计算机组成原理

翁睿

哈尔滨工业大学

Part 3

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

4. 原码乘法

4.3

(1) 原码一位乘运算规则

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

 $\begin{array}{r} 0.1101 \\ \times 0.1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ \hline 1101 \\ \hline 0.10001111 \end{array}$

参考笔算乘法运算

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

例4.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 4.3

解:	数值部分的运算		7.14 HT
	部分积	乘数	
	0.0000	$110\underline{1}$	部分积 初态 $z_0 = 0$
	+ 0.1110	_	+ x*
逻辑右移	0.1110		
这种们物	> 0.0111	0110	→1 ,得 z ₁
	+ 0.0000	I	+ 0
逻辑右移	0.0111	0	
这种们物	> 0.0011	1011	→1, 得 z ₂ + x*
	+ 0.1110		+ x*
)四 <i>村</i>	1.0001	10	
逻辑右移	> 0.1000	1 1 0 <u>1</u>	→1, 得 z ₃ + x*
	+ 0.1110		+ x*
\m\40 \	1.0110	110	
逻辑右移	20.1011	$0\ 1\ 1\ 0$	→1 ,得 z ₄

例4.21 结果

4.3

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算 (遵循无符号数规则)

用移位的次数判断乘法是否结束

逻辑移位

移位n次 加n次

(3) 原码一位乘的硬件配置

4.3

A、X、Q均n+1位

。移位和加受末位乘数控制

5. 补码乘法

4.3

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i_1} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$ 乘数 $[y]_{i_1} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

① 被乘数任意,乘数为正

同原码乘 但加和移位按补码规则运算 乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正 8

④ Booth 算法

4.3

递推公式

$$\begin{split} [z_0]_{\stackrel{*}{\uparrow}} &= 0 \\ [z_1]_{\stackrel{*}{\uparrow}} &= 2^{-1} \{ (y_{n+1} - y_n)[x]_{\stackrel{*}{\uparrow}} + [z_0]_{\stackrel{*}{\uparrow}} \} \qquad y_{n+1} = 0 \\ \vdots \\ [z_n]_{\stackrel{*}{\uparrow}} &= 2^{-1} \{ (y_2 - y_1)[x]_{\stackrel{*}{\uparrow}} + [z_{n-1}]_{\stackrel{*}{\uparrow}} \} \\ [x \cdot y]_{\stackrel{*}{\uparrow}} &= [z_n]_{\stackrel{*}{\uparrow}} + (y_1 - y_0)[x]_{\stackrel{*}{\uparrow}} \qquad 最后一步不移位 \end{split}$$

 y_{i+1} 一 y_i 的实现方法

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	→1
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→1

例4.23 已知 x = +0.0011 y = -0.1011 求 $[x \cdot y]_{\uparrow \downarrow}$ 4.3

解: 00.0000 +11.1101	1.0101	0	 +[- <i>x</i>] _{≱⊦}	$[x]_{\not \uparrow \backprime} = 0.0011$
补码 11.1101 右移 11.110 + 00.0011	1 101 <u>0</u>	1	$\rightarrow 1$ $+[x]_{\uparrow \uparrow}$	$[y]_{?} = 1.0101$ $[-x]_{?} = 1.1101$
补码 00.0001 右移 00.000 +11.1101	1 11 10 <u>1</u>	0	$\rightarrow 1$ + $[-x]_{{\uparrow}}$	
补码 11.1101 右移 +00.0011	1 1 1 1 1 1 <u>0</u>	1	-1	$∴ [x \cdot y]_{\not= h}$ =1.11011111
补码 00.0001 右移 00.000 +11.1101	111 1111 <u>1</u>	0	$\rightarrow 1$ + $[-x]_{{\nmid}h}$	移位 n 次 加 n+1 次
2023/3/9 1.1101	1111		最后一步	不移位

(2) Booth 算法的硬件配置

4.3

 $A \times X \times Q$ 均 n+2 位 移位和加法操作受乘数末两位控制

•Booth编码:

乘数中的每两位 对应基-2 Booth 编码中的一位。

Booth 编码中的每一位决定在当前位 置加被乘数的系数 总结规律:

乘数火车向右走, 首1湖被被 连串01不加减, 尾1进洞加被乘。 被乘加减交替程。

$$+[x]_{\nmid i} \cdot y_i' \rightarrow 1$$

1 2

4.3

乘法小结

- 整数乘法与小数乘法完全相同可用 逗号 代替小数点
- ▶ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

- 快速乘法器
 - •①阵列乘法器:
 - •最直白的思路,用n²个与门和n个加法器实现。
 - •首先,为方便分析阵列乘法器的工作流程,我们把全加器画为如下图的形式:
 - * 注意每个位置 对应的输入输出 信号是什么。 (下面要用到)

• 阵列乘法器

•举个例子:构造一个5位*5位的阵列乘法器:

•被乘数: $a_4a_3a_2a_1a_0$ 乘数: $b_4b_3b_2b_1b_0$ 结果: R=a*b

一位乘法的逻辑实现

- R=X*Y
 - 1 \times 1 = 1
 - 1 \times 0 = 0
 - $0 \times 1 = 0$
 - $\cdot 0 \times 0 = 0$
- 与门实现一位乘法
- •用25个与门并发计算
- •一级门延迟,生成所有位积

• 阵列乘法器

- 举个例子: 构造一个5位*5位的斜向进位阵列乘法器:
 - •被乘数: $a_4a_3a_2a_1a_0$ 乘数: $b_4b_3b_2b_1b_0$ 结果: R=a*b

▶华莱士树快速求和过程的主要思想:将求和项每3组压缩为 2组,如此反复直至仅剩2组;最后用超前进位加法器求和

■ 方法: 将多个加法器组织成一个并行树 (Wallace Tree)

■ 优点: 易于应用流水线设计执行,可以同步支持多个乘法

乘法器性能提升小结

- ▶核心算法: n个部分积累加
- ▶Booth一位乘 → Booth两位乘
 - 一位乘法: n个全加器, n²个全加器时延, 面积小 (Intel 8086)
 - •两位乘法:减少部分积的个数,速度更快,增加额外电路
- ▶斜向进位阵列乘法器 → 华莱士树
 - 斜向进位: (n²-n) 个全加器, n级全加器时延, 面积大
 - •华莱士树: 更多全加器,log₂n级全加器时延,面积更大
- ▶主流乘法器
 - •二位booth算法 + 华莱士树 + 流水

Ш

四、除法运算

6.3

1. 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ? 心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ?上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.00001111

2. 笔算除法和机器除法的比较

6.3

笔算除法

商符单独处理

心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器

上商位置不固定

机器除法

符号位异或形成

|x| - |y| > 0上商 1

|x| - |y| < 0上商 0

余数左移一位低位补"0" 减除数

1倍字长加法器

在寄存器 最末位上商

3. 原码除法

以小数为例

$$[x]_{\mathbb{R}} = x_0 \cdot x_1 x_2 \dots x_n$$

$$[y]_{\mathbb{R}} = y_0 \cdot y_1 y_2 \dots y_n$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot \frac{x^*}{y^*}$$

式中
$$x^* = 0.x_1x_2 \cdots x_n$$
 为 x 的绝对值 $y^* = 0.y_1y_2 \cdots y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

(1) 恢复余数法

6.3

例6.24
$$x = -0.1011$$
 $y = -0.1101$ 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: $[x]_{\mathbb{R}} = 1.1011$ $[y]_{\mathbb{R}} = 1.1101$ $[y^*]_{\mathbb{R}} = 0.1101$ $[-y^*]_{\mathbb{R}} = 1.0011$

② 被除数(余数)	商	说明
0.1011	0.0000	
+ 1.0011		+[- <i>y</i> *] _{*\}
1.1110	0	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	← 1
+ 1.0011		+[-y*] _{*\}
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	01	← 1
2023/3/9 + 1.0011		$+[-y^*]_{}$

~

_被除数(余数)	商	说 明
0.0101	011	余数为正,上商1
逻辑左移 0.1010	011	←1
+ 1.0011		+[-y*] _补
1.1101	0110	余数为负,上商 0
+ 0.1101		恢复余数 +[y*] _补
0.1010	0110	恢复后的余数
逻辑左移 1.0100	0110	←1
+ 1.0011		+[-y*] _{*\}
0.0111	01101	余数为正,上商1
'		-

 $\frac{x^*}{y^*} = 0.1101$ $\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$

余数为正 上商1

上商5次

第一次上商判溢出

移4次

金数为负 上商 0,恢复余数

(2) 不恢复余数法

6.3

• 恢复余数法运算规则

(2) 不恢复余数法(加减交替法)

6.3

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$
余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1" $2R_i - y^*$ 余数 $R_i < 0$ 上商 "0" $2R_i + y^*$

加减交替

例 6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

 $[x]_{\mathbb{R}} = 1.1011$

 $[y]_{\text{g}} = 1.1101$

 $[x^*]_{\nmid h} = 0.1011$

 $[y^*]_{n} = 0.1101$

 $[-y^*]_{\nmid h} = 1.0011$

ATAI

例6.25 结果

6.3

②
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore [\frac{x}{y}]_{\emptyset} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移n次,加n+1次

用移位的次数判断除法是否结束

2 3

6.3

(3) 原码加减交替除法硬件配置

A、X、Q均n+1位用 Q_n 控制加减交替

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 求阶差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \begin{cases} x \text{向 } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \end{cases} \\ < 0 & j_x < j_y \begin{cases} x \text{ 向 } y \text{ 看齐} & \checkmark S_x \rightarrow 1, j_x + 1 \\ y \text{ 向 } x \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 6.4 求 x + y

解: $[x]_{\stackrel{?}{\uparrow}} = 00, 01; 00.1101$ $[y]_{\stackrel{?}{\uparrow}} = 00, 11; 11.0110$

1. 对阶

2. 尾数求和

3. 规格化

6.4

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \le |S| < 1$$

(2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1 \times \times \cdots \times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots imes$	反码	$1.0 \times \times \cdots \times$

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{*} = [1.1] 0 0 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{1}$ 不是规格化的数

$$S = -1$$

$$[S]_{3} = 1.000 \cdots 0$$

∴ [-1]_¾ 是规格化的数

6.4(3) 左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例 $[x+y]_{\lambda} = 00, 11; 11.1001$

左规后 $[x+y]_{**} = 00, 10; 11.0010$

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

当 尾数溢出(>1)时,需 右规

即尾数出现 $01. \times \times \cdots \times$ 或 $10. \times \times \cdots \times$ 时

尾数右移一位,阶码加1

例6.27 $x = 0.1101 \times 2^{10}$ $y = 0.1011 \times 2^{01}$ 6.4

解: $[x]_{\stackrel{*}{\uparrow}} = 00,010;00.110100$ $[y]_{\stackrel{*}{\uparrow}} = 00,001;00.101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $\therefore S_y \longrightarrow 1, j_y + 1$
 $\therefore [y]_{\stackrel{?}{\Rightarrow}} = 00,010; 00.010110$

② 尾数求和

$$[S_x]_{\stackrel{}{ ext{st}}}=00.\ 110100$$
 $+[S_y]_{\stackrel{}{ ext{$^{\chi}$}}}=00.\ 010110$ 对阶后的 $[S_y]_{\stackrel{}{ ext{$^{\chi}$}}}$ 尾数溢出需右规

③ 右规

6.4

 $[x+y]_{\nmid k} = 00, 010; 01.001010$

右规后

 $[x+y]_{\nmid k} = 00, 011; 00. 100101$

 $\therefore x+y=0.100101\times 2^{11}$

4. 舍入

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置"1"法

例 6.28
$$x = (-\frac{5}{8}) \times 2^{-5}$$
 $y = (\frac{7}{8}) \times 2^{-4}$

 \vec{x}_{x-y} (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:

$$x = (-0.101000) \times 2^{-101}$$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{3} = 11,011;11.011000$$

$$[y]_{\lambda} = 11, 100; 00. 111000$$

① 对阶

$$[\Delta j]_{\nmid h} = [j_x]_{\nmid h} - [j_y]_{\nmid h} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 $\therefore S_x \longrightarrow 1$, j_x+1

$$\therefore$$
 [x]_{\$\frac{1}{2}\$, = 11, 100; 11. 101100}

② 尾数求和

③ 右规

$$[x-y]_{\mbox{\tiny h}}=11,100;10.110100$$

右规后

$$[x-y]_{\nmid k} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

5. 溢出判断

6.4

设机器数为补码,尾数为规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该补码 在数轴上的表示为

