UNIT 8: ADVANCED TOPICS

L23. COMPUTATIONAL COMPLEXITY

DEFINITIONS

- ullet P = { problems solvable in polynomial (n^c) time } (what this class is all about)
- EXP = { problems solvable in exponential (2^{n^c}) time }
- ullet R = { problems solvable in finite time } "recursive" (Turing 1936; Church 1941)

MOST DECISION PROBLEMS ARE UNCOMPUTABLE

- ullet program pprox (finite?) binary string pprox nonneg. integer $\in N$
- decision problem = a function from binary strings (\approx nonneg. integers) to $\{YES(1), NO(0)\}$
- \approx infinite sequence of bits \approx real number $\in \mathbb{R}$ $|\mathbb{N}| \ll |\mathbb{R}|$: no assignment of unique nonneg. integers to real numbers (\mathbb{R} uncountable)
- mot nearly enough programs for all problems
- each program solves only one problem
- ⇒ almost all problems cannot be solved

NP

Non-deterministic Polynomial

NP = {Decision problems solvable in polynomial time via a "lucky" algorithm}. The "lucky" algorithm can make lucky guesses, always "right" without trying all options.

- nondeterministic model: algorithm makes guesses & then says YES or NO
- guesses guaranteed to lead to YES outcome if possible (no otherwise)

In other words, NP = {decision problems with solutions that can be "checked" in polynomial time}. This means that when answer = YES, can "prove" it & polynomial-time algorithm can check proof

$\mathbf{P} eq \mathbf{NP}$

Big conjecture (worth \$1,000,000)

- ullet pprox cannot engineer luck
- ullet pprox generating (proofs of) solutions can be harder than checking them

HARDNESS AND COMPLETENESS

Tetris is $\underline{NP\text{-}hard}$ = "as hard as" every problem \in NP. In fact $\underline{NP\text{-}complete}$ = $NP \cap NP$ -hard.

REDUCTIONS

Convert your problem into a problem you already know how to solve (instead of solving from scratch)

- most common algorithm design technique
- ullet unweighted shortest path ightarrow weighted (set weights =1)
- ullet min-product path o shortest path (take logs) (PS6-1)
- longest path \rightarrow shortest path (negate weights) (Quiz 2, P1k)
- ullet shortest ordered tour o shortest path (k copies of the graph) (Quiz 2, P5)
- cheapest leaky-tank path \rightarrow shortest path (graph reduction) (Quiz 2, P6)

All the above are One-call reductions: A problem \rightarrow B problem \rightarrow B solution \rightarrow A solution

Multicall reductions: solve A using free calls to B — in this sense, every algorithm reduces problem \rightarrow model of computation

NP-complete problems are all interreducible using polynomial-time reductions (same difficulty). This implies that we can use reductions to prove NP-hardness — such as in 3-Partition \rightarrow Tetris

THINKING

这一讲快速介绍了可计算性和计算复杂性。几乎是纯数学的领域。其中大多数决策问题不可计算的证明如果有什么实际意义的话,会指向很有趣的讨论。

R23. COMPUTATIONAL COMPLEXITY

NP-COMPLETE

Read CLRS on NP-complete, know these problems that are NP-complete, and avoid reduction to these problems in the future.

SAT

THINKING

可计算性和计算复杂度在实际应用中有重要的意义:对于需要在大数据集上运算的情况,避免无法解决或解决速度很慢(_NP-complete)的问题。

L24. TOPICS IN ALGORITHMS RESEARCH

Parallel Processor Architecture & Algorithms

Geometric Folding Algorithms

Data Structures

(Almost) Planar Graphs

Recreational Algorithms

R24. FINAL EXAM REVIEW

BLOOM FILTER

 $\prod_{i=0}^k$