

MARSIM: A light-weight point-realistic simulator for LiDAR-based UAVs

Fanze Kong, Xiyuan Liu, Benxu Tang, Jiarong Lin, Yunfan Ren, Yixi Cai, Fangcheng Zhu, Nan Chen, Fu Zhang The University of Hong Kong

Overview

Workflow

Time consuming comparison

Problem:

Existing simulators can hardly perform simulations of real-world environments due to the requirements of dense mesh maps that are difficult to obtain.

Contributions:

- Directly utilizing high-resolution point cloud maps reconstructed from real environments for LiDAR.
- High efficiency in computation and memory consumption.
- Support of dynamic obstacles, multi-UAV and multiple types of LiDARs.
- Already Open-sourced! Scan QR to GitHub ->

Results

Ten high-resolution (0.01 m) realistic point cloud maps provided with MARSIM and a demo shows scanning of a Livox-AVIA LiDAR that restore the details of real-world constructions.

Realistic UAV model and mutual observation

Livox Mid-360

Support of high-resolution collision detection

Support of multiple UAVs' simulation: over 30 drones with a 3070ti