Geometría Algebraica I (18GAL01/MAT-610) Quiz 3 (Primavera 2025) SOLUCIONES

Nombre:	Nota:	_/10
Nombre	110ta	_/ 1

1. (5 points) Dé la definición de haz (de grupos abelianos) sobre un espacio topológico X.

Solution: Un haz \mathscr{F} sobre X es un funtor contravariante de la categoría de abiertos de X en la categoría de grupos abelianos con la siguiente propiedad. Para todo cubrimiento de abiertos $U = \bigcup_{i \in I} U_i$, se tiene que la sucesión de grupos abelianos

$$0 \to \mathscr{F}(U) \xrightarrow{s \mapsto (s|_{U_i})_{i \in I}} \prod_i \mathscr{F}(U_i) \xrightarrow{(s_i)_{i \in I} \mapsto (s_i|_{U_i \cap U_j} - s_j|_{U_i \cap U_j})_{i,j \in I}} \prod_{i,j} \mathscr{F}(U_i \cap U_j)$$

es exacta. Aquí, $s \mapsto s|_V$ denota el homomorfismo $\mathcal{F}(U) \to \mathcal{F}(V)$ que se tiene al aplicar el funtor \mathcal{F} a una inclusión de abiertos $U \supset V$. Se pide también que $\mathcal{F}(\emptyset) = 0$.

2. (5 points) Dé un ejemplo de un haz (de grupos abelianos) sobre un espacio topológico.

Solution: Se puede tomar $X = \emptyset$ y el único haz sobre este espacio topológico es el constante $\mathscr{F}(\emptyset) = 0$. Un ejemplo menos trivial se obtiene al tomar cualquier espacio topológico X y grupo abeliano A y tomar el haz asociado al pre-haz constante $(U \subset V) \mapsto \mathrm{id}_A$. Este haz se puede ver que es el haz de funciones A-valuadas localmente constantes. Es decir, $\mathscr{F}(U)$ es el conjunto de funciones $U \to A$ tal que hay un cubrimiento por abiertos $U = \bigcup_i U_i$ tal que la restricción $U_i \to A$ es constante.