Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа № 1.2

Эффект Комптона

Студент Ришат ИСХАКОВ 512 группа

Преподаватель
Лев Владиславович
Инжечик

Цель работы: С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

1. Теория

Будем считать, что γ -излучение — поток квантов с энергией $\hbar\omega$ и импульсом $p=\frac{\hbar\omega}{c}$. Эффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим — как результат упругого соударения γ -кванта и свободного электрона.

Пусть до соударения электрон покоился (mc^2) , а γ -квант имел энергию $\hbar\omega$ и импульс $p=\frac{\hbar\omega}{c}$. Тогда после соударения:

$$E_{\text{электрона}} = \gamma mc^2$$

 $p_{\text{электрона}} = \gamma m v$

$$\gamma = \sqrt{\frac{1}{1 - \frac{v^2}{c^2}}},$$

а γ -квант рассеивается на угол θ по отношению к начальному движению:

Рис. 1: Векторная диаграмма рассеяния

$$E_{\gamma} = \hbar \omega_1 \tag{1}$$

$$p_{\gamma} = \frac{\hbar\omega_1}{c} \tag{2}$$

3C9:
$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1$$
 (3)

3CH:
$$\frac{\hbar\omega_0}{c} = \frac{\hbar\omega_1\cos\theta}{c} + \gamma mvcos\varphi$$
 (4)

$$\gamma mvsin\varphi = \frac{\hbar\omega_1}{c}sin\theta \tag{5}$$

Переходя от ω_0 , ω_1 к λ_0 , λ_1 :

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta) \tag{6}$$

 $\Lambda_k = \frac{h}{mc} = 2.42 \cdot 10^{-10} \; \text{см} - \text{комптоновская } \lambda$ электрона.

При рассеянии квантов невысокой $(1 \div 10 \text{K} \cdot \text{B})$ энергии часть электронов ведёт себя как связанные, а часть — как свободные, т.е. одновременно наблюдаются релеевское и комптоновское рассеяния.

Цель работы — проверка соотношения (6). Его можно преобразовать от длин волн к энергии квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta, \quad \varepsilon_0 = \frac{E_0}{mc^2}$$

2. Экспериментальная установка

Рис. 2: Блок - схема установки по изучению рассеяния γ -квантов: 1 - источник излучения (^{137}Cs), 2 - графитовая мишень, 3 - фотоэлектронный умножитель (Φ ЭУ), 4 - сцинтиллятор, 5 - свинцовый коллиматор, 6 - лимб

Рис. 3: Блок - схема измерительного комплекса: Д - дисплей, ΠP - принтер, BCB - высоковольтный выпрямитель, УA - усилитель - анализатор, $K\Pi$ - клавиатура

3. Ход работы

Устанавливая сцинтилляционный счётчик под разными углами θ к первоначальному направлению полёта γ -квантов, сняли амплитудные спектры и определили положение фотопиков для каждого угла.

Таблица 1: Результаты измерений:

Угол,°	0	11	20	30	40	50	60	70	80	90	100	110	120
Канал	986	891	803	734	691	603	526	502	440	414	370	349	316

4. Обработка данных

1. Построили график зависимости $\frac{1}{N(\theta)}$ от $(1-\cos\theta)$ и провели через точки наилучшую прямую:

Рис. 4: График зависимости $\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta)$

Погрешности аппроксимации, рассчитанные методом наименьших квадратов: (y = Ax + b): $\frac{\sigma A}{A} \approx 0.023$; $\frac{\sigma b}{b} \approx 0.014$.

- 2. С помощью графика определили коэффициент пропорциональности между $N(\theta)$ и $\varepsilon(\theta)$: $A=\frac{\varepsilon}{N}\approx 0.0013.$
- 3. Перейдя от переменной $\varepsilon = \frac{E}{mc^2}$ к энергии E, получаем, что энергия частицы, на которой происходит рассеяние, находится по формуле:

$$mc^2 = E_\gamma \cdot \frac{N(90)}{N(0) - N(90)}$$

где E_{γ} — энергия γ -лучей, рассеянных источником.

При этом значения N(0) и N(90) используем полученные из графика (а не полученные непосредственно при измерениях), так как эти значения учитывают измерения, сделанные под другими углами.

$$N_{\text{наил.}}(0) \approx 909.09, \quad N_{\text{наил.}}(90) \approx 416.67$$

Полученная энергия:

$$E_{\text{эксп.}} = mc^2 = 662 \text{ KэB} \cdot \frac{416.67}{909.09 - 416.67} \approx 560 \text{ KэB}$$

4. Рассчитаем погрешности измерений:

$$\frac{\sigma N(0)}{N(0)} = \frac{\sigma b}{b} \approx 0.014$$

$$\frac{\sigma N(90)}{N(90)} = \sqrt{\left(\frac{\sigma b}{b}\right)^2 + \left(\frac{\sigma A}{A}\right)^2} = \sqrt{(0.014)^2 + (0.023)^2} \approx 0.027$$

$$\frac{\sigma E}{E} = \sqrt{\left(\frac{\sigma N(90)}{N(90)}\right)^2 + \left(\frac{\sigma N(0) + \sigma N(90)}{N(0) - N(90)}\right)^2} = \sqrt{(0.027)^2 + \left(\frac{11.25 + 12.73}{909.09 - 416.67}\right)^2} \approx 0.056 = 5.6$$

С учётом погрешностей:

$$E_{\text{эксп.}} = 560 \pm 32 \text{ KэВ}$$

Энергия покоя электрона:

$$E_{\text{электр.}} = mc^2 = 9.1 \cdot 10^{-31} \cdot (3 \cdot 10^8)^2 \approx 511 \text{ KэB}$$

5. Вывод

Исследовали энергетический спектр γ -квантов, рассеянных на графите. Используя полученные данные, построили график зависимости $\frac{1}{N(\theta)}$ от $(1-\cos\theta)$, где N - номер канала в анализаторе, θ - угол рассеяния. Полученная зависимость оказалась линейная. С её помощью определили энергию покоя частицы, на которой происходит рассеяние: $E_{\text{эксп.}} = 560 \pm 32 \text{ K}$ эВ. В пределах погрешностей полученная величина оказалась близкой к энергии покоя электрона: $E_{\text{электр.}} \approx 511 \text{ K}$ эВ, то есть, как и предполагалось, рассеяние происходит на электронах. Погрешность вычисления энергии составила 5.6%.