Aula 04: Introdução à Probabilidade

Estatística e Probabilidades

André Victor Ribeiro Amaral (sala 3029) avramaral@gmail.com

Teoria dos conjuntos

Um conjunto A é uma coleção bem definida de elementos. Se o elemento a pertence ao conjunto A, dizemos que $a \in A$.

Além disso, temos:

- Se $\forall a \in A$, temos que $a \in B$, então $A \subset B$;
- $A \cup B$ é o conjunto definido por $\{a : a \in A \text{ ou } a \in B\};$
- $A \cap B$ é o conjunto definido por $\{a : a \in A \ \mathbf{e} \ a \in B\}$; e
- $A^c = \Omega A$ é o conjunto definido por $\{a : a \notin A \ \mathbf{e} \ a \in \Omega\}$, onde Ω é o "conjunto do todo";
- Ø é o "conjunto vazio";
- $(A \cup B)^c = A^c \cap B^c$ (Lei de Morgan); e
- $(A \cap B)^c = A^c \cup B^c$ (Lei de Morgan).

Modelo Probabilístico

Um Modelo Probabilístico é construído a partir da definição de um Espaço de Probabilidade. Nesse sentido, temos que:

Definição 1

Um espaço de probabilidade é uma tripla ordenada $(\Omega, \mathcal{A}, \mathbb{P})$, onde:

- 1. Ω é o espaço amostral;
- 2. \mathcal{A} é uma σ -álgebra de Ω ; e
- 3. \mathbb{P} é uma medida de probabilidade.

Espaço Amostral (Ω)

Entende-se como Espaço Amostral (Ω) um conjunto que contenha todos os possíveis resultados de um experimento aleatório.

Exemplo: em um experimento aleatório que se resume ao lançamento de um dados de 6 faces, o Espaço Amostral pode ser definido como $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Exemplo: em um experimento aleatório que se resume ao lançamento de uma moeda (honesta), o Espaço Amostral pode ser definido como $\Omega = \{ \text{cara, coroa} \}.$

Exemplo: em um experimento aleatório que se resume ao sorteio de um número real a, t.q. $a \in [0,1]$, o Espaço Amostral pode ser definido como $\Omega = \{a: a \in [0,1]\}$

σ -álgebra (A)

Uma σ -álgebra (\mathcal{A}) de Ω (com $A \in \mathcal{A}$ "evento") é uma coleção de subconjuntos de Ω que satisfazem as seguintes propriedades:

- 1. $\Omega \in \mathcal{A}$;
- 2. se $A \in \mathcal{A}$, então $A^c \in \mathcal{A}$; e
- 3. se $A_1, A_2, \dots, A_n \in \mathcal{A}$, então $\bigcup_{i=1}^n A_i \in \mathcal{A}$.

Observação: A partir da propriedade 3, é possível provar que se $A_1, A_2, \dots, A_n \in \mathcal{A}$, então $\bigcap_{i=1}^n A_i \in \mathcal{A}$. Vejamos:

Para verificar que $\bigcap_{i=1}^n A_i \in \mathcal{A}$, basta mostrar, como resultado da propriedade 2, que $(\bigcap_{i=1}^n A_i)^c \in \mathcal{A}$. Assim, como $(\bigcap_{i=1}^n A_i)^c = \bigcup_{i=1}^n A_i^c$ e, pela propriedade 3, $\bigcup_{i=1}^n A_i^c \in \mathcal{A}$, temos que $\bigcap_{i=1}^n A_i \in \mathcal{A}$.

Medida de Probabilidade (\mathbb{P})

Uma Medida de Probabilidade, ou Probabilidade, (\mathbb{P}) é uma função $\mathbb{P}: \mathcal{A} \longrightarrow \mathbb{R}$ que satisfaz as seguintes propriedades (ou Axiomas da Teoria da Probabilidade):

- 1. $\mathbb{P}(A) \geqslant 0, \forall A \in \mathcal{A};$
- 2. $\mathbb{P}(\Omega) = 1$; e
- 3. se $A_1, A_2, \dots, A_n \in \mathcal{A}$ são disjuntos 2 a 2 (ou seja, $A_i \cap A_j = \emptyset, \forall i \neq j$), então $\mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$.

Consequência 1

Se $A \subset B$, então $\mathbb{P}(A) \leqslant \mathbb{P}(B)$.

Demonstração:

É possível escrever B como sendo $A \cup (B - A)$. Dessa forma, por construção, temos B como sendo a união disjunta de $A \in (B - A)$.

Assim, a partir do Axioma 3, $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B - A)$.

Como, pelo Axioma 1, a $\mathbb{P}(B-A) \ge 0$, conclui-se que a $\mathbb{P}(B) \ge \mathbb{P}(A)$ (ou $\mathbb{P}(A) \le \mathbb{P}(B)$).

Consequência 2

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A).$$

Demonstração:

É possível escrever Ω como sendo $A \cup A^c$. Dessa forma, como feito para a Consequência 1, temos que a $\mathbb{P}(\Omega) = \mathbb{P}(A) + \mathbb{P}(A^c)$.

A partir do Axioma 2, que diz que $\mathbb{P}(\Omega) = 1$, a igualdade se transforma em $1 = \mathbb{P}(A) + \mathbb{P}(A^c) \implies \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

Em particular, $\mathbb{P}(\emptyset) = 0$. Para verificar isso, tome A como \emptyset :

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A) \implies \mathbb{P}(\Omega) = 1 - \mathbb{P}(\emptyset) \implies 1 = 1 - \mathbb{P}(\emptyset) \implies \mathbb{P}(\emptyset) = 0.$$

Consequência 3

Seja A evento qualquer, então $\mathbb{P}(A) \in [0, 1]$.

Demonstração:

Sendo A um elemento de \mathcal{A} , a relação $\emptyset \subset A \subset \Omega$ é válida. Assim, como resultado da Consequência 1, temos que $\mathbb{P}(\emptyset) \leqslant \mathbb{P}(A) \leqslant \mathbb{P}(\Omega)$.

Além disso, a partir do Axioma 2 e da Consequência 2, respectivamente, sabe-se que $\mathbb{P}(\Omega)=1$ e $\mathbb{P}(\emptyset)=0$.

Dessa forma, $0 \leq \mathbb{P}(A) \leq 1$.

Consequência 4

Seja $\{A_i\}_{i=1}^n$ seq. de eventos, então $\mathbb{P}(\bigcup_{i=1}^n A_i) \leqslant \sum_{i=1}^n \mathbb{P}(A_i)$.

Demonstração:

É possível escrever
$$\bigcup_{i=1}^n A_i$$
 como $A_1 \cup A_2 \cup A_3 \cup \cdots \cup A_n = A_1 \cup (A_2 - A_1) \cup (A_3 - (A_1 \cup A_2)) \cup \cdots \cup (A_n - (A_1 \cup A_2) \cup \cdots \cup A_{n-1})$.

Assim, definindo $B_1 = A_1$ e $B_n = A_n - \bigcup_{i=i}^{n-1} A_i$ (sendo $B_n \subset A_n$), temos que $\bigcup_{i=i}^n A_i = \bigcup_{i=i}^n B_i$. Dessa forma, por construção, $\bigcup_{i=1}^n B_i$ é a união de conjuntos disjuntos, e, portanto, vale o Axioma 3: $\mathbb{P}(\bigcup_{i=1}^n A_i) = \mathbb{P}(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n \mathbb{P}(B_i)$.

Por fim, como $B_n \subset A_n$, a Consequência 1 garante que $\mathbb{P}(\bigcup_{i=1}^n A_i) \leqslant \sum_{i=1}^n \mathbb{P}(A_i)$.

Consequência 5

Sejam $A,\,B$ eventos, então $\mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\cap B).$

Demonstração:

De maneira similar ao que acabamos de fazer, podemos escrever $A \cup B$ como $A \cup (B - A)$, onde $A \cap (B - A) = \emptyset$.

Além disso, perceba que também podemos escrever B como $(B-A)\cup (A\cap B)$, onde $(B-A)\cup (A\cap B)=\emptyset$.

Assim, utilizando o Axioma 3, temos que

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B - A) \in \mathbb{P}(B) = \mathbb{P}(B - A) + \mathbb{P}(A \cap B).$$

Juntando tudo, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

Exercício

Exercício (ROSS, Sheldon. Probabilidade: Um curso moderno com aplicações):

João leva dois livros para ler durante as férias. A probabilidade de ele gostar do primeiro livro é de 0.5, de gostar do segundo livro é de 0.4 e de gostar de ambos os livros é de 0.3. Qual a probabilidade de ele gostar de pelo menos um dos livros? E qual a probabilidade de ele não gostar de nenhum dos livros?

Exercício

Resposta:

Sejam $A = \{\text{João gosta do primeiro livro}\}\ e\ B = \{\text{João gosta do segundo livro}\};\ \log_0,\ \mathbb{P}(A) = 0.5,\ \mathbb{P}(B) = 0.4\ e\ \mathbb{P}(A\cap B) = 0.3.$

Sendo assim a probabilidade de ele gostar de pelo menos um dos livros é definida por $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B) = 0.6$.

Agora, perceba que o evento $C = \{\text{João não gosta de nenhum dos livros}\}$ é complementar do evento $D = \{\text{João gosta de pelo menos um dos livros}\}$. Assim, $\mathbb{P}(C) = 1 - \mathbb{P}(D) = 0.4$.

Alternativamente,

$$\mathbb{P}(C) = \mathbb{P}(A^c \cap B^c) = \mathbb{P}(A \cup B)^c = 1 - \mathbb{P}(A \cup B) = 0.4.$$

Algumas Consequências ⁰

Teorema 1 (Continuidade de Probabilidade)

- A. Se $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$, com $\{A_i\}_{i=1}^{+\infty}$ seq. infinita de eventos, então $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mathbb{P}(A_n)$.
- B. Se $A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$, com $\{A_i\}_{i=1}^{+\infty}$ seq. infinita de eventos, então $\mathbb{P}(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mathbb{P}(A_n)$.
- Perceba que o que Teorema diz é que, se $A_n \uparrow A = \bigcup_{i=1}^{+\infty} A_i$, então $\mathbb{P}(A_n) \uparrow \mathbb{P}(A)$. De maneira análoga, se $A_n \downarrow A = \bigcap_{i=1}^{+\infty} A_i$, então $\mathbb{P}(A_n) \downarrow \mathbb{P}(A)$.
- Podemos pensar na "continuidade de probabilidade" como "continuidade de uma função f em um ponto (c, f(c))"; i.e., à medida que x se aproxima de c, f(x) se aproxima de f(c).

Algumas Consequências ⁰

Demonstração (parte 01 de 02):

A. Defina $B_1 = A_1 \in B_n = A_n - A_{n-1}$ (tal que $B_n \subset A_n$). Dessa forma, $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$, com $\bigcup_{i=1}^{\infty} B_i$ união disjunta (use Ax. 3).

Assim, $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \mathbb{P}(\bigcup_{i=1}^{\infty} B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{P}(B_i).$

Portanto, temos que: $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \mathbb{P}(B_1) + \lim_{n \to \infty} \sum_{i=2}^{n} \mathbb{P}(B_i)$.

Agora, iá que $B_1 = A_1$ e $B_i = A_i - A_{i-1}$, é possível dizer que:

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \mathbb{P}(A_1) + \lim_{n \to \infty} \sum_{i=2}^{n} \mathbb{P}(A_i - A_{i-1}) = \mathbb{P}(A_1) + \lim_{n \to \infty} \sum_{i=2}^{n} (\mathbb{P}(A_i) - \mathbb{P}(A_{i-1})), \text{ já que } A_{i-1} \subset A_i, \forall i.$$

Por fim, enxergando a série telescópica,

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \mathbb{P}(A_1) + \lim_{n \to \infty} (-\mathbb{P}(A_1) + \mathbb{P}(A_n)) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

Algumas Consequências ⁰

Demonstração (parte 02 de 02):

B. Tomando o complementar de cada um dos termos da sequência $\{A_i\}_{i=1}^{\infty}$, temos que $A_1^c \subset A_2^c \subset \cdots \subset A_n^c \subset \cdots$.

Assim, a partir do item "A.", temos que

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i{}^c) = \lim_{n \to \infty} \mathbb{P}(A_n{}^c).$$

O que quer dizer que $\mathbb{P}((\bigcap_{i=1}^{\infty} A_i)^c) = \lim_{n \to \infty} 1 - \mathbb{P}(A_n)$.

Por fim, $1 - \mathbb{P}(\bigcap_{i=1}^{\infty} A_i) = 1 - \lim_{n \to \infty} \mathbb{P}(A_n)$; o que implica em $\mathbb{P}(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mathbb{P}(A_n)$, como queríamos demonstrar.

Observações

Agora, se os elementos $a \in \Omega$ acontecem de maneira equiprovável, podemos definir maneiras de calcular as probabilidades como:

Definição 2

Seja A evento definido em Ω , então podemos dizer que:

$$\mathbb{P}(A) = \frac{\#(A)}{\#(\Omega)},$$

onde $\#(\cdot)$ representa a cardinalidade do conjunto considerado.

Aqui, perceba que se Ω é conjunto infinito (ou não-enumerável), $\mathbb{P}(A) = 0$ sempre que A representar um conjunto que contém um único elemento. Entretanto, se $\Omega \subset \mathbb{R}$ e A = [a, b], com $a, b \in \mathbb{R}$, então $\mathbb{P}(A)$ pode ser definido por $\frac{(b-a)}{\text{comprimento}(\Omega)}$.

Exemplos

Resolva os problemas abaixo:

- 1. Considere o experimento de lançar um dado (honesto). Seja $A = \{3\}$ e $B = \{3 \text{ ou } 4\}$; nesse caso, quanto vale $\mathbb{P}(A) = \frac{1}{6}$ e $\mathbb{P}(B)$? Além disso, qual o valor de $\mathbb{P}(A \cup B)$? E de $\mathbb{P}(A \cap B)$?
- 2. Considere o experimento de lançar um dado (honesto) duas vezes. Seja $A = \{\text{soma dos dois lançamentos \'e }7\}$. Quanto vale $\mathbb{P}(A)$? Para responder à essa pergunta, primeiro defina Ω . Agora, se $B = \{\text{soma dos dois lançamentos \'e }8\}$, qual o valor de $\mathbb{P}(B)$?
- 3. Considere o experimento de sortear um número, de maneira uniforme, no intervalo [0,1]. Seja $A = \{$ o número sorteado está entre 0.25 e 0.75 $\}$. Quanto vale $\mathbb{P}(A)$?

Exemplos

Respostas

1.
$$\mathbb{P}(A) = \frac{1}{6}$$
, $\mathbb{P}(B) = \frac{2}{6} = \frac{1}{3}$, $\mathbb{P}(A \cup B) = \frac{2}{6} = \frac{1}{3}$ e $\mathbb{P}(A \cap B) = \frac{1}{6}$.

2.
$$\mathbb{P}(A) = \frac{6}{36} = \frac{1}{6} \in \mathbb{P}(B) = \frac{5}{36}$$
.

3.
$$\mathbb{P}(A) = \frac{0.75 - 0.25}{1 - 0} = \frac{0.5}{1} = 0.5.$$

Desafio

1. Considere o experimento de lançar um dado (honesto) três vezes. Seja $A_x = \{\text{soma dos três lançamentos \'e } x\}$. Qual é maior: $\mathbb{P}(A_9)$ ou $\mathbb{P}(A_{10})$? Para responder à essa pergunta, primeiro defina Ω .