2. $\frac{32}{5} - \frac{6}{5}i$ 3. $\frac{6}{5} + \frac{32}{5}i$ 4. $\frac{6}{5} - \frac{32}{5}i$ 5. $\frac{9}{5} + \frac{28}{5}i$ $1.\frac{32}{5} + \frac{6}{5}i$ X. On considère l'ensemble Ro des réels non nuls muni de la loi « * » définie par $\forall (a,b) \in R_O^2$, a*b $=\frac{ab}{3}$: Le symétrique de 6 pour la loi « * » est : 3. 1 4. $\frac{1}{2}$ $2.\frac{3}{5}$ 5.6 $1.\frac{1}{6}$

IX. Si Z= 2 + i, alors Z + 2Z + $\frac{1}{7}$. = ?

 $1, \frac{\sqrt{5}}{5}$

2. √**5 --** 2

XI. On définit dans
$$\mathscr{C}$$
 la loi de composition $(**)$ par $\forall Z = a + bi, \forall Z' = a' + b'i, Z * Z = aa' + (ab' + a'b)i$ avec $(a, a', b, b') \in R^4$. On peut montrer que $(\mathscr{C}, +, *)$ a la structure d'anneau unitaire. Le symétrique de $3 + i$ pour la loi $*$ est :

1.
$$-2-9i$$
 2. $\frac{1}{30} - \frac{i}{10}$ 3. $\frac{1}{3} - i$ 4. $-3-9i$ 5. $\frac{1}{3} - \frac{i}{9}$

XII. La forme trigonométrique du nombre complexe
$$Z = (1 + i)^n + (1 - i)^n$$
 est :
$$1.2^{\frac{n+2}{2}} \cos n\frac{\pi}{4} \qquad 2.\cos n\frac{\pi}{4} \qquad 3.2^{\frac{1}{n}} \cos n\frac{\pi}{4} \qquad 4.2^{\frac{2n+2}{2}} \cos n\frac{\pi}{4} \qquad 5.2 \cos n\frac{\pi}{4}$$

XIII.
$$\begin{cases} e^x \cdot e^y = 2 \\ \ln x + \ln y = \ln(x - 1) + \ln (y + 1) \end{cases}$$
 Ce système a pour solution le couple :

1.
$$(2,-1)$$
 2. $(\frac{2+\ln 2}{2},\frac{\ln 2}{2})$ 3. $(\frac{e^2}{2},1+\frac{e^2}{2})$ 4. $(1,0)$ 5. $(1+\ln \sqrt{2},\ln \sqrt{2})$

XIV.
$$\lim_{x \to 0} \frac{8^x - 2^x}{4x} =$$
 www.ecoles-rdc.net

1.2ln 2 2.
$$\frac{\ln 3}{4}$$
 3. $\frac{\ln 2}{2}$ 4. $\frac{\ln 4}{4}$ 5. ln 2

 $3.6 - 2\sqrt{3}$

VVI lim
$$\binom{4x+1}{2}^{x+3} = 1 e^{\frac{3}{2}} 2 e^{\frac{2}{3}} 3 e^{\frac{1}{2}} 4 e^{\frac{4}{3}} 5 e^{\frac{3}{4}}$$

 $4.1 + \frac{2\sqrt{5}}{5}$

 $5, \sqrt{5}$

XVI.
$$\lim_{x \to +\infty} \left(\frac{4x+1}{4x-2}\right)^{x+3} = 1 \cdot e^{\frac{3}{2}} 2 \cdot e^{\frac{2}{3}} 3 \cdot e^{\frac{1}{2}} 4 \cdot e^{\frac{4}{3}} 5$$
.
XVII. On donne la fonction $f: x \to \frac{e^{x-1}}{\ln(1-x)}$. Le domaine de définition de f es :

XVII. On donne la fonction
$$f: x \to \frac{1}{\ln(1-x)}$$
. Le domaine de definition de l'es :
$$1.]-\infty, 0[\cup]0,1[\qquad 2.]-\infty, 1[\qquad 3.]0,1[\qquad 4.]-\infty, 0[\cup]0,+\infty[$$

1.]
$$-\infty$$
, 0[\cup]0,1[2.] $-\infty$, 1[\cup]1, + ∞ [3.]0,1[4.] $-\infty$, 0[\cup]0, + ∞ [5.] $-\infty$, 1[\cup]1, + ∞ [

XVIII. Le coefficient du terme en x3 dans le développement de Mac-Laurin de la fonction
$$f(x) = (x+1)\ln(x+1)$$
 est