Final project report

106061151 劉安得 106061227 林柏辰

規則說明:

遊戲開始兩名玩家各有 50 分(七段顯示器顯示),射出飛鏢後扣掉飛鏢射中的得分,在七輪遊戲內先將分數歸零者獲勝。射飛鏢的方法為用鍵盤進行上(W)下(S)左(A)右(D)的瞄準(標靶顯示於螢幕),接著按住按鈕開始蓄力(LED 燈顯示力道大小),放開時飛鏢射出。一名玩家射完後按按鈕切換玩家。

分工:

劉安得: VGA 顯示部分

林柏辰: 七段顯示器、LED、按鈕、鍵盤及提供變數給 VGA 判斷

1. Design Specification

```
Input:
```

clk,

rst,

switch,// button 切換玩家

acc// button 蓄力

Inout:

ps2 data,

ps2 clk

Output:

[15:0] led,// LED 顯示蓄力條

[7:0] ssd,//7-segment display 顯示玩家目前分數

[3:0] ssd_ctl,

[3:0] vgaRed,// VGA 顯示標靶及瞄準/命中處

[3:0] vgaGreen,

[3:0] vgaBlue,

hsync,

vsync,

mclk,// speaker 播放飛鏢命中音效

Irclk,

sclk,

sd in

2. Block diagram

(紅字為 output)

3. Design Implementation

(本次使用的飛鏢圖)

這次 Final project 所需的 module 為:

基本輸入處理:

button: 為 button 訊號的 debouncer,產生的 output 有 b_switch, b_acc one_pulse: 將 debounce 過的 button 訊號轉成一個 clock cycle 的 pulse,為

按下按鈕時產生,產生的 output 有 switch_pulse

back_pulse: 類似 one_pulse 但在按鈕放開時產生 pulse,產生的 output 有

acc_pulse, valid_pulse

frequency divider: 產生 32Hz 的 clk, 此為 LED 燈變動的速度

KeyboardDecoder: 鍵盤輸入訊號處理,是之前老師給的 source code

state: FSM,指示目前玩家

主要功能:

dart_shoot: 蓄力射飛鏢的 module。產生代表蓄力條的 LED output、相對應的力道大小 str(值為 0-16),以及代表瞄準(1)/射出(0)狀態的 valid

aim:產生瞄準時的預計落點已及射出後的命中位置。x座標由鍵盤秒準的結果以及亂數產生-2~2的誤差決定;y座標由鍵盤瞄準結果以及蓄力的結果決定。標靶為半徑 10 單位的正圓,鍵盤每次可往上/下調整一單位,或是左/右調整兩單位。

score_calculate: 將(x, y)座標對應到相應的得分,產生的 output 為兩位玩家 目前的剩餘分數

ssd: 將兩位玩家目前的分數顯示於七段顯示器,左邊兩個 digits 為玩家 1; 右邊兩個 digits 為玩家 2。另外,分數右下角的點如果亮起代表輪到該 玩家

judge winner: 判斷玩家的輸贏。遊戲為玩家 1 先射,判斷規則有:

- 1. 經過七輪遊戲未分出勝負,則剩餘分數較低者獲勝,若一樣則平手。
- 2. 當玩家 1 射出後分數歸零,玩家 2 剩餘分數在 20 分以上,則宣告玩家 1 獲勝。
- 3. 當玩家 1 射出後分數歸零,玩家 2 分數小於 20 分,則輪到玩家 2;若玩家 2 射出後分數未歸零,則宣告玩家 1 獲勝;若玩家 2 射出後分數歸零則平手。
- 4. 若玩家 2 射出後分數歸零,玩家 1 分數不為零,宣告玩

家二獲勝。

speaker: 飛鏢射出後播放命中音效

VGA 部分:

因為似乎放不下兩張 320*240,而且我遊戲結束的圖片有三張,於是 我決定把遊戲結束的圖片再縮小 1/2,並垂直疊起來一起讀取變成 160*360,所以我總共讀了一張 320*240 和 160*360

Clock_divisor: 除頻器,提供 25Hz 給 memory IP 使用 Mem_addr_div: 當顯示標靶時,產出要讀取的 address

Win_player: 當遊戲結束時,根據輸贏判斷顯示哪張圖片。當 player 為 001

時代表玩家一勝出,010代表玩家二勝出,100代表玩家三

勝出

Vga controler: 產出 h cnt, v cnt, hsync, vsync, valid

I/O	Led[15]	Led[14]	Led[13]	Led[12]	Led[11]	Led[10]	Led[9]	Led[8]
Pin	L1	P1	N3	P3	U3	W3	V3	V13

I/O	Led[7]	Led[6]	Led[5]	Led[4]	Led[3]	Led[2]	Led[1]	Led[0]
Pin	V14	U14	U15	W18	V19	U19	E19	U16

1/0	Ssd[7]	Ssd[6]	Ssd[5]	Ssd[4]	Ssd[3]	Ssd[2]	Ssd[1]	Ssd[0]

Pin	W7	W6	U8	V8	U5	V5	U7	V7

I/O	Ssd_ctl[3]	Ssd_ctl[2]	Ssd_ctl[1]	Ssd_ctl[0]
Pin	W4	V4	U4	U2

I/O	vgaRed[3]	vgaRed[2]	vgaRed[1]	vgaRed[0]
Pin	N19	J19	H19	G19

I/O	vgaBlue[3]	vgaBlue[2]	vgaBlue[1]	vgaBlue[0]
Pin	J18	K18	L18	N18

I/O	vgaGreen[3]	vgaGreen[2]	vgaGreen[1]	vgaGreen	
Pin	D17	G17	H17	J17	

I/O	acc	show	Switch	Rst	clk	hsync	vsync
Pin	T17	V16	T18	V17	W5	P19	R19

I/O	mclk	Lrclk	Sclk	Sd_in	Ps2_clk	Ps2_data
Pin	A14	A16	P19	B16	C17	B17

4. Discussion

我們的螢幕會有些破圖,我們找不到原因,並且重跑 bitstream 後每次破的位置都不同。一開始我們有試著顯示看看,這時候比較沒有破圖,所以我覺得可能跟複雜度有關,當 project 越複雜越容易破圖,但我們還是找不到原因

一開始我們打算顯示四張圖片,但卻發現連顯示兩張都記憶體不夠。最

後,想到縮小再放大的方法,解決記憶體不夠的問題。

5. Conclusion

這次 final project 讓我們學到如何從零開始的做出一個成品。我們要從一開始的規格開始設計,不再像之前的 lab 一開始就有 specification。再過的過程中也會不斷的新增功能或改良,不斷的嘗試。