Chapter 5

Differentation Selected Exercise homework

Exercise 5.1. Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is constant.

Exercise 5.2. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$
 $(a < x < b).$

Exercise 5.3. Suppose g is a real function on \mathbb{R} , with bounded derivative (say $|g'| \leq M$). Fix $\varepsilon > 0$, and define $f(x) = x + \varepsilon g(x)$. Prove that f is one-to-one if ε is small enough.

(A set of admissible values of ε can be determined which depends only on M.)

Exercise 5.4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where $C_0, ..., C_n$ are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Exercise 5.5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Exercise 5.6. Suppose

- (a) f is continuous for $x \ge 0$
- (b) f'(x) exists for x > 0
- (c) f(0) = 0,
- (d) f' is monotonically increasing

Put

$$g(x) = \frac{f(x)}{x} \qquad (x > 0)$$

and prove that g is monotonically increasing.

Exercise 5.7. Suppose f'(c), g'(c) exist, $g'(c) \neq 0$, and f(c) = g(c) = 0. Prove that

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}$$

(This holds also for complex functions.)

Exercise 5.8. Suppose f' is continuous on [a, b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon$$

whenever $0 < |t-x| < \delta$, $a \le x \le b$, $a \le t \le b$. (This could be expressed by saying that f is uniformly differentiable on [a, b] if f' is continuous on [a, b].) Does this hold for vector-valued functions too?

Exercise 5.9. Let f be a continuous real function on \mathbb{R} , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exists?

Exercise 5.10. Suppose f and g are complex differentiable functions on $(0, 1), f(x) \to 0, g(x) \to 0, f'(x) \to A, g'(x) \to B$ as $x \to 0$, where A and B are complex numbers, $B \neq 0$. Prove that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}$$

Compare with Example 5.18.

Hint:

$$\frac{f(x)}{g(x)} = \left\{ \frac{f(x)}{x} - A \right\} \cdot \frac{x}{g(x)} + A \cdot \frac{x}{g(x)}.$$

Example 5.18. On the segment (0, 1), define f(x) = x and $g(x) = x + x^2 e^{i/x^2}$.

Since $|e^{it}| = 1$ for all real t, we see that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 1. \tag{36}$$

Next,

$$g'(x) = 1 + \left\{ 2x - \frac{2i}{x}e^{i/x^2} \right\}$$
 (0 < x < 1).

so that

$$|g'(x)| \ge \left|2x - \frac{2i}{x}\right| - 1 \ge \frac{2}{x} - 1.$$
 (38)

Hence

$$\left| \frac{f'(x)}{g'(x)} \right| = \frac{1}{|g'(x)|} \le \frac{x}{2-x}$$

and so

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = 0. \tag{40}$$

By (36) and (40), L'Hospital's rule fails in this case. Note also that $g'(x) \neq 0$ on (0, 1), by (38).

Exercise 5.11. Suppose f is defined in a neighborhood of x, and suppose f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Show by an example that the limit may exist even if f''(x) does not. Hint: Use **Theorem 5.13**.

Exercise 5.18. Suppose f is a real function on [a, b], n is a positive integer, and $f^{(n-1)}$ exists for every $t \in [a, b]$. Let α, β , and P be as in Taylor's theorm (5.8). Define

$$Q(t) = \frac{f(t) - f(\beta)}{t - \beta}$$

for $t \in [a, b], t \neq \beta$, differentiate

$$f(t) - f(\beta) = (t - \beta)Q(t)$$

n-1 times at $t=\alpha$, and derive the following version of Taylor's theorem:

$$f(\beta) = P(\beta) + \frac{Q^{n-1}(\alpha)}{(n-1)!} (\beta - \alpha)^n.$$

Exercise 5.19. Suppose f is defined in (-1, 1) and f'(0) exists. Suppose $-1 < \alpha_n < \beta_n < 1$, $\alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$. Define the difference quotients

$$D_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}.$$

Prove the following statements:

- (a) If $\alpha_n < 0 < \beta_n$, then $\lim D_n = f'(0)$
- (b) If $0 < \alpha_n < \beta_n$ and $\{\beta_n/(\beta_n \alpha_n)\}$ is bounded, then $\lim D_n = f'(0)$.
- (c) If f' is continuous in (-1, 1), then $\lim D_n = f'(0)$.

Give an example in which f is differentiable in (-1, 1) (but f' is not continuous at 0) and in which α_n , β_n tend to 0 in such a way that $\lim D_n$ exists but is different from f'(0).

Theorem 1. Let f be continuous mapping of [a, b] to \mathbb{R}^k , $n \in \mathbb{N}$. Suppose $f^{(n-1)}$ is continuous and $f^{(n)}$ exists at [a, b]. Let α , β be distinct points on [a, b], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k$$

Then, there exists $c \in (\alpha, \beta)$ such that

$$||f(\beta) - P(\beta)|| \le \left\| \frac{f^{(n)}(c)}{n!} \right\| (\beta - \alpha)^n$$

Note that $\|\cdot\|$ is *p*-norm.

Exercise 5.20. Formulate and prove an inequality which follows from Taylor's theorem and which remains valid for vector-valued functions.

Proof. We will prove **Theorem 1**

Let $u = f(\beta) - P(\beta)$, $g = u \cdot f$.

Then g is continuous mapping of [a, b] to \mathbb{R} .

As u is constant vector, $g^{(n)} = u \cdot f^{(n)}$. By **Theorem 5.14**, there exists $c \in (\alpha, \beta)$ such that

$$g(\beta) = P'(\beta) + \frac{g^{(n)}(c)}{n!} (\beta - \alpha)^n \tag{1}$$

where
$$P'(x) = \sum_{k=0}^{n-1} \frac{u \cdot f^{(k)}(\alpha)}{k!} (x - \alpha)^k$$
.

$$\therefore g(\beta) - P'(\beta) = u \cdot f(\beta) - \sum_{k=0}^{n-1} \frac{u \cdot f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k$$

$$= u \cdot \left\{ f(\beta) - \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (x - \alpha)^k \right\}$$

$$= u \cdot \left\{ f(\beta) - f(\alpha) \right\} = ||u||^2$$

$$\frac{g^{(n)}(c)}{n!} (\beta - \alpha)^n = \frac{u \cdot f^{(n)}(c)}{n!} (\beta - \alpha)^n$$

$$\leq ||u|| \cdot ||\frac{f^{(n)}(c)}{n!} (\beta - \alpha)^n|| \qquad (\because \text{ Cauchy-Schwarz inequality})$$

Using above formulas, (1) can be

$$||u||^2 \le ||u|| \cdot \left| \left| \frac{f^{(n)}(c)}{n!} \right| (\beta - \alpha)^n \right|$$

Hence ||u|| > 0,

$$||f(\beta) - P(\beta)|| \le \left\| \frac{f^{(n)}(c)}{n!} \right\| (\beta - \alpha)^n$$

Lemma 1. Let $P_n(x)$ be set of polynomials of degree 3n+1. Suppose f(x) = e^{-1/x^2} for $x \neq 0$, then

$$\lim_{x \to 0} g\left(\frac{1}{x}\right) f(x) = 0$$

where $g \in P_n(x)$.

Proof. Let $x = \frac{1}{t}$. It is easy to show that

$$\lim_{x \to 0} g\left(\frac{1}{x}\right) f(x) = 0$$

if and only if

$$\lim_{t\to\infty}g(t)f\left(\frac{1}{t}\right)=\lim_{t\to-\infty}g(t)f\left(\frac{1}{t}\right)=0$$

using $\varepsilon - \delta$ argument.

So, we will show that $\lim_{t\to\infty} g(t)f\left(\frac{1}{t}\right) = L$.

As $\lim_{t\to\infty}\left\{t^{3n+2}-g(t)\right\}=\infty$, there exists C>0 such that $|g(t)|\leq C\,t^{3n+2}$ for all $t\neq 0$.

$$\begin{split} |g(t)| & \leq C\,t^{3n+2} \Leftrightarrow -C\,t^{3n+2} \leq g(t) \leq C\,t^{3n+2} \\ & \Leftrightarrow -C\,t^{3n+2}e^{-t^2} \leq g(t)f\left(\frac{1}{t}\right) \leq C\,t^{3n+2}e^{-t^2} \\ & \Rightarrow \lim_{t \to \infty} -C\,t^{3n+2}e^{-t^2} \leq \lim_{t \to \infty} g(t)f\left(\frac{1}{t}\right) \leq \lim_{t \to \infty} C\,t^{3n+2}e^{-t^2} \end{split}$$

By squeeze theorem, $\lim_{t\to\infty}g(t)f\left(\frac{1}{t}\right)=0$. The case $t\to-\infty$ is analogous, and proof is completed.

Lemma 2. Let $f(x) = e^{-1/x^2}$ for all $x \neq 0$, and f(0) = 0. Then f(x) is infinitely differentiable for $x \in \mathbb{R}$. Moreover,

$$f^{(n)}(x) = \begin{cases} f(x)Q_n(x) & (x > 0) \\ 0 & (x = 0) \end{cases}$$

where $P_n(x)$ a polynomial function of degree n, and $Q_n(x) = P_{3n}\left(\frac{1}{x}\right)$ fulfills the recursive definition

$$Q_0(x) = 1$$

$$Q_n(x) = \frac{2}{x^3} Q_{n-1}(x) + Q'_{n-1}(x)$$

Proof. Let us use mathematical induction.

It is easy to show when n = 1.

Assume n = k is true.

Then, $f^{(k+1)}(x)$ is well-defined for $x \neq 0$.

More Specifically,

$$f^{(k+1)}(x) = \left\{ e^{-1/x^2} \right\}' Q_k(x) + e^{-1/x^2} \left\{ Q_k(x) \right\}'$$

$$= \frac{2}{x^3} e^{-1/x^2} Q_k(x) + e^{-1/x^2} Q'_k(x)$$

$$= e^{-1/x^2} \left\{ \frac{2}{x^3} Q_k(x) + Q'_k(x) \right\}$$

$$= e^{-1/x^2} Q_{n+1}(x)$$

$$= f(x) Q_{n+1}(x)$$

So if we show $f^{(k+1)}(0) = 0$, then we can say that $f^{(k+1)}$ is also differentiable for $x \in \mathbb{R}$.

By definition,

$$f^{(k+1)}(0) = \lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{f^{(k)}(x)}{x} \qquad (\because f^{(k)}(0) = 0)$$

$$= \lim_{x \to 0} f(x) \frac{Q_k(x)}{x}$$

$$= \lim_{x \to 0} f(x) P_{3k+1} \left(\frac{1}{x}\right) \qquad (\because Q_k(x) = P_{3k} \left(\frac{1}{x}\right))$$

$$= 0 \qquad (\because \text{By Lemma 1})$$

Hence $f^{(k+1)}(0) = 0$, $f^{(k+1)}$ is also differentiable for $x \in \mathbb{R}$. By the principle of mathematical induction, f(x) is infinitely differentiable for $x \in \mathbb{R}$. **Exercise 5.21.** Let E be a closed subset of \mathbb{R} . There is a real continuous function f on \mathbb{R} whose zero set is E. Is it possible, for each closed set E, to find such an f which is differentiable on \mathbb{R} , or one which is n times differentiable, or even one which has derivatives of all orders on \mathbb{R} ?

Proof. Let $f(x) = e^{-1/x^2}$ for all $x \neq 0$, and f(0) = 0. By Lemma 2, f(x) is infinitely differentiable, and $f^{(n)}(0)$ for $n \in \mathbb{N}$. Define function g by

$$g = (f \circ ReLU)(x)$$

with $ReLU(x) = \max(0, x)$.

i.e.

$$g(x) = \begin{cases} e^{-1/x^2} & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

g is also infinitely differentiable everywhere on \mathbb{R} and whose zero set is $(-\infty, 0]$.

Let us think

$$f_{(a,b)}(x) = g(x-a)g(b-x)$$

where $-\infty \le a < b \le \infty$.

Note that $f_{(-\infty,b)}(x) = e^{-\frac{1}{(x-b)^2}}$ for x > b, and similarly when $b = \infty$.

As set E is closed, complement of E is open set consisting of a union of disjoint open intervals, so $E^c = \bigcup_i (a_i, b_i)$

Let l be collection of disjoint open intervals, and define function h by

$$h(x) = \sum_{(a,b)\in l} f_{(a,b)}(x)$$

h is well-defined since at least one of the terms in the sum isn't 0 for any $x \notin E$, infinitely differentiable on \mathbb{R} , and has zero set E.

Exercise 5.22. Suppose f is a real function on $(-\infty, \infty)$. Call x a fixed point of f if f(x) = x.

- (a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.
- (b) Show that the function f defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although 0 < f'(t) < 1 for all real t.

(c) However, if there is a constant A < 1 such that $|f'(t)| \le A$ for all real t, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is an arbitary real number and

$$x_{n+1} = f(x_n)$$

for n = 1, 2, 3, ...

(d) Show that the process described in (c) can be visualized by the zig-zag path

$$(x_1, x_2) \to (x_2, x_2) \to (x_2, x_3) \to (x_3, x_3) \to (x_3, x_4) \to \cdots$$