Design of the frontend for LEN5, a RISC-V Out-of-Order processor

Candidate: Marco Andorno Supervisor: prof. Maurizio Martina

POLITECNICO DI TORINO

Master's thesis in Electronic Engineering
Academic year 2018-2019

LEN5 overview

• Open source ISA, which allows for open source hardware.

- · Open source ISA, which allows for open source hardware.
- Modular ISA, that provides extensions to tailor the architecture to the design needs.

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Based on three pillars:

1. Dynamic pipeline scheduling

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Based on three pillars:

- 1. Dynamic pipeline scheduling
- 2. Branch prediction

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Based on three pillars:

- 1. Dynamic pipeline scheduling
- 2. Branch prediction
- 3. Speculative execution

Used in every modern high-performance processor, because it allows the best **exploitation of ILP**.

Based on three pillars:

- 1. Dynamic pipeline scheduling
- 2. Branch prediction
- 3. Speculative execution

LEN5 uses **Tomasulo's algorithm**, with its distributed control approach.

Frontend design

Frontend overview I\$

PC gen stage

Instruction Fetch Unit (IFU)

Branch management

Branch Prediction Unit (BPU)

Gshare branch predictor

Branch Target Buffer (BTB)

Branch unit

BPU update actions

Prediction	Resolution	Target	Action
Taken	Taken	~	Increment 2-bit counter
		×	Increment 2-bit counter
			Update BTB entry
			Flush, go to right target
	Not taken	-	Decrement 2-bit counter
			Remove BTB entry
			Flush, go to branch PC+4
Not taken	Not taken	-	Decrement 2-bit counter
	Taken	-	Increment 2-bit counter
			Add BTB entry
			Flush, go to right target

Results

Gshare accuracy vs. History bits

Misprediction penalty vs. BTB size

Synthesis area results

Total cell area grows **exponentially** with the length of the **global history** and of the **BTB index** (*z* axis in log scale).

Synthesis frequency results

- · Frequency depends only on the size of the BTB
- The BTB address decoding network is the critical path of the whole design

Wrap-up

Frontend design:

· Address generation

Frontend design:

- · Address generation
- Instruction fetch

Frontend design:

- · Address generation
- Instruction fetch
- Branch prediction

Frontend design:

- · Address generation
- Instruction fetch
- · Branch prediction

Insightful **exploratory work**, with several applications:

Frontend design:

- · Address generation
- Instruction fetch
- Branch prediction

Insightful **exploratory work**, with several applications:

Teaching and research

Frontend design:

- · Address generation
- Instruction fetch
- · Branch prediction

Insightful exploratory work, with several applications:

- Teaching and research
- High-performance computing

Future work

Possible improvements:

More advanced branch prediction

Future work

Possible improvements:

- More advanced branch prediction
- · SRAM data structures

Future work

Possible improvements:

- · More advanced branch prediction
- SRAM data structures
- ISA extensions

Thank you for your attention!