Predicting Pet Adoption Speeds

W207 Summer 2023 Lucy, Nicole, Bailey, Alberto, & Erik

Project Repository Link:

https://github.com/UC-Berkeley-I-School/mids-207-final-project-summer23-Rueda-Sambrailo-Herr-Liu-Kuehl

Pet Adoption culture

Motivation: Animal illness and euthanization in shelters

Objectives and Research Questions

Research Objective: Can we use machine learning to predict adoption speed?

Secondary Question: Can we use those predictions to advise shelters on how to increase adoption?

Example Application: Adoption postings

Data: Overview

PetFinder.my Adoption Prediction Dataset (Kaggle)

	Type (Source)	Size	Total Features	Key Features
Pet Profile Features	Tabular	(14993, 24)	24	Type, Breed, Age, Gender, Health, State (location) Adoption Speed
Pet Image Metadata	JSON (Google Vision API)	14652 pets	14	Face Annotation, Label Annotation, Image Properties
Pet Description Sentiment Analysis	JSON (Google NL API)	14442	7	Sentiment Score, Sentiment Magnitudes, Languages

Data: Summary Stats

I was a 'Same Day' rescue!

Adoption Speeds

Data: Summary Stats

Median Adoption Speeds faster for. . . than . . . cats dogs long-haired dogs short-haired dogs specified name unspecified (Miu Miu) (kitten) dog of specified breed mixed breed black, yellow & black cat white cat

Data: Summary Stats

Pet Rescuers

4,800 Rescuers

~12,000
Adoption Records

6 Rescuers

1,200+
Adoption Records

Data: Feature Engineering

Feature Additions

- RescuerCount (qty of rescues)
- State Population & Median Income (for adoption locations)
- Breed Groups (by American Kennel Club)
- Guessed Age (age was likely guessed)

Feature Transformations

Binning

Binary Encoding

Multi-Hot Encoding

Standardize

- Age
- Quantity
- Breeds
- State

- Colors
- Gender
- Age
- Fee

Addressing Nulls

Re-classifying & Balancing Labels (Adoption Speed)

Modeling Approach

Decision Tree vs. XGBoost

Single Decision Tree

- one tree
- high feature influence

0.5 y -0.5 X1 0.5 X2

XGBoost

- 100's of trees
- very prone to overfitting

source: https://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

XGBoost: Model & Hyperparameters

Deep Neural Networks - Architecture & Hyperparameters

Feed-Forward NN (w/out text data)

X Features, activation function, batch normalization, weight decay

TabNet (w/out text data)

Voting Ensemble (FFNN + TabNet)

	precision	recall	f1-score
0 1 2 3	0.33 0.31 0.34 0.47	0.59 0.10 0.24	0.43 0.16 0.28
accuracy macro avg weighted avg	0.36 0.37	0.57 0.38 0.38	0.51 0.38 0.34 0.35

Summary of Results

	Val Set: weighted-F1 score	Test Set: weighted-F1 score
Baseline Majority Predictor	0.10	0.12
Decision Tree	0.38	0.36
XGBoost	0.41+	0.41+
Feedforward Neural Network	~0.35	~0.30
Transformers: TabNet	0.29	0.29
Ensemble: FFNN + TabNet + XGBoost	~0.40	~0.40

Key Takeaways from Models

FFNN: suffering from overfitting and feature interference

	Val Set: weighted-F1 score	Test Set: weighted-F1 score
FFNN (numeric features only)	0.37	0.25
FFNN (text description only - embedding)	0.31	0.33
FFNN (text embeddings + numeric)	0.34	0.16

Ways to improve model performance

Feature engineering Model depth and width

Regularization

Learning Rate and Optimizer

Conclusion

Research Objective: Can we use machine learning to predict adoption speed?

Secondary Question: Can we use those predictions to advise shelters on how to increase adoption?

Information gain ranking from decision tree

Features	Feature Importances
RescuerCount	0.334191
Age	0.286694
isGeneric_Breed	0.133757

Limitations and Future Work

Fairness in ML

 Accessibility of data and images (variability in image quality, demographic / geographic representation)

Image processing / Description bias (embeddings, image metadata)

Privacy of veterinary medical records

Impact: Inaccurate recommendations for adoption postings could negatively impact eligible pets.

Contributions

All team members worked on all stages of the project collaboratively, sharing the work streams in an equal and effective way

Data processing / Feature Engineering

 Bailey worked on the image files, Nicole on the sentiment files, Erik and Alberto split the numeric features and Lucy worked on incorporating additional data and putting everything together

Modeling

- Bailey and Erik worked on Decision Trees
- Nicole, Lucy and Alberto worked on FENN and Transformers

Slides

Divided equally according to the previous work done

References

- 1. Ho, J., Hussain, S., & Sparagano, O. (2021). Did the COVID-19 pandemic spark a public interest in pet adoption?. *Frontiers in Veterinary Science*, *8*, 647308.
- 2. Zadeh, A., Combs, K., Burkey, B., Dop, J., Duffy, K., & Nosoudi, N. (2022). Pet analytics: Predicting adoption speed of pets from their online profiles. *Expert Systems with Applications*, 204, 117596.
- 3. https://worldanimalfoundation.org/advocate/pet-adoption-statistics/
- 4. https://www.americanhumane.org/fact-sheet/animal-shelter-euthanasia-2/
- 5. https://www.petfinder.com/tools-widgets/custom-pet-list/getting-started/
- 6. https://www.washingtonpost.com/business/2022/01/07/covid-dogs-return-to-work/
- 7. https://raw.githubusercontent.com/MoH-Malaysia/covid19-public/main/static/population.csv
- 8. https://storage.googleapis.com/dosm-public-economy/salaries_state_sex.csv
- 9. https://www.hhhstopeka.org/adopt
- 10. https://www.cleveland19.com/2021/09/27/pandemic-pets-are-facing-euthanization-after-being-surrendered-due-overcrowding/
- 11. https://www.kaggle.com/competitions/netfinder-adoption-prediction/discussion/88773
- 12. https://www.kaggle.com/c/petition-prediction/discussion/89042

