第二讲、 极限

基本内容: 数列极限和函数极限的定义; 归结原理; Cauchy 收敛准则; 求极限的各种方法(单调有 界定理、夹逼定理、拟合法与Cauchy命题、Stolz 定理、无穷小量的使用、不定式与 L'Hospital 法则、 运用带 Peano 余项的 Taylor 展式、化为积分和); 上、下极限及其性质; Wallis 公式与 Stirling 公式.

§2.1 极限的存在性和 Cauchy 收敛准则

数列 $\{a_n\}$ 收敛到 a ($\lim a_n = a$) 的 $\varepsilon - N$ 定义是: $\forall \varepsilon > 0, \exists N,$ 使得 $n \geq N$ 时有 $|a_n - a| < \varepsilon$.

函数 f(x) 在 x_0 处收敛到 A ($\lim f(x) = A$)的 $\varepsilon - \delta$ 定义是: $\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon, x_0) > 0, \ \text{ if } \ 0 < |x - x_0| < \delta \ \text{ if } \ |f(x) - A| < \varepsilon.$

 $\lim_{x \to x_0} f(x) = A \iff$ 归结原理

对于任意数列 $x_n \to x_0 \ (n \to \infty), \ x_n \neq x_0, \ \mathsf{f} \lim_{n \to \infty} f(x_n) = A$.

Cauchy 收敛准则 (数列) 数列 $\{a_n\}$ 收敛 \iff $\forall \varepsilon > 0, \exists N, \notin \{n, m \geq N \text{ bif } |a_n - a_m| < \varepsilon.$

单调有界定理 单调有界数列必有(有限)极限.

例 1. 设对每个 n 成立 $0 < x_n < 1$ 和 $(1 - x_n)x_{n+1} \ge \frac{1}{4}$, 证明 $\{x_n\}$ 收敛, 并求其极限.

例 2. (1) 证明数列 $\{c_n\}$ 收敛, 其中 $c_n=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n$ (极限称为 Euler 常数 γ).

(2) 求级数
$$1 + \frac{1}{2} - \frac{2}{3} + \dots + \frac{1}{3n-2} + \frac{1}{3n-1} - \frac{2}{3n} + \dots$$
 的和.

(2) 求级数 $1 + \frac{1}{2} - \frac{2}{3} + \dots + \frac{1}{3n-2} + \frac{1}{3n-1} - \frac{2}{3n} + \dots$ 的和. 例 3. 求 $\lim_{n \to \infty} (1 + \frac{1}{n^2}) (1 + \frac{2}{n^2}) = (1 + \frac{2}{n^2})$

例 4. 证明 $n \to \infty$ 时, (1) $\sin n$ 不存在极限; (2) $\sin n^2$ 不存在极限.

§2.2 求极限的基本方法

一、运用夹逼定理

推广的夹逼定理 对任意 $\epsilon > 0$, 存在 $\{a_n\}$, $\{b_n\}$, 使 $a_n \leqslant x_n \leqslant b_n$, 且 $\lim a_n \geqslant a_n \leqslant a_n$ $M - \epsilon$, $\lim_{n \to \infty} b_n \leqslant M + \epsilon$. $\mathbb{M} \lim_{n \to \infty} x_n = M$.

例 5. 给定 p 个正数 a_1, a_2, \dots, a_p . 求 $\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_p^n}$.

例 6. 用 p(n) 表示能整除 n 的素数的个数. 证明 $\lim_{n \to \infty} \frac{p(n)}{n} = 0$.

二、拟合法与 Cauchy 命题、Stolz 定理

Cauchy **命题** 设 $\{x_n\}$ 收敛于 a, 则它的前 n 项的算术平均值(所成的数列) 也收敛于 a, 即有

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a.$$

 $\frac{0}{0}$ 型的 Stolz 定理 设数列 $\{a_n\}$ 和 $\{b_n\}$ 都是无穷小量, 其中 $\{a_n\}$ 还是严格单调减少数 列, 义存在

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{a_{n+1} - a_n} = l,$$

其中 l 为有限或 $\pm \infty$, 则有

$$\lim_{n \to \infty} \frac{b_n}{a_n} = l.$$

 $\frac{*}{\infty}$ **型的** Stolz **定理** 设数列 $\{a_n\}$ 是严格单调增加的无穷大量, 又存在

$$\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n}=l,$$

其中 l 为有限或 $\pm \infty$,则有

$$\lim_{n \to \infty} \frac{b_n}{a_n} = l.$$

例 7. 求数列 $\{a_n\}$ 的极限, 其中 $a_n = \frac{1! + 2! + \cdots + n!}{n!}, n \in \mathbb{N}$.

例 8. 设
$$a_1 > 0$$
, $a_{n+1} = a_n + \frac{1}{a_n}$, $n \in \mathbb{N}$, 证明 $\lim_{n \to \infty} \frac{a_n}{\sqrt{2n}} = 1$.

例 9. 设已知
$$\lim_{n\to\infty} a_n = a$$
, 证明: $\lim_{n\to\infty} \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k = a$.

例 10. 已知 $\sum_{n=1}^{\infty} a_n$ 收敛, $\{p_n\}$ 为严格单增正序列, $\lim_{n\to\infty} p_n = +\infty$. 证明:

$$\lim_{n\to\infty}\frac{p_1a_1+p_2a_2+\cdots+p_na_n}{p_n}=0.$$

例 11. 设订
$$m s_n = s$$
 求 $m = \frac{c_1 + \frac{1}{2} \cdot 2 + \cdots + \frac{1}{n} s_1}{s_1 \cdot 2 \cdot 1 \cdot 1}$.

例 12. 设 $x_1 \in (0, \frac{\pi}{2}), \ x_{n+1} = \sin x_n, \ n \in \mathbf{N}.$ 证明 $\lim_{n \to \infty} \sqrt{\frac{n}{3}} x_n = 1.$

三、无穷小量的使用

例, 当 $x \to 0$ 时, 有: $\sin x \sim x$; $\tan x \sim x$; $1 - \cos x \sim \frac{x^2}{2}$; $\ln(1+x) \sim x$; $\mathrm{e}^x \sim x$; $(1+x)^\alpha \sim \alpha x$.

例 13. 设存在极限
$$\lim_{x\to 0}\frac{f(x)}{x}$$
,又有 $f(x)-f\left(\frac{x}{2}\right)=o(x)$ $(x\to 0)$,证明 $f(x)=o(x)$ $(x\to 0)$.

例 14. 证明 $\sin \sqrt{x+1} - \sin \sqrt{x}$ 当 $x \to +\infty$ 时极限为 0, 并分析它作为无穷小量的阶数.

例 15. 求
$$\lim_{x \to +\infty} \left(\frac{1}{x} \cdot \frac{a^x - 1}{a - 1}\right)^{\frac{1}{x}}$$
, 其中 $a > 0, a \neq 1$.

例 16. 设函数 $f(x) = a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx$, 且对所有 x 成立 $|f(x)| \leq |\sin x|$. 证明成立不等式 $|a_1 + 2a_2 + \dots + na_n| \leq 1$.

四、不定式与 L'Hospital 法则

有 $\frac{0}{0}$ 型、 1^∞ 型和 $\frac{*}{\infty}$ 等型的不定式, 可用 L'Hospital 法则和下面的 Taylor 展式等方法 求极限.

例 17. 求
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$$
.

有时对 1[∞] 型的不定式可用

 $\lim_{x\to 0} (1+f(x))^{g(x)} = \lim_{x\to 0} \left((1+f(x))^{\frac{1}{f(x)}} \right)^{f(x)\cdot g(x)} = \lim_{x\to 0} (f(x)\cdot g(x)) ,$ 其中 f, g 大于 0. 对 $x\to \infty$ 也对.

例 18. 求
$$\lim_{x\to 0^+} (\sin\frac{x}{2} + \cos 2x)^{\frac{1}{x}}$$
.

例 19. 证明函数
$$f(x) = e^{-x^2} \int_0^x \sqrt{x} e^{x^2} \sin x dx$$
 在 $[0, +\infty)$ 上有界.

五、运用带 Peano 余项的 Taylor 展式

要熟记 e^x , $\sin x$, $\cos x$, $\tan x$, $\arcsin x$, $\arctan x$, $\ln(1+x)$, $(1+x)^{\alpha}$ 的带 Peano 余项 的 Taylor 展式至少至 4-5 项.

例 20. 设 f(0) = 0, f'(0) 存在. 定义数列

$$x_n = f\left(\frac{1}{n^2}\right) + f\left(\frac{2}{n^2}\right) + \dots + f\left(\frac{n}{n^2}\right), \quad n \in \mathbb{N},$$

试求 $\lim_{n\to\infty} x_n$. 并求下列极限:

1.
$$\lim_{n \to \infty} \left(\sin \frac{1}{n^2} + \sin \frac{2}{n^2} + \dots + \sin \frac{n}{n^2} \right),$$

2.
$$\lim_{n\to\infty} \left[\left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \cdots \left(1 + \frac{n}{n^2} \right) \right].$$

例 21. 求
$$\lim_{n \to \infty} n^4 (\cos \frac{1}{n} - e^{-\frac{1}{2n^2}})$$
.

例 21. 求 $\lim_{n\to\infty} n^4(\cos\frac{1}{n}-\mathrm{e}^{-\frac{1}{2n^2}}).$ 六、化为积分和 $\lim_{n\to\infty} (\frac{\sin\frac{\pi}{n}}{n+1}+\frac{\sin\frac{\pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin\pi}{n+\frac{1}{n}}).$

例 22. 求极限
$$\lim_{n\to\infty} \left(\frac{\sin\frac{\pi}{n}}{n+1} + \frac{\sin\frac{\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin\pi}{n+\frac{1}{n}}\right)$$

例 23. 设
$$f \in C([0,1]), \ f(x) > 0, \ 求 \lim_{n \to \infty} \sqrt[n]{f(\frac{1}{n})f(\frac{2}{n})\cdots f(\frac{n-1}{n})f(1)}.$$

例 24. 证明
$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}$$
.

七、多元函数的极限

例 25. 求极限
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$
.

直观上看分子的次数高于分母的次数,极限应该是 0. 这种题目一般用极坐标代换后可化 为一个有界量与无穷小量的乘积。

例 26. 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^3+y^3)}{x^2+y^2}$$
.

有时需要放不等式.

例 27. 求极限
$$\lim_{(x,y)\to(0,0)} (x^2+y^2)^{xy}$$
.

例 28. 求极限
$$\lim_{(x,y)\to(+\infty,+\infty)}\left(rac{xy}{x^2+y^2}
ight)^{x^2}$$
.

证明函数的重极限不存在的常用方法:

(1) 找两种特殊的趋近方式, 使得在这两种方式下函数的极限值不相同. 例如

$$f(x,y) = \begin{cases} 0, & x^2 \leq |y| & \text{if } y = 0, \\ 1, & \text{it.} \end{cases}$$

当 (x,y) 沿任何过原点的任何直线 y = kx 趋于 (0,0) 点时, 有

$$\lim_{(x,y=kx)\to(0,0)} f(x,y) = 0.$$

但 (x,y) 沿曲线 $y = \frac{1}{2}x^2$ 趋于 (0,0) 点时

$$\lim_{(x,y=\frac{1}{2}x^2)\to(0,0)} f(x,y) = 1,$$

所以 f(x,y) 在 (0,0) 点的重极限不存在.

(2) 证明两个累次极限存在但不相等, 例如

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2},$$

由于

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 1, \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y) = -1,$$

 $\lim_{x\to 0}\lim_{y\to 0}f(x,y)=1,\quad \lim_{y\to 0}\lim_{x\to 0}f(x,y)=-1,$ 于是重极限不存亡。因为以果重及限在主 地下累冰、以限了右在 中 电极以与累次极限的关系,

§2.3 上、下极限

上、下极限有如下重要性质:

1. 不等式

$$\overline{\lim}_{n \to \infty} (x_n + y_n) \leqslant \overline{\lim}_{n \to \infty} x_n + \overline{\lim}_{n \to \infty} y_n,
\underline{\lim}_{n \to \infty} (x_n + y_n) \geqslant \underline{\lim}_{n \to \infty} x_n + \underline{\lim}_{n \to \infty} y_n.$$

在右边有意义时成立

2. 不等式

$$\underline{\lim}_{n \to \infty} (x_n + y_n) \leqslant \underline{\lim}_{n \to \infty} x_n + \overline{\lim}_{n \to \infty} y_n \leqslant \overline{\lim}_{n \to \infty} (x_n + y_n)$$

在中间的和式有意义时成立.

3. 若在两个数列 $\{x_n\}$ 和 $\{y_n\}$ 中已知 $\{y_n\}$ 收敛(或广义收敛), 则成立

$$\underline{\lim}_{n \to \infty} (x_n + y_n) = \underline{\lim}_{n \to \infty} x_n + \lim_{n \to \infty} y_n, \quad \overline{\lim}_{n \to \infty} (x_n + y_n) = \overline{\lim}_{n \to \infty} x_n + \lim_{n \to \infty} y_n,$$

 $(在\{y_n\})$ 广义收敛时要求所出现的和式有意义).

例 29. 设 $\{x_n\}$ 有界, 且已知 $\lim_{n\to\infty} (x_{2n}+2x_n)=A$. 证明数列 $\{x_n\}$ 收敛, 并求其极限.

例 30. 设
$$\{x_n\}$$
 为正有界数列. 求 $\lim_{n\to\infty}\frac{x_n}{x_1+x_2+\cdots+x_n}$.

例 31. 设正数数列 $\{a_n\}$ 满足条件 $\lim_{n\to\infty}\frac{a_n}{a_{n+1}+a_{n+2}}=0$, 证明 $\{a_n\}$ 无界.

例 32. 设数列 $\{b_n\}$ 由 $b_1=1$ 和 $b_{n+1}=1+\frac{1}{b_n}$ $(n\in\mathbb{N})$ 生成. 讨论数列 $\{b_n\}$ 的敛散性, 若收敛则求出其极限.

例 33. 设 $y_n = x_n + 2x_{n+1}, n \in \mathbb{N}$. 证明在数列 $\{y_n\}$ 收敛时, 数列 $\{x_n\}$ 也收敛.

例 34. 设
$$\{x_n\}$$
 为正数数列,证明 $\overline{\lim}_{n\to\infty} n\left(\frac{1+x_{n+1}}{x_n}-1\right)\geqslant 1$.

§2.4 Wallis 公式与 Stirling 公式

Wallis 公式:
$$\lim_{n\to\infty} \frac{1}{2n+1} \left(\frac{2\cdot 4 \cdot \cdots \cdot (2n)}{1\cdot 3 \cdot \cdots \cdot (2n-1)} \right)^2 = \frac{\pi}{2}.$$

证明 在 $0 < x < \frac{\pi}{2}$ 时有 $0 < \sin x < 1$,因此就有 $\sin^{2n+2} x < \sin^{2n+1} x < \sin^{2n} x$. 这样就成立(积分) 不等式 $I_{2n+2} < I_{2n+1} < I_{2n}$. 其中

$$I_m = \int_0^{\pi/2} \sin^m x \, dx = \begin{cases} \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}, & m = 2n, \\ \frac{(2n)!!}{(2n+1)!!}, & m = 2n+1, \end{cases}$$

于是

 $I_{2r+2}=rac{2n+1}{2n+2}$ I_{2n} I_{2n}

$$\lim_{n\to\infty}\frac{I_{2n+1}}{I_{2n}}=1.$$

再代入 I_{2n} 与 I_{2n+1} 的表达式, 就得到所要的结果:

$$\lim_{n \to \infty} \frac{1}{2n+1} \cdot \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \cdot \frac{2}{\pi} = 1. \quad \Box$$

在应用中 Wallis 公式的几个等价形式有时更为方便. 例如:

$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, \quad \frac{(n!)^2 2^{2n}}{(2n)!} \sim \sqrt{\pi n}.$$

从上可见, Wallis 公式的实质就是刻画了双阶乘 (2n)!! 与 (2n-1)!! 之比的渐近性态.

Stirling 公式: 关于阶乘 n! 有渐近公式:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \ (n \to \infty)$$

及

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot e^{\frac{\theta}{12n}}, \ \theta \in (0,1).$$

证明见《数学分析习题课讲义》(上册)364-365页.

例 35. 计算
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n^2} \cdot \frac{n!}{n^n \sqrt{n}}$$
.

第二讲练习题

- 2. 设 $\{a_n\}$ 为正数数列, 并且已知它收敛于 a>0. 证明 $\lim_{n\to\infty} \sqrt[n]{a_n}=1$.
- 3. 设数列 $\{a_n\}$ 满足条件 $0 < a_1 < 1$ 和 $a_{n+1} = a_n(1 a_n) \ (n \ge 1)$, 证明 $\lim_{n \to \infty} na_n = 1$
- 4. 若 $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \beta$, 则 $\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = \alpha\beta$.

$$\lim_{n\to\infty} \left(\int_0^1 g(x) (f(x))^n dx \right)^{\frac{1}{n}} = \max_{0\leqslant x\leqslant 1} f(x).$$

6. 设 $\lim_{x \to a} f(x) = 1$, $\lim_{x \to a} g(x) = +\infty$, $\lim_{x \to a} g(x)(f(x) - 1) = \alpha$. 证明:

$$\lim_{x \to a} f(x)^{g(x)} = e^{\alpha}.$$

7. 设 $\sum_{n=0}^{\infty} a_n b_n$ 收敛, b_n 单调趋于零,证明:

$\lim_{n\to\infty} (a_1 + a_1 + a_2) = 0.$ 8. 设 $\{a_{2k-1}\}$, $\{a_{2k}\}$ 和 $\{a_{3k}\}$ 都收敛, 证明数列 $\{a_n\}$ 收敛. 9. 设 $x_n = \sum_{k=1}^n \left(\sqrt{1 + \frac{k}{n^2}} - 1\right)$, $n \in \mathbb{N}$. 计算 $\lim_{n\to\infty} x_n$.

- 10. 设 a_0, a_1, \cdots, a_p 是 p+1 个给定的数, 且满足条件 $a_0+a_1+\cdots+a_p=0$. 求 $\lim_{n\to\infty} (a_0\sqrt{n}+a_1+\cdots+a_p) = 0$. $a_1\sqrt{n+1} + \dots + a_p\sqrt{n+p}$).
- 11. 证明当 0 < k < 1 时 $\lim_{n \to \infty} [(1+n)^k n^k] = 0$.
- 12. 设正数数列 $\{a_n\}$ 满足条件 $\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=0$, 证明 $\{a_n\}$ 是正无穷大量.
- 13. 设 $a_1 = b$, $a_2 = c$, 在 $n \ge 3$ 时 a_n 由递推公式 $a_n = \frac{a_{n-1} + a_{n-2}}{2}$ 定义. 求 $\lim_{n \to \infty} a_n$.

17.
$$\Re \lim_{n\to\infty} \left(1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n-1} \frac{1}{n}\right).$$

- 18. 计算 $\lim_{x\to 0} \frac{\sin(\tan x) \tan(\sin x)}{\arcsin(\arctan x) \arctan(\arcsin x)}$.
- 19. 设 $0 < \lambda < 1$, $\{a_n\}$ 是收敛于 a 的正数数列. 证明:

$$\lim_{n\to\infty}(a_n+\lambda a_{n-1}+\lambda^2a_{n-2}+\cdots+\lambda^na_0)=\frac{a}{1-\lambda}.$$

- 20. 设 $a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} 2\sqrt{n}, n \in \mathbb{N}$, 证明数列 $\{a_n\}$ 收敛.
- 21. 对一般的自然数 n 计算极限 $\lim_{x\to 0} \frac{\sin nx n\sin x}{x^3}$.
- 22. 设函数 f 在 $(0,+\infty)$ 上单调增加,且有 $\lim_{x\to +\infty} \frac{f(2x)}{f(x)} = 1$. 证明: 对每个 a>0,成立 $\lim_{x\to +\infty} \frac{f(ax)}{f(x)} = 1$.
- 23. 设成立 $\lim_{x\to 0} f(x) = 0$, $f(x) f\left(\frac{x}{2}\right) = o(x)$ $(x\to 0)$. 证明: f(x) = o(x) $(x\to 0)$.

苏州大学数学科学学院