

Data Sets

Kaggle - The Movies Dataset - (cast, crew, genres, user ratings) https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset

The Movie DB - (revenue, budget)

https://www.themoviedb.org/

Box Office Mojo - (Domestic Box Office sales)

https://www.boxofficemojo.com/

Example of messy data provided for each movie

Cast

```
{'id': 31, 'name': 'Tom Hanks'},
{'id': 12898, 'name': 'Tim Allen'},
{'id': 7167, 'name': 'Don Rickles'},
{'id': 12899, 'name': 'Jim Varney'},
{'id': 12900, 'name': 'Wallace Shawn'},
```

Keywords

```
[{'id': 931, 'name': 'jealousy'},

{'id': 4290, 'name': 'toy'},

{'id': 5202, 'name': 'boy'},

{'id': 6054, 'name': 'friendship'},

{'id': 9713, 'name': 'friends'},

{'id': 9823, 'name': 'rivalry'},
```

Crew

```
{'id': 7879, 'job': 'Director', 'name': 'John Lasseter'},
{'id': 12891, 'job': 'Screenplay', 'name': 'Joss Whedon'}
{'id': 7, 'job': 'Screenplay', 'name': 'Andrew Stanton'},
{'id': 12892, 'job': 'Screenplay', 'name': 'Joel Cohen'},
{'id': 12893, 'job': 'Screenplay', 'name': 'Alec Sokolow'
{'id': 8, 'job': 'Editor', 'name': 'Lee Unkrich'},
{'id': 1168870, 'job': 'Editor', 'name': 'Robert Gordon'}
```

How to measure the quality of each cast member, crew member, etc?

Measures of film quality in the dataset:

Popularity

mean	8.471042
std	12.082205
min	0.000657
25%	3.900239
50%	7.358204
75%	10.829195
max	547.488298

- No description on Kaggle
- No apparent cap on range
- Not clear how this is determined

Vote Average

6.202871
0.995378
0.000000
5.600000
6.300000
6.900000
10.000000

- User generated
- Ranges from 0-10
- Paired with Vote Count

Process:

1) Extract Ids for each set, Ex:

	title	lds_Cast	Ids_Director	lds_Screenplay	lds_Editor	lds_Keywords	genrelds
0	Toy Story	[31, 12898, 7167, 12899, 12900, 7907, 8873, 11	[7879]	[12891, 7, 12892, 12893]	[8, 1168870]	[931, 4290, 5202, 6054, 9713, 9823, 165503, 17	[16, 35, 10751]

- 2) Calculate quality of each id in a set using various methods
 - Past Average

- All Movie Average

- Past Vote Average

- All Movie Vote Average

- Past Historic Average
- 3) Average over all ids in a set for each method to create features for that set

Cast Specific Feature Generation (set average):

- Total of Averaged Ratings Ranked Average Ratings
- Top 3 Averaged Ratings

Summary of the 42 Features generated:

	Average Rating	Vote Average	Historic Average	All Movie Average	All Movie Vote Average
Actors	Х	Х	X	Х	Х
Directors	Х	Х	Х	Х	Х
Screenwriters	Х	Х	X	Х	X
Editors	X	Χ	X	Х	X
Genres	X				
Keywords	X				

Cast Specific Features

	Total	Тор 3	Ranked Average	Ranked Total
Average Rating	X	Х	X	Х
Vote Average	Х	Х	Х	Х
Historic Average	Х	Х	Х	Х
All Movie Average	Х	Х	Х	Х
All Movie Vote Average	Х	Х	Х	Х

Modeling

Independent Feature Selection

Budget

Modeling

Independent Feature Selection

Scipy.Stats.BoxCox - Power transformation, requires positive values

Modeling - Base Regression Model Performances

Models Tested

- Epsilon-Support Vector Regression (SVR)
- Stochastic Gradient Descent Regression (SGD)
- K Nearest Neighbors Regressor (kNN)
- Random Forest Regressor (RandForr)
- Ada Boost Regressor (AdaBoost)
- Bayesian Ridge Regressor (BayesianRidge)
- Linear Regression (Linear)

Model Performance Metrics

- Mean Squared Error (MSE)
- Mean Average Error (MAE)
- R^2 Score (r2)

Modeling - Base Regression Model Performances

Modeling - Optimization

Two rounds of Bayesian Optimization for Random Forest Model

- Each round using 10 fold cross validation
- Reporting out median of cross validation performance

Round 1:

- 8 metaparameters tested
- Range set around default
- 80 iterations

Round 2:

- 3 metaparameters tested
- Range set around values of Round 1
- 50 iterations

Modeling - Optimization Results

Round 1:

<u>Ranges</u>

(90 - 110)n estimators: max_depth: (40 - 60)min_samples_split: (2 - 10)min_samples_leaf: (1 - 10)min_weight_fraction_leaf: (0.0 - 0.5)(0.0 - 0.2)min_impurity_decrease: (0.0 - 0.2)ccp_alpha: max_features: (24 - 44)

Values

101 n estimators: max_depth: 51 min_samples_split: 4 5 min_samples_leaf: min_weight_fraction_leaf: 0.0 min_impurity_decrease: 0.0 ccp_alpha: 0.0 max_features: 25

Best Score

0.167

Round 2:

Ranges |

n_estimators:	(125 - 250
max_depth:	(37 - 55)
max_features:	(10 - 40)

<u>Values</u>

<u>varaoo</u>	
n_estimators:	160
max_depth:	39
max_features :	38

Best Score

0.161

Modeling - Optimization Results

Optimized Model (Round 2) Output

MSE: 0.3343961152603857 MAE: 0.4316499854236619 R^2: 0.882417335490463

Modeling - Including Production Companies

Changes to the Data

- Added Feature First Production Company Listed
- Limit dataset to those in top 60 most frequent Production Companies
- Use one hot encoding to add as a categorical variable

Modeling - Production Companies Base Model Performance

Conclusions

- The features (engineered and original) are not good predictors of the Box
 Office performance
- The produced models at best overfit the Training set, and cannot generalize to the Test Set
- 42 features engineered are all based on film user rating, a biased measure that does not correlate to film performance, i.e. garbage in, garbage out

