We Claim:

1. A transmitter comprising

a plurality of m antennas, where m greater than one; and

an encoder handling m blocks of incoming symbols at a time, each block containing N of said incoming symbols, and encoding said N blocks of incoming symbols into m streams of symbols, each being applied to a different one of said m antennas, where said encoding involves modulo arithmetic.

- 2. The transmitter of claim 1 where said encoding follows an orthogonal encoding design.
 - 3. The transmitter of claim 1 where said encoding is FD-DC encoding.
- **4.** The transmitter of claim **1** where said encoding also involves negations and complex conjugations.
 - **5.** The transmitter of claim 1 where m=2, and where in frame k said encoder generates

a stream of symbols, $x_1^k(n)$, $n=0, 1, 2, \ldots N-1$, that is applied to a first one of said antennas, preceded by a cyclic prefix sequence of symbols $x_1^k(t)$, t=-1, -2, -v, where v equals to symbol memory of channel through which said transmitter communicates with a receiver, where a cyclic prefix sequence is one where $x_1^k(i)$ in the prefix sequence equals $x_1^k(N-i)$ in the succeeding sequence, and a stream of symbols, $x_2^k(n)$, $n=0, 1, 2, \ldots N-1$, that is applied to a second

one of said antennas, preceded by a cyclic prefix sequence of symbols

 $x_2^k(t)$, t=-1, -2, -v, and

in frame k+1 said encoder generates

a stream of symbols $x_1^{k+1}(t)$ that is equal to $-\overline{x}_2^k((-n)_N)$, that is applied to said first one of said antennas, preceded by a cyclic prefix sequence of symbols $x_1^{k+1}(t)$, t=-1, -2, $-\nu$, and a second stream of symbols $x_2^{k+1}(t)$ that is equal to, $\overline{x}_1^k((-n)$, that is applied to said second one of said antennas, preceded by a cyclic prefix

6. A receiver comprising:

a time-domain to frequency-domain converter responsive to a signal received by an antenna in frames k and k+1, for developing signals \mathbf{Y}^k in frame k and signals \mathbf{Y}^{k+1} in frame k+1;

sequence of symbols $x_2^{k+1}(t)$, t=-1, -2, -v.

a linear combiner for creating a first linear combination signal, $\tilde{\mathbf{Y}}^k$, from signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , and a second linear combination signal, $\tilde{\mathbf{Y}}^{k+1}$, from signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , where said first linear combination is different from said second linear combination;

an equalizer that pre-multiplies signal $\tilde{\mathbf{Y}}^k$ by a diagonal matrix \mathbf{W} to form signal $\tilde{\mathbf{Z}}^k$, and pre-multiplies signal $\tilde{\mathbf{Y}}^{k+1}$ by said diagonal matrix \mathbf{W} to form signal $\tilde{\mathbf{Z}}^{k+1}$;

a frequency-domain to time-domain converter for converting signals $\tilde{\mathbf{Z}}^k$ and $\tilde{\mathbf{Z}}^{k+1}$ to time-domain signals; and

a slicer responsive to said time domain signals.

- 7. The receiver of claim 6 where said time-domain to frequency-domain converter implements a Fast Fourier Transform algorithm.
- **8.** The receiver of claim **6** where said frequency-domain to time-domain converter implements an inverse Fast Fourier Transform algorithm.

- 9. The receiver of claim 6 where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^k$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , multiplies at least one of said component signals by a diagonal matrix.
- 10. The receiver of claim 6 where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^k$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , multiplies each of said component signals by a different diagonal matrix.
- 11. The receiver of claim 6 where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^k$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , employs diagonal matrices $\boldsymbol{\Lambda}_1$ and $\boldsymbol{\Lambda}_2$ where diagonal matrix $\boldsymbol{\Lambda}_1$ is related to characteristics of transmission medium between a first antenna of a transmitter of signals received by said receiver, and $\boldsymbol{\Lambda}_2$ is related to characteristics of transmission medium between a first antenna of a transmitter of signals received by said receiver.
- 12. The receiver of claim 11 where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^{k+1}$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , employs diagonal matrices that are related to said matrices $\mathbf{\Lambda}_1$ and $\mathbf{\Lambda}_2$ through operations taken from a set that includes negations and complex conjugations.
- 13. The receiver of claim 6 where said linear combiner creates signal $\tilde{\mathbf{Y}}^k = \boldsymbol{\Lambda}_1^* \mathbf{Y}^k + \boldsymbol{\Lambda}_2 \overline{\mathbf{Y}}^{k+1}$, and signal $\tilde{\mathbf{Y}}^{k+1} = \boldsymbol{\Lambda}_2^* \mathbf{Y}^k \boldsymbol{\Lambda}_1 \overline{\mathbf{Y}}^{k+1}$, where $\overline{\mathbf{Y}}^{k+1}$ is a complex conjugate of \mathbf{Y}^{k+1} .
- 14. The receiver of claim 13 where elements of said diagonal matrix W are related to matrices Λ_1 and Λ_2 .
 - 15. The receiver of claim 13 where said diagonal matrix W has elements

$$\mathbf{W}(i,i) = \frac{1}{\tilde{\Lambda}(i,i) + \frac{1}{SNR}}, \text{ where } \tilde{\Lambda}(i,i) = \Lambda_1(i,i)\Lambda_1^*(i,i) + \Lambda_2(i,i)\Lambda_2^*(i,i), \text{ and } \left(\cdot\right)^*$$

represents a complex conjugate operation, and SNR is a computed value.

16. A receiver comprising:

a time-domain to frequency-domain converter responsive to a signal received by an antenna in frames k, k+1, ... k+m, where m is a selected integer greater than 0, for developing signals \mathbf{Y}^k , \mathbf{Y}^{k+1} , ... \mathbf{Y}^{k+m} , in frames k, k+1, ... k+m, respectively;

a linear combiner for creating signals $\tilde{\mathbf{Y}}^k$, $\tilde{\mathbf{Y}}^{k+1}$, ... $\tilde{\mathbf{Y}}^{k+m}$ from linear combinations of signals related to \mathbf{Y}^k , \mathbf{Y}^{k+1} , ... \mathbf{Y}^{k+m} ;

an equalizer that pre-multiplies each signal $\tilde{\mathbf{Y}}^{j}$, $j=k, k+1, \ldots k+m$ by a diagonal matrix \mathbf{W} to form signals $\tilde{\mathbf{Z}}^{j}$, $j=k, k+1, \ldots k+m$;

a frequency-domain to time-domain converter for converting signals $\tilde{\mathbf{Z}}^{j}$ to time-domain signals; and

a slicer responsive to said time domain signals.

17. The receiver of claim 17 where said signals related to signals \mathbf{Y}^k , \mathbf{Y}^{k+1} , ... \mathbf{Y}^{k+m} are related to said signals \mathbf{Y}^k , \mathbf{Y}^{k+1} , ... \mathbf{Y}^{k+m} through operations from a set that includes negations and complex conjugations.

18. A receiver comprising:

p antennas, where p is an integer greater than 1;

a time-domain to frequency-domain converter responsive to a signal received by each of said antennas in frames k, k+1, ... k+m, where m is a selected integer greater than 0, for developing signals \mathbf{Y}_{j}^{k} , \mathbf{Y}_{j}^{k+1} , ... \mathbf{Y}_{j}^{k+m} , in frames k, k+1, ... k+m, respectively, where subscript j identifies a jth antennas of said p antennas;

a linear combiner for creating groups of signals $\tilde{\mathbf{Y}}_n^k$, $\tilde{\mathbf{Y}}_n^{k+1}$, ... $\tilde{\mathbf{Y}}_n^{k+m}$ for each value of subscript $j=1,2,\ldots p$, from linear combinations of signals related to said signals $\tilde{\mathbf{Y}}_n^k$,

 $\tilde{\mathbf{Y}}_n^{k+1}$, ... $\tilde{\mathbf{Y}}_n^{k+m}$, when n is an index designating a transmitting unit that supplies signals to said p antennas;

an equalizer that pre-multiplies each signal $\tilde{\mathbf{Y}}_n^q$, $q=k, k+1, \dots k+m$ by a diagonal matrix **W** to form signals $\tilde{\mathbf{Z}}_n^q$, $q=k, k+1, \dots k+m$;

a frequency-domain to time-domain converter for converting signals $\tilde{\mathbf{Z}}_n^q$ to time-domain signals; and

a slicer responsive to said time domain signals.

19. The receiver of claim 18 where p=2, and where said linear combiner obtains signals $\tilde{\mathbf{Y}}_n^k$ and $\tilde{\mathbf{Y}}_n^{k+1}$ by computing

$$\begin{bmatrix} \hat{\mathbf{Y}}_1^k \\ \hat{\mathbf{Y}}_2^k \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\mathbf{\Lambda}_{2-1}\mathbf{\Lambda}_{1-2}^{-1} \\ -\mathbf{\Lambda}_{2-2}\mathbf{\Lambda}_{1-1}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1^k \\ \mathbf{Y}_2^k \end{bmatrix}$$

where $\hat{\mathbf{Y}}_1^k$ represents signal received at said receiver, in frame k, from transmitting unit 1, and $\hat{\mathbf{Y}}_2^k$ represents signal received at said receiver, in frame k, from transmitting unit 1, $\boldsymbol{\Lambda}_{1-1}$ is a diagonal matrix representing transmission medium between transmitting unit 1 and a first one of said two antennas, $\boldsymbol{\Lambda}_{2-1}$ is a diagonal matrix representing transmission medium between transmitting unit 2 and said first one of said two antennas $\boldsymbol{\Lambda}_{1-2}^{-1}$ is a diagonal matrix representing transmission medium between said transmitting unit 1 and a second one of said two antennas $\boldsymbol{\Lambda}_{2-2}$ is a diagonal matrix representing transmission medium between said transmitting unit 1 and said second one of said two antennas.

20. A method carried out in a receiver for decoding received frame signals of a unit that transmits over p antennas, comprising the steps of:

converting each received frame signal to frequency domain;

in groups of p consecutive converted frame signals, combining said converted frame signals to form p intermediate signals;

multiplying said intermediate signals by values related to transfer characteristics between said p antennas and said receiver, to obtain thereby equalized signals;

converting said equalized signals to time domain, to obtain time domain estimate signals; and

carrying out a decision regarding information symbols transmitted by said unit, based on said estimate signals.

- 21. The method of claim 20 where said combining is linear combining.
- **22.** The method of claim **20** where said transfer characteristics employed in said step of multiplying are frequency domain characteristics of transmission channel between said p antennas and said receiver.