Ruled Surface

In this section, fix an algebraically closed field **k**.

1 Preliminaries on Projective Bundles

Let S be a variety over \mathbb{k} and \mathcal{E} a vector bundle of rank r+1 on S.

Proposition 1. The S-varieties $\mathbb{P}_X(\mathcal{E}) \cong \mathbb{P}_X(\mathcal{E}')$ if and only if $\mathcal{E} \cong \mathcal{E}' \otimes \mathcal{L}$ for some line bundle \mathcal{L} on S.

Theorem 2. Let $\pi: X = \mathbb{P}_S(\mathcal{E}) \to S$ be the projective bundle associated to a vector bundle \mathcal{E} of rank r+1 on S. Then there is an exact sequence of vector bundles on $\mathbb{P}_S(\mathcal{E})$

$$0 \to \Omega_{\mathbb{P}_{S}(\mathcal{E})/S} \to \pi^{*}(\mathcal{E})(-1) \to \mathcal{O}_{\mathbb{P}_{S}(\mathcal{E})} \to 0.$$

In particular, $K_X \sim \pi^*(K_S + \det \mathcal{E}) - (r+1)\mathcal{O}_{\mathbb{P}_S(\mathcal{E})}(1)$. Yang: To be continued...

Theorem 3 (Tsen's Theorem, [Stacks, Tag 03RD]). Let C be a smooth curve over an algebraically closed field \mathbb{K} . Then $K = \mathbb{K}(C)$ is a C_1 field, i.e., every degree d hypersurface in \mathbb{P}^n_K has a K-rational point provided $d \leq n$. Yang: Need a reference.

Theorem 4 (Cohomology and Base Change, [Har77, Theorem 12.11]). Let $f: X \to S$ be a projective morphism of noetherian schemes and \mathcal{F} a coherent sheaf on X which is flat over S. Then for each $i \geq 0$ and each point $s \in S$ there is a natural base change homomorphism

$$\varphi^i_s:\mathsf{R}^if_*\mathcal{F}\otimes\kappa(s)\to H^i(X_s,\mathcal{F}_s).$$

Suppose that φ_s^i is surjective. Then

- (a) there exists an open neighborhood U of s such that $\varphi_{s'}^i$ is an isomorphism for all $s' \in U$;
- (b) TFAE:
 - (i) φ_s^{i-1} is surjective;
 - (ii) $R^i f_* \mathcal{F}$ is locally free on an open neighborhood of s.

Theorem 5 (Grauert's Theorem, [Har77, Corollary 12.9]). Let $f: X \to S$ be a projective morphism of noetherian schemes and \mathcal{F} a coherent sheaf on X which is flat over S. Suppose that S is integral and the function $S \mapsto \dim_{\kappa(S)} H^i(X_S, \mathcal{F}_S)$ is constant on S for some $i \geq 0$. Then $\mathsf{R}^i f_* \mathcal{F}$ is locally free and the base change homomorphism

$$\varphi_s^i: \mathsf{R}^i f_* \mathcal{F} \otimes \kappa(s) \to H^i(X_s, \mathcal{F}_s)$$

Date: August 26, 2025, Author: Tianle Yang, My Homepage

is an isomorphism for all $s \in S$.

Theorem 6 (Miracle Flatness, [Mat89, Theorem 23.1]). Let $f: X \to Y$ be a morphism of noetherian schemes. Assume that Y is regular and X is Cohen-Macaulay. If all fibers of f have the same dimension $d = \dim X - \dim Y$, then f is flat.

Proposition 7. Let X be a noetherian scheme and \mathcal{E} a vector bundle of rank r+1 on X. Let Y be a X-scheme via a morphism $g:Y\to X$. Then there is a bijection

$$\{X\text{-morphisms }Y\to \mathbb{P}_X(\mathcal{E})\} \leftrightarrow \left\{\begin{array}{l} \text{surjective morphisms }g^*\mathcal{E}\to \mathcal{L}\\ \text{where }\mathcal{L} \text{ is a line bundle on }Y \end{array}\right\}.$$

Yang: Need to check.

2 Minimal Section and Classification

Definition 8 (Ruled surface). A *ruled surface* is a smooth projective surface X together with a surjective morphism $\pi: X \to C$ to a smooth curve C such that all fibers of π are isomorphic to \mathbb{P}^1 .

Let $\pi: X \to C$ be a ruled surface over a smooth curve C of genus g.

Lemma 9. There exists a section of π .

ightharpoonup Proof.

Proposition 10. Then there exists a vector bundle $\mathcal E$ of rank 2 on $\mathcal C$ such that $X\cong \mathbb P_{\mathcal C}(\mathcal E)$ over $\mathcal C$.

Proof. Let $\sigma: \mathcal{C} \to X$ be a section of π and D be its image. Let $\mathcal{L} = \mathcal{O}_X(D)$ and $\mathcal{E} = \pi_*\mathcal{L}$. Since D is a section of π , $\mathcal{L}|_{X_c} \cong \mathcal{O}_{\mathbb{P}^1}(1)$ for any $c \in \mathcal{C}$, whence $h^0(X_c, \mathcal{L}|_{X_c}) = 2$ for any $c \in \mathcal{C}$. By Miracle Flatness (Theorem 6), f is flat. By Grauert's Theorem (Theorem 5), \mathcal{E} is a vector bundle of rank 2 on \mathcal{C} .

Lemma 11. There is a one-to-one correspondence between sections of π and quotient line bundles of \mathcal{E} .

ightharpoonup Proof.

Lemma 12. It is possible to write $X \cong \mathbb{P}_{\mathcal{C}}(\mathcal{E})$ such that $H^0(\mathcal{C}, \mathcal{E}) \neq 0$ but $H^0(\mathcal{C}, \mathcal{E} \otimes \mathcal{L}) = 0$ for any line bundle \mathcal{L} on \mathcal{C} with $\deg \mathcal{L} < 0$. Such a vector bundle \mathcal{E} is called a *normalized vector bundle*.

 $holdsymbol{ ext{$\mid$}} Proof.$

Definition 13. A section C_0 of π is called a *minimal section* if Yang: to be continued...

Theorem 14. Let

Theorem 15. Let $\pi: X \to C$ be a ruled surface over $C = \mathbb{P}^1$ with invariant e. Then $X \cong \mathbb{P}_{C}(\mathcal{O}_{C} \oplus \mathcal{O}_{C}(-e))$.

Theorem 16. Let $\pi: X = \mathbb{P}_E(\mathcal{E}) \to E$ be a ruled surface over an elliptic curve E with invariant e and normalized \mathcal{E} .

- (a) If \mathcal{E} is indecomposable, then e = 0 or -1, and for each e there exists a unique such ruled surface up to isomorphism.
- (b) If \mathcal{E} is decomposable, then $e \geq 0$ and $\mathcal{E} \cong \mathcal{O}_E \oplus \mathcal{L}$ where \mathcal{L} is a line bundle on E with $\deg \mathcal{L} = -e$.

3 The Néron-Severi Group of Ruled Surfaces

Proposition 17. Let $\pi: X \to C$ be a ruled surface over a smooth curve C of genus g. Let C_0 be a minimal section of π and let f be a fiber of π . Then $K_X \sim -2C_0 + (K_C -)f$ where $e = -C_0^2$. Yang: Check this carefully.

Rational case. Let $\pi: X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \to \mathbb{P}^1$ be a ruled surface over \mathbb{P}^1 with $\mathcal{E} \cong \mathcal{O} \oplus \mathcal{O}(-e)$ for some $e \geq 0$.

Elliptic case. Let $\pi: X = \mathbb{P}_{\mathcal{C}}(\mathcal{E}) \to E$ be a ruled surface over an elliptic curve E with \mathcal{E} a normalized vector bundle of rank 2 and degree -e.

References

- [Har77] Robin Hartshorne. Algebraic geometry. Vol. No. 52. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, pp. xvi+496. ISBN: 0-387-90244-9 (cit. on p. 1).
- [Mat89] Hideyuki Matsumura. *Commutative ring theory*. 8. Cambridge university press, 1989 (cit. on p. 2).
- [Stacks] The Stacks Project Authors. Stacks Project. URL: https://stacks.math.columbia.edu/(cit. on p. 1).