UECM3993 Quiz Marking Guide

Name:			Student ID:		Marks:	/12
Course Co Faculty: Session:		JRSE TITLE: ES, UTAR 022	UECM3993 I Course: Lecturer:	PREDICTIVE MODELLING AM, AS, FM LIEW HOW HUI	G	
	provided,	you will ge		ovided. If you do not An answer without necessity	=	
CO4: Demo	onstrate su	pervised and	unsupervised lea	arning with statistical so	oftware	
1. Write	down the r	eturn value	(or output) of the	e following (unsupervise	d learning) l	R commands.
(a) s	um(c(15,12))	,16,13,14))				(0.5 mark)
A	Ans. 70					$\dots [0.5 \text{ mark}]$
(b) n	nean(c(20,1))	8,13,19,15))				(0.5 mark)
A	<i>Ans.</i> 17					$\dots [0.5 \text{ mark}]$
` ′	d(c(20,18,1					(1 mark)
A	1ns. 2.9154	476			•••••	[1 mark]
		'B', 'A', 'A',	'B', 'B', 'A'), c('B', 'A', 'A', 'A', 'B', 'A	', 'A'))	(1 mark)
A	4ns.					
	A B					
	A 3 0 B 2 2					
						[1 mark]
(e) n	natrix(seq(54,40,-2),2,4)				(1 mark)
` ′	1ns.	,, , ,				, , ,
	1,] 54	50 46	42			
	2,] 52	48 44	40			
						$\dots [1 \text{ mark}]$

2. Write a simple R script to generate the following table (with the correct data type for each column) without importing any library or reading data from any file.

```
Grade Height Age Gender
1
        В
               160
                      16
                                 0
2
        В
               159
                       8
                                 0
3
        В
               177
                      11
                                 1
4
        С
               138
                      14
                                 1
5
        В
                       2
                                 0
               134
6
        \mathsf{C}
                                 0
               158
                       3
```

Write down the R command(s) to obtain the following statistics of the table.

```
Height
                                         Gender
Grade
                             Age
B:4
              :134.0
                              : 2.00
                                         0:4
      Min.
                        Min.
C:2
      1st Qu.:143.0
                        1st Qu.: 4.25
                                         1:2
      Median :158.5
                        Median: 9.50
              :154.3
      Mean
                        Mean
                               : 9.00
      3rd Qu.:159.8
                        3rd Qu.:13.25
      Max.
              :177.0
                        Max.
                                :16.00
```

(2 marks)

Ans. A sample R script is listed below.

3. Given the training data with features $X_1,\,X_2$ and the label Y in Table 3.1.

$\overline{X_1}$	X_2	Y
6.8	25.05	1
6.5	26.1	1
5.25	26.75	1
7.5	25.65	1
10.6	18.9	2
11.65	17.45	2
4.45	19.9	2

Table 3.1: Training data with features X_1 , X_2 and a label Y.

Ans. After calculating the distances of the point we want to predict to each point in the training data, we obtain the following table.

$\overline{X_1}$	X_2	dist	rank	Y
6.8	25.05	1.960867	4	1
6.5	26.1	0.873212	1	1
5.25	26.75	0.912414	2	1
7.5	25.65	1.839837	3	1
10.6	18.9	9.154371	6	2
11.65	17.45	10.934007	7	2
4.45	19.9	7.203471	5	2

[2 mark	s]
The prediction with kNN (k=3) is 1 $[0.5 \text{ mark}]$	<u>«</u>]
The prediction with kNN (k=5) is 1	<u>[</u>

- 4. Given the insurance data with the following features
 - age: age of the policyholder
 - sex: gender of the policyholder (female=0, male=1)
 - bmi: body mass index, body weight to square of the height ratio, ideally 18.5 to 25
 - children: number of children/dependents of the policyholder
 - smoker: smoking state of the policyholder (non-smoker=0, smoker=1)
 - region: the residential area of policyholder in the USA (northeast=0, northwest=1, southeast=2, southwest=3)
 - charges: individual medical costs billed by the health insurance

and the labelled output is insuranceclaim, 1 for valid insurance claim and 0 for invalid insurance claim. Suppose the trained supervised learning logistic regression model has the following analysis result.

```
Call:
glm(formula = insuranceclaim ~ ., family = binomial, data = data.train)
Deviance Residuals:
    Min
             1 Q
                  Median
                               ЗQ
                                       Max
-2.0137 -0.5764
                   0.1023
                            0.5095
                                     3.2432
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.188e+00
                       7.310e-01
                                  -9.833 < 2e-16 ***
            2.620e-02
                       9.395e-03
                                   2.788
                                           0.0053 **
age
            3.960e-02 1.946e-01
                                   0.203
                                           0.8387
sex1
            2.702e-01
                        2.326e-02
                                  11.612
                                          < 2e-16 ***
bmi
           -2.101e+00 2.516e-01
                                  -8.352
children1
                                          < 2e-16 ***
children2
           -3.722e+00 3.179e-01 -11.708
                                          < 2e-16 ***
            -4.759e+00 4.389e-01 -10.842
                                          < 2e-16 ***
children3
            -5.623e+00 8.721e-01 -6.448 1.13e-10 ***
children4
children5
           -3.692e+00 9.185e-01 -4.020 5.82e-05 ***
            4.098e+00 5.067e-01
                                  8.089 6.03e-16 ***
smoker1
region1
            -4.436e-01 2.759e-01
                                  -1.608
                                           0.1079
            -6.801e-01 2.870e-01
                                  -2.369
                                           0.0178 *
region2
            -3.765e-01
                       2.727e-01
                                  -1.381
                                           0.1673
region3
charges
            1.178e-05 1.933e-05
                                  0.609
                                           0.5423
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1270.09
                            on 935
                                    degrees of freedom
Residual deviance: 669.93
                           on 922 degrees of freedom
AIC: 697.93
Number of Fisher Scoring iterations: 6
```

By calculating the conditional probabilty P(Y=1|X=x), predict whether the insurance claim is valid or invalid when a female policyholder of age 61, of bmi 39.1, having two children, is a non-smoker, living in the southwest of USA and has a medical costs bill of 14235.07. In addition, compare the odds of insurance claim for a policyholder of bmi 25 against a policyholder of bmi 18.5 by computing the odds ratio and then compare the probabilities getting valid policy claim in the two cases. (3 marks)

Ans.

0.0261958855	61.00
0.0395991299	0.00
0.2701582775	39.10
-2.1011023960	0.00
-3.7218081674	1.00
-4.7586887311	0.00
-5.6234310023	0.00
-3.6924041239	0.00
4.0983992038	0.00
-0.4436383930	0.00
-0.6801038451	0.00
-0.3765294689	1.00
	0.0395991299 0.2701582775 -2.1011023960 -3.7218081674 -4.7586887311 -5.6234310023 -3.6924041239 4.0983992038 -0.4436383930 -0.6801038451

$$\beta^T x = 1.042339$$

The odds ratio is

$$\frac{odds(bmi = 25)}{odds(bmi = 18.5)} = \exp(0.2701583 \times (25 - 18.5)) = 5.789401$$
 [0.5 mark]