Reti Combinatorie: sintesi

Rete Logica

 Una rete logica è un circuito elettronico digitale in grado di realizzare una o più funzioni di commutazione

Analisi e Sintesi di reti logiche

COMPORTAMENTO della Rete

Nomenclatura

·Consideriamo funzioni di commutazione di n variabili espresse come somme di prodotti (OR di AND)

$$Y = P_1 + P_2 + ... + P_K$$

•Pi prodotto di k≤n variabili diretta o negate (una variabile diretta o negata è chiamata **letterale**), ex n=4

$$Y = X_3X_1 + X_4X_2X_1 + X_4X_3X_2X_1$$

•P_i si chiama implicante della funzione, $P_i \rightarrow y$.

se ogni volta che P_i =1 allora si ha che y=1, ex

$$X_4X_3X_2X_1 \rightarrow y$$

 Implicante primo: implicante per il quale non è possibile eliminare un letterale dalla sua espressione ed ottenere ancora un implicante, ex

$$X_4X_2X_1$$

•Espressione minima: espressione nella quale non possono essere eliminati né un letterale né un termine senza alterare la funzione rappresentata dall'espressione stessa.

$$Y = X_3 X_1 + X_4 X_2 X_1$$

Sintesi di reti combinatorie

- · Una rete combinatoria realizza una funzione di commutazione
- Nell'attività di progetto é necessario tenere conto sia delle prestazioni che del costo.
- Necessità: rete logica il più veloce possibile.
- · Quindi a parità di velocità é necessario ottimizzare il costo.
- Data una tabella di verità è possibile ricavare più espressioni equivalenti che la rappresentano.

Forme canoniche come reti

Ogni funzione y può essere espressa come somma canonica, cioè è possibile realizzarla usando 2 livelli di porte logiche (OR - AND) VELOCITA' MASSIMA

Costo di una funzione

· Costo: Somma del numero di letterali e degli implicanti

Alcune possibili realizzazioni di F = AB + C

Mappe di Karnaugh (MK)

- Le mappe di Karnaugh sono tabelle che permettono la rappresentazione e la semplificazione delle funzioni di commutazione fino a quattro variabili. E' possibile usarle, con qualche difficoltà, anche per funzioni di cinque e sei variabili
- Le mappe di Karnaugh per le funzioni di 2, 3, 4, 5 variabili sono divise in tante caselle (o "celle") quanti sono i corrispondenti mintermini (4, 8, 16, 32).

MK per 2 variabili

Tabella di verità

MK per 2,3,4 variabili

- ·Le caselle adiacenti corrispondono a configurazioni delle variabili di ingresso che differiscono di <u>un solo</u> bit
- ·Anche le caselle sulle due colonne estreme sono da considerarsi adiacenti, come se la mappa fosse originariamente su una sfera che è stata tagliata e spianata.

Esempio

Se la funzione è data come somma di mintermini, basta scrivere 1 in tutte le celle corrispondenti ai mintermini della somma

Semplificazione

	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

V		$X_1 X_0$			
•	''	00	01	11	10
	00	0		0	0
V V	01	0	1	0	0
$X_3 X_2$	11	0	$\widetilde{0}$	0	0
	10	0	0	0	0

•
$$m_1 + m_5 = X_3 X_2 X_1 X_0 + X_3 X_2 X_1 X_0$$

 $= \varphi X_2 + \varphi X_2$
 $= \varphi (X_2 + X_2) = \varphi$
• $\varphi = X_3 X_1 X_0$

 m_1 ed m_5 non sono implicanti primi, mentre ϕ è un implicante primo In una mappa K un implicante primo corrisponde ad un raggruppamento di 2^i celle adiacenti (cubi), sia orizzontalmente o verticalmente, non incluso in altri raggruppamenti

Esempi

Altre definizioni

• *Implicante primo essenziale:* implicante primo rappresentato da un cubo che copre almeno un 1 non coperto da altri implicanti primi

• Cuore di una funzione: insieme degli implicanti primi essenziali

Esempi

V		$X_1 X_0$					
•		00	01	11	10		
	00		1	1			
	01	1	1	1			
	11	1	1	1			
	10		1	1			

Algoritmo per la minimizzazione

- Si segnano con 1 le caselle relative ai mintermini della funzione
- 2. Si identificano gli implicanti primi essenziali e si disegnano i relativi cubi. Se sono coperti tutti i mintermini si va al passo 4, altrimenti al 3.
- 3. Si coprono i restanti mintermini con il minor numero possibile di implicanti
- 4. Fine della procedura
- Commento: non sistematicità del passo 3

Esempio

Funzioni parzialmente specificate

Funzioni in cui non sono possibili alcune configurazioni delle variabili di ingresso o non interessa il valore di uscita per alcune configurazioni di ingresso

Esempio: date quattro variabili di commutazione codificanti i numeri 0..9 la funzione è vera quando il numero è divisibile per 3.

Tabella di verità e MK di una funzione parz. spec.

$\mathbf{x}_3 \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$	f
0000	1
0001	0
0010	0
0 0 1 1	1
0100	0
0 1 0 1	0
0 1 1 0	1
0 1 1 1	0
1000	0
1001	1
1010	d.c.c.
1011	d.c.c.
1 1 0 0	d.c.c.
1 1 0 1	d.c.c.
1 1 1 0	d.c.c.
1111	d.c.c.

Realizzare un circuito che riconosca se un numero compreso tra 0 e 9 sia divisibile per 3.

Algoritmo per la minimizzazione

- Si segnano con 1 le caselle relative ai mintermini e con le d.c.c. (don't care condition) della funzione.
- 2. Si identificano gli implicanti primi essenziali rappresentati da cubi costituiti da 1 e ed aventi almeno un 1. Se sono coperti tutti i mintermini si va al passo 4, altrimenti al 3.
- 3. Si coprono i restanti mintermini con il minor numero possibile di cubi aventi le dimensioni massime e costituiti da 1 e -.
- 4. Fine della procedura
- Commento: non sistematicità del passo 3