Rzędy i Generatory

Artur Wojtuszkiewicz

Warsztaty Matematyczne 2022

1 Teoria

1.1 Rzędy

Def. 1 Dla $a \perp m$, rząd a modulo m (ord_m(a)) to najmniejsza taka liczba całkowita dodatnia n, że $a^n \equiv 1 \mod m$.

Twierdzenie 1 $a^k \equiv 1 \mod m$ wtedy i tylko wtedy gdy $ord_m(a) \mid k$.

Z tego twierdzenie wynikają następujące fakciki (najprzydatniejsze są fakciki 1, 2, 3):

- 1. $ord_m(a) \mid \varphi(m)$
- 2. $a^x \equiv a^y \mod m \iff x \equiv y \mod ord_m(a)$
- 3. $t \mid m \implies ord_t(a) \mid ord_m(a)$
- 4. $ord_m(a^k) = \frac{ord_m(a)}{NWD(k, ord_m(a))}$
- 5. $ord_m(a) \perp ord_m(b) \implies ord_m(ab) = ord_m(a) \cdot ord_m(b)$
- 6. $x \perp y \implies ord_{xy}(a) = NWW(ord_x(a), ord_y(a))$

Przykład 1 Udowodnij że dla liczby pierwszej p, każdy dzielnik $2^p - 1$, inny od 1, jest większy od p.

Rozwiązanie: Wystarczy udowodnić że każdy jej dzielnik pierwszy q jest większy niż p. $ord_{2^p-1}(2) = p$ oraz $ord_q(2) \mid ord_{2^p-1}(2)$. $ord_q(2) \neq 1$ ponieważ wtedy $2 \equiv 1 \mod q$. Pozostaje $ord_q(2) = p$, czyli $p = ord_q(2) \leq \varphi(q) < q$.

1.2 Generatory

Def. 2 Generatorem (pierwiastkiem pierwotnym) modulo m nazywamy g takie, że $ord_m(q) = \varphi(m)$

Nazwę "generator" wyjaśnia fakcik 2: biorąc potęgi generatora, od g^1 do $g^{\varphi(m)}$, modulo m, każdy $x \perp m$ zostaje "wygenerowany" dokładnie raz. W szczególności dla m pierwszego, są to wszystkie elementy oprócz 0.

Twierdzenie 2 Generator modulo m istnieje wtedy i tylko wtedy, gdy m = 1, m = 2, m = 4, $m = p^k$ lub $m = 2p^k$, dla p nieparzystego pierwszego.

Przykład 2 Udowodnij że jeśli m jest potęgą nieparzystej liczby pierwszej p, to iloczyn liczb niepodzielnych przez p mniejszych od m, przystaje do -1 modulo m.

Rozwiązanie: Elementy będące nawzajem swoimi odwrotnościami tworzą pary. Iloczyn elementów w każdej parze to 1, więc szukany iloczyn jest równy iloczynowi wszystkich elementów będących własną odwrotnością, czyli liczb spełniających $x^2 \equiv 1 \mod m$. m jest potęgą nieparzystej liczby pierwszej, więc istnieje generator g modulo m. Podstawiając $x=g^y$, otrzymujemy $g^{2y} \equiv 1 \mod m$, czyli $\varphi(m) \mid 2y$. Wynika z tego, że jedynymi takimi elementami są $g^0 \equiv 1 \mod m$ ig $g^{(m)} \equiv -1 \mod m$.

2 Zadania

- 1. Wyznacz wszystkie liczby dodatnie n, takie że $n \mid 2^n 1$.
- 2. Udowodnij, że dla liczby pierwszej p oraz k niepodzielnego przez p-1, zachodzi:

$$1^k + 2^k + \ldots + (p-1)^k \equiv 0 \mod p$$

- 3. Udowodnij, że każdy nieparzysty dzielnik pierwszy $a^{2^n} + 1$ jest postaci $k \cdot 2^{n+1} + 1$.
- 4. Udowodnij, że jeśli istnieje generator modulo m, to elementów rzędu x jest $\varphi(x)$.
- 5. (Kryterium Eulera) Udowodnij, że dla nieparzystej liczby pierwszej p oraz a niepodzielnego przez p, równanie $x^2 \equiv a \mod p$ ma rozwiązanie wtedy i tylko wtedy, gdy $a^{\frac{p-1}{2}} \equiv 1 \mod p$.
- 6. Udowodnij, że dla liczby pierwszej $p, p^p 1$ ma dzielnik pierwszy postaci kp + 1.
- 7. Udowodnij, że jeśli n jest całkowite większe od 1, oraz $n \mid 5^n + 6^n$, to $11 \mid n$.
- 8. (OM) Udowodnij, że jęśli k, n są liczbami całkowitymi większymi od 1, to nie istnieją takie liczby naturalne a, b, że zachodzi jednocześnie $k \mid 2^a 1, 2^b + 1$ oraz $n \mid 2^b 1, 2^a + 1$
- 9. Niech p będzie liczbą pierwszą. Udowodnij, że istnieje taka liczba pierwsza q, że dla każdej liczby całkowitej n, zachodzi $q \mid n^p p$.
- 10. Wyznacz wszystkie pary liczb pierwszych p, q takie, że $pq \mid 2^p + 2^q$.