Distributed Systems

Edited/Reviewed By: **Dr. Anas Youssef**

Email: anas.youssef@ci.menofia.edu.eg

Distributed Systems

Course Overview

&

Introduction to Distributed Systems

List of topics

- Course overview
- Introduction to distributed systems
- Introduction to Cloud Computing

Grading based on

- Course work 30%
 - Midterm 15%
 - Section 15%
- Final Exam 70%

Course Book

Distributed Systems:
Concepts and Design,
(Fifth Edition),
Coulouris G., J.
Dollimore and T.
Kindberg published by
Addison Wesley, May
2011.

Additional reading

- Distributed Systems: Principles and Paradigms (2nd edition), Andrew S. Tanenbaum, Maarten Van Steen, 2007.
- Reliable Distributed Programming, Rachid Guerraoui and Luis Rodrigues 2011.
- Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures, Hassan Gomaa, 2011.

- This course addresses issues of software engineering topics in a distributed environment and distributed software applications, include web applications as well as other network environments.
- The course examines issues that exist because of the complexity of software running simultaneously and asynchronously on multiple heterogeneous networks.
- At the end of the course, students will have a deeper understanding of software engineering topics in a distributed environment. They will be better equipped to design, develop, test, and analyze the performance of distributed applications.

Distributed Systems

Definition

Cloud computing is the delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a metered service over a network (typically the Internet).

Wikipedia

Distributed Systems 26

Our Data Now...

Emails, Calendars, Contacts, Location Information, etc...

Using Diverse Interfaces & Devices

...and even appliances

Consumer

We also want to access, share and process our data from all of our devices, anytime, anywhere!

Distributed Systems 28

How will you...

How Will We Manage Our Data?

Manage it ourselves?

Personal, but time consuming.

How would you get access to your data wherever you are?

- Would you keep it on your devices?
- or would you keep it online?

What if it's managed by someone else?

 and you can get this "service" for free or with a subscription?

A Cloud is ...

 A data center hardware and software that the vendors use to offer the computing resources

Cloud Computing

Cloud Computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and other devices,

as a metered service over a network.

The promise of the Cloud

- Transformation of IT from a product to a service
- Revolutionizing for health care, financial systems, scientific research, and society

Distributed Systems

Why Cloud Computing?

Cloud Properties

- Pooled resource
- Network accessible
- Virtualization
- Elasticity
- Automation
- Metered billing

Cloud Challenges

- Quality of Service
- Network Dependence
- Vendor Lock-In, Storage Lock-in & Computation Lock-in
- Non-standardized
- Security Risks
- Privacy

IT as a Service

- How do you offer IT as a service?
- Different users have different needs
- Consider the needs of:
 - Average End User
 - Mobile Application Developer
 - Enterprise System Architect

Let us look at some of the typical service models

Cloud Service Models

Clouds

http://www.mimuw.edu.pl/~iwanicki/

Distributed Systems 39

SaaS

- You are most familiar with this!
- Software is delivered as a service over the Internet, eliminating the need to install and run the application on the customer's own computer
- This simplifies maintenance and support
- Examples: Gmail, YouTube, and Google Docs, among others

SaaS Maturity Levels

 Distinguishing attributes: configurability, multitenant efficiency, scalability

PaaS

- The Cloud provider exposes a set of tools (a platform) which allows users to create SaaS applications
- The SaaS application runs on the provider's infrastructure
- The cloud provider manages the underlying hardware and requirements

PaaS Example I

Google App Engine

Build web applications on Google's Infrastructure

PaaS Example II

The Facebook Developer

Platform

Set of APIs that allow you to create Facebook Applications

laaS (1/2)

- The cloud provider leases to users Virtual Machine Instances (i.e., computer infrastructure) using the virtualization technology
- The user has access to a standard Operating System environment and can install and configure all the layers above it

laaS (2/2)

Linux

 The virtualization technology is a major enabler of laaS

laaS Example

Amazon Web Service Elastic Compute Cloud (EC2)

Other Service Models

- Database-as-a-Service
- Sensing-as-a-Service
- XaaS
 - "X" as a Service

The Cloud Software Stack

Applications

 Cloud applications can range from Web applications to scientific computational jobs

Data

- Data Management
- New generation cloudspecific databases and management systems
- E.g., Hbase, Cassandra, Hive, Pig etc.

Runtime Environment

- Runtime platforms to support cloud programming models
- E.g., MPI,
 MapReduce, Pregel etc.

Middleware for Clouds

- Management platforms that enable:
 - Resource Management
 - Monitoring
 - Provisioning
 - Identity Management and Security

Operating Systems

- Standard Operating Systems used in Personal Computing
- Packaged with libraries and software for quick deployment and provisioning
- E.g., Amazon Machine Images (AMI) contain OS as well as required software packages as a "snapshot" for instant deployment

Virtualization

- Key Component
- Resource Virtualization
- Amazon EC2 is based on the Xen virtualization platform

Three Cloud Service Models

Traditional IT	laaS	PaaS	SaaS	G
Application	Application	Application	Application	
Data	Data	Data	Data	you
Runtime	Runtime	Runtime	Runtime	manage
Middleware	Middleware	Middleware	Middleware	provider manages
O/S	O/S	O/S	O/S	_
Virtualization	Virtualization	Virtualization	Virtualization	
Servers	Servers	Servers	Servers	
Storage	Storage	Storage	Storage	
Networking	Networking	Networking	Networking	

Cloud Deployment Models

- Public
- Private
- Hybrid

Public (external) cloud

- Open market for on demand computing and IT resources
- Concerns: Limited SLA, reliability, availability, security, trust and confidence
- Examples: IBM, Google, Amazon, ...

- Private (Internal) cloud
 - For enterprises/corporations with large scale IT

Hybrid cloud

 Extend the private cloud(s) by connecting it to other external cloud vendors to make use of their available cloud services

Cloud Burst

 Use the local cloud, and when you need more resources, burst into the public cloud

