Matplotlib:

- Matplotlib is a popular Python library used for creating static, interactive, and animated visualizations in various formats.
- It provides a wide range of tools for visualizing data, from simple line plots to complex 3D visualizations.
- Matplotlib is particularly useful for data exploration, analysis, and presentation.

Installing Matplotlib:

```
pip install matplotlib
```

```
In [2]: 1 !pip install matplotlib ...
```

In [1]: 1 import matplotlib

Some common charts that can be genereted using .

- 1. Line Plot: Display data points connected by lines to show trends.
- 2. Scatter Plot: Display individual data points as dots, useful for spotting relationships.
- 3. Bar Plot: Show categorical data using rectangular bars, good for comparisons.
- 4. Histogram: Visualize frequency distribution of continuous data.
- 5. Pie Chart: Display proportions of parts within a whole.
- 6. Box Plot: Visualize data distribution using quartiles.
- 7. Heatmap: Use colors to represent data values in a 2D matrix.
- 8. Subplots: Create multiple plots within a single figure.

```
In [3]: 1 train = pd.read_csv("Data/train.csv")
2 test = pd.read_csv("Data/test.csv")
3 df1 = pd.concat([train, test], ignore_index=True)
```

In [4]: 1 df1.head()

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Em
0	1	0.0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1.0	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0.0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
4												

In [5]: 1 df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	1309 non-null	int64			
1	Survived	891 non-null	float64			
2	Pclass	1309 non-null	int64			
3	Name	1309 non-null	object			
4	Sex	1309 non-null	object			
5	Age	1046 non-null	float64			
6	SibSp	1309 non-null	int64			
7	Parch	1309 non-null	int64			
8	Ticket	1309 non-null	object			
9	Fare	1308 non-null	float64			
10	Cabin	295 non-null	object			
11	Embarked	1307 non-null	object			
<pre>dtypes: float64(3), int64(4), object(5)</pre>						

memory usage: 122.8+ KB

```
In [6]:
               # Loading 4th data
              df4 = pd.read_csv("Data/sample.csv")
 In [7]:
               df4.head()
 Out[7]:
                name
                           age height weight
           0
                          41.0
                                   74
                                         170
               Aubrey
                       Μ
           1
                          42.0
                                   68
                                         166
                 Ron
           2
                 Carl
                       M 32.0
                                   70
                                         155
           3
              Antonio
                          39.0
                                   72
                                         167
             Deborah
                        F 30.0
                                   66
                                         124
In [38]:
               # Load data from seaborn
              iris_data = sns.load_dataset("iris")
              tips_data = sns.load_dataset("tips")
```

Line Plot:

- A line plot displays data points connected by lines, suitable for showing trends over continuous data points.
- · Line plots are particularly useful for depicting data that is ordered chronologically or sequentially.
- · General syntax:-

```
plt.plot(x, y)
```



```
In [10]:
              # Sample data
           2
              x_{values} = [1, 2, 3, 4, 5]
           3
              y_values = [10, 15, 8, 12, 7]
           5
           6
              plt.plot(x_values, y_values, marker='o',
                       linestyle='dashdot', color='b',
           7
                       label='Data Series', linewidth = 0.5)
           8
           9
              plt.xlabel('X-axis Label')
             plt.ylabel('Y-axis Label')
          10
             plt.title('Line Plot Example')
             plt.legend()
          12
          13
              plt.show();
          14
```


Out[11]:

```
2023-01-01
                  10
   2023-01-02
                  15
   2023-01-03
                  12
   2023-01-04
                  20
   2023-01-05
                  25
   2023-01-06
                  22
   2023-01-07
                  18
   2023-01-08
                  30
   2023-01-09
                  28
9 2023-01-10
                  35
```

date value

- 4 plt.ylabel('Value')
- 5 plt.xticks(rotation=45)
- 6 plt.grid(True)
- 7 plt.show()

Time Series Line Plot

Scatter Plot:

- Scatter plots are used to display individual data points as dots.
- Great for showing relationships between two variables.

```
In [12]:
              # Sample data
           1
           2
              x_{values} = [1, 2, 3, 4, 5]
           3
              y_values = [10, 15, 8, 12, 7]
           5
              plt.scatter(x_values, y_values, color='g', marker='o', label='Data Points')
              plt.xlabel('X-axis Label')
           7
              plt.ylabel('Y-axis Label')
           8
           9
              plt.title('Scatter Plot Example')
          10
              plt.legend()
          11
          12
          13
              plt.show();
          14
          15
```


Histogram:

- A histogram is a graphical representation of the distribution of a dataset.
- It displays the frequency or count of data points within specified intervals, often called "bins," along the x-axis.
- The y-axis represents the frequency or count of data points falling within each bin.
- Histograms are particularly useful for visualizing the underlying distribution of continuous or discrete data.
- · for Univariate Analysis.

Bar Plot:

- A bar plot, also known as a bar chart or bar graph, is a data visualization tool used to represent categorical data.
- It displays the values of different categories as rectangular bars with lengths proportional to the values they represent.
- Bar plots are commonly used to compare and display the distribution, frequency, or relative size of different categories or groups.

```
In [16]:
             # Sample data
             categories = ['Category A', 'Category B', 'Category C', 'Category D']
           2
             values = [25, 40, 30, 15]
           4
           5
             plt.bar(categories, values, color='#974EC3')
           6
           7
             plt.xlabel('Categories')
             plt.ylabel('Values')
             plt.title('General Bar Plot Example')
           9
             # plt.grid(axis='y')
          10
          11
          12
             plt.show()
          13
```


Out[18]:

	Datsman	2015	2016	2017
0	AB de Villiers	513	687	216
1	DA Warner	562	848	641
2	MS Dhoni	372	284	290
3	RG Sharma	482	489	333
4	V Kohli	505	973	308

2016

PIE CHART:-

- A circular graphical representation used to visualize the distribution of data within different categories or parts of a whole.
- It is useful when you want to show how a single entity is divided into smaller components, and you want to emphasize the proportions or percentages of those components.

Distribution of Categories

Distribution of Males and Females.

BOXPLOTS:

- A box plot, also known as a box-and-whisker plot, is a graphical representation of the distribution of a dataset through its five-number summary: minimum, first quartile (25th percentile), median (50th percentile), third quartile (75th percentile), and maximum.
- It provides a compact way to visualize the central tendency, spread, and potential outliers of a dataset.

```
In [23]:
             import matplotlib.pyplot as plt
           2
             # Sample data
             data = [10, 15, 20, 25, 30, 35, 40, 45, 50, 55]
           5
           6
             # Create a boxplot
           7
             plt.boxplot(data)
             # Add title and labels
           9
             plt.title('Boxplot Example')
          10
             plt.xlabel('X-axis Label')
             plt.ylabel('Y-axis Label')
          12
          13
             # Display the plot
          14
          15
             plt.show()
          16
```


Adding Details to plot:

- plt.title('Chart Title'): Adds a title to your chart.
- plt.xlabel('X Label') and plt.ylabel('Y Label'): Adds labels to the x-axis and y-axis, respectively.
- plt.legend(): Adds a legend to differentiate between multiple data series.
- plt.grid(): Adds grid lines to your chart for better readability.
- plt.xticks(ticks, labels): Sets custom tick locations and labels on the x-axis.
- plt.yticks(ticks, labels): Sets custom tick locations and labels on the y-axis.
- You can customize colors, line styles, and marker styles using parameters like color, linestyle, and marker in plotting functions.
- You can adjust the transparency of chart elements using the alpha parameter.
- plt.xlim(min_value, max_value) and plt.ylim(min_value, max_value): Set custom axis limits.
- plt.text(x, y, 'Text', fontsize=12, color='red'): Adds text to specified coordinates with custom font size and color.

```
In [24]:
              # plt.style.available
              # plt.style.use("Solarize_Light2")
              # saving a plot [plt.savefig()]
In [25]:
              # cmap
           1
              # colorbar
In [26]:
              iris_data['species'] = iris_data['species'].replace({'setosa':0,'versicolor':1,'v
In [27]:
              plt.scatter(iris_data['sepal_length'],iris_data['petal_width'],
           1
           2
                           c=iris_data['species'],
                           cmap= 'tab10')
           3
           4
              # plt.colorbar()
           5
              plt.show();
           2.5
           2.0
           1.5
           1.0
           0.5
           0.0
                    4.5
                             5.0
                                      5.5
                                                       6.5
                                                               7.0
                                                                        7.5
                                              6.0
                                                                                8.0
```

Plot size:-

Annotations

```
In [29]: 1 #plt.text
```

Out[30]: Text(60, 4, 'this point')

In [31]: 1 df4.head()

^	4	F 24 1	١.
()	шт	131	٠.
9	ч	2-	•

	name	sex	age	height	weight
0	Aubrey	М	41.0	74	170
1	Ron	М	42.0	68	166
2	Carl	М	32.0	70	155
3	Antonio	М	39.0	72	167
4	Deborah	F	30.0	66	124

```
In [32]:
              plt.scatter(df4['weight'],df4['height'],s= df4['age'])
           2
              for i in range(df4.shape[0]):
                  plt.text(df4['weight'].values[i],df4['height'].values[i],df4['name'].values[
           3
                                                                   Roger
                                                                           ∡ubrey
           74
                                                                     Joel Antonigames
           72
                                                                 David
                                                                               Jim
                                                       Yao
                                                               ∡Carl
           70
                                                  ■Rut Michael
                                                                       ₽on
           68

Elizabeth

                               Jacqueli⊅eborah
           66
                                            ∡Susan
                                    ₄Helen
           64
                 Donna
           62
                  100
                          110
                                  120
                                          130
                                                  140
                                                         150
                                                                 160
                                                                         170
In [33]:
              batters = pd.read_csv('Data/batter.csv')
           2
              batters_df = batters.head(30)
              plt.figure(figsize=(18,10))
In [34]:
           1
              plt.scatter(batters_df['avg'],batters_df['strike_rate'],s=batters_df['runs'])
           2
           3
           4
              for i in range(batters_df.shape[0]):
           5
                  plt.text(batters_df['avg'].values[i],batters['strike_rate'].values[i],batter
          150
          145
          140
          130
          120
                                       30
```

35

40

45

ADDING LINES

- plt.axhline()
- plt.axvlines()

SUBPLOTS:

In [36]:

1 tips_data

Out[36]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [37]:
             fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 6))
           2
             # Generate some sample data
           4 x = np.linspace(0, 10, 100)
           5
             y1 = np.sin(x)
           6 y2 = np.cos(x)
             y3 = x ** 2
           8
             y4 = np.exp(x)
           9
          10
             # Plot data on each subplot
             axes[0, 0].scatter(tips_data['total_bill'], tips_data['tip'])
             axes[0, 0].set_title('Total bill vs tips')
          12
          13
          14
             axes[0, 1].hist(tips data['total bill'])
             axes[0, 1].set_title('Distribution of Total Bill column')
          15
          16
          17
             axes[1, 0].bar(tips_data['day'],tips_data['total_bill'])
          18
             axes[1, 0].set_title('Day wise Total bill')
          19
          20
             axes[1, 1].pie(tips_data['sex'].value_counts(),labels=['Male','Female'],autopct=
          21
             axes[1, 1].set_title('Sex distribution.')
             axes[1, 1].legend( loc="upper right")
          22
          23
          24
             # Adjust Layout
          25
             plt.tight_layout()
          26
             # Show the subplots
          27
          28
             plt.show()
          29
```

