图论作业(3.24)

中国人民大学 信息学院 崔冠宇 2018202147

P24, **T24** K_n^c 与 K_{mn}^c 是什么样的图? 试画它们的图示.

解. (1)由定义易知, K_n 的补图是 n 阶零图, 即 $K_n^c \cong N_n$. 如图所示(以 K_5 为例).

(2)由定义易知, $K_{m,n}$ 的补图是 K_m 与 K_n 的并. 如图所示(以 $K_{2,3}$ 为例).

P25, **T27** 证明每个 n 顶单图与 K_n 的一子图同构.

证明. 设 n 顶单图 $G = \langle V, E \rangle$. 令 $E' = \{(u, v) | u, v \in V, u \neq v, (u, v) \notin E\}$, 由定义,

 $K_n = \langle V, E \cup E' \rangle$. 对图 G 而言,有 $V \subseteq V(K_n) = V$,以及 $E \subseteq E(K_n) = E \cup E'$,因此 $G \subseteq K_n$,显然 $G \subseteq K_n$ 的某一子图(就是 G 本身)同构. \square

P25, **T28** 证明 K_n 的由任何顶点集导出的子图仍是完全图.

证明. 设 $V_1 \subseteq V(K_n)$, $K_n[V_1] = \langle V_1, E_1 \rangle$ 是 K_n 的一个导出子图, $|V_1| = r$. 根据 K_n 的定义, 对 $\forall u, v \in V(K_n) (u \neq v)$, $\exists (u, v) \in E(K_n)$. 根据导出子图的定义, 容易看出: $E_1 = \{(u, v) | u, v \in V_1, u \neq v\}$, 所以 $K_n[V_1] \cong K_r$. \square

P25, T29 证明二分图的子图是二分图.

证明. 设二分图 $G = \langle V_1, V_2, E \rangle$, 其中 $V_1 \cap V_2 = \emptyset$, $E = \{(u, v) | u \in V_1, v \in V_2\}$.

设 $G' = \langle V', E' \rangle \subseteq G$. 记 $V'_1 = (V' \cap V_1), V'_2 = (V' \cap V_2),$ 容易验证: $V' = V' \cap (V_1 \cup V_2) = V'_1 \cup V'_2,$ $V'_1 \cap V'_2 = V' \cap (V_1 \cap V_2) = \emptyset, E' = \{(u', v') | u' \in V'_1, v' \in V'_2\} \subseteq E,$ 故 $G' = \langle V'_1, V'_2, E' \rangle$ 是二分图. \square