Funkcije

1 Funkcije

- Preslikavanje ili funkcija f skupa A u skup B u oznaci $f:A\to B$ je relacija $f\subset A\times B$ za koju vrijedi da je svaki elemenat skupa A u relaciji sa tačno jednim elementom skupa B Tačnije $(\forall x\in A)(\exists!y\in B)(x,y)\in f$
- Umjesto $(x,y) \in f$ može se pisati y = f(x) te se za x kaže da je **orginal**, a y je **slika** funkcije
- \bullet Skup A je **domen** funkcije, a skup B je **kodomen** funkcije

Primjer: Neka je skup $A = \{x \in \mathbb{N} | x \leq 3\}$ i skup $B = \{a, b, c\}$ onda za neku relaciju $\rho = \{(1, a), (2, b), (3, a)\}$ možemo reći da je funkcija jer postoji relacija za svaki elemenat iz A sa nekim elementom iz B. Ovdje, A je domen, dok je B kodomen.

$$f = \left(\begin{array}{ccc} 1 & 2 & 3 \\ a & b & a \end{array}\right)$$

Npr. $\rho = \{(1, a), (2, b), (3, a), (1, b)\}$ nije funkcija jer elemenat 1 ima relaciju sa više od jednog elementa iz skupa B.

Za naredne primjere definisat će se skup nenegativnih realnih brojeva $\mathbb{R}^+ = \{x | x \in \mathbb{R} \land x \geq 0\}$. Analogno tome će se definisati i skup nepozitivnih realnih brojeva $\mathbb{R}^- = \{x | x \in \mathbb{R} \land x \leq 0\}$.

Primjer: Funkcija $f: \mathbb{R}^+ \to \mathbb{R}^+$ $f(x) = \sqrt{x}$ je funkcija koja preslikava skup \mathbb{R}^+ u \mathbb{R}^+ tako da $\forall x \in \mathbb{R}^+$ postoji tačno jedno preslikavanje u \mathbb{R}^+ . Tako je \mathbb{R}^+ domen, a \mathbb{R}^+ kodomen.

Figure 1: Grafikon funkcije $f: \mathbb{R}^+ \to \mathbb{R}^+$ $f(x) = \sqrt{x}$

Primjer: $f: \mathbb{Z} \to \mathbb{R}$ $f(x) = \sqrt{x}$ nije funkcija jer ne postoji korjen za negativni broj u \mathbb{R} .

2 Inverzne funkcije

Inverzna funkcija funkcija funkcija oznake f^{-1} za koju vrijedi $f^{-1}(f(x)) = x$

Primjer: Pronaći inverznu funkciju funkcije f(x) = 2x + 3

$$f^{-1}(f(x)) = x \implies f^{-1}(2x+3) = x$$
 uvede se smjena: $a = 2x + 3 \implies x = \frac{a-3}{2}$
$$f^{-1}(a) = \frac{a-3}{2} \implies f^{-1}(x) = \frac{x-3}{2}$$

Primjer: Pronaći inverznu funkciju funkcije: $f(x) = \frac{4x+2}{-2x-5}$

$$f^{-1}(f(x)) = x \implies f^{-1}(\frac{4x+2}{-2x-5}) = x$$
 uvodi se smjena:
$$t = \frac{4x+2}{-2x-5} \implies 4x+2 = (-2x-5)t$$

$$x = \frac{-5t-2}{4+2t}$$

$$f^{-1}(t) = \frac{-5t-2}{4+2t} \implies f^{-1}(x) = \frac{-5x-2}{4+2x}$$

Nemaju sve funkcije inverznu funkciju. Npr. $f(x)=x^2$ je jedan takav primjer. Za takvu funkciju se može reći da ima dvije inverzne funkcije $f_1(x)=-\sqrt{x}$ i $f_2(x)=\sqrt{x}$

Lijevo: $f(x) = x^2$

Desno: $f_1(x)$ (plava), $f_2(x)$ (crvena)

3 Kompozicija funkcija

• Neka su date dvije funkcije f i g. Funkcija $h = f \circ g$ je **kompozicija (ili produkt)** funkcija f i g, i vrijedi h(x) = f(g(x)).

2

- Ukoliko je $f:X\to Y$ i $g:Y\to Z$ onda za $h=f\circ g$ vrijedi $h:X\to Z$
- Kompozicija više funkcija je $f \circ g \circ h = f(g(h(x)))$

Primjer: f(x) = 5x - 2, g(x) = 2x + 5 $f \circ g = f(g(x)) = f(2x + 5) = 5(2x + 5) - 2 = 10x + 23$

Primjer: f(x) = 5x - 2, g(x) = 2x + 5 $g \circ f = g(f(x)) = g(5x - 2) = 2(5x - 2) + 5 = 10x + 1$

4 Ponavljanje

- 1. Definisati pojam funkcije.
- 2. Definisati pojam orginala i slike funkcije.
- 3. Definisati pojmove domen i kodomen funkcije.
- 4. Definisati inverznu funkciju.
- 5. Definisati kompoziciju funkcija.
- 6. Označiti da li su sljedeće relacije funkcije:

•

- 7. Pronaći inverzne funkcija:
- 8. pronaci kompoziciju funkcija
- 9. kombinacija kompozicije i inverzne