この note では Hartshorne "Algebraic Geometry" p.61 にある sheaf property (3) を Identity Axiom と呼び、同じく (4) を Gluability Axiom と呼ぶ. これらの名称は Vakil "Foundations of Algebraic Geometry" にあるものである.

Ex1.1 Constant Sheaf is Associated to Constant Presheaf.

A:: abelian group, X:: topological space とする. 任意の空でない開集合 $U\subseteq X$ について $\mathcal{A}(U)=A$ とし, restriction map $\rho_{UV}:\mathcal{F}(U)\to\mathcal{F}(V)$ は id_A とする. この A を constant presheaf と呼ぶ. \mathcal{A} に対応する sheaf を \mathcal{A}^+ としよう. また, 開集合 $U\subseteq X$ に対し, $\hat{\mathcal{A}}=\{f:U\to A\mid f::$ continus.} とおく. $\mathcal{A}^+=\hat{\mathcal{A}}$ を示そう.

 \mathcal{A} の germ を考える. 明らかに $\varinjlim_{P \in U} \mathcal{A}(U) = \varinjlim_{P \in U} A \cong A$. よって \mathcal{A} の germ は A の元と同一 視出来る. すると, $\mathcal{A}^+(U)$ の元 s は, 以下の条件を満たすものである.

$$\forall P \in U, \ P \in \exists V \subseteq U, \ \exists a \in \mathcal{F}(V), \ \forall Q \in V, \ s(Q) = a_Q = a.$$

これは $\mathcal{A}^+(U)$ の元 s が locally constant な写像であることを言っている. locally constant であれば 連続であることは自明 $(\mathcal{A}^+(U) \supseteq \hat{\mathcal{A}}(U))$. 逆に連続な section は $s^{-1}(\{a\})$ が開集合になるので locally constant となる $(\mathcal{A}^+(U) \subseteq \hat{\mathcal{A}}(U))$. よって $\mathcal{A}^+ = \hat{\mathcal{A}}$.

Ex1.2 The Image/Kernel in a Sheaf/Stalk.

(a) ASSERTION.

F' を F の subsheaf だとする. この時、以下の写像 $\iota_{F_P'}^{F_P}: F_P' \to F_P$ に依って F_P' は F_P の subgroup とみなせる. なお、germ は \sim_P についての同値類(点ではなく集合)とみなす. \sim_P は「点 P の開近傍 において二つの section が一致する.」という同値関係である.

$$\iota_{\mathcal{F}_{P}^{r}}^{\mathcal{F}_{P}}(s_{P}) = \left\{ \langle U, \sigma \rangle \; \middle| \; \begin{array}{c} P \in U, \sigma \in \mathcal{F}(U), \\ P \in {}^{\exists}V \subseteq U, \; \langle V, \sigma \rangle \in s_{P}. \end{array} \right\} \middle/ \sim_{P}$$

 $\langle U,\sigma \rangle$ は本文 p.62 の記号である。以下, $\iota_{\mathcal{F}_P}^{F_P}$ は適宜 ι と略す。 $s_P=t_P$ であるとき $\iota(s_P)=\iota(t_P)$ であることは定義の " $\langle V,\sigma \rangle \in s_P$ " の部分から明らか。この写像が単射であることは以下のように示される。まず互いに異なる $s_P,t_P \in \mathcal{F}_P'$ をとる。すると $\langle U,\sigma \rangle \in s_P \setminus t_P$ が取れる。明らかに $\langle U,\sigma \rangle \in \iota(s_P)$. この $\langle U,\sigma \rangle$ について,開集合 U をより小さい U' に取り替えても $\langle U,\sigma \rangle \in s_P \setminus t_P$ となる。これは s_P,t_P が \sim_P についての同値類だからである。したがって $\langle *,\sigma \rangle$ は $\iota(t_P)$ に属さない。以上から $\iota(s_P) \neq \iota(t_P)$.

 $\phi: \mathcal{F} \to \mathcal{G}$ を morphisms of sheaves とする. 以下の例では subsheaf の stalk $(\ker \phi)_P$ と $\ker \phi_P \subset \mathcal{F}_P$ が一致しない. まず \mathcal{F},\mathcal{G} をどちらも実直線 \mathbb{R} 上の連続な関数がなす層(変数は x)とし, $\phi(f)=f-x$ とする. この ϕ で ramp function $ramp(x)=[x\geq 0]x$ を写したものは $\phi(ramp)(x)=[x< 0](-x)$ となる. これは明らかに x=1 の近傍 (0,2) で 0 になるから, $\langle (0,2), ramp \rangle \in \ker \phi_P$. また,近傍 を (-2,2) としても, $\langle (0,2), ramp \rangle \sim_P \langle (-2,2), ramp \rangle \in \ker \phi_P$. しかし, $ramp|_{(-2,2)} \neq 0$ だから $ramp \notin (\ker \phi)((-2,2))$ となる.なので $(\ker \phi)_P$ に $\langle (-2,2), ramp \rangle$ は入っていない.よって $(\ker \phi)_P$ と $(\ker \phi)_P$ は上で定義した ι を介さなければ一致しない.しかし,この二つを \mathcal{F}_P の subgroup とみなせば,一致していると言うことも出来る.Hartshrone はこの意味で $(\ker \phi)_P = \ker \phi_P$ と主張している.

(b) Preparing.

Ati-Mac Ex2.19 から、加群の direct limit は exact functor であるこれの証明は https://math. stackexchange.com/questions/121122 などにある. このことを sheaf の exact sequence に用いたいが、使えることは自明ではない. 実際、 $\mathcal{F} \stackrel{\phi}{\longrightarrow} \mathcal{G} \stackrel{\psi}{\longrightarrow} \mathcal{H}$ が exact であっても、加群の列 $\mathcal{F}(U) \stackrel{\phi_U}{\longrightarrow} \mathcal{G}(U) \stackrel{\psi_U}{\longrightarrow} \mathcal{H}(U)$ が完全であるとは限らないからである.

点 P を任意の点とし、 $\ker \psi_P \subseteq \operatorname{im} \phi_P$ を示す。まず、 $\ker \psi_P$ から $\operatorname{germ} s_P$ をとる.

$$\mathcal{F}_{P} \xrightarrow{\phi_{P}} \mathcal{G}_{P} \xrightarrow{\psi_{P}} \mathcal{H}_{P}$$

$$s_{P} \vdash_{\psi_{P}} b_{P}$$

すると点 P の開近傍 U と、section $\sigma \in \ker \psi_U = (\ker \psi)(U)$ が取れて、 $\sigma_P = s_P$ となる.

$$\mathcal{F}_{P} \xrightarrow{\phi_{P}} \mathcal{G}_{P} \xrightarrow{\psi_{P}} \mathcal{H}_{P}$$

$$s_{P} \longmapsto 0_{P}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sigma \longmapsto 0$$

$$\mathcal{F}(U) \xrightarrow{\phi_{U}} \mathcal{G}(U) \xrightarrow{\psi_{U}} \mathcal{H}(U)$$

仮定より, $\sigma \in (\ker \psi)(U) = (\operatorname{im} \psi)(U)$. なので,

$$(\operatorname{im}^{pre} \psi)_P = (\operatorname{im} \phi)_P \ni \sigma_P = s_P \in \ker \phi_P.$$

よって以下が得られる.

$$P \in {}^{\exists}V \subseteq U, \quad \sigma|_{V} \in (\operatorname{im}^{pre}\psi)(V) = \operatorname{im}\psi_{V}.$$

以上より、 $\sigma_P = s_P$ かつ $\operatorname{im} \psi_V \ni \sigma|_V \in \ker \psi_V$. あとは $\phi_V(\tau) = \sigma|_V$ となる $\tau \in \mathcal{F}(V)$ をとり、図式の可換性を用いれば良い.

(c) Prooves.

- (a) $\forall P \in X$, $(\ker \phi)_P = \ker \phi_P$, $(\operatorname{im} \phi)_P = \operatorname{im} \phi_P$.
- (b) $\phi :: inj/surj \iff \forall P \in X, \ \phi_P :: inj/surj.$
- (c) $\mathcal{F} \to \mathcal{G} \to \mathcal{H}$:: exact $\iff {}^{\forall}P \in X, \ \mathcal{F}_P \to \mathcal{G}_P \to \mathcal{H}_P$:: exact
- ■Proof of Half of (c). 以下が成り立つ.

$$\mathcal{F} \xrightarrow{\phi} \mathcal{G} \xrightarrow{\psi} \mathcal{H} :: \text{ exact } \Longrightarrow {}^{\forall} P \in X, \ \mathcal{F}_P \xrightarrow{\phi_P} \mathcal{G}_P \xrightarrow{\psi_P} \mathcal{H}_P :: \text{ exact.}$$

ただし \mathcal{F} , \mathcal{G} , \mathcal{H} は位相空間 X 上の sheaf である. この命題は (c) の半分である.

■Proof of (a). $\phi: \mathcal{F} \to \mathcal{G}$ に対し、 $0 \to \ker \phi \xrightarrow{i} \mathcal{F} \xrightarrow{\phi} \mathcal{G}$ は exact. このことから $0 \to (\ker \phi)_P \xrightarrow{i_P} \mathcal{F}_P \xrightarrow{\phi_P} \mathcal{G}_P$ は exact. よって $\operatorname{im} i_P = \ker \phi_P$ が得られる.明らかに i_P は injective だから、 $(\ker \phi)_P \cong \operatorname{im} i_P = \ker \phi_P$ となる.また、 $\mathcal{F} \xrightarrow{\phi} \mathcal{G} \to \operatorname{im} \phi \to 0$ が exact であることから $(\operatorname{im} \phi)_P \cong \operatorname{im} \phi_P$ も得られる.

■Proof of Remained Part of (c). 任意の点 $P \in X$ について, $\mathcal{F}_P \xrightarrow{\phi_P} \mathcal{G}_P \xrightarrow{\psi_P} \mathcal{H}_P$ が exact であった とする. そこで任意の開集合 $U \subset X$ と, 任意の section $s \in \mathcal{F}(U)$ を取る. 以下のように $\operatorname{im} \phi \subseteq \ker \phi$ が示される.

$$s \in (\operatorname{im} \phi)(U)$$

$$\Longrightarrow^{\forall} P \in U, \quad s_P \in (\operatorname{im} \phi)_P = \operatorname{im} \phi_P$$

$$\Longleftrightarrow^{\forall} P \in U, \quad s_P \in \ker \phi_P$$

$$\Longleftrightarrow^{\forall} P \in U, \quad P \in^{\exists} V_P \subseteq U, \quad s|_{V_P} \in (\ker \phi)(V_P)$$

$$\Longrightarrow s \in (\ker \phi)(U)$$

最後の行で Gluability Axiom を用いた. この証明で ker と im を交換すれば im $\phi \supseteq \ker \phi$ も示され, よって im $\phi = \ker \psi$ が得られる.

■Proof of (b). $0 \to \mathcal{F} \to \mathcal{G}$ と $\mathcal{F} \to \mathcal{G} \to 0$ に (c) を用いれば良い.

Ex1.3 Surjectivity of Morphism is (Not) Local Property.

(a) Paraphrase of Surjectivity.

 $\mathcal{F}, \mathcal{G}: X \to A, \phi: \mathcal{F} \to \mathcal{G}$ について $\phi::$ surj が以下の命題と同値であることを示す.

$$(*) \quad ^\forall U :: \text{ open in } X, \quad ^\forall s \in \mathcal{G}(U), \quad \bigcup ^\exists U_i = U, \quad ^\exists t_i \in \mathcal{F}(U_i), \quad ^\forall i, \quad \phi(t_i) = s|_{U_i}.$$

 ϕ :: surj ならば covering $\{U_i\}$ として U をとり, $\phi(t)=s$ となる t を t_i とすれば良い.

逆を示す。Ex1.2b より、任意の $P \in U$ について ϕ_P :: surj であることを示せば良い。仮定より $P \in V \subseteq U$ となる V ((*) 中の U_i) が存在し、 $\phi_P(t_P) = s|_V = s_P$ を満たす $t_P \in \mathcal{F}(V) \subseteq \mathcal{F}_P$ が存在 する。よって ϕ_P :: surj.

(b) Give an Counterexample.

Ex1.4 Induced Injective Sheaf Morphism.

(a) Injective Presheaf Morphism Induces Injective Sheaf Morphism.

以下は可換図式である.

これを stalk をとる関手 $\lim_{P \in U}$ で写すと、Prop-Def1.2 の直後に言及されている $\mathcal{F}_P = \mathcal{F}_P^+$ から、以下が得られる.

この可換図式から $\phi_P = \phi_P^+$. よって Ex1.2b から ϕ :: inj $\iff \phi^+$:: inj.

(b) Natural Induced Map $\operatorname{im} \phi \to \mathcal{G}$ is Injective.

埋め込み写像 $\operatorname{im}^{pre} \phi \hookrightarrow \mathcal{G}$ は injective なので、ここから誘導される $\operatorname{im} \phi \to \mathcal{G}$ も injective.

Ex1.5 For Morphism of Shaves, iso=inj+surj.

 $\phi: \mathcal{F} \to \mathcal{G}$ を考える. ϕ が iso であることと、任意の点 P で ϕ_P が iso であることは同値.また、 ϕ が inj+surj であることと、任意の点 P で ϕ_P が inj+surj であることは同値である.これらはそれぞれ Prop1.1 と Ex1.2 から理解る.よって ϕ_P について iso=inj+surj を確かめれば必要十分.

 $\blacksquare \phi_P :: \mathsf{iso} \implies \phi_P :: \mathsf{inj+surj}. \quad \phi_P :: \mathsf{iso} \ \mathsf{tso} \$

$$\forall x_1, x_2 \in \mathcal{F}_P, \ \phi_P(x_1) = \phi_P(x_2) \implies \phi_P^{-1} \circ \phi_P(x_1) = x_1 = x_2 = \phi_P^{-1} \circ \phi_P(x_2)$$

すなわち ϕ_P :: inj. 同時に

$$\forall y \in \mathcal{G}_P, \ \phi_P(\phi_P^{-1}(y)) = y$$

すなわち $φ_P$:: surj.

 $\blacksquare \phi_P$:: iso $\iff \phi_P$:: inj+surj. まず ϕ_P :: surj から以下が成り立つ.

$$\forall y \in \mathcal{G}_P, \quad \exists x \in \mathcal{F}_P, \quad \phi_P(x) = y.$$

この命題を満たす $x \in \mathcal{F}_P$ は ϕ_P :: inj からただひとつである.

$$\forall y \in \mathcal{G}_P, \quad \exists_1 x \in \mathcal{F}_P, \quad \phi_P(x) = y.$$

なので $\phi_P^{-1}(y)=x$ と定めればこれは写像になる. なお, ϕ_P でなく ϕ で議論をすると、構成した ϕ の naturality を示す必要がある.

Ex1.6 Short Exact Sequence of Sheaves.

(a) Natural Map $q: \mathcal{F} \to \mathcal{F}/\mathcal{F}'$ Has $\operatorname{im} q = \mathcal{F}/\mathcal{F}'$ and $\ker q = \mathcal{F}'$.

quotient sheaf の定義 (p.65) より,任意の点 P について $(\mathcal{F}/\mathcal{F}')_P = \mathcal{F}_P/\mathcal{F}'_P$ ^{†1}. よって q から誘導される q_P は $\mathcal{F}_P \to \mathcal{F}_P/\mathcal{F}'_P$ の自然な写像である. $\operatorname{im} q_P = \mathcal{F}_P/\mathcal{F}'_P$, $\operatorname{ker} q_P = \mathcal{F}'$ となるから,Ex1.2a より主張が得られる.

(b) If $0 \to \mathcal{F}' \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{F}'' \to 0$ is Exact, ...

仮定より、 $0 = \ker f$ 、im $f = \ker g$, im $g = \mathcal{F}''$. よって f は inj で、 $f|^{\operatorname{im} f}: \mathcal{F}' \to \operatorname{im} f$ は surj+inj. なので $\operatorname{Ex} 1.5$ よりこれは iso であり、 \mathcal{F}' は im $f \subset \mathcal{F}$ と同型である。続けて $g: \mathcal{F} \to \mathcal{F}''$ から誘導される $g_P: \mathcal{F}_P \to \mathcal{F}_P''$ を考える。定義より $\mathcal{F}_P, \mathcal{F}_P''$ は abelian group (abelian group の圏での colimit) で、 g_P は その morphism。 だから abelian group の準同型定理からの帰結として $\mathcal{F}_P/\ker g_P = (\mathcal{F}/\ker g)_P \cong \mathcal{F}_P''$ が得られる. Prop1.1 より $\mathcal{F}'' \cong \mathcal{F}/\ker g = \mathcal{F}/\ker f \cong \mathcal{F}/\mathcal{F}'$.

^{†1} これは sheafification functor $sh_X: \mathbf{PSh}(X,\mathfrak{C}) \to \mathbf{Sh}(X,\mathfrak{C})$ が forgetful functor の left adjoint functor であること,及び left adjoint functor は colimit を保つことからも得られる.

Ex1.7 $\operatorname{im} \phi \cong \mathcal{F} / \ker \phi$, and $\operatorname{coker} \phi \cong \mathcal{G} / \operatorname{im} \phi$.

 $\phi: \mathcal{F} \to \mathcal{G}$ について考える. im $\phi \cong \mathcal{F}/\ker \phi$ は以下の完全列に Ex1.6b を用いて得られる.

$$0 \to \ker \phi \xrightarrow{i} \mathcal{F} \xrightarrow{\phi} \operatorname{im} \phi \to 0.$$

ただしiは埋め込み写像である. $\operatorname{coker} \phi \cong \mathcal{G} / \operatorname{im} \phi$ は同様に以下の完全列から得られる.

$$0 \to \operatorname{im} \phi \xrightarrow{\phi} \mathcal{G} \xrightarrow{q} \operatorname{coker} \phi \to 0.$$

ただし q は $q^{pre}: \mathcal{G} \to \operatorname{coker} \phi = \mathcal{G}/\operatorname{im} \phi$ から誘導される写像. これが完全列であることは次のように示される. まず Ex1.6a を用いて stalk の完全列を得る.

$$0 \to \operatorname{im} \phi_P \xrightarrow{\phi_P} \mathcal{G}_P \xrightarrow{q_P} \operatorname{coker} \phi_P = \mathcal{G}_P / \operatorname{im} \phi_P \to 0.$$

Ex1.2a,c を用いて元の列が完全であることが示される.

Ex1.8 $\forall U \subset X$, $\Gamma(U, -) ::$ left exact functor

以下を $X \to A$ の sheaves がなす完全列とする.

$$0 \to \mathcal{F}' \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{F}''$$
.

完全列なので $0=\ker f, \operatorname{im} f=\ker g.$ $\mathcal{A}\mapsto \mathcal{A}(U)$ で定義される functor $\Gamma(U,-)$ により、この完全列は以下の列になる。

$$0 \to \mathcal{F}'(U) \xrightarrow{f_U} \mathcal{F}(U) \xrightarrow{g_U} \mathcal{F}''(U).$$

これが完全列であることは $0 = \ker f_U$, $\operatorname{im} f_U = \ker g_U$ と同値.

まず $\ker f$ を考えると、定義より $0=(\ker f)(U)=\ker f_U$. よって f_U :: inj. また、 $\Gamma(U,-)$ は functor だから

$$0 = \Gamma(U, g \circ f) = \Gamma(U, g) \circ \Gamma(U, f) = 0.$$

すなわち $g_U \circ f_U = 0$, im $f_U \subseteq \ker g_U$.

残るは逆の包含関係である。まず $s \in \ker g_U \subseteq \mathcal{F}(U)$ を取る。Ex1.2a より、任意の $P \in U$ について $\inf_P = \ker g_P$ なので任意の点 P について $\sup_P \in \inf_P = \ker g_P$ であり、 $\inf_P \in \mathcal{F}_P$ が存在する。そこで $\sup_P \in \mathcal{F}_P$ の代表元 $\inf_P \in \mathcal{F}_P$ が存在する。そこで $\sup_P \in \mathcal{F}_P$ がたるこで $\sup_P \in \mathcal{F}_P$ が存在する。そこで $\sup_P \in \mathcal{F}_P$ が存在する。そこで $\sup_P \in \mathcal{F}_P$ が存在する。そこで $\sup_P \in \mathcal{F}_P$ がたるこで \sup

$$f_{W_{PQ}}(t^P|_{W_{PQ}}) = s|_{W_{PQ}} = f_{W_{PQ}}(t^Q|_{W_{PQ}}).$$

 $0=(\ker f)(W_{PQ})=\ker f_{W_{PQ}}$ より $f_{W_{PQ}}$ は inj. したがって $t^P|_{W_{PQ}}=t^Q|_{W_{PQ}}$ が得られる. $(P\in W_{PQ})$ は U を被覆するから、Gluability Axiom より、 $t|_{W_{PQ}}=t^P|_{W_{PQ}}=t^Q|_{W_{PQ}}$ なる $t\in \mathcal{F}'(U)$ が存在する.morphism と restriction の naturality により、

$$f_U(t)|_{W_{PQ}} = f_{W_PQ}(t|_{W_{PQ}}) = f_{W_{PQ}}(t^P|_{W_{PQ}}) = s|_{W_{PQ}}$$

となるから、Identity Axiom より $f_U(t) = s$. 以上より im $f_U \supseteq \ker g_U$.

Ex1.9 Direct Sum.

sheaves $\mathcal{F}, \mathcal{G}: X \to \mathfrak{C}$ について, $\mathcal{F} \oplus \mathcal{G}$ を以下で定める.

$$\mathcal{F} \oplus \mathcal{G} : U \mapsto \mathcal{F}(U) \oplus \mathcal{G}(U).$$

ただし U :: open in X. これが presheaf であることは自明なので、sheaf であることを示す. 以下、U :: open in X とその開被覆 $\{U_i\}$ を固定する.

■ $\mathcal{F} \oplus \mathcal{G}$ Satisfies Identity Axiom. $s \oplus t \in \mathcal{F}(U) \oplus \mathcal{G}(U)$ が $(s \oplus t)|_{U_i} = 0 \oplus 0 = 0$ を満たすとする.この仮定を論理式で書下すと,

$$\forall P \in U_i, (s \oplus t)(P) = s(P) \oplus t(P) = 0 \oplus 0.$$

abelian group の coproduct は product と同型だから、これは以下のように書き換えられる.

$$\forall P \in U_i, \quad s(P) = 0 \land t(P) = 0.$$

これは $s|_{U_i}=t|_{U_i}=0$ と同値. なので \mathcal{F},\mathcal{G} は sheaf であることから s=t=0. すなわち $s\oplus t=0$.

■ $\mathcal{F} \oplus \mathcal{G}$ Satisfies Gluability Axiom. $s_i \oplus t_i \in \mathcal{F}(U_i) \oplus \mathcal{G}(U_i)$ が存在し、以下を満たすとする.

$$\forall i, j, (s_i \oplus t_i)|_{U_i \cap U_i} = (s_j \oplus t_j)|_{U_i \cap U_i}.$$

前段落と同様に書き換えて,以下が得られる.

$$\forall i, j, \quad s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \wedge t_i|_{U_i \cap U_j} = t_j|_{U_i \cap U_j}.$$

 \mathcal{F}, \mathcal{G} は sheaf であることから、以下を満たす $s \in \mathcal{F}(U_i), t \in \mathcal{G}(U_i)$ が存在する.

$$\forall i, \ s|_{U_i} = s_i \wedge t|_{U_i} = t_i.$$

この s,t について $(s \oplus t)|_{U_i} = (s|_{U_i}) \oplus (t|_{U_i}) = s_i \oplus t_i$.

 $lacksymbol{\mathbb{F}} + \mathcal{G}$ is Coproduct in $\mathbf{Sh}(X)$. 以下の図式を考える.

ただし Z, f, g は任意で、i, j はそれぞれ $s \mapsto s \oplus 0, t \mapsto 0 \oplus t$ とする. すると \mathcal{F}, \mathcal{G} から \mathcal{Z} へ至る二つのパスをたどることで、この図式を可換にする [f, g] は以下のものしか無い事が理解る.

$$[f,g]: s \oplus t \mapsto f(s) + g(t).$$

f,g は morphism of abelian group で f(s),g(t) は element of abelian group. だから、例えば $\mathcal{F}\to\mathcal{Z}$ の二つのパスは次の計算の通り可換になる.

$$[f,g] \circ i : s \mapsto s \oplus 0 \mapsto f(s) + g(0) = f(s) \longleftrightarrow s : f$$

よって $\mathcal{F} \oplus \mathcal{G}$ は coproduct.

Ex1.10 Direct Limit.

Ex1.8 の functor $\Gamma(-,-)$, sheafification functor sh_X と abelian category の direct limit $\lim_{\to i} \mathcal{E}$ 用いて、 $\lim_{\to i} \mathcal{F}_i$ を以下で定める.

$$\Gamma(-, \lim_{i \to i} \mathcal{F}_i) = sh_X \lim_{i \to i} \Gamma(-, \mathcal{F}_i).$$

ただし $\{\mathcal{F}_i\}_{i\in I}$ は direct system である. これが $\mathbf{Sh}(X)$ の direct limit であることを示す.

まず, $\mathcal{L}: U \mapsto \lim_{\to i} \mathcal{F}_i(U)$ とおく. これは明らかに $\mathbf{PSh}(X)$ における direct limit で^{†2}, $\mathcal{L}^+ = \lim_{\to i} \mathcal{F}_i$ を満たす. よって sheafification functor sh_X が direct limit を保つことを見れば良い. 次の可換図式は \mathcal{L} の UMP を表す.

ただし \mathcal{G}, f_i は任意. sheafification の UMP を $\bar{f}_i : \mathcal{L} \to \mathcal{G}$ に用いて、次の可換図式が得られる.

よって $f_i: \mathcal{F}_i \to \mathcal{G}$ に対して一意に $\bar{f}_i: \mathcal{L}^+ \to \mathcal{G}$ が存在する.これで $\mathcal{L}^+ = \lim_{\to i} \mathcal{F}_i$ の UMP が示せた. $\mathcal{F}_i \to \mathcal{F}_j$ との可換性は morphism を結合すれば容易に分かる.

(i) Another Proof.

sheafification functor $sh_X: \mathbf{PSh}(X) \to \mathbf{Sh}(X)$ が Forgetful Functor $F: \mathbf{Sh}(X) \to \mathbf{PSh}(X)$ の left adjoint functor であることを用いる。これは R.Vakil "Foundations of Algebraic Geometry" Part I, 2.4.L などにある事実である。 direct limit が colimit であることと,"Left Adjoint Preserves Colimits" より,

$$sh_X \lim_{\to i} \mathcal{F}_i \cong \lim_{\to i} sh_X \mathcal{F}_i \cong \lim_{\to i} \mathcal{F}_i.$$

Ex1.11 Pre-Direct Limit on Noetherian Top.Sp. is Already a Sheaf.

sheaves $\{\mathcal{F}^i\}_{i\in I}$ with morphisms $f^{ij}:\mathcal{F}^i\to\mathcal{F}^j$:: direct system とし、 $\mathbf{PSh}(X)$ における direct limit を \mathcal{L} で書く、X :: noetherian topological space であるとき、 \mathcal{L} が予め sheaf であることを示す、以下、U :: open in X と開被覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を任意にとり、固定する.

X:: noetherian より、X:: quasi-compact. なので集合 $\{U_{\lambda}\}$ から有限被覆 $\{U_{i}\}_{i\in J}$ が出来る.

Ex1.12 Inverse Limit.

sheaves $\{\mathcal{F}^i\}$ with morphisms $f^{ij}: \mathcal{F}^i \to \mathcal{F}^j$:: inverse system とし, $\mathbf{PSh}(X)$ における inverse limit $U \mapsto \lim_{i \leftarrow} \mathcal{F}^i(U)$ を \mathcal{L} で書く、このとき \mathcal{L} は $\mathbf{Sh}(X)$ においても inverse limit であることを示す。

 $^{^{\}dagger 2}$ $\mathbf{PSh}(X)$ が direct limit を持つことは abelian category $\mathfrak C$ が direct limit を持つことによる.

sheafification functor を $Sh: \mathbf{PSh}(X) \to \mathbf{Sh}(X)$, forgetful functor を $Fgt: \mathbf{Sh}(X) \to \mathbf{PSh}(X)$ で書く. Fgt は Sh の right adjoint functor $(Sh \dashv Fgt.)$ なので, $\lim_{i \leftarrow}$ と可換^{†3}. inverse limit は limit なので以下が得られる.

$$\lim_{i \leftarrow} Fgt\mathcal{F}^i \cong Fgt \lim_{i \leftarrow} \mathcal{F}^i \cong \lim_{i \leftarrow} \mathcal{F}^i.$$

最後の \cong は F が forgetful functor,すなわち object を変化させないことによる.したがって $\mathbf{PSh}(X)$ における inverse limit は $\mathbf{Sh}(X)$ における inverse limit と一致する.まったく同様の議論で $\mathbf{PSh}(X)$ における limit は $\mathbf{Sh}(X)$ における limit に一致する.

(i) Proof of $Sh \dashv Fgt$.

adjoint の定義にはいくつか同値なものがあるが、ここでは Steve Awodey "Category Theory" p.214 にある Cor9.5 を用いる.

F は object を変えない埋め込み写像なので、直ちに全単射 $\tilde{\eta}_{(-)}:(-)\leftrightarrow F(-):\tilde{\epsilon}_{(-)}$ がとれる.これに sheafification の UMP を用いると以下の可換図式が得られる.

こうして unit $\eta: \mathrm{id}_{\mathbf{PSh}(X)} \to FgtSh$ と counit $\epsilon: ShFgt \to \mathrm{id}_{\mathbf{Sh}(X)}$ が得られる. さらに、この二つの可換図式を組み合わせて、以下の可換図式が作れる.

$$id_{\mathbf{PSh}(X)} \xrightarrow{\theta} Sh$$

さて、 $\mathcal{F} \in \mathbf{PSh}(X)$, $\mathcal{G} \in \mathbf{Sh}(X)$ と $g: Sh\mathcal{F} \to \mathcal{G}$ を任意に取る. この時の可換図式は以下の (1) である.

コの字型の部分をたどることで、(2) の $\bar{g}: \mathcal{F} \to Fgt\mathcal{G}$ が得られる。 $\operatorname{Ex} 1.4$ における ϕ^+ の作り方をなぞると、 $\operatorname{Sh}(\bar{g})$ は (2) の波矢印 $\theta_{Fgt\mathcal{G}} \circ \bar{g}$ から sheafification の UMP で得られるものである。sheafification をしたあとの可換図式が (3) である。UMP から、 $\theta_{Fgt\mathcal{G}}$ および $\theta_{Fgt\mathcal{G}} \circ \bar{g}$ と共に可換な三角形をなす射は $\operatorname{Sh}(\bar{g})$ に等しい。よって $\operatorname{Sh}(\bar{g}) = \theta_{Fgt\mathcal{G}} \circ \tilde{\epsilon}_{\mathcal{G}}^{-1} \circ g$ 。こうして $g = \epsilon_{\mathcal{G}} \circ \operatorname{Sh}(\bar{g})$ が得られる。

 $^{^{\}dagger 3}$ "Right Adjoints Preserves Limits."

Ex1.13 Espace Étalé of a Presheaf.

(i) Definition of Espace Étalé.

 $\mathcal{F} \in \mathbf{PSh}(X)$ に対し、espace étalé of \mathcal{F} Spé (\mathcal{F}) を以下のように定義する。まず、集合として Spé $(\mathcal{F}) = \bigsqcup_{P \in X} \mathcal{F}_P$ とおく、projection map π とその "section" \bar{s} を以下で定める。まず、 π は以下のもの。

$$\pi: \operatorname{Sp\acute{e}}(\mathcal{F}) \to X$$

 $s \in \mathcal{F}_P \mapsto P.$

任意の U :: open in X と $s \in \mathcal{F}(U)$ に対して $\bar{s}: U \to \operatorname{Sp\'e}(\mathcal{F})$ を以下で定める.

$$\bar{s}: U \rightarrow \operatorname{Sp\acute{e}}(\mathcal{F})$$

$$P \mapsto s_{P}.$$

この時, $\pi\circ \bar s=\mathrm{id}_U$. すなわち, $\bar s$ は U 上で π の "section"である。そして $\mathrm{Sp\acute{e}}(\mathcal F)$ に以下のような位相を入れる: 任意の U と任意の s について $\bar s$ が連続であるような最強の位相。これはつまり $\{\bar s\}$ についての終位相である。

(ii) More References for Espace Étalé.

Wikipedia の Sheaf のページ https://www.wikiwand.com/en/Sheaf_(mathematics)#/The_.C3. A9tal.C3.A9_space_of_a_sheaf (2017年3月30日参照) に概略が書かれている。詳細についての資料は以下の通り、まず、一般の espace étalé(étalé space)の categorical な定義が https://ncatlab.org/nlab/show/etale+space にある。Étalé space の圏と sheaf の圏が圏同値であることの証明は Saunders Mac Lane, Ieke Moerdijk "Sheaves in Geometry and Logic"の §5-6, pp.83-90 にある。(この命題はこの本の p.90 Cor3 である。) 同様のことが "Etale cohomology course notes" http://math.colorado.edu/~jonathan.wise/teaching/math8174-spring-2014/notes.pdf の 7 Etale spaces and sheaves (p.24) にあるが、この note はミスが多いしわかりにくいのでおすすめしない。

(iii) Proposition and Proof.

X 上の étalé space をとって,その連続な section 全体をとる関手を $Sec: \mathbf{Et}(X) \to \mathbf{Sh}(X)$ とする. 逆に presheaf から étalé space を作る関手を $\acute{Et}: \mathbf{PSh}(X) \to \mathbf{Et}(X)$ とする.sheafification functor が $Sh = Sec\acute{Et}$ で定義できることを示す.

■Plan of Proof. 二つの写像を定める.

ただし U は任意の X の開集合で,P は U の任意の点である.この α,β が natural map かつ isomorphism であることが証明できるので,圏同値 $\mathbf{Et}(X) \simeq \mathbf{Sh}(X)$ が示せる.しかし我々の目的は sheafification の UMP であり,これには α についてさえ示せれば十分である.この証明は Saunders

Mac Lane, Ieke Moerdijk "Sheaves in Geometry and Logic" pp.85-86 にある^{†4}.

 $\blacksquare \alpha$:: natural. $\mathcal{F}, \mathcal{G} \in \mathbf{PSh}(X)$ とする.

 $Sec \acute{E}t \phi$ は次のような, section を section へ写す写像である.

$$Sec\acute{E}t\phi: [P \mapsto *_P] \mapsto [P \mapsto *_P \mapsto \phi_P(*_P)].$$

したがって $\mathcal{F} \to Sec\acute{E}t\mathcal{G}$ のどちらのパスでも $s \mapsto [P \mapsto \phi_P(s_P) = (\phi(s))_P]$ と section を section へ写 す写像になる. ただし P は X の点である. これで α :: natural が示せた.

 $\blacksquare \alpha$:: iso. まず α :: inj は Indentity Axiom から容易に示されるので略す. α :: surj の証明は長い. まず U :: open in $X, \sigma \in (Sec \acute{E}t \mathcal{F})(U)$ を任意に取る. すると $Sec \acute{E}t$ の定義から, 以下が成り立つ.

$$\forall P \in U, P \in \exists V \subseteq U :: \text{ open}, \exists s \in \mathcal{F}(V), \sigma(P) = s_P.$$

ÉtF の位相は像位相であり、かつ $\alpha(s)=\bar{s}$ は明らかに単射. なので $\alpha(s)(V)=\bar{s}(V)$ は open である $^{\dagger 5}$. しかも σ :: continuous だから、 $\sigma(S)\subseteq\alpha(\sigma)(V)$ なる $P\in S\subseteq\sigma^{-1}(\alpha(\sigma)(V))$:: open が存在する $^{\dagger 6}$. 直ちに以下が成り立つ.

$$\forall Q \in S, \exists Q' \in V, \mathcal{F}_Q \ni \sigma(Q) = s_{Q'}.$$

明らかに Q=Q', すなわち $\sigma|_S=\alpha(s)|_S$ が成り立つ. 点 P を様々に取ることで, S で U を被覆できることがわかる. s&S と t&T の二組について

$$\alpha(s)|_{S\cap T} = \sigma|_{S\cap T} = \alpha(t)|_{S\cap T}.$$

したがって α :: inj から $s|_{S\cap T}=t|_{S\cap T}$. こうして Gluability Axiom から, $\alpha(s)|_S=\alpha(\int)|_S=\sigma|_S$ なる $\int \in \mathcal{F}(U)$ の存在が示せる.最後に Identity Axiom を用いて $\alpha(\int)=s$. これで α :: iso が示せた.

■UMP of Sheafification. $Sh = Sec\acute{E}t$ とすると、これが sheafification functor となる。その UMP を見よう。 $\mathcal{F} \in \mathbf{PSh}(X), \mathcal{G} \in \mathbf{Sh}(X)$ とする。 $\alpha : \mathrm{id}_{\mathbf{Sh}(X)} \to \mathit{Sh}$ の naturality から、次の可換図式が得られる。

$$\begin{array}{ccc}
\mathcal{F} & \longrightarrow Sh\mathcal{F} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\mathcal{G} & \stackrel{\sim}{\longrightarrow} Sh\mathcal{G}
\end{array}$$

 $\alpha_{\mathcal{G}}:\mathcal{G}\to\mathit{Sh}\mathcal{G}::$ iso だから, $\mathcal{F}\to\mathcal{G}$ から $\mathit{Sh}\mathcal{F}\to\mathcal{G}$ が得られた.次に,以下で示す可換図式 (1) が与えられたとしよう.全体を Sh で写し, $\mathit{Sh}|_{\mathbf{Sh}(X)}\cong\mathrm{id}_{\mathbf{Sh}(X)}$ を用いて可換図式 (2) が得られる.

 $^{^{\}dagger 4}$ この本では α は η と書かれている.また,この本でいう cross-section は $\pi \circ \sigma = \mathrm{id}_U$ なる section のこと. \dot{s} は \bar{s} のことである.その他,germ の記法などがだいぶ違うので注意.

^{†5} \bar{s} の像位相において,開集合 V の像が開集合であることは $\bar{s}^{-1}\circ \bar{s}(V)$ が開集合であることと同値だが,単射性から,この集合は V に等しい.

 $^{^{\}dagger 6}$ これは ϵ - δ 論法に似ている。 $\sigma^{-1}(\alpha(\sigma)(V))$ が開集合であるから,任意の点,特に P はこの集合の内点である.このことから開集合 S が存在することは自明である.

したがって f = g. 以上で existence & uniqueness が示せた.

Ex1.14 Support.

 $\mathcal{F} \in \mathbf{Sh}(X), U$:: open in $X, s \in \mathcal{F}(U)$ をとる. $\mathrm{Supp}\, s = \{P \in U \mid s_P \neq 0\}$ としたとき,これが closed in U であることを示そう.そのために $T = (\mathrm{Supp}\, s)^c = \{P \in U \mid s_P = 0\}$ として,これが open であることを示す.

 $P \in T$ を任意に取る。すると s_P の代表元として $\langle V_P, s \rangle$ $(P \in V_P \subset U)$ が取れる。今 $s_P = 0$ なので, $s|_{V_P} = 0$. したがって $V_P \subset T$ となる。任意の $P \in T$ についてこのように V_P が取れるので,T は open covering $\{V_P\}_{P \in T}$ を持つ。よって $T = \bigcup_{P \in T} V_P$:: open in U.

Supp \mathcal{F} は $\{P \in X \mid \mathcal{F}_P \neq 0\}$ と定義される. これは closed とは限らない. 実際, \mathcal{F} の元を, なめらかな 実関数に $bump(x) = [x > 0]e^{-1/x}$ * をかけたものとすると, Supp $bump(x) = [0, \infty)$, Supp $\mathcal{F} = (0, \infty)$ となる. 後者は明らかに閉集合でない.

Ex1.15 Sheaf $\mathcal{H}om$.

 $\mathcal{F},\mathcal{G} \in \mathbf{Sh}(X), U$:: open in X とし, \mathcal{F} の U への restrction(p.65) を $\mathcal{F}|_U$ で書く. $U \mapsto \mathrm{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)$ で定まる presental $\mathcal{H}om(\mathcal{F},\mathcal{G})$ が sheaf であることを示そう.以下では U とその開被 覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を任意にとって固定する.

■ $\mathcal{H}om(\mathcal{F},\mathcal{G})(U)$:: Abelian Group. $s,t\in\mathcal{H}om(\mathcal{F},\mathcal{G})(U)$ について, s+t を以下で定める.

$$(s+t)(\sigma) = s(\sigma) + t(\sigma)$$
 where V :: open in U , $\sigma \in (\mathcal{F}|_U)(V)$.

単位元は $\operatorname{im} \mathcal{F}|_U$ の単位元を返す定値写像である. 単位元を以下では 0 と書く.

■ $\mathscr{H}om(\mathcal{F},\mathcal{G})$:: Presheaf. U,V :: open かつ $V\subseteq U$ とする. $\overline{\mathrm{res}}_U^V$: $\mathscr{H}om(\mathcal{F},\mathcal{G})(U)\to \mathscr{H}om(\mathcal{F},\mathcal{G})(V)$ を以下のように定める.

$$\{\mathcal{F}|_U \ni \sigma|_U \mapsto \tau|_U \in \mathcal{G}|_U\} \mapsto \{\mathcal{F}|_V \ni \sigma|_V \mapsto \tau|_V \in \mathcal{G}|_V\}$$

これは $\operatorname{res}(\mathcal{F})_U^V:\mathcal{F}(U)\to\mathcal{F}(V)$ と $\operatorname{res}(\mathcal{G})_U^V:\mathcal{G}(U)\to\mathcal{G}(V)$ の自然性から誘導される.

■Identity Axiom. $s \in \mathcal{H}om(\mathcal{F},\mathcal{G})(U) = \operatorname{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)$ をとる。この s が任意の λ について $s|_{U_\lambda} = 0$ を満たすとする。さて,V:: open in U と $\sigma \in \mathcal{F}(V)$ を任意に取る。 $\{V_\lambda\}$ を $V_\lambda = V \cap U_\lambda$ で定めると,これは V の開被覆になる。仮定より, $s|_{V_\lambda}(\sigma) = s(\sigma)|_{V_\lambda} = 0$. よって $s(\sigma) \in \mathcal{G}(V)$ に Indentity Axiom を用いることで $s(\sigma)|_V = 0$ が示される。 V,σ は任意なので,結局以下が得られた。

$$\forall V :: \text{ open in } U, \quad \forall \sigma \in \mathcal{F}(V), \quad s(\sigma) = 0.$$

すなわち, s は定値写像 0 である. 以上で Indentity Axiom の成立が示された.

■Gluability Axiom. sections $s_{\lambda} \in \mathcal{H}om(\mathcal{F},\mathcal{G})(U_{\lambda})$ をとる. これが任意の $\lambda, \mu \in \Lambda$ について $s_{\lambda}|_{U_{\lambda}\cap U_{\mu}} = s_{\mu}|_{U_{\lambda}\cap U_{\mu}}$ を満たすとしよう. この仮定は以下のように書ける.

$$\forall \lambda, \mu \in \Lambda, \quad \forall \sigma \in \mathcal{F}(U_{\lambda} \cap U_{\mu}), \quad s_{\lambda}(\sigma) = s_{\mu}(\sigma).$$

 $^{^{\}dagger7}$ [True]=1,[False]=0 とした. Iverson の記法である. bump(x) がなめらかであることは次の PDF を参照せよ: https://andromeda.rutgers.edu/~loftin/difffal03/bump.pdf.

そこで λ をひとつ取って固定し, $\sigma \in \mathcal{F}(U_{\lambda})$ とする.さらに $\{V_{\mu}\}_{\mu \in \Lambda}$ を $V_{\mu} = U_{\lambda} \cap U_{\mu}$ で定める.この $\{V_{\mu}\}$ は U_{λ} の開被覆である.すると最初の仮定と $V_{\mu} \cap V_{\nu} = U_{\lambda} \cap (U_{\mu} \cap U_{\nu}) \subseteq U_{\mu} \cap U_{\nu}$ から以下が成り立つ.

$$\forall \mu, \nu \in \Lambda, \quad s_{\mu}(\sigma)|_{V_{\mu} \cap V_{\nu}} = s_{\nu}(\sigma)|_{V_{\mu} \cap V_{\nu}}.$$

sections $s_{\mu}(\sigma) \in \mathcal{G}(U_{\lambda})$ に対して Gluability Axiom を用いて, $s(\sigma)|_{V_{\mu}} = s_{\mu}(\sigma)|_{V_{\mu}}$ なる $s(\sigma)$ の存在が言える. Indentity Axiom から $s(\sigma)|_{U_{\lambda}} = s_{\mu}(\sigma)|_{U_{\lambda}}$. こうして,以下を満たす $s \in \mathcal{H}om(\mathcal{F},\mathcal{G})(U)$ の像が各点 $\sigma \in \mathcal{F}(U_{\lambda})$ ごとに定義できる.

$$\forall \lambda \in \Lambda, \quad \forall \sigma \in \mathcal{F}(U_{\lambda}), \quad s(\sigma)|_{U_{\lambda}} = s_{\lambda}(\sigma)|_{U_{\lambda}}.$$

簡潔にかけば、 $s|_{U_{\lambda}}=s_{\lambda}|_{U_{\lambda}}$. よって Gluability Axiom の成立が示せた.

Ex1.16 Flasque Sheaves.

U,V: open in $X,\ V\subseteq U$ とする. restriction map res_U^V が surjective であるような $\mathcal{F}\in\mathbf{Sh}(X)$ を flasque $^{\dagger 8}$ sheaf と呼ぶ.

(a) Constant Sheaf on Irreducible Top.Sp is Flasque.

X:: irreducible, A:: abelian group, U,V:: open in X, $V\subseteq U$ とする. A を X から A への constant sheaf とすると,定義より $A(V)=\{s:V\to A\mid s:: \text{continuous.}\}$. そこで $s\in A(V)$ を一つ とって固定する。s:: continuous という条件は次と同値

$$\forall a \subseteq A, \ s^{-1}(a) :: \text{ open in } V.$$

X:: irreducible であるとき, $s \in \mathcal{F}(V)$ がどのようなものか考えよう.

■Case: #A=1. まず #A=1, すなわち A が自明な abelian group $\{e\}$ であったとする. この時, 明らかに $\mathcal{F}(V)$ は定値写像 $x\mapsto e$ のみからなる. $\mathcal{F}(U)$ も同じ定値写像からなるので, この時 constant sheaf は flasque.

■Case #A > 1. $a \neq b$ が成り立つような $a,b \in A$ を任意に取る. すると以下が成り立つ.

$$s^{-1}(\{a\}) \cap s^{-1}(\{b\}) = s^{-1}(\{a\} \cap \{b\}) = s^{-1}(\emptyset) = \emptyset.$$

したがって X :: irreducible から $s^{-1}(\{a\})$ or $s^{-1}(\{b\}) = \emptyset$. 仮に任意の $a \in A$ について $s^{-1}(\{a\}) = \emptyset$ であったとすると s が写像にならない. したがって $s^{-1}(\{a_s\}) \neq \emptyset$ となる $a_s \in A$ がただひとつ存在する. s は写像なので $s^{-1}(A) = V$ が成り立ち,したがって s はこのような a_s への定値写像である事が分かる. すると容易に s は U へ拡張できるので,この時も constant sheaf は flasque.

(b) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is Exact and \mathcal{F}' is Flasque, then...

 $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ が exact かつ \mathcal{F}' が flasque であったとする.この時,任意の open set U について $0 \to \mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U) \to 0$ は exact であることを示す.

写像に $0 \to \mathcal{F}' \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{F}'' \to 0$ と名前をつけ、U:: open in X と $s'' \in \mathcal{F}''(U)$ をとる.Ex1.8 より、 $0 \to \mathcal{F}'(U) \xrightarrow{f_U} \mathcal{F}(U) \xrightarrow{g_U} \mathcal{F}''(U)$ は exact.なのであとは g_U が surjective であることを示せば良い.

^{†8} フランス語. フラスコのこと. 軟弱という意味. 発音は https://ja.forvo.com/word/flasque/.

元の exact sequence から g:: surjが言える. Ex1.3 より, 以下が成り立つ.

(*)
$$\bigcup \exists U_i = U, \exists t_i \in \mathcal{F}(U_i), \forall i, g(t_i) = s''|_{U_i}.$$

任意に i,j をとり、以下の可換図式で diagram chase をする. ただし $U=U_i\cap U_j$ とした.

 $s'' \in \mathcal{F}''(U)$ と、(*) から存在が示される $t_i \in \mathcal{F}(U_i), t_j \in \mathcal{F}(U_j)$ から diagram chasing を始める.

- (1) naturality $h \circ g_{U_{ij}}(t_i|_{U_{ij}}) = s''|_{U_{ij}} = g(t_j|_{U_{ij}}).$
- (2) よって列の完全性から $t_i t_j \in \ker g_{U_{ij}} = \operatorname{im} f_{U_{ij}}$.
- (3) したがって $f_{U_{ij}}(u'_{ij})=t_i-t_j$ なる $u'_{ij}\in\mathcal{F}'(U_{ij})$ が存在する.
- (4) $\operatorname{res}_U^{U_{ij}}$:: surj から $s'_{ij}|_{U_{ij}}=u'_{ij}$ なる $s'_{ij}\in\mathcal{F}'(U)$ が存在する.
- (5) $s_{ij} = f_U(s'_{ij})|_{U_i} + t_j \in \mathcal{F}(U_i)$ とおく. (足すのは t_j であることに注意.)

以上から、 $g_U(s) = s''$ なる $s \in \mathcal{F}(U)$ の存在が示せた.

(i) Another Proof

次の PDF の Lemma2.12(p.10) がこの演習問題と同じ命題である: http://www.math.mcgill.ca/goren/SeminarOnCohomology/Sheaf_Cohomology.pdf. 次の PDF の Lemma0.3(p.12) も同じ: http://www.uio.no/studier/emner/matnat/math/MAT4215/v15/notes1.pdf. どちらの証明でも Zorn's Lemma が用いられている.

(c) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is Exact and $\mathcal{F}', \mathcal{F}$ is Flasque, then \mathcal{F}'' also.

U,V: open in $X,V\subseteq U$ とする. (b) より,以下の完全列が得られる.

$$0 \longrightarrow \mathcal{F}'(U) > \xrightarrow{f} \mathcal{F}(U) \xrightarrow{g} \mathcal{F}''(U) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{F}'(V) > \xrightarrow{f} \mathcal{F}(V) \xrightarrow{g} \mathcal{F}''(V) \longrightarrow 0$$

証明は diagram chasing による.

- (1) $s'' \in \mathcal{F}''(V)$ を任意に取る.
- (2) $\mathcal{F}(U) \to \mathcal{F}(V) \to \mathcal{F}''(V)$:: surj から、 $g(\tilde{s})|_{V} = s''$ なる $\tilde{s} \in \mathcal{F}(U)$ が取れる.
- (3) naturality から $g(\tilde{s}|_V) = s'' = g(\tilde{s})|_V$.

 $s:=g(\tilde{s})\in\mathcal{F}''(U)$ とおけば $s|_V=s''$.

(d) If $f: X \to Y$ is Conti. and \mathcal{F} is Flasque, then $f_*\mathcal{F}$ is Flasque.

U,V :: open in Y, $V \subseteq U$ とする. このとき $f^{-1}(V) \subseteq f^{-1}(U)$. なので $\mathcal{F}(U) \to \mathcal{F}(V)$:: surj より $\mathcal{F}(f^{-1}(U)) \to \mathcal{F}(f^{-1}(V))$:: surj. $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$ だから, $f_*\mathcal{F}$:: flasque.

(e) Discontinuous Sections.

 $\mathcal{F} \in \mathbf{Sh}(X)$ とする. これに対し、discontinuous sections of \mathcal{F} と呼ばれる sheaf \mathcal{G} が以下のように作れる. π は Ex1.13 の $s_P \mapsto P$ なる写像である.

$$\mathcal{G}: U \mapsto \left\{ s: U \to \bigsqcup_{P \in U} \mathcal{F}_P \mid \pi \circ s = \mathrm{id}_U \right\}$$

 \mathcal{G} が flasque sheaf であることと、 $\mathcal{F} \to \mathcal{G}$ の自然な単射が存在することを示す.

■g:: sheaf. g:: presheaf は明らか. sheaf であることを示すため, U:: open in X とその open cover $\{U_i\}_{i\in I}$ をとり,固定する.任意の $i\in I$ について $s|_{U_i}=0$ であるような $s\in \mathcal{G}(U)$ が存在したとする. $\bigcup U_i=U$ より,任意の点 $P\in U$ に対して s(P)=0. これは Identity Axiom の成立を意味する.同様に " $\forall i,j, \ \forall P\in U_i\cap U_j, \$ "を " $\forall P\in U, \$ "に書き換えるだけで,Gluability Axiom の成立が証明できる.

 $\blacksquare \mathcal{G}$:: flasque. $V \subset U$ とする、 $s \in \mathcal{G}(V)$ をとる、これは例えば以下のように拡張できる、

$$\bar{s}(P) = \begin{cases} s(P) & (P \in V) \\ 0 & (P \in U \setminus V) \end{cases}$$

■ α in Ex1.13 is injective. Ex1.13 の $\alpha:s\mapsto [P\mapsto s_P]$ が injective であることは以下のように示される. ある $s,t\in \mathcal{F}(U)$ について $\alpha(s)=\alpha(t)$ が成立するとしよう. すると十分小さい open set $(P\in)V_P(\subset U)$ が存在して, $s|_{V_P}=t|_{V_P}$ となる. 明らかに $\{V_P\}_{P\in U}$ は U の open cover なので, $s-t\in \mathcal{G}$ に Identity Axiom を用いて s=t が得られる.

Ex1.17 Skyscraper Sheaves.

X:: topological space, $P \in X$, A:: abelian group とする. sheaf $i_P(A)$ を以下で定める.

$$i_P(A)(U) = \begin{cases} A & (P \in U) \\ 0 & (\text{otherwise}) \end{cases}$$

点 P を含む最小の閉集合を $\{P\}^-$ と書く.

(a) $(i_P(A))_Q = A$ is A if $Q \in \{P\}^-$, otherwise 0 .

U を Q を含む極小の開集合とした時, $(i_P(A))_Q$ は集合として $\mathcal{F}(U)$ と一致する.したがって以下が成立する.

$$\begin{split} (i_P(A))_Q &= A \\ \iff {}^\forall U \subset X, \quad Q \in U \implies P \in U \\ \iff {}^\forall U \subset X, \quad P \in U^c \implies Q \in U^c. \end{split}$$

最後の行は対偶として得られた.一方,点 P を含む最小の閉集合 $\{P\}^-$ は以下を満たす唯一の集合として特徴づけられる.

$${}^\forall U\subset X,\ P\in U^c\implies \{P\}^-\subseteq U^c$$

よって $(i_P(A))_Q = A \iff Q \in \{P\}^-$. 他の場合は明らかに $(i_P(A))_Q = 0$ となる。また,この特徴付けの対偶から $U \cap \{P\}^- \neq \emptyset$ ならば $P \in U$. $P \in U$ ならば $P \in U \cap \{P\}^-$ なので逆も成立する.

(b) $i_P(A)$ can be described as direct image.

abelian group A に伴う $\{P\}^-$ 上の constant sheaf を A とする. すると $i_P(A)$ は埋め込み写像 $i:\{P\}^- \hookrightarrow X$ の direct image $i_*(A)$ に等しい.実際,開集合 U について $i_*(A)(U) = \mathcal{A}(i^{-1}(U)) = \mathcal{A}(U \cap \{P\}^-)$ であるから以下のようになる.

$$i_*(\mathcal{A})(U) \cong \begin{cases} A & (U \cap \{P\}^- \neq \emptyset) \\ 0 & (\text{otherwise}) \end{cases}.$$

(a) で見たとおり $U \cap \{P\}^- \neq \emptyset$ と $P \in U$ は同値. よって $i_*(A) = i_P(A)$. 特に, $\{P\}^-$ はその最小性 から irreducible なので,Ex1.16a,d と合わせれば $i_P(A)$ は flasque であることが分かる.

Ex1.18 Adjoint Property of f^{-1} .

 $f: X \to Y$:: continuous map について、 f^{-1} が f_* の left adjoint functor であることを示す.そのために、当分の間は $f^{-1} = Sh \varinjlim_{V \supseteq f(-)} Fgt$ でなく、 $f^{pre}\mathcal{F} = \varinjlim_{V \supseteq f(-)} \mathcal{F}(-)$ が left adjoint であることを示す.left adjoint の定義としては Hom についての定義を用いる.

最初に unit $\eta: \mathrm{id}_{\mathbf{Sh}(Y)} \to f_* f^{pre}$ と counit $\epsilon: f^{pre} f_* \to \mathrm{id}_{\mathbf{Sh}(X)}$ を構成する.

■Construction of Unit η . $\mathcal{G} \in \mathbf{Sh}(Y)$ をとると, U :: open in Y について次の等式が成り立つ.

$$(f_*f^{pre}\mathcal{G})^{pre}(U) = (f^{pre}\mathcal{G})^{pre}(f^{pre}(U)) = \varinjlim_{V \supseteq f \circ f^{pre}(U)} \mathcal{G}(V).$$

 $U \supseteq f \circ f^{pre}(U)$ (全射と等号成立は同値) だから, cocone の「母線」として

$$(\eta_{\mathcal{G}})_U: \mathcal{G}(U) \to (f_* f^{pre} \mathcal{G})^{pre}(U)$$

が得られる. η の自然性は容易に示される. ($f_* f^{pre}$ は母線と可換になるように射を写す.)

■Construction of Counit ϵ . $\mathcal{F} \in \mathbf{Sh}(X)$ をとると, U :: open in X について次の等式が成り立つ.

$$(f^{pre}f_*\mathcal{F})(U) = \varinjlim_{V \supseteq f(U)} \mathcal{F}(f^{pre}(V)).$$

 $V \supseteq f(U)$ であるとき, $f^{pre}(V) \supseteq f^{pre} \circ f(U) \supseteq U$ (単射と等号成立は同値). したがって colimit の UMP により $(\epsilon_F)_U$ が得られる.

 ϵ の自然性はあまり自明ではないのでここで示そう.

最初,この図式を書いた時には,上面の台形が可換になっていることは非自明である.direct limit の UMP から $\mathcal{F}(V)$,($f^{pre}f_*\mathcal{F}$)(U), $\mathcal{F}'(U)$ の三角形が可換になるような唯一の射 ($f^{pre}f_*\mathcal{F}$)(U) → $\mathcal{F}'(U)$ (波線のもの) が存在する.しかし同じ三角形を可換にするような射として, ϵ を通る射 ($f^{pre}f_*\mathcal{F}$)(U) → $\mathcal{F}(U)$ が既に存在する.UMP から,この射は波線の射に等しい.また,同様に ($f^{pre}f_*\mathcal{F}$)(U) → $\mathcal{F}(U)$ も波線の射と等しい.まとめると,上面の台形が可換であることが判る.これは ϵ の自然性を意味する.

- ■Preparation of Unit-Counit Equations. まず $f \circ f^{-1}(B) \subseteq B$ に B = f(A) を代入すると $f \circ f^{-1} \circ f(A) \subseteq f(A)$. 続いて $f^{-1} \circ f(A) \supseteq A$ の両辺を f で写すと $f \circ f^{-1} \circ f(A) \supseteq f(A)$. 二つを合わせて $f \circ f^{-1} \circ f = f$ が得られる. 双対的に $f^{-1} \circ f \circ f^{-1} = f^{-1}$ が得られる.
- ■Unit-Counit Equations. まず計算.

$$(f_*f^{pre}f_*\mathcal{F})(U)$$

$$=(f_*f^{pre}\mathcal{F})(f^{-1}(U))$$

$$= \varinjlim_{V \supseteq f \circ f^{-1}(U)} (f_*\mathcal{F})(V)$$

$$= \varinjlim_{V \supseteq f \circ f^{-1}(U)} \mathcal{F}(f^{-1}(V))$$

 $V \supseteq f \circ f^{-1}(U)$ であるとき,既に見たように $f^{-1}(V) \supseteq f^{-1}(U)$.以下の可換図式を見よ.

$$(f_*f^{pre}f_*\mathcal{F})(U) \xrightarrow{f_*(\epsilon_{\mathcal{F}})} (f_*\mathcal{F})(U)$$

$$\uparrow \qquad \qquad \downarrow \qquad$$

よって $\mathrm{id}_{f_*} = f_* \epsilon \circ \eta_{f_*}$ が得られた. 再び計算する.

$$\begin{split} &(f^{pre}f_*f^{pre}\mathcal{G})(U)\\ =&f^{pre}f_*\varprojlim_{V\supseteq f(U)}\mathcal{G}(V)\\ =&f^{pre}\varprojlim_{V\supseteq f(U)}\mathcal{G}(f^{-1}(V))\\ =&\varprojlim_{W\supseteq f\circ f^{-1}(V)}\varinjlim_{V\supseteq f(U)}\mathcal{G}(W) \end{split}$$

 $V \supseteq f(U)$ であるとき $W \supseteq f \circ f^{-1}(V) \supseteq f(U)$. $V \supseteq f(U)$ を満たす V 全体は、明らかに $W \supseteq f \circ f^{-1}(V) \supset f(U)$ を満たす W 全体を包含する $f \circ f^{-1}(V) \supset f(U)$ を満たす $f \circ f^{-1}(V)$ を満たす $f \circ f^{-1}(V)$ を

 $^{^{\}dagger 9}$ W の方がより厳しい条件を満たさなくてはならない. $f\circ f^{-1}(V)$ は開集合にならないかもしれないが, W は開集合である.

在するとは限らない.)

 $(f^{pre}\eta_{\mathcal{G}})_U$ は $\mathcal{G}(U) \xrightarrow{\eta} (f_*f^{pre}\mathcal{G})(U)$ を f^{pre} で写せば直ちに得られ, $(\epsilon)_{f^{pre}\mathcal{G}(U)}$ は $(f^{pre}f_*f^{pre}\mathcal{G})(U)$ の UMP から得られる.最後に, $(f^{pre}\mathcal{G})(U)$ の UMP から, $\mathrm{id}_{f^{pre}}=\epsilon_{f^{pre}\mathcal{G}}\circ f^{pre}\eta_{\mathcal{G}}$.

■Hom-set Definition. 以下のように写像を定義する.

$$\phi(-) = f_*(-) \circ \eta_{\mathcal{G}}, \quad \psi(-) = \epsilon_{\mathcal{F}} \circ f^{pre}(-).$$

すると unit-counit equations からこれらが互いに逆写像であることが分かる. こうして所期の同型 $\phi: \operatorname{Hom}(f^{pre}\mathcal{F},\mathcal{G}) \xrightarrow{\cong} \operatorname{Hom}(\mathcal{F},f_*\mathcal{G})$ が得られる. 自然性は η,ϵ の自然性から誘導される.

$$\operatorname{Hom}_{\mathbf{Sh}}(f^{-1}\mathcal{F},\mathcal{G})$$

$$= \operatorname{Hom}_{\mathbf{Sh}}(Shf^{pre}\mathcal{F},\mathcal{G})$$

$$= \operatorname{Hom}_{\mathbf{PSh}}(f^{pre}\mathcal{F}, Fgt\mathcal{G})$$

$$= \operatorname{Hom}_{\mathbf{PSh}}(\mathcal{F}, f_*Fgt\mathcal{G})$$

$$= \operatorname{Hom}_{\mathbf{Sh}}(\mathcal{F}, f_*\mathcal{G})$$

最後に, \mathcal{F} , \mathcal{G} が予め sheaf であること,及び $\mathcal{F}gt$ が object を変化させない埋め込み関手であることを用いた.

Ex1.19 Extending a Sheaf by Zero.

X:: topological space, Z:: closed subset in X, $U=X\setminus Z$ とする. さらに $i:Z\hookrightarrow X, j:U\hookrightarrow X$ を埋め込み写像とする.

(a) $i_*\mathcal{F}$: Extending $\mathcal{F} \in \mathbf{Sh}(Z)$ by Zero Outside Z.

 $\mathcal{F} \in \mathbf{Sh}(Z)$ とする. i は埋め込み写像なので、開集合 U について $(i_*\mathcal{F})(U) = \mathcal{F}(U \cap Z)$. 点 P の開近傍を考える.

■Case: $P \in Z^c$. Z^c は開集合だから, $P \in Z^c$ ならば,開近傍 V が存在して $P \in V \subseteq Z^c$ となる. このとき, $\mathcal{F}(Z \cap V) = \mathcal{F}(\emptyset) = 0$ となる.しかも $\mathcal{F}(Z \cap V) = 0$ は十分小さいすべての U について成り立つ.したがって P の任意の開近傍 V について次の図式が可換.

よって $\mathcal{F}(Z \cap V) \to (i_* \mathcal{F})_P$ はゼロ写像しかなく, $(i_* \mathcal{F})_P$ の UMP から $(i_* \mathcal{F})_P = 0$.

- ■Case: $P \in Z$. 逆に $P \in Z$ ならば、点 P の X における開近傍 U から作られる $Z \cap U$ は、常に空でない P の開近傍. いつでも埋め込み射 $F(V) \to F(Z \cap V)$ が存在するので、結局 F(V) $(P \in V)$ なるabelian group 全てから $(i_*F)_P$ に射がのびている.よって $(i_*F)_P = F_P$.
- ■Conclusion. まとめると、以下が成り立つ.

$$(i_*\mathcal{F})_P = \begin{cases} \mathcal{F}_P & (P \in Z) \\ 0 & (P \notin Z) \end{cases}$$

(b) $j_!\mathcal{F}$: Extending $\mathcal{F} \in \mathbf{Sh}(U)$ by Zero Outside U

 $\mathcal{F} \in \mathbf{Sh}(U)$ とし、 $j_!\mathcal{F}$ を以下で定まる presheaf の sheafification とする.

$$(j_!\mathcal{F})^{pre}(V) = \begin{cases} \mathcal{F}(V) & (V \subseteq U) \\ 0 & (\text{otherwise}) \end{cases}$$

sheafification で stalk は変わらないから, $(j_!\mathcal{F})_P = (j_!\mathcal{F})_P^{pre}$. 点 P の開近傍を考えよう.

- ■Case: $P \in U$. U:: open なので、ある V:: open が存在して $P \in V \subseteq U$ となる.このような V について $(j_!\mathcal{F})^{pre}(V) = \mathcal{F}(V)$. U より小さい任意の開近傍 V については $(j_!\mathcal{F})^{pre}(V) = \mathcal{F}(V)$ となる上,U より大きい任意の開近傍 V から射 $\operatorname{res}_V^{U \cap V}: \mathcal{F}(V) \to \mathcal{F}(U)$ が生えている.よって $(j_!\mathcal{F})_{P}^{pre} = \mathcal{F}_{P}$.
- ■Case: $P \in U^c$. このとき,どのように P の開近傍 V をとっても, $P \in V$ かつ $P \notin U$ なので $V \not\subseteq U$. したがって $(j_!\mathcal{F})_P^{pre}=0$ となる.
- ■Conclusion. まとめると,以下が成り立つ.

$$(j_!\mathcal{F})_P = \begin{cases} \mathcal{F}_P & (P \in U) \\ 0 & (P \notin U) \end{cases}$$

(c) $0 \to i_!(\mathcal{F}|_U) \to \mathcal{F} \to i_*(\mathcal{F}|_Z) \to 0$ is Exact.

Ex1.2c を応用する. $P \in X$ を任意の点とする. $P \in U$ exor Z なので、それぞれの場合について考える.

- ■Case: $P \in Z$. この時, $(j_!(\mathcal{F}|_U))_P = \mathcal{F}_P$, $(i_*(\mathcal{F}|_Z))_P = 0$ となる. よって $0 \to (j_!(\mathcal{F}|_U))_P \to \mathcal{F}_P \to (i_*(\mathcal{F}|_Z))_P \to 0$ は $0 \to \mathcal{F}_P \to \mathcal{F}_P \to 0 \to 0$ に等しく,これは完全列.
- ■Case: $P \in U$. この時, $(j_!(\mathcal{F}|_U))_P = 0$, $(i_*(\mathcal{F}|_Z))_P = \mathcal{F}_P$ となる. よって $0 \to (j_!(\mathcal{F}|_U))_P \to \mathcal{F}_P \to (i_*(\mathcal{F}|_Z))_P \to 0$ は $0 \to 0 \to \mathcal{F}_P \to \mathcal{F}_P \to 0$ に等しく,これは完全列.

Ex1.20 Subsheaf with Supports.

Z:: closed in $X, \mathcal{F} \in \mathbf{Sh}(X)$ とする. $\Gamma_Z(X, \mathcal{F})$ を以下で定める.

$$\Gamma_Z(X, \mathcal{F}) = \{ s \in \Gamma(X, \mathcal{F}) = \mathcal{F}(X) \mid \operatorname{Supp}(s) \subseteq Z. \}.$$

"Supp $(s) \subseteq Z$ " は " $\forall P \in Z^c$, s(P) = 0" と同値である。また、特に Supp $(0) = \emptyset$ より、 $0 \in \Gamma_Z(X, \mathcal{F})$.

(a) Presheaf $V \mapsto \Gamma_{V \cap Z}(V, \mathcal{F}|_V)$ is a Sheaf.

Presheaf $\mathcal{H}_Z^0(\mathcal{F})$ &

$$\mathcal{H}_Z^0(\mathcal{F}): V \mapsto \Gamma_{V \cap Z}(V, \mathcal{F}|_V)$$

で定める. これが sheaf であることを示そう. 開集合 V とその開被覆 $\{V_i\}_{i\in I}$ を任意にとる.

- ■Identity Axiom. $s \in \mathcal{H}_Z^0(\mathcal{F})(V)$ をとる。任意の $i \in I$ について $s|_{V_i} = 0$ が成り立つとしよう。この時, $\mathcal{H}_Z^0(\mathcal{F})$ の定義から, $s \in \mathcal{F}(V)$ と $\operatorname{Supp}(s|_V) \subseteq V \cap Z$ が成り立つ。 \mathcal{F} の indentity axiom をもちいて, $s|_V = 0$ が得られる。
- ■Gluability Axiom. $s_i \in \mathcal{H}_Z^0(\mathcal{F})(V_i)$ をとる。任意の $i,j \in I$ について $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ が成り立つとしよう。するとやはり $s_i \in \mathcal{F}(V_i)$ なので, \mathcal{F} の gluability axiom から, $s|_{V_i} = s_i$ なる $s \in \mathcal{F}(V)$ が存在する。あとは $s \in \mathcal{H}_Z^0(\mathcal{F})(V)$,すなわち $\operatorname{Supp}(s) \subseteq V \cap Z$ を示せば良い。これは

$$\operatorname{Supp}(s_i) = \operatorname{Supp}(s|_{V_i}) = \operatorname{Supp}(s) \cap V_i \subseteq V_i \cap Z$$

から $\operatorname{Supp}(s) = \bigcup (\operatorname{Supp}(s) \cap V_i) \subseteq \bigcup (V_i \cap Z) = V \cap Z$ と計算できる.

(b) For $U = X \setminus Z$, $0 \to \mathcal{H}_Z^0(\mathcal{F}) \to \mathcal{F} \to j_*(\mathcal{F}|_U)$ is Exact.

開集合 $U=X\setminus Z$ と $j:U\hookrightarrow X$ について, $0\to\mathcal{H}_Z^0(\mathcal{F})\to\mathcal{F}\to j_*(\mathcal{F}|_U)$ が exact であることを示す. さらに, $\mathcal{F}::$ flasque ならば $0\to\mathcal{H}_Z^0(\mathcal{F})\to\mathcal{F}\to j_*(\mathcal{F}|_U)\to 0$ も exact であることを示す. 定義より, $\mathcal{H}_Z^0(\mathcal{F}),j_*(\mathcal{F}|_U)$ は以下のような集合である.

$$\mathcal{H}_Z^0(\mathcal{F}) = \{ s \in \mathcal{F}(V) \mid {}^\forall Q \in U \cap V, \quad s(Q) = 0. \}, \quad j_*(\mathcal{F}|_U) = \mathcal{F}(U \cap V).$$

そこで写像 $\zeta: \mathcal{F} \to j_*(\mathcal{F}|_U)$ を以下で定義する.

$$\zeta(s)(Q) = [Q \in U \cap V]s(Q)$$
 where $V :: \text{ open in } X, s \in \mathcal{F}(V), Q \in V.$

ただし $[Q \in U \cap V]$ は Iverson の記法である. (ここは指示関数を用いて $\chi_{U \cap V}(Q)$ と書いても良い.) すると既に確認した $\mathcal{H}_Z^0(\mathcal{F})$ の定義から、 $\ker \zeta = \mathcal{H}_Z^0(\mathcal{F})$. よって $0 \to \mathcal{H}_Z^0(\mathcal{F}) \hookrightarrow \mathcal{F} \xrightarrow{\zeta} j_*(\mathcal{F}|_U)$ は exact. さらに \mathcal{F} :: flasque だと仮定する. すると、 $s \in \mathcal{F}(U \cap V)$ に対して $s'|_{U \cap V} = s$ なる $s' \in \mathcal{F}(V)$ が存在する. 明らかに $\zeta(s') = s$ となるから、この時 ζ は全射.したがって $0 \to \mathcal{H}_Z^0(\mathcal{F}) \to \mathcal{F} \to j_*(\mathcal{F}|_U) \to 0$ も exact になる.

Ex1.21 Some Examples of Sheaves on Varieties.

k :: algebraically closed field, X :: variety over k とする. \mathcal{O}_X を the sheaf of regular functons on X (Example 1.0.1) とする.

(a) The Sheaf of Ideals \mathcal{I}_Y .

Y:: closed in X とする. 任意の U:: open in X について, $\mathcal{I}_Y(U)$ を以下で定める.

$$\mathcal{I}_{V}: U \mapsto \{f \in \mathcal{O}_{X}(U) \mid \forall P \in Y \cap U, f(P) = 0.\}.$$

 $\mathcal{I}_Y(U)$ は $\mathcal{O}_X(U)$ のイデアルである. この時, $\mathcal{I}_Y(\subseteq \mathcal{O}_X)$ が sheaf であることを示す.

- (b) If Y :: subvariety, then $\mathcal{O}_X \cong i_*(\mathcal{O}_Y)$.
- (c)
- (d)
- (e)

Ex1.22 Glueing Sheaves.

X:: topological space, $\mathfrak{U}=\{U_i\}_{i\in I}$:: open cover of X, $\mathcal{F}_i\in\mathbf{Sh}(U_i)$ とする. この $\{\mathcal{F}_i\}_{i\in I}$ に付随して,同型写像 $\phi_{ij}:\mathcal{F}_i|_{U_i\cap U_j}\stackrel{\equiv}{\to} \mathcal{F}_j|_{U_i\cap U_j}$ が存在し, $\{\mathcal{F}_i\}_{i\in I}$ with $\{\phi_{ij}\}_{i,j\in I}$ が inverse system をなすとする. この時,inverse limit \mathcal{F} の存在を示す.さらに, $\mathcal{F}|_{U_i}\equiv\mathcal{F}_i$ となることを示す.この命題は section でなく sheaf の Gluablity Axiom と言える.

Prop1.1 を用いて仮定を書き換える. $\{\mathcal{F}_i\}_{i\in I}$ について,以下の同型がある.

$$\forall i, j \in I, \quad \forall P \in U_i \cap U_j, \quad (\mathcal{F}_i)_P \cong (\mathcal{F}_i)_P.$$

この時, sheaf \mathcal{F} が存在して,

$$\forall i \in I, \quad \forall P \in U_i, \quad \mathcal{F}_P = (\mathcal{F}|_{U_i})_P \cong (\mathcal{F}_i)_P$$

となることを示す. $\mathrm{Ex}1.19\mathrm{b}$ の結果が結論によく似ているので、これを参考にする.

 \mathcal{F} を以下の presheaf の sheafification と定義する.

$$\mathcal{F}^{pre}(V) = \begin{cases} \mathcal{F}_i(V) & (\exists i \in I, \ V \subseteq U_i) \\ 0 & (\text{otherwise}) \end{cases}$$

もし $V\subseteq U_i$ なる i が複数存在した時には,どれを選んでも構わない.その時 $V\subset U_i\cap U_j$ なる $i,j\in I$ が存在し,i,j どちらを選んでも $\mathcal{F}^{pre}(V)$ が ϕ_{ij} を介して同型になるからである.そして Ex1.19b の証明から分かるように, $(\mathcal{F}|_{U_i})_P=(\mathrm{emb}_!^{U_i}\,\mathcal{F}_i)_P=(\mathcal{F}_i)_P$.ただし $\mathrm{emb}^{U_i}:U_i\hookrightarrow U$ は埋め込み写像である.