Election Prediction Report

Ashley Murray, Hunter Gregory, Matty Pahren, Nathan O'Hara, Scott Heng

10/29/2020

Introduction

Forecasting elections is of great interest, as politicians might use election outcome models to adjust campaign strategies, economists might use them to predict how markets will react, and citizens might use them to decide whether to vote. The 2020 election is one of great importance, and it has seemingly gained even more attention than past elections.

In this report, we seek to model predicting the outcomes of several key races. Specifically, we aim to predict and provide uncertainty predictions for the following: 1. the outcome of the presidential election 2. whether the US Senate remains in Republican control 3. the electoral college vote 4. the outcomes of all NC Congressional elections (the 13 federal Representatives to Congress) 5. the outcome of the NC Senate election

First, we will provide background on the elections and our data. Then, we will describe our methods for all of the models, including a model of who votes in North Carolina, which aims to better the predictive power of our NC senate and House models. Next, we will discuss the results of our models. After that, we will walk through some of the limitations of our models. Finally, the appendices will include more detailed information about our modeling procedures and the data sources used.

Background and Data

Election Overview

On November 3, 2020, all 50 states will hold congressional elections for their respective Representatives as well as the presidential election between Donald Trump and Joe Biden. The senate currently has 53 Republican seats of 100 total seats, and senatorial elections across many states will determine 35 seats, 23 of which are currently under Republican control [1]. Overall, this election is clearly unprecedented due to the current pandemic since the "most severe pandemic in recent history" - the 1918 influenza - was over a century ago and not during a presidential election year [2]. It will be interesting to see if the dramatic increase in mail-in voting will favor different candidates or political parties.

Polling Data

We use polls extensively in nearly all our models. Specifically, we use FiveThirtyEight's polling data for the presidential and US Senate races. We did not end up using these data for North Carolina's elections for the House of Representatives since there were only three of thirteen districts with polls, and each of these districts only had two to four polls.

By considering the presidential polls data, as seen in Fig. 1, we can observe how the probabilities of being elected for both candidates change over time. We see that Biden has consistently had higher probabilities of being elected than Trump since April 2020, while both candidates experience similar degrees of increase in

percentage during their 'Convention Bounce'. Biden appears to consistently have a mean percentage of being elected around 50% and up, and has had a recent surge during October. On the contrary, Trump's percentage estimates have largely been below 45% with a significant drop towards October. From the exploratory data analysis on national polls we can already see that Biden is projected to have an advantage over President Trump.

Fig 1.1 National Polls over time for Biden and Trump

However, this does not tell the full picture, as the United States Presidential Elections adopt an Electoral College system, which sometimes can allow a candidate to become President if that candidate did not receive the popular vote nationally, but secured support in key states that contain a large number of electoral votes. These states have a larger influence on the course of the elections and therefore are highly contested between the two candidates. Figure 1.2 shows the polls for both candidates by state over time, revealing which candidates have advantages over the other in certain states and which states require more attention in order to gain the people's support. Fig 1.3 shows the polls in swing states- States that have relatively equal support for either party and therefore can heavily influence the outcome of the election. For the majority of swing states, Biden similarly is favored statistically to be elected, with the exception of Iowa and Ohio.

For senate data, we look at the senate races and their probabilities for being elected (Democrat or Republican). Over the years, we can observe that there are many close senate races as seen in Fig 1.4. In Fig 1.5, we can also see the percentages for being elected into the senate for individual candidates based on their party affiliation. We can observe that overall Democratic candidates tend to have high percentages for being elected into the senate over Republican candidates, and this distinction becomes more prominent closer to the election date.

Electoral College Model

The Linzer model is a Bayesian forecast model that specifies how preferences evolve over time and how events are noisy measurements of the underlying preferences.

The purpose of this model is to predict the outcome of the presidential election by looking at electoral college votes. The probability of Trump winning is calculated by looking at the percentage of times in our 1500 simulations Trump gets 270 or more electoral college votes. In modeling the overall outcome of the presidential election, this model also predicts how each state's electoral college vote will go. Each state's electoral college outcome is modeled by looking at polling data from FiveThirtyEight for that state in order to predict what percent of the popular vote both Trump and Biden receive. Whichever candidate receives a larger percentage of the popular vote receives all of the electoral votes for that state. In reality, Maine and Nebraska can have split electoral college votes instead of the all-or-nothing approach other states take, but we chose to also model these states as all-or-nothing for simplicity sake due to the nature of the polling data that was collected.

US Senate Model

Similar to our electoral college model, this model looks at senate race polling data from fivethirtyeight in order to predict the outcome of all current US senate races. The data was filtered to only include general election polling data, so in other words all jungle primary or runoff election polls were removed. Additionally, the data was filtered to only include polls less than a year out from the election. After filtering, we were left with data for all states where senate elections were being held except for Arkansas, Rhode Island, South Dakota, Louisiana, and the second Georgia Race. However, most of these races were predicted to be blowout races, with Arkansas, South Dakota, and Louisiana deemed as safely Republican and Rhode Island deemed safe Democrat. Georgia was the only race we were missing data for that seemed close, but we chose to use the Georgia predictions generated from the other Georgia race we did have data on, since senators are elected by the whole state and it is likely that the same people are voting for both senators. Lastly, polling data for third-parties was filtered out, and the remaining percentages were standardized. In other words, we took the final Democrat and Republican share for each poll, and created a final variable equal to Republican share divided by the total share occupied by Republican and Democrat percentages, to figure out what percentage of the two-party share Republicans were expected to win. Since this is the case, we counted these states as a corresponding Republican or Democratic win in each of our simulations. After making predictions for each individual race, we aggregate the results and look at the percentage of times where Republicans win more than 21 seats, where 21 is the number of seats Republicans need to win in order to have a 50/50Republican/Democrat split in the senate.

North Carolina Senate Model

The North Carolina Senate Model we constructed is a multi-level model. We include a random effect for each county in North Carolina, and the response variable we used is the percentage of registered Republicans in 2018. We chose to use the year 2018 here since this was the year we had most recent data for. Additional predictors are North Carolina Census variables aggregated at the county level, including the percentage of people who live 15 minutes away from where they were, the percentage of people who are foreign-born, the percentage of single parents, the percentage of people who have at least some college education, the percentage of people living below the poverty line, the average rent of a two-bedroom apartment in the county, the average annual job growth from 2004-2013, and then the share of the population that is white, black, asian, and hispanic. All of these variables are taken from the 2010 Census, with the exception of annual average job growth and the rent of a two-bedroom apartment, which was measured in 2015. After the model was used to calculate the percentage of Republicans per county, this data was aggregated and weighted using the total number of people that voted in the 2016 election to come up with a final estimate of the percentage of people who would vote for Republican Thom Tillis.

North Carolina House Model

The North Carolina House Model is almost identical to our senate model. We constructed a multi-level model with a random effect for each county in North Carolina, and the response variable we used is the percentage of registered Republicans in 2018. We chose to use the year 2018 here since this was the year we had most recent data for. Additional predictors are North Carolina Census variables aggregated at the county level, including the percentage of people who live 15 minutes away from where they work, the percentage of people who are foreign-born, the percentage of single parents, the percentage of people who have at least some college education, the percentage of people living below the poverty line, the average rent of a two-bedroom apartment in the county, the average annual job growth from 2004-2013, and then the share of the population that is white, black, asian, and hispanic. All of these variables are taken from the 2010 Census, with the exception of annual average job growth and the rent of a two-bedroom apartment, which was measured in 2015. Additionally, we included a categorical variable which says what party the incumbent belongs to in a particular district. All of the incumbents were Republican or Democrat with the exception of District 11, which had a vacant seat. After the model was used to calculate the percentage of Republicans per county, this data was aggregated and weighted using the total number of people that voted in the 2016 election to come up with a final estimate of the percentage of people who voted Republican in each district. For districts that were split between counties, we divided said counties in half and assigned half of the population to one district and half to the other. We attempted to come up with a better division than this arbitrary half/half split, but we were unable to collect data telling us which zip codes, Census tracts, or other smaller regions belonged to which Congressional district.

Results

Electoral College Model Results

Our model predicts that Trump has a 0% chance of winning. This number seems very low, but we think this is primarily due to the fact that more recent polls are weighted more, and in the most recent polls Biden edges out Trump in many key states. The state predicted to have the highest share of Trump voters is West Virginia, where Trump is predicted to have 65.5% of the two-party share vote, with 95% credible interval (61.7%, 68.4%). The region predicted to have the lowest share of Trump voters is Washington D.C., and our model predicts that Trump will only get 8.9% of the two-party share vote, with 95% credible interval (2.9%, 16.9%).

Electoral College Model Validation

For model validation, we plot traceplots for all the beta coefficients. From the traceplots, we can observe that there is randomness across iterations, signifying that convergence has been reached with 1500 iterations. Modifying our initial burn-in rate (250, 500,1000) did not seem to affect model convergence, and thus decided to stick to the original burn-in rate of 500. We also tried different quantities of iterations to see if it would improve the model. We concluded that 1500 simulations produced Rhat values close to 1, signifying that the chains have mixed well. Similar good results are shown in the lag-1 scatterplots where there seems to be a lot of randomness which means that the model sampler is sampling the entire space in an uncorrelated manner. The ACF plots show little correlation between new samples of beta with previous samples which is also desirable. To see these plots please refer to the appendix.

On top of standard model validation tools, we also performed out-of sample validation by implementing the same model on 2016 data to predict the results of the Clinton-Trump When validating on 2016 election data, we predicted that Clinton had a 87.1% chance of winning. Clinton didn't end up winning the election, however many election prediction models forecasted that she would have a landslide victory. Thus, our model is seemingly consistent with what experts were predicting, which is another aspect of good model fit for the study.

US Senate Model Results

We predict that the Republicans have a 0.2% chance of keeping control of the senate. The Republican party wins between 10 and 18 seats most of the time in our simulations, which is shy of the 22 seats needed to win a majority.

US Senate Model Validation

Traceplots for this model indicate that convergence was also reached for this model. Additionally, lag-1 scatterplots and autocorrelation plots show that there is no need to be concerned about non-random data or correlations. All of our Rhat values are close to 1, again indicating that the chains have mixed well.

When using our model to predict the chance of Republicans controlling the senate after the 2018 midterm elections, we get a probability of 71.4%. This estimate seems to be close to what many other well-known political models forecasted, and the Republicans did indeed keep control of the senate after this election.

North Carolina Senate Model Results

We predict that Republican Thom Tillis will win 45.6% of the two-party vote-share, and we are 95% confident that this prediction will fall between 40.2% and 50.9%. Since our interval contains 50%, we can not be sure that he will lose the race to Cal Cunningham.

North Carolina Senate Model Validation

The residual plots for this model show a random scatter around zero, and the qq plot of residuals shows that they are also approximately normally distributed.

However, when using the 2016 election as an out-of-sample validation, we predict that the Republican candidate would win 45.6% of the popular vote, with a 95% prediction interval from 40.4% to 50.7%. However, in reality, Republican candidate Richard Burr won the race with 51.1% of the popular vote, and Democratic candidate Deborah K. Ross fell with only 45.4% of the vote [4]. This meant that he won 53.0% of the two-party share vote. Thus, our model doesn't hold up perfectly in this out of sample validation.

For additional sensitivity analysis, we can compare our senate estimates from this model to the ones that we used to factor into our US Senate model. In the Linzer model, North Carolina was predicted to have a 47.9% chance of going Republican, with interval 46.0% to 50.0%. This interval is contained within the interval we calculated from our NC Senate model, indicating that the two model predictions converge, albeit the variance is higher for the NC Senate model.

North Carolina House Model Results

We predict that the Republican running in District 1 will receive 29.7% of the two-party share (24.7%, 34.6%), and 40.4% in District 2 (33.1%, 48.3%). In District 3, we expect them to win 49.4% of the two-party share (43.6%, 55.2%), 30.4% in District 4 (23.4%, 38.0%), and 59.1% in District 5 (54.8%, 63.3%). For District 6, our prediction is 40.0% (35.4%, 45.1%), followed by 52.2% in District 7 (47.3%, 57.1%), and 40.6% in District 8 (42.6%, 51.9%). In District 9, we expect the Republican to win 40.6% of the two-party share (34.1%, 47.2%) and 60.8% in District 10 (57.7%, 64.8%). Finally, in District 11, we expect this to be a 49.8% Republican share (45.4%, 54.2%), 0% Republican share in District 12, and a 60.6% Republican share in District 13 (57.0%, 64.1%). District 12 is 0% because the Democrat is running unopposed, and there appears to be no write-in campaign. Districts 3, 7, 8, and 11 appear to be the ones without clear winners, as their prediction intervals all contain 50%.

North Carolina House Model Validation

Again, the residual plots for this model show a random scatter around zero, and the qq plot of residuals shows that they are also approximately normally distributed.

For the 2016 Congressional elections, our model predicted District 1 would receive 29.4% of the vote (24.7%, 34.0%), District 2 would receive 42.7% (35.4%, 50.1%), District 3 would receive 48.3% (42.8%, 53.9%), District 4 would receive 32.7% (25.7%, 40.0%), District 5 would receive 57.9% (53.7%, 62.2%), District 6 would receive 39.9% (35.2%, 44.6%), District 7 would receive 51.6% (46.9%, 56.1%), District 8 would receive 46.9% (42.4%, 51.3%), District 9 would receive 41.1% (34.8%, 47.5%), District 10 would receive 59.3% (55.4%, 63.1%), District 11 would receive 50.4% (46.0%, 54.5%), District 12 would receive 36.9% (30.5%, 43.5%), and finally District 13 would receive 58.9% (55.5%, 62.4%). In reality, Republicans won Districts 2, 3, 5, 6, 7, 8, 9, 10, 11, and 13, while Democrats won Districts 1, 4, and 12 [5]. We would have predicted Democrat wins in Districts 2, 3, 6, 8, 9 where this did not actually happen. Part of the reason for this is that North Carolina's Congressional Districts were re-drawn after a gerrymandering lawsuit, so 2020 is the first election where these new districts will be used. Since our model groups districts according to the new lines, it makes sense that our model wouldn't have great predictive power on old data.

Who Votes in North Carolina Model

An additional model was created in order to better understand who votes in North Carolina, incorporating information from the North Carolina voter registration database. Ultimately, we modeled the proportion of registered voters who voted in the 2016 and 2018 elections, validating on data from the 2012 and 2014 elections. The predictors included in the voter registration database included race, gender, ethnicity, age group, county, party affiliation, and whether the election was a presidential or midterm election.

We implemented a binomial mixed-effects model modeling the proportion of registered voter turnout using the aforementioned predictors as fixed effects, as well as random effects on the same predictors as well as an intercept to quantify heterogeneity across congressional districts. Using this model, we were able to understand the trends in voter turnout both across North Carolina broadly, and within competitive congressional districts. For more information about the model and analysis of its results, please consult our separate paper on Who Votes in North Carolina.

Additinal Discussion

Limitations

One common limitation across all models was the quality of the data. As polling data often has a disproportionate amount of observations for groups and variables, there will be a degree of uncertainty in our predictions as our sample size does not truly reflect the true opinions of people and certain demographics. There can be underrepresented or misrepresented groups of identities that can dramatically affect the effectiveness of the model.

Another prominent limitation in our Linzer models is that is a consequence of the quality of the data was the unrealistic weightage of polls closer to the election. There is a significant increase in influence that recent polls have on the predictions of the linzer model, which is perhaps why our results for the senate and electoral college are near unanimous as the results of the most recent poll before the election would have a heavy influence on the predictions made by the Linzer model.

Bibliography

TODO: update to real citations, sort alphabetically, and fix numbers throughout report [1] https://www.270towin.com/2020-senate-election/ [2] https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1. html#:~:text=The%201918%20influenza%20pandemic%20was,spread%20worldwide%20during%201918%2D1919 [3] . . . [4] https://en.wikipedia.org/wiki/2016_United_States_Senate_election_in_North_Carolina [5] https://en.wikipedia.org/wiki/2016_United_States_House_of_Representatives_elections_in_North_Carolina

Appendix A: Models Used

Who Votes Model

Model Purpose

This model aims to predict which groups of people in North Carolina are most likely to vote based on demographic characteristics like race, gender, ethnicity, age, and county of residence. This model also factors in election year, and it can determine whether groups were more likely to vote in the 2018 midterm elections or the 2016 election.

Model Structure

Estimates From Model

Electoral College Model

Model Purpose

The purpose of this model is to predict the outcome of the 2020 presidential race. This is accomplished by simulating the outcome of electoral college votes for each state based on polling data and then calculating the total number of times where Trump gets 270 or more electoral votes. This percentage is our probability that Trump wins the election.

Model Structure

We model the percent Republican support y_k for each poll k under the following Bayesian model: FIXME!!!!

$$y_k \sim Binom(\beta_{i,s[k]}, \sigma_{yj}^2)$$

$$logit(\pi_{ij}) = \beta_{ij} + \delta_j$$

$$for \quad j > 1: \beta_{ij} \sim N(\beta_{i,j-1}, \sigma_{\beta}^2)$$

$$\delta_j \sim N(\delta_{j-1}, \sigma_{\delta}^2)$$

$$for \quad j = 1: \beta_{i1} \sim N(logit(h_i), s_i^2)$$

$$\delta_1 = 0$$

Estimates From Model

beta[12,1]

beta[13,1]

46.6 1.0

48.8 0.7

44.7

47.4

```
## # A tibble: 5,377 x 2
##
  # Groups:
               question_id [5,377]
##
      question_id
                       n
##
            <int> <int>
##
    1
           121717
##
    2
           121725
                       2
##
   3
           121894
                       2
                       2
##
   4
           121895
##
   5
           122083
                       2
   6
           122084
                       2
##
##
   7
           122085
                       2
                       2
##
    8
           122086
##
    9
           122089
                       2
                       2
## 10
           122098
## # ... with 5,367 more rows
## module glm loaded
   Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
##
  Graph information:
##
      Observed stochastic nodes: 5377
##
      Unobserved stochastic nodes: 11374
##
      Total graph size: 27746
##
## Initializing model
## [1] O
## Inference for Bugs model at "/var/folders/bl/kdxqftsj6xj9mm8fpxmrv6qr0000gn/T//Rtmpj1P5X6/model12aed
    3 chains, each with 1000 iterations (first 500 discarded)
##
    n.sims = 1500 iterations saved
                                         25%
                                                 50%
                                                                97.5% Rhat n.eff
##
                 mean
                         sd
                               2.5%
                                                         75%
## beta[1,1]
                  50.2 0.9
                               48.4
                                        49.7
                                                50.2
                                                         50.8
                                                                 51.9 1.0
                                                                              710
## beta[10,1]
                 35.2 0.9
                               33.4
                                        34.6
                                                35.2
                                                         35.7
                                                                 36.9
                                                                       1.0
                                                                              110
## beta[11,1]
                 50.8 0.7
                               49.5
                                        50.4
                                                50.9
                                                        51.3
                                                                 52.2
                                                                       1.0
                                                                              750
```

46.5

48.8

47.2

49.3

48.7

50.4 1.0

1.0

88

69

45.9

48.4

	beta[14,1]	43.2	1.4	39.8	42.3	43.2	44.1	45.9	1.1	83
	beta[15,1]	34.9	1.9	31.9	33.4	34.6	36.4	38.5	1.2	12
	beta[16,1]	50.2	1.0	48.3	49.5	50.1	50.8	52.3	1.0	100
	beta[17,1]	50.8	0.8	49.0	50.3	50.9	51.4	52.3	1.1	37
	beta[18,1]	44.4	1.4	41.6	43.4	44.5	45.4	47.1	1.1	48
	beta[19,1]	60.9	1.3	58.6	60.1	60.8	61.6	64.0	1.2	26
	beta[2,1]	48.3	0.7	47.0	47.8	48.3	48.8	49.8	1.0	1000
	beta[20,1]	64.9	2.8	59.6	62.9	64.9	66.7	70.0	1.3	11
	beta[21,1]	65.5	1.6	61.7	64.6	65.6	66.6	68.4	1.4	10
	beta[22,1]	35.6	2.2	31.7	33.9	35.4	37.3	39.9	1.2	14
	beta[23,1]	30.4	2.4	25.7	28.9	30.4	31.9	35.2	1.2	20
	beta[24,1]	55.8	2.7	51.0	53.9	55.7	57.6	61.3	1.1	96
	beta[25,1]	53.0	2.4	48.6	51.1	53.1	54.7	57.4	1.9	5
	beta[26,1]	59.5	3.4	52.7	57.3	59.4	61.9	66.1	1.6	7
	beta[27,1]	54.0	0.9	52.3	53.3	53.9	54.6	55.8	1.1	24
	beta[28,1]	38.4	2.2	34.5	36.8	38.1	39.6	43.7	1.1	45
##	beta[29,1]	39.7	1.5	37.0	38.7	39.6	40.6	43.0	1.2	14
##	beta[3,1]	46.0	0.5	45.0	45.7	46.0	46.4	47.0	1.0	140
##	beta[30,1]	62.8	1.5	59.6	61.8	62.9	63.8	65.7	1.0	63
##	beta[31,1]	48.5	0.9	46.7	47.8	48.4	49.1	50.3	1.0	67
##	beta[32,1]	44.2	2.6	39.3	42.3	44.0	46.1	49.2	1.0	740
##	beta[33,1]	42.5	2.7	37.1	40.6	42.6	44.3	48.0	1.0	87
##	beta[34,1]	54.7	2.0	50.8	53.3	54.7	56.0	58.8	1.1	60
##	beta[35,1]	59.7	2.0	55.8	58.3	59.9	61.0	63.7	1.1	110
##	beta[36,1]	50.9	3.1	44.2	48.9	51.0	53.0	56.9	1.0	190
##	beta[37,1]	57.5	2.1	53.3	56.3	57.6	58.7	61.7	1.1	23
##	beta[38,1]	53.0	1.3	50.2	52.2	53.0	53.8	55.5	1.1	47
##	beta[39,1]	44.6	1.9	41.3	43.3	44.5	45.7	49.0	1.1	36
##	beta[4,1]	49.4	1.0	47.7	48.7	49.3	50.0	51.5	1.2	15
##	beta[40,1]	33.1	1.3	29.9	32.2	33.3	34.1	35.1	1.1	23
##	beta[41,1]	30.2	1.6	27.2	29.0	30.2	31.4	33.3	1.0	140
##	beta[42,1]	60.7	1.3	57.7	59.8	60.8	61.6	62.8	1.0	59
##	beta[43,1]	55.3	5.8	43.4	51.2	56.0	59.8	65.0	1.1	35
##	beta[44,1]	55.6	1.5	53.0	54.6	55.6	56.6	58.9	1.3	11
##	beta[45,1]	55.9	1.9	52.7	54.5	55.7	57.0	60.6	1.2	20
##	beta[46,1]	58.1	2.2	54.0	56.7	58.0	59.4	63.3	1.2	19
	beta[47,1]	33.9	3.2	29.0	31.4	33.5	36.0	40.6	1.8	6
	beta[48,1]	39.0	1.8	36.0	37.8	38.9	40.0	43.2	1.2	18
	beta[49,1]	8.9	2.9	4.3	6.9	8.5	10.2	16.9	1.5	8
	beta[5,1]	49.9	0.8	48.4	49.4	49.9	50.5	51.5	1.1	31
	beta[50,1]	39.0	2.3	34.6	37.3	39.2	40.8	43.0	1.1	21
	beta[51,1]	59.0	3.3	51.2	57.1	59.1	61.2	65.0	1.3	12
	beta[52,1]	54.1	1.9	50.1	52.9	54.1	55.5	57.6	1.1	67
	beta[53,1]	39.5	2.0	36.0	38.3	39.2	40.7	43.9	1.2	18
	beta[54,1]	48.7	2.2	44.3	47.3	48.7	50.2	52.8	1.0	150
	beta[55,1]	47.7	1.8	44.4	46.6	47.4	49.1	51.4	1.2	19
	beta[56,1]	44.5	5.6	30.2	41.6	45.9	48.7	51.5	2.1	5
	beta[6,1]	41.5	0.9	39.8	40.9	41.6	42.2	43.3	1.0	70
	beta[7,1]	46.7	0.9	45.1	46.1	46.7	47.3	48.5	1.3	12
	beta[8,1]	45.2	1.3	42.7	44.3	45.2	46.1	47.9	1.0	540
	beta[9,1]	39.8	1.2	37.5	39.0	39.7	40.5	42.4	1.1	19
	deviance	17316.4	73.4	17179.8	17266.1	17314.8	17366.7	17464.2	1.1	39
##										

For each parameter, n.eff is a crude measure of effective sample size,

```
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 2558.0 and DIC = 19874.3
## DIC is an estimate of expected predictive error (lower deviance is better).
```

US Senate Model

Model Purpose

This model predicts the probability that the senate will remain in Republican control. This is accomplished by simulating the outcomes of all 35 senate races based on polling data and calculating the total number of times where Republicans win more than 21 of these seats, as 21 is the number of seats where the senate remains in a 50/50 Democrat/Republican split. The percentage of our simulations that have Republicans winning over 21 seats is the probability that they will keep control of the senate.

Model Structure

Estimates From Model

49.7

46.0

53.0

beta[24,1]

beta[25,1]

beta[26,1]

4.9

5.1

3.3

40.3

35.2

46.1

46.4

42.6

50.9

```
##
   Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 792
##
      Unobserved stochastic nodes: 10896
##
      Total graph size: 13409
##
## Initializing model
## Inference for Bugs model at "/var/folders/bl/kdxqftsj6xj9mm8fpxmrv6qr0000gn/T//RtmpjlP5X6/model12aed
    3 chains, each with 1000 iterations (first 500 discarded)
##
    n.sims = 1500 iterations saved
                         sd
                                       25%
                                              50%
##
                 mean
                              2.5%
                                                      75%
                                                           97.5% Rhat n.eff
## beta[1,1]
                 49.7
                       1.1
                              47.6
                                      49.0
                                              49.7
                                                     50.5
                                                             51.7
                                                                   1.0
                                                                          400
                                                     53.1
## beta[10,1]
                 51.8
                       1.7
                              48.4
                                      50.7
                                              51.9
                                                             54.8
                                                                   1.0
                                                                           69
## beta[11,1]
                 43.2
                       2.5
                              39.3
                                      41.5
                                             43.1
                                                     44.3
                                                             49.2
                                                                   1.1
                                                                          220
## beta[12,1]
                 52.8
                       3.2
                              46.5
                                      50.8
                                              52.7
                                                     54.9
                                                             59.3
                                                                   1.1
                                                                           31
## beta[13,1]
                 49.0
                       1.7
                              45.6
                                      47.8
                                              49.1
                                                     50.3
                                                             52.2
                                                                   1.2
                                                                           17
## beta[14,1]
                 51.2
                       1.9
                              47.1
                                      50.1
                                              51.4
                                                     52.5
                                                             54.7
                                                                   1.0
                                                                          170
## beta[15,1]
                 50.9
                       2.6
                              45.7
                                      49.2
                                              51.0
                                                     52.7
                                                             55.7
                                                                   1.0
                                                                          200
## beta[16,1]
                 46.2 2.5
                              41.7
                                      44.3
                                              46.0
                                                     47.9
                                                             51.4
                                                                   1.1
                                                                           33
## beta[17,1]
                 50.3
                              46.7
                                      49.1
                                              50.3
                                                     51.5
                                                             53.9
                       1.9
                                                                   1.5
                                                                            8
## beta[18,1]
                 43.6
                       2.0
                              39.9
                                      42.1
                                              43.5
                                                     44.9
                                                             47.7
                                                                   1.1
                                                                           42
                                                                   1.4
## beta[19,1]
                 52.3
                       6.0
                              42.4
                                      48.2
                                             51.6
                                                     55.8
                                                             65.0
                                                                            9
                                      46.0
## beta[2,1]
                 46.9
                       1.3
                              44.3
                                              46.9
                                                     47.7
                                                             49.3
                                                                   1.0
                                                                          300
## beta[20,1]
                       2.1
                              45.9
                                      49.3
                                              50.7
                                                     51.9
                 50.5
                                                             54.1
                                                                   1.2
                                                                           18
                       2.2
                              44.8
                                      49.2
                                              50.4
                                                             53.6
## beta[21,1]
                 50.1
                                                     51.6
                                                                   1.4
                                                                           11
## beta[22,1]
                 51.2
                       2.9
                              45.0
                                      49.4
                                              51.3
                                                     53.2
                                                             56.6
                                                                   1.0
                                                                           67
## beta[23,1]
                              41.7
                                      47.6
                                                             59.3
                 51.0
                       4.7
                                              51.1
                                                     54.4
                                                                   1.6
                                                                            7
```

49.5

46.4

53.0

53.0

49.6

55.3

60.1

55.0

59.3 1.1

1.1

1.1

34

19

39

```
## beta[27,1]
                 52.9
                      4.3
                              45.3
                                     49.5
                                             52.7
                                                    56.1
                                                            62.1
                                                                  1.1
                                                                          28
## beta[28,1]
                 45.8
                       3.9
                              37.4
                                                    48.2
                                                            53.2
                                                                          19
                                     43.6
                                             45.9
                                                                  1.2
## beta[29,1]
                 45.7
                       4.7
                              36.0
                                     42.9
                                             45.3
                                                    48.7
                                                            55.0
                                                                  1.4
                                                                           9
                                     49.1
## beta[3,1]
                 49.7
                       1.0
                              47.7
                                             49.7
                                                    50.4
                                                                  1.2
                                                                          17
                                                            51.6
## beta[30,1]
                 48.8
                       3.5
                              40.9
                                     46.8
                                             49.0
                                                    51.1
                                                            55.0
                                                                  1.2
                                                                          16
## beta[4,1]
                       3.5
                                             40.9
                                                            49.6
                 41.3
                              35.7
                                     38.8
                                                    43.2
                                                                  1.1
                                                                          33
## beta[5,1]
                                                    45.8
                 44.9
                       1.1
                              42.6
                                     44.1
                                             44.9
                                                            47.0
                                                                  1.0
                                                                         330
## beta[6,1]
                 45.5
                       1.4
                              42.9
                                     44.6
                                             45.5
                                                    46.3
                                                            48.3
                                                                  1.1
                                                                          42
## beta[7,1]
                 41.3
                       3.7
                              34.7
                                     38.9
                                             41.0
                                                    43.6
                                                            49.4
                                                                  1.3
                                                                          11
## beta[8,1]
                 45.6 1.4
                              43.3
                                     44.6
                                             45.4
                                                    46.4
                                                            48.9
                                                                  1.0
                                                                          65
## beta[9,1]
                 47.9 1.0
                              46.0
                                     47.3
                                             47.9
                                                    48.5
                                                            50.0
                                                                  1.1
                                                                          72
  deviance
               3334.0 32.2 3272.7 3312.5 3333.9 3354.6 3400.3
##
                                                                          13
##
## For each parameter, n.eff is a crude measure of effective sample size,
  and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 433.3 and DIC = 3767.2
## DIC is an estimate of expected predictive error (lower deviance is better).
## [1] 0.002
```

North Carolina Senate Model

Model Purpose

The purpose of this model is to predict the outcome of the 13 races in North Carolina that will determine who gets elected to the US House of Representatives. In order to achieve this prediction, we use the percentage of Republican votes (out of all Democratic and Republic votes in a given county) as our response variable as a proxy for the number of people we expect to vote Republican, and predictor variables include economic, race, and education data from the North Carolina Census.

Model Structure

We used a linear model with a random effect for county.

```
Republican Share _{i} = \alpha_{i} + \beta_{travel\ time_{i}} + \beta_{foreign\ share_{i}} + \beta_{single\ parent\ share_{i}} + \beta_{fraction\ college_{i}} + \beta_{poor\ share_{i}} + \beta_{two\ bed\ rent_{i}} + \beta_{job\ growth_{i}} + \beta_{share\ white_{i}} + \beta_{share\ black_{i}} + \beta_{share\ hispanic_{i}} + \beta_{share\ asian_{i}} + \beta_{incumbent\ party\ Republican_{i}} + \beta_{incumbent\ party\ None_{i}} + \epsilon_{i}
where\ \alpha_{i} \sim N(\gamma_{0}, \tau^{2})
and\ \epsilon_{i} \sim N(0, \sigma^{2})
```

where i represents a given county. The republican share for a district j is then calculated as

$$Republican\ District_j = \sum_{i \in counties_j} t_i^*$$

where $counties_j$ is the set of counties in district j, and $t_i^* = \frac{t_i}{2I(split_i)}$, where t_i is the total number of voters in county i, I is the indicator function, and $split_i$ is a boolean of whether county i is divided into two districts. Each split county was examined individually and looked geographically split in half for each district, so

dividing the total by 2 is a reasonable approximation we can make with our given data. The Republican was considered to win the district if $Republican\ District_j > 0.5$.

Estimates From Model

```
# estimate percentages across whole state
M4 <- lmer(Republican.percentage ~ traveltime15_2010 + foreign_share2010 + singleparent_share2010 + fra
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.122035 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unide:
## - Rescale variables?
summary(M4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Republican.percentage ~ traveltime15_2010 + foreign_share2010 +
       singleparent_share2010 + frac_coll_plus2010 + poor_share2010 +
##
       rent_twobed2015 + ann_avg_job_growth_2004_2013 + share_white2010 +
##
##
       share_black2010 + share_hisp2010 + share_asian2010 + (1 |
##
      Data: rep2016
## Control: lmerControl(optimizer = "Nelder_Mead")
## REML criterion at convergence: -493.2
##
## Scaled residuals:
##
         Min
                      1Q
                            Median
                                            3Q
## -4.877e-06 -6.637e-07 9.660e-08 6.798e-07
                                               4.947e-06
##
## Random effects:
## Groups
            Name
                        Variance Std.Dev.
             (Intercept) 5.783e-03 7.605e-02
## county
## Residual
                         1.414e-14 1.189e-07
## Number of obs: 110, groups: county, 100
##
## Fixed effects:
##
                                 Estimate Std. Error t value
## (Intercept)
                                 0.4520588 0.2334036
                                                       1.937
## traveltime15_2010
                                 0.3001242 0.1315344
                                                       2.282
                                -1.6469213 1.0555181 -1.560
## foreign_share2010
## singleparent_share2010
                                -0.1907868 0.1882423 -1.014
## frac_coll_plus2010
                               -0.2745731 0.2264104 -1.213
## poor_share2010
                                -0.9628153 0.2794336 -3.446
## rent_twobed2015
                                -0.0002076 0.0001124 -1.847
## ann_avg_job_growth_2004_2013 1.7808509 0.9042251
                                                       1.969
## share_white2010
                                0.5184147 0.1909646
                                                       2.715
## share_black2010
                               -0.2531535 0.1733063 -1.461
## share_hisp2010
                                                       2.203
                                1.4983133 0.6801527
## share_asian2010
                                 2.2977221 1.8462989
                                                       1.245
##
```

```
## Correlation of Fixed Effects:
##
               (Intr) t15_20 f_2010 sn_2010 f__201 p_2010 r_2015 a____2 shr_w2010
## trvl15 2010 0.077
## frgn_sh2010 0.107 0.086
## snglpr_2010 -0.377 -0.101 -0.089
## frc cl 2010 0.098 -0.257 -0.449 0.029
## por shr2010 -0.549 -0.286 0.002 -0.138 -0.202
## rnt twb2015 -0.371 -0.140 0.111 0.010 -0.461 0.447
## a____2004_2 -0.136  0.402  0.134  0.202 -0.410  0.142 -0.041
## shr_wht2010 -0.923 -0.108 -0.102 0.272 -0.058 0.428 0.089 0.138
## shr_blc2010 -0.731 -0.058 -0.056 -0.103
                                             0.082 0.302 -0.017 0.002
## shr_hsp2010 -0.357 -0.123 -0.909 0.108
                                             0.416 0.117 -0.051 -0.180
                                                                         0.350
## shar_sn2010 -0.202 0.093 -0.527 0.087 -0.272 0.135 -0.047 0.079 0.265
##
               shr_b2010 shr_h2010
## trvl15_2010
## frgn_sh2010
## snglpr_2010
## frc cl 2010
## por_shr2010
## rnt twb2015
## a____2004_2
## shr wht2010
## shr_blc2010
## shr hsp2010 0.299
## shar sn2010 0.102
                          0.470
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## convergence code: 0
## Model failed to converge with max|grad| = 0.122035 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
coef(M4)
## $county
       (Intercept) traveltime15_2010 foreign_share2010 singleparent_share2010
##
## 1
         0.4256560
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 3
         0.4517946
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 5
         0.4476513
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 7
         0.3814097
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 9
         0.4290457
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 11
         0.6927023
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 13
        0.4464046
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 15
        0.4654785
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 17
                           0.3001242
        0.4034823
                                             -1.646921
                                                                   -0.1907868
## 19
         0.4933365
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 21
        0.2813985
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 23
         0.4206401
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 25
                                             -1.646921
         0.4473768
                           0.3001242
                                                                   -0.1907868
## 27
         0.4944897
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 29
        0.4255611
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 31
        0.5274182
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
## 33
         0.4505614
                           0.3001242
                                             -1.646921
                                                                   -0.1907868
```

-1.646921

-1.646921

-0.1907868

-0.1907868

0.3001242

0.3001242

35

37

0.5159774

0.3370516

##		0.4066493	0.3001242	-1.646921	-0.1907868
##	41	0.4836184	0.3001242	-1.646921	-0.1907868
##	43	0.5015163	0.3001242	-1.646921	-0.1907868
##	45	0.4507420	0.3001242	-1.646921	-0.1907868
##	47	0.3597681	0.3001242	-1.646921	-0.1907868
##	49	0.5132857	0.3001242	-1.646921	-0.1907868
##	51	0.4549904	0.3001242	-1.646921	-0.1907868
	53	0.4780539	0.3001242	-1.646921	-0.1907868
	55	0.3694725	0.3001242	-1.646921	-0.1907868
	57	0.5301751	0.3001242	-1.646921	-0.1907868
	59	0.5779657	0.3001242	-1.646921	-0.1907868
	61	0.3942447	0.3001242	-1.646921	-0.1907868
	63	0.4359293	0.3001242	-1.646921	-0.1907868
	65	0.4706160	0.3001242	-1.646921	-0.1907868
	67	0.4871043	0.3001242	-1.646921	-0.1907868
	69	0.4347387	0.3001242	-1.646921	-0.1907868
	71	0.5336488	0.3001242	-1.646921	-0.1907868
##	73	0.3788446	0.3001242	-1.646921	-0.1907868
##	75	0.4195272	0.3001242	-1.646921	-0.1907868
##	77	0.3589847	0.3001242	-1.646921	-0.1907868
##	79	0.3121005	0.3001242	-1.646921	-0.1907868
##	81	0.5434302	0.3001242	-1.646921	-0.1907868
##	83	0.4447690	0.3001242	-1.646921	-0.1907868
##	85	0.4932905	0.3001242	-1.646921	-0.1907868
##	87	0.2148950	0.3001242	-1.646921	-0.1907868
##		0.4745318	0.3001242	-1.646921	-0.1907868
	91	0.5009796	0.3001242	-1.646921	-0.1907868
	93	0.4359966	0.3001242	-1.646921	-0.1907868
	95	0.3608819	0.3001242	-1.646921	-0.1907868
	97	0.4865958	0.3001242	-1.646921	-0.1907868
	99	0.3541519	0.3001242	-1.646921	-0.1907868
	101	0.4809884	0.3001242	-1.646921	-0.1907868
	103	0.4438431	0.3001242	-1.646921	-0.1907868
	105	0.3724232	0.3001242	-1.646921	-0.1907868
	107	0.4840308	0.3001242	-1.646921	-0.1907868
	109	0.4954919	0.3001242	-1.646921	-0.1907868
	111	0.4219144	0.3001242	-1.646921	-0.1907868
##	113	0.4424278	0.3001242	-1.646921	-0.1907868
##	115	0.2739694	0.3001242	-1.646921	-0.1907868
##	117	0.4354315	0.3001242	-1.646921	-0.1907868
##	119	0.5182178	0.3001242	-1.646921	-0.1907868
##	121	0.6195859	0.3001242	-1.646921	-0.1907868
##	123	0.4204950	0.3001242	-1.646921	-0.1907868
##	125	0.5831726	0.3001242	-1.646921	-0.1907868
##	127	0.4577757	0.3001242	-1.646921	-0.1907868
##	129	0.5309662	0.3001242	-1.646921	-0.1907868
	131	0.4336171	0.3001242	-1.646921	-0.1907868
	133	0.4293392	0.3001242	-1.646921	-0.1907868
	135	0.3311659	0.3001242	-1.646921	-0.1907868
	137	0.3851851	0.3001242	-1.646921	-0.1907868
		0.4246297	0.3001242		-0.1907868
	139			-1.646921 -1.646921	
	141	0.5171662	0.3001242	-1.646921	-0.1907868
	143	0.4304348	0.3001242	-1.646921	-0.1907868
##	145	0.3791814	0.3001242	-1.646921	-0.1907868

```
## 147
         0.5065270
                             0.3001242
                                                                        -0.1907868
                                                -1.646921
## 149
                             0.3001242
                                                -1.646921
         0.4560819
                                                                        -0.1907868
  151
         0.5839708
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
##
  153
         0.3611784
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
##
  155
         0.5121853
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 157
                             0.3001242
         0.4388530
                                                -1.646921
                                                                        -0.1907868
## 159
         0.5632146
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 161
         0.4628483
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 163
         0.5153136
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 165
         0.5423142
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 167
         0.4672783
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
##
  169
         0.4756819
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 171
                             0.3001242
         0.4173556
                                                -1.646921
                                                                        -0.1907868
                                                                        -0.1907868
## 173
         0.3741218
                             0.3001242
                                                -1.646921
## 175
         0.3672538
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 177
         0.3704494
                                                -1.646921
                             0.3001242
                                                                        -0.1907868
## 179
         0.4698480
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 181
         0.4731463
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 183
         0.4682517
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
##
  185
         0.5515526
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 187
         0.4445968
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 189
         0.4801432
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 191
         0.4847447
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 193
         0.5373073
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
## 195
         0.4805449
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
##
  197
         0.5712919
                             0.3001242
                                                -1.646921
                                                                        -0.1907868
   199
                                                                        -0.1907868
##
         0.3286129
                             0.3001242
                                                -1.646921
##
       frac_coll_plus2010 poor_share2010 rent_twobed2015
## 1
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 3
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 5
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 7
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 9
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 11
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 13
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 15
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 17
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 19
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 21
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 23
                                -0.9628153
                -0.2745731
                                              -0.0002076225
  25
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 27
                -0.2745731
                                -0.9628153
                                              -0.0002076225
                -0.2745731
##
  29
                                -0.9628153
                                              -0.0002076225
## 31
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 33
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 35
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 37
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 39
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 41
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 43
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 45
                                -0.9628153
                -0.2745731
                                              -0.0002076225
## 47
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 49
                -0.2745731
                                              -0.0002076225
                                -0.9628153
## 51
                -0.2745731
                                -0.9628153
                                              -0.0002076225
```

##		-0.2745731	-0.9628153	-0.0002076225
##	55	-0.2745731	-0.9628153	-0.0002076225
##	57	-0.2745731	-0.9628153	-0.0002076225
##	59	-0.2745731	-0.9628153	-0.0002076225
##	61	-0.2745731	-0.9628153	-0.0002076225
##	63	-0.2745731	-0.9628153	-0.0002076225
##	65	-0.2745731	-0.9628153	-0.0002076225
##	67	-0.2745731	-0.9628153	-0.0002076225
	69	-0.2745731	-0.9628153	-0.0002076225
##				
##	71	-0.2745731	-0.9628153	-0.0002076225
##	73	-0.2745731	-0.9628153	-0.0002076225
##	75	-0.2745731	-0.9628153	-0.0002076225
##	77	-0.2745731	-0.9628153	-0.0002076225
##	79	-0.2745731	-0.9628153	-0.0002076225
##	81	-0.2745731	-0.9628153	-0.0002076225
##	83	-0.2745731	-0.9628153	-0.0002076225
##	85	-0.2745731	-0.9628153	-0.0002076225
##	87	-0.2745731	-0.9628153	-0.0002076225
##	89	-0.2745731	-0.9628153	-0.0002076225
##	91	-0.2745731	-0.9628153	-0.0002076225
##	93	-0.2745731	-0.9628153	-0.0002076225
##	95	-0.2745731	-0.9628153	-0.0002076225
	97		-0.9628153	-0.0002076225
##		-0.2745731		
##	99	-0.2745731	-0.9628153	-0.0002076225
##	101	-0.2745731	-0.9628153	-0.0002076225
##	103	-0.2745731	-0.9628153	-0.0002076225
##	105	-0.2745731	-0.9628153	-0.0002076225
##	107	-0.2745731	-0.9628153	-0.0002076225
##	109	-0.2745731	-0.9628153	-0.0002076225
##	111	-0.2745731	-0.9628153	-0.0002076225
##	113	-0.2745731	-0.9628153	-0.0002076225
##	115	-0.2745731	-0.9628153	-0.0002076225
##	117	-0.2745731	-0.9628153	-0.0002076225
##	119	-0.2745731	-0.9628153	-0.0002076225
##	121	-0.2745731	-0.9628153	-0.0002076225
##	123	-0.2745731	-0.9628153	-0.0002076225
##	125	-0.2745731	-0.9628153	-0.0002076225
##	127	-0.2745731	-0.9628153	-0.0002076225
##	129	-0.2745731	-0.9628153	-0.0002076225
##	131	-0.2745731	-0.9628153	-0.0002076225
##	133	-0.2745731	-0.9628153	-0.0002076225
##	135	-0.2745731	-0.9628153	-0.0002076225
##	137	-0.2745731	-0.9628153	-0.0002076225
##	139	-0.2745731	-0.9628153	-0.0002076225
##	141	-0.2745731	-0.9628153	-0.0002076225
##	143	-0.2745731	-0.9628153	-0.0002076225
##	145	-0.2745731	-0.9628153	-0.0002076225
##	147	-0.2745731	-0.9628153	-0.0002076225
##	149	-0.2745731	-0.9628153	-0.0002076225
##	151	-0.2745731	-0.9628153	-0.0002076225
##	153	-0.2745731	-0.9628153	-0.0002076225
##	155	-0.2745731	-0.9628153	-0.0002076225
##	157	-0.2745731	-0.9628153	-0.0002076225
##	159	-0.2745731	-0.9628153	-0.0002076225

```
## 161
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 163
                                -0.9628153
                -0.2745731
                                              -0.0002076225
## 165
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 167
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 169
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 171
                                -0.9628153
                                              -0.0002076225
                -0.2745731
## 173
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 175
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 177
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 179
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 181
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 183
                -0.2745731
                                -0.9628153
                                              -0.0002076225
                -0.2745731
## 185
                                -0.9628153
                                              -0.0002076225
## 187
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 189
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 191
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 193
                -0.2745731
                                -0.9628153
                                              -0.0002076225
## 195
                                              -0.0002076225
                -0.2745731
                                -0.9628153
## 197
                                -0.9628153
                                              -0.0002076225
                -0.2745731
##
   199
                -0.2745731
                                -0.9628153
                                              -0.0002076225
##
       ann_avg_job_growth_2004_2013 share_white2010 share_black2010 share_hisp2010
## 1
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 3
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 5
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 7
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 9
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 11
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 13
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 15
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 17
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 19
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 21
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 23
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 25
                                                             -0.2531535
                             1.780851
                                             0.5184147
                                                                                1.498313
## 27
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 29
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 31
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 33
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 35
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 37
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 39
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 41
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 43
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 45
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 47
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 49
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 51
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 53
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 55
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 57
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 59
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 61
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 63
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
## 65
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                                1.498313
```

##		1.780851	0.5184147	-0.2531535	1.498313
##	69	1.780851	0.5184147	-0.2531535	1.498313
##	71	1.780851	0.5184147	-0.2531535	1.498313
##	73	1.780851	0.5184147	-0.2531535	1.498313
##	75	1.780851	0.5184147	-0.2531535	1.498313
##	77	1.780851	0.5184147	-0.2531535	1.498313
##	79	1.780851	0.5184147	-0.2531535	1.498313
##	81	1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
##		1.780851	0.5184147	-0.2531535	1.498313
	101				
		1.780851	0.5184147	-0.2531535	1.498313
	103	1.780851	0.5184147	-0.2531535	1.498313
	105	1.780851	0.5184147	-0.2531535	1.498313
	107	1.780851	0.5184147	-0.2531535	1.498313
	109	1.780851	0.5184147	-0.2531535	1.498313
	111	1.780851	0.5184147	-0.2531535	1.498313
	113	1.780851	0.5184147	-0.2531535	1.498313
	115	1.780851	0.5184147	-0.2531535	1.498313
	117	1.780851	0.5184147	-0.2531535	1.498313
	119	1.780851	0.5184147	-0.2531535	1.498313
	121	1.780851	0.5184147	-0.2531535	1.498313
	123	1.780851	0.5184147	-0.2531535	1.498313
	125	1.780851	0.5184147	-0.2531535	1.498313
##	127	1.780851	0.5184147	-0.2531535	1.498313
##	129	1.780851	0.5184147	-0.2531535	1.498313
##	131	1.780851	0.5184147	-0.2531535	1.498313
##	133	1.780851	0.5184147	-0.2531535	1.498313
##	135	1.780851	0.5184147	-0.2531535	1.498313
##	137	1.780851	0.5184147	-0.2531535	1.498313
##	139	1.780851	0.5184147	-0.2531535	1.498313
##	141	1.780851	0.5184147	-0.2531535	1.498313
##	143	1.780851	0.5184147	-0.2531535	1.498313
##	145	1.780851	0.5184147	-0.2531535	1.498313
##	147	1.780851	0.5184147	-0.2531535	1.498313
##	149	1.780851	0.5184147	-0.2531535	1.498313
	151	1.780851	0.5184147	-0.2531535	1.498313
	153	1.780851	0.5184147	-0.2531535	1.498313
	155	1.780851	0.5184147	-0.2531535	1.498313
	157	1.780851	0.5184147	-0.2531535	1.498313
	159	1.780851	0.5184147	-0.2531535	1.498313
	161	1.780851	0.5184147	-0.2531535	1.498313
	163	1.780851	0.5184147	-0.2531535	1.498313
	165	1.780851	0.5184147	-0.2531535	1.498313
	167	1.780851	0.5184147	-0.2531535	1.498313
	169	1.780851	0.5184147	-0.2531535	1.498313
	171	1.780851	0.5184147	-0.2531535	1.498313
##	173	1.780851	0.5184147	-0.2531535	1.498313

```
## 175
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
## 177
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
                                             0.5184147
## 179
                             1.780851
                                                             -0.2531535
                                                                               1.498313
## 181
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
## 183
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
## 185
                                             0.5184147
                                                             -0.2531535
                             1.780851
                                                                               1.498313
## 187
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
                                                             -0.2531535
## 189
                             1.780851
                                             0.5184147
                                                                               1.498313
## 191
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
## 193
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
## 195
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
## 197
                                                             -0.2531535
                             1.780851
                                             0.5184147
                                                                               1.498313
## 199
                             1.780851
                                             0.5184147
                                                             -0.2531535
                                                                               1.498313
##
       share_asian2010
## 1
               2.297722
## 3
               2.297722
## 5
               2.297722
## 7
               2.297722
## 9
               2.297722
## 11
               2.297722
## 13
               2.297722
## 15
               2.297722
## 17
               2.297722
## 19
               2.297722
## 21
               2.297722
## 23
               2.297722
## 25
               2.297722
## 27
               2.297722
## 29
               2.297722
## 31
               2.297722
## 33
               2.297722
## 35
               2.297722
## 37
               2.297722
## 39
               2.297722
## 41
               2.297722
## 43
               2.297722
## 45
               2.297722
## 47
               2.297722
## 49
               2.297722
## 51
               2.297722
## 53
               2.297722
## 55
               2.297722
               2.297722
## 57
## 59
               2.297722
## 61
               2.297722
## 63
               2.297722
## 65
               2.297722
## 67
               2.297722
## 69
               2.297722
## 71
               2.297722
## 73
               2.297722
## 75
               2.297722
## 77
               2.297722
## 79
               2.297722
```

##	81	2.297722
##	83	2.297722
##	85	2.297722
##	87	2.297722
##	89	2.297722
##	91	2.297722
##	93	2.297722
##	95	2.297722
##	97	2.297722
##	99	2.297722
##	101	2.297722
##	103	2.297722
##	105	2.297722
##	107	2.297722
##	109	2.297722
##	111	2.297722
##	113	2.297722
##	115	2.297722
##	117	2.297722
##	119	2.297722
##	121	2.297722
##	123	2.297722
##	125	2.297722
##	127	2.297722
##	129	2.297722
##	131	2.297722
##	133	2.297722
##	135	2.297722
##	137	2.297722
##	139	2.297722
##	141	2.297722
##	143	2.297722
##	145	2.297722
##	147	2.297722
##	149	2.297722
##	151	2.297722
##	153	2.297722
##	155	2.297722
##	157	2.297722
##	159	2.297722
##	161	2.297722
##	163	2.297722
##	165	2.297722
##	167	2.297722
##	169	2.297722
##	171	2.297722
##	173	2.297722
##	175	2.297722
##	177	2.297722
##	179	2.297722
##	181	2.297722
##	183	2.297722
##		2.297722
##		2.297722
πĦ	101	2.201122

```
## 189
              2.297722
## 191
              2.297722
## 193
              2.297722
## 195
              2.297722
## 197
              2.297722
## 199
              2.297722
##
## attr(,"class")
## [1] "coef.mer"
PI <- predictInterval(merMod = M4, newdata = full_counties,
                        level = 0.95, n.sims = 1000,
                        stat = "median", type="linear.prediction",
                        include.resid.var = TRUE)
# account for counties split into 2 districts
modified_counties <- full_counties %>%
  mutate(Totals = as.numeric(gsub(",","",Totals))) %>%
  mutate(voters = case_when(split == "y" ~ Totals/2,
                            TRUE ~ Totals))
modified_counties$fit = PI$fit
modified_counties$lower = PI$lwr
modified_counties$upper = PI$upr
# weight county vote share by number of people who voted in 2016 election
modified_counties %>%
  group by(district) %>%
  summarise(dist_share_rep = sum(fit*voters)/sum(voters),
            dist_lwr_rep = sum(lower*voters)/sum(voters),
            dist_upr_rep = sum(upper*voters)/sum(voters))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 13 x 4
##
      district dist_share_rep dist_lwr_rep dist_upr_rep
##
         <int>
                        <dbl>
                                     <dbl>
                                                   <dbl>
                                                   0.340
## 1
             1
                        0.294
                                     0.249
## 2
             2
                        0.423
                                     0.347
                                                   0.493
## 3
             3
                        0.483
                                     0.428
                                                   0.537
## 4
                                     0.251
                                                   0.392
             4
                        0.325
## 5
             5
                        0.579
                                     0.538
                                                   0.621
## 6
             6
                        0.398
                                     0.351
                                                   0.443
## 7
             7
                        0.516
                                     0.470
                                                   0.561
## 8
                        0.469
                                     0.426
                                                   0.513
             8
## 9
             9
                                                   0.473
                        0.410
                                     0.347
## 10
            10
                        0.593
                                     0.555
                                                   0.629
## 11
            11
                        0.503
                                     0.461
                                                   0.544
## 12
                        0.367
            12
                                     0.304
                                                   0.429
## 13
            13
                        0.589
                                     0.555
                                                   0.622
modified_counties %>%
  summarise(dist_share_rep = sum(fit*voters)/sum(voters),
            dist_lwr_rep = sum(lower*voters)/sum(voters),
            dist_upr_rep = sum(upper*voters)/sum(voters))
```

```
## dist_share_rep dist_lwr_rep dist_upr_rep
## 1 0.4554345 0.4037169 0.505731
```

North Carolina Senate Model

Model Purpose

The purpose of this model is to predict the outcome of the North Carolina senate race between Democrat Cal Cunningham and Republican Thom Tillis. Predictor variables are the same as those in the model above, and similarly, we use the percentage of Republican votes (out of all Democratic and Republic votes in a given county) as our response variable as a proxy for the number of people we expect to vote for Thom Tillis.

Model Structure

This model is identical to the House model above, except for each $Republican\ Share_i$, we do not include predictors based on incumbent party. That is, we have

```
Republican Share<sub>i</sub> = \alpha_i + \beta_{travel\ time_i} + \beta_{foreign\ share_i} + \beta_{single\ parent\ share_i} +
\beta_{fraction\ college_i} + \beta_{poor\ share_i} + \beta_{two\ bed\ rent_i} + \beta_{job\ growth_i} +
\beta_{share\ white_i} + \beta_{share\ black_i} + \beta_{share\ hispanic_i} + \beta_{share\ asian_i}
where\ \alpha_i \sim N(\gamma_0, \tau^2)
and\ \epsilon_i \sim N(0, \sigma^2)
```

We calculated the overall Republican share for all districts simply as

$$Tillis = \sum_{j=1}^{13} Republican \ District_j$$

. Tillis was considered to win the election if Tillis > 0.5.

REML criterion at convergence: -418.3

Estimates From Model

##

##

```
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0409366 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unide:
   - Rescale variables?
## Linear mixed model fit by REML ['lmerMod']
## Formula: Republican.percentage ~ traveltime15_2010 + foreign_share2010 +
##
       singleparent_share2010 + incumbent_party + frac_coll_plus2010 +
##
       poor_share2010 + rent_twobed2015 + ann_avg_job_growth_2004_2013 +
##
       share white2010 + share black2010 + share hisp2010 + share asian2010 +
##
       (1 | county)
      Data: rep2018
##
## Control: lmerControl(optimizer = "Nelder Mead")
```

```
## Scaled residuals:
##
         Min
                            Median
                     1Q
                                           30
                                                     Max
## -1.528e-05 -8.502e-07 8.290e-08 9.472e-07 1.614e-05
## Random effects:
                        Variance Std.Dev.
## Groups
           Name
            (Intercept) 6.728e-03 8.202e-02
  county
## Residual
                        2.199e-14 1.483e-07
## Number of obs: 110, groups: county, 100
##
## Fixed effects:
##
                                 Estimate Std. Error t value
## (Intercept)
                                5.560e-01 2.211e-01
                                                       2.515
## traveltime15_2010
                                3.364e-01 1.415e-01
                                                       2.377
## foreign_share2010
                               -1.079e+00 1.134e+00 -0.952
## singleparent_share2010
                               -1.740e-01
                                           1.960e-01
                                                      -0.888
## incumbent_partyNONE
                               -4.035e-12 2.422e-07
                                                       0.000
## incumbent partyREP
                                6.245e-13 1.211e-07
                                                       0.000
                               -4.248e-01 2.431e-01
## frac_coll_plus2010
                                                     -1.748
                                                      -3.826
## poor share2010
                               -1.126e+00 2.942e-01
## rent_twobed2015
                               -2.474e-04 1.228e-04 -2.015
1.984
                                4.931e-01 1.806e-01
## share_white2010
                                                       2.731
## share black2010
                               -3.056e-01 1.743e-01 -1.753
                                1.091e+00 7.240e-01
## share hisp2010
                                                      1.507
## share asian2010
                                1.972e+00 1.978e+00
                                                      0.997
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)
##
      vcov(x)
                     if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## convergence code: 0
## Model failed to converge with max|grad| = 0.0409366 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## $county
##
       (Intercept) traveltime15_2010 foreign_share2010 singleparent_share2010
## 1
                           0.336388
        0.5388496
                                            -1.078875
                                                                  -0.1740335
## 3
        0.5432444
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 5
        0.5542341
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 7
        0.4850282
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 9
        0.5288560
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 11
        0.7853014
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 13
        0.5497029
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 15
        0.5562997
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 17
        0.5396343
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 19
        0.6008755
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 21
        0.3572555
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 23
        0.5173754
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 25
        0.5413006
                           0.336388
                                            -1.078875
                                                                  -0.1740335
## 27
        0.5970874
                           0.336388
                                            -1.078875
                                                                  -0.1740335
```

##	29	0.5593757	0.336388	-1.078875	-0.1740335
##	31	0.6367365	0.336388	-1.078875	-0.1740335
##	33	0.5090577	0.336388	-1.078875	-0.1740335
##	35	0.6239852	0.336388	-1.078875	-0.1740335
##	37	0.4282286	0.336388	-1.078875	-0.1740335
	39	0.5383648	0.336388	-1.078875	-0.1740335
	41	0.6098246	0.336388	-1.078875	-0.1740335
	43	0.6339599	0.336388	-1.078875	-0.1740335
	45	0.5554416	0.336388	-1.078875	-0.1740335
	47	0.4712051	0.336388	-1.078875	-0.1740335
##	49	0.6231006	0.336388	-1.078875	-0.1740335
	51	0.5698176	0.336388	-1.078875	-0.1740335
	53	0.5889148	0.336388	-1.078875	-0.1740335
	55	0.4786996	0.336388	-1.078875	-0.1740335
	57	0.6488653	0.336388	-1.078875	-0.1740335
##	59	0.6868917	0.336388	-1.078875	-0.1740335
##	61	0.4886049	0.336388	-1.078875	-0.1740335
##	63	0.5394019	0.336388	-1.078875	-0.1740335
##	65	0.5662458	0.336388	-1.078875	-0.1740335
##	67	0.5968552	0.336388	-1.078875	-0.1740335
##	69	0.5334427	0.336388	-1.078875	-0.1740335
	71	0.6408027	0.336388	-1.078875	-0.1740335
	73	0.4647787	0.336388	-1.078875	-0.1740335
	75	0.4954655	0.336388	-1.078875	-0.1740335
	77	0.4421480	0.336388	-1.078875	-0.1740335
	79	0.4129254	0.336388	-1.078875	-0.1740335
	81	0.6518044	0.336388	-1.078875	-0.1740335
	83	0.5391524	0.336388	-1.078875	-0.1740335
	85	0.6001280	0.336388	-1.078875	-0.1740335
	87	0.3054421	0.336388	-1.078875	-0.1740335
	89	0.5706097	0.336388	-1.078875	-0.1740335
##	91	0.5939078	0.336388	-1.078875	-0.1740335
##	93	0.5332356	0.336388	-1.078875	-0.1740335
##	95	0.4582635	0.336388	-1.078875	-0.1740335
##	97	0.5966752	0.336388	-1.078875	-0.1740335
##	99	0.4387766	0.336388	-1.078875	-0.1740335
##	101	0.5928635	0.336388	-1.078875	-0.1740335
##	103	0.5244696	0.336388	-1.078875	-0.1740335
##	105	0.4789526	0.336388	-1.078875	-0.1740335
	107	0.5996059	0.336388	-1.078875	-0.1740335
	109	0.6022073	0.336388	-1.078875	-0.1740335
	111	0.5269745	0.336388	-1.078875	-0.1740335
	113	0.5430739	0.336388	-1.078875	-0.1740335
	115	0.3605807	0.336388	-1.078875	-0.1740335
	117	0.5299121	0.336388	-1.078875	-0.1740335
	117		0.336388		-0.1740335
		0.6197384		-1.078875 -1.078875	
	121	0.7046325	0.336388	-1.078875	-0.1740335
	123	0.5166569	0.336388	-1.078875	-0.1740335
	125	0.6927173	0.336388	-1.078875	-0.1740335
	127	0.5603676	0.336388	-1.078875	-0.1740335
	129	0.6385466	0.336388	-1.078875	-0.1740335
	131	0.5363303	0.336388	-1.078875	-0.1740335
##	133	0.5420910	0.336388	-1.078875	-0.1740335
##	135	0.4298272	0.336388	-1.078875	-0.1740335

```
## 137
         0.4800538
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 139
                              0.336388
         0.5343294
                                                -1.078875
                                                                        -0.1740335
                                                -1.078875
## 141
         0.6227613
                              0.336388
                                                                        -0.1740335
## 143
         0.5741209
                              0.336388
                                                -1.078875
                                                                        -0.1740335
##
  145
         0.4724552
                              0.336388
                                                -1.078875
                                                                        -0.1740335
         0.6316485
## 147
                                                                        -0.1740335
                              0.336388
                                                -1.078875
## 149
         0.5649166
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 151
         0.6978117
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 153
         0.4649725
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 155
         0.5970068
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 157
         0.5400305
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 159
         0.6722531
                              0.336388
                                                -1.078875
                                                                        -0.1740335
         0.5953439
## 161
                                                -1.078875
                                                                        -0.1740335
                              0.336388
## 163
         0.6436984
                                                                        -0.1740335
                              0.336388
                                                -1.078875
## 165
         0.6581870
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 167
         0.5757871
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 169
         0.5733446
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 171
         0.5265906
                                                -1.078875
                                                                        -0.1740335
                              0.336388
                              0.336388
## 173
         0.4613810
                                                -1.078875
                                                                        -0.1740335
         0.4616094
## 175
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 177
         0.4660127
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 179
         0.5715069
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 181
         0.5799563
                                                                        -0.1740335
                              0.336388
                                                -1.078875
## 183
         0.5645499
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 185
         0.6746275
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 187
         0.5593074
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 189
         0.5867936
                              0.336388
                                                -1.078875
                                                                        -0.1740335
##
  191
         0.5941619
                              0.336388
                                                -1.078875
                                                                        -0.1740335
## 193
         0.6492310
                              0.336388
                                                -1.078875
                                                                        -0.1740335
         0.5850325
## 195
                                                -1.078875
                                                                        -0.1740335
                              0.336388
## 197
         0.6741342
                              0.336388
                                                -1.078875
                                                                        -0.1740335
##
  199
         0.4164014
                              0.336388
                                                -1.078875
                                                                        -0.1740335
##
       incumbent_partyNONE incumbent_partyREP frac_coll_plus2010 poor_share2010
##
              -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
  1
                                                                           -1.125642
##
   3
              -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 5
                                                          -0.4247737
             -4.035487e-12
                                   6.244926e-13
                                                                           -1.125642
## 7
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 9
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 11
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 13
             -4.035487e-12
                                   6.244926e-13
                                                                           -1.125642
                                                          -0.4247737
  15
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 17
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
##
  19
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 21
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 23
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 25
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 27
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 29
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
##
  31
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
##
  33
              -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
##
  35
                                                          -0.4247737
             -4.035487e-12
                                   6.244926e-13
                                                                           -1.125642
## 37
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 39
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
## 41
             -4.035487e-12
                                   6.244926e-13
                                                          -0.4247737
                                                                           -1.125642
```

##	43	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13		-1.125642
##				-0.4247737	
		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	. –	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	~ =	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##		-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
	101	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
	103	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
	105	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	107	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	109	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	111	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
	113	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	115	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	117	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	119	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	121	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	123	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	125	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	127	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	129	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	131	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	133	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	135	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	137	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	139	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	141	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	143	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	145	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	147	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642
##	149	-4.035487e-12	6.244926e-13	-0.4247737	-1.125642

```
## 151
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 153
                                                         -0.4247737
             -4.035487e-12
                                   6.244926e-13
                                                                          -1.125642
## 155
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 157
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 159
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 161
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 163
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 165
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 167
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 169
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 171
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 173
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
                                                         -0.4247737
## 175
             -4.035487e-12
                                   6.244926e-13
                                                                          -1.125642
## 177
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 179
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 181
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
             -4.035487e-12
## 183
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 185
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 187
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 189
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 191
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 193
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 195
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 197
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
## 199
             -4.035487e-12
                                   6.244926e-13
                                                         -0.4247737
                                                                          -1.125642
##
       rent_twobed2015 ann_avg_job_growth_2004_2013 share_white2010
## 1
         -0.0002473574
                                             1.928913
                                                              0.4931066
##
   3
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 5
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 7
                                                              0.4931066
         -0.0002473574
                                             1.928913
## 9
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 11
         -0.0002473574
                                                              0.4931066
                                             1.928913
## 13
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 15
         -0.0002473574
                                                              0.4931066
                                             1.928913
## 17
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 19
                                             1.928913
         -0.0002473574
                                                              0.4931066
## 21
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 23
         -0.0002473574
                                                              0.4931066
                                             1.928913
## 25
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 27
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 29
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 31
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 33
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 35
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 37
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 39
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 41
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 43
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 45
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 47
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 49
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 51
         -0.0002473574
                                             1.928913
                                                              0.4931066
## 53
         -0.0002473574
                                                              0.4931066
                                             1.928913
## 55
         -0.0002473574
                                             1.928913
                                                              0.4931066
```

##	57	-0.0002473574	1.928913	0.4931066
##	59	-0.0002473574	1.928913	0.4931066
##		-0.0002473574	1.928913	0.4931066
	63	-0.0002473574	1.928913	0.4931066
##	65	-0.0002473574	1.928913	0.4931066
##	67	-0.0002473574	1.928913	0.4931066
##	69	-0.0002473574	1.928913	0.4931066
##	71	-0.0002473574	1.928913	0.4931066
##	73	-0.0002473574	1.928913	0.4931066
##	75	-0.0002473574	1.928913	0.4931066
##	77	-0.0002473574	1.928913	0.4931066
	79	-0.0002473574	1.928913	0.4931066
	81	-0.0002473574	1.928913	0.4931066
##	83	-0.0002473574	1.928913	0.4931066
	85	-0.0002473574	1.928913	0.4931066
##	87	-0.0002473574	1.928913	0.4931066
	89	-0.0002473574	1.928913	0.4931066
##		-0.0002473574	1.928913	0.4931066
	93	-0.0002473574	1.928913	0.4931066
	95	-0.0002473574	1.928913	0.4931066
	97	-0.0002473574	1.928913	0.4931066
##	99	-0.0002473574	1.928913	0.4931066
##	101	-0.0002473574	1.928913	0.4931066
##	103	-0.0002473574	1.928913	0.4931066
##	105	-0.0002473574	1.928913	0.4931066
##	107	-0.0002473574	1.928913	0.4931066
##	109	-0.0002473574	1.928913	0.4931066
##	111	-0.0002473574	1.928913	0.4931066
##	113	-0.0002473574	1.928913	0.4931066
##	115	-0.0002473574	1.928913	0.4931066
##	117	-0.0002473574	1.928913	0.4931066
##	119	-0.0002473574	1.928913	0.4931066
##	121	-0.0002473574	1.928913	0.4931066
##	123	-0.0002473574	1.928913	0.4931066
##	125	-0.0002473574	1.928913	0.4931066
##	127	-0.0002473574	1.928913	0.4931066
	129	-0.0002473574	1.928913	0.4931066
	131	-0.0002473574	1.928913	0.4931066
	133	-0.0002473574	1.928913	0.4931066
	135	-0.0002473574	1.928913	0.4931066
	137	-0.0002473574	1.928913	0.4931066
	139	-0.0002473574	1.928913	0.4931066
	141	-0.0002473574	1.928913	0.4931066
	143	-0.0002473574	1.928913	0.4931066
	145	-0.0002473574	1.928913	0.4931066
	147	-0.0002473574	1.928913	0.4931066
	149	-0.0002473574	1.928913	0.4931066
	151	-0.0002473574	1.928913	0.4931066
	153	-0.0002473574	1.928913	0.4931066
	155	-0.0002473574	1.928913	0.4931066
	157	-0.0002473574	1.928913	0.4931066
	159	-0.0002473574	1.928913	0.4931066
	161	-0.0002473574	1.928913	0.4931066
##	163	-0.0002473574	1.928913	0.4931066

```
## 165
         -0.0002473574
                                               1.928913
                                                               0.4931066
## 167
         -0.0002473574
                                               1.928913
                                                               0.4931066
  169
         -0.0002473574
                                               1.928913
                                                               0.4931066
##
  171
         -0.0002473574
                                               1.928913
                                                               0.4931066
##
  173
         -0.0002473574
                                              1.928913
                                                               0.4931066
## 175
         -0.0002473574
                                              1.928913
                                                               0.4931066
## 177
         -0.0002473574
                                              1.928913
                                                               0.4931066
## 179
         -0.0002473574
                                               1.928913
                                                               0.4931066
         -0.0002473574
##
  181
                                              1.928913
                                                               0.4931066
##
  183
         -0.0002473574
                                              1.928913
                                                               0.4931066
##
  185
         -0.0002473574
                                              1.928913
                                                               0.4931066
##
   187
         -0.0002473574
                                               1.928913
                                                               0.4931066
         -0.0002473574
##
  189
                                              1.928913
                                                               0.4931066
##
  191
         -0.0002473574
                                               1.928913
                                                               0.4931066
## 193
         -0.0002473574
                                               1.928913
                                                               0.4931066
##
   195
         -0.0002473574
                                               1.928913
                                                               0.4931066
         -0.0002473574
##
  197
                                               1.928913
                                                               0.4931066
##
   199
         -0.0002473574
                                                               0.4931066
                                               1.928913
##
       share_black2010
                        share_hisp2010 share_asian2010
##
   1
             -0.3056365
                               1.090963
                                                 1.971851
##
  3
             -0.3056365
                               1.090963
                                                 1.971851
## 5
             -0.3056365
                               1.090963
                                                 1.971851
## 7
             -0.3056365
                               1.090963
                                                 1.971851
## 9
             -0.3056365
                               1.090963
                                                 1.971851
## 11
             -0.3056365
                               1.090963
                                                 1.971851
## 13
             -0.3056365
                               1.090963
                                                 1.971851
##
  15
             -0.3056365
                               1.090963
                                                 1.971851
##
  17
             -0.3056365
                               1.090963
                                                 1.971851
## 19
             -0.3056365
                               1.090963
                                                 1.971851
## 21
             -0.3056365
                               1.090963
                                                 1.971851
## 23
             -0.3056365
                               1.090963
                                                 1.971851
##
  25
             -0.3056365
                                                 1.971851
                               1.090963
##
   27
             -0.3056365
                               1.090963
                                                 1.971851
##
  29
             -0.3056365
                               1.090963
                                                 1.971851
##
   31
             -0.3056365
                               1.090963
                                                 1.971851
##
  33
             -0.3056365
                               1.090963
                                                 1.971851
##
  35
             -0.3056365
                               1.090963
                                                 1.971851
## 37
             -0.3056365
                               1.090963
                                                 1.971851
## 39
             -0.3056365
                               1.090963
                                                 1.971851
##
  41
             -0.3056365
                               1.090963
                                                 1.971851
##
  43
             -0.3056365
                               1.090963
                                                 1.971851
##
   45
             -0.3056365
                               1.090963
                                                 1.971851
             -0.3056365
                               1.090963
##
  47
                                                 1.971851
##
  49
             -0.3056365
                               1.090963
                                                 1.971851
## 51
             -0.3056365
                                                1.971851
                               1.090963
## 53
             -0.3056365
                               1.090963
                                                 1.971851
## 55
             -0.3056365
                               1.090963
                                                 1.971851
##
  57
             -0.3056365
                               1.090963
                                                 1.971851
             -0.3056365
##
  59
                                                 1.971851
                               1.090963
##
   61
             -0.3056365
                                                1.971851
                               1.090963
##
   63
             -0.3056365
                               1.090963
                                                 1.971851
##
  65
             -0.3056365
                               1.090963
                                                 1.971851
## 67
             -0.3056365
                               1.090963
                                                 1.971851
## 69
             -0.3056365
                               1.090963
                                                 1.971851
```

## 71	-0.3056365	1.090963	1.971851
## 73	-0.3056365	1.090963	1.971851
## 75	-0.3056365	1.090963	1.971851
## 77	-0.3056365	1.090963	1.971851
## 79	-0.3056365	1.090963	1.971851
## 81	-0.3056365	1.090963	1.971851
## 83	-0.3056365	1.090963	1.971851
## 85	-0.3056365	1.090963	1.971851
## 87	-0.3056365	1.090963	1.971851
## 89	-0.3056365	1.090963	1.971851
## 91	-0.3056365	1.090963	1.971851
## 93	-0.3056365	1.090963	1.971851
## 95	-0.3056365	1.090963	1.971851
## 97	-0.3056365	1.090963	1.971851
## 99	-0.3056365	1.090963	1.971851
## 101	-0.3056365	1.090963	1.971851
## 101	-0.3056365	1.090963	1.971851
## 105	-0.3056365	1.090963	1.971851
## 103	-0.3056365	1.090963	1.971851
## 107	-0.3056365	1.090963	1.971851
## 111	-0.3056365	1.090963	1.971851
## 111	-0.3056365	1.090963	1.971851
## 115 ## 115	-0.3056365	1.090963	1.971851
## 113 ## 117	-0.3056365	1.090963	1.971851
## 117 ## 119	-0.3056365	1.090963	1.971851
## 119 ## 121	-0.3056365	1.090963	1.971851
## 121 ## 123	-0.3056365	1.090963	1.971851
## 125 ## 125	-0.3056365	1.090963	1.971851
## 125 ## 127	-0.3056365	1.090963	1.971851
## 127 ## 129	-0.3056365	1.090963	1.971851
## 129 ## 131	-0.3056365	1.090963	1.971851
## 131	-0.3056365	1.090963	1.971851
## 135 ## 135	-0.3056365	1.090963	1.971851
## 135 ## 137	-0.3056365	1.090963	1.971851
## 137 ## 139	-0.3056365	1.090963	1.971851
## 139 ## 141	-0.3056365	1.090963	1.971851
## 141 ## 143	-0.3056365	1.090963	1.971851
## 145 ## 145			1.971851
## 145 ## 147	-0.3056365 -0.3056365	1.090963 1.090963	1.971851
## 147 ## 149	-0.3056365	1.090963	1.971851
	-0.3056365		1.971851
	-0.3056365	1.090963	1.971851
		1.090963	
## 155 ## 157	-0.3056365	1.090963 1.090963	1.971851
	-0.3056365		1.971851 1.971851
	-0.3056365 -0.3056365	1.090963	
		1.090963	1.971851
## 163 ## 165	-0.3056365	1.090963	1.971851
	-0.3056365 -0.3056365	1.090963	1.971851
	-0.3056365	1.090963	1.971851
## 169 ## 171	-0.3056365	1.090963	1.971851
## 171 ## 173	-0.3056365 -0.3056365	1.090963	1.971851
## 173 ## 175	-0.3056365	1.090963	1.971851 1.971851
## 175 ## 177	-0.3056365	1.090963	
## 177	-0.3056365	1.090963	1.971851

```
## 179
            -0.3056365
                               1.090963
                                                1.971851
## 181
            -0.3056365
                               1.090963
                                               1.971851
## 183
            -0.3056365
                               1.090963
                                                1.971851
## 185
            -0.3056365
                               1.090963
                                               1.971851
## 187
            -0.3056365
                              1.090963
                                               1.971851
## 189
            -0.3056365
                              1.090963
                                               1.971851
## 191
            -0.3056365
                              1.090963
                                               1.971851
            -0.3056365
## 193
                               1.090963
                                                1.971851
## 195
            -0.3056365
                              1.090963
                                               1.971851
## 197
            -0.3056365
                               1.090963
                                                1.971851
## 199
            -0.3056365
                               1.090963
                                                1.971851
##
## attr(,"class")
## [1] "coef.mer"
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 13 x 4
##
      district dist_share_rep dist_lwr_rep dist_upr_rep
##
         <int>
                         <dbl>
                                       <dbl>
                                                     <dbl>
   1
                         0.298
                                       0.249
                                                     0.346
##
             1
##
    2
             2
                         0.402
                                       0.320
                                                     0.477
##
   3
             3
                         0.494
                                       0.436
                                                     0.552
                                                     0.375
##
   4
                         0.304
                                       0.225
             4
##
    5
             5
                         0.592
                                       0.548
                                                     0.635
##
   6
             6
                                       0.350
                                                     0.449
                         0.401
##
   7
             7
                         0.523
                                       0.473
                                                     0.572
##
   8
             8
                         0.472
                                       0.425
                                                     0.518
##
    9
             9
                         0.405
                                       0.337
                                                     0.471
## 10
                                                     0.647
            10
                         0.608
                                       0.567
## 11
                                                     0.543
            11
                         0.500
                                       0.454
## 12
            12
                         0.355
                                       0.285
                                                     0.420
## 13
            13
                         0.605
                                       0.570
                                                     0.641
```

Appendix B: Data Sources

Appendix C: Diagnostic Plots

Traceplots, Lag-1 Scatter plots, and ACF Plots for Presidential and US Senate Models

Presidential Model

US Senate Model

Residual Plots for NC House and Senate Models

-2

0

-1

2

1

Appendix D: Out-of-Sample Validation

Electoral College - 2016 Election

```
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
    .default = col_character(),
##
    X1 = col_double(),
##
    entry.date.time..et. = col_datetime(format = ""),
    number.of.observations = col double(),
##
    trump = col_double(),
##
##
    clinton = col double(),
##
    other = col_double(),
##
    undecided = col_double(),
    question.iteration = col_double(),
##
    johnson = col_logical(),
##
    mcmullin = col_logical()
## )
## See spec(...) for full column specifications.
## Warning: 585 parsing failures.
## row
                                                                  file
           col
                         expected actual
## 1523 johnson 1/0/T/F/TRUE/FALSE
                                  12 'data/2016_Economist_Polls.csv'
## 1525 johnson 1/0/T/F/TRUE/FALSE
                                     13 'data/2016_Economist_Polls.csv'
## 1527 johnson 1/0/T/F/TRUE/FALSE
                                     7 'data/2016_Economist_Polls.csv'
## 1528 johnson 1/0/T/F/TRUE/FALSE
                                     16 'data/2016_Economist_Polls.csv'
                                     10 'data/2016 Economist Polls.csv'
## 1530 johnson 1/0/T/F/TRUE/FALSE
## .... ......
## See problems(...) for more details.
## Compiling model graph
##
     Resolving undeclared variables
##
     Allocating nodes
## Graph information:
##
     Observed stochastic nodes: 172
##
     Unobserved stochastic nodes: 312
##
     Total graph size: 1049
##
## Initializing model
## Inference for Bugs model at "/var/folders/bl/kdxqftsj6xj9mm8fpxmrv6qr0000gn/T//RtmpjlP5X6/model12aed
   3 chains, each with 1000 iterations (first 500 discarded)
   n.sims = 1500 iterations saved
##
##
                    sd 2.5%
                               25%
                                     50%
                                           75% 97.5% Rhat n.eff
              mean
## beta[1,1]
              50.8 3.6 43.8 48.5 50.7 53.1 57.9
                                                    1.0
## beta[10,1] 50.5 3.8 43.2 48.1 50.5 53.0 58.4 1.0
                                                           900
## beta[11,1] 49.5 3.8 42.1 47.0 49.4 52.0
                                              56.8 1.0
                                                           640
## beta[12,1] 62.2 4.1 54.0 59.5 62.3 64.9 69.7 1.0
                                                            54
## beta[13,1]
              46.4
                   3.9
                        38.8 43.9 46.4 48.9
                                                           620
                                               54.0
                                               48.6 1.0
## beta[14,1]
              40.3 3.9 32.7 37.7 40.3 42.7
                                                            71
## beta[15,1]
              57.2 3.7 49.7 54.7 57.2 59.6 64.7
                                                            97
## beta[16,1] 42.8 3.7
                        35.8 40.3 42.9 45.3 50.4 1.0
                                                           240
## beta[17,1] 43.7 3.8 36.3 41.1 43.8 46.2 51.0 1.0
```

```
## beta[18,1]
                41.2
                       3.8
                            34.0
                                   38.4
                                         41.2
                                                43.8
                                                       48.8
                                                                    210
                                                              1.0
                                         43.4
                43.5
                            36.5
                                                45.9
                                                       51.3
## beta[19,1]
                       3.8
                                   41.1
                                                              1.0
                                                                    180
## beta[2,1]
                41.8
                       3.9
                            34.5
                                   39.1
                                          41.8
                                                44.3
                                                       49.7
                                                              1.0
                                                                    180
## beta[20,1]
                61.2
                       3.9
                            53.2
                                   58.6
                                          61.3
                                                63.8
                                                       68.8
                                                                     91
                                                              1.0
## beta[21,1]
                63.0
                       4.0
                            55.1
                                   60.3
                                          63.1
                                                65.7
                                                       70.8
                                                              1.0
                                                                    200
                                          53.8
                                                56.3
                                                       61.2
## beta[22,1]
                53.7
                       3.9
                            45.7
                                   51.2
                                                              1.0
                                                                    420
                                   48.2
                                          50.7
                                                       57.9
## beta[23,1]
                50.6
                       3.7
                            43.1
                                                53.0
                                                              1.0
                                                                    490
## beta[24,1]
                53.0
                       3.8
                            45.6
                                   50.4
                                          53.1
                                                55.6
                                                       60.2
                                                              1.0
                                                                    500
                            39.7
## beta[25,1]
                46.5
                       3.8
                                   43.9
                                          46.5
                                                49.0
                                                       53.8
                                                              1.0
                                                                   1500
                            38.5
## beta[26,1]
                46.0
                       3.9
                                   43.6
                                          46.0
                                                48.4
                                                       53.9
                                                              1.0
                                                                    650
## beta[27,1]
                40.1
                       3.9
                            32.6
                                   37.4
                                          39.9
                                                42.7
                                                       47.5
                                                              1.0
                                                                    100
                            45.2
                                   50.1
                                          52.4
                                                54.9
                                                       60.0
## beta[28,1]
                52.5
                       3.7
                                                              1.0
                                                                    680
## beta[29,1]
                38.0
                       3.9
                            30.8
                                   35.3
                                          37.8
                                                40.5
                                                       46.1
                                                              1.0
                                                                    110
                                   39.0
                                                44.2
                                                       50.0
## beta[3,1]
                41.7
                       3.9
                            34.4
                                          41.6
                                                              1.0
                                                                    360
## beta[30,1]
                       3.9
                            34.5
                                   39.4
                                          42.0
                                                44.4
                                                                    270
                41.9
                                                       49.6
                                                              1.0
## beta[31,1]
                53.8
                       3.9
                            46.5
                                   51.2
                                          53.7
                                                56.5
                                                       61.6
                                                              1.0
                                                                    300
                            48.1
                                   53.5
                                                58.7
## beta[32,1]
                56.1
                       4.0
                                          56.2
                                                       63.6
                                                              1.0
                                                                    110
## beta[33,1]
                51.1
                       3.8
                            43.1
                                   48.6
                                          51.2
                                                53.7
                                                       58.3
                                                                    370
                                                              1.0
                                         50.9
## beta[34,1]
                            43.8
                                   48.4
                                                53.2
                                                                   1500
                50.8
                       3.7
                                                       57.9
                                                              1.0
## beta[35,1]
                60.6
                       4.0
                            52.6
                                   57.9
                                          60.7
                                                63.3
                                                       68.4
                                                              1.1
                                                                     45
## beta[36,1]
                48.8
                       4.0
                            40.9
                                   46.3
                                          48.9
                                                51.5
                                                       56.5
                                                              1.0
                                                                   1200
## beta[37,1]
                       3.9
                            31.0
                                   35.9
                                          38.5
                                                41.1
                                                       46.7
                38.5
                                                              1.0
                                                                    150
                       3.8
                            48.7
                                   53.9
                                                58.9
                                                       63.7
## beta[38,1]
                56.3
                                          56.3
                                                              1.0
                                                                    130
                            43.4
                                   48.7
                                                53.8
## beta[39,1]
                51.2
                       3.9
                                          51.1
                                                       58.7
                                                              1.0
                                                                   1400
                                                42.2
## beta[4,1]
                39.6
                       3.9
                            32.3
                                   37.0
                                          39.5
                                                       48.0
                                                              1.0
                                                                    180
## beta[40,1]
                56.0
                       3.9
                            48.2
                                   53.5
                                          56.0
                                                58.6
                                                       63.6
                                                              1.0
                                                                     97
## beta[41,1]
                47.9
                       3.9
                            40.1
                                   45.4
                                          48.0
                                                50.4
                                                       55.7
                                                                   1500
                                                              1.0
                                   38.1
## beta[42,1]
                40.8
                       3.9
                            33.1
                                          40.8
                                                43.3
                                                       48.2
                                                              1.0
                                                                    130
## beta[43,1]
                46.0
                            38.5
                                   43.4
                                          45.9
                                                48.4
                                                       53.6
                       3.8
                                                              1.0
                                                                    250
## beta[44,1]
                48.0
                       3.8
                            40.4
                                   45.6
                                          47.9
                                                50.4
                                                       56.0
                                                              1.0
                                                                    610
## beta[45,1]
                47.1
                       3.9
                            39.5
                                   44.7
                                          47.1
                                                49.7
                                                       55.0
                                                              1.0
                                                                    210
## beta[46,1]
                53.1
                       3.8
                            45.5
                                   50.6
                                          53.2
                                                55.6
                                                       60.5
                                                              1.0
                                                                    270
## beta[47,1]
                65.6
                       4.0
                            57.1
                                   62.9
                                          65.7
                                                68.3
                                                       73.3
                                                              1.1
                                                                     43
                                                60.3
                            50.3
                                   55.4
                                          57.9
## beta[48,1]
                57.8
                       3.8
                                                       65.5
                                                                    120
                                                              1.0
## beta[49,1]
                51.2
                       3.6
                            44.0
                                   48.8
                                          51.1
                                                53.6
                                                       58.4
                                                                   1500
                                                              1.0
## beta[5,1]
                50.9
                            43.5
                                   48.3
                                          51.0
                                                53.4
                                                       58.4
                       3.8
                                                              1.0
                                                                   1500
## beta[50,1]
                37.9
                       3.9
                            30.8
                                   35.2
                                          37.9
                                                40.4
                                                       45.4
                                                              1.0
                                                                      64
## beta[51,1]
                       5.2
                            26.2
                                   32.4
                                          35.8
                                                39.5
                                                       47.0
                                                                     36
                36.1
                                                              1.1
## beta[6,1]
                       3.9
                            53.0
                                   58.3
                                          60.9
                                                63.4
                                                       68.5
                                                              1.1
                60.8
                                                                     50
                                                54.1
                            44.3
                                   49.1
                                                       58.9
                                                              1.0
## beta[7,1]
                51.6
                       3.7
                                          51.6
                                                                    730
                            49.3
                                   54.2
## beta[8,1]
                56.6
                       3.8
                                          56.6
                                                59.1
                                                       64.1
                                                              1.0
                                                                    120
  beta[9,1]
                       3.9
                            46.8
                                   51.9
                                          54.6
                                                57.1
                                                       62.3
                                                                    360
                54.5
                                                              1.0
##
   deviance
               652.0 38.9 595.1 622.5 641.4 679.4 730.9
                                                                      4
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 295.4 and DIC = 947.4
## DIC is an estimate of expected predictive error (lower deviance is better).
## [1] 0.8706667
```

US Senate - 2018 Election

```
set.seed(1)
jags_r <- jags(data = jags_data_republican,</pre>
                   model.file = model,
                   parameters.to.save = c("beta[1,1]", "beta[2,1]", "beta[3,1]", "beta[4,1]", "beta[5,1]
                                           "beta[6,1]", "beta[7,1]", "beta[8,1]", "beta[9,1]", "beta[10,1]
                                           "beta[11,1]", "beta[12,1]", "beta[13,1]", "beta[14,1]", "beta[
                                           "beta[16,1]", "beta[17,1]", "beta[18,1]", "beta[19,1]", "beta[
"beta[21,1]", "beta[22,1]", "beta[23,1]", "beta[24,1]", "beta[
                                           "beta[26,1]", "beta[27,1]", "beta[28,1]", "beta[29,1]", "beta[
                   n.iter = 1000)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
##
   Graph information:
##
      Observed stochastic nodes: 786
##
      Unobserved stochastic nodes: 10956
##
      Total graph size: 13451
##
## Initializing model
b1r <- jags_r$BUGSoutput$sims.array[1:1500]
b10r <- jags_r$BUGSoutput$sims.array[1501:3000]
b11r <- jags r$BUGSoutput$sims.array[3001:4500]
b12r <- jags_r$BUGSoutput$sims.array[4501:6000]
b13r <- jags_r$BUGSoutput$sims.array[6001:7500]
b14r <- jags_r$BUGSoutput$sims.array[7501:9000]
b15r <- jags r$BUGSoutput$sims.array[9001:10500]
b16r <- jags_r$BUGSoutput$sims.array[10501:12000]
b17r <- jags_r$BUGSoutput$sims.array[12001:13500]
b18r <- jags_r$BUGSoutput$sims.array[13501:15000]
b19r <- jags_r$BUGSoutput$sims.array[15001:16500]
b2r <- jags_r$BUGSoutput$sims.array[16501:18000]
b20r <- jags_r$BUGSoutput$sims.array[18001:19500]
b21r <- jags_r$BUGSoutput$sims.array[19501:21000]
b22r <- jags_r$BUGSoutput$sims.array[21001:22500]
b23r <- jags_r$BUGSoutput$sims.array[22501:24000]
b24r <- jags_r$BUGSoutput$sims.array[24001:25500]
b25r <- jags r$BUGSoutput$sims.array[25501:27000]
b26r <- jags_r$BUGSoutput$sims.array[27001:28500]
b27r <- jags r$BUGSoutput$sims.array[28501:30000]
b28r <- jags_r$BUGSoutput$sims.array[30001:31500]
b29r <- jags_r$BUGSoutput$sims.array[31501:33000]
b3r <- jags_r$BUGSoutput$sims.array[33001:34500]
b30r <- jags r$BUGSoutput$sims.array[34501:36000]
b4r <- jags_r$BUGSoutput$sims.array[36001:37500]
b5r <- jags_r$BUGSoutput$sims.array[37501:39000]
b6r <- jags_r$BUGSoutput$sims.array[39001:40500]
b7r <- jags_r$BUGSoutput$sims.array[40501:42000]
b8r <- jags_r$BUGSoutput$sims.array[42001:43500]
b9r <- jags_r$BUGSoutput$sims.array[43501:45000]
```

```
## Inference for Bugs model at "/var/folders/bl/kdxqftsj6xj9mm8fpxmrv6qr0000gn/T//RtmpjlP5X6/model12aed
    3 chains, each with 1000 iterations (first 500 discarded)
    n.sims = 1500 iterations saved
##
                              2.5%
                                       25%
                                              50%
                                                           97.5% Rhat n.eff
                 mean
                         sd
                                                      75%
## beta[1,1]
                 47.1
                       1.7
                              43.8
                                      46.0
                                             47.1
                                                     48.2
                                                             50.5
                                                                   1.0
                                                                          140
                 50.6
                              41.6
                                             50.3
                                                     53.3
                                                             61.7
                                                                   1.0
                                                                          230
## beta[10,1]
                       4.9
                                      47.4
                                                             49.3
## beta[11,1]
                 45.3
                       2.1
                              41.5
                                      43.8
                                             45.3
                                                     46.7
                                                                   1.0
                                                                           97
## beta[12,1]
                 43.9
                       2.1
                              39.8
                                      42.5
                                             43.8
                                                     45.2
                                                             48.5
                                                                   1.1
                                                                           25
## beta[13,1]
                 52.4
                       2.8
                              47.3
                                      50.7
                                             52.4
                                                     54.0
                                                             58.4
                                                                   1.2
                                                                           14
## beta[14,1]
                 45.1
                       2.4
                              40.8
                                      43.4
                                             45.0
                                                     46.7
                                                             50.0
                                                                  1.2
                                                                           14
## beta[15,1]
                 42.2
                       4.8
                              33.8
                                      38.3
                                             42.0
                                                     46.1
                                                             51.1
                                                                  2.3
                                                                            4
## beta[16,1]
                 45.2
                       4.0
                                      42.6
                                             45.6
                                                     48.0
                                                             52.1
                                                                   1.3
                              36.8
                                                                           11
## beta[17,1]
                 45.0
                       1.9
                              41.2
                                      43.7
                                             45.1
                                                     46.2
                                                             48.9
                                                                  1.1
                                                                           24
## beta[18,1]
                 42.4
                       3.7
                              35.3
                                      39.9
                                             42.1
                                                     44.8
                                                             50.1
                                                                   1.2
                                                                           18
## beta[19,1]
                 41.6
                       5.4
                              30.9
                                      37.6
                                             42.4
                                                     45.7
                                                             50.6
                                                                  1.5
                                                                            7
## beta[2,1]
                 49.6
                       1.2
                              47.0
                                      48.8
                                             49.6
                                                     50.4
                                                             52.0
                                                                   1.1
                                                                           77
## beta[20,1]
                 47.4
                                                             52.4
                       2.5
                              42.6
                                      45.7
                                             47.4
                                                     49.1
                                                                  1.0
                                                                           53
## beta[21,1]
                 50.4
                       2.7
                              45.2
                                      48.7
                                             50.2
                                                     52.0
                                                             56.0
                                                                  1.2
                                                                           14
                                                     53.3
## beta[22,1]
                 51.4
                       2.7
                              45.5
                                      49.6
                                             51.7
                                                             56.4
                                                                  1.2
                                                                           15
                                                     47.5
## beta[23,1]
                 44.4
                       4.3
                              36.0
                                      41.2
                                             44.9
                                                             51.6
                                                                            9
## beta[24,1]
                 49.8
                       3.9
                              41.4
                                      47.3
                                             49.9
                                                     52.7
                                                             56.8
                                                                  1.1
                                                                           80
## beta[25,1]
                 44.5
                       3.6
                              38.1
                                      41.6
                                                     47.4
                                                             50.9
                                             44.7
                                                                   1.8
                                                                            6
                                                     48.8
## beta[26,1]
                 44.5
                       6.2
                                      41.2
                              29.4
                                             46.1
                                                             52.6
                                                                   1.8
                                                                            6
                 50.2
                       4.5
                              40.8
                                      47.6
## beta[27,1]
                                             50.2
                                                     53.1
                                                             58.0
                                                                   1.1
                                                                           52
                                                                  1.1
## beta[28,1]
                 45.4
                       3.9
                              37.2
                                      43.1
                                             45.8
                                                     47.9
                                                             52.4
                                                                           46
## beta[29,1]
                 45.4
                       6.5
                              28.9
                                      41.6
                                             46.8
                                                     49.7
                                                             55.7
                                                                   2.0
                                                                            5
## beta[3,1]
                 49.7
                              46.3
                                      48.4
                                             49.7
                                                     50.9
                                                             53.2
                                                                  1.0
                       1.8
                                                                          110
## beta[30,1]
                 46.5
                       5.0
                              37.7
                                      42.7
                                             46.7
                                                     49.6
                                                             57.3
                                                                   1.9
                                                                            5
## beta[4,1]
                 52.4
                       1.5
                              49.4
                                      51.5
                                                     53.3
                                                             55.6
                                                                          220
                                             52.4
                                                                  1.0
## beta[5,1]
                 49.2
                       1.4
                              46.2
                                      48.4
                                             49.2
                                                     50.0
                                                             51.8
                                                                   1.0
                                                                          140
## beta[6,1]
                 49.0
                       2.0
                              44.5
                                      47.9
                                             49.1
                                                     50.2
                                                             52.9
                                                                   1.1
                                                                          120
## beta[7,1]
                 50.2
                       1.2
                              47.8
                                      49.4
                                             50.2
                                                     51.0
                                                             52.6
                                                                   1.0
                                                                         1500
## beta[8,1]
                 48.7
                       2.6
                              43.6
                                      47.0
                                             48.7
                                                     50.4
                                                             53.8
                                                                   1.0
                                                                           99
                       2.8
                                                             50.0
## beta[9,1]
                 45.0
                              39.6
                                      43.1
                                             45.1
                                                     47.0
                                                                           42
                                                                   1.1
   deviance
               3231.8 48.5 3132.6 3199.6 3233.0 3266.6 3319.2
                                                                           12
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 964.7 and DIC = 4196.5
## DIC is an estimate of expected predictive error (lower deviance is better).
##
      question_id poll_id cycle
                                        state pollster_id
                                                                          pollster
## 1
             91111
                     56597
                             2018
                                        Maine
                                                      1102
                                                                  Emerson College
## 2
             91111
                     56597
                             2018
                                        Maine
                                                      1102
                                                                  Emerson College
## 3
             91111
                     56597
                             2018
                                                      1102
                                                                  Emerson College
                                        Maine
## 4
             90510
                     56313
                                                                Critical Insights
                             2018
                                        Maine
                                                       114
## 5
             90510
                     56313
                                                                Critical Insights
                             2018
                                        Maine
                                                       114
## 6
             90510
                     56313
                             2018
                                        Maine
                                                       114
                                                                Critical Insights
## 7
             90518
                     56319
                             2018
                                        Maine
                                                       365 Pan Atlantic Research
             90518
                                                       365 Pan Atlantic Research
## 8
                     56319
                             2018
                                        Maine
## 9
             90518
                     56319
                             2018
                                        Maine
                                                       365 Pan Atlantic Research
             90151
                     56161
                             2018
                                                               Self-Made Insights
## 10
                                        Maine
                                                      1462
```

```
## 11
             90151
                     56161
                             2018
                                        Maine
                                                      1462
                                                               Self-Made Insights
## 12
                             2018
             90151
                     56161
                                        Maine
                                                      1462
                                                               Self-Made Insights
## 13
             85923
                     53545
                             2018
                                        Maine
                                                       458
                                                               Suffolk University
## 14
             85923
                     53545
                             2018
                                                       458
                                                               Suffolk University
                                        Maine
## 15
             85923
                     53545
                             2018
                                        Maine
                                                       458
                                                               Suffolk University
                     53625
                                                       907
## 16
             86679
                             2018 New Mexico
                                                                              GBAO
                                                                              GBAO
## 17
             86679
                     53625
                             2018 New Mexico
                                                       907
##
      sponsor_ids sponsors
                                       display_name pollster_rating_id
## 1
                                   Emerson College
## 2
                                   Emerson College
                                                                      88
## 3
                                    Emerson College
                                                                      88
## 4
                                                                      64
                                 Critical Insights
## 5
                                 Critical Insights
                                                                      64
## 6
                                  Critical Insights
                                                                      64
## 7
                             Pan Atlantic Research
                                                                     249
## 8
                             Pan Atlantic Research
                                                                     249
## 9
                             Pan Atlantic Research
                                                                     249
## 10
                                Self-Made Insights
                                                                     493
## 11
                                                                     493
                                Self-Made Insights
## 12
                                Self-Made Insights
                                                                     493
## 13
                                Suffolk University
                                                                     323
## 14
                                Suffolk University
                                                                     323
## 15
                                Suffolk University
                                                                     323
## 16
                                               GBAO
                                                                     109
## 17
                                               GBAO
                                                                     109
##
       pollster_rating_name fte_grade sample_size population population_full
## 1
             Emerson College
                                     A-
                                                 883
                                                               lv
                                      A-
                                                  883
## 2
             Emerson College
                                                               lv
                                                                                lv
## 3
                                      A-
                                                  883
             Emerson College
                                                               lv
                                                                                lv
## 4
           Critical Insights
                                    C/D
                                                  600
                                                               lv
                                                                                lv
## 5
           Critical Insights
                                    C/D
                                                  600
                                                               lv
                                                                                lv
## 6
           Critical Insights
                                    C/D
                                                  600
                                                               ٦ 77
                                                                                ٦ ت
## 7
      Pan Atlantic Research
                                    B/C
                                                  500
                                                               lv
                                                                                lv
      Pan Atlantic Research
                                                  500
                                                               lv
## 8
                                    B/C
                                                                                lv
## 9
      Pan Atlantic Research
                                    B/C
                                                  500
                                                               lv
                                                                                lv
## 10
                                                  750
         Self-Made Insights
                                                               ٦ ٧
                                                                                lv
## 11
         Self-Made Insights
                                                  750
                                                               ٦ ٧
                                                                                ٦v
## 12
         Self-Made Insights
                                                  750
                                                               ٦ ٧
                                                                                ٦v
## 13
         Suffolk University
                                                  500
                                       Α
                                                               ٦ ٧
                                                                                lv
## 14
         Suffolk University
                                       Α
                                                  500
                                                               ٦ ٧
                                                                                lν
         Suffolk University
                                                  500
## 15
                                       Α
                                                               lv
                                                                                lv
## 16
                         GBAO
                                    B/C
                                                  800
                                                               lv
                                                                                ٦v
## 17
                         GBAO
                                    B/C
                                                  800
                                                               lv
                                                                                lv
##
             methodology office_type seat_number seat_name start_date end_date
              IVR/Online U.S. Senate
## 1
                                                  0
                                                      Class I
                                                                 10/27/18 10/29/18
              IVR/Online U.S. Senate
## 2
                                                  0
                                                      Class I
                                                                 10/27/18 10/29/18
## 3
              IVR/Online U.S. Senate
                                                  0
                                                      Class I
                                                                 10/27/18 10/29/18
## 4
      Live Phone/Online U.S. Senate
                                                  0
                                                      Class I
                                                                  10/8/18 10/16/18
      Live Phone/Online U.S. Senate
                                                  0
                                                      Class I
                                                                  10/8/18 10/16/18
      Live Phone/Online U.S. Senate
## 6
                                                  0
                                                      Class I
                                                                  10/8/18 10/16/18
## 7
                  Online U.S. Senate
                                                  0
                                                      Class I
                                                                  10/1/18
                                                                           10/7/18
## 8
                  Online U.S. Senate
                                                      Class I
                                                  0
                                                                  10/1/18
                                                                           10/7/18
                                                                           10/7/18
## 9
                  Online U.S. Senate
                                                  0
                                                      Class I
                                                                  10/1/18
## 10
              IVR/Online U.S. Senate
                                                  0
                                                      Class I
                                                                  9/27/18 9/30/18
```

```
IVR/Online U.S. Senate
                                                     Class I
                                                                 9/27/18
                                                                           9/30/18
## 12
             IVR/Online U.S. Senate
                                                     Class I
                                                 0
                                                                 9/27/18
                                                                           9/30/18
## 13
             Live Phone U.S. Senate
                                                     Class I
                                                                  8/2/18
                                                                            8/6/18
             Live Phone U.S. Senate
                                                     Class I
                                                                  8/2/18
## 14
                                                 0
                                                                            8/6/18
## 15
             Live Phone U.S. Senate
                                                 0
                                                     Class I
                                                                  8/2/18
                                                                            8/6/18
## 16
                         U.S. Senate
                                                 0
                                                     Class I
                                                                  8/1/18
                                                                            8/5/18
## 17
                         U.S. Senate
                                                     Class I
                                                                  8/1/18
                                                 0
                                                                            8/5/18
      election_date sponsor_candidate internal partisan tracking nationwide_batch
##
## 1
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 2
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 3
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 4
                        Eric L. Brakey
                                                       REP
            11/6/18
                                             true
                                                                  NA
                                                                                 false
## 5
            11/6/18
                        Eric L. Brakey
                                                       REP
                                                                                 false
                                             true
                                                                  NA
## 6
            11/6/18
                        Eric L. Brakey
                                             true
                                                       REP
                                                                  NA
                                                                                 false
## 7
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 8
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 9
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 10
            11/6/18
                        Eric L. Brakey
                                                       REP
                                                                                 false
                                             true
                                                                  NA
## 11
            11/6/18
                        Eric L. Brakey
                                                       REP
                                                                                 false
                                             true
                                                                  NA
## 12
            11/6/18
                        Eric L. Brakey
                                             true
                                                       REP
                                                                  NA
                                                                                 false
## 13
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 14
            11/6/18
                                            false
                                                                                 false
                                                                  NA
## 15
            11/6/18
                                            false
                                                                  NA
                                                                                 false
## 16
            11/6/18
                                                                                 false
                       Martin Heinrich
                                             true
                                                       DEM
                                                                  NA
## 17
            11/6/18
                       Martin Heinrich
                                             true
                                                       DEM
                                                                  NA
                                                                                 false
      ranked_choice_reallocated
                                      created_at
## 1
                            false 10/31/18 10:40
## 2
                            false 10/31/18 10:40
## 3
                            false 10/31/18 10:40
## 4
                           false 10/19/18 10:53
## 5
                           false 10/19/18 10:53
## 6
                           false 10/19/18 10:53
## 7
                           false 10/19/18 16:06
## 8
                           false 10/19/18 16:06
## 9
                           false 10/19/18 16:06
## 10
                           false 10/11/18 15:56
## 11
                           false 10/11/18 15:56
## 12
                           false 10/11/18 15:56
## 13
                           false
                                    8/8/18 15:44
## 14
                                    8/8/18 15:44
                           false
## 15
                                    8/8/18 15:44
                           false
## 16
                           false
                                    9/7/18 13:43
## 17
                                    9/7/18 13:43
                           false
##
                                                                                             notes
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
```

10 Brakey's campaign manager says their pollster was David Burrell at Self-Made Insights.

```
## 11 Brakey's campaign manager says their pollster was David Burrell at Self-Made Insights.
## 12 Brakey's campaign manager says their pollster was David Burrell at Self-Made Insights.
## 14
## 15
## 16
## 17
##
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10
## 11
## 12
## 13
## 14
## 15
## 16 https://www.scribd.com/document/385670682/NM-Sen-GBA-Strategies-for-Martin-Heinrich-August-2018?1
## 17 https://www.scribd.com/document/385670682/NM-Sen-GBA-Strategies-for-Martin-Heinrich-August-2018?1
        stage race_id
                            answer candidate_id
                                                    candidate_name candidate_party
## 1
                   103 Ringelstein
                                           11393
                                                   Zak Ringelstein
                                                                                 DEM
      general
                                                                                 REP
## 2
      general
                   103
                            Brakey
                                           11394
                                                    Eric L. Brakey
## 3
                   103
                                                                                 IND
      general
                              King
                                           11395 Angus S. King Jr.
## 4
                                           11393
                                                   Zak Ringelstein
                                                                                 DEM
      general
                   103 Ringelstein
## 5
      general
                   103
                            Brakey
                                           11394
                                                    Eric L. Brakey
                                                                                 REP
## 6
      general
                   103
                                           11395 Angus S. King Jr.
                                                                                 IND
                              King
## 7
      general
                   103 Ringelstein
                                           11393
                                                   Zak Ringelstein
                                                                                 DEM
                                                                                 REP
## 8
      general
                   103
                            Brakey
                                           11394
                                                    Eric L. Brakey
## 9
      general
                   103
                              King
                                           11395 Angus S. King Jr.
                                                                                 IND
                                                                                 DEM
## 10 general
                   103 Ringelstein
                                           11393
                                                   Zak Ringelstein
## 11 general
                   103
                            Brakey
                                           11394
                                                    Eric L. Brakey
                                                                                 REP
## 12 general
                   103
                                           11395 Angus S. King Jr.
                                                                                 IND
                              King
## 13 general
                   103 Ringelstein
                                           11393
                                                   Zak Ringelstein
                                                                                 DEM
                   103
                                                    Eric L. Brakey
                                                                                 REP
## 14 general
                            Brakey
                                           11394
                   103
                                                                                 IND
## 15 general
                              King
                                           11395 Angus S. King Jr.
## 16 general
                   114
                          Heinrich
                                           11154
                                                   Martin Heinrich
                                                                                 DEM
## 17 general
                   114
                           Johnson
                                           12389
                                                      Gary Johnson
                                                                                 LIB
##
       pct
## 1
       5.8
## 2
      37.2
## 3
      50.4
## 4
      7.0
## 5
     27.0
## 6 41.0
## 7
       8.2
## 8 29.6
## 9 57.2
## 10 8.0
```

```
## 11 36.0

## 12 47.0

## 13 8.8

## 14 25.0

## 15 51.6

## 16 50.0

## 17 38.0

## [1] 0.714
```

NC Senate - 2016 Election

```
# estimate percentages across whole state
M5 <- lmer(Republican.percentage ~ traveltime15_2010 + foreign_share2010 + singleparent_share2010 + fra
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0505167 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unide:
## - Rescale variables?
summary(M5)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Republican.percentage ~ traveltime15_2010 + foreign_share2010 +
       singleparent_share2010 + frac_coll_plus2010 + poor_share2010 +
##
       rent_twobed2015 + ann_avg_job_growth_2004_2013 + share_white2010 +
       share_black2010 + share_hisp2010 + share_asian2010 + (1 |
##
##
      Data: rep2018
## Control: lmerControl(optimizer = "Nelder_Mead")
##
## REML criterion at convergence: -477.3
##
## Scaled residuals:
##
         Min
                     1Q
                            Median
                                           30
                                                     Max
## -5.513e-06 -7.755e-07 1.422e-07 8.683e-07 5.065e-06
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
            (Intercept) 6.582e-03 8.113e-02
## county
                        2.114e-14 1.454e-07
## Number of obs: 110, groups: county, 100
##
## Fixed effects:
##
                                 Estimate Std. Error t value
## (Intercept)
                                0.4722495 0.1961836
                                                      2.407
## traveltime15_2010
                                0.3360326 0.1400589
                                                      2.399
## foreign_share2010
                               -1.1516980 1.1160988 -1.032
## singleparent_share2010
                               -0.1779817 0.1928895 -0.923
## frac_coll_plus2010
                               -0.4612821 0.2410866 -1.913
## poor_share2010
                               -1.0724253 0.2814571 -3.810
```

```
## rent twobed2015
                              -0.0002246 0.0001199 -1.874
## ann_avg_job_growth_2004_2013  1.9637504  0.9610191
                                                    2.043
## share white2010
                             0.5633199 0.1625826
                                                   3.465
## share_black2010
                              -0.2449879 0.1621993 -1.510
## share hisp2010
                               1.2053728 0.7042888
                                                    1.711
## share asian2010
                               2.2784069 1.9419713 1.173
## Correlation of Fixed Effects:
##
              (Intr) t15_20 f_2010 sn_2010 f__201 p_2010 r_2015 a____2 shr_w2010
## trvl15_2010 0.039
## frgn_sh2010 0.091 0.094
## snglpr_2010 -0.289 -0.080 -0.078
## frc_cl_2010 0.070 -0.267 -0.456 0.051
## por_shr2010 -0.461 -0.279 0.014 -0.251 -0.186
## rnt_twb2015 -0.354 -0.134  0.117 -0.043 -0.447  0.426
## a____2004_2 -0.087  0.417  0.144  0.182  -0.405  0.107 -0.071
## shr_wht2010 -0.876 -0.077 -0.083 0.162 -0.024 0.297 -0.012 0.096
## shr_hsp2010 -0.295 -0.122 -0.919 0.059 0.443 0.059 -0.082 -0.211 0.284
## shar sn2010 -0.133 0.101 -0.517 0.053 -0.271 0.089 -0.081 0.068 0.219
##
              shr_b2010 shr_h2010
## trvl15_2010
## frgn_sh2010
## snglpr_2010
## frc cl 2010
## por shr2010
## rnt_twb2015
## a____2004_2
## shr_wht2010
## shr_blc2010
## shr_hsp2010 0.230
## shar_sn2010 0.034
                        0.444
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## convergence code: 0
## Model failed to converge with max|grad| = 0.0505167 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
coef(M5)
## $county
      (Intercept) traveltime15_2010 foreign_share2010 singleparent_share2010
## 1
        0.4532772
                         0.3360326
                                          -1.151698
                                                               -0.1779817
        0.4598225
## 3
                         0.3360326
                                                               -0.1779817
                                          -1.151698
## 5
        0.4672636
                         0.3360326
                                          -1.151698
                                                               -0.1779817
## 7
        0.3996636
                         0.3360326
                                                               -0.1779817
                                          -1.151698
## 9
       0.4443991
                         0.3360326
                                          -1.151698
                                                               -0.1779817
## 11
       0.7015396
                                                               -0.1779817
                         0.3360326
                                          -1.151698
## 13
       0.4686293
                         0.3360326
                                          -1.151698
                                                               -0.1779817
## 15
       0.4726095
                         0.3360326
                                          -1.151698
                                                               -0.1779817
## 17
       0.4536222
                         0.3360326
                                          -1.151698
                                                               -0.1779817
## 19
                                                               -0.1779817
      0.5162099
                         0.3360326
                                          -1.151698
## 21
       0.2743436
                         0.3360326
                                          -1.151698
                                                               -0.1779817
## 23
       0.4358237
                         0.3360326
                                          -1.151698
                                                               -0.1779817
```

## 25	0.4564625	0.3360326	-1.151698	-0.1779817
## 27	0.5106316	0.3360326	-1.151698	-0.1779817
## 29	0.4685348	0.3360326	-1.151698	-0.1779817
## 31	0.5533898	0.3360326	-1.151698	-0.1779817
## 33	0.4250111	0.3360326	-1.151698	-0.1779817
## 35	0.5432417	0.3360326	-1.151698	-0.1779817
## 37	0.3492047	0.3360326	-1.151698	-0.1779817
## 39	0.4543088	0.3360326	-1.151698	-0.1779817
## 41	0.5264287	0.3360326	-1.151698	-0.1779817
## 43	0.5467729	0.3360326	-1.151698	-0.1779817
## 45	0.4710328	0.3360326	-1.151698	-0.1779817
	0.4710328			
## 47		0.3360326	-1.151698	-0.1779817
## 49	0.5371110	0.3360326	-1.151698	-0.1779817
## 51	0.4848484	0.3360326	-1.151698	-0.1779817
## 53	0.5039482	0.3360326	-1.151698	-0.1779817
## 55	0.3959760	0.3360326	-1.151698	-0.1779817
## 57	0.5656565	0.3360326	-1.151698	-0.1779817
## 59	0.6058440	0.3360326	-1.151698	-0.1779817
## 61	0.4011641	0.3360326	-1.151698	-0.1779817
## 63	0.4566739	0.3360326	-1.151698	-0.1779817
## 65	0.4828332	0.3360326	-1.151698	-0.1779817
## 67	0.5153772	0.3360326	-1.151698	-0.1779817
## 69	0.4492340	0.3360326	-1.151698	-0.1779817
## 71	0.5552053	0.3360326	-1.151698	-0.1779817
## 73	0.3781243	0.3360326	-1.151698	-0.1779817
## 75	0.4133561	0.3360326	-1.151698	-0.1779817
## 77	0.3576553	0.3360326	-1.151698	-0.1779817
## 79	0.3267211	0.3360326	-1.151698	-0.1779817
## 81	0.5703113	0.3360326	-1.151698	-0.1779817
## 83	0.4555675	0.3360326	-1.151698	-0.1779817
## 85	0.4333673	0.3360326	-1.151698	-0.1779817
## 87	0.2225186	0.3360326	-1.151698	-0.1779817
## 89	0.4888772	0.3360326	-1.151698	-0.1779817
## 91	0.5127152	0.3360326	-1.151698	-0.1779817
## 93	0.4522379	0.3360326	-1.151698	-0.1779817
## 95	0.3708037	0.3360326	-1.151698	-0.1779817
## 97	0.5118320	0.3360326	-1.151698	-0.1779817
## 99	0.3621873	0.3360326	-1.151698	-0.1779817
## 101	0.5051719	0.3360326	-1.151698	-0.1779817
## 103	0.4430512	0.3360326	-1.151698	-0.1779817
## 105	0.3935219	0.3360326	-1.151698	-0.1779817
## 107	0.5138650	0.3360326	-1.151698	-0.1779817
## 109	0.5184472	0.3360326	-1.151698	-0.1779817
## 111	0.4409303	0.3360326	-1.151698	-0.1779817
## 113	0.4574054	0.3360326	-1.151698	-0.1779817
## 115	0.2745427	0.3360326	-1.151698	-0.1779817
## 117	0.4468347	0.3360326	-1.151698	-0.1779817
## 119	0.5363137	0.3360326	-1.151698	-0.1779817
## 121	0.6204067	0.3360326	-1.151698	-0.1779817
## 123	0.4325759	0.3360326	-1.151698	-0.1779817
## 125	0.6106872	0.3360326	-1.151698	-0.1779817
## 127	0.4803742	0.3360326	-1.151698	-0.1779817
## 127 ## 129	0.4803742	0.3360326	-1.151698	-0.1779817
## 129 ## 131	0.4545242	0.3360326	-1.151698	-0.1779817
## 131	0.4040242	0.3300320	1.101090	-0.1119011

```
## 133
         0.4531984
                             0.3360326
                                                                        -0.1779817
                                                -1.151698
## 135
         0.3458851
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
  137
         0.4007400
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 139
         0.4462398
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
##
  141
         0.5381040
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 143
         0.4878061
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 145
         0.3890212
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 147
         0.5479032
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 149
         0.4825959
                             0.3360326
                                                                        -0.1779817
                                                -1.151698
## 151
         0.6120349
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 153
         0.3800372
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
  155
##
         0.5341413
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
##
  157
         0.4572826
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 159
         0.5875697
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 161
         0.5098550
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
##
  163
         0.5599677
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 165
         0.5785897
                             0.3360326
                                                                        -0.1779817
                                                -1.151698
  167
         0.4935569
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 169
         0.4899553
                                                                        -0.1779817
                             0.3360326
                                                -1.151698
##
  171
         0.4412842
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 173
         0.3943569
                             0.3360326
                                                                        -0.1779817
                                                -1.151698
## 175
         0.3806005
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 177
         0.3779339
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 179
         0.4912166
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 181
         0.4922466
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 183
         0.4818112
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 185
         0.5921530
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
##
  187
         0.4714922
                             0.3360326
                                                                        -0.1779817
                                                -1.151698
## 189
         0.4982720
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 191
         0.5088488
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
## 193
         0.5631618
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
##
  195
         0.5001494
                             0.3360326
                                                -1.151698
                                                                        -0.1779817
##
  197
         0.5880820
                             0.3360326
                                                                        -0.1779817
                                                -1.151698
##
  199
                                                                        -0.1779817
         0.3305538
                             0.3360326
                                                -1.151698
##
       frac_coll_plus2010 poor_share2010 rent_twobed2015
## 1
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 3
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 5
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 7
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 9
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 11
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 13
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 15
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 17
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 19
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 21
                -0.4612821
                                 -1.072425
                                               -0.000224607
                                               -0.000224607
## 23
                -0.4612821
                                 -1.072425
## 25
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 27
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 29
                -0.4612821
                                 -1.072425
                                               -0.000224607
##
                -0.4612821
                                               -0.000224607
  31
                                 -1.072425
## 33
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 35
                                 -1.072425
                                               -0.000224607
                -0.4612821
## 37
                -0.4612821
                                 -1.072425
                                               -0.000224607
```

шш	20	0 4640004	1 070405	0 000004607
	39	-0.4612821	-1.072425	-0.000224607
##		-0.4612821	-1.072425	-0.000224607
##	43	-0.4612821	-1.072425	-0.000224607
##	45	-0.4612821	-1.072425	-0.000224607
##	47	-0.4612821	-1.072425	-0.000224607
##	49	-0.4612821	-1.072425	-0.000224607
##	51	-0.4612821	-1.072425	-0.000224607
##	53	-0.4612821	-1.072425	-0.000224607
##	55	-0.4612821	-1.072425	-0.000224607
##	57	-0.4612821	-1.072425	-0.000224607
##	59	-0.4612821	-1.072425	-0.000224607
	61	-0.4612821	-1.072425	-0.000224607
	63	-0.4612821	-1.072425	-0.000224607
##	65	-0.4612821	-1.072425	-0.000224607
	67		-1.072425	
		-0.4612821		-0.000224607
	69	-0.4612821	-1.072425	-0.000224607
##	71	-0.4612821	-1.072425	-0.000224607
##	73	-0.4612821	-1.072425	-0.000224607
##	75	-0.4612821	-1.072425	-0.000224607
##	77	-0.4612821	-1.072425	-0.000224607
##	79	-0.4612821	-1.072425	-0.000224607
##	81	-0.4612821	-1.072425	-0.000224607
##	83	-0.4612821	-1.072425	-0.000224607
##	85	-0.4612821	-1.072425	-0.000224607
##	87	-0.4612821	-1.072425	-0.000224607
	89	-0.4612821	-1.072425	-0.000224607
##	91	-0.4612821	-1.072425	-0.000224607
##	93	-0.4612821	-1.072425	-0.000224607
##	95	-0.4612821	-1.072425	-0.000224607
##	97	-0.4612821	-1.072425	-0.000224607
##	99	-0.4612821	-1.072425	-0.000224607
##	101	-0.4612821	-1.072425	-0.000224607
##	103	-0.4612821	-1.072425	-0.000224607
##	105	-0.4612821	-1.072425	-0.000224607
##	107	-0.4612821	-1.072425	-0.000224607
##	109	-0.4612821	-1.072425	-0.000224607
##	111	-0.4612821	-1.072425	-0.000224607
##	113	-0.4612821	-1.072425	-0.000224607
##	115	-0.4612821	-1.072425	-0.000224607
##	117	-0.4612821	-1.072425	-0.000224607
##	119	-0.4612821	-1.072425	-0.000224607
##	121	-0.4612821	-1.072425	-0.000224607
##	123	-0.4612821	-1.072425	-0.000224607
##	125	-0.4612821	-1.072425	-0.000224607
##	127	-0.4612821	-1.072425	-0.000224607
##	129	-0.4612821	-1.072425	-0.000224607
##	131	-0.4612821	-1.072425	-0.000224607
##	133	-0.4612821	-1.072425	-0.000224607
##	135	-0.4612821	-1.072425	-0.000224607
##	137	-0.4612821	-1.072425	-0.000224607
##	139	-0.4612821	-1.072425	-0.000224607
##	141	-0.4612821	-1.072425	-0.000224607
##	143	-0.4612821	-1.072425	-0.000224607
##	145	-0.4612821	-1.072425	-0.000224607

```
## 147
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 149
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 151
                                 -1.072425
                                               -0.000224607
                -0.4612821
## 153
                -0.4612821
                                 -1.072425
                                               -0.000224607
##
  155
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 157
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 159
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 161
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 163
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 165
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 167
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 169
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 171
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 173
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 175
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 177
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 179
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 181
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 183
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 185
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 187
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 189
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 191
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 193
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 195
                -0.4612821
                                 -1.072425
                                               -0.000224607
## 197
                -0.4612821
                                 -1.072425
                                               -0.000224607
  199
                -0.4612821
                                 -1.072425
##
                                               -0.000224607
       ann_avg_job_growth_2004_2013 share_white2010 share_black2010 share_hisp2010
##
## 1
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 3
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 5
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 7
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
                              1.96375
## 9
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
                                                             -0.2449879
## 11
                              1.96375
                                             0.5633199
                                                                                1.205373
## 13
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 15
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 17
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 19
                                                             -0.2449879
                              1.96375
                                             0.5633199
                                                                                1.205373
## 21
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 23
                                                             -0.2449879
                              1.96375
                                             0.5633199
                                                                                1.205373
## 25
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 27
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 29
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 31
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 33
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 35
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 37
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 39
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 41
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 43
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 45
                                                             -0.2449879
                                                                                1.205373
                              1.96375
                                             0.5633199
## 47
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
## 49
                                                             -0.2449879
                              1.96375
                                             0.5633199
                                                                                1.205373
## 51
                              1.96375
                                             0.5633199
                                                             -0.2449879
                                                                                1.205373
```

##	E2	1.96375	0.5633199	-0.2449879	1.205373
			0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199		
##		1.96375		-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##	85	1.96375	0.5633199	-0.2449879	1.205373
##		1.96375	0.5633199	-0.2449879	1.205373
##	89	1.96375	0.5633199	-0.2449879	1.205373
##	91	1.96375	0.5633199	-0.2449879	1.205373
##	93	1.96375	0.5633199	-0.2449879	1.205373
##	95	1.96375	0.5633199	-0.2449879	1.205373
##	97	1.96375	0.5633199	-0.2449879	1.205373
##	99	1.96375	0.5633199	-0.2449879	1.205373
##	101	1.96375	0.5633199	-0.2449879	1.205373
##	103	1.96375	0.5633199	-0.2449879	1.205373
##	105	1.96375	0.5633199	-0.2449879	1.205373
##	107	1.96375	0.5633199	-0.2449879	1.205373
##	109	1.96375	0.5633199	-0.2449879	1.205373
##	111	1.96375	0.5633199	-0.2449879	1.205373
##	113	1.96375	0.5633199	-0.2449879	1.205373
##	115	1.96375	0.5633199	-0.2449879	1.205373
##	117	1.96375	0.5633199	-0.2449879	1.205373
##	119	1.96375	0.5633199	-0.2449879	1.205373
##	121	1.96375	0.5633199	-0.2449879	1.205373
##	123	1.96375	0.5633199	-0.2449879	1.205373
##	125	1.96375	0.5633199	-0.2449879	1.205373
##	127	1.96375	0.5633199	-0.2449879	1.205373
##	129	1.96375	0.5633199	-0.2449879	1.205373
##	131	1.96375	0.5633199	-0.2449879	1.205373
##	133	1.96375	0.5633199	-0.2449879	1.205373
##	135	1.96375	0.5633199	-0.2449879	1.205373
##	137	1.96375	0.5633199	-0.2449879	1.205373
##	139	1.96375	0.5633199	-0.2449879	1.205373
##	141	1.96375	0.5633199	-0.2449879	1.205373
##	143	1.96375	0.5633199	-0.2449879	1.205373
##	145	1.96375	0.5633199	-0.2449879	1.205373
	147	1.96375	0.5633199	-0.2449879	1.205373
	149	1.96375	0.5633199	-0.2449879	1.205373
	151	1.96375	0.5633199	-0.2449879	1.205373
	153	1.96375	0.5633199	-0.2449879	1.205373
	155	1.96375	0.5633199	-0.2449879	1.205373
	157	1.96375	0.5633199	-0.2449879	1.205373
	159	1.96375	0.5633199	-0.2449879	1.205373
				· · = = = • · · ·	

##	161		1.96375	0.5633199	-0.2449879	1.205373
##	163		1.96375	0.5633199	-0.2449879	1.205373
##	165		1.96375	0.5633199	-0.2449879	1.205373
##	167		1.96375	0.5633199	-0.2449879	1.205373
##	169		1.96375	0.5633199	-0.2449879	1.205373
##	171		1.96375	0.5633199	-0.2449879	1.205373
##	173		1.96375	0.5633199	-0.2449879	1.205373
##	175		1.96375	0.5633199	-0.2449879	1.205373
##	177		1.96375	0.5633199	-0.2449879	1.205373
##	179		1.96375	0.5633199	-0.2449879	1.205373
##	181		1.96375	0.5633199	-0.2449879	1.205373
##	183		1.96375	0.5633199	-0.2449879	1.205373
##	185		1.96375	0.5633199	-0.2449879	1.205373
##	187		1.96375	0.5633199	-0.2449879	1.205373
##	189		1.96375	0.5633199	-0.2449879	1.205373
##	191		1.96375	0.5633199	-0.2449879	1.205373
##	193		1.96375	0.5633199	-0.2449879	1.205373
##	195		1.96375	0.5633199	-0.2449879	1.205373
##	197		1.96375	0.5633199	-0.2449879	1.205373
##	199		1.96375	0.5633199	-0.2449879	1.205373
##		share_asian2010				
##	1	2.278407				
##	3	2.278407				
##	5	2.278407				
##	7	2.278407				
##	9	2.278407				
##	11	2.278407				
##	13	2.278407				
##	15	2.278407				
##	17	2.278407				
##	19	2.278407				
##	21	2.278407				
##	23	2.278407				
##	25	2.278407				
##	27	2.278407				
##	29	2.278407				
##	31	2.278407				
##	33	2.278407				
##	35	2.278407				
##	37	2.278407				
##	39	2.278407				
##	41	2.278407				
##	43	2.278407				
##	45	2.278407				
##	47	2.278407				
##	49	2.278407				
##	51	2.278407				
##	53	2.278407				
##	55	2.278407				
##	57	2.278407				
##	59	2.278407				
##	61	2.278407				
##	63	2.278407				

65

2.278407

##	67	2.278407
##	69	2.278407
##	71	2.278407
##	73	2.278407
##	75	2.278407
##	77	2.278407
##	79	2.278407
##	81	2.278407
##	83	2.278407
##	85	2.278407
##	87	2.278407
##	89	2.278407
##	91	2.278407
##	93	2.278407
##	95	2.278407
##	97	2.278407
##	99	2.278407
##	101	2.278407
##	103	2.278407
##	105	2.278407
##	107	2.278407
##	109	2.278407
##	111	2.278407
##	113	2.278407
##	115	2.278407
##	117	2.278407
##	119	2.278407
##	121	2.278407
##	123	2.278407
##	125	2.278407
##	127	2.278407
##	129	2.278407
##	131	2.278407
##	133	2.278407
##	135	2.278407
##	137	2.278407
##	139	2.278407
##	141	2.278407
##	143	2.278407
##	145	2.278407
##	147	2.278407
##	149	2.278407
##	151	2.278407
##	153	2.278407
##	155	2.278407
##	157	2.278407
##	159	2.278407
##	161	2.278407
##	163	2.278407
##	165	2.278407
##	167	2.278407
##	169	2.278407
##	171	2.278407
##	173	2.278407

```
## 175
              2.278407
## 177
              2.278407
## 179
              2.278407
## 181
              2.278407
## 183
              2.278407
## 185
              2.278407
## 187
              2.278407
## 189
              2.278407
## 191
              2.278407
## 193
              2.278407
## 195
              2.278407
## 197
              2.278407
## 199
              2.278407
##
## attr(,"class")
## [1] "coef.mer"
PI <- predictInterval(merMod = M5, newdata = full_counties,
                        level = 0.95, n.sims = 1000,
                        stat = "median", type="linear.prediction",
                        include.resid.var = TRUE)
# account for counties split into 2 districts
modified_counties <- full_counties %>%
 mutate(Totals = as.numeric(gsub(",","",Totals))) %>%
  mutate(voters = case_when(split == "y" ~ Totals/2,
                            TRUE ~ Totals))
modified_counties$fit = PI$fit
modified_counties$lower = PI$lwr
modified_counties$upper = PI$upr
# weight county vote share by number of people who voted in 2016 election
modified_counties %>%
  group_by(district) %>%
  summarise(dist_share_rep = sum(fit*voters)/sum(voters),
            dist_lwr_rep = sum(lower*voters)/sum(voters),
            dist_upr_rep = sum(upper*voters)/sum(voters))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 13 x 4
##
      district dist_share_rep dist_lwr_rep dist_upr_rep
##
         <int>
                        <dbl>
                                      <dbl>
## 1
                        0.297
                                      0.249
                                                   0.346
             1
## 2
             2
                        0.403
                                     0.323
                                                   0.476
## 3
             3
                        0.494
                                     0.436
                                                   0.551
## 4
             4
                        0.304
                                     0.227
                                                   0.375
## 5
                                                   0.635
             5
                        0.591
                                     0.549
## 6
             6
                        0.399
                                     0.351
                                                   0.448
## 7
             7
                                     0.473
                                                   0.570
                        0.522
## 8
             8
                        0.472
                                     0.426
                                                   0.518
## 9
             9
                        0.404
                                      0.339
                                                   0.469
## 10
            10
                        0.607
                                     0.568
                                                   0.647
## 11
            11
                        0.498
                                     0.455
                                                   0.542
```

```
## 12
            12
                         0.355
                                      0.290
                                                   0.421
## 13
            13
                         0.605
                                      0.570
                                                   0.640
modified_counties %>%
  summarise(dist_share_rep = sum(fit*voters)/sum(voters),
            dist_lwr_rep = sum(lower*voters)/sum(voters),
            dist_upr_rep = sum(upper*voters)/sum(voters))
##
     dist_share_rep dist_lwr_rep dist_upr_rep
## 1
          0.4552253
                       0.4011045
                                     0.5083217
```

NC House of Representatives - 2016 Election

```
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.120646 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unide:
## - Rescale variables?
## Linear mixed model fit by REML ['lmerMod']
## Formula: Republican.percentage ~ traveltime15_2010 + foreign_share2010 +
       singleparent_share2010 + incumbent_party + frac_coll_plus2010 +
##
##
      poor_share2010 + rent_twobed2015 + ann_avg_job_growth_2004_2013 +
      share_white2010 + share_black2010 + share_hisp2010 + share_asian2010 +
##
##
       (1 | county)
##
      Data: rep2016
## Control: lmerControl(optimizer = "Nelder_Mead")
##
## REML criterion at convergence: -433.5
##
## Scaled residuals:
##
         Min
                      1Q
                             Median
                                            30
                                                      Max
## -1.205e-05 -7.836e-07 2.770e-08 8.577e-07 1.227e-05
##
## Random effects:
## Groups
           Name
                         Variance Std.Dev.
             (Intercept) 5.904e-03 7.684e-02
## county
                         1.443e-14 1.201e-07
## Number of obs: 110, groups: county, 100
##
## Fixed effects:
##
                                  Estimate Std. Error t value
                                 4.521e-01 2.358e-01
## (Intercept)
                                                        1.917
## traveltime15_2010
                                 3.001e-01 1.329e-01
                                                        2.258
## foreign_share2010
                                -1.647e+00 1.066e+00 -1.544
## singleparent_share2010
                                -1.908e-01 1.902e-01
                                                       -1.003
## incumbent_partyNONE
                                -2.556e-12 1.962e-07
                                                        0.000
## incumbent_partyREP
                                 3.658e-13 9.808e-08
                                                       0.000
## frac_coll_plus2010
                                -2.746e-01 2.288e-01
                                                      -1.200
## poor_share2010
                                -9.628e-01 2.823e-01
                                                       -3.410
## rent_twobed2015
                                -2.076e-04 1.136e-04
                                                      -1.828
## ann_avg_job_growth_2004_2013 1.781e+00 9.136e-01
                                                        1.949
```

```
## share white2010
                                  5.184e-01 1.929e-01
                                                          2.687
## share_black2010
                                 -2.532e-01 1.751e-01
                                                         -1.446
## share hisp2010
                                  1.498e+00 6.872e-01
                                                           2.180
## share_asian2010
                                  2.298e+00 1.865e+00
                                                           1.232
##
  Correlation matrix not shown by default, as p = 14 > 12.
  Use print(x, correlation=TRUE) or
       vcov(x)
                       if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## convergence code: 0
## Model failed to converge with max|grad| = 0.120646 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
    - Rescale variables?
##
   $county
##
       (Intercept) traveltime15_2010 foreign_share2010 singleparent_share2010
## 1
         0.4256560
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
                                                                      -0.1907868
## 3
         0.4517946
                            0.3001242
                                               -1.646921
## 5
         0.4476513
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 7
         0.3814097
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 9
         0.4290457
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 11
         0.6927023
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 13
         0.4464046
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 15
         0.4654785
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 17
         0.4034823
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 19
         0.4933365
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 21
         0.2813985
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 23
         0.4206401
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
                                               -1.646921
## 25
         0.4473768
                            0.3001242
                                                                      -0.1907868
## 27
         0.4944897
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 29
         0.4255611
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 31
         0.5274182
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 33
                                               -1.646921
         0.4505614
                            0.3001242
                                                                      -0.1907868
## 35
         0.5159774
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 37
                            0.3001242
                                               -1.646921
         0.3370516
                                                                      -0.1907868
## 39
         0.4066493
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 41
         0.4836184
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 43
         0.5015163
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 45
         0.4507420
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 47
         0.3597681
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 49
         0.5132857
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 51
         0.4549904
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 53
         0.4780539
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 55
         0.3694725
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 57
         0.5301751
                            0.3001242
                                                                      -0.1907868
                                               -1.646921
## 59
         0.5779657
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 61
         0.3942447
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 63
         0.4359293
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 65
         0.4706160
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 67
         0.4871043
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
## 69
         0.4347387
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
         0.5336488
## 71
                            0.3001242
                                               -1.646921
                                                                      -0.1907868
```

## 73	0.3788446	0.3001242	-1.646921	-0.1907868
## 75	0.4195272	0.3001242	-1.646921	-0.1907868
## 77	0.3589847	0.3001242	-1.646921	-0.1907868
## 79	0.3121005	0.3001242	-1.646921	-0.1907868
## 81	0.5434302	0.3001242	-1.646921	-0.1907868
## 83	0.4447690	0.3001242	-1.646921	-0.1907868
## 85	0.4932905	0.3001242	-1.646921	-0.1907868
## 87	0.2148950	0.3001242	-1.646921	-0.1907868
## 89	0.4745318	0.3001242	-1.646921	-0.1907868
## 91	0.5009796	0.3001242	-1.646921	-0.1907868
## 93	0.4359966	0.3001242	-1.646921	-0.1907868
## 95	0.3608819	0.3001242	-1.646921	-0.1907868
## 97	0.4865958	0.3001242	-1.646921	-0.1907868
## 99	0.3541519	0.3001242	-1.646921	-0.1907868
## 101	0.4809884	0.3001242	-1.646921	-0.1907868
## 103	0.4438431	0.3001242	-1.646921	-0.1907868
## 105	0.3724232	0.3001242	-1.646921	-0.1907868
## 107	0.4840308	0.3001242	-1.646921	-0.1907868
## 109	0.4954919	0.3001242	-1.646921	-0.1907868
## 111	0.4219144	0.3001242	-1.646921	-0.1907868
## 113	0.4424278	0.3001242	-1.646921	-0.1907868
## 115	0.2739694	0.3001242	-1.646921	-0.1907868
## 117	0.4354315	0.3001242	-1.646921	-0.1907868
## 119	0.5182178	0.3001242	-1.646921	-0.1907868
## 121	0.6195859	0.3001242	-1.646921	-0.1907868
## 123	0.4204950	0.3001242	-1.646921	-0.1907868
## 125	0.5831726	0.3001242	-1.646921	-0.1907868
## 127	0.4577757	0.3001242	-1.646921	-0.1907868
## 129	0.5309662	0.3001242	-1.646921	-0.1907868
## 131	0.4336171	0.3001242	-1.646921	-0.1907868
## 133	0.4293392	0.3001242	-1.646921	-0.1907868
## 135	0.3311659	0.3001242	-1.646921	-0.1907868
## 137	0.3851851	0.3001242	-1.646921	-0.1907868
## 139	0.4246297	0.3001242	-1.646921	-0.1907868
## 141	0.5171662	0.3001242	-1.646921	-0.1907868
## 143	0.4304348	0.3001242	-1.646921	-0.1907868
## 145	0.3791814	0.3001242	-1.646921	-0.1907868
## 147	0.5065270	0.3001242	-1.646921	-0.1907868
## 149	0.4560819	0.3001242	-1.646921	-0.1907868
## 151	0.5839708	0.3001242	-1.646921	-0.1907868
## 153	0.3611784	0.3001242	-1.646921	-0.1907868
## 155	0.5121853	0.3001242	-1.646921	-0.1907868
## 157	0.4388530	0.3001242	-1.646921	-0.1907868
## 157	0.5632146	0.3001242	-1.646921	-0.1907868
## 161	0.4628483	0.3001242	-1.646921	-0.1907868
## 163	0.5153136	0.3001242	-1.646921	-0.1907868
## 165	0.5423142	0.3001242	-1.646921	-0.1907868
## 165	0.4672783	0.3001242	-1.646921 -1.646921	-0.1907868
## 167 ## 169	0.4672763	0.3001242	-1.646921 -1.646921	-0.1907868
## 109 ## 171	0.4173556	0.3001242	-1.646921 -1.646921	-0.1907868
## 171 ## 173		0.3001242		-0.1907868
## 173 ## 175	0.3741218 0.3672538	0.3001242	-1.646921 -1.646921	-0.1907868
## 177 ## 170	0.3704494	0.3001242	-1.646921 -1.646921	-0.1907868
## 179	0.4698480	0.3001242	-1.646921	-0.1907868

```
## 181
         0.4731463
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
## 183
         0.4682517
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
## 185
         0.5515526
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
  187
##
         0.4445968
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
##
  189
         0.4801432
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
         0.4847447
## 191
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
## 193
         0.5373073
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
## 195
         0.4805449
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
## 197
         0.5712919
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
##
  199
         0.3286129
                            0.3001242
                                                -1.646921
                                                                       -0.1907868
##
       incumbent_partyNONE incumbent_partyREP frac_coll_plus2010 poor_share2010
##
  1
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
                                                         -0.2745731
##
   3
             -2.556112e-12
                                   3.657525e-13
                                                                         -0.9628153
## 5
                                   3.657525e-13
             -2.556112e-12
                                                         -0.2745731
                                                                         -0.9628153
## 7
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 9
             -2.556112e-12
                                   3.657525e-13
                                                          -0.2745731
                                                                         -0.9628153
             -2.556112e-12
## 11
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 13
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 15
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 17
             -2.556112e-12
                                   3.657525e-13
                                                          -0.2745731
                                                                         -0.9628153
## 19
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 21
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 23
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 25
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 27
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
  29
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 31
                                                                         -0.9628153
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
##
   33
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
##
  35
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 37
                                   3.657525e-13
                                                         -0.2745731
             -2.556112e-12
                                                                         -0.9628153
## 39
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 41
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
##
  43
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
##
  45
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 47
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 49
                                                         -0.2745731
             -2.556112e-12
                                   3.657525e-13
                                                                         -0.9628153
## 51
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 53
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 55
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 57
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 59
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 61
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
##
  63
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
##
  65
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 67
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 69
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
             -2.556112e-12
                                                         -0.2745731
                                                                         -0.9628153
## 71
                                   3.657525e-13
## 73
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 75
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 77
             -2.556112e-12
                                   3.657525e-13
                                                          -0.2745731
                                                                         -0.9628153
## 79
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 81
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 83
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 85
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
```

##	87	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	89	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	91	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##		-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##		-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##		-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	99	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	101	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	103	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	105	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	107	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	109	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	111	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	113	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	115	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	117	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	119	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	121	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	123	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	125	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	127	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	129	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	131	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	133	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	135	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	137	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	139	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	141	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	143	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	145	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	147	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	149	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	151	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	153	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	155	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	157	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
##	159	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	161	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	163	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	165	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	167	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	169	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	171	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	173	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	175	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	177	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	179	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	181	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	183	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	185	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	187	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153
	189	-2.556112e-12	3.657525e-13	-0.2745731 -0.2745731	-0.9628153
	191	-2.556112e-12	3.657525e-13	-0.2745731 -0.2745731	-0.9628153
##	193	-2.556112e-12	3.657525e-13	-0.2745731	-0.9628153

```
## 195
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
## 197
             -2.556112e-12
                                   3.657525e-13
                                                         -0.2745731
                                                                         -0.9628153
                                                         -0.2745731
## 199
             -2.556112e-12
                                   3.657525e-13
                                                                         -0.9628153
##
       rent_twobed2015 ann_avg_job_growth_2004_2013 share_white2010
## 1
         -0.0002076225
                                              1.780851
                                                              0.5184147
         -0.0002076225
## 3
                                              1.780851
                                                              0.5184147
## 5
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 7
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 9
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 11
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 13
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 15
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 17
         -0.0002076225
                                              1.780851
                                                              0.5184147
         -0.0002076225
## 19
                                              1.780851
                                                              0.5184147
## 21
                                                              0.5184147
         -0.0002076225
                                              1.780851
## 23
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 25
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 27
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 29
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 31
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 33
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 35
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 37
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 39
         -0.0002076225
                                              1.780851
                                                              0.5184147
         -0.0002076225
## 41
                                              1.780851
                                                              0.5184147
## 43
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 45
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 47
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 49
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 51
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 53
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 55
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 57
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 59
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 61
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 63
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 65
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 67
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 69
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 71
         -0.0002076225
                                                              0.5184147
                                              1.780851
## 73
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 75
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 77
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 79
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 81
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 83
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 85
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 87
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 89
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 91
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 93
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 95
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 97
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 99
         -0.0002076225
                                              1.780851
                                                              0.5184147
```

```
## 101
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 103
         -0.0002076225
                                                              0.5184147
                                              1.780851
                                                              0.5184147
##
  105
         -0.0002076225
                                              1.780851
## 107
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
  109
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 111
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 113
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 115
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 117
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 119
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 121
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 123
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 125
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 127
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 129
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 131
         -0.0002076225
                                              1.780851
                                                              0.5184147
         -0.0002076225
## 133
                                              1.780851
                                                              0.5184147
  135
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 137
         -0.0002076225
                                                              0.5184147
                                              1.780851
##
  139
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 141
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 143
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 145
         -0.0002076225
                                                              0.5184147
                                              1.780851
## 147
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 149
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 151
         -0.0002076225
                                              1.780851
                                                              0.5184147
  153
##
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
  155
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 157
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 159
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 161
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 163
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
  165
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
  167
         -0.0002076225
                                                              0.5184147
                                              1.780851
##
   169
                                              1.780851
         -0.0002076225
                                                              0.5184147
## 171
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 173
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 175
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 177
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 179
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 181
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 183
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
  185
         -0.0002076225
                                              1.780851
                                                              0.5184147
  187
##
         -0.0002076225
                                              1.780851
                                                              0.5184147
         -0.0002076225
## 189
                                              1.780851
                                                              0.5184147
## 191
         -0.0002076225
                                              1.780851
                                                              0.5184147
## 193
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
  195
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
  197
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
   199
         -0.0002076225
                                              1.780851
                                                              0.5184147
##
       share_black2010 share_hisp2010 share_asian2010
## 1
            -0.2531535
                               1.498313
                                                2.297722
## 3
            -0.2531535
                               1.498313
                                                2.297722
## 5
            -0.2531535
                               1.498313
                                                2.297722
```

##	7	-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
	11	-0.2531535	1.498313	2.297722
##	13	-0.2531535	1.498313	2.297722
##	15	-0.2531535	1.498313	2.297722
##	17	-0.2531535	1.498313	2.297722
##	19	-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
	23	-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
##		-0.2531535	1.498313	2.297722
	43	-0.2531535	1.498313	2.297722
	45	-0.2531535	1.498313	2.297722
##	47	-0.2531535	1.498313	2.297722
	49	-0.2531535	1.498313	2.297722
##	51	-0.2531535	1.498313	2.297722
##	53	-0.2531535	1.498313	2.297722
##	55	-0.2531535	1.498313	2.297722
##	57	-0.2531535	1.498313	2.297722
##	59	-0.2531535	1.498313	2.297722
##	61	-0.2531535	1.498313	2.297722
##	63	-0.2531535	1.498313	2.297722
##	65	-0.2531535	1.498313	2.297722
##	67	-0.2531535	1.498313	2.297722
##	69	-0.2531535	1.498313	2.297722
##	71	-0.2531535	1.498313	2.297722
##	73	-0.2531535	1.498313	2.297722
##	75	-0.2531535	1.498313	2.297722
##	77	-0.2531535	1.498313	2.297722
##	79	-0.2531535	1.498313	2.297722
##	81	-0.2531535	1.498313	2.297722
##	83	-0.2531535	1.498313	2.297722
##	85	-0.2531535	1.498313	2.297722
##	87	-0.2531535	1.498313	2.297722
##	89	-0.2531535	1.498313	2.297722
##	91	-0.2531535	1.498313	2.297722
##	93	-0.2531535	1.498313	2.297722
##	95	-0.2531535	1.498313	2.297722
##	97	-0.2531535	1.498313	2.297722
##	99	-0.2531535	1.498313	2.297722
##	101	-0.2531535	1.498313	2.297722
##	103	-0.2531535	1.498313	2.297722
##	105	-0.2531535	1.498313	2.297722
##	107	-0.2531535	1.498313	2.297722
##	109	-0.2531535	1.498313	2.297722
##	111	-0.2531535	1.498313	2.297722
##	113	-0.2531535	1.498313	2.297722

```
## 115
             -0.2531535
                               1.498313
                                                2.297722
## 117
             -0.2531535
                               1.498313
                                                2.297722
## 119
                               1.498313
             -0.2531535
                                                2.297722
## 121
             -0.2531535
                                                2.297722
                               1.498313
## 123
             -0.2531535
                               1.498313
                                                2.297722
## 125
             -0.2531535
                               1.498313
                                                2.297722
## 127
             -0.2531535
                               1.498313
                                                2.297722
## 129
             -0.2531535
                               1.498313
                                                2.297722
## 131
             -0.2531535
                               1.498313
                                                2.297722
## 133
             -0.2531535
                               1.498313
                                                2.297722
## 135
             -0.2531535
                               1.498313
                                                2.297722
## 137
             -0.2531535
                               1.498313
                                                2.297722
## 139
             -0.2531535
                               1.498313
                                                2.297722
## 141
             -0.2531535
                               1.498313
                                                2.297722
## 143
             -0.2531535
                               1.498313
                                                2.297722
## 145
             -0.2531535
                               1.498313
                                                2.297722
## 147
                               1.498313
             -0.2531535
                                                2.297722
## 149
             -0.2531535
                               1.498313
                                                2.297722
## 151
             -0.2531535
                                                2.297722
                               1.498313
## 153
             -0.2531535
                               1.498313
                                                2.297722
## 155
             -0.2531535
                               1.498313
                                                2.297722
## 157
             -0.2531535
                                                2.297722
                               1.498313
## 159
             -0.2531535
                               1.498313
                                                2.297722
## 161
             -0.2531535
                               1.498313
                                                2.297722
## 163
             -0.2531535
                               1.498313
                                                2.297722
## 165
             -0.2531535
                               1.498313
                                                2.297722
## 167
             -0.2531535
                                                2.297722
                               1.498313
## 169
             -0.2531535
                               1.498313
                                                2.297722
## 171
             -0.2531535
                               1.498313
                                                2.297722
## 173
             -0.2531535
                                                2.297722
                               1.498313
## 175
             -0.2531535
                               1.498313
                                                2.297722
## 177
             -0.2531535
                               1.498313
                                                2.297722
## 179
             -0.2531535
                               1.498313
                                                2.297722
## 181
             -0.2531535
                                                2.297722
                               1.498313
## 183
             -0.2531535
                               1.498313
                                                2.297722
## 185
             -0.2531535
                               1.498313
                                                2.297722
## 187
             -0.2531535
                               1.498313
                                                2.297722
## 189
             -0.2531535
                                                2.297722
                               1.498313
## 191
             -0.2531535
                                                2.297722
                               1.498313
## 193
             -0.2531535
                               1.498313
                                                2.297722
## 195
             -0.2531535
                               1.498313
                                                2.297722
## 197
             -0.2531535
                                                2.297722
                               1.498313
## 199
             -0.2531535
                               1.498313
                                                2.297722
##
## attr(,"class")
## [1] "coef.mer"
   `summarise()` ungrouping output (override with `.groups` argument)
##
   # A tibble: 13 \times 4
##
      district dist_share_rep dist_lwr_rep dist_upr_rep
##
         <int>
                                                      <dbl>
                          <dbl>
                                       <dbl>
##
   1
              1
                          0.295
                                       0.247
                                                     0.341
##
    2
             2
                          0.424
                                       0.348
                                                     0.493
##
    3
             3
                          0.483
                                       0.428
                                                     0.538
```

##	4	4	0.325	0.252	0.392
##	5	5	0.579	0.538	0.620
##	6	6	0.399	0.351	0.443
##	7	7	0.517	0.471	0.563
##	8	8	0.469	0.425	0.513
##	9	9	0.410	0.348	0.473
##	10	10	0.594	0.554	0.631
##	11	11	0.504	0.461	0.546
##	12	12	0.367	0.305	0.427
##	13	13	0.590	0.554	0.623