12-12-15_Sr.IPLCO_Jee-Main_RPTM-14_ Syllabus

MATHS:

Complete Properties of Triangles and Inverse Trigonometric Functions

PHYSICS

Geometrical & Wave Optics

Experiments:

- 1. Focal length of (i) Convex mirror
- (ii) Concave mirror, and (iii) convex lens using parallax method.
- 2. Plot of angle of deviation vs angle of incidence for a triangular prism.
- 3. Refractive index of a glass slab using a travelling microscope.

CHEMISTRY

States of Matter, Solid State, Chemical Kinetics

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

MATHS

- In a triangle ABC, AC = 4, BC = 5, AB = 6. A point E is taken on AB such that 61. AE = $\frac{1}{2}$ (EB) then CE = ____
 - 1) $\frac{\sqrt{11}}{2}$

- 2) $\frac{3\sqrt{11}}{2}$ 3) $\sqrt{11}$ 4) $\frac{2\sqrt{11}}{3}$
- AB is diameter of a circle of radius 1-unit CD is a chord perpendicular to AB that 62. cuts AB at E. If the arc CAD is $\frac{2}{3}$ of circumference of the circle then AE =
- 1) $\frac{1}{2}$ 2) $\frac{3}{2}$ 3) $\frac{5}{2}$ D) $\frac{7}{2}$
- If h_1, h_2, h_3 are lengths of altitude of a triangle ABC, r is inradius of Δ^{le} ABC then minimum value of $\frac{h_1 + r}{h_1 - r} + \frac{h_2 + r}{h_2 - r} + \frac{h_3 + r}{h_3 - r}$ is
 - 1) 12
- 2)4
- 3)3
- 4)6

Sr.IPLCO JEE-MAIN Q.P

space for rough work

64. $\triangle^{le}ABC$ is an isosceles triangle with AC = CB, $\angle ABD = \frac{\pi}{3}$, $\angle BAE = 50^{\circ}$, $\angle C = 20^{\circ}$ then $\angle EDB =$ _____ (Here D is a point on AC, E is a point on BC)

 $1)\ 20^{0}$

- $2) 30^{0}$
- $3) 45^{0}$
- 4) 55°
- 65. In a $\Delta^{le}ABC$, AB = 20, $AC = \frac{45}{2}$, BC = 27. Point X and Y are taken on AB and AC respectively so that AX = AY. If Area of $\Delta^{le}AXY = \frac{1}{2}$ (Area of $\Delta^{le}ABC$) then

 $AX = \underline{\hspace{1cm}}$

- 1) $\frac{45}{4}$
- 2) $\frac{15}{2}$
- 3) 15
- 4) $\frac{15}{4}$
- 66. In a $\Delta^{le}ABC$, AB = 13, BC = 14, CA = 15. F is a point on AC such that perpendicular drawn from F to the side BC, meets BC at E and EF divides $\Delta^{le}ABC$, into two regions of equal areas then EF=_____

1) $\sqrt{7}$

- 2) $2\sqrt{7}$
- 3) $3\sqrt{7}$
- 4) $4\sqrt{7}$

 $Sr.IPLCO_JEE-MAIN_Q.P$

space for rough work

Sri Chaitanya IIT Academy

12-12-15_Sr.IPLCO_Jee-Main_RPTM-14_Q.PAPER

- Altitude AD of an equilateral triangle ABC is a diameter of circle. If this circle intersect the sides AB and AC at E and F then $\frac{EF}{RC}$ =
 - 1) $\frac{1}{2}$
- 2) $\frac{1}{4}$
- 3) $\frac{3}{4}$ 4) $\frac{3}{8}$
- In a $\Delta^{le}ABC$, the bisector of $\angle B$ and $\angle C$ meet AC and AB at D and E 68. respectively BD and EC intersect at O. If OD = OE and $\angle B \neq \angle C$ and $\angle BAC$ =
 - 1) 30°
- $2) 60^{\circ}$
- 3) 45°
- 4) $\left(\frac{45}{2}\right)^0$
- In a triangle ABC if $A B = 120^{\circ}$ and R = 8r then $\cos C =$ 69.
- 2) $\frac{3}{8}$
 - 3) $\frac{5}{8}$
- In a triangle ABC if $\frac{a}{h} = 2 + \sqrt{3}$ and $\angle C = 60^{\circ}$ then 70.
 - 1) $\angle A = 105^{\circ}$, $\angle B = 15^{\circ}$
- 2) $\angle A = 60^{\circ}$, $\angle B = 60^{\circ}$
- 3) $\angle A = 30^{\circ}, \angle B = 90^{\circ}$
- 4) $\angle A = 45^{\circ}$, $\angle B = 75^{\circ}$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

- In any triangle ABC the maximum value of $\frac{a^2 + b^2 + c^2}{a^2}$ is 71.
 - 1)3
- 2) 6
- 3)9
- In a triangle ABC if $\left(\cot\frac{A}{2}\right)^2 + 4\left(\cot\frac{B}{2}\right)^2 + 9\left(\cot\frac{C}{2}\right)^2 = \left(\frac{6s}{7r}\right)^2$ then the ratio of 72. sides a:b:c=
 - 1) 3:4:5
- 2) 2:3:5
- 3) 1:1: $\sqrt{2}$ 4) 13:40:45
- If the lengths of medians of a triangle ABC are 6, 8, 10 then area of triangle ABC 73. is

- 1) 16 sq.units 2) 24 sq.units 3) 32 sq.units 4) 48 sq.units
- In the triangle ABC, D is on the side AC such that AD = BC, BD = DC 74.

$$\angle DBC = 2\theta$$
, $\angle BAD = 3\theta$ then $\theta = \underline{\hspace{1cm}}$

- 3) $\frac{\pi}{12}$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

In a triangle ABC if $r_1 = 2r_2 = 3r_3$ D is mid point of BC and if $\angle ADC = \theta$ then $\cos\theta =$

- 1) $\frac{7}{25}$ 2) $\frac{-7}{25}$ 3) $\frac{3}{25}$ 4) $\frac{-3}{25}$

If radius of a circle which is inscribed in an Isosceles triangle with maximum 76. angle 120° is $\sqrt{3}$ then area of Δ^{le} is_____

- 1) $12 + 7\sqrt{3}$ sq.units
- 2) $12 7\sqrt{3}$ sq.units
- 3) $12 + 5\sqrt{3}$ sq.units

4) $12 - 5\sqrt{3}$ sq.units

In a triangle ABC if r = 1, R = 3, $\Delta = 7$ then $\sum \left(\frac{\cos A}{a}\right) =$

- 1) $\frac{1}{7}$ 2) $\frac{2}{7}$ 3) $\frac{3}{7}$ 4) $\frac{4}{7}$

In a triangle ABC, $\angle C = 90^{\circ}$ and $\tan A = \frac{\sqrt{\sqrt{5} - 1}}{2}$ then a, b, c are 78.

- 1) in A.P
- 2) in G.P
- 3) in H.P
- 4) satisfying a + c = b

Sr.IPLCO JEE-MAIN Q.P

space for rough work

In a triangle ABC if $\angle B = \frac{\pi}{3}$ and $x = \sin A \cdot \sin C$ then range of x is

$$2) \left[\frac{1}{2}, 1 \right)$$

2)
$$\left[\frac{1}{2},1\right)$$
 3) $\left[\frac{1}{4},\frac{3}{4}\right]$ 4) $\left(0,\frac{3}{4}\right]$

4)
$$\left(0, \frac{3}{4}\right)$$

The lengths of medians of a right angled triangle through its acute angles are 3 80. and 4 then area of triangle is

1)
$$\frac{2\sqrt{11}}{3}$$

2)
$$\frac{4\sqrt{11}}{3}$$
 3) $\frac{3\sqrt{11}}{4}$ 4) $\frac{5\sqrt{11}}{3}$

3)
$$\frac{3\sqrt{11}}{4}$$

4)
$$\frac{5\sqrt{11}}{3}$$

The number of ordered pairs (x, y) satisfying $y = |\cos x|$ and $y = \cos^{-1}(\cos x)$ in 81. $[-2\pi, 2\pi]$ is

82. In a $\Delta^{le}ABC$, $\angle A = \angle B = \frac{1}{2} \left(\sin^{-1} \left(\frac{\sqrt{6} + 1}{2\sqrt{3}} \right) + \sin^{-1} \left(\frac{1}{\sqrt{3}} \right) \right)$ and $C = 6 \left(3^{1/4} \right)$ then area of

 Δ^{le} ABC is

- 1) 9 sq.units
- 2) 18 sq.units 3) 27 sq.units 4) 54 sq.units

Sr.IPLCO JEE-MAIN Q.P

space for rough work

- If $(\sin^{-1} x)^3 + (\cos^{-1} x)^3 = \alpha . \pi^3$ where α is real then range of α is
- 1) $\left| \frac{1}{32}, \frac{7}{8} \right|$ 2) $\left| \frac{1}{8}, \frac{7}{8} \right|$ 3) $\left| \frac{1}{32}, \frac{7}{32} \right|$ 4) $\left| \frac{1}{16}, \frac{7}{8} \right|$

- $\sin^{-1} x > \cos^{-1} x$ then range of x is 84.
 - 1) $\left(-1, \frac{-1}{\sqrt{2}}\right)$ 2) $\left(0, \frac{1}{\sqrt{2}}\right)$ 3) $\left(\frac{1}{\sqrt{2}}, 1\right)$ 4) $\left(\frac{-1}{\sqrt{2}}, 0\right)$

- Number of value of x for which $\tan\{x\} = \cot\{x\}$ where $\{\bullet\}$ represents fractional 85. part of $x, x \in [0, 2\pi]$
 - 1) 12
- 2)7
- 3)8
- 4)6
- The range of x for which $4(\cot^{-1} x)^2 16(\cot^{-1} x) + 15 \le 0$
 - 1) $\left|\cot\frac{5}{2},\cot\frac{3}{2}\right|$ 2) $\left|-\cot\frac{3}{2},-\cot\frac{5}{2}\right|$ 3) [0,1]
- **4**) ℝ

Sr.IPLCO JEE-MAIN Q.P

space for rough work

- A triangle is inscribed in a circle such that the vertices of the triangle divide the circumference of circle into 3-arcs of lengths 3, 4, 5 then area of the triangle is
 - 1) $\frac{9(\sqrt{3}+1)}{\pi^2}$ sq.units

2) $\frac{9\sqrt{3}(\sqrt{3}+1)^2}{\pi^2}$ sq.units

3) $\frac{\left(\sqrt{3}+1\right)^2}{\pi^2}$ sq.units

- 4) $\frac{9(\sqrt{3}+1)\sqrt{3}}{\pi^2}$ sq.units
- In a triangle ABC if $a^2 + c^2 = 2015b^2$ then $\frac{\cot A + \cot C}{\cot B} =$ 88.
- 1) $\frac{2}{2015}$ 2) $\frac{2}{2014}$ 3) $\frac{2}{2016}$
- 4) $\frac{2}{2013}$
- If the median AD of a triangle ABC is perpendicular to AB then $\frac{\tan A}{\tan B} =$ _____ 89.
 - 1) 1
- 2) -1
- 3) 2
- 4) -2
- A Δ^{le} ABC has sides 6, 7, 8. The line through its incentre parallel to shortest side 90. is drawn to meet the other two sides at P and Q then PQ=
 - 1) $\frac{30}{7}$
- 2) 5
- 3) $\frac{15}{4}$
- 4) 3

Sr.IPLCO JEE-MAIN Q.P

space for rough work