Lecture Notes 4: Multinomial Distribution

Professor: Zhihua Zhang

2.3.1 More About Mixture Distribution

Definition 2.1. In probability theory and statistics, the moment-generating function of a random variable X is

$$M_X(t) = \mathbb{E}[e^{tX}] = \int e^{tx} f_X(x) dx$$

One property about moment-generating function is that we can get $\mathbb{E}[X^k]$ from $M_X^{(k)}(0)$, as we can see $M_X^{(k)}(t) = \int x^k e^{tx} f_X(x) dx$, where we assume we can put the derivation inside. So $M_X^{(k)}(0) = \mathbb{E}[X^k]$.

Definition 2.2. A function $f:(0,\infty)\to\mathbb{R}$ is completely monotone function if and only if f is of class C^{∞} (infinitely derivable), and $(-1)^n f^{(n)}(\lambda) \geq 0$ for all $n \in \mathbb{N} \cup \{0\}$, and $\lambda > 0$.

Theorem 2.1. (Bernstein) Let $g:(0,\infty)\to\mathbb{R}$ be a completely monotone function. Then it is the Laplace transform of unique measure μ on $[0,\infty]$, i.e. for all $\lambda>0$,

$$g(\lambda) = \mathcal{L}(\mu; \lambda) = \int_{[0,\infty)} e^{-\lambda t} \mu(dt)$$

. Conversely, whenever $\mathcal{L}(\mu; \lambda) < \infty$ for every $\lambda > 0$, $\lambda \mapsto \mathcal{L}(\mu; \lambda)$ is a completely monotone function.

Proof. Assume g(0+) = 1 and $g(+\infty) = 0$. By Taylor's formula

$$f(\lambda) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (\lambda - a)^k + \int_a^{\lambda} \frac{f^{(n)}(s)}{(n-1)!} (\lambda - s)^{n-1} ds$$

$$= \sum_{k=0}^{n-1} \frac{(-1)^k f^{(k)}(a)}{k!} (a - \lambda)^k + \int_{\lambda}^a \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s - \lambda)^{n-1} ds$$
(1)

where a > 0 and $n \in \mathbb{N}$. Let $a \to \infty$, then

$$\lim_{a \to \infty} \int_{\lambda}^{a} \frac{(-1)^{n} f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} ds = \int_{\lambda}^{\infty} \frac{(-1)^{n} f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} ds$$

$$\leq f(\lambda).$$

So the sum in (1) converges for every $n \in \mathbb{N}$ as $a \to \infty$. Let

$$\rho_n(\lambda) = \lim_{a \to \infty} \frac{(-1)^n f^{(n)}(a)}{n!} (a - k)^n$$

. This limit doesn't depend on $\lambda > 0$. Indeed, for k > 0,

$$\rho_n(k) = \lim_{a \to \infty} \frac{(-1)^n f^{(n)}(a)}{n!} (a - k)^n$$

$$= \lim_{a \to \infty} \frac{(-1)^n f^{(n)}(a)}{n!} (a - \lambda)^n \frac{(a - k)^n}{(a - \lambda)^n}$$

$$= \rho_n(\lambda).$$

So we can get

$$f(\lambda) = \sum_{k=0}^{n-1} \rho_k(\lambda) + \int_{\lambda}^{\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} ds$$

Let $\lambda \to \infty$, since $f(+\infty) = 0$, so $\rho_k(\lambda) = 0$. Then we can get

$$f(\lambda) = \int_{\lambda}^{\infty} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} (s-\lambda)^{n-1} ds$$
 (2)

. And since f(0+) = 1, we can get:

$$1 = \lim_{\lambda \to 0+} f(\lambda) = \int_0^\infty \frac{(-1)^n f^{(n)}(s)}{(n-1)!} s^{n-1} ds$$

And (2) can also be written as:

$$f(\lambda) = \int_0^\infty (1 - \frac{\lambda}{s})_+^{n-1} \frac{(-1)^n f^{(n)}(s)}{(n-1)!} s^{n-1} ds.$$

Let $t = \frac{n}{s}$, then

$$f(\lambda) = \int_0^\infty (1 - \frac{\lambda t}{n})_+^{n-1} \frac{(-1)^n}{n!} f^{(n)}(\frac{n}{t}) (\frac{n}{t})^{n+1} dt$$

. Since $\lim_{n\to\infty} (1-\frac{\lambda t}{n})_+^{n-1} = e^{-\lambda t}$. So

$$f(\lambda) = \int_0^\infty e^{-\lambda t} \frac{(-1)^n}{n!} f^{(n)}(\frac{n}{t}) (\frac{n}{t})^{n+1} dt.$$

For the converse, let $f(\lambda) = \mathcal{L}(\mu; \lambda) = \int_0^\infty e^{-\lambda t} \mu(dt)$. So

$$(-1)^n f^{(n)}(\lambda) = \int_0^\infty t^n e^{-\lambda t} \mu(dt) \ge 0$$

Corollary Let g(t) be a function that is symmetric about the origin, integrable, convex and twice differentially on $(0, \infty)$ and $g(0^+) = 1$, $g(+\infty) = 0$ then

$$g(t) = \int_0^\infty \frac{1}{s} (1 - \frac{t}{s})_+ s^2 g''(s) ds$$

Theorem 2.2. A function f(x) can be represented as a Gaussian scale mixture iff $f(\sqrt{x})$ is completely monotone on $(0,\infty)$.

Theorem 2.3. If f(x) > 0, then $e^{-uf(x)}$ is completely monotone for every u > 0 iff f'(x) is completely monotone.

3 Multinomial Distribution

3.0.2 Bivariate Distribution

Given a pair of discrete random variable X and Y, define the joint mass distribution by $f_{x,Y}(X=x,Y=y) = \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=xandY=y)$.

Definition 3.1. In the continuous case, we call a function f(x,y) a probability density function, if

- 1. $f(x,y) \ge 0$ for all x,y.
- 2. $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$
- 3. for any set $A \subset \mathbb{R} \times \mathbb{R}$, $\mathbb{P}((X,Y) \in A) = \int \int_A f(x,y) dx dy$.

The cumulative distribution function of joint (X, Y) is given by $F_{X,Y}(X, Y) = \mathbb{P}(X \leq x, Y \leq y)$.

Definition 3.2. If random variable X and Y have joint probability density function $f_{X,Y}(x,y)$, then the marginal distribution function is given by $f_X(x) = \int f_{X,Y}(x,y) dy$.

Definition 3.3. Random variables X and Y are independent, if for every A and B, $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$.

Theorem 3.1. Random variables X and Y have joint p.d.f $f_{X,Y}$, then X and Y are independent if and only if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all x and y.

Definition 3.4. If $f_Y(y) > 0$, then the conditional density function given Y is $f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$.

Definition 3.5. Let $X = (X_1, X_2, ..., X_n)$ where X_i is a random variable. We call X a random vector, its p.d.f. is $f_{X_1,...X_n}(x_1, x_2, ..., x_n)$, and the marginal is $f(x_i) = \sum_{x_1,...x_{i-1},x_{i+1},...x_n} f(x_1,...x_n)$.

Definition 3.6. Let $f(x_1, x_2, ..., x_n)$ be the joint density function of $X_1, X_2, ..., X_n, \pi_1, \pi_2, ..., \pi_n$ is a permutation of $\{1, 2, ..., n\}$. If $f(x_1, x_2, ..., x_n) = f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n})$, then $X_1, ..., X_n$ are exchangeable.

Theorem 3.2. (de Finetti) Let $X_i \subset X$ for all $i \in \{1, 2, ...\}$. Suppose that for any n, $x_1, x_2, ..., x_n$ are exchangeable. Then we have

$$f(x_1, x_2, ...x_n) = \int \pi_{i=1}^n f(x_i|\theta) f(\theta) d\theta$$

for some parameter θ with prior distribution $f(\theta)$.

Theorem 3.3. If $\theta \sim f(\theta)$ and $X_1, X_2, ..., X_n$ are conditionally iid given θ , then marginally $X_1, X_2, ... X_n$ are exchangeable.

3.1 Transformation

Random variable X has pdf f_X and cmf F_X . Let Y = g(X) be a function of X. In the discrete case, the pmf of Y is $f_Y(y) = \mathbb{P}(Y = y) = \mathbb{P}(g(X) = y) = \mathbb{P}(x \in g^{-1}(y))$.

Example 3.1. Suppose
$$\mathbb{P}(X = -1) = \mathbb{P}(X = 1) = \frac{1}{4}$$
 and $\mathbb{P}(X = 0) = \frac{1}{2}$. Let $Y = X^2$. So $\mathbb{P}(Y = 0) = \frac{1}{2}$, $\mathbb{P}(Y = 1) = \frac{1}{2}$.

In the continuous case, the steps to find density of transformation variable is given by:

- 1. For each y, find set $A_y = \{x : g(x) \le y\}$.
- 2. Find CDF, $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(x) \le y) = \mathbb{P}(\{x : g(x) \le y\}) = \int_{A_y} f_X(x) dx$.
- 3. $f_Y(y) = F'_Y(y)$.

If random variable Z = g(X, Y), then the way to find density of Z is given by:

- 1. For each z, find $A_z = \{(x, y) : g(x, y) \le z\}.$
- 2. Find CDF $F_Z(z) = \mathbb{P}(Z \leq z) = \int \int_{A_z} f_{X,Y}(x,y) dx dy$.
- 3. $f_Z(z) = F'_Z(z)$.

Theorem 3.4. Let X have CDF $F_X(x)$ and Y = g(X), and let $\mathcal{X} = \{x : f_X(x) > 0\}$, $\mathcal{Y} = \{y : y = g(x) \text{ for some } x \in X\}$

- 1. if g is a strictly incresing function on \mathcal{X} , $F_Y(g) = F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$.
- 2. if g is a strictly decreasing function on \mathcal{X} and X is a continuous random variable. $F_Y(y) = 1 F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$

Theorem 3.5. Let X have continuous pdf $f_X(x)$, Y = g(X), and g is strictly monotone function, then $f_Y(y) = f_X(g^{-1}(y)) |\frac{d}{dy} g^{-1}(y)|$

Proof. According to two case in theorem 3.4.

- 1. g is a strictly increasing function on \mathcal{X} , then $f_Y(y) = \frac{dF_Y(y)}{dy} = f_X(g^{-1}(y)) \frac{dg^{-1}(y)}{dy}$
- 2. g is a strictly decreasing function on \mathcal{X} , then $f_Y(y) = \frac{dF_Yy}{dy} = -f_X(g^{-1}(y))\frac{dg^{-1}(y)}{dy}$.

So, we can combine them to $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$.

Theorem 3.6. (Probability integral transformation) Let X has a continuous cdf $F_X(x)$, $Y = F_X(x)$. Then Y has uniform distribution on (0,1), i.e. $\mathbb{P}(Y \leq y) = y \ (0 < y < 1)$.

Proof.
$$\mathbb{P}(Y \leq y) = \mathbb{P}(F_X(x) \leq y) = \mathbb{P}(F_X^{-1}(F_X(x)) \leq F_X^{-1}(y)) = \mathbb{P}(x \leq F^{-1}(y)) = F_X(F_X^{-1}(y)) = y.$$