Основы глубинного обучения

Лекция 4

Оптимизация в глубинном обучении. Свёрточные архитектуры.

Шабалин Александр

НИУ ВШЭ, 2024

Инициализации

Internal covariate shift

Инициализация весов

- Не должно быть симметрий (плохо инициализировать всё одним числом)
- Хороший вариант:

$$w_j \sim \frac{2}{\sqrt{n}} \mathcal{N}(0,1)$$

n — число входов

• Пытаемся сделать так, чтобы масштаб всех выходов был примерно одинаковым

https://www.tensorflow.org/tutorials/images/data_augmentation

https://github.com/albumentations-team/albumentations

- Много разных вариантов
- «Бесплатное» расширение обучающей выборки
- В некотором смысле регуляризация модели

- Обычно аугментации случайно применяют к картинкам из текущего батча
- На этапе применения можно сделать несколько аугментаций картинки, применить сеть к каждой, усреднить предсказания

Test-time Augmentation (TTA)

• Аугментации могут быть полезны и во время инференса!

• Можно гарантированно улучшить качество, усредняя предсказания модели для разных аугментаций изображения

Архитектуры свёрточных сетей

LeNet (1998)

LeNet (1998)

- Для данных MNIST
- Идея end-to-end обучения
- Использовали аугментацию
- Около 60.000 параметров
- Доля ошибок на тесте 0.8%

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Около 1.200.000 изображений
- 1000 классов

AlexNet (2012)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky

University of Toronto

kriz@cs.utoronto.ca

Ilya Sutskever

University of Toronto

ilya@cs.utoronto.ca

Geoffrey E. Hinton

University of Toronto

hinton@cs.utoronto.ca

AlexNet (2012)

AlexNet (2012)

- Используют ReLU, аугментацию, dropout
- Градиентный спуск с инерцией (momentum)
- Обучение на двух GPU (5-6 суток)
- Около 60 миллионов параметров

Ошибка около 17%

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman*

Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk

ConvNet Configuration									
A	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224×224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
			pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
	maxpool								
FC-4096									
FC-4096									
FC-1000									
soft-max									

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	Е
Number of parameters	133	133	134	138	144

- Только маленькие свёртки
 - Меньше параметров
 - Больше нелинейностей (т.к. больше свёрточных слоёв)
- Градиентный спуск с инерцией
- Dropout для двух первых полносвязных слоёв

• Хитрая инициализация (сначала обучается вариант A со случайными начальными весами, потом им инициализируются более глубокие сети)

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test (Q)		
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

GoogLeNet (2014)

Going Deeper with Convolutions

```
Christian Szegedy<sup>1</sup>, Wei Liu<sup>2</sup>, Yangqing Jia<sup>1</sup>, Pierre Sermanet<sup>1</sup>, Scott Reed<sup>3</sup>,

Dragomir Anguelov<sup>1</sup>, Dumitru Erhan<sup>1</sup>, Vincent Vanhoucke<sup>1</sup>, Andrew Rabinovich<sup>4</sup>

<sup>1</sup>Google Inc. <sup>2</sup>University of North Carolina, Chapel Hill

<sup>3</sup>University of Michigan, Ann Arbor <sup>4</sup>Magic Leap Inc.
```

¹{szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke}@google.com
²wliu@cs.unc.edu, ³reedscott@umich.edu, ⁴arabinovich@magicleap.com

GoogLeNet (2014)

(b) Inception module with dimensionality reduction

GoogLeNet (2014)

- Снижается число каналов перед «тяжёлыми» свёртками
- Несколько выходных слоёв для улучшения обучаемости
- В конце нет линейных слоев, вместо них global average pooling

- Обучается градиентным спуском с инерцией
- Ошибка 6.67% на ImageNet

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- Добавление слоёв в свёрточную сеть ухудшает качество даже на обучении
- Хотя возможностей для переобучения больше, сеть почему-то не может ими воспользоваться

- Добавили Batch Normalization
- Heт MaxPooling слоев
- Даёт низкую ошибку на обучении даже с 1000 слоёв (но там плохо на тестовой выборке)
- Обучается градиентным спуском с инерцией со случайной инициализацией
- Топ-5 ошибка 3.57% на ImageNet

Эволюция архитектур

DenseNet

- Каждый слой связан со всеми следующими
- Очень мало каналов
- 20М параметров
- Топ-5 ошибка 6.6% на ImageNet

MobileNet

- Легковестная модель для мобильных девайсов
- Используют depthwise и pointwise свертки
- 4.2М параметров

• Топ-5 ошибка 10.1% на ImageNet

Что ещё?

- Highway networks
- Inception-ResNet
- Squeeze and Excitation Network
- NASNet
- EfficientNet
- ...

Transfer Learning

- Обучаем модель на большом датасете
- На маленьком датасете дообучаем голову (linear probing) или всю модель (fine-tuning)

• Позволяет переиспользовать накопленные знания

