2. Use the informal definitions of O, Θ , and Ω to determine whether the following assertions are true or false.

a.
$$n(n+1)/2 \in O(n^3)$$

b.
$$n(n+1)/2 \in O(n^2)$$

c.
$$n(n+1)/2 \in \Theta(n^3)$$

d.
$$n(n+1)/2 \in \Omega(n)$$

3. For each of the following functions, indicate the class $\Theta(g(n))$ the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions.

a.
$$(n^2+1)^{10}$$

b.
$$\sqrt{10n^2 + 7n + 3}$$

c.
$$2n \lg(n+2)^2 + (n+2)^2 \lg \frac{n}{2}$$

d.
$$2^{n+1} + 3^{n-1}$$

- e. $\lfloor \log_2 n \rfloor$
- 4. a. Table 2.1 contains values of several functions that often arise in analysis of algorithms. These values certainly suggest that the functions

$$\log n$$
, n , $n \log n$, n^2 , n^3 , 2^n , $n!$

are listed in increasing order of their order of growth. Do these values prove this fact with mathematical certainty?

- b. Prove that the functions are indeed listed in increasing order of their order of growth.
- 5. Order the following functions according to their order of growth (from the lowest to the highest):

$$(n-2)!$$
, $5 \lg(n+100)^{10}$, 2^{2n} , $0.001n^4 + 3n^3 + 1$, $\ln^2 n$, $\sqrt[3]{n}$, 3^n .

- 6. a. Prove that every polynomial of degree k, $p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0$ with $a_k > 0$, belongs to $\Theta(n^k)$.
 - b. Prove that exponential functions a^n have different orders of growth for different values of base a > 0.

TABLE 2.1	Values (some a	approximate) of	several	functions	important for
	analysis of algo				

n	$\log_2 n$	н	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	3.3·10 ¹	10 ²	10^{3}	10 ³	3.6·10 ⁶
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^6	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

1. Compute the following sums.

a.
$$1+3+5+7+\cdots+999$$

b.
$$2+4+8+16+\cdots+1024$$

c.
$$\sum_{i=2}^{n+1} 1$$

d.
$$\sum_{i=3}^{n+1} i$$

c.
$$\sum_{i=3}^{n+1} 1$$
 d. $\sum_{i=3}^{n+1} i$ e. $\sum_{i=0}^{n-1} i(i+1)$

f.
$$\sum_{i=1}^{n} 3^{j+1}$$

g.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij$$

f.
$$\sum_{j=1}^{n} 3^{j+1}$$
 g. $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$ h. $\sum_{i=0}^{n-1} 1/i(i+1)$

2. Find the order of growth of the following sums.

a.
$$\sum_{i=0}^{n-1} (i^2+1)^2$$
 b. $\sum_{i=2}^{n-1} \lg i^2$

b.
$$\sum_{i=2}^{n-1} \lg i^2$$

c.
$$\sum_{i=1}^{n} (i+1)2^{i-1}$$

c.
$$\sum_{i=1}^{n} (i+1)2^{i-1}$$
 d. $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$

Use the $\Theta(g(n))$ notation with the simplest function g(n) possible.