W rzucie ukośnym mamy do czynienia z lotem ciała wyrzuconego z poziomu zerowego ($y_0 = 0$). Ciału jest nadawana prędkość o wartości v_0 , skierowana pod kątem a do poziomu. Ciało porusza się łukiem, by po pewnym czasie opaść na ziemię. Wygodnie jest umieścić rysunek rzutu ukośnego w układzie współrzędnych, co ułatwia orientację w nazwach zmiennych i pozwala na wyprowadzenie równania toru.

Odległość jaką przebywa ciało w poziomie do momentu upadku na poziom początkowy nazwiemy zasięgiem (Z) rzutu ukośnego.

Początkowe położenie:	$ \begin{vmatrix} x = 0 \\ y = 0 \end{vmatrix} $
Kąt , jaki prędkość początkowa tworzy z poziomem:	α
Prędkość początkowa ma wartość v ₀	Prędkość pocz. pozioma: $v_{0x} = v_0 \cdot \cos \alpha$ Prędkość pocz. pionowa: $v_{0y} = v_0 \cdot \sin \alpha$
Przyspieszenie ma wartość g.	Przyspieszenie w tym ruchu jest stałe i jest skierowane pionowo w dół.

W przypadku gdy nie musimy uwzględniać oporu powietrza, torem ruchu ciała jest parabola. Ruch ciała rozkłada się wtedy na dwa ruchy prostsze:

- ruch w poziomie (współrzędna X-owa) odbywa się ze stałą prędkością o wartości składowej poziomej prędkości początkowej v_{0X}
- ruch w pionie (współrzędna Y-owa) jest w istocie rzutem pionowym, czyli ruchem jednostajnie zmiennym z prędkością początkową równą **składowej pionowej** v_{0Y} .

Wzory opisujące rzut ukośny

Prędkość pozioma v_x (w dowolnej chwili czasu t):

$$v_x = v_{0x} = const$$

$$v_x = v_0 \cos a$$

Prędkość pionowa vy po czasie t:

$$v_y = v_0$$
 sin a - g t

Odległość pozioma przebyta w poziomie po czasie t:

$$x = v_{ox}$$
 $t = v_0 t \cos \alpha$

Wysokość na jakiej znajduje się ciało po czasie t:

$$y = v_{0y} \cdot t - \frac{g}{2}t^2$$

$$y = v_0 \cdot t \cdot \sin \alpha - \frac{g}{2}t^2$$

Czas lotu do momentu upadku na poziom początkowy:

$$t_s = \frac{2v_{0y}}{g} = \frac{2v_0 \cdot \sin \alpha}{g}$$

Czas wznoszenia do osiągnięcia maksymalnej wysokości:

$$t_{\scriptscriptstyle W} = \frac{v_{\scriptscriptstyle 0y}}{g} = \frac{v_{\scriptscriptstyle 0} \cdot \sin \alpha}{g}$$

$$t_w = 1 t_s$$

Zasięg rzutu poziomego (odległość przebyta w poziomie do momentu upadku na poziom początkowy):	$Z = \frac{2v_0^2 \cdot \sin \alpha \cdot \cos \alpha}{g} = \frac{v_0^2}{g} \sin 2\alpha$
Maksymalna osiągnięta wysokość:	$H_{\text{max}} = \frac{v_{0y}^2}{2 \cdot g}$
	$H_{\text{max}} = \frac{{v_0}^2 \cdot \sin^2 \alpha}{2 \cdot g}$

Tor rzutu ukośnego ma kształt paraboli skierowanej ramionami w dół

Równanie toru rzutu ukośnego

$$y = x \cdot \lg \alpha - \frac{g}{2 \cdot v_{0x}^2} x^2$$

lub

$$y = x \cdot \lg \alpha - \frac{g}{2 \cdot v_0^2 \cdot \cos^2 \alpha} x^2$$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.