Chapter 29

Reaction Mechanisms

29.1 TST and Overview of Mechanisms

4/18: • Overview of key concepts.

- Reaction mechanisms can involve more than one elementary step.
- Reactions can be sequential (single- or multi-step).
- To establish a mechanism, we use several techniques, approaches, assumptions, and approximations.
- Establish rate determining steps: The rate law and rate constants associated with these steps tend to dominate the kinetics of the overall reaction.
- Invoke the steady-state approximation to help solve the complicated mathematics of reaction kinetics.
- Enzyme kinetics, Michaelis-Menten mechanism involves an SS approximation.
- Oftentimes, reactions are of the form

$$E + S \xrightarrow{k_1} \xrightarrow{k_r} P + E$$

- Note that this form is very much analogous to the form analyzed in TST.
- **Elementary reaction**: A reaction that does not involve the formation of a reaction intermediate; the products must be formed directly from the reactants.
 - Denoted by the double arrow.
 - An elementary reaction can still be reversible.
- Molecularity (of an elementary reaction): The number of reactant molecules involved in the chemical reaction.
- Unimolecular (reaction): An elementary reaction with molecularity one. General form

$$A \Longrightarrow products$$

Rate law

$$v = k[A]$$

• Bimolecular (reaction): An elementary reaction with molecularity two. General form

$$A + B \Longrightarrow products$$

Rate law

$$v = k[A][B]$$

• Termolecular (reaction): An elementary reaction with molecularity three. General form

$$A + B + C \Longrightarrow products$$

Rate law

$$v = k[A][B][C]$$

- No elementary reaction with molecularity greater than three is known, and the overwhelming majority of elementary reactions are bimolecular.
- When a complex reaction is at equilibrium, the rate of the forward process is equal to the rate of the reverse process for each and every step of the reaction mechanism.
 - We denote a reversible elementary reaction as follows.

$$A + B \stackrel{k_1}{\rightleftharpoons} C + D$$

- A reversible elementary reaction signifies that the reaction occurs in both the forward and reverse directions to a significant extent and that the reaction in each direction is an elementary reaction.
- The rate laws are

$$v_1 = k_1[A][B]$$
 $v_{-1} = k_{-1}[C][D]$

- At equilibrium,

$$\begin{aligned} k_1[\mathbf{A}]_{\mathrm{eq}}[\mathbf{B}]_{\mathrm{eq}} &= k_{-1}[\mathbf{C}]_{\mathrm{eq}}[\mathbf{D}]_{\mathrm{eq}} \\ \frac{k_1}{k_{-1}} &= \frac{[\mathbf{C}]_{\mathrm{eq}}[\mathbf{D}]_{\mathrm{eq}}}{[\mathbf{A}]_{\mathrm{eq}}[\mathbf{B}]_{\mathrm{eq}}} &= K_c \end{aligned}$$

• **Principle of detailed balance**: The following relationship, which holds for all reversible elementary reactions. *Given by*

$$K_c = \frac{k_1}{k_{-1}}$$