Image Processing with Fourier Transform

Finite and Discrete Input and Output

The Discrete Fourier Transform transforms a sequence of N complex numbers

 $\{x_n\} = x_0, x_1, \dots, x_{n-1}$ into another sequence of complex numbers

 $\{X_k\} = X_0, X_1, \dots X_{N-1},$ which is defined by

One dimension

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn}$$

$$x_n = rac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{i2\pi k n/N}$$

Two dimension

$$X[s,t] = \sum_{n} \sum_{m} x[n,m] e^{-j2\pi mk/M} e^{-j2\pi nk/N}$$
$$x[n,m] = \sum_{n} \sum_{m} X[s,t] e^{j2\pi mk/M} e^{j2\pi nk/N}$$

We're using FFT - Fast Fourier Transform (FFTs are faster ways of doing DFTs)

1. fft2 - fft.fft2(a, s=None, axes=(- 2, - 1), norm=None)

This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT.]

```
original = np.fft.fft2(img)
plt.subplot(152), plt.imshow(np.log(1+np.abs(original)), 'gray'), plt.title("Spectrum")
```


Blurring using Low Pass Filter

Low Pass Filter only allow low frequencies to pass

Edge Detection using High Pass Filter

High Pass Filter, on the contrary, only allow higher frequencies to pass

Image Sharpening using High Pass Filter

Image sharpening is done by adding to the original image a signal proportional to a high-pass filtered version of the image.

```
img = cv2.imread('image_sharpen.jpeg', 0)
# perform FFT
original = np.fft.fft2(img)
# get spectrum
center = np.fft.fftshift(original)
# center spectrum for high pass
HighPassCenter = center * gaussianHP(d0,img.shape)
# perform high pass
HighPass = np.fft.ifftshift(HighPassCenter)
# reverse FFT -> IFFT
inverse_HighPass = np.fft.ifft2(HighPass)
# add filter to original image
sharpened = img+np.abs(inverse_HighPass)
```


Noise Suppression using Low Pass Filter

A low pass filter (LPF) is used to remove high frequency noise from the signal and preserves the low frequency components in the signal

