# Proves d'accés a la Universitat. Curs 2008-2009

# Tecnologia industrial

Sèrie 1

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna, i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

#### PRIMERA PART

# Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada, 0,5 punts; qüestió mal contestada, -0,16 punts; qüestió no contestada, 0 punts.]

# Qüestió 1

Un vehicle circula entre dues poblacions properes per una carretera de 7,5 km de longitud a una velocitat de 30 km/h. El cost econòmic del temps emprat per a fer aquest viatge s'estima que és  $8 \in /h$  i el cost directe del vehicle,  $0,20 \in /km$ . Quin és el cost econòmic del trajecte?

- *a*) 1,5 €
- *b*) 2 €
- *c*) 3 €
- *d*) 3,5 €

# Qüestió 2

Es disposa d'un voltímetre de quatre dígits per a fer-hi la lectura en V. El full de característiques del voltímetre indica que, per a un fons d'escala de 2 V, la precisió és  $\pm 1$  mV  $\pm 1$ % de la lectura. L'error absolut màxim en una lectura d'1,2 V és

- $a) \pm 12 \text{ mV}$
- **b**)  $\pm 13 \text{ mV}$
- c)  $\pm 24 \text{ mV}$
- $d) \pm 26 \text{ mV}$

# Qüestió 3

Un telefèric té una capacitat nominal de transport de 25 persones. L'interval entre sortides consecutives és de 10 minuts i el temps del trajecte és de 5 minuts. Quin és el màxim nombre de passatgers per hora que pot transportar el telefèric?

- **a**) 100
- **b**) 150
- **c**) 200
- **d**) 250

# Qüestió 4

Segons càlculs de la Unió Europea, un avió emet una quantitat de 132 g de  $CO_2$  per cada kilòmetre de trajecte i cada passatger que transporta. En un recorregut en avió de 9 000 km hi viatgen 350 passatgers. Quina és la quantitat de  $CO_2$  emesa a l'atmosfera durant aquest vol?

- a)  $297,0 \cdot 10^3 \text{ kg}$
- **b**)  $339,4 \cdot 10^3 \text{ kg}$
- c)  $387.5 \cdot 10^3 \text{ kg}$
- **d**)  $415,8 \cdot 10^3 \text{ kg}$

# Qüestió 5

Una empresa de fabricació de bigues de fusta en comercialitza un model de densitat 510 kg/m³ en conjunts de 25 bigues, que mesuren 240 mm × 5000 mm × 70 mm cada una. Quant pesen les 25 bigues? ( $g = 10 \text{ m/s}^2$ )

- **a**) 1,071 kN
- **b**) 10,71 kN
- c) 107,1 kN
- d) 1071 kN

#### Exercici 2

[2,5 punts]

Per a mantenir la pressió d'un dipòsit d'aire comprimit entre 6 bar i 8 bar, es disposa d'un compressor que es posa en marxa per sota de 6 bar, si estava aturat, i s'atura per sobre de 8 bar, si estava en marxa. Entre 6 bar i 8 bar no modifica el seu estat de funcionament. Utilitzant les variables d'estat:

pressió inferior a 6 bar 
$$i = \begin{cases} 1 \text{ sí} \\ 0 \text{ no} \end{cases}$$
; pressió superior a 8 bar  $s = \begin{cases} 1 \text{ sí} \\ 0 \text{ no} \end{cases}$ ;

compressor en marxa 
$$m = \begin{cases} 1 \text{ si} \\ 0 \text{ no} \end{cases}$$
; canvi d'estat (aturat/marxa) del compressor  $c = \begin{cases} 1 \text{ si} \\ 0 \text{ no} \end{cases}$ 

a) Escriviu la taula de veritat del sistema i indiqueu quins casos no són possibles.

[1 punt]

b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la.

[1 punt]

c) Dibuixeu l'esquema de contactes equivalent.

[0,5 punts]

#### **SEGONA PART**

# **OPCIÓ A**

#### Exercici 3

[2,5 punts]

Una banyera de dimensions interiors 750 mm × 1250 mm s'omple d'aigua a  $t_{\rm f}=35\,^{\circ}{\rm C}$ . Per a escalfar l'aigua, que inicialment estava a  $t_{\rm i}=15\,^{\circ}{\rm C}$ , s'empra un escalfador de butà, de poder calorífic p=45,79 MJ/kg, que té un rendiment  $\eta=80\,\%$ . La calor específica de l'aigua és  $c_{_{\rm D}}=4,187$  kJ/(kg·K).

- a) Determineu l'energia necessària,  $E_a$ , que ha de rebre l'aigua per a ser escalfada en funció de l'alçària h de l'aigua que hi ha a la banyera. [1 punt]
- **b**) Representeu, de manera aproximada i indicant les escales, el gràfic de l'energia  $E_{\rm a}$  per a 200 mm  $\leq h \leq$  400 mm. [0,5 punts]

Una bombona de butà conté m = 12,5 kg de gas i costa c = 12,94 €.

c) Determineu el cost mínim,  $c_{\min}$ , del combustible necessari, en  $\in$ , per a omplir la banyera fins a una alçària de 400 mm. [1 punt]

### Exercici 4

[2,5 punts]



Un calefactor elèctric té un commutador per a seleccionar la potència que subministra. En la figura se'n mostra el circuit elèctric, format per dues resistències de valors  $R_1 = 30 \ \Omega$  i  $R_2 = 50 \ \Omega$  i alimentat a  $U = 230 \ V$ . Determineu:

a) La resistència mínima,  $R_{min}$ , del circuit.

- [0,5 punts]
- b) El corrent I consumit pel calefactor quan la resistència és la mínima. [0,5 punts]
- c) El valor de les tres potències,  $P_1$ ,  $P_2$  i  $P_3$ , que pot proporcionar el calefactor.

[1 nunt]

d) L'energia elèctrica consumida,  $E_{\text{elèctr}}$ , en kW·h, si el calefactor es manté encès durant t=2 h a la màxima potència. [0,5 punts]

#### **OPCIÓ B**

# Exercici 3

[2,5 punts]

Un motor reductor és format per un motor elèctric de rendiment  $\eta_{\text{mot}} = 0.87$  i un reductor de rendiment  $\eta_{\rm red}=0.95$  i relació de transmissió  $\tau=\omega_{\rm s}/\omega_{\rm e}=1/24$ . En règim de funcionament nominal consumeix una potència elèctrica  $P_{\text{elèctr}} = 12,6 \text{ kW}$  i l'eix de sortida gira a  $n_s = 62,5 \text{ min}^{-1}$ . Determineu:

- [1 punt]
- [1 punt]
- a) La potència  $P_{\text{mot}}$  i el parell  $\Gamma_{\text{mot}}$  a l'eix de sortida del motor. b) La potència  $P_{\text{red}}$  i el parell  $\Gamma_{\text{red}}$  a l'eix de sortida del reductor. c) La potència total dissipada,  $P_{\text{diss}}$ , en el motor reductor. [0,5 punts]

# Exercici 4

[2,5 punts]



El remolc de la figura està preparat per a transportar càrrega i es mou arrossegat per una bicicleta articulada en el punt O. El remolc amb la càrrega inclosa, amb centre de masses en G, té una massa m = 90 kg. Amb el remolc en repòs i en la posició representada:

a) Determineu l'angle  $\varphi$ .

- [0,5 punts]
- b) Determineu la força F, en funció de d, que la roda fa sobre el terra. [0,75 punts]
- ${\it c}$ ) Dibuixeu, de manera aproximada i indicant les escales, la força vertical  $F_{_{\rm O}}$  que la bicicleta ha de fer en el punt O per a −100 mm  $\leq d \leq$  300 mm. [0,75 punts]
- Si el remolc s'arrossega a v = 20 km/h, determineu:
- d) La velocitat de rotació de la roda del remolc  $n_{rem}$ , en min<sup>-1</sup>.

[0,5 punts]

