Musterlösungen zur Serie 1: Banachscher Fixpunktsatz

1. Aufgabe (i) Beweisen Sie, dass die Funktion

$$f: [0, \infty[\to [0, \infty[, f(x) = \frac{x + \frac{1}{2}}{x + 1}]]$$

strikt kontraktiv ist, d.h. dass ein $c \in [0, 1]$ existiert, so dass gilt

$$|f(x) - f(y)| \le c|x - y|$$
 für alle $x, y \in [0, \infty[$.

- (ii) Berechnen Sie den Fixpunkt von f.
- (iii) Berechnen Sie (mit dem Taschenrechner) die ersten fünf Glieder der Approximationsfolgen $x_{j+1} = f(x_j), \quad j = 0, 1, \ldots$ des Banachschen Fixpunktsatzes für die Startwerte $x_0 = 0, x_0 = 1$ und $x_0 = 100$.
- (iv) Vergleichen Sie jeweils den Abstand der Approximation x_5 vom Fixpunkt mit seiner a-priori-Abschätzung $\frac{c^5}{1-c}|x_1-x_0|$ und seiner a-posteriori-Abschätzung $\frac{c}{1-c}|x_5-x_4|$.

Lösung (i) Es gilt für $x, y \in [0, \infty)$

$$|f(x) - f(y)| = \left| \frac{x + \frac{1}{2}}{x + 1} - \frac{y + \frac{1}{2}}{y + 1} \right| = \left| \frac{(x + \frac{1}{2})(y + 1) - (x + 1)(y + \frac{1}{2})}{(x + 1)(y + 1)} \right|$$
$$= \frac{1}{2} \left| \frac{x - y}{(x + 1)(y + 1)} \right| \le \frac{1}{2} |x - y|.$$

Also ist f strikt kontraktiv mit der Kontraktionskonstanten $c = \frac{1}{2}$.

(ii) Die Lösung von

$$\frac{x + \frac{1}{2}}{x + 1} = x$$

ist $x = 1/\sqrt{2}$.

(iii) Mit dem Taschenrechner erhalten wir (auf fünf Stellen gerundet) die folgenden Approximationen für den Fixpunkt $1/\sqrt{2} = 0.70711$:

(iv) Wir erhalten mit dem Rechner (auf fünf Stellen gerundet):

$$\begin{array}{llll} x_0 = 0: & |x_5 - 1/\sqrt{2}| = 0.00021023 & \frac{c}{1-c}|x_5 - x_4| = 0.0010142 & \frac{c^5}{1-c}|x_1 - x_0| = 0.031250 \\ x_0 = 1: & |x_5 - 1/\sqrt{2}| = 0.000036076 & \frac{c}{1-c}|x_5 - x_4| = 0.00017422 & \frac{c^5}{1-c}|x_1 - x_0| = 0.015625 \\ x_0 = 100: & |x_5 - 1/\sqrt{2}| = 0.00020734 & \frac{c}{1-c}|x_5 - x_4| = 0.0010020 & \frac{c^5}{1-c}|x_1 - x_0| = 6.1878 \end{array}$$

1

2. Aufgabe Überprüfen Sie, ob die folgenden Abbildungen $f: X \subseteq \mathbb{R}^n \to X$ strikt kontraktiv bzgl. der jeweils angegebenen Metrik ρ sind:

(i)
$$n=1, X=[1,\infty[, \rho(x,y)=|x-y|, f(x)=x+\frac{1}{x}]$$

(ii)
$$n = 2$$
, $X = \mathbb{R}^2$, $\rho((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$, $f(x_1, x_2) = \frac{1}{2}(\sin x_1, \cos x_2)$,

(iii)
$$n = 2$$
, $X = \mathbb{R}^2$, $\rho((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$, $f(x, y) = \frac{1}{2}(x_1 + x_2, x_2)$,

(iv)
$$n = 2$$
, $X = \mathbb{R}^2$, $\rho((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$, $f(x, y) = \frac{1}{2}(x_1 + x_2, x_2)$.

Lösung (i) Wenn f strikt kontraktiv wäre, so müßte, nach dem Banachschen Fixpunktsatz, die Fixpunktgleichung

$$x + \frac{1}{x} = x$$

eine Lösung in $[1, \infty[$ besitzen. Das ist aber offensichtlich nicht der Fall, also ist f nicht strikt kontraktiv.

(ii) Mit Hilfe des Mittelwertsatzes erhalten wir für beliebige $x, y \in \mathbb{R}$ die folgenden Abschätzungen (dabei sind ξ und η gewisse Zahlen zwischen x und y)

$$|\sin x - \sin y| = |(x - y)\cos \xi| \le |x - y|,$$

$$|\cos x - \cos y| = |(x - y)\sin \eta| \le |x - y|.$$

Also gilt

$$\rho(f(x_1, y_1), f(x_2, y_2)) = \left(\left| \frac{1}{2} \sin x_1 - \frac{1}{2} \sin y_1 \right|^2 + \left| \frac{1}{2} \cos x_2 - \frac{1}{2} \cos y_2 \right|^2 \right)^{1/2} \\
\leq \frac{1}{2} \left(|x_1 - y_1|^2 + |x_2 - y_2|^2 \right)^{1/2} \\
= \frac{1}{2} \rho((x_1, x_2), (y_1, y_2)).$$

Dies zeigt, dass f strikt kontraktiv mit der Kontraktionskonstanten c = 1/2 ist.

(iii) und (iv) Es gilt

$$f(x_1, x_2) - f(y_1, y_2) = f(x_1 - x_2, y_1 - y_2) = \frac{1}{2}(x_1 - y_1 + x_2 - y_2, x_2 - y_2).$$

Im Fall (iii) der Euklidischen Metrik folgt also

$$\rho(f(x_1, y_1), f(x_2, y_2)) = \frac{1}{2} (|x_1 - y_1 + x_2 - y_2|^2 + |x_2 - y_2|^2)^{1/2}
\leq \frac{1}{2} (|x_1 - y_1|^2 + 2|x_1 - y_1||x_2 - y_2| + 2|x_2 - y_2|^2)^{1/2}
\leq \frac{1}{2} (2|x_1 - y_1|^2 + 3|x_2 - y_2|^2)^{1/2}
\leq \frac{\sqrt{3}}{2} \rho((x_1, x_2), (y_1, y_2)),$$

d.h. f ist strikt kontractiv.

Im Fall (iv) der Maximum-Metrik ist f nicht strikt kontractiv, weil z.B.

$$\rho(f(1,1),f(0,0)) = \max\{1,0\} = 1 = \rho((1,1),(0,0)).$$

*Aufgabe Es sei $M \subseteq \mathbb{R}$ nichtleer sowie offen und abgeschlossen bzgl. der Standard-Metrik in \mathbb{R} . Beweisen Sie, dass dann $M = \mathbb{R}$ gilt.

Lösung Wir nehmen das Gegenteil an, d.h. dass ein $x \in \mathbb{R} \setminus M$ existiert. Wegen $M \neq \emptyset$ existiert ferner ein $y \in M$. Es sei z.B. x > y. Dann ist x eine obere Schranke der Menge

$$N := \{ z \in \mathbb{R} : [y, z] \subseteq M \}.$$

Folglich existiert

$$s := \sup N$$

als reelle Zahl. Für alle $n \in \mathbb{N}$ ist s-1/n nicht obere Schranke von N, folglich exisiert für jedes $n \in \mathbb{N}$ ein $z_n \in N$ mit

$$s - \frac{1}{n} < z_n \le s,$$

also mit $z_n \to s$. Wegen $N \subseteq M$ gilt $z_n \in M$, und weil M abgeschlossen ist, folgt $s \in M$. Weil M offen ist, existiert ein r > 0 mit

$$[s-r, s+r] \subseteq M$$
.

Wegen $z_n \in N$ gilt außerdem

$$[y, z_n] \subseteq M$$
.

Wegen $z_n \to s$ folgt daraus

$$[y,s+r]\subseteq M,$$

d.h. $s+r \in N$. Das widerspricht aber der Eigenschaft, dass s obere Schranke von N ist.