Artificial Intelligence Planning Graphplan

Artificial Intelligence Planning

•Graphplan

Graphplan: Overview

- •given a propositional planning domain and problem
- •step 1: extend the graph with 2 layers (forward, left to right)
 - edges shown are preconditions and effects
 - other edges (not shown) express mutual exclusivity
 - worst-case time complexity is polynomial
- •step 2: search for a plan in the graph
 - search backwards (right to left)
 - worst-case time complexity is exponential
- •repeat steps 1 and 2

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

>A Propositional DWR Example

- •The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- •Forward Planning Graph Expansion
- •Backwards Search in the Planning Graph
- •The Graphplan Algorithm

Classical Representations

- propositional representation
 - world state is set of propositions
 - action consists of precondition propositions, propositions to be added and removed
- STRIPS representation
 - like propositional representation, but first-order literals instead of propositions
- state-variable representation
 - state is tuple of state variables $\{x_1, ..., x_n\}$
 - action is partial function over states

Classical Representations

•propositional representation

- world state is set of propositions
- •action consists of precondition propositions, propositions to be added and removed

STRIPS representation

- named after STRIPS planner
- •like propositional representation, but first-order literals instead of propositions
- most popular for restricted state-transitions systems

state-variable representation

- •state is tuple of state variables $\{x_1,...,x_n\}$
- action is partial function over states
- •useful where state is characterized by attributes over finite domains
- •equally expressive: planning domain in one representation can also be represented in the others

Example: Simplified DWR Problem

- · robots can load and unload autonomously
- locations may contain unlimited number of robots and containers
- · problem: swap locations of containers

Example: Simplified DWR Problem

•[figure]

•initial state:

- •2 locations: loc1 and loc2, connected by path
- •2 robots: robr and robq, both unloaded initially at loc1 and loc2 respectively
- •2 containers: conta and contb, initially at loc1 and loc2 respectively
- robots can load and unload autonomously
- •locations may contain unlimited number of robots and containers
- problem: swap locations of containers

Simplified DWR Problem: STRIPS Operators

- move(*r*,*l*,*l*')
 - precond: at(r,l), adjacent(l,l')
 - effects: at(r,l'), $\neg at(r,l)$
- load(*c*,*r*,*l*)
 - precond: at(r,l), in(c,l), unloaded(r)
 - effects: loaded(r,c), \neg in(c,l), \neg unloaded(r)
- unload(*c*,*r*,*l*)
 - precond: at(r,l), loaded(r,c)
 - effects: unloaded(r), in(c,l), $\neg loaded(r,c)$

Simplified DWR Problem: STRIPS Actions

•move(*r*,*l*,*l*')

•move robot *r* from location *l* to adjacent location *l*' (4 possible actions; with rigid adjacent relation evaluated)

•precond: at(r,l), adjacent(l,l')

•effects: at(r,l'), ¬at(r,l)

•load(*c*,*r*,*l*)

•load container *c* onto robot *r* at location *l* (8 possible actions)

•precond: at(r,l), in(c,l), unloaded(r)

•effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)

•unload(c,r,l)

•unload container c from robot r at location I (8 possible actions)

•precond: at(r,l), loaded(r,c)

•effects: unloaded(r), in(c,l), ¬loaded(r,c)

Simplified DWR Problem: State Proposition Symbols

- · robots:
 - r1 and r2: at(robr,loc1) and at(robr,loc2)
 - q1 and q2: at(robq,loc1) and at(robq,loc2)
 - ur and uq: unloaded(robr) and unloaded(robq)
- containers:
 - a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2), loaded(conta,robr), and loaded(conta,robq)
 - b1, b2, br, and bq: in(contb,loc1), in(contb,loc2), loaded(contb,robr), and loaded(contb,robq)
- initial state: {r1, q2, a1, b2, ur, uq}

Simplified DWR Problem: State Proposition Symbols

•idea: represent each atom that may occur in a state by a single (short) proposition symbol

•robots:

- •r1 and r2: at(robr,loc1) and at(robr,loc2)
- •q1 and q2: at(robq,loc1) and at(robq,loc2)
- ur and uq: unloaded(robr) and unloaded(robq)

·containers:

- •a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2), loaded(conta,robr), and loaded(conta,robq)
- •b1, b2, br, and bq: in(contb,loc1), in(contb,loc2), loaded(contb,robr), and loaded(contb,robq)
- •14 state propositions
- •initial state: {r1, q2, a1, b2, ur, uq}

Simplified DWR Problem: Action Symbols

- · move actions:
 - Mr12: move(robr,loc1,loc2), Mr21: move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2), Mq21: move(robq,loc2,loc1)
- load actions:
 - Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lbr1, Lbr2, Lbq1, and Lbq2 correspondingly
- · unload actions:
 - Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, Ubr1, Ubr2, Ubq1, and Ubq2 correspondingly

Simplified DWR Problem: Action Symbols

•move actions:

•Mr12: move(robr,loc1,loc2), Mr21: move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2), Mq21: move(robq,loc2,loc1)

·load actions:

•Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1, Lbr2, Lbq1, and Lbq2 correspondingly

•unload actions:

•Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, Uar1, Ubr2, Ubq1, and Ubq2 correspondingly

- •14 state symbols: lower case, italic
- •20 action symbols: uppercase, not italic

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- · Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

- •A Propositional DWR Example
- **≻The Basic Planning Graph (No Mutex)**
- Layered Plans
- Mutex Propositions and Actions
- •Forward Planning Graph Expansion
- •Backwards Search in the Planning Graph
- •The Graphplan Algorithm

Solution Existence

- **Proposition**: A propositional planning problem $\mathcal{P}=(\Sigma,s_i,g)$ has a solution iff $S_a \cap \Gamma^{>}(\{s_i\}) \neq \{\}.$
- **Proposition**: A propositional planning problem $\mathcal{P}=(\Sigma,s_i,g)$ has a solution iff $\exists s \in \Gamma^{<}(\{g\}) : s \subseteq s_i$.

Solution Existence

- •Proposition: A propositional planning problem $\mathcal{P}=(\Sigma,s_i,g)$ has a solution iff $S_g \cap \Gamma^{>}(\{s_i\}) \neq \{\}$.
 - •... iff there is a goal state that is also a reachable state
- •Proposition: A propositional planning problem $\mathcal{P}=(\Sigma, s_i, g)$ has a solution iff $\exists s \in \Gamma^{<}(\{g\}) : s \subseteq s_i$.
 - •... iff there is a minimal set of propositions amongst all regression sets that is a subset of the initial state

Reachability Tree

- tree structure, where:
 - root is initial state s;
 - children of node s are $\Gamma(\{s\})$
 - arcs are labelled with actions
- all nodes in reachability tree are $\Gamma^{>}(\{s_i\})$
 - all nodes to depth d are $\Gamma^d(\{s_i\})$
 - solves problems with up to dactions in solution
- problem: O(k^d) nodes;
 k = applicable actions per state

Reachability Tree

- •tree structure, where:
 - •root is initial state s;
 - •children of node s are $\Gamma(\{s\})$
 - ·arcs are labelled with actions
- •all nodes in reachability tree are Γ ($\{s_i\}$)
 - •all nodes to depth d are $\Gamma^d(\{s_i\})$
 - •solves problems with up to dactions in solution
- •problem: $O(k^d)$ nodes;
- k = applicable actions per state

Planning Graph: Nodes

- layered directed graph G=(N,E):
 - $-N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \dots$
 - state proposition layers: P_0, P_1, \dots
 - action layers: $A_1, A_2, ...$
- first proposition layer P₀:
 - propositions in initial state s_i : $P_0 = s_i$
- action layer A_i:
 - all actions a where: precond(a)⊆P_{i-1}
- proposition layer P_i:
 - all propositions p where: $p \in P_{i-1}$ or $\exists a \in A_i$: $p \in effects^+(a)$

Planning Graph: Nodes

- •layered directed graph G=(N,E):
 - •layered = each node belongs to exactly one layer
 - $\bullet N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \cdots$
 - •proposition and action layers alternate
 - •state proposition layers: $P_0, P_1, ...$
 - •action layers: $A_1, A_2, ...$
- •first proposition layer P_0 :
 - •propositions in initial state s_i : $P_0 = s_i$
- •action layer A_i:
 - all actions a where: precond(a)⊆P_{i-1}
- •proposition layer *P_i*:
 - •all propositions p where: $p \in P_{i-1}$ or $\exists a \in A_i$: $p \in effects^+(a)$
 - •propositions at layer P_j are all propositions in the union of all nodes in the reachability tree at depth j
 - note: negative effects are not deleted from next layer
- •note: $P_{j-1} \subseteq P_j$; propositions in the graph monotonically increase from one proposition layer to the next

Planning Graph: Edges

- from proposition $p \in P_{i-1}$ to action $a \in A_i$:
 - if: p ∈ precond(a)
- from action $a \in A_i$ to layer $p \in P_i$:
 - positive arc if: p ∈ effects⁺(a)
 - negative arc if: p ∈ effects⁻(a)
- · no arcs between other layers

Planning Graph: Arcs

- •directed and layered = arcs only from one layer to the next
- •from proposition $p \in P_{i-1}$ to action $a \in A_i$:
 - •if: $p \in \text{precond}(a)$
- •from action $a \in A_i$ to layer $p \in P_i$:
 - •positive arc if: $p \in effects^+(a)$
 - •negative arc if: $p \in effects^{-}(a)$
- •no arcs between other layers
- •note: $A_{j-1} \subseteq A_j$; actions in the graph monotonically increase from one action layer to the next

Planning Graph Example

•[figure]

- •start with initial proposition layer
- next action layer: applicable action; links from preconditions (black)
- •next proposition layer: previous proposition plus positive effects; links to positive effects (green); links to negative effects (red)
- •next action layer (A₂); precondition links; next proposition layer (P₂); effect links
- •next action layer (A₃); precondition links; next proposition layer (P₃); effect links
- •action layers contain "inclusive disjunctions" of actions

Reachability in the Planning Graph

- · reachability analysis:
 - if a goal g is reachable from initial state s,
 - then there will be a proposition layer P_g in the planning graph such that $g \subseteq P_g$
- · necessary condition, but not sufficient
- · low complexity:
 - planning graph is of polynomial size and
 - can be computed in polynomial time

Reachability in the Planning Graph

- ·reachability analysis:
 - •if a goal g is reachable from initial state s_i
 - •then there will be a proposition layer P_g in the planning graph such that $g \subseteq P_a$
 - •or: if no proposition layer contains *g* then *g* is not reachable
- necessary condition, but not sufficient
 - •necessary vs. sufficient:
 - •reachability tree:
 - nodes contain propositions that must necessarily hold
 - propositions in one node are consistent
 - •planning graph:
 - proposition layers contains propositions that may possibly hold
 - •propositions in one layer usually inconsistent (e.g. robots/containers in two places at once)
 - •similarly, incompatible actions in one layer may interfere with each other

·low complexity:

- ·planning graph is of polynomial size and
- ·can be computed in polynomial time
- need more conditions (for sufficient criterion)

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- · Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

- •A Propositional DWR Example
- •The Basic Planning Graph (No Mutex)

≻Layered Plans

- Mutex Propositions and Actions
- •Forward Planning Graph Expansion
- •Backwards Search in the Planning Graph
- •The Graphplan Algorithm

Independent Actions: Examples

- Mr12 and Lar1:
 - cannot occur together
 - Mr12 deletes precondition r1 of Lar1
- Mr12 and Mr21:
 - cannot occur together
 - Mr12 deletes positive effect r1 of Mr21
- Mr12 and Mq21:
 - may occur in same action layer

Independent Actions: Examples

- •Mr12 and Lar1:
 - cannot occur together
 - •Mr12 deletes precondition r1 of Lar1
- •Mr12 and Mr21:
 - cannot occur together
 - •Mr12 deletes positive effect r1 of Mr21
- •Mr12 and Mq21:
 - •may occur in same action layer

Independent Actions

- Two actions a_1 and a_2 are independent iff:
 - effects⁻(a_1) ∩ (precond(a_2) ∪ effects⁺(a_2)) = {} and
 - effects⁻(a_2) ∩ (precond(a_1) ∪ effects⁺(a_1)) = {}.
- A set of actions π is independent iff every pair of actions a₁,a₂∈π is independent.

Independent Actions

- •idea: independent actions can be executed in any order (in same layer)
- •Two actions a_1 and a_2 are independent iff:
 - •effects $^{-}(a_1) \cap (precond(a_2) \cup effects^{+}(a_2)) = \{\}$ and
 - •effects $^{-}(a_2) \cap (\operatorname{precond}(a_1) \cup \operatorname{effects}^{+}(a_1)) = \{\}.$
 - •two actions are dependent iff:
 - •one deletes a precondition of the other or
 - •one deletes a positive effect of the other
- •A set of actions π is independent iff every pair of actions $a_1, a_2 \in \pi$ is independent.
- •note: independence does not depend on planning problem; can be pre-computed
- note: independence relation is symmetrical (follows from definition)

Pseudo Code: independent

```
function independent(a_1,a_2)

for all p \in \text{effects}^-(a_1)

if p \in \text{precond}(a_2) or p \in \text{effects}^+(a_2) then

return false

for all p \in \text{effects}^-(a_2)

if p \in \text{precond}(a_1) or p \in \text{effects}^+(a_1) then

return false

return true
```

```
Pseudo Code: independent

•function independent(a₁,a₂)

•returns true iff the two given actions are independent

•for all p∈effects⁻(a₁)

•if p∈precond(a₂) or p∈effects⁺(a₂) then

•return false

•for all p∈effects⁻(a₂)

•if p∈precond(a₁) or p∈effects⁺(a₁) then

•return false

•return true

•complexity:

•let b be max. number of preconditions, positive, and negative effects of any action

•element test in hash-set takes constant time

•complexity: O(b)
```

Applying Independent Actions

- A set π of independent actions is <u>applicable</u> to a state s iff U_{a∈π}precond(a) ⊆ s.
- The <u>result</u> of applying the set π in s is defined as: $y(s,\pi) = (s \text{effects}^-(\pi)) \cup \text{effects}^+(\pi)$, where:
 - precond(π) = $U_{a\in\pi}$ precond(a),
 - effects⁺(π) = $U_{a\in\pi}$ effects⁺(a), and
 - − effects⁻(π) = $\mathbf{U}_{a \in \pi}$ effects⁻(a).

Applying Independent Actions

- •A set π of independent actions is <u>applicable</u> to a state s iff $\bigcup_{a \in \pi} \operatorname{precond}(a) \subseteq s$.
- •note: applying a set of independent actions can be done in any order
- •The <u>result</u> of applying the set π in s is defined as:

 $y(s,\pi) = (s - effects^{-}(\pi)) \cup effects^{+}(\pi)$, where:

- •precond(π) = $\cup_{a \in \pi}$ precond(a),
- •effects⁺(π) = $\cup_{a \in \pi}$ effects⁺(a), and
- •effects⁻(π) = $\cup_{a \in \pi}$ effects⁻(a).

Execution Order of Independent Actions

- **Proposition**: If a set π of independent actions is applicable in state s then, for any permutation $\langle a_1, ..., a_k \rangle$ of the elements of π :
 - the sequence $\langle a_1, ..., a_k \rangle$ is applicable to s, and
 - the state resulting from the application of π to s is the same as from the application of $\langle a_1, ..., a_k \rangle$, i.e.: $\gamma(s, \pi) = \gamma(s, \langle a_1, ..., a_k \rangle)$.

Execution Order of Independent Actions

- •Proposition: If a set π of independent actions is applicable in state s then, for any permutation $\langle a_1,...,a_k\rangle$ of the elements of π :
 - •the sequence $\langle a_1,...,a_k \rangle$ is applicable to s, and
 - •the state resulting from the application of π to s is the same as from the application of $\langle a_1,...,a_k \rangle$, i.e.:

 $\gamma(s,\pi) = \gamma(s,\langle a_1,\ldots,a_k\rangle).$

Layered Plans

- Let $P = (A, s_i, g)$ be a statement of a propositional planning problem and G = (N, E), $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup ...$, the corresponding planning graph.
- A <u>layered plan</u> over *G* is a sequence of sets of actions: $\prod = \langle \pi_1, ..., \pi_k \rangle$ where:
 - $-\pi_i\subseteq A_i\subseteq A,$
 - $-\pi_i$ is applicable in state P_{i-1} , and
 - the actions in π_i are independent.

Layered Plans

- •Let $P = (A, s_i, g)$ be a statement of a propositional planning problem and G = (N, E), $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup ...$, the corresponding planning graph.
- •A <u>layered plan</u> over G is a sequence of sets of actions: $\prod = \langle \pi_1, ..., \pi_k \rangle$ where:
 - $\bullet \pi_i \subseteq A_i \subseteq A$,
 - • π_i is applicable in state P_{i-1} , and
 - •the actions in π_i are independent.

Layered Solution Plan

- A layered plan $\prod = \langle \pi_1, ..., \pi_k \rangle$ is a solution to a to a planning problem $P = (A, s_i, g)$ iff:
 - $-\pi_1$ is applicable in s_i ,
 - for $j \in \{2...k\}$, π_j is applicable in state
 - $\gamma(...\gamma(\gamma(s_{i},\pi_{1}), \pi_{2}), ... \pi_{j-1}), \text{ and}$
 - $-g\subseteq \gamma(\ldots\gamma(\gamma(s_i,\pi_1),\,\pi_2),\,\ldots,\,\pi_k).$

Layered Solution Plan

- •A layered plan $\prod = \langle \pi_1, ..., \pi_k \rangle$ is a solution to a to a planning problem $P = (A, s_i, g)$ iff:
 - • π_1 is applicable in s_i ,
 - •for $j \in \{2...k\}$, π_i is applicable in state $\gamma(...\gamma(\gamma(s_i,\pi_1), \pi_2), ... \pi_{i-1})$, and
 - • $g \subseteq \gamma(...\gamma(\gamma(s_i, \pi_1), \pi_2), ..., \pi_k).$
- •note: independence of actions still not sufficient criterion for solution

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- · Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

- •A Propositional DWR Example
- •The Basic Planning Graph (No Mutex)
- Layered Plans
- **≻**Mutex Propositions and Actions
- •Forward Planning Graph Expansion
- •Backwards Search in the Planning Graph
- •The Graphplan Algorithm

Problem: Dependent Propositions: Example

- r2 and ar.
 - r2: positive effect of Mr12
 - ar: positive effect of Lar1
 - but: Mr12 and Lar1 not independent
 - hence: r2 and ar incompatible in P₁
- r1 and r2:
 - positive and negative effects of same action: Mr12
 - hence: r1 and r2 incompatible in P₁

Problem: Dependent Propositions: Example

- •r2 and ar:
 - •r2: positive effect of Mr12
 - •ar: positive effect of Lar1
 - •but: Mr12 and Lar1 not independent
 - •dependent actions cannot occur together same set of actions in a layered plan, e.g. in $\pi_{\rm 1}$
 - •hence: r2 and ar incompatible in P1
- •*r*1 and *r*2:
 - positive and negative effects of same action: Mr12
 - •hence: r1 and r2 incompatible in P1
- •both cases: compatible if they are also
 - •two positive effects of one action
 - •the positive effects of two independent actions
- •incompatible propositions: cannot be reached through preceding action layer (A_1)

No-Operation Actions

- No-Op for proposition *p*:
 - name: Ap
 - precondition: p
 - effect: p
- *r1* and *r2*:
 - r1: positive effect of Ar1
 - r2: positive effect of Mr12
 - but: Ar1 and Mr12 not independent
 - hence: r1 and r2 incompatible in P₁
- · only one incompatibility test

No-Operation Actions

•No-Op for proposition *p*:

•for every action layer and every proposition that may persist

•name: Ap

•precondition: p

•effect: p

•r1 and r2:

•r1: positive effect of Ar1

•r2: positive effect of Mr12

•but: Ar1 and Mr12 not independent

•hence: r1 and r2 incompatible in P1

only one incompatibility test

•previous slide: two types of incompatibility (positive effects of dependent actions + positive and negative effects of same action)

with no-ops: only first type needed (simplification)

Mutex Propositions

- Two propositions p and q in proposition layer P_j are mutex (mutually exclusive) if:
 - every action in the preceding action layer A_j that has p as a positive effect (incl. no-op actions) is mutex with every action in A_i that has q as a positive effect, and
 - there is no single action in A_j that has both, p and q, as positive effects.
- notation: $\mu P_i = \{ (p,q) \mid p,q \in P_i \text{ are mutex} \}$

Mutex Propositions

- •Two propositions p and q in proposition layer P_j are $\underline{\text{mutex}}$ (mutually exclusive) if:
 - •every action in the preceding action layer A_j that has p as a positive effect (incl. no-op actions) is mutex with every action in A_j that has q as a positive effect, and
 - •need to define when two actions are mutex
 - obvious case: if they are dependent
 - •there is no single action in A_i that has both, p and q, as positive effects.
- •notation: $\mu P_i = \{ (p,q) \mid p,q \in P_i \text{ are mutex} \}$
- note: mutex relation for propositions is symmetrical (follows from definition)
- •proposition layer P_1 contains 8 mutex pairs

Pseudo Code: mutex for Propositions

```
function mutex(p_1,p_2,\mu A_j)
for all a_1 \in p_1.producers()
for all a_2 \in p_2.producers()
if (a_1,a_2) \notin \mu A_j then
return false
return true
```

Pseudo Code: mutex for Propositions

•function mutex($p_1, p_2, \mu A_j$)

•input: two propositions (from same layer), mutex relation between the actions in the preceding layer

•for all $a_1 \in p_1$.producers()

•producers: actions in the preceding layer that have p_1 as a positive effect; should be stored with proposition node

•for all $a_2 \in p_2$.producers()

•producers: see above

•if (a₁,a₂)∉μA; then

•test whether the action are in the given set of mutually exclusive actions

return false

•if not: consistent producers found; propositions are not mutex

•return true

•no consistent producers found; propositions are mutex

•note: single action producing both is covered: action cannot be mutex with itself

•complexity: let m be number of actions in domain (incl. no-ops); $O(m^2)$

Mutex Actions: Example

- •r1 and r2 are mutex in P1
- •r1 is precondition for Lar1 in A_2
- •r2 is precondition for Mr21 in A2
- •hence: Lar1 and Mr21 are mutex in A2
- •dependency between actions in action layer A_j leads to mutex between propositions in P_j
- •mutex between propositions in P_j leads to mutex between actions in action layer A_{j+1}

Mutex Actions

- Two actions a_1 and a_2 in action layer A_j are $\underline{\text{mutex}}$ if:
 - $-a_1$ and a_2 are dependent, or
 - a precondition of a_1 is mutex with a precondition of a_2 .
- notation: $\mu A_j = \{ (a_1, a_2) \mid a_1, a_2 \in A_j \text{ are mutex} \}$

Mutex Actions

- •Two actions a_1 and a_2 in action layer A_i are mutex if:
 - • a_1 and a_2 are dependent, or
 - dependent actions are necessarily mutex
 - •a precondition of a_1 is mutex with a precondition of a_2 .
 - •dependency is domain-specific, i.e. not problem-specific
 - mutex-relation is problem specific
 - pair of actions/propositions may be mutex in one layer but not so in another

•notation:

$$\mu A_i = \{ (a_1, a_2) \mid a_1, a_2 \in A_i \text{ are mutex} \}$$

- •action layer A₁ contains 2 mutex (dependent) pairs
- •action layer A₂ contains 24 mutex pairs (not all dependent)
- •note: mutex relation (for actions and propositions) is symmetrical (follows from definition)

Pseudo Code: mutex for Actions

```
function \operatorname{mutex}(a_1,a_2,\mu P)

if \neg\operatorname{independent}(a_1,a_2) then

return true

for all p_1 \in \operatorname{precond}(a_1)

for all p_2 \in \operatorname{precond}(a_2)

if (p_1,p_2) \in \mu P then return true

return false
```

```
Pseudo Code: mutex for Actions

•function mutex(a₁,a₂,μP)

•μP – mutex relations from the preceding proposition layer

•if ¬independant(a₁,a₂) then

•return true

•for all p₁∈precond(a₁)
```

- for all p₂∈precond(a₂)
 if (p₁,p₂)∈µP then return true
- ·return false
- •complexity: let b = max number preconditions/pos. effects/neg effects: $O(b^2)$

Decreasing Mutex Relations

- **Proposition**: If $p,q \in P_{i-1}$ and $(p,q) \notin \mu P_{i-1}$ then $(p,q) \notin \mu P_i$.
 - Proof:
 - if $p,q \in P_{j-1}$ then $Ap,Aq \in A_j$
 - if $(p,q)\notin \mu P_{j-1}$ then $(Ap,Aq)\notin \mu A_j$
 - since Ap,Aq \in A_i and (Ap,Aq) \notin μ A_i, (p,q) \notin μ P_i must hold
- Proposition: If $a_1, a_2 \in A_{i-1}$ and $(a_1, a_2) \notin \mu A_{i-1}$ then $(a_1, a_2) \notin \mu A_i$.
 - Proof
 - if a₁,a₂∈A_{i-1} and (a₁,a₂)∉μA_{i-1} then
 - $-a_1$ and a_2 are independent and
 - their preconditions in P_{i-1} are not mutex
 - both properties remain true for P_i
 - hence: $a_1, a_2 \in A_i$ and $(a_1, a_2) \notin \mu A_i$

Decreasing Mutex Relations

- •Proposition: If $p,q \in P_{i-1}$ and $(p,q) \notin \mu P_{i-1}$ then $(p,q) \notin \mu P_i$.
 - •Proof:
 - •if $p,q \in P_{i-1}$ then Ap,Aq $\in A_i$
 - •if (p,q)∉μP_{i-1} then (Ap,Aq)∉μA_i
 - •since Ap,Aq \in A_i and (Ap,Aq) \notin μ A_i, (p,q) \notin μ P_i must hold
- •Proposition: If $a_1, a_2 \in A_{j-1}$ and $(a_1, a_2) \notin \mu A_{j-1}$ then $(a_1, a_2) \notin \mu A_{j-1}$
 - •Proof:
 - •if $a_1, a_2 \in A_{i-1}$ and $(a_1, a_2) \notin \mu A_{i-1}$ then
 - $\cdot a_1$ and a_2 are independent and
 - •their preconditions in P_{i-1} are not mutex
 - both properties remain true for P_i
 - •hence: $a_1, a_2 \in A_i$ and $(a_1, a_2) \notin \mu A_i$
- •mutex relations are monotonically decreasing (between layers with the same propositions)

Removing Impossible Actions

- •actions with mutex preconditions p and q are impossible
 - •example: preconditions r2 and ar of Uar2 in A_2 are mutex
- •action with mutex preconditions can never be part of any layered plan (will violate applicability condition in definition)
- ·can be removed from the graph
 - •example: remove Uar2 from A2
- •mutex pair of actions must remain in graph because one of the actions may be used in final plan
- note: still consistent with monotonically increasing actions

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- · Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

- •A Propositional DWR Example
- •The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- > Forward Planning Graph Expansion
- Backwards Search in the Planning Graph
- •The Graphplan Algorithm

Reachability in Planning Graphs

- **Proposition**: Let $P = (A, s_i, g)$ be a propositional planning problem and G = (N, E), $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup ...$, the corresponding planning graph. If
 - -g is reachable from s_i then
 - there is
 - there is a proposition layer P_g such that
 - $g \subseteq P_q$ and
 - $\neg \exists g_1, g_2 \in g: (g_1, g_2) \in \mu P_g.$

Reachability in Planning Graphs

- •Proposition: Let $P = (A, s_i, g)$ be a propositional planning problem and G = (N, E), $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup ...$, the corresponding planning graph. If •g is reachable from s_i
- then
 - $\ \, \hbox{ $^{ \cdot}$ there is a proposition layer P_g such that } \\$
 - $\cdot g$ ⊆ P_g and
 - •¬∃ $g_1,g_2 \in g$: $(g_1,g_2) \in \mu P_g$.
- •still only necessary condition, but relatively efficient to compute

The Graphplan Algorithm: Basic Idea

- expand the planning graph, one action layer and one proposition layer at a time
- from the first graph for which P_g is the last proposition layer such that
 - $-g \subseteq P_g$ and
 - $\neg \exists g_1, g_2 \in g: (g_1, g_2) \in \mu P_g$
- search backwards from the last (proposition) layer for a solution

The Graphplan Algorithm: Basic Idea

- •expand the planning graph, one action layer and one proposition layer at a time
 - •similar to iterative deepening: discover new part of the search space with each iteration
- •from the first graph for which P_q is the last proposition layer such that
 - •g ⊆ P_g and
 - •¬∃ $g_1,g_2 \in g$: $(g_1,g_2) \in \mu P_g$
 - •no need to search for solutions in graph with fewer layers; see last proposition
- •search backwards from the last (proposition) layer for a solution
- •two major steps:
 - expansion of planning graph to next proposition layer
 - searching a given planning graph for a solution

Planning Graph Data Structure

```
• k-th planning graph G<sub>k</sub>:
```

- nodes N:
 - array of proposition layers $P_0 \dots P_k$ proposition layer j: set of proposition symbols
 - array of action layers A₁ ... A_k
 proposition layer j: set of action symbols
- - precondition links: $pre_i \subseteq P_{i-1} \times A_i$, $j \in \{1...k\}$
 - positive effect links: $e_i^+ \subseteq A_i \times P_i$, $j \in \{1...k\}$
 - negative effect links: $e_j^- \subseteq A_j \times P_j$, $j \in \{1...k\}$
 - proposition mutex links: $\mu P_j \subseteq P_i \times P_j$, $j \in \{1...k\}$
 - action mutex links: $\mu A_i \subseteq A_i \times A_i$, $j \in \{1...k\}$

Planning Graph Data Structure

•k-th planning graph G_k :

•nodes N:

•array of proposition layers $P_0 \dots P_k$

proposition layer j: set of proposition symbols

•array of action layers $A_1 \dots A_k$

•proposition layer j: set of action symbols

•edges E:

•precondition links: $pre_i \subseteq P_{i-1} \times A_i$, $j \in \{1...k\}$

•positive effect links: $e_i^+ \subseteq A_i \times P_i$, $j \in \{1...k\}$

•negative effect links: $e_i^- \subseteq A_i \times P_i$, $j \in \{1...k\}$

•proposition mutex links: $\mu A_i \subseteq A_i \times A_i$, $j \in \{1...k\}$

•action mutex links: $\mu P_i \subseteq P_i \times P_i$, $j \in \{1...k\}$

•note: instance of this data structure does not depend on problem

•initial planning graph: $P_0 = s_i$; rest is empty sets

Pseudo Code: expand

```
function expand(G_{k-1})

A_k \leftarrow \{a \in A \mid \text{precond}(a) \subseteq P_{k-1} \text{ and } \{(p_1,p_2) \mid p_1,p_2 \in \text{precond}(a)\} \cap \mu P_{k-1} = \{\}\}

\mu A_k \leftarrow \{(a_1,a_2) \mid a_1,a_2 \in A_k, \ a_1 \neq a_2, \ \text{and mutex}(a_1,a_2,\mu P_{k-1})\}

P_k \leftarrow \{p \mid \exists a \in A_k : p \in \text{effects}^+(a)\}

\mu P_k \leftarrow \{(p_1,p_2) \mid p_1,p_2 \in P_k, \ p_1 \neq p_2, \ \text{and mutex}(p_1,p_2,\mu A_k)\}

for all a \in A_k

pre_k \leftarrow pre_k \cup (\{p \mid p \in P_{k-1} \ \text{and } p \in \text{precond}(a)\} \times a)

e_k^+ \leftarrow e_k^+ \cup (a \times \{p \mid p \in P_k \ \text{and } p \in \text{effects}^+(a)\})

e_k^- \leftarrow e_k^- \cup (a \times \{p \mid p \in P_k \ \text{and } p \in \text{effects}^-(a)\})
```

```
Pseudo Code: expand

•function expand(G_{k-1})

•A_k \leftarrow \{a \in A \mid \text{precond}(a) \subseteq P_{k-1} \text{ and } \{(p_1,p_2) \mid p_1,p_2 \in \text{precond}(a)\} \cap \mu P_{k-1} = \{\}\}

•actions with satisfied, non-mutex preconditions (incl. no-ops)

•\mu A_k \leftarrow \{(a_1,a_2) \mid a_1,a_2 \in A_k, \ a_1 \neq a_2, \text{ and mutex}(a_1,a_2,\mu P_{k-1})\}

•P_k \leftarrow \{p \mid \exists a \in A_k : p \in \text{effects}^+(a)\}

•union of all positive effects

•\mu P_k \leftarrow \{(p_1,p_2) \mid p_1,p_2 \in P_k, \ p_1 \neq p_2, \text{ and mutex}(p_1,p_2,\mu A_k)\}

•for all a \in A_k

•pre_k \leftarrow pre_k \cup (\{p \mid p \in P_{k-1} \text{ and } p \in \text{precond}(a)\} \times a)

•e_k^+ \leftarrow e_k^+ \cup (a \times \{p \mid p \in P_k \text{ and } p \in \text{effects}^+(a)\})

•e_k^- \leftarrow e_k^- \cup (a \times \{p \mid p \in P_k \text{ and } p \in \text{effects}^-(a)\})
```

Planning Graph Complexity

- **Proposition**: The size of a planning graph up to level *k* and the time required to expand it to that level are polynomial in the size of the planning problem.
- Proof:
 - problem size: *n* propositions and *m* actions
 - $-|P_i| \le n$ and $|A_i| \le n + m$ (incl. no-op actions)
 - algorithms for generating each layer and all link types are polynomial in size of layer

Planning Graph Complexity

- •Proposition: The size of a planning graph up to level *k* and the time required to expand it to that level are polynomial in the size of the planning problem.
- •Proof:
 - •problem size: n propositions and m actions
 - • $|P_i| \le n$ and $|A_i| \le n+m$ (incl. no-op actions)
 - •algorithms for generating each layer and all link types are polynomial in size of layer

Fixed-Point Levels

- A <u>fixed-point level</u> in a planning graph G is a level κ such that for all i, $i > \kappa$, level i of G is identical to level κ , i.e. $P_i = P_{\kappa}$, $\mu P_i = \mu P_{\kappa}$, $A_i = A_{\kappa}$, and $\mu A_i = \mu A_{\kappa}$.
- **Proposition**: Every planning graph *G* has a fixed-point level κ , which is the smallest k such that $|P_k| = |P_{k+1}|$ and $|\mu P_k| = |\mu P_{k+1}|$.
- Proof:
 - $-P_i$ grows monotonically and μP_i shrinks monotonically
 - $-A_i$ and P_i only depend on P_{i-1} and μP_{i-1}

Fixed-Point Levels

- •A <u>fixed-point level</u> in a planning graph G is a level κ such that for all i, $i > \kappa$, level i of G is identical to level κ , i.e. $P_i = P_{\kappa}$, $\mu P_i = \mu P_{\kappa}$, $A_i = A_{\kappa}$, and $\mu A_i = \mu A_{\kappa}$.
- •Proposition: Every planning graph G has a fixed-point level κ , which is the smallest k such that $|P_k|=|P_{k+1}|$ and $|\mu P_k|=|\mu P_{k+1}|$.

•
$$|P_k| = |P_{k+1}|$$
 implies $P_k = P_{k+1}$

- •Proof:
 - •P_i grows monotonically and μ P_i shrinks monotonically

• μP_i shrinks monotonically: for equal P_i

- • A_i and P_i only depend on P_{i-1} and μP_{i-1}
- •time complexity: O(n+m) from fixed point level; only copying required

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- · Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

- •A Propositional DWR Example
- •The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- •Forward Planning Graph Expansion
- **≻**Backwards Search in the Planning Graph
- •The Graphplan Algorithm

Searching the Planning Graph

- · general idea:
 - search backwards from the last proposition layer P_k in the current graph
 - let g be the set of goal propositions that need to be achieved at a given proposition layer P_j (initially the last layer)
 - find a set of actions $\pi_j \subseteq A_j$ such that these actions are not mutex and together achieve g
 - take the union of the preconditions of π_j as the new goal set to be achieved in proposition layer $P_{j,1}$

Searching the Planning Graph

•general idea:

- •search backwards from the last proposition layer P_k in the current graph
- •let g be the set of goal propositions that need to be achieved at a given proposition layer P_i (initially the last layer)
- •find a set of actions $\pi_j \subseteq A_j$ such that these actions are not mutex and together achieve g
- •take the union of the preconditions of π_j as the new goal set to be achieved in proposition layer P_{j-1}

Planning Graph Search Example

- •initial goal: a2 and b1
- •only one incoming positive effect link per goal (but no-ops not shown)
- •achievable with Uar2 and Ubq1 (which are not mutex; mutex relations not shown)
- precondition links indicate sub-goal at next layer
- •new sub-goal at P_2 : r2, q1, ar, bq
- •only one incoming positive effect link per goal condition (but no-ops not shown)
 - •achieve ar and bq with no-ops
 - •achieve r2 with Mr12 and q1 with Mq21
- •precondition links (for Mr12 and Mg21) indicate some sub-goal at next layer
- •complete sub-goal (incl. preconditions of no-ops) at P₁: r1, q2, ar, bq
- •only one incoming positive effect link per goal condition (but no-ops not shown)
 - •achieve r1 and q2 with no-ops
 - •achieve ar with Lar1 and bq with Lbq2
- precondition links (for Lar1 and Lbq2) indicate some sub-goal at next layer
- •complete sub-goal (incl. preconditions of no-ops) at P_0 : complete initial state

Repeated Sub-Goals

- •ultimate goal leads to possible sub-goals at P_i
- •possible sub-goals at P_i lead to possible sub-goals at P_i
 - •search to initial proposition layer to see whether sub-goals can be achieved
 - •suppose: sub-goals at P_i cannot be achieved
- •backtrack to later layer, say P_i
- •possible sub-goals at P_j may lead to same possible sub-goals at P_i , but in a different way
 - •no need to repeat search: same sub-goals at same layer still cannot be achieved
 - •generalization: same some sub-goals at same or earlier layer still cannot be achieved
 - •otherwise no-op would achieve sub-goal at later layer

The nogood Table

- <u>nogood table</u> (denoted ∇) for planning graph up to layer k:
 - array of k sets of sets of goal propositions
 - inner set: one combination of propositions that cannot be achieved
 - outer set: all combinations that cannot be achieved (at that layer)
- before searching for set g in P_i:
 - check whether g∈ $\nabla(j)$
- when search for set g in P_i has failed:
 - add g to $\nabla(j)$

The nogood Table

- •nogood table (denoted ∇) for planning graph up to layer k:
 - •array of k sets of sets of goal propositions
 - •inner set: one combination of propositions that cannot be achieved
 - outer set: all combinations that cannot be achieved (at that layer)
 - •mutex only gives pairs of propositions that cannot be achieved together, nogood table gives impossible tuples
- •before searching for set g in P_i:
 - •check whether $g \in \nabla(j)$
 - •actually: in *j* or later layer
- •when search for set g in P_i has failed:
 - •add g to $\nabla(j)$
 - •or move?

Pseudo Code: extract

function extract(G,g,i)

if i=0 then return $\langle \rangle$ if $g \in \nabla(i)$ then return failure $\prod \leftarrow \operatorname{gpSearch}(G,g,\{\},i)$ if $\prod \neq \operatorname{failure}$ then return \prod $\nabla(i) \leftarrow \nabla(i) + g$ return failure

Pseudo Code: extract

•function extract(G,g,i)

•inputs: planning graph *G*, set of propositions (sub-goals) *g*, and layer at which sub-goals need to be achieved *i*

•output: a layered plan $\langle \pi_1, ..., \pi_i \rangle$ that achieves g at i in G or failure if there is no such plan

•if *i*=0 then return ⟨⟩

•trivial success with empty plan

•if $g \in \nabla(i)$ then return failure

•sub-goals have resulted in failure before

 $\cdot \pi_i \leftarrow \text{gpSearch}(G, g, \{\}, i)$

perform the search

•if $\pi_i \neq \text{failure then return } \pi_i$

•the search was successful

 $\cdot \nabla(i) \leftarrow \nabla(i) + g$

•unsuccessful search: remember unachievable sub-goals

•return failure

Pseudo Code: gpSearch

```
Pseudo Code: gpSearch
•function gpSearch(G,g,\pi,i)
        •inputs: planning graph G, remaining sub-goals g, and set of actions already
        committed to \pi, both at level i
        outputs: layered plan
•if g={} then
        •all actions chosen
•\prod ← extract(G,\cup_{a \in \pi}precond(a),i-1)
•if ∏=failure then return failure
•return \prod \bullet \langle \pi \rangle
\cdot p \leftarrow g.selectOne()
        •no need to backtrack here; order only important for efficiency
•resolvers \leftarrow \{a \in A_i \mid p \in \text{effects}^+(a) \text{ and } \neg \exists a' \in \pi: (a,a') \in \mu A_i\}
•if resolvers={} then return failure
•a ← resolvers.chooseOne()

    non-deterministic choice point; backtrack to here
```

•return GPSearch(G,g-effects⁺(a), π +a,i)

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- · Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

- •A Propositional DWR Example
- •The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- •Forward Planning Graph Expansion
- Backwards Search in the Planning Graph
- **≻The Graphplan Algorithm**

Pseudo Code: Graphplan

```
function graphplan(A,s_i,g)

i 
ildet 0; 
allow 
i]; P_0 
ildet s_i; G 
ildet (P_0, {})

while (g 
otin P_i 
otin G^2 
cap P_i 
otin P_i 
otin G^2 
cap P_i 
otin G^2 
otin G^2 
cap P_i 
otin
```

```
Pseudo Code: graphplan
•function graphplan(A,s<sub>i</sub>,g)
          •given planning problem, return layered solution plan
\cdot i \leftarrow 0; \forall \leftarrow []; P_0 \leftarrow s_i; G \leftarrow (P_0, \{\})
•while (g \not P_i \text{ or } g^2 \cap \mu P_i \neq \{\}) and \neg \text{fixedPoint}(G) do
\cdot i \leftarrow i+1; expand(G)
          •planning graph expanded until solution possible or fixed point reached
•if g \not = P_i or g^2 \cap \mu P_i \neq \{\} then return failure
          test necessary criterion
\cdot \eta \leftarrow \text{fixedPoint}(G) ? |\nabla(\kappa)| : 0
          •used to test when expansion will not work
\cdot \Pi \leftarrow \text{extract}(G,g,i)
•while ∏=failure do
\cdot i \leftarrow i+1; expand(G)
\cdot \Pi \leftarrow \text{extract}(G,g,i)
•if \prod=failure and fixedPoint(G) then
•if \eta = |\nabla(\kappa)| then return failure
\cdot \eta \leftarrow |\nabla(\kappa)|
```

•return ∏

Graphplan Properties

- **Proposition**: The Graphplan algorithm is sound, complete, and always terminates.
 - It returns failure iff the given planning problem has no solution;
 - otherwise, it returns a layered plan
 ∏ that is a solution to the given planning problem.
- Graphplan is orders of magnitude faster than previous techniques!

Graphplan Properties

- •Proposition: The Graphplan algorithm is sound, complete, and always terminates.
 - •It returns failure iff the given planning problem has no solution;
 - •otherwise, it returns a layered plan \prod that is a solution to the given planning problem.
- •Graphplan is orders of magnitude faster than previous techniques!
 - caveat: restriction to propositional STRIPS

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- · Backwards Search in the Planning Graph
- The Graphplan Algorithm

Overview

- •A Propositional DWR Example
- •The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- •Forward Planning Graph Expansion
- •Backwards Search in the Planning Graph
- •The Graphplan Algorithm