

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO		
Disciplina:				Código da Disciplina:
Materiais de Construção Mecâr	nica I			ETM203
Course:				
Mechanical Construction Mater	als I			
Materia:				
Materiales de Construcción Me	cánica I			
Periodicidade: Anual	Carga horária total:	80	Carga horária sema	anal: 01 - 00 - 01
Curso/Habilitação/Ênfase:			Série:	Período:
Engenharia de Produção			2	Diurno
Engenharia de Produção			2	Noturno
Engenharia de Produção			2	Noturno
Professor Responsável:		Titulação - Graduação		Pós-Graduação
Susana Marraccini Giampietri Lebrao		Engenheiro Metalúrgico		Doutor
Professores:		Titulação - Graduaç	ção	Pós-Graduação
Marcelo Ferreira Moreira		Engenheiro Metalúrgico		Mestre
Susana Marraccini Giampietri Lebrao		Engenheiro Metalúrgico		Doutor

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1- Conceitos e princípios fundamentais de metalurgia e ciência dos materiais.
- C2- Conceitos de propriedades físicas e mecânicas dos materiais.
- C3- Noções básicas sobre processos de fabricação e aplicações dos materiais.
- C4- Noções básicas do processo de seleção dos materiais.

Habilidades:

- H1- Estabelecer correlações entre composição química, propriedades mecânicas e microestrutura em materiais.
- H2- Identificar fenômenos destrutivos em materiais.

Valores:

- V1- Compreensão mais fundamentada sobre a constituição dos materiais, suas propriedades, aplicações e limitações.
- V2- Visão crítica sobre o processo de seleção de materiais

EMENTA

Ciência dos materiais. Ligas metálicas. Diagramas de equilíbrio. Introdução aos aços de construção mecânica. Diagrama de equilíbrio Fe-C. Diagramas TTT. Ferros Fundidos. Ligas de alumínio. Ligas de cobre. Cerâmicas. Polímeros. Processamento, degradação e reciclagem de polímeros. LABORATÓRIO: Estudo e realização dos principais ensaios mecânicos: tração, dureza, impacto. Líquidos penetrantes e partículas magnéticas. Metalografia dos aços e do alumínio. Ensaio de fadiga. Ensaios mecânicos de polímeros.

2020-ETM203 página 1 de 10

SYLLABUS

Materials science. Metal alloys. Equilibrium diagrams. Introduction to mechanical construction steels. Fe-C equilibrium diagram. TTT diagrams. Cast Iron. Aluminum alloys. Copper alloys. Ceramics. Polymers. Processing, degradation and recycling of polymers. LAB: Study and realization of the main mechanical tests: tensile, hardness, impact. Penetrant and magnetic particles. Metallography of steels and aluminum. Fatigue test. Mechanical tests polymers.

TEMARIO

Ciencia de los materiales. Aleaciones de metal. Diagramas de equilibrio. Introducción a aceros de construcción mecánicas. Fe-C diagrama de equilibrio. Diagramas TTT. Hierro fundido. Las aleaciones de aluminio. Las aleaciones de cobre. Cerámica. Polímeros. Procesamiento, la degradación y el reciclado de polímeros. LAB: Estudio y realización de las principales pruebas mecánicas: resistencia a la tracción, dureza, impacto. Penetrantes y partículas magnéticas. Metalografía de aceros y aluminio. Prueba de resistencia. Ensayos mecánicos polímeros.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Experimentação
- Simulação

METODOLOGIA DIDÁTICA

Aulas expositívas, aulas práticas de laboratório, exercícios, discussão e resolução de casos

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Química- ligações químicas

Física- Conceitos de dilatação térmica, densidade, condutibilidade térmica e elétrica, unidades de medida, análise dimensional

CONTRIBUIÇÃO DA DISCIPLINA

Os conhecimentos adquiridos na disciplina fazem parte da fundamentação teórica básica de um engenheiro, sendo aplicados rotineiramente em sua vida profissional. A premissa é que o engenheiro projetará, construirá ou ainda, administrará a produção de componentes e que estes serão fabricadas com algum material. Assim, a disciplina possibilitará ao aluno compreender a constituição dos materiais metálicos de um ponto de vista mais amplo, envolvendo sua estrutura cristalina, sua microestrutura e as relações destas com as propriedades mecânicas.

Adicionalmente, a disciplina também apresentará aos alunos de engenharia que os materiais, empregados em componentes por eles projetados, também poderão ser projetados ou desenvolvidos para um determinada finalidade, maximizando o desempenho do produto final.

2020-ETM203 página 2 de 10

BIBLIOGRAFIA

Bibliografia Básica:

SHACKELFORD, James F. Introduction to materials science for engineers. 4. ed. New Jersey: Prentice-Hall, c1996. 670 p. ISBN 0024097616.

Bibliografia Complementar:

ASHBY, Michael F; JONES, David R. H. Engenharia de materiais. Trad. da 3 ed. americana por Arlete Simille Marques. Rio de Janeiro , RJ: Elsevier, 2007. v. 1. 371 p. ISBN 9788535223620.

CALLISTER JR., William D. Ciência e engenharia de materiais: uma introdução. SOARES, Sérgio Murilo Stamile (trad.), d'ALMEIDA, José Roberto Moraes de (Rev.). 7. ed. Rio de Janeiro, RJ: LTC, 2007. 705 p. ISBN 9788521615958.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

Peso de $MP(k_p)$: 7,0 Peso de $MT(k_m)$: 3,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A nota dos trabalhos será composta por 5,0 pontos referentes aos relatórios realizados e entregues em aula de laboratório e 5,0 pontos referentes aos trabalhos realizados via moodle.

Como todos os trabalhos serão realizados e entregues via moodle, com prazo de uma semana para sua realização e avisados antecipadamente em sala e por mensagem no moodle, não haverá trabalho substitutivo.

Esta disciplina opta pela concessão prevista na resolução CEUN-CEPE 02.12.2008.

2020-ETM203 página 3 de 10

OUTRAS INFORMAÇÕES

2020-ETM203 página 4 de 10

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
CES	Edupack	

2020-ETM203 página 5 de 10

2020-ETM203 página 6 de 10

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana		
1 L	Inicio das aulas da la série.	0
1 T	Inicio das aulas da la série.	0
2 L	Palestra sobre segurança nos laboratórios e assinatura do termo	1% a 10%
	de compromisso. Apresentação dos laboratórios e dos critérios de	
	avaliação da disciplina.	
2 T	Apresentação do professor e da temática do curso. Apresentação do	1% a 10%
	software CES Edupack e propriedades dos materiais.	
3 T	CARNAVAL	0
3 L	CARNAVAL	0
4 T	Apresentação do professor e da temática do curso. Apresentação do	1% a 10%
	software CES Edupack e propriedades dos materiais.	
4 L	Palestra sobre segurança nos laboratórios e assinatura do termo	1% a 10%
	de compromisso. Apresentação dos laboratórios e dos critérios de	
	avaliação da disciplina.	
5 T	Breve revisão de ligações químicas.Definição de força de ligação	1% a 10%
	e energia de ligação. Relação entre propriedades físicas e o tipo	
	da ligação química, características gerais dos metais, cerâmicas	
	e polímeros.	
5 L	Deformação elástica dos materiais: ensaio de tração instrumentado	91% a
	com extensômetros e medidor acústico em Al, aço e polímero	100%
	(cálculo do módulo de elasticidade , deformação elástica sob	
	mesma carga).	
6 T	Breve revisão de ligações químicas.Definição de força de ligação	1% a 10%
	e energia de ligação. Relação entre propriedades físicas e o tipo	
	da ligação química, características gerais dos metais, cerâmicas	
	e polímeros.	
6 L	Deformação elástica dos materiais: ensaio de tração instrumentado	91% a
	com extensômetros e medidor acústico em Al, aço e polímero	100%
	(cálculo do módulo de elasticidade , deformação elástica sob	
	mesma carga).	
7 L	Ensaio de tração com escoamento nítido (metais).	91% a
		100%
7 T	Exercícios em sala- Lista de exercícios extra sobre energia de	91% a
	ligação química e propriedades físicas.Resolução individual e	100%
	correção no final da aula	
8 L	Ensaio de tração com escoamento nítido (metais).	91% a
		100%
8 T	Exercícios em sala- Lista de exercícios extra sobre energia de	91% a
	ligação química e propriedades físicas.Resolução individual e	100%
	correção no final da aula	
9 L	Semana de provas	0
9 T	Semana de provas	0

2020-ETM203 página 7 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

10 T		
	Estrutura cristalina dos metais, reticulados cristalinos,	11% a 40%
	parâmetros do reticulado, número de coordenação - estruturas CCC,	
	CFC e HC. Estrutura polimérica e cerâmica.	
10 L	Ensaio de tração com escoamento não-nítido (limite de escoamento	91% a
	0,2%).	100%
11 T	Estrutura cristalina dos metais, reticulados cristalinos,	11% a 40%
	parâmetros do reticulado, número de coordenação - estruturas CCC,	
	CFC e HC. Estrutura polimérica e cerâmica.	
11 L	Ensaio de tração com escoamento não-nítido (limite de escoamento	91% a
	0,2%).	100%
12 Т	Exercícios em sala. Fator de empacotamento atômico das estruturas	91% a
	CCC e CFC. Cálculo de densidade teórica e materiais	100%
	policristalinos e introdução às imperfeições cristalinas.	
12 L	Materiais cerâmicos e ensaio de flexão em cerâmicas (cálculo do	91% a
	módulo de ruptura - MOR)	100%
13 Т	Exercícios em sala. Fator de empacotamento atômico das estruturas	91% a
- -	CCC e CFC. Cálculo de densidade teórica e materiais	100%
	policristalinos e introdução às imperfeições cristalinas.	1000
13 L	Materiais cerâmicos e ensaio de flexão em cerâmicas (cálculo do	91% a
13 1	módulo de ruptura - MOR)	100%
14 Т	Imperfeições cristalinas e estruturas não-cristalinas.	1% a 10%
14 L	Ensaio de impacto (estudo de caso do Titanic).	91% a
14 11	Ensaro de Impacto (estado de caso do IItanie).	100%
15 Т	SEMANA SMILE DE INOVAÇÃO	0
15 L	SEMANA SMILE DE INOVAÇÃO SEMANA SMILE DE INOVAÇÃO	0
16 T		 1% a 10%
	Imperfeições cristalinas e estruturas não-cristalinas.	91% a
16 L	Ensaio de impacto (estudo de caso do Titanic).	91% a 100%
17 m	Maraniamas de andimorto anliginais assumbaniais matilias	
17 T	Mecanismos de endurecimento aplicáveis aos materiais metálicos.	1% a 10%
17 L	Ensaios de dureza (escalas Brinell, Rockwell, Vickers e Shore	91% a
10 =	A/D).	100%
18 T	Mecanismos de endurecimento aplicáveis aos materiais metálicos.	1% a 10%
18 L	Ensaios de dureza (escalas Brinell, Rockwell, Vickers e Shore	91% a
	A/D).	100%
19 L	Semana de provas	0
19 T	Semana de provas	0
20 L	Semana de provas	0
20 Т	Semana de provas	0
21 T	Plantão de dúvidas	91% a
		100%
21 L	Plantão de dúvidas	91% a
		100%
22 L	Semana de provas	0
22 T	Semana de provas	0
	Semana de provas	0
23 Т		

2020-ETM203 página 8 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

24 T	Ligas metálicas, generalidades, soluções sólidas - Introdução aos	41% a 60%
	diagramas de equilíbrio. Cálculos e sequência de solidificação no	
	diagrama isomorfo	
24 L	Observação de estruturas bifásicas (latão alfa e latão alfa-beta)	91% a
	Exercícios - cálculos e sequência de solidificação	100%
25 T	Ligas metálicas, generalidades, soluções sólidas - Introdução aos	41% a 60%
	diagramas de equilíbrio. Cálculos e sequência de solidificação no	
	diagrama isomorfo	
25 L	Observação de estruturas bifásicas (latão alfa e latão alfa-beta)	91% a
	Exercícios - cálculos e sequência de solidificação	100%
26 Т	Diagramas de equilíbrio. Cálculos e sequência de solidificação	41% a 60%
	nos diagramas eutético, eutetóide e peritético	
26 L	Observação de microestruturas hipoeutética, eutética e	91% a
	hipereutética. (sistema Al-Si)Exercícios- cálculos e sequência de	100%
	solidificação	
27 Т	Diagramas de equilíbrio. Cálculos e sequência de solidificação	41% a 60%
	nos diagramas eutético, eutetóide e peritético	
27 L	Observação de microestruturas hipoeutética, eutética e	91% a
	hipereutética. (sistema Al-Si)Exercícios- cálculos e sequência de	100%
	solidificação	1000
28 Т	Introdução ao diagrama Fe-Fe3C. Exercícios sobre diagrama Fe-Fe3C	41% a 60%
28 L	Metalografia e observação de estruturas de aços resfriados	91% a
	lentamente	100%
29 Т	Introdução ao diagrama Fe-Fe3C. Exercícios sobre diagrama Fe-Fe3C	41% a 60%
29 L	Metalografia e observação de estruturas de aços resfriados	91% a
	lentamente	100%
30 T	Semana de provas	0
30 L	Semana de provas	0
31 T	Os materiais estruturais - Metais não ferrosos mais importantes	1% a 10%
31 L	Ensaios não-destrutivos.	91% a
J1 1	Embaros nas descrativos.	100%
32 T	Os materiais estruturais - Metais não ferrosos mais importantes	1% a 10%
32 L	Ensaios não-destrutivos.	91% a
	Embaros nas descrativos.	100%
33 Т	Introdução aos materiais poliméricos	1% a 10%
33 L	Síntese polimérica e caracterização	91% a
] JJ II	bineese polimerica e caracterização	100%
34 T	Introdução aos materiais poliméricos	1% a 10%
34 L	Síntese polimérica e caracterização	91% a
34 11	Sincese polimerica e caracterização	100%
35 T	Progoggamento do polímeros	1% a 10%
	Processamento de polímeros Francios megânicos de polímeros	91% a
35 L	Ensaios mecânicos de polímeros.	
26 17	Progoggamento do polímeros	19 2 109
36 T	Processamento de polímeros	1% a 10%
36 L	Ensaios mecânicos de polímeros.	91% a
27.	Dl.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100%
37 L	Plantão de dúvidas	91% a
		100%

2020-ETM203 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

37 T	Plantão de dúvidas	91% a
		100%
38 T	Semana de provas	0
38 L	Semana de provas	0
39 T	Semana de provas	0
39 L	Semana de provas	0
40 L	Plantão de dúvidas	91% a
		100%
40 T	Plantão de dúvidas	91% a
		100%
41 L	Plantão de dúvidas	0
41 T	Plantão de dúvidas	0
Legend	a: T = Teoria, E = Exercício, L = Laboratório	

2020-ETM203 página 10 de 10