# Catalytic Transformation of Methane over In-Loaded ZSM-5 Zeolite in the Presence of Ethene

Toshihide Baba,\*,† Yoshimune Abe,‡ Kenji Nomoto,‡ Koji Inazu,† Tsuneo Echizen,† Akio Ishikawa,† and Kazuhito Murai†

Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-14 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, and Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Received: September 25, 2004; In Final Form: December 5, 2004

Methane is shown to react with ethene over In-loaded ZSM-5 to higher hydrocarbons such as propene and toluene at around 673 K. Such methane conversion is not catalyzed by proton-exchanged ZSM-5 (H–ZSM-5) under the same conditions, only C<sub>2</sub>H<sub>4</sub> being converted to higher hydrocarbons. By using <sup>13</sup>C-labeled methane (<sup>13</sup>CH<sub>4</sub>) as a reactant, the reaction paths for the formation of propene, benzene and toluene were examined. <sup>13</sup>C-labeled propene (<sup>13</sup>CC<sub>2</sub>H<sub>6</sub>) is formed by the reaction of <sup>13</sup>CH<sub>4</sub> with C<sub>2</sub>H<sub>4</sub>. The lack of <sup>13</sup>C-labeled benzene revealed that propene is not transformed to benzene, which instead originates entirely from C<sub>2</sub>H<sub>4</sub>. The <sup>13</sup>C atom is inserted both into the methyl group and benzene ring in the toluene formed. This indicates that toluene is formed by two reaction paths; the reaction of <sup>13</sup>CC<sub>2</sub>H<sub>6</sub> with butenes formed by the dimerization of C<sub>2</sub>H<sub>4</sub> and the reaction of benzene with <sup>13</sup>CH<sub>4</sub>. The existence of the latter path was proved by the direct reaction of <sup>13</sup>CH<sub>4</sub> with benzene. The reaction of methane with benzene was also carried out in a continuous flow system over In-loaded ZSM-5. The reaction afforded 7.6% and 0.9% yields of toluene and xylenes, respectively, at 623 K.

#### Introduction

The heterolytic dissociation of hydrogen on Ag<sup>+</sup>-exchanged zeolites such as Ag-Y and Ag-A has been shown unequivocally by proton magic angle spinning nuclear magnetic resonance (<sup>1</sup>H MAS NMR).<sup>1,2</sup> Thus, the exposure of Ag<sup>+</sup>-exchanged zeolites to hydrogen leads to the formation of acidic protons and silver hydride species (Ag-H). The amount of acidic protons and silver hydride species are reversibly changed with hydrogen pressure. The process may be expressed as follows

$$ZO^{-}Ag^{+} + H_{2} \rightleftharpoons ZO-H + Ag-H$$
 (1)

where  $ZO^-$  is the zeolite lattice and ZO-H represents acidic OH groups. The Ag-H may actually exist as cationic silver clusters  $(Ag_n$ -H).<sup>1,2</sup>

We have also reported that  $CH_4$  is activated on  $Ag^+$ -exchanged zeolites such as Ag-Y. Thus, the formation of Ag-H upon exposure of Ag-Y to  $CH_4$  at 423 K has been confirmed by  $^1H$  MAS NMR. This result suggests that  $Ag^+$  cations cause the heterolytic dissociation of the C-H bond of  $CH_4$ , and that Ag-H and methyl cation-like species  $(CH_3^{\delta+})$  are formed over  $Ag^+$ -exchanged zeolites by the following reaction:

$$ZO^{-}Ag^{+} + CH_{4} \rightarrow ZO^{\delta -}CH_{3}^{\delta +} + Ag-H$$
 (2)

Thus, if  $C_2H_4$  coexists with  $CH_4$  in the reaction system,  $CH_3^{\delta+}$  should react with  $C_2H_4$  to form  $C_3H_6$ , as follows:

$$ZO^{\delta-}CH_3^{\delta+} + CH_2 = CH_2 \rightarrow ZO-H + CH_3 - CH = CH_2$$
 (3)

We have reported that the transformation of  $CH_4$  to  $C_3H_6$  in the initial stage of the transformation of  $CH_4$  in the presence of  $C_2H_4$ .<sup>3,4</sup> This is proven by employing  $^{13}C$ -labeled methane  $(^{13}CH_4)$  as the reactant over  $Ag^+$ -exchanged zeolites. In this reaction, the formation of singly  $^{13}C$ -labeled propene  $(^{13}CC_2H_6)$  and hydrogen progressed selectively, with the latter explainable by the reaction of Ag-H with acidic protons (ZO-H) formed by reaction 3 to regenerate  $Ag^+$  cations, as follows.

$$ZO-H + Ag-H \rightarrow ZO^{-}Ag^{+} + H_{2}$$
 (4)

This reaction is the reverse of the heterolytic dissociation of hydrogen molecules expressed by reaction 1. According to reactions 2–4, the transformation of CH<sub>4</sub> to propene and hydrogen proceeds catalytically.

ZSM-5 zeolites loaded with Ga or Zn cations are known to catalyze the conversion of lower alkanes such as propane into aromatic hydrocarbons. <sup>5,6</sup> However, such zeolites exhibit no practical catalytic activity for CH<sub>4</sub> conversion. <sup>5</sup> Naccache et al. also reported that H-galloaluminosilicate did not activate CH<sub>4</sub> and that <sup>13</sup>CH<sub>4</sub> could not be inserted into products such as propene and butene in the conversion of C<sub>2</sub>H<sub>4</sub>/CH<sub>4</sub> or C<sub>3</sub>H<sub>6</sub>/CH<sub>4</sub> mixtures. <sup>7</sup> In contrast, our group recently found that ZSM-5 zeolites loaded with metal cations such as Ga, when prepared by calcining the mixture of NH<sub>4</sub>+-exchanged ZSM-5 (NH<sub>4</sub>-ZSM-5) and the metal salt such as Ga(NO<sub>3</sub>)<sub>3</sub>, exhibit a catalytic activity for CH<sub>4</sub> conversion in the presence of C<sub>2</sub>H<sub>4</sub>. <sup>8</sup> Furthermore, singly <sup>13</sup>C-labeled propene was formed when <sup>13</sup>CH<sub>4</sub> was reacted with ethene over metal-loaded zeolites. This suggests that CH<sub>4</sub> is activated on metal cations (M<sup>n+</sup>) to form metal

<sup>\*</sup> To whom correspondence should be addressed. E-mail: tbaba@chemenv.titech.ac.jp. Phone: +81-45-924-5480. Fax: +81-45-924-5480.

<sup>†</sup> Department of Environmental Chemistry and Engineering.

Department of Chemical Engineering.

hydride species ( $[M - H]^{(n-1)+}$ ) and methyl cation-like species ( $CH_3^{\delta+}$ ), similar to the case for  $Ag^+$ -exchanged zeolites:

$$ZO^{-}M^{n+} + CH_4 \rightarrow ZO^{\delta-}CH_3^{\delta+} + [M - H]^{(n-1)+}$$
 (5)

Of the metal cations examined to date, the mixture of NH<sub>4</sub>-ZSM-5 and  $In(NO_3)_3$ , upon calcination, exhibits a high catalytic activity for the transformation of CH<sub>4</sub> in the presence of  $C_2H_4$ .<sup>8</sup>

An important problem identified in the transformation of  $CH_4$  in the presence of  $C_2H_4$  over  $Ag^+$ -exchanged zeolites is that the catalytic activity decreases with running time.<sup>3,4</sup> The formation of silver metal was confirmed by X-ray diffraction (XRD) analysis after the reaction over Ag-Y at 673 K, and the transformation of  $CH_4$  did not occur over Ag-Y zeolites when pretreated under hydrogen at 673 K for 1 h. These results suggest that the deactivation of the catalyst occurs by the reduction of silver cations to silver metal. There is a possibility that deactivation will be suppressed by the use of In-loaded ZSM-5, as In cations are more resistant to reduction than  $Ag^+$  cations.

It is well-known that many metal salts and metal oxides undergo solid ion-exchange on proton-exchanged zeolites such as H-ZSM-5 to form metal cations in zeolite cavities. The mixture of In<sub>2</sub>O<sub>3</sub> and proton-exchanged zeolites undergoes reductive solid ion-exchange to afford In<sup>+</sup> cationic species in the zeolite cavities under hydrogen atmosphere. Anazirev et al. reported the incorporation of In<sup>+</sup> cations into ZSM-5 by reductive solid-state ion exchange, which proceeded according to

$$In_2O_3 + 2H_2 + 2ZO-H \rightarrow ZO^-In^+ + 3H_2O$$
 (6)

when the mixture of  $\rm In_2O_3$  and H-ZSM-5 was subjected to heat treatment in hydrogen atmosphere at 670–770 K.  $^{10}$ 

However, the exchange of In cationic species seems to be more complicated. It was also reported that for mixtures of  $NH_4^+$ -exchanged zeolites and  $In_2O_3$ , such as  $NH_4$ - $\beta$  zeolites, In<sub>2</sub>O<sub>3</sub> was reduced to a few In cationic species, concomitant with incorporation into the zeolite as a lattice cations by heating the mixtures of NH<sub>4</sub><sup>+</sup>-exchanged zeolites and In<sub>2</sub>O<sub>3</sub>. <sup>12,13</sup> For example, Neinska et al. reported that both In<sup>+</sup> and InO<sup>+</sup> cationic species were detected by IR spectroscopic bands attributed to interaction of these ions with adsorbed pyridine in  $\beta$ -zeolite when the mixture of  $In_2O_3$  and as-synthesized  $\beta$ -zeolite was heated under vacuum at 670 K.13 On the other hand, Kikuchi and co-workers examined IR study of OH groups on the mixture of In<sub>2</sub>O<sub>3</sub> and H-ZSM-5 calcined at around 900 K, and the decrease of intensity of acidic OH band by the calcination temperature was observed. 14 They proposed that InO<sup>+</sup> species were formed by calcining the mixture of NH<sub>4</sub>-ZSM-5 and In<sub>2</sub>O<sub>3</sub> at 823-973 K.

$$In2O3 + 2ZO-H \rightleftharpoons 2ZO^{-}InO^{+} + H2O$$
 (7)

Beyer et al. reported that  $\rm InO^+$  was reduced to  $\rm In^+$  with hydrogen at 600–770 K.<sup>11</sup> They also reported that both  $\rm InO^+$  and  $\rm In^+$  cations were observed by IR spectroscopic bands attributed to interaction of these cations with adsorbed pyridine when the mixture of  $\rm In_2O_3$  and H- $\beta$  zeolite was treated with hydrogen.<sup>15</sup> They concluded that the interconversion between  $\rm InO^+$  and  $\rm In^+$  cationic species was reversible.

$$ZO^{-}InO^{+} + H_{2} \rightleftharpoons ZO^{-}In^{+} + H_{2}O$$
 (8)

The preparation conditions of In-loaded ZSM-5 influence the conversion of CH<sub>4</sub>, and the various chemical states of In cationic species, such as InO<sup>+</sup> and In<sup>+</sup> cationic species, which are formed by calcination and/or hydrogen treatment, exist possibly in ZSM-5. In this work, catalysts were prepared from NH<sub>4</sub>-ZSM-5 and In<sub>2</sub>O<sub>3</sub> by calcination or by pretreatment under hydrogen after calcination. The catalytic performance of the In-loaded ZSM-5 catalyst thus prepared, referred to an In/ZSM-5 catalyst, for the transformation of CH<sub>4</sub> in the presence of C<sub>2</sub>H<sub>4</sub> is examined with respect to various reaction variables. <sup>13</sup>CH<sub>4</sub> was used for elucidating the reaction path for the formation of propene and the higher hydrocarbons (e.g., benzene and toluene). It is also shown that methane reacts with benzene to form toluene over In/ZSM-5.

## **Experimental Section**

**Preparation of NH**<sub>4</sub><sup>+</sup>-**Exchanged ZSM-5.** ZSM-5 (SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> = 23.8) containing template molecules was obtained from Tosoh Co. Ltd., Japan. The zeolite was converted into the Na form (Na-ZSM-5) by calcination followed by ion exchange. NH<sub>4</sub>-ZSM-5 was obtained by repeating the ion exchange of the Na-ZSM-5 with an NH<sub>4</sub>Cl solution. Neither Na<sup>+</sup> cations nor extra framework aluminum were detected by atomic absorption spectrometry or  $^{27}$ Al MAS NMR, respectively.

**Preparation of In/ZSM-5.** Indium cation-loaded ZSM-5 (In/ZSM-5) was prepared by a solid ion-exchange method. The powder mixture of NH<sub>4</sub>-ZSM-5 and In<sub>2</sub>O<sub>3</sub> was packed in a continuous flow reactor (10 mm i.d. silica tubing) in a vertical furnace and heated under an air stream at 0.8 K min<sup>-1</sup> from room temperature to the prescribed temperature. The sample was then calcined at the prescribed temperature for 3 h. Some of the samples were exposed to hydrogen flow (200 cm<sup>3</sup> min<sup>-1</sup>) at 101 kPa for 1 h at the prescribed temperature after calcination.

Reaction Procedures for the Transformation of CH4 in the Presence of C<sub>2</sub>H<sub>4</sub>. After calcination or hydrogen pretreatment of a catalyst, the air or hydrogen in the reactor was immediately replaced with helium, and the temperature was reduced to the prescribed reaction temperature. The reaction of CH<sub>4</sub> with C<sub>2</sub>H<sub>4</sub> was then carried out under continuous flow at atmospheric pressure. The reactants (CH<sub>4</sub> (33.8 kPa) and C<sub>2</sub>H<sub>4</sub> (33.8 kPa)) were fed along with helium (33.8 kPa) into the reactor through mass flow meters. In this work, helium served as both a carrier gas and an internal standard for determination of the amounts of hydrogen, CH<sub>4</sub>, and C<sub>2</sub>H<sub>4</sub> by gas chromatography using an activated carbon column and a thermal conductivity detector. Aliphatic hydrocarbons with fewer than four carbon atoms were determined using a Porapak O column, and hydrocarbons with more than three carbon atoms were determned using an OV-101 column. The conversions of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> and the selectivities for hydrocarbon products are expressed in mol %, where the latter is defined as (the amount of a hydrocarbon product (mol))/(total amount of hydrocarbon products (mol))  $\times$  100 (%).

Reaction Procedures for the Reaction of Benzene with CH<sub>4</sub>. The reaction of benzene with CH<sub>4</sub> was carried out in a continuous flow reactor operating at atmospheric pressure. Benzene was delivered into the preheating zone of the reactor by a motor-driven syringe. The reaction products were collected and analyzed by a gas chromatograph equipped with an OV-101 column. The conversion of benzene and the yields of the reaction products (e.g., toluene and xylenes) were determined using propylbenzene as an internal standard, while the conversion of CH<sub>4</sub> was determined using helium as an internal standard.

Transformation of <sup>13</sup>CH<sub>4</sub> in a Gas Circulation Reaction System. The transformation of <sup>13</sup>CH<sub>4</sub> in the presence of C<sub>2</sub>H<sub>4</sub> was carried out in a gas-circulation system (reactor volume: 308 cm<sup>3</sup>). The mixture (0.1 g) of NH<sub>4</sub>-ZSM-5 (SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> = 23.8) and  $In_2O_3$  (In/Al = 0.17) was heated in a quartz tube reactor at 0.3 K min<sup>-1</sup> from room temperature to 903 K under a dry air flow of 200 cm<sup>3</sup> min<sup>-1</sup>, and then calcined at 903 K for 3 h. After calcination, the catalyst was cooled to 723 K and treated under flowing hydrogen (100 cm<sup>3</sup> min<sup>-1</sup>) at 723 K for 1 h. The catalyst was then cooled to 673 K, and then connected to the gas circulation glass system for evacuation at 673 K for

After preparation of the catalyst, the reaction of <sup>13</sup>CH<sub>4</sub> with C<sub>2</sub>H<sub>4</sub> was initiated at 673 K by introducing the mixture into the reactor containing the catalyst. Side reactions, such as ethylene self-condensation and cracking of hydrocarbon products were minimized by carrying out the reactions at a high molar ratio of <sup>13</sup>CH<sub>4</sub> to C<sub>2</sub>H<sub>4</sub> (39.4 kPa <sup>13</sup>CH<sub>4</sub> to 0.35 kPa C<sub>2</sub>H<sub>4</sub>). The reaction products, <sup>13</sup>CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> in gas phase, were collected using a gas sampler and analyzed by gas chromatographs equipped with Porapak Q and OV-101 columns with flame ionization detectors. <sup>13</sup>CH<sub>4</sub> and hydrogen were simultaneously analyzed using an activated carbon column and thermal conductivity detector. The conversion of C<sub>2</sub>H<sub>4</sub> and the yields of reaction products were determined using <sup>13</sup>CH<sub>4</sub> as an internal standard. The amount of converted <sup>13</sup>CH<sub>4</sub> is negligible because of a large excess of <sup>13</sup>CH<sub>4</sub> used as a reactant. The conversion of ethylene was ca. 10%.

The reaction products were collected by a gas sampler and identified by gas chromatography mass spectrometry (GC-MS) using a Shimadzu (Japan) QP 5000 spectrometer. The amounts of <sup>13</sup>C-labeled hydrocarbons were determined by employing selected-ion monitoring techniques in all analyses. For example, the mole fractions of <sup>13</sup>C-labeled propene (<sup>13</sup>CC<sub>2</sub>H<sub>6</sub>) and <sup>13</sup>Clabeled toluene were determined in reference to the respective calibration graphs. In the case of propene, the calibration graph was prepared by plotting the ratio of ion abundance at m/z 42 to that at m/z 43 against the ratio of the known concentration of propene-2-13C (CH<sub>3</sub>13CH=CH<sub>2</sub>, purity 99%) to that of unlabeled propene ( $C_3H_6$ ). Here, m/z is defined as the ratio between the mass (m) of an ion and the number (z) of electron charges on it. Propene-2-13C was obtained from Sigma-Aldrich Fine Chemicals, Milwaukee, WI. The ratio of <sup>13</sup>C-labeled toluene (13C12C6H8) to unlabeled toluene (C7H8) was determined by plotting the ratio of the ion abundance at m/z 92 to that at m/z 93 against the known ratio of the concentration of toluene-1-13C (ring 13C, CH<sub>3</sub>-13CC<sub>5</sub>H<sub>5</sub>) to unlabeled toluene. The ratio of the ion abundance at m/e 51 to that at m/e 52 was also plotted. Toluene- $\alpha$ -<sup>13</sup>C (<sup>13</sup>CH<sub>3</sub>-C<sub>6</sub>H<sub>5</sub>) was also used to obtain the calibration graph. Toluene-1-13C (ring 13C, CH<sub>3</sub>-13CC<sub>5</sub>H<sub>5</sub>) and toluene-α-13C (13CH<sub>3</sub>-C<sub>6</sub>H<sub>5</sub>) were obtained from Nippon Sanso, Japan.

#### **Results and Discussion**

Catalytic Activity of In/ZSM-5 and H-ZSM-5. Table 1 lists the conversion results for CH<sub>4</sub> - C<sub>2</sub>H<sub>4</sub> reaction and the selectivity for hydrocarbon product over the In-loaded ZSM-5 catalysts, which were calcined at 903 K or pretreated with hydrogen at 723 K after calcination at 903 K. The ratio of In/ Al in the catalyst was 0.17. The reaction was carried out at 623 K, and the pressures of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> were set equal at 33.8 kPa. The catalytic activity of H-ZSM-5 prepared by calcining NH<sub>4</sub>-ZSM-5 at 903 K is also shown.

Several distinct features can be seen in Table 1. Most importantly, CH<sub>4</sub> was not converted over H-ZSM-5, as reported

TABLE 1: Conversions of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> and Selectivity for Hydrocarbon Products over H-ZSM-5 and In/ZSM-5<sup>a</sup>

|                   | H-ZSM-5 <sup>a</sup> | In/ZSM-5 <sup>b</sup> | In/ZSM-5 <sup>c</sup> |
|-------------------|----------------------|-----------------------|-----------------------|
| conversion/mol %  |                      |                       |                       |
| $CH_4$            | 0.0                  | 3.2                   | 6.8                   |
| $C_2H_4$          | 85.4                 | 78.5                  | 76.4                  |
| selectivity/mol % |                      |                       |                       |
| $C_3H_6$          | 15.5                 | 23.7                  | 29.6                  |
| $C_4H_8$          | 25.3                 | 22.5                  | 22.3                  |
| $C_5H_{10}$       | 7.9                  | 9.2                   | 11.1                  |
| lower alkenes     | 48.7                 | 55.4                  | 63.0                  |
| $C_2H_6$          | 3.4                  | 3.0                   | 2.5                   |
| $C_3H_8$          | 17.9                 | 13.5                  | 7.8                   |
| $C_4H_{10}$       | 14.6                 | 12.5                  | 11.7                  |
| $C_5H_{12}$       | 4.3                  | 3.7                   | 3.1                   |
| lower alkenes     | 40.2                 | 32.7                  | 3.1                   |
| $C_6^+$           | 6.3                  | 6.6                   | 6.3                   |
| aromatics         | 4.6                  | 5.2                   | 5.6                   |

<sup>a</sup> Reaction Conditions: reaction temperature = 623 K,  $CH_4 = C_2H_4$ = 33.8 kPa, In/Al = 0.17, W/F = 3.6 g h  $mol^{-1}$  b H-ZSM-5 was prepared by calcinations of NH<sub>4</sub>-ZSM-5 at 903 K. <sup>c</sup> In<sub>2</sub>O<sub>3</sub>/NH<sub>4</sub>-ZSM-5 calcined at 903 K <sup>d</sup> In<sub>2</sub>O<sub>3</sub>/NH<sub>4</sub>-ZSM-5 calcined at 903 K and then treated with hydrogen at 723 K.



Figure 1. Effect of temperature of catalyst calcination on the conversion of CH<sub>4</sub> ( $\bigcirc$ ) and C<sub>2</sub>H<sub>4</sub> ( $\square$ ). Results are shown for In/ZSM-5 catalyst prepared by calcination of a mixture of NH<sub>4</sub>-ZSM-5 and In<sub>2</sub>O<sub>3</sub> (In/Al = 0.17) at each temperature for 3 h. Reaction temperature: 623 K.  $W/F = 3.6 \text{ g h mol}^{-1}$ ,  $CH_4 = 33.8 \text{ kPa}$ ,  $C_2H_4 = 33.8 \text{ kPa}$ .

previously,<sup>3</sup> only C<sub>2</sub>H<sub>4</sub> being converted to higher hydrocarbons, such as propene and aromatic hydrocarbons, which are benzene, toluene and xylenes. Furthermore, the transformation of CH<sub>4</sub> proceeded over both versions of the In/ZSM-5 catalyst, and the selectivity for lower alkenes (propene  $(C_3H_6)$  + butenes  $(C_4H_8)$ + pentenes (C<sub>5</sub>H<sub>10</sub>)) was increased by introducing the In cationic species into ZSM-5. The hydrogen-pretreated In/ZSM-5 catalyst displayed higher selectivity for lower alkenes than the simply calcined In/ZSM-5 catalyst. As the amount of converted CH<sub>4</sub> was about one tenth of the amount of converted C<sub>2</sub>H<sub>4</sub>, the hydrocarbon products originate almost entirely from C<sub>2</sub>H<sub>4</sub>.

Effect of Calcination Temperature without Hydrogen **Pretreatment.** As shown in Table 1, the In/ZSM-5 catalyst calcined at 903 K without hydrogen pretreatment exhibits a catalytic activity for the transformation of CH<sub>4</sub>. The effect of calcination temperature on the catalytic activity of In/ZSM-5 was examined by performing calcination at various temperatures for 3 h.

Figure 1 shows the conversion results for CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> at 623 K after 1 h, plotted as a function of calcination temperature. The conversion of CH<sub>4</sub> exhibits a clear dependence on calcination temperature, with a maximum conversion achieved at calcination temperature of 903 K.



**Figure 2.** Effect of temperature of catalyst hydrogen pretreatment on the conversion of CH<sub>4</sub> ( $\bigcirc$ ) and C<sub>2</sub>H<sub>4</sub> ( $\square$ ). Results are shown for In/ZSM-5 catalyst treated with hydrogen at each temperature for 1 h, after calcination of a mixture of NH<sub>4</sub>-ZSM-5 and In<sub>2</sub>O<sub>3</sub> (In/Al = 0.17) at 903 K for 3 h. Reaction temperature: 623 K. W/F = 3.6 g h mol<sup>-1</sup>, CH<sub>4</sub> = 33.8 kPa, C<sub>2</sub>H<sub>4</sub> = 33.8 kPa.

In contrast to the variation in  $CH_4$  conversion,  $C_2H_4$  conversion increased continuously with calcination temperature, indicating that the activation mechanism for  $CH_4$  differs from that for  $C_2H_4$ . There is a possibility that  $CH_4$  is activated on  $InO^+$  species, which were formed by calcining the mixture of  $NH_4$ -ZSM-5 and  $In_2O_3$ . <sup>14</sup>

Effect of Hydrogen Treatment. As mentioned in the Introduction, InO<sup>+</sup> species in zeolite lattice was reduced to In<sup>+</sup> cations under hydrogen. In this section, the effect of the temperature of hydrogen pretreatment on the catalytic activity was examined. In/ZSM-5 was prepared by hydrogen pretreatment, after calcining the mixture of NH<sub>4</sub>-ZSM-5 and In<sub>2</sub>O<sub>3</sub> at 903 K. The conversions of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> after 1 h are plotted as a function of the temperature of hydrogen pretreatment in Figure 2. The conversion of C<sub>2</sub>H<sub>4</sub> gradually decreased with increasing temperature of hydrogen treatment, decreasing from 83.3% at 623 K to 74.3% at 833 K. This suggests that the amount of acidic protons is decreased by exchanging them with In<sup>+</sup> cationic species.

In contrast, the conversion of  $CH_4$  gradually increased with hydrogen pretreatment temperature to a maximum of 6.8% at 723 K. The amount of  $In^+$  cations possibly increased by hydrogen treatment, and  $In^+$  cationic species as well as  $Ag^+$  seem to activate  $CH_4$  and the formation of  $CH_3^{\delta+}$  may progress by the abstraction of  $H^-$  ions from  $CH_4$ . It has been proposed that the abstraction of  $H^-$  ions from lower alkanes (other than  $CH_4$ ) occurs with metal cations such as  $Zn^{2+}$  to form metal-hydride species ( $[Zn-H]^+$ ).  $^{16,17}$ 

The increase in the catalytic activity after hydrogen treatment as a result of In cationic species formation, does not contradict the fact that  $\rm InO^+$  species can also activate methane. The reaction expressed by the eq 8 was reversible. Minalyi et al. reported the detection of trivalent In cationic species (InO^+) and  $\rm In^+$  cationic species in ZSM-5, after hydrogen treatment.  $^{15}$  At this stage, the active In species involved in the transformation of CH<sub>4</sub> cannot be determined in this work. The characterization of these In species, such as  $\rm InO^+$  and  $\rm In^+$  cations, is currently in progress.

**Effect of In Content.** The optimum In content in In/ZSM-5 was investigated by examining the effect of the In/Al atomic ratio on the catalytic activity of In/ZSM-5. Figure 3 shows the change in the catalytic activity of In/ZSM-5 with the ratio of In/Al in the catalyst at 623 K. These catalysts were prepared by treatment with hydrogen at 723 K for 1 h, after calcination at 903 K for 3 h.



**Figure 3.** Effect of In content in In/ZSM-5 catalyst on the conversion of CH<sub>4</sub> ( $\bigcirc$ ) and C<sub>2</sub>H<sub>4</sub> ( $\square$ ). Results are shown for In/ZSM-5 catalyst treated with hydrogen at 723 K for 1 h, after calcination of a mixture of NH<sub>4</sub>-ZSM-5 and In<sub>2</sub>O<sub>3</sub> (In/Al = 0.17) at 903 K for 3 h. Reaction temperature: 623 K. W/F = 3.6 g h mol<sup>-1</sup>, CH<sub>4</sub> = 33.8 kPa, C<sub>2</sub>H<sub>4</sub> = 33.8 kPa.

TABLE 2: Effect of Reaction Temperature on Conversions of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> and Selectivity for Hydrocarbon Products<sup>a</sup>

|                   | reaction temperature/K |      |      |      |      |      |      |
|-------------------|------------------------|------|------|------|------|------|------|
|                   | 553                    | 598  | 623  | 653  | 673  | 703  | 773  |
| conversion/mol %  |                        |      |      |      |      |      |      |
| $CH_4$            | 0.1                    | 1.4  | 6.8  | 10.1 | 11.8 | 7.9  | 3.1  |
| $C_2H_4$          | 1.6                    | 15.3 | 76.4 | 87.7 | 90.3 | 99.0 | 99.2 |
| selectivity/mol % |                        |      |      |      |      |      |      |
| $C_3H_6$          | 55.6                   | 33.7 | 29.6 | 20.2 | 20.8 | 11.4 | 12.4 |
| $C_4H_8$          | 33.2                   | 32.7 | 22.3 | 20.4 | 16.1 | 3.2  | 4.6  |
| $C_5H_{10}$       | 0                      | 12.7 | 11.1 | 6.2  | 5.9  | 1.6  | 0.2  |
| lower alkenes     | 88.8                   | 79.1 | 63.0 | 46.8 | 42.8 | 16.2 | 17.2 |
| $C_2H_6$          | 0                      | 2.7  | 2.5  | 1.7  | 1.8  | 0.9  | 6.4  |
| $C_3H_8$          | 11.2                   | 4.6  | 7.8  | 12.2 | 14.2 | 30.5 | 29.6 |
| $C_4H_{10}$       | 0                      | 4.2  | 11.7 | 15.9 | 19.5 | 27.4 | 7.8  |
| $C_5H_{12}$       | 0                      | 1.8  | 3.1  | 8.1  | 7.2  | 4.3  | 12.0 |
| lower alkanes     | 11.2                   | 13.3 | 25.1 | 37.9 | 42.7 | 63.1 | 55.8 |
| $C_6^+$           | 0                      | 6.6  | 6.3  | 5.9  | 2.3  | 1.6  | 0.5  |
| aromatics         | 0                      | 1.0  | 5.6  | 9.4  | 12.2 | 19.1 | 26.5 |

 $^a$  W/F = 3.6 g h mol $^{-1}$ , CH<sub>4</sub> = C<sub>2</sub>H<sub>4</sub> = 33.8 kPa, In/ZSM-5 (In/Al = 0.17) prepared by pretreatment with hydrogen at 723 K, followed by calcining the mixture of NH<sub>4</sub>-ZSM-5 with In<sub>2</sub>O<sub>3</sub> at 903 K.

The conversion of  $CH_4$  increased with the In/Al ratio to a maximum of 6.8% at In/Al = 0.17, decreasing gradually at higher ratios. At larger amount of In loading, hydrocarbon products may undergo cracking to afford products including  $CH_4$ , and the apparent conversion of  $CH_4$  decreases.

Effect of Reaction Temperature. The effect of reaction temperature on the conversions of  $CH_4$  and  $C_2H_4$  and the selectivities for hydrocarbon products was examined. In/ZSM-5 catalysts were pretreated with hydrogen at 723 K, after the calcination at 903 K. The results are shown in Table 2. The conversion of  $C_2H_4$  was as low as that of  $CH_4$  at 553 K but increased with reaction temperature from 15.3% at 598 K to 90.3% at 673 K. The conversion of  $CH_4$  increased more slowly with reaction temperature, reaching 11.8% at 673 K, and decreased with further increases in reaction temperature to 773 K. At higher temperatures, higher hydrocarbons formed from ethene may undergo cracking to afford products including  $CH_4$ . This leads to the decrease in the apparent conversion of  $CH_4$  at higher temperatures.

A change in the conversions of  $CH_4$  over running time in the reaction with  $C_2H_4$  at 673 K is shown in Figure 4. The conversion of  $CH_4$  did not change over the running time of 10 h, while that of  $C_2H_4$  gradually decreased with running time.



**Figure 4.** Conversion of  $CH_4$  (O) and  $C_2H_4$  ( $\square$ ) plotted against time on stream at 673 K. Results are shown for In/ZSM-5 catalyst treated with hydrogen at 723 K for 1 h, after calcination of a mixture of NH<sub>4</sub>-ZSM-5 and  $In_2O_3$  (In/Al = 0.17) at 903 K for 3 h. Reaction temperature: 673 K.  $W/F = 3.6 \text{ g h mol}^{-1}$ ,  $CH_4 = 33.8 \text{ kPa}$ ,  $C_2H_4 =$ 33.8 kPa.

The catalytic activity of In/ZSM-5 is more stable than that of Ag/ZSM-5, over which the conversion of CH<sub>4</sub> was 13.2% after 1 h, and almost zero after 5 h under the same reaction conditions.3

**Effect of contact time.** Figure 5 shows the dependence of the conversions of CH<sub>4</sub> and  $C_2H_4$  on the contact time (W/F) at 673 K, where W is the weight of the catalyst (g) and F is the total flow rate of  $(CH_4 + C_2H_4 + He)$  (mol h<sup>-1</sup>). The conversion of CH<sub>4</sub> reached a maximum of 11.8% at 3.6 g h mol<sup>-1</sup>, but decreased with further increasing contact time. This indicates that CH<sub>4</sub> is produced by the cracking of products derived from ethane at longer contact times. When the conversion of ethene was carried out in the absence of CH<sub>4</sub> at 3.6 g h mol<sup>-1</sup>, the conversion of ethene was 94.2% and the selectivity for CH<sub>4</sub> was 0.9%. This may lead to the decrease in the net production of CH<sub>4</sub>.

The effect of contact time on the selectivities for hydrocarbon products is also shown in the figure. At W/F of 0.2 g h mol<sup>-1</sup>, the main products were C<sub>3</sub>H<sub>6</sub> and C<sub>4</sub>H<sub>8</sub>, and no aromatic

hydrocarbons were formed. This selective formation of C<sub>3</sub>H<sub>6</sub> suggests that C<sub>3</sub>H<sub>6</sub> is almost exclusively by the reaction of CH<sub>4</sub> with C<sub>2</sub>H<sub>4</sub> in the initial stage, while the conversion of ethene to propene also proceeds. With increasing W/F, the selectivity for C<sub>3</sub>H<sub>6</sub> and C<sub>4</sub>H<sub>8</sub> decreased, while the selectivity for C<sub>3</sub>H<sub>8</sub> and aromatic hydrocarbons increased. The aromatic hydrocarbons are presumably formed via C<sub>3</sub>H<sub>6</sub> and C<sub>4</sub>H<sub>8</sub>.

Conversion of <sup>13</sup>CH<sub>4</sub> in the Presence of C<sub>2</sub>H<sub>4</sub>. To further investigate the reaction pathway of the transformation of CH<sub>4</sub>, the reaction of <sup>13</sup>CH<sub>4</sub> with C<sub>2</sub>H<sub>4</sub> was examined over In/ZSM-5 at 673 K using a gas circulation system. To minimize side reactions such as the oligomerization of C<sub>2</sub>H<sub>4</sub> and the cracking of the hydrocarbon products, a large excess of <sup>13</sup>CH<sub>4</sub> (39.4 kPa) to C<sub>2</sub>H<sub>4</sub> (0.35 kPa) was used as the reactant, and the reaction was performed in 1 min. Under these conditions, the conversion of C<sub>2</sub>H<sub>4</sub> was 13%, and ethane (17%), propene (23%), benzene (41%) and toluene (19%) were observed as gaseous hydrocarbons (values in parentheses denote selectivities in mol %).

Ethane and benzene produced contains only negligible amount of <sup>13</sup>C-labeled products. The GC-MAS spectrum of benzene produced gave the ratio of the ion abundance at m/z 78 to m/z79 was 100/6.6, showing the mole fraction of <sup>13</sup>C<sup>12</sup>C<sub>5</sub>H<sub>6</sub> in benzene was 7%, almost equivalent to the natural abundance. Similarly, the mole fraction of <sup>13</sup>C<sup>12</sup>CH<sub>6</sub> was 2%. These results indicate that ethane and benzene is entirely derived from ethene.

On the other hand, <sup>13</sup>C was inserted in propene and toluene. Only one <sup>13</sup>C from <sup>13</sup>CH<sub>4</sub> was inserted into propene and toluene, no significant amounts of multi-13C-labeled propene or toluene being observed.

The mole fractions of <sup>13</sup>C<sup>12</sup>C<sub>2</sub>H<sub>6</sub> in propene and <sup>13</sup>C<sup>12</sup>C<sub>6</sub>H<sub>8</sub> in toluene were then determined by reference to the calibration graphs. The ion abundance peaks were measured at m/z 42 and 43 for propene, and at m/z 92 and 93 for toluene. The calculated mole fraction of <sup>13</sup>C<sup>12</sup>C<sub>2</sub>H<sub>6</sub> in propene was 39%, while that for <sup>13</sup>C<sup>12</sup>C<sub>6</sub>H<sub>8</sub> in toluene was 54%. Thus, propene was formed by both the reaction of <sup>13</sup>CH<sub>4</sub> with C<sub>2</sub>H<sub>4</sub> and the transformation (oligomerization-cracking) of C<sub>2</sub>H<sub>4</sub>. As <sup>13</sup>C-labeled benzene was



Figure 5. Effect of contact time (W/F) on the catalytic activity of In/ZSM-5 at 673 K. Results are shown for In/ZSM-5 catalyst treated with hydrogen at 723 K for 1 h, after calcination of a mixture of NH<sub>4</sub>-ZSM-5 and  $In_2O_3$  (In/Al = 0.17) at 903 K for 3 h. Reaction temperature: 673 K.  $CH_4 = 33.8 \text{ kPa}, C_2H_4 = 33.8 \text{ kPa}.$ 



**Figure 6.** Mass spectrum of toluene after the reaction of  $^{13}\text{CH}_4$  with  $C_2\text{H}_4$  at 673 K. Spectrum A: toluene formed by the transformation of  $^{13}\text{CH}_4$  over In/ZSM-5 in the presence of  $C_2\text{H}_4$  at 673 K for 1 min. Spectrum B: unlabeled toluene.



Figure 7. Fragmentation of toluene.

not formed, propene was not transformed to benzene under the reaction conditions.

The reaction path for toluene formation was investigated by recording the fragmentation spectrum of toluene (Figure 6, spectrum A) produced in the transformation of  $^{13}\text{CH}_4$  in the presence of  $\text{C}_2\text{H}_4$ . For comparison, the spectrum of unlabeled toluene ( $^{12}\text{CH}_3-^{12}\text{C}_6\text{H}_5$ ) is also shown (spectrum B). In spectrum A, the main peak occurs at m/z 92, due to  $^{13}\text{C}^{12}\text{C}_6\text{H}_7^+$ , while in spectrum B, the main peak is at m/z 91, attributable to  $^{12}\text{C}_7\text{H}_7^+$ .

Two paths (paths A and B) for toluene fragmentation are wellknown (Figure 7).19 In path A, methyl groups are ejected from toluene to give a molecular ion with m/z of 51. Therefore, the mole fraction of toluene labeled with a single 13C atom in benzene ring (12CH<sub>3</sub>-13C12C<sub>5</sub>H<sub>5</sub>) can be determined from the calibration graph by measuring the ion abundance peaks at m/z51 and 52. This determination of the mole fraction of <sup>12</sup>CH<sub>3</sub>-<sup>13</sup>C<sup>12</sup>C<sub>5</sub>H<sub>5</sub> in toluene gives a result of 37%, which can be compared with the total mole fraction of <sup>13</sup>C-labeled toluene (13C12C<sub>6</sub>H<sub>8</sub>) of 54%. On this basis, the mole fraction of toluene with labeled methyl group (13CH<sub>3</sub>-12C<sub>6</sub>H<sub>5</sub>) is estimated to be 17% (54-37 = 17%). Thus, the molar ratio of  ${}^{12}\text{CH}_3$ - $^{13}\text{C}^{12}\text{C}_5\text{H}_5$  to  $^{13}\text{CH}_3 - ^{12}\text{C}_6\text{H}_5$  is 37/17 = 2.2. Singly  $^{13}\text{C}$ -labeled toluene is therefore plausibly formed by two reactions; the reaction of <sup>13</sup>C<sup>12</sup>C<sub>2</sub>H<sub>6</sub> with butenes formed by the dimerization of C<sub>2</sub>H<sub>4</sub> and the reaction of benzene with <sup>13</sup>CH<sub>4</sub>.

**Reaction of Methane with Benzene.** To confirm the reaction path for the formation of  ${}^{13}\text{CH}_3{}^{12}\text{C}_6\text{H}_6$  by the reaction of benzene with  ${}^{13}\text{CH}_4$ , the reaction of benzene with  ${}^{13}\text{CH}_4$  was carried out over In/ZSM-5 under the conditions of 39.8 kPa of  ${}^{13}\text{CH}_4$ , and

1.63 kPa of benzene at 673 K. The In/ZSM-5 was prepared by treatment with hydrogen at 723 K for 1 h, after calcination at 903 K for 3 h.

The reaction products were toluene and hydrogen, and no other hydrocarbon products were observed. The conversion of benzene was 6.4%, which is almost the same as the yield of toluene (6.2%) based on benzene, suggesting that other side reactions such as disproportionation of toluene to benzene and xylenes did not occur. The fraction of  $^{13}\mathrm{CH}_3-\mathrm{C}_6\mathrm{H}_5$  in toluene was 96%, showing that  $\mathrm{CH}_3{}^{\delta+}$  species are formed on In/ZSM-5 and react with benzene to form toluene. H-ZSM-5 exhibits no catalytic activity for the reaction of  $^{13}\mathrm{CH}_4$  with benzene under the same reaction conditions.

The reaction of benzene with CH<sub>4</sub> was also carried out in a flow reactor by using In/ZSM-5 at 623 K. Partial pressures of both CH<sub>4</sub> and benzene were 33.8 kPa. The conversion of CH<sub>4</sub> and that of benzene were 8.5 and 8.3 mol %, respectively at running time of 1 h. The reaction products were toluene and xylenes, whose selectivities were 89 mol % (yield 7.6%) and 11 mol % (yield 0.9%), respectively. Xylenes are presumably formed by the methylation of toluene with CH<sub>4</sub> and/or by the disproportionation of toluene on acidic sites of In/ZSM-5.

#### Conclusion

This work demonstrates that  $CH_4$  reacts with  $C_2H_4$  proceeds to afford higher hydrocarbons over In/ZSM-5. In/ZSM-5 pretreated with hydrogen at 723 K after calcining at 903 K, exhibited the highest conversion of  $CH_4$  of 11.8% at a reaction temperature of 673 K. The conversion of  $CH_4$  was about one-eighth of the conversion of  $C_2H_4$ . Use of  $^{13}CH_4$  revealed that propene was found to be formed by two reaction paths; the reaction of  $C_2H_4$  with  $C_2H_4$ , and the oligomerization-cracking of  $C_2H_4$ . Toluene is also formed plausibly by two reaction paths; the reaction of  $C_3H_6$  with butenes, and the reaction of benzene with  $CH_4$ . The latter path was confirmed by the direct reaction.

### **References and Notes**

- Baba, T.; Tojoh, Y.; Takahashi, T.; Sawada, H.; Ono, Y. Catal. Today 2001, 66, 81.
- (2) Baba, T.; Komastu, N.; Sawada, H.; Yamaguchi, Y.; Takahashi, T.; Ono, Y. *Langmuir* **1999**, *15*, 7894.
  - (3) Baba, T.; Sawada, H. Phys. Chem. Chem. Phys. 2002, 4, 3919.
- (4) Baba, T.; Sawada, H.; Takahashi, T.; Abe, M. Appl. Catal. A Gen. **2002**, 231, 55.
- (5) Inui, T.; Ishihara, Y.; Kamachi, K.; Matsuda, H. Stud. Surf. Sci. Catal. 1989, 49, 1183.
  - (6) Ono, Y. Catal. Rev. Sci. Technol. 1992, 34, 179.
- (7) Naccache, C. M.; Meriandeau, P.; Sapaly, G.; Van Tiep, L.; Taarit, Y. B. J. Catal. 2002, 205, 217.
  - (8) Baba, T.; Abe, Y. Appl. Catal. A Gen. 2003, 250, 265.
  - (9) Karge, H. G.; Beyer, H. K. Stud. Surf. Sci. Catal. 1991, 69, 43.
- (10) Kanazirev, V.; Neinska, Y.; Tsoncheva, T.; Kosova, L. In *Proceedings of the 9th International Zeolite Conference. Montreal 1992*; von Ballmoos, R., Higgins, J. B., Treacy, M. M. J., Eds.; Butterworth-Heinemann: New York, 1993; p 461.
- (11) Beyer, H. K.; Mihalyi, R. M.; Minchev, C.; Neinska, Y.; Kanazirev, V. Microporous Mesoporous Mater. 1996, 7, 333.
- (12) Mihalyi, R. M.; Beyer, H. K.; Mavrodinova, V.; Minchev, C.; Neinska, Y.; *Microporous Mesoporous Mater.* **1999**, 24, 143.
- (13) Neinska, Y.; Mihalyi, R. M.; Mavrodinova, V.; Minchev, C.; Beyer, H. K. Phys. Chem. Chem. Phys. 1999, 1, 5761.
- (14) Kikuchi, E.; Ogura, M.; Terasaki, I.; Yogo, Y. J. Cayal. 1996, 161, 465.
- (15) Mihalyi, R. M.; Beyer, H. K.; Mavrodinova, V.; Minchev, C.; Neinska, Y. React. Kinet. Catal. Lett. 1999, 68, 355.
  - (16) Mole, T.; Anderson, J. R.; Creer, G. Appl. Catal. 1985, 17, 141.
- (17) Buckles, G.; Huchings, G. J.; Williams, C. D. Catal. Lett. 1991, 11, 89.
- (18) Messe, M.; Beier, H.; Zeeh, B. Spektroskopische Methoden in der organischen Chemie; Georg Thieme Verlag: 1996, Chapter 4.