Matrix Computations Chapter 6: Singular value, Singular Vectors, and Singular Value Decomposition Section 6.3 SVD for Linear Systems

Jie Lu ShanghaiTech University

Linear Systems: Sensitivity Analysis

Given nonsingular $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{y} \in \mathbb{R}^n$, let \mathbf{x} be the solution to

$$y = Ax$$

Consider a perturbed version of the above system:

$$\hat{\mathbf{A}} = \mathbf{A} + \Delta \mathbf{A}, \quad \hat{\mathbf{y}} = \mathbf{y} + \Delta \mathbf{y}$$

where $\Delta \mathbf{A}$ and $\Delta \mathbf{y}$ are errors (e.g., floating point errors, measurement errors, etc.)

Let $\hat{\mathbf{x}}$ be a solution to the perturbed system

$$\hat{\mathbf{y}} = \hat{\mathbf{A}}\hat{\mathbf{x}}$$

Problem: Analyze how the solution error $\|\hat{\mathbf{x}} - \mathbf{x}\|_2$ scales with $\Delta \mathbf{A}$ and $\Delta \mathbf{y}$

Remark: We have already studied sensitivity analysis of linear systems in Section 1.3. Here, we focus on its relation with SVD

Condition Number

The condition number of matrix A is defined as

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|$$

Let the above norm be 2-norm. Then, $\|\mathbf{A}\|_2 = \sigma_{\max}(\mathbf{A})$, $\|\mathbf{A}^{-1}\|_2 = 1/\sigma_{\min}(\mathbf{A})$, and

$$\kappa(\mathbf{A}) = \frac{\sigma_{\max}(\mathbf{A})}{\sigma_{\min}(\mathbf{A})}$$

For nonsingular **A**, $\sigma_{\max}(\mathbf{A}) \geq \sigma_{\min}(\mathbf{A}) > 0$

Thus, $\kappa(\mathbf{A}) \geq 1$, and $\kappa(\mathbf{A}) = 1$ if **A** is orthogonal

• A is said to be ill-conditioned if $\kappa(A)$ is very large, referring to the cases where A is close to singular

Sensitivity Analysis

Theorem

Let $\varepsilon > 0$ be s.t.

$$\frac{\|\Delta \mathbf{A}\|_2}{\|\mathbf{A}\|_2} \leq \varepsilon, \qquad \frac{\|\Delta \mathbf{y}\|_2}{\|\mathbf{y}\|_2} \leq \varepsilon.$$

If ε is sufficiently small s.t. $\varepsilon \kappa(\mathbf{A}) < 1$, then

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \le \frac{2\varepsilon\kappa(\mathbf{A})}{1 - \varepsilon\kappa(\mathbf{A})}$$

Implications:

- For small errors and in the worst-case sense, the relative error $\|\hat{\mathbf{x}} \mathbf{x}\|_2 / \|\mathbf{x}\|_2$ tends to increase with the condition number
- In particular, for $\varepsilon \kappa(\mathbf{A}) \leq \frac{1}{2}$, the error bound is simplified to

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \le 4\varepsilon\kappa(\mathbf{A})$$

Proof

Proof (cont'd)

Interpretation of Linear Systems under SVD

Consider the linear system

$$y = Ax$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the system matrix, $\mathbf{x} \in \mathbb{R}^n$ is the system input, and $\mathbf{y} \in \mathbb{R}^m$ is the system output

Using SVD $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^T$, we can write

$$\mathbf{y} = \mathbf{U}\tilde{\mathbf{y}}, \qquad \tilde{\mathbf{y}} = \Sigma \tilde{\mathbf{x}}, \qquad \tilde{\mathbf{x}} = \mathbf{V}^T \mathbf{x}$$

Interpretation of Linear Systems under SVD (cont'd)

Implication: All linear systems work by performing three processes in cascade

- $\tilde{\mathbf{x}} = \mathbf{V}^T \mathbf{x}$: Let \mathbf{x} resolve into $\mathbf{v}_1, \dots, \mathbf{v}_n$ (rotate by \mathbf{V}^T)
- $\tilde{\mathbf{y}} = \Sigma \tilde{\mathbf{x}}$: Element-wise scale the first $p = \min\{m, n\}$ elements of $\tilde{\mathbf{x}}$ by $\sigma_i \geq 0$, $i = 1, \ldots, p$, and then either truncate or zero-pad to obtain the m-dimensional $\tilde{\mathbf{y}}$
- $\mathbf{y} = \mathbf{U}\tilde{\mathbf{y}}$: Reconstitute with basis $\mathbf{u}_1, \dots, \mathbf{u}_m$ (rotate by \mathbf{U})

Solution of Linear Systems via SVD

Problem: Given general $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{y} \in \mathbb{R}^m$, determine

- whether y = Ax has a solution (more precisely, whether there exists an x such that y = Ax)
- what is the solution

It can be shown via SVD that

$$\begin{aligned} \mathbf{y} &= \mathbf{A} \mathbf{x} &\iff & \mathbf{y} &= \mathbf{U}_1 \tilde{\Sigma} \mathbf{V}_1^T \mathbf{x} \\ &\iff & \mathbf{U}_1^T \mathbf{y} = \tilde{\Sigma} \mathbf{V}_1^T \mathbf{x}, \ \mathbf{U}_2^T \mathbf{y} = \mathbf{0} \\ &\iff & \mathbf{V}_1^T \mathbf{x} = \tilde{\Sigma}^{-1} \mathbf{U}_1^T \mathbf{y}, \ \mathbf{U}_2^T \mathbf{y} = \mathbf{0} \\ & & \mathbf{x} &= \mathbf{V}_1 \tilde{\Sigma}^{-1} \mathbf{U}_1^T \mathbf{y} + \boldsymbol{\eta}, \\ &\iff & \text{for any } \boldsymbol{\eta} \in \mathcal{R}(\mathbf{V}_2) = \mathcal{N}(\mathbf{A}), \\ & & \mathbf{U}_2^T \mathbf{y} = \mathbf{0} \end{aligned}$$

Solution of Linear Systems via SVD (cont'd)

$$\begin{aligned} \mathbf{y} &= \mathbf{A}\mathbf{x} &\iff & \mathbf{x} &= \mathbf{V}_1 \tilde{\Sigma}^{-1} \mathbf{U}_1^T \mathbf{y} + \boldsymbol{\eta}, \\ \text{for any } \boldsymbol{\eta} &\in \mathcal{R}(\mathbf{V}_2) = \mathcal{N}(\mathbf{A}), \\ & \mathbf{U}_2^T \mathbf{y} &= \mathbf{0} \end{aligned}$$

Case (a): Full-column rank **A**, i.e., $r = n \le m$

- There is no V_2 , and $U_2^T y = 0$ is equivalent to $y \in \mathcal{R}(U_1) = \mathcal{R}(A)$
- **Result**: The linear system has a solution if and only if $\mathbf{y} \in \mathcal{R}(\mathbf{A})$, and the solution, if exists, is uniquely given by $\mathbf{x} = \mathbf{V}_1 \tilde{\Sigma}^{-1} \mathbf{U}_1^T \mathbf{y}$

Case (b): Full-row rank **A**, i.e., $r = m \le n$

- There is no U₂
- **Result**: The linear system always has a solution, and the solution is given by $\mathbf{x} = \mathbf{V}_1 \tilde{\Sigma}^{-1} \mathbf{U}^T \mathbf{y} + \boldsymbol{\eta}$ for any $\boldsymbol{\eta} \in \mathcal{N}(\mathbf{A})$

Least Squares via SVD

Consider the LS problem: Given general $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$$

For any $\mathbf{x} \in \mathbb{R}^n$,

$$\begin{split} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} &= \|\mathbf{y} - \mathbf{U}\boldsymbol{\Sigma}\underbrace{\mathbf{V}^{T}\mathbf{x}}_{=\tilde{\mathbf{x}}}\|_{2}^{2} = \|\underbrace{\mathbf{U}^{T}\mathbf{y}}_{=\tilde{\mathbf{y}}} - \boldsymbol{\Sigma}\tilde{\mathbf{x}}\|_{2}^{2} \\ &= \sum_{i=1}^{r} |\tilde{y}_{i} - \sigma_{i}\tilde{x}_{i}|^{2} + \sum_{i=r+1}^{p} |\tilde{y}_{i}|^{2} \\ &\geq \sum_{i=r+1}^{p} |\tilde{y}_{i}|^{2} \end{split}$$

where the equality can be attained if $\tilde{\mathbf{x}}$ satisfies $\tilde{y}_i = \sigma_i \tilde{x}_i$ for $i = 1, \dots, r$

Least Squares via SVD (cont'd)

It can be shown that such a $\tilde{\boldsymbol{x}}$ corresponds to

$$\mathbf{x} = \mathbf{V}_1 \tilde{\Sigma}^{-1} \mathbf{U}_1^T \mathbf{y} + \mathbf{V}_2 \mathbf{x}_2' \text{ for any } \mathbf{x}_2' \in \mathbb{R}^{n-r}$$

which is the desired LS solution

Pseudo-Inverse

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, a pseudo-inverse of \mathbf{A} is defined as a matrix $\mathbf{A}^{\dagger} \in \mathbb{R}^{n \times m}$ satisfying the Moore-Penrose conditions:

(i) $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}=\mathbf{A}$; (ii) $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}$; (iii) $\mathbf{A}\mathbf{A}^{\dagger}$ is symmetric (iv) $\mathbf{A}^{\dagger}\mathbf{A}$ is symmetric

Given the thin SVD $\mathbf{A} = \mathbf{U}_1 \tilde{\Sigma} \mathbf{V}_1^T$,

$$\boldsymbol{\mathsf{A}}^{\dagger} = \boldsymbol{\mathsf{V}}_{1} \tilde{\boldsymbol{\Sigma}}^{-1} \boldsymbol{\mathsf{U}}_{1}^{\mathcal{T}}$$

- $\mathbf{x}_{\mathsf{LS}} = \mathbf{A}^{\dagger}\mathbf{y} + \boldsymbol{\eta}$ for any $\boldsymbol{\eta} \in \mathcal{R}(\mathbf{V}_2)$
- The same applies to the linear system y = Ax that has a solution
- When A has full column rank

•
$$\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

•
$$A^{\dagger}A = I$$

when A has full row rank

•
$$\mathbf{A}^{\dagger} = \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{-1}$$

•
$$AA^{\dagger} = I$$

Orthogonal Projections

• With SVD, the orthogonal projections of \mathbf{y} onto $\mathcal{R}(\mathbf{A})$ and $\mathcal{R}(\mathbf{A})^{\perp}$ are given by

$$\begin{split} \Pi_{\mathcal{R}(\mathbf{A})}(\mathbf{y}) &= \mathbf{A}\mathbf{x}_{\mathsf{LS}} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{y} = \mathbf{U}_{1}\mathbf{U}_{1}^{T}\mathbf{y} \\ \Pi_{\mathcal{R}(\mathbf{A})^{\perp}}(\mathbf{y}) &= \mathbf{y} - \mathbf{A}\mathbf{x}_{\mathsf{LS}} = (\mathbf{I} - \mathbf{A}\mathbf{A}^{\dagger})\mathbf{y} = \mathbf{U}_{2}\mathbf{U}_{2}^{T}\mathbf{y} \end{split}$$

The orthogonal projector and orthogonal complement projector of A are given by

$$\mathbf{P}_{\mathbf{A}} = \mathbf{U}_1 \mathbf{U}_1^T, \qquad \mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{U}_2 \mathbf{U}_2^T$$

- Properties:
 - P_A is idempotent, i.e., $P_AP_A = P_A$
 - P_A is symmetric
 - The eigenvalues of P_A are either 0 or 1
 - $\mathcal{R}(\mathbf{P}_{\mathbf{A}}) = \mathcal{R}(\mathbf{A})$
 - The same properties above apply to P_A^{\perp} , and $I = P_A + P_A^{\perp}$

Minimum 2-Norm Solution to Underdetermined Linear Systems

Consider solving the linear system $\mathbf{y} = \mathbf{A}\mathbf{x}$ with fat $\mathbf{A} \in \mathbb{R}^{m \times n}$, m < n

 This is an underdetermined linear system: more unknowns n than the number of equations m

Assume **A** has full row rank. We already know that $\mathbf{x} = \mathbf{A}^\dagger \mathbf{y} + \boldsymbol{\eta}$ for any $\boldsymbol{\eta} \in \mathcal{R}(\mathbf{V}_2)$ is a solution

Now discard η and take $\mathbf{x}=\mathbf{A}^{\dagger}\mathbf{y}$ as one particular solution. This is the *unique* minimum 2-norm solution to $\mathbf{y}=\mathbf{A}\mathbf{x}$, i.e., it uniquely solves

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x}\|_2^2 \qquad \text{s.t. } \mathbf{y} = \mathbf{A}\mathbf{x}$$