

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FIS1513 - Estática y Dinámica

Facultad de Física

Profesor: Ulrich Volkmann

Ayudantes: Eitan Dvorquez, Williams Medina, Jorge Pérez, Francisco Zamorano

Taller 5

Problema 1

Una partícula P de masa m se lanza por el interior de un recipiente cilíndrico con eje vertical, radio R y altura h. El roce de P con la pared cilíndrica es despreciable; domina el roce viscoso $\vec{F}_{t,v} = -c\vec{v}$ de P con el fluido que llena el recipiente. La partícula es lanzada en contacto con la superficie cilíndrea, con velocidad horizontal de magnitud v_0 . Determine:

- a) La velocidad vertical v_z como función del tiempo y la función z(t).
- b) La velocidad angular de P como función del tiempo.
- c) Valor que debe tener el coeficiente c para que P alcance justo a dar una sola vuelta, suponiendo que el recipiente es infinitamente alto $(h \to \infty)$

Problema 2

El coeficiente de roce estático entre la plataforma del camión y la caja que transporta es $\mu_e = 0, 3$. Determine la distancia mínima de frenado s que debe recorrer el camión, partiendo de una velocidad de 72, 4[km/h] y con desaceleración constante durante el frenado, de modo que la caja no se deslice hacia adelante.

Problema 3

El bloque B_1 de masa m_1 está apoyado sobre una superficie horizontal fija; el bloque B_2 está apoyado sobre B_1 . Los bloques están unidos a los extremos de una cuerda ideal que pasa por una polea fija, como se muestra en la figura. Los coegicientes de roce dinámico entre B_1 y B_2 y entre B_1 y al superficie horizontal tienen el mismo valor μ . Todos los demás roces son despreciables. Si B_1 se desliza con velocidad constante hacia la izquierda, determine la magnitud de la fuerza horizontal \vec{F} que está actuando sobre él.

