Introducción al Aprendizaje Profundo

Bere & Ricardo Montalvo Lezama

github.com/richardtml/riiaa-20-aa

Agosto 2020

En este taller

- Aprendizaje de Máquinas
 - Introducción
 - Regresión lineal

- Aprendizaje Profundo
 - Perceptrón multicapa
 - Redes convolucionales
 - Panorama

Aprendizaje de Máquinas

IA, AM y AP

Tipos de aprendizaje

¿Cómo funciona el aprendizaje de máquinas?

- Programas que aprenden a partir de ejemplos.
- Se aprende un modelo: función parámetrizada.

Aprendizaje supervisado

- La función de pérdida compara la salida verdadera con la salida predicha.
- Se minimiza la pérdida para actualizar los parámetros del modelo.
- El más común de los tipos de aprendizaje.

Regresión y Clasificación

Regresión

¿Cual será la temperatura mañana?

Clasificación

¿Cómo será el día mañana?

Regresión lineal

• Regresión: predecir una salida continua.

repetir hasta converger:

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

repetir hasta converger:

$$\theta_0 := \theta_0 - \frac{\alpha}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$$

$$\theta_{0} := \theta_{0} - \frac{\alpha}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$$

$$\theta_{1} := \theta_{1} - \frac{\alpha}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x^{(i)}$$

algoritmo de entrenamiento

Descenso por gradiente

• Avanzar hacia la dirección con menor pérdida.

repetir hasta converger:

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

Evaluación

- Aprendizaje iterativo en entrenamiento y validación.
- Evaluación final en prueba.

Limitaciones

Aprendizaje Profundo

Una receta con mucho exito

Representación de imágenes

Se representan con una matriz de valores de píxeles por cada color.

MNIST 1x28x28, CIFAR-10 3x32x32, ImageNet 3x256x256.

Perceptrón multicapa

• Conjuntos de neuronas completamente conectadas.

Funciones de activación (I)

- Función no lineal a la salida de la neurona.
 - Sigmoide: clasificación binaria.
 - Softmax: clasificación multiclase.

Sigmoide

$$sigmoid(x) = \frac{1}{1 + \exp(-x)}$$

Softmax

$$z = softmax(x)$$

$$z_{j} = \frac{\exp(x_{j})}{\sum_{k} \exp(x_{k})}$$

¡tiempo de programar! 1a_mlp.ipynb

Redes Convolucionales

Arquitectura LeNet

Convolución

ventaneo por columnas

Convolución: entrada 5×5 , salida 3×3 , filtro 3x3.

Muestreo

Muestreo máximo: entrada 5×5 , salida 3×3 , paso 1x1.

Funciones de activación (II)

- Función no lineal a la salida de la neurona.
 - ReLu: capas ocultas.

ReLu

relu(x) = max(0,x)

Funciones de activación (II)

- Función no lineal a la salida de la neurona.
 - ReLu: capas ocultas.
 - Softmax: clasificación multiclase.

ReLu

relu(x) = max(0,x)

Softmax

$$z = softmax(x)$$

$$z_{j} = \frac{\exp(x_{j})}{\sum_{k} \exp(x_{k})}$$

¡tiempo de programar! 2a_cnn.ipynb

Tareas de Visión

Arquitecturas

¡Gracias!

Ricardo Montalvo Lezama

http://turing.iimas.unam.mx/~ricardoml/ ricardoml@turing.iimas.unam.mx

Bere Montalvo Lezama

http://turing.iimas.unam.mx/~bereml/
 bereml@turing.iimas.unam.mx