Lecture 4Section 7.4 The Exponential Function Section 7.5

Arbitrary Powers; Other Bases

Jiwen He

1 Definition and Properties of the Exp Function

1.1 Definition of the Exp Function

Number e

Definition 1. The number e is defined by

$$\ln e = 1$$

i.e., the unique number at which $\ln x = 1$.

Remark

Let $L(x) = \ln x$ and $E(x) = e^x$ for x rational. Then

$$L \circ E(x) = \ln e^x = x \ln e = x,$$

i.e., E(x) is the inverse of L(x).

 e^x : Inverse of $\ln x$

Definition 2. The exp function $E(x) = e^x$ is the *inverse* of the log function $L(x) = \ln x$:

$$L \circ E(x) = \ln e^x = x, \quad \forall x.$$

Properties

- $\ln x$ is the *inverse* of e^x : $\forall x > 0$, $E \circ L = e^{\ln x} = x$.
- $\forall x > 0, y = \ln x \iff e^y = x.$
- graph (e^x) is the reflection of graph $(\ln x)$ by line y = x.
- range $(E) = \text{domain}(L) = (0, \infty), \text{domain}(E) = \text{range}(L) = (-\infty, \infty).$
- $\lim_{\substack{x \to -\infty \\ \infty}} e^x = 0 \quad \Leftrightarrow \quad \lim_{x \to 0^+} \ln x = -\infty, \ \lim_{x \to \infty} e^x = \infty \quad \Leftrightarrow \quad \lim_{x \to \infty} \ln x =$

1.2 Properties of the Exp Function

Algebraic Property

Lemma 3. • $e^{x+y} = e^x \cdot e^y$.

$$\bullet \ e^{-x} = \frac{1}{e^x}.$$

$$\bullet \ e^{x-y} = \frac{e^x}{e^y}.$$

• $e^{rx} = (e^x)^r$, $\forall r \ rational$.

Proof

$$\ln e^{x+y} = x + y = \ln e^x + \ln e^y = \ln (e^x \cdot e^y).$$

Since $\ln x$ is one-to-one, then

$$e^{x+y} = e^x \cdot e^y$$
.

$$1 = e^0 = e^{x + (-x)} = e^x \cdot e^{-x} \quad \Rightarrow \quad e^{-x} = \frac{1}{e^x}.$$

$$e^{x-y} = e^{x+(-y)} = e^x \cdot e^{-y} = e^x \cdot \frac{1}{e^y} = \frac{e^x}{e^y}.$$

- For $r = m \in \mathbb{N}$, $e^{mx} = e^{\overbrace{x + \dots + x}^m} = e^{\overbrace{x + \dots + x}^m} = (e^x)^m$.
- For $r = \frac{1}{n}$, $n \in \mathbb{N}$ and $n \neq 0$, $e^x = e^{\frac{n}{n}x} = \left(e^{\frac{1}{n}x}\right)^n \implies e^{\frac{1}{n}x} = \left(e^x\right)^{\frac{1}{n}}$.
- For r rational, let $r = \frac{m}{n}$, $m, n \in \mathbb{N}$ and $n \neq 0$. Then $e^{rx} = e^{\frac{m}{n}x} = \left(e^{\frac{1}{n}x}\right)^m = \left((e^x)^{\frac{1}{n}}\right)^m = (e^x)^{\frac{m}{n}} = (e^x)^r$.

Derivatives

Lemma 4. $\bullet \frac{d}{dx}e^x = e^x \Rightarrow \int e^x dx = e^x + C.$

• $\frac{d^m}{dx^m}e^x = e^x > 0$ \Rightarrow $E(x) = e^x$ is concave up, increasing, and positive.

Proof

Since $E(x) = e^x$ is the inverse of $L(x) = \ln x$, then with $y = e^x$,

$$\frac{d}{dx}e^x = E'(x) = \frac{1}{L'(y)} = \frac{1}{(\ln y)'} = \frac{1}{\frac{1}{y}} = y = e^x.$$

First, for m = 1, it is true. Next, assume that it is true for k, then

$$\frac{d^{k+1}}{dx^{k+1}}e^x = \frac{d}{dx}\left(\frac{d^k}{dx^k}e^x\right) = \frac{d}{dx}\left(e^x\right) = e^x.$$

By the axiom of induction, it is true for all positive integer m.

1.3 Another Definition of the Exp Function

 e^x : as the series ∇^∞ $\frac{x^k}{x^k}$

Definition 5. (Section 11.5)

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
$$= \lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{x^{k}}{k!} \right), \quad \forall x \in R.$$

 $(k! = 1 \cdot 2 \cdots k)$

 $\mathbf{Number}\ e$

•
$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots = \lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{1}{k!} \right).$$

• $e \approx 2.71828182845904523536...$

Limit: $\lim_{x\to\infty} \frac{e^x}{x^n}$

Theorem 6.

$$\lim_{x \to \infty} \frac{e^x}{r^n} = \infty, \quad \forall n \in \mathbb{N}.$$

Proof. • Recall that

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1} + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \cdots$$

• For large x > 0,

$$e^x > \frac{x^p}{p!} \quad \Rightarrow \quad \frac{e^x}{x^n} > \frac{x^{p-n}}{p!}.$$

• For p > n, $\lim_{x \to \infty} x^{p-n} = \infty$, then $\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$.

Quiz

Quiz

- 1. domain of $\ln(1+x^2)$: (a) x > 1, (b) x > -1, (c) any x.
- 2. domain of $\ln(x\sqrt{4+x^2})$: (a) $x \neq 0$, (b) x > 0, (c) any x.

2 Differentiation and Graphing

Chain Rule

Differentiation: Chain Rule Lemma 7.
$$\frac{d}{dx}e^u = e^u \frac{du}{dx}$$
.

Proof

By the chain rule,

$$\frac{d}{dx}e^{u} = \frac{d}{du}\left(e^{u}\right)\frac{du}{dx} = e^{u}\frac{du}{dx}$$

Examples 8. • $\frac{d}{dx}e^{kx} = e^{kx} \cdot k = ke^{kx}$.

•
$$\frac{d}{dx}e^{\sqrt{x}} = e^{\sqrt{x}} \cdot \frac{d}{dx}\sqrt{x} = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}y = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$$

•
$$\frac{d}{dx}e^{-x^2} = e^{-x^2}\frac{d}{dx}(-x^2) = e^{-x^2}(-2x) = -2xe^{-x^2}.$$

Examples: Chain Rule Examples 9.
$$\bullet \frac{d}{dx}e^{4\ln x}$$
.

•
$$\frac{d}{dx}e^{\sin 2x}$$
.

•
$$\frac{d}{dx}\ln\left(\cos e^{2x}\right)$$
.

Solution

Simplify it before the differentiation:

$$e^{4 \ln x} = (e^{\ln x})^4 = x^4 \quad \Rightarrow \quad \frac{d}{dx} e^{4 \ln x} = \frac{d}{dx} x^4 = 4x^3.$$

By the chain rule,

$$\frac{d}{dx}e^{\sin 2x} = e^{\sin 2x}\frac{d}{dx}\sin 2x = e^{\sin 2x} \cdot 2\cos 2x$$

By the chain rule,

$$\frac{d}{dx}\ln\left(\cos e^{2x}\right) = \frac{1}{\cos e^{2x}}\cdot\left(-\sin e^{2x}\right)\cdot\frac{d}{dx}e^{2x} = -2e^{2x}\tan e^{2x}.$$

2.2 Graphing

Graph of
$$f(x) = e^{-\frac{x^2}{2}}$$

Example 10. Let $f(x) = e^{-\frac{x^2}{2}}$. Determine the symmetry of graph and asymptotes. On what intervals does f increase? Decrease? Find the extrem values of f.Determine the concavity and inflection points.

Solution

Since $f(-x) = e^{-\frac{(-x)^2}{2}} = e^{-\frac{x^2}{2}} = f(x)$ and $\lim_{x \to \pm \infty} e^{-\frac{(-x)^2}{2}} = 0$, the graph is symmetry w.r.t. the y-axis, and the x-axis is a horizontal asymptote.

• We have $f'(x) = e^{-\frac{x^2}{2}}(-x) = -xe^{-\frac{x^2}{2}}$.

• Thus $f \uparrow$ on $(-\infty, 0)$ and \downarrow on $(0, \infty)$.

• At x = 0, f'(x) = 0. Thus $f(0) = e^0 = 1$ is the (only) local and absolute maximum.

• From $f'(x) = -xe^{-\frac{x^2}{2}}$, we have $f''(x) = -e^{-\frac{x^2}{2}} + x^2e^{-\frac{x^2}{2}} = (x^2 - 1)e^{-\frac{x^2}{2}}.$

• At $x = \pm 1$, f''(x) = 0. Then, the graph is concave up on $(-\infty, -1)$ and $(1, \infty)$; the graph is concave down on (-1, 1).

• The points $(\pm 1, f(\pm 1)) = (\pm 1, e^{-\frac{1}{2}})$ are points of inflection.

Quiz (cont.)

Quiz (cont.)

3. $\frac{d}{dx}(\ln|x|) = ?$: (a) $\frac{1}{x}$, (b) $\frac{1}{|x|}$, (c) $-\frac{1}{x}$.

4. $\int x^{-1} dx = ?$: (a) $\ln x + C$, (b) $\ln |x| + C$, (c) $x^{-1} + C$.

3 Integration

3.1 *u*-Substitution

Integration: u-Substitution

Theorem 11.

$$\int e^{g(x)}g'(x) \, dx = e^{g(x)} + C.$$

Proof.

Let u = g(x), thus du = g'(x)dx, then

$$\int e^{g(x)}g'(x) \, dx = \int e^u du = e^u + C = e^{g(x)} + C.$$

Example 12. Calculate $\int xe^{-\frac{x^2}{2}} dx$. Let $u = -\frac{x^2}{2}$, thus du = -xdx, then $\int xe^{-\frac{x^2}{2}} dx = -\int e^u du = -e^u + C = -e^{-\frac{x^2}{2}} + C$.

4 Arbitrary Powers

4.1 Arbitrary Powers

Arbitrary Powers: $f(x) = x^r$

Definition 13. For z irrational, we define $x^z = e^{z \ln x}$, x > 0.

Properties (r and s real numbers)

- For x > 0, $x^r = e^{r \ln x}$.
- $x^{r+s} = x^r \cdot x^s$, $x^{r-s} = \frac{x^r}{r^s}$, $x^{rs} = (x^r)^s$
- $\frac{d}{dx}x^r = rx^{r-1}$, \Rightarrow $\int x^r dx = \frac{x^{r+1}}{r+1} + C$, for $r \neq -1$.

Example 14. $\frac{d}{dx}(x^2+1)^{3x} = \frac{d}{dx}e^{3x\ln(x^2+1)} = e^{3x\ln(x^2+1)}\frac{d}{dx}(3x\ln(x^2+1))$ = $e^{3x\ln(x^2+1)}\left(\frac{6x^2}{x^2+1} + 3\ln(x^2+1)\right)$

4.2 Other Bases

Other Bases: $f(x) = p^x$, p > 0

Definition 15. For p > 0, the function

$$f(x) = p^x = e^{x \ln p}$$

is called the exp function with base p.

Properties

$$\frac{d}{dx}p^x = p^x \ln p \quad \Rightarrow \quad \int p^x \, dx = \frac{1}{\ln p}p^x + C, \text{ for } p > 0, \, p \neq 1$$

Other Bases: $f(x) = \log_p x$, p > 0

Definition 16. For p > 0, the function

$$f(x) = \log_p x = \frac{\ln x}{\ln p}$$

is called the log function with base p.

Properties

$$\frac{d}{dx}\log_p x = \frac{1}{x\ln p}.$$

Outline

Contents

1	Definition and Properties			
	1.1	Definition	1	
	1.2	Properties	2	
		Another Definition		
2	Differentiation			
	2.1	Chain Rule	5	
		Graphing		
3	Integration			
	3.1	u-Substitution	8	
4	Arb	pitrary Powers	9	
		Arbitrary Powers	9	
		Other Bases		