

Analysis of Quasi-statics in metals
V.E=0
VXH = jind
V. B = 0
-VXE = 12, B
So jind = o E ind then we have with B= nH
V× H = g Eind
c ·
Dx Dx H = a Dx Eing Dx E = Foth
VXE = Z oth
$\nabla (\vec{A} \cdot H) - \nabla^2 H = -\sigma_M \partial_t H$
So find a diffusion equation for magnetic
So find a diffusion equation for magnetic fields:
V'H = om 2H
C ²
Diffusion equation
$S^{\sharp} U = D \Delta_J^{\mathcal{U}}$
diffusion Coefficient

Solving the Diff Eq. pg. 2

Then find
$$\partial_t H \propto -i\omega H$$

$$\begin{pmatrix} \partial^2 & + i\omega \\ \partial x^2 & D \end{pmatrix} h(x) = 0$$
So try $h(x) = c e^{i k x} = \frac{1}{2}$

$$- k^2 + i\omega = 0 \implies k_{\pm} = \pm (1+i) \quad \omega = \pm (1+i) \quad$$

Diff Eq. pg. 3 Thus find that the magnetic, field decays with characteristic length S $S = \sqrt{\frac{2D}{\omega}} - \sqrt{\frac{2c^2}{\omega m\sigma}} \qquad \sigma \sim 10^{18} \text{ Hz}$ Srcm 1 The state of metal and probe For Den ~ cm² find property of metal We can calculate the electric field 1×= 0E = VXB Find for B in Z-direction jy - - 2B² - Re [-2 He-inteik+x] Re [-ik+ He-iwteik+x] 3 = \(\frac{1}{2}\) H \(\epsi^{\times/\sigma}\) (\(\epsi^{\sigma} - \omega t - \overline{1}/4)\)

