UCS301: Hashing

Hash Functions and Hash Tables

- Hashing has 2 major components
 - Hash function h
 - Hash Table Data Structure of size N
- A hash function h maps keys (a identifying element of record set) to hash value or hash key which refers to specific location in Hash table
- Example:

$$h(x) = x \mod N$$

is a hash function for integer keys

- The integer h(x) is called the hash value of key x
- A hash table data structure is an array or array type ADTof some fixed size, containing the keys.
- An array in which records are <u>not</u> stored consecutively their place of storage is calculated using the key and a *hash function*

- **Hashed key**: the result of applying a hash function to a key
- Keys and entries are scattered throughout the array
- Contains the main advantages of both Arrays and Trees
- Mainly the topic of hashing depends upon the two main factors / parts
 (a) Hash Function
 (b) Collision Resolution
- Table Size is also an factor (miner) in Hashing, which is 0 to tablesize-1.

Hash Tables

Notation:

- U Universe of all possible keys.
- K Set of keys actually stored in the dictionary.
- |K| = n.
- When U is very large,
 - Arrays are not practical.
 - |K| << |U|.
- Use a table of size proportional to |K| The hash tables.
 - However, we lose the direct-addressing ability.
 - Define functions that map keys to slots of the hash table.

Table Size

- Hash table size
 - Should be appropriate for the hash function used

 Too big will waste memory; too small will increase collisions and may eventually force *rehashing* (copying into a larger table)

Hash Function

- The mapping of keys into the table is called *Hash Function*
- A hash function,
 - Ideally, it should distribute keys and entries evenly throughout the table
 - It should be easy and quick to compute.
 - It should minimize collisions, where the position given by the hash function is already occupied
 - It should be applicable to all object
- Different types of hash functions are used for the mapping of keys into tables.
 - (a) Division Method
 - (b) Mid-square Method
 - (c) Folding Method

1. Division Method

- Choose a number *m* larger than the number *n* of keys in *k*.
- The number *m* is usually chosen to be a prime no.
- The hash function H is defined as,
 H(k) = k(mod m) or H(k) = k(mod m) + 1
- Denotes the remainder, when k is divided by m
- 2nd formula is used when range is from 1 to m.

• <u>Example:</u>

Elements are: 3205, 7148, 2345

Table size: 0 - 99 (prime)

m = 97 (prime)

H(3205)=4, H(7148)=67, H(2345)=17

For 2nd formula add 1 into the remainders.

2. Folding Method

- The key *k* is partitioned into no. of parts
- Then add these parts together and ignoring the last carry.
- One can also reverse the first part before adding (right or left justified. Mostly right)

$$H(k) = k1 + k2 + \dots + kn$$

• <u>Example:</u>

3. Mid-Square Method

- The key k is squared. Then the hash function H is defined as H(k) = I
- The I is obtained by deleting the digits from both ends of K^{2} .
- The same position must be used for all the keys.

• <u>Example:</u>

k: 3205 7148 2345

k²: 10272025 51093904 5499025

H(k): 72 93 99

• 4th and 5th digits have been selected. From the right side.

Hashing

Collision Resolution

- If, when an element is inserted, it hashes to the same value as an already inserted element, then we have a collision and need to resolve it.
- As the number of elements in the table increases, the likelihood of a *collision* increases so make the table **as large as practical**
- There are several methods for dealing with this:
 - Separate chaining
 - Open addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- <u>Probing</u>: If the table position given by the hashed key is already occupied, increase the position by some amount, until an empty position is found

Separate Chaining

- The idea is to keep a list of all elements that hash to the same value.
 - The array elements are pointers to the first nodes of the lists.
 - A new item is inserted to the front of the list.

Advantages:

- Better space utilization for large items.
- Simple collision handling: searching linked list.
- Overflow: we can store more items than the hash table size.
- Deletion is quick and easy: deletion from the linked list.

Example

Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

hash(key) = key % 10.

Operations

• Initialization: all entries are set to NULL

Find:

- locate the cell using hash function.
- sequential search on the linked list in that cell.

Insertion:

- Locate the cell using hash function.
- (If the item does not exist) insert it as the first item in the list.

Deletion:

- Locate the cell using hash function.
- Delete the item from the linked list.

Analysis of Separate Chaining

- Collisions are very likely.
 - How likely and what is the average length of lists?
- Load factor λ definition:
 - Ratio of number of elements (N) in a hash table to the hash TableSize.
 - i.e. $\lambda = N/TableSize$
 - The average length of a list is also λ
 - For chaining, λ is not bound by 1; it can be > 1.

Cost of searching

Cost = Constant time to evaluate the hash function + time to traverse the list.

Unsuccessful search:

— We have to traverse the entire list, so we need to compare λ nodes on the average.

Successful search:

- List contains the one node that stores the searched item + 0 or more other nodes.
- Expected # of other nodes = x = (N-1)/M which is essentially λ , since M is presumed large.
- On the average, we need to check half of the other nodes while searching for a certain element
- Thus average search cost = $1 + \lambda/2$

Summary

- The analysis shows us that the table size is not really important, but the load factor is.
- TableSize should be as large as the number of expected elements in the hash table.
 - To keep load factor around 1.
- TableSize should be prime for even distribution of keys to hash table cells.

Linear Probing

- Linear probing uses the hash function
 h(k,i)=(h'(k)+ i) mod m, for i=0,1,2,...,m-1.
- In linear probing, collisions are resolved by sequentially scanning an array (with wraparound) until an empty cell is found.
 - i.e. f is a linear function of i, typically f(i)=I, where $h(k,i)=(h'(k)+i) \mod m$ can be written as $h(k,i)=(h'(k)+f(i)) \mod m$.
- $h(k,i)=(h'(k)+c_1i+c_2i^2) \mod m$, where h' is an auxiliary hash function, c_1 and c_2 are positive auxiliary constants, and i=0,1,2,...,m-1.
- Example:
 - Insert items with keys: 89, 18, 49, 58, 9 into an empty hash table.
 - Table size is 10.
 - Hash function is $hash(x) = x \mod 10$.
 - f(i) = i;

Figure 20.4

Linear probing hash table after each insertion

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

_			10	40	4.0
0			49	49	49
1				58	58
2					9
3					
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

Find and Delete

- The find algorithm follows the same probe sequence as the insert algorithm.
 - A find for 58 would involve 4 probes.
 - A find for 19 would involve 5 probes.
- We must use lazy deletion (i.e. marking items as deleted)
 - Standard deletion (i.e. physically removing the item) cannot be performed.
 - e.g. remove 89 from hash table.

Clustering Problem

- As long as table is big enough, a free cell can always be found, but the time to do so can get quite large.
- Worse, even if the table is relatively empty, blocks of occupied cells start forming.
- This effect is known as primary clustering.
- Any key that hashes into the cluster will require several attempts to resolve the collision, and then it will add to the cluster.

Quadratic Probing

- Quadratic Probing eliminates primary clustering problem of linear probing.
- Quadratic probing uses a hash function of the form $h(k,i)=(h'(k)+c_1i+c_2i^2) \mod m$, where h' is an auxiliary hash function, c_1 and c_2 are positive auxiliary constants, and i=0,1,2,...,m-1. Frequently, the following settings are used: $c_1=0$ and $c_2=1$.
- Collision function is quadratic.
 - The popular choice is $f(i) = i^2$ (Applying $c_1 = 0$ and $c_2 = 1$ to $f(i) = c_1 i + c_2 i^2$)
- If the hash function evaluates to h and a search in cell h is inconclusive, we try cells $h + 1^2$, $h+2^2$, ... $h + i^2$. Here, $c_1=0$ and $c_2=1$.
 - i.e. It examines cells 1,4,9 and so on away from the original probe.
- Remember that subsequent probe points are a quadratic number of positions from the *original probe point*.

Figure 20.6

A quadratic probing hash table after each insertion (note that the table size was poorly chosen because it is not a prime number). Here, N=10, $c_1=0$ and $c_2=1$.

```
hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (9, 10) = 9
```

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

0			49	49	49
1					
2				58	58
3					9
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

Quadratic Probing

• Problem:

- We may not be sure that we will probe all locations in the table (i.e. there
 is no guarantee to find an empty cell if table is more than half full.)
- If the hash table size is not prime this problem will be much severe.

However, there is a theorem stating that:

If the table size is *prime* and load factor is not larger than 0.5, all probes will be to different locations and an item can always be inserted.

Theorem

 If quadratic probing is used, and the table size is prime, then a new element can always be inserted if the table is at least half empty.

Some considerations

- How efficient is calculating the quadratic probes?
 - Linear probing is easily implemented. Quadratic probing appears to require * and % operations.
 - However by the use of the following trick, this is overcome:
 - $H_i = H_{i-1} + 2i 1 \pmod{M}$
- What happens if load factor gets too high?
 - Dynamically expand the table as soon as the load factor reaches 0.5, which is called *rehashing*.
 - Always double to a prime number.
 - When expanding the hash table, reinsert the new table by using the new hash function.

Analysis of Quadratic Probing

- Quadratic probing has not yet been mathematically analyzed.
- Although quadratic probing eliminates primary clustering, elements that hash to the same location will probe the same alternative cells. This is know as secondary clustering.
- Techniques that eliminate secondary clustering are available.
 - the most popular is double hashing.

Double Hashing

- Double hashing uses a hash function of the form h(k,i)=(h₁(k)+ i h₂(k)) mod m, for i=0,1,2,...,m-1.
- A second hash function is used to drive the collision resolution.
 - $f(i) = i * h_2(x)$
- We apply a second hash function to x and probe at a distance $h_2(x)$, $2*h_2(x)$, ... and so on.
- The function $h_2(x)$ must never evaluate to zero.
 - e.g. Let $h_2(x) = x \mod 9$ and try to insert 99 in the previous example.
- A function such as $h_2(x) = R (x \mod R)$ with R a prime smaller than Table Size will work well.
 - e.g. try R = 7 for the previous example.(7 x mode 7)
- The table size N must be a prime to allow probing of all the cells
- Common choice of compression map for the secondary hash function:
 h₂(x) = x mod m. But, some times m is replaced with other prime number q where q < N.

Example of Double Hashing

 Consider a hash table storing integer keys that handles collision with double hashing

$$-N = 13$$

$$- \mathbf{h}_1(\mathbf{k}) = \mathbf{k} \mod 13$$

$$- h_2(k) = k \mod 7$$

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

k	$h_1(k)$	$h_2(k)$	Prob	oes	
18	5	9	5		
41	2	8	2		
22	9	10	9		
22 44	5	7	5	7	
59	7	10	7	10	0
32	6	4	6		
31	5	8	5	8	
73	8	11	8	11	

7 8

The relative efficiency of four collision-resolution methods

Applications of Hashing

- Compilers use hash tables to keep track of declared variables
- A hash table can be used for on-line spelling checkers if misspelling detection (rather than correction) is important, an entire dictionary can be hashed and words checked in constant time
- Game playing programs use hash tables to store seen positions, thereby saving computation time if the position is encountered again
- Hash functions can be used to quickly check for inequality if two elements hash to different values they must be different