#### **Q1**

A classic example of a non-stationary series is the daily closing IBM stock price series(data set ibmclose).

### Use R to plot the daily closing prices for IBM stock and the ACF and PACF.

library(fpp2)

tsdisplay(ibmclose)



### Explain how each plot shows that the series is non-stationary and should be differenced

For the time series plot, it may show that the mean and variance of ibmclose is not constant. So the series may be non-stationary.

Very slowly decaying ACF may show that the series maybe non-stationary.

PACF cannot tell it is non-stationary.

```
> ndiffs(ibmclose)
[1] 1
> nsdiffs(ibmclose)
Error in nsdiffs(ibmclose) : Non seasonal data
```

#### Q<sub>1</sub>b

### Form one or more hypothesis as to the nature of the underlying data

1.Staying with ARIMA(p,d,q) model and using ndiffs(ibmclose) and nsdiffs(ibmclose)

2.d=1

3.p will be order of AR component. This can be determined using PACF

#### tsdisplay(diff(ibmclose))



4.Hence p = 0

5.q is order of MA component. This can be determined using the ACF

6.Hence q = 0

### Fit an Arima model to the data in R. See class slides for syntax.

#### **Q2**

For the usgdp series:

# a.if necessary, find a suitable Box-Cox transformation for the data;

1. Raw time series (visually) shows some convexity



2.BoxCox transformed time series appears more linear autoplot(BoxCox(usgdp, lambda=BoxCox.lambda(usgdp)))



3.lambda value

```
> BoxCox.lambda(usgdp)
[1] 0.366352
```

# b.fit a suitable ARIMA model to the transformed data using auto.arima();

```
1.uses auto.arima on BoxCox transformed version of USGDP
```

2.Replicates the same model using Arima on raw variable

# c.try some other plausible models by experimenting with the orders chosen;

Note that for 2c, you should follow the process overviewed in class where we inspect ACF/PACF, form hypotheses, fit the models, check AICc AND Ljung-Box test

tsdisplay(BoxCox(usgdp, lambda=BoxCox.lambda(usgdp)))



```
> nsdiffs(BoxCox(usgdp, lambda=BoxCox.lambda(usgdp)))
[1] 0
> ndiffs(BoxCox(usgdp, lambda=BoxCox.lambda(usgdp)))
[1] 1
```

tsdisplay(diff(BoxCox(usgdp, lambda=BoxCox.lambda(usgdp))))







tsdisplay(diff(BoxCox(usgdp, lambda=BoxCox.lambda(usgdp))))

```
Fast decaying pattern in PACF probably eliminates possibility of MA
model
Possible hypotheses:
ARIMA(1,1,0)
ARIMA(2,1,0)
ARIMA(1,1,0)[Want to be certain]
ARIMA(1,1,0)
> Arima(usgdp, order=c(1,1,0),include.drift=TRUE, lambda='auto')
Series: usqdp
ARIMA(1,1,0) with drift
Box Cox transformation: lambda= 0.3663571
Coefficients:
             drift
        arl
      0.3180 0.1831
s.e. 0.0619 0.0179
sigma^2 = 0.03556: log likelihood = 59.82
AIC=-113.64 AICc=-113.54 BIC=-103.25
ARIMA(2,1,0)
> Arima(usgdp, order=c(2,1,0),include.drift=TRUE, lambda='auto')
Series: usqdp
ARIMA(2,1,0) with drift
Box Cox transformation: lambda= 0.3663571
Coefficients:
         arl
                ar2
                      drift
      0.2795 0.1208 0.1829
s.e. 0.0647 0.0648 0.0202
sigma^2 = 0.03519: log likelihood = 61.55
AIC=-115.09 AICc=-114.92 BIC=-101.24
```

# d.choose what you think is the best model and check the residual diagnostics;

You can access the data similar to Q1.

Model df: 2. Total lags used: 8

```
> checkresiduals(Arima(usgdp, order=c(2,1,0),include.drift=TRUE, lambda='auto'))
        Ljung-Box test
data: Residuals from ARIMA(2,1,0) with drift
Q* = 6.5772, df = 6, p-value = 0.3617
```

Choose AICC are smallest one, so choose ARIMA(2,1,0)



#### Q3

The annual bituminous coal production in the United States from 1920 to 1968 is in data set bicoal.

#### a. Produce a time plot of the data

autoplot(bicoal)



## b. You decide to fit the following model to the series:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3} + \phi_4 y_{t-4} + \varepsilon_t$$

where y\_t is the coal production in year t and epsilon\_t is a white noise series. What sort of ARIMA model is this?

ARIMA(4,0,0)

## c.Explain why this model was chosen using the ACF and PACF

tsdisplay(bicoal)



PACF has some ambiguity. 1st column is clearly significant. So is column 4. On the other hand, column 2 and 3 are marginal at best. So the p should be 4

ACF shows a gradually decaying pattern, consistent with AR