WHAT IS CLAIMED IS:

1. A compound of Formula I:

wherein X is a substituent selected from the group consisting of an OH, an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted;

wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R¹ and the carbon to which R¹ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R² is absent and R¹ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the

bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R⁵ and the carbon to which R⁵ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁶ is absent and R⁵ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R⁵ and R⁶ are independently selected from the group consisting of H, C₁-C₈ alkyl, aryl, and a heterocycle;

or a salt thereof, wherein the compound is a solid.

2. A compound of Formula I:

(Formula I)

wherein X is a substituent selected from the group consisting of an OH, an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X; wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted;

wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

, wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R⁵ and the carbon to which R⁵ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁶ is absent and R⁵ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R⁵ and R⁶ are independently selected from the group consisting of H, C₁-C₈ alkyl, aryl, and a heterocycle;

or a salt thereof;

provided that, when each of R¹ and R⁵ is CH₂ attached by a double-bond, R² and R⁶ are absent, R³ and R⁴ are CH₃, R⁷ is H, T¹ and T² are both O, Z is CH₂, and p is 3, then X and Y are not both methoxy, both ethoxy, or both hydroxyl; and when each of R¹, R², R⁵, and R⁶ are H, then X and Y are not both sulfide or both ether.

3. A compound of Formula I:

$$R^{1}$$

$$(R^{2})$$

$$R^{1}$$

$$(R^{2})$$

$$R^{2}$$

$$(R^{2})$$

$$R^{3}$$

$$(R^{4}$$

$$(R^{6})$$

$$(R^{6})$$

(Formula I)

wherein X is a substituent selected from the group consisting of a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphone, a sulphone, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted;

wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of a C_1 - C_8 alkyl, an aryl, and a heterocycle; and

wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^6 is absent and R^5 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^5 and R^6 are independently selected from the group consisting of C_1 - C_8 alkyl, aryl, and a heterocycle;

or a salt thereof.

4. The compound of any of claims 1-3, wherein the amino acid-derived group has the structure:

wherein each of R, R', and R" is independently selected from the group consisting of H, a C_1 - C_8 alkyl optionally substituted with an amine or a carboxylate; an aryl; an aryl alkyl; and a heterocycle.

- 5. The compound of claim 4, wherein R is H, CH₃, benzyl, (CH₂)₄-NH₂, or CH₂COOH.
- 6. The compound of any of claims 1-5, wherein the phosphorus-containing group is a phosphoric group, a phosphorus group, a phosphonic acid group, or a phosphonous acid group.
- 7. The compound of claim 6, wherein the phosphorus-containing group has the structure:

8. The compound of claim 6, wherein the phosphorus-containing group has the structure:

9. The compound of claim 6, wherein the phosphorus-containing group has the structure:

wherein R is C₁-C₈ alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; or a heterocycle.

10. The compound of claim 6, wherein the phosphorus-containing group has the structure

wherein R is C₁-C₈ alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; or a heterocycle.

11. The compound of any of claims 1-10, wherein X is selected from the group consisting of:

wherein each of R, R', and R" is independently selected from the group consisting of H; C_1 - C_8 alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; and a heterocycle, and wherein u is 1 to about 16.

12. The compound of any of claims 1-10, wherein X is an amide having the structure:

wherein each of R and R' is independently H; C₁-C₈ alkyl optionally substituted with an aryl, a heterocycle, an alkoxy, a halo, an amine, or carboxylate; an aryl; or a heterocycle.

- 13. The compound of any of claims 1, 2, or 4-10, wherein X is a monohydroxylic or a polyhydroxylic group.
- 14. The compound of claim 13, wherein the monohydroxylic group or polyhydroxylic group is derived from a diol, a polyol, a sorbitol, a polyethylene glycol (PEG), a polymer, or a sugar.

15. The compound of claim 13, wherein the monohydroxylic group or polyhydroxylic group has the structure:

wherein B is O, B is attached to the cyclopentyloxy ring at any carbon of the ring, at the carbon to which B is attached, A is H, and, at the carbons where B is not attached, A is – OH; or

wherein B is O, B is attached to any carbon of PEG, at the carbon to which B is attached, A is H, and, at the carbons where B is not attached, A is -OH.

16. The compound of any of claims 1-15, wherein each of T¹ and T² is O, p is 3 and Z is -CH₂-.

- 17. The compound of any of claims 1-16, wherein R¹ and R² are not both H.
- 18. The compound of any of claims 1-17, wherein each of R³ and R⁴ is a C₁-C₈ alkyl optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, H, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl.
- 19. The compound of claim 18, wherein each of R³ and R⁴ is a C₁-C₄ alkyl optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl.
- 20. The compound of any of claims 1-19, wherein each of R³ and R⁴ is CH₃.

11

- 21. The compound of any of claims 1-19, wherein R⁸ is H.
- 22. The compound of any of claims 1-21, wherein the bond between R¹ and the carbon to which R¹ is attached is a double bond and R¹ is CH₂.
- 23. The compound of any of claims 1-22, wherein the bond between R⁵ and the carbon to which R⁵ is attached is a double bond and R⁵ is CH₂.
- 24. The compound of any of claims 1, 2, 4-10, or 16-23, wherein each of X and Y is OH.
- 25. The compound of any of claims 1, 2, 4-10, or 16-24, wherein X is OH and Y is H.
- 26. The compound of any of claims 1, 2, 4-10, or 16-25, wherein X is OR and R is an alkyl.
- 27. The compound of claim 26, wherein R is a C₁-C₈ alkyl.

- 28. The compound of claim 27, wherein R is methyl, ethyl, or isopropyl.
- 29. The compound of claim 27, wherein R is t-butyl.
- 30. The compound of any of claims 1-23 and 26-29, wherein Y is the same as X.
- 31. The compound of claim 1, wherein the compound is

$$H_2$$
C H_3 H_3 CO H_3 H_4 CO H_2

32. The compound of claim 1, wherein the compound is

33. The compound of claim 1, wherein the compound is

$$H_3CO$$
 H_3CO
 H_3C

34. The compound of claim 1 or 2, wherein the compound is

$$(H_3C)_2HCO \qquad H \qquad OCH(CH_3)_2 \\ OCH_3 \qquad H_3CO \qquad CH_2$$

35. The compound of claim 1 or 2, wherein the compound is

$$(H_3C)_3CO$$
 H_3CO
 $OC(CH_3)_3$
 $OC(CH_3)$

36. The compound of any of claims 1-3, wherein the compound is

wherein R is an alkyl; a C₂-C₂₄ alkenyl; a cyclohexylalkyl; a C₃-C₂₆ alkoxyacetyl; a naphthalenalkyl optionally substituted with methyl or halogen; a phenyl (C₃-C₂₆ alkenyl), wherein the phenyl is optionally substituted with methyl or halogen; a cinnamyl; a pyridinealkyl optionally substituted with methyl or halogen; a dihydropyridine alkyl optionally substituted with C₁-C₂₄ alkyl; a thiophenealkyl optionally substituted with methyl or halogen; an aryl; an allyl; a furanalkyl optionally substituted with methyl or halogen; cysteine; glutathione; or a group of structure

wherein each of Y and Y' is independently hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C_1 - C_{24} alkoxy or halogen.

37. The compound of claim 36, wherein R is

and wherein each of Y and Y' is independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy or halogen.

38. The compound of claim 37, wherein R is

and wherein Y and Y' are hydrogen, and Y" is a C_1 - C_8 alkyl or a C_1 - C_8 alkoxy.

39. The compound of claim 37, wherein R is

and wherein Y and Y' are hydrogen, and Y" is hydrogen, methyl, or methoxy.

40. The compound of any of claims 1-3, wherein the compound is

wherein R is an alkyl; a cycloalkyl; a C₂-C₂₄ alkenyl; a cyclohexylalkyl; a C₃-C₂₆ alkoxyacetyl; a naphthalenalkyl optionally substituted with methyl or halogen; phenyl (C₂-C₂₄ alkenyl), wherein the phenyl is optionally substituted with methyl or halogen; cinnamyl; pyridinealkyl optionally substituted with methyl or halogen; dihydropyridine alkyl optionally substituted with C₁-C₂₄ alkyl; thiophenealkyl optionally substituted with methyl or halogen; an aryl; an allyl; furanalkyl optionally substituted with methyl or halogen; or a group of structure

wherein each of Y and Y' is independently hydrogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C_1 - C_{24} alkoxy or halogen.

41. The compound of claim 40, wherein R is

and wherein each of Y and Y' is independently hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen, or Y and Y' together form 3,4-methylenedioxy, and Y" is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy or halogen.

42. The compound of claim 41, wherein R is

WO 2005/040170 PCT/US2004/035050

64

and wherein Y and Y' are hydrogen, and Y" is a hydrogen, a C₁-C₈ alkyl, or a C₁-C₈ alkoxy.

43. The compound of claim 40, wherein R is a C_1 - C_8 alkyl.

44. The compound of claim 43, wherein R is t-butyl.

45. The compound of any of claims 1-44, wherein the compound is isolated or purified.

46. The compound of any of claims 2-45, wherein the compound is a solid at room temperature.

- 47. The compound of any of claims 1-46, wherein the compound is a crystalline solid.
- 48. A pharmaceutical composition comprising a compound of any of claims 1-47 and a pharmaceutically acceptable carrier.
- 49. A method of inhibiting the growth of a cell, which method comprises administering to the cell in an amount effective to inhibit the growth of the cell a compound of any of claims 1-47.
- 50. The method of claim 49, wherein the cell is in a host.
- 51. The method of claim 50 wherein the host is a mammal.
- 52. The method of claim 51, wherein the mammal is a human.
- 53. The method of any of claims 50-52, wherein the host is afflicted with a disease caused by hyperproliferation and the method effectively treats the disease.

- 54. The method of claim 53, wherein the disease is resistant to treatment with cisplastin.
- 55. The method of claim 53 or 54, wherein the disease is cancer.
- 56. The method of claim 55, wherein the cancer is ovarian cancer, colon cancer, melanoma, glioma, or breast cancer and the cancer is optionally resistant to treatment with cisplatin.
- 57. A method of treating a viral, parasitic, or bacterial infection of a cell, which method comprises administering to the cell in an amount effective to treat a viral, parasitic, or bacterial infection a compound of any of claims 1-47.
- 58. The method claim 57, wherein the cell is in a host.
- 59. The method of claim 58, wherein the host is a mammal.
- 60. The method of claim 59, wherein the mammal is a human.
- 61. The method of any of claims 59-60 wherein the host is afflicted with a disease caused by the viral, parasitic, or bacterial infection and the method effectively treats the disease.
- 62. A method of preparing a compound of Formula I

$$R^{1}$$

$$(R^{2})$$

$$(R^{2})$$

$$(R^{5})$$

$$(R^{5})$$

wherein X is OH,

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is OH;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted;

wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R^5 and the carbon to which R^5 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^6 is absent and R^5 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^5 and R^6 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle;

or a salt thereof; and
wherein the compound is a solid;
which method comprises:

(a) providing a compound of Formula II:

$$R^{1}$$
 (R^{2})
 R^{5}

(Formula II)

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

- (b) contacting the compound of Formula II with water, whereby the solid compound of Formula I is formed.
- 63. The method of claim 62, wherein compound of Formula II is contacted with water in a solvent system comprising a water-miscible aprotic solvent and water.
- 64. The method of claim 63, wherein the water-miscible aprotic solvent is acetonitrile.
- 65. The method of claim 62 or 63, wherein the solvent system comprises at least 10% (v/v) water.
- 66. The method of any of claims 62-65, wherein the compound of Formula II is

$$H_2C$$

OCH₃
 H_3CO

OCH₂
 CH_2

67. The method of any of claims 62-66, wherein the compound of Formula I is

$$H_2$$
C H_3 C H_3 CO H_3 C H_2 C H_2 C H_2 C H_2 C H_2 C H_3 C

68. A method of preparing a compound of Formula I

$$R^{1}$$

$$(R^{2})$$

$$(R^{2})$$

$$(R^{3} R^{4} O$$

$$(R^{5} R^{5} O)$$

wherein X is a substituent selected from the group consisting of an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid- derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted;

wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group

consisting of an aryl, a heterocycle, H, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R⁵ and the carbon to which R⁵ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁶ is absent and R⁵ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R⁵ and R⁶ are independently selected from the group consisting of H, C₁-C₈ alkyl, aryl, and a heterocycle;

or a salt thereof; and

wherein the compound is a solid.

which method comprises:

(a) providing a compound of Formula II:

$$R^{1}$$

$$(R^{2})$$

$$(R^{2})$$

$$(R^{5})$$

$$(R^{6})$$

(Formula II)

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

- (b) combining the compound of Formula II with a nucleophilic organic reactant, wherein the nucleophilic part of the nucleophilic organic reactant provides X, whereby the solid compound of Formula I is formed.
- 69. A method of preparing a compound of Formula I

wherein X is a substituent selected from the group consisting of an OH, an ether, a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted;

wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R^1 and the carbon to which R^1 is attached is a single bond or a double bond, wherein, when the bond is a double bond, R^2 is absent and R^1 is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R^1 and R^2 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, and a heterocycle; and

wherein the bond between R⁵ and the carbon to which R⁵ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁶ is absent and R⁵ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R⁵ and R⁶ are independently selected from the group consisting of H, C₁-C₈ alkyl, aryl, and a heterocycle;

or a salt thereof; and

provided that, when each of R^1 and R^5 is CH_2 attached by a double-bond, R^2 and R^6 are absent, R^3 and R^4 are CH_3 , R^7 is H, T^1 and T^2 are both O, Z is CH_2 , and p is 3, then X and Y are not both methoxy, both ethoxy, or both hydroxyl; and when each of R^1 , R^2 , R^5 , and R^6 are H, then X and Y are not both sulfide or both ether;

which method comprises:

(a) providing a compound of Formula II:

(Formula II)

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

(b) combining the compound of Formula II with a nucleophilic organic reactant other than methanol or ethanol, wherein the nucleophilic part of the nucleophilic organic reactant provides X,

whereby the solid compound of Formula I is formed.

70. A method of preparing a compound of Formula I

wherein X is a substituent selected from the group consisting of a silyl ether, a trialkyl silyl ether, an ester, a carbonate, a carbamate, a thiocarbamate, a cyclic carbamate, a cyclic thiocarbamate, an acetate, SH, a sulfide, a sulphoxide, a sulphone, a sulphite, a bisulphite, a sulphonamide, an amine, an amide, an azido, a cyano, a halo, a triphenylphosphonium, a silyl, a trialkyl silyl, an amino acid-derived group, and a phosphorus-containing group;

wherein the bond between the carbon to which Y is attached and the N of NR⁷ to which the carbon is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁷ is absent and Y is H, and, when the bond is a single bond, R⁷ is H and Y is a substituent selected from the group defined for X, wherein Y is optionally the same as X;

wherein each of T¹ and T² is independently O, S, or NR⁸;

wherein Z is a divalent radical of an alkane, an alkene, or an alkyne, any of which optionally contains a heteroatom or carbonyl and any of which is substituted or unsubstituted;

wherein p is an integer that is greater than or equal to 2;

wherein each of R^3 , R^4 , and R^8 is independently a hydrogen; a C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, or C_2 - C_{24} alkynyl, optionally substituted with a group selected from the group consisting of an aryl, a heterocycle, and an amine; or an aryl optionally substituted with an alkyl, an aryl, an alkoxy, a halo, an amine, a hydroxy, or a trifluoromethyl;

wherein the bond between R¹ and the carbon to which R¹ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R² is absent and R¹ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R¹ and R² are independently selected from the group consisting of C₁-C₈ alkyl, aryl, and a heterocycle; and

wherein the bond between R⁵ and the carbon to which R⁵ is attached is a single bond or a double bond, wherein, when the bond is a double bond, R⁶ is absent and R⁵ is a divalent radical derived from an alkane, an aromatic hydrocarbon, or a heterocycle, and when the bond is a single bond, R⁵ and R⁶ are independently selected from the group consisting of C₁-C₈ alkyl, aryl, and a heterocycle;

or a salt thereof; and which method comprises:

(a) providing a compound of Formula II:

$$R^{1}$$
 (R^{2})
 (R^{2})
 (R^{2})
 (R^{3})
 (R^{4})
 (R^{5})

wherein the definitions of R¹, R², R³, R⁴, R⁵, R⁶, T¹, T², Z, and p are the same as those for Formula I; and

- (b) combining the compound of Formula II with a nucleophilic organic reactant, wherein the nucleophilic part of the nucleophilic organic reactant provides X, and whereby the solid compound of Formula I is formed.
- 71. The method of any of claims 62-70, wherein the compound of Formula I is a solid at room temperature.
- 72. The method of any of claims 62-71, wherein the compound of Formula I is a crystalline solid.
- 73. The method of any of claims 62-72, wherein the compound of Formula I is precipitated.
- 74. The method of any of claims 68-73, wherein the nucleophilic reactant is a thiol.

- 75. The method of claim 74, wherein the nucleophilic reactant is a thiolphenol, an alkylthiolphenol, or an alkoxythiolphenol.
- 76. The method of any of claims 68-73, wherein the nucleophilic reactant is an amine.
- 77. The method of claim 76, wherein the nucleophilic reactant is an alkylamine.
- 78. The method of any of claims 63-77 further comprising isolating the compound of Formula I.
- 79. The method of claim 78, wherein the compound of Formula I is isolated by evaporation.
- 80. The method of any of claims 68-79, wherein the compound of Formula II is