Pràctiques de Física per Veterinària

Professors responsables

Carles Rodó Lluis Galbany Germano Nardini rodo@ifae.es lgalbany@ifae.es C7b/014, Tel.2838 C7b/-172, Tel.4985 C7b/020, Tel.2842

Institut de Física d'Altes Energies Facultat de Ciències Universitat Autònoma de Barcelona

Objectius

Les pràctiques de Física són una part important de l'assignatura de Física. L'objectiu essencial d'aquestes és familiaritzar-se amb la noció de la precisió d'una mesura i de les magnituds que d'aquesta mesura se'n deriven. Altres objectius importants són l'aprenentatge de determinades tècniques de laboratori i acceptar el fet que tot sovint la millor forma de mesurar una magnitud pot ser una mesura indirecta.

Realització de les pràctiques

La realització de les pràctiques al laboratori i el posterior lliurament dels informes corresponents són indispensables per a presentar-se a l'examen de l'assignatura.

Les pràctiques tendran lloc entre els dies 23 de novembre i 19 de desembre, d'acord amb el calendari lectiu del curs 2007-2008, al *Laboratori de Tècniques Experimentals I, Porta C3-332, Facultad de Ciències* (al tercer pis del bloc C3 parell). La tercera sessió, corresponent al tractament informatitzat de dades, precisions i errors, es realitzarà a l'aula d'informàtica de la Facultat de Veterinària.

Contingut

Tres pràctiques, totes obligatòries

- La llei d'Ohm i la conducció nerviosa.
- Mesura de volums, densitats i viscositats.
- Tractament de dades.

A continuació trobareu un guió per a cadascuna de les pràctiques, amb una introducció teòrica, la metodologia a seguir i les qüestions a respondre. Excepcionalment hi ha un guió de contingut fonamentalment teòric i que no correspon a cap pràctica concreta sobre tractament d'errors i precisió de les mesures. És el fonament teòric de la tercera sessió, però tracta de conceptes bàsics sobre el procediment de mesura, motiu pel qual convindria que el llegíssiu abans de qualsevol altre guió.

Es molt recomanable presentar-se al laboratori amb els guions de les pràctiques llegits.

Elaboració de l'informe de pràctiques

Per a cada pràctica s'haurà de presentar un informe de l'activitat realitzada al laboratori, on hauran de constar clarament delimitats els següents elements: les dades recollides durant l'experiència, els càlculs importants que s'han realitzat, les gràfiques demanades i les observacions que es considerin rellevants, així com les respostes a les qüestions que plantegi el guió.

Amb cada guió hi ha un exemple minimalista de l'informe a entregar. És, sobretot, un recordatori de les dades essencials. Podeu omplir els forats, o bé usar un format propi. No oblideu les gràfiques!

Data de lliurament

Aquest informe s'haurà d'entregar, com a molt tard, el dia 11 de gener.

Valoració del treball de laboratori

Es tenen en consideració tant el treball i actitud mostrats durant les sessions al laboratori com els informes de pràctiques. La qualificació d'aquest informes es basa en els següents criteris:

- Resultats i interpretacions raonables. No hi ha d'haver disbarats en els resultats de les mesures. Amés, tota mesura ha d'anar acompanyada sempre de la corresponent unitat.
- Precisió. És un dels objectius més importants d'aquestes pràctiques. No oblideu que tota mesura porta associada una certa precisió (de vegades en direm "error"), que cal especificar juntament amb el resultat.
- Gràfiques. Tota gràfica ha de tenir el títol així com els valors i les unitats en els eixos.
- Qüestions. Les respostes a les preguntes dels guions han de ser lògiques i ben argumentades.
- *Presentació*. Es valora que la pràctica estigui presentada de manera ordenada i que sigui fàcilment comprensible.

Algunes normes d'ús del laboratori

- Mantingueu silenci o feu els comentaris en veu baixa per tal de no dificultar la feina dels companys i les explicacions.
- No toqueu el material del laboratori que no correspongui a la pràctica que esteu realitzant.
- Deixeu abrics i bosses en els armariets que hi ha a sota de les taules o en l'armari indicat al costat de l'entrada.
- L'hora de finalització de la pràctica és a les 17:00 o a les 19:00 de la tarda. Només si hi ha un motiu justificat (com ara pràctiques posteriors) es podrà marxar un màxim de 10 minuts abans.
- Abans de marxar, endreceu el material i les cadires que hageu fet servir.

Mesura de la Viscositat (mètode de Stokes)

Objectiu

Determinar la velocitat límit de caiguda de les esferes en un líquid i el coeficient de viscositat del líquid esmentat per mitjà del mètode de Stokes.

Material

- Tub de vidre de 45mm de diàmetre i si més no 795 mm. de longitud, tancat per un extrem.
- Un joc de boles d'acer (millor tenir-ne de diferents diàmetres).
- El líquid del problema (són molt convenients la glicerina, oli de cotxe, ...)

Fonament

Quan un cos es mou a través d'un fluid, apareix una força sobre el cos, que s'oposa a aquest moviment. Aquesta força, que s'anomena "força d'arrossegament", té l'origen en els esforços tangencials i normals que exerceix el fluid sobre la superfície del cos.

La força d'arrossegament sobre un cos de geometria donada resulta molt difícil de determinar analíticament, donat que depèn d'un gran nombre de factors. Per això cal recórrer bàsicament a l'adquisició de dades experimentals per a determinar-la. Aquesta força es pot expressar com:

$$F_D = C_D \left(\frac{1}{2}\rho v^2\right) A \tag{1.1}$$

on

- \bullet v: és la velocitat relativa del cos en el fluid.
- ρ : és la densitat del fluid.
- A : és l'àrea de la secció transversal màxima que el cos ofereix al flux.

• C_D : és un paràmetre empíric anomenat coeficient d'arrossegament. El seu valor depèn de la forma geomètrica del cos, i de l'orientació d'aquest respecte el flux, així com del valor del nombre de Reynols associat amb el flux a l'entorn del cos.

Aquest nombre anomenat "nombre de Reynolds", que anomenarem: R, és una magnitud adimensional definida de la forma:

$$R = \frac{\rho \, v \, D}{\eta}$$

on:

- $-\rho$ i v tenen el mateix significat que a l'equació (1.1)
- D: és una longitud característica del cos (el diàmetre en el cas de l'esfera)
- $-\eta$: és el coeficient de viscositat del fluid.

Llei de Stokes

Per a valors petits del nombre de Reynolds (R < 1), és possible determinar analíticament l'expressió de la força d'arrossegament sobre una esfera llisa. S'obté:

$$F_D = 3 \pi \eta D v$$

expressió que és coneguda com a llei de Stokes, en honor del físic holandès Sir Georges Stokes, que la va deduir per primera vegada l'any 1845. Aquesta llei estableix que la força d'arrossegament viscós que s'oposa al moviment d'una esfera a través d'un fluid, quan R < 1, és proporcional a la viscositat del fluid (η) , al diàmetre de l'esfera (D) i a la velocitat de l'esfera (v) en el si del fluid.

Tenint en compte la definició del coeficient d'arrossegament (1.1), es pot comprovar fàcilment que:

$$C_D = \frac{24}{R} \quad ; \quad R < 1$$

per al cas d'una esfera, cosa que concorda molt bé amb els resultats experimentals.

Mesura de la Viscositat

Podem emprar la llei de Stokes per a realitzar una mesura precisa de la viscositat d'un fluid.

Considerem una esfera llisa de massa m i diàmetre D, que cau en el si d'un fluid viscós (veure figura). Les forces que actuen sobre l'esfera són: el seu pes: mg, la força de flotació: E i la força d'arrossegament viscós: F_D . La segona llei de Newton ens permet escriure:

$$mg - E - F_D = ma$$

on a és l'acceleració de l'esfera.

Com a conseqüència de l'acceleració de l'esfera, la seva velocitat augmenta, però donat que la força d'arrossegament F_D és proporcional a la velocitat, també augmenta l'oposició al moviment. Així l'esfera arribarà a aconseguir una velocitat tal que la força del seu pes sigui compensada per la suma de la força de flotació: E i la força d'arrossegament F_D . Aleshores l'acceleració de l'esfera serà nul·la i la seva velocitat deixarà d'augmentar. En aquestes condicions, l'esfera es mourà amb una velocitat constant que s'anomena velocitat límit: v_{lim} . És per això que un paracaigudista que es llenci des d'un avió o una puça ensinistrada que es dediqui a fer salts de trampolí en un líquid poc dens, no van augmentant la seva velocitat a mesura que "cauen", sinó que arriba un punt en que assoleixen una velocitat constant. Aquesta velocitat és precisament la velocitat límit abans esmentada.

Si ρ_{es} és la densitat de l'esfera , i ρ_l la del líquid, el pes de l'esfera i la força de flotació sobre ella vindran donats per:

$$mg = \frac{4}{3}\pi \left(\frac{D}{2}\right)^3 \rho_{es} g = \frac{\pi}{6}D^3 \rho_{es} g$$

$$4 \quad (D)^3 \qquad \pi$$

$$E = \frac{4}{3}\pi \left(\frac{D}{2}\right)^3 \rho_l g = \frac{\pi}{6}D^3 \rho_l g$$

de manera que, un cop s'hagi arribat a la velocitat límit, tindrem:

$$m q = E + F_D$$

és a dir:

$$\frac{\pi}{6} D^3 \rho_{es} \, g = \frac{\pi}{6} D^3 \rho_l \, g + 3 \, \pi \, \eta \, D \, v_{lim}$$

d'on podem extreure una expressió per a la velocitat límit.

$$v_{lim} = \frac{D^2(\rho_{es} - \rho_l) g}{18 \eta}$$

relació que ens permet determinar el coeficient de viscositat d'un fluid a partir de la mesura de la velocitat límit de caiguda de la petita esfera a través del fluid, sempre que el nombre de Reynolds associat al fluid a l'entorn de l'esfera sigui més petit que la unitat.

Rigorosament, l'expressió anterior de v_{lim} només és certa per esferes que cauen en el si d'un líquid d'extensió indefinida. En les condicions experimentals, en les que les esferes cauen axialment a través d'un líquid viscós contingut en una proveta o en un tub cilíndric de diàmetre Φ , cal efectuar una sèrie de **correccions**:

- 1. Correcció deguda a la longitud finita del tub: en el nostre cas aquesta correcció pot negligir-se.
- 2. Correcció de Ladenburg: La presència de les parets del tub dóna lloc a una possible disminució de la velocitat límit de caiguda. Si anomenem v_m a la velocitat mesurada experimentalment, la velocitat límit, un cop corregida per aquest efecte es pot expressar com:

$$v_{\rm lim} = \left(1 + 2.4 \frac{D}{\Phi}\right) v_m$$

on, com hem dit abans: Φ és el diàmetre del tub.

Per a un líquid donat, el valor del coeficient de viscositat depèn extraordinàriament de la temperatura, per tant, cal especificar quin és el seu valor en el moment en que es mesura la viscositat.

Mesures a realitzar

Del que es tracta ara és d'emprar les expressions contingudes en aquest guió, per tal de mesurar:

- \bullet El temps que triguen 5 boles en recórrer la distància h compresa entre les dues marques del tub.
- A partir d'aquí, trobar la seva velocitat mitja, calcular la velocitat límit de les esferes en el si del líquid emprant l'expressió obtinguda (corretgida pels dos efectes abans esmentats).
- Finalment, deduir el coeficient de viscositat de la glicerina: η .

NOTA: Tots aquests valors s'han d'obtenir amb els seus corresponents errors i unitats. Els valors del diàmetre del tub, la densitat del líquid, la massa de les boles i el seu radi, es troben a l'informe que heu d'omplir i de lliurar.

Mesura de la densitat. Balança de Mohr

Objectiu

Aprendre a determinar densitats de líquids utilitzant la Balança de Mohr. Conèixer les seves principals aplicacions en enologia i en la industria agroalimentària.

Material

- Balança de Mohr-Westphal.
- Aigua destil·lada.
- Llet sencera.

Fonament

S'anomena densitat absoluta, o simplement densitat d'un cos, a la seva massa per unitat de volum. Si m és la massa d'un cos i V el seu volum, la seva densitat serà:

$$\rho = \frac{m}{V}$$

En el sistema internacional la densitat s'expressa en kg/m^3 .

Es defineix la **densitat relativa** d'un cos com el quocient entre la seva densitat absoluta i la d'una substància que es pren com a referència. Pels sòlids i líquids és usual considerar com a referència la densitat de l'aigua pura a 4° C. Pels gasos és freqüent prendre la densitat de l'aire, sota condicions normals, com a substància de referència.

Segons la definició, la densitat relativa es pot calcular com el quocient entre la massa m d'un volum determinat de substància i la massa m_a del mateix volum d'aigua.

$$\rho_r = \frac{\rho}{\rho_a} = \frac{m}{m_a}$$

La densitat relativa ve expressada per un nombre adimensional. En el cas que la substància de referència sigui l'aigua i la temperatura sigui de 4 °C, el valor de la densitat relativa coincideix amb el valor de la densitat absoluta expressada en g cm⁻³.

Principi d'Arquímedes

Aquest principi estableix que tot cos submergit, totalment o parcial en un fluid, experimenta una empenta vertical, dirigida cap a dalt, igual al pes del fluid desallotjat. Si un cos, de volum V, es troba totalment submergit en un líquid de densitat ρ , l'empenta que experimenta el cos és

$$E = \rho \, q \, V \tag{1.2}$$

Per tant, si un mateix cos el submergim successivament en dos fluids diferents, de densitats ρ_1 i ρ_2 , les empentes que el cos experimenta es troben en la mateixa relació que les densitats dels líquids, és a dir

$$\frac{E_2}{E_1} = \frac{\rho_2}{\rho_1}$$

de forma que si coneixem ρ_1 podem determinar la densitat ρ_2 de l'altre líquid.

Balança de Mohr

La balança de Mohr s'utilitza per a la determinació de densitats de líquids, més o menys densos que l'aigua. Consisteix en una palanca de primer gènere de braços desiguals.

- El **braç curt** té incorporat un contrapès (a) de posició regulable. Porta l'agulla que ha d'encarar-se amb una altra agulla fixa al xassís per a obtenir l'equilibri.
- En el **braç llarg** hi ha marcades 10 osques (b), numerades del 1 al 10, encara que aquesta numeració s'ha d'interpretar com 0.1, 0.2, ..., de manera que el 10 representa la unitat.
- De l'extrem del braç llarg penja, mitjançant un fil prim de platí, un **immersor de** vidre (c), que normalment porta incorporat un **termòmetre** (d) per mesurar la temperatura del líquid del qual volem determinar la densitat.
- L'alçada de la balança pot regular-se mitjançant el cargol (e) i anivellar-se mitjançant el cargol (f).

Quan l'immersor està penjat a l'aire, queda equilibrat pel contrapès (la balança està equilibrada). Si se submergeix l'immersor en un líquid l'empenta hidrostàtica desequilibra la balança de manera que, per tal de restablir l'equlibri, hem de col·locar unes peses anomenades **reiters** sobre el braç graduat de forma que es compensi l'empenta hidrostàtica. Els reiters tenen els extrems acabats en ganxos per a poder-los penjar els uns dels altres quan hagin d'estar en la mateixa posició del braç.

Mesures amb la balança de Mohr

Desembalatge

- Desembaleu totes les peces de la balança amb molt de compte, especialment amb l'immersor de vidre i el termòmetre.
- Un cop desembalades les peces, procediu al seu muntatge.
- Reguleu l'equilibri de la balança mitjançant el cargol de l'extrem del braç.

Posada en marxa i pesada

Si introduïm l'immersor-termòmetre de la balança en aigua a 4° C, ($\rho = 1 \text{ g/cm}^3$), aquesta exerceix una empenta que s'hauria d'equilibrar mitjançant el reiter del tipus 1/1 col·locat a l'osca 10 en el mateix ganxo en el qual està suspès el fil de platí. El reiter 1/1 en aquesta posició ens defineix la unitat de densitat. Les osques numerades del braç de la balança corresponen doncs a dècimes parts d'aquesta unitat. Normalment treballarem a temperatures superiors, per la qual cosa llegirem un valor inferior a 1. Degut a l'error instrumental de la balança, aquest valor no coincidirà exactament amb la densitat real de l'aigua a la temperatura de treball, que haurem de consultar a les taules. A partir d'aquests dos valors definirem un factor de correcció f, que serà igual al quocient entre la densitat real de l'aigua, ρ_a , i la que nosaltres mesurem, ρ'_a :

$$f = \frac{\rho_a}{\rho_a'}$$

Mesures a realitzar

- Trobeu la densitat de l'aigua destil·lada, ρ'_a , mesureu la temperatura i trobeu a les taules la densitat exacta de l'aigua ρ_a . Calculeu el factor de correcció instrumental f.
- Mesureu la densitat de la llet.
- Apliqueu el factor de correcció instrumental f i trobeu així la densitat correcta del líquid problema (és a dir, la llet).

Mesura del Volum d'un Cos

Objectiu

Del que es tracta es de determinar el volum d'un cos, aplicant el principi d'Arquímides.

Material

- Una petxina, que es el cos del que volem determinar el volum.
- Un dinamòmetre de 1 Newton.

Fonament

En un fluid en equilibri les forces que actuen sobre la superfície d'un element de fluid, han de compensar el seu pes.

$$Pes = m_{fluid} g = \rho_{fluid} V g$$

Ara, si substituim l'element de fluid per un objecte (en aquest cas la petxina), el pes serà diferent, pero la força de flotació no.

$$F_{TOT} = m_{cos} g - \rho_{fluid} V g = (\rho_{cos} - \rho_{fluid}) V g$$

El principi d'Arquímides ens diu que: la força de flotació sobre un objecte és igual al pes del fluid que substituteix.

Podem aplicar aquest principi per tal de determinar el volum d'un cos, essent especialment útil en el cas de que el cos sigui petit (com un os petit i irregular), o be, com en el nostre cas un cos que és most "ample", i altres mètodes per mesurar el volum no anirien massa bé.

Si fem una primera pesada del cos:

$$Pes_{cos} = P = m_{cos} q$$

Fem una segona pesada submergint el cos dins aigua:

$$Pes_{cos\ submergit} = P' = P - V_{cos} \rho_{aiqua} g$$

Per podem obtenir el volum del cos:

$$V_{cos} = \frac{P - P'}{\rho_{aigua} g}$$

Recordar que el pes es mesura en newtons (1N = 1Kg × m/s²) i que $\rho_{\rm aigua} = 1$ Kg/l (a 4º C).

Mesura del Volum del Cos

- Fer una primera pesada de la petxina: P, amb el dinamòmetre.
- Fer una segona pesada de la petxina: P', sumergida en aigua.
- Determinar el seu volum de la petxina amb el seu error.

VISCOSITAT D'UN LÍQUID I MESURA DE DENSITATS I VOLUMS FULL DE RESULTATS.

Nom:			

Viscositat d'un Líquid

1. Mesureu l'alçada del tub, i anoteu les característiques de la bola, amb els errors corresponents:

$$h =$$
 $m =$ $r =$

2. Calculeu el volum de l'esfera metàl.lica utilitzada a la pràctica i la seva densitat (amb els seus errors).

$$V =$$
 $\rho =$

3. Mesureu el temps que triguen les esferes en recórrer la longitud h compresa entre les dues marques del tub. Trobeu el temps mig i l'error d'aquesta estimació (sumeu l'error instrumental i l'estadístic).

$$egin{array}{lll} t_1 = & t_2 = & t_3 = \ t_4 = & t_5 = & t_m = \ \epsilon_{t_{ ext{tot}}} = & \epsilon_{t_{ ext{tot}}} = & \epsilon_{t_{ ext{tot}}} = & \end{array}$$

4. Trobeu la velocitat mitja de caiguda de les esferes (v) i l'error corresponent (ϵ_v) al llarg del tros h de la columna de glicerina.

$$v =$$

5. Calculeu la velocitat límit de caiguda de les esferes en el si del líquid, corregint la contribució deguda al petit diàmetre del tub: $v_{\text{limit}} \pm \epsilon_{v_{\text{limit}}}$.

$$v_{
m limit} =$$

6. Trobeu finalment la viscositat del fluid (η) i el seu error corresponent (ϵ_{η}) a partir dels resultats anteriors.

$$\eta =$$

DADES: $\rho_{\text{glicerina}} = 1.26 \,\text{g/cm}^3$, diametre_{tub} = $45 \pm 1 \,\text{mm}$

Mesura de densitats

2. Calculeu el factor de correcció experimental f.

$$f =$$

3. Mesureu la densitat de la llet ρ'_l . Apliqueu a aquest resultat el factor de correcció experimental f i determineu així la densitat de la llet, ρ_l .

$$ho_l'=$$
 $ho_l=$

4. Hem dut a terme aquesta pràctica amb llet sencera. Quins resultats creus que haguéssim obtingut amb llet desnatada?. Dit d'una altra manera, quina de les dues llets creus que és més densa? (Ajuda: la resposta no és gens intuïtiva). Intenta raonar el perquè.

Mesura del volum

- 1. Pes de la petxina: P =
- 2. Pes de la petxina submergida en aigua: P' =
- 3. Volum de la petxina: V =

Llei d'Ohm i conducció nerviosa.

Objectius

- Familiaritzar-se amb els conceptes bàsics dels circuits elèctrics: voltatge, intensitat i resistència.
- Aprendre a mesurar correctament el voltatge i la intensitat amb un multímetre.
- Verificar experimentalment la relació lineal entre el voltatge i la intensitat del corrent elèctric (llei d'Ohm).
- Simular la transmissió de l'impuls nerviós a través d'un axó.

Material

- Taula de circuits, ponts i cables.
- 3 resistències de l'ordre de 200 Ω .
- 3 resistències de l'ordre de 2000 Ω .
- 3 condensadors d'uns 10 nF.
- Multímetre.

Mètode

La Llei d'Ohm

L'objectiu d'aquest apartat és comprovar experimentalment la llei d'Ohm:

$$V = RI \qquad \Longleftrightarrow \qquad R = \frac{V}{I}.$$
 (1)

Per dur a terme aquest estudi fareu servir el circuit de la figura 1, que consta d'una resistència d'una 200Ω i una font de tensió variable ε .

Figura 1: Circuit amb una resistència i una font de tensió.

- Munteu el circuit representat a la figura 1.
- Mesureu amb el múltimetre la diferència entre els punts A i B (V_{AB}) i la intensitat I que circula, per a cinc voltatges diferents de la font d'alimentació.
- \bullet Representació gràficament el voltatge V_{AB} en funció de la intensitat I.
- Dibuixeu la recta que més s'ajusti¹

Associació de resistències. En aquest apartat haureu de comprovar experimentalment les lleis d'associació de resistències en sèrie i en paral·lel.

Figura 2: Circuit amb dues resistències en sèrie.

Figura 3: Circuit amb dues resistències en paral·lel.

¹Feu servir el mètode d'ajust per mínims quadrats (regressió lineal), que trobareu a l'apèndix de tractament de dades. Recordeu que el tractament de dades i càlcul d'errors el farem en detall a la tercera pràctica.

Resistències en sèrie.

- Munteu el circuit de la figura 2.
- Determineu les diferències de potencial V_{AB} , V_{BC} i V_{AC} amb la font d'alimentació fixada a uns 12 V, així com la intensitat de corrent I que passa pel circuit.
- Amb les dades anteriors calculeu el valor de les resistències R_1 i R_2 . Trobeu la resistència equivalent R_{eq} fent servir la llei d'associació de resistències en sèrie:

$$R_{\rm eq} = R_1 + R_2.$$
 (2)

• Verifiqueu la validesa d'aquesta llei determinant la resistència equivalent a partir de V_{AC} i la intensitat I que circula pel muntatge.

Resistències en paral·lel.

- Munteu el circuit de la figura 3.
- Determineu la diferència de potencial entre els punts A i B (V_{AB}), amb la font d'alimentació fixada a uns 12 V.
- Mesureu la intensitat de corrent elèctric que passa per cadascuna de les resistències, és a dir, mesureu I_1 i I_2 .
- Amb les dades trobades calculeu les resistències R_1 i R_2 fent servir la llei d'Ohm. Trobeu la resistència equivalent $R_{\rm eq}$ utilitzant la llei d'associació de resistències en paral·lel,

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}.\tag{3}$$

• Verifiqueu la validesa d'aquesta llei determinant la resistència equivalent a partir V_{AB} i la intensitat total I que circula pel muntatge.

Conducció nerviosa: simulació d'un axó.

En aquesta segona part simulareu la conducció nerviosa a través d'un axó, tant amb mielina com sense, mitjançant el circuit de la figura 4. Les resistències R simulen la resistència al corrent que ofereix l'axoplasma, mentre que les R' representen la resistència de la membrana recobridora de mielina. Recordeu que la resistència de la membrana és més gran en presència de mielina. Els condensadors C simulen l'acumulació dels ions a les parets de la membrana i retarden la propagació dels impulsos.

Mitjançant un oscil·loscopi es pot observar com un cert senyal es propaga a través del muntatge. Si sotmetem el circuit a un potencial $V_{AA'}$ podem observar l'atenuació de la diferència de potencial al llarg del circuit. Aquesta atenuació és de caràcter exponencial i ve caracteritzada pel paràmetre espacial λ :

$$V(x) = V_{AA'} \exp(-x/\lambda). \tag{4}$$

L'objectiu d'aquesta part final és verificar aquest comportament i determinar el valor de λ per als casos assenyalats.

Figura 4: Simulació de la transmissió de l'impuls nerviós a través d'un axó.

Simulació d'un axó sense mielina $(R' \sim 200 \Omega)$

- Les distàncies indicades a les taules del vostre full de dades corresponen a les distàncies respecte les dendrites de l'axó (on es produeix la recepció del senyal) que pretenem simular amb el circuit.
- Amb la font d'alimentació fixada a uns 12 V mesureu les diferències de potencial als punts indicats. Amb l'ajut d'una calculadora acabeu d'omplir la taula.
- Representeu gràficament $\ln(V/V_{AA'})$ en funció de la distància x. Justifiqueu el resultat.
- Dibuixeu (o calculeu) la recta que més s'ajusti als punts representats i calculeu-ne el seu pendent. Fent servir aquest pendent determineu el paràmetre espacial λ .

Simulació d'un axó amb mielina $(R' \sim 2000 \Omega)$

- Repetiu tots els passos anteriors canviant la resistència R'.
- Quina influència té la resistència R' sobre el valor de λ ? Com afecta això a la conducció nerviosa?

LLEI D'OHM I CONDUCCIÓ NERVIOSA. FULL DE RESULTATS.

Llei d' Ohm (figura 1).

	1	2	3	4	5		
V_{AB}						\longrightarrow	R =
I							

Representeu la taula gràficament. (El càlcul del valor de R el fareu en la pràctica 3, de tractament de dades i incerteses.)

Resistències en Sèrie (figura 2).

Determinació experimental de les resistències i càlcul de la resistència equivalent teòrica $R_{\rm eq,teor}$. Per al càlcul de les resistències R_1 i R_2 i d' $R_{\rm eq,teor}$ i $R_{\rm eq,teor}$ = utilitzeu les frmules que trobareu a l'Apèndix A del dossier "Tractament de Dades".

V_{AB}		D]	
V_{BC}	\longrightarrow	R_1	\longrightarrow	$R_{\rm eq,teor} =$
I		R_2		

Determinació experimental de la resistència equivalent $R_{\rm eq,exp}$,

Resistències en paral·lel (figura 3).

Determinació experimental de les resistències i càlcul de la resistència equivalent teòrica $R_{\rm eq,teor}$.

Determinació experimental de la resistència equivalent $R_{\rm eq,exp}$,

$$V_{AB}$$
 I
 \longrightarrow
 $R_{\rm eq,exp} =$

Conducció nerviosa: simulació d'un axó (figura 4).

Figura 4.

Simulació d'un axó sense mielina ($R' \sim 200~\Omega$).

	AA'	BB'	CC'	DD'	
x	0 cm	$0,12 \mathrm{~cm}$	$0,24 \mathrm{~cm}$	$0,36 \mathrm{~cm}$	
V					$\lambda =$
$\ln(V/V_{AA'})$					

Simulació d'un axó amb mielina ($R'\sim 2000~\Omega$).

	AA'	BB'	CC'	DD'	
x	0 cm	0,47 cm	$0,94 \mathrm{~cm}$	$1,41 \mathrm{cm}$	
V					$\lambda =$
$\ln(V/V_{AA'})$					

Per al càcul de λ farem servir la regressió lineal que veurem a la pràctica 3. No us oblideu de representar gràficament $\ln(V/V_{AA'})$ en funció de x, per tots dos casos.

Responeu la pregunta que us fan al guió.

Pràctiques de Física General

Sessió 3

0.1 Familiarització amb el full de càlcul

El full de càlcul és una aplicació molt habitual en tots els sistemes operatius. El primer full de càlcul ("spreadsheet") tal i com els coneixem avui dia data de 1979, s'anomenava *VisiCalc* i funcionava sobre un Apple][.

El principal interés d'un full de càlcul és la seva capacitat per a presentar informació de manera organitzada, d'operar amb aquesta informació, i veure com canvien determinats valors resultat (outputs) quan canviem altres valors entrada (inputs).

El full de càlcul, per a merèixer aquest nom, ha de consistir com a mínim en una "graella" de cel·les (disposades en columnes i fileres) on s'hi poden introduir les dades, i amb unes quantes operacions bàsiques que es poden fer entre les cel·les per a obtenir resultats.

- 1. Obriu l'aplicació de full de càlcul, i obriu un nou full. Introduïu uns quants valors en una columna (per exemple: 0,2 a la cel·la superior esquerra, 'A1'; 0,4 a la dessota 'A2'; 0,6 a 'A3", etc.). A la segona columna, 'B' introduïu altres valors al costat de cada cel·la que hagueu omplert abans (per exemple: 1,57 a 'B1'; 2,21 a 'B2'...). També podem posar-hi valors alfanumèrics (útils per a etiquetar).
- 2. Ara començarem a fer algunes operacions. Una fórmula (o operació) sempre comença amb un signe igual.
 - Feu clic a la cel·la 'C1', i escriviu la fórmula: =A1+B1. Sortiu de la cel·la (prement "intro", "return" o amb el tabulador) i observeu el resultat. Podeu escriure a la cel·la 'C2' la fórmula corresponent: =A2+B2.
- 3. La multiplicació es representa amb un asterisc. A la cel·la 'D3': =(A1+B1)*(A2+B2). A la cel·la 'E3' escriurem: =C1*C2. I a 'D4' un quocient: =D3/(A1+A2).
- 4. Un bon full de càlcul ha de poder treballar també amb columnes o fileres, i no només amb cel·les. Al cas d'Excel, ens referirem a la columna 'A' com A:A, i a la filera '3' de forma semblant: 3:3. A Excel, la funció "suma" calcula la suma dels arguments, i "producto" el producte. Escriviu a 'E1': =suma(B:B), i a 'E2': =suma(1:1). Feu la prova amb =producto(A:A).
- 5. No cal sumar tota una columna o tota una filera. Podem sumar només unes quantes cel·les. Si volem sumar les cel·les des d' 'A1' fins a 'A10', escriurem =suma(A1:A10). Podem sumar també part d'una filera similarment: =suma(A3:B3). O fins i tot cel·les de diverses columnes: =suma(A1:B5). També si són cel·les no contigües: =suma(A1:A4;B3:B5). Fixeu-vos que separem els diferents "rangs" amb un punt i coma (en la versió anglesa, una coma).
- 6. A Excel, no cal escriure les referències manualment, podem introduir-les fent "clic". Situeu-vos a 'E6', teclegeu el signe de fórmula (=), feu clic a la casella 'A1' i clic

- a la casella 'C2' abans de prèmer intro. Excel automàticament posarà un signe +, suposant que és aquesta l'operació que volíeu fer. Si voleu dividir, per exemple, haureu de prèmer la tecla / vosaltres. Construïu l'operació =C2-(B1/A1) a 'F1'.
- 7. Ja tenim pràcticament totes les eines necessàries per a treure'n profit del full de càlcul. Ara repassarem algunes característiques que simplifiquen la nostra feina.
 - Estirar d'una fórmula. Esborreu totes les cel·les que heu omplert, excepte les de la primera i segona columnes. Escriviu a 'D1' la fórmula: =A1*B1. Sortiu de la cel·la, i apunteu amb cura al vèrtex inferior dret de la cel·la fins que canvii de forma a un quadradet que permet estirar la selecció. Feu clic, mantingueu apretat i estireu cap avall. Les cel·les ja no són buides, sinó que s'hi ha introduit "automàgicament" la fórmula adequada: cada cel·la de la columna D conté el producte de les dues cel·les a la seva esquerra (a les columnes A i B).
- 8. Suposem ara que volem a la columna C el resultat de dividir la suma de les columnes A i B per una constant que tenim guardada a la cel·la 'D1'. Escriviu a 'C1' la fórmula =(A1+B1)/D1, i estireu cap avall. El resultat a la cel·la 'C3' és =(A3+B3)/D3 enlloc de =(A3+B3)/D1, com necessitem.

Per a evitar aquest efecte quan estirem les fórmules, farem servir referències absolutes. Si posem un \$ davant de la referència, la convertim en absoluta. Escriure a una fórmula \$D\$1, significa que quan estirem de la fórmula, sempre hi posi la cel·la D1. Similarment, \$D1 significa que no pot canviar la 'D', i D\$1 significa que no pot canviar l'1. Escriure a una fórmula 'D1', 'D\$1', '\$D1' o '\$D\$1' dóna el mateix resultat en la cel·la on l'hem escrita; l'única diferència és com "passarà" a la cel·la següent quan "estirem" la cel·la que conté la fórmula.

Escriviu a 'E1' la fórmula =(A1+B1)/D\$1, i estireu cap avall. Veureu com ara a la cel·la 'D4' tenim el resultat desitjat: =(A4+B4)/D\$1.

0.2 Càlcul de la desviació estàndard

- 1. Tanqueu el full de càlcul i obriu-ne un altre. A la columna 'A' (d'A1 fins a A5) poseu-hi els temps mesurats per a una bola a la pràctica de viscositat. A la columna 'B' els temps d'una altra bola, i a la 'C' els de l'última bola.
 - A la cel·la 'A7' escriviu la fórmula = suma(A1:A5)/5. Lògicament aquesta cel·la conté el valor mitjà del temps per a la primera bola. Estireu la fórmula cap a la dreta fins a 'C7'. Ja tenim els 3 valors mitjans.
- 2. Ara ens cal calcular la desviació dels valors respecte de la mitjana que acabem de calcular. El millor estimador és la desviació estàndard, que avalua el quadrat de la diferència entre cada mesura real i la mitjana obtinguda (vegeu la fórmula 2 al dossier sobre Tractament de Dades). Ens caldrà per tant calcular el valor mitjà dels quadrats de les mesures.

A la cel·la 'E1' escriviu la fórmula =A1*A1 (o sigui, el quadrat d'A1). Estireu cap avall i després cap a la dreta, fins a 'G5'. Podeu comprovar que, per exemple, a la cel·la 'F4' hi diu = B4*B4. Per tant hem construit automàgicament la taula dels quadrats dels temps, i a cada columna hi ha els quadrats de la columna corresponent.

- 3. Copieu el rang de cel·les 'A7:C7', feu clic a 'E7' i enganxeu. Acabeu d'enganxar les fórmules de les mitjanes: per exemple, a 'G7' hi tenim la fórmula =suma(G1:G5)/5, que és la mitjana de la columna G, o sigui, la mitjana dels quadrats dels temps.
- 4. Ja pràcticament hem acabat. A la casella 'A9' escriurem la fórmula de la desviació estàndard, que conté la funció arrel quadrada; a Excel en espanyol, aquesta funció és raiz(); a la majoria de fulls de càlcul (i a Excel en altres idiomes també) la funció és sqrt(). Escriviu: = raiz((E7-A7*A7)/(5-1)).

Estireu cap a la dreta fins a la cel·la 'C9', i comproveu la fórmula que hi ha. És correcta?

5. El mateix càlcul de l'apartat 2 el podríem haver fet (en Excel) sense necessitat de la columna amb els quadrats, ja que és possible fer productes i altres operacions entre columnes.

Sel·leccioneu la cel·la 'E10' i escriviu la fórmula = suma(A1:A5*A1:A5), però enlloc de sortir fent intro, mantingueu premudes les tecles ctrl i majúscules al mateix temps que l'intro. Comproveu que la fórmula que hi ha és: {=suma(A1:A5*A1:A5)}. Els claudàtors que no hem escrit els posa Excel per a mostrar-nos que és una operació vectorial. Això és així, per què en prèmer ctrl i shift hem obligat a Excel a interpretar la fórmula com una operació vectorial, component a component.

Podeu comprovar que el resultat coincideix amb la suma de quadrats dels temps, escrivint a la cel·la 'E9' =5*E7 i verificant que el resultat de 'E9' i 'E10' coincideix (ja que tenim a la cel·la 'E7' la mitjana dels quadrats).

0.3 Regressió lineal i correlació

Ara considerarem parelles de valors. Tal i com vàrem fer a la pràctica de la Llei d'Ohm i conducció nerviosa, tindrem un valor d'entrada (el potencial) i un de resultat (la intensitat del corrent elèctric). Posarem un dels valors en una columna, i l'altre a la seva dreta. Finalment voldrem comprovar si els valors formen una recta, quina recta és, i la qualitat de l'ajust.

- 1. Al full d'excel que teniu obert, feu clic a la segona pestanya inferior (hi diu 'Hoja 2'), per treballar amb un full en blanc. Introduïu les mesures dels voltatges a les cel·les A1:A5 i de les intensitats a B1:B5.
- 2. Per al càlcul de la regressió (vegeu el dossier de Tractaments de Dades, fórmules (7) i (8)), necessitarem columnes amb els valors de V^2 (voltatges), I^2 (intensitats) i V*I. Les posarem respectivament a les columnes D, E i F.

Escriviu a 'D1': =A1*A1; a 'E1': = B1*B1; i a 'F1': = A1*B1. Sel·leccioneu el rang D1:F1, i arrossegueu cap avall, fins a D5:F5. Ja tenim les columnes amb els quadrats i el producte mixt.

- 3. Per al càlcul de la recta de regressió i la correlació ens caldrà la suma d'aquests valors (suma de voltatges, intensitats, suma dels seus quadrats i del producte mixt). Posarem aquesta suma a la filera '9': a la cel·la 'A9' la suma dels valors del voltatge: =suma(A1:A5). Ara sel·leccioneu la cel·la i estireu cap a la dreta, fins a 'F9'. Ja tenim les sumes!
- 4. Ara calcularem el pendent de la recta de regressió. Escriviu a 'A11' l'etiqueta m =, sel.leccioneu 'B11' i escriviu la fórmula (7) del dossier en llenguatge d'Excel (recordeu que N és el nombre de dades, 5 en aquest cas):
 - = (5*F9-A9*B9)/(5*D9-A9*A9)
- 5. Similarment per a l'ordenada a l'origen (fórmula 8). Escriurem a la cel·la 'A12' l'etiqueta b=, i a 'B12' la fórmula (podeu retallar i enganxar part de la fórmula anterior, ja que el denominador és idèntic):
 - = (D9*B9-A9*F9)/(5*D9-A9*A9)
- 6. I ara el coeficient de correlació, que ens indica la qualitat de l'ajust, o sigui, si els punts són aprop de la recta de regressió, o pel contrari queden lluny. Com diu al dossier "Tractament de Dades", la recta de regressió s'ajustarà bé a les dades si el coeficient de correlació és més gran que 0,95.

Escriviu a la cel·la 'A13' l'etiqueta r=, i a 'B13' la fórmula següent. Fixeu-vos que el numerador és com el de la fórmula que hem escrit a 'A11' (retalleu i enganxeu):

= (5*F9-A9*B9)/raiz((5*D9-A9*A9)*(5*E9-B9*B9))

Qüestions

- Escriviu a 'A16' la fórmula corresponent a la suma dels voltatges, si enlloc de 5 valors haguéssim fet 7 mesures. El mateix per a 'B16:F16' amb les seves corresponents columnes.
- Escriviu a 'B19' la fórmula per a l'ordenada a l'origen en el mateix supòsit de la qüestió anterior, o sigui, amb 7 mesures. Aprofiteu que teniu les sumes a les cel·les A16:F16.
- 3. Aprofiteu que hem deixat cel·les en blanc per a posar-hi etiquetes (de l'estil: 'intensitat', 'voltatge', 'mitjana', etc). Així quan torneu a obrir el full de càlcul sabreu què hi ha a cada cel·la.

ATENCIÓ: escriviu el vostre nom i cognoms en alguna cel·la lliure, guardeu-lo amb un nom descriptiu i envieu-lo directament per correu electrònic a l'adreça: rodo@ifae.es