Blockchain: The Code Law

SEMINAR @ SOFTUNI 15.03.2017

LECTURER: HRISTO HRISTOV CHRISSTOV.COM

Agenda

1. Seminar opening

2. Introduction

- Blockchain 101 what is (a) blockchain
- Blockchain data what are blocks and how are they created
- Blockchain network some major differences between a blockchain and a traditional DB
- Blockchain consensus the process of confirming transactions

<short break>

3. Comparison

Core differences between the bitcoin & ethereum blockchain

4. Blockchain Applications

- Use-cases and implementation scenarios
- How to create your own blockchain instance

5. Q&A

Source: Majesco (NYSE MKT: MJCO), a global provider of core insurance software

1. Seminar opening

What Is a Blockchain?

- A distributed database
- Maintains a growing list of ordered records blocks.
 - •Each block has a timestamp and a link to a previous block.
- Trustless but trustworthy system

Why the fuss?

- Eliminating the need for an intermediary of any sort
 - recording transactions, establishing identity and establishing contracts
- can be used to store any kind of digital information, including computer code. (not only bitcoins)

Most important features:

- no middleman required
- anonymous/private
- distributed
- cryptographically secure

Let us get into the details:

- back-linked structure of ordered data
- often visualized as vertical stack with each block on top of the other (remember this please)
- Some terms:
 - o blockchain height
 - o blockchain tip
 - o genesis block
- Each block is identified by a hash (SHA256 bitcoin)
- Each block references a previous one the parent
- Each block contains its parent hash in its header
- The sequence of hashes linking each block to its parent creates a chain going back all the way to the first block ever created, known as the *genesis block*.
- When the parent is modified in any way, its hash changes.
- This change affects the child block and all subsequent blocks
 - Think of a big pot filled with soil the surface is soft, but the deeper you go, the more stable it gets

An Example

Digital ledger = blockchain

- Think also of pages in a book
- Blockchains by definition are linear and grow in chronological order
- Blockchains are P2P networks, with each peer holding a copy of the ledger (contrast to client-server)

Data Layer

- Data is stored in blocks
- Blocks are chained together via a hash
- Hash = a program that processes data(transactions) and outputs a piece of data. This process is also called mapping.
- Nonce makes it impossible to duplicate block. In essence it is a random number.

Briefly About Hashing

- Hashing:
 - o taking data of random size and mapping it to data of fixed size
- Hash
 - The output of the hashing functions
- One-way hashing function
 - Easy to check if true BUT impossible to recreate the input data
- Hashing ≠ encrypting
 - Encryption supposes someone will decrypt something, with hashing you can only check values

Block Data Structure

- Merkle tree = binary hash tree
- has the ability to make a large piece of data very small, allowing quick access (reference) and provability
- "I had certain data, the hash is the proof"

Network Layer

- by definition blockchains are decentralized and distributed
 - i.e. a list of transactions is replicated across a number of computers, rather than being stored on a central server.
- If a certain blockchain does not posses this attributes it is:
 - Either a centralized/private blockchain
 - Or a database incorrectly termed as a "blockchain"
- Full nodes vs Miners in a network
 - Simplified Payment Verification (SPV)

Fig. 1—(a) Centralized. (b) Decentralized. (c) Distributed networks.

Blockchain consensus

- How do blockchain nodes agree which transactions are valid and hence be included in the blockchain?
- The block is the final result of performing distributed consensus
- Consensus protocols PoW / PoS. Consensus protocols make the blockchain what it is: store data in an *open* but *immutable* way

Consensus Protocols

- The consensus protocol does two things:
 - o ensures that the **next** block in a blockchain is the one and **only version of the truth**
 - o keeps powerful adversaries from derailing the system and successfully forking the chain
- Currently, in Bitcoin, the SHA256 hashing must produce a sequence starting with 18 zeros. The number of zeros is set by the difficulty.
- What are the chances to have a hash starting with o? And 2^n for every subsequent zero

Other Protocols:

Proof of stake

- o a 'validator' invests in the coins of the system
- o validators (also called stakeholders, because they hold a stake in the system) are paid strictly in transaction fees.
- o require much less computational power and potentially eliminates the 51% problem
- o other issue: validators with nothing to lose can behave badly, e.g. double sign

Proof of activity

- o a hybrid between PoW and PoS
- o the final block hash will require a signage

Proof of burn

o By committing your coins to never-never land, you earn a lifetime privilege to mine on the system based on a random selection process.

Consensus Protocols - 2

Proof of capacity

- you 'pay' with hard drive space. The more hard drive space you have, the better your chance of mining the next block and earning the block reward.
- The more plots you have, the better your chance of finding the next block in the chain.

Proof of elapsed time (by Intel)

- This system works similarly to proof of work, but consumes far less electricity.
- Instead of having participants solve a cryptographic puzzle, the algorithm uses a trusted execution environment (TEE) such as Software Guard Extensions (SGX) to ensure blocks get produced in a random lottery fashion, but without the required work.
- SGX protects selected code and data from disclosure or modification.
- Intel's approach is based on a guaranteed wait time provided through the TEE.
- the protocol requires investing trust in a third party (Intel). Could be suitable for private blockchains.

Proof of Service (PoSe)

- not a consensus protocol
- Refers to tier 2 of a crypto ecosystem but works hand in hand with tier 1

Bitcoin & Ethereum blockchain

How do they stack up against each other?

	Blockhain		
Criteria	Bitcoin	Ethereum	
Open-Source	Yes	Yes	
Currency	b itcoin	ether	
Block time	10 minutes	14.5 seconds	
Block size	1 MB	No direct limit	
Consensus protocol	PoW	PoW + PoS	
Protocol function	SHA-256	Ethash	
Network	Bitcoin network protocol	ÐEVp2p	
Scripting language	None (Bitcoin Scripting Language)	Solidity (JS+C# libraries)	
Storage	Transactions	Transactions + code	
Data Structure	Binary hash tree	Modified Radix tree	

Bitcoin & Ethereum blockchain - Currency

- Initial distribution: mining vs ICO
- Total supply: 21m vs constant annual rate = 0.3 x ICO
- Ethereum's founders studied Bitcoin economics for a while before coming up with Ethereum

Bitcoin & Ethereum blockchain - Blocks

- Bitcoin: 10 minute blocks, the blockchain can process 3 7 transactions per second
- Ethereum: 14.5 sec blocks, the blockchain can process 25 transactions per second
- Compare to Visa's scale

Bitcoin & Ethereum blockchain - Consensus protocol and function

- Bitcoin: PoW blockchain, hashing SHA-256
- Ethereum: PoW > PoS blockchain , Ethash-ing:
 - finding a nonce input to the algorithm so that the result is below a certain threshold
 - the consensus function is ASIC resistant

Bitcoin & Ethereum blockchain - Network

- Bitcoin: the Bitcoin Network Protocol, all communications over TCP
- Ethereum: ĐΞVp2p -
 - geared towards building a robust transport
 - well-formed network
 - software interface in order to provide infrastructure which meets the requirements of distributed or decentralized applications such as Ethereum

Bitcoin & Ethereum blockchain - Scripting Language

- Bitcoin: Script
 - Scripting provides the flexibility to change the parameters of what's needed to spend transferred Bitcoins. For example, the scripting system could be used to require two private keys, or a combination of several, or even no keys at all.
 - slightly lower level than C
- Ethereum: Solidity
 - similar to JavaScript, high-level language
 - with Solidity you can create and implement your own "smart contracts" that exist on the Ethereum Blockchain

Bitcoin & Ethereum blockchain - Storage

• Bitcoin:

- transactions
- some conditions about those transactions

• Ethereum:

- transactions
- "smart contracts" the code that is stored and executed in the blockchain
- smart contracts essentially make possible blocks on the blockchain to store much more that sending and receiving sums
- the smart contract contain state and functions, i.e. business logic
- can be audited at any time, just like checking if a transaction exists on the blockchain
- all nodes on the network have a copy
- smart contracts are executed by the EVM

Bitcoin & Ethereum blockchain - Data Structure

• Bitcoin:

Ethereum:

In very, very, very layman's terms -

Ethereum block data structure

allows for:

• Much more checks of

transactions and states

 Much better light client functioning (remember SPV's?)

Smart Contracts Essentials

- smart contracts are computer protocols
- they are based on contractual law
- smart contracts **execute the terms of the contract**
- Everything that:
 - can be coded
 - quantified or qualified in one way or another
 - is subject to an agreement

And most importantly, smart contracts are on-the-chain, thus

- o everyone can look them up
- o they are immutable
- o cost some money to be executed, i.e. to call a function in a smart contract

Smart Contracts Essentials - 2

- Contracts are immutable, irrevocable, incorruptible APIs.
- Disclaimer: Solidity does provide a private selfdestruct method.
- Contracts on the public network have 100% uptime.
- Writing to the blockchain will cost you Ether (via gas).
- Writes will take ~15 seconds to be confirmed.
- Reads are free and instantaneous.
- Transactions only begin through external action.

Blockchain Types

Туре	Permissioned	Decentralized	Trustless
Public	No	Yes	Yes
Hybrid	Yes	Partially	No
Private i.e. Database	Yes	No	No

Public blockchains

- no central authority, anyone can read, write and verify(participate in consensus) transactions

Hybrid blockchains

- no central authority, only selected participants can write or verify transactions. Read access can be public or not.

Private blockchains

- write permissions are centralized to one person/node or group. Read access could be granted to outside people

Blockchain Types By Industry

So a blockchain type would largely depend on the industry in point:

- 1. FinTech
 - Private blockchains
 - PWC
 - Quorum by JP Morgan
 - KPMG & Microsoft Azure
- 2. Non-financial
 - o Private & public blockchains
 - Maersk & IBM

4.o. Blockchain applications

Blockchain Use cases

Financial	Corporate	Government	Cross-industry	Hospitality
International Payments	Supply chain management	Record management	Accounting	AirBnB
Capital Markets	Healthcare	Identity management	Shareholder's voting	Turo
Trade Finance	Real estate	Voting	Record management	Hotels
Regulatory Compliance & Audit	Media	Taxes	Cyber security	
KYC & anti-money laundering	Energy		Big data	
Insurance			Data storage	
P ₂ P transactions			loT	

4.o. Blockchain applications

Create Your Own Blockchain Instance

1. BaaS by Azure

- a single-click, cloud-based blockchain developer environment
- Learn, play & fail fast
- Create your own private and hybrid blockchains

2. Rubix by Delloite

Architecture designed to support fully functional private networks

3. IBM blockchain on Bluemix

- Distinguished for its pluggable architecture
- Writing smart contracts with popular languages

4. Others

- Multichain target experimenting with blockchain for financial institutions
- Walletbuilders.com all in one, Bitcoin-based solution
- OpenChain a transaction chain, offering real-time confirmations

What About Adoption?

In terms if technology adoption and maturity:

- Feasible adoption can begin after the technology has matured to a level that can be easily supported
- There is a great chance that developing countries will be "adoption engines"
- Current stage: end of the beginning

4.1. How to start our own blockchain

If you can have a currency without a government body, then you might also be able to have a system fulfilling government functions, without a government.

Thank you for taking the time & interest!