arborescente

Parcourir un arbre

Parcours en profondeur Rechercher un fichier

Recherche de fichiers Notion d'arbre

Christophe Viroulaud

Terminale - NSI

Algo 04

hiérarchique arborescente

Parcourir un arbre

Parcours en profondeur Rechercher un fichier

Pour retrouver un document les systèmes d'exploitation proposent une fonction de recherche.

1 find -name "mon-fichier.pdf"

Code 1 – Rechercher *mon-fichier.pdf* dans le dossier courant et ses sous-dossiers

hiérarchique arborescente

Parcourir un arbre

Parcours en profondeur Rechercher un fichier

Comment effectuer une recherche efficace dans la structure des dossiers?

Sommaire

Recherche de fichiers Notion d'arbre

Structure hiérarchique arborescente

Parcourir un arbre

Parcours en profondeur

Rechercher un fichier

2 Parcourir un arbre

1. Structure hiérarchique arborescente

FIGURE 1 – Structure hiérarchique d'un système Linux

Recherche de fichiers

Structure hiérarchique arborescente

Parcourir un arbre

Parcours en profondeu Rechercher un fichier

hiérarchique arborescente

Parcourir un arbre

Parcours en profondeur Rechercher un fichier

À retenir

Un arbre est défini par :

- un nœud particulier qui constitue la racine,
- plusieurs sous-ensembles d'autres arborescences reliées à la racine.

On nomme **nœud-fils** l'ensemble des nœuds reliés à un même **nœud-père**.

On nomme feuilles les nœuds qui n'ont pas de fils.

Remarque

De manière usuelle un arbre est représentée à *l'envers*, la racine en haut.

FIGURE 2 – Une structure arborescente

Recherche de fichiers Notion d'arbre

Structure hiérarchique arborescente

Parcourir un arbre

Parcours en largeur
Parcours en profondeur
Rechercher un fichier

À retenir

La **taille** d'un arbre est le nombre de nœuds de la structure.

FIGURE 3 – La taille de l'arbre est 11.

À retenir

La hauteur (ou profondeur) d'un arbre est la longueur du plus grand chemin entre la racine et une feuille.

FIGURE 4 – La hauteur de l'arbre est 3.

hiérarchique arborescente

Structure

Parcourir un arbre

Parcours en profondeur

Remarque

La définition de la *hauteur* varie dans la littérature. Elle peut être présentée comme le nombre maximum de sommets entre la racine et une feuille. *La hauteur de l'arbre est alors 4*.

Sommaire

Recherche de fichiers Notion d'arbre

hiérarchique arborescente

Parcourir un arbre

Parcours en profonder

2. Parcourir un arbre

- 2.1 Parcours en largeui
- 2.2 Parcours en profondeur
- 2.3 Rechercher un fichier

Parcours en largeur

Recherche de fichiers Notion d'arbre

Structure niérarchique arborescente

Parcourir un arbre

Parcours en largeur

Parcours en profondeur

À retenir

L'arbre est parcouru niveau par niveau. À chaque étage les nœuds sont parcourus avant de passer au niveau suivant. L'ordre des nœuds par niveau n'est pas déterminé.

Activité 1 : Parcourir en largeur l'arbre suivant.

Recherche de fichiers Notion d'arbre

otructure niérarchique arborescente

Parcourir un arbre

Parcours en largeur

Parcours en profondeur Rechercher un fichier

Correction

Parcours en largeur : P - Y - I - S - T - N - F - U - N - H - O

Recherche de fichiers Notion d'arbre

Structure niérarchique arborescente

Parcourir un arbre

Parcours en largeur

Parcours en profondeur

Sommaire

Recherche de fichiers Notion d'arbre

Parcours en profondeur

2. Parcourir un arbre

- 2.2 Parcours en profondeur

Parcours en profondeur

Recherche de fichiers Notion d'arbre

Structure hiérarchique arborescente

Parcours en largeur

Parcours en profondeur Rechercher un fichier

À retenir

Dans un parcours en profondeur, un des sous-arbres est parcouru entièrement avant qu'un autre ne soit exploré. C'est un algorithme récursif.

On distingue trois parcours en profondeur :

- ordre préfixe : On liste R puis les nœuds de F₁ en ordre préfixe, puis les nœuds de F₂ en ordre préfixe...
- ordre infixe : On liste les nœuds de F₁ en ordre infixe, puis R, puis les nœuds de F₂ en ordre infixe...
- ordre suffixe : On liste les nœuds de F₁ en ordre suffixe, puis les nœuds de F₂ en ordre suffixe..., puis R.

Activité 2 : Parcourir en profondeur l'arbre suivant.

Recherche de fichiers Notion d'arbre

otructure niérarchique arborescente

Parcourir un arbre

Parcours en profondeur

Parcours en profondeur

- Parcours préfixe : P Y T H O N I S F U -Ν
- Parcours infixe: H T O Y N P I F S U N
- Parcours suffixe : H O T N Y I F U N S -Ρ

Sommaire

Recherche de fichiers Notion d'arbre

hiérarchique arborescente

Parcourir un arbre

Parcours en largeur Parcours en profondeu

Rechercher un fichier

- 1. Structure hiérarchique arborescente
- 2. Parcourir un arbre
- 2.1 Parcours en largeur
- 2.2 Parcours en profondeur
- 2.3 Rechercher un fichier

Rechercher un fichier

Activité 3:

- 1. Ouvrir l'ordinateur virtuel sous Debian.
- 2. Créer l'arborescence de dossiers représentée par l'arbre, à l'aide des instructions suivantes :

```
mkdir p # Créer le dossier p
cd p # Entrer dans le dossier p
cd .. # Retourner dans le dossier père
```

Recherche de fichiers Notion d'arbre

Structure hiérarchique arborescente

Parcours en largeur
Parcours en profondeur
Rechercher un fichier

Activité 4:

- 3. Se placer dans le dossier P.
- 4. La commande suivante affiche le parcours d'une recherche quelconque. L'exécuter.
 - find -print
- 5. Quel type de parcours effectue la fonction find?

Correction

```
1
   ./y
   ./y/t
   ./y/t/h
   ./y/t/o
   ./y/n
   ./y/n/i
   ./s
8
9
   ./s/f
   ./s/u
10
   ./s/u/n
11
```

Code 2 - Parcours en profondeur préfixe

Recherche de fichiers Notion d'arbre

hiérarchique arborescente

Parcourir un arbre

Parcours en largeur Parcours en profondeu

Rechercher un fichier