Содержание

1	Теорема о выражении меры множества через интеграл от меры сечений. Теорема Фу- бини	3
	1.1 Теорема о выражении меры множества через интеграл от меры сечений	3
2	Теорема о замене переменных в кратном интеграле	3
3	Теорема о построении криволинейной системы координат исходя из её части	4
4	Гладкие подмногообразия пространства R^N . Теорема о гладком подмногообразии пространства R^N , заданном системой уравнений 4.1 Гладкие подмногообразия пространства R^N	444
5	Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n . Теоремы о структуре множества $T_P(M)$ геометрических касательных векторов к гладкому подмногообразию M пространства \mathbb{R}^n в общем случае и в случае, когда M заданно системой уравнений 5.1 Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n	4 4
6	Необходимые условия безусловного экстремума. Достаточные условия безусловного экстремума 6.1 Необходимые условия безусловного экстремума	5 5 5
7	Метод Лагранжа нахождения точек условного экстремума. Необходимые условия условного экстремума. 7.1 Метод Лагранжа нахождения точек условного экстремума 7.2 Необходимые условия условного экстремума 7.3 Достаточные условия условного экстремума	5 5 5
8	Топологическое пространство. Индуцированная топология. Карта и атлас на топологическом пространстве. Общие (абстрактные) определения многообразия и гладкого многобразия. Классы гладкости C^k отображений из одного гладкого многообразия в другое 8.1 Топологическое пространство	6 6 7 7
9	Теорема о гладком атласе на гладком подмногообразии пространства \mathbb{R}^N . Достаточное условие гладкости подмногообразия пространства \mathbb{R}^N в терминах карты 9.1 Теорема о гладком атласе на гладком подмногообразии пространства \mathbb{R}^N 9.2 Достаточное условие гладкости подмногообразия пространства \mathbb{R}^N в терминах карты	7 7 8
10	Касательный вектор к абстрактному гладкому многообразию как оператор дифференцирования. Теорема о структуре множества $T_P(M)$ касательных векторов. Изменение координат касательного вектора при замене локальной системы координат 10.1 Касательный вектор к абстрактному гладкому многообразию как оператор дифференцирования	8 8 8 8
11	Край многообразия. Теорема о независимости краевой точки карты от карты 11.1 Край многообразия 11.2 Теорема о независимости краевой точки карты от карты	9

12 Несобственный интеграл. Связь сходимости несобственного интеграла и интегриру мости функции по Лебегу. Критерий Коши. Признаки Дирихле и Абеля сходимост несобственных интегралов	
12.1 Несобственный интеграл	
12.1 Песооственный интеграл	. 9
12.4 Признаки Дирихле и Абеля сходимости несобственных интегралов	
13 Связь поточечной и равномерной сходимостей для функциональной последовательности. Критерий Коши равномерной сходимости функциональной последовательност Обобщенный признак сравнения для функциональных рядов. Признак Вейерштрас равномерной сходимости функционального ряда. Признаки Дирихле и Лейбница ра номерной сходимости функционального ряда. Признак Абеля равномерной сходимост функционального ряда. Признак Абеля равномерной сходимост функционального ряда. Непрерывность равномерного предела, непрерывных фунций и суммы равномерно сходящегося функционального ряда с непрерывными сл гаемыми. Почленное интегрирование функциональных последовательностей и рядо Дифференцирование предельной функции и почленное дифференцирование функц	ги. сса пв- ти к- па-
онального ряда 13.1 Связь поточечной и равномерной сходимостей для функциональной последовательности . 13.2 Критерий Коши равномерной сходимости функциональной последовательности . 13.3 Обобщенный признак сравнения для функциональных рядов . 13.4 Признак Вейерштрасса равномерной сходимости функционального ряда . 13.5 Признаки Дирихле и Лейбница равномерной сходимости функционального ряда . 13.6 Признак Абеля равномерной сходимости функционального ряда . 13.7 Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми . 13.8 Почленное интегрирование функциональных последовательностей и рядов . 13.9 Дифференцирование предельной функции и почленное дифференцирование функционального ряда .	. 10 . 11 . 11 . 11 . 11 . 11 . 12
14 Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о кру сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сход мости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости прочленном дифференцировании степенного ряда. Теоремы о почленном интегриров нии и дифференцировании степенного ряда. Единственность разложения функции степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Примбесконечно дифференцируемой, но неаналитической функции. Представление экспенны комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлогования правенным рядом.	ци- ри за- в в ер во- ра
с остаточным членом в интегральной форме. Представление степенной и логарифм	
ческой функций степенными рядами 14.1 Степенные ряды 14.2 Формула Коши-Адамара для радиуса сходимости 14.3 Теорема о круге сходимости степенного ряда	. 13
14.4 Первая теорема Абеля	. 14 . 14
 14.7 Сохранение радиуса сходимости при почленном дифференцировании степенного ряда 14.8 Теоремы о почленном интегрировании и дифференцировании степенного ряда 14.9 Единственность разложения функции в степенной ряд, ряд Тейлора 	. 14 . 15
14.10Достаточное условие аналитичности функции	. 15 . 16
14.13Формулы Эйлера	. 16

1 Теорема о выражении меры множества через интеграл от меры сечений. Теорема Фубини

1.1 Теорема о выражении меры множества через интеграл от меры сечений

 $\Pi 1$

Пусть есть счётный набор конечно измеримых убывающих вложенных множеств X_i . Мера множества, являющегося счётным пересечением есть предел мер

 $\Pi 2$

Если интеграл неотрицательной функции по множеству равен нулю, то сама функция равна нулю почти на всём множестве

Тһ О выражении меры множества через интеграл от меры сечений

- 1. Для начала докажем для клетки. Её сечение будет принимать простой вид, в зависимости от принадлежности x, что даёт простое интегрирование и доказывает теорему
- 2. Теперь докажем для счётного набора (объединения) клеток. Задача сводится к предыдущей.
- 3. Найдём меру множества, являющегося счётным пересечением объединения счётного числа клеток
- 4. Определим убывающую последовательность множеств
- 5. Далее считаем меры составляющих, по ходу дела используя теорему Лебега об ограниченной сходимости
- 6. Теперь рассмотрим случай множества нулевой меры и, с помощью всяких сравнений и пределов, докажем требуемое.
- 7. В конце рассмотрим общий случай конечно измеримого множества.
- 8. Используем все предыдущие леммы и случаи и получаем требуемое при почти всех x

1.2 Теорема Фубини

Тһ О геометрическом смысле интеграла

 $\mathbf{Th} \ \Phi y$ бини

2 Теорема о замене переменных в кратном интеграле

 $\mathbf{Omp}\ C^k$ -глад κ ий диффеоморфизм

Опр Носитель функции

Тһ О замене переменных в кратном интеграле

 $\Pi 2$ Теорема справедлива, если функция f непрерывна на Y, а её носитель компактен и лежит в Y

- 1. Убрав условие 3, мы сделали теорему локальной (для каждой точки существует окрестность, где выполнено условие 3)
- 2. Воспользуемся теоремой о расщеплении отображений, о неявной функции, критерием компактности, теоремой о разбиении единицы
- 3. Это позволяет разбить функцию на сумму. Утверждение для фиксированного индекса (на его области значений) верно по предыдущей лемме

${f \Pi}{f 4}$ Теорема справедлива, если функция f непрерывна на Y

- 1. Рассмотрим неотрицательно значные функции и введём хитрые множества Y_k и функции f_k
- 2. Докажем, что $\subset f_k$ исходя из определения f_k . Получили ограниченность и замкнутость f_k
- 3. Из построения множеств следуют включения, а за ними и неравенства
- 4. Теперь покажем, что f_k стремятся к f через определения и построения условий.
- 5. Запишем следствия из предела и перейдём и завершим доказательство с помощью теоремы Б. Леви
- 6. В общем случае разобьём f на f_{+} и f_{-} и получим искомое равенство

3 Теорема о построении криволинейной системы координат исходя из её части

Опр Криволинейная система координат на множестве А

Опр Координатный набор

Тһ О построении криволинейной системы координат исходя из ее части.

- 1. Рассмотрим отображение из известного набора функций и матрицу Якоби этого отображения.
- 2. Рассмотрим координатные строки и матрицу в точке и применим теорему о ранге матрицы
- 3. Определим новые гладкие функции и всеобъемлющее отображение, рассмотрим новую матрицу Якоби
- 4. Применим теорему об обратном отображении и получим требуемое

4 Гладкие подмногообразия пространства R^N . Теорема о гладком подмногообразии пространства R^N , заданном системой уравнений

 ${f 4.1}$ - Гладкие подмногообразия пространства R^N

Опр Гладкое n-мерное подмногообразием пространства \mathbb{R}^N_n в точке $P\in M$

Опр Канонический и выпрямляющий диффеоморфизм

Утв Гладкое п-мерное подмногообразие пространства

4.2 Теорема о гладком подмногообразии пространства \mathbb{R}^N , заданном системой уравнений

Тһ О гладком подмногообразии, заданном системой уравнений

- 1. Сначала достроим отображения до гладкого диффеоморфизма по теореме о построении криволинейной системы координат, исходя из её части
- 2. Докажем, что выпрямляемость обратного диффеоморфизма. Это делается через анализ множеств и из их свойств
- 5 Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n . Теоремы о структуре множества $T_P(M)$ геометрических касательных векторов к гладкому подмногообразию M пространства \mathbb{R}^n в общем случае и в случае, когда M заданно системой уравнений
- 5.1 Геометрический касательный вектор к подмножеству пространства \mathbb{R}^n

Опр Геометрический касательный вектор к множеству в точке

Опр Геометрическое касательное пространство

5.2 Теоремы о структуре множества $T_P(M)$ геометрических касательных векторов к гладкому подмногообразию M пространства \mathbb{R}^n в общем случае и в случае, когда M заданно системой уравнений

 ${f Th. 1}\ {\it O}\ cmpy kmype$ множества геометрических касательных векторов к гладкому подмногообразию.

- 1. Воспользуемся определением канонического диффеоморфизма, леммой о $T_P(M)$ к линейному пространству и о локальности $T_P(M)$.
- 2. Запишем вид $T_P(M)$ и перейдём к локальной параметризации (из-за правил умножения матриц)

3. Итого, касательные векторы есть л.к. столбцов матрицы Якоби, а само $T_P(M)$ является n-мерным линейным подпространством \mathbb{R}^N

Th. 2 О структуре множества геометрических касательных векторов к подмногообразию, заданному системой уравнений.

- 1. Пишем те же рассуждениями, что и в теореме о гладком подмногообразии, заданном системой уравнений.
- 2. Введём новую переменную и воспользуемся предыдущей теоремой

6 Необходимые условия безусловного экстремума. Достаточные условия безусловного экстремума

6.1 Необходимые условия безусловного экстремума

Опр Точка экстремума

Опр Точка (не)строгого локального минимума (максимума) функции на множестве

Тh Необходимое условие экстремума

Для доказательства воспользуемся определением градиента и рассмотрим функцию одной переменной, где применим теорему Ферма

6.2 Достаточные условия безусловного экстремума

Опр Стационарная точка

Тһ Достаточные условия экстремума.

- 1. Разложим Δf по формуле Тейлора с использованием определения стационарной точки.
- 2. Воспользуемся леммой и определением о-малого и предела
- 3. Теперь перепишем Δf и получим требуемое. В случае отрицательной определённости рассуждения аналогичны (f меняется на -f)
- 4. В знаконеопределённом случае рассмотрим выделенные направления и запишем Δf .
- 5. Воспользуемся определением предела и выберем достаточно малые t_i для построения противоречия
- 6. В последнем случае приводятся два контрпримера $f = x^4$ и $f = x^3$

7 Метод Лагранжа нахождения точек условного экстремума. Необходимые условия условного экстремума. Достаточные условия условного экстремума

7.1 Метод Лагранжа нахождения точек условного экстремума

Опр Функция Лагранжа

Опр Множители Лагранжа

7.2 Необходимые условия условного экстремума

Тһ Необходимые условия экстремума

Сделаем общие построения для доказательства теорем.

- 1. Воспользуемся теоремой о построении криволинейной системы координат, исходя из её части и введём новые обозначения для обратных функций
- 2. Тогда можно расписать обратную функцию Лагранжа и показать, что новая задача эквивалентна старой

Теперь докажем саму теорему.

1. Воспользуемся теоремой о необходимом условии безусловного экстремума и выберем специальные множители Лагранжа.

- 2. Вернёмся к исходным переменным, воспользовавшись теоремой о дифференцировании сложной функции и значениями $\frac{\partial L}{\partial \lambda_i}$
- 3. Вышеперечисленное показывает, что x_0 стационарная точка функции Лагранжа, как и нашей исходной функции

7.3 Достаточные условия условного экстремума

Тһ Достаточные условия экстремума.

- 1. Перейдём к обратной функции Лагранжа, для которой точка y_0 стационарна
- 2. Исходная точка будет стационарной, если в этой точке обратная функция совпадёт с обратной функцией Лагранжа, то есть k' для обратной функции Лагранжа будет отрицательная определена
- 3. Покажем, что это эквивалентно отрицательной определённости k. Для этого воспользуемся инвариантностью первого дифференциала, распишем второй и воспользуемся стационарностью точки
- 4. Согласно теореме о структуре множества геометрических касательных векторов к подмногообразию, заданному системой уравнений, получаем эквивалентность структур форм, что нам и требуется
- 8 Топологическое пространство. Индуцированная топология. Карта и атлас на топологическом пространстве. Общие (абстрактные) определения многообразия и гладкого многобразия. Классы гладкости C^k отображений из одного гладкого многообразия в другое

8.1 Топологическое пространство

Опр Топологическое пространство

Опр Топология

Опр Открытое в топологическом пространстве множество

Опр Семейство всех открытых подмножеств метрического пространства с метрикой

Опр Окрестность точки

Опр Внутренность множества

Опр Замыкание множества

8.2 Индуцированная топология

Опр Индуцированная топология

 $\Pi 1$

Доказывается по определению, с привлечением старых множеств, породивших новую топологию

Опр Хаусдорфово топологическое пространство

Опр Предел по топологическому пространству

Заметим, что у хаусдорфова пространства не может быть двух различных пределов; иначе может лг2

Доказывается выбором специальных окрестностей, которые не пересекаются

Опр База топологического пространства

 $\Pi 3$

Возьмём пересечения открытых шаров с рациональными радиусами и координатами

Опр Непрерывное отображение

Опр Секвенциально непрерывное в точке отображение

Опр (Секвенциально) непрерывное в точке отображение

Опр Гомеоморфизм

 $\Pi 4$

Докажем от частного к общему с помощью непрерывности и открытости объединения открытых

Опр Компактное топологическое пространство

Опр Секвенциально компактное топологическое пространство

Опр Секвенциально компактное множество

 $\Pi 5$

Возьмём открытое покрытие множества, перейдём к прообразам, выберем там открытое покрытие и конечное подпокрытие

Опр Гомеоморфные множества

Опр Топологический инвариант

Опр Линейно-связное топологическое пространство

Компактность и линейная связность являются топологическими инвариантами, поскольку они сохраняются при любом непрерывном отображении

8.3 Карта и атлас на топологическом пространстве

Опр п-мерная карта на топологическом пространстве

Опр Гомеоморфизм карты

Опр Район действия карты

Опр Область параметров карты

Опр Атлас на топологическом пространстве

8.4 Общие (абстрактные) определения многообразия и гладкого многобразия

Опр п-мерное абстрактное многообразие

Опр Замена координат, отображение перехода, отображение склейки

8.5 Классы гладкости C^k отображений из одного гладкого многообразия в другое

Опр Гладкий диффеоморфизм

Опр Гладкий атлас

Атлас на многообразии, состоящий из одной карты, считается гладким

Опр Эквивалентные гладкие атласы

Опр Гладкая структура, определяемая атласом

Опр Гладкое п-мерное многообразие

Опр Карта на гладком многообразии

Опр Локальная система координат карты

Опр Kласс C^k -глад κ их отображений

Опр Координатное представление отображения

Oпр Диффеоморфные гладкие многообразия

9 Теорема о гладком атласе на гладком подмногообразии пространства \mathbb{R}^N . Достаточное условие гладкости подмногообразия пространства \mathbb{R}^N в терминах карты

9.1 Теорема о гладком атласе на гладком подмногообразии пространства \mathbb{R}^N

Тһ О гладком атласе на гладком подмногообразии

- 1. По лемме, $\forall P$ найдётся карта на топологическом пространстве M, порождённая каноническим диффеоморфизмом, район действия которой содержит точку P. Семейство всех таких карт составляет атлас; покажем, что он гладкий
- 2. Фиксируем $\forall P$, вводим новые обозначения и рассматриваем отображения замены координат
- 3. Они будут состоять из суперпозиции гладких диффеоморфизмов, что докажет и диффеоморфность замены координат

9.2 Достаточное условие гладкости подмногообразия пространства \mathbb{R}^N в терминах карты

Опр Порождённая каноническим диффеоморфизмом карта

Опр Порождённая каноническим диффеоморфизмом в некоторой окрестности точки карта

Th.1 Достаточное условие гладкости подмногообразия в терминах карты.

- 1. Считаем V открытым подмножеством согласно лемме и воспользуемся теоремой о ранге матрицы
- 2. От исходного отображения перейдём к f(x) с новыми обозначениями и запишем Матрицу Якоби отображения
- 3. Увидим, что в x_0 матрица невырождена, что позволяет использовать теорему об обратном отображении
- 4. M будет задано простой системой уравнений, то есть имеет вид подпространства или полуподпространства
- 5. Теперь докажем, что M подмногообразие. В случае внутренней точки рассматриваем сужения и пересечения, вводя новые обозначения.
- 6. Осталось показать, что параметры находились в линейной части пространства. В случае внутренней точки доказываем сначала прямое, а потом и обратное включения с помощью шаманства
- 7. Случай граничной точки следует заменой подпространства на полуподпространство
- 8. Согласно определению отображения f, справедливо равенство, которое и завершает доказательство

10 Касательный вектор к абстрактному гладкому многообразию как оператор дифференцирования. Теорема о структуре множества $T_P(M)$ касательных векторов. Изменение координат касательного вектора при замене локальной системы координат

10.1 Касательный вектор к абстрактному гладкому многообразию как оператор дифференцирования

Опр Производная функции по вектору в точке

Опр Касательный вектор

Оператор обладает свойством локальности

Обозначение Множество всех касательных векторов

Опр Соответствующие абстрактный и обычный касательный векторы

Опр Координаты касательного вектора

Касательный вектор является линейным оператором. Это следует из свойства линейности и правила Лейбница для производной функции одной переменной

10.2 Теорема о структуре множества $T_P(M)$ касательных векторов

Тh О структуре множества касательных векторов.

- 1. Фиксируем произвольную ЛСК в окрестности точки и введём новые обозначения.
- 2. Перейдём к равенствам для любой функции f. В итоге получим линейное пространство.
- 3. Покажем, что коэффициенты разложения вектора по системе векторов определены однозначно Это следует из существования соответствующего геометрического касательного вектора
- 4. Итого операторный набор составляет базис в $T_P(M)$

Опр Производная функции по геометрическому касательному вектору

Опр Изоморфизмом линейных пространств

Опр Изоморфные линейные пространства

10.3 Изменение координат касательного вектора при замене локальной системы координат

Лемма

Доказывается записью вектора в двух базисах и с помощью теоремы о дифференцировании сложной функции

11 Край многообразия. Теорема о независимости краевой точки карты от карты

11.1 Край многообразия

Опр Краем допустимой области параметров

Край, вообще говоря, не совпадает с границей множества, потому как граничные точки могут не принадлежать множеству

Опр Краевая точка карты

11.2 Теорема о независимости краевой точки карты от карты

Th О независимости краевой точки от карты.

- 1. Докажем от противного: пусть краевая для одной карты и нет для другой
- 2. \exists две окрестности, операции с которым показывают, что x_2 внутренняя точка множества V_2 .
- 3. Сделаем замену координат, а потом и тождественное изображение. Получим невырожденность замены координат.
- 4. Воспользуемся теоремой о неявной функции и получим окрестность точки x_1 в V_1 первой карты Также X_k будут монотонны по включению
- 5. Таким образом, точка x_1 не лежит на границе области, а значит, P не краевая точка карты, противоречие

Опр Край гладкого многообразия

12 Ориентация гладкого многообразия. Существование ровно двух ориентаций линейно-связного ориентируемого многообразия

12.1 Ориентация гладкого многообразия

Опр Согласованные (по ориентации) карты

Опр Ориентирующий атлас

Опр (Не)ориентируемое многообразие

Опр Согласованные атласы

Опр Ориентация многообразия

Опр Ориентированное многообразие

 ${
m Omp}\ {\it Kapmu},\ {\it coombemcmby}$ ющие ориентации или согласованные с ориентацией гладкого многообра-

12.2 Существование ровно двух ориентаций линейно-связного ориентируемого многообразия

 $\mathbf{Th} \ O \ \partial \mathit{byx} \ \mathit{opuehmauuxx} \ \mathit{многообразиx}.$

- 1. Возьмём ориентирующий атлас и сделаем из него атлас с противоположной ориентацией. Заметим, что допустимая область параметров таковой остаётся
- 2. Таким образом, существуют по крайней мере две различные ориентации многообразия это класс всех атласов, согласованных с первым
- 3. Покажем, что третьей ориентации многообразия не существует. Фиксируем ориентирующий атлас.

- 4. Выберем $\forall P$ и проанализируем знак якобиана замены координат
- 5. Знак якобиана непрерывно зависит от точки, притом не может обращаться в ноль как якобиан диффеоморфизма
- 6. Итак, в зависимости от знака якобиана, кандидат согласован либо с первым, либо со вторым атласом

13 Ориентация гладкого (N-1)-мерного подмногообразия пространства \mathbb{R}^N . Теорема о непрерывной нормали

13.1 Ориентация гладкого (N-1)-мерного подмногообразия пространства \mathbb{R}^N

Опр Единичный вектор нормали к многообразию

Опр Согласованные единичный вектор нормали и карта

Опр Согласованный с ориентацией многообразия вектор нормали

13.2 Теорема о непрерывной нормали

Тһ О непрерывной нормали

Последовательность сходится равномерно 🖨 выполняется условие Коши

- 1. ⇒: покажем непрерывность функции. Зафиксируем $\forall P_0$ и покажем, что частичный предел последовательности стремящихся точек единственен.
- 2. Зафиксируем карту с P_0 и перейдём к пределу в скалярных произведениях и по модулю
- 3. Условие согласованности нормали и карты \Leftrightarrow det > 0. Перейдя к пределу, получим равенство пределов нормалей, притом функция нормали непрерывна в любой точке M
- 4. ⇐: перейдём к карте и возьмём правый базис (или изменим до правого)
- 5. Пользуемся непрерывностью и линейной связностью для получения правого базиса в каждой точке
- 6. Полученный атлас будет ориентирующим, так как все карты имеют правые тройки, поэтому они согласованы
- Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о круге сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости при почленном дифференцировании степенного ряда. Теоремы о почленном интегрировании и дифференцировании степенного ряда. Единственность разложения функции в степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Пример бесконечно дифференцируемой, но неаналитической функции. Представление экспоненты комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлора с остаточным членом в интегральной форме. Представление степенной и логарифмической функций степенными рядами

14.1 Степенные ряды

Опр Предел последовательности комплексных чисел Предел модуля разности равен нулю Заметим, что комплексный предел эквивалентен двум вещественным (для действительной и мнимой части)

Опр *Сходящийся комплексный ряд* Существует конечный предел последовательности частичных сумм этого ряда

Опр *Абсолютно сходящийся комплексный ряд* Сходится вещественный ряд модулей членов ряда И вновь сходимость комплексного ряда эквивалентна сходимости двух вещественных рядов

Опр *Равномерно сходящийся комплекснозначная функциональная последовательность* Вещественнозначная последовательность модулей разности предельной функции и элементов последовательности равномерно сходится к нулю на том же множестве

Опр *Равномерно сходящийся комплексный функциональный ряд* Последовательность частичных сумм этого ряда равномерно сходится к сумме этого ряда на том же множестве

Опр Cmenehhoù pad Если задана последовательность комплексных чисел и комплексное число, то ... Однако удобнее (и мы в дальнейшем будем так делать) работать с рядом без степенной разности, сделав замену комплексной переменной

14.2 Формула Коши-Адамара для радиуса сходимости

Опр *Радиус сходимости степенного ряда* Неотрицательное число (или бесконечность), определяемое формулой Коши-Адамара

Притом для этой формулы мы расширили операцию деления

14.3 Теорема о круге сходимости степенного ряда

Опр *Круг сходимости степенного ряда* Круг на комплексной плоскости с центром в $w_0(0)$ и радиусом равным радиусу сходимости

Если радиус сходимости бесконечен, то кругом сходимости считается вся комплексная плоскость

 \mathbf{Th} О круге сходимости

Степенной ряд абсолютно сходится внутри круга сходимости и расходится вне его

- 1. Зафиксируем произвольное комплексное число $z_0 \neq 0$, обозначим $q = \frac{z_0}{R}$ и исследуем сходимость с помощью обобщённого признака Коши
- 2. В тривиально случае $z_0 = 0$ ряд сходится абсолютно
- 3. В случае $0 < |z_0| < R$ в силу обобщённого признака Коши ряд сходится абсолютно
- 4. В случае $|z_0| > R$ в силу обобщённого признака Коши члены абсолютного ряда не стремятся к нулю, как и исходного ряда, а значит, он расходится по отрицанию необходимого условия

14.4 Первая теорема Абеля

Тh Первая теорема Абеля

Если степенной ряд сходится в точке z_0 , то он сходится абсолюто в любой точке по модулю меньшей Доказательство следует от противного в силу п.4 теоремы о круге сходимости

14.5 Теорема о равномерной сходимости степенного ряда

Ть О равномерной сходимости степенного ряда

 $\forall r \in (0,R)$ ряд $\sum_{\mathbb{N}} {}_0 c_k z^k$ сходится равномерно в круге радиуса r

Доказывается через неравенство, применением теоремы о круге сходимости и по признаку Вейерштрасса равномерной сходимости комплексного ряда

- 1. Зафиксируем произвольное комплексное число $z_0 \neq 0$, обозначим $q = \frac{z_0}{R}$ и исследуем сходимость с помощью обобщённого признака Коши
- 2. В тривиально случае $z_0 = 0$ ряд сходится абсолютно
- 3. В случае $0<|z_0|< R$ в силу обобщённого признака Коши ряд сходится абсолютно
- 4. В случае $|z_0| > R$ в силу обобщённого признака Коши члены абсолютного ряда не стремятся к нулю, как и исходного ряда, а значит, он расходится по отрицанию необходимого условия

14.6 Вторая теорема Абеля

Тh Вторая теорема Абеля

Если степенной ряд сходится в точке z_0 , то он сходится равномерно на отрезке $[0, z_0]$

- 1. Разобьём члены ряда на произведение членов произведения с помощью параметра $t \in [0,1]$
- 2. Первый ряд сходится по условию (а значит, по предыдущей теореме, ещё и равномерно)
- 3. Второй ряд равномерно ограничен на отрезке и монотонен по индексу
- 4. Поэтому два вещественных ряда сходятся равномерно на [0,1], как и исходный ряд на $[0,z_0]$

14.7 Сохранение радиуса сходимости при почленном дифференцировании степенного ряда

Th Радиусы сходимости степенных рядов, полученные формальным дифференцированием и интегрированием исходного, совпадают с его радиусом сходимости

- 1. Радиусы сходимости исходного и продифференцированного рядов совпадают в силу формулы Коши-Адамара
- 2. Также они сходятся или расходятся одновременно, потому как при z=0 это очевидно, а в противном случае они отличаются на ненулевую константу (как и их пределы)
- 3. Так как исходный ряд получается почленным дифференцированием интегрального, то и их радиусы сходимости совпадают

14.8 Теоремы о почленном интегрировании и дифференцировании степенного ряда

Ть Об интегрировании и дифференцировании степенного ряда

Если вещественный степенной ряд имеет ненулевой радиус сходимости, то внутри интервала сходимости

- справедливы формулы почленного интегрирования
- функция ряда имеет производные любого порядка, получаемые почленным дифференцированием ряда
- коэффициенты степенного ряда однозначно определяются по обрывку формулы Тейлора
- 1. Для почленного интегрирования достаточно ввести новую переменную и воспользоваться теоремами о равномерной сходимости степенного ряда и о почленном интегрировании равномерно сходящегося функционального ряда
- 2. Для производных достаточно ввести новую переменную и воспользоваться теоремами о сохранении радиуса сходимости, о равномерной сходимости степенного ряда и о почленном дифференцировании функционального ряда
- 3. Проводя те же рассуждения по индукции, доказываем второе утверждение теоремы
- 4. Доказывается аналогично лемме первого семестра перед формулой Тейлора

14.9 Единственность разложения функции в степенной ряд, ряд Тейлора

Опр *Бесконечно дифференцируемая функция в точке* В этой точке существуют производные функции любого порядка

Опр Ряд Тейлора Ряд бесконечно дифференцруемой функции в точке с членами ...

Опр *Регулярная функция в точке* z_0 Ряд Тейлора функции в точке z_0 сходится к функции в некоторой окрестности z_0

Из теоремы об интегрировании и дифференцировании степенного ряда следует, что если функция может быть представлена как сумма степенного ряда $\sum_{\mathbb{N}_0} a_k (z-z_0)^k$ с ненулевым радиусом сходимости, то этот ряд является рядом Тейлора функции в точке z_0 . В этом случае функция является регулярной в точке z_0

Опр *Остаточный член формулы Тейлора* Разность n раз дифференцируемой функции и формулы Тейлора

Непосредственно из определений следует, что функция является регулярной в точке $\Leftrightarrow \lim_{n\to\infty} r_n(x) = 0$. Притом для доказательства регулярности недостаточно показать ненулевой радиус сходимости функции, надо ещё проверить её остаток

14.10 Достаточное условие аналитичности функции

Тh Достаточное условие регулярности

Если $\exists U_{\delta}(x_0)$, где функция бесконечно дифференцируема и последовательность её производных равномерно ограничена константой C>0, то функция регулярна в точке и $\forall x\in U_{\delta}(x_0)$ раскладывается в ряд Тейлора

- 1. Применим формулу Тейлора с остаточным членом в форме Лагранжа. Тогда остаточный член формулы Тейлора $\leq M \frac{\delta^{n+1}}{(n+1)!}$
- 2. Так как факториал растёт быстрее показательной (доказывается через принцип Архимеда, определение факториала, цепочку неравенств и предельный переход), то остаточный член стремится к нулю
- 3. Поэтому функция регулярна, потому как раскладывается в ряд Тейлора в x_0

14.11 Пример бесконечно дифференцируемой, но неаналитической функции

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Ряд Тейлора этой бесконечно дифференцируемой в точке $x_0 = 0$ сходится не к функции f(x), а к некоторой другой функции, не совпадающей с f(x) в сколь угодно малой окрестности точки

$$\forall k \in \mathbb{N} \lim_{x \to 0} \frac{1}{x^k} e^{-\frac{1}{x^2}} = \lim_{t \to +\infty} t^{\frac{k}{2}} e^{-t} = 0$$

По индукции легко показать, что если $P_{3n}(t)$ – многочлен степени 3n от t, то

$$f^{(n)}(x) = \begin{cases} P_{3n}(\frac{1}{x})e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Следовательно, все коэффициенты ряда Тейлора функции f(x) в точке $x_0 = 0$ равны нулю. Поэтому сумма ряда Тейлора функции f(x) в точке x_0 равна нулю и не совпадает с функцией f(x) в сколь угодно малой окрестности точки x_0 . Таким образом, хотя функция и бесконечно дифференцируема, она не является регулярной в нуле

14.12 Представление экспоненты комплексного аргумента степенным рядом

Опр Ряд Маклорена Ряд Тейлора функции в нуле

Th.1 Ряды маклорена функций e^x , $\sin(x)$, $\cos(x)$, $\sin(x)$, $\cosh(x)$ сходятся к этим функциям на всей числовой прямой

- 1. $\forall \delta > 0 \ \forall x \in U_{\delta}(0) \ e^x < e^{\delta}$, поэтому выполнено достаточное условие регулярности
- 2. Аналогично, используя ограниченность последовательности всех производных оставшихся функций доказываем их разложения

Тh.2 Для комплексной экспоненты её ряд Тейлора не отличается от вещественного

- 1. В силу предыдущей теоремы радиус сходимости степенного ряда-претендента сходится на всём \mathbb{C} , поэтому по теореме о круге сходимости он сходится абсолютно для любого $z \in \mathbb{C}$
- 2. Зафиксируем произвольное комплексное число в алгебраической форме и воспользуемся определением экспоненты комплексного числа, чтобы зафиксировать доказываемое равенство
- 3. Покажем, что функция-ряд-претендент обладает свойством экспоненты. Для этого воспользуемся теоремой о перемножении абсолютно сходящихся рядов, которая для комплексных рядов доказывается точно так же, как и для вещественных (только здесь надо использовать метод "диагоналей")

4. В результате преобразований получим сумму сумм, которую распределим по этим суммам, и применим формулу бинома Ньютона, завершив доказательство свойства

- 5. Далее рассмотрим функцию кандидат на чисто мнимом аргументе и путём разложения на чётную и нечётную суммы получим выражение для чисто мнимой экспоненты
- 6. В итоге, применив свойство экспоненты и убедившись, что функция работает на вещественных аргументах, получим разложение комплексной экспоненты в ряд Тейлора в силу единственности

14.13 Формулы Эйлера

Лемма Для любого $z \in \mathbb{C}$ справедливы формулы Эйлера Они используют новопостроенные комплексные функции и подравнивают комплексную тригонометрию к вещественной гиперболике

- 1. Для доказательства формулы гиперкомплексной экспоненты достаточно разделить сумм на чётную и нечётную, а затем воспользоваться $i^2 = -1$
- 2. Остальные формулы следуют из первой

14.14 Формула Тейлора с остаточным членом в интегральной форме

Тһ Формула Тейлора с остаточным членом в интегральной форме

Если функция в $U_{\delta}(x_0)$ имеет непрерывные производные по n+1 порядок, то для остаточного члена формулы Тейлора справедливо представление в интегральной форме: $r_n(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{n+1}(t) dt \forall x \in U_{\delta}(x_0)$

- 1. При n=0 теорема справедлива в силу формулы Ньютона Лейбница
- 2. Пусть теорема справедлива для n = s 1. Тогда проинтегрируем r_{s-1} по частям
- 3. Затем, расписав r_s по определению, подставим проинтегрированное выражение и получим требуемое равенство
- 4. Таким образом, теорема доказана по индукции

14.15 Представление степенной и логарифмической функций степенными рядами

Th Ряд Маклорена степенной функции сходится к этой функции на интервале единичного радиуса

- 1. Зафиксируем $x \in (-1;1)$ и учитывая выражение для f^n распишем остаточный член в интегральной форме, походу дела вынося константы, вводя новые обозначения и переменные интегрирования
- 2. Затем воспользуемся ограниченностью x для оценки. Осталось показать, что $\lambda_n \to 0$
- 3. В тривиальных случаях x=0 и $\alpha=m\in\mathbb{N}_0, m< n$ утверждение очевидно
- 4. В общем случае найдём предел отношения и воспользуемся схожими рассуждениями с доказательством признака Даламбера (сравнение с геометрической прогрессией)

Заметим, что при $m \geq n$ ряд Маклорена совпадает с конечной суммой

Из доказанного и теоремы о почленном интегрировании степенного ряда при |x|<1 (не забывая про замену индекса суммирования) получаем ряд Маклорена для логарифма. Данное разложение справедливо и при x=1. Действительно, данный ряд будет сходиться по признаку Лейбница. Следовательно, в силу второй теоремы Абеля этот ряд сходится равномерно на отрезке [0;1]. Согласно теореме о непрерывности суммы равномерно сходящегося функционального ряда частичные суммы этого ряда будет непрерывны на отрезке [0;1]. Поэтому существует требуемый предел