

What we will learn today

- Autoencoder
- Variational Autoencoder
- ☐ Generative Adversarial Network

Supervised Learning

Data: (x,y)

x is data, y is label

Data Labeling is needed

Goal: Learn a *function* to map $x \rightarrow y$

$$y = f(x)$$

Examples: classification, regression, object detection, semantic segmentation, image segmentation etc.

Classification: Input x

$$v = 8$$

Object Detection

DOG, DOG, CAT

Semantic Segmentation

Supervised Learning

Data: (x,y)

x is data, y is label

Goal: Learn a <u>function</u> to map $x \rightarrow y$ y = f(x)

Examples: classification, regression, object detection, semantic segmentation, image segmentation etc.

Unsupervised Learning

Data: x

Just data, No labels!

Goal: Learn some underlying hidden <u>structure</u> of the data

Unsupervised Learning

Data: x

Just data, No labels!

Goal: Learn some underlying hidden <u>structure</u> of the data

Dimensionality Reduction (e.g. Principal Component Analysis- PCA)

Unsupervised Learning

Data: x

Just data, No labels!

Goal: Learn some underlying hidden <u>structure</u> of the data

Unsupervised Learning

Feature Learning (e.g. Autoencoders)

Data: x

Just data, No labels!

Goal: Learn some underlying hidden <u>structure</u> of the data

Discriminative Model:

Learn a <u>probability</u> distribution P(y|x)

Generative Model:

Learn a <u>probability</u> distribution P(x)

Conditional Generative

Model: Learn a <u>probability</u> distribution P(x|y)

Data: x

Label: y = Cat

Probability Recap:

Density Function

P(x) assigns a positive number to each possible x; higher numbers mean x is more likely

Density functions are **normalized**:

$$\int_{x} P(x)dx = 1$$

Different values of x complete for density

Discriminative Model:

Learn a <u>probability</u> distribution P(y|x)

P(cat| 1) P(dog| 1)

Generative Model:

Learn a <u>probability</u> distribution P(x)

Density Function

P(x) assigns a positive number to each possible x; higher numbers mean x is more likely Density functions are **normalized**:

$$\int_{x} P(x)dx = 1$$

Different values of x **complete** for density

Conditional Generative Model: Learn a probability distribution P(x|y)

Discriminative Model:

Learn <u>a probability</u> distribution P(y|x)

Generative Model:

Learn <u>a probability</u> distribution P(x)

Conditional Generative Model: Learn a probability distribution P(x|y)

Discriminative model: the possible labels for each input "compete" for probability mass. But no competition between **images**

Discriminative Model:

Learn <u>a probability</u> distribution P(y|x)

Generative Model:

Learn <u>a probability</u> distribution P(x)

Conditional Generative

Model: Learn a probability distribution P(x|y)

Discriminative model: No way for the model to handle unreasonable inputs; it must give label distributions for all images

Discriminative Model:

Learn <u>a probability</u> distribution P(y|x)

Generative Model:

Learn <u>a probability</u> distribution P(x)

Conditional Generative Model: Learn a probability distribution P(x|y)

Generative model: All possible images compete with each other for probability mass

Requires deep image understanding! Is a dog more likely to sit or stand? How about 3-legged dog vs 3-armed monkey?

Discriminative Model:

Learn <u>a probability</u> distribution P(y|x)

Generative Model:

Learn <u>a probability</u> distribution P(x)

Conditional Generative Model: Learn a probability distribution P(x|y)

Generative model: All possible images compete with each other for probability mass

Model can "reject" unreasonable inputs by assigning them small values

Discriminative Model:

Learn <u>a probability</u> distribution P(y|x)

Generative Model:

Learn <u>a probability</u> distribution P(x)

Conditional Generative Model: Learn a probability distribution P(x|y)

Conditional Generative Model: Each possible label induces a competition among all images

Discriminative Model:

Learn <u>a probability</u> distribution P(y|x)

Generative Model:

Learn <u>a probability</u> distribution P(x)

Conditional Generative Model: Learn a probability distribution P(x|y)

These models may seem to be very distinct.

Although, they are actually **not fully** distinct.

Discriminative Model:

Learn <u>a probability</u> distribution P(y|x)

Generative Model:

Learn <u>a probability</u> distribution P(x)

Conditional Generative Model: Learn a probability distribution P(x|y)

Recall Bayes' Rule:

We can build a conditional generative model from other components!

Discriminative Model:

Learn <u>a probability</u> \longrightarrow <u>distribution</u> P(y|x)

Assign labels to data Feature learning (with labels)

Generative Model:

Learn <u>a probability</u> $\underline{\hspace{1cm}}$ <u>distribution</u> P(x)

Detect outliers

Feature learning (without labels)
Sample to **generate** new data

Conditional Generative

Model: Learn <u>a probability</u>

distribution P(x|y)

Assign labels, while rejecting outliers!

Generate new data conditioned on input labels

Taxonomy of Generative Models

Taxonomy of Generative Models

Autoencoders (Regular, non-variational)

Unsupervised method for learning feature vectors from raw data x, without any labels. "Autoencoding" = encoding itself

Features should extract useful information (maybe object identities, properties, scene type, etc) that we can use for downstream tasks

Problem: How can we **learn** this **feature transform** from raw data?

Autoencoders (Regular, non-variational)

Idea: Use the features to **reconstruct the input data** with a decoder "Autoencoding" = encoding itself

Autoencoders (Regular, non-variational)

Idea: Use the features to **reconstruct the input data** with a decoder "Autoencoding" = encoding itself

"Encoder" learns mapping from the data, \mathcal{X} , to a low-dimensional latent space, \mathcal{X}

"Decoder" learns mapping back from latent space, \hat{y} , to reconstructed observation, \hat{x}

input data

Autoencoders (Regular, non-variational)

Loss: L2 distance between input and reconstructed data.

Does not use any labels! Just raw data!

Autoencoders (Regular, non-variational)

Autoencoding is a form of compression! **Size of latent vector** affects the reconstructed data quality.

2D latent space

5D latent space

Ground truth

```
70157141450714145071369
```

Autoencoders (Regular, non-variational)

Latent Space of MNIST dataset

Autoencoders (Regular, non-variational)

After training, throw away decoder and use encoder for a downstream task

Autoencoders (Regular, non-variational)

After training, throw away decoder and use encoder for a downstream task

Cherdsak Kingkan

Applications

- Dimensionality Reduction and Feature Extraction
- Denoising Data
- Anomaly detections

Autoencoders (Regular, non-variational)

Autoencoders learn **latent features** for data without any labels!
Can use features to initialize a supervised model
Not probabilistic: No way to sample **new data** from learned model

Autoencoders (Regular, non-variational)

There are "gaps" in the latent space, where data is never mapped to.

If we sample a latent vector from a **region** in the **latent space that was never seen** by the decoder during training, the output might not make any sense at all.

the latent space, y, can become **disjoint** and **non-continuous**.

Variational autoencoders are a probabilistic twist on autoencoders!

Sample from the mean and standard deviation to compute latent sample

Overview of VAE: Instead of learning an arbitrary function, the network learns the parameters of **probability distribution** modeling the data

Intuition

Latent attributes

Intuition

Using a variational autoencoder, we can describe latent attributes in probabilistic terms.

Intuition

After training with lots of samples, the probability distribution of each attribute is learned. So that we can represent each latent attribute as a probability distribution.

Intuition

Probabilistic spin on autoencoders: we want to do

- 1. Learn latent features y from raw data
- 2. Sample from the model to **generate new data**

Probabilistic spin on autoencoders: we want to do

- 1. Learn latent features # from raw data
- 2. Sample from the model to **generate new data**

We can only see \boldsymbol{x} , but we want to infer the attributes of \boldsymbol{y} , i.e., we want to compute

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

After training, we want to **sample** a hidden variable ${}_{\mathcal{Y}}$ which **generate** an observation ${\mathcal{X}}$

Probabilistic spin on autoencoders: we want to do

- 1. Learn latent features # from raw data
- 2. Sample from the model to **generate new data**

After training, we want to **sample** a hidden variable $_{\mathscr{T}}$ which **generate** an observation \mathscr{X}

We can only see \boldsymbol{x} , but we want to infer the attributes of $_{\mathcal{F}}$, i.e., we want to compute

compute with **Decoder network**

we assumed Gaussian prior

Very difficult to compute (technically possible, but practical impossible)

Probabilistic spin on autoencoders: we want to do

- 1. Learn latent features # from raw data
- 2. Sample from the model to **generate new data**

We can only see \boldsymbol{x} , but we want to infer the attributes of \boldsymbol{x} , i.e., we want to compute

compute with **Decoder network**

we assumed Gaussian prior

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

$$p(x) = \int p(x|z)p(z)dz$$

After training, we want to **sample** a hidden variable $_{\mathscr{Y}}$ which **generate** an observation x

Impossible to integrate over all $\normalfootnote{\circ}$ (intractable)

Probabilistic spin on autoencoders: we want to do

- 1. Learn latent features # from raw data
- 2. Sample from the model to generate new data

We can approximate p(z|x) by another distribution q(z|x) , i.e.

Compute with Encoder Network

$$q(z|x) \approx p(z|x)$$

*Features

the KL divergence is a measure of difference between two probability distributions. Thus, if we wanted to ensure that q(z|x) was similar to p(z|x), we could minimize the KL divergence between the two distributions

$$minD_{KL}(q(z|x)||p(z|x))$$

Common choice of prior - Gaussian Distribution

Probabilistic spin on autoencoders: we want to do

- 1. **Learn latent features** y from raw data
- 2. Sample from the model to **generate new data**

$$p(z) = \mathcal{N}(\mu, \sigma)$$

The reconstruction likelihood

$$E_{q(z|x)}\log p(x|z) - D_{KL}(q(z|x)||p(z))$$

Cherdsak Kingkan

Regularization Loss: ensures that our **learned distribution** is similar to the true **prior distribution**

Why regularization term is needed

Why regularization term is needed

Autoencoder

Variational Autoencoder

How to perform backpropagation when training training the model

$$E_{q(z|x)} \log p(x|z) - D_{KL}(q(z|x)||p(z))$$

Reparameterization trick

Latent perturbation

Slowly increase or decrease a **single latent variable**. Keep all other variables fixed.

Head pose

Different dimension of y encodes different interpretable latent features

Latent perturbation

Ideally, we want latent variables that are uncorrelated with each other.

Enforce diagonal prior on the latent variables to encourage independence

Disentanglement

Cherdsak Kingkan

What if we just want to sample

Idea: do not explicitly model density, and instead just sample to generate new instances.

Problem: want to sample from complex distribution - cannot do this directly

Solution: sample from something simple (e.g., noise), learn a transformation to the data distribution.

GANs are a way to make a generative model by having two neural networks compete with

Intuition behind GANs

Discriminator looks at both real and fake data created by the generator

Discriminator

Generator starts from noise to try to create an imitation of the data

Generator

Fake data

Intuition behind GANs

Discriminator tries to predict what's real and what's fake

Generator starts from noise to try to create an imitation of the data

Generator

Fake data

Intuition behind GANs

Discriminator tries to predict what's real and what's fake

Discriminator P(real) = 1

Generator starts from noise to try to create an imitation of the data

Generator

Fake data

Real data

Intuition behind GANs

Discriminator tries to predict what's real and what's fake

Discriminator

Real data

Generator tries to improve its imitation of the data

Intuition behind GANs

Discriminator tries to predict what's real and what's fake

Discriminator

P(real) = 1

Generator tries to improve its imitation of the data

Generator

Intuition behind GANs

Discriminator tries to identify real data from fakes created by the generator.

Generator tries to create imitations of data to trick the discriminator.

Training GANs

Jointly train generator G and discriminator D with a minimax game

Training GANs

Jointly train generator G and discriminator D with a minimax game

Training G and D using alternating gradient updates

$$\min_{\boldsymbol{G}} \max_{\boldsymbol{D}} \left(E_{\boldsymbol{x} \sim p_{data}} [\log \boldsymbol{D}(\boldsymbol{x})] + E_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log \left(1 - \boldsymbol{D} \big(\boldsymbol{G}(\boldsymbol{z}) \big) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \max_{\mathbf{D}} V(\mathbf{G}, \mathbf{D})$$

For t in 1, ... T:

1. (Update D)
$$D = D + \alpha_D \frac{\partial V}{\partial D}$$

2. (Update G) $G = G - \alpha_G \frac{\partial V}{\partial G}$

2. (Update G)
$$G = G - \alpha_G \frac{\partial V}{\partial G}$$

Generating new data with GANs

After training, use generator network to create **new data** that's never been seen before.

GANs are distribution transformers

After training, use generator network to create **new data** that's never been seen before.

GANs are distribution transformers

After training, use generator network to create **new data** that's never been seen before.

61

GANs are distribution transformers

After training, use generator network to create **new data** that's never been seen before.

Applications - Progressively Growing GAN

Applications - Conditional GAN

Applications - Conditional GAN

Applications - Cycle GAN

Domain transformation: CycleGAN learns transformations across domains with unpaired data.

Applications - Cycle GAN

Distribution transformations.

data manifold X → data manifold Y

Summarize

Autoencoder (AE)

Variational Autoencoder (VAE)

Generative Adversarial Network (GAN)

Announcement

November 2, 2024

No lecture

BUT

- There is a Lab session
 - k-Means
 - Mean Shift
 - UNet
 - o AE/VAE
 - GAN