360 video

Paul Bourke

Presentation slides here http://paulbourke.net/ecu2018/

Pioneering days

Contents

Pioneering days	Hobbyist	Current commercial solutions	Future
< 2010	Massive camera development from	Low cost twin lens cameras	Solving the parallax issue
Pre VR head mounted	2014-2015		
displays		Higher end multiple	Scaling up resolution
	Mirror based single	camera solutions	and frame rate
Large unwieldy	camera		
		Software evolution	Plenoptic function
Data storage difficult	Ultrawide angle		
problematic	fisheye	Optical flow	Volumetric video
		algorithms to solve the	
Design mainly for large	Home made rigs using	parallax problem.	Light field capture
scale displays	GoPros		
	Google camera		

Standard dome

iDome

One possible future

- A single standard camera == view for one eye.
- Two standard cameras == view for two eyes (stereopsis).
- Single camera and fisheye lens == engages peripheral vision for one eye.
- Dual cameras and fisheye lenses == engages peripheral vision for two eyes.
- 360 camera == ability to look around, and engages peripheral vision.
- 360 stereo camera == ability to look around, engages peripheral vision, and stereopsis.

Replace camera with video camera in the above and time component is added.

But, they don't allow the viewer to move around!

The plenoptic function

- Plenoptic: (optics) Of or relating to all the light, travelling in every direction in a given space.
- The "light field" is the infinity of 3D points through which innumerable light rays (photons) enter and exit every point.
- The part of the light field we observe (in one eye) are the two spherical images located at the position of our eyes.
- The plenoptic function is a 7 dimensional function of position: (3 variables), polar angle (2 variables), wavelength and time.

$$L(x,y,z,\theta,\phi,\lambda,t)=t$$

Final slide: Considerations

- Everything and everyone is in shot, where does the director stand?
- No out of camera for a boom mic.
- How do you light the set?
- Equirectangular projections are non-linear, cannot treat them like a rectangle during editing, eg: cannot simply add 2D elements.
- Left edge of the equirectanglar connects to right edge.
- There is no concept of zoom.

Questions and demonstrations