06;12

Радиационно-стимулированные процессы в CdTe солнечных элементах

© Ж. Жанабергенов, Ш.А. Мирсагатов, С.Ж. Каражанов

Физико-технический институт, Ташкент, Узбекистан

Поступило в Редакцию 3 июня 2003 г.

Экспериментально обнаружено немонотонное изменение выходных параметров поликристаллических CdTe солнечных элементов при монотонном возрастании дозы γ -облучения. Установлено, что такая зависимость имеет место вследствие немонотонности дозовой зависимости времени жизни неосновных носителей заряда на базе. Показано, что ток короткого замыкания, фактор заполнения и коэффициент полезного действия γ -облученных CdTe солнечных элементов могут быть больше, чем у необлученных.

Известно, что радиационное облучение может качественно изменить электрофизические свойства полупроводниковых приборов. Например, экспериментально обнаружена немонотонная дозовая зависимость тока короткого замыкания (J_{sc}) Ge [1] и Si [2–4] солнечных элементов, коллекторного тока CdTe биполярных фототранзисторов [5], а также немонотонная зависимость J_{sc} от концентрации глубоких примесей (N_t) , найденной при теоретическом исследовании вклада примесного фотовольтаического эффекта в процессы фотоэлектрического преобразования [6,7]. Одним из основных результатов этого круга исследований является возрастание J_{sc} и убывание напряжения холостого хода (V_{oc}) при монотонном возрастании концентрации глубоких дефектов (N_t) . При этом коэффициент полезного действия (η) может убывать (возрастать) с ростом N_t , если убывание η за счет убывания V_{oc} больше (меньше), чем рост η за счет возрастания J_{sc} . Об убывании и возрастании η с ростом концентрации глубоких примесей в Si солнечных элементах сообщалось ранее в работах [2–4] и [8] соответственно. В данной работе приводятся экспериментальные результаты по поликристаллическим CdTe солнечным элементам, подтверждающие возможность возрастания коэффициента полезного действия с ростом концентрации глубоких примесей, типа рассмотренного в теоретической модели [8].

Изготовлены ρ CdTe-nCdTe-nCdS солнечные элементы сопротивлением базы $\rho\approx 10^3\div 10^5~\Omega\cdot$ cm и площадью $1~{\rm cm}^2$ по технологии, описанной в [10]. Толщина пленок составляла $d\sim 50~\mu$ m. Пленки состоят из блоков микрокристаллов со столбчатой структурой, ориентированных по направлению роста и разориентированных по азимуту. Размеры зерен находятся в пределах от $100~{\rm дo}~150~\mu$ m, так что зерна охватывают всю толщину пленки. Облучение γ -квантами (Co 60) энергией $E\approx 1.2~{\rm MeV}$ проводилось при помощи установки мощностью $1700~{\rm rad/s}$ при $T=50^{\circ}{\rm C}$ в области доз $\leqslant 1.6\cdot 10^{18}~{\rm cm}^2$.

На рис. 1 представлена дозовая зависимость тока короткого замыкания J_{sc} (рис. 1, a), напряжения холостого хода V_{oc} (рис. 1, a), фактора заполнения FF (рис. 1, b) и коэффициента полезного действия η (рис. 1, b). Видно, что все эти выходные параметры немонотонно меняются при монотонном возрастании дозы у-облучения Ф. Кроме того, величины J_{sc} , FF и η необлученных солнечных элементов меньше, чем у облученных в области дозы $\Phi \leqslant 8 \cdot 10^{17} \, \mathrm{photon/cm^2}.$ В этом принципиальное отличие рассмотренных CdTe солнечных элементов от кремниевых [2–4], в которых выходные параметры облученных образцов были меньше, чем у необлученных во всем рассмотренном интервале дозы облучения. Однако в [1] величина J_{sc} облученных Ge солнечных элементов была также больше, чем у необлученных, что согласуется с нашими результатами. Насколько нам известно, возрастание η с N_t является первым экспериментальным подтверждением теоретической модели, рассмотренной в [8], имеющей место, когда рост η за счет увеличения J_{sc} больше, чем убыль η за счет убывания V_{oc} .

Отметим, что, в отличие от монокристаллических Ge [1] и Si [2–4] аналогов, в поликристаллических CdTe солнечных элементах возрастание и убывание выходных параметров происходят в достаточно широком интервале дозы облучения и являются более плавными. Это означает, что в поликристаллическом CdTe упомянутые выше зависимости являются более устойчивыми к облучению.

Следуя [7–9], можно предположить, что причина возрастания J_{sc} , FF и η с ростом дозы облучения Φ связана с ростом времени жизни неосновных носителей заряда на базе, обусловленным ростом степени компенсации. Дозовая зависимость удельного темнового сопротивления ρ на рис. 2 подтверждает правильность этого предположения. Как видно, зависимость $\rho(\Phi)$ (рис. 2) также является немонотонной и коррелирует с зависимостями $J_{sc}(\Phi)$, $FF(\Phi)$ и $\eta(\Phi)$ на рис. 1. Следовательно,

Письма в ЖТФ, 2003, том 29, вып. 24

Рис. 1. Зависимость: a — тока короткого замыкания J_{sc} (—) и напряжения холостого хода V_{oc} (---), b — фактора заполнения FF (—) и коэффициента полезного действия η (---) поликристаллических CdTe солнечных элементов от дозы γ -облучения.

можно заключить, что γ -облучение, перезаряжая дефектные состояния, приводит к росту степени компенсации и обусловливает немонотонное изменение выходных параметров CdTe солнечных элементов.

Возрастание степени компенсации базы подтверждается также исследованием влияния γ -облучения на вольт-емкостную характеристику МОП-структуры на основе крупноблочных пленок p-CdTe, изготовленной по технологии, описанной в [11]. С (V) характеристика, найденная

Письма в ЖТФ, 2003, том 29, вып. 24

Рис. 2. Зависимость удельного сопротивления ρ (—) от дозы γ -облучения.

математическим моделированием (1) до облучения и для доз (1) $\Phi=1.6\cdot 10^{16}$ и $\Phi=1.6\cdot 10^{17}\,\mathrm{cm^{-2}}$, находится справа по отношению к экспериментальным кривым, тогда как (2) при дозе $\Phi=8\cdot 10^{17}\,\mathrm{cm^{-2}}$ она находится слева от экспериментальной C(V) зависимости. Эти данные позволяют утверждать, что в первом случае (1) на границе раздела окись (JTO) — полупроводник (p-CdTe) доминируют поверхностные состояния донорного типа, тогда как во втором случае (2) доминируют состояния акцепторного типа [12]. Этот результат также подтверждает предположение о возрастании степени компенсации полупроводника с ростом дозы облучения.

Анализ рис. 1 показывает, что V_{oc} слабо меняется с дозой, тогда как остальные выходные параметры J_{sc} , FF и η претерпевают существенные изменения. Отсюда следует, что в немонотонности дозовой зависимости FF и η определяющую роль играет зависимость $J_{sc}(\Phi)$.

Сравнивая дозовые зависимости $J_{sc}(\Phi)$ (рис. 1, a) и $\rho(\Phi)$ (рис. 2), нетрудно заметить, что J_{sc} возрастает с дозой всего на $\sim 15\%$, тогда как ρ возрастает почти на порядок. Отсюда следует, что в убывании $V_{oc}(\Phi)$ определяющую роль играет возрастание $\rho(\Phi)$, которое приведет к росту темнового тока насыщения, причем последнее доминирует над возрастанием $J_{sc}(\Phi)$.

Письма в ЖТФ, 2003, том 29, вып. 24

Таким образом, проведено исследование влияния γ -облучения на свойства солнечных элементов на основе поликристаллического CdTe. Показано, что выходные параметры этих элементов меняются немонотонно при монотонном возрастании дозы γ -облучения. Установлено, что причиной тому является немонотонность дозовой зависимости времени жизни неосновных носителей заряда. При этом ток короткого замыкания, фактор заполнения и коэффициент полезного действия облученных солнечных элементов могут быть большими, чем у необлученных.

Список литературы

- [1] Baruch P. // J. Phys. Chem. Solids. 1959. V. 8. P. 153–157.
- [2] Yamaguchi M., Taylor S.J., Yang M.Yu., Matsuda S., Kawasaki O., Hisamatsu T. // Jpn. J. Appl. Phys. 1996. V. 35. N 7. Part 1. P. 3918–3922.
- [3] Yamaguchi T., Taylor S.J., Watanabe S., Ando K., Yamaguchi M., Hisamatsu T., Matsuda S. // Appl. Phys. Lett. 1998. V. 72. N 10. P. 1226–1228.
- [4] Imaizumi M., Taylor S.J., Yamaguchi M., Ito T., Hisamatsu T., Matsuda S. // J. Appl. Phys. 1999. V. 85. N 3. P. 1916–1920.
- [5] *Мирсагатов Ш.А., Султанов А.И.* // Электронная техника. Сер. Лазерная техника и оптоэлектроника. 1990. В. 3 (55). С. 98–100.
- [6] Keevers M.J., Green M.A. // J. Appl. Phys. 1994. V. 75. N 8. P. 4022–4030.
- [7] Karazhanov S.Zh. // J. Appl. Phys. 2001. V. 89. N 8. P. 3707-3714.
- [8] Karazhanov S.Zh. // Appl. Phys. Lett. 2001. V. 78. N 24. P. 3836–3838.
- [9] Karazhanov S.Zh. // Appl. Phys. Lett. 2000. V. 76. N 19. P. 2689–2691.
- [10] Азимов С.А., Мирсагатов Ш.А., Музаффарова С.А. // Гелиотехника. 1982. N 4. C. 22–25.
- [11] *Мирсагатов Ш.А., Музаффарова С.А.* // Гелиотехника. 1983. № 2. С. 18—21.
- [12] Sze S.M. Physics of semiconductor devices. Wiley, New York, 1969.