

Manipulation of Geospatial Data: a Dashboard Within Hungary's Geographical Scope

Data Science Bachelor Project Author: **Gergo Gyori** (gegy@itu.dk) Supervisor: **Eleni Tzirita Zacharatou**

Aim: Develop a dashboard that allows users to find specific places based on their constraints

Geospatial data

What is geospatial data?

- Data about objects, events, or phenomena that have a location on the surface of the earth
 - Static: location of amenities, etc
- **Dynamic**: moving vehicle, the spread of disease, etc
- It combines location information (e.g., coordinates on the earth), attribute information (e.g., the characteristics of the object)
- This project uses static geospatial data

Source: GAO.

Data source

OpenStreetMap

- OpenStreetMap (OSM) is a collaborative mapping project that provides a free and editable map of the world.
- The map data in OSM includes a wide range of features such as roads, buildings, parks, rivers, and points of interest
- Open license

OSM - Queries

- OSM key-value tag queries are used to filter and extract specific object from OSM data based on their attribute values
- Each object in OSM is represented by a set of key-value tags
- Users can specify the desired combination to allow for targeted data extraction

A park with green in the middle of the city

Example of the "leisure=park" query: results the park objects marked in hlue.

Another data sources

Klimadat operated by Hungarian Meteorological Service

https://klimadat.met.hu/

- Various weather-related data (precipitation, temperature, etc.) and predictions
- Based on ALADIN-Climate and REMO models

- KSH (Hungarian Central Statistical Office)

https://www.ksh.hu/?lang=en

- Economic, social, and demographic data
- Process and analysis of statistical data

Users' preferences - Survey

- Free-form and predefined set of question
- 5 points scale
- Focusing on the user's needs
- Divided into two main section:
 - Place to live
 - Place to go on vacation

When it comes to choosing a place to live , how important is proximity to certain factors? Please rate the following factors based on their significance:						
	Not important	Unimportant	Neither import	Important	Very important	
Shop (e.g, supe						
Gym						
Access to high						
Educational ins						
Workplace						
Particular plac						
Access to publi						
Park						
Forest						
Lake or river						

Apart from the amenities or elements of the natural environment already mentioned, are there any others that are important to you? If so, please specify.
Long-answer text

Flowchart of the pre-processing OSM queries

Two python packages are used:

Geopandas and Shapely

Unary union

- Improper tagging merge similar objects
- Eliminate duplicate objects
- Eliminate overlaps after buffering

Buffer

Original objects, some lakes

Each objects are buffered by 100 metres

Merge into one object after unary union without overlaps

Effect of simplification

- No significant improvement in intersection calculation
- Leads to greater inaccuracy
- Douglas-Peucker Algorithm

	Result						
Simplify value	Forest layer area after simp. in square km	Water layer area after simp. in square km		time to calculate intersection (s)	Result layer area is square kilometer		
0.1	74669	32876	2711	0.47	25909		
2	74668	32873	2711	0.42	25906		
10	74594	32769	2711	0.31	25801		

Result of pre-processing

Name of the layer	No. of objects	No. of vertices	Total time (buffer, unary union) (s)			Parquet file size (MB)	CSV file size (MB)
Supermarket	2254	53632	0.52	0.01	0.08	0.8	2
Park	5573	117722	1.5	0.02	0.2	1.8	4.3
Water	18999	406629	11	0.03	0.65	7	16

Result table: Objects are buffered by 1000 metres, the layer saved in to parquet or csv file format

- Time consuming
- It is faster to read the file, especially in parquet format

Košický kra

The dashboard - UI

- Hosted on Streamlit

https://spot-ideal-places-to-live-in-hungary.streamlit.app/

Settings and the result

The structure of the UI and an example result

Functions

Simple sidebar

Double - ended sidebar

Avoid

Areas with blue will be taken into account during the intersection calculation

Functions

Intersection

Result of the intersection of the three layers

The back-end of the dashboard

Overlay difference between the area of Hungary and the layer

Limitations, future work, conclusion

- Inaccuracy of OSM database
- Big scale: PostGIS
- The dashboard is available for free for the public
- Can be used by people to find a place to live, agricultural stakeholders, or real estate companies

Thank you

Appendix

Douglas-Peucker algorithm

Indexing - R-Tree

Area of Polygon

From		То				
×	У	x	У	Avg Height	Width (+/-)	Area (+/-)
0.72	2.28	2.66	4.71	3.495	1.94	6.7803
2.66	4.71	5	3.5	4.105	2.34	9.6057
5	3.5	3.63	2.52	3.01	-1.37	-4.1237
3.63	2.52	4	1.6	2.06	0.37	0.7622
4	1.6	1.9	1	1.3	-2.1	-2.7300
1.9	1	0.72	2.28	1.64	-1.18	-1.9352

Total:

8.3593

Buffer

Clipping

