Tegur- og Málfræði

Fyrirlestrarnótur

Matthías Páll Gissurarson

Vor 2015

Efnisyfirlit

1	201	2015-01-05				
	1.1	Mengi: Ritháttur og upprifjun	5			
	1.2	Firðrúm	6			
	1.3	Riemann Darboux- heildið	6			
	1.4	Núllmengi	7			
		1.4.1 Dæmi	7			
	1.5	Fyrri fyrirlestur	9			
		1.5.1	9			
2	2015-01-07					
	2.1		12			
	2.2		12			
	2.3	Lebesgue-mælanleg mengi og Lebesgue-málið	14			
3	201	5-01-09	15			
	3.1	Fyrri fyrirlestur	15			
		3.1.1	15			
		3.1.2	15			
		3.1.3	16			
		3.1.4	18			

4		EFNISYFIF	RLIT	
		3.1.5	18	
	3.2	Seinni fyrirlestur	19	
4	4 2015-01-12			21

2015-01-05

1.1 Mengi: Ritháttur og upprifjun

Gefum okkur að til grundvallar liggi "hæfilega" stórt almengi.

• Fjölskylda af hlutmengjum í mengi M er vörpun $a: \Lambda \to \mathcal{P}(M)$. Skrifum í stað $a(\alpha)$ og táknum a með $(A_{\alpha})_{\alpha \in \Lambda}$. Λ kallast stikamengi fjölskyldunnar.

$$\bigcap_{\alpha\in\Lambda}:=\{x\in M|x\in A_\alpha\text{ f. \"{o}ll }\alpha\text{ \'{u}r }\Lambda\}$$

- $\bigcup_{\alpha \in \Lambda} := \{ x \in M | x \in A_{\alpha} \text{ f. eitthvert } \alpha \text{ úr } \Lambda \}$
- \bullet Fyrir $A\subseteq M$ setjum við

$$A^C = M \setminus A := \{ x \in M | x \not\in A \}$$

og köllum $\mathit{fyllimengi}$ A (í M).

• Fyrir $A, B \subseteq M$ setjum við

$$B \setminus A := \{x \in B | x \not\in A\} = B \cap A^C$$

• Fyrir $A, B \subseteq M$ kallast

$$A\Delta B := (A \setminus B) \cup (B \setminus A)$$

(s.s. bara þau stök sem eru í öðru hvoru, en ekki báðum) samhverfur mismunur A og B.

• Reglur de Morgan

$$(\bigcup_{\alpha \in \Lambda} A_{\alpha})^{C} = \bigcap_{\alpha \in \Lambda} A_{\alpha}^{C}$$

$$(\bigcap_{\alpha \in \Lambda} A_{\alpha})^{C} = \bigcup_{\alpha \in \Lambda} A_{\alpha}^{C}$$

• Fyrir $A \subseteq M$ skgr. við kennifall A:

$$1_A: M \to \mathbb{R}, 1_A(x) = \begin{cases} 1 & \text{ef } x \in A \\ 0 & \text{ef } x \notin A \end{cases}$$

Α

• Fyrir $A, B \subseteq M$ gildir $1_{A \cap B} = 1_A \cdot 1_B, 1_{A \cup B} = 1_A + 1_B - 1_{A \cap B}$ og $1_{A^C} = 1 - 1_A$.

1.2 Firðrúm

Hlutmengi í firðrúmi er opið bpaa það sé sammengi af opnum kúlum. Sér í lagi er hlutmengi í \mathbb{R} opið bpaa það sé sammengi af opnum bilum.

1.3 Riemann Darboux- heildið

er mjög þunglamalegt og hegðar sér illa m.t.t markgilda; runa af Riemann heildanlegum föllum getur hæglega stefnt (í sérhverjum punkti) á fall sem er ekki Riemann heildanlegt (stundum kallað einfaldlega samleitið).

Dæmi.

$$f:[0,1] \to R, f(x) = \left\{ egin{array}{ll} 0 & ext{ef } x
ot\in \mathbb{Q} \\ 1 & ext{ef } x \in \mathbb{Q} \end{array} \right. | f = 1_{Q \cap [0,1]}.$$

 \mathbb{Q} er teljanlegt, svo að til er gagntækt fall $q: \mathbb{N} \to \mathbb{Q} \cap [0,1]$, þ.e.a.s. til er runa $(q_n)_{n \in \mathbb{N}}$ þar sem sérhver ræð tala úr [0,1] kemur nkvl. einu sinni fyrir. Setjum $A_n = \{q_1, \ldots, q_n\}$ og $f_n = 1_{A_n}$. Þá er $f_n \nearrow f$ og ljóst er að f_n -in eru Riemann heildanleg, en f ekki.

Hugmyndin er sú að stækka flokk heildanlegra falla þ.a. ekki f gildi.

Allar eðlilegar reiknireglur varðandi heildi gilda áfram.

Flokkurinn er mun þjálli m.t.t. ýmissa aðgerða, sérstaklega markgildistöku.

1.4. NÚLLMENGI 7

1.4 Núllmengi

1.4.1 Dæmi

i) Öll teljanleg hlutmengi í \mathbb{R} eru Núllmengi: Ef $(x_n)_{n\geq 1}$ er upptalning á stökum teljanlegs mengis, þá er $A=\cup_{n\geq 1}[x_n,x_n]$ og $\sum_{n=1}^{\infty}\ell([x_n,x_n])=\sum_{n=1}^{\infty}0=0$

ii) $\ell(\emptyset) = \ell(]0,0[) = 0$, svo að \emptyset er núllmengi.

Innskot

Setning. Látum $\sum_{n=1}^{\infty} a_n$ vera alsamleitna tvinntalnaröð og $\sigma: \stackrel{n\geq 1}{\mathbb{N}} \to \mathbb{N}$ vera gagntæka vörpun (umröðun). Þá er röðin $\sum_{n=1}^{\infty} a_{\sigma(n)}$ alsamleitin og $\sum_{n=1}^{\infty} a_{\sigma(n)} = \sum_{n=1}^{\infty} a_n$.

Sönnun. Fyrir N > 0 er til M > 0 þ.a. $\{\sigma(1), \ldots, \sigma(n)\} \subseteq \{1, \ldots, M\}$.

$$\sum_{n=1}^{N} \left| a_{\sigma(n)} \right| \le \sum_{n=1}^{M} \left| a_n \right| \le \sum_{n=1}^{\infty} \left| a_n \right|$$

þar með er $\sum_{n=1}^{\infty} \left| a_{\sigma(n)} \right|$ alsamleitin. Setjum nú fyrir öll $n \geq 1$ $S_n := \sum_{k=1}^n a_k$ og $T_n := \sum_{k=1}^n a_{\sigma(k)}$. Okkur nægir að sýna að f. sérhvert $\epsilon > 0$ sé til n_0 þ.a. $|S_n - T_n| \leq \epsilon$ f. öll $n \geq n_0$.

Gefum okkur $\epsilon > 0$ og veljum N þ.a. $\sum_{j=N+1}^{\infty} |a_j| \leq \epsilon$. Tökum svo n_0 þ.a. $\{1,\ldots,n\}\subseteq \{\sigma(1),\ldots,\sigma(n_0)\}$. Þá styttast tölurnar $|a_n,\ldots,a_n|$ allar út í mismuninum S_n-T_n , og þar með $|S_n-T_n|\leq \sum_{j=N+1}^{\infty} |a_j|\leq \epsilon$ ef $n\geq n_0$.

Setning (Umröðunarsetning Riemanns). Ef $\sum a_n$, þar sem a_n eru rauntölur er samleitin, en $\sum |a_n| = \infty$, þ.e. samleitin en ekki alsamleitin, og $L \in [-\infty, +\infty]$, þá er til gagntæk vörpun $\sigma : \mathbb{N} \to \mathbb{N}$ sem hefur þann eiginleika að $\sum_{n=1}^{\infty} a_{\sigma(n)} = L$.

Sönnun. Sleppt.

Lausleg útskýring:

$$a_n^+ \left\{ \begin{array}{ll} a_n & \text{ef } a_n \ge 0 \\ 0 & \text{ef } a_n < 0 \end{array} \right. a_n^- \left\{ \begin{array}{ll} |a_n| & \text{ef } a_n \le 0 \\ 0 & \text{ef } a_n > 0 \end{array} \right.$$

Ef a_n er alsamleitin, þá er $\sum a_n = \underbrace{\sum a_n^+}_{\text{saml}} - \underbrace{\sum a_n^-}_{\text{saml}}$, en ef $\sum a_n$ er samleitin en ekki alsamleitin, þá eru $\sum a_n^+$ og $\sum a_n^-$ báðar ósamleitnar.

Látum nú Λ vera eitthvað teljanlegt mengi og $(a_{\alpha})_{\alpha \in \Lambda}$ vera fjölskylda af tvinntölum. Við segjum að summan $\sum_{\alpha \in \Lambda}$ sé alsamleitin ef til er gagntæk vörpun $\sigma : \mathbb{N} \to \Lambda$ þ.a. $\sum_{n=1}^{\infty} \left| a_{\sigma(n)} \right| < +\infty$ (þ.e.a.s. $\sum_{n=1}^{\infty} \left| a_{\sigma(n)} \right|$ er alsamleitin). Táknum þá summuna með $\sum_{n=1}^{\infty} |a_n|$. Skv. setn sem við vorum að sanna, þá er þessi eiginleiki óháður valinu á σ .

Æfing

Látum $(a_{\alpha})_{\alpha \in \Lambda}$ eins og áður. Sýnið: Ef a_{α} er alsamleitin, þá gildir f. sérhvert $\epsilon > 0$ að til er endanlegt hlutmengi I í Λ sem uppfyllir

$$\left| \sum_{\alpha \in \Lambda} a_{\alpha} - \sum_{\alpha \in J} \right| < \epsilon$$

fyrir öll endanleg J þ.a. $I \subseteq J \subseteq \Lambda$.

Athugasemd. Út frá umröðunarsetningu fæst að samleitin röð $\sum_{n=1}^{\infty} a_n$ sem breytist ekki við umraðanir er alsamleitin.

Takið eftir að summa $\sum_{\alpha \in \Lambda} a_{\alpha}$ er alsamleitin þþaa til sé K > 0 sem uppfyllir $\sum_{\alpha \in I} a_{\alpha} |a_{\alpha}| \leq K$ f. öll endanleg $I \subseteq \Lambda$.

Lítum nú á tilfellið
$$(a_{m,n})_{(m,n)\in \underbrace{\mathbb{N}\times\mathbb{N}}_{\mathbb{N}^2}}$$

Ef $\sum_{(m,n)\in\mathbb{N}^2}a_{m,n}$ er alsamleitin, þá er til k>0 þ.a. $\sum_{m=1}^M\sum_{n=1}^N|a_{m,n}|\leq k$ f. öll M og N.

Pá er $\sum_{n=1}^N |a_{m,n}| \le k$ f. öll m og öll N. og því $\sum_{n=1}^\infty |a_{m,n}| \le k$ og $\forall m$ og þar með $\sum_{n=1}^N \left(\sum_{m=1}^M |a_{m,n}|\right) \le k$ f. öll M. Af því leiðir að $\sum_{m=1}^\infty \left(\sum_{n=1}^\infty |a_{m,n}|\right) \le k$ og þar með er $\sum_{m=1}^\infty \left(\sum_{n=1}^\infty |a_{m,n}|\right)$ alsamleitin.

1.5 Fyrri fyrirlestur

1.5.1

 $S\ddot{o}nnun.$ Gefum okkur $\epsilon>0.$ Fyrir hvert m
 veljum við runu $(I_k^n)_{k\geq 1}$ af bilum sem uppfyllir

$$N_n \subset \bigcup_{k \ge 1} I_k^n \text{ og } \sum_{n=k}^{\infty} \ell(I_k^n) < \frac{\epsilon}{2^n}$$

Veljum gagntæka vörpun $\sigma:\mathbb{N}\to\mathbb{N}^2$ og skrifum $(I_k^n)_{(m,n)\in\mathbb{N}^2}$ sem runu $(J_j)_{j\in\mathbb{N}}$ með hjálp $\sigma,$ þ.e.a.s $J_j=I_k^n$

þþaa
$$\sigma(j) = (m, n)$$
.

Athugasemd. $N \subseteq \mathbb{R}$ er núllmengi ef fyrir sérhvert $\epsilon > 0$ er til runa $(I_n)_n$ af bilum þ.a. $N \subseteq \bigcup I_n$ og $\sum_{n \ge 1} \ell(I_n) < \epsilon$.

2015-01-07

Innskot

Pá gildir um öll M og N að $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{m,n}| \leq \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} |a_{m,n}|)$, svo að $\sum_{(m,n)\in\mathbb{N}^2} a_{m,n}$ er alsamleitin.

Sýnum að þá sé $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}) = \sum_{(m,n) \in \mathbb{N}^2} a_{m,n}$.

Nú: Gefum okkur $\epsilon > 0$. Veljum M svo stórt að $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}) < \frac{\epsilon}{4}$.

Veljum svo N það stórt að $\sum_{n=N+1}^{\infty} |a_{m,n}| < \frac{\epsilon}{2^{n+2}}$ fyrir $1 \leq m \leq M$.

Við gefum

$$\left| \sum_{(m,n)\in\mathbb{N}^2} \sum_{m=1}^M \sum_{n=1}^N a_{m,n} \right| < \frac{\epsilon}{2}$$

þá fæst:

$$\begin{split} \left| \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}) - \sum_{(m,n) \in \mathbb{N}^2} a_{m,n} \right| & \leq \left| \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}) - \sum_{m=1}^{M} \sum_{n=1}^{N} a_{m,n} \right| + \underbrace{\left| \sum_{m=1}^{M} \sum_{n=1}^{N} a_{m,n} - \sum_{(m,n) \in \mathbb{N}^2} a_{m,n} \right|}_{< \frac{\epsilon}{2}} \\ & < \left| \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}) \right| + \left| \sum_{m=1}^{M} (\sum_{n=N+1}^{\infty} a_{m,n}) \right| + \frac{\epsilon}{2} \\ & < \frac{\epsilon}{4} + \sum_{n=1}^{\infty} \frac{\epsilon}{2^{m+2}} + \frac{\epsilon}{2} < \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon \end{split}$$

Hér líkur innskoti.

2.1

Sönnun á 2.1.1. Gefum okkur $\epsilon>0$. Fyrir hvert m
 veljum við runu $(I_k^n)_{k\geq 1}$ af bilum sem uppfyllir

$$N_n \subset \bigcup_{k>1} I_k^n \text{ og } \sum_{n=k}^{\infty} \ell(I_k^n) < \frac{\epsilon}{2^n}$$

Veljum gagntæka vörpun $\sigma:\mathbb{N}\to\mathbb{N}^2$ og skrifum $(I_k^n)_{(m,n)\in\mathbb{N}^2}$ sem runu $(J_j)_{j\in\mathbb{N}}$ með hjálp σ , þ.e.a.s $J_j=I_k^n$

bbaa
$$\sigma(j) = (m, n)$$
.

Athugasemd. $N \subseteq \mathbb{R}$ er núllmengi ef fyrir sérhvert $\epsilon > 0$ er til runa $(I_n)_n$ af bilum þ.a. $N \subseteq \bigcup I_n$ og $\sum_{n \ge 1} \ell(I_n) < \epsilon$.

Ljóst er að $N=\bigcup_{n\geq 1}N_n\subseteq\bigcup_{(m,n)\in\mathbb{N}^2}I_k^n=\bigcup_{j\geq 1}J_j$ og skv. innskotinu hér að framan fæst þá að $\sum_{n=j}^\infty\ell(J_j)=\sum_{n=1}^\infty(\sum_{n=k}^\infty\ell(I_k^n))<\sum_{n=n}^\infty\frac{\epsilon}{2^n}=\epsilon$

Dæmi. Öll teljanleg hlutmengi í \mathbb{R} eru núll mengi, en Cantor-mengið er dæmi um óteljanlegt núllmengi (sjá bls. 19 í bók og "mengi og firðrúm").

2.2

Athuqasemd. 2.2.1: F. öll $A \subseteq \mathbb{R}$ gildir

- $m^*(A) \ge 0$
- Z_A er af gerðinni $]r, \infty]$ eða $[r, \infty]$.

Sönnun á setn 2.2.2. A er núllmengi þþa
a fyrir sérhver $\epsilon>0$ sé til runa af bilum $(I_n)_{n\geq 1}$ þ.a. $A\subset \bigcup_{n\geq 1}I_n$ og $\sum_{n\geq 1}\ell(I_n)<\epsilon$ þþa
a fyrir sérhvert $\epsilon>0$ er til tala x úr Z_A þ.a. $x<\epsilon$ þþa
a $m^*(A)=\inf Z_A=0$

Sönnun a setn 2.2.3. Sérhver run af bilum sem þekur B þekur líka A svo að $Z_A\subseteq Z_B$ og þar með $m^*(A)=\inf Z_A\le \inf Z_B=m^*$

2.2.

Æfing

(a) Látum I_1, \ldots, I_n vera rauntalna bil sem uppfylla $[a, b] \subseteq I_1 \cup \cdots \cup I_n$. Sýnið að $b - a \le \ell(I_1) + \cdots + \ell(I_n)$.

(b) Látum $(I_n)_{n\geq 1}$ vera runu af bilum sem þekur ó
endanlegt bil I. Sýnið að $\sum_{n\geq 1}\ell(I_n)=\infty.$

Sönnun á 2.2.4. Skv. (b) í æfingunni er niðurstaðan rétt ef I er ótakmarkað. Gerum því ráð fyrir að $\ell(I) < \infty$. Byrjum á tilfellinu I = [a, b]

Athugasemd. Ljóst er að $m^*(I) \leq \ell(I)$ vegna þess að bilarunan $I_1 := I$ og $I_k = [0,0]$ fyrir $k \geq 2$ þekur I og $\sum_{n=k}^{\infty} \ell(I_k) = \ell(I) + 0 + \cdots + 0 = \ell(I)$.

Sönnum því $\ell(I) \leq m^*(I)$.

Gefum okkur $\epsilon > 0$. Þá er til bilaruna $(I_n)_{n \geq 1}$ sem uppfyllir

$$[a,b] \subseteq \bigcup_{n>1} I_n \text{ og } 0 \sum_{n=1}^{\infty} \ell(I_n) \le m^*([a,b]) + \frac{\epsilon}{2}.$$

Látum a_n og b_n tákna vinstri og hægri endapunkta bilsins I_n og setjum $J_n:=|a_n-\frac{\epsilon}{2},b_n+\frac{\epsilon}{2}[$. Pá er $I_n\subseteq J_n$ og $\ell(I_n)=\ell(J_n)-\frac{\epsilon}{2^{n+1}}$ og þar með $\sum_{n=1}^\infty\ell(J_n)=\sum_{n=1}^\infty\ell(I_n)+\frac{\epsilon}{2}.$ Af því sést svo að $\sum_{n=1}^\infty\ell(J_n)\leq m^*([a,b])+\epsilon.$ Nú er $(J_n)_n$ opin þakning á [a,b], svo að til er n_0 þ.a. $[a,b]\subseteq J_1\cup\cdots\cup J_{n_0}$ Skv. æfingunni fæst því að $\ell([a,b])\leq \sum_{n=1}^{n_0}\ell(J_n)<\sum_{n=1}^\infty\ell(J_n)\leq m^*([a,b])+\epsilon.$

Gerum nú næst ráð fyrir að I =]a, b[og tökum eitthvert $\epsilon > 0$. Þá fæst:

$$\begin{split} \ell(]a,b[) &\leq \ell([a+\frac{\epsilon}{2},b-\frac{\epsilon}{2}]) + \epsilon \\ &\leq m^*([a+\frac{\epsilon}{2},b-\frac{\epsilon}{2}]) + \epsilon \\ &\underbrace{\leq}_{2,2,3} m*(]a,b[) + \epsilon \end{split}$$

Loks fæst að fyrir I = [a, b[eða I =]a, b[að

$$\ell(I) = \ell(]a, b[) \le m^*(]a, b[) \underbrace{\le}_{2,2,3} m^*(I)$$

Sönnun á 2.2.5. G.r.f. að $\sum_{n=1}^{\infty} m^*(E_n) < \infty$; annars er ekkert að sanna.

Gefum okkur $\epsilon > 0$. Fyrir sérhvert $n \geq 1$ er til runa af bilum $(I_k^n)_{k \geq 1}$ sem þekja E_n og uppfylla $\sum_{n=k}^{\infty} \ell(I_k^n) \leq m^*(E_n) + \frac{\epsilon}{2^n}$. Pá fæst

$$m^*(\bigcup_{n=1}^{\infty} E_n) \le \sum_{(m,n)\in\mathbb{N}^2} \ell(I_k^n) = \sum_{\text{innskot}} \sum_{n=1}^{\infty} (\sum_{n=k}^{\infty} \ell(I_k^n))$$
$$\le \sum_{n=1}^{\infty} (m^*(E_n) + \frac{\epsilon}{2^n}) = \sum_{n=1}^{\infty} m^*(E_n) + \epsilon$$

 $S\ddot{o}$ á 2.2.6. Leiðir beint af því að lengd bils er óháð hliðrun

2.3 Lebesgue-mælanleg mengi og Lebesgue-málið

Þetta skilyrði kemur frá Carathéodory.

Athugasemd. (i)

$$m^*: \mathcal{P}(\mathbb{R}) \to [0, \infty]$$

og um sérhvert bil I gildir $m^*(I) = \ell(I)$ með hjálp valfrumsendunnar er unnt að sýna fram á að til sé runa $(X_n)_{n\geq 1}$ í $\mathcal{P}(\mathbb{R})$, sem eru innbyrðis sundurlæg og $m^*(\bigcup_{n\geq 1} X_n) < \sum_{n=1}^{\infty} m^*(X_n)$ (*) Viljum því einskorða m^* við minna safn hlutmengja sem efur tiltekna eiginleika og meðal annars þannig að = gildi í stað < í (*) hér að ofan.

(ii) Skv. setn. 2.2.5 er ójafnan $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^C)$.

2015-01-09

3.1 Fyrri fyrirlestur

3.1.1

Sönnun. Við vitum að ójafnan

$$m^*(A) \le m^*(A \cap E) + m^*(A \cap E^C)$$

gildir alltaf.

3.1.2

Sönnun. (i) Látum N vera núllmengi og $A \subseteq \mathbb{R}$. Pá fæst

$$m^*(A\cap N)\leq m^*(N)=0$$
vegna $A\cap N\subseteq N$
$$m^*(A\cap N^C)\leq m^*(A)$$
vegna $A\cap N^C\subseteq A$

og því $m^* \ge m^*(A \cap N) + m^*(A \cap N^C)$.

(ii) Látum okkur nægja að skoða bil af gerðinni I=[a;b]. Tökum $A\subseteq \mathbb{R}$ og $\epsilon>0$. Veljum þakningu $(I_n)_{n\geq 1}$ af bilum fyrir A, sem uppfyllir $m^*(A)\leq m^*(A)\leq \sum_{k=1}^\infty \ell(I_n)\leq m^*(A)+\epsilon$ Ljóst er að bilin $I_n':=I_n\cap [a,b]$ þekja $A\cap [a,b]$, svo að $m^*(A\cap [a,b])\leq \sum_{k=1}^\infty \ell(I_n')$.

Bilin $I_n'':=I_n\cap]-\infty, a[\text{ og }I_n''':=I_n\cap]b,\infty[\text{ þekja }A\cap]a,b[^c\text{ svo að }$

$$m^*(A \cap [a, b]^c) \le \sum_{k=1}^{\infty} \ell(I_n'') + \sum_{k=1}^{\infty} \ell(I_n''')$$

3.1.3

Sönnun. (i) $\mathbb{R} \in \mathcal{M}$:

Ef $A\subseteq\mathbb{R},$ þá er $A\cap\mathbb{R}=A$ og $A\cap\mathbb{R}^C=A\cap\emptyset=\emptyset,$ svo að

$$m^*(A) = \underbrace{m^*(A \cap \mathbb{R})}_{=m^*(A)} + \underbrace{m^*(A \cap \mathbb{R}^C)}_{=0}$$

(ii) Ef $E \in \mathcal{M}$ og $A \subseteq \mathbb{R}$, þá gildir

$$m^*(A)=m^*(A\cap E)+m^*(A\cap E^C)=m^*(A\cap (E^C)^C)+m^*(A\cap E^C)$$
svo að $E^C\in \mathcal{M}$

- (iii) Gerum fyrst ráð fyrir að $(E_k)_{k\geq 1}$ sé runa af innbyrðis sundurlægum mengjum úr \mathcal{M} .
 - Byrjum á að sýna með þrepun, að fyrir sérhvert $A \subseteq \mathbb{R}$ gildi:

$$m^*(A) = \sum_{k=1}^n m^*(A \cap E_k) + m^*(A \cap (\bigcup_{k=1}^n E_k)^C)$$

n = 1:

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^C)$$
 vegna $E_1 \in \mathcal{M}$

 $(\mathbf{n} - \mathbf{1}) \Rightarrow \mathbf{n}$: Látum $A \subseteq \mathbb{R}$. Þar sem E_n er úr \mathcal{M} , þá fæst:

$$m^*(A \cap (\bigcup_{k=1}^{n-1} E_k)^C) = m^*(A \cap (\bigcup_{k=1}^{n-1} E_k)^C \cap E_n) + m^*(A \cap (\bigcup_{k=1}^{n-1} E_k)^C \cap E^C)$$

Nú er $(\bigcup_{k=1}^{n-1} E_k)^C \cap E_n = E_n$ (E_k -in eru innb. sundurlæg). svo umskrifa má síðustu jöfnuna:

$$\underbrace{m^*(A \cap (\bigcup_{k=1}^{n-1} E_k)^C)}_{= m^*(A) - \sum_{k=1}^n m^*(A \cap E_k) \text{ skv. pf.}} = m^*(A \cap E_n) + m^*(A \cap (\bigcup_{k=1}^n E_k)^C)$$

með því að nota de Morgan, og því

$$m^*(A) = \underbrace{\sum_{k=1}^{n-1} m^*(A \cap E_k) + m^*(A \cap E_n)}_{\sum_{k=1}^n m^*(A \cap E_k)} + m^*(A \cap (\bigcup_{k=1}^n E_k)^C)$$

• Sýnum nú að $\bigcup_{k\geq 1} E_k \in \mathcal{M}$ og $m^*(\bigcup_{k\geq 1} E_k) = \sum_{k=1}^{\infty} m^*(E_k)$. Par sem $(\bigcup_{k=1}^{\infty} E_k)^C \subseteq (\bigcup_{k=1}^n E_k)^C$ fyrir öll n, þá fæst:

$$m^*(A) \ge \sum_{k=1}^n m^*(A \cap E_k) + m^*(A \cap (\bigcup_{k=1}^\infty E_k)^C) \,\forall n \in \mathbb{N}.$$

Meeð því að láta $n \to \infty$ fæst því

$$m^{*}(A) \ge \sum_{k=1}^{\infty} m^{*}(A \cap E_{k}) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{C})$$

$$\ge m^{*}(A \cap [\bigcup_{k=1}^{\infty} E_{k}]) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{C})$$

Bæði ójöfnumerkin eru því jafnaðarmerki, svo að $\bigcup_{k=1}^\infty E_k \in \mathcal{M}$ og

$$m^*(A) = \sum_{k=1}^{\infty} m^*(A \cap E_k) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^C)$$

Með því að taka $A = \bigcup_{k=1}^{\infty} E_k$ fáum við

$$m^*(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} m^*(E_k) + \underbrace{m^*(\emptyset)}_{=0}$$

3.1.4

- 1. $\mathcal{P}(\Omega)$ er σ -algebra.
- **2**. $\{\emptyset, \Omega\}$ er σ -algebra.
- 3. $\Omega := \mathbb{N}, O = \{1, 3, 5, \ldots\}, J = \{2, 4, 6, \ldots\}.$ Pá er $\{\emptyset, O, J, \mathbb{N}\}$ σ -algebra
- 4. Látum $(\mathcal{F}_{\alpha})_{\alpha \in \Lambda}$ vera fjölskylda af σ -algebrum á Ω , þá er $\bigcap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}$ σ -algebra á λ
 - $\omega \in \mathcal{F}_{\alpha} \ \forall \alpha \in \Lambda$, svo að $\Omega \in \bigcap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}$
 - Ef $E \in \bigcap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}$, þá er $E \in \mathcal{F}_{\alpha} \ \forall \alpha$ og því $E^{C} \in \mathcal{F}_{\alpha} \ \forall \alpha$ og þar með $E^{C} \in \bigcap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}$
 - Ef $(E_n)_{n\geq 1}$ er runa í $\bigcap_{\alpha\in\Lambda}\mathcal{F}_{\alpha}$, þá er $(E_n)_{n\geq 1}$ runa í \mathcal{F}_{α} $\forall \alpha$ og því $\bigcup_{n\geq 1}E_n\in\mathcal{F}_{\alpha}$ $\forall \alpha$ og þar með $\bigcup_{n\geq 1}E_n\in\mathcal{F}_{\alpha}$
 - Athugasemd. Ef $\Lambda = \emptyset$, þá er $\bigcap_{\alpha \in \emptyset} \mathcal{F}_{\alpha} = \mathcal{P}(\Omega)$ (almengið).
- 5. Ef S er eitthver safn hlutmengja í Ω , þá er sniðmengi allra σ -algebra á Ω , sem innihalda S kölluð σ -algebran sem S framleiðir. Köllsum hana \mathcal{F}_{S} . Hún hefur eftirfarandi eiginleika (þ.e.a.s hún er minnst allra σ -algebra sem innihalda S): Ef F er σ -algebra á Ω og $S \subseteq F$, þá $F_S \subseteq F$
- 6. Ef Ω er firðrúm (grannrúm), þá kallast σ -algebran, sem opnu mengin framleiða, Borel-algebran á Ω ; hún er einnig framleidd af lokuðum mengjum.

3.1.5

Dæmi. 1. $\mu_1, \mu_2 : \mathcal{P}(\Omega) \to [0, \infty]$

$$\begin{array}{l} \mu_1(E) = 0 \ \forall E \in \mathcal{P}(\Omega) \\ \mu_2(\emptyset) = 0, \mu_2(E) = \infty \ \text{ef} \ E \neq \emptyset \end{array} \right\} \ \text{m\'al\'a} \ \mathcal{P}(\Omega)$$

Athugasemd. $\mu_1 = \mu_2 \Leftrightarrow \Omega = \emptyset$

2. Tökum punkt p úr Ω . Fallið $\mu: \mathcal{P}(\Omega) \to [0, \infty]$ sem skilgr. er með

$$\mu(E) := \begin{cases} 0 & \text{ef } p \notin E \\ 1 & \text{ef } p \in E \end{cases}$$

er mál á $\mathcal{P}(\Omega)$.

3. $\mu: \mathcal{P}(\mathbb{N}) \to [0, \infty], \mu(E) = \#(E)$ er mál, oft kallað talningarmálið á \mathbb{N} .

3.2 Seinni fyrirlestur

Farið var í sönnun á 3.1.3.

2015-01-12

Sönnun á setn 3.1.3 (framhald). Búin að sanna (i) og (ii). (iii) Búið að sanna. Ef $(E_n)_{n\geq 1}$ er runa í \mathcal{M} af innbyrðis sundurlægum mengju, þá er $\bigcup_{n\geq 1} E_n \in \mathcal{M}$. og $m(\bigcup_{n\geq 1} E_n) = \sum_{n=1}^{\infty} m(E_n)$

 \cdot Sýna: sammengi endanlegra margra (ekki endilega sundurlægra) mengja úr \mathcal{M} sé í \mathcal{M} . Okkur nægir að skoða tvö mengi.

 $N\acute{u}$: Fyrir sérhvert $A \subseteq \mathbb{R}$ gildir að

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^C)$$

og

$$m^*(A \cap E_1^C) = m^*(A \cap E_1^C \cap E_2) + \underbrace{m^*(A \cap E_1^C \cap E_2^C)}_{m^*(A \cap (E_1 \cup E_2)^C)}$$

og því

$$m^*(A) = \underbrace{m^*(A \cap E_1) + m^*(A \cap E_1^C \cap E_2)}_{\geq m^*(A \cap (E_1 \cup E_2))} + m^*(A \cap (E_1 \cup E_2)^C)$$
$$\geq m * (A \cap (E_1 \cup E_2)) + m^*(A \cap (E_1 \cup E_2)^C)$$

og því $E_1 \cup E_2 \in \mathcal{M}$.

Skv. (ii) fæst því (de morgan) að enandlegt sniðmengi mengja úr \mathcal{M} er í \mathcal{M} .

· Lokahnykkur: Látum $(E_k)_{k\geq 1}$ vera runu í \mathcal{M} og synum að $\bigcup_{k\geq 1} E_k \in \mathcal{M}$.

Mengin
$$F_1:=E_1,\,F_2:=E_1\setminus E_1,\,F_k:=E_k\setminus\bigcup_{j=1}^{k-1}E_j$$
,... eru í \mathcal{M} . og auðséð
$$E_k\cap(\bigcup_{j=1}^{k-1}E_j)^C$$

er að $\bigcup_{k\geq 1}F_k=\bigcup_{k\geq 1}E_k$. Þar með er $\bigcup_{k\geq 1}E_k\in\mathcal{M}$ vegna þess að F_k -in eru innbyrðis sundurlæg.