Aplicaciones de las bases de Gröbner en equilibrio general y teoría de juegos

Marcelo Gallardo

PUCP

13 de junio de 2025

- Introducción
- Preliminares algebraicos
- 3 Lemma de Shape
- Lemma de Shape paramétrico
- Singular
- Equilibrio Arrow-Debreu
 - Preliminares
 - Funciones de utilidad CES: cómputo del equilibrio
- Teoría de juegos
 - Equilibrio Nash Bayesiano
 - Cómputo de equilibrio de Nash en estrategias mixtas
 - Modelo de carrera armamentaria
 - Aplicación: F(c) = c y resolución
- Conclusiones
- Anexo
 - Resultado del análisis complejo

Introducción

- Preliminares algebraicos: monomios, polinomios, ideales, variedad afín, base de Gröbner. 15-20 minutos.
- Lema de Shape, lema de Shape paramétrico. 30-35 minutos.
- Cómputo de bases de Gröbner. 5-10 minutos.
- Aplicaciones:
 - Equilibrio de Arrow-Debreu. 25 minutos.
 - Equilibrio de Nash. 35 minutos.
 - Juego estático con información perfecta.
 - ★ Equilibrio Perfecto Bayesiano.

Referencias

- Cox, D. A., Little, J. B., & O'Shea, D. (2015). <u>Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra</u> (4th ed.). Springer.
 - (Serie: Undergraduate Texts in Mathematics).
- Sturmfels, B. (1962). <u>Gröbner Bases and Convex Polytopes</u>. American Mathematical Society. Berkeley.
 (Disponible en: https://math.berkeley.edu/~bernd/GBCP.pdf)
- Ocok, W. (2014). Using Gröbner Bases to Find Nash Equilibria. Georgia College.
- Canann, T. J. (2019). <u>Essays in Applied and Computational Game Theory</u>. Doctoral dissertation, University of Minnesota.
 Advisor: Jan Werner.
- Kubler, F., & Schmedders, K. (2010). Tackling Multiplicity of Equilibria with
 Gröbner Bases. Operations Research, 58(4, Part 2), 1037–1050.
 (Disponible en: https://www.jstor.org/stable/40793305)
- Baliga, S., & Sjöström, T. (2004). <u>Arms Races and Negotiations</u>. <u>The Review of Economic Studies</u>, 71(2), 351–369.

(Publicado por: Oxford University Press. Disponible en:

https://www.jstor.org/stable/3700629)

Preliminares algebraicos

Preliminares algebraicos

El cuerpo que se usará a continuación para definir los coeficientes de polinomios es por lo general $\mathbb Q$ o $\mathbb R$. Sin embargo, a la hora de trabajar con soluciones de ecuaciones $x \in \mathbb K$, usaremos $\mathbb C$ pues es algebraicamente cerrado.

Algunas definiciones elementales

Definición

Un **monomio** en x_1, \dots, x_n es un producto de la forma

$$x_1^{\alpha_1}\cdots x_n^{\alpha_n}, \quad \alpha_i\geq 0.$$

Definición

Un **polinomio** f en x_1, \dots, x_n con coeficientes en \mathbb{K} es una combinación lineal finita (con coeficientes en \mathbb{K}) de monomios. Esto es:

$$f = \sum_{\alpha} a_{\alpha} x^{\alpha} \tag{1}$$

donde $a_{\alpha} \in \mathbb{K}$, la suma es finita y $\alpha = (\alpha_1, \cdots, \alpha_n)$: $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

Notación

El conjunto formado por elementos (1) se denota $\mathbb{K}[x_1, \dots, x_n]$.

Definiciones elementales (continúa)

Una relación de orden total \preceq en M_n es un orden monomial si

- $\forall m_1, m_2 \in M_n$ tal que $m_1 \leq m_2$ se tiene $mm_1 \leq m_2 m$, para todo $m \in M_n$.
- Principio del buen orden: todo conjunto no vacío de M_n tiene un menor elemento con ≤.

A lo largo de esta presentación, vamos a considerar el orden lexicográfico estándar:

Definición

Dados $\alpha, \beta \in \mathbb{Z}^n_{\geq 0}$, decimos que $\alpha \succeq_{\mathsf{lex}} \beta$ si $\alpha - \beta \in \mathbb{Z}^n$ es tal que la entrada más a la izquierda es positiva. Se escribe $x^\alpha \succeq_{\mathsf{lex}} x^\beta$ si $\alpha \succeq_{\mathsf{lex}} \beta$ o a secas \succeq .

Orden lexicográfico

Example

Por ejemplo, en \mathbb{Z}^2 ,

$$(0,1) \leq_L (0,2)$$

$$(0,10) \leq_L (1,0).$$

Example

Sea $f = x + x^2 + xy + y^2$, entonces

$$y^2 \leq_L x \leq_L xy \leq_L x^2$$
.

Dato curioso

El orden lexicográfico es bastante usado en microeconomía por lo siguiente:

- Las binarias que son completas y transitivas forman el pilar de la teoría del consumidor
- x ≥ y cuando un agente de decisión prefiere consumir x a y. Usualmente estas representan canastas de consumo en \mathbb{R}^n_+ .
- Una propiedad deseable es que \succ sea continua. Esto eso, dadas $(\mathbf{x}_n)_{n\in\mathbb{N}}$ e $(\mathbf{y}_n)_{n\in\mathbb{N}}$ con $\mathbf{x}_n \succeq \mathbf{y}_n$ para todo n, $\lim_n \mathbf{x}_n = \mathbf{x} \succeq \lim_n \mathbf{y}_n = \mathbf{y}$.
- $\mathbf{x}_n = (1/n, 0)$ y $\mathbf{y}_n = (0, 2)$, queda claro que \succeq no es continua.
- La continuidad es clave para representar \succ por una función de utilidad $u(\cdot)$ ver Teorema de Debreu - y hacer cálculo/análisis.

Definiciones elementales (continúa)

Fijado ≽, definimos, dado

$$f=\sum_{|\alpha|=0}^d a_\alpha x^\alpha,$$

con

•
$$|\alpha| = \sum_{i=1}^n \alpha_i$$

•
$$a_{\alpha} = a_{\alpha_1 \cdots \alpha_n}$$
.

los siguientes elementos:

- $x^{\alpha}, a_{\alpha} \neq 0$, monomio de f y denotamos $M(f) = \{x^{\alpha}: a_{\alpha} \neq 0\}$,
- $a_{\alpha}x^{\alpha}$, $a_{\alpha} \neq 0$, término de f,
- grad $(f) = \max\{|\alpha| : x^{\alpha} \in M(f)\}.$
- El monomio líder ml $(f)=\max\{x^{lpha}:\ x^{lpha}\in M(f)\}=x^{lpha_{f 0}}$
- El término líder: $\mathsf{tl}(f) = a_{\alpha_0} x^{\alpha_0}$, donde x^{α_0} es $\mathsf{ml}(f)$ y a_{α_0} su coeficiente.
- El coeficiente líder: $cl(f) = a_{\alpha_0}$.

Ideales

Definición

Un subconjunto $I\subset \mathbb{K}[x_1,\cdots,x_n]$ es un **ideal** si cumple con los siguientes criterios:

- **○** 0 ∈ *I*
- $f,g \in I$, entonces $f+g \in I$
- $f \in I, h \in \mathbb{K}[x_1, \dots, x_n], \text{ entonces } f \cdot h \in I.$

En general, esta definición es válida cuando $I \subset A$ con A anillo conmutativo con unidad.

Ideales (continúa)

Observación

Del Teorema de la base de Hilbert, se sigue que $\mathbb{K}[x_1,\cdots,x_n]$ es Noetheriano. Por ende, todo ideal de $\mathbb{K}[x_1,\cdots,x_n]$ es finitamente generado. Así,

$$I = \langle f_1, \cdots, f_s \rangle = \left\{ \sum_{i=1}^s c_i(x_1, \cdots, x_n) f_i : c_i(x_1, \cdots, x_n) \in \mathbb{K}[x_1, \cdots, x_n] \right\}$$

con $f_1, \dots, f_s \in \mathbb{K}[x_1, \dots, x_n]$. Más aún, podemos usar monomios (Lema de Dickson).

Bases de Gröbner

Sea $I \subset \mathbb{K}[x_1, \cdots, x_n]$ ideal. Una base de Gröbner (BG) respecto a un orden monomial \preceq de I es conjunto finito $G \subset I$ tal que para todo $f \in I$, existe $g \in G$ tal que m(g)|m(f).

Proposición

Sea $I \subset \mathbb{K}[x_1, \dots, x_n]$ un ideal, y $G = \{g_1, \dots, g_s\} \subset I$. Fijado un orden monomial \preceq , son equivalentes:

- G es una BG de I
- \bullet $f \in I \Leftrightarrow \text{el resto de la pseudodivisión de } f \text{ por } g_1, \cdots, g_s \text{ es cero.}$

Bases de Gröbner (continúa)

En Cook, 2014: fijado un orden monomial, un subconjunto $G=\{g_1,\cdots,g_s\}$ de un ideal es una base de Gröbner si

$$\langle \mathsf{t} | (G) \rangle = \langle \mathsf{t} | (g_1), \cdots, \mathsf{t} | (g_s) \rangle = \langle \mathsf{t} | (I) \rangle,$$

donde

$$\mathsf{tl}(I) = \{ cx^{\alpha} : \exists f \in I \text{ tal que } \mathsf{tl}(f) = cx^{\alpha} \}$$
 (2)

y $\langle t|(I)\rangle$ es el ideal generado por los elementos de (2). Ciertamente podemos considerar m|(I) e vez de t|(I).

Bases de Gröbner (continúa)

Una BG genera pero la conversa no es necesariamente cierta, i.e. un conjunto generador no es necesariamente BG. Consideremos

$$I = \langle x^2 + y, xy + 1 \rangle.$$

 $f = y^2 - x \in I$ pero y^2 (usando el orden lexicográfico graduado) no es divisible por los monomios líderes de los generadores.

Algoritmo de Buchberger

Esto es importante para la parte de implementación: Dados $g,h\in\mathbb{K}[x_1,\cdots,x_n]$, definimos el S-proceso o S-pol como el polinomio

$$S(g,h) = MCM(m|(g), m|(h)) \left(\frac{g}{t|(g)} - \frac{h}{t|(h)}\right).$$

Denotamos $x^{\theta}=x_1^{\theta_1}\cdots x_n^{\theta_n}$. El $\mathsf{MCM}(x^{\alpha},x^{\beta})=\prod_{i=1}^n x_i^{\mathsf{máx}\{\alpha_i,\beta_i\}}$. Además,

$$\frac{\mathsf{MCM}(x^\alpha, x^\beta)}{x^\alpha}, \frac{\mathsf{MCM}(x^\alpha, x^\beta)}{x^\beta}$$

son monomios.

Proposición

Criterio de Buchberger. Fijado un orden monomial ≤, un conjunto

G = $\{g_1, \ldots, g_s\} \subset \mathbb{K}[x_1, \ldots, x_n] \setminus \{0\}$ es una base de Gröbner del ideal $I = \langle g_1, \ldots, g_s \rangle$ si y solo si el residuo de la pseudodivisión de cada par $S(g_i, g_j)$ respecto de G es cero, para todo $i \neq j$.

Algoritmo de Buchberger (continúa)

Teorema

Algoritmo de Buchberger. Sea \leq un orden monomial en $\mathbb{K}[x_1,\ldots,x_n]$, y sea $I=\langle f_1,\ldots,f_s\rangle\neq 0$ un ideal. Entonces, existe un algoritmo que termina en un número finito de pasos y produce una base de Gröbner de I, descrito del siguiente modo:

- Entrada: $\{f_1,\ldots,f_s\}\subset \mathbb{K}[x_1,\ldots,x_n]$.
- Inicialización: $G_0 := \{f_1, \ldots, f_s\}.$
- Iteración: Para $i \ge 0$, construya G_{i+1} a partir de G_i como sigue:
 - **1** Para cada par $(g,h) \in G_i$, calcule el residuo r de dividir S(g,h) por G_i .
 - ② Si existe algún par tal que $r \neq 0$, defina $G_{i+1} := G_i \cup \{r\}$.
 - \odot Si todos los residuos son cero, detenga el algoritmo y devuelva G_i como salida.
- Salida: $G := G_k$ para algún k, tal que todos los pares-S en G_k se reducen a cero. Este conjunto es una base de Gröbner de I.

Lemma de Shape

Preliminares geométricos y objeto(s) de interés

En las aplicaciones, lo que nos interesa es: dados $f_1,\cdots,f_s\in\mathbb{K}[x_1,\cdots,x_n]$, encontrar los elementos en

$$\mathbb{V} = \{x \in \mathbb{K}^n : f_1(x) = \cdots = f_k(x) = 0\}.$$

Recordemos que el conjunto $\mathbb V$ es un conjunto algebraico, definido por f_1,\cdots,f_s .

Observación

Note que

$$\mathbb{V} = \{x \in \mathbb{K}^n : g(x) = 0, \text{ con } g \in \langle f_1, \cdots, f_s \rangle \}.$$

En efecto, si $x \in \mathbb{V}$, entonces

$$g(x) = \left(\sum_{i=1}^{s} h_i f_i\right)(x) = 0.$$

Luego, si x es tal que g(x)=0 para todo $g\in \langle f_1,\cdots,f_s\rangle$, en particular esto es cierto para $g=f_i$.

Aspectos clave

Más aún, si tenemos $\langle g_1,\cdots,g_r
angle=\langle f_1,\cdots,f_s
angle$, entonces

$$\mathbb{V} = \{x \in \mathbb{K}^n: \ g_1(x) = \cdots = g_r(x) = 0\}.$$

El objetivo es encontrar una <u>base</u> alternativa a f_1,\cdots,f_s que sea sencilla de resolver.

Ejemplo

Considere

$$f_1(x, y) = 2x^2 + 3y^2 - 11$$

 $f_2(x, y) = x^2 - y^2 - 3$.

Veamos que

$$\langle f_1, f_2 \rangle = \langle x^2 - 4, y^2 - 1 \rangle = \langle g_1, g_2 \rangle.$$

Primero, $f_2 = g_1 - g_2$ y $f_1 = 2g_1 + 3g_2$. Análogamente, $g_1 = \frac{3f_2 + f_1}{5}$ y $g_2 = \frac{f_1 - 2f_2}{5}$. Así,

$$V(f_1, f_2) = \{(2,1), (2,-1), (-2,1), (-2,-1)\}.$$

Nota: vamos a restringir el análisis (salvo se diga lo contrario) a s = r = n.

Ideal regular

Definición

Decimos que $I = \langle f_1, \dots, f_n \rangle$ es **regular** en x, si $\mathbb{V}(I)$ es finito y los puntos son localmente únicos

$$f(x) = 0 \implies \operatorname{rango}(D_x f(x)) = \operatorname{rango}\left[\left(\frac{\partial f_j}{\partial x_i}\right)_{1 \le i, j \le n}(x)\right] = n,$$

donde $f = (f_1, \dots, f_n) : \mathbb{K}^n \to \mathbb{K}^n$.

Ideal radical y cero-dimensional

Definición (Ideal radical)

Un ideal $I \subseteq \mathbb{K}[x_1,\ldots,x_n]$ es <u>radical</u> si, siempre que $f^k \in I$ para algún $k \geq 1$, entonces $f \in I$.

Example

Sea $I = \langle x^2 \rangle \subseteq \mathbb{K}[x]$. Entonces:

$$V(I) = \{0\}, \text{ ya que } x^2 = 0 \text{ solo en } x = 0.$$

Sin embargo, I no es radical, porque $x \notin I$ aunque $x^2 \in I$. El radical de I es $\sqrt{I} = \langle x \rangle$, que sí es radical.

Definición (Ideal cero-dimensional)

Un ideal $I \subseteq \mathbb{K}[x_1,\ldots,x_n]$ es <u>cero-dimensional</u> si su variedad de ceros en \mathbb{K}^n es un conjunto finito de puntos. Recordemos que esto ocurre cuando la dimensión del anillo cociente $\mathbb{K}[x_1,\ldots,x_n]/I$ es finita.

Lema de Shape

Lema

Sea \mathbb{K} algebraicamente cerrado. Sea I un ideal cero dimensional y radical en $\mathbb{K}[x_1,\cdots,x_n]$. Supongamos que $\mathbb{V}(I)$ tiene m puntos con coordenadas x_1 distintas. Entonces, la base de Gröbner G de I respecto al orden lexicográfico siendo x_1 la última variable, tiene la siguiente forma:

$$g_1 = x_1^m + h_1(x_1)$$

 $g_2 = x_2 + h_2(x_1)$
 \vdots
 $g_n = x_n + h_n(x_1).$

donde h_1, \dots, h_m son polinomios en x_1 de grado a lo más m-1.

Prueba: Independencia lineal de $[1], [x_1], \ldots, [x_1^{m-1}]$ en $\mathbb{K}[x_1, \cdots, x_n]/I$.

Supongamos que existe una combinación lineal no trivial sobre \mathbb{K} :

$$g(x_1) := c_0 + c_1x_1 + c_2x_1^2 + \cdots + c_{m-1}x_1^{m-1} \in I,$$

con algunos coeficientes $c_i \in \mathbb{K}$, no todos cero. Sea $\mathbb{V}(I) = \{\xi_1, \dots, \xi_m\} \subset \mathbb{A}^n$, con $\xi_i = (\xi_{i,1}, \dots, \xi_{i,n})$. Teníamos que las primeras coordenadas $\xi_{1,1}, \dots, \xi_{m,1}$ son todas distintas.

Entonces, ya que $g \in I$, se tiene que $g(\xi_{i,1}) = 0$ para todo $i = 1, \ldots, m$. Esto define un sistema homogéneo lineal:

$$\begin{bmatrix} 1 & \xi_{1,1} & \xi_{1,1}^2 & \dots & \xi_{1,1}^{m-1} \\ 1 & \xi_{2,1} & \xi_{2,1}^2 & \dots & \xi_{2,1}^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi_{m,1} & \xi_{m,1}^2 & \dots & \xi_{m,1}^{m-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{bmatrix} = 0.$$

Esta es una matriz de Vandermonde, que es no singular pues los $\xi_{i,1}$ son distintos:

$$\det(V) = \prod_{1 \leq i \leq j \leq n} (\xi_{1,i} - \xi_{1,j}).$$

Entonces, la única solución es $c_0 = \cdots = c_{m-1} = 0$: contradicción. Luego, los elementos $[1], [x_1], \ldots, [x_1^{m-1}]$ son linealmente independientes.

26/156

Prueba: $[1], \ldots, [x_1^{m-1}]$ generan

Para mostrar que $\{[1], [x_1], \ldots, [x_1^{m-1}]\}$ es una base, falta ver que generan todo el espacio cociente $\mathbb{K}[x_1, \ldots, x_n]/I$. Consideremos la aplicación lineal bien definida:

$$\varphi: \mathbb{K}[x_1,\ldots,x_n]/I \to \mathbb{K}^m$$

$$[f] \mapsto (f(\xi_1),\ldots,f(\xi_m)), \ \xi_j \in \mathbb{V}(I).$$

Esta aplicación esta bien definida ya que si $f \equiv g \mod I$, entonces $f(\xi_i) = g(\xi_i)$ para cada i.

Inyectividad de φ y dimension del cociente

El núcleo de φ es (Nullstellensatz de Hilbert):

$$\ker \varphi = \{ [f] \in \mathbb{K}[x_1, \dots, x_n] / I : f(\xi_i) = 0 \ \forall i \} = [I(\mathbb{V}(I))] = [\sqrt{I}].$$

Como I es radical (por hipótesis), se tiene que $I=\sqrt{I}=I(\mathbb{V}(I))$. Entonces el núcleo de φ es trivial, o sea:

$$\ker \varphi = \{0\} \Rightarrow \varphi \text{ es inyectiva}.$$

Esto implica que:

Marcelo Gallardo

$$\dim_{\mathbb{K}}(\mathbb{K}[x_1,\ldots,x_n]/I) \leq m.$$

Pero ya probamos que $[1], \ldots, [x_1^{m-1}]$ son m vectores linealmente independientes. Por tanto, forman una base del cociente.

28/156

Construcción de los generadores g_1, \ldots, g_n

Ahora escribamos $[x_1^m], [x_2], \dots, [x_n]$ como combinación lineal en la base $[1], \dots, [x_1^{m-1}]$:

$$[x_1^m] = \sum_{i=0}^{m-1} a_i [x_1^i]$$

$$[x_j] = \sum_{i=0}^{m-1} b_{j,i} [x_1^i], \quad j = 2, \dots, n.$$

Luego:

$$x_{1}^{m} - \sum_{i=0}^{m-1} a_{i} x_{1}^{i} \in I$$
$$x_{j} - \sum_{i=0}^{m-1} b_{j,i} x_{1}^{i} \in I.$$

Así, definimos:

$$g_1 = x_1^m - \sum_{i=0}^{m-1} a_i x_1^i$$
 $g_j = x_j - \sum_{i=0}^{m-1} b_{j,i} x_1^i$ para $j = 2, \dots, n$.

Radicalidad e igualdad de ideales

Entonces $g_1, \ldots, g_n \in I$, por lo que $\mathbb{V}(I) \subseteq \mathbb{V}(g_1, \ldots, g_n)$. Ahora bien, como los polinomios g_1, \ldots, g_n tienen a lo sumo m raíces comunes (grado de g_1) se sigue que $\mathbb{V}(I) = \mathbb{V}(g_1, \ldots, g_n)$. Finalmente, se tiene que:

$$I = \langle g_1, \ldots, g_n \rangle.$$

Definition

Una BG minimal $G = \{g_1, \dots, g_s\}$ del ideal I es **reducida** si ml $(g_i) \nmid m$ para todo $m \in M(g_j)$, para todo $i \neq j$. Además todos los elementos de G son mónicos.

Determinante de Vandermonde

Transponemos:

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n & a_{n+1} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} & a_{n+1}^{n-1} \\ a_1^n & a_2^n & a_3^n & \cdots & a_n^n & a_{n+1}^n \end{pmatrix}$$

Restando a_1 veces la fila i a la fila i+1, se obtiene

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & a_2 - a_1 & \cdots & a_n - a_1 & a_{n+1} - a_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_2^n - a_1 a_2^{n-1} & \cdots & a_n^n - a_1 a_n^{n-1} & a_{n+1}^n - a_1 a_{n+1}^{n-1} \end{pmatrix}$$

Determinante de Vandermonde (continúa)

Expandiendo por la primera columna y factorizando a_i-a_1 de la i-ésima columna para $i=2,\ldots,n+1$, se obtiene que el determinante es

$$\prod_{j=2}^{n+1} (a_j - a_1) \cdot \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_2 & a_3 & \cdots & a_{n+1} \\ \vdots & \vdots & & \vdots \\ a_2^{n-1} & a_3^{n-1} & \cdots & a_{n+1}^{n-1} \end{pmatrix}$$

Luego,

$$\prod_{j=2}^{n+1} (a_j - a_1) \cdot \prod_{2 \le i < j \le n+1} (a_j - a_i) = \prod_{1 \le i < j \le n+1} (a_j - a_i)$$

y el paso inductivo queda completo.

32 / 156

Lema de Shape

Observación

Podemos alternativamente escribir:

$$\mathcal{G} = \{x_1 - q_1(x_n), x_2 - q_2(x_n), \ldots, x_{n-1} - q_{n-1}(x_n), r(x_n)\}\$$

donde r es un polinomio de grado d y cada q_i es un polinomio de grado menor o igual a d-1. En efecto, se hace la identificación: d=m,

$$r(x_n) \Leftrightarrow g_1 \ y \ q_j \Leftrightarrow h_j$$
.

- E. Becker, M. G. Marinari, T. Mora, C. Traverso. The Shape of the Shape Lemma. Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), ACM, New York, 1994, pp. 129.
- P. Gianni, T. Mora. <u>Algebraic Solution of Systems of Polynomial Equations Using Gröbner Bases</u>. In: <u>Applied Algebra</u>, <u>Algebraic Algorithms and Error-Correcting Codes (AAECC 1987)</u>, Lecture Notes in Computer Science, vol. 356, Springer, 2005, pp. 247–257.
- Lecture notes: aquí.

Shape Lemma y sistemas polinomiales

Si las condiciones del Shape Lemma se cumplen, encontrar todas las soluciones de un sistema polinomial se reduce a resolver una única ecuación univariada. Esto es posible gracias a:

- Obtener una base de Gröbner reducida bajo orden lexicográfico.
- Utilizar métodos numéricos eficientes para polinomios univariados.

Condiciones del Shape Lemma

Para aplicar el Shape Lemma se necesita que [Cox et al., 1998]:

- El ideal sea radical.
- El conjunto algebraico asociado finito.
- \odot Las soluciones deben tener coordenadas x_n distintas.

Si no se cumplen de entrada, podemos modificar el sistema agregando ecuaciones auxiliares.

Correcciones de las hipótesis (técnico - skip)

Forzar regularidad: $1 - t \det[D_x f(x)] = 0$

Para asegurar que todas las soluciones sean regulares, podemos incorporar la ecuación

$$1-t\det[D_xf(x)]=0,$$

donde:

- $D_x f(x)$ es la matriz jacobiana de f.
- t es una nueva variable auxiliar.

Así, en las soluciones forzamos $\det[D_x f(x)] \neq 0$, lo que implica por el Teorema de la Función Implícita que las soluciones son localmente únicas (no tienen multiplicidad).

Separar soluciones usando una nueva variable y

Para aplicar el <u>Shape Lemma</u> necesitamos que las soluciones tengan coordenadas finales distintas.

Si varias soluciones comparten el mismo x_n , se introduce una nueva variable:

$$y=\sum_{i=1}^n a_i x_i,$$

donde los coeficientes a; se eligen genéricamente (aleatoriamente).

Resultado:

- Con probabilidad 1, las soluciones tendrán y-coordenadas distintas.
- Entonces el Shape Lemma puede aplicarse usando y como última coordenada.
- Se incorpora la ecuación $y \sum_i a_i x_i$ y se combina con f(x) = 0.

Cierre del skip

Por qué es una base de Gröbner reducida

La base generada por el Shape Lemma es:

$$\{x_1-q_1(x_n), x_2-q_2(x_n), \ldots, x_{n-1}-q_{n-1}(x_n), r(x_n)\}.$$

Bajo el orden lexicográfico:

- Cada término líder es distinto $(x_1, x_2, \dots, x_{n-1}, x_n^d)$, usando \succeq_{lex} para x_n la última variable.
- Cada polinomio está reducido (no se puede simplificar más).

Por eso esta base es una base de Gröbner reducida para el sistema.

Shape Lemma y número de soluciones

El Shape Lemma implica que el número de soluciones reales del sistema

$$f_1(x) = \cdots = f_n(x) = 0$$

coincide con el número de raíces reales del polinomio univariado $r(x_n)$.

Resolver el sistema multivariable se reduce a estudiar un polinomio en una sola variable.

Fundamento teórico

- Teorema Fundamental del Álgebra: Un polinomio univariado de grado d tiene exactamente d raíces complejas (contando multiplicidades) (Sturmfels, 2002).
- Regla de los Signos de Descartes: El número de raíces reales positivas de un polinomio es como máximo el número de cambios de signo en los coeficientes.
- Teorema de Sturm: Permite determinar exactamente el número de raíces reales de un polinomio en un intervalo dado si los coeficientes son racionales.
- Sturmfels, B. 2002. Solving Systems of Polynomial Equations. CBMS Regional Conference Series in Mathematics, No. 97. American Mathematical Society, Providence.

Así:

- Estimar el número máximo de equilibrios reales.
- Calcular el número exacto de equilibrios reales.

Definition (Número de cambios de signo)

Sea

$$r(y) = a_0 + a_1 y + a_2 y^2 + \dots + a_d y^d \in \mathbb{R}[y]$$

un polinomio univariado con coeficientes reales. Sea

$$(a_{i_0},a_{i_1},\ldots,a_{i_k})\subseteq(a_0,\ldots,a_d)$$

la subsecuencia de coeficientes no nulos, es decir, $a_{i_j} \neq 0$ para todo j.

El **número de cambios de signo** en r es la cantidad de índices $j \in \{0, \dots, k-1\}$ tales que:

$$sign(a_{i_j}) \neq sign(a_{i_{j+1}}),$$

donde

$$\operatorname{sign}(x) = \begin{cases} +1 & \text{si } x > 0, \\ -1 & \text{si } x < 0. \end{cases}$$

Interpretación interesante

- Fije $f \in \mathbb{K}[x_1, \cdots, x_n]$
- ullet Defina $M_f: \mathbb{K}[x] o \mathbb{K}[x]$ tal que $g o f \cdot g$.
- Ahora defina la aplicación inducida $\Lambda_f: \mathbb{K}[x]/I \to \mathbb{K}[x]/I$ con I cero dimensional. Note que $[g] \to [f \cdot g]$.
- Esta define una aplicación entre espacios vectoriales de dimensión finita.
- Luego:

$$\lambda \in \sigma(\Lambda_f) \Leftrightarrow \lambda \in \{f(\mathbb{V}(I))\}.$$

• Defina Λ_{x_n} . Entonces, su espectro son las n-ésimas componentes de los puntos en $\mathbb{V}(I)$.

Prueba: Sea $g \notin I$:

$$[x_n g]_I = [\lambda g]_I$$

$$g(x_n - \lambda) \in I$$

$$g(y)(y_n - \lambda) = 0, \ \forall \ y \in \mathbb{V}(I)$$

de donde $\lambda=y_n$ para algún $y\in\mathbb{V}(I)$. Recíprocamente, dado $p^i\in\mathbb{V}(I)$, $p^i=(p_1^i,\cdots,p_n^i)$, podemos construir g tal que

$$[x_ng]=[p_n^ig] \implies [(x_n-p_n^i)g]=[0].$$

Basta tomar g que anule a todos los demás puntos pero no a p^i (lo cual existe por el curso y además asegura que $[g] \neq 0$).

Lemma de Shape paramétrico

Lema de Forma Paramétrica

Las bases de Gröbner son particularmente útiles para el trabajo teórico porque podemos calcular bases de Gröbner para polinomios cuyos coeficientes dependen de parámetros. Esto permite hacer afirmaciones sobre el número de equilibrios para clases de modelos económicos parametrizados, generalizando el Shape Lemma clásico.

Nota: Los parámetros son cruciales en economía, **p** (precios), θ preferencias, ω dotaciones.

Contexto del Lema de Forma Paramétrica

Trabajamos en el anillo $\mathbb{K}[e;x] \equiv \mathbb{K}[e][x]$, donde:

- $\mathbb{K} \in {\mathbb{Q}, \mathbb{R}},$
- ullet e_1,\ldots,e_m son parámetros,
- x_1, \ldots, x_n son variables.
- Polinomios en e_1, \dots, e_m .

El objetivo es obtener una base de Gröbner en forma de Shape donde los coeficientes son polinomios en los parámetros.

Enunciado del Lema de Forma Paramétrica (Kubler and Schmedders, 2010)

Lemma

Sea $E \subset \mathbb{R}^m$ un conjunto abierto de parámetros, $(x_1, \dots, x_n) \in \mathbb{C}^n$ el conjunto de variables, y sean $f_1, \dots, f_n \in \mathbb{K}[e_1, \dots, e_n, x_1, \dots, x_n]$. Suponga que para cada $\bar{e} \in E$:

- El ideal $I(\bar{e}) = \langle f_1(\bar{e}, \cdot), \dots, f_n(\bar{e}, \cdot) \rangle$ es regular,
- Todas las soluciones complejas tienen coordenadas x_n distintas.

Entonces existen polinomios $r, v_1, \ldots, v_{n-1} \in \mathbb{K}[e_1, \cdots, e_m, y]$ y $\rho_1, \ldots, \rho_{n-1}$ en $\mathbb{K}[e]$, no todos nulos, tales que, para todo $\overline{e} \in E$ con $\rho_{\ell}(\overline{e}) \neq 0$ para todo ℓ y $r(\overline{e}, \cdot)$ no idénticamente nula:

$$\begin{aligned} \{x \in \mathbb{C}^n : f_i(\overline{e}, x) = 0, \ \forall \ i = 1, \cdots, n\} \\ = \{x \in \mathbb{C}^n : \rho_i(\overline{e})x_i = v_i(\overline{e}, y) \ \forall \ i = 1, \cdots, n-1, \quad r(\overline{e}, x_n) = 0\}. \end{aligned}$$

Enunciado (consistente) del Lema de Forma Paramétrica

Lemma

Sea $E \subset \mathbb{R}^m$ un conjunto abierto de parámetros y $x = (x_1, \cdots, x_n) \in \mathbb{C}^n$ el conjunto de variable. Sean $f_1, \cdots, f_n \in \mathbb{K}[e_1, \cdots, e_m][x_1, \cdots, x_n]$. Suponga que para cada $\overline{e} = (\overline{e}_1, \cdots, \overline{e}_m) \in E$, el ideal

$$I(\overline{e}) = \langle f_1(\overline{e}, \cdot), \cdots, f_n(\overline{e}, \cdot) \rangle$$

es cero-dimensional y radical. Suponga también que existen $u_1,\cdots,u_n\in\mathbb{K}$ tales que, si para todo \overline{e} , cualesquiera soluciones $\overline{x}\neq\overline{x}'$ satisfaciendo

$$f_1(\overline{e},\overline{x})=\cdots=f_n(\overline{e},\overline{x})=0=f_1(\overline{e},\overline{x}')=\cdots=f_n(\overline{e},\overline{x}')$$

también cumplen $\sum_{i=1}^{n} u_i \overline{x}_i \neq \sum_{i=1}^{n} u_i \overline{x}_i'$. **Entonces**, existen $r, v_1, \dots, v_n \in \mathbb{K}[e][y]$ $y \in [n]$, $\dots, p_n \in \mathbb{K}[e]$ tales que, para $y = \sum_{i=1}^{n} u_i x_i$ y para **casi todo** \overline{e} :

$$\{x \in \mathbb{C}^n : f_1(\overline{e}, x) = \dots = f_n(\overline{e}, x) = 0\}$$

$$=\{x\in\mathbb{C}^n: \rho_1(\overline{e})x_1=v_1(\overline{e},y),\cdots,\rho_n(\overline{e})x_n=v_n(\overline{e},y), r(\overline{e},y)=0\}.$$

- (ロ) (個) (注) (注) (注) (2) (2)

Importancia del Lema Paramétrico

El Lema de Forma Paramétrica permite:

- Representar soluciones de sistemas polinomiales parametrizados en forma de Shape.
- Tratar los coeficientes como polinomios en los parámetros.
- Derivar bases de Gröbner estructuradas, lo cual es útil para estudiar familias de modelos económicos.
- El «casi todo» corresponde a un subconjunto cerrado de menor dimensión en E.

La obtención de esta base se realiza usando variantes del **algoritmo de Buchberger**.

Referencias (Buchberger)

- Cox, D. A., J. B. Little, D. B. O'Shea. 1997. <u>Ideals, Varieties, and Algorithms</u>. Undergraduate Texts in Mathematics. Springer-Verlag, New York.
- Cox, D. A., J. B. Little, D. B. O'Shea. 1998. <u>Using Algebraic Geometry</u>. Graduate Texts in Mathematics. Springer-Verlag, New York.
- Greuel, G.-M., G. Pfister. 2007. <u>A Singular Introduction to Commutative Algebra</u>. Springer-Verlag, Berlin.
- Greuel, G.-M., G. Pfister, H. Schönemann. 2005. <u>Singular 3.0</u>. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de.

Bases de Gröbner Paramétricas: comentarios

Un problema de las bases de Gröbner paramétricas es que, al fijar valores específicos de los parámetros, la base resultante puede no ser una base de Gröbner correcta del sistema original.

- Inicialmente tenemos una base de Gröbner simbólica en los parámetros.
- Evaluamos y puede que se cancelen términos.

Para una especialización correcta, en todos los valores de los parámetros de interés debemos tener:

- $\rho_{\ell}(\bar{e}) \neq 0$ para todo ℓ ,
- $r(\bar{e},\cdot)$ no es idénticamente cero,
- El ideal I es regular para todo \bar{e} .
- Presentación: A.G.H.

Caso e=0

Example

Como muestra el siguiente ejemplo, no se puede recuperar el conjunto de soluciones $\mathbb{V}(I)$ a partir de $\mathbb{V}(G)$, incluso si G es regular. Considere

$$I(e) = \langle e(x+y), xy + e \rangle \subset \mathbb{Q}[e; x, y].$$

Una base de Gröbner válida para casi todos los valores del parámetro *e* está dada por:

$$G = \langle y^2 - e, x + y \rangle.$$

Sin embargo, para e = 0, esta **no** es la base de Gröbner correcta: $\langle xy \rangle$. Esto no contradice el Lema de Shape paramétrico pues el ideal I no es regular en e = 0:

$$J = \begin{bmatrix} e & e \\ y & x \end{bmatrix} \bigg|_{e=0} = \begin{bmatrix} 0 & 0 \\ y & x \end{bmatrix}.$$

Cálculo en Singular: Base de Gröbner

```
ring R = (0, e), (x, y), lp;
ideal I = (e*(x + y), x*y + e);
ideal G = groebner(I);
G;

// Resultado esperado:
// G[1] = y2 - e
// G[2] = x + y
```

Procedimiento interno de Singular con parámetros

- Extensión del cuerpo base: Al declarar ring R = (0, e), (x, y), 1p;, el sistema trabaja sobre el campo racional de funciones $\mathbb{Q}(e)$, es decir, permite divisiones simbólicas por e.
- Aplicación del algoritmo de Buchberger optimizado: Singular usa variantes como std o slimgb, con eliminación inteligente de pares S y minimización de coeficientes.
- Reducción racional simbólica: Las reducciones entre polinomios se hacen permitiendo coeficientes en $\mathbb{Q}(e)$, por lo que puede aparecer $\frac{1}{e}$, $\frac{e+1}{e^2-1}$, etc.
- Válida solo genéricamente: La base devuelta es válida para todos los valores de e salvo aquellos donde se anulan los denominadores; Singular no detecta ni reporta estos puntos críticos.
- No realiza estratificación: Singular no implementa directamente el cálculo de bases de Gröbner comprehensivas (CGB), ni analiza por defecto para qué valores de e la base cambia.
- Enlace aquí.

Discusión (skip)

Regularidad del Ideal y Solución de Sistemas Polinomiales

- ullet El supuesto de que el ideal I es regular para todos los parámetros en E es muy fuerte.
- En aplicaciones económicas, suele bastar la regularidad para casi todos los valores de parámetros (es decir, fuera de un conjunto cerrado de medida cero).
- Pregunta natural: ¿Qué pasa si en \bar{e} , I no es regular pero en todo entorno de \bar{e} sí existe un ideal I regular?
- En lugar de asumir regularidad de I, podemos:
 - Calcular el conjunto de parámetros para los cuales la base de Gröbner no se especializa correctamente (Cox et al., 1997, pp. 283–284).
- Alternativamente:
 - ► Suponer únicamente que hay soluciones complejas finitas, sin asumir regularidad.
 - ► Calcular el <u>radical</u> del ideal mediante algoritmos (por ejemplo, en Singular):
 - ★ El sistema tendrá los mismos ceros complejos finitos.
 - ★ El Jacobiano tendrá rango completo en todas las soluciones.

Unicidad robusta y puntos críticos en bases de Gröbner paramétricas

- No basta verificar que para un \bar{e} dado el sistema $f(\bar{e},x)=0$ tenga una única solución real.
- Se desea demostrar que para <u>casi todo</u> $e \in E$, las soluciones reales sean únicas, descartando que exista un conjunto abierto $M \subset E$ con múltiples soluciones reales (unicidad robusta).
- Sea $r(e, x_n)$ la representación univariada obtenida por el Lema de la Forma; un **punto crítico** ocurre en (\bar{e}, \bar{x}_n) si:

$$r(\bar{e}, \bar{x}_n) = 0, \quad \frac{\partial r}{\partial x_n}(\bar{e}, \bar{x}_n) = 0$$

- En dichos puntos, el Lema de la Forma deja de ser válido y la base de Gröbner puede cambiar de forma.
- Aubry et al., 2002.

Cierre del skip

Singular

Cálculo de base de Gröbner reducida en Singular

Comandos ejecutados:

```
ring R = 0, (x, y, z), lp;
option(redSB);
ideal I = (
    x - y*z^3 - 2*z^3 + 1,
    -x + y*z - 3*z + 4,
    x + y*z^9
);
ideal G = groebner(I);
G;
```

Salida:

```
G[1] = 2z^{11} + 3z^{9} - 5z^{8} + 5z^{3} - 4z^{2} - 1
G[2] = 2y + 18z^{10} + 25z^{8} - 45z^{7} - 5z^{6} + 5z^{5}
- 5z^{4} + 5z^{3} + 40z^{2} - 31z - 6
G[3] = 2x - 2z^{9} - 5z^{7} + 5z^{6} - 5z^{5} + 5z^{4}
- 5z^{3} + 5z^{2} + 1
```

Solución real del sistema G=0

- ullet El sistema polinomial genera una base de Gröbner $G=\{g_1,g_2,g_3\}$ en forma triangular
- Usando solve (G) en Singular, se obtienen exactamente 11 soluciones complejas.
- De ellas, sólo una es real; las otras 10 son pares conjugados o no reales.
- La solución real es:

$$(x,y,z)=\left(\frac{1}{2},\ -\frac{1}{2},\ 1\right)$$

• Esta solución corresponde a una raíz simple de $g_1(z)$, y al sustituirla en g_2 y g_3 se recuperan y y x.

Base de Gröbner reducida con parámetro e

Código ejecutado en Singular:

```
ring R = (0, e), (x, y, z), lp;
option(redSB);
ideal I = (
    x - y*z^3 - 2*z^3 + 1,
    -x + y*z - 3*z + 4,
    e*x + y*z^9
);
ideal G = groebner(I);
G;
```

Salida obtenida:

$$G[1] = 2z^{11} + 3z^{9} - 5z^{8} + (5e)z^{3} + (-4e)z^{2} + (-e)$$

$$G[2] = (e^{2} + e)y + (8e + 10)z^{10} + (10e + 15)z^{8} + (-20e - 25)z^{7} + (-5e)z^{6} + (5e)z^{5} + (-5e)z^{4} + (5e)z^{3} + (20e^{2} + 20e)z^{2} + (-16e^{2} - 15e)z + (-3e^{2} - 3e)$$

$$G[3] = (e + 1)x - 2z^{9} - 5z^{7} + 5z^{6} - 5z^{5}$$

 $+ 5z^4 - 5z^3 + 5z^2 + 1$

Falla del Lema de la Forma (Shape Lemma)

Supuestos clave del Shape Lemma:

- El ideal I es regular (Jacobiano de rango completo en todas las soluciones).
- Las soluciones tienen valores distintos en la última variable.

Ejemplo 1:
$$x^2 - y = 0$$
, $y - 4 = 0$

- Tiene soluciones $x = \pm 2, y = 4 \Rightarrow$ misma última coordenada.
- En Singular: G[1] = y 4, $G[2] = x\hat{2} 4 \rightarrow no$ es escalonada.
- Falla el Shape Lemma por no cumplir la unicidad en la última variable.

Ejemplo 2:
$$x^2(x-y) = y^2(x+y-1) = 0$$

- Singular bota: $\{2y^5 5y^4 + 4y^3 y^2, xy^2 + y^3 y^2, x^3 x^2y\}$.
- Tiene raíces múltiples como $(x,y)=(0,0)\Rightarrow$ no hay unicidad local.

Conclusión: El Shape Lemma puede fallar si:

- El ideal no es radical o regular.
- Las soluciones comparten su última coordenada.

Síntesis - recapitulación

- Preliminares: polinomios, ideales, base de Gröbner.
- **2** Lema de Shape: $r(x_n)$. Condiciones: ideal de dimensión cero, radicalidad, regularidad.
- Lema de Shape paramétrico.
- Fallas: regularidad en todo e, dependencia de e.
- En la práctica: usamos Singular y vemos si todo cuadra ex-post. Rápidamente podemos, para sistemas chicos, analizar la condición de regularidad.

Equilibrio Arrow-Debreu

Figura Kenneth Arrow.

Matemático. PhD Columbia, profesor en Stanford, Harvard, Chicago. Nobel en1972 junto a Jonh Hicks.

Figura Gérard Debreu.

Ingeniero matemático. PhD Universidad de Paris. Profesor en Berkeley, Chicago. Nobel en 1983.

Preliminares

- Funciones de utilidad.
- Economías de intercambio puro.
- Preferencias, dotaciones, precios.

Notación y setting

- **Q** Relación de preferencias: relación binaria sobre $X \times X$ (subconjunto tal que $xRy \Leftrightarrow x \succeq y$).
- Transitiva y completa.
- $u(\cdot): X \to \mathbb{R}$ representa a \succ si y solo si

$$x \succeq y \Leftrightarrow u(x) \ge u(y)$$
.

Notación v setting

Decimos que u (función de utilidad) es

- **1** Monótona (a veces estrictamente monótona): si $x \le y$, $x \ne y$ implica u(x) < u(y).
- ② Cuasicóncava: si para cualesquiera $x, y \in X$, $x \neq y$ y $\theta \in (0,1)$,

$$u(x) \leq u(y) \implies u(x) \leq u(\theta x + (1 - \theta)y).$$

3 Cóncava: si para cualesquiera $x, y \in X$, $x \neq y$ y $\theta \in (0, 1)$,

$$\theta u(x) + (1 - \theta)u(y) \le u(\theta x + (1 - \theta)y).$$

• Homotética: si para cualesquiera $x, y \in X$ tales que u(x) = u(y), entonces $u(\alpha x) = u(\alpha y)$ para todo $\alpha \in \mathbb{R}_+$.

Problema de maximización de la utilidad

Dado un ingreso I>0 y un vector de precios $p\in\mathbb{R}_{++}^L$, cada individuo resuelve

$$\begin{cases} m \land x & u(x) \\ s. a & p \cdot x \le I \\ & x \ge 0. \end{cases}$$

- **Q** Cuando las preferencias son monótonas, el problema se resuelve sobre $p \cdot x = I$.
- ② Cuando lím $_{x_i\downarrow 0}$ $\frac{\partial u}{\partial x_i}=\infty$, entonces $x^*>0$.
- **3** $u(x) = \prod_{i=1}^{L} x_i^{\alpha_i} \text{ con } \alpha_i > 0, \text{ entonces } x_i^* = \frac{\alpha_i I}{\left(\sum_{i=1}^{L} \alpha_i\right) p_i}.$
- La solución es invariante si se considera como función objetivo f(u(x)) con $f(\cdot)$ estrictamente creciente.

Economías de intercambio puro

$$\mathcal{E} = \{\omega_i, u_i\}_{i=1}^n.$$

- $\bullet \ \omega_i \in \mathbb{R}_+^L.$
- $u_i: \mathbb{R}_+^L \to \mathbb{R}.$
- 3 L es el número de bienes en la economía.
- n es el número de consumidores.

Se consideran economías de intercambio puro E tales que

- $\bullet \ \sum_{i=1}^n \omega_i \in \mathbb{R}_{++}^L.$
- $u_i \in C^1$ cóncava, estrictamente monótona.
- Se cumplen las condiciones de Inada.
- $\forall x \in \mathbb{R}^{nL}_+$ con $\sum_{i=1}^L \omega_i \ge \sum_{i=1}^L x_i$, $u_i(x_i) \in [0,1]$ (normalización). Simplemente dividir por $\max_{1 \le i \le n} \left| u_i \left(\sum_{i=1}^n \omega_i \right) \right|$.

Equilibrio Walrasiano

Definición

Sea ${\cal E}$ una economía de intercambio puro. Un equilibrio Walrasiano es un par (p^*,x^*) tal que

- ② $x^*=(x_i^*)_{i=1}^n\in\mathbb{R}_+^{nL}$ es una asignación en la que $\sum_{i=1}^n x_i^*=\sum_{i=1}^n \omega_i$
- ③ \forall i = 1, ..., n: $p \cdot \omega_i = p \cdot x_i^*$ y $u_i(y) > u_i(x_i^*) \implies p \cdot y > p \cdot x_i^*$. Esto significa que cada agente maximiza su utilidad.

Observación

Por el Teorema del Máximo de Berge, $x_i^*=x^*(p,\omega_i)$ es continua, más no sabemos nada acerca de la diferenciabilidad (con miras por ejemplo a usar Newton-Raphson.

Equilibrio Walrasiano

Matemáticamente, cada agente resuelve

$$\begin{cases} \mathsf{máx} & u_i(x_i) \\ \mathsf{s. a} & p \cdot x_i \leq p \cdot \omega_i \\ & x_i \geq 0. \end{cases}$$

Se obtiene $x_i^*(p)$. Luego, para encontrar p^* , se resuelve

$$\sum_{i=1}^n x_i^*(p) = \sum_{i=1}^n \omega_i.$$

Equilibrio Walrasiano

Ejemplo

Considere n=2 y L=2 con $u_1(x_{11},x_{21})=x_{11}x_{21}$ y $u_2(x_{12},x_{22})=x_{11}^{1/4}x_{22}^{3/4}$. Considere también $\omega_1=(1,2)$ y $\omega_2=(4,3)$. Entonces,

$$2 x_{12}^* = \frac{4p_1 + 3p_2}{4p_1}, \ x_{22}^* = \frac{3(4p_1 + 3p_2)}{4p_2}.$$

Ley de Walras y homogeneidad de grado cero^a

$$x_{11}^* + x_{12}^* = \frac{\rho_1 + 2}{2\rho_1} + \frac{4\rho_1 + 3}{4\rho_1} = 1 + 4 = 5.$$

Resolviendo la ecuación, $p_1^*/p_2^*=1/2$. Resulta que la otra ecuación es redundante y solo no interesa el ratio $p_1/p_2=1/2$.

 $^{{}^{\}mathbf{a}}x^*(\alpha p) = x^*(p)$ para todo $\alpha > 0$.

Funciones de utilidad CES: cómputo del equilibrio

Tackling Multiplicity of Equilibria with Gröbner Bases - ejemplo 1

- Funciones de utilidad:
 - $u_1(c_1,c_2)=-\frac{64}{2}c_1^{-2}-\frac{1}{2}c_2^{-2},$
 - $u_2(c_1,c_2)=-\frac{1}{2}c_1^{-2}-\frac{64}{2}c_2^{-2}$
- ② Dotaciones $e^1 = (1 e, e)$ y $e^2 = (e, 1 e)$, con $e \in [0, 1]$.
- **3** Denotemos $e_{h,\ell}$ y $c_{h,\ell}$ la dotación (consumo) del agente h del bien ℓ .
- Las CPO en conjunto con las restricciones de factibilidad proveen el sistema:

$$64c_{11}^{-3} - \lambda_1 p_1 = 0$$

$$c_{12}^{-3} - \lambda_1 p_2 = 0$$

$$p_1(c_{11} - e_{11}) + p_2(c_{12} - e_{12}) = 0$$

$$c_{21}^{-3} - \lambda_2 p_1 = 0$$

$$64c_{22}^{-3} - \lambda_2 p_2 = 0$$

$$p_1(c_{21} - e_{21}) + p_2(c_{22} - e_{22}) = 0$$

$$c_{11} + c_{21} - e_{11} - e_{21} = 0$$

$$c_{12} + c_{22} - e_{12} - e_{22} = 0.$$

Tackling Multiplicity of Equilibria with Gröbner Bases - ejemplo 1

- Por la ley de Walras podemos hacer $p_1 = 1$.
- 2 Haciendo esto, eliminamos λ_1 .
- ② Las ecuaciones de «market clearing» permiten despejar c_{12} y c_{22} .
- ullet Luego, haciendo $p_2=q^3$ y $x_\ell=c_{1\ell}-e_{1\ell}$, se obtiene

$$3(1 - e + x_1) - 4(e + x_2)q = 0$$

$$4(e - x_1) - (1 - e - x_2)q = 0$$

$$x_1 + x_2q^3 = 0.$$

Ejemplo con 3 soluciones reales

Código en Singular:

```
ring R=(0,e), (x(1),x(2),q), lp;
option(redSB);
ideal I = (
   -4*(e + x(2))*q + (1 + x(1)),
   -(1 - e - x(2))*q + 4*(e - x(1)),
   x(1) + x(2)*q^3
);
ideal G = groebner(I);
```

Representación univariada:

$$G[1] = (15e+1)q^3 - 4q^2 + 4q - 15e - 1$$

Las otras 2 son:

$$G[2] = (225e + 15)x_2 - (60e + 4)q^2 + 16q - (-225e^2 - 30e + 15)$$
$$G[3] = -15x_1 - 4q + 15e + 1.$$

Conclusión

Luego, las tres raíces de la representación univariada son:

$$1, \ \frac{3-15e-\sqrt{5}\sqrt{1-42e-135e^2}}{2(1+15e)}, \ \frac{3-15e+\sqrt{5}\sqrt{1-42e-135e^2}}{2(1+15e)}.$$

- Tres soluciones reales para $e \leq \frac{1}{45}$.
- En $e = \frac{1}{45}$, hay una raíz triple: q = 1.
- Para $e > \frac{1}{45}$, solo una raíz real q = 1, las otras dos son complejas.
- Cada q induce valores positivos para x₁ y x₂, determinando equilibrios Arrow-Debreu.

Teoría de juegos

John von Neumann

Figura John von Neumann.

Matemático nacido en el imperio austrohúngaro, nacionalizado estadounidense. ETH, Princeton.

John Nash

Figura John Nash.

Matemático. Carnegie Mellon (Bs), Princeton (PhD). Profesor en MIT y Princeton. Nobel en 1994, junto a Reinhard Selten y John Harsanyi.

Roger Myerson

Figura Roger Myerson.

Matemático. PhD Harvard, profesor en Chicago. Nobel en 2007, junto a Eric Maskin.

Fundamentos

Un juego estratégico es un modelo interactivo de decisión en la cual el tomador de decisiones escoge su plan de acción y las elecciones se hacen simultáneamente. El modelo consiste en:

- Un conjunto de jugadores $N = \{1, \dots, N\}$.
- Un conjunto de acciones para cada jugador i: A_i .
- Una relación de preferencias \succeq_i definida sobre $A = \bigotimes_{j \in N} A_j$. Eventualmente, asumimos que \succeq_i viene representado por una función de pagos $u_i : A \to \mathbb{R}$.

Un perfil de acciones $a = (a_j)_{j \in N}$ se denominará <u>resultado</u>.

Definición

Si el conjunto A_i es finito, entonces el juego es dicho finito.

Equilibrio de Nash

Notación

El juego estratégico introducido será denotado

$$\langle N, (A_i), (u_i) \rangle$$
.

Definition

Un equilibrio de Nash en un juego estratégico $\langle N, (A_i), (u_i) \rangle$ es un perfil de acciones $a^* \in A$, en el cual para cada $i \in N$:

$$u_i(a_i^*, a_{-i}^*) \geq u_i(a_i, a_{-i}^*), \ \forall \ a_i \in A_i.$$

Equilibrio de Nash (continúa)

Según la definición 9, el jugador i no tiene ninguna acción que conlleva a un resultado que prefiere cuando escoge a_i^* , dado que los demás jugadores $j \neq i$ juegan a_j^* . En otras palabras, ningún jugador se beneficia desviándose unilateralmente. La siguiente reformulación de la definición 9 suele ser más útil: para cada $a_{-i} \in A_{-i} = \bigotimes_{j \neq i} A_j$, definamos la mejor respuesta del jugador i dado que los demás juegan a_{-i} :

$$B_{i}(a_{-i}) = \left\{ a_{i} \in A_{i} : \underbrace{(a_{-i}, a_{i}) \succeq_{i} (a_{-i}, a'_{i})}_{u_{i}(a_{-i}, a'_{i})}, \ \forall \ a'_{i} \in A_{i} \right\}. \tag{3}$$

El conjunto (3) se llama correspondencia de mejor respuesta del jugador i. Un EN es entonces un perfil de acciones a^* tal que

$$a_i^* \in B_i(a_{-i}^*), \ \forall \ i \in N.$$

En particular, definiendo $B(a)=(B_i(a_i))_{i=1,\cdots,n}$, a^* es un EN ssi $a^*\in B(a^*)$.

Mozart vs Chopin

Ejemplo

Juego de coordinación. Considere:

	JZ. WOZart	JZ. Chopin
J1: Mozart	(2,2)	(0,0)
J1: Chopin	(0,0)	(1, 1)

Este juego tiene dos EN como en BoS: (Mozart, Mozart) y (Chopin, Chopin). Sin embargo, en este caso ambos prefieren (Mozart, Mozart). De hecho, es un perfil Pareto eficiente/óptimo (PO), mientras que (Chopin, Chopin) no lo es. Así, la noción de EN no descarta estados estacionarios en los cuales los resultados sean <u>inferiores</u>.

Aspectos adicionales

- ullet Existencia: A_i finito, u_i continua, lineal en estrategias mixtas \Longrightarrow existencia por Kakutani.
- Estrategias mixtas: $\alpha_i \in \Delta(A_i)$.
- Utilidad esperada (vNM).
- A_i infinito: Myerson, distribuciones sobre A_i .
- Refinamientos: Selten (1975), Myerson (1978).
- Teorema min-max.
- Pagos discontinuos: Reny 1999 (Econometrica).
 - Teorema de Luisin.
 - Extensión de Tietze.
 - Knaster–Kuratowski–Mazurkiewicz.

Equilibrio Nash Bayesiano

Juegos Bayesianos

Definición

Un juego bayesiano con tipos consiste en:

- un conjunto finito de jugadores N,
- un conjunto de tipos Θ_i para cada jugador,
- una distribución de probabilidad F sobre el conjunto de perfiles de tipos posibles de los jugadores $\Theta = \bigotimes_{i \in N} \Theta_i$,
- un conjunto de acciones A; disponible para cada jugador,
- una función de utilidad para cada jugador

$$u_i:A\times\Theta\to\mathbb{R}$$

donde, como antes, $A = \bigotimes_{i \in N} A_i$.

Harsanyi propone que en un juego bayesiano el conjunto de jugadores no es N, sino

$$\{(i,\theta_i): i \in N, \theta_i \in \Theta_i\} = \bigcup_{i \in N} \Theta_i. \tag{4}$$

El conjunto en (4) puede ser bastante grande. En efecto, Θ_i no tiene porque ser finito o enumerable

El equilibrio de Nash se extiende a los juegos bayesianos requiriendo que cada estrategia sea una función que asigne una acción a cada tipo

Figura Timing según Harsanyi.

Es decir, los jugadores eligen estrategias **después** de descubrir sus tipos. La alternativa propuesta en (5) propone más bien que los jugadores eligen su estrategia **antes** de descubrir su tipo y, por lo tanto, una estrategia es un plan contingente descrito mediante una función.

Definición

Equilibrio bayesiano. Dado un juego bayesiano $\langle N, (\Theta_i), F, (A_i), (u_i) \rangle$, un equilibrio bayesiano es un equilibrio de Nash del juego estratégico

$$\langle \{(i,\theta_i): i \in N, \theta_i \in \Theta_i\}, (A_{i,\theta_i}), (u_{i,\theta_i}) \rangle$$

en el cual:

- el conjunto de jugadores es el conjunto de pares (i, θ_i) ,
- el conjunto de estrategias del jugador (i, θ_i) es A_i ,
- la función de utilidad de cada jugador (i, θ_i) , dado el perfil de estrategias $a = (a_{j,t_j})_{j \in N, \theta_j \in \Theta_{jj}}$ es

$$u_{i,\theta_i}(a) = \int_{\theta_{-i} \in \Theta_{-i}} u_i(a_{i,\theta_i}, a_{-i,\theta_{-i}}, \theta_i, \theta_{-i}) dF(\theta_{-i}|\theta_i).$$

Definición

Equilibrio bayesiano (definición alternativa). Dado un juego bayesiano $\langle N, (\Theta_i), F, (A_i), (u_i) \rangle$, un equilibrio bayesiano es un equilibrio de Nash del juego estratégico $\langle N, (A_i), (v_i) \rangle$, donde

• el conjunto de estrategias de cada jugador es

$$A_i = \{\alpha_i \text{ medible} : \alpha_i : \Theta_i \to A_i\}$$

ullet la función de utilidad de cada jugador i, dado el perfil de estrategias $(lpha_1,\cdots,lpha_n)$ es

$$v_i(\alpha) = \int_{\theta_i \in \Theta_i} \int_{\theta_{-i} \in \Theta_{-i}} u_i(\alpha_i(\theta_i), \alpha_{-i}(\theta_{-i}), \theta_i, \theta_{-i}) dF(\theta_{-i}|\theta_i) dF(\theta_i).$$

Equilibrio de Nash: aplicación

Pagos esperados en estrategias mixtas

Considere tres jugadores: A, B y C. Denotamos sus pagos esperados por α , β y γ , respectivamente:

$$\alpha = x_1 \sum_{j,k} A_{1jk} y_j z_k + x_2 \sum_{j,k} A_{2jk} y_j z_k + \dots + x_n \sum_{j,k} A_{njk} y_j z_k$$

$$\beta = y_1 \sum_{i,k} B_{i1k} x_i z_k + y_2 \sum_{i,k} B_{i2k} x_i z_k + \dots + y_n \sum_{i,k} B_{ink} x_i z_k$$

$$\gamma = z_1 \sum_{i,j} C_{ij1} x_i y_j + z_2 \sum_{i,j} C_{ij2} x_i y_j + \dots + z_n \sum_{i,j} C_{ijn} x_i y_j$$

donde:

- ullet x_1,\ldots,x_n son las probabilidades sobre las estrategias puras de A,
- ullet y_1,\ldots,y_n son las probabilidades sobre las estrategias puras de B,
- ullet z_1,\ldots,z_n son las probabilidades sobre las estrategias puras de C,
- ullet A_{ijk} representa el pago para el jugador A cuando A juega i, B juega j y C juega k,
- ullet B_{ijk} representa el pago para el jugador B bajo las mismas condiciones,
- ullet C_{ijk} representa el pago para el jugador C bajo las mismas condiciones.

Ejemplo de Nash con dos jugadores

Consideremos un juego con dos jugadores:

- Jugador X con estrategias puras a y b,
- Jugador Y con estrategias puras c y d.

La matriz de pagos es la siguiente:

$$\begin{array}{c|cccc} & c & d \\ \hline a & (5,-3) & (-4,4) \\ b & (5,3) & (-4,-5) \\ \end{array}$$

Donde el primer número en cada celda es el pago para X y el segundo para Y.

Estrategias mixtas y definición de equilibrio

Sea:

- x: probabilidad de que X juegue a (entonces 1 x es para b),
- y: probabilidad de que Y juegue c (entonces 1 y es para d).

Las estrategias mixtas son:

$$S_1 = xa + (1-x)b,$$
 $S_2 = yc + (1-y)d$

Definimos α como el pago esperado de X jugando S_1 , y β el de Y jugando S_2 (en ambos casos, máximo).

Condiciones de equilibrio de Nash

Un equilibrio de Nash mixto requiere que:

- Si una estrategia se juega con probabilidad positiva, entonces debe dar el pago máximo esperado.
- Si una estrategia no da el pago máximo, entonces no debe jugarse.

Esto se traduce en las siguientes condiciones de complementariedad:

$$x(\alpha - (X_{11}y + X_{12}(1 - y))) = 0$$

$$(1 - x)(\alpha - (X_{21}y + X_{22}(1 - y))) = 0$$

$$y(\beta - (Y_{11}x + Y_{21}(1 - x))) = 0$$

$$(1 - y)(\beta - (Y_{12}x + Y_{22}(1 - x))) = 0$$

Sustitución de los pagos

Sustituyendo los valores reales de la matriz de pagos, obtenemos:

$$x(\alpha - 5y + 4(1 - y)) = 0$$

$$(1 - x)(\alpha + 5y - 3(1 - y)) = 0$$

$$y(\beta + 3x - 4(1 - x)) = 0$$

$$(1 - y)(\beta - 5x + 4(1 - x)) = 0$$

Esto representa un sistema polinomial en las variables α , β , x y y.

Sistema simplificado

Simplificando los polinomios anteriores:

$$x\alpha - 9xy + 4x = 0$$

$$\alpha - x\alpha - 8xy + 3x + 8y - 3 = 0$$

$$y\beta + 7xy - 4y = 0$$

$$\beta - y\beta + 9xy - 9x - 4y + 4 = 0$$

Estos polinomios pertenecen al anillo $\mathbb{R}[\alpha, \beta, x, y]$.

Base de Groebner reducida

Con el orden lexicográfico $\alpha>\beta>x>y$, se obtiene la siguiente base de Groebner:

$$g_1 = 17y^3 - 24y^2 + 7y$$

$$g_2 = 2xy^2 - 2xy + y^2 + y$$

$$g_3 = 280x^2 - 280x - 289y^2 + 289y$$

$$g_4 = \beta + 16xy - 9x - 8y + 4$$

$$g_5 = a - 17xy + 7x + 8x - 3$$

Resolución de y

Observamos que g_7 depende solo de v:

$$17y^3 - 24y^2 + 7y = 0$$

Resolviendo encontramos:

$$y \in \left\{0, 1, \frac{7}{17}\right\}$$

Solo tomamos $y = \frac{7}{17}$ porque:

- y = 0 o y = 1 conducirían a estrategias puras (no nos interesan aquí),
- Buscamos equilibrios mixtos (con probabilidades estrictamente entre 0 y 1).

Determinación de x

Sustituimos $y=\frac{7}{17}$ en los polinomios de la base de Groebner. Se encuentra:

$$x=\frac{1}{2}$$

Por lo tanto:

$$1 - x = \frac{1}{2}, \quad 1 - y = \frac{10}{17}$$

Equilibrio de Nash

El vector solución es:

$$(x, 1-x, y, 1-y) = \left(\frac{1}{2}, \frac{1}{2}, \frac{7}{17}, \frac{10}{17}\right)$$

Por lo tanto, las estrategias mixtas de equilibrio son:

$$S_1 = \frac{1}{2}a + \frac{1}{2}b$$

$$S_2 = \frac{7}{17}c + \frac{10}{17}d$$

Finalmente, los pagos son $\alpha = -5/17$ y $\beta = 1/2$

Modelo de carrera armamentaria

Modelo de carrera armamentaria

- Baliga y Sjöström (2004), Review of Economic Studies (top 5). Desde ahora BS.
- Dos jugadores $i \in I = \{1, 2\}$.
- Simultáneo.
- ullet Dos acciones para cada jugador B (construir armas) o N (no construir).
- Si i construye pero -i no, los pagos son μc_i y -d respectivamente. c_i es el costo de incurrir en la producción de armamento.
- Si ambos no construyen, su pago es 0.
- Si los dos construyen armas, el pago es $-c_i$.

	В	N
В	$(-c_1,-c_2)$	$(\mu-c_1,-d)$
Ν	$(-d, \mu - c_2)$	(0,0)

Modelo de carrera armamentaria

	В	N
В	$(-c_1, -c_2)$	$(\mu-c_1,-d)$
N	$(-d, \mu - c_2)$	(0,0)

- Stag-hunt si c_i conocido y tal que $c_i \in (\mu, d)$.
- EN: (B, B) y (N, N).

Modelo de carrera armamentaria (continúa)

- Estructura Bayesiana.
- $c_i \sim F$ con soporte $K = [0, \overline{c}]$.
- F'(c) > 0, $F(\overline{c}) = 1$ y F(0) = 0.
- $\overline{c} < d$.
- Como $-c_i \ge -\overline{c} > -d$, B es siempre mejor respuesta a B.

En BS (2004) prueban que si

$$F(c)d \geq c, \ \forall \ c \in K,$$

entonces $\forall \ \mu > 0$ existe un único Equilibrio de Nash Bayesiano (B,B), sin importar c_i .

- Note que esto es ineficiente: (N, N) domina en el sentido de Pareto a (B, B).
- Roger Myerson (1978) Refinements of the Nash equilibrium concept. <u>International</u> <u>Journal of Game Theory.</u>

Teorema 1 de BS

Teorema

Se tiene que:

- (i) Si la condición del multiplicador se satisface, entonces para cualquier $\mu>0$ existe un único equilibrio de Nash bayesiano. En este equilibrio, todos los jugadores eligen B, independientemente de su tipo.
- (ii) Si la condición del multiplicador se viola, entonces para $\mu>0$ suficientemente pequeño existe un equilibrio de Nash bayesiano en el cual N es elegido con probabilidad estrictamente positiva.

Teorema Principal en el Modelo de Cheap Talk

Teorema (Baliga y Sjöström (2004, Teorema 2))

Supongamos que se satisface la condición del multiplicador. Para cualquier $\delta>0$, existe un $\overline{\mu}>0$ tal que si $0<\mu<\overline{\mu}$, entonces existe un equilibrio Bayesiano perfecto del juego extendido con cheap talk en el que \emph{N} es jugado con probabilidad al menos $1-\delta$.

La prueba del teorema se encuentra en el artículo original y recae en el lema siguiente.

Lema 1: Terna de Cortes (c^L, c^*, c^H)

Lemma

Supongamos que se satisface la condición del multiplicador. Para μ suficientemente pequeño, existe un triple (c^L, c^*, c^H) tal que:

$$egin{aligned} \mu < c^L < c^* < c^H < \overline{c}, \ [F(c^H) - F(c^L)]c^L = (1 - F(c^H))\mu, \ [1 - 2(F(c^H) - F(c^L))]c^H = F(c^L)d, \ (1 - F(c^H))(\mu - c^*) + F(c^L)(c^L - c^*) = F(c^L)(-d). \end{aligned}$$

Además, si $\mu \to 0$, entonces $c^H \to 0$.

Equilibrio con cheap talk en el juego de carrera armamentista

- El lema sienta las bases para el equilibrio con anuncios en la etapa 1 y acciones en la etapa 2.
- No se necesita la descripción completa del equilibrio; basta con los siguientes elementos
 - Existen umbrales c^L , c^H y c^* en el espacio de tipos.
 - $ightharpoonup c^*$ es el tipo en el que el jugador es indiferente entre enviar B o N si ambos jugadores envían un mensaje conciliador.
 - Las ecuaciones (4), (5) y (6) determinan estos umbrales.
- En equilibrio, si ambos jugadores tienen tipo mayor que c^H , envían mensaje conciliador y juegan N en la etapa 2.
- Si $c^H \to 0$, entonces $\Pr(c_i > c^H) \to 1$ y se evita la carrera armamentista. Este es el resultado central del artículo.

Segundo equilibrio y comparación

- BS también mencionan otro equilibrio perfecto Bayesiano con umbrales $(\tilde{c}^L, \tilde{c}^*, \tilde{c}^H)$ que satisfacen las mismas ecuaciones.
- En este caso, $\tilde{c}^L, \tilde{c}^H \to c^{\mathsf{med}}$ cuando $\mu \to 0$, donde $F(c^{\mathsf{med}}) = 1/2$.
- En este segundo equilibrio, se evita la carrera armamentista solo para una fracción (25 %) de los casos cuando μ es pequeño.
- BS no afirman si existen más equilibrios aparte de estos dos.

Baliga y Sjostrom (2004), RES.

Modelo de carrera armamentaria (continúa)

- ¿Hay otros equilibrios?
- Si -i juega N y $c_i \ge \mu$, entonces la mejor respuesta es N.
- Si $c_i < \mu$, entonces la estrategia dominante es B. La probabilidad de que B sea dominante es $F(\mu)$.
- Equilibrios con umbral: si i se arma, entonces $c'_i < c_i$ también.
- ullet Los tipos dominante siempre se arman. Los que casi lo son: $\mu-c_i<0$ pero cercano a cero, también.
- Efecto de contagio: $c_i'' > c_i' \cdots$
- ullet Umbral $c_i^*>0$ donde paran. Por debajo juegan B por encima N.
- Simetría: $c_1^* = c_2^* = c^*$.
- c^* indiferente $S(c^*) = 0$, con

$$S(c) = F(c)(d-c) + (1-F(c))(\mu-c).$$
 (6)

donde $F(c^*)$ es la probabilidad de jugar B. En efecto, el esperado de jugar B es

$$\underbrace{F(c)(-c)}_{\text{Oponente juega}} + \underbrace{(1-F(c))(\mu-c)}_{\text{Oponente juega N}}$$

Modelo de carrera armamentaria (continúa)

• El pago esperado de jugar N es

$$F(c)(-d) + (1 - F(c))(0) = -dF(c).$$

- Condición del multiplicador $F(c)d \ge c$ para todo $c \in K$.
- Si se cumple dicha condición S(c) > 0, para todo μ , por lo que no hay ENB simétrico donde N es escogido con probabilidad positiva.

Teorema 1 de BS

Teorema

Se tiene que:

- (i) Si la condición del multiplicador se satisface, entonces para cualquier $\mu>0$ existe un único equilibrio de Nash bayesiano. En este equilibrio, todos los jugadores eligen B, independientemente de su tipo.
- (ii) Si la condición del multiplicador se viola, entonces para $\mu>0$ suficientemente pequeño existe un equilibrio de Nash bayesiano en el cual N es elegido con probabilidad estrictamente positiva.

Extensión con Cheap Talk y Restauración de Continuidad

- A partir de ahora asumimos que se satisface la condición del multiplicador.
- Sin cheap-talk: existe una discontinuidad en la correspondencia de equilibrio.
 - Si $\mu = 0$, hay un equilibrio donde todos eligen N.
 - ightharpoonup Si $\mu>0$, la fracción $F(\mu)>0$ de tipos con estrategia dominante inicia un contagio.
 - ► Como muestra el Teorema 1, todos terminan jugando B.
- Con cheap-talk: se restaura la continuidad.
 - $lackbox{P}$ Para μ suficientemente pequeño, existe un equilibrio donde casi todos los tipos eligen N.

Etapas del Juego con Cheap Talk

- **1 Etapa 0**: la naturaleza determina c_1 y c_2 , privados para cada jugador.
- ② Etapa 1: se envían mensajes públicos simultáneamente.
 - Dos tipos de mensajes: Dove (conciliador) y Hawk (agresivo).
 - ▶ No afectan los pagos directamente, pero transmiten intenciones.
- Etapa 2: los jugadores eligen simultáneamente B o N.

Teorema Principal en el Modelo de Cheap Talk

Teorema (Baliga y Sjöström (2004, Teorema 2))

Supongamos que se satisface la condición del multiplicador. Para cualquier $\delta>0$, existe un $\overline{\mu}>0$ tal que si $0<\mu<\overline{\mu}$, entonces existe un equilibrio Bayesiano perfecto del juego extendido con cheap talk en el que \emph{N} es jugado con probabilidad al menos $1-\delta$.

La prueba del teorema se encuentra en el artículo original y recae en el lema siguiente.

Lema 1: Terna de Cortes (c^L, c^*, c^H)

Lemma

Supongamos que se satisface la condición del multiplicador. Para μ suficientemente pequeño, existe un triple (c^L, c^*, c^H) tal que:

$$egin{aligned} \mu < c^L < c^* < c^H < \overline{c}, \ [F(c^H) - F(c^L)]c^L = (1 - F(c^H))\mu, \ [1 - 2(F(c^H) - F(c^L))]c^H = F(c^L)d, \ (1 - F(c^H))(\mu - c^*) + F(c^L)(c^L - c^*) = F(c^L)(-d). \end{aligned}$$

Además, si $\mu \to 0$, entonces $c^H \to 0$.

Prueba: Ver Anexo 1 de BS 2004.

Interpretación del Lema 1

- c^L es el umbral para ser considerado **very tough**: por debajo (muy fácil armarse).
- c^H es el umbral para ser considerado **normal**: por arriba (costoso armarse).
- c* es un tipo que queda indiferente entre jugar B o N después de mensajes conciliadores.

Las ecuaciones del lema 11 determinan el balance entre los distintos tipos y su comportamiento esperado en el cheap-talk.

Clasificación de Tipos y Estrategias en el Cheap Talk

Tipo de jugador:

- Normal si $c_i > c^H$
- Fairly tough si $c^L < c_i < c^H$.
- Very tough si $c_i < c^L$

Estrategias en las Etapas:

- Etapa 1 (mensajes):
 - Very tough envía Hawk.
 - Fairly tough y Normal envían Dove.
- Etapa 2 (acciones):
 - ▶ Si $c_i \leq \mu$, elige B sin importar mensajes.
 - \triangleright Si $c_i > \mu$
 - Si ambos dicen Hawk, entonces juegan N.
 - ★ Si uno dijo Dove y el otro Hawk, i juega B.
 - ★ Elige N si ambos dijeron Dove y $c_i > c^*$.
 - ★ Elige B en cualquier otro caso.

Matriz de Acciones en Equilibrio

Intuición:

- c^L define un tipo que es indiferente entre decir Dove y seguir una estrategia deshonesta, o decir Hawk y seguir una estrategia acorde.
- c^H define un tipo que es indiferente entre decir Dove o Hawk y seguir una estrategia acorde.
- c^* es un tipo que es indiferente entre jugar B o N cuando ambos dicen Dove.

Dependiendo de los tipos c_1 y c_2 , las acciones de equilibrio (se demuestra que es un EBP) son:

	$c_2 < c^L ext{ (Dove)}$	$c^L \leq c_2 \leq c^H \; (Hawk)$	$c_2 > c^H \; (Dove)$
$c_1 < c^L ext{ (Dove)}$	BB	ВВ	BN
$c^L \leq c_1 \leq c^H \; (Hawk)$	BB	NN	BB
$c_1 > c^H \; (Dove)$	NB	BB	NN

Resumen de la Dinámica

• Cuando μ es pequeño, $\mu < c^L$ hay más tipos normales que fairly tough:

$$\underbrace{1-F(c^H)}_{\text{Cercano a 1 cuando }\mu\to 0} > \underbrace{F(c^H)-F(c^L)}_{\text{Cercano a 0 cuando }\mu\to 0}.$$

Ver lema 11.

- La información transmitida por los mensajes permite evitar la carrera armamentista.
- La estrategia depende críticamente de:
 - \triangleright El tipo individual c_i
 - Los mensajes enviados por ambos jugadores.
- ullet Cheap talk permite coordinar sobre ${\it N}$ incluso si $\mu>0$.

Lema 2: Racionalidad Secuencial en la Etapa de Acción

Lemma

Las estrategias especificadas son racionales en la etapa de acción para todos los tipos, tras cualquier mensaje.

- Si $c_i < \mu$, elige B siempre (independiente del mensaje).
- Si $c_i > \mu$:
 - ► Si ambos dijeron Hawk, el oponente jugará N, así que N es mejor respuesta.
 - Si uno dijo Hawk y el otro Dove (o mensaje fuera de equilibrio), el oponente jugará B, así que B es mejor respuesta.
 - Si ambos dijeron Dove:
 - ***** El oponente podría ser normal $(1 F(c^H))$ o very tough $(F(c^L))$.
 - ★ Para tipo c^* , se es indiferente entre \overrightarrow{B} y \overrightarrow{N}
 - ★ Si $c_i < c^*$, mejor B; si $c_i > c^*$, mejor N.

Lema 3: Dominant Strategy Types Prefieren Decir Dove

Lemma

El jugador i prefiere decir Dove si $c_i < \mu$.

- ullet Tipo dominante busca maximizar la probabilidad de que el oponente juegue N.
- Si dice Hawk:
 - El oponente elegirá N solo si es fairly tough.
 - ▶ Probabilidad: $F(c^H) F(c^L)$
- Si dice Dove:
 - El oponente elegirá N si es normal.
 - Probabilidad: $1 F(c^H)$
- Como $1 F(c^H) > F(c^H) F(c^L)$, prefiere decir Dove.

Lema 4: Comportamiento de Tipos Intermedios ($\mu < c_i < c^*$)

Lemma

Jugador i prefiere decir Dove si $\mu < c_i < c^L$ y Hawk si $c^L \le c_i < c^*$.

- Caso $\mu < c_i < c^*$:
 - ► Si dice Hawk:

Utilidad =
$$[1 - (F(c^H) - F(c^L))](-c_i)$$

► Si dice Dove:

$$\mathsf{Utilidad} = (1 - F(c^H))(\mu - c_i) + F(c^H)(-c_i)$$

- Si $c_i = c^L$, ambas utilidades son iguales.
- Si $c_i > c^L$, Hawk es mejor.
- Si $c_i < c^L$, Dove es mejor.

Lema 5: Tipos con $c_i \geq c^*$

Lemma

Jugador i prefiere decir Hawk si $c^* < c_i \le c^H$ y Dove si $c_i > c^H$.

Observaciones finales

- Existen otros equilibrios informativos además del considerado (c^L, c^H) .
- Por ejemplo, otra intersección de las curvas (6) y (5) da lugar a otro equilibrio (\hat{c}^L, \hat{c}^H) .
- Cuando $\mu o 0$, $(\hat{c}^L, \hat{c}^H) o (0, c^{\mathsf{med}})$, donde $F(c^{\mathsf{med}}) = \frac{1}{2}$.
- En dicho equilibrio, (N, N) ocurre la mitad del tiempo: peor que el equilibrio con (c^L, c^H) .

Baliga y Sjostrom (2004), RES (fin).

Aplicación: F(c) = c y resolución

Distribución lineal y sistema de ecuaciones

Considere F(c) = c. Entonces el lema 11 queda:

$$(c^{H} - c^{L}) = (1 - c^{H})\mu$$
$$[1 - 2(c^{H} - c^{L})]c^{H} = c^{L}d$$
$$(1 - c^{H})(\mu - c^{*}) + c^{L}(-c^{*}) = c^{L}(-d).$$

Denotando $m = \mu$, $(c(1), c(2), c(3)) = (c^L, c^*, c^H)$, introducimos el sistema en Singular. Note que los parámetros son (m, d).

Cómputo de la base de Gröbner en un modelo de equilibrio

Código en Singular:

```
ring R= (0,m,d), (c(3),c(2),c(1)), lp;
option(redSB);
ideal I = (
    ((c(3)-c(1))*c(1)-(1-c(3))*m,
        (1-2*(c(3)-c(1)))*c(3)-c(1)*d,
        (1-c(3))*(m-c(2))-c(1)*c(2)+c(1)*d)
);
ideal G = groebner(I);
```

Salida (base de Gröbner):

$$G[1] = (-2md + d - 1)c(1)^{3} + (2md + m)c(1)^{2} + (m^{2}d - 2m^{2} - m)c(1) + m^{2}$$

$$G[2] = (m+1)c(2) + (m-d)c(1) + (-md - m)$$

$$G[3] = (-2m^{2} - 2m)c(3) + (2m - d + 1)c(1)^{2} - mdc(1) + (2m^{2} + m)$$

Interpretación: sistema con tres ecuaciones polinómicas que determinan las probabilidades mixtas c(1), c(2), c(3) en función de los parámetros m y d.

Análisis del sistema con d=1,5 y $\bar{c}=1$

- ullet Se analiza el sistema con $m=\mu$ pequeño y d=1,5>ar c=1.
- El polinomio univariado G[1] de la base de Gröbner tiene 2 cambios de signo, a lo sumo 2 raíces reales positivas.
- Para $\mu < 0.25$, el sistema tiene 3 soluciones reales, pero una tiene valores negativos y se descarta.
- ullet Las tres curvas reales restantes definen los equilibrios $c^L < c^* < c^H.$
- El equilibrio c^H cumple $c^H > \frac{1}{2}$ cuando $\mu \to 0$, como exigen (BS).
- ullet En \mupprox 0,0558568, las ramas asociadas a c^L se bifurcan: raíz doble.
- Para $\mu > 0.0559$, c^L es compleja, ya no hay 3 soluciones reales.

Falla de la especialización y caso límite $d=ar{c}=1$

- Para $\mu=0$, la base de Gröbner parametrizada no se especializa correctamente.
- ullet El coeficiente líder de G[3] se anula en $\mu=0$, violando el Lema de Shape.
- Sin embargo, un análisis directo muestra:
 - Solución regular en $(0, 0, \frac{1}{2})$
 - ► Solución doble en (0,0,0)
- ullet Cuando d=ar c=1, la base de Gröbner es más simple.
- ullet Aparecen tres soluciones cerradas, pero (1,1,1) viola las restricciones del modelo.
- Las otras dos soluciones son reales solo si $\mu \leq$ 0,125; para $\mu >$ 0,125, c^L y c^* se vuelven complejas: solo $c^H = \frac{1}{2}$ persiste.
- Así, el teorema de BS ya no se cumple si $d = \bar{c}$.

Conclusiones

Conclusiones

- Uso práctico: Singular.
- 2 Equilibrio general: 2×2 .
- Teoría de juegos: modelo de carrera armamentista.
- Parámetros: dotaciones, soporte en la distribución, creencias etc.
- $\textbf{ 3} \ \, \text{Trabajo futuro: modelos de equilibrio general en economías con producción } 2\times2\times2.$

Anexo

C es algebraicamente cerrado

Theorem

El cuerpo $\mathbb C$ es algebraicamente cerrado: todo polinomio no constante en $\mathbb C[z]$ tiene al menos una raíz en $\mathbb C$.

Prueba: C es algebraicamente cerrado

Prueba: Vamos a proceder por contradicción y asumir que dado $f(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_0$, $\operatorname{im}(f)\subset\mathbb{C}-\{0\}$. Considere $\Gamma=Re^{2\pi it}$ con $t\in I=[0,1]$ y R suficientemente grande de forma que

$$|R^n e^{2\pi i t n}| > |a_{n-1} R^{(n-1)} e^{2\pi i t (n-1)} + \dots + a_0|,$$

Por el teorema 6

$$\int_{f(\Gamma)} \frac{dz}{z} \underbrace{\int_{\text{Cambio de variable}}} \int_{\Gamma} \frac{f'(z)}{f(z)} dz$$

$$\underbrace{=}_{\text{Rouche}} \int_{\Gamma} \frac{(z^n)'}{z^n} dz = \int_{\Gamma} \frac{n}{z} dz$$

$$= \int_{0}^{1} \frac{n}{Re^{2\pi it}} 2\pi i Re^{2\pi it} dt$$

$$= \int_{0}^{1} 2\pi i n dt = 2\pi i n.$$

Prueba: continúa

Como los polinomios son funciones holomorfas y sus inversas también (siempre y cuando no se anulen), f'/f es holomorfa (bajo el supuesto de que f no se anula). Por ende, por el teorema de Cauchy,

$$\int_{\Gamma} \frac{f'(z)}{f(z)} dz = 0.$$

Pero entonces,

$$\int_{f(\Gamma)} \frac{dz}{z} = 0.$$

Esto último es una contradicción.

Teorema de Rouché

Teorema

Sea C una cadena cerrada con interior. Sean f y g funciones holomorfas definidas en una vecindad de K(C). Si se cumple que

$$|f(z)-g(z)|<|g(z)|$$
 para todo $z\in \operatorname{Supp}(C),$

entonces f y g tienen la misma cantidad de ceros (contados con multiplicidad) en el interior de \mathcal{C} .

(Ver Notas de Análisis Complejo por Alfredo Poirier, Sección Matemáticas, PUCP, 2021.)

Demostraciones BS

Prueba

Prueba:

- Si $\mu > d$, entonces B es una estrategia estrictamente dominante para todos los tipos: el análisis es trivial.
- ullet Supongamos en cambio que $0<\mu< d$.

Propiedad de Corte (Cut-off Property)

- Establecemos la propiedad de corte:
 - ▶ Si B es una mejor respuesta débil para tipo c_i , entonces es una mejor respuesta estricta para cualquier $c_i' < c_i$.
- Si el jugador i cree que su oponente j elige B con probabilidad p_j :

$$\begin{aligned} \text{Utilidad}(B) &= p_j(-c_i) + (1-p_j)(\mu-c_i) = (1-p_j)\mu - c_i \\ \text{Utilidad}(N) &= p_j(-d). \end{aligned}$$

B es mejor respuesta débil si:

$$c_i \leq (1-p_j)\mu + p_j d.$$

ullet Como las creencias son iguales para todos los tipos, la preferencia por B es estricta para cualquier $c_i' < c_i$.

Prueba del Teorema 1 (Parte I: Caso (i))

Multiplicador Satisfecho

- Si el jugador j elige B con probabilidad 1, entonces todos los tipos de i eligen B porque $\overline{c} < d$.
- ullet Siempre existe un equilibrio donde todos eligen B, sin importar el tipo.
- ullet Supongamos que existe un equilibrio donde N es jugado con probabilidad positiva.
- Entonces ambos jugadores deben elegir N con probabilidad positiva.
- Definimos c* como el tipo tal que:
 - ▶ $c_i \le c^*$ \Rightarrow elige B
 - $ightharpoonup c_i > c^* \Rightarrow \text{elige } N$
- El tipo c* debe ser indiferente:

$$c_i^* = (1 - p_j)\mu + p_j d = (1 - F(c_j^*))\mu + F(c_j^*)d$$

- Supongamos sin pérdida de generalidad que $c_1^* \le c_2^*$.
- Entonces:

$$c_1^* = (1 - F(c_2^*))\mu + F(c_2^*)d \ge (1 - F(c_1^*))\mu + F(c_1^*)d > F(c_1^*)d,$$

pues $0 < \mu < d$ y $F(c_1^*) \le F(c_2^*) \le 1$.

• Lo cual viola la condición del multiplicador.

- (ロ) (団) (注) (注) (注) (2 の(C)

Prueba del Teorema 1 (Parte II: Caso (ii))

Multiplicador Violado

- Existe c' tal que c' > dF(c').
- Para μ suficientemente pequeño:
 - ▶ $S(c') \le 0$, donde S es como en (6).
 - $\triangleright S(\overline{c}) = d \overline{c} > 0$
- ullet Por continuidad existe $c^* < \overline{c}$ tal que:

$$S(c^*)=0$$

- Definimos estrategias:
 - $ightharpoonup c_i \leq c^* \Rightarrow \text{elige } B$
 - $ightharpoonup c_i > c^* \quad \Rightarrow \quad \text{elige N}.$
- El tipo c^* es indiferente; tipos menores prefieren B, tipos mayores prefieren N.
- Estas estrategias forman un equilibrio Bayesiano.

Lema 5: Tipos con $c_i \geq c^*$

Lemma

Jugador i prefiere decir Hawk si $c^* < c_i \le c^H$ y Dove si $c_i > c^H$.

Prueba:

- Supongamos que $c_i \geq c^*$ y jugador i dice Hawk.
 - ▶ Si el oponente también dice Hawk (con probabilidad $F(c^H) F(c^L)$), ambos eligen N.
 - Si no, eligen B.
 - Entonces, la utilidad esperada de decir Hawk es:

$$[1 - (F(c^{H}) - F(c^{L}))](-c_{i})$$
(11)

- Supongamos que dice Dove.
 - ► Si el oponente es tipo duro, ambos juegan B.
 - ightharpoonup Si el oponente es tipo normal, él elige N y el oponente elige B o N.
 - La utilidad esperada de decir Dove es:

$$[F(c^H) - F(c^L)](-c_i) + F(c^L)(-d)$$
 (12)

Prueba (continúa)

- Por la ecuación (6), se tiene que (11) = (12) si $c_i = c^H$.
- Por tanto:
 - ▶ Si $c_i = c^H$, el jugador es indiferente entre Hawk y Dove.
 - ightharpoonup Si $c_i > c^H$, (11) < (12) prefiere decir Dove.
 - Si $c^* < c_i < c^H$, (11) > (12) prefiere decir Hawk.
- Esto prueba el lema: los jugadores con $c_i \in (c^*, c^H)$ prefieren Hawk; con $c_i > c^H$, prefieren Dove.

Prueba (continúa)

- Se ha mostrado que el perfil de estrategias especificado constituye un equilibrio bayesiano perfecto.
- Cuando $\mu \to 0$, también $c^L \to 0$ y $c^H \to 0$.
- Entonces, la fracción de tipos que eligen B en equilibrio tiende a 0.
- Esto cierra la demostración del teorema principal.

Gracias

Using Algebraic Geometry, volume 185 of Graduate Texts in Mathematics. Springer, New York.