

Sumário

- 1. Paralelismo
- 2. Perpendicularidade
- 3. Projeções e Distâncias

Paralelismo

Teorema

Teorema 1

Se do ponto médio do lado de um triângulo, traçarmos uma paralela a um dos lados, esta passará pelo ponto médio do terceiro lado.

- ▶ **Hipótese:** $AD = DB \in \overline{DE} \parallel \overline{BC}$.
- ▶ Tese: AE = EC.

Pelo ponto E, que a paralela ao lado \overline{BC} corta o lado \overline{AC} , trace um segmento paralelo ao lado \overline{AB} , cortando o lado \overline{BC} .

i) Qual teorema garante que BD = FE?

ii) Sendo $\overline{AB} \parallel \overline{EF}$, cortadas pela transversal \overline{AC} , como podemos relacionar os ângulos $\widehat{ADE} = \widehat{EFC}$?

iii) Como $\overline{DA} \parallel \overline{FE} \in \overline{DE} \parallel \overline{FC}$, como podemos relacionar os ângulos $\widehat{ADE} \in \widehat{EFC}$?

- iv) Dos itens anteriores, o que garante a congruência dos triângulos DAE e FEC?
- ightharpoonup Da congruência acima, o que garante que AE = EC?

Teorema

Teorema 2

O segmento que une os pontos médios de dois lados de um triângulo é paralelo ao terceiro lado.

- ▶ **Hipótese:** AD = DB e AE = EC.
- ▶ Tese: $\overline{DE} \parallel \overline{BC}$.

- 1. Pelo ponto médio de \overline{AB} , D, traçamos uma reta paralela ao lado \overline{BC} .
- 2. Pelo Teorema 5, essa reta corta o lado \overline{AC} no seu ponto médio, E.
- 3. Como pelos pontos distintos D e E passa uma única reta, o segmento \overline{DE} deve estar contido na reta traçada, o que implica em também ser paralelo ao lado \overline{BC} .

Exercício

Exercício 1

Demonstre o seguinte corolário do Teorema 2:

Corolário 1

No triângulo anterior, tem-se
$$DE = \frac{BC}{2}$$
.

Perpendicularidade

Definição

- Como vimos, Euclides define 'ângulo reto' como sendo igual ao ângulo formado por duas retas que se cortam de maneira a formar quatro ângulos iguais.
- ► Essas duas retas são ditas **perpendiculares** (símbolo: ⊥).
- O resultado a seguir é um corolário do Teorema do Triângulo Externo.

Corolário

Corolário 2

Por um ponto não pertencente a uma reta, passa uma única reta perpendicular a reta dada.

- ► Hipótese: $C \notin r$.
- ► Tese: Existe uma única reta que passa por C e é perpendicular a reta r.

Existência:

- ▶ Seja *r* uma reta e *C* um ponto fora dela.
- Trace na reta r um ponto D tal que CD = CB.

4

Existência:

➤ O triângulo *DCB* é isósceles, logo sua bissetriz é também sua mediana e sua altura (Teorema 2).

Existência:

Assim, a bissetriz de \hat{C} é uma reta perpendicular à reta r que passa por C.

Unicidade:

Suponha, por absurdo, que existam duas retas perpendiculares à reta r, que passam por C.

Unicidade:

- O triângulo *CFE* possui dois ângulos retos (*CFE* e *CEF*).
- Mas, por causa do TAE, se um ângulo for reto os outros devem ser agudos, contradizendo a afirmação acima.

Exercício

Exercício 2

Demonstre o sequinte teorema:

Num mesmo plano, duas retas distintas perpendiculares a uma terceira, são paralelas entre si.

- ► Hipótese: $r, s, t \in \alpha, r \perp s$, $r \perp t$ e $s \neq t$.
- ► **Tese:** *s* e *t* são paralelas.

Projeções e Distâncias

Projeção Ortogonal

Definição 1

Chama-se **projeção ortogonal** de um ponto sobre uma reta r ao ponto de interseção da reta com a perpendicular à ela que passa por aquele ponto.

- $ightharpoonup \overrightarrow{PP'} \perp r e \overrightarrow{PP'} \cap r = \{P'\}.$
- ▶ Se $P \in r$, então P' = P.

Projeção de um segmento sobre uma reta

Definição 2

A **projeção** de um segmento de reta \overline{AB} não perpendicular a uma reta r sobre esta reta é o segmento $\overline{A'B'}$ em que

- ► A' é a projeção de A sobre r e
- ▶ B' é a projeção de B sobre r.

Figura 1: Exemplos da projeção

Retas Oblíquas

Definição 3

Se duas retas são concorrentes e não são perpendiculares, diz-se que essas retas são oblíquas.

Distâncias

Definição 4

A distância de um ponto a uma reta é a distância desse ponto à projeção dele sobre a reta.

Exercícios

Exercício 3

Mostre que todo ponto da bissetriz de um ângulo é equidistante dos lados do ângulo.