DSP Lab 5 - Graeme Judge

Question 1)

$$\frac{1}{6} \frac{1}{3} \frac{1}{3} y(t) - 2 \frac{1}{16} y(t) + 5y(t) - 2 \frac{1}{16} x(t) + 3 \frac{1}{16} x(t)$$

$$= (65^{3} - 25^{2} + 5) y(e^{3t}) = (35^{2} + 25) x(e^{3t})$$

$$= \frac{y(e^{5t})}{x(e^{3t})} = \frac{35^{2} + 25}{65^{3} - 25^{2} + 5}$$

$$\stackrel{\circ}{\circ} H(s) = \frac{y(e^{5t})}{x(e^{3t})} = \frac{35^{2} + 25}{(65^{3} - 25^{2} + 5)}$$

$$\frac{1}{3} \frac{1}{4} y(t) + 5 \frac{1}{3} y(t) + 6y(t) = \frac{1}{3} x(t) + 6x(t)$$

$$\stackrel{\circ}{\circ} H(s) = \frac{1}{3} \frac{1}{4} y(t) + \frac{1}{3} \frac{1}{4} x(t) + \frac{1}{3} \frac{1}{4} x(t)$$

$$\stackrel{\circ}{\circ} H(s) = \frac{1}{3} \frac{1}{4} \frac{1}{4} x(t) + \frac{1}{3} \frac{1}{4} x(t)$$

$$\stackrel{\circ}{\circ} H(s) = \frac{1}{3} \frac{1}{4} \frac{1}{4}$$

Question 2) a)

$$Z(z) = \chi(z) - \chi(z) = \frac{z^{2}}{|z|} + \frac{z^{2}$$

Question 2) b)

Question 2) c)

Question 3)

3)
$$H(z) = \frac{2! \cdot 0.3z + 1}{z^{2} \cdot 0.3z + 0.9}$$

(a) $\forall -2$ exponents then $x \in (largest exp)$
 $H(z) = \frac{2! \cdot 0.3z + 1}{z^{2} \cdot 0.3z + 0.8} \times \frac{z^{2}}{z^{-1}} = \frac{|-0.3z^{-1} \cdot z^{-2}|}{|-0.3z^{-1} \cdot 0.8z^{-2}|}$

(b) Find poles

 $Z = -b! \sqrt{6! \cdot 4ac}$
 $Z = -0.5! \sqrt{0.09 - 4c_{1}(c_{1}(c_{1}))}$
 $Z = -0.15 + 0.56$; $Z = 0.15 + 0.56$;

(a) $Z = -0.15 + 0.56$; $Z = 0.15 + 0.56$;

(b) $Z = 0.15 + 0.56$; $Z =$