





#### Paper

# Do Transformers Really Perform Bad for Graph Representation?

The Transformer architecture has become a dominant choice in many domains, such as natural language processing and computer vision. Yet, it has not achieved competitive performance on popular leaderboards of graph-level prediction compared to mainstream GNN variants. Therefore, it remains a mystery how Transformers could perform well for graph representation learning. In this paper, we solve this mystery by presenting Graphormer, which is built upon the standard Transformer architecture, and could attain excellent results on a broad range of graph representation learning tasks, especially on the recent OGB Large-Scale Challenge. Our key insight to utilizing Transformer in the graph is the necessity of effectively encoding the structural information of a graph into the model. To this end, we propose several simple yet effective structural encoding methods to help Graphormer better model graph-structured data. Besides, we mathematically characterize the expressive power of Graphormer and exhibit that with our ways of encoding the structural information of graphs, many popular GNN variants could be covered as the special cases of Graphormer.



Paper record

Table 1: Results on PCQM4M-LSC. \* indicates the results are cited from the official leaderboard Hu et al. (2021).

Parse references

| method                                               | #param. | train MAE | validate MAE     |
|------------------------------------------------------|---------|-----------|------------------|
| GCN Kipf and Welling (2016)                          | 2.0M    | 0.1318    | 0.1691 (0.1684*) |
| GIN Xu et al. (2019)                                 | 3.8M    | 0.1203    | 0.1537 (0.1536*) |
| GCN-VN Kipf and Welling (2016); Gilmer et al. (2017) | 4.9M    | 0.1225    | 0.1485 (0.1510*) |
| GIN-VN Xu et al. (2019); Gilmer et al. (2017)        | 6.7M    | 0.1150    | 0.1395 (0.1396*) |
| GINE-VN Brossard et al. (2020); Gilmer et al. (2017) | 13.2M   | 0.1248    | 0.1430           |
| DeeperGCN-VN Li et al. (2020a); Gilmer et al. (2017) | 25.5M   | 0.1059    | 0.1398           |
| GT Dwivedi and Bresson (2021)                        | 0.6M    | 0.0944    | 0.1400           |



Login/Register to save edits

Table 3: Results on MolHIV.

| method                              | #param. | AP (%)             |
|-------------------------------------|---------|--------------------|
| DeeperGCN-VN+FLAG Li et al. (2020a) | 5.6M    | 28.42±0.43         |
| DGN Beaini et al. (2021)            | 6.7M    | 28.85±0.30         |
| GINE-VN Brossard et al. (2020)      | 6.1M    | 29.17±0.15         |
| PHC-GNN Le et al. (2021)            | 1.7M    | 29.47±0.26         |
| GINE-APPNP Brossard et al. (2020)   | 6.1M    | 29.79±0.30         |
| GIN-VNXu et al. (2019) (fine-tune)  | 3.4M    | 29.02±0.17         |
| Graphormer-FLAG                     | 119.5M  | <b>31.39±</b> 0.32 |

Parse references

#### Table 3: Results on MolHIV.

Parse references

| method                                                  | #param. | AUC (%)            |
|---------------------------------------------------------|---------|--------------------|
| GCN-GraphNorm Brossard et al. (2020); Cai et al. (2021) | 526K    | 78.83±1.00         |
| PNA Corso et al. (2020)                                 | 326K    | 79.05±1.32         |
| PHC-GNN Le et al. (2021)                                | 111K    | 79.34±1.16         |
| DeeperGCN-FLAG Li et al. (2020a)                        | 532K    | 79.42±1.20         |
| DGN Beaini et al. (2021)                                | 114K    | 79.70±0.97         |
| GIN-VNXu et al. (2019) (fine-tune)                      | 3.3M    | 77.80±1.82         |
| Graphormer-FLAG                                         | 47.0M   | <b>80.51±</b> 0.53 |

#### Table 4: Results on ZINC.

Parse references

| method                                 | #param. | test MAE    |
|----------------------------------------|---------|-------------|
| GIN Xu et al. (2019)                   | 509,549 | 0.526±0.051 |
| GraphSage Hamilton et al. (2017)       | 505,341 | 0.398±0.002 |
| GAT Veličković et al. (2018)           | 531,345 | 0.384±0.007 |
| GCN Kipf and Welling (2016)            | 505,079 | 0.367±0.011 |
| GatedGCN-PE Bresson and Laurent (2017) | 505,011 | 0.214±0.006 |
| MPNN (sum) Gilmer et al. (2017)        | 480,805 | 0.145±0.007 |
| PNA Corso et al. (2020)                | 387,155 | 0.142±0.010 |

Table 5: Ablation study results on PCQM4M-LSC dataset with different designs.

|                                           |          |            |             |             |                        | arse referenc |
|-------------------------------------------|----------|------------|-------------|-------------|------------------------|---------------|
| Node Relation Encodi                      | ng       | Centrality |             | Edge Enc    | oding                  | valid<br>MAE  |
| Laplacian PEDwivedi and<br>Bresson (2021) | Spatial  | Centrality | via<br>node | via<br>Aggr | via attn<br>bias(Eq.7) | valid<br>MAE  |
| -                                         | -        | -          | -           | -           | -                      | 0.2276        |
| 1                                         | -        | -          | -           | -           | -                      | 0.1483        |
| -                                         | <b>✓</b> | -          | -           | -           | -                      | 0.1427        |
| -                                         | <b>✓</b> | ✓          | -           | -           | -                      | 0.1396        |
| -                                         | /        | 1          | /           | -           | -                      | 0.1328        |
| -                                         | <b>√</b> | ✓          | -           | <b>√</b>    | -                      | 0.1327        |
| -                                         | <b>√</b> | ✓          | -           | -           | ✓                      | 0.1304        |

Table 6: Statistics of the datasets.

| Dataset        | Scale  | # Graphs  | # Nodes    | # Edges    | Task Type             |
|----------------|--------|-----------|------------|------------|-----------------------|
| PCQM4M-LSC     | Large  | 3,803,453 | 53,814,542 | 55,399,880 | Regression            |
| OGBG-MolPCBA   | Medium | 437,929   | 11,386,154 | 12,305,805 | Binary classification |
| OGBG-MolHIV    | Small  | 41,127    | 1,048,738  | 1,130,993  | Binary classification |
| ZINC (sub-set) | Small  | 12,000    | 277,920    | 597,960    | Regression            |

Table 7: Model Configurations and Hyper-parameters of Graphormer on PCQM4M-LSC.

|                               | Graphormer\textscSmall | Graphormer |
|-------------------------------|------------------------|------------|
| #Layers                       | 6                      | 12         |
| Hidden Dimension d            | 512                    | 768        |
| FFN Inner-layer Dimension     | 512                    | 768        |
| #Attention Heads              | 32                     | 32         |
| Hidden Dimension of Each Head | 16                     | 24         |
| FFN Dropout                   | 0.1                    | 0.1        |
| Attention Dropout             | 0.1                    | 0.1        |

| Peak Learning Rate  | 3e-4         | 2e-4         |
|---------------------|--------------|--------------|
| Batch Size          | 1024         | 1024         |
| Warm-up Steps       | 60 <i>K</i>  | 60 <i>K</i>  |
| Learning Rate Decay | Linear       | Linear       |
| Adam $\epsilon$     | 1e-8         | 1e-8         |
| Adam (β1, β2)       | (0.9, 0.999) | (0.9, 0.999) |
| Gradient Clip Norm  | 5.0          | 5.0          |
| Weight Decay        | 0.0          | 0.0          |

Table 8: Hyper-parameters for Graphormer on OGBG-MolPCBA, where the text in bold denotes the hyper-parameters we eventually use.

| (2, 5, <b>10</b> )   |
|----------------------|
| {2, 5, <b>10</b> }   |
|                      |
| (2e-4, <b>3e-4</b> ) |
| 256                  |
| 0.06                 |
| 0.3                  |
| {1, 2,3, <b>4</b> }  |
| 0.001                |
|                      |
|                      |

Table 9: Hyper-parameters for Graphormer on OGBG-MolHIV, where the text in bold denotes the hyper-parameters we eventually use.

| Graphormer |
|------------|
| 8          |
| 2e-4       |
| 128        |
| 0.06       |
| 0.1        |
| 0.1        |
|            |

Table 10: Model Configurations and Hyper-parameters on ZINC(sub-set).

|                                  | Graphormer\textscSlim |
|----------------------------------|-----------------------|
| #Layers                          | 12                    |
| Hidden Dimension                 | 80                    |
| FFN Inner-Layer Hidden Dimension | 80                    |
| #Attention Heads                 | 8                     |
| Hidden Dimension of Each Head    | 10                    |
| FFN Dropout                      | 0.1                   |
| Attention Dropout                | 0.1                   |
| Embedding Dropout                | 0.0                   |
| Max Steps                        | 400 <i>K</i>          |
| Max Epochs                       | 10 <i>K</i>           |
| Peak Learning Rate               | 2e-4                  |
| Batch Size                       | 256                   |
| Warm-up Steps                    | 40 <i>K</i>           |
| Learning Rate Decay              | Linear                |
| $Adam\epsilon$                   | 1e-8                  |
| Adam ( $\beta$ 1, $\beta$ 2)     | (0.9, 0.999)          |
| Gradient Clip Norm               | 5.0                   |
| Weight Decay                     | 0.01                  |

Table 11: Hyper-parameters for fine-tuning GROVER on MolHIV and MolPCBA.

|                       | GROVER                   | GROVER\textscLARGE       |
|-----------------------|--------------------------|--------------------------|
| Dropout               | {0.1, 0.5}               | {0.1, 0.5}               |
| Max Epochs            | {10, 30, 50}             | {10, 30}                 |
| Learning Rate         | {5e-5, 1e-4, 5e-4, 1e-3} | {5e-5, 1e-4, 5e-4, 1e-3} |
| Batch Size            | {64, 128}                | {64, 128}                |
| Initial Learning Rate | 1e-7                     | 1e-7                     |
| End Learning Rate     | 1e-9                     | 1e-9                     |
|                       |                          |                          |

| 6/7/23, 8:55 PM |
|-----------------|
|-----------------|

| method                                | #param. | AUC (%)            |
|---------------------------------------|---------|--------------------|
| Morgan Finger Prints + Random Forest* | 230K    | <b>80.60±</b> 0.10 |
| GROVER*[46]                           | 48.8M   | 79.33±0.09         |
| GROVER\textscLarge*[46]               | 107.7M  | 80.32±0.14         |
| Graphormer-FLAG                       | 47.0M   | 80.51±0.53         |

## Table 13: Comparison to pre-trained Transformer-based GNN on MolPCBA. \* indicates that additional features for molecule are used.

Parse references

| method                  | #param. | AP (%)             |
|-------------------------|---------|--------------------|
| GROVER*[46]             | 48.8M   | 16.77±0.36         |
| GROVER\textscLarge*[46] | 107.7M  | 13.05±0.18         |
| Graphormer-FLAG         | 47.0M   | <b>31.39±</b> 0.32 |

### Results in Papers With Code

Contact us on: ■ hello@paperswithcode.com.

Papers With Code is a free resource with all data licensed under CC-BY-SA.

Terms Data policy Cookies policy from Meta Al

| 6/7/23, 8:55 PM | Paper tables with annotated results for Do Transformers Really Perform Bad for Graph Representation? $\mid$ Pape |
|-----------------|------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |
|                 |                                                                                                                  |