XN297LBW Datasheet

Single Chip 2.4GHz Transceiver

FEATURES

- Low Power
 - > 16mA TX at 0dBm output power
 - > 15mA RX at 2Mbps air data rate
 - > 2uA in power down
- Low Cost BOM
 - Few external components
 Four Capacitors, One crystal oscillator
- High Performance
 - Excellent Receiver sensitivity
 - -85dBm@2Mbps
 - -88dBm@1Mbps
 - -93dBm@250Kbps
 - Programmable Output Power Up to 13dBm
 - Stable RF performance over a wide operating voltage range
 - ➤ Built-in LDO 1.8V

GENERAL DESCRIPTION

The XN297LBW is a single chip 2.4GHz transceiver, designed for operation in the world wide ISM frequency band at 2.400~2.483GHz. The XN297LBW integrates radio frequency (RF) transmitter and receiver, frequency synthesizer, crystal oscillator, baseband GFSK modem, and so on. The XN297LBW supports one to multiple network and communication with ACK. TX power, frequency channel, and data rate can be set by SPI. Multiple external components are integrated into the chip.

2Mbps, 1Mbps 250kbps optional data	Up to 4Mbps SPI interface rate
rate	
Support 32 and 64 byte payload length	Compact 8-pin SOP8 package
Support ±20ppm 16MHz crystal	Operating voltage 2.2V~3.3V

APPLICATIONS

- TV and STB remote controls
- Wireless Mouse and keyboard
- Toys and wireless audio
- Wireless gamepads
- Active RFID
- Smart home automation

GFSK Modulation	Support automatic reply and automatic
	retransmission
Support RSSI detector	Support Data whitening and CRC

1 Electrical characteristics

Table1 XN297L Electrical characteristics

Symbol	Condition		Parameter		Unit
	at VCC = 3V±5%, T=25℃	Min	Тур	Max	
ICC	Sleep		2		uA
	Standby I		30		uA
	Standby III		650		uA
	Standby II		780		uA
	TX at -35dBm output power		9		mA
	TX at -20dBm output power		9.5		mA
	TX at 0dBm output power		16		mA
	TX at 2dBm output power		19		mA
	TX at 8dBm output power		30		mA
	TX at 13dBm output power		66		mA
	RX at 2Mbps		16.5		mA
	RX at 1Mbps		15.5		mA
	RX at 250kbps		15		mA
	General	RF			•
f_{OP}	Operating frequency	2400		2483	MHz
PLL_{res}	PLL Programming resolution		1		MHz
$f_{{\scriptscriptstyle XTAL}}$	Crystal frequency		16		MHz
DR	Data rate	1		2	Mbps
Δf_{250K}	Frequency deviation at		125		KHz
<i>△y</i> 250 <i>K</i>	250kbps				
Δf_{1M}	Frequency deviation at 1Mbps		160	250	KHz
Δf_{2M}	Frequency deviation at 2Mbps		320	500	KHz
FCH_{250K}	Channel spacing at 250Kbps		1		MHz
FCH_{1M}	Channel spacing at 1Mbps		1		MHz
FCH_{2M}	Channel spacing at 2Mbps		2		MHz
	Transmit	tter			
PRF	Typical output power	2	8	13	dBm
PRFC	Output Power Range	-35		13	dBm
PBW1	20dB Bandwidth for		2		MHz

		DEDD TRUTTO	I
	Modulated Carrier at 2Mbps		
PBW2	20dB Bandwidth for	1	MHz
	Modulated Carrier at 1Mbps		
PBW3	20dB Bandwidth for	500	KHz
	Modulated Carrier at 250Kbps		
	Receiver		
RX_{max}	Maximum received signal at	0	dBm
	<0.1% BER		
RXSENS1	Sensitivity (0.1%BER)	-83	dBm
	@2Mbps		
RXSENS 2	Sensitivity (0.1%BER)	-87	dBm
	@1Mbps		
RXSENS3	Sensitivity (0.1%BER)	-93	dBm
	@250Kbps		
C/I_{co}	C/I Co-channel (@2Mbps)	10	dBc
C/I_{1ST}	1st Adjacent Channel	-6	dBc
	Selectivity C/I		
C/I_{2ND}	2nd Adjacent Channel	-10	dBc
	Selectivity C/I		
C/I_{3RD}	3rd Adjacent Channel	-22	dBc
	Selectivity C/I		
$C/I_{_{4TH}}$	4th Adjacent Channel	-28	dBc
	Selectivity C/I		
C/I_{5TH}	5th Adjacent Channel	-34	dBc
	Selectivity C/I		
C/I_{co}	C/I Co-channel (@1Mbps)	10	dBc
C/I_{1ST}	1st Adjacent Channel	1	dBc
	Selectivity C/I		
C/I_{2ND}	2nd Adjacent Channel	-18	dBc
	Selectivity C/I		
C/I_{3RD}	3rd Adjacent Channel	-23	dBc
	Selectivity C/I		
C/I_{4TH}	4th Adjacent Channel	-28	dBc
	Selectivity C/I		
C/I_{5TH}	5th Adjacent Channel	-32	dBc
	Selectivity C/I		

C/I_{6TH}	6th Adjacent Channel		-35		dBc
	Selectivity C/I				
C/I_{co}	C/I Co-channel (@250Kbps)		2		dBc
C/I_{1ST}	1st Adjacent Channel		-8		dBc
	Selectivity C/I				
C/I_{2ND}	2nd Adjacent Channel		-18		dBc
	Selectivity C/I				
C/I_{3RD}	3rd Adjacent Channel		-24		dBc
	Selectivity C/I				
C/I_{4TH}	4th Adjacent Channel		-28		dBc
	Selectivity C/I				
C/I_{5TH}	5th Adjacent Channel		-32		dBc
	Selectivity C/I				
C/I_{6TH}	6th Adjacent Channel		-35		dBc
	Selectivity C/I				
	Operating co	nditions			
VDD	Supply voltage	2.2	3	3.3	V
VSS	Ground		0		V
V_{OH}	Output high level voltage	VDD-0.3		VDD	V
$V_{\scriptscriptstyle OL}$	Output low level voltage	VSS		VSS+0.3	V
$V_{I\!H}$	Input high level voltage	2.0	3	3.6	V
$V_{{\scriptscriptstyle IL}}$	Input low level voltage	VSS		VSS+0.3	٧

^{*} Note: In the channels, such as 2416 and 2432 MHz, integer times of 16MHz crystal, receiver sensitivity degrades about 2dB; and modulation quality of the emission signal (EVM) falls by 10%.

^{*} Note: In 250KBps mode, it should not be more than 16 bytes of payload length, because of frequency drift in open-loop transmition.

2 Absolute maximum ratings

Table 2 XN297LBW absolute maximum ratings

Symbol	Condition	P	Parameter		
		Min	Тур	Max	
	maximum r	atings			
$V_{\scriptscriptstyle DD}$	Supply voltage	-0.3		3.6	V
$V_{_I}$	Input voltage	-0.3		5	V
V_o	Output voltage	VSS		VDD	
Pd	Total Power Dissipation			300	mW
	(TA=-40°C~85°C)				
T_{OP}	Operating Temperature	-40		85	°C
T_{STG}	Storage Temperature	-40		125	°C

^{*} Note: Exceeding one or more of the limiting values may cause permanent damage to XN297LBW.

3 Block diagram

Figure 1 XN297LBW block diagram

^{*} Caution: Electrostatic sensitive device, comply with protection rules when operating.

4 Pin definition

Figure 2 XN297LBW pin definition

Table 3 Pin function

PIN	Name	Function	PIN	Name	Function
1	CSN	SPI Chip Select	5	XC1	Crystal Pin 1
2	SCK	SPI Clock	6	XC2	Crystal Pin 2
3	DATA	SPI Data Input/Output	7	VSS	Ground
4	VDD	Power Supply	8	ANT	Antenna interface

5 Operational Modes

This chapter describes XN297LBW all kinds of working mode, and is used to control the chip into the working mode of method. XN297LBW own state machine is controlled by chip internal registers configuration values and external signal pin.

5.1 State diagram

Six kinds of working mode in table 4 gives the corresponding mode of control register and FIFO registers.

Table 4 Control BIT and function description

MODE	PWR_DN	STB1	STB3	STB2	RX	TX
CONTROL BIT						
PWR_UP	0	1	1	1	1	1
EN_PM	0	0	1	1	1	1
CE	0	0	0	1	1	1
PRIM_RX	Χ	Х	Х	0	1	0
FUNCTION						
DESCRIPTION						
SPI operation	√	√	√	✓	√	√
Keep register	√	√	√	✓	✓	√
value						
Crystal	Х	✓	✓	√	√	√
oscillator						
work						
Crystal	Х	Х	Х	√	√	√
oscillator						
output						
Main power	Х	Х	✓	√	√	√
management						
work						
TX work	Χ	Х	Х	Χ	Χ	√
RX work	Х	Х	Х	Х	√	Х

5.2 State diagram

Figure 3 is XN297LBW working state diagram, said six working mode between jump XN297LBW in VDD is greater than 2.2 V to begin to work properly into sleep mode, the MCU can be sent via SPI configuration commands and CE pin into the other five state.

5.3 IRQ PIN

In the status register TX_DS RX_DR or MAX_RT is 1, report and the corresponding interrupt enable bit is 0, IRQ pins interrupt trigger. The MCU writes 1 to the corresponding interrupt source, clear the interrupt. IRQ pins interrupt trigger can be blocked or enabled, report by setting the interrupt enable bit is 1, ban IRQ pins interrupt triggered.

6 DATA FIFO

Figure 4 FIFO block diagram

The XN297LBW contains TX FIFO, RX FIFO. It is sent via SPI read/write command. It writes TX FIFO in TX mode by W_TX_PAYLOAD and W_TX_NO_ACK instructions. If MAX_RT interruption, data will be cleared in the TX FIFO. It reads PAYLOAD in RX FIFO in receiving mode by R_RX_PAYLOAD, and it reads the length of the PAYLOAD by R_RX_PL_WID instruction. FIFO_STATUS register indicates FIFO states.

7 SPI CONTROL

The XN297L is controlled by SPI port for read and write register, and command. The XN297L is a slave terminal, SPI transfer rate depends on the MCU interface speed, and the maximum data transfer rate is 4 MBps.

SPI interface is a standard SPI interface are shown in table 5, you can use the general I/O for MCU simulation SPI interface. CSN pin to 0, SPI interface instructions to be performed. From 1 to 0 a CSN pin changes execute one instruction. After the change from 1 to 0 CSN pin can be read by MISO status register contents.

Table 5 SPI port

PIN	I/O DIRECTION	FUNCTION DESCRIPTION
CSN	Input	SPI Chip Select
SCK	Input	Clock
DATA	Input/Output	Serial Data Input/Output

*Note1: CSN Pin to 0, Data pin input the addr from MCU. After 8 clock, Data Pin transformed from input status to output status, and MCU read data.

*Note2: CE status is controlled by SPI.

*Note3: IRQ status is obtained by inquiring register

*Note4: During emitting signal, SPI writing/reading is forbidden.

7.1 SPI Commands

Table 6 SPI command format

<Command word: MSBit to LSBit (one byte)>

<Data bytes: LSByte to MSByte, MSBit in each byte first>

COMMAND	COMMAND	DATA	OPERATION
	WORD	BYTES	

	(BINARY)		
R_REGISTER	000A AAAA	1 to 5	Read registers.
			AAAAA =5 bit Register Map
			Address
W_REGISTER	001A AAAA	1 to 5	Write registers.
			AAAAA = 5 bit Register Map
			Address
			Executable in power down or
			standby modes only.
R_RX_PAYLOAD	0110 0001	1 to 32/64	Read RX-payload.
			A read operation starts at byte
			0. Payload is deleted from RX
			FIFO after it is read. Used in RX
			mode.
W_TX_PAYLOAD	1010 0000	1 to 32/64	Write TX-payload.
			A write operation starts at byte
			0. Used in TX payload.
FLUSH_TX	1110 0001	0	Flush TX FIFO, used in TX
			mode
FLUSH_RX	1110 0010	0	Flush RX FIFO, used in RX
			mode
REUSE_TX_PL	1110 0011	0	Used for a PTX device, reuse
			last transmitted payload.
			Packets are repeatedly
			retransmitted as long as CE is
			high. TX payload reuse is
			active until W_TX_PAYLOAD or
			FLUSH_TX is executed.
ACTIVATE	0101 0000	1	This write command followed
			by data 0x73 activates the
			following features:
			• R_RX_PL_WID
			• W_TX_PAYLOAD_NOACK
			• W_ACK_PAYLOAD
			This is executable in power
			down or standby modes only.

DEACTIVE			This write command followed
DEACTIVE			by data 0x8C deactivates the
			following features:
R_RX_PL_WID	0110 0000	0	Read RX-payload width for the
K_KX_FL_VVID	0110 0000		top, R_RX_PAYLOAD in the RX
			FIFO.
W ACK DAVIOAD	1010 1PPP	1 to 32/64	Used in RX mode.
W_ACK_PAYLOAD	1010 1999	1 10 32/64	
			Write Payload to be
			transmitted together with
			ACK packet on PIPE PPP. (PPP
			valid in the range from 000 to
			101). Maximum two ACK
			packet payloads can be
			pending. Payloads with same
			PPP are handled using first in -
N/ T/ DAN/ OAD NO	1011 0000	4 . 22/64	first out principle.
W_TX_PAYLOAD_NO	1011 0000	1 to 32/64	Write Payload to be
ACK			transmitted, used in TX mode.
			Disable auto ACK on this
			packet.
CE_FSPI_ON	1111 1101	1	SPI command CE internal logic
			1, use the command followed
			by the data 0x00
CE_FSPI_OFF	1111 1100	1	SPI command CE internal logic
			0, use the command followed
			by the data 0x00
RST_FSPI_HOLD	0101 0011	1	With the command followed
			by data 0x5A, makes the
			XN297L into reset and
			maintain
RST_FSPI_RELS			With the command followed
			by data 0xA5, release the
			XN297 reset and start to work
			normally

The R_REGISTER and W_REGISTER commands can operate on single or multi-byte registers. When accessing multi-byte registers, first read or write the MSBit of LSByte. Terminate the writing before all bytes in a multi-byte register are written, then it leaves the unwritten MSByte(s) unchanged. For example, the LSByte of RX_ADDR_PO can be modified by writing only one byte to the RX_ADDR_PO register.

7.2 SPI Timing

Figure 5 SPI read operation

8 Packet format description

8.1 Packet format for normal Burst

Table 7 Packet format for normal burst

Preamble	Address	Payload	CRC
(3 byte)	(3~5 byte)	(1~32/64 byte)	(0/2 byte)

It can choose Address and Payload part to scramble, according to scrambler

configuration bits.

8.2 Packet format for Enhanced Burst

Table 8 Packet format for enhanced burst

Preamble	Address	Package control field (10bit)			Payload	CRC
(3 byte)	(3~5	Payload	PID	NO_ACK	(1~32/64	(0/2
	byte)	length (7bit)	(2bit)	(1bit)	byte)	byte)

It can choose Address, Package control field and Payload part to scramble, according to scrambler configuration bits.

8.3 Packet format for Enhanced Burst ACK

Table 9 Packet format for enhanced burst ack

Preamble	Address	Package control field (10bit)			CRC
(3 byte)	(3~5	Payload	PID	NO_ACK	(0/2 byte)
	byte)	length (7bit)	(2bit)	(1bit)	

It can choose Address, Package control field to scramble, according to scrambler configuration bits.

9 Application example

Figure 6 XN297L application

10 Package size

	(UNITS OF MEASURE=MILLIMETER)				
SYMBOL		MIN	NOM	MAX	
	Α	1.35	1.55	1.75	
	A1	0.10	0.15	0.25	
	A2	1.25	1.40	1.65	
	A3	0.50	0.60	0.70	
	b	0.38	-	0.51	
	b1	0.37	0.42	0.47	
絫	С	0.17	_	0.25	
Δ	c1	0.17	0.20	0.23	
	D	4.80	4.90	5.00	
	E	5.80	6.00	6.20	
	E1	3.80	3.90	4.00	
	e				
	L	0.45	0.60	0.80	
	L1				
	L2	0.25BSC			
	R	0.07	-	-	
	R1	0.07	-	-	
	h	0.30	0.40	0.50	
	θ	0.	-	8.	
	θ1	15'	17*	19*	
	θ2	11"	13*	15*	
	θ3	15*	17*	19"	
	θ4	11'	13°	15*	

Figure 7 SOP8L package size