Задача 6. Приложете теоремата за съществуване и единственост в правоъгълник $\Pi := \{ |x| \leq 2, |y| \leq 1 \}$, за да намерите интервал, в който съществува решение на задачата на Коши

$$\begin{cases} y' = y^2 - x - 1 \\ y(0) = 0 \end{cases}$$

Решение:

От $|x| \le 2$ и $|y| \le 1 \Rightarrow a = 2$ и b = 1. От $f(x,y) = y^2 - x - 1$ е непрекъсната в компакта $\Pi \Rightarrow$ е ограничена в него.

Намираме $f_x'=2y$ и f_y' съществува и е непрекъсната в $\Pi\Rightarrow f$ е липшицова по y в Π . От $f\in C(\Pi)$ и f е липшицова (от $f_y')\Rightarrow$ притежава единствено решение. Тъй като $f_x'=0$ и f_y' не е изпълнено, заключаваме, че $f_{max}(x,y)$ се намира по периферията на компакта Π .

При
$$x=2\Rightarrow f(2,y)=y^2-3, \quad min=-3, max=-2$$
 При $x=-2\Rightarrow f(-2,y)=y^2+1, \quad min=1, max=2$ При $y=1\Rightarrow f(x,1)=-x, \quad min=-2, max=2$ При $y=-1\Rightarrow f(x,-1)=-x, \quad min=-2, max=2$ $\Rightarrow h=min\{a,\frac{M}{b}\}=min\{2,\frac{1}{2}\}=\frac{1}{2}.$ Следователно съществува решение при $x\in\{x_0-\frac{1}{2},x_0+\frac{1}{2}\}\equiv\{0-\frac{1}{2},0+\frac{1}{2}\}\equiv\{-\frac{1}{2},\frac{1}{2}\}$.