Predict Car Prices with Machine Learning

Table of Contents

- 1. <u>Step 1 : Menentukan Label Data</u> 6. <u>Step 6: Membersihkan Data</u>
- 2. Step 2: Mengumpulkan Data 7. Step 7: Mengkonstruksi Data
- 3. <u>Step 3: Menelaah Data</u> 8. <u>Step 8: Membangun Model</u>
- 4. <u>Step 4: Memvalidasi Data</u> 9. <u>Step 9: Mengevaluasi Hasil Pemodelan</u>
- 5. <u>Step 5: Menentukan Objek Data</u>

Machine learning yang digunakan adalah dengan pemrograman Python

Label/target: kolom 'Price'

Menentukan Label Data

Fitur: Kolom selain 'Price'

Total kolom dataset ada 18 kolom yang termasuk di dalamnya mencakup informasi mengenai Id, price, levy, manufacturer, model, production year, category, leather interior, fuel type, engine volume, mileage, cylinders, gear box type, drive wheels, doors, wheel, color dan airbags.

Mengumpulkan Data

Car price prediction dataset ini diambil dari Kaggle:

https://www.kaggle.com/datasets/deepcontractor/car-price-prediction-challenge

Dan merupakan sekumpulan data yang memiliki 19237 baris x 18 kolom. Tujuan dari dataset adalah untuk menentukan prediksi harga mobil berdasarkan fitur-fitur yang dimiliki oleh dataset.

Menelaah Data

Category sedan merupakan category yang paling banyak

Production year yang memiliki jumlah paling banyak mulai tahun 2010 hingga tahun 2016

Hyundai dan toyota merupakan merupakan jumlah brand manufacturer yang paling dominan

Diesel merupakan fuel type yang memiliki harga paling murah, sedangkan CNG merupakan fuel type dengan harga paling mahal

Memvalidasi Data

```
# Check Duplikasi
dataset.duplicated().sum()
313
```

Setelah dilakukan pengecekan duplikasi data, didapatkan sebanyak 313 data duplikasi

```
dataset['Levy'].unique()
array(['1399', '1018', '-', '862', '446', '891',
'761', '751', '394', '1053', '1055', '1079', '810',
'2386', '1850', '531', '586', ...
```

Terdapat nilai (-) dan tipe datanya 'object' maka dilakukan penggantian untuk (-) menjadi (0) dan tipe datanya menjadi integer

Menentukan Object Data

	Price	Levy	Manufacturer	Model	Prod. year	Category	Leather interior	Fuel type	Engine volume	Mileage	Cylinders	Gear box type	Drive wheels	Wheel	Color	Airbags
0	13328	1399	LEXUS	RX 450	2010	Jeep	Yes	Hybrid	3.5	186005 km	6.0	Automatic	4x4	Left wheel	Silver	12
1	16621	1018	CHEVROLET	Equinox	2011	Jeep	No	Petrol	3	192000 km	6.0	Tiptronic	4x4	Left wheel	Black	8
2	8467	0	HONDA	FIT	2006	Hatchback	No	Petrol	1.3	200000 km	4.0	Variator	Front	Right- hand drive	Black	2
3	3607	862	FORD	Escape	2011	Jeep	Yes	Hybrid	2.5	168966 km	4.0	Automatic	4x4	Left wheel	White	0
4	11726	446	HONDA	FIT	2014	Hatchback	Yes	Petrol	1.3	91901 km	4.0	Automatic	Front	Left wheel	Silver	4

#Histogram:

Pembatasan nilai pada batas atas dan batas bawah: threshold_low = 1000 threshold_high = 100000

Membersihkan Data

1. Duplikasi data berkaitan dengan integritas dan keakuratan analisis data oleh karena itu 313 data duplikasi tersebut di drop

```
# karena ada duplikasi maka 'drop' duplikasi
dataset.drop_duplicates(inplace= True)
```

2. Kolom Levy yang missing value diisi dengan 0 (nol)

```
dataset["Levy"] = np.where(dataset["Levy"] == "-" ,0 , dataset["Levy"]).astype(int)
```


Mengkonstruksi Data

Kolom	Keterangan
Mileage	Menghapus 'km' dan mengubahnya menjadi tipe data integer
Fuel type	Merubah setiap hybrid menjadi Fuel (petrol) + Electric source
Engine volume	Menghapus kata 'turbo' dan mengubah tipe data menjadi float, kemudian merubah setiap nilai (0) dan >10 dengan nilai yang sesuai.
Electric Source	Membuat Kolom baru yang hanya berisi data "Hybrid" dan bertipe data float

Mengkonstruksi Data

```
Data columns (total 16 columns):
                     Non-Null Count Dtype
    Column
    Price
                    18924 non-null int64
                     18924 non-null object
    Levy
    Manufacturer
                     18924 non-null object
    Model
                     18924 non-null object
    Prod. year
                    18924 non-null int64
               18924 non-null object
    Category
    Leather interior 18924 non-null object
    Fuel type
                     18924 non-null object
    Engine volume
                    18924 non-null object
    Mileage
                    18924 non-null object
    Cylinders
                    18924 non-null float64
    Gear box type 18924 non-null object
 12 Drive wheels
                     18924 non-null object
                    18924 non-null object
13 Wheel
                    18924 non-null object
 14 Color
15 Airbags
                    18924 non-null int64
dtypes: float64(1), int64(3), object(12)
```

Data	columns (total 17	columns):	
#	Column	Non-Null Count	Dtype
0	Price	18924 non-null	int64
1	Levy	18924 non-null	int64
2	Manufacturer	18924 non-null	object
3	Model	18924 non-null	object
4	Prod. year	18924 non-null	int64
5	Category	18924 non-null	object
6	Leather interior	18924 non-null	object
7	Fuel type	18924 non-null	object
8	Engine volume	18924 non-null	object
9	Mileage	18924 non-null	object
10	Cylinders	18924 non-null	float64
11	Gear box type	18924 non-null	object
12	Drive wheels	18924 non-null	object
13	Wheel	18924 non-null	object
14	Color	18924 non-null	object
15	Airbags	18924 non-null	int64
16	Electric source	18924 non-null	float64
dtype	es: float64(2), int	t64(4), object(1	1)

Data Info before construction

Back

Data Info after construction

Distribusi Data

Korelasi Data

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Label / target: kolom 'Price'

Mengkonstruksi Data

Fitur kategorikal: Dilabeling dengan LabelEncoder

Hasil:

9 fitur ter-encode ke numerik:

Manufacturer	Model	Category	Leather interior	Fuel type	Gear box type	Drive wheels	Wheel	Color
LEXUS	RX 450	Jeep	Yes	Petrol	Automatic	4x4	Left wheel	Silve
CHEVROLET	Equinox	Jeep	No	Petrol	Tiptronic	4x4	Left wheel	Black
HONDA	FIT	Hatchback	No	Petrol	Variator	Front	Right-hand drive	Blac

Mengkonstruksi Data

Selanjutnya dilakukan Feature Engineering menggunakan Robust scaler (untuk variabel X):

Back

```
#Bagi datanya menjadi Variabel
independen dan dependen
X = data.drop(['Price'], axis=1)
y = data['Price']
from sklearn.preprocessing import RobustScaler
scaler = RobustScaler()
scaler.fit(X)
X = scaler.transform(X)
                     X.tail(5)
                  \rightarrow
                                                              0.454545
                                                                      0.006961 -0.166667
                                                 -4.0 1.0 1.0 0.0 0.454545 -0.741299
                                                 0.0 2.0 0.0 0.0 0.363636
                      15701 -0 151515
                                                                      0.222738
                                                                                          0.357998
                                                 -3.0 0.0 0.0 0.0 0.000000
                                                 0.0 0.0 0.0 0.0 0.636364 0.132251
                                                                                          0.581288 0.0
```

Decision Tree

Membangun Model

Model akan ditrain pada 5 regressor, yaitu:

Linear regression

XGboost

X_train, X_test, y_train, y_test =

train test split(X,y, test size =

0.1, random state = 0)

Evaluasi Hasil Pemodelan

Linear Regression


```
lm = LinearRegression()
lm.fit(X_train, y_train)
```

Kategori	Train	Test
R-squared	33.04	36.51
MAE	9492.13	9594.38
RMSE	13702.88	13722.42

Random Forest

Kategori	Train	Test	Kategori	Train	Test
R-squared	96.11	80.49	R-squared	96.07	80.13
MAE	1821.56	4599.36	MAE	1837.68	4631.35
RMSE	3301.03	7606.61	RMSE	3338.60	7676.79

XGBoost

Kategori	Train	Test	Kategori	Train	Test
R-squared	88.38	80.48	R-squared	90.98	79.21
MAE	3741.63	4800.12	MAE	3389.00	4860.89
RMSE	5706.21	7608.96	RMSE	5029.33	7852.22

LightGBM

Kategori	Train	Test	Kategori	Train	Test
R-squared	90.20	80.30	R-squared	82.39	78.19
MAE	3398.98	4715.54	MAE	4472.95	5011.99
RMSE	5241.28	7642.56	RMSE	7026.16	8042.57

Decision Tree

Back

<pre>reg = DecisionTreeRegressor(random_state</pre>	=	0)
reg.fit(X_train, y_train)		

Kategori	Train	Test
R-squared	84.44	71.23
MAE	3692.71	5475.73
RMSE	6604.74	9237.61

Kategori	Train	Test	
R-squared	99.60	62.07	
MAE	82.26	5907.01	
RMSE	1049.53	10606.16	

Summary R-Squared

Model F	R-squared	Score
---------	-----------	-------

0	Random Forest	80.502944
1	XGBoost	80.480248
2	LightGBM	80.307476
3	Decision Tree	71.229785
4	Linear Regression	36.512955/

Summary

Dipilih model random forest untuk diteruskan ke model deployment

Thank You