Office Hours!

Instructor:

Trevor Klar, trevorklar@math.ucsb.edu

Office Hours:

Mondays 2–3PM Tuesdays 10:30–11:30AM Thursdays 1–2PM or by appointment

Office:

South Hall 6431X (Grad Tower, 6th floor, blue side, first door on the right)

© 2017 Daryl Cooper, Trevor Klar

§8.13: Max/Min problems

Often want to find the biggest, smallest, most, least, maximum, minimum of something.

Here's the graph of
$$y = f(x) = -x^2 + 4x + 3$$

The <u>maximum value</u> or just <u>maximum of the function is 7.</u>

The value of x which gives the maximum of f(x) is x = 2

We write f(2) = 7.

For this example you can see this is the maximum because

$$f(x) = -x^2 + 4x + 3 = -(x - 2)^2 + 7$$

 $(x-2)^2$ is always positive except when x=2

How To Find A Maximum

- (1) Find f'(x)
 (2) Solve f'(x) = 0. This is the x value that gives the max.
 - (3) To find the maximum plug the value of x found in (2) back into f(x).
- Use this method to find the maximum of $f(x) = -x^2 + 8x + 5$. The maximum value is...

$$A = 4$$
 $B = 5$ $C = -2x + 8$ $D = 21$ $E = 15$ D

2. Find the value of x which makes f(x) = (2-x)(x+6) a maximum.

The value of x is...

$$A = 16$$
 $B = 1$ $C = -1$ $D = 2$ $E = -2$

How To Find A Minimum?

What this technique actually does is find both maxima and minima In Math 34A a problem will have either a maximum or a minimum, but not both. So the technique will find what you want. In Math 34B you discover how to do problems which have both a maximum and a minimum and find out which is which.

More Examples

3. What is the minimum of f(x) = (x+2)(x+4) + 3?

$$A = 0$$
 $B = 1$ $C = 2$ $D = 3$ $E = 4$

Answer: C

4. What is minimum of $f(x) = x^2 + 16x^{-2}$?

$$A = 2$$
 $B = 4$ $C = 6$ $D = 8$ $E = 16$

Answer: D

5. Find the value of x which makes $f(x) = -e^x - e^{-2x}$ a maximum.

$$A = 0$$
 $B = ln(2)$ $C = -ln(2)$ $D = ln(2)/3$ $E = ln(2)/3$

Answer: E

Word Problem #1

A ball is thrown into the air. After t seconds the height in meters above the ground of the ball is $h(t) = 40t - 10t^2$. How many meters high did the ball go?

$$A = 2$$
 $B = 40 - 20t$ $C = 20$ $D = 40$

Word Problem #2

If an airline sells tickets at a price of \$200 + 5x each the number of tickets it sells is 1000 - 20x. What price should the tickets be if the airline wants to get the most money?

$$A = 5$$
 $B = 25$ $C = 175$ $D = 200$ $E = 225$ E

Word Problems

Word Problem #3

A fenced garden with an area of 100 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. What length and width should be used so the least amount of fence is needed?

Approach:

- (1) Express the total length of fence in terms of <u>only</u> one variable, either L = length of field, or W = width of field. This gives a formula for P = (total length of fence) involving, say, W.
- (2) Find minimum by solving $\frac{dP}{dW} = 0$.

Students always find (1) the hardest part.

You have been prepared for this by word problems from chapter 3!

Word Problem #4 (a sequel!)

A fenced garden with an area of 1000 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. Three sides are wood fence, and the remaining side is a brick wall.

- The wood fence costs \$5 per meter length.
- The brick wall costs \$20 per meter length.
- C = total cost of the fence and brick wall
- L = length of the brick wall
- W =width of the other side
- (a) Find a formula for C in terms of only L.

A =
$$2W + 2L$$
 B = $2000L^{-1} + 2L$ C = $25L + 10000L^{-1}$
D = $20L + 10000WL^{-1}$ E = $5L + 3000$ C

(b) What length of brick wall gives lowest cost?

$$A = 20$$
 $B = 40$ $C = 50$ $D = 100$ $E = 25$ A