Разработка системы для снижения механических повреждений шин большегрузных автосамосвалов на технологических дорогах с использованием компьютерного зрения

Выполнил: Тарасов Данил, 7 класс Руководитель: Моякулова Екатерина Николаевна МАУ ДО "ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ", Г.МИРНЫЙ

Определение цели и задач проекта

1 Цель

Разработать систему компьютерного зрения для обнаружения и предотвращения повреждений шин большегрузных самосвалов на технологических дорогах.

Задачи

Сбор и разметка данных, обучение модели, интеграция в систему оповещения водителей, тестирование и оптимизация.

Актуальность проблемы

Частые проколы шин

Камни и другие препятствия на технологических дорогах часто приводят к проколам шин больших самосвалов, что вызывает простои и дополнительные расходы.

Высокие затраты

Замена импортных шин - дорогостоящее мероприятие, которое может значительно повлиять на расходы горнодобывающих предприятий.

Необходимость решения

Решение этой проблемы позволит повысить эффективность работы техники и сократить эксплуатационные расходы.

Обзор существующих решений и их ограничения

Существующие решения

Системы мониторинга дорог, датчики давления в шинах.

Ограничения

Недостаточная точность, высокая стоимость, сложность интеграции.

Необходимость инноваций

Требуется новый подход, использующий современные технологии компьютерного зрения и машинного обучения.

Концепция предлагаемой системы

1 Видеокамеры

Установка камер на большегрузных самосвалах для постоянного мониторинга дороги.

2 ____ Модель ИИ

Использование глубокого обучения для обнаружения камней и препятствий на дороге.

Предупреждение водителя

Интеграция системы с внутренним дисплеем самосвала для своевременного оповещения.

Проведены работы по сбору и разметке данных для обучения ИИ

Сбор данных

Произведена съемка видео и фото на реальных технологических дорогах при помощи камеры телефона.

Разметка данных

Аннотированы фото с указанием камней и других препятствий.

Формирование набора данных

Создан набор данных для обучения модели ИИ. После экспериментов с обучением данные были увеличены изображениями с интернета, а так же аугментированы.

Разработка модели детектирования объектов

Изучены инструкции по обучению моделей ИИ

Были опробованы модели YOLOv3, YOLOv11 и YOLOv5. Выбор был сделан в пользу модели YOLOv5, изза простоты инструкций

Тренировка модели

Обучена выбранная модель ИИ на размеченных данных с использованием предобученной модели Yolov5s.pt. В результате обучения получена модель, обнаруживающая крупные камни, булыжники.

Проверка обнаружения

Обученная модель на тестовых данных 70% обнаруживает камни и булыжники. Чтобы достичь 100% нужно обучить на большом количестве фото.

Разработка прототипа программы предупреждения

Прототип

Программа написана на языке Python. Использованы библиотеки OpenCV, PyQt5, Использована обученная модель ...

2

Особенности программы

Программа при обнаружении объектов может сообщать голосом о помехе.

)

Повышение безопасности

Своевременное оповещение позволяет водителю избегать столкновения с препятствиями и снижает риск повреждения шин.

Выводы

AA

Эксперименты

Тренировка модели на различных данных показывает что, чем на больших данных обучается, тем точнее определяет нужный объект.

Аннотирование

Чем точнее маркировка, тем эффективнее обучение. Поэтому маркировка проводилась несколько раз.

Настройки

Опытным путем остановился на 50 эпохах обучения.

Перспективы дальнейшего развития

1 Расширение функциональности

Интеграция системы с другими технологиями, такими как датчики давления в шинах и системы автономного управления.

2 Дообучение модели

Можно классификацию расширить, например, добавить ямы и другие опасные объекты

3 Дальнейшие исследования

Совершенствование алгоритмов компьютерного зрения и методов обнаружения препятствий.

