Package 'scs'

April 11, 2023

11pm 11, 2020
Version 3.2.4
Title Splitting Conic Solver
Description Solves convex cone programs via operator splitting. Can solve: linear programs ('LPs'), second-order cone programs ('SOCPs'), semidefinite programs ('SDPs'), exponential cone programs ('ECPs'), and power cone programs ('PCPs'), or problems with any combination of those cones. 'SCS' uses 'AMD' (a set of routines for permuting sparse matrices prior to factorization) and 'LDL' (a sparse 'LDL' factorization and solve package) from 'SuiteSparse' (https://people.engr.tamu.edu/davis/suitesparse.html).
Depends R (>= $3.5.0$)
SystemRequirements GNU Make
Suggests Matrix, slam, tinytest
Encoding UTF-8
License GPL-3
<pre>URL https://github.com/FlorianSchwendinger/scs</pre>
RoxygenNote 7.2.0
NeedsCompilation yes
Author Florian Schwendinger [aut, cre], Brendan O'Donoghue [aut, cph], Balasubramanian Narasimhan [aut], Timothy A. Davis [cph], Patrick R. Amestory [cph], Iain S. Duff [cph]
Maintainer Florian Schwendinger <florianschwendinger@gmx.at></florianschwendinger@gmx.at>
Repository CRAN
Date/Publication 2023-04-11 11:20:02 UTC
R topics documented:
scs 2 scs_control 3
Index 5

2 scs

scs

SCS - Splitting Conic Solver

Description

Solves convex cone programs via operator splitting.

Usage

```
scs(A, b, obj, P = NULL, cone, initial = NULL, control = scs_control())
```

Arguments

A	a matrix of constraint coefficients. NOTE: The rows of matrix A have to be ordered according to the order given in subsection "Allowed cone parameters". For more information see README .			
b	a numeric vector giving the primal constraints			
obj	a numeric vector giving the primal objective			
Р	a symmetric positive semidefinite matrix, default NULL			
cone	a list giving the cone sizes			
initial	a named list (warm start solution) of three elements: x (length = length(obj)), y (length = nrow(A)), and s (length = nrow(A)), default NULL indicating no warm start.			
control	a list giving the control parameters. For more information see README .			

Details

Important Note:

The order of the rows in matrix A has to correspond to the order given in the table "Cone Arguments", which means means rows corresponding to *primal zero cones* should be first, rows corresponding to *non-negative cones* second, rows corresponding to *second-order cone* third, rows corresponding to *positive semidefinite cones* fourth, rows corresponding to *exponential cones* fifth and rows corresponding to *power cones* at last.

SCS can solve:

- 1. linear programs (LPs)
- 2. second-order cone programs (SOCPs)
- 3. semidefinite programs (SDPs)
- 4. exponential cone programs (ECPs)
- 5. power cone programs (PCPs)
- 6. problems with any combination of cones, which can be defined by the parameters listed in the subsection "Allowed cone parameters"

Allowed cone parameters are:

scs_control 3

Parameter	Type	Length	Description
Z	integer	1	number of primal zero cones (dual free cones),
			which corresponds to the primal equality constraints
1	integer	1	number of linear cones (non-negative cones)
bsize	integer	1	size of box cone
bl	numeric	bsize-1	lower limit for box cone
bu	numeric	bsize-1	upper limit for box cone
q	integer	≥ 1	vector of second-order cone sizes
S	integer	≥ 1	vector of positive semidefinite cone sizes
ер	integer	1	number of primal exponential cones
ed	integer	1	number of dual exponential cones
р	numeric	≥ 1	vector of primal/dual power cone parameters

Value

list of solution vectors x, y, s and information about run

Examples

```
A <- matrix(c(1, 1), ncol=1) 
 b <- c(1, 1) 
 obj <- 1 
 cone <- list(z = 2) 
 control <- list(eps_rel = 1e-3, eps_abs = 1e-3, max_iters = 50) 
 sol <- scs(A = A, b = b, obj = obj, cone = cone, control = control) 
 sol
```

scs_control

SCS Control Arguments

Description

Details to the *control* parameters.

Usage

```
scs_control(
  max_iters = 100000L,
  eps_rel = 1e-04,
  eps_abs = 1e-04,
  eps_infeas = 1e-07,
  alpha = 1.5,
  rho_x = 1e-06,
  scale = 0.1,
  verbose = FALSE,
  normalize = TRUE,
  warm_start = FALSE,
  acceleration_lookback = 0L,
```

4 scs_control

```
acceleration_interval = 1L,
adaptive_scale = TRUE,
write_data_filename = NULL,
log_csv_filename = NULL,
time_limit_secs = 0
)
```

Arguments

an integer giving the maximum number of iterations (default is 100000L). max_iters a double specifying relative feasibility tolerance (default 1e-4). eps_rel eps_abs a double specifying absolute feasibility tolerance (default 1e-4). eps_infeas a double specifying infeasibility tolerance (primal and dual) (default 1e-7). a double giving the (Douglas-Rachford) over-relaxation parameter, allowed valalpha ues are in (0, 2) (default 1.5). rho_x a double giving the momentum of x term (default os 1e-6). a double giving the factor (default is 1.0) by which the data is rescaled (only scale used if normalize is TRUE). verbose a logical giving if the progress should be printed (default is FALSE). normalize a logical giving if heuristic data rescaling should be used (default is TRUE). a logical indicating if a warm_start is provided (default FALSE, but a call to scs warm_start with a non-null initial argument overrides it to be effectively TRUE) acceleration_lookback an integer indicating How much memory to use for Anderson acceleration. More memory requires more time to compute but can give more reliable steps (default 0L, disabling it). acceleration_interval an integer specifying the number of iterations for which Anderson acceleration is run (default 1L). adaptive_scale a logical indicating whether to heuristically adapt dual through the solve (default write_data_filename a string indicating filename to write problem data to (default NULL indicating no log_csv_filename

a string indicating filename where SCS will write csv logs of various quantities through the solver (default NULL indicating no logging, as it makes the solver

a double indicating time limit for solve run in seconds; can be fractional (default

Value

time_limit_secs

a list containing the control parameters.

much slower).

0.0 indicating no limit).

Index

scs, 2
scs_control, 3