Office Movement

Input: standard input
Output: standard output

Nokia has a round building, which has n office rooms in each floor, 1≤n≤30000.

Room i $(1 \le i \le n)$ is adjacent to room i-1 and i+1; room 1 is adjacent to room 2 and room n; room n is adjacent to room 1 and room n-1.

Room i ($1 \le i \le n$) is good to serve from Min_i to Max_i person, ($0 \le Min_i \le Max_i$).

Initially there are $Init_i$ person in the room i, $(0 \le Init_i)$.

You task is to move a person from a room to its adjacent room each step, and use the less steps to make finally the person in room i ($Final_i$) is in a good condition, ($Min_i \le Final_i \le Max_i$).

Input

The first line contains one integer n ($1 \le n \le 30000$).

Each of next n lines has three integers. The line i contains integers Min, Max, and Init,

Output

The first line contains one integer m, the number of steps in your movement.

Each of next m lines have two integers x, y, means moving one person from room x to room y. Please make sure the room x and room y are adjacent.

Example

Input:	Room 1
3	
135	
243	
330	
Output:	
3	
13	Room 2
13	
13	