S5 TOPICAL BREEZER 2023

TOPIC; PARTICULATE NATURE OF MATTER

DATE; 9th MARCH 2023

NA	AMECOMBN	COMBN	
INS	INSTRUCTION; Attempt all questions		
1.	(a) Describe how in a mass spectrometer the ions are;		
(i) f	formed		
		•••••	
(ii)) accelerated		
	i) separated		
		••••••	
(iv)) detected		

KIBUGO Page 1 of 7

b) State two advantages and one disadvantage of using mass spectrometer		
Advantages		
Disadvantage		
c) State one use of a mass spectromet	er to a chemist.	
2. (a) Bromine has two isotopes <i>Br</i> -spectrum of bromine shows peaks (a)Write the formula(e) of the ic		
Peak value	Formula of ion	
158		
160		
162		

KIBUGO Page 2 of 7

(b)	•		n of the isotopes in	
(c) Ske	tch a mass	spectrum for bro	mine using the abov	ve information.
	•	•	of magnesium con	•
wit	th mass-ch	large ratios and re	lative intensities sl	now below.
m/z		24	25	26
Relative intensit		1	0.127	0.139
miensii	7			
(i)	Explain wh	y magnesium gives	three peaks in its	spectrum.

KIBUGO Page **3** of **7**

(ii)	(ii) Use the information in the table to calculate an accurate value for the relative atomic mass of magnesium.
	The figure below shows a mass spectrum for chlorine.
	100 75 50 25 1sotopes
Detern	nine the relative atomic mass of chlorine

KIBUGO Page 4 of 7

5. The figure below shows the mass spectrum of lead. The heights of the peaks and the mass numbers of the isotopes are shown on the figure.

(a) Calculate the relative atomic mass of lead.

	• • • • • • • • • • • • • • • • • • • •
	······································
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	·····
(b) Explain why the peaks have different heights.	
(b) Explain why the peaks have different heights.	• • • • • • • • • • • • • • • • • • • •
(b) Explain why the peaks have different heights.	• • • • • • • • • • • • • • • • • • • •
(b) Explain why the peaks have different heights.	············

KIBUGO Page 5 of 7

6. (a) State Graham's law of gaseous diffusion.	(1mark)	
(b) Two pieces of cotton wool were each soaked separately in concentrated ammonia solution and concentrated hydrochloric acid respectively and simultaneously inserted into opposite ends of a horizontal wide glass tube. After a short time a white ring was across the tube. If the distance between the inner surfaces of the cotton wool plugs is 50cm. (i) Name the white ring		
(iii) Write the equation leading to formation of	the white ring.	
(iii) Determine how far from the ammonia plug the	white ring is	
formed.		

KIBUGO Page 6 of 7

sar	A gas Q diffuses 4 times as rapidly as sulphur dioxide under the ne conditions. If the density of sulphur dioxide under the same additions of temperature and pressure is, calculate the density of
sec 25	50 cm ³ of an alkene diffuse through a porous medium in 10 conds and 716 cm ³ of oxygen diffuse through the same medium in seconds under the same conditions. Calculate the molecular mass the alkene and deduce its structural formula.
	END.

WELCOME TO CHEMISTRY CLASS 2023.

KIBUGO Page **7** of **7**