

LPDDR4/4X Datasheet

RS512M32LX4D2BNR-53BT

200-Ball

Revision 1.0

Apr. 27. 2023

This document and all information provided herein (collectively, "Information") remains the sole and exclusive property of RAYSON. You must keep all Information in strict confidence and trust, and must not, directly or indirectly, in any way, disclose, make accessible, post on the internet, reveal, report, publish, disseminate or transfer any Information to any third party. You must not reproduce or copy Information, without first obtaining express written permission from RAYSON. You must not use, or allow use of, any Information in any manner whatsoever, except to internally evaluate the information. You must restrict access to Information to those of your employees who have a bonafide need-to-know for such purpose and are bound by obligations at least as restrictive as this clause. In order to receive Information, you must agree to the foregoing and to indemnify RAYSON for any failure to strictly comply therewith. If you do not agree, please do not accept any receipt of Information.

Revision History

Version	Date	Editor
V1.0	2023-4-27	Basic spec and architecture

Notes: This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change at any time without notice, as further product development and data characterization sometimes occur.

Contents

1. Product Overview	4
1.1. Feature Overview	
2. Physical Specifications	
2.1. Function Block Diagram	
2.2. Package ballout & Addressing	
2.3. Pad Definition	
2.4. Discrete Package Dimension	
3. Core Specifications	
3.1. Part Number Decoding	
3.2. Ordering Options	
3.3. Die Addressing Table	
3.4. Mode Register Contens	

1. Product Overview

1.1. Feature Overview

- Ultra-low-voltage core and I/O power supplies
 - $-V_{DD1} = 1.70-1.95V$; 1.80V nominal
 - $-V_{DD2} = 1.06-1.17V$; 1.10V nominal
 - $-V_{DDQ} = 0.57-0.65V$; 0.60V nominal Or $V_{DDQ} = 1.06-1.17V$; 1.10V nominal
- Frequency range
 - 1866-10 MHz (data rate range per pin:3733-20Mbp/s)
- 16n prefetch DDR architecture
- 8 internal banks per channel for concurrent operation
- Single-data-rate CMD / ADR entry
- Bidirectional / differential data strobe per byte lane
- Programmable READ and WRITE latencies (RL / WL)
- Programmable and on-the-fly burst lengths (BL = 16, 32)
- Directed per-bank refresh for concurrent bank operation and ease of command scheduling
- Up to 8.53 GB / s per die x16 channel
- On-chip temperature sensor to control self refresh rate
- Partial-array self refresh (PASR)
- Selectable output drive strength (DS)
- Clock-stop capability
- RoHS-compliant, "green" packaging
- $V_{DD1}/V_{DD2}/V_{DDQ}$: 1.80V/1.10V/0.60V or 1.10V
- Array configuration
 - 512Meg x 32 (2 channels x 16 I/O)
 - 512M16 x 2 die in package
- FBGA "green" package
 - 200-ball FBGA (10mm x15mm x0.85±0.1mm)
- Speed grade, cycle time
 - -535ps@ RL = 32/36
- Operating temperature range

- -25°C to +85°C

2. Physical Specifications

2.1. Function Block Diagram

Dual-Die, Dual-Channel Package, Single-Rank Block Diagram

2.2. Package ballout & Addressing

200-Ball Dual-Channel, Single-Rank Discrete FBGA

	1	2	3	4	5
Α	DNU	DNU	V _{SS}	V_{DD2}	ZQ0
В	DNU	DQ0_A	V_{DDQ}	DQ7_A	V_{DDQ}
С	V _{SS}	DQ1_A	DMI0_A	DQ6_A	V _{SS}
D	V_{DDQ}	V _{SS}	DQS0_t_A	V _{SS}	V_{DDQ}
E	V _{SS}	DQ2_A	DQS0_c_A	DQ5_A	V _{SS}
F	V_{DD1}	DQ3_A	V _{DDQ}	DQ4_A	V_{DD2}
G	V _{SS}	ODT_CA_A	V _{SS}	V_{DD1}	V _{SS}
Н	V_{DD2}	CA0_A	NC	CSO_A	V_{DD2}
J	V _{SS}	CA1_A	V _{SS}	CKEO_A	NC
K	V_{DD2}	V _{SS}	V_{DD2}	V _{SS}	NC

8	9	10	11	12
NC	V_{DD2}	V _{SS}	DNU	DNU
V_{DDQ}	DQ15_A	$V_{\mathtt{DDQ}}$	DQ8_A	DNU
V _{SS}	DQ14_A	DMI1_A	DQ9_A	V _{SS}
V_{DDQ}	V _{SS}	DQS1_t_A	V _{SS}	V_{DDQ}
V _{SS}	DQ13_A	DQS1_c_A	DQ10_A	V _{SS}
V _{DD2}	DQ12_A	V _{DDQ}	DQ11_A	V_{DD1}
V _{SS}	V_{DD1}	V _{SS}	NC	V _{SS}
V_{DD2}	CA2_A	CA3_A	CA4_A	V_{DD2}
CK_t_A	CK_c_A	V _{SS}	CA5_A	V _{SS}
NC	V _{SS}	V_{DD2}	V _{SS}	V_{DD2}

V_{DD2}	V _{SS}	V_{DD2}	V _{SS}	NC
V _{SS}	CA1_B	V _{SS}	CKEO_B	NC
V_{DD2}	CAO_B	NC	CSO_B	V_{DD2}
V _{SS}	ODT_CA_B	V _{SS}	V_{DD1}	V _{SS}
V _{DD1}	DQ3_B	V_{DDQ}	DQ4_B	V_{DD2}
V_{SS}	DQ2_B	DQS0_c_B	DQ5_B	V _{SS}
V_{DDQ}	V _{SS}	DQS0_t_B	V _{SS}	V_{DDQ}
V _{SS}	DQ1_B	DMI0_B	DQ6_B	V _{SS}
DNU	DQ0_B	V_{DDQ}	DQ7_B	V_{DDQ}
DNU	DNU	V _{SS}	V_{DD2}	V _{SS}
1	2	3	4	5

W

AA

ΑB

Top View

2.3. Pad Definition

"_A" and "_B" indicate DRAM channels. "_A" pads are present in all devices while "_B" pads are present in dual channel SDRAM devices only.

LPDDR4X pad definitions are the same as LPDDR4, except ODT_CA pins as described in the following Table

Symbol	Туре	Description
CK_t_A, CK_c_A CK_t_B, CK_c_B	Input	Clock: CK_t and CK_c are differential clock inputs. All address, command and control input signals are sampled on positive edge of CK_t and the negative edge of CK_c.AC timings for CA parameters are referenced to clock. Each channel (A, B) has its own clock pair.
CKEO_A,CKE1_A CKEO_B,CKE1_B	Input	Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, input buffers, and output drivers. Power-saving modes are entered and exited via CKE transitions. CKE is sampled at the rising edge of CK.
CSO_A CSO_B	Input	Chip select: Each channel (A, B) has its own CS signals.
CA[5:0]_A CA[5:0]_B	Input	Command/address inputs: Provide the command and address inputs according to the command truth table. Each channel (A, B) has its own CA signals.
ODT_CA_A ODT_CA_B	Input	LPDDR4X CA ODT Control: The ODT_CA pin is ignored by LPDDR4X devices. CA ODT is fully controlled through MR11 and MR22. The ODT_CA pin shall be connected to a valid logic level.
DQ[15:0]_A DQ[15:0]_B	1/0	Data input/output: Bidirectional data bus.
DQS[1:0]_t_A DQS[1:0]_c_A DQS[1:0]_t_B DQS[1:0]_c_B	1/0	Data strobe: DQS_t and DQS_c are bidirectional differential output clock signals used to strobe data during a READ or WRITE. The data strobe is generated by the DRAM for a READ and is edge-aligned with data. The data strobe is generated by the SoC memory controller for a WRITE and is trained to precede data. Each byte of data has a data strobe signal pair. Each channel (A, B) has its own DQS_t and DQS_c strobes.
DMI[1:0]_A DMI[1:0]_B	1/0	Data mask/Data bus inversion: DMI is a dual use bidirectional signal used to indicate data to be masked, and data which is inverted on the bus. For data bus inversion(DBI), the DMI signal is driven HIGH when the data on the data bus is inverted, or driven LOW when the data is in its normal state. DBI can be disabled via a mode register setting. For data mask, the DMI signal is used in combination with the data lines to indicate data to be masked in a MASK WRITE command (see the Data Mask (DM) and Data Bus Inversion (DBI) sections for details). The data mask function can be disabled via a mode register setting. Each byte of data has a DMI signal. Each channel has its own DMI signals.

Symbol	Туре	Description
ZQ0, ZQ1	Reference	ZQ calibration reference: Used to calibrate the output drive strength and the termination resistance. The ZQ pin shall be connected to V_{DDQ} through a 240 Ω ±1% resistor.
V_{DDQ} , V_{DD1} , V_{DD2}	Supply	Power supplies: Isolated on the die for improved noise immunity.
V _{SS}	Supply	Ground reference: Power supply ground reference.
RESET_n	Input	RESET: When asserted LOW, the RESET pin resets all channels of the die.
DNU	ı	Do not use: Must be grounded or left floating.
NC	-	No connect: Not internally connected.

2.4. Discrete Package Dimension

10mm X15mm (Package Code: NR)

3. Core Specifications

3.1. Part Number Decoding

3.2. Ordering Options

Table 1: Key Timing Parameters

Clock Rate Data Rate		WRITE Latency		READ Latency		
Speed Grade	(MHz)	(Mb/s/pin)	Set A	Set B	DBI Disabled	DBI Enabled
-53	1866	3733	16	30	32	36

Table 2: Part Number List

Part Number	Total Density	Data Rate	Operating temperature
RS512M32LX4D2BNR-53BT	2GB(16Gb)	3733 Mb/s/pin	-25°C to + 85°C

Table 3: Refresh Requirement Parameters

Parameter	Symbol	8Gb Per Channel	unit
REFRESH cycle time (all banks)	^t RFCab	280	ns
REFRESH cycle time (per bank)	^t RFCpb	140	ns
Per bank refresh to per bank refresh time (different bank)	^t PBR2PBR	90	ns

3.3. Die Addressing Table

	Configuration	512M32 (16Gb/package)	
	Channel A, rank 0	x16 mode × 1 die	
Die Configuration	Channel B, rank 0	x16 mode × 1 die	
	Channel A, rank 1		
	Channel B, rank 1		
	Memory density (per die)	8Gb	
	Memory density (per channel)	8Gb	
	Configuration	64Mb × 16 DQ × 8 banks x 2 channels x1 rank	
	Number of channels (per die)	1	
	Number of banks per channel	8	
	Array prefetch(bits,per channel)	256	
Die Addressing	Number of rows (per channel)	65,536	
Die Addressing	Number of columns (fetch boundaries)	64	
	Page size (bytes)	2048	
	Channel density (bits per channel)	8,589,934,592	
	Total density (bits per die)	8,589,934,592	
	Bank address	BA[2:0]	
	Row address	R[15:0]	
	Column address	C[9:0]	
	Burst starting address boundary	64-bit	

Notes: Note: 1.Refer to Package Block Diagram section and Monolithic Device Addressing section

3.4. Mode Register Contens

	MR0					
OP7						
OP6		OP[0] = 0b: Both legacy and				
OP5		modified refresh mode				
OP4		supported				
OP3		OP[1] = 0b: Device supports normal latency				
OP2		1b: Device supports byte				
OP1	Latency Mode	more latency				
OP0	RFF					

	MR5			
OP7				
OP6				
OP5				
OP4				
OP3	Manufacturer ID	0001 0011b : CX		
OP2				
OP1				
OP0				

MR6				
OP7				
OP6				
OP5				
OP4	Revision ID1	0000 0000b		
OP3	Kevision ID1	0000 00000		
OP2				
OP1				
OP0				

MR8			
OP7	I/O width	OP[7:6] =	
OP6		00b: x16/channel	
OP5	Density		
OP4		OP[5:2] = 0100b:	
OP3		8Gb single-channel die	
OP2			
OP1			
ОРО			

MR13		
OP7		
OP6		
OP5		OP[2] = 0b: Normal
OP4		operation (default)
OP3		1b: Output the $V_{REF(CA)}$ value on DQ7 and $V_{REF(DQ)}$ value on
OP2	VRO	DQ6
OP1		
ОРО		

MR24				
OP7	TRR Mode			
OP6				
OP5				
OP4		OP[3:0] = 1000b: Unlimited MAC		
OP3	Unlimited MAC	OP[7] = 0b: Disable (default) 1b: Reserved		
OP2		23. Neserved		
OP1	MAC Value			
OP0				

Notes: 1. The contents of MR0, MR[6:5], MR8, MR13 and MR24 will reflect information specific to each in these package

2. Other bits not defined above and other mode registers are referred to in Mode Register Assignments and Definitions section.

