Assignment7

Aravind A Anil

March 16, 2021

Statement: (6.17): A person plays a game of tossing a coin thrice. For each head, he is given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the organiser.Let X denotes the amount gained or lost by the person. show that X is random variable and exhibit it as a function on the sample space of the experiment.

Solution:, here we are tossing a coin three times so,

.Let X_i , i = 0, 1, 2, be the value at the end of each toss.

Then
$$X_i = X_{i-1} + Y$$
, Where $Y \in \{2, -1.5\}$
 $X_0 = Y$

$$X_0 - Y$$
$$X_1 = X_0 + Y$$

$$X_2 = X_1 + Y$$

 $Z \in 0, 1$, where 0 represent getting a tail and 1 represents getting a head

	head	tail
Z	1	0

1. X_0 can have two values

- (a) Case-i
 - When **Z=0**, $X_0 = -1.5$ $Pr(X_0|Z=0) = \frac{1}{2}$
- (b) Case-ii
 - When **Z**=**1**, $X_0 = 2$ $Pr(X_0|Z=1) = \frac{1}{2}$

2. X_1 can have four values

- (a) Case-i
 - When $X_0 = -1.5 \& Z = 0$

$$X_1 = -1.5 - 1.5$$

= -3

$$Pr(X_1|Z=0, X_0=-1.5) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

- (b) Case-ii
 - When $X_0 = 2\&Z = 0$

$$X_1 = 2 - 1.5$$

= .5

$$Pr(X_1|Z=0, X_0=2) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

- (c) Case-iii
 - When $X_0 = -1.5 \& Z = 1$ $X_1 = -1.5 + 2$

$$= .5$$

$$Pr(X_1|Z=1, X_0=-1.5) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

(d) Case-iv

• When
$$X_0 = 2\&\ Z = 1$$

$$X_1 = 2 + 2$$

$$= 4$$

$$Pr(X_1|Z=1, X_0=2) = \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{4}$

- 3. X_2 can have eight values
 - (a) Case-i
 - When $X_1 = -3 \& Z = 0$

$$X_2 = -3 - 1.5$$

= -4.5

$$Pr(X_2|X_1 = -3, Z = 0) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

- (b) Case-ii
 - When $X_1 = -3 \& Z = 1$

$$X_2 = -3 + 2$$

= -1

$$Pr(X_2|X_1 = -3, Z = 1) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

- (c) Case-iii
 - When $X_1 = .5 \& Z = 0$

$$X_2 = .5 + -1.5$$

= -1

$$Pr(X_2|X_1 = .5, Z = 0) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

(d) Case-iv

• When
$$X_1 = .5 \& Z = 1$$

$$X_2 = .5 + 2$$
$$= 2.5$$

$$Pr(X_2|X_1 = .5, Z = 1) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

(e) Case-v

Case-v will be same as Case-iii since $X_1 = .5$ is occurring two times

$$X_2 = .5 - 1.5$$

= -1

$$Pr(X_2|X_1 = .5, Z = 0) = \frac{1}{8}$$

(f) Case-vi

Case-vi will be same as Case-iv since $X_1 = .5$ is occurring two times

$$X_2 = .5 + 2$$
$$= 2.5$$

$$Pr(X_2|X_1 = .5, Z = 1) = \frac{1}{8}$$

- (g) Case-vii
 - When $X_1 = 4 \& Z = 0$

$$X_2 = 4 - 1.5$$
$$= 2.5$$

$$Pr(X_2|X_1 = 4, Z = 0) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

(h) Case-viii

• When
$$X_1 = 4 \& Z = 0$$

$$X_2 = 4 + 2$$
$$= 6$$

$$Pr(X_2|X_1 = 4, Z = 1) = \frac{1}{4} \times \frac{1}{2}$$

= $\frac{1}{8}$

Here values of X_2 can be 6,2.5,-1,-4.5 All these are real values

Hence, $X_2 = \{6, 2.5, -1, -4.5\}$ & X_2 is a Random Variable

 X_2 A_5 A_5 A_5

X_2	-4.5	-1	2.5	6
$Pr(X_2)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Table 1: Probability Distribution of X_2

Figure 1: CDF

Figure 2: PMF