Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Naţională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

CLASA a XI-a

Problema 1. Pentru un număr real a>1 dat, considerăm șirul $(x_n)_{n>1}$ definit prin $x_1=a$ și

$$x_1 + x_2 + \dots + x_{n+1} = x_1 x_2 \cdots x_{n+1},$$

pentru orice $n \geq 1$. Arătați că șirul este convergent și determinați limita sa. Gazeta Matematică

Problema 2. Fie matricele pătrate A, B de ordin 3 cu elemente numere reale astfel încât $AB = O_3$.

- a) Demonstrați că funcția $f: \mathbb{C} \to \mathbb{C}$ dată de $f(x) = \det(A^2 + B^2 + xBA)$ este polinomială de grad cel mult 2.
 - b) Demonstrați că $\det(A^2 + B^2) \ge 0$.

Problema 3. Fie $n \in \mathbb{N}^*$ și matricile $A, B \in \mathcal{M}_n(\mathbb{C})$ cu proprietatea că $A \cdot B^2 = A - B$.

- a) Arătați că matricea $I_n + B$ este inversabilă;
- b) Arătați că AB = BA.

Problema 4. O funcție $f: \mathbb{R} \to \mathbb{R}$ are proprietatea \mathcal{F} dacă pentru orice $a \in \mathbb{R}$ există un interval (b,a) astfel încât pentru orice $x \in (b,a)$ să avem $f(x) \leq f(a)$.

- a) Dați un exemplu de funcție cu proprietatea \mathcal{F} nemonotonă pe \mathbb{R} .
- b) Arătați că dacă f este continuă și are proprietatea \mathcal{F} , atunci f este crescătoare.

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.