

Education

Massachusetts Institute of Technology

Cambridge, MA

2017-2021

Ph.D. IN COMPUTER SCIENCE

• Minor: Probability in High Dimension (Mathematics)

• Thesis: Sampling-based Algorithms for Fast and Deployable Al

· Advisor: Daniela Rus • GPA: 5.00/5.00

Massachusetts Institute of Technology

Cambridge, MA

S.M. IN COMPUTER SCIENCE

2015-2017 • Thesis: Algorithms for Persistent Autonomy and Surveillance

• Advisor: Daniela Rus

• GPA: 4.91/5.00

University of North Carolina at Chapel Hill

Chapel Hill, NC

B.S. Computer Science with Highest Honors, B.A. Mathematics

· Graduated with Highest Distinction

· Advisor: Ron Alterovitz

• Thesis: Design Optimization Algorithms for Concentric Tube Robots

· GPA: 3.91/4.00

Experience _____

Massachusetts Institute of Technology

Cambridge, MA

September 2021 - Present

· Working on algorithms for privacy-aware and efficient Machine Learning

JP Morgan New York City, NY AI RESEARCH INTERN May 2021 - September 2021

· Developed sampling-based algorithms with regret guarantees for large-scale graph neural network training

Massachusetts Institute of Technology

Cambridge, MA

TEACHING ASSISTANT FOR ADVANCED ALGORITHMS (6.854J / 18.415J)

Fall 2019

- · Conducted office hours to help students on problem sets and concepts covered in lectures; designed and graded assignments
- TA rating according to the official MIT subject evaluation report: 7.0/7.0

Microsoft Redmond, WA

SOFTWARE ENGINEER INTERN

· Improved the computational efficiency of Huffman coding in SQL Server as part of the SQL Server Performance Team

University of North Carolina

Chapel Hill, NC

Summer 2015

Undergraduate Research Assistant

August 2012 - May 2015

- Developed and analyzed efficient algorithms for motion planning and design optimization of concentric tube medical robots Computational Robotics Group under Prof. Ron Alterovitz
- Enhanced and implemented a Self-Aware Traffic Route Planning Algorithm (http://gamma.cs.unc.edu/TROUTE/) as a member of the GAMMA group under Prof. Ming Lin
- Developed enabling technologies, such as the Tar Heel Reader (tarheelreader.org), with Prof. Gary Bishop

University of North Carolina

Chapel Hill, NC

UNDERGRADUATE TEACHING ASSISTANT FOR INTRO. TO SCIENTIFIC COMPUTING (COMP 116)

August 2014 - December 2014

· Conducted office hours to help students on problem sets and concepts covered in lectures; designed and graded assignments

SAS Cary, NC SOFTWARE ENGINEERING INTERN

· Developed fully-automated tests and utilized SAS software to perform data analysis of coverage reports

Summer 2014

SAS Cary, NC

SOFTWARE ENGINEERING INTERN

Summer 2013 • Developed automated tests for SAS University, a web-based SAS platform

UNC Eshelman School of Pharmacy

Chapel Hill, NC

SOFTWARE DEVELOPER INTERN

Summer 2012

2019

• Developed novel educational products using XHTML/HTML, CSS, PHP, JavaScript to facilitate learning for pharmacy students

Н	or		re	2.	Δ	M2	rd	•
п	UI	IUI	13	œ	M	N A	ΙU	3

2021	Winner, MIT The Engine's Interval Program (one of 2 winning teams)	MIT
2021	Expert Reviewer, International Conference on Learning Representations	ICLR
2021	Expert Reviewer, International Conference on Machine Learning	ICML
2020	Expert Reviewer, International Conference on Learning Representations	ICLR
2020	Top 10% of Reviewers, Neural Information Processing Systems	NeurlPS
2017	Best Paper Award, Robotics: Science and Systems Conference	RSS@MIT
2015	Carolina Research Scholar, University of North Carolina at Chapel Hill	UNC
2015	Finalist, CRA Outstanding Undergraduate Researcher Award	CRA
2014	Phi Beta Kappa, University of North Carolina at Chapel Hill	UNC
2014	Charles H. Dunham Scholarship, SAS-funded scholarship at UNC	UNC
2014	Dunlevie Honors Undergraduate Award, University of North Carolina at Chapel Hill	UNC
2014	Summer Undergraduate Research Fellowship, University of North Carolina at Chapel Hill	UNC
2012-2015	Honors Carolina, UNC Honors Program	UNC
2011-2015	Dean's List, University of North Carolina at Chapel Hill	UNC

Publications _____

STEPHANIE GIL, CENK BAYKAL, AND DANIELA RUS

Graph Belief Propagation Networks Junteng Jia, Cenk Baykal, Vamsi Potluru, and Austin Benson	Submitted 2021
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks CENK BAYKAL*, Lucas Liebenwein*, Igor Gilitschenski, Dan Feldman, and Daniela Rus	SIAM SIMODS 2021
Coresets for Support Vector Machines Cenk Baykal*, Murad Tukan*, Dan Feldman, and Daniela Rus	TCS 2021
Low-Regret Active Learning Cenk Baykal, Lucas Liebenwein, Dan Feldman, and Daniela Rus	Submitted 2021
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus	MLSys 2021
Provable Filter Pruning for Efficient Neural Networks Lucas Liebenwein*, Cenk Baykal*, Harry Lang, Dan Feldman, and Daniela Rus	ICLR 2020
On Coresets for Support Vector Machines Murad Tukan*, Cenk Baykal*, Dan Feldman, and Daniela Rus	<i>TAMC</i> 2020
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, DAN FELDMAN, AND DANIELA RUS	ICLR 2019
Deterministic Coresets for Stochastic Matrices with Applications to Scalable Sparse PageRank	TAMC
CENK BAYKAL*, HARRY LANG*, NAJIB ABU SAMRA, TONY TANNOUS, DAN FELDMAN, AND DANIELA RUS Resilient Multi-Agent Consensus using Wi-Fi Signals	2019 L-CSS

Sampling-Based Approximation Algorithms for Reachability Analysis with Provable Guarantees Cenk Baykal*, Lucas Liebenwein*, Igor Gilitschenski, Sertac Karaman, and Daniela Rus	RSS 2018
Asymptotically Optimal Kinematic Design of Robots using Motion Planning CENK BAYKAL, CHRIS BOWEN, AND RON ALTEROVITZ	Autonomous Robots 2018
Kinematic Design Optimization of a Parallel Surgical Robot to Maximize Anatomical Visibility via Motion Planning ALAN KUNTZ, CHRIS BOWEN, CENK BAYKAL, ARTHUR W. MAHONEY, PATRICK L. ANDERSON, FABIEN MALDONADO, ROBERT J. WEBSTER III, AND RON ALTEROVITZ	ICRA 2018
Asymptotically Optimal Design of Piecewise Cylindrical Robots using Motion Planning (Best Paper Award) Cenk Baykal and Ron Alterovitz	RSS 2017
Persistent Surveillance of Events with Unknown, Time- varying Statistics CENK BAYKAL, GUY ROSMAN, SEBASTIAN CLAICI, AND DANIELA RUS	ICRA 2017
Persistent Surveillance of Events with Unknown Rate Statistics CENK BAYKAL, GUY ROSMAN, KYLE KOTOWICK, MARK DONAHUE, AND DANIELA RUS	WAFR 2016
Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning CENK BAYKAL, LUIS G. TORRES, AND RON ALTEROVITZ	IROS 2015
Participatory Route Planning David Wilkie, Cenk Baykal, And Ming Lin	SIGSPATIAL 2014
Interactive-rate Motion Planning for Concentric Tube Robots Luis G. Torres, Cenk Baykal, and Ron Alterovitz	ICRA 2014