### Forecasting Coca-Cola Bag Orders Using Social Media

By

Elijah Ampo, Ruohan Zhou, and Yingkun Zhu

Supervisor: Arnab Bose

#### A Capstone Project

Submitted to the University of Chicago in partial fulfillment of the requirements for the degree of

Master of Science in Analytics

Graham School of Continuing Liberal and Professional Studies

| The Capstone Project committee for Elijah Ampo, Ruohan Zhou, and Yingkun Zh<br>Certifies that this is the approved version of the following capstone project report |                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
| EColo Do-                                                                                                                                                           |                           |  |
| Forecasting Coca-Cola Bag                                                                                                                                           | Orders Using Social Media |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
|                                                                                                                                                                     |                           |  |
| Approved by Supe                                                                                                                                                    | ervising Committee:       |  |
|                                                                                                                                                                     |                           |  |
| Arnab Bose                                                                                                                                                          | Dr. Sema Barlas           |  |
|                                                                                                                                                                     |                           |  |

## **Abstract**

Scholle IPN is a global manufacturing company that has experienced variability in their sales forecasts. In this project, we will demonstrate how Scholle IPN can leverage social media data to predict orders from their clients. We will introduce dimension reduction methods to account for the high dimensional nature of social media data. In addition, an ensemble model approach to sales forecasting will be used to generate the best sales forecasting model.

**Keywords**: Time Series, Machine Learning, sARIMA, Regression with ARIMA Errors, XGBoost, Long Short-Term Memory (LSTM), Ensemble, Social Media, Linear Regression.

## **Executive Summary**

Manufacturing companies need to forecast the demand of their products ahead of time, so that raw material preparation, production, and shipping schedule can be arranged accordingly. Failing to predict the future demand can result in waste due to over-producing, business opportunities lose because of under-stocking or unable to deliver in a timely manner, etc. In an era where social media dominates people's life, and data analytics are growing more and more powerful when it comes to drawing insights to enhance business actions, Scholle IPN tasked us to test if Social Media brings any predictive power to forecast the future Coca-Cola bag sales. With this problem stated, we took this task on as a trial to examine whether or not people's discussion and engagement on Social Media has any impact on the consumption of the Coke product in real life.

In order to achieve that, we started with gathering external data from Social Media, and combined with the internal data provided by Scholle IPN. After preliminary exploratory on the data - both internal and external, we built traditional Regression with ARIMA errors models, then more advanced Machine Learning models, namely, XGBoost and LSTM RNN. XGBoost using the differenced social media variables gave the best predictions (lowest sMAPE score) among all the individual models while still has a decent level of interpretability for us to explain the model. Since we obtained the various predicting results from the single predicting models, we also stacked these individual models together and created three ensemble models - mean average, Linear Regression, and Random Forest. Random Forest ensemble model achieved the best outcomes, with the lowest error score. Key findings from this project including the following:

- Social Media contents, specifically, online discussions and engagement level of certain brands and ad campaigns have helped Machine Learning models to forecast the future bag sales.
- Different Social Media variables have different importances when it comes to modeling. For instance, the jobs related conversation online demonstrated higher level of importance than other brands-related conversations in our XGBoost model feature importance.
- Reducing the dimensionality when handling a large number of features improves the
  predictive accuracy; Cross Correlation check, Principal Component Analysis are also
  vital before modeling in our case.
- Ensemble modeling is a great way to bring the individual models together as inputs, and establish a better model with stronger predictive capacity. The output from the ensemble model has been proven to be the best results out of all. We recommend

Scholle IPN to continue monitoring the Social Media conversations, and follow our practice of adding the social media variables to the internal historical sales data. For future work, we also recommend to examine the year-to-year comparison between the forecasting bag sales with the actual bag sales.

## **Table of Contents**

| Introduction                                 | 1  |
|----------------------------------------------|----|
| Problem Statement                            | 1  |
| Research Purpose                             |    |
| Variables and Scope                          |    |
| Background                                   |    |
| Methodology                                  | -  |
| Data                                         |    |
| Exploratory Data Analysis                    |    |
| Modeling Framework                           |    |
| Math and Science notation                    |    |
| Math Examples                                |    |
| Additional R Markdown and bookdown resources |    |
| Findings                                     | 13 |
| Results of descriptive analyses              |    |
| Modeling results                             |    |
| Results of model performance and validation  |    |
| Conclusion                                   | 10 |
| Recommendations                              | 17 |
| Appendix A: The First Appendix               | 18 |
| Appendix B: A Second Appendix, for example   | 19 |
| Deferences                                   | 20 |

# **List of Figures**

| 1 | differenced social media data      | 4  |
|---|------------------------------------|----|
| 2 | Principal Component Analysis       | 5  |
| 3 | Avg. length by supplement and dose | 14 |

## **List of Tables**

| 1 | Social Media Variables with Specified Lags |
|---|--------------------------------------------|
| 2 | Principal Components with Specified Lags   |
| 3 | Average tooth length                       |
| 4 | Summary of ToothGrowth data                |
| 5 | t-test results                             |

### Introduction

Scholle IPN is a global manufacturing company based in Northlake, IL, with products focused primarily in bag-in-box packaging. The company is a pioneer in its industry by implementing a combination of qualitative observations and quantitative analyses in forecasting their products' sales. However, variability in these sales forecasts present challenges for Scholle IPN in raw material preparation, operational efficiency, and asset management.

#### **Problem Statement**

In this project, we will provide a forecasting solution to Scholle IPN using social media data. This project will primarily focus on one of Scholle IPN's main clients, Coca-Cola. Coca-Cola uses Scholle IPN's state-of-the art bags to store beverage products at quick service restaurant (QSR) partners worldwide. Since 2014, Coca-Cola has accounted for 95.68% of Scholle's syrup-related bag order shipments, so inaccurate forecasts of future orders could result in operational inefficiencies. Minimizing these operational inefficiencies is important to maintain Scholle's partnership with Coca-Cola. In order to solve this business problem, we will examine whether we can substantially improve Scholle IPN's Coca-Cola demand forecasts by using social media as the primary variable.

### **Research Purpose**

The purpose of this research is to forecast Coca-Cola bag orders by utilizing social media data. When customer express their opinions in social media, businesses like Scholle IPN can gain valuable insights that can inform business decisions. For example, if a McDonald's promotion is generating discussion posts online, then Scholle IPN can potentially expect an increase in bag orders from Coca-Cola. In order to make these online discussions actionable, we must first take into account additional considerations. First, since social media posts are usually in the form of text, we will explore methods to convert text to numerical data. Second, we will need to explore different ways to reduce the dimension of social media variables to account for its high dimensionality. And finally, we will use these social media variables to forecast Coca-Cola bag orders using an ensemble approach. Below is a list of research objectives for this project:

- Convert text-based social media data to numerical data using natural language processing.
- Reduce the dimension of social media variables using different methods.
- Forecast Coca-Cola bag orders using an ensemble approach.

### Variables and Scope

The scope of this forecasting project will be limited to predicting the future monthly bag orders for Coca-Cola in the United States and Canada. All variables will be aggregated or averaged at the monthly level. The forecasting window for this project will be 18 months for all models to accommodate Scholle's business needs. The main social media variables used to predict Coca-Cola bag orders will be collected from Twitter and Google Trends. For Twitter, we will focus our project on the following variables: tweet text, number of likes, number of retweets, and number of replies. For Google Trends, monthly trend values for selected topics will be extracted at the monthly level. Additional data retrieval rules were applied to ensure that Twitter and Google Trends data are from the United States and Canada (see Appendix A).

## **Background**

1. Social Media Variables For this forecasting project, we will focus on collecting social media data on relevant topics. These relevant topics are Coca-Cola, Pepsi, McDonald's, Taco Bell, and "jobs". Coca-Cola was selected because it is their product's demand that Scholle IPN is interested in forecasting. Pepsi was selected due to its position as the main competitor for Coca-Cola. Meanwhile, McDonald's and Taco Bell were chosen because they are the top quick service restaurant partners for Coca-Cola and Pepsi based on 2018 annual sales revenue. The topic 'jobs' was selected to gather job-related tweets intended to capture economic activity in the United States and Canada. Relationships between social media activity on these topics and the quantity of Coca-Cola bag ordered can be useful information for our forecasting models. Twitter data will be a combination of user-level tweets and company-level tweets, while Google Trend data will be a monthly trend value for our selected terms. User-level tweets are Twitter posts from regular online consumers tweeting about Coca-Cola, Pepsi, McDonald's, Taco Bell, and "jobs." Company-level tweets are Twitter posts by the official Twitter accounts of Coca-Cola, Pepsi, McDonald's, and Taco Bell. Meanwhile, Google Trends is a popularity measure for Coca-Cola and other relevant terms based on their search frequency over time.

2.Sentiment Analysis One method of quantifying text-based social media data for our forecasting models is by implementing sentiment analysis. This is a technique in natural language processing that we will use for each tweet to generate a numerical value signifying whether consumers have a positive or negative outlook on Coca-Cola, Pepsi, McDonald's, Taco Bell, or jobs. We can then average sentiment scores by month for each relevant term, and use this as an additional predictor to forecast Coca-Cola bag orders. For this project, we will only calculate sentiment scores for user-generated tweets because we assume that tweets generated by the official company accounts are all positive. Prior to conducting sentiment analysis, text processing steps must be conducted on tweets. The following steps were conducted on the tweets: *Remove stop words on tweets* Tokenize tweets \*Lemmatize tweets

The R package sentimentR was used to calculate sentiment scores for each tweet. This package takes into account additional information such as valence shifters and deamplifiers resulting in a more accurate sentiment score (see Appendix A). The sentiment scores for each selected term's collective tweets per month will be averaged at the monthly level to generate the monthly average sentiment variable.

3. Stationarity and Defferencing An important step to consider when forecasting is to re-

move trends and seasonality from variables in order to make it stationary. When time series data is stationary displaying a stable mean and stable variance over time, it is less likely to produce spurious relationships and misleading results. Statistical tests (KPSS test) were conducted on each variable to determine its stationarity (see Appendix A). After testing, it was determined that the dependent variable, monthly quantity of Coca-Cola bag orders, was stationary. This means that this variable requires no further transformations. However, the independent variables showed varying results and require additional processing. One way of transforming time series data to become stationary is the method of differencing. Differencing is the method of subtracting the value of the current time step from the value of previous time step(s). This method was applied to all social media variables to ensure that they were all stationary. The visual below demonstrates how the method of differencing is able to remove trends from the monthly total user tweets. The top half of the visual are time plots of the pre-differenced variables, while the bottom are time plots of the differenced variables.

#### include\_graphics(path = "figure/differencing.jpg")



Figure 1: differenced social media data

4.Dimension Reduction When building forecasting models, it is important to be aware of the level of complexity of these models. In this project, we will be collecting Twitter data that allow users to collect over a hundred features for a single tweet (tweet text, user profile data, etc.). Using all of these variables will make our forecasting models highly complex and likely result in poor predictions. Fortunately, the scope of this project limits tweet information to only a tweet's text, number of likes, number of retweets, and number of replies. However, the complexity of this project (relevant topics, social media data type, social media source) still leaves us with 46 total independent variables per observation (see Data section). We will use two main approaches in this project to further reduce our social media variable's dimensions.

#### \*Method A - Principal Component Analysis

The first method we will use to reduce the dimensionality of our social media variables is principal component analysis (PCA). PCA uses an orthogonal transformation of our variables into linearly uncorrelated variables called principal components. The main idea is that the majority of the variance explained will be concentrated on a limited number of principal components. This allows us to discard the principal component variables that provide little additional information. This approach further reduces the overall dimension of our original set of variables. When performing this technique with our social media variables, we are able to observe the "elbow feature" at number of principal component (n) = 7. This tells us that only the first seven principal components is required to explain most

of the total variance (97%) of our variables. By using PCA, we were able to reduce our overall social media variables from 46 to 7.

include\_graphics(path = "figure/pca.jpg")



Figure 2: Principal Component Analysis

\*Method B - Cross Correlation The second method we will employ to reduce our total features is by testing our independent variables for cross correlation with the dependent variable. Mainly, this approach will inform us on how many months in advance a social media variable can lead to an increase or decrease in Coca-Cola bag orders. For example, consider when a social media variable was found to be significantly positively correlated with Coca-Cola bag orders at lag t-1. If this social media variable has a positive value for the current month, then an increase in Coca-Cola bag orders can be expected the following month. In this project, we will check for cross correlation on each independent variable up to six months prior (t-6). We will do this on the original variables as well as the principal component variables. Using the cross correlation approach, we were able to identify eight lags from the social media variables that were cross correlated with Coca-Cola bag orders. Below is a table of these social media variables with their specified lags listed.

| Social Media Variable    | Significant Lag |
|--------------------------|-----------------|
| Coca-Cola Account tweet  | s t-1           |
| Taco Bell Account tweet  | s t-1           |
| Job Google Trend         | t-2             |
| McDonald's Google Trend  | t-2             |
| McDonald's Account repli | es t-5          |
| Taco Bell Google Trend   | t-5             |
| McDonald's Google Trend  | t-5             |
| Pepsi Account tweets     | t-6             |

Table 1: Social Media Variables with Specified Lags

In addition, we were able to identify seven lags from principal components that were cross correlated with Coca-Cola bag orders. Below is a table of these principal components with their specified lags listed.

Table 2: Principal Components with Specified Lags

| Principal Component | Significant Lag |
|---------------------|-----------------|
| PC7                 | t-1             |
| PC6                 | t-2             |
| PC4                 | t-2             |
| PC6                 | t-3             |
| PC4                 | t-3             |
| PC3                 | t-5             |
| PC3                 | t-6             |

5.Ensemble Modeling A variety of different machine learning models will be used to forecast future Coca-Cola bag orders (see Modeling Framework). In addition to these machine learning models, this project will demonstrate the strength of the ensemble model approach. The main assumption to ensemble modeling is that combining all lower-level models will result in a more accurate, overall model. An ensemble model is able to highlight the strength of each individual model and account for each model's weaknesses. The ensemble model approach will be used in this project to produce the best model.

## Methodology

#### Data

The data used to predict Coca-Cola bag orders will come from three distinct sources: Scholle IPN, Twitter, and Google Trends. The aggregation of all relevant data will be at the monthly level with a date range from October 2009 to October 2018. This will ensure that the data will have enough observations for our forecasting models. The dependent variable for this project will be the monthly total bag orders from Coca-Cola, which will be calculated using Scholle IPN's internal sales data. The independent variables are social media variables collected from Twitter and Google Trends. Twitter is a widely used social media platform in the United States and Canada that was founded in 2006. This platform will allow us to get a feeling about users and their opinions on Coca-Cola, Pepsi, McDonald's, Taco Bell, and 'jobs'. Most importantly, Twitter gives users access to data elements about a tweet necessary for this project, including the date a tweet was posted and the reactions a tweet received (i.e. number of likes, replies, and retweets). Twitter's years of existence, popularity, and data features make it an ideal social media data source for this project. However, Twitter does have a number of limitations. One of the main disadvantages of using Twitter data is its high volume and high dimensionality. Twitter receives millions of tweets a day that has information about the actual tweet (number of likes, replies, etc.), the user who posted the tweet (username, location, etc.) and the users who interact with the tweet (replied to tweet, username, etc.). A well defined scope will limit the amount of tweets to be collected and will allow us to prepare for any data storage and computational

Google Trends will give us an opportunity to see how frequently internet users search for Coca-Cola, Pepsi, McDonald's, Pepsi, and 'jobs' in Google. The main advantage of Google Trends is the ease in which we are able to collect this data. Google Trends allow users to select aggregate level (monthly, annual), location, and a date range for each query. The main disadvantage of Google Trends is that the raw data used to generate the trend value is not available. This makes it challenging to validate unusual trends in a search query. For more information on the specific variables, please refer to the Social Media Variables section. For more information on how the social media data were collected, please refer to Appendix A. Below is a summary table of the monthly social media variables:

### **Exploratory Data Analysis**

In order to ensure maximum utility of the collected social media data and produce accurate Coca-Cola bag order forecasts, it is important to conduct exploratory analysis on these variables. Analyzing all the variables prior to modeling will allow us to better understand trends in our variables. Identifying these trends can aid in the interpretation of our forecasting results. In this section, we will provide a brief analysis of each variable and highlight trends that could be of value when predicting the demand for Coca-Cola bag orders.

Above is a time plot of monthly Coca-Cola syrup bag orders from October 2009 to October 2019. At a glance, we observe an annual seasonal pattern with no consistent trend over time. Overall, the bag quantity orders show a mean of 7,521,158 per month. Expectedly, Scholle IPN experience the highest volume of Coca-Cola bag orders during summer months (June-August) with averages over eight million ordered bags. The only other month with an average of over eight million Coca-Cola bags is during the month of March.

\*\*User-generated Tweets User-generated tweets provides our forecasting models with information regarding how frequently Twitter users talk about Coca-Cola, Pepsi, McDonald's, Taco Bell, and "jobs". When looking at the average monthly tweet mentions for each term, the term "jobs" surprisingly appeared the most. Jobs-related tweets in the dataset represent 42.7% of all the user-generated tweets collected. The visual below of the average monthly tweet volume for each selected term demonstrates how "jobs" dominated our collected data.

The disparity on tweet volume across topics can be explained by the limitations imposed by the Twitter Search API (please refer to the Appendix for more information). Originally, we did not anticipate the general public to engage in job-related conversation on a social media platform compared to the other relevant terms. This finding provides value to our analysis as the term "jobs" now has a large sample size and can potentially give us better indication on how economic activity in North America impact Coca-Cola bag orders. However, this resulted in a lower total of user-generated tweets for all other relevant terms. Limited sample size for these variables could adversely impact their ability to forecast Coca-Cola bag orders.

\*\*Company-generated Tweets To continue the exploration of covariates, we will explore company-generated tweets. This set of social media variables will provide us information about promotional behavior for these selected companies (monthly tweets) and the subsequent consumer reaction to these promotions (monthly likes, retweets and replies). A total of 24,442 such tweets were collected between October 2009 to October 2018. Among the four companies, the official Twitter accounts of Coca-Cola and McDonald's were the most active in terms of posting Twitter content. The time series plots below (not built to scale) clearly show a general trend among all four companies.

For each company, the total number of tweets per month were low in the beginning portion of the time plot. This was followed by a surge in tweet volume in the middle part of the decade suggesting how all four companies started to heavily utilize Twitter as a promotional tool. This change in behavior from companies could be attributed to the increased use of Twitter by social media consumers around the same time. The time plots below (not built

to scale) of total consumer reactions (replies, likes, retweets) is a representation of how Twitter users who engaged with each company reacted to their tweets over time.

Noticeably, Twitter users became much more engaged with these Twitter accounts towards the middle portion of the time plots. This could be a sign of how effective these company's promotions are during the middle of the decade, or it could be an indicator of when social media started becoming more popular in mainstream society. The limited Twitter activity by the Twitter accounts and users during the earlier portion of the time plots should be considered when modeling.

\*\*Google Trends Although Google Trends is not a social media platform, it does provide an easily attainable source of data regarding general interest in Coca-Cola, Pepsi, McDonald's, Taco Bell, and 'jobs'. This could provide useful information when forecasting Coca-Cola bag orders. Above are time series plots for each term and their monthly Google Trend value from October 2009 to October 2018. Generally, there seems to be a seasonal trend that appear for each search term. It is interesting to note that the two quick service restaurants, McDonald's and Taco Bell, experienced an increasing trend over time.

When using Google Trends, it is important to consider that trend values are calculated strictly based on the search term entered. This strict rule could fail in certain instances where a single term could have different meanings. For example, an unusual spike can be observed in the time series plot for 'jobs' in October 2011. After conducting additional research, this spike can be attributed to a sudden interest in Steve Jobs when he passed away. For Pepsi, a spike in April 2017 was traced back due to its connection to a controversial advertisement involving the celebrity Kendall Jenner. These outliers will be imputed with a value that fit the distribution of the rest of the dataset.

### **Modeling Framework**

#### **Metrics**

Transform dose into a factor. Only three dosage levels are present.

```
data(ToothGrowth)
colnames(ToothGrowth) <- c("length", "supplement", "dose")
ToothGrowth$dose <- as.factor(ToothGrowth$dose)</pre>
```

We are most interested in discovering which treatment leads to the optimal tooth growth. In this vein, we use aggregate function to transform our data and compute the average tooth length by both supplement type and dose size.

Table 3: Average tooth length

| supplement | dose | length |
|------------|------|--------|
| OJ         | 0.5  | 13.23  |
| VC         | 0.5  | 7.98   |
| OJ         | 1    | 22.70  |
| VC         | 1    | 16.77  |
| OJ         | 2    | 26.06  |
| VC         | 2    | 26.14  |

#### Math and Science notation

TEX is the best way to typeset mathematics. Donald Knuth designed TEX when he got frustrated at how long it was taking the typesetters to finish his book, which contained a lot of mathematics. One nice feature of *R Markdown* is its ability to read LATEX code directly.

Get around math mode's automatic italicizing in LaTeX by using the argument \$\mathrm{formula here}\$, with your formula inside the curly brackets. (Notice the use of the backticks here which enclose text that acts as code.)

So, 
$$Fe_2^{2+}Cr_2O_4$$
 is written  $\mathrm{mathrm}\{Fe_2^{2+}Cr_2O_4\}$ \$.

The command below does what you'd expect: it forces the current line/paragraph to not indent. See below and examples of commonly used symbols:

Exponent or Superscript written as  $x^2$  becomes  $x^2$ 

Subscript written as  $x_1$  becomes  $x_1$ 

Infinity written as \$\infty\$ becomes ∞

alpha written as  $\alpha \$ 

beta written as  $\theta \$ 

delta written as  $\Delta \theta \delta$ 

epsilon written as  $\epsilon$ 

sigma written  $\sum_{i=1}^{n} f(x)$  becomes  $\sum_{i=1}^{n} f(x)$ 

### **Math Examples**

An Ordinary Least Squares model, from *Introductory Econometrics*, *6th edition* by Jeffrey M. Wooldridge, page 27.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

An infinite distributed lag (IDL) time series model, by Wooldridge, page 633.

$$y_t = \alpha + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} \dots + \varepsilon_t$$

A vector autoregressive (VAR) model, by Wooldridge, page 657.

$$y_t = \delta_0 + \alpha_1 y_{t-1} + \gamma_1 z_{t-1} + \alpha_2 y_{t-2} + \gamma_2 z_{t-2} \dots,$$

ddfdf Determinant of a square matrix:

$$\det \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0$$

A regularization problem solved by Jerome Friedman, Trevor Hastie, Rob Tibshirani and Noah Simon, implemented in the R package glmnet.

$$\min_{\beta_0,\beta} \frac{1}{N} \sum_{i=1}^{N} w_i l(y_i, \beta_0 + \beta^T x_i) + \lambda \left[ (1-\alpha) ||\beta||_2^2 / 2 + \alpha ||\beta||_1 \right]$$

From Lapidus and Pindar, Numerical Solution of Partial Differential Equations in Science and Engineering, page 54.

$$\int_{t} \left\{ \sum_{j=1}^{3} T_{j} \left( \frac{d\phi_{j}}{dt} + k\phi_{j} \right) - kT_{e} \right\} w_{i}(t) dt = 0, \qquad i = 1, 2, 3.$$

From Lapidus and Pindar, page 145.

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) = \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} w_{i} w_{j} w_{k} f(\xi, \eta, \zeta).$$

#### Additional R Markdown and bookdown resources

- Bookdown Online Book https://bookdown.org/yihui/bookdown/
- Markdown Info Sheet https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
- R Markdown Reference Guide https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

## **Findings**

Should be organized as follows:

- Results of descriptive analyses
- Modeling results
- Results of model performance and validation

### Results of descriptive analyses

Table 4: Summary of ToothGrowth data

| length        | supplement | dose   |
|---------------|------------|--------|
| Min.: 4.20    | OJ:30      | 0.5:20 |
| 1st Qu.:13.07 | VC:30      | 1:20   |
| Median :19.25 | NA         | 2:20   |
| Mean :18.81   | NA         | NA     |
| 3rd Qu.:25.27 | NA         | NA     |
| Max. :33.90   | NA         | NA     |
|               |            |        |

Table 4 above contains summary statistics of the *Tooth Growth* data.

While the code is not displayed to create the graph below (echo=FALSE), it is displayed in the Appendix by referencing the boxplot chunk name.



Figure 3: Avg. length by supplement and dose

Figure 3 was created with the ggplot2 package. We can visually compare the average tooth growth by supplement and dose.

### **Modeling results**

First, use a t.test() to test *if* dosage leads to growth of incisor length. From the results below, it appears every test rejects the null hypothesis.

Table 5: t-test results

| Name       | Method                  | Pvalue   | Tstat      |
|------------|-------------------------|----------|------------|
| Test 0.5-1 | Welch Two Sample t-test | 1.00e-07 | -6.476648  |
| Test 0.5-2 | Welch Two Sample t-test | 0.00e+00 | -11.799046 |
| Test 1-2   | Welch Two Sample t-test | 1.91e-05 | -4.900484  |

Table 5

### Results of model performance and validation

Next, subset the ToothGrowth data into separate data sets defined by supplement dose of 0.5, 1, and 2 mg. This allow us to controlling for dose increases of *economic* significance.

Subset tooth data into a separate data.frame for each dosage level. Then Execute the t.test() function for the dosage of 0.5 mg and display the results.

```
dose05 <- ToothGrowth[ToothGrowth$dose == 0.5, ]
dose1 <- ToothGrowth[ToothGrowth$dose == 1, ]
dose2 <- ToothGrowth[ToothGrowth$dose == 2, ]

test4 <- t.test(length ~ supplement, data = dose05)
test5 <- t.test(length ~ supplement, data = dose1)
test6 <- t.test(length ~ supplement, data = dose2)</pre>
```

Place the results of the analysis directly into your content with *inline code* functions:

With a very low p-value of 0.0064 and a corresponding t-statistic of 3.1697, it appears that at low doses, *Orange Juice* is the preferable delivery mechanism to *Vitamin C* for Ascorbic Acid delivery.

The p-value and t-statistic above have been directly extracted from the model object and printed inline. using the 'r foo' syntax with quotes(') replaced by back-ticks (').

## **Conclusion**

This section includes a concise summary of the findings. Your summary might be organized by the research objectives or hypotheses. Make sure you address the extent to which research objectives are achieved, and if they are not achieved, explain why. Make sure to interpret your findings in a way that acknowledges the limitations of the research. That is, do not extrapolate the insights derived from your research to situations you have not examined.

While increasing dosage leads to larger incisor length, the choice of delivery mechanism between Orange Juice and Vitamin C does not seem to make a difference. However, at very low levels, Orange Juice appears more effective, displaying higher average growth.

## Recommendations

Includes guidelines as to ways in which your results should or could be used in practice. You may discuss other uses of your results, if there are any. The ways to extend your analysis and the benefits of doing so might be included in this section as well.

## Appendix A

## The First Appendix

This first appendix includes all of the R chunks of code that were hidden throughout the document (using the include = FALSE chunk tag) to help with readibility and/or setup.

#### In section ??:

#### In section ??:

# **Appendix B**

# A Second Appendix, for example

### References

- There are a variety of tools available for creating a bibliography database (stored with the .bib extension). In addition to BibTeX suggested below, you may want to consider using the free and easy-to-use tool called Zotero.
- R Markdown uses pandoc (http://pandoc.org/) to build its bibliographies. To cite references in your thesis (after creating your bibliography database), place the reference name inside square brackets and precede it by the "at" symbol. For example, here's a reference to a book about worrying: (Molina & Borkovec, 1994). This Molina1994 entry appears in a file called thesis.bib in the bib folder. This bibliography database file was created by a program called BibTeX. You can call this file something else if you like (look at the YAML header in the main .Rmd file) and, by default, is to placed in the bib folder.

#### **Additional Tips**

- The sooner you start compiling your bibliography for something as large as a capstone, the better. Typing in source after source is mind-numbing enough; do you really want to do it for hours on end at the last minute?
- The cite key (a citation's label) needs to be unique from the other entries.
- When you have more than one author or editor, you need to separate each author's name by the word "and" e.g. Author = {Noble, Sam and Youngberg, Jessica},

#### Example output generated from bib file

- Angel, E. (2000). *Interactive computer graphics : A top-down approach with opengl.* Boston, MA: Addison Wesley Longman.
- Angel, E. (2001a). *Batch-file computer graphics : A bottom-up approach with quicktime*. Boston, MA: Wesley Addison Longman.
- Angel, E. (2001b). *Test second book by angel*. Boston, MA: Wesley Addison Longman.
- Molina, S. T., & Borkovec, T. D. (1994). The Penn State worry questionnaire: Psychometric properties and associated characteristics. In G. C. L. Davey & F. Tallis (Eds.), *Worrying: Perspectives on theory, assessment and treatment* (pp. 265–283). New York:

References 21

Wiley.