Exercise 0.1 (1). *Proof.* (1) A left \mathbb{Z} -module is by definition already an abelian group. We must check that the module structure doesn't add any additional structure, or more specifically, that every abelian group has a unique \mathbb{Z} -module structure which is the one described below.

Now, we are given a map $\mathbb{Z} \times M \to M$ by $(n,x) \mapsto n \cdot x$ where M is some abelian group. Since by part (2) of the definition of being a module, i.e., $(r+s) \cdot x = r \cdot x + s \cdot x$, we have

$$n \cdot x = \underbrace{1 \cdot x + \ldots + 1 \cdot x}_{n \text{ times}} = \underbrace{x + \ldots + x}_{n \text{ times}}$$

where the second equality follows from (4) in the definition: $\mathbb{1}_R \cdot x = x$. This tells us how to give any abelian group M a \mathbb{Z} -module structure and that this must be unique. Simply define a map $\mathbb{Z} \times M \to M$ by

$$(n,x) \mapsto n \cdot x = \underbrace{x + \ldots + x}_{n \text{ times}}.$$

This is indeed an element of M since groups are closed under addition. Now we check that this map satisfies the axioms for a module.

$$n(x+y) = \underbrace{(x+y) + (x+y) + \ldots + (x+y)}_{n \text{ times}} = \underbrace{x + \ldots + x}_{n \text{ times}} + \underbrace{y + \ldots + y}_{n \text{ times}}$$

The others are checked similarly.

- (2) For R = k a field, we have that the distribute laws are precisely those of (1) and (2) from the definition of a module in the notes, and $\alpha(\beta x) = (\alpha \beta) x$ and $1 \cdot x = x$ are precisely axioms (3) and (4). Furthermore, we by assumption have that M is an abelian group.
- (3) Suppose M is a k [t]-module. Then, in particular, M inherits a k-multiplication making it into a k-vector space, but the question is whether it has additional structure. If we know what (t,x) is mapped to, then by axiom (3), we know what $t^2x = t$ (tx) will be, and likewise t^kx for any $k \in \mathbb{N}$. Consider M as a k-vector space with basis $\mathcal{B} = \{v_\alpha \mid \alpha \in I\}$ for some indexing set I. Now, we claim that $t\mathcal{B} = \{tv_\alpha \mid \alpha \in I\}$ is also a basis. Suppose $\sum c_\alpha tv_\alpha = 0$ as a finite sum in M. By axiom (1), we then also have t $(\sum c_\alpha v_\alpha) = 0$. Now, $\alpha x = 0 \iff \alpha = 0 \lor x = 0$ in a vector space, so t = 0 or $\sum c_\alpha v_\alpha = 0$. Now, if t = 0, then M simply reduces to a k-vector space with no additional structure. However, if $t \neq 0$, then by linear independence, $c_\alpha = 0$ for all α , so $t\mathcal{B}$ is again a basis. By induction then, $t^k\mathcal{B}$ will be a basis. We can define a linear map $T: M \to M$ by $v_\alpha \mapsto tv_\alpha$ on the basis and extend it linearly. Then we indeed have

$$\left(\sum_{n=0}^{m} c_n t^n\right) x = \sum_{n=0}^{m} c_n t^n x = \sum_{n=0}^{m} c_n T^n x$$

so the action of any element of k[t] on some $x \in M$ is uniquely determined by the linear map T. So we have an injective map

 $\{k [t] \text{-modules}\} \to \{(V, T) \mid V \text{ is a } k\text{-vector space and } T \in \operatorname{End}_k(V)\}.$

by sending $M \mapsto (V,T)$ where V is M considered as a vector space over K and T is the map $v \mapsto tv$.

Conversely, given a pair (M,T), we can make M into a k-module by letting $(\sum c_n t^n) x = \sum c_n T^n(x)$. This clearly satisfies the axioms for the map in the definition of a module.

(4) Suppose M is a k[G]-module where k[G] is a k-algebra associated to a group G. Then M inherits a vector space structure from k. Now, the map $k[G] \times M \to M$ sends $(g,x) \mapsto gx$ which is invertible since $g^{-1}(g \cdot x) = gx$ $(g^{-1}g) \cdot x = 1 \cdot x = x$. Furthermore, since g(x+y) = gx + gy by the axioms of a module, the map $T_g(x) = gx$ is a group automorphism, so $g \mapsto T_g$ is a map $\rho \colon G \to \operatorname{Aut}(V)$. Furthermore, we have $\rho(g+g')(x) =$ $T_{g+g'}(x) = (g+g')x = gx + g'x = \rho(g)(x) + \rho(g')(x)$. Thus ρ is in fact a group homomorphism.

Conversely, any such pair M and a group homomorphism $\rho \colon G \to \operatorname{Aut}(V)$ defines a k[G]-module by $(\sum c_g g) \cdot x = \sum c_g \rho(g)(x)$.

Exercise 0.2 (2). Let M be a $k[t]/(t^n)$ -module. Then M is in particular a k-vector space. Now, if $\mathcal{B} = \{v_{\alpha}\}$ is a basis for M as a k-vector space, then $t\mathcal{B}, \ldots, t^{n-1}\mathcal{B}$ are bases for M as k-vector spaces, so the map $T: M \to M$ sending $x \to tx$ is a linear automorphism, but since $t^n = 0$, we get $T^n = 0 \in \operatorname{Hom}_k(M, M)$. So a $k[t]/(t^n)$ -module consists of a pair (M,T) of a k-vector space M and a nilpotent map T of index k.

A $k[t, t^{-1}]$ -module consists similarly of a k-vector space and an invertible linear automorphism of the k-vector space.

Exercise 0.3 (5). Proof. We have $r \cdot (x+y) = \varphi(r)(x+y) = \varphi(r)x + \varphi(r)y = \varphi(r)x + \varphi(r)y$ $r \cdot x + r \cdot y$, $(r+s) \cdot x = \varphi(r+s)x = \varphi(r)x + \varphi(s)x = r \cdot x + s \cdot x$, $r \cdot (s \cdot x) = \varphi(r+s)x = \varphi(r+s)x$ $r \cdot \varphi(s)x = \varphi(r)\varphi(s)x = \varphi(rs)x = (rs) \cdot x$, and lastly, $1_R \cdot x = \varphi(1_R)x = 1_S x = x$ (where we assume that $\varphi \neq 0$)

Exercise 0.4 (6). Proof. (1) When
$$R = \mathbb{Z}$$
, we have $a \cdot x = \underbrace{x + \ldots + x}_{a \text{ times}}$, so $\varphi(a \cdot x + y) = \varphi\left(\underbrace{x + \ldots + x}_{a \text{ times}}\right) + \varphi(y) = \varphi(y) + \sum_{i=1}^{a} \varphi(x)$, so again, no

Converse is the same.

- (2) Suppose $\varphi \colon M \to N$ is a k-linear homomorphism where M and N are k-modules. Then first, M and N can be considered as k-vector spaces. If we consider them as such, we have for $\alpha, \beta \in k$ and $x, y \in M$ that $\varphi(\alpha x + \beta y) = \varphi(\alpha x) + \varphi(\beta x) = \alpha \varphi(x) + \beta \varphi(x)$, where the first equality follows from φ being a homomorphism of the underlying abelian groups, and the second equality follows from the additional assumption on R-maps that we can draw the scalar out.
- (3) Suppose φ is a k[t]-linear homomorphism from (V,T) to (W,S). We then have $\varphi(\sum c_n T^n x) = \varphi((\sum c_n t^n) x) = \sum c_n t^n \varphi(x) = \sum c_n S^n \varphi(x)$, so it follows from the previous subexercise, that φ is a vector space homomorphism with the property $\varphi(T(x)) = S(\varphi(x))$ for all $x \in V$.

Exercise 0.5 (8). *Proof.* This follows from the same being true for maps of sets which φ , in particular, is.

Exercise 0.6 (10). *Proof.* By exercise 6.(a), a \mathbb{Z} -linear homomorphism is simply a homomorphism of the underlying abelian groups. So we easily find that

- (1) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z})$ is in bijection with the integers, \mathbb{Z} .
- (2) Similar. Bijection with \mathbb{Z}/m .
- (3) Similarly, bijection with the underlying set of A.
- (4) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m,\mathbb{Z}) = \{0\}$ since for any \mathbb{Z} -linear homomorphism $\varphi \colon \mathbb{Z}/m \to \mathbb{Z}$, we have $m \cdot \varphi(1) = 0$ and hence $\varphi(1) = 0$, so $\varphi = 0$.
- (5) If $m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ and $n = q_1^{\beta_1} \cdots q_t^{\beta_t}$, then

$$\begin{aligned} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/m,\mathbb{Z}/n\right) &= \operatorname{Hom}_{\mathbb{Z}}\left(\oplus_{i}\mathbb{Z}/\left(p_{i}^{\alpha_{i}}\right), \oplus_{j}\mathbb{Z}/\left(q_{j}^{\beta_{j}}\right)\right) \\ &= \bigoplus_{i,j} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/\left(p_{i}^{\alpha_{i}}\right), \mathbb{Z}/\left(q_{j}^{\beta_{j}}\right)\right) \end{aligned}$$

Now if $p \neq q$, then the Hom set is trivial. If $p_i = q_j$ then we must have that $\varphi(p_i^{\alpha_i}) = 0$, thus $\beta_j \leq \alpha_i$. If $\beta_j \leq \alpha_i$, then $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/\left(p_i^{\alpha_i}\right), \mathbb{Z}/\left(q_j^{\beta_j}\right)\right) \approx \mathbb{Z}/\left(q_j^{\beta_j}\right)$, so

$$\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/m,\mathbb{Z}/n\right) \approx \bigoplus_{\substack{p_i = q_j \\ \beta_j \leq \alpha_i}} \mathbb{Z}/\left(q_j^{\beta_j}\right)$$

(6) Suppose $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$, then suppose $\varphi\left(\frac{a}{b}\right) = m$. Then $n\varphi\left(\frac{a}{bn}\right) = m$ so $n \mid m$ for all n > 1. Thus m = 0, so as $\frac{a}{b}$ was arbitrary, $\varphi = 0$. Hence $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$.

Exercise 0.7 (11). *Proof.* Since k is algebraically closed, we have that V decomposes as the direct sum of its generalized eigenspaces. So we now claim that $M_{\lambda_i} = k[t]/(t-\lambda_i)^{e_i}$. But $M_{\lambda_i} = \left\{x \in V \mid \exists k > 0 \colon (t-\lambda_i)^k x = (T-\lambda_i)^k x = 0\right\}$. Now, M_{λ_i} is cyclic with generator x and has basis $x, (T-\lambda_i)x, \ldots, (T-\lambda_i)^{k-1}x$. Define now a map $M_{\lambda_i} \to k[t]/(t-\lambda_i)^k$ by $(T-\lambda_i)^T x \mapsto (t-\lambda_i)^T$ which is clearly a linear isomorphism. Thus the decomposition follows.

Exercise 0.8 (12). *Proof.* We have that $R[t]/(t^2+1) \approx \{a_0+a_1t \mid a_0, a_1 \in \mathbb{R}\}$, and on the other hand, $t^2 \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = -\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$, so we have that $(\mathbb{R}^2, T) \approx \mathbb{R}[t]/(t^2+1)$ by $ct^n x \mapsto ct^n$. Irreducibility of t^2+1 follows from Eisenstein.

Exercise 0.9 (14). *Proof.* Suppose M is finitely generated by the set $\{x_1, \ldots, x_n\} \subset M$. Define $\varphi \colon R^n \to M$ by $\varphi(r_1, \ldots, r_n) = r_1x_1 + \ldots + r_nx_n$. By definition of a generating set, φ is surjective, and it is clear that it is an R-homomorphism. Conversely, if $\varphi \colon \mathbb{R}^m \to M$ is a surjective homomorphism, then since $\{e_1, \ldots, e_m\}$ generates \mathbb{R}^m , $\{\varphi e_1, \ldots, \varphi e_m\}$ generates M.

Exercise 0.10 (15). By exercise 14, there is a surjective R-homomorphism $\varphi \colon R \to M$, so by the first isomorphism theorem, $M \approx R/\ker \varphi$. Conversely, if $M \approx R/I$ then M is cyclic as it is generates by the inverse of $\overline{1} \in R/I$ which generates R/I.

Exercise 0.11 (16). To show surjectivity, we must show that for any $m \in M$, there is an R-map $\varphi \colon R \to M$ with $\varphi(1) = m$. But R is cyclic, generated by $1 \in R$. By prop 2.34 in Rotman, we can extend a function $\tilde{\varphi} \colon \{1\} \to M$ mapping $1 \mapsto m$ to an R-map $\varphi \colon R \to M$ with $\varphi(1) = m$. Hence the map $\operatorname{Hom}_R(R,M) \to M$ by $f \mapsto f(1)$ is surjective. Since R is generated by 1 and any functions are uniquely determined by their values on the generating set, we get that the map is also injective. Lastly, we must check that it is an R-map. Let $\psi(f) = f(1)$. Then $\varphi(rf) = (rf)(1) = rf(1) = r\psi(f)$ since $\operatorname{Hom}_R(R,M)$ has the structure of a group ring.

Exercise 0.12 (17). Suppose M is an R-module which has a basis X. Then let $\mu \colon X \to M$ be the inclusion. Now for any function $X \to N$ for N another R-module, we have that it extends uniquely by linearity to a function $M \to N$. Namely, if $f \colon X \to N$ is the function, then the R-map $\tilde{f} \colon M \to N$ must be

$$\tilde{f}\left(\sum_{x\in X}c_xx\right) = \sum_{x\in X}c_xf(x)$$

which is clearly R-linear.

Conversely, suppose M is a free R-module on the set X, given with the map $\mu \colon X \to M$. We claim that $\mu(X)$ is an R-linarly independent set which generates M, i.e., a basis. To show that it generates M, first note that the inclusion $X \to \langle X \rangle$ gives a map $f \colon M \to \langle X \rangle$ such that

$$\begin{array}{c} X \xrightarrow{\mu} M \\ \downarrow^{t} \downarrow^{f} \\ \langle X \rangle \end{array}$$

commutes. But by extending linearly, a map on X can be extended to $\langle X \rangle$, so μ extends to a map $\tilde{\mu} \colon \langle X \rangle \to M$ such that

$$\begin{array}{c} X \xrightarrow{\mu} M \\ \downarrow^{\iota} \hat{\mu} \uparrow^{f} \\ \langle X \rangle \end{array}$$

commutes. Then $f\tilde{\mu}\iota = f\mu = \iota$, which, by the universal of freeness of $\langle X \rangle$ on X, gives that $f\tilde{\mu} = \mathbbm{1}_{\langle X \rangle}$. Likewise, $\tilde{\mu}f\mu = \tilde{\mu}\iota = \mu$, so by universality of freeness of M on X, we get $\tilde{\mu}f = \mathbbm{1}_M$. Thus f is indeed an isomorphism.

Exercise 0.13 (20). (1) Let U be the set of all f(N) for $f: M \to R$ an R-map. We order U by inclusion, so $f(N) \leq g(N)$ iff $f(N) \subset g(N)$. Suppose $f_1(N) \leq f_2(N) \leq \ldots$ is a tower. By theorem 1.12 in the notes, every submodule of a free R-module is free, so N is free. Suppose v_1, \ldots, v_k is a basis for N. Then let $f_1(v_{i_1}), \ldots, f_1(v_{i_r})$ be a basis for $f_1(N)$. Now, for all $i, f_i(N)$ has dimension at most k, so adjoining repeatedly certain $f_j(v_{i_{j_t}})$, we obtain a basis for $f_i(N)$ for all $i \geq K \in \mathbb{N}$ for some K. Then $f_K(N)$ is an upper bound. By Zorn's lemma, there thus exists a maximal element u(N) for some map $u: M \to R$.

- (2) If $a_1 = 0$ then $u(N) = \{0\}$, so every $f: M \to R$ would have to vanish on N. However, if $N \neq 0$, then choosing a basis as above, v_1, \ldots, v_k , we can define a map $\tilde{g}: \{v_1, \ldots, v_k\} \to R$ by $v_i \mapsto 1_R$ and then extending linearly to a map $g: N \to R$ which is nontrivial, hence $g(N) \neq 0$, and then we can extend this again to a map on M by mapping the rest of M to 0. Hence $a_1 \neq 0$.
- (3) Since $\pi_i \in \operatorname{Hom}_R(M,R)$, we have that $\pi_i(N) \subset u(N) = (a_1)$, so in particular, $\pi_i(e'_1) = a_1\alpha_i$ for some $\alpha_i \in R$.
- (4) If $e'_1 = c_1 x_1 + \ldots + c_n x_n$, then $a_1 \alpha_i = \pi_i (e'_1) = c_i$, so $e'_1 = a_1 \sum_i \alpha_i x_i = a_1 e_1$.

(5)

$$a_1u(e_1) = u(a_1e_1) = u(e'_1) = a_1$$

hence $a_1(u(e_1)-1)=0$ and since $a_1\neq 0$ and R is an integral domain, we have $u(e_1)=1$. Now, define $\varphi(x)=(x-u(x)e_1,u(x))$. Then $(0,0)=\varphi(x)=(x-u(x)e_1,u(x))$ if and only if u(x)=0 and hence x=0. So φ is injective. Now suppose $(x,y)\in\ker u\oplus R$. Then $u(ye_1)=y$ and $ye_1-u(ye_1)e_1=0$, so $\varphi(ye_1)=(0,y)$. Meanwhile, $x\in\ker u$, so $\varphi(x)=(x,0)$. Hence $\varphi(x+ye_1)=(x,y)$, so φ is surjective. Lastly, $\varphi(x+x')=(x+x'-u(x+x')e_1,u(x+x'))=(x-u(x)e_1,u(x))+(x'-u(x')e_1,u(x'))=\varphi(x)+\varphi(x')$ and $\varphi(rx)=(rx-u(rx)e_1,u(rx))=(r(x-u(x)e_1),ru(x))=r(x-u(x)e_1,u(x)e_1,u(x))=r(x-u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u(x)e_1,u$

(6) We can repeat the above process on $M' \cap N$ to decompose M' into $M'' \oplus R$ with some isomorphism $\varphi \colon M' \approx M'' \oplus R$ with $\varphi(x) = (x - u'(x)e_2, u'(x))$ where $u'(e_2) = 1$ and $\alpha_2 e_2 \in M' \cap N$. Thus,

$$M\approx \tilde{M}\oplus \underbrace{R\oplus\ldots\oplus R}_{n\text{ times}}$$

under the isomorphism

$$x \mapsto \left(x - u(x)e_1 - u^{(1)}(x)e_2 - \dots - u^{(n-1)}(x)e_n, u^{(1)}(x), u^{(2)}(x), \dots, u^{(n-1)}(x)\right).$$

How can we show that a_1e_1, \ldots, a_ne_n are now linearly independent? Suppose $\sum a_ie_i = 0$. Then this is mapped under the isomorphism to

$$0 = \left(\sum a_i e_i - a_1 e_1 - \dots - a_n e_n, a_1, \dots, a_n\right)$$

so $a_i = 0$ for all i.

Exercise 0.14 (21). A free module F of rank n is isomorphic to \mathbb{R}^n , so we get from the first isomorphism theorem that

$$M \approx R^{n} / (\langle a_{1} \rangle \oplus \langle a_{2} \rangle \oplus \ldots \oplus \langle a_{m} \rangle) \approx R^{k} \oplus R / (a_{1}) \oplus \ldots \oplus R / (a_{m})$$

where $\ker \varphi = \langle a_1 e_1, \dots, a_n e_n \rangle$ as in the previous exercise. Apply the Chinese Remainder Theorem