Seum

1.
$$\sin x$$
, $0 \le x \le \frac{\pi}{2}$

1. $\sin x$, $0 \le x \le \frac{\pi}{2}$

1. $\sin x$, $0 \le x \le \frac{\pi}{2}$

1. $\sin x$, $\cos x = \frac{\pi}{2}$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

2. $\sin x = 2 \le x \le \pi$

3. $\sin x = 2 \le x \le \pi$

4. $\sin x = 2 \le x \le \pi$

4. $\sin x = 2 \le x \le \pi$

5. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

6. $\sin x = 2 \le x \le \pi$

7. $\sin x = 2 \le x \le \pi$

8. $\sin x = 2 \le x \le \pi$

8. $\sin x = 2 \le x \le \pi$

8. $\sin x = 2 \le x \le \pi$

8. $\sin x = 2 \le x \le \pi$

8. $\sin x = 2 \le x \le \pi$

9. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2 \le x \le \pi$

1. $\sin x = 2$

 $f(x) = \frac{1}{2} + \frac{1}{11} + \frac{2}{11} \sum_{l=1/4}^{l} \frac{1}{l+1/2} \cos \lambda mz + \frac{2}{11} \left(\sum_{l=1/4}^{l} \frac{1}{l+1/2} + \frac{2}{11} \right) \sin \lambda mz + \sum_{l=1/4}^{l} \left(\frac{1}{l+1/2} \right) \sin \lambda mz + \sum_{l=1/4}^{l} \left(\frac{1}{l+1$

it sails to converge to sta)

2.
$$A(w) = \frac{1}{\pi} \int_{0}^{\pi} \frac{3}{3} v^{2} \cos(w) dv$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{3}{3} v^{2} \cos(w) dv$$

$$= \frac{1}{\pi} \left(\frac{3}{2} v^{2} \sin(w) \right)^{2} - \frac{b}{w} \int_{0}^{\pi} \sin(w) dv$$

$$= \frac{1}{\pi} \left(\frac{3}{2} v^{2} \sin(w) + \frac{12 \cos(2w)}{w^{2}} - \frac{b}{w^{3}} \sin(w) \right)$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{3}{2} v^{2} \sin(w) dv$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{3}{2} v^{2} \sin(w) dv$$

$$= \frac{1}{\pi} \left(\frac{-3}{2} v^{2} \cos(w) \right)^{2} + \frac{b}{w} \int_{0}^{\pi} v \cos(w) dv$$

$$= \frac{1}{\pi} \left(\frac{-12 \cos(2w)}{w} + \frac{12 \sin(2w)}{w^{2}} + \frac{6 \cos(2w)}{w^{3}} - \frac{b}{w^{3}} \right)$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{12 \sin(2w)}{w} + \frac{12 \cos(2w)}{w^{2}} - \frac{6 \sin(2w)}{w^{3}} \right) \cos(w)$$

$$+ \left(\frac{-12 \cos(2w)}{w} + \frac{12 \sin(2w)}{w^{2}} + \frac{6 \cos(2w)}{w^{3}} - \frac{6}{w^{3}} \right) \sin(w) \right) dw$$

This Sails to converge when 2=2.