PYC12

USN 1 M S 2 2 A D 0 2 4

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

SEMESTER END EXAMINATIONS - MAY 2023

Program : B.E:- Common to CSE/ISE/CSE(CY)/
AI & DS/BT/AI & ML/CSE(AI & ML)

, Semester : ^I

Course Name : Engineering Physics
Course Code : PYC12

Max. Marks : 100 Duration : 3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

• Physical constants: $h=6.625 \times 10^{-34} \, \text{Js}$; $k=1.38 \times 10^{-23} \, \text{JK}^{-1}$; $m_e=9.1 \times 10^{-31} \, \text{kg}$; $\epsilon_0=8.852 \times 10^{-12} \, \text{Fm}^{-1}$; $e=1.602 \times 10^{-19} \, \text{c}$; $N_A=6.023 \times 10^{26} / \text{k.mol}$; $c=3 \times 10^8 \, \text{ms}^{-1}$.

UNIT - I

- 1. a) Explain the construction and working of He-Ne laser with relevant CO1 (08) diagrams.
 - b) Explain intermodal dispersion and how is it reduced in a Graded index CO1 (07) multimode fibre.
 - c) Calculate the number of modes supported for $82\mu m$ carrier wave by a CO1 $^{(05)}$ multi-mode step index optical fiber of core diameter $50\mu m$, core refractive index 1.53 and fractional index change 2.3×10^{-3} .
- a) Explain interaction of radiation with matter and derive the expression for CO1 (08) energy density at thermal equilibrium in terms of Einstein coefficients.
 Compare the expression with Planck's law.
 - b) What is attenuation in an optical fiber? Explain any three mechanisms CO1 (07) leading to attenuation in an optical fiber.
 - c) For a light of frequency 1.5X10¹⁴ Hz used as an excitation source at a CO1 (05) temperature of 300K find the ratio of stimulated to spontaneous emissions.

UNIT-II

- 3. a) Setup Schrodinger's time independent one dimensional wave equation. CO2 (08) What are the characteristics of a wave function.
 - b) Define phase velocity and group velocity. Derive the expression for CO2 (07) group velocity from superposition principle.
 - c) An electron has a speed of 4.8×10^5 m/s accurate to 0.017 %. With what CO2 (05) accuracy can be located the position of electron?
- 4. a) Solve the Schrodinger wave equation for the Eigen energy values and CO2 (08) Eigen functions in the case of a particle in an infinite potential well.
 - b) State Heisenberg uncertainty principle. Prove that an electron does not CO2 (07) exist within a nucleus.
 - c) The ground state energy of electron in an infinite is 37.64 eV. What will CO2 (05) be the ground state energy value if the width of the well is doubled?

UNIT - III

- 5. a) Obtain an expression for the density of energy states in a metal. CO3 (08)
 - b) Define Fermi factor. Explain the dependence of Fermi factor on CO3 (07) temperature with the graph.
 - c) The polarizability of an elemental solid dielectric material is 7x10⁻⁴⁰ Fm². Of Assuming the internal field to be a Lorentz field, Calculate the material's dielectric constant if it has 2x10²⁸ atoms/m³.

(05)

PYC12

6. Define the internal field. Derive an expression for internal field in a one-(80)dimensional array of atoms in solids. b) Define critical temperature. Explain the Meissner effect. (07)CO3 c) The Fermi energy of a metal is 5.5eV. Determine the value of energy for CO3 (05)which the probability of occupation is 2 % at 350K. **UNIT-IV** 7. With suitable diagram, explain the production and detection of circularly CO4 (80)polarized light and elliptically polarized light. b) Explain single-particle quantum interference with a suitable example. CO4 (07)c) Consider two states $|\psi>=|\phi_1>+3i|\phi_2>-|\phi_3>$ and $|\chi>=|\phi_1>$ CO4 (05)-i $|\phi_2>+5i$ $|\phi_3>$ where $|\phi_1>$, $|\phi_2>$ and $|\phi_3>$ are orthonormal. Are $|\psi>$ and $|\chi>$ normalized ? Justify your response. Explain the set up and theory of Stern-Gerlach experiment with suitable CO4 8. a) (80)diagrams. b) What is a qubit? Explain how a Bloch sphere is used for the CO4 (07)representation of qubits. Describe the action of a Hadamard gate and obtain the output of given CO4 (05)quantum circuit.

UNIT - V

9.

- Discuss Poisson's probability distribution. Explain the probability of (80)number of particles emitted per second by a radioactive source using this method. Explain as how physics of mechanics is involved in making a character b) (07)jumping animation. A jumping animation sequence consists of six frames with pulse height CO5 (05)0.5m and stop height 0.6m. Calculate the stop time if the animation is played at 30fps.
- 10. Discuss normal distribution and bell curve. Explain Maxwell Boltzmann a) CO5 (80)distribution law.
 - What is Monte-carlo simulation method? Discuss the steps involved in b) CO5 (07)this method.
 - How many frames exist in a sequence of animation which covers a total CO5 (05)distance of 0.2m with base distance of 0.05m.
