

PROBLEM No. 1

$$a. \frac{0.5p}{[f]_{SI}} = m^{-1}s$$

b. 0.5p

$$e^{\frac{\mu v_{x \max}^2}{2RT}} = 0.01 \Rightarrow -\frac{\mu v_{x \max}^2}{2RT} = \ln \frac{1}{100} \Rightarrow v_{x \max} = \sqrt{\frac{4RT \ln 10}{\mu}} = \sqrt{\frac{4 \cdot 8.31 \frac{J}{\text{mol K}} \cdot 300 \text{K} \cdot 2.5}{4 \cdot 10^{-3} \frac{\text{kg}}{\text{mol}}}}$$

 $v_{x \text{ max}} = 2500 \text{ m/s}$

c. 2p

d. 2p

e. 0.5p

 $\eta = 0.13$

f. 0.5p

 $\eta = 0.0022$

Romanian Master of Physics 2012

g. 0.5p

$$\left(v^2 e^{-\frac{\mu v^2}{2RT}}\right)' = 0 \Rightarrow 2v e^{-\frac{\mu v^2}{2RT}} = v^2 \frac{2\mu v}{2RT} e^{-\frac{\mu v^2}{2RT}} \Rightarrow v^2 = \frac{2RT}{\mu}$$

$$\left(v^{2} e^{-\frac{\mu v^{2}}{2RT}}\right)' = 0 \Rightarrow 2v e^{-\frac{\mu v^{2}}{2RT}} = v^{2} \frac{2\mu v}{2RT} e^{-\frac{\mu v^{2}}{2RT}} \Rightarrow v^{2} = \frac{2RT}{\mu}$$

$$v_{p} = \sqrt{\frac{2RT}{\mu}} = \sqrt{\frac{2 \cdot 8.31 \frac{J}{\text{mol K}} \cdot 300 \text{K}}{4 \cdot 10^{-3} \frac{\text{kg}}{\text{mol}}}} \approx 1125 \frac{\text{m}}{\text{s}}$$

$$v \in [1000; 1250] \frac{m}{s}$$

h.
$$\frac{0.5p}{P(0,0,0)} = 0.0022$$

i. 2p

1. 2p				
magnitude of the velocity component	magnitude of the velocity component	magnitude of the velocity component	number of	P
(m/s)	(m/s)	(m/s)	occurrences	
0	0	1000	6	0.00100
0	0	1250	6	0.00068
0	250	1000	24	0.00090
0	500	1000	24	0.00078
0	750	750	12	0.00083
0	750	1000	24	0.00062
250	250	1000	24	0.00079
250	500	1000	48	0.00069
250	750	750	24	0.00074
500	500	750	24	0.00080
500	500	1000	24	0.00060

j.
$$1p$$
 $\eta = 0.17868$