1. Determine the domain of the function below.

$$f(x) = \frac{4}{12x^2 - 32x + 20}$$

- A. All Real numbers except x = a, where $a \in [0.72, 1.63]$
- B. All Real numbers.
- C. All Real numbers except x=a and x=b, where $a\in[14.99,15.36]$ and $b\in[15.62,16.64]$
- D. All Real numbers except x=a and x=b, where $a\in[0.72,1.63]$ and $b\in[1.55,2.28]$
- E. All Real numbers except x = a, where $a \in [14.99, 15.36]$
- 2. Choose the equation of the function graphed below.

A.
$$f(x) = \frac{-1}{(x-1)^2} + 1$$

B.
$$f(x) = \frac{1}{x+1} + 1$$

C.
$$f(x) = \frac{1}{(x+1)^2} + 1$$

D.
$$f(x) = \frac{-1}{x-1} + 1$$

E. None of the above

3. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-7x}{2x+2} + \frac{-5x^2}{10x^2 + 24x + 14} = \frac{-6}{5x+7}$$

- A. $x \in [-1.36, -0.99]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x_1 \in [0.2, 0.48]$ and $x_2 \in [-1.26, -1.09]$
- D. $x_1 \in [0.2, 0.48]$ and $x_2 \in [-1.01, -0.99]$
- E. $x \in [-1.56, -1.35]$
- 4. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{12}{-24x + 24} + 1 = \frac{12}{-24x + 24}$$

- A. $x_1 \in [-2, 0]$ and $x_2 \in [-2, 4]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [1.0, 2.0]$
- D. $x_1 \in [1, 3]$ and $x_2 \in [-2, 4]$
- E. $x \in [-2, 0]$
- 5. Choose the graph of the equation below.

$$f(x) = \frac{1}{(x+3)^2} - 3$$

В.

C.

D.

E. None of the above.

6. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{90}{40x + 60} + 1 = \frac{90}{40x + 60}$$

A. $x_1 \in [-3.5, 0.5]$ and $x_2 \in [-1.5, -0.5]$

B. $x \in [-1.5, -0.5]$

C. $x_1 \in [-3.5, 0.5]$ and $x_2 \in [1.5, 3.5]$

D. All solutions lead to invalid or complex values in the equation.

E. $x \in [1.5, 2.5]$

7. Determine the domain of the function below.

$$f(x) = \frac{4}{30x^2 - 43x + 15}$$

A. All Real numbers except x = a, where $a \in [14.82, 15.14]$

B. All Real numbers except x=a and x=b, where $a\in[14.82,15.14]$ and $b\in[29.61,30.49]$

C. All Real numbers.

D. All Real numbers except x = a, where $a \in [0.57, 0.62]$

E. All Real numbers except x=a and x=b, where $a\in[0.57,0.62]$ and $b\in[0.68,1.16]$

8. Choose the graph of the equation below.

$$f(x) = \frac{-1}{x-3} - 1$$

C.

D.

В.

E. None of the above.

9. Choose the equation of the function graphed below.

A.
$$f(x) = \frac{-1}{(x-1)^2} + 3$$

B.
$$f(x) = \frac{-1}{x-1} + 3$$

C.
$$f(x) = \frac{1}{x+1} + 3$$

D.
$$f(x) = \frac{1}{(x+1)^2} + 3$$

E. None of the above

10. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{5x}{-2x+7} + \frac{-7x^2}{8x^2 - 16x - 42} = \frac{-5}{-4x - 6}$$

A. $x_1 \in [-0.08, 1.51]$ and $x_2 \in [3.5, 5.5]$

B. $x \in [-3.4, -1.97]$

C. $x_1 \in [-0.08, 1.51]$ and $x_2 \in [-8.1, 2.9]$

D. All solutions lead to invalid or complex values in the equation.

E. $x \in [-1.96, -0.9]$