Memory & I/O Interface Cheat Sheet (Theory Only)

1. Memory Hierarchy

Memory Hierarchy \rightarrow Organizes different memory types based on speed, cost, and capacity. **Memory Levels (Fastest to Slowest):**

Memory Type	Speed	Cost per Bit	Capacity
Registers	Fastest	Very High	Very Small
Cache Memory	Very Fast	High	Small
Main Memory (RAM)	Fast	Moderate	Medium
Secondary Storage (HDD/SSD)	Slow	Low	Large
Tertiary Storage (Optical, Tape)	Slowest	Very Low	Very Large

Trade-Off: Faster memory \rightarrow More expensive \rightarrow Smaller capacity.

2. Main Memory (RAM) & Memory Chip Organization

Types of RAM:

- **SRAM (Static RAM):** Fast, used in Cache.
- **DRAM (Dynamic RAM):** Slower, used in Main Memory.

Memory Chip Organization:

- **Memory Addressing:** Each memory cell has a unique address.
- **Word Size:** Number of bits in a memory location (e.g., 32-bit, 64-bit).
- **Memory Bank:** Groups of memory modules accessed simultaneously.

Example: 2D Memory Organization (4×4 matrix for 16-bit memory):

Address		Data
0000		1010
0001		1100
0010		1111

3. Auxiliary (Secondary) Memory

Used for permanent data storage (non-volatile).

Types:

- Hard Disk Drive (HDD): Magnetic storage, high capacity.
- Solid-State Drive (SSD): Flash memory, faster than HDD.
- Optical Disks (CD/DVD/Blu-ray): Store media and backup data.
- **Magnetic Tapes:** Used for large-scale backups.

4. Associative (Content-Addressable) Memory

Memory that searches data by content instead of address.

Used in cache memory, networking (CAM - Content Addressable Memory), and databases.

Example:

Key | Data

```
"user1" | 1010

"user2" | 1100

"admin" | 1111

Searching "admin" directly returns 1111 without scanning entire memory.
```

5. Virtual Memory

Concept: Uses secondary storage (HDD/SSD) as an extension of RAM.

Implemented using Paging & Segmentation.

Page Table maps virtual addresses to physical addresses.

Example:

```
Virtual Address \rightarrow Page Table \rightarrow Physical Memory Address 0001 1010 \rightarrow 0110 0101
```

Advantages:

- Expands memory space.
- Allows multiple programs to run efficiently.

Disadvantages:

• Slower than RAM (due to disk access).

6. Cache Memory

Small, fast memory placed between CPU and RAM.

Stores frequently accessed data to improve speed.

Mapping Techniques:

- **Direct Mapping:** Each block maps to a fixed cache location.
- Fully Associative Mapping: Any block can go into any cache location.
- Set Associative Mapping: Combines Direct & Fully Associative Mapping.

Cache Performance Metrics:

- Hit Ratio: % of memory accesses found in cache.
- Miss Penalty: Time taken to fetch data from RAM when cache miss occurs.

7. Input-Output (I/O) Interface

Allows CPU to communicate with external devices (Keyboard, Monitor, Storage).

Components of I/O Interface:

- **Data Bus:** Transfers data.
- Address Bus: Identifies device.
- Control Signals: Start/Stop data transfer.

Types of I/O Communication:

- **Memory-Mapped I/O:** Uses memory addresses for I/O devices.
- **Port-Mapped I/O:** Uses separate address space for I/O.

8. Asynchronous Data Transfer

Used when CPU & I/O devices operate at different speeds.

Synchronization Methods:

- Handshake Protocol: Two-way signaling between sender & receiver.
- Strobe Signal: One-way signal to indicate data is ready.

9. Modes of Data Transfer

Mode Description

Programmed I/O CPU manually handles I/O data transfer (slow).

Interrupt-Driven I/O CPU is notified only when I/O is ready (better

efficiency).

Direct Memory Access (DMA)Data is transferred directly from I/O to memory without

CPU intervention (fastest).

10. Priority Interrupt

Interrupt Handling when multiple interrupts occur. Methods:

• **Polling:** CPU checks each device sequentially.

- **Vectored Interrupt:** Device sends a unique interrupt code to CPU.
- Daisy Chaining: Devices connected in series, priority based on position.

11. Direct Memory Access (DMA)

Allows I/O devices to directly access main memory without CPU involvement. Components:

- **DMA Controller (DMAC):** Manages data transfer.
- Bus Arbitration: Determines control of system bus. Steps in DMA Transfer:

1st CPU requests DMA to transfer data.

2ndDMA takes control of memory bus.

3rdDMA transfers data between I/O and memory.

4th DMA notifies CPU when complete.

12. Bus Interface Circuits & Standard I/O Interfaces

Buses: Connect different computer components for data transfer.

- Data Bus (Carries Data).
- Address Bus (Identifies Device).
- Control Bus (Manages Communication).

Standard I/O Interfaces:

Interface		Description			
PCI (Peripheral Component Interconnect)		High-speed bus for internal hardware (Graphics Card, Sound Card).			
SCSI (Small Computer System Interface)		Used for high-speed disk drives and tape storage.			
USB (Universal Serial Bus)		Common interface for external devices (Keyboard, Mouse, Flash Drives).			
Comparison of Interfaces:					
Feature	PCI	SCSI	USB		
Speed	High	Very High	Moderate		
Devices	Internal	Storage Devices	External		
Complexity	Moderate	High	Low		

13. Case Study - Advanced Processors

Modern Processors Implement:

- Multi-Core Architectures (Parallel Processing).
- Out-of-Order Execution (Improves Efficiency).
- Advanced Branch Prediction (Reduces Pipeline Stalls).
- High-Speed Cache Memory (L1, L2, L3).
- Hyper-Threading (Intel) & Simultaneous Multithreading (AMD).
 Examples:
- Intel Core i9, AMD Ryzen 9 (Multi-Core, Hyper-Threading).
- ARM Processors (Used in smartphones, energy-efficient).
- **RISC-V** (Open-source architecture).

Key Takeaways

Memory Hierarchy: Fastest at the top (Registers) \rightarrow Slowest at the bottom (HDD).

Virtual Memory: Expands memory using the disk (Paging, Segmentation).

Cache Memory: Stores frequently used data for quick access.

I/O Interfaces: PCI, SCSI, USB handle communication between devices.

DMA: Direct data transfer without CPU overhead.

Modern Processors: Use Multi-Core, Hyper-Threading, and High-Speed Cache.

This Memory & I/O Cheat Sheet covers memory hierarchy, cache, I/O interfaces, DMA, and modern processors. Let me know if you need further explanations!