About Sellmeier relation and the calculation of the material dispersion :

See: https://en.wikipedia.org/wiki/Sellmeier equation

See also: https://www.rp-photonics.com/sellmeier formula.html

Sellmeier equation

From Wikipedia, the free encyclopedia

The **Sellmeier equation** is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium.

It was first proposed in 1872 by Wilhelm Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling dispersion.^[1]

Contents [hide]

- 1 The equation
- 2 Coefficients
- 3 See also
- 4 References
- 5 External links

The equation [edit]

In its original and the most general form, the Sellmeier equation is given as

$$n^2(\lambda) = 1 + \sum_i rac{B_i \lambda^2}{\lambda^2 - C_i},$$

where n is the refractive index, λ is the wavelength, and B_i and C_i are experimentally determined *Sellmeier coefficients*. These coefficients are usually quoted for λ in micrometres. Note that this λ is the vacuum wavelength, not that in the material itself, which is λ/n . A different form of the equation is sometimes used for certain types of materials, e.g. crystals.

Each term of the sum representing an absorption resonance of strength B_i at a wavelength $\sqrt{C_i}$. For example, the coefficients for BK7 below correspond to two absorption resonances in the ultraviolet, and one in the mid-infrared region. Close to each absorption peak, the equation gives non-physical values of $n^2 = \pm \infty$, and in these wavelength regions a more precise model of dispersion such as Helmholtz's must be used.

If all terms are specified for a material, at long wavelengths far from the absorption peaks the value of n tends to

$$n pprox \sqrt{1 + \sum_i B_i} pprox \sqrt{arepsilon_r}$$
 ,

where ε_r is the relative dielectric constant of the medium.

For characterization of glasses the equation consisting of three terms is commonly used: [2][3]

$$n^2(\lambda) = 1 + rac{B_1 \lambda^2}{\lambda^2 - C_1} + rac{B_2 \lambda^2}{\lambda^2 - C_2} + rac{B_3 \lambda^2}{\lambda^2 - C_3},$$

As an example, the coefficients for a common borosilicate crown glass known as BK7 are shown below:

Coefficient	Value		
B ₁	1.03961212		
B ₂	0.231792344		
B ₃	1.01046945		
C ₁	6.00069867×10 ⁻³ µm ²		
C ₂	2.00179144×10 ⁻² µm ²		
C ₃	1.03560653×10 ² µm ²		

The Sellmeier coefficients for many common optical materials can be found in the online database of RefractiveIndex.infor ₽.

For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10^{-6} over the wavelengths' range^[4] of 365 nm to 2.3 µm, which is of the order of the homogeneity of a glass sample.^[5] Additional terms are sometimes added to make the calculation even more precise.

Sometimes the Sellmeier equation is used in two-term form:[6]

$$n^2(\lambda)=A+rac{B_1\lambda^2}{\lambda^2-C_1}+rac{B_2\lambda^2}{\lambda^2-C_2}.$$

Here the coefficient *A* is an approximation of the short-wavelength (e.g., ultraviolet) absorption contributions to the refractive index at longer wavelengths. Other variants of the Sellmeier equation exist that can account for a material's refractive index change due to temperature, pressure, and other parameters.

Coefficients [edit]

Table of coefficients of Sellmeier equation[7]

Material	B ₁	B ₂	B ₃	C ₁ , µm ²	C ₂ , µm ²	C ₃ , µm ²
borosilicate crown glass (known as <i>BK7</i>)	1.03961212	0.231792344	1.01046945	6.00069867×10 ⁻³	2.00179144×10 ⁻²	103.560653
sapphire (for ordinary wave)	1.43134930	0.65054713	5.3414021	5.2799261×10 ⁻³	1.42382647×10 ⁻²	325.017834
sapphire (for extraordinary wave)	1.5039759	0.55069141	6.5927379	5.48041129×10 ⁻³	1.47994281×10 ⁻²	402.89514
fused silica	0.696166300	0.407942600	0.897479400	4.67914826×10 ⁻³	1.35120631×10 ⁻²	97.9340025
Magnesium fluoride	0.48755108	0.39875031	2.3120353	0.001882178	0.008951888	566.13559

For pure silica (SiO_2) , which is the material used for manufacturing most of the optical fibers, the Sellmeier relation is

$$n^2-1=rac{0.6961663\lambda^2}{\lambda^2-0.0684043^2}+rac{0.4079426\lambda^2}{\lambda^2-0.1162414^2}+rac{0.8974794\lambda^2}{\lambda^2-9.896161^2}$$

Let us note that:

- 1- the above relation is also called "dispersion formula".
- 2- The phase velocity is $v_{\varphi} = \frac{c}{n}$. In guided optics, $v_{\varphi} = \frac{\omega}{\beta}$
- 3- The group index is $n_g=n-\lambda \frac{dn}{d\lambda}$ and the group velocity is $v_g=\frac{c}{n_g}$. In guided optics, $v_g=\frac{d\omega}{d\beta}$
- 4- the derivative $dn/d\lambda$ is often called "chromatic dispersion".
- 5- Furthermore, as shown in the provided written course of chapter 4, the quantity $\frac{d^2\beta}{d\omega^2} = \frac{d(\frac{L}{v_g})}{d\omega}$ is called "group velocity dispersion = GVD", while it is rather a quantity corresponding to a group time delay dispersion (the group time delay t_g over a length of propagation L being related to v_g by $v_g = \frac{L}{t_g} = t_g = \frac{L}{v_g}$).

From the above relations, one can easily show that $\frac{d^2\beta}{d\omega^2} = \frac{1}{c}\frac{dn_g}{d\omega} = \frac{\lambda^3}{2\pi c^2}\frac{d^2n}{d\lambda^2}$. This quantity can be expressed in s²/m or in fs²/mm

- 6- Finally, the chromatic material dispersion is $D=D_{mat}=\frac{1}{L}\frac{dt_g}{d\lambda}=-\frac{\lambda}{c}\frac{d^2n}{d\lambda^2}$. It is expressed in s/(m.m) or ps/(nm.km).
- 7- From 5 and 6, we easily see that the relation between the GVD $\frac{d^2\beta}{d\omega^2}$ and the chromatic dispersion D is : $\frac{d^2\beta}{d\omega^2} = -\frac{\lambda^2}{2\pi c}$. D

On the following internet site, one can easily find the curve $n = f(\lambda)$ for different materials, and in particular for pure silica :

https://refractiveindex.info/?shelf=main&book=SiO2&page=Malitson

On this page, one can obtain the refractive index at a given wavelength, the derivative $dn/d\lambda$, the group index, the GVD and the chromatic dispersion, at this wavelength.