CSC 230

Numeration

Tom Arjannikov

tarjan@uvic.ca

University of Victoria

Fall 2019

Outline

- Number systems
- Conversion between
- Binary arithmetic
- Computer logic
- Negative numbers
- Horner's Algorithm
- Endianness

Numbers

- Numeration The action or process of calculating or assigning a number to something (Oxford dictionary).
- Arabic numbers (digits)
- Abacus (oldest calculator)
- Binary numbers (bits)

Integer Number Systems

Binary

Base: 2Digits: 0,1

Octal

• Base: 8

• Digits: 0,1,2,3,4,5,6,7

Decimal

• Base: 10

• Digits: 0,1,2,3,4,5,6,7,8,9

Hexadecimal

• Base: 16

Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Positional Representation

Base 10

$$\begin{array}{rrr}
 + & 7 \\
 + & 80 \\
 + & 500 \\
 + & 3000 \\
 \hline
 = & 3587
 \end{array}$$

Weighted Positional Representation

Integer Value =
$$\sum_{i=0}^{n-1} d_i * b_i$$

Decimal Value =
$$\sum_{i=-m}^{n-1} d_i * b_i$$

e.g.
$$312.98 = 3*10^2 + 1*10^1 + 2*10^0 + 9*10^{-1} + 8*10^{-2}$$

Polynomial representation

Base 10

$$3*1000 + 5*100 + 8*10 + 7 =$$

 $3*10^3 + 5*10^2 + 8*10^1 + 7*10^0$

General Form

$$d_n * b^n + d_{n-1} * b^{n-1} + ... + d_2 * b^2 + d_1 * b^1 + d_0 * b^0$$

where d_n is the digit in n^{th} position starting from the right and b is the base.

```
Binary: 0b or % prefix
     e.g. 0b11011010 or %11011010
Octal: 00 (zero-oh) or 0 prefix
     e.g 0o617 or 0617
Hexadecimal (hex): 0x (zero-oh) or $ prefix
     e.g 0x1F or $1F
General: use a subscript with base number
    e.g. 101_2 \neq 101_8 \neq 101_{10} \neq 101_{16}
```

Memorize this table! (not)

Decimal	Binary	Hex	Octal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	
9	1001	9	
10	1010	Α	
11	1011	В	
12	1100	С	
13	1101	D	
14	1110	Е	
15	1111	F	

Conversion shortcut: binary \rightarrow hex or octal

Group the bits:

```
Binary:  (\ 11010110\ 10110101\ )_2 = 54965_{10}  Octal:  (\ 1\ 101\ 011\ 010\ 110\ 101)_2 = 153265_8  Hex:  (\ 1101\ 0110\ 1011\ 0101\ )_2 = D6B5_{16}
```

Conversion: decimal \rightarrow any base

Example: convert 119₁₀ to octal.

Repeated division by base:

$$119/8 = 14 * 8 + 7$$
 $r = 7$ (right most digit)
 $14/8 = 1 * 8 + 6$ $r = 6$ (second last)
 $1/8 = 0 * 8 + 1$ $r = 1$ ()
stop at 0
 $119_{10} = 167_8$

Conversion review

 $\mathsf{Decimal} \to \mathsf{binary}, \ \mathsf{octal}, \ \mathsf{hex}$

 $\mathsf{Binary} \to \mathsf{decimal}, \ \mathsf{octal}, \ \mathsf{hex}$

 $\mathsf{Octal} \to \mathsf{decimal}, \ \mathsf{binary}, \ \mathsf{hex}$

 $\text{Hex} \rightarrow \text{decimal, binary, octal}$

Binary Arithmetic

Binary Addition

Traditional vs long carry methods

Binary Subtraction

Binary Multiplication

					1	0	1	0	\leftarrow input 1
*					1	1	0	1	\leftarrow input 2
					1	0	1	0	
+				0	0	0	0		
+			1	0	1	0			
+		1	0	1	0				
	1	0	0	0	0	0	1	0	← result

Binary Division

							1	1	1	\leftarrow quotient
1	1	0)	1	0	1	1	0	1	\leftarrow divisor) dividend
-					1	1	0			
					1	0	1	0		
-						1	1	0		
						1	0	0	1	
-							1	1	0	
								1	1	← remainder

Computer (Boolean) Logic

Logic Gates Notation

NOT
$$(\bar{A}) \text{ or } (\neg A) \text{ or } (\sim A) \text{ or } (!A) \text{ or } (A')$$
AND
$$(A \cdot B) \text{ or } (A \wedge B) \text{ or } (A \& B)$$
OR
$$(A + B) \text{ or } (A \vee B) \text{ or } (A \parallel B)$$
XOR
$$(A \oplus B) \text{ or } (A \veebar B)$$

Truth Table

Α	В	NC	T	AND	OR	XOR	NAND	NOR
0	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0
1	0	0	1	0	1	1	1	0
1	1	0	0	1	1	0	0	0

AND \rightarrow 1 when both are one, 0 otherwise

 $\mathsf{OR} \to \mathsf{0}$ when both are 0, 1 otherwise

 $\mathsf{XOR} \to -\mathsf{0}$ when both are the same, 1 otherwise

Bitwise Operations

Rotating

Shifting

- << left shift
 - multiply by 2
 - overflow can occur
- >> right shift
 - divide by 2
 - underflow may occur

Masking

input: string of bits
mask: string of bits (same size as input)
binary Boolean operator:

- AND 1 preserves, 0 clears
- OR 0 preserves, 1 sets
- XOR 0 preserves, 1 toggle

Negative Numbers

Signed Magnitude

Binary	Decimal		
0000	0		
0001	1		
0010	2		
0011	3		
0100	4		
0101	5		
0110	6		
0111	7		
1000	-0		
1001	-1		
1010	-2		
1011	-3		
1100	-4		
1101	-5		
1110	-6		
1111	-7		

1's Compliment

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

2's Compliment

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

2's Compliment Algorithm

Convert negative value to binary:

- 1. Convert the absolute value to binary
- 2. Compliment (flip all the bits)
- 3. Add 1 (in binary)

Convert a negative binary number to decimal:

- 1. Subtract 1 (in binary)
- 2. Compliment (flip all the bits)
- 3. Convert as positive binary integer
- 4. Prepend a minus

2's Compliment Advantages

- efficient
- uniform
- avoids two zeros
- only need one adder (no subtraction unit)

In Addition...

Endianness

Byte-addressable memory:

Byte order	Big-endian	23-bit integer	Little-endian
		0A1B2C3D	
1	0A		3D
2	1B		2C
3	2C		1B
4	3D		0A

Word-addressable memory:

Byte order	Big-endian	23-bit integer	Little-endian
		0A1B2C3D	
1	0A1B		2C3D
2	2C3D		0A1B

Fall 2019

29/30

In 1819, William George Horner developed a method for evaluation of a polynomial of degree n using at most n multiplications and n additions.

$$d_n * b^n + d_{n-1} * b^{n-1} + \dots + d_2 * b^2 + d_1 * b^1 + d_0 * b^0$$

$$= ((\dots(d_n * b + d_{n-1}) * b + \dots + d_2) * b + d_1) * b + d_0$$

Note: evaluation starts from inner-most parentheses.

Allows for fast multiplication and division w/o hardware multiplier.