Profesor: César Hernández Cruz Ayudante: Iñaki Cornejo de la Mora

Tarea 2

1. Sea D una digráfica de orden n. Demuestre que si D no tiene ciclos dirigidos, entonces existe un orden total, v_1, \ldots, v_n de V_D , tal que siempre que (v_i, v_j) sea una flecha de D, se tiene que i < j.

- 2. Demuestre que si Gtiene diámetro mayor que 3, entonces \overline{G} tiene diámetro menor que 3.
- 3. Sea G una gráfica conexa. Demuestre que si G no es completa, entonces contiente a P_3 como subgráfica inducida.
- 4. Demuestre que cualesquiera dos trayectorias de longitud máxima en una gráfica conexa tienen un vértice en común.
- 5. Caracterice a las gráficas k-regulares para $k \in \{0, 1, 2\}$.
- 6. Demuestre que si $|E| \geq |V|$, entonces G contiene un ciclo.

Puntos extra

- 1. Sea G una gráfica. Demuestre que G es k-partita completa si y sólo si no contiene a K_{k+1} ni a $\overline{P_3}$ como subgráficas inducidas.
- 2. Demuestre que si G es una gráfica con $|V| \ge 4$ y $|E| > n^2/4$, entonces G contiene un ciclo impar.
- 3. Sea $d=(d_1,\ldots,d_n)$ una sucesión no creciente de enteros no negativos. Sea $d'=(d_2-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n)$.
 - (a) Demuestre que d es gráfica si y sólo si d' es gráfica.
 - (b) Usando el primer inciso, describa un algoritmo que acepte como entrada una sucesión no creciente de enteros no negativos d y devuelva una gráfica simple con sucesión de grados d, un certificado de que d no es gráfica.

