

Deploy Gemma2 with multiple LoRA adapters with TGI DLC on GKE

Hieu Ngo, Senior Al Engineer @ MoMo

Gemma 2

Gemma 2 is a open-source LLM offers

best-in-class performance, runs at incredible speed across different hardware and easily integrates with other Al tools.

Gemma 2

	BENCHMARK	METRIC	Gemma 2		Llama 3		Grok-1
			9B	27B	8B	70B	314B
General	MMLU	5-shot, top-1	71.3	75.2	66.6	79.5	73.0
Reasoning	ввн	3-shot, CoT	68.2	74.9	61.1	81.3	
	HellaSwag	10-shot	81.9	86.4	82		-
Math	GSM8K	5-shot, maj@1	68.6	74.0	45.7		62.9 (8-shot)
	MATH	4-shot	36.6	42.3			23.9
Code	HumanEval	pass@1	40.2	51.8			63.2 (0-shot)

LoRA (Low-Rank Adaptation)

- Technique to fine-tune models.
- The core idea is to train to specific tasks without needing to retrain the entire model, but only a small set of parameters called adapters.

Text Generation Inference (TGI)

Text Generation Inference

Fast optimized inference for LLMs

Technical Lead & LLMs at Hugging Face...

X

3x more tokens and 13x faster generations than vLLM?

• Hugging Face TGI 3.0 released! FTGI 3.0 dramatically improves LLM inference processing by 3x more input tokens, running 13x faster than vLLM on long prompts while requiring zero configuration!

TL:DR:

Processes 3x more tokens than vLLM (30k vs 10k tokens on L4 GPU for Ilama 3.1-8B)

Achieves 13x faster processing on long prompts (200k+ tokens) through conversation caching

Significantly reduced memory & Zero configuration needed for models

New kernels (flash-infer, flash-decoding), optimized prefix caching, and improved VRAM efficiency

Soon available on AWS, Google Cloud, and Dell **Enterprise Hub**

Future: special models, KV-cache retention, and multimodal models

Learn more: https://lnkd.in/e8eNnJ7E

3x more tokens and 13x faster with TGI

Motivation

Independence - For each task that your organization cares about, different teams can work on different fine tunes

Performance -

evidence that smaller, specialized models outperform their larger, general-purpose model.

<u>Predibase</u> showed better performance than GPT-4 using task-specific LoRAs with a base like mistralai/Mistral-7B-v0.1.

Privacy - Specialized models offer flexibility with training data segregation and access restrictions to different users based on data privacy requirements. Additionally, in cases where running models locally is important, a small model can be made highly capable for a specific task while keeping its size small enough to run on device.

When to fine-tune

So, where is the catch?

Deploying and serving Large Language Models (LLMs) **is challenging** in many ways. **Cost and operational** complexity are key considerations when deploying a single model, let alone n models. This means that, for all its glory, fine-tuning complicates LLM deployment and serving even further.

That is why today I am super excited to introduce **TGI's feature - Multi-LoRA serving**.

Inference LORA

Multi-LoRA Serving

Multi-LoRA Serving

LoRAs (the adapter weights) can vary based on rank and quantization, but they are generally quite tiny.

Example:

predibase/magicoder is 13.6MB, which is less than 1/1000th the size of mistralai/Mistral-7B-v0.1, which is 14.48GB.

In relative terms, loading **30 adapters into RAM** results in only a **3% increase** in **VRAM**. Ultimately, this is not an issue for most deployments. Hence, we can have one deployment for many models.

Deep Learning Container

TGI DLC

Choose a container image type

Base versions

TensorFlow versions

PyTorch versions

Hugging Face container images

Model Garden container images

Experimental image families

Google Kubernetes Engine (GKE)

GKE, short for Google Kubernetes Engine, is a **managed Kubernetes** service provided by Google Cloud. It allows you to deploy, manage, and scale containerized applications using Kubernetes, an open-source container orchestration platform. With GKE, **Google handles much of the underlying infrastructure,** such as **provisioning, maintaining, and upgrading Kubernetes clusters,** so you can **focus on developing and running your applications.**

Create GKE Cluster

```
gcloud container clusters create-auto $CLUSTER_NAME \
   --project=$PROJECT_ID \
   --location=$LOCATION \
   --release-channel=stable \
   --cluster-version=1.29 \
   --no-autoprovisioning-enable-insecure-kubelet-readonly-port
```


Deploy TGI

kubectl apply -f Google-Cloud-Containers/examples/gke/tgi-multi-lora-deployment/config

```
containers:
- name: tgi-container
   image: us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311
  resources:
    requests:
      nvidia.com/gpu: 1
  env:
    - name: MODEL ID
      value: google/gemma-2-2b-it
    - name: LORA ADAPTERS
      value: google-cloud-partnership/gemma-2-2b-it-lora-magicoder,google-cloud-partnership/gemma-2-2b-it-lora-sql,google-cloud-partnership/gemma-2
    - name: NUM_SHARD
      value: "1"
    - name: PORT
      value: "8080"
    - name: HUGGING FACE HUB TOKEN
```


Deploy TGI

Deploy TGI

Demo and Q&A

References

- Deploy Gemma2 with multiple LoRA adapters with TGI DLC on GKE.
- TGI Multi-LoRA: Deploy Once, Serve 30 models
- LoRA Land: Fine-Tuned Open-Source LLMs that Outperform GPT-4

Thank you!