

PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 10

Aufgabe 37 (ähnlich)

Bestimmen Sie für die folgenden linearen Abbildungen jeweils eine Basis für Kern und Bild:

- $\begin{array}{l} \text{(i)} \ \ \varphi_1 \colon \mathbb{R}^2 \to \mathbb{R}^2; \ \ (x_1, x_2) \mapsto (x_1 x_2, x_2 + 2x_1) \\ \text{(ii)} \ \ \varphi_2 \colon \mathbb{R}^2 \to \mathbb{R}^3; \ \ (x_1, x_2) \mapsto (x_1 + x_2, x_1 2x_2, x_1) \\ \text{(iii)} \ \ \varphi_3 \colon \mathbb{R}^3 \to \mathbb{R}^3; \ \ (x_1, x_2, x_3) \mapsto (5x_1 + x_2, x_1 + x_2 + x_3, 2x_3 8x_1) \end{array}$

Lösung.

- (i) Wir bestimmen zuerst den Kern von φ_1 : $\varphi_1(x_1,x_2)=(0,0)\Longrightarrow x_1=(0,0)$ $x_2 \Longrightarrow 3x_1 = 0 \Longrightarrow x_1 = x_2 = 0$, also gilt $\ker \varphi_1 = \{0\}$ und $\operatorname{Bild}(\varphi_1) = \mathbb{R}^2$. Eine Basis von Bild $(\varphi_1) = \mathbb{R}^2$ ist also die Standardbasis von \mathbb{R}^2 , die einzige Basis von $\ker \varphi_1$ ist die leere Menge.
- (ii) $\varphi_2(x_1, x_2) = (0, 0, 0) \Longrightarrow x_1 = -x_2 \land x_1 = 0 \Longrightarrow x_1 = x_2 = 0$, also gilt $\ker \varphi_2 = \{0\}$ und dass φ_2 injektiv ist. Eine Basis von $\ker \varphi_2 = \{0\}$ ist also die leere Menge. Aus der Injektivität von φ_2 folgt, dass wir eine Basis von $Bild(\varphi_2)$ erhalten, wenn wir das Bild der Standardbasis von \mathbb{R}^2 durch φ_2 berechnen: $\varphi_2(1,0) = (1,1,1)$ und $\varphi_2(0,1) = (1,-2,0)$.
- (iii) Für jedes $x_1 \in \mathbb{R}$ können wir x_2 und x_3 so bestimmen, dass $5x_1 + x_2 = 2x_3 x_3 + x_4 = 2x_3 x_4 = 2x_4 = 2x_4 x_4 = 2x_4 =$ $8x_1 = 0$ gilt und man sieht leicht, dass für diese Werte auch $x_1 + x_2 + x_3 = 0$ gilt. Also hat der Kern von φ_3 Dimension 1 und wird z.B. von dem Vektor (1, -5, 4) erzeugt.

Da ker φ_3 ein-dimensional ist, folgt, dass das Bild von φ_3 zwei-dimensional ist. Um eine Basis dieses Untervektorraums zu erhalten, berechnen wir $\varphi_3(0,1,0) = (1,1,0)$ und $\varphi_3(0,0,1) = (0,1,2)$ und bemerken, dass die Vektoren (1,1,0) und (0,1,2) linear unabhängig sind, also einen zweidimensionalen Raum aufspannen. Dieser kann nur Bild (φ_3) sein, also bilden die beiden Vektoren eine Basis davon.

Aufgabe 38 (ähnlich)

Sei $V = \mathbb{R}[t]_{\leq 4}$ der Vektorraum aller reellen Polynome vom Grad ≤ 4 . Entscheiden Sie, welche der folgenden Abbildungen $\varphi \colon V \to V$ linear sind:

- (a) $p \mapsto p(0)$ (Auswertung in 0)
- (b) $p \mapsto p(1)$ (Auswertung in 1)
- (c) $p \mapsto p'$ (Ableitung nach t)
- (d) $p \mapsto p+1$.

Lösung.

(a) Analog zu (b).

1

(b) Sei f(p) = p(1), $\forall p \in V$. f hat also den Definitionsbereich V und den Zielbereich \mathbb{R} . Seien p_1 und p_2 Elemente von V, und $\alpha, \beta \in \mathbb{R}$. Es gilt:

$$f(\alpha p_1 + \beta p_2) = (\alpha p_1 + \beta p_2)(1) = (\alpha p_1)(1) + (\beta p_2)(1)$$

= $\alpha p_1(1) + \beta p_2(1) = \alpha f(p_1) + \beta f(p_2),$

also ist f linear.

- (c) Aus den bekannten Regeln für das Berechnen der Ableitung eines Polynoms folgt sofort, dass diese Abbildung linear ist.
- (d) Sei g(p) = p + 1, $\forall p \in V$. Dann ist g(t + 1) = t + 2 aber g(t) + g(1) = t + 1 + 2 = t + 3. Also ist diese Abbildung nicht linear. Alternativ kann man feststellen, dass $g(0) = 1 \neq 0$, was zur selben Schlussfolgerung führt.

Aufgabe 39 (a, b, c)

Sei $\varphi \colon V \to W$ eine lineare Abbildung zwischen K-Vektorräumen. Entscheiden Sie, welche der folgenden Aussagen wahr sind:

- (a) Sind v_1, \ldots, v_n in V linear unabhängig, so sind $\varphi(v_1), \ldots, \varphi(v_n)$ in W linear unabhängig.
- (b) Sind $\varphi(v_1), \ldots, \varphi(v_n)$ in W linear unabhängig, so sind v_1, \ldots, v_n in V linear unabhängig.
- (c) Wenn φ bijektiv ist, dann ist $\varphi^{-1}: W \to V$ ebenfalls linear.

Lösung.

- (a) Die Abbildung φ , definiert durch $\varphi(x) = 0$, $\forall x \in V$, ist offensichtlich linear. Die Aussage ist also im Allgemeinen falsch, denn eine Menge von Vektoren, die den Nullvektor enthält, ist nie linear unabhängig. (Aussage (a) ist stets wahr, wenn ker $\varphi = \{0\}$ gilt.)
- (b) Seien $\lambda_1, \ldots, \lambda_n \in K$, so dass $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$ gilt. Da φ eine lineare Abbildung ist, haben wir $0 = \varphi(0) = \varphi(\lambda_1 v_1 + \ldots + \lambda_n v_n) = \lambda_1 \varphi(v_1) + \ldots + \lambda_v \varphi(v_n)$. Nun folgt aus der linearen Unabhängigkeit von $\varphi(v_1), \ldots, \varphi(v_n)$ in W, dass $\lambda_1 = \ldots = \lambda_n = 0$ gelten muss. Also sind v_1, \ldots, v_n in V linear unabhängig.
- (c) Seien $w_1, w_2 \in W$, $\lambda_1, \lambda_2 \in K$. Da φ bijektiv ist, gibt es $v_1, v_2 \in V$, so dass $w_1 = \varphi(v_1)$ und $w_2 = \varphi(v_2)$ gelten. Nun haben wir

$$\varphi^{-1}(\lambda_1 w_1 + \lambda_2 w_2) = \varphi^{-1}(\lambda_1 \varphi(v_1) + \lambda_2 \varphi(v_2)) = \varphi^{-1}(\varphi(\lambda_1 v_1 + \lambda_2 v_2))$$

= $\lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 \varphi^{-1}(w_1) + \lambda_2 \varphi^{-1}(w_2),$

also ist φ^{-1} eine lineare Abbildung.

Aufgabe 40 (ähnlich)

Bestimmen Sie den Rang der folgenden Matrix über dem Körper Q:

$$A = \left(\begin{array}{cccc} 2 & 0 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{array}\right).$$

Was ist der Rang, wenn wir A als Matrix über dem Körper $\mathbb{Z}/3\mathbb{Z}$ auffassen? Finden Sie jeweils eine invertierbare Untermatrix von maximaler Größe.

 $L\ddot{o}sung.$ Wir wenden den Gauß-Algorithmus an, um die Matrix A in Zeilenstufenform zu bringen. Wir erhalten:

$$A = \left(\begin{array}{cccc} 2 & 0 & 1 & 1\\ 0 & 1 & 3/2 & -1/2\\ 0 & 0 & -5/2 & 1/2\\ 0 & 0 & 0 & 11/5 \end{array}\right).$$

Die Lösungsmenge eines linearen Gleichungssystems, das A als Koeffizientenmatrix hat, existiert und ist einzig, also ist A invertierbar und hat vollen Rang. A selbst ist dann die invertierbare Untermatrix von maximaler Größe.

Wenn wir die Einträge von A als Elemente aus $\mathbb{Z}/3\mathbb{Z}$ auffassen, erhalten wir folgende Matrix in Zeilenstufenform:

$$A = \left(\begin{array}{cccc} 2 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Wir sehen, dass das homogene Gleichungssystem mit A als Koeffizientenmatrix auch über $\mathbb{Z}/3\mathbb{Z}$ keine freien Variable hat, also hat A auch über $\mathbb{Z}/3\mathbb{Z}$ den Rang gleich 4 und ist invertierbar.