TRED 46, TRED 46.2

Stefano Markidis, Alex Vapirev and Giovanni Lapenta

Tred46 – Tred46.2

- Simulation of antiparallel reconnection (no guide field)
- Done in two parts:
 - 0 -> 11000 computational cycles (Probably the main interest for you) – Tred46
 - 10000 -> 16000 computational cycles (restart from 10000)Tred46.2
- Simulations with **3072** cores. Domain decomposition with core grid (virtual topology) **32 x 12 x 8**. Each core used is characterized by a number called **rank**. In threads ranks goes from 0 to 3071. Each rank corresponds to a particular point of the virtual topology and to particular 3D region.

Coordinate system and initial configuration

- Harris sheet (balance)
- Initial perturbation along a line is applied in the midline of the simulation box (hard-wired in the code)
- Coordinate system NOT GSM!

Output

- HDF5 binary for each core
- VTK (ASCII), obtained in post processing from HDF5 file. We have a C code to merge all the files and make one file
- Text file for single point output

To view directly hdf5 you need to have installed hdf5 library. **Matlab** supports hdf5 and we have code to read. Pierre Henri (UNIPI) has developed reader for IDL too.

Output

- Settings with simulation parameters. Setting.txt
- Total energy, momentum, potential energies, kinetic energies recorded in ConservedQuantities.txt.
- Fields saved at low frequency (every 1000 cycles) in hdf format-> proc_rank.hdf
- Particles saved at very low frequency in hdf format -> part_rank.hdf
- Restart field with all the fields and particles quantities
 -> restart_rank.hdf
- Fields information saved at high frequency in several domain points in text format-> Virtual Satellites_rank.txt

Settings.txt & settings.hdf

- Two file save the original setting of the simulations
- Cat settings.txt
- h5dump settings.hdf less (need to have installed hdf5 installed on your machine)

Simulation box

- Lx = 40 so x=0 -> x=40
- Ly = 15 so $y=0 \rightarrow y=15$
- Lz = 10 so z=0 -> z=10

Lengths are expressed in di = ion skin depth

The BC are periodic in x-direction, and z – direction, while the boundary are perfect boundary condition in y direction.

Grid size

- Nx = 512
- Ny = 192
- Nz = 128

Time step

• Dt = 0.125

The time is expressed in (ion plasma frequency) ^ (-1).

Species (NS) and Mass ratios (qom)

- There are 4 particles species present in the simulation
- Species 0 -> current sheet electrons qom = 256
- Species 1 -> current sheet ions qom = 1
- Species 2 -> background electrons qom = 256
- Species 3 -> background ions = 1
- The background density is in rho_init = 0.1

B0 (magnetic field configuration)

- B0x = 0.0097 (asymptotic field, chosen to guarantee equilibrium in initial configuration)
- BOy = 0.0
- B0z = 0.0 (no guide field)

Density

- You have charge density as output. To have density n, you need to multiply by 4 pi and sign of the species.
- n = 1.1 (n = 1.0 current sheet + n = 0.1 from background) in the center of the current sheet.

Velocity

 The velocity are normalized to the speed of light in vacuum.

Conserved quantities file

 Useful to check the conservation laws are violated. If variations are > 5% simulation are disregarded and redone changing time step and grid spacing.

File procs

- Each proc file saves B, E, rho (for each species), J (for each species), p (for each species).
- Saved every 1000 cycles in tred46
- All the proc combined in a vtk file, to give the fields all over the domain
- Derived quantities, such as Epar and Eperp and fluid velocity are calculated also in postprocessing.
- The vtk files are visualized with Paraview and Visit.
- They give very good overview, and suggest which point in the simulation are interesting to follow

Proc -> Je intensity (from Visit)

Proc abs(By) from Paraview

Part files

- They record particle position, velocity, and statistical weight (variable for current sheet particle, constant for background particles)
- Not present in tred46

Restart files

- Provide all the information for restarting a simulation from certain cycle.
- In tred46, we have a restart file at 10,000
- Useful for getting all the particle information we don't have from part.

Virtual satellites

- 27 probes for each processor on 3x3x3 grid
- Header with the position of each probe
- At each cycle, a line in Virtual satellite with Bx, By, Bz, Ex, Ey, Ez, Jxe, Jye, Jze, Jxi, Jyi, Jzi, rhoe, rhoi is recorded;

Virtual Satellites File Structure

- 27 X
 - x_sat, y_sat, z_sat
- For each computational cycle
 - -27x
 - Bx, By, Bz, Ex, Ey, Ez, Jxe, Jye, Jze, Jxi, Jyi, Jzi, rhoe, rhoi

Virtual satel

X = 24, y = 7.5

From Alex

time

Difficulties

- Need to identify the point you want to study, and identity the rank that point is located
- Format of the Virtual satellites

We can provide scripts to solve these two problems.