ST2131 AY21/22 SEM 2

github/jovyntls

01. COMBINATORIAL ANALYSIS

The Basic Principle of Counting

- basic principle of counting → Suppose that two experiments are performed. If exp1 can result in any one of m possible outcomes and if, for each outcome of exp1, there are n possible outcomes of exp2, then together there are mn possible outcomes of the two experiments.
- $\frac{1}{2}$ generalized basic principle of counting $\frac{1}{2}$ If r experiments are performed such that the first one may result in any of n_1 possible outcomes and if for each of these n_1 possible outcomes, there are n_2 possible outcomes of the 2nd exp, and if ..., then there is a total of $n_1 \cdot n_2 \cdot \cdots \cdot n_r$ possible outcomes of r experiments.

Permutations

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that an event can occur, we will know the probability of the event.

N2 - there are n! different arrangements for n objects.

N3 - there are $\frac{n!}{n_1! \; n_2! \; ... \; n_r!}$ different arrangements of n objects, of which n_1 are alike, n_2 are alike, ..., n_r are alike.

Combinations

$$\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \le r \le n$$

N5 - The Binomial Theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Multinomial Coefficients

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! \, n_2! \dots n_r!}$$

N6 - represents the number of possible divisions of n distinct objects into r distinct groups of respective sizes n_1, n_2, \ldots, n_3 , where $n_1 + n_2 + \cdots + n_r = n$

N7 - The Multinomial Theorem:
$$(x_1 + x_2 + \dots + x_r)^n = \sum_{\substack{(n_1,\dots,n_r): n_1+n_2+\dots+n_r=n}} \frac{n!}{n_1! \ n_2! \ \dots n_r!} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}$$

Number of Integer Solutions of Equations

N8 - there are $\binom{n-1}{r-1}$ distinct *positive* integer-valued vectors (x_1, x_2, \dots, x_r)

satisfying $x_1+x_2+\cdots+x_r=n, \quad x_i>0, \quad i=1,2,\ldots,r$ N9 - there are $\binom{n+r-1}{r-1}$ distinct non-negative integer-valued vectors

 (x_1, x_2, \ldots, x_r) satisfying $x_1 + x_2 + \cdots + x_r = n$

Proof. let $y_k = x_k + 1 \Rightarrow y_1 + y_2 + \cdots + y_r = n + r$

02. AXIOMS OF PROBABILITY

Sample Space and Events

- sample space → The set of all outcomes of an experiment
- event → Any subset of the sample space
- **complement** of $E \to E^c$ is the event that contains all outcomes that are *not* in E.
- **subset** $\to E \subset F$ is all of the outcomes in E that are also in F.

•
$$E \subset F \land F \subset E \Rightarrow E = F$$

$$\begin{array}{lll} \text{DeMorgan's Laws:} & (\bigcup\limits_{i=1}^{n} E_i)^c = \bigcap\limits_{i=1}^{n} E_i^c & \text{and} & (\bigcap\limits_{i=1}^{n} E_i)^c = \bigcup\limits_{i=1}^{n} E_i^c \end{array}$$

Axioms of Probability

definition 1: relative frequency

 $P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$. problems: (1) $\frac{n(E)}{n}$ may not converge when $n \to \infty$. (2) $\frac{n(E)}{n}$ may not converge to the same value if the experiment is repeated.

Axioms (definition 2)

Consider an experiment with sample space S. For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following 3 axioms: 1. 0 < P(E) < 1**2.** P(S) = 1

3. For mutually exclusive events, $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$. same for finite case

mutually exclusive \rightarrow events for which $E_i E_i = \emptyset$ when $i \neq j$

Simple Propositions

N1 - $P(\emptyset) = 0$

N6 - **probability function** \iff it satisfies the 3 axioms.

N8 - if $E \subset F$, then $P(E) \leq P(F)$

 ${\bf N10}$ - Inclusion-Exclusion identity where n=3

 $P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG)$

N11 - Inclusion-Exclusion identity -

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \dots$$

$$+ (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} E_{i_2} \dots E_{i_r}) + \dots + (-1)^{n+1} P(E_1 E_2 \dots E_n)$$

- (i) $P(\bigcup_{i=1}^n E_i) \leq \sum_{i=1}^n P(E_i)$ (based on Inclusion-Exclusion identity)
- (ii) $P(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) \sum_{i \le i} P(E_i E_j)$
- (iii) $P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i) \sum_{i < i} P(E_i E_j) + \sum_{k < j < i} P(E_i E_j E_k)$

Sample Space having Equally Likely Outcomes

Consider an experiment with sample space $S = \{e_1, e_2, \dots, e_n\}$. Then

 $P(\{e_1\}) = P(\{e_2\}) = \dots = P(\{e_n\}) = \frac{1}{n} \quad \text{or} \quad P(\{e_i\}) = \frac{1}{n}.$ N1 - for any event E, $P(E) = \frac{\# \text{ of outcomes in } E}{\# \text{ of outcomes in } S} = \frac{\# \text{ of outcomes in } E}{n}$

increasing sequence of events $\{E_n, n \geq 1\} \rightarrow E_1 \subset E_2 \subset \cdots \subset E_n \subset \cdots$ decreasing sequence of events $\{E_n, n \geq 1\} \rightarrow E_1 \supset E_2 \supset \cdots \supset E_n \supset \cdots$

increasing: $\lim_{n\to\infty}E_n=\bigcup_{i=1}^\infty E_i$ decreasing: $\lim_{n\to\infty}E_n=\bigcap_{i=1}^\infty E_i$ N2 - for both *increasing* and *decreasing* sequence, $\lim_{n\to\infty}P(E_n)=P(\lim_{n\to\infty}E_n)$

03. CONDITIONAL PROBABILITY AND INDEPENDENCE

Conditional Probability

if
$$P(F)>0$$
, then $P(E|F)=\frac{P(E\cap F)}{P(F)}$

multiplication rule:

$$P(E_1 \dots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\dots P(E_n|E_1E_2\dots E_{n-1})$$

N3 - axioms of probability apply to conditional probability

2. P(S|F) = 1 where S is the sample space 1. $0 \le P(E|F) \le 1$

3. If E_i $(i \in \mathbb{Z}_{\geq 1})$ are mutually exclusive, then $P(\bigcup^{\infty} E_i | F) = \sum^{\infty} P(E_i | F)$

N4 - If we define Q(E) = P(E|F), then all previously proven results apply. • $P(E_1 \cup E_2|F) = P(E_1|F) + P(E_2|F) - P(E_1E_2|F)$

Total Probability & Bayes' Theorem

conditioning formula - $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$

$$P(F) \to F \xrightarrow{P(E|F)} E \qquad P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(F) \cdot P(E|F)}{P(E)}$$

$$F^{c} \to E^{c} \qquad P(F^{c}|E) = \frac{P(EF^{c})}{P(E)} = \frac{P(F^{c}) \cdot P(E|F^{c})}{P(E)}$$

Total Probability

theorem of total probability - Suppose F_1, F_2, \ldots, F_n are mutually exclusive events such that $\bigcup_{i=1}^n F_i = S$, then $P(E) = \sum_{i=1}^n P(EF_i) = \sum_{i=1}^n P(F_i) P(E|F_i)$

Bayes Theorem

$$P(F_j|E) = \frac{P(EF_j)}{P(E)} = \frac{P(F_j)P(E|F_j)}{\sum_{i=1}^{n} P(F_i)P(E|F_i)}$$

application of bayes' theorem

$$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$$

Let A be the event that the person test positive for a disease.

 B_1 : the person has the disease. B_2 : the person does not have the disease.

true positives: $P(B_1 \mid A)$ false negatives: $P(\bar{A} \mid B_1)$ false positives: $P(A \mid B_2)$ true negatives: $P(\bar{A} \mid B_2)$

Independent Events

N1 - E and F are independent $\iff P(EF) = P(E) \cdot P(F)$

N2 - E and F are independent $\iff P(E|F) = P(E)$

N3 - E and F are independent $\iff E$ and F^c are independent.

N4 - if E, F, G are independent, then E will be independent of any event formed from F and G. (e.g. $F \cup G$)

N6 - (E and F are indep) \wedge (E and G are indep) \Rightarrow E and FG are independent

 ${\bf N7}$ - For independent trials with probability p of success, probability of m successes before n failures, for m, n > 1,

$$P_{n-1,m} \xrightarrow{A \text{ win}} A \text{ win}$$

$$P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k}$$

04. RANDOM VARIABLES

random variable
→ a real-valued function defined on the sample space

Types of Random Variables

r.v.	-	E(X)
binomial	X= # of successes in n trials w/ replacement	np
negative binomial	X= # of trials until k successes	k/p
geometric	X= # of trials until a success	1/p
hypergeometric	X= # of successes in n trials, no replacement	rn/N

• X is a **Bernoulli r.v.** with parameter p if \rightarrow

$$p(x) = \begin{cases} p, & x = 1, \text{ ('success')} \\ 1 - p, & x = 0 \end{cases}$$
 ('failure')

• Y is a Binomial r.v. with parameters n and $p o Y = X_1 + X_2 + \cdots + X_n$ where X_1, X_2, \ldots, X_n are independent Bernoulli r.v.'s with parameter p.

• $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$

• P(k successes from n independent trials each with probability p of success)E(Y) = np, Var(Y) = np(1-p)

Negative Binomial $\to X =$ number of trials until k successes are obtained

ullet e.g. number of balls drawn (with replacement) until k red balls are obtained

• **Geometric** $\rightarrow X =$ number of trials until a success is obtained

• $P(X = k) = (1 - p)^{k-1} \cdot p$ where k is the number of trials needed

• e.g. number of balls drawn (with replacement) until 1 red ball is obtained • Hypergeometric $\to X =$ number of trials until success, without replacement

•
$$P(X=k)=rac{{m\choose k}{N-m\choose n-k}}{{N\choose k}}, k=0,1,\ldots,n$$
 (for m red balls of N balls)

ullet e.g. number of red balls out of n balls drawn without replacement

Properties

N1 - if
$$X \sim \text{Binomial}(n,p)$$
, and $Y \sim \text{Binomial}(n-1,p)$, then
$$E(X^k) = np \cdot E[(Y+1)^{k-1}]$$
 N2 - if $X \sim \text{Binomial}(n,p)$ then for $k \in \mathbb{Z}^+$

N2 - if
$$X \sim \mathsf{Binomial}(n,p)$$
, then for $k \in \mathbb{Z}^+$,

$$P(X = k) = \frac{(n-k+1)p}{k(1-p)} \cdot P(X = k-1)$$

Coupon Collector Problem

 ${\it Q}.$ Suppose there are ${\it N}$ distinct types of coupons. If ${\it T}$ denotes the number of coupons needed to be collected for a complete set, what is P(T=n)?

A.
$$P(T > n - 1) = P(T \ge n) = P(T = n) + P(T > n)$$

 $\Rightarrow P(T = n) = P(T > n - 1) - P(T > n)$

Let $A_i = \{$ no type i coupon is contained among the first $n\}$

$$P(T > n) = P(\bigcup_{j=1}^{N} A_j)$$

 $P(T > n) = \sum_{i} P(A_i)$ - coupon j is not among the first n collected $-\sum \sum_{j_1 < j_2} P(A_{j_1} A_{j_2})$ - coupon j_1 and j_2 are not the first n $+\cdots+(-1)^{N+1}P(A_1A_2\cdots A_N)$ by inclusion-exclusion identity

$$P(A_{j_1}A_{j_2}\cdots A_{j_k}) = (\frac{N-k}{N})^n$$

Hence
$$P(T > n) = \sum_{i=1}^{N-1} {N \choose i} (\frac{N-i}{N})^n (-1)^{i+1}$$

Probability Mass Function

probability mass function, pmf of $X \rightarrow$ (discrete) p(a) = P(X = a)

- if X assumes one of the values x_1, x_2, \ldots , then $\sum\limits_{i=1}^{\infty} p(x_i) = 1$
- cdf, $F(a) = \sum p(x)$ for all $x \le a$
- the pmf p(a) is positive for at most a countable number of values of a

Cumulative Distribution Function

- **cumulative distribution function (cdf)** of a r.v. $X \to \text{the function } F$ defined by $F(x) = P(X \le x), -\infty < x < \infty$
 - F(x) is defined on the entire real line. (aka distribution function)

$$\mathbf{pmf}, \frac{a \mid 1 \quad 2 \quad 4}{p(a) \mid \frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{4}} \qquad \mathbf{cdf}, F(a) = \begin{cases} 0, & a < 1 \\ \frac{1}{2}, & 1 \leq a < 2 \\ \frac{3}{4}, & 2 \leq a < 4 \\ 1, & a \geq 4 \end{cases}$$

Expected Value

- aka population mean/sample mean, μ
- if X is a discrete random variable having pmf p(x), the **expectation** or the **expected value** of X is defined as $E(X) = \sum x \cdot p(x)$

N1 - if a and b are constants, then E(aX+b)=aE(X)+b

N2 - the n^{th} moment of X is given as $E(X^n) = \sum_{x} x^n \cdot p(x)$

• I is an indicator variable for event A if $I = \begin{cases} 1, & \text{if } A \text{ occurs} \\ 0, & \text{if } A^c \text{ occurs} \end{cases}$. then E(I) = P(A).

finding expectation of f(x)

- method 1, using pmf of Y: let Y = f(X). Find corresponding X for each Y.
- method 2, using pmf of X: $E[f(x)] = \sum_{x} f(x)p(x)$

Variance

If X is a r.v. with mean $\mu = E[X]$, then the **variance** of X is defined by

$$\begin{split} Var(X) &= E[(X-\mu)^2] \\ &= E(x^2) - [E(x)]^2 \\ &= \sum (x_i - \mu)^2 \cdot p(x_i) \qquad \text{(deviation \cdot weight)} \end{split}$$

• $Var(aX + b) = a^2 Var(x)$

Poisson Random Variable

a r.v. X is said to be a **Poisson r.v.** with parameter λ if for some $\lambda > 0$,

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

$$E(X) = \lambda, \quad Var(X) = \lambda$$

- $\sum_{i=0}^{\infty} P(X=i) = 1$
- Poisson Approximation of Binomial if $X \sim \text{Binomial}(n, p)$, where n is large and p is small, then $X \sim \text{Poisson}(\lambda)$ where $\lambda = np$.
 - ✓ weak dependence is ok
- 2 ways to look at the Poisson distribution
 - 1. an approximation to the binomial distribution with large n and small p
 - 2. counting the number of events that occur at random at certain points in time

Poisson distribution as random events

Let N(t) be the number of events that occur in time interval [0, t].

N1 - If the 3 assumptions are true, then $N(t) \sim \mathsf{Poisson}(\lambda t)$.

N2 - If λ is the *rate of occurrences* of events per unit time, then the number of occurrences in an interval of length t has a Poisson distribution with mean λt .

$$P(N(t) = k) = \frac{e^{-\lambda t} (\lambda t)^k}{k!}$$
, for $k \in \mathbb{Z}_{>0}$

o(h) notation

$$o(h)$$
 stands for any function $f(h)$ such that $\lim_{h \to 0} \frac{f(h)}{h} = 0$

- $\begin{array}{l} \bullet \ o(h) + o(h) = o(h) \\ \bullet \ \frac{\lambda t}{n} + o(\frac{t}{n}) \dot{=} \frac{\lambda t}{n} \ \text{for large} \ n \end{array}$

Expected Value of sum of r.v.

For a r.v. X, let X(s) denote the value of X when $s \in \mathcal{S}$

N1 -
$$E(x) = \sum_i x_i P(X = x_i) = \sum_{s \in S} X(s) p(s)$$
 where $S_i = \{s : X(s) = x_i\}$

N2 -
$$E(\sum_{i=1}^{n}) = \sum_{i=1}^{n} E(X_i)$$
 for r.v. X_1, X_2, \dots, X_n

e.g. distribution of time to next event

Q. suppose an accident happens at a rate of 5 per day. Find the distribution of time, starting from now, until the next accident.

A. Let X = time (in days) until the next accident.

Let V = be the number of accidents during time period [0, t].

$$V \sim \text{Poisson}(5t)$$
 $\Rightarrow P(V = k) = \frac{e^{-5t \cdot (5t)^k}}{k!}$

 $P(X > t) = P(\text{no accidents happen during } [0, t]) = P(V = 0) = e^{-5t}$ $P(X \le t) - 1 - e^{-5t}$

05. CONTINUOUS RANDOM VARIABLES

X is a **continuous r.v.** \rightarrow if there exists a nonnegative function f defined for all real $x \in (-\infty, \infty)$, such that $P(X \in B) = \int_{B} f(x) dx$

N1 -
$$P(X \in (-\infty, \infty)) = \int_{-\infty}^{\infty} f(x) dx = 1$$

N2 -
$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

N3 -
$$P(X = a) = \int_a^a f(x) dx = 0$$

N4 -
$$P(X < a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$$

N5 - interpretation of probability density function

$$\begin{split} P(x < X < x + dx) &= \int_{x}^{x + dx} f(y) \, dy \\ &\approx f(x) \cdot dx \\ \text{pdf at } x, f(x) &\approx \frac{P(x < X < x + dx)}{dx} \end{split}$$

N6 - if X is a continuous r.v. with pdf f(x) and cdf F(x), then $f(x) = \frac{d}{dx}F(x)$. (Fundamental Theorem of Calculus)

N7 - median of X, x occurs where $F(x) = \frac{1}{2}$

Generating a Uniform r.v.

if X is a continuous r.v. with cdf F(x), then

• N8 - $F(X) = U \sim uniform(0,1)$

Proof. let
$$Y=F(X)$$
. then cdf of Y , $F_Y(y)=P(Y\leq y)=P(F(X)\leq y)=P(X\leq F^{-1}(y))=F(F^{-1}(y))=y$.

- N9 $X = F^{-1}(U) \sim \text{cdf } F(x)$.
 - generating a r.v. from a uniform(0, 1) r.v. and a r.v. with cdf F(x).

Expectation & Variance

N1 - expectation of X, $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$

 ${\bf N2}$ - if X is a continuous r.v. with pdf f(x), then for any real-valued function g, $E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x) dx$

N2a
$$E[aX+b]=\int_{-\infty}^{\infty}(aX+b)\cdot f(x)\,dx=a\cdot E(X)+b$$

N3 - for a non-negative r.v. $Y, E(Y) = \int_0^\infty P(Y > y) dy$

Proof.
$$\int_0^\infty P(Y>y)\,dy = \int_0^\infty \int_y^\infty f_Y(x)\,dx\,dy \text{ (because } f(x) = \frac{d}{dx}F(x)\text{)}$$

$$= \int_0^\infty x f_Y(x)\,dx$$

$$= E(Y)$$

N4 - variance of X, $Var(X) = E[(X - \mu)^2] = E(X^2) - [E(X)]^2$

Q - Find the pdf of (b-a)X + a where a, b are constants, b > a. The pdf of X is given by $f(x) = \begin{cases} 1, & 0 \le X \le 1 \\ 0, & \text{otherwise} \end{cases}$

$$\operatorname{cdf}, F_Y(y) = P(Y \le y) = P((b-a)X + a \le y) = P(X \le \frac{y-a}{b-a})$$

$$F_Y(y) = \int_0^{\frac{y-a}{b-a}} 1 \, dx = \frac{y-a}{b-a}, \quad a < y < b$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} \frac{1}{b-a}, & a < y < b \\ 0, & \text{otherwise} \end{cases}$$

Uniform Random Variable

X is a **uniform r.v.** on the interval (α, β) , $X \sim Uniform(\alpha, \beta)$ if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta \\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{\alpha + \beta}{2}, \quad Var(X) = \frac{(\beta - \alpha)^2}{12}$$

if $X \sim Uniform(\alpha, \beta)$, then $\frac{x-\alpha}{\beta-\alpha} \sim Uniform(0, 1)$

Normal Random Variable

X is a **normal r.v.** with parameters μ and σ^2 , $X \sim N(\mu, \sigma^2)$ if the pdf of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x}{\mu}\sigma)^2}, \quad -\infty < x < \infty$$
$$E(x) = \mu, \quad Var(X) = \sigma^2$$

 $\text{if }X\sim N(\mu,\sigma^2)\text{, then }\frac{X-\mu}{\sigma}\sim N(0,1)$ $\text{if }Y\sim N(\mu,\sigma^2)\text{ and }a\text{ is a constant, }F_y(a)=\Phi(\frac{a-\mu}{\sigma})$

standard normal distribution $\to X \sim N(0,1)$

•
$$F(x) = P(X \le x) = \frac{1}{\sqrt{r\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy = \Phi(x)$$

Normal Approximation to the Binomial Distribution

if
$$S_n \sim Binomial(n,p)$$
, then $\frac{S_n-np}{\sqrt{np(1-p)}} \sim N(0,1)$ for large n .
$$\mu=np, \quad \sigma^2=np(1-p)$$

Exponential Random Variable

a continuous r.v. X is a exponential r.v., $X \sim Exponential(\lambda)$ or $Exp(\lambda)$ if for some $\lambda > 0$, its pdf is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$

$$P(X < a) = \int_0^a \lambda e^{-\lambda x} dx$$

- an exponential r.v. is memoryless
 - a non-negative r.v. is memoryless → if $P(X > s + t \mid X > t) = P(X > s)$ for all s, t > 0.

$$I(A > S + t \mid A > t) = I(A > S)$$
 for all S

Gamma Distribution

a r.v. X has a gamma distribution, $X \sim Gamma(\alpha, \lambda)$ with parameters (α, λ) , $\lambda > 0$ and $\alpha > 0$ if its pdf is given by

$$f(x) \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
$$E(X) = \frac{\alpha}{\lambda} Var(X) = \frac{\alpha}{\lambda^2}$$

where the gamma function $\Gamma(\alpha)$ is defined as $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} dy$.

N1 -
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

Proof. using integration by parts of LHS to RHS

N2 - if α is an integer n, then $\Gamma(n) = (n-1)!$ **N3** - if $X \sim Gamma(\alpha, \lambda)$ and $\alpha = 1$, then

$$X \sim Exp(\lambda)$$
.

N4 - for events occurring randomly in time following the 3 assumptions of poisson distribution, the **amount of time elapsed** until a total of n events has occurred is a gamma r.v. with parameters (n, λ) .

- time at which the *n*-th event occurs, $T_n \sim Gamma(n, \lambda)$
- number of events in time period [0, t], $N(t) \sim Poisson(\lambda t)$

N5 - $Gamma(\alpha = \frac{n}{2}, \lambda = \frac{1}{2}) = \chi_n^2$ (chi-square distribution to n degrees of

Beta Distribution

a r.v. X is said to have a **beta distribution**, $X \sim Beta(a,b)$

$$f(x) = \begin{cases} \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1}, & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{a}{a+b} \quad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

N1 -
$$\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

N2 - $\beta(a = 1, b = 1) = Uniform(0, 1)$

N3 - $\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

Cauchy Distribution

a r.v. X has a cauchy distribution, $X \sim Cauchy(\theta)$ with parameter θ , $\infty < \theta < \infty$ if its density is given by

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$$

06. JOINTLY DISTRIBUTED RANDOM VARIABLES

Joint Distribution Function

the **joint cumulative distribution function** of the pair of r.v. X and Y is \rightarrow $F(x,y) = P(X \le x, Y \le y), -\infty < x < \infty, -\infty < y < \infty$

N1 - marginal cdf of X, $F_X(x) = \lim_{x \to \infty} F(x, y)$.

N2 - marginal cdf of Y, $F_Y(y) = \lim_{x \to \infty} F(x, y)$.

N3 -
$$P(X > a, Y > b) = 1 - F_X(a) - F_Y(b) + F(a, b)$$

N4 - $P(a_1 < X \le a_2, b_1 < Y \le b_2)$ $= F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1)$

Joint Probability Mass Function

if X and Y are both discrete r.v., then their **joint pmf** is defined by p(i,j) = P(X=i, Y=j)

N1 - marginal pmf of X,
$$P(X = i) = \sum_{i} P(X = i, Y = j)$$

N2 - marginal pmf of Y, $P(Y=i) = \sum_{i}^{\infty} P(X=i, Y=j)$

Joint Probability Density Function

the r.v. X and Y are said to be *jointly continuous* if there is a function f(x,y) called the **joint pdf**, such that for any two-dimensional set C,

$$P[(X,Y) \in C] = \iint_C f(x,y) dx dy$$

= volume under the surface over the region C.

$$\begin{array}{ll} & \textbf{N1} \text{-} \text{ if } C = \{(x,y): x \in A, y \in B\}, \text{ then} \\ P(X \in A, Y \in B) = \int\limits_{B} \int\limits_{A} f(x,y) \, dx \, dy \\ f^{(x,y)} & \textbf{N2} \text{-} F(a,b) \end{array}$$

$$= P\left(X \in (-\infty, a], Y \in (-\infty, b]\right)$$
$$= \int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y) \, dx \, dy$$

N3 -
$$f(a,b) = \frac{\delta^2}{\delta a \delta b} F(a,b)$$

interpretation of pdf

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$
$$\approx f(x) dx$$

pdf at
$$x, f(x) pprox \frac{P(x < X < x + dx)}{dx}$$

interpretation of joint pdf

P(a < X < a + da, b < Y < b + db) $= \int_{b}^{b+db} \int_{a}^{a+da} f(x,y) \, dx \, dy$ $\approx f(a,b) \, da \, db \qquad \text{(density of probability)}$ marginal pdf of X, $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ marginal pdf of Y, $f_Y(x) = \int_{-\infty}^{\infty} f(x,y) dx$

how to do a double integral

example - given the joint pdf of X and Y, find the pdf of r.v. X/Y.

ans. set dummy variable
$$W=X/Y$$
, then
$$F_W(w)=P(W\leq w)=P(\frac{X}{Y}\leq w) \quad \text{for } P(\frac{X}{Y}\leq w)=\int_0^\infty \int_0^{wy} e^{-x-y}\,dx\,dy$$

Independent Random Variables

N1 - X, Y are independent $\rightarrow P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$

N2 - X and Y are independent $\rightarrow P(X \le a, Y \le b) = P(X \le a) \cdot P(Y \le b)$ or $F(a,b) = F_X(a) \cdot F_Y(b)$ \Rightarrow joint cdf is the product of the marginal cdfs

N3 - discrete case: discrete r.v. X and Y are independent \iff

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y) \text{ for all } x, y.$$

N4 - continuous case: jointly continuous r.v. X and Y are independent \iff

$$\begin{split} f(x,y) &= f_X(x) \cdot f_Y(y) \text{ for all } x,y. \\ -\infty &< x < \infty, \quad -\infty < y < \infty \end{split}$$

N5 - independence is a **symmetric** relation $\to X$ indep of $Y \iff Y$ indep of X

if X and Y are independent, then for any functions h and q, $E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)]$

Sum of Independent Random Variables

N1 - for independent, continuous r.v. X and Y having pdf f_X and f_Y ,

$$F_{X+Y}(a) = \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

Distribution of Sums of Independent r.v.

for i = 1, 2, ..., n.

1. $X_i \sim Gamma(t_i, \lambda) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(\sum_{i=1}^n t_i, \lambda)$

2. $X_i \sim Exp(\lambda) \quad \Rightarrow \quad \sum_{i=1}^{n} X_i \sim Gamma(n, \lambda)$

3. $Z_i \sim N(0,1) \quad \Rightarrow \quad \sum_{i=1}^n z_i^2 \sim \chi_n^2 = Gamma(\frac{n}{2}, \frac{1}{2})$

4. $X_i \sim N(\mu_i, \sigma_i^2) \Rightarrow \sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$ 5. $X \sim Poisson(\lambda_1), Y \sim Poisson(\lambda_2) \Rightarrow X + Y \sim Poisson(\lambda_1 + \lambda_2)$

6. $X \sim Binom(n, p), Y \sim Binom(m, p) \Rightarrow X + Y \sim Binom(n + m, p)$

Conditional Distribution (discrete)

for discrete r.v. X and Y, the ${\color{red} {\bf conditional\ pmf}}$ of X given that Y=y is

$$P_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x,y)}{P(Y = y)}$$

for discrete r.v. X and Y, the **conditional pdf** of X given that Y=y is

$$F_{X|Y}(x|y) = P(X \le x|Y = y) = \sum_{a \le x} \frac{P(X = a, Y = y)}{P(Y = y)} = \sum_{a \le x} P_{X|Y}(a|y)$$

N0 - equivalent notation:

• $P_{X|Y}(x|y) = P(X = x|Y = y)$

 $P_X(x) = P(X = x)$

N1 - if X is independent of Y, then $P_{X|Y}(x|y) = P_X(x)$

Conditional Distribution (continuous)

for X and Y with joint pdf f(x,y), the **conditional pdf** of X given that Y=y is

$$f_{X|Y}(x|y) = rac{f(x,y)}{f_Y(y)} \quad ext{ for all } y ext{ s.t. } f_Y(y) > 0$$

$$f_{X|Y}(a|y) = P(X \le a|Y = y) = \int_{-\infty}^{a} f_{X|Y}(x|y) dx$$

N1 - for any set A, $P(X \in A|Y=y) = \int f_{X|Y}(x|y) \, dy$

N2 - if X is independent of Y, then $f_{X|Y}(x|y) = f_X(x)$.

! "find the marginal/conditional pdf of Y" \Rightarrow must include the **range** too!!

Joint Probability Distribution of Functions of r.v.

Let X_1 and X_2 be jointly continuous r.v. with joint pdf $f_{x_1,x_2}(x_1,x_2)$. Suppose $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$ satisfy

- 1. the equations $y_1 = q_1(X_1, X_2)$ and $y_2 = q_2(X_1, X_2)$ can be uniquely solved for x_1, x_2 in terms of y_1 and y_2
- 2. $g_1(x_1, x_2)$ and $g_2(x_1, x_2)$ have continuous partial derivatives at all points

$$(x_1,x_2) \text{ such that } J(x_1,x_2) = \begin{vmatrix} \frac{\delta g_1}{\delta x_1} & \frac{\delta g_1}{\delta x_2} \\ \frac{\delta g_2}{\delta x_1} & \frac{\delta g_2}{\delta x_2} \end{vmatrix} = \frac{\delta g_1}{\delta x_1} \cdot \frac{\delta g_2}{\delta x_2} - \frac{\delta g_2}{\delta x_1} \cdot \frac{\delta g_1}{\delta x_2} \neq 0$$

then

$$\begin{split} f_{Y_1,Y_2}(y_1,y_2) &= f_{X_1,X_2}(x_1,x_2) \frac{1}{|J(x_1,x_2)|} \\ \text{where } x_1 &= h_1(y_1,y_2), x_2 = h_2(y_1,y_2) \end{split}$$

07. PROPERTIES OF EXPECTATION

- for a discrete r.v. X, $E(X) = \sum_x x \cdot p(x) = \sum_x \cdot P(X = x)$
- for a **continuous** r.v. $X, E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$
- for a non-negative integer-valued r.v. Y, $E(Y) = \sum_{i=1}^{\infty} P(Y \geq i)$ for a non-negative r.v. Y, $E(Y) = \int_{-\infty}^{\infty} P(Y > y) \, dy$

Expectations of Sums of Random Variables

for
$$X$$
 and Y with joint pmf $p(x,y)$ and joint pdf $f(x,y)$,
$$E[g(x,y)] = \sum_y \sum_x g(x,y) p(x,y)$$

$$E[g(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, dx \, dy$$

N2 - if $P(a \le X \le b) = 1$, then $a \le E(X) \le b$

N4 - for r.v.s X and Y, if X > Y, then E(X) > E(Y)

N5 - let X_1, \ldots, X_n be independent and identically distributed r.v.s having distribution $P(X_i \leq x) = F(x)$ and expected value $E(X_i) = \mu$.

if
$$\bar{X} = \sum\limits_{i=1}^n \frac{X_i}{n}$$
, then $E(\bar{X}) = \mu$

N6 - \bar{X} is the **sample mean**. \Rightarrow sample mean = population mean ! trick: express a r.v. as a sum of r.v. with easier to find expectation

examples

- hypergeometric with r red balls out of N balls with n trials
 - indicator r.v. = 1 if the *i*th ball selected is red
 - $P(Y_i = 1) = \frac{r}{N} \Rightarrow E(Y_i) = \frac{r}{N} \Rightarrow E(X) = \sum_{i=1}^n Y_i = n \frac{r}{N}$
- · coupon collector problem:
 - let X = number of coupons collected for a complete set
 - let X_i = additional number to be collected to obtain distinct type after i distinct types have been collected. $X_i \sim Geometric(p = \frac{N-i}{N})$
 - $E(X) = \sum_{i=1}^{N-1} E(X_i) = 1 + \frac{1}{\frac{N-1}{N}} + \frac{1}{\frac{N-2}{N}} + \dots + \frac{1}{\frac{1}{N}}$ $=N(\frac{1}{N}+\frac{1}{N-1}+\cdots+1)$

Covariance, Variance of Sums and Correlations

covariance → measure of linear relationship

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

N1 - X and Y are independent $\Rightarrow Cov(X,Y) = 0$

N2 - $Cov(X,Y) = 0 \Rightarrow X$ and Y are independent. *Proof.* let E(X) = 0, $E(XY) = 0 \Rightarrow Cov(X,Y) = 0$, but not independent e.g. non-linear relationship

Covariance properties

- 1. Cov(X,Y) = Cov(Y,X)
- 2. Cov(X,X) = Var(X)
- 3. Cov(aX, Y) = aCov(X, Y)
- **4.** $Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$

N1 -
$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

N2 - if X_1, \ldots, X_n are pairwise independent, $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$

N3 - for n independent and identically distributed r.v. with variance σ^2 ,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
 $Var(\bar{X}) = \frac{\sigma^2}{n}$ $E(S^2) = \sigma^2$

 $\Rightarrow S^2$ is an unbiased estimator for σ^2 .

Correlation

correlation of two r.v.
$$X$$
 and Y , $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)\cdot Var(Y)}}$

N1 - $-1 < \rho(X,Y) < 1$ where -1 and 1 denote a perfect negative and positive linear relationship respectively.

N2 - $\rho(X,Y)=0 \Rightarrow$ no *linear* relationship - uncorrelated

N3 -
$$\rho(X,Y) = 1 \Rightarrow Y = aX + b, a = \frac{\delta y}{\delta x} > 0$$

N4 - for independent events A, B with indicator r.v. I_A , I_B : $Cov(I_A, I_B) = 0$.

N5 - deviation is not correlated with the sample mean. For independent & identically distributed r.v. X_1, X_2, \ldots, X_n with variance σ^2 , then $Cov(X_i - \bar{X}, \bar{X}) = 0$.

Conditional Expectation

the **conditional expectation** of X given that Y = y, $\forall y$ s.t. $P_Y(y) > 0$, is:

$$E[X|Y=y] = \sum_{x} x \cdot P(X=x|Y=y) = \sum_{x} x \cdot p_{X|Y}(x|y)$$

$$E(X|Y=y) = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} x \cdot \frac{f(x,y)}{f_{Y}(y)} dx$$

N1 - If $X, Y \sim Geometric(p)$,

then $P(X=i|X+Y=n)=\frac{1}{n-1}$, a uniform distribution.

N2 -
$$E(X|X+Y=n)=\sum_{i=1}^{n-1}i\cdot P(X=i|X+Y=n)=\frac{n}{2}$$
 discrete case: $E[g(x)|Y=y]=\sum g(x)P_{X|Y}(x|y)$

continuous case: $E[g(x)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y)$ then $E(X) = E_{\text{w.r.t. } y}(E_{\text{w.r.t. } X|Y=y}(X|Y))$

Deriving Expectation

$$E(X) = E_Y(E_X(X|Y))$$

discrete case:
$$E(X)=\sum\limits_{y}E(X|Y=y)P(Y=y)$$
 continuous case: $E(X)=\int_{-\infty}^{\infty}E(X|Y=y)f_{Y}(y)\,dy$

N3 - 3 methods for finding E(X) given f(x,y)

- 1. using $E(g(x,y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy \implies \text{let } g(x,y) = x$
- 2. using $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$
- 3. using $E(X) = \int_{-\infty}^{\infty} E(X|Y=y) f_Y(y) dy$

N4 -
$$E(\sum_{i=1}^{N} X_i) = E_N(E(\sum_{i=1}^{N} X_i | N)) = \sum_{n=0}^{\infty} E(\sum_{i=1}^{N} X_i | N = n) \cdot P(N = n)$$

Computing Probabilities by Conditioning

discrete:
$$P(E) = \sum_{y} P(E|Y=y)P(Y=y)$$

continuous:
$$P(E) = \int\limits_{-\infty}^{\infty} P(E|Y=y) f_Y(y) \, dy$$

Proof. X is an indicator r.v.; E(X|Y=y) = P(X=1|Y=y) = P(E|Y=y)

N5 -
$$P(X < Y) = \int P(X < Y | Y = y) \cdot f_Y(y)$$

Conditional Variance

$$Var(X|Y) = E[(X - E(X|Y))^{2} | Y]$$

= $E(X^{2}|Y) - [E(X|Y)]^{2}$

N6 - Var(X) = E[Var(X|Y)] + Var[E(X|Y)]

N7 -
$$E(f(Y)) = E(f(Y)|Y = t) = E(f(t)|Y = t)$$

= $E(f(t))$ if $N(t)$ and Y are independent

Moment Generating Functions

moment generating function M(t) of the r.v. $X \rightarrow$

$$M(t) = E(e^{tX})$$
 for all real values of t

- if X is discrete with pmf p(x), $M(t) = \sum_{x} e^{tx} \cdot p(x)$
- if X is continuous with pdf f(x), $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

M(t) is called the \mathbf{mgf} because all moments of X can be obtained by successively differentiating M(t) and then evaluating the result at t=0.

- $M'(0) = E(X), M''(0) = E(X^2), M^n(0) = E(X^n), n \ge 1$
- $M'(t) = E(X^n e^{tX}), \quad n \ge 1$

if X and Y are independent and have mgf's $M_X(t)$ and $M_Y(t)$ respectively,

N10 - the mgf of X + Y is $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

N11 - if $M_X(t)$ exists and is finite in some region about t=0, then the distribution of X is **uniquely** determined. $M_X(t) = M_Y(t) \iff X = Y$

Common mgf's

- $X \sim Normal(0,1), \quad M(t) = e^{e^2/2}$
- $X \sim Binomial(n, p), \quad M(t) = (pe^t + (1 p))^n$
- $X \sim Poisson(\lambda), \quad M(t) \exp[\lambda(e^t 1)]$
- $X \sim Exp(\lambda)$, $M(t) = \frac{\lambda}{\lambda t}$

08. LIMIT THEOREMS

Markov's Inequality \to if X is a non-negative r.v., $\forall a > 0$, $P(X \ge a) \le \frac{E(x)}{a}$. **Chebyshev's inequality** \rightarrow if X is an r.v. with finite mean μ and variance σ^2 , then

for any value of k > 0, $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$.

N1 - if Var(X) = 0, then P(X = E[X]) = 1

weak law of large numbers \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distributed r.v.s, each with finite mean $E[X_i] = \mu$. Then, for any $\epsilon > 0$, $P\{|\frac{X_1+\dots+X_n}{\epsilon}-\mu|\geq\epsilon\}\to 0 \text{ as } n\to\infty$

central limit theorem \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distributed r.v.s each having mean μ and variance σ^2 . Then the

distribution of $\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}$ tends to the standard normal as $n\to\infty$. • aka: $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \to z \sim N(0,1)$

• for $-\infty < a < \infty$, as $n \to \infty$, $P(\frac{X_1 + \dots + X_n - n\mu}{\sigma \sqrt{n}} \le a) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} \, dx = F(a) \quad \text{- cdf of } N(0,1)$ N2 - Let Z_1, Z_2, \dots be a sequence of r.v.s with distribution functions F_{Z_n} and

moment generating functions M_{Z_n} , $n \ge 1$. Let Z be a r.v. with distribution function F_Z and mgf M_Z .

If $M_{Z_n}(t) o M_Z(t)$ for all t, then $F_{Z_n}(t) o F_Z(t)$ for all t at which $F_Z(t)$ is

strong law of large numbers \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distribution r.v.s, each having finite mean $\mu = E[X_i]$.

Then, with probability 1, $\frac{X_1+\cdots+X_n}{n}\to\mu$ as $n\to\infty$

approximations -
$$\lim_{n\to\infty} (1-\frac{\lambda}{n})^n = e^{-\lambda}$$