Paragraph Vector

Tianyi Sun, Qingyuan Xue, Eric Darve

Clustering using PCA on labelled sentiment moview review data (learned paragraph vectors embeddings)

Understanding of language

I saw a man on a hill with a telescope

Ambiguity is Explosive and Ambiguity is Ubiquitous

How can machine understands language

The: [0100000]

cat: [0010000]

sat: [0001000]

on: [0000100]

the: [0000010]

mat: [0000001]

How are you How have you been Nice to see you Have a nice day Have a nice day How been Nice to see you you day How

а	are	been	day	have	how	nice	see	to	you
1	1	1	1	2	2	2	1	1	3

One-hot Encoding

represents word as one-hot vectors **Drawbacks**: inefficiency and no similarity representation

Bag of Words

describe the occurrence of words **Drawbacks**: orders and structures are ignored

The breakthrough: training through tasks

The efficient algorithms of continuous **Bag-of-Words model** and continuous **Skip-gram model** compute the word representations

Using the context words to predict the centre word

Using the current word to predict the context words

What about sentences and paragraphs? Paragraph Vector

- Training: words prediction using paragraph vector and words vectors
- Prediction: compute paragraph vector with the new paragraph input

The algorithm and python implementations

Objective function:

$$\max_{w,b} \quad 1/T \sum_{t=k}^{T-K} \text{logP}(\text{Wt} \mid W^{t-k}, ...W^{t+k}, D)$$

Training and implementations

Training algorithm	dm_concat	Dimension Size	Negative	Initial learning rate	Window_size
distributed memory	1 (Concatenate the context vectors)	400	2(noisy words)	0.065	10 (maximum distance)
distributed bag of words	1 (Concatenate the context vectors)	400	2(noisy words)	0.065	10 (maximum distance)

Evaluations and Results

• Linguistic acceptability Judgments (10,657 labeled english sentences) (two examples from the data set)

The professor talked us	0	
Anson became a muscle bound	1	

- Classification Prediction
 - Logistic regression model accuracy: 0.69 (versus the chance rate: 0.69)

samples	True labels	Predictions
who does john visit sally because he likes?	0	1
the more does bill smoke , the more Susan hates him	0	1
the bookcase ran	0	1

Evaluations and Results

IMDB Movie Reviews

- Doc2Vec: 25,000 labelled training samples, 50,000 unlabelled samples
 Sentiment classification task: 25,000 labelled training samples, 25,000 labelled testing samples.

Sentiment classification task

Models	Accuracy
LDA (Latent Dirichlet Allocation)	67.42%
Chance Rate (baseline)	50%
Paragraph Vector	75%

References

- Course Information & Introduction to the NLP, University of Sydney: Lecture notes https://canvas.sydney.edu.au/courses/30912/pages/course-contents
- Le, Q., & Mikolov, T. (2014, June). Distributed representations of sentences and documents. In *International conference on machine learning* (pp. 1188-1196). PMLR.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Warstadt, A., Singh, A., & Bowman, S. R. (2019). Neural network acceptability judgments. *Transactions of the Association for Computational Linguistics*, 7, 625-641.
- Liu, F., Jiao, Y., Massiah, J., Yilmaz, E., & Havrylov, S. (2021). Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations. *arXiv* preprint arXiv:2109.13059.