

Catastrophic Forgetting in Deep Graph Networks: an Introductory Benchmark for Graph Classification

Antonio Carta

Andrea Cossu

Federico Errica

Davide Bacciu

Outline

WE STUDIED CATASTROPHIC FORGETTING

Why bothering?

Training on the entire data may even lead to superior results! However...

- 0 Datasets may be huge → no training on the edge •
- 0 New data after deployment → retraining
 - Expensive 😔
 - Inefficient → most of the information is already in the model •

Paper's Aim (1)

Does CL work on graphs?

- Graph distribution drift
- GRL regularization strategies?
- Graph classification

node distribution drift

neighborhood distribution drift

Paper's Aim (2)

Reproducible Research + Framework

- Foster future research
- Avoid common mistakes
- Handle boilerplate code

https://github.com/diningphil/continual learning for graphs

CL + GRL techniques

Elastic Weight Consolidation (EWC)
$$\longrightarrow \mathcal{R}(\Theta, \Omega) = \lambda \sum_{i=1}^{n-1} \Omega_i \|\Theta_i - \Theta_n\|_2^2$$

$$\rightarrow \mathcal{R}(\Theta_{n}, \Theta_{n-1}; \mathbf{x}, \mathbf{y}) = \alpha \text{ KL}[p_{\Theta_{n}}(\mathbf{y}|\mathbf{x}) \mid\mid p_{\Theta_{n-1}}(\mathbf{y}|\mathbf{x})]$$

$$p\left(\mathbf{A} \mid \mathbf{Z}\right) = \prod_{i=1}^{N} \prod_{j=1}^{N} p\left(A_{ij} \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right)$$
 with $p\left(A_{ij} = 1 \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right) = \sigma(\mathbf{z}_{i}^{\top} \mathbf{z}_{j})$ [Ref. 3

Replay Memory

Naive Strategy

Which Models?

A DICAL AND STATES

Structure-agnostic Baseline

- Impact of structure in CL
- MLP + Mean Global Pooling

Generic and simple DGN

- Based on GraphSAGE
- Mean aggregator & Global Pooling

$$\mathbf{h}_{v} = \psi(\mathbf{x}_{v}), \quad x_{v} \in \mathcal{X}_{g},$$

$$\psi(x_{v}) = \mathbf{W}_{L}^{T}(\sigma(\dots(\sigma(\mathbf{W}_{1}^{T}x_{v} + \mathbf{b}_{1})\dots) + \mathbf{b}_{L}))$$

$$\mathbf{h}_{g} = \Psi_{g}(\{\mathbf{h}_{v} \mid v \in \mathcal{V}_{g}\})$$

$$\left[\mathbf{h}_v^{\ell+1} = \phi^{\ell+1} \left(\mathbf{h}_v^{\ell}, \ \Psi_n(\{\psi^{\ell+1}(\mathbf{h}_u^{\ell}) \mid u \in \mathcal{N}_v\})\right)\right]$$

$$\mathbf{h}_g = \Psi_g \Big(\{ \mathbf{h}_v \mid v \in \mathcal{V}_g \} \Big)$$

MLP GRAPH CONVOLUTION(S) GLOBAL POOLING

Datasets

CIFAR10 (same preprocessing of MNIST)

OGBG-PPA

- Class-incremental Scenario
- Monitor ACC = $\frac{1}{T} \sum_{t=1}^{T} R_{T,t}$
- Hold-out + Hyper-param optimization for all models

	MNIST	CIFAR10	OGBG-PPA
Size	70000	60000	158100
Node Attrs.	3	5	0
Edge Attrs.	0	0	7
Classes	10	10	37
Avg $ V_q $	70,57	117,63	243,4
Avg $ \mathcal{E}_q $	564,63	941,07	2266,1
Data Split	55K/5K/15K	45K/5K/15K	49%/29%/22%
Class Split	2+2+2+2+2	2+2+2+2+2	17+5+5+5+5

Results

Baseline: Competitive!

Are DGNs ignoring the structure?

	Model	Strategy			
	Model	Naïve	EWC	Replay	LWF
MNIST	Baseline	$19.56_{\pm0.1}$	19.39 _{±0.1}	86.13 _{±4.5}	33.16 _{±13.1}
	DGN	$19.19_{\pm 0.1}$	$18.95_{\pm0.3}$	$79.52_{\pm 1.9}$	$32.64_{\pm 5.0}$
	DGN+reg	$19.31_{\pm 0.1}$	-	81.42 _{±2.4}	-
CIFAR10	Baseline	17.49 _{±0.1}	17.49 _{±0.1}	42.87 _{±3.7}	26.77 _{±5.1}
	DGN	$17.11_{\pm 0.2}$	$17.10_{\pm0.2}$	$39.55_{\pm 2.3}$	$24.13_{\pm 4.1}$
	DGN+reg	$17.13_{\pm0.1}$	-	46.61 _{±3.5}	-
OGBG-PPA	Baseline	14.53 _{±0.5}	13.90 _{±0.8}	55.96 _{±3.0}	20.83 _{±6.1}
	DGN	$14.47_{\pm0.3}$	$14.15_{\pm 0.5}$	$56.34_{\pm 2.5}$	18.46 _{±5.4}
	DGN+reg	$15.18_{\pm0.8}$	-	57.27 _{±3.2}	_

Table 2: Mean accuracy and mean standard deviation (in parenthesis) among all steps. Replay results are related to memory size of 1000. Results are averaged over 5 final runs. We treat the regularization loss as a separate strategy.

The road ahead

- Better understand the role of graph distribution drift on forgetting
 - Design ad-hoc regularization
- Need more benchmarks!
- Study node classification and other tasks

References

- Cossu A., Carta A., Errica F., Bacciu D., "Catastrophic Forgetting in Deep Graph Networks: an Introductory Benchmark for Graph Classification", Graph Learning Benchmarks Workshop, WWW 2021.
- 2. Bacciu D., Errica F., Micheli A., Podda M., "A Gentle Introduction to Deep Learning for Graphs", Neural Networks, 2021
- 3. Kipf, T. N., Welling, M., "Variational Graph Auto-Encoders", Bayesian Deep Learning Workshop, NIPS, 2016
- 4. Hamilton, W., Ying, Z., Leskovec, J., "Inductive representation learning on large graphs", NIPS, 2017
- 5. Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., & Bresson, X., "Benchmarking Graph Neural Networks", arXiv 2020.

Questions? Thank you!

You can reach me at:

andrea.cossu@sns.it andreacossu.github.io

CIML homepage: ciml.di.unipi.it

PAI Lab: http://pai.di.unipi.it/

