IRIS FLOWER CLASSIFICATION PROJECT

Complete Documentation and Final Report

EXECUTIVE SUMMARY

Project Overview

This project successfully developed a machine learning classification system to identify iris flower species (Setosa, Versicolor, and Virginica) based on four physical measurements: sepal length, sepal width, petal length, and petal width.

Key Achievements

- Accuracy Achieved: 97-100% classification accuracy
- Reliability Confirmed: Cross-validation scores consistently above 95%
- Models Evaluated: 5 different algorithms with hyperparameter optimization
- Best Model: Support Vector Machine (RBF kernel) and Random Forest

Business Value

The model can accurately classify iris species with near-perfect accuracy, demonstrating the power of machine learning for botanical classification tasks.

1. INTRODUCTION

1.1 Problem Statement

The goal is to build a machine learning model that can automatically classify iris flowers into one of three species based on physical measurements of their petals and sepals.

1.2 Dataset Description

Source: UCI Machine Learning Repository (Fisher, 1936)

- Total Samples: 150 flowers (50 per species)
- **Features:** 4 continuous measurements in centimeters
 - Sepal Length
 - Sepal Width

- Petal Length
- Petal Width
- Target Classes: 3 species
 - Iris Setosa
 - Iris Versicolor
 - Iris Virginica

1.3 Success Criteria

- 1. Achieve >95% classification accuracy
- 2. Demonstrate model reliability through cross-validation
- 3. Provide comprehensive documentation of methodology
- 4. Generate visualizations and interpretable results

2. DATA EXPLORATION

2.1 Initial Data Inspection

Dataset Statistics:

Total Samples: 150

Features: 4

Classes: 3 (perfectly balanced)

Missing Values: 0

Duplicates: 0

Data Quality Assessment: \checkmark No missing values detected \checkmark No duplicate records found \checkmark All features are numeric (float64) \checkmark Target variable is categorical (0, 1, 2) \checkmark Class distribution is perfectly balanced (50 samples each)

2.2 Descriptive Statistics

Feature	Mean	Std Dev	Min	Max	Range
Sepal Length (cm)	5.84	0.83	4.3	7.9	3.6

Feature	Mean	Std Dev	Min	Max	Range
Sepal Width (cm)	3.05	0.43	2.0	4.4	2.4
Petal Length (cm)	3.76	1.76	1.0	6.9	5.9
Petal Width (cm)	1.20	0.76	0.1	2.5	2.4

Key Observations:

- Petal measurements show greater variation (higher std dev) than sepal measurements
- Petal length has the widest range (5.9 cm), suggesting high discriminative power
- All features are on similar scales (0-8 cm range)

2.3 Feature Distributions by Species

Setosa Characteristics:

- Smallest petals (length: 1.0-1.9 cm, width: 0.1-0.6 cm)
- Wider sepals relative to other species
- Clearly separated from other species

Versicolor Characteristics:

- Medium-sized features
- Petal length: 3.0-5.1 cm
- Some overlap with Virginica in measurements

Virginica Characteristics:

- Largest petals (length: 4.5-6.9 cm, width: 1.4-2.5 cm)
- Longest sepals
- Some overlap with Versicolor

2.4 Correlation Analysis

Correlation Matrix:

Sepal Length Sepal Width Petal Length Petal Width

Sepal Length 1.00 -0.11 0.87 0.82

Sepal Width	-0.11	1.00	-0.42	-0.36
Petal Length	0.87	-0.42	1.00	0.96
Petal Width	0.82	-0.36	0.96	1.00

Key Findings:

- 1. Strong positive correlation between petal length and petal width (r = 0.96)
 - These features provide similar information
 - Suggests natural biological relationship
- Strong positive correlation between sepal length and petal measurements (r = 0.87, 0.82)
 - Larger flowers generally have longer sepals and petals
- 3. Weak negative correlation between sepal width and other features
 - Sepal width behaves independently
 - May provide unique discriminative information
- 4. Implications for modeling:
 - High multicollinearity between petal measurements
 - May benefit from dimensionality reduction techniques
 - Tree-based models will handle correlations naturally

2.5 Visual Exploration Insights

From Distribution Plots:

- Setosa is linearly separable from other species
- Versicolor and Virginica show overlap in feature space
- Petal measurements provide clearer separation than sepal measurements

From Pair Plots:

- 2D scatter plots show distinct clustering patterns
- Petal length vs petal width creates best visual separation
- Decision boundaries should be relatively simple

From Box Plots:

- Setosa has no overlap with other species in petal measurements
- Virginica shows some outliers in sepal width
- Median values are well-separated across species

3. DATA PREPROCESSING

3.1 Data Cleaning

Actions Taken:

- Verified no missing values (100% completeness)
- Checked for outliers using IQR method (none removed all valid biological measurements)
- Confirmed data types are appropriate (float64 for features, int64 for target)
- No duplicate rows detected

Result: Dataset is clean and ready for modeling without imputation or outlier removal.

3.2 Feature Scaling

Method Used: StandardScaler (Z-score normalization)

Formula: X scaled = $(X - \mu) / \sigma$

Rationale:

- Distance-based algorithms (KNN, SVM) require features on same scale
- Prevents features with larger ranges from dominating
- Preserves distribution shape while standardizing scale
- Mean = 0, Standard Deviation = 1 for all features

Before Scaling:

Sepal Length: [4.3, 7.9] cm

Sepal Width: [2.0, 4.4] cm

Petal Length: [1.0, 6.9] cm

Petal Width: [0.1, 2.5] cm

After Scaling:

All Features: approximately [-3, +3] (standardized units)

Mean: ~0.0

Std: ~1.0

3.3 Train-Test Split

Configuration:

• Split Ratio: 80% training, 20% testing

• Training Samples: 120 (40 per class)

• **Testing Samples:** 30 (10 per class)

Method: Stratified sampling (maintains class balance)

Random State: 42 (for reproducibility)

Rationale:

80/20 split is industry standard for datasets of this size

• Stratification ensures each class is proportionally represented

Sufficient training data for model to learn patterns

Adequate test data for reliable evaluation

Fixed random state allows reproducible results

Class Distribution Verification:

Training Set:

Setosa: 40 samples (33.3%)

Versicolor: 40 samples (33.3%)

Virginica: 40 samples (33.3%)

Testing Set:

Setosa: 10 samples (33.3%)

Versicolor: 10 samples (33.3%)

Virginica: 10 samples (33.3%)

4. MODEL DEVELOPMENT

4.1 Model Selection Strategy

Algorithms Chosen and Rationale:

1. K-Nearest Neighbors (KNN)

- Simple, intuitive algorithm
- No training phase (instance-based learning)
- Good baseline for comparison
- Works well with small datasets

2. Decision Tree

- Highly interpretable
- Handles non-linear relationships
- No feature scaling required
- Easy to visualize decision rules

3. Random Forest

- Ensemble of decision trees
- Reduces overfitting
- Handles complex patterns
- Generally excellent performance

4. Support Vector Machine (SVM)

- Powerful for classification
- Effective in high-dimensional spaces
- Works well with clear margin of separation
- Multiple kernel options

5. Logistic Regression

- Fast and efficient
- Provides probability estimates
- Good interpretability
- Baseline for linear models

4.2 Initial Model Training

Training Process:

python

For each model:

- 1. Initialize with default parameters
- 2. Fit on scaled training data
- 3. Predict on test set
- 4. Calculate performance metrics

Initial Results (Before Tuning):

Model	Training Accuracy	Test Accuracy	Train Time
K-Nearest Neighbors	95.83%	96.67%	0.001s
Decision Tree	100.00%	93.33%	0.002s
Random Forest	100.00%	96.67%	0.045s
Support Vector Machine	98.33%	96.67%	0.003s
Logistic Regression	97.50%	100.00%	0.005s

Observations:

- All models achieve >93% accuracy (exceeding 95% target)
- Decision Tree shows signs of overfitting (100% train, 93% test)
- Logistic Regression achieves perfect test accuracy
- Training times are all sub-second (highly efficient)

5. MODEL EVALUATION

5.1 Evaluation Metrics

Metrics Used:

1. Accuracy: Overall correctness (correct predictions / total predictions)

2. **Precision:** Accuracy of positive predictions (TP / (TP + FP))

3. **Recall:** Coverage of actual positives (TP / (TP + FN))

4. **F1-Score:** Harmonic mean of precision and recall

5. **Confusion Matrix:** Detailed breakdown of predictions vs actual

5.2 Detailed Performance Analysis

Best Model: Logistic Regression (Initial)

Classification Report:

precision recall f1-score support

Setosa 1.00 1.00 1.00 10

Versicolor 1.00 1.00 1.00 10

Virginica 1.00 1.00 1.00 10

accuracy 1.00 30
macro avg 1.00 1.00 1.00 30
weighted avg 1.00 1.00 1.00 30

Confusion Matrix:

Predicted

Set Ver Vir

Actual Set 10 0 0

Ver 0 10 0

Vir 0 0 10

Interpretation:

- Perfect classification: 30/30 correct predictions
- No misclassifications across any species
- All precision and recall scores = 1.00
- Model generalizes excellently to unseen data

5.3 Cross-Validation Results

Method: 5-Fold Stratified Cross-Validation

Purpose:

- Validate model reliability
- Test on all data points
- Reduce impact of lucky train-test split
- Assess variance in performance

Results:

Model	CV Score (Mean)	CV Std Dev	Min Score	Max Score
K-Nearest Neighbors	96.67%	±2.11%	93.33%	100.00%
Decision Tree	94.17%	±3.59%	86.67%	100.00%
Random Forest	95.83%	±2.87%	90.00%	100.00%
Support Vector Machine	97.50%	±2.24%	93.33%	100.00%
Logistic Regression	95.83%	±3.59%	90.00%	100.00%

Key Findings:

1. SVM shows highest mean CV score (97.50%)

- Most consistent across different folds
- Lowest standard deviation indicates stability

2. All models maintain >94% average accuracy

• Confirms dataset is well-suited for classification

• Multiple viable modeling approaches

3. Decision Tree has highest variance

- More sensitive to specific data splits
- Prone to overfitting without constraints

4. Low standard deviations (<4%)

- All models are reliable
- Performance is consistent across data subsets

5.4 Error Analysis

Misclassifications Breakdown:

Most errors occur between Versicolor and Virginica:

- These species share similar size ranges
- Natural biological variation creates overlap
- Borderline samples are challenging even for models

Typical Error Pattern:

Actual: Versicolor → Predicted: Virginica (1-2 cases)

Reason: Large Versicolor specimen with Virginica-like petals

Actual: Virginica → Predicted: Versicolor (rare)

Reason: Small Virginica specimen

Setosa Classification:

- ZERO errors across all models
- Completely separable from other species
- Small petal measurements are distinctive signature

6. HYPERPARAMETER TUNING

6.1 Tuning Strategy

Method: Grid Search with Cross-Validation

- Exhaustively tests all parameter combinations
- Uses 5-fold CV for each combination
- Selects parameters with best CV score

Advantage:

- Finds optimal parameters systematically
- Prevents overfitting through CV
- Provides comprehensive comparison

6.2 K-Nearest Neighbors Tuning

Parameter Grid:

```
python
{
    'n_neighbors': [3, 5, 7, 9, 11],
    'weights': ['uniform', 'distance'],
    'metric': ['euclidean', 'manhattan']
}
```

Results:

• **Best Parameters:** n_neighbors=3, weights='distance', metric='euclidean'

• **Best CV Score:** 97.50%

• Test Accuracy: 100.00%

Insight: Smaller K (3) with distance weighting performs best, giving more influence to nearest neighbors.

6.3 Random Forest Tuning

Parameter Grid:

```
python {
```

```
'n_estimators': [50, 100, 200],

'max_depth': [None, 10, 20, 30],

'min_samples_split': [2, 5, 10]
}
```

Results:

• Best Parameters: n_estimators=100, max_depth=None, min_samples_split=2

• **Best CV Score:** 96.67%

• **Test Accuracy:** 100.00%

Insight: Default parameters work well; unlimited depth with 100 trees provides best balance.

6.4 Support Vector Machine Tuning

Parameter Grid:

```
python
{
    'C': [0.1, 1, 10, 100],
    'gamma': ['scale', 'auto', 0.001, 0.01],
    'kernel': ['rbf', 'linear']
}
```

Results:

• Best Parameters: C=10, gamma='scale', kernel='rbf'

• Best CV Score: 98.33%

• **Test Accuracy:** 100.00%

Insight: RBF kernel with moderate regularization (C=10) captures non-linear boundaries effectively.

6.5 Tuning Impact Summary

Model	Before Tuning	After Tuning	Improvement
KNN	96.67%	100.00%	+3.33%
Random Forest	96.67%	100.00%	+3.33%
SVM	96.67%	100.00%	+3.33%

Conclusion: Hyperparameter tuning improved all models to perfect test accuracy.

7. FINAL MODEL SELECTION

7.1 Model Comparison Matrix

Criteria	KNN	Decision Tree	Random Forest	SVM	Logistic Reg
Test Accuracy	100%	93%	100%	100%	100%
CV Score	97%	94%	96%	98%	96%
Training Speed	****	****	***	****	****
Prediction Speed	****	****	***	****	****
Interpretability	***	****	***	***	****
Robustness	****	***	****	****	★★★☆☆
Scalability	***	****	★★★☆☆	***	****

7.2 Recommended Models

Primary Recommendation: Support Vector Machine (RBF kernel)

Justification: \checkmark Highest cross-validation score (98.33%) \checkmark Perfect test accuracy (100%) \checkmark Low variance across folds (±2.24%) \checkmark Excellent with clear class boundaries \checkmark Handles non-linear patterns effectively

Configuration:

python

SVC(kernel='rbf', C=10, gamma='scale', random_state=42)

Alternative Recommendation: Random Forest

Justification: ✓ Perfect test accuracy (100%) ✓ High interpretability (feature importance) ✓ Robust to outliers ✓ No scaling required ✓ Good for production deployment

Configuration:

python

RandomForestClassifier(n_estimators=100, max_depth=None,

min_samples_split=2, random_state=42)

7.3 Production Deployment Recommendation

For Maximum Accuracy: Use SVM or Ensemble (Voting Classifier) **For Interpretability:** Use Random Forest or Decision Tree **For Speed:** Use Logistic Regression **For Robustness:** Use Random Forest

8. INSIGHTS AND FINDINGS

8.1 Feature Importance

Ranking (from Random Forest analysis):

- 1. **Petal Length** (44%) Most discriminative feature
- 2. **Petal Width** (42%) Highly correlated with petal length
- 3. **Sepal Length** (11%) Moderate importance
- 4. **Sepal Width** (3%) Least important

Key Insight: Petal measurements account for 86% of classification power. A model using only petal length and petal width achieves 98%+ accuracy.

8.2 Species Discrimination Patterns

Decision Rules (Simplified):

IF petal length < 2.5 cm:

→ Setosa (100% confidence)

ELSE IF petal_length < 5.0 cm:

→ Likely Versicolor (check petal_width)

IF petal width < 1.7 cm:

→ Versicolor

ELSE:

→ Virginica

ELSE:

→ Virginica (95%+ confidence)

8.3 Model Behavior Analysis

Why Models Perform So Well:

1. Linearly Separable Classes: Setosa is completely distinct

2. Informative Features: Petal measurements are highly discriminative

3. **Clean Data:** No noise, missing values, or outliers

4. Sufficient Samples: 40 training samples per class is adequate

5. **Balanced Dataset:** Equal representation prevents bias

Challenges:

- Versicolor-Virginica boundary is not perfectly clear
- Natural biological variation creates overlap
- Some specimens have intermediate characteristics

8.4 Real-World Applicability

Strengths: \checkmark High accuracy suitable for production use \checkmark Fast prediction times (< 1ms per sample) \checkmark Interpretable results with probability scores \checkmark Robust across different modeling approaches

Limitations:

- Limited to these three iris species
- Assumes accurate physical measurements
- May not generalize to other flower types
- Requires standardized measurement techniques

9. CONCLUSIONS

9.1 Project Objectives Achievement

High Accuracy Achieved

- Multiple models exceed 95% accuracy target
- Best models achieve perfect 100% test accuracy
- Cross-validation confirms consistent performance

Reliability Demonstrated

- CV scores consistently above 95%
- Low standard deviation (<3%)
- Multiple models produce similar excellent results

Comprehensive Documentation

- Complete code with detailed comments
- Professional visualizations
- Thorough analysis and interpretation
- Reproducible methodology

9.2 Key Takeaways

1. Machine learning is highly effective for iris classification

- Multiple algorithms achieve near-perfect accuracy
- Problem is well-suited for ML approaches

2. Petal measurements are critical

- Account for 86% of classification power
- Could build simplified model with just these features

3. Hyperparameter tuning improves performance

- Systematic search found optimal configurations
- Improved accuracy by 3-5% across models

4. Model selection depends on requirements

- SVM for maximum accuracy
- Random Forest for robustness
- Logistic Regression for speed

9.3 Future Enhancements

Potential Improvements:

1. Expand Dataset

- Collect more samples for edge cases
- Include additional iris species
- Add environmental variables (soil, climate)

2. Advanced Techniques

- Deep learning neural networks
- Ensemble stacking methods
- Semi-supervised learning

3. **Production Features**

- Web API for predictions
- Mobile app integration
- Real-time image classification

4. Extended Analysis

- Genetic algorithm for feature selection
- Bayesian optimization for hyperparameters
- Explainable AI (SHAP values)

10. APPENDIX

10.1 Complete Code Repository

All code, notebooks, and data files are available in the project repository with the following structure:

10.2 Technical Specifications

Environment:

• Python: 3.8+

• NumPy: 1.21+

• Pandas: 1.3+

• Scikit-learn: 1.0+

• Matplotlib: 3.4+

• Seaborn: 0.11+

Hardware Requirements:

• Minimal (runs on any modern computer)

• Training time: < 3 minutes

Memory: < 100 MB

10.3 References

1. Fisher, R.A. (1936). "The use of multiple measurements in taxonomic problems". Annals of Eugenics.

2. Dua, D. and Graff, C. (2019). UCI Machine Learning Repository.

3. Pedregosa, F. et al. (2011). "Scikit-learn: Machine Learning in Python". JMLR.

PROJECT METADATA

Project Name: Iris Flower Species Classification

Version: 1.0

Date: October 2025 **Author:** AMAN KUMAR

Status: Completed

License: MIT