Релевантность (валидность) статей относительно рассматриваемой задачи проранжирована по системе: $R=\{V, PV, NW\}$: V - valid, PW - partly valid, NW - not valid;

No	R	Статья	Комментарий составителя
1	V	Леонид Моисеевич Местецкий. Непрерывная морфология бинарных изображений: фигуры, скелеты, циркуляры. Физматлит, 2009.	Стр. 26-37 Базовые понятия и определения. Скелетное и медиальные представления. Может быть принят за условный теорминимум в работе.
2	V	Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, and Vijay Pande. Low data drug discovery with one-shot learning. 2016. https://arxiv.org/pdf/1611.03199.pdf	Стр. 9-10 Методы свертки произвольных графов для получения непрерывного векторного представления молекул. Перенос идеи СNN для изображений на произвольный граф. Может быть рассмотрено как способ генерации признаков на основе графа. Результат — Open Source библиотека DeepChem.
3	V	Ciresan D. C. et al. Convolutional neural network committees for handwritten character classification //Document Analysis and Recognition (ICDAR), 2011 International Conference on. – IEEE, 2011. – C. 1135-1139. http://people.idsia.ch/~ciresan/data/icdar2011a.pdf	СNN применительно к датасету MNIST, качество увеличено до 0.27%. То есть можно утверждать, что на конкретной задаче CNN, получающая на вход растровое представление, может давать качество, близкое к идеальному.
4	NV (PW)	Клименко С. В., Местецкий Л. М., Семенов А. Б. Моделирование рукописного шрифта с помощью жирных линий //Труды. – 2006. – Т. 16. https://www.researchgate.net/publication/289962170 Handwritten fonts modeling based on fat curves	Моделирование почерка. Представление символов в виде жирных линий. Применение медиального представления фигур в прикладной задаче.
5	PW	Кушнир О. и др. Сравнение формы бинарных растровых изображений на основе скелетизации //Машинное обучение и анализ данных. – 2012. – Т. 1. – No. 3. – С. 255-263. http://jmlda.org/papers/doc/2012/no3/Kushnir2012Skeletonmatching.pdf	Проблема отсутствия методов для сравнения форм бинарных растровых изображений. Производится поиск метрики близости изображений в векторной (скелетизированной) форме, классификация с использованием SVM. Описаны полезные признаки, по которым может быть определена близость объектов. Полученный функционал близости фактически отражает похожесть изображений, но не удовлетворяет условиям метрики. Предположительно, неустойчив к изменения вида границ (деформациям). Не подойдет п.н.

6	PW	Goyal P., Ferrara E. Graph embedding techniques, applications, and performance: A survey. arXiv: 1705.02801, 2017. https://arxiv.org/pdf/1705.02801.pdf	Описаны многочисленные embedding'и для графов. В частности сверточный метод (подобно статье No. 2). Есть библиотека в Питоне с реализациями — <u>GEM</u>
7	? (PW)	Cai H., Zheng V.W., Chang K.CC. A comprehensive survey of graph embedding: Problems, techniques and applications https://arxiv.org/pdf/1709.07604.pdf	Обзор методов embedding'a графов.
8	NW (PW)	Grover A., Leskovec J. node2vec: Scalable Feature Learning for Networks. arXiv:1607.00653, 2016 https://arxiv.org/pdf/1607.00653.pdf	Описание алгоритма embedding'a node2vec. Есть git - node2vec. Тем не менее речь идет о мультиклассовой классификации вершин графа и предсказании наличия вершин между ребрами. Не ясна параллель с данной задачей.
9	V	Mestetskiy L., Semenov A. Binary Image Skeleton - Continuous Approach // Proceedings 3rd International Conference on Computer Vision Theory and Applications, VISAPP 2008. P. 251-258. https://www.researchgate.net/ publication/ 221415333 Binary Image Skeleton - Continuous Approach	Скелетное представление. Общие идеи и методы получения. Устойчивость к шуму. Преимущества непрерывного представления над дискретным.
10	PW	Shape Matching Based on Skeletonization and Alignment of Primitive Chains https://www.researchgate.net/ publication/ 288003650 Shape Matching Based o n_Skeletonization_and_Alignment_of-Primitive_Chains	Предложен алгоритм вычисления похожести объектов по их контуру. В основе лежит скелетонизация и выпрямление простых цепей. Не ясно насколько хорошо этот опыт может быть перенесен с листьев на символы, которые по своей структуру более случайны и разнообразны. Вероятно, это не будет с рукописными шрифтами.
11	V	Aleksey Morozov. Low data drug discovery with one-shot learning. 2017. http://www.machinelearning.ru/wiki/images/a/a2/ Morozov2017Synthesis of medicines.pdf	Статья основана во многом на работе No. 2 из текущего списка. Схожая (заимствованная) идея свертки графов.
12	PV	Extract an Essential Skeleton of a Character as a Graph from a Character Image https://arxiv.org/pdf/1506.05068.pdf	Эффективный метод скелетонизации символа, основанный на последовательном применении двух алгоритмов GNG и RNG. Кода, видимо, нет. Но результаты впечатляют. Есть схожий код для matlab-a (тут) Впрочем, видимо, идея не столь нова. Есть иные реализации даже в scikit-image на руthon, но тут только выделение скелетного или медиального представления, а не графа.

Link Review

13	PV	Network Extraction From Images https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4629128/	Серьезная научка по предыдущей теме, с привлекательной библиотекой на python (<u>nefi</u>). Правда, библиотека может оказаться избыточной.
14	V	A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton https://pdfs.semanticscholar.org/37ae/faa97ed6dbf7f4d0b76a75881330e22a3700.pdf Nunez-Iglesias et al. (2018), <i>PeerJ</i> , DOI 10.7717/peerj.4312	Идея та же, что и у предыдущих двух работ, но удобнее и проще в освоении. Простая скелетонизация и расширенное описание полученного графа. Есть git. Протестировано на MNIST. Есть встроенная возможность визуализации и извлечения характеристик графа: тип ребер, длина и т.д. Зачет! Данный результат может быть использован для построения скелетного графа, если в работе не будет использоваться медиальная функция.
15	V	SOME NEW LAYER ARCHITECTURES FOR GRAPH CNN https://arxiv.org/pdf/1811.00052.pdf	Graph CNN. Улучшение уже имеющихся работ по развитию архитектуры GCN. Основан на пространственном подходе, в частности robust spatial filtering. Упор делается на модификации признаков ребер, а не вершин. Широко и полно описана область исследований, может быть полезно. Реализации не предоставлено.
16	V	Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.org/pdf/1703.00792.pdf	Работа, положенная в основу No.15. Подробны описаны все слои сети. Подробно изложен вычислительный эксперимент. Есть <u>git</u> .