Datenstrukturen & Algorithmen Gruppeübung Gruppe 10

Ciheng Zhang (3472321) zch3183505@gmail.com Yao He (3487882) st168323@stud.uni-stuttgart.de Yuchan Bian (3496226) st170182@stud.uni-stuttgart.de

1 Aufgabe 1

(b)

Funktion	ONotation
$f_1(n) = n$	O(n)
$f_2(n) = 1$	O(1)
$f_3(n) = n!$	O(n!)
$f_4(n) = log(n)$	O(logn)
$f_5(n) = 2^n$	$O(2^n)$
$f_6(n) = n^4$	$O(n^k)$ für $k > 1$

$$f_3(n) > f_6(n) > f_5(n) > f_1(n) > f_4(n) > f_2(n)$$

2 Aufgabe 2

(a)

Zeile 2 ist O(1). Die Schleife Zeile 3 bis Zeile5 ist $log_2(n)$,
d.h O(logn). Die Schleife Zeile 6 bis 10 inkl
 inner Schleife und outer Schleife. Aber die erst mal die Result gleich wie Null, und die Schleife beendden. Es ist O(1).

$$O(1) + O(logn) + O(1) = O(logn)$$

(b)

Das ist ein Rekursive Algorithmen. $V_n = V_{n-1} + V_{n-1}$. D.h. $V_n = 2^n$. Aus diese Grund

$$O(2^n)$$

(c)

Zeile 3 ist O(1). Die Schleife Zeile 4 bis 11 ist f(n) = 0.5n * (log(n) - 1 + 50).

$$O(1) + O(nlogn) = O(nlogn)$$

Die Schleife Zeile 3 bis Zeile 9 ist f(n) = 5n * n * 2n. Dann die Sch

(d)

leife von Zeile 10 bis 12 ist f(n) = n/2.

$$O(n^3) + O(n) = O(n^3)$$

(e)

Zeile 2 ist O(1). Die Rekursive $V_n = V_{n-1} + 1 + n/2$. D.h. $V_n = n + n^2/2$

$$O(n^2)$$

(f)

Zeile 2 und Zeile 3 ist O(1), Zeile 4 bis 6 wegen die Zahl ist 99. Es ist O(1), Die Schleife 7-9 f(n) = 0.5(n+99), d.h. O(n).

$$O(1) + O(1) + O(1) + O(n) = O(n)$$

3 Aufgabe 3

Lösung im beigefügten Eclipse-Project