MAJOR PROJECT

LOAN PREDICTION DATASET

Project by **Meet Vijay Raychura**Data Science

Task 1:

You are provided with a loan sanction dataset where you will have to identify whether the loan of a particular person is approved or not depending on the information the individual has provided.

The dataset consists of the following attributes:

Atrribute

Loan_id
Gender
Married
Dependents
Education

Self-employed
ApplicantIncome
CoapplicantIncome
LoanAmount
Loan_Amount_Term
Credit_history

Significance

Unique loan Id

Male/female
Applicant married (Y/N)
Number of dependents
Applicant education
(Graduate/ Under
graduate)
Self employed (Y/N)
Applicant income
Coapplicant income
Loan amount in thousands
Term of loan in months
Credit history meet
guidelines

Property_area
Loan status

Urban / Semi urban / Rural Loan approved (Y/N)

Steps for you to follow:

- Import all the necessary libraries
- Import the dataset provided
- Understand the data
- Deal with the missing values if any
- Do some visualization if necessary
- Divide the dataset into training and test datasets
- Build the machine learning model which ever is suitable for the dataset
- Fit the model on the training dataset
- Test the model and find the accuracy of the model on the test and the training datasets
- Create a confusion matrix

At last, draw conclusions based on the dataset provided and document the same on the jupyter notebook Most importantly, please comment the usefulness of each cell.

Task-2

On the same dataset draw conclusions from the dataset and create a tableau dashboard for the same.

Task-1

```
#Import dataframe from csv file.
import pandas as pd

df = pd.read_csv("/content/loan.csv")
df

#DATA PRE-PROCESSING

#Remove unnecessary columns

df = df.drop(['Loan_ID'], axis='columns')
```

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
0	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban	Y
1	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
2	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Y
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Υ
4	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Υ
	22.		122	ii.	V.	70	11	117	117	1.2	W	
609	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0	Rural	Υ
610	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0	Rural	Y
611	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0	Urban	Y
612	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0	Urban	Y
613	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0	Semiurban	N

614 rows x 12 columns

#DATA PRE-PROCESSING

```
#Remove rows with null values

df.dropna(inplace=True)
```

df

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
1	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
2	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Υ
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Υ
4	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Υ
5	Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	360.0	1.0	Urban	Υ
609	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0	Rural	Υ
610	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0	Rural	Υ
611	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0	Urban	Υ
612	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0	Urban	Υ
613	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0	Semiurban	N

480 rows × 12 columns

inputs

```
# Checking if null values still remain

df['Loan_Status'].isnull().sum()

0

df = df.drop(['Dependents'],axis='columns')

# Taking every column except target column Loan_Status as input for model.

inputs = df.drop(['Loan_Status'], axis='columns')
```

	Gender	Married	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area
1	Male	Yes	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural
2	Male	Yes	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban
3	Male	Yes	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban
4	Male	No	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban
5	Male	Yes	Graduate	Yes	5417	4196.0	267.0	360.0	1.0	Urban
609	Female	No	Graduate	No	2900	0.0	71.0	360.0	1.0	Rural
610	Male	Yes	Graduate	No	4106	0.0	40.0	180.0	1.0	Rural
611	Male	Yes	Graduate	No	8072	240.0	253.0	360.0	1.0	Urban
612	Male	Yes	Graduate	No	7583	0.0	187.0	360.0	1.0	Urban
613	Female	No	Graduate	Yes	4583	0.0	133.0	360.0	0.0	Semiurban

480 rows × 10 columns

```
#Label encode each value from categorical to numerical
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
inputs['Gender'] = le.fit_transform(inputs['Gender'])
inputs['Married'] = le.fit_transform(inputs['Married'])
inputs['Education'] = le.fit_transform(inputs['Education'])
inputs['Self_Employed'] = le.fit_transform(inputs['Self_Employed'])
inputs['Property_Area'] = le.fit_transform(inputs['Property_Area'])
```

	Gender	Married	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area
1	1	1	0	0	4583	1508.0	128.0	360.0	1.0	0
2	1	1	0	1	3000	0.0	66.0	360.0	1.0	3
3	1	1	1	0	2583	2358.0	120.0	360.0	1.0	3
4	1	0	0	0	6000	0.0	141.0	360.0	1.0	3
5	1	1	0	1	5417	4196.0	267.0	360.0	1.0	3
609	0	0	0	0	2900	0.0	71.0	360.0	1.0	0
610	1	1	0	0	4106	0.0	40.0	180.0	1.0	0
611	1	1	0	0	8072	240.0	253.0	360.0	1.0	3
612	1	1	0	0	7583	0.0	187.0	360.0	1.0	3
613	0	0	0	1	4583	0.0	133.0	360.0	0.0	2

480 rows × 10 columns

```
# Loan_Status column in target variable. It is then label encoded.

target = df.drop(inputs, axis='columns')
target['Loan_Status'] = le.fit_transform(target['Loan_Status'])
```

target

Loan_Status

1 0

2 1

3 1

4 1

5 1

...

609 1

610 1

611 1

```
612
            1
    613
            0
480 rows x 1 columns
# Importing accuracy score libraries and setting test size to 20%.
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score
inputs train, inputs test, target train, target test =
train test split(inputs,target,test size=0.2)
from sklearn import tree
model = tree.DecisionTreeClassifier()
# Fitting our training data to DecisionTreeClassifier.
model.fit(inputs train, target train)
 ▼ DecisionTreeClassifier
 DecisionTreeClassifier()
# Testing model accuracy score by putting against previously unseen
testing data.
model.score(inputs test, target test)
0.71875
# Creating confusion matrix.
from sklearn.metrics import confusion matrix
target pred= model.predict(inputs test)
cm = confusion matrix(target test, target pred)
cm
array([[20, 8], [19, 49]])
```

Loan_Status

Task-2

Sheet 1

Sheet 2

Sheet-3

Applicant Income

Coapplicant Income

Property Area Rural Semiurban Urban

Education / Gender / Property Area

Semiurban