Summary of Generalized Partial Credit Model

May 30, 2018

1 Checking Assumptions

Table 1: Goodness of fit statistics related to the test of unidimensionality in the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the pilot empirical study

data	df	chisq	AGFI	TLI	CFI	DETECT	ASSI	RATIO
Pre-test	2	4.133	0.579	0.846	0.949	0.020	0.333	0.995
Post-test						0.007	0.146	0.986

df: degree of freedom; AGFI: Adjusted Goodness of Fit Index; CFI: Comparative Fit Index; TLI: Tucker-Lewis

Table 2: Item residual correlation statistics related to the test of local independence in the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the pilot empirical study

data	max.chisq	maxaQ3	MADaQ3	SRMSR	p.value
Pre-test	5.539	0.271	0.101	0.093	0.954
Post-test	1.637	0.317	0.108	0.093	0.598

aQ3: adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3;

Table 3: Test of monotonicity in the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the pilot empirical study

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Pre-test.P1s0	1.00	0	0		0	0		0	0	0
Pre-test.P2s0	1.00	0	0		0	0		0	0	0
Pre-test.P3s2	0.86	0	0		0	0		0	0	0
Pre-test.P4s0	0.77	0	0		0	0		0	0	0
Post-test.PAs0		0	0		0	0		0	0	0
Post-test.PBs0		0	0		0	0		0	0	0
Post-test.PCs0	1.00	0	0		0	0		0	0	0
Post-test.PDs2	1.00	0	0		0	0		0	0	0

2 Estimating Item Parameters

Table 4: Estimated parameters in the GPCM-based instrument for measuring the Pre-test $\,$

estimated	P1s0	P2s0	P3s2	P4s0
xsi.item	-0.607	0.426	4.279	4.033
B.Cat0	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000
B.Cat2	0.000	0.000	2.000	0.000
B.Cat3	0.000	0.000	3.000	0.000
AXsi.Cat0	0.000	0.000	0.000	0.000
AXsi.Cat1	0.607	-0.426	-3.887	-4.033
AXsi.Cat2			-7.521	
AXsi.Cat3			-12.836	
max.Outfit	0.671	0.513	1.295	0.400
max.Infit	0.851	0.772	1.494	0.976

Table 5: Estimated parameters in the GPCM-based instrument for measuring the Post-test $\,$

estimated	PAs0	PBs0	PCs0	PDs2
xsi.item	-3.734	-2.766	-0.695	3.497
B.Cat0	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000
B.Cat2	0.000	0.000	0.000	2.000
B.Cat3	0.000	0.000	0.000	3.000
AXsi.Cat0	0.000	0.000	0.000	0.000
AXsi.Cat1	3.734	2.766	0.695	-4.043
AXsi.Cat2				-6.043
AXsi.Cat3				-10.490
max.Outfit	0.834	0.828	0.819	0.974
max.Infit	0.949	0.998	0.972	1.105

3 Latent Trait Estimates

Table 6: Latent trait estimates and person model fit of the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the pilot empirical study

Post-test.Infit	0.364	0.226	0.364	0.616	0.310	0.307	0.616	0.364	0.364	0.262	0.310	0.364	0.551	0.364	0.307	0.364	0.364	0.364	0.310	0.076	0.013	0.486	0.307	0.364	0.076	0.421	0.364	0.307	0.364	786
Post-test.Outfit	0.111	0.197	0.111	0.616	0.279	0.210	0.616	0.111	0.111	0.128	0.279	0.111	0.436	0.111	0.210	0.111	0.111	0.111	0.279	0.024	0.011	0.486	0.210	0.111	0.024	0.107	0.111	0.210	0.111	0.486
Post-test.error	1.142	1.957	1.142	1.456	1.435	1.430	1.456	1.142	1.142	2.046	1.435	1.142	1.365	1.142	1.430	1.142	1.142	1.142	1.435	1.007	0.944	2.521	1.430	1.142	1.007	1.920	1.142	1.430	1.142	0 501
Post-test.theta	2.326	-4.988	2.326	-3.250	-1.659	-1.657	-3.250	2.326	2.326	0.423	-1.659	2.326	-3.278	2.326	-1.657	2.326	2.326	2.326	-1.659	3.529	2.961	-4.457	-1.657	2.326	3.529	5.254	2.326	-1.657	2.326	747
Pre-test.Infit	0.133	0.223	0.107	0.339	0.339	0.199	0.339	0.199	0.223	0.573	0.237	0.223	0.199	0.223	0.199	0.223	0.225	0.223	0.237	0.573	0.223	0.339	0.364	0.107	0.556	0.223	0.223	1.531	0.573	0.937
Pre-test.Outfit	0.162	0.099	0.115	0.175	0.175	0.157	0.175	0.157	0.099	0.404	0.237	0.099	0.157	0.099	0.157	0.099	0.132	0.099	0.237	0.404	0.099	0.175	0.297	0.115	0.307	0.099	0.099	0.902	0.404	0.937
Pre-test.error	0.951	1.945	1.054	1.296	1.296	1.288	1.296	1.288	1.945	1.432	2.123	1.945	1.288	1.945	1.288	1.945	1.954	1.945	2.123	1.432	1.945	1.296	0.916	1.054	1.409	1.945	1.945	1.054	1.432	9 193
Pre-test.theta	3.468	-1.850	4.852	2.789	2.789	2.375	2.789	2.375	-1.850	-0.087	-2.047	-1.850	2.375	-1.850	2.375	-1.850	-1.848	-1.850	-2.047	-0.087	-1.850	2.789	4.100	4.852	-0.090	-1.850	-1.850	4.852	-0.087	-2047
	10116	10119	10120	10121	10122	10126	10127	10128	10129	10130	10131	10132	10133	10134	10135	10136	10137	10138	10139	10140	10141	10143	10144	10145	10146	10148	10149	10152	10153	10157