# Segment Trees RARES CRISTIAN

# Introductory Problem: Range Sum Queries

- ► Given:
  - Array  $A = \{a_1, a_2, ..., a_n\}$
  - Queries  $f(j,k) = \sum_{i=j}^{k} a_i$
- ▶ Naïve Approach:
  - For each query, iterate from index j to k, computing the sum.
  - ▶ Time Complexity of Query: O(n)

- ▶ Solution: Prefix Sums
  - ▶ Let  $P = \{p_1, p_2, ..., p_n\}$  where

  - ▶ Efficiently compute *P* iteratively:

    - $p_0 = 0$
    - ▶ Time Complexity Preprocessing: O(n)
  - Answer Queries:  $f(j,k) = p_k p_{j-1}$ 
    - ▶ Time Complexity Query: 0(1)

#### Adding Updates

New query type: Updates

 $V(i,v) \rightarrow a_i := v$ 

Solving with Prefix Sums

- Answering queries remains the same
- ► Handling Updates:
  - ▶ Update value of  $p_i$  for all  $j \ge i$
  - **▶** 0(n)

#### What we Want

- For all possible queries, Q, minimize the number of ranges in P needed to compute f(Q).
  - ► (Moving forward, *P* is the set of ranges we precompute the answer to)
- For any given element  $a \in A$ , minimize the number of elements in P which contain a.

#### Possible Functions

- Prefix Approach:
  - For sum queries,  $f(j,k) = p_k p_{j-1}$
  - ightharpoonup Or, f(j,k) = f(0,k) f(0,j-1)
  - ► There needs to be some notion of an inverse.
- Many problems to do not have an easily computable inverse.
  - ► Consider Maximum of range.

- Our New Approach
  - Say we partitioned [i, k] into [i, j] and [j + 1, k]
  - We require f(i,k) = M(f(i,j), f(j+1,k)) for some function M.
  - ► *M* represents merging two ranges together.

#### A Segment Tree



#### Some Properties

- ► Height: log(N)
  - ▶ Every  $a_i \in A$  is contained in log(N) elements of P
- ▶ Total of 2n-1 elements in the Tree
- $\triangleright$  Node 2*i* is the left child of *i*
- Node 2i + 1 is the right child of i



#### **Updating Elements**

- ► Algorithm  $U(p \in P, i, v)$ 
  - ▶ Want U(p, i, v) to return f(p) given  $a_i = v$
- Initial Call to U(p = root, i, v)
  - If  $p = \{a_i\}$ , set  $a_i$  to v; return f(p) = v
  - ▶ If  $a_i \notin p$ , return f(p)
  - ▶ If  $a_i \in p$ ,
    - ▶ set f(p) equal to  $M(U(p \rightarrow left, i, v), U(p \rightarrow right, i, v))$
    - ightharpoonup Return f(p)
- ▶ Time Complexity:
  - ▶ Path from root to leaf
  - $ightharpoonup \log(N)$



#### Finding the Partition: An Algorithm

- ► Terminology:
  - ▶ Given a query range Q, and a range  $p \in P$ , we say p 'expands Q' if  $\exists x, y \in p$  such that  $x \in Q$  and  $y \notin Q$ .
- ▶ Algorithm  $F(p \in P, Q) = f(p \cap Q)$
- Initial call to F(p = root, Q)
  - ▶ If p is completely contained in Q (that is,  $p \cap Q = p$ ), return f(p)
  - ▶ If  $p \cap Q = \emptyset$ , return neutral element.
  - ▶ If p expands Q, return  $M(F(p \rightarrow left\ child, Q),\ F(p \rightarrow right\ child, Q))$ .

#### Queries: Time Complexity

- $\blacktriangleright$  Claim: At most two nodes at the same depth expand Q.
- Proof by contradiction
  - Assume three nodes at the same depth expand Q = [i, k].
  - ▶ All contiguous ranges, so to expand, a range contains either i and i-1 or k and k+1.
  - Pigeonhole principle → two ranges must contain same elements, a contradiction.
- ► At most 2·(height of Tree) expanded nodes
  - $ightharpoonup O(\log(N))$  Query time

#### Questions?

... If not, we'll move on to the original segment tree problem

## Segment Intersection

#### The Problem

#### ► Given:

► A static set of *V* nonintersecting non-horizontal line segments.

#### Queries:

- ► Given a vertical line segment, s, find which segments in V intersect s.
- ► Easier Subproblem:
  - ▶ Stabbing Query: Given vertical line, find which segments in *V* it intersects.

#### Elementary Intervals

- Sort x-coordinates of all segments.
  - $p_1, p_2, ..., p_m$
- $\blacktriangleright$  Consider the partitioning of the real line induced by the points  $p_i$ .
  - ► Call these elementary intervals:
  - $(-\infty, p_1), [p_1, p_1], (p_1, p_2), \dots, (p_{m-1}, p_m), [p_m, p_m], (p_m, \infty)$
- ► For each elementary interval, we can store which segments lie within it.
  - $\blacktriangleright$  Might be  $O(n^2)$  storage



 $s_3$ 

 $S_1$ 

### Segment Tree Solution (Subproblem)



#### Back to the Original Problem

- May have many candidate intersections.
- For a segment s to be listed in a node, s must completely span the range of the node.
- ▶ Zooming in on a single node.
  - Binary Search for lowest segment which is higher than the bottom of the query.



