セルアセンブリの構築を目指して

加藤チーム

神経科学的妥当性評価:実装したものに✔印を入れてください。

		•			/
海馬内活動	リプレイ	(/)	脳領域構造	CA1	(v)
	プリプレイ	(/)		CA2	
	場所細胞			CA3	(v)
	グリッド細胞			歯状回	~
	頭部方向細胞			嗅内皮質	~
	シータ位相歳差	(v)		海馬支脚	
	スパース表現			Perirhinal Cortex	
	パターン補完			Postrhinal Cortex	
	細胞新生	~	その他	コネクトームの導入	
行動機能	自律的フェーズ変化			BiCAMONでの可視化	
	エピソード記憶	(v)		その他	
	場所の再認				
	記憶転送				
	ナビゲーション/空間認 知				
	Path integration				

チーム名

規定課題点評価:成功・失敗エピソード数を記入してください。

課題番号	成功エピソード数	 失敗エピソード数 	合計エピソード数(成功+失 敗)
1 - 1	28	6	34
1 – 2	26	4	30
1 – 3	18	66	84
1 – 4			
1 - 5			
1 – 6			
1 – 7			
1 - 8			
2 – 1			
2 – 2			
3 – 1			
3 – 2			
3 – 3			

課題1-1

・クリア

課題1-2

クリア

課題1-3

• 最終的にスタート地点で回転

課題1-4

• 到達せず

課題1-5

• 到達せず

課題1-6

• 到達せず

課題1-7

課題1-8

海馬の構成要素を分類すると

- 歯状回
- ⇒情報のキャッシュとして保存
- CA3、CA1
- ⇒情報に時系列としての表現を付与

今回注目した部位

青エリア:歯状回(情報のキャッシュとして)

緑エリア: CA3~1 (時間表現 (動きませんでした))

Neural Episodic Control(2017)

- DQNではリプレイバッファからランダムにし かサンプルできないので効率が悪い
- 以前記憶した情報を効率的に取り出せるように キー(featureから生成されるベクトル), バ リュー(Q値)で保持
- 類似したキーから過去のQが取得可能

Algorithm 1 Neural Episodic Control

 \mathcal{D} : replay memory.

 M_a : a DND for each action a.

N: horizon for N-step Q estimate.

for each episode do

for
$$t = 1, 2, \dots, T$$
 do

Receive observation s_t from environment with embedding h.

Estimate $Q(s_t, a)$ for each action a via (1) from M_a $a_t \leftarrow \epsilon$ -greedy policy based on $Q(s_t, a)$

Take action a_t , receive reward r_{t+1}

Append $(h, Q^{(N)}(s_t, a_t))$ to M_{a_t} .

Append $(s_t, a_t, Q^{(N)}(s_t, a_t))$ to \mathcal{D} .

Train on a random minibatch from \mathcal{D} .

end for

end for

過去の特徴

Cognitive Mapping and Planning for Visual Navigation (2017)

CA3-CA1ブロック

CA3-CA1ブロック

環境の特徴量

CA3-CA1ブロック 環境の特徴量 CA3の発火度 Confidence and belief about world from d belie previous time step, warped using egomotion. from previous time step. Differentiable Warping Updated confidence and belief about world. EC-DGブロック Combine -

エゴセントリックな情報から, 客観的な情報に変換していく

CA3-CA1ブロック

海馬でのエピソード記憶(1)

エピソード記憶の時系列関係をスパイクタイミング 依存シナプス可塑性(Spike-Timing Dependent Synaptic Plasticit)で学習したい

しかし、実時間ではイベント間の時間間隔が長すぎてSTDPでは学習し難い

そこで、シータ波の中に時間圧縮表現することで、 STDPで学習可能な時間差にする

海馬でのエピソード記憶(2)

海馬ではシータ位相歳差を用いて時系列を 表現しているという説が有力

そこで、アトラクター的なリズム引き込みによる実装を試みたし

しかし、ハッカソン日程の半分辺りで工数的に無理と判断 <a>□

なんちゃってシータ位相歳差モデルでとに かく作ることに

なんちゃってシータ位相歳差モデル

- シータ位相歳差の位相前進はプログラムで明示的に実装(現在を180°として10°ずつ前進)
- シータ波の中にある全イベント間の前後関係を STDPで学習
- 報酬イベントが入ったときに、重みの更新量を 増大させる
- 現在の状態から学習した時系列の重みを用いて 未来のエピソードを想起して、強化学習に入力

まとめ

・歯状回のキャッシュ機能に相当する モジュールの作成が出来た。 (行動と視覚と報酬の情報統合の足がかり)

・DQNによる学習との差別化が 上手く行えなかった。