Math 535 - General Topology Fall 2012 Homework 13 Solutions

Note: In this problem set, function spaces are endowed with the compact-open topology unless otherwise noted.

Problem 1. Let X be a compact topological space, and (Y, d) a metric space. Consider the uniform metric

$$d(f,g) := \sup_{x \in X} d(f(x), g(x))$$

on the set of continuous maps C(X,Y).

Show that the topology on C(X,Y) induced by the uniform metric is the compact-open topology.

Solution. Denote respectively by \mathcal{T}_{co} and \mathcal{T}_{met} the compact-open topology and the uniform metric topology on C(X,Y).

 $(\mathcal{T}_{met} \subseteq \mathcal{T}_{co})$ It suffices to show that for any $f \in C(X,Y)$ and $\epsilon > 0$, the open ball $B(f,\epsilon) \subseteq C(X,Y)$ is a neighborhood of f in the compact-open topology.

Cover Y by open balls of radius $\frac{\epsilon}{3}$ and pull this open cover back to X via f:

$$X = f^{-1}(Y)$$

$$= f^{-1}\left(\bigcup_{y \in Y} B(y, \frac{\epsilon}{3})\right)$$

$$= \bigcup_{y \in Y} f^{-1}\left(B(y, \frac{\epsilon}{3})\right).$$

Since X is compact, there is a finite subcover

$$X = f^{-1}\left(B(y_1, \frac{\epsilon}{3})\right) \cup \ldots \cup f^{-1}\left(B(y_n, \frac{\epsilon}{3})\right)$$

=: $U_1 \cup \ldots \cup U_n$.

The closures $\overline{U_i} \subseteq X$ are compact, since they are closed in X which is compact. Moreover they satisfy:

$$f(\overline{U_i}) \subseteq \overline{f(U_i)} \text{ since } f \text{ is continuous}$$

$$= \overline{f\left(f^{-1}\left(B(y_i, \frac{\epsilon}{3})\right)\right)}$$

$$\subseteq \overline{B(y_i, \frac{\epsilon}{3})}$$

$$\subseteq B^{cl}(y_i, \frac{\epsilon}{3}) := \{y \in Y \mid d(y_i, y) \leq \frac{\epsilon}{3}\}$$

$$\subseteq B(y_i, \frac{\epsilon}{2}).$$

Therefore f satisfies

$$f \in \bigcap_{i=1}^{n} V(\overline{U_i}, B(y_i, \frac{\epsilon}{2})) =: N$$

where the latter subset $N \subseteq C(X,Y)$ is open in the compact-open topology.

Claim: $N \subseteq B(f, \epsilon)$. Let $g \in N$ and take any point $x \in X$. Since the U_i cover X, we have $x \in U_i$ for some index $1 \le i \le n$. The values f(x) and g(x) satisfy:

$$f(x) \in f(U_i) \subseteq B(y_i, \frac{\epsilon}{3})$$

 $g(x) \in g(U_i) \subseteq g(\overline{U_i}) \subseteq B(y_i, \frac{\epsilon}{2}).$

By the triangle inequality, we obtain:

$$d(f(x), g(x)) \le d(f(x), y_i) + d(y_i, g(x))$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{2}$$

$$= \frac{5\epsilon}{6}$$

and since $x \in X$ was arbitrary, we conclude $d(f,g) \leq \frac{5\epsilon}{6} < \epsilon$.

[Note that the condition $d(f(x), g(x)) < \epsilon$ for all $x \in X$ was enough to guarantee $d(f, g) < \epsilon$, since the supremum $\sup_{x \in X} d(f(x), g(x))$ is achieved at a point $x_0 \in X$.]

 $(\mathcal{T}_{co} \subseteq \mathcal{T}_{met})$ Take a subbasic open $V(K,U) \subseteq C(X,Y)$ and $f \in V(X,U)$. We want to show that V(K,U) is metrically open, i.e. find a radius ϵ satisfying $B(f,\epsilon) \subseteq V(K,U)$.

The subset $f(K) \subseteq Y$ is compact, and moreover it satisfies $f(K) \subseteq U$ by assumption. Hence there is a number $\epsilon > 0$ such that the ϵ -neighborhood of f(K) is contained in U, i.e. $B(f(K), \epsilon) \subseteq U$ (c.f. Homework 5 Problem 5b).

Claim: $B(f,\epsilon) \subseteq V(K,U)$. Let $g \in B(f,\epsilon)$. For any $x \in K$, we have:

$$g(x) \in B(f(x), \epsilon) \subseteq B(f(K), \epsilon) \subseteq U$$

so that the map $g: X \to Y$ satisfies $g(K) \subseteq U$, i.e. $g \in V(K, U)$.

Problem 2. Let X and Y be topological spaces. Let $f, g: X \to Y$ be two continuous maps. Show that a homotopy from f to g induces a (continuous) path from f to g in the space of continuous maps C(X,Y).

More precisely, let F(X,Y) denote the set of all functions from X to Y. There is a natural bijection of sets:

$$\varphi \colon F(X \times [0,1], Y) \xrightarrow{\cong} F([0,1], F(X, Y))$$

sending a function $H: X \times [0,1] \to Y$ to the function $\varphi(H): [0,1] \to F(X,Y)$ defined by $\varphi(H)(t) = H(-,t) =: h_t$.

Your task is to show that if a function $H: X \times [0,1] \to Y$ is continuous, then the following two conditions hold:

- 1. $h_t : X \to Y$ is continuous for all $t \in [0, 1]$;
- 2. The corresponding function $\varphi(H): [0,1] \to C(X,Y)$ is continuous.

Solution.

1. For $t \in [0,1]$, the "slice inclusion" map $\iota_t \colon X \to X \times [0,1]$ defined by

$$\iota_t(x) = (x,t)$$

is an embedding. Therefore the map $h_t: X \to Y$ is continuous, since it is the composite $h_t = H \circ \iota_t$, as illustrated here:

$$X \xrightarrow{\iota_t} X \times [0,1] \xrightarrow{H} Y.$$

2. Let $V(K,U) \subseteq C(X,Y)$ be a subbasic open subset, with $K \subseteq X$ compact and $U \subseteq Y$ open. We want to show that the preimage $\varphi(H)^{-1}(V(K,U)) \subseteq [0,1]$ is open in [0,1]. This preimage is:

$$\varphi(H)^{-1}(V(K,U)) = \{t \in [0,1] \mid h_t \in V(K,U)\}$$

$$= \{t \in [0,1] \mid h_t(K) \subseteq U\}$$

$$= \{t \in [0,1] \mid H(k,t) \in U \text{ for all } k \in K\}$$

$$= \{t \in [0,1] \mid K \times \{t\} \subseteq H^{-1}(U)\}.$$

Since $H: X \times [0,1] \to Y$ is continuous, $H^{-1}(U)$ is open in $X \times [0,1]$. If the inclusion $K \times \{t\} \subseteq H^{-1}(U)$ holds, then since K and $\{t\}$ are compact, there exist open subsets $W \subseteq X$ and $J \subseteq [0,1]$ satisfying

$$K \times \{t\} \subseteq W \times J \subseteq H^{-1}(U)$$

by the tube lemma. In particular, every $t' \in J$ satisfies $K \times \{t'\} \subseteq W \times \{t'\} \subseteq H^{-1}(U)$. Therefore the inclusion

$$J \subseteq \varphi(H)^{-1} \left(V(K, U) \right)$$

holds, so that $\varphi(H)^{-1}(V(K,U))$ is open in [0,1].

Remark. If X is locally compact Hausdorff, then the converse holds as well: the two conditions guarantee that $H \colon X \times [0,1] \to Y$ is continuous. In that case, a homotopy from f to g is really the same as a path from f to g in the function space C(X,Y).

Problem 3.

a. Let X and Y be topological spaces, where Y is Hausdorff. Show that C(X,Y) is Hausdorff.

Solution. Let $f, g \in C(X, Y)$ be distinct elements, i.e. there is a point $x \in X$ where $f(x) \neq g(x)$. Since Y is Hausdorff, the points f(x) and g(x) in Y can be separated by neighborhoods $U, U' \subseteq Y$, satisfying $f(x) \in U$, $g(x) \in U'$, and $U \cap U' = \emptyset$. Then we have $f \in V(\{x\}, U)$ and $g \in V(\{x\}, U')$, where both subsets are open in C(X, Y) since the singleton $\{x\} \subseteq X$ is compact. Moreover, their intersection is:

$$V(\lbrace x \rbrace, U) \cap V(\lbrace x \rbrace, U') = V(\lbrace x \rbrace, U \cap U')$$
$$= V(\lbrace x \rbrace, \emptyset)$$
$$= \emptyset$$

so that f and g can be separated by neighborhoods in C(X,Y).

b. Assume there exists a topological space X such that C(X,Y) is Hausdorff. Show that Y is Hausdorff.

Solution. Let $y, y' \in Y$ be distinct points. Consider the constant functions $f, f' \colon X \to Y$ at y and y' respectively, i.e. $f \equiv y$ and $f' \equiv y'$. Note that f and f' are continuous, i.e. elements of C(X,Y).

Since C(X,Y) is Hausdorff, the distinct elements f and f' can be separated by basic open neighborhoods

$$f \in N = V(K_1, U_1) \cap \ldots \cap V(K_n, U_n)$$
$$f' \in N' = V(K'_1, U'_1) \cap \ldots \cap V(K'_k, U'_k)$$

in C(X,Y). The condition $f \in V(K_i,U_i)$ means $f(K_i) \subseteq U_i$, or equivalently $y \in U_i$ since f is the constant function $f \equiv y$. Likewise, we have $y' \in U'_i$ for all i. Therefore we obtain neighborhoods of y and y' in Y:

$$y \in U := U_1 \cap \ldots \cap U_n$$
$$y' \in U' := U'_1 \cap \ldots \cap U'_k.$$

Claim: The neighborhoods U and U' are disjoint. For any point $y_0 \in U \cap U'$, the constant function $g: X \to Y$ with value y_0 is continuous and satisfies

$$g \in V(K_1, U \cap U') \cap \ldots \cap V(K_n, U \cap U')$$

$$\subseteq V(K_1, U) \cap \ldots \cap V(K_n, U)$$

$$= V(K_1, U_1) \cap \ldots \cap V(K_n, U_n) = N$$

and likewise $g \in N'$. This implies $g \in N \cap N' = \emptyset$, and therefore $U \cap U' = \emptyset$.

Problem 4.

a. Let X, Y, and Z be topological spaces. Let $g: Y \to Z$ be a continuous map. Show that the induced map "postcomposition by g"

$$g_* \colon C(X,Y) \to C(X,Z)$$

 $f \mapsto g_*(f) = g \circ f$

is continuous.

Solution. It suffices to show that the preimage of a subbasic open is open.

Consider the subbasic open subset $V(K,U) \subseteq C(X,Z)$, where $K \subseteq X$ is compact and $U \subseteq Z$ is open. Its preimage in C(X,Y) is

$$(g_*)^{-1}V(K,U) = \{ f \in C(X,Y) \mid g \circ f \in V(K,U) \}$$

$$= \{ f \in C(X,Y) \mid g(f(K)) \subseteq U \}$$

$$= \{ f \in C(X,Y) \mid f(K) \subseteq g^{-1}(U) \}$$

$$= V(K, g^{-1}(U))$$

which is open in C(X,Y) since $K\subseteq X$ is compact and $g^{-1}(U)\subseteq Y$ is open in Y.

Remark. Alternate proof when X is locally compact Hausdorff.

It suffices to show that the corresponding map

$$\widetilde{g_*} : C(X,Y) \times X \to Z$$

is continuous. But this map is the composite $g \circ e$ where $e \colon C(X,Y) \times X \to Y$ is the evaluation map:

Since X is locally compact Hausdorff, the evaluation map e is continuous, and so is the composite $\widetilde{g}_* = g \circ e$.

b. Let W, X, and Y be topological spaces. Let $d: W \to X$ be a continuous map. Show that the induced map "precomposition by d"

$$d^* \colon C(X,Y) \to C(W,Y)$$

 $f \mapsto d^*(f) = f \circ d$

is continuous.

Solution. Consider the subbasic open subset $V(K, U) \subseteq C(W, Y)$, where $K \subseteq W$ is compact and $U \subseteq Y$ is open. Its preimage in C(X, Y) is

$$\begin{split} (d^*)^{-1}V(K,U) &= \{ f \in C(X,Y) \mid f \circ d \in V(K,U) \} \\ &= \{ f \in C(X,Y) \mid f(d(K)) \subseteq U \} \\ &= V(d(K),U) \end{split}$$

which is open in C(X,Y) since $d(K) \subseteq X$ is compact and $U \subseteq Y$ is open in Y.

Remark. Alternate proof when X is locally compact Hausdorff.

It suffices to show that the corresponding map

$$\widetilde{d}^* \colon C(X,Y) \times W \to Y$$

is continuous. But this map is the composite $e \circ (\mathrm{id} \times d)$ where $e \colon C(X,Y) \times X \to Y$ is the evaluation map:

$$C(X,Y) \times W \xrightarrow{\widetilde{d}^*} Y.$$

$$id \times d \downarrow \qquad \qquad e$$

$$C(X,Y) \times X$$

Since X is locally compact Hausdorff, the evaluation map e is continuous, and so is the composite $\widetilde{d}^* = e \circ (\mathrm{id} \times d)$.

Problem 5. Let X and Y be topological spaces, where X is *Hausdorff*. Let S be a subbasis for the topology of Y. Show that the collection

$$\{V(K,S) \mid K \subseteq X \text{ compact}, S \in \mathcal{S}\}$$

is a subbasis for the compact-open topology on C(X,Y).

The notation above is $V(K, S) = \{ f \in C(X, Y) \mid f(K) \subseteq S \}.$

Solution. Let \mathcal{T} be the topology on C(X,Y) generated by the collection above. We want to show the equality $\mathcal{T} = \mathcal{T}_{co}$, where the latter denotes the compact-open topology.

 $(\mathcal{T} \subseteq \mathcal{T}_{co})$ Since $S \in \mathcal{S}$ is open in Y, the subsets $V(K, S) \subseteq C(X, Y)$ are open in the compact-open topology.

 $(\mathcal{T}_{co} \subseteq \mathcal{T})$ It suffices to show that the generating open subsets V(K,U) are in \mathcal{T} , where $K \subseteq X$ is compact and $U \subseteq Y$ is open.

First, let \mathcal{B} denote the collection of finite intersections of members of \mathcal{S} , so that \mathcal{B} is a basis for the topology on Y. The equality

$$V(K, S_1) \cap V(K, S_2) = \{ f \in C(X, Y) \mid f(K) \subseteq S_1 \text{ and } f(K) \subseteq S_2 \}$$

= $\{ f \in C(X, Y) \mid f(K) \subseteq S_1 \cap S_2 \}$
= $V(K, S_1 \cap S_2)$

shows that subsets of the form $V(K, B) \subseteq C(X, Y)$ are in \mathcal{T} , where $K \subseteq X$ is compact and $B \in \mathcal{B}$.

Let $f \in V(K, U)$, i.e. f satisfies $f(K) \subseteq U$. We want to find a \mathcal{T} -neighborhood of f contained in V(K, U). Since \mathcal{B} is a basis for the topology on Y, the open subset $U \subseteq Y$ can be written as a union

$$U = \bigcup_{\alpha \in A} B_{\alpha}$$

with $B_{\alpha} \in \mathcal{B}$. Therefore K is covered by the preimages:

$$K \subseteq f^{-1}(U)$$

$$= f^{-1} \left(\bigcup_{\alpha \in A} B_{\alpha} \right)$$

$$= \bigcup_{\alpha \in A} f^{-1}(B_{\alpha})$$

where each $f^{-1}(B_{\alpha}) \subseteq X$ is open in X. Since X is Hausdorff, there exist compact subsets $K_1, \ldots, K_n \subseteq X$ satisfying

$$K = K_1 \cup \ldots \cup K_n$$

and $K_i \subseteq f^{-1}(B_{\alpha_i})$ for some indices α_i (c.f. Homework 8 Problem 4b).

The condition $f(K_i) \subseteq B_{\alpha_i}$ says $f \in V(K_i, B_{\alpha_i})$ for all i = 1, ..., n. The conditions $K = K_1 \cup ... \cup K_n$ and $B_{\alpha_i} \subseteq U$ imply:

$$V(K_1, B_{\alpha_1}) \cap \ldots \cap V(K_n, B_{\alpha_n}) \subseteq V(K_1, U) \cap \ldots \cap V(K_n, U)$$
$$= V(K_1 \cup \ldots \cup K_n, U)$$
$$= V(K, U).$$

Therefore $V(K_1, B_{\alpha_1}) \cap \ldots \cap V(K_n, B_{\alpha_n})$ is a \mathcal{T} -neighborhood of f contained in V(K, U). \square

Problem 6. Consider the real line \mathbb{R} and the rationals \mathbb{Q} with their standard (metric) topology. Consider the evaluation map

$$e: \mathbb{Q} \times C(\mathbb{Q}, \mathbb{R}) \to \mathbb{R}.$$

Let $f: \mathbb{Q} \to \mathbb{R}$ be a constant function (say, $f \equiv 0$), and let $q \in \mathbb{Q}$. Show that the evaluation map e is not continuous at $(q, f) \in \mathbb{Q} \times C(\mathbb{Q}, \mathbb{R})$.

Hint: You may want to use the fact that all compact subsets of \mathbb{Q} have empty interior (c.f. Homework 7 Problem 5), and the fact that \mathbb{Q} is completely regular (since it is normal).

Solution. Take $\epsilon = 1$ and consider the open ball $B_1(0)$ of radius 1 centered at $e(q, f) = f(q) = 0 \in \mathbb{R}$. We will show that on every neighborhood of (q, f) in $\mathbb{Q} \times C(\mathbb{Q}, \mathbb{R})$, the evaluation map e takes values larger than 1, proving discontinuity of e at (q, f).

Since "open boxes" form a basis of the product topology on $\mathbb{Q} \times C(\mathbb{Q}, \mathbb{R})$, it suffices to consider a neighborhood of (q, f) of the form $V \times N$ where $V \subseteq \mathbb{Q}$ is an open neighborhood of $q \in \mathbb{Q}$ and $N \subseteq C(\mathbb{Q}, \mathbb{R})$ is a basic open neighborhood of $f \in C(\mathbb{Q}, \mathbb{R})$, of the form

$$N = V(K_1, U_1) \cap \ldots \cap V(K_n, U_n)$$

for some compact subsets $K_i \subset \mathbb{Q}$ and open subsets $U_i \subseteq \mathbb{R}$.

The condition $f \in N$ can be restated as the following equivalent conditions:

$$f \in N \Leftrightarrow f \in V(K_i, U_i)$$
 for all i
 $\Leftrightarrow f(K_i) \subseteq U_i$ for all i
 $\Leftrightarrow 0 \in U_i$ for all i .

Therefore any continuous function $g: \mathbb{Q} \to \mathbb{R}$ that vanishes on $K := K_1 \cup ... \cup K_n$, i.e. satisfying $g|_K \equiv 0$, automatically satisfies $g \in N$.

Moreover, K is a finite union of compact subsets of \mathbb{Q} , thus itself compact. Therefore $K \subset \mathbb{Q}$ has empty interior, which implies $V \not\subseteq K$ since $V \subseteq \mathbb{Q}$ is open in \mathbb{Q} . Pick a rational $q' \in V \setminus K$.

Since K is closed in \mathbb{Q} (being compact in the Hausdorff space \mathbb{Q}), and \mathbb{Q} is completely regular, there exists a continuous function

$$g: \mathbb{Q} \to [0,75] \subset \mathbb{R}$$

satisfying $g|_K \equiv 0$ and g(q') = 75. By construction, the pair (q',g) is sufficiently close to (q,f):

$$(q',g) \in V \times N$$

and satisfies e(q', g) = g(q') = 75 > 1.