Tutorial 2

1) Calculate the delay in the following loop assuming the system clock period= $0.33 \, \mu s$.

Label	Instruction	T-states
	LXI B, 12FF H	10
DELAY:	DCX B	6
	XTHL	16
	XTHL	16
	NOP	4
	NOP	4
	MOV A,C	4
	ORA B	4
	JNZ DELAY	10/7

2) Specify the number of times the following loop is executed:

a. MVI A,17 H

LOOP: ORA A

RAL

JNC LOOP

b. MVI A,17 H

LOOP: RAL

ORA A

JNC LOOP

c. LXI B, 1000 H

LOOP: DCX B

NOP

JNZ LOOP

3) In the following figure, load register C with 00Hand register B with C8H. Calculate the loop delay in LOOP1 and LOOP2 (clock period= 325 ns.)

4) Specify the number of times the following loop is executed:

a MVI B, 64 H

LOOP: NOP

DCR B

JNZ LOOP

b. ORA A

MVI B, 64H

LOOP: DCR B

JNCLOOP

c. MVI A, 17 H

LOOP: ORA A

RRC

JNC LOOP

5) Calculate the COUNT to obtain a 100 μs delay, and express the value in Hex. (Use the clock frequency of your system.)

		T-states
	MVI B, COUNT	
LOOP:	NOP	4
	NOP	4
	DCR B	4
	JNZ LOOP	10/7