m04_v01_store_sales_prediction

September 12, 2021

1 0.0. IMPORTS

1.1 0.1. Helper Functions

```
[2]: def cramer_v( x, y ):
    cm = pd.crosstab( x, y ).as_matrix()
    n = cm.sum()
    r, k = cm.shape

    chi2 = ss.chi2_contingency( cm )[0]
    chi2corr = max( 0, chi2 - (k-1)*(r-1)/(n-1) )

    kcorr = k - (k-1)**2/(n-1)
    rcorr = r - (r-1)**2/(n-1)

    return np.sqrt( (chi2corr/n) / ( min( kcorr-1, rcorr-1 ) ) )

def jupyter_settings():
    %matplotlib inline
    %pylab inline
```

```
plt.style.use( 'bmh' )
plt.rcParams['figure.figsize'] = [25, 12]
plt.rcParams['font.size'] = 24

display( HTML( '<style>.container { width:100% !important; }</style>') )
pd.options.display.max_columns = None
pd.options.display.max_rows = None
pd.set_option( 'display.expand_frame_repr', False )

sns.set()
```

[3]: jupyter_settings()

Populating the interactive namespace from numpy and matplotlib <IPython.core.display.HTML object>

1.2 0.2. Loading data

```
[5]: df_sales_raw = pd.read_csv( '../data/train.csv', low_memory=False )
    df_store_raw = pd.read_csv( '../data/store.csv', low_memory=False )

# merge
    df_raw = pd.merge( df_sales_raw, df_store_raw, how='left', on='Store' )
```

2 1.0. PASSO 01 - DESCRICAO DOS DADOS

```
[5]: df1 = df_raw.copy()
```

2.1 1.1. Rename Columns

2.2 1.2. Data Dimensions

```
[7]: print( 'Number of Rows: {}'.format( df1.shape[0] ) )
     print( 'Number of Cols: {}'.format( df1.shape[1] ) )
    Number of Rows: 1017209
    Number of Cols: 18
    2.3 1.3. Data Types
[8]: df1['date'] = pd.to_datetime( df1['date'] )
     df1.dtypes
[8]: store
                                               int64
                                               int64
    day_of_week
     date
                                      datetime64[ns]
     sales
                                               int64
                                               int64
     customers
     open
                                               int64
                                               int64
    promo
     state_holiday
                                              object
     school_holiday
                                               int64
     store_type
                                              object
     assortment
                                              object
     competition_distance
                                             float64
     competition_open_since_month
                                             float64
     competition_open_since_year
                                             float64
                                               int64
     promo2
    promo2_since_week
                                             float64
                                             float64
    promo2_since_year
    promo_interval
                                              object
    dtype: object
    2.4 1.4. Check NA
```

```
[9]: df1.isna().sum()
[9]: store
                                              0
     day_of_week
                                              0
     date
                                              0
     sales
                                              0
     customers
                                              0
                                              0
     open
     promo
                                              0
                                              0
     state_holiday
     school_holiday
                                              0
                                              0
     store_type
                                              0
     assortment
```

```
competition_distance 2642
competition_open_since_month 323348
competition_open_since_year 323348
promo2 0
promo2_since_week 508031
promo2_since_year 508031
promo_interval 508031
dtype: int64
```

2.5 1.5. Fillout NA

```
[10]: df1.sample()
```

[10]: store day of week date sales customers open promo state holiday school holiday store type assortment competition distance competition open since month competition open since year promo2 promo2_since_week promo2_since_year promo interval 519202 398 7 2014-03-23 0 0 C. c 1540.0 2012.0 NaN NaN 1 1.0 Jan,Apr,Jul,Oct

```
[11]: #competition_distance
     df1['competition distance'] = df1['competition distance'].apply( lambda x:__
      \rightarrow200000.0 if math.isnan(x) else x)
     #competition open since month
     df1['competition_open_since_month'] = df1.apply( lambda x: x['date'].month if_
      →math.isnan(x['competition_open_since_month']) else_
      →x['competition_open_since_month'], axis=1 )
     #competition_open_since_year
     df1['competition open since year'] = df1.apply( lambda x: x['date'].year if__
      →math.isnan(x['competition_open_since_year']) else_
      #promo2_since_week
     df1['promo2_since_week'] = df1.apply( lambda x: x['date'].week if math.isnan(__

¬x['promo2_since_week'] ) else x['promo2_since_week'], axis=1 )
     #promo2 since year
     df1['promo2_since_year'] = df1.apply( lambda x: x['date'].year if math.isnan(_

¬x['promo2_since_year'] ) else x['promo2_since_year'], axis=1 )
     #promo interval
     month_map = {1: 'Jan', 2: 'Fev', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', _
      →7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'}
```

```
[12]: df1.isna().sum()
```

```
0
[12]: store
      day_of_week
                                        0
      date
                                        0
      sales
                                        0
      customers
                                        0
      open
                                        0
                                        0
      promo
      state_holiday
                                        0
      school_holiday
                                        0
      store_type
                                        0
                                        0
      assortment
                                        0
      competition_distance
                                        0
      competition_open_since_month
      competition_open_since_year
                                        0
                                        0
      promo2
      promo2_since_week
                                        0
      promo2_since_year
                                        0
                                        0
      promo_interval
                                        0
      month_map
                                        0
      is promo
      dtype: int64
```

2.6 1.6. Change Data Types

2.7 1.7. Descriptive Statistics

2.7.1 1.7.1. Numerical Atributes

[15]:	attributes	min	max	range	mean
median	std skew	kurtos	is		
0	store	1.0	1115.0	1114.0	558.429727
558.0	321.908493 -0.000955	-1.20052	4		
1	day_of_week	1.0	7.0	6.0	3.998341
4.0	1.997390 0.001593 -	1.246873			
2	sales	0.0	41551.0	41551.0	5773.818972
5744.0	3849.924283 0.641460	1.7783	75		
3	customers	0.0	7388.0	7388.0	633.145946
609.0	464.411506 1.598650	7.09177	3		
4	open	0.0	1.0	1.0	0.830107
1.0	0.375539 -1.758045	1.090723			
5	promo	0.0	1.0	1.0	0.381515
0.0	0.485758 0.487838 -	1.762018			
6	school_holiday	0.0	1.0	1.0	0.178647
0.0	0.383056 1.677842	0.815154			
7	${\tt competition_distance}$	20.0	200000.0	199980.0	5935.442677
2330.0	12547.646829 10.242344	147.7897	12		
8 com	petition_open_since_month	1.0	12.0	11.0	6.786849
7.0	3.311085 -0.042076 -	1.232607			
9 cor	mpetition_open_since_year	1900.0	2015.0	115.0	2010.324840

```
2012.0
            5.515591 -7.235657 124.071304
10
                                     0.0
                                               1.0
                                                         1.0
                                                                 0.500564
                          promo2
1.0
         0.500000 -0.002255
                               -1.999999
11
               promo2_since_week
                                              52.0
                                                        51.0
                                                                23.619033
                                     1.0
22.0
         14.310057
                    0.178723
                                -1.184046
12
                                            2015.0
                                                         6.0 2012.793297
               promo2_since_year 2009.0
2013.0
            1.662657 -0.784436
                                  -0.210075
13
                                     0.0
                                               1.0
                                                         1.0
                                                                 0.155231
                        is_promo
0.0
         0.362124
                    1.904152
                                1.625796
```

```
[16]: sns.distplot( df1['competition_distance'], kde=False )
```

[16]: <matplotlib.axes._subplots.AxesSubplot at 0x157ae2520>

2.7.2 1.7.2. Categorical Atributes

```
plt.subplot( 1, 3, 2 )
sns.boxplot( x='store_type', y='sales', data=aux )

plt.subplot( 1, 3, 3 )
sns.boxplot( x='assortment', y='sales', data=aux )
```

[18]: <matplotlib.axes._subplots.AxesSubplot at 0x10312af10>

3 2.0. PASSO 02 - FEATURE ENGINEERING

```
[19]: df2 = df1.copy()
```

3.1 2.1. Mapa Mental de Hipoteses

```
[20]: Image( 'img/MindMapHypothesis.png' )
[20]:
```


3.2 2.2. Criacao das Hipoteses

3.2.1 2.2.1. Hipoteses Loja

- 1. Lojas com número maior de funcionários deveriam vender mais.
- 2. Lojas com maior capacidade de estoque deveriam vender mais.
- 3. Lojas com maior porte deveriam vender mais.
- 4. Lojas com maior sortimentos deveriam vender mais.
- 5. Lojas com competidores mais próximos deveriam vender menos.
- 6. Lojas com competidores à mais tempo deveriam vendem mais.

3.2.2 2.2.2. Hipoteses Produto

- 1. Lojas que investem mais em Marketing deveriam vender mais.
- 2. Lojas com maior exposição de produto deveriam vender mais.
- 3. Lojas com produtos com preço menor deveriam vender mais.
- 5. Lojas com promoções mais agressivas (descontos maiores), deveriam vender mais.
- 6. Lojas com promoções ativas por mais tempo deveriam vender mais.
- 7. Lojas com mais dias de promoção deveriam vender mais.

8. Lojas com mais promoções consecutivas deveriam vender mais.

3.2.3 2.2.3. Hipoteses Tempo

- 1. Lojas abertas durante o feriado de Natal deveriam vender mais.
- 2. Lojas deveriam vender mais ao longo dos anos.
- 3. Lojas deveriam vender mais no segundo semestre do ano.
- 4. Lojas deveriam vender mais depois do dia 10 de cada mês.
- 5. Lojas deveriam vender menos aos finais de semana.
- 6. Lojas deveriam vender menos durante os feriados escolares.

3.3 2.3. Lista Final de Hipóteses

- 1. Lojas com maior sortimentos deveriam vender mais.
- 2. Lojas com competidores mais próximos deveriam vender menos.
- 3. Lojas com competidores à mais tempo deveriam vendem mais.
- 4. Lojas com promoções ativas por mais tempo deveriam vender mais.
- 5. Lojas com mais dias de promoção deveriam vender mais.
- 7. Lojas com mais promoções consecutivas deveriam vender mais.
- 8. Lojas abertas durante o feriado de Natal deveriam vender mais.
- 9. Lojas deveriam vender mais ao longo dos anos.
- 10. Lojas deveriam vender mais no segundo semestre do ano.
- 11. Lojas deveriam vender mais depois do dia 10 de cada mês.
- 12. Lojas deveriam vender menos aos finais de semana.
- 13. Lojas deveriam vender menos durante os feriados escolares.

3.4 2.4. Feature Engineering

```
[21]: # year
df2['year'] = df2['date'].dt.year

# month
df2['month'] = df2['date'].dt.month

# day
df2['day'] = df2['date'].dt.day

# week of year
df2['week_of_year'] = df2['date'].dt.weekofyear
```

```
# year week
df2['year_week'] = df2['date'].dt.strftime( '%Y-%W' )
# competition since
df2['competition\_since'] = df2.apply( lambda x: datetime.datetime(_\precipitate))
→month=x['competition_open_since_month'],day=1 ), axis=1 )
df2['competition_time_month'] = ( ( df2['date'] - df2['competition_since'] )/30__
→).apply( lambda x: x.days ).astype( int )
# promo since

→df2['promo2_since_week'].astype( str )
df2['promo_since'] = df2['promo_since'].apply( lambda x: datetime.datetime.
\rightarrowstrptime( x + '-1', '%Y-%W-%w') - datetime.timedelta( days=7))
df2['promo_time_week'] = ( ( df2['date'] - df2['promo_since'] )/7 ).apply(__
→lambda x: x.days ).astype( int )
# assortment
df2['assortment'] = df2['assortment'].apply( lambda x: 'basic' if x == 'a' else_
# state holiday
df2['state holiday'] = df2['state holiday'].apply( lambda x: 'public holiday',
\rightarrow if x == 'a' else 'easter_holiday' if x == 'b' else 'christmas' if x == 'c'
⇔else 'regular_day' )
```

4 3.0. PASSO 03 - FILTRAGEM DE VARIÁVEIS

```
[22]: df3 = df2.copy()
```

4.1 3.1. Filtragem das Linhas

```
[23]: df3 = df3[(df3['open'] != 0) & (df3['sales'] > 0)]
```

4.2 3.2. Selecao das Colunas

```
[24]: cols_drop = ['customers', 'open', 'promo_interval', 'month_map']
df3 = df3.drop( cols_drop, axis=1 )
```

5 4.0. PASSO 04 - ANALISE EXPLORATORIA DOS DADOS

```
[25]: df4 = df3.copy()
```

5.1 4.1. Analise Univariada

5.1.1 4.1.1. Response Variable

[26]: sns.distplot(df4['sales'], kde=False)

[26]: <matplotlib.axes._subplots.AxesSubplot at 0x179ba10d0>

5.1.2 4.1.2. Numerical Variable

[27]: num_attributes.hist(bins=25);

5.1.3 4.1.3. Categorical Variable

```
[28]: # state holiday
     plt.subplot( 3, 2, 1 )
     a = df4[df4['state_holiday'] != 'regular_day']
     sns.countplot( a['state_holiday'] )
     plt.subplot(3, 2, 2)
     sns.kdeplot( df4[df4['state_holiday'] == 'public_holiday']['sales'],__
      →label='public_holiday', shade=True )
     sns.kdeplot( df4[df4['state_holiday'] == 'easter_holiday']['sales'],u
      →label='easter_holiday', shade=True )
     sns.kdeplot( df4[df4['state_holiday'] == 'christmas']['sales'],__
      →label='christmas', shade=True )
     # store type
     plt.subplot(3, 2, 3)
     sns.countplot( df4['store_type'] )
     plt.subplot( 3, 2, 4 )
     sns.kdeplot( df4[df4['store_type'] == 'a']['sales'], label='a', shade=True )
     sns.kdeplot( df4[df4['store_type'] == 'b']['sales'], label='b', shade=True )
     sns.kdeplot( df4[df4['store_type'] == 'c']['sales'], label='c', shade=True )
     sns.kdeplot( df4[df4['store_type'] == 'd']['sales'], label='d', shade=True )
     # assortment
     plt.subplot(3, 2, 5)
     sns.countplot( df4['assortment'] )
     plt.subplot(3, 2, 6)
     →shade=True )
     sns.kdeplot( df4[df4['assortment'] == 'basic']['sales'], label='basic', |
      ⇒shade=True )
     sns.kdeplot( df4[df4['assortment'] == 'extra']['sales'], label='extra', |
      →shade=True )
```

[28]: <matplotlib.axes._subplots.AxesSubplot at 0x167f7f4f0>

5.2 4.2. Analise Bivariada

5.2.1 H1. Lojas com maior sortimentos deveriam vender mais.

FALSA Lojas com MAIOR SORTIMENTO vendem MENOS.

[29]: <matplotlib.axes._subplots.AxesSubplot at 0x11764edc0>

5.2.2 H2. Lojas com competidores mais próximos deveriam vender menos.

FALSA Lojas com COMPETIDORES MAIS PROXIMOS vendem MAIS.

```
[30]: | aux1 = df4[['competition_distance', 'sales']].groupby('competition_distance').

sum().reset_index()

     plt.subplot( 1, 3, 1 )
     sns.scatterplot( x ='competition distance', y='sales', data=aux1 );
     plt.subplot( 1, 3, 2 )
     bins = list( np.arange( 0, 20000, 1000) )
     aux1['competition_distance_binned'] = pd.cut( aux1['competition_distance'],
      →bins=bins )
     aux2 = aux1[['competition_distance_binned', 'sales']].groupby(__
      sns.barplot( x='competition_distance_binned', y='sales', data=aux2 );
     plt.xticks( rotation=90 );
     plt.subplot( 1, 3, 3 )
     x = sns.heatmap( aux1.corr( method='pearson' ), annot=True );
     bottom, top = x.get_ylim()
     x.set_ylim( bottom+0.5, top-0.5 );
```


5.2.3 H3. Lojas com competidores à mais tempo deveriam vendem mais.

FALSE Lojas com COMPETIDORES À MAIS TEMPO vendem MENOS.

5.2.4 H4. Lojas com promoções ativas por mais tempo deveriam vender mais.

FALSA Lojas com promocoes ativas por mais tempo vendem menos, depois de um certo periodo de promocao

```
[32]: aux1 = df4[['promo_time_week', 'sales']].groupby( 'promo_time_week').sum().
      →reset_index()
      grid = GridSpec( 2, 3 )
      plt.subplot( grid[0,0] )
      aux2 = aux1[aux1['promo_time_week'] > 0] # promo extendido
      sns.barplot( x='promo_time_week', y='sales', data=aux2 );
      plt.xticks( rotation=90 );
      plt.subplot( grid[0,1] )
      sns.regplot( x='promo_time_week', y='sales', data=aux2 );
      plt.subplot( grid[1,0] )
      aux3 = aux1[aux1['promo_time_week'] < 0] # promo regular</pre>
      sns.barplot( x='promo_time_week', y='sales', data=aux3 );
      plt.xticks( rotation=90 );
      plt.subplot( grid[1,1] )
      sns.regplot( x='promo_time_week', y='sales', data=aux3 );
      plt.subplot( grid[:,2] )
      sns.heatmap( aux1.corr( method='pearson' ), annot=True );
```


- 5.2.5 H5. Lojas com mais dias de promoção deveriam vender mais.
- 5.2.6 H7. Lojas com mais promoções consecutivas deveriam vender mais.

FALSA Lojas com mais promocoes consecutivas vendem menos

```
[33]: df4[['promo', 'promo2', 'sales']].groupby(['promo', 'promo2']).sum().
      →reset_index()
        promo
[33]:
              promo2
                          sales
                     1482612096
           0
                   0
                     1289362241
     1
           0
                   1
     2
                     1628930532
            1
                   0
            1
                     1472275754
                   1
[34]: | aux1 = df4[( df4['promo'] == 1 ) & ( df4['promo2'] == 1 )][['year_week',__
     ax = aux1.plot()
     aux2 = df4[( df4['promo'] == 1 ) & ( df4['promo2'] == 0 )][['year_week',__
      →'sales']].groupby( 'year_week' ).sum().reset_index()
     aux2.plot( ax=ax )
     ax.legend( labels=['Tradicional & Extendida', 'Extendida']);
```


5.2.7 H8. Lojas abertas durante o feriado de Natal deveriam vender mais.

FALSA Lojas abertas durante o feriado do Natal vendem menos.

5.2.8 H9. Lojas deveriam vender mais ao longo dos anos.

FALSA Lojas vendem menos ao longo dos anos

```
[36]: aux1 = df4[['year', 'sales']].groupby( 'year' ).sum().reset_index()

plt.subplot( 1, 3, 1 )
    sns.barplot( x='year', y='sales', data=aux1 );

plt.subplot( 1, 3, 2 )
    sns.regplot( x='year', y='sales', data=aux1 );

plt.subplot( 1, 3, 3 )
    sns.heatmap( aux1.corr( method='pearson' ), annot=True );
```


5.2.9 H10. Lojas deveriam vender mais no segundo semestre do ano.

FALSA Lojas vendem menos no segundo semestre do ano

```
[37]: aux1 = df4[['month', 'sales']].groupby( 'month' ).sum().reset_index()

plt.subplot( 1, 3, 1 )
    sns.barplot( x='month', y='sales', data=aux1 );

plt.subplot( 1, 3, 2 )
    sns.regplot( x='month', y='sales', data=aux1 );

plt.subplot( 1, 3, 3 )
    sns.heatmap( aux1.corr( method='pearson' ), annot=True );
```


5.2.10 H11. Lojas deveriam vender mais depois do dia 10 de cada mês.

VERDADEIRA Lojas vendem mais depois do dia 10 de cada mes.

5.2.11 H12. Lojas deveriam vender menos aos finais de semana.

VERDADEIRA Lojas vendem menos nos final de semana

5.2.12 H13. Lojas deveriam vender menos durante os feriados escolares.

VERDADEIRA Lojas vendem menos durante os feriadso escolares, except os meses de Julho e Agosto.

5.2.13 4.2.1. Resumo das Hipoteses

Hipoteses	Conclusao	Relevancia		
H1	Falsa	Baixa		
H2	Falsa	Media		
Н3	Falsa	Media		
H4	Falsa	Baixa		
Н5	-	-		
Н7	Falsa	Baixa		
Н8	Falsa	Media		

```
H9 Falsa Alta
H10 Falsa Alta
H11 Verdadeira Alta
H12 Verdadeira Alta
H13 Verdadeira Baixa
```

5.3 4.3. Analise Multivariada

5.3.1 4.3.1. Numerical Attributes

```
[43]: correlation = num_attributes.corr( method='pearson' )
sns.heatmap( correlation, annot=True );
```


5.3.2 4.3.2. Categorical Attributes

```
[44]: # only categorical data
a = df4.select_dtypes( include='object' )

# Calculate cramer V
a1 = cramer_v( a['state_holiday'], a['state_holiday'] )
a2 = cramer_v( a['state_holiday'], a['store_type'] )
a3 = cramer_v( a['state_holiday'], a['assortment'] )

a4 = cramer_v( a['store_type'], a['state_holiday'] )
a5 = cramer_v( a['store_type'], a['store_type'] )
a6 = cramer_v( a['store_type'], a['assortment'] )
```

<ipython-input-2-a3b24802d76f>:2: FutureWarning: Method .as_matrix will be
removed in a future version. Use .values instead.
 cm = pd.crosstab(x, y).as_matrix()

[44]: <matplotlib.axes._subplots.AxesSubplot at 0x11c2eb130>

6 5.0. PASSO 05 - DATA PREPARATION

```
[87]: df5 = df4.copy()
```

6.1 5.1. Normalização

6.2 5.2. Rescaling

6.3 5.3. Transformação

6.3.1 5.3.1. Encoding

```
[89]: # state_holiday - One Hot Encoding
df5 = pd.get_dummies( df5, prefix=['state_holiday'], columns=['state_holiday'] )

# store_type - Label Encoding
le = LabelEncoder()
df5['store_type'] = le.fit_transform( df5['store_type'] )

# assortment - Ordinal Encoding
assortment_dict = {'basic': 1, 'extra': 2, 'extended': 3}
df5['assortment'] = df5['assortment'].map( assortment_dict )
```

6.3.2 5.3.2. Response Variable Transformation

```
[90]: df5['sales'] = np.log1p( df5['sales'] )
```

6.3.3 5.3.2. Nature Transformation

```
df5['day_of_week_cos'] = df5['day_of_week'].apply( lambda x: np.cos( x * ( 2. *u → np.pi/7 ) ) )

# month
df5['month_sin'] = df5['month'].apply( lambda x: np.sin( x * ( 2. * np.pi/12 )u → ) )
df5['month_cos'] = df5['month'].apply( lambda x: np.cos( x * ( 2. * np.pi/12 )u → ) )

# day
df5['day_sin'] = df5['day'].apply( lambda x: np.sin( x * ( 2. * np.pi/30 ) ) )
df5['day_cos'] = df5['day'].apply( lambda x: np.cos( x * ( 2. * np.pi/30 ) ) )

# week of year
df5['week_of_year_sin'] = df5['week_of_year'].apply( lambda x: np.sin( x * ( 2. u → * np.pi/52 ) ) )
df5['week_of_year_cos'] = df5['week_of_year'].apply( lambda x: np.cos( x * ( 2. u → * np.pi/52 ) ) )
```

[92]: df5.head()

[92]: store day_of_week date sales promo school_holiday store_type assortment competition_distance competition_open_since_month competition_open_since_year promo2 promo2 since_week promo2 since_year is promo year month day week_of_year_year_week competition_since competition_time_month promo_since promo_time_week state_holiday_christmas state holiday easter holiday state holiday public holiday state_holiday_regular_day day_of_week_sin day_of_week_cos month_sin month cos day_sin day_cos week_of_year_sin week_of_year_cos 5 2015-07-31 8.568646 1 2 -0.170968 1 9 2008 2015 31 0 31 1.0 31 2015-30 2008-09-01 0.918919 2015-07-27 0.287016 0 0 -0.974928 -0.222521 -0.5-0.866025 0.207912 0.978148 -0.568065 -0.822984 2 5 2015-07-31 8.710290 1 1 0 -0.283871 1 11 2007 13 2010 7 31 1 1.0 31 2015-30 2007-11-01 1.054054 2010-03-22 0.922551 0 0 0 -0.974928 -0.222521 -0.5 1 -0.866025 0.207912 0.978148 -0.568065-0.822984 5 2015-07-31 9.025816 0 1 1.903226 1 12 2006 14 2011 1.0 7 31 1 2006-12-01 1.202703 2011-03-28 31 2015-30

	0.801822		0				0		
	0		1	-0.9749	28	-0.222521	L	-0.5	
	-0.866025	0.207912	0.978148	-0.56	8065	-0.822	2984		
			5 2015-07-31	9.546527	1		1		2
	3	-0.275	5806		Ç	9			
	2009		31		2015	0	1.0	7	31
			2009-09-01		0.74324	43 2015-0			
	0.287016		0						
	0			-0.9749				-0.5	
			0.978148						
			5 2015-07-31	8.481151			1		0
	1					4			
	2015		31			0		7	31
			2015-04-01		-0.16216				
	0.287016		0				•		
	0		1					-0.5	
	-0.866025	0.207912	0.978148	-0.56	8065	-0.822	2984		
[]:									
Г].									
[]:									
[]:									
[]:									
[]:									
[]:									
Г];									