Assume that $f(x) \leq g(x) \leq h(x)$ for all x in some open interval containing a, except perhaps at a itself. If $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x)$ exists and equals L, also. Justify each step in the following proof of the squeeze theorem.

- a) Given $\epsilon > 0$ show that there exists a $\delta_1 > 0$ such that if $0 < |x a| < \delta_1$, then $|f(x) L| < \epsilon$.
- b) Show that if $0 < |x a| < \delta_1$, then $L \epsilon < f(x)$.
- c) Show that there exists a $\delta_2 > 0$ such that if $0 < |x a| < \delta_2$, then $h(x) < L + \epsilon$
- d) Let $\delta = min\delta_1, \delta_2$. Show: If $0 < |x a| < \delta$, then $L \epsilon < g(x) < L + \epsilon$
- e) Complete the proof by showing that if $0 < |x a| < \delta$, then $|g(x) L| < \epsilon$.

- a) a) Suppose that $f(xx) \le 0$ for all x (except perhaps at x=a). Show: if $\lim_{x\to a} f(x) = L$, then $L \le 0$. Hint: Assume instead that L>0. Let $\epsilon=\frac{L}{2}$ and derive a contradiction
 - b) State and prove the analogue for $f(x) \ge 0$.
- b) Assume that $g(x) \le h(x)$ for all x (except perhaps at a). If $\lim_{x \to a} g(x) = M$ and $\lim_{x \to a} h(x) = N$, prove that $M \le N$. (Hint: Let f(x) = g(x) h(x) and then use problem 2.2.9).

Prove (from the $\epsilon - \delta$ definition) that $\lim_{x \to 3} \sqrt{3-x}$ does not exist, but $\lim_{x \to 3^-} \sqrt{3-x} = 0$.

Consider the set of numbers $a_n:n\in\mathbb{N}$ where each a_n is determined via this recursive definition:

$$a_1 = 2$$
 and $a_n = 2 - \frac{1}{a_{n-1}}$ for $n \ge 2$.

For example,

$$a_1 = 2$$
, $a_2 = 2 - \frac{1}{a_1} = 2 - \frac{1}{2} = \frac{3}{2}$, $a_3 = 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3}$, etc.

Use induction to prove that for all $n \in \mathbb{N}$ we have $a_n = \frac{n+1}{n}$.