Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Packaging and Integration

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Packaging

Packaging

test, wafer thinning, dicing, bonding, ...

Probe Test

Wafer Thinning

Incoming Wafer

Apply Backgrind Tape

Backgrind Wafer

Remove Backgrind Tape

typically, ~100 μ m can be as thin as 20 μ m

Wafer Thinning

Incoming Wafer

Apply Backgrind Tape

Wafer
Device Side

Backgrind Wafer

Remove Backgrind Tape

Dicing

laser saw plasma

. . .

Wire Bonding

'Flip-Chip' Die Bonding

Metals alloys: Pb, Cu, Ag, Sn, ... low melting point

Eutectic Bonding

Infrared Imaging

Si is transparent at near-infrared (> 1100 nm)

After pick & place: stops are not in contact to each other

After reflow: stops have reached each other

Through-Silicon Via (TSV)

Conductive channels through the silicon wafer

Source : Samsung Electronics

James Lu, RPI, Peaks in Packaging, 2003

Through-Silicon Via (TSV)

Conductive channels through the silicon wafer

Silicon Interposer

A conductive interface between chips and substrates

Q: Why shall we use Si?

Memory Chips

Increase the memory volume by 3D chip stacks

$2D \rightarrow 2.5D - 3D$

reduced size, faster speed, higher performance, ...

3D IC

Logic + Memory + Sensing + ...

conventional

3D IC

Chip Packaging

Q: Why is the package black?

X-ray Inspection of Circuit

X-ray image

X-ray Inspection of Circuit

High-resolution non-destructive threedimensional imaging of integrated circuits

Mirko Holler¹, Manuel Guizar–Sicairos¹, Esther H. R. Tsai¹, Roberto Dinapoli¹, Elisabeth Müller¹, Oliver Bunk¹, Jörg Raabe¹ & Gabriel Aeppli^{1,2,3}

Wafer Bonding

when direct growth is difficult ...

Wafer Bonding

- Direct wafer-wafer bonding
 - very clean and smooth surface
 - □ high temperature (> 1000 °C) for atom diffusion

Wafer Bonding

- **Direct bonding**
- Surface activated bonding
- Plasma activated bonding
- Anodic bonding
- **Eutectic bonding**
- Glass frit bonding
- Adhesive bonding
- Thermocompression bonding
- Reactive bonding
- Transient liquid phase diffusion bonding

Wafer Bonding: Applications

Make Silicon-on-Insulator (SOI)

Bonding + Etch back

Make Silicon-on-Insulator (SOI)

'Smart-Cut'

After low temperature splitting, SOI wafer (B) is annealed ~1100°C to strengthen the bond, whereas wafer A is reused. SOI film thickness set by H2 implant energy and BOX thickness

MEMS

Micro-Electro-Mechanical Systems (MEMS)

MEMS

- 1. Oxide reduction
- 2. Vacuum
- 3. Gettering

4. Controlled Collapse Hermetic Sealing

Solder ring

Controlled atmosphere

III-V Lasers on Si

Multijunction (MJ) Solar Cells

Use the entire solar spectrum

Stacked MJ Solar Cells

bonded AlGaInP/GaAs // GaInAsP/GaInAs solar cells

UV and IR Imaging Sensors

- Silicon only absorbs well from 400 nm to 1100 nm
- IR sensors: InGaAs, HgCdTe, ...
- UV sensors: GaN, ...
- sensor arrays bonded with Si circuits

infrared imaging

Red LEDs

- AlGaInP red LEDs grown on GaAs substrates
- GaAs strongly absorbs red light
- GaP is transparent in red, but not lattice matched
- bond LEDs on GaP, and remove GaAs

Blue LEDs

- GaN blue LEDs grown on sapphire substrates
- Sapphire is electrically and thermally insulating
- bonded onto a thermally conductive substrate

