[19]中华人民共和国国家知识产权局

[12] 发明专利申请公开说明书

[21] 申请号 99119986.3

[51] Int. Cl⁷

CO7K 14/47

C07K 16/18 C07H 21/00

C12P 21/00 C12N 15/12

C12N 15/63 G01N 33/68

C12Q 1/68 A61K 38/17

A61K 39/395 A61P 35/00

A61P 37/00 A61P 43/00

[11]公开号 CN 1296014A

[43]公开日 2001年5月23日

[22]申请日 1999.11.11 [21]申请号 99119986.3

[71]申请人 上海生元基因开发有限公司

地址 200001 上海市北京东路 668 号 6 楼

[72]发明人 毛裕民 谢 毅

[74]专利代理机构 上海市华诚律师事务所代理人 徐申民

权利要求书2页 说明书18页 附图页数1页

[54] 发明名称 新的人抑制生长蛋白及其编码序列 [57] 精裏

本发明公开了一种新的人抑制生长蛋白,DEG1(Novel Humam Depressed Growth—Rate Protein DEG1,简称"BioHDEGI"),编码此多肽的多核苷酸和经重组技术产生这种多肽的方法。本发明还公开了将此多肽和多核苷酸用于治疗线粒体功能紊乱、免疫紊乱和癌症等多种疾病的方法。本发明还公开了抗此多肽的拮抗剂及其治疗作用。本发明还公开了基于鉴别此核酸序列中的突变和此多肽表达水平改变的诊断测定方法。本发明还公开了编码这种新的BioHDEG1的多核苷酸的用途。

权利要求书

- 1、一种分离的人 BioHDEG1 多肽, 其特征在于, 它包括: 具有 SEQ ID NO.2 所示的 氨基酸序列的多肽、或其多肽的片段、类似物或衍生物。
- 2、如权利要求 1 所述的多肽,其特征在于,它是具有 SEQ ID NO.2 所示的氨基酸序列的多肽或其氨基酸变异不超过 5 % 的衍生物。
- 3、如权利要求 2 所述的多肽, 其特征在于, 它是具有 SEQ ID NO.2 所示的氨基酸序列的多肽。
 - 4、一种分离的多核苷酸,其特征在于,所述多核苷酸是选自下组:
- (a)编码具有 SEQ ID NO.2 所示氨基酸序列的多肽或其片段、类似物、衍生物的多核苷酸:
 - (b) 与多核苷酸(a) 互补的多核苷酸;
 - (c)与(a)或(b)有至少70%相同性的多核苷酸。
- 5、如权利要求 4 所述的多核苷酸,其特征在于,所述多核苷酸是编码具有 SEQ ID NO. 2 所示氨基酸序列的多核苷酸。
- 6、如权利要求 4 所述的多核苷酸, 其特征在于, 所述多核苷酸的序列是具有 SEQ ID NO. 1 中 277-1023 位的序列或具有 SEQ ID NO. 1 中 1-1153 位的序列。
- 7、一种含有外源多核苷酸的重组载体,其特征在于,它是由权利要求 4 所述多核苷酸与质粒、病毒或表达载体构建而成的重组载体。
- 8、一种含有外源多核苷酸的遗传工程化宿主细胞,其特征在于,它是选自于下列 一种宿主细胞:
 - (a) 用权利要求 7 所述的重组载体转化或转导的宿主细胞;
 - (b) 用权利要求 4 所述多核苷酸转化或转导的宿主细胞。
 - 9、一种具有 BioHDEG1 活性的多肽的制备方法, 其特征在于, 所述方法包括:
 - (a) 在适合表达 BioHDEG1 条件下, 培养权利要求 8 所述的工程化宿主细胞;
 - (b) 从培养物中分离出具有 BioHDEG1 活性的多肽。
- 10、一种能与多肽结合的抗体,其特征在于,所述抗体是能与 BioHDEG1 特异性结合的抗体。
- 11、一类模拟或调节多肽活性或表达的化合物,其特征在于,它是模拟 BioHDEG1 的活性化合物,或促进 BioHDEG1 的活性的化合物,或拮抗 BioHDEG1 的活性的化合物,或抑制 BioHDEG1 的活性的化合物。
 - 12、如权利要求 11 所述的化合物, 其特征在于, 它是 SEQ ID NO .1 所示的多核苷

酸序列或其片段的反义序列。

- 13、一种权利要求 11 所述化合物的应用,其特征在于,所述化合物用于调节 BioHDEG1 在体内、体外活性的方法。
- 14、一种检测与权利要求 1 所述的 BioHDEG1 多肽相关的疾病或疾病易感性的方法, 其特征在于,是通过选自下组的方法来检测相关的疾病或疾病的易感性:
 - (a)间接或直接检测所述多肽表达量是否异常;
 - (b) 间接或直接检测所述多肽活性是否异常;
 - (c) 直接或间接检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变异。
- 15、如权利要求 1 所述多肽的应用, 其特征在于, 它应用于筛选 BioHDEG1 的模拟 物、激动剂、拮抗剂或抑制剂; 或者用于肽指纹图谱鉴定。
- 16、如权利要求 4 所述的核酸分子的应用,其特征在于,它作为引物用于核酸扩增 反应,或者作为探针用于杂交反应,或者用于制造基因芯片或微阵列。
- 17、一种药物组合物,其特征在于,它含有安全有效量的权利要求 1 所述的多肽和/或权利要求 4 所述的多核苷酸以及药学上可接受的载体。
- 18、如权利要求 1 所述的多肽的应用,其特征在于,用所述多肽制备用于调节及治疗线粒体功能紊乱、免疫紊乱和癌症疾病的药物。

新的人抑制生长蛋白及其编码序列

说

本发明属于生物技术领域和遗传工程领域,具体地说,本发明涉及了一种新的多肽——人抑制生长蛋白 DEG1 (Novel Human Depressed Growth-Rate Protein DEG1, 简称 "BioHDEG1"),以及编码此多肽的多核苷酸序列。本发明还涉及此多核苷酸和多肽的制备方法和应用。

酵母中,DEG1 基因的表达产物 DEG1 蛋白可催化 tRNA 的反密码子环中 psi38、psi39 位点的假尿苷的形成 [Lecointe F,et al. J Biol Chem 1998;273:1316-23]。tRNA 反密码子的发夹结构中的假尿苷在转译过程中起重要调节作用。DEG1 基因位于染色体的着丝点附近,并且只在低水平表达,对维持细胞的正常生长有重要作用[Carbone ML,et al. Curr Genet 1991;19:1-8]。DEG1 基因受损的个体会丧失 tRNA 中 psi38、psi39 位点上合成假尿苷的功能,而其他位点上合成假尿苷的功能不受影响。DEG1 基因的缺损对酵母来说虽非致命,但相当程度地抑制了个体的生长。DEG1 蛋白的大部分定位于核酸中,但其较重要的一部分在胞质中也时有发现。

一个简单的信号要素(TATATA)在 DEG1 基因的转录中止和 3' 末端成熟形成过程中均有必要的参与作用[Brambilla A,et al. Mol Gen Genet 1997;254:681-8]。DEG1 蛋白是迄今为止在酵母中发现的第三个 tRNA: 假尿苷合成酶,它与 E.coli.的 tRNA: 假尿苷合成酶 I(PSU-I)具有同源性。DEG1 蛋白属于假尿苷合成酶家族,此家族酶大多作用在 RNA 分子特定区域中的尿嘧啶残基上。而经修饰的假尿苷出现在所有的反转 RNA、核糖体 RNA 的大小亚基和大多数小核酸 RNA 中。

研究表明, DEG1 蛋白的缺损、抑制或过度表达与一些疾病有密切关系,例如线粒体功能紊乱引致的疾病、免疫紊乱和癌症等。因此,为诊断、预防、治疗相关疾病,研究和开发人 DEG1 蛋白有重要意义。

本发明的一个目的是提供分离的新的多肽——人抑制生长蛋白 DEG1(简称为 "BioHDEG1")以及其片段、类似物和衍生物。

本发明的另一个目的是提供编码该 BioHDEG1 多肽的多核苷酸。

本发明的另一个目的是提供含有编码 BioHDEG1 的多核苷酸的重组载体。

本发明的另一个目的是提供含有编码 BioHDEG1 的多核苷酸的基因工程化宿主细胞。

本发明的另一个目的是提供生产 BioHDEG1 的方法。

本发明的另一个目的是提供针对本发明的 BioHDEG1 多肽的抗体。

本发明的另一个目的是提供了针对本发明 BioHDEG1 多肽的模拟化合物、拮抗剂、激动剂、抑制剂。

本发明的另一个目的是提供诊断和治疗与BioHDEG1 异常相关的疾病的方法。

在本发明的第一方面,提供新颖的分离出的人抑制生长蛋白 DEG1 (BioHDEG1),该多肽是人源的,它包含: 具有 SEQ ID NO: 2 氨基酸序列的多肽、或其保守性变异多肽、或其活性片段、或其活性衍生物、类似物。较佳地,该多肽是具有 SEQ ID NO: 2 氨基酸序列的多肽或其氨基酸变异不超过 5 %的衍生物。

在本发明的第二方面,提供分离的编码这些多肽的多核苷酸,该多核苷酸包含一核苷酸序列,该核苷酸序列与选自下组的一种核苷酸序列有至少 70%相同性: (a)编码上述 BioHDEG1 的多核苷酸; (b)与多核苷酸(a)互补的多核苷酸。较佳地,该多核苷酸编码具有 SEQ ID NO: 2 所示氨基酸序列的多肽。更佳地,该多核苷酸的序列是选自下组的一种: (a) 具有 SEQ ID NO: 1 中 277-1023 位的序列; 和(b) 具有 SEQ ID NO: 1 中 1-1153 位的序列。

在本发明的第三方面,提供了含有上述多核苷酸的载体,以及被该载体转化或转导的宿主细胞或者被上述多核苷酸直接转化或转导的宿主细胞。

本发明的其它方面由于本文的技术的公开,对本领域的技术人员而言是显而易见的。

下列附图用于说明本发明的具体实施方案,而不用于限定由权利要求书所界定的本 发明范围。

图1是本发明的人抑制生长蛋白DEG1 (BioHDEG1)和Saccharomyces cerevisiae的抑制生长蛋白DEG1 (S14145)的氨基酸序列同源性比较图。相同氨基酸在两个序列间用单字符氨基酸表示,相似氨基酸用"+"表示。

如本发明所用,"分离的"是指物质从其原始环境中分离出来(如果是天然的物质,原始环境即是天然环境)。例如,活体细胞内的天然状态下的多聚核苷酸和多肽是没有分离纯化的,但同样的多聚核苷酸或多肽如从天然状态中同存在的其他物质中分开,则为分离纯化的。

如本文所用, "分离的 BioHDEG1 蛋白或多肽"是指 BioHDEG1 基本上不含天然与其

相关的其它蛋白、脂类、糖类或其它物质。本领域的技术人员能用标准的蛋白质纯化技术纯化 BioHDEG1。基本上纯的多肽在非还原聚丙烯酰胺凝胶上能产生单一的主带。BioHDEG1 多肽的纯度能用氨基酸分析确定。

本发明提供了一种新的多肽——BioHDEG1多肽,其基本上是由SEQ ID NO: 2所示的 氨基酸序列组成的。本发明的多肽可以是重组多肽、天然多肽、合成多肽,优选重组多 肽。本发明的多肽可以是天然纯化的产物,或是化学合成的产物,或使用重组技术从原核或真核宿主(例如,细菌、酵母、高等植物、昆虫和哺乳动物细胞)中产生。根据重组生产方案所用的宿主,本发明的多肽可以是糖基化的,或可以是非糖基化的。本发明的多肽还可包括或不包括起始的甲硫氨酸残基。

本发明还包括 BioHDEG1 的片段、衍生物和类似物。如本发明所用,术语"片段"、"衍生物"和"类似物"是指基本上保持本发明天然的 BioHDEG1 相同的生物学功能或活性的多肽。本发明多肽的片段、衍生物或类似物可以是: (i)有一个或多个保守或非保守性氨基酸残基(优选保守性氨基酸残基)被取代的多肽,而这样的取代的氨基酸残基可以是也可以不是由遗传密码编码的,或(ii)在一个或多个氨基酸残基中具有取代基团的多肽,或(iii)成熟多肽与另一个化合物(比如延长多肽半衰期的化合物,例如聚乙二醇)融合所形成的多肽,或(iv)附加的氨基酸序列融合到此多肽序列而形成的多肽(如前导序列或分泌序列或用来纯化此多肽的序列或蛋白原序列)。根据本文的指导,这些片段、衍生物和类似物属于本领域熟练技术人员公知的范围之内。

本发明还提供了分离的核酸(多核苷酸),该多核苷酸基本由编码具有 SEQ ID NO: 2 氨基酸序列的多肽的多核苷酸组成。较佳地,本发明的多核苷酸序列具有 SEQ ID NO: 1 的核苷酸序列。

本发明的多核苷酸可以是 DNA 形式或是 RNA 形式。 DNA 形式包括 cDNA、基因组 DNA 或人工合成的 DNA。 DNA 可以是单链的或是双链的。 DNA 可以是编码链或非编码链。编码成熟多肽的编码区序列可以与 SEQ ID NO:1 所示的编码区序列相同或者是简并的变异体。如本发明所用,"简并的变异体"在本发明中是指编码具有 SEQ ID NO:2 的蛋白质或多肽,但与 SEQ ID NO:1 所示的编码区序列有差别的核酸序列。

编码 SEQ ID NO:2 的成熟多肽的多核苷酸包括:只有成熟多肽的编码序列;成熟多肽的编码序列和各种附加编码序列;成熟多肽的编码序列(和任选的附加编码序列)以及非编码序列。

术语"编码多肽的多核苷酸"是指包括编码此多肽的多核苷酸和包括附加编码和/或非编码序列的多核苷酸。

本发明还涉及上述多核苷酸的变异体,其编码与本发明有相同的氨基酸序列的多肽

或多肽的片段、类似物和衍生物。此多核苷酸的变异体可以是天然发生的等位变异体或非天然发生的变异体。这些核苷酸变异体包括取代变异体、缺失变异体和插入变异体。如本领域所知的,等位变异体是一种多核苷酸的替换形式,它可能是一个或多个核苷酸的取代、缺失或插入,但不会从实质上改变其编码的多肽的功能。

本发明还涉及与以上所描述的序列杂交的多核苷酸(两个序列之间具有至少 50%, 优选具有 70%的相同性)。本发明特别涉及在严格条件下与本发明所述多核苷酸可杂交的多核苷酸。在本发明中, "严格条件"是指: (1)在较低离子强度和较高温度下的杂交和洗脱, 如 0.2×SSC, 0.1%SDS, 60℃;或(2)杂交时加有变性剂, 如 50%(v/v)甲酰胺, 0.1%小牛血清/0.1%Ficoll, 42℃等;或(3)仅在两条序列之间的相同性至少在 95%以上,更好是 97%以上时才发生杂交。并且, 可杂交的多核苷酸编码的多肽与 SEQ ID NO: 2 所示的成熟多肽有相同的生物学功能和活性。

本发明还涉及与以上所描述的序列杂交的核酸片段。如本发明所用,"核酸片段"的长度至少含 10 个核苷酸,较好是至少 30 个核苷酸,更好是至少 50 个核苷酸,最好是至少 100 个核苷酸以上。核酸片段也可用于核酸的扩增技术(如 PCR)以确定和/或分离编码 BioHDEG1 的多核苷酸。

本发明中的多肽和多核苷酸优选以分离的形式提供,更佳地被纯化至均质。

本发明的编码 BioHDEG1 的特异的多核苷酸序列能用多种方法获得。例如,用本领域熟知的杂交技术分离多核苷酸。这些技术包括但不局限于: 1)用探针与基因组或 cDNA 文库杂交以检出同源的多核苷酸序列,和 2)表达文库的抗体筛选以检出具有共同结构特征的克隆的多核苷酸片段。

本发明的 DNA 片段序列也能用下列方法获得: 1) 从基因组 DNA 分离双链 DNA 序列; 2) 化学合成 DNA 序列以获得所述多肽的双链 DNA。

上述提到的方法中,分离基因组 DNA 最不常用。DNA 序列的直接化学合成是经常选用的方法。更经常选用的方法是 cDNA 序列的分离。分离感兴趣的 cDNA 的标准方法是从高表达该基因的供体细胞分离 mRNA 并进行逆转录,形成质粒或噬菌体 cDNA 文库。提取 mRNA 的方法已有多种成熟的技术,试剂盒也可从商业途径获得 (Qiagene)。而构建 cDNA 文库也是通常的方法 (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989)。还可得到商业供应的 cDNA 文库,如 Clontech 公司的不同 cDNA 文库。当结合使用聚合酶链反应技术时,即使极少的表达产物也能克隆。

可用常规方法从这些 cDNA 文库中筛选本发明的基因。这些方法包括(但不限于): (1) DNA-DNA 或 DNA-RNA 杂交; (2) 标志基因功能的出现或丧失; (3) 测定 BioHDEG1 转录本的水平; (4) 通过免疫学技术或测定生物学活性,来检测基因表达的蛋白产物。上述方

法可单用,也可多种方法联合应用。在第(1)种方法中,杂交所用的探针是与本发明的多核苷酸的任何一部分同源,其长度至少10个核苷酸,较好是至少3个核苷酸,更好是至少50个核苷酸,最好是至少100个核苷酸。此外,探针的长度通常在2000个核苷酸之内,较佳的为1000个核苷酸之内。此处所用的探针通常是在本发明的基因序列信息的基础上化学合成的 DNA 序列。本发明的基因本身或者片段当然可以用作探针。DNA 探针可用放射性同位素、荧光素或酶(如碱性磷酸酶)等进行标记。

在第(4)种方法中,检测 BioHDEG1 基因表达的蛋白产物可用免疫学技术如 Western 印迹法,放射免疫沉淀法,酶联免疫吸附法(ELISA)等。

应用 PCR 技术扩增 DNA/RNA 的方法(Saiki, et al. Science 1985;230:1350-1354) 被优选用于获得本发明的基因。特别是很难从文库中得到全长的 cDNA 时,可优选使用 RACE 法(RACE-cDNA 末端快速扩增法)。用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选择,并可用常规方法合成。可用常规方法如通过凝胶电泳分离和纯化扩增的 DNA/RNA 片段。

如上所述得到的本发明的基因或其各种 DNA 片段的核苷酸序列,可用常规方法如双脱氧链终止法(Sanger et al. PNAS, 1977, 74: 5463-5467)测定。这类多核苷酸序列测定也可用商业测序试剂盒。为了获得全长的 cDNA 序列,测序需反复进行。有时需要测定多个克隆的 cDNA 序列,才能拼接成全长的 cDNA 序列。

本发明也涉及包含本发明的多核苷酸的载体,以及用本发明的载体或直接用BioHDEG1 编码序列经基因工程产生的宿主细胞,以及经重组技术产生本发明所述多肽的方法。

本发明中,编码 BioHDEG1 的多核苷酸序列可插入到载体中,以构成含有本发明所述多核苷酸的重组载体。术语"载体"指本领域熟知的细菌质粒、噬菌体、酵母质粒、植物细胞病毒、哺乳动物细胞病毒如腺病毒、逆转录病毒或其它载体。在本发明中适用的载体包括但不限于:在细菌中表达的基于T7启动子的表达载体(Rosenberg, et al. Gene, 1987, 56:125);在哺乳动物细胞中表达的 pMSXND 表达载体(Lee and Nathans, J Bio Chem. 263:3521, 1988)和在昆虫细胞中表达的来源于杆状病毒的载体。总之,只要能在宿主体内复制和稳定,任何质粒和载体都可以用于构建重组表达载体。表达载体的一个重要特征是通常含有复制起始点、启动子、标记基因和翻译调控元件。

可用本领域的技术人员熟知的方法来构建含编码 BioHDEG1 的 DNA 序列和合适的转录/翻译调控元件的表达载体。这些方法包括体外重组 DNA 技术、DNA 合成技术、体内重组技术等(Sambroook, et al. Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989)。所述的 DNA 序列可有效连接到表达载体中的适

当启动子上,以指导 mRNA 合成。这些启动子的代表性例子有: 大肠杆菌的 lac 或 trp 启动子; λ 噬菌体的 PL 启动子; 真核启动子包括 CMV 立即早期启动子、HSV 胸苷激酶启动子、早期和晚期 SV40 启动子、反转录病毒的 LTRs 和其它一些已知的可控制基因在原核细胞或真核细胞或其病毒中表达的启动子。表达载体还包括翻译起始用的核糖体结合位点和转录终止子等。在载体中插入增强子序列将会使其在高等真核细胞中的转录得到增强。增强子是 DNA 表达的顺式作用因子,通常大约有 10 到 300 个碱基对,作用于启动子以增强基因的转录。可举的例子包括在复制起始点晚期一侧的 100 到 270 个碱基对的 SV40增强子、在复制起始点晚期一侧的多瘤增强子以及腺病毒增强子等。

此外, 表达载体优选地包含一个或多个选择性标记基因, 以提供用于选择转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、新霉素抗性以及绿色荧光蛋白(GFP), 或用于大肠杆菌的四环素或氨苄青霉素抗性等。

本领域一般技术人员都清楚如何选择适当的载体/转录调控元件(如启动子、增强子等)和选择性标记基因。

本发明中,编码 BioHDEG1 的多核苷酸或含有该多核苷酸的重组载体可转化或转导入宿主细胞,以构成含有该多核苷酸或重组载体的基因工程化宿主细胞。术语"宿主细胞"指原核细胞,如细菌细胞;或是低等真核细胞,如酵母细胞;或是高等真核细胞,如哺乳动物细胞。宿主细胞的代表性例子有:大肠杆菌,链霉菌属;细菌细胞如鼠伤寒沙门氏菌;真菌细胞如酵母;植物细胞;昆虫细胞如果蝇 S2 或 Sf9;动物细胞如 CHO、COS 或 Bowes 黑素瘤细胞等。

用本发明所述的 DNA 序列或含有所述 DNA 序列的重组载体转化宿主细胞可用本领域技术人员熟知的常规技术进行。当宿主为原核生物如大肠杆菌时,能吸收 DNA 的感受态细胞可在指数生长期后收获,用 CaCl₂法处理,所用的步骤在本领域众所周知。也可用 MgCl₂ 进行。如果需要,转化也可用电穿孔的方法进行。当宿主是真核生物,可选用如下的 DNA 转染方法:磷酸钙共沉淀法,或者常规机械方法如显微注射、电穿孔、脂质体包装等。

通过常规的重组 DNA 技术 (Science, 1984; 224: 1431), 利用本发明的多核苷酸序列可用来表达或生产重组的 BioHDEG1。一般来说有以下步骤:

- (1). 用本发明的编码人 BioHDEG1 的多核苷酸(或变异体), 或用含有该多核苷酸的 重组表达载体转化或转导合适的宿主细胞;
 - (2). 在合适的培养基中培养转化或转导的宿主细胞;
 - (3). 从培养基或细胞中分离、纯化蛋白质。

在步骤(2)中,根据所用的宿主细胞,培养中所用的培养基可选自各种常规培养基。在适于宿主细胞生长的条件下进行培养。当宿主细胞生长到适当的细胞密度后,用合适

的方法(如温度转换或化学诱导)诱导选择的启动子,将细胞再培养一段时间。

在步骤(3)中,重组多肽可包被于细胞内、或在细胞膜上表达、或分泌到细胞外。如果需要,可利用其物理的、化学的和其它特性通过各种分离方法分离和纯化重组的蛋白。这些方法是本领域技术人员所熟知的。这些方法包括但并不限于:常规的复性处理、蛋白沉淀剂处理(盐析方法)、离心、渗透破菌、超声波处理、超离心、分子筛层析(凝胶过滤)、吸附层析、离子交换层析、高效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。

本发明的多肽以及该多肽的拮抗剂、激动剂和抑制剂可直接用于疾病治疗。BioHDEG1 蛋白或多肽可做为药物治疗抑制生长蛋白 DEG1 功能低下或丧失所致的疾病。BioHDEG1 的拮抗剂可用来治疗或预防免疫紊乱,免疫紊乱包括但(不局限于):肾小球性肾炎、红斑狼疮、格雷夫氏病、糖尿病、贫血、肺气肿、胰腺炎、阿迪森氏症、骨关节炎、痛风、多发性肌炎、重症肌无力、血色素沉着症、遗传性过敏性皮炎、哮喘、支气管炎、自身免疫甲状腺炎等。与 BioHDEG1 特异性结合的抗体可直接用作拮抗剂,或间接以靶向或传递机制将药剂带到表达 BioHDEG1 的细胞或组织中。

BioHDEG1 的拮抗剂或片段或衍生物可用来治疗或预防线粒体功能紊乱引致的疾病,疾病包括(但并不局限于): 肌阵挛性癫痫、线粒体脑肌病、乳酸中毒症及相关综合症等。

BioHDEG1 的拮抗剂或片段或衍生物可用来治疗或预防癌症,癌症包括(但并不局限于): 腺癌、白血病、淋巴瘤、黑色素瘤、肉瘤等; 尤其是肾、膀胱、胰腺、骨、脑、乳腺、子宫、胆囊、肝、肺、甲状腺、食道、睾丸、皮肤、肠系膜等部位有关的癌症。与BioHDEG1 特异性结合的抗体可直接用作拮抗剂,或间接以靶向或传递机制将药剂带到表达 BioHDEG1 的细胞或组织中。BioHDEG1 的拮抗剂或片段或衍生物可用来治疗或预防癌症免疫紊乱。

本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂)BioHDEG1 的药剂的方法。激动剂提高 BioHDEG1 刺激细胞增殖等生物功能,而拮抗剂阻止和治疗与细胞过度增殖有关的紊乱如各种癌症。例如,在药物的存在下,将哺乳动物细胞与标记的 BioHDEG1 一起培养,然后测定药物提高或阻遏 BioHDEG1 作用的能力,从而鉴别出激动剂或拮抗剂。

BioHDEG1 的拮抗剂包括筛选出的抗体、化合物、受体缺失物和类似物等。BioHDEG1 的拮抗剂可以与 BioHDEG1 多肽结合并消除其功能,或是抑制该多肽的产生,或是与该多肽的活性位点结合使该多肽不能发挥生物学功能。

在筛选作为拮抗剂的化合物时,可以将 BioHDEG1 加入生物分析测定中,通过测定化合物对 BioHDEG1 和其受体之间相互作用的影响来确定化合物是否是拮抗剂。用上述筛

选化合物的同样方法,可以筛选出起拮抗剂作用的受体缺失物和类似物。能与 BioHDEG1 结合的多肽分子可通过筛选由各种可能组合的氨基酸结合于固相物组成的随机多肽库而获得。筛选时,一般应对 BioHDEG1 分子进行标记。

本发明提供了用多肽,及其片段、衍生物、类似物或它们的细胞作为抗原以生产抗体的方法。这些抗体可以是多克隆抗体或单克隆抗体。本发明还提供了针对 BioHDEG1 抗原决定簇的抗体。这些抗体包括(但不限于):多克隆抗体、单克隆抗体、嵌合抗体、单链抗体、Fab 片段和 Fab 表达文库产生的片段。

多克隆抗体的生产可用 BioHDEG1 直接注射免疫动物(如家兔,小鼠,大鼠等)的方法得到。有多种佐剂可用于增强免疫反应,其中包括但不限于弗氏佐剂等。制备 BioHDEG1 的单克隆抗体的技术包括(但不限于):杂交瘤技术(Kohler and Milstein. Nature, 1975, 256:495-497),三瘤技术,人 B-细胞杂交瘤技术,EBV-杂交瘤技术等。将人恒定区和非人源的可变区结合的嵌合抗体可用已有的技术生产(Morrison et al, PNAS, 1985, 81:6851)。而已有的生产单链抗体的技术(U.S. Pat No. 496778)也可用于生产抗 BioHDEG1 的单链抗体。

抗 BioHDEG1 的抗体可用于免疫组织化学技术中,检测活检标本中的 BioHDEG1。与BioHDEG1 结合的单克隆抗体也可用放射性同位素标记,注入体内可跟踪其位置和分布。这种放射性标记的抗体可作为一种非创伤性诊断方法用于肿瘤细胞的定位和判断是否有转移。

抗体还可用于设计针对体内某一特殊部位的免疫毒素。如 BioHDEG1 高亲和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋白, 红豆碱等)共价结合。一种通常的方法是用巯基交联剂如 SPDP, 攻击抗体的氨基,通过二硫键的交换,将毒素结合于抗体上,这种杂交抗体可用于杀灭 BioHDEG1 阳性的细胞。

本发明中的抗体可用于治疗或预防与 BioHDEG1 相关的疾病。给予适当剂量的抗体可以刺激或阻断 BioHDEG1 的产生或活性。

本发明还涉及定量和定位检测 BioHDEG1 水平的诊断试验方法。这些试验是本领域所熟知的,且包括 FISH 测定和放射免疫测定。试验中所检测的 BioHDEG1 水平,可以用作解释 BioHDEG1 在各种疾病中的重要性和用于诊断 BioHDEG1 起作用的疾病。

本发明的多肽还可用作肽谱分析。例如,多肽可用物理的、化学或酶进行特异性切割,并进行一维或二维或三维的凝胶电泳分析,更好的是进行质谱分析。

编码 BioHDEG1 的多核苷酸也可用于多种治疗目的。基因治疗技术可用于治疗由于BioHDEG1 的无表达或异常/无活性表达所致的细胞增殖、发育或代谢异常。重组的基因治疗载体(如病毒载体)可设计用于表达变异的 BioHDEG1, 以抑制内源性的 BioHDEG1 活

性。例如,一种变异的 BioHDEG1 可以是缩短的、缺失了信号传导功能域的 BioHDEG1, 虽可与下游的底物结合,但缺乏信号传导活性。因此重组的基因治疗载体可用于治疗 BioHDEG1 表达或活性异常所致的疾病。来源于病毒的表达载体如逆转录病毒、腺病毒、 腺病毒相关病毒、单纯疱疹病毒、细小病毒等可用于将编码 BioHDEG1 的多核苷酸转移至 细胞内。构建携带编码 BioHDEG1 的多核苷酸的重组病毒载体的方法可见于已有文献 (Sambrook, et al.)。另外重组编码 BioHDEG1 的多核苷酸可包装到脂质体中然后再转移 至细胞内。

多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内组织中; 或在体外通过载体(如病毒、噬菌体或质粒等)先将多核苷酸导入细胞中, 再将细胞移植到体内等。

抑制 BioHDEG1 mRNA 的寡核苷酸 (包括反义 RNA 和 DNA) 以及核酶也在本发明的范围之内。核酶是一种能特异性分解特定 RNA 的酶样 RNA 分子,其作用机制是核酶分子与互补的靶 RNA 特异性杂交后进行核酸内切作用。反义的 RNA 和 DNA 及核酶可用已有的任何RNA 或 DNA 合成技术获得,如固相磷酸酰胺化学合成法合成寡核苷酸的技术已广泛应用。反义 RNA 分子可通过编码该 RNA 的 DNA 序列在体外或体内转录获得。这种 DNA 序列已整合到载体的 RNA 聚合酶启动子的下游。为了增加核酸分子的稳定性,可用多种方法对其进行修饰,如增加两侧的序列长度,核糖核苷之间的连接应用磷酸硫酯键或肽键而非磷酸二酯键。

编码 BioHDEG1 的多核苷酸可用于诊断与 BioHDEG1 相关的疾病。编码 BioHDEG1 的多核苷酸可用于检测 BioHDEG1 的表达与否或在疾病状态下 BioHDEG1 的异常表达。如编码 BioHDEG1 的 DNA 序列可用于对活检标本进行杂交以判断 BioHDEG1 的表达状况。杂交技术包括 Southern 印迹法,Northern 印迹法、原位杂交等。这些技术方法都是公开的成熟技术,相关的试剂盒都可从商业途径得到。本发明的多核苷酸的一部分或全部可作为探针固定在微阵列(microarray)或 DNA 芯片(又称为"基因芯片")上,用于分析组织中基因的差异表达分析和基因诊断。用 BioHDEG1 特异的引物进行 RNA-聚合酶链反应(RT-PCR)体外扩增也可检测 BioHDEG1 的转录产物。

检测 BioHDEG1 基因的突变也可用于诊断 BioHDEG1 相关的疾病。BioHDEG1 突变的形式包括与正常野生型 BioHDEG1 DNA 序列相比的点突变、易位、缺失、重组和其它任何异常等。可用已有的技术如 Southern 印迹法、DNA 序列分析、PCR 和原位杂交检测突变。另外,突变有可能影响蛋白的表达,因此用 Northern 印迹法、Western 印迹法可间接判断基因有无突变。

本发明的序列对染色体鉴定也是有价值的。该序列会特异性地针对某条人染色体具

体位置且并可以与其杂交。目前,需要鉴定染色体上的各基因的具体位点。然而,现在只有很少的基于实际序列数据(重复多态性)的染色体标记物可用于标记染色体位置。根据本发明,为了将这些序列与疾病相关基因相关联,其重要的第一步就是将这些 DNA 序列定位于染色体上。

简而言之,根据 cDNA 制备 PCR 引物(优选 15-35bp),可以将序列定位于染色体上。 然后,将这些引物用于 PCR 筛选含各条人染色体的体细胞杂合细胞。只有那些含有相应 于引物的人基因的杂合细胞会产生扩增的片段。

体细胞杂合细胞的 PCR 定位法,是将 DNA 定位到具体染色体的快捷方法。使用本发明的寡核苷酸引物,通过类似方法,可利用一组来自特定染色体的片段或大量基因组克隆而实现亚定位。可用于染色体定位的其它类似策略包括原位杂交、用标记的流式分选的染色体预筛选和杂交预选,从而构建染色体特异的 cDNA 库。

将 cDNA 克隆与中期染色体进行荧光原位杂交(FISH),可以在一个步骤中精确地进行染色体定位。此技术的综述,参见 Verma 等, Human Chromosomes:a Manual of Basic Techniques, Pergamon Press, New York (1988)。

一旦序列被定位到准确的染色体位置,此序列在染色体上的物理位置就可以与基因图数据相关联。这些数据可见于例如,V. Mckusick, Mendelian Inheritance in Man(可通过与 Johns Hopkins University Welch Medical Library 联机获得)。然后可通过连锁分析,确定基因与业已定位到染色体区域上的疾病之间的关系。

接着, 测定患病和未患病个体间的 cDNA 或基因组序列差异。如果在一些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未观察到, 则该突变可能是疾病的病因。比较患病和未患病个体, 通常涉及首先寻找染色体中结构的变化, 如从染色体水平可见的或用基于 cDNA 序列的 PCR 可检测的缺失或易位。根据目前的物理作图和基因定位技术的分辨能力, 被精确定位至与疾病有关的染色体区域的 cDNA, 可以是 50 至 500个潜在致病基因间之一种(假定 1 兆碱基作图分辨能力和每 20kb 对应于一个基因)。

可以将本发明的多肽、多核苷酸及其模拟物、激动剂、拮抗剂和抑制剂与合适的药物载体(药学上可接受的载体)组合后使用。这些载体可以是水、葡萄糖、乙醇、盐类、缓冲液、甘油以及它们的组合。组合物包含安全有效量的本发明多肽或拮抗剂以及不影响药物效果的载体和赋形剂。这些组合物可以作为药物用于疾病治疗。

本发明还提供含有一种或多种容器的药盒或试剂盒,容器中装有一种或多种本发明的药用组合物成分。与这些容器一起,可以有由制造、使用或销售药品或生物制品的政府管理机构所给出的指示性提示,该提示反映出生产、使用或销售的政府管理机构许可其在人体上施用。此外,本发明的多肽可以与其它的治疗化合物结合使用。

药物组合物可以以方便的方式给药,如通过局部、静脉内、腹膜内、肌内、皮下、 鼻内或皮内等的给药途径。BioHDEGI 以有效地治疗和/或预防具体的适应症的量来给药。 施用于患者的 BioHDEGI 的量和剂量范围将取决于许多因素,如给药方式、待治疗者的健 康条件和诊断医生的判断。

在本发明的一个实例中,提供了一种分离的多核苷酸,它编码具有 SEQ ID NO: 2 所示氨基酸序列的成熟多肽。该多核苷酸是从人胎脑组织的 cDNA 文库中发现的,多核苷酸序列全长为 1153 个碱基,其开放读框 (277-1023) 编码了 248 个氨基酸。根据氨基酸序列同源比较发现,此多肽与 Saccharomyces cerevisiae 的抑制生长蛋白 DEG1 有 46%的同源性,由此推断本发明新的人 BioHDEG1 具有抑制生长蛋白 DEG1 基因家族相似的结构和功能。

本发明所提供的人 BioHDEG1 的 cDNA、寡聚核苷酸、多肽及抗体等,对于研究不同组织和细胞中抑制生长蛋白 DEG1 的作用、诊断抑制生长蛋白 DEG1 失调的相关性疾病、筛选抑制剂或药物治疗这些疾病有重要价值。

此外,由于本发明的人 BioHDEG1 蛋白具有源自人的天然氨基酸序列,因此,与来源于其他物种的同族蛋白相比,预计在施用于人时将具有更高的活性和/或更低的副作用(例如在人体内的免疫原性更低或没有)。

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室手册(New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件,或按照制造厂商所建议的条件。

实施例 1: BioHDEG1 cDNA 的克隆

用异硫氰酸胍/酚/氯仿一步法提取人胎脑总 RNA。用 Quick mRNA 分离试剂盒 (Qiegene 公司产品)从总 RNA 中分离 poly(A) mRNA。2ug poly(A) mRNA 经逆转录形成 cDNA。用 Smart cDNA 克隆试剂盒(购自 Clontech)将 cDNA 片段定向插入到 pBSK(+)载体(Clontech 公司产品)的多克隆位点上,转化 DH5α细菌形成 cDNA 文库。用染料终止循环反应测序试剂盒(Perkin-Elmer 公司产品)和 ABI 377 自动测序议(Perkin-Elmer 公司)测定所有克隆的 5'和 3'末端的序列。将测定的 cDNA 序列与己有的公共 DNA 序列数据库(Genbank)进行比较,结果发现其中一个克隆(0189b06)的 cDNA 序列为新的 DNA。通过合成一系列引物对该克隆所含的插入 cDNA 片段进行双向测定。结果表明,0189b06 克隆所含的全长 cDNA 为 1153bp(如 SEQ ID NO:1 所示),从第 277bp 至 1023bp 有一个 747bp 的

开放阅读框架(ORF),编码一个新的蛋白质(如 SEQ ID NO: 2 所示)。此克隆被命名为pBS-0189b06,其编码的蛋白质命名为人抑制生长蛋白 DEG1(简称为"BioHDEG1")。

实施例2: cDNA 克隆的同源检索

将本发明的人BioHDEG1基因的核苷酸序列及其编码的蛋白序列,用Blast程序(Basic local Alignment search tool) [Altschul, SF et al. J. Mol. Biol. 1990; 215: 403-10],在Genbank、 Swissport等数据库进行同源检索。与本发明的人BioHDEG1基因同源性最高的基因是一种已知的Saccharomyces cerevisiae的抑制生长蛋白DEG1的基因,其编码的蛋白在Genbank的准入号为S14145。蛋白质同源比较结果示于图1,两者高度同源,其相同性为46%;相似性为64%。这表明,本发明的新多肽具有抑制生长蛋白DEG1的结构和功能。

实施例 3: 用 RT-PCR 方法克隆 BioHDEG1 基因

用胎脑细胞总RNA为模板,以oligo-dT为引物进行逆转录反应合成cDNA,用Qiagene的试剂盒纯化后,用下列引物进行PCR扩增:

引物 1: 5'-GGGAAACGCGGCGCGCGGCCGG -3' (SEQ ID NO. 3)

引物 2: 5'-CCTTTTCTGTCCACCTACCA -3' (SEQ ID NO. 4)

引物1对应于SEQ ID NO: 1的5'端的第1bp开始的正向序列;引物2对应于SEQ ID NO:1中的3'端反向序列。

扩增反应的条件:在50μl的反应体积中含有50mmo1/L KC1,10mmo1/L Tris-C1,(pH8.5),1.5mmo1/L MgC1₂,200μmo1/L dNTP, 10pmo1引物,1U的Taq DNA聚合酶(C1ontech公司产品)。在PE9600型DNA热循环仪(Perkin-Elmer公司)上按下列条件反应25个周期:94℃ 30sec;55℃,30sec;72℃ 2min。在RT-PCR时同时设β-肌动蛋白为阳性对照和模板空白为阴性对照。扩增产物用QIAGEN公司的试剂盒纯化,用TA克隆试剂盒连接到pCR载体上(Invitrogen公司产品)。DNA序列分析结果表明,PCR产物的DNA序列与SEQ ID NO:1所示的1-1153bp完全相同。

实施例 4: Northern 印迹法分析 BioHDEG1 基因的表达:

用一步法提取总 RNA [Anal. Biochem 1987, 162, 156-159]。该法包括酸性硫氰酸 胍苯酚-氯仿抽提。即用 4M 异硫氰酸胍-25mM 柠檬酸钠, 0.2M 乙酸钠 (pH4.0) 对组织进行 匀浆, 加入 1 倍体积的苯酚和 1/5 体积的氯仿-异戊醇 (49: 1), 混合后离心。吸出水相

层,加入异丙醇(0.8 体积)并将混合物离心得到 RNA 沉淀。将得到的 RNA 沉淀用 70%乙醇 洗涤,干燥并溶于水中。

用 $20\mu g$ RNA,在含 20mM 3-(N-吗啉代) 丙磺酸 (pH7.0)-5mM 乙酸钠-1mM EDTA-2. 2M 甲醛的 1.2% 琼脂糖凝胶上进行电泳。然后转移至硝酸纤维素膜上。用 α -32P dATP 通过随机引物法制备 32P-标记的 DNA 探针。所用的 DNA 探针为 SEQ 1 所示的 PCR 扩增的 BioHDEG1 编码区序列 (277bp 至 1023bp)。将 32P-标记的探针 $(9 2\times10^6 cpm/m1)$ 与转移了 RNA 的硝酸纤维素膜在溶液中于 42 C 杂交过夜,该溶液包含 50% 甲酰胺 -25mM KH, PO_4 $(pH7.4)-5\times SSC-5\times Denhardt's 溶液和 <math>200\mu g/m1$ 鲑精 DNA。杂交之后,将滤膜在 $1\times SSC-0.1\% SDS$ 中于 55 C 洗 30min。然后,用 Phosphor Imager 进行分析和定量。

实施例 5: 重组 BioHDEG1 的体外表达、分离和纯化

根据 SEQ ID NO:1 的编码区序列(15-1023 位),设计出一对特异性扩增引物,序列如下:

引物 3: 5'- CCCGAATTCATGGATTATGCAGCTCAGAA -3' (SEQ ID No 5)

引物 4: 5'- CCCGCGGCCGCCTAGTGTGTCATTACAGTCC-3' (SEQ ID No 6)

此两段引物的 5' 端分别含有 EcoRI 和 NotI 酶切位点,其后分别为目的基因 5' 端和 3'端的编码序列, EcoRI 和 NotI 酶切位点相应于表达载体质粒 pET-28b(+)(Novagen 公 司产品, Cat. No. 69865. 3)上的选择性内切酶位点。以含有全长目的基因的 pBS-0189b06 质粒为模板, 进行 PCR 反应。PCR 反应条件为: 总体积 50μl 中含 pBS-0189b06 质粒 10pg、 引物 3 和引物 4 分别为 10pmmol 、Advantage polymerase Mix (Clontech 公司产品)lμl。 循环参数: 94 ℃ 20s, 60 ℃ 30s, 68 ℃ 2 min, 共 25 个循环。用 EcoRI 和 NotI 分 别对扩增产物和质粒 pET-28(+)进行双酶切, 分别回收大片段,并用 T4 连接酶连接。连 接产物转化用氯化钙法大肠杆细菌 DH5α, 在含卡那霉素(终浓度 30μg/ml)的 LB 平板培 养过夜后,用菌落 PCR 方法筛选阳性克隆,并进行测序。挑选序列正确的阳性克隆(pET-0189b06)用氯化钙法将重组质粒转化大肠杆菌 BL21 (DE3) plySs (Novagen 公司产品)。在 含卡那霉素(终浓度 30µg/ml)的 LB 液体培养基中,宿主菌 BL21(pET-0189b06)在 37℃培 养至对数生长期,加入 IPTG 至终浓度 1mmol/L,继续培养 5 小时。离心收集菌体,经超 声波破菌, 离心收集上清, 用能与 6 个组氨酸(6His-Tag)结合的亲和层析柱 His. Bind Quick Cartridge (Novagen 公司产品)进行层析,得到了纯化的目的蛋白 BioHDEG1。经 SDS-PAGE 电泳, 在 27kDa 处得到一单一的条带。将该条带转移至 PVDF 膜上用 Edams 水 解法进行 N-端氨基酸序列分析, 结果 N-端 15 个氨基酸与 SEQ ID NO:2 所示的 N-端 15 个氨基酸残基完全相同。

实施例 6: 抗 BioHDEG1 抗体的产生

用多肽合成仪(PE 公司产品)合成下述 BioHDEG1 特异性的多肽: Met-Asp-Tyr-Ala- Ala-Gln-Lys-Tyr-Val-Gly-Thr-His-Asp-Phe-Arg (SEQ ID NO:7)。将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复合物,方法参见: Avrameas, et al. Immunochemistry, 1969; 6:43。用 4mg 上述血蓝蛋白多肽复合物加上完全弗氏佐剂免疫家兔,15 天后再用血蓝蛋白多肽复合物加不完全弗氏佐剂加强免疫一次。采用经 15μg/ml 牛血清白蛋白多肽复合物包被的滴定板做 ELISA 测定兔血清中抗体的滴度。用蛋白 A-Sepharose 从抗体阳性的家兔血清中分离总 IgG。将多肽结合于溴化氰活化的 Sepharose 4B 柱上,用亲和层析法从总 IgG 中分离抗多肽抗体。免疫沉淀法证明纯化的抗体可特异性地与 BioHDEG1 结合。

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用 作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对 本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

序列表

(1)一般信息:

(i) 发明名称:新的人抑制生长蛋白及其编码序列

(ii)序列数目: 7

(2) SEQ ID NO: 1 的信息:

(i)序列特征:

(A) 长度: 1153bp

(B) 类型: 核酸

(C)链性:双链

(D) 拓扑结构:线性

(ii)分子类型: cDNA

(iii) 序列描述: SEQ ID NO: 1:

- 1 GGGAAACGCGGCGCGGCCGGCTGCCGGAAAGTGATCTCACTTGACCTTCGCTCTCAGTTT
- 61 CCAAGGGGCAGGATTCCGAGGACTTTAATGTAAAAGAGGAGGCTAATGCTGCTGCTGAA
- 121 GAGATCOGTTATACCCACATTCTCAATCGGGTACTCCCTCCAGACATCCGTATATTGGCC
- 181 TGGGCCCCTGTAGAACCAAGCTTCAGTGCTAGGTTCAGCTGCCTTGAGCGGACTTACCGC
- 241 TATTTTTCCCTCGTGCTGATTTAGATATTGTAACCATGGATTATGCAGCTCAGAAGTAT
- 301 GTTGGCACCCATGATTTCAGGAACTTGTGTAAAATGGATGTAGCCAACGGTGTGATTAAT
- 361 TTTCAGAGGACTATTCTATCTGCTCAAGTACAGCTAGTGGGCCAGAGCCCAGGTGAGGGG
- 421 AGATGGCAAGAACCTTTCCAGTTATGTCAGTTTGAAGTGACTGGCCAGGCATTCCTTTAT
- 481 CATCAAGTCCGATGTATGATGGCTATCCTCTTTCTGATTGGCCAAGGAATGGAGAAGCCA
- 541 GAGATTATTGATGAGCTGCTGAATATAGAGAAAAATCCCCAAAAGCCTCAATATAGTATG
- 601 GCTGTAGAATTTCCTCTAGTCTTATATGACTGTAAGTTTGAAAATGTCAAGTGGATCTAT
- 661 GACCAGGAGGCTCAGGAGTTCAATATTACCCACCTACAACAACTGTGGGCTAATCATGCT
- 721 GTCAAAACTCACATGTTGTATAGTATGCTACAAGGACTGGACACTGTTCCAGTACCCTGT
- 781 GGAATAGGACCAAAGATGGATGGAATGACAGAATGGGGAAATGTTAAGCCCTCTGTCATA
- 841 AAGCAGACCAGTGCCTTTGTAGAAGGAGTGAAGATGCGCACATATAAGCCCCTCATGGAC
- 901 CGTCCTAAATGCCAAGGACTGGAATCCCGGATCCAGCATTTTGTAGTAGGGGACGAATTG
- 961 AGCACCCACATTTATTCCATGAGGAAGAAACAAAAGCCAAAAGGGACTGTAATGACACAC
- 1021 TAGAGGAAGACAATACTAATTTGGAGACACCAACGAAGAGGGTCTGTGTTGACACAGAAA
- 1081 TTAAAAGCATCATTTAACCATAGACAATTTGCCAGGATCTAGGAACCACCTAATGGTAGG
- 1141 TGGACAGAAAAGG
 - (2) SEQ ID NO: 2的信息:

- (i)序列特征:
 - (A) 长度: 248 个氨基酸
 - (B) 类型: 氨基酸
 - (D) 拓扑结构:线性
- (ii)分子类型:多肽
- (iii) 序列描述: SEQ ID NO: 2:

```
1 Met Asp Tyr Ala Ala Gln Lys Tyr Val Gly Thr His Asp
                                                                Phe Arg
                                                                    G1n
                              Val
                                   Ala Asn Gly
                                                 Val
                                                      Ile Asn
                                                                Phe
                          Asp
16 Asn
            Cys
                Lys
                     Met
                                                      Gly
                                                           Gln Ser Pro
                                        Gln Leu
                                                 Val
        Thr
            Ile
                Leu
                      Ser
                          Ala Gln
                                   Val
31 Arg
                                                                    Glu
                                             Gln
                                                 Leu
                                                           Gln Phe
        Glu Gly Arg
                      Trp
                          Gln Glu
                                   Pro
                                        Phe
                                                      Cys
46 Gly
                                                                Met
                                        His Gln
                                                 Val
                                                      Arg Cys
                      Ala
                          Phe Leu
                                   Tyr
61 Val
        Thr
           G1y
                 Gln
                          Ile Gly
                                    Gln
                                        G<sub>1</sub>y
                                             Met
                                                 Glu
                                                      Lys
                                                           Pro
                                                               Glu
                                                                    Ile
76 Ala
        Ile Leu Phe
                      Leu
                                                                    G1n
                     Leu Asn Ile
                                    G1u
                                        Lys
                                             Asn
                                                 Pro
                                                       Gln
                                                           Lvs
91 Ile
        Asp Glu Leu
                                                      Tyr
                                                           Asp
                                                                Cys Lys
                          Glu Phe
                                   Pro
                                        Leu
                                             Val
                                                  Leu
106 Tyr
        Ser
            Met Ala
                      Val
                                                           Gln Glu Phe
                                                  Glu
                                                       Ala
                               Ile
                                    Tyr
                                        Asp
                                             Gln
121 Phe
        Glu
            Asn
                Val
                     Lys
                          Trp
                                                           Ala
                                             Ala
                                                 Asn
                                                       His
                                                               Val
        Ile
            Thr His
                      Leu
                          Gln
                               Gln
                                    Leu
                                        Trp
136 Asn
                                                               Val Pro
                                        Gln
                                             Gly
                                                  Leu
                                                       Asp
                                                           Thr
151 Thr His Met Leu
                      Tyr
                          Ser Met
                                    Leu
                G<sub>1</sub>y
                      Ile
                          G1 y
                               Pro
                                   Lys
                                        Met
                                             Asp
                                                 Gly
                                                       Met
                                                           Thr
                                                               Glu
166 Val
        Pro Cys
                                                           Ala Phe
                                                                     Val
                                             Gln
                                                  Thr
                                                       Ser
181 Gly
        Asn
            Val
                Lys
                      Pro
                           Ser
                               Val
                                    Ile
                                        Lys
                                        Lys Pro
                                                                     Pro
                                                 Leu Met
                                                           Asp
                                                               Arg
196 Glu
        Gly
            Val Lys
                     Met
                           Arg
                               Thr
                                    Tyr
                                             Gln His Phe
                                                           Val
                                                                Val Gly
                 Gly
                                    Arg
                                        Ile
211 Lys
        Cys
            Gln
                      Leu
                           Glu
                               Ser
                                        Ser Met Arg Lys Lys Gln Lys
226 Asp
                 Ser
                      Thr
                           His
                               Ile
                                    Tyr
        G1u
            Leu
                Thr
                     Val
                               Thr
241 Pro Lys Gly
                           Met
                                   His
```

- (2) SEQ ID NO: 3 的信息
 - (i)序列特征
 - (A)长度: 20 个碱基
 - (B) 类型: 核酸
 - (C) 链性: 单链
 - (D) 拓扑结构:线性
 - (ii)分子类型: 寡核苷酸
- (iii)序列描述: SEQ ID NO: 3:

GGGAAACGCGGCGGCCGG

20

- (2) SEQ ID NO: 4 的信息
 - (i)序列特征
 - (A) 长度: 20 个碱基

- (B)类型:核酸
- (C)链性: 单链
- (D) 拓扑结构: 线性
- (ii)分子类型: 寡核苷酸
- (iii)序列描述: SEQ ID NO: 4:

CCTTTCTGTCCACCTACCA

20

- (2) SEQ ID NO: 5的信息
 - (i)序列特征
 - (A) 长度: 29 个碱基
 - (B) 类型: 核酸
 - (C) 链性: 单链
 - (D) 拓扑结构: 线性
 - (ii)分子类型: 寡核苷酸
- (iii)序列描述: SEQ ID NO: 5;

CCCGAATTCATGGATTATGCAGCTCAGAA

29

- (2) SEQ ID NO: 6的信息
 - (i)序列特征
 - (A)长度: 31 个碱基
 - (B) 类型: 核酸
 - (C)链性: 单链
 - (D) 拓扑结构:线性
 - (ii)分子类型: 寡核苷酸
 - (iii)序列描述: SEQ ID NO: 6:

CCCGCGCCCCTAGTGTGTCATTACAGTCC

31

- (2) SEQ ID NO:7 的信息:
 - (i)序列特征:
 - (A) 长度: 15 个氨基酸
 - (B) 类型: 氨基酸
 - (D) 拓扑结构:线性

(ii)分子类型:多肽

(iii)序列描述: SEQ ID NO: 7:

Met Asp Tyr Ala Ala Gin Lys Tyr Val Gly Thr His Asp Phe Arg

15

1 MDYAAQKYVGTHDFRNLCKMDVANGVINFQRTILSAQVQLVGQSPGEGRWQEPFQLCQFE 60 BioHDEG1: M AA +VG DFRN CK+D + + NF+RTI+S+++ + EF CF+ 236 MSKAASYFVGERDFRNFCKLDGSKQITNFKRTIISSKILPLS--ETFY-C-FD 284 S14145: 61 VTGQAFLYHQVRCMMAILFLIGQGMEKPEIIDELLNIEKNPQKPQYSMAVEFPLVLYDCK 120 BioHDEG1: + G AFL+HQVRCMMAILFL+GQ +E PEI+ L +IEK PQ+P Y MA + PL+LYDCK 285 LVGSAFLWHQVRCMMAILFLVGQSLEVPEIVLRLTDIEKTPQRPVYEMANDIPLLLYDCK 344 S14145: 121 FENVKW----IYDQEAQEFNITHLQQLWANHAVK 150 BioHDEG1: + D +A +P T + L ++ +K 345 FPEMDWQEPTVDDYKAIKFT-TATEALTLHYELK 377 \$14145: BioHDEG1; 本发明的人抑制生长蛋白 BioHDEG1

明

说

S14145 ; Saccharomyces cerevisiae 的抑制生长蛋白 DEG1

图 1

Novel human growth arrestin and coding sequ nce ther of

Patent Number:

CN1296014

Publication date:

2001-05-23

Inventor(s):

MAO YUMIN (CN); XIE YI (CN)

Applicant(s):

SHANGHAI SHENGYUAN GENE DEV CO (CN)

Requested Patent: CN1296014

Application

Number:

CN19990119986 19991111

Priority Number

(s):

CN19990119986 19991111 ·

IPC Classification: C07K14/47; C07K16/18; C07H21/00; C12P21/00; C12N15/12; C12N15/63; G01N33/68;

C12Q1/68; A61K38/17

EC Classification:

Equivalents:

Abstract

The present invention discloses a novel human depressed growth-rate protein DEG1, called "BioHDEG1" for short, polynucleotide for coding said polypeptide and method for producing this polypeptide by using recombination technology. Said invention also discloses a method for curing several diseases of mitochondrial dysfunction, immunologic dysfunction and cancers by using said polypeptide and polynucleotide. Said invention also discloses an antagonist for resisting said polypeptide and its medical effect. It also discloses the diagnostic testing method based on identification of mutation in said mucleic acid sequence and horizontal change of said polypeptide expression, and also discloses the application of the polynucleotide to coding this novel BioHDEG1.

Data supplied from the esp@cenet database - 12