- 1. (10 %) **Free Blocks Management Using a Linked List** Consider a file system managing free blocks by using linked lists. The table below shows the final two blocks storing free blocks. Fill the empty tables below to show the changes which occur in the tables after the following scenarios. Highlight the changes using a color pencil.
 - (a) Five new blocks are allocated
 - (b) The block 22 is freed

Bloc

k#

- (c) Another 5 blocks are allocated
- (d) Another block is allocated

17

(e) Another three blocks are allocated

18

(f) Four blocks (23456, 8345345, 56, and 634534) are freed

Next Bloc	18	0			
k					
	4589	24353			
	43546	98745			
	718	76345			
	345	9877			
	23456	7345			
	834534 5	34535			
	634534	15469 8			
	3478	967			
	56	8657			
Bloc k#			Bloc k#	Bloc k#	
Next			Next	Next	
Bloc			Bloc	Bloc	
k			k	k	

Bloc k#		Bloc k#	Bloc k#	
Next Bloc k		Next Bloc k	Next Bloc k	

2. **Free Blocks Management** — **Comparision** Given the two memory footprint scenarios for Free Blocks Management as presented in class. State the condition under which the linked list approach uses less space than the bitmap approach.