See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/27688918

Primary structure of the acidic carbohydrate chain of hemocyanin from Panulirus interruptus

ARTICLE in FEBS LETTERS · AUGUST 1987

Impact Factor: 3.17 · DOI: 10.1016/0014-5793(87)80370-8 · Source: OAI

CITATIONS

19

READS

10

5 AUTHORS, INCLUDING:

J.F.G. Vliegenthart Utrecht University

196 PUBLICATIONS 2,437 CITATIONS

SEE PROFILE

Johannis P Kamerling

Utrecht University, Utrecht, The Netherlan...

574 PUBLICATIONS **13,731** CITATIONS

SEE PROFILE

Primary structure of the acidic carbohydrate chain of hemocyanin from *Panulirus interruptus*

J.A. van Kuik, J. Breg, C.E.M. Kolsteeg, J.P. Kamerling and J.F.G. Vliegenthart

Department of Bio-Organic Chemistry, Utrecht University, Transitorium III, PO Box 80.075, NL-3508 TB Utrecht,
The Netherlands

Received 8 July 1987

The N-glycosidic carbohydrate chains of hemocyanin from the spiny lobster Panulirus interruptus were liberated by hydrazinolysis of a pronase digest and subsequently reduced. Separation of the mixture of oligosaccharide-alditols by high-voltage paper electrophoresis resulted in a neutral (90%) and an acidic (10%) fraction. 500-MHz ¹H-NMR spectroscopy of the acidic fraction revealed a single component with the following novel structure:

Hemocyanin; N-linked carbohydrate; Sulfate; (Panulirus interruptus)

1. INTRODUCTION

Hemocyanins are high- M_r copper-containing oxygen-transport proteins, which are found in the hemolymph of some arthropods and molluscs. It has been shown that interesting species-specific differences in carbohydrate chains occur among the hemocyanins in both phyla [1-5]. The hemo-

Correspondence address: J.F.G. Vliegenthart, Department of Bio-Organic Chemistry, Utrecht University, Transitorium III, PO Box 80.075, NL-3508 TB Utrecht, The Netherlands

Abbreviations: Man, D-mannopyranose; GlcNAc, 2-acetamido-2-deoxy-D-glucopyranose; GlcNAc-ol, 2-acetamido-2-deoxy-D-glucitol

cyanin from the spiny lobster *Panulirus interruptus* is an *N*-glycoprotein, having a carbohydrate content of 1.5% with Man and GlcNAc as the only constituting monosaccharides [5]. Recently, the primary structures of the neutral carbohydrate chains were established to be $\text{Man}\alpha(1-6)[\text{GlcNAc}\beta(1-2)\text{Man}\alpha(1-3)]\text{Man}\beta(1-4)\text{GlcNAc}\beta(1-4)\text{GlcNAc}$ and $\text{Man}\alpha(1-6)[\text{Man}\alpha(1-3)]\text{Man}\alpha(1-6)[\text{Man}\alpha(1-3)]\text{Man}\beta(1-4)\text{GlcNAc}\beta(1-4)\text{GlcNAc}$ [5]. Here, the structural characterization of the acidic carbohydrate material, representing 10% of the carbohydrate part, is described.

2. MATERIALS AND METHODS

The preparation and isolation of the acidic carbohydrate fraction from a hydrazinolysate of the

pronase digest of *P. interruptus* hemocyanin have been described in [5].

Methyl α -D-mannopyranoside 6-O-sulfate was synthesized according to [6]. Briefly, methyl α -D-mannopyranoside (194 mg, 1 mmol) was dissolved in 5 ml dry pyridine. After cooling to 5°C, 73 μ l chlorosulfonic acid (1.1 mmol) in 300 μ l dry chloroform was added. The mixture was stirred for 30 min at 5°C, and then for 2 h at 25°C. After the addition of 2 ml water, the solvent was evaporated to dryness. The crude material was purified on a silica column (2 × 7 cm), using a mixture of dichloromethane: methanol (5:3, v/v) as eluting system. The final product was converted into the corresponding sodium salt by neutralization with NaOH.

For ¹H-NMR analysis, samples were repeatedly exchanged in ²H₂O (99.96 atom% ²H, Aldrich) with intermediate lyophilization. ¹H-NMR spectra were recorded on a Bruker AM-500 spectrometer (SON hf-NMR facility, Department of Biophysical Chemistry, University of Nijmegen, The Netherlands) operating at 500 MHz in the Fouriertransform mode at a probe temperature of 27°C. One-dimensional spin lock difference spectroscopy was performed according to [7], in combination with the MLEV-17 composite pulse decoupling cycle [8], using a spin lock time of 160 ms. Resolution enhancement of the spectra was achieved by Lorentzian-to-Gaussian transformation Chemical shifts (δ) are given relative to sodium 4.4-dimethyl-4-silapentane-1-sulfonate, but were actually measured indirectly to acetone in ${}^{2}H_{2}O$ (δ 2.225) [10].

3. RESULTS AND DISCUSSION

Hydrazinolysis of a pronase digest of hemocyanin from the spiny lobster *P. interruptus* resulted in complete liberation of the *N*-linked carbohydrate chains [5]. After re-*N*-acetylation and reduction, the mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis, yielding 10% acidic material, which chromatographed as one peak, denoted **A**. In view of the sugar analysis of the native glycoprotein, showing only Man and GlcNAc as monosaccharides, no sugar constituent can be held responsible for the acidic nature of fraction **A**.

To elucidate the primary structure of the oligo-

saccharide-alditol present in fraction A. a 500-MHz ¹H-NMR spectrum was recorded (fig.1A). Relevant ¹H-NMR data of A, together with those of Man α (1-6)[GlcNAc β (1-2)Man α (1-3) $IMan\beta(1-4)GlcNAc\beta(1-4)GlcNAc-ol$, being the previously reported structure in the neutral fraction c [5], are presented in table 1. The equal intensity of the anomeric proton signals in the ¹H-NMR spectrum of A points to the presence of a single compound. When comparing the ¹H-NMR data of A and c (table 1), it is evident that all structuralreporter groups which are present in the spectrum of c also occur in that of A, having essentially the same chemical shifts. This means that the compound in fraction A and c must have the structural element GlcNAc $\beta(1-2)$ Man $\alpha(1-3)$ [Man $\alpha(1-6)$]Ma $n\beta(1-4)$ GlcNAc $\beta(1-4)$ GlcNAc-ol in However, the spectrum of A shows two additional downfield signals, resonating at δ 4.354 and δ 4.2. The doublet of doublets at δ 4.354 has a large coupling constant of 11.6 Hz, which can only correspond to a geminal coupling of H-6 and H-6' of Man, or GlcNAc. To identify this monosaccharide residue, one-dimensional spin lock difference spectroscopy was performed. For this purpose a selective 180° pulse was given to the signal at δ 4.354 and the difference spectrum revealed the complete set of proton signals from one sugar unit (fig.1B). This residue could be identified as Man-4' from the H-2 signal at δ 3.979, and from the (less distinct) H-1 signal at δ 4.911. The unknown signal at δ 4.2 belongs to H-6' of Man-4'. The appearance of the Man-4' H-6 and H-6' at downfield positions as found for A, in comparison to c, must be attributed to the presence of an acidic substituent at C-6. In view of the literature data on acidic carbohydrate chains, it is reasonable to propose that either a phosphate or a sulfate group is involved. It has been demonstrated that 6-Ophosphorylation of a terminal α -D-Man residue causes a downfield shift of H-6 and H-6' to δ 4.061 in Man α (1-6)Man-R [11] and a downfield shift of H-6 to δ 4.096 in Man α (1-2)Man, whereby a ¹H-³¹P coupling (6.5 Hz) is evident [12]. However, in the ¹H-NMR spectrum of A, the H-6 (and H-6') are shifted to even more downfield positions than observed for H-6 (and H-6') in terminal 6-Ophosphorylated α -D-mannose residues [11,12]. Furthermore, no ¹H-³¹P coupling is present on the Man-4' H-6 and H-6' signals. Therefore, a sulfate

Fig.1. (A) Structural-reporter group regions of the resolution-enhanced 500-MHz 1 H-NMR spectrum (2 H₂O at 27°C) of oligosaccharide-[1- 2 H]alditol fraction A from P. interruptus hemocyanin. The numbers in the spectrum refer to the corresponding residues in the structure. The relative intensity scale of the N-acetyl region differs from that of the other part of the spectrum as indicated. ϕ denotes impurity. (B) Spin lock difference spectrum, with a selective 180° pulse (indicated by the arrow) on the H-6 signal of Man-4'.

group should be present. To confirm this suggestion, the 1 H-NMR spectra of the methyl α -D-mannopyranoside and methyl α -D-mannopyranoside 6-O-sulfate were recorded. As is evident from table 2, sulfation at C-6 causes a downfield shift of H-6 and H-6' to δ 4.344 and 4.229, respectively. These chemical shift values are of the same order

as those observed for Man-4' H-6 (δ 4.354) and H-6' (δ 4.218) in **A**. It should be noted that the H-6 and H-6' signals of Man-4' are essentially the same as those described for terminal GlcNAc, Osulfated at C-6 (H-6, δ 4.337; H-6', δ 4.219) in GlcNAc β (1-3)Gal β [13]. Summarizing the various data, the structure of **A** is proposed to be:

Table 1

¹H chemical shifts of structural-reporter groups of the constituent monosaccharides for the acidic high-voltage paper electrophoresis fraction A, together with the neutral HPLC fraction c, derived from Panulirus interruptus hemocyanin

Reporter group	Residue ^a	Chemical shift b,c (ppm)			
		4' 3-2-1-ol 5-4	S-4' 3-2-1-ol 5-4		
				Fraction c	Fraction A
				NAc	GlcNAc-1-ol
		GlcNAc-2	2.077		2.077
GlcNAc-5	2.055	2.055			
H-1	GlcNAc-2	4.636	4.636		
	Man-3	4.789	4.817		
	Man-4	5.118	5.129		
	Man-4'	4.918	4.911		
	GlcNAc-5	4.551	4.551		
H-2	GlcNAc-1-ol	4.239	4.221		
	Man-3	4.255	4.235		
	Man-4	4.186	4.187		
	Man-4'	3.975	3.979		
H-3	Man-4'	n.d. ^d	3.89		
H-4	Man-4'	n.d.	3.698		
H-5	Man-4'	n.d.	3.89		
H-6	Man-4'	n.d.	4.354		
H-6'	Man-4'	n.d.	4.218		

^a For numbering of monosaccharide residues and complete structures, see fig.1A

4' SO_4 -6)Man α (1-6) 3 2 1 5 4 Man β (1-4)GlcNAc β (1-4)GlcNAc-ol.
GlcNAc β (1-2)Man α (1-3)

Primary structural studies on sulfated N-linked carbohydrate chains have thus far been very

¹H-NMR chemical shifts for the methyl α-D-glycopyranosides of mannose and mannose 6-O-sulfate

Protons	Chemical shift ^a (ppm)		
	Man	Man-6-S	
H-1	4.761	4.763	
H-2	3.929	3.938	
H-3	3.751	3.626	
H-4	3.640	3.700	
H-5	3.604	3.824	
H-6	3.898	4.344	
H-6'	3.755	4.229	
OCH ₃	3.407	3.418	

Table 2

limited. Some details have been reported for 4-O-sulfated Man in the carbohydrate chains of hen egg albumin [14] and 3/4-O-sulfated GalNAc in the carbohydrate chains of lutropin [15]. Man-6-sulfate has been discovered recently as a constituent of the N-linked carbohydrate chains of the lyso-somal enzymes from Dictyostelium discoideum [16].

ACKNOWLEDGEMENTS

This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

REFERENCES

- [1] Van Kuik, J.A., Van Halbeek, H., Kamerling, J.P. and Vliegenthart, J.F.G. (1985) J. Biol. Chem. 260, 13984-13988.
- [2] Van Kuik, J.A., Sijbesma, R.P., Kamerling, J.P., Vliegenthart, J.F.G. and Wood, E.J. (1986) Eur. J. Biochem. 160, 621-625.
- [3] Debeire, P., Montreuil, J., Goyffon, M., Van Kuik, J.A., Van Halbeek, H. and Vliegenthart, J.F.G. (1986) Carbohydr. Res. 151, 305-310.

b Chemical shifts are given for neutral solutions at 27°C, in ppm downfield from sodium 4,4-dimethyl-4-silapentane-1-sulfonate in 2H_2O acquired at 500 MHz (but were actually measured relative to internal acetone: δ 2.225)

S, sulfate

d n.d., not determined

^a Chemical shifts are given for neutral solutions at 27°C, in ppm downfield from sodium 4,4-dimethyl-4-silapentane-1-sulfonate in 2H_2O acquired at 500 MHz (but were actually measured relative to internal acetone: δ 2.225)

- [4] Van Kuik, J.A. (1987) PhD Thesis, Utrecht University.
- [5] Van Kuik, J.A., Van Halbeek, H., Kamerling, J.P. and Vliegenthart, J.F.G. (1986) Eur. J. Biochem. 159, 297-301.
- [6] Lloyd, A.G. (1962) Biochem. J. 83, 455-460.
- [7] Davis, D.G. and Bax, A. (1985) J. Am. Chem. Soc. 107, 7197-7198.
- [8] Bax, A. and Davis, D.G. (1985) J. Magn. Reson. 65, 355-360.
- [9] Ernst, R.R. (1966) Adv. Magn. Res. 2, 1-135.
- [10] Vliegenthart, J.F.G., Dorland, L. and Van Halbeek, H. (1983) Adv. Carbohydr. Chem. Biochem. 41, 209-374.

- [11] Srivastava, O.P. and Hindsgaul, O. (1987) Carbohydr. Res. 161, 324-329.
- [12] Srivastava, O.P. and Hindsgaul, O. (1986) Carbohydr. Res. 155, 57-72.
- [13] Hounsell, E.F., Feeney, J., Scudder, P., Tang, P.W. and Feizi, T. (1986) Eur. J. Biochem. 157, 375-384.
- [14] Yamashita, K., Ueda, I. and Kobata, A. (1983) J. Biol. Chem. 258, 14144-14147.
- [15] Green, E.D., Van Halbeek, H., Boime, T. and Baenziger, J.U. (1985) J. Biol. Chem. 260, 15623-15630.
- [16] Freeze, H.H. and Wolgast, D. (1986) J. Biol. Chem. 261, 127-134.