第一章 数制和码制

主要要求:

- □ 掌握几种常用的数制及其转换。
- 了解二进制算数运算。
- 掌握几种常用的编码。

一、数字电路与数字信号

电子电路分类

模拟电路 数字电路 传递、处理模拟 信号的电子电路

传递、处理数字

信号的电子电路

模拟信号

时间上和幅度上都

连续变化的信号

数字信号

时间上和幅度上都

断续变化的信号

二、数字电路的特点

研究对象

输出信号与输入信号之间的逻辑关系

分析工具

逻辑代数

信 号

只有高电平和低电平两个取值

电子器件工作状态

导通(开)、截止(关)

主要优点

便于高度集成化、工作可靠性高、 抗干扰能力强和保密性好等

1.1 数制和码制

主要要求:

- 掌握十进制数和二进制数的表示及其相互转换。
- 了解八进制和十六进制。
- 理解 BCD 码的含义,掌握 8421BCD 码,

了解其他常用 BCD 码。

一、数制计数的方法

(一) 十进制(Decimal)

数码: 0、1、2、3、4、5、6、7、8、9

进位规律:逢十进一,借一当十

- 10 称十进制的权
- 10 称为基数
 - 0~9十个数码称系数

十进制数可表示为各位加权系数之和,称为按权展开式

$$(3176.54)_{10} = 3 \times 10^{3} + 1 \times 10^{2} + 7 \times 10^{1} + 6 \times 10^{0} + 5 \times 10^{-1} + 4 \times 10^{-2}$$

(二) 二进制(Binary)

数码: 0、1

进位规律:逢二进一,借一当二

按权展开式表示

例如
$$0+1=1$$
 $1+1=10$

$$(1011.11)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^{1} + 1 \times 2^{1$$

权: 2^i 基数: 2 系数: 0、1

将按权展开式按照十进制规律相加,即得对应十进制数。

$$(1011.11)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

= 8 + 0 + 2 + 1 + 0.5 + 0.25 = 11.75

$$(1011.11)_2 = (11.75)_{10}$$

(三) 八进制和十六进制

进制	八进制 (Octal)	十六进制 (Hexadecimal)			
数的表示	(xxx) ₈ 或(xxx) ₀	$(xxx)_{16}$ 或 $(xxx)_{H}$			
计数规律	逢八进一,借一当八	逢十六进一,借一当十六			
基数	8	16			
权	8^i	16^i			
数码	0 ~ 7	0~9, A, B, C, D, E, F			

例如(3BE.C4)₁₆ = $3 \times 16^2 + 11 \times 16^1 + 14 \times 16^0 + 12 \times 16^{-1} + 4 \times 16^{-2}$ = 768 + 176 + 14 + 0.75 + 0.015625= $(958.765625)_{10}$

二、数制转换

一十进制与非十进制间的转换

十进制 → 非十进制

非十进制 十进制

- 非十进制间的转换

二进制一八、十六进制

八、十六进制 ― 二进制

不同进制数的对照表

十进制数	二进制	八进制	十六进制
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

1. 各种数制转换成十进制 按权展开求和

2. 十进制转换为二进制

整数和小数分别转换

整数部分:除2取余法

小数部分:乘2取整法

☀ [例] 将十进制数 (26.375)₁₀ 转换成二进制数

一直除到商为0为止

 $(26.375)_{10} = (11010.011)_{2}$

3. 二进制与八进制间的相互转换

■ 二进制→八进制

从小数点开始,整数部分向左 (小数部分向右) 三位一组,最后不 足三位的加 0 补足三位,再按顺序 写出各组对应的八进制数。

*
$$(11100101.11101011)_2 = (?)_8$$

0 11100101.11101011 0

■ 八进制→二进制

每位八进制数用三位二进制 数代替,再按原顺序排列。

$$(745.361)_8 = (111100101.011110001)_2$$

4. 二进制和十六进制间的相互转换

□ 二进制→十六进制:

从小数点开始,整数部分向左(小数部分向右)四位一组, 最后不足四位的加 0 补足四位, 再按顺序写出各组对应的十六进 制数。

* $(100111111011.111011)_2 = (?)_{16}$

0100111110111.1111011100

 $(10011111011.111011)_2 = (4FB.EC)_{16}$

□ 十六进制→二进制:

每位十六进制数用四位二进制数代替,再按原顺序排列。

 $(3BE5.97D)_{16} = (111011111100101.1001011111101)_2$

三数值数

符号 (+/-) 数码化

最高位: "1" 表示 "-"

(一) 机器数

(二) 带符号二进制数的代码表示

1. 负数: 尾数为真值数值部分按位取反正数: 尾数部分与真值形式相同

2.
$$X_1 = +4$$
 $[X_1]_{\cancel{\boxtimes}} = 00000100$ $X_2 = -4$ $[X_2]_{\cancel{\boxtimes}} = 11111011$

3. 补码[X]_{补:} 符号位 + 尾数部分

正数: 尾数部分与真值同即 $[X]_{h} = [X]_{E}$

负数: 尾数为真值数值部分按位取反加1

即 $[X]_{}$ = $[X]_{}$ + 1

补码的性质:

用补码进行运算时,两数补码之和等于 两数和之补码,即

$$[X_1]_{\not \nmid h} + [X_2]_{\not \nmid h} = \{X_1 + X_2\}_{\not \nmid h}$$

(三)、带符号数的运算

正数:原码=反码=补码

按位取反 按位取反加1 负数: 原码 ← → → 反码 原码 ← → →

例:利用二进制补码运算求(107)10-(79)10的值。

解:
$$(107)_{10} = (1101011)_2$$
 $[107]_{3/2} = (0 1101011)_2$

$$(-79)_{10} = (-1001111)_2$$
 $[-79]_{3} = (10110001)_2$

$$[107-79]_{\frac{1}{1}} = [107]_{\frac{1}{1}} + [-79]_{\frac{1}{1}} = (01101011)_2 + (10110001)_2$$

$$= (0\ 0011100)_2$$

$$+$$
 10110001

$$107-79 = (00011100)_{\uparrow \downarrow} = (00011100)_{ff}$$

= (+28)₁₀

自动丢弃

四、二进制代码

将若干个二进制数码 0 和 1 按一定规则排列起来表示某种特定含义的代码称为二进制代码,简称二进制码。

用数码的特定组合表示特定信息的过程称编码

常用二进制代码

自然二进制码 二 - 十进制码 格雷码

奇偶检验码

ASCII 码

(美国信息交换标准代码)

(一) 自然二进制码

按自然数顺序排 列的二进制码

(二) 二-十进制代码

表示十进制数 0~9十个数码的二进制代码

(又称 BCD 码 即 Binary Coded Decimal)

4位二进制码有 16 种组合,表示 0~9十个数可有多种方案,所以 BCD 码有多种。

常用二 - 十进制代码表

比 8421BCD 码多余 3

十进		有	权	1	无权码
制数	8421码	5421 码	2421 (A)	2421 (B)	余3码
0	0000	0000	0000	0000	0011
1	0001	0001	0001	0001	0100
2	0010	0010	0010	0010	0101
3	0011	0011	0011	0011	0110
4	0100	0100	0100	0100	0111
5	0101	1000	0101	1011	1000
6	0110	1001	0110	1100	1001
7	0111	1010	0111	1101	1010
8	1000	1011	1110	1110	1011
9	1001	1100	1111	1111	1100

权为8、4、2取四位自然二进制数的前10种组合, 去掉后6种组合1010~1111。

* 用 BCD 码表示十进制数举例:

$$(36)_{10} = (00110110)_{8421BCD}$$
 $(4.79)_{10} = (0100. \ 011111001)_{8421BCD}$
 $(010100000)_{8421BCD} = (50)_{10}$

* 注意区别 BCD 码与数制:

$$(150)_{10} = ()_{8421BCD}$$

$$= ()_2 = ()_8 = ()_{16}$$

$$(150)_{10} = (000101010000)_{8421BCD}$$

$$= (10010110)_2 = (226)_8 = (96)_{16}$$

(三) 可靠性代码

■ 格雷码(Gray 码,又称循环码) 典型格雷码构成规则:

最低位以 0110 为循环节

次低位以 00111100 为循环节

第三位以 0000111111110000 为循环节

• • • • • •

特点:

相邻项或对称项只有一位不同。

0	0	0	0
0	0	0	1
0	0	1	1
0	0	1	0
0	1	1	0
0	1	1	1
0	1	0	1
0	1	0	0
1	1	0	0
1	1	0	1
1	1	1	1
1	1	1	0
1	0	1	0
1	0	1	1
1	0	0	1
1	Λ	•	^

十进制数	自然二进制码			格雷码				
	B_3	\mathbf{B}_2	\mathbf{B}_1	B_0	G_3	G_2	G_1	G_0
0	0	0	0	0	O	O	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	O	1	0
4	0	1	0	0	O	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

格雷码与自然二进制码之间的转换

①自然二进制码 — 格雷码

先将二进制码最左端补**0**,然后将二进制码由 左向右连续将两位相邻位异或,所得结果即为格 雷码。

②格雷码 ——→自然二进制码

先将格雷码的最高位直接抄下,做为二进制 数的最高位,然后将二进制数的最高位与格雷码 的次高位异或,得到二进制数的次高位,再将二 进制数的次高位与格雷码的下一位异或,得二进 制数的下一位,如此一直进行下去,直到最后。 ■ 奇偶校验码

组成 {信息码:需要传送的信息本身。 1位校验位:取值为0或1,以使整个代码中"1"的个数为奇数或偶数。

使"1"的个数为奇数的称奇校验,为偶数的称偶校验。

8421 奇偶校验码

十进制数	8421 奇 校	验码	8421 偶校验码		
1 20193	信息码	校验码	信息码	校验码	
0	0000	1	0000	0	
1	0001	0	0001	1	
2	0010	0	0010	1	
3	0011	1	0011	0	
4	0100	0	0100	1	
5	0101	1	0101	0	
6	0110	1	0110	0	
7	0111	0	0111	1	
8	1000	0	1000	1	
9	1001	1	1001	0	

作业

题 1.2(2)(4)、1.4(2)(4)、1.5(2)(4)、

1.6 (2) (4), **1.7** (2) (4), **1.9** (2) (4),

1.15 (4) (8)

补充题:

将下列数码作为自然二进制码和8421BCD码时,分别求出相应的十进制数。

① 10010111 ② 10001001011