STUDY AND APPLICATION OF ANT COLONY SYSTEM ON TRAVELLING SALESMAN PROBLEM

Palimpati and Stringfellow

OVERVIEW

- Travelling salesman problem (**TSP**)
- ANT COLONY SYSTEM(ACS)
- Description of algorithms
- Rules applied
- Data sets used
- Results
- Summary

TRAVELLING SALESMAN PROBLEM

• Minimum length Hamiltonian circuit.

• Shortest possible route that visits each city once and returns to the origin city.

• NP-HARD problem.

Graph Theory

- Each node is referred to as a cities
- A path between two cities is denoted by a sequence of edge pairs or a sequence of nodes
- For study purposes: simple and fully connected graphs
- Large TSP data sets available online

ANT COLONY SYSTEM

• Ants deposit pheromones while searching for food.

• A pheromone evaporates with time.

• Ants choose a path depending upon the amount of pheromones.

TOUR CONSTRUCTION IN ACS

- 1. An ant starts at a some city.
- 2. Use pheromone and heuristic (educated or trial and error) values to probabilistically construct a tour by iteratively adding cities that the ant has not visited yet, until all cities have been visited.
- 3. Go back to the initial city.

PHEROMONE AS A HEURISTIC IN ACS

- Initialize edge weights
- Update edge weights (add the pheromone to traversed edges)
- Decrement edge weights (evaporate pheromone)

INITIALIZATION OF PHEROMONE IN ACS

- Set equal amount of pheromone for all edges
 - value > expected amount of pheromone deposited by an ant during an iteration.
- If set too low, the search is quickly biased by the first tours generated by the ants.
- If set too high, many iterations are lost waiting until pheromone evaporates enough.

SIGNIFICANT FACTORS IN ACS ALGORITHM

- Pheromone τ remaining information on the path the ants pass through
 - τ_{ij} = weightof the edge between nodes i and j
- Visibility η reciprocal distance between nodes
 - $\eta_{ij} = \frac{1}{d_{ij}}$, d is distance between nodes i and j

SIGNIFICANT FORMULA IN ACS ALGORITHM

- Probability P At each construction step of the shortest path, ant_k applies a probabilistic rule to decide which city to visit next.
- The shortest travelled path so far, will have a high τ and a high η making P (probability) stronger for selection purposes.

RANDOM PROPORTIONAL RULE

• The rule is given as follows:

$$p_{ij}^{k} = \frac{\tau_{ij}^{\alpha} \, \eta_{ij}^{\beta}}{\sum_{z \in i} \tau_{iz}^{\alpha} \, \eta_{iz}^{\beta}}, \quad 0 \text{ if no next city}$$

k is an ant.

 p_{ij}^k is probability of choosing the next city j when an ant is at i.

 τ_{ij} is pheromone quantity between the edge between x and y.

 $\eta_{ij} = \frac{1}{d_{ij}}$, where d is the distance between i and j.

 α is a parameter to control the influence of pheromone.

 β is a parameter to control the influence of distance.

ACS TOUR CONSTRUCTION

- With a probability of P the ant makes the best possible move.
- With a probability of (1-P), the ant performs a biased exploration of edges.
- Tuning P allows modulation of the degree of exploration and the choice to explore other tours.
- The ant which has the best tour will now add pheromone after each iteration according to Global Pheromone Trail Update.

Global Pheromone Trail Update

In pheromone trail update, both evaporation and new pheromone deposit only apply to the arcs that belong to the best so far solution.

- $\Delta \tau_{ij} = Q/Lk$ is quantity of pheromone laid on the path (i,j) by ant k, where Q is a constant value of total pheromone and L_k is the tour length of the kth ant.
- Update $\tau_{ij} = (1 \rho) \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}$, where ρ is the constant evaporation factor and m is the number of ants in the colony

Improvement in Efficiency

• The pheromone update at each iteration is reduced from O(n^2) to O(n).

Local Pheromone Trail Update

• Ants use a local pheromone update rule that they apply immediately after having crossed an arc (I,j) during their tour.

$$\tau_{ij} = (1 - \rho) \tau_{ij} + \rho \tau_0$$

• Each time an ant uses an arc its pheromone level is reduced, so that the arc becomes less desirable for the following ants.

PYTHON CODE IMPLEMENTATION

• The SKO package consists of optimization algorithms and sample code.

from sko.ACA import ACA_TSP

- In the following example code, size_pop is set to 3 ants to find the shortest path among 12 cities (points).
- Function cal_total_distance() refers to a path length computation and is the objective function.
- Function ACA_TSP() finds the best path given the data.

```
from __future__ import division
import numpy as np
from scipy import spatial
import pandas as pd
import matplotlib.pyplot as plt
from sko.ACA import ACA TSP
# generate coordinate points
num points = 12
points_coordinate = np.random.rand(num_points, 2)
distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, \
                       metric='euclidean')
def cal total distance(routine):
    num points, = routine.shape
    return sum([distance_matrix[routine[i % num_points], \
                 routine[(i + 1) % num points]] \
                      for i in range(num_points)])
```

```
def main():
    #find shortest path
    aca = ACA TSP(func=cal total distance, n dim=num points,
                  size pop=3, max iter=10,
                  distance matrix=distance matrix)
    best x, best y = aca.run()
    # Plot the result
    fig, ax = plt.subplots(1, 2)
    best_points_ = np.concatenate([best_x, [best_x[0]]])
    best_points_coordinate = points_coordinate[best_points_, :]
    for index in range(0, len(best points )):
        ax[0].annotate(best points [index], (best points coordinate[index, 0], \
                                              best_points_coordinate[index, 1]))
    ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
    pd.DataFrame(aca.y best history).cummin().plot(ax=ax[1])
    plt.show()
```


ACO-TSP finds the best travel-sequence in the No. 5

INSIGHT INTO THE ACO_TSP RUN() FUNCTION

ACO_TSP problem (1997)

 TSP: travel sales problem.
 Find a shortest route of visiting all red-dot points

$$\eta_{ij} = \frac{1}{d_{ij}}$$
 , d is distance

$$P_{ij}^{k} = egin{cases} rac{ au_{ij}^{lpha} \eta_{ij}^{eta}}{\sum_{Z \in i}^{\square} au_{iz}^{lpha} \eta_{iz}^{eta}} \ 0 \ , otherwise \end{cases}$$

$$\Delta \tau_{ij}^k = \begin{cases} \frac{Q}{L_k} \\ 0 \text{ , otherwise} \end{cases}$$

$$\tau_{ij}(t+1) = (1-\rho)\tau_{ij}(t) + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

```
run(self, max iter=None):
self.max_iter = max_iter or self.max_iter
for i in range(self.max_iter): # 附海文學:
   prob matrix = (self.Tau ** self.alpha) * ((self.prob matrix distance) ** self.beta) # 转移概率 王原知一代
    for j in range(self.size_pop): # T開个例数
       self.Table[j, 0] = 0 # start point,其实可以随机,但没什么区别
       for k in range(self.n_dim - 1): # 對权限法的每个节点
           allow_list * list(set(range(self.n_dim)) - taboo_set) # 存取機点中歐速排
           prob = prob_matrix[self.Table[j, k], allow_list]
           prob = prob / prob.sum() # EST
          next point = np.random.choice(allow list, size=1, p=prob)[0]
           self.Table[j, k + 1] = next_point
   y = np.array([self.func(i) for i in self.Table])
    index_best = y.argmin()
   x_best, y_best = self.Table[index_best, :].copy(), y[index_best].copy()
    self.x_best_history.append(x_best)
   self.y_best_history.append(y_best)
   delta_tau = np.zeros((self.n_dim, self.n_dim))
   for j in range(self.size_pop): # 問个對权
       for k in range(self, n_dim - 1): # # 170
           delta_tau[n1, n2] +* 1 / y[j] # 涂抹的信息素
       n1, n2 = self.Table[j, self.n_dim - 1], self.Table[j, 0] # 解权从最后一个节点使回到第一个节点
       delta_tau[n1, n2] += 1 / y[j] # 涂抹信息素
  self.Tau = (1 - self.rho) * self.Tau + delta_tau
best_generation = np.array(self.y_best_history).argmin()
self.best x = self.x best history[best generation]
self.best_y = self.y_best_history[best_generation]
return self.best x, self.best y
```

OTHER VIDEOS

For a trace of the algorithm:

https://www.youtube.com/watch?v=783ZtAF4j5g

NEAREST NEIGHBOR (NN) ALGORITHM

- 1. Initialize all vertices as unvisited.
- 2. Select an arbitrary vertex, set it as the current vertex U. Mark U as visited.
- 3. Find the shortest edge from U to one of the unvisited vertex V.
- 4. Mark V as the current vertex and mark it as visited.
- 5. If all the vertices are visited, then terminate.
- 6. Otherwise go to step 3.

DATA SETS

All points on a circle

ACS and Nearest Neighbour algorithm will work perfectly as the

nearest node will always be on the circle.

Data sets

Random Nodes: As the number of Nodes increase the ACS performance decreases as the number of solutions increase.

Some NN vs ACS Results

Relative errors obtained using NN and ACS on Travelling Sales Man Problem (compared to known optimal solution).

NO OF NODES	NN RELATIVE ERROR	ACS RELATIVE ERROR
6	10.37	2.37
17	20.47	4.05
26	18.67	4.85
48	121.07	88.96

RESULTS

SUMMARY

- Tough ACS does not yield an optimal solution it gives much better results than many other algorithms.
- More number of paths are explored in ACS as the individual ants take individual routes while constructing tour.
- Tuning parameters will improve the results obtained by ACS.