Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

$$x^{(i) < j >}$$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $\bigcirc \quad x^{< i > (j)}$
- $igcap x^{(j) < i>}$
- $\bigcirc \quad x^{< j > (i)}$

1/1 points

This specific type of architecture is appropriate when:

Correct

It is appropriate when every input should be matched to an output.

- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x=1$

1/1 points

(Check all that apply). Recurrent Neural Networks

10/10 points (100.00%)

Quiz, 10 questions

Un-se	Speech recognition (input an audio clip and output a transcript)	
	Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)	
Correct!		
	Image classification (input an image and output a label)	
Un-selected is correct		
	Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)	
Correct!		

1/1 points You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- igcup Estimating $P(y^{<1>},y^{<2>},\dots,y^{< t-1>})$
- $igcap ext{Estimating } P(y^{< t>})$
- igcap Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

igcap Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$

1/1 points

You have finished training a language model RNN and are using it to sample random sentences, as follows:

Recurrent Neural Networks

10/10 points (100.00%)

Quiz, 10 questions

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

1/1 points

6.

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

- Vanishing gradient problem.
- Exploding gradient problem.

Correct

Recurrent Neural Networks

10/10 points (100.00%)

Quiz, 10 questions	ReLU activation function g(.) used to compute g(z), where z is too large.
	Sigmoid activation function g(.) used to compute g(z), where z is too large.
	1/1 points
	7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?
	1
	100
	Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.
	300
	10000
	1/1 points

Quiz, 10 questions

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

1/1 points

Recurrent Neural Networks

LSTM

10/10 points (100.00%)

Quiz, 10 questions

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$a^{< t>} = c^{< t>} \qquad \qquad c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

 Γ_u and $1-\Gamma_u$

Correct

Yes, correct!

- Γ_u and Γ_r
- \bigcap $1-\Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

1/1 points

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.

10/10 points (100.00%)

Quiz, 10 questions

Correct

Yes!

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

