${\rm CS}652$ Smalltalk VM Operational Semantics

Terence Parr

April 2, 2015

$T \bowtie x$	Resolve x in scope T
$o \in X$	o instance of X
$o_{class} \in exttt{STMetaClassObject}$	Metaclass (type) of object o
$o_{class_{class}} = o_{class}$	A metaclass object is its own type
$o_{superclass} \in exttt{STMetaClassObject}$	Superclass (type) of object o
o_{field_i}	The i^{th} field of object o
$f_{literal_i}$	The i^{th} literal of method f
$f_s^{block_i} \in exttt{BlockDescriptor}$	The i^{th} block of method f associated with in-
	stance self= s
$f_s^{block_i}[_,_,_] \in exttt{BlockContext}$	The i^{th} block of method f invoked with self= s
$\gamma \in \texttt{MethodContext}^*$	Stack of method invocations growing to the right
$\delta \in \mathtt{Object}^*$	Operand stack of objects growing to the right
S	The state of the VM system dictionary
(\mathbb{S},γ)	VM state is the system dictionary and a method
	invocation stack with zero or more elements
$(\mathbb{S}, \gamma) \Rightarrow (\mathbb{S}', \gamma')$	VM state transition
$(\mathbb{S}, \gamma) \Rightarrow^* (\mathbb{S}', \gamma')$	Zero-or-more state transitions
$f_s[ip, l_0,l_{n-1}, \delta]$	Method invocation context that derived from
	sending message f to receiver s (self); $f \in$
	MethodContext; l_i is local variable or argument,
	indexed from 0 and arguments first; δ is the
	operand stack
$f[ip, l_0,l_{n-1}, \delta]$	Same as previous but the receiver is unknown or
	irrelevant
$f[ip, _, _]$	A method invitation context with "don't care"
	for locals and operand stack

Figure 1: Smalltalk VM Bytecode Specification Notation

Bytecode Instruction	Transition
initial state	$state_0 = (\mathbb{S}[\mathtt{nil},\mathtt{true},\mathtt{false},\mathtt{Transcript}],\mathtt{main}_m[0,\epsilon,\epsilon])$
	for $m \in \text{MainClass}$; program terminates if $\exists state_0 \Rightarrow^* (S', \epsilon)$
nil	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{nil}])$
self	$(\mathbb{S}, \gamma f_s[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip+1, \underline{\ }, \delta s])$
true	$(\mathbb{S}, \gamma f[ip, \cdot, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 1, \cdot, \delta \text{ true}])$
false	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{false}])$
${\sf push_char}\;c$	$\left \left(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \right) \right \Rightarrow \left(\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta c] \right) \right $
$push_int i$	$\left((\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \underline{\ }, \delta i]) \right)$
${\sf push_float}\; i$	$(\mathbb{S}, \gamma f[ip, \cdot, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \cdot, \delta intBitsToFloat(i)])$
${\sf push_field}\; i$	$(\mathbb{S}, \gamma f_s[ip, _, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip + 3, _, \delta s_{field_i}])$
${\tt push_local}\ n, i$	$(\mathbb{S}, \gamma f[ip,l_i, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5,l_i, \delta l_i])$
${\tt push_literal}\ i$	$(\mathbb{S}, \gamma f[ip, \cdot, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \cdot, \delta f_{literal_i}])$
${\sf push_global}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta \mathbb{S}[f_{literal_i}]])$
$push_array n$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta a_1a_n]) \Rightarrow (\mathbb{S}, \gamma f[ip+3, \underline{\ }, \delta A]) \text{ where } A = Array(a_1a_n)$
${ t store_field} \ i$	$(\mathbb{S}, \gamma f_s[ip, \neg, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}[s_{field_i} = \mathbf{v}], \gamma f_s[ip + 3, \neg, \delta])$
$\verb store_local n, i$	$(\mathbb{S}, \gamma f[ip,l_{i}, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5,l_{i-1}\mathbf{v} l_{i+1}, \delta])$
pop	$\left((\mathbb{S}, \gamma f[ip, \underline{\ }, \delta v]) \Rightarrow (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta]) \right)$
$\operatorname{send} n, i$	$(\mathbb{S}, \gamma f[ip, \neg, \delta r p_1p_n]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \neg, \delta] \ (r_{class} \bowtie f_{literal_i})_r[0, p_1p_n, \epsilon])$
$\mathtt{send_super}\ n, i$	
block i	$\left((\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta f_s^{block_i}]) \right)$
block_return	$\left((\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g^{block}[\underline{\ }, \underline{\ }, \delta'v]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta v]) \right)$
(local method) return	$\left((\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g[\underline{\ }, \underline{\ }, \delta'v]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta v]) \right)$
(nonlocal method) return	$\left \left(\mathbb{S}, \gamma f[ip, \neg, \delta] \ g_s[\neg, \neg, \neg] \ \dots \ h[\neg, \neg, \neg] \ g_s^{block}[\neg, \neg, \delta'v] \right) \right. \Rightarrow \left. \left(\mathbb{S}, \gamma f[ip, \neg, \delta v] \right) \right.$
$\mathtt{dbg}\;i,loc$	$(\mathbb{S}, \gamma f[ip, _, _]) \Rightarrow (\mathbb{S}[file=f_{literal_i}, line=loc[31:8], col=loc[7:0]], \gamma f[ip+7, _, _])$
	· ·
	from 0) from lower 8 bits and line number from the upper 24 bits.

Table 1: Smalltalk VM State Transition Rules