PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-076747

(43) Date of publication of application: 15.03.2002

(51)Int.Cl.

HO1Q 3/26 7/08 HO4B

HO4B 7/10

(21)Application number: 2000-268608

(71)Applicant: ATR ADAPTIVE COMMUNICATIONS

RES LAB

NTT DOCOMO INC

(22)Date of filing:

05.09.2000

(72)Inventor: OHIRA TAKASHI

TANO SATORU

(54) CONTROL DEVICE AND CONTROL METHOD FOR ARRAY ANTENNA

(57)Abstract:

PROBLEM TO BE SOLVED: To enable an accurate beam-null control for the time and the beam forming direction, using a simpler configuration compared with conventional examples.

SOLUTION: By a predetermined phase shift, variable phase shifters 3-1-3-N phase-shift multiple radio signals of N pieces, which are received by an array antenna 100 composed of multiple antenna elements of N pieces, and a summing device 4 puts together and outputs the multiple phase-shifted radio signals of N pieces. A demodulator 7 demodulates radio signals after putting together into baseband signals, and a time division filter bank circuit 10 conducts time division so as to output one sample signal of non-perturbation term and multiple sample signals of perturbation term in series signals as different signals, based on the demodulated baseband signals. A beam control 20 calculates and outputs each phase shift of variable phase shifters 3-1-3-N to conduct adaptive beam

control, using a predetermined adaptive beam control method which turns the main beam of the array antenna 100 to a predetermined direction based on the signals after time division processing.

LEGAL STATUS

[Date of request for examination]

20.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3668419

[Date of registration]

15.04.2005

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-76747 (P2002-76747A)

(43)公開日 平成14年3月15日(2002.3.15)

(51) Int.Cl.7	i	識別記号	FΙ		テ	-マコード(参考)
H01Q	3/26		H01Q	3/26	Z	5 J O 2 1
H04B	7/08		H04B	7/08	D	5K059
	7/10			7/10	Α	

		審查請求	未請求 請求項の数8 OL (全 23 頁)		
(21)出願番号	特願2000-268608(P2000-268608)	(71)出願人	396011680 株式会社エイ・ティ・アール環境適応通信		
(22)出顧日	平成12年9月5日(2000.9.5)		研究所 京都府相楽郡精華町光台二丁目2番地2		
特許法第30条第1項	適用申請有り 2000年3月7日 社	(71)出願人	392026693		
団法人電子情報通信	学会発行の「2000年電子情報通信学		株式会社エヌ・ティ・ティ・ドコモ		
会総合大会講演論文	集 通信1」に発表		東京都千代田区永田町二丁目11番1号		
		(72)発明者	大平 孝		
			京都府相楽郡精華町光台二丁目2番地2		
			株式会社エイ・ティ・アール環境適応通信		
			研究所内		
		(74)代理人	100062144		
	•		弁理士 青山 葆 (外2名)		
			最終頁に続く		

(54) 【発明の名称】 アレーアンテナの制御装置及び制御方法

(57)【要約】

【課題】 従来例に比較して構成が簡単であって、時間 的にかつビーム形成方向として正確にピーム・ヌル制御 ができる。

【解決手段】 可変移相器3-1乃至3-Nは、複数N個のアンテナ素子からなるアレーアンテナ100によって受信された複数N個の無線信号をそれぞれ所定の移相量だけ移相させ、合成器4は移相された複数N個の無線信号を合成して出力する。復調器7は合成後の無線信号をベースパンド信号に復調し、時分割フィルタバンク回路10は復調されたベースパンド信号に基づいて1つの非摂動項のサンブル信号と系列信号内の摂動項の複数のサンブル信号とが異なる出力信号として出力されるように時分割処理を行う。ビーム制御回路20は、時分割処理後の信号に基づいてアレーアンテナ100の主ビームを所定の方向に向けるような所定の適応ビーム制御法を用いて、可変移相器3-1乃至3-Nの各移相量を計算して出力して適応ビーム制御を行う。

【特許請求の範囲】

【請求項1】 複数N個のアンテナ素子が互いに所定の間隔で並置されてなるアレーアンテナの各アンテナ素子で受信された複数N個の無線信号をそれぞれ所定の移相量だけ移相させて出力する複数N個の移相手段と、

上記各移相手段から出力される複数N個の無線信号を合成して、合成後の無線信号を出力する合成手段と、

上記合成手段から出力される無線信号をベースバンド信号に復調して出力する復調手段と、

上記復調手段から出力されるベースバンド信号を所定の 10 利得で利得制御して出力する利得制御手段と、

上記利得制御手段から出力されるベースバンド信号と所 定値の基準信号との間の誤差信号を発生して出力する減 算手段と、

上記複数の移相手段の各移相量をそれぞれ所定のシフト量だけ摂動させ、各移相量に対する、上記減算手段から出力される誤差信号の電力の傾斜ベクトルを計算し、計算された誤差信号の電力の傾斜ベクトルと上記誤差信号に基づいて当該誤差信号が最小となるように、上記アレーアンテナの主ビームを所定の方向に向けるための各移20相量及び上記利得制御手段の利得を計算してそれぞれ上記各移相手段及び上記利得制御手段に出力する制御手段とを備えたアレーアンテナの制御装置において、

上記ベースバンド信号は複数個のサンプル信号を含む系列信号を含み、

上記復調手段と上記利得制御手段との間、又は上記利得制御手段と上記制御手段及び上記減算手段との間に挿入して設けられ、入力されるベースバンド信号に基づいて、摂動されない期間における少なくとも1つのサンプル信号と、摂動された期間における上記系列信号内の複30数のサンプル信号とが異なる出力信号として出力されるように時分割処理を実行する時分割処理手段をさらに備えたことを特徴とするアレーアンテナの制御装置。

【請求項2】 上記利得制御手段は、トランスバーサルフィルタ回路であることを特徴とする請求項1記載のアレーアンテナの制御装置。

【請求項3】 複数N個のアンテナ素子が互いに所定の間隔で並置されてなるアレーアンテナの各アンテナ素子で受信された複数N個の無線信号をそれぞれ所定の移相量だけ移相させて出力する複数N個の移相手段と、

上記各移相手段から出力される複数N個の無線信号を合成して、合成後の無線信号を出力する合成手段と、

上記合成手段から出力される無線信号をベースバンド信号に復調して出力する復調手段と、

上記復調手段から出力されるベースバンド信号を所定の 利得で利得制御して出力する利得制御手段と、

上記利得制御手段から出力されるベースバンド信号の符号を判別して符号判別値を示す符号判別値信号を出力する符号判別手段と、

上記符号判別手段から出力される符号判別値信号と、上 50 るステップの利得を計算してそれぞれ上記各移相手段及

記利得制御手段から出力されるベースバンド信号との間 の誤差信号を発生して出力する減算手段と、

上記複数の移相手段の各移相量をそれぞれ所定のシフト 量だけ摂動させ、各移相量に対する、上記利得制御手段 から出力されるベースバンド信号の摂動前後の変化量を 計算し、計算された変化量と、上記復調手段から出力さ れるベースバンド信号と、上記利得制御手段から出力さ れるベースバンド信号と、上記減算手段から出力される 誤差信号とに基づいて、上記誤差信号の自乗平均が最小 となるように、上記アレーアンテナの主ビームを所定の 方向に向けるための上記各移相量及び上記利得を計算し てそれぞれ上記各移相手段及び上記利得制御手段に出力 する制御手段とを備え、

上記ベースバンド信号は複数個のサンプル信号を含む系列信号を含み、

上記復調手段と上記利得制御手段との間、又は上記利得制御手段と上記制御手段及び上記減算手段との間に挿入して設けられ、入力されるベースバンド信号に基づいて、摂動されない期間における少なくとも1つのサンブル信号と、摂動された期間における上記系列信号内の複数のサンブル信号とが異なる出力信号として出力されるように時分割処理を実行する時分割処理手段をさらに備えたことを特徴とするアレーアンテナの制御装置。

【請求項4】 請求項1乃至3のうちの1つに記載のアレーアンテナの制御装置において、

上記復調手段の後段に挿入して設けられ、上記復調手段 から出力されるベースバンド信号に対してアナログ・ディジタル変換して、変換後のディジタルのベースバンド 信号を出力する変換手段をさらに備えたことを特徴とするアレーアンテナの制御装置。

【請求項5】 複数N個のアンテナ素子が互いに所定の間隔で並置されてなるアレーアンテナの各アンテナ素子で受信された複数N個の無線信号を、複数の移相手段を用いて、それぞれ所定の移相量だけ移相させるステップと

上記移相された複数N個の無線信号を合成して、合成後の無線信号を出力するステップと、

上記合成後の無線信号をベースバンド信号に復調するステップと、

40 上記復調されたベースバンド信号を、利得制御手段を用いて所定の利得で利得制御するステップと、

上記利得制御されたベースバンド信号と所定値の基準信号との間の誤差信号を発生するステップと、

上記複数の移相手段の各移相量をそれぞれ所定のシフト 量だけ摂動させ、各移相量に対する、上記誤差信号の電力の傾斜ベクトルを計算し、計算された誤差信号の電力 の傾斜ベクトルと上記誤差信号に基づいて当該誤差信号 が最小となるように、上記アレーアンテナの主ビームを 所定の方向に向けるための各移相量及び上記利得制御す スステップの利得を計算してそれぞれ上記名を相手即及

び上記利得制御手段に出力するステップとを含むアレー アンテナの制御方法において、

上記ベースバンド信号は複数個のサンプル信号を含む系 列信号を含み、

上記復調するステップと上記利得制御するステップとの 間、又は上記利得制御するステップと上記計算するステ ップ及び上記誤差信号を発生するステップとの間で実行 され、入力されるベースバンド信号に基づいて、摂動さ れない期間における少なくとも1つのサンブル信号と、 摂動された期間における上記系列信号内の複数のサンプ 10 ル信号とが異なる出力信号として出力されるように時分 割処理を実行するステップをさらに含むことを特徴とす るアレーアンテナの制御方法。

【請求項6】 上記利得制御するステップは、トランス バーサルフィルタ回路を用いて実行されることを特徴と する請求項1記載のアレーアンテナの制御方法。

【請求項7】 複数N個のアンテナ素子が互いに所定の 間隔で並置されてなるアレーアンテナの各アンテナ素子 で受信された複数N個の無線信号を、複数の移相手段を 用いてそれぞれ所定の移相量だけ移相させるステップ と、

上記移相された複数N個の無線信号を合成して、合成後 の無線信号を出力するステップと、

上記合成後の無線信号をベースバンド信号に復調するス テップと、

上記復調されたベースバンド信号を、利得制御手段を用 いて所定の利得で利得制御するステップと、

上記利得制御されたベースバンド信号の符号を判別して 符号判別値を示す符号判別値信号を出力するステップ

上記符号判別値信号と、上記利得制御されたベースバン ド信号との間の誤差信号を発生するステップと、

上記複数の移相手段の各移相量をそれぞれ所定のシフト 量だけ摂動させ、各移相量に対する、上記利得制御され たベースバンド信号の摂動前後の変化量を計算し、計算 された変化量と、上記復調されたベースバンド信号と、 上記利得制御されたベースバンド信号と、上記誤差信号 とに基づいて、上記誤差信号の自乗平均が最小となるよ うに、上記アレーアンテナの主ビームを所定の方向に向 けるための上記各移相量及び上記利得を計算してそれぞ 40 れ上記各移相手段及び上記利得制御手段に出力するステ ップとを備え、

上記ベースバンド信号は複数個のサンブル信号を含む系 列信号を含み、

上記復調するステップと上記利得制御するステップとの 間、又は上記利得制御するステップと上記計算するステ ップ及び上記誤差信号を発生するステップとの間で実行 され、入力されるベースバンド信号に基づいて、摂動さ れない期間における少なくとも1つのサンブル信号と、 摂動された期間における上記系列信号内の複数のサンプ 50 2及びビーム制御回路93を組み合わせることにより、

ル信号とが異なる出力信号として出力されるように時分 割処理を実行するステップをさらに含むことを特徴とす るアレーアンテナの制御方法。

【請求項8】 請求項5乃至7のうちの1つに記載のア レーアンテナの制御方法において、

上記復調するステップの後に実行され、上記復調された ベースバンド信号に対してアナログ・ディジタル変換し て、変換後のディジタルのベースバンド信号を出力する ステップをさらに含むことを特徴とするアレーアンテナ の制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数のアンテナ素 子を備えたアレーアンテナを制御するための制御装置及 び制御方法に関する。

[0002]

【従来の技術】図10は、従来例のアレーアンテナの制 御装置の構成を示すブロック図である。図10におい て、複数N個のアンテナ素子1-1乃至1-Nが互いに 20 所定の間隔で1直線上に並置されてなるアレーアンテナ 100によって無線信号が受信され、各アンテナ素子1 -1乃至1-Nで受信された無線信号はそれぞれ、低雑 音増幅器(LNA)2-1乃至2-N、所定の中間周波 数の中間周波信号に周波数変換するダウンコンバータ5 -1乃至5-N、中間周波信号をベースバンド信号に復 調する復調器7-1乃至7-N及びアナログ/ディジタ ル変換を行うA/D変換器9-1乃至9-Nを介してビ ーム制御回路93及び可変移相器91-1乃至91-N に出力される。可変移相器91-1乃至91-Nはそれ 30 ぞれ、入力されるベースバンド信号を、ビーム制御回路 93から指示される移相量だけ移相した後、合成器92 に出力する。合成器92は入力される複数N個のベース バンド信号を電力合成して、合成後のベースパンド信号 をビーム制御回路93に出力するとともに、外部装置に 出力する。

【0003】とこで、ビーム制御回路93は、A/D変 換器9-1乃至9-Nから入力される各ベースバンド信 号と、合成後のベースバンド信号とに基づいて、例えば 公知のLMS (Least Mean Square) 法等のMMSE (M inimizing Mean Square Error) の基準に基づく手法な どの適応ビーム制御アルゴリズムを用いて、合成後のベ ースバンド信号が最大となりかつアレーアンテナ100 が所定の方向に主ビームを向けるような可変移相器91 1万至91-Nの各移相量を計算して各可変移相器9 1-1乃至91-Nを制御するために出力する。

【0004】以上のように構成された、いわゆる適応型 アレーアンテナの制御装置は、複数のアンテナ素子1-1乃至1-N及び無線受信機回路に、デジタル信号処理 回路である可変移相器91-1乃至91-N、合成器9 受信電波環境に適応した指向性バターンを得ることができる高機能なアンテナ制御装置である。図10の従来例では、ディジタルビーム形成回路(DBF)を用いた構成であり、アレーアンテナの主ビームを所望到来波の方向に形成したり、干渉波の方向にヌル点を形成してこれを除去するという機能を有する。

【0005】しかしながら、アンテナ素子1-1乃至1-N毎に受信回路(低雑音増幅器2-1乃至2-N、ダウンコンバータ5-1乃至5-N、及び復調器7-1乃至7-N)並びにA/D変換器9-1乃至9-Nを用い 10る必要があるので、ハードウエア規模や消費電力が大きくなるという問題点があった。特に、アンテナ素子の素子数が多い高利得アンテナの場合に特にこの問題は深刻なものとなる。さらに、アンテナ素子毎に受信するので信号レベルが低下した環境下では動作が困難となるという欠点もある。

【0006】との問題点を解決するために、本発明者ら は、例えば、従来技術文献 1 「田野ほか、"M-CMA (Modified Constant Modulus Algorithm), ーマイク 口波信号処理による適応ビーム形成のためのディジタル 20 信号処理アルゴリズムー"、電子情報通信学会研究報 告, A·P99-62, pp. 15-22, 1999 年」において、このマイクロ波帯でビーム形成を行いデ ィジタル信号処理制御を行うアダプティブアレーに適し た適応アルゴリズムとして、M-CMA(ModifiedCons tant Modulus Algorithm) が提案されている。とのMー CMA法では、ハードウェア構成の簡易化のため、ビー ム形成器を可変移相器と加算器で構成することを前提と している。M-CMA法はCMA法と同じように振幅偏 差の平均自乗誤差の最小化を評価基準とするため、СМ 30 A法と同様にビームステアリングとヌルステアリングの 同時制御が可能である。言うまでもなく、M-CMA法 はプラインドアルゴリズムに位置づけられるため、フレ ーム同期や周波数・位相同期を確立する前にビーム形成 可能である。従って、種々の同期確立以前にビーム形成 が行われ、ビーム形成器からはSINR (Signal to In terference and NoiseRatio) の高い信号が I F 段以降 に供給されるため、劣悪なSINR環境下においても種 々の同期が容易に確立できるという利点もある。原理的 にM-CMA法は各可変移相器の制御電圧に対する誤差 40 平面における傾斜ベクトルを摂動を用いて推定する。

[0007]

【発明が解決しようとする課題】しかしながら、M-C MA法では、同じ時刻の受信信号に対して摂動を与えた時のビーム形成器の出力信号(摂動項)と、与えないビーム形成器の出力信号(非摂動項)が更新式において必要になる。これを近似的に求める手段として、高速サンプリングを用いる方法がある。これは摂動をかけると同時に、ビーム形成器の出力信号をシンボルレートに対して高速にサンプリングし、この出力の隣り合った信号を50

「非摂動項」と「摂動項」として用いるのである。この動作原理には、雑音の影響を無視すれば、高速サンブルされたビーム形成器の出力信号の隣り合った信号の相関は非常に高く、両者の違いは摂動の有り無しの違いだけであることを利用している。ただしこの場合、ビットレートに比較して非常に高速なサンブリングを行えるA/D変換器が必要になること、サンプリングタイミング調整が困難であって、回路構成が複雑になるという問題点があった。

[0008] 本発明の目的は以上の問題点を解決し、従来例に比較して構成が簡単であって、時間的にかつビーム形成方向として正確に主ビームの制御やヌルの制御ができるアレーアンテナの制御装置及び制御方法を提供するととにある。

[0009]

【課題を解決するための手段】本発明に係るアレーアン テナの制御装置は、複数N個のアンテナ素子が互いに所 定の間隔で並置されてなるアレーアンテナの各アンテナ 素子で受信された複数N個の無線信号をそれぞれ所定の 移相量だけ移相させて出力する複数N個の移相手段と、 上記各移相手段から出力される複数N個の無線信号を合 成して、合成後の無線信号を出力する合成手段と、上記 合成手段から出力される無線信号をベースバンド信号に 復調して出力する復調手段と、上記復調手段から出力さ れるベースバンド信号を所定の利得で利得制御して出力 する利得制御手段と、上記利得制御手段から出力される ベースバンド信号と所定値の基準信号との間の誤差信号 を発生して出力する減算手段と、上記複数の移相手段の 各移相量をそれぞれ所定のシフト量だけ摂動させ、各移 相量に対する、上記減算手段から出力される誤差信号の 電力の傾斜ベクトルを計算し、計算された誤差信号の電 力の傾斜ベクトルと上記誤差信号に基づいて当該誤差信 号が最小となるように、上記アレーアンテナの主ビーム を所定の方向に向けるための各移相量及び上記利得制御 手段の利得を計算してそれぞれ上記各移相手段及び上記 利得制御手段に出力する制御手段とを備えたアレーアン テナの制御装置において、上記ベースバンド信号は複数 個のサンプル信号を含む系列信号を含み、上記復調手段 と上記利得制御手段との間、又は上記利得制御手段と上 記制御手段及び上記減算手段との間に挿入して設けら れ、入力されるベースバンド信号に基づいて、摂動され ない期間における少なくとも1つのサンブル信号と、摂 動された期間における上記系列信号内の複数のサンプル 信号とが異なる出力信号として出力されるように時分割 処理を実行する時分割処理手段をさらに備えたことを特 徴とする。

【0010】上記アレーアンテナの制御装置において、 上記利得制御手段は、好ましくは、トランスバーサルフィルタ回路であることを特徴とする。

【0011】また、本発明に係るアレーアンテナの制御

装置は、複数N個のアンテナ素子が互いに所定の間隔で 並置されてなるアレーアンテナの各アンテナ素子で受信 された複数N個の無線信号をそれぞれ所定の移相量だけ 移相させて出力する複数N個の移相手段と、上記各移相 手段から出力される複数N個の無線信号を合成して、合 成後の無線信号を出力する合成手段と、上記合成手段か ち出力される無線信号をベースバンド信号に復調して出 力する復調手段と、上記復調手段から出力されるベース バンド信号を所定の利得で利得制御して出力する利得制 御手段と、上記利得制御手段から出力されるベースバン ド信号の符号を判別して符号判別値を示す符号判別値信 号を出力する符号判別手段と、上記符号判別手段から出 力される符号判別値信号と、上記利得制御手段から出力 されるベースバンド信号との間の誤差信号を発生して出 力する減算手段と、上記複数の移相手段の各移相量をそ れぞれ所定のシフト量だけ摂動させ、各移相量に対す る、上記利得制御手段から出力されるベースバンド信号 の摂動前後の変化量を計算し、計算された変化量と、上 記復調手段から出力されるベースバンド信号と、上記利 得制御手段から出力されるベースバンド信号と、上記減 20 算手段から出力される誤差信号とに基づいて、上記誤差 信号の自乗平均が最小となるように、上記アレーアンテ ナの主ビームを所定の方向に向けるための上記各移相量 及び上記利得を計算してそれぞれ上記各移相手段及び上 記利得制御手段に出力する制御手段とを備え、上記べー スバンド信号は複数個のサンプル信号を含む系列信号を 含み、上記復調手段と上記利得制御手段との間、又は上 記利得制御手段と上記制御手段及び上記減算手段との間 に挿入して設けられ、入力されるベースバンド信号に基 づいて、摂動されない期間における少なくとも1つのサ ンプル信号と、摂動された期間における上記系列信号内 の複数のサンプル信号とが異なる出力信号として出力さ れるように時分割処理を実行する時分割処理手段をさら に備えたととを特徴とする。

【0012】上記アレーアンテナの制御装置は、好まし くは、上記復調手段の後段に挿入して設けられ、上記復 調手段から出力されるベースバンド信号に対してアナロ グ・ディジタル変換して、変換後のディジタルのベース バンド信号を出力する変換手段をさらに備えたことを特 徴とする。

【0013】さらに、本発明に係るアレーアンテナの制 御方法は、複数N個のアンテナ素子が互いに所定の間隔 で並置されてなるアレーアンテナの各アンテナ素子で受 信された複数N個の無線信号を、複数の移相手段を用い て、それぞれ所定の移相量だけ移相させるステップと、 上記移相された複数N個の無線信号を合成して、合成後 の無線信号を出力するステップと、上記合成後の無線信 号をベースバンド信号に復調するステップと、上記復調 されたベースバンド信号を、利得制御手段を用いて所定 の利得で利得制御するステップと、上記利得制御された

ベースバンド信号と所定値の基準信号との間の誤差信号 を発生するステップと、上記複数の移相手段の各移相量 をそれぞれ所定のシフト量だけ摂動させ、各移相量に対 する、上記誤差信号の電力の傾斜ベクトルを計算し、計 算された誤差信号の電力の傾斜ベクトルと上記誤差信号 に基づいて当該誤差信号が最小となるように、上記アレ ーアンテナの主ビームを所定の方向に向けるための各移 相量及び上記利得制御するステップの利得を計算してそ れぞれ上記各移相手段及び上記利得制御手段に出力する ステップとを含むアレーアンテナの制御方法において、 上記ベースバンド信号は複数個のサンプル信号を含む系 列信号を含み、上記復調するステップと上記利得制御す るステップとの間、又は上記利得制御するステップと上 記計算するステップ及び上記誤差信号を発生するステッ プとの間で実行され、入力されるベースバンド信号に基 づいて、摂動されない期間における少なくとも1つのサ ンプル信号と、摂動された期間における上記系列信号内 の複数のサンブル信号とが異なる出力信号として出力さ れるように時分割処理を実行するステップをさらに含む ことを特徴とする。

【0014】上記アレーアンテナの制御方法において、 上記利得制御するステップは、好ましくは、トランスバ ーサルフィルタ回路を用いて実行されることを特徴とす る。

[0015] またさらに、本発明に係るアレーアンテナ の制御方法は、複数N個のアンテナ素子が互いに所定の 間隔で並置されてなるアレーアンテナの各アンテナ素子 で受信された複数N個の無線信号を、複数の移相手段を 用いてそれぞれ所定の移相量だけ移相させるステップ と、上記移相された複数N個の無線信号を合成して、合 成後の無線信号を出力するステップと、上記合成後の無 線信号をベースバンド信号に復調するステップと、上記 復調されたベースバンド信号を、利得制御手段を用いて 所定の利得で利得制御するステップと、上記利得制御さ れたベースバンド信号の符号を判別して符号判別値を示 す符号判別値信号を出力するステップと、上記符号判別 値信号と、上記利得制御されたベースバンド信号との間 の誤差信号を発生するステップと、上記複数の移相手段 の各移相量をそれぞれ所定のシフト量だけ摂動させ、各 移相量に対する、上記利得制御されたベースバンド信号 の摂動前後の変化量を計算し、計算された変化量と、上 記復調されたベースバンド信号と、上記利得制御された ベースバンド信号と、上記誤差信号とに基づいて、上記 誤差信号の自乗平均が最小となるように、上記アレーア ンテナの主ビームを所定の方向に向けるための上記各移 相量及び上記利得を計算してそれぞれ上記各移相手段及 び上記利得制御手段に出力するステップとを備え、上記 ベースバンド信号は複数個のサンブル信号を含む系列信 号を含み、上記復調するステップと上記利得制御するス 50 テップとの間、又は上記利得制御するステップと上記計 算するステップ及び上記誤差信号を発生するステップと の間で実行され、入力されるベースバンド信号に基づい て、摂動されない期間における少なくとも1つのサンプ ル信号と、摂動された期間における上記系列信号内の複 数のサンプル信号とが異なる出力信号として出力される ように時分割処理を実行するステップをさらに含むこと を特徴とする。

【0016】上記アレーアンテナの制御方法は、好まし くは、上記復調するステップの後に実行され、上記復調 されたベースバンド信号に対してアナログ・ディジタル 変換して、変換後のディジタルのベースバンド信号を出 力するステップをさらに含むことを特徴とする。

[0017]

【発明の実施の形態】以下、図面を参照して本発明に係 る実施形態について説明する。

【0018】〈第1の実施形態〉図1は、本発明に係る 第1の実施形態であるアレーアンテナの制御装置の構成 を示すブロック図であり、図10と同様のものについて は同一の符号を付している。また、図2は、図1の時分 割フィルタバンク回路10とビーム制御回路20と摂動 付加回路30の詳細な内部構成を示すブロック図であ る。

【0019】との第1の実施形態のアレーアンテナの制 御装置は、複数N個のアンテナ素子1-1乃至1-Nが 互いに所定の間隔で配置されてなるアレーアンテナ10 0 (例えばリニアアレーであって、2次元形状又は3次 元形状で配置されてもよい。)のビームをM-CMA法 を用いて制御するためのビーム制御回路20を備えた適 応制御型制御装置において、A/D変換器9とビーム制 御回路30との間に、入力されるベースバンド信号に基 30 づいて、摂動付加回路30で摂動されない期間における 1つの信号(少なくとも1つの信号でもよい。)と、摂 動付加回路30で摂動された期間におけるトレーニング 信号であるM系列信号内の複数のサンプル信号とが異な る出力信号として出力されるように時分割処理を実行す る時分割フィルタバンク回路10を備えたことを特徴と している。すなわち、この実施形態では、M-CMA法 を用いたビーム制御における上述の問題を解決する方法 としてポリフェーズ表現で構成された時分割フィルタバ ンク回路10を利用し、これにより、同時刻における摂 40 動項と非摂動項が厳密な形で得られるため、正確なビー ム・ヌル制御を可能にする。ととで、時分割フィルタバ ンク回路10内のディジタルフィルタ13-0乃至13 - (M-1)は、例えば、ディジタル位相変調システム で帯域制限フィルタとして用いられる、ルートロールオ フフィルタをポリフェーズ構成したものである。

【0020】以下、図1に示すアレーアンテナの制御装 置の構成について説明する。図1において、複数N個の アンテナ素子1-1乃至1-Nが互いに所定の間隔で配

受信され、各アンテナ素子1-1乃至1-Nで受信され た無線信号はそれぞれ、低雑音増幅器(LNA)2-1 乃至2-Nを介して可変移相器3-1乃至3-Nに入力 される。各可変移相器3-1乃至3-Nはそれぞれ、入 力される無線信号を、摂動付加回路30から出力される 各移相制御電圧 v_{k.i} (i = 1, 2, …, N) に対応し た各移相量だけ移相した後、合成器4に出力する。合成 器4は入力されるN個の無線信号を電力合成して、合成 後の無線信号を、所定の中間周波数の中間周波信号に周 波数変換するダウンコンバータ5及び中間周波信号の帯 域成分のみを帯域ろ波する帯域通過フィルタ(BPF) 6を介して復調器7に出力する。復調器7は、入力され る無線信号を、送信機側の変調方法(例えば、QPS K、PSK、FSKなど) に対応した復調方法を用いて ベースバンド信号に復調して、所望のベースバンド信号 のみを取り出す低域通過フィルタ(LPF)8を介して A/D変換器9に出力する。A/D変換器9は、入力さ れるアナログのベースバンド信号をディジタルのベース バンド信号にA/D変換して、変換後のベースバンド信 号信号u、を外部装置に出力するとともに、時分割フィ ルタバンク回路10を介してビーム制御回路20にに出 力する。

【0021】なお、可変移相器3-1乃至3-Nと合成 器4とは、例えば公知の大規模GaAsMMICにてな るマイクロ波シグナルプロセッサによって構成すること ができる。また、本実施形態においては、ベースバンド 信号はトレーニング信号として例えばM系列信号を含 み、A/D変換器9のサンプリングレートをfs=2M fcとする。ここで、Mは1以上の自然数であり、<math>fcはシンボルクロック周波数である。

【0022】時分割フィルタバンク回路10は、図2に 示すように、互いに縦続に接続されそれぞれ1/(2M fc)の遅延時間を有する(M-1)個の遅延回路11 -1乃至11-(M-1)と、それぞれ(M/2)倍の ダウンサンプリングレートを有するM個のダウンサンプ ラ12-0乃至12-(M-1)と、それぞれ詳細後述 する伝達関数を有し例えばFIRフィルタで構成される M個のディジタルフィルタ13-0乃至13-(M-1) と、それぞれ(1/4)倍のダウンサンプリングレ ートを有するM個のダウンサンプラ14-0乃至14-(M-1) とを備えて構成される。時分割フィルタバン ク回路10において、A/D変換器9からのベースバン ド信号u,は、ダウンサンプラ12-(M-1)、ディ ジタルフィルタ13-(M-1)及びダウンサンプラ1 4-(M-1)を介して、時分割処理されたベースバン ド信号Ψ 、 μ-1 としてビーム制御回路20に出力される とともに、互いに縦続接続された(M-1)個の遅延回 路11-(M-1)乃至11-1を介してダウンサンブ ラ12-0に出力される。 ととで、遅延回路11-(M 置されてなるアレーアンテナ100によって無線信号が 50 -1)から出力されるベースバンド信号uょは、ダウン

サンプラ12-(M-2)、ディジタルフィルタ13-(M-2)及びダウンサンプラ14-(M-2)を介し て、時分割処理されたベースバンド信号Ψ_{*・พ-2}として ビーム制御回路20に出力される。以下、同様にして、 遅延回路11-mから出力されるベースバンド信号uk は、ダウンサンプラ12-m、ディジタルフィルタ13 - m及びダウンサンプラ14-mを介して、時分割処理 されたベースバンド信号Ψ. ...としてビーム制御回路2 0に出力され、ととで、m=M−3, …, 0である。 【0023】図3は、図2の時分割フィルタバンク回路 10 10の動作例を示すブロック図であり、本実施形態で は、一例として、N=M-1の場合を示している。 【0024】本実施形態では、図3に示すように、1シ ンボルの時間Tを2分割して、時間T/2において、M 個のサンブル信号(これはM系列信号を対応する。)を 含み、M個のサンブル信号は、摂動付加回路30で摂動 されない期間における1つの非摂動項のサンプル信号 (△v=0)と、摂動付加回路30で摂動された期間に おけるトレーニング信号であるM系列信号内の複数N (=M-1)個の摂動項のサンブル信号(摂動付加電圧 20 △∨が付加された)とを含む。そして、時分割フィルタ バンク回路10は、M個のサンプル信号のうち、1つの 非摂動項のサンブル信号 $(\Delta v = 0)$ と、M-1個の摂

動項のサンプル信号(摂動付加電圧△vが付加された)

が異なる出力信号として出力されるように時分割処理を

実行する。

【0025】図2において、時分割フィルタバンク回路 10から出力される時分割処理後のベースバンド信号Ψ 、。は、ビーム制御部21に直接に出力されるととも に、ビーム制御部21により指定される制御利得gょを 有する可変増幅器22-0を介してビーム制御部21及 び減算器24に入力される。また、時分割フィルタバン ク回路10から出力される時分割処理後のベースバンド 信号Ψκικは、ビーム制御部21により指定される制御 利得g を有する可変増幅器22-mを介してビーム制 御部21に入力され、とこで、m=1, 2, …, M-1 である。ととで、制御利得は正又は負の値をとりうる。 一方、基準信号発生器23は所定の一定値を有する基準 信号σを発生して減算器24に出力する。減算器24は 基準信号σから利得増幅後のベースバンド信号 Υκιο を 減算して、その誤差 (又は偏差) 信号 exをビーム制御 部21に出力する。ビーム制御部21は、入力される誤 差信号e、と、それぞれ利得制御されたM個のベースバ ンド信号y㎏, 。乃至y㎏, μ-1と、利得制御前のベースバン ド信号Ψk.oとに基づいて、詳細後述するように、M-CMA法を用いて、摂動付加回路30のスイッチングコ ントローラ32を制御して各可変移相器3-1乃至3-Nの各移相制御電圧 V k.i (i=1, 2, …, N) を所 定のシフト量だけ摂動させ、これにより対応する各移相 量を所定の対応シフト量だけ摂動させ、各移相量に対す る減算器 22 から出力される誤差信号 e_k の電力の傾斜ベクトルを計算し、計算された誤差信号 e_k の電力の傾斜ベクトルに基づいて A D 変換器 9 から出力されるベースバンド信号 y_k の電力を最大にしかつ、減算器 22 から出力される誤差信号 e_k に基づいて当該誤差信号 e_k が最小となるように、アレーアンテナ 100 の主ビームを所定の方向に向けるための各移相量に対応する各移相制御電圧 v_{k+1} 及び可変増幅器 21 の増幅度 g_k を計算して、計算した各移相制御電圧 v_{k+1} を摂動付加回路 30 を介して各可変移相器 3-1 乃至 3-N に出力するとともに、計算した増幅度 g_k を可変増幅器 21 に出力する。

【0026】摂動付加回路30は、摂動付加電圧△vを 発生する摂動付加電圧発生器31と、N個のスイッチ3 4-1乃至34-Nと、N個の加算器33-1乃至33 -Nとを備えて構成される。とこで、摂動付加電圧発生 器31により発生された摂動付加電圧△vはスイッチ3 4-1乃至34-Nの各接点bに入力され、スイッチ3 4-1乃至34-Nの各接点aはそれぞれ接地されてい る。 これらスイッチ34-1乃至34-Nの切り換え は、ビーム制御部21の制御により動作するスイッチコ ントローラ32により制御され、ととで、各スイッチ3 4-1乃至34-Nは通常接点a側に接続されている が、スイッチングコントローラ32は、例えばトレーニ ング信号を受信しているときに、図3に示すように、1 シンボルの半分の時間T/2において、M系列信号のM =N+1個のサンプル信号のうちの1つの非摂動項のサ ンプル信号 (Δv=0) に続いて、各移相器3-1乃至 3-Nに対応する複数N(=M-1)個の摂動項のサン プル信号 (摂動付加電圧A vが付加された)が順次出力 されるように、N個のスイッチ34-1乃至34-Nの うちの1つのスイッチのみを順次接点b側に切り換える ことにより、ビーム制御部21から出力される移相制御 電圧 V_{k.n} (n=1, 2, …, N) に対して加算器33 - 1 乃至33-Nのうちの1つで加算して付加する。摂 動付加回路30から出力される移相制御電圧は移相制御 電圧 $v_{r,n}$ ($n=1, 2, \dots, N$) としてそれぞれ移相 器3-1乃至3-Nに出力される。

[0027]なお、トレーニング信号を受信していると 40 きに、摂動付加電圧 Δ vを付加するときは、ビーム制御 回路20から出力される移相制御電圧 $v_{k,n}$ と、摂動付 加回路30から出力される移相制御電圧 $v_{k,n}$ とは異な るが、説明の便宜上同一の記号を付す。

【0028】次いで、本実施形態で用いるM-CMA法の原理と課題について説明する。マイクロ波信号処理によるビーム形成とディジタル信号処理を融合したアダプティブアレーの構成を示す図1では、間隔dで空間に配列されたアレーアンテナ100のアンテナ素子1-1乃至1-Nによって受信された受信信号は、LNA2-150 乃至2-Nを介して、MMIC等で構成される可変移相

器3-1乃至3-Nによって重み付けされたのち合成器 4で加算され、ビーム形成器の出力信号となる。時刻 k において i 番目の給電素子で受信された信号をux.iと するとビーム形成器の出力信号 S k は、等価低域モデル (例えば、従来技術文献2「エス. スタインほか、"現 代の通信回線理論",森北出版,1970年」参照。) を用いて次式ように表される。

[0029] 【数1】 $= s_k(v_{k,1} \quad v_{k,2} \quad \cdots v_{k,1})$ $= \sum_{i=1}^{N} \exp(-j\theta(v_{k,i}))_{u_{k,i}}$

【0030】上記数1において、v.,はi番目のアン テナ素子1-iに接続された可変移相器3-iに印加さ れる制御電圧であり、heta (・) は可変移相器 3-i の制 御電圧に対する移相特性関数であり、Nはアンテナ素子 の数、iは虚数単位を示している。このビーム形成器の 出力信号はダウンコンバータ5によりベースバンド帯に 変換され、A/D変換器9によりA/D変換される。C とで、周波数変換された信号 s * とビーム形成器の出 力信号Sよは全く異なったものであるが、周波数変換と フィルタリングが理想的に行われたとすると、両者の違 いはexp (j2pft)の有無だけである。ただし、 fは搬送波周波数で、iは虚数単位、tは時刻を表して いる。本実施形態では、ビーム形成器の理論上の特性の 上界を検証するため、RF帯の不完全性等は考慮しな い。この場合、exp(j2pft)の有無は本質的な 30 【0038】 問題ではないので、本実施形態では周波数変換された信 号 s、'とビーム形成器の出力信号 s、を同一視して説明 を行う。

【0031】A/D変換された受信信号はベースバンド 帯のAGC増幅器である可変増幅器22-0乃至22-(M-1) により増幅される。増幅後の信号ykと所望 レベルσとの誤差は誤差信号e、として次式のように定 義される。

[0032]

[数2] $e_k = \sigma^p - g_k^p | s_k |^p = \sigma^p - |y_k|^p$ ただし、

【数3】 $y_k = g_k s_k$

【0033】 ここで、gkは時刻kにおける可変増幅器 *

$$\begin{split} & \Delta_{i} \mid y_{k} \mid \\ & = g_{k} \Delta_{i} \mid s_{k} (v_{k,1} \quad v_{k,2} \quad \dots \quad v_{k,N}) \mid \\ & = g_{k} \{ \mid s_{k} (v_{k,1} \quad \dots \quad v_{k,i} + \Delta v \quad \dots \quad v_{k,1}) \mid - \mid s_{k} (v_{k,1} \quad \dots \quad v_{k,j} \quad \dots \quad v_{k,1}) \mid \} \end{split}$$

【0041】上記数6を用いることにより、可変増幅器 の利得g,だけでなく、通常のCMA法と同様に数2で 50 し、上記数6及び数7から制御電圧の最適値を求めるに

*22-0乃至22-(M-1)の利得である。また、上 記数2における |・ | は、複素数の絶対値をとることを 意味している。一方、pはM-CMA法における乗数で あり、1以上の自然数をとり、本実施形態では例えばp =2である。との、可変増幅器の利得gょを下記の評価 基準によって最適化する。

[0034]

[数4] J=E[|e_k|^q]→min

【0035】上記数4において、Jはコスト関数であ 10 り、E[・]は集合平均を取る関数であり、qはpと共 にM-CMA法の乗数を意味している。従って、数4 は、コスト関数Jを最小化する評価基準を表している。 この解を公知のSGD (Stochastic Gradient Decent) の原理に基づいて求めると、可変増幅器の利得gょに関 しては以下の式を繰り返すことにより最適値が求められ

[0036] 【数5】 $=g_{k-1}-\mu \frac{\partial J}{\partial g_k}$ $=g_{k-1} + \mu |e_k|^{q-2} |e_k| y_k |^{p-1} |s_k|$

【0037】上記数5のmはステップサイズパラメータ と呼ばれる係数である。さらに、上記数4の評価基準に 基づいて、上記数1のビーム形成器の制御電圧まで最適 化を図るなら、SGDの原理から次式を繰り返すことに より最適値が求まる。

[0038]
[数6]

$$v_{k,i}$$

 $= v_{k-1,i} - \mu \frac{\partial J}{\partial v_{k,i}}$
 $= v_{k-1,i} + \mu |e_k|^{q-2} e_k |y_k|^{p-1} \Delta_i |y_k|$

[0039] CCで、 Δ_i |・ | は i 番目のアンテナ素 子1-iに接続された可変移相器3-iの制御電圧に対 40 する微係数を表しており、以下のように近似的に求め

[0040] 【数7】

定義された振幅偏差までも抑圧することができる。ただ

は同時刻の「摂動項」と「非摂動項」が必要になる。と れは、摂動をかけると同時に、シンボルレートに比較し て高速にA/D変換し、隣あった信号を利用することで 解決できる。すなわち、隣り合った信号は信号相関が高 いため、ほとんど同一と見なせ、かつその片方が摂動を 受けているため上記の要求条件を満足できる。しかしな がら、精度を上げるには、かなり高速でサンプルする必 要があり、今後ビットレートが高速化することを考慮す るとハードウェアの実現が困難となる。そこで、本実施 形態では、このサンプリングレートを低減でき、高精度 10 な「非摂動項」、「摂動項」を得るために時分割フィル タバンク回路10を利用しており、次いで、これについ て詳述する。

【0042】上記数1で示されたビーム形成器の出力信 号はダウンコンバータ5によって周波数変換され、A/ D変換器 9 によってディジタル信号に変換されるが、そ の時のサンプリングレートを情報レートのM倍で行い、 ディジタルフィルタで不要信号の除去を行い、デシメー ションを行うことで復調信号を得るシステムを利用す る。このディジタルフィルタをFIR(Finite Impulse 20 Response)フィルタで構成する場合、一般にその伝達 関数T(z-1/M)は以下のようにポリフェーズ表現する ととができる。

[0043]

【数8】

$$T(z^{-1/M})$$

$$= \sum_{i=-ML}^{ML-1} h_{i/M} Z^{-i/M}$$

$$= \sum_{i=-ML}^{M-1} \sum_{i/M}^{L-1} h_{i/M} Z^{-i-1-i/M}$$

$$= \sum_{i/M}^{M-1} \sum_{i/M}^{L-1} h_{i/M} Z^{-i-1-i/M}$$

$$= \sum_{i/M}^{M-1} z^{-i/M} \sum_{i/M}^{L-1} h_{i/M} Z^{-i/M}$$

$$= \sum_{i/M}^{M-1} T_{i/M} Z^{-i/M}$$

$$= \sum_{i/M}^{M-1} T_{i/M} Z^{-i/M}$$

$$F(\psi_{k,l})$$

 $= \sum_{i=-L}^{L-1} h_{i+l/M} \exp(-j2\pi \frac{(i+l/M)n}{N}) \sum_{k=0}^{N-1} u_{k-(i+l/M)} \exp(-j2\pi \frac{(k-(i+l/M))n}{N})$ $=F(h_i)F(u_k)$ 【0052】ただし、F(·)は・のDFT後の信号を 表している。すなわち、全てのポリフェーズフィルタか らは同一の周波数スペクトラムを持つ信号が得られる。

従って、この出力を I D F T (Inverse DFT) すれば疑

いもなく同一の時系列が得られる。

 $= \sum_{i=0}^{N-1} \sum_{i=-L}^{L-1} h_{i+l/M} u_{k-(i+l/M)} \exp(-j2\pi \frac{kn}{N})$

* [0044] ただし、 $T_1(z^{-1})$, 1=0, ..., M-1は各ポリフェーズフィルタを構成するフィルタバンク であり、次式のように定義される。

[0045]

【数9】

$$T_l(z^{-1}) = z^{-l/M} \sum_{i=-L}^{L-1} h_{i+l/MZ}^{-i}$$

【0046】各フィルタの入力信号は、バンク内の各フ ィルタの動作速度がナイキストレート以上であれば、サ ンプリングレートに関わらず一定のスペクトラム情報を 保持している。このとき、雑音がなければすべてのフィ ルタバンクからは、同一の信号が出力される。ただし、 以下の条件を満足させる必要がある。

[0047]

【数10】

 $T_1(z^{-1}) = T_m(z^{-1})$; 1, m=0, ..., M-1 【0048】 ととで、当該フィルタバンクにより同一の 信号が得られることを示す。入力信号をロャー(1+1/N)と すると、上記数10で定義されたポリフェーズフィルタ の出力信号は次式のように表される。

[0049]

【数11】

$$\psi_{k,l} = \sum_{i=-L}^{L-1} h_{i+l/M} u_{k-(i+l/M)}$$

【0050】 この信号をDFT (Digital Furrier Tran sform) すると次式のように表される。

[0051]

【数12】 30

*

[0053]次いで、ポリフェーズ表現のフィルタバン クの伝達関数を行列表現するため、次式で定義する遅延 行列F(1)を導入する。

[0054]

50 【数13】Φ(1)≡diag[z⁻¹ z^{-1-1/M} …

Z-1-(H-1)/H]

1 = -L, ..., L - 1

【0055】とこで、≡は「定義する」ととを意味し、diag(・)は括弧内ベクトルを対角要素とする対角行列を意味している。との遅延行列を用いることで、フィルタバンクの伝達関数は次式のようにベクトル表現できる。

17

[0056]

【数14】

 $\Phi = [T_0(z) \quad T_1(z) \quad \cdots \quad T_{N-1}(z)]^{\mathsf{T}}$ $= [\Phi(-L) \quad \Phi(-L+1) \quad \cdots \quad \Phi(L-1)]$ H

[0057] ただし、H=[h-L, h-L+1/M, …, h L+(M-1)/M] 「はポリフェーズ化される前のフィルタのインパルス応答を表している。一方、数1で表されるビーム形成器において、1番目のアンテナ素子1-1から順次摂動をかけていく場合、その出力信号は以下のように数式表現できる。

[0058]

【数15】

 S_k

 $= diag[s_k \quad s_{k+1/M} \quad \cdots \quad s_{k+(M-1)/M}]^T$

$$= [W_{k,1} \quad W_{k,2} \quad \cdots \quad W_{k,N}] \begin{bmatrix} U_{k,1} \\ U_{k,2} \\ \vdots \\ U_{k,N} \end{bmatrix}$$

*

 $\Psi_k = \begin{bmatrix} W_{k,1} \\ W_{k,2} \\ \vdots \\ W_{k,N} \end{bmatrix}^T \begin{bmatrix} U_{k+L,1} & U_{k+L-1,1} & \cdots & U_{k-(L-1),1} \\ U_{k+L,2} & U_{k+L-1,2} & \cdots & U_{k-(L-1),2} \\ \vdots & \vdots & \ddots & \vdots \\ U_{k+L,N} & U_{k+L-1,N} & \cdots & U_{k-(L-1),N} \end{bmatrix} H$

【0063】 CCで、ベクトルΘ_{κ.1}を

【数19】 $\Theta_{k,i}$ \equiv $[U_{k+1,i}, \cdots, U_{k-(k-1),i}]$ H と導入する。ととで、雑音の影響がなく、上記数10の条件が満足されていれば、上述のようにベクトル $\Theta_{k,i}$ の要素は全て同一となる(数11及び数12を用いて上 40 述した通りである。)そとで、その値を $\theta_{k,i}$ とおくと、ベクトルP = $[1, \cdots, 1]$ を用いて、ベクトル $\Theta_{k,i}$ は

[数20] Θ_{k,i}≡θ_{k,i}P

と表される。すると上記数18も次式のように書き換え られる。

[0064]

[数21]

* [0059]上記数15における U_{k+1} と W_{k+1} はそれぞれ i 番目のアンテナ素子1-i の出力信号と、その出力信号に対する重み係数行列であり、次式のように表される。

[0060]

10 $u_{k-(n-1)/n,1}$

[数16] $W_{k,j} = diag[exp(-j\theta)]$

 $(v_{k,i})$) $exp(-j\theta(v_{k+1/N,i})) \cdots exp(-j\theta(v_{k+(N-1)/N,i}))$

[数17] $U_{k,i} = d i ag [u_{k,i} u_{k-1/N,i} \dots$

【0061】とのビーム形成器の出力信号を上記数14で表されたポリフェーズフィルタバンクである時分割フィルタバンク回路10に入力すると、可変増幅器22-0乃至22-(M-1)への入力信号が得られる。すなわち上記数14に出力信号を入力して逆z変換すると、その出力信号ベクトルΨょは上記数15で定義された行列を用いて次式のように表される。

[0062]

【数18】

20

$$\begin{aligned} & \Psi_k \\ &= \sum_{i=1}^{N} \theta_{k,i} W_{k,j} P = [\cdots \quad \psi_{k,l} \quad \cdots] \\ &= [\cdots \quad \sum_{i=1}^{N} \theta_{k,j} \exp(-j\theta(v_{k+1/M,i})) \quad \cdots]^T \\ & l = 0, \cdots M - 1 \end{aligned}$$

[0065]上記数21は各アンテナ素子1-1乃至1-Nからの信号を一旦、ベースバンド帯に変換し、伝達関数T(z)のディジタルフィルタを通過した後に、重み係数

[数22] W_{k}^{T} = [exp(-j2 θ ($v_{k,1}$), ..., exp(-j2 θ ($v_{k,1/N,1}$)), ...]

で重み付けしたものと等価な信号が、ポリフェーズフィ 50 ルタバンクである時分割フィルタバンク回路10の1/

M番目のフィルタから出力されることを意味している。 そこで、重み係数♥、、を次式のように動作させる。た だし、M≥N+1とする(図1乃至図3の実施形態で は、M=N+1としている。)。

[0066]

【数23】 V_{k+1/M,i} = V_{k,i}; i ≠ 1 のとき $V_{k+1/N,i} = V_{k,i} + \Delta v$; $i \neq 1$ のとき ととで、 $i=1, \dots, N$, 及び $l=0, \dots, M-1$ であ

【0067】すなわち、M個の連続した入力信号系列に 10 おいて、最初のサンプル信号には全く摂動を与えず、そ の次のサンブルから各素子に接続された可変移相器3-1乃至3-Nの制御電圧に摂動を順次かけていく。具体 的には、1番目のサンプル信号では、1番目の可変移相 器3-1の制御電圧にだけ摂動を与える。これにより、 ポリフェーズフィルタバンクである時分割フィルタバン ク回路10の0番目のフィルタ(図2の時分割フィルタ バンク回路10では、ディジタルフィルタ13-0及び ダウンサンプラ14-0) からは非摂動項の信号 $\Psi_{k,k}$ が出力され、1番目のフィルタ(図2の時分割フィルタ バンク回路10では、ディジタルフィルタ13-1及び ダウンサンプラ14-1) からは1番目のアンテナ素子 1-1に対する摂動項の信号 Ψ_{k-1} が出力される。従っ て、ポリフェーズフィルタを応用することで、上述した 問題が解決できることがわかる。すなわち、ポリフェー ズフィルタを応用したM-CMA法のアダプティブアレ ーは以下の逐次的な係数更新式に基づき最適係数を求め ることができる。

[0068]

【数24】 $y_{k,i} = g_k \Psi_{k,i}$ CCC, $i = 0, 1, \dots, M-1$ 【数25】 $e_k = \sigma^p - |y_{k,0}|^p$ 【数26】 $v_{k,i} = v_{k-1,i} + \mu \mid e_k \mid^{q-2} e_k \mid y_{k,o} \mid$ p-1 (| $y_{k,i}$ | - | $y_{k,0}$ |) ととで、i=0, …, M-1【数27】

 $g_{k-1} = g_{k-1} + \mu \mid e_k \mid^{q-2} e_k \mid y_{k,0} \mid^{p-1} \mid \Psi_{k,0} \mid$ 【0069】一般に、ポリフェーズフィルタとしてはア ンチエリアジングフィルタが適用されるが、通信システ ムではA/D変換器9の前にアナログ低域通過フィルタ が備えられているため、アンチエリアジングフィルタは 不要である。そとで、本実施形態では、例えば、位相変 調システムでしばしば利用されるナイキストフィルタ系 における、受信機のルートロールオフフィルタをポリフ ェーズ化することにより時分割フィルタバンク回路10 を構成する。

【0070】図1において、A/D変換器9によるA/ D変換前にエリアジングフィルタである低域通過フィル タ8を経た後にポリフェーズフィルタである時分割フィ ルタバンク回路10に入力される。図2の時分割フィル 50 ンテナの制御装置における時分割フィルタバンク回路1

タバンク回路10であるポリフェーズフィルタバンク内 の各ルートロールオフフィルタであるディジタルフィル タ13-0乃至13-(M-1)は、信号にエリアジン グ歪みを与えないようにナイキストレートの2倍以上で 動作させる必要がある。従って、ルートロールオフトフ ィルタをM-フェーズ化する場合には、A/D変換器9 はナイキストレートの2M倍以上でサンブルする必要が ある(本実施形態では、サンプリングレートを上述のよ うに、f=2Mfcとしている。)。そして、縦続接続 された遅延回路11-1乃至11-(M-1)により時 分割した後、M/2倍のダウンサンプラ12-0乃至1 2-(M-1)でM/2倍にデシメーションし、ディジ タルフィルタ13-0乃至13-(M-1)を経た後、 4倍のダウンサンプラ14-0乃至14-(M-1)で 4倍にデシメーションすることにより、時分割処理され た並列でM個のサンプル信号からなるM系列の復調信号 を得る。なお、ダウンサンプラ12-0乃至12-(M - 1) の倍数と、ダウンサンプラ14-0乃至14-(M-1)の倍数は、好ましくは、それらの積が2Mと なるように選択される。

【0071】時分割フィルタバンク回路10の動作例を 示す図3では、1シンボル内を2(N+1)倍、すなわ ちアンテナの素子数N+1の2倍でオーバサンブルし、 N+1個のフィルタバンクに分配する。各フィルタバン クはシンボルレートの2倍で演算を行う。一方、同期し て1/2シンボル内で順次、各アンテナ素子1-1乃至 1-Nに接続された可変移相器3-1乃至3-Nに対し て摂動を与える。ただし、必ず1/2シンボル毎に摂動 をリセットし、すなわち、非摂動項の信号を発生させ 30 る。なお、図3では1シンボル内で全ての摂動を行った が、1シンボルの信号を受信する毎に1つのアンテナ素 子の可変移相器への摂動を与え、これを1素子ずつ行い ことで演算速度を低減させることも可能である。この場 合、N個のシンボル信号を受信して初めて、全素子の摂 動を終了する。ただし、摂動を与えない期間を1/2シ ンボルに挿入する必要があることを考慮すると、サンプ リングレートはシンボルレートの4倍まで低減できる。 【0072】以上説明したように、本実施形態によれ ば、ポリフェーズフィルタバンクである時分割フィルタ バンク回路10を用いることにより、処理すべき信号の レートを低下させかつ各アンテナ素子に対応する複数の 摂動項の信号を正確に取り出すことができる。従って、 ビットレートに比較して非常に高速なサンプリングを行 えるA/D変換器を必要とせず、低速となるのでサンプ リングのタイミング調整も容易となる。それ故、回路構 成が簡単であって、時間的正確にかつ、ビーム形成方向

【0073】<第1の変形例>図4は、第1の実施形態 の変形例である、本発明に係る第1の変形例のアレーア

として正確に主ビームの制御やヌルの制御ができる。

0とビーム制御回路20aの構成を示すブロック図であり、図1及び図2と同一のものは同一の符号を付している。

【0074】第1の実施形態においては、M個の可変増 幅器22-0乃至22-(M-1)を時分割フィルタバ ンク回路10とビーム制御部21との間に備えていた が、これに代えて、ビーム制御部21で指定される制御 利得gkを有する1個の可変増幅器22をA/D変換器 9と、時分割フィルタバンク回路10との間に挿入した ことを特徴としている。ここで、ビーム制御部21は、 M-CMA法によるビーム制御処理において、利得制御 前のベースバンド信号ット。(図2のベースバンド信号 Ψ 、。)を必要とするが、これは、図4の時分割フィル タバンク回路10から出力されるベースバンド信号Ψ k.oを制御利得gkで除算することにより計算することが できる。また、これにとって代わって、図4において1 点鎖線で示すように、A/D変換器9からのベースバン ド信号u、から利得制御前のベースバンド信号y、。(図 2のベースバンド信号Ψ、。)を時分割分離して取り出 してもよい。

[0075]以上のように構成された第1の変形例によれば、第1の実施形態における作用効果に加えて、可変増幅器22の個数を大幅に減少させることができ、これにより、回路構成をより簡単にできるという特有の効果を有する。

【0076】 <第2の実施形態>図5は、本発明に係る 第2の実施形態であるアレーアンテナの制御装置におけ る時分割フィルタバンク回路10とビーム制御回路20 tの構成を示すブロック図であり、図5のTRF回路6 1-1乃至61-(M-1)(以下、総称して、符号6 1を付す。)の詳細な内部構成を示すブロック図であ り、図1乃至図4及び図10と同一のものについては同 一の符号を付している。との第2の実施形態のアレーア ンテナの制御装置は、第1の実施形態に係る図1及び図 2のビーム制御回路20に代えて、TDL (Tapped Del ay Line;タップ付き遅延線)回路70を有するトランス バーサルフィルタ回路(以下、TRF回路という。)6 1を備えるとともに、詳細後述する時空間信号処理M-CMA法を用いて適応型のビーム制御を行うビーム制御 部21 tを備えるビーム制御回路21 tを備えたことを 40 特徴としている。その他の構成は第1の実施形態と同様 であり、ととで詳細説明を省略する。

【0077】図5において、A/D変換器9から時分割フィルタバンク回路10を介して出力されるベースバンド信号 $\Psi_{\mathbf{k},\mathbf{n}}$ ($\mathbf{m}=0$, 1, 2, \cdots , $\mathbf{M}-1$)は、ビーム制御部21t及びTRF回路61内の可変増幅器72-0に入力されるとともに、複数(L-1)個の遅延回路71-1乃至71-(L-1)が縦続接続されてなるTDL回路70の第1段の遅延回路71-1に入力される。上記ベースバンド信号 $\Psi_{\mathbf{k},\mathbf{n}}$ は可変増幅器72-0

を介して加算器 73 に出力されるとともに、複数(L-1)段の遅延回路 71-1 乃至 71-(L-1) 及び可変増幅器 72-(L-1) を介してビーム制御部 21 t 及び加算器 73 に出力される。 TDL 回路 70 において、各遅延回路 71-1 乃至 71-(L-1) はそれぞれ入力される信号を所定の遅延時間 τ だけ遅延して出力する。 CC で、遅延時間 τ は、好ましくは 1 シンボル時間の 1/2 に設定されるが、例えば 1 シンボル時間、もしくはそれ以下に設定されてもよい。

【0078】遅延回路71-1から出力される、ベース バンド信号 $\Psi_{k,n} = b p_k$ の遅延信号 $b p_{k-1}$ はビーム制 御部21 tに出力されるとともに、可変増幅器72-1 を介して加算器73に出力される。また、遅延回路71 -2から出力されるベースバンド信号bpkの遅延信号 bp.,,はビーム制御部21tに出力されるとともに、 可変増幅器72-2を介して加算器73に出力される。 さらに、遅延回路71-3から出力されるベースバンド 信号 bp の遅延信号 bp よっはビーム制御部21 tに出 力されるとともに、可変増幅器72-3を介して加算器 20 73に出力される。さらに同様にして、遅延回路71-(L-2) から出力されるベースバンド信号bpょの遅 延信号 b p t はビーム制御部21t に出力されるとと もに、可変増幅器72-(L-2)を介して加算器73 に出力される。ととで、可変増幅器(又は利得制御器) 72-0乃至72-(L-1)はそれぞれ、ビーム制御 部21tにより設定される増幅度w。乃至w,-1で入力さ れる信号を増幅(又は利得制御)して出力し、ここで、 増幅度(又は利得)は正又負の値をとる。そして、加算 器73は入力されるベースバンド信号bpx及びその複 数(L-1)個の遅延信号 bp k-1乃至 bp k-11を加算 して加算結果の信号を出力信号y, (m=0, 1, 2, …, M-1) としてビーム制御部21tk出力す る。なお、出力信号 yk.oは、減算器 24 にも出力され る。このように構成することにより、TDL回路70 と、可変増幅器72-0乃至72-(L-1)と、加算 器73とを備えたTRF回路61を構成する。すなわ ち、第2の実施形態では、第1の実施形態における各可 変増幅器22-0乃至22-(M-1)を図6のTRF 回路61で構成している。

40 【0079】一方、基準信号発生器23は所定の一定値を有する基準信号σを発生して減算器24に出力する。減算器24は基準信号σから出力信号yk.oを減算して、その誤差(又は偏差)信号ekをビーム制御部21tに出力する。ビーム制御部21tは、入力される誤差信号ekと、ベースバンド信号bkkと、その遅延信号bkk-1乃至yk-1+1と、TRF回路61-0乃至61-(M-1)の通過後のベースバンド信号yk.o(m=0,1,2,…,M-1)とに基づいて、時空間信号処理M-CMA法を用いて、各可変移相器3-1乃至3-50Nの各移相制御電圧 yk.o(i=1,2,…,N)を摂

動付加回路 30 を制御することにより所定のシフト量だけ摂動させ、とれにより対応する各移相量を所定の対応シフト量だけ摂動させ、各移相量に対する減算器 24 から出力される誤差信号 e_* の電力の傾斜ベクトルを計算し、計算された誤差信号 e_* の電力の傾斜ベクトルに基づいて、減算器 24 から出力される誤差信号 e_* に基づいて当該誤差信号 e_* が最小となるように、アレーアンテナ 100 の主ビームを所定の方向に向けるための各移相量に対応する各移相制御電圧 v_* 、 及び各可変増幅器 72-0 乃至 72-(L-1) の増幅度 w_* 乃至 w_{L-1} を計算してそれぞれ各可変移相器 3-1 乃至 3-N 及び各可変増幅器 3-1 乃至 3-N 及び各可変増幅器 3-1 乃至 3-1 公出力して設

【0080】以上のように構成された第2の実施形態に係るアレーアンテナの制御装置においては、ビーム制御回路20tは、誤差信号e゚が最小となるように、アレーアンテナ100の主ビームを希望波方向に向けかつ、干渉波方向にヌルを向けるように、適確に適応ビーム制御することができる。また、マルチパス伝送路において生じる希望波の遅延波をTRF回路61を用いて取り込 20んで同相合成することができ、希望波における信号対雑音電力比(S/N)を改善することができる。また、第*

*2の実施形態では、低雑音増幅器2-1乃至2-N及び 可変移相器3-1乃至3-Nは、アンテナ素子1-1乃 至1-Nの素子数Nに対応したN個を必要とするが、合 成器4以降の回路では、各回路構成要素は1つのみで済 む。従って、図10に示す従来例に比較して、従来例に 比較してハードウエア構成が簡単であって、回路構成要 素の数が少ないので消費電力が少ない。

【0081】次いで、第2の実施形態で用いる適応ビーム処理について以下に説明する。第2の実施形態に係る アダプティブアレーアンテナの構成において、ベースバンド信号 $y_k = y_k (v_{k,1}, \cdots, v_{k,k})$ は公知の等価低域モデルを用いて上記の数1のように表わすことができる。このベースバンド信号 y_k は、TDL回路70を有するTRF回路61に入力される。TRF回路61では、TDL回路70の各タップから出力される信号はそれぞれ、可変増幅器72-0乃至72-(L-1)によりタップ係数である増幅度 w_k (i) で重み付けされた後、加算器73で加算されて、以下に示す出力信号 $y_{k,k}$ (= z_k とおく。)を出力する。

20 【0082】 【数28】

$$z_{k}(v_{k,l},...v_{k,N}) = \sum_{i=0}^{L-1} w_{k}^{*}(i) bp_{k-i}(v_{k,l},..., v_{k,N})$$

【0083】 C C で、ビームとヌルのブラインド制御を行うため、公知のC M A 法と同様に、T R F 回路 610 出力信号 \mathbf{z}_{k} の振幅偏差の最小化を図る。すなわち、出力信号 $\mathbf{y}_{k,0} = \mathbf{z}_{k}$ と基準信号 σ との誤差を次式のように定義すると、

【数29】 $e_k = \sigma^p - |z_k(v_{k,1}, ..., v_{k,N})|^p$ 以下の式を満足することが必要条件となる。ただし、 σ は基準信号のレベルであり、所望の振幅レベルを示している。

[0084]

定する。

【数30】

$$E\left[\frac{\partial e^{q}}{\partial v_{k,i}}\right] = 0$$
 (i = 1,..., N)

【数31】

$$E\left[\frac{\partial e^{q}}{\partial v_{k,i}^{*}}\right] = 0 \qquad (i = 0, \dots, L-1)$$

【0086】上記数29を誤差関数とし、上記数30及び数31を満足する解を探すアルゴリズムは、公知の最40 急降下法の原理を適用すれば、次式のように表わすことができる。

[0087]

※ 【数32

 $\mathbf{v_k} \!\!= \mathbf{v_{k-1}} \!\!- \mu \frac{\partial \, \mathbf{e_k^q}}{\partial \, \mathbf{v_{k,i}}} \!\! \doteq \mathbf{v_{k-1}} \!\! + \mu \, \, \mathbf{e_k^q-1} \!\! \mid \, \, \mathbf{z_k} \!\! \mid^{p-2} \frac{\partial \, \mid \, \mathbf{z_k} \!\! \mid}{\partial \, \mathbf{v_{k,i}}}$

【数33】

$$\mathbf{w_k} \!\!=\! \mathbf{w_{k-1}} \!\!-\! \mu \frac{\partial \, \mathbf{e_k^q}}{\partial \mathbf{w_k(i)}} \!\!=\! \mathbf{w_{k-1}} \!\!+\! \mu \, \, \mathbf{e_k^{q-1}} | \, \, z_k |^{p-2} \frac{\partial \, | \, z_k |}{\partial \mathbf{w_k^*\!(i)}}$$

[0088]上記数32と数33はそれぞれ、上記数3 0及び数31を満足するさせるためのアルゴリズムの式 である。上記数32における偏微分項は、上記数26の 偏微分の近似式を用いて得ることができる。一方、上記 数31における偏微分項は、上記数28の両辺を偏微分 することによって直接的に求めることができる。従っ て、上記数32及び数33は次式となり、次式の係数更 新式を用いて収束処理を実行する。

[0089]

 z_k |, (i = 1, ...N)

【数35】 $W_k(i) = W_{k-1}(i) + \mu_w e_k^{q-1} | Z_k |$ $y_{i} = 0, \dots L - 1$

[0090] ただし、

【数36】△, | z, |

 $=\Delta_{i} \mid Z_{k} (V_{k,1}, \dots, V_{k,i}, \dots, V_{k,N}) \mid$ $= | Z_k (V_{k,1}, \dots, V_{k,1} + \Delta V, \dots, V_{k,N}) |$ $- | Z_k (V_{k,1}, \dots, V_{k,i}, \dots, V_{k,N}) |$ である。

【0091】上記数46において、△vは摂動のための 20 微少項であり、上記数34及び数35におけるμ、とμ、 はそれぞれ、移相器3-1乃至3-Nの制御電圧と、可 変増幅器72-0乃至72-(L-1)の増幅度である タップ係数のステップサイズである。本実施形態に係る 時空間信号処理M-CMA法のアルゴリズムを正しい収 束させるには、この2種類のステップサイズは以下の条 件を満足する必要がある。

[0092]

【数37】 $\mu_{\bullet} = \mu_{\bullet} \Delta V$ ここで、△vの単位はラジアンである。

【0093】以上説明したように、本実施形態によれ ば、ポリフェーズフィルタバンクである時分割フィルタ バンク回路10を用いることにより、処理すべき信号の レートを低下させかつ各アンテナ素子に対応する複数の 摂動項の信号を正確に取り出すことができる。従って、 ビットレートに比較して非常に高速なサンプリングを行 えるA/D変換器を必要とせず、低速となるのでサンプ リングのタイミング調整も容易となる。それ故、回路構 成が簡単であって、時間的正確にかつ、ビーム形成方向 として正確に主ビームの制御やヌルの制御ができる。

【0094】<第2の変形例>図7は、第2の実施形態 の変形例である、本発明に係る第2の変形例のアレーア ンテナの制御装置における時分割フィルタバンク回路 1 0とビーム制御回路20taの構成を示すブロック図で あり、図5及び図6と同一のものは同一の符号を付して いる。

【0095】第2の実施形態においては、M個のTRF 回路61-0乃至61-(M-1)を時分割フィルタバ ンク回路10とビーム制御部21 tとの間に備えていた が、とれに代えて、ビーム制御部21tで指定される重 50 1mと、可変増幅器82-0乃至82-(M-1)と、

み係数を有する1個のTRF回路61をA/D変換器9 と、時分割フィルタバンク回路10との間に挿入したと とを特徴としている。ここで、ビーム制御部21tは、 時空間信号処理M-CMA法によるビーム制御処理にお いて、利得制御前のベースバンド信号y㎏。(図5のベ ースバンド信号Ψ,。)を必要とするが、これは、図7 の時分割フィルタバンク回路10から出力されるベース バンド信号Ψ、。を重み付け係数で除算することにより 計算するととができる。また、これにとって代わって、 【数34】 V_{k,i} = V_{k-1,i} + µ_v e_k^{q-1} | Z_k | ^{p-2} Δ_i | 10 図7において1点鎖線で示すように、A/D変換器9か らのベースバンド信号 ukから利得制御前のベースバン ド信号 $Y_{k,o}$ (図7のベースバンド信号 $\Psi_{k,o}$)を時分割 分離して取り出してもよい。

26

【0096】以上のように構成された第2の変形例によ れば、第2の実施形態における作用効果に加えて、TR F回路61の個数を大幅に減少させることができ、これ により、回路構成をより簡単にできるという特有の効果 を有する。

【0097】<第3の実施形態>図8は、本発明に係る 第3の実施形態であるアレーアンテナの制御装置におけ る時分割フィルタバンク回路10とビーム制御回路20 mの構成を示すブロック図であり、図1乃至図7及び図 10と同一のものについては同一の符号を付している。 本実施形態のアレーアンテナの制御装置は、ビーム制御 部21mを有するビーム制御回路20mを備えたことを 特徴としている。

【0098】ビーム制御回路20mは、復調器7及び時 分割フィルタバンク回路10を介してA/D変換器9か らの出力信号であるベースバンド信号 $\Psi_{k,n}$ (m=0,

30 1, 2, …, M-1) に基づいて、詳細後述する変形さ れた最小平均二乗法(以下、M-LMS法という。)を 用いて、可変移相器3-1乃至3-Nの各移相量を摂動 付加回路30を制御することによりそれぞれ所定のシフ ト量だけ摂動させ、各移相量に対する、可変増幅器82 -0乃至82-(M-1)から出力されるベースバンド 信号y, の摂動前後の変化量Ay, を計算し、計算さ れた変化量Ayk. と、A/D変換器9から時分割フィ ルタバンク回路10を介して出力されるベースバンド信 号Ψκ.。と、可変増幅器82から出力されるベースバン ド信号y, と、ベースバンド信号Ψ, 。を可変増幅器8 2により利得制御されたベースバンド信号 y k . o とそれ の符号判別値は、(符号判別器83の出力である。)と の間の誤差信号eょとに基づいて、当該誤差信号eょの自 乗平均が最小となるように、上記アレーアンテナの主ビ ームを所定の方向に向けるための上記各移相量及び上記 利得g,を計算してそれぞれ各可変移相器3-1乃至3 -N及び可変増幅器82-0乃至82-(M-1)に出 力することを特徴としている。

【0099】ビーム制御回路20mは、ビーム制御部2

符号判別器83と、減算器84とを備えて構成される。 とこで、各可変増幅器82-0乃至82-(M-1) は、入力されるベースバンド信号Ψκωを、ビーム制御 部81により示される制御利得g,で増幅して、利得制 御されたベースバンド信号y. をビーム制御部21m に出力し、また、そのうちベースバンド信号ソト。を符 号判別器83、減算器84及びビーム制御部21mに出 力する。次いで、符号判別器83は、後述するように、 入力されるベースバンド信号y,の符号判別値d,を演算 して減算器84に出力する。さらに、減算器84は、符 10 号判別値dょからベースバンド信号yょ。を減算して減算 結果の誤差信号 e をビーム制御部81 に出力する。そ して、ビーム制御部81は、入力されるベースバンド信 号Ψk.。及びyk.、並びに誤差信号ekに基づいてM-LMS法を用いて制御利得gkを演算して可変増幅器8 2に出力するとともに、可変制御電圧 $v_{k,i}$ (i = 1, 2, …, N)を演算してそれぞれ可変移相器3-1乃至 3-Nに出力する。

【0100】このビーム制御回路80では、A/D変換 後のベースバンド信号Ψkのみに基づいて、M−LMS 法を用いて、例えば、データ伝送を行う前の所定のトレ ーニング期間において、各可変移相器3-1乃至3-N に対する各移相制御電圧 Vk.1 を摂動付加回路30を制 御することにより所定のシフト量だけ摂動させることに より、各移相量に対する、可変増幅器82から出力され るベースバンド信号y. の摂動前後の変化量△y. を 計算し、計算された変化量Ayk. と、A/D変換器9 から時分割フィルタバンク回路10を介して出力される ベースバンド信号Ψ、。と、可変増幅器82-0乃至8 2-(M-1) から出力されるベースパンド信号yxxx と、ベースバンド信号ykioの符号判別値dk(符号判別 器83の出力である。)とベースバンド信号 yk.oとの 間の誤差信号eょとに基づいて、当該誤差信号eょの自乗 平均が最小となるように、上記アレーアンテナの主ビー ムを所定の方向に向けるための上記各移相量及び上記利 得を計算してそれぞれ各可変移相器3-1乃至3-N及 び可変増幅器82-0乃至82-(M-1)に出力す

【0101】以上のように構成されたアレーアンテナの制御装置においては、ビーム制御回路20mは、ビーム 40制御回路20mの減算器84で発生される誤差信号ekの自乗平均が最小となるように、アレーアンテナ100の主ビームを適応的に所定の方向に形成する。構成されたアレーアンテナの制御装置では、低雑音増幅器2-1乃至2-N及び可変移相器3-1乃至3-Nは、アンテナ素子1-1乃至1-Nの素子数Nに対応したN個を必要とするが、合成器4以降の回路では、各回路構成要素は1つのみで済む。従って、図10に示す従来例に比較して、ハードウエア構成が簡単であって、回路構成要素の数が少ないので消費電力が少ない。 50

【0102】次いで、ビーム制御回路20mにおける制御アルゴリズムについて説明する。まず、可変増幅器82-0乃至82-(M-1)から出力される利得制御されたベースバンド信号 yk, k, k は次式で表される。

[0103]

【数38】 $y_{k,n} = g_k \Psi_{k,n}$

[0104] ここで、 Ψ_{k-} はA/D変換器9から時分割フィルタバンク回路10を介して出力され複素数で表されたベースバンド信号であり、 g_k は実数で表された可変増幅器82-0 乃至82-(M-1) の利得であり、 y_{k-} は複素数で表された可変増幅器82-0 乃至82-(M-1) の各出力信号を示している。このとき、誤差信号 e_k を次式のように定義される。

[0105]

【数39】 $e_k = d_k - y_{k,0}$

【0106】ととで、d_kは符号判別器83からの、符号判別値を示す出力信号であり、次式のように求められる

[0107]

[$\{ \pm 40 \} d_k = \text{sgn} [\text{Re} (y_k)] + j \cdot \text{sgn} [\text{Im} (y_k)]$

【0108】ととで、 $Re[\cdot]$ は引数の実数を示す関数であり、 $Im[\cdot]$ は引数の虚数を示す関数である。また、sgn[x]は符号判別関数であり、以下のように定義される。

[0109]

【数41】sgn[x]

=1;x≥0のとき

=-1;x<0のとき

【0110】との時、各可変増幅器82-0乃至82-(M-1)の利得は次式のように更新される。

[0111]

[数42] $g_k = g_{k-1} + \mu Re [\Psi_{k,0} e_k]$

【0112】とこで、 μ はステップサイズパラメータと呼ばれ、 $0 < \mu < 1$ での適当な定数である。また、*は複素共役を示す。一方、可変位相器 3 - i の制御電圧は次式のように更新される。

[0113]

[数43] $v_{k,1} = v_{k-1,1} + \mu Re (e_k^* \Delta y_{k,1})$

○ 【0114】 このとき、変化量△y_{k,1}は次式のように 求められる。

[0115]

【数44】△ук.,

 $= y_{k,0} (v_{k-1,1}, \dots, v_{k-1,1} + \Delta v, \dots, v_{k-1,N})$ $- y_{k,0} (v_{k-1,1}, \dots, v_{k-1,1}, \dots, v_{k-1,N})$

50 を示す。また、数44の右辺の第1項は、時刻k-1の

移相制御電圧 V k-1.1, …, V k-1.1, …, V k-1.1 に加 えて、第 i 番目のアンテナ素子 1 - i に対応する可変移 相器3-iのみに摂動電圧△vを余分にかけたときの利 得制御されたベースバンド信号ykioを示す。そして、 数44で表される△Ук.はとれら2つの信号の変化 量、すなわち、摂動前後のベースバンド信号ソメルの変 化量である。

29

【0117】従って、数43から明らかなように、計算 した摂動前後のベースバンド信号ソ、。の変化量△ソ、、・ と、誤差信号 eょとに基づいて移相制御電圧 Vょいを演算 10 して設定する。そして、数42から明らかなように、誤 差信号 e. の自乗平均が最小となるように、可変増幅器 82-0乃至82-(M-1)の利得g_kを決定して設 定する。このようにビーム制御することにより、当該ア レーアンテナの主ビームを所定の方向に向けることがで き、特に、TDMA等で利用されるプリアンブルやCD MA等で利用されるパイロット信号を所望信号として用 いることで、搬送波対干渉波電力比(CIR)がマイナ ス、すなわち、所望信号が干渉波よりもレベルが低い場 合にも、所望波方向にビームを向け、干渉波方向にヌル 20 を形成できる。

【0118】本実施形態においては、振幅制御は、A/ D変換器9から時分割フィルタバンク回路10を介した 出力ベースバンド信号ッ、。に対してディジタル信号処 理により行い、マイクロ波帯(RF帯)の可変移相器制 御では、移相器入力信号を観測できないため、摂動によ り係数の更新量を求める。また、振幅制御では、出力べ ースバンド信号 y*.。がディジタル信号として得られる ため、数42の形式で、振幅推定アルゴリズムが得られ る。また、発明したアルゴリズムは誤差信号eょの二乗 平均の最小化という公知のLMS法と同様の規範を用い ているため、発明したアルゴリズムを「M-LMS法」 と呼んでいる。

【0119】以上説明したように、本実施形態によれ ば、M-LMS法を用いてビーム制御するので、DBF 回路で実現されたアダプティブアレーと同様に、ビー ム、ヌル制御が可能で有ることに加えて、RF帯でビー ム形成が行えるため、従来例に比較して回路規模やコス トの削減が可能になるという利点がある。従って、構成 が簡単であって消費電力が少ない。また、TDMA等で 40 利用されるプリアンブルやCDMA等で利用されるパイ ロット信号を所望信号として用いることで、搬送波対干 渉波電力比(CIR)がマイナス、すなわち、所望信号 が干渉波よりもレベルが低い場合にも、所望波方向にビ ームを向け、干渉波方向にヌルを形成できる。従って、 劣悪な環境であっても安定に適応動作を行うことができ る。

【0120】また、本実施形態によれば、ポリフェーズ フィルタバンクである時分割フィルタバンク回路10を かつ各アンテナ素子に対応する複数の摂動項の信号を正 確に取り出すことができる。従って、ビットレートに比 較して非常に高速なサンプリングを行えるA/D変換器 を必要とせず、低速となるのでサンプリングのタイミン グ調整も容易となる。それ故、回路構成が簡単であっ て、時間的正確にかつ、ビーム形成方向として正確に主 ビームの制御やヌルの制御ができる。

30

【0121】 <第3の変形例>図9は、第3の実施形態 の変形例である、本発明に係る第3の変形例のアレーア ンテナの制御装置における時分割フィルタバンク回路 1 Oとビーム制御回路20maの構成を示すブロック図で あり、図8と同一のものは同一の符号を付している。 [0122]第3の実施形態においては、可変増幅器8 2-0乃至82-(M-1)を時分割フィルタバンク回 路10とビーム制御部21mとの間に備えていたが、と れに代えて、ビーム制御部21mで指定される重み係数 を有する1個の可変増幅器82をA/D変換器9と、時 分割フィルタバンク回路10との間に挿入したことを特 徴としている。ととで、ビーム制御部21mは、M-L MS法によるビーム制御処理において、利得制御前のべ ースパンド信号 $Y_{k,o}$ (図8のベースバンド信号 $\Psi_{k,o}$) を必要とするが、これは、図9の時分割フィルタバンク 回路10から出力されるベースバンド信号Ψk.oを制御 利得gェで除算することにより計算することができる。 また、これにとって代わって、図9において1点鎖線で 示すように、A/D変換器9からのベースバンド信号u kから利得制御前のベースバンド信号yk.。(図9のベー スパンド信号 $\Psi_{k,o}$)を時分割分離して取り出してもよ

【0123】以上のように構成された第3の変形例によ れば、第3の実施形態における作用効果に加えて、可変 増幅器82の個数を大幅に減少させることができ、これ により、回路構成をより簡単にできるという特有の効果 を有する。

【0124】 <他の変形例>以上の実施形態において は、A/D変換器9を用いてベースバンド信号をA/D 変換した後、その後の回路においてディジタル信号処理 を行っているが、A/D変換器9を挿入せず、その後の 回路においてアナログで信号処理を実行してもよい。

【0125】以上の実施形態においては、摂動付加回路 30は、各ビーム制御回路20, 20a, 20t, 20 ta, 20m, 20maとは別の回路で構成されている が、摂動付加回路30の機能を各ビーム制御回路20, 20a, 20t, 20ta, 20m, 20ma内におい てソフトウエア又はハードウエア回路で統合して構成し てもよい。

[0126]

【実施例】さらに、本発明者らは、第1の実施形態に係 る、ポリフェーズフィルタを応用したM-CMA法のア 用いることにより、処理すべき信号のレートを低下させ 50 ダブティブアレーの干渉抑圧特性を計算機シミュレーシ ョンにより実験したので、その実験方法及び実験結果に ついて以下に詳述する。

【0127】変調方式としてQPSK変調方式を用い、 検波器には遅延検波を適用した送受信機構成を前提とした。また、伝送路はAWGN(Additive White Gaussia n Noise)チャネルを適用した。アンテナは半波長間隔のリニアアレーアンテナで、その素子数は4とした。また、リニアアレーアンテナの正面方向を0度とすると、希望波は-50度の方向から、干渉波は30度の方向から等レベルで入射する環境を想定した。また、M-CM 10 A法の乗数をp=q=1に設定し、ステップサイズμ=0.0001とした。処理速度の低減のためオーバサンプルはシンボルレートの4倍とした。また、アレーアンテナの初期状態は正面方向にビームを形成している。

【0128】図11は、第1の実施形態のシミュレーション結果であって4素子リニアアレーアンテナの場合の指向性パターンを示すグラフである。図11から明らかなように、希望波方向に理論限界の12dB程度のアレーファクタを持つビームを形成している。干渉波方向には深いヌルを形成できていることがわかる。ただし、SNRが低い場合には、若干ヌルの位置がずれている。これは、SNRが低い場合には、ビームを形成する方に制御が集中し、ヌルには多少感度が落ちるためと考えられる。

【0129】図12は、第1の実施形態のシミュレーション結果であって4素子リニアアレーアンテナの場合の搬送波/雑音電力比(CNR)に対するビットエラーレート(BER)の特性を示すグラフである。図12においては、理論値として、干渉がない条件での4素子最大比合成ダイバーシチ受信時の遅延検波の特性を示している。M-CMA法を用いたアダプティブアレーは希望波にビームを向けるだけでなく干渉波方向に鋭いヌルを形成できるため、すべてのCNR条件において、理論値に1.5dBにまで漸近する優れた特性が得られることが分かる。この1.5dBの劣化は上述したヌルに対する感度低下によるものと考えられる。

【0130】以上説明したように、小型・低価格化が可能なアナログビーム形成型アダプティブアレーにおいて適応ビーム制御を可能とするM-CMA法の効果的な実現方法として、ポリフェーズフィルタを利用した。原理的にM-CMA法の係数更新式においては同時刻の「摂動項」と「非摂動項」が必要となる。この信号を簡易に得る方法として、ポリフェーズフィルタを構成する各フィルタバンクを備えた時分割フィルタバンク回路10が同時刻に全く同じ波形を出力することを利用する。すなわち、時分割フィルタバンク回路10内の各ポリフェーズフィルタには摂動を受けた信号と受けない信号を振り分けることで、フィルタ毎に異なった摂動あるいは、非摂動項が出力されるのである。

[0131]

32

【発明の効果】以上詳述したように本発明によれば、ポリフェーズフィルタバンクである時分割フィルタバンク回路を用いることにより、処理すべき信号のレートを低下させかつ各アンテナ素子に対応する複数の摂動項の信号を正確に取り出すことができる。従って、ビットレートに比較して非常に高速なサンプリングを行えるA/D変換器を必要とせず、低速となるのでサンプリングのタイミング調整も容易となる。それ故、回路構成が簡単であって、時間的正確にかつ、ビーム形成方向として正確に主ビームの制御やヌルの制御ができる。

【図面の簡単な説明】

[図1] 本発明に係る第1の実施形態であるアレーアンテナの制御装置の構成を示すブロック図である。

【図2】 図1の時分割フィルタバンク回路10とビーム制御回路20と摂動付加回路30の詳細な内部構成を示すブロック図である。

【図3】 図2の時分割フィルタバンク回路10の動作例を示すブロック図である。

ーファクタを持つビームを形成している。干渉波方向に 【図4】 第1の実施形態の変形例である、本発明に係は深いヌルを形成できていることがわかる。ただし、S 20 る第1の変形例のアレーアンテナの制御装置における時 NRが低い場合には、若干ヌルの位置がずれている。こ 分割フィルタバンク回路10とビーム制御回路20aの れは、SNRが低い場合には、ビームを形成する方に制 構成を示すブロック図である。

【図5】 本発明に係る第2の実施形態であるアレーアンテナの制御装置における時分割フィルタバンク回路10とビーム制御回路20tの構成を示すブロック図である。

【図6】 図5のTRF回路61の詳細な内部構成を示すブロック図である。

【図7】 第2の実施形態の変形例である、本発明に係る第2の変形例のアレーアンテナの制御装置における時分割フィルタバンク回路10とビーム制御回路20taの構成を示すブロック図である。

【図8】 本発明に係る第3の実施形態であるアレーアンテナの制御装置における時分割フィルタバンク回路10とビーム制御回路20mの構成を示すブロック図である。

【図9】 第3の実施形態の変形例である、本発明に係る第3の変形例のアレーアンテナの制御装置における時分割フィルタバンク回路10とビーム制御回路20maの構成を示すブロック図である。

【図10】 従来例のアレーアンテナの制御装置の構成を示すブロック図である。

【図11】 第1の実施形態のシミュレーション結果であって4素子リニアアレーアンテナの場合の指向性バターンを示すグラフである。

【図12】 第1の実施形態のシミュレーション結果であって4素子リニアアレーアンテナの場合の搬送波/雑音電力比(CNR)に対するビットエラーレート(BER)の特性を示すグラフである。

50 【符号の説明】

34

- 1-1乃至1-N…アンテナ素子、
- 2-1乃至2-N…低雑音增幅器(LNA),

33

- 3-1乃至3-N…可変移相器、
- 4…合成器、
- 5…ダウンコンバータ、
- 6…帯域通過フィルタ(BPF)、
- 7…復調器、
- 8…低域通過フィルタ(LPF)、
- 9…A/D変換器、
- 10…時分割フィルタバンク回路、
- 11-1乃至11-(M-1)…遅延回路、
- 12-0乃至12-(M-1)…ダウンサンプラ、
- 13-0乃至13-(M-1)…ディジタルフィルタ、
- 14-0乃至14-(M-1)…ダウンサンプラ、
- 20, 20a, 20t, 20ta, 20m, 20ma…
- ビーム制御回路、

- *21, 21t, 21m…ビーム制御部、
 - 22-0乃至22-(M-1)…可変增幅器、
 - 23…基準信号発生器、
 - 24…減算器、
 - 30…摂動付加回路、
 - 31…摂動付加電圧発生器、
 - 32…スイッチコントローラ、
 - 33-1万至33-N…加算器、
 - 34-1乃至34-N…スイッチ、
- 10 61,61-0乃至61-(M-1)…トランスバーサ
 - ルフィルタ回路(TRF回路)、
 - 70…TDL回路、
 - 71-1乃至71-(L-1)…遅延回路、
 - 72-0乃至72-(L-1)…可変增幅器、
 - 73…加算器、
 - 100…アレーアンテナ。

【図1】

[図6]

[図2]

[図3]

[図4]

【図5】

[図7]

【図8】

[図9]

【図10】

【図11】

【図12】

フロントページの続き

(72)発明者 田野 哲 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内

F ターム (参考) 5J021 AA05 AA06 CA06 DB02 DB03 DB04 EA04 FA05 FA14 FA15 FA16 FA17 FA20 FA23 FA24 FA26 FA29 FA30 FA31 FA32 GA02 HA05 HA10 SK059 CC03 CC04 DD37 EE02

1

JAPANESE [JP,2002-076747,A]

CLAIMS DETAILED DESCRIPTION TECHNICAL FIELD PRIOR ART EFFECT OF THE INVENTION TECHNICAL PROBLEM MEANS EXAMPLE DESCRIPTION OF DRAWINGS DRAWINGS

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] two or more — two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- two or more [to which the phase shift only of the predetermined amount of phase shifts is carried out, and it outputs N radio signals, respectively] -- with N phase shift means A synthetic means outputted from each above-mentioned phase shift means to compound two or more radio signals of N individual, and to output the radio signal after composition, A recovery means to restore to it and output the radio signal outputted from the above-mentioned synthetic means to baseband signaling, A gain control means to carry out gain control of the baseband signaling outputted from the above-mentioned recovery means, and to output it on predetermined gain, A subtraction means to generate and output the error signal between the baseband signaling outputted from the above-mentioned gain control means, and the reference signal of a predetermined value, Only a predetermined shift amount is made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively. So that the dip vector of the power of the error signal outputted from the abovementioned subtraction means over each amount of phase shifts may be calculated and the error signal concerned may serve as min based on the dip vector and the above-mentioned error signal of power of an error signal which were calculated In the control unit of the array antenna equipped with the control means which calculates the gain of each amount of phase shifts for turning the main beam of the above-mentioned array antenna in the predetermined direction, and the above-mentioned gain control means, and is outputted to each above-mentioned phase shift means and the above-mentioned gain control means, respectively The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It is inserted and prepared between the above-mentioned recovery means and the above-mentioned gain control means or between the above-mentioned gain control means, the above-mentioned control means, and the above-mentioned subtraction means. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, The control unit of the array antenna characterized by having further a time-sharing processing means for two or more sample signals within the above-mentioned sequence signal in the period which it precessed to differ and to perform time-sharing processing so that it may be outputted as an output signal.

[Claim 2] The above-mentioned gain control means is the control unit of the array antenna according to claim 1 characterized by being a transversal filter circuit.

[Claim 3] two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- two or more [to which the phase shift only of the predetermined amount of phase shifts is carried out, and it outputs N radio signals, respectively] -- with N phase shift means A synthetic means outputted from each above-mentioned phase shift means to compound two or more radio signals of N individual, and to output the radio signal after composition, A recovery means to restore to it and output the radio signal outputted from the above-mentioned synthetic means to baseband signaling, A gain control means to carry out gain control of the baseband signaling outputted from the above-mentioned recovery means, and to output it on predetermined gain, A sign distinction means to output the sign distinction value signal which distinguishes the sign of the baseband signaling outputted from the abovementioned gain control means, and shows a sign distinction value, A subtraction means to generate and output the error signal between the sign distinction value signal outputted from the above-mentioned sign distinction means, and the baseband signaling outputted from the abovementioned gain control means, The variation which only the predetermined shift amount was made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively, calculated the variation before and behind the perturbation of the baseband signaling outputted from the above-mentioned gain control means to each amount of phase shifts, and was calculated, Based on the baseband signaling outputted from the above-mentioned recovery means, the baseband signaling outputted from the above-mentioned gain control means, and the error signal outputted from the above-mentioned subtraction means, so that the root mean square of the above-mentioned error signal may serve as min It has the control means which calculates each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the above-mentioned array antenna in the predetermined direction, and is outputted to each above-mentioned phase shift means and the abovementioned gain control means, respectively. The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It is inserted and prepared between the above-mentioned recovery means and the above-mentioned gain control means or between the above-mentioned gain control means, the above-mentioned control means, and the abovementioned subtraction means. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, The control unit of the array antenna characterized by having further a time-sharing processing means for two or more sample signals within the above-mentioned sequence signal in the period which it precessed to differ and to perform timesharing processing so that it may be outputted as an output signal. [Claim 4] The control unit of the array antenna which is inserted and formed in the latter part of the above-mentioned recovery means in the control unit of claim 1 thru/or the array antenna of one of 3 publications, carries out analog-to-digital conversion to the baseband signaling outputted from the above-mentioned recovery means, and is characterized by having further a conversion means to output the digital baseband signaling after conversion. [Claim 5] two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- N radio signals using two or more phase shift means with the step to which the phase shift only of the predetermined amount of phase shifts is carried out, respectively The step by which the phase shift was carried out [above-mentioned] and which compounds two or more radio signals of N individual, and outputs the radio signal after composition, The step which restores to the radio signal after the above-mentioned composition to baseband signaling, and the step which carries out gain control of the baseband signaling by which the recovery was carried out [above-mentioned] on predetermined gain using a gain control means. The step which generates the error signal between the baseband signaling by which gain control was carried out [above-mentioned], and the reference signal of a predetermined value, Only a predetermined shift amount is made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively. Calculate the dip vector of the power of the above-mentioned error signal over each amount of phase shifts, and so that the error signal concerned may serve as min based on the dip vector and the abovementioned error signal of power of an error signal which were calculated In the control approach of the array antenna containing the step which calculates each amount of phase shifts for turning the main beam of the above-mentioned array antenna in the predetermined direction, and the gain of the above-mentioned step which carries out gain control, and is outputted to each above-mentioned phase shift means and the above-mentioned gain control means, respectively The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It performs between the above-mentioned step which carries out a recovery, and the above-mentioned step which carries out gain control, or between the steps which generate

the above-mentioned step which carries out gain control, the above-mentioned step which carries out count, and the above-mentioned error signal. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, The control approach of the array antenna characterized by including further the step which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the above-mentioned sequence signal in the period which it precessed differ. [Claim 6] The above-mentioned step which carries out gain control is the control approach of the array antenna according to claim 1 characterized by performing using a transversal filter circuit.

[Claim 7] two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- N radio signals with the step to which the phase shift only of the predetermined amount of phase shifts is carried out using two or more phase shift means, respectively The step by which the phase shift was carried out [above-mentioned] and which compounds two or more radio signals of N individual, and outputs the radio signal after composition, The step which restores to the radio signal after the above-mentioned composition to baseband signaling, and the step which carries out gain control of the baseband signaling by which the recovery was carried out [above-mentioned] on predetermined gain using a gain control means, The step which outputs the sign distinction value signal which distinguishes the sign of the baseband signaling by which gain control was carried out [above-mentioned], and shows a sign distinction value. The step which generates the error signal between the abovementioned sign distinction value signal and the baseband signaling by which gain control was carried out [above-mentioned], The variation which only the predetermined shift amount was made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively, calculated the variation before and behind the perturbation of the baseband signaling by which gain control was carried out [above-mentioned] to each amount of phase shifts, and was calculated, Based on the baseband signaling by which the recovery was carried out [above-mentioned], the baseband signaling by which gain control was carried out [abovementioned], and the above-mentioned error signal, so that the root mean square of the abovementioned error signal may serve as min It has the step which calculates each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the abovementioned array antenna in the predetermined direction, and is outputted to each abovementioned phase shift means and the above-mentioned gain control means, respectively. The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It performs between the above-mentioned step which carries out a recovery, and the above-mentioned step which carries out gain control, or between the steps which generate the above-mentioned step which carries out gain control, the above-mentioned step which carries out count, and the above-mentioned error signal. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, The control approach of the array antenna characterized by including further the step which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the above-mentioned sequence signal in the period which it precessed differ. [Claim 8] The control approach of the array antenna which is performed after the abovementioned step which carries out a recovery, carries out analog-to-digital conversion to the baseband signaling by which the recovery was carried out [above-mentioned], and is

[Translation done.]

characterized by including further the step which outputs the digital baseband signaling after conversion in the control approach of claim 5 thru/or the array antenna of one of 7 publications.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the control unit and the control approach for controlling the array antenna equipped with two or more antenna elements.
[0002]

[Description of the Prior Art] Drawing 10 is the block diagram showing the configuration of the control device of the array antenna of the conventional example. A radio signal is received in drawing 10 by the array antenna 100 by which it comes to juxtapose two or more the antenna elements 1-1 thru/or 1-N of N individual on 1 straight line at the predetermined spacing mutually. The radio signal received by each antenna element 1-1 thru/or 1-N, respectively A low noise amplifier (LNA) 2-1 thru/or 2-N, the down converter 5-1 that carries out frequency conversion to the intermediate frequency signal of a predetermined intermediate frequency, or 5-N, It is outputted to the beam control circuit 93 and a variable phase-shifter 91-1 thru/or 91-N through A/D converter 9-1 thru/or 9-N which performs the demodulator 7-1 thru/or 7-N and the analog / digital conversion which restores to an intermediate frequency signal to baseband signaling. A variable phase-shifter 91-1 thru/or 91-N output the baseband signaling inputted to the synthetic vessel 92, after carrying out the phase shift only of the amount of phase shifts in which it is directed from the beam control circuit 93, respectively. The synthetic vessel 92 is outputted to an external device while it carries out power composition of the baseband signaling of a two or more N individual inputted and outputs the baseband signaling after composition to the beam control circuit 93.

[0003] Each baseband signaling into which the beam control circuit 93 is inputted from A/D converter 9-1 thru/or 9-N here, Adaptation beam control algorithms, such as technique based on the criteria of MMSE (Minimizing Mean Square Error), such as law, are used, the baseband signaling after composition — being based — for example, well-known LMS (Least Mean Square) — It outputs in order for the baseband signaling after composition to serve as max, and to calculate each amount of phase shifts of the variable phase-shifter 91-1 by which an array antenna 100 turns the main beam in the predetermined direction thru/or 91-N and to control each variable phase-shifter 91-1 thru/or 91-N.

[0004] The so-called control device of the ecad array antenna constituted as mentioned above is highly efficient antenna control equipment which can obtain the directivity response pattern which was adapted for the received electric-wave environment by combining with two or more antenna elements 1-1 thru/or 1-N, and radio set circuits the variable phase-shifter 91-1 which is a digital-signal-processing circuit thru/or 91-N, the synthetic vessel 92, and the beam control circuit 93. the configuration which used the digital beam formation circuit (DBF) in the conventional example of drawing 10 — it is — forming the main beam of an array antenna in the direction of a request incoming wave **** — the direction of an interference wave — null — it has the function to form a point and to remove this.

[0005] However, since A/D converter 9-1 thru/or 9-N needed to be used for the receiving-circuit (low noise amplifier 2-1 thru/or 2-N, down converter 5-1 or 5-N and demodulator 7-1 thru/or 7-N) list for every antenna element 1-1 thru/or 1-N, there was a trouble that hardware

[0007]

magnitude and power consumption became large. Especially, when it is a high interest profit antenna with many element numbers of an antenna element, especially this problem will become serious. Furthermore, since it receives for every antenna element, there is also a fault that actuation becomes difficult under the environment to which signal level fell. [0006] In order to solve this trouble, this invention persons "For example, the conventional technical reference 1 "M-CMA besides Tano (Modified Constant Modulus Algorithm), - In digitalsignal-processing algorithm-" for adaptation beam shape ** by microwave signal processing, the Institute of Electronics, Information and Communication Engineers research report and A-P 99-62, and pp.15 1999 [-22 or]" M-CMA (ModifiedConstant Modulus Algorithm) is proposed as adaptation algorithm suitable for the adaptive array which performs beam shape ** with this microwave band, and performs digital-signal-processing control. By this M-CMA method, it is premised on constituting a beam formation machine from a variable phase-shifter and an adder for simplification of a hardware configuration. in order that the M-CMA method may make a valuation basis minimization of the average square error of amplitude deflection like the CMA method -- the CMA method -- the same -- beam steering and null -- the concurrency control of a steering is possible. Needless to say, since it is positioned in a blind algorithm, before the M-CMA method establishes frame synchronization, and a frequency and phase simulation, beam formation is possible for it. Therefore, beam shape ** is performed before various synchronous establishment, and from a beam formation machine, since the high signal of SINR (Signal to Interference and NoiseRatio) is supplied after IF stage, various synchronizations also have the advantage of being easily establishable, under the inferior SINR environment. The M-CMA method presumes the dip vector in the error flat surface over the control voltage of each variable phase-shifter using a perturbation theoretically.

[Problem(s) to be Solved by the Invention] However, by the M-CMA method, the output signal (perturbation term) of the beam formation machine when giving a perturbation to the input signal of the same time of day and the output signal (non-precessing term) of the beam formation machine which is not given are needed in an updating type. There is an approach using a high-speed sampling as a means to ask for this in approximation. This samples the output signal of a beam formation machine at a high speed to a symbol rate, and uses the signal with which this output adjoined each other as "a non-precessing term" and a "perturbation term" at the same time it applies a perturbation. If the effect of a noise is disregarded, correlation of the signal with which the output signal of the beam formation machine by which the high-speed sample was carried out adjoined each other will be dramatically high to this principle of operation, and it will use that the difference among both is only a difference in the existence of a perturbation for it. However, there was a trouble that the A/D converter which can perform a very high-speed sampling in this case as compared with a bit rate being needed, and sampling timing adjustment were difficult, and circuitry became complicated.

[0008] The object of this invention solves the above trouble and it is in offering the control unit and the control approach of an array antenna as for which control of the main beam and control of null are made to accuracy as a beam formation direction in time [as compared with the conventional example, a configuration is easy, and].
[0009]

[Means for Solving the Problem] the control unit of the array antenna concerning this invention — two or more — two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] — two or more [to which the phase shift only of the predetermined amount of phase shifts is carried out, and it outputs N radio signals, respectively] — with N phase shift means A synthetic means outputted from each above—mentioned phase shift means to compound two or more radio signals of N individual, and to output the radio signal after composition, A recovery means to restore to it and output the radio signal outputted from the above—mentioned synthetic means to baseband signaling, A gain control means to carry out gain control of the baseband signaling outputted from the above—mentioned recovery means, and to output it on predetermined gain, A subtraction means to generate and output the error signal between the

baseband signaling outputted from the above-mentioned gain control means, and the reference signal of a predetermined value, Only a predetermined shift amount is made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively. So that the dip vector of the power of the error signal outputted from the above-mentioned subtraction means over each amount of phase shifts may be calculated and the error signal concerned may serve as min based on the dip vector and the above-mentioned error signal of power of an error signal which were calculated In the control unit of the array antenna equipped with the control means which calculates the gain of each amount of phase shifts for turning the main beam of the above-mentioned array antenna in the predetermined direction, and the above-mentioned gain control means, and is outputted to each above-mentioned phase shift means and the abovementioned gain control means, respectively The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It is inserted and prepared between the above-mentioned recovery means and the above-mentioned gain control means or between the above-mentioned gain control means, the above-mentioned control means, and the abovementioned subtraction means. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by having further a time-sharing processing means for two or more sample signals within the above-mentioned sequence signal in the period which it precessed to differ and to perform time-sharing processing so that it may be outputted as an output signal.

[0010] In the control device of the above-mentioned array antenna, the above-mentioned gain control means is preferably characterized by being a transversal filter circuit.

[0011] Moreover, the control unit of the array antenna concerning this invention two or more -two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- two or more [to which the phase shift only of the predetermined amount of phase shifts is carried out, and it outputs N radio signals, respectively] -- with N phase shift means A synthetic means outputted from each above-mentioned phase shift means to compound two or more radio signals of N individual, and to output the radio signal after composition, A recovery means to restore to it and output the radio signal outputted from the above-mentioned synthetic means to baseband signaling, A gain control means to carry out gain control of the baseband signaling outputted from the above-mentioned recovery means, and to output it on predetermined gain, A sign distinction means to output the sign distinction value signal which distinguishes the sign of the baseband signaling outputted from the above-mentioned gain control means, and shows a sign distinction value, A subtraction means to generate and output the error signal between the sign distinction value signal outputted from the above-mentioned sign distinction means, and the baseband signaling outputted from the above-mentioned gain control means, The variation which only the predetermined shift amount was made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively, calculated the variation before and behind the perturbation of the baseband signaling outputted from the above-mentioned gain control means to each amount of phase shifts, and was calculated, Based on the baseband signaling outputted from the above-mentioned recovery means, the baseband signaling outputted from the above-mentioned gain control means, and the error signal outputted from the abovementioned subtraction means, so that the root mean square of the above-mentioned error signal may serve as min It has the control means which calculates each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the above-mentioned array antenna in the predetermined direction, and is outputted to each above-mentioned phase shift means and the above-mentioned gain control means, respectively. The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It is inserted and prepared between the above-mentioned recovery means and the above-mentioned gain control means or between the above-mentioned gain control means, the above-mentioned control means, and the above-mentioned subtraction means. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by having further a time-sharing processing means for two or more sample signals within the above-mentioned sequence signal in the period which it precessed to differ and to perform timesharing processing so that it may be outputted as an output signal.

[0012] Preferably, the control unit of the above-mentioned array antenna is inserted and formed in the latter part of the above-mentioned recovery means, carries out analog-to-digital conversion to the baseband signaling outputted from the above-mentioned recovery means, and is characterized by having further a conversion means to output the digital baseband signaling after conversion.

[0013] Furthermore, the control approach of the array antenna concerning this invention two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- N radio signals using two or more phase shift means with the step to which the phase shift only of the predetermined amount of phase shifts is carried out, respectively The step by which the phase shift was carried out [above-mentioned] and which compounds two or more radio signals of N individual, and outputs the radio signal after composition, The step which restores to the radio signal after the above-mentioned composition to baseband signaling, and the step which carries out gain control of the baseband signaling by which the recovery was carried out [above-mentioned] on predetermined gain using a gain control means, The step which generates the error signal between the baseband signaling by which gain control was carried out [above-mentioned], and the reference signal of a predetermined value, Only a predetermined shift amount is made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively. Calculate the dip vector of the power of the above-mentioned error signal over each amount of phase shifts, and so that the error signal concerned may serve as min based on the dip vector and the above-mentioned error signal of power of an error signal which were calculated in the control approach of the array antenna containing the step which calculates each amount of phase shifts for turning the main beam of the above-mentioned array antenna in the predetermined direction, and the gain of the above-mentioned step which carries out gain control, and is outputted to each above-mentioned phase shift means and the abovementioned gain control means, respectively The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It performs between the above-mentioned step which carries out a recovery, and the above-mentioned step which carries out gain control, or between the steps which generate the above-mentioned step which carries out gain control, the above-mentioned step which carries out count, and the above-mentioned error signal. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by including further the step which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the above-mentioned sequence signal in the period which it precessed differ.

[0014] In the control approach of the above-mentioned array antenna, the above-mentioned step which carries out gain control is preferably characterized by performing using a transversal filter circuit.

[0015] Furthermore, the control approach of the array antenna concerning this invention two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- N radio signals with the step to which the phase shift only of the predetermined amount of phase shifts is carried out using two or more phase shift means, respectively The step by which the phase shift was carried out [above-mentioned] and which compounds two or more radio signals of N individual, and outputs the radio signal after composition, The step which restores to the radio signal after the above-mentioned composition to baseband signaling, and the step which carries out gain control of the baseband signaling by which the recovery was carried out [above-mentioned] on predetermined gain using a gain control means, The step which outputs the sign distinction value signal which distinguishes the sign of the baseband signaling by which gain control was carried out [above-mentioned], and shows a sign distinction value, The step which generates the error signal between the above-mentioned sign distinction value signal and the baseband signaling by which gain control was carried out [above-mentioned], The variation which only the predetermined shift amount was made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively, calculated the variation before

and behind the perturbation of the baseband signaling by which gain control was carried out [above-mentioned] to each amount of phase shifts, and was calculated, Based on the baseband signaling by which the recovery was carried out [above-mentioned], the baseband signaling by which gain control was carried out [above-mentioned], and the above-mentioned error signal, so that the root mean square of the above-mentioned error signal may serve as min It has the step which calculates each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the above-mentioned array antenna in the predetermined direction, and is outputted to each above-mentioned phase shift means and the abovementioned gain control means, respectively. The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It performs between the above-mentioned step which carries out a recovery, and the above-mentioned step which carries out gain control, or between the steps which generate the above-mentioned step which carries out gain control, the above-mentioned step which carries out count, and the above-mentioned error signal. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by including further the step which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the above-mentioned sequence signal in the period which it precessed differ.

[0016] The control approach of the above-mentioned array antenna is preferably performed after the above-mentioned step which carries out a recovery, carries out analog-to-digital conversion to the baseband signaling by which the recovery was carried out [above-mentioned], and is characterized by including further the step which outputs the digital baseband signaling after conversion.

[0017]

[Embodiment of the Invention] Hereafter, the operation gestalt which starts this invention with reference to a drawing is explained.

[0018] <Operation gestalt of ** 1st> drawing 1 is the block diagram showing the configuration of the control device of the array antenna which is the 1st operation gestalt concerning this invention, and attaches the same sign about the same thing as drawing 10 . Moreover, drawing 2 is the block diagram showing the detailed internal configuration of the time-sharing filter bank circuit 10 of drawing 1 , the beam control circuit 20, and the perturbation addition circuit 30. [0019] The control unit of the array antenna of this 1st operation gestalt The array antenna 100 (for example, it is a linear array and may be arranged in a two-dimensional configuration or a three-dimension configuration.) with which it comes to arrange two or more the antenna elements 1-1 thru/or 1-N of N individual at the predetermined spacing mutually In the adaptive control mold control unit equipped with the beam control circuit 20 for controlling a beam using the M-CMA method One signal in the period which it does not precess between A/D converter 9 and the beam control circuit 30 in the perturbation addition circuit 30 based on the baseband signaling inputted (at least one signal may be used.) It is characterized by having the timesharing filter bank circuit 10 which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the M sequence signal which is a training signal in the period which it precessed in the perturbation addition circuit 30 differ. That is, since the time-sharing filter bank circuit 10 which consisted of this operation gestalt with a poliphase expression as an approach of solving the above-mentioned problem in the beam control which used the M-CMA method is used and the perturbation term and the nonprecessing term in this time of day are acquired in a strict form by this, exact beam Nur control is enabled. Here, the digital filter 13−0 in the time-sharing filter bank circuit 10 thru∕or 13− (M−1) carry out the poliphase configuration of the root roll-off filter used as a band limit filter for example, by the digital phase modulation system.

[0020] Hereafter, the configuration of the control unit of the array antenna shown in drawing 1 is explained. In drawing 1, the radio signal which the radio signal was received and was received by each antenna element 1–1 thru/or 1–N by the array antenna 100 by which it comes to arrange two or more the antenna elements 1–1 thru/or 1–N of N individual at the predetermined spacing mutually is inputted into a variable phase–shifter 3–1 thru/or 3–N through a low noise amplifier (LNA) 2–1 thru/or 2–N, respectively. Each variable phase–shifter 3–1 thru/or 3–N output the

radio signal inputted to the synthetic vessel 4, after carrying out the phase shift only of each amount of phase shifts corresponding to each phase shift control voltage vk and i (i= 1, 2, --, N) outputted from the perturbation addition circuit 30, respectively. The synthetic vessel 4 outputs only the down converter 5 which carries out power composition of the radio signal of N individual inputted, and carries out frequency conversion of the radio signal after composition to the intermediate frequency signal of a predetermined intermediate frequency, and the band component of an intermediate frequency signal to a demodulator 7 through the band-pass filter (BPF) 6 which carries out band wave filtration. A demodulator 7 restores to the radio signal inputted to baseband signaling using the recovery approach corresponding to the modulation approaches by the side of a transmitter (for example, QPSK, PSK, FSK, etc.), and outputs it to A/D converter 9 through the low pass filter (LPF) 8 which takes out only desired baseband signaling. A/D converter 9 is boiled and outputted to the beam control circuit 20 through the time-sharing filter bank circuit 10 while it carries out A/D conversion of the baseband signaling of an analog inputted to digital baseband signaling and outputs the baseband signaling signal uk after conversion to an external device.

[0021] In addition, the microwave signal processor which becomes in well-known large-scale GaAsMMIC can constitute a variable phase-shifter 3-1 thru/or 3-N and the synthetic vessel 4, for example. Moreover, in this operation gestalt, baseband signaling sets the sampling rate of A/D converter 9 to fs=2Mfc for example, including an M sequence signal as a training signal. Here, M is the one or more natural numbers, and fc is a symbol clock frequency. [0022] The delay circuit 11-1 thru/or 11- (M-1) of an individual which is mutually connected to concatenation and has the time delay of 1/(2Mfc), respectively as the time-sharing filter bank circuit 10 is shown in drawing 2 (M-1), M down samplers 12-0 thru/or 12- (M-1) which has a twice as many down sampling rate as this, respectively (M/2), M digital filters 13-0 thru/or 13-(M-1) which has the transfer function which carries out the detail after-mentioned, respectively, for example, consists of FIR filters, It has M down samplers 14-0 thru/or 14- (M-1) which has a twice as many down sampling rate as this, respectively (1/4), and is constituted. In the timesharing filter bank circuit 10 the baseband signaling uk from A/D converter 9 While being outputted to the beam control circuit 20 through down sampler 12- (M-1), digital filter 13- (M-1), and down sampler 14- (M-1) as baseband signaling psik by which time-sharing processing was carried out, and M-1 It is outputted to the down sampler 12-0 through delay circuit 11- (M-1) of the individual (M-1) by which cascade connection was carried out mutually thru/or 11-1. Here, the baseband signaling uk outputted from delay circuit 11- (M-1) is outputted to the beam control circuit 20 through down sampler 12− (M−2), digital filter 13− (M−2), and down sampler 14− (M–2) as baseband signaling psik by which time-sharing processing was carried out, and M–2. baseband signaling psi by which time-sharing processing of the baseband signaling uk outputted from delay circuit 11-m was hereafter carried out similarly through down sampler 12-m, digital filter 13-m, and down sampler 14-m -- it outputs to the beam control circuit 20 as k and m -having -- here -- m=M- it is 3, --, 0.

[0023] <u>Drawing 3</u> is the block diagram showing the example of the time-sharing filter bank circuit 10 of <u>drawing 2</u> of operation, and shows the case of N=M -1 as an example with this operation gestalt.

[0024] With this operation gestalt, as shown in <u>drawing 3</u>, divide the time amount T of one symbol into two, and it sets to time amount T / 2. M sample signals (this corresponds an M sequence signal.) The sample signal of the 1st non-precessing term in the period to include and which does not precess M sample signals in the perturbation addition circuit 30 (deltav=0), The sample signal (perturbation addition electrical-potential-difference deltav was added) of the perturbation term of two or moreN (= M-1) individual within the M sequence signal which is a training signal in the period which it precessed in the perturbation addition circuit 30 is included. And the time-sharing filter bank circuit 10 performs time-sharing processing so that it may be outputted as an output signal with which the sample signal (deltav=0) of the 1st non-precessing term differs from the sample signal (perturbation addition electrical-potential-difference deltav was added) of M-1 perturbation term among M sample signals.

[0025] <A To HREF="/Tokujitu/tjitemdrw.ipdl?N0000=239&N0500=1 E_N/;>;?

898;8///&N0001=15&N0552=9&N 0553= 000020" TARGET="tjitemdrw"> drawing 2 Baseband signaling psik after the time-sharing processing which sets and is outputted from the timesharing filter bank circuit 10, and 0 While being directly outputted to the beam control section 21, it is inputted into the beam control section 21 and a subtractor 24 through the adjustable amplifier 22-0 which has the control gain gk specified by the beam control section 21. moreover, baseband signaling [after the time-sharing processing outputted from the time-sharing filter bank circuit 10] psi -- k and m are inputted into the beam control section 21 through adjustable amplifier 22-m which has the control gain gk specified by the beam control section 21 -- having --- here --- m= --- it is 1, 2, ---, M−1. Here, control gain can take a forward or negative value. On the other hand, the reference signal generator 23 generates the reference signal sigma which has predetermined constant value, and outputs it to a subtractor 24. A subtractor 24 subtracts the baseband signaling yk after gain magnification, and 0 from a reference signal sigma, and outputs the error (or deflection) signal ek to the beam control section 21. Based on the error signal ek inputted, M baseband signaling yk by which gain control was carried out, respectively, 0 or yk, M-1, and baseband signaling psik before gain control and 0, the beam control section 21 so that the detail after-mentioned may be carried out Control the switching controller 32 of the perturbation addition circuit 30, and only a predetermined shift amount is made to precess each variable phase-shifter 3-1 thru/or each phase shift control voltage vk and i (i= 1, 2, --, N) of 3-N using the M-CMA method. Make only a predetermined response shift amount precess each amount of phase shifts which corresponds by this, and the dip vector of the power of the error signal ek outputted from the subtractor 22 to each amount of phase shifts is calculated. Power of the baseband signaling yk outputted from A/D converter 9 based on the dip vector of the power of the calculated error signal ek is made into max. So that the error signal ek concerned may serve as min based on the error signal ek outputted from a subtractor 22 The amplification degree gk of each phase shift control voltage vk and i corresponding to each amount of phase shifts for turning the main beam of an array antenna 100 in the predetermined direction and the adjustable amplifier 21 is calculated. While outputting each calculated phase shift control voltage vk and i to each variable phase-shifter 3-1 thru/or 3-N through the perturbation addition circuit 30, the calculated amplification degree gk is outputted to the adjustable amplifier 21. [0026] The perturbation addition circuit 30 is equipped with the perturbation addition voltage generator 31 which generates perturbation addition electrical-potential-difference deltay, the switch 34-1 of N individual thru/or 34-N, and the adder 33-1 thru/or 33-N of N individual, and is constituted. Here, perturbation addition electrical-potential-difference deltay generated by the perturbation addition voltage generator 31 is inputted into each contact b of a switch 34-1 thru/or 34-N, and each contact a of a switch 34-1 thru/or 34-N is grounded, respectively. Although a switch of these switches 34-1 thru/or 34-N is controlled by the switch controller 32 which operates by control of the beam control section 21 and each switch 34-1 thru/or 34-N are usually connected to Contact a side here The switching controller 32 for example, when having received the training signal it is shown in drawing 3 -- as -- time amount T / 2 of the one half of one symbol -- setting -- the sample signal (deltav=0) of the 1st non-precessing term in the sample signal of +one M=N of an M sequence signal -- then So that the sequential output of the sample signal (perturbation addition electrical-potential-difference deltav was added) of the perturbation term of two or moreN (= M-1) individual corresponding to each phase shifter 3-1 thru/or 3-N may be carried out By switching only the switch 34-1 of N individual thru/or one switch in 34-N to Contact b side one by one, it adds and adds by one of an adder 33-1 thru/or 33-N to the phase shift control voltage vk and n (n= 1, 2, --, N) outputted from the beam control section 21. The phase shift control voltage outputted from the perturbation addition circuit 30 is outputted to a phase shifter 3-1 thru/or 3-N, respectively as phase shift control voltage vk and n (n= 1, 2, ---, N).

[0027] In addition, although it differs in the phase shift control voltage vk and n outputted from the beam control circuit 20, and the phase shift control voltage vk and n outputted from the perturbation addition circuit 30 when having received the training signal, and adding perturbation addition electrical-potential-difference deltav, the same notation is attached on [of explanation] expedient.

[0028] Subsequently, the principle and technical problem of the M-CMA method used with this operation gestalt are explained. In <u>drawing 1</u> which shows the configuration of the adaptive array which united beam shape ** and digital signal processing by microwave signal processing, after weighting of the input signal received by the antenna element 1-1 thru/or 1-N of an array antenna 100 arranged at intervals of d in space is carried out through LNA 2-1 thru/or 2-N by the variable phase-shifter 3-1 thru/or 3-N which consists of MMIC(s) etc., it is added with the synthetic vessel 4, and it turns into an output signal of a beam formation machine. if the signal received with the i-th feed component in time of day k is set to uk and i — the output signal sk of a beam formation machine — an equivalence low-pass model (for example, refer to the conventional technical reference 2 ""the present-day communication line theory" besides S . Stein, Morikita Shuppan, and 1970".) — using — a degree type — it is expressed like. [0029]

[Equation 1] s_k $= s_k(v_{k,1} \quad v_{k,2} \quad \cdots v_{k,1})$ $= \sum_{i=1}^{N} \exp(-j\theta(v_{k,i}))_{u_{k,i}}$

[0030] In one above, vk and i are control voltage impressed to variable-phase-shifter 3-i connected to i-th antenna element 1-i, theta (-) is a phase shift characteristic function to the control voltage of variable-phase-shifter 3-i, N shows the number of antenna elements and j shows the imaginary unit. The output signal of this beam formation machine is changed into a baseband band by the down converter 5, and A/D conversion is carried out with A/D converter 9. Although the output signals sk of signal sk' by which frequency conversion was carried out, and a beam formation machine completely differ here, supposing frequency conversion and filtering are performed ideally, the difference among both is only the existence of exp (j2pft). However, f is carrier frequency, i expresses an imaginary unit and t expresses time of day. With this operation gestalt, in order to verify the upper bound of the property on the theory of a beam formation machine, the imperfection of RF band etc. is not taken into consideration. In this case, since the existence of exp (j2pft) is not an essential problem, it explains with this operation gestalt by identifying the output signal sk of signal sk' by which frequency conversion was carried out, and a beam formation machine in the same category.

[0031] The input signal by which A/D conversion was carried out is amplified by the adjustable amplifier 22-0 thru/or 22- (M-1) which is the AGC amplifier of a baseband band. The signal yk after magnification and the error with the request level sigma are defined like a degree type as an error signal ek.

[0032]

[Equation 2] Ek=sigma p-gkp|sk|p=sigma p-|yk|p, however [Equation 3] yk=gksk [0033] Here, gk is the gain of the adjustable amplifier 22-0 in time of day k thru/or 22- (M-1). Moreover, |-| in two above means taking the absolute value of complex. On the other hand, it is a multiplier in the M-CMA method, and p takes the one or more natural numbers, and is p= 2 with this operation gestalt. The gain gk of this adjustable amplifier is optimized by the following valuation basis. [0034]

[Equation 4] J=E[|ek|q] ->min [0035] In four above, J is a cost function, E [-] is a function which takes an ensemble average, and q means the multiplier of the M-CMA method with p. Therefore, several 4 expresses the valuation basis which minimizes the cost function J. If this solution is calculated based on the well-known principle of SGD (Stochastic Gradient Decent), an optimum value will be calculated by repeating the following formulas about the gain gk of adjustable amplifier.

[0036]

[Equation 5]

$$g_k$$

$$= g_{k-1} - \mu \frac{\partial J}{\partial g_k}$$

$$= g_{k-1} + \mu |e_k|^{q-2} e_k |y_k|^{p-1} |s_k|$$

[0037] m with five above is a multiplier called a step size parameter. Furthermore, if optimization is attained to the control voltage of a beam formation machine with one above based on a valuation basis with four above, an optimum value can be found by repeating a degree type from the principle of SGD.

[0038]

[Equation 6]

$$= v_{k-1,i} - \mu \frac{\partial J}{\partial v_{k,i}}$$

$$= v_{k-1,i} + \mu |e_k|^{q-2} e_k |y_k|^{p-1} \Delta_i |y_k|$$

[0039] Here, deltai |-| expresses the fine multiplier to the control voltage of variable-phase-shifter 3-i connected to i-th antenna element 1-i, and asks for it in approximation as follows. [0040]

[Equation 7]

$$\Delta_i |y_k|$$

$$= g_k \Delta_i | s_k(v_{k,1} \quad v_{k,2} \quad \dots \quad v_{k,N})|$$

$$= g_k\{|s_k(v_{k,1} \dots v_{k,i} + \Delta v \dots v_{k,1})| - |s_k(v_{k,1} \dots v_{k,j} \dots v_{k,1})|\}$$

[0041] By using six above, it can oppress to the amplitude deflection defined by several 2 not only like the gain gk of adjustable amplifier but like the usual CMA method. However, in quest of the optimum value of control voltage, the "perturbation term" and "a non-precessing term" of this time of day are needed from six above and several 7. While this applies a perturbation, as compared with a symbol rate, A/D conversion of it is carried out to a high speed, and it can be solved by using a ******** signal. That is, since it could consider that it was almost the same since the adjacent signal had high signal correlation, and the one of the two has received the perturbation, the above-mentioned requirements can be satisfied. However, in order to raise precision, it is necessary to carry out a sample considerably at high speed, and implementation of hardware will become difficult if it takes into consideration that a bit rate will accelerate from now on. So, with this operation gestalt, this sampling rate could be reduced, in order to acquire highly precise "non-precessing term" and a "perturbation term", the time-sharing filter bank circuit 10 is used, and subsequently this is explained in full detail.

[0042] Although frequency conversion of the output signal of the beam formation machine shown by one above is carried out with a down converter 5 and it is changed into a digital signal by A/D converter 9, the sampling rate at that time is performed by M times of an information rate, a digital filter removes an undesired signal, and the system which acquires a recovery signal by performing decimation is used. When it constitutes this digital filter from an FIR (Finite Impulse Response) filter, generally the poliphase expression of that transfer function T (z-1/M) can be carried out as follows.

[0043]

[Equation 8]

$$\begin{split} &T(z^{-1/M})\\ &= \sum_{i=-ML}^{ML-1} h_{i/M} z^{-i/M} \\ &= \sum_{i=-ML}^{M-1} \sum_{i_1+i_2/M}^{L-1} z^{-i_1-i_2/M} \\ &= \sum_{i_2=0}^{M-1} \sum_{i_1+i_2/M}^{L-1} z^{-i_1-i_2/M} \\ &= \sum_{i_2=0}^{M-1} z^{-i_2/M} \sum_{i_1=-L}^{L-1} h_{i_1+i_2/M} z^{-i_1} \\ &= \sum_{i_2=0}^{M-1} T_{i_2}(z^{-1}) \end{split}$$

[0044] However, M-1 is TI (z-1), I=0, --, a filter bank that constitutes each poliphase filter, and is defined like a degree type.

[0045]

[Equation 9]

$$T_l(z^{-1}) = z^{-l/M} \sum_{i=-L}^{L-1} h_{i+l/MZ}^{-i}$$

[0046] With [the working speed of each filter in a bank] a Nyquist rate [more than], the input signal of each filter is not concerned with a sampling rate, but holds fixed spectrum information. At this time, if there is no noise, the same signal will be outputted from all filter banks. However, it is necessary to satisfy the following conditions.

[0047]

[Equation 10]

TI(z-1) = Tm(z-1);I, m= 0, --, M-1 [0048] Here, it is shown that the same signal is acquired by the filter bank concerned. When an input signal is made into uk- (i+I/M), the output signal of the poliphase filter defined by ten above is expressed like a degree type.

[0049]

[Equation 11]

$$\psi_{k,l} = \sum_{i=-L}^{L-1} h_{i+l/M} u_{k-(i+l/M)}$$

[0050] When DFT (Digital Furrier Transform) of this signal is carried out, it is expressed like a degree type.

[0051]

[Equation 12]

$$F(\psi_{k,l})$$

$$\begin{split} &= \sum_{i=0}^{N-1} \sum_{i=-L}^{L-1} h_{i+l/M} u_{k-(i+l/M)} \exp(-j2\pi \frac{kn}{N}) \\ &= \sum_{i=-L}^{L-1} h_{i+l/M} \exp(-j2\pi \frac{(i+l/M)n}{N}) \sum_{k=0}^{N-1} u_{k-(i+l/M)} \exp(-j2\pi \frac{(k-(i+l/M))n}{N}) \\ &= F(h_i) F(u_k) \end{split}$$

[0052] However, F (-) expresses the signal after DFT of -. That is, a signal with the same frequency spectrum is acquired from all poliphase filters. Therefore, if IDFT (Inverse DFT) of this output is carried out, there will also be no misgiving and the same time series will be acquired. [0053] Subsequently, in order to carry out matrix representation of the transfer function of the filter bank of a poliphase expression, delay matrix F (I) which a degree type defines is introduced.

[0054]

[Equation 13] phi(I) **diag [z-I z-I-1/M -- z-I-(M-1)/M]

I=-L, --, L-1 [0055] Here, ** means what "is defined" and diag (-) means the diagonal matrix which uses the vector in a parenthesis as a diagonal element. By using this delay matrix, the transfer function of a filter bank can carry out vectorial representation like a degree type. [0056]

[Equation 14]

However, H=[h-L and h-L+1/M, ---, hL+(M-1)/M] T expresses the impulse response of the filter before being poliphase-ized. On the other hand, in the beam formation machine expressed with several 1, when applying the sequential perturbation from the 1st antenna element 1-1, the output signal can carry out a formula expression as follows.

[0058]

[Equation 15] S_k

$$= diag[s_k \quad s_{k+1/M} \quad \cdots \quad s_{k+(M-1)/M}]^T$$

$$= [W_{k,1} \quad W_{k,2} \quad \cdots \quad W_{k,N}] \begin{bmatrix} U_{k,1} \\ U_{k,2} \\ \vdots \\ U_{k,N} \end{bmatrix}$$

[0059] Uk, i and Wk in 15 above, and i are the weighting—factor matrices over the i-th output signal and output signal of antenna element 1-i, respectively, and are expressed like a degree type.

[0060]

[Equation 16] Wk, j=diag [exp(-jtheta (vk, i)) exp(-jtheta (vk+1/M, i)) -- exp (-jtheta (vk+ (M-1) / M, i))]

[Equation 17] Uk, i=diag (uk and i uk-1/M, i -- uk- (M-1) / [M, i])

[0061] If the output signal of this beam formation machine is inputted into the time-sharing filter bank circuit 10 which is the poliphase filter bank expressed with 14 above, the input signal to the adjustable amplifier 22-0 thru/or 22- (M-1) will be acquired. That is, when the inverse z transform of the output signal is inputted and carried out to 14 above, the output-signal vector psik is expressed like a degree type using the matrix defined by 15 above.

[0062]

[Equation 18]

$$\Psi_{k} = \begin{bmatrix} W_{k,1} \\ W_{k,2} \\ \vdots \\ W_{k,N} \end{bmatrix}^{T} \begin{bmatrix} U_{k+L,1} & U_{k+L-1,1} & \cdots & U_{k-(L-1),1} \\ U_{k+L,2} & U_{k+L-1,2} & \cdots & U_{k-(L-1),2} \\ \vdots & \vdots & \ddots & \vdots \\ U_{k+L,N} & U_{k+L-1,N} & \cdots & U_{k-(L-1),N} \end{bmatrix} H$$

[0063] Here, it is [Equation 19] about vector thetak and i. It introduces with thetak and i**(Uk+L, i, --, [Uk, - (L-1), i]) H. if there is no effect of a noise and conditions with ten above are satisfied here -- above -- Vector theta -- there where all the elements of k and i become the same (it is as having mentioned above using several 11 and several 12.) -- the value -- theta -- if it sets with k and i -- vector P= [1, --, 1] -- using -- Vector theta -- k and i -- [Equation 20] It is expressed thetak and i**theta k and iP. Then, 18 above is rewritten like a degree type. [0064]

[Equation 21]

$$\begin{aligned} & \Psi_k \\ &= \sum_{i=1}^N \theta_{k,i} W_{k,j} P = [\cdots \quad \psi_{k,l} \quad \cdots] \\ &= [\cdots \quad \sum_{i=1}^N \theta_{k,j} \exp(-j\theta(v_{k+l/M,i})) \quad \cdots]^T \\ & l = 0, \cdots M - 1 \end{aligned}$$

[0065] 21 above is a weighting factor [several 22], after once changing the signal from each antenna element 1-1 thru/or 1-N into a baseband band and passing the digital filter of transfer function T (z). WkT=[exp (j-2 theta (vk, i), --, exp (-j2theta (vk+I/M, i)), --])

The signal equivalent to what came out of and carried out weighting means being outputted from the filter of eye I/M watch of the time-sharing filter bank circuit 10 which is a poliphase filter bank. Then, weighting factors Wk and i are operated like a degree type. However, it considers as M>=N +1 (with drawing 1 thru/or the operation gestalt of drawing 3, it is considering as M=N +1.).

[0066]

[Equation 23] Here, it is i= 1, --, N and l= 0, --, M-1 at the time of vk+l/M, i=vk, and i+delta v;i!=l at the time of vk+l/M, i=vk, and i;i!=l.

[0067] That is, in M continuous input signal sequences, a perturbation is not given to the first sample signal at all, but the perturbation is applied to the control voltage of the variable phase—shifter 3–1 connected to each component from the following sample thru/or 3–N one by one. Specifically by the l-th sample signal, a perturbation is given only to the l-th control voltage of variable—phase—shifter 3–l. The 0th filter of the time—sharing filter bank circuit 10 which is a poliphase filter bank by this (in the time—sharing filter bank circuit 10 of drawing 2) Signal psik of a non-precessing term and 0 are outputted from a digital filter 13–0 and the down sampler 14–0, and it is the l-th filter (in the time—sharing filter bank circuit 10 of drawing 2). From digital filter 13–l and down sampler 14–l, signal psik of a perturbation term to l-th antenna element 1–l and l are outputted. Therefore, it turns out that the problem mentioned above is solvable by applying a poliphase filter. That is, the adaptive array adapting a poliphase filter of the M-CMA method can ask for the optimal multiplier based on the following successive renewal types of a multiplier. [0068]

[Equation 24] yk, i=gkpsik, and i — here — i= — 0, 1, —, M-1 — [Equation 25] ek=sigma p-|yk and 0|p — [Equation 26] vk, i=vk -1, i+mu|ek|q-2 ek|yk, 0|p-1 (|yk, i|-|yk, 0|) here — i= 0, —, M-1 — [Equation 27]

gk-1=gk-1+ mu|ek|q-2 ek|yk, 0|p-1|psik, 0|[0069] Generally, although an anti-aliasing filter is applied as a poliphase filter, since it has the analog low pass filter in front of A/D converter 9 in communication system, the anti-aliasing filter is unnecessary. So, the time-sharing filter bank circuit 10 consists of these operation gestalten by, for example, poliphase-izing the root roll-off filter of a receiver in the nyquist filter system often used by the phase modulation system. [0070] In drawing 1, it is inputted into the time-sharing filter bank circuit 10 which is a poliphase filter, after passing through the low pass filter 8 which is an area JINGU filter before the A/D conversion by A/D converter 9. It is necessary to operate the digital filter 13-0 thru/or 13- (M-1) which is each root roll-off filter in the poliphase filter bank which is the time-sharing filter bank circuit 10 of drawing 2 more than by the twice of a Nyquist rate so that area JINGU distortion may not be given to a signal. Therefore, to form a root roll OFUTO filter into M-phase, it is necessary to carry out the sample of A/D converter 9 more than by 2M time of a Nyquist rate (with this operation gestalt, the sampling rate is set to f=2Mfc as mentioned above.). And after carrying out time sharing by the delay circuit 11-1 thru/or 11- (M-1) by which cascade connection was carried out, Decimation is carried out to M/2 by the M/2 twice as many down sampler 12-0 as this thru/or 12- (M-1). After passing through a digital filter 13-0 thru/or 13-(M-1), the recovery signal of the M sequence which is parallel and consists of M sample signals by which time-sharing processing was carried out is acquired by increasing decimation 4 times

by the 4 times as many down sampler 14-0 as this thru/or 14- (M-1). In addition, preferably, the multiple of the down sampler 12-0 thru/or 12- (M-1) and the multiple of the down sampler 14-0 thru/or 14- (M-1) are chosen so that those products may be set to 2M.

[0071] In drawing 3 which shows the example of the time-sharing filter bank circuit 10 of operation, the exaggerated sample of the inside of 1 symbol is carried out by twice (N+1), i.e., the twice of the element number N+1 of an antenna, and it distributes to N+1 filter bank. Each filter bank calculates by the twice of a symbol rate. A perturbation is given to the variable phase-shifter 3-1 thru/or 3-N synchronously connected to each antenna element 1-1 thru/or 1-N one by one within 1 / 2 symbols on the other hand. However, a perturbation is surely reset every 1/2 symbol, namely, the signal of a non-precessing term is generated. In addition, although all perturbations were performed within 1 symbol in drawing 3, it is also possible to give the perturbation to the variable phase-shifter of one antenna element, whenever it receives the signal of one symbol, to perform one of this at a time, and to reduce operation speed by things. In this case, the perturbation of all components is ended only after receiving the symbol signal of N individual. However, if it takes into consideration that it is necessary to insert in 1/2 symbol the period which does not give a perturbation, a sampling rate can be reduced up to 4 times of a symbol rate.

[0072] As explained above, according to this operation gestalt, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time—sharing filter bank circuit 10 which is a poliphase filter bank. Therefore, the A/D converter which can perform a very high—speed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy. so, circuitry — being easy — time accuracy — and control of the main beam and control of null are made to accuracy as a beam formation direction.

[0073] <1st modification > drawing 4 is the block diagram showing the configuration of the timesharing filter bank circuit 10 in the control device of the array antenna of the 1st modification concerning this invention which is the modification of the 1st operation gestalt, and beam control circuit 20a, and the same thing as drawing 1 and drawing 2 attaches the same sign. [0074] In the 1st operation gestalt, although it had M adjustable amplifiers 22-0 thru/or 22- (M-1) between the time-sharing filter bank circuit 10 and the beam control section 21, it is characterized by having replaced with this and inserting one adjustable amplifier 22 which has the control gain gk specified by the beam control section 21 between A/D converter 9 and the time-sharing filter bank circuit 10. Although the beam control section 21 needs the baseband signaling yk before gain control, and 0 (baseband signaling psik of drawing 2, 0) in the beam control processing by the M-CMA method here, this is calculable by doing the division of baseband signaling psik outputted from the time-sharing filter bank circuit 10 of drawing 4, and 0 on the control gain gk. Moreover, for this, instead, as a dashed line shows drawing 4, timesharing separation may be carried out and the baseband signaling yk before gain control and 0 (baseband signaling psik of drawing 2, 0) may be taken out from the baseband signaling uk from A/D converter 9.

[0075] According to the 1st modification constituted as mentioned above, in addition to the operation effectiveness in the 1st operation gestalt, the number of the adjustable amplifier 22 can be decreased substantially and this has the characteristic effectiveness that circuitry can be simplified more.

[0076] <Operation gestalt of ** 2nd> $\frac{drawing 5}{drawing 5}$ is the block diagram showing the configuration of the time-sharing filter bank circuit 10 and 20t of beam control circuits in the control device of the array antenna which is the 2nd operation gestalt concerning this invention, is the block diagram showing the TRF circuit 61-1 of $\frac{drawing 5}{drawing 5}$ thru/or the detailed internal configuration of 61- (M-1) (it names generically and a sign 61 is attached hereafter.), and attaches the same sign about the same thing as $\frac{drawing 1}{drawing 1}$ thru/or $\frac{drawing 4}{drawing 1}$, and $\frac{drawing 10}{drawing 1}$. The control unit of the array antenna of this 2nd operation gestalt The transversal filter circuit which replaces with $\frac{drawing 1}{drawing 1}$ concerning the 1st operation gestalt, and the beam control circuit 20 of $\frac{drawing 2}{drawing 2}$, and has the TDL (Tapped Delay Line; delay line with tap) circuit 70 (it is hereafter called a TRF

circuit.) While having 61, it is characterized by having 21t of beam control circuits equipped with 21t of beam control sections which perform beam control of an ecad using the signal-processing M-CMA method between space-time which carries out the detail after-mentioned. Other configurations are the same as that of the 1st operation gestalt, and omit detail explanation here.

[0077] In drawing 5, baseband signaling psik outputted through the time-sharing filter bank circuit 10 from A/D converter 9 and m (m= 0, 1 and 2, --, M-1) While being inputted into the adjustable amplifier 72-0 in 21t of beam control sections, and the TRF circuit 61, the delay circuit 71-1 of two or more (L-1) individuals thru/or 71- (L-1) are inputted into the delay circuit 71-1 of the 1st step of the TDL circuit 70 which comes to carry out cascade connection. Above-mentioned baseband signaling psik and m are outputted to 21t of beam control sections, and an adder 73 through the delay circuit 71-1 of two or more (L-1) stages thru/or 71- (L-1), and adjustable amplifier 72- (L-1) while they are outputted to an adder 73 through the adjustable amplifier 72-0. In the TDL circuit 70, each delay circuit 71-1 thru/or 71- (L-1) delay for it and output only the predetermined time delay tau for the signal inputted, respectively. Here, although a time delay tau is preferably set as one half of 1 symbol time amount, it may be set, for example as less than [1 symbol time amount or it].

[0078] Delay signal bpk-1 of baseband signaling psik outputted from a delay circuit 71-1 and m=bpk is outputted to an adder 73 through the adjustable amplifier 72-1 while it is outputted to 21t of beam control sections. Moreover, delay signal bpk-2 of the baseband signaling bpk outputted from a delay circuit 71-2 are outputted to an adder 73 through the adjustable amplifier 72-2 while they are outputted to 21t of beam control sections. Furthermore, delay signal bpk-3 of the baseband signaling bpk outputted from a delay circuit 71-3 are outputted to an adder 73 through the adjustable amplifier 72-3 while they are outputted to 21t of beam control sections. Still more nearly similarly, delay signal bpk-L of the baseband signaling bpk outputted from delay circuit 71- (L-2) is outputted to an adder 73 through adjustable amplifier 72- (L-2) while it is outputted to 21t of beam control sections. The adjustable amplifier (or gain control machine) 72– 0 thru∕or 72− (L−1) amplify and (or gain control) output the signal inputted by the amplification degree w0 set up by 21t of beam control sections thru/or wL-1, respectively, and amplification degree (or gain) takes the value of ***** here. And an adder 73 adds delay signal bpk-1 thru/or bpk-L +1 of the baseband signaling bpk inputted and its two or more (L-1) individuals, and outputs the signal of an addition result to 21t of beam control sections as output signals yk and m (m= 0, 2 [1 and 2], −−, M−1). In addition, an output signal yk and 0 are outputted also to a subtractor 24. Thus, by constituting, the TRF circuit 61 equipped with the TDL circuit 70, the adjustable amplifier 72−0 thru/or 72− (L−1), and an adder 73 is constituted. That is, each adjustable amplifier 22-0 thru/or 22- (M-1) in the 1st operation gestalt consists of the 2nd operation gestalt in the TRF circuit 61 of drawing 6.

[0079] On the other hand, the reference signal generator 23 generates the reference signal sigma which has predetermined constant value, and outputs it to a subtractor 24. A subtractor 24 subtracts an output signal yk and 0 from a reference signal sigma, and outputs the error (or deflection) signal ek to 21t of beam control sections. The error signal ek into which 21t of beam control sections is inputted, and baseband signaling bkk, It is based on the delay signal bkk-1 thru/or yk-L +1, and the TRF circuit 61-0 thru/or the baseband signaling yk and m (m= 0, 2 [1 and 2], --, M-1) after passage of 61- (M-1). Only a predetermined shift amount is made to precess each variable phase-shifter 3-1 thru/or each phase shift control voltage vk and i (i= 1, 2, --, N) of 3-N by controlling the perturbation addition circuit 30 using the signal-processing M-CMA method between space-time. Make only a predetermined response shift amount precess each amount of phase shifts which corresponds by this, and the dip vector of the power of the error signal ek outputted from the subtractor 24 to each amount of phase shifts is calculated. So that the error signal ek concerned may serve as min based on the error signal ek outputted from a subtractor 24 based on the dip vector of the power of the calculated error signal ek Each phase shift control voltage vk and i corresponding to each amount of phase shifts for turning the main beam of an array antenna 100 in the predetermined direction and each adjustable amplifier 72-0 the amplification degree w0 of 72- (L-1) thru/or wL-1 are calculated. It is outputted and

set as each variable phase-shifter 3-1 thru/or 3-N and each adjustable amplifier 72-0 thru/or 72- (L-1), respectively.

[0080] In the control device of the array antenna concerning the 2nd operation gestalt constituted as mentioned above, adaptation beam control of the 20t of the beam control circuits can be accurately carried out so that an error signal ek may serve as min, the main beam of an array antenna 100 may be turned in the direction of the wave of choice and null may be turned in the direction of an interference wave. Moreover, in-phase synthesis of the delay wave of the wave of choice produced in a multi-pass transmission line can be incorporated and carried out using the TRF circuit 61, and the signal-to-noise power ratio (S/N) in the wave of choice can be improved. Moreover, although a low noise amplifier 2-1 thru/or 2-N and a variable phase-shifter 3-1 thru/or 3-N need N individual corresponding to the element number N of an antenna element 1-1 thru/or 1-N with the 2nd operation gestalt, the number of each circuitry elements is one sufficient in the circuit after the synthetic vessel 4. Therefore, as compared with the conventional example shown in drawing 10, as compared with the conventional example, a hardware configuration is easy, and since there are few circuitry elements, there is little power consumption.

[0081] Subsequently, adaptation beam processing in which it uses with the 2nd operation gestalt is explained below. In the configuration of the adaptive array antenna concerning the 2nd operation gestalt, baseband signaling yk=yk (vk, 1, --, vk, N) can be expressed like above several 1 using a well-known equivalence low-pass model. This baseband signaling yk is inputted into the TRF circuit 61 which has the TDL circuit 70. In the TRF circuit 61, after weighting of the signal outputted from each tap of the TDL circuit 70 is carried out by the adjustable amplifier 72-0 thru/or 72- (L-1) with the amplification degree wk (i) which is a tap multiplier, respectively, it is added with an adder 73 and outputs the output signals yk and m (= it sets with zk.) shown below.

[0082]

[Equation 28]

$$z_k(v_{k,l},...v_{k,N}) = \sum_{i=0}^{L-1} w_k^*(i) bp_{k-i}(v_{k,l},..., v_{k,N})$$

[0083] Here, in order to perform blind control of a beam and null, minimization of the amplitude deflection of the output signal zk of the TRF circuit 61 is attained like the well-known CMA method. That is, it is [Equation 29] when the error of an output signal yk, and a 0=zk and a reference signal sigma is defined like a degree type. It becomes a requirement to satisfy the formula below ek=sigma p-|zk(vk, 1, --, vk, N) |p. However, sigma is the level of a reference signal and shows desired amplitude level.
[0084]

[Equation 30]

$$E\left[\frac{\partial e^{q}}{\partial v_{k,i}}\right] = 0 \qquad (i = 1, \dots, N)$$

$$E\left[\frac{\partial e^{q}}{\partial v_{k,i}^{*}}\right] = 0 \qquad (i = 0, \dots, L-1)$$

[0085] Here, p and q show the dimension of presumption of the CMA method, and in practice, the time of p=q=2 is called the CMA method and they are called Goddard's algorithm except it. By the CMA method, it cannot ask for several 30 partial differential by one above and several 28. Then, in this operation gestalt, make a variable phase—shifter 3–1 thru/or the control voltage vk of 3–N, 1, ---, vk and N precess, each amount of phase shifts is made by this to precess like M–CMA concerning the 1st operation gestalt, and it asks. Moreover, it can ask for 31 above like the usual CMA method. Here, a multiplier update process is performed for an output signal zk as follows as zk=zk (vk (1), ---, vk (N)).

[0086] The algorithm which looks for the solution with which 29 above is made into an error function and it is satisfied of 30 above and several 31 can be expressed like a degree type, if the principle of the well-known steepest descent method is applied.
[0087]

[Equation 32]

$$\mathbf{v}_{k} = \mathbf{v}_{k-1} - \mu \frac{\partial \mathbf{e}_{k}^{\mathbf{q}}}{\partial \mathbf{v}_{k,i}} = \mathbf{v}_{k-1} + \mu \mathbf{e}_{k}^{\mathbf{q}-1} |\mathbf{z}_{k}|^{p-2} \frac{\partial |\mathbf{z}_{k}|}{\partial \mathbf{v}_{k,i}}$$

[Equation 33]

$$w_{k} = w_{k-1} - \mu \frac{\partial e_{k}^{q}}{\partial w_{k}(i)} = w_{k-1} + \mu e_{k}^{q-1} |z_{k}|^{p-2} \frac{\partial |z_{k}|}{\partial w_{k}^{*}(i)}$$

[0088] 32 above and several 33 are the formulas of the algorithm for satisfying 30 above and several 31, respectively. The partial-differential term in 32 above can be acquired using the approximation of a partial differential with 26 above. On the other hand, the partial-differential term in 31 above can be directly searched for by carrying out the partial differential of the both sides with 28 above. Therefore, 32 above and several 33 become a degree type, and perform convergence processing using the renewal type of a multiplier of a degree type. [0089]

[Equation 34] vk, i=vk −1, i+mu vekq−1|zk|p−2deltai|zk| (i= 1, −−N),

[Equation 35] wk(i) =wk-1(i)+muwekq-1|zk|p-2 zk*yk (i= 0, --L-1),

[0090] However, [Equation 36] It is deltai|zk|=deltai|zk(vk, 1, --, vk and i, --, vk, N) |=|zk(vk1, --, vk, i+deltav, --, vk, N) |-|zk(vk, 1, --, vk and i, --, vk, N) |.

[0091] In 46 above, deltav is a very small term for a perturbation, and 34 above, and muv and muw in several 35 are the step sizes of the tap multiplier which are the control voltage of a phase shifter 3-1 thru/or 3-N, and the amplification degree of the adjustable amplifier 72-0 thru/or 72- (L-1), respectively. In order to carry out right convergence of the algorithm of the signal-processing M-CMA method between space-time concerning this operation gestalt, two kinds of this step size needs to satisfy the following conditions.

[0092]

[Equation 37] muw=muvdeltav -- here, the unit of deltav is a radian.

[0093] As explained above, according to this operation gestalt, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time-sharing filter bank circuit 10 which is a poliphase filter bank. Therefore, the A/D converter which can perform a very high-speed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy. so, circuitry — being easy — time accuracy — and control of the main beam and control of null are made to accuracy as a beam formation direction.

[0094] <2nd modification> drawing 7 is the block diagram showing the time-sharing filter bank circuit 10 in the control device of the array antenna of the 2nd modification concerning this invention which is the modification of the 2nd operation gestalt, and the configuration of beam control circuit 20ta, and the same thing as drawing 5 and drawing 6 attaches the same sign. [0095] In the 2nd operation gestalt, although it had M TRF circuits 61-0 thru/or 61- (M-1) between the time-sharing filter bank circuit 10 and 21t of beam control sections, it is characterized by having replaced with this and inserting one TRF circuit 61 which has the weighting factor specified by 21t of beam control sections between A/D converter 9 and the time-sharing filter bank circuit 10. Although 21t of beam control sections needs the baseband signaling yk before gain control, and 0 (baseband signaling psik of drawing 5, 0) here in the beam control processing by the signal-processing M-CMA method between space-time, this is calculable by doing the division of baseband signaling psik outputted from the time-sharing filter bank circuit 10 of drawing 7, and 0 by the weighting multiplier. Moreover, for this, instead, as a dashed line shows drawing 7, time-sharing separation may be carried out and the baseband

signaling yk before gain control and 0 (baseband signaling psik of <u>drawing 7</u>, 0) may be taken out from the baseband signaling uk from A/D converter 9.

[0096] According to the 2nd modification constituted as mentioned above, in addition to the operation effectiveness in the 2nd operation gestalt, the number of the TRF circuit 61 can be decreased substantially and this has the characteristic effectiveness that circuitry can be simplified more.

[0097] <Operation gestalt of ** 3rd> drawing 8 is the block diagram showing the configuration of the time-sharing filter bank circuit 10 and 20m of beam control circuits in the control device of the array antenna which is the 3rd operation gestalt concerning this invention, and attaches the same sign about the same thing as drawing 1 thru/or drawing 7, and drawing 10. The control device of the array antenna of this operation gestalt is characterized by having 20m of beam control circuits which have 21m of beam control sections.

[0098] 20m of beam control circuits is based on baseband signaling psik which is an output signal from A/D converter 9, and m (m= 0, 1 and 2, --, M-1) through a demodulator 7 and the timesharing filter bank circuit 10. The minimum an average of 2 multiplication which carries out the detail after-mentioned and which deformed (it is hereafter called the M-LMS method.) Use and only a predetermined shift amount is made to precess each amount of phase shifts of a variable phase-shifter 3-1 thru/or 3-N by controlling the perturbation addition circuit 30, respectively. The variation delta yk and m which calculated the variation delta yk and m before and behind the perturbation of the baseband signaling yk and m outputted from the adjustable amplifier 82-0 thru/or 82- (M-1) to each amount of phase shifts, and was calculated, Baseband signaling psik outputted through the time-sharing filter bank circuit 10 from A/D converter 9, and 0, The baseband signaling yk and m outputted from the adjustable amplifier 82, baseband signaling psik and the baseband signaling yk by which gain control was carried out with the adjustable amplifier 82 in 0, 0 and the sign distinction value dk (it is the output of the sign distinction machine 83.) of that Based on the error signal ek of a between, so that the root mean square of the error signal ek concerned may serve as min It is characterized by calculating each above-mentioned amount of phase shifts and the above-mentioned gain gk for turning the main beam of the abovementioned array antenna in the predetermined direction, and outputting to each variable phaseshifter 3-1 thru/or 3-N and the adjustable amplifier 82-0 thru/or 82- (M-1), respectively. [0099] 20m of beam control circuits is equipped with 21m of beam control sections, the adjustable amplifier 82−0 thru/or 82− (M−1), the sign distinction machine 83, and a subtractor 84, and they are constituted, baseband signaling psi into which each adjustable amplifier 82-0 thru/or 82- (M-1) are inputted here -- the baseband signaling yk and m by which amplified k and m on the control gain gk shown by the beam control section 81, and gain control was carried out -- 21m of beam control sections -- outputting -- moreover -- among those, baseband signaling yk and 0 are outputted to the sign distinction machine 83, a subtractor 84, and 21m of beam control sections. Subsequently, the sign distinction machine 83 calculates the sign distinction value dk of the baseband signaling yk inputted, and outputs it to a subtractor 84 so that it may mention later. Furthermore, a subtractor 84 subtracts baseband signaling yk and 0 from the sign distinction value dk, and outputs the error signal ek of a subtraction result to the beam control section 81. And the beam control section 81 calculates the adjustable control voltage vk and i (i= 1, 2, --, N), and outputs it to a variable phase-shifter 3-1 thru/or 3-N, respectively while it calculates the control gain gk using the M-LMS method based on an error signal ek in baseband signaling psik inputted, 0 and yk and m, and a list and outputs it to the adjustable amplifier 82. [0100] In the predetermined training period before performing data transmission in this beam control circuit 80 only based on baseband signaling psik after A/D conversion, using the M-LMS method By making only a predetermined shift amount precess each variable phase-shifter 3-1 thru/or each phase shift control voltage vk and i to 3-N by controlling the perturbation addition circuit 30 The variation delta yk and m which calculated the variation delta yk and m before and behind the perturbation of the baseband signaling yk and m outputted from the adjustable amplifier 82 to each amount of phase shifts, and was calculated, Baseband signaling psik outputted through the time-sharing filter bank circuit 10 from A/D converter 9, and 0, The baseband signaling yk and m outputted from the adjustable amplifier 82-0 thru/or 82- (M-1),

baseband signaling yk, 0 sign distinction values dk (it is the output of the sign distinction machine 83.) Based on baseband signaling yk and the error signal ek between 0, so that the root mean square of the error signal ek concerned may serve as min Each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the above-mentioned array antenna in the predetermined direction are calculated, and it outputs to each variable phase-shifter 3-1 thru/or 3-N and the adjustable amplifier 82-0 thru/or 82- (M-1), respectively.

[0101] In the control device of the array antenna constituted as mentioned above, 20m of beam control circuits forms the main beam of an array antenna 100 in the predetermined direction accommodative so that the root mean square of the error signal ek generated with the subtractor 84 of 20m of beam control circuits may serve as min. Although a low noise amplifier 2–1 thru/or 2–N and a variable phase–shifter 3–1 thru/or 3–N need N individual corresponding to the element number N of an antenna element 1–1 thru/or 1–N in the control unit of the constituted array antenna, the number of each circuitry elements is one sufficient in the circuit after the synthetic vessel 4. Therefore, as compared with the conventional example shown in drawing 10, a hardware configuration is easy, and since there are few circuitry elements, there is little power consumption.

[0102] Subsequently, the control algorithm in 20m of beam control circuits is explained. First, the baseband signaling yk and m which is outputted from the adjustable amplifier 82-0 thru/or 82-(M-1) and by which gain control was carried out is expressed with a degree type.

[Equation 38] yk, m=gkpsik, m [0104] Here, psik and m are the baseband signaling which was outputted through the time-sharing filter bank circuit 10 from A/D converter 9, and was expressed with complex, gk is the gain of the adjustable amplifier 82-0 thru/or 82- (M-1) expressed with the real number, and yk and m show each output signal of the adjustable amplifier 82-0 thru/or 82- (M-1) expressed with complex. At this time, an error signal ek is defined like a degree type.

[0105]

[Equation 39] ek=dk-yk, 0 [0106] Here, dk is an output signal which shows the sign distinction value from the sign distinction machine 83, and is calculated like a degree type.

[0107]

[Equation 40] dk=sgn[Re(yk)]+j-sgn [Im (yk)]

[0108] Here, Re [-] is a function which shows the real number of an argument, and Im [-] is a function which shows the imaginary of an argument. Moreover, sgn [x] is a sign discriminant function and is defined as follows.

[0109]

[Equation 41] sgn[x]

= At the time of 1; x>=0 = it is [0110] at the time of -1; x<0. At this time, the gain of each adjustable amplifier 82-0 thru/or 82- (M-1) is updated like a degree type.

[0111]

[Equation 42] gk=gk-1+muRe [psik, 0ek*]

[0112] Here, mu is called a step size parameter and is the suitable constant of 0< mu<1. Moreover, * shows a complex conjugate. On the other hand, the control voltage of variable-phase machine 3-i is updated like a degree type.

[0113]

[Equation 43] vk, i=vk −1, i+mu Re (ek*delta yk and i)

[0114] At this time, Variation delta yk and i is calculated like a degree type.

[0115]

[Equation 44] deltayk, i=yk, 0 (1 vk- 1, 1, --, vk- 1, i+deltav, --, vk- N)

- yk, 0 (1 vk- 1, 1, --, vk- 1, i, --, vk- N)

[0116] phase shift control voltage vk- of the time of day k-1 in case the 2nd term of the several 44 right-hand side does not add a perturbation electrical potential difference -- 1, 1, --, vk-1, i, -- and the baseband signaling yk with which gain control of [when impressing vk-1 and N to each variable phase-shifter 3-1 thru/or 3-N] was carried out are shown. moreover, the 1st

term of the several 44 right-hand side — phase shift control voltage vk— of time of day k=1 — 1, 1, —, v \leq SUB>k=1, i, —, vk=1, and N — in addition, the baseband signaling yk with which gain control of [when applying perturbation electrical-potential-difference deltav to an excess] was carried out only to variable-phase-shifter 3-i corresponding to i-th antenna element 1-i, and 0 are shown. And delta yk(s) and i which are expressed with several 44 are the variation yk of these two signals, i.e., the baseband signaling before and behind perturbation, and the variation of 0.

[0117] Therefore, based on the baseband signaling yk before and behind the calculated perturbation, the variation delta yk and i of 0, and an error signal ek, the phase shift control voltage vk and i is calculated and set up so that clearly from several 43. And the adjustable amplifier 82–0 thru/or the gain gk of 82– (M-1) are determined and set up so that from several 42, and the root mean square of an error signal ek may serve as min. Thus, by carrying out beam control, by using the pilot signal used by the preamble especially used by TDMA etc., CDMA, etc. as a request signal, the main beam of the array antenna concerned can be turned in the predetermined direction, and a subcarrier pair interference wave power ratio (CIR) turns a beam in the direction of a request wave, also when level is lower than an interference wave, and minus, i.e., a request signal, can form null in the direction of an interference wave.

[0118] In this operation gestalt, digital signal processing performs amplitude control to the output baseband signaling yk and m which minded the time-sharing filter bank circuit 10 from A/D converter 9, and by variable-phase-shifter control of a microwave band (RF band), since a phase-shifter input signal cannot be observed, the amount of updating of a multiplier is calculated by the perturbation. Moreover, by amplitude control, since the output baseband signaling yk and m is acquired as a digital signal, an amplitude presumption algorithm is obtained in several 42 format. Moreover, since the invented algorithm uses the same norm as the well-known LMS method of minimization of the mean square of an error signal ek, it is calling the invented algorithm the "M-LMS method."

[0119] the adaptive array realized in the DBF circuit since beam control was carried out using the M-LMS method according to this operation gestalt as explained above -- the same -- a beam and null -- it can control and is -- in addition, since RF band can perform beam shape **, there is an advantage that the cutback of circuit magnitude or cost is attained as compared with the conventional example. Therefore, a configuration is easy and there is little power consumption. Moreover, by using the pilot signal used by the preamble used by TDMA etc., CDMA, etc. as a request signal, a subcarrier pair interference wave power ratio (CIR) turns a beam in the direction of a request wave, also when level is lower than an interference wave, and minus, i.e., a request signal, can form null in the direction of an interference wave. Therefore, even if it is an inferior environment, adaptation actuation can be carried out to stability. [0120] Moreover, according to this operation gestalt, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time-sharing filter bank circuit 10 which is a poliphase filter bank. Therefore, the A/D converter which can perform a very highspeed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy, so, circuitry -- being easy -- time accuracy --- and control of the main beam and control of null are made to accuracy as a beam formation direction.

[0121] <3rd modification> drawing 9 is the block diagram showing the time—sharing filter bank circuit 10 in the control device of the array antenna of the 3rd modification concerning this invention which is the modification of the 3rd operation gestalt, and the configuration of beam control circuit 20ma, and the same thing as drawing 8 attaches the same sign.
[0122] In the 3rd operation gestalt, although it had the adjustable amplifier 82-0 thru/or 82- (M-1) between the time—sharing filter bank circuit 10 and 21m of beam control sections, it is characterized by having replaced with this and inserting one adjustable amplifier 82 which has

the weighting factor specified by 21m of beam control sections between A/D converter 9 and the time-sharing filter bank circuit 10. Although 21m of beam control sections needs the baseband signaling yk before gain control, and 0 (baseband signaling psik of <u>drawing 8</u>, 0) in the

beam control processing by the M-LMS method here, this is calculable by doing the division of baseband signaling psik outputted from the time-sharing filter bank circuit 10 of drawing 9, and 0 on the control gain gk. Moreover, for this, instead, as a dashed line shows drawing 9, time-sharing separation may be carried out and the baseband signaling yk before gain control and 0 (baseband signaling psik of drawing 9, 0) may be taken out from the baseband signaling uk from A/D converter 9.

[0123] According to the 3rd modification constituted as mentioned above, in addition to the operation effectiveness in the 3rd operation gestalt, the number of the adjustable amplifier 82 can be decreased substantially and this has the characteristic effectiveness that circuitry can be simplified more.

[0124] In the operation gestalt more than modification > besides <, although digital signal processing is performed in the subsequent circuit after carrying out A/D conversion of the baseband signaling using A/D converter 9, A/D converter 9 may not be inserted but signal processing may be analogically performed in a subsequent circuit.

[0125] In the above operation gestalt, although the perturbation addition circuit 30 consists of circuits where each beam control circuits 20, 20a, and 20t, 20ta, 20m, and 20ma are another, it may unify and constitute the function of the perturbation addition circuit 30 from software or hardware circuitry in each beam control circuits 20, 20a, and 20t, 20ta, 20m, and 20ma. [0126]

[Example] Furthermore, since this invention persons experimented in the interference oppression property of the adaptive array adapting a poliphase filter of the M-CMA method concerning the 1st operation gestalt by computer simulation, they explain the experiment approach and experimental result in full detail below.

[0127] It was premised on the transmitter-receiver configuration which applied differentially coherent detection to the wave detector, using a QPSK modulation technique as a modulation technique. Moreover, the transmission line applied the AWGN (Additive White Gaussian Noise) channel. An antenna is a linear array antenna of half-wave length spacing, and the element number was set to 4. moreover — if the direction of a transverse plane of a linear array antenna is made into 0 times — the wave of choice — the direction of –50 degrees to an interference wave — from the direction of 30 degrees — etc. — the environment which carries out incidence on level was assumed. Moreover, the multiplier of the M-CMA method was set as p=q=1, and it considered as the step size mu= 0.0001. The exaggerated sample carried out by 4 times the symbol rate for reduction of processing speed. Moreover, the initial state of an array antenna forms the beam in the direction of a transverse plane.

[0128] <u>Drawing 11</u> is as a result of [of the 1st operation gestalt] simulation, and is a graph which shows the directivity response pattern in the case of a four-element linear array antenna. The beam which has the about 12dB array factor of a theoretical limitation in the direction of the wave of choice is formed so that clearly from <u>drawing 11</u>. It turns out that deep null can be formed in the direction of an interference wave. However, when SNR is low, the location of null is shifted a little. Control concentrates on the direction which forms a beam and this is considered for sensibility to fall to null somewhat, when SNR is low.

[0129] <u>Drawing 12</u> is as a result of [of the 1st operation gestalt] simulation, and is a graph which shows the property of a bit error rate (BER) over the subcarrier/noise power ratio in the case of a four-element linear array antenna (CNR). In <u>drawing 12</u>, the property of the differentially coherent detection at the time of the four-element maximum ratio composition diversity reception in conditions without interference is shown as a theoretical value. Since the adaptive array using the M-CMA method not only turns a beam to the wave of choice, but can form sharp null in the direction of an interference wave, in all CNR conditions, it turns out that the outstanding property which carries out asymptotic to a theoretical value even at 1.5dB is acquired. It is thought that this 1.5dB degradation is based on the sensibility lowering to the null mentioned above.

[0130] As explained above, the poliphase filter was used as the effective implementation approach of the M-CMA method which enables adaptation beam control in the analog beam shape molding adaptive array in which small and low-pricing are possible. In the renewal type of a

multiplier of the M-CMA method, the "perturbation term" and "a non-precessing term" of this time of day are theoretically needed. It uses that consider as the approach of acquiring this signal simply, and the time-sharing filter bank circuit 10 equipped with each filter bank which constitutes a poliphase filter outputs the completely same wave as this time of day. That is, different perturbation for every filter or a non-precessing term is outputted to each poliphase filter in the time-sharing filter bank circuit 10 by distributing the signal which does not receive a perturbation with a carrier beam signal.

[0131]

[Effect of the Invention] As explained in full detail above, according to this invention, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time-sharing filter bank circuit which is a poliphase filter bank. Therefore, the A/D converter which can perform a very high-speed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy. so, circuitry – being easy — time accuracy — and control of the main beam and control of null are made to accuracy as a beam formation direction.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL FIELD

[Field of the Invention] This invention relates to the control unit and the control approach for controlling the array antenna equipped with two or more antenna elements.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] Drawing 10 is the block diagram showing the configuration of the control device of the array antenna of the conventional example. A radio signal is received in <u>drawing 10</u> by the array antenna 100 by which it comes to juxtapose two or more the antenna elements 1-1 thru/or 1-N of N individual on 1 straight line at the predetermined spacing mutually. The radio signal received by each antenna element 1−1 thru/or 1−N, respectively A low noise amplifier (LNA) 2-1 thru/or 2-N, the down converter 5-1 that carries out frequency conversion to the intermediate frequency signal of a predetermined intermediate frequency, or 5–N, It is outputted to the beam control circuit 93 and a variable phase–shifter 91–1 thru/or 91– N through A/D converter 9-1 thru/or 9-N which performs the demodulator 7-1 thru/or 7-N and the analog / digital conversion which restores to an intermediate frequency signal to baseband signaling. A variable phase-shifter 91–1 thru/or 91–N output the baseband signaling inputted to the synthetic vessel 92, after carrying out the phase shift only of the amount of phase shifts in which it is directed from the beam control circuit 93, respectively. The synthetic vessel 92 is outputted to an external device while it carries out power composition of the baseband signaling of a two or more N individual inputted and outputs the baseband signaling after composition to the beam control circuit 93.

[0003] Each baseband signaling into which the beam control circuit 93 is inputted from A/D converter 9–1 thru/or 9–N here, Adaptation beam control algorithms, such as technique based on the criteria of MMSE (Minimizing Mean Square Error), such as law, are used. the baseband signaling after composition — being based — for example, well–known LMS (Least Mean Square) — It outputs in order for the baseband signaling after composition to serve as max, and to calculate each amount of phase shifts of the variable phase–shifter 91–1 by which an array antenna 100 turns the main beam in the predetermined direction thru/or 91–N and to control each variable phase–shifter 91–1 thru/or 91–N.

[0004] The so-called control device of the ecad array antenna constituted as mentioned above is highly efficient antenna control equipment which can obtain the directivity response pattern which was adapted for the received electric-wave environment by combining with two or more antenna elements 1-1 thru/or 1-N, and radio set circuits the variable phase-shifter 91-1 which is a digital-signal-processing circuit thru/or 91-N, the synthetic vessel 92, and the beam control circuit 93. the configuration which used the digital beam formation circuit (DBF) in the conventional example of drawing 10 — it is — forming the main beam of an array antenna in the direction of a request incoming wave **** — the direction of an interference wave — null — it has the function to form a point and to remove this.

[0005] However, since A/D converter 9-1 thru/or 9-N needed to be used for the receiving—circuit (low noise amplifier 2-1 thru/or 2-N, down converter 5-1 or 5-N and demodulator 7-1 thru/or 7-N) list for every antenna element 1-1 thru/or 1-N, there was a trouble that hardware magnitude and power consumption became large. Especially, when it is a high interest profit antenna with many element numbers of an antenna element, especially this problem will become serious. Furthermore, since it receives for every antenna element, there is also a fault that actuation becomes difficult under the environment to which signal level fell.

[0006] In order to solve this trouble, this invention persons "For example, the conventional

technical reference 1 "M-CMA besides Tano (Modified Constant Modulus Algorithm), - In digitalsignal-processing algorithm-" for adaptation beam shape ** by microwave signal processing, the Institute of Electronics, Information and Communication Engineers research report and A-P 99-62, and pp.15 1999 [-22 or]" M-CMA (ModifiedConstant Modulus Algorithm) is proposed as adaptation algorithm suitable for the adaptive array which performs beam shape ** with this microwave band, and performs digital-signal-processing control. By this M-CMA method, it is premised on constituting a beam formation machine from a variable phase-shifter and an adder for simplification of a hardware configuration. in order that the M-CMA method may make a valuation basis minimization of the average square error of amplitude deflection like the CMA method -- the CMA method -- the same -- beam steering and null -- the concurrency control of a steering is possible. Needless to say, since it is positioned in a blind algorithm, before the M-CMA method establishes frame synchronization, and a frequency and phase simulation, beam formation is possible for it. Therefore, beam shape ** is performed before various synchronous establishment, and from a beam formation machine, since the high signal of SINR (Signal to Interference and NoiseRatio) is supplied after IF stage, various synchronizations also have the advantage of being easily establishable, under the inferior SINR environment. The M-CMA method presumes the dip vector in the error flat surface over the control voltage of each variable phase-shifter using a perturbation theoretically.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] As explained in full detail above, according to this invention, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time-sharing filter bank circuit which is a poliphase filter bank. Therefore, the A/D converter which can perform a very high-speed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy. so, circuitry – being easy — time accuracy — and control of the main beam and control of null are made to accuracy as a beam formation direction.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] However, by the M-CMA method, the output signal (perturbation term) of the beam formation machine when giving a perturbation to the input signal of the same time of day and the output signal (non-precessing term) of the beam formation machine which is not given are needed in an updating type. There is an approach using a high-speed sampling as a means to ask for this in approximation. This samples the output signal of a beam formation machine at a high speed to a symbol rate, and uses the signal with which this output adjoined each other as "a non-precessing term" and a "perturbation term" at the same time it applies a perturbation. If the effect of a noise is disregarded, correlation of the signal with which the output signal of the beam formation machine by which the high-speed sample was carried out adjoined each other will be dramatically high to this principle of operation, and it will use that the difference among both is only a difference in the existence of a perturbation for it. However, there was a trouble that the A/D converter which can perform a very high-speed sampling in this case as compared with a bit rate being needed, and sampling timing adjustment were difficult, and circuitry became complicated.

[0008] The object of this invention solves the above trouble and it is in offering the control unit and the control approach of an array antenna as for which control of the main beam and control of null are made to accuracy as a beam formation direction in time [as compared with the conventional example, a configuration is easy, and].

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

MEANS

[Means for Solving the Problem] the control unit of the array antenna concerning this invention -- two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- two or more [to which the phase shift only of the predetermined amount of phase shifts is carried out, and it outputs N radio signals, respectively] -- with N phase shift means A synthetic means outputted from each above-mentioned phase shift means to compound two or more radio signals of N individual, and to output the radio signal after composition, A recovery means to restore to it and output the radio signal outputted from the above-mentioned synthetic means to baseband signaling, A gain control means to carry out gain control of the baseband signaling outputted from the above-mentioned recovery means, and to output it on predetermined gain, A subtraction means to generate and output the error signal between the baseband signaling outputted from the above-mentioned gain control means, and the reference signal of a predetermined value, Only a predetermined shift amount is made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively. So that the dip vector of the power of the error signal outputted from the above-mentioned subtraction means over each amount of phase shifts may be calculated and the error signal concerned may serve as min based on the dip vector and the above−mentioned error signal of power of an error signal which were calculated In the control unit of the array antenna equipped with the control means which calculates the gain of each amount of phase shifts for turning the main beam of the above-mentioned array antenna in the predetermined direction, and the above-mentioned gain control means, and is outputted to each above-mentioned phase shift means and the abovementioned gain control means, respectively The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It is inserted and prepared between the above−mentioned recovery means and the above−mentioned gain control means or between the above-mentioned gain control means, the above-mentioned control means, and the abovementioned subtraction means. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by having further a time-sharing processing means for two or more sample signals within the above-mentioned sequence signal in the period which it precessed to differ and to perform time-sharing processing so that it may be outputted as an output signal.

[0010] In the control device of the above-mentioned array antenna, the above-mentioned gain control means is preferably characterized by being a transversal filter circuit.

[0011] Moreover, the control unit of the array antenna concerning this invention two or more — two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] — two or more [to which the phase shift only of the predetermined amount of phase shifts is carried out, and it outputs N radio signals, respectively] — with N phase shift means A synthetic means outputted from each above—mentioned phase shift means to compound two or more radio signals of N individual, and to output the radio signal after composition, A recovery means to restore to it and output the radio signal outputted from the above—mentioned synthetic means to baseband signaling, A gain control means to carry out gain control of the baseband signaling outputted

from the above-mentioned recovery means, and to output it on predetermined gain, A sign distinction means to output the sign distinction value signal which distinguishes the sign of the baseband signaling outputted from the above-mentioned gain control means, and shows a sign distinction value, A subtraction means to generate and output the error signal between the sign distinction value signal outputted from the above-mentioned sign distinction means, and the baseband signaling outputted from the above-mentioned gain control means, The variation which only the predetermined shift amount was made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively, calculated the variation before and behind the perturbation of the baseband signaling outputted from the above-mentioned gain control means to each amount of phase shifts, and was calculated, Based on the baseband signaling outputted from the above-mentioned recovery means, the baseband signaling outputted from the above-mentioned gain control means, and the error signal outputted from the abovementioned subtraction means, so that the root mean square of the above-mentioned error signal may serve as min It has the control means which calculates each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the above-mentioned array antenna in the predetermined direction, and is outputted to each above-mentioned phase shift means and the above-mentioned gain control means, respectively. The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It is inserted and prepared between the above-mentioned recovery means and the above-mentioned gain control means or between the above-mentioned gain control means, the above-mentioned control means, and the above-mentioned subtraction means. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by having further a time-sharing processing means for two or more sample signals within the above-mentioned sequence signal in the period which it precessed to differ and to perform timesharing processing so that it may be outputted as an output signal.

[0012] Preferably, the control unit of the above-mentioned array antenna is inserted and formed in the latter part of the above-mentioned recovery means, carries out analog-to-digital conversion to the baseband signaling outputted from the above-mentioned recovery means, and is characterized by having further a conversion means to output the digital baseband signaling after conversion.

[0013] Furthermore, the control approach of the array antenna concerning this invention two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- N radio signals using two or more phase shift means with the step to which the phase shift only of the predetermined amount of phase shifts is carried out, respectively The step by which the phase shift was carried out [above-mentioned] and which compounds two or more radio signals of N individual, and outputs the radio signal after composition, The step which restores to the radio signal after the above-mentioned composition to baseband signaling, and the step which carries out gain control of the baseband signaling by which the recovery was carried out [above-mentioned] on predetermined gain using a gain control means, The step which generates the error signal between the baseband signaling by which gain control was carried out [above-mentioned], and the reference signal of a predetermined value, Only a predetermined shift amount is made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively. Calculate the dip vector of the power of the above-mentioned error signal over each amount of phase shifts, and so that the error signal concerned may serve as min based on the dip vector and the above-mentioned error signal of power of an error signal which were calculated In the control approach of the array antenna containing the step which calculates each amount of phase shifts for turning the main beam of the above-mentioned array antenna in the predetermined direction, and the gain of the above-mentioned step which carries out gain control, and is outputted to each above-mentioned phase shift means and the abovementioned gain control means, respectively The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It performs between the above-mentioned step which carries out a recovery, and the above-mentioned step which carries out gain control, or between the steps which generate the above-mentioned step which carries out gain control,

the above-mentioned step which carries out count, and the above-mentioned error signal. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by including further the step which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the above-mentioned sequence signal in the period which it precessed differ.

[0014] In the control approach of the above-mentioned array antenna, the above-mentioned step which carries out gain control is preferably characterized by performing using a transversal filter circuit.

[0015] Furthermore, the control approach of the array antenna concerning this invention two or more -- two or more [by which N antenna elements were received by each antenna element of the array antenna which it comes to juxtapose each other at the predetermined spacing] -- N radio signals with the step to which the phase shift only of the predetermined amount of phase shifts is carried out using two or more phase shift means, respectively The step by which the phase shift was carried out [above-mentioned] and which compounds two or more radio signals of N individual, and outputs the radio signal after composition, The step which restores to the radio signal after the above-mentioned composition to baseband signaling, and the step which carries out gain control of the baseband signaling by which the recovery was carried out [above−mentioned]on predetermined gain using a gain control means, The step which outputs the sign distinction value signal which distinguishes the sign of the baseband signaling by which gain control was carried out [above-mentioned], and shows a sign distinction value, The step which generates the error signal between the above-mentioned sign distinction value signal and the baseband signaling by which gain control was carried out [above-mentioned], The variation which only the predetermined shift amount was made to precess each amount of phase shifts of two or more above-mentioned phase shift means, respectively, calculated the variation before and behind the perturbation of the baseband signaling by which gain control was carried out [above−mentioned]to each amount of phase shifts, and was calculated, Based on the baseband signaling by which the recovery was carried out [above-mentioned], the baseband signaling by which gain control was carried out [above-mentioned], and the above-mentioned error signal, so that the root mean square of the above-mentioned error signal may serve as min It has the step which calculates each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the above-mentioned array antenna in the predetermined direction, and is outputted to each above-mentioned phase shift means and the abovementioned gain control means, respectively. The above-mentioned baseband signaling includes a sequence signal including two or more sample signals. It performs between the above-mentioned step which carries out a recovery, and the above-mentioned step which carries out gain control, or between the steps which generate the above-mentioned step which carries out gain control, the above-mentioned step which carries out count, and the above-mentioned error signal. At least one sample signal in the period which it does not precess based on the baseband signaling inputted, It is characterized by including further the step which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the above-mentioned sequence signal in the period which it precessed differ.

[0016] The control approach of the above-mentioned array antenna is preferably performed after the above-mentioned step which carries out a recovery, carries out analog-to-digital conversion to the baseband signaling by which the recovery was carried out [above-mentioned], and is characterized by including further the step which outputs the digital baseband signaling after conversion.

[0017]

[Embodiment of the Invention] Hereafter, the operation gestalt which starts this invention with reference to a drawing is explained.

[0018] <Operation gestalt of ** 1st> drawing 1 is the block diagram showing the configuration of the control device of the array antenna which is the 1st operation gestalt concerning this invention, and attaches the same sign about the same thing as drawing 10. Moreover, drawing 2 is the block diagram showing the detailed internal configuration of the time-sharing filter bank circuit 10 of drawing 1, the beam control circuit 20, and the perturbation addition circuit 30.

[0019] The control unit of the array antenna of this 1st operation gestalt The array antenna 100 (for example, it is a linear array and may be arranged in a two-dimensional configuration or a three-dimension configuration.) with which it comes to arrange two or more the antenna elements 1-1 thru/or 1-N of N individual at the predetermined spacing mutually In the adaptive control mold control unit equipped with the beam control circuit 20 for controlling a beam using the M-CMA method One signal in the period which it does not precess between A/D converter 9 and the beam control circuit 30 in the perturbation addition circuit 30 based on the baseband signaling inputted (at least one signal may be used.) It is characterized by having the timesharing filter bank circuit 10 which performs time-sharing processing so that it may be outputted as an output signal with which two or more sample signals within the M sequence signal which is a training signal in the period which it precessed in the perturbation addition circuit 30 differ. That is, since the time-sharing filter bank circuit 10 which consisted of this operation gestalt with a poliphase expression as an approach of solving the above-mentioned problem in the beam control which used the M-CMA method is used and the perturbation term and the nonprecessing term in this time of day are acquired in a strict form by this, exact beam Nur control is enabled. Here, the digital filter 13-0 in the time-sharing filter bank circuit 10 thru/or 13- (M-1) carry out the poliphase configuration of the root roll-off filter used as a band limit filter for example, by the digital phase modulation system.

[0020] Hereafter, the configuration of the control unit of the array antenna shown in drawing 1 is explained. In drawing 1, the radio signal which the radio signal was received and was received by each antenna element 1-1 thru/or 1-N by the array antenna 100 by which it comes to arrange two or more the antenna elements 1-1 thru/or 1-N of N individual at the predetermined spacing mutually is inputted into a variable phase-shifter 3-1 thru/or 3-N through a low noise amplifier (LNA) 2-1 thru/or 2-N, respectively. Each variable phase-shifter 3-1 thru/or 3-N output the radio signal inputted to the synthetic vessel 4, after carrying out the phase shift only of each amount of phase shifts corresponding to each phase shift control voltage vk and i (i= 1, 2, --, N) outputted from the perturbation addition circuit 30, respectively. The synthetic vessel 4 outputs only the down converter 5 which carries out power composition of the radio signal of N individual inputted, and carries out frequency conversion of the radio signal after composition to the intermediate frequency signal of a predetermined intermediate frequency, and the band component of an intermediate frequency signal to a demodulator 7 through the band-pass filter (BPF) 6 which carries out band wave filtration. A demodulator 7 restores to the radio signal inputted to baseband signaling using the recovery approach corresponding to the modulation approaches by the side of a transmitter (for example, QPSK, PSK, FSK, etc.), and outputs it to A/D converter 9 through the low pass filter (LPF) 8 which takes out only desired baseband signaling. A/D converter 9 is boiled and outputted to the beam control circuit 20 through the time-sharing filter bank circuit 10 while it carries out A/D conversion of the baseband signaling of an analog inputted to digital baseband signaling and outputs the baseband signaling signal uk after conversion to an external device.

[0021] In addition, the microwave signal processor which becomes in well-known large-scale GaAsMMIC can constitute a variable phase-shifter 3-1 thru/or 3-N and the synthetic vessel 4, for example. Moreover, in this operation gestalt, baseband signaling sets the sampling rate of A/D converter 9 to fs=2Mfc for example, including an M sequence signal as a training signal. Here, M is the one or more natural numbers, and fc is a symbol clock frequency. [0022] The delay circuit 11-1 thru/or 11- (M-1) of an individual which is mutually connected to concatenation and has the time delay of 1/(2Mfc), respectively as the time-sharing filter bank circuit 10 is shown in drawing 2 (M-1), M down samplers 12-0 thru/or 12- (M-1) which has a twice as many down sampling rate as this, respectively (M/2), M digital filters 13-0 thru/or 13- (M-1) which has the transfer function which carries out the detail after-mentioned, respectively, for example, consists of FIR filters, It has M down samplers 14-0 thru/or 14- (M-1) which has a twice as many down sampling rate as this, respectively (1/4), and is constituted. In the time-sharing filter bank circuit 10 the baseband signaling uk from A/D converter 9 While being outputted to the beam control circuit 20 through down sampler 12- (M-1), digital filter 13- (M-1), and down sampler 14- (M-1) as baseband signaling psik by which time-sharing processing was

carried out, and M-1 It is outputted to the down sampler 12-0 through delay circuit 11- (M-1) of the individual (M-1) by which cascade connection was carried out mutually thru/or 11-1. Here, the baseband signaling uk outputted from delay circuit 11- (M-1) is outputted to the beam control circuit 20 through down sampler 12- (M-2), digital filter 13- (M-2), and down sampler 14- (M-2) as baseband signaling psik by which time-sharing processing was carried out, and M-2. baseband signaling psi by which time-sharing processing of the baseband signaling uk outputted from delay circuit 11-m was hereafter carried out similarly through down sampler 12-m, digital filter 13-m, and down sampler 14-m -- it outputs to the beam control circuit 20 as k and m -- having -- here -- m=M- it is 3, --, 0.

[0023] <u>Drawing 3</u> is the block diagram showing the example of the time-sharing filter bank circuit 10 of <u>drawing 2</u> of operation, and shows the case of N=M -1 as an example with this operation gestalt.

[0024] With this operation gestalt, as shown in drawing 3, divide the time amount T of one symbol into two, and it sets to time amount T / 2. M sample signals (this corresponds an M sequence signal.) The sample signal of the 1st non-precessing term in the period to include and which does not precess M sample signals in the perturbation addition circuit 30 (deltav=0), The sample signal (perturbation addition electrical-potential-difference deltav was added) of the perturbation term of two or moreN (= M-1) individual within the M sequence signal which is a training signal in the period which it precessed in the perturbation addition circuit 30 is included. And the time-sharing filter bank circuit 10 performs time-sharing processing so that it may be outputted as an output signal with which the sample signal (deltav=0) of the 1st non-precessing term differs from the sample signal (perturbation addition electrical-potential-difference deltav was added) of M-1 perturbation term among M sample signals.

[0025] In drawing 2 , baseband signaling psik after the time-sharing processing outputted from the time-sharing filter bank circuit 10 and 0 are inputted into the beam control section 21 and a subtractor 24 through the adjustable amplifier 22-0 which has the control gain gk specified by the beam control section 21 while they are directly outputted to the beam control section 21. moreover, baseband signaling [after the time-sharing processing outputted from the timesharing filter bank circuit 10] psi --- k and m are inputted into the beam control section 21 through adjustable amplifier 22-m which has the control gain gk specified by the beam control section 21 -- having -- here -- m= -- it is 1, 2, --, M-1. Here, control gain can take a forward or negative value. On the other hand, the reference signal generator 23 generates the reference signal sigma which has predetermined constant value, and outputs it to a subtractor 24. A subtractor 24 subtracts the baseband signaling yk after gain magnification, and 0 from a reference signal sigma, and outputs the error (or deflection) signal ek to the beam control section 21. Based on the error signal ek inputted, M baseband signaling yk by which gain control was carried out, respectively, 0 or yk, M-1, and baseband signaling psik before gain control and 0, the beam control section 21 so that the detail after-mentioned may be carried out Control the switching controller 32 of the perturbation addition circuit 30, and only a predetermined shift amount is made to precess each variable phase-shifter 3-1 thru/or each phase shift control voltage vk and i (i= 1, 2, --, N) of 3-N using the M-CMA method. Make only a predetermined response shift amount precess each amount of phase shifts which corresponds by this, and the dip vector of the power of the error signal ek outputted from the subtractor 22 to each amount of phase shifts is calculated. Power of the baseband signaling yk outputted from A/D converter 9 based on the dip vector of the power of the calculated error signal ek is made into max. So that the error signal ek concerned may serve as min based on the error signal ek outputted from a subtractor 22 The amplification degree gk of each phase shift control voltage vk and i corresponding to each amount of phase shifts for turning the main beam of an array antenna 100 in the predetermined direction and the adjustable amplifier 21 is calculated. While outputting each calculated phase shift control voltage vk and i to each variable phase-shifter 3-1 thru/or 3-N through the perturbation addition circuit 30, the calculated amplification degree gk is outputted to the adjustable amplifier 21.

[0026] The perturbation addition circuit 30 is equipped with the perturbation addition voltage generator 31 which generates perturbation addition electrical-potential-difference deltay, the

switch 34-1 of N individual thru/or 34-N, and the adder 33-1 thru/or 33-N of N individual, and is constituted. Here, perturbation addition electrical-potential-difference deltav generated by the perturbation addition voltage generator 31 is inputted into each contact b of a switch 34-1 thru/or 34-N, and each contact a of a switch 34-1 thru/or 34-N is grounded, respectively. Although a switch of these switches 34-1 thru/or 34-N is controlled by the switch controller 32 which operates by control of the beam control section 21 and each switch 34-1 thru/or 34-N are usually connected to Contact a side here The switching controller 32 for example, when having received the training signal it is shown in drawing 3 -- as -- time amount T / 2 of the one half of one symbol -- setting -- the sample signal (deltav=0) of the 1st non-precessing term in the sample signal of +one M=N of an M sequence signal -- then So that the sequential output of the sample signal (perturbation addition electrical-potential-difference deltav was added) of the perturbation term of two or moreN (= M-1) individual corresponding to each phase shifter 3-1 thru/or 3-N may be carried out By switching only the switch 34-1 of N individual thru/or one switch in 34-N to Contact b side one by one, it adds and adds by one of an adder 33-1 thru/or 33-N to the phase shift control voltage vk and n (n= 1, 2, --, N) outputted from the beam control section 21. The phase shift control voltage outputted from the perturbation addition circuit 30 is outputted to a phase shifter 3-1 thru/or 3-N, respectively as phase shift control voltage vk and n (n= 1, 2, ---, N).

[0027] In addition, although it differs in the phase shift control voltage vk and n outputted from the beam control circuit 20, and the phase shift control voltage vk and n outputted from the perturbation addition circuit 30 when having received the training signal, and adding perturbation addition electrical-potential-difference deltay, the same notation is attached on [of explanation] expedient.

[0028] Subsequently, the principle and technical problem of the M-CMA method used with this operation gestalt are explained. In <u>drawing 1</u> which shows the configuration of the adaptive array which united beam shape ** and digital signal processing by microwave signal processing, after weighting of the input signal received by the antenna element 1-1 thru/or 1-N of an array antenna 100 arranged at intervals of d in space is carried out through LNA 2-1 thru/or 2-N by the variable phase-shifter 3-1 thru/or 3-N which consists of MMIC(s) etc., it is added with the synthetic vessel 4, and it turns into an output signal of a beam formation machine. if the signal received with the i-th feed component in time of day k is set to uk and i — the output signal sk of a beam formation machine — an equivalence low-pass model (for example, refer to the conventional technical reference 2 ""the present-day communication line theory" besides S . Stein, Morikita Shuppan, and 1970".) — using — a degree type — it is expressed like. [0029]

[Equation 1]

$$s_{k}$$

$$= s_{k}(v_{k,1} \quad v_{k,2} \quad \cdots v_{k,1})$$

$$= \sum_{i=1}^{N} \exp(-j\theta(v_{k,i}))_{u_{k,i}}$$

[0030] In one above, vk and i are control voltage impressed to variable-phase-shifter 3-i connected to i-th antenna element 1-i, theta (-) is a phase shift characteristic function to the control voltage of variable-phase-shifter 3-i, N shows the number of antenna elements and j shows the imaginary unit. The output signal of this beam formation machine is changed into a baseband band by the down converter 5, and A/D conversion is carried out with A/D converter 9. Although the output signals sk of signal sk' by which frequency conversion was carried out, and a beam formation machine completely differ here, supposing frequency conversion and filtering are performed ideally, the difference among both is only the existence of exp (j2pft). However, f is carrier frequency, i expresses an imaginary unit and t expresses time of day. With this operation gestalt, in order to verify the upper bound of the property on the theory of a beam formation machine, the imperfection of RF band etc. is not taken into consideration. In this case, since the existence of exp (j2pft) is not an essential problem, it explains with this operation

gestalt by identifying the output signal sk of signal sk' by which frequency conversion was carried out, and a beam formation machine in the same category.

[0031] The input signal by which A/D conversion was carried out is amplified by the adjustable amplifier 22-0 thru/or 22- (M-1) which is the AGC amplifier of a baseband band. The signal yk after magnification and the error with the request level sigma are defined like a degree type as an error signal ek.

[0032]

[Equation 2] Ek=sigma p-gkp|sk|p=sigma p-|yk|p, however [Equation 3] yk=gksk [0033] Here, gk is the gain of the adjustable amplifier 22-0 in time of day k thru/or 22- (M-1). Moreover, |-| in two above means taking the absolute value of complex. On the other hand, it is a multiplier in the M-CMA method, and p takes the one or more natural numbers, and is p= 2 with this operation gestalt. The gain gk of this adjustable amplifier is optimized by the following valuation basis. [0034]

[Equation 4] J=E[|ek|q] ->min [0035] In four above, J is a cost function, E [-] is a function which takes an ensemble average, and q means the multiplier of the M-CMA method with p. Therefore, several 4 expresses the valuation basis which minimizes the cost function J. If this solution is calculated based on the well-known principle of SGD (Stochastic Gradient Decent), an optimum value will be calculated by repeating the following formulas about the gain gk of adjustable amplifier.

[0036]

[Equation 5]

$$\begin{split} &= g_{k-1} - \mu \frac{\partial J}{\partial g_k} \\ &= g_{k-1} + \mu \left| e_k \right|^{q-2} e_k \left| y_k \right|^{p-1} \left| s_k \right| \end{split}$$

[0037] m with five above is a multiplier called a step size parameter. Furthermore, if optimization is attained to the control voltage of a beam formation machine with one above based on a valuation basis with four above, an optimum value can be found by repeating a degree type from the principle of SGD.

[0038]

[Equation 6] $v_{k,i}$

$$= v_{k-1,i} - \mu \frac{\partial J}{\partial v_{k,i}}$$

$$= v_{k-1,i} + \mu |e_k|^{q-2} e_k |y_k|^{p-1} \Delta_i |y_k|$$

[0039] Here, deltai |-| expresses the fine multiplier to the control voltage of variable-phase-shifter 3-i connected to i-th antenna element 1-i, and asks for it in approximation as follows. [0040]

[Equation 7]

$$\Delta_i |y_k|$$

$$= g_k \Delta_i | s_k(v_{k,1} \quad v_{k,2} \quad \dots \quad v_{k,N}) |$$

$$= g_k \{ | s_k(v_{k,1} \quad \dots \quad v_{k,i} + \Delta v \quad \dots \quad v_{k,1}) | - | s_k(v_{k,1} \quad \dots \quad v_{k,i} \quad \dots \quad v_{k,1}) | \}$$

[0041] By using six above, it can oppress to the amplitude deflection defined by several 2 not only like the gain gk of adjustable amplifier but like the usual CMA method. However, in quest of the optimum value of control voltage, the "perturbation term" and "a non-precessing term" of this time of day are needed from six above and several 7. While this applies a perturbation, as compared with a symbol rate, A/D conversion of it is carried out to a high speed, and it can be solved by using a ******* signal. That is, since it could consider that it was almost the same

since the adjacent signal had high signal correlation, and the one of the two has received the perturbation, the above-mentioned requirements can be satisfied. However, in order to raise precision, it is necessary to carry out a sample considerably at high speed, and implementation of hardware will become difficult if it takes into consideration that a bit rate will accelerate from now on. So, with this operation gestalt, this sampling rate could be reduced, in order to acquire highly precise "non-precessing term" and a "perturbation term", the time-sharing filter bank circuit 10 is used, and subsequently this is explained in full detail.

[0042] Although frequency conversion of the output signal of the beam formation machine shown by one above is carried out with a down converter 5 and it is changed into a digital signal by A/D converter 9, the sampling rate at that time is performed by M times of an information rate, a digital filter removes an undesired signal, and the system which acquires a recovery signal by performing decimation is used. When it constitutes this digital filter from an FIR (Finite Impulse Response) filter, generally the poliphase expression of that transfer function T (z-1/M) can be carried out as follows.

[0043]

[Equation 8]
$$T(z^{-1/M})$$

$$= \sum_{i=-ML}^{ML-1} h_{i/M} Z^{-i/M}$$

$$= \sum_{i=-ML}^{M-1} \sum_{i/M}^{L-1} h_{i/M} Z^{-i/M}$$

$$= \sum_{i_2=0}^{M-1} \sum_{i_1+i_2/M}^{L-1} Z^{-i/M} Z^{-i/M}$$

$$= \sum_{i_2=0}^{M-1} z^{-i/M} \sum_{i_1=-L}^{L-1} h_{i/M} Z^{-i/M}$$

$$= \sum_{i_2=0}^{M-1} T_{i/M} Z^{-i/M}$$

$$= \sum_{i_2=0}^{M-1} T_{i/M} Z^{-i/M}$$

[0044] However, M-1 is TI (z-1), l=0, --, a filter bank that constitutes each poliphase filter, and is defined like a degree type.

[0045]

[Equation 9]

$$T_l(z^{-1}) = z^{-l/M} \sum_{i=-L}^{L-1} h_{i+l/MZ}^{-i}$$

[0046] With [the working speed of each filter in a bank] a Nyquist rate [more than], the input signal of each filter is not concerned with a sampling rate, but holds fixed spectrum information. At this time, if there is no noise, the same signal will be outputted from all filter banks. However, it is necessary to satisfy the following conditions.

[0047]

[Equation 10]

TI(z-1) = Tm(z-1);I, m= 0, --, M-1 [0048] Here, it is shown that the same signal is acquired by the filter bank concerned. When an input signal is made into uk- (i+I/M), the output signal of the poliphase filter defined by ten above is expressed like a degree type. [0049]

[Equation 11]

$$\psi_{k,l} = \sum_{i=-L}^{L-1} h_{i+l/M} u_{k-(i+l/M)}$$

[0050] When DFT (Digital Furrier Transform) of this signal is carried out, it is expressed like a degree type.

[0051]

[Equation 12]
$$F(\psi_{k,l})$$

$$= \sum_{i=0}^{N-1} \sum_{i=-L}^{L-1} h_{i+l/M} u_{k-(i+l/M)} \exp(-j2\pi \frac{kn}{N})$$

$$= \sum_{i=-L}^{L-1} h_{i+l/M} \exp(-j2\pi \frac{(i+l/M)n}{N}) \sum_{k=0}^{N-1} u_{k-(i+l/M)} \exp(-j2\pi \frac{(k-(i+l/M))n}{N})$$

$$= F(h_i) F(u_k)$$

[0052] However, F (-) expresses the signal after DFT of -. That is, a signal with the same frequency spectrum is acquired from all poliphase filters. Therefore, if IDFT (Inverse DFT) of this output is carried out, there will also be no misgiving and the same time series will be acquired. [0053] Subsequently, in order to carry out matrix representation of the transfer function of the filter bank of a poliphase expression, delay matrix F (I) which a degree type defines is introduced.

[0054]

[Equation 13] phi(l) **diag [z-l z-l-1/M -- z-l-(M-1)/M]

I=-L, --, L-1 [0055] Here, ** means what "is defined" and diag (-) means the diagonal matrix which uses the vector in a parenthesis as a diagonal element. By using this delay matrix, the transfer function of a filter bank can carry out vectorial representation like a degree type. [0056]

[Equation 14]

phi — ** — [— T — zero — (— z —) — — T — one — (— z —) — — — TM — one — (— z —) —] — T — = — [— phi (—L) — — phi (—L+1) — — — phi (L-1) —] — H — [— 0057 —] However,
$$H=[h-L$$
 and $h-L+1/M$, —, $hL+(M-1)/M$] T expresses the impulse response of the filter before being poliphase—ized. On the other hand, in the beam formation machine expressed with several 1, when applying the sequential perturbation from the 1st antenna element 1–1, the output signal can carry out a formula expression as follows.

[Equation 15]

 S_k

$$= diag[s_k \quad s_{k+1/M} \quad \cdots \quad s_{k+(M-1)/M}]^T$$

$$= [W_{k,1} \quad W_{k,2} \quad \cdots \quad W_{k,N}] \begin{bmatrix} U_{k,1} \\ U_{k,2} \\ \vdots \\ U_{k,N} \end{bmatrix}$$

[0059] Uk, i and Wk in 15 above, and i are the weighting-factor matrices over the i-th output signal and output signal of antenna element 1-i, respectively, and are expressed like a degree type.

[0060]

[Equation 16] Wk, j=diag [exp(-jtheta (vk, i)) exp(-jtheta (vk+1/M, i)) -- exp (-jtheta (vk+ (M-1) / M, i))]

[Equation 17] Uk, i=diag (uk and i uk-1/M, i -- uk- (M-1) / [M, i])

[0061] If the output signal of this beam formation machine is inputted into the time-sharing filter bank circuit 10 which is the poliphase filter bank expressed with 14 above, the input signal to the adjustable amplifier 22-0 thru/or 22- (M-1) will be acquired. That is, when the inverse z transform of the output signal is inputted and carried out to 14 above, the output-signal vector psik is expressed like a degree type using the matrix defined by 15 above. [0062]

[Equation 18]

$$\Psi_k = \begin{bmatrix} W_{k,1} \\ W_{k,2} \\ \vdots \\ W_{k,N} \end{bmatrix}^T \begin{bmatrix} U_{k+L,1} & U_{k+L-1,1} & \cdots & U_{k-(L-1),1} \\ U_{k+L,2} & U_{k+L-1,2} & \cdots & U_{k-(L-1),2} \\ \vdots & \vdots & \ddots & \vdots \\ U_{k+L,N} & U_{k+L-1,N} & \cdots & U_{k-(L-1),N} \end{bmatrix} H$$

[0063] Here, it is [Equation 19] about vector thetak and i. It introduces with thetak and i**(Uk+L, i, --, [Uk, - (L-1), i]) H. if there is no effect of a noise and conditions with ten above are satisfied here -- above -- Vector theta -- there where all the elements of k and i become the same (it is as having mentioned above using several 11 and several 12.) -- the value -- theta -- if it sets with k and i -- vector P= [1, --, 1] -- using -- Vector theta -- k and i -- [Equation 20] It is expressed thetak and i**theta k and iP. Then, 18 above is rewritten like a degree type. [0064]

[Equation 21] Ψ₁.

$$= \sum_{i=1}^{N} \theta_{k,i} W_{k,j} P = [\cdots \quad \psi_{k,l} \quad \cdots]$$

$$= [\cdots \quad \sum_{i=1}^{N} \theta_{k,j} \exp(-j\theta(v_{k+l/M,i})) \quad \cdots]^{T}$$

$$l = 0, \cdots M - 1$$

[0065] 21 above is a weighting factor [several 22], after once changing the signal from each antenna element 1–1 thru/or 1–N into a baseband band and passing the digital filter of transfer function T (z). WkT=[exp (j-2 theta (vk, i), ---, exp (-j2theta (vk+I/M, i)), ---])

The signal equivalent to what came out of and carried out weighting means being outputted from the filter of eye I/M watch of the time-sharing filter bank circuit 10 which is a poliphase filter bank. Then, weighting factors Wk and i are operated like a degree type. However, it considers as M>=N +1 (with drawing 1 thru/or the operation gestalt of drawing 3, it is considering as M=N +1.).

[0066]

[Equation 23] Here, it is i= 1, --, N and l= 0, --, M-1 at the time of vk+l/M, i=vk, and i+delta v;i!=l at the time of vk+l/M, i=vk, and i;i!=l.

[0067] That is, in M continuous input signal sequences, a perturbation is not given to the first sample signal at all, but the perturbation is applied to the control voltage of the variable phase—shifter 3–1 connected to each component from the following sample thru/or 3–N one by one. Specifically by the l-th sample signal, a perturbation is given only to the l-th control voltage of variable-phase-shifter 3–l. The 0th filter of the time-sharing filter bank circuit 10 which is a poliphase filter bank by this (in the time-sharing filter bank circuit 10 of drawing 2) Signal psik of a non-precessing term and 0 are outputted from a digital filter 13–0 and the down sampler 14–0, and it is the l-th filter (in the time-sharing filter bank circuit 10 of drawing 2). From digital filter 13–l and down sampler 14–l, signal psik of a perturbation term to l-th antenna element 1–l and l are outputted. Therefore, it turns out that the problem mentioned above is solvable by applying a poliphase filter. That is, the adaptive array adapting a poliphase filter of the M-CMA method can ask for the optimal multiplier based on the following successive renewal types of a multiplier. [0068]

[Equation 24] yk, i=gkpsik, and i — here — i= — 0, 1, —, M-1 — [Equation 25] ek=sigma p-|yk and 0|p — [Equation 26] vk, i=vk -1, i+mu|ek|q-2 ek|yk, 0|p-1 (|yk, i|-|yk, 0|) here — i= 0, —, M-1 — [Equation 27]

gk-1=gk-1+ mu|ek|q-2 ek|yk, 0|p-1|psik, 0|[0069] Generally, although an anti-aliasing filter is applied as a poliphase filter, since it has the analog low pass filter in front of A/D converter 9 in communication system, the anti-aliasing filter is unnecessary. So, the time-sharing filter bank circuit 10 consists of these operation gestalten by, for example, poliphase-izing the root roll-off

filter of a receiver in the nyquist filter system often used by the phase modulation system. [0070] In drawing 1, it is inputted into the time-sharing filter bank circuit 10 which is a poliphase filter, after passing through the low pass filter 8 which is an area JINGU filter before the A/D conversion by A/D converter 9. It is necessary to operate the digital filter 13-0 thru/or 13- (M-1) which is each root roll-off filter in the poliphase filter bank which is the time-sharing filter bank circuit 10 of drawing 2 more than by the twice of a Nyquist rate so that area JINGU distortion may not be given to a signal. Therefore, to form a root roll OFUTO filter into M-phase, it is necessary to carry out the sample of A/D converter 9 more than by 2M time of a Nyquist rate (with this operation gestalt, the sampling rate is set to f=2Mfc as mentioned above.). And after carrying out time sharing by the delay circuit 11-1 thru/or 11- (M-1) by which cascade connection was carried out, Decimation is carried out to M/2 by the M/2 twice as many down sampler 12-0 as this thru/or 12- (M-1). After passing through a digital filter 13-0 thru/or 13-(M−1), the recovery signal of the M sequence which is parallel and consists of M sample signals by which time-sharing processing was carried out is acquired by increasing decimation 4 times by the 4 times as many down sampler 14-0 as this thru/or 14- (M-1). In addition, preferably, the multiple of the down sampler 12-0 thru/or 12- (M-1) and the multiple of the down sampler 14-0 thru/or 14- (M-1) are chosen so that those products may be set to 2M. [0071] In drawing 3 which shows the example of the time-sharing filter bank circuit 10 of operation, the exaggerated sample of the inside of 1 symbol is carried out by twice (N+1), i.e., the twice of the element number N+1 of an antenna, and it distributes to N+1 filter bank. Each filter bank calculates by the twice of a symbol rate. A perturbation is given to the variable phaseshifter 3-1 thru/or 3-N synchronously connected to each antenna element 1-1 thru/or 1-N one by one within 1 / 2 symbols on the other hand. However, a perturbation is surely reset every 1/2 symbol, namely, the signal of a non-precessing term is generated. In addition, although all perturbations were performed within 1 symbol in drawing 3, it is also possible to give the perturbation to the variable phase-shifter of one antenna element, whenever it receives the signal of one symbol, to perform one of this at a time, and to reduce operation speed by things. In this case, the perturbation of all components is ended only after receiving the symbol signal of N individual. However, if it takes into consideration that it is necessary to insert in 1/2 symbol the period which does not give a perturbation, a sampling rate can be reduced up to 4 times of a symbol rate.

[0072] As explained above, according to this operation gestalt, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time-sharing filter bank circuit 10 which is a poliphase filter bank. Therefore, the A/D converter which can perform a very high-speed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy. so, circuitry — being easy — time accuracy — and control of the main beam and control of null are made to accuracy as a beam formation direction.

[0073] <1st modification> drawing 4 is the block diagram showing the configuration of the time-sharing filter bank circuit 10 in the control device of the array antenna of the 1st modification concerning this invention which is the modification of the 1st operation gestalt, and beam control circuit 20a, and the same thing as drawing 1 and drawing 2 attaches the same sign.
[0074] In the 1st operation gestalt, although it had M adjustable amplifiers 22–0 thru/or 22– (M–1) between the time-sharing filter bank circuit 10 and the beam control section 21, it is characterized by having replaced with this and inserting one adjustable amplifier 22 which has the control gain gk specified by the beam control section 21 between A/D converter 9 and the time-sharing filter bank circuit 10. Although the beam control section 21 needs the baseband signaling yk before gain control, and 0 (baseband signaling psik of drawing 2, 0) in the beam control processing by the M-CMA method here, this is calculable by doing the division of baseband signaling psik outputted from the time-sharing filter bank circuit 10 of drawing 4, and 0 on the control gain gk. Moreover, for this, instead, as a dashed line shows drawing 4, time-sharing separation may be carried out and the baseband signaling yk before gain control and 0 (baseband signaling psik of drawing 2, 0) may be taken out from the baseband signaling uk from

A/D converter 9.

[0075] According to the 1st modification constituted as mentioned above, in addition to the operation effectiveness in the 1st operation gestalt, the number of the adjustable amplifier 22 can be decreased substantially and this has the characteristic effectiveness that circuitry can be simplified more.

[0076] <Operation gestalt of ** 2nd> drawing 5 is the block diagram showing the configuration of the time—sharing filter bank circuit 10 and 20t of beam control circuits in the control device of the array antenna which is the 2nd operation gestalt concerning this invention, is the block diagram showing the TRF circuit 61–1 of drawing 5 thru/or the detailed internal configuration of 61– (M–1) (it names generically and a sign 61 is attached hereafter.), and attaches the same sign about the same thing as drawing 1 thru/or drawing 4, and drawing 10. The control unit of the array antenna of this 2nd operation gestalt The transversal filter circuit which replaces with drawing 1 concerning the 1st operation gestalt, and the beam control circuit 20 of drawing 2, and has the TDL (Tapped Delay Line; delay line with tap) circuit 70 (it is hereafter called a TRF circuit.) While having 61, it is characterized by having 21t of beam control circuits equipped with 21t of beam control sections which perform beam control of an ecad using the signal—processing M–CMA method between space—time which carries out the detail after—mentioned. Other configurations are the same as that of the 1st operation gestalt, and omit detail explanation here.

[0077] In drawing 5, baseband signaling psik outputted through the time-sharing filter bank circuit 10 from A/D converter 9 and m (m= 0, 1 and 2, --, M-1) While being inputted into the adjustable amplifier 72-0 in 21t of beam control sections, and the TRF circuit 61, the delay circuit 71-1 of two or more (L-1) individuals thru/or 71- (L-1) are inputted into the delay circuit 71-1 of the 1st step of the TDL circuit 70 which comes to carry out cascade connection. Above-mentioned baseband signaling psik and m are outputted to 21t of beam control sections, and an adder 73 through the delay circuit 71-1 of two or more (L-1) stages thru/or 71- (L-1), and adjustable amplifier 72- (L-1) while they are outputted to an adder 73 through the adjustable amplifier 72-0. In the TDL circuit 70, each delay circuit 71-1 thru/or 71- (L-1) delay for it and output only the predetermined time delay tau for the signal inputted, respectively. Here, although a time delay tau is preferably set as one half of 1 symbol time amount, it may be set, for example as less than [1 symbol time amount or it].

[0078] Delay signal bpk-1 of baseband signaling psik outputted from a delay circuit 71-1 and m=bpk is outputted to an adder 73 through the adjustable amplifier 72-1 while it is outputted to 21t of beam control sections. Moreover, delay signal bpk-2 of the baseband signaling bpk outputted from a delay circuit 71-2 are outputted to an adder 73 through the adjustable amplifier 72-2 while they are outputted to 21t of beam control sections. Furthermore, delay signal bpk-3 of the baseband signaling bpk outputted from a delay circuit 71-3 are outputted to an adder 73 through the adjustable amplifier 72-3 while they are outputted to 21t of beam control sections. Still more nearly similarly, delay signal bpk-L of the baseband signaling bpk outputted from delay circuit 71- (L-2) is outputted to an adder 73 through adjustable amplifier 72- (L-2) while it is outputted to 21t of beam control sections. The adjustable amplifier (or gain control machine) 72-0 thru/or 72- (L-1) amplify and (or gain control) output the signal inputted by the amplification degree w0 set up by 21t of beam control sections thru/or wL-1, respectively, and amplification degree (or gain) takes the value of ***** here. And an adder 73 adds delay signal bpk-1 thru/or bpk-L +1 of the baseband signaling bpk inputted and its two or more (L-1) individuals, and outputs the signal of an addition result to 21t of beam control sections as output signals yk and m (m= 0, 2 [1 and 2], --, M-1). In addition, an output signal yk and 0 are outputted also to a subtractor 24. Thus, by constituting, the TRF circuit 61 equipped with the TDL circuit 70, the adjustable amplifier 72-0 thru/or 72- (L-1), and an adder 73 is constituted. That is, each adjustable amplifier 22-0 thru/or 22- (M-1) in the 1st operation gestalt consists of the 2nd operation gestalt in the TRF circuit 61 of drawing 6.

[0079] On the other hand, the reference signal generator 23 generates the reference signal sigma which has predetermined constant value, and outputs it to a subtractor 24. A subtractor 24 subtracts an output signal yk and 0 from a reference signal sigma, and outputs the error (or

deflection) signal ek to 21t of beam control sections. The error signal ek into which 21t of beam control sections is inputted, and baseband signaling bkk, It is based on the delay signal bkk-1 thru/or yk-L +1, and the TRF circuit 61-0 thru/or the baseband signaling yk and m (m= 0, 2 [1 and 2], --, M-1) after passage of 61- (M-1). Only a predetermined shift amount is made to precess each variable phase-shifter 3-1 thru/or each phase shift control voltage vk and i (i= 1, 2, --, N) of 3-N by controlling the perturbation addition circuit 30 using the signal-processing M-CMA method between space-time. Make only a predetermined response shift amount precess each amount of phase shifts which corresponds by this, and the dip vector of the power of the error signal ek outputted from the subtractor 24 to each amount of phase shifts is calculated. So that the error signal ek concerned may serve as min based on the error signal ek outputted from a subtractor 24 based on the dip vector of the power of the calculated error signal ek Each phase shift control voltage vk and i corresponding to each amount of phase shifts for turning the main beam of an array antenna 100 in the predetermined direction and each adjustable amplifier 72-0 the amplification degree w0 of 72-(L-1) thru/or wL-1 are calculated. It is outputted and set as each variable phase-shifter 3-1 thru/or 3-N and each adjustable amplifier 72-0 thru/or 72-(L-1), respectively.

[0080] In the control device of the array antenna concerning the 2nd operation gestalt constituted as mentioned above, adaptation beam control of the 20t of the beam control circuits can be accurately carried out so that an error signal ek may serve as min, the main beam of an array antenna 100 may be turned in the direction of the wave of choice and null may be turned in the direction of an interference wave. Moreover, in-phase synthesis of the delay wave of the wave of choice produced in a multi-pass transmission line can be incorporated and carried out using the TRF circuit 61, and the signal-to-noise power ratio (S/N) in the wave of choice can be improved. Moreover, although a low noise amplifier 2-1 thru/or 2-N and a variable phase-shifter 3-1 thru/or 3-N need N individual corresponding to the element number N of an antenna element 1-1 thru/or 1-N with the 2nd operation gestalt, the number of each circuitry elements is one sufficient in the circuit after the synthetic vessel 4. Therefore, as compared with the conventional example, a hardware configuration is easy, and since there are few circuitry elements, there is little power consumption.

[0081] Subsequently, adaptation beam processing in which it uses with the 2nd operation gestalt is explained below. In the configuration of the adaptive array antenna concerning the 2nd operation gestalt, baseband signaling yk=yk (vk, 1, --, vk, N) can be expressed like above several 1 using a well-known equivalence low-pass model. This baseband signaling yk is inputted into the TRF circuit 61 which has the TDL circuit 70. In the TRF circuit 61, after weighting of the signal outputted from each tap of the TDL circuit 70 is carried out by the adjustable amplifier 72-0 thru/or 72- (L-1) with the amplification degree wk (i) which is a tap multiplier, respectively, it is added with an adder 73 and outputs the output signals yk and m (= it sets with zk.) shown below.

[0082]

[Equation 28]

$$z_{k}(v_{k,l},...v_{k,N}) = \sum_{i=0}^{L-1} w_{k}^{*}(i) bp_{k-i}(v_{k,l},..., v_{k,N})$$

[0083] Here, in order to perform blind control of a beam and null, minimization of the amplitude deflection of the output signal zk of the TRF circuit 61 is attained like the well-known CMA method. That is, it is [Equation 29] when the error of an output signal yk, and a 0=zk and a reference signal sigma is defined like a degree type. It becomes a requirement to satisfy the formula below ek=sigma p-|zk(vk, 1, --, vk, N) |p. However, sigma is the level of a reference signal and shows desired amplitude level.

[Equation 30]

0084

$$E\left[\frac{\partial e^{q}}{\partial v_{k,i}}\right] = 0$$
 ($i = 1, \dots, N$)

[0085] Here, p and q show the dimension of presumption of the CMA method, and in practice, the time of p=q=2 is called the CMA method and they are called Goddard's algorithm except it. By the CMA method, it cannot ask for several 30 partial differential by one above and several 28. Then, in this operation gestalt, make a variable phase-shifter 3-1 thru/or the control voltage vk of 3-N, 1, --, vk and N precess, each amount of phase shifts is made by this to precess like M-CMA concerning the 1st operation gestalt, and it asks. Moreover, it can ask for 31 above like the usual CMA method. Here, a multiplier update process is performed for an output signal zk as follows as zk=zk (vk (1), --, vk (N)).

[0086] The algorithm which looks for the solution with which 29 above is made into an error function and it is satisfied of 30 above and several 31 can be expressed like a degree type, if the principle of the well-known steepest descent method is applied.

[0087]

[Equation 32]

$$\mathbf{v_k} = \mathbf{v_k} - 1 - \mu \frac{\partial \mathbf{e_k^q}}{\partial \mathbf{v_{k,i}}} = \mathbf{v_k} - 1 + \mu \mathbf{e_k^q} - 1 |\mathbf{z_k}|^{p-2} \frac{\partial |\mathbf{z_k}|}{\partial \mathbf{v_{k,i}}}$$

[Equation 33]

$$\mathbf{w}_{k} = \mathbf{w}_{k-1} - \mu \frac{\partial \mathbf{e}_{k}^{q}}{\partial \mathbf{w}_{k}(\mathbf{i})} = \mathbf{w}_{k-1} + \mu \mathbf{e}_{k}^{q-1} |\mathbf{z}_{k}|^{p-2} \frac{\partial |\mathbf{z}_{k}|}{\partial \mathbf{w}_{k}^{*}(\mathbf{i})}$$

[0088] 32 above and several 33 are the formulas of the algorithm for satisfying 30 above and several 31, respectively. The partial-differential term in 32 above can be acquired using the approximation of a partial differential with 26 above. On the other hand, the partial-differential term in 31 above can be directly searched for by carrying out the partial differential of the both sides with 28 above. Therefore, 32 above and several 33 become a degree type, and perform convergence processing using the renewal type of a multiplier of a degree type.

[Equation 34] vk, i=vk -1, i+mu vekq-1|zk|p-2deltai|zk| (i= 1, --N),

[Equation 35] wk(i) =wk-1(i)+muwekq-1|zk|p-2 zk*yk (i= 0, --L-1),

[0090] However, [Equation 36] It is deltai|zk|=deltai|zk(vk, 1, --, vk and i, --, vk, N) |=|zk(vk1, --, vk, i+deltav, --, vk, N) |-|zk(vk, 1, --, vk and i, --, vk, N) |.

[0091] In 46 above, deltav is a very small term for a perturbation, and 34 above, and muv and muw in several 35 are the step sizes of the tap multiplier which are the control voltage of a phase shifter 3–1 thru/or 3–N, and the amplification degree of the adjustable amplifier 72–0 thru/or 72– (L-1), respectively. In order to carry out right convergence of the algorithm of the signal-processing M-CMA method between space-time concerning this operation gestalt, two kinds of this step size needs to satisfy the following conditions.

[0092]

[Equation 37] muw=muvdeltav -- here, the unit of deltav is a radian.

[0093] As explained above, according to this operation gestalt, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time-sharing filter bank circuit 10 which is a poliphase filter bank. Therefore, the A/D converter which can perform a very high-speed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy, so, circuitry — being

easy — time accuracy — and control of the main beam and control of null are made to accuracy as a beam formation direction.

[0094] <2nd modification> drawing 7 is the block diagram showing the time-sharing filter bank circuit 10 in the control device of the array antenna of the 2nd modification concerning this invention which is the modification of the 2nd operation gestalt, and the configuration of beam control circuit 20ta, and the same thing as drawing 5 and drawing 6 attaches the same sign. [0095] In the 2nd operation gestalt, although it had M TRF circuits 61-0 thru/or 61-(M-1)between the time-sharing filter bank circuit 10 and 21t of beam control sections, it is characterized by having replaced with this and inserting one TRF circuit 61 which has the weighting factor specified by 21t of beam control sections between A/D converter 9 and the time-sharing filter bank circuit 10. Although 21t of beam control sections needs the baseband signaling yk before gain control, and 0 (baseband signaling psik of drawing 5, 0) here in the beam control processing by the signal-processing M-CMA method between space-time, this is calculable by doing the division of baseband signaling psik outputted from the time-sharing filter bank circuit 10 of drawing 7, and 0 by the weighting multiplier. Moreover, for this, instead, as a dashed line shows drawing 7, time-sharing separation may be carried out and the baseband signaling yk before gain control and 0 (baseband signaling psik of drawing 7, 0) may be taken out from the baseband signaling uk from A/D converter 9.

[0096] According to the 2nd modification constituted as mentioned above, in addition to the operation effectiveness in the 2nd operation gestalt, the number of the TRF circuit 61 can be decreased substantially and this has the characteristic effectiveness that circuitry can be simplified more.

[0097] <Operation gestalt of ** 3rd> $\frac{1}{20}$ drawing 8 is the block diagram showing the configuration of the time-sharing filter bank circuit 10 and 20m of beam control circuits in the control device of the array antenna which is the 3rd operation gestalt concerning this invention, and attaches the same sign about the same thing as $\frac{1}{20}$ thru/or $\frac{1}{20}$ and $\frac{1}{20}$. The control device of the array antenna of this operation gestalt is characterized by having 20m of beam control circuits which have 21m of beam control sections.

[0098] 20m of beam control circuits is based on baseband signaling psik which is an output signal from A/D converter 9, and m (m= 0, 1 and 2, --, M-1) through a demodulator 7 and the timesharing filter bank circuit 10. The minimum an average of 2 multiplication which carries out the detail after-mentioned and which deformed (it is hereafter called the M-LMS method.) Use and only a predetermined shift amount is made to precess each amount of phase shifts of a variable phase-shifter 3-1 thru/or 3-N by controlling the perturbation addition circuit 30, respectively. The variation delta yk and m which calculated the variation delta yk and m before and behind the perturbation of the baseband signaling yk and m outputted from the adjustable amplifier 82-0 thru/or 82- (M-1) to each amount of phase shifts, and was calculated, Baseband signaling psik outputted through the time-sharing filter bank circuit 10 from A/D converter 9, and 0, The baseband signaling yk and m outputted from the adjustable amplifier 82, baseband signaling psik and the baseband signaling yk by which gain control was carried out with the adjustable amplifier 82 in 0, 0 and the sign distinction value dk (it is the output of the sign distinction machine 83.) of that Based on the error signal ek of a between, so that the root mean square of the error signal ek concerned may serve as min It is characterized by calculating each above-mentioned amount of phase shifts and the above-mentioned gain gk for turning the main beam of the abovementioned array antenna in the predetermined direction, and outputting to each variable phaseshifter 3−1 thru/or 3−N and the adjustable amplifier 82−0 thru/or 82− (M−1), respectively. [0099] 20m of beam control circuits is equipped with 21m of beam control sections, the adjustable amplifier 82−0 thru/or 82− (M−1), the sign distinction machine 83, and a subtractor 84, and they are constituted. baseband signaling psi into which each adjustable amplifier 82-0 thru/or 82- (M-1) are inputted here -- the baseband signaling yk and m by which amplified k and m on the control gain gk shown by the beam control section 81, and gain control was carried out -- 21m of beam control sections -- outputting -- moreover -- among those, baseband signaling yk and 0 are outputted to the sign distinction machine 83, a subtractor 84, and 21m of beam control sections. Subsequently, the sign distinction machine 83 calculates the sign distinction

value dk of the baseband signaling yk inputted, and outputs it to a subtractor 84 so that it may mention later. Furthermore, a subtractor 84 subtracts baseband signaling yk and 0 from the sign distinction value dk, and outputs the error signal ek of a subtraction result to the beam control section 81. And the beam control section 81 calculates the adjustable control voltage vk and i (i= 1, 2, --, N), and outputs it to a variable phase-shifter 3-1 thru/or 3-N, respectively while it calculates the control gain gk using the M-LMS method based on an error signal ek in baseband signaling psik inputted, 0 and yk and m, and a list and outputs it to the adjustable amplifier 82. [0100] In the predetermined training period before performing data transmission in this beam control circuit 80 only based on baseband signaling psik after A/D conversion, using the M-LMS method By making only a predetermined shift amount precess each variable phase-shifter 3-1 thru/or each phase shift control voltage vk and i to 3-N by controlling the perturbation addition circuit 30 The variation delta yk and m which calculated the variation delta yk and m before and behind the perturbation of the baseband signaling yk and m outputted from the adjustable amplifier 82 to each amount of phase shifts, and was calculated, Baseband signaling psik outputted through the time-sharing filter bank circuit 10 from A/D converter 9, and 0, The baseband signaling yk and m outputted from the adjustable amplifier 82-0 thru/or 82- (M-1), baseband signaling yk, 0 sign distinction values dk (it is the output of the sign distinction machine 83.) Based on baseband signaling yk and the error signal ek between 0, so that the root mean square of the error signal ek concerned may serve as min Each above-mentioned amount of phase shifts and the above-mentioned gain for turning the main beam of the above-mentioned array antenna in the predetermined direction are calculated, and it outputs to each variable phase-shifter 3-1 thru/or 3-N and the adjustable amplifier 82-0 thru/or 82- (M-1), respectively.

[0101] In the control device of the array antenna constituted as mentioned above, 20m of beam control circuits forms the main beam of an array antenna 100 in the predetermined direction accommodative so that the root mean square of the error signal ek generated with the subtractor 84 of 20m of beam control circuits may serve as min. Although a low noise amplifier 2–1 thru/or 2–N and a variable phase–shifter 3–1 thru/or 3–N need N individual corresponding to the element number N of an antenna element 1–1 thru/or 1–N in the control unit of the constituted array antenna, the number of each circuitry elements is one sufficient in the circuit after the synthetic vessel 4. Therefore, as compared with the conventional example shown in drawing 10, a hardware configuration is easy, and since there are few circuitry elements, there is little power consumption.

[0102] Subsequently, the control algorithm in 20m of beam control circuits is explained. First, the baseband signaling yk and m which is outputted from the adjustable amplifier 82-0 thru/or 82-(M-1) and by which gain control was carried out is expressed with a degree type.
[0103]

[Equation 38] yk, m=gkpsik, m [0104] Here, psik and m are the baseband signaling which was outputted through the time-sharing filter bank circuit 10 from A/D converter 9, and was expressed with complex, gk is the gain of the adjustable amplifier 82-0 thru/or 82- (M-1) expressed with the real number, and yk and m show each output signal of the adjustable amplifier 82-0 thru/or 82- (M-1) expressed with complex. At this time, an error signal ek is defined like a degree type.

[0105]

[Equation 39] ek=dk-yk, 0 [0106] Here, dk is an output signal which shows the sign distinction value from the sign distinction machine 83, and is calculated like a degree type. [0107]

[Equation 40] dk=sgn[Re(yk)]+j-sgn [Im (yk)]

[0108] Here, Re [-] is a function which shows the real number of an argument, and Im [-] is a function which shows the imaginary of an argument. Moreover, sgn [x] is a sign discriminant function and is defined as follows.

[0109]

[Equation 41] sgn[x]

= At the time of 1; $x \ge 0$ = it is [0110] at the time of -1; $x \le 0$. At this time, the gain of each

adjustable amplifier 82-0 thru/or 82- (M-1) is updated like a degree type.

[0111]

[Equation 42] gk=gk-1+muRe [psik, 0ek*]

[0112] Here, mu is called a step size parameter and is the suitable constant of 0< mu<1. Moreover, * shows a complex conjugate. On the other hand, the control voltage of variable-phase machine 3-i is updated like a degree type.

[0113]

[Equation 43] vk, i=vk −1, i+mu Re (ek*delta yk and i)

[0114] At this time, Variation delta yk and i is calculated like a degree type.

[0115]

[Equation 44] deltayk, i=yk, 0 (1 vk- 1, 1, --, vk- 1, i+deltav, --, vk- N)

- yk, 0 (1 vk- 1, 1, --, vk- 1, i, --, vk- N)

[0116] phase shift control voltage vk- of the time of day k-1 in case the 2nd term of the several 44 right-hand side does not add a perturbation electrical potential difference -- 1, 1, --, vk-1, i, −− and the baseband signaling yk with which gain control of [when impressing vk−1 and N to each variable phase-shifter 3-1 thru/or 3-N] was carried out are shown. moreover, the 1st term of the several 44 right-hand side -- phase shift control voltage vk- of time of day k-1 -- 1, 1, --, vk-1, i, --, vk-1, and N -- in addition, the baseband signaling yk with which gain control of [when applying perturbation electrical-potential-difference deltav to an excess] was carried out only to variable-phase-shifter 3-i corresponding to i-th antenna element 1-i, and 0 are shown. And delta yk(s) and i which are expressed with several 44 are the variation yk of these two signals, i.e., the baseband signaling before and behind perturbation, and the variation of 0. [0117] Therefore, based on the baseband signaling yk before and behind the calculated perturbation, the variation delta yk and i of 0, and an error signal ek, the phase shift control voltage vk and i is calculated and set up so that clearly from several 43. And the adjustable amplifier 82-0 thru/or the gain gk of 82- (M-1) are determined and set up so that from several 42, and the root mean square of an error signal ek may serve as min. Thus, by carrying out beam control, by using the pilot signal used by the preamble especially used by TDMA etc., CDMA, etc. as a request signal, the main beam of the array antenna concerned can be turned in the predetermined direction, and a subcarrier pair interference wave power ratio (CIR) turns a beam in the direction of a request wave, also when level is lower than an interference wave, and minus, i.e., a request signal, can form null in the direction of an interference wave.

[0118] In this operation gestalt, digital signal processing performs amplitude control to the output baseband signaling yk and m which minded the time-sharing filter bank circuit 10 from A/D converter 9, and by variable-phase-shifter control of a microwave band (RF band), since a phase-shifter input signal cannot be observed, the amount of updating of a multiplier is calculated by the perturbation. Moreover, by amplitude control, since the output baseband signaling yk and m is acquired as a digital signal, an amplitude presumption algorithm is obtained in several 42 format. Moreover, since the invented algorithm uses the same norm as the well-known LMS method of minimization of the mean square of an error signal ek, it is calling the invented algorithm the "M-LMS method."

[0119] the adaptive array realized in the DBF circuit since beam control was carried out using the M-LMS method according to this operation gestalt as explained above — the same — a beam and null — it can control and is — in addition, since RF band can perform beam shape **, there is an advantage that the cutback of circuit magnitude or cost is attained as compared with the conventional example. Therefore, a configuration is easy and there is little power consumption. Moreover, by using the pilot signal used by the preamble used by TDMA etc., CDMA, etc. as a request signal, a subcarrier pair interference wave power ratio (CIR) turns a beam in the direction of a request wave, also when level is lower than an interference wave, and minus, i.e., a request signal, can form null in the direction of an interference wave. Therefore, even if it is an inferior environment, adaptation actuation can be carried out to stability.

[0120] Moreover, according to this operation gestalt, the signal of two or more perturbation terms which the rate of the signal which should be processed is reduced and corresponds to each antenna element can be taken out to accuracy by using the time—sharing filter bank circuit

10 which is a poliphase filter bank. Therefore, the A/D converter which can perform a very high-speed sampling as compared with a bit rate is not needed, but since it becomes a low speed, timing adjustment of a sampling also becomes easy. so, circuitry — being easy — time accuracy — and control of the main beam and control of null are made to accuracy as a beam formation direction.

[0121] <3rd modification> drawing 9 is the block diagram showing the time-sharing filter bank circuit 10 in the control device of the array antenna of the 3rd modification concerning this invention which is the modification of the 3rd operation gestalt, and the configuration of beam control circuit 20ma, and the same thing as drawing 8 attaches the same sign.

[0122] In the 3rd operation gestalt, although it had the adjustable amplifier 82–0 thru/or 82– (M–1) between the time-sharing filter bank circuit 10 and 21m of beam control sections, it is characterized by having replaced with this and inserting one adjustable amplifier 82 which has the weighting factor specified by 21m of beam control sections between A/D converter 9 and the time-sharing filter bank circuit 10. Although 21m of beam control sections needs the baseband signaling yk before gain control, and 0 (baseband signaling psik of drawing 8, 0) in the beam control processing by the M–LMS method here, this is calculable by doing the division of baseband signaling psik outputted from the time-sharing filter bank circuit 10 of drawing 9, and 0 on the control gain gk. Moreover, for this, instead, as a dashed line shows drawing 9, time-sharing separation may be carried out and the baseband signaling yk before gain control and 0 (baseband signaling psik of drawing 9, 0) may be taken out from the baseband signaling uk from A/D converter 9.

[0123] According to the 3rd modification constituted as mentioned above, in addition to the operation effectiveness in the 3rd operation gestalt, the number of the adjustable amplifier 82 can be decreased substantially and this has the characteristic effectiveness that circuitry can be simplified more.

[0124] In the operation gestalt more than modification > besides <, although digital signal processing is performed in the subsequent circuit after carrying out A/D conversion of the baseband signaling using A/D converter 9, A/D converter 9 may not be inserted but signal processing may be analogically performed in a subsequent circuit.

[0125] In the above operation gestalt, although the perturbation addition circuit 30 consists of circuits where each beam control circuits 20, 20a, and 20t, 20ta, 20m, and 20ma are another, it may unify and constitute the function of the perturbation addition circuit 30 from software or hardware circuitry in each beam control circuits 20, 20a, and 20t, 20ta, 20m, and 20ma.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EXAMPLE

[Example] Furthermore, since this invention persons experimented in the interference oppression property of the adaptive array adapting a poliphase filter of the M-CMA method concerning the 1st operation gestalt by computer simulation, they explain the experiment approach and experimental result in full detail below.

[0127] It was premised on the transmitter-receiver configuration which applied differentially coherent detection to the wave detector, using a QPSK modulation technique as a modulation technique. Moreover, the transmission line applied the AWGN (Additive White Gaussian Noise) channel. An antenna is a linear array antenna of half-wave length spacing, and the element number was set to 4. moreover — if the direction of a transverse plane of a linear array antenna is made into 0 times — the wave of choice — the direction of –50 degrees to an interference wave — from the direction of 30 degrees — etc. — the environment which carries out incidence on level was assumed. Moreover, the multiplier of the M-CMA method was set as p=q=1, and it considered as the step size mu= 0.0001. The exaggerated sample carried out by 4 times the symbol rate for reduction of processing speed. Moreover, the initial state of an array antenna forms the beam in the direction of a transverse plane.

[0128] <u>Drawing 11</u> is as a result of [of the 1st operation gestalt] simulation, and is a graph which shows the directivity response pattern in the case of a four-element linear array antenna. The beam which has the about 12dB array factor of a theoretical limitation in the direction of the wave of choice is formed so that clearly from <u>drawing 11</u>. It turns out that deep null can be formed in the direction of an interference wave. However, when SNR is low, the location of null is shifted a little. Control concentrates on the direction which forms a beam and this is considered for sensibility to fall to null somewhat, when SNR is low.

[0129] <u>Drawing 12</u> is as a result of [of the 1st operation gestalt] simulation, and is a graph which shows the property of a bit error rate (BER) over the subcarrier/noise power ratio in the case of a four-element linear array antenna (CNR). In <u>drawing 12</u>, the property of the differentially coherent detection at the time of the four-element maximum ratio composition diversity reception in conditions without interference is shown as a theoretical value. Since the adaptive array using the M-CMA method not only turns a beam to the wave of choice, but can form sharp null in the direction of an interference wave, in all CNR conditions, it turns out that the outstanding property which carries out asymptotic to a theoretical value even at 1.5dB is acquired. It is thought that this 1.5dB degradation is based on the sensibility lowering to the null mentioned above.

[0130] As explained above, the poliphase filter was used as the effective implementation approach of the M-CMA method which enables adaptation beam control in the analog beam shape molding adaptive array in which small and low-pricing are possible. In the renewal type of a multiplier of the M-CMA method, the "perturbation term" and "a non-precessing term" of this time of day are theoretically needed. It uses that consider as the approach of acquiring this signal simply, and the time-sharing filter bank circuit 10 equipped with each filter bank which constitutes a poliphase filter outputs the completely same wave as this time of day. That is, different perturbation for every filter or a non-precessing term is outputted to each poliphase filter in the time-sharing filter bank circuit 10 by distributing the signal which does not receive a

perturbation with a carrier beam signal. [0131]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the block diagram showing the configuration of the control device of the array antenna which is the 1st operation gestalt concerning this invention.

[Drawing 2] It is the block diagram showing the detailed internal configuration of the time-sharing filter bank circuit 10 of drawing 1, the beam control circuit 20, and the perturbation addition circuit 30.

[Drawing 3] It is the block diagram showing the example of the time-sharing filter bank circuit 10 of drawing 2 of operation.

[Drawing 4] It is the block diagram showing the configuration of the time-sharing filter bank circuit 10 in the control device of the array antenna of the 1st modification concerning this invention which is the modification of the 1st operation gestalt, and beam control circuit 20a. [Drawing 5] It is the block diagram showing the configuration of the time-sharing filter bank circuit 10 and 20t of beam control circuits in the control device of the array antenna which is the 2nd operation gestalt concerning this invention.

[Drawing 6] It is the block diagram showing the detailed internal configuration of the TRF circuit 61 of drawing 5.

[Drawing 7] It is the block diagram showing the time-sharing filter bank circuit 10 in the control device of the array antenna of the 2nd modification concerning this invention which is the modification of the 2nd operation gestalt, and the configuration of beam control circuit 20ta. [Drawing 8] It is the block diagram showing the configuration of the time-sharing filter bank circuit 10 and 20m of beam control circuits in the control device of the array antenna which is the 3rd operation gestalt concerning this invention.

[Drawing 9] It is the block diagram showing the time-sharing filter bank circuit 10 in the control device of the array antenna of the 3rd modification concerning this invention which is the modification of the 3rd operation gestalt, and the configuration of beam control circuit 20ma. [Drawing 10] It is the block diagram showing the configuration of the control device of the array antenna of the conventional example.

[Drawing 11] It is as a result of [of the 1st operation gestalt] simulation, and is the graph which shows the directivity response pattern in the case of a four-element linear array antenna. [Drawing 12] It is as a result of [of the 1st operation gestalt] simulation, and is the graph which shows the property of a bit error rate (BER) over the subcarrier/noise power ratio in the case of a four-element linear array antenna (CNR).

[Description of Notations]

- 1-1 thru/or 1-N -- Antenna element
- 2-1 thru/or 2-N -- Low noise amplifier (LNA),
- 3-1 thru/or 3-N -- Variable phase-shifter,
- 4 -- Synthetic vessel,
- 5 -- Down converter,
- 6 -- Band-pass filter (BPF).
- 7 -- Demodulator.
- 8 -- Low pass filter (LPF),

```
9 -- A/D converter
10 -- Time-sharing filter bank circuit,
11-1 thru/or 11 -(M-1)-- Delay circuit,
12-0 thru/or 12 -(M-1)-- Down sampler,
13-0 thru/or 13 -(M-1)-- Digital filter,
14-0 thru/or 14 -(M-1)-- Down sampler,
20, 20a, 20t, 20ta, 20m, 20ma -- Beam control circuit,
21, 21t, 21m -- Beam control section,
22-0 thru/or 22 -(M-1)-- Adjustable amplifier,
23 - Reference signal generator,
24 -- Subtractor,
30 - Perturbation addition circuit,
31 -- Perturbation addition voltage generator,
32 -- Switch controller,
33-1 thru/or 33-N -- Adder,
34-1 thru/or 34-N -- Switch,
61, 61-0, or 61 -(M-1)-- Transversal filter circuit (TRF circuit),
70 -- TDL circuit,
71-1 thru/or 71 -(L-1)-- Delay circuit,
72-0 thru/or 72 -(L-1)-- Adjustable amplifier,
73 -- Adder,
100 -- Array antenna.
```