МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе№2
по дисциплине «Организация ЭВМ и систем»
Тема: Изучение режимов адресации и формирования
исполнительного адреса.

Студент гр. 1303	Иванов А. С.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Изучить режимы адресации, используя готовую программу lr2_comp.asm на Ассемблере, также изучить формирование исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы

- 1. Был выбран вариант набора значений исходных данных vec1, vec2 и matr из файла lr2.dat, занесены данные из варианта вместо значений, указанных в изначальной программе.
- 2. Программа была протранслирована с созданием файла диагностических сообщений. Выявленные ошибки:

mov mem3, [bx];

Ошибка возникла из-за того, что команды не в состоянии оперировать сразу с двумя ячейками памяти. Один из операндов должен быть либо регистром, либо значением, а другой может быть ячейкой в памяти.

mov cx, vec2[di] / mov cx,matr[bx][di];

Ошибка возникла из-за несоответствия типов. Попытка поместить байт в слово в обоих случаях.

mov ax, matr[bx*4][di];

Ошибка возникла из-за масштабирования базового регистра bx, данный регистр нельзя использовать при индексной адресации с масштабированием.

mov ax, matr[bp+bx];

Ошибка возникла из-за того, что берутся два базовых регистра при том, что исполняемый адрес при адресации с базированием и индексированием берется как сумма адресов, расположенных в базовом и индексном регистрах.

ax,matr[bp+di+si];

Ошибка возникла из-за того, что берутся два индексных регистра при том, что исполняемый адрес при адресации с базированием и индексированием берется как сумма адресов, расположенных в базовом и индексном регистрах.

- 3. Программа была исправлена и снова протранслирована, также скомпонован загрузочный модуль.
- 4. Программа была выполнена в пошаговом режиме под управлением отладчика afdpro с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды. Результат представлен в таблице 1.

Исходный код программы и листинг программы (с исправленными ошибками) приведены в приложении А.

Таблица 1 – протокол отладки программы.

Адрес	Символический	16-ричный	Изменяемые данные

команды	код команды	код команды	г до	после
0000	PUSH DS	1E	IP = 0000	IP = 0001
			SP=0018	SP=0016
			Stack $+0 = 0000$	Stack +0 = 19F5
0001	SUB AX, AX	2BCO	AX=0000	AX=0000
			IP = 0001	IP = 0003
			SP=0016	SP=0016
0003	PUSH AX	50	IP = 0003	IP = 0004
			SP=0016	SP=0014
			Stack $+0 = 19F5$	Stack $+0 = 0000$
			Stack $+2 = 0000$	Stack +2 = 19F5
0004	MOV AX,1A07	B8071A	AX = 0000	AX =1A07
			IP = 0004	IP = 0007
			SP=0014	SP=0014
0007	MOV DS,AX	8ED8	DS=19F5	DS=1A07
			IP = 0007	IP = 0009
			SP=0014	SP=0014
0009	MOV AX,01F4	B8F401	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C
000C	MOV CX,AX	8BC8	CX = 00B0	CX=01F4
			IP = 000C	IP = 000E
000E	MOV BL,24	B324	BX = 0000	BX = 0024
			IP = 000E	IP = 0010
0010	MOV BH,CE	B7CE	BX = 0024	BX = CE24
			IP = 0010	IP = 0012
0012	MOV [0002],FFCE	C7060200C EFF	IP = 0012	IP = 0018

0018	MOV BX,0006	BB0600	BX = CE24	BX = 0006
			IP = 0018	IP = 001B
001B	MOV [0000],AX	A30000	IP = 001B	IP = 001E
001E	MOV AL,[BX]	8A07	AX = 01F4	AX = 0105
			[BX] = [0006] = 05	IP = 0020
			IP = 001E	
0020	MOV AL,[BX+03]	8A4703	AX = 0105	AX = 0108
	112,[211*00]		[BX+03] = 08	IP = 0023
			IP = 0020	
0023	MOV CX,	8B4F03	CX = 01F4	CX = 0C08
	[BX+03]		[BX+03] = 08	IP = 0026
			IP = 0023	
0026	MOV DI, 0002	BF0200	DI = 0000	DI = 0002
			IP = 0026	IP = 0029
0029	MOV AL,	8A850E00	AX = 0108	AX = 0114
	[000E+DI]		[000E+DI] = 14	IP = 002D
			IP = 0029	
002D	MOV BX, 0003	BB0300	BX = 0006	BX = 0003
	,		IP = 002D	IP = 0030
0030	MOV AL,	8A811600	[0016+BX+DI] = 03	AX = 0103
	[0016+BX+DI]		AX = 0114	IP = 0034

			IP = 0030	
0024	NOV. N. 1.05	D00714	177 0102	1.07
0034	MOV AX, 1A07	B8071A	AX = 0103	AX = 1A07
			IP = 0034	IP = 0037
0037	MOV ES, AX	8EC0	ES = 19F5	ES = 1A07
			AX = 1A07	IP = 0039
			IP = 0037	
0039	MOV AX,	268B07	AX = 1A07	AX = 00FF
	ES:[BX]		IP = 0039	IP = 003C
003C	MOV AX, 0000	B80000	AX = 00FF	AX = 0000
			IP = 003C	IP = 003F
003F	MOV ES, AX	8EC0	ES = 1A07	ES = 0000
			AX = 0000	IP = 0041
			IP = 003F	
0041	PUSH DS	1E	IP = 0041	IP = 0042
			SP = 0014	SP = 0012
			Stack+0 = 0000	Stack+0 = 1A07
			Stack+2 = 19F5	Stack+2 = 0000
			Stack+4 = 0000	Stack+4 = 19F5
0042	POP ES	07	ES = 0000	ES = 1A07
			IP = 0042	IP = 0043
			SP = 0012	SP = 0014
			Stack+0 = 1A07	Stack+0 = 0000
			Stack+2 = 0000	Stack+2 = 19F5

			Stack+4 = 19F5	Stack+4 = 0000
0043	MOV CX,	268B4FFF	CX = 0C08	CX = FFCE
	ES:[BX—01]		IP = 0043	IP = 0047
0047	XCHG AX, CX	91	AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
			IP=0047	IP=0048
0048	MOV DI, 0002	BF0200	DI = 0002	DI = 0002
			IP = 0048	IP = 004B
004B	MOV ES:[BX+DI], AX	268901	IP = 004B	IP = 004E
004E	MOV BP, SP	8BEC	BP = 0000	BP = 0014
			SP = 0014	IP = 0050
			IP = 004E	
0050	PUSH [0000]	FF360000	IP = 0050	IP = 0054
			[0000] = 01F4	[0000] = 01F4
			SP = 0014	SP = 0012
			Stack+0 = 0000	Stack+0 = 01F4
			Stack+2 = 19F5	Stack+2 = 0000
			Stack+4 = 0000	Stack+4 = 19F5
0054	PUSH [0002]	FF360200	IP = 0054	IP = 0058
			[0002] = FFCE	[0002] = FFCE
			SP = 0012	SP = 0010
			Stack+0 = 01F4	Stack+0 = FFCE
			Stack+2 = 0000	Stack+2 = 01F4
			Stack+4 = 19F5	Stack+4 = 0000
			Stack+ $6 = 0000$	Stack+6 = 19F5
0058	MOV BP, SP	8BEC	BP = 0014	BP = 0010

			SP = 0010 IP = 0058	SP = 0010 $IP = 005A$
005A	MOV DX, [BP+02]	8B5602	DX = 0000 $[BP+02] = 01F4$ $IP = 005A$	DX = 01F4 $IP = 005D$
005D	RET Far 0002	CA0200	IP = 005D SP = 0010 CS = 1A0A Stack+0 = FFCE Stack+2 = 01F4 Stack+4 = 0000 Stack+6 = 19F5	IP = FFCE SP = 0016 CS = 01F4 Stack+0 = 19F5 Stack+2 = 0000 Stack+4 = 0000 Stack+6 = 0000

Выводы

Были изучены режимы адресации, используя готовую программу, также изучено формирование исполнительного адреса.

ПРИЛОЖЕНИЕ А

Название файла: lab2.asm

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 38,37,36,35,31,32,33,34

vec2 DB 70,80,-70,-80,50,60,-50,-60

matr DB -2,-1,5,6,-8,-7,3,4,-4,-3,7,8,-6,-5,1,2

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

push AX

mov AX,DATA

mov DS,AX

```
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax,n1
mov cx,ax
mov bl,EOL
mov bh,n2
; Прямая адресация
mov mem2,n2
mov bx,OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al,[bx]
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al, matr[bx][di]
;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
```

```
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
;mov ax,matr[bp+bx]
;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
     Название файла: lr2.lst
      #Microsoft (R) Macro Assembler Version 5.10
10/21/22 12:53:0
                                                                 Page
                                                                          1-
1
 = 0024
                             EOL EQU '$'
 = 0002
                             ind EQU 2
 = 01F4
                             n1 EQU 500
```

```
=-0.032
                           n2 EOU -50
                      ; Стек программы
0000
                     AStack SEGMENT STACK
0000 000C[
                           DW 12 DUP(?)
        3333
                 ]
0018
                      AStack ENDS
                      ; Данные программы
0000
                      DATA SEGMENT
                               Директивы
                                          описания
                                                                  данни́
                      X
0000 0000
                           mem1 DW 0
0002 0000
                           mem2 DW 0
0004 0000
                           mem3 DW 0
0006 26 25 24 23 1F 20
                          vec1 DB 38,37,36,35,31,32,33,34
      21 22
     46 50 BA BO 32 3C
                         vec2 DB 70,80,-70,-80,50,60,-50,-60
000E
      CE C4
0016 FE FF 05 06 F8 F9
                         matr DB -2, -1, 5, 6, -8, -7, 3, 4, -4, -3, 7, 8, -6, -
5,1,2
       03 04 FC FD 07 08
       FA FB 01 02
0026
                      DATA ENDS
                      ; Код программы
0000
                     CODE SEGMENT
                      ASSUME CS:CODE, DS:DATA, SS:AStack
                     ; Головная процедура
0000
                     Main PROC FAR
0000 1E
                     push DS
0001 2B CO
                           sub AX, AX
0003 50
                      push AX
0004 B8 ---- R
                      mov AX, DATA
0007 8E D8
                           mov DS, AX
                               ПРОВЕРКА
                                                РЕЖИМОВ
                                                                АДРЕСА□
                      ИИ НА УРОВНЕ СМЕЩЕНИЙ
                      ; Регистровая адресация
0009 B8 01F4
                          mov ax, n1
000C 8B C8
                           mov cx, ax
000E B3 24
                           mov bl, EOL
0010 B7 CE
                           mov bh, n2
                      ; Прямая адресация
      C7 06 0002 R FFCE
0012
                         mov mem2,n2
0018 BB 0006 R
                     mov bx, OFFSET vec1
001B A3 0000 R
                     mov mem1,ax
                      ; Косвенная адресация
001E 8A 07
                           mov al, [bx]
                      ;mov mem3,[bx]
                      ; Базированная адресация
0020 8A 47 03
                           mov al, [bx]+3
0023
      8B 4F 03
                           mov cx, 3[bx]
                      ; Индексная адресация
#Microsoft (R) Macro Assembler Version 5.10
                                                               10/21/22
```

Page 1-

2

12:53:0

```
mov di,ind
mov al,vec2[di]
0026 BF 0002
0029 8A 85 000E R
                 ;mov cx,vec2[di]
                  ; Адресация с базирование\square
                  и индексированием
                  mov bx,3
mov al,matr[bx][di]
002D BB 0003
0030 8A 81 0016 R
                  ; mov cx, matr[bx] [di]
                  ;mov ax,matr[bx*4][di]
                  ; ПРОВЕРКА
                                        РЕЖИМОВ АДРЕСА□
                  ИИ С УЧЕТОМ СЕГМЕНТОВ
                  ; Переопределение сегмент
                  ; ----- вариант 1
0034 B8 ---- R
                mov ax, SEG vec2
0037 8E CO
                 mov es, ax
0039 26: 8B 07 mov ax, es:[bx]
003C B8 0000
                  mov ax, 0
                 ; ----- вариант 2
003F 8E C0
                  mov es, ax
0041 1E
                  push ds
0042 07 pop es
0043 26: 8B 4F FF mov cx, es:[bx-1]
0047 91 xchg cx, ax
                 ; ----- вариант 3
                 mov di, ind
0048 BF 0002
004B 26: 89 01 mov es:[bx+di],ax
                 ; ----- вариант 4
004E 8B EC
                     mov bp,sp
                  ; mov ax, matr[bp+bx]
                  ; mov ax, matr[bp+di+si]
                  ; Использование сегмента
                                                          Ú
                  тека
0050 FF 36 0000 R
                  push mem1
                     push mem2
0054 FF 36 0002 R
0058 8B EC
                     mov bp,sp
005A 8B 56 02
                     mov dx, [bp]+2
005D CA 0002
                      ret 2
                 Main ENDP
0060
0060
                  CODE ENDS
                 END Main
```

Segments and Groups:

	N a m e	Length Alig	n Combine Class
CODE		0018 PARA 0060 PARA 0026 PARA	NONE
Symbols:			
	N a m e	Type Value	Attr
EOL		NUMBER	0024
IND		NUMBER	0002
MAIN		F PROC	0000 CODE Length =
MATR		L BYTE L WORD L WORD L WORD	0016 DATA 0000 DATA 0002 DATA 0004 DATA
N1		NUMBER NUMBER	01F4 -0032
VEC1 VEC2		L BYTE L BYTE	0006 DATA 000E DATA
_		TEXT 0101 TEXT lab2 TEXT 510	n

⁸² Source Lines 82 Total Lines

47830 + 459430 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors

¹⁹ Symbols