Credit and Credibility

Arnay Sood arnav.sood@ubc.ca

March 27, 2019

Producers of public information are subject to economic incentives.

Producers of public information are subject to economic incentives.

 Setting: Credit Ratings Agencies (CRAs), who earn fees from the firms they rate (so-called "issuer-pays model.")

Producers of public information are subject to economic incentives.

- Setting: Credit Ratings Agencies (CRAs), who earn fees from the firms they rate (so-called "issuer-pays model.")
- Incentives:

$$\max_{\text{price, ratings}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \text{profits}$$

Producers of public information are subject to economic incentives.

- Setting: Credit Ratings Agencies (CRAs), who earn fees from the firms they rate (so-called "issuer-pays model.")
- Incentives:

$$\max_{\text{price, ratings}} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \text{profits}$$

Ratings is a choice variable!

Producers of public information are subject to economic incentives.

- Setting: Credit Ratings Agencies (CRAs), who earn fees from the firms they rate (so-called "issuer-pays model.")
- Incentives:

$$\max_{\text{price, ratings}} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \text{profits}$$

- Ratings is a choice variable!
- **Empirics** Gillette et al. (2018): Unexpected positive shock to ratings improves CRA market share and profits.

Producers of public information are subject to economic incentives.

- Setting: Credit Ratings Agencies (CRAs), who earn fees from the firms they rate (so-called "issuer-pays model.")
- Incentives:

$$\max_{\text{price, ratings}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \text{profits}$$

- Ratings is a choice variable!
- **Empirics** Gillette et al. (2018): Unexpected positive shock to ratings improves CRA market share and profits.
- Empirics 2008 Recession?

Our Model (English)

One-shot CRA choosing prices and ratings for a continuum of firms, with a lower bound on ratings informativeness.

• Firms: $i \in [0,1]$, with $\theta_i \in \{H,L\}$. Have outside options contingent on type: $\omega_i \sim F_{\theta}$.

Our Model (English)

One-shot CRA choosing prices and ratings for a continuum of firms, with a lower bound on ratings informativeness.

- Firms: $i \in [0, 1]$, with $\theta_i \in \{H, L\}$. Have outside options contingent on type: $\omega_i \sim F_{\theta}$.
- Capital Market: Invests in any firm which gets a good signal (WLOG, it can be shown there are two signals), so long as there's a minimum "precision."

Our Model (English)

One-shot CRA choosing prices and ratings for a continuum of firms, with a lower bound on ratings informativeness.

- Firms: $i \in [0, 1]$, with $\theta_i \in \{H, L\}$. Have outside options contingent on type: $\omega_i \sim F_{\theta}$.
- Capital Market: Invests in any firm which gets a good signal (WLOG, it can be shown there are two signals), so long as there's a minimum "precision."
- CRA: Forward-looking to market behavior and firm entry decisions, chooses a public mechanism (p, ϕ) , where $\phi \in \mathbb{R}$ summarizes the ratings policy.

• Mass-one continuum indexed by $i \in [0,1]$, types $\theta_i \in \{H,L\}$ ("High," "Low.")

- Mass-one continuum indexed by $i \in [0,1]$, types $\theta_i \in \{H,L\}$ ("High," "Low.")
- Realized types are unimportant, since model is solved in expectation. Common prior: $Pr[\theta_i = H] = \lambda$.

- Mass-one continuum indexed by $i \in [0,1]$, types $\theta_i \in \{H,L\}$ ("High," "Low.")
- Realized types are unimportant, since model is solved in expectation. Common prior: $Pr[\theta_i = H] = \lambda$.
- Outside options follow type-contingent distributions F_{θ} on $[\omega_{\theta}, \overline{\omega_{\theta}}]$.

- Mass-one continuum indexed by $i \in [0,1]$, types $\theta_i \in \{H,L\}$ ("High," "Low.")
- Realized types are unimportant, since model is solved in expectation. Common prior: $Pr[\theta_i = H] = \lambda$.
- Outside options follow type-contingent distributions F_{θ} on $[\omega_{\theta}, \overline{\omega_{\theta}}]$.
- Mechanistically solve:

$$V_i \equiv \max\{\omega_i, \mathbb{E}U(\theta) - p\} \tag{1}$$

Our Model (Capital Market)

Assigns outcomes to firms according to a simple cutoff rule:

$$U: \theta \mapsto R \underbrace{\mathbb{1}_{\lambda^{\circ}(\theta) \geq \underline{\lambda}, \theta = h}}_{\text{Y/N investment decision}} \tag{2}$$

- 1 A positive signal h. and
- **2** A minimum posterior $Pr[\theta_{firm} = H | signal = h] \ge \underline{\lambda}$

Our Model (Capital Market)

Assigns outcomes to firms according to a simple cutoff rule:

$$U: \theta \mapsto R \underbrace{\mathbb{1}_{\lambda^{o}(\theta) \geq \underline{\lambda}, \theta = h}}_{\text{Y/N investment decision}} \tag{2}$$

- What's required for investment?
- 1 A positive signal h. and
- **2** A minimum posterior $Pr[\theta_{firm} = H | signal = h] \ge \underline{\lambda}$

• Assume (WLOG) that ratings space $\xi \equiv \{h, I\}$.

- Assume (WLOG) that ratings space $\xi \equiv \{h, l\}$.
- Can be shown that $H \mapsto h$ always ("why hide peaches?") So ratings decision is map $f : L \mapsto \Delta(\xi)$.

- Assume (WLOG) that ratings space $\xi \equiv \{h, l\}$.
- Can be shown that $H \mapsto h$ always ("why hide peaches?") So ratings decision is map $f: L \mapsto \Delta(\xi)$.
- Can summarize f by $\phi \in \mathbb{R}$ s.t. $\phi \equiv \Pr[\theta_i = L, \xi_i = h]$.

- Assume (WLOG) that ratings space $\xi \equiv \{h, l\}$.
- Can be shown that $H \mapsto h$ always ("why hide peaches?") So ratings decision is map $f: L \mapsto \Delta(\xi)$.
- Can summarize f by $\phi \in \mathbb{R}$ s.t. $\phi \equiv \Pr[\theta_i = L, \xi_i = h]$.
- Objective is then:

$$\max_{p \ge 0, \phi \in [0,1]} p\{F_L(\phi R - p)(1 - \lambda) + F_H(R - p)\lambda\}$$
 (3)

s.t. the constraint in (2) is satisfied.

- Assume (WLOG) that ratings space $\xi \equiv \{h, l\}$.
- Can be shown that $H \mapsto h$ always ("why hide peaches?") So ratings decision is map $f: L \mapsto \Delta(\xi)$.
- Can summarize f by $\phi \in \mathbb{R}$ s.t. $\phi \equiv \Pr[\theta_i = L, \xi_i = h]$.
- Objective is then:

$$\max_{p \ge 0, \phi \in [0,1]} p\{F_L(\phi R - p)(1 - \lambda) + F_H(R - p)\lambda\}$$
 (3)

s.t. the constraint in (2) is satisfied

- Assume (WLOG) that ratings space $\xi \equiv \{h, l\}$.
- Can be shown that $H \mapsto h$ always ("why hide peaches?") So ratings decision is map $f: L \mapsto \Delta(\xi)$.
- Can summarize f by $\phi \in \mathbb{R}$ s.t. $\phi \equiv \Pr[\theta_i = L, \xi_i = h]$.
- Objective is then:

$$\max_{p \ge 0, \phi \in [0,1]} p\{F_L(\phi R - p)(1 - \lambda) + F_H(R - p)\lambda\}$$
 (3)

s.t. the constraint in (2) is satisfied

This objective is **forward-looking**, in that it incorporates optimality conditions for firms and the market.

Our Model (Timing)

1 The CRA chooses a scheme $m \equiv (p, \phi)$ according to the common prior λ about the share of high-type firms, in order to solve (3).

Our Model (Timing)

- ① The CRA chooses a scheme $m \equiv (p, \phi)$ according to the common prior λ about the share of high-type firms, in order to solve (3).
- ② Firms observe (p, ϕ) , and make entry decisions according to (1). Denote the proportion of firms of type θ which decide to buy ratings as e_{θ} (i.e., the mass of high entrants is $e_H \lambda$.)

Our Model (Timing)

- ① The CRA chooses a scheme $m \equiv (p, \phi)$ according to the common prior λ about the share of high-type firms, in order to solve (3).
- ② Firms observe (p, ϕ) , and make entry decisions according to (1). Denote the proportion of firms of type θ which decide to buy ratings as e_{θ} (i.e., the mass of high entrants is $e_H \lambda$.)
- **3** The market observes $\{(p, \phi), e_H, e_L\}$, and mechanistically executes the investment rule in (2).

Equilibrium Ingredients

A CRA policy (p, ϕ) , entry decisions e_H, e_L , and a market ratings policy (call it $\pi : \xi \to \{0, R\}$) s.t. ...

- **1** $\pi(\cdot)$ solves the market's problem, (2).
- 2 Entry decisions e_H , e_L maximize the firm objective (1).
- **3** CRA actions (p, ϕ) maximize the CRA objective (3).
- **©** CRA actions are optimal in expectation, policies e_H , e_L are forward-looking best-responses, and market outcomes $\pi(\cdot)$ are updated in a Bayes-plausible way.

Before proceeding with an analysis of this model, it's worth examining its implicit assumptions.

No Transfer Payments: Maybe *L*-type firms (who may have more to gain from a high credit rating) might pay more for a good rating. This is ruled out by our flat price *p*.

¹See, e.g., Veldkamp (2006a)

Before proceeding with an analysis of this model, it's worth examining its implicit assumptions.

- No Transfer Payments: Maybe L-type firms (who may have more to gain from a high credit rating) might pay more for a good rating. This is ruled out by our flat price p.
- No Outside Information: The only source of information is the single CRA. In practice, there is a competitive market for information¹, which may discipline the CRA.

¹See, e.g., Veldkamp (2006a)

Before proceeding with an analysis of this model, it's worth examining its implicit assumptions.

- No Transfer Payments: Maybe L-type firms (who may have more to gain from a high credit rating) might pay more for a good rating. This is ruled out by our flat price p.
- No Outside Information: The only source of information is the single CRA. In practice, there is a competitive market for information¹, which may discipline the CRA.
- No Inside Information: Likewise, we do not allow firms to generate their own information (e.g., in reality a high-type firm may decide to seek debt financing instead of equity financing.)

¹See, e.g., Veldkamp (2006a)

Before proceeding with an analysis of this model, it's worth examining its implicit assumptions.

- No Transfer Payments: Maybe L-type firms (who may have more to gain from a high credit rating) might pay more for a good rating. This is ruled out by our flat price p.
- No Outside Information: The only source of information is the single CRA. In practice, there is a competitive market for information¹, which may discipline the CRA.
- No Inside Information: Likewise, we do not allow firms to generate their own information (e.g., in reality a high-type firm may decide to seek debt financing instead of equity financing.)
- No CRA Competition: In practice, the credit-ratings industry is an oligopoly and not a monopoly.

See, e.g., Veldkamp (2006a)

Backwards Induction

• Calculate $\lambda^o(h|p,\phi,e_H,e_L)$, or the posterior about type conditional on a high signal.

Backwards Induction

- ① Calculate $\lambda^{o}(h|p,\phi,e_{H},e_{L})$, or the posterior about type conditional on a high signal.
- ② Given \uparrow , solve for $e_H|(p,\phi), e_L|(p,\phi)$.

Backwards Induction

- ① Calculate $\lambda^o(h|p,\phi,e_H,e_L)$, or the posterior about type conditional on a high signal.
- ② Given \uparrow , solve for $e_H|(p,\phi), e_L|(p,\phi)$.
- **3** Given \uparrow , solve for p, ϕ .

Market's Posterior

1 Start with *inflow prior*, $Pr[\theta_i = H | entry]$:

$$\lambda' \equiv \frac{e_H \lambda}{e_H \lambda + e_L (1 - \lambda)} \tag{4}$$

Market's Posterior

① Start with *inflow prior*, $Pr[\theta_i = H | entry]$:

$$\lambda' \equiv \frac{e_H \lambda}{e_H \lambda + e_L (1 - \lambda)} \tag{4}$$

2 This implies;

$$\lambda^{o}(h) = \frac{\lambda^{I}}{\lambda^{I} + (1 - \lambda^{I})\phi} \tag{5}$$

Market's Posterior

① Start with *inflow prior*, $Pr[\theta_i = H | entry]$:

$$\lambda^{I} \equiv \frac{e_{H}\lambda}{e_{H}\lambda + e_{L}(1 - \lambda)} \tag{4}$$

② This implies;

$$\lambda^{o}(h) = \frac{\lambda'}{\lambda' + (1 - \lambda')\phi} \tag{5}$$

3 Which can be rewritten in terms of raw policies:

$$\lambda^{o}(h) = \frac{e_{H}\lambda}{e_{H}\lambda + \phi e_{L}(1 - \lambda)} \tag{6}$$

Entry Policies

• In an interior solution, H types can expect reward R with probability 1, and L types can expect it with probability ϕ .

Entry Policies

- In an interior solution, H types can expect reward R with probability 1, and L types can expect it with probability ϕ
- Gives us the following:

$$e_H = F_H(R - p) \tag{7}$$

$$e_L = F_L(\phi R - p) \tag{8}$$

Market Credibility Constraint

Can rewrite $\lambda^{o}(h) \geq \underline{\lambda}$...

$$\frac{\lambda^{o}(h) \geq \underline{\lambda}}{e_{H}\lambda + \phi e_{L}(1 - \lambda)} \geq \underline{\lambda} \qquad \text{by (6)}$$

$$\frac{e_{H}\lambda}{e_{H}\lambda + \phi e_{L}(1 - \lambda)} \geq \phi e_{L}\underline{\lambda}(1 - \lambda)$$

$$\phi \leq \frac{e_{H}\lambda(1 - \underline{\lambda})}{e_{L}\underline{\lambda}(1 - \lambda)}$$
(9)

Market Credibility Constraint

Can rewrite $\lambda^{o}(h) \geq \underline{\lambda}...$

$$\frac{\lambda^{\circ}(h) \geq \underline{\lambda}}{e_{H}\lambda + \phi e_{L}(1 - \lambda)} \geq \underline{\lambda} \qquad \text{by (6)}$$

$$\frac{e_{H}\lambda}{e_{H}\lambda + \phi e_{L}(1 - \lambda)} \geq \phi e_{L}\underline{\lambda}(1 - \lambda)$$

$$\phi \leq \frac{e_{H}\lambda(1 - \underline{\lambda})}{e_{L}\underline{\lambda}(1 - \lambda)}$$
(9)

This last constraint (which we call the **Market Credibility** constraint, or (MC)) can be interpreted as a sort of discipline on the CRA's dishonesty ϕ . It says that the CRA cannot lie so much that the market ceases to invest in any firms.

Raters' Lagrangian

We wish to solve (3) subject to (9). Write the Lagrangian:

$$\mathcal{L} \equiv p\{F_H(R-p)\lambda + F_L(\phi R - p)(1-\lambda)\}$$

$$-\mu(\log \phi + \log F_L(\phi R - p) - \log F_H(R-p) - \log \tau)$$
(10)

FOC p

$$0 = F_{H}(R - p)\lambda + F_{L}(\phi R - p)(1 - \lambda)$$

$$- p \left(f_{H}(R - p)\lambda + f_{L}(\phi R - p)(1 - \lambda)\right)$$

$$+ \mu \left(\frac{f_{L}(\phi R - p)}{F_{L}(\phi R - p)} - \frac{f_{H}(R - p)}{F_{H}(R - p)}\right)$$
Composition of customer pool changes! (11)

FOC ϕ

$$\underbrace{\frac{\phi R(1-\lambda)f_L(\phi R-p)}{\text{Marginal return to L-type firms}}} = \mu \left(\frac{1}{p} + \underbrace{\frac{\phi R}{p} \cdot \frac{f_L(\phi R-p)}{F_L(\phi R-p)}}_{\text{something like $\Delta\%$}}\right) (12)$$

Analytical Propositions

Note: Full proofs are up on GitHub.

• **Existence:** Objective is continuous, can be shown that feasible set is compact. So Weierstrass EVT shows existence.

Analytical Propositions

Note: Full proofs are up on GitHub.

- Existence: Objective is continuous, can be shown that feasible set is compact. So Weierstrass EVT shows existence
- No Truth-Telling: Will always be some entry. Since constraint is continuous, can always do a little better without exhausting slack.

Analytical Propositions

Note: Full proofs are up on GitHub.

- Existence: Objective is continuous, can be shown that feasible set is compact. So Weierstrass EVT shows existence
- No Truth-Telling: Will always be some entry. Since constraint is continuous, can always do a little better without exhausting slack.
- Constraint Always Binds: By Fermat, need (a) non-differentiable point, (b) a stationary point, or (c) a boundary point. Assume $F_H, F_L \in C^1$, so no (a). $\frac{\partial}{\partial \phi}$ of objective (3) is (subject to assumptions) nonzero. So, must be a boundary.

Vanilla Model

Adjusting λ

Adjusting $\underline{\lambda}$

Adjusting R

Adjusting λ (Degenerate)

Adjusting F_L (Degenerate)

Wrap-Up

- Solving the one-shot (pricing, ratings) problem gives us standard monopoly FOCs, with an additional term.
- There is a clean closed form for the market credibility constraint (9), which always binds.
- Comparative statics reveal a number of outcomes, depending on parameters.
- Code up at https://github.com/arnavs/credit-pricing

Questions

FAQ...

- Isn't your model unrealistic/overly stylized? Why is it useful?
 A: The model helps illustrate the simultaneous role of CRA prices (as prices, and also as a "lever" to impact the ratings pool.)
- You mentioned some caveats. Can these be relaxed?

 A: The (no outside information) and (CRA is a monopoly) ones can be jointly loosened by modeling CRAs as symmetric price-makers. Firms can also produce their own signals, which would replace $\pi: \xi \to \{0, R\}$ with $\pi: \xi \times \Gamma \to \{0, R\}$.
- How would one generalize beyond the one-shot binary case?
 A: We could make the model a finite or infinite horizon model by incorporating a reputational term to the CRA objective (3), as we've seen in class. And/or partition the n-dimensional ratings space.
- Data?
 - A: We haven't used any, but there is lots of data on credit ratings and outcomes, which could conceivably be used to calibrate a model of strategic behavior by CRAs. This isn't a *sui generis* area of research²