OSI Referans Modeli

OSI Referans Modeli

- Farklı bilgisayarların ve standartların gelişmesi ile ortaya çıkan sorunların çözümü için ortaya konan bir modeldir.
- ISO (International Organization for Standardization), son OSI (Open Systems Interconnection) modelini 1984'te ortaya koymuştur.
- 7 katmandan oluşur.
- Karmaşıklığı azaltmak ve standartlar geliştirmek amacıyla oluşturulmuştur.

OSI Katmanları

- 1. Fiziksel Katman
- 2. Veri İletim Katmanı
- 3. Ağ Katmanı
- 4. Taşıma Katmanı
- 5. Oturum Katmanı
- 6. Sunum Katmanı
- 7. Uygulama Katmanı

7. Uygulama (Application) Katmanı

- Kullanıcıların bilgisayarlar ile iletişime geçtiği ve kullanıcıya en yakın olan katmandır.
- Uygulama katmanı bilgisayar ile ağ arasında monitör görevi görür.
- Uygulamaların ağ üzerinde çalışması bu katmandan kontrol edilir.
- HTTP, SSH, DNS, SMTP, SNMP, FTP gibi protokoller bu katmana aittir.

4

6. Sunum (Presentation) Katmanı

- Sunum katmanının görevi, gönderilecek verinin karşı bilgisayar tarafından anlaşılabilir halde olmasını sağlamaktır.
- Böylece farklı programların birbirlerinin verisini kullanabilmesi mümkün olur.
- Gönderilecek verinin ortak ve standart formatlara dönüştürülmesini sağlar.

5

6. Sunum Katmanı (Devam)

- Bu katman, verileri uygulama katmanına sunarken veri üzerinde kodlama ve dönüştürme işlemlerini yapar.
- Ayrıca bu katmanda;
 - Veriyi sıkıştırma / açma,
 - Şifreleme / şifre çözme
- Bu katmanda tanımlanan bazı standartlar; TIFF, JPEG, MIDI, MPEG, HTML.

6. Sunum Katmanı (Devam)

- Sunum katmanı günümüzde çoğunlukla ağ ile ilgili değil, programlarla ilgili hale gelmiştir.
- Örneğin eğer iki tarafta da GIF formatını açabilen bir resim gösterici kullanılıyorsa, bir istemcinin diğeri üzerindeki bir GIF dosyayı açması esnasında sunum katmanına bir iş düşmez, daha doğrusu sunum katmanı olarak kastedilen şey, aynı dosyayı okuyabilen programları kullanmaktır.

6. Sunum Katmanı Örneği

DOS ve Windows 9x metin tipli veriyi 8 bit ASCII olarak kaydederken (örneğin A harfini 01000001 olarak), XP tabanlı işletim sistemleri 16 bit Unicode'u kullanır (A harfi için 00000000 01000001). Ancak kullanıcı tabii ki sadece A harfiyle ilgilenir. Sunum katmanı bu gibi farklılıkları ortadan kaldırır.

8

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	ر Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ī
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
						-		_			<u>-</u>

5. Oturum (Session) Katmanı

- İki istemci arasındaki bağlantının yapılması, kullanılması ve sonlandırılması işlemlerini yapar.
- Bir bilgisayar birden fazla bilgisayarla aynı anda iletişim içinde olduğunda, doğru bilgisayarla iletişim kurmasını, haberleşmenin organize ve senkronize edilmesini sağlar.
- Örneğin A bilgisayarı B üzerindeki yazıcıyı kullanırken, C bilgisayarı B üzerindeki diske erişiyorsa, B hem A ile olan, hem de C ile olan iletişimini aynı anda sürdürmek zorundadır.

5. Oturum Katmanı (Devam)

- Eğer veri iletiminde hata oluşmuş ise tekrar gönderilmesine karar verir.
- Verinin güvenliğini sağlar.
- Bu katmanda çalışan protokollere örnek;
 - NFS (Network File System),
 - SMB (server message block)
 - NetBIOS (network basic input/output system)
 - PAP (printer access control)

4. Taşıma (Transport) Katmanı

- Bu katman 5-7 ve 1-3 arası katmanlar arası bağlantıyı sağlar.
- Üst katmandan aldığı verileri bölümlere (segment) ayırarak bir alt katmana iletir.
- Bir üst katmana bu bölümleri birleştirerek sunar.
- Gönderilecek bilginin güvenli bir şekilde ulaştırılmasını sağlar. Hata bulma ve hataları düzeltme görevi vardır.
- İki istemci arasında mantıksal bir bağlantının kurulmasını sağlar.

4. Taşıma Katmanı (Devam)

- Aynı zamanda akış kontrolü (flow control) kullanarak karşı tarafa gönderilen verinin yerine ulaşıp ulaşmadığını kontrol eder.
- Karşı tarafa gönderilen bölümlerin gönderilen sırayla birleştirilmesini sağlar.
- Örnek; TCP, UDP (User Datagram Protocol).

3. Ağ (Network) Katmanı

- Ağ katmanı veri paketinin farklı bir ağa gönderilmesi gerektiğinde yönlendiricilerin kullanacağı bilginin eklendiği katmandır.
- Bu katmanda iletilen veri blokları paket olarak adlandırılır.
- Bu katman, veri paketlerinin ağ adreslerini kullanarak bu paketleri uygun ağlara yönlendirme işini yapar.
- Adresleme işlemlerini (Mantıksal adres ve fiziksel adres çevrimleri) yürütür.
- Yönlendiriciler (Router) bu katmanda tanımlıdırlar.
- Örnek: IP

2. Veri İletim (Data Link) Katmanı

- Ağ katmanından aldığı veri paketlerine hata kontrol bitlerini ekleyerek çerçeve (frame) halinde fiziksel katmana iletme işinden sorumludur.
- İletilen çerçevenin doğru mu yoksa yanlış mı iletildiğini kontrol eder, eğer çerçeve hatalı iletilmişse çerçevenin yeniden gönderilmesini sağlar.
- Ayrıca ağ üzerindeki diğer bilgisayarları tanımlama, kablonun o anda kimin tarafından kullanıldığının tespitini yapar.
- Örnek: Ethernet, Frame Relay, ISDN, Switch ve Bridge

2. Veri İletim Katmanı (Devam)

Veri iletim katmanı iki alt katmandan oluşur;

Media Access Control (MAC)

- MAC alt katmanı veriyi hata kontrol kodu (CRC), alıcı ve gönderenin MAC adresleri ile beraber paketler ve fiziksel katmana aktarır.
- Alıcı tarafta da bu işlemleri tersine yapıp veriyi veri bağlantısı içindeki ikinci alt katman olan LLC'ye aktarmak görevi yine MAC alt katmanına aittir.

Logical Link Control (LLC)

- LLC alt katmanı bir üst katman olan ağ katmanı için geçiş görevi görür.
- Protokole özel mantıksal portlar oluşturur (Service Access Points, SAP).
- Böylece kaynak istemcide ve hedef istemcide aynı protokoller iletişime geçebilir (örneğin TCP/IP).
- LLC ayrıca veri paketlerinden bozuk gidenlerin (veya karşı taraf için alınanların) tekrar gönderilmesinden sorumludur.

BLP105 - Ağ Temelleri

18

1. Fiziksel (Physical) Katman

- Fiziksel katman verinin kablo üzerinde alacağı fiziksel yapıyı tanımlar.
- Bu katmanda yer alan cihaz ve programlar üst katmanlarda hazırlanmış ham veriyi
 0 ve 1 'ler şeklinde elektrik sinyali olarak göndermekle sorumludur.
- Bu katmanda tanımlanan standartlar taşınan verinin içeriğiyle ilgilenmezler. Daha çok işaretin şekli, fiziksel katmanda kullanılacak konnektör türü, kablo türü gibi elektriksel ve mekanik özelliklerle ilgilenir.
- Ağ arabirim kartı, kablolar, RJ-45 bu katmanda çalışır.

Özet

- OSI kavramsal bir modeldir. Yani hiçbir yerde OSI programı veya OSI donanımı diye bir şey göremezsiniz. Ancak yazılım ve donanım üreticileri bu modelin tanımladığı kurallar çerçevesinde üretim yaparlar ve ürünleri birbiri ile uyumlu olur.
- OSI Modeli cihazların işlevlerini anlamak ve açıklamakta kullanılır. Örneğin HUB dediğimiz cihazlar gelen veriyi sadece bir takım elektrik sinyalleri olarak gören ve bu sinyalleri çoklayıp, diğer portlarına gönderen bir cihazdır. Bu da HUB'ların fiziksel(1. katman) katmanda çalışan cihazlar olduğunu gösterir.

Katmanlar ve Görevleri (Özet)

Katman	Görevi
7. Uygulama	Kullanıcının uygulamaları
6. Sunum	Aynı dilin konuşulması; veri formatlama, şifreleme
5. Oturum	Bağlantının kurulması ve yönetilmesi
4. Taşıma	Verinin bölümlere ayrılarak karşı tarafa gitmesinin kontrol edilmesi
3. A ğ	Veri bölümlerinin paketlere ayrılması, ağ adreslerinin fiziksel adreslere çevrimi
2. Veri İletim	Ağ paketlerinin çerçevelere ayrılması
1. Fiziksel	Fiziksel veri aktarım

Katmanlar ve Protokolleri

Katman	PDU (Protocol Data Unit) Ad
7. Uygulama	HTTP, FTP, SMTP
6. Sunum	ASCII, JPEG, PGP
5. Oturum	NetBIOS
4. Taşıma	TCP, UDP, SPX
3. Ağ	IP, IPX
2. Veri İletim	Ethernet, Frame Relay, ISDN
1. Fiziksel	Bit, Kablo, Konnektör

Katmanlar ve Protokolleri

OSI'de verilerin adı

Katman	Kullanılan Veri Adı			
7. Uygulama	Data (Veri)			
6. Sunum	Data			
5. Oturum	Data			
4. Taşıma	Segment (Bölüm)			
3. Ağ	Packet (Paket)			
2. Veri İletim	Frame (Çerçeve)			
1. Fiziksel	Bits (Bit)			

Kapsülleme ve Kapsül Açma

- **Kapsülleme:** Verinin katmanlar arasında yukarıdan aşağıya doğru indirilmesi esnasında veri üzerine katmanlara özel bilgiler eklenmesi işlemine denir.
- Kapsül açma: Kaynaktan gönderilen veriler hedef tarafından alındıktan sonra, kapsüllenmiş protokol veri birimleri üzerindeki, katmanlara özel bilgilerin çıkarılması işlemine denir.

Kapsülleme Örneği

Kaynaklar

- Milli Eğitim Bakanlığı Ağ Hizmetleri
- Ankara Üniversitesi Açık Ders Malzemeleri