Sheet 2: Diodes - Operation & Applications

1- Calculate the barrier potential (V_B) at room temperature, when the resistivity of the two sides of a germanium (Ge) diode is 2.2 Ω .cm (p side) and 1.1 Ω .cm (n side). Repeat for a silicon (Si) diode. $n_i(Si) = 1.5 \times 10^{10}$ atoms/cm³ $n_i(Ge) = 2.5 \times 10^{13}$ atoms/cm³

- 2- If the reverse saturation current in a silicon diode is 1nA, what is the current passing through a diode when the voltage across the diode is 0.8V at room temperature.
- 3- In the circuit shown in Figure 1, the diode D1 is germanium with a potential barrier (V_{B1}) 0.3V and an incremental resistance (R_{f1}) 25 Ω whereas the diode D2 is silicon with a potential barrier (V_{B2}) 0.7V and an incremental resistance (R_{f2}) 15 Ω . Calculate the diodes currents.

- 4- For the circuit shown in Figure 2, assume identical diodes with a barrier potential (V_B) of 0.6V. Calculate output voltage (V_o) for the following input voltages:
- (a) $V_1 = 0V$ and $V_2 = 0V$.
- (b) $V_1=10V$ and $V_2=0V$.
- (c) $V_1 = 0V$ and $V_2 = 10V$.
- (d) $V_1 = 10V$ and $V_2 = 10V$.

Figure 2

5- Sketch the output waveform (V_o versus time) of the circuit shown in Figure 3, assuming the diode with a barrier potential (V_B) of 0.6V and $V_{in} = 5$ sinwt.

6- Sketch the output waveform (V_o versus time) of the circuit shown in Figure 4, assuming ideal diodes and $V_{in}=20 \ sinwt$.

Figure 4(a)

Figure 4(b)

Figure 4(c)

- 7- (I) For the zener diode network of Figure 5, determine:
- (a) The output voltage (V_o) across R_L .
- (b) The voltage (V_R) across R.
- (c) The current through the zener diode (I_Z) .
- (d) The zener power (P_Z) .
- (II) Repeat part (I) with $R_L = 4k\Omega$.

Figure 5

8- Determine the range of values of the input voltage (V_{in}) that will maintain zener diode in Figure 6 in the regulation state.

Figure 6