

Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación \mathcal{T} iempo: 2 horas \mathcal{P} untaje \mathcal{T} otal: 32 puntos \mathcal{O} ctubre de 2015

heliono D + II Examen Parcial

t=USUALES

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos y procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes las apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

Primero grupo

1. Sea (G,*) algún grupo cuyo elemento neutro es e; para $a \in G$ se dice que a es un elemento involutivo de (G,*) si $a^2 = e$. Si se sabe que $(\mathbb{Z}_4,+)$ es grupo abeliano:

- (a) Halle x', ∀x ∈ Z₄.
 (b) Detetermine todos los elementos involutivos de (Z₄, +).
 - (3 pts)
- 2. Si se sabe que $(\mathbb{R}^* \times \mathbb{R}, \odot)$ es grupo abeliano, tal que $\forall (x, y), (z, w) \in \mathbb{R}^* \times \mathbb{R}$,

$$(x,y) \otimes (z,w) = (-5xz, y + 3 + w)$$

(a) Determine el elemento neutro de $(\mathbb{R}^* \times \mathbb{R}, \odot)$.

- (2 pts)
- (b) Determine el elemento simétrico de todo elemento (a, b) de $\mathbb{R}^* \times \mathbb{R}$.
- (2 pts)

(3 pts)

(c) Resuelva la ecuación $(-2,3) \otimes (x,y) = (-1,0)$.

(2 pts)

- 3. Sea (G,*) algún grupo cuyo elemento neutro es e; demuestre que:
 - (a) e es único.

(3 pts)

(b) $\forall a, b \in G, (a * b)' = b' * a'.$

(3 pts)

(4 pts)

- 4. Sea (H,*) algún grupo cuyo elemento neutro es e. Demuestre que si $\forall a \in H, \ a=a'$ entonces (H,*) es abeliano. (3 pts)
- 5. Sea (F, \oslash, \ominus) una estructura algebraica, tal que F es cerrado bajo \oslash y bajo \ominus . Si además (F, \oslash) es grupo, \ominus es conmutativa en F y F^* posee elemento simétrico para cada uno de sus elementos bajo \ominus , determine cuáles propiedades hacen falta para que (F, \oslash, \ominus) sea campo. (4 pts)
- 6. Sea $H = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \middle/ x, y \in \mathbb{R} \right\}$. Si se sabe que (H, +) es subgrupo de $(\mathcal{M}_2(\mathbb{R}), +)$, conteste lo que se pide en cada caso:
 - (a) Demuestre que $(H, +, \cdot)$ es anillo conmutativo con unidad.
 - (b) Posee $(H, +, \cdot)$ divisores de cero? Justifique.

.

OPCIONAL Si se sabe que (G, *) es algún grupo cuyo elemento neutro es e y $m \in G$, con m fijo, demuestre que H es subgrupo de G, donde $H = \{w \in G \mid w * m = m * w\}$. (4 pts)