Replicate Intl Michael Coggins, PhD

BIOMETRIC DATA SCIENCE HRV PROJECT

Current Progress

CONTENTS

- 1. Purpose
- 2. About Me
- 3. Current Conclusion
- 4. Data Science Life Cycle
 - 1. Initial Ideation / Problem Definition
 - 2. Data Acquisition and Exploration
 - 1. EDA (.csv and .xlsx files); Transformation
 - 2. Domain understanding and Hypothesis
 - 3. Outlier analysis and data cleaning concerns
 - 4. Composite metric development
 - 3. R&D / Model(s) Building
 - 1. Using <> to guess at missing age values
 - 2. Underlying contributors / key feature detection
 - 3. Using Gen AI to increase adult data
 - 4. Delivery and Monitoring (not there yet, so...)
 - 1. Using EKG-based HRV data models to evaluate PPG-based proprietary data

PURPOSE

Why? But....why...(or why not)?

I want to understand us and data can help

- For years, I collected biometric data mostly performance, but some relevant to basic medical health and wellness as part of my own curiosity regarding client success (or not) as a coach and trainer
 - In 2016-2019, I created a small pilot study to look at wearable technology as a potentially unbiased data collection/analysis engine to predict improvements in a person's strength, lean muscle mass, bone density and fat loss based on different exercise and diet interventions
- During the pandemic, as gyms closed, I took online courses in Data Science to broaden my analytical techniques as most of what I used in previous research 'lives' were basic parametric and non-parametric methods
- In 2022, I thought...why not put these together?
 - But, a professor friend, suggested I use some publicly available data first, as way to have a comparison to other researchers' data analytics and conclusions.

ABOUT ME

Entrepreneur (Replicate International)
Business Analyst (Credit Suisse, Campbell Alliance)
Researcher (Yale, Cornell)
Military Engineer (USAF)

Data Scientist (in-progress)

- Started computational side projects after career change from equity research to athletic coach / trainer
- Started Coursera courses during Covid lockdown (IBM Data Science cert amongst other classes)

LINEAR REGRESSION CURRENT CONCLUSION

Naive linear regression using 32 features of 91 Subjects with full metadata (age) showed IBI/HR not the most predictive features

Initially I chose a supervised multiple linear regression model based on age as the dependent variable:

- Initial model will use all 91 subjects and is easy to understand and has significant literature on model benefits and limitations
- Full code uploaded to GitHub here: https://github.com/mrc7mrc49/HRV-Public-DB-Irirzun

Relative ranking of most important features (Top 6):

- No Change Count Z[SDNN, 512]", "CoV Avg IBI", "High Count Z[SDNN]256 >4 Z", "CoV C[rMSSD]512", "High Count C[rMSSD]512 >4 Z"
- Avg IBI and Avg HR not among Top 6 is somewhat of a surprise given the strong, consistent relationship of infants possessing Avg HRs or ~2x adults

IDEATION, PROBLEM DEFINITION OR PURPOSE

Can we learn something new from old data

- There exist various publicly-accessible databases of human biometric data with potential for preventative health decisions, or performance-based tailoring of performance/recovery programs
- There appears to be untapped potential for data to be analyzed by alternative methods including ML programs
- Why not run some of the public data through alternative methods to look for possible uncovered predictors/relevant metrics?
- EKG data represent a simple test case with significant years of study (and possibly a number of databases), yet little consensus about predictive value

Can we identify new predictive metrics from EKG data?

INITIAL DATA VISUALIZATION

First, we sought to look at the data to get a feel for the potential for different classes based on age (sex)

Notes:

- Inter-Beat Intervals (IBIs, recorded in milliseconds per heart beat) are the reported data. We also converted IBIs to Instantaneous Heart Rates (iHRs, beats/min)
 - Due to relationship between IBIs and iHRs: iHR = 60 (seconds per min) / IBI (in seconds)
- Database included 24-hour Holter monitor recordings of different aged subects:
 - 56 Infants aged (1 month 3 years 11 months)
 - 11 Adults aged (17 53)
 - 24 Adolescents (4-15)
 - 4 Unknown

Single Subject IBIs

Metadata

TIME DOMAIN ANALYSIS - IN THE PAST

Two main measurements:

- SDNN Standard Deviation (from mean over chosen time period)
 - Evaluates deviations from each beat to the mean
 - Corresponds to slower time course, lower frequency changes (*possibly* parasympathetic)
- rMSSD Root Mean Square Standard Deviation (from immediately previous IBI)
 - Evaluates deviation from immediately previous recorded heart beat
 - Corresponds to faster time course, higher frequency changes (sympathetic nervous system and respiration, *possibly*)

Fig. 1 RR interval used for HRV measurement

HYPOTHESIS

Versions of normalizing TD data to account for variable expected values given different average HRs

My idea for analysis creates values similar to Z Scores

- $Z = (x \mu) / \sigma$ as a new version of a 'normalized' comparator given a pre-existing IBI (or HR)
 - I chose to use a simple version of an 'expected noise' or 'expected jitter' appropriate for SDNN (around the time period mean IBI) and rMSSD (immediately previous IBI)
- Shown is a single subject with created Z scores (for SDNN comparison metric)

Trace	aPR	IBI(ms)	((n) - (n-1)	E[SDNN] 512	Z[SDNN]
461	130.1518	0	0	1.735612767	0
453	132.4503	8	64	1.705362594	13.62410465
438	136.9863	15	225	1.657180472	64.82695304
437	137.2998	1	1	1.631944205	0.149950134
461	130.1518	24	576	1.651921188	183.0213445
461	130.1518	0	0	1.665443658	1
469	127.9318	8	64	1.683254414	14.08274278
469	127.9318	0	0	1.69680065	1
469	127.9318	0	0	1.707449986	1
484	123.9669	15	225	1.726485454	59.10796569
469	127.9318	15	225	1.732668954	58.63216679
484	123.9669	15	225	1.746710209	57.57125161
469	127.9318	15	225	1.750456973	57.2926512
476	126.0504	7	49	1.757323967	8.900253548
477	125.7862	1	1	1.763789356	0.187522666
461	130.1518	16	256	1.762008285	65.29524855
453	132.4503	8	64	1.756761066	12.6297431
453	132.4503	0	0	1.752116523	1
453	132.4503	0	0	1.747976474	1
446	134.5291	7	49	1.741473361	9.117892873
453	132.4503	7	49	1.738264039	9.162766311
445	134.8315	8	64	1.732471725	13.08760844
453	132.4503	8	64	1.729952747	13.13630267

CREATED COMPOSITE DATA

Given different size datasets (row length) and disparities in known attributes, what might better represent individual data

Created a sliding windows of time periods (now many HRV 'epochs')

- I chose two time periods of 512 IBIs (513 heart beats) and 256 IBIs (257 IBIs)
 - Given infants have ~2x as many heart beats per time period, this allows for a comparison of similar #IBIs or similar periods of time
 - 512 IBIs is ~6-10 minutes for adults, ~3.5-5 minutes for infants
 - Now there are thousands of short time overlapping epochs (short windows) to potentially better capture periods of stabilized physiological state

T=0,	T=x1,	T=x2,	T=x3,	T=x4,
IBI 1	IBI 2	IBI 3	IBI 4	IBI 5

	Age		Avg IBI	CoV	Avg iPR	CoV	No Change Count	Low Count Z<2	High Count Z>4	Avg C[SDNN,	CoV C[SDNN,	Low Count	High Count
Subect	(years)	Gender	(ms, 512)	Avg IBI	(bpm, 512)	Avg iPR	Z[SDNN, 512]	[SDNN, 512]	[SDNN, 512]	512]	512]	<2 C[SDNN]	>4 C[SDNN]
<u>0</u>	53	M	943.3	0.17	66.0	0.21	0.04	0.16	0.63	7.39	0.44	0.00	0.94
2	17	F	841.5	0.19	74.3	0.21	0.03	0.09	0.76	10.88	0.27	0.00	1.00
<u>3</u>	46	F	711.4	0.11	85.4	0.12	0.08	0.16	0.57	6.76	0.74	0.00	0.83
<u>5</u>	38	F	769.4	0.17	82.3	0.18	0.06	0.14	0.62	7.82	0.45	0.00	0.96
<u>6</u>	32	М	858.4	0.17	70.2	0.17	0.07	0.20	0.48	5.04	0.33	0.00	0.70

CREATED COMPOSITE DATA

Given different size datasets (row length) and disparities in known attributes, what might better represent individual data

Created a group of simple statistical data as comparators

- Sample descriptors such as mean, coefficient of variation, count, etc. help minimize ectopic and missing beats
 - Some metrics not shown below

	Age		Avg IBI	CoV	Avg iPR	CoV	No Change Count	Low Count Z<2	High Count Z>4	Avg C[SDNN,	CoV C[SDNN,	Low Count	High Count
Subect	(years)	Gender	(ms, 512)	Avg IBI	(bpm, 512)	Avg iPR	Z[SDNN, 512]	[SDNN, 512]	[SDNN, 512]	512]	512]	<2 C[SDNN]	>4 C[SDNN]
0	53	M	943.3	0.17	66.0	0.21	0.04	0.16	0.63	7.39	0.44	0.00	0.94
2	17	F	841.5	0.19	74.3	0.21	0.03	0.09	0.76	10.88	0.27	0.00	1.00
3	46	F	711.4	0.11	85.4	0.12	0.08	0.16	0.57	6.76	0.74	0.00	0.83
<u>5</u>	38	F	769.4	0.17	82.3	0.18	0.06	0.14	0.62	7.82	0.45	0.00	0.96
<u>6</u>	32	М	858.4	0.17	70.2	0.17	0.07	0.20	0.48	5.04	0.33	0.00	0.70

TIME DOMAIN COMPOSITE DATA VISUALIZATION

Do any of the composite metrics show variation by age or possible 2-3 groupings (infant, adolescent, adult)

Created metric data presented (used for AI/ML processing)

- Non-normalized data showed a number of expected trends (and are also visible after normalization)
 - Infants have significantly smaller IBIs / higher iHRs: top row
- Normalized data showed potential for some metrics to group ages into 2 or 3 groups by our created 'expectation' Z metric
 - Low Count represents the percentage of time bin windows that had IBIs < X (initially we chose X to be 2 representing a change of < 3 standard deviations)
 - High Count represents the percentage of time bin windows that had IBIs > X (initially we chose X to be 4 representing a change of > 5 standard deviations)

LINEAR REGRESSION CURRENT CONCLUSION

Naive linear regression using 32 features of 91 Subjects with full metadata (age) showed IBI/HR not the most predictive features

Relative ranking of most important features (Top 6):

- "No Change Count Z[SDNN, 512]", "CoV Avg IBI", "High Count Z[SDNN]256 >4 Z", "CoV C[rMSSD]512", "High Count C[rMSSD]512 >4 Z"
- Avg IBI and Avg HR not among Top 6 is somewhat of a surprise given the strong, consistent relationship of infants possessing Avg HRs or ~2x adults

Next steps:

- Gen AI for increasing Adult/Adolescent data
- Removal of infants <4 years old to account for possible upright bias

