Provably Powerful Graph Networks

Haggai Maron 12* , Heli Ben-Hamu 1* , Hadar Serviansky 1* & Yaron Lipman 1

 1 Weizmann Institute of Science, 2 NVIDIA Research, (*Equal contribution)

Introduction

There is an ongoing research effort aimed at finding Graph Neural Network (GNN) architectures that are both *expressive* and *practical*. Recently, [2, 3] have analysed the expressive power of Message-Passing neural networks by comparing it to the Weisfeiler-Lehman (WL) hierarchy: a hierarchy of graph isomorphism tests with increasing complexity and expressive power. The main result is that massage-passing networks have limited expressive power and are at most as powerful as the first WL test (1-WL).

Goal

We wish to find GNN architectures that are provably more powerful than massage passing GNNs:

- 1. Find neural network architectures that are as powerful as k-WL test.
- 2. Due to the increasing complexity in the hierarchy, find a simple and scalable architecture that is provably more powerful than massage passing.

Weisfeiler-Lehman graph isomorphism tests

The WL tests are a family of iterative algorithms used for testing graph isomorphism. Let:

- G = (V, E, d) be a colored graph, |V| = n.
- ullet Σ is a set of colors.
- $d:V \to \Sigma$ is a function that assigns a color to each vertex in V.

1-WL. At each iteration the coloring of each node is updated according to its current color and the colors of its neighbors. Upon reaching a stable coloring a global feature of the graph is calculated in the form of a color histogram.

k-WL. The k-WL test is a generalization of 1-WL: it re-colors each k-tuple of nodes in the graph at each iteration according to its neighborhood's coloring.

k-order graph networks (k-GN)

A permutation invariant family of neural network architectures devised in [1]:

 $L_i: \mathbb{R}^{n^{k_i} \times a_i} \to \mathbb{R}^{n^{k_{i+1}} \times a_{i+1}}$ are equivariant linear layers composed of the full linear equivariant basis characterized in [1], h is an invariant layer and m is a multi-layer perceptron (MLP). The order of the network is the maximal tensor degree $\max_{i \in [d+1]} k_i = k$.

Contributions

- 1. We show that the discriminative power of k-GNs is at least as the power of k-WL. This implies that for $k \geq 3$ these models are more powerful than message-passing neural networks. However, this expressiveness comes at the cost of having to compute and store high order tensors.
- 2. We propose a *simple* and *scalable* model architecture that is provably more powerful than massage-passing networks, having the discriminative power of at least 3-WL.

Simple network architecture with 3-WL power

We propose the following neural network architecture:

$$F = m \circ h \circ B_d \circ B_{d-1} \cdots \circ B_1 \tag{1}$$

where m is an MLP, h is an invariant layer, and B_1, \ldots, B_d are blocks with the structure and code as in Figure 1. The block consists of (i) applying 3 different MLPs to the feature dimension of the input (ii) multiplying the output of two MLPs feature-wise and (iii) concatenating the output of the last MLP.

Figure 1. A basic block of a simple and powerful (3-WL) graph neural network.

Theorem. Given two graphs G = (V, E, d), G' = (V', E', d') that can be distinguished by the 3-WL graph isomorphism test, there exists a network F (equation 1) so that $F(G) \neq F(G')$. On the other direction for every two isomorphic graphs $G \cong G'$ and F (equation 1), F(G) = F(G').

Intuition. We give intuition to the improved power gained by the addition of matrix multiplication by showing that this model can distinguish between the two regular graphs that appear above, which are 2-WL indistinguishable. We consider a constant initial coloring of the graph G with adjacency matrix A. A network with 2 blocks can compute A^3 and then take its trace (using the invariant layer); trace(A^3) computes the number of cycles of length 3. Now, the graph on the right has 0 such cycles while the graph on the left has 12.

k-GNs are as powerful as k-WL

Theorem. Given two graphs G = (V, E, d), G' = (V', E', d') that can be distinguished by the k-WL graph isomorphism test, there exists a k-order network F so that $F(G) \neq F(G')$. On the other direction for every two isomorphic graphs $G \cong G'$ and k-order network F, F(G) = F(G').

Proof idea. The proof of is based on showing that k-GNs can implement the different parts of the k-WL algorithm. Namely, neighborhood aggregation and color encoding. This can be done by learning an injective function on multisets. Each k-tuple has k neighborhoods, where each neighborhood coloring is represented as a multiset. We show that a family of polynomials composed with summation and tiling over the nodes dimension is an injective multiset function that can be approximated by k-GNs. Finally, the encoding is simply concatenating the output of the above function for each neighborhood.

Experiments

Table 1. Graph Classification Results on the datasets from [4]

dataset	MUTAG	PTC	PROTEINS	NCI1	NCI109	COLLAB	IMDB-B	IMDB-M
size	188	344	1113	4110	4127	5000	1000	1500
classes	2	2	2	2	2	3	2	3
avg node #	17.9	25.5	39.1	29.8	29.6	74.4	19.7	13
			Resu	ılts				
GK	81.39±1.7	55.65±0.5	71.39±0.3	62.49±0.3	62.35±0.3	NA	NA	NA
RW	79.17 ± 2.1	55.91 ± 0.3	59.57 ± 0.1	> 3 days	NA	NA	NA	NA
PK	76±2.7	59.5 ± 2.4	73.68 ± 0.7	82.54±0.5	NA	NA	NA	NA
WL	84.11±1.9	57.97±2.5	74.68 ± 0.5	84.46 ± 0.5	85.12 ± 0.3	NA	NA	NA
FGSD	92.12	62.80	73.42	79.80	78.84	80.02	73.62	52.41
AWE-DD	NA	NA	NA	NA	NA	73.93 ± 1.9	74.45 ± 5.8	51.54 ± 3.6
AWE-FB	87.87±9.7	NA	NA	NA	NA	70.99 ± 1.4	73.13 ± 3.2	51.58 ± 4.6
DGCNN	85.83±1.7	58.59±2.5	75.54±0.9	74.44±0.5	NA	73.76±0.5	70.03±0.9	47.83±0.9
PSCN (k=10)	88.95±4.4	62.29±5.7	75 ± 2.5	76.34 ± 1.7	NA	72.6 ± 2.2	71 ± 2.3	45.23±2.8
DCNN	NA	NA	61.29 ± 1.6	56.61 ± 1.0	NA	52.11 ± 0.7	49.06 ± 1.4	33.49 ± 1.4
ECC	76.11	NA	NA	76.82	75.03	NA	NA	NA
DGK	87.44±2.7	60.08±2.6	75.68 ± 0.5	80.31±0.5	80.32±0.3	73.09 ± 0.3	66.96±0.6	44.55±0.5
DiffPool	NA	NA	78.1	NA	NA	75.5	NA	NA
CCN	$91.64{\pm}7.2$	70.62 ± 7.0	NA	76.27 ± 4.1	75.54 ± 3.4	NA	NA	NA
Invariant Graph Network	s 83.89±12.95	58.53±6.86	76.58 ± 5.49	74.33 ± 2.71	72.82 ± 1.45	78.36 ± 2.47	72.0 ± 5.54	48.73±3.41
GIN	89.4±5.6	64.6±7.0	76.2 ± 2.8	82.7 ± 1.7	NA	80.2 ± 1.9	$75.1 {\pm} 5.1$	$52.3 {\pm} 2.8$
1-2-3 GNN	86.1±	60.9±	75.5±	76.2±	NA	NA	74.2±	49.5±
Ours 1	90.55±8.7	66.17±6.54	77.2 ± 4.73	83.19±1.11	81.84 ± 1.85	80.16±1.11	72.6 ± 4.9	50 ± 3.15
Ours 2	88.88±7.4	64.7±7.46	76.39 ± 5.03	81.21±2.14	81.77 ± 1.26	81.38 ± 1.42	72.2±4.26	44.73±7.89
Ours 3	89.44±8.05	62.94±6.96	76.66±5.59	80.97±1.91	82.23 ± 1.42	80.68±1.71	73±5.77	50.46±3.59
Rank	$3^{ m rd}$	$2^{ m nd}$	$2^{ m nd}$	$2^{ m nd}$	$2^{ m nd}$	$\mathbf{1^{st}}$	$6^{ m th}$	$f 5^{ m th}$

Equivariant layers evaluation.

We performed a baseline comparison on the NCI1 dataset [4]: (i) our suggested model, denoted Matrix Product (MP); (ii) matrix product + full linear basis from [1] (MP+LIN); (iii) only full linear basis (LIN); and (iv) MLP applied to the feature dimension. Although all

methods (excluding MLP) are able to achieve a zero training error, the (MP) and (MP+LIN) enjoy better generalization than the linear basis of [1]. Note that (MP) and (MP+LIN) are comparable, however (MP) is considerably more efficient.

References

- [1] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
- In International Conference on Learning Representations, 2019.
- [2] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. arXiv preprint arXiv:1810.02244, 2018.
- [3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In International Conference on Learning Representations, 2019.
- [4] Pinar Yanardag and S.V.N. Vishwanathan. Deep Graph Kernels.
 - In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD '15, 2015.