

Impedance and Admittance

Linear Circuit Analysis II EECE 202

www.aum.edu.kw

Announcement

1. GCA1 during Week 5 Second Lecture

2

Recap

1. Solving equation differential and integrals using

LT

New Material

- 1. Impedances
- 2. Admittances

3

Passive Elements

Resistor

Inductor

Capacitor

What is an Impedance??

Impedance is a generalized Resistance

that is frequency dependent

Impedance, denoted $Z_{in}(s)$, in the s---world,

in the <u>total absence of initial conditions</u>, is:

$$Z_{in}(s) = \frac{V_{in}(s)}{I_{in}(s)}$$

$$V_{in}(s) = Z_{in}(s) \times I_{in}(s)$$

$$Y_{in}(s) = \frac{1}{Z_{in}(s)} = \frac{I_{in}(s)}{V_{in}(s)} \Omega^{-1} z_{in}^{-1}$$

www.aum.edu.kw

Resistance Impedance/Admittance

In the total absence of initial conditions

In time domain, $v_R = Ri_R$

In "s" domain,
$$V_R(s) = RI_R(s) \triangleq Z_R(s)I_R(s)$$

$$\implies I_R(s) = \frac{1}{R} \times V_R(s) \triangleq Y_R(s) \times V_R(s)$$

Result:
$$Z_R(s) = R$$
 and $Y_L(s) = \frac{1}{R}$

Note: At s = 0, the impedance of the inductor is zero meaning the inductor looks like a short circuit

Inductance Impedance/Admittance

In the total absence of initial conditions

In time domain,
$$v_L = L \frac{di_L}{dt}$$

In "s" domain,
$$V_L(s) = LsI_L(s) \triangleq Z_L(s)I_L(s)$$

$$\implies I_L(s) = \frac{1}{Ls} \times V_L(s) \triangleq Y_L(s) \times V_L(s)$$

Result:
$$Z_L(s) = Ls$$
 and $Y_L(s) = \frac{1}{Ls}$

Note: At s = 0, the impedance of the inductor is zero meaning the inductor looks like a short circuit

Capacitance Impedance/Admittance

In the total absence of initial conditions

In time domain,
$$i_C = C \frac{dv_C}{dt}$$

In "s" domain,
$$I_C(s) = CsV_C(s) \triangleq Y_C(s)V_C(s)$$

$$\implies V_C(s) = \frac{1}{Cs} \times I_C(s) \triangleq Z_C(s) \times I_C(s)$$

Result:
$$Z_C(s) = \frac{1}{Cs}$$
 and $Y_L(s) = Cs$

Note: At s = 0, the impedance of the capacitor is infinite meaning the capacitor looks like an open circuit

Series Circuit Manipulation RULES

In the total absence of the initial conditions, find the equivalent impedance and admittance for the shown series connection:

$$Z(s) = R + Ls + \frac{1}{cs} \Omega$$

$$Y(s) = \frac{1}{Z(s)} = \frac{1}{R + Ls + \frac{1}{Cs}} \Omega^{-1}$$

Parallel Circuit Manipulation RULES

In the total absence of the initial conditions, find the equivalent impedance and admittance for the shown parallel connection:

$$Y(s) = Y_R + Y_L + Y_C$$

$$= \frac{1}{R} + \frac{1}{Ls} + Cs \quad \Omega^{-1}$$

$$Z(s) = \frac{1}{Y(s)}$$

Example 1

Assume zero initial conditions, find the input impedance seen by the source. Assume all parameter values are 1.

$$Z_{in}(s) = \frac{R_1 \frac{1}{Cs}}{R_1 + \frac{1}{Cs}} + \frac{R_2 Ls}{R_2 + Ls}$$

$$Z_{in}(s) = \frac{1}{s+1} + \frac{s}{s+1} = 1$$

Example 13.14 (p. 613)

For the shown circuit, Compute the following:

1-Draw the circuit in the S-domain.

2- Find Z(s).

3-Find $V_0(s)$ in terms of V(s).

4-Given that v(t) = u(t), find $v_0(t)$.

Assume zero initial conditions

$$Z_{R1} = R_1 = 10 \Omega$$

$$Z_{R2} = R_2 = 2 \Omega$$

$$Z_L = Ls = 1s \Omega$$

$$Z_C = 1/(sC) = 1/(0.1s) = 10/s \Omega$$

Example 13.14 (contin...)

$$Z_1(s) = Z_C // Z_{R1}$$

OR

$$Y_1(s) = Y_C + Y_{R1} = sC + \frac{1}{R_1} = 0.1s + \frac{1}{10} = \frac{s+1}{10}$$

$$Z_1(s) = \frac{10}{s+1} \quad \Omega$$

Similarly,

$$Z_2(s) = Z_L // Z_{R2}$$

OR

$$Y_2(s) = Y_L + Y_{R2} = \frac{1}{sL} + \frac{1}{R_2} = \frac{1}{1s} + \frac{1}{2} = \frac{s+2}{2s}$$

then, $Z_2(s) = \frac{2s}{s+2}$ Ω

Example 13.14 (contin...)

$$Z_1(s) = \frac{10}{s+1} \quad \Omega$$

$$Z_2(s) = \frac{2s}{s+2} \Omega$$

$$Z(s)=Z_1(s)+Z_2(s)$$

$$Z(s) = \frac{10(s+2)+2s(s+1)}{(s+1)(s+2)} = \frac{2s^2+12s+20}{(s+1)(s+2)} \quad \Omega$$

Example 13.14 (contin...)

$$V_o(s) = \frac{Z_2(s)}{Z(s)}V(s)$$

$$V_o(s) = \frac{\frac{2s}{s+2}}{\frac{(2s^2+12s+20)}{(s+1)(s+2)}}V(s)$$

$$V_o(s) = \frac{2s(s+1)(s+2)}{(s+2)(2s^2+12s+20)}V(s)$$

$$V_o(s) = \frac{2s(s+1)}{(2s^2 + 12s + 20)}V(s)$$

$$V_o(s) = \frac{s(s+1)}{(s^2+6s+10)} V(s)_{\text{www.aum.edu.kw}}$$

Given that v(t) = u(t), find $v_o(t)$

$$V_o(s) = \frac{s(s+1)}{(s^2+6s+10)} V(s)$$

And given that v(t) = u(t), then V(s) = 1/s, then

$$V_{o}(s) = \frac{s(s+1)}{(s^{2}+6s+10)} \frac{1}{s}$$

$$V_{o}(s) = \frac{(s+1)}{(s^{2}+6s+10)} = \frac{(s+1)}{((s+3)^{2}+1^{2})}$$

$$V_{o}(s) = \frac{s}{((s+3)^{2}+1^{2})} + \frac{1}{((s+3)^{2}+1^{2})}$$

$$V_{o}(s) = \frac{s+3-3}{((s+3)^{2}+1^{2})} + \frac{1}{((s+3)^{2}+1^{2})}$$

$$V_{o}(s) = \frac{(s+3)}{((s+3)^{2}+1^{2})} + \frac{1-3}{((s+3)^{2}+1^{2})}$$

$$V_{o}(s) = \frac{(s+3)}{((s+3)^{2}+1^{2})} + \frac{-2}{((s+3)^{2}+1^{2})}$$

$$V_{o}(s) = \frac{(s+3)}{((s+3)^{2}+1^{2})} - 2\frac{1}{((s+3)^{2}+1^{2})}$$

Repeat example 13.14 for R_2 =10 Ω and C= 0.01 F

$$v_o(t) = e^{-3t} Cos(1t)u(t) - 2e^{-3t} Sin(1t)u(t)$$
 V www.aum.edu.kw

Example 1

Assume zero initial conditions, Use source transformation to determine Z_{th} (s) for the indicated terminals

By source transformation:

$$I(s) = \frac{V(s)}{\frac{1}{0.2s}} = 0.2V(s)$$

Turn the current source off:

$$Y_{th}(s) = Y_R(s) + Y_C(s) + Y_L(s)$$

$$Y_{th}(s) = \frac{1}{2.5} + 0.2s + \frac{1}{s} = \frac{s^2 + 2s + 5}{5s}$$

$$Z_{th}(s) = \frac{5s}{s^2 + 2s + 5}$$

www.aum.edu.kw

Use AI and answer following questions

- 1. What is the difference between impedance and admittance in a circuit?
- 2. How does frequency affect the impedance of an inductor and a capacitor?
- 3. Why does the impedance of an inductor behave like a short circuit at low frequencies?
- 4. How does admittance simplify the analysis of parallel circuits?
- 5. Solve Activity

Summary

- Inductance Impedance
- Capacitance Impedance
- Series circuit manipulation rules
- Series circuit manipulation rules

Suggested Additional Problems for Ch. 13: Example 13.1 (p. 609), 13.2 (p. 611), 13.3 (p. 612), Exercise (p. 606), (p. 607)???