BUSINESS CASE: TARGET SQL

Srinivas Bhairi
Batch: DSML'24

- 1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
 - 1.Data type of all columns in the "customers" table.

```
SELECT column_name,data_type
FROM `scaler-dsml-sql-444310.Target.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers'
```

column_name	data_type	
customer_id	STRING	
customer_unique_id	STRING	
customer_zip_code_prefix	INT64	
customer_city	STRING	
customer_state	STRING	

In-sights:

Data Understanding: Helps in understanding the structure of the customers table.

Schema Validation: Useful when writing queries to ensure correct data types are used.

Debugging: If queries fail due to type mismatches, this helps check the expected data type.

Data Transformation: Knowing data types helps in performing correct aggregations and conversions.

2.Get the time range between which the orders were placed.

lowest_purchase_timestamp	highest_purchase_timestamp
2016-09-04 21:15:19.000000 UTC	2018-10-17 17:30:18.000000 UTC

<u>In-sight:</u>

Understanding Order Timeline: Helps determine the date range of available order data.

3. Count the Cities & States of customers who ordered during the given period.

In-sights:

4119

- Customer Reach: The number of cities and states where orders were placed helps understand the geographic spread of customers.
- Market Penetration: If the number of unique states is low, there might be potential markets to expand into.
- Regional Popularity: If a large number of cities contribute to the orders, the business has a diverse customer base.

2.In-depth Exploration:

1.Is there a growing trend in the no. of orders placed over the past years?

```
WITH yearly_orders AS (

SELECT

EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year,

COUNT(order_id) AS total_orders

FROM `Target.orders`

GROUP BY order_year
)

SELECT

order_year,

total_orders,

LAG(total_orders) OVER (ORDER BY order_year) AS prev_year_orders,

ROUND(((total_orders - LAG(total_orders) OVER (ORDER BY order_year)) /

LAG(total_orders) OVER (ORDER BY order_year)) * 100, 2) AS growth_percentage
FROM yearly_orders

order by order_year
```

order_year	total_orders	prev_year_orders	growth_percentage
2016	329	null	null
2017	45101	329	13,608.51
2018	54011	45101	19.76

Identifying Growth Trends

- A positive growth percentage indicates increasing order volume year-over-year, which suggests strong customer demand & business expansion.
- A negative growth percentage signals a decline, potentially due to market competition, pricing strategies, or operational issues.

2.Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
SELECT
    FORMAT_DATE("%B",order_purchase_timestamp) AS order_month,
    COUNT(order_id) AS total_orders
FROM `Target.orders`
GROUP BY order_month
order by total_orders
```

order_month	total_orders
September	4305
October	4959
December	5674
November	7544
January	8069
February	8508
April	9343
June	9412
March	9893
July	10318
May	10573
August	10843

Seasonality Trends:

- If certain months (e.g., May,August) have significantly higher orders, it might indicate seasonal demand, possibly due to holidays, Independence day sales.
- Conversely, months with lower order counts might indicate off-peak periods where fewer customers are purchasing.

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn

o 7-12 hrs: Mornings

13-18 hrs : Afternoon

19-23 hrs : Night

```
WITH final AS (
    SELECT
        CASE
            WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN
'Dawn'
            WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN
'Morning'
            WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN
'Afternoon'
            WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 23 THEN
'Night'
        END AS day_time,
        COUNT(order_id) AS no_of_orders
    FROM `Target.orders`
    GROUP BY day_time
)
SELECT day_time,
       no_of_orders
FROM final
ORDER BY no_of_orders DESC
LIMIT 1;
```

day_time	most_orders
Afternoon	38135

Peak Order Time

- The result will show which time period has the highest order volume.
- If Afternoon or Night has the most orders, it suggests customers are more active during these periods.
- If Morning leads, it may indicate business-related orders, possibly from B2B clients.

3. Evolution of E-commerce orders in the Brazil region:

1.Get the month on month no. of orders placed in each state.

customer_state	order_month	no_of_orders
AC	1	8
AC	2	6
AC	3	4
AC	4	9
AC	5	10
AC	6	7
AC	7	9
AC	8	7
AC	9	5
AC	10	6
AC	11	5
AC	12	5
AL	1	39
AL	2	39
AL	3	40
AL	4	51
AL	5	46
AL	6	34

AL	7	40
AL	8	34
AL	9	20
AL	10	30
AL	11	26
AL	12	14

Seasonal Demand Patterns:

- Some states may see higher order volumes in specific months (e.g., holiday seasons or festivals).
- If orders peak in November/December, it could be due to holiday shopping trends.
- If orders drop in certain months, the company can plan promotions to boost sales.

2. How are the customers distributed across all the states?

customer_state	no_of_customers
AC	81
AL	413
AM	148
AP	68
ВА	3380
CE	1336
DF	2140
ES	2033
GO	2020
MA	747
MG	11635
MS	715
MT	907
PA	975
РВ	536
PE	1652
PI	495

5045
12852
485
253
46
5466
3637
350
41746
280

Identifying Key Market Regions

- States with the highest number of customers are high-priority markets for sales and marketing efforts.
- These states might need more warehouse locations to optimize shipping efficiency.
- States with a low number of customers indicate untapped markets.
- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 1.Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
ROUND(((total_value - LAG(total_value) OVER (ORDER BY order_year))/
LAG(total_value) OVER (ORDER BY order_year)) * 100, 2) as percentage_growth
from final
order by order_year
```

order_year	total_value	prev_value	percentage_growth
2017	3,669,022.12	null	null
2018	8,694,733.84	3,669,022.12	136.98

If 2018 has higher revenue, it means the company scaled up successfully. If revenue dropped in 2018, potential reasons could include:

- Market saturation
- Increased competition
- Operational inefficiencies
- Customer retention issues

•

2. Calculate the Total & Average value of order price for each state.

AL 411 80,314.81 AM 147 22,356.84 AP 68 13,474.30 BA 3358 511,349.99 CE 1327 227,254.71 DF 2125 302,603.94 ES 2025 275,037.31 GO 2007 294,591.95 MA 740 119,648.22	
AM 147 22,356.84 AP 68 13,474.30 BA 3358 511,349.99 CE 1327 227,254.71 DF 2125 302,603.94 ES 2025 275,037.31 GO 2007 294,591.95 MA 740 119,648.22	197.32
AP 68 13,474.30 BA 3358 511,349.99 CE 1327 227,254.71 DF 2125 302,603.94 ES 2025 275,037.31 GO 2007 294,591.95 MA 740 119,648.22	195.41
BA 3358 511,349.99 CE 1327 227,254.71 DF 2125 302,603.94 ES 2025 275,037.31 GO 2007 294,591.95 MA 740 119,648.22	152.09
CE 1327 227,254.71 DF 2125 302,603.94 ES 2025 275,037.31 GO 2007 294,591.95 MA 740 119,648.22	198.15
DF 2125 302,603.94 ES 2025 275,037.31 GO 2007 294,591.95 MA 740 119,648.22	152.28
ES 2025 275,037.31 GO 2007 294,591.95 MA 740 119,648.22	171.25
GO 2007 294,591.95 MA 740 119,648.22	142.4
MA 740 119,648.22	135.82
	146.78
MG 11544 1,585,308.03	161.69
	137.33
MS 709 116,812.64	164.76
MT 903 156,453.53	173.26
PA 970 178,947.81	184.48
PB 532 115,268.08	216.67
PE 1648 262,788.03	159.46
PI 493 86,914.08	176.3
PR 4998 683,083.76	136.67
RJ 12762 1,824,092.67	142.93
RN 482 83,034.98	172.27
RO 247 46,140.64	186.8
RR 46 7,829.43	170.21
RS 5432 750,304.02	138.13
SC 3612 520,553.34	144.12
SE 345 58,920.85	170.79
SP 41375 5,202,955.05	125.75
TO 279 49,621.74	177.86

<u>In-sights :</u>

- 1. Identify High-Value States for Focused Marketing
- 2. Improve Performance in Low-Revenue States

Improvement:

 If the order_items table has product categories, analyzing which categories drive high avg order value can be helpful.

3. Calculate the Total & Average value of order freight for each state.

state	no_of_orders	Total_freight_value	avg_order_price
AC	81	3,686.75	45.52
AL	411	15,914.59	38.72
AM	147	5,478.89	37.27
AP	68	2,788.50	41.01
BA	3358	100,156.68	29.83
CE	1327	48,351.59	36.44
DF	2125	50,625.50	23.82
ES	2025	49,764.60	24.58
GO	2007	53,114.98	26.46
MA	740	31,523.77	42.6
MG	11544	270,853.46	23.46
MS	709	19,144.03	27
MT	903	29,715.43	32.91
PA	970	38,699.30	39.9
PB	532	25,719.73	48.35
PE	1648	59,449.66	36.07
PI	493	21,218.20	43.04
PR	4998	117,851.68	23.58
RJ	12762	305,589.31	23.95

RN	482	18,860.10	39.13
RO	247	11,417.38	46.22
RR	46	2,235.19	48.59
RS	5432	135,522.74	24.95
SC	3612	89,660.26	24.82
SE	345	14,111.47	40.9
SP	41375	718,723.07	17.37
ТО	279	11,732.68	42.05

Freight Costs Vary Across States:

- States with higher total freight costs indicate:
 - A larger number of orders
 - Higher shipping costs due to distance, logistics challenges, or fewer fulfillment centers

5. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_delivered_customer_date order_estimated_delivery_date

order_id	delivery_time	diff_estimated_delivery
1950d777989f6a877539f53795b4c3c3	30	12
2c45c33d2f9cb8ff8b1c86cc28c11c30	30	-28
65d1e226dfaeb8cdc42f665422522d14	35	-16
635c894d068ac37e6e03dc54eccb6189	30	-1
3b97562c3aee8bdedcb5c2e45a50d5e1	32	0
68f47f50f04c4cb6774570cfde3a9aa7	29	-1
276e9ec344d3bf029ff83a161c6b3ce9	43	4
54e1a3c2b97fb0809da548a59f64c813	40	4
fd04fa4105ee8045f6a0139ca5b49f27	37	1
302bb8109d097a9fc6e9cefc5917d1f3	33	5
66057d37308e787052a32828cd007e58	38	6

1.Actual Delivery Time

- date_diff(order_delivered_customer_date, order_purchase_timestamp, day)
- Measures the total days taken for delivery after order placement.

2. Delivery Speed vs. Estimated Date

- date_diff(order_delivered_customer_date, order_estimated_delivery_date, day)
- Positive values → Delivered late (past the estimated date)
- Negative values → Delivered early (faster than expected)
- Zero value → Delivered on the estimated date

3. Improve Delivery Time Predictions

4. Recognize Fast Deliveries

2. Find out the top 5 states with the highest & lowest average freight value.

```
GROUP BY c.customer_state
),
highest AS (
    SELECT state, avg_freight_value,
           ROW_NUMBER() OVER (ORDER BY avg_freight_value DESC) AS ranking
   FROM final
   LIMIT 5
),
lowest AS (
    SELECT state, avg_freight_value,
           ROW_NUMBER() OVER (ORDER BY avg_freight_value ASC) AS ranking
   FROM final
   LIMIT 5
)
SELECT state, avg_freight_value, ranking, 'Highest' AS type
FROM highest
UNION ALL
SELECT state, avg_freight_value, ranking, 'Lowest' AS type
FROM lowest
ORDER BY type , ranking
```

state	avg_freight_value	ranking	type
RR	48.59	1	Highest
РВ	48.35	2	Highest
RO	46.22	3	Highest
AC	45.52	4	Highest
PI	43.04	5	Highest
SP	17.37	1	Lowest
MG	23.46	2	Lowest
PR	23.58	3	Lowest
DF	23.82	4	Lowest
RJ	23.95	5	Lowest

1. Highest Freight Cost States

- These states have high shipping costs per order.
- Possible reasons:
 - Distant locations from warehouses.
 - Higher demand for express delivery.
 - Limited logistics options leading to higher costs.

2. Lowest Freight Cost States

- These states have low shipping charges per order.
- Possible reasons:
 - Closer proximity to sellers and warehouses.
 - Efficient logistics network.
 - Higher volume of orders, reducing per-order shipping cost.

3. Find out the top 5 states with the highest & lowest average delivery time.

```
WITH final AS (
    SELECT
        c.customer_state AS state,
        SUM(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,
DAY)) AS total_delivery_time_days,
        COUNT(DISTINCT o.order_id) AS no_of_orders
    FROM `Target.customers` c
    INNER JOIN `Target.orders` o ON c.customer_id = o.customer_id
    GROUP BY c.customer_state
),
average_data as(
SELECT
    ROUND(total_delivery_time_days / no_of_orders, 2) AS avg_delivery_time
FROM final
ORDER BY avg_delivery_time
)
(select state,
       avg_delivery_time,
       row_number()over(order by avg_delivery_time desc) as ranking,
       "Highest" as type
from average_data
limit 5)
```

state	avg_delivery_time	ranking	type
SP	8.05	1	lowest
PR	11.25	2	lowest
MG	11.27	3	lowest
DF	12.16	4	lowest
sc	14.12	5	lowest
AP	26.34	1	Highest
RR	25.83	2	Highest
AM	25.46	3	Highest
AL	23.11	4	Highest
PA	22.62	5	Highest

1. Fastest Delivery States

- These states have the shortest average delivery times.
- Possible reasons:
 - o Efficient local logistics and faster shipping routes.
 - o Proximity to warehouses or distribution centers.
 - $\circ \quad \text{Higher order volumes, leading to optimized delivery schedules}.$

2. Slowest Delivery States

- These states have the longest average delivery times.
- Possible reasons:
 - $\circ \qquad \text{Remote locations with fewer transport options.}$
 - Poor infrastructure, leading to delivery delays.
 - Unoptimized logistics routes causing inefficiencies.

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
with final as
(select c.customer_state as state,
       count(distinct o.order_id) as no_of_orders,
     sum(date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp,day))
as total_actual_delivery_days,
       sum(date_diff(order_estimated_delivery_date,o.order_purchase_timestamp,day))
as total_estimated_delivery_days
from `Target.orders` o
inner join `Target.customers` c
ON o.customer_id = c.customer_id
group by state),
avg_data as
(select state,
       no_of_orders,
       round(total_actual_delivery_days/no_of_orders,2) as avg_actual_delivery,
       round(total_estimated_delivery_days/no_of_orders,2) as
avg_estimated_delivery
from final
order by 3,4)
select state,
       no_of_orders,
       round(avg_estimated_delivery-avg_actual_delivery,2) as fast_deliveries
from avg_data
order by fast_deliveries desc
limit 5
```

state	no_of_orders	fast_deliveries
AC	81	20.39
RR	46	20.34
RO	253	20.24
AP	68	19.37
AM	148	19.3

1. Top 5 Fastest Delivery States

- These states have a positive "fast_deliveries" value, meaning orders are delivered earlier than the estimated date.
- Possible reasons:
 - o Highly optimized logistics & supply chain.
 - Presence of local warehouses.
 - Strong transportation networks (e.g., highways, airports, courier services).

6. Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

month	no_of_orders	payment_mode
1	6103	credit_card
1	1715	UPI
1	477	voucher
1	118	debit_card
2	1723	UPI
2	6609	credit_card
2	424	voucher
2	82	debit_card
3	7707	credit_card
3	1942	UPI
3	109	debit_card
3	591	voucher
4	572	voucher
4	7301	credit_card

In-sights:

- 1.If a particular payment mode is dominant, it may indicate customer trust in that method.
- 2.Business can offer targeted promotions (e.g., cashback on credit card payments).

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

installments	num_orders
,	49060
2	12389
3	10443
	7088
10	5315
	5234
3	4253
6	3916
7	1623
9	644
12	133
15	74
18	27
1′	23
24	18
20	17
13	16
14	15
17	8
16	5
2′	3

22	1
23	1

Payment Behavior:

- You can identify which installment plans are most popular among customers.
- Helps to understand how many customers prefer to pay in installments rather than upfront.