

Model Checking

CTL Model Checking

[Baier & Katoen, Chapter 6.4]

Prof. Dr. Nils Jansen

Radboud University, 2025

Credit to the slides: Prof. Dr. Dr.h.c. Joost-Pieter Katoen

Topic

The CTL model-checking problem:

Given:

- A finite transition system TS
- CTL state-formula Φ

Decide whether $TS \models \Phi$, and if $TS \not\models \Phi$ provide a counterexample¹

¹CTL counterexamples are outside the scope of this course.

Overview

- Recap: Computational Tree Logic
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- 4 Model Checking Existential Until and Always
- 5 Complexity Considerations
- 6 Summary

Overview

- Recap: Computational Tree Logic
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- Model Checking Existential Until and Always
- 6 Complexity Considerations
- **6** Summary

CTL Syntax

Definition: Syntax Computation Tree Logic

• CTL state-formulas with $a \in AP$ obey the grammar:

$$\Phi ::= \mathsf{true} \ \middle| \ a \ \middle| \ \Phi_1 \wedge \Phi_2 \ \middle| \ \neg \Phi \ \middle| \ \exists \varphi \ \middle| \ \forall \varphi$$

• and φ is a path-formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2.$$

Example CTL State-formulas

- ∀□∃○ a
- ∃(∀□a) U b

5

CTL Syntax

Definition: Syntax Computation Tree Logic

• CTL state-formulas with $a \in AP$ obey the grammar:

$$\Phi ::= \mathsf{true} \ \middle| \ a \ \middle| \ \Phi_1 \ \land \ \Phi_2 \ \middle| \ \neg \Phi \ \middle| \ \exists \varphi \ \middle| \ \forall \varphi$$

• and φ is a path-formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2.$$

Intuition

- $s \models \forall \varphi$ if all paths starting in s fulfill φ
- $s \models \exists \varphi$ if some path starting in s fulfill φ

5

Intuitive CTL Semantics

Intuitive CTL Semantics

CTL Semantics

Define a satisfaction relation for CTL-formulas over AP for a given transition system TS without terminal states.

Two parts:

- Interpretation of state-formulas over states of TS
- Interpretation of path-formulas over paths of TS

CTL Semantics (1)

Notation

TS, $s \models \Phi$ if and only if state-formula Φ holds in state s of transition system TS. As TS is known from the context we simply write $s \models \Phi$.

Definition: Satisfaction relation for CTL state-formulas The satisfaction relation ⊨ is defined for CTL state-formulas by:

$$s \models a$$
 iff $a \in L(s)$
 $s \models \neg \Phi$ iff not $(s \models \Phi)$
 $s \models \Phi \land \Psi$ iff $(s \models \Phi)$ and $(s \models \Psi)$
 $s \models \exists \varphi$ iff there exists $\pi \in Paths(s)$. $\pi \models \varphi$
 $s \models \forall \varphi$ iff for all $\pi \in Paths(s)$. $\pi \models \varphi$

where the semantics of CTL path-formulas is defined on the next slide.

CTL Semantics (2)

Definition: satisfaction relation for CTL path-formulas Given path π and CTL path-formula φ , the satisfaction relation \models where $\pi \models \varphi$ if and only if path π satisfies φ is defined as follows:

$$\pi \models \bigcirc \Phi$$
 iff $\pi[1] \models \Phi$
 $\pi \models \Phi \cup \Psi$ iff $(\exists j \ge 0, \pi[j] \models \Psi$ and $(\forall 0 \le i < j, \pi[i] \models \Phi))$

where $\pi[i]$ denotes the state s_i in the path $\pi = s_0 s_1 s_2 \dots$

Transition System Semantics

• For CTL-state-formula Φ , the satisfaction set $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models \Phi$

■ Point of attention: $TS \not\models \Phi$ is not equivalent to $TS \models \neg \Phi$ because of several initial states, e.g., $s_0 \models \exists \Box \Phi$ and $s_0' \not\models \exists \Box \Phi$

Overview

- 1 Recap: Computational Tree Logic
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- 4 Model Checking Existential Until and Always
- 5 Complexity Considerations
- 6 Summary

Existential Normal Form

Definition: existential normal form

A CTL formula is in existential normal form (ENF) if it is of the form:

$$\Phi \ \ \, ::= \ \ \, \mathsf{true} \ \ \, \left| \ \ \, a \ \ \, \right| \ \, \Phi_1 \wedge \Phi_2 \ \ \, \left| \ \ \, \neg \Phi \ \ \, \right| \ \, \exists \bigcirc \, \Phi \ \ \, \left| \ \ \exists (\Phi_1 \cup \Phi_2) \ \ \, \right| \ \, \exists \square \, \Phi$$

Only existentially quantified temporal modalities \bigcirc , U and \square .

For each CTL formula, there exists an equivalent CTL formula in ENF.

Existential Normal Form

Definition: existential normal form

A CTL formula is in existential normal form (ENF) if it is of the form:

$$\Phi ::= true \left| \begin{array}{c|c} a & \Phi_1 \land \Phi_2 & \neg \Phi & \exists \bigcirc \Phi & \exists (\Phi_1 \cup \Phi_2) & \exists \Box \Phi \end{array} \right|$$

Only existentially quantified temporal modalities \bigcirc , U and \square .

For each CTL formula, there exists an equivalent CTL formula in ENF.

Proof.

Universally quantified temporal modalities can be transformed as follows:

Overview

- Recap: Computational Tree Logic
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- 4 Model Checking Existential Until and Always
- 5 Complexity Considerations
- Summary

Basic Idea

- How to check whether TS satisfies CTL formula Ψ ?
 - convert the formula Ψ into the equivalent Φ in ENF
 - compute recursively the set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$
 - $TS \models \Phi$ if and only if each initial state of TS belongs to $Sat(\Phi)$

Basic Idea

- How to check whether TS satisfies CTL formula Ψ ?
 - convert the formula Ψ into the equivalent Φ in ENF
 - compute recursively the set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$
 - $TS \models \Phi$ if and only if each initial state of TS belongs to $Sat(\Phi)$
- Recursive bottom-up computation of $Sat(\Phi)$:
 - consider the parse tree of Φ
 - start to compute Sat(a_i), for all leafs in the parse tree
 - then go one level up in the tree and determine Sat(·) for these nodes

e.g.,:
$$Sat(\Psi_1 \wedge \Psi_2) = Sat(\Psi_1) \cap Sat(\Psi_2)$$
node at level i
node at level i
node at level $i+1$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- and so on...... until the root is treated, i.e., $Sat(\Phi)$ is computed
- Check whether $I \subseteq Sat(\Phi)$.

Basic Algorithm

syntax tree for Φ

Basic Algorithm

$$\Phi = \underbrace{\exists \bigcirc a \lor \exists (b \ U \neg c)}_{\Phi_1} \quad \rightsquigarrow \quad a_1 \lor a_2$$

$$\text{syntax tree for } \Phi$$

$$\text{compute } Sat(a), Sat(b), Sat(c)$$

$$Sat(\Phi_1) = \ldots = Sat(a_1)$$

$$Sat(\neg c) = S \setminus Sat(c)$$

$$Sat(\Phi_2) = \ldots = Sat(a_2)$$

$$\text{replace } \Phi_1 \text{ with } a_1$$

$$\text{replace } \Phi_2 \text{ with } a_2$$

$$\text{processed in bottom-up fashion}$$

$$Sat(\Phi) = Sat(a_1) \cup Sat(a_2)$$

Basic Algorithm

```
Sat(\text{true}) = S

Sat(a) = \{s \in S \mid a \in L(s)\}

Sat(\neg \Phi) = S \setminus Sat(\Phi)

Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)

Sat(\exists \bigcirc \Phi) = \{s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset\}

Sat(\exists \Box \Phi) = \dots

Sat(\exists (\Phi \cup \Psi)) = \dots
```

Treatment of $\exists \Box \Phi$ and $\exists (\Phi \cup \Psi)$: via a fixed-point computation

Overview

- Recap: Computational Tree Logic
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- Model Checking Existential Until and Always
- **5** Complexity Considerations
- **6** Summary

Characterization of *Sat* **for** ∃U

In fact, $\exists (\Phi \cup \Psi)$ is the smallest solution of this recursive equation

Characterization of *Sat* **for** ∃U

Expansion law:

$$\exists (\Phi \cup \Psi) \equiv \Psi \vee (\Phi \land \exists \bigcirc \exists (\Phi \cup \Psi))$$

In fact, $\exists (\Phi \cup \Psi)$ is the smallest solution of this recursive equation

 $Sat(\exists(\Phi \cup \Psi))$ is the smallest subset T of S, such that:

(1)
$$Sat(\Psi) \subseteq T$$
 and (2) $(s \in Sat(\Phi) \text{ and } Post(s) \cap T \neq \emptyset) \Rightarrow s \in T$.

That is, $T = Sat(\exists(\Phi \cup \Psi))$ is the smallest fixed point of the (higher-order) function $\Omega: 2^S \to 2^S$ given by:

$$\Omega(T) = Sat(\Psi) \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T \neq \emptyset \}$$

Characterization of *Sat* **for** ∃□

Expansion law:

$$\Phi \square E \bigcirc E \land \Phi = \Phi \square E$$

In fact, $\exists \Box \Phi$ is the largest solution of this recursive equation

Characterization of *Sat* **for** ∃□

Expansion law:

$$\Phi \square E \bigcirc E \land \Phi \equiv \Phi \square E$$

In fact, $\exists \Box \Phi$ is the largest solution of this recursive equation

 $Sat(\exists \Box \Phi)$ is the largest subset V of S, such that:

(1)
$$V \subseteq Sat(\Phi)$$
 and (2) $s \in V$ implies $Post(s) \cap V \neq \emptyset$.

That is, $V = Sat(\exists \Box \Phi)$ is the largest fixed point of the (higher-order) function $\Omega: 2^S \to 2^S$ given by:

$$\Omega(V) = \{ s \in Sat(\Phi) \mid Post(s) \cap V \neq \emptyset \}$$

Example for ∃□**2**

 $V = \{s_0\}$ satisfies the condition:

$$V \subseteq \{s \in Sat(a) \mid Post(s) \cap V \neq \emptyset\}$$

But
$$V \subsetneq Sat(\exists \Box a) = \{s_0, s_1\}$$

Universally Quantified Formulas

- $Sat(\forall \bigcirc \Phi) = \{ s \in S \mid Post(s) \subseteq Sat(\Phi) \}$
- $Sat(\forall \Box \Phi)$ equals the largest set T of states such that:

$$T \subseteq \{ s \in Sat(\Phi) \mid Post(s) \subseteq T \}$$

• $Sat(\forall(\Phi \cup \Psi))$ is the smallest set T of states such that:

$$Sat(\Psi) \cup \{ s \in Sat(\Phi) \mid Post(s) \subseteq T \} \subseteq T$$

Model Checking ∃U

$$Sat(\exists(\Phi \cup \Psi))$$
 is the smallest subset T of S , such that:
$$(1) \ Sat(\Psi) \subseteq T \quad \text{and} \quad (2) \ (s \in Sat(\Phi) \text{ and } Post(s) \cap T \neq \emptyset) \Rightarrow s \in T$$

• This suggests to compute $Sat(\exists(\Phi \cup \Psi))$ iteratively:

$$T_0 = Sat(\Psi)$$
 and $T_{i+1} = T_i \cup \{s \in Sat(\Phi) \mid Post(s) \cap T_i \neq \emptyset\}$

- T_i = states that can reach a Ψ -state in at most i steps via Φ states
- By induction it follows:

$$T_0 \subsetneq T_1 \subsetneq \ldots \subsetneq T_j = T_{j+1} = Sat(\exists (\Phi \cup \Psi))$$

• As TS is finite, we have $T_{j+1} = T_j = Sat(\exists (\Phi \cup \Psi))$ for some j.

Example

Computing true $U((p=r) \land (p \neq q))$ over $AP = \{p, q, r\}$:

Algorithm for $\exists (\bullet_1 \cup \Phi_2)$

Compute $Sat(\exists(\Phi_1 \cup \Phi_2))$ by a linear-time enumerative backward search

```
T := Sat(\Phi_2) \leftarrow collects all states s \models \exists (\Phi_1 \cup \Phi_2)
E := Sat(\Phi_2) \leftarrow set of states still to be expanded
WHILE E \neq \emptyset DO
    select a state s' \in E and remove s' from E
   FOR ALL s \in Pre(s') DO
       IF s \in Sat(\Phi_1) \setminus T THEN add s to T and E FI
     OD
OD
return T
```

Model Checking ∃□

 $Sat(\exists \Box \Phi)$ is the largest subset V of S, such that:

(1)
$$V \subseteq Sat(\Phi)$$
 and (2) $s \in V$ implies $Post(s) \cap V \neq \emptyset$.

• This suggests to compute $Sat(\exists \Box \Phi)$ iteratively:

$$V_0 = Sat(\Phi)$$
 and $V_{i+1} = \{ s \in V_i \mid Post(s) \cap V_i \neq \emptyset \}$

- $V_i = \text{states that have some } \Phi \text{-path of at least } i \text{ transitions}$
- By induction it follows:

$$V_0 \supseteq V_1 \supseteq \ldots \supseteq V_j = V_{j+1} = Sat(\exists \Box \Phi)$$

• As TS is finite, we have $V_{j+1} = V_j = Sat(\exists \Box \Phi)$ for some j.

Algorithm for ∃□

Compute $Sat(\exists \Box \Phi)$ by an enumerative backward search

```
T := Sat(\Phi) \leftarrow organizes the candidates for s \models \exists \Box \Phi
E := S \setminus T \leftarrow set of states to be expanded
WHILE E \neq \emptyset DO
   pick a state s' \in E and remove s' from E
   FOR ALL s \in Pre(s') DO
    IF s \in T and Post(s) \cap T = \emptyset THEN
         remove s from T and add s to E
    FI
UD
                             naïve implementation:
return T
                             quadratic time complexity
```

An Alternative SCC-Based Algorithm

An SCC-based algorithm for determining $Sat(\exists \Box \Phi)$:

- 1. Eliminate all states $s \notin Sat(\Phi)$:
 - determine $TS[\Phi] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(\Phi), \rightarrow' = \rightarrow \cap (S' \times Act \times S'), I' = I \cap S', \text{ and } L'(s) = L(s)$ for $s \in S'$
 - Why? all removed states refute $\exists \Box \Phi$ and thus can be safely removed

Example: $Sat(\exists \Box q)$

An Alternative SCC-Based Algorithm

An SCC-based algorithm for determining $Sat(\exists \Box \Phi)$:

- 1. Eliminate all states $s \notin Sat(\Phi)$:
 - determine $TS[\Phi] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(\Phi), \rightarrow' = \rightarrow \cap (S' \times Act \times S'), I' = I \cap S', \text{ and } L'(s) = L(s)$ for $s \in S'$
 - Why? all removed states refute $\exists \Box \Phi$ and thus can be safely removed
- 2. Determine all non-trivial strongly connected components in $TS[\Phi]$
 - non-trivial SCC = maximal, connected sub-graph with > 0 transition \Rightarrow any state in such SCC satisfies $\exists \Box \Phi$
- 3. $s \models \exists \Box \Phi$ is equivalent to "an SCC in $TS[\Phi]$ is reachable from s"
 - this search can be done in a backward manner in linear time

Example

Determining $Sat(\exists \Box q)$ using the SCC-based algorithm

CTL Model-Checking Algorithm

$$Sat(\text{true}) = S$$

$$Sat(a) = \{ s \in S \mid a \in L(s) \}$$

$$Sat(\neg \Phi) = S \setminus Sat(\Phi)$$

$$Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)$$

$$Sat(\exists \bigcirc \Phi) = \{ s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset \}$$

$$Sat(\exists \Box \Phi) = \bigcap_{n \geq 0} V_n \text{ where}$$

$$V_0 = Sat(\Phi)$$

$$V_{n+1} = \{ s \in V_n \mid Post(s) \cap V_n \neq \emptyset \}$$

$$Sat(\exists (\Phi \cup \Psi)) = \bigcup_{n \geq 0} V_n \text{ where}$$

$$T_0 = Sat(\Psi)$$

$$T_{n+1} = T_n \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T_n \neq \emptyset \}$$

Overview

- Recap: Computational Tree Logic
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- 4 Model Checking Existential Until and Always
- 6 Complexity Considerations
- 6 Summary

Time Complexity

The CTL model-checking problem can be solved in $O(|\Phi| \cdot |TS|)$.

Proof.

- 1. The parse tree of Φ has size $O(|\Phi|)$
- 2. The time complexity at a node of the parse tree is in O(|TS|)
- 3. This holds in particular for computing $Sat(\exists U)$ and $Sat(\exists \Box ...)$
- 4. The entire time complexity is thus in $O(|\Phi| \cdot |TS|)$

32

Complexity of CTL Model-Checking Problem

The CTL model-checking problem is PTIME-complete.

Proof.

Containment: Our algorithm runs in polynomial time

Hardness: Reduction from (monotone) Boolean circuit value problem

33

Complexity of CTL Model-Checking Problem

The CTL model-checking problem is PTIME-complete.

Proof.

Containment: Our algorithm runs in polynomial time

Hardness: Reduction from (monotone) Boolean circuit value problem

(Monotone) Boolean Circuit Value Problem

Given: Circuit consisting of Λ , V, 1, and 0 gates organised in layers

Question: Does the circuit evaluate to 1?

This problem is well-known to be PTIME-hard

Overview

- Recap: Computational Tree Logic
- 2 Existential Normal Form
- 3 Basic CTL Model-Checking Algorithm
- 4 Model Checking Existential Until and Always
- 5 Complexity Considerations
- **6** Summary

Summary

- CTL model checking determines Sat(Φ) by a recursive descent over
 Φ parse free of the CTL familia
- $Sat(\exists(\Phi \cup \Psi))$ is approximated from below by a backward search from Ψ -states
- Sat(∃□Φ) is approximated from above by a backward search from Φ-states

The CTL model-checking problem is PTIME-complete