CSCI 4331/6331

Quiz 2

Name(s):

In this quiz, you will practice proving security by reduction.

1. Let $G: \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG. Prove that

$$G'(s) = \overline{G(s)}$$

is a PRG.

The following questions are meant to guide you through the proof. If you feel that you do not need them, you can just provide the full proof at the end.

- (a) Write down the assumption you need to make to start the proof by reduction. (What do you need to assume about the adversary A_c ?)
- (b) In order to prove security by a reduction, what is the adversary A_r that you need to construct?
- (c) How would you construct A_r using A_c ?

(d) Argue that A_r succeeds if A_c succeeds.

2.	Let $\Pi = (Gen, Enc, Dec)$	be an	encryption	scheme	that ha	as indistingui	ishable ϵ	encrypti	ions
	against an eavesdropper.	Prove	that the fol	lowing e	encryptic	on scheme is	also sec	ure aga	inst
	an eavesdropper.								

$$\mathsf{Enc}_k'(m) = \overline{\mathsf{Enc}_k(m)}$$

The following questions are meant to guide you through the proof. If you feel that you do not need them, you can just provide the full proof at the end.

- (a) How would you decrypt?
- (b) Write down the assumption you need to make to start the proof by reduction. What security game is A_c playing?
- (c) In order to prove security by a reduction, what is the adversary A_r that you need to construct, what game is it playing?
- (d) How would you construct A_r using A_c ?

(e) Argue that A_r succeeds if A_c succeeds.

3. What would change if we defined $\mathsf{Enc}_k'(m) = \mathsf{Enc}_k(\overline{m})$