Lambda Calculi With Explicit Substitutions

Donovan Crichton

Februrary 2025

Preliminaries

- Slides and Examples available at: https://github.com/donovancrichton/Talks
- This talk: BFPG/LambdaCalculiWithExplicitSubstituions

2025-01-30

└─Preliminaries

Slides and Examples available at:
 https://github.com/donovancrichton/Talks
 This talk: BFPG/LambdaCalculiWithExolicitSubstitutions

Preliminaries

Welcome to the talk!

About me

- PhD Candidate
- Computing Foundations
- School of Computing
- Visiting Scholar
- Trusted Systems Lab
- IIIS
- ASD Co-Lab Scholar

Lambda Calculi With Explicit Substitutions

2025-01-30

└─About me

About me

This is a test $def\Sigma$.

A test definition for some concept.

This is a test example.

An example for some concept.

The Identity Function

 $f : a \rightarrow a$ f x = x

${\sf Lambda\ Calculi\ With\ Explicit\ Substitutions}$

2025-01-30

Lambda Calculi With Explicit Substitutions

Untyped Lambda Calculus Syntax

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

Our set of variables

Lambda Calculi With Explicit Substitutions

2025-01-30

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

Our set of variables

$$V ::= x, y, z, \dots$$

Lambda Calculi With Explicit Substitutions

Untyped Lambda Calculus Syntax

2025-01-30

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

Our set of variables

$$V ::= x, y, z, ...$$

Untyped Lambda Calculus Grammar Lambda Calculi With Explicit Substitutions

2025-01-30

Untyped Lambda Calculus Syntax

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

Our set of variables

$$V ::= x, y, z, \dots$$

Untyped Lambda Calculus Grammar

$$M, N ::=$$

Lambda Calculi With Explicit Substitutions

Untyped Lambda Calculus Syntax

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

```
Our set of variables
       V:=x,y,z,...
Untyped Lambda Calculus
Grammar
M, N ::=
             V Variable.
          M N Application.
```

Lambda Calculi With Explicit Substitutions

2025-01-30

Untyped Lambda Calculus Syntax

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

```
Our set of variables V := x, y, z, ...

Untyped Lambda Calculus Grammar

M, N := V \quad Variable.

\mid M \quad N \quad Application.
\mid \lambda V.M \quad Abstration.
```

Lambda Calculi With Explicit Substitutions

2025-01-30

Untyped Lambda Calculus Syntax

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

```
Our set of variables
                                  Code Tie-In
        V := x, y, z, ...
                                   -- Our 'set' of variables.
                                  V : Type
Untyped Lambda Calculus
                                   V = String
Grammar
                                   -- Our\ Lambda\ (\Lambda)
                                   -- Calculus Syntax.
M, N ::=
               V Variable.
                                  data \Lambda = Var V
            M N Application.
                                             \Lambda \Lambda qq\Lambda
          \lambda V.M Abstration.
                                             Abs V A
```

Lambda Calculi With Explicit Substitutions

└─Untyped Lambda Calculus Syntax

- 1. A quick refresher on the untyped lambda calculus
- 2. Smallest turing-complete language.
- 3. First we need a set of variables.
- 4. Grammar/Syntax has 3 terms.
- 5. Looks scary? You can read this already, clearly inspires data declarations in ML languages

Untyped Lambda Calculus Computation

The Problem

Lambda Calculi With Explicit Substitutions

Lambda Calculi With Explicit Substitutions

There is usually a non-trivial disconnect between how lambda calculus is presented in machinemics, to how it is implemented in a programming language. Substitution in readilional presentations of the programming language. Substitution in readilional presentations of the programming language. Substitution in readilional presentations of the programming language and the programming language a

The Problem

Implementation GapFormal Reasoning

2025-01-30

Explicit Substitutions (Paper)

Martin Abadi

Luca Cardelli

Pierre-Louis Curien Levy

Lambda Calculi With Explicit Substitutions 2025-01-30

Explicit Substitutions (Paper)

Explicit Substitutions (Paper)

References

