STA261: Probability and Statistics II

Shahriar Shams

Week 6 (Interval estimation: $z,\,t,\,\chi^2$ and MLE based confidence intervals)

Winter 2020

Recap of Week 5

- Large sample property of MLE
 - $\hat{\theta}$ is the MLE of θ_0 .
 - $nI(\theta_0)$ is the Fisher Information.
 - For $n \to \infty$

$$\hat{\theta} \xrightarrow{D} N(\theta_0, \frac{1}{nI(\theta_0)})$$

- Efficiency
 - Cramer Rao Lower Bound(CRLB) for variance of unbiased estimators.

$$var[T] \ge \frac{1}{nI(\theta_0)}$$

Learning goals for this week

- Definition of Confidence Interval (CI)
- CI for parameters of Normal dist
 - CI for μ , (σ^2 known)
 - CI for μ , (σ^2 unknown)
 - CI for σ^2
- MLE based Confidence Intervals
- One-sided Confidence Intervals
- Few definitions related to CI and interpretation of CI

These are selected topics from

Evans and Rosenthal: chapter 6.3.2, 6.3.4, 6.5 and

John A. Rice: Chap 8.5.3

Section 1

Some revisions

Revisit: Population dist vs Sampling dist

• Each of the blue dots represents one value of \bar{X} calculated based on one set of sample of size, n=10 from a N(15,4) distribution.

15

20

25

- If we increase the sample size (n) gradually, the blue density curve will get narrower and narrower. [Recall: $\bar{X} \sim N(\mu, \sigma^2/n)$]
- Standard Error (SE): the standard deviation of the blue curve

10

• $SE(\bar{X}) = \frac{2}{\sqrt{10}}$ for this example

Revisit some sampling distributions

• If $X_1, X_2, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$
$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

• $X_1, X_2, ..., X_n$ iid from $f_{\theta_0}(x)$. Under some conditions and for $n \to \infty$

$$\frac{\hat{\theta} - \theta_0}{\sqrt{\frac{1}{nI(\theta_0)}}} \xrightarrow{D} N(0, 1)$$

Section 2

Definition of Confidence Interval

Definition of Confidence Interval (CI) (E&R - P326)

An interval $C(X_1, X_2, ..., X_n) = (l(X_1, X_2, ..., X_n), u(X_1, X_2, ..., X_n))$ is a γ -confidence interval for $\psi(\theta)$ if

$$P_{\theta}[\psi(\theta) \in C(X_1, X_2, ..., X_n)] \ge \gamma$$

$$\implies P_{\theta}[l(X_1, X_2, ..., X_n) \le \psi(\theta) \le u(X_1, X_2, ..., X_n)] \ge \gamma$$

for every $\theta \in \Omega$.

 γ represents the confidence level of the interval.

In naive words, we want "two numbers" which will have at least γ chance of containing the true parameter.

Example explaining the definition of CI

- Assume the unknown parameter is μ
- Assume $\gamma = 0.95$
- We want an expression similar to this

$$P[l() \le \mu \le u()] \ge 0.95$$

- In most regular cases "= 0.95" interval is calculable.
- We need a tool that relates sample observations $(X_1, X_2, ..., X_n)$ to the parameter (μ) and finally allows calculating probability.
- This tool is called *Pivotal Quantity* or simply *Pivots*

Pivotal Quantity

Definition: A random variable defined in terms of the sample observations $X_1, X_2, ..., X_n$ is called a pivotal quantity

- if it involves the unknown parameters in it's expression
- but the distribution of this random variable does not depend on the parameters

The variables given on slide 6 are examples of Pivotal quantity.

Section 3

CI for parameters of Normal dist

Subsection 1

CI for μ , (σ^2 known)

CI for mean (μ) of Normal dist, σ^2 known

- We know, $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$
- Assuming $\gamma = 0.95$ we can write,

$$P\left[k_{1} \leq \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \leq k_{2}\right] \geq 0.95$$

$$\implies P[k_{1} * \frac{\sigma}{\sqrt{n}} \leq \bar{X} - \mu \leq k_{2} * \frac{\sigma}{\sqrt{n}}] \geq 0.95$$

$$\implies P[\bar{X} - k_{2} * \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X} - k_{1} * \frac{\sigma}{\sqrt{n}}] \geq 0.95$$

• k_1 and k_2 are quantiles of N(0,1) distribution satisfying

$$P[k_1 \le Z \le k_2] \ge 0.95$$

where Z is a standard Normal variable.

choice of k_1 and k_2 assuming $\gamma = 0.95$

- In green one, $k_1 = -\infty$ and $k_2 = 1.65 \iff (0.95 \text{ quantile})$
- In red one, $k_1 = -1.96$ and $k_2 = 1.96$
- In blue one, $k_1 = -1.65$ and $k_2 = \infty$
- they all (along with infinitely many other) gives a total area of 0.95
- Simplest choice: pick the one with the shortest length of interval

Choice of k_1 and k_2 for any γ

- The sampling distribution is **unimodal and symmetric** around the mode, the middle γ part gives the shortest interval.
- $z_{(\frac{1-\gamma}{2})}$ and $z_{(\frac{1+\gamma}{2})}$ are preferred as the value of k_1 and k_2 .
- Example: for $\gamma = 0.95 \implies \begin{cases} k_1 = z_{0.025} = -1.96 \\ k_2 = z_{0.975} = 1.96 \end{cases}$
- Finally, for $X_1, X_2, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with σ^2 known we have the γ -CI of μ as

$$\left(\bar{X}-z_{\left(\frac{1+\gamma}{2}\right)}\frac{\sigma}{\sqrt{n}}\,,\,\bar{X}+z_{\left(\frac{1+\gamma}{2}\right)}\frac{\sigma}{\sqrt{n}}\right)$$

Example of CI for μ [Normal dist with known σ^2]

Exercise-6.3.1 (E&R):

(4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3) $\stackrel{iid}{\sim} N(\mu, \sigma_0^2)$ with $\sigma_0^2 = 0.5$ Calculate the 0.95-confidence interval for μ .

- n = 10
- $\bar{x} = \frac{1}{10}(4.7 + 5.5 + \dots + 5.3) = 4.88$
- $9 \ \gamma = 0.95 \implies \frac{1+\gamma}{2} = 0.975$
- using z-table or R [qnorm(0.975)], $z_{0.975} \approx 1.96$
- **6** 0.95-CI for μ :

$$4.88 \pm 1.96 * \frac{\sqrt{0.5}}{\sqrt{10}} = (4.442, 5.318)$$

Subsection 2

 $\overline{\text{CI}} \text{ for } \mu, (\sigma^2 \text{ unknown})$

CI for mean (μ) of Normal dist, σ^2 unknown

- When σ^2 is unknown, we use S^2 as an estimator of σ^2 .
- Now we can't use $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$ anymore.
- We use $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{(n-1)}$
- We can use the same idea of slide 13-15
- For $X_1, X_2, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with σ^2 unknown we have the γ -CI of μ as

$$\left(\bar{X} - t_{\frac{1+\gamma}{2}(n-1)} \frac{S}{\sqrt{n}}, \bar{X} + t_{\frac{1+\gamma}{2}(n-1)} \frac{S}{\sqrt{n}}\right)$$

where, $t_{\frac{1+\gamma}{2}(n-1)}$ is the $\frac{1+\gamma}{2}$ quantile of a $t_{(n-1)}$ distribution.

Example of CI for μ [Normal dist with unknown σ^2]

Exercise-6.3.2 (E&R):

 $(4.7,\,5.5,\,4.4,\,3.3,\,4.6,\,5.3,\,5.2,\,4.8,\,5.7,\,5.3)\stackrel{iid}{\sim}N(\mu,\sigma^2)$ with both μ and σ^2 unknown

Calculate the 0.95-confidence interval for μ .

$$n = 10$$

$$\bar{x} = \frac{1}{10}(4.7 + 5.5 + \dots + 5.3) = 4.88$$

$$\gamma = 0.95 \implies \frac{1+\gamma}{2} = 0.975$$

- **6** using t-table or R $[qt(0.975, df=9)], t_{0.975(9)} \approx 2.262$
- **6** 0.95-CI for μ :

$$4.88 \pm 2.262 * \frac{0.696}{\sqrt{10}} = (4.382, 5.378)$$

Subsection 3

CI for σ^2

CI for variance σ^2 of Normal distribution [E&R-P338]

- Recall, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$
- we can write,

$$P\left[\chi_{\frac{1-\gamma}{2}(n-1)}^{2} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{\frac{1+\gamma}{2}(n-1)}^{2}\right] \qquad \geq \gamma$$

$$\Longrightarrow P\left[\chi_{\frac{1-\gamma}{2}(n-1)}^{2} \leq \frac{1}{\sigma^{2}} \leq \frac{\chi_{\frac{1+\gamma}{2}(n-1)}^{2}}{(n-1)S^{2}}\right] \qquad \geq \gamma$$

$$\Longrightarrow P\left[\frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}(n-1)}^{2}} \leq \sigma^{2} \leq \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}(n-1)}^{2}}\right] \qquad \geq \gamma$$

• γ -level confidence interval:

$$\left(\frac{(n-1)S^2}{\chi^2_{\frac{1+\gamma}{2}(n-1)}}\,,\,\frac{(n-1)S^2}{\chi^2_{\frac{1-\gamma}{2}(n-1)}}\right)$$

Example of CI of σ^2

 $(4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3) \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with both μ and σ^2 unknown.

Calculate the 0.95-confidence interval for σ^2 .

- n = 10
- $\bar{x} = \frac{1}{10}(4.7 + 5.5 + \dots + 5.3) = 4.88$
- $(n-1)s^2 = \sum (x_i \bar{x})^2 = \sum x_i^2 n * (\bar{x})^2 = 4.356$
- **1** $\gamma = 0.95 \implies \frac{1-\gamma}{2} = 0.025 \text{ and } \frac{1+\gamma}{2} = 0.975$
- **10** using χ^2 -table or R, $\chi^2_{0.025(9)} \approx 2.7$ and $\chi^2_{0.975(9)} \approx 19.023$
- **6** 0.95-CI for μ :

$$\left(\frac{4.356}{19.023}, \frac{4.356}{2.7}\right) = (0.229, 1.613)$$

Comments on χ^2 based intervals

- χ^2 is not a symmetric distribution (at least for lower degrees of freedoms)
- It's shape depends on it's degrees of freedom.
- Using $\chi^2_{\frac{1-\gamma}{2}(n-1)}$ and $\chi^2_{\frac{1+\gamma}{2}(n-1)}$ as two ends may not result in the shortest length.

Section 4

MLE based CI for θ_0

CI for θ_0 using the asymptotic distribution of $\hat{\theta}$

Recall

For
$$n \to \infty$$
 we know $\frac{\hat{\theta} - \theta_0}{\sqrt{\frac{1}{nI(\theta_0)}}} \xrightarrow{D} N(0, 1)$

• Using the same idea of slide 13-15, we can "write" that the γ -CI for θ_0 is

$$\left(\hat{\theta} - z_{\left(\frac{1+\gamma}{2}\right)} \sqrt{\frac{1}{nI(\theta_0)}}, \, \hat{\theta} + z_{\left(\frac{1+\gamma}{2}\right)} \sqrt{\frac{1}{nI(\theta_0)}}\right)$$

• Question: Can we use this for calculation? (why or why not?)

Estimate of the Fisher Information

- When Fisher Information involves the unknown parameter (θ_0) we can't use the expression on the previous page.
- We have two alternatives which give us an **estimate** of the Fisher information.

Plug-in estimate of Fisher Information

$$nI(\hat{\theta}) = -E\left[\frac{\partial^2}{\partial \theta^2}\log f(X_1, X_2, ..., X_n | \theta)\right]\Big|_{\theta = \hat{\theta}}$$

(In the expression of the Fisher information, replace θ by the mle, $\hat{\theta}$)

Observed Fisher Information (E&R page 364)

$$= -\frac{\partial^2}{\partial \theta^2} \log f(X_1, X_2, ..., X_n | \theta) \Big|_{\theta = \hat{\theta}}$$

(in the expression of the second-derivative of the negative log-likelihood replace θ by $\hat{\theta}$)

Estimate of the Fisher Information(cont...)

Though for the distributions that we have learned so far, both of these options produce same estimate (feel free to check, it will be a good practice), we will continue with the **plug-in estimate of Fisher Information**.

Using the *plug-in estimate* of Fisher Information, γ -level CI for θ_0 is

$$\left(\hat{\theta} - z_{(\frac{1+\gamma}{2})} \sqrt{\frac{1}{nI(\hat{\theta})}} \;,\; \hat{\theta} + z_{(\frac{1+\gamma}{2})} \sqrt{\frac{1}{nI(\hat{\theta})}}\right)$$

Example: CI for λ when data follows $Poisson(\lambda)$

- $\hat{\lambda} = \bar{X}$ is the MLE of λ
- Fisher Information, $nI(\lambda) = \frac{n}{\lambda}$
- Plug-in estimate, $nI(\hat{\lambda}) = \frac{n}{X}$
- Finally, based on observed data the calculated γ -CI for λ is

$$\left(\bar{X}-z_{(\frac{1+\gamma}{2})}\sqrt{\frac{\bar{X}}{n}}\;,\;\bar{X}+z_{(\frac{1+\gamma}{2})}\sqrt{\frac{\bar{X}}{n}}\right)$$

$(4, 10, 10, 4, 6, 8, 8, 3, 4, 4) \stackrel{iid}{\sim} Pois(\lambda)$. Calculate 0.95-CI of λ

- $\bar{x} = 6.1 \implies nI(\hat{\lambda}) = 10/6.1$
- **2** 0.95-CI of λ : $6.1 \pm 1.96 * \sqrt{6.1/10} \implies (4.569, 7.631)$

Section 5

One-sided Confidence Intervals

One-sided intervals

- Until now, all the intervals that have constructed some how represent the middle $\gamma*100$ percent of the sampling distributions.
- These are called two-sided intervals (we are discarding both ends of the distribution)
- An one sided confidence interval looks like

$$P[-\infty \le \psi(\theta) \le u(X_1, X_2, ..., X_n)] \ge \gamma$$

or

$$P[l(X_1, X_2, ..., X_n) \le \psi(\theta) \le \infty] \ge \gamma$$

One-sided intervals (cont...)

- Left sided CI is represented by the green density.
- Right sided CI is represented by the blue density.

$(4, 10, 10, 4, 6, 8, 8, 3, 4, 4) \stackrel{iid}{\sim} Pois(\lambda).$ Calculate **left sided** 0.95-CI of λ

- $\bar{x} = 6.1 \implies nI(\hat{\lambda}) = 10/6.1$
- **2** left sided 0.95-CI of λ : $(-\infty, 6.1 + 1.65 * \sqrt{6.1/10} \implies (-\infty, 7.34)$

Section 6

Few definitions related to two-sided CI and interpreting CI

Few definitions related to CI (for two-sided z and t intervals)

- For z and t interval, the sample mean (\bar{x}) is the midpoint of the lower and upper bound.
- width of the interval = upper bound lower bound.
- 3 Half of the width is known as the Margin of Error (ME).
- CI: $[\bar{x} \pm \text{ME}]$
- **1** The width of the interval will increase as the confidence level (γ) increases. $(\gamma \uparrow \implies width \uparrow)$
- **10** The width of the interval will increase as the standard deviation (either σ or s) increases.
- **②** The width of the interval will decrease as the sample size (n) increases. $(n \uparrow \Longrightarrow width \downarrow)$

Interpreting CI

- In slide 16, we got the 0.95-CI of μ as (4.442,5.318)
- Does it mean, $P[4.442 \le \mu \le 5.318] = 0.95$?
- Frequentist believe μ is a fixed number.
- Can we assign a probability statement to μ ?

Interpreting CI (cont...)

- \bullet Generated 20 set of samples (each with size, n=30) from N(0,1)
- Constructed the 0.95-CI for μ [just like slide 16, but 20 times]
- CIs are not fixed numbers rather random variables.
- 1 out of these 20 CIs missed the true mean ($\mu = 0$, the horizontal line)

Interpreting CI(cont...)

- Wrong interpretation: There is 95% chance that μ is between 4.442 and 5.318
- Correct interpretation: If we keep taking samples (infinite times) and keep constructing 0.95-CIs, in 95% of the cases our CIs will capture the true value of the parameter.
- Question: The confidence interval that we calculated, does it include the true parameter? (In other words, the one that we calculated is it a red one or blue one in the graph on slide 36)? We don't know!
- In *Bayesian* school of thoughts, parameters are random variables. So assigning probabilities to a parameter is possible.

Assignment (Non-credit)

Evans and Rosenthal

Example: 6.3.7, 6.3.8, **6.3.16**, **6.3.17**

Exercise(CI part of these ques): 6.3.1-6.3.4, 6.3.6, 6.3.8, 6.3.10, 6.3.12

R: 6.3.19, 6.3.21, 6.3.22

(CI part) 6.5.4, 6.5.5, 6.5.7, 6.5.8