

IEL 2019/2020 - Semestrální projekt

Artur Suvorkin xsuvor00

19. prosince 2020

Obsah

Příklad 1: Metoda postupného zjednodušování obvodu	2
Příklad 2: Theveninův teorém	6
Příklad 4: Metoda smyčkových proudů v RLC obvodu	9
Shrnutí dosažených výsledků	12

Příklad 1: Metoda postupného zjednodušování obvodu

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	R_3 [Ω]	R_4 [Ω]	$R_5 [\Omega]$	R_6 [Ω]	R_7 [Ω]	R_8 [Ω]
G	130	60	380	420	330	440	450	650	410	275

Chceme tento obvod vyřešit pomocí metody postupného zjednodušování obvodu. Pokoušíme se přejít od složitého obvodu postupným zjednodušováním k obvodu s jediným rezistorem a s jediným zdrojem proudu. Nejprve můžeme zjednodušit rezistory R₃ a R₄ a současně kombinují zdroje napětí U₁ a U₂.

$$R_{34} = \frac{R_3 \times R_4}{R_3 + R_4} = \frac{330 \times 440}{330 + 440} = 188.5714 \,\Omega$$

$$U_{12} = U_1 + U_2 = 130 + 60 = 190 V$$

Dále vidíme, že odpory R₂ a R₃₄ jsou zapojeny do série.

Nyní musíme dále zjednodušit a k tomu musíme použít transformaci přepočet hvězda-trojúhelník pro odpory $R_1\,R_5\,R_{234}\,.$

Nyní vidíme že rezistory R_B, R₇ a R_C, R₆ sériově zapojeny.

Zbývá udělat jen pár akcí. Rezistory R_{B7} a R_{C6} jsou zapojeny paralelně, ve výsledku dostaneme rezistor R_{B7C6}

$$R_{B7C6} = \frac{R_{B7} \times R_{C6}}{R_{B7} + R_{C6}} = \frac{528.8679 \times 840.3674}{528.8679 + 840.3674} = 324.5923 \,\Omega$$

Zbývá poslední akce, a to složit zbývající rezistory, protože jsou všechny zapojeny do série.

$$R_{ekv} = R_A + R_{B7C6} + R_8 = 160.7547 + 324.5923 + 275 = 760.3470 \,\Omega$$

Nyní můžeme najít aktuální proud

$$I = \frac{U_{12}}{R_{eky}} = \frac{190}{760.3470} = 0.2498 A$$

Nyní se musíme postupně vracet k okamžiku, kdy můžeme vypočítat I_{R6} a U_{R6}

$$U_{R_A} = R_A \times I = 160.7547 \times 0.2498 = 40.1565 V$$
 $U_{R_{B7C6}} = R_{B7C6} \times I = 324.5923 \times 0.2498 = 81.0831 V$
 $U_{R_8} = R_8 \times I = 275 \times 0.2498 = 68.695 V$
 $U_{R_{B7C6}} = U_{R_{B7}} = U_{R_{C6}}$
 $I_{R_{B7}} = \frac{U_{R_{B7}}}{R_{B7}} = \frac{81.0831}{528.8679} = 0.1533 A$
 $I_{R_{C6}} = \frac{U_{R_{C6}}}{R_{C6}} = \frac{81.0831}{840.3674} = 0.0964 A$
 $I_{R_6} = I_{R_{C6}} = I_{R_C} = 0.0964 A$
 $U_{R_6} = I_{R_6} \times R_6 = 0.0964 \times 650 = 62.66 V$

Příklad 2: Theveninův teorém

Stanovte napětí U_{R3} a proud I_{R3}. Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1[\Omega]$	$R_2 [\Omega]$	R_3 [Ω]	R_4 [Ω]	R_5 [Ω]	R_6 [Ω]
Н	220	190	360	580	205	560	180

Obvod vyřeším Théveninovou větou tak, že si nejprve vytvořím náhradní (ekvivalentní) obvod a to vzhledem k rezistoru R₃, u kterého chci zjistit jeho napětí a proud. Musím odstranit rezistor R₃

Rezistory $R_1 \; R_4 \; R_5$ jsou zapojeny do série, to samé lze říci o rezistorech $R_2 \; R_6$

$$R_{145} = R_1 + R_4 + R_5 = 190 + 205 + 560 = 955 \Omega$$

 $R_{26} = R_2 + R_6 = 360 + 180 = 540 \Omega$

Nyní máme paralelně zapojené odpory R₁₄₅ a R₂₆

$$R_{ekv} = \frac{R_{145} \times R_{26}}{R_{145} + R_{26}} = \frac{955 \times 540}{955 + 540} = 344.9498 \Omega$$

$$I = \frac{U}{R_{ekv}} = \frac{220}{344.9498} = 0.6377 A$$

Našli jsme obvod bez rezistoru R_3 . Obvod s ním bude vypadat takto, musíme udělat rovnici pro I_{R3}

Zbývá najít Ui

$$U_i = U - I_1 \times (R_4 + R_5) = 220 - 0.2303 \times (205 + 560) = 43.8205 V$$

Nyní, když mám hodnoty U_i a R_i , mohu vypočítat požadované hodnoty U_{R3} a I_{R3}

$$I_{R_3} = \frac{U_i}{R_i + R_3} = \frac{43.8205}{344.9498 + 580} = 0.0473 A$$
 $U_{R_3} = I_{R_3} \times R_3 = 27.4781 V$

Příklad 4: Metoda smyčkových proudů v RLC obvodu

Pro napájecí napětí platí: $u_1 = U_1 * \sin(2\pi ft)$, $u_2 = U_2 * \sin(2\pi ft)$. Ve vztahu pro napětí $u_{L2} = U_{L2} * \sin(2\pi ft + \phi_{L2})$ určete $|U_{L2}|$ a ϕ_{L2} Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik ($t = \frac{\pi}{2\omega}$)

sk.	U_1 [V]	U_2 [V]	$R_1[\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	<i>C</i> ₂ [µF]	f[Hz]
F	20	35	12	10	170	80	150	90	65

Nejprve je potřeba vypočítat ω, následně převést hodnoty cívek a kondenzátorů do základních jednotek.

$$\omega = 2 \times \pi \times f = 2 \times \pi \times 65 = 408.4070 Rad$$
 $L_1 = 170 mH = \frac{170}{1000} = 0.17H$
 $L_2 = 80 mH = \frac{80}{1000} = 0.08H$
 $C_1 = 150 \mu F = \frac{150}{1000000} = 0.00015 F$
 $C_2 = 90 \mu F = \frac{90}{1000000} = 0.00009 F$

Teď mohu kapacitance kondenzátorů a indukčnost cívek:

$$X_{L1} = \omega \times L_1 = 408.407 \times 0.17 = 69.4291 \Omega$$

$$X_{L2} = \omega \times L_2 = 408.407 \times 0.08 = 32.6725 \Omega$$

$$X_{C1} = \frac{1}{\omega \times C_1} = \frac{1}{408.407 \times 0.00015} = 16.3235 \Omega$$

$$X_{C2} = \frac{1}{\omega \times C_2} = \frac{1}{408.407 \times 0.00009} = 27.2059 \Omega$$

Také zjistím hodnoty napětí U₁ a U₂:

$$U_{1} = U_{1} \times \sin(2\pi ft) = U_{1} \times \sin(2\pi f \times \frac{\pi}{2\omega}) = U_{1} \times \sin(2\pi f \times \frac{\pi}{2\pi f}) = U_{1} \times \sin(\frac{\pi}{2}) = U_{1} \times 1 = 20V$$

$$U_{2} = U_{2} \times \sin(2\pi ft) = U_{2} \times \sin(\frac{\pi}{2}) = U_{2} = 35V$$

Vytvořme soustavu lineárních rovnic podle obrázku:

$$\begin{cases} I_A \times (jX_{L2} - jX_{C1} + R_1) - I_B \times (-jX_{C1}) - I_C \times jX_{L2} = U_1 \\ -I_A \times (-jX_{C1}) + I_B \times (jX_{L1} - jX_{C1} + R_2) - I_C \times R_2 = 0 \\ -I_A \times jX_{L2} - I_B \times R_2 + I_C \times (jX_{L2} - jX_{C2} + R_2) - I_B \times R_2 = U_2 \end{cases}$$

Dostaneme matici

$$\begin{bmatrix} 12 + 16.3435 & 16.3235 & -32.6725 & 20 \\ 16.3235 & 10 + 53.1056 & -10 & 0 \\ -32.6725 & -10 & 10 - 5.4666 & 35 \end{bmatrix}$$

Po vyřešení matice získáme následující hodnoty

$$I_A = 0.2527 + 0.8297j A$$

 $I_B = 0.1288 - 0.3241j A$
 $I_C = 0.4955 + 0.7724j A$

Počítáme hned proud I_{L_2} $I_{L_2} = I_A - I_c = 0.2527 + 0.8297j - (0.4955 + 0.7724j) = -0.2428 + 0.0573j A$ $I_{L_2} = \sqrt{(-0.2428)^2 + (0.0573)^2} = 0.2494 A$

Nyní si můžu vypočítat napětí
$$U_{L_2}$$

 $|U_{L_2}| = I_{L_2} \times jX_{L_2} = 0.2494 \times 32.6725 = 8.1485 V$

Shrnutí dosažených výsledků

Příklad	Skupina	Výsledky			
1	G	$I_{R6} = 0.0964 \text{ A}$	$U_{R6} = 62.66 \text{ V}$		
2	Н	<i>I_{R3}</i> = 0.0473 A	$U_{R3} = 27.4781 \text{ V}$		
3	С				
4	F	U _{L2} = 8.1485V			
5	Α				