MATH20212 Cheat Sheet

1 Rings

A ring is a set R and two binary operations, written + and \times , on R which satisfies the following conditions:

- (R1) $\langle R, + \rangle$ is an abelian group with identity 0
- $(R2) \times is associative$
- $(R3) \times is distributive over +$
- (R4) there exists an element $1 \in R$, different from 0, that is an identity for \times

Let R be a ring and $S \subseteq R$. Then S is a subring of R if it is a ring in its own right with respect to the same addition and multiplication as in R and S contains 1_R .

Subring Test: Let R be a ring and $S \subseteq R$, then S is a subring of R, iff:

- (i) $1 \in S$
- (ii) $r + s, r \times s \in S$, for all $r, s \in S$
- $(iii) r \in S$ for all $r \in S$

Let R be a ring. The ring of polynomials R[X] in the indeterminate X is defined as follows:

Elements: formal linear combinations of the form $\sum_{i>0} a_i X^i$ with $a_i \in R$ for $i=0,1,\ldots$

Equality: $\sum_{i\geq 0} a_i X^i = \sum_{i\geq 0} b_i X^i \iff a_i = b_i \text{ for all } i\geq 0$ Addition: $\sum_{i\geq 0} a_i X^i + \sum_{i\geq 0} b_i X^i = \sum_{i\geq 0} (a_i + b_i) X^i$

Multiplication: $(\sum_{i\geq 0} a_i X^i)(\sum_{i\geq 0} b_i X^i) = \sum_{k\geq 0} (\sum_{i+j=k} a_i b_j) X^k$ Zero element is $\sum_{i\geq 0} 0X^i = 0$ and the one is $1X^0 + \sum_{i\geq 1} 0X^i = 1$

For a polynomial $f = \sum_{i>0} a_i X^i$, we define the **degree** of f, denoted deg(f), to be the largest i such that $a_i \neq 0$ and we let $deg(f) = -\infty$ if f = 0.

2 Integral Domains and Fields

The characteristic, char(R), of a ring R is the least positive integer n such that $n \cdot 1 = 0$. If there is no such n, then the characteristic of R is defined to be 0.

A non-zero element $r \in R$ is a **zero-divisor** if there is a non-zero element $s \in R$ with rs = 0 or sr = 0.

The ring R is a **domain** if, for all $r, s \in R$, $rs = 0 \implies r = 0$ or s = 0, so a domain is a ring with **no** zero-divisors. A commutative domain is called an **integral domain**.

A division ring is a ring in which every non-zero element has a right inverse and a left inverse. In this case, these inverses are the same. We write r^{-1} for this inverse of r and say that r is invertible or that r is a unit. A field is a commutative division ring.

An element r of a ring R is **nilpotent** if there is some integer $n \ge 1$ with $r^n = 0$ and the least such n is the **index** of nilpotence of r. An element $r \in R$ is idempotent if $r^2 = r$ - and 0 and 1 are idempotent in any ring.