Employee Performance Analysis

INX Future Inc.

• Candidate Name : Raja Prabu Manivel

• Candidate E-Mail : rpthalaprabhu@gmail.com

• REP Name : DataMitesTM Solutions Pvt Ltd

• Assesment ID : E10901-PR2-V18

• Module : Certified Data Scientist - Project

• Exam Format : Open Project- IABACTM Project Submission

• Project Assessment : IABACTM

• Registered Trainer : Ashok Kumar A

• Submission Deadline Date : 24-MAY-2025

Analysis

1. Data Understanding and Exploration

Initial exploration revealed:

Dataset contains a mix of categorical (e.g., Department, Gender, JobRole) and numerical features (e.g., Age, YearsAtCompany, MonthlyIncome).

Target variable: **Performance Rating** or derived classification (e.g., high vs low performer).

Class distribution is somewhat imbalanced, but no severe skew.

Key Observations from EDA:

JobSatisfaction, **JobInvolvement**, and **EnvironmentSatisfaction** are positively correlated with higher performance.

Features like **OverTime** and **YearsAtCompany** provided actionable variance.

Low variance or irrelevant features like EmployeeNumber were removed during preprocessing.

2. Data Processing Techniques

The following preprocessing steps were taken across notebooks:

Missing Value Handling: Dropped rows with missing values (e.g., NumCompaniesWorked, TotalWorkingYears).

Categorical Encoding:

Label Encoding for binary features (e.g., OverTime, Gender).

One-Hot Encoding for multi-class features (e.g., Department, JobRole).

Feature Scaling:

StandardScaler applied to numerical features for SVM and Logistic Regression models.

Feature Selection:

Correlation matrix used to identify and retain key influencing features.

Low-correlation or identifier columns dropped.

3. Machine Learning Algorithms Considered

Three main algorithms were trained and evaluated:

V Logistic Regression

Baseline model

Fast and interpretable

Performed decently but struggled with nonlinear patterns

Random Forest Classifier

Performed best among all models

Provided feature importance for insight generation

Handled both categorical and numerical features well

IJ Support Vector Classifier (SVC)

Performed well after scaling

Sensitive to hyperparameters, better with tuned parameters

Each model was evaluated using:

Accuracy

Classification Report (Precision, Recall, F1-Score)

Confusion Matrix

4. Model Selection Rationale

Model	Accuracy	Pros	Cons
Logistic Regression	89%	Simple, interpretable	Lower performance, linear only
Random Forest	99.5%	High accuracy, feature insights	Slightly slower, more complex
SVC	99.4%	Good on scaled data	Requires tuning, less interpretable

Conclusion:

Random Forest was selected as the final model due to the best trade-off between accuracy and interpretability.

The Random Forest model gave 99.58% test accuracy with good generalization capability. Followed a structured machine learning workflow involving data preprocessing, model building, diagnostics and optimizations. The end-to-end implementation, analysis and choice of final model were appropriate.