

密级状态: 绝密() 秘密() 内部() 公开(√)

RK3399_Android7.1_TABLET_软件开发指南

(技术部,第二系统产品部)

文件状态:	当前版本:	V1.01
[]正在修改	作 者:	郝小伟, 刘益星
[√] 正式发布	完成日期:	2018-05-16
	审核:	陈海燕、黄祖芳
	完成日期:	2018-05-16

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Semiconductor Co., Ltd (版本所有,翻版必究)

版本历史

版本号	作者	修改日期	修改说明	备注
V1.00	郝小伟	2017.01.16	2017.01.16 正式发布	
V1.01	刘益星	2018.05.16	增加 lpddr4 支持说明	

目 录

前言	ī				. 1
1	支持	列表			. 2
	1.1	!	DD	R 支持列表	. 2
	1.2	1	EM	MC 支持列表	. 2
		1.2.	1	高性能 EMMC 颗粒的选取	. 2
	1.3	,	WiF	Fi/BT 支持列表	. 3
	1.4	,	SD	K 软件包适用硬件列表	. 3
	1.5		多妓	某体编解码支持列表	. 4
2	文档	/工具	索	引	. 5
	2.1		文档	当索引	. 5
	2.2		工具	具索引	. 6
3	SDK	【编译	4/烷	[4]	. 8
	3.1	!	SD	K 获取	. 8
		3.1.	1	SDK 下载链接	. 8
		3.1.	2	SDK 代码压缩包	. 8
	3.2	!	SD	K 编译	. 8
		3.2.	1	JDK 安装	. 8
		3.2.	2	编译模式	. 8
		3.2.	3	Laptop 编译	. 9
		3.2.	4	Tablet 编译	. 9
		3.2.	5	挖掘机编译	. 9
		3.2.	6	固件生成步骤	10
	3.3		固化	‡烧写	10
	3.4	-	量产	产烧写	11
4	U-Bo	oot \exists	干发		11
	4.1	1	Roc	ckchip U-Boot 简介	11
	4.2	-	平台	3 配置	11
	4.3		固化	牛生成	12

	4.3	3.1	一级 Loader 模式	12
	4.3	3.2	二级 Loader 模式	12
	4.4	U-E	Boot 编译	13
	4.5	U-E	Boot 开启关机充电功能	13
	4.6	U-E	Boot logo 相关的配置	14
	4.6	5.1	U-Boot logo 开关配置	14
	4.6	5.2	U-Boot logo 图片更换	14
5	Kernel	开发		14
	5.1	DT	S 介绍	14
	5.2	US	B 配置	15
	5.3	Wil	Fi 配置	16
	5.4	ВТ	配置	17
	5.5	GP	IO	18
	5.6	AR	M、GPU 频率修改	18
	5.7	温控	空配置	21
	5.8	Lpc	ddr4 支持说明	22
	5.8	3.1	需要 lpddr4 的变频	26
	5.8	3.2	不需要 lpddr4 变频	26
6	Android	d 常り	凡配置	27
	6.1	An	droid 产品配置	27
	6.1	1	lunch 选项说明	27
	6.1	2	添加一个新的产品	27
	6.2	常月	月功能配置说明	29
	6.2	2.1	常用配置宏说明	29
	6.2	2.2	预装 APK	30
	6.2	2.3	开/关机动画及铃声	31
	6.3	Par	rameter 说明	31
	6.4	新均	曾分区配置	31
	6.5	OT	A 升级	31

7	常用工具	具说明	. 32
	7.1	StressTest	. 32
	7.2	DeviceTest	. 32
	7.3	PCBA 测试工具	. 32
	7.4	DDR 测试工具	. 32
	7.5	update.img 打包	. 32
	7.6	固件签名	. 32
	7.7	序列号/Mac/厂商信息烧写	. 32
	7.8	量产工具使用	. 32
8	注意事项	页	. 32

前言

概述

本文档主要介绍 Rockchip RK3399 软件开发指南,旨在帮助软件开发工程师更快上手 RK3399 的开发及调试。

产品版本

芯片名称	内核版本	Android 版本		
RK3399	Linux4.4	Android7.1.1		

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

1 支持列表

1.1 DDR 支持列表

RK3399 DDR 目前选型列表支持双通道 DDR3、DDR3L、LPDDR3。

表 1-1 RK3399 DRAM Support Type

Chip	DRAM Support Type				
RK3399	DDR3/DDR3L/LPDDR3				

RK3399 DDR 颗粒支持程度列表,详见 RKDocs\Platform support lists 目录下《RK DDR Support List Ver2.18》,下表中所标示的 DDR 支持程度表,只建议选用 √、T/A 标示的颗粒。

表 1-2 RK3399 DDR Support Symbol

Symbol	Description
√	Fully Tested and Mass production
T/A	Fully Tested and Applicable
N/A	Not Applicable

1.2 EMMC 支持列表

RK3399支持eMMC 5.1, SDIO3.0, 可运行 HS200, HS400模式,详见 RKDocs\Platform support lists 目录下《RKeMMCSupportList Ver1.29_2016_08_05》,下表中所标示的 DDR 支持程度表,只建议选用 √、T/A 标示的颗粒。

表 1-3 RK3399 EMMC Support Symbol

Symbol	Description
\checkmark	Fully Tested , Applicable and Mass Production
T/A	Fully Tested , Applicable and Ready for Mass Production
D/A	Datasheet Applicable,Need Sample to Test
N/A	Not Applicable

1.2.1 高性能 EMMC 颗粒的选取

为了提高系统性能,选取高性能的 EMMC 颗粒也是需要的。请在挑选 EMMC 颗粒前,参照我们的支持列表的型号,对应的研究下厂商提供的 Datasheet,重点关注下厂商标注的 performance 一章节。

参照厂商大小、读写的速率进行筛选。建议选取顺序读速率>200Mb/s、顺序写速率>40Mb/s。如有选型上的疑问,也可直接联系我们的 Fae 窗口。

6.1.5 Performance

[Table 23] Performance

Density	Partition Type	Performance				
Delisity	randon type	Read(MB/s)	Write (MB/s)			
16GB		285	40			
32GB	General	310	70			
64GB		310	140			
128GB		310	140			
16GB		295	80			
32GB	Enhanced	320	150			
64GB	Ennanced	320	245			
128GB		320	245			

图 1-1 EMMC Performance 示例

1.3 WiFi/BT 支持列表

RK3399 内核运行 Linux4.4,WiFi/BT 支持列表,详见 RKDocs\Platform support lists 目录下《RK3399_WiFi_Situation_20160808》,下表中所标示为目前 RK3399 上大量测试过的 Wifi/Bt 芯片列表,建议按照列表上的型号进行选型。如果有其他 WiFi/BT 芯片调试,可先与 WiFi/BT 芯片原厂沟通,是否有可以稳定在 Linux4.4 运行的驱动程序,并能提供调试帮助。

另外后续我们会不断更新支持列表,如果疑问和建议可以与我们的 Fae 窗口联系。

RK3399 Wi-Fi Situation											
WiFi Chip	IFACE	IEEE 802.11 Standard	2.4GHz Band	5.0GHz Band	ВТ	GPS	NFC	SoftA P	P2P@	4.4 kernel	
AP6354	SDIO	IEEE 802.11A/B/G/N/AC	✓	✓	✓	×	×	✓	✓	✓	
Realtek RTL8188EUS	USB	IEEE 802.11B/G/N	~	×	×	×	×	✓	✓	✓	
①. 支持P2P功能, 支持WiFi Display。											
②. ✓: 表示	②. ✓: 表示驱动支持kernel 4.4,后续验证更多模块后会更新WIFI在kernel 4.4支持列表										

图 1-2 RK3399 目前大量测试的 Wifi/Bt 支持列表

1.4 SDK 软件包适用硬件列表

本 SDK 是基于谷歌 Android7.1 64bit 系统,适配瑞芯微 RK3399 芯片的软件包,适用于 laptop 产品形态、Tablet 产品形态、sapphire(蓝宝石)& excavator(挖掘机)开发板、及其他基于 RK3399 平台开发的产品。

使用的是 sapphire(蓝宝石) & excavator(挖掘机)开发板的,kernel 配置可直接使用 rk3399-sapphire-excavator-edp.dts 进行配置。

参考《RK3399_VR&Tablet_V10_20160620》硬件设计的 TABLET 样机, kernel 配置可以参考:

TABLET:rk3399-mid-818-android.dts

另外随 SDK 发布,附带了 Box 样机板,sapphire(蓝宝石) & excavator(挖掘机)开发板的硬件使用说明。

1.5 多媒体编解码支持列表

RK3399 多媒体方面支持强大,支持 4K VP9 and 4K 10bits H265/H264 视频解码,高达 60fps, 1080P 多格式视频解码 (WMV, MPEG-1/2/4, VP8),1080P 视频编码,支持 H.264,VP8 格式,视频 后期处理器:反交错、去噪、边缘/细节/色彩优化。

具体的编解码支持列表,详见 RKDocs\Platform support lists 目录下《RK3399 Multimedia Codec Benchmark v1.0》

2 文档/工具索引

2.1 文档索引

RK3399 SDK 发布文档旨在帮助开发者快速上手开发及调试,另由于 RK3399 内核运行版本为 Linux4.4,有些新的知识请大家也多自己补充,文档中涉及的并不能涵盖所有的知识和问题。文档列表也正 在不断更新,如有文档上的疑问及需求,请联系我们的 Fae 窗口。

RK3399 SDK 中在 RKDocs 目录下附带了 Develop reference documents (开发指导文档)、Platform support lists (支持列表)、RKTools manuals (工具使用文档)。

Develop reference de companhe	
Develop reference documents	
│ ├── Camera_for_RockChipSDK 参考说明_v4.1.pdf	
│ ├── RK3399 VR Sensor 开发指南.pdf	
│	
RK USB Compliance Test Note V1.2.pdf	
│ ├── Rockchip Audio 开发指南 V1.0-20160606.pdf	
│ ├── Rockchip CPU-Freq 开发指南 V1.0-20160701.pdf	
│ ├── Rockchip DEVFreq 开发指南 V1.0-20160701.pdf	
│	
│ ├── Rockchip IO-Domain 开发指南 V1.0-20160630.pdf	
│ ├── RockChip_LCD 开发文档 v1.6.pdf	
│ ├── Rockchip Pin-Ctrl 开发指南 V1.0-20160725.pdf	
│ ├── Rockchip RK818 电量计 开发指南 V1.0-20160725.pdf	
│ ├── Rockchip SDMMC SDIO eMMC 开发指南 V1.0-20160630.pdf	
│ ├── Rockchip SPI 开发指南 V1.0-20160629.pdf	
│ ├── Rockchip Thermal 开发指南 V1.0-20160701.pdf	
│	
│ ├── Rockchip U-Boot 开发指南 V3.7-20160708.pdf	
│ ├── Rockchip USB 开发指南 V1.0-20160704.pdf	
Rockchip Vendor Storage Application Note.pdf	
│ ├── Rockchip 背光控制 开发指南 V0.1-20160729.pdf	
│ ├── Rockchip 量产烧录 指南 V1.0-20160718.pdf	
│ ├── Rockchip 时钟子模块 开发指南 V1.0-20160630.pdf	
│ ├── Rockchip 休眠唤醒 开发指南 V0.1-20160729.pdf	
│ ├── Rockchip 以太网 开发指南 V2.3.1-20160708.pdf	
┃ ┣━ 分体机	
KK3399_VR 分体机_KEY_修改说明文档.pdf	
K3399_VR 分体机_NANOC_sensor 方向配置.pdf	
K3399_VR 分体机_NANOC_编译和烧写说明文档.pdf	
RockChip_DSS Development Guide v1.2.pdf	

2.2 工具索引

RK3399 SDK 发布工具,用于开发调试阶段及量产阶段使用。工具可能随 SDK 更新不断更新,如有工具上的疑问及需求,请联系我们的 Fae 窗口。

RK3399 SDK 中在 RKTools 目录下附带了 linux(Linux 操作系统环境下使用工具)、windows (Windows 操作系统环境下使用工具)。

RKTools	
linux	
├── Linux_Pack_Firmware(Linux 固件打包工具)	
│ ├── Linux_SecureBoot (Linux 固件签名工具)	

3 SDK 编译/烧写

3.1 SDK 获取

SDK 通过瑞芯微代码服务器对外发布。客户向瑞芯微技术窗口申请 SDK,需同步提供 SSH 公钥进行服务器 认证授权,获得授权后即可同步代码。关于瑞芯微代码服务器 SSH 公钥授权,请参考《RK3399_ANDROID7.1-TABLET-SDK_V1.00发布说明.pdf》。

3.1.1 SDK 下载链接

RK3399 ANDROID7.1-TABLET-SDK 下载地址如下:

repo init --repo-url=ssh://git@www.rockchip.com.cn:2222/repo-release/tools/repo.git -u ssh://git@www.rockchip.com.cn:2222/rk3399- nougat/manifests.git -m rk3399 nougat release.xml

repo 是 google 用 Python 脚本写的调用 git 的一个脚本,主要是用来下载、管理 Android 项目的软件 仓库,其下载地址如下:

git clone ssh://git@www.rockchip.com.cn/repo/rk/tools/repo

3.1.2 SDK 代码压缩包

为方便客户快速获取 SDK 源码,瑞芯微技术窗口通常会提供对应版本的 SDK 初始压缩包。以 Rk3399 Android7.1-Tablet-sdk.tar.qz 为例,拷贝到该初始化包后,通过如下命令可检出源码:

mkdir rk3399

tar zxvf Rk3399_Android7.1-Tablet-sdk.tar.gz -C rk3399

cd rk3399

- .repo/repo/repo sync -l
- .repo/repo/repo sync

3.2 SDK 编译

3.2.1 JDK 安装

Android7.1 系统编译依赖于 JAVA 8。编译之前需安装 OpenJDK。

安装命令如下。

sudo apt-get install openjdk-8-jdk

配置 JAVA 环境变量,例如,安装路径为/usr/lib/jvm/java-8-openjdk-amd64,可在终端执行如下命令配置环境变量。

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

export PATH=\$JAVA_HOME/bin:\$PATH

export CLASSPATH=::\$JAVA HOME/lib:\$JAVA HOME/lib/tools.jar

3.2.2 编译模式

SDK 默认以 userdebug 模式编译。

使用 adb 时,需要先执行 adb root , adb disable-verity 关闭 system 分区的 verity 特性,重启后再执行 adb root, adb remount,进而进行 push 操作来 debug。

3.2.3 Laptop 编译

```
uboot 编译:
          cd u-boot
          make rk3399_defconfig
          make ARCHV=aarch64
        kernel 编译:
          cd kernel
          make ARCH=arm64 rockchip_defconfig -j8
          make ARCH=arm64 rk3399-tve1205g.img -j12
        android 编译:
          source build/envsetup.sh
          lunch rk3399_laptop-userdebug
          make -j12
          ./mkimages.sh
3.2.4 Tablet 编译
        uboot 编译:
          cd u-boot
          make rk3399_defconfig
          make ARCHV=aarch64
        kernel 编译:
          cd kernel
          make ARCH=arm64 rockchip_defconfig -j8
          make ARCH=arm64 rk3399-mid-818-android.img -j12
        android 编译:
          source build/envsetup.sh
          lunch rk3399_mid-userdebug
          make -j12
          ./mkimages.sh
3.2.5 挖掘机编译
        uboot 编译:
          cd u-boot
          make rk3399_defconfig
          make ARCHV=aarch64
        kernel 编译:
          cd kernel
          make ARCH=arm64 rockchip_defconfig -j8
          make ARCH=arm64 rk3399-sapphire-excavator-edp.img -j12
        android 编译:
          source build/envsetup.sh
          lunch rk3399_mid-userdebug
          make -j12
          ./mkimages.sh
```


3.2.6 固件生成步骤

执行./mkimage.sh 后,在 rockdev/Image-xxx/目录生成完整的固件包(xxx 是具体 lunch 的产品名)

3.3 固件烧写

刷机说明详见 RKDocs\ RKTools manuals 目录下《Android 开发工具手册.pdf》。

SDK 提供烧写工具,如下图所示。编译生成相应的固件后,进入烧写模式,即可进行刷机。对于已烧过其它固件的机器,可以选择重新烧录固件,或是选择低格设备,擦除 idb,然后进行刷机。

图 3-1Android 开发工具烧写界面

注: 烧写前,需安装最新的的 USB 驱动,驱动详见

RKTools/windows/

— DriverAssitant_v4.5

3.4 量产烧写

量产上考虑到生产效率及工厂工位安排,量产烧写说明详见 RKDocs\Develop reference document 目录下《Rockchip 量产烧录 指南 V1.0-20160718》。

在量产过程中如涉及到工具上的问题,可以联系我们的 Fae 窗口。

4 U-Boot 开发

本节简单介绍 U-Boot 基本概念和编译的注意事项,帮助客户了解 RK 平台 U-Boot 框架,具体 U-Boot 开发细节可参考 RKDocs\Develop reference documents 目录下《Rockchip U-boot 开发指南 V1.0-20160704.pdf》。

4.1 Rockchip U-Boot 简介

Rockchip U-Boot 是基于开源的 UBoot 2014.10 正式版进行开发的,主要支持:

- 支持芯片: rk3288、rk3036、rk312x、rk3368、rk322x、rk3366、rk3399 等;
- 支持 Android 平台的固件启动:
- 支持 ROCKUSB 和 Google Fastboot 两种方式烧写;
- 支持 secure boot 固件签名加密保护机制;
- 支持 LVDS、EDP、MIPI、HDMI、CVBS 等显示设备:
- 支持 SDCard、Emmc、Nand Flash、U 盘等存储设备;
- 支持开机 logo 显示、充电动画显示,低电管理、电源管理;
- 支持 I2C、SPI、PMIC、CHARGE、GUAGE、USB、GPIO、PWM、DMA、GMAC、EMMC、NAND 中断等驱动:

4.2 平台配置

平台配置文件位于 U-Boot 根目录下的 configs 文件夹下,其中 Rockchip 相关的以 RK 开头,并根据产品形态分为 MID 和 BOX 两种配置:

rk3288_defconfig

rk3126_defconfig

rk3128_defconfig

rk3368_defconfig

rk3399_defconfig

rk3288_box_defconfig

rk3128_box_defconfig

rk3036_box_defconfig

rk3368_box_defconfig

rk322x box defconfig

rk3399_box_defconfig

RK3399 Laptop/Tablet 选用的是 rk3399_defconfig 配置。

4.3 固件生成

Rockchip 平台 Loader 分为一级模式和二级模式,根据不同的平台配置生成相应的 Loader 固件。通过宏 CONFIG_SECOND_LEVEL_BOOTLOADER 定义二级 Loader 模式。

4.3.1 一级 Loader 模式

U-BOOT 作为一级 Loader 模式,那么仅支持 EMMC 存储设备,编译完成后生成的镜像:

RK3399MiniLoaderAll_V1.05.bin

其中 V1.05 是发布的版本号。

4.3.2 二级 Loader 模式

U-Boot 作为二级 Loader 模式,那么固件支持所有的存储设备,该模式下,需要 MiniLoader 支持,通过宏 CONFIG_MERGER_MINILOADER 进行配置生成。同时引入 Arm Trusted Firmware 后会生成 trust image,这个通过宏 CONFIG_MERGER_TRUSTIMAGE 进行配置生成。

以 rk3399 编译生成的镜像为例:

RK3399MiniLoaderAll_V1.05.bin

UBOOT.img

trust.img

其中 V1.05 是发布的版本号,rockchip 定义 U-Boot loader 的版本,其中 1.05 是根据存储版本定义的,客户务必不要修改这个版本。

UBOOT.img 是 U-Boot 作为二级 loader 的打包。

trust.img 是 U-Boot 作为二级 loader 的打包。

RK3036、RK3126、RK3128、RK322x、RK3368、RK3366、RK3399 等采用二级

loader 模式。

4.4 U-Boot 编译

RK3399 SDK 编译使用的是如下配置:

```
make rk3399 _defconfig
make ARCHV=aarch64
```

编译完,会生成 trust.img、RK3399MiniLoaderAll_V1.05.bin、uboot.img 三个文件。

目前编译出来的 RK3399MiniLoaderAll_V1.05.bin DDR 为定频 666Mhz 版本,为了调试方便,发布 SDK 的同时,我们也在烧写工具目录下提供了不同频率版本的 Loader。

路径: RKTools\windows\AndroidTool\rockdev

```
DDR 运行 200Mhz: RK3399MiniLoaderAll_V1.05_DDR200MHz.bin
DDR 运行 400Mhz: RK3399MiniLoaderAll_V1.05_DDR400MHz.bin
DDR 运行 666Mhz: RK3399MiniLoaderAll_V1.05_DDR666MHz.bin
DDR 运行 800Mhz: RK3399MiniLoaderAll_V1.05_DDR800MHz.bin
```

4.5 U-Boot 开启关机充电功能

为了实现充电动画,需要在 uboot/include/configs/rk33plat.h 中打开如下开关,默认该功能是关闭的。

```
#define CONFIG_UBOOT_CHARGE

#define CONFIG_SCREEN_ON_VOL_THRESD 3400//3.4v

#define CONFIG_SYSTEM_ON_VOL_THRESD 3500//3.5v
```

其中 CONFIG_SCREEN_ON_VOL_THRESD 是系统点亮屏幕的电压门限,低于这个电压,禁止系统亮屏。 CONFIG_SYSTEM_ON_VOL_THRESD 是系统正常启动的电压门限,低于这个电压,禁止 uboot 启动内核。这两个电压可以根据具体的产品设计灵活调整。

产品板级 dts 中如下节点进行充电模式开关配置,可以灵活配置使用 uboot 还是 Android 的 关机充电模式:

```
uboot-charge {
    compatible = "rockchip,uboot-charge";
    rockchip,uboot-charge-on = <0>;
    rockchip,android-charge-on = <1>;
};
```


rockchip,uboot-charge-on 开关 uboot 阶段的充电动画,rockchip,android-charge-on 开关 android 充电动画。

如果选择使用 uboot 阶段的充电动画,即 rockchip,uboot-charge-on = <1>时,还需要将动画图片资源文件打包在 resource.img,方法如下: pack_resource.sh 脚本可以新增资源文件到现有的镜像: ./pack_resource <resources dir> <old image> <dst image><resource_tool path>如在 uboot 根目录下执行: sudo ./tools/resource_tool/pack_resource. sh tools/resource_tool/resources/ ../kernel/resource.img resource.img tools/resource_tool/resource_tool/resource_tool/resource_tool/resource.img 在 uboot 根目录下的动画图片资源打包在 ../kernel/resource.img,生成新的 resource.img 在 uboot 根目录。

4.6 U-Boot logo 相关的配置

4.6.1 U-Boot logo 开关配置

Sdk 默认开启 U-Boot logo 功能,以达到更快显示开机 logo 的目的 rockchip,uboot-logo-on = <1>;

如果需要关闭这个功能的,设置 rockchip,uboot-logo-on = <0>;即可

4.6.2 U-Boot logo 图片更换

U-boot logo 显示的两张图片是 kernel 根目录下的 logo.bmp 和 logo_kernel.bmp,如果需要更换,用同名的 bmp 替换掉,重新编译 resource.img 即可。

Ps:不一定要两张图片,可以只要一张,如果只有一张就保留 logo.bmp 这一张。

5 Kernel 开发

RK3399 kernel 版 本 是 4.4 , config 配 置 文 件 统 一 为 arch/arm64/configs/rockchip_defconfig。

5.1 DTS 介绍

RK3399 的 dts 文件在 kernel/arch/arm64/boot/dts/rockchip/下,其中 rk3399.dtsi 是核心配置文件定义了平台相关的内容; RK3399-android.dtsi 是产品级配置文件定义了一些外围设备; 具体的产品 dts 需要 include 这两个文件,如 Tablet 产品的 dts 文件 rk3399-mid-818-android.dts。产品的 dts 里面根据具体的产品需求配置 CPU、GPU、DDR

的频率和电压表;配置 io、屏、wifi、bt、sensor、温控、背光、电池、系统供电配置等等。

5.2 USB 配置

RK3399 Type-c 模块需要外挂一个 fusb302 逻辑检测芯片来识别接入设备类型及 USB 的正反插。Fusb302 的软件驱动在 dts 里面的配置如下:

```
fusb0: fusb30x@22 {
               compatible = "fairchild,fusb302";
               reg = <0x22>;
               pinctrl-names = "default";
               pinctrl-0 = <&fusb0_int>;
               int-n-gpios = <&gpio1 1 GPIO_ACTIVE_HIGH>;
               status = "okay";
       };
中断脚配置:
&pinctrl {
fusb30x {
       fusb0_int: fusb0-int {
           rockchip,pins = <1 2 RK_FUNC_GPIO &pcfg_pull_up>;
       };
   };
}
```

在 fusb302 及 usb phy 检测区分接入 type-c 口的是哪一类设备(充电器、USB、OTG、DP等)之后,通知系统,所以相关联的模块代码需要注册 fusb302 的 extcon notifier 来接收,需要在模块 dts 配置加入 extcon = <&fusb0>。

如 rk818 dts 节点中加入 extcon = <&fusb0>,通过 fusb302 及 usb phy 检测区分充电器、USB、OTG 的拔插后,rk818 模块决定相关的充电电流配置及 OTG 的开关。

目前 sdk 参考 dts 中默认 enable 了 fusb302 的配置,如果产品未使用 type-c 接口、未使用 fusb302,产品 dts 中请 disabled 节点 tcphy0 及 fusb0,并将 USB 相关联的模块 dts 中

extcon = <&fusb0>改为 extcon = <&u2phy0>。

5.3 WiFi 配置

```
wireless-wlan {
    compatible = "wlan-platdata";
    rockchip,grf = <&grf>;
    wifi_chip_type = "ap6354";
    sdio_vref = <1800>;
    WIFI,host_wake_irq = <&gpio0 3 GPIO_ACTIVE_HIGH>; /* GPIO0_a3
*/
    status = "okay";
};
```

上面部分内容是 WiFi 的 dts 配置内容,主要包括电源控制、中断等功能脚的配置。下面将对

各个配置项(一般客户只需要修改下面红色标出部分参数)的功能进行详细描述:

```
wifi_chip_type = " ap6354";
```

用来确认 WiFi 芯片型号,实际使用什么型号的 WiFi 需要在这里指定

```
sdio_vref = <1800>; //1800mv or 3300mv
```

这个配置项配置WiFi 模组的IO 参考电压值,根据实际硬件设计中提供给WiFi 模组参考电压输入的电压值来进行设定,参考电压设置错误会导致 WiFi 通信异常引起 WiFi 打不开或者工作不稳定。

```
WIFI,host_wake_irq = <&gpio0 3 GPIO_ACTIVE_HIGH>;
```

这个配置项是 WiFi 中断脚的配置,某些 WiFi 模组没有这个脚可以不用配置直接将此配置 项

注释掉。使用 Broadcom 的 WiFi 比如 AP6xxx 以及 RK90x 等模组都需要正确配置这GPIO。

Broadcom wifi AP6xxx 系统会使用此中断脚作为 WiFi 数据中断脚,此中断脚有异常将会导致 WiFi 无法正常工作。其它 WiFi,例如 RTL8723BS,在机器进入休眠时,如果有 WiFi 数

据到来时此中断用来唤醒机器。此中断脚有异常并不会造成 WiFi 无法正常工作。

5.4 BT 配置

```
wireless-bluetooth {
    compatible = "bluetooth-platdata";
    //wifi-bt-power-toggle;
    uart_rts_gpios = <&gpio2 19 GPIO_ACTIVE_LOW>; /* GPIO2_C3 */
    pinctrl-names = "default", "rts_gpio";
    pinctrl-0 = <&uart0_rts>;
    pinctrl-1 = <&uart0_gpios>;
    //BT,power_gpio = <&gpio3 19 GPIO_ACTIVE_HIGH>; /* GPIOx_xx */
    BT,reset_gpio = <&gpio0 9 GPIO_ACTIVE_HIGH>; /* GPIO0_B1 */
    BT,wake_gpio = <&gpio2 26 GPIO_ACTIVE_HIGH>; /* GPIO2_D2 */
    BT,wake_host_irq = <&gpio0 4 GPIO_ACTIVE_HIGH>; /* GPIO0_A4 */
    status = "okay";
};
```

以上是 BT 在 dts 里面的配置,下面对常见可能需要修改的部分进行简单的说明

BT,reset_gpio = <&gpio0 9 GPIO_ACTIVE_HIGH>;

这个配置项是关于 BT 的 RESET 脚配置,这个脚不同的 BT 模组不一定都有,具体以实际原理图为准。

BT,power_gpio = <&gpio3 19 GPIO_ACTIVE_HIGH>

这个配置项是关于 BT 的电源控制 GPIO 配置,高电平有效,具体以实际原理图为准。

```
BT,wake_gpio = <&gpio2 26 GPIO_ACTIVE_HIGH>;
```

这个配置项是关于 BT 的 WAKE 脚配置, 对应原理图中的 BT WAKE 管脚, 高电平有效。

BT,wake_host_irq = <&gpio0 4 GPIO_ACTIVE_HIGH>

这个配置项是关于 BT 的中断脚配置, 对应原理图中的 BT_HOST_WAKE 管脚,高电平有效。


```
默认 BT 使用 uart0 接口连接, uart0 的配置如下
&uart0 {
    pinctrl-names = "default";
    pinctrl-0 = <&uart0_xfer &uart0_cts>;
    status = "okay";
};
```

5.5 GPIO

RK3399 提供 5 组 GPIO(GPIO0~GPIO4)共 122 个,所有的 GPIO 都可以用作中断,GPIO0/GPIO1 可以作为系统唤醒脚,所有 GPIO 都可以软件配置为上拉或者下拉,所有 GPIO 默认为输入,GPIO 的驱动能力软件可以配置。

关于原理图上的 **gpio** 跟 **dts** 里面的 **gpio** 的对应关系,例如 GPIO4c0,那么对应的 dts 里面应该是"gpio4 16"。因为 GPIOA 有 8 个 pin,GPIOB 也有 8 个 pin,以此计算可得 c0 口 就是 16,c1 口就是 17,以此类推;

GPIO 的使用请参考 RKDocs\Develop reference documents 目录下《RKDocs\Develop reference documents 目录下《Rockchip Pin-Ctrl 开发指南 V1.0-20160725.pdf》。

5.6 ARM、GPU 频率修改

以下以 rk3399-vr-android.dts 为例进行说明。

CPU A53 支持的频率有:

408MHZ/600MHZ/816MHZ/1008MHZ/1200MHZ/1416MHZ/1512MHZ

频率和电压的 dts 配置如下:

```
&cluster0_opp {
    opp@408000000 {
        opp-hz = /bits/ 64 <408000000>;
        opp-microvolt = <800000>;
        clock-latency-ns = <40000>;
    };
```



```
opp@1512000000 {
      opp-hz = /bits/ 64 <1512000000>;
      opp-microvolt = \langle 1100000 \rangle;
      status="disabled";
   };
};
CPU A72 支持的频率有:
408MHZ/600MHZ/816MHZ/1008MHZ/1200MHZ/1416MHZ/1608MHZ/1800MHZ/199
2MHZ
频率和电压的 dts 配置如下:
&cluster1_opp {
   opp@408000000 {
      opp-hz = /bits/64 < 408000000>;
      opp-microvolt = <800000>;
      clock-latency-ns = <40000>;
   };
   opp@1992000000 {
      opp-hz = /bits/ 64 <1992000000>;
      opp-microvolt = <1225000>;
   };
};
GPU 支持的频率有:
200MHZ/300MHZ/400MHZ/500MHZ/600MHZ/800MHZ
频率和电压的 dts 配置如下:
&gpu_opp_table {
   compatible = "operating-points-v2";
```



```
opp-shared;
   opp@200000000 {
      opp-hz = /bits/64 < 200000000>;
      opp-microvolt = \langle 825000 \rangle;
   };
   opp@800000000 {
      opp-hz = /bits/64 < 800000000>;
      opp-microvolt = \langle 1125000 \rangle;
   };
};
A53/A72/GPU 分别有对于的调试接口,可以通过 ADB 命令进行操作,对于的接口目录如下:
A53: /sys/devices/system/cpu/cpu0/cpufreq/
A72: /sys/devices/system/cpu/cpu4/cpufreq/
GPU: /sys/class/devfreq/ff9a0000.gpu/
这些目录下有如下节点:
     available_frequencies: 显示支持的频率
     available_governors: 显示支持的变频策略
     cur_freq:显示当前频率
```

- Governor: 显示当前的变频策略
- max_freq: 显示当前最高能跑的频率
- min_freq: 显示当前最低能跑的频率

以 GPU 为例进行定频操作,流程如下:

- 查看支持哪些频率
 cat /sys/class/devfreq/ff9a0000.gpu/available_frequencies
- 切换变频策略
 echo userspace > /sys/class/devfreg/ff9a0000.gpu/governor

● 定频

echo 400000000 > /sys/class/devfreq/ff9a0000.gpu/userspace/set_freq

设置完后,查看当前频率
 cat /sys/class/devfreq/ff9a0000.gpu/cur_freq

参考 RKDocs\Develop reference documents 目录下《Rockchip DEVFreq 开发指南 V1.0-20160701.pdf》

5.7 温控配置

RK3399 芯片的 ARM 核和 GPU 核分别带有温控传感器,可以实时监控 cpu 和 gpu 的温度,并通过算法来控制 cpu 和 gpu 的频率从而控制 cpu 和 gpu 的温度。每个产品的硬件设计和模具不同对应的散热情况也不同,可以通过 dts 中的如下配置进行适当的调整温控参数来适配产品:设置温控开启的温度:

```
&threshold {
   temperature = <85000>; /* millicelsius */
};
设置温控上限温度:
&target {
   temperature = <100000>; /* millicelsius */
};
设置软件关机温度:
&soc crit {
   temperature = <105000>; /* millicelsius */
};
配置硬件关机温度:
&tsadc {
   rockchip,hw-tshut-mode = <1>; /* tshut mode 0:CRU 1:GPIO */
   rockchip,hw-tshut-polarity = <1>; /* tshut polarity 0:LOW 1:HIGH */
   rockchip,hw-tshut-temp = <110000>;
```



```
status = "okay";
```

};

温控的具体说明可以参考 RKDocs\Develop reference documents 目录下《Rockchip Thermal 开发指南 V1.0-20160701.pdf》。

5.8 Lpddr4 支持说明

支持 lpddr4,请确认是否包含如下两个提交,如果没有请更新代码:

Uboot:

commit ee358662f83429ca87ba216781769df4b3b389c8

Author: CanYang He <hcy@rock-chips.com>
Date: Tue Apr 24 16:36:48 2018 +0800

rk3399: bl31: ddr: update bl31 to v1.16 ddr bin to v1.11

bl31: update version to v1.16

built from optee commit: d98d16e

update features:

1.add used SIP numbers definition

- 2.support lpddr4 400MHz and 800MHz suspend and resume
- 3.fix global reset fail when vdd_gpu power off
- 4.support only one channel
- 5.remove ddr debug log in suspend and dfs

ddr: update ddr init bin v1.11

built from ddr init project commit:

d6e7216 Version: DDR Version 1.11 20180509

update feature:

- 1.the init code change lpddr4 frequency from 50MHz to 400MHz, and final to 800MHz, this version is a good support for system suspend resume.
- 2.fix global reset fail when vdd_gpu power off
- 3.support 1 cs lpddr4
- 4.support lpddr4 only one channel
- 5.remove some lpddr4 log

Signed-off-by: CanYang He <hcy@rock-chips.com>

kernel:


```
commit 07d026bc900e8634e4700288d4cd756b3e34a41b

Author: CanYang He <hcy@rock-chips.com>
Date: Tue Apr 24 16:42:31 2018 +0800

arm64: dts: rockchip: support lpddr4

1. modify lpddr4 setting in rk3399-dram-default-timing.dts
2. add a dts file for evb-rev3 lpddr4
3. mcu run at 97MHz to reduce lpddr4 scale frequency elapsed time
4. lp4 using sram buffer for pcm buffer
5. add support for sram audio buffer

Signed-off-by: CanYang He <hcy@rock-chips.com>
```

基于以上两个提交,根据下面说明做相应的配置。

rk3399 使用 lpddr4 的 dts 配置请参考文件: arch/arm64/boot/dts/rockchip/<u>rk3399-evb-rev3-android-lp4.dts</u>,将该文件中的相关节点(如下红色字体标注)拷贝到对应的产品 d ts 中:

```
/ {
           model = "Rockchip RK3399 Evaluation Board v3 (Android) LPDDR4";
           compatible = "rockchip,android", "rockchip,rk3399-evb-rev3-android-l
p4", "rockchip,rk3399";
           /* first 64k(0xff8c0000~0xff8d0000) for ddr and suspend */
           iram: sram@ff8d0000 {
                  compatible = "mmio-sram";
                  reg = <0x0 \ 0xff8d0000 \ 0x0 \ 0x20000>; /* 128k */
           };
   };
   &dmac_bus {
           iram = <&iram>;
           rockchip,force-iram;
   };
   &dfi {
           status = "okay";
   };
```



```
&dmc {
      status = "okay";
      center-supply = <&vdd_center>;//供电部分需要客户根据实际硬件电路来配
      system-status-freq = <
             /*system status
                                   freq(KHz)*/
             SYS STATUS NORMAL
                                       800000
             SYS_STATUS_REBOOT
                                      400000
             SYS_STATUS_SUSPEND
                                       400000
             SYS STATUS VIDEO 1080P 400000
             SYS_STATUS_VIDEO_4K
                                       800000
             SYS_STATUS_VIDEO_4K_10B 800000
             SYS STATUS PERFORMANCE 800000
             SYS_STATUS_BOOST
                                      400000
             SYS_STATUS_DUALVIEW
                                       800000
             SYS STATUS ISP
                                     800000
      >;
      auto-min-freq = <400000>;
      auto-freq-en = <0>;
};
&dmc_opp_table {
      compatible = "operating-points-v2";
      opp-200000000 {
             opp-hz = /bits/64 < 200000000>;
             opp-microvolt = \langle 825000 \rangle;
             status = "disabled";
      };
      opp-300000000 {
             opp-hz = /bits/64 < 300000000>;
             opp-microvolt = <850000>;
             status = "disabled";
      };
      opp-400000000 {
             opp-hz = /bits/64 < 400000000>;
             opp-microvolt = <900000>;
      };
      opp-528000000 {
             opp-hz = /bits/64 < 528000000>;
```



```
opp-microvolt = <900000>;
              status = "disabled";
       };
       opp-600000000 {
              opp-hz = /bits/64 < 600000000>;
              opp-microvolt = <900000>;
              status = "disabled";
       };
       opp-800000000 {
              opp-hz = /bits/64 < 800000000>;
              opp-microvolt = <900000>;
       };
       opp-928000000 {
              opp-hz = /bits/64 < 928000000>;
              opp-microvolt = <900000>;
              status = "disabled";
       };
       opp-1056000000 {
              opp-hz = /bits/ 64 < 1056000000>;
              opp-microvolt = <900000>;
              status = "disabled";
       };
};
```

这里需要注意的是,1) lpddr4 我们只支持 400M 和 800M 两档频率,其他频率被 disabled 掉了,所以如果客户要使用同一个 dts 来支持 lpddr4 和其他类型的 ddr,则其他类型的 ddr 也将只有 400M 和 800M 的频率,这个请务必注意; 2) 以上配置默认开启 DDR 变频功能。lpddr4 的变频功能对声卡的数量有所限制,说明如下:

如果 lpddr4 需要变频功能,则需要将音频 buffer 移到 sram 中,RK3399 的 sram 空间有限,可用空间 128k,目前预分配给单个音频流的空间为 32k,所以系统支持的上限声卡数最多只能 2 个(32k * 2 * 2,每个声卡包含 playback 和 capture),更多的声卡无法创建成功,除非减小单个流的预分配大小,但这也相对的减小了底下支持的 buffer size max,如果用户层使用声卡想设置更大 buffer 时将受限。需注意,USB 声卡由于未使用 dma,所以不在限制范围内,也就是说,可以有 2 个声卡(包含 hdmi、spdif、i2s 等接口的声卡)加上多个 usb 声卡。因此,接下来分成两种情况描述:

5.8.1 需要 lpddr4 的变频

如果需要 lpddr4 变频,则需要将音频 buffer 移到 sram 中,此时系统最多只能支持 2 个声卡,请按照如下方法进行配置:

1. dts 中添加 sram 节点

```
/* first 64k(0xff8c0000~0xff8d0000) for ddr and suspend */
iram: sram@ff8d0000 {
   compatible = "mmio-sram";
   reg = <0x0 0xff8d0000 0x0 0x20000>; /* 128k */
};
```

2. 相对应的产品 dts 中引用 iram 节点。

```
&dmac_bus {
  iram = <&iram>;
  rockchip,force-iram;
};
```

5.8.2 不需要 lpddr4 变频

由于 lpddr4 变频有 2 个声卡的限制,因此如果需要 3 个以上声卡,需要关闭 lpddr4 的变频,即在对应产品的 dts 中将 dmc 节点 disable,如下所示:

```
&dmc {
    status = "disabled";
    ... ...
};
```

另外,需要确保在内核中删除掉5.8.1 节中描述的2个配置:

1. 删除 dts 中的如下配置:

```
/* first 64k(0xff8c0000~0xff8d0000) for ddr and suspend */
iram: sram@ff8d0000 {
```



```
compatible = "mmio-sram";
reg = <0x0 0xff8d00000 0x0 0x200000>; /* 128k */
};
```

2. 删除 dts 中的如下配置:

```
&dmac_bus {
  iram = <&iram>;
  rockchip,force-iram;
};
```

6 Android 常见配置

6.1 Android 产品配置

6.1.1 lunch 选项说明

```
//rk3399 平台 box 产品 userdebug (64 位)
    rk3399_box-userdebug:
    rk3399_box-user:
                                   //rk3399 平台 box 产品 user (64 位)
                                   //rk3399 平台 EVB 开发板 userdebug (64
    rk3399_64-userdebug:
位)
    rk3399_64-user:
                                   //rk3399 平台 EVB 开发板 user (64 位)
   rk3399_mid-userdebug:
                                 //rk3399 平台平板产品 userdebug (64 位)
    rk3399_mid-user:
                                  //rk3399 平台平板产品 user (64 位)
   rk3399_ laptop -userdebug:
                                     //rk3399 平台笔记本产品 userdebug(64
位)
    rk3399_ laptop -user:
                                      //rk3399 平台笔记本产品 user (64 位)
```

6.1.2 添加一个新的产品

rk3399 平台支持平板、Laptop、Box 等产品形态,当需要添加一个新的产品时,可以基于已有的 rk3399_mid、rk339_box、rk339_laptop 来建立,如下以建立一个新的平板产品为例进行说明,具体步骤为:

● 产品命令规则:

Box 产品名中需带有"box"字样; 平板产品名中需带有"mid"字样; 笔记本产品中需带有"laptop"字样 请务必遵守以上规则,否则系统会异常。

● 新增文件夹 device/rockchip/rk3399/rk3399_ mid _000,基于 rk3399_mid.mk 创建 rk3399_mid_000.mk,将 rk3399 目录下的所有文件拷贝至 rk3399_ mid _000 目录下。 cd device/rockchip/rk3399 mkdir rk3399_mid_000

cp rk3399_mid.mk ./rk3399_ mid _000.mk

cp rk3399 mid/* rk3399 mid 000/

● 在 device/rockchip/rk3399/ AndroidProducts.mk 中添加:

PRODUCT_MAKEFILES := \
\$(LOCAL_DIR)/rk3399.mk \
\$(LOCAL_DIR)/rk3399_64.mk \
\$(LOCAL_DIR)/rk3399_64_vr.mk \
\$(LOCAL_DIR)/rk3399_64_discrete_vr.mk \
\$(LOCAL_DIR)/rk3399_32.mk \
\$(LOCAL_DIR)/rk3399_box.mk \
\$(LOCAL_DIR)/rk3399_mid.mk \
\$(LOCAL_DIR)/rk3399_mid_000.mk \
\$(LOCAL_DIR)/rk3399_mid_1.mk \
\$(LOCAL_DIR)/rk3399_mid_1.mk \
\$(LOCAL_DIR)/rk3399_mid_1.mk \

在 vendorsetup.sh 中添加产品对应的 lunch 选项:
 add_lunch_combo rk3399-userdebug
 add_lunch_combo rk3399_32-userdebug


```
add_lunch_combo rk3399_box-user
add_lunch_combo rk3399_box-user
add_lunch_combo rk3399_64-userdebug
add_lunch_combo rk3399_64-user
add_lunch_combo rk3399_64_vr-userdebug
add_lunch_combo rk3399_64_vr-user
add_lunch_combo rk3399_64_discrete_vr-userdebug
add_lunch_combo rk3399_64_discrete_vr-user
add_lunch_combo rk3399_mid-userdebug
add_lunch_combo rk3399_mid-user
add_lunch_combo rk3399_mid_000-userdebug
add_lunch_combo rk3399_mid_000-user
```

● 修改 rk3399_ mid _000.mk 及 rk3399_mid_000 目录下的新产品所需要修改的配置。

6.2 常用功能配置说明

6.2.1 常用配置宏说明

宏配置	功能说明
BUILD_WITH_GOOGLE_MARKET	若为 true 则集成 GMS 包,false 不集成
BUILD_WITH_GOOGLE_MARKET_ALL	若为 true 集成 full 的 GMS 包,false 集
	成 mini 的 GMS 包
BUILD_WITH_GOOGLE_FRP	使能恢复出厂设置保护 FRP 功能
BUILD_WITH_FORCEENCRYPT	使能默认全盘加密
PRODUCT_SYSTEM_VERITY	使能 Verified boot
BUILD_WITH_GMS_CER	GMS 认证配置选项
BUILD_WITH_WIDEVINE	集成 Widevine level3 插件库
BOARD_NFC_SUPPORT	使能 NFC 功能
BOARD_SENSOR_ST	选用 ST 的 sensor 框架

BOARD_SENSOR_MPU	选用 MPU 的 sensor 框架
BOARD_SENSOR_MPU_VR	选用 MPU_VR 的 sensor 框架
BOARD_GRAVITY_SENSOR_SUPPORT	使能 G-Sensor
BOARD_COMPASS_SENSOR_SUPPORT	使能 Compass
BOARD_GYROSCOPE_SENSOR_SUPPORT	使能陀螺仪 Gyroscope
BOARD_PROXIMITY_SENSOR_SUPPORT	使能距离感应器
BOARD_LIGHT_SENSOR_SUPPORT	使能光感应器
BOARD_PRESSURE_SENSOR_SUPPORT	使能压力感应器
BOARD_TEMPERATURE_SENSOR_SUPPORT	使能温度传感器
BOARD_ENABLE_3G_DONGLE	使能 3G Dongle 功能
TARGET_ROCKCHIP_PCBATEST	使能 PCBA 测试
BOOT_SHUTDOWN_ANIMATION_RINGING	使能开关机动画+铃声
BOARD_SYSTEMIMAGE_PARTITION_SIZE	System 分区最大容量

6.2.2 预装 APK

Android 上的应用预安装功能,主要是指配置产品时,根据厂商要求,将事先准备好的第三方应用预制进 Android 系统。预安装分为可卸载预安装和不可卸载预安装,本文主要阐述的是可卸载预安装的功能。配置步骤如下:

- 新增文件夹 device/rockchip/rk3399/rk3399_mid/preinstall_del,要确认是在 TARGET_DEVICE_DIR 定义的目录, get_build_var TARGET_DEVICE_DIR 可以看到。
- 拷贝需要预制的第三方应用到上述文件夹,注意 apk 文件名尽量使用英文,避免空格。

编译结束后会在 out/target/product/rk3399_mid/system/目录,生成 preinstall_del 文件夹,文件夹内包含了预制的第三方应用。烧录后,系统会自动安装这些应用到 data/app 目录。因此他们是可卸载的。需要注意的是,在 preinstall 目录中的应用,即使用户在使用过程中将其卸载,但在恢复出厂设置后,应用又会自动安装。如果希望恢复出厂设置后不再恢复预安装应用,可以将上述文件夹名字改为 preinstall_del_forever 即可实现。

6.2.3 开/关机动画及铃声

需要在产品的 makefile 中配置 BOOT_SHUTDOWN_ANIMATION_RINGING := true, 并且准备如下相应资源文件,编译结束后对应的资源文件会拷贝到相应的 out 目录下。

将开机铃声 复制到 device/rockchip/common/startup.wav (源码路径)

将关机铃声 复制到 device/rockchip/common/startup.wav (源码路径)

将开机动画 复制到 device/rockchip/common/bootanimation.zip (源码路径)

将关机动画 复制到 device/rockchip/common/shutdownanimation.zip (源码路径)

6.3 Parameter 说明

rk3399 Android 7.1 平台有平板、Box、Laptop 等产品形态,不同的产品形态可能需要不同的 parameter 参数,请参考 device/rockchip/rk3399/下子目录 rk3399_mid、rk3399_box、rk3399_laptop 中的来相应修改配置,关于 parameter 中各个参数、分区情况细节,请参考\RKDocs\RKTools manuals\ Rockchip Parameter File Format Ver1.3.pdf。

6.4 新增分区配置

请参考\RKDocs\RKTools manuals\Android 增加一个分区配置指南 V1.00.pdf。

6.5 OTA 升级

请参考\RKDocs\RKTools manuals\ RK SDK OTA 包生成方法.pdf。

_mid-target_files-eng.hxw-new.zip ./update-block.zip

由于 RK3399 平台 Tablet Android 7.1 默认支持 verified boot, ota 差分包升级时,必须要使用 block 升级方式,生成差分包:

./build/tools/releasetools/ota_from_target_files.py --block -v -i out/target/product/rk3399_mid/obj/PACKAGING/target_files_intermediates/rk3399 _mid-target_files-eng.hxw-old.zip -p out/host/linux-x86/ -k build/target/product/security/testkey out/target/product/rk3399_mid/obj/PACKAGING/target_files_intermediates/rk3399

31

7 常用工具说明

- 7.1 StressTest
- 7.2 DeviceTest
- 7.3 PCBA 测试工具
- 7.4 DDR 测试工具
- 7.5 update.img 打包
- 7.6 固件签名
- 7.7 序列号/Mac/厂商信息烧写
- 7.8 量产工具使用
- 8 注意事项