Mathematical Thinking I Course Notes Fall 2023

David Lyons Mathematical Sciences Lebanon Valley College

last update: August 9, 2023

Mathematical Thinking I Course Notes

Fall 2023

David Lyons Mathematical Sciences Lebanon Valley College Copyright ©2023

Contents

1	Some Essential Mathematical Vocabulary		1
	1.1	Sets and Functions	1
	1.2	Integers, divisibility, primes	6
	1.3	Linear and Exponential Growth	8
	Sol	ntions to Exercises for Section 1	10
2	Problems		16
	2.1	Linear and Exponential Growth	16
	2.2	Rational and irrational numbers	19
	2.3	Decimal representation of numbers	19
	2.4	Sets and functions	19
	2.5	Pythagorean triples	21

1 Some Essential Mathematical Vocabulary

1.1 Sets and Functions

A **set** is a collection of objects called the **elements** or **members** of the set. Given an object x and a set A, exactly one of two things is true: either x is an element of A, denoted $x \in A$, or x is not an element of A, denoted $x \notin A$.

To denote a set that contains a small number of elements, we list the elements, separated by commas, and enclosed in curly brackets. For example, the set $A = \{x, y, z\}$ contains elements x, y, z, and contains no other objects. In this notation, the order in which the objects are listed does not matter. Redundancy also does not matter: the same object may be listed more than once. For example, we may write the following.

$$A = \{x, y, z\} = \{y, z, x\} = \{y, x, y, z\}$$

Another way to denote a set is the notation $\{x : x \text{ satisfies condition } C\}$, where the colon ":" is pronounced "such that". For example, the *closed unit interval* of the real line is the set $\{x : 0 \le x \le 1\}$.

The set that contains no elements is called the *empty set*, denoted \emptyset .

We write $A \subseteq B$ to indicate that every element in the set A is also in the set B, and we write $A \not\subseteq B$ to indicate that there is at least one element in A that is not an element in B.

The *intersection* of sets A, B, denoted $A \cap B$, is the set

$$A \cap B = \{x \colon x \in A \text{ and } x \in B\}.$$

The **union** of sets A, B, denoted $A \cup B$, is the set

$$A \cup B = \{x \colon x \in A \text{ or } x \in B\}$$

where the word "or" means "one or the other or both".

The set

$$A \setminus B = \{x \colon x \in A \text{ and } x \notin B\}$$

(also sometimes denoted A - B) is called the **difference of set** A **minus set** B, or just "A minus B" for short.

Given objects x, y, an ordered list of the form (x, y) is called an **ordered pair**. To say that the pair is ordered means that the pairs (x, y) and (y, x) are different if $x \neq y$. The object x is called the **first entry** (or the **left entry**) of the ordered pair (x, y), and the object y is called the **second entry** (or the **right entry**). The set of all ordered pairs of the form (a, b), where a is an element of set A and b is an element of set A, is called the **(Cartesian) product** of the set A with the set A, denoted $A \times B$.

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

A function f from a set S to a set T, denoted $f: S \to T$, is a subset of $S \times T$ with the property that every element s in S is the left entry of exactly one element in f. We write f(s) = t or $s \xrightarrow{f} t$ to indicate that (s,t) is the element

of f whose left entry is s. The set S is called the **domain** of f and the set T is called the **codomain** of f. Two functions are **equal** if they have the same domain, the same codomain, and contain the same elements.

Given an element $s_0 \in S$, we refer to $f(s_0)$ as the *image of* s_0 *under* f. Given an element $t_0 \in T$, we call the set $\{s \in S : f(s) = t_0\}$ the *preimage of* t_0 *under* f.

The function $f \colon S \to T$ is called **one-to-one** or **injective** if, for every $t \in T$, the preimage of t under f has at most 1 element. A function $f \colon S \to T$ is called **onto** or **surjective** if, for every $t \in T$, the preimage of t has at least one element. A function is called **bijective**, or a **one-to-one correspondence**, if it is both injective and surjective.

Given functions $f: S \to T$ and $g: T \to U$, the function $g \circ f: S \to U$, called the **composition** of g with f, is defined by $(g \circ f)(s) = g(f(s))$ for all $s \in S$.

Given a set S, the function $f: S \to S$ defined by f(s) = s for every $s \in S$ is called the *identity function on* S. The identity function on S is sometimes denoted I_S , Id_S , or $\mathbb{1}_S$, and the subscript S may be omitted when the context is clear.

Given a function $f: S \to T$, if there is a function $g: T \to S$ such that $g \circ f = \mathbb{1}_S$ and $f \circ g = \mathbb{1}_T$, then f is said to be *invertible*. The function g is called the *inverse* of f, and we write $g = f^{-1}$.

More on images and preimages. Let $f: S \to T$ be a function. Given a set $U \subseteq S$, the *image of* U *under* f, denoted f(U), is the set

$$f(U) = \{ f(u) \colon u \in U \}.$$

Given a set $V \subseteq T$, the **preimage of** V under f, denoted $f^{-1}(V)$, is the set

$$f^{-1}(V) = \{u \colon f(u) \in V\}.$$

When $V = \{t_0\}$ is a set with only one element, we write $f^{-1}(t_0)$ for the preimage set $f^{-1}(\{t_0\})$.

CAUTION about terminology. The collection of symbols " f^{-1} " is used in several different ways (this is called *overloading* of terminology).

- " f^{-1} " denotes the inverse of the invertible function f. Depending on f, the inverse function may or may not exist.
- " $f^{-1}(V)$ " denotes the inverse image of a subset V of the codomain T. This set is always defined for any $f: S \to T$ and for any $V \subseteq T$.
- " $f^{-1}(t_0)$ " can mean two different things:
 - the image of t_0 under the function $f^{-1}: T \to S$, defined when f is invertible, but not defined otherwise, or
 - the preimage set $f^{-1}(t_0) = \{s \in S : f(s) = t_0\}$, defined for every $f: S \to T$ and every t_0 in T

The size of a set. Intuitively, the size of a set S is the number of distinct elements of S. Intuitively, we "count" the elements in a set S by putting them in an ordered list.

$$(s_1, s_2, s_3, \ldots)$$

This intuitive notion suffers from the fact that there is not a unique way to count. For example, there are six different ways to count the 3-element set $\{a, b, c\}$. Here are the 6 possible orderings.

$$(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)$$

Here is a more formal way to define the size of a set: a set S is called *finite* if S is empty or if there exists a one-to-one correspondence

$$f: \{1, 2, 3, \dots, n\} \to S$$

for some positive whole number n. A set that is not finite is called *infinite*. A one-to-one correspondence $f: \{1, 2, \ldots, n\} \to S$ is a counting of S in the sense that each element of S appears exactly once in the ordered list

$$(f(1), f(2), \dots, f(n))$$

A consequence of Exercise 17 is that all possible countings of a set S must produce ordered lists of the same length. It is this length that we call the size of the finite set S. For a finite set S that contains exactly n distinct elements, we write |S| = n. The symbols '|S|' are pronounced "the size of S".

Exercises for 1.1

1. Which of these are correct (one, both, or neither)? Discuss.

$$b \subseteq \{a, b, c\}, \quad b \in \{a, b, c\}$$

2. Which of these are correct (one, both, or neither)? Discuss.

$$\emptyset \subseteq \{a, b, c\}, \quad \emptyset \in \{a, b, c\}$$

3. Are any of the following things the same? Discuss.

$$\{0\}, \{\emptyset\}, \emptyset, \{\}$$

- 4. Write out all of the subsets of $\{x, y, z\}$.
- 5. Write out all of the functions from $\{x, y, z\}$ to $\{A, B\}$. Which are injective? Which are bijective?
- 6. Write out all of the functions from $\{A, B\}$ to $\{x, y, z\}$. Which are injective? Which are surjective? Which are bijective? For each of your functions $f: \{A, B\} \to \{x, y, z\}$, write out $f^{-1}(x)$ and $f^{-1}(\{x, y\})$.
- 7. Write out all of the functions from $\{x, y, z\}$ to $\{x, y, z\}$. Which are injective? Which are surjective? Which are bijective?
- 8. Consider the functions $f, g: \{x, y, z\} \to \{a, b, c\}$ given by f(x) = b, f(y) = a, f(z) = c and g(x) = a, g(y) = a, and g(z) = c. One of the two things below has two possible meanings, and one has only one possible meaning. Which is which? And what are those meanings? Discuss.

$$f^{-1}(a), \quad g^{-1}(a)$$

- 9. Show, by examples, that the number of elements in the preimage of a point can be 0, 1, 2, any positive integer n, or infinite.
- 10. Suppose that a function f is bijective. Show that f is invertible.
- 11. Suppose that a function f is invertible. Show that f is bijective.
- 12. Suppose the function f is invertible and that $g = f^{-1}$. Show that $f = g^{-1}$.
- 13. Suppose that f and g are both invertible, and that the composition $g \circ f$ is defined. Show that $g \circ f$ is invertible and that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. This fact is referred to as the "shoes and socks" property.
- 14. Let $f: S \to T$ be a function. Prove the following.
 - (i) If $f^{-1}(t_0) \cap f^{-1}(t_1) \neq \emptyset$, then $f^{-1}(t_0) = f^{-1}(t_1)$.
 - (ii) For any s in S, there is a t in T such that $s \in f^{-1}(t_0)$.
 - (iii) Conclude that every element of S is an element of exactly one preimage set under f.
- 15. Suppose that S is finite and that $f: S \to S$ is one-to-one. Show that f is onto.

- 16. Show the previous statement fails if S is not assumed to be finite.
- 17. Let m, n be positive whole numbers, and suppose that

$$f: \{1, 2, 3, \dots, n\} \to \{1, 2, 3, \dots, m\}$$

is a one-to-one correspondence. Show that m=n. Hint: use Exercise 14.

1.2 Integers, divisibility, primes

The set

$$\mathbf{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

of all the whole numbers is called the *integers*. We say that an integer a divides an integer b, written a|b, if b=ak for some integer k. If a|b, we say that b is divisible by a, and we say a is a divisor of b. We write $a \nmid b$ to indicate that a does not divide b. Given a positive integer m, we say integers a, b are equivalent modulo m, written $a \equiv b \pmod{m}$, if m|(a-b). An integer p > 1 whose only positive divisors are 1 and p is called **prime**. Here are two important facts about divisibility and primes.

(1.2.1) The Division Algorithm. Let m be a positive integer. For each integer n there are unique integers q, r that satisfy

$$n = mq + r, \qquad 0 \le r < m.$$

The number q is called the **quotient** and the number r is called the **remainder** for **dividing** n **by** m.

(1.2.2) **The Fundamental Theorem of Arithmetic.** Every positive integer n can be written as a product of primes. Further, this prime factorization is unique. That means that if $n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_\ell$ for primes p_i, q_j , then $k = \ell$ and there is a rearrangement of the subscripts for which $p_i = q_i$ for $1 \le i \le k$.

Modular Arithmetic

We write \mathbf{Z}_m to denote the set

$$\mathbf{Z}_m = \{0, 1, \dots, m-1\}$$

of possible remainders obtained when dividing by a positive integer by m. The function $\mathbf{Z} \to \mathbf{Z}_m$ that sends an input n to its remainder when dividing by m is called "reducing mod m". Sometimes we write $n \operatorname{MOD} m$ or n % m, pronounced "n modulo m" or simply "n mod m", to denote this remainder.

We define operations $a +_m b$ and $a \cdot_m b$ for elements a, b in \mathbf{Z}_m by

$$a +_m b = (a + b) \operatorname{MOD} m$$

 $a \cdot_m b = (ab) \operatorname{MOD} m$

The operations $+_m$, \cdot_m are called **addition modulo** m and **multiplication modulo** m, respectively. The set \mathbf{Z}_m is sometimes called the "m-hour clock" and the operations $+_m$, \cdot_m are called "clock arithmetic" or "arithmetic modulo m".

Exercises for 1.2

- 1. Let p be prime and suppose that p|(ab) for some integers a, b. Show that it must be the case that p|a or p|b (or both).
- 2. Explain why there are infinitely many primes. Hint: Suppose there are only finitely many primes, say p_1, \ldots, p_n . Consider $s = p_1 p_2 \cdots p_n + 1$. Explain why s is not divisible by any of the primes, and why this is a contradiction.
- 3. Let m > 1 be a positive integer.
 - (a) Show that $a \equiv b \pmod{m}$ if and only if $a \operatorname{MOD} m = b \operatorname{MOD} m$. This means that the following two statements hold.
 - (i) If $a \equiv b \pmod{m}$, then $a \operatorname{MOD} m = b \operatorname{MOD} m$.
 - (ii) If $a \operatorname{MOD} m = b \operatorname{MOD} m$, then $a \equiv b \pmod{m}$.
 - (b) Show that $a \equiv a \pmod{m}$ for every integer a. (This is called the *reflexive* property of equivalence modulo m.)
 - (c) Show that if $a \equiv b \pmod{m}$ then $b \equiv a \pmod{m}$. (This is called the *symmetric* property of equivalence modulo m.)
 - (d) Show that if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$. (This is called the *transitive* property of equivalence modulo m.)
 - (e) Show that if $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then
 - i. $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$, and
 - ii. $a_1a_2 \equiv b_1b_2 \pmod{m}$.
 - (f) Let m be a prime. Let a be a nonzero element of \mathbf{Z}_m and let b be any element of \mathbf{Z}_m . Show that there exists some x in \mathbf{Z}_m such that $ax \equiv b \pmod{m}$. Hint: consider the function $\mu_a \colon \mathbf{Z}_m \to \mathbf{Z}_m$ given by $n \to an \operatorname{MOD} m$. Show that μ_a is one-to-one and onto.
 - (g) Suppose that m is not prime. Show that there exist nonzero elements a, b in \mathbf{Z}_m for which there exists no x in \mathbf{Z}_m such that $ax \equiv b \pmod{m}$.

1.3 Linear and Exponential Growth

The two most basic growth patterns are the following.

$$a, a + d, a + 2d, a + 3d, \dots, a + nd, \dots$$

 $a, ar, ar^2, ar^3, \dots, ar^n, \dots$

In both patterns, the constant a is called the *initial term*. The first pattern is called an *arithmetic sequence*¹ with *common difference* d. An arithmetic sequence is said to have *linear* growth because it is the sequence of values

$$L(0), L(1), L(2), \dots$$

of the linear function L(t) = a + dt. The second pattern is called a **geometric** sequence with **common ratio** r (where r > 0 and $r \neq 1$). A geometric sequence is said to have **exponential** growth because it is the sequence of values

$$E(0), E(1), E(2), \dots$$

of the exponential function $E(t) = ar^t$.

Finite arithmetic and geometric sums. Exercises at the end of this subsection outline the proofs of the following formulas.

$$(1.3.1) a + (a+d) + (a+2d) + \dots + (a+nd) = \frac{(n+1)(2a+nd)}{2}$$

(1.3.2)
$$a + ar + ar^{2} + \dots + ar^{n} = a \left(\frac{1 - r^{n+1}}{1 - r} \right)$$

Infinite geometric sums. An infinite sum of the form

$$a + ar + ar^2 + ar^3 + \cdots$$

is called an *infinite geometric series*, and is defined to mean the limit (if the limit exists) $\lim_{n\to\infty} s_n$, where s_1, s_2, s_3, \ldots is sequence of finite sums

$$s_0 = a$$

$$s_1 = a + ar$$

$$s_2 = a + ar + ar^2$$

$$\vdots$$

$$s_n = a + ar + ar^2 + \dots + ar^n$$

$$\vdots$$

If |r| < 1, then $|r|^n \to 0$ as $n \to \infty$. Using properties of limits from calculus, we have

$$a\left(\frac{1-r^{n+1}}{1-r}\right) \to a\left(\frac{1}{1-r}\right)$$

as $n \to \infty$. Putting this together with (1.3.2) above is the justification for the following formula.

(1.3.3)
$$a + ar + ar^2 + ar^3 + \dots = a\left(\frac{1}{1-r}\right)$$
 for $|r| < 1$

 $^{^1}$ The emphasis is on the third syllable "met" when the word "arithmetic" is used as an adjective rather than a noun. For example: "Addition is an operation of a · rith' · metic. Repeated addition creates an arith · met' · ic sequence."

Exercises for 1.3

- 1. Fill in the missing terms of the following arithmetic and geometric sequences. Identify the initial term and the common difference or common ratio for each.
 - (a) $5, 2, -1, \underline{\ }, \underline{\ }, \underline{\ }, \underline{\ }, \dots$
 - (b) $5, 2, 0.8, \underline{\ }, \underline{\ }, \underline{\ }, \underline{\ }, \underline{\ }, \dots$
 - (c) $_, 2, _, 5, _, 8, \dots$
 - (d) $_$, 2, $_$, 4, $_$, 8, . . .
- 2. Find the sum of the first 100 positive integers.
- 3. Find the given sums of terms of arithmetic and geometric sequences.
 - (a) $2+5+8+11+\cdots+302$
 - (b) $2+5+8+11+\cdots+1571$
 - (c) $2+6+18+54+\cdots+2(3^{100})$
 - (d) $2+6+18+54+\cdots+9565938$
- 4. Prove (1.3.1). Hint: Write the sum in reverse order $L(n) + L(n-1) + \cdots + L(1) + L(0)$ directly beneath $L(0) + L(1) + \cdots + L(n)$, in such a way that the terms are aligned vertically. Notice that each vertically aligned pair has the form L(k) and L(n-k), and that L(k) + L(n-k) = 2a + nd (the k's cancel!). Now go from there.
- 5. Prove (1.3.2). Hint: Let s be the desired sum $a + ar + ar^2 + \cdots + ar^n$. Examine the expansion of s rs (many terms cancel!). Simplify and solve for s.