什么是ULPI协议?

ULPI协议的全称是UTMI+Low Pin Interface。从名字上就可以看出ULPI是UTMI的Low Pin版本。UTMI(USB2.0 Transceiver Macrocell Interface)是一种用于USB controller和USB PHY通信的协议。相对于ULPI,UTMI有更多的控制信号,支持8bit/16bit 数据接口。

• UTMI 接口信号

• ULPI 接口信号

信号定义

SIGNAL	DIRECTION	DESCRIPTION
CLK	I/O	时钟输入,60MHz

SIGNAL	DIRECTION	DESCRIPTION			
DATA[7:0]	I/O	8-bit双向数据总线			
DIR	OUT	控制数据总线方向,0 => LINK到PHY, 1 => PHY到LINK			
STP	IN	Stop信号,用于Stop PHY的输出,获取总线控制权,为1时有效			
NXT	OUT	当LINK向PHY发送数据时,NXT为1表示当前数据已经被PHY所接受。当PHY向LINK发送数据时,NXT为1表示PHY有新的数据在总 线上			

时序

Power On Reset (POR)
对于使用ULPI协议的PHY芯片而言, POR时序尤为重要, POR时序不满足会直接导致PHY芯片无法Lock PLL, 不能输出稳定的60MHz CLK。

以下是USB3320的POR时序:

• DIR信号获取Bus控制权

- 发送和接收时序图 注意以下几点
 - 数据和控制信号都是在上升沿采样

• 由于数据的收发不是分开的,发送数据方需要考虑output delay,并保证数据在下一个clk的上升沿采样时满足setup time和hold time

Figure 7 – ULPI timing diagram

ttps://blog.csdn.net/huangkangving

Parameter	Symbol	Min	Max	Units					
Output clock									
Setup time (control in, 8-bit data in)	Tsc, Tsp		6.0	ns					
Hold time (control in, 8-bit data in)	THC, THD	0.0		ns					
Output delay (control out, 8-bit data out)	TDC, TDD		9.0	ns					
Setup time (4-bit data in) (optional)	TSDD		3.0	ns					
Hold time (4-bit data in) (optional)	THDD	-0.8		ns					
Output delay (4-bit data out) (optional)	TDDD		4.0	ns					
Input clock (optional)									
Setup time (control in, 8-bit data in)	Tsc, Tsp		3.0	ns					
Hold time (control in, 8-bit data in)	THC, THD	1.5		ns					
Output delay (control out, 8-bit data out)	TDC, TDD		6.0	ns					
Setup time (4-bit data in)	TSDD		2.5	ns					
Hold time (4-bit data in)	THDD	0.8		ns					
Output delay (4-bit data out)	TDDD		3.5	ns					

Table 5 – ULPI interface timing