## **Bunker Hill Community College**

## Third Statistics Exam 2019-04-25

Exam ID 027

| Name:                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
| his take-home exam is due <b>Monday, April 29</b> at the beginning of class.                                                                                                                        |
| ou may use any notes, textbook, or online tools; however, you may not request help from an<br>ther human. If you believe a question is ambiguous, unanswerable, or erroneous, please le<br>ne know. |
| ou will show your work on the pages with questions. When you are sure of your answers, youll put those answers in the boxes on the first few pages.                                                 |
| Inless you have an objection to doing so, please copy the honor-code text below and sign.                                                                                                           |
| I understand that outside help is NOT allowed on this exam. On my honor, the work herein is<br>my own.                                                                                              |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
| Signature:                                                                                                                                                                                          |

| 1. | (a)  |  |
|----|------|--|
|    | (b)  |  |
|    |      |  |
| 2. | (a)  |  |
|    |      |  |
|    | (b)  |  |
|    |      |  |
|    | (c)  |  |
|    | / IN |  |
|    | (d)  |  |
|    |      |  |
|    | (e)  |  |
|    |      |  |
|    | (f)  |  |
|    |      |  |
|    | (g)  |  |
|    |      |  |
| 3. | (a)  |  |
|    |      |  |
|    | (b)  |  |
|    |      |  |
|    | (c)  |  |
|    |      |  |
|    | (d)  |  |
|    |      |  |
|    | (e)  |  |
|    |      |  |
|    | (f)  |  |
|    |      |  |
|    | (g)  |  |
|    |      |  |
| 4. | (a)  |  |
|    |      |  |
|    | (b)  |  |
|    |      |  |
| 5. |      |  |
|    |      |  |
| 6. | (a)  |  |

| Mat-181 3rd Exam, version 027, NO OUTS |
|----------------------------------------|
|----------------------------------------|

| (b)         |     |  |
|-------------|-----|--|
| (d) (e) (f) | (b) |  |
| (d) (e) (f) |     |  |
| (e) (f)     | (c) |  |
| (e) (f)     |     |  |
| (f)         | (d) |  |
| (f)         |     |  |
|             | (e) |  |
|             |     |  |
| (g)         | (f) |  |
| (g)         |     |  |
|             | (g) |  |

- 1. As an ornithologist, you wish to determine the average body mass of *Dumetella carolinensis*. You randomly capture 14 adults of *Dumetella carolinensis*, resulting in a sample mean of 38.31 grams and a sample standard deviation of 4.3 grams. You decide to report a 99.5% confidence interval.
  - (a) Determine the lower bound of the confidence interval.
  - (b) Determine the upper bound of the confidence interval.

2. A teacher has 7 students who have each taken two quizzes. Perform a two-tail test with significance level 0.01 to determine whether students' performance changed on average.

|         | student1 | student2 | student3 | student4 | student5 | student6 | student7 |
|---------|----------|----------|----------|----------|----------|----------|----------|
| quiz 1: | 62.6     | 64.7     | 65.1     | 53.7     | 61.9     | 84.6     | 64.2     |
| quiz 2: | 72.5     | 74.1     | 68.2     | 67.7     | 60.5     | 95.1     | 79.1     |

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either  $z^*$  or  $t^*$ . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either  $z_{obs}$  or  $t_{obs}$ . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

3. You are interested in whether a treatment causes an effect on a continuously measurable attribute. You use a treatment group with 6 cases and a control group with 6 cases. You decide to run a hypothesis test with a significance level of 0.04. Your data is below. Please use 6 for the degrees of freedom (calculated with the Welch-Satterthwaite equation).

| treatment | control |
|-----------|---------|
| 8.9       | 7.6     |
| 9.2       | 9.2     |
| 9         | 6.9     |
| 8.7       | 6.4     |
| 8.5       | 8.6     |
| 9.2       | 8.1     |

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either  $z^*$  or  $t^*$ . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either  $z_{obs}$  or  $t_{obs}$ . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

- 4. From a very large population, a random sample of 2000 individuals was taken. In that sample, 69.1% were messy. Determine a 99% confidence interval of the population proportion.
  - (a) Find the lower bound of the confidence interval.
  - (b) Find the upper bound of the condifence interval.

5. Your boss wants to know what proportion of a very large population is cold. She also wants to guarantee that the margin of error of a 96% confidence interval will be less than 0.06 (which is 6 percentage points). How large of a sample is needed? Please round up, using only 2 significant digits.

6. An experiment is run with a treatment group of size 48 and a control group of size 87. The results are summarized in the table below.

|           | treatment | control |
|-----------|-----------|---------|
| angry     | 38        | 52      |
| not angry | 10        | 35      |

Using a significance level of 0.04, determine whether the treatment causes an effect on the proportion of cases that are angry.

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either  $z^*$  or  $t^*$ . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either  $z_{obs}$  or  $t_{obs}$ . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?