アメリカ式統計学-統計検定2級範囲-

第2回

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

箱の中に5枚のカードが入っている。その中から3のカードを引く確率は?

$$P(3) = \frac{1}{5}$$

箱の中に1~5までの実数の番号がついたカードが入っている。その中から 3のカードを引く確率は?

$$P(3) = \frac{1}{\infty}$$

$\frac{1}{\infty}$ について考える

分母が大きくなると

$$\frac{1}{1} = 1$$

$$\frac{1}{10} = 0.1$$

$$\frac{1}{100} = 0.01$$

$$\frac{1}{1000} = 0.001$$

問題

$$\frac{1}{0} = ?$$

$$\frac{1}{\infty} = 0$$

$\frac{1}{\infty}$ について考える

分母が大きくなると

$$\frac{1}{1} = 1$$

$$\frac{1}{10} = 0.1$$

$$\frac{1}{100} = 0.01$$

$$\frac{1}{1000} = 0.001$$

問題

$$\frac{1}{0} = \infty$$

$$\frac{1}{\infty} = 0$$

箱の中に1~5までの実数の番号がついたカードが入っている。その中から 3のカードを引く確率は?

$$P(3) = \frac{1}{\infty} = 0$$

箱の中に1~5までの実数の番号がついたカードが入っている。その中から **3以上**のカードを引く確率は?

箱の中に1~5までの実数の番号がついたカードが入っている。その中から **3以上**のカードを引く確率は?

$$P(3以上) =$$

箱の中に1~5までの実数の番号がついたカードが入っている。その中から **3以上**のカードを引く確率は?

$$P(3以上) = \frac{1}{2}$$

確率の問題を解くのに必要な知識?

ある大学で1年生120人のうち60人がフランス語、50人がスペイン語、20人がフランス語とスペイン語を履修している。120人からランダムに学生を選んだ時、この学生が

- (1) フランス語もしくはスペイン語を履修している確率は?
- (2) フランス語もスペイン語も履修していない確率は?
- (3) フランス語だけを履修している確率は?

確率の問題を解くのに必要な知識?

ある大学で1年生120人のうち60人がフランス語、50人がスペイン語、20人がフランス語とスペイン語を履修している。120人からランダムに学生を選んだ時、この学生が

- (1) フランス語もしくはスペイン語を履修している確率は?
- (2) フランス語もスペイン語も履修していない確率は?
- (3) フランス語だけを履修している確率は?

集合とは?

集合

いくつかの「もの」からなる集まり。 集合を構成する個々の「もの」のことを元という

集合とは?

集合

いくつかの「もの」からなる集まり。 集合を構成する個々の「もの」のことを元という

和集合(union)

 $A \cup B = \{A \subset B \text{ の最低一方に属す要素全体}\}$

和集合(union)

$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \cup B = \{1,2,3,4,5,6,7,8\}$$

共通部分(intersection)

 $A \cap B = \{A \subset B$ の両方に属す要素全体 $\}$

共通部分(intersection)

$$A \cap B = \{A \subset B$$
の両方に属す要素全体 $\}$

$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \cap B = \{4,5\}$$

$$A \setminus B = \{A$$
だけに属す要素全体 $\}$

$$A \setminus B = \{A \text{ だけに属す要素全体}\}$$

$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \setminus B = \{1,2,3\}$$

 $B \setminus A = \{B \ だけに属す要素全体\}$

$$B \setminus A = \{B \ だけに属す要素全体\}$$

$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$B \setminus A = \{6,7,8\}$$

対称差集合(symmetric difference)

A ⊕ B={どちらか一方の集合に含まれるが両方には含まれない要素全体}

対称差集合(symmetric difference)

A ⊕ *B*={どちらか一方の集合に含まれるが両方には含まれない要素全体}

$$A = \{1,2,3,4,5\}$$

$$B = \{4,5,6,7,8\}$$

$$A \oplus B = \{1,2,3,6,7,8\}$$

素集合(互いに素)(disjoint)

共通部分を持たない集合

素集合(互いに素)(disjoint)

共通部分を持たない集合

$$A = \{1,2,3\}$$

$$B = \{4,5,6,7,8\}$$

$$A \ge B$$
 は互いに素

$$A \cap B = \{\emptyset\}$$

全体集合(universe)

集合全体

全体集合(universe)

集合全体

$$A = \{1,2,3\}$$

U:整数全体

補集合(complement)

 $A^c = \{$ 全体集合 U から A を**取り除いた要素全体** $\}$

補集合(complement)

$A^c = \{$ 全体集合 U から A を**取り除いた要素全体** $\}$

$$A = \{1,2,3\}$$

U:整数全体

$$A^c = \{1,2,3\}$$
以外の全整数

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C) =$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C) = \{0, Blue\}$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C)^c =$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$(B \setminus C)^c = \{0, Blue\}$$
以外の集合

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A \cap (B \setminus C)^c =$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A \cap (B \setminus C)^c = \{3, 7, -5, 13\}$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$\left(A \setminus (A \cap (B \setminus C)^{c})\right) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) =$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$\left(A \setminus (A \cap (B \setminus C)^c)\right) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$

 $(B \cap C) =$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = ?$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$
$$(B \cap C) = \{3, 17, Star\}$$

$$A = \{3, 7, -5, 0, 13\}$$
 $B = \{0, 17, 3, Blue, Star\}$
 $C = \{Pink, Star, 3, 17\}$

$$(A \setminus (A \cap (B \setminus C)^c)) \cup (B \cap C) = \{0, 3, 17, Star\}$$

$$A \setminus (A \cap (B \setminus C)^c) = \{0\}$$
$$(B \cap C) = \{3, 17, Star\}$$

(1) $A \cap B^c$

 $(2) A^c \cap B^c \qquad (3) (A \cup B)^c$

 $(1) A \cap B^c$

 $(2) A^c \cap B^c \qquad (3) (A \cup B)^c$

 $(1) A \cap B^c$

 $(2) A^c \cap B^c \qquad (3) (A \cup B)^c$

 $(1) A \cap B^c \qquad \qquad (2) A^c \cap B^c \qquad \qquad (3) (A \cup B)^c$

(1) $A \cap B^c$ (2) $A^c \cap B^c$ (3) $(A \cup B)^c$

 $(1) A \cap B^c \qquad (2) A^c \cap B^c \qquad (3) (A \cup B)^c$

 $(1) A \cap B^c$

(2) $A^c \cap B^c$

 $(3) (A \cup B)^c$

ド・モルガンの定理

$$(A \cup B)^c = A^c \cap B^c$$

「A または B」でない, という状況は「A でない」かつ「B でない」という状況と同じ

 $(A \cup B)^c \cap C$

 $(A \cup B)^c \cap C$

A の要素の数: n(A)

$$n(A) = 5$$

Bの要素の数: n(B)

$$n(B) = 6$$

A とB の共通要素の数:

$$n(A \cap B)$$

$$n(A \cap B) = 2$$

関係は?

$$n(A) = 5$$

$$n(B)=6$$

$$n(A \cap B) = 2$$

 $A \subset B$ の和集合の要素の数: $n(A \cup B)$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

 $A \subset B$ の和集合の要素の数: $n(A \cup B)$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

 $A \subset B$ の和集合の要素の数: $n(A \cup B)$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

調査項目	回答	
価格は満足ですか?	満足している	80人
	満足していない	70人
品質は満足ですか?	満足している	110人
	満足していない	40人

全体:150人

全体:150人

全体:150人

調査項目	回答	
価格は満足ですか?	満足している	80人
	満足していない	70人
品質は満足ですか?	満足している	110人
	満足していない	40人

全体:150人

調査項目	回答	
価格は満足ですか?	満足している	80人
	満足していない	70人
品質は満足ですか?	満足している	110人
	満足していない	40人

全体:150人

全体:150人

価格と質の両方に満足していない人の数

150-n(価格∪品質)

全体:150人

価格と質の両方に満足していない人の数

$$150 - n$$
(価格 \cup 品質) = $150 - (n(価格) + n(品質) - n(価格 \cap 品質))$

価格と質の両方に満足していない人の数

$$150 - n$$
(価格U品質) = $150 - (n(価格) + n(品質) - n(価格 \cap 品質))$
= $150 - (80 + 110 - 65)$

価格と質の両方に満足していない人の数

$$150 - n$$
(価格U品質) = $150 - (n(価格) + n(品質) - n(価格 \cap 品質))$
= $150 - (80 + 110 - 65)$
= 25

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

確率基礎用語(標本空間と事象)

ある実験を行った時に、起こり得る全ての結果の集合を標本空間、 または、全事象という。標本空間の要素(元)を標本点、標本空間 の部分集合を事象という。

確率基礎用語(標本空間と事象)

ある実験を行った時に、起こり得る全ての結果の集合を**標本空間**、 または、**全事象**という。標本空間の要素(元)を**標本点**、標本空間 の部分集合を**事象**という。

例:サイコロを1回投げる実験

標本空間:起こり得るすべての結果

$$S = \{1,2,3,4,5,6\}$$

事象:標本空間の部分集合

$$A = \{2,4,6\}$$

確率基礎用語 (標本空間と事象)

確率基礎用語(標本空間と事象)

確率基礎用語(標本空間と事象)

- コインを3回投げたとき、その標本空間を求めてください。
- コインを3回投げたとき、2回表が出る確率を求めてください。

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

1回目

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

1回目 2回目

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

n(S) = 8

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

標本空間

表表表

表表裏

表裏表

表裏裏

裏表表

裏表裏

裏裏表

裏裏裏

n(S) = 8

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

標本空間

表表表

表表裏

表裏表

表裏裏

裏表表

裏表裏

裏裏表

裏裏裏

$$n(S) = 8$$

A: 2回表が出る事象

$$n(A) = 3$$

コインを3回投げたとき、その標本空間を求めてください。 コインを3回投げたとき、2回表が出る確率を求めてください。

標本空間

表表表

表表裏

表裏表

表裏裏

裏表表

裏表裏

裏裏表

裏裏裏

$$n(S) = 8$$

A: 2回表が出る事象

$$n(A) = 3$$

2回表が出る確率

$$P(A) = \frac{3}{8}$$

科学するとは?

「科学する」とは?

科学するとは?

科学するとは?

科学理論の構造

代数学の公理

$$A = B$$
 のとき

$$A + C = B + C$$

$$x - 5 = 11$$

代数学の公理

$$A = B$$
 のとき

$$A + C = B + C$$

$$x - 5 = 11$$

$$A = B$$

代数学の公理

$$A = B$$
 のとき

$$A + C = B + C$$

$$|x-5| + 5 = 11 + 5$$

$$A + 5 = B + 5$$

代数学の公理

$$A = B$$
 のとき

$$A + C = B + C$$

$$x - 5 + 5 = 11 + 5$$

$$A + 5 = B + 5$$

代数学の公理

$$A = B$$
 のとき

$$A + C = B + C$$

$$x = 16$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- $(1) \ 0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

確率の公理

- $(1) \ 0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

確率は0以上1以下とする

確率の公理

- $(1) \ 0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

確率は0以上1以下とする

(絶対に起こらない) 0

1 (絶対に起こる)

確率の公理

(1)
$$0 \le P(A) \le 1$$

(2)
$$P(S) = 1$$
, $P(A^c) = 1 - P(A)$

(3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

確率の公理

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

標本空間 (S) の確率を 1 とする

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

確率の公理

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

問:サイコロを1回投げた時?

$$P(S) = 1$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- $(1) \ 0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

$$A = \{6\}$$

$$A^{c} = \{1,2,3,4,5\}$$

$$P(A^{c}) = 1 - P(A) = \frac{5}{6}$$

- (1) $0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

確率の公理

- $(1) \ 0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

同時に起こらない事象の確率は足し算ができる

- $(1) \ 0 \le P(A) \le 1$
- (2) P(S) = 1, $P(A^c) = 1 P(A)$
- (3) A₁, A₂…A_nが排反事象なら

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

$$A_1 = \{2\}$$

$$A_2 = \{5\}$$

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) = \frac{2}{6}$$

演習問題

4つの要素

$$S = \{a_1, a_2, a_3, a_4\}$$

から標本空間 S が構成されている。下の (a)~(d) のどの場合が標本空間 S の確率になり得るか?

演習問題

4つの要素

$$S = \{a_1, a_2, a_3, a_4\}$$

から標本空間 S が構成されている。下の $(a)\sim(d)$ のどの場合が標本空間 S の確率になり得るか?

(a)
$$P(a_1) = \frac{1}{2}$$
, $P(a_2) = \frac{1}{3}$, $P(a_3) = \frac{1}{4}$, $P(a_4) = \frac{1}{5}$

(b)
$$P(a_1) = \frac{1}{2}$$
, $P(a_2) = \frac{1}{4}$, $P(a_3) = -\frac{1}{4}$, $P(a_4) = \frac{1}{2}$

(c)
$$P(a_1) = \frac{1}{2}$$
, $P(a_2) = \frac{1}{4}$, $P(a_3) = \frac{1}{8}$, $P(a_4) = \frac{1}{8}$

(d)
$$P(a_1) = \frac{1}{2}$$
, $P(a_2) = \frac{1}{4}$, $P(a_3) = \frac{1}{4}$, $P(a_4) = 0$

演習問題

4つの要素

$$S = \{a_1, a_2, a_3, a_4\}$$

から標本空間 S が構成されている。下の $(a)\sim(d)$ のどの場合が標本空間 S の確率になり得るか ?

(a)
$$P(a_1) = \frac{1}{2}$$
, $P(a_2) = \frac{1}{3}$, $P(a_3) = \frac{1}{4}$, $P(a_4) = \frac{1}{5}$
(b) $P(a_1) = \frac{1}{2}$, $P(a_2) = \frac{1}{4}$, $P(a_3) = -\frac{1}{4}$, $P(a_4) = \frac{1}{2}$
(c) $P(a_1) = \frac{1}{2}$, $P(a_2) = \frac{1}{4}$, $P(a_3) = \frac{1}{8}$, $P(a_4) = \frac{1}{8}$
(d) $P(a_1) = \frac{1}{2}$, $P(a_2) = \frac{1}{4}$, $P(a_3) = \frac{1}{4}$, $P(a_4) = 0$

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

このとき $P(A_1 \cup A_2)$ は?

$$P(A_1 \cup A_2) = \frac{n(A_1 \cup A_2)}{n(S)}$$

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

このとき $P(A_1 \cup A_2)$ は?

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

確率の定義

集合和の要素の数

$$n(A_1 \cup A_2) = n(A_1) + n(A_2) - n(A_1 \cap A_2)$$

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

$$= \frac{n(A_1) + n(A_2) - n(A_1 \cap A_2)}{n(S)}$$

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

このとき $P(A_1 \cup A_2)$ は?

$$P(A_1 \cup A_2) = \frac{n(A_1 \cup A_2)}{n(S)}$$

$$= \frac{n(A_1) + n(A_2) - n(A_1 \cap A_2)}{n(S)}$$
$$= \frac{n(A_1)}{n(S)} + \frac{n(A_2)}{n(S)} - \frac{n(A_1 \cap A_2)}{n(S)}$$

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

$$P(A_1 \cup A_2) = \frac{n(A_1 \cup A_2)}{n(S)}$$

$$= \frac{n(A_1) + n(A_2) - n(A_1 \cap A_2)}{n(S)}$$

$$= \frac{n(A_1)}{n(S)} + \frac{n(A_2)}{n(S)} - \frac{n(A_1 \cap A_2)}{n(S)}$$

$$= P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

$$S = \{1,2,3,4,5,6\}$$

 $A_1 = \{2,5\}$ $A_2 = \{3,5\}$

$$P(A_1 \cup A_2) = \frac{n(A_1 \cup A_2)}{n(S)}$$

$$= \frac{n(A_1) + n(A_2) - n(A_1 \cap A_2)}{n(S)}$$

$$= \frac{n(A_1)}{n(S)} + \frac{n(A_2)}{n(S)} - \frac{n(A_1 \cap A_2)}{n(S)}$$

$$= P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

$$=\frac{2}{6}+\frac{2}{6}-\frac{1}{6}=\frac{3}{6}$$

問題

ある大学で1年生120人のうち60人がフランス語、50人がスペイン語、20人がフランス語とスペイン語を履修している。120人からランダムに学生を選んだ時、この学生が

- (1) フランス語もしくはスペイン語を履修している確率は?
- (2) フランス語もスペイン語も履修していない確率は?
- (3) フランス語だけを履修している確率は?

1年生120人
$$(n(S) = 120)$$

1年生120人
$$(n(S) = 120)$$

$$\rightarrow$$
 $f \cup s$

$$n(f \cup s) = n(f) + n(s) - n(f \cap s)$$

1年生120人
$$(n(S) = 120)$$

$$\rightarrow$$
 $f \cup s$

$$n(f \cup s) = n(f) + n(s) - n(f \cap s)$$

= 60 + 50 - 20
= 90

1年生120人
$$(n(S) = 120)$$

(1) フランス語もしくはスペイン語を履修

$$\rightarrow$$
 $f \cup s$

$$n(f \cup s) = n(f) + n(s) - n(f \cap s)$$

= 60 + 50 - 20

求める確率は
$$P(f \cup s) = \frac{n(f \cup s)}{n(S)}$$

= 90

1年生120人
$$(n(S) = 120)$$

$$\rightarrow$$
 $f \cup s$

$$n(f \cup s) = n(f) + n(s) - n(f \cap s)$$

= $60 + 50 - 20$
= 90

求める確率は
$$P(f \cup s) = \frac{n(f \cup s)}{n(S)} = \frac{90}{120}$$

1年生120人
$$(n(S) = 120)$$

(2) フランス語もスペイン語も履修していない

1年生120人
$$(n(S) = 120)$$

(2) フランス語もスペイン語も履修していない

1年生120人
$$(n(S) = 120)$$

- (2) フランス語もスペイン語も履修していない
 - $(f \cup s)^c$ (黄色の部分)

1年生120人
$$(n(S) = 120)$$

(2) フランス語もスペイン語も履修していない

$$(f \cup s)^c$$
 (黄色の部分)

$$n((f \cup s)^c) = n(S) - n(f \cup s)$$

1年生120人
$$(n(S) = 120)$$

(2) フランス語もスペイン語も履修していない

$$= 120 - 90$$

= 30

1年生120人
$$(n(S) = 120)$$

(2) フランス語もスペイン語も履修していない

$$(f \cup s)^c$$
 (黄色の部分)

$$n((f \cup s)^c) = n(S) - n(f \cup s)$$
$$= 120 - 90$$
$$= 30$$

求める確率は
$$P((f \cup s)^c) = \frac{n((f \cup s)^c)}{n(S)}$$

1年生120人
$$(n(S) = 120)$$

(2) フランス語もスペイン語も履修していない

$$(f \cup s)^c$$
 (黄色の部分)

$$n((f \cup s)^c) = n(S) - n(f \cup s)$$
$$= 120 - 90$$
$$= 30$$

求める確率は
$$P((f \cup s)^c) = \frac{n((f \cup s)^c)}{n(S)} = \frac{30}{120}$$

1年生120人
$$(n(S) = 120)$$

1年生120人
$$(n(S) = 120)$$

1年生120人
$$(n(S) = 120)$$

1年生120人
$$(n(S) = 120)$$

$$n(f \setminus s) = n(f) - n(f \cap s)$$

1年生120人
$$(n(S) = 120)$$

1年生120人
$$(n(S) = 120)$$

求める確率は
$$P(f \setminus s) = \frac{n(f \setminus s)}{n(S)}$$

1年生120人
$$(n(S) = 120)$$

求める確率は
$$P(f \setminus s) = \frac{n(f \setminus s)}{n(S)} = \frac{40}{120}$$

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

順列

順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

【X】には5通りの選び方がある

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

【X】には5通りの選び方がある

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

【Y】には4通りの選び方がある

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

【Y】には4通りの選び方がある

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を**並べる**」並べ方の数は?

【Z】には3通りの選び方がある

5 4

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

【Z】には3通りの選び方がある

5

4

3

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

並べ方の総数は?

Z

5 4

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

並べ方の総数は?

 $5 \times 4 \times 3$

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

・「異なる5人の中から、重複せずに3人を並べる」並べ方の数は?

並べ方の総数は?

 $5 \times 4 \times 3 = 60 通り$

順列

順列

公式
$$nP_r = \frac{n!}{(n-r)!}$$

順列

公式
$$nP_r = \frac{n!}{(n-r)!}$$

順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

$$_{5}P_{3} = \frac{5!}{(5-3)!}$$

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

$$P_3 = \frac{5!}{\sqrt{5}} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2}$$

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

$$_{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1}$$

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

$$_5P_3 = \frac{5!}{(5-3)!} = 5 \times 4 \times 3 = 60$$

順列

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

$$(1)_{5}P_{2}$$

$$(2)_{8}P_{4}$$

$$(3)_{6}P_{6}$$

順列

異なるn個の中から、**重複せずに**、r個選んで**並べる**場合の数

$$(1)_{5}P_{2}$$

$$(2)_{8}P_{4}$$

$$(3)_{6}P_{6}$$

$$_{5}P_{2} = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 = 20$$

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

$$(1)_{5}P_{2}$$

$$(2)_{8}P_{4}$$

(3)
$$_{6}P_{6}$$

$$_{5}P_{2} = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 = 20$$

$$_{8}P_{4} = \frac{8!}{(8-4)!} = \frac{8!}{4!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} = 8 \cdot 7 \cdot 6 \cdot 5 = 1680$$

順列

異なるn 個の中から、**重複せずに**、r 個選んで**並べる**場合の数

$$(1)_{5}P_{2}$$

(2)
$$_{8}P_{4}$$

(3)
$$_{6}P_{6}$$

$$_{5}P_{2} = \frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 5 \cdot 4 = 20$$

$$_{8}P_{4} = \frac{8!}{(8-4)!} = \frac{8!}{4!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} = 8 \cdot 7 \cdot 6 \cdot 5 = 1680$$

$$_{6}P_{6} = \frac{6!}{(6-6)!} = \frac{6!}{0!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1} = 720$$

組み合わせ(combination)

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

「異なる5人の中から、重複せずに3人選ぶ」選び方の総数は?

選び方の総数は?

組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

「異なる5人の中から、重複せずに3人選ぶ」選び方の総数は?

選び方の総数は?

(A,B,C) (A,B,D) (A,B,E)

(A,C,D) (A,C,E)

(A,D,E)

Aを含む選び方

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

「異なる5人の中から、重複せずに3人選ぶ」選び方の総数は?

選び方の総数は?

(A,B,C) (A,B,D) (A,B,E) (A,C,D) (A,C,E) (A,D,E) (B,C,D) (B,C,E) (B,D,E)

Aを含む選び方

Aを含まず、 Bを含む選び方

組み合わせ

異なるn 個の中から、**重複せずに**、r 個選び出す場合の数

「異なる5人の中から、重複せずに3人選ぶ」選び方の総数は?

選び方の総数は?

(A,B,C) (A,B,D) (A,B,E) (A,C,D) (A,C,E) (A,D,E) (B,C,D) (B,C,E) (B,D,E)

(C,D,E)

Aを含む選び方

Aを含まず、 Bを含む選び方 A、Bを含まず、 Cを含む選び方

組み合わせ

異なるn 個の中から、**重複せずに**、r 個選び出す場合の数

「異なる5人の中から、重複せずに3人選ぶ」選び方の総数は?

選び方の総数は?

10通り

(A,B,C) (A,B,D) (A,B,E) (A,C,D) (A,C,E)

(A,D,E)

(B,C,D) (B,C,E)

(B,D,E)

(C,D,E)

Aを含む選び方

Aを含まず、 Bを含む選び方 A、Bを含まず、 Cを含む選び方

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

$$_{5}C_{3} = \frac{5!}{3! \times (5-3)!}$$

組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

$${}_{5}C_{3} = \frac{5!}{3! \times (5-3)!} \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1}$$

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

$$_{5}C_{3} = \frac{5!}{3! \times (5-3)!} \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1}$$

組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

$${}_{5}C_{3} = \frac{5!}{3! \times (5-3)!} \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1} = 10$$

組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

 $_{n}C_{0}=_{n}C_{n}=1$ と定義する

$${}_{5}C_{3} = \frac{5!}{3! \times (5-3)!} \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1} = 10$$

組み合わせ

異なるn 個の中から、**重複せずに**、r 個**選び出す**場合の数

練習問題

(1) $_{6}C_{2}$

(2) $_{8}C_{6}$

(3) $_{10}C_2$

組み合わせ

異なるn個の中から、**重複せずに**、r個**選び出す**場合の数

練習問題

(1)
$$_{6}C_{2}$$

(2)
$$_{8}C_{6}$$

(3)
$$_{10}C_2$$

$$_{6}C_{2} = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = 15$$

組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

練習問題

(1)
$$_{6}C_{2}$$

(2)
$$_{8}C_{6}$$

(3)
$$_{10}C_2$$

$$_{6}C_{2} = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = 15$$

$$_{8}C_{6} = \frac{8!}{6!(8-6)!} = \frac{8!}{2!6!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(2 \cdot 1)} = \frac{8 \cdot 7}{(2 \cdot 1)} = 28$$

組み合わせ

異なるn個の中から、**重複せずに**、r個選び出す場合の数

練習問題

(1)
$$_{6}C_{2}$$

(2)
$$_{8}C_{6}$$

(3)
$$_{10}C_2$$

$${}_{6}C_{2} = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)} = 15$$

$${}_{8}C_{6} = \frac{8!}{6!(8-6)!} = \frac{8!}{2!6!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(2 \cdot 1)} = \frac{8 \cdot 7}{(2 \cdot 1)} = 28$$

$${}_{10}C_{2} = \frac{10!}{2!(10-2)!} = \frac{10!}{2!8!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)} = \frac{10 \cdot 9}{(2 \cdot 1)} = 45$$

どこが違う?

「5人の中から3人を**並べる**」 VS 「5人の中から3人**選ぶ**」

どこが違う? 「5人の中から3人を**並べる**」 VS 「5人の中から3人**選ぶ**」 (A,B,C) (A,C,B) (B,A,C) (B,C,A) (C,A,B) (C,B,A)(A,B,D) (A,D,B)(B,A,D) (B,D,A) (D,A,B) (D,B,A)(A,B,E) (A,E,B)(B,A,E) (B,E,A) (E,A,B) (E,B,A)(A,C,D) (A,D,C) (C,A,D) (C,D,A) (D,A,C) (D,C,A)(A,C,E) (A,E,C) (C,A,E) (C,E,A) (E,A,C) (E,C,A)(A,D,E) (A,E,D) (D,A,E) (D,E,A) (E,A,D) (E,D,A)(B,C,D) (B,D,C) (C,B,D) (C,D,B) (D,B,C) (D,C,B)(B,C,E)(B,E,C) (C,B,E) (C,E,B) (E,B,C) (E,C,B)(B,C,E)(B,E,C)(C,B,E) (C,E,B) (E,B,C)(E,C,B)(B,D,E) (B,E,D)(D,B,E) (D,E,B) (E,B,D) (E,D,B)(C,D,E) (C,E,D) (D,C,E) (D,E,C) (E,C,D) (E,D,C)

どこが違う?

「5人の中から3人を**並べる**」

VS

「5人の中から3人**選ぶ**」

どこが違う? 「5人の中から3人を**並べる**」 VS 「5人の中から3人**選ぶ**」 (A,B,C) (A,C,B) (B,A,C) (B,C,A) (C,A,B) (C,B,A)(A,B,D) (D,A,B) (A,D,B)(B,A,D) (B,D,A)(D,B,A)(A,B,E) (A,E,B)(B,A,E) (B,E,A) (E,A,B)(E,B,A) (A,C,D) (A,D,C) (C,A,D) (C,D,A) (D,A,C)(D,C,A)(A,C,E) (A,E,C) (C,A,E) (C,E,A) (E,A,C) (E,C,A)(A,D,E) (A,E,D) (D,A,E) (D,E,A) (E,A,D) (E,D,A)(B,C,D) (B,D,C) (C,B,D) (C,D,B) (D,B,C) (D,C,B)(B,C,E)(B,E,C) (C,B,E) (C,E,B) (E,B,C) (E,C,B)(B,C,E)(B,E,C)(C,E,B)(C,B,E) (E,B,C) (E,C,B)(B,E,D)(B,D,E)(D,B,E) (D,E,B) (E,B,D) (E,D,B)(C,D,E) (C,E,D) (D,C,E) (D,E,C) (E,C,D) (E,D,C)

60通り

60通り

問題

アルファベット26文字のカードがある。この中の2枚のカードで文字を作るとき、出来る文字列は何種類か?

順列の問題

₂₆P₂ = 26·25 = 650 (種類)

大人3人、子供4人がいる。ここから4人を選んで順番を考慮してリレーチーム を作る。

順列の問題

 $_{7}P_{4} = 7 \cdot 6 \cdot 5 \cdot 4 = 840$ (種類)

問題

学芸会で演劇をすることになり、演劇部に所属する男子生徒6人と女子生徒3人の中から出演してもらうことにした。男子生徒だけを3人選ぶとすると、その選び方は何通りあるか。

組み合わせの問題

$$_6$$
C $_3$ = 20 (通り)

5人の中から 2人代表を選ぶ方法の数を求めよ。

組み合わせの問題

$$_5C_2 = 10$$
 (通り)

5人の中からリーダーと副リーダーを選ぶ方法の数を求めよ

順列の問題

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

二項分布 (ベルヌーイ試行)

= ベルヌーイ試行

コインを投げた時の表が出るか裏が出るかのように、何かを行った時 に起こる結果が2つしかない試行のことをベルヌーイ試行と言う。

$$P$$
(成功) = p

$$P(失敗) = 1 - p$$

二項分布(ベルヌーイ試行)

= ベルヌーイ試行

コインを投げた時の表が出るか裏が出るかのように、何かを行った時に起こる結果が2つしかない試行のことをベルヌーイ試行と言う。

$$P(成功) = p$$

$$P(失敗) = 1 - p$$

二項分布

ベルヌーイ試行をn回行って、k回成功する確率

$$P(k$$
回成功する確率) = $_{n}C_{k}p^{k}(1-p)^{n-k}$

二項分布(ベルヌーイ試行)

= ベルヌーイ試行

コインを投げた時の表が出るか裏が出るかのように、何かを行った時に起こる結果が2つしかない試行のことをベルヌーイ試行と言う。

$$P(成功) = p$$

$$P(失敗) = 1 - p$$

例:10回コインを投げた時、6回表が出る確率

$$P(成功) = p$$

$$P(失敗) = 1 - p$$

$$P(k$$
回成功する確率) = ${}_{n}C_{k}p^{k}(1-p)^{n-k}$

例:10回コインを投げた時、6回表が出る確率

ベルヌーイ試行ー

$$P(成功) = p$$

$$P(失敗) = 1 - p$$

表が出るを成功とする

$$P(k$$
回成功する確率) = ${}_{n}C_{k}p^{k}(1-p)^{n-k}$

例:10回コインを投げた時、6回表が出る確率

ベルヌーイ試行

$$P(表) = 0.5$$

$$P($$
裏 $) = 0.5$

表が出るを成功とする

$$P(k$$
回成功する確率) = ${}_{n}C_{k}p^{k}(1-p)^{n-k}$

例:10回コインを投げた時、6回表が出る確率

$$P(表) = 0.5$$

$$P($$
裏 $) = 0.5$

表が出るを成功とする

例:10回コインを投げた時、6回表が出る確率

·ベルヌーイ試行 =

$$P(表) = 0.5$$

$$P($$
裏 $) = 0.5$

表が出るを成功とする

$$P(6$$
回表がでる確率) = $_{10}C_6$ 0.5 6 (1 - 0.5) 4

例:10回コインを投げた時、6回表が出る確率

ベルヌーイ試行=

$$P(表) = 0.5$$

$$P($$
裏 $) = 0.5$

表が出るを成功とする

$$P(6$$
回表がでる確率 $) = {}_{10}C_6 \ 0.5^6 (1-0.5)^4 = 0.205$

例:10回コインを投げた時、6回表が出る確率

ベルヌーイ試行 =

$$P(表) = 0.5$$

$$P($$
裏 $) = 0.5$

表が出るを成功とする

- 二項分布

$$P(6$$
回表がでる確率 $) = {}_{10}C_6 \ 0.5^6 (1-0.5)^4 = 0.205$

EXCEL

=binom.dist(成功数,試行回数,成功率、関数形式)

例:10回コインを投げた時、6回表が出る確率

ベルヌーイ試行=

$$P(表) = 0.5$$

$$P($$
裏 $) = 0.5$

表が出るを成功とする

二項分布

$$P(6$$
回表がでる確率 $) = {}_{10}C_6 \ 0.5^6 (1-0.5)^4 = 0.205$

EXCEL

=binom.dist(6,10,0.5,0)

問題

10円硬貨を5回投げるとき、表がちょうど2回出る確率は?

問題

10円硬貨を5回投げるとき、表がちょうど2回出る確率は?

【解答】

10円硬貨を1回投げて表がでる確率は p=0.5

表が出ない(=裏が出る)確率は 1-p=0.5

試行を5回 (n=5) 繰り返して、表が2回 (k=2) 出る確率は

$$_{5}C_{2} \ 0.5^{2} (1 - 0.5)^{3} = \frac{5!}{2! (5 - 2)!} (0.5)^{2} (0.5)^{5 - 2} = 10 \times \frac{1}{32} = \frac{5}{16}$$

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

2. 集合と確率

今日のコンテンツ

- 2-1 集合と論理演算
- 2-2 確率
- 2-3 順列・組み合わせ
- 2-4 二項分布
- 2-5 Excel演習

例:10回コインを投げた時、6回表が出る確率

確率

$$P(6回表が出る確率) = {}_{10}C_6 0.5^6 (1-0.5)^4 = 0.205$$

問題

10円硬貨を5回投げるとき、表がちょうど2回出る確率は?

問題

10円硬貨を5回投げるとき、表がちょうど2回出る確率は?

【解答】

10円硬貨を1回投げて表がでる確率は $p=rac{1}{2}$

表が出ない(=裏が出る)確率は $1-p=\frac{1}{2}$

試行を5回 (n=5) 繰り返して、表が2回 (k=2) 出る確率は

$$\frac{5!}{2!(5-2)!} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{5-2} = 10 \times \frac{1}{32} = \frac{5}{16}$$