Comparing Classes of Estimators: When does Gradient Descent Beat Ridge Regression in Linear Models?

Dominic Richards¹ Edgar Dobriban² Patrick Rebeschini¹

¹Department of Statistics University of Oxford

²Wharton Department of Statistics and Data Science University of Pennsylvania

October 30, 2021

Collaborators

Dominic Richards

Patrick Rebeschini

Overview

Introduction

Setup

Minimax Optimality for Orthogonal Designs

General Design Matrices
Slowly Decaying Eigenvalues
Quickly Decaying Eigenvalues

Proof Sketch for General Design Matrices

Conclusion

Overview

Introduction

Setup

Minimax Optimality for Orthogonal Designs

General Design Matrices

Proof Sketch for General Design Matrices

Conclusion

Modern Machine Learning

Modern Machine Learning

- ▶ Big Datasets: ImageNet, Common Crawl, MS-Coco, ...
- ▶ Big Models: GPT-3, Megatron-Turing NLG, WideResNet, ...

Backbone of many algorithms is Stochastic Gradient Descent

$$\beta_0 \sim P_0$$
 $\beta_{t+1} = \beta_t - \eta \widehat{g}_t$ $\mathbb{E}[\widehat{g}_t] = \nabla f(\beta_t)$ $t = 0, 1, ...$

Motivations for (Stochastic) Gradient Descent

Can generally be split in two directions:

Computation/Approximation

- Cheap gradient estimation through mini-batch sub-sampling
- ightharpoonup Backpropagation + auto. diff allow for expressive models
- Accelerated computations with GPUs

Statistics/Regularization (this work)

- ▶ Implicit Regularization: GD induces a good inductive bias
- ► Canonical example: on over-parametrized least squares, GD from $\beta_0 = 0$ converges to *Least Norm* interpolating solution

Shrinkage methods for Linear Models

Vast amount of work focusing on (non-sparse) shrinkage methods ...

- ► Early works on shrinkage methods Tikhonov [1943], Stein [1956], James and Stein [1961], Hoerl and Kennard [1970], Stein [1981], ...
- ▶ Inverse Problems (GD = Landweber Damping) Landweber [1951], Engl et al. [1996], Bissantz et al. [2007], Caponnetto and De Vito [2007], Yao et al. [2007], Bauer et al. [2007], Raskutti et al. [2014], Rosasco and Villa [2015], Blanchard and Mücke [2018], Pagliana and Rosasco [2019], Lin et al. [2020], ...

Classical View / Takeaway

Explicit Regularization (e.g., Ridge Regression) is <u>Gold Standard</u> & GD is an Approximation

Gradient Descent "Magic"

More recently, a focus on understanding (S)GD Magic

- ightharpoonup (Early Stopped Grad Flow + Ridge) \gg Ridge [Skouras et al., 1994]
- ▶ Bias towards certain principal components textbook result, see also Belkin et al, Wu et al. [2020]
- ▶ Mild sample inflation: Single-pass SGD vs Ridge [Zou et al., 2021]

Our perspective

- ▶ Modern methods depend on many tuning parameters (learning rate, batch size, regularization strength). Empirically, performance can depend strongly on them.
- ► Can we understand theoretically how performance is affected? Especially, what is the *sensitivity to suboptimal hyperparameters?*
- Our work that aims to to answer this (in linear models) by comparing classes of estimators (e.g., GD & Ridge)

Overview

Introduction

Setup

Minimax Optimality for Orthogonal Designs

General Design Matrices

Proof Sketch for General Design Matrices

Conclusion

Setup

Standard Linear Model: observe features $X \in \mathbb{R}^{n \times d}$, outcome $Y \in \mathbb{R}^n$

$$Y = X\beta_{\star} + \epsilon$$

Assumptions:

$$\mathbb{E}[\epsilon] = 0, \qquad \mathbb{E}[\epsilon \epsilon^{\top}] = \sigma^2 I_n, \qquad \mathbb{E}[\beta_{\star} \beta_{\star}^{\top}] = \frac{\psi}{d} I_d, \qquad \epsilon \perp \!\!\! \perp \beta_{\star}$$

Study average-case behavior $\mathbb{E}_{\beta_\star}[L_{\beta_\star}(\hat{\beta})]$ where $L_{\beta_\star}(\hat{\beta}) := \|\hat{\beta} - \beta_\star\|_2^2$

Random-effects model for β_{\star} : average-case analysis over problems where each feature has small effect.

Classes of Estimators

Focusing on two classes of estimators:

▶ **Ridge Regression**: for *regularization parameters* $\lambda > 0$, minimize $\frac{1}{2n}\|X\beta - Y\|_2^2 + \frac{\lambda}{2}\|\beta\|_2^2$, leading to

$$\widehat{\beta}_{\lambda} := \left(\frac{X^{\top}X}{n} + \lambda I_{d}\right)^{-1} \frac{X^{\top}Y}{n}$$

▶ **Gradient Descent**: for $\eta > 0$, $\widehat{\beta}_{\eta,0} = 0$, and for *iterates* $t \ge 0$

$$\begin{split} \widehat{\beta}_{\eta,t+1} &= \widehat{\beta}_{\eta,t} - \eta \nabla_{\widehat{\beta}_{\eta,t}} \left(\frac{1}{2n} \| X \widehat{\beta}_{\eta,t} - Y \|_2^2 \right) \\ &= \widehat{\beta}_{\eta,t} - \frac{\eta}{n} X^\top (X \widehat{\beta}_{\eta,t} - Y) \\ &= \sum_{\ell=0}^t \eta \left(I_d - \eta \frac{X^\top X}{n} \right)^\ell \frac{X^\top Y}{n} \end{split}$$

A key classical Lemma

Optimal amount of ridge regularization $\lambda_\star := \frac{\sigma^2 p}{\psi n} = \frac{1}{SNR} \frac{p}{n}$.

GD (and other estimators $\Phi(\frac{X^{\top}X}{n})\frac{X^{\top}Y}{n}$ where $\Phi: \mathbb{R} \to \mathbb{R}$) cannot beat opt. tuned ridge regression in expectation

Lemma

Under the random-effects model, for any $\eta>0$, t>0

$$\underbrace{\mathbb{E}_{\epsilon,\beta_{\star}}[L_{\beta_{\star}}(\widehat{\beta}_{\eta,t})]}_{\text{Error of GD}} \ \, \geq \underbrace{\mathbb{E}_{\epsilon,\beta_{\star}}[L_{\beta_{\star}}(\widehat{\beta}_{\lambda_{\star}})]}_{\text{Opt. Tuned Ridge Regression}}$$

But λ_{\star} depends upon the unknown $SNR = \psi/\sigma^2$ In practice *classes of models* are considered, e.g.,

$$\Gamma = \{\widehat{\beta}_{\lambda} : \lambda \in \{0, \delta, 2\delta, \dots, 1\}\} \qquad \delta > 0$$

then picking $\operatorname{argmin}_{\widehat{\beta} \in \Gamma} \hat{\mathbb{E}}_{\epsilon, \beta_{\star}}[L_{\beta_{\star}}(\widehat{\beta})]$ e.g., via cross-validation

Overview

Introduction

Setup

Minimax Optimality for Orthogonal Designs

General Design Matrices

Proof Sketch for General Design Matrices

Conclusion

Minimax Optimality for a Class of Models

► Evaluate a class of models $\Gamma = \{\Phi_1, \dots, \Phi_k\}$, where $\Phi_j : \mathbb{R}_+ \to \mathbb{R}_+$ is a spectral shrinker, so $\hat{\beta}_{\Phi_j} = \Phi_j(\frac{X^\top X}{n})\frac{X^\top Y}{n}$, via the smallest excess risk

$$\min_{\hat{\beta} \in \Gamma} \left(\mathbb{E}_{\beta_{\star},\epsilon}[L_{\beta_{\star}}(\hat{\beta})] - \mathbb{E}_{\beta_{\star},\epsilon}[L_{\beta_{\star}}(\widehat{\beta}_{\lambda_{\star}})] \right)$$

- ► Consider a parameter space Θ of $\theta = (\psi, \sigma, X)$ (recall $\mathbb{E}[\epsilon \epsilon^{\top}] = \sigma^2 I_n$, $\mathbb{E}[\|\beta_{\star}\|^2] = \psi$)
- ▶ What is the minimax optimal class of *k* models? Find

$$\mathcal{M}_{k} = \inf_{\Gamma = \{\Phi_{1}, \dots, \Phi_{k}\}_{(\psi, \sigma, X) \in \Theta}} \min_{\hat{\beta} \in \Gamma} \left(\mathbb{E}_{\beta_{\star}, \epsilon}[L_{\beta_{\star}}(\hat{\beta})] - \mathbb{E}_{\beta_{\star}, \epsilon}[L_{\beta_{\star}}(\widehat{\beta}_{\lambda_{\star}})] \right)$$

Ridge? GD? something else?

Minimax Optimality for Orthogonal Designs

Theorem

Wlog fix $\sigma = 1$. Suppose $\psi \in [\psi_-, \psi_+]$ and $X^\top X/n = I_p$. Then

$$\mathcal{M}_k = rac{1}{k^2} \left(rac{1}{\sqrt{1 + \psi_-}} - rac{1}{\sqrt{1 + \psi_+}}
ight)^2.$$

Optimal class $\Gamma = \{\Phi_1, \dots, \Phi_k\}$ where $\Phi_j = 1 - \phi_j$ for $j = 1, \dots, k$ is

$$\phi_{\mathbf{j}} = \left[\frac{1}{x_{+}} + \left(\frac{\mathbf{j}}{2} - \frac{1}{2}\right)c\right]^{2} - \frac{c^{2}}{4}, \quad c = \frac{1}{k}\left(\frac{1}{x_{-}} - \frac{1}{x_{+}}\right), \quad x_{\pm} = \sqrt{1 + \psi_{\pm}}$$

Excess risks of specific classes

Comparing shrinkage performance with k models

► Minimax Grid: We have

Minimax excess risk
$$\sim \frac{1}{k^2}$$

▶ Ridge Regression: with uniform discretization

Excess risk decays as
$$\begin{cases} \sim 1/k & \text{for } k \text{ small enough} \\ \sim 1/k^2 & \text{for } k \text{ large enough} \end{cases}$$

(also have "switching" behavior)

▶ **Gradient Descent**: With $\eta \sim 1/k$,

Excess risk
$$\sim \frac{1}{k^2}$$

Minimax Excess Risk

- ightharpoonup Excess risk of Ridge Regression initially decays at the slow O(1/k) rate
- lacktriangle Excess risks of GD and optimal method both decay at fast $O(1/k^2)$ rate.

Minimax Excess Risk: Proof sketch

After some algebra, equivalent to

$$\inf_{\phi_1,\dots,\phi_k\in\mathbb{R}}\sup_{x\in[x_-,x_+]}\min_{j\in[k]}\left|x\phi_j-\frac{1}{x}\right|.$$

▶ By the monotonicity properties of $g:(0,\infty)\times(0,\infty)\mapsto[0,\infty)$, $g(x,l)=|xl-\frac{1}{x}|$, for fixed $x_+^{-2}\leq\phi_1\leq\ldots\leq\phi_k\leq x_-^{-2}$, the sup is

$$\max\left(\frac{1}{x_{-}}-x_{-}\phi_{k},\max_{j=1,\dots,k-1}\frac{\phi_{j+1}-\phi_{j}}{\sqrt{2(\phi_{j+1}+\phi_{j})}},x_{+}\phi_{1}-\frac{1}{x_{+}}\right).$$

- ▶ If any two terms are not equal, can decrease the inf by changing some ϕ_j . By the compactness of $x_+^{-2} \le \phi_1 \le \ldots \le \phi_k \le x_-^{-2}$, the min is achieved; and all terms must be equal (say, to γ).
- ▶ Solve recursion $\phi_{j+1} \phi_j = \gamma \cdot \sqrt{2(\phi_{j+1} + \phi_j)}$, with boundary conditions.

Overview

Introduction

Setup

Minimax Optimality for Orthogonal Designs

General Design Matrices
Slowly Decaying Eigenvalues
Quickly Decaying Eigenvalues

Proof Sketch for General Design Matrices

Conclusion

General Design Matrices - Setup

Design Matrix: eigenvalues of $X^{\top}X/n$ are $s_1 \geq s_2 \geq \cdots \geq s_r > 0$

Assumptions: Suppose $\psi = 1$ and that

$$1 \ge \frac{d}{n}\sigma^2 = \lambda_{\star} \ge \lambda_{\min} > 0$$

where $\lambda_{min}>0$ is known. Equivalently, $\sigma\geq\sigma_{min}>0$ where σ_{min} known.¹

Model Classes: size k > 1

$$\mathcal{C}^{\sf GD}(\eta) := \{\widehat{eta}_{\eta,j} : 1 \leq j \leq k\},$$

$$\mathcal{C}^{\sf Ridge}(\lambda_{\sf min}) := \{\widehat{eta}_{\lambda} : \lambda \in \{\lambda_{\sf min}, \lambda_{\sf min} + \delta, \lambda_{\sf min} + 2\delta, \dots, 1\}, \}$$

where $\delta = (1 - \lambda_{\min})/(k-1)$

¹Differs from previous parametrization with fixed σ , but equivalent to it.

Comparing Classes of Models

Definition

For any two finite classes of estimators $\mathcal{C}_1=\{\hat{\beta}^u\}_{u\in U_1}$ and $\mathcal{C}_2=\{\hat{\beta}^u\}_{u\in U_2}$, define the *relative sub-optimality ratio*^a

$$\mathcal{S}(\mathcal{C}_1,\mathcal{C}_2) := \frac{\min_{\hat{\beta} \in \mathcal{C}_1} \mathbb{E}_{\beta_{\star},\epsilon}[L_{\beta_{\star}}(\hat{\beta})] - \mathbb{E}_{\beta_{\star},\epsilon}[L_{\beta_{\star}}(\widehat{\beta}_{\lambda_{\star}})]}{\min_{\hat{\beta} \in \mathcal{C}_2} \mathbb{E}_{\beta_{\star},\epsilon}[L_{\beta_{\star}}(\hat{\beta})] - \mathbb{E}_{\beta_{\star},\epsilon}[L_{\beta_{\star}}(\widehat{\beta}_{\lambda_{\star}})]}.$$

^afor x > 0, $x/0 = \infty$, and 0/0 is undefined

- ▶ If $S(C_1, C_2) < 1$, best model in C_1 outperforms best model in C_2 .
- ▶ Study $S(C^{GD}(\eta), C^{Ridge}(\lambda_{min}))$

General Design Matrices - Setup

- Provide general results based on eigenvalue decay
- ▶ Specialize them to slow decay (power law $i^{-\alpha}$, $\alpha < 1$); and fast decay (power law $i^{-\alpha}$, $\alpha > 1$; exponential). Focus presentation on this

General Design Matrices - Slow Decay Result

Let
$$\Gamma = \{\lambda_{\min}, \lambda_{\min} + \delta, \lambda_{\min} + 2\delta, \dots, 1\}$$
 & $\mathsf{Dist}_{\delta}(\lambda_{\star}, \Gamma) = \frac{1}{\delta} \min_{\lambda \in \Gamma} |\lambda - \lambda_{\star}|$

$$\mathsf{Dist}_{\delta}(\lambda_{\star}, \Gamma) = \min\{\varepsilon, \frac{1-\varepsilon}{\varepsilon}\} \text{ if } \lambda_{\star} = \lambda_{\mathsf{min}} + (j+\varepsilon)\delta \text{ for } j \leq k-2, \varepsilon \in (0,1).$$

Theorem (Slow Decay)

Suppose $\mathbf{s}_i = \mathbf{i}^{-\alpha}$ for $\alpha \in (0,1)$. There exists $r_{\alpha,\lambda_\star,k,\lambda_{\min}} > 1$ such that if

$$k \gtrsim rac{1}{\lambda_\star \lambda_{\mathsf{min}}} \log(1 + rac{1}{\lambda_\star}) \qquad r \geq \mathit{r}_{lpha, \lambda_\star, k, \lambda_{\mathsf{min}}}$$

then with $\eta=1/(k\lambda_{\mathsf{min}})$

$$\mathcal{S}(\mathcal{C}^{\mathsf{GD}}(\eta), \mathcal{C}^{\mathsf{Ridge}}(\lambda_{\mathsf{min}})) \simeq \frac{1}{\mathsf{Dist}_{\delta}(\lambda_{\star}, \Gamma)^{2}} \left(\frac{d}{n}\right)^{2} \left(\frac{\sigma^{2}}{\sigma_{\mathsf{min}}}\right)^{4}.$$

General Design Matrices w/ Slow Decay - Result

If eigenvalues decay slowly, r is large and $\mathrm{Dist}_{\delta}(\lambda_{\star},\Gamma)=\Omega(1)$ then

$$\mathcal{S}(\mathcal{C}^{\mathsf{GD}}(\eta), \mathcal{C}^{\mathsf{Ridge}}(\lambda_{\mathsf{min}})) \simeq \left(\frac{d}{n}\right)^2 \left(\frac{\sigma^2}{\sigma_{\mathsf{min}}}\right)^4.$$

- ▶ If $d \simeq n$ and $\sigma_{\min} = \Omega(\sigma)$ then $\mathcal{S}(\mathcal{C}^{\mathsf{GD}}(\eta), \mathcal{C}^{\mathsf{Ridge}}(\lambda_{\min})) \simeq \sigma^4$
- ► (roughly) GD outperforms ridge regression in High-Dim. + Low Noise!
- For instance, if $r = d = n^q$ for $q \in (g(\alpha), 1)$, then²

$$\mathcal{S}(\mathcal{C}^{\sf GD}(\eta), \mathcal{C}^{\sf Ridge}(\lambda_{\sf min})) \simeq rac{(\sigma^2/\sigma_{\sf min})^4}{n^{2(1-q)}}$$

Tends to zero as $n, d \to \infty$

General Design Matrices w/ Slow Decay - Experiment

- ▶ Numerically compute $S(C^{GD}(\eta), C^{Ridge}(\lambda_{min}))$ for fixed r.
- ightharpoonup Evaluate our upper and lower bounds (constants = 1)
- ▶ Bounds capture \nearrow <u>trend</u> and <u>spiking due to discretization</u> as a function of $\lambda_{\star} = p\sigma^2/n$.

General Design Matrices w/ Fast Decay - Result

Theorem (Fast Decay)

Suppose $s_i = i^{-\alpha}$ for $\alpha > 1$ and $s_r \le \lambda_\star$, and $k \gtrsim \frac{1}{\lambda_\star \lambda_{\min}} \log(1 + \frac{1}{\lambda_\star})$. Then with $\eta = 1/(k\lambda_{\min})$

$$\mathcal{S}(\mathcal{C}^{\mathsf{GD}}(\eta), \mathcal{C}^{\mathsf{Ridge}}(\lambda_{\mathsf{min}})) \gtrsim \frac{\mathsf{exp}(-O(\alpha))}{\mathsf{Dist}_{\delta}(\lambda_{\star}, \Gamma)^{2}} \left(\frac{d}{n}\right)^{2} k^{2} \sigma^{4}.$$

- ▶ Intuition: Ridge Reg. outperforms GD, so $\mathcal{S}(\mathcal{C}^{\mathsf{GD}}(\eta), \mathcal{C}^{\mathsf{Ridge}}(\lambda_{\mathsf{min}})) \gg 1$, when eigenvalues decay quickly.
- ▶ When $d \sim n$ and σ is a constant, nontrivial when $1 < \alpha \lesssim \log(k)$
- ▶ Also holds for exponentially decaying eigenvalues $s_i = e^{-\rho i}$ for $\rho > 0$.

General Design Matrices - Experiment w/ α

- ▶ Numerically compute $S(C^{GD}(\eta), C^{Ridge}(\lambda_{min}))$ for fixed r.
- ▶ $\log(k)$ seems to be roughly the threshold where $RR \gg GD$ uniformly for $\lambda_{\star} \geq 1/k$ (where our theory holds).

Overview

Introduction

Setup

Minimax Optimality for Orthogonal Designs

General Design Matrices

Proof Sketch for General Design Matrices

Conclusion

Proof Sketch - Setup

For a class of models C, optimal excess risk is

$$\mathcal{E}(\mathcal{C}) := \min_{\hat{\beta} \in \mathcal{C}} \left\{ \mathbb{E}_{\beta_{\star}, \epsilon}[L_{\beta_{\star}}(\hat{\beta})] - \mathbb{E}_{\beta_{\star}, \epsilon}[L_{\beta_{\star}}(\hat{\beta}_{\lambda_{\star}})] \right\}.$$

Consider one estimator $\widehat{\beta}_{\Phi} = \Phi(\frac{X^{\top}X}{n})\frac{X^{\top}Y}{n}$. With $M_{\Phi}(s) = 1 - \Phi(s)s$

$$\mathcal{E}(\widehat{\beta}_{\Phi}) = \frac{\lambda_{\star}}{d} \sum_{i=1}^{r} \left(\frac{1}{\lambda_{\star}} + \frac{1}{s_{i}} \right) \left(M_{\Phi}(s_{i}) - \frac{\lambda_{\star}}{\lambda_{\star} + s_{i}} \right)^{2}.$$

Consider the classes $\mathcal{C}=(\Phi_1,\ldots,\Phi_k)$ and $\delta=(1-\lambda_{\mathsf{min}})/(k-1)$

- ▶ Ridge Regression: $M_{\Phi_j}(s) = \lambda_j/(s+\lambda_j)$ where $\lambda_j = \lambda_{\min} + (j-1)\delta$
- ▶ **GD**: $M_{\Phi_i}(s) = (1 \eta s)^j$ for j = 1, ..., k.

Proof Sketch - Ridge Regression

Recall that $\lambda_\star = \lambda_{\min} + (j+arepsilon)\delta$ for some $j\in\{0,1,\ldots,k-2\}, arepsilon\in(0,1)$

$$\mathcal{E}(\mathcal{C}^{\mathsf{Ridge}}(\lambda_{\mathsf{min}}, k)) = \lambda_{\star} \min_{t=1,\dots,k} \frac{1}{d} \sum_{i=1}^{r} \left(\frac{1}{\lambda_{\star}} + \frac{1}{s_{i}}\right) \left(\frac{\lambda_{t}}{\lambda_{t} + s_{i}} - \frac{\lambda_{\star}}{\lambda_{\star} + s_{i}}\right)^{2}$$

$$= \lambda_{\star} \min_{\kappa \in \{-\varepsilon, 1 - \varepsilon\}} \frac{1}{d} \sum_{i=1}^{r} \left(\frac{1}{\lambda_{\star}} + \frac{1}{s_{i}}\right) \frac{s_{i}^{2} \kappa^{2} \delta^{2}}{(\lambda_{\star} + \kappa \delta + s_{i})^{2} (\lambda_{\star} + s_{i})^{2}}$$

Suppose $\varepsilon=1/2$ and $\delta\leq\lambda_\star$, so the summands are $\frac{s_i}{\lambda_\star}\frac{\delta^2}{(s_i+\lambda_\star)^3}$; then

$$\mathcal{E}(\mathcal{C}^{\mathsf{Ridge}}(\lambda_{\mathsf{min}}, k)) \simeq \frac{\lambda_{\star} \delta^{2}}{d} \Big(\sum_{s_{i} > \lambda_{\star}} \frac{\lambda_{\star}}{s_{i}^{2}} + \sum_{s_{i} \leq \lambda_{\star}} \frac{s_{i}}{\lambda_{\star}^{3}} \Big). \tag{1}$$

Tail of Eigenvalue Distribution

Proof Sketch - Gradient Descent

Plugging in the class of models

$$\mathcal{E}(\mathcal{C}^{\mathsf{GD}}(\eta, k)) = \lambda_{\star} \min_{t=1,\dots,k} \frac{1}{d} \sum_{i=1}^{r} \left(\frac{1}{\lambda_{\star}} + \frac{1}{s_{i}} \right) \left((1 - \eta s_{i})^{t} - \frac{\lambda_{\star}}{\lambda_{\star} + s_{i}} \right)^{2}.$$

Switch perspective: define per-eigenvalue optimal number of iterations $t^*(s) = \log(1 + s/\lambda_*)/\log(1/(1 - \eta s))$ so that

$$(1 - \eta s)^{t^*(s)} = \frac{\lambda_*}{\lambda_* + s}$$
 $\lim_{s \to 0} t^*(s) = \frac{1}{\eta \lambda_*}$

Choosing global number of iterations $t = \lceil (\eta \lambda_{\star})^{-1} \rceil$, can bound

$$\mathcal{E}(\mathcal{C}^{\mathsf{GD}}(\eta,k)) \lesssim \frac{\lambda_{\star}}{d} \left(\sum_{i:s_i > \lambda_{\star}} \frac{\lambda_{\star}}{s_i^2} + \sum_{i:s_i \leq \lambda_{\star}} \frac{1}{s_i} \left(1 - (1 - \eta s_i)^{\lceil (\eta \lambda_{\star})^{-1} \rceil - t^{\star}(s_i)} \right)^2 \right)$$

Key calculation: bounding $\lceil (\eta \lambda_{\star})^{-1} \rceil - t^{\star}(s_i)$

Proof Sketch - Gradient Descent

We have

$$rac{1}{\eta\lambda_\star}-t^\star(s)=t^\star(0)-t^\star(s)\leqrac{3}{2}rac{s}{\eta\lambda_\star^2}$$

yielding $1-(1-\eta s_i)^{\lceil (\eta \lambda_\star)^{-1} \rceil - t^\star(s_i)} \lesssim \eta s(1+\frac{s}{\eta \lambda^2})$ and thus

$$\mathcal{E}(\mathcal{C}^{\mathsf{GD}}(\eta, k)) \lesssim \frac{\lambda_{\star}}{d} \left(\sum_{i: s_i > \lambda_{\star}} \frac{\lambda_{\star}}{s_i^2} + \sum_{i: s_i \leq \lambda_{\star}} \max \left\{ \eta^2 s_i, \frac{s_i^3}{\lambda_{\star}^4} \right\} \right).$$

Compare Tail Dependence $s_i < \eta \lambda_{\star}^2$ • Ridge Regression: $\frac{\delta^2 s}{\lambda^3}$

► Gradient Descent:
$$\lambda_{\star} \eta^2 s$$

Gradient Descent: $\lambda_* \eta^- s$

$$\frac{\lambda_{\star}\eta^2 s_i}{(\delta^2 s_i)/(\lambda^3)} \approx \frac{\lambda_{\star}^4}{k^2 \lambda^2} \cdot \frac{1}{(1/k^2)} = \frac{\lambda_{\star}^4}{\lambda^2} \cdot \left(\frac{d}{\eta}\right)^2 \left(\frac{\sigma^2}{\sigma_{\min}}\right)^2$$

where $\eta = 1/(k\lambda_{\min})$, $\delta = O(1/k)$.

Overview

Introduction

Setup

Minimax Optimality for Orthogonal Designs

General Design Matrices

Proof Sketch for General Design Matrices

Conclusion

Conclusion

Aim: compare classes of estimators accounting for (discrete) hyperparameters. Some intriguing results in linear models.

Orthogonal Designs:

Min-Max-Min excess risk

$$\underbrace{ \inf_{\substack{\Gamma = \{\Phi_1, \dots, \Phi_k\}\\ \text{Model Class}}} \sup_{\substack{\psi, \sigma, X}} \min_{\substack{\hat{\beta} \in \Gamma\\ \text{Nature Model Selection}}} \underbrace{ \left(\mathbb{E}_{\beta_\star, \epsilon}[L_{\beta_\star}(\hat{\beta})] - \mathbb{E}_{\beta_\star, \epsilon}[L_{\beta_\star}(\hat{\beta})] \right) }_{\text{Excess risk}}$$

- For k models, optimal class and GD: $O(1/k^2)$
- ▶ Ridge: "switching" between O(1/k) & $O(1/k^2)$ \Longrightarrow GD \gg Ridge

General Designs: compare GD & Ridge via relative suboptimality

- ▶ Fast eigenvalue decay $1 < \alpha \lesssim \log(k)$: Ridge \gg GD
- ▶ Slow eigenvalue decay $0 < \alpha < 1$, small noise, high dim: GD \gg Ridge

References I

- Frank Bauer, Sergei Pereverzev, and Lorenzo Rosasco. On regularization algorithms in learning theory. *Journal of Complexity*, 23(1):52–72, 2007.
- Nicolai Bissantz, Thorsten Hohage, Axel Munk, and Frits Ruymgaart. Convergence rates of general regularization methods for statistical inverse problems and applications. *SIAM Journal on Numerical Analysis*, 45(6):2610–2636, 2007.
- Gilles Blanchard and Nicole Mücke. Optimal rates for regularization of statistical inverse learning problems. *Foundations of Computational Mathematics*, 18(4): 971–1013, 2018.
- Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3): 331–368, 2007.
- Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. *Regularization of inverse problems*, volume 375. Springer Science & Business Media, 1996.
- Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal problems. *Technometrics*, 12(1):55–67, 1970.

References II

- W James and Charles Stein. Estimation with quadratic loss. In *Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics*, 1961.
- Louis Landweber. An iteration formula for fredholm integral equations of the first kind. *American journal of mathematics*, 73(3):615–624, 1951.
- Junhong Lin, Alessandro Rudi, Lorenzo Rosasco, and Volkan Cevher. Optimal rates for spectral algorithms with least-squares regression over hilbert spaces. *Applied and Computational Harmonic Analysis*, 48(3):868–890, 2020.
- Nicolò Pagliana and Lorenzo Rosasco. Implicit regularization of accelerated methods in hilbert spaces. *Advances in Neural Information Processing Systems*, 32: 14481–14491, 2019.
- Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Early stopping and nonparametric regression: an optimal data-dependent stopping rule. *Journal of Machine Learning Research*, 15:335–366, 2014.
- Lorenzo Rosasco and Silvia Villa. Learning with incremental iterative regularization. In *Advances in Neural Information Processing Systems*, pages 1630–1638, 2015.
- K Skouras, C Goutis, and MJ Bramson. Estimation in linear models using gradient descent with early stopping. *Statistics and Computing*, 4(4):271–278, 1994.

References III

- Charles Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics.* The Regents of the University of California, 1956.
- Charles M Stein. Estimation of the mean of a multivariate normal distribution. *The annals of Statistics*, pages 1135–1151, 1981.
- Andrey Nikolayevich Tikhonov. On the stability of inverse problems. In *Dokl. Akad. Nauk SSSR*, volume 39, pages 195–198, 1943.
- Jingfeng Wu, Difan Zou, Vladimir Braverman, and Quanquan Gu. Direction matters: On the implicit bias of stochastic gradient descent with moderate learning rate. In *International Conference on Learning Representations*, 2020.
- Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning. *Constructive Approximation*, 26(2):289–315, 2007.
- Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P Foster, and Sham M Kakade. The benefits of implicit regularization from SGD in least squares problems. *arXiv preprint arXiv:2108.04552*, 2021.