# Low Power Wakeup-Receiver

Project Electrical Engineering AS2019

### **Authors**

Cédric Renda, Manuel Tischhauser

**Supervisor** 

Prof. Dr. Heinz Mathis

**Assistant Supervisor** 

Selina Malacarne

**Subject** 

Wireless Communications

### **Abstract**

### Introduction

In company buildings, universities and other similar facilities, it is usual to attach occupancy schedules next to room entrances. These schedules are mostly printed on paper, or in more modern buildings, displayed on a screen. Using paper, it is impracticable to take short-term changes into account, since every adjustment needs to be made by printing a new schedule. Screens on the other hand need either to be connected to a power supply, which entails extensive installation work, or powered by a battery, which needs to be replaced from time to time. All these disadvantages could be avoided by using a screen which harvests its energy from the indoor light, and is updated via a wireless interface. The screen should therefore be completely wireless, which simplifies the installation.

### **Approach**

Solar cells should harvest the required energy which can be store in a super-capacitor. Because this harvesting unit cannot provide unlimited energy, the whole system with display, microcontroller and wireless interface should consume as little energy as possible. To achieve this, a e-paper display is used, which only needs energy to update the screen, but not to maintain the displayed data. By using a wake up receiver, it is now possible to disconnect the energy storage from the system, since it can be reconnected again when needed if a wake up interrupt is detected. In a nutshell, the display, microcontroller and interface can be completely disconnected from the power supply when not used. In this state, only the leakage of the super-capacitor and the wakeup receiver in listening mode consume power. This consumption is in the micro watt range.

### **Conclusion**

# **Contents**

| Al      | brevi            | ations                                     | 1  |  |  |  |  |  |  |  |  |
|---------|------------------|--------------------------------------------|----|--|--|--|--|--|--|--|--|
| 1       | <b>Intro</b> 1.1 | duction<br>bla                             | 3  |  |  |  |  |  |  |  |  |
| 2       | The              | ry                                         | 5  |  |  |  |  |  |  |  |  |
|         | 2.1              | Microencapsulated Electrophoretic Displays | 5  |  |  |  |  |  |  |  |  |
|         | 2.2              | wake up interrupt                          | 6  |  |  |  |  |  |  |  |  |
|         | 2.3              | software grafik zeichen                    | 6  |  |  |  |  |  |  |  |  |
| 3       | Eval             | action                                     | 7  |  |  |  |  |  |  |  |  |
|         | 3.1              | Wakeup Receiver                            | 7  |  |  |  |  |  |  |  |  |
|         |                  | 3.1.1 AS3933                               | 7  |  |  |  |  |  |  |  |  |
|         |                  | 3.1.2 RFicient                             | 8  |  |  |  |  |  |  |  |  |
|         |                  | 3.1.3 Test run in realistic environments   | 8  |  |  |  |  |  |  |  |  |
| 4       | Deve             | opment                                     | 9  |  |  |  |  |  |  |  |  |
|         | 4.1              | Overview                                   | 9  |  |  |  |  |  |  |  |  |
|         | 4.2              | Hardware                                   | 9  |  |  |  |  |  |  |  |  |
|         |                  | 4.2.1 Energy Harvesting                    | 9  |  |  |  |  |  |  |  |  |
|         | 4.3              | Software                                   | 13 |  |  |  |  |  |  |  |  |
|         |                  | 4.3.1 Receiver                             | 13 |  |  |  |  |  |  |  |  |
|         |                  | 4.3.2 Transceiver                          | 13 |  |  |  |  |  |  |  |  |
| 5       | Resu             | lts 1                                      | 15 |  |  |  |  |  |  |  |  |
| 6       | Sum              | nary 1                                     | 17 |  |  |  |  |  |  |  |  |
| Sources |                  |                                            |    |  |  |  |  |  |  |  |  |
| Li      | st of f          | gures 1                                    | 19 |  |  |  |  |  |  |  |  |
| Li      | st of t          | bles                                       | 21 |  |  |  |  |  |  |  |  |
| Sta     | ateme            | at of Plagiarisms                          | 23 |  |  |  |  |  |  |  |  |
| A       | Requ             | irements                                   | 27 |  |  |  |  |  |  |  |  |
|         |                  | e e e e e e e e e e e e e e e e e e e      | 28 |  |  |  |  |  |  |  |  |
|         | A.2.             | Requirement Specification                  | 30 |  |  |  |  |  |  |  |  |

### **Abbreviations**

**BLE** Bluetooth Low Power

IIS Fraunhofer-Institut für Integrierte Schaltungen

ASK Amplitude Shift Keying

OOK On-Off Keying

GUI Graphical User Interface

SPI Serial Peripheral Interface

# Introduction

1.1 bla

# **Theory**

### 2.1 Microencapsulated Electrophoretic Displays

There are several different technologies which are applied in e-paper displays. But since the developed prototype uses a screen, which uses a microencapsulated electrophoretic display, this section only describes this specific implementation.



Figure 2.1: filler pic

### amundson



Figure 2.2: E-paper display under microscope with 250x magnification

### 2.2 wake up interrupt

Bluetooth Low Power (BLE)
BLE
Bluetooth Low Power

### 2.3 software grafik zeichen

### **Evaluation**

This chapter lists the pros and cons of available Technologies. On this basis was evaluated, which hardware is suitable.

### 3.1 Wakeup Receiver

In this semester thesis, two different implementations of the wakeup receiver technology were compared. The AS3933 from AMS and the RFicient from the Fraunhofer-Institut für Integrierte Schaltungen (IIS) which kindly provided an evaluation kit before the actual release of the product. This section first introduces both products, before comparing them with a series of tests in a for this application realistic environment.

### 3.1.1 AS3933

The AS3933 is a low frequency wakeup receiver, which uses ASK to modulate a carrier frequency between 15-150 kHz. The transmitter sends a manchester encoded, programmable wakeup pattern of length 16 or 32 bit. If this pattern is detected on the receiver end, a wakeup interrupt is generated. More important features on receiver end are:

- Receiver sensitivity  $80 \mu VRMS$  (equivalent to -68.93 dBm)
- Current consumption in 3-channel listening mode 2.3 μA
- Operating supply range 2.4 V 3.6 V
- Three antennas (enables 3D detection)
- Channels individually selective to reduce power consumption

The low power consumption makes it possible run the receiver in listening mode below 8.3  $\mu$ Was3933.

The demo kit comes with a GUI, which enables the user to set the parameters as desired. First trials showed, that only one of the three antennas seemed to work. According to the manual, it should have been possible to activate the other two channels as well, but the in the demo kit included GUI did not provide this option. Consulting the technical support of AMS was unfortunately of no use. Therefore all test were made with only one channel as good as possible.

### 3.1.2 RFicient

The Rficient from the IIS uses OOK to modulate a 868 MHz signal. It can either run in pure wakeup mode, where the receiver generates an interrupt as soon as a code is received or a selective mode, where a 16 bit wakeup preamble needs to match the receiver. After the preamble is detected, the data rate can be changed to transfer more bits which can be sent over an SPI-bus to a connected device. Data rates can be set in a range between 256 bp/s - 32 kbp/s. the most important features are:

- Receiver sensitivity -80 dBm
- Energy consumption  $3 \mu A$  at 1.5 V (data rate 1 kbit/s)
- Unidirectional data transfer possible

The power consumption therefore is in listening mode (data rate = 1 kb/s)  $4.5 \mu$ W.

Just as the AS3933, the RFicient demo kit comes with a GUI, which enables the user to set the important parameters and even access the register directly **rficient**.

### 3.1.3 Test run in realistic environments

### **Development**

### 4.1 Overview

### **Not Up To Date Graphic**



### 4.2 Hardware

### 4.2.1 Energy Harvesting

The screen should be self-sustaining, thus some sort of energy-harvesting unit is needed. It was apparent to choose light as the energy source, since the screen will be used in rooms, that are artificially illuminated most of the time. The energy obtained by solar cells is converted to a

suitable voltage, using a ADP5090 chip. This way, a super-capacitor, which is used as an energy storage device, is charged.

### Solar cell

As solar cell, the AM-1522 by Panasonic is used. One panel has an area of 55.0 mm  $\times$  40.5 mm and delivers up to 58.7  $\mu$ A when operating at an optimal voltage of 2.1 V, provided an illuminance of 200 lux. To keep a reasonable display to panel ratio, four cells where connected in parallel, which corresponds to an area of ca. 89.1 cm<sup>2</sup> (Display area = 283 cm<sup>2</sup>). Therefore, the solar cells should provide a power of

$$P = U \cdot I = 4 \cdot 57.8 \,\mu\text{A} \cdot 2.1 \,\text{V} = 485.52 \,\mu\text{W}, \tag{4.1}$$

given a 200 lux illuminance amorton.

#### Power management

The ADP5090 from Analog Devices is used on the power management. This boost regulator makes it possible to charge storage elements, such as rechargeable batteries and super capacitors with the input dc-power provided by the PV-cell. Utilized features are:

- Maximum power point tracking
- Efficiency up to 90%
- Input voltage  $V_{IN}$  from 80 mV to 3.3 V
- Programmable voltage range (2.2 V to 5.2 V) for the storage element

To prevent the storage element from overdischarging, the ADP5090 enables the user to set a maximal Voltage with resistors:

$$V_{\text{BAT\_TERM}} = \frac{3}{2} V_{\text{REF}} \left( 1 + \frac{R_{\text{TERM1}}}{R_{\text{TERM2}}} \right). \tag{4.2}$$

The same procedure is applied to set a minimal voltage:

$$V_{\text{BAT\_SD}} = V_{\text{REF}} \left( 1 + \frac{R_{\text{SD1}}}{R_{\text{SD2}}} \right). \tag{4.3}$$

While discharging, the ADP5090 will switch off the output  $V_{\text{SYS}}$  if  $V_{\text{BAT\_SD}}$  is reached. This prevents the storage element from overdischarging. The output voltage  $V_{\text{SYS}}$ , where the load is attached, will therefore always stay in this programmed range ( $V_{\text{BAT\_SD}} \leq V_{\text{SYS}} \leq V_{\text{BAT\_TERM}}$ ) adp.

For this prototype, the evaluation board for the ADP5090 was used, where the internal reference voltage ( $V_{REF}$  in (4.2) and (4.3)) is 1.21 V **adp\_eval**.

### **Super capacitor**

As energy storage, a super capacitor from Taiyo Yuden (LIC1235RS3R8406) has proven to be suitable, which is a 40 F cylinder type lithium ion capacitor. The operating voltage range is between 2.2 V and 3.8 V. Discharging the capacitor lower than 2.2 V causes shorter lifetime and higher leakage current. The same unwanted behaviour occurs when charging the capacitor over 3.8 V **yuden**.

#### **Combined test**

To test the behaviour of the power management, supercapacitor and solar cells, a couple of measurements are executed.

To carry out these measurements, it is first necessary to adjust the minimal and maximal voltage of the ADP5090. The nrf58240 accepts supply voltages between 1.6 V up to 5.5 V **nrf**. The STM32 on the other side is less flexible with an input voltage range of 1.71 V to 3.6 V **stm32**. As stated in the section above, the super capacitors operating voltage is between 2.2 V and 3.8 V. Hence it seems reasonable, to set  $V_{\text{BAT\_TERM}} \leq 3.6 \text{ V}$  and  $V_{\text{BAT\_SD}} \geq 2.2 \text{ V}$ , to satisfy all of these three elements. In order to do this, the four resistors have to be chosen as  $R_{\text{TERM1}} = 4.3 \text{ M}\Omega$ ,  $R_{\text{TERM2}} = 4.7 \text{ M}\Omega$ ,  $R_{\text{SD1}} = 4.3 \text{ M}\Omega$  and  $R_{\text{SD2}} = 5.1 \text{ M}\Omega$ . Inserted in the equation (4.2) and (4.3) we get

$$V_{\text{BAT\_TERM}} = \frac{3}{2} 1.21 \text{ V} \left( 1 + \frac{4.3 \text{ M}\Omega}{4.7 \text{ M}\Omega} \right) \approx 3.48 \text{ V}$$
 (4.4)

and

$$V_{\text{BAT\_SD}} = 1.21 \text{ V} \left( 1 + \frac{4.3 \text{ M}\Omega}{5.1 \text{ M}\Omega} \right) \approx 2.23 \text{ V}.$$
 (4.5)

While testing, the input voltage from the solar cells  $(V_{\rm IN})$ , voltage of the supercap  $(V_{\rm BAT})$  and the output voltage  $(V_{\rm SYS})$  are tracked. Additionally, the illuminance  $(E_{\rm v})$  near the PV-cells is recorded.

The purpose of the first test is to check, if the ADP5090 converts  $V_{\rm IN}$  to a voltage  $\leq$   $V_{\rm BAT\ TERM}$ . The measurements where taken over a couple hours and are plotted in Figure 4.1.

No load was connected to the output, which is the reason  $V_{\rm SYS}$  is overlapped by  $V_{\rm BAT}$ . It can be seen, that between 17:00 and 23:00, the super capacitor was being charged and that the ADP5090 controls the voltage  $V_{\rm BAT}$  like expected to the adjusted maximum voltage  $V_{\rm BAT}$  TERM.

The second test should simulate the discharging when a load is connected, after the capacitor was fully charged. It was necessary to estimate the consumed power by the electronic components of the prototype. A rough measurement with a power analyser showed, that the microcontroller and the e-paper display together draw at its peak about 240 mA when connected to 5 V. The nrf52840 on the other hand, only consumes 6 mA with a 3 V source. Thus the expected consumed power at is's peak is:

$$P_e = 5 \text{ V} \cdot 0.24 \text{ A} + 3 \text{ V} \cdot 0.006 \text{ A} = 1.218 \text{ W}.$$
 (4.6)

A load of  $10\,\Omega$  should lead to currents between 0.223 A and 0.348 A which again lead to a power consumption that should approximately match the power consumption of the finished prototype. Furthermore, the solar cells where covered to observe the discharging without interference of additionally charging behaviour. Figure 4.2 shows the result.



Figure 4.1: Charging behaviour

As soon as the load is connected (after 25),  $V_{\rm SYS}$  and  $V_{\rm BAT}$  first drop by almost 1 V and after that steadily decrease. After ca. 100 s,  $V_{\rm BAT}$  reached the value of  $V_{\rm BAT\_SD}$  and the ADP5090 switches the output off ( $V_{\rm SYS}$  drops to 0) to prevent the capacitor from overdischarging. The output now stays switched off, until  $V_{\rm IN}$  again supplies energy, and  $V_{\rm BAT\_SD}$ . It can also clearly be seen, that after 160 seconds, the ADP5090 controls  $V_{\rm IN}$  to ca. 2.1 V. Recall that this is the optimal power point of the solar cell.



Figure 4.2: Discharging behaviour

### 4.3 Software

### 4.3.1 Receiver

The software of the ULPWUR is separated in three different parts.



### 4.3.2 Transceiver

# Results

# **Summary**

# **Sources**

# **List of Figures**

| 2.1 | filler pic                                               | 5  |
|-----|----------------------------------------------------------|----|
| 2.2 | E-paper display under microscope with 250x magnification | 6  |
| 4.1 | Charging behaviour                                       | 12 |
| 4.2 | Discharging behaviour                                    | 13 |

# **List of Tables**

# **Statement of Plagiarism**

We declare that, apart from properly referenced quotations, this report is our own work and contains no plagiarism; it has not been submitted previously for any other assessed unit on this or other degree courses.

Place Date

Rapperswil December 7, 2019

**Signatures** 

Cedric Renda

Manuel Tischhauser

# Appendix A Requirements

### A.1 Assignment



### Low power wakeup receiver

### Semesterarbeit für Manuel Tischhauser und Cédric Renda Herbst 2019

#### 1. Einführung

Im Gebäudemanagement ist es üblich, Belegungspläne an den Eingängen der Räume anzubringen. Oftmals sind diese in Papierformat und müssen bei einer Änderung von Hand gewechselt werden. Mit dieser Methode werden kurzfristige Belegungen nicht aufgezeigt. Dies könnte man umgehen, wenn man mit Displays arbeitet die Wireless aktualisiert werden können. Dabei stellt sich allerdings das Problem, dass man entweder Kabel für die Netzeinspeisung verlegen muss oder Batterien verwendet, die regelmässig ersetzt werden müssen. Im Idealfall entfällt die Speisung komplett.

#### 2. Aufgabenstellung

Zu einem Empfängermodul soll eine bidirektionale low power Kommunikationsstrecke aufgebaut werden. Der Empfänger soll durch Energy-harvesting Massnahmen möglichst passiv betrieben werden können. Dieser enthält einen Ultra Low Power Wake-up Receiver und eine Anzeige mit dem die empfangenen Daten auf entsprechende Weise dargestellt werden. Ein System kann aus mehreren Empfängern bestehen, welche unabhängig voneinander vom Sender selektiert werden können.

#### 3. Ablauf

#### 4. Laborjournal

Während der Arbeit ist ein persönliches (d.h. pro Person eines), gebundenes, handschriftliches und datiertes Laborjournal zu führen. Darin werden alle Tätigkeiten betreffend Dauer und Resultate eingetragen. Ebenfalls soll darin ein Protokoll geführt werden von den wöchentlichen Treffen. Das Laborjournal wird am Ende der Arbeit abgegeben und wird mitbenotet.

### 5. Bericht

Über die Arbeit ist ein Bericht zu verfassen, dessen Textteil maximal 60 Seiten umfassen und eine Dateigrösse von 5MB nicht überschreiten soll. Im Bericht sollen alle gemachten Überlegungen, Abklärungen, Berechnungen und Untersuchungen detailliert (in Text und Bild) dokumentiert werden. Der Bericht muss gut leserlich geschrieben und übersichtlich gegliedert sein. Weitere Richtlinien, wie ein Bericht aufgebaut sein kann, und weitere nützliche Informationen findet man im Leitfaden, welcher in gedruckter Version im Arbeitsplatzordner und auf dem Public Server abgelegt ist.

Des Weiteren muss im Bericht unbedingt eine unterschriebene Nicht-Plagiatserklärung enthalten sein, ein Beispiel dieser Erklärung befindet sich auf dem Public Server.

Der Bericht ist in 1 Papier-Exemplar abzugeben, mit einer beiliegenden CD-ROM, auf der alle anfallenden Daten, wie auch der Bericht selbst (im PDF-Format) gespeichert sind.

#### Semesterarbeit

Writing in English is highly encouraged.

### 6. Termine

Beginn der Arbeit: Abgabe des Berichts: Mündliche Präsentation:

### 7. Organisatorisches

Betreuung der Arbeit: Betreuung des Labors:

Arbeitsplatz: Industriepartner:

Besprechungen: wöchentlich, nach Vereinbarung, an der HSR Examinator: Prof. Dr. Heinz Mathis, <a href="mailto:hmathis@hsr.ch">hmathis@hsr.ch</a>

Rapperswil, [Datum] Viel Erfolg wünscht Ihnen

Heinz Mathis,

Dozent Mobilkommunikation

2/2

### **A.2** Requirement Specification



### Pflichtenheft

Projekt: Low power wakeup receiver

Version 0.1

Cédric Renda, Manuel Tischhauser

| Name                   | Datum | Unterschrift |
|------------------------|-------|--------------|
| Prof. Dr. Heinz Mathis |       |              |
| Selina Malacarne       |       |              |
| Cédric Renda           |       |              |
| Manuel Tischhauser     |       |              |

27. September 2019

| Dfl | icl | tor | hof | + |
|-----|-----|-----|-----|---|

#### Low power wakeup receiver

### Inhaltsverzeichnis

| 1 | Zeitplan               | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---|------------------------|---|--|--|--|--|--|--|--|--|--|--|--|--|--|
|   | 3.4 Dokumentation      | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 3.3 Varianten/Optionen | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 3.2 Software           |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 3.1 Hardware           |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | Produktanforderungen   | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | Auftrag                |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | Einleitung             | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |                        |   |  |  |  |  |  |  |  |  |  |  |  |  |  |

#### 1 Einleitung

Im Gebäudemanagement ist es üblich, Belegungspläne an den Eingängen der Räume anzubringen. Oftmals sind diese in Papierformat und müssen bei einer Änderung von Hand gewechselt werden. Mit dieser Methode werden kurzfristige Belegungen nicht aufgezeigt. Dies könnte man umgehen, wenn man mit Displays arbeitet, die über eine drahtlose Schnittstelle aktualisiert werden können. Dabei stellt sich allerdings das Problem, dass man entweder Kabel für die Netzeinspeisung verlegen muss, oder Batterien verwendet, die regelmässig ersetzt werden müssen. Im Idealfall entfällt die Speisung komplett.

### 2 Auftrag

Im Rahmen dieser Semesterarbeit soll eine Lösung zur oben beschriebenen Problematik ausgearbeitet werden. Der Fokus liegt auf der Erstellung eines autarken Anzeigesystems welches über eine drahtlose Schnittstelle bedient werden kann. Die folgende Punkte sollen dabei abgearbeitet werden:

- Recherche bezüglich Schnittstelle und Energy Harvesting.
- Vor- und Nachteile bestehender Technologien abwägen und geeignete Hardware wählen.
- Erstellen eines lauffähigen Prototypen.



 ${\bf Abbildung~2.1:}~{\it Use-Case~Diagramm}$ 

Der Prototyp richtet sich nach dem Use-Case Diagramm in Abbildung 2.1.

### 3 Produktanforderungen

Das Empfängermodul ist autark und kann auf einem Display Stundenpläne anzeigen. Diese werden über eine drahtlose, bidirektionale Schnittstelle gesendet. Der Sender wird mit einem Computer bedient.

Besteht das System aus mehreren Empfängern, so kann das Sendemodul diese unabhängig von einander selektieren.

#### 3.1 Hardware

#### Sender

- Schnittelle zum Computer
- Sendemodul

#### Empfänger

- $\bullet\,$  Mikrocontroller oder Vergleichbares (Prozessor, Speicher, usw.)
- $\bullet~$  E-Paper-Display
- Energy-Harvesting-Einheit
- Energiespeicher
- Empfangsmodul

#### 3.2 Software

#### ${\bf Sender}$

• Treiber für Sendemodul

#### Empfänger

• Firmware für Mikrocontroller

#### 3.3 Varianten/Optionen

Ist der Prototyp funktionsfähig, soll zu einem späteren Zeitpunkt auch möglich sein, verschiedene Bildschirmgrössen zu verwenden, wobei sich auch Anzeige nicht nur auf Raumbelegungspläne beschränkt. Deshalb soll das System und insbesondere die Software so flexibel wie möglich entwickelt werden.

#### 3.4 Dokumentation

Die Dokumentation beinhaltet sämtliche Überlegungen, Abklärungen, Berechnungen und Untersuchungen, welche im Laufe der Semesterarbeit gemacht wurden.

Pflichtenheft

### 4 Zeitplan

| Monat                    |                                        | Sep      | temb  | er     | Oktober  |                     |          |         |             |        |        |        |        |        |        |       |        | November |       |      |        |          |      |        |       |         |        |       |    |        | Dezember    |                |                     |          |         |        |        |       |             |        |   |
|--------------------------|----------------------------------------|----------|-------|--------|----------|---------------------|----------|---------|-------------|--------|--------|--------|--------|--------|--------|-------|--------|----------|-------|------|--------|----------|------|--------|-------|---------|--------|-------|----|--------|-------------|----------------|---------------------|----------|---------|--------|--------|-------|-------------|--------|---|
| Kalenderwoche            | 38 39<br>Mo Di Mi Do Fr Mo Di Mi Do Fr |          |       |        |          |                     |          | 41      |             |        |        | 42     |        |        | 43     |       | 44     |          |       |      | 45     |          |      | 46     |       |         | 47     |       |    |        | 18          | $\blacksquare$ |                     | 9        |         | 50     |        |       | 51          |        |   |
| wocnentag                | Mo Di                                  | Mi Do Fr | Mo Di | Mi Do  | Fr M     | o Di A              | li Do Fr | Mo D    | i Mi I      | Do Fr  | Mo Di  | Mi I   | Do Fr  | Mo Di  | Mi     | Do Fr | Mo E   | i Mi     | Do Fr | Mo D | i Mi   | Do Fr    | Mo [ | i Mi   | Do Fr | Mo D    | i Mi   | Do Fr | Mo | Di N   | ti Do I     | Fr Mo          | Di M                | li Do Fr | Mo Di   | Mi     | Do Fr  | Mo Di | Mi          | Do Fr  |   |
| Allgemein                |                                        |          |       |        |          |                     |          |         |             |        |        |        |        |        |        |       |        |          |       |      |        |          |      |        |       |         |        |       |    |        |             |                |                     |          |         |        |        |       |             |        |   |
| Pflichtenheft            |                                        |          | Ш     | ш      |          |                     |          |         |             |        |        | Ш      |        |        |        |       | Ш      |          |       |      |        |          | Ш    |        |       |         |        |       |    |        |             |                | Ш                   |          |         |        |        |       |             |        |   |
| Recherche / Konzept      |                                        |          | Ш     |        |          |                     |          |         |             |        |        |        |        |        |        |       |        |          |       |      |        |          |      |        |       |         |        |       |    |        |             |                |                     |          |         |        |        |       |             |        |   |
| Dokumentation            |                                        |          |       |        |          | П                   | П        |         |             |        |        | П      |        |        |        |       |        |          |       |      |        |          |      |        |       |         |        |       |    |        |             |                | П                   | П        |         | П      |        |       | $\Box$      |        |   |
| Präsentation             |                                        |          | Ш     | Ш      | ш        | Ш                   | Ш        | $\perp$ |             | _      | П      | Ш      | _      | Ц      | L      |       | ш      |          | ш     | ш    | _      | ш        | Ш    | _      | П     | Ш       |        |       | 4  | П      | Ш           |                | Ш                   | Ш        | Ш       | Ш      | _      |       |             |        |   |
| Hardware                 |                                        |          |       |        | Н        | Н                   |          | +       |             |        | +      |        |        | Н      | H      |       | Н      |          |       | Н    |        |          | Н    |        |       | +       |        |       |    |        |             |                | Н                   |          |         |        |        |       |             |        |   |
| Evaluierung              |                                        |          |       | П      |          | ${}^{-}$            |          |         |             |        |        | П      | $\top$ |        | $\top$ | П     | П      | $\neg$   |       |      | $\top$ | П        | П    | $\top$ | П     |         | $\top$ | П     | т  | П      | $\neg$      |                | П                   | П        | П       | П      | $\neg$ |       | $\neg \neg$ |        |   |
| Schema Empfänger         |                                        |          |       |        | П        | П                   |          |         |             |        |        |        |        |        |        |       |        |          |       |      |        |          | П    |        |       |         |        |       |    | П      |             |                |                     |          |         |        |        |       |             |        |   |
| Schema Sender            |                                        |          |       |        | $\vdash$ | $^{\dagger\dagger}$ | $\top$   |         | $\neg$      | $\top$ | $\top$ |        |        |        | $\top$ | т     | $\Box$ |          |       | т    | $\top$ | $\vdash$ | П    | $\top$ | т     |         |        |       | т  | $\Box$ | $\top$      |                | $^{\dagger\dagger}$ | $\top$   |         | $\Box$ | $\top$ |       | $\top$      |        |   |
| Layout Empfänger         |                                        |          |       |        | П        | $\Box$              |          |         |             |        |        | П      |        |        |        |       |        |          |       |      |        |          | П    |        |       |         |        |       |    | П      |             |                |                     |          |         |        |        |       |             |        |   |
| Layout Sender            |                                        |          |       |        | П        | $\Box$              |          |         | $\neg$      |        |        | П      |        | $\Box$ | $\top$ |       | $\Box$ |          |       |      |        |          | П    |        |       |         |        |       |    | П      | $\neg$      |                | $\Box$              |          |         | $\Box$ |        |       | $\neg \neg$ |        |   |
| Bestücken                |                                        |          |       |        | П        | $\Box$              |          |         |             |        |        | $\Box$ |        |        |        |       | П      |          |       |      |        |          | П    |        |       |         |        |       |    | П      |             |                |                     |          |         |        |        |       |             | 9      |   |
| Testen                   |                                        |          | П     | щ      | П        | П                   | П        | П       |             | _      | П      | П      | 1      | П      | Ţ      |       | П      |          |       | П    | Ţ      |          | П    | T      | П     | П       |        |       | ┰  | П      | П           | _              | П                   | П        | П       | П      | _      | П     | П           | Aboabe |   |
| Software                 |                                        |          |       |        | Н        | Н                   |          | +       |             |        | +      |        |        | Н      | H      |       | Н      |          |       | Н    |        |          | Н    |        |       | +       |        |       |    |        |             |                | Н                   |          |         |        |        |       |             |        | İ |
| Analyse und Design       |                                        |          |       | $\Box$ | П        | П                   | $\top$   |         | $\neg \neg$ | $\neg$ |        | П      | $\neg$ |        | т      | П     | П      | $\neg$   | П     | П    | $\top$ | П        | П    | $\top$ | П     |         | $\top$ |       |    | П      | $\neg \neg$ |                | П                   | $\top$   | $\Box$  | П      | $\neg$ |       | $\neg \neg$ |        |   |
| Konfiguration der        |                                        |          |       |        | П        | $\Box$              |          |         |             |        |        |        |        |        |        |       |        |          |       |      |        |          | П    |        |       |         |        |       |    | $\Box$ | $\neg$      |                | $\Box$              |          |         |        |        |       | $\neg$      |        |   |
| Komponenten              |                                        |          |       |        |          |                     |          |         |             |        |        |        |        |        |        |       |        |          |       |      |        |          |      |        |       |         |        |       |    |        |             |                |                     |          |         |        |        |       |             |        |   |
| E-paper Displaytreiber   |                                        |          |       |        |          |                     |          |         |             |        |        | П      |        |        |        | П     |        |          |       |      |        |          |      |        |       |         |        |       |    | П      | $\top$      |                | $\Box$              |          |         |        |        |       | $\top$      |        |   |
| Schnittstellentreiber    |                                        |          |       | П      | П        | П                   |          |         | $\neg$      |        |        | П      | $\neg$ |        | Т      | П     | П      |          |       | П    |        |          |      |        |       |         |        |       |    | П      | $\neg \neg$ |                | П                   |          |         | П      |        |       | $\neg \neg$ |        |   |
| Optimierung              |                                        |          |       | П      | П        | П                   |          |         |             |        |        | П      |        |        | Т      |       |        |          |       |      |        | П        |      | Т      |       |         |        | П     |    |        |             |                |                     |          |         | П      |        |       |             |        |   |
| Leistungsverbrauch       |                                        |          |       |        | Ш        |                     |          |         |             |        |        |        |        | Ш      |        |       | Ш      |          |       |      |        |          |      |        |       |         |        |       |    |        |             |                | Ш                   |          |         |        |        | Ш     |             |        |   |
| Meetings                 |                                        |          | _     | -      | щ        | Н                   |          | _       |             |        | Н      | Н      | +      | Н      | +      |       | Н      |          |       | Н    | +      |          | Н    | _      |       | $\perp$ |        |       | _  |        |             | _              | Н                   | Н        | $\perp$ |        |        | Н     |             | -8     |   |
| Besprechung mit Betreuer |                                        |          |       |        |          |                     |          |         |             |        |        |        |        |        |        |       |        |          |       |      |        |          |      |        |       |         |        |       |    |        |             |                |                     |          |         |        |        |       |             | -      |   |
| Teamsitzing              |                                        |          |       |        |          |                     |          |         |             |        |        |        |        |        |        |       |        |          |       |      |        |          |      |        |       |         |        |       | -  |        | -           |                |                     |          |         |        |        |       |             | -      |   |