

Heart Failure Mortality Prediction

Machine Learning Analysis for Clinical Decision Support

Project Overview

Primary Goal

Develop a predictive model to assess heart failure mortality risk using clinical patient data

Clinical Data Analysis

Utilizing comprehensive patient records including demographics, lab results, and medical history

Machine Learning Approach

Implementing logistic regression to identify key predictive factors for mortality outcomes

Dataset Overview

Clinical Data Analysis

Key Statistics

Total Patients 299

Total Features 13

Data Quality 100% Complete

Feature Categories

- Age & Demographics
- Clinical Measurements
- Binary Health Conditions
- Target Variable

7Numerical Features

5Binary Features

Data Preprocessing

Preparing data for machine learning analysis

Feature Scaling

StandardScaler normalization applied to numerical features:

```
numerical_features = ['age',
'creatinine_phosphokinase',
'ejection_fraction', 'platelets', 'serum_creatinine',
'serum_sodium', 'time']
```


Train-Test Split

Data split with stratification:

80%

Training

20%

Testing

Machine Learning Model Implementation

Logistic Regression

- Binary Classification Algorithm
- Predicts Mortality Probability (0-1)
- Sigmoid Function for Probability Mapping

```
model = LogisticRegression()
model.fit(X_train, y_train)
```

Algorithm Workflow

Input Features
12 Clinical Variables

Linear Combination

 $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_{12} X_{12}$

Sigmoid Function $P = 1/(1 + e^{-z})$

Mortality Prediction
Death Event: 0 or 1

Model Performance Results

Logistic Regression Classification Metrics

Confusion Matrix Analysis

- ✓ True Negatives: 38 patients correctly predicted as survivors
- False Positives: 3 patients incorrectly predicted as deceased
- False Negatives: 8 patients incorrectly predicted as survivors
- ✓ True Positives: 11 patients correctly predicted as deceased
 - **Model Insight:** High specificity (92.7%) indicates excellent ability to identify survivors, while sensitivity (57.9%) suggests room for improvement in detecting mortality risk.

Key Conclusions

Strong Predictive Performance

AUC score of 86.14% demonstrates excellent model discrimination capability

Balanced Accuracy

Overall accuracy of 81.67% with good precision-recall balance

Clinical Relevance

Model successfully identifies high-risk patients for early intervention

Future Directions

Advanced Algorithms

Explore ensemble methods, neural networks, and gradient boosting for improved performance

Feature Engineering

Incorporate additional clinical markers and patient history data

Clinical Validation

Validate model with larger, multi-center datasets for broader applicability

Clinical Integration

Develop user-friendly interface for real-time clinical decision

Successful ML Model for Heart Failure Mortality Prediction