Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Pokročilé komunikační techniky - MPC-PKT 2020/2021

Projekt

Analýza sieťovej komunikácie

Obsah

1	Zada	anie	1
2	Ana	lýza	1
	2.1	Záznamy 1-22 - ECHO IPv4	1
		Záznamy 23-46 - ECHO IPv6	
		Záznamy 47-82 - DNS (UDP + TCP)	
		Záznamy 83-104 - DNS (pokračovanie)	
	2.5	Záznamy 105-200 - ICMP	7
	2.6	Záznamy 201-210 - komunikácia s webserverom - DNS, TCP	9
	2.7	Záznamy 211-228 - komunikácia s webserverom - TCP, HTTP	10
	2.8	Záznamy 229-238 - Protokol QUIC	12
	2.9	Záznamy 239-439 - Protokol TCP	13
3	Záve	er er	15

1 Zadanie

Zmyslom tohto projektu je samostatne analyzovať predložený .pcapng súbor, ktorý obsahuje zachytenú sieťovú komunikáciu.

2 Analýza

V tejto sekcií bude analyzovaná sieťová komunikácia súboru .pcapng. Sieťovú komunikáciu som rozdelil do logických celkov podľa druhov sieťového provozu. Celkovo sa tak analýza skladá z deviatich podkapitol. Celé zadanie projektu je možné nájsť na nasledujúcom odkaze¹.

2.1 Záznamy 1-22 - ECHO IPv4

Na nasledujúcom obrázku 1 je možné vidieť záznamy 1-22, ktoré budú analyzované v tejto sekcii.

No.	Time	Source	Destination	typ	Protocol	Length Info
	1 0.000000	00:00:00_00:00:01	Broadcast		ARP	64 Who has 172.16.1.4? Tell 172.16.1.1
VIIII	2 0.000024	00:00:00_00:00:04	00:00:00_00:00:01		ARP	64 172.16.1.4 is at 00:00:00:00:04
	3 0.000024	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=0, ID=0000)
	4 0.000147	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=1480, ID=0000)
	5 0.000276	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=2960, ID=0000)
	6 0.992000	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=0, ID=0001) [Reassembled in #9]
	7 0.992122	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=1480, ID=0001) [Reassembled in #9]
	8 0.992261	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=2960, ID=0001) [Reassembled in #9]
	9 0.992397	172.16.1.1	172.16.3.4		ECHO	606 Request
	10 1.012904	00:00:00_00:00:04	Broadcast		ARP	64 Who has 172.16.1.1? Tell 172.16.1.4
	11 1.012904	00:00:00_00:00:01	00:00:00_00:00:04		ARP	64 172.16.1.1 is at 00:00:00:00:01
	12 1.013046	172.16.3.4	172.16.1.1		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=0, ID=0000)
	13 1.013180	172.16.3.4	172.16.1.1		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=1480, ID=0000)
	14 1.013312	172.16.3.4	172.16.1.1		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=2960, ID=0000)
	15 1.992000	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=0, ID=0002) [Reassembled in #18]
	16 1.992122	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=1480, ID=0002) [Reassembled in #18]
	17 1.992250	172.16.1.1	172.16.3.4		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=2960, ID=0002) [Reassembled in #18]
	18 1.992379	172.16.1.1	172.16.3.4		ECHO	606 Request
	19 2.006995	172.16.3.4	172.16.1.1		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=0, ID=0001) [Reassembled in #22]
	20 2.009399	172.16.3.4	172.16.1.1		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=1480, ID=0001) [Reassembled in #22]
	21 2.011802	172.16.3.4	172.16.1.1		IPv4	1518 Fragmented IP protocol (proto=UDP 17, off=2960, ID=0001) [Reassembled in #22]
	22 2.012673	172.16.3.4	172.16.1.1		ECHO	606 Response

Obr. 1: Záznamy 1-22

- V tejto komunikácii figuruje sieťový protokol IPv4, transportný protokol UDP, linkový protokol ARP a sieťový protokol ICMP.
- Z ukážky vyplýva, že sa jedná o komunikáciu medzi dvoma zariadeniami. Zariadenie 00:00:00:00:00:00:00:01
 vysiela správu typu ARP Broadcast zo zdrojovou IP adresou 172.16.1.1 s požiadavkou na zistenie IP
 adresy zariadenia 172.16.1.4 veľkosť paketu predstavuje 64 B (štandardná veľkosť ethernet paketu) a typ
 zapuzdrenia je Ethernet.
- V druhom pakete zariadenie s MAC adresou **00:00:00:00:00:04** odpovedá, že disponuje s hľadanou IP adresou **172.16.1.4**. V tomto prípade sa nejedná o **ARP Broadcast** odpoveď ale práve o unicast. Hľadané zariadenie odpovedá len tazatelovi. Veľkosť paketu znovu predstavuje **64 B** a typ zapuzdrenia je **Ethernet**.
- V prípade paketov **3-9** je z wiresharku možné vyčítať, že **proto = UDP 17**², z ktorého vyplýva, že sa jedná o fragmentovaný **UDP** provoz. S najväčšou pravdepodobnosťou prebehla snaha o ping zo siete LAN na inú sieť, kde sa nachádza zariadenie **172.16.3.4**. Fragmentáciu rovnako naznačujú aj príznaky (flags) v jednotlivých paketoch (..1. ... = More fragments: Set). K fragmentácii mohlo dôjsť z dôvodu veľkosti daných paketov. Z wiresharku je možné vidieť, že veľkosť paketov predstavuje **1518 B** čo podľa zdroja³ predstavuje maximálnú veľkosť ethernetového paketu, avšak **MTU** niektorej

¹https://bit.ly/3s9qhNs

²https://bit.ly/3daY1WB

³https://bit.ly/3d51iGJ

linky na sieti môže byť nastavené na štandardnú hodnotu **1500 B**, čo v konečnom dôsledku zapríčiní fragmentáciu jednotlivých paketov. Rovnako veľkosť ECHO paketu dátovej časti je **5008 B**.

 V paketoch 10 a 11 sa znovu jedná o ARP request a ARP reply. Rovnako nastáva fragmentácia z dôvodu veľkej dátovej časti ECHO request paketu

Obr. 2: Protocol Hierarchy Statistics IPv4

- Z ukážky 2 vyplýva, že boli prenesené **3 ECHO** pakety avšak vď aka fragmentovanému stavu ich celkovo bolo **18**.
- Veľkosť ECHO paketov bola dohromady 15 000 B = 15 kB.
- Prenášané dáta neboli žiadnym spôsobom zabezpečené.
- Rýchlosti prenosu je možné vidieť na grafe 3.

Obr. 3: I/O Graphs IPv4

2.2 Záznamy 23-46 - ECHO IPv6

Na nasledujúcom obrázku 4 je možné vidieť záznamy 23-46, ktoré budú analyzované v tejto sekcii.

23 *REF*	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=0 more=y ident=0xa68f4557 nxt=17)
24 0.000123	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=1448 more=y ident=0xa68f4557 nxt=17)
25 0.000252	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=2896 more=y ident=0xa68f4557 nxt=17)
 26 0.000382 	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	ECHO	730 Request
27 0.027238	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=0 more=y ident=0x18485103 nxt=17)
28 0.027373	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=1448 more=y ident=0x18485103 nxt=17)
29 0.027503	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=2896 more=y ident=0x18485103 nxt=17)
30 0.027581	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	ECHO	730 Response
31 0.999972	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=0 more=y ident=0x8c7cd8e0 nxt=17)
32 1.000094	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=1448 more=y ident=0x8c7cd8e0 nxt=17)
33 1.000223	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=2896 more=y ident=0x8c7cd8e0 nxt=17)
34 1.000351	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	ECHO	730 Request
35 1.015149	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=0 more=y ident=0x904a8ced nxt=17)
36 1.017546	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=1448 more=y ident=0x904a8ced nxt=17)
37 1.019943	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=2896 more=y ident=0x904a8ced nxt=17)
38 1.021022	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	ECHO	730 Response
39 1.999972	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=0 more=y ident=0x8ed0be55 nxt=17)
40 2.000094	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=1448 more=y ident=0x8ed0be55 nxt=17)
41 2.000229	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	IPv6	1514 IPv6 fragment (off=2896 more=y ident=0x8ed0be55 nxt=17)
42 2.000360	2001:cafe:beef:1:200:ff:fe00:1	2001:cafe:beef:3:200:ff:fe00:a	ECHO	730 Request
43 2.015149	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=0 more=y ident=0x8561df05 nxt=17)
44 2.017546	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=1448 more=y ident=0x8561df05 nxt=17)
45 2.019943	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	IPv6	1514 IPv6 fragment (off=2896 more=y ident=0x8561df05 nxt=17)
46 2.021022	2001:cafe:beef:3:200:ff:fe00:a	2001:cafe:beef:1:200:ff:fe00:1	ECHO	730 Response

Obr. 4: Záznamy 23-46

- V tejto komunikácii figuruje sieťový protokol IPv6 a ICMPv6, transportný protokol UDP.
- Protokol **UDP** využíva pri komunikácii porty **49 153** (pre klienta) a port **7** (pre server)⁴.
 - port 49 153 (source port) je dynamicky volený port pre klienta, zároveň je to prvý voľný port v rozsahu 49152–65535.
 - port 7 (destination port) patrí medzi tzv. Well-known ports, je to štandardný protokol, ktorý odpovedá UDP ECHO protokolu.
- IPv6 adresy komunikujúcich strán:
 - Klient: 2001:cafe:beef:1:200:ff:fe00:1 \rightarrow MAC 00:00:00:00:00:01
 - Server: 2001:cafe:beef:3:200:ff:fe00:a \rightarrow MAC 00:00:00:00:00:04
- Priebeh komunikácie: IPv6 komunikácia sa skladá z ECHO REQUEST paketov, ktorých dátová časť (payload) predstavuje 5000 B. Dátová časť je príliš veľká a prekračuje veľkosť MTU čo má za následok opätovnú fragmentáciu ako v prípade ECHO IPv4 2.1. Komunikácia medzi zariadeniami prebieha nasledovne: klient odošle ECHO Request na server, avšak payload je príliš veľký tak sa sa správa fragmentuje na viacero paketov viď 5 (pakety sú znovu poskladané na strane serveru). Následne server odpovie pomocou ECHO Response (pakety sú poskladané na strane klienta), fragmentácia nastáva z rovnakého dôvodu. Následne sa tento proces zopakuje ešte dvakrát.

```
Source Address: 2001:cafe:beef:1:200:ff:fe00:1
  Destination Address: 2001:cafe:beef:3:200:ff:fe00:a
  [Source SA MAC: 00:00:00_00:00:01 (00:00:00:00:00:01)]
  [Destination SA MAC: 00:00:00 00:00:0a (00:00:00:00:00:0a)]
Fragment Header for IPv6
    Next header: UDP (17)
     Reserved octet: 0x00
    0001 0000 1111 1... = Offset: 543 (4344 bytes)
.... ... .00. = Reserved bits: 0
    .... .... ...0 = More Fragments: No Identification: 0xa68f4557
Y [4 IPv6 Fragments (5008 bytes): #23(1448), #24(1448), #25(1448), #26(664)]
     [Frame: 23, payload: 0-1447 (1448 bytes)]
     [Frame: 24, payload: 1448-2895 (1448 bytes)]
     [Frame: 25, payload: 2896-4343 (1448 bytes)]
     [Frame: 26, payload: 4344-5007 (664 bytes)]
     [Fragment count: 4]
     [Reassembled IPv6 length: 5008]
```

Obr. 5: Paket č. 26

⁴https://bit.ly/3s8KNhi

• Objem dát predstavuje 6 prenesených ECHO paketov, ktoré boli celkovo fragmentované na 24 paketov viď 6.

Obr. 6: Protocol Hierarchy Statistics IPv6

• Prenosová rýchlosť je znázornená na grafe 7.

Obr. 7: I/O Graphs IPv6

- Dáta rovnako ako v prípade IPv4 nie sú zabezpečené.
- Obsah dátovej časti v prípade ECHO Requestu činí 5000 B a je fragmentovaná na 3 pakety 23-25 viď. 5.
 V prípade ECHO Response nastáva podobný jav.

2.3 Záznamy 47-82 - DNS (UDP + TCP)

Na nasledujúcom obrázku 8 je možné vidieť záznamy 47-82, ktoré budú analyzované v tejto sekcii.

47 *REF*	10.0.2.15	9.9.9.9	DNS	81 Standard query 0x0000 A airbnb.com OPT
48 0.503268	9.9.9.9	10.0.2.15	DNS	129 Standard query response 0x0000 A airbnb.com A 54.82.106.203 A 52.202.116.246 A 34.193.147.255 OPT
49 4.934543	10.0.2.15	9.9.9.9	DNS	81 Standard query 0x0000 RRSIG airbnb.com OPT
50 4.960608	9.9.9.9	10.0.2.15	DNS	150 Standard query response 0x0000 RRSIG airbnb.com SOA ns1.p74.dynect.net OPT
51 7.714297	10.0.2.15	9.9.9.9	DNS	81 Standard query 0x0000 DNSKEY airbnb.com OPT
52 7.882571	9.9.9.9	10.0.2.15	DNS	146 Standard query response 0x0000 DNSKEY airbnb.com SOA dns1.p08.nsone.net OPT
53 12.547987	10.0.2.15	9.9.9.9	TCP	66 50181 → 53 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
54 12.576450	9.9.9.9	10.0.2.15	TCP	60 53 → 50181 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
55 12.576517	10.0.2.15	9.9.9.9	TCP	54 50181 → 53 [ACK] Seq=1 Ack=1 Win=64240 Len=0
56 12.576711	10.0.2.15	9.9.9.9	DNS	95 Standard query 0x0000 DNSKEY airbnb.com OPT
57 12.576875	9.9.9.9	10.0.2.15	TCP	60 53 → 50181 [ACK] Seq=1 Ack=42 Win=65535 Len=0
58 12.747022	9.9.9.9	10.0.2.15	DNS	160 Standard query response 0x0000 DNSKEY airbnb.com SOA dns1.p08.nsone.net OPT
59 12.747124	10.0.2.15	9.9.9.9	TCP	54 50181 → 53 [FIN, ACK] Seq=42 Ack=107 Win=64134 Len=0
60 12.747346	9.9.9.9	10.0.2.15	TCP	60 53 → 50181 [ACK] Seq=107 Ack=43 Win=65535 Len=0
61 12.776260	9.9.9.9	10.0.2.15	TCP	60 53 → 50181 [FIN, ACK] Seq=107 Ack=43 Win=65535 Len=0
62 12.776310	10.0.2.15	9.9.9.9	TCP	54 50181 → 53 [ACK] Seq=43 Ack=108 Win=64134 Len=0
63 15.036140	10.0.2.15	9.9.9.9	TCP	66 50182 → 53 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
64 15.066385	9.9.9.9	10.0.2.15	TCP	60 53 → 50182 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
65 15.066459	10.0.2.15	9.9.9.9	TCP	54 50182 → 53 [ACK] Seq=1 Ack=1 Win=64240 Len=0
66 15.066581	10.0.2.15	9.9.9.9	DNS	95 Standard query 0x0000 RRSIG airbnb.com OPT
67 15.066702	9.9.9.9	10.0.2.15	TCP	60 53 → 50182 [ACK] Seq=1 Ack=42 Win=65535 Len=0
68 15.078357	9.9.9.9	10.0.2.15	DNS	160 Standard query response 0x0000 RRSIG airbnb.com SOA dns1.p08.nsone.net OPT
69 15.078452	10.0.2.15	9.9.9.9	TCP	54 50182 → 53 [FIN, ACK] Seq=42 Ack=107 Win=64134 Len=0
70 15.078634	9.9.9.9	10.0.2.15	TCP	60 53 → 50182 [ACK] Seq=107 Ack=43 Win=65535 Len=0
71 15.096605	9.9.9.9	10.0.2.15	TCP	60 53 → 50182 [FIN, ACK] Seq=107 Ack=43 Win=65535 Len=0
72 15.096670	10.0.2.15	9.9.9.9	TCP	54 50182 → 53 [ACK] Seq=43 Ack=108 Win=64134 Len=0
73 18.025827	10.0.2.15	9.9.9.9	TCP	66 50183 → 53 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
74 18.056331	9.9.9.9	10.0.2.15	TCP	60 53 → 50183 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
75 18.056412	10.0.2.15	9.9.9.9	TCP	54 50183 → 53 [ACK] Seq=1 Ack=1 Win=64240 Len=0
76 18.056554	10.0.2.15	9.9.9.9	DNS	95 Standard query 0x0000 A airbnb.com OPT
77 18.056705	9.9.9.9	10.0.2.15	TCP	60 53 → 50183 [ACK] Seq=1 Ack=42 Win=65535 Len=0
78 18.224889	9.9.9.9	10.0.2.15	DNS	143 Standard query response 0x0000 A airbnb.com A 34.193.147.255 A 54.82.106.203 A 52.202.116.246 OPT
79 18.225009	10.0.2.15	9.9.9.9	TCP	54 50183 → 53 [FIN, ACK] Seq=42 Ack=90 Win=64151 Len=0
80 18.225143	9.9.9.9	10.0.2.15	TCP	60 53 → 50183 [ACK] Seq=90 Ack=43 Win=65535 Len=0
81 18.246301	9.9.9.9	10.0.2.15	TCP	60 53 → 50183 [FIN, ACK] Seq=90 Ack=43 Win=65535 Len=0
82 18.246356	10.0.2.15	9.9.9.9	TCP	54 50183 → 53 [ACK] Seq=43 Ack=91 Win=64151 Len=0

Obr. 8: Záznamy 47-82

- V tejto komunikácii figuruje aplikačný protokol **DNS**, transportný protokol **TCP** a **UDP**.
- Protokol UDP (DNS) využíva pri komunikácii na strane klienta dynamické porty z rozsahu 49152-65535.
 Príklad na tento port je 55848 (klient, paket 48). Na strane serveru je to port 53, ktorý zodpovedá službe DNS⁵.
- V prípade TCP klient využíva dynamický port 50181 (paket 53), server využíva port 53 (štandardný port pre DNS rovnako ako v prípade UDP komunikácie⁶).
- IPv4 adresy komunikujúcich strán:
 - Klient: 10.0.2.15 \rightarrow MAC 08:00:27:08:94:4e
 - **Server**: 9.9.9.9 \rightarrow MAC 52:54:00:12:35:02
- Priebeh komunikácie: Komunikácia prebieha pomocou protokolov TCP a UDP.

- UDP:

- * Klient 10.0.2.15 odošle DNS dotaz typu **A** (Dotazuje sa na IP adresu) na DNS server 9.9.9.9. Konkrétne sa dotazuje na IP adresu webovej stránky airbnb.com.
- * Následne server odpovedá a zasiela ako odpoveď IP adresy webu airbnb.com.
- * V ďalšom kroku znovu prebehne komunikácia medzi klientom a serverom, len s tým rozdielom, že komunikácia je zašifrovaná (Resource Record Signature **RRSIG**).
- * Posledným dotazom je dotaz **DNSKEY**, v ktorom sa klient pýta serveru na verejný kľúč. Server následne odpovie a zašle potrebné informácie.

- TCP

- * Komunikácia prebieha obdobným spôsobom, len s tým rozdielom, že v prípade TCP pred DNS dotazom nastane **3-way handshake**, rovnako pri ukončení spojenia **4-way handshake**.
- * Rovnako TCP komunikácia obsahuje aj potvrdzovacie ACK pakety.

⁵https://bit.ly/3sdmL10

 $^{^6}$ https://bit.ly/3mHJ5lD ightarrow služba DNS využíva transportný protokol ako TCP tak aj UDP

2.4 Záznamy 83-104 - DNS (pokračovanie)

Na nasledujúcom obrázku 9 je možné vidieť záznamy 83-104, ktoré budú analyzované v tejto sekcii.

83 *REF*	135.76.93.254	135.76.186.134	DNS	70 Standard query 0xcc1f A airbnb.com
84 0.031081	135.76.93.254	135.76.1.134	DNS	70 Standard query 0xcc1f A airbnb.com
85 0.160010	135.76.186.134	135.76.93.254	DNS	118 Standard query response 0xcc1f A airbnb.com A 54.82.106.203 A 34.193.147.255 A 52.202.116.246
86 0.174675	135.76.1.134	135.76.93.254	DNS	118 Standard query response 0xcc1f A airbnb.com A 34.193.147.255 A 52.202.116.246 A 54.82.106.203
87 0.174701	135.76.93.254	135.76.1.134	ICMP	146 Destination unreachable (Port unreachable)
88 0.530489	135.76.93.254	135.76.186.134	DNS	74 Standard query 0xf17d A www.airbnb.com
89 0.561938	135.76.93.254	135.76.1.134	DNS	74 Standard query 0xf17d A www.airbnb.com
90 0.715777	135.76.186.134	135.76.93.254	DNS	230 Standard query response 0xf17d A www.airbnb.com CNAME san1.airbnb.com.edgekey.net CNAME e111434.a.akamaiedge.net A
91 0.804393	135.76.1.134	135.76.93.254	DNS	230 Standard query response 0xf17d A www.airbnb.com CNAME san1.airbnb.com.edgekey.net CNAME e111434.a.akamaiedge.net A
92 1.004069	135.76.93.254	135.76.186.134	DNS	80 Standard query 0x91e6 AAAA pxyapp.proxy.att.com
93 1.034701	135.76.93.254	135.76.1.134	DNS	80 Standard query 0x91e6 AAAA pxyapp.proxy.att.com
94 1.040836	135.76.186.134	135.76.93.254	DNS	179 Standard query response 0x91e6 AAAA pxyapp.proxy.att.com CNAME lbv-135-28-13-12.pmtr.west.att.com SOA ns0.sldc.sbc.
95 1.042145	135.76.93.254	135.76.186.134	DNS	83 Standard query 0x28b6 AAAA operations.intl.att.com
96 1.072780	135.76.93.254	135.76.1.134	DNS	83 Standard query 0x28b6 AAAA operations.intl.att.com
97 1.077679	135.76.1.134	135.76.93.254	DNS	179 Standard query response 0x91e6 AAAA pxyapp.proxy.att.com CNAME lbv-135-28-13-12.pmtr.west.att.com SOA ns0.sldc.sbc.
98 1.077707	135.76.93.254	135.76.1.134	ICMP	207 Destination unreachable (Port unreachable)
99 1.077891	135.76.186.134	135.76.93.254	DNS	138 Standard query response 0x28b6 AAAA operations.intl.att.com SOA bebrxdc01.intl.att.com
100 1.116859	135.76.1.134	135.76.93.254	DNS	138 Standard query response 0x28b6 AAAA operations.intl.att.com SOA defradc15.intl.att.com
101 1.229790	135.76.93.254	135.76.186.134	DNS	76 Standard query 0x212e A www.airbnb.co.uk
102 1.261171	135.76.93.254	135.76.1.134	DNS	76 Standard query 0x212e A www.airbnb.co.uk
103 1.415612	135.76.186.134	135.76.93.254	DNS	232 Standard query response 0x212e A www.airbnb.co.uk CNAME san1.airbnb.com.edgekey.net CNAME e111434.a.akamaiedge.net
104 1.420606	135.76.1.134	135.76.93.254	DNS	232 Standard query response 0x212e A www.airbnb.co.uk CNAME san1.airbnb.com.edgekey.net CNAME e111434.a.akamaiedge.net

Obr. 9: Záznamy 47-82

- V tejto komunikácii figuruje aplikačný protokol DNS, transportný protokol UDP a seiťový protokol ICMP.
- Rovanko ako v predošlom prípade 2.3 DNS na strane klienta využíva dynamické porty z rozsahu 49125-65535. Na strane serveru využíva dobre známy port **53** (štandardný port pre službu DNS).
- IPv4 adresy komunikujúcich strán:
 - Klient: 135.76.93.254 \rightarrow MAC 00:05:9a:3c:7a:00
 - **Server-1**: 135.76.186.134 \rightarrow MAC 00:11:22:33:44:55
 - Server-2: 135.76.1.134 \rightarrow MAC 00:11:22:33:44:55

- Klient 135.76.93.254 odošle 2 DNS dotazy typu A na serveri 135.76.186.134 a 135.76.1.134, kde sa dotazuje na IPv4 webovej stránky airbnb.com.
- Následne mu serveri odpovedajú a poskytujú radu IP adries, ktoré patria dotazovanej webovej stránke.
- Následne server **135.76.1.134** prestane odpovedať *Destination unreachable* (*Port unreachable*)
- Pakety **88-91** opakujú celý proces znovu.
- V ďalšom kroku klient odošle znovu dotaz na oba serveri, avšak tento raz sa jedná o dotaz typu AAAA. V tomto dotaze sa snaží zistiť IPv6 adresu pre webovú stránku pxyapp.proxy.att.com.
- Server znovu *unreachable* a proces sa opakuje znovu (ď alšie DNS dotazy na airbnb.co.uk).
- Celkovo v komunikácii prebehlo 22 paketov, komunikácia nebola nijakým spôsobom šiforvaná.

2.5 Záznamy 105-200 - ICMP

Na nasledujúcom obrázku 10 je možné vidieť záznamy 105-152, a na obrázku 11 sú zobrazené záznamy 153-200, ktoré budú analyzované v tejto sekcii.

105 *REF*	192.168.1.108	147.229.2.90	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=e870)
106 8.985024	192.168.1.108	147,229,2,90	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=e871)
107 13.835107	192.168.1.108	147.229.2.90	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=e872)
108 18.835040	192.168.1.108	147.229.2.90	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=e873)
109 23.834876	192.168.1.108	147.229.2.90	IPv4	1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=e874)
110 35.620689	192.168.1.108	147.229.2.90	ICMP	43 Echo (ping) request id=0x0001, seq=180/46080, ttl=128 (reply in 111)
111 35.628288	147.229.2.90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=180/46080, ttl=54 (request in 110)
112 36.631365	192.168.1.108	147,229,2,90	ICMP	43 Echo (ping) request id=0x0001, seq=181/46336, ttl=128 (reply in 113)
113 36.638860	147.229.2.90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=181/46336, ttl=54 (request in 112)
114 37,646917	192,168,1,108	147,229,2,90	ICMP	43 Echo (ping) request id=0x0001, seq=182/46592, ttl=128 (reply in 115)
115 37.654587	147.229.2.90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=182/46592, ttl=54 (request in 114)
116 38.662517	192.168.1.108	147.229.2.90	ICMP	43 Echo (ping) request id=0x0001, seq=183/46848, ttl=128 (reply in 117)
117 38,670120	147,229,2,90	192,168,1,108	ICMP	60 Echo (ping) reply id=0x0001, seq=183/46848, ttl=54 (request in 116)
118 39.678171	192.168.1.108	147.229.2.90	ICMP	43 Echo (ping) request id=0x0001, seq=184/47104, ttl=128 (reply in 119)
119 39.685713	147.229.2.90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=184/47104, ttl=54 (request in 118)
120 40,693786	192.168.1.108	147.229.2.90	ICMP	43 Echo (ping) request id=0x0001, seq=185/47360, ttl=128 (reply in 121)
121 40.701368	147.229.2.90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=185/47360, ttl=54 (request in 120)
122 41.709503	192.168.1.108	147,229,2,90	ICMP	43 Echo (ping) request id=0x0001, seq=186/47616, ttl=128 (reply in 123)
123 41.717062	147,229,2,90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=186/47616, ttl=54 (request in 122)
24 42.725060	192.168.1.108	147,229,2,90	ICMP	43 Echo (ping) request id=0x0001, seq=187/47872, ttl=128 (reply in 125)
25 42,732633	147,229,2,90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=187/47872, ttl=54 (request in 124)
26 43.749662	192.168.1.108	147.229.2.90	TCMP	43 Echo (ping) request id=0x0001, seq=188/48128, ttl=128 (reply in 127)
27 43.748312	147.229.2.90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=188/48128, ttl=54 (request in 126)
28 44.756287	192,168,1,108	147.229.2.90	ICMP	43 Echo (ping) request id=0x0001, seq=189/48384, ttl=128 (reply in 129)
29 44.764153	147.229.2.90	192.168.1.108	ICMP	60 Echo (ping) reply id=0x0001, seq=189/48384, ttl=54 (request in 128)
130 58.403658	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=190/48640, ttl=1 (no response found
131 58.403916	192.168.1.1	192,168,1,108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
132 58.404496	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=191/48896, ttl=1 (no response found
133 58.404735	192.168.1.1	192,168,1,108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
34 58,405256	192.168.1.108	147,229,2,90	ICMP	106 Echo (ping) request id=0x0001, seg=192/49152, ttl=1 (no response found
35 58.405501	192.168.1.1	192.168.1.108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
36 58,408997	192,168,1,1	192,168,1,108	ICMP	120 Destination unreachable (Port unreachable)
37 59.923781	192.168.1.1	192.168.1.108	ICMP	120 Destination unreachable (Port unreachable)
38 61.439296	192.168.1.1	192.168.1.108	ICMP	120 Destination unreachable (Port unreachable)
39 63,971849	192,168,1,108	147,229,2,90	ICMP	106 Echo (ping) request id=0x0001, seq=193/49408, ttl=2 (no response found
40 63.973164	100.125.139.2	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
41 63,974607	192.168.1.108	147,229,2,90	ICMP	106 Echo (ping) request id=0x0001, seq=194/49664, ttl=2 (no response found
42 63.975387	100.125.139.2	192,168,1,108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
43 63.976434	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=195/49920, ttl=2 (no response found
44 63.977277	100.125.139.2	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
45 64.987477	192,168,1,108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=196/50176, ttl=3 (no response found
46 64.988666	83.240.3.13	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
47 64,990438	192,168,1,108	147,229,2,90	ICMP	106 Echo (ping) request id=0x0001, sea=197/50432, ttl=3 (no response found
48 64.991554			TCMP	70 Time-to-live exceeded (Time to live exceeded in transit)
48 64.991554 49 64.992777	83.240.3.13 192.168.1.108	192.168.1.108 147.229.2.90	ICMP ICMP	70 Time-to-live exceeded (Time to live exceeded in transit) 106 Echo (ping) request id=0x0001, seq=198/50688, ttl=3 (no response found
49 64.992777	83.240.3.13 192.168.1.108	192.168.1.108 147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=198/50688, ttl=3 (no response found
	83.240.3.13	192.168.1.108		

Obr. 10: Záznamy 105-152

153 66.009472	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=200/51200, ttl=4 (no response found!)
154 66.015806	83.240.2.38	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
155 66.018140	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=201/51456, ttl=4 (no response found!)
156 66.022301	83.240.2.38	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
157 67.034264	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=202/51712, ttl=5 (no response found!)
158 67.039729	83.240.2.37	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
159 67.041823	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=203/51968, ttl=5 (no response found!)
160 67.046083	83.240.2.37	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
161 67.047823	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=204/52224, ttl=5 (no response found!)
162 67.051972	83.240.2.37	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
163 68.065669	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=205/52480, ttl=6 (no response found!)
164 68.071710	91.210.16.191	192.168.1.108	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
165 68.073971	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=206/52736, ttl=6 (no response found!)
166 68.079867	91.210.16.191	192.168.1.108	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
167 68.081856	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=207/52992, ttl=6 (no response found!)
168 68.088525	91.210.16.191	192.168.1.108	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
169 69.097013	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=208/53248, ttl=7 (no response found!)
170 69.104842	195.113.157.161	192.168.1.108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
171 69.107162	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=209/53504, ttl=7 (no response found!)
172 69.115160	195.113.157.161	192.168.1.108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
173 69.117200	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=210/53760, ttl=7 (no response found!)
174 69.125093	195.113.157.161	192.168.1.108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
175 70.128169	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=211/54016, ttl=8 (no response found!)
176 70.135487	213.195.192.106	192.168.1.108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
177 70.137782	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=212/54272, ttl=8 (no response found!)
178 70.145179	213.195.192.106	192.168.1.108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
179 70.147213	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=213/54528, ttl=8 (no response found!)
180 70.154521	213.195.192.106	192.168.1.108	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
181 71.159342	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=214/54784, ttl=9 (no response found!)
182 71.167878	147.229.253.236	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
183 71.170063	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=215/55040, ttl=9 (no response found!)
184 71.178235	147.229.253.236	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
185 71.180080	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=216/55296, ttl=9 (no response found!)
186 71.188852	147.229.253.236	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
187 72.221927	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=217/55552, ttl=10 (no response found!)
188 72.230239	147.229.253.96	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
189 72.232452	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=218/55808, ttl=10 (no response found!)
190 72.240519	147.229.253.96	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
191 72.242684	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=219/56064, ttl=10 (no response found!)
192 72.250815	147.229.253.96	192.168.1.108	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
193 73.268881	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=220/56320, ttl=11 (reply in 194)
194 73.276379	147.229.2.90	192.168.1.108	ICMP	106 Echo (ping) reply id=0x0001, seq=220/56320, ttl=54 (request in 193)
195 73.278624	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=221/56576, ttl=11 (reply in 196)
196 73.286108	147.229.2.90	192.168.1.108	ICMP	106 Echo (ping) reply id=0x0001, seq=221/56576, ttl=54 (request in 195)
197 73.288081	192.168.1.108	147.229.2.90	ICMP	106 Echo (ping) request id=0x0001, seq=222/56832, ttl=11 (reply in 198)
198 73.295777	147.229.2.90	192.168.1.108	ICMP	106 Echo (ping) reply id=0x0001, seq=222/56832, ttl=54 (request in 197)
199 157.012471	192.168.1.108	103.248.176.78	ICMP	1042 Echo (ping) request id=0x0001, seq=223/57088, ttl=128 (reply in 200)
200 157.295425	103.248.176.78	192.168.1.108	ICMP	1042 Echo (ping) reply id=0x0001, seq=223/57088, ttl=46 (request in 199)

Obr. 11: Záznamy 153-200

• V tejto komunikácii nefiguruje žiadny aplikačný ani transportný protokol, iba sieťový protokol ICMP a IPv4.

• IPv4 adresy komunikujúcich strán:

Klient: 192.168.1.108 → 50:e5:49:38:9d:8f
 Server: 147.229.2.90 → d8:58:d7:00:4f:80

- Úvod komunikácie tvorí fragmentovaný IPv4 provoz, fragmentácia nastala z dôvodu príliš veľkej veľkosti paketu (1514 B), ktorá prekračuje maximálne povolené MTU v sieti.
- Následne pakety 110-129 tvoria štandardný ICMP Request/Reply provoz. Za povšimnutie stojí aj hodnota TTL, ktorá je v prípade ECHO Request 128 a v prípade ECHO Reply je 53.
- V prípade paketu 130 došlo k zmene, hodnota TTL už nie je 128 ale 1. Čo má za následok, že ICMP request sa nedostane za router do siete.
- Tento jav opísaný v predošlom bode je vidieť na paketoch 131, 133 a 134, ktoré sa nemôže dostať z lokálnej siete vďaka nastavenej hodnote TTL=1.
- Pakety 136-138 značia, že lokálny router, ktorého adresa default gateway je 192.168.1.1 nevie kontaktovať cieľovú stanicu.
- Následne na paketoch 139-192 môžme pozorovať postupné navyšovanie hodnoty TTL (z hodnoty 2 na hodnotu 10).
- Na záver v paketoch 193-157 sa táto hodnota navýši na hodnotu TTL = 11 a následné ICMP ECHO Request/Reply komunikácia medzi klientom a serverom prebiehajú bez problémov.
- Rýchlosť prenášania paketov je vidieť na grafe 12. Rovnako je vidieť aj "hluchú" časť komunikácie, keď hodnota TTL < 11 a následne sa ku koncu komunikácie prenosová rýchlosť obnovila pre TTL = 11.

Obr. 12: I/O Graphs ICMP

- Objem dát a rýchlosť prenosu je možné vidieť na obrázku 13.
- Je možné vidieť, že bolo celkovo prenesených 96 paketov o veľkosti 17 656 B.

Obr. 13: Protocol Hierarchy Statistics ICMP

2.6 Záznamy 201-210 - komunikácia s webserverom - DNS, TCP

Na nasledujúcom obrázku 14 je možné vidieť záznamy 201-210, ktoré budú analyzované v tejto sekcii.

201 *REF*	192.168.110.142	146.230.254.16	TCP	66 52297 → 53 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
202 0.191498	146.230.254.16	192.168.110.142	TCP	60 53 → 52297 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460
203 0.191581	192.168.110.142	146.230.254.16	TCP	54 52297 → 53 [ACK] Seq=1 Ack=1 Win=64240 Len=0
204 0.191842	192.168.110.142	146.230.254.16	DNS	99 Standard query 0x850c A xnmgbaam7a8h OPT
205 0.191936	146.230.254.16	192.168.110.142	TCP	60 53 → 52297 [ACK] Seq=1 Ack=46 Win=64240 Len=0
206 0.384256	146.230.254.16	192.168.110.142	DNS	99 Standard query response 0x850c Server failure A xnmgbaam7a8h OPT
207 0.384477	192.168.110.142	146.230.254.16	TCP	54 52297 → 53 [FIN, ACK] Seq=46 Ack=46 Win=64195 Len=0
208 0.384664	146.230.254.16	192.168.110.142	TCP	60 53 → 52297 [ACK] Seq=46 Ack=47 Win=64239 Len=0
209 0.575904	146.230.254.16	192.168.110.142	TCP	60 53 → 52297 [FIN, PSH, ACK] Seq=46 Ack=47 Win=64239 Len=0
210 0.575947	192.168.110.142	146.230.254.16	TCP	54 52297 → 53 [ACK] Seq=47 Ack=47 Win=64195 Len=0

Obr. 14: Záznamy 201-210

- V tejto komunikácii figuruje aplikačný protokol **DNS** a transportný protokol **TCP**.
- IPv4 adresy komunikujúcich strán:
 - Klient: 192.168.110.142 \rightarrow MAC: 00:0c:29:fb:b6:1f
 - Server: 146.230.254.16 \rightarrow MAC: 00:50:56:fa:12:6a
- Na strane klienta sú využívané dynamické porty z rozsahu 49125-65535. Na strane serveru štandardný port pre DNS 53.
- Priebeh komunikácie:
 - V prípade TCP prenosu sa komunikácia nadväzuje štandardným 3-way handshake procesom⁷.
 - Paket 204 žiada DNS dotazom (dotaz typu A) server o IP adresu hosta xn-mgbaam7a8h.
 - Paket **205** je **TCP ACK** správa zo strany serveru klientovi.
 - Nasleduje odpoveď zo strany serveru, že daného hosta nepozná
 - V poslednom kroku sa ukončí TCP spojenie pomocou 4-way hanshake.
 - Hľadané doménové meno xn-mgbaam7a8h zodpovedá arabskému znaku (neviem ho vysádzať), po preklade do slovenského jazyka naberá význam Emiráty.

https://bit.ly/3g8Xw18

Obr. 15: .xn-mgbaam7a8h

2.7 Záznamy 211-228 - komunikácia s webserverom - TCP, HTTP

Na nasledujúcom obrázku 16 je možné vidieť záznamy 211-228, ktoré budú analyzované v tejto sekcii.

211 *REF*	192.168.1.169	147.229.71.65	TCP	66 63184 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
212 0.000002	192.168.1.169	147.229.71.65	TCP	66 63185 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
213 0.031980	147.229.71.65	192.168.1.169	TCP	68 80 → 63185 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=64 SACK_PERM=1
214 0.031981	147.229.71.65	192.168.1.169	TCP	68 80 → 63184 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=64 SACK_PERM=1
215 0.032128	192.168.1.169	147.229.71.65	TCP	54 63185 → 80 [ACK] Seq=1 Ack=1 Win=262144 Len=0
216 0.032203	192.168.1.169	147.229.71.65	TCP	54 63184 → 80 [ACK] Seq=1 Ack=1 Win=262144 Len=0
217 0.033480	192.168.1.169	147.229.71.65	HTTP	472 GET /~xstodu07/ HTTP/1.1
218 0.043888	147.229.71.65	192.168.1.169	HTTP	649 HTTP/1.1 200 OK (text/html)
219 0.043962	192.168.1.169	147.229.71.65	TCP	54 63185 → 80 [ACK] Seq=419 Ack=596 Win=261376 Len=0
220 0.188550	192.168.1.169	147.229.71.65	TCP	66 63186 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
221 0.188879	192.168.1.169	147.229.71.65	TCP	66 63187 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
222 0.211867	147.229.71.65	192.168.1.169	TCP	68 80 → 63186 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=64 SACK_PERM=1
223 0.211867	147.229.71.65	192.168.1.169	TCP	68 80 → 63187 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=64 SACK_PERM=1
224 0.211995	192.168.1.169	147.229.71.65	TCP	54 63186 → 80 [ACK] Seq=1 Ack=1 Win=262144 Len=0
225 0.212087	192.168.1.169	147.229.71.65	TCP	54 63187 → 80 [ACK] Seq=1 Ack=1 Win=262144 Len=0
226 0.212396	192.168.1.169	147.229.71.65	HTTP	406 GET /favicon.ico HTTP/1.1
227 0.224457	147.229.71.65	192.168.1.169	HTTP	667 HTTP/1.1 404 Not Found (text/html)
228 0.224574	192.168.1.169	147.229.71.65	TCP	54 63186 → 80 [ACK] Seq=353 Ack=614 Win=261376 Len=0

Obr. 16: Záznamy 221-228

- V tejto komunikácii figuruje aplikačný protokol **HTTP** a transportný protokol **TCP**.
- Na strane **klienta** sú využívané dynamické porty z rozsahu **49125-65535**. Na strane **serveru** štandardný port pre HTTP **80**.
- IPv4 adresy komunikujúcich strán:
 - Klient: 192.168.1.169 → MAC: 10:02:b5:54:8f:c1
 Server: 147.229.71.65 → MAC: 50:d4:f7:ca:f4:00

- Komunikácia sa v prípade transportného protokolu TCP zaháji štandardne pomocou 3-way handshake procesu. Sú odoslané dva SYN pakety na server, následne klient obdrží dva SYN, ACK. V poslednom kroku klient odošle na server dva SYN pakety čím otvára spojenie.
- V pakete 217 klient odošle na server HTTP GET požiadavku. Detail tejto požiadavky je možné vidieť na obrázku 17

```
Hypertext Transfer Protocol
  GET /~xstodu07/ HTTP/1.1\r\n
     [Expert Info (Chat/Sequence): GET /~xstodu07/ HTTP/1.1\r\n]
        [GET /~xstodu07/ HTTP/1.1\r\n]
         [Severity level: Chat]
        [Group: Sequence]
     Request Method: GET
     Request URI: /~xstodu07/
     Request Version: HTTP/1.1
   Accept: text/html, application/xhtml+xml, image/jxr, */*\r\n
   Accept-Language: en-US,en;q=0.7,cs;q=0.3\r\n
   User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; ATT-IE11; rv:11.0) like Gecko\r\n
   Accept-Encoding: gzip, deflate, peerdist\r\n
   Host: www.stud.feec.vutbr.cz\r\n
   Connection: Keep-Alive\r\n
   X-P2P-PeerDist: Version=1.1\r\n
   X-P2P-PeerDistEx: MinContentInformation=1.0, MaxContentInformation=2.0\r\n
   [Full request URI: http://www.stud.feec.vutbr.cz/~xstodu07/]
   [HTTP request 1/1]
   [Response in frame: 218]
```

Obr. 17: Detail HTTP GET

- V GET requeste sa nachádzajú detaily požiadavky na server.
- Je možné vidieť aj Full request URI: http://www.stud.feec.vutbr.cz/~xstodu07/.
- Po otvorení tohto URI nastane presmerovanie na "tajnú" stránku viď 18.

Obr. 18: Tajná stránka

- na tejto stránke sa nachádza odkaz na formulár⁸ za bonusové body ¨.
- Paketom **218** server potvrdzuje požiadavku (200 OK).
- Paket 226 predstavuje GET request na prvok favicon.ico. URI na tento prvok⁹ sa nachádza opäť v detailoch paketu.
 - * Otvorenie tohto odkazuje je zamietnuté (404 Not Found), avšak ako vidieť na obrázku 19, odhaľuje verziu *Apache* a verziu *PHP*, ktorá je nainštalovaná na serveri jedná sa o bezpečnostné riziko.

Obr. 19: Potenciálne bezpečnostné riziko

⁸https://bit.ly/2RofSRc

⁹https://bit.ly/3tjW9QP

2.8 Záznamy 229-238 - Protokol QUIC

Na nasledujúcom obrázku 20 je možné vidieť záznamy 229-238, ktoré budú analyzované v tejto sekcii.

229 *REF*	10.0.2.15	216.58.201.67	Long Header	QUIC	1392 Initial, DCID=fdeda346e620e2b0, PKN: 1, CRYPTO, PADDING
230 0.000427	10.0.2.15	216.58.201.67	Long Header	QUIC	121 0-RTT, DCID=fdeda346e620e2b0
231 0.023875	216.58.201.67	10.0.2.15	Long Header	QUIC	1392 Initial, SCID=fdeda346e620e2b0, PKN: 1, ACK, CRYPTO, PADDING
232 0.024080	216.58.201.67	10.0.2.15	Long Header	QUIC	278 Handshake, SCID=fdeda346e620e2b0
233 0.024080	216.58.201.67	10.0.2.15	Short Header	QUIC	103 Protected Payload (KPO)
234 0.024523	10.0.2.15	216.58.201.67	Long Header	QUIC	120 Handshake, DCID=fdeda346e620e2b0
235 0.024693	216.58.201.67	10.0.2.15	Short Header	QUIC	654 Protected Payload (KPO)
236 0.025222	10.0.2.15	216.58.201.67	Short Header	QUIC	75 Protected Payload (KP0), DCID=fdeda346e620e2b0
237 0.030802	216.58.201.67	10.0.2.15	Short Header	QUIC	124 Protected Payload (KPO)
238 0.063644	10.0.2.15	216.58.201.67	Short Header	QUIC	75 Protected Payload (KP0), DCID=fdeda346e620e2b0

Obr. 20: Záznamy 229-238

- V tejto komunikácii figuruje aplikačný protokol QUIC a transportný protokol UDP.
- Na strane klienta sú využívané dynamické porty z rozsahu 49125-65535. Na strane serveru štandardný port pre HTTPS 443.
- IPv4 adresy komunikujúcich strán:
 - Klient: 10.0.2.15 \rightarrow MAC: 08:00:27:08:94:4e
 - Server: 216.58.201.57 \rightarrow MAC: 52:54:00:12:35:02

- Komunikácia prebieha štandardne pre protokol QUIC.
- V prvom rade bolo pomocou paketov typu **Long Header** naviazané spojenie a prebehol handshake.
- Následne po naviazaní spojenia klient začne komunikovať pomocou Short Header paketov.
- Objem dát a rýchlosť prenosu je možné vidieť na obrázku 21.
 - Ceľkovo bolo prenesených 10 paketov rýchlosťou 544 kbit/s. Podieľ QUIC pri komunikácii tvorí 3914 B

Obr. 21: Protokol Hierarchy Statistics QUIC

- **Bezpečnosť prenášaných dát**: Všetky prenášané dáta sú zašifrované symetrickou blokovou šifrou AES viď. 22.
- Obsah dátovej časti: V programe nie je možné zobraziť dátovú časť, práve z dôvodu, že wireshark zachytáva už zašifrované dáta. Ak by bolo potrebné zachytit nešifrovanú komunikáciu je to možné pomocou nástroja net-export.

```
▼ TLSv1.3 Record Layer: Handshake Protocol: Server Hello
     Frame Type: CRYPTO (0x000000000000000)
     Offset: 0
     Length: 96
     Crypto Data
    Handshake Protocol: Server Hello
       Handshake Type: Server Hello (2)
        Length: 92
        Version: TLS 1.2 (0x0303)
        Random: a613b9e6bdb550e4392b42a37bc1e15ff4d7fdb72251c97df9ac6af651530330
        Session ID Length: 0
       Cipher Suite: TLS_AES_128_GCM_SHA256 (0x1301)
        Compression Method: null (0)
        Extensions Length: 52
     > Extension: pre_shared_key (len=2)
     > Extension: key_share (len=36)
     > Extension: supported_versions (len=2)
```

Obr. 22: Handshake Protocol

2.9 Záznamy 239-439 - Protokol TCP

Na nasledujúcom obrázku 23 je možné vidieť snippet zo záznamov 239-439, ktoré budú analyzované v tejto sekcii.

239 *REF*	192.168.204.130	192.168.204.1	TCP	66 49732 → 5201 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
240 0.000448	192.168.204.1	192.168.204.130	TCP	66 5201 → 49732 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1
241 0.000506	192.168.204.130	192.168.204.1	TCP	54 49732 → 5201 [ACK] Seq=1 Ack=1 Win=262656 Len=0
242 0.000645	192.168.204.130	192.168.204.1	TCP	91 49732 → 5201 [PSH, ACK] Seq=1 Ack=1 Win=262656 Len=37
243 0.002920	192.168.204.1	192.168.204.130	TCP	1514 5201 → 49732 [ACK] Seq=1 Ack=38 Win=1051136 Len=1460
244 0.002920	192.168.204.1	192.168.204.130	TCP	1514 5201 → 49732 [ACK] Seq=1461 Ack=38 Win=1051136 Len=1460
245 0.002920	192.168.204.1	192.168.204.130	TCP	1514 5201 → 49732 [ACK] Seq=2921 Ack=38 Win=1051136 Len=1460
246 0.002920	192.168.204.1	192.168.204.130	TCP	1514 5201 → 49732 [ACK] Seq=4381 Ack=38 Win=1051136 Len=1460
247 0.002920	192.168.204.1	192.168.204.130	TCP	1514 5201 → 49732 [ACK] Seq=5841 Ack=38 Win=1051136 Len=1460
248 0.002920	192.168.204.1	192.168.204.130	TCP	1514 5201 → 49732 [ACK] Seq=7301 Ack=38 Win=1051136 Len=1460
249 0.002920	192.168.204.1	192.168.204.130	TCP	1514 5201 → 49732 [ACK] Seg=8761 Ack=38 Win=1051136 Len=1460

Obr. 23: Záznamy 239-249

- V tejto komunikácii figuruje transportný protokol TCP.
- Na strane **klienta** sú využívané dynamické porty z rozsahu 49125-65535 konkrétne **49 732**. Na strane serveru je využívaný port **5201**, ktorý podľa zdroja¹⁰ patrí aplikácii *Iperf*¹¹.
- IPv4 adresy komunikujúcich strán:
 - Klient: 192.168.204.130 → MAC: 00:0c:29:6f:52:b6
 Server: 192.168.204.130 → MAC: 00:50:56:c0:00:08
- Priebeh komunikácie:
 - Pakety 239-242 pomocou 3-way handshak procesu sa otvorí spojenie.
 - Komunikácia sa javí byť bezproblémová, server pravidelne bez retransmisií posiela pakety klientovi, ktorý mu v pravideľných intervaloch odpovedá **ACK** správou.
 - Na grafe 24 je možné vidieť ako sa postupne zvyšovali hodnoty sekvenčných čísel. Nárast je viacmenej lineárny bez strát.
 - Na grafe 25 je možné vidieť priepustnosť linky. Z grafu je možné konštatovať, že hodnota je konštantná. Prípadné kolísania sú zapríčínené ACK paketmi zo strany klienta. Postupné utlmenie vidíme v čase $t=2\ s$, keď dochádza k ukončeniu spojenia zo strany klienta pomocou **4-way hanshake** mechanizmu.

¹⁰https://bit.ly/2Q19vDa

¹¹https://bit.ly/3a5ydJt

- Na grafe 26 je možné vidieť ceľkový objem prenesených dát a rýchlosť prenosu. Celkovo bolo prenesených 201 paketov, rýchlosťou 706 kbit/s o celkovej veľkosti 273 071 B.
- Sieťová komunikácia nie je šifrovaná, veľkosť dátovej časti jednotlivých paketov je 1460 B.

Obr. 24: Graf nárastu sekvenčných čísel

Obr. 25: Throughput

Obr. 26: Protocol Hierarchy Statistics - TCP

3 Záver

V tomto projekte bol analyzovaný súbor .pcapng. Súbor bol rozdelený do logických na seba nadväzujúcich celkov, ktoré sú uvedené ako podkapitoly v tejto projektovej dokumentácii. V podkapitole 2.1 boli analyzované pakety 1-22, jednalo sa o ECHO IPv4 komunikáciu. V podkapitole 2.2 boli analyzované pakety 23-46, jednalo sa o ECHO IPv6 komunikáciu. V podkapitole 2.3 boli analyzované pakety 47-82, jednalo sa o DNS komunikáciu, kde figurovalo ako UDP tak aj TCP. V podkapitole 2.4 boli analyzované pakety 83-104, jednalo sa o ďalší typ DNS komunikácie. V podkapitole 2.5 boli analyzované pakety 105-200, jednalo sa o ICMP komunikáciu. V podkapitole 2.6 boli analyzované pakety 201-210, jednalo sa o komunikáciu so serverom pomocou transportného protokolu TCP. Bolo potrebné zistiť význam arabského symbolu, ktorý našiel využitie v ďalšej podkapitole. V podkapitole 2.7 boli analyzované pakety 211-228, jednalo sa o ďalší typ komunikácie so serverom, v tomto prípade figurovali protokoly TCP a HTTP. V tejto podkapitole bolo možné objaviť tajný odkaz z formulárom. V podkapitole 2.8 boli analyzované pakety 229-238, jednalo sa o sieťový protokol transportnej vrstvy - QUIC. V podkapitole 2.9 boli analyzované pakety 239-439, jednalo sa o komunikáciu TCP. Výstupom každej kapitoly sú komentáre, grafy, obrázky a štatistiky. Bola taktiež splnená bonusová úloha, ktorá bola popísaná v podkapitolách 2.6 a 2.7.