CLAIM AMENDMENTS

Claims 1-38. (Canceled)

39. (Currently Amended) A compound of the formula:

$$W-Y-(AA)_n-Z$$

wherein n is $\theta 1$ to 15;

Y is a phenylalanyl radical having a phenyl ring, an amine end, and a carboxyl end, the phenyl ring having one or more substituents selected from the group consisting of hydroxyl, carboxyl, formyl, carboxyalkyl, carboxyalkyloxy, dicarboxyalkyl, dicarboxyalkyloxy, dicarboxyhaloalkyl, dicarboxyhaloalkyloxy, and phosphonoalkyl, phosphonohaloalkyl, wherein the alkyl portion of the substituents may be unsubstituted or substituted with a substituent selected from the group consisting of halo, hydroxy, carboxyl, amino, aminoalkyl, alkyl, alkoxy, and keto;

W is a moiety attached to the nitrogen of Y and is selected from the group consisting of alkylcarbonyl, oxalyl, alkylaminooxalyl, arylaminooxalyl, arylalkylaminooxalyl, alkoxyoxalyl, carboxyalkyl carbonyl, heterocyclyl carbonyl, heterocyclylalkyl carbonyl, aryloxycarbonyl, and arylalkoxycarbonyl, wherein the aryl and alkyl portions of the substituents may be unsubstituted or substituted with a substituent selected from the group consisting of halo, hydroxy, carboxyl, amino, aminoalkyl, alkyl, and alkoxy, and keto; and the heterocyclyl portion of W contains at least 4 hetero atoms selected from the group consisting of O, N, and S;

AA is an amino acid, the amine end of which is attached to the carboxyl end of Y; and Z is an arylalkylamino or aryl heterocyclyl C₁-C₆ alkylamino wherein an aryl group is linked to a heterocyclyl group;

or a salt thereof;

with the proviso that Z is not arylalkylamino when <u>W is oxalyl</u> and the phenyl ring of phenylalanyl contains a phosphonoalkyl, or phosphonohaloalkyl <u>hydroxyl, malonyl</u> <u>difluoromethyl, malonyloxy, phosphonodifluoromethyl, or phosphonomethyl</u> substituent at a position para to the alkylamido group <u>CH₂ CH- group of</u> phenylalanyl and the ortho and meta positions are unsubstituted.

40. (Currently Amended) A compound of the formula: W-Y-(AA)_n-Z wherein n is 1 to 15;

Y is a phenylalanyl radical having a phenyl ring, an amine end, and a carboxyl end, the phenyl ring having one or more substituents selected from the group consisting of hydroxyl, carboxyl, formyl, carboxy C₁-C₆ alkyl, carboxy C₁-C₆ alkyloxy, dicarboxy C₁-C₆ alkyloxy, dicarboxyhalo C₁-C₆ alkyl, dicarboxyhalo C₁-C₆ alkyloxy, and phosphono C₁-C₆ alkyl, phosphonohalo C₁-C₆ alkyl, wherein the alkyl portion of the substituents may be unsubstituted or substituted with a substituent selected from the group consisting of halo, hydroxy, carboxyl, amino, aminoalkyl, C₁-C₆ alkyl, C₁-C₆ alkoxy, and keto;

W is a moiety attached to the nitrogen of Y and is selected from the group consisting of C_1 - C_6 alkylcarbonyl, oxalyl, C_1 - C_6 alkylaminooxalyl, arylaminooxalyl, aryl C_1 - C_6 alkylaminooxalyl, C_1 - C_6 alkoxyoxalyl, carboxy C_1 - C_6 alkyl carbonyl, heterocyclyl carbonyl, heterocyclyl C_1 - C_6 alkyl carbonyl, aryloxycarbonyl, and aryl C_1 - C_6 alkoxycarbonyl, wherein the aryl and alkyl portions of the substituents may be unsubstituted or substituted with a substituent selected from the group consisting of halo, hydroxy, carboxyl, amino, amino C_1 - C_6 alkyl, C_1 - C_6 alkyl, and C_1 - C_6 alkoxy, and keto; and the heterocyclyl portion of W contains at least 4 hetero atoms selected from the group consisting of O, O, and O;

AA is an amino acid, the amine end of which is attached to the carboxyl end of Y; and Z is an aryl C₁-C₆ alkylamino or arylheterocyclyl C₁-C₆ alkylamino wherein an aryl group is linked to a heterocyclyl group;

or a salt thereof.;

with the proviso that Z is not aryl C_1 - C_6 alkylamino when \underline{W} is oxalyl and the phenyl ring of phenylalanyl contains a <u>hydroxyl</u>, <u>dicarboxyhaloalkyl</u>, <u>dicarboxyalkoxy</u>, phosphonoalkyl, or phosphonohaloalkyl substituent at a position para to the <u>alkylamido group</u> CH_2 CH- group of phenylalanyl and the ortho and meta positions are unsubstituted.

41. (Previously Presented) The compound of claim 40, wherein Y is of the formula XI:

wherein D has the formula XII, XIII, or XIV:

$$R_3O$$
 R_4O
 R_5
 R_6
 R_8O
 R_7O
 R_8O
 $R_$

wherein R_3 and R_4 may be the same or different and are selected from the group consisting of hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkaryl, and heteroaryl; and R_5 and R_6 may be the same or different and are selected from the group consisting of hydrogen, halo, hydroxy, amino, and C_1 - C_6 alkoxy; and

E is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, carboxyl, and C_1 - C_6 alkylcarbonyl C_1 - C_6 alkyl.

- 42. (Previously Presented) The compound of claim 41, wherein D is of formula XII.
- 43. (Previously Presented) The compound of claim 41, wherein D is of formula XIII.
- 44. (Previously Presented) The compound of claim 41, wherein D is of formula XIV.
- 45. (Previously Presented) The compound of claim 42, wherein E is hydrogen.

46. (Previously Presented) The compound of claim 42, wherein E is carboxyl.

47. (Previously Presented) The compound of claim 42, wherein R₃, R₄, R₅, and R₆ are hydrogen.

48. (Previously Presented) The compound of claim 44, wherein R₃ and R₄ are hydrogen.

49. (Currently Amended) The compound of claim 39, wherein W is selected from the group consisting of C_1 - C_6 alkylcarbonyl, oxalyl, C_1 - C_6 alkylaminooxalyl, arylaminooxalyl, aryl C_1 - C_6 alkylaminooxalyl, C_1 - C_6 alkoxyoxalyl, carboxy C_1 - C_6 alkyl carbonyl, heterocyclyl carbonyl, heterocyclyl C_1 - C_6 alkyl carbonyl, aryl C_1 - C_6 alkyl heterocyclyl C_1 - C_6 alkyl carbonyl, aryloxycarbonyl, and aryl C_1 - C_6 alkoxycarbonyl, wherein the aryl and alkyl portions of the substituents may be unsubstituted or substituted with a substituent selected from the group consisting of halo, hydroxy, carboxyl, amino, amino C_1 - C_6 alkyl, C_1 - C_6 alkyl, and C_1 - C_6 alkoxy, and keto; and the heterocyclyl portion of W contains at least 4 hetero atoms selected from the group consisting of O, O, and O.

Claims 50-66. (Canceled)

67. (Previously Presented) The compound of claim 40, wherein Z is aryl C₁-C₆ alkylamino.

68. (Previously Presented) The compound of claim 67, wherein the aryl portion of Z has the formula:

wherein Q_1 is hydrogen or a substituent selected from the group consisting of hydroxyl, halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, amino, and C_1 - C_6 acylamino.

Claims 69-72. (Canceled)

73. (Previously Presented) The compound of claim 39, wherein the aryl heterocyclyl portion of Z has the formula:

wherein Q_2 is hydrogen or a substituent selected from the group consisting of hydroxyl, halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, amino, and C_1 - C_6 acylamino, and F and G are independently selected from the group consisting of C, N, O, and S.

Claims 74-77. (Canceled)

78. (Previously Presented) The compound of claim 39, wherein said amino acid is selected from the group consisting of glycine, alanine, valine, norvaline, leucine, iso-leucine, norleucine, α -amino n-decanoic acid, serine, homoserine, threonine, methionine, cysteine, S-acetylaminomethyl-cysteine, proline, trans-3- and trans-4-hydroxyproline, phenylalanine, tyrosine, 4-aminophenylalanine, 4- nitrophenylalanine, 4-chlorophenylalanine, 4-carboxyphenylalanine, β -phenylserine β -hydroxyphenylalanine, phenylglycine, α -naphthylalanine, cyclohexylalanine, cyclohexylglycine, tryptophan, indoline-2-carboxylic acid, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, aspartic acid, asparagine, aminomalonic acid, aminomalonic acid monoamide, glutamic acid, glutamine, histidine, arginine, lysine, N'-benzyl-N'-methyl-lysine, N',N'-dibenzyl-lysine, 6-hydroxylysine, ornithine, α -aminocyclopentane carboxylic acid, α -aminocyclohexane carboxylic acid, α -aminocyclohexane carboxylic acid, α -diaminobutyric acid, α , β -diaminopropionic acid, homophenylalanine, and α -tert-butylglycine.

Claims 79-84. (Canceled)

85. (Previously Presented) A composition comprising a pharmaceutically acceptable carrier and a compound of claim 39.

86. (Withdrawn) A method for inhibiting an SH2 domain of a protein from binding with a phosphoprotein comprising contacting the SH2 domain with a compound of claim 39.

Claims 87-90. (Canceled)

91. (Withdrawn) A method for inhibiting SH2 domain of a protein from binding with a phosphoprotein comprising exposing a material containing the SH2 domain to a compound of claim 39.

- 92. (Withdrawn) A method for determining the presence of an SH2 domain of a protein in a material comprising:
- (a) exposing a sample of said material to a SH2 domain binding compound and obtaining a first binding result;
- (b) exposing another sample of said material to a compound of claim 39 and obtaining a second binding result; and
- (c) comparing the first and second binding results to determine whether an SH2 domain of a protein is present in the material.
- 93. (Withdrawn) A method of treating cancer in a mammal comprising administering a compound of claim 39.

Claims 94-106. (Canceled)

107. (Withdrawn) A method of enhancing the therapeutic effect of a treatment rendered to a mammal that has been afflicted with a cancer, comprising administering to the mammal a compound of claim 39 in conjunction with the treatment.

Claims 108-112. (Canceled)

113. (Withdrawn) A method of inhibiting the MAP kinase activity in a mammal comprising administering to the mammal a compound of claim 39.

Claims 114-115. (Canceled)

116. (Currently Amended) A compound of the formula:

$$W-Y-(AA)_n-Z$$

wherein n is 0 to 15;

Y is a phenylalanyl radical having a phenyl ring, an amine end, and a carboxyl end, the phenyl ring having (i) dicarboxy C_1 - C_6 alkyl, (ii) hydroxyl and carboxy C_1 - C_6 alkyl, (iii) carboxyl and carboxy C_1 - C_6 alkyl, or (iv) dicarboxyhalo C_1 - C_6 alkyl, or dicarboxyhalo C_1 - C_6 alkyloxy; or an ester of (i), (ii), (iii), or (iv); wherein the alkyl portion of the substituents may be unsubstituted or substituted with a substituent selected from the group consisting of halo, hydroxy, carboxyl, amino, aminoalkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, and keto;

W is a moiety attached to the nitrogen of Y and is selected from the group consisting of C_1 - C_6 alkylcarbonyl, oxalyl, C_1 - C_6 alkylaminooxalyl, arylaminooxalyl, aryl C_1 - C_6 alkylaminooxalyl, C_1 - C_6 alkoxyoxalyl, carboxy C_1 - C_6 alkyl carbonyl, heterocyclyl C_1 - C_6 alkyl carbonyl, aryl C_1 - C_6 alkyl heterocyclyl C_1 - C_6 alkyl carbonyl, aryloxycarbonyl, and aryl C_1 - C_6 alkoxycarbonyl, wherein the aryl and alkyl portions of the substituents may be unsubstituted or substituted with a substituent selected from the group consisting of halo, hydroxy, carboxyl, amino, amino C_1 - C_6 alkyl, C_1 - C_6 alkyl, and C_1 - C_6 alkoxy, and keto; and the heterocyclyl portion of W contains at least 4 hetero atoms selected from the group consisting of O, N, and S;

AA is an amino acid, the amine end of which is attached to the carboxyl end of Y; and Z is an aryl C₁-C₆ alkylamino or arylheterocyclyl C₁-C₆ alkylamino wherein an aryl group is linked to a heterocyclyl group;

or a salt thereof.

117. (Previously Presented) A composition comprising a pharmaceutically acceptable carrier and a compound of claim 116.

118. (Withdrawn) A method for inhibiting an SH2 domain of a protein from binding with a phosphoprotein comprising contacting the SH2 domain with a compound of claim 116.

Claim 119. (Canceled)

120. (Previously Presented) The compound of claim 39, which is of the formula:

- 121. (Currently Amended) A composition comprising a pharmacologically pharmaceutically acceptable carrier and the compound of claim 120.
- 122. (Previously Presented) A method for inhibiting an SH2 domain of a protein from binding with a phosphoprotein comprising contacting the SH2 domain with the compound of claim 120.
- 123. (Previously Presented) A method of preventing or treating a disease, state, or condition, in a mammal comprising administering inhibiting proliferation of cells in a patient that exhibit erb-2 signalling comprising contacting the cells with the compound of claim 120.
- 124. (Previously Presented) A method of inhibiting MAP kinase activity in a mammal comprising administering to the mammal the compound of claim 120.
- 125. (Withdrawn) A method of inhibiting proliferation of cells in a patient that exhibit erb-2 signalling comprising contacting the cells with a compound of claim 39.

- 126. (Previously Presented) The compound of claim 116, wherein n is 1-3.
- 127. (Previously Presented) The compound of claim 116, wherein Z is naphthylpropylamino.
- 128. (Previously Presented) The compound of claim 116, wherein the phenyl ring of Y includes a malonyl group.
- 129. (Previously Presented) The compound of claim 116, wherein the phenyl ring of Y includes a carboxymethyl group and a hydroxyl group.
- 130. (Previously Presented) The compound of claim 116, wherein said amino acid is selected from the group consisting of glycine, alanine, leucine, isoleucine, norleucine, cyclohexylalanine, 4-aminocyclohexylglycine, 4-acetylaminocyclohexylglycine, aspartic acid, asparagine, glutamic acid, and glutamine.
- 131. (Withdrawn) A method of inhibiting MAP kinase activity in a mammal comprising administering to the mammal a compound of claim 116.
- 132. (Withdrawn) A method of inhibiting proliferation of cells in a patient that exhibit erb-2 signalling comprising contacting the cells with a compound of claim 116.
- 133. (Previously Presented) A method for treating cancer in a patient comprising administering to the patient an effective amount of the compound of claim 120.
- 134. (Withdrawn) A method for treating cancer in a patient comprising administering to the patient an effective amount of the compound of claim 40.
- 135. (Withdrawn) A method of enhancing the therapeutic effect of a treatment rendered to a mammal that has been afflicted with a cancer, comprising administering to the mammal a compound of claim 116 in conjunction with the treatment.

136. (Currently Amended) A method of enhancing the therapeutic effect of a <u>cancer</u> treatment rendered to a mammal that has been afflicted with a cancer, comprising administering to the mammal the compound of claim 120 in conjunction with the treatment.

137. (New) A method for treating breast cancer in a mammal comprising administering to the mammal a compound of claim 39.

138. (New) A method for treating breast cancer in a mammal comprising administering to the mammal a compound of claim 40.

139. (New) A method for treating breast cancer in a mammal comprising administering to the mammal a compound of claim 120.