EE 123 Discussion Section 1

Jan. 30, 2019 Li-Hao Yeh

Based on notes by Jon Tamir, Giulia Fanti and Frank Ong

Announcements

- Office Hours
 - Miki: Wednesdays 4:15-5:15pm, Cory 506
 - Li-Hao: Monday 11am-12pm, Cory 504
 - Michael: Friday 3-4pm, Cory 504
 - Lab office hour: 10-11am, Cory 504
- Lab 0 due Monday Feb. 4
- HW 1 due Monday Feb. 4
- Questions?

About today

- Properties of systems
- Review on linear regression

Consider a system below:

$$y[n] = \alpha x[n]$$

Is this system Linear/Time-invariant/Causal/BIBO stable?

Consider a system below:

$$y[n] = \alpha x[n]$$

Is this system Linear/Time-invariant/Causal/BIBO stable?

YES to all

What about this modified system:

$$y[n] = \begin{cases} \alpha x[n], & x[n] \le 1 \\ \alpha, & x[n] > 1 \end{cases}$$

Is this system Linear/Time-invariant/Causal/BIBO stable?

What about this modified system:

$$y[n] = \begin{cases} \alpha x[n], & x[n] \le 1 \\ \alpha, & x[n] > 1 \end{cases}$$

Is this system Linear/Time-invariant/Causal/BIBO stable?

Not Linear \rightarrow whenever x[n]>1, y[n] = α , this is not homogeneous.

Time invariant \rightarrow Plug in x[n-1], the output is straight-up y[n-1] Causal \rightarrow It only depends on current x[n], which is memoryless/causal stable \rightarrow both α and x[n] are bounded then output y[n] is bounded

What about this modified system:

$$y[n] = \begin{cases} \alpha x[n], & x[n] \le 1 \\ \alpha, & x[n] > 1 \end{cases}$$

Any realistic system acts like this system?

- 1. MOS/BJT amplifier input/output
- 2. Hooke's law
- 3. Hysteresis

They all have limited linear region

Another system (from old exam)

A discrete-time system H produces an output signal y that is the symmetric part of the input:

$$y[n] = \frac{x[n] + x[-n]}{2}$$

Which of the following are true?

- The system must be LTI
- The system cannot be LTI

Another system (from old exam)

A discrete-time system H produces an output signal y that is the symmetric part of the input:

$$y[n] = \frac{x[n] + x[-n]}{2}$$

Which of the following are true?

- The system must be LTI
- The system cannot be LTI

Another system (from old exam)

Not time invariant:

- For $x_1[n] = \delta[n]$, then $y_1[n] = \delta[n]$
- For $x_2[n] = \delta[n-1]$, then $y_2[n] = \frac{\delta[n-1] + \delta[n+1]}{2}$
- $y_1[0] = 1$ but $y_2[1] = \frac{1}{2}$
- → Not time invariant

(however, the system is linear)

Consider an LTI system with input x[n] and output y[n], when we input a signal $\left(\frac{1}{3}\right)^n u[n]$, where u[n] is unit step function, we observe an output g[n]. Can we express y[n] in terms of x[n] and g[n]?

Consider an LTI system with input x[n] and output y[n], when we input a signal $\left(\frac{1}{3}\right)^n u[n]$, where u[n] is unit step function, we observe an output g[n]. Can we express y[n] in terms of x[n] and g[n]?

The key is to massage the input into $\delta[n]$

We know
$$u[n] - u[n-1] = \delta[n]$$

Consider an LTI system with input x[n] and output y[n], when we input a signal $\left(\frac{1}{3}\right)^n u[n]$, where u[n] is unit step function, we observe an output g[n]. Can we express y[n] in terms of x[n] and g[n]?

By time-invariance: input $\left(\frac{1}{3}\right)^{n-1}u[n-1]$, output g[n-1] By linearity: input $\left(\frac{1}{3}\right)^n(u[n]-u[n-1])=\delta[n]$, output $g[n]-\frac{1}{3}g[n-1]$ (impulse response)

Consider an LTI system with input x[n] and output y[n], when we input a signal $\left(\frac{1}{3}\right)^n u[n]$, where u[n] is unit step function, we observe an output g[n]. Can we express y[n] in terms of x[n] and g[n]?

$$y[n] = x[n] * \left(g[n] - \frac{1}{3}g[n-1]\right)$$

Cascaded system problem

Let T1 and T2 be two separate systems and T be the cascaded system:

True or False?

If T1 is LTI and T2 is not LTI, then T cannot be LTI

False

Consider the system T1=0. Then T=0

If T1 is not LTI and T2 is not LTI, then T cannot be LTI

False

Consider the system
$$T_1\{x\} = x^3$$
 and $T_2\{x\} = x^{\frac{1}{3}}$. Then $T\{x\} = x$

Many signal processing problems can be formulated as a **least squares**, where we try to find model parameters that best fit the observed data. We will see this many, many times

Example: Linear regression. Suppose we observe five data points x[k], where $k = \{-2, -1, 0, 1, 2\}$. We want to fit a line x = mk + b by minimizing the squared distance between the line and the data points:

For each value of k, we have a linear equation for our model:

Example,
$$k = 2$$
: $x[2] = 2m + b$

And we have a squared error with our data:

Example,
$$k = 2: (x[2] - (b + 2m))^2$$

Sum of squared errors:
$$\sum_{k} (x[k] - (mk + b))^{2}$$

$$\Rightarrow \text{ In matrix form, Error} = \frac{1}{2} ||\mathbf{x} - \mathbf{K}\boldsymbol{\beta}||_{2}^{2} \qquad \text{Error} = \frac{1}{2} \left\| \begin{pmatrix} x_{-2} \\ x_{-1} \\ x_{0} \\ x_{1} \end{pmatrix} - \begin{bmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} {m \choose b} \right\|^{2}$$

To find the best fit from a least squares sense, minimize the sum of squared errors:

minimize
$$\frac{1}{2} \left\| \begin{pmatrix} x_{-2} \\ x_{-1} \\ x_0 \\ x_1 \\ x_2 \end{pmatrix} - \begin{bmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{pmatrix} m \\ b \end{pmatrix} \right\|_{2}^{2} = \text{minimize } \frac{1}{2} \|\mathbf{x} - \mathbf{K}\boldsymbol{\beta}\|_{2}^{2}$$

To solve for b and m, take the derivative (gradient) with respect to b and to m, and set to zero:

$$\min_{\boldsymbol{\beta}} \sum_{k=1}^{\infty} \left\| \mathbf{x} - \mathbf{K} \boldsymbol{\beta} \right\|_{2}^{2}$$

$$\mathbf{K}^{T} \mathbf{K} \boldsymbol{\beta} - \mathbf{K}^{T} \mathbf{x} = 0 \qquad \qquad \Rightarrow \boldsymbol{\beta} = \left(\mathbf{K}^{T} \mathbf{K} \right)^{-1} \mathbf{K}^{T} \mathbf{x}$$
In Python,
$$\mathbf{K} = \text{np.array([...])}$$

$$\mathbf{x} = \text{np.array([...])}$$

$$\text{beta = np.linalg.solve(K, x)}$$