Force and Angle Sensor Design for Bipedal Robot Foot

Present by Harsha Karunanayaka

Project Description

Current Issues in Force Sensing

- Low resolution with ADC.
- Analog signals are prone to noise when subjected to electrical and magnetic interferences when transmitting data to long distances (1m).

Aims of the project

- Convert analog signals to digital with higher resolution.
- Use UART and CAN communication for transmitting the data.
- Transmitting the sensor data at 0.25ms rate to the main microprocessor.

System Design

System Design Cont.

Build Prototype

Components Required

STM32 Discovery board

Flexi Force A502 sensor

UART to USB bridge module

Build Prototype Cont.

IMU (MPU 6050) Testing

Build Prototype Cont.

Force Sensor Testing with HX711 Load Cell Amplifier

PCB Design

Schematic

PCB Design Cont.

PCB Layout

Software Development

Future Development

- Library that is available for HX711 for STM32 is not giving desired results. It does not use HAL_I2C functions. Thus, a new library needs to be developed.
- Transmitting data with 0.25ms rate is challenging. When using the "sprint" function to read the serial data that rate can not be achieved.
- Individual components were tested separately. But, testing both of them together is required.
- CAN communication was not used to transmit the data.

THANK YOU