Задание № 1 по курсу "Численное моделирование реагирующих потоков"

Расчет параметров газовой смеси за фронтом волны детонации

- 1. Для решения системы нелинейных алгебраических уравнений $f(\vec{u}) = 0$ (первые 3 уравнения системы (1) из задания) был использован метод простой итерации. Для этого систему $f(\vec{u}) = 0$ привели к эквивалентной системе $\vec{u} = \varphi(\vec{u})$ так, чтобы отображение было сжимающим. Для этого из первого уравнения исходной системы (1) выразили давление p, из второго η , из третьего T. Получили последовательность итераций $\vec{u}_{i+1} = \varphi(\vec{u}_i)$.
- 2. Начальное приближение \vec{u}_0 рассчитывалось с использованием двух допущений ($p_0 \ll p$ (приближение сильной волны) и $\gamma = \gamma_0 = const$):

$$\begin{cases} \rho = \frac{\gamma + 1}{\gamma} \rho_0 \\ p = 2\rho_0 (\gamma - 1)Q \end{cases}$$
$$T = \frac{p}{\rho R \sum_{i=1}^{N} \frac{W_i}{\mu_i}}$$

3. Количество итераций до сходимости: 13. Невязка бралась по третьей норме:

$$\Delta = \left| f(\vec{u}_i) \right| = \sqrt{\sum_i^3 f(\vec{u}_i)}$$
 . Критерий остановки: норма невязки меньше 10^{-5} . Представлен график убывания невязки.

4. Найденные значения:

$$\begin{cases} p = 18.49amM \\ \rho = 1.91 \frac{\kappa c}{M^3} \\ T = 3220.68K \\ v = 820.46 \frac{M}{c} \\ D = 1937.88 \frac{M}{c} \\ \gamma = 1.29 \end{cases}$$

5.

6. Дополнительное задание (расчет параметров волны дефлаграции).

В качестве начального приближения использовал следующие параметры (их подбирал наугад, но заведомо знал, что давление должно быть меньше p_0 и плотность должна быть меньше p_0):

$$\begin{cases} p = 0.5 \text{ atm} \\ \rho = 0.05 \frac{\kappa c}{M^3} \\ T = 5000 \text{ K} \end{cases}$$

7. Для решения системы нелинейных алгебраических уравнений $f(\vec{u}) = 0$ (первые 3 уравнения системы (1) из задания) был использован метод Ньютона с использованием матрицы Якоби: $\vec{u}_{i+1} = \vec{u}_i - J^{-1}(\vec{u}_i) \cdot f(\vec{u}_i)$. Метод простой итерации не сходился, поэтому было решено использовать другой метод. Количество итераций до сходимости: 45.

Невязка бралась по третьей норме: $\Delta = \left| f(\vec{u_i}) \right| = \sqrt{\sum_i^3 f(\vec{u_i})}$. Критерий остановки: норма невязки меньше 10^{-5} . Полученные результаты представлены ниже.

$$\begin{cases} p = 0.4519 \text{ атм} \\ \rho = 0.0732 \frac{\kappa c}{M^3} \\ T = 2051.39 \text{ K} \\ v = -836.07 \frac{M}{c} \\ D = 59.60 \frac{M}{c} \\ \gamma = 1.2995 \end{cases}$$