1

11.9.5-13

EE23BTECH11033-killana jaswanth

question:

$$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} \tag{1}$$

then show that a,b,c,d are in G.P

solution:

parameter	description	value
x(0)	first term	а
x(1)	second term	b
x(2)	third term	С
x(3)	fourth term	d
r	common ratio	$\frac{b}{a}$
n	no of terms	4
x(n)	<i>n</i> / th term	$x(0) r^n$

TABLE 0: input parameters

$$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx}$$

$$acx = b^2x$$
(2)

$$acx = b^2x (3)$$

$$\implies b^2 = ac \tag{4}$$

$$\frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$$

$$bdx = c^2x$$
(5)

$$bdx = c^2x (6)$$

$$\implies c^2 = bd$$
 (7)

As proved above a,b,c are in G.P and b,c,d are also in G.P. So, a,b,c,d are in G.P

Applying z-transform

$$X(z) = \frac{a^2}{a - bz^{-1}} \quad |z| > \left| \frac{b}{a} \right|$$

$$X(z) = \frac{x(0)^2}{x(0) - x(1)z^{-1}} \quad |z| > \left| \frac{x(1)}{x(0)} \right|$$
(9)

$$X(z) = \frac{x(0)^2}{x(0) - x(1)z^{-1}} \quad |z| > \left| \frac{x(1)}{x(0)} \right| \tag{9}$$