Lab 9: Noise reduction using spatial-domain Techniques

Goal

The goal of this lab is to learn how to perform noise reduction using spatial domain techniques.

Objectives

- Learn how to implement the arithmetic mean filter, as well as some of its variations, such
 - as the contra-harmonic mean, the harmonic mean, and the geometric mean filters
- Learn how to perform order statistic filtering, including median, min, max, midpoint, and alpha-trimmed mean filters.

Tools/Software Requirement

- o Anaconda, jupyter notebook, google colab
- o Python 3.5

Tasks and description:-

Task #1:-

Corrupt the input images with different types of noise models such as:-

- 1. 'Gaussian'
- 2. 'poisson'
- 3. 'salt & pepper'
- 4. 'speckle'
- 5. Salt only noise
- 6. Pepper only noise

Note:

You may use the **skimage.util.random noise** function from scikit image library.

Example:-

guassiannoise=skimage.util.random_noise(img,"gaussian")
peppernoise=skimage.util.random_noise(img,"pepper")

You can incorporate all the above mentioned 6 types of noise models by playing around with the second argument.

For further details you may consult the following link:https://scikit-image.org/docs/stable/api/skimage.util.html#random-noise

Demonstration:-

Your output for task 1 should look something like this :-

o Image Corrupted with Gaussian Noise:

o Image Corrupted with Pepper Noise:

o Image Corrupted with Poisson Noise:

o Image Corrupted with Salt & Pepper Noise:

Image Corrupted with Salt Noise:

o Image Corrupted with Speckle Noise:

Task #2:Apply different kinds of noise removal filters as given below;

- 1. Arithmetic mean
- 2. Geometric mean
- 3. Harmonic mean
- 4. Contra harmonic mean, The contra harmonic mean filter is used for filtering an image with either salt or pepper noise (but not both).
- 5. Max filters
- 6. Min filters

7. Median filters

Note:-

1):-in order to find out how a filter is affecting a particular type of noise you can save the resultant image using cv2.imwrite because just plotting would might not give you a precise intuition.

2):- You can use **filters** class from **scikit image** library. It contains very handy and easy to use builtin functions for filters.

You can import it as follows:-

- o import skimage
- o from skimage import filters

As it is a well renowned library for image processing so it has vast variety of functions. But for today's lab as we are using filtering so <u>scipy.ndimage</u> package is useful for you. You may visit the following link to get an insight about most of the filters for task2. https://docs.scipy.org/doc/scipy-0.14.0/reference/ndimage.html

1):- Arithmetic mean

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(r,c) \in s_{xy}} g(r,c)$$

Suppose you have a 3*3 kernel as follows:kernel = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape(3, 3)/9

You can apply it using <u>cv2.filter2D</u> function as used in previous labs.

order 9x9

Impact on Gaussian Noise

order 9x9

Impact on Pepper Noise

order 7x7

Impact on Poisson Noise

order 9x9

Impact on Salt Noise

2):- Min filter

$$\hat{f}(x,y) = \min_{(r,c) \in s_{xy}} \{g(r,c)\}\$$

You may use the minimum filter function from scikit image. https://docs.scipy.org/doc/scipy-<u>0.14.0/reference/generated/scipy.ndimage.filters.minimum_filter.html</u>

impact on gaussian noise

.....

impact on poisson noise

impact on speckle noise

3):- Max filter

$$\hat{f}(x,y) = \max_{(r,c) \in S_{xy}} \{g(r,c)\}$$

For max filter of scikit image visit the following link.

https://docs.scipy.org/doc/scipy-

 $\underline{0.14.0/reference/generated/scipy.ndimage.filters.maximum_filter.html\#scipy.ndimage.filters.maximum_filter.html\#scipy.ndimage.filters.maximum_filter.html\#scipy.ndimage.filters.maximum_filter.html#scipy.filters.maximum_filter.html#scipy.filters.maximum_filter.html#scipy.filters.maximum_filter.html#scipy.filters.filters.filters.filters.filters.filters.filters.filters.filters.filters.filters.filters.filte$

Max on saltnoise

Max on pappernoise

4):- Median filter

$$\hat{f}(x,y) = \underset{(r,c) \in S_{xy}}{\text{median}} \{g(r,c)\}\$$

For median filter visit the following link.

https://docs.scipy.org/doc/scipy-

0.14.0/reference/generated/scipy.ndimage.filters.median_filter.html#scipy.ndimage.filters.median_filter

Median on guassiannoise

Median on saltnoise

Median on poissonnoise

Median on pappernoise

Median on specklenoise

Median on salt n papper noise

5):- Geometric mean

$$\hat{f}(x,y) = \left[\prod_{(r,c) \in S_{xy}} g(r,c) \right]^{\frac{1}{mn}}$$

Geometric mean filter can be found in rank class of <u>skimage.filters</u> Visit the following link to read further.

https://scikit-image.org/docs/dev/api/skimage.filters.rank.html#skimage.filters.rank.geometric_mean_

geometric on saltnoise

geometric on specklenoise

geometric on poissonnoise

geometric on pappernoise

geometric on salt n papper noise

6):- Harmonic mean

$$\hat{f}(x,y) = \frac{mn}{\sum_{(r,c) \in S_{xy}} \frac{1}{g(r,c)}}$$

harmonic on guassiannoise

harmonic on saltnoise

harmonic on specklenoise

harmonic on poissonnoise

harmonic on pappernoise

harmonic on salt n papper noise

7):- Contra Harmonic

$$\hat{f}(x,y) = \frac{\displaystyle\sum_{(r,c) \in S_{xy}} g(r,c)^{Q+1}}{\displaystyle\sum_{(r,c) \in S_{xy}} g(r,c)^{Q}}$$

Output:-

For Q > 0

for positive values of Q it eliminates pepper noise.

contra_harmonic on guassiannoise

contra_harmonic on saltnoise

contra_harmonic on specklenoise

For Q < 0

for negative values of Q it eliminates salt noise.

contra_harmonic on poissonnoise

contra_harmonic on pappernoise

contra_harmonic on salt n papper noise

contra_harmonic on guassiannoise

contra_harmonic on saltnoise

contra_harmonic on specklenoise

contra_harmonic on poissonnoise

contra_harmonic on pappernoise

contra_harmonic on salt n papper noise

Submission Guidelines:-

Deliverables:

You have to submit a python notebook with ipynb extension containing all the codes and screen shots of output of all codes. Do not submit any zip folder containing code and screenshots separately.