Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical

Discussion & Broader implications

Towards Hierarchical Explanation

Christiaan Hinrik Albert Anna

FACT-AI 2020

Table of Contents

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototyp network

The hierarchical prototype network

Hierarchica results

Discussion & Broader

Reproducing the prototype network

2 The hierarchical prototype network

3 Hierarchical results

4 Discussion & Broader implications

Original paper

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader

Li, Oscar and Liu, Hao and Chen, Chaofan and Rudin, Cynthia.

Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions.

Thirty-Second AAAI Conference on Artificial Intelligence, 2018

ldea

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications

- Broadly speaking, (convolutional) neural nets are not interpretable
- Instead of explaining predictions after training, integrate explanations in training goal
- Learn a fixed amount of prototypes which represent the entire dataset

The prototype network

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchica prototype network

Hierarchica results

Discussion & Broader

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchica results

Discussion & Broader

Loss function

 $\mathsf{Loss} = \mathsf{Reconstruction} \; \mathsf{error} \;$

$$L((f,g)), D) = R(g \circ f, D)$$

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchica results

Discussion & Broader

Loss function

 $\mathsf{Loss} = \mathsf{Crossentropy} \; \mathsf{loss} + \mathsf{Reconstruction} \; \mathsf{error}$

$$L((f,g,h),D) = E(h \circ f,D) + R(g \circ f,D)$$

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchica results

Discussion & Broader

Loss function

 $\label{eq:Loss} \mbox{Loss} = \mbox{Crossentropy loss} + \mbox{Reconstruction error} + \\ \mbox{Regularization terms}$

$$L((f,g,h),D) = E(h \circ f, D) + R(g \circ f, D) + R_1 + R_2$$

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchica results

Discussion & Broader

Loss function

 $\label{eq:Loss} \mbox{Loss} = \mbox{Crossentropy loss} + \mbox{Reconstruction error} + \\ \mbox{Regularization terms}$

$$L((f,g,h),D) = E(h \circ f,D) + R(g \circ f,D) + R_1 + R_2$$

Regularization terms for prototypes p_1,\ldots,p_m

$$R_1(\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_m}, D) = \frac{1}{m} \sum_{i=1}^{m} \min_{i \in [1, n]} ||\mathbf{p}_j - f(\mathbf{x}_i)||_2^2$$

$$R_2(\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_m}, D) = \frac{1}{n} \sum_{i=1}^{n} \min_{j \in [1, m]} ||\mathbf{p}_j - f(\mathbf{x}_i)||_2^2$$

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications

Loss function

 $\label{eq:Loss} \mbox{Loss} = \mbox{Crossentropy loss} + \mbox{Reconstruction error} + \\ \mbox{Regularization terms}$

$$L((f,g,h),D) = \lambda_{\mathsf{class}} E(h \circ f, D) + \lambda_R R(g \circ f, D) + \lambda_1 R_1 + \lambda_2 R_2$$

Regularization terms for prototypes p_1, \ldots, p_m

$$R_1(\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_m}, D) = \frac{1}{m} \sum_{j=1}^m \min_{i \in [1, n]} ||\mathbf{p}_j - f(\mathbf{x}_i)||_2^2$$

$$R_2(\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_m}, D) = \frac{1}{n} \sum_{i=1}^{n} \min_{j \in [1, m]} ||\mathbf{p}_j - f(\mathbf{x}_i)||_2^2$$

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchica prototype network

Hierarchical

Discussion & Broader implications

- MNIST digits
- 15 prototypes

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical

Discussion & Broader implications

- MNIST digits
- 15 prototypes
- Autoencoder with four convolutional layers

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader

- MNIST digits
- 15 prototypes
- Autoencoder with four convolutional layers
- Learning rate 0.0001, Epochs 1500

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications

- MNIST digits
- 15 prototypes
- Autoencoder with four convolutional layers
- Learning rate 0.0001, Epochs 1500
- Test accuracy: 98.879% (Paper reports 99.22%)

Learned prototypes

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchica prototype network

Hierarchica

Discussion & Broader

Original results:

Learned prototypes

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchica prototype network

Hierarchica results

Discussion & Broader

Original results:

Reproduced results:

However...

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications Reproduced results with another seed:

• (Accuracy still 98.71%)

The hierarchical idea

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader

- If m > K, multiple prototypes of 1 class
- Sometimes prototype network does not learn a prototype for each class
- If m = K, 1 prototype for each class
- Cannot capture intraclass differences

The hierarchical idea

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications

- If m > K, multiple prototypes of 1 class
- Sometimes prototype network does not learn a prototype for each class
- If m=K, 1 prototype for each class
- Cannot capture intraclass differences

Possible solution: superprototypes

Input example \prec Subprototype \prec Superprototype, where \prec means "more specific than"

Our architecture

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications

Two new loss terms

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader

New loss term

$$\begin{split} L((f,g,h),D) &= \\ \lambda_{\text{class}} E(h \circ f, D) + \lambda_R R(g \circ f, D) + \lambda_1 R_1 + \lambda_2 R_2 + \lambda_3 R_3 + \lambda_4 R_4 \end{split}$$

$$R_1(\mathbf{p_1}, \dots, \mathbf{p_m}, D) = \frac{1}{m} \sum_{i=1}^m \min_{i \in [1, n]} ||\mathbf{p}_j - f(\mathbf{x}_i)||_2^2$$

$$R_2(\boldsymbol{p_1}, \dots, \boldsymbol{p_m}, D) = \frac{1}{n} \sum_{i=1}^{n} \min_{\boldsymbol{j} \in [1, m]} ||\boldsymbol{p_j} - f(\boldsymbol{x_i})||_2^2$$

$$R_3(\mathbf{P_1}, \dots, \mathbf{P_K}, \mathbf{p_1}, \dots, \mathbf{p_m}) = \frac{1}{K} \sum_{k=1}^{K} \min_{j \in [1, m]} ||\mathbf{P_k} - \mathbf{p_j}||_2^2$$

$$R_4(\mathbf{P_1}, \dots, \mathbf{P_K}, \mathbf{p_1}, \dots, \mathbf{p_m}) = \frac{1}{m} \sum_{j=1}^{m} \min_{k \in [1, K]} ||\mathbf{P}_k - \mathbf{p}_j||_2^2$$

Results

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications

Accuracy for superprototype classifier: 98.86%

Accuracy for subprototype classifier: 99.02%

Superprototypes and subprototypes

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications K Superprototypes (fixed layer)

• m Subprototypes (learnable FC layer)

Transparency & Fairness

Towards Hierarchical Explanation

Christiaan, Hinrik, Albert, Anna

Reproducing the prototype network

The hierarchical prototype network

Hierarchical results

Discussion & Broader implications

- Model interclass and intraclass variation
- Some hierarchical interpretability
- Possibly discover biases in dataset by looking at (sub)prototypes

Thank you for your attention

Thank you for your attention Any questions?