

TERM END EXAMINATIONS - MAY 2024

	TERM END EXAMINATION	Semester	Winter Sem 2023-2024
Programme	B.Tech	Demesie	
Course Name/	Differential and Difference Equation /	Slot	A22+A23
Course Code	MAT2001	Max. Marks	100
Time	3 Hrs.		

Answer ALL the Questions

		Answer ALL the Questions	
Q.No. Sub. Sec.		Question Description Marks	
Q.No.	Sub- Ster	PART-A(60 Marks)	
1.	a)	Find Eigen Values and Eigen Vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
		OR	
		Find the general solution of the system of differential equations 12	
	by	$\frac{dx}{dx} = \frac{dy}{dx} = 4x + y$	
		$\frac{dt}{dt} = x + y$, $\frac{dt}{dt}$ Draw the graph the following function and find its corresponding Fourier Series 12	
2.	34	$f(x) = \begin{cases} sinx, & 0 \le x \le \pi \\ 0, & \pi \le x \le 2\pi \end{cases}$	
		OR	
	b)	Find Fourier Series of the function $f(x) = x$ in $[-\pi, \pi]$, then apply Parseval's Identity 12	
	U)	to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2}$.	
		The temperature $u(x,t)$ at any point of an infinite bar satisfies the equation $\frac{\partial u}{\partial t} = 12$	
3. a)		The temperature u(x,t) at any point of the length of the bar is given by	
		$\frac{\partial^2 y}{\partial x^2}$, $0 < x < \infty$, $t > 0$ the initial temperature along the length of the bar is given by	
		$u(x,0) = \begin{cases} 1, & x < 1 \\ 0, & x > 1 \end{cases}$	
		Determine the expression of $u(x, t)$.	
		OR	
		$(1-x^2, x \le 1)$ and hence evaluate 12	
	b)	Find Fourier Transform of $f(x) = \begin{cases} 1 - x^2, & x \le 1 \\ 0, & x > 1 \end{cases}$ and hence evaluate	n
		(a) $\int_0^\infty \frac{x\cos x - \sin x}{x^3} \cos \frac{x}{2} dx$ (b) $\int_0^\infty \frac{x\cos x - \sin x}{x^3} dx$.	
4	a)	Use convolution theorem to find $Z^{-1}\left[\frac{z^2}{(z-\frac{1}{2})(z-\frac{1}{4})}\right]$.	•
7	"		
		OR	
		Evaluate $Z\left[\frac{1}{n!}\right]$.	5
	b)	Evaluate $Z\left[\frac{1}{n!}\right]$.	

Page 1 of 2

6 Evaluate $Z[(n+1)^2]$. Solve $y_{n+2} + 10y_{n+1} + 25y_n = 1 + n^2$ by using method of undetermined 12 coefficients. OR Solve $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$, $y_0 = 0$, $y_1 = 1$ by using Z transforms. 12 b) PART-B(40 Marks) If λ is an Eigen value of a non-singular matrix A then prove that $\frac{|A|}{\lambda}$ is an Eigen 8 value of A-1. Write the Dirichlet conditions for f(x) in Fourier series a) For a given $f(x) = x \sin x$, $0 \le x \le 2\pi$, find its a_0 using Fourier series. b) 8 Apply Fourier integral to prove that $\int_0^\infty \frac{\cos \lambda x}{1+\lambda^2} dx = \frac{\pi}{2} e^{-x} (x \ge 0).$ 8 Find relation between Z transforms and Laplace transforms. Solve Fibonacci relation $a_{n+2} = a_{n+1} + a_n$ with initial condition $a_0 = 0$ and $a_1 = 0$ 8 10 1.