



# KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

## II ETAP REJONOWY

13 grudnia 2017 r.



#### Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

| Maksymalna liczba punktów   | 40 | 100% |
|-----------------------------|----|------|
| Uzyskana liczba punktów     |    | %    |
| Podpis Przewodniczącej/-ego |    |      |

#### Zadanie 1. (1 pkt)

Które z poniższych jonowych równań reakcji zostało zapisane prawidłowo?

A. 
$$Ca^{2+} + CO_3^{2-} + 2H^+ + 2Cl^- \rightarrow Ca^{2+} + 2Cl^- + CO_2 + H_2O$$

B. 
$$Li + 2 H_2O \rightarrow Li^+ + 2 OH^- + H_2$$

C. 
$$SO_3 + 2K^+ + 2OH^- \rightarrow 2K^+ + SO_4^{2-} + H_2O$$

D. 
$$Ag^{+} + NO_{3}^{-} + Na^{+} + Cl^{-} \rightarrow Ag^{+} + Cl^{-} + NaNO_{3}$$

#### Zadanie 2. (1 pkt)

Produktem spalania wodoru w chlorze jest:

- A. kwas solny
- B. kwas chlorowy
- C. chlorowodór
- D. kwas chlorowodorowy

#### Zadanie 3. (1 pkt)

Amoniak – wodorek azotu, bardzo dobrze rozpuszcza się w wodzie. Wodny roztwór amoniaku nazywany jest wodą amoniakalną.

Jakie jest pH wodnego roztworu amoniaku?

- A. Większe od 1, ale mniejsze od 7
- B. Równe 7
- C. Większe od 7, ale mniejsze od 14
- D. Równe 14

#### Zadanie 4. (1 pkt)

Spośród podanych niżej związków chemicznych wskaż ten, który zawiera pierwiastek o najniższym stopniu utlenienia?

- A.  $PbBr_2$
- B.  $Al_2S_3$
- C. CH<sub>4</sub>
- D. PH<sub>3</sub>

#### **Zadanie 5.** (1 pkt)

Elektroujemność to zdolność atomu do przyciągania elektronów tworzących wiązanie kowalencyjne z atomami innego pierwiastka w związku chemicznym. Elektroujemność jest wielkością niemianowaną.

| Elektroujemnos | ść wg. skali Paulinga |
|----------------|-----------------------|
| Atom           | Wartość               |
| I              | 2,5                   |
| Br             | 2,8                   |
| Cl             | 3,0                   |
| О              | 3,5                   |
| F              | 4,0                   |

Na podstawie: A. Bielański: Podstawy chemii nieorganicznej. PWN, 2002.

Który z pierwiastków 17 grupy układu okresowego (o ogólnym symbolu X) nie tworzy kwasu o wzorze HXO<sub>3</sub> ?

- A. fluor
- B. chlor
- C. brom
- D. jod

#### Zadanie 6. (1 pkt)

W której z poniższych odpowiedzi wymieniony jest sprzęt laboratoryjny potrzebny do przygotowania 100 cm³ roztworu NaOH o stężeniu 0,1 mol·dm⁻³?

- A. Waga analityczna, naczynko wagowe, probówka, tryskawka z wodą destylowaną.
- B. Waga analityczna, naczynko wagowe, zlewka o poj. 100 cm³, cylinder miarowy, tryskawka z wodą destylowaną.
- C. Waga analityczna, naczynko wagowe, kolba stożkowa o poj. 100 cm³, cylinder miarowy, tryskawka z wodą destylowaną.
- D. Waga analityczna, naczynko wagowe, kolba miarowa o poj. 100 cm³ z korkiem, tryskawka z wodą destylowaną.

#### **Zadanie 7.** (1 pkt)

Zielony roztwór manganianu(VI) potasu zakwaszony kwasem siarkowym(VI) zmienia barwę na fioletową czemu towarzyszy wytrącenie brunatnego osadu. Obserwacja ta związana jest z właściwością jonów manganianowych(VI), które w środowisku kwasowym ulegają reakcji dysproporcjonowania zgodnie z równaniem:

$$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$$

Korzystając z podanych w zadaniu informacji wskaż równanie zachodzącej reakcji redukcji.

A. 
$$MnO_4^{2-} + 4H^+ + 2e^- \rightarrow MnO_2 + 2H_2O$$

B. 
$$MnO_4^{2-} \rightarrow MnO_4^{-} + e^{-}$$

C. 
$$2MnO_4^{2-} + 4H^+ + e^- \rightarrow MnO_4^- + MnO_2 + 2H_2O$$

D. 
$$H^+ + OH^- \rightarrow H_2O$$

#### **Zadanie 8.** (1 pkt)

Uczeń przeprowadził trzy doświadczenia, w których do trzech równych porcji roztworów różnych kwasów o tym samym stężeniu molowym, dodawał stechiometryczną ilość roztworu wodorotlenku sodu o stężeniu 0,1 mol·dm<sup>-3</sup>.

Doświadczenie I

Do 20,0 cm<sup>3</sup> 0,1-molowego roztworu HCl dodał 0,1-molowy roztwór NaOH.

Doświadczenie II

Do 20,0 cm<sup>3</sup> 0,1-molowego roztworu H<sub>2</sub>S dodał 0,1-molowy roztwór NaOH.

Doświadczenie III

Do 20,0 cm<sup>3</sup> 0,1-molowego roztworu HNO<sub>2</sub> dodał 0,1-molowy roztwór NaOH.

Zaznacz poprawną odpowiedź (A-D) opisującą objętość dodanego wodorotlenku sodu:

największa / taka sama / najmniejsza ilość

zakładając, że dodawano stechiometryczna ilość tej substancji.

| Odpowiedź | Numer doświadczenia, w którym objętość zużytego NaOH jest: |           |             |  |
|-----------|------------------------------------------------------------|-----------|-------------|--|
| Oupowieuz | największa                                                 | taka sama | najmniejsza |  |
| A.        | II                                                         | I, II     | III         |  |
| B.        | I                                                          | II, III   | III, II     |  |
| C.        | II                                                         | I, III    | I, III      |  |
| D.        | I, III                                                     | II, III   | II          |  |

#### **Zadanie 9.** (1 pkt)

Bromowodór jest jednym z produktów fotochemicznej reakcji bromu z:

- A. Acetylenem
- B. Propanem
- C. Propenem
- D. Propynem

#### **Zadanie 10.** (1 pkt)

Poniżej podano wzory dwóch związków organicznych:



Wskaż zdanie prawdziwe:

- A. Związki I i II są względem siebie homologami
- B. Związki I i II są względem siebie izomerami
- C. Związki I i II mają ten sam wzór rzeczywisty
- D. Związek I i II jest palny

#### **Zadanie 11.** (2 pkt)

Reakcję miedzi z rozcieńczonym roztworem kwasu azotowego(V) ilustruje równanie:

$$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$$

W celu ustalenia wpływu wybranych czynników na szybkość reakcji chemicznych przeprowadzono kilkukrotnie reakcję miedzi z rozcieńczonym kwasem azotowym(V), za każdym razem zmieniając jednak jeden z warunków prowadzenia przemiany.

Poniższa tabela dotyczy wpływu wybranych czynników na szybkość opisanej reakcji. Uzupełnij tabelę wpisując wyrazy:

zwiększa się, zmniejsza się, bez zmian

| Nr | Zmiana warunków reakcji poprzez                                                                                  | Wpływ zmiany na szybkość reakcji |
|----|------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1. | użycie mniej rozdrobnionej miedzi                                                                                |                                  |
| 2. | obniżenie temperatury prowadzenia przemiany o 10° C przez zanurzenie naczynia do zlewki z mieszaniną wody i lodu |                                  |
| 3. | rozcieńczenie kwasu azotowego(V)                                                                                 |                                  |
| 4. | podwyższenie temperatury prowadzenia<br>przemiany o 10° C przez ogrzewanie naczynia<br>palnikiem gazowym         |                                  |

#### **Zadanie 12.** (2 pkt)

Rtęć występuje w związkach chemicznych na I i II stopniu utlenienia tworząc odpowiednio jony  $Hg_2^{2+}$  oraz  $Hg^{2+}$ . Nierozpuszczalny w wodzie jodek rtęci(I) występuje w dwóch odmianach różniących się trwałością i barwą. Podczas dodawania roztworu jodku potasu do roztworu azotanu(V) rtęci(I) wytrąca się najpierw żółty osad jodku rtęci(I), który z czasem przekształca się w odmianę tego związku o barwie pomarańczowej.

a) Napisz jonowe skrócone równanie reakcji zachodzącej podczas dodawania roztworu

| azotanu(V) rtęci(I) do roztworu jodku potasu.                                                                         |
|-----------------------------------------------------------------------------------------------------------------------|
| Równanie reakcji:                                                                                                     |
|                                                                                                                       |
|                                                                                                                       |
| <ul> <li>b) Uzupełnij poniższe zdanie dotyczące jodku rtęci(I) podając odpowiednią barwę tego<br/>związku.</li> </ul> |
| Trwalsza odmiana jodku rtęci(I) ma barwę                                                                              |

#### Informacja do zadania 13 – 14

W atomie pewnego pierwiastka elektrony rozmieszczone są na czterech powłokach elektronowych (K, L, M i N) przy czym tylko dwa elektrony obsadzają powłokę N. Pierwiastek ten tworzy związki chemiczne, w których przyjmuje tylko II lub III stopień utlenienia. Atom jedynego trwałego izotopu tego pierwiastka zawiera nieparzystą liczbę elektronów oraz 32 neutrony w jądrze. Nietrwały, promieniotwórczy izotop-60 tego pierwiastka, użyty w urządzeniach określany mianem "bomba" jest stosowany m.in. w medycynie nuklearnej do radioterapii.



#### **Zadanie 16.** (2 pkt)

Chromatografia to metoda rozdzielania mieszaniny związków chemicznych wykorzystująca odmienną zdolność oddziaływania składników mieszaniny z podłożem nazywanym fazą stałą lub stacjonarną oraz na różnej zdolności oddziaływania składników mieszaniny z rozpuszczalnikiem nazywanym fazą ruchomą.

W celu rozdzielenia mieszaniny dwóch substancji: A - o żółtej barwie i B - o niebieskiej barwie, użyto płytki pokrytej cienką warstwą substancji niepolarnej. Na płytkę naniesiono kroplę ciekłej mieszaniny o barwie zielonej, a następnie umieszczono płytkę w przykrytej szkiełkiem zegarowym zlewce, do której uprzednio nalano kilkanaście cm³ polarnego rozpuszczalnika. Po kilkunastu minutach zauważono, że rozpuszczalnik przemieszczał się w górę płytki i rozdzielił zieloną plamę mieszaniny na dwie plamy: żółtą, która "powędrowała" z rozpuszczalnikiem w górę płytki i niebieską którą przesunęła się tylko nieznacznie w górę.

Zaznacz kółkiem cyfry tak, aby uzyskać prawdziwe zdanie opisujące właściwości substancji A będącej składnikiem rozdzielanej mieszaniny.

| Cząsteczki<br>substancji A<br>przemieściły | 1.były polarne    | stąd | stąd<br>wynika,                          | 3.silnie<br>oddziaływały<br>z fazą stałą | i                                      | 5.duże<br>powinowactwo do<br>rozpuszczalnika |
|--------------------------------------------|-------------------|------|------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------|
| się na dużą<br>odległość<br>ponieważ       | 2.byly niepolarne | że   | 4. słabo<br>oddziaływały<br>z fazą stałą | miały                                    | 6.małe powinowactwo do rozpuszczalnika |                                              |

#### Informacja do zadania 17 – 18

Hydratami nazywamy substancje zawierające w swoim składzie ściśle określoną ilość wody. Przykładem hydratu jest siarczan(VI) miedzi(II) – woda 1/5 o wzorze  $CuSO_4 \cdot 5 H_2O$ . Hydraty w zależności od długości czasu prowadzonego ogrzewania tracą całą lub część zawartej w nich wody przechodząc w sole mniej uwodnione lub bezwodne.

Przeprowadzono doświadczenie opisane poniższym schematem:



| Zadanie 17. (2 pkt)  a) Napisz równanie reakcji jaka zachodzi podczas długotrwałego ogrzewania kracia siarczanu(VI) miedzi(II) – woda 1/5.                                                    | ryształów |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| b) Sformułuj dwie różne obserwacje towarzyszące przebiegowi opisanego doświadcz                                                                                                               | zenia.    |
| I                                                                                                                                                                                             |           |
| II.                                                                                                                                                                                           |           |
| Zadanie 18. (2 pkt)  Oblicz stężenie procentowe(w % mas.) roztworu powstałego przez rozpuszcz siarczan(VI) miedzi(II) – woda 1/5 w 100 gramach wody. Wynik podaj z dokładi liczb całkowitych. |           |

#### **Zadanie 19.** (2 pkt)

a) Równanie reakcii utlenienia:

Wodę królewską uzyskuje się przez zmieszanie stężonego kwasu azotowego(V) ze stężonym kwasem solnym w stosunku objętościowym 1:3. Mieszania ta wykazuje zdolność roztwarzania metali szlachetnych m.in. złota, platyny i palladu.

Proces roztwarzania złota w wodzie królewskiej można podzielić na dwa etapy:

- 1. Utlenianie metalicznego złota do jonów złota(III) przez aniony azotanowe(V) pochodzące z dysocjacji kwasu azotowego(V). Dodatkowymi produktami reakcji są: trujący gaz o charakterystycznej brunatnej barwie i ostrym zapachu oraz woda.
- 2. Wiązanie jonów złota(III) przez aniony chlorkowe pochodzące z dysocjacji kwasu solnego,

w wyniku czego tworzą się aniony kompleksowe o wzorze AuCl<sub>4</sub><sup>-</sup>.

Na podst.: F. Bonaccorso, G. Calogero, G. Di Marco, O. M. Maragò, P. G. Gucciardi, U. Giorgianni, K. Channon, G. Sabatino., Fabrication of gold tips by chemical etching in aqua regia, "Rev. Sci. Instrum.", 2007.

Napisz jonowe skrócone równanie reakcji zachodzącej podczas pierwszego etapu roztwarzania złota w wodzie królewskiej. Współczynniki stechiometryczne dobierz metodą bilansu elektronowego zapisując równania reakcji utlenienia i redukcji.

| <br>               |              |          |         |            |       |              |       |       |        |
|--------------------|--------------|----------|---------|------------|-------|--------------|-------|-------|--------|
| Równan             | ie reakcji r | edukcji: |         |            |       |              |       |       |        |
| Jonowe<br>królewsk |              | równanie | reakcji | pierwszego | etapu | roztwarzania | złota | <br>w | wodzie |

| <b>7</b> 24 | anie | 20  | (2) | nkt)      |
|-------------|------|-----|-----|-----------|
| Lau         | ame  | ۷٠. | ( ~ | $px\iota$ |

Odkryte w XIX wieku klatraty metanu zwane też hydratami metanu mają wzór ogólny  $mCH_4 \cdot nH_2O$ , w którym m i n są liczbami całkowitymi. Klatraty metanu to białe, krystaliczne ciała stałe występujące m.in. na dnie oceanów. W 1996 roku załoga niemieckiego statku badawczego FS Sonne wydobyła z dna Pacyfiku 50 kg klatratów metanu. Rozważa się wykorzystanie hydratów metanu jako źródła gazu ziemnego.

|                | Na podst.: pi.wikipedia.org/wiki/kiatrat_metanu                                                                                                                                                                                                                                                     |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | wzór klatratu metanu wiedząc, że zawartość $CH_4$ w tym hydracie wynosi 13,39 % mas. zenia prowadź z dokładnością do dwóch miejsc po przecinku.                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |
| Reako<br>kwaso | <b>nie 21.</b> (2 pkt)<br>cje alkenów o prostych łańcuchach węglowych z bromowodorem w środowisku<br>owym(H <sub>2</sub> SO <sub>4</sub> ) przebiegają zgodnie z regułą Markownikowa. W środowisku nadtlenków<br>a ta nie ma zastosowania – przyłączenie zachodzi niezgodnie z regułą Markownikowa. |
| a)             | Napisz wzór półstrukturalny(grupowy) produktu addycji HBr do propenu realizowanej w obecności nadtlenków.                                                                                                                                                                                           |
| ••             |                                                                                                                                                                                                                                                                                                     |
| b)             | Podaj nazwę systematyczną produktu addycji HBr do propenu realizowanej <u>w</u> środowisku o odczynie kwasowym(H <sub>2</sub> SO <sub>4</sub> ) bez obecności nadtlenków.                                                                                                                           |
|                |                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                     |

#### **Zadanie 22.** (2 pkt)

Uzupełnij poniższą tabelę podając prawidłową nazwę systematyczną narysowanego związku organicznego oraz rysując brakujący wzór półstrukturalny(grupowy) węglowodoru o podanej nazwie systematycznej.

| Wzór<br>półstrukturalny<br>(grupowy) | CH <sub>3</sub> CI   CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> |                        |
|--------------------------------------|----------------------------------------------------------------------|------------------------|
| Nazwa<br>systematyczna               |                                                                      | 3-etylo-2-metylopentan |

#### **Zadanie 23.** (1 pkt)

Benzyna to mieszanina ciekłych węglowodorów, której głównymi składnikami są nasycone węglowodory alifatyczne.

Napisz w formie cząsteczkowej równanie reakcji spalania całkowitego najlżejszego alkanu wchodzącego w skład benzyny.

.....

#### **Zadanie 24.** (2 pkt)

 $SiO_2$  – tlenek krzemu(IV) często nazywany również krzemionką jest głównym składnikiem szkła. Jest to krystaliczne ciało stałe o dużej twardości zaliczanym do bezwodników kwasowych.

a) Zaprojektuj doświadczenie, w którym z tlenku krzemu(IV) otrzymasz kwas krzemowy(IV). W tym celu narysuj schemat doświadczenia uwzględniający warunki przeprowadzenia reakcji i niezbędne odczynniki chemiczne.

Schemat doświadczenia uwzględniającego odczynniki i warunki przebiegu reakcji:

b) Napisz, w formie cząsteczkowej równania reakcji zachodzących podczas każdego

|            | etapu zaprojektowanego doświadczenia.                                                                                                                                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eta        | p 1:                                                                                                                                                                                                                                                           |
| Eta        | p 2:                                                                                                                                                                                                                                                           |
| Zac        | danie 25. (2 pkt)                                                                                                                                                                                                                                              |
| Kai<br>spa | talizatory samochodowe przekształcają m.in. szkodliwy tlenek azotu(II) będący składnikiem dlin w cząsteczkowy azot. Wydajność stosowanych obecnie katalizatorów nie jest jednak 19% i dlatego spore ilości tlenku azotu(II) przedostają się do atmosfery.      |
| ozo        | troposferze – przypowierzchniowej warstwie atmosfery, tlenek azotu(II) ułatwia tworzenie<br>nu. W ozonosferze – górnej warstwie atmosfery, tlenek azotu(II) powoduje natomiast<br>kład ozonu oraz jest produktem reakcji tlenu atomowego z tlenkiem azotu(IV). |
| Por        | niżej przedstawiono równania reakcji, które zachodzą w troposferze i ozonosferze.                                                                                                                                                                              |
|            | $O_2 + O \rightarrow O_3$ $O + NO_2 \rightarrow NO + O_2$ $NO_2 \rightarrow NO + O$ $2NO + O_2 \rightarrow 2NO_2$ $NO + O_3 \rightarrow NO_2 + O_2$                                                                                                            |
| a)         | Wybierz trzy równania reakcji które ilustrują powstawanie ozonu w <u>troposferze</u> (przy udziale NO) i napisz je w kolejności w jakiej zachodzą.                                                                                                             |
|            | 1                                                                                                                                                                                                                                                              |
|            | 2                                                                                                                                                                                                                                                              |
|            | 3                                                                                                                                                                                                                                                              |
| b)         | Określ funkcję jaką pełni NO w reakcjach zachodzących w <u>ozonosferze</u> ( <i>substrat</i> , <i>produkt</i> , <i>katalizator</i> ):                                                                                                                          |
|            |                                                                                                                                                                                                                                                                |

#### **Zadanie 26.** (2 pkt)

Tlenek węgla(II) - czad to niebezpieczny dla organizmów bezbarwny i bezwonny gaz zaliczany do tlenków obojętnych. Powstaje on m.in. w czasie spalania węgla i związków organicznych przy niedostatecznym dostępie powietrza. Najważniejszym sposobem ratowania zaczadziałych ludzi jest podawanie im do oddychania powietrza wzbogaconego w czysty tlen. Następuje wówczas zahamowanie niedotlenienia komórek i utlenienie zawartego w organizmie tlenku węgla(II) do tlenku węgla(IV) zgodnie z równaniem:

$$2CO_{(g)} + O_{2(g)} \Leftrightarrow 2CO_{2(g)}$$

Na podst.: A. Bielański, Podstawy chemii nieorganicznej, PWN, Warszawa 2002

W zamkniętym tłokiem zbiorniku, zmieszano utrzymując warunki normalne tlen i tlenek węgla(II) w stosunku objętościowym 0,1:0,2. Po pewnym czasie, kiedy w zbiorniku ustalił się stan równowagi stwierdzono, że reakcja nie przebiegła ze 100% wydajnością, a objętość dwutlenku węgla wynosiła 0,45 dm³(w przeliczeniu na warunki normalne).

Oblicz zawartość nieprzereagowanego tlenku węgla(II). Wynik podaj w % objętościowych.

| Obliczenia:                                                                                  |
|----------------------------------------------------------------------------------------------|
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
| Odpowiedź: Zawartość nieprzereagowanego tlenku węgla(II) w mieszaninie poreakcyjnej wynosiła |

| <b>Zadanie 27.</b> (2 pkt) |
|----------------------------|
|----------------------------|

**Zadanie** 27. (2 pkt)

Uczeń przeprowadził doświadczenie, w którym do 20 cm³ roztworu azotanu(V) cynku o stężeniu 0,1 mol·dm³ dodawał porcjami (każda o objętości 5 cm³) wodny roztwór wodorotlenku sodu o stężeniu 0,2 mol·dm³. Po dodaniu każdej porcji zasady sodowej uczeń dokładnie mieszał zawartość naczynia.

|    | a) | Podaj obserwacje, które zanotował uczeń po dodaniu 5 cm³ wodnego roztworu wodorotlenku sodu.                |
|----|----|-------------------------------------------------------------------------------------------------------------|
| •• | b) | Napisz w jonowe skrócone równanie reakcji jaka zaszła po dodaniu 20 cm³ wodnego roztworu wodorotlenku sodu. |
|    |    |                                                                                                             |

# Brudnopis

### UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH

masy atomowe pierwiastków podano w atomowych jednostkach masy [u] (dolna liczba, wydrukowana większą czcionką pod symbolem w krateczce pierwiastka)

| <sub>1</sub> Н<br>1     |                         |                       |                         |                         |                        |                         |                        |                         |                         |                         |                         |                         |                         |                          |                         |                         |                        | <sub>2</sub> He 4       |
|-------------------------|-------------------------|-----------------------|-------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|------------------------|-------------------------|
| <sub>3</sub> Li<br>7    | <sub>4</sub> Be<br>9    |                       |                         |                         |                        |                         |                        |                         |                         |                         |                         |                         | <sub>5</sub> B<br>11    | <sub>6</sub> C<br>12     | <sub>7</sub> N<br>14    | <sub>8</sub> O<br>16    | <sub>9</sub> F<br>19   | 10Ne<br>20              |
| 11Na<br>23              | 12Mg<br>24              |                       |                         |                         |                        |                         |                        |                         |                         |                         |                         |                         | 13Al<br>27              | 14 <b>Si</b><br>28       | 15P<br>31               | 16S<br>32               | 17Cl<br>35,5           | <sub>18</sub> Ar<br>40  |
| <sub>19</sub> K<br>39   | 20Ca<br>40              | 21Sc<br>45            | 22Ti<br>48              | 5                       | 51                     | <sub>24</sub> Cr<br>52  | 25Mn<br>55             | <sub>26</sub> F<br>56   | 59                      | 59                      | <sub>29</sub> Cu<br>64  | <sub>30</sub> Zn<br>65  | 31Ga<br>70              | 32Ge<br>73               | 33As<br>75              | 34Se<br>79              | 35Br<br>80             | 36Kr<br>84              |
| 37Rb<br>85              | <sub>38</sub> Sr<br>88  | <sub>39</sub> Y<br>89 | <sub>40</sub> Zr<br>91  | Ş                       | 93                     | <sub>2</sub> Mo<br>96   | <sub>43</sub> Tc<br>97 | 44R<br>10               |                         | 106                     | 47Ag<br>108             | 48Cd<br>112             | 49In<br>115             | <sub>50</sub> Sn<br>119  | 51Sb<br>122             | <sub>52</sub> Te<br>128 | <sub>53</sub> I<br>127 | <sub>54</sub> Xe<br>131 |
| 55Cs<br>133             | <sub>56</sub> Ba<br>137 | 57La<br>139<br>(*)    | <sub>72</sub> Hf<br>178 |                         |                        | <sub>74</sub> W<br>184  | 75Re<br>186            | <sub>76</sub> C         |                         |                         | <sub>79</sub> Au<br>197 | <sub>80</sub> Hg<br>201 | 81Tl<br>204             | 82Pb<br>207              | <sub>83</sub> Bi<br>209 | 84Po<br>209             | 85At<br>210            | 86Rn<br>222             |
| <sub>87</sub> Fr<br>223 | <sub>88</sub> Ra<br>226 | 89Ac<br>227<br>(**)   | 104Rf<br>261            |                         |                        | <sub>06</sub> Sg<br>266 | 107Bh<br>272           | 108F<br>27              |                         |                         | 111Rg<br>280            | 112Cn<br>285            | 113<br>284              | 114<br>289               | 115<br>288              | 116<br>292              |                        | 118<br>294              |
| (*)<br>lantanowc        |                         |                       |                         | <sub>60</sub> Nd<br>144 | 61F                    |                         | Sm<br>50               | <sub>63</sub> Eu<br>152 | <sub>64</sub> Gd<br>157 | <sub>65</sub> Tb<br>159 | <sub>66</sub> Dy<br>163 | <sub>67</sub> Ho<br>165 | <sub>68</sub> Er<br>167 | <sub>69</sub> Tn         |                         |                         | Lu<br>75               |                         |
| (**)<br>aktynowce       |                         |                       |                         | Pa<br>31                | <sub>92</sub> U<br>238 | 93 <sup>1</sup><br>23   |                        | Pu<br>44                | <sub>95</sub> Am<br>243 | <sub>96</sub> Cm<br>251 | <sub>97</sub> Bk<br>247 | <sub>98</sub> Cf<br>251 | <sub>99</sub> Es<br>252 | <sub>100</sub> Fm<br>257 | 101M<br>258             |                         |                        | <sub>3</sub> Lr<br>62   |

#### ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE W TEMPERATURZE 25°C

|                                      | CT | Br- | г | N03 | CH <sub>3</sub> COO | $S^{2-}$ | SO32- | SO42- | CO32- | SiO <sub>3</sub> <sup>2-</sup> | CrO <sub>4</sub> <sup>2-</sup> | PO43- | ОН |
|--------------------------------------|----|-----|---|-----|---------------------|----------|-------|-------|-------|--------------------------------|--------------------------------|-------|----|
| Na <sup>+</sup>                      | R  | R   | R | R   | R                   | R        | R     | R     | R     | R                              | R                              | R     | R  |
| K*                                   | R  | R   | R | R   | R                   | R        | R     | R     | R     | R                              | R                              | R     | R  |
| NH <sub>4</sub> <sup>+</sup>         | R  | R   | R | R   | R                   | R        | R     | R     | R     | -                              | R                              | R     | R  |
| Cu <sup>2+</sup>                     | R  | R   | - | R   | R                   | N        | N     | R     | 1,-   | N                              | N                              | N     | N  |
| Ag <sup>+</sup>                      | N  | N   | N | ·R  | R                   | N        | N     | T     | N     | N                              | N                              | N     |    |
| Mg <sup>2+</sup><br>Ca <sup>2+</sup> | R  | R   | R | -R  | R                   | R        | R     | R     | N     | N.                             | R                              | N     | N  |
| Ca <sup>2</sup> *                    | R  | R   | R | R.  | R                   | T        | N     | T     | N     | N                              | T                              | N     | T  |
| Ba <sup>2+</sup>                     | R  | R   | R | R   | R                   | R        | N     | N     | - N   | N                              | N                              | N     | R  |
| Zn <sup>2</sup> *                    | R  | R   | R | R   | R                   | N        | Т     | R     | N     | N                              | T                              | N     | N  |
| AI <sup>3+</sup>                     | R  | R   | R | R   | R                   | -        |       | R     | -     | N                              | N                              | N     | N  |
| Sn <sup>2+</sup>                     | R  | R   | R | R   | R                   | N        | -     | R     | 1 -   | N.                             | N                              | N     | N  |
| Pb <sup>2+</sup>                     | T  | T   | N | R   | R                   | N        | N     | N     | N     | N                              | N                              | N     | N  |
| Mn <sup>2+</sup>                     | R  | R   | R | R   | R                   | N        | N     | R     | N     | N                              | N                              | N     | N  |
| Fe <sup>2+</sup>                     | R  | R   | R | R   | R                   | N        | N     | R     | N     | N                              | -                              | N     | 'N |
| Fe <sup>3+</sup>                     | R  | R   | _ | R   | R                   | N        |       | R     | 1 - 1 | N                              | N                              | N     | N  |

R- substancja rozpuszczalna; T- substancja trudno rozpuszczalna (strąca się ze stęż. roztworów); N- substancja nierozpuszczalna; – oznacza, ze dana substancja albo rozkłada się w wodzie, albo nie została otrzymana

Żródło: W. Mizerski. Tablice Chemiczne, Adamantan. 2004