Image Denoising and Deblurring Applied Math 515 Final Project

Samuel Rudy, Kelsey Maass, Riley Molloy, and Kevin Mueller

March 12 2016

Contents

- Motivation
- De(noise/blur)ing Objective Functions
- Optimization with L1 Wavelet Regularization
- Optimization with Total Variation Regularization
- Discussion
- Oiscussion

Image Denoising and Deblurring

Mathematical Formulation

- Blur: Ax is a discrete convolution of the true image with a Gaussian kernel (reflexive boundary conditions).
- Noise: w is noise drawn from a Gaussian or Student's t distribution

Naive Solution: $x = A^{-1}b$

True image

Blurred image

Recovered image

Naive Solution: $x = A^{-1}(b - w)$

True image

Blurred and noisy image

Recovered image

Since the blur operator is ill-conditioned, a better approach is to minimize a regularized loss function.

General Loss Function

$$L_b(x) = \underbrace{f(Ax - b)}_{\text{Fidelity term}} + \underbrace{\lambda R(x)}_{\text{Regularization}}$$

Fidelity Terms

$$f = egin{cases} \|\cdot\|_F^2 \ h_\gamma(\cdot) \ \gamma^{-1}\log(\cosh(\gamma\cdot)) \end{cases}$$

Regularization Terms

$$R = \begin{cases} \|Wx\|_1 \\ TV(x) \end{cases}$$

Fidelity Term Penalty Functions

THIS SLIDE NEEDS HELP!
What is Ax - b Why use different functions than frobenius norm?
Use pictures as motivation. Show quadratic and huber penalty functions, show different distributions?

Image Assumptions and Regularizers

Our choices of regularizers assume that images are sparse in wavelet domains and that they are relatively smooth (low total variation). SPLIT THIS INTO 2 SLIDES

L1 Wavelet Regularization

Loss Function

$$L_b(x) = f(Ax - b) + \lambda ||Wx||_1$$

Proximal Gradient Step

$$x^{k+1} = \operatorname{prox}_{\alpha^{-1}\lambda \| W \cdot \|_1} \left(x^k - \alpha^{-1} A^T \nabla f (A x^k - b) \right)$$

Results: Gaussian Noise

11 / 22

Results: Student's t Noise

Choosing λ

Total Variation Regularization

Loss Function

$$L_b(x) = f(Ax - b) + \lambda \text{TV}(x) + \delta(x|[0, 1])$$

Proximal Gradient Step

$$\begin{split} \boldsymbol{x}^{k+1} &= \operatorname{prox}_{\boldsymbol{\alpha}^{-1}(\boldsymbol{\lambda} \| \cdot \|_{TV} + \delta_{[0,1]})} (\underbrace{\boldsymbol{x}^k - \boldsymbol{\alpha}^{-1} \boldsymbol{A}^T \nabla f(\boldsymbol{A} \boldsymbol{x}^k - \boldsymbol{b})}_{\boldsymbol{u}^k}) \\ &= \underset{\boldsymbol{z}}{\operatorname{arg } \min} \left(\|\boldsymbol{u}^k - \boldsymbol{z}\|_F^2 + \boldsymbol{\alpha}^{-1} \boldsymbol{\lambda} \|\boldsymbol{z}\|_{TV} + \delta(\boldsymbol{z}|[0,1]) \right) \\ &= P_{[0,1]} \left(\underset{\boldsymbol{z}}{\operatorname{arg } \min} \left(\|\boldsymbol{u}^k - \boldsymbol{z}\|_F^2 + \boldsymbol{\alpha}^{-1} \boldsymbol{\lambda} \|\boldsymbol{z}\|_{TV} \right) \right) \end{split}$$

Dual Form of Total Variation

A Few Definitions

- $\mathcal{P} = \{(p,q) \in \mathbb{R}^{(m-1) \times n} \times \mathbb{R}^{m \times (n-1)} : |p_{i,j}| \le 1, |p_{i,j}| \le 1\},$
- ullet $\mathcal{L}: \mathbb{R}^{(m-1) \times n} \times \mathbb{R}^{m \times (n-1)} o \mathbb{R}^{m \times n}$ such that

$$\mathcal{L}(p,q)_{i,j} = p_{i,j} + q_{i,j} - p_{i-1,j} - q_{i,j-1}$$

for
$$i = 1, ..., m, j = 1, ..., n$$
, and $p_{0,j} = p_{m,j} = q_{i,0} = q_{i,n} = 0$.

 \bullet P_C is the usual projection operator onto the set C

Total Variation

$$\mathrm{TV}(x) = \max_{p,q \in \mathcal{P}} T(x,p,q) \implies T(x,p,q) = \mathrm{Tr}(\mathcal{L}(p,q)^T x).$$

Dual Form of TV Denoising with $\|\cdot\|_F^2$

The problem:

$$\min_{x \in C} ||x - b||_F^2 + 2\lambda \text{TV}(x), C = [0, 1]$$

Dual problem:

$$\min_{(p,q)\in\mathcal{P}} \underbrace{-\|H_C(b-\lambda\mathcal{L}(p,q))\|_F^2 + \|b-\lambda\mathcal{L}(p,q)\|_F^2}_{h(p,q)}$$

$$H_C(x) = \underbrace{x - P_C(x)}_{\text{prox}}$$

Optimality conditions:

$$x = P_C(b - \lambda \mathcal{L}(p, q)).$$

Optimization of Dual Form

Problem Statement

$$\min_{\substack{(p,q) \in \mathcal{P} \\ (p,q)}} \left\{ \|b - \lambda \mathcal{L}(p,q)\|_F^2 - \|(I - P_{[0,1]})(b - \lambda \mathcal{L}(p,q))\|_F^2 \right\} \\
\min_{\substack{(p,q) \\ (p,q)}} \left\{ \underbrace{\|b - \lambda \mathcal{L}(p,q)\|_F^2 - \|(I - P_{[0,1]})(b - \lambda \mathcal{L}(p,q))\|_F^2}_{=h(p,q)} + \delta((p,q)|\mathcal{P}) \right\}$$

$$abla h(p,q) = -2\lambda \mathcal{L}^T P_{[0,1]}(b - \lambda \mathcal{L}(p,q))$$
Lipschitz with constant $\leq 16\lambda^2$
 \Rightarrow Use projected gradient

Optimization in Dual Form

Projection onto \mathcal{P}

Recal
$$\mathcal{P}=(p,q)\in [-1,1]^{m-1 imes n} imes [-1,1]^{m imes n-1}$$

$$P_{\mathcal{P}}(p,q) = (r,s) ext{ with } \left\{ egin{aligned} r_{ij} &= sgn(p_{ij})\min\{1,|p_{ij}|\} \ s_{ij} &= sgn(q_{ij})\min\{1,|q_{ij}|\} \end{aligned}
ight.$$

Projected Gradient Step

$$(p^{k+1},q^{k+1}) = P_{\mathcal{P}}\left((p^k,q^k) + \frac{1}{8\lambda}\mathcal{L}^{\mathsf{T}}P_{[0,1]}(b-\lambda\mathcal{L}(p,q))\right)$$

Summary of Fast TV Regularization

$MFISTA(b, f, \lambda)$

$$\begin{split} y^1 &= x^0 = b; \ t^1 = 1 \\ \alpha &\geq Lip(\nabla f) \\ \text{for } k = 1 : N \ \text{do} \\ u^k &= y^k - \frac{A^T \nabla f(Ay^k - b)}{\alpha} \\ z^k &= FGP(u^k, \frac{\lambda}{2\alpha}) \\ x^k &= \underset{x \in \{x^{k-1}, z^k\}}{\operatorname{argmin}} \ L_b(x) \\ t^{k+1} &= \frac{1 + \sqrt{1 + 4t^{k^2}}}{2} \\ y^{k+1} &= x^k + \frac{t^k}{t^{k+1}} (z^k - x^k) \\ &+ \frac{t^{k-1}}{t^{k+1}} (z^k - x^k) \end{split}$$

 $FGP(b, \lambda)$

$$(r_{ij}^1, s_{ij}^1) = (p_{ij}^0, q_{ij}^0) = 0; \ t^1 = 1$$
 for $k = 1 : N$ do

$$(p^{k}, q^{k}) = P_{\mathcal{P}}\left((r^{k}, s^{k}) - \frac{\mathcal{L}^{T}P_{[0,1]}(b - \lambda \mathcal{L}(r^{k}, s^{k}))}{8\lambda}\right)$$
$$t^{k+1} = \frac{1 + \sqrt{1 + 4t^{k^{2}}}}{2}$$
$$(r^{k}, s^{k}) = (p^{k}, q^{k}) + \frac{t^{k} - 1}{k+1}(p^{k} - p^{k-1}, q^{k} - q^{k-1})$$

end for

return
$$P_{[0,1]}(b - \lambda \mathcal{L}(p^N, q^N))$$

end for

return x^N

Results: Gaussian Noise

Results: Student's-t Noise

Questions?

- Codes used to generate figures https://github.com/snagcliffs/Amath575project
- Guckenheimer, J., Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983. Print.
- Oliveira, D., Leonel, E. (2008) *Braz. J. Phys.* 38(1):62-64
- Grassberger, P., Procaccia, I. (1983) *Phys. Rev. Letters*. 50(5):346-349