МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА

Вычислительный центр Г. А. ФУРМАН

ПОДПРОГРАММА ВЫЧИСЛЕНИЯ ВСЕХ КОРНЕЙ МНОГОЧЛЕНА ДЛЯ ИП-4

Серия:

Математическое обслуживание машины «Сетунь»

Под общей редакцией Е. А. ЖОГОЛЕВА Выпуск 5

ИЗДАТЕЛЬСТВО МОСКОВСКОГО
УНИВЕРСИТЕТА 1965

Содержание

§1. Назначені	ие и использов	ание подпрог	раммы.	3
§2. Метод				9
Цитированная	литература			14
Приложение.	Подпрограмма	вычисления	всех	корней
много-члена.				15

§1. Назначение и использование подпрограммы.

Данная подпрограмма предназначена для нахождения всех корней многочлена:

$$f(x) = a_0 x^n + a_1 x^n - 1 + ... + a_{n-1} x + a_n$$

где n — степень многочлена, удовлетворяющая условию $2 \le n \le 44$, a_k (k=1,2,...,n) — комплексные числа, являющиеся коэффициентами многочлена, $a_0 \ne 0$.

Подпрограмма работает в системе ИП-4 [1], поэтому перед её использованием необходимо ввести в память машины ИП-4 с библиотекой подпрограмм.

Сама подпрограмма вместе со своими рабочими ячейками занимает на магнитном барабане 12 зон с зоны 22 по зону 34 включительно. Подпрограмма снабжена собственной программой ввода, поэтому для ввода её в машину достаточно установить на фототрансмиттер I перфоленту с подпрограммой и нажать кнопку «Начальный пуск». При неправильном вводе какой-либо зоны необходимо как обычно, оттянуть одну зону перфоленты назад и нажать кнопку «Пуск». По окончании ввода подпрограммы в зону Ф₂ вызывается основная зона ИП-4 и происходит останов:

Перед обращением к данной подпрограмме основная программа должна получить или ввести коэффициенты многочлена. Они могут быть размещены на любом свободном месте магнитного барабана (адрес коэффициента а₀ задается при обращении к подпрограмме), но должны быть расположены в последовательных длинных ячейках магнитного барабана, начиная с а₀, по порядку возрастания их номеров. Каждый коэффициент занимает три последовательные длинные ячейки, как этого требует ИП-4 (последняя короткая ячейка остается свободной), так что обобщенные адреса смежных коэффициентов отличаются на константу О 10 (glF). Кроме того, каждый козффициент (мантиссы его действительной и мнимой частей и порядок) должны находится в одной зоне магнитного барабана.

Обращение к подпрограмме производится с помощью обобщенного перехода и имеет следующий вид:

$$egin{align*} &(x_0)\!:\!Z\,Y\!4\,Z\!3 \ &(x_1)\!:\!Z\,WY\,00 \ &(x_2)\!:\!0\,22\,Y\!4 \ \end{pmatrix}$$
 Обобщенный переход к подпрограмме
$$&(x_3)\!:\!<\!a_0\!> \ &(x_4)\!:\!g\,(n\!+\!1)l_F \ &(x_5)\!:\!P_\varepsilon \ \end{pmatrix}$$
 Информация при обращении

Здесь <a $_0>$ является обобщенным адресом начала массива коэффициентов (обобщенным адресом коэффициента a0); величина g(n+1) $l_{\rm F}$ рассматривается в каче-

стве целого числа и задается коротким словом, причем n — степень многочлена; величина P_{ϵ} задает относительную погрешность ϵ вычисления корней так, что $\epsilon=3^{P\epsilon}$, P_{ϵ} — задается в единицах адреса (в пяти старших разрядах короткого слова).

Работа подпрограммы организована таким образом, что после нахождения очередного корня происходит возврат в основную программу к команде (x_6) , следующей за обращением к данной подпрограмме, для обработки и использования полученного значения корня, например, для его печати. При этом вычисленное значение корня хранится по обобщенному адресу $0.33\,ZW$. Для нахождения следующего корня нужно вернуться в подпрограмму с помощью обобщенного перехода:

$$\begin{array}{c} (v_0): ZY4Z3 \\ (v_1): ZWY00 \\ (v_2): 032WX \end{array}$$
 $E\Pi^{r}$ next

При этом, если уже все корни найдены, в подпрограмме произойдет останов Ω_{cn} (в зоне 32 МБ) по команде:

В том случае, когда последующие корни вычислять не требуется, следует перейти к дальнейшему выполнению

основной программы (или прекратить выполнение программы).

Под основную программу и коэффициенты на магнитном барабане остаются зоны 4W÷44 (имеется ввиду барабан с 36 зонами, на машинах с барабаном удвоенной емкости может быть использована, естественно, вся вторая половина). Кроме того, если в основной программе нет обращений к вычислению функций sinu, cosu, shu, chu, eu, то можно использовать в основной программе также и зоны барабана 13, 14 и 2W, занятые соответствующей подпрограммой ИП-4.

Величина є определяет момент окончания вычисления очередного корня согласно условию:

$$\frac{|X_{i+1}-X_i|}{|X_{i+1}|} < \Xi$$
;

Где хі и хі+1-два последовательных приближенных значений корня. Однако в подпрограмме имеется и другое условие окончания вычисления очередного корня, а именно: когда троичный порядок $f(x_i+1)$ будет меньше — 12. При этом предполагается, что выполнение последнего условия означает, что найденное значение X_i достаточно хорошо удовлетворяет уравнению f(x)=0. Для многих многочленов, получаемых на практике, это так на самом деле, в противном случае можно добиться справедливости этого предположения введением подходящего масштабного множителя в коэф-

фициенты многочлена. Таким образом, проверка двух указанных условий означает, что корни будут получаться либо с заданной относительной точностью, либо с меньшей относительной точностью (например, корни, близкие к нулю), если они «достаточно хорошо» удовлетворяют уравнению f(x)=0.

Следует иметь в виду, что на погрешность вычисления каждого очередного корня влияют погрешности нахождения предыдущих корней, так что выполнение условия (1.1) не всегда будет означать, очередной корень найден с заданной относительной точностью. Поэтому тот корень, который находится первым, оказывается в более выгодном положении. При наличии кратных или близких корней будет происходить, как правило, быстрое накопление погрешностей. В этих случаях необходимо задавать как можно более высокую точность вычислений, например, P_{ϵ} =-15 (при P₅<-15 монет произойти «зацикливание», точность вычислений в системе ИП-4, примерно равна семи верным десятичным знакам).

Для контроля точности вычислений в сомнительных случаях рекомендуется повторить решение задачи, предварительно заслав один из средних по времени нахождения корней на место начального приближения $X_{\rm i}$ (по обобщенному адресу 0 22 XZ).

При решении задачи может произойти предупредительный останов [1] (который можно какое-то число раз игнорировать нажатием кнопки «Пуск») или просто

переполнение. Тогда полезно начать решение с другого начального приближения X_i (отличного от -1, 0 и 1), или ввести в коэффициенты подходящий масштабный множитель, если это не приведет к потере точности из-за выполнения второго условия, или сделать замену переменной $y=\alpha x$.

Пример. Пусть коэффициенты многочлена 44-ой степени записаны на барабане в зонах 40÷44. Требуется вычислить и отпечатать все корни данного многочлена. Подпрограмма печати занимает зоны барабана 4W÷4Z. Тогда основную программу можно записать в зону 13 МБ и она будет иметь следующий вид:

$\Pi_{\Phi} = 1$		Зона МБ 13
WX	0 1W XX	$[3.\Pi. \Pi\Pi - 4] \Rightarrow [\Phi_0]$
WY	1 ZX Z0	$\left.\right\}$ $N^{r}\Rightarrow M$,
WO	0 44 0X	
W1	0 1W X3	$[\Phi_0] \Rightarrow [3.\Pi. H\Pi - 4]$
W3	Z Y4 Z3) обощенный переход к подпро-
W4	Z WY 00	грамме вычисления корней
xx	0 22 Y4	многочлена
XY	0 40 WW	< <i>a</i> .>
X0	0 1W 00	$9(n+1)l_f$, $npu n = 99$
X1	0 Z1 00	$P_{\varepsilon} = -\Lambda$

$\Pi_{\varphi}=1$		Зона МБ 13	
Х3	Z Y4 Z3) (Обращение к подпро-
X4	Z WY 00		грамме печати комплек-
YX	0 4X W4	*	сного числа (в один
YY	0 01 00		столбец).
Y0	0 33 ZW	$\langle X_{i+}, \rangle$	
Y1	Z Y4 Z3) BOSEDAT B	з подпрограмму вы-
Y3	Z WY 00	}	корней многочлена
Y4	0 32 WX	числения	корпеи многочлена
ZX	0 13 00		

§2. Метод.

В основу данной подпрограммы положен метод, позволяющий последовательно находить все корни многочлена с комплексными коэффициентами — метод парабол [2]. Этот метод позволяет находить все корни многочлена без задания их начальных приближений. Метод удобен тем, что при вычислении корней не требуется оценивать производную многочлена.

Пусть дан многочлен:

$$f(x) = a_0 x^n + a_1 x^n - 1 + \dots + a_n$$
 (2.1)

 $(a_0 \neq 0, a_0, ..., a_n$ — комплексные числа) и известно значение f(x) в трех точках: x_{i-2}, x_{i-1}, x_i .

^{*}Указанная подпрограмма будет описана в одном из следующих выпусков.

Запишем интерполяционный многочлен Лагранжа по 3-м узлам:

$$\begin{split} Z_{i}(x) &= f(x_{i-2}) \frac{(x-x_{i})(x-x_{i-1})}{(x_{i}-x_{i-2})(x_{i-1}-x_{i-2})} - \\ &- f(x_{i-1}) \frac{(x-x_{i})(x-x_{i-2})}{(x_{i}-x_{i-1})(x_{i-1}-x_{i-2})} + \\ &+ f(x_{i}) \frac{(x-x_{i-1})(x-x_{i-2})}{(x_{i}-x_{i-1})(x_{i-1}-x_{i-2})} \end{split}$$

Введем новые переменные:

$$h = x - x_{i}$$

$$h_{i} = x_{i} - x_{i-1}$$

$$h_{i-1} = x_{i-1} - x_{i-2}$$

$$Z_{i}(x) = f(x_{i-2}) \frac{h(h + h_{i})}{(h_{i} + h_{i-1})h_{i-1}} - f(x_{i-1}) \frac{h(h + h_{i} + h_{i-1})}{h_{i}h_{i-1}} + f(x_{i}) \frac{(h + h_{i})(h + h_{i} + h_{i-1})}{h_{i}(h_{i} + h_{i-1})}$$

Обозначим:

$$\lambda = \frac{h}{h_i}$$
, $\lambda_i = \frac{h_i}{h_{i-1}}$, $\delta_i = 1 + \lambda_i = \frac{h_i + h_{i-1}}{h_{i-1}}$

Тогда

$$Z_{i}(x) = f(x_{i-2})[\lambda^{2} \delta_{i}^{-1} \lambda_{i}^{2} + \lambda \lambda_{i}^{2} \delta_{i}^{-1}] - f(x_{i-1})[\lambda^{2} \lambda_{i} + \lambda \delta_{i}] + f(x_{i})[\lambda^{2} \lambda_{i} \delta_{i}^{-1} + \lambda \lambda_{i} \delta_{i}^{-1} + \lambda + 1]$$

Окончательно получаем:

$$Z_{i}(x) = \lambda^{2} \delta_{i}^{-1} [f(x_{i-2}) \lambda_{i}^{2} - f(x_{i-1}) \lambda \delta_{i} + f(x_{i}) \lambda_{i}] + \lambda \delta_{i}^{-1} [f(x_{i-2}) \lambda_{i}^{2} - f(x_{i-1}) \delta_{i}^{2} + f(x_{i}) (\lambda_{i} + \delta_{i})] + f(x_{i})$$

$$(2.2)$$

Приравниваем (2.2) нулю и решаем относительно λ:

$$\lambda = \frac{-2 f(x_i) \delta_i}{g_i \pm \sqrt{g_i^2 - 4f(x_i) \delta_i \lambda_i [f(x_{i-2}) \lambda_i - f(x_{i-1}) \delta_i + f(x_i)]}}$$
 (2.3)

где

$$g_i = f(x_{i-2})\lambda_i^2 - f(x_{i-1})\delta_i^2 + f(x_i)(\lambda_i + \delta_i)$$

Итерационный процесс получаем, полагая $x=x_i+1$, тогда:

$$\lambda = \lambda_{i+1} = \frac{x_{i+1} - x_i}{x_i - x_{i-1}}$$

 $\lambda_{\text{i+1}}$ находим по формуле (2.3). Затем по найденному $\lambda_{\text{i+1}}$ считаем:

$$h_{i+1} = \lambda_{i+1} h_i$$

$$x_{i+1} = x_i + h_{i+1}$$
(2.4)

Знак перед корнем в формуле (2.3) выбирается так, чтобы знаменатель имел наибольшее значение. Тогда h_{i+1} получается меньшим по величине, т.е. X_{i+1} есть ближайшее значение к X_i .

Процесс удобно начинать при x_0 =-1, x_1 =1, x_2 =0. Это дает λ_2 =-1/2, λ_2 =-1. Для окончания счета задается величина ϵ и при

$$\frac{|X_{i+1} - X_i|}{|X_{i+1}|} < \Xi$$

счет прекращается, а в качестве результата выдается величина \mathbf{x}_{i+1} .

По найденному корню r понижается степень многочлена f(x). Затем весь процесс повторяется с самого начала для нового многочлена f'(x). Коэффициенты нового многочлена считаются по формуле:

$$a'_{l} = r a'_{l-1} + a_{l}, \quad l = 1, 2, ..., n-1, \quad a'_{0} = a_{0}$$
 (2.5)

Если в процессе счета $\dfrac{|f\left(x_{i+1}\right)|}{|f\left(X_{i}\right)|}{>}\,8\mathrm{h}$, то $\lambda_{\scriptscriptstyle 1\!+\!1}$ делится

пополам, а h_{i+1} , x_{i+1} пересчитываются.

Доказательство сходимости метода, когда X_0 , X_1 , X_2 достаточно близки к корню, приводится в работе [2]. Общее же доказательство сходимости не получено для этого метода. Но практически не встречалось ни одного примера, когда бы этот процесс не сходился или сходился бы медленно.

Цитированная литература.

- [11 Г.А.Фурман. Интерпретирующая система для действий с комплексными числами (ИП-4). Отчет ВЦ МТУ, ротопринт. Серия: Математическое обслуживание машины «Сетунь», вып.2, М., 1964.
- [2] Muller David E.A. method for solving algebraic equation using an automatic computer. Mathematical Table, October 1956r V-X,208-215

Приложение. Подпрограмма вычисления всех корней многочлена.

Адрес Команда

Программа ввода.

Адрес Команда

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
Π_{ϕ} =0	Π_{ϕ} =0
₩₩ ₩X 0 24 ZX (F)+3e _A =>(F)-14	02 03 0 00 20 -304 ⇒ (F)
WY 0 Z1 0X $(f) \Rightarrow \delta_1$	$04 0 21 0X (F) \Rightarrow \mathcal{O}_{1}$
We wo old so $\delta_2 \Rightarrow (\hat{f})$	1W 1X 0 OY ZO $-10\ell_A \Rightarrow (F)$
1 0 33 ZX $(F) + \ell_A \Rightarrow (F)$	1Y 0 Z3 OX $(F) \Rightarrow \delta_2 \longrightarrow 5$
₩2 ₩3 0 1Y 1X Y∏-Z [> 5	12 10 0 23 20 $\mathcal{O}_{\xi} \Rightarrow (\tilde{F}) \leftarrow 1$
W4 2 1X XX [0.3.4∏-4]=>[42]	11 1 01 X0 [ββο∂]⇒[P,]
XW XX Z WW 2X 🕰	12 13 1 33 X4 [P] ⇒ [Mi]
XY 0 00 00	14 1 33 XY [M _j] ⇒ [Q]
XZ XO O OO OO	$2 \text{ (S)} \qquad 2 \text{ (S)}$
X1 0 00 D0	2Y 0 Z₩ Y3 (s) ⇒> d
X2 X3 0 00 00	22 20 0 0x 20 -81G ->(F)
X4 0 00 00	21 2 WX 31 Q => (s) -12
YW YX 0 00 00	22 23 0 20 YO cgb(s) HQ-9 => (s)
YY 0 00 00	24 0 2¥ 33 (s) + d ⇒ (s)
YZ YQ 0 00 00	3 ₩ 3 ¥ 0 Z ₩ Y3 (S) ⇒> d
Y1 0 00 00	3Y 0 Z4 ZX $(F)+3G \Rightarrow (F)$
Y2 Y3 0 00 00	3Z 30 0 21 1X 47-7 5-2
Y4 0 00 00 PY	31 0 4X 18 <i>\(\inf\)</i> 1
ZW ZX 0.00 00]	32 33 0 01 20 $-804 \Rightarrow (F)$
zy 0 00 00 J	34 0 21 00 <i>6/7 (**2</i>
zz zo o zo oo 9e _a	$4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
zı 0 00 00 $\delta_{\mathtt{i}}$	47 2 22 37 (s) -∑; →(s) 42 40 0 WX 10 4/7-0 (-4
z2 z3 0 00 00 δ_2	42 40 0 WX 10 Un-0"5-4"
Z4 0 03 00 3 4	41 0 00 2X 352
ON OX Z 00 00 -31ea	42 43 0 10 00 <i>5</i>
OY 0 ZZ 00 -10 eA	44 0 00 00
0Z 00 0 XX 00 -30 4	KC 0 00 OZ
01 Z 01 X0 [8603] \Rightarrow [Φ_2]	Z OW OY

Контрольные суммы.

Адрес	Команда	Адрес	Команда
$\Pi_{\phi}=z$		$\Pi_{\phi}=z$	
WW WX	0 00 00 z 2x 00} ∑22	02 03 04	0 00 00
WZ WO W1	$\begin{bmatrix} 0 & 00 & 00 \\ 1 & WO & 30 \end{bmatrix} \Sigma_{23}$	1W 1X	0 00 00
W2 W3	0 00 23 0 YW 2Z} \(\Sigma_{24} \)	1Z 10 11	0 00 00
XW XX	0 00 Z2 0 XX 4#} Σ _{3ν}	12 13	0 00 00
XZ XO	0 00 Z1 Z wy γx} Σ _{3×}	2¥ 2X	0 00 00
X2 X3 X4	0 00 73 1 YZ 23 Σ_{3Y}	2Z 20 21	0 00 00
YW YX YY	0 00 0W \\Z 14 43 \\Z 32	22 23 24	0 00 00
YZ YO	$\begin{bmatrix} 0 & 00 & 24 \\ 0 & 02 & Y1 \end{bmatrix} \Sigma_{30}$	3W 3X	0 00 00
Y2 Y3	0 00 0W \\ 0 2X W4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3Z 30 31	0 00 00
ZW ZX	0 00 03 1 γ2 wx Σ ₃₂	32 33	0 00 00
22 20 21	0 00 00	4W 4X	0 00 00
Z2 Z3 Z4	0 00 00	42 40 41	0 00 00
OW OX	0 00 00	42 43 44	0 00 00
0Z 00 01	0 00 00	KC	0 00 00 Z WY WZ

Начало подпрограммы.

	Зона МБ 22
Адрес Команда	Адрес Команда
WW WX 0 00 00 A	02 03 0 33 00]
WY 0 00 00 An	04 1 XX Y3) ε - P
WZ WO O OO OO AK	11 1X 0 04 30 $A_{3e} \rightarrow (\theta)$
#1 0 00 00 (g)	17 1 W1 Y3 (136 (16)
W2. W3 0 88 WW Axing	12 10 Z 34 031160
W4 0 33 OW A fi-2	11 Z OY 00
XW XX 0 00 00 P	12 18 0 2X 2Z } -1 ⇒ Xi-2
XY 0 00 10 9e _f	14 Z 00 W1
xz xo o oo oo	2# 2X 0 33 ##)
X1 0 00 00	2Y Z Z3 00]
X2 X3 0 00 00 Xio	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
X4 0 00 00	.21 2 00 41
YW YX O WW OO]	22 23 0 33 XW)
YY 0 00 00	24 2 23 00
YZ YO O OO OO	3
Y1 0 00 00	3Z 30 0 33 YW)
12 13 0 00 00 14 2 34 03) - Ha4	
24 ZX Z OY 00	32 33 0 23 XX [M ₂] ⇒ [Ф]
ZY Z 00 3# 40.>	⇒(s) 34 1 WY 30] A
ZZ ZO 0 1\ 33	YN YX O XY Y3 AH > Aq.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	1 1 2 - 7
Z2 Z3 Z 34 03 Z4 0 33 00 9(n+1)4	$\Rightarrow (S) \qquad \qquad 41 1 \text{W2} 30 A \times_{i-2} \Rightarrow A \times_{\text{TEX}}$
OW OX 1 WX Y3 (S) ⇒ Δ	42 43 0 4₩ Y3) Asi-2 > Astrex
07 1 WY 33 (s) +AH	AK KC 0 00 00
01 Z 34 03	Z 2X 00

Вычисление f(x). Выход.

3она МБ 23

Адрес Команда	Адрес Команда
WW WX 1 4X 30 A $x_{\text{TEK}} \Rightarrow (s)$ $\downarrow LLL$ WY 1 Y1 Y3 $(s) \Rightarrow A'_{x_{\text{TEK}}}$	02 03 Z W1 00} V⇒ frex
WY 1 Y1 Y3 (S) $\Rightarrow A'_{XTEK}$ WZ WO 1 14 Y3 (S) $\Rightarrow A''_{XTEK}$ W1 1 4Y 30] A	02 03 Z W1 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 Z 34 03
$ \begin{array}{c cccc} x & xx & z & oy & oo \\ xy & o & oo & oo \end{array} \qquad a_{\bullet} \Rightarrow \mathcal{V} $	12 18 Z Z3 00 14 0 00 00 2W 2X Z 00 W1
W2 W3 1 04 Y3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2W 2X Z 00 W1 2Y 0 33 ZW 2Y 0 707 - 1007 - 1
x4 1 43 33 \ Aq ₁ ⇒ Aq _e	27 0 33 2 \mathbb{Z} 22 20 0 33 \mathbb{X} 3 \mathbb{Z} \mathbb{Z} 3 2
YW YX 1 ZY Y3) YY Z 34 03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
YY Z 34 03 YZ YO Z 0Y 00 Y1 0 00 00 Y2 Y3 0 10 10 Y. Xmer ⇒ U	3ж 3х 2 Y4 23 3Y 2 wy 00 3z 30 0 00 00
Y2 Y3 0 10 10 Y4 Z 00 4W ZW ZX Z 0Y 00)	31 9 99 00 32 33 0 ZX 00 -424
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 0 00 00 Ax 4W 4X 0 00 00 Axmex
21 2 00 3m)	44 0 00 00 Afmer
22 23 1 2Y 30 $Aa_{e+1} \Rightarrow (s)$ 24 1 43 33 $Aa_{e+1} \Rightarrow (s)$ OW 0X 1 2Y Y3 $(s) \Rightarrow Aa_{e}$	41 0 33 3# Å fi+1 42 43 0 00 10 9e _F
OY 1 34 3X (S) - A 1/2 OZ 00 1 YY 1X 911-2 1-1	чч о оо 10 9 <i>€</i> _€ кс о оо оо
· 01 Z 34 03	1 WO 30

Вычисление h_{i-1} , h_i , λ_i и δ_i .

Зона МБ 23 Адрес Команда Адрес Команда $\Pi_{\phi}=1$ $\Pi_{\phi}=1$ WW WX 0 33 X3 $[\mathcal{P}_b] \Rightarrow [M_{L_i}] \rightarrow L^2$ 02 03 Z 00 W1 0 23 XX [M,] ⇒ [P,] WY 04 Z 00 4W) 1W 1X WZ WO 0 4 301 Z OY OO AxTEK +9eF ⇒AXTEK #1 0 42 33 1Y 0 33 YW O 4W Y3 Afrex + 90 => Afrex W2 W3 12 10 0 1Z -YY 0 23 X3 [P₀] ⇒ [M₁] 0 34 WW 11 0 42 3X Axtex -Axi+1 ⇒(S) XX WX 12 13 Z Z3 001 XY 1 YX 13 4n-1/1-1 14 0 33 4% 411-0 5+ L9 XZ XO 1 Y4 10 2W 2X Z 00 W1 Z Y4 Z31 2Y 2 00 4% X1 X2 X3 Z WY 00 2Z 20 Z OY 00' 0 23 WX 0 34 ## XЧ 21 22 23 0 10 WX YW YX 2 Y4 Z37 Z WY 00 0 34 YW YY 24 YZ YO O 30 WX 3# 3X 2 23 00 0 00 00 3¥. Z 00 3% Y 1 0 00 00 3Z 30 Z 00 W1 Y2 Y3 Z 00 4W Z 34 031 31 Y4 Z OY ÓO Z 0Y 001 ZW ZX 32 33 0 2X 3¥ ZY 0 33 ** > 34 22 20 Z 00 W1 YF YX 0 12 ZY Z 00 4#J 4Y 0 34 34 **Z1** Z Z3 00] 2 OY 001 42 40 22 23 Z 00 3W 0 33 XW 24 41 Z 00 W1 0 1Z YY 42 43 XO WO Z 00 4W 0 33 4# 44 OY

КC

0Z 00

01

Z Z3 00

0 33 XW

0 00 Z3

O YW ZZ

Вычисление $g_{\mathtt{i}}$

	Зона МБ ЗW
Адрес Команда	Адрес Команда
Π_{ϕ} =1	Π_{ϕ} =1
WW WX Z 34 03 WY Z 13 00 WZ W0 0 10 10 W1 0 34 1W $V^2 \Rightarrow d_2$	02 03 0 34 1W 04 2 00 W1 1W 1X Z 00 4W 1Y Z 0Y 00]
₩2 ₩3 Z Z3 00 ₩4 0 34 YW X₩ XX Z 00 ₩1	12 10 0 33 1\\ 11 0 10 10 12 13 2 00 4\\ 14 2 0Y 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
X4 0 34 2₩ YW YX Z Z3 00 YY 0 34 YW YZ Y0 Z 00 ₩1 λi ⇒ V	21 Z Z3 00 22 23 0 34 2W 24 Z 00 W1 3W 3X Z 00 4W $d_3 \Rightarrow v$
Y1 Z 00 YW) Y2 Y3 Z 13 00 Y4 0 10 10 \ \mathcal{V}^2 ⇒ d_1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ZN ZX 0 34 0W) ZY Z 20 00 3W Z1 Z 00 W1 CL₁ ⇒ V	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
22 23 Z 00 4₩ Z4 Z 0Y 00 0W 0X 0 33 0W 15. f: ⇒ d.	42 40 0 34 18) 41 2 8X 00 50
0Y 0 10 10 0Z 00 0 34 0W 01 Z Z3 00	KC 0 00 Z2 0 XX 4#

Вычисление λ (начало)

		Зона МБ ЗХ
Адрес	Команда	Адрес Команда
$\Pi_{\varphi} {=} 1$		Π_{ϕ} =1
TH EX		02 03 Z 0Y 00]
EY.		V ← V · V · V · V · V · V
WZ W0		1W 1X 0 10 10
W2 W3	=	12 10 2 0Y 00)
#4		11 0 34 0 $d_1 + v \Rightarrow v$
XX XX	1 252 - 0/	12 13 0 1Z ZY
XY	i	14 Z 00 4 W
XZ XO	z zs 00)	2W 2X Z 0Y 00]
X1	$\begin{array}{c c} 0 & 33 & 111 \\ 7 & 00 & 11 \end{array} \qquad f_{i-1} \Rightarrow v$	$2Y 0 2X YZ 4 \cdot \mathcal{V} \Rightarrow d_1$
X2 X3	Z 00 W1 (Ji-1	22 20 0 10 10
X4	· · · · · ·	21 0 34 OW)
AM AX	i i	22 23 Z. 3 00
YY	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	24 0 33 2 f _i ⇒ V
YZ YO	0 10 10	3W 3X Z 00 W1
¥1	•	3Y Z 00 4W)
12 Y3		3Z 30 Z 0Y 00 31 0 34 3W & .25 - 6.
74 28 28	, , ,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ZW ZX ZY	1 .	34 0 34 3W
ZZ Z0	· · · · · · · · · · · · · · · · · · ·	4W 4X Z Z3 00)
21 Z1	1	48 Z 00 3 N , δ; ⇒ V
Z2 Z 3		4Z 40 Z 00 W1
Z4	l l	41 2 00 4W)
OW OX	•	42 43 Z WX 00 511 - L3
OY		44 0 00 00
0Z 00	> +, =>1)	KC 0 00 Z1
01	Z 00 4W)	Z WY YX

Вычисление λ (продолжение)

		Зона МБ ЗҮ
Адрес	Команда	Адрес Команда
$\Pi_{\phi}=1$		Π ₀ =1
'	a su sos 415	•
WW WX	Z 34 03 Z 07 00	02 03 Z Z3 00] 04 Z 00 3W
WZ WO	1 4 00 00	$1 \times 1 \times 0 = 21 \times 3 \times 1 = 10^{-1} \Rightarrow d_1$
W1	•	1Y 0 34 0W)
W2 W3	Z 00 4W)	12 10 2 23 00)
M-1		11 0 34 24 d ₁ => d ₄
	0 34 2 dv ⇒ u	12 13 0 21 43
XY YO		14 0 34 4 1 1
XZ XO		2W 2X Z Z3 00)
	$\begin{bmatrix} z & 13 & 00 \\ 0 & 11 & X0 \end{bmatrix} \sqrt{u} \Rightarrow d_1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
YY		21 Z 00 4W)
YW YX		22 23 Z OY 00]
YY	i	au n av aw
YZ YO		3W 3X 0 10 10 $-2 \cdot v \Rightarrow \delta_i$
Y1	Z 00 4 W	3Y 0 3Y 3W)
Y2 Y3	z oy ooj	32 30 Z WX 00 57 1-16
Y4	" L /1. + U -> U.	31 0 00 00
ZW ZX	0 12 21	32 33 0 00 00
ZY	0 34 21	34 0 00 00
22 20	z zs 00	4# 4X 0 00 00
Z1	0 34 0₩ d, ⇒ U	4Y 0 00 00 4Z 40 0 00 00
22 23 24		41 0 00 00
0% 0X	Z 0Y 00]	42 43 0 00 00
YO WO	0 34 1 d -25-20	44 0 00 00
0Z 00	O 1Z YY Q2-V-A2	KC 0 00 Z3
01	0 34 14)	1 YZ 23

Вычисление λ (окончание), h_{i+1} и x_{i+1} .

Зона МБ 3Z


```
0 33 XX [Mfi+i] → [P,]+1L3
                                    02 03
                                            0 34 OW)
                                            0 10 WX
        0 33 30]
                                        04
                                            Z 00 3W
        0 23 3X
                                     1W 1X
                  (s)-49 ⇒ (s)
                                            Z 33 30
                                        1Y
        1 Y4 3X
                                                      [M_{\rho}] \Rightarrow [Q]
                   ,
7U-≅ L<del>></del>1
                                            0 22 XX
                                     13 10
W2 W3
        1 ZX 1X
                                                       (s)- p⇒(s)
                                            O XX 3X
                                        11
        Z 34 031
    ₩4
                                                       YN-11
                                            1 20 13
XW XX
        Z Z3 00
                                    12 13
        0 2X 4W
                                        14
                                            Z Y4 Z3]
    XΥ
                                                      PU L-rio
                                            Z WY 00
                                    2¥ 2X
XZ XO
        Z 00 W1
                                            0 23 21
                                        2Y
        Z 00 4W
    X1
X2 X3
                                            Z 34 031
                                    27 20
        Z 0Y 00
                                            Z 0Y 00
                                        21
        0 34 2₩
    XЧ
                                     22 23
                                            0 33 XW
YW YX
        0 10 10
                                            Z 00 W1
                                        24
        0 34 ZW)
    ΥY
                                            0 33 WW
                                     3¥ 3X
        Z Y4 Z3]
YZ YO
                                        3Y
                                            Z Z3 001
    Y 1
        Z WY 00
                                     3Z 30
                                            0 33 YW
        0 3Z Z3
Y2 Y3
                                            2 00 W1
                                        31
    YЧ
        0 04 00
                                     32 33
                                            0 33 XW
ZW ZX
        2 34 037
                                            Z Z3 001
                                        34
        Z Z3 00
    ZY
                                            0 33 ZW
                                     4# 4X
        0 34 XW
ZZ Z0
                                             Z 00, W1
                                        44
        0 2Y W3
    21
                                            0 33 Y
                                     42 40
Z2 Z3
        0 34 0#
                                             Z WX 00
                                        41
         Z Z3 00°
    24
                                             0 00 00
        0 33 Z₩
                                     42 43
 OW OX
                                        44
                                             0 00 00
         0 2Y W3
    OY
                                             0 00 24
                                     KC
         2 00 44,
 02 00
                                             0 0Z Y1
        Z 0Y 00
    01
```

Адрес Команда Адрес Команда 02 03 0 00 00 0 00 00 04 WZ WO 0 33 1W 1# 1X 0 00 00 W1 Z 00 W1 1Y 0 00 00 W2 W3 0 33 OW 1Z 10 0 00 00 Z Z3 00] 0 00 00 11 0 WY 30 } A_H ⇒ A'a. XW XX 0 33 2W 12 13 14 XY Z 00 W1 24 2X 0 XY 33 An +9e= > Aa1 XZ XO 0 33 1W 1 30 Y3) X1 Z Z3 00] 2Y X2 X3 0 33 3W 27. 20 Z 34 03 X4 Z 00 W1 Z 0Y 00} 21 0 00 00 22 23 YW YX 0 33 2W YY 0 33 X3 [P₆] → [M₆,] 24 Z 00 W1 YZ YO O 23 XX [M] → [4] 3W 3X 2 00 4W] Y1 0 4Z 30 } Axi+1 ⇒ Axrex YΕ Z 0Y 00 Y2 Y3 O 4W Y3] A fi+1 => Afrek 0 00 00 3Z 30 0 10 WX $[\phi_0] \Rightarrow [M_2]$ 31 Y4 0 23 X3 Z 00 4W] 32 33 ZW ZX Z Y4 Z3] **Б**Π **Г**→**L**9 Z WY 00} Z OY OO 34 ZY 4W 4X 0 2X ZZ 0 24 44 ZZ ZO ЧY 0 10 10 0 00 00 21 4Z 40 0 33 ZW Z2 Z3 0 00 00 41 Z Y4 Z3 0 00 00 24 42 43 Z WY 00 0 00 00 XO WG 44 0 23 20 OY 0 00 00 КC 0 00 OW 02 00 0 00 00 0 2X W4 0 00 00 01

Зона МБ 31

Понижение степени многочлена.

Зона МБ 32

Адрес	Команда		Команда
WW WX	$\begin{array}{ccc} 0 & 22 & XX & [M_a] \Rightarrow [P_a] & \text{next} \\ 0 & WX & 30 \end{array}$	02 03 04	0 12 24 0 00 00 ae+V ⇒ a
WZ WO W1	1 43 3X Δ-94⇒Δ 0 WX Y3	1W 1X 1Y	1 24 30) 1 43 33 Aae ⇒ Aae-1
M5 M3	1 43 3X Δ-9€ ⇒ (S) 1 XY 13 YΠ-1 [-1]	1Z 10	1 24 Y3)
XX XX	Z WW 2X 🕰 cm	12 13	1 01 Y35 Met 1
XY XZ XO	$ \begin{array}{c c} 0 & \text{WY } 33 \\ 1 & 43 & 33 \end{array} $ $ \begin{array}{c c} A_{\text{H}} + \Delta \Rightarrow A_{\text{K}} $	14 2W 2X	Z 44 20 M. ⇒ (F)
X1 X2 X3	0 W0 Y3 J 1 44 Y3 Ak → Ak	2¥ 2 7 20	1 44 3X AqA* →(S)
XЧ	$0 22 X3 [P_a] \Rightarrow [M_{\Delta}]$		1 Y4 1X 411-2 -2 0 22 XX [Ma] => [Pa]
	$ \begin{cases} 0 & \text{WY } 30 \\ 1 & \text{Z4 } \text{Y3} \end{cases} A_{H} \Rightarrow A_{a_{i-1}} $ 1 43 33	24 3₩ 3X	0 WX 30 1 43 3X Δ -18 € ⇒(S)
Y 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3Y 3Z 30	1 43 3X 1 43 3X 1 4X 10
14	Z 34 03 2 Z 07 00	3 1 32 33	z Y4 Z3 5 1 1 2 L0
ZW ZX ZY	0 33 ZW Xi+i ⇒ V	34	0 22 10)
ZZ ZO Z1	Z 00 W1 Z 00 YW		z wy 00 50 - L11
Z2 Z3 Z4	Z 0Y 00 0 00 0 15 > 75	42 40 41	0 00 00
OY XO #D	0 10 10 2 00 4W	42 43 44	4.84
0Z 00 01	Z OY OO O OO OO	КC	0 00 03 1 Y2 WX

Рабочие ячейки (зона не вводится).

3она МБ 33

Рабочие ячейки (зона не вводится).

Издано:

Выпуск 1.

Жоголев Е.А. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ И МАТЕМАТИЧЕСКОЕ ОБСЛУЖИВАНИЕ ДЛЯ МАШИНЫ «СЕТУНЬ».

Выпуск 2.

Фурман Г.А. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ДЛЯ ДЕЙСТВИЙ С КОМПЛЕКСНЫМИ ЧИСЛАМИ (ИП-4).

Выпуск 3. Франк Л.С.Рамиль Альварес X. ПОД-ПРОГРАММА ВЫЧИСЛЕНИЯ ЗНАЧЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРА-ЛОВ ДЛЯ ИП-2.

Выпуск 4.

Жоголев Е.А Есакова Л.В. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ИП-3.