《高等数学》试卷1(下)

一. 选择题 (3分×10)

1. 点M (2,3,1) 到点M (2,7,4) 的距离 |MM| (= ().

A. 3

B. 4

C. 5

2. 向量 $\vec{a} = -\vec{i} + 2\vec{j} + \vec{k}, \vec{b} = 2\vec{i} + \vec{j}$,则有().

A. $\vec{a} /\!/ \vec{b}$ B. $\vec{a} \perp \vec{b}$ C. $\left\langle \vec{a}, \vec{b} \right\rangle = \frac{\pi}{3}$ D. $\left\langle \vec{a}, \vec{b} \right\rangle = \frac{\pi}{4}$

3. 函数 $y = \sqrt{2 - x^2 - y^2} + \frac{1}{\sqrt{x^2 + y^2 - 1}}$ 的定义域是 ().

A. $\{x, y \mid 1 \le x^2 + y^2 \le 2\}$ B. $\{x, y \mid 1 < x^2 + y^2 < 2\}$

 $(x, y)_{1 < x^{2} + y^{2} \le 2}$ $(x, y)_{1 \le x^{2} + y^{2} < 2}$

4. 两个向量 \vec{a} 与 \vec{b} 垂直的充要条件是().

A. $\vec{a} \cdot \vec{b} = 0$ B. $\vec{a} \times \vec{b} = \vec{0}$ C. $\vec{a} - \vec{b} = \vec{0}$ D. $\vec{a} + \vec{b} = \vec{0}$

5. 函数 $z = x^3 + y^3 - 3xy$ 的极小值是 ().

B. -2 C. 1 D. -1

6. 设 $z = x \sin y$, 则 $\frac{\partial z}{\partial y}\Big|_{\begin{pmatrix} 1, \frac{\pi}{4} \end{pmatrix}} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$.

A. $\frac{\sqrt{2}}{2}$ B. $-\frac{\sqrt{2}}{2}$ C. $\sqrt{2}$ D. $-\sqrt{2}$

7. 若p级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛,则().

A. p < 1 B. $p \le 1$ C. p > 1 D. $p \ge 1$

8. 幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域为 ().

A. [-1,1] B(-1,1) C. [-1,1] D. (-1,1]

9. 幂级数 $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$ 在收敛域内的和函数是().

A.
$$\frac{1}{1-x}$$

B.
$$\frac{2}{2-x}$$

C.
$$\frac{2}{1-x}$$

A.
$$\frac{1}{1-x}$$
 B. $\frac{2}{2-x}$ C. $\frac{2}{1-x}$ D. $\frac{1}{2-x}$

10. 微分方程 $xy' - y \ln y = 0$ 的通解为 ().

A.
$$y = cex$$

B.
$$y = e^{x}$$

A.
$$y = cex$$
 B. $y = ex$ C. $y = cxex$ D. $y = ecx$

D.
$$y = e c$$

二. 填空题 (4分×5)

1. 一平面过点
$$A(0,0,3)$$
 且垂直于直线 AB , 其中点 $B(2,-1,1)$, 则此平面方程为

3. 设
$$z = x^3 y^2 - 3xy^3 - xy + 1$$
,则 $\frac{\partial^2 z}{\partial x \partial y} =$

4.
$$\frac{1}{2+x}$$
的麦克劳林级数是______.

三. 计算题 (5 分×6)

1. 设
$$z = eu \sin v$$
, 而 $u = xy, v = x + y$, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

2. 已知隐函数
$$z = z(x, y)$$
由方程 $x^2 - 2y^2 + z^2 - 4x + 2z - 5 = 0$ 确定,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

3. 计算
$$\int \sin \sqrt{x^2 + y^2} d\sigma$$
 , 其中 $D: \pi^2 \le x^2 + y^2 \le 4\pi^2$.

4. 求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).

四. 应用题(10分×2)

1. 要用铁板做一个体积为 2 m 3 的有盖长方体水箱, 问长、宽、高各取怎样的尺寸时, 才能使用料最省?

试卷 1 参考答案

二. 填空题

1.
$$2x - y - 2z + 6 = 0$$
.

$$2. \cos(xy)(ydx + xdy).$$

3.
$$6x^2y - 9y^2 - 1$$
.

$$4. \qquad \sum_{n=0}^{\infty} \frac{\left(-1\right)_n}{2^{n+1}} x^n.$$

5.
$$y = (C_1 + C_2 x)e^{-2x}$$
.

三. 计算题

1.
$$\frac{\partial z}{\partial x} = exy[y\sin(x+y) + \cos(x+y)]$$
, $\frac{\partial z}{\partial y} = exy[x\sin(x+y) + \cos(x+y)]$.

2.
$$\frac{\partial z}{\partial x} = \frac{2-x}{z+1}, \frac{\partial z}{\partial y} = \frac{2y}{z+1}.$$

3.
$$\int_{0}^{2\pi} d\phi \int_{0}^{2\pi} \sin \rho \cdot \rho d\rho = -6\pi \ 2.$$

4.
$$\frac{16}{3}R^3$$
.

5.
$$y = e^{3x} - e^{2x}$$
.

四.应用题

1. 长、宽、高均为√2m 时,用料最省.

2.
$$y = \frac{1}{3}x^2$$
.

《高数》试卷2(下)

一. 选择题 (3分×10)

1. 点
$$M_1$$
(4,3,1), M_2 (7,1,2)的距离 $|M_1M_2|$ = ().

$$\sqrt{12}$$

B.
$$\sqrt{13}$$

c.
$$\sqrt{14}$$

A.
$$\sqrt{12}$$
 B. $\sqrt{13}$ C. $\sqrt{14}$ D. $\sqrt{15}$

2. 设两平面方程分别为x-2y+2z+1=0和-x+y+5=0,则两平面的夹角为 ().

A.
$$\frac{\pi}{6}$$
 B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$

B.
$$\frac{\pi}{4}$$

c.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

3. 函数 $z = \arcsin \left(x^2 + y^2\right)$ 的定义域为 ().

$$(x, y)_{0 \le x^2 + y^2 \le 1}$$

A.
$$\{x, y \mid 0 \le x^2 + y^2 \le 1\}$$
B. $\{x, y \mid 0 < x^2 + y^2 < 1\}$

C.
$$\left\{ (x, y) \middle| 0 \le x^2 + y^2 \le \frac{\pi}{2} \right\}$$
 D. $\left\{ (x, y) \middle| 0 < x^2 + y^2 < \frac{\pi}{2} \right\}$

D.
$$\left\{ (x, y) \mid 0 < x^2 + y^2 < \frac{\pi}{2} \right\}$$

4. 点
$$P(-1,-2,1)$$
 到平面 $x+2y-2z-5=0$ 的距离为 ().

A. 3

B. 4

C. 5

5. 函数
$$z = 2xy - 3x^2 - 2y^2$$
 的极大值为 ().

A. 0 B. 1 C. -1 D. $\frac{1}{2}$

A. 6

B. 7

C. 8

D. 9

7. 若几何级数 \sum^{∞} arn 是收敛的,则().

A. $r \le 1$ B. $r \ge 1$ C. |r| < 1 D. $|r| \le 1$

8. 幂级数 $\sum (n+1)x_n$ 的收敛域为 ().

A. [-1,1] B. [-1,1) C. (-1,1] D. (-1,1)

9. 级数 $\sum_{n=1}^{\infty} \frac{\sin na}{n^4}$ 是 ().

A. 条件收敛 B. 绝对收敛 C. 发散 D. 不能确定

二. 填空题 (4分×5)

2. 函数 $z = e^{xy}$ 的全微分为_____

3. 曲面 $z = 2x^2 - 4y^2$ 在点 (2,1,4) 处的切平面方程为

三. 计算题 (5分×6)

1. 设 $\vec{a} = \vec{i} + 2\vec{j} - \vec{k}, \vec{b} = 2\vec{j} + 3\vec{k}$, 求 $\vec{a} \times \vec{b}$.

2. 设 $z = u^2v - uv^2$, 而 $u = x \cos y, v = x \sin y$, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

3. 已知隐函数 z = z(x, y)由 $x^3 + 3xyz = 2$ 确定,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial v}$.

4. 如图, 求球面 $x^2 + y^2 + z^2 = 4a^2$ 与圆柱面 $x^2 + y^2 = 2ax$ (a > 0) 所围的几何体的体积.

四. 应用题 (10 分×2)

1. 试用二重积分计算由 $y = \sqrt{x}$, $y = 2\sqrt{x}$ 和 x = 4 所围图形的面积.

试卷2参考答案

一. 选择题 CBABA CCDBA.

二. 填空题

1.
$$\frac{x-2}{1} = \frac{y-2}{1} = \frac{z+1}{2}$$
.

2.
$$e^{xy}(ydx + xdy)$$
.

3.
$$8x - 8y - z = 4$$
.

4.
$$\sum_{n=0}^{\infty} (-1)^n x^{2n}$$
.

5.
$$y = x^3$$
.

三. 计算题

1.
$$8\vec{i} - 3\vec{j} + 2\vec{k}$$
.

2.
$$\frac{\partial z}{\partial x} = 3x^2 \sin y \cos y \left(\cos y - \sin y\right), \frac{\partial z}{\partial y} = -2x^3 \sin y \cos y \left(\sin y + \cos y\right) + x^3 \left(\sin^3 y + \cos^3 y\right)$$

3.
$$\frac{\partial z}{\partial x} = \frac{-yz}{xy + z^2}, \frac{\partial z}{\partial y} = \frac{-xz}{xy + z^2}.$$

4.
$$\frac{32}{3}a^3\left(\frac{\pi}{2}-\frac{2}{3}\right)$$
.

5.
$$y = C_1 e^{-2x} + C_2 e^{-x}$$
.

四.应用题

1.
$$\frac{16}{3}$$
.

2.
$$x = -\frac{1}{2}gt^2 + v_0t + x_0$$
.

《高等数学》试卷3(下)

- 一、选择题(本题共10小题, 每题3分, 共30分)
- 2、设 a=i+2j-k, b=2j+3k, 则 a 与 b 的向量积为 ()
- A, i-j+2k B, 8i-j+2k C, 8i-3j+2k D, 8i-3i+k
- 3、点P(-1、-2、1) 到平面 x+2y-2z-5=0 的距离为()
- A, 2 B, 3 C, 4 D, 5
- 4、函数 z=xsiny 在点(1, $\frac{\pi}{4}$)处的两个偏导数分别为()
- A, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{2}}{2}$, B, $\frac{\sqrt{2}}{2}$, $-\frac{\sqrt{2}}{2}$ C, $-\frac{\sqrt{2}}{2}$ D, $-\frac{\sqrt{2}}{2}$
- 5、设 $x^2+y^2+z^2=2Rx$,则 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 分别为())
- A, $\frac{x-R}{z}$, $-\frac{y}{z}$ B, $-\frac{x-R}{z}$, $-\frac{y}{z}$ C, $-\frac{x-R}{z}$, $\frac{y}{z}$ D, $\frac{x-R}{z}$, $\frac{y}{z}$
- 6、设圆心在原点, 半径为 R, 面密度为 $μ = x^2 + y^2$ 的薄板的质量为 () (面积 $A=πR^2$)
- A, R₂A B, 2R₂A C, 3R₂A D, $\frac{1}{2}R_2A$
- 7、级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ 的收敛半径为()
- A, 2 B, $\frac{1}{2}$ C, 1 D, 3
- 8、cosx的麦克劳林级数为()
- A, $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ B, $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ C, $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ D, $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-1)!}$
- 二、填空题(本题共5小题, 每题4分, 共20分)
- 1、直线 L₁: x=y=z 与直线 L₂: $\frac{x-1}{2} = \frac{y+3}{-1} = z$ 的夹角为_____。

直线
$$L_3$$
: $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z}{2}$ 与平面 $3x + 2y - 6z = 0$ 之间的夹角为______。

2、(0.98) 2.03的近似值为_____, sin100的近似值为_____。

3、二重积分
$$\iint d\sigma$$
 , $D: x^2 + y^2 \le 1$ 的值为_____。

三、计算题(本题共6小题,每小题5分,共30分)

- 2、求曲线 x=t, y=t2, z=t3 在点(1, 1, 1)处的切线及法平面方程.
- 3、计算 $\iint xyd\sigma$,其中D由直线y=1, x=2及y=x围成.

4、问级数
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}$$
收敛吗?若收敛,则是条件收敛还是绝对收敛?

5、将函数 f(x)=e3x 展成麦克劳林级数

四、应用题(本题共2小题, 每题10分, 共20分)

1、求表面积为 a2 而体积最大的长方体体积。

参考答案

一、选择题

10, A

二、填空题

1,
$$ar \cos \frac{2}{\sqrt{18}}$$
, $\arcsin \frac{8}{21}$ 2, 0.96, 0.17365

$$4, 0, +\infty$$

5,
$$y = ce^{\frac{x^2}{2}}$$
, $cx = 1 - \frac{1}{y}$

三、计算题

所以
$$x_t|_{t=1}=1$$
, $y_t|_{t=1}=2$, $z_t|_{t=1}=3$
故切线方程为: $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$

法平面方程为: (x-1) +2(y-1)+3(z-1)=0

即 x+2y+3z=6

3、解: 因为 D 由直线 y=1, x=2, y=x 围成,

所以

D:
$$\begin{cases} 1 \leq y \leq 2 \\ y \leq x \leq 2 \end{cases}$$

故:
$$\iint_{D} xyd\sigma = \int_{1}^{2} \left[\int_{y}^{2} xydx \right] dy = \int_{1}^{2} (2y - \frac{y^{3}}{2}) dy = 1\frac{1}{8}$$

4、解: 这是交错级数, 因为

 $V_n = \sin \frac{1}{n} \rangle 0$, 所以, $V_n + 1 \langle V_n, \underline{1} \lim \sin \frac{1}{n} = 0$, 所以该级数为莱布尼兹型级数, 故收敛。

又
$$\sum_{n=1}^{\infty} \sin \frac{1}{n}$$
当 x 趋于0时, $\sin x \sim x$, 所以, $\lim_{n\to\infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$, 又级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 从而 $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 发散。 5

所以,原级数条件收敛。

、解: 因为
$$e^{w} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots$$

 $x \in (-\infty, +\infty)$

用 2x 代 x, 得:

$$e^{2x} = 1 + (2x) + \frac{1}{2!}(2x)^{2} + \frac{1}{3!}(2x)^{3} + \dots + \frac{1}{n!}(2x)^{n} + \dots$$

$$= 1 + 2x + \frac{2^{2}}{2!}x^{2} + \frac{2^{3}}{3!}x^{3} + \dots + \frac{2^{n}}{n!}x^{n} + \dots$$

$$x \in (-\infty, +\infty)$$

四、应用题

1、解:设长方体的三棱长分别为x, y, z

则 2(xy+yz+zx)= a^2

构造辅助函数

$$F(x, y, z) = xyz + \lambda (2xy + 2yz + 2zx - a^2)$$

求其对 x, y, z 的偏导, 并使之为 0, 得:

$$\begin{cases} yz+2\lambda & (y+z)=0 \\ xz+2\lambda & (x+z)=0 \\ xy+2\lambda & (x+y)=0 \end{cases}$$

与 2(xy+yz+zx)-a²=0 联立,由于 x, y, z 均不等于零

可得 x=y=z

代入 2 (xy+yz+zx) -a2=0 得 x=y=z=
$$\frac{\sqrt{6}a}{6}$$

所以,表面积为 a^2 而体积最大的长方体的体积为 $V = xyz = \frac{\sqrt{6}a^3}{36}$

2、解: 据题意

$$\frac{dM}{dt} = -\lambda M$$

其中λ>0为常数

初始条件 $M|_{t=0} = M_0$

对于
$$\frac{dM}{dt} = -\lambda M$$
式

$$\frac{dM}{M} = -\lambda dt$$

两端积分得 $\ln M = -\lambda t + \ln C$

所以,
$$M = ce^{-\lambda t}$$

又因为
$$M|_{t=0} = M_0$$
 所以, $M_0 = C$

所以,
$$M = C$$

所以,
$$M = M_0 e^{-\lambda t}$$

由此可知, 铀的衰变规律为: 铀的含量随时间的增加而按指数规律衰减。

《高数》试卷 4 (下)

一. 选择题: 3'×10=30' 1. 下列平面中过点(1,1,1)的平面是_ (A) x + y + z = 0 (B) x + y + z = 1 (C) x = 1 (D) x = 32. 在空间直角坐标系中,方程 $x_2 + y_2 = 2$ 表示______. (A)圆 (B)圆域 (C)球面 (D)圆柱面 3. 二元函数 $z = (1-x)^2 + (1-y)^2$ 的驻点是______. (A)(0,0)(B)(0,1)(C)(1,0)(D)(1,1)**4**. 二重积分的积分区域 D 是 1 ≤ x2 + y2 ≤ 4 , 则 ∬ dxdy = _____. (B) 4π (C) 3π (D) 15π $(A)^{\pi}$ 5. 交换积分次序后 $\int_{0}^{1} dx \int_{0}^{x} f(x,y) dy =$ ______. (A) $\int_{0}^{1} dy \int_{y}^{1} f(x, y) dx$ (B) $\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx$ (C) $\int_{0}^{1} dy \int_{0}^{y} f(x, y) dx$ (D) $\int_{0}^{x} dy \int_{0}^{1} f(x, y) dx$ 6. n 阶行列式中所有元素都是 1, 其值是_____. (A) n (B) O (C) n! (D) 1 8. 下列级数收敛的是_____ (A) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1}$ (B) $\sum_{n=1}^{\infty} \frac{3^n}{2^n}$ (C) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ (D) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ 9. 正项级数 \sum_{u_n} 和 \sum_{v_n} 满足关系式 $u_n \leq v_n$,则 _______. (A) 若 \sum_{u_n} 收敛,则 \sum_{v_n} 收敛 (B) 若 \sum_{v_n} 收敛,则 \sum_{u_n} 收敛 (C) 若 \sum_{v_n} 发散,则 \sum_{u_n} 发散 (D) 若 \sum_{u_n} 收敛,则 \sum_{v_n} 发散 10. 已知: $\frac{1}{1-x} = 1 + x + x^2 + \cdots$, 则 $\frac{1}{1+x^2}$ 的幂级数展开式为______. (A) $1+x_2+x_4+\cdots$ (B) $-1+x_2-x_4+\cdots$ (C) $-1-x_2-x_4-\cdots$ (D) $1-x_2+x_4-\cdots$ 二. 填空题: 4'×5 = 20' 数 $z = \sqrt{x^2 + y^2 - 1 + \ln(2 - x^2 - y^2)}$ 的定义域为______ 2. 若 f(x,y) = xy, 则 $f(\frac{y}{x},1) = \underline{\hspace{1cm}}$.

3. 已知
$$(x_0, y_0)$$
是 $f(x, y)$ 的驻点,若 $f''_{xx}(x_0, y_0) = 3$, $f''_{yy}(x_0, y_0) = 12$, $f''_{xy}(x_0, y_0) = a$ 则当_____时, (x_0, y_0) 一定是极小点.

1. 已知:
$$z = xy$$
, 求: $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

2. 计算二重积分
$$\iint \sqrt{4-x^2} d\sigma$$
, 其中 $D = \{(x,y) \mid 0 \le y \le \sqrt{4-x^2}, 0 \le x \le 2\}$.

3. 已知:
$$XB=A$$
, 其中 $A=\begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \end{pmatrix}$, $B=\begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, 求未知矩阵 X .

4. 求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
的收敛区间.

5. 求
$$f(x) = e^{-x}$$
 的麦克劳林展开式 (需指出收敛区间).

1. 求平面
$$x-2y+z=2$$
和 $2x+y-z=4$ 的交线的标准方程.

参考答案

$$= . 1. \left\{ (x,y) \mid 1 \le x^2 + y^2 < 2 \right\} \quad 2. \quad \frac{y}{x} \quad 3. \quad -6 < a < 6 \quad 4. \quad 2.7 \quad 5. \quad \lim_{n \to \infty} u_n = 0$$

四. 1. 解:
$$\frac{\partial z}{\partial x} = yx_{y-1} \frac{\partial z}{\partial y} = x_y \ln y$$

2.
$$\Re : \iint_{D} \sqrt{4-x^2} d\sigma = \int_{0}^{2} dx \int_{0}^{\sqrt{4-x^2}} \sqrt{4-x^2} dy = \int_{0}^{2} (4-x^2) dx = \left[4x - \frac{x^3}{3}\right]_{0}^{2} = \frac{16}{3}$$

4. 解:
$$R=1,$$
 当 $|x|$ 〈1 时,级数收敛,当 $x=1$ 时,得 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ 收敛,

当
$$x = -1$$
 时,得 $\sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{n} = \sum_{n=1}^{\infty} \frac{-1}{n}$ 发散,所以收敛区间为 $(-1,1]$.

5. 解:. 因为
$$e_x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $x \in (-\infty, +\infty)$, 所以 $e_{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$ $x \in (-\infty, +\infty)$.

四.1.解:. 求直线的方向向量: $\vec{s} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \end{bmatrix} = \vec{i} + 3\vec{j} + 5\vec{k}$, 求点: 令 z=0, 得 y=0, x=2, 即交点为(2, 0. 0),

所以交线的标准方程为:. $\frac{x-2}{1} = \frac{y}{3} = \frac{z}{5}$

《高数》试卷5(下)

一、选择题(3 分/题)

1、已知
$$\vec{a} = \vec{i} + \vec{j}$$
, $\vec{b} = -\vec{k}$,则 $\vec{a} \times \vec{b} = ($)

A 0 B $\vec{i} - \vec{j}$ C $\vec{i} + \vec{j}$ D $-\vec{i} + \vec{j}$

2、空间直角坐标系中 $x^2 + y^2 = 1$ 表示()

A 圆 B 圆面 C 圆柱面 D 球面

3、二元函数 $z = \frac{\sin xy}{x}$ 在 (0, 0) 点处的极限是 ()

4、交换积分次序后 $\int_{x}^{1} dx \int_{x}^{1} f(x,y) dy = ($)

A $\int_{0}^{\infty} dy \int_{0}^{1} f(x, y) dx$ B $\int_{0}^{\infty} dy \int_{0}^{1} f(x, y) dx$

 $\begin{array}{ccc}
C & \int dy \int_{y}^{1} f(x, y) dx & D & \int dy \int_{0}^{y} f(x, y) dx
\end{array}$

5、二重积分的积分区域 D 是 $|x| + |y| \le 1$,则 $\int dx dy = ($

10、正项级数 $\sum_{n} u_n$ 和 $\sum_{n} v_n$ 满足关系式 $u_n \leq v_n$,则()

A 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛 B 若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

C 若 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 发散 D 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} v_n$ 发散

二、填空题(4分/题)

- 1、空间点 p (-1, 2, -3) 到 xoy 平面的距离为_____
- 3、级数 $^{∑}$ u 收敛的必要条件是__
- 三、计算题(6分/题)
- 1、已知二元函数 $z = y^{2x}$,求偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$
- 2、 求两平面: x-2y+z=2与2x+y-z=4交线的标准式方程。
- 3、计算二重积分 $\iint_D \frac{x^2}{y^2} dxdy$, 其中 D 由直线 x=2, y=x 和双曲线 xy=1 所围成的区域。
- 4、求幂级数 $\sum_{n=1}^{\infty} \frac{(x-1)^n}{5^n}$ 的收敛半径和收敛区间。
- 四、应用题(10分/题)
- 1、判断级数 $\sum_{(-1)^{n-1}} \frac{1}{n_p}$ 的收敛性,如果收敛,请指出绝对收敛还是条件收敛。

参考答案

一、 选择题(3 分/题)

DCBDA ACBCB

二、填空题(4分/题)

$$0 5, \lim_{n \to \infty} u_n = 0$$

三、计算题(6分/题)

1,
$$\frac{\partial z}{\partial x} = 2y^{2x} \ln y$$
, $\frac{\partial z}{\partial y} = 2x \cdot y^{2x-1}$

$$2, \ \frac{x-2}{1} = \frac{y-0}{3} = \frac{z-0}{5}$$

$$3, \frac{9}{4}$$

4、

5、收敛半径 R=3, 收敛区间为 (-4, 6)

四、应用题(10分/题)

1、当p<0时,发散;

0 时条件收敛;

p>1时绝对收敛

