DroMOOC

Sensor fusion and state estimation Basic Level

Observers and Kalman filter (Part I)

M. Makarov

CentraleSupélec

Motivation for observers and Kalman filtering

Example 1 - Quadrotor pitch angle estimation

- Physical disturbances on the system (turbulence...)
- Sensor imperfections (noise, bias, drift...)
 - in a single sensor
 - in a set of sensors used in combination
- ⇒ Need to reconstruct potentially unmeasured variables to control the system
 - Observers (deterministic)
- ⇒ Need to reconstruct accurate real system behavior in presence of ill-known or unmodeled random effects on system and measurements of various characteristics
 - Kalman filters (can be seen as a special kind of observers)

State-space representation of systems

General nonlinear case

Continuous-time system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{e}(t), t)$$

$$\mathbf{s}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{e}(t), t)$$

Discrete-time system

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{e}_k, k)$$

 $\mathbf{s}_k = \mathbf{g}(\mathbf{x}_k, \mathbf{e}_k, k)$

- x state vector, dimension n
- e input vector, dimension m
- s output vector, dimension p

State-space representation of LTI systems

Linear Time Invariant (LTI) systems

Continuous-time system

$$\dot{\mathbf{x}}(t) = \mathbf{A} \ \mathbf{x}(t) + \mathbf{B} \ \mathbf{e}(t)$$
 $\mathbf{s}(t) = \mathbf{C} \ \mathbf{x}(t) + \mathbf{D} \ \mathbf{e}(t)$

Discrete-time system

$$\mathbf{x}_{k+1} = \mathbf{F} \ \mathbf{x}_k + \mathbf{G} \ \mathbf{e}_k$$

 $\mathbf{s}_k = \mathbf{H} \ \mathbf{x}_k + \mathbf{J} \ \mathbf{e}_k$

- $A, F \in \mathbb{R}^{n \times n}$ state matrix
- B, $G \in \mathbb{R}^{n \times m}$ input matrix
- ullet $oldsymbol{C},~oldsymbol{H} \in \mathbb{R}^{p imes n}$ output matrix
- D, $J \in \mathbb{R}^{p \times m}$ direct feedthrough matrix

Local linear model (continuous time)

Nonlinear system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{e}(t), t)$$

 $\mathbf{s}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{e}(t), t)$

• Equilibrium point: constant x_0 , e_0 , s_0 s.t. $\forall t$:

$$(S_0) \begin{cases} 0 = f(\mathbf{x}_0, \mathbf{e}_0, t) \\ \mathbf{s}_0 = g(\mathbf{x}_0, \mathbf{e}_0, t) \end{cases}$$

• Taylor 1st order approximation around the equilibrium point with $\mathbf{x}(t) = \mathbf{x}_0 + \tilde{\mathbf{x}}(t)$, $\mathbf{e}(t) = \mathbf{e}_0 + \tilde{\mathbf{e}}(t)$, $\mathbf{s}(t) = \mathbf{s}_0 + \tilde{\mathbf{s}}(t)$:

$$\dot{ ilde{x}}(t) = egin{bmatrix} \dot{ ilde{x}} & \ddot{ ilde{x}} & \ddot{ ilde{x}} & \ddot{ ilde{x}}(t) + egin{bmatrix} \dfrac{\partial f}{\partial e} \end{bmatrix}_{(x_0, e_0, t)} & \tilde{e}(t) \end{pmatrix}$$
 $\ddot{ ilde{s}}(t) = egin{bmatrix} \dfrac{\partial g}{\partial x} \end{bmatrix}_{(x_0, e_0, t)} & \tilde{x}(t) + egin{bmatrix} \dfrac{\partial g}{\partial e} \end{bmatrix}_{(x_0, e_0, t)} & \tilde{e}(t) \end{pmatrix}$

State-space representation of systems

Example 2 - Quadrotor vertical dynamics

$$\dot{p}_z(t) = v_z(t)$$
 $\dot{v}_z(t) = \frac{\cos \theta \cos \varphi}{m} \mathcal{T}(t) + g$

- Let's consider here only the part of the complete state vector related to the vertical dynamics $\mathbf{x}(t) = (p_z(t), v_z(t))^T$
- Thrust magnitude is considered as a control input $u(t) = \mathcal{T}(t) = -b \sum_{i=1}^{4} \omega_i(t)^2$
- An output of this system can be defined as $s(t) = p_z(t)$

Roll and pitch angles $\varphi(t)$ and $\theta(t)$ have their own dynamics. The choice of the state variables (p_z, v_z) is therefore incomplete! For complete nonlinear dynamic modeling of a quadrotor, please refer to the corresponding lecture.

Local linear model (continuous time)

Example 2 - Quadrotor vertical dynamics

• Consider the equilibrium point representing the **hovering** situation with $\theta_0 \approx 0, \ \varphi_0 \approx 0$. Other variables around this equilibrium are:

$$0 = v_{z_0}$$

$$0 = \cos \theta_0 \cos \varphi_0 \frac{1}{m} \mathcal{T}_0 + g \implies \mathcal{T}_0 = -mg$$

 The linearized equations of the vertical dynamics around the hovering equilibrium are:

$$\begin{split} \dot{\bar{p}}_z(t) &= \dot{p}_z(t) = v_z(t) = v_{z_0} + \tilde{v}_z(t) \ \Rightarrow \ \dot{\bar{p}}_z(t) = \tilde{v}_z(t) \\ \dot{\bar{v}}_z(t) &= \cos(\theta_0 + \tilde{\theta}(t)) \cos(\varphi_0 + \tilde{\varphi}(t)) \frac{1}{m} (\mathcal{T}_0 + \tilde{\mathcal{T}}(t)) + g \\ \Rightarrow \ \dot{\bar{v}}_z(t) &= \tilde{\mathcal{T}}(t) \end{split}$$

Sampled LTI systems

Discrete-time model of sampled systems

The equivalent model of a continuous-time system sampled with sampling time T_s is:

$$\mathbf{x}_{k+1} = \mathbf{F} \ \mathbf{x}_k + \mathbf{G} \ \mathbf{u}_k$$

 $\mathbf{y}_k = \mathbf{C} \ \mathbf{x}_k + \mathbf{D} \ \mathbf{u}_k$

with

$$m{F} = e^{m{A}T_s} \ m{G} = \int_0^{T_s} e^{m{A} heta} m{B} d heta$$

 \Rightarrow Solve between $t_k = kT_s$ and $t_{k+1} = (k+1)T_s$ to express $x_{k+1} = x(t_{k+1})$ as function of $x_k = x(t_k)$ and constant input $e(t) = u_k$:

$$egin{aligned} m{x}(t_{k+1}) = & e^{m{A}(t_{k+1} - t_k)} m{x}(t_k) ... \ & + \int_{t_{
u}}^{t_{k+1}} e^{m{A}(t_{k+1} - au)} m{B} m{e}(au) d au \end{aligned}$$

Sampled LTI systems

Example 2 - Quadrotor vertical dynamics around the hovering equilibrium

• Suppose the control input \tilde{T} is constant over the sampling period T_s , i.e.:

$$\begin{split} &\text{for } t_k = kT_s \leq t \leq t_{k+1} = (k+1)T_s, \\ & \begin{bmatrix} \dot{\tilde{p}}_z(t) \\ \dot{\tilde{v}}_z(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{p}_z(t) \\ \tilde{v}_z(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tilde{\mathcal{T}}_k \text{ with } \tilde{\mathcal{T}}(t) = \tilde{\mathcal{T}}(kT_s) = \tilde{\mathcal{T}}_k \end{split}$$

Integrate beween t_k and t_{k+1}:

$$egin{aligned} ilde{v}_z(t_{k+1}) &= ilde{v}_z(t_k) + \mathcal{T}_s ilde{\mathcal{T}}_k \ ilde{
ho}_z(t_{k+1}) &= ilde{
ho}_z(t_k) + \mathcal{T}_s ilde{v}_z(t_k) + rac{\mathcal{T}_s^2}{2} ilde{\mathcal{T}}_k \end{aligned}$$

Resulting sampled system equations:

$$\begin{bmatrix} \tilde{p}_z[k+1] \\ \tilde{v}_z[k+1] \end{bmatrix} = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{p}_z[k] \\ \tilde{v}_z[k] \end{bmatrix} + \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix} \tilde{\mathcal{T}}_k$$

Stability of the equilibrium point x_0 , e_0 , s_0

Lyapunov stability

$$\forall \varepsilon > 0, \forall t_{\mathbf{0}}, \exists \delta(\varepsilon, t_{\mathbf{0}}) \ s. \ t. :$$

$$\|\boldsymbol{x}(t_0) - \boldsymbol{x_0}\| < \delta(\varepsilon, t_0)$$

$$\Rightarrow \|\boldsymbol{x}(t) - \boldsymbol{x}_0\| < \varepsilon, \forall t \ge t_0$$

Asymptotic stability

i. Lyapunov stability

$$ii. \ \lim_{t\to\infty} \lVert \boldsymbol{x}(t) - \boldsymbol{x}_0 \rVert = 0$$

Exponential stability

i. Asymptotic stability

$$ii. \ \exists M, \alpha > 0 \ s.t.$$
:

$$\|\boldsymbol{x}(t) - \boldsymbol{x_0}\| \leq M \|\boldsymbol{x}(t_0) - \boldsymbol{x_0}\| e^{-\alpha(t-t_0)}$$

Stability of LTI systems (continuous time)

The free response of the continuous-time LTI system

$$\dot{\mathbf{x}}(t) = \mathbf{A} \ \mathbf{x}(t) + \mathbf{B} \ \mathbf{e}(t)$$

 $\mathbf{s}(t) = \mathbf{C} \ \mathbf{x}(t) + \mathbf{D} \ \mathbf{e}(t)$

to initial condition $\mathbf{x}(t_0)$ (solution of $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$) is:

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0) = \sum_{i=1}^k \sum_{j=1}^{n_i} \alpha_{ij} (t-t_0)^{j-1} e^{\lambda_i(t-t_0)}$$

with λ_i (i = 1..k) the *i*-th eigenvalue of **A** of order n_i .

$Re(\lambda_i)$

Exponential stability criterion

The real part of all **A** eigenvalues is strictly negative.

Stability of sampled LTI systems (discrete time)

- The state matrix $\mathbf{F} = e^{\mathbf{A}T}$ of the sampled system has eigenvalues $p_i = e^{\lambda_i T_s}$, with λ_i (i = 1..n) the eignevalues of \mathbf{A}
- The free response of $\dot{\mathbf{x}}_{k+1} = \mathbf{F}\mathbf{x}_k$ is $\mathbf{x}_k = \mathbf{F}^{k-k0}\mathbf{x}_{k0}$

Exponential stability criterion

All eigenvalues of \boldsymbol{F} have a modulus strictly inferior to 1.

Stability of LTI systems

Example 2 - Quadrotor vertical dynamics around hovering

• Continuous-time dynamics :

$$egin{bmatrix} \dot{ ilde{p}}_z(t) \ \dot{ ilde{v}}_z(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix} egin{bmatrix} ilde{p}_z(t) \ ilde{v}_z(t) \end{bmatrix} + egin{bmatrix} 0 \ 1 \end{bmatrix} ilde{\mathcal{T}}(t)$$

• Discrete-time dynamics of the sampled system :

$$egin{bmatrix} ilde{p}_z[k+1] \ ilde{v}_z[k+1] \end{bmatrix} = egin{bmatrix} 1 & T_s \ 0 & 1 \end{bmatrix} egin{bmatrix} ilde{p}_z[k] \ ilde{v}_z[k] \end{bmatrix} + egin{bmatrix} rac{T_s^2}{2} \ T_s \end{bmatrix} ilde{\mathcal{T}}_k$$

Observability

Definition (general case)

The nonlinear continuous-time system with **measurement** vector z(t)

$$\dot{x}(t) = f(x(t), e(t), t)$$
$$z(t) = g(x(t), e(t), t)$$

is observable if for all x_0 s.t. $x(t_0) = x_0$, the observation of z(t) for a finite time $t_f - t_0$ allows us to determine x_0 .

Observability of LTI systems

$$\dot{\mathbf{x}}(t) = \mathbf{A} \ \mathbf{x}(t) + \mathbf{B} \ \mathbf{e}(t) \ \mathrm{with} \ \mathbf{x} \in \mathbb{R}^n$$
 $\mathbf{z}(t) = \mathbf{C} \ \mathbf{x}(t) + \mathbf{D} \ \mathbf{e}(t)$ is observable $\Leftrightarrow \mathrm{rank} \left[\mathbf{C}^T \ (\mathbf{C}\mathbf{A})^T \ \ldots \ (\mathbf{C}\mathbf{A}^{n-1})^T \right]^T = n$

Similar definition and criterion hold for discrete-time systems.

Observability of LTI systems

Example 2 - Quadrotor vertical dynamics around hovering

• Continuous-time dynamics :

$$\begin{bmatrix} \dot{\tilde{p}}_{z}(t) \\ \dot{\tilde{v}}_{z}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{p}_{z}(t) \\ \tilde{v}_{z}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tilde{\mathcal{T}}(t) \text{ with } \begin{cases} z(t) = \tilde{p}_{z}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \tilde{p}_{z}(t) \\ \tilde{v}_{z}(t) \end{bmatrix} \\ \text{or } \\ z(t) = \tilde{v}_{z}(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{p}_{z}(t) \\ \tilde{v}_{z}(t) \end{bmatrix}$$

• Rank of the observability matrices (n = 2):

$$\operatorname{rank}\left(\begin{bmatrix} \boldsymbol{C_1} \\ \boldsymbol{C_1} \boldsymbol{A} \end{bmatrix}\right) = \operatorname{rank}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 2 \quad \text{but} \quad \operatorname{rank}\left(\begin{bmatrix} \boldsymbol{C_2} \\ \boldsymbol{C_2} \boldsymbol{A} \end{bmatrix}\right) = \operatorname{rank}\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) = 1$$

Deterministic state estimation (continuous time)

• **Problem:** measurements of the state x(t) are usually unavailable (for supervision or control), but z(t) is measured and the state-space model is known:

$$\dot{\mathbf{x}}(t) = \mathbf{A} \ \mathbf{x}(t) + \mathbf{B} \ \mathbf{u}(t)$$

 $\mathbf{z}(t) = \mathbf{C} \ \mathbf{x}(t)$

Observer (continuous-time)

$$\dot{\hat{m{x}}}(t) = m{A} \ \hat{m{x}}(t) + m{B} \ m{u}(t) + m{K} \left(m{z}(t) - \hat{m{z}}(t)
ight) \ \hat{m{z}}(t) = m{C} \ \hat{m{x}}(t)$$

ullet Dynamics of the reconstruction error $arepsilon={m x}-{m{\hat x}}$:

$$\dot{\varepsilon} = \dot{x} - \dot{\hat{x}}$$

$$= A x + B u - (A \hat{x} + B u + KC (x - \hat{x}))$$

$$= (A - KC) \varepsilon$$

⇒ Reconstruction of the state by an observer

