Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound having the following Formula:

$$\begin{array}{c|c} Ar & X & & \\ \hline N & N & & \\ H & H & & \\ R10 & & \end{array}$$

or a salt, hydrate, or complex thereof, wherein:

1 and n are independently 0, 1, 2, 3, 4 or 5;

$$(1 + n)$$
 is $[[1,]]$ 2, 3, 4 or 5;

X is O or S;

R10 is selected from the group consisting of hydrogen, hydroxy, C₃₋₇cycloalkyloxy, acyloxy, carboxy, carbamoyl, acyl, amino, alkylamino, arylamino, acylamino, C₁₋₅alkyl, C₁₋₅alkoxy, aryloxy, alkylcarbamoyl, arylcarbamoyl, alkyloxycarbonyl,

wherein the C₁₋₅alkyl, aryl, C₁₋₅alkoxy, aryloxy, alkylcarbamoyl, arylcarbamoyl or alkyloxycarbonyl is optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, acyloxy, C₁₋₅alkoxy, aryloxy, heteroaryloxy, nitro, amino, acylamino, alkylamino, arylamino, cyano, aryl, heteroaryl

Wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅alkyl or C₁₋₅alkoxy, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, sulfonyl, alklylsulfonyl,

arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydroxy, and halogen;

Ar is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, trihalomethoxy, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide,

hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

$$--N$$
-R₁

or

$$\begin{array}{c} R_3 \\ \begin{matrix} \begin{matrix} \\ \end{matrix} \\ \begin{matrix} + \end{matrix} \\ \begin{matrix} \\ \end{matrix} \\ R_2 \end{array}$$

wherein R₁ is:

$$R_4$$
 R_4
 R_5

or

$$R_8$$
 R_8
 R_7

or

$$R_7$$
 R_8
 R_8
 R_6

or

$$R_6$$

p is 0, 1 or 2; q is 0, 1 or 2;

 R_4 and R_4 are independently selected from the group consisting of hydrogen, halogen, C_{1-5} alkyl, aryl, heteroaryl

wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR₉; wherein R₉ is hydroxy, C_{1-5} alkyl, C_{1-5} alkoxy, amino, alkylamino or arylamino; R_5 is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl,

alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

 R_7 and R_8 are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently selected from the group of atoms consisting of C_7 , N_7 , O and S; wherein adjacent atoms U-T, T-Q, U-W, W-L may form one or more double bonds; R_2 and R_3 are independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, acyloxy, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy, wherein the alkyl or alkoxy may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, aryloxy, arylmethyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkyloxycarbonyl, tetrazolyl, alkylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₁₋₅ alkoxy

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino,

alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, arylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R_1 , R_2 , and R_3 bond together; further provided that Ar is not 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-(lower) alkoxyphenyl, pyrene, chrysene, or phenanthrene: and further provided that when Ar is phenyl,

$$R_1$$
 R_2
 R_2
 R_2
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

2. (Original) The compound according to claim 1, wherein Z is

- 3. (Original) The compound according to claim 2, wherein (1 + n) is 2, 3, or 4.
- 4. (Original) The compound according to claim 3, wherein (1 + n) is 2, or 3.
- 5. (Original) The compound according to claim 1, wherein X is O.
- 6. (Original) The compound according to claim 5, wherein R10 is hydrogen.
- 7. (Currently amended) The compound according to claim 6, wherein Ar is [[aryl]] optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, trihalomethoxy, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro,

and aryloxy

amino, and carboxy,

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, and carboxy;

R₅ is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, and carboxy,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, and carboxy;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, and carboxy;

 R_7 and R_8 are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, and carboxy.

8. (Original) The compound of claim 7, wherein R_2 is independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl,

substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, acyloxy, acylamino, aryl

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which are substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, aryloxy, arylmethyloxy, acylamino, hydroxy, and halogen,

heteroaryl

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which are substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, acylamino, hydroxy, and halogen,

C₁₋₅ alkoxy

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen arylmethyloxy

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which are substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylcarbamoyl, tetrazolyl, alkylcarbamoyl, tetrazolyl,

Atty. Dkt. No. 051023-0111 Appln. Ser. No. 10/019,652

isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, acylamino, hydroxy, and halogen, and C₃₋₇ cycloalkyl

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which is substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, and acylamino.

9. (Original) The compound of claim 8, wherein R_2 is independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl,

substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, alkylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, and acylamino.

10. (Original) The compound of claim 9, wherein R_2 is independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl, substituted with one or more groups independently selected from the group consisting of carboxy and alkyloxycarbonyl.

$$\begin{array}{c}
R_3 \\
 \downarrow^+ \\
N^- \\
R_1 \\
R_2
\end{array}$$

- 11. (Original) The compound according to claim 1, wherein Z is
- 12. (Original) The compound according to claim 11, wherein (1 + n) is 2, 3, or 4.

- 13. (Original) The compound according to claim 12, wherein (1 + n) is 2, or 3.
- 14. (Original) The compound according to claim 13, wherein X is O.
- 15. (Original) The compound according to claim 14, wherein R10 is hydrogen.
- 16. (Original) The compound according to claim 15, wherein R_3 is C_{1-8} alkyl optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, and carboxy.

17. (Currently amended) A compound according to claim 6, wherein Ar is arylor heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

Z is:

$$-$$
N $-$ R₁ R_2 Or

$$\begin{array}{c} R_3 \\ \downarrow \\ N \\ R_2 \end{array}$$

wherein R₁ is:

$$R_4$$
 R_5
or
 R_8

$$R_7$$

or

$$\begin{array}{c|c}
R_7 & R_8 \\
U & & \\
\hline
T & Q & & \\
\end{array}$$

or

$$V$$
 R_7
 R_6
 R_8

p is 0, 1 or 2;

q is 0, 1 or 2;

R₄ is selected from the group consisting of hydrogen, halogen, C₁₋₅ alkyl, aryl, heteroaryl

wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR_9 ; wherein R_9 is hydroxy, C_{1-5} alkyl, C_{1-5} alkoxy, amino, alkylamino or arylamino; R_5 is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino,

 R_7 and R_8 are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently selected from the group of atoms consisting of C_7 , N_7 , O and S; wherein adjacent atoms U-T, T-Q, U-W, W-L may form one or more double bonds; R_2 and R_3 are independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl

hydroxyamino, amidino, guanidino, and cyanoguanidino;

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl,

arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy, wherein the alkyl or alkoxy may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkylsulfonylcarbamoyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, arylsulfonyl, arylsulfonyl, arylsulfonamide, alkylsulfonamide, arylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl,

alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R₁, R₂, and R₃ bond together;

further provided that Ar is not 2-hydroxy-5-methoxyphenyl, and further provided that when Ar is phenyl,

18. (Currently amended) A compound according to claim 17, wherein Ar is arylor

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio,

alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino.

- 19. (Original) The compound according to claim 1, wherein X is S.
- 20. (Original) The compound according to claim 19, wherein R10 is hydrogen.
- 21. (Currently amended) A compound according to claim 20, wherein Ar is arylor heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

Z is:

$$N$$
— R_1
 R_2

or

wherein R₁ is:

$$R_4$$
or
 R_5

$$R_8$$
 R_6

or

$$\begin{array}{c|c} R_7 & R_8 \\ \hline U & & \\ \hline T & & \\ Q & & \\ \end{array}$$

or

$$R_{7}$$
 R_{7}
 R_{6}

p is 0, 1 or 2;

q is 0, 1 or 2;

R₄ is selected from the group consisting of hydrogen, halogen, C₁₋₅ alkyl, aryl, heteroaryl wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR_9 ; wherein R_9 is hydroxy, C_{1-5} alkyl, C_{1-5} alkoxy, amino, alkylamino or arylamino; R_5 is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio,

alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro,

amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

 R_7 and R_8 are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently selected from the group of atoms consisting of C_7 , $C_$

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy, wherein the alkyl or alkoxy may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R₁, R₂, and R₃ bond together;

further provided that Ar is not 2-hydroxy-5-methoxyphenyl, and further provided that when Ar is phenyl,

Z is
$$R_2$$
 and R_2 is methyl,
$$-(CH_2)_2$$
then R_1 is not

22. (Currently amended) A compound according to claim 1, wherein R10 is selected from the group consisting of hydroxy, C₃₋₇cycloalkyloxy, acyloxy, carboxy, carboxy, carbamoyl, acyl, amino, alkylamino, arylamino, C₁₋₅alkyl, aryl, C₁₋₅alkoxy, aryloxy, alkylcarbamoyl, arylcarbamoyl, alkyloxycarbonyl,

wherein the C₁₋₅alkyl, aryl, C₁₋₅alkoxy, aryloxy, alkylcarbamoyl, arylcarbamoyl or alkyloxycarbonyl is optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkylsulfonyl, arylsulfonyl, arylsulfonyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, acyloxy, C₁₋₅alkoxy, aryloxy, heteroaryloxy, nitro, amino, acylamino, alkylamino, arylamino, cyano, aryl, heteroaryl

Wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅alkyl or C₁₋₅alkoxy, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydroxy, and halogen;

Ar is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro,

amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfamoyl, alkylsulfamoyl, alkylsulfamoyl, alkylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide,

hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and

cyanoguanidino;

Z is:

or

$$\begin{array}{c} R_3 \\ \begin{matrix} \\ \\ \\ \\ \\ \\ R_2 \end{array}$$

wherein R₁ is:

$$R_4$$
or
 R_5

$$R_8$$
 R_6

or

$$\begin{array}{c|c} R_7 & R_8 \\ \hline U & & \\ \hline I & & \\ \hline \end{array}$$

or

$$V$$
 R_7
 R_8

p is 0, 1 or 2;

q is 0, 1 or 2;

R₄ is selected from the group consisting of hydrogen, halogen, C₁₋₅ alkyl, aryl, heteroaryl wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR_9 ; wherein R_9 is hydroxy, C_{1-5} alkyl, C_{1-5} alkoxy, amino, alkylamino or arylamino; R_5 is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio,

alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

nydroxyammo, amidmo, guamdmo, cyanoguamdm

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro,

amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

 R_7 and R_8 are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently selected from the group of atoms consisting of C_7 , N_7 , O and S_7 ; wherein adjacent atoms U-T, T-Q, U-W, W-L may form one or more double bonds; R_2 and R_3 are independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy, wherein the alkyl or alkoxy may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylsulfamoyl, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R₁, R₂, and R₃ bond together;

further provided that Ar is not 2-hydroxy-5-methoxyphenyl, and further provided that when Ar is phenyl,

then R1 is not-

23. (Original) The compound according to claim 1 selected from the group consisting of: N-Phenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-1,3-diaminopropane; N-(4-Nitrophenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-1,3-diaminopropane; N-(4-Bromophenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-1,3-diaminopropane;

N-Phenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-propyl-1,3-diaminopropane; Methyl 4-[[3-(4-bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;

Methyl 4-[[3-(4-bromophenylureido)propyl][(1R)-1-phenylethyl]amino]butylate;

Methyl 4-[[3-(4-bromophenylureido)propyl][2-(4-chlorophenyl)ethyl]amino] butylate;

Methyl 4-[[4-(4-bromophenylureido)butyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;

Methyl 4-[[5-(4-bromophenylureido)pentyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;

Methyl 4-[[3-(4-methylphenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;

Methyl 4-[[3-(3,4-dichlorophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;

4-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butanoic acid;

4-[[3-(4-Bromophenylureido)propyl][(1R)-1-phenylethyl]amino] butanoic acid;

4-[[4-(4-Bromophenylureido)butyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;

- 4-[[5-(4-Bromophenylureido)pentyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Methylphenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(3,4-Dichlorophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl]diethylammonium iodide;
- [3-(4-Bromophenylureido)propyl][2-(4-chlorophenyl)ethyl]diethylammonium iodide;
- N-Phenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-2-hydroxy-1,3-diaminopropane;
- 4-[[3-(4-Chlorophenylthioureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid:
- 4-[[(3S)-3-(4-Bromophenylureido)-3-(tert-butoxycarbonyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)-2-hydroxypropyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Chlorophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic;
- Methyl 4-[[3-(4-bromophenylureido)propyl](1-indanyl)amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl](1-indanyl)amino]butanoic acid;
- Methyl 4-[[3-(4-bromophenylureido)propyl][(1R)-1-indanyl]amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl][(1R)-1-indanyl]amino]butanoic acid;
- Methyl 4-[[3-(4-bromophenylureido)propyl][(1*R*)-1,2,3,4-tetrahydro-1-naphthyl]amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl][(1*R*)-1,2,3,4-tetrahydro-1-naphthyl]amino]butanoic acid:
- Ethyl 4-[[3-(4-bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanamide;
- 3-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-[(phenylsulfonyl)carbamoyl]propane;
- 4-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-butanol;
- 3-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-[1-(triphenylmethyl)tetrazol-5-yl]propane;

- 3-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-(1*H*-tetrazol-5-yl)propane;
- Methyl 4-[[3-[4-(carboxy)phenylureido]propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl][(1*R*)-1-(4-methoxyphenyl)ethyl]amino]butanoic acid:
- 4-[[3-[4-(Ethoxycarbonyl)phenylureido]propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Iodophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-[4-(Butoxycarbonyl)phenylureido]propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- [3-(Phenylureido)propyl]bis[2-(4-chlorophenyl)ethyl]amine;
- 4-[[3-(4-Bromophenylureido)propyl][(1R)-1-(4-bromophenyl)ethyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)propyl][1-(4-fluorophenyl)ethyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)propyl][1-(4-chlorophenyl)ethyl]amino]butanoic acid;
- Methyl 4-[[(3S)-3-(4-bromophenylureido)-3-(tert-butoxycarbonyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- Methyl 4-[[(3S)-3-(4-bromophenylureido)-3-(isopropylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- Methyl 4-[[(3S)-3-(4-bromophenylureido)-3-(benzylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- 4-[[(3S)-3-(4-Bromophenylureido)-3-(isopropylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[(3S)-3-(4-Bromophenylureido)-3-(benzylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino|butanoic acid;
- 4-[[3-(4-Bromophenylthioureido)propyl][(1R)-1-indanyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylthioureido)propyl][(1*R*)-1,2,3,4-tetrahydro-1-naphthyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)propyl][(1S)-1-(4-bromophenyl)ethyl]amino]butanoic acid;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl]bis(4-methylbenzyl)ammonium iodide;

- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](4-chlorobenzyl)ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](benzyl)ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(3-chlorophenyl)ethyl]diethylammonium iodide;
- [3-(4-Bromophenylureido)propyl][(1S)-1-phenylethyl][3-(carboxy)propyl]ethylammonium trifluoroacetate;
- [3-(4-Bromophenylureido)propyl][(1*R*)-1-phenylethyl][3-(carboxy)propyl]ethylammonium trifluoroacetate;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl][4-(methoxycarbonyl)butyl] ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl][4-(carboxy)benzyl]ethylammonium iodide;
- [5-(Phenylureido)pentyl][2-(4-chlorophenyl)ethyl]diethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](2-chlorobenzyl)ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](2,5-difluorobenzyl)ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](3-fluorobenzyl)ethylammonium iodide;
- [3-(4-Cyanophenylureido)propyl][2-(3-chlorophenyl)ethyl][2-(2-methoxyehtoxy)ethyl] ethylammonium iodide; and
- [3-(4-Methoxyphenylureido)propyl][2-(3-chlorophenyl)ethyl][2-(2-methoxyehtoxy)ethyl] ethylammonium iodide.
- 24. (Currently amended) The compound according to claim 1, wherein the compound is defined below:

1	phenyl	О	1	1	-(CH ₂) ₂ -CI	ethyl	Н
2	4-nitrophenyl	О	1	1	-(CH ₂) ₂ -CI	ethyl	Н
3	4-bromophenyl	Ο	1	1	-(CH ₂) ₂ -CI	ethyl	Н
4	4 nitrophenyl	0	1	-0-	-(CH),-(CH)	ethyl	H
5	4-nitrophenyl	О	1	2	-(CH ₂) ₂ -CI	ethyl	Н
6	4-chlorophenyl	О	1	1	-(CH ₂) ₂ -CI	ethyl	Н
7	phenyl	О	1	2	-(CH ₂) ₂ -CI	ethyl	Н
8	phenyl	O	1	3	-(CH ₂) ₂ -CI	ethyl	Н
9	2-methoxy- phenyl	О	1	1	-(CH ₂) ₂ -CI	ethyl	Н
10	phenyl	О	1	1	-(CH ₂) ₂ -CI	n-propyl	Н
11	phenyl	О	1	1	-(CH ₂) ₂ -	ethyl	Н
12	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ -CO ₂ Me	Н
13	phenyl	O	1	1	-(CH ₂) ₂ -CI	-CH ₂ -	Н

14	phenyl	O 1	1	-(CH ₂) ₂ -CI	n-butyl	Н
15	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂ -NO ₂	Н
16	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂ CN	Н
17	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂ -CI	Н
18	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂ -CMe	Н
19	phenyl	O 1	1	-(CH ₂) ₂ -CI	−CH₂ − tBu	Н
20	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂ -_N	Н
21	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂	Н
22	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂ CO ₂ B	Н
23	phenyl	O 1	1	-(CH ₂) ₂ -CI	-сң ₂ (Н
24	phenyl	O 1	1	-(CH ₂) ₂ -CI	-CH ₂ -_N	Н
25	phenyl	O 1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ -	Н

26	phenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂	Н
27	phenyl	О	1	1	-(CH ₂) ₂ -CI	methyl	Н
28	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ -	Н
29	4-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
30	4-bromophenyl	О	1	1	Me _{,,,}	-(CH ₂) ₃ CO ₂ Me	Н
31	4-bromophenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н
32	4-bromophenyl	О	1	2		-(CH ₂) ₃ CO ₂ Me	Н
33	4-bromophenyl	O	1	3		-(CH ₂) ₃ CO ₂ Me	Н
34	4-methylphenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
35	3,4-dichloro- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
36	4-bromophenyl	O	1	1	-CH ₂ -OMe OMe	-(CH ₂) ₃ CO ₂ Me	Н
37	4-bromophenyl	0	1	1	-c+ ₂ -	-(CH ₂) ₃ CO ₂ Me	Н

38	4-bromophenyl	O	1	1	-CH ₂ O	-(CH ₂) ₃ CO ₂ Me	Н
39	4-bromophenyl	O	1	1	-CH ₂ S	-(CH ₂) ₃ CO ₂ Me	Н
40	4-bromophenyl	Ο	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ Me	Н
41	4-bromophenyl	Ο	1	1	-CH ₂ -CF ₃	-(CH ₂) ₃ CO ₂ Me	Н
• 42	4-bromophenyl	Ο	1	1	—(CH ₂) ₂ —	-(CH ₂) ₃ CO ₂ Me	Н
43	4-bromophenyl	О	1	1	-(CH ₂) ₂ -OMe	-(CH ₂) ₃ CO ₂ Me	Н
44	4-bromophenyl	О	1	1	-(CH ₂) ₂	-(CH ₂) ₃ CO ₂ Me	Н
45	4-bromophenyl	О	1	1	-0H-()	-(CH ₂) ₃ CO ₂ Me	Н
46	4-bromophenyl	Ο	1	1	-(CH ₂) ₂ -Ĥ	-(CH ₂) ₃ CO ₂ Me	Н
47	4-bromophenyl	О	1	1	Me	-(CH ₂) ₃ CO ₂ Me	Н
48	4-bromophenyl	О	1	1	-CH ₂ -\square N	-(CH ₂) ₃ CO ₂ Me	Н
49	phenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н
50	4-bromophenyl	0	1	0		-(CH ₂) ₃ CO ₂ Me	Н

51	3-chlorophenyl	О	1	1	\Diamond	-(CH ₂) ₃ CO ₂ Me	Н
52	3-methylphenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
53	4-chloro-3- (trifluoro- methyl)phenyl	O	1	1		-(CH ₂) ₃ CO ₂ Me	Н
54	2-biphenyl	O	1	1		-(CH ₂) ₃ CO ₂ Me	Н
55	2,4-dimethoxy- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
56	phenyl	Ο	1	1		-(CH ₂) ₃ CO ₂ Me	Н
57	4-methoxy- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
58	4-phenoxy- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
59	1-naphthyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
60	4-bromophenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
61	4-bromophenyl	О	1	1	Me _{I,I,}	-(CH ₂)₃CO ₂ H	Н
62	4-bromophenyl	О	1	2		-(CH ₂)₃CO ₂ H	Н
63	4-bromophenyl	0	1	3		-(CH ₂) ₃ CO ₂ H	Н

64	4-methylphenyl	O	1	1		-(CH ₂)₃CO ₂ H	Н
65	3,4-dichloro- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
66	4-bromophenyl	О	1	1	OMe OMe	-(CH ₂)₃CO ₂ H	Н
67	4-bromophenyl	O	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ H	Н
68	4-bromophenyl	O	1	1	-CH ₂ 0	-(CH ₂) ₃ CO ₂ H	Н
69	4-bromophenyl	Ο	1	1	-CH ₂ S	-(CH ₂) ₃ CO ₂ H	Н
70	4-bromophenyl	Ο	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ H	Н
71	4-bromophenyl	Ο	1	1	-CH ₂ -CF ₃	-(CH ₂) ₃ CO ₂ H	Н
72	4-bromophenyl	Ο	1	1	-(CH ₂) ₂ -	-(CH ₂) ₃ CO ₂ H	Н
73	4-bromophenyl	Ο	1	1	-(CH ₂) ₂ -OMe	-(CH₂)₃CO₂H	Н
74	4-bromophenyl	0	1	1	-(CH ₂) ₂	-(CH ₂) ₃ CO ₂ H	Н
75	4-bromophenyl	О	1	1	-QH-{\bigs\}	-(CH ₂)₃CO ₂ H	Н
76	4-bromophenyl	0	1	1	-(CH ₂) ₂ -Â	-(CH ₂)₃CO ₂ H	Н

77	4-bromophenyl	О	1	1	Me	-(CH ₂) ₃ CO ₂ H	Н
78	4-bromophenyl	О	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ H	Н
79	4-bromophenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂)₃CO ₂ H	Н
80	phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ H	Н
81	4-bromophenyl	0	1	0		-(CH ₂) ₃ CO ₂ H	II -
82	3-chlorophenyl	O	1	1		-(CH ₂)₃CO ₂ H	Н
83	3-methylphenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
84	4-chloro-3- (trifluoro- methyl)phenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
85	2-biphenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
86	2,4-dimethoxy- phenyl	О	1	1	$\langle \rangle$	-(CH ₂) ₃ CO ₂ H	Н
87	phenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
88	4- methoxyphenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
89	4-phenoxy- phenyl	0	1	1		-(CH ₂)₃CO ₂ H	Н

		<u></u>					
90	1-naphthyl	Ο	1	1		-(CH ₂) ₃ CO ₂ H	Н
93	4-chloro-3- (trifluoro- methyl)phenyl	Ο	1	1		ethyl	Н
94	4-chloro-3- (trifluoro- methyl)phenyl	О	1	1	-CH ₂ -	-(CH ₂) ₃ SMe	Н
95	4-chloro-3- (trifluoro- methyl)phenyl	Ο	1	1	-(CH ₂) ₂ -	-CH ₂ CH(CH ₃) ₂	Н
96	4-chloro-3- (trifluoro- methyl)phenyl	Ο	1	1	—(CH ₂) ₂ ——OMe	-CH ₂ CH(CH ₃) ₂	Н
97	4-chloro-3- (trifluoro- methyl)phenyl	О	1	1	-(CH ₂) ₂ -A	-(CH ₂) ₃ CO ₂ H	Н
98	2-biphenyl	О	1	1			Н
99	2-biphenyl	O	1	1	-CH ₂ -	-(CH ₂) ₂ CH(CH ₃) ₂	Н
100	2-biphenyl	О	1	1	-CH ₂	-(CH ₂)₃SMe	Н
101	2-biphenyl	О	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ H	Н
102	2-biphenyl	О	1	1	-CH ₂ -		Н
103	2-biphenyl	Ο	1	1	-CH ₂ -OMe OMe	-(CH₂)₃SMe	Н
104	2-biphenyl	0	1	1	-cH-()	-CH ₂ CH(CH ₃) ₂	Н

105	2-biphenyl	0	1	1	-(CH ₂) ₂ -	-(CH ₂)₃SMe	Н
106	2-biphenyl	O	1	1	-(CH ₂) ₂ -	-(CH ₂) ₃ CO ₂ Me	Н
107	2-biphenyl	О	1	1	-(CH ₂) ₂ -		Н
108	2-biphenyl	O	1	1	-(CH ₂) ₂ -OMe	-CH ₂ CH(CH ₃) ₂	Н
109	2-biphenyl	O	1	1	$-(CH_2)_2$ -OMe	-CH ₂ CO ₂ B	Н
110	2-biphenyl	O	1	1	$-(CH_2)_2$ -OMe		Н
111	2-biphenyl	O	1	1	-(CH ₂) ₂ -Me	-CH ₂ CH(CH ₃) ₂	Н
112	2-biphenyl	O	1	1	-(CH ₂) ₂ -Me	−CH ₂ CO ₂ B	Н
113	2-biphenyl	O	1	1	-(CH ₂) ₂ -CI	-CH ₂ CH(CH ₃) ₂	Н
114	2-biphenyl	O	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ -	H
115	2-biphenyl	O	1	1	-(CH ₂) ₂ -CI	-CH₂ CO₂E	Н
116	2-biphenyl	O	1	1	-(CH ₂) ₂ -CI	✓ ⁿⁿ N	Н
117	2-biphenyl	0	1	1	-(CH ₃) ₂ -A	-CH ₂ CH(CH ₃) ₂	Н

118	4-bromophenyl	O	1	1	-(CH ₂) ₂ \(\bigg\) \(\big\)	-CH ₂ CH(CH ₃) ₂	Н
119	4-bromophenyl	О	1	1	-(CH ₂) ₂ \(\bigg\)	-(CH ₂) ₂ CH(CH ₃) ₂	Н
120	4-bromophenyl	О	1	1	-(CH ₂) ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-(CH ₂) ₂ -	Н
121	4-bromophenyl	О	1	1	-(CH ₂) ₂ \(\bigg\)	-(CH ₂) ₂ -0-CH ₂ -	Н
122	4-bromophenyl	О	1	1		-CH ₂ CH(CH ₃) ₂	Н
123	4-bromophenyl	О	1	1		-(CH ₂) ₂ -O-CH ₂ -	Н
124	4-bromophenyl	О	1	1		-(CH₂)₃SMe	Н
125	4-bromophenyl	О	1	1		-CH ₂ CO ₂ B	Н
126	4-bromophenyl	О	1	1	-CH2-0	-CH ₂ CH(CH ₃) ₂	Н
127	4-bromophenyl	О	1	1	-CH ₂ -	-(CH ₂) ₂ -0-CH ₂ -	Н
128	4-bromophenyl	0	1	1	-CH ₂ -		Н
129	4-bromophenyl	0	1	1	-CH ₂ -CF ₃	-CH ₂ CH(CH ₃) ₂	Н
130	4-bromophenyl	0	1	1	-CH ₂ -CF ₃	-(CH ₂) ₃ SMe	Н

131	4-bromophenyl	0	1	1	OMe -CH ₂ OMe OMe	-(CH ₂) ₂ CH(CH ₃) ₂	Н
132	4-bromophenyl	О	1	1	-(CH ₂) ₂ -\bigcip -Me	-(CH ₂) ₃ CO ₂ H	Н
133	4-bromophenyl	O	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ H	Н
134	4-bromophenyl	O	1	1	-(CH ₂) ₂ -CI		Н
135	3-methylphenyl	O	1	1			Н
136	3-methylphenyl	O	1	1	-042-0	-CH ₂ CH(CH ₃) ₂	Н
137	3-methylphenyl	O	1	1	-(CH ₂) ₂ -	ethyl	Н
138	3-methylphenyl	О	1	1	-(CH ₂) ₂ -	-CH₂ CO₂B	Н
139	3-methylphenyl	O	1	1	-(CH ₂) ₂ -OMe	-(CH ₂) ₃ SMe	Н
140	3-methylphenyl	О	1	1	-(CH ₂) ₂ -OMe	-(CH ₂) ₃ CO ₂ H	Н
141	3-methylphenyl	0	1	1	-(CH ₂) ₂ -Me	-(CH ₂) ₃ SMe	Н
142	3-methylphenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ SMe	Н
143	3-methylphenyl	0	1	1	-(CH ₂) ₂ -CI	✓ ^{nı} ı.	Н

144	3-chlorophenyl	0	1	1	-CH ₂ (0)	—(CH ₂) ₂ -	Н
145	3-chlorophenyl	О	1	1	-CH ₂ S	-(CH ₂) ₂ CH(CH ₃) ₂	Н
146	3-chlorophenyl	Ο	1	1	-CH ₂ S	-CH ₂ CO ₂ EI	н
147	3-chlorophenyl	О	1	1	-(CH ₂) ₂ -\(\bigve{N}\)	-CH ₂ -	Н
148	3-chlorophenyl	О	1	1	-(CH ₂) ₂ N	-(CH ₂) ₂ -0-CH ₂ -	Н
149	3-chlorophenyl	О	1	1		-CH ₂ CO ₂ EI	Н
150	3-chlorophenyl	О	1	1		VIII.	Н
151	3-chlorophenyl	О	1	1	-(CH ₂) ₂ -\bigcom_\text{Me}	-CH ₂ CH(CH ₃) ₂	Н
152	3-chlorophenyl	О	1	1	-(CH ₂) ₂ -\bigcom_\text{Me}	-(CH ₂) ₂ -0-CH ₂ -	Н
153	3-chlorophenyl	О	1	1	-(CH ₂) ₂ -\	-CH ₂ CO ₂ EI	Н
154	3-chlorophenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ -	Н
155	3-chlorophenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ CO ₂ E	Н
156	3-chlorophenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н

							
157	2,4-dimethoxy- phenyl	О	1	1		-(CH ₂) ₃ SMe	Н
158	2,4-dimethoxy- phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ SMe	Н
159	4-methoxy- phenyl	О	1	1	-(CH ₂) ₂ -OMe	-(CH ₂) ₂ -O-CH ₂ -	Н
160	3,4-dichloro- phenyl	0	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ Me	Н
161	1-naphthyl	О	1	1	-CH ₂ -CF ₃	-(CH ₂)₃CO ₂ H	Н
162	1-naphthyl	O	1	1	-(CH ₂) ₂ -	-CH ₂ CO ₂ E	Н
163	phenyl	О	1	1	-(CH ₂) ₂ -\(\bigcirc\)-CI	ethyl	ОН
164	4-chlorophenyl	S	1	1		-(CH ₂)₃CO ₂ H	Н
165	4-bromophenyl	0	0	2		-(CH ₂)₃CO ₂ H	-Jo-
166	4-bromophenyl	Ο	0	2		-(CH₂)₃CO₂H	+-1
167	4-bromophenyl	0	1	1		-(CH ₂)₃CO ₂ H	ОН
168	4-methoxy- phenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н

	· · · · · · · · · · · · · · · · · · ·						
169	4-benzyloxy- phenyl	S	1	1		-(CH ₂)₃CO ₂ H	Н
170	4-(trifluoro- methoxy)phenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
171	4-chlorophenyl	0	1	1		-(CH ₂) ₃ CO ₂ H	Н
172	4-bromophenyl	0	1	1		-(CH ₂) ₃ CO ₂ Me	Н
173	4-bromophenyl	O	1	1		-(CH ₂) ₃ CO ₂ H	Н
174	4-bromophenyl	0	1	1		-(CH ₂) ₃ CO ₂ Me	Н
175	4-bromophenyl	O	1	1		-(CH ₂) ₃ CO ₂ H	Н
176	4-bromophenyl	0	1	1	\Diamond	-(CH ₂) ₃ CO ₂ Me	Н
177	4-bromophenyl	0	1	1	\Diamond	-(CH ₂) ₃ CO ₂ H	Н
178	4-bromophenyl	0	1	1	·: 🗘	-(CH ₂) ₃ CO ₂ Me	Н
179	4-bromophenyl	0	1	1	·.	-(CH ₂) ₃ CO ₂ H	Н
180	4-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
181	4-bromophenyl	0	1	1		-(CH ₂) ₃ CO ₂ H	Н

182	4-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
183	4-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
184	4-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Et	Н
185	4-chlorophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
186	4-bromophenyl	О	1	1		-CH₂CO₂H	Н
187	4-fluorophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
188	4-fluorophenyl	О	1	1	\bigcirc	-(CH ₂)₃CO ₂ H	Н
189	2-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
190	2-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
191	4-bromophenyl	О	1	1		ethyl	Н
192	phenyl	О	1	1		ethyl	Н
193	4-bromophenyl	О	1	1		-(CH ₂) ₃ CONH ₂	Н
194	4-bromophenyl	0	1	1	10	-(CH ₂) ₃ CO ₂ Me	Н

					· · · · · · · · · · · · · · · · · · ·	
195	4-bromophenyl	O 1	1	$+ \bigcirc$	-(CH ₂) ₃ CO ₂ H	Н
196	4-bromophenyl	O 1	1		M3 H S	Н
197	4-bromophenyl	O 1	1		M3 H S C	Н
198	3-bromophenyl	O 1	1	$\langle \Sigma \rangle$	-(CH ₂) ₃ CO ₂ Me	Н
199	3-bromophenyl	O 1	1	$\langle \Sigma \rangle$	-(CH ₂) ₃ CO ₂ H	Н
200	4-bromo-2- methylphenyl	O 1	1		-(CH ₂) ₃ CO ₂ Me	Н
201	4-bromo-2- methylphenyl	O 1	1		-(CH ₂)₃CO ₂ H	Н
202	4-bromophenyl	O 1	1		-(CH ₂) ₄ OCOCH ₃	Н
203	4-bromophenyl	O 1	1		-(CH ₂) ₄ OH	Н
204	4-bromophenyl	O 1	1		-(CH ₂) ₅ OCOCH ₃	Н
205	4-bromophenyl	O 1	1		-(CH ₂)₅OH	Н
206	4-bromophenyl	O 1	1	1 0	-(CH ₂) ₃ CO ₂ Me	Н
207	4-bromophenyl	O 1	1	1 0	-(CH ₂) ₃ CO ₂ H	Н

208	4-bromophenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂)₃CO ₂ Me	Н
209	4-bromophenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ H	Н
210	4-bromophenyl	О	1	1		Mys CH	Н
211	4-bromophenyl	О	1	1		-(CH ₂) ₅ CO ₂ H	Н
212	4-bromophenyl	О	1	1		OMe	Н
213	4-bromophenyl	О	1	1		-(CH ₂) ₄ CO ₂ Me	Н
214	4-bromophenyl	О	1	1		-(CH ₂) ₄ CO ₂ H	Н
215	4-bromophenyl	Ο	1	1		-(CH ₂) ₃ OCOCH ₃	Н
216	4-bromophenyl	0	1	1		-(CH ₂)₃OH	Н
217	4-bromophenyl	О	1	1		Ph Ph N N N N	Н
218	4-bromophenyl	О	1	1		HN N N	Н
219	phenyl	О	1	1	-(CH ₂) ₂ --CI	-(CH ₂)₃OH	Н

220	phenyl	0	1	1	-(CH ₂) ₂ -CI	-CH ₂ CONH ₂	Н
221	phenyl	О	1	1	$-(CH_2)_2$ - CI	-CH ₂ CH=CH ₂	н
222	4-bromophenyl	O	1	1		HN N N	Н
223	4-bromophenyl	О	1	1		-сң ₂ -{}-со ₂ н	Н
224	4-bromophenyl	О	1	1		-CH ₂ CO ₂ E	Н
225	4-carboxy- phenyl	O	1	1	\Longrightarrow	-(CH ₂) ₃ CO ₂ Me	Н
226	4-bromophenyl	О	1	1	Ç—CH,	-(CH₂)₃CO₂H	Н
227	4-bromophenyl	О	1	1	OMe	-(CH₂)₃CO₂H	Н
228	4-(ethoxy-carbonyl)phenyl	Ο	1	1		-(CH ₂)₃CO ₂ H	н
229	4-iodophenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
230	phenyl	О	1	1	-(CH ₂) ₂ F	ethyl	Н
231	phenyl	0	1	1	$-(CH_2)_2$ - CH_3	ethyl	Н
232	phenyl	0	1	1	-(CH ₂) ₂ -	ethyl	Н

233	phenyl	0	1	1	-(CH ₂) ₂ -CI	ethyl	Н
234	phenyl	О	1	1		ethyl	Н
235	4-carboxy- phenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
236	3-(ethoxy-carbonyl)phenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
237	4-(n-butyloxy-carbonyl)phenyl	O	1	1		-(CH ₂) ₃ CO ₂ H	Н
238	phenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ -CI	Н
239	phenyl	O	1	1	-(CH ₂) ₂ -CI	-CH ₂ CH(CH ₃) ₂	Н
240	phenyl	О	1	1	-(CH ₂) ₂ -CI	- CH ₂ -	Н
241	phenyl	Ο	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₄ CO ₂ Me	Н
242	phenyl	O	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₅ CO ₂ Et	Н
243	phenyl	O	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ CONH ₂	Н
244	phenyl	O	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ OCOCH ₃	Н
245	phenyl	0	1	1	-(CH²)²-(CH²)²-CI	-CH₂CO₂Me	Н

246	4-bromophenyl	s	1	1		-(CH₂)₃CO₂H	Н
247	3-bromophenyl	s	1	1		-(CH ₂) ₃ CO ₂ H	Н
248	3-chlorophenyl	s	1	1		-(CH ₂) ₃ CO ₂ H	Н
249	4-iodophenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
250	4-methylphenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
251	3,4-dichloro- phenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
252	4-bromophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
253	3-bromophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
254	3-chlorophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
255	4-iodophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
256	3,4-dichloro- phenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
257	4-fluorophenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
258	4-bromophenyl	О	1	1	Br	-(CH ₂) ₃ CO ₂ H	Н

259	4-bromophenyl	0	1	1	NO ₂	-(CH ₂)₃CO ₂ H	Н
260	3-cyanophenyl	O	1	1		-(CH ₂)₃CO ₂ H	Н
261	3-methoxy- phenyl	0	1	1		-(CH ₂)₃CO ₂ H	Н
262	3-acetylphenyl	O	1	1		-(CH₂)₃CO₂H	Н
263	3-(methylthio)- phenyl	O	1	1		-(CH ₂)₃CO ₂ H	Н
264	4-methylthio- phenyl	0	1	1		-(CH ₂)₃CO ₂ H	Н
265	2-naphthyl	0	1	1		-(CH₂)₃CO₂H	Н
266	4-(trifluoro- methoxy)phenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
267	H,C-	0	1	1		-(CH ₂) ₃ CO ₂ H	Н
268	4-bromophenyl	0	1	1		-(CH ₂) ₃ CO ₂ H	Н
269	4-bromophenyl	0	1	1	↓ —F	-(CH ₂) ₃ CO ₂ H	Н
270	4-bromophenyl	0	1	1		-(CH ₂) ₃ CO ₂ H	Н
271	4-bromophenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н

272	4-bromophenyl	0	1	1	} —α	-(CH ₂) ₃ CO ₂ H	Н
273	4-bromophenyl	0	1	1	HO,	-(CH ₂)₃CO ₂ H	Н
274	phenyl	O	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н
275	phenyl	O	1	1	-(CH ₂) ₂ -Ci	-(CH ₂) ₂ OCH ₃	Н
276	phenyl	O	1	1	-(CH ₂) ₂ -CI	-CH(CH ₃) ₂	Н
277	4-biphenyl	O	1	1		-(CH ₂)₃CO ₂ H	Н
278	4-acetylphenyl	O _.	1	1		-(CH ₂) ₃ CO ₂ H	Н
279	G N	0	1	1-		(CH ₂) ₃ CO ₂ H	- H
280	phenyl	O	1	1	-(CH ₂) ₂ -	-CH ₂ -	Н
281	4-bromophenyl	O	0	2		-(CH ₂) ₃ CO ₂ Me	J.+
282	4-bromophenyl	O	0	2		-(CH ₂)₃CO ₂ Me	
283	4-bromophenyl	0	0	2		-(CH ₂)₃CO ₂ Me	N N

284	4-bromophenyl	0	0	2	<u> </u>	, I,
204	4-bromophenyi	U	U	2	ν 🕓	-(CH ₂) ₃ CO ₂ H
285	4-bromophenyl	О	0	2		-(CH ₂) ₃ CO ₂ H
286	4-bromophenyl	О	0	2		-(CH ₂) ₃ CO ₂ H
					$\langle \rangle$ =\	
287	4-bromophenyl	O	0	2		-(CH ₂) ₃ CO ₂ H
288	4-bromophenyl	S	1	1	, .	-(CH₂)₃CO₂H H
					, _	
289	4-bromophenyl	S	1	1		-(CH2)3CO2H H
290	4-bromophenyl	s	1	1		-(CH ₂) ₃ CO ₂ H H
					_	
291	phenyl	Ο	1	1	-(CH ₂) ₂ -CI	-cH₂-⟨)-cN H
292	phenyl	О	1	1	-(CH ₂) ₂ -CI	−CH ₂ — OMe OMe
200		_		•	\	
293	4-bromophenyl	Ο	1	1	₹	-(CH ₂) ₃ CO ₂ H H

CPD No.	Ar	X m	R1	R2	R3	Y
91	phenyl	O 3	-(CH ₂) ₂ -CI	ethyl	ethyl	I
92	4-bromo- phenyl	O 3	-(CH ₂) ₂ -CI	ethyl	ethyl	I
294	4-bromo- phenyl	O 3	-(CH ₂) ₂ -CI	n-butyl	ethyl	I
295	4-bromo- phenyl	O 3	-(CH ₂) ₂ -CI	n-propyl	ethyl	I
296	phenyl	O 3	-(CH ₂) ₂ -CI	-сн₂-⟨>-сн₃ -сн	cH ₃	Br
297	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -CH ₃	ethyl	I
298	phenyl	O 3	-(CH ₂) ₂ -CI	-аң- (-а	ethyl	I
299	phenyl	O 3	-(CH ₂) ₂ -CI	-(CH ₂) ₃ OH	ethyl	I
300	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ CONH ₂	ethyl	I
301	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ CH=CH ₂	ethyl	I

302	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
303	phenyl	O 3	-(CH ₂) ₂ -CI	−CH₂-⟨¯¯¯)−CO₂Me	ethyl	I
304	phenyl	O 3	—(CH ₂) ₂ ———OMe	ethyl	ethyl	I
305	phenyl	O 3	-CH ₂ -	ethyl	ethyl	I
306	phenyl	O 3	-(CH ₂) ₂ -F	ethyl	ethyl	I
307	phenyl	O 3	-(CH ₂) ₂ -CH ₃	ethyl	ethyl	I
308	phenyl	O 3	-(CH ₂) ₂ -	ethyl	ethyl	I
309	phenyl	O 3	-(CH ₂) ₂ -	ethyl	ethyl	I
310	phenyl	O 3	-cH ₂	ethyl	ethyl	I
311	phenyl	O 3		ethyl	ethyl	I
312	4-bromo- phenyl	O 3		-(CH ₂) ₃ CO ₂ Me	ethyl	I
313	4-bromo- phenyl	O 3	\leftarrow	$-(CH_2)_3CO_2Me$	ethyl	I
314	4-bromo- phenyl	O 3	\Diamond	-(CH ₂) ₃ CO ₂ Me	ethyl	I

315	4-bromo- phenyl	О	3	$\nearrow \bigcirc$	-(CH ₂) ₃ CO ₂ H	ethyl	CF ₃ COO
316	4-bromo- phenyl	О	3		-(CH ₂) ₃ CO ₂ H	ethyl	CF ₃ COO
317	phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ -CI	ethyl	I
318	phenyl	Ο	3	-(CH ₂) ₂ -CI	-CH ₂ CH(CH ₃) ₂	ethyl	I
319	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
320	phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₄ CO ₂ Me	ethyl	I
321	phenyl	О	3	-(CH ₂) ₂ -___\-CI	-(CH ₂) ₅ CO ₂ Et	ethyl	I
322	phenyl	О	3	-(CH ₂) ₂ -\bigcipCI	-сң ₂ -(Со ₂ н	ethyl	I
323	phenyl	О	5	$-(CH_2)_2$ - \sim	ethyl	ethyl	I
324	4-methoxy- phenyl	О	3	$-(CH_2)_2$ - CI	-CH ₂ -	ethyl	I
325	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
326	4-cyano- phenyl	0	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
327	phenyl	0	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I

328	phenyl	0	3	-(CH ₂) ₂ -	-сң_	ethyl	I
329	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
330	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
331	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -CMe	ethyl	I
332	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -CO ₂ Me	ethyl	I
333	phenyl	O	3	-(CH ₂) ₂ -CI	-сң	ethyl	I
334	phenyl	Ο	3	-(CH ₂) ₂ -CI	-cH²-{	ethyl	I
335	4-bromo- phenyl	S	3	-(CH ₂) ₂ -CI	ethyl	ethyl	I
336	phenyl	S	3	-(CH ₂) ₂ -CI	ethyl	ethyl	I
337	phenyl	Ο	3	-(CH ₂) ₂ -CI	-CH ₂ -\bigcom_NO ₂	ethyl	I
338	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ethyl	I
339	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -F	ethyl	I
340	phenyl	0	3	-(CH ₂) ₂ -CI	−CH₂ — Br	ethyl	I

341	phenyl	O 3	-(CH ₂) ₂ -CI	- CH ₂ -	ethyl	I
342	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
343	phenyl	O 3	$-(CH_2)_2$	-CH ₂ -	ethyl	, I
344	phenyl	O 3	-(CH ₂) ₂ -(CH	-CH ₂ -OMe	ethyl	I
345	phenyl	O 3	$-(CH_2)_2$ -CI	-CH ₂ -CN	ethyl	I
346	phenyl	O 3	-(CH ₂) ₂ -\bigcipCI	-сң ₂	ethyl	I
347	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -CH ₃	ethyl	I
348	phenyl	O 3	-(CH ₂) ₂ -CI	-cH ₂	ethyl	I
349	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -Cd	ethyl	I
350	phenyl	O 3	-(CH ₂) ₂ -\(\bigcirc\)-CI	-сңС	ethyl	I
351	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
352	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
353	phenyl	O 3	-(CH ₂) ₂ -CI	-cH ₂ -CH ₃	ethyl	I

						.,	
354	phenyl	0	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
355	3,4-dichloro- phenyl	Ο	3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
356	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
357	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
358	3,4-dichloro- phenyl	Ο	3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
359	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
360	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
361	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
362	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -CI	CH ₂	ethyl	I
363	3,4-dichloro- phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
364	3,4-dichloro- phenyl	O	3	-(CH ₂) ₂ -\bigcipCI	−сн ₂ (сн ₃	ethyl	I
365	3,4-dichloro- phenyl	Ο	3	-(CH ₂) ₂ -	-сн ₂ { сн ₃	ethyl	I
366	3,4-dichloro- phenyl	0	3	-(CH ₂) ₂ -CI	−сң₂(сң,	ethyl	I

367	3,4-dichloro- phenyl	0	3	-(CH ₂) ₂ -CI	−сң ₋ -(сң,	ethyl	I
368	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -	-сн₂(сн₃	ethyl	I
369	3,4-dichloro- phenyl	Ο	3	-(CH ₂) ₂ -\bigcip_Q	-(CH ₂) ₂ F	ethyl	I
370	3,4-dichloro- phenyl	Ο	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
371	3,4-dichloro- phenyl	О	3	-(CH ₂) ₂ -\F	-(CH ₂) ₂ F	ethyl	I
372	4-bromo- phenyl	Ο	3	-(CH ₂) ₂ -	-CH ₂ CN	ethyl	I
373	4-bromo- phenyl	O	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
374	4-bromo- phenyl	O	3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
375	4-bromo- phenyl	О	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
376	4-bromo- phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
377	4-bromo- phenyl	О	3	-(CH ₂) ₂ -\bigcip a	-CH ₂ -<	ethyl	I
378	4-bromo- phenyl	O	3	-(CH ₂) ₂ -	-сң <u>.</u>	ethyl	I
379	4-bromo- phenyl	0	3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I

380	4-bromo- phenyl	0	3	-(CH ₂) ₂ -CI	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
381	4-bromo- phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ F	ethyl	I
382	4-bromo- phenyl	О	3	-(CH ₂) ₂ -(CI	-(CH ₂) ₂ F	ethyl	I
383	4-bromo- phenyl	0	3	$-(CH_2)_2$ $-CI$	-(CH ₂) ₂ F	ethyl	I
384	4-bromo- phenyl	O	3	-(CH ₂) ₂ -\int CI	-(CH ₂) ₂ F	ethyl	I
385	4-bromo- phenyl	O	3	-(CH ₂) ₂ -\F	-(CH ₂) ₂ F	ethyl	I
386	4-(trifluoro- methyl)phenyl	O	3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
387	4-(trifluoro- methyl)phenyl	O	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
388	4-(trifluoro- methyl)phenyl	O	3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
389	4-(trifluoro- methyl)phenyl	О	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
390	4-(trifluoro- methyl)phenyl	0	3	-(CH ₂) ₂ -	−сӊ <u></u>	ethyl	I
391	4-(trifluoro- methyl)phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
392	4-cyano- phenyl	0	3	-(CH ₂) ₂ -\square\colon OMe	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I

393	4-cyano- phenyl	O 3	-(CH ₂) ₂ -\(\bigcirc\)	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
394	4-cyano- phenyl	O 3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
395	4-cyano- phenyl	O 3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
396	4-cyano- phenyl	O 3	-(CH ₂) ₂ -\rightarrow CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
397	4-cyano- phenyl	O 3	-(CH ₂) ₂ -	-CH₂	ethyl	I
398	4-cyano- phenyl	O 3	-(CH ₂) ₂ -CI	-c+₂- 	ethyl	I
399	4-cyano- phenyl	O 3	-(CH ₂) ₂ -	-CH ₂ (CH ₃	ethyl	I
400	4-cyano- phenyl	O 3	-(CH ₂) ₂ -\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	-CH ₂ (CH ₃	ethyl	I
401	4-cyano- phenyl	O 3	-(CH ₂) ₂ -CI	- CH₂(CH₃	ethyl	I
402	4-cyano- phenyl	O 3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
403	4-cyano- phenyl	O 3	-(CH ₂) ₂ -\square CI	-(CH ₂) ₂ F	ethyl	I
404	4-cyano- phenyl	O 3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ F	ethyl	I
405	4-cyano- phenyl	O 3	-(CH ₂) ₂	-(CH₂)₂F	ethyl	I

406	phenyl	O 3	-(CH ₂) ₂ -\int OMe	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
407	phenyl	O 3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
408	phenyl	O 3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
409	phenyl	O 3	$-(CH_2)_2$ \longrightarrow CA	-CH ₂ CONH ₂	ethyl	I
410	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ CONH ₂	ethyl	I
411	phenyl	O 3	-(CH ₂) ₂ -	-CH₂CN	ethyl	I
412	phenyl	O 3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
413	phenyl	O 3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
414	phenyl	O 3	-(CH ₂) ₂ -CD	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
415	phenyl	O 3	-(CH ₂) ₂ -CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
416	phenyl	O 3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
417	phenyl	O 3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
418	phenyl	O 3	-(CH ₂) ₂ -\(\sum_{Cl}\)	-CH ₂ -	ethyl	I

419	phenyl	O 3	-(CH ₂) ₂ CI	-CH ₂	ethyl	I
420	phenyl	O 3	-(СН ₂) ₂ -СП	-CH ₂	ethyl	I
421	phenyl	O 3	-(СҢ ₂) ₂ -	-CH ₂	ethyl	I
422	phenyl	O 3	-(CH ₂) ₂ -CI	-сн₂{ сн₃	ethyl	I
423	phenyl	O 3	-(CH ₂) ₂ -(CI	−сң / сң	ethyl	I
424	phenyl	O 3	-(CH ₂) ₂ -CI	-сң(сң	ethyl	I
425	phenyl	O 3	-(CH ₂) ₂ -CI	-сн,(сн,	ethyl	I
426	phenyl	O 3	-(CH ₂) ₂ -	−сӊ <i>-</i> сӊ,	ethyl	I
427	phenyl	O 3	-(CH ₂) ₂ -Cl	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
428	phenyl	O 3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
429	phenyl	O 3	-(CH ₂) ₂	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
430	phenyl	O 3	$-(CH_2)_2$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
431	phenyl	O 3	-(CH ₂) ₂ -(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I

432	phenyl	0	3	-(CH ₂) ₂ -CI	-(CH₂)₂F	ethyl	I
433	phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ F	ethyl	I
434	phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ F	ethyl	I
435	4-methoxy- phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
436	4-methoxy- phenyl	О	3	-(CH ₂) ₂ -\int CI	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
437	4-methoxy- phenyl	Ο	3	-(CH ₂) ₂ -\(\)CI	-CH₂CONH₂	ethyl	I
438	4-methoxy- phenyl	О	3	-(CH ₂) ₂ -\times_CI	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
439	4-methoxy- phenyl	O	3	-(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
440	4-methoxy- phenyl	Ο	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
441	4-methoxy- phenyl	О	3	-(CH ₂) ₂ -	-CH ₂	ethyl	I
442	4-methoxy- phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
443	4-methoxy- phenyl	Ο	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
444	4-methoxy- phenyl	0	3	-(CH ₂) ₂ -CI	-сң(сң,	ethyl	I

445	4-methoxy- phenyl	0	3	-(CH ₂) ₂ -CI	−сң₂-/(сң,	ethyl	I
446	4-methoxy- phenyl	O	3	-(CH ₂) ₂ -CI	−сн₂{ сн₃	ethyl	I
447	4-methoxy- phenyl	Ο	3	-(CH ₂) ₂ -CI	-сң- сң,	ethyl	I
448	4-methoxy- phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
449	4-methoxy- phenyl	Ο	3	-(CH ₂) ₂ -CI	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
450	4-methoxy- phenyl	Ο	3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
451	4-methoxy- phenyl	O	3	-(CH ₂) ₂ -\(\sum_{Cl}\)	-(CH ₂) ₂ F	ethyl	I
452	4-methoxy- phenyl	Ο	3	$-(CH_2)_2$ $-CI$	-(CH ₂) ₂ F	ethyl	I
453	4-methoxy- phenyl	O	3	-(CH ₂) ₂ -\alpha a	-(CH ₂) ₂ F	ethyl	I

- 25. (Original) A pharmaceutical composition comprising a compound according to claim 1.
- 26. (Withdrawn) A method of treating CCR-3 mediated diseases in a patient, comprising administering to said patient an effective amount of the pharmaceutical composition of claim 25.
- 27. (Withdrawn) The method of claim 26, wherein said CCR-3 mediated disease is an eosinophil mediated allergic disease.
- 28. (Withdrawn) The method of claim 27, wherein said eosinophil mediated allergic disease is selected from the group consisting of asthma, rhinitis, eczema, inflammatory bowl diseases and parasitic infections.

Atty. Dkt. No. 051023-0111 Appln. Ser. No. 10/019,652

- 29. (Withdrawn) The method of claim 26, wherein said CCR-3 mediated disease is a T-cell or a dendritic cell mediated disease.
- 30. (Withdrawn) The method of claim 29, wherein said T-cell or dendritic cell mediated disease is selected from the group consisting of autoimmune diseases and HIV.
- 31. (Withdrawn) The method of claim 26, wherein said pharmaceutical composition comprises a prodrug.
- 32. (Withdrawn) A kit for treating CCR-3 mediated diseases in a patient, comprising:
 - (A) a pharmaceutical composition of claim 25;
- (B) reagents to effect administration of said pharmaceutical composition to said patient; and
- (C) instruments to effect administration of said pharmaceutical composition to said patient.
- 33. (Withdrawn) A method of inhibiting a CCR-3 mediated cellular response in a cell which expresses CCR-3, comprising contacting said cell with a compound according to claim 1, such that said cellular response is inhibited.
- 34. (Withdrawn) A method according to claim 33, wherein the CCR-3 mediated cellular repsonse is a chemotaxis.
- 33. (Withdrawn) A method of treating a CCR-3 mediated diseases in a mammal, comprising administering to said mammal an effective amount of the pharmaceutical composition according to claim 25.
- 36. 41. (Cancelled)