These slides are being provided with permission from the copyright for CS2208 use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

Tutorial 03: Addition/Subtraction using 2's Complement

Computer Science Department

CS2208: Introduction to Computer Organization and Architecture

Fall 2022-2023

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: elsakka@csd.uwo.ca

Phone: 519-661-2111 x86996

Binary Arithmetic

☐ These tables cover the fundamental arithmetic operations.

Addition	Subtraction	Multiplication
0 + 0 = 0 (carry 0)	0 - 0 = 0 (borrow 0)	$0 \times 0 = 0$
0 + 1 = 1 (carry 0)	0 - 1 = 1 (borrow 1)	$0 \times 1 = 0$
1 + 0 = 1 (carry 0)	1 - 0 = 1 (borrow 0)	$1 \times 0 = 0$
1 + 1 = 0 (carry 1)	1 - 1 = 0 (borrow 0)	$1 \times 1 = 1$

Addition (three bits)

Subtraction (three bits)

Sign and Magnitude Addition/Subtraction

- The operations are carried out similar to normal math calculations
- The resultant sign is arranged separately
 - \square The sign of A B depends on the values of A and B
 - \square If B > A, the answer will be calculated as -(B A), O.W., it is +(A B)
- The location of the radix points needs to be aligned before performing the operation.
- If the provided number of bits are not enough to hold the result, it means an overflow occurred.

- A subtraction operation is converted to an addition operation (after performing the 2's complement to the operand appearing after the negative sign)
- When adding two *positive* numbers and finding the result is *negative*, this means an *overflow occurred*.
- When adding two *negative* numbers and finding the result is *positive*, this means an *overflow occurred*.
- Overflow will never occur when adding a positive number to a negative number, or vice versa.
- How about
 - □ subtracting a *negative* number from a *positive* number?
 - □ subtracting a *positive* number from a *negative* number?

■ *Example 1*:

Perform $20_{10} - 10_{10}$ using 2's complement 6-bit system

- $20_{10} \rightarrow 10100_2$
- 10_{10} → 1010_2
- $20_{10} 10_{10} \rightarrow 10100_2 1010_2$
 - \rightarrow 010100₂ 001010₂
 - $\rightarrow 010100_2 + (-001010_2)$
- This is the answer in 2's complement
- **→** 010100₂ +
- $^{\circ}$ \rightarrow 001010₂
- This step is not needed. It is just for you to verify. \longrightarrow +10₁₀

 (-001010_2) 110110_2 Overflow can not occur

Carry out

to be

0101002

+110110

1001010,

CS 2208: Introduction to Computer Organization and Architecture

■ *Example 2*:

Perform $10_{10} - 20_{10}$ using 2's complement 6-bit system

- \bullet 10₁₀ \rightarrow 1010₂
- \bullet 20₁₀ \rightarrow 10100₂
- $10_{10} 20_{10} \rightarrow 1010_2 10100_2$
 - \rightarrow 001010₂ 010100₂
 - \rightarrow 001010₂ + (-010100₂)
- This is the answer in 2's complement
- \rightarrow 001010₂ + 101100₂
- **→** 110110₂
- -001010_2

This step is not needed. It is just for you to verify.

→-10₁₀

■ *Example 3*:

Perform $20_{10} + 10_{10}$ using 2's complement 6-bit system

- $20_{10} \rightarrow 10100_2$
- 10_{10} → 1010_2
- $\blacksquare 20_{10} + 10_{10} \rightarrow 10100_2 + 1010_2$

This is the answer in 2's complement

- \rightarrow 010100₂ + 001010₂
- $^{\circ}$ \rightarrow 0111110₂

This step is not needed. It is just for you to verify.

$$\longrightarrow +30_{10}$$

■ *Example 4*:

Perform $-20_{10} - 10_{10}$ using 2's complement 6-bit system

- \bullet 20₁₀ \rightarrow 10100₂
- 10_{10} → 1010_2

$$-20_{10} - 10_{10} \rightarrow -10100_2 - 1010_2$$

$$\rightarrow$$
 -010100₂ - 001010₂

$$\rightarrow$$
 (-010100₂)+ (-001010₂

This is the answer in 2's complement

This step is not

needed. It is just_ for vou to verify.

$$\rightarrow$$
 101100₂+

$$-011110_2$$

$$\rightarrow$$
 -30₁₀

Overflow might occur, but it did not in this case

110110₂

Carry out to be ignored

1111 101100₂ +110110₂ 1100010₃

© Mahmoud R. El-Sakka

CS 2208: Introduction to Computer Organization and Architecture

■ *Example 5*:

Perform $20_{10} + 20_{10}$ using 2's complement 6-bit system

 \bullet 20₁₀ \rightarrow 10100₂

■
$$20_{10} + 20_{10}$$
 → $10100_2 + 10100_2$
→ $010100_2 + 010100_2$

No carry out

Overflow might occur, and indeed it did in this case

- **■** *Example 6*:
 - Perform $-20_{10} 20_{10}$ using 2's complement 6-bit system
- \bullet 20₁₀ \rightarrow 10100₂
- $-20_{10} 20_{10} \rightarrow -10100_2 10100_2$
 - \rightarrow -010100₂ 010100₂
 - \rightarrow (-010100₂)+ (-010100₂) Carry out
 - \rightarrow 101100₂ + 101100₂

Carry out to be ignored

Overflow might occur, and indeed it did in this case

 $\begin{array}{c}
1 & 11 \\
 & 101100_{2} \\
 & +101100_{2} \\
\hline
 & 1011000_{2}
\end{array}$

■ *Example 7*:

Perform $20_{10} - 20_{10}$ using 2's complement 6-bit system

- $\blacksquare 20_{10} \rightarrow 10100_2$
- $20_{10} 20_{10} \rightarrow 10100_2 10100_2$
 - \rightarrow 010100₂ 010100₂
 - \rightarrow 010100₂ + (-010100₂)
 - $\rightarrow 010100_2 + 101100_2$
 - \rightarrow 000000₂
- needed. It is just for you to verify.

This is the answer

in 2's complement

This step is not

■ *Example 8*:

Perform $31_{10} + 1_{10}$ using 2's complement 6-bit system

- \blacksquare 31₁₀ \rightarrow 11111₂

■
$$31_{10} + 1_{10}$$
 \Rightarrow $111111_2 + 1_2$ No carry out

Overflow might occur, and indeed it did in this case

Overflow might occur, and indeed it did in this case

■ *Example 9*:

Perform -31_{10} – 1_{10} using 2's complement 6-bit system

- \blacksquare 31₁₀ \rightarrow 11111₂

Carry out to be ignored

$$-31_{10} - 1_{10} \rightarrow -111111_2 -$$

$$\rightarrow$$
 (-0111111₂) + (-000001₂)

This is the answer in 2's complement

This step is not

needed. It is just,

for vou to verify.

$$\rightarrow$$
 (100001₂) + (111111₂)

$$-100000_2$$

$$\rightarrow$$
 -32₁₀

Overflow might occur, but it did not in this case

© Mahmoud R. El-Sakka

CS 2208: Introduction to Computer Organization and Architecture

■ *Example 10*:

Encode –3.25₁₀ using 2's complement 6-bit system

- \blacksquare 3.25₁₀ \Rightarrow 11.01₂
- $-3.25_{10} \rightarrow -0011.01_2$
 - **→** 1100.11₂

Carry out to be ignored

You can also look at it as if it is -3_{10} -0.25_{10}

- $-3_{10} 0.25_{10} \rightarrow -11_2 0.01_2$
 - \rightarrow $(-000011_2) + (-0000.01_2)$

This is the answer in 2's complement

- \rightarrow (111101₂) + (1111.11₂)
- **→** 111100.11₂

1100.11₂

 -3.25_{10}

Overflow might occur, but it did not in this case

111101.00₂
.+111111.11₂
1111100.11₂

 $C_{out} == C_{in}$

111111

Binary points
MUST be
aligned

CS 2208: Intro- puter Organization and Architecture