Tutorial 1: Kinematics of a 3-DOF Robot

Figure 1: The 3-dof parallel robot photo and diagram

A 3-degree-of-freedom parallel robot is illustrated in Fig.1. S_L and S_R are the left and right shoulder coordinate vectors, respectively, E_L and E_R the left and right elbow coordinate vectors, W and W are the wrist and hand coordinate vectors, respectively. Let W and W be the lengths of the upper arm, forearm and hand, respectively. W is the hand's orientation. We place a coordinate origin at the left shoulder, and let W be the distance between the shoulders.

Q1: Direct kinematics [25%]

Determine the direct kinematics transformation of the robot. Compute the position of H as a function of the two motors angles q_L, q_R , the angle θ , and the parameters a, b, c, d. Hint: The wrist W is on the perpendicular to $E_L - E_R$ through the midpoint C of the elbows E_L and E_R .

Q2: Redundancy resolution

If d = 0 m, a = b = 0.3 m and c = 0.2 m then the kinematics is simplified to this of a 3-link mechanism as studied in the lectures. In this case:

a) Jacobian [25%]

Plot the robot with d=0 m, and calculate the Jacobian matrix relating the joint velocities \dot{q}_L , \dot{q}_R , $\dot{\theta}$ and the hand velocity $\dot{H}=[\dot{x}_1,\dot{x}_2]^T$.

b) Movement integration [25%]

Use Matlab or Python to program a straight hand movement with duration T=2s from position $[0.141,0.441]^Tm$ to position $[0.241,0.641]^Tm$ with velocity profile $\sigma(\tau)=30\tau^2(\tau^2-2\tau+1), \tau=t/T$, where $t\in[0,T]$. Provide plots of the hand velocity $\sigma(\tau(t))$, hand position profile $\int_0^t \sigma(\tau(t')) dt'$ and hand trajectory $H(t)=[x_1(t),x_2(t)]^T$.

c) Movement integration [25%]

Plot the profiles of $q_L(t)$, $q_R(t)$, $\theta(t)$, against time, of the trajectory minimising the joint velocity norm $\sqrt{\dot{q_L}^2 + \dot{q_R}^2 + \dot{\theta}^2}$. For the starting configuration, use $q_L = 150^\circ$, $q_R = 30^\circ$, and $\theta = 45^\circ$.