Near-equivalence of the Restricted Isometry Property and Johnson-Lindenstrauss Lemma

Rachel Ward

University of Texas at Austin

September 20, 2011

Joint work with Felix Krahmer (Hausdorff Center, Bonn, Germany)

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2}\log(p))$ be a natural number. Then there exists a Lipschitz map $f: \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\varepsilon)\|x_i-x_j\|^2 \leq \|f(x_i)-f(x_j)\|^2 \leq (1+\varepsilon)\|x_i-x_j\|^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2}\log(p))$ be a natural number. Then there exists a Lipschitz map $f: \mathbb{R}^N \to \mathbb{R}^m$ such that

$$|(1-\varepsilon)||x_i-x_j||^2 \le ||f(x_i)-f(x_j)||^2 \le (1+\varepsilon)||x_i-x_j||^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2}\log(p))$ be a natural number. Then there exists a Lipschitz map $f: \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\varepsilon)\|x_i-x_j\|^2 \le \|f(x_i)-f(x_j)\|^2 \le (1+\varepsilon)\|x_i-x_j\|^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: f is taken as a random orthogonal projection

[Alon 2003] *m*-dependence on *p* and ε optimal up to $\log(1/\varepsilon)$

Let $\varepsilon \in (0,1)$ and let $x_1,...,x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2}\log(p))$ be a natural number. Then there exists a Lipschitz map $f: \mathbb{R}^N \to \mathbb{R}^m$ such that

$$|(1-\varepsilon)||x_i-x_j||^2 \le ||f(x_i)-f(x_j)||^2 \le (1+\varepsilon)||x_i-x_j||^2$$

for all $i, j \in \{1, 2, ..., p\}$.

Johnson-Lindenstrauss Lemma

Original proof: f is taken as a random orthogonal projection

[Alon 2003] *m*-dependence on *p* and ε optimal up to $\log(1/\varepsilon)$

(Even with suboptimal dependence we call such f "JL embeddings" or "distance-preserving embeddings")

000000

Idea of proof

Probabilistic distance-preserving embeddings

We want a linear map $\Phi: \mathbb{R}^N \to \mathbb{R}^m$ such that

$$\left| \|\Phi(x_i - x_j)\| - \|x_i - x_j\| \right| \le \varepsilon \|x_i - x_j\| \text{ for } \binom{p}{2} \text{ vectors } x_i - x_j.$$

000000

Idea of proof

We want a linear map $\Phi: \mathbb{R}^N \to \mathbb{R}^m$ such that

$$\left|\left|\left|\Phi(x_i-x_j)\right|\right|-\left|\left|x_i-x_j\right|\right|\right|\leq \varepsilon ||x_i-x_j|| \text{ for } \binom{p}{2} \text{ vectors } x_i-x_j.$$

▶ For any fixed vector $v \in \mathbb{R}^N$, and for a matrix $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ with i.i.d. Gaussian entries.

$$\mathbb{P}\Big(\big|\|\Phi v\|^2 - \|v\|^2\big| \ge \varepsilon \|v\|^2\Big) \le \exp(-c\varepsilon^2 m).$$

- ▶ Take union bound over $\binom{p}{2}$ vectors $x_i x_i$;
- ▶ If $m \ge c' \varepsilon^{-2} \log(p)$, then Φ is optimal embedding with probability > 1/2.

Practical distance-preserving embeddings

For computational efficiency, $\Phi: \mathbb{R}^N \to \mathbb{R}^m$ should

- ▶ allow fast matrix-vector multiplies: O(N log N) flops per matrix-vector multiply is optimal
- not involve too much randomness

Idea of proof

Practical distance-preserving embeddings

▶ [Ailon, Chazelle '06] : "Fast Johnson-Lindenstrauss Transform"

$$\Phi = \mathcal{GFD}$$
;

- $ightharpoonup \mathcal{D}: \mathbb{R}^N o \mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- $\mathcal{F}: \mathbb{R}^N \to \mathbb{R}^N$ is discrete Fourier matrix.
- $\mathcal{G}: \mathbb{R}^N \to \mathbb{R}^m$ is sparse Gaussian matrix.

 $\mathcal{O}(N \log N)$ multiplication when $p < e^{N^{1/2}}$

Practical distance-preserving embeddings

Johnson-Lindenstrauss Lemma

▶ [Ailon, Chazelle '06] : "Fast Johnson-Lindenstrauss Transform"

$$\Phi = \mathcal{GFD}$$
;

- $ightharpoonup \mathcal{D}: \mathbb{R}^N o \mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
- $\mathcal{F}: \mathbb{R}^N \to \mathbb{R}^N$ is discrete Fourier matrix.
- $\mathcal{G}: \mathbb{R}^N \to \mathbb{R}^m$ is sparse Gaussian matrix.

 $\mathcal{O}(N \log N)$ multiplication when $p < e^{N^{1/2}}$

Many more constructions ...

Practical Johnson-Lindenstrauss embeddings

- ► [Ailon, Liberty '10]: $\Phi = \mathcal{F}_{rand}\mathcal{D}$,
 - $ightharpoonup \mathcal{D}: \mathbb{R}^N o \mathbb{R}^N$ is diagonal matrix with random ± 1 entries.
 - $ightharpoonup \mathcal{F}_{rand}: \mathbb{R}^N \to \mathbb{R}^m$ consists of m randomly-chosen rows from the discrete Fourier matrix
 - \triangleright $\mathcal{O}(N \log(N))$ multiplication, but suboptimal embedding dimension for distance-preservation:

$$m = \mathcal{O}(\varepsilon^{-4}\log(p)\log^4(N))$$

Proof relies on (nontrivial) estimates for \mathcal{F}_{rand} from [Rudelson, Vershynin '08] (operator LLN, Dudley's inequality, ...)- these estimates are used in *compressed sensing* for sparse recovery guarantees.

0000000

Practical Johnson-Lindenstrauss embeddings

RIP

[Krahmer, W '10]: Improved embedding dimension for
$$\Phi = \mathcal{F}_{rand}\mathcal{D}$$
 to $m = \mathcal{O}\left(\varepsilon^{-2}\log(p)\log^4(N)\right)$.

0000000

Practical Johnson-Lindenstrauss embeddings

[Krahmer, W '10]: Improved embedding dimension for
$$\Phi = \mathcal{F}_{rand}\mathcal{D}$$
 to $m = \mathcal{O}\left(\varepsilon^{-2}\log(p)\log^4(N)\right)$.

Proof relies only on a certain restricted isometry property of \mathcal{F}_{rand} introduced in context of sparse recovery. Many random matrix constructions share this property...

000000

RIP

The Restricted Isometry Property (RIP)

The Restricted Isometry Property

Johnson-Lindenstrauss Lemma

A vector $x \in \mathbb{R}^N$ with at most k nonzero coordinates is k-sparse.

Definition (Candès/Romberg/Tao (2006))

A matrix $\Phi: \mathbb{R}^N \to \mathbb{R}^m$ is said to have the *restricted isometry* property of order k and level δ if

$$(1 - \delta) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta) \|x\|_2^2$$

for all k-sparse $x \in \mathbb{R}^N$.

The Restricted Isometry Property

Johnson-Lindenstrauss Lemma

A vector $x \in \mathbb{R}^N$ with at most k nonzero coordinates is k-sparse.

Definition (Candès/Romberg/Tao (2006))

A matrix $\Phi: \mathbb{R}^N \to \mathbb{R}^m$ is said to have the *restricted isometry* property of order k and level δ if

$$(1 - \delta) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta) \|x\|_2^2$$

for all k-sparse $x \in \mathbb{R}^N$.

Usual context: If $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ has (k, δ) -RIP with δ sufficiently small, and if $x^{\#}$ is a k-sparse solution to the system $y = \Phi x$, then $x^{\#} = \operatorname*{argmin}_{\Phi z = v} \|z\|_{1}.$

RIP through concentration of measure

Johnson-Lindenstrauss Lemma

Recall the concentration inequality for distance-preserving embeddings (i.e. when Φ is Gaussian):

$$\mathbb{P}\left(\left|\|\Phi v\|^2 - \|v\|^2\right| \ge \varepsilon \|v\|^2\right) \le \exp(-c\varepsilon^2 m) \tag{1}$$

RIP through concentration of measure

Johnson-Lindenstrauss Lemma

Recall the concentration inequality for distance-preserving embeddings (i.e. when Φ is Gaussian):

$$\mathbb{P}\left(\left|\|\Phi v\|^2 - \|v\|^2\right| \ge \varepsilon \|v\|^2\right) \le \exp(-c\varepsilon^2 m) \tag{1}$$

[Baraniuk et al 2008]: If $\Phi: \mathbb{R}^N \to \mathbb{R}^m$ satisfies the concentration inequality, then with high probability a particular realization of Φ satisfies (k, ε) -RIP for $m > c' \varepsilon^2 k \log N$

▶ Implies RIP with optimally small *m* for Gaussian (and more generally subgaussian) matrices

Known RIP bounds

Johnson-Lindenstrauss Lemma

The following random matrices satisfy (k, δ) -RIP with high probability (proved via other methods):

- ▶ [Rudelson/Vershynin '08]: Partial Fourier matrix \mathcal{F}_{rand} ; $m \geq \delta^{-2} k \log^4(N)$
- ▶ [Adamczak et al '09]: Matrices whose columns are i.i.d. from log-concave distribution - $m \gtrsim \delta^{-2} k \log^2(N)$
- ▶ The best known deterministic constructions require $m \ge k^{2-\mu}$ for some small μ (Bourgain et al (2011)).

Main results

Johnson-Lindenstrauss Lemma

Theorem (Krahmer, W. 2010)

Fix $\eta > 0$ and $\varepsilon > 0$. Let $\{x_j\}_{j=1}^p \subset \mathbb{R}^N$ be arbitrary. Set $k \geq 40 \log \frac{4p}{\eta}$, and suppose that $\Phi : \mathbb{R}^N \to \mathbb{R}^m$ has the $(k, \varepsilon/4)$ -restricted isometry property. Let \mathcal{D} be a diagonal matrix of random signs. Then with probability $\geq 1 - \eta$,

$$(1-\varepsilon)\|x_j\|_2^2 \le \|\Phi \mathcal{D}x_j\|_2^2 \le (1+\varepsilon)\|x_j\|_2^2$$

uniformly for all x_j .

▶ \mathcal{F}_{rand} has (k, δ) -RIP with $m \ge c\varepsilon^{-2}k\log^4(N) \Rightarrow \mathcal{F}_{rand}\mathcal{D}$ is a distance-preserving embedding if $m \ge c'\varepsilon^{-2}\log(p)\log^4(N)$.

A Geometric Observation

- A matrix that acts as an approximate isometry on sparse vectors (an RIP matrix) also acts as an approximate isometry on most vertices of the Hamming cube $\{-1,1\}^N$).
 - ▶ Apply our result to the vector x = (1, ..., 1).

- Assume w.l.o.g. x is in decreasing arrangement.
- ▶ Partition x in $R = \frac{2N}{L}$ blocks of length $s = \frac{k}{2}$:

$$x = (x_1, \dots, x_N) = (x_{(1)}, x_{(2)}, \dots, x_{(R)}) = (x_{(1)}, x_{(b)})$$

Need to bound

$$\begin{split} \|\Phi D_{\xi} x\|_{2}^{2} &= \|\Phi D_{x} \xi\|_{2}^{2} = \|\sum_{j=1}^{R} \Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\|_{2}^{2} \\ &= \sum_{J=1}^{R} \|\Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\|_{2}^{2} + 2 \xi_{(1)}^{*} D_{x_{(1)}} \Phi_{(1)}^{*} \Phi_{(\flat)} D_{x_{(\flat)}} \xi_{(\flat)} \\ &+ \sum_{J,L=2}^{R} \left\langle \Phi_{(J)} D_{x_{(J)}} \xi_{(J)}, \Phi_{(L)} D_{x_{(L)}} \xi_{(L)} \right\rangle \end{split}$$

Estimate each term separately.

First term

Johnson-Lindenstrauss Lemma

- ▶ Φ has (k, δ) -RIP, hence also has (s, δ) -RIP, and each $\Phi_{(J)}$ is almost an isometry.
- ▶ Noting that $||D_{x_{(I)}}\xi_{(J)}||_2 = ||D_{\xi_{(I)}}x_{(J)}||_2 = ||x_{(J)}||_2$, we estimate

$$(1-\delta)\|x\|_2^2 \leq \sum_{J=1}^R \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_2^2 \leq (1+\delta)\|x\|_2^2.$$

▶ Conclude with $\delta \leq \frac{\varepsilon}{4}$ that

$$\left(1 - \frac{\varepsilon}{4}\right) \|x\|_{2}^{2} \leq \sum_{I=1}^{R} \|\Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\|_{2}^{2} \leq \left(1 + \frac{\varepsilon}{4}\right) \|x\|_{2}^{2}.$$

Second term

Johnson-Lindenstrauss Lemma

$$2\xi_{(1)}^*D_{x_{(1)}}\Phi_{(1)}^*\Phi_{(\flat)}D_{x_{(\flat)}}\xi_{(\flat)}$$

• Keep $\xi_{(1)} = b$ fixed, then use Hoeffding's inequality.

Proposition (Hoeffding (1963))

Let $v \in \mathbb{R}^N$, and let $\xi = (\xi_i)_{i=1}^N$ be a Rademacher sequence. Then, for any t > 0.

$$\mathbb{P}\Big(|\sum_{i}\xi_{j}v_{j}|>t\Big)\leq 2\exp\Big(-\frac{t^{2}}{2\|v\|_{2}^{2}}\Big).$$

▶ Need to estimate $||v||_2$ for $v = D_{x_{(b)}} \Phi_{(b)}^* \Phi_{(1)} D_{x_{(1)}} b$.

Key estimate

Johnson-Lindenstrauss Lemma

Proposition

Let $R = \lceil N/s \rceil$. Let $\Phi = (\Phi_i) = (\Phi_{(1)}, \Phi_{(b)}) \in \mathbb{R}^{m \times N}$ have the $(2s, \delta)$ -RIP, let $x = (x_{(1)}, x_{(b)}) \in \mathbb{R}^N$ be in decreasing arrangement with $||x||_2 \le 1$, fix $b \in \{-1,1\}^s$, and consider the vector

$$v \in \mathbb{R}^N, \quad v = D_{\mathsf{x}(\flat)} \Phi_{(\flat)}^* \Phi_{(1)} D_{\mathsf{x}(1)} b.$$

Then $||v||_2 \leq \frac{\delta}{\sqrt{s}}$.

Key ingredients for the proof of the proposition

- $\|x_{(J)}\|_{\infty} \leq \frac{1}{\sqrt{k}} \|x_{(J-1)}\|_2$ for J > 1 (decreasing arrangement).
- ▶ Off-diagonal RIP estimate: $\|\Phi_{(J)}^*\Phi_{(L)}\| \leq \delta$ for $J \neq L$.

Third term

Johnson-Lindenstrauss Lemma

$$\sum_{J,L=2\atop J\neq L}^R \left\langle \Phi_{(J)} D_{\mathsf{x}_{(J)}} \xi_{(J)}, \Phi_{(L)} D_{\mathsf{x}_{(L)}} \xi_{(L)} \right\rangle$$

Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright '71, Boucheron et al '03)

Let X be the $N \times N$ matrix with entries $x_{i,j}$ and assume that $x_{i,j} = 0$ for all $i \in [N]$. Let $\xi = (\xi_i)_{i=1}^N$ be a Rademacher sequence. Then, for any $t>0, \qquad \mathbb{P}\Big(\big|\sum_{i,j}\xi_i\xi_jx_{i,j}\big|>t\Big)\leq 2\exp\Big(-\frac{1}{64}\min\Big(\frac{\frac{96}{65}t}{\|X\|},\frac{t^2}{\|X\|^2}\Big)\Big).$

▶ Need ||C|| and $||C||_{\mathcal{F}}$ for

$$C \in \mathbb{R}^{N \times N}$$
, $C_{j,\ell} = \left\{ egin{array}{ll} x_j \Phi_j^* \Phi_\ell x_\ell, & j,\ell > s ext{ in different blocks} \\ 0, & ext{else.} \end{array} \right.$

Summary and discussion

Johnson-Lindenstrauss Lemma

Novel connection: An RIP matrix with randomized column signs is a distance-preserving (Johnson-Lindenstrauss) embedding.

- ▶ Yields "near-equivalence" between RIP and JL-Lemma
- ▶ Allows to transfer the theoretical results developed in compressed sensing to the setting of distance-preserving embeddings
- Yields improved bounds for embedding dimension of several classes of random matrices, and optimal dependence on distortion ε for a fast embedding.

Thanks!