Алгебраическое доказательство линейных теорем Конвея–Гордона–Закса и ван Кампена–Флореса¹

И. И. Богданов, А. Д. Матушкин

Abstract. In this paper we present short algebraic proofs of the Linear Conway–Gordon–Sachs and the Linear van Kampen–Flores theorems in the spirit of the Radon theorem on convex hulls.

Theorem. Take any n+3 general position points in \mathbb{R}^n . If n is odd, then there are two linked (n+1)/2-simplices with the vertices at these points. If n is even, then one can choose two disjoint (n+2)/2-tuples such that the interiors (n/2)-simplices with the vertices at these (n+2)/2-tuples intersect each other.

This theorem is interesting even in case of small dimensions.

1 Введение

В данной работе предлагаются короткие алгебраические доказательства классических теорем о пересечении и зацепленности. Полные версии теорем Конвея–Гордона–Закса и ван Кампена—Флореса были сформулированы соответственно для непрерывных вложений полного графа на n+3 вершинах в \mathbb{R}^n (точнее, авторы доказали эту теорему для шести точек в \mathbb{R}^3) и непрерывных вложений n-мерного остова (2n+2)-мерного симплекса в \mathbb{R}^{2n} (см. [1]). Мы обсуждаем линейные (то есть более частные) аналоги этих теорем. Отметим, что известны другие простые доказательства рассматриваемых теорем (см., например, [2], [3], [4]), основанные на идее понижения размерности. Теоремы Конвея—Гордона—Закса и ван Кампена—Флореса интересны уже в случае малых размерностей. Мы сначала сформулируем их для трехмерного и четырехмерного пространств соответственно, а затем обобщим формулировки и представим доказательство обобщенных теорем.

Пусть Δ и Δ' — два треугольника в пространстве, среди шести вершин которых никакие 4 не лежат в одной плоскости. Будем говорить, что эти треугольники *зацеплены*, если контур треугольника Δ пересекает внутренность треугольника Δ' в единственной точке.

Теорема 1 (Линейная версия теоремы Конвея–Гордона–Закса, частный случай). Для любых 6 точек в трехмерном пространстве, никакие 4 из которых не лежат в одной плоскости, найдутся два зацепленных треугольника с вершинами в этих точках.

 $^{^{1}}$ Доказательство возникло в результате обсуждений на семинарах по дискретному анализу на факультете инноваций и высоких технологий Московского физико-технического института.

Теорема 2 (Линейная версия теоремы ван Кампена-Флореса, частный случай). Среди любых 7 точек в четырехмерном пространстве, никакие 5 из которых не лежат в одном трехмерном аффинном подпространстве, можно выбрать две непересекающиеся тройки точек такие, что треугольники с вершинами в них пересекаются.

Замечание. В оригинальных формулировках теорем 1 и 2 вместо существования искомых поднаборов точек утверждался более сильный факт о нечетности числа искомых поднаборов. Предложенное нами доказательство обобщения теорем 1 и 2 может быть обобщено на случай таких более общих формулировок.

Сформулируем теперь обобщение теорем 1 и 2.

Будем говорить, что точки $A_1, A_2, \ldots, A_m \in \mathbb{R}^n$, m > n, находятся в общем положении, если никакие n+1 из них не лежат в одной гиперплоскости (то есть в аффинном подпространстве размерности n-1).

Пусть Δ и Δ' — два n-мерных симплекса в \mathbb{R}^{2n-1} , вершины которых находятся в общем положении. Тогда эти симплексы *зацеплены*, если граница симплекса Δ пересекает внутренность симплекса Δ' в единственной точке.

Теорема 3. Пусть даны n+3 точки общего положения в \mathbb{R}^n . Тогда, если n нечетно, то существуют два непересекающихся поднабора по (n+3)/2 точек, внутренности выпуклых оболочек которых пересекаются. Если же n нечетно, то существуют два непересекающихся поднабора по (n+2)/2 точек, выпуклые оболочки которых зацеплены.

2 Доказательство теоремы 3

В доказательстве теоремы мы будем пользоваться следующим эквивалентным определением общности положения точек.

Точки $A_1, A_2, \ldots, A_m \in \mathbb{R}^n$, m > n, находятся в общем положении, если для любых B_0, B_1, \ldots, B_n из них векторы $B_1 - B_0, B_2 - B_0, \ldots, B_n - B_0$ линейно независимы.

2.1 Начало доказательства

Обозначим точки из условия теоремы через $A_1, A_2, \ldots, A_{n+3}$. Рассмотрим следующую систему линейных уравнений относительно вещественных переменных $x_1, x_2, \ldots, x_{n+3}$:

$$\begin{cases} x_1 A_1 + x_2 A_2 + \ldots + x_{n+3} A_{n+3} = 0, \\ x_1 + x_2 + \ldots + x_{n+3} = 0. \end{cases}$$
 (1)

Поскольку в этой системе n+1 скалярных уравнений и n+3 неизвестных, то размерность пространства ее решений не меньше двух. А в силу общности положения точек

 $A_1, A_2, \ldots, A_{n+3}$ любые n+1 столбцов матрицы данной системы линейно независимы. Значит, размерность пространства решений в точности равна двум. Таким образом, данная система уравнений задает двумерную плоскость в (n+3)-мерном пространстве параметров. Обозначим эту плоскость через γ . Покольку любые n+1 столбцов матрицы системы (1) линейно независимы, то при добавлении к системе (1) любого из n+3 уравнений вида

$$x_{i} = 0$$
,

где $i \in \{1, 2, ..., n+3\}$, размерность пространства решений уменьшится на 1. Иначе говоря, пространство решений дополненной системы — прямая в плоскости γ , проходящая через точку (0, 0, ..., 0). Обозначим эту прямую через ℓ_i . В силу линейной независимости любых n+1 столбцов матрицы системы (1) прямые $\ell_1, \ell_2, ..., \ell_{n+3}$ попарно различны.

Рассмотрим в плоскости γ произвольную точку $x=(x_1,x_2,\ldots,x_{n+3}),$ не лежащую ни на одной из прямых $\ell_1,\ell_2,\ldots,\ell_{n+3}.$ Обозначим через ω дугу окружности в плоскости γ с центром в точке 0, концами которой являются точки x и $-x=(-x_1,-x_2,\ldots,-x_{n+3}).$ Для любого $i=1,2,\ldots,n+3$ прямая ℓ_i разделяет плоскость γ на две полуплоскости, в одной из которых i-ые координаты точек положительны, а в другой — отрицательны. Следовательно, при движении по дуге ω от точки x к точке -x при переходе через любую из прямых $\ell_1,\ell_2,\ldots,\ell_{n+3}$ число положительных координат точки изменяется ровно на 1.

Лемма 1. Пусть ненулевая точка $\hat{x} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_{n+3})$ является решением системы (1). Тогда выпуклые оболочки множеств $\{A_i, \hat{x}_i > 0\}$ и $\{A_i, \hat{x}_i < 0\}$ пересекаются по внутренней для обеих выпуклых оболочек точке.

Доказательство леммы. Обозначим через I^+ множество таких индексов $i \in \{1, \ldots, n+3\}$, для которых $\hat{x}_i > 0$, через I^- — множество индексов $i \in \{1, 2, \ldots, n+3\}$, для которых $\hat{x}_i < 0$. В силу того, что \hat{x} является решением системы (1), выполнены равенства

$$\begin{cases} \sum_{i \in I^{+}} \hat{x}_{i} A_{i} = \sum_{i \in I^{-}} (-\hat{x}_{i} A_{i}), \\ \sum_{i \in I^{+}} \hat{x}_{i} = \sum_{i \in I^{-}} (-\hat{x}_{i}) =: S. \end{cases}$$

Следовательно,

$$\sum_{i \in I^+} \frac{\hat{x}_i}{S} A_i = \sum_{i \in I^-} \frac{-\hat{x}_i}{S} A_i.$$

Это означает, что выпуклые оболочки наборов точек $\{A_i, i \in I^+\}$ и $\{A_i, i \in I^-\}$ пересекаются. Поскольку все числа $x_i, i \in I^+ \cup I^-$, ненулевые, то точка пересечения является внутренней для обеих выпуклых оболочек.

2.2 Случай четного n

Поскольку у одной из точек x и -x положительных координат не меньше, чем (n+2)/2, а у другой — не больше, чем (n+2)/2, то существует такое $i \in \{1,2,\ldots,n+3\}$, что у точки пересечения дуги ω с прямой ℓ_i будет ровно по (n+2)/2 положительных и отрицательных координат. Обозначим эту точку пересечения за \hat{x} . Тогда по лемме 1 выпуклые оболочки наборов $\{A_i, \hat{x}_i > 0\}$ и $\{A_i, \hat{x}_i < 0\}$, являющиеся (n+2)/2-мерными симплесками, пересекаются по внутренней точке.

2.3 Случай нечетного n

Очевидно, что два (n+1)/2-мерных симплекса Δ и Δ' в \mathbb{R}^n , вершины которых находятся в общем положении, зацеплены тогда и только тогда, когда они пересекаются по отрезку, причем один из концов этого отрезка является внутренней точкой для симплекса Δ и граничной точкой для симплекса Δ' , а другой конец, наоборот, — внутренней точкой для симплекса Δ' и граничной точкой для симплекса Δ .

Поскольку у одной из точек x и -x положительных координат не меньше, чем (n+3)/2, а у другой — не больше, чем (n+3)/2, то существуют такие две точки пересечения дуги ω с прямыми $\ell_1,\ell_2,\ldots,\ell_{n+3}$, что между ними на дуге ω нет других точек пересечения с прямыми ℓ_i , и, кроме того, у одной из этих точек (n+3)/2 положительных и (n+1)/2 положительных координат, а у другой (n+3)/2 отрицательных и (n+1)/2 положительных координат. Обозначим эти точки соответственно через x^1 и x^2 . Обозначим через Δ_j^+ , $j \in \{1,2\}$, выпуклую оболочку множества таких точек A_i , что x_i^j положительно, а через Δ_j^- , $j \in \{1,2\}$, — выпуклую оболочку множества таких точек A_i , что x_i^j отрицательно. В силу определения точек x^1 и x^2 выпуклые оболочки Δ_1^+ и Δ_2^- являются (n+1)/2-мерными симплексами, причем Δ_1^- является (n-1)/2-мерной гранью симплекса Δ_2^- , а Δ_2^+ является (n-1)/2-мерной гранью симплекса Δ_1^+ . По лемме 1 существует внутренняя точка симплекса Δ_1^+ , принадлежащая симплексу Δ_1^- , и существует внутренняя точка симплекса Δ_2^- , принадлежащая симплексу Δ_2^+ . Что и означает зацепленность симплексов Δ_1^+ и Δ_2^-

Список литературы

- [1] V. Prasolov, Elements of combinatorical and differential topology, AMS, RI, 2006. Russian version: MCCME, Moscow, 2004, ftp://ftp.mccme.ru/users/prasolov/topology/topol2.pdf.
- [2] А. Скопенков, Алгоритмы распознавания реализуемости гиперграфов, www.mccme.ru/circles/oim/algor.pdf.

- [3] A. Skopenkov, M. Skopenkov, Some short proofs of the nonrealizability of hypergraphs, http://arxiv.org/pdf/1402.0658.pdf.
- [4] A. Zimin, An alternative proof of the Conway-Gordon-Sachs Theorem, http://arxiv.org/abs/1311.2882v2.pdf.