VIROLOGY

(A virus is a bad news wrapped in protein P.B. Medawar)

INTRODUCTION TO VIROLOGY.

- HISTORICAL ASPECTS
- CLASSIFICATION
- REPLICATION
- TRANSMISSION
- PATHOGENISIS.

HISTORICAL ASPECTS

- Word virus used for any noxious agent or a poison in ancient times.
- Next ---> used nonspecifically for any infectious agent.
- Later the term "filterable viruses" was used for infectious agents that present in clinical specimens which can not be cultured and remain infectious after passage through bacteriological filters.

MILESTONES IN VIROLOGY

- 1796--->Jenner- small pox vaccination.
- 1884---> Vaccine for Rabies.
- 1880--->With the development of bacterial isolation and culture method.

Discovered filterable viruses.

• 1890---> Ivanowski- TMV

Father of science of virology

- 1902---> Yellow fever virus.
- 1964---> EBV
- 1975---> HBV

Lecture -1: Classification and properties of viruses

• Prof: N. P. Sunil Chandra

General properties of viruses

Definition of a virus.

• Viruses are obligatory intracellular parasites that contain either DNA or RNA. They depend on synthetic machinery of the cell for replication

• VIRION:-

Complete infectious virus particle.

• COMPOSITION AND STRUCTURE:-

All composed of single spp: of Nucleic Acids, {NA} either single stranded or double stranded RNA or DNA.

• CAPSID:-

- . Protein coat which enclose NA.
- . Composed of similar repeating protein molecules [morphological units] or

aggregates of morphological units.

= Capsomeres.

• NUCLEOCAPSID:-

Structure composed of NA surroun-ded by the capsid.

- Some viruses are naked nucleocapsids
- Others:- Enclosed in a phospholipid bilayer of cellular origin. = Envelop.

SPIKES:- Envelopes are covered with surface projections.

STRUCTURE OF ENVELOPED VIRUS

envelope

derived from host cell membranes (surface, internal, nuclear) with inserted viral glycoproteins

Construction of an enveloped virus.

Examples of virus morphology, variety and size.

MORPHOLOGY

- 4 broad morphological classes based on EM observation.
 - 1. Spherical.

Viruses of man

2. Rod shape.

- and animals.

- 3. Complex.
- 4. Tad pole shape.---> Bacteriophage [viruses of bacteria]

- EM---->Permit visualization of virus symmetry.
- All spherical viruses have nucleocapsids
 of :-

Icosohedral Helical symmetry

• ICOSOHEDRAN:-

Polyhedran with 20 equilateral triangular faces, 12 vertices, and 30 edges.

- Helical viruses which infect verfibrates;
 - ---> Surrounded by envelop.
 - ---> Appear to be flexible.

Acquire; Rod shape

or

Spherical shape

 Envelop viruses Treatment with ether Disrupt lipid envelop [Loss of infectivity]

VIRUS SYMMETRY AND CONSTRUCTION

icosahedral symmetry of nucleocapsid

of non-enveloped virus
with icosahedral symmetry

20 faces

Symmetry and construction of the viral nucleocapsid.

Pleomorphism :-

Partly due to, Envelop

Nucleocapsid flexibility.

Complex viruses:-

Viruses which do not Helical
fit into
or
Icosohedral
symmetry

• Summary:-Morphology spherical rod shape complex tad pole shape icosohedral helical symmetry symmetry

CLASSIFICATION

- Historically viruses classified according to;
 - 1. Disease symptoms.
 - 2. Host range.
 - 3. Affected organs Dermotropic Neurotropic
 - 4. Epidemiological Arbo viruses criteria Enteric Respiratory

• Rapid progress in virology led to the increase no: of viruses discovered

Revision of nomenclature in Taxonomic order was needed.

• International Committee on Taxonomy of viruses. [ICTV]

• Viruses should be given;

• Family -----Viridae eg; Herpes viridae.

• Sub family ---- Virinae Gamma herpes virinae.

• Genera ---- Virus

• Species ---- Virus

- Current classification is based on;
 - 1. Architecture of the virus particle.
 - 2. Nature of the genetic material.

Two broad groups

Ribo viruses [RNA viruses]

Deoxyribo viruses

[DNA viruses]

- Further classification is based on;
 - 1. Strandedness of NA.
 - 2. Symmetry of the nucleocapsid
 - 3. Enveloped or not.
 - 4. No: of capsomeres etc.

- Further distinctions are based on;
 - 1. Biological properties.
 - 2. Antigenic relationships.

- Families are grouped into Genetic classes
 - 1. Double stranded DNA genome.
 - 2. Single stranded DNA genome.
 - 3. Double stranded RNA genome.
 - 4. Positive single stranded RNA genome.
 - 5. Negative ,, ,, ,,
 - 6. Positive ", ", ",
 - Where replication cycle involves a DNA intermediate.
 - 7. Double stranded DNA genome.
 - -Where replication cycle involves
 - a RNA intermediate.

REPLICATION

VIRUSES AND THE HOST CELL.

Life cycle is divided into 3 phases;

Adsorption and Penetration

→ Eclipse

Assembly and Release

- ADSORPTION:-
- Viruses adsorb to ---> specific cell surface molcules. [receptors]

ie; Influenza --- sialic acid recidues.

HIV --- CD4 on Th cells.

EBV --- C3d [CR2]

• Following adsorption→ Penetration occurs via either,

Pinocytosis

Fusion [Enveloped viruses],

Direct, or,

Disruption of cell membrane integrity.

- ECLIPSE.
 - . No virus particle can be seen in the host cell by , —— EM or

measurements.

infectivity

. At this stage, input virus ---> "uncoated"

[disassembled]

- . Virus NA is replicating.
- . New viral protein are synthesized.

[Eclipse contd]

- Mechanisms are complex.
- Important points are,
 - 1. Replication of viral NA,

Highly specific

*Controlled process

Viruses have own polimerase

or

Proteins that modify host polilimerase.

2. Viral genome----> must be a message or, transcribed to a message.

Translation of the RNA to give virus specified proteins.

- + ve strand RNA same sense as m RNA i.e. Polio
- - ve strand RNA- a complement of message i.e. Measles

ASSEMBLY AND RELEASE

At the end of the eclipse phase,

Progeny genomes + Newly synthesized

virus proteins

Assemble to form new virus particles. {poorly understood}

Assembly and release contd;

• Protein subunit ---> (icosohedral structure

• Progressive addition of protein subunits around the NA molecule

Assembly and release contd;

• Release:- cell lysis enveloped viruses

bud out from the plasma membrane and acquire envelop in the process

Viruses and disease

• 1. Necrosis : cell death Polio HSV

• 2. Proliferative changes - Initial short lived hyperplasia ----> Necrosis.

Occur in "Pock" lesions with extensive inflammatory reaction.

• 3. Proliferative changes ---> leads to neoplastic transformation.

[tumor viruses]

- 4. Inclusion bodies;
 - . Characteristic feature of many viruses.
 - . May occur in nucleus or cytoplasm.

Secondary infection
 Damage to epithelium---->Secondary
 bacterial infection

Viruses in the multicellular host

• 1. Requirements of any virus:-

- 2. Tissue in which to multiply.
- 3. Portal of exit.
 - 4. Means of transmission.

1. Portal of entry:-

Mucosal surfaces
 GIT
 Urogenital
 Conjunctiva

• Skin {need damage to cornified layer}

Abrasion
 Blood Direct introduction
 Vectors

2. Target tissue for amplification

• Infection may be :
superficial

or

systemic

Superficial infections

- Virus replication at portal of entry.
- Short incubation period.
- Acute infection of short duration.

Systemic infections

- Long incubation period.
- Replication at multiple sites
- Outcome dependant on host immune response.

Eg: Measles
Varicella
Rubella

INFECTION AND REPLICATION DURING SYSTEMIC VIRUS INFECTION

Amplification

Spread to target organs

Exit portal

3.Exit portal

• Examples:-

Respiratory tract - Measles

- Rubella

- Flu

- Varicella

Oropharyngial epithelium

- Herpes simplex
- EBV

4. Transmission mechanisms

• Examples:-

Respiratory aerosols - Rubella

- Influenza
- Rhino virus
- Measles
- VZV

Oral contact / Salivary transfer - HSV

- EBV
- CMV

Faeco oral - Polio

- Hepatitis A
- Rota virus

Skin dust inhalation - Small pox

Sexual - HSV

- CMV
- HBV
- HIV
- Genital papilloma

Animal bites - Rabies

Insect vectors - Jap. Encephalitis

- Dengue virus

Blood contact - HBV

{Iatrogenic, - HIV

abrasions} - CMV

Congenital - rubella, CMV, HBV, HSV, VZV

Perinatal - HSV, CMV, HBV, HIV

PATHOGENESIS

Pathogenesis of viral infection

depend upon interactions of,

- 1. Entry of virus to susceptible cells.
- 2. Viral multiplication and spread.
- 3. Effect of virus on cell functions.
- 4. Host immune response.
- 5. Virus clearance or Establishment- Persistent infection
- 6. Virus shedding.

- Some viruses survive within the host.
 - Persistent and latent infections.

Viral infections
 Persistent or Chronic Latent

Acute - Cleared following acute phase.
 Eg: Flu, Polio.

• Persistent - Hep. B, HIV

Infectious virus continuously
present for many years or life time.

• Latent - Infectious virus disappears after acute phase. Reappears sometimes years later.

Neurons: HSV Cold sores { reactivation }
 VZV → Shingles { reactivation }

• B cells:-EBV

• Retro virus:- Virus integrate into host cell chromosome as Provirus if not transcribed. = Latent.

Time

- In an individual infected with HIV is persistently infectious Because virus can be isolated continuously from circulation.
- Virus is replicated in some cells.

 {Productive infection}

These cells are immune targets

• In other cells - Provirus is quiescent

There latently infected cells are not immune targets.

May be activated in a later stage.

Mechanisms for virus survival:-

- Failure to eliminate a virus means virus can evade immune response.
- Many viruses show mechanisms of immune evasion.

Eg:

- 1. Adeno virus → Interfere with transmission of class 1 molecule to the cell surface.
- 2. HIV, EBV, Measles —Suppression of immune response.

- 3. HIV Cause rapid antigenic variation in the host.
- Immune evasion can not account for persistence.
 - i.e. Adeno viruses
 Pox viruses