Key Definition (1)

- **Valid**: A sentence is **valid** if it is **True under all possible assignments** of True/False to its variables (e.g. P V¬P)
- **Tautology**: A tautology is a valid sentence
- Equivalent: Two sentences are equivalent if they have the same truth table, e.g. PA Q and QA P. So P is equivalent to Q if and only if P \leftrightarrow Q is valid
- Satisfiable: A sentence is satisfiable if there is some assignment of True/False to its variables for which the sentence is True
- **Unsatisfiable**: A sentence is unsatisfiable if it is not satisfiable (e.g. $P \land \neg P$). Sentence is **False** for **all assignments** of True/False to its variables

Tautology:

Examples 1:

Show statement " $(R \land S) \rightarrow (\neg R \lor S)$ " is tautology:

- Recall that tautology means "True" under all possible assignments
- Then we can draw a full truth table which list all possibilities to see if it is tautology
- Looking at the truth table, the all-possible assignments of R, S have truth of the statement. Then the statement is tautology

R	S	¬R	(R ∧ S)	(¬R ∨ S)	$(R \land S) \rightarrow (\neg R \lor S)$
0	0	1	0	1	1
0	1	1	0	1	1
1	0	0	0	0	1
1	1	0	1	1	1

Tautology:

Examples 2:

Show statement " $(P \land Q) \rightarrow Q$ " is tautology:

- Recall that tautology means "True" under all possible assignments
- Then we can draw a full truth table which list all possibilities to see if it is tautology
- Looking at the truth table, the all-possible assignments of P, Q have truth of the statement. Then the statement is tautology

Р	Q	(P ∧ Q)	$(P \land Q) \rightarrow Q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

Equivalence:

Examples:

Show statement " $\neg(P \land Q) \leftrightarrow (\neg P \lor \neg Q)$ " (which is De Morgan theorem):

- Recall that equivalence requires left-hand side has the same truth table with the right-hand side
- Looking at the truth table below, $\neg(P \land Q)$ is the same as $(\neg P \lor \neg Q)$, then they are equivalent

Р	Q	(P ∧ Q)	¬(P ∧ Q)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Р	Q	¬P	¬Q	(¬P ∨¬Q)
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Satisfiable vs Unsatisfiable:

Examples:

Is statement $\neg(P \land Q)$ satisfiable or unsatisfiable? What about $(P \land Q) \land \neg Q$?

- Recall that satisfiable means at least one possible assignment makes the statement true
- Unsatisfiable means all possible assignments make the statement false

Р	Q	(P ∧ Q)	¬(P ∧ Q)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Р	Q	(P ∧ Q)	¬Q	(P ∧ Q) ∧ ¬Q
0	0	0	1	0
0	1	0	0	0
1	0	0	1	0
1	1	1	0	0

(Satisfiable) (Unsatisfiable)

Quiz Time!