

(MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting)

四川大学, AAAI2024

报告时间 2024.6.14

研究方向 时间序列

TimesNet, 2023ICLR

序列内、序列间相关性

TimesNet

MSGNet ScaleGraph Adp Block Reshape GLayer₁ Multi-Head ScaleGraph Attention Scale₁ Block Laver Reshape FFT SoftMax Embedding Back Input

ICLR-2023, 清华THUML

四川大学, AAAI2024

- Time points
- Time points in a scale
 Series

《Water-wave Information Transmission and Recurrent Acceleration Network for Long-range Time Series Forecasting》 北京交通大学, NeurIPS 2023

报告时间 2024.6.14

研究方向 时间序列

任务: 使用更长的历史序列作为输入

全局和局部相关性: 短期变化和长期趋势

不同尺度上的周期性语义信息

Table 1: Advantages of WITRAN compared to other methods.

Advantages	(a) RNN	(b) CNN	(c) Full Attention	(d) LogTrans	(e) Pyraformer	(f) MICN	(g) PatchTST	(h) TimesNet	(i) WITRAN (ours)
Non point-wise semantic information capture	/	/	×	/	1	1	/	/	/
Special design to capture long-term repetitive patterns	×	×	×	×	✓	×	X	1	/
Efficiently (1 or 2 layers) model global correlations	√ (1)	×	√ (1)	×	X	√ (2)	√ (2)	×	√ (1)
Well solve the gradient vanishing/exploding problem of RNN	×	_	-	_	_	_	-	_	/

1) Transformer, informer, 不依赖逐点信息, 考虑周期性信息 (Autoformer, Pyraformer)

Methods	RNN	CNN	Transformer	LogTrans	Informer	Autoformer	Pyraformer	FEDformer	FiLM	PatchTST	MICN	WITRAN (ours)
Time	$\mathcal{O}(L)$	$\mathcal{O}(L)$	$\mathcal{O}(L^2)$	$\mathcal{O}(L \log L)$	$\mathcal{O}(L \log L)$	$\mathcal{O}(L \log L)$	$\mathcal{O}(L)$	$\mathcal{O}(L)$	$\mathcal{O}(L)$	$\mathcal{O}((L/S)^2)$	$\mathcal{O}(L)$	$\mathcal{O}(\sqrt{L})$
Memory	$\mathcal{O}(L)$	$\mathcal{O}(L)$	$\mathcal{O}(L^2)$	$\mathcal{O}(L^2)$	$\mathcal{O}(L \log L)$	$\mathcal{O}(L \log L)$	$\mathcal{O}(L)$	$\mathcal{O}(L)$	$\mathcal{O}(L)$	$\mathcal{O}((L/S)^2)$	$\mathcal{O}(L)$	$\mathcal{O}(L)$

水波纹信息传输WIT

- 1) 输入序列根据自然周期进行排列
- 2) 在水平和垂直两个方向上分别结合门控选择单

TimesNet用的傅里叶提取周期,

WITran用的自然周期

$$\mathbf{X}_{\mathrm{1D}} \in \mathbb{R}^{T \times C}.$$

$$\mathbf{A} = \mathrm{Avg}\left(\mathrm{Amp}\left(\mathrm{FFT}(\mathbf{X}_{\mathrm{1D}})\right)\right), \ \{f_{1}, \cdots, f_{k}\} = \underset{f_{*} \in \{1, \cdots, [\frac{T}{2}]\}}{\mathrm{arg}} \left(\mathbf{A}\right), \ p_{i} = \left\lceil \frac{T}{f_{i}} \right\rceil, i \in \{1, \cdots, k\}.$$

$$\{p_{1}, \cdots, p_{k}\}._{k}\},$$

循环加速网络 (RAN)

3) 并行处理两个方向的信息传输。O(L)内存复杂度,O(根号L)的时间复杂度

TimesNet转到2维度之后用卷积来做, WITRAN用的RNN来做

Figure 3: Overall structure of WITRAN.

序列重排:一维到二维

$$X_{\text{1D}} \in \mathbb{R}^{H \times c_{\text{in}}}$$
 $TF_{\text{en}} \in \mathbb{R}^{H \times c_{\text{time}}}$

HourOfDay, DayOfWeek, DayOfMonth and DayOfYear)

$$X_{1D} = \begin{cases} X &, norm = 0 \\ X - x_H &, norm = 1 \end{cases}$$
$$X_{2D} = \text{Rearrange}([X_{1D}, TF_{\text{en}}]),$$
$$X_{2D} \in \mathbb{R}^{R \times C \times (c_{\text{in}} + c_{\text{time}})}$$

$$X_{1D} = \begin{cases} X & ,norm = 0 \\ X - x_H & ,norm = 1 \end{cases}$$
$$X_{2D} = \text{Rearrange}([X_{1D}, TF_{\text{en}}]),$$

减去最后一个时间点的值

训练集和预测集分布差异不明显时,说明两组数据的波动是相似的norm是0

Table 10: The distribution of data in the training and validation sets (Mean and STD) and the value of *norm*.

Datasets		ECL		Traffic			ETTh1			ETTh2			Weather		
Tasks	training set	validation set	norm	training set	validation set	norm	training set	validation set	norm	training set	validation set	norm	training set	validation set	norm
168-168 168-336	3425.733±564.8776 3427.480±566.9556	3036.397±388.2128 3036.291±388.0110		0.029±0.0170 0.029±0.0170	0.034±0.0201 0.035±0.0202		16.880±8.2921 16.606±8.0735	6.667±4.1794 6.258±3.8462		28.959±12.0653 28.767±12.0604	18.680±9.0427 17.922±8.5800		0.500±6.6321 0.536±6.6444	1.143±7.7659 1.017±7.8162	
336-336 336-720 720-720	3428.455±569.1108 3434.150±573.2660 3437.773±578.4705	3036.291±388.0110 3037.919±387.2758 3037.919±387.2758	0	0.029±0.0170 0.029±0.0170 0.029±0.0170	0.035±0.0202 0.035±0.0203 0.035±0.0203	1	16.207±7.5364 15.446±6.6217 14.832±5.9927	6.258±3.8462 5.583±3.4658	1	28.434±11.8740 27.774±11.6120 27.111±11.3299	17.922±8.5800	0	0.585±6.6409 0.700±6.6410 0.825±6.6270	1.017±7.8162 0.721±7.9234 0.721±7.9234	0
720-1440 1440-1440 1440-2880	3439.817±586.5029 3452.135±594.6857 3458.328±610.2118	3046.877±397.7761 3046.877±397.7761 3093.128±446.4128	0	0.029±0.0170 0.029±0.0169 0.029±0.0171	0.035±0.0204 0.035±0.0204 0.036±0.0208	1	14.044±5.5077 13.722±5.5456 14.195±5.5780	4.273±2.7600 4.273±2.7600 2.623±2.5005	1	26.403±11.4257 26.355±11.8918 28.303±12.1275	13.646±6.5725 13.646±6.5725 9.130±5.5363	1	0.978±6.6791 1.029±6.7679 0.725±6.8812	-0.547±7.5174 -0.547±7.5174 -3.859±5.5129	0

分析时序的自然周期C,做序列重排 L=R行*C列 L能被C整除避免了padding的出现 C-12,24,48......

$$\begin{aligned} h_{r,\ c,\ l}^{\text{hor}} &= \text{GSC}_{\text{hor}}(input_{r,\ c,\ l}, h_{r,\ c-1,\ l}^{\text{hor}}, h_{r-1,\ c,\ l}^{\text{ver}}) \\ h_{r,\ c,\ l}^{\text{ver}} &= \text{GSC}_{\text{ver}}(input_{r,\ c,\ l}, h_{r-1,\ c,\ l}^{\text{ver}}, h_{r,\ c-1,\ l}^{\text{hor}}) \\ o_{r,\ c,\ l} &= [h_{r,\ c,\ l}^{\text{hor}}, h_{r,\ c,\ l}^{\text{ver}}], \end{aligned}$$

主隐藏态, 副隐藏态

循环加速网络RAN

(b) HVGSU structure

数据点并行运算

切片长度=R+C-1

(c) RAN structure

固定预测长度变化输入长度

《First De-Trend then Attend: Rethinking Attention for Time-Series Forecasting》 NeurIPS 2022, 亚马逊AI实验室

报告时间 2024.6.14

研究方向 时间序列

基于attention和Transformer的时间序列预测模型

- 1) 时域 (informer)
- 2) 傅里叶频域 (FEDformer)
- 3) 小波变换频域

$$Attention(Q, K, V) = Softmax(\frac{Q \cdot K^{T}}{\sqrt{d_{k}}}) \cdot V$$

$$\mathbf{o}(\mathbf{q},\mathbf{k},\mathbf{v}) = \mathcal{F}^{-1}\Big(\sigma\big(\mathcal{F}(\mathbf{q})\overline{\mathcal{F}(\mathbf{k}})^T/\sqrt{d_q}\big)\mathcal{F}(\mathbf{v})\Big).$$

$$\mathbf{o}(\mathbf{q}, \mathbf{k}, \mathbf{v}) = \mathcal{W}^{-1} \Big(\sigma \left(\mathcal{W}(\mathbf{q}) \mathcal{W}(\mathbf{k}^T) / \sqrt{d_q} \right) \mathcal{W}(\mathbf{v}) \Big).$$

Fourier Domain

softmax的极化作用能够 更好利用季节性数据

(b) $\sin(x)$ Freq

(c) $\sin(x)$ Linear

(d) sin(x) Softmax

Table 1: MSE and MAE of attention models and MLP with linear-trend data.

Metric	Time	Fourier	Wavelet	MLP		
MSE	3.157 ± 0.435	8.567 ± 0.487	2.327 ± 0.689	0 ± 0		
MAE	1.741 ± 0.121	2.880 ± 0.073	1.477 ± 0.239	0.006 ± 0.003		

(i) Trend Time

(j) Trend Freq

(k) Trend Linear

(1) Trend Softmax

MLP能够更好利用趋势数据

(m) Spike Time

(n) Spike Freq

傅里叶变化对尖峰数据 的鲁棒性强

(b) Attention Models

对于周期性强的数据, 傅里叶频域变换效果更好

主要贡献

- 1) 证明在线性条件下, 时域、傅里叶、小波变换的注意模型有相同的表征能力
- 2) 考虑softmax的非线性

(i) Trend Time

(m) Spike Time

(a) sin(x) Time

(e) Vary Time

(b) Past Decomposable Mixing (c) Future Multipredictor Mixing (a) Multiscale Time Series Lx Seasonal Mixing Predictor Bottom-up # Decomposition whom Feed Forward Predictor Down-Sampling Predictor Top-down Prediction Predictor Trend Mixing Input Series

- 趋势项用MLP, Revin (去除序列中的非平稳项)
- 季节项用傅里叶频域注意力