Statistical Theory and Modeling (ST2601) Continuous random variables

Mattias Villani

Department of Statistics Stockholm University

Overview

- **■** Continuous random variables
- **Exponential distribution**
- Gamma distribution
- Chi2 distribution
- Beta distribution

Cumulative distribution function

Cumulative distribution function (cdf) for a random variable X is

$$F(x) = \Pr(X \le x)$$
 for $-\infty < x < \infty$

- Applies to both discrete and continuous random variables.
- The p-functions in R, for example ppois(4, lambda = 2)

Probability density function

- The outcome of a **continuous random variable** can be any real number, but Pr(X = x) = 0 for all x!
- A probability density function (pdf) for random variable X satisfies
 - ▶ $f(x) \ge 0$ for all x, $-\infty < x < \infty$

 - $\Pr(a \le X \le b) = \int_a^b f(x) dx$
- The d-functions in R. dnorm(-1, mu = 2, sd = 1).

Probability density function

The pdf is the derivative of the cdf:

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x} F(x)$$

■ The cdf is the integral of the pdf:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Fundamental theorem of calculus applied to pdf-cdf pair:

$$Pr(a \le X \le b) = Pr(X \le b) - Pr(a < X)$$

$$\Pr(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a)$$

Examples

■ The pdf of a normal $X \sim N(\mu, \sigma^2)$ variable

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

■ The pdf of a $X \sim \text{Uniform}(a, b)$

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

Example pdf and cdf

Let X be a random variable with probability density function

$$f(x) = \begin{cases} 3x^2 & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Probability by integrating the pdf

$$\Pr(X \le 0.5) = \int_{-\infty}^{0.5} f(x) dx = \int_{0}^{0.5} 3x^{2} dx = \left[x^{3}\right]_{0}^{0.5} = 0.5^{3} = 0.125$$

The cdf is

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{0}^{x} 3x^{2}dt = \left[t^{3}\right]_{0}^{x} = x^{3}$$

(note: the anti-derivative is $x^3 + C$ for some C, but here the condition $F(\infty) = F(1) = 1$ implies that C = 0).

Check:

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \frac{\mathrm{d}}{\mathrm{d}x}x^3 = 3x^3 = f(x) \qquad \text{OK!}$$

Example pdf and cdf

Expected value for continuous random variables

Expected value

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Example: $f(x) = 3x^2$

$$\mu = \mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot 3x^2 dx = \int_{0}^{1} 3x^3 dx = 3\left[\frac{1}{4}x^4\right]_{0}^{1} = \frac{3}{4}$$

Variance for continuous random variables

Variance

$$\mathbb{V}(X) = \mathbb{E}\left((X - \mu)^2\right) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx$$

or

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mu^2$$

$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 \cdot 3x^2 dx = \int_{-\infty}^{\infty} 3x^4 dx = \left[\frac{3}{5}x^5\right]_0^1 = \frac{3}{5}$$

So

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mu^2 = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = 0.0375$$

■ The standard deviation is

$$S(X) = \sqrt{V(X)} = \sqrt{0.0375} \approx 0.194.$$

Exponential distribution

- $X \sim \text{Expon}(\beta)$ with support $X \in [0, \infty)$.
- Parameters: $\beta > 0$.
- Data as life time, duration etc. Memoryless.
- Probability density function

$$f(x) = \frac{1}{\beta} e^{-x/\beta}$$
 for $x \ge 0$

Cumulative distribution function

$$F(x) = \int_{0}^{x} \frac{1}{\beta} e^{-x/\beta} dt = \frac{1}{\beta} \left[-\beta e^{-x/\beta} \right]_{0}^{x} = -e^{-x/\beta} - (-1) = 1 - e^{-x/\beta}$$

Mean and variance

$$\mathbb{E}(X) = \beta \qquad \mathbb{V}(X) = \beta^2$$
 pdf for $\operatorname{Expon}(\beta = 1)$ of β cdf for β cdf f

Gamma distribution

- $X \sim \operatorname{Gamma}(\alpha, \beta)$ with support $X \in [0, \infty)$.
- Parameters: $\alpha > 0$, $\beta > 0$.
- Probability density function (scale parameteriztion)

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$
 for $x \ge 0$

- Expon(β) is the special case Gamma($\alpha = 1, \beta$).
- Mean and variance

$$\mathbb{E}(X) = \alpha\beta \qquad \mathbb{V}(X) = \alpha\beta^2$$
 pdf for $\mathrm{Gamma}(\alpha=2,\beta=1)$ cdf for $\mathrm{Gamma}(\alpha=2,\beta=1)$ o.75 cdf for $\mathrm{Gamma}(\alpha=2,\beta=1)$ o.25 cdf for $\mathrm{Gamma}(\alpha=2,\beta=1)$ o.25 cdf for $\mathrm{Gamma}(\alpha=2,\beta=1)$

The Gamma function

Gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Fundamental property

$$\Gamma(x+1) = x \cdot \Gamma(x)$$

 \blacksquare When x is an integer

$$\Gamma(x) = (x - 1)!$$

gamma(x) in R.

Chi-squared distribution

- The special case $Gamma(\alpha = \nu/2, \beta = 2)$ is the **Chi-squared** (χ^2) distribution with ν degrees of freedom.
- We write $X \sim \chi^2_{\nu}$.
- Important distribution only because of

$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(0, 1)$$
 then $\sum_{i=1}^n X_i^2 \sim \chi_n^2$

Mean and variance

- $X \sim \text{Beta}(\alpha, \beta)$ with support $X \in (0, 1)$.
- Parameters: $\alpha > 0$, $\beta > 0$.
- Data as proportions:
 - $X = \frac{\text{firm own capital}}{\text{firm total capital}}$
 - \rightarrow X = %bleached coral.
- Probability density function

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
 for $0 < x < 1$

 \blacksquare B(α, β) is the **Beta function**. beta(a, b) in R.

- $X \sim \text{Beta}(\alpha, \beta)$ with support $X \in (0, 1)$.
- Parameters: $\alpha > 0$, $\beta > 0$.
- Data as proportions:
 - $X = \frac{\text{firm own capital}}{\text{firm total capital}}$
 - \rightarrow X = %bleached coral.
- Probability density function

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
 for $0 < x < 1$

where $B(\alpha, \beta)$ is the **Beta function** (beta(a, b) in R):

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

 $\blacksquare X \sim \text{Beta}(\alpha, \beta)$ then

$$\mathbb{E}(X) = \frac{\alpha}{\alpha + \beta}$$

$$\mathbb{V}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$