Barème.

- Partie sur papier : chaque question sur 2 points, total sur 18 points, ramené sur 10 points, +45%.
- Partie sur machine : questions 1, 2, 3, 6, 9 et 10 sur 4 points, les autres sur 8 points, total sur 56 points, ramené sur 10 points, +10%.

Statistiques descriptives.

Soit
$$\varphi : \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right).$$

	Papier	Machine	Note finale
Transformation	p	m	$\varphi\left(1,45\frac{10p}{56}+1,1\frac{10m}{18}\right)$
Note maximale	49	18	20+
Note minimale	5	0	3, 2
Moyenne	$\approx 30,37$	$\approx 7,27$	$\approx 11,78$
Écart-type	$\approx 9,42$	$\approx 4,61$	$\approx 4,68$
Premier quartile	25	4	8,8
Médiane	32	7	12, 2
Troisième quartile	36	10	14,75

Remarques sur la partie papier.

Dans ce devoir, vous ne pouviez pas confondre les y (positions) avec les Y (vecteurs).

- Q1 Pas de fonction ici, rien n'était renvoyé. On vous demandait les valeurs des expressions écrites.
- **Q2** À quoi servait cette fonction si $\lambda * [a_0, \ldots, a_{n-1}] = [\lambda a_0, \ldots, \lambda a_{n-1}]$?

Certains ont multiplié par 2, comme dans l'exemple.

J'ai encore vu quelques L = L.append(...). C'est embêtant.

L=T ne copie pas la liste T mais crée un alias. C'était ce que l'on vous demandait d'éviter.

- Q3 Il fallait compter le nombre de tours de boucles et évaluer la complexité d'un tour de boucle.
- **Q4** Une écriture du type $Y = \begin{pmatrix} y(t) \\ z(t) \end{pmatrix}$ est maladroite.

Écrire $F: \begin{pmatrix} y(t) \\ z(t) \end{pmatrix}, t \mapsto \begin{pmatrix} z(t) \\ f(z(t)) \end{pmatrix}$ n'est pas correct, qu'est-ce que t?

Q5 On demandait de renvoyer deux listes : celles des y et celle des z, en plus des temps.

Vous ne pouvez pas écrire $h = \frac{t_{max} - t_{min}}{n-1}$ dans une fonction python.

Vous ne pouviez pas écrire y = y + h * F(y,t) pour une variable scalaire y (idem pour z.)

- **Q7-Q9** On ne vous demandait pas d'écrire une fonction, mais d'écrire des instructions permettant de produire le tracé. Vous pouviez utiliser une fonction, mais il fallait l'utiliser!

 Les listes des y et des z devaient être produites par les fonctions euler et verlet.
- **Q8** Il fallait conserver l'ancienne valeur de y pour calculer la nouvelle valeur de z.
- Q10 On vous donnait les conditions initiales : le graphe partait de «l'intérieur» pour la méthode d'Euler. Il n'y avait donc pas de perte d'énergie (ce qui n'est pas incohérent physiquement), mais augmentation de l'énergie.
 - Le repère n'est pas orthonormé, le portrait de phase de la méthode de Vernet n'est pas un cercle mais une ellipse (qui ne s'écrit pas élipse).