Ops_Gt]$$
(113)

7.41 Reaction v_r9

This is a reversible reaction of one reactant forming one product.

Name v_r9

Notes GDP dissociation from Ops_Gt, GDP is taken into account in the rate constant. Here we assume the same kinetics as in reactions v_r14_*

Reaction equation

$$Ops_Gt \rightleftharpoons Ops_G \tag{114}$$

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
Ops_Gt	Ops_Gt	

Product

Table 87: Properties of each product.

Id	Name	SBO
Ops_G	Ops_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = kG3 \cdot [Ops_Gt] - kG4_GDP \cdot [Ops_G]$$
(115)

7.42 Reaction v_r10

This is an irreversible reaction of one reactant forming one product.

Name v_r10

Notes GTP binding to Ops_G, GDP is taken into account in the rate constant. We assume the same kinetics as in reactions v_r15_*

Reaction equation

$$Ops_G \longrightarrow Ops_G_GTP \tag{116}$$

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
Ops_G	Ops_G	

Product

Table 89: Properties of each product

Id	Name	SBO
Ops_G_GTP	Ops_G_GTP	

Derived unit contains undeclared units

$$v_{42} = kG5_GTP \cdot [Ops_G] \tag{117}$$

7.43 Reaction v_r11

This is an irreversible reaction of one reactant forming two products.

Name v_r11

Notes Ops_G_GTP dissociation to Ops and G_GTP, here G_GTP is the Gt heterotrimer with bound GTP. We assume the same kinetics as in reactions v_r16_*

Reaction equation

$$Ops_G_GTP \longrightarrow G_GTP + Ops$$
 (118)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
Ops_G_GTP	Ops_G_GTP	

Products

Table 91: Properties of each product.

Id	Name	SBO
G_GTP	G_GTP	
0ps	Ops	

Kinetic Law

$$v_{43} = kG6 \cdot [Ops_G_GTP] \tag{119}$$

7.44 Reaction v r12

This is an irreversible reaction of one reactant forming one product.

Name v_12

Notes Similarly to Firsov et al. (2006) we consider the rate of Rho regeneration from Ops + 11cis_ret combination as a first order kinetics with the rate constant kRecyc implicitely including 11cis_ret concentration. See paper for details.

Reaction equation

$$Ops \longrightarrow R \tag{120}$$

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
0ps	Ops	

Product

Table 93: Properties of each product.

Id	Name	SBO
R	R	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = kRrecyc \cdot [Ops] \tag{121}$$

7.45 Reaction v_r13_0

This is a reversible reaction of two reactants forming one product.

Name v_r13_0

Notes Rhodopsin and transducin binding

Reaction equation

$$Gt + R0 \Longrightarrow R0_Gt$$
 (122)

Reactants

Table 94: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
RO	R0	

Product

Table 95: Properties of each product.

Id	Name	SBO
RO_Gt	R0_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = kG1_0 \cdot [Gt] \cdot [R0] - kG2 \cdot [R0_Gt]$$
 (123)

7.46 Reaction v_r13_1

This is a reversible reaction of two reactants forming one product.

Name v_r13_1

Notes Rhodopsin and transducin binding

Reaction equation

$$Gt + R1 \Longrightarrow R1_Gt$$
 (124)

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R1	R1	

Product

Table 97: Properties of each product.

Id	Name	SBO
R1_Gt	R1_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = kG1_{-1} \cdot [Gt] \cdot [R1] - kG2 \cdot [R1_{-}Gt]$$
 (125)

7.47 Reaction v_r13_2

This is a reversible reaction of two reactants forming one product.

Name v_r13_2

Notes Rhodopsin and transducin binding

Reaction equation

$$Gt + R2 \Longrightarrow R2_Gt$$
 (126)

Reactants

Table 98: Properties of each reactant.

Id	Name	SBO
	Gt	
R2	R2	

Product

Table 99: Properties of each product.

Id	Name	SBO
$R2_Gt$	$R2_Gt$	

Kinetic Law

$$v_{47} = kG1_2 \cdot [Gt] \cdot [R2] - kG2 \cdot [R2_Gt]$$
 (127)

7.48 Reaction v_r13_3

This is a reversible reaction of two reactants forming one product.

Name v_r13_3

Notes Rhodopsin and transducin binding

Reaction equation

$$Gt + R3 \Longrightarrow R3_Gt$$
 (128)

Reactants

Table 100: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R3	R3	

Product

Table 101: Properties of each product.

Id	Name	SBO
R3_Gt	R3_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = kG1_3 \cdot [Gt] \cdot [R3] - kG2 \cdot [R3_Gt]$$
 (129)

7.49 Reaction v_r13_4

This is a reversible reaction of two reactants forming one product.

Name v_r13_4

Notes Rhodopsin and transducin binding

Reaction equation

$$Gt + R4 \Longrightarrow R4_Gt$$
 (130)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R4	R4	

Product

Table 103: Properties of each product.

Id	Name	SBO
$R4_Gt$	R4_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = kG1_4 \cdot [Gt] \cdot [R4] - kG2 \cdot [R4_Gt]$$
 (131)

7.50 Reaction v_r13_5

This is a reversible reaction of two reactants forming one product.

Name v_r13_5

Notes Rhodopsin and transducin binding

Reaction equation

$$Gt + R5 \rightleftharpoons R5_Gt$$
 (132)

Reactants

Table 104: Properties of each reactant.

Id	Name	SBO
Gt R5		

Product

Table 105: Properties of each product.

Id	Name	SBO
R5_Gt	R5_Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = kG1_5 \cdot [Gt] \cdot [R5] - kG2 \cdot [R5_Gt]$$
 (133)

7.51 Reaction v_r13_6

This is a reversible reaction of two reactants forming one product.

Name v_r13_6

Notes Rhodopsin and transducin binding

Reaction equation

$$Gt + R6 \Longrightarrow R6_Gt$$
 (134)

Reactants

Table 106: Properties of each reactant.

Id	Name	SBO
Gt	Gt	
R6	R6	

Product

Table 107: Properties of each product.

Id	Name	SBO
R6_Gt	R6₋Gt	

Kinetic Law

$$v_{51} = kG1_{-}6 \cdot [Gt] \cdot [R6] - kG2 \cdot [R6_{-}Gt]$$
 (135)

7.52 Reaction v_r14_0

This is a reversible reaction of one reactant forming one product.

Name v_r14_0

Notes GDP dissociation from Rn_Gt. GDP is taken into account in the rate constant

Reaction equation

$$R0_Gt \rightleftharpoons R0_G$$
 (136)

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
RO_Gt	R0_Gt	

Product

Table 109: Properties of each product.

Id	Name	SBO
RO_G	R0_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = kG3 \cdot [R0_Gt] - kG4_GDP \cdot [R0_G]$$
 (137)

7.53 Reaction v_r14_1

This is a reversible reaction of one reactant forming one product.

Name v_r14_1

Notes GDP dissociation from Rn_Gt. GDP is taken into account in the rate constant

Reaction equation

$$R1_Gt \rightleftharpoons R1_G$$
 (138)

Reactant

Table 110: Properties of each reactant.

Id	Name	SBO
R1_Gt	R1_Gt	

Product

Table 111: Properties of each product.

Id	Name	SBO
R1_G	R1_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = kG3 \cdot [R1_Gt] - kG4_GDP \cdot [R1_G]$$
 (139)

7.54 Reaction v_r14_2

This is a reversible reaction of one reactant forming one product.

Name v_r14_2

Notes GDP dissociation from Rn_Gt. GDP is taken into account in the rate constant

Reaction equation

$$R2_Gt \rightleftharpoons R2_G \tag{140}$$

Reactant

Table 112: Properties of each reactant.

Id	Name	SBO
$R2_Gt$	$R2_Gt$	

Product

Table 113: Properties of each product.

Id	Name	SBO
R2_G	R2_G	

Derived unit contains undeclared units

$$v_{54} = kG3 \cdot [R2_Gt] - kG4_GDP \cdot [R2_G]$$
 (141)

7.55 Reaction v_r14_3

This is a reversible reaction of one reactant forming one product.

Name v_r14_3

Notes GDP dissociation from Rn_Gt. GDP is taken into account in the rate constant

Reaction equation

$$R3_G t \rightleftharpoons R3_G$$
 (142)

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
R3_Gt	R3_Gt	

Product

Table 115: Properties of each product.

Id	Name	SBO
R3_G	R3_G	

Kinetic Law

$$v_{55} = kG3 \cdot [R3_Gt] - kG4_GDP \cdot [R3_G]$$
 (143)

7.56 Reaction v_r14_4

This is a reversible reaction of one reactant forming one product.

Name v_r14_4

Notes GDP dissociation from Rn_Gt. GDP is taken into account in the rate constant

Reaction equation

$$R4_Gt \rightleftharpoons R4_G$$
 (144)

Reactant

Table 116: Properties of each reactant.

Id	Name	SBO
$R4_Gt$	R4_Gt	

Product

Table 117: Properties of each product.

Id	Name	SBO
R4_G	R4_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = kG3 \cdot [R4_Gt] - kG4_GDP \cdot [R4_G]$$

$$(145)$$

7.57 Reaction v_r14_5

This is a reversible reaction of one reactant forming one product.

Name v_r14_5

Notes GDP dissociation from Rn_Gt. GDP is taken into account in the rate constant

Reaction equation

$$R5_Gt \rightleftharpoons R5_G$$
 (146)

Reactant

Table 118: Properties of each reactant.

Id	Name	SBO
R5_Gt	R5_Gt	

Product

Table 119: Properties of each product.

Id	Name	SBO
R5_G	R5_G	

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = kG3 \cdot [R5_Gt] - kG4_GDP \cdot [R5_G]$$
 (147)

7.58 Reaction v_r14_6

This is a reversible reaction of one reactant forming one product.

Name v_r14_6

Notes GDP dissociation from Rn_Gt. GDP is taken into account in the rate constant

Reaction equation

$$R6_Gt \rightleftharpoons R6_G$$
 (148)

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
R6_Gt	R6_Gt	

Product

Table 121: Properties of each product.

Id	Name	SBO
R6_G	R6_G	

Derived unit contains undeclared units

$$v_{58} = kG3 \cdot [R6_Gt] - kG4_GDP \cdot [R6_G]$$
 (149)

7.59 Reaction v_r15_0

This is an irreversible reaction of one reactant forming one product.

Name v_r15_0

Notes GTP binding to Rn_G. GTP is taken into account in the rate constant. Here G is still a heterotrimer and GTP binds to such heterotrimer_R complex

Reaction equation

$$R0_G \longrightarrow R0_G_GTP$$
 (150)

Reactant

Table 122: Properties of each reactant.

Id	Name	SBO
RO_G	R0_G	

Product

Table 123: Properties of each product.

Id	Name	SBO
RO_G_GTP	R0_G_GTP	

Kinetic Law

$$v_{59} = kG5_GTP \cdot [R0_G] \tag{151}$$

7.60 Reaction v_r15_1

This is an irreversible reaction of one reactant forming one product.

Name v_r15_1

Notes GTP binding to Rn_G. GTP is taken into account in the rate constant. Here G is still a heterotrimer and GTP binds to such heterotrimer_R complex

Reaction equation

$$R1_G \longrightarrow R1_G_GTP$$
 (152)

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
R1_G	R1_G	

Product

Table 125: Properties of each product.

Id	Name	SBO
R1_G_GTP	R1_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = kG5_GTP \cdot [R1_G] \tag{153}$$

7.61 Reaction v_r15_2

This is an irreversible reaction of one reactant forming one product.

Name v_r15_2

Notes GTP binding to Rn_G. GTP is taken into account in the rate constant. Here G is still a heterotrimer and GTP binds to such heterotrimer_R complex

Reaction equation

$$R2_G \longrightarrow R2_G_GTP$$
 (154)

Reactant

Table 126: Properties of each reactant.

Id	Name	SBO
R2_G	R2_G	

Product

Table 127: Properties of each product.

Id	Name	SBO
R2_G_GTP	R2_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = kG5_GTP \cdot [R2_G] \tag{155}$$

7.62 Reaction v_r15_3

This is an irreversible reaction of one reactant forming one product.

Name v_r15_3

Notes GTP binding to Rn_G. GTP is taken into account in the rate constant. Here G is still a heterotrimer and GTP binds to such heterotrimer_R complex

Reaction equation

$$R3_G \longrightarrow R3_G_GTP$$
 (156)

Reactant

Table 128: Properties of each reactant.

Id	Name	SBO
$R3_G$	R3_G	

Product

Table 129: Properties of each product.

Id	Name	SBO
R3_G_GTP	R3_G_GTP	

Derived unit contains undeclared units

$$v_{62} = kG5_GTP \cdot [R3_G] \tag{157}$$

7.63 Reaction v_r15_4

This is an irreversible reaction of one reactant forming one product.

Name v_r15_4

Notes GTP binding to Rn_G. GTP is taken into account in the rate constant. Here G is still a heterotrimer and GTP binds to such heterotrimer_R complex

Reaction equation

$$R4_G \longrightarrow R4_G_GTP \tag{158}$$

Reactant

Table 130: Properties of each reactant.

Id	Name	SBO
$R4_G$	R4_G	

Product

Table 131: Properties of each product.

Id	Name	SBO
R4_G_GTP	R4_G_GTP	

Kinetic Law

$$v_{63} = kG5_GTP \cdot [R4_G] \tag{159}$$

7.64 Reaction v_r15_5

This is an irreversible reaction of one reactant forming one product.

Name v_r15_5

Notes GTP binding to Rn_G. GTP is taken into account in the rate constant. Here G is still a heterotrimer and GTP binds to such heterotrimer_R complex

Reaction equation

$$R5_G \longrightarrow R5_G_GTP$$
 (160)

Reactant

Table 132: Properties of each reactant.

Id	Name	SBO
R5_G	R5_G	

Product

Table 133: Properties of each product.

Id	Name	SBO
R5_G_GTP	R5_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{64} = kG5_GTP \cdot [R5_G] \tag{161}$$

7.65 Reaction v_r15_6

This is an irreversible reaction of one reactant forming one product.

Name v_r15_6

Notes GTP binding to Rn_G. GTP is taken into account in the rate constant. Here G is still a heterotrimer and GTP binds to such heterotrimer_R complex

Reaction equation

$$R6_G \longrightarrow R6_G_GTP$$
 (162)

Reactant

Table 134: Properties of each reactant.

Id	Name	SBO
R6_G	R6_G	

Product

Table 135: Properties of each product.

Id	Name	SBO
R6_G_GTP	R6_G_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = kG5_GTP \cdot [R6_G] \tag{163}$$

7.66 Reaction v_r16_0

This is an irreversible reaction of one reactant forming two products.

Name v_r16_0

Notes Rn_G_GTP dissociation to Rn and G_GTP. Here G_GTP is the Gt heterotrimer with bound GTP

Reaction equation

$$R0_G_GTP \longrightarrow G_GTP + R0$$
 (164)

Reactant

Table 136: Properties of each reactant.

Id	Name	SBO
RO_G_GTP	R0_G_GTP	

Products

Table 137: Properties of each product.

Id	Name	SBO
G_GTP R.O	G_GTP R0	
KU	KU	

Derived unit contains undeclared units

$$v_{66} = kG6 \cdot [R0_G_GTP] \tag{165}$$

7.67 Reaction v_r16_1

This is an irreversible reaction of one reactant forming two products.

Name v_r16_1

Notes Rn_G_GTP dissociation to Rn and G_GTP. Here G_GTP is the Gt heterotrimer with bound GTP

Reaction equation

$$R1_G_GTP \longrightarrow G_GTP + R1$$
 (166)

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
R1_G_GTP	R1_G_GTP	

Products

Table 139: Properties of each product.

Id	Name	SBO
G_GTP	$G_{-}GTP$	
R1	R1	

Kinetic Law

$$v_{67} = kG6 \cdot [R1_G_GTP] \tag{167}$$

7.68 Reaction v_r16_2

This is an irreversible reaction of one reactant forming two products.

Name v_r16_2

Notes Rn_G_GTP dissociation to Rn and G_GTP. Here G_GTP is the Gt heterotrimer with bound GTP

Reaction equation

$$R2_G_GTP \longrightarrow G_GTP + R2$$
 (168)

Reactant

Table 140: Properties of each reactant.

Id	Name	SBO
R2_G_GTP	R2_G_GTP	

Products

Table 141: Properties of each product.

•	
Name	SBO
G_GTP	
R2	
	G_GTP

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = kG6 \cdot [R2_G_GTP] \tag{169}$$

7.69 Reaction v_r16_3

This is an irreversible reaction of one reactant forming two products.

Name v_r16_3

Notes Rn_G_GTP dissociation to Rn and G_GTP. Here G_GTP is the Gt heterotrimer with bound GTP

Reaction equation

$$R3_G_GTP \longrightarrow G_GTP + R3 \tag{170}$$

Reactant

Table 142: Properties of each reactant.

Id	Name	SBO
R3_G_GTP	R3_G_GTP	

Products

Table 143: Properties of each product.

Id	Name	SBO
$G_{-}GTP$	G_GTP	
R3	R3	

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = kG6 \cdot [R3_G_GTP] \tag{171}$$

7.70 Reaction v_r16_4

This is an irreversible reaction of one reactant forming two products.

Name v_r16_4

Notes Rn_G_GTP dissociation to Rn and G_GTP. Here G_GTP is the Gt heterotrimer with bound GTP

Reaction equation

$$R4_G_GTP \longrightarrow G_GTP + R4 \tag{172}$$

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
R4_G_GTP	R4_G_GTP	

Products

Table 145: Properties of each product.

Id	Name	SBO
$G_{-}GTP$	G_GTP	
R4	R4	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = kG6 \cdot [R4_G_GTP] \tag{173}$$

7.71 Reaction v_r16_5

This is an irreversible reaction of one reactant forming two products.

Name v_r16_5

Notes Rn_G_GTP dissociation to Rn and G_GTP. Here G_GTP is the Gt heterotrimer with bound GTP

Reaction equation

$$R5_G_GTP \longrightarrow G_GTP + R5$$
 (174)

Reactant

Table 146: Properties of each reactant.

Id	Name	SBO
R5_G_GTP	R5_G_GTP	

Products

Table 147: Properties of each product.

Name	SBO
G_GTP R5	
	G_GTP

Derived unit contains undeclared units

$$v_{71} = kG6 \cdot [R5_G_GTP] \tag{175}$$

7.72 Reaction v_r16_6

This is an irreversible reaction of one reactant forming two products.

Name v_r16_6

Notes Rn_G_GTP dissociation to Rn and G_GTP. Here G_GTP is the Gt heterotrimer with bound GTP

Reaction equation

$$R6_G_GTP \longrightarrow G_GTP + R6 \tag{176}$$

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
R6_G_GTP	R6_G_GTP	

Products

Table 149: Properties of each product.

	•	
Id	Name	SBO
G_GTP	$G_{-}GTP$	
R6	R6	

Kinetic Law

$$v_{72} = kG6 \cdot [R6_G_GTP] \tag{177}$$

7.73 Reaction v_r17

This is an irreversible reaction of one reactant forming two products.

Name v_r17

Notes Dissociation of trimeric Gt into alpha and beta-gamma subunits

Reaction equation

$$G_{-}GTP \longrightarrow Ga_{-}GTP + Gbg$$
 (178)

Reactant

Table 150: Properties of each reactant.

Id	Name	SBO
$G_{-}GTP$	G_GTP	

Products

Table 151: Properties of each product.

	•	
Id	Name	SBO
Ga_GTP	Ga_GTP	
Gbg	Gbg	

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = kG7 \cdot [G_GTP] \tag{179}$$

7.74 Reaction v_r18

This is a reversible reaction of two reactants forming one product.

Name v_r18

Notes PDE activation. Here we have the following assumptions on the effector 1) Each PDE subunit may bind Ga_Gtp and become active independently from the other one and with no cooperativity, 2) A PDE hetero-tetramer can hence bind up to 2 different Ga_GTP and

thus it works with its in vivo kcat (the reversible reaction is assumed to be possibly present but in this model its rate is set to zero)

Reaction equation

$$Ga_GTP + PDE \Longrightarrow PDE_Ga_GTP$$
 (180)

Reactants

Table 152: Properties of each reactant.

Id	Name	SBO
Ga_GTP	Ga_GTP	
PDE	PDE	

Product

Table 153: Properties of each product.

Id	Name	SBO
PDE_Ga_GTP	PDE_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = \text{kP1} \cdot [\text{PDE}] \cdot [\text{Ga_GTP}] - \text{kP1_rev} \cdot [\text{PDE_Ga_GTP}]$$
 (181)

7.75 Reaction v_r19

This is an irreversible reaction of one reactant forming one product.

Name v_r19

Reaction equation

$$PDE_Ga_GTP \longrightarrow PDE_a_Ga_GTP$$
 (182)

Reactant

Table 154: Properties of each reactant.IdNameSBO

PDE_Ga_GTP PDE_C	Ga_GTP
------------------	--------

Product

Table 155: Properties of each product.

Id	Name	SBO
PDE_a_Ga_GTP	PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = kP2 \cdot [PDE_Ga_GTP] \tag{183}$$

7.76 Reaction v_r20

This is an irreversible reaction of two reactants forming one product.

Name v_r20

Notes Here PDE has two Ga bound but only one active subunit

Reaction equation

$$Ga_GTP + PDE_a_Ga_GTP \longrightarrow Ga_GTP_PDE_a_Ga_GTP$$
 (184)

Reactants

Table 156: Properties of each reactant.

Id	Name	SBO
Ga_GTP	Ga_GTP	
$PDE_a_Ga_GTP$	PDE_a_Ga_GTP	

Product

Table 157: Properties of each product.

Id	Name	SBO
Ga_GTP_PDE_a_Ga_GTP	Ga_GTP_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \text{kP3} \cdot [\text{PDE_a_Ga_GTP}] \cdot [\text{Ga_GTP}]$$
(185)

7.77 Reaction v_r21

This is an irreversible reaction of one reactant forming one product.

Name v_r21

Notes Here PDE has two Ga bound and both its subunits are active

Reaction equation

$$Ga_GTP_PDE_a_Ga_GTP \longrightarrow Ga_GTP_a_PDE_a_Ga_GTP$$
 (186)

Reactant

Table 158: Properties of each reactant.

	- F	
Id	Name	SBO
Ga_GTP_PDE_a_Ga_GTP	Ga_GTP_PDE_a_Ga_GTP	

Product

Table 159: Properties of each product.

Id	Name	SBO
Ga_GTP_a_PDE_a_Ga_GTP	Ga_GTP_a_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{77} = kP4 \cdot [Ga_GTP_PDE_a_Ga_GTP]$$
 (187)

7.78 Reaction v_r22

This is an irreversible reaction of two reactants forming one product.

Name v_r22

Notes RGS binds to a PDE-Ga complex with both active subunits to form a complex

Reaction equation

$$Ga_GTP_a_PDE_a_Ga_GTP + RGS \longrightarrow RGS_Ga_GTP_a_PDE_a_Ga_GTP$$
 (188)

Reactants

Table 160: Properties of each reactant.

Id	Name	SBO
Ga_GTP_a_PDE_a_Ga_GTP RGS	Ga_GTP_a_PDE_a_Ga_GTP RGS	

Product

Table 161: Properties of each product.

Id	Name	SBO
RGS_Ga_GTP_a_PDE_a_Ga_GTP	RGS_Ga_GTP_a_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = kRGS1 \cdot [RGS] \cdot [Ga_GTP_a_PDE_a_Ga_GTP]$$
 (189)

7.79 Reaction v_r23

This is an irreversible reaction of one reactant forming three products.

Name v_r23

Notes One out of two PDE subunits is deactivated and one GTP is hydrolyzed

Reaction equation

$$RGS_Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE_a_Ga_GTP + RGS$$
 (190)

Reactant

Table 162: Properties of each reactant.

Id	Name	SBO
RGS_Ga_GTP_a_PDE_a_Ga_GTP	RGS_Ga_GTP_a_PDE_a_Ga_GTP	

Products

Table 163: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	
PDE_a_Ga_GTP	PDE_a_Ga_GTP	
RGS	RGS	

Kinetic Law

Derived unit contains undeclared units

$$v_{79} = kRGS2 \cdot [RGS_Ga_GTP_a_PDE_a_Ga_GTP]$$
 (191)

7.80 Reaction v_r24

This is an irreversible reaction of two reactants forming one product.

Name v_r24

Notes RGS binds to a PDE-Ga complex with one active subunit to form a complex. Here we assume that the association rate constant is the same as in v_r22

Reaction equation

$$PDE_a_Ga_GTP + RGS \longrightarrow RGS_PDE_a_Ga_GTP$$
 (192)

Reactants

Table 164: Properties of each reactant.

Table 101. 11operties of each reactant.		
Id	Name	SBO
PDE_a_Ga_GTP RGS	PDE_a_Ga_GTP RGS	

Product

Table 165: Properties of each product.

Id	Name	SBO
RGS_PDE_a_Ga_GTP	RGS_PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{80} = kRGS1 \cdot [RGS] \cdot [PDE_a_Ga_GTP]$$
 (193)

7.81 Reaction v_r25

This is an irreversible reaction of one reactant forming three products.

Name v_r25

Notes The PDE subunit is deactivated and GTP is hydrolyzed. Here we assume that the deactivation/dissociation rate constant is the same as in v_r23

Reaction equation

$$RGS_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE + RGS$$
 (194)

Reactant

Table 166: Properties of each reactant.

Id	Name	SBO
RGS_PDE_a_Ga_GTP	RGS_PDE_a_Ga_GTP	

Products

Table 167: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	
PDE	PDE	
RGS	RGS	

Kinetic Law

Derived unit contains undeclared units

$$v_{81} = kRGS2 \cdot [RGS_PDE_a_Ga_GTP]$$
 (195)

7.82 Reaction v_r26

This is an irreversible reaction of one reactant forming two products.

Name v_r26

Notes Inactivation of the PDEa complex by Ga's GTPase capability

Reaction equation

$$PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE$$
 (196)

Reactant

Table 168: Properties of each reactant.

Id	Name	SBO
PDE_a_Ga_GTP	PDE_a_Ga_GTP	

Products

Table 169: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	
PDE	PDE	

Kinetic Law

Derived unit contains undeclared units

$$v_{82} = \text{kPDEshutoff} \cdot [\text{PDE_a_Ga_GTP}]$$
 (197)

7.83 Reaction v_r27

This is an irreversible reaction of one reactant forming two products.

Name v_r27

Notes Inactivation of the aPDEa complex by Ga's GTPase capability; here we assume that the same rate constant as above applies

Reaction equation

$$Ga_GTP_a_PDE_a_Ga_GTP \longrightarrow Ga_GDP + PDE_a_Ga_GTP$$
 (198)

Reactant

Table 170: Properties of each reactant.

Id	Name	SBO
Ga_GTP_a_PDE_a_Ga_GTP	Ga_GTP_a_PDE_a_Ga_GTP	

Products

Table 171: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	
$PDE_a_Ga_GTP$	PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{83} = \text{kPDE} \text{shutoff} \cdot [\text{Ga_GTP_a_PDE_a_Ga_GTP}]$$
 (199)

7.84 Reaction v_r28

This is an irreversible reaction of one reactant forming one product.

Name v_r28

Notes Here we assume, according to Felber et al. (1996) that Gt may hydrolize GTP to GDP, and hence inactivate

Reaction equation

$$Ga_GTP \longrightarrow Ga_GDP$$
 (200)

Reactant

Table 172: Properties of each reactant.

Id	Name	SBO
Ga_GTP	Ga_GTP	

Product

Table 173: Properties of each product.

Id	Name	SBO
Ga_GDP	Ga_GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{84} = kGshutoff \cdot [Ga_GTP]$$
 (201)

7.85 Reaction v_r29

This is an irreversible reaction of two reactants forming one product.

Name v_r29

Notes Gt recycling... heterotrimer reconstitution

Reaction equation

$$Ga_GDP + Gbg \longrightarrow Gt \tag{202}$$

Reactants

Table 174: Properties of each reactant.

Id	Name	SBO
Ga_GDP	Ga_GDP	
Gbg	Gbg	

Product

Table 175: Properties of each product.

Id	Name	SBO
Gt	Gt	

Kinetic Law

Derived unit contains undeclared units

$$v_{85} = \text{kGrecyc} \cdot [\text{Gbg}] \cdot [\text{Ga_GDP}] \tag{203}$$

7.86 Reaction v_r30

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name v_r30

Notes RK inhibition by Rec_2Ca (Rec_wCa2 is determined using QSSA and not directly)

Reaction equation

$$RK \xrightarrow{\underline{Ca2_free}} Rec_wCa2_RK$$
 (204)

Reactant

Table 176: Properties of each reactant.

Id	Name	SBO
RK	RK	

Modifier

Table 177: Properties of each modifier.

Id	Name	SBO
Ca2_free	Ca2_free	

Product

Table 178: Properties of each product.

Tuote 170. 110perties of each product.		
Id	Name	SBO
Rec_wCa2_RK	Rec_wCa2_RK	

Kinetic Law

Derived unit contains undeclared units

$$v_{86} = kRec3 \cdot Rec_wCa2 \cdot [RK] - kRec4 \cdot [Rec_wCa2_RK]$$
 (205)

7.87 Reaction v_r31

This is a reversible reaction of one reactant forming one product.

Name v_r31

Notes Ca2+ association and dissociation from intracellular buffers, with total concentration eT

Reaction equation

$$Ca2_free \rightleftharpoons Ca2_buff$$
 (206)

Reactant

Table 179: Properties of each reactant.

Id	Name	SBO
Ca2_free	Ca2_free	

Product

Table 180: Properties of each product.

Id	Name	SBO
Ca2_buff	Ca2_buff	

Kinetic Law

Derived unit contains undeclared units

$$v_{87} = k1 \cdot (eT - [Ca2_buff]) \cdot [Ca2_free] - k2 \cdot [Ca2_buff]$$
(207)

7.88 Reaction v_r32

This is an irreversible reaction of one reactant forming no product.

Name v_r32

Notes Efflux of Ca2+ via the Na+/Ca2+ - K+ exchanger. Note that intracellular Ca2 cannot be lower than Ca2_0

Reaction equation

Ca2_free
$$\longrightarrow \emptyset$$
 (208)

Reactant

Table 181: Properties of each reactant.

Id	Name	SBO
Ca2_free	Ca2_free	

Kinetic Law

Derived unit not available

$$v_{88} = \text{gammaCa} \cdot ([\text{Ca2_free}] - \text{Ca2_0}) \tag{209}$$

7.89 Reaction v_r33

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v_r33

Notes Influx of extracellular Ca2+ through cGMP-gated cation channels

Reaction equation

$$\emptyset \xrightarrow{\text{cGMP}} \text{Ca2_free} \tag{210}$$

Modifier

Table 182: Properties of each modifier.

Id	Name	SBO
cGMP	cGMP	

Product

Table 183: Properties of each product.

Id	Name	SBO
Ca2_free	Ca2_free	

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = \frac{1000000.0 \cdot fCa \cdot Jdark}{(2 + fCa) \cdot F \cdot Vcyto} \cdot \left(\frac{[cGMP]}{cGMPdark}\right)^{ncg}$$
(211)

7.90 Reaction v_r34

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name v_r34

Notes Synthesis by means of Guanylyl cyclase

Reaction equation

$$\emptyset \xrightarrow{\text{Ca2_free}} \text{cGMP} \tag{212}$$

Modifier

Table 184: Properties of each modifier.

Id	Name	SBO
Ca2_free	Ca2_free	

Product

Table 185: Properties of each product.

Id	Name	SBO
cGMP	cGMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{90} = \frac{\text{alfamax}}{1 + \left(\frac{\text{[Ca2.free]}}{\text{Kc}}\right)^{\text{m}}}$$
(213)

7.91 Reaction v_r35

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name v_r35

Notes Hydrolysis by means of PDE

Reaction equation

$$cGMP \xrightarrow{Ga_GTP_a_PDE_a_Ga_GTP, PDE_a_Ga_GTP} \emptyset$$
 (214)

Reactant

Table 186: Properties of each reactant.

Id	Name	SBO
cGMP	cGMP	

Modifiers

Table 187: Properties of each modifier.

Id	Name	SBO
Ga_GTP_a_PDE_a_Ga_GTP PDE_a_Ga_GTP	Ga_GTP_a_PDE_a_Ga_GTP PDE_a_Ga_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_{91} = (\text{betadark} + \text{betasub} \cdot \text{E}) \cdot [\text{cGMP}]$$
 (215)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species Arr

Name Arr

SBO:0000252 polypeptide chain

Initial concentration $3.13 \cdot 10^7 \text{ mol} \cdot 1^{-1}$

This species takes part in twelve reactions (as a reactant in v_r5_1, v_r5_2, v_r5_3, v_r5_4, v_r5_5, v_r5_6 and as a product in v_r6_1, v_r6_2, v_r6_3, v_r6_4, v_r6_5, v_r6_6).

$$\frac{d}{dt}Arr = v_{27} + v_{28} + v_{29} + v_{30} + v_{31} + v_{32} - v_{21} - v_{22} - v_{23} - v_{24} - v_{25} - v_{26}$$
(216)

8.2 Species Ca2_buff

Name Ca2_buff

SBO:0000247 simple chemical

Initial concentration $42.857 \text{ mol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in v_r31).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ca2_buff} = v_{87} \tag{217}$$

8.3 Species Ca2_free

Name Ca2_free

SBO:0000247 simple chemical

Initial concentration $0.6 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v_r31, v_r32 and as a product in v_r33 and as a modifier in v_r30, v_r34).

$$\frac{d}{dt} \text{Ca2_free} = |v_{89}| - |v_{87}| - |v_{88}| \tag{218}$$

8.4 Species G_GTP

Name G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in nine reactions (as a reactant in v_r17 and as a product in v_r11, v_r16_0, v_r16_1, v_r16_2, v_r16_3, v_r16_4, v_r16_5, v_r16_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}G_{-}GTP = |v_{43}| + |v_{66}| + |v_{67}| + |v_{68}| + |v_{69}| + |v_{70}| + |v_{71}| + |v_{72}| - |v_{73}|$$
(219)

8.5 Species Ga_GDP

Name Ga_GDP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v_r29 and as a product in v_r23, v_r25, v_r26, v_r27, v_r28).

$$\frac{d}{dt}Ga_GDP = |v_{79}| + |v_{81}| + |v_{82}| + |v_{83}| + |v_{84}| - |v_{85}|$$
(220)

8.6 Species Ga_GTP

Name Ga_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v_r18, v_r20, v_r28 and as a product in v_r17).

$$\frac{d}{dt}Ga_GTP = |v_{73}| - |v_{74}| - |v_{76}| - |v_{84}|$$
 (221)

8.7 Species Ga_GTP_PDE_a_Ga_GTP

Name Ga_GTP_PDE_a_Ga_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r21 and as a product in v_r20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ga_GTP_PDE_a_Ga_GTP} = |v_{76}| - |v_{77}| \tag{222}$$

8.8 Species Ga_GTP_a_PDE_a_Ga_GTP

Name Ga_GTP_a_PDE_a_Ga_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v_r22, v_r27 and as a product in v_r21 and as a modifier in v_r35).

$$\frac{d}{dt}Ga_GTP_a_PDE_a_Ga_GTP = |v_{77}| - |v_{78}| - |v_{83}|$$
 (223)

8.9 Species Gbg

Name Gbg

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r29 and as a product in v_r17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gbg} = |v_{73}| - |v_{85}| \tag{224}$$

8.10 Species Gt

Name Gt

SBO:0000252 polypeptide chain

Initial concentration $3.6 \cdot 10^8 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in v_r8, v_r13_0, v_r13_1, v_r13_2, v_r13_3, v_r13_4, v_r13_5, v_r13_6 and as a product in v_r29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gt} = |v_{85}| - |v_{40}| - |v_{45}| - |v_{46}| - |v_{47}| - |v_{48}| - |v_{49}| - |v_{50}| - |v_{51}| \tag{225}$$

8.11 Species Ops

Name Ops

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 16 reactions (as a reactant in v_r8, v_r12 and as a product in v_r6_1, v_r6_2, v_r6_3, v_r6_4, v_r6_5, v_r6_6, v_r7_0, v_r7_1, v_r7_2, v_r7_3, v_r7_4, v_r7_5, v_r7_6, v_r11).

$$\frac{d}{dt}Ops = v_{27} + v_{28} + v_{29} + v_{30} + v_{31} + v_{32} + v_{33} + v_{34} + v_{35} + v_{36} + v_{37} + v_{38} + v_{39} + v_{43} - v_{40} - v_{44}$$
(226)

8.12 Species Ops_G

Name Ops_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in v_r10 and as a product in v_r9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ops}_{-}\mathrm{G} = v_{41} - v_{42} \tag{227}$$

8.13 Species Ops_G_GTP

Name Ops_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r11 and as a product in v_r10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ops}_{-}\mathrm{G}_{-}\mathrm{GTP} = v_{42} - v_{43} \tag{228}$$

8.14 Species Ops_Gt

Name Ops_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r9 and as a product in v_r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ops}_{-}\mathrm{Gt} = |v_{40}| - |v_{41}| \tag{229}$$

8.15 Species PDE

Name PDE

SBO:0000252 polypeptide chain

Initial concentration $1.335 \cdot 10^7 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in v_r18 and as a product in v_r25, v_r26).

$$\frac{\mathrm{d}}{\mathrm{d}t} PDE = |v_{81}| + |v_{82}| - |v_{74}| \tag{230}$$

8.16 Species PDE_Ga_GTP

Name PDE_Ga_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r19 and as a product in v_r18).

$$\frac{\mathrm{d}}{\mathrm{d}t} PDE_Ga_GTP = |v_{74}| - |v_{75}|$$
 (231)

8.17 Species PDE_a_Ga_GTP

Name PDE_a_Ga_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in v_r20, v_r24, v_r26 and as a product in v_r19, v_r23, v_r27 and as a modifier in v_r35).

$$\frac{d}{dt}PDE_a_Ga_GTP = v_{75} + v_{79} + v_{83} - v_{76} - v_{80} - v_{82}$$
 (232)

8.18 Species R

Name R

SBO:0000252 polypeptide chain

Initial concentration $3.6 \cdot 10^9 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r1 and as a product in v_r12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = v_{44} - v_1 \tag{233}$$

8.19 Species RO

Name R0

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v_r2_0 , v_r7_0 , v_r13_0 and as a product in v_r1 , v_r16_0).

$$\frac{\mathrm{d}}{\mathrm{d}t}R0 = |v_1| + |v_{66}| - |v_2| - |v_{33}| - |v_{45}| \tag{234}$$

8.20 Species RO_G

Name R0_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r15_0 and as a product in v_r14_0).

$$\frac{d}{dt}R0_{-}G = v_{52} - v_{59} \tag{235}$$

8.21 Species RO_G_GTP

Name R0_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r16_0 and as a product in v_r15_0).

$$\frac{d}{dt}R0_{-}G_{-}GTP = v_{59} - v_{66}$$
 (236)

8.22 Species RO_Gt

Name R0_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r14_0 and as a product in v_r13_0).

$$\frac{d}{dt}R0_{-}Gt = |v_{45}| - |v_{52}| \tag{237}$$

8.23 Species RO_RKpre

Name R0_RKpre

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r3_0 and as a product in v_r2_0).

$$\frac{\mathrm{d}}{\mathrm{d}t} R0_{-}RKpre = |v_2| - |v_9| \tag{238}$$

8.24 Species R1

Name R1

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v_r2_1, v_r5_1, v_r7_1, v_r13_1 and as a product in v_r4_1, v_r16_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}R1 = |v_{15}| + |v_{67}| - |v_{3}| - |v_{21}| - |v_{34}| - |v_{46}| \tag{239}$$

8.25 Species R1_Arr

Name R1_Arr

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r6_1 and as a product in v_r5_1).

$$\frac{d}{dt}R1_Arr = |v_{21}| - |v_{27}| \tag{240}$$

8.26 Species R1_G

Name R1_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r15_1 and as a product in v_r14_1).

$$\frac{d}{dt}R1_{-}G = v_{53} - v_{60} \tag{241}$$

8.27 Species R1_G_GTP

Name R1_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r16_1 and as a product in v_r15_1).

$$\frac{d}{dt}R1_{-}G_{-}GTP = v_{60} - v_{67}$$
 (242)

8.28 Species R1_Gt

Name R1_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r14_1 and as a product in v_r13_1).

$$\frac{d}{dt}R1_{-}Gt = v_{46} - v_{53}$$
 (243)

8.29 Species R1_RKpost

Name R1_RKpost

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r4_1 and as a product in v_r3_0).

$$\frac{\mathrm{d}}{\mathrm{d}t} R1 RKpost = |v_9| - |v_{15}| \tag{244}$$

8.30 Species R1_RKpre

Name R1_RKpre

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r3_1 and as a product in v_r2_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R}1\mathrm{L}\mathrm{R}\mathrm{K}\mathrm{pre} = |v_3| - |v_{10}| \tag{245}$$

8.31 Species R2

Name R2

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v_r2_2, v_r5_2, v_r7_2, v_r13_2 and as a product in v_r4_2, v_r16_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}R2 = |v_{16}| + |v_{68}| - |v_{4}| - |v_{22}| - |v_{35}| - |v_{47}| \tag{246}$$

8.32 Species R2_Arr

Name R2_Arr

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r6_2 and as a product in v_r5_2).

$$\frac{d}{dt}R2_Arr = v_{22} - v_{28} \tag{247}$$

8.33 Species R2_G

Name R2_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r15_2 and as a product in v_r14_2).

$$\frac{d}{dt}R2_{-}G = v_{54} - v_{61} \tag{248}$$

8.34 Species R2_G_GTP

Name R2_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r16_2 and as a product in v_r15_2).

$$\frac{d}{dt}R2_{-}G_{-}GTP = v_{61} - v_{68}$$
 (249)

8.35 Species R2_Gt

Name R2_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r14_2 and as a product in v_r13_2).

$$\frac{d}{dt}R2_{-}Gt = |v_{47} - v_{54}| \tag{250}$$

8.36 Species R2_RKpost

Name R2_RKpost

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r4_2 and as a product in v_r3_1).

$$\frac{\mathrm{d}}{\mathrm{d}t} R2 RKpost = v_{10} - v_{16}$$
 (251)

8.37 Species R2_RKpre

Name R2_RKpre

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r3_2 and as a product in v_r2_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} R2_{-}RKpre = |v_4| - |v_{11}| \tag{252}$$

8.38 Species R3

Name R3

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v_r2_3, v_r5_3, v_r7_3, v_r13_3 and as a product in v_r4_3, v_r16_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}R3 = |v_{17}| + |v_{69}| - |v_{5}| - |v_{23}| - |v_{36}| - |v_{48}| \tag{253}$$

8.39 Species R3_Arr

Name R3_Arr

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r6_3 and as a product in v_r5_3).

$$\frac{d}{dt}R3_Arr = |v_{23}| - |v_{29}| \tag{254}$$

8.40 Species R3_G

Name R3_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r15_3 and as a product in v_r14_3).

$$\frac{d}{dt}R3_{-}G = v_{55} - v_{62} \tag{255}$$

8.41 Species R3_G_GTP

Name R3_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r16_3 and as a product in v_r15_3).

$$\frac{d}{dt}R3_{-}G_{-}GTP = v_{62} - v_{69}$$
 (256)

8.42 Species R3_Gt

Name R3_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r14_3 and as a product in v_r13_3).

$$\frac{d}{dt}R3_{-}Gt = |v_{48}| - |v_{55}| \tag{257}$$

8.43 Species R3_RKpost

Name R3_RKpost

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r4_3 and as a product in v_r3_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} R3 RKpost = |v_{11}| - |v_{17}| \tag{258}$$

8.44 Species R3_RKpre

Name R3_RKpre

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r3_3 and as a product in v_r2_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} R3 RKpre = v_5 - v_{12}$$
 (259)

8.45 Species R4

Name R4

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v_r2_4, v_r5_4, v_r7_4, v_r13_4 and as a product in v_r4_4, v_r16_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}R4 = |v_{18}| + |v_{70}| - |v_{6}| - |v_{24}| - |v_{37}| - |v_{49}| \tag{260}$$

8.46 Species R4_Arr

Name R4_Arr

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r6_4 and as a product in v_r5_4).

$$\frac{d}{dt}R4_Arr = |v_{24}| - |v_{30}|$$
 (261)

8.47 Species R4_G

Name R4_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r15_4 and as a product in v_r14_4).

$$\frac{d}{dt}R4_{-}G = v_{56} - v_{63} \tag{262}$$

8.48 Species R4_G_GTP

Name R4_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r16_4 and as a product in v_r15_4).

$$\frac{d}{dt}R4_{-}G_{-}GTP = v_{63} - v_{70}$$
 (263)

8.49 Species R4_Gt

Name R4_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r14_4 and as a product in v_r13_4).

$$\frac{d}{dt}R4_{-}Gt = |v_{49}| - |v_{56}| \tag{264}$$

8.50 Species R4_RKpost

Name R4_RKpost

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r4_4 and as a product in v_r3_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} R4 RKpost = |v_{12}| - |v_{18}| \tag{265}$$

8.51 Species R4_RKpre

Name R4_RKpre

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r3_4 and as a product in v_r2_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} R4 RKpre = |v_6| - |v_{13}| \tag{266}$$

8.52 Species R5

Name R5

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v_r2_5, v_r5_5, v_r7_5, v_r13_5 and as a product in v_r4_5, v_r16_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}R5 = |v_{19}| + |v_{71}| - |v_{7}| - |v_{25}| - |v_{38}| - |v_{50}|$$
(267)

8.53 Species R5_Arr

Name R5_Arr

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r6_5 and as a product in v_r5_5).

$$\frac{d}{dt}R5_Arr = |v_{25}| - |v_{31}| \tag{268}$$

8.54 Species R5_G

Name R5_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r15_5 and as a product in v_r14_5).

$$\frac{d}{dt}R5_{-}G = v_{57} - v_{64} \tag{269}$$

8.55 Species R5_G_GTP

Name R5_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r16_5 and as a product in v_r15_5).

$$\frac{d}{dt}R5_{-}G_{-}GTP = v_{64} - v_{71}$$
 (270)

8.56 Species R5_Gt

Name R5_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r14_5 and as a product in v_r13_5).

$$\frac{d}{dt}R5_{-}Gt = v_{50} - v_{57}$$
 (271)

8.57 Species R5_RKpost

Name R5_RKpost

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r4_5 and as a product in v_r3_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} R5 RKpost = |v_{13}| - |v_{19}| \tag{272}$$

8.58 Species R5_RKpre

Name R5_RKpre

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r3_5 and as a product in v_r2_5).

$$\frac{\mathrm{d}}{\mathrm{d}t} R5 R K pre = |v_7| - |v_{14}| \tag{273}$$

8.59 Species R6

Name R6

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v_r2_6, v_r5_6, v_r7_6, v_r13_6 and as a product in v_r4_6, v_r16_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}R6 = |v_{20}| + |v_{72}| - |v_8| - |v_{26}| - |v_{39}| - |v_{51}| \tag{274}$$

8.60 Species R6_Arr

Name R6_Arr

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r6_6 and as a product in v_r5_6).

$$\frac{d}{dt}R6_Arr = v_{26} - v_{32} \tag{275}$$

8.61 Species R6_G

Name R6_G

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r15_6 and as a product in v_r14_6).

$$\frac{d}{dt}R6_{-}G = v_{58} - v_{65} \tag{276}$$

8.62 Species R6_G_GTP

Name R6_G_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r16_6 and as a product in v_r15_6).

$$\frac{d}{dt}R6_{-}G_{-}GTP = v_{65} - v_{72}$$
 (277)

8.63 Species R6_Gt

Name R6_Gt

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r14_6 and as a product in v_r13_6).

$$\frac{d}{dt}R6_{-}Gt = |v_{51}| - |v_{58}| \tag{278}$$

8.64 Species R6_RKpost

Name R6_RKpost

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r4_6 and as a product in v_r3_5).

$$\frac{d}{dt}R6_RKpost = |v_{14}| - |v_{20}|$$
 (279)

8.65 Species R6_RKpre

Name R6_RKpre

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in v_r2_6).

$$\frac{\mathrm{d}}{\mathrm{d}t} R6 R K pre = v_8 \tag{280}$$

8.66 Species RGS

Name RGS

SBO:0000252 polypeptide chain

Initial concentration $3000000 \ \mathrm{mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v_r22, v_r24 and as a product in v_r23, v_r25).

$$\frac{d}{dt}RGS = |v_{79}| + |v_{81}| - |v_{78}| - |v_{80}|$$
 (281)

8.67 Species RGS_Ga_GTP_a_PDE_a_Ga_GTP

Name RGS_Ga_GTP_a_PDE_a_Ga_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r23 and as a product in v_r22).

$$\frac{d}{dt}RGS_Ga_GTP_a_PDE_a_Ga_GTP = v_{78} - v_{79}$$
(282)

8.68 Species RGS_PDE_a_Ga_GTP

Name RGS_PDE_a_Ga_GTP

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v_r25 and as a product in v_r24).

$$\frac{\mathrm{d}}{\mathrm{d}t} RGS_PDE_a_Ga_GTP = v_{80} - v_{81}$$
 (283)

8.69 Species RK

Name RK

SBO:0000252 polypeptide chain

Initial concentration $10838 \text{ mol} \cdot 1^{-1}$

This species takes part in 14 reactions (as a reactant in v_r2_0 , v_r2_1 , v_r2_2 , v_r2_3 , v_r2_4 , v_r2_5 , v_r2_6 , v_r3_0 and as a product in v_r4_1 , v_r4_2 , v_r4_3 , v_r4_4 , v_r4_5 , v_r4_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}RK = \begin{vmatrix} v_{15} + v_{16} + v_{17} + v_{18} + v_{19} + v_{20} - v_{2} \\ - v_{3} - v_{4} - v_{5} - v_{6} - v_{7} - v_{8} - v_{86} \end{vmatrix}$$
(284)

8.70 Species Rec_wCa2_RK

Name Rec_wCa2_RK

SBO:0000296 macromolecular complex

Initial concentration $4204560 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in v_r30).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rec_wCa2_RK} = v_{86} \tag{285}$$

8.71 Species cGMP

Name cGMP

SBO:0000247 simple chemical

Initial concentration $4 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v_r35 and as a product in v_r34 and as a modifier in v_r33).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cGMP} = v_{90} - v_{91} \tag{286}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

SBO:0000252 polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBO:0000296 macromolecular complex: Non-covalent complex of one or more macromolecules and zero or more simple chemicals

SBO:0000297 protein complex: Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany