Using the AD5206 digital potentiometer with AC signals

- The AD5206 behaves like six mechanical potentiometers.
- Each potentiometer has three terminals (A,B, and W), just like a mechanical.
- These potentiometers are (to the best of my knowledge) completely isolated—I did not observe any leakage between them.
- There are two power terminals on the chip: $V_{\rm SS}$ and $V_{\rm DD}$.
- These terminals are subject to the constraints that

$$V_{\rm SS} \le 0 \le V_{\rm DD}$$

and

$$|V_{\rm DD}| + |V_{\rm SS}| \le 5.5V$$

• The potentials of all three wiper terminals MUST be between $V_{\rm SS}$ and $V_{\rm DD}$:

$$V_{\rm SS} \le \{A, B, W\} \le V_{\rm DD}$$

• If this condition is not met, the response is nonlinear, and signals are distorted.

Monopolar Mode

These potentiometers are usually used in (and most online resources assume) monopolar mode

- In this mode, $V_{SS} = 0V = GND$, and $V_{DD} = 5V$.
- This is very convenient, since the logic output of most microcontrollers (e.g. Arduino) is 5V, so no step-down is needed.
- However, because of the voltage bounds mentioned above, this means we can't send zero-offset AC signals (like we're working with here) through the digipot
- We could add an offset using an opamp, but that makes scaling very difficult, and adds unnecessary noise.

Bipolar Mode

Instead, we can operate in bipolar mode, where $V_{\rm SS} < 0$. Some considerations in this mode:

- The potential bounds still apply. If we power the digipot with $\pm 2.5V$, the signal must fall within those bounds as well. This should not be a problem, since our signal should be within the $\pm 1V$ envelope.
- The logic voltage must be within 0.3V of $V_{\rm DD}$ (or specifically, when $V_{\rm DD}=3V$, the logic must be between 2.6V and 3.3V, as per the datasheet).
- Logic low is still ground.
- There are 3.3V logic Arduinos, which could directly drive the chip in this mode. I am looking to acquire one of these, to eliminate the three voltage dividers needed with a 5V arduino.

Communication

- We communicate with the potentiometer using SPI (serial peripheral interface).
- To set a resistance:
 - Drive the CS (chip select) pin low
 - Write the address as a single byte, MSB first. Because valid addresses are 0-5 (zero-indexed), the word will look like 0b00000101 (for address 5).
 - In Arduino, this can be done with SPI.transfer(channel), where channel is in the range 0-5.
 - Then write the desired potentiometer value as a single byte, ranging from 0 (minimum resistance) to 255 (maximum resistance). In theory, the output resistance at step n will be

$$R_{\rm out} = (n/255) \cdot 50 \,\mathrm{k}\Omega$$

Experimental response curves are detailed below.

- Drive the CS pin high.
- The code used on the Arduino is in the associated Github repository.

Odds and ends

- During testing, I used an external power supply tuned to $\pm 2.5V$. However, to simplify the circuit (the less wires running on and off the board, the better), I am using voltage dividers off the $\pm 15V$ opamp bus.
- Because of gaps in our resistor set, I was not able to power the chip at $\pm 2.5V$. Instead, it is powered at -2V/+3V. This should not present a problem, since it still gives us the $\pm 2V$ envelope, which should be sufficient.
- IMPORTANT!!! The AD5206 comes in three varieties— $10 \,\mathrm{k}\Omega$, $50 \,\mathrm{k}\Omega$, and $100 \,\mathrm{k}\Omega$. The 10 and 100 varieties DO NOT respond properly in bipolar mode. This was not documented anywhere, but only the $50 \,\mathrm{k}\Omega$ works for our purposes.
- The only possible explanation I was able to find is that the $50\,\mathrm{k}\Omega$ is listed as RoHS compliant on DigiKey, while the others are not. The $50\,\mathrm{k}\Omega$ could therefore be a newer make. This stymied me for about 5 days, since I was using a $100\,\mathrm{k}\Omega$.

Response curves

Potentiometer	Base resistance (Ω)	Response (Ω/tick)
Ideal	50^{1}	196.1
R1	30.3	202.6
R2	39.5	202.3
R3	39.9	202.1
R4	42.0	202.1
R5	10.9	202.6
R6	27.4	202.4

These resistors have a small (near-negligible) wiper resistance, and a slightly higher maximum resistance than advertised. The typical maximum resistance was about $51.5 \,\mathrm{k}\Omega$. No statistically significant nonlinearity was observed.

¹ "Typical" wiper resistance from datasheet