DYNAMIC PROGRAMMING: ROD CUTTING

CS340

- How to cut steel rods into pieces in order to maximize the revenue you can get?
 - Each cut is free. Rod lengths are always an integral number of inches.
 - Input: A length n and table of prices p_i, for i = 1, 2, ..., n.
 - Output: The maximum revenue obtainable for rods whose lengths sum to n, computed as the sum of the prices for the individual rods.

Table of prices:

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

• Can cut up a rod in 2ⁿ⁻¹ different ways, because can choose to cut or not cut after each of the first n - 1 inches.

Table of prices:

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

 Here are all 8 ways to cut a rod of length 4, with the costs from the example:

- How many ways are repeats of other ways?
- Which way of cutting gives the most revenue?

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

Let r_i be the maximum revenue for a rod of length i. Can express a solution as a sum of individual rod lengths.

Can determine optimal revenues r_i for the example, by inspection:

i	r_i	optimal solution
1	1	1 (no cuts)
2	5	2 (no cuts)
3	8	3 (no cuts)
4	10	2 + 2
5	13	2 + 3
6	17	6 (no cuts)
7	18	1 + 6 or 2 + 2 + 3
8	22	2 + 6

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

Can determine optimal revenue r_n by taking the maximum of

- p_n : the price we get by not making a cut,
- $r_1 + r_{n-1}$: the maximum revenue from a rod of 1 inch and a rod of n-1 inches,
- $r_2 + r_{n-2}$: the maximum revenue from a rod of 2 inches and a rod of n-2 inches, ...
- $r_{n-1} + r_1$.

That is,

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$
.

 To solve the original problem, solve problems on smaller sizes. It is recursive in nature.

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

Dynamic-programming solution

- The problem has an optimal substructure
- Instead of solving the same subproblems repeatedly, arrange to solve each subproblem just once.
- Save the solution to a subproblem in a table, and refer back to the table whenever we revisit the subproblem.
- "Store, don't recompute" → time-memory trade-off.
- Can turn an exponential-time solution into a polynomialtime solution.

Length i	1	2	3	4	5	6	7	8
Price p _i	1	5	8	9	10	17	17	20

Bottom-up

 Sort the subproblems by size and solve the smaller ones first. That way, when solving a subproblem, have already solved the smaller subproblems we need.

```
BOTTOM-UP-CUT-ROD(p, n) Reverse let r[0..n] be a new array r[0] = 0 for j = 1 to n q = -\infty for i = 1 to j q = \max(q, p[i] + r[j - i]) r[j] = q return r[n]
```

```
      Length i
      0
      1
      2
      3
      4
      5
      6
      7
      8

      Price p<sub>i</sub>
      0
      1
      5
      8
      9
      10
      17
      17
      20

      Revenue r<sub>i</sub>
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

What is the time complexity?

Length i	0	1	2	3	4	5	6	7	8
Price p _i	0	1	5	8	9	10	17	17	20
Revenue r _i	0	1	5	8	10	13	17	18	22
Cuts s _i	0	1	2	3	2	2	6	1	2

Record optimal choices (locations of cuts) in addition to optimal revenues.

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n) let r[0..n] and s[0..n] be new arrays r[0] = 0 for j = 1 to n q = -\infty for i = 1 to j if q < p[i] + r[j - i] q = p[i] + r[j - i] s[j] = i r[j] = q return r and s
```

```
PRINT-CUT-ROD-SOLUTION (p, n)

(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

while n > 0

print s[n]

n = n - s[n]
```