Space Race with Data Science

Niwemutoni Marine

15^{th MARCH 2024}

TABLE OF CONTENT

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Introduction

Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- -factors that determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
 - One-hot encoding was applied to categorical features
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

EDA with Data Visualization

We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

EDA with SQL

- We loaded the SpaceX dataset into a PostgreSQL database without leaving the jupyter notebook.
- We applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.

Build an Interactive Map with Folium

- We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some question for instance:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Predictive Analysis (Classification)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.

Success Rate vs. Orbit Type

From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

The plot below shows the Flight Number vs. Orbit type. We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

All Launch Site Names

• We used the key word **DISTINCT** to show only unique launch sites from the SpaceX data.

Display the names of the unique launch sites in the space mission

Out[10]: launchsite 0 KSC LC-39A 1 CCAFS LC-40 2 CCAFS SLC-40 3 VAFB SLC-4E

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.

• We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending

order.

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))

0	No attempt	10
1	Success (drone ship)	6
2	Failure (drone ship)	5
3	Success (ground pad)	5
4	Controlled (ocean)	3
5	Uncontrolled (ocean)	2
6	Precluded (drone ship)	1
7	Failure (parachute)	1

Pie chart showing the success percentage achieved by each launch site

Total Success Launches By all sites

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

Confusion Matrix

The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes. The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier

Conclusions

We can conclude that:

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.