

- دگره (Allele)
- چند ریختی تک نکلئوتیدی (SNP)
 - ژننمود (Genotype)
 - رخنمود (Phenotype)
 - تعادل هاردی-وینبرگ (HWE)
 - عدم تعادل پیوستگی (LD)

مسئله تحقيق

- افرادی با منشأ نامعلوم که در زیر جمعیتهایی خوشه بندی میشوند
 - تفاوت نژاد افراد جمعیت قابل تشخیص با ویژگیهای ظاهری نیست
 - افراد هر زیر جمعیت دارای شباهت ژنتیکی درون جمعیتی هستند
 - افراد هر زیر جمعیت دارای تفاوت ژنتیکی بیرون جمعیتی هستند
 - هر زیر جمعیت علل بیماری ژنتیکی خاصی دارد که با بقیه متفاوت است
 - عواملی مانند فاصله جغرافیایی باعث جدایی جمعیتها میشود
 - هر زير جمعيت مسير تكاملي متفاوتي طي ميكند
 - علائم بیماری یکسان ولی علل ژنتیکی متفاوت

• ساختار جمعیت • مبتنی بر فاصله • مبتنی بر مدل

• تشخیص برهمکنش

- تک جایگاهی
 - رگرسیون
- جستجوي فراگير
 - بيزى

پیشینهی BEAM

• مخفف Bayesian Epistasis Association Mapping

- BEAM1 نشانگر ۳ حالتهی ساده
 - BEAM2 بلوک بندی ژنوم
- BEAM3 گراف بیماری بجای بلوک بندی

• BEAM4 رگرسیون بیزی

مدل پیشنهادی

• بيز گوناگوني

• تشخیص بیماری

• تشخیص روایستایی با BEAM3

مدل پیشنهادی (ورودیها)

- ژننمود دو دگرهای از L جایگاه برای N فرد
 - Y برچسب «بیمار» یا «سالم»
 - تعداد خوشهها K از قبل میدانیم

		Y			X	
			1	2	•••	L
1	웃	0	a b	a a		b b
2	웃	1	b b	a b	•••	b a
	:	:			÷	
N	Q	0	а	а		а
1 V	人	0	b	b		а

مدل پیشنهادی (پارامترها)

- پارامترهای هر فرد
- Z تعلق یک دگره به یک خوشه \bullet
- Q تعلق یک فرد به یک خوشه \bullet

مدل پیشنهادی (پارامترها)

- پارامترهای هر خوشه
- P بسامد (فراوانی) یک دگره در یک خوشه \bullet
 - مدل بیماری M
 - Iجايگاههاي بيماري •
 - $G = (C, \Delta)$ گراف بیماری •

زیر جمعیت k

مدل پیشنهادی (مدل گرافیکی)

• احتمال توأم پارامترها

$$f(X,Y,P,Z,Q,M) = f(X|P,Z)f(Z|Q)$$
$$f(Y|X,Q,M) f(M|Q)$$
$$\pi(P)\pi(Q)$$

مدل پیشنهادی (ساختار جمعیت)

- زیر جمعیتها در تعادل هاردی-وینبرگ هستند
- بسامد دگرههای هر زیر جمعیت مستقل از بقیه است

$$f(X,Z,Q,P) = f(X|Z,P)f(Z|Q)$$
$$\pi(P)\pi(Q)$$

مدل پیشنهادی (ساختار جمعیت/بیز گوناگونی)

- تقریب میدان میانگین: با توزیعهای $ilde{f}$ توزیع پسین f را تقریب میزنیم $ilde{f}$
 - $\ln ilde{f}(heta_i) \propto \mathbb{E}_{ ilde{f}(heta_{-i})}[\ln f(heta,\!X)]$ قضيه بيز گوناگونی
 - $\ln f(X) \geq \mathbb{E}_{\tilde{f}(\theta)} \left[\ln \frac{f(\theta|X)}{\tilde{f}(\theta)} \right]$ کران پایین شواهد •

• مراحل استفاده از VB با LLBO

- لگاریتم توزیع توأم پارامترها را بدست می آوریم
 - امید ریاضی را نسبت به جمع پخش می کنیم
- مقادیر امیدهای ریاضی و گشتاورها را جایگزاری می کنیم
 - بهینهسازی پارامترهای توزیعهای گوناگونی
- بهروزرسانی پارامترهای توزیعهای گوناگونی در یک چرخه

مدل پیشنهادی (تشخیص بیماری)

- همبستگی بین Y و جود دارد \bullet
- ژننمود افراد سالم به Y بستگی ندارند
 - توزیع دگرهها در افراد سالم و بیمار

$$f(X, Y, G, I) = f(X|Y, G, I) f(G|I) \pi(I) \pi(Y)$$

$$\propto \frac{f_A(X_1|Y, G)}{f_0(X_1)} f(G|I) \pi(I)$$

مدل پیشنهادی (مقدار اولیهی مدل بیماری)

مدل پیشنهادی (به روزرسانی گراف)

الگوريتم پيشنهادي

مدل پیشنهادی (تحلیل)

- تقریب میدان میانگین برای ساختار جمعیت
 - تمام پارامترها را از هم مستقل در نظر گرفتیم
 - $O(N^2LK)$ پیچیدگی زمانی •
 - $f_0(x_i+X_1)$ تقریب گراف برای •
- W^{W-2} عداد گرافهایی که باید برای f_0 محاسبه کرد:
 - W(W-1) . اگر از گراف فعلی استفاده کنیم:
- در واقع سعی می کنیم گراف فعلی را در هر چرخه بهبود بدهیم

تولید دادههای ساختگی

• شبیهسازی

- جمعیت غیر مخلوطی
 - جمعیت مخلوطی
 - مدل بیماری

تولید دادههای جمعیت

تولید دادهی بیماری (مشخص کردن مدل بیماری)

$$logit(Y) = \frac{1}{2} X_1 + \frac{1}{2} X_2 + \frac{1}{2} X_3 + X_4 X_5 + X_6 X_7 + X_5 X_9 X_{10} + const$$

جمعیت ۲

جمعیت ۱

SNP					جايگاه			
١				٧٨				
١				4719				
١				777.9				
٠ .			۵۴۳۵	۵۴۳۵ ۹		F91		
1 7		7999	۲999 8979		٧٩			
1	۲		١	۵۷۸	۲۷	۸۶	997.	

SNP				جایگاه			
•				77.			
١				7497			
۲				۵۵۰۵			
٠ ٢			81AT A1		۸۱	٣٩	
٠ .			۵۳۹		٣٢۴٢		
•	•		١	1774	787. 80		۶۰۰۵

تولید دادهی بیماری (افزودن برچسب)

نتايج

• بررسی دقت خوشهبندی

- بيز گوناگوني
- زنجير ماركوف مونت كارلو

• تشخیص بیماری

- مجموعه دادههای دارای تمام جایگاههای بیماری
 - مجموعه داده با برهم کنش سه گانه

دقت خوشهبندی K=2

MAF=2%

MAF=1%

دقت خوشهبندی K=3

MAF=2%

→ fastSTRUCTURE (VB)
→ STRUCTURE (MCMC)

MAF=1%

→ fastSTRUCTURE (VB)
→ STRUCTURE (MCMC)

مقایسه روشهای خوشهبندی

زنجير ماركوف مونت كارلو

- نمونهبرداری از توزیع پسین
- زمان زیاد برای نمونهبرداری
- عملکرد بهتر در حجم کم نمونه
- نمونهبرداری بیشتر برای نمونههای بزرگ برای بهبود دقت

بيز گوناگوني

- بهینهسازی
- سرعت بیشتر در همگرایی
- نیاز به حجم نمونهی به نسبت بیشتر
 - کوچک کردن مقدار آستانه برای نمونههای بزرگ برای بهبود دقت

تشخیص بیماری مجموعه دادهی ۱

الگوريتم پيشنهادي

تشخیص بیماری مجموعه دادهی ۲

الگوريتم پيشنهادي

الگوريتم پيشنهادي

- درست-کاذبهای ندارد
- تمام تک جایگاهیها شناسایی میشوند
- جایگاههای دوگانه بیشتری شناسایی میشود

- گاهی درست-کاذب دارد
- گاهی تک-جایگاهیها شناسایی نمیشوند
- یکی از جایگاههای دوگانه شناسایی میشود

تشخیص بیماری مجموعه دادهی ۳ (تأثیر خوشهبندی)

الگوريتم پيشنهادي

الگوريتم پيشنهادي

- تمام جایگاهها شناسایی میشوند
 - درست-کاذب ندارد

- ۲ جایگاهها شناسایی نمی شود
- درست-کاذب گزارش می شود

تشخیص بیماری مجموعه دادهی ۳ رایر خوشهبندی از پر خوشهبندی زیر جمعیتهای جداگانه در BEAM3 جمعیتهای

زیر جمعیت ۲

زیرجمعیت ۱

تشخیص بیماری با زیر جمعیتهای جداگانه

- افزودن مرحله پیشپردازش
 - بهبود دقت تشخیص
- تمام جایگاههای خاص زیر جمعیت شناسایی میشوند
 - درست-کاذبها رفع میشود

نوآوري

- درنظر گرفتن ساختار جمعیت در تشخیص بیماری
- جایگزین کردن خوشهبندی MCMC با بیز گوناگونی
- جایگزین کردن مدل جستجوی فراگیر با روش یافتن روایستایی

کارهای آینده

- تولید دادههای ساختگی با روشهای پیچیدهتر
 - تولید دادههای جمعیت
 - تولید دادههای بیماری
- توسعهی الگوریتم برای دادههای غیر مورد-کنترل
 - دادههای QTL
 - دادههای واقعی
- دادههای موش (GSE2814) ٪۱۰۰ انجام شد ولی نتایج ضعیف بود
 - دادههای انسان (GSE68086) ٪۹۰ انجام شده

تشکر و تقدیر

- دکتر سید محمود طاهری
 - دکتر سید مرتضی امینی
 - دکتر فیروزه ریواز
 - مهندس مهرداد تمیجی

