

ET6540: Network Security Domain Name Server (DNS)

VINH TRAN-QUANG (Ph.D., Assoc. Prof.)

Smart Applications & Network System Laboratory

Add: Room 618, Ta Quang Buu Library No.1 Dai Co Viet Road, Hanoi, Vietnam

Email: vinhtq@hust.edu.vn

m706501@shibaura-it.ac.jp

Website: https://sanslab.vn

Match the term to the description:

Level:

Descriptions:

- C Domain name
- B DNS zone
- A Delegation

- A. Transfer of authority for/to a sub-domain
- B. A set of names under the same authority (ie ".com")
- C. A name in the DNS format

DNS: DNS Root Name Servers

Designation, Responsibility, and Locations

DNS: DNS Lookup Example

DNS record types (partial list):

- NS: name server (points to other server)
- A: address record (contains IP address)
- MX: address in charge of handling email
- TXT: generic text (e.g. used to distribute site public keys (DKIM)

Fill in the blanks:

Changing a domain name into an IP ad	Idress involves a large	number
of steps. To save time, the records are	cached	cached
on a local server for reuse later.		

Each record has a TTL that states how long a record can be kept for future use.

DNS responses are cached

- Quick response for repeated translations
- Note: NS records for domains also cached
 - **C** DNS negative queries are cached
- Save time for nonexistent sites, e.g. misspelling
 - **Cached data periodically times out**
- Lifetime (TTL) of data controlled by owner of data
- TTL passed with every record

Users/hosts trust the host-address mapping provided by DNS:

- Used as basis for many security policies:
 - Browser same origin policy, URL address

Obvious problems

- Interception of requests or compromise of DNS servers can result in incorrect or malicious responses
 - e.g: malicious access point in a cafe

- authenticated requests/responses
 - Provided by DNSsec ... but few use DNSsec (yet)

Basic DNS Vulnerabilities: Cache Poisoning

Basic idea: give DNS servers false records and get it cached

DNS uses a 16-bit request identifier to pair queries with answers

Cache may be poisoned when a name server:

- Disregards identifiers
- Has predictable ids
- Accepts unsolicited DNS records

Select the true statements about DNS:

DNS stores the IP address. For security reasons the domain name is stored somewhere else.

All domain names and IP addresses are stored at the Central Registry.

It can take several days for information to propagate to all DNS servers.

IP Header

Header

UDP

DNS data

32 bits

Query ID:

- 16 bit random value
- Links response to query

DNS Packet: Resolver to NS request

DNS Packet: Response to Resolver

Response contains IP addr of next NS server (called "glue")

DNS Packet: Response to Resolver

<u>₽</u>

UDP

DNS Packet: Authoritative Response

linux.unixwiz.net

dnsr1.sbcglobal.net

QR=1 – this is a response

AA=1 – Authoritative!

RA=0 – recursion unavailable

bailiwick checking: response is cached if it is within the same domain of query (i.e. a.com cannot set NS for b.com)

Traditional Poisoning Attack

Kaminsky's Poisoning Attack

Increase Query ID size

- Randomize src port, additional 11 bits
- Now attack takes several hours
 - ? Ask every DNS query twice:
- Attacker has to guess QueryID correctly twice (32 bits) But DNS
- system cannot handle the load
- 7

Deploy DNSSEC (eventually)

Guarantees:

- Authenticity of DNS answer origin
- Integrity of reply
- Authenticity of denial of existence

- Accomplishes this guarantee by signing DNS replies at each step of the way
- Uses public-key cryptography to sign responses
- Typically use trust anchors, entries in the operating system to bootstrap the process

(4) IP address of "wikipedia.org", signature ".org" (IP)

DNS Rebinding Attack

DNS Rebinding Attack: Defenses

Browser mitigation: DNS Pinning

- Refuse to switch to a new IP
- Interacts poorly with proxies, VPN, dynamic DNS, ...
- Not consistently implemented in any browser

Server-side defenses

- Check Host header for unrecognized domains
- Authenticate users with something other than IP

Firewall defenses

External names can't resolve to internal addresses

Protects browsers inside the organization

Select all the true statements about rebinding attacks:

The attacker needs to register a domain and delegate it to a server under his control.

The attacker's server responds with a short TTL record.

A short TTL means the page will be quickly cached

The attacker exploits the same origin policy.