مبانی فیزیک

• جرل واكر • هاليدى • رزنيك

فيزيك يايهٔ ١ برای دانشجویان فنی و مهندسی

مکانیک، گرما، ترمودینامیک، و نظریهٔ جنبشی گازها

18. دما، گرما و قانون اول ترمودینامیک

فیزیک ۱ مهندسی

سيدجواد هاشمي فر

اردیبهشت ۱۴۰۰

ظرفیت گرمایی

دریک فلاسک عایق بندی شده،

۱۰۰ گرم یخ ۲۰۰- را با ۴۰۰ گرم

آب ℃،6 شده مخلوط می کنیم.

محصول نهایی چیست؟

L = 333 kJ/kg c_w = 4180 J/kgK c_i = 2220 J/kgK

سازوکارهای انتقال گرما

رسانش گرما

رسانش تیغههای مرکب

رسانش تیغههای موازی

رسانش تيغههاي متوالي

رسانش تيغههاي متوالي

گرمانگاری

تبدیل گرما به کار

کار انجام شده توسط گاز

قانون اول ترموديناميك

کار انجام شده روی سامانه و کار انجام شده توسط سامانه

فرآیندهای ترمودینامیکی

فرآیندهای ایستاوار

قانون اول ترموديناميك

فرآیند دما-ثابت (همدما)

فرآیند بیدررو

