

Ministerul Educației și Cercetării – Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

PIODA SCIISA I

Proba E: Specializarea: matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ◆Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 1

A. MECANICĂ

Se consideră accelerația gravitațională $g = 10 \text{ m/s}^2$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Unitatea de măsură a puterii scrisă în funcție de unități ale mărimilor fundamentale din SI este:

a. $m^{-2} ka s^{-3}$

b. $m^2 ka s^3$

c. $m^2 kg s^{-3}$

d. $m^2 kg s^{-1}$

2. Pentru a ajunge din holul hotelului la etajul I, aflat cu 4 m mai sus, un turist urcă scările de lungime 8 m. Lucrul mecanic efectuat de turist asupra geamantanului cu masa m = 10kq, pentru a-l urca din hol la etaj, este:

a. −1200 *J*

b. -400 *J*

c 400 /

d. 800 J

3. Două corpuri identice, de masă m fiecare, se deplasează unul spre celălalt cu viteze egale în modul (ν). Căldura degajată în urma ciocnirii plastice dintre cele două corpuri este:

a. 0

b. $\frac{mv^2}{4}$

c. $\frac{mv^2}{2}$

d. mv

4. Un corp este aruncat de la înălțimea $h = 10 \ m$ față de Pământ, pe verticală în jos, cu viteza $v_o = 10 \ m/s$. Timpul după care distanța corpului față de Pământ s-a înjumătățit este de aproximativ:

a. 0,41 s

b. 1,41 s

c 2/11

d. 2.82 s

- 5. Un corp cu masa *m* efectuează o mişcare circulară uniformă cu raza *R* şi perioada *T*. Dacă la un moment dat frecvența mişcării scade la jumătate, masa corpului şi raza traiectoriei rămânând constante, atunci:
- a. accelerația centripetă își menține valoarea constantă și perioada se dublează
- b. accelerația centripetă își micșorează valoarea de 4 ori și perioada se dublează
- c. viteza unghiulară își dublează valoarea și perioada scade la jumătate
- d. viteza unghiulară își micșorează valoarea la jumătate iar accelerația centripetă își mărește valoarea de 4 ori.

II. Rezolvați următoarele probleme:

- 1. În vârful unui plan înclinat de unghi $\alpha=30^{\circ}$ (măsurat față de direcția orizontală) se așează un corp de masă m=1 kg. Coeficientul de frecare la alunecare dintre corp și planul înclinat este $\mu=0,865$ ($\cong\sqrt{3}/2$). Se imprimă corpului viteza inițială $v_o=5$ m/s orientată în jos, în lungul planului înclinat.
- a. Determinați accelerația corpului.
- b. Reprezentați grafic viteza corpului în funcție de timp în primele 3 secunde de la lansare.
- c. Determinați variația energiei potențiale a sistemului corp Pământ după 4s de la lansarea corpului.

15 puncte

- **2.** Un resort elastic, orizontal, de masă neglijabilă, constanta elastică $k = 100 \ N/m$ şi lungime nedeformată I_o , este comprimat cu $x = 20 \ cm$ de corpul cu masa $m_1 = 2 \ kg$ (vezi figura alăturată). Se lasă liber sistemul resort-corp.
- **a.** Neglijând frecările, determinați înălțimea maximă până la care urcă acest corp pe suprafața sferică de rază R=0,2m.

b. Calculați valoarea forței de reacțiune în punctul de înălțime maximă.

c. În cazul în care coeficientul de frecare la alunecare dintre corpul cu masa m_1 și suprafața de contact este $\mu = 0.01$, iar în punctul A corpul cu masa m_1 se ciocnește perfect elastic cu un corp de masa $m_2=2m_1$ aflat în repaus, determinați viteza corpului 2 imediat după ciocnire.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Ministerul Educatiei si Cercetării - Serviciul National de Evaluare si Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic – toate specializările

- ◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ♦Se acordă 10 puncte din oficiu.
- ♦Timpul efectiv de lucru este de 3 ore.

Varianta 1

B. ELECTRICITATE ŞI MAGNETISM

Permeabilitatea magnetică a vidului are valoarea $\mu_0 = 4\pi \cdot 10^{-7} \, \text{N/A}^2$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

- 1. Pe factura de curent electric a unei familii este trecut un consum lunar de 150 kWh, ceea ce este echivalent cu:
- **a.** $42 \cdot 10^{-6} J$
- **c.** $24 \cdot 10^6 J$
- **d.** $54 \cdot 10^7 J$
- 2. La capetele unui fir conductor se aplică o tensiune electrică constantă U. În situația în care coeficientul termic al rezistivității este pozitiv, intensitatea curentului electric prin conductor:
- a. scade cu creșterea temperaturii, deoarece rezistivitatea electrică scade cu temperatura
- b. crește cu creșterea temperaturii, deoarece rezistivitatea electrică scade cu temperatura
- c. scade cu creşterea temperaturii, deoarece rezistivitatea electrică creşte cu temperatura
- d. nu se modifică, deoarece rezistivitatea electrică nu depinde de temperatură.
- 3. Un reşou electric degajă o putere P = 2 kW dacă la borne i se aplică o tensiune U = 200 V. Sârma din care este confecționată rezistența reșoului are diametrul d=1 mm și rezistivitatea $\rho=1\frac{\Omega\cdot mm^2}{m}$. Lungimea sârmei este egală cu:

- 4. Un solenoid fără miez magnetic, situat în aer ($\mu_{aer} \cong \mu_0$) are N = 100 spire, lungimea I = 10 cm și este parcurs de un curent electric staționar cu intensitatea I=100~mA. Un proton cu sarcina electrică $q=1,6\cdot 10^{-19}~C$, pătrunde cu viteza $v=10^4~m/s$. orientată sub unghiul α față de axa solenoidului, în interiorul acestuia. În cazul în care câmpul magnetic din solenoid acționează asupra protonului cu forța $F = 3.2 \cdot \pi \cdot 10^{-20} \, N$, unghiul α este egal cu:
- **a.** 0°
- **b.** 30°
- **c.** 45°
- **d.** 60°

- a. se induce pentru scurt timp curent electric având sensul (1);
- **b.** se induce curent electric al cărui sens se modifică periodic;
- c. nu se induce curent electric, fluxul magnetic prin inel rămânând constant;
- d. se induce pentru scurt timp curent electric având sensul (2).

II. Rezolvați următoarele probleme:

- 1. O sursă cu t.e.m E = 24 V și rezistenta internă $r = 2 \Omega$, alimentează un circuit electric format din n beculete identice, legate în paralel, având fiecare rezistența electrică $R = 30 \Omega$. Determinați:
- **a.** numărul maxim (n) de beculețe care pot fi legate în paralel, știind că sursa nu suportă un curent mai mare decât $I_{max} = 7 A$;
- b. căldura degajată de beculețe într-o oră, în condițiile descrise la punctul a.;
- c. puterea maximă pe care sursa ar putea să o degajeze pe circuitul exterior.
- 2. O spiră conductoare de rază r=6~cm și rezistență electrică $R=0.5~\Omega$, se află într-un câmp magnetic omogen. Dependenta valorii inductiei câmpului magnetic de timp este ilustrată în figura alăturată. Planul spirei formează un unghi $\alpha = 30^{\circ}$ cu direcția liniilor de câmp. Determinați:
- **a.** fluxul magnetic prin spiră la momentul initial t=0:
- **b.** tensiunea indusă în spiră la momentul $t_1 = 5 s$;
- c. sarcina electrică transportată prin spiră în primele 8 s.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Ministerul Educatiei si Cercetării - Serviciul National de Evaluare si Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

◆Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 1

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Numărului lui Avogadro $N_A = 6,023 \cdot 10^{23} \text{ mol}^{-1}$, $1atm \cong 10^5 \text{ N/m}^2$, $R \cong 8,31 \text{ J/(mol \cdot K)}$, $C_p = C_V + R$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Dintre punctele 1, 2, 3 si 4 din figura alăturată, pe aceeasi izotermă s-ar putea afla punctele:

a. 1 și 3

b. 1 și 2

c. 1 și 4

d. 4 și 2

2. Căldura molară la presiune constantă a oxigenului molecular ($\mu_{O_2} = 32 \ g \ / \ mol$) are valoarea $C_p = \frac{7}{2} \ R$.

În aceste condiții căldura specifică a oxigenului la presiune constantă este de aproximativ:

a. $1{,}10 \cdot 10^{-3} \frac{J}{kg K}$

b. $9,09 \cdot 10^{-1} \frac{J}{kg K}$ **c.** $9,09 \cdot 10^2 \frac{J}{kg K}$ **d.** $2,91 \cdot 10^4 \frac{J}{kg K}$

3. Din principiul I al termodinamicii rezultă:

a. o maşină termică, funcționând după o transformare ciclică, nu poate transforma integral căldura primită în lucru mecanic;

b. energia internă este o mărime fizică a cărei variație într-o transformare de stare depinde de tipul transformării;

c. întotdeauna lucrul mecanic efectuat de un sistem termodinamic este mai mare decât căldura primită;

d. într-o transformare ciclică, lucrul mecanic efectuat de sistem nu poate depăși căldura primită de sistem.

4. Într-un recipient se găsesc amestecate uniform N molecule dintr-un gaz cu masa molară μ şi 2 N molecule dintr-un gaz cu masa molară 2μ . Masa molară a amestecului este de aproximativ:

a. μ

b. 1,50 µ

c. 1,66 µ

d. 3 µ

5. Dacă energia cinetică medie de translație a unei molecule de gaz, aflat la presiunea p=1 atm este egală cu $\overline{\epsilon}_c=5\cdot 10^{-21}$ J, atunci concentrația moleculelor gazului considerat ideal are valoarea:

a. $5 \cdot 10^{-26} \ m^{-3}$

b. $3 \cdot 10^{25} \ m^{-3}$

c. $5 \cdot 10^{25} \ m^{-3}$

d. $3 \cdot 10^{25} \ dm^{-3}$

II. Rezolvati următoarele probleme:

- 1. Într-un cilindru orizontal, etanş, cu piston mobil este închisă, la presiunea $p_1 = 2$ atm şi temperatura $t_1 = 27^{\circ}$ C, o masă m=12~g de heliu $(\mu_{He}=4g/mol)$, considerat gaz ideal. Heliul este supus succesiunii de transformări $1 \rightarrow 2 \rightarrow 3$. În transformarea $1 \rightarrow 2$ densitatea heliului rămâne constantă iar temperatura absolută se dublează. În transformarea $2 \rightarrow 3$ heliul se destinde până la presiunea inițială, energia internă rămânând constantă.
- **a.** Reprezentați grafic în coordonate p-V succesiunea de transformări $1 \rightarrow 2 \rightarrow 3$.
- b. Determinați valoarea vitezei termice a atomilor de heliu în starea 2.
- c. Determinați volumul heliului în starea 3.

15 puncte

2. Considerati un motor termic, ce ar functiona după un ciclu Carnot și ar efectua un lucru mecanic egal cu 100 J în fiecare ciclu. Cunoscând că temperatura sursei calde este $t_1 = 227^{\circ} C$, că raportul volumelor în comprimarea adiabatică are valoarea $0.6^{3/2}$ și că substanța de lucru are căldura molară la volum constant $C_V = \frac{3}{2} R$, determinați:

a. temperatura sursei reci (T_2);

b. randamentul unei motorului termic ce ar funcționa după acest ciclu;

c. căldura cedată de substanța de lucru într-un ciclu.

15 puncte

3

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

snee

Ministerul Educației și Cercetării – Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 1

D.OPTICĂ

Viteza luminii în vid $c = 3 \cdot 10^8 \, m/s$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. La trecerea din aer ($n_{aer} \equiv 1$) într-un lichid, o rază de lumină este deviată cu 15° de la direcția inițială. Unghiul de incidență fiind de 60°, indicele de refracție al lichidului este de aproximativ:

a. 0,89

b. 1,22

c. 1,50

d. 1,66

2. O lentilă plan-convexă din sticlă ($n_{sticla} = 1.5$), aflată în aer ($n_{aer} \cong 1$), are convergența $C = 2 \delta$. Raza de curbură a feței convexe a lentilei are valoarea:

a. 25 cm

b. 50 cm

c. 1 *m*

d. 4 m

3. O rază de lumină se propagă într-un mediu cu indice de refracție absolut n=2 şi cade pe suprafața de separație cu aerul ($n_{aer} \cong 1$) sub unghiul de incidență i=60°. Raza de lumină va fi deviată față de direcția normalei în punctul de incidență, sub un unghi de:

a. 0°

b. 60°

c. 120°

d. 180°

4. Un dispozitiv Young, situat în aer ($n_{aer} \equiv 1$), având distanța dintre fante $2l = 0.2 \, mm$ și distanța până la ecranul pe care se observă interferența $D = 2 \, m$, produce pe ecran primul minim de interferență la distanța $x = 2.75 \, mm$ de axa de simetrie a dispozitivului. Sursa de lumină este așezată pe axa de simetrie a dispozitivului. Lungimea de undă a radiației utilizate este:

a. 450 nm

b. 500 nm

c. 550 nm

d. 600 nm

5. Un obiect luminos punctiform este situat în centrul de curbură al unei oglinzi concave. Imaginea punctului luminos se formează:

a. la infinit

b. în vârful oglinzii

c. în focarul oglinzii

d. în centrul de curbură al oglinzii

II. Rezolvați următoarele probleme:

- 1. O lentilă subțire formeză o imagine virtuală și de 2 ori mai mică decât un obiect real, așezat perpendicular pe axa optică principală a lentilei. Distanța dintre obiect și imaginea sa este egală cu 4 cm.
- a. Determinați poziția obiectului față de lentilă.
- b. Aflați convergența lentilei.
- c. Realizați un desen prin care să evidențiați construcția imaginii prin lentilă, pentru obiectul considerat, în situația descrisă de problemă.

15 puncte

- 2. Un fascicul paralel de lumină monocromatică cu frecvența $v = 6 \cdot 10^{14} \, Hz$, cade sub un unghi de incidență $i = 30^{\circ}$ pe o rețea de difracție, situată în aer ($n_{aer} \cong 1$), având 550 de trăsături pe mm. Determinați:
- a. lungimea de undă a radiației folosite;
- b. numărul total de maxime date de rețeaua de difracție pe ecran;
- c. valoarea sinusului unghiului față de axa de simetrie a dispozitivului sub care s-ar forma maximul de difracție de ordinul 3, dacă întregul dispozitiv s-ar cufunda într-un lichid cu indicele de refracție n = 1,5 și lumina ar cădea normal pe rețea.

15 puncte

Proba E: Specializarea : matematică –informatică, științe ale naturii