01 - Course overview

February 5, 2018

1 Foundations of Machine Learning

1.1 Course overview

1.1.1 Learning objectives:

- Build predictive models from training data
- Correctly evaluate predictive models
- Analyze and compare the performance of different models
- Reason about the mathematical foundations of data mining techniques
- Recognize when a predictive model is under/overfitting
- Combine the above with dimension-reduction techniques
- Visualize and explore data using embeddings and clustering

1.1.2 Lecturers:

- Joaquin Vanschoren (j.vanschoren@tue.nl) MF 7.104a
- Vlado Menkovski (v.menkovski@tue.nl) MF 7.097b
- Anne Driemel (a.driemel@tue.nl) MF 7.073

1.1.3 Contact hours:

- Mondays, 10:45 12:30: Plenary Lectures (Flux 1.02)
- Thursdays, 13:45 15:30: Tutorials and Feedback (Flux 1.02)
 - These are NOT labs
- Thursdays, 15:45 17:30: Plenary Lectures (Flux 1.02)

1.1.4 Course materials:

- See Canvas for:
 - Syllabus
 - Announcements, discussions
 - Assignments, grades
- Lecture materials (Notebooks+PDFs) on GitHub
 - https://github.com/joaquinvanschoren/ML-course
 - The README contains pointers to relevant books

1.1.5 Evaluation:

- No exam, only assignments (4 team assignments, 1 individual)
- Preliminary(!) overview:
 - 1: Linear Models, Model selection, Ensembles (15 points)
 - * Released Feb 8, Deadline Mar 1
 - 2: Kernel methods and Bayesian Inference (15 points)
 - * Released Mar 1, Deadline Mar 15
 - 3: Dimensionality reduction, Embeddings (15 points)
 - * Released Mar 15, Deadline Mar 29
 - 4: Deep learning (15 points)
 - * Released Mar 29, Deadline Apr 12
 - Individual assignment: Data challenge (30 points)
 - * Released Mar 22, Deadline Apr 20
- Team assignments in teams of 2 students
 - Free choice, form groups on Canvas before Feb 9th!
 - * Can be the same for all 4 team assignments
 - * You can use Canvas Discussions or Chat to find teammates
 - You're allowed to find a new teammate (yourselves) after each assignment
- Passing grade:
 - 6/10 over all assignments
 - 5/10 on the individual assignment

1.2 Course contents

May still change!

1.2.1 Contents: Week 1

- Machine learning concepts
- Build first models with scikit-learn
- k-Nearest Neighbors
- Tutorials:
 - Linear Algebra
 - Data Analysis with Python
- Linear Models
 - Linear regression, ridge regression, lasso
 - Logistic regression, linear SVMs

1.2.2 Contents: Week 2 (after spring break)

- Model evaluation and selection
 - Overfitting, cross-validation, ROC analysis, Bias-Variance analysis
 - Hyperparameter optimization
- Tutorials:
 - Data Analysis with Python (continued)
 - Feature engineering
- Ensemble learning
 - Decision trees
 - Bagging, (Gradient) Boosting, Stacking

1.2.3 Contents: Week 3

- Kernel methods
 - Support Vector Machines, Kernelization
- Tutorials:
 - Feature engineering (continued)
- Bayesian Learning
 - Naive Bayes
 - Gaussian processes

1.2.4 Contents: Week 4

- Constructing pipelines
 - Preprocessing, feature engineering, learning
 - Building machine learning systems
- Tutorials:
 - Analysing images
- Dimensionality reduction 1
 - PCA, MDS, Isomap

1.2.5 Contents: Week 5

- Dimensionality reduction 2
 - Random projections, Locality-sensitive hashing
- Locality-sensitive hashing
 - Jaccard Similarity, MinHashing

1.2.6 Contents: Week 6

- Clustering
 - Lloyd's algorithm, kMeans++, Gonzales' algorithm
- Introduction to Deep Learning
 - Artificial neurons, gradient descent, backprop

1.2.7 Contents: Week 7

- Multilayer Perceptron Convolutional Neural Networks

1.2.8 Contents: Week 8

- Recurrent Neural Networks
- Q&A