

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления (ИУ)»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии (ИУ7)»

ОТЧЕТ

Лабораторная работа №1

по курсу «Моделирование»

на тему: «Изучение функций распределения и функций плотности распределения»
Вариант № 1

Студент ₋	<u>ИУ7-75Б</u> (Группа)	(Подпись, дата)	<u>И.О. Артемьев</u> (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	<u>И.В. Рудаков</u> (И. О. Фамилия)

СОДЕРЖАНИЕ

1	Зад	цание	٠
2	Teo	ретическая часть	4
	2.1	Равномерное распределение	4
	2.2	Распределение Пуассона	4
3	Рез	зультаты работы программы	6
	3.1	Равномерное распределение	(
	3.2	Распределение Пуассона	-

1 Задание

Разработать программу для построения графиков функции распределения и функции плотности распределения для следующих распределений:

- равномерное распределение;
- распределение Пуассона.

Разработать интерфейс, предоставляющий возможность выбора закона распределения и указания его параметров.

2 Теоретическая часть

2.1 Равномерное распределение

Функция плотности распределения f(x) случайной величины X, имеющей равномерное распределение на отрезке [a,b] ($X \sim R(a,b)$), где $a,b \in R$, имеет следующий вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{иначе.} \end{cases}$$
 (2.1)

Соответствующая функция распределения $F(x)=\int_{-\infty}^x f(t)dt$ принимает вид:

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & x \in [a, b] \\ 1, & x > b \end{cases}$$
 (2.2)

2.2 Распределение Пуассона

Биномиальное распределение с параметрами n и p – это распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Распределение Пуассона — это частный случай биномиального распределения при $n\gg 0$ и $p\to 0$. Распределение Пуассона также называют законом «редких» событий, так как оно всегда проявляется там, где производится большое число испытаний, в каждом из которых с малой вероятностью происходит «редкое» событие.

Дискретная случайная величина X имеет закон распределения Пуассона с параметром λ ($X\sim\Pi(\lambda)$), где $\lambda>0$, если она принимает значения 0,1,2,... с вероятностями:

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \{0, 1, 2, ...\}$$
 (2.3)

Параметр λ распределения Пуассона – это среднее количество успешных испытаний в заданной области возможных исходов.

Соответствующая функция распределения принимает вид:

$$F(x) = P(X < x) = \sum_{k=0}^{x-1} P(X = k) = e^{-\lambda} \sum_{k=0}^{x-1} \frac{\lambda^k}{k!}$$
 (2.4)

Для дискретной случайной величины не существует функции плотности распределения вероятностей.

3 Результаты работы программы

3.1 Равномерное распределение

На рисунках 3.1 и 3.2 приведены результаты построения графиков функций плотности f(x) и распределения F(x) для случайных величин $X \sim R(-5.4,5)$ и $X \sim R(1,4)$, соответственно.

Рисунок 3.1 – Графики функций плотности f(x) и распределения F(x) для случайной величины $X \sim R(-5.4, 5)$.

Рисунок 3.2 – Графики функций плотности f(x) и распределения F(x) для случайной величины $X \sim R(1,4)$.

3.2 Распределение Пуассона

На рисунках 3.3 и 3.4 приведены результаты построения графиков функции вероятности P(x) и распределения F(x) на отрезке $x \in [-10, 20]$ для случайных величин $X \sim \Pi(1)$, и $X \sim \Pi(5)$, соответственно.

Рисунок 3.3 – Графики функций вероятности P(x) и распределения F(x) для случайной величины $X \sim \Pi(1)$.

Рисунок 3.4 — Графики функций вероятности P(x) и распределения F(x) для случайной величины $X \sim \Pi(5)$.