СЕМИНАРЫН БОДЛОГО 15

Дараах $\int_C f ds$ муруй шугаман интегралыг бод.

- 1. f(x,y)=3x, C нь $x^2+y^2=4$ тойргийн (2,0) болон (0,2) цэгүүдийн хооронд орших муруй.
- 2. f(x,y)=3xy, C нь $y=x^2$ функцийн графикийн (0,0) болон (2,4) цэгүүдийн хооронд орших муруй.
- 3. f(x,y) = 3x, C нь (0,0) болон (1,0) цэгүү-дийг холбосон шулуун шугам ба (1,0) цэгээс координатын эх дээр төвтэй нэгж радиустай тойргийн координатын хавтгайн нэгдүгээр мөчид орших нум.
- 4. $f(x,y,z)=xz,\ C$ нь $y=x^2$ гадаргуун z=2 хавтгай дээрх (1,1,2) болон (2,4,2) цэгүүдийг хооронд орших муруй.
- 5. f(x,y,z)=xy, C нь $y^2+x^2=4$ болон x+z=4 гадаргуунуудын огтлолцолд үүсэх муруйн (муруйн чиглэл цагийн зүүний эсрэг).

 ${\cal C}$ муруйн дагуу ${\cal F}$ хүчний үйлчлэлээр хийгдэх ажлыг ол.

- 1. $f(x,y) = \langle 2x, 2y \rangle$, C нь (3,1) болон (5,4) цэгүүдийг холбосон шулуун шугам.
- 2. $f(x,y) = \langle 2y, 2x \rangle$, C нь (4,2) болон (0,4) цэгүүдийг холбосон шулуун шугам.
- 3. $f(x,y)=\langle y^2+x,y^2+2\rangle,\, C$ нь (4,2) болон (0,4) цэгүүдийг дайрах тойргийн координатын хавтгайн нэгдүгээр мөчид орших нум.
- 4. $f(x,y)=\langle 2y+x^2,x^2-2x\rangle,\ C$ нь (-3,0) болон (3,0) цэгүүдийг дайрах тойргийн координатын хавтгайн дээд хагаст орших нум.
- 5. $f(x,y) = \langle xe^y, e^x + y^2 \rangle$, C нь $y = x^2$ функцийн (0,0) болон (1,1) цэгүүдийн хооронд орших нум.

Дараах интегралууд замаас үл хамаарна гэдгийг үзүүл.

- 1. $\oint_C 2xydx (x^2-1)dy$, C нь (1,0) болон (3,1) цэгүүдийг холбосон ямар нэг муруй.
- 2. $\oint_C 3x^2y^2dx + (2x^3y 4)dy$, C нь (1,2) болон (-1,1) цэгүүдийг холбосон ямар нэг муруй.
- 3. $\oint_C y e^{xy} dx + (x e^{xy} 2y) dy$, C нь (1,0) болон (0,4) цэгүүдийг холбосон ямар нэг муруй.
- 4. $\oint_C (2xe^{x^2}-2y)dx+(2y-2x)dy$, C нь (1,2) болон (-1,1) цэгүүдийг холбосон ямар нэг муруй.
- 5. $\oint_C (z^2+2xy)dx+x^2dy+2xzdz$, C нь (2,1,3) болон (4,-1,0) цэгүүдийг холбосон ямар нэг муруй.

Гриний теоремыг ашиглан дараах интегралуудыг бод.

- 1. $\oint_C xe^{2x}dx 3x^2ydy$, C нь (0,0), (3,0), (3,2), (0,2), болон (0,0) цэгүүдийг холбосон шулуун шугамаар холбосон тэгш өнцөгт.
- 2. $\oint_C \frac{x}{x^2+1} dx + (3x-4tg(y/2))dy$, C нь $y=x^2$ муруйн (-1,1) болон (1,1) цэгүүд, мөн $y=2-x^2$ муруйн (1,1) болон (-1,1) цэгүүдийн хооронд орших нумуудаас тогтоно.
- 3. $\oint_C (tgx y^3) dx + (x^3 \sin y) dy$, C нь $x^2 + y^2 = 2$ тойрог.
- 4. $\oint_C \mathbf{F} \cdot d\mathbf{r}$, энд $\mathbf{F} = \langle x^3 y, x + y^3 \rangle$ ба C нь $y = x^2$ болон y = x функцийн графикуудаар үүсэх битүү муруй.
- 5. $\oint_C \mathbf{F} \cdot d\mathbf{r}$, энд $\mathbf{F} = \langle e^{x^2} y, x^2 + e^y \rangle$ ба C нь $y = 1 x^2$ болон y = 0 функцийн графикуудаар үүсэх битүү муруй.