Parcial Práctica Normal - Segunda Fecha

TEMA 1

ISO/CSO 2023 1S #Alumno:

... Apellido y Nombre:

Hojas: 11

1) Suponga que se tiene la siguiente tabla de procesos a ser ejecutados.

јов	Inst. Llegada	СРИ	E/S (recur,inst,dur)
1 1	1	5	(R1, 1, 3)
2	0	7	(R2, 3, 2)
3	3	3	

Dado el algoritmo: SRTF

- 1. Realice el diagrama de Gantt
- 2. Calcule el TPR y el TPE

2) Dado un esquema donde cada dirección hace referencia a un byte, con páginas de 2 KiB (dos kibibytes), donde el frame 0 se encuentra en la dirección física 0. Con la siguiente correlación entre páginas y marcos:

Página	Marco	11.336	
0	6	-12788 - 14335	
1		10240 - 12287	
2	4	8192 - 10239	
3	. 1 .	2048 - 4095	M2: 4096_6143 M3:6144-8191
4	0	02041	M2:01.15-0115

P=0 m=6

d. 1562 d=1111 3) Suponga un SO con administración de la memoria virtual mediante paginación por demanda con la siguiente alocación de páginas:

1	1	2	4	2	1	3	4	5	1	6	1	2	3
f1	1	1	1	1	1	1	1		6 A P	SEV	TOPET		
f2		2	2	2	2	2	2						
f3 .		1	4	4	4	4	4						
4						3	3	3					

Complete la alocación de páginas en cada frame según los siguientes algoritmos (solo cuando ilega el requerimiento para la página 5)

a) EIEO ,			b) OPT		
11	5	1	110	1	1
12	2	1	12	2	1
13	4	J	13	4X	5
14	3	1/	14	5 X	3

- 4) Se tiene una unidad de disco con 4 platos, con 2 caras útiles cada uno, 2500 pistas por cara y 63 sectores por pista de 4096 bytes cada uno. Si el disco gira a 7200 RPM, tiene un tiempo de posicionamiento(seek) de 10,5 ms y una velocidad de transferencia de 146 MB/seg (Mebibytes por segundo), calcular e indicar:
- a) Capacidad total del disco:
- b)¿Cuántas caras se necesitan para almacenar un archivo de 1000 Mebibytes almacenado de manera contigua a partir del primer sector de la primera pista de una una cara determinada?
- c)¿Cuántos milisegundos se tardarían en transferir un archivo almacenado de manera contigua de 8600 sectores?
- d)¿Cuántos milisegundos se tardarían en transferir el mismo archivo pero almacenado de manera aleatoria?
- 5) Se tiene un sistema Unix utilizando un esquema de Asignación Indexada basada en INodos para la administración del espacio en disco, donde cada bloque ocupa 2 Kib (dos Kibibits) y se utilizan 32 bits para direccionar a un bloque
- a. ¿Cuántas direcciones a bloque pueden contener un bloque de disco?
- b. Si el i-nodo dispone de 1 puntero a bloque de datos de tipo DD (Direccionamiento Directo), 2 punteros a bloque de datos de tipo DIS (Direccionamiento Indirecto Simple) punteros a bloque de datos de tipo DID (Direccionamiento Indirecto doble). ¿Cuál será tamaño máximo de un archivo, expresado en bytes?