Data Cleaning

Imports

```
In []: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  from imblearn.under_sampling import RandomUnderSampler
  from sklearn.preprocessing import StandardScaler
```

Loading Original Data

```
In []: df = pd.read_csv('weatherAUS.csv')
    df.head()

Out[]: Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir Wind
```

ut[]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	Winc
	0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	
	1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	
	2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	
	3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	
	4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	

5 rows × 23 columns

Binary Encoding of RainToday/Tomorrow

```
In []: # One Hot Encoding

# Update RainToday column
    raintoday = pd.get_dummies(df['RainToday'])
    df['RainToday'] = raintoday['Yes']

# Update RainTomorrow column
    raintomorrow = pd.get_dummies(df['RainTomorrow'])
    df['RainTomorrow'] = raintomorrow['Yes']
df.head()
```

Out[]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	Winc
	0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	
	1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	
	2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	
	3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	
	4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	

5 rows × 23 columns

Remove NaNs

```
In [ ]: # Remove columns with over 1/3 NaNs
    df.drop(['Evaporation', 'Sunshine', 'Rainfall', 'Cloud9am', 'Cloud3pm', 'Loc
    df.head()
```

Out[]:		Date	MinTemp	MaxTemp	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm	Wi	
	0	2008- 12-01	13.4	22.9	W	44.0	W	WNW		
	1	2008- 12-02	7.4	25.1	WNW	44.0	NNW	WSW		
	2	2008- 12-03	12.9	25.7	WSW	46.0	W	WSW		
	3	2008- 12-04	9.2	28.0	NE	24.0	SE	Е		
	4	2008- 12-05	17.5	32.3	W	41.0	ENE	NW		
In []:	<pre># Drop NaN values df.dropna(inplace = True)</pre>									
	df	head(
Out[]:		Date	MinTemp	MaxTemp	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm	Wi	
	0	2008- 12-01	13.4	22.9	W	44.0	W	WNW		
	1	2008- 12-02	7.4	25.1	WNW	44.0	NNW	WSW		
	2	2008-	12.9	25.7	WSW	46.0	W	WSW		

WSW

NE

W

46.0

24.0

41.0

WSW

Е

NW

W

SE

ENE

Encode Remaining Categorical Variables

25.7

28.0

32.3

12.9

9.2

17.5

12-03

2008-

12-04

2008-

12-05

```
In []: # Update Date Column

df['year'] = pd.DatetimeIndex(df['Date']).year
    df['month'] = pd.DatetimeIndex(df['Date']).month
    df['day'] = pd.DatetimeIndex(df['Date']).day
    df.drop(['Date'], axis = 1, inplace = True)
    df.head()
```

```
Out [ ]: MinTemp MaxTemp WindGustDir WindGustSpeed WindDir9am WindDir3pm WindSpeed
        0
               13.4
                        22.9
                                      W
                                                   44.0
                                                                W
                                                                          WNW
         1
                7.4
                         25.1
                                   WNW
                                                   44.0
                                                              NNW
                                                                          WSW
        2
               12.9
                        25.7
                                    WSW
                                                   46.0
                                                                W
                                                                          WSW
        3
                9.2
                        28.0
                                      NE
                                                   24.0
                                                                            Ε
                                                                SE
        4
               17.5
                        32.3
                                      W
                                                   41.0
                                                               ENE
                                                                           NW
In [ ]:
        df.WindGustDir.value_counts().sort_values(ascending=False)
                8542
        W
Out[]:
        SE
                8215
                7995
        Ε
        SSE
                7925
                7912
        S
        N
                7896
        WSW
                7821
        SW
                7773
        SSW
                7522
        WNW
                6982
        ENE
                6904
        NW
                6553
        ESE
                6315
        NE
                6148
        NNE
                5604
        NNW
                5308
        Name: WindGustDir, dtype: int64
In [ ]: def encoding_N(row):
             if 'N' in row[column]:
                 return 1
             else:
                return 0
         def encoding_E(row):
             if 'E' in row[column]:
                 return 1
             else:
                 return 0
         def encoding_S(row):
             if 'S' in row[column]:
                 return 1
             else:
                return 0
        def encoding_W(row):
             if 'W' in row[column]:
                 return 1
             else:
                 return 0
```

```
In []: update_columns = ['WindGustDir', 'WindDir9am', 'WindDir3pm']

for column in update_columns:
    df[column+'N'] = df.apply(lambda row: encoding_N(row), axis=1)
    df[column+'E'] = df.apply(lambda row: encoding_E(row), axis=1)
    df[column+'S'] = df.apply(lambda row: encoding_S(row), axis=1)
    df[column+'W'] = df.apply(lambda row: encoding_W(row), axis=1)

df.drop(update_columns, axis = 1, inplace = True)
```

In []: df.head()

Out[]:		MinTemp	MaxTemp	WindGustSpeed	WindSpeed9am	WindSpeed3pm	Humidity9am	Hu
	0	13.4	22.9	44.0	20.0	24.0	71.0	
	1	7.4	25.1	44.0	4.0	22.0	44.0	
	2	12.9	25.7	46.0	19.0	26.0	38.0	
	3	9.2	28.0	24.0	11.0	9.0	45.0	
	4	17.5	32.3	41.0	7.0	20.0	82.0	

5 rows × 28 columns

Data Exploration

Initial Descriptions

```
In [ ]: df.describe()
```

	MinTemp	MaxTemp	WindGustSpeed	WindSpeed9am	WindSpeed3pm	Hu
count	115415.000000	115415.000000	115415.000000	115415.000000	115415.000000	1154
mean	12.672407	23.644513	40.828081	15.216688	19.516371	
std	6.238970	6.971647	13.338630	8.362088	8.586030	
min	-8.200000	2.600000	7.000000	2.000000	2.000000	
25%	8.100000	18.300000	31.000000	9.000000	13.000000	
50%	12.400000	23.100000	39.000000	13.000000	19.000000	
75%	17.200000	28.700000	48.000000	20.000000	24.000000	
max	33.900000	48.100000	135.000000	87.000000	87.000000	1

8 rows × 28 columns

Out[]:

Correlation Matrix

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb552977910>


```
In [ ]: correlate = df.corr()
   correlate
```

	MinTemp	MaxTemp	WindGustSpeed	WindSpeed9am	WindSpeed3pm	Н
MinTemp	1.000000	0.728610	0.159282	0.150052	0.145654	
MaxTemp	0.728610	1.000000	0.056850	-0.005989	0.013626	
WindGustSpeed	0.159282	0.056850	1.000000	0.590132	0.678569	
WindSpeed9am	0.150052	-0.005989	0.590132	1.000000	0.498255	
WindSpeed3pm	0.145654	0.013626	0.678569	0.498255	1.000000	
Humidity9am	-0.217067	-0.515588	-0.183934	-0.222205	-0.093797	
Humidity3pm	0.026907	-0.497169	-0.021263	-0.018744	0.052981	
Pressure9am	-0.433600	-0.312804	-0.446087	-0.202463	-0.285172	
Pressure3pm	-0.448056	-0.411641	-0.400743	-0.151562	-0.245085	
Temp9am	0.898502	0.884949	0.124632	0.089087	0.126241	
Temp3pm	0.703989	0.984276	0.018299	-0.019171	-0.011790	
RainToday	0.043948	-0.240498	0.152262	0.097250	0.086494	
RainTomorrow	0.077364	-0.167040	0.234628	0.091620	0.095698	
year	0.045828	0.062946	-0.027563	-0.014091	-0.027539	
month	-0.211504	-0.171276	0.051801	0.042637	0.057476	
day	0.001575	-0.001384	-0.008812	-0.006671	-0.009200	
WindGustDirN	-0.006184	0.058115	0.003732	-0.039966	0.004605	
WindGustDirE	0.236121	0.239784	-0.167436	-0.022673	-0.092648	
WindGustDirS	0.011241	-0.064723	-0.021431	0.028567	0.001690	
WindGustDirW	-0.208689	-0.203830	0.140730	-0.021348	0.071292	
WindDir9amN	-0.082341	0.017123	0.094629	-0.021269	0.034362	
WindDir9amE	0.150988	0.294265	-0.125451	-0.033222	-0.133435	
WindDir9amS	0.090011	-0.025456	-0.086797	0.010572	-0.011101	
WindDir9amW	-0.145901	-0.283775	0.062170	-0.020491	0.069909	
WindDir3pmN	0.020486	0.101639	0.024387	-0.064041	-0.001086	36
WindDir3pmE	0.232103	0.175630	-0.157909	-0.023885	-0.074840	
WindDir3pmS	-0.019005	-0.102426	-0.033484	0.063355	-0.004145	
WindDir3pmW	-0.197892	-0.138989	0.144229	-0.014892	0.064907	

28 rows × 28 columns

Out[]:

```
In []: correlated_features = set()

for i in range(len(correlate.columns)):
    for j in range(i):
        if abs(correlate.iloc[i, j]) > 0.85:
            colname = correlate.columns[i]
            correlated_features.add(colname)

df.drop(labels=correlated_features, axis=1, inplace=True)
```

In []:	<pre>df.head()</pre>
---------	----------------------

Out[]:		MinTemp	MaxTemp	WindGustSpeed	WindSpeed9am	WindSpeed3pm	Humidity9am	Hu
	0	13.4	22.9	44.0	20.0	24.0	71.0	
	1	7.4	25.1	44.0	4.0	22.0	44.0	
	2	12.9	25.7	46.0	19.0	26.0	38.0	
	3	9.2	28.0	24.0	11.0	9.0	45.0	
	4	17.5	32.3	41.0	7.0	20.0	82.0	

5 rows × 25 columns

Balancing Our Data

Undersampling

```
In []: # Barplot to display original balance of data

sum_yes = df['RainTomorrow'].sum()
sum_no = len(df) - sum_yes

x_labels = ['Yes', 'No']
y_labels = [sum_yes, sum_no]

plt.bar(x_labels, y_labels)
plt.xlabel('Rain Tomorrow Classification')
plt.ylabel('Count')
plt.title('Dataset Balance')
Out[]: Text(0.5, 1.0, 'Dataset Balance')
```



```
In []: # Undersampling
X = df.drop("RainTomorrow", axis=1)
y = df["RainTomorrow"]
RUS = RandomUnderSampler(random_state=42)
X_und, y_und = RUS.fit_sample(X, y)
```

```
In []: # Barplot of data after undersampling

sum_yes = y_und.sum()
sum_no = len(y_und) - sum_yes

x_labels = ['Yes', 'No']
y_labels = [sum_yes, sum_no]

plt.bar(x_labels, y_labels)
plt.xlabel('Rain Tomorrow Classification')
plt.ylabel('Count')
plt.title('Dataset Balance')
```

Out[]: Text(0.5, 1.0, 'Dataset Balance')

Standardize Data

```
In []: scaler = StandardScaler()
    scaler.fit(X_und)
    standardized_X = scaler.transform(features)
```

Download the New Dataset

```
In []: # Download
    standardized_X.to_csv("cleaned_rain_x.csv")
    y_und.to_csv("cleaned_rain_y.csv")
```