Derived Category

January 6, 2023

Contents

1	Categories					
	1.1	Definitions	5			
	1.2	Equivalence of categories	7			
2	Additive and abelian categories					
	2.1	Additive category	8			
	2.2	Abelian category	9			
	2.3	Exact sequences	10			
	2.4	Adjoint functors	11			
3	Der	Derived categories: first definition				
	3.1	Complexes	12			
	3.2	Localization of a category	13			
4	Derived categories: definition through homotopy categories					
	4.1	Homotopy category	14			
	4.2	Morphisms in $\mathbf{D}^{?}(A)$	16			
	4.3	Mapping cones	21			
	4.4	Derived categories are additive	24			
	4.5	Localization of subcategories	24			
	4.6	$\mathcal{A} \to \mathbf{D}^?(\mathcal{A})$ is a fully faithful embedding	25			

5	Tria	angulated categories	26				
	5.1	The data of triangulated categories	27				
	5.2	Axioms and properties of triangulated categories	28				
	5.3	Exact functors	33				
	5.4	Localizations of triangulated categories	36				
6	Der	Derived functors					
	6.1	$\emph{\textbf{F}}$ -adapted objects	39				
	6.2	Construction of the derived functor	43				
	6.3	How unique is RF ?	44				
	6.4	The largest F -adapted class $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	46				
	6.5	Composition of derived functors	47				
7	Exa	Examples of derived functors					
	7.1	Ext	50				
	7.2	Tensor product	51				
		7.2.1 <i>R</i> -modules	51				
		7.2.2 Coherent sheaves	51				
		7.2.3 Complexes of coherent sheaves	52				
	7.3	Pullback and pushforward	52				
	7.4	Derived category of coherent sheaves	53				
	7.5	Local Hom	55				
8	Son	ne properties of derived functors in algebraic geometry	55				
	8.1	Composition	55				
	8.2	Projection formula	56				
	8.3	Adjunction	57				
	8.4	Grothendieck-Verdier duality	58				
	8.5	Serre functor	58				
	8.6	Fourier-Mukai transforms	59				
9	Semi-orthogonal decomposition						
	9.1	X is connected if and only if $D^{\mathrm{b}}(X)$ is indecomposable	61				
		9.1.1 Decomposition of triangulated category	61				

		9.1.2	Support	61
		9.1.3	Proof of (9.3)	63
	9.2	Semi-o	rthogonal decomposition	64
		9.2.1	Definition	64
		9.2.2	Admissible subcategory	65
		9.2.3	Examples of admissible subcategories	68
		9.2.4	Exceptional collection	69
10	Full	except	cional collection	70
	10.1	$\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$)	70
	10.2	Strong	exceptional collection	73
	10.3	Quiver	representations	74
		10.3.1	Quiver	74
		10.3.2	Path algebra	74
		10.3.3	Quiver with relations	74
		10.3.4	Quiver representations	75
	10.4	Full ex	ceptional collection and quiver with relations	75
11	Gro	thendi	eck-Riemann-Roch	7 6
	11.1	Chern	classes of a vector bundle	76
	11.2	Chern	classes of a coherent sheaf	77
	11.3	Chern	character	77
		11.3.1	A particular example	77
		11.3.2	General definition	77
	11.4	Grothe	endieck group	78
		11.4.1	Abelian category	78
		11.4.2	$\mathrm{K}(CohX)\ \ldots\ldots\ldots\ldots\ldots\ldots\ldots$	78
		11.4.3	$\mathrm{K}(D^\mathrm{b}(X))$	79
	11.5	Grothe	endieck-Riemann-Roch	80
		11.5.1	Todd class	80
		11.5.2	GRR	80
		11.5.3	Hirzebruch-Riemann-Roch	80
		11 5 /	Fourier-Mukai transforms and GRR	81

	11.6	Grothendieck group and semi-orthogonal decomposition	81				
12 Invariants under D -equivalence							
	12.1	Dimension	82				
	12.2	Grothendieck group	82				
	12.3	Cohomology, Euler characteristic	82				
	12.4	Canonical rings	83				
	12.5	Hochschild (co)homology	85				
	12.6	Hochschild-Kostant-Rosenberg isomorphism	85				
13 Spanning class							
	13.1	Definition	87				
	13.2	Examples	87				
		13.2.1 Closed points	87				
		13.2.2 Ample line bundles	88				
	13.3	Some applications	88				
14 Autoequivalence							
	14.1	Definition, first examples	91				
	14.2	Spherical twists	92				
		14.2.1 Historical origin	92				
		14.2.2 Spherical objects	93				
		14.2.3 Examples	93				
	14.3	$ extcolor{T} ext{-structures}$	93				
	14.4	Torsion pairs	95				
	14 5	Tilting	96				

1 Categories

1.1 Definitions

Definition 1.1. A locally small category \mathcal{C} consists of

- A class $Ob \mathcal{C}$ of objects.
- For all $X, Y \in \text{Ob } \mathcal{C}$, a set of morphisms

$$\operatorname{Hom}(X,Y) = \{ \varphi : X \to Y \}.$$

• A collection of maps: for all $X, Y, Z \in \text{Ob } \mathcal{C}$,

$$\operatorname{Hom}(X,Y) \times \operatorname{Hom}(Y,Z) \to \operatorname{Hom}(X,Z)$$

 $(\varphi,\psi) \mapsto \psi \circ \varphi$

subject to the following conditions.

- The sets Hom(X, Y) are pairwise disjoint.
- For each $X \in \text{Ob } \mathcal{C}$, there exists $\text{id}_X \in \text{Hom}(X, X)$ such that $\text{id}_X \circ \varphi = \varphi$ and $\psi \circ \text{id}_X = \psi$.
- $(\varphi \circ \psi) \circ \chi = \varphi \circ (\psi \circ \chi)$

It follows from the definition that id_X is unique.

Definition 1.2. A morphism $\varphi: X \to Y$ in a category \mathcal{C} is called isomorphism if there exists $\psi: Y \to X$ such that $\varphi \circ \psi = \mathrm{id}_Y$ and $\psi \circ \varphi = \mathrm{id}_X$. We say that X and Y are isomorphic.

Definition 1.3. A covariant functor $F: \mathcal{C} \to \mathcal{D}$ between two categories \mathcal{C} , \mathcal{D} consists of

• A map

$$Ob \mathcal{C} \to Ob \mathcal{D}$$

 $X \mapsto F(X).$

• A map

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y))$$

 $\varphi \mapsto F(\varphi)$

for all $X, Y \in \text{Ob } \mathcal{C}$ such that $F(\varphi \circ \psi) = F(\varphi) \circ F(\psi)$ and $F(\text{id}_X) = \text{id}_{F(X)}$.

Proposition 1.4. A covariant functor sends isomorphisms to isomorphisms.

Proof. Let $\varphi: X \to Y$ be an isomorphism. Then there exists a morphism $\psi: Y \to X$ such that $\psi \circ \varphi = \mathrm{id}_X$ and $\varphi \circ \psi = \mathrm{id}_Y$. Since

$$\operatorname{id}_{F(X)} = F(\operatorname{id}_X) = F(\psi \circ \varphi) = F(\psi) \circ F(\varphi),$$

 $\operatorname{id}_{F(Y)} = F(\operatorname{id}_Y) = F(\varphi \circ \psi) = F(\varphi) \circ F(\psi),$

 $F(\varphi)$ is an isomorphism.

Definition 1.5. A contravariant functor $F: \mathcal{C} \to \mathcal{D}$ is defined similarly, with

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(F(Y),F(X))$$

 $\varphi \mapsto F(\varphi)$

We may view the contravariant functor F as a functor from the opposite category \mathcal{C}^{op} to \mathcal{D} .

Definition 1.6. A functor $F: \mathcal{C} \to \mathcal{D}$ is called

- full if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(F(X),F(Y))$ is surjective for all $X,Y \in \operatorname{Ob} \mathcal{C}$;
- faithful if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(F(X),F(Y))$ is injective for all $X,Y \in \operatorname{Ob} \mathcal{C}$.

Proposition 1.7. Given a fully faithful functor $F: \mathcal{C} \to \mathcal{D}$. Let $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$. Then f is an isomorphism if and only if F(f) is an isomorphism.

Proof. The only if part follows from (1.4). Suppose that F(f) is an isomorphism. Then there exists $\varphi: F(Y) \to F(X)$ such that $\varphi \circ F(f) = \mathrm{id}_{F(X)}$ and $F(f) \circ \varphi = \mathrm{id}_{F(Y)}$. Since $\mathrm{Hom}(X,Y) \to \mathrm{Hom}(F(X),F(Y))$ is surjective, there exists $g \in \mathrm{Hom}(X,Y)$ such that $F(g) = \varphi$. Then

$$F(g \circ f) = \varphi \circ F(f) = \mathrm{id}_{F(X)} = F(\mathrm{id}_X), \quad F(f \circ g) = F(f) \circ \varphi = \mathrm{id}_{F(Y)} = F(\mathrm{id}_Y).$$

It follows from the injectivity of $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(F(X),F(Y))$ that $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$, which shows that f is an isomorphism.

Definition 1.8. A subcategory $\mathcal{D} \subseteq \mathcal{C}$ is a category \mathcal{D} such that

- $Ob \mathcal{D} \subseteq Ob \mathcal{C}$;
- $\operatorname{Hom}_{\mathcal{D}}(X,Y) \subseteq \operatorname{Hom}_{\mathcal{C}}(X,Y)$ for all $X, Y \in \operatorname{Ob} \mathcal{D}$ and is compatible with compositions and the identity.

We call \mathcal{D} a full subcategory if $\operatorname{Hom}_{\mathcal{D}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y)$

1.2 Equivalence of categories

Definition 1.9. Two categories \mathcal{C} and \mathcal{D} are called isomorphic if there exists functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ such that $F \circ G = \mathrm{id}_{\mathcal{D}}$ and $G \circ F = \mathrm{id}_{\mathcal{C}}$.

Remark. Equality of objects is a very restrictive notion. Even objects defined by universal properties (e.g. $X \times Y$) are only unique up to unique isomorphism.

Definition 1.10. A functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if

- F is fully faithful;
- F is essentially surjective, i.e., for each $Y \in \mathcal{D}$, there exists $X \in \mathcal{C}$ such that $F(X) \cong Y$.

Definition 1.11. Given functors $F, G : \mathcal{C} \to \mathcal{D}$. A natural transformation $\eta : F \to G$ is a collection of morphisms

$$\{\eta(X): F(X) \to G(X)\}_{X \in \text{Ob}\,\mathcal{C}}$$

such that for each $\varphi: X \to Y$, the following diagram commutes

$$F(X) \xrightarrow{F(\varphi)} F(Y)$$

$$\downarrow^{\eta(X)} \qquad \downarrow^{\eta(X)}$$

$$G(X) \xrightarrow{G(\varphi)} G(Y).$$

We define $\operatorname{Funct}(\mathcal{C}, \mathcal{D})$ to be the category of functors $F: \mathcal{C} \to \mathcal{D}$, with natural transformations as morphisms. Then a natural isomorphism is an isomorphism in this category.

Theorem 1.12. Two category \mathcal{C} and \mathcal{D} are equivalent if and only if there exists $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ such that $F \circ G \cong \mathrm{id}_{\mathcal{D}}$ and $G \circ F \circ \mathrm{id}_{\mathcal{C}}$.

We say that G is a quasi-inverse of F.

Theorem 1.13 (Yoneda's lemma). Let C be a category, and let C^{op} be its opposite category. The functor

$$h_{\bullet}: \ \mathcal{C} \rightarrow \operatorname{Funct}(\mathcal{C}^{\operatorname{op}}, \operatorname{\mathsf{Sets}})$$

$$X \mapsto h_X = \operatorname{Hom}(-, X)$$

is fully faithful.

A contravariant functor $F: \mathcal{C} \to \mathsf{Sets}$ is called representable if $F \cong h_X$ for some $X \in \mathsf{Ob}\,\mathcal{C}$. Such X is unique up to unique isomorphism by Yoneda's lemma.

Definition 1.14. For all $X, Y \in \text{Ob } \mathcal{C}$. We define $X \times Y$ to be the object satisfying the universal property:

Proposition 1.15. The object $X \times Y$ is the unique object represents $Z \mapsto \operatorname{Hom}(Z, X) \times \operatorname{Hom}(Z, Y)$.

2 Additive and abelian categories

2.1 Additive category

Let \mathcal{C} be a category.

Definition 2.1. An object $* \in \mathcal{C}$ is called

- initial if $\# \operatorname{Hom}(*, X) = 1$ for each X;
- final if $\# \operatorname{Hom}(X, *) = 1$ for each X.

If * is both initial and final, we call * a zero object.

All these objects are unique up to unique isomorphism.

Definition 2.2. A category \mathcal{C} is called additive if

- 1) $\operatorname{Hom}(X,Y)$ is an abelian group for all $X,Y\in\operatorname{Ob}\mathcal{C}$ and compositions are bi-additive;
- 2) the zero object 0 exists;
- 3) $X \times Y$ (or equivalently, $X \oplus Y$) exists for all $X, Y \in Ob \mathcal{C}$.

A functor $F: \mathcal{C} \to \mathcal{D}$ between additive category is called additive if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(F(X),F(Y))$ is a group homomorphism.

Proposition 2.3. Let $F: \mathcal{C} \to \mathcal{D}$ be an additive functor. Then for all $X, Y \in \mathcal{C}$, $F(X \oplus Y) = F(X) \oplus F(Y)$.

Proof. Let $p_X: X \oplus Y \to X$, $p_Y: X \oplus Y \to Y$ be the projections, and let $i_X: X \to X \oplus Y$, $i_Y: Y \to X \oplus Y$ be the inclusions. Then $i_X \circ p_X + i_Y \circ p_Y = \mathrm{id}_{X \oplus Y}$. Given any $f: Z \to X$, $g: Z \to Y$, we see that $h = f \circ F(p_X) + g \circ F(p_Y): Z \to F(X \oplus Y)$ satisfies

$$h \circ F(i_X) = f \circ F(\mathrm{id}_X) = f, \quad h \circ F(i_Y) = g \circ F(\mathrm{id}_Y) = g.$$

If $h': Z \to F(X \oplus Y)$ is another morphism such that $h' \circ F(i_X) = f$ and $h' \circ F(i_Y) = g$, then

$$h' = h' \circ F(i_X \circ p_X + i_Y \circ p_Y) = f \circ F(p_X) + g \circ F(p_Y) = h.$$

Hence,
$$F(X \oplus Y) = F(X) \oplus F(Y)$$
.

2.2 Abelian category

Let \mathcal{C} be an additive catrgory.

Definition 2.4. For each $f: X \to Y$. Define the kernel of f to be the fiber product (if exists)

$$\ker f \longrightarrow X \\
\downarrow \qquad \qquad \downarrow_f \\
0 \longrightarrow Y.$$

Define the cokernel of f to be the fiber product (if exists)

$$\begin{array}{ccc} X & \longrightarrow & 0 \\ \downarrow^f & & \downarrow \\ Y & \longrightarrow & \operatorname{coker} f. \end{array}$$

Proposition 2.5. The kernel of $f: X \to Y$ exists if and only if

$$\mathcal{C}^{\mathrm{op}} \to \operatorname{Sets}$$

$$Z \mapsto \ker(\operatorname{Hom}(Z,X) \xrightarrow{f \circ} \operatorname{Hom}(Z,Y))$$

is representable.

 $\underline{\wedge}$ The naive analogous statement for coker f is wrong. The correct statement is $\operatorname{coker}(f)$ exists if and only if

$$\begin{array}{ccc} \mathcal{C} & \to & \mathsf{Sets} \\ Z & \mapsto & \ker(\mathrm{Hom}(Y,Z) \xrightarrow{\circ f} \mathrm{Hom}(X,Z)) \end{array}$$

is co-representable.

We define the image of f to be $\operatorname{Im} f = \ker(Y \to \operatorname{coker} f)$, and the coimage to be $\operatorname{coIm} f = \operatorname{coker}(\ker f \to X)$. The universal properties gives a unique factorization

$$X \to \operatorname{coIm} f \to \operatorname{Im} f \to Y$$
.

Definition 2.6. An abelian category is an additive category \mathcal{C} such that

- 4) for each morphism $f: X \to Y$, ker f and coker f exists;
- 5) the canonical map $\operatorname{coIm} f \to \operatorname{Im} f$ is an isomorphism.

2.3 Exact sequences

Let \mathcal{C} be an abelian category. A sequence

$$\cdots \xrightarrow{f_{i-1}} X_i \xrightarrow{f_i} X_{i+1} \xrightarrow{f_{i+1}} \cdots$$

in C is called exact if ker $f_i = \text{Im } f_{i-1}$ for each i. A short exact sequence is an exact sequence of the form

$$0 \to X \to Y \to Z \to 0.$$

A covariant additive functor $F: \mathcal{C} \to \mathcal{D}$ between abelian categories is called

• left exact if for every short exact sequence

$$0 \to X \to Y \to Z \to 0$$
.

the sequence

$$0 \to F(X) \to F(Y) \to F(Z)$$

is exact;

• right exact if for every short exact sequence

$$0 \to X \to Y \to Z \to 0$$
,

the sequence

$$F(X) \to F(Y) \to F(Z) \to 0$$

is exact;

• exact if F is both left and right exact.

Theorem 2.7 (Freyd-Mitchell Embedding Theorem). For every small abelian category \mathcal{C} , there exists a fully faithful exact functor $F:\mathcal{C}\to R\text{-Mod}$ for some ring R.

This allows us to manipulate small abelian category as if they were category of Rmodules.

2.4 Adjoint functors

Let \mathcal{C} , \mathcal{D} be arbitrary categories, and let $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ be functors.

Definition 2.8. We say that F is the left adjoint of G, and G is the right adjoint of F, if

$$\operatorname{Hom}_{\mathcal{D}}(F(-), -) \cong \operatorname{Hom}_{\mathcal{C}}(-, G(-))$$

in Funct($\mathcal{C}^{\text{op}} \times \mathcal{D}$, Sets). In this case, we write $F \dashv G$.

We may represent an adjoint pair as a diagram:

$$\mathcal{C}$$
 G
 \mathcal{D} .

Proposition 2.9. Left adjoint and right adjoint are unique.

Suppose now that \mathcal{C} and \mathcal{D} are abelian categories, and $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ are additive functors.

Proposition 2.10. If $F \dashv G$, then F is right exact and G is left exact.

3 Derived categories: first definition

3.1 Complexes

Let \mathcal{A} be an abelian category. A complex K^{\bullet} in \mathcal{A} is a sequence

$$\cdots \to K^{i-1} \xrightarrow{d^{i-1}} K^i \xrightarrow{d^i} K^{i+1} \to \cdots$$

of morphisms in \mathcal{A} such that $d^i \circ d^{i-1}$ for all $i \in \mathbb{Z}$. A morphism of complexes $f^{\bullet}: K^{\bullet} \to L^{\bullet}$ is a commutative diagram

$$\cdots \longrightarrow K^{i-1} \xrightarrow{d} K^{i} \xrightarrow{d} K^{i+1} \longrightarrow \cdots$$

$$\downarrow^{f^{i-1}} \qquad \downarrow^{f^{i}} \qquad \downarrow^{f^{i+1}}$$

$$\cdots \longrightarrow L^{i-1} \xrightarrow{d} L^{i} \xrightarrow{d} L^{i+1} \longrightarrow \cdots$$

A morphism of complexes $f^{\bullet}: K^{\bullet} \to L^{\bullet}$ is called a quasi-isomorphism if

$$H^n(f^{\bullet}): H^n(K^{\bullet}) \xrightarrow{\sim} H^n(L^{\bullet})$$

for all n. Define Kom(A) to be the complexes in A. Quite often, we will also consider various full subset of bounded complexes:

$$\operatorname{Kom}^{+}(\mathcal{A}) := \{ K^{\bullet} \mid K^{i} = 0, \ i \leq i_{0}(K^{\bullet}) \},$$

$$\operatorname{Kom}^{-}(\mathcal{A}) := \{ K^{\bullet} \mid K^{i} = 0, \ i \geq i_{0}(K^{\bullet}) \},$$

$$\operatorname{Kom}^{b}(\mathcal{A}) := \operatorname{Kom}^{+}(\mathcal{A}) \cap \operatorname{Kom}^{-}(\mathcal{A}).$$

Throughout this section, let ? be \emptyset , +, -, or b.

Proposition 3.1. If \mathcal{A} is abelian, then $Kom^{?}(\mathcal{A})$ is also abelian.

We define the shift functor $-[n]: \mathrm{Kom}^?(\mathcal{A}) \to \mathrm{Kom}^?(\mathcal{A})$ as follows: for $K^{\bullet} \in \mathrm{Kom}^?(\mathcal{A})$, we define $K^{\bullet}[n]$ by $K[n]^i = K^{n+i}$ and $d_{K^{\bullet}[n]} = (-1)^n d_{K^{\bullet}}$. Given $f^{\bullet}: K^{\bullet} \to L^{\bullet}$, we define $f^{\bullet}[n]: K^{\bullet}[n] \to L^{\bullet}[n]$ by $f[n]^i = f^{n+i}$.

3.2 Localization of a category

Let \mathcal{B} be a category and let S be a collection of morphisms (in \mathcal{B}).

Definition 3.2. A strict localization of \mathcal{B} by S is

- a category $S^{-1}\mathcal{B}$;
- a functor $Q: \mathcal{B} \to S^{-1}\mathcal{B}$ that sends S to isomorphisms and satisfies the following universal property: for every functor $F: \mathcal{B} \to \mathcal{D}$ sending S to isomorphisms, we have

$$\mathcal{B} \xrightarrow{Q} S^{-1}\mathcal{B}$$

$$\downarrow^{\exists !}$$

$$\mathcal{D}$$

Definition 3.3. If $Q: \mathcal{B} \to S^{-1}\mathcal{B}$. sends S to isomorphisms and the following weaker universal property:

for every functor $F: \mathcal{B} \to \mathcal{D}$ sending S to isomorphisms, there exists $\Phi: S^{-1}\mathcal{B} \to \mathcal{D}$, unique up to (natural) isomorphisms, such that $\Phi \circ Q = \cong F$,

we call $S^{-1}\mathcal{B}$ a localization of \mathcal{B} by S.

Theorem 3.4. Strict localization exists as a large category.

Definition 3.5. The derived category $D^{?}(A)$ of A is the localization of Kom $^{?}(A)$ by the quasi-isomorphisms.

The proof of theorem is easy but useless in practice: Simply set $\mathrm{Ob}(S^{-1}\mathcal{B})=\mathrm{Ob}\,\mathcal{B}$ and

$$\operatorname{Hom}_{S^{-1}\mathcal{B}}(X,Y) = \{X = X_0 \leftrightarrow X_1 \leftrightarrow \cdots \leftrightarrow X_n = Y\}/\sim.$$

Here, each $X_i \leftrightarrow X_{i+1}$ is either $X_i \to X_{i+1} \in \operatorname{Hom}_{\mathcal{B}}(X_i, X_{i+1})$ or $X_i \leftarrow X_{i+1} \in S$, and the equivalence relation \sim is defined by: $\varphi \sim \psi$ if we can transform φ to ψ through the following:

$$(W_1 \xrightarrow{f} W_2 \xrightarrow{g} W_3) \sim (W_1 \xrightarrow{g \circ f} W_3)$$
$$(W_1 \xrightarrow{s} W_2 \xleftarrow{s} W_1) \sim (W_1 \xrightarrow{\mathrm{id}_{W_1}} W_1)$$
$$(W_1 \xleftarrow{s} W_2 \xrightarrow{s} W_1) \sim (W_1 \xrightarrow{\mathrm{id}_{W_1}} W_1)$$

It is difficult to tell whether $\varphi = \psi$ in $\operatorname{Hom}_{\mathcal{D}(\mathcal{A})}(X,Y)$ and not clear whether $\operatorname{Hom}_{\mathcal{D}(\mathcal{A})}(X,Y)$ is a set. So we want good representative of φ , e.g., $\varphi = X \leftarrow X' \to Y$.

To deal with these problems, instead of working with Kom(A), we work with the homotopy category K(A).

4 Derived categories: definition through homotopy categories

4.1 Homotopy category

Let K^{\bullet} , $L^{\bullet} \in \text{Kom}(\mathcal{A})$. Let $k^i : K^i \to L^{i-1}$ be morphisms. Define $h^i = k^{i+1}d + dk^i : K^i \to L^i$.

$$\cdots \longrightarrow K^{i-1} \xrightarrow{d} K^{i} \xrightarrow{d} K^{i+1} \longrightarrow \cdots$$

$$\downarrow^{h^{i-1}} \downarrow^{h^{i}} \downarrow^{h^{i}} \downarrow^{h^{i+1}} \downarrow^{h^{i+1}}$$

$$\cdots \longrightarrow L^{i-1} \xrightarrow{d} L^{i} \xrightarrow{d} L^{i+1} \longrightarrow \cdots$$

Then $h^{\bullet}: K^{\bullet} \to L^{\bullet}$ is a morphism of complexes.

Definition 4.1. The morphism h^{\bullet} is said to be homotopic to 0, written as $h \sim 0$.

Proposition 4.2. The collection $\{h \sim 0\}$ forms an ideal, i.e., for all h_1^{\bullet} , $h_2^{\bullet} : K^{\bullet} \to L^{\bullet}$ homotopic to 0,

- $h_1^{\bullet} + h_2^{\bullet} \sim 0$;
- $f^{\bullet} \circ h_{1}^{\bullet} \sim 0$ for all $f^{\bullet} : L^{\bullet} \to M^{\bullet}$

• $h_1^{\bullet} \circ g^{\bullet} \sim 0$ for all $g: N^{\bullet} \to K^{\bullet}$.

We say that $\varphi, \psi : K^{\bullet} \to L^{\bullet}$ are homotopic $(\varphi \sim \psi)$ if $\varphi - \psi \sim 0$.

Proposition 4.3. If $\varphi \sim \psi$, then the morphisms

$$H^{\bullet}(\varphi), H^{\bullet}(\psi): H^{\bullet}(K^{\bullet}) \to H^{\bullet}(L^{\bullet})$$

are equal. In particular, if φ is a quasi-isomorphism and $\varphi \sim \psi$, then ψ is also a quasi-isomorphism.

Definition 4.4. The homotopy category $K^{?}(A)$ is defined by

- $\operatorname{Ob} K^{?}(\mathcal{A}) = \operatorname{Ob} \operatorname{Kom}^{?}(\mathcal{A})$; and
- $\operatorname{Mor} K^{?}(A) = \operatorname{Mor} \operatorname{Kom}^{?}(A) / \sim$.

Proposition 4.5. The localization of $K^{?}(A)$ by quasi-isomorphisms is canonically isomorphic to $D^{?}(A)$

Proof. Let S be the collection of quasi-isomorphisms and let $\tilde{D}(\mathcal{A}) = S^{-1}K(\mathcal{A})$. Then $\mathrm{Kom}(\mathcal{A}) \to K(\mathcal{A}) \to \tilde{D}(\mathcal{A})$ sends quasi-isomorphisms to isomorphisms, so that there exists a unique functor $G: D(\mathcal{A}) \to \tilde{D}(\mathcal{A})$ such that the following diagram commute:

$$\operatorname{Kom}(\mathcal{A}) \xrightarrow{G} \tilde{D}(\mathcal{A})$$

$$C \cap D(\mathcal{A}).$$

It is clear that G is a bijection on objects. Choose a section $K(\mathcal{A}) \to \mathrm{Kom}(\mathcal{A})$ of $\mathrm{Kom}(\mathcal{A}) \to K(\mathcal{A})$. The universal property gives

Thus G is surjective on morphisms. That G is injective on morphisms follows from

Lemma 4.6. If $f^{\bullet} \sim g^{\bullet} : K^{\bullet} \to L^{\bullet}$, then $Q(f^{\bullet}) = Q(g^{\bullet})$.

4.2 Morphisms in $D^{?}(A)$

Proposition 4.7.

1) $\operatorname{Hom}_{D^?(\mathcal{A})}(X,Y) = \{(s,f) \mid X \stackrel{s \in S}{\longleftrightarrow} X' \stackrel{f}{\to} Y\} / \sim$, where $(s,f) \sim (s',f')$ if we have the following commutative diagram in $K^?(\mathcal{A})$:

 \sim is an equivalence relation.

2) Given $X \stackrel{s}{\leftarrow} X' \stackrel{f}{\rightarrow} Y$ and $Y \stackrel{t}{\leftarrow} Y' \stackrel{g}{\rightarrow} Z$ with s, t quasi-isomorphism. There exists a commutative diagram in $K^{?}(\mathcal{A})$:

such that u is a quasi-isomorphism.

Definition 4.8. Given a category \mathcal{C} and a collection of morphisms S, we say that S is a localizing system if

- (LS1) $id_X \in S$ for all object $S, S \circ S \subseteq S$;
- (LS2) (extension property) for all such diagrams

$$Z \qquad Y' \xrightarrow{f'} X'$$

$$\downarrow_{s \in S} \qquad \downarrow_{s' \in S}$$

$$X \xrightarrow{f} Y \qquad Z',$$

16

there exists $W \xrightarrow{t} X \in S$, $W \xrightarrow{g} Z$, $X' \xrightarrow{t'} W' \in S$ and $Z' \xrightarrow{g'} W'$ such that the following diagrams commute:

$$\begin{array}{ccc} W \stackrel{g}{\longrightarrow} Z & Y' \stackrel{f'}{\longrightarrow} X' \\ \downarrow^t & \downarrow^s & \downarrow^{s'} & \downarrow^{t'} \\ X \stackrel{f}{\longrightarrow} Y & Z' \stackrel{g'}{\longrightarrow} W'; \end{array}$$

(LS3) for all $f, g: X \to Y, f \circ s = g \circ s$ for some $s \in S$ if and only if $t \circ f = t \circ g$ for some $t \in S$.

Lemma 4.9. The collection of quasi-isomorphisms in $K^{?}(A)$ forms a localizing system.

We show that the lemma implies the proposition:

Step 1. By (LS1) and (LS2), the elements in $\operatorname{Hom}_{D^{?}(\mathcal{A})}(X,Y)$ can be represented by $(X \xrightarrow{s} X', X' \xrightarrow{f} Y)$ and (LS2) also gives the existence of composition (we still need to check that it is well-defined).

Step 2. We prove that \sim is an equivalence relation. Transitivity is the least obvious. Assume $(X \stackrel{s}{\leftarrow} X' \xrightarrow{f} Y) \sim (X \stackrel{s'}{\leftarrow} X'' \xrightarrow{f'} Y)$ and $(X \stackrel{s'}{\leftarrow} X'' \xrightarrow{f'} Y) \sim (X \stackrel{s''}{\leftarrow} X''' \xrightarrow{f''} Y)$. Then, by definition, we have the following diagram:

with $s \circ t$ and $s' \circ t'$ being quasi-isomorphisms. It follows from (LS2) that we may complete the diagram

$$\begin{array}{c} W \stackrel{h}{\longrightarrow} Z' \\ \downarrow^{u \in S} & \downarrow^{s' \circ t'} \\ Z \stackrel{s \circ t}{\longrightarrow} X. \end{array}$$

Since $s' \circ (g \circ u) = s \circ t \circ u = s' \circ (t \circ h)$, (LS3) gives a quasi-isomorphism $v : V \to W$ such that $(g \circ u) \circ v = (t \circ h) \circ v$.

$$V \xrightarrow{v} W \xrightarrow{g \circ u} X'' \xrightarrow{s'} X$$

We verify that

defines the desired equivalence.

Step 3. We check the composition is well-defined. First, given

We need to show that $(s \circ u, g \circ h) \sim (s \circ u', g \circ h')$. Take W so that we may complete the diagram

$$W \xrightarrow{v \in S} X''$$

$$\downarrow^{k} \qquad \downarrow^{u}$$

$$X''' \xrightarrow{u'} X'.$$

Since $t \circ (h \circ v) = f \circ u \circ v = f \circ u' \circ k = t \circ (h' \circ k)$, (LS3) gives a quasi-isomorphism $w: V \to W$ such that $(h \circ v) \circ w = (h' \circ k) \circ w$.

$$V \xrightarrow{w} W \xrightarrow{h \circ v} Y' \xrightarrow{t} Y$$

We check that

defines the desired equivalence. This shows that given (s, f) and (t, g), the composition $(t, g) \circ (s, f)$ is well-defined.

Next, we need to show that if $(X \stackrel{s}{\leftarrow} X' \stackrel{f}{\rightarrow} Y) \sim (X \stackrel{s'}{\leftarrow} X'' \stackrel{f'}{\rightarrow} Y)$, then for all $(Y \stackrel{t}{\leftarrow} Y' \stackrel{g}{\rightarrow} Z), (t,g) \circ (s,f) \sim (t,g) \circ (s',f')$. Since $(s,f) \sim (s',f')$, there exists X''' and

morphisms $X''' \xrightarrow{h} X'$, $X''' \xrightarrow{h'} X''$ such that $s \circ h = s' \circ h'$ is a quasi-isomorphism. So we may replace X'' by X''' so that there exists a morphism $X'' \xrightarrow{k} X'$ such that $s' = s \circ k$.

Take W that complete the above diagram with $u \in S$, then

$$(t \circ g) \circ (s, f) = (s \circ (k \circ u), g \circ \ell) = (s' \circ u, g \circ \ell) = (t \circ g) \circ (f', s').$$

Finally, we need to show that if $(Y \stackrel{t}{\leftarrow} Y' \stackrel{g}{\rightarrow} Z) \sim (Y \stackrel{t'}{\leftarrow} Y'' \stackrel{g'}{\rightarrow} Z)$, then for all $(X \stackrel{s}{\leftarrow} X' \stackrel{f}{\rightarrow} Y)$, $(t,g) \circ (s,f) \sim (t',g') \circ (s,f)$. Since $(t,g) \sim (t',g')$, there exists Y''' and morphisms and morphisms $Y''' \stackrel{h}{\rightarrow} Y'$, $Y''' \stackrel{h'}{\rightarrow} X''$ such that $t \circ h = t' \circ h'$ is a quasi-isomorphism. So we may replace Y'' by Y''' so that there exists a morphism $Y'' \stackrel{k}{\rightarrow} Y'$ such that $t' = t \circ k$.

Take W that complete the above diagram with $u \in S$, then

$$(t \circ g) \circ (s, f) = (s \circ u, g \circ k \circ \ell) = (s \circ u, g' \circ \ell) = (t' \circ g') \circ (f, s).$$

Step 4. Define the category Roof(A) by taking Ob Roof(A) = Ob(Kom(A)) and

$$\operatorname{Hom}_{\operatorname{Roof}(\mathcal{A})}(X,Y) = \{X \stackrel{s \in S}{\longleftrightarrow} Z \stackrel{f}{\to} Y\} / \sim .$$

We need to show that the composition is associative. Given

By (LS2) we can take W'', X'', and W''' that completes the diagram

with s', t', and s'' being quasi-isomorphisms. Then

$$(u,h) \circ ((t,g) \circ (s,f)) = (u,h) \circ (s' \circ s, g \circ k) = (s \circ s' \circ s'', h \circ \ell \circ m)$$
$$= (t \circ t', h \circ \ell) \circ (s,f) = ((u,h) \circ (t,g)) \circ (s,f).$$

Let $F: \operatorname{Kom}(\mathcal{A}) \to \operatorname{Roof}(\mathcal{A})$ be a functor defined by F(X) = X and $F(f) = (X \stackrel{\operatorname{id}_X}{\longleftarrow} X \stackrel{f}{\to} Y)$. It remains to show that $D(\mathcal{A}) = \operatorname{Roof}(\mathcal{A})$. We show that for each functor $H: \operatorname{Kom}(\mathcal{A}) \to \mathcal{D}$ that sends quasi-isomorphisms to isomorphisms, there exists a unique functor $G: \operatorname{Roof}(\mathcal{A}) \to \mathcal{D}$ such that $H = G \circ F$.

Step 5. (uniqueness) Assuming G exists. Since $F = \operatorname{id}$ on objects, $G \circ F = H$ gives $G(X) = H \circ F^{-1}(X)$. Let $\varphi = (s, f)$ be a morphism in $\operatorname{Roof}(A)$. Then $\varphi \circ F(s) = F(f)$. Apply G to both sides gives $G(\varphi) \circ H(s) = H(f)$. Since H(s) is invertible, $G(\varphi) = H(f) \circ H(s)^{-1}$. So G is uniquely determined.

Step 6. (existence) The uniqueness of G suggest us to construct G as follows: for $X \in \text{Roof}(\mathcal{A})$, define $G(X) = H \circ F^{-1}(X)$; for $\varphi = (s, f) \in \text{Hom}_{\text{Roof}(\mathcal{A})}$, define $G(\varphi) = H(f) \circ H(s)^{-1}$.

We check that G is a well-defined functor. If $(X' \xrightarrow{s} X, f) \sim (X'' \xrightarrow{s'} X, f') \in \operatorname{Hom}_{\operatorname{Roof}(\mathcal{A})}(X, Y)$, then there exists X''' and morphisms $X''' \xrightarrow{h} X'$, $X''' \xrightarrow{h'} X''$ such that $s'' = s \circ h = s' \circ h'$ is a quasi-isomorphism.

Hence,

$$H(f) \circ H(s)^{-1} = H(f) \circ H(h) \circ H(s'')^{-1}$$
$$= H(f') \circ H(h') \circ H(s'')^{-1} = H(f') \circ H(s')^{-1}.$$

So G is well-defined on the morphisms. It remains to check that $G(\mathrm{id}_X) = \mathrm{id}_{G(X)}$ and $G(\psi \circ \varphi) = G(\psi) \circ G(\varphi)$. Since $\mathrm{id}_X = (\mathrm{id}_X, \mathrm{id}_X)$,

$$G(\mathrm{id}_X) = H(\mathrm{id}_X) \circ H(\mathrm{id}_X)^{-1} = \mathrm{id}_{H(X)} \mathrm{id}_{H(X)}^{-1} = \mathrm{id}_{G(X)}$$
.

Let $\varphi = (s, f)$ and let $\psi = (t, g)$. Then $\psi \circ \varphi = (s \circ u, g \circ h)$ for some u, h such that $f \circ u = t \circ h$ and u is a quasi-isomorphism.

Hence,

$$H(\psi \circ \varphi) = H(g \circ h) \circ H(s \circ u)^{-1} = H(g) \circ H(h) \circ H(u)^{-1} \circ H(s)^{-1}$$
$$= H(g) \circ H(t)^{-1} \circ H(f) \circ H(s)^{-1} = H(\psi) \circ H(\varphi).$$

This completes the proof of (4.7).

4.3 Mapping cones

Given $f^{\bullet}: K^{\bullet} \to L^{\bullet}$, the cone of f is the complex $C(f)^{\bullet}$ defined by $C(f)^{i} = K^{i+1} \oplus L^{i}$, i.e., $C(f)^{\bullet} = K^{\bullet}[1] \oplus L^{\bullet}$, and

$$d_{C(f)}^{i} \begin{pmatrix} k^{i+1} \\ \ell^{i} \end{pmatrix} = \begin{pmatrix} -d_{K}^{i+1} & 0 \\ f^{i+1} & d_{L}^{i} \end{pmatrix} \begin{pmatrix} k^{i+1} \\ \ell^{i} \end{pmatrix}.$$

We can easily check that

$$d_{C(f)}^{i+1}d_{C(f)}^{i} = \begin{pmatrix} -d_{K}^{i+2} & 0 \\ f^{i+2} & d_{L}^{i+1} \end{pmatrix} \begin{pmatrix} -d_{K}^{i+1} & 0 \\ f^{i+1} & d_{L}^{i} \end{pmatrix} = \begin{pmatrix} (-d_{K}^{i+2})(-d_{K}^{i+1}) & 0 \\ -f^{i+2}d_{K}^{i+1} + d_{L}^{i+1}f^{i+1} & d_{L}^{i+1}d_{L}^{i} \end{pmatrix} = 0.$$

We have natural maps

$$K^{\bullet} \xrightarrow{f} L^{\bullet} \xrightarrow{\tau} C(f)^{\bullet} \longrightarrow K^{\bullet}[1]$$

$$\ell^{i} \longmapsto \begin{pmatrix} 0 \\ \ell^{i} \end{pmatrix}, \begin{pmatrix} k^{i+1} \\ \ell^{i} \end{pmatrix} \longmapsto k^{i+1}.$$

The short exact sequence

$$0 \to L^{\bullet} \to C(f)^{\bullet} \to K^{\bullet}[1] \to 0$$

induces to a long exact sequence

$$\cdots \to H^i(K^{\bullet}) \to H^i(L^{\bullet}) \to H^i(C(f)^{\bullet}) \to H^{i+1}(K^{\bullet}) \to \cdots$$

Given morphisms f_1 , f_2 , α , β with $\beta \circ f_1 = f_2 \circ \alpha$. We can find $\gamma : C(f_1)^{\bullet} \to C(f_2)^{\bullet}$ such that the following diagram commute.

$$K_{1}^{\bullet} \xrightarrow{f_{1}} L_{1}^{\bullet} \longrightarrow C(f_{1})^{\bullet} \longrightarrow K_{1}^{\bullet}[1]$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\alpha[1]}$$

$$K_{2}^{\bullet} \xrightarrow{f_{2}} L_{2}^{\bullet} \longrightarrow C(f_{2})^{\bullet} \longrightarrow K_{2}^{\bullet}[1].$$
(TR3)

In fact, we can simply take $\gamma = \alpha[1] \oplus \beta$, so that

$$\begin{split} \gamma^{i+1}d^i_{C(f_1)} - d^i_{C(f_2)}\gamma^i &= \begin{pmatrix} \alpha^{i+2} & 0 \\ 0 & \beta^{i+1} \end{pmatrix} \begin{pmatrix} -d^{i+1}_{K_1} & 0 \\ f^{i+1}_1 & d^i_{L_1} \end{pmatrix} - \begin{pmatrix} -d^{i+1}_{K_2} & 0 \\ f^{i+1}_2 & d^i_{L_2} \end{pmatrix} \begin{pmatrix} \alpha^{i+1} & 0 \\ 0 & \beta^i \end{pmatrix} \\ &= \begin{pmatrix} -\alpha^{i+2}d^{i+1}_{K_1} + d^{i+1}_{K_2}\alpha^{i+1} & 0 \\ \beta^{i+1}f^{i+1}_1 - f^{i+1}_2\alpha^{i+1} & \beta^{i+1}d^i_{L_1} - d^i_{L_2}\beta^i \end{pmatrix} = 0. \end{split}$$

Proposition 4.10 (TR2). Given $f: K^{\bullet} \to L^{\bullet}$, there is a morphism $g: K^{\bullet}[1] \to C(\tau)$ such that in $K(\mathcal{A})$, g is an isomorphism and the following diagram commute.

$$L^{\bullet} \xrightarrow{\tau} C(f)^{\bullet} \longrightarrow K^{\bullet}[1] \xrightarrow{f[1]} L^{\bullet}[1]$$

$$\parallel \qquad \qquad \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$L^{\bullet} \xrightarrow{\tau} C(f)^{\bullet} \longrightarrow C(\tau)^{\bullet} \longrightarrow L^{\bullet}[1].$$

Proof. Note that $C(\tau)^i = L^{i+1} \oplus C(f)^i = L^{i+1} \oplus K^{i+1} \oplus L^i$. We define $g^i(k^{i+1}) = (-f^{i+1}(k^{i+1}), k^{i+1}, 0)$. It can be checked easily that g makes the above diagram commute. In $K(\mathcal{A})$, we can check that the projection $C(\tau)^i = L^{i+1} \oplus K^{i+1} \oplus L^i \to K^{i+1}$ is the inverse of g.

Using the mapping cone, we can now prove (4.9).

Proof of (4.9). (LS1) is obvious. Given

$$Z \qquad Y' \xrightarrow{f'} X'$$

$$\downarrow_{s \in S} \qquad \downarrow_{s' \in S}$$

$$X \xrightarrow{f} Y \qquad Z',$$

We have the morphisms

$$Z \xrightarrow{s} Y \xrightarrow{\tau} C(s) \longrightarrow Z[1],$$

which is isomorphic to

$$C(\tau)[-1] \longrightarrow Y \xrightarrow{\tau} C(s) \longrightarrow C(\tau),$$

in $K^{?}(a)$ by (4.10). (TR3) gives us a commutative diagram

$$C(\tau \circ f)[-1] \xrightarrow{t} X \xrightarrow{\tau \circ f} C(s) \longrightarrow C(\tau \circ f)$$

$$\downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C(\tau)[-1] \longrightarrow Y \xrightarrow{\tau} C(s) \longrightarrow C(\tau),$$

Define $W = C(\tau \circ f)[-1]$. Since s is a quasi-isomorphism, $H^{\bullet}(C(s)) = 0$, thus $t : W \to X$ is also a quasi-isomorphism. The other square can be complete similarly.

For (LS3), it is enough to show that for all $f \in \operatorname{Hom}_{K^?(\mathcal{A})}(K^{\bullet}, L^{\bullet})$, $sf \sim 0$ for some quasi-isomorphism s if and only if $ft \sim 0$ for some quasi-isomorphism t. We only prove the only if part, the if part can be done similarly. Suppose $s: L^{\bullet} \to M^{\bullet}$ and sf = hd + dh for some $h: K^{\bullet} \to M^{\bullet}[-1]$. Define $g^{\bullet}: K^{\bullet} \to C(s)^{\bullet}[-1] = L^{\bullet} \oplus M^{\bullet}[-1]$ by letting $g^i(k^i) = (f^i(k^i), -h^i(k^i))$. We check that g is indeed a morphism:

$$g^{i+1}d_K^i - d_{C(s)[-1]}^i g^i = \begin{pmatrix} f^{i+1} \\ -h^{i+1} \end{pmatrix} d_K^i - \begin{pmatrix} d_L^i & 0 \\ -s^i & -d_M^{i-1} \end{pmatrix} \begin{pmatrix} f^i \\ -h^i \end{pmatrix}$$
$$= \begin{pmatrix} f^{i+1}d_K^i - d_L^i f^i \\ -h^{i+1}d_K^i + s^i f^i - d_M^{i-1} h^i \end{pmatrix} = 0.$$

It is clear that f is the composition of g and the projection map $C(s)^{\bullet}[-1] \to L^{\bullet}$.

$$C(g)^{\bullet}[-1] \xrightarrow{t} K^{\bullet} \xrightarrow{g} C(s)^{\bullet}[-1]$$

$$C(s)^{\bullet}[-1] \xrightarrow{f} L^{\bullet} \xrightarrow{s} M^{\bullet}$$

Since s is a quasi-isomorphism, $H^{\bullet}(C(s)^{\bullet}) = 0$, and thus the projection map $t : C(g)[-1] \to K^{\bullet}$ is also a quasi-isomorphism. Define k^{\bullet} by

$$C(g)^{\bullet}[-1] \xrightarrow{k^{\bullet}} C(s)^{\bullet}[-2]$$

$$\parallel \qquad \qquad \parallel$$

$$K^{\bullet} \oplus L^{\bullet}[-1] \oplus M^{\bullet}[-2] \xrightarrow{\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}} L^{\bullet}[-1] \oplus M^{\bullet}[-2].$$

Since

$$\begin{split} d_{C(s)[-1]}^i &= \begin{pmatrix} d_L^i & 0 \\ -s^i & -d_{M[-1]}^{i-1} \end{pmatrix}, \\ d_{C(g)[-1]}^i &= \begin{pmatrix} d_K^i & 0 \\ -g^i & -d_{C(s)[-1]}^{i-1} \end{pmatrix} = \begin{pmatrix} d_L^i & 0 & 0 \\ -f^i & -d_L^{i-2} & 0 \\ h^i & s^{i-1} & d_{M[-1]}^{i-2}, \end{pmatrix} \end{split}$$

we see that

$$\begin{split} k^{i+1}d^i_{C(g)[-1]} + d^{i-1}_{C(s)[-1]}k^i &= \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} d^i_L & 0 & 0 \\ -f^i & -d^{i-2}_L & 0 \\ h^i & s^{i-1} & d^{i-2}_{M[-1]}, \end{pmatrix} \\ &+ \begin{pmatrix} d^i_L & 0 \\ -s^i & -d^{i-1}_{M[-1]} \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ &= \begin{pmatrix} f^i & 0 & 0 \\ -h^i & 0 & 0 \end{pmatrix} = gt, \end{split}$$

i.e., $gt \sim 0$. Hence, $ft \sim 0$.

4.4 Derived categories are additive

Let \mathcal{A} be an abelian category. Given φ , $\varphi' \in \operatorname{Hom}_{D^?(\mathcal{A})}(X,Y)$, which are represented by $(Z \xrightarrow{s} X, f)$ and $(Z' \xrightarrow{s'} X, f')$, respectively. We construct $\varphi + \varphi' \in \operatorname{Hom}_{D^?(\mathcal{A})}(X,Y)$ as follows. By extension property (LS2), there exists Z'' and morphisms $Z'' \xrightarrow{h} Z$, $Z'' \xrightarrow{h'} Z'$ such that $s \circ h = s' \circ h'$ is a quasi-isomorphism. Then we define $\varphi + \varphi' = (s \circ h = s' \circ h', f \circ h + f' \circ h')$.

With this definition, we verify that

Proposition 4.11. $D^{?}(A)$ is additive.

4.5 Localization of subcategories

Proposition 4.12. We have $D^{b}(X) \subseteq D^{\pm}(X) \subseteq D(X)$ as full subcategory.

Let \mathcal{C} be a category, $S \subseteq \operatorname{Mor} \mathcal{C}$. For $\mathcal{B} \subseteq \mathcal{C}$ a full subcategory, define $S_{\mathcal{B}} = S \cap \operatorname{Mor} \mathcal{C}$. Question. When does the natural functor $S_{\mathcal{B}}^{-1}\mathcal{B} \to S^{-1}\mathcal{C}$ realize $S_{\mathcal{B}}^{-1}$ as a full subcategory?

Lemma 4.13. Assume that S is a localizing system satisfying

- a) $S_{\mathcal{B}}$ is a localizing system;
- b) For each $X' \xrightarrow{s \in S} X$ with $X \in \mathcal{B}$, there exists $X'' \to X'$ such that the composition $(X'' \to X) \in S_{\mathcal{B}}$,

or b') with all arrows reversed.

Then $S_{\mathcal{B}}^{-1}\mathcal{B} \hookrightarrow S^{-1}\mathcal{C}$ is fully faithful.

4.6 $\mathcal{A} \to \mathbf{D}^{?}(\mathcal{A})$ is a fully faithful embedding

Let K^{\bullet} be an object of Kom[?](\mathcal{A}). We call K^{\bullet} an H^0 -complex if $H^i(K^{\bullet}) = 0$ for each $i \neq 0$.

Proposition 4.14. The functor $\Phi : \mathcal{A} \to \mathrm{Kom}^{?}(\mathcal{A}) \to D^{?}(\mathcal{A})$ yields an equivalence of \mathcal{A} with the full subcategory of $D^{?}(\mathcal{A})$ consisting of H^{0} -complexes.

Proof. Consider

$$H^0: D^?(\mathcal{A}) \to \mathcal{A}$$

 $X^{\bullet} \mapsto H^0(X^{\bullet}).$

For all $X, Y \in \mathcal{A}$, we have

$$\operatorname{Hom}_{\mathcal{A}}(X,Y) \xrightarrow{\Phi} \operatorname{Hom}_{D^{?}(\mathcal{A})}(X,Y) \xrightarrow{H^{0}} \operatorname{Hom}_{\mathcal{A}}(X,Y)$$

by definition. Now we prove that

$$\operatorname{Hom}_{D^{?}(\mathcal{A})}(X,Y) \xrightarrow{H^{0}} \operatorname{Hom}_{\mathcal{A}}(X,Y) \xrightarrow{\Phi} \operatorname{Hom}_{D^{?}(\mathcal{A})}(X,Y).$$

Given $\varphi = (Z \xrightarrow{s} X, f) \in \operatorname{Hom}_{D^{?}(\mathcal{A})}(X, Y)$. $\Phi(H^{0}(\varphi))$ is represented by $H^{0}(f) \circ H^{0}(s)^{-1}$.

Let

$$V = \cdots \xrightarrow{d_Z^{-3}} Z^{-2} \xrightarrow{d_Z^{-2}} Z^{-1} \xrightarrow{d_Z^{-1}} \ker d_Z^0 \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow^r \qquad \qquad \downarrow^{\mathrm{id}} \qquad \downarrow^{\mathrm{id}} \qquad \downarrow \qquad \downarrow$$

$$Z = \cdots \xrightarrow{d_Z^{-3}} Z^{-2} \xrightarrow{d_Z^{-2}} Z^{-1} \xrightarrow{d_Z^{-1}} Z^0 \xrightarrow{d_Z^0} Z^1 \xrightarrow{d_Z^1} \cdots,$$

and let $h: V \to X$ defined by $h^0 = H^0(s) \circ (\ker d_Z^0 \to H^0(Z))$, and $h^{i\neq 0} = 0$. We verify that

commutes in $\mathrm{Kom}^?(\mathcal{A})$ and r is a quasi-isomorphism.

Given an H^0 -complex Z, both morphisms $r: V \to Z$ and $V \to H^0(Z)$ are quasi-isomorphism. Hence Z lies in the essential image of $\mathcal{A} \to D^?(\mathcal{A})$.

Let $\operatorname{Kom}_0^?(\mathcal{A}) \subseteq \operatorname{Kom}^?(\mathcal{A})$ be the full subcategory consisting of complexes with d=0. We regard as the full subcategory of $\operatorname{Kom}^?(\mathcal{A})$, by sending $X \in \mathcal{A}$ to $[X]^{\bullet}$ with $[X]^0 = X$ and $[X]^{i\neq 0} = 0$.

Proposition 4.15. Assume that \mathcal{A} is semi-simple, i.e., every short exact sequence splits in \mathcal{A} . Show that

$$\operatorname{Kom}_0^?(\mathcal{A}) \xrightarrow{\sim} \operatorname{Kom}^?(\mathcal{A}) \xrightarrow{\sim} D^?(\mathcal{A}).$$

So
$$K^{\bullet} \cong \bigoplus_{i} H^{i}(K^{\bullet})[-i].$$

Proposition 4.16. Show that the essential image of $D^+(A) \to D(A)$ consists of complexes X^{\bullet} with $H^i(X^{\bullet}) = 0$ for all $i \ll 0$. The similar statement hold for $D^-(A)$ and $D^{\mathrm{b}}(A)$.

5 Triangulated categories

We've seen that D(A) is additive. Though D(A) is not abelian for most A, it is nevertheless a triangulated category.

5.1 The data of triangulated categories

A triangulated category \mathcal{T} is an additive category together with:

• an additive automorphism [1]: $\mathcal{T} \to \mathcal{T}$, called the shift functor; from this, a triangle is a diagram of the form

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1],$$

where a morphism of triangles is a commutative diagram

• and a collection of triangles

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$$

called exact or distinguished triangles, denoted by \(\text{\(\omega\)}\) (we also use the notation

$$\begin{array}{ccc} X & & & Y \\ \swarrow & & & \\ Z & & & \end{array} \right)$$

subject to the axioms $(TR1) \sim (TR4)$ below.

Example 5.1. For $K^{?}(\mathcal{A})$ and $D^{?}(\mathcal{A})$, [1] is the shift functor induced by [1]: Kom[?](\mathcal{A}) \rightarrow Kom[?](\mathcal{A}). The distinguished triangles are all triangles isomorphic to

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \longrightarrow \operatorname{Cone}(f) \longrightarrow X^{\bullet}[1]$$

for some morphism $f: X^{\bullet} \to Y^{\bullet}$ of complexes. Recall that if $X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to X^{\bullet}[1]$ is a distinguished triangle, then we have a long exact sequence

$$\cdots \to H^i(X^{\bullet}) \to H^i(Y^{\bullet}) \to H^i(Z^{\bullet}) \to H^{i+1}(X^{\bullet}) \to \cdots$$

Proposition 5.2. Let

$$0 \to X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to 0$$

be a short exact sequence in $Kom^{?}(A)$. Then

$$X \longrightarrow Y \longrightarrow Z \stackrel{0}{\longrightarrow} X[1].$$

is a distinguished triangle in $D^{?}(A)$.

Given $X^{\bullet} \in D^{?}(\mathcal{A})$, we define the canonical truncations

$$\tau_{\leq i} X^{\bullet} = (\cdots \to X^{i-2} \xrightarrow{d^{i-2}} X^{i-1} \xrightarrow{d^{i-1}} \ker d^{i} \to 0 \to \cdots)$$
$$\tau_{>i} X^{\bullet} = (\cdots \to 0 \to \operatorname{Im} d^{i} \to X^{i+1} \xrightarrow{d^{i+1}} X^{i+2} \to \cdots).$$

(5.2) implies that the triangle

$$\tau_{\leq i} X^{\bullet} \stackrel{f}{\longrightarrow} X^{\bullet} \longrightarrow \tau_{>i} \longrightarrow \tau_{\leq i} X^{\bullet}[1]$$

is distinguished. We have

$$H^{j}(\tau_{\leq i}X^{\bullet}) = \begin{cases} H^{j}(X^{\bullet}), & \text{if } j \leq i \\ 0, \text{ else,} \end{cases} H^{j}(\tau_{>i}X^{\bullet}) = \begin{cases} H^{j}(X^{\bullet}), & \text{if } j > i \\ 0, \text{ else.} \end{cases}$$

Remark. Shouldn't confound $\tau_{\leq i}$, $\tau_{>i}$ with the naive truncation

$$\sigma_{\leq i} X^{\bullet} = (\cdots \to X^{i-1} \xrightarrow{d^{i-1}} X^{i} \to 0 \to \cdots)$$

$$\sigma_{>i} X^{\bullet} = (\cdots \to 0 \to X^{i+1} \xrightarrow{d^{i+1}} X^{i+2} \to \cdots).$$

The triangle

$$\sigma_{\leq i} X^{\bullet} \xrightarrow{f} X^{\bullet} \longrightarrow \sigma_{>i} X^{\bullet} \longrightarrow \sigma_{\leq i} X^{\bullet}[1]$$

is also distinguished.

5.2 Axioms and properties of triangulated categories

(TR1)

•
$$\triangle : X \xrightarrow{\mathrm{id}} X \longrightarrow 0 \longrightarrow X[1].$$

• Given an isomorphism of triangles

$$\Delta': \qquad X' \longrightarrow Y' \longrightarrow Z' \longrightarrow X'[1]$$

$$\downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr}$$

$$\Delta: \qquad X \longrightarrow Y \longrightarrow Z \longrightarrow X[1],$$

 \triangle' is distinguished if and only if \triangle is distinguished.

• Any morphism $f: X \to Y$ can be completed to a distinguished triangle

(TR2) A triangle

$$X^{\bullet} \xrightarrow{u} Y^{\bullet} \xrightarrow{v} Z^{\bullet} \xrightarrow{w} X^{\bullet}[1]$$

is distinguished if and only if

$$Y^{\bullet} \stackrel{v}{\longrightarrow} Z \stackrel{w}{\longrightarrow} X^{\bullet}[1] \stackrel{-u[1]}{\longrightarrow} Y^{\bullet}[1]$$

is distinguished.

(TR3) Given two distinguished triangles

$$\triangle = \begin{array}{c} X \xrightarrow{r} Y \\ Z, \end{array} \qquad \triangle = \begin{array}{c} X' \xrightarrow{r} Y' \\ Z' \end{array}$$

and a commutative diagram

$$\begin{array}{ccc} X' & \longrightarrow & Y' \\ \downarrow^f & & \downarrow^g \\ X & \longrightarrow & Y. \end{array}$$

there exists $h: Z' \to Z$ such that the diagram

$$X' \longrightarrow Y' \longrightarrow Z' \longrightarrow X'[1]$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h \qquad \downarrow^{f[1]}$$

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1]$$

commutes.

Remark. The map $h: Z' \to Z$ above is not required to be unique (in any sense). If \mathcal{T} satisfies (TR1), (TR2), (TR3), we call \mathcal{T} a pre-triangulated category.

Proposition 5.3. Given a distinguished triangle

- (i) $v \circ u = 0$.
- (ii) For each $U \in \mathcal{T}$, the sequence

$$\cdots \to \operatorname{Hom}(U,X[i]) \xrightarrow{u[i] \circ} \operatorname{Hom}(U,Y[i]) \xrightarrow{v[i] \circ} \operatorname{Hom}(U,Z[i]) \to \operatorname{Hom}(U,X[i+1]) \to \cdots$$

is exact (similar for Hom(X[i], U) etc.)

Proof. (i) Consider the morphism of distinguished triangles

$$X \longrightarrow X \longrightarrow 0 \longrightarrow X[1]$$

$$\downarrow u \qquad \downarrow f \qquad \qquad \downarrow \downarrow$$

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1],$$

where f exists by (TR3). Hence $v \circ u = f \circ 0 = 0$.

(ii) By (TR2), it is enough to show that the sequence is exact at Hom(U, Y[i]). By (i), $v[i] \circ u[i] \circ = (v \circ u)[i] \circ = 0$, so $\text{Im}(u[i] \circ) \subseteq \text{ker}(v[i] \circ)$. For each $f \in \text{ker}(v[i] \circ)$, we have the morphism of distinguished triangles

$$V \longrightarrow V \longrightarrow 0 \longrightarrow V[1]$$

$$\downarrow^{g} \qquad \downarrow^{f} \qquad \downarrow^{g[1]}$$

$$X[i] \xrightarrow{u[i]} Y[i] \xrightarrow{v[i]} Z[i] \xrightarrow{w[i]} X[i+1],$$

where g exists by (TR3). Hence $f = u[i] \circ g \in \text{Im}(u[i] \circ)$.

Proposition 5.4. In (TR3), if f and g are isomorphisms, so is h. In particular, for each $f: X \to Y$, the isomorphism class of the object Z in the distinguished triangle

completing f is unique.

We write Cone(f) := Z and call it the mapping cone of f.

Proof. For each $U \in \mathcal{T}$, apply $\operatorname{Hom}_{\mathcal{T}}(U, -)$ to the diagram

$$X' \longrightarrow Y' \longrightarrow Z' \longrightarrow X'[1] \longrightarrow Y'[1]$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h} \qquad \downarrow^{f[1]} \qquad \downarrow^{g[1]}$$

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1] \longrightarrow Y[1].$$

It follows from (5.3) that the two rows of

are both exact. Since f_* , g_* , $f[1]_*$, $g[1]_*$ are isomorphisms, the five lemma shows that h_* is also an isomorphism. Hence, by Yoneda's lemma, $h: Z' \to Z$ is an isomorphism.

Remark. Given $f: X \to Y$ in \mathcal{T} . Only the isomorphism class of $\operatorname{Cone}(f)$ is well-defined. In general there is no functorial construction of $\operatorname{Cone}(f)$.

(TR4) Assume we have the following diagram

containing the distinguished triangles

and the commutative diagrams

Then we can complete the diagram by

with

distinguished and

commute.

(TR4) implies that given $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{T} , there exists a distinguished triangle

Unfolding the octahedron, we have

(TR4) implies the following

Lemma 5.5. Each commutative diagram

$$E_1 \xrightarrow{e} E_2$$

$$\downarrow^{\varphi_1} \qquad \downarrow^{\varphi_2}$$

$$F_1 \xrightarrow{f} F_2$$

can be completed to a commutative diagram

Proof. We already know that G_1 , G_2 , E_3 , F_3 exist (mapping cone). Let $H = \text{Cone}(E_1 \to F_2)$. Applying (TR4') and (Υ) to both $E_1 \xrightarrow{e} E_2 \xrightarrow{\varphi_2} F_2$ and $E_1 \xrightarrow{\varphi_1} F_1 \xrightarrow{f} F_2$ gives

$$E_3 \xrightarrow{u} H \xrightarrow{v'} G_2 \longrightarrow E_3[1]$$

$$G_1 \xrightarrow{u'} H \xrightarrow{v} F_3 \longrightarrow G_1[1]$$

such that

is commutative. Define $G_3 = \operatorname{Cone}(E_3 \xrightarrow{u} H \xrightarrow{v} F_3)$. We finish the proof by applying (TR4') and (\Upsilon') to $E_3 \xrightarrow{u} H \xrightarrow{v} F_3$.

Theorem 5.6. The homotopy categories $K^{?}(A)$ are triangulated.

We've already proven that $K^{?}(A)$ satisfies (TR1) ~ (TR3).

Remark. The homotopy category $K^{?}(\mathcal{A})$ of \mathcal{A} makes sense as long as \mathcal{A} is an additive category. $K^{?}(\mathcal{A})$ is again a triangulated category with [1] and distinguished triangles are defined the same way.

5.3 Exact functors

Let \mathcal{C} and \mathcal{D} be triangulated categories. A triangle functor (or exact functor) is an additive functor $\Phi: \mathcal{C} \to \mathcal{D}$ such that $\Phi \circ [1] = [1] \circ \Phi$ and Φ preserves distinguished triangles, i.e.,

Example 5.7. For every additive functor $F: \mathcal{A} \to \mathcal{B}$ between abelian categories, the induced functor $K^{?}(\mathcal{A}) \to K^{?}(\mathcal{B})$ is exact.

Exactness is preserved under adjunction.

Proposition 5.8. Let $F: \mathcal{C} \to \mathcal{D}$ be an exact functor. If $G \dashv F$ or $F \dashv G$, then $G: \mathcal{D} \to \mathcal{C}$ is exact. In particular, if F is an equivalence of category, then its quasi-inverse is also an exact functor.

Proof. We prove the proposition when $F \dashv G$.

$$G \circ [1] = [1] \circ G$$
: Since $F \circ [n] = [n] \circ F$, we have

$$\operatorname{Hom}(A, G(B[1])) \cong \operatorname{Hom}(F(A), B[1]) \cong \operatorname{Hom}(F(A)[-1], B)$$

 $\cong \operatorname{Hom}(F(A[-1]), B) \cong \operatorname{Hom}(A[-1], G(B)) \cong \operatorname{Hom}(A, G(B)[1]),$

and all these isomorphisms are functorial in $A \in \mathcal{C}$ and $B \in \mathcal{D}$. By Yoneda's lemma, $G(B[1]) \cong G(B)[1]$, functorial in B. Hence $G \circ [1] = [1] \circ G$.

G preserves distinguished triangles: Given distinguished triangle

in D. We complete $G(X) \to G(Y)$ into a distinguished triangle

Apply F to this distinguished triangle, we get

$$FG(X) \longrightarrow FG(Y) \longrightarrow F(Z_0) \longrightarrow FG(X)[1]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1].$$

where $FG(X) \to X$ and $FG(Y) \to Y$ are adjunction morphisms, and the blue arrow

 $F(Z_0) \to Z$ comes from (TR3). We have morphisms of triangles

where \triangle_1 is distinguished and we want to show \triangle_3 is also distinguished. For each $A \in \mathcal{C}$, as

is exact, (*) and the five lemma implies

$$\operatorname{Hom}(A, G(Z)) \cong \operatorname{Hom}(A, Z_0),$$

functorial in A. So $\triangle_1 \to \triangle_3$ implies $G(Z) \cong Z_0$ by Yoneda's lemma. Hence $\triangle_3 \cong \triangle_1$ and therefore \triangle_3 is exact.

Definition 5.9. An equivalence of triangulated categories is an exact functor $\Phi: \mathcal{C} \to \mathcal{D}$ which is an equivalence of categories. A triangulated subcategory of \mathcal{D} is a subcategory $\mathcal{C} \subseteq \mathcal{D}$ carrying a structure of triangulated category such that $\mathcal{C} \hookrightarrow \mathcal{D}$ is exact.

Proposition 5.10. Let \mathcal{C} be a full subcategory of a triangulated category \mathcal{D} . Then $\mathcal{C} \subseteq \mathcal{D}$ is a triangulated subcategory if and only if

- (i) [1] restricts to an automorphism on C;
- (ii) for each distinguished triangle

in \mathcal{D} , $X, Y \in \mathcal{C}$ implies Z is isomorphic to an object in \mathcal{C} .

Example 5.11. $K^{\mathrm{b}}(\mathcal{A}) \subseteq K^{\pm}(\mathcal{A}) \subseteq K(\mathcal{A})$ and $D^{\mathrm{b}}(\mathcal{A}) \subseteq D^{\pm}(\mathcal{A}) \subseteq D(\mathcal{A})$ are inclusions of full triangulated subcategory.

Remark. The canonical truncations $\tau_{\leq i}$, $\tau_{>i}:D^{?}(\mathcal{A})\to D^{?}(\mathcal{A})$ are not exact functors.

5.4 Localizations of triangulated categories

When does a localization of a triangulated category \mathcal{T} carry a natural structure of triangulated category?

Let S be a collection of morphisms in \mathcal{T} . We say that S is compatible with triangulation if

- $f \in S$ if and only if $f[1] \in S$
- for each diagram

there exists $h: Z' \to Z$ so that we can complete the diagram

$$\begin{array}{ccccc} & & X' & \longrightarrow & Y' & \longrightarrow & Z' & \longrightarrow & X'[1] \\ & & \downarrow^f & & \downarrow^g & & \downarrow^h & & \downarrow^{f[1]} \\ & & & X & \longrightarrow & Y & \longrightarrow & Z & \longrightarrow & X[1]. \end{array}$$

Theorem 5.12. Let \mathcal{T} be a triangulated category, and let S be a localized system compatible with triangulation. Then $S^{-1}\mathcal{T}$ is a triangulated category, with respect to:

- The natural shift functor on $S^{-1}\mathcal{T}$.
- A triangle in $S^{-1}\mathcal{T}$ is called distinguished if it is isomorphic to the image of a distinguished triangle under $\mathcal{T} \to S^{-1}\mathcal{T}$.

Corollary 5.13. The derived category $D^{?}(A)$, together with the shift functor and distinguished triangles defined before, is a triangulated category.

Interlude: On diagram chasing

Let \mathcal{A} be an abelian category. As we mentioned before, in many situations we can't regard objects of \mathcal{A} as sets. Even if they are sets (e.g., $\mathcal{A} = \mathsf{Ab}$), in general we can't understand set-theoretically ker f and coker f. For instance,

- monomorphism \neq injection (e.g., $\mathcal{A} =$ the category of divisible abelian groups, $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$);
- epimorphism \neq surjection (e.g., $\mathcal{A} = \text{Ring}, \mathbb{Z} \to \mathbb{Q}$).

Fortunately, there exists a formalism allowing us to understand morphisms in \mathcal{A} , as if they were sets. Here we summarize the rules.

Elements

Let Y be an object of \mathcal{A} . An element y of Y (denoted $y \in Y$) is an equivalence class of pairs

$$(X \in \mathcal{A}, h : X \to Y)$$

by the equivalence relation $(X,h) \sim (X',h')$ if there exists

with g, g' epic.

Maps induced by morphisms

Given a morphism $f: Y_1 \to Y_2$ in \mathcal{A} , we get

$$f: \{ \text{ elements of } Y_1 \} \rightarrow \{ \text{ elements of } Y_2 \}$$

 $(X, h) \mapsto (X, f \circ h).$

Diagram chasing rules

The element $0 \in Y$ is defined by $0 \mapsto Y$.

Proposition. Let $f: Y_1 \to Y_2$ be a morphism in \mathcal{A} .

- (i) f is a monomorphism if and only if for each $y \in Y_1$, f(y) = 0 implies y = 0, or equivalently, for all $y, y' \in Y_1$, f(y) = f(y') implies y = y'.
- (ii) f is an epimorphism if and only if for each $y_2 \in Y_2$, there exists $y_1 \in Y_1$ such that $f(y_1) = y_2$.

- (iii) f = 0 if and only if for each $y \in Y$, f(y) = 0.
- (iv) $Y_1 \xrightarrow{f} Y \xrightarrow{g} Y_2$ is exact if and only if $g \circ f = 0$ and for each $y \in Y$ with g(y) = 0, there exists $y_1 \in Y_1$ such that $f(y_1) = y$.

For each $y = (X, h) \in Y$, define $-y = (X, -h) \in Y$.

Proposition. Let $g: Y_1 \to Y_2$ be a morphism in \mathcal{A} . Let $y, y' \in Y_1$ such that g(y) = g(y'). Then exists $z \in Y_1$ such that g(z) = 0 and

- for each $f: Y_1 = Y$ such that f(y) = 0, we have f(z) = -f(y');
- for each $f: Y_1 = Y$ such that f(y') = 0, we have f(z) = -f(y).

6 Derived functors

Let $F: \mathcal{A} \to \mathcal{B}$ be a covariant additive functors between abelian categories. Assume F is left exact (e.g., $F = \Gamma(X, -) : \mathsf{QCoh}(X/k) \to \mathsf{Vect}_k$). We want to construct the right derived functor

$$RF: D^+(\mathcal{A}) \to D^+(\mathcal{B})$$

which is an exact functor such that $R^iF = H^i(RF)$. That RF is exact implies, e.g., for each short exact sequence

$$0 \to X \to Y \to Z \to 0$$

in \mathcal{A} .

$$\mathsf{R}F(X) \to \mathsf{R}F(Y) \to \mathsf{R}F(Z) \to \mathsf{R}F(X)[1]$$

is an distinguished triangle in $D^+(\mathcal{B})$, and for each left exact sequence

$$0 \to X \to Y \to Z$$

in \mathcal{A} . We have the long exact sequence

$$\cdots \to R^i F(X) \to R^i F(Y) \to R^i F(Z) \to R^{i+1} F(X) \to \cdots$$

Rough plan of construction:

(1) RF maps complexes to complexes, but we're not able to give a general explicit construction of $RF(X^{\bullet})$ for every $X^{\bullet} \in Kom(\mathcal{A})$.

- (2) Instead, we only define $\mathsf{R}F(X^{\bullet})$ for complexes X^{\bullet} consisting of F-adapted objects $\mathcal{I}_F \subseteq \mathcal{A}$.
- (3) The full subcategory $\mathcal{I}_F \subseteq \mathcal{A}$ satisfies

$$S^{-1}K^+(\mathcal{I}_F) \xrightarrow{\sim} D^+(\mathcal{A}),$$

so enough to define RF on $K^+(\mathcal{I}_F)$.

Sometimes we will only consider functors $F: \mathcal{A} \to \mathcal{B}$ which are left exact. For right exact functors $G: \mathcal{A} \to \mathcal{B}$, the construction of left derived functor $LG: D^-(\mathcal{A}) \to D^-(\mathcal{B})$ and other statements are similar.

6.1 *F*-adapted objects

A complex $X^{\bullet} \in \text{Kom}(\mathcal{A})$ is called acyclic if $H^{i}(X^{\bullet}) = 0$ for all i.

Definition 6.1. Let $F : \mathcal{A} \to \mathcal{B}$ be a left (resp. right) exact functor. A class of objects $\mathcal{I}_F \subseteq \mathcal{A}$ is called F-adapted if the following conditions hold.

- (i) \mathcal{I}_F is stable under finite direct sums.
- (ii) F sends acyclic complexes in $\mathrm{Kom}^+(\mathcal{I}_F)$ (resp. $\mathrm{Kom}^-(\mathcal{I}_F)$) to acyclic complexes.
- (iii) Any object in \mathcal{A} is a subobject (resp. quotient) of some object of \mathcal{I}_F .

If \mathcal{I}_F satisfies (i) and (iii) we also say that \mathcal{A} contains sufficiently many objects in \mathcal{I}_F , or \mathcal{I}_F is sufficiently large.

Example 6.2. An object $I \in \mathcal{A}$ is called injective if for each monomorphism $f: A \to B$ and for each morphism $g: A \to I$, there exists a lifting

$$A \xrightarrow{g} \mathring{|}_{\tilde{g}}$$

$$A \xrightarrow{f} B.$$

Let $\mathcal{I} \subseteq \mathcal{A}$ be the full subcategory of injective objects.

Proposition 6.3. If \mathcal{A} contains enough injective objects, then \mathcal{I} is F-adapted for each left-exact functor F.

Proof. Given $I, J \in \mathcal{I}$. For any monomorphism $f: A \to B$ and any morphism $(g, h): A \to I \oplus J$, we have liftings

We see that (\tilde{g}, \tilde{h}) gives a lifting

$$A \xrightarrow{f} B.$$

$$I \oplus J$$

$$\uparrow_{(\tilde{g},\tilde{h})}$$

So \mathcal{I} is stable under finite direct sums.

Let

$$I^{\bullet}: \quad 0 \to I^{\ell} \xrightarrow{d^{\ell}} I^{\ell+1} \xrightarrow{d^{\ell+1}} I^{\ell+2} \to \cdots$$

be an acyclic complex in $\mathrm{Kom}^+(\mathcal{I}_F)$. We want to show that

$$F(I^{\bullet}): 0 \to F(I^{\ell}) \xrightarrow{F(d^{\ell})} F(I^{\ell+1}) \xrightarrow{F(d^{\ell+1})} F(I^{\ell+2}) \to \cdots$$

is also acyclic. Since $H^i(I^{\bullet}) = 0$ for each i, we may decompose I^{\bullet} into exact sequences

For each $i \geq \ell + 1$, since I^{i+1} is injective, the short exact sequence

$$0 \longrightarrow \ker d^{i+1} \xrightarrow{d^i} \ker d^{i+1} \longrightarrow \ker d^{i+2} \longrightarrow 0$$

$$\downarrow I^i$$

splits. Hence, the left-exactness of F gives a short exact sequence

$$0 \longrightarrow F(\ker d^{i+1}) \xrightarrow{F(d^i)} F(I^{i+1}) \longrightarrow F(\ker d^{i+2}) \longrightarrow 0$$

for each i. These exact sequences patches together into a long exact sequence $F(I^{\bullet})$.

Proposition 6.4. For each $X^{\bullet}\mathcal{I}K^{+}(\mathcal{A})$ and for each $I^{\bullet} \in K^{+}(\mathcal{I})$, the natural map

$$\operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, I^{\bullet}) \to \operatorname{Hom}_{D(\mathcal{A})}(X^{\bullet}, I^{\bullet})$$

is an isomorphism.

Proof.

Dually, an object $P \in \mathcal{A}$ is called projective if for each epimorphism $f: B \to A$ and for each morphism $g: P \to A$, there exists a lifting

$$P \downarrow g \downarrow g \downarrow A.$$

$$B \xrightarrow{\tilde{g}_f} A.$$

Let $\mathcal{P} \subseteq \mathcal{A}$ be the full subcategory of projective objects. Again, if \mathcal{A} contains enough projective object then \mathcal{P} is F-adapted for each right exact functor G.

Let $\mathcal{I}_F \subseteq \mathcal{A}$ be a full subcategory of F-adapted objects for some left exact functor $F: \mathcal{A} \to \mathcal{B}$. Then \mathcal{I}_F is an additive subcategory of \mathcal{A} . Recall that $K^?(\mathcal{I}_F)$ is an triangulated category.

Lemma 6.5. Let S be the class of quasi-isomorphisms in $K^+(\mathcal{I}_F)$. Then S is a localizing system in $K^+(\mathcal{I}_F)$ compatible with triangulation.

Proof. Adapt the proof that quasi-isomorphisms in $K^{?}(A)$ form a localizing system compatible with triangulation.

Proposition 6.6. The natural functor $\Psi: S^{-1}K^+(\mathcal{I}_F) \to D^+(\mathcal{A})$ is an equivalence of triangulated categories.

Proof. First, we show that $S^{-1}K^+(\mathcal{I}_F) \to D^+(\mathcal{A})$ is essentially surjective. Namely, for each $C^{\bullet} \in \mathrm{Kom}^+(\mathcal{A})$, there exists $I^{\bullet} \in \mathrm{Kom}^+(\mathcal{A})$ such that C^{\bullet} is quasi-isomorphic to I^{\bullet} . We may assume that $C^i = 0$ for each i < 0. Construct $C^{\bullet} \to I^{\bullet}$ by induction: For the initial step, since \mathcal{I}_F is F-adapted, we can find a monomorphism $C^0 \hookrightarrow I^0 \in \mathcal{I}_F$. Consider the fibered coproduct

$$0 \longrightarrow C^0 \longrightarrow C^1$$

$$\downarrow \qquad \qquad \downarrow$$

$$I^0 \longrightarrow C^1 \sqcup_{C_0} I^0,$$

We then take a monomorphism $C^1 \sqcup_{C_0} I^0 \hookrightarrow I^1 \in \mathcal{I}_F$. Then, we complete the diagram

$$0 \longrightarrow C^0 \longrightarrow C^1$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow I^0 \longrightarrow I^1.$$

Now, assume that we have

$$0 \longrightarrow C^0 \longrightarrow \cdots \longrightarrow C^i$$

$$\downarrow^{s^0} \qquad \qquad \downarrow^{s^i}$$

$$0 \longrightarrow I^0 \longrightarrow \cdots \xrightarrow{d^{i-1}} I^i.$$

Consider

Then take a monomorphism $C^{i+1} \sqcup_{C_i} \operatorname{coker} d^{i-1} \hookrightarrow I^{i+1} \in \mathcal{I}_F$ so that we can complete the diagram

$$0 \longrightarrow C^0 \longrightarrow \cdots \longrightarrow C^i \longrightarrow C^{i+1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow I^0 \longrightarrow \cdots \longrightarrow I^i \longrightarrow I^{i+1}.$$

This gives us a complex $I^{\bullet} \in \text{Kom}^+(\mathcal{I}_F)$ and a morphism $s^{\bullet} : C^{\bullet} \to I^{\bullet}$. We still need to show that $H^i(C^{\bullet}) \to H^i(I^{\bullet})$ is an isomorphism for each $i \geq 0$, which is a simple diagram chasing. (*)

We show that $S^{-1}K^+(\mathcal{I}_F) \to D^+(\mathcal{A})$ is fully faithful. By (4.13), it is enough show for each quasi-isomorphism $X \stackrel{s}{\to} X'$ with $X \in K^+(\mathcal{I}_F)$, there exists a morphism $X' \to X''$ such that the composition $X \to X'$ is a quasi-isomorphism in $K^+(\mathcal{I}_F)$. We just prove the existence of the quasi-isomorphism $X' \to X''$.

To show that the equivalence $S^{-1}K^+(\mathcal{I}_F) \xrightarrow{\sim} D^+(\mathcal{A})$ is triangulated, it suffices to verify that

- [1] restricts to an automorphism on $S^{-1}K^+(\mathcal{I}_F)$;
- for each distinguished triangle

with $X, Y \in \text{Kom}^+(\mathcal{I}_F)$, Z is quasi-isomorphic to some object in $\text{Kom}^+(\mathcal{I}_F)$.

Both are clear.

6.2 Construction of the derived functor

Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor, and let $\mathcal{I}_F \subseteq \mathcal{A}$ be a full subcategory of F-adapted objects. We have seen that

$$\Psi: S^{-1}K^+(\mathcal{I}_F) \to D^+(\mathcal{A})$$

defines an equivalence of categories.

Lemma 6.7. We have a factorization

$$K^{+}(\mathcal{I}_{F}) \xrightarrow{I^{\bullet} \mapsto F(I^{\bullet})} D^{+}(\mathcal{B})$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$S^{-1}K^{+}\mathcal{I}_{F}.$$

Proof. By the universal property of localization, enough to show that F maps a quasi-isomorphism $f: X^{\bullet} \to Y^{\bullet}$ in $\mathrm{Kom}^+(\mathcal{I}_F)$ to a quasi-isomorphism in $\mathrm{Kom}^+(\mathcal{B})$.

Since f is a quasi-isomorphism, C(f) is acyclic, so C(F(f)) = F(C(f)) is also acyclic. Hence, F(f) is a quasi-isomorphism.

Choose a quasi-inverse

$$\Phi: D^+(\mathcal{A}) \xrightarrow{\sim} S^{-1}K^+(\mathcal{I}_F)$$

of Ψ .

Definition 6.8. The right derived functor of F is

$$RF: D^{+}(\mathcal{A}) \xrightarrow{\Phi} S^{-1}K^{+}(\mathcal{I}_{F}) \xrightarrow{\overline{F}} D^{+}(\mathcal{B})$$

$$I^{\bullet} \mapsto F(I^{\bullet}).$$

Define $R^i F(X^{\bullet}) = H^i(\mathsf{R} F(X^{\bullet}).$

Proposition 6.9. The functor RF is an exact functor.

Proof. It is clear that both Φ and \overline{F} commute with [1]. Since \overline{F} sends distinguished triangles to distinguished triangles (because F(C(f)) = C(F(f))). So \overline{F} is exact. It remains to show that Φ sends distinguished triangles to distinguished triangles; namely, for each triangle

in $S^{-1}K^+(\mathcal{I}_F)$, which is distinguished in $D^+(\mathcal{A})$, it is isomorphic in $S^{-1}K^+(\mathcal{I}_F)$ to some distinguished triangle.

We represent $\varphi: X \to Y$ by $(T \xrightarrow{s} X, f)$, where $T \in \mathrm{Kom}^+(\mathcal{I}_F)$. Then there is a commutative diagram

$$T \xrightarrow{g} Y \xrightarrow{C(s)} T[1] \qquad \triangleq \text{ in } S^{-1}K^{+}(\mathcal{I}_{F})$$

$$\downarrow^{s} \qquad \qquad \downarrow \qquad \qquad \downarrow^{s[1]}$$

$$X \xrightarrow{\varphi} Y \xrightarrow{S} Z \xrightarrow{X[1]} \qquad \triangleq \text{ in } D^{+}(\mathcal{A}),$$

where the blue arrow (a morphism in $D^+(A)$) exists by (TR3). Since s is a quasi-isomorphism, C(s) is quasi-isomorphic to Z. As Φ is fully faithful, it gives an isomorphism

$$T \longrightarrow Y \longrightarrow C(s) \longrightarrow T[1]$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$X \longrightarrow Y \longrightarrow Z \longrightarrow X[1].$$

of triangles in $S^{-1}K^+(\mathcal{I}_F)$.

Remark. More generally, given any exact functor $F: K^+(A) \to K^+(B)$. Assume that there exists a full triangulated subcategory $\mathcal{I}_F \subseteq K^+(A)$ such that

- for each $X^{\bullet} \in K^{+}(\mathcal{A})$, there exists a quasi-isomorphism $X^{\bullet} \to I^{\bullet} \in \mathcal{I}_{F}$;
- $I^{\bullet} \in \mathcal{I}_F$ is acyclic implies $F(I^{\bullet})$ is acyclic.

Then $RF: D^+(\mathcal{A}) \to D^+(\mathcal{B})$ exists.

6.3 How unique is RF?

A priori, RF depends on \mathcal{I}_F and $\Phi: D^+(\mathcal{A}) \xrightarrow{\sim} S^{-1}K^+(\mathcal{I}_F)$. Given another \mathcal{I}_F' and $\Phi': D^+(\mathcal{A}) \xrightarrow{\sim} S^{-1}K^+(\mathcal{I}_F')$, the two constructions of RF are related by a natural isomorphism

$$D^{+}(\mathcal{A}) \xrightarrow{\Phi} \int_{\overline{F}'}^{F} D^{+}(\mathcal{B})$$

$$S^{-1}K^{+}(\mathcal{I}_{F}')$$

$$S^{-1}K^{+}(\mathcal{I}_{F}')$$

defined as follows:

Recall that Φ and Ψ are quasi-inverse. So there exists $\beta: \mathrm{id}_{D^+(\mathcal{A})} \xrightarrow{\sim} \Psi \circ \Phi$. Similarly, there exists $\beta': \mathrm{id}_{D^+(\mathcal{A})} \xrightarrow{\sim} \Psi' \circ \Phi'$. Given $X^{\bullet} \in D^+(\mathcal{A})$, and let

$$I^{\bullet} = \Phi(X^{\bullet}), \quad J^{\bullet} = \Phi'(X^{\bullet}).$$

 β and β' yields quasi-isomorphisms $X^{\bullet} \to I^{\bullet}$ and $X^{\bullet} \to J^{\bullet}$, which are functorial in X^{\bullet} . Since \overline{F} maps quasi-isomorphisms to quasi-isomorphisms, we get quasi-isomorphisms $F(X^{\bullet}) \to F(I^{\bullet})$ and $F(X^{\bullet}) \to F(J^{\bullet})$, which gives a quasi-isomorphism

$$\overline{F}(\Phi(X^{\bullet})) = F(I^{\bullet}) \to F(J^{\bullet}) = \overline{F}'(\Phi'(X^{\bullet}))$$

in $D^+(\mathcal{B})$, functorial in X^{\bullet} . Hence, $\overline{F}\Phi$ is natural isomorphic to $\overline{F}'\Phi'$.

Proposition 6.10 (Universal property of RF). We have a morphism of functors

$$K^{+}(\mathcal{A}) \xrightarrow{Q_{\mathcal{A}}} D^{+}(\mathcal{A})$$

$$\downarrow^{\varepsilon} \qquad D^{+}(\mathcal{B})$$

$$K^{+}(\mathcal{B}).$$

$$K^{+}(\mathcal{B}).$$

Moreover, for each exact functor $G: D^+(\mathcal{A}) \to D^+(\mathcal{B})$, and for each morphism $Q_{\mathcal{B}} \circ K(F) \to G \circ Q_{\mathcal{A}}$, there exists a $\nu: \mathsf{R}F \to G$ such that the following diagram commute.

$$Q_{\mathcal{B}} \circ K(F) \longrightarrow G \circ Q_{\mathcal{A}}$$

$$\downarrow^{\varepsilon} \qquad \qquad \downarrow^{\varepsilon}$$

$$\mathsf{R}F \circ Q_{\mathcal{A}}.$$

Here we only define $\varepsilon: Q_{\mathcal{B}} \circ K(F) \to \mathsf{R}F \circ Q_{\mathcal{A}}$. As before, choose $\beta: \mathrm{id}_{D^+(\mathcal{A})} \xrightarrow{\sim} \Psi \circ \Phi$. Then for each $X \in K^+(\mathcal{A})$, there is a functorial resolution $Q_{\mathcal{A}}(X) \to I^{\bullet} = \Phi(Q_{\mathcal{A}}(X)) \in \mathrm{Kom}^+(\mathcal{I}_F)$ in $D^+(\mathcal{A})$, represented by $(X \xrightarrow{s} C, I^{\bullet} \xrightarrow{t} C)$ in $K^+(\mathcal{A})$. Apply K(F), we get $(K(F)(X) \xrightarrow{K(F)(s)} K(F)(C), K(F)(I^{\bullet}) \xrightarrow{K(F)(t)} K(F)(C))$.

We can assume that $C \in \mathrm{Kom}^+(\mathcal{I}_F)$. As C, I^{\bullet} , t is a quasi-isomorphism implies F(C(t)) = C(F(t)) is acyclic, which means K(F)(t) is a quasi-isomorphism. We get $Q_{\mathcal{B}}K(F)(X) \to Q_{\mathcal{B}}K(F)(I^{\bullet})$ functorial in X. As the diagram

commutes, we get

$$Q_{\mathcal{B}}K(F)(I^{\bullet}) = \overline{F}(I^{\bullet}) = \overline{F}(\Phi(Q_{\mathcal{A}}(X))) = \mathsf{R}F(Q_{\mathcal{A}}(X)).$$

This defines $\varepsilon: Q_{\mathcal{B}} \circ K(F) \to \mathsf{R}F \circ Q_{\mathcal{A}}$.

6.4 The largest F-adapted class

Let $F : \mathcal{A} \to \mathcal{B}$ be a left exact functor. Given an F-adapted class of objects \mathcal{I}_F , sometimes there aren't so many objects in \mathcal{I}_F to compute RF in practice.

Example 6.11. Let (X, \mathcal{O}_X) be a ringed space, and let \mathcal{I}_F be the class of injective \mathcal{O}_X -modules. \mathcal{O}_X -mod has enough injective objects, but essentially the only injective resolution we know is the "Godement" resolution $(\mathscr{F} \hookrightarrow \mathscr{I} \text{ with } \mathscr{I}(U) := \prod_{x \in U} I_x$, where I_x is an injective abelian group that contains \mathscr{F}_X), which is useless in practive, to compute e.g., $\mathsf{R}\Gamma$, where

$$\Gamma: \mathcal{O}_X - \mathsf{mod} \to \mathsf{Ab}$$
 $\mathscr{F} \mapsto \Gamma(X, \mathscr{F}).$

We want to find \mathcal{I}_F containing as many objects as possible. Assume that $\mathsf{R}F$ exists. An object $X \in \mathcal{A}$ is called F-acyclic if $R^i F(X) = 0$ for each $i \neq 0$.

Theorem 6.12. Let $\mathcal{Z} \subseteq \mathcal{A}$ be the full subcategory of F-acyclic objects.

- (i) $\mathcal{I}_F \subseteq \mathcal{Z}$ for any F-adapted class \mathcal{I}_F .
- (ii) \mathcal{I}_F exists if and only if \mathcal{Z} is sufficiently large.

In this case, \mathcal{Z} , and also all sufficiently large subclasses of \mathcal{Z} , are F-adapted.

Proof. (i) For each $X \in \mathcal{I}_F$, we have $R^i F(X) = H^i(F(X)[0]) = 0$ for each $i \neq 0$.

(ii) The only if part follows from (i). It remains to show that every sufficiently large subclass $R \subseteq \mathcal{Z}$ is F-adapted; namely, F sends acyclic complexes $K^{\bullet} \in \mathrm{Kom}^+(R)$ to acyclic complexes. Note that if

$$0 \rightarrow K_1 \rightarrow K_2 \rightarrow K_3 \rightarrow 0$$

is exact with $K_1, K_2, K_3 \in R$,

$$0 \rightarrow F(K_1) \rightarrow F(K_2) \rightarrow F(K_3) \rightarrow 0$$

is also exact (because $R^iF(K_j)=0$ for $i\neq 0$ and j=1,2,3). Now given an acyclic complex

$$(\cdots \to 0 \to K^0 \xrightarrow{d^0} K^1 \xrightarrow{d^1} \cdots) \in \mathrm{Kom}^+(R),$$

we decompose it into short exact sequences

$$0 \to K^0 \to K^1 \to \operatorname{Im} d^1 \to 0,$$

$$0 \to \operatorname{Im} d^1 \to K^2 \to \operatorname{Im} d^2 \to 0,$$

$$\vdots$$

$$0 \to \operatorname{Im} d^i \to K^{i+1} \to \operatorname{Im} d^{i+1} \to 0,$$

$$\vdots$$

Apply RF and induction on i, we get $\operatorname{Im} d^i \in R$. So

$$F(\operatorname{Im}(K^i \xrightarrow{d^i} K^{i+1})) = \operatorname{Im}(F(K^i) \xrightarrow{F(d^i)} F(K^{i+1}))$$

and

$$0 \to \operatorname{Im} F(d^{i}) \to F(K^{i+1}) \to \operatorname{Im} F(d^{i+1})$$

is exact. Hence $\operatorname{Im} F(d^i) = \ker F(d^{i+1})$, i.e., $F(K^{\bullet})$ is acyclic.

6.5 Composition of derived functors

Let $F: \mathcal{A} \to \mathcal{B}$, $G: \mathcal{B} \to \mathcal{C}$ be left exact functors between abelian categories such that $F(\mathcal{I}_F) \subseteq \mathcal{I}_G$. Given $X \in D^+(\mathcal{A})$, it is easy to see that $R(G \circ F)(X) \cong RG(RF(X))$: choose $I^{\bullet} \in \text{Kom}^+(\mathcal{I}_F)$ that is quasi-isomorphic to X, then

$$\mathsf{R}(G \circ F)(X) \cong G(F(I^{\bullet})) \cong \mathsf{R}G(F(I^{\bullet})) \cong \mathsf{R}G(\mathsf{R}F(I^{\bullet})).$$

Next proposition says that $R(G \circ F)(X) \cong RG(RF(X))$ is functorial in $X \in D^+(A)$.

Proposition 6.13. Assume that $\mathcal{I}_F \subseteq \subseteq \mathcal{A}$ (resp. $\mathcal{I}_G \subseteq \mathcal{B}$) is an F-adapted (resp. G-adapted) class such that $F(\mathcal{I}_F) \subseteq \mathcal{I}_G$. Then $\mathsf{R}F$, $\mathsf{R}G$, $\mathsf{R}(G \circ F)$ exist and

$$R(G \circ F) \cong RG \circ RF.$$

Interlude 2: Spectral sequences

Let $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{C}$ be left exact functors between abelian categories. Assume that

- there exists F-adapted class $\mathcal{I}_F \subseteq \mathcal{A}$;
- there exists G-adapted class $\mathcal{I}_G \subseteq \mathcal{B}$;
- $F(\mathcal{I}_F) \subseteq \mathcal{I}_G$,

which implies that RF, RG, $R(G \circ F)$ exist and $R(G \circ F) \cong RG \circ RF$. We can use spectral sequence to relate $R^pG(R^qF(X))$ and $R^{p+q}(G \circ F)(X)$.

Proposition 6.14. For each $X \in D^+(A)$, there exists a spectral sequence

$$E_2^{p,q} = R^p G(R^q F(X)) \Rightarrow R^{p+q}(G \circ F)(X).$$

Definition

Let \mathcal{A} be an abelian category. A spectral sequence in \mathcal{A} consists of

- $E^n \in \mathcal{A}$ for each $n \in \mathbb{Z}$;
- for each $r \in \mathbb{Z}_{\geq 0}$, $\{E_r^{p,q} \in \mathcal{A} \mid p,q \in \mathbb{Z}\}$, called the r^{th} page;
- $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$, such that $d_r \circ d_r = 0$;
- isomorphisms

$$E_{r+1}^{p,q} \cong \frac{\ker(d_r : E_r^{p,q} \to E_r^{p+r,q-r+1})}{\operatorname{Im}(d_r : E_r^{p-r,q+r_1} \to E_r^{p,q})},$$

subject to the following conditions:

• For each (p,q), there exists r_0 such that for all $r \geq r_0$,

$$E_r^{p-r,q+r-1} \xrightarrow{d_r=0} E_r^{p,q} \xrightarrow{d_r=0} E_r^{p+r,q-r+1}.$$

This implies $E_{r_0}^{p,q} \cong E_{r_0+1}^{p,q} \cong \cdots =: E_{\infty}^{p,q}$.

• Each E^n admits a decreasing filtration

$$\cdots \subseteq F^{p+1}E^n \subseteq F^pE^n \subseteq F^{p-1}E^n \subseteq \cdots,$$
 with $\bigcap_p F^pE^n = 0$ and $\bigcup_p F^pE^n = E^n$ such that
$$E^{p,q}_\infty \cong F^pE^{p+q}/_{F^{p+1}E^{p+q}} =: \operatorname{Gr}_F^pE^{p+q}.$$

We say that the spectral sequence $\{E_r^{p,q}\}$ converges to $\{E^n\}$, and write $E_r^{p,q} \Rightarrow E^{p+q}$. We say that $\{E_r^{p,q}\}$ degenerate at page r_0 if $d_r^{p,q} = 0$ for each $r \geq r_0$ and for each p, q. In this case, $E_{\infty}^{p,q} = E_{r_0}^{p,q}$. If \mathcal{A} is semisimple, then $E^n \cong \bigoplus_{p+q=n} E_{r_0}^{p,q}$ (non-canonical).

An example

Let $G: \mathcal{A} \to \mathcal{B}$ be left exact. Assume there exists a G-adapted class \mathcal{I}_G . Then we get the right derived functor $RG: D^+(\mathcal{A}) \to D^+(\mathcal{B})$.

Corollary 6.15. If $RG(A) \in D^{b}(\mathbb{B})$ for each $A \in \mathcal{A}$, then RG induces

$$RG: D^{\mathrm{b}}(\mathcal{A}) \to D^{\mathrm{b}}(\mathcal{B}).$$

Proof. Let $X^{\bullet} \in D^{\mathrm{b}}(\mathcal{A})$. Then for each $k \in \mathbb{Z}$,

Then induction on the number of integers j such that $H^j(X^{\bullet}) \neq 0$ completes the proof.

We present a proof using spectral sequences.

Proof. Let $X^{\bullet} \in D^{b}(\mathcal{A})$. Apply (6.14) to G and $F = \mathrm{id}_{A}$, we get

$$E_2^{p,q} = R^pG(R^qF(X^\bullet)) = R^pG(H^q(X^\bullet)) \Rightarrow R^{p+q}(G)(X^\bullet).$$

Since $X^{\bullet} \in D^{\mathrm{b}}(\mathcal{A})$ and $\mathsf{R}G(H^q(X^{\bullet})) \in D^{\mathrm{b}}(X)$, there exists C > 0 such that $E_2^{p,q} = R^pG(H^q(X^{\bullet})) = 0$ for all |p|, |q| > C. As $E_{\infty}^{p,q}$ is a sub-quotient of $E_2^{p,q}$, we have $E_{\infty}^{p,q} = 0$ for all |p|, |q| > C. Hence $R^{p+q}G(X^{\bullet}) = E^{p+q} = 0$ whenever |p+q| > 2C, so $\mathsf{R}G(X^{\bullet}) \in D^{\mathrm{b}}(\mathcal{B})$.

7 Examples of derived functors

7.1 Ext

Let \mathcal{A} be an abelian category.

Definition 7.1. For each $X, Y \in \mathcal{A}$, we define

$$\operatorname{Ext}_{A}^{i}(X,Y) := \operatorname{Hom}_{D(A)}(X[0], Y[i]).$$

Some immediate properties of Ext:

- $\operatorname{Ext}^0(X,Y) = \operatorname{Hom}_{\mathcal{A}}(X,Y).$
- $\operatorname{Ext}^{i}(X,Y) = \operatorname{Hom}_{D(\mathcal{A})}(X[k],Y[k+i])$ for each $k \in \mathbb{Z}$.
- For each $X, Y, Z \in \mathcal{A}$, we have a bilinear map

$$\operatorname{Ext}^{i}(X,Y) \times \operatorname{Ext}^{j}(Y,Z) \to \operatorname{Ext}^{i+j}(X,Z)$$

defined by composition. It is called the Yoneda product.

• We have seen that every short exact sequence

$$0 \to X' \to X \to X'' \to 0$$

induces a long exact sequence

$$\cdots \to \operatorname{Ext}^i(X'',Y) \to \operatorname{Ext}^i(X,Y) \to \operatorname{Ext}^i(X',Y) \to \operatorname{Ext}^{i+1}(X'',Y) \to \cdots$$

and similar for $\operatorname{Ext}^{i}(Y, -)$.

Proposition 7.2. For each i < 0, $\operatorname{Ext}^{i}(X, Y) = 0$.

Proof. Given $X[0] \to Y[i]$, represented by $(K^{\bullet} \xrightarrow{s} X[0], f)$. Since i < 0, we have

where the composition $s \circ g$ is a quasi-isomorphism. Hence $\operatorname{Ext}^i(X,Y) = \operatorname{Hom}(X,Y[i]) = 0$.

Proposition 7.3. Assume that \mathcal{A} has enough injectives (resp. projectives). Then $\operatorname{Ext}^i(X,-) \cong R^i \operatorname{Hom}(X,-)$ (resp. $\operatorname{Ext}^i(-,X) \cong R^i \operatorname{Hom}(-,X)$).

Proof. For each A^{\bullet} , $B^{\bullet} \in \text{Kom}(\mathcal{A})$, define

$$\operatorname{Hom}^n(A^{\bullet}, B^{\bullet}) = \prod_{i \in \mathbb{Z}} \operatorname{Hom}(A^i, B^{n+i})$$

and

$$d^n: \operatorname{Hom}^n(A^{\bullet}, B^{\bullet}) \to \operatorname{Hom}^{n+1}(A^{\bullet}, B^{\bullet})$$

$$f \mapsto d_B \circ f - (-1)^n f \circ d_A.$$

Then $(\operatorname{Hom}^n(A^{\bullet}, B^{\bullet}), d^n)$ is a complex. We have

$$\ker d^i = \operatorname{Hom}_{\operatorname{Kom}(\mathcal{A})}(A^{\bullet}, B^{\bullet}[i]), \quad H^i(\operatorname{Hom}^{\bullet}(A^{\bullet}, B^{\bullet})) = \operatorname{Hom}_{K(\mathcal{A})}(A^{\bullet}, B^{\bullet}[i]).$$

Now given $Y \in \mathcal{A}$, let $Y \to I^{\bullet}$ be an injective resolution. Then by (6.4)

$$\operatorname{Ext}^{i}(X,Y) = \operatorname{Hom}_{D(\mathcal{A})}(X,I^{\bullet}[i]) \cong \operatorname{Hom}_{K(\mathcal{A})}(X,I^{\bullet}[i])$$
$$= H^{i}(\operatorname{Hom}^{\bullet}(X,I^{\bullet})) = H^{i}(\operatorname{Hom}(X,I^{\bullet}[i])) = R^{i}\operatorname{Hom}(X,Y).$$

The second statement can be proved similarly.

7.2 Tensor product

7.2.1 *R*-modules

Let R be a ring with 1, and let N be a left R-module. Then $F = - \otimes_R N : \mathsf{mod}\text{-}R \to \mathsf{Ab}$ is a right exact functor. Flat modules form a class of F-adapted objects. Then we get

$$\mathsf{L} F = - \otimes_R^{\mathsf{L}} N : D^-(R\operatorname{\mathsf{-mod}}) \to D^-(\mathsf{Ab})$$

We define $\operatorname{Tor}_i^R(M,N) = H^{-i}(M \otimes_R^{\mathsf{L}} N)$.

7.2.2 Coherent sheaves

Let X be a variety over a field k. Let $\mathscr{F} \in \mathsf{Coh}\,X$. Then

$$-\otimes \mathscr{F}: \mathsf{Coh}\, X \to \mathsf{Coh}\, X$$

is right exact.

Assume X is quasi-projective. Then for each $\mathscr{E} \in \mathsf{Coh}\, X,\, \mathscr{E}$ has a resolution

$$\cdots \to \mathscr{L}^1 \to \mathscr{L}^0 \to \mathscr{E}$$

by locally free sheaves of finite rank. Moreover if $\mathscr{E}^{\bullet} \in \mathrm{Kom}^{-}(\mathsf{Coh}\,X)$ is an acyclic complex of locally free sheaves, then $\mathscr{E}^{\bullet} \otimes \mathscr{F}$ is also acyclic. So locally free sheaves on X form a class of objects adapted for $-\otimes \mathscr{F}$. Hence, we get

$$-\otimes^{\mathsf{L}}\mathscr{F}:D^{-}(X)\to D^{-}(X)=:D^{-}(\mathsf{Coh}\,X),$$

and $\mathcal{T}or_1(\mathscr{E},\mathscr{F}) := H^{-i}(\mathscr{E} \otimes^{\mathsf{L}} \mathscr{F}).$

Assume X is smooth quasi-projective. Then every $\mathscr{E} \in \mathsf{Coh}\,X$ has a finite locally free resolution. Hence,

$$-\otimes^{\mathsf{L}}\mathscr{F}:D^{\mathrm{b}}(X)\to D^{\mathrm{b}}(X):=D^{\mathrm{b}}(\mathsf{Coh}\,X).$$

7.2.3 Complexes of coherent sheaves

Let X be a quasi-projective variety over a field k. Given \mathscr{E}^{\bullet} , \mathscr{F}^{\bullet} . Define

$$(\mathscr{E}^{\bullet} \otimes \mathscr{F}^{\bullet})^{i} = \bigoplus_{p+q=i} \mathscr{E}^{p} \oplus \mathscr{F}^{q},$$

with $d^i = d_{\mathscr{E}} \otimes \operatorname{id} + (-1)^i \operatorname{id} \otimes d_{\mathscr{F}}$. Then

$$-\otimes \mathscr{F}^{\bullet}: K^{-}(\operatorname{Coh} X) \to K^{-}(\operatorname{Coh} X)$$

is right exact, and complexes of locally free sheaves in $K^-(\mathsf{Coh}\,X)$ are again adapted for $-\otimes\mathscr{F}^{\bullet}$. This gives the derived functor $-\otimes^{\mathsf{L}}\mathscr{F}^{\bullet}:D^-(X)\to D^-(X)$. Furthermore, we get

$$-\otimes^{\mathsf{L}} -: D^{-}(X) \times D^{-}(X) \to D^{-}(X)$$

with $D^{\mathrm{b}}(X) \times D^{\mathrm{b}}(X)$ if X is smooth.

7.3 Pullback and pushforward

Let $f: X \to Y$ be a morphism of ringed spaces. Then f^* is the left adjoint of f_* . Hence, f^* is right exact and f_* is left exact.

Now, let X, Y be quasi-projective varieties over a field k. Then $f^* : \operatorname{\mathsf{Coh}} Y \to \operatorname{\mathsf{Coh}} X$ is right exact. Since locally free sheaves are f^* -adapted, we get the left derived functor $\mathsf{L} f^* : D^-(Y) \to D^-(X)$, and $\mathsf{L} f^*$ maps $D^{\mathrm{b}}(Y)$ to $D^{\mathrm{b}}(X)$ if Y is smooth.

If X and Y are noetherian schemes, we have $f_*: \mathsf{QCoh} \to \mathsf{QCoh}$, which is left exact. Since QCoh has enough injectives, we have the right derived functor $\mathsf{R}f_*: D^+(\mathsf{QCoh}\,X) \to D^+(\mathsf{QCoh}\,X)$. We define the higher direct image $R^if_*(\mathscr{F}^{\bullet})$ to be $H^i(\mathsf{R}f_*\mathscr{F}^{\bullet})$.

In particular, when X is defined over a field k,

$$\Gamma: \mathsf{QCoh}\,X \to \mathsf{Vect}_k$$

is the pushforward of $p: X \to \operatorname{Spec} k$. So we define

$$\mathsf{R}\Gamma = \mathsf{R}p_* : D^+(\mathsf{QCoh}\,X) \to D^+(\mathsf{QCoh}\,X),$$

and $H^i(X, \mathscr{F}^{\bullet}) = R^i\Gamma(\mathscr{F}^{\bullet})$ the hypercohomology.

For each $\mathscr{F} \in \mathsf{QCoh}\,X$, as $R^i f_* \mathscr{F} = 0$ for $|i| \gg 1$, $\mathsf{R} f_*$ induces

$$Rf_*: D^{\mathrm{b}}(\operatorname{\mathsf{QCoh}} X) \to D^{\mathrm{b}}(\operatorname{\mathsf{QCoh}} Y).$$

Theorem 7.4. Assume $f: X \to Y$ is a proper morphism. Then $f_*: \mathsf{Coh}\, X \to \mathsf{Coh}\, Y$.

Assume $f: X \to Y$ is proper. In general, $\operatorname{\mathsf{Coh}} X$ does not have enough injectives so we can't define $\mathsf{R} f_*: D^?(\operatorname{\mathsf{Coh}} X) \to D^?(\operatorname{\mathsf{Coh}} Y)$ as a derived functor of $f_*: \operatorname{\mathsf{Coh}} X \to \operatorname{\mathsf{Coh}} Y$. To define $\mathsf{R} f_*: D^\mathrm{b}(\operatorname{\mathsf{Coh}} X) \to D^\mathrm{b}(\operatorname{\mathsf{Coh}} Y)$, we need to proceed differently.

7.4 Derived category of coherent sheaves

Definition 7.5. A thick subcategory \mathcal{A} of an abelian category \mathcal{B} is a full abelian subcategory such that for each short exact sequence

$$0 \to M' \to M \to M'' \to 0$$

with M', $M'' \in \mathcal{A}$, we have $M \in \mathcal{A}$.

Let $\mathcal{A} \subseteq \mathcal{B}$ be a thick subcategory. Define $D^?_{\mathcal{A}}(\mathcal{B}) \subseteq D^?(\mathcal{B})$ as the full subcategory of complexes X^{\bullet} with $H^i(X^{\bullet}) \in \mathcal{A}$ for each i.

Lemma 7.6. Let X be a noetherian scheme and let $\varphi : \mathscr{E} \to \mathscr{F}$ be a surjective morphism of quasi-coherent sheaves. Assume that \mathscr{F} is coherent. Then there exists a coherent subsheaf $\mathscr{G} \subseteq \mathscr{E}$ such that $\varphi|_{\mathscr{G}}$ is surjective.

Proposition 7.7. For any noetherian scheme X, and for ? = - or b,

$$D^{?}(X) := D^{?}(\mathsf{Coh}\,X) \xrightarrow{\sim} D^{?}_{\mathsf{Coh}\,X}(\mathsf{QCoh}\,X).$$

Proof. Let ? = b, the other case is similar. Let $\mathscr{F}^{\bullet} \in D^{b}_{\mathsf{Coh}\,X}(\mathsf{QCoh}\,X)$, and assume that \mathscr{F}^{i} is coherent for all $i \geq i_{0}$ for some i_{0} . Since $\mathscr{F}^{i_{0}} \to \mathrm{Im}\,d^{i_{0}}$ and $\ker d^{i_{0}} \to \frac{\ker d^{i_{0}}}{\mathrm{Im}\,d^{i_{0}-1}}$ are surjections and the codomains are coherent, by (7.6) there exists coherent subsheaves $\mathscr{F}' \subseteq \mathscr{F}^{i_{0}}$ and $\mathscr{F}'' \subseteq \ker d^{i_{0}}$ such that $\mathscr{F}' \to \mathrm{Im}\,d^{i_{0}}$ and $\mathscr{F}'' \to \frac{\ker d^{i_{0}}}{\mathrm{Im}\,d^{i_{0}-1}}$ are also surjections. Replace $\mathscr{F}^{i_{0}}$ by the coherent subsheaf $\mathscr{F}^{i_{0}}_{\mathrm{new}}$ generated by \mathscr{F}' , $\mathscr{F}'' \subseteq \mathscr{F}^{i_{0}}$ and $\mathscr{F}^{i_{0}-1}$ by $(d^{i_{0}-1})^{-1}(\mathscr{F}^{i_{0}}_{\mathrm{new}})$. Do this inductively, we finally get a complex of coherent sheaves that is quasi-isomorphic to the original complex.

Proposition 7.8. Let $f: X \to Y$ be a proper morphism between noetherian schemes. Then

$$Rf_*: D^+(\operatorname{QCoh} X) \to D^+(\operatorname{QCoh} Y)$$

induces $Rf_*: D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(Y)$.

Proof. Enough to show that for each $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}_{\mathsf{Coh}\,X}(\mathsf{QCoh}\,X)$, we have

$$\mathsf{R} f_* \mathscr{F}^{\bullet} \in D^{\mathrm{b}}_{\mathsf{Coh}\, Y}(\mathsf{QCoh}\, Y),$$

namely $R^i f_* \mathscr{F}^{\bullet} \in \mathsf{Coh}\, Y$. We have a spectral sequence

$$E_2^{p,q} = R^p f_*(H^q(\mathscr{F}^{\bullet})) \Rightarrow R^{p+q} f_* \mathscr{F}^{\bullet}.$$

Since $R^p f_*(H^q(\mathscr{F}^{\bullet}))$ are coherent, $E^{p,q}_{\infty}$ are also coherent. Since $E^{p,q}_2 = 0$ for all |p|, $|q| \gg 1$, $E^{p,q}_{\infty} = 0$ for all |p|, $|q| \gg 1$. Thus $R^{p+q} f_* \mathscr{F}^{\bullet}$ is an extension of finitely many coherent sheaves $E^{p,q}_{\infty}$, showing that $R^{p,q} f_* \mathscr{F}^{\bullet}$ is coherent.

7.5 Local Hom

Let X be a quasi-projective variety over a field k. For $\mathscr{E}^{\bullet} \in \mathrm{Kom}^{-}(\mathsf{QCoh}\,X)$ and $\mathscr{F}^{\bullet} \in \mathrm{Kom}^{+}(\mathsf{QCoh}\,X)$, we define

$$\mathscr{H}om^{i}(\mathscr{E}^{\bullet},\mathscr{F}^{\bullet}) = \prod_{j \in \mathbb{Z}} \mathscr{H}om(\mathscr{E}^{j},\mathscr{F}^{j+i})$$

with $d^i(\{\mathscr{E}^j \xrightarrow{f^j} \mathscr{F}^{j+i}\}_j) = \{f^{j+1\circ d-(-1)^i d\circ f^j}\}_j$. We get a left exact functor

$$\mathscr{H}om^{\bullet}(\mathscr{E}^{\bullet}, -) : K^{+}(\operatorname{QCoh} X) \to K^{+}(\operatorname{QCoh} X).$$

If $\mathscr{E}^{\bullet} \in \operatorname{Kom^b}(\operatorname{\mathsf{Coh}} X)$, it maps $K^{\operatorname{b}}(\operatorname{\mathsf{Coh}} X)$ to itself.

Using the same argument constructing $\mathsf{R} f_*: D^\mathrm{b}(X) \to D^\mathrm{b}(X)$, we get the right derived functor

$$\mathsf{R}\mathscr{H}om(\mathscr{E}^{\bullet},-):D^+(\mathsf{QCoh}\,X)\to D^+(\mathsf{QCoh}\,X).$$

Again, it maps $D^{\mathrm{b}}(X)$ to itself if $\mathscr{E}^{\bullet} \in D^{\mathrm{b}}(X)$.

Likewise, using the same argument constructing Lf^* , we get the right derived functor

$$R\mathscr{H}om(-,\mathscr{F}^{\bullet}): D^{-}(QCoh X) \to D^{+}(QCoh X),$$

which maps $D^{\mathrm{b}}(X)$ to itself if $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(X)$ and X is smooth. Using these derived functors, we get

$$\mathsf{R}\mathscr{H}\!\mathit{om}(-,-):D^-(\operatorname{\mathsf{QCoh}}\nolimits X)\times D^+(\operatorname{\mathsf{QCoh}}\nolimits X)\to D^+(\operatorname{\mathsf{QCoh}}\nolimits X),$$

which maps $D^{\mathrm{b}}(X) \times D^{\mathrm{b}}(X)$ to $D^{\mathrm{b}}(X)$.

8 Some properties of derived functors in algebraic geometry

8.1 Composition

Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be morphisms of smooth quasi-projective varieties.

Proposition 8.1. We have

(1)
$$R(g \circ f)_* \xrightarrow{\sim} Rg_* \circ Rf_*$$
;

(2)
$$L(g \circ f)^* \xrightarrow{\sim} Rf^* \circ Rg^*$$
.

Proof. (1) Given an injective object $\mathcal{I} \in \mathsf{QCoh}\,X$. Then \mathcal{I} is flasque, so $f_*\mathcal{I}$ is also flasque. Thus $R^j g_*(f_*\mathcal{I}) = 0$ for each $j \neq 0$, i.e., f_* sends injective objects to g_* -acyclic objects. This proves (1).

(2) If \mathscr{F} is a locally free sheaf on Z, then $g^*\mathscr{F}$ is also locally free. This proves (2).

8.2 Projection formula

Proposition 8.2. Let $f: X \to Y$ be a proper morphism between smooth quasiprojective varieties. For all $\mathscr{E} \in D^{\mathrm{b}}(X)$ and $\mathscr{F} \in D^{\mathrm{b}}(Y)$, we have functorial isomorphisms

$$\mathsf{R}f_*\mathscr{E}\otimes^{\mathsf{L}}\mathscr{F}\xrightarrow{\sim}\mathsf{R}f_*(\mathscr{E}\otimes^{\mathsf{L}}\mathsf{L}f^*\mathscr{F}).$$

Proof. Let \mathcal{I}^{\bullet} be a complex of injective objects that is quasi-isomorphic to \mathscr{E} , and let \mathscr{L}^{\bullet} be a complex of locally free sheaves of finite length that is quasi-isomorphic to \mathscr{F} . Then it follows from the classical projection formula that

$$\mathsf{R} f_* \mathscr{E} \otimes^{\mathsf{L}} \mathscr{F} \cong (f_* \mathcal{I}^{\bullet}) \otimes \mathscr{L}^{\bullet} \cong f_* (\mathcal{I}^{\bullet} \otimes f^* \mathscr{L}^{\bullet}).$$

Since

$$\mathsf{R}f_*(\mathscr{E} \otimes^{\mathsf{L}} \mathsf{L}f^*\mathscr{F}) \cong \mathsf{R}f_*(\mathcal{I}^{\bullet} \otimes f^*\mathscr{L}^{\bullet}),$$

it suffices to show that the morphism

$$\alpha: f_*(\mathcal{I}^{\bullet} \otimes f^* \mathscr{L}^{\bullet}) \to \mathsf{R} f_*(\mathcal{I}^{\bullet} \otimes f^* \mathscr{L}^{\bullet}),$$

which comes from the natural transformation (see (6.10))

$$K^+(\operatorname{QCoh} X) \xrightarrow{\operatorname{R} f_*} D^+(\operatorname{QCoh} Y)$$

$$K^+(\operatorname{QCoh} Y),$$

is an isomorphism. The statement is local, so up to shrinking Y, we can assume that $\mathscr{L}^i = \bigoplus_{J_i} \mathcal{O}_Y$. Then $f^*\mathscr{L}^i = \bigoplus_{J_i} \mathcal{O}_X$ and thus $\mathcal{I}^j \otimes f^*\mathscr{L}^i \cong \bigoplus_{J_i} \mathcal{I}^j$ is injective. It follows from $\mathcal{I}^{\bullet} \otimes f^*\mathscr{L}^{\bullet}$ that α is an isomorphism.

Based on similar arguments, we can also show the following.

Proposition 8.3. Let $f: X \to Y$ be a morphism of smooth projective varieties. Given \mathscr{E}^{\bullet} , $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(Y)$, we have

$$\mathsf{L} f^* \mathscr{E}^{\bullet} \otimes^{\mathsf{L}} \mathsf{L} f^* \mathscr{F}^{\bullet} \xrightarrow{\sim} \mathsf{L} f^* (\mathscr{E}^{\bullet} \otimes^{\mathsf{L}} f^{\bullet})$$

and the isomorphism is functorial.

8.3 Adjunction

Proposition 8.4. Let $f: X \to Y$ be a morphism of smooth projective varieties. For all $\mathscr{E} \in D^{\mathrm{b}}(X)$ and $\mathscr{F} \in D^{\mathrm{b}}(Y)$, we have functorial isomorphisms

$$\mathsf{R}\mathscr{H}om(\mathscr{F},\mathsf{R}f_*\mathscr{E})\xrightarrow{\sim}\mathsf{R}f_*\mathsf{R}\mathscr{H}om(\mathsf{L}f^*\mathscr{F},\mathscr{E}).$$

In particular,

$$\mathsf{R}\,\mathrm{Hom}(\mathscr{F},\mathsf{R}f_*\mathscr{E})\xrightarrow{\sim}\mathsf{R}\,\mathrm{Hom}(\mathsf{L}f^*\mathscr{F},\mathscr{E}),$$

$$\mathrm{Hom}(\mathscr{F},\mathsf{R}f_*\mathscr{E})\xrightarrow{\sim}\mathrm{Hom}(\mathsf{L}f^*\mathscr{F},\mathscr{E}).$$

Proof. The proof is similar to the projection formula. With the same notation in that proof, we have

$$\mathsf{R}\mathscr{H}om(\mathscr{F},\mathsf{R}f_*\mathscr{E})\cong\mathscr{H}om(\mathscr{L}^{\bullet},f_*\mathcal{I}^{\bullet})\cong f_*\mathscr{H}om(f^*\mathcal{L}^{\bullet},\mathcal{I}^{\bullet})$$

and

$$\mathsf{R} f_* \mathsf{R} \mathscr{H} om(\mathsf{L} f^* \mathscr{F}, \mathscr{E}) \cong \mathsf{R} f_* \mathscr{H} om)(f^* \mathscr{L}^{\bullet}, \mathcal{I}^{\bullet}).$$

Similar argument shows that $f_*\mathscr{H}om(f^*\mathcal{L}^{\bullet},\mathcal{I}^{\bullet}) \to \mathsf{R}f_*\mathscr{H}om)(f^*\mathcal{L}^{\bullet},\mathcal{I}^{\bullet})$ is an isomorphism.

Let X be a smooth projective variety. We can also show the following in $D^{\mathrm{b}}(X)$: for all \mathscr{E}^{\bullet} , \mathscr{F}^{\bullet} , $\mathscr{G}^{\bullet} \in D^{\mathrm{b}}(X)$, we have

$$\mathsf{R}\mathscr{H}om(\mathscr{F}^{\bullet},\mathscr{E}^{\bullet})\otimes^{\mathsf{L}}\mathscr{G}^{\bullet}\cong\mathsf{R}\mathscr{H}om(\mathscr{F}^{\bullet},\mathscr{E}^{\bullet}\otimes^{\mathsf{L}}\mathscr{G}^{\bullet})\cong\mathsf{R}\mathscr{H}om(\mathsf{R}\mathscr{H}om(\mathscr{E}^{\bullet},\mathscr{F}^{\bullet}),\mathscr{G}^{\bullet}),$$

$$\mathsf{R}\mathscr{H}om(\mathscr{F}^{\bullet},\mathsf{R}\mathscr{H}om(\mathscr{E}^{\bullet},\mathscr{G}^{\bullet})\cong\mathsf{R}\mathscr{H}om(\mathscr{F}^{\bullet}\otimes^{\mathsf{L}}\mathscr{E}^{\bullet},\mathscr{G}^{\bullet}).$$

In particular, if $\mathscr{G}^{\bullet} = \mathcal{O}_X$, then

$$\mathsf{R}\mathscr{H}om(\mathscr{F}^{\bullet},\mathscr{E}^{\bullet})\cong (\mathscr{F}^{\bullet})^{\vee}\otimes^{\mathsf{L}}\mathscr{E}^{\bullet},$$

where $(\mathscr{F}^{\bullet})^{\vee} = \mathsf{R}\mathscr{H}om(\mathscr{F}^{\bullet}, \mathcal{O}_X).$

8.4 Grothendieck-Verdier duality

Here is a particular case of the GV duality

Theorem 8.5. Let $f: X \to Y$ be a proper morphism between smooth quasi-projective varieties over some field k. Then for all $\mathscr{E} \in D^{\mathrm{b}}(\mathscr{E})$ and $\mathscr{F} \in D^{\mathrm{b}}(\mathscr{F})$, there exists a functorial isomorphism

$$\mathsf{R}f_*\mathsf{R}\mathscr{H}om(\mathscr{E},f^!\mathscr{F})\cong\mathsf{R}\mathscr{H}om(\mathsf{R}f_*\mathscr{E},\mathscr{F}),$$

where $f^!\mathscr{F} = \mathsf{L} f^*\mathscr{F} \otimes \omega_X \otimes f^*\omega_Y^{\vee}[\dim X - \dim Y]$ and ω_X , ω_Y are the canonical line bundles on X, Y, respectively.

In particular,

$$\operatorname{Hom}(\mathscr{E}, f^!\mathscr{F}) \cong \operatorname{Hom}(\mathsf{R}f_*\mathscr{E}, \mathscr{F}),$$

namely, f' is a right adjoint of f_* .

When $f: X \to \operatorname{Spec} k$, we obtain Serre duality

$$\operatorname{Hom}(\mathscr{E}, \omega_X[n]) \cong \operatorname{Hom}(\mathsf{R}\Gamma(\mathscr{E}^{\bullet}), k).$$

8.5 Serre functor

Let \mathcal{D} be a k-linear triangulated category. Assume

$$\sum_i \dim \operatorname{Hom}^i(\mathscr{E},\mathscr{F}) < \infty$$

for all \mathscr{E} , $\mathscr{F} \in \mathcal{D}$.

Definition 8.6. A Serre functor is an autoequivalence

$$S: \mathcal{D} \to \mathcal{D}$$

such that for all $\mathscr{E}, \mathscr{F} \in \mathcal{D}$, there exists an isomorphism

$$\operatorname{Hom}(\mathscr{E},\mathscr{F}) \cong \operatorname{Hom}(\mathscr{F},S(\mathscr{E}))^{\vee},$$

which is functorial in \mathscr{E} and \mathscr{F} .

Example 8.7. Let X be a smooth projective variety over k. Then $S = -\otimes(\omega_X[\dim X])$: $D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(X)$ is a Serre functor. In particular, when $\omega_X \cong \mathcal{O}_X$, then $[\dim X]$: $D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(X)$ is a Serre functor.

For a triangulated category \mathcal{D} , if $[n]: \mathcal{D} \to \mathcal{D}$ is a Serre functor, we call \mathcal{D} a Calabi-Yau category of dimension n.

Proposition 8.8. Given a k-linear exact functor

$$F: \mathcal{C} \to \mathcal{D}$$

between k-linear triangulated category, admitting Serre functors $S_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ and $S_{\mathcal{D}}: \mathcal{D} \to \mathcal{D}$. Then

- F has a left adjoint if and only if F has a right adjoint;
- F is an equivalence implies that $F \circ S_{\mathcal{C}} \cong S_{\mathcal{D}} \circ F$.

8.6 Fourier-Mukai transforms

Let X, Y be smooth projective varieties. Let

be the projections.

Definition 8.9. A Fourier-Mukai transform is a functor of the form

$$\Phi_{X \to Y}^{\mathscr{P}}: D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(Y)$$

$$\mathscr{F}^{\bullet} \mapsto \mathsf{R}q_{*}(p^{*}\mathscr{F}^{\bullet} \otimes^{\mathsf{L}} \mathscr{P})$$

for some $\mathscr{P} \in D^{\mathrm{b}}(X \times Y)$. We call \mathscr{P} the Fourier-Mukai kernel of $\Phi^{\mathscr{P}}$.

We see that $\Phi_{X\to Y}^{\mathscr{P}}$ is an exact functor. Given smooth projective varieties $X,\,Y,\,Z$ and

$$\mathscr{P} \in D^{\mathrm{b}}(X \times Y), \quad \mathscr{Q} \in D^{\mathrm{b}}(Y \times Z),$$

the composition of the Fourier-Mukai transforms $\Phi^{\mathcal{Q}} \circ \Phi^{\mathcal{P}}$ is also a Fourier-Mukai transform with kernel

$$\mathscr{R} = \mathsf{R}(p_{ZX})_*(p_{XY}^*\mathscr{P} \otimes^{\mathsf{L}} p_{YZ}^*\mathscr{Q}),$$

where p_{YZ} , p_{ZX} , p_{XY} are the projections

We call \mathscr{R} the convolution of \mathscr{P} and \mathscr{Q} and write $\mathscr{R} = \mathscr{P} * \mathscr{Q}$.

Proposition 8.10. Let $f: X \to Y$ be a morphism of smooth projective varieties and let $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(X)$. Then $\mathsf{R} f_*, \mathsf{L} f^*, -\otimes \mathscr{F}^{\bullet}$, [1] are Fourier-Mukai transforms.

Theorem 8.11 (Orlov). Given an exact functor

$$F: D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(Y).$$

If F is fully faithful, then $F = \Phi_{X \to Y}^{\mathscr{P}}$ for some $\mathscr{P} \in D^{\mathrm{b}}(X \times Y)$. Moreover, \mathscr{P} is unique up to isomorphisms.

Remark. There exist examples of exact functor $F: D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(Y)$ which are not Fourier-Mukai transforms.

Proposition 8.12. Let $\mathscr{P} \in D^{\mathrm{b}}(X \times Y)$. We have

$$\Phi_{Y \to X}^{\mathscr{P}^{\vee}} \circ S_Y \dashv \Phi_{X \to Y}^{\mathscr{P}}, \quad \Phi_{X \to Y}^{\mathscr{P}} \dashv S_X \circ \Phi^{\mathscr{P}^{\vee}},$$

where S_X , S_Y are the Serre functors and

$$\mathscr{P}^{\vee} = \mathsf{R}\mathscr{H}om(\mathscr{P}, \mathcal{O}_{Y\times X}) \in D^{\mathrm{b}}(Y\times X).$$

Proof. We only prove $\Phi_{Y\to X}^{\mathscr{P}^{\vee}} \circ S_Y \dashv \Phi_{X\to Y}^{\mathscr{P}}$. Given $\mathscr{E}^{\bullet} \in D^{\mathrm{b}}(X)$ and $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(Y)$, we have

$$\operatorname{Hom}(\Phi^{\mathscr{P}^{\vee}} \circ S_{Y}(\mathscr{F}^{\bullet}), \mathscr{E}^{\bullet}) = \operatorname{Hom}(\operatorname{R}p_{*}(\Phi^{\mathscr{P}^{\vee}} \otimes^{\mathsf{L}} q^{*}\mathscr{F}^{\bullet} \otimes q^{\bullet}\omega_{Y}[\operatorname{dim}Y], \mathscr{E}^{\bullet})$$

$$\cong \operatorname{Hom}(\operatorname{R}p * (\mathscr{P}^{\vee} \otimes^{\mathsf{L}} q^{*}\mathscr{F}^{\bullet} \otimes q^{*}\omega_{Y}), \mathscr{E}^{\bullet}[-\operatorname{dim}Y])$$

$$\cong \operatorname{Hom}(\mathscr{P}^{\vee} \otimes^{\mathsf{L}} q^{*}\mathscr{F}^{\bullet} \otimes q^{*}\omega_{Y}, p^{!}\mathscr{E}^{\bullet}[-\operatorname{dim}Y])$$

$$= \operatorname{Hom}(\mathscr{P}^{\vee} \otimes^{\mathsf{L}} q^{*}\mathscr{F}^{\bullet} \otimes q^{*}\omega_{Y}, p^{*}\mathscr{E}^{\bullet} \otimes p^{*}\omega_{X} \otimes q^{*}\omega_{Y} \otimes p^{*}\omega_{X}^{\vee})$$

$$\cong \operatorname{Hom}(\mathscr{P}^{\vee} \otimes^{\mathsf{L}} q^{*}\mathscr{F}^{\bullet}, p^{*}\mathscr{E}^{\bullet}) \cong \operatorname{Hom}(q^{*}\mathscr{F}^{\bullet}, \mathscr{P}^{\otimes}p^{*}\mathscr{E}^{\bullet})$$

$$\cong \operatorname{Hom}(\mathscr{F}^{\bullet}, q_{*}(\mathscr{P} \otimes p^{*}\mathscr{E}^{\bullet})) = \operatorname{Hom}(\mathscr{F}^{\bullet}, \Phi^{\mathscr{P}}(\mathscr{E}^{\bullet})).$$

9 Semi-orthogonal decomposition

9.1 X is connected if and only if $D^{\mathbf{b}}(X)$ is indecomposable

9.1.1 Decomposition of triangulated category

Let \mathcal{T} be a triangulated category.

Definition 9.1. We say that \mathcal{T} is decomposed into triangulated subcategories \mathcal{C}_1 , $\mathcal{C}_2 \subseteq \mathcal{T}$ if

i) for each $A \in \mathcal{T}$, there exists $B_i \in \mathcal{C}_i$ such that

ii) $\operatorname{Hom}(B_1, B_2) = \operatorname{Hom}(B_2, B_1) = 0$ for all $B_i \in \mathcal{C}_i$.

Proposition 9.2. Given a distinguished triangle

- If u = 0, then $B = A \oplus C$.
- If \mathcal{T} decomposed into \mathcal{C}_1 , \mathcal{C}_2 , then for each $A \in \mathcal{T}$, there exists $B_1 \in \mathcal{C}_1$, $B_2 \in \mathcal{C}_2$ such that $A = B_1 \oplus B_2$.

We say that \mathcal{T} is indecomposable if for each decomposition of \mathcal{T} into \mathcal{C}_1 , \mathcal{C}_2 , either $\mathcal{C}_1 = 0$ or $\mathcal{C}_2 = 0$.

Proposition 9.3. Let X be a noetherian scheme. Then $D^{\mathrm{b}}(X)$ is indecomposable if and only if X is connected.

9.1.2 Support

Definition 9.4. Let $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(X)$. The support of \mathscr{F}^{\bullet} is defined as

$$\operatorname{Supp} \mathscr{F}^{\bullet} = \bigcup_{i} \operatorname{Supp}(H^{i}(\mathscr{F}^{\bullet})).$$

Lemma 9.5. Suppose \mathscr{F}^{\bullet} is an object in $D^{\mathrm{b}}(X)$ such that Supp $\mathscr{F}^{\bullet} = Z_1 \sqcup Z_2$ with Z_1 , Z_2 closed. Then $\mathscr{F}^{\bullet} = \mathscr{F}_1^{\bullet} \oplus \mathscr{F}_2^{\bullet}$ with Supp $\mathscr{F}_i^{\bullet} \subseteq Z_i$.

Proof. We can assume that $H^k(\mathscr{F}^{\bullet}) = 0$ for all k < 0 and $H^0(\mathscr{F}^{\bullet}) \neq 0$. We induction on the length of \mathscr{F}^{\bullet} , i.e., the maximal number ℓ such that $H^{\ell}(\mathscr{F}^{\bullet}) \neq 0$.

If $\ell = 0$, then $\mathscr{F}^{\bullet} \cong \mathscr{H}[0]$ with $\mathscr{H} = H^0(\mathscr{F}^{\bullet}) \in \mathsf{Coh}\,X$. We have $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$ with $\mathsf{Supp}\,\mathscr{H}_i \subseteq Z_i$.

For general case, consider the distinguished triangle

We have $\ell(\tau_{>0}\mathscr{F}^{\bullet}[1]) = \ell(\mathscr{F}^{\bullet}) - 1$, so $\tau_{>0}\mathscr{F}^{\bullet} \cong \mathscr{G}_{1}^{\bullet} \oplus \mathscr{G}_{2}^{\bullet}$ with $\operatorname{Supp} \mathscr{G}_{i}^{\bullet} \subseteq Z_{i}$. We have $\tau_{\leq 0}\mathscr{F}^{\bullet} \cong \mathscr{H}[0]$ for $\mathscr{H} = H^{0}(\mathscr{F}^{\bullet})$. Write $\mathscr{H} = \mathscr{H}_{1} \oplus \mathscr{H}_{2}$ with $\operatorname{Supp} \mathscr{H}_{i} \subseteq Z_{i}$.

Claim. $\operatorname{Hom}(\mathscr{G}_{1}^{\bullet}, \mathscr{H}_{2}[1]) = 0$.

Proof of Claim. Consider the spectral sequence (by taking the left exact functors $\text{Hom}(-, \mathcal{H}_2)$ and id)

$$E_2^{p,q} = \operatorname{Ext}^p(H^{-q}(\mathscr{G}_1^{\bullet}), \mathscr{H}_2) \Rightarrow \operatorname{Ext}^{p+q}(\mathscr{G}_1^{\bullet}, \mathscr{H}_2).$$

For each q, we have the spectral sequence (by taking the left exact functors id and $\mathscr{H}om(-,\mathscr{H}_2)$)

$$(E^q)_2^{s,t} = H^s(X, \mathcal{E}xt^t(\mathcal{H}^{-q}(\mathscr{G}_1^{\bullet}), \mathscr{H}_2)) \Rightarrow \operatorname{Ext}^{s+t}(\mathcal{H}^{-q}(\mathscr{G}_1^{\bullet}), \mathscr{H}_2).$$

Since $\mathscr{E}xt^t(\mathscr{H}^{-q}(\mathscr{G}_1^{\bullet}),\mathscr{H}_2)=0$ as $\operatorname{Supp}(\mathscr{H}^{-q}(\mathscr{G}_1^{\bullet}))\cap\operatorname{Supp}\mathscr{H}_2=\varnothing,$

$$\operatorname{Ext}^p(\mathscr{H}^{-q}(\mathscr{G}_1^{\bullet}),\mathscr{H}_2) = 0$$

for each p. Hence,

$$\operatorname{Hom}(\mathscr{G}_1^{\bullet},\mathscr{H}_2[1]) = \operatorname{Ext}^1(\mathscr{G}_1^{\bullet},\mathscr{H}_2) = 0. \qquad \Box$$

Similarly, $\operatorname{Hom}(\mathscr{G}_2, \mathscr{H}_1[1]) = 0$. So $u : \tau_{>0} \mathscr{F}^{\bullet} \to \tau_{\leq 0} \mathscr{F}^{\bullet}[1]$ can be decomposed into $\begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix}$, where $u_1 : \mathscr{G}_1^{\bullet} \to \mathscr{H}_1[1]$ and $u_2 : \mathscr{G}_2^{\bullet} \to \mathscr{H}_2[1]$. Take \mathscr{F}_i^{\bullet} such that complete the distinguished triangle

then Supp $\mathscr{F}_i^{\bullet} \subseteq Z_i$. By (TR3) and (*),

9.1.3 Proof of (9.3)

Assume that $X = X_1 \sqcup X_2$. Let $j_i : X_i \hookrightarrow X$ be the inclusion.

Lemma 9.6. The functor

$$R(j_i)_*: D^{\mathrm{b}}(X_i) \to D^{\mathrm{b}}(X)$$

is fully faithful, whose essential image consists of $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(X)$ with Supp $\mathscr{F}^{\bullet} \subseteq X_i$.

Regarding $D^{b}(X_{1})$, $D^{b}(X_{2})$ as full subcategories of $D^{b}(X)$, we show that $D^{b}(X)$ decomposed into $D^{b}(X_{1})$, $D^{b}(X_{2})$:

• For each $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(X)$, (9.5) gives a decomposition $\mathscr{F}^{\bullet} \cong \mathscr{G}_{1}^{\bullet} \oplus \mathscr{G}_{2}^{\bullet}$, where $\mathrm{Supp} \mathscr{G}_{i}^{\bullet} \subseteq X_{i}$, So we have the distinguished triangle

• For each $\mathscr{G}_1^{\bullet} \in D^{\mathrm{b}}(X_1)$ and each $\mathscr{G}_2^{\bullet} \in D^{\mathrm{b}}(X_2)$, we claim that

$$\operatorname{Hom}_{D^{\mathrm{b}}(X)}(\mathscr{G}_{1}^{\bullet},\mathscr{G}_{2}^{\bullet})=0.$$

Indeed, let $f: \mathscr{G}_1^{\bullet} \to \mathscr{G}_2^{\bullet}$ in $D^{\mathrm{b}}(X)$ represented by $(\mathscr{G}_1^{\bullet} \to \mathcal{I}^{\bullet}, \mathscr{G}_2^{\bullet} \to \mathcal{I}^{\bullet})$ with $\mathscr{G}_2^{\bullet} \to \mathcal{I}^{\bullet}$ quasi-isomorphism. We can assume that $\operatorname{Supp} \mathscr{G}_1^j \subseteq X_1$ and $\operatorname{Supp} \mathcal{I}^j \subseteq X_2$ for each j, so $\mathscr{G}_1^{\bullet} \to \mathcal{I}^{\bullet}$ is zero.

Same argument shows that $\operatorname{Hom}_{D^{b}(X)}(\mathscr{G}_{2}^{\bullet},\mathscr{G}_{1}^{\bullet})=0.$

Now assume that X is connected. Suppose that $D^{\mathrm{b}}(X)$ decomposes into D_1 , $D_2 \subseteq D^{\mathrm{b}}(X)$. We have $\mathcal{O}_X \cong \mathscr{G}_1^{\bullet} \oplus \mathscr{G}_2^{\bullet}$ with $\mathscr{G}_i^{\bullet} \in D_i$. As $H^j(\mathscr{G}_1^{\bullet}) = H^j(\mathscr{G}_2^{\bullet}) = 0$ for each $j \neq 0$, we can assume that $\mathscr{G}_i^{\bullet} = \mathscr{G}_i \in \mathsf{Coh}\, X$. Hence, both \mathscr{G}_1 and \mathscr{G}_2 are ideal sheaves \mathcal{I}_{X_1} ,

 \mathcal{I}_{X_2} . Since X is connected and $\mathcal{O}_X \cong \mathcal{I}_{X_1} \oplus \mathcal{I}_{X_2}$, either $X_1 = \emptyset$ or $X_2 = \emptyset$. With loss of generality, we assume that $X_1 = \emptyset$, then $X_2 = X$, so $\mathscr{G}_2 = 0$ and thus $\mathcal{O}_X \in D_1$.

Let $x \in X$ be a closed point. As $\mathcal{O}_{X,x}$ is simple in $\mathsf{Coh}\,X$, either $\mathcal{O}_{X,x} \in D_1$ or $\mathcal{O}_{X,x} \in D_2$. As $\mathsf{Hom}(\mathcal{O}_X, \mathcal{O}_{X,x}) \neq 0$, necessarily $\mathcal{O}_{X,x} \in D_1$.

Assume that \mathscr{F}^{\bullet} is a nonzero object in D_2 . We can assume that $H^0(\mathscr{F}^{\bullet} \neq 0)$ and $H^i(\mathscr{F}^{\bullet}) = 0$ for all i > 0. Then we have a distinguished triangle

Choose $x \in \text{Supp}(H^0(\mathscr{F}^{\bullet}))$ and a surjection $H^0(\mathscr{F}^{\bullet}) \to \mathcal{O}_{X,x}$. We see that

$$\tau_{\leq 0}\mathscr{F}^{\bullet} \to H^0(\mathscr{F}^{\bullet}) \to \mathcal{O}_{X,x}$$

is nonzero, contradicting $\tau_{\leq 0} \mathscr{F}^{\bullet} \in D_2$ and $\mathcal{O}_{X,x} \in D_1$. Hence $D^{\mathrm{b}}(X)$ is indecomposable.

9.2 Semi-orthogonal decomposition

Analogy: Decomposition of triangulated category corresponds to $A = B \oplus C$ in an abelian category \mathcal{A} , while semi-orthogonal decomposition corresponds to a short exact sequence

$$0 \to B \to A \to C \to 0$$

in \mathcal{A} .

9.2.1 Definition

Let \mathcal{T} be a triangulated category.

Definition 9.7. A semi-orthogonal decomposition of \mathcal{T} is a sequence of strictly full triangulated subcategory $\mathcal{C}_1, \ldots, \mathcal{C}_m$ such that

- i) $\operatorname{Hom}_{\mathcal{T}}(C_i, C_j) = 0$ for all $C_i \in \mathcal{C}_i$, $C_j \in \mathcal{C}_j$ whenever i > j;
- ii) for each $X \in \mathcal{T}$, there exists a decomposition

$$0 \xrightarrow{f_m} X_m \xrightarrow{f_{m-1}} \cdots \xrightarrow{f_2} X_2 \xrightarrow{f_1} X_1 = X$$

such that $Cone(f_i) \in \mathcal{C}_i$.

We write $\mathcal{T} = \langle \mathcal{C}_1, \dots, \mathcal{C}_m \rangle$.

Here, a strictly full subcategory $\mathcal{B} \subseteq \mathcal{A}$ is a full subcategory such that for each $X \in \mathcal{B}$, we have

$$Y \cong X \text{ in } \mathcal{A} \implies Y \in \mathcal{B}.$$

An semi-orthogonal decomposition $\mathcal{T} = \langle \mathcal{C}_1, \dots, \mathcal{C}_m \rangle$ is called **maximal** if \mathcal{C}_i does not admit any nontrivial semi-orthogonal decomposition for each i.

Given some additive full subcategories $D_1, \ldots, D_m \subseteq \mathcal{T}$. The **thick closure** of D_1, \ldots, D_m is the smallest strictly full triangulated subcategory $\mathcal{D} \subseteq \mathcal{T}$ such that $\mathcal{D} \supseteq \mathcal{D}_i$ for each i and \mathcal{D} is thick, i.e., closed under taking direct summands.

If $\mathcal{D} = \mathcal{T}$, we say that $\mathcal{D}_1, \ldots, \mathcal{D}_m$ classically generate \mathcal{T} .

Proposition 9.8. Given strictly full thick triangulated subcategories $C_1, \ldots, C_m \subseteq \mathcal{T}$ which satisfying $\text{Hom}(C_i, C_j) = 0$ for all i > j. Then the followings are equivalent:

- C_1, \ldots, C_m classically generate \mathcal{T} ;
- $\mathcal{T} = \langle \mathcal{C}_1, \dots, \mathcal{C}_m \rangle$ is an semi-orthogonal decomposition.

Proposition 9.9. Given an semi-orthogonal decomposition $\mathcal{T} = \langle \mathcal{C}_1, \dots, \mathcal{C}_m \rangle$. For each $X \in \mathcal{T}$, the X_i 's and the C_i 's in the decomposition

$$0 \xrightarrow{f_m} X_m \xrightarrow{f_{m-1}} \cdots \xrightarrow{f_2} X_2 \xrightarrow{f_1} X_1 = X$$

are unique up to isomorphisms.

So we get projection functors

$$P_i: \mathcal{T} \to \mathcal{C}_i \quad P_{i,m}: \mathcal{T} \to \langle \mathcal{C}_i, \dots, \mathcal{C}_m \rangle$$

 $X \mapsto \mathcal{C}_i, \qquad X \mapsto X_i,$

One way of obtaining semi-orthogonal decomposition is by taking the orthogonal complement of an admissible subcategory.

9.2.2 Admissible subcategory

Let \mathcal{D} be a triangulated category, and let $\mathcal{D}' \subseteq \mathcal{D}$ be a full triangulated subcategory. The right orthogonal complement of \mathcal{D}' (with respect to \mathcal{D}) is the full subcategory $(\mathcal{D}')^{\perp} \subseteq \mathcal{D}$

with

$$\mathrm{Ob}(\mathcal{D}')^{\perp} = \{ X \in \mathcal{D} \mid \mathrm{Hom}(Y, X) = 0 \ \forall Y \in \mathcal{D}' \}.$$

The left orthogonal complement $^{\perp}D'$ is defined similarly.

Proposition 9.10. If $\mathcal{T} = \langle \mathcal{C}_1, \dots, \mathcal{C}_m \rangle$, then

$$\mathcal{T} = \langle \mathcal{C}_1, \dots, \mathcal{C}_{k-1}, \langle \mathcal{C}_k, \dots, \mathcal{C}_{\ell} \rangle, \mathcal{C}_{\ell+1}, \dots, \mathcal{C}_m \rangle$$

and

$$\langle \mathcal{C}_k, \dots, \mathcal{C}_\ell \rangle = {}^{\perp} \langle \mathcal{C}_1, \dots, \mathcal{C}_{k-1} \rangle \cap \langle \mathcal{C}_{\ell+1}, \dots, \mathcal{C}_m \rangle^{\perp}.$$

Definition 9.11. A subcategory \mathcal{D}' of \mathcal{D} is called right (resp. left) admissible if for each $X \in \mathcal{D}$, there exists a distinguished triangle

such that $Y \in \mathcal{D}'$ and $Z \in (\mathcal{D}')^{\perp}$ (resp. $Y \in {}^{\perp}\mathcal{D}'$ and $Z \in \mathcal{D}'$).

We say that \mathcal{D}' is admissible if \mathcal{D}' is left and right admissible. By definition, if \mathcal{D}' is right (resp. left) admissible, then $\mathcal{D} = \langle (\mathcal{D}')^{\perp}, \mathcal{D}' \rangle$ (resp. $\mathcal{D} = \langle \mathcal{D}', {}^{\perp}\mathcal{D}' \rangle$). The following proposition is useful.

Proposition 9.12. Let $\mathcal{D}' \subseteq \mathcal{D}$ be a full triangulated subcategory. Then $\mathcal{D}' \subseteq \mathcal{D}$ is right (resp. left) admissible if and only if the inclusion $\iota : \mathcal{D}' \to \mathcal{D}$ has a right (resp. left) adjoint $\pi : \mathcal{D} \to \mathcal{D}'$.

Proof. Suppose $\mathcal{D}' \to \mathcal{D}$ has a right adjoint. Then the element $g : \iota \pi(X) \to X$ corresponding to id: $\pi(X) \to \pi(X)$ gives a distinguished triangle

For each $Y' \in \mathcal{D}'$, by the naturality of adjunction, the following diagram commutes:

$$\operatorname{Hom}_{\mathcal{D}}(\iota(Y'), \iota\pi(X)[j]) \xrightarrow{g\circ} \operatorname{Hom}_{\mathcal{D}}(\iota(Y'), X[j])$$

$$\uparrow^{\natural}$$

$$\operatorname{Hom}_{\mathcal{D}'}(Y', \pi(X)[j]).$$

As $\iota : \mathcal{D}' \to \mathcal{D}$ is fully faithful, $\operatorname{Hom}_{\mathcal{D}'}(Y', \pi(X)[j]) \to \operatorname{Hom}_{\mathcal{D}}(\iota(Y'), \iota\pi(X)[j])$ is an isomorphism. If follows from the exact sequence

$$\operatorname{Hom}_D(\iota(Y'), \iota\pi(X)) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_D(\iota(Y'), X) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_D(Y', Z) \stackrel{\sim}{\longrightarrow}$$

$$\longrightarrow \operatorname{Hom}_D(\iota(Y'), \iota \pi(X)[1]) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_D(\iota(Y'), X[1])$$

gives $\operatorname{Hom}_D(Y', Z) = 0$.

Suppose $\mathcal{D}' \subseteq \mathcal{D}$ is right admissible. For each $X \in \mathcal{D}$, choose $Y \in \mathcal{D}'$, $Z \in (\mathcal{D}')^{\perp}$ such that the triangle

is distinguished. Define $\pi(X) = Y$. Then for each $A \in \mathcal{D}'$,

$$g \circ : \operatorname{Hom}_{\mathcal{D}'}(A, \pi(X)) \to \operatorname{Hom}_{\mathcal{D}}(\iota(A), X)$$
 (8)

is an isomorphism. The isomorphism is clearly functorial in A. It remains to show that it is functorial in X.

Given a morphism $X' \xrightarrow{f} X$. We get two distinguished triangles

$$Y' \longrightarrow X' \longrightarrow Z' \longrightarrow Y'[1]$$

$$\downarrow^f$$

$$Y \longrightarrow X \longrightarrow Z \longrightarrow Y[1].$$

Since $\operatorname{Hom}(Y', Z) = \operatorname{Hom}(Y', Z[-1]) = 0$, we have unique morphisms

$$Y' \longrightarrow X' \longrightarrow Z' \longrightarrow Y'[1]$$

$$\downarrow^{\exists !} \qquad \downarrow^{f} \qquad \downarrow^{\exists !} \qquad \downarrow$$

$$Y \longrightarrow X \longrightarrow Z \longrightarrow Y[1],$$

which shows that (δ) is functorial in X.

Remark. In many references, when we define semi-orthogonal decomposition

$$\mathcal{T} = \langle \mathcal{C}_1, \dots, \mathcal{C}_m \rangle$$
,

we require that each C_i is admissible. When $T = D^b(X)$ where X is smooth and projective:

Theorem 9.13. If $D^{b}(X) = \langle \mathcal{C}_1, \dots, \mathcal{C}_m \rangle$, then each \mathcal{C}_i is admissible.

9.2.3 Examples of admissible subcategories

Let X, Y be smooth projective varieties. Assume that we have $F: D^{\rm b}(X) \to D^{\rm b}(Y)$, which is fully faithful and exact. Orlov's theorem shows that F is Fourier-Mukai. So F has left and right adjoints. Thus $F: D^{\rm b}(X) \to D^{\rm b}(Y)$ embeds $D^{\rm b}(X)$ as an admissible subcategory of $D^{\rm b}(Y)$.

Proposition 9.14. Let $f: X \to B$ be a projective morphism between smooth projective varieties. Assume that $Rf_*\mathcal{O}_X = \mathcal{O}_B$, e.g., f has connected fiber. Then $Lf^*: D^b(B) \to D^b(X)$ is fully faithful, thus realizing $D^b(B)$ as an admissible subcategory of $D^b(X)$.

Proof. By adjunction and projection formula, we have morphisms

$$\mathscr{F}^{\bullet} \to \mathsf{R} f_* \mathsf{L} f^* \mathscr{F}^{\bullet} \cong \mathscr{F}^{\bullet} \otimes^{\mathsf{L}} \mathsf{R} f_* \mathcal{O}_X \cong \mathscr{F}^{\bullet}.$$

The composition is an isomorphism by checking on a bounded locally free sheaf resolution $\mathscr{L}^{\bullet} \to \mathscr{F}^{\bullet}$ locally. So id $\cong \mathsf{R} f_* \mathsf{L} f^*$. It follows from the diagram

$$\operatorname{Hom}(\mathscr{E}^{\bullet},\mathscr{F}^{\bullet}) \xrightarrow{\sim} \operatorname{Hom}(\mathscr{E}^{\bullet}, \mathsf{R} f_{*} \mathsf{L} f^{*} \mathscr{F}^{\bullet})$$

$$\downarrow^{\circ} \qquad \qquad \downarrow^{\circ} \qquad \qquad \downarrow^$$

that Lf^* is fully faithful.

Let \mathcal{D} be a k-linear triangulated category.

Definition 9.15. An object $E \in \mathcal{D}$ is called exceptional if

$$\operatorname{Hom}(E, E[\ell]) = \begin{cases} k, & \text{if } \ell = 0\\ 0, & \text{else.} \end{cases}$$

Proposition 9.16. The thick closure of an exceptional object $E \in \mathcal{D}$ consists of all object isomorphic to $\bigoplus_{i \in I} E[i]^{j_i}$, where $I \subseteq \mathbb{Z}$ is a finite set.

Proposition 9.17. Assume that $\sum_{i} \dim \operatorname{Hom}^{i}(A, B) < \infty$ for all $A, B \in \mathcal{D}$. Then the thick closure $\langle E \rangle \subseteq \mathcal{D}$ of an exceptional object E is an admissible subcategory.

Proof. Given $A \in \mathcal{D}$. We have the distinguished triangle

where $\operatorname{Hom}(E, A[i]) \otimes E[-i]$ is in fact $E[-i]^{\oplus \dim \operatorname{Hom}(E, A[i])}$. As E exceptional, applying $\operatorname{Hom}(E[-i], -)$ to f gives

$$\operatorname{Hom}(E, A[i]) \xrightarrow[[i]]{\sim} \operatorname{Hom}(E[-i], A).$$

Thus $\operatorname{Hom}(E[-i], B) = 0$ for each i, so $B \in \langle E \rangle^{\perp}$ and $\langle E \rangle$ is right admissible.

The proof of left-admissibility is similar.

9.2.4 Exceptional collection

Definition 9.18. Let $E_1, \ldots, E_m \in \mathcal{D}$ be exceptional objects.

- If $\operatorname{Hom}(E_i, E_j[\ell]) = 0$ for all i > j and for all ℓ , we can (E_1, \dots, E_m) an exceptional collection.
- An exceptional collection is full if E_1, \ldots, E_m classically generate \mathcal{D} .

If E_1, \ldots, E_m is a full exceptional collection of \mathcal{D} , then $\langle E_1, \ldots, E_m \rangle := \langle \langle E_1 \rangle, \ldots, \langle E_1 \rangle \rangle$ is an semi-orthogonal decomposition of D. More generally, if E_1, \ldots, E_m is an exceptional collection, then $\langle \mathcal{C}^{\perp}, E_1, \ldots, E_m \rangle$ is an semi-orthogonal decomposition of \mathcal{D} , where $\mathcal{C}^{\perp} := \langle E_1, \ldots, E_m \rangle$.

Interlude 3: Yoneda extensions

Let \mathcal{A} be an abelian category.

Definition 9.19. Let $A, B \in \mathcal{A}$. A degree i Yoneda extension of B is an exact sequence of the form

$$E: 0 \to A \to Z^{-(i-1)} \to Z^{-(i-2)} \to \cdots \to Z^0 \to B \to 0.$$

Two Yoneda extension E, E' are equivalent if there exists a commutative diagram

$$E: \qquad 0 \longrightarrow A \longrightarrow Z^{-(i-1)} \longrightarrow \cdots \longrightarrow Z^0 \longrightarrow B \longrightarrow 0$$

$$\parallel \qquad \uparrow \qquad \qquad \uparrow \qquad \parallel$$

$$E'': \qquad 0 \longrightarrow A \longrightarrow (Z^{-(i-1)})'' \longrightarrow \cdots \longrightarrow (Z^0)'' \longrightarrow B \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$E': \qquad 0 \longrightarrow A \longrightarrow (Z^{i-1})' \longrightarrow \cdots \longrightarrow (Z^0)' \longrightarrow B \longrightarrow 0,$$

where E'' is also a Yoneda extension.

Proposition 9.20. The above definition defines an equivalence relation.

Let

$$\operatorname{Ex}^i(A,B) = \{ \text{ Yoneda extension of } B \text{ by } A \} / \{ \text{ the equivalence} \} \cdot$$

Consider the map

$$\delta : \operatorname{Ex}^{i}(B, A) \to \operatorname{Hom}_{\mathcal{D}(A)}(B, A[i]) = \operatorname{Ext}^{i}(B, A)$$

by sending $E: A \to Z^{\bullet} \to B$ to the roof

$$\begin{array}{c}
B \\
\uparrow \\
\cdots \longrightarrow 0 \longrightarrow A \longrightarrow Z^{i-1} \longrightarrow \cdots \longrightarrow Z^{0} \longrightarrow 0 \longrightarrow \cdots \\
\downarrow^{id} \\
\cdots \longrightarrow 0 \longrightarrow A \longrightarrow 0 \longrightarrow \cdots$$

Lemma 9.21. The map $\delta : \operatorname{Ex}^i(B,A) \to \operatorname{Ext}^i(B,A)$ is a bijection.

In particular if $\delta(A \to Z^{\bullet} \to B) = 0$, then $Z^{\bullet} \cong A[i] \oplus B$ in $\mathcal{D}^{b}(\mathcal{A})$.

10 Full exceptional collection

10.1
$$\mathcal{D}^{\mathbf{b}}(\mathbb{P}^n)$$

Theorem 10.1 (Beilinson). The line bundles

$$\mathcal{O}(a), \ \mathcal{O}(a+1), \ \dots, \mathcal{O}(a+n)$$

form a full exceptional collection in $\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$.

Proof. Since $\text{Hom}(\mathcal{O}(i), \mathcal{O}(j)[\ell]) \cong H^{\ell}(\mathbb{P}^n, \mathcal{O}(j-i))$, which is 0 if -n < j - i < 0. These line bundle form an exceptional collection.

It remains to show that $\mathcal{O}(a), \ldots, \mathcal{O}(a+n)$ classically generate $\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$. As $-\otimes \mathcal{O}(j)$ defines an equivalence of category from $\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$ to itself, it is enough to prove this for some a.

For each full additive subcategory of $\mathcal{C} \subseteq \mathcal{D}$, we say that \mathcal{C} generates \mathcal{D} if $\langle \mathcal{C} \rangle^{\perp} = 0$.

Proposition 10.2. The subcategory $\langle \mathcal{C} \rangle^{\perp} = 0$ if and only if for all $C \in \mathcal{C}$, $X \in \mathcal{D}$ and for all i, $\text{Hom}_{\mathcal{D}}(C, X[i]) = 0$.

It is enough to prove the following

Lemma 10.3. Let X be a projective variety over a field k of dimension n. If \mathscr{L} is an globally generated (base-point-free) ample line bundle, then $\bigoplus_{i=0}^{n} \mathscr{L}^{-i}$ generates $\mathcal{D}^{\mathrm{b}}(X)$.

Proof of Lemma. Let $\varphi = |\mathcal{L}| : X \to \mathbb{P}^N$, which is a finite morphism. Consider the Koszul resolution

$$\cdots \longrightarrow \bigwedge^{\ell+1} H^0(\mathbb{P}^N, \mathcal{O}(1)) \otimes \mathcal{O}(-\ell-1)$$

$$\xrightarrow{f_{\ell}} \bigwedge^{\ell} H^{0}(\mathbb{P}^{N}, \mathcal{O}(1)) \otimes \mathcal{O}(-\ell) \longrightarrow \cdots \longrightarrow \mathcal{O} \longrightarrow 0,$$

where f_{ℓ} is the composition $(H^0 := H^0(\mathbb{P}^N, \mathcal{O}(1)))$

$$\bigwedge^{\ell+1} H^0 \otimes \mathcal{O}(-\ell-1) \to \bigwedge^{\ell} H^0 \otimes H^0 \otimes \mathcal{O}(-\ell-1) \to \bigwedge^{\ell} H^0 \otimes \mathcal{O}(-\ell)$$

Pulling back the Koszul complex by the finite morphism φ , we obtain an exact sequence

$$0 \to \mathcal{L}^{-N-1} \to \cdots \to (\mathcal{L}^{-k})^{\oplus \binom{N+1}{k}} \to \cdots \to \mathcal{O}_X \to 0.$$

Let $K := \ker((\mathscr{L}^{-n-1})^{\oplus \binom{N+1}{n+1}} \to (\mathscr{L}^{-n})^{\oplus \binom{N+1}{n}})$. We get an exact sequence (i.e., a Yoneda extension of \mathcal{O}_X by K)

$$0 \to K \to (\mathscr{L}^{-n-1})^{\oplus \binom{N+1}{n+1}} \to \cdots \to (\mathscr{L}^{-1})^{\oplus N+1} \to \cdots \to \mathcal{O}_X \to 0.$$

Since dim X = n, we have $\operatorname{Ext}^{n+1}(\mathcal{O}_X, K) = 0$, so \mathcal{O}_X is a direct summand of

$$0 \to (\mathscr{L}^{-n-1})^{\oplus \binom{N+1}{n+1}} \to \cdots \to (\mathscr{L}^{-1})^{\oplus N+1} \to \cdots \to 0$$

in $\mathcal{D}^{\mathrm{b}}(X)$. Applying the exact functor $(-\otimes \mathcal{L}^{-n-j-1}) \circ \mathsf{R} \operatorname{Hom}(-, \mathcal{O}_X)$ to this result shows that \mathcal{L}^{-n-j-1} is a direct summand of

$$0 \to (\mathscr{L}^{-n-j})^{\oplus N+1} \to \cdots \to (\mathscr{L}^{-j})^{\oplus \binom{N+1}{n+1}} \to \cdots \to 0.$$

This for each $j \geq 0$, $\mathcal{L}^{-j} \in \langle \mathcal{L}^{-i} \mid 0 \leq i \leq n \rangle$.

Given $E^{\bullet} \in \mathcal{D}^{\mathrm{b}}(X)$ such that

$$\mathsf{R}\operatorname{Hom}\Bigl(\bigoplus_{i=0}^n\mathscr{L}^{-i},E^{\bullet}\Bigr)=0.$$

Then $\mathsf{R}\,\mathsf{Hom}(\mathscr{L}^{-j},E^{\bullet}=0$ for each $j\geq 0$. Namely, $\mathsf{R}\Gamma(X,E^{\bullet}\otimes\mathscr{L}^{j})=0$ for each $j\geq 0$. Up to shifting, we can assume that $H^{i}(E^{\bullet})=0$ for each i>0. We show that $H^{0}(E^{\bullet})=0$; this proves the lemma by induction.

Recall that $\dim X - n$. We have

$$\mathsf{R}\Gamma(X, \tau_{\leq -n-1}(E^{\bullet}\otimes \mathscr{L}^{j}) \in \mathcal{D}^{<0}(\mathsf{Vect}_{k}).$$

This is because

$$E_2^{p,q} = R^p \Gamma(X, H^q(\tau_{\leq -n-1}(E^{\bullet} \otimes \mathscr{L}^j)) \Rightarrow R^{p+q} \Gamma(X, \tau_{\leq -n-1}(E^{\bullet} \otimes \mathscr{L}^j)),$$

and
$$R^p\Gamma(X, H^q(\tau_{\leq -n-1}(E^{\bullet}\otimes \mathcal{L}^j)) = 0$$
 if $p \geq n+1$ or $q \geq -n$.

Consider the distinguished triangle

$$\mathsf{R}\Gamma(X, \tau_{\leq -n-1}(E^{\bullet} \otimes \mathscr{L}^{j})) \to \mathsf{R}\Gamma(X, E^{\bullet} \otimes \mathscr{L}^{j}) \to \mathsf{R}\Gamma(X, \tau_{>-n-1}(E^{\bullet} \otimes \mathscr{L}^{j})) \xrightarrow{[1]} .$$

Since $R\Gamma(X, E^{\bullet} \otimes \mathcal{L}^{j}) = 0$, we have

$$R^0\Gamma(X, \tau_{>-n-1}(E^{\bullet}\otimes \mathscr{L}^j))=0.$$

Since $H^i(E^{\bullet}) = 0$ for i > 0 and \mathscr{L} is ample, we can choose $j_0 \in \mathbb{Z}$ such that for each $j \geq j_0$, $R^p\Gamma(X, H^q(\tau_{>-n-1}(E^{\bullet} \otimes \mathscr{L}^j))) = 0$ if $p \geq 1$. Consider

$$E_2^{p,q} = R^p \Gamma(X, H^q(\tau_{>-n-1}(E^{\bullet} \otimes \mathscr{L}^j))) \Rightarrow R^{p+q} \Gamma(X, \tau_{>-n-1}(E^{\bullet} \otimes \mathscr{L}^j)).$$

Since $E_2^{p,q} \neq 0$ only if $p \leq 0$ and $q \leq 0$,

$$0=R^0\Gamma(X,\Gamma(X,\tau_{>-n-1}(E^\bullet\otimes\mathscr{L}^j))=E_2^{0,0}=H^0(X,H^0(E^\bullet)\otimes\mathscr{L}^j)$$

for each $j \geq j_0$. As \mathscr{L} is ample, necessarily $H^0(E^{\bullet}) = 0$.

Remark. Let $\mathcal{C} \subseteq \mathcal{D}$ be a full additive subcategory.

- If \mathcal{C} classically generates \mathcal{D} , then \mathcal{C} generates \mathcal{D} .
- If \mathcal{C} is a right admissible full triangulated subcategory, then the converse also holds.

10.2 Strong exceptional collection

Let \mathcal{D} be a triangulated category.

Definition 10.4. An exceptional collection E_1, \ldots, E_m of \mathcal{D} is called strong if $\text{Hom}(E_i, E_j[k])$ for all i, j and for all $k \neq 0$.

The full exceptional collection

$$\mathcal{O}(a), \ \mathcal{O}(a+1), \ \ldots, \ \mathcal{O}(a+n)$$

of $\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$ is strong.

Theorem 10.5 (Bondal). Let X be a smooth projective variety. If (E_1, \ldots, E_m) is a strong full exceptional collection of $D^{\mathrm{b}}(X)$, then

$$\mathsf{R}\operatorname{Hom}_{\mathcal{D}^\mathrm{b}(X)}\Bigl(\bigoplus_{i=1}^m E_i,-\Bigr):\mathcal{D}^\mathrm{b}(X)\stackrel{\sim}{ o} \mathcal{D}^\mathrm{b}(\mathsf{mod}\text{-}A_\mathrm{fin}),$$

where A is the endomorphism ring $\operatorname{End}\Bigl(\bigoplus_{i=1}^m E_i\Bigr)$ and $\operatorname{\mathsf{mod-}} A_{\operatorname{fin}}$ is the category of right A-modules of finite type.

Given a triangulated category \mathcal{D} . If $\mathcal{D} \cong \mathcal{D}^{?}(\mathcal{A})$ for some abelian category \mathcal{A} , we call \mathcal{A} the heart (of a triangulated structure) of \mathcal{D} . In bondal's theorem, the statement

$$\mathcal{D}^{\mathrm{b}}(\mathsf{Coh}\,X) \cong \mathcal{D}^{\mathrm{b}}(\mathsf{mod}\text{-}A_{\mathrm{fin}}$$

provides two hearts of $\mathcal{D}^{\mathrm{b}}(X)$ of different nature.

Remark. It is rare that $\mathcal{D}^{\mathrm{b}}(X)$ admits of full exceptional collection

$$(E_1,\ldots,E_m).$$

For instance, we will see that this implies

- $H^{p,q}(X) = 0$ for all $p \neq q$;
- $K(\mathcal{D}^{b}(X)) = \mathbb{Z}[E_1] \oplus \cdots \oplus \mathbb{Z}[E_m].$

Conjecture 10.6. If $\mathcal{D}^{b}(X)$ has a full exceptional collection, then X is rational.

10.3 Quiver representations

10.3.1 Quiver

A quiver Q is an oriented graph. Formally, $Q = (Q_0, Q_1, s, t)$, where

- Q_0 is a set of vertices;
- Q_1 is a set of edges;
- $s, t: Q_1 \to Q_0$ source and target map, i.e., if $a \xrightarrow{\alpha} b \in Q_1$, $s(\alpha) = a$ and $t(\alpha) = b$.

10.3.2 Path algebra

Given $a, b \in Q_0$. A **path** from a to b is a sequence $\alpha_1, \ldots, \alpha_n \in Q_1$ such that $s(\alpha_1) = a$, $t(\alpha_i) = s(\alpha_{i+1})$, and $t(\alpha_n) = b$. We write $p = (a \mid \alpha_1, \ldots, \alpha_n \mid b)$, and define s(p) = a, t(p) = b. The length of the path $\ell(p) := n$. n = 0 is allowed: $e_a := (a \mid |a|)$.

The **path algebra** of Q over a field k is the graded associative k-algebra kQ defined as

- the paths in Q form the basis of kQ;
- grading $(kQ)_n$ is defined by the length of the path;
- given two paths p_1 , p_2 , define

$$p_1 p_2 = \begin{cases} \text{concatenation of } p_1 \text{ and } p_2, \text{ if } t(p_1) = s(p_2) \\ 0, \text{ else.} \end{cases}$$

A **cycle** is a path p with $\ell(p) \geq 1$ such that s(p) = t(p)

Proposition 10.7. The dimension of the algebra kQ is finite if and only if Q is acyclic, i.e., without any cycle.

10.3.3 Quiver with relations

A **relation** ρ in a quiver Q is an element

$$\rho = \sum_{i} a_i p_i \in kQ$$

such that $\ell(p_i) \geq 2$ and $s(p_i) = s(p_i)$, $t(p_i) = t(p_i)$ for all i, j.

A quiver with relations (Q, ρ) is a quiver Q endowed with a set of relations $\rho = \{\rho_j\}$.

The **path algebra** of (Q, ρ) is $A_Q := {^kQ}/{I}$, where I is the two-sided ideal generated by ρ_i .

10.3.4 Quiver representations

A representation of the quiver Q is the data

$$W = ((W_i)_{i \in Q_0}, (w_\alpha)_{\alpha \in Q_1})$$

where each W_i is a k-vector space and each $w_{\alpha}: W_{s(\alpha)} \to W_{t(\alpha)}$ is a k-linear map.

Assume that (Q, ρ) is a quiver with relations. A representation of (Q, ρ) is a representation W of Q such that for each $\rho_i \in \rho$, the corresponding linear map

$$\rho_i: W_{s(rho_i)} \to W_{t(\rho_i)}$$

is zero. Morphisms of quiver representations are defined in the obvious way. We set $\dim W = \sum_{i \in Q_0} \dim W_i$, the dimension of the quiver representation.

Proposition 10.8. Let (Q, ρ) be a quiver with relations. Then mod- $({}^{kQ}/{}_{I})_{\text{fin}}$ is equivalent to the category of finite dimensional representation of (Q, ρ) .

10.4 Full exceptional collection and quiver with relations

Let X be a smooth projective variety. Assume that $\mathcal{D}^{\mathrm{b}}(X)$ admits a strongly full exceptional collection

$$(E_1,\ldots,E_m).$$

Recall that they satisfy

$$\operatorname{Hom}(E_i, E_j) = \begin{cases} k, & \text{if } i = j \\ 0, & \text{if } i > j. \end{cases}$$

So

$$A = \operatorname{End}\left(\bigoplus_{i=1}^{m} E_i\right) = \left(\bigoplus_{i=1}^{m} k e_i\right) \oplus \left(\bigoplus_{i < j} \operatorname{Hom}(E_i, E_j)\right),$$

where e_i is the generator of $\operatorname{Hom}(E_i, E_i)$. We now construct acyclic (Q, ρ) such that $A \cong {}^{kQ}/_{I}$. Let

- $Q_0 = \{1, \ldots, m\};$
- $e_i \in A$ is the path of length 0 in Q at the vertex i;
- for all i < j, consider the linear map

$$\varphi_{i,j}: \prod_{i < k < j} \operatorname{Hom}(E_i, E_k) \times \operatorname{Hom}(E_k, E_j) \to \operatorname{Hom}(E_i, E_j)$$

defined by composition. Choose a basis $\alpha_1, \ldots, \alpha_{n_{ij}}$ of $\text{Hom}(E_i, E_j)/\text{Im }\varphi_{ij}$. These $\alpha_1, \ldots, \alpha_{n_{ij}}$ define the edges $i \to j$ in Q_1 .

• An element $p = \sum a_i p_i \in kQ$ with $s(p_i) = s(p_j)$, $t(p_i) = t(p)j$ is in I if and only if the corresponding map $E_{s(p)} \to E_{t(p)}$ is zero.

As an example, for the exceptional collection

$$\mathcal{O}, \ \mathcal{O}(1), \ \ldots, \ \mathcal{O}(n)$$

of $\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$, the associated quiver is

Proposition 10.9. The ideal I is generated by the relations

$$x_k x'_\ell - x_\ell x'_k$$

for all $k \neq \ell \in \{1, ..., n+1\}$, where $\{x_1, ..., x_{n+1}\}$ (resp. $\{x'_1, ..., x'_{n+1}\}$) is the set of arrows $i \to (i+1)$ (resp. $(i+1) \to (i+2)$).

11 Grothendieck-Riemann-Roch

In this section, we work over \mathbb{C} . Let X be a smooth quasi-projective variety.

11.1 Chern classes of a vector bundle

For each vector bundle \mathscr{E} over X, we have the **Chern classes** of \mathscr{E} ,

$$c_i(\mathscr{E}) \in H^{2i}(X,\mathbb{Z}).$$

They satisfy the following properties

- 1) $c_0(\mathscr{E}) = 1$;
- 2) $c_1(\mathcal{O}_X(D)) = [D]$ for any divisor D on X;
- 3) given short exact sequence

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

we have
$$c(\mathscr{E}) = c(\mathscr{E}') c(\mathscr{E}'')$$
, where $c(\mathscr{E}) = \sum_{i \geq 0} c_i(\mathscr{E})$;

4) $c_i(\mathscr{E}) = 9$ for each $i > \operatorname{rk} \mathscr{E}$.

11.2 Chern classes of a coherent sheaf

Let \mathscr{F} be a coherent sheaf on X. As X is smooth we can choose a locally free resolution

$$0 \to \mathcal{L}_{\ell} \to \cdots \to \mathcal{L}_{0} \to \mathscr{F} \to 0.$$

Define
$$c(\mathscr{F}) = \prod_{i} c(\mathscr{L}_i)^{(-1)^i}$$
. Here,

$$c(\mathcal{L})^{-1} = 1 + (1 - c(\mathcal{L})) + (1 - c(\mathcal{L}))^2 + \cdots$$

Lemma 11.1. The Chern class $c(\mathcal{F})$ is independent of the choice of resolution and still satisfy $1) \sim 4$).

11.3 Chern character

Let X be a smooth quasi-projective variety. $\mathscr E$ a vector bundle on X.

11.3.1 A particular example

Assume that $\mathscr{E} = \mathscr{L}_1 \oplus \cdots \oplus \mathscr{L}_r$. Then we define

$$\operatorname{ch}(\mathscr{E}) = \sum_{i} e^{\operatorname{c}_{1}(\mathscr{L}_{i})}.$$

11.3.2 General definition

In general, \mathscr{E} does not split into line bundles. Let $c_t(\mathscr{E}) = \sum t^i c_i(\mathscr{E})$, called the **Chern polynomial**. Write formally

$$c_t(\mathscr{E}) = \prod_{i=1}^{\operatorname{rk}\mathscr{E}} (1 + \alpha_i t).$$

The formal variables α_i are called **Chern roots**. (When $\mathscr{E} = \mathscr{L}_1 \oplus \cdots \oplus \mathscr{L}_r$, we can take $\alpha_i = c_1(\mathscr{L}_i)$.)

We define the **Chern character** $\operatorname{ch}(\mathscr{E})$ to be $\sum e^{\alpha_i}$. $\operatorname{ch}(\mathscr{E})$ is actually a \mathbb{Q} -linear combination of product of Chern classes. Explicitly, the first few terms are

$$Ch(\mathscr{E}) = rk(\mathscr{E}) + c_1 + \frac{1}{2}(c_1^2 - 2c_2) + \frac{1}{6}(c_1^3 - 3c_1c_2 + 3c_3) + \frac{1}{24}(c_1^4 - 4c_1^2c_2 + 4c_1c_3 + 2c_2^2 - 4c_4) + \dots \in H^*(X, \mathbb{Q}).$$

Lemma 11.2. Let \mathscr{E} , \mathscr{E}' , \mathscr{E}'' be vector bundles.

1) If there is a short exact sequence

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0.$$

then
$$Ch(\mathscr{E}) = Ch(\mathscr{E}') + Ch(\mathscr{E}'')$$
.

- 2) $\operatorname{Ch}(\mathscr{E} \otimes \mathscr{E}') = \operatorname{Ch}(\mathscr{E}) \operatorname{Ch}(\mathscr{E}').$
- 3) The definition of Chern character can be extended to coherent sheaves in a unique way, subject to 1).

11.4 Grothendieck group

11.4.1 Abelian category

Let \mathcal{A} be an abelian category and let $\mathcal{B} \subseteq \mathcal{A}$ a additive subcategory. We define

$$K(\mathcal{B}) = \frac{\bigoplus_{E \in \mathcal{B}} \mathbb{Z} \cdot [E]}{\langle [E] - [E'] | 0 \to E' \to E \to E'' \to 0 \text{ exact in } \mathcal{A} \rangle}.$$

For example, $K(\mathsf{Vect}_{k, \mathrm{fin}} \cong \mathbb{Z}.$

11.4.2 K(Coh X)

Let X be a smooth quasi-projective variety. Define $K(X) = K(\mathsf{Coh}\,X)$. Since X is smooth, we actually have

$$K(\operatorname{Vect} X) \cong K(X),$$

where $\mathsf{Vect}\,X$ is the category of vector bundles over X of finite rank. As tensoring with a vector bundle preserves exact sequence, given $\mathscr{E},\,\mathscr{E}'\in\mathsf{Vect}\,X$, we can define

$$[\mathscr{E}] \cdot [\mathscr{E}'] = [\mathscr{E} \otimes \mathscr{E}'].$$

This defines $K(X) \cong K(\text{Vect } X)$ as a ring. Chern character extends to a ring homomorphism

$$\text{Ch}: \ \mathrm{K}(X) \ \to \ H^*(X,\mathbb{Q})$$

$$[\mathscr{F}] \ \mapsto \ \mathrm{Ch}(\mathscr{F}).$$

11.4.3 $K(D^{\mathbf{b}}(X))$

Let \mathcal{D} be a triangulated category. We have a similar definition:

$$K(\mathcal{D}) := \frac{\bigoplus_{E \in \mathcal{D}} \mathbb{Z} \cdot [E]}{\langle [E] - [E'] - [E''] \mid F \to E \to G \to F[1] \text{ distinguished} \rangle}$$

We call $K(\mathcal{D})$ the Grothendieck group of \mathcal{D} .

Proposition 11.3. Let \mathcal{A} be an abelian category.

• For each $E^{\bullet} \in D^{\mathrm{b}}(\mathcal{A})$, we have

$$[E^{\bullet}] = \sum_{i} (-1)^{i} [H^{i}(E^{\bullet})] = \sum_{i} (-1)^{i} [E^{i}]$$

in $K(D^b(\mathcal{A}))$.

• We have an equivalence of category

$$K(\mathcal{A}) \xrightarrow{\sim} K(D^{b}(\mathcal{A})).$$

In particular, if X is a smooth quasi-projective variety,

$$K(D^{b}(X)) \cong K(X).$$

Proposition 11.4. Given \mathscr{F}_1^{\bullet} , $\mathscr{F}_2^{\bullet} \in D^{\mathrm{b}}(X)$, we have

$$[\mathscr{F}_1^{\bullet}]\cdot [\mathscr{F}_2^{\bullet}] = [\mathscr{F}_1^{\bullet}\otimes^{\mathsf{L}}\mathscr{F}_2^{\bullet}].$$

By construction, all exact functor between triangulated category $F:\mathcal{D}_1\to\mathcal{D}_2$ induces $F:\mathrm{K}(\mathcal{D}_1)\to\mathrm{K}(\mathcal{D}_2)$. For example, let $f:X\to Y$ be a proper morphism between smooth quasi-projective varieties. Then the functor $\mathsf{R} f_*:D^\mathrm{b}(X)\to D^\mathrm{b}(Y)$ induces $\mathsf{R} f_*:\mathrm{K}(X)\to\mathrm{K}(Y)$.

11.5 Grothendieck-Riemann-Roch

11.5.1 Todd class

Let X be a smooth quasi-projective variety, \mathscr{E} a vector bundle of rank r on X, α_1 , ..., α_r the Chern roots of \mathscr{E} . We define the Todd class $\mathrm{Td}(\mathscr{E})$ to be

$$\prod_{i=1}^r Q(\alpha_i),$$

where $Q(x) = \frac{x}{1 - e^{-x}}$. Td(\mathscr{E}) is again a \mathbb{Q} -linear combination of products of Chern classes:

$$Td(\mathscr{E}) = 1 + \frac{1}{2}c_1 + \frac{1}{2}(c_1^2 + c_2) + \frac{1}{24}c_1c_2 + \frac{1}{720}(-c_1^4 + 4c_1^2c_2 + c_1c_3 + 3c_2^2 - c_4) + \dots \in H^*(X, \mathbb{Q}).$$

11.5.2 GRR

Theorem 11.5. Let $f: X \to Y$ be a proper morphism of smooth quasi-projective varieties. Then we have the following commutative diagram:

$$D^{b}(X) \xrightarrow{Rf_{*}} D^{b}(Y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$K(X) \xrightarrow{Rf_{*}} K(Y)$$

$$\downarrow^{\operatorname{ch}(-)\operatorname{Td}_{X}} \qquad \downarrow^{\operatorname{ch}(-)\operatorname{Td}_{Y}}$$

$$H^{\bullet}(X,\mathbb{Q}) \xrightarrow{f_{*}} H^{\bullet}(Y,\mathbb{Q}),$$

where $\mathrm{Td}_X = \mathrm{Td}(T_X)$, $\mathrm{Td}_Y = \mathrm{Td}(T_Y)$.

11.5.3 Hirzebruch-Riemann-Roch

When $f: X \to \{ \mathrm{pt} \}$, for each $\mathscr{E}^{\bullet} \in D^{\mathrm{b}}(X)$ we have

$$\mathsf{R} f_*[\mathscr{E}^\bullet] = [\mathsf{R} \Gamma(\mathscr{E}^\bullet)] = \sum (-1)^i \dim H^i(X,\mathscr{E}^\bullet) =: \chi(\mathscr{E}^\bullet).$$

Corollary 11.6 (HRR). For each $\mathscr{E}^{\bullet} \in D^{\mathrm{b}}(X)$,

$$\chi(\mathscr{E}^{\bullet}) = \int_X \operatorname{ch}(\mathscr{E}^{\bullet}) \operatorname{Td}_X.$$

11.5.4 Fourier-Mukai transforms and GRR

Let X, Y be smooth projective varieties. For each $\alpha \in D^b(X)$ (or $\alpha \in K(X)$), define

$$v(\alpha) = \operatorname{ch}(\alpha) \sqrt{\operatorname{Td}_X} \in H^{\bullet}(X, \mathbb{Q}).$$

We call $v(\alpha)$ the Mukai vector. Let $\mathscr{P} \in D^{\mathrm{b}}(X \times Y)$, and let $p: X \times Y \to X$ and $q: X \times Y \to Y$ be the projections.

Proposition 11.7. We have the commutative diagram:

$$D^{b}(X) \xrightarrow{\Phi^{\mathscr{P}}} D^{b}(Y)$$

$$\downarrow^{v} \qquad \qquad \downarrow^{v}$$

$$H^{\bullet}(X,\mathbb{Q}) \xrightarrow{} H^{\bullet}(Y,\mathbb{Q})$$

$$\beta \longmapsto q_{*}(v(\mathscr{P}) \cup p^{*}\beta).$$

Remark. This induced map $H^{\bullet}(X,\mathbb{Q}) \to H^{\bullet}(Y,\mathbb{Q})$ is just \mathbb{Q} -linear. In general it does not preserve the grading, nor the cup-product.

11.6 Grothendieck group and semi-orthogonal decomposition

Let \mathcal{D} be a triangulated category. Assume that \mathcal{D} admits an semi-orthogonal decomposition $(\mathcal{C}_1, \ldots, \mathcal{C}_m)$. Recall that we have the projection functors $p_i : \mathcal{D} \to \mathcal{C}_i$.

Proposition 11.8. The morphism

$$K(\mathcal{D}) \stackrel{\sim}{\to} K(\mathcal{C}_1) \oplus \cdots \oplus K(\mathcal{C}_m)$$

$$[F] \mapsto ([p_1(F)], \dots, [p_m(F)])$$

is well-defined and s a group isomorphism.

In particular, if E_1, \ldots, E_m is a full exceptional collection, then $K(\mathcal{D})$ is isomorphic to \mathbb{Z}^m . When $\mathcal{D} = D^b(X)$, this is very rare, because usually $K(\mathcal{D}) = K(X)$ is usually infinitely dimensional.

12 Invariants under *D*-equivalence

Let X, Y be smooth projective varieties. Assume that $D^{b}(X) \cong D^{b}(Y)$ as triangulated categories. Then X and Y share same common invariants. We will see some examples of

such invariants.

12.1 Dimension

Proposition 12.1. Suppose there is an equivalence $\Phi: D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(Y)$. Then $\dim X = \dim Y$.

Proof. Let $\mathscr{P} \in D^{\mathrm{b}}(X \times Y)$ be the Fourier-Mukai kernel such that $\Phi = \Phi^{\mathscr{P}}$. As Φ is an equivalence, we have

$$\Phi^{-1} \dashv \Phi \dashv \Phi^{-1}$$
.

Since the Fourier-Mukai kernel of left adjoint of Φ is $\mathscr{P}^{\vee} \otimes p_Y^* \omega_Y[\dim Y]$, and the Fourier-Mukai kernel of right adjoint of Φ is $\mathscr{P}^{\vee} \otimes p_X^* \omega_X[\dim X]$, where $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ are the projections, the uniqueness of Fourier-Mukai kernel gives an isomorphism

$$\mathscr{P}^{\vee} \otimes p_Y^* \omega_Y[\dim Y] \cong \mathscr{P}^{\vee} \otimes \pi_X^* \omega_X[\dim X].$$

As they are nonzero in $D^{\mathrm{b}}(X \times Y)$ and $H^{i}(\mathscr{P}^{\vee} \otimes p_{Y}^{*}\omega_{Y}) = H^{i}(\mathscr{P}^{\vee}) \otimes p_{Y}^{*}\omega_{Y}$ is non-zero if and only if $H^{i}(\mathscr{P}^{\vee} \otimes p_{X}^{*}\omega_{X}) = H^{i}(\mathscr{P}^{\vee}) \otimes p_{X}^{*}\omega_{X}$ is non-zero (note that $p_{Y}^{*}\omega_{Y}$ and $p_{X}^{*}\omega_{X}$ are locally free), necessarily dim $X = \dim Y$.

Question. Let X, Y be smooth projective varieties. Assume that there is an embedding $D^{\mathrm{b}}(X) \hookrightarrow D^{\mathrm{b}}(Y)$, do we have $\dim X \leq \dim Y$?

12.2 Grothendieck group

Let $\Phi: D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(Y)$. We have

$$K(X)\cong K(D^{\mathrm{b}}(X))\cong K(D^{\mathrm{b}}(Y))\cong K(Y),$$

where all \cong are group isomorphisms. It may happen that $\Phi(\mathcal{O}_X) \neq \mathcal{O}_Y$. In this case, $K(X) \cong K(Y)$ is not a ring isomorphism.

12.3 Cohomology, Euler characteristic

Let X, Y be smooth projective varieties over \mathbb{C} .

Proposition 12.2. The equivalence $\Phi: D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(Y)$ implies

- $H^{\bullet}(X, \mathbb{Q}) \cong H^{\bullet}(Y, \mathbb{Q})$ as \mathbb{Q} -vector spaces;
- e(X) = e(Y), where $e(-) = \sum_{i=1}^{n} (-1)^i \dim H^i(-, \mathbb{Q})$ is the Euler characteristic.

Proof. Let $\mathscr{P}, \mathscr{Q} \in D^{\mathrm{b}}(X \times Y)$ such that $\Phi = \Phi^{\mathscr{P}}$ and $\Phi^{-1} = \Phi^{\mathscr{Q}}$. We have

$$D^{b}(X) \xrightarrow{\Phi^{\mathscr{P}}} D^{b}(Y) \xrightarrow{\Phi^{\mathscr{Q}}} D^{b}(X)$$

$$\downarrow^{v} \qquad \qquad \downarrow^{v} \qquad \qquad \downarrow^{v}$$

$$H^{\bullet}(X,\mathbb{Q}) \xrightarrow{\varphi_{\mathscr{P}}} H^{\bullet}(Y,\mathbb{Q}) \xrightarrow{\varphi_{\mathscr{Q}}} H^{\bullet}(X,\mathbb{Q}),$$

where $\varphi_{\mathscr{P}}(\beta) = q_*(v(\mathscr{P}) \cup p^*\beta)$ and $\varphi_{\mathscr{Q}}$ is defined similarly.

As $\varphi_{\mathscr{Q}} \circ \varphi_{\mathscr{P}}(\beta) = p_*(v(\mathscr{P} * \mathscr{Q}) \cup p^*\beta)$ and $\mathscr{P} * \mathscr{Q} \cong \mathcal{O}_{\Delta_X} \in D^{\mathrm{b}}(X \times X)$, we have $\varphi_{\mathscr{Q}} \circ \varphi_{\mathscr{P}} = \mathrm{id}$, and similarly $\varphi_{\mathscr{P}} \circ \varphi_{\mathscr{Q}} = \mathrm{id}$. Hence $H^{\bullet}(X, \mathbb{Q}) \cong H^{\bullet}(Y, \mathbb{Q})$.

Since $v(\mathscr{P}) = \operatorname{ch}(\mathscr{P}) \cup \sqrt{\operatorname{Td}_{X \times Y}} \in H^{\operatorname{even}}(X \times Y, \mathbb{Q})$. The morphism

$$\varphi_{\mathscr{P}}: H^{\mathrm{even}}(X, \mathbb{Q}) \oplus H^{\mathrm{odd}}(X, \mathbb{Q}) \xrightarrow{\sim} H^{\mathrm{even}}(Y, \mathbb{Q}) \oplus H^{\mathrm{odd}}(Y, \mathbb{Q})$$

preserves the $\mathbb{Z}/2\mathbb{Z}$ -grading. Hence $e(X) = \dim H^{\text{even}} - \dim H^{\text{odd}} = e(Y)$.

Conjecture 12.3. If $D^{b}(X) \cong D^{b}(Y)$, then $h^{p,q}(X) = h^{p,q}(Y)$ for all p, q.

The conjecture is known to hold when dim $X \leq 3$ (Popa-Schnell).

Proposition 12.4. Under the assumptaion $D^{b}(X) \cong D^{b}(Y)$, the sums of vertical Hodge number are preserved, i.e., for each k,

$$\sum_{p-q=k}h^{p,q}(X)=\sum_{p-q=k}h^{p,q}(Y).$$

12.4 Canonical rings

Let X, Y, be smooth projective varieties over a field k. The **canonical ring** of X is defined to be

$$R(X) = \bigoplus_{i>0} H^0(X, \omega_X^{\otimes i}).$$

Proposition 12.5 (Orlov). If $D^{\mathrm{b}}(X) \cong D^{\mathrm{b}}(Y)$, then $R(X) \cong R(Y)$ as graded k-algebra.

Proof. As before, let \mathscr{P} , $\mathscr{Q} \in D^{\mathrm{b}}(X \times Y)$ such that $\Phi = \Phi_{X \to Y}^{\mathscr{P}} : D^{\mathrm{b}}(X) \xrightarrow{\sim} D^{\mathrm{b}}(Y)$ and $\Phi^{-1} = \Phi_{X \to X}^{\mathscr{Q}}$.

First, we prove that $\Phi_{X\to Y}^{\mathcal{Q}}: D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(Y)$ is also an equivalence. Indeed, $\mathscr{P} * \mathscr{Q} \cong \mathcal{O}_{\Delta_X}$, $\mathscr{Q} * \mathscr{P} \cong \mathcal{O}_{\Delta_Y}$. Let $\tau: X \times Y \to Y \times X$ be the isomorphism that sends (x,y) to (y,x). Then $(\tau^*\mathscr{Q}) * (\tau^*\mathscr{P}) \cong \mathcal{O}_{\Delta_X}$, $(\tau^*\mathscr{P}) * (\tau^*\mathscr{Q}) \cong \mathcal{O}_{\Delta_Y}$. Thus $\Phi_{X\to Y}^{\mathscr{Q}} = \Phi_{X\to Y}^{\tau^*\mathscr{Q}}$ is an equivalence.

Let $\iota: X \to X \times X$, $\iota: Y \to Y \times Y$ be the diagonal maps. We have

$$H^{0}(X, \omega_{X}^{\otimes k}) \cong \operatorname{Hom}_{X \times X}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\omega_{X}^{\otimes k}),$$

$$H^{0}(Y, \omega_{Y}^{\otimes k}) \cong \operatorname{Hom}_{Y \times Y}(\iota_{*}\mathcal{O}_{Y}, \iota_{*}\omega_{Y}^{\otimes k}).$$

Consider $(\tau^* \mathscr{Q}) \boxtimes \mathscr{P} \in D^{\mathrm{b}}((X \times X) \times (Y \times Y))$. We will show that $\Phi^{\tau^* \mathscr{Q} \boxtimes \mathscr{P}}(\iota_* \omega_X^{\otimes k}) \cong \iota_* \omega_Y^{\otimes k}$, so that $R(X) \cong R(Y)$ as graded k-vector spaces.

Let $\mathscr{S} = \Phi^{\tau^* \mathscr{Q} \boxtimes \mathscr{P}}(\iota_* \omega_X^k)$. Then $\Phi^{\mathscr{S}}$ can be factorized as

$$D^{\mathrm{b}}(Y) \xrightarrow{\Phi^{\mathscr{Q}}} D^{\mathrm{b}}(X) \xrightarrow{\Phi^{\iota_* \omega_X^{\otimes k}}} D^{\mathrm{b}}(X) \xrightarrow{\Phi^{\mathscr{P}}} D^{\mathrm{b}}(Y).$$

Since $\Phi^{\iota_*\omega_X^{\otimes k}} = (-\otimes \omega_X)^k = S_X^k[-kn]$, where $n = \dim X = \dim Y$, (8.8) gives

$$\Phi^{\mathscr{S}} = \Phi^{\mathscr{P}} \circ \Phi^{\iota_* \omega_X^{\otimes k}} \circ \Phi^{\mathscr{Q}} \cong \Phi^{\mathscr{P}} \circ S_X^k[-kn] \circ \Phi^{\mathscr{Q}} \cong S_Y^k[-kn] = \Phi^{\iota_* \omega_Y^{\otimes k}}.$$

Hence, $\iota_*\omega_Y^{\otimes k} \cong \mathscr{S} = \Phi^{\tau^*\mathscr{Q}\boxtimes\mathscr{P}}(\iota_*\omega_X^k).$

Finally, we show that $R(X) \xrightarrow{\sim} R(Y)$ is a ring homomorphism. In fact, this follows from the following commutative diagram:

$$H^{0}(X, \omega_{X}^{\otimes k}) \otimes H^{0}(X, \omega_{X}^{\otimes \ell}) \xrightarrow{\cdot} H^{0}(X, \omega_{X}^{\otimes (k+\ell)})$$

$$\downarrow^{\natural} \qquad \qquad \downarrow^{\natural}$$

$$\operatorname{Hom}(\mathcal{O}_{X}, \omega_{X}^{\otimes k}) \otimes \operatorname{Hom}(\omega_{X}^{\otimes \ell}, \omega_{X}^{\otimes (k+\ell)}) \xrightarrow{\circ} \operatorname{Hom}(\mathcal{O}_{X}, \omega_{X}^{\otimes (k+\ell)})$$

$$\downarrow^{\natural} \qquad \qquad \downarrow^{\natural}$$

$$\operatorname{Hom}_{X \times X}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\omega_{X}^{\otimes k}) \otimes \operatorname{Hom}_{X \times X}(\iota_{*}\omega_{X}^{\otimes \ell}, \iota_{*}\omega_{X}^{\otimes (k+\ell)}) \xrightarrow{\circ} \operatorname{Hom}_{X \times X}(\iota_{*}\mathcal{O}_{X}, \omega_{X}^{\otimes (k+\ell)})$$

$$\downarrow^{\Phi^{\tau^{*} \mathscr{D} \boxtimes \mathscr{P}}} \qquad \qquad \downarrow^{\Phi^{\tau^{*} \mathscr{D} \boxtimes \mathscr{P}}$$

$$\operatorname{Hom}_{Y \times Y}(\iota_{*}\mathcal{O}_{Y}, \iota_{*}\omega_{Y}^{\otimes k}) \otimes \operatorname{Hom}_{Y \times Y}(\iota_{*}\omega_{Y}^{\otimes \ell}, \iota_{*}\omega_{Y}^{\otimes (k+\ell)}) \xrightarrow{\circ} \operatorname{Hom}_{Y \times Y}(\iota_{*}\mathcal{O}_{Y}, \omega_{Y}^{\otimes (k+\ell)}).$$

Remark. One can show that ω_X (resp. ω_X^{\vee}) is ample if and only if ω_Y (resp. ω_Y^{\vee}) is ample. Hence if ω_X or ω_X^{\vee} is ample,

$$D^{\mathrm{b}}(X) \cong D^{\mathrm{b}}(Y) \iff X \cong Y.$$

Corollary 12.6. We have $D^{\mathrm{b}}(X) \cong D^{\mathrm{b}}(Y)$ if and only if $\mathrm{K}(X) \cong \mathrm{K}(Y)$.

12.5 Hochschild (co)homology

Let X be a smooth projective variety over a field k. Define the bigraded k-algebra

$$HH(X) = \bigoplus_{i,\ell \in \mathbb{Z}} HA_{i,\ell}(X),$$

where $HA_{i,\ell}(X) = \operatorname{Ext}_{X\times X}^i(\iota_*\mathcal{O}_X, \iota_*\omega_X^{\ell})$ with product defined by the Yoneda product.

The canonical ring $R(X) = \bigoplus_{\ell} HA_{0,\ell}(X) \subseteq HH(X)$ as subalgebra. We could have proven directly that $D^{\mathrm{b}}(X) \cong D^{\mathrm{b}}(Y)$ implies $HH(X) \cong HH(Y)$ as bigraded k-algebra.

We have another $\operatorname{sub-}k$ -algebra

$$HH^{\bullet}(X) := \bigoplus_{i} HA_{i,0}(X) \cong HH(X),$$

called the **Hochschild cohomology** of X. The **Hochschild homology** of X is defined as

$$HH_{\bullet}(X) = \bigoplus_{i} HA_{i+\dim X,1}(X) = \bigoplus_{i} \operatorname{Ext}^{i+\dim X}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\omega_{X}).$$

 $HH_{\bullet}(X)$ is a graded $HH^{\bullet}(X)$ -module. So $HH(X) \cong HH(Y)$ implies $HH^{\bullet}(X) \cong HH^{\bullet}(Y)$ as k-algebra and $HH_{\bullet}(X) \cong HH_{\bullet}(Y)$ as HH^{\bullet} -modules.

12.6 Hochschild-Kostant-Rosenberg isomorphism

Theorem 12.7. Let X be a smooth quasi-projective variety over a field k. Then

$$HH^{i}(X) \cong \operatorname{Ext}_{X \times X}^{i}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\mathcal{O}_{X}) \cong \bigoplus_{p+q=i} H^{q}(X, \bigwedge^{p} T_{X}),$$
$$HH_{i}(X) \cong \operatorname{Ext}_{X \times X}^{i}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\omega_{X}) \cong \bigoplus_{q-p=i} H^{q}(X, \Omega_{X}^{p}).$$

When X is smooth over \mathbb{C} , this implies again that the sums of vertical Hodge numbers are invariant under D-equivalence.

Remark. In general, these isomorphism don't preserve product.

Proof. (sketch) Consider the local-to-global spectral sequences

$$H^{p}(X \times X, \mathscr{E}xt^{q}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\mathcal{O}_{X})) \Rightarrow \operatorname{Ext}_{X \times X}^{p+q}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\mathcal{O}_{X}) = HH^{p+q}(X),$$

$$H^{p}(X \times X, \mathscr{E}xt^{q}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\omega_{X})) \Rightarrow \operatorname{Ext}_{X \times X}^{p+q}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\omega_{X}) = HH_{p+q-\dim X}(X).$$

One way to prove this theorem is to show that these spectral sequence degenerate at E_2 , so that

$$HH^{\ell}(X) = \bigoplus_{p+q=\ell} H^{p}(X \times X, \mathscr{E}xt^{q}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\mathcal{O}_{X}))$$

$$HH_{\ell-\dim X}(X) = \bigoplus_{p+q=\ell} H^{p}(X \times X, \mathscr{E}xt^{q}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\omega_{X})).$$

Assuming this, we finish the proof as follows: Choose an embedding $j: X \hookrightarrow \mathbb{P}^N = \mathbb{P}(V)$. We have the Euler sequence

$$0 \to \Omega_{\mathbb{P}^N}(1) \to V^{\vee} \to \mathcal{O}(1) \to 0.$$

Let $\Delta \subset \mathbb{P}^N \times \mathbb{P}^N$ be the diagonal. Then

$$\mathcal{O}_{\mathbb{P}^N}(-1) \boxtimes \Omega_{\mathbb{P}^N}(1) \longrightarrow \mathcal{O}_{\mathbb{P}^N \times \mathbb{P}^N} \longrightarrow \mathcal{O}_{\Delta} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

is exact (because over $(\ell, \ell') \in \mathbb{P}^N \times \mathbb{P}^N$, $\mathcal{O}_{\mathbb{P}^N}(-1) \boxtimes \Omega_{\mathbb{P}^N}(1)|_{(\ell, \ell')} = \ell \otimes {\ell'}^{\perp}$). Apply $(j \times j)^*$, we get the exact sequence

$$\mathscr{E} = \mathcal{O}_X(-1) \boxtimes \Omega_X(1) \longrightarrow \mathcal{O}_{X \times X} \longrightarrow \iota_* \mathcal{O}_X \longrightarrow 0,$$

where \mathscr{E} is a locally free sheaf of rank $d = \dim X$ over $X \times X$. Consider the Koszul resolution

$$0 \to \bigwedge^d \mathscr{E} \to \bigwedge^{d-1} \mathscr{E} \to \cdots \to \mathscr{E} \to \mathcal{O}_{X \times X} \to \iota_* \mathcal{O}_X \to 0.$$

We see that

$$\mathcal{E}xt^{q}(\iota_{*}\mathcal{O}_{X}, \iota_{*}\mathcal{O}_{X}) \cong \mathcal{H}om_{X \times X}(\iota_{*}\mathcal{O}_{X}[-q], \iota_{*}\mathcal{O}_{X})$$

$$\cong \mathcal{H}om_{X \times X} \left(\bigwedge^{q} \mathcal{E}, \iota_{*}\mathcal{O}_{X}\right)$$

$$\cong \iota_{*}\mathcal{H}om_{X} \left(\iota^{*} \bigwedge^{q} \mathcal{E}, \mathcal{O}_{X}\right)$$

$$\cong \iota_{*}\mathcal{H}om_{X} \left(\bigwedge^{q} (\iota^{*}\mathcal{E}), \mathcal{O}_{X}\right).$$

Since X is the zero locus of some section of \mathscr{E}^{\vee} , $\iota^*e \cong N_{X/X \times X}^{\vee} \cong \Omega_X$. So $\mathscr{E}xt^q(\iota_*\mathcal{O}_X, \iota_*\mathcal{O}_X) \cong \iota_* \bigwedge^q T_X$. Hence

$$H^p(X \times X, \mathscr{E}xt^q(\iota_*\mathcal{O}_X, \iota_*\mathcal{O}_X)) \cong H^p(X \times X, \iota_*\bigwedge^q T_X) \cong H^p(X, \bigwedge^q T_X).$$

Similarly, we have $\mathscr{E}xt^q(\iota_*\mathcal{O}_X,\iota_*\omega_X)\cong\iota_*\Omega_X^{d-q}$, thus

$$H^p(X \times X, \mathscr{E}xt^q(\iota_*\mathcal{O}_X, \iota_*\omega_X)) \cong H^p(X, \Omega_X^{d-q}).$$

13 Spanning class

13.1 Definition

Let \mathcal{D} be a triangulated category.

Definition 13.1. A spanning class of \mathcal{D} is a collection Ω of objects of \mathcal{D} such that $\langle \Omega \rangle^{\perp} = {}^{\perp} \langle \Omega \rangle = 0$. Explicitly, this means that the following are all equivalent:

- $E \cong 0$;
- $\operatorname{Hom}(F, E[i]) = 0$ for each $F \in \Omega$ and for each $i \in \mathbb{Z}$;
- $\operatorname{Hom}(E[i], F) = 0$ for each $F \in \Omega$ and for each $i \in \mathbb{Z}$.

Spanning classes are like generators of groups, rings, etc., which are useful for practical reason.

Proposition 13.2. Assume that \mathcal{D} has a Serre functor. Then for any collection Ω , $\langle \Omega \rangle^{\perp} = 0$ if and only if $^{\perp}\langle \Omega \rangle = 0$. Thus, Ω generates \mathcal{D} if and only if Ω is a spanning class.

13.2 Examples

Let X be a smooth projective variety over a field k.

13.2.1 Closed points

Lemma 13.3. The collection

$$\Omega = \{ \mathcal{O}_x \mid x \in X \text{ is a closed point, } \}$$

is a spanning class of $D^{\mathrm{b}}(X)$.

Proof. Let $E^{\bullet} \in D^{b}(X)$ be a nonzero object. We may assume that $H^{0}(E^{\bullet}) \neq 0$ and $H^{i}(E^{\bullet}) = 0$ for each i > 0. Choose $x \in \text{Supp}(H^{0}(E^{\bullet}))$. Consider

$$E_2^{p,q} = \operatorname{Ext}^p(H^{-q}(E^{\bullet}), \mathcal{O}_x) \Rightarrow \operatorname{Ext}^{p+q}(E^{\bullet}, \mathcal{O}_x).$$

We have $E_2^{p,q} = 0$ if p < 0 or q < 0. So

$$E_2^{0,0} \cong E_\infty^{0,0} \cong \operatorname{Hom}(E^{\bullet}, \mathcal{O}_x) \cong \operatorname{Hom}(H^0(E^{\bullet}), \mathcal{O}_x) \neq 0$$

as
$$x \in \text{Supp}(H^0(E^{\bullet}))$$
.

13.2.2 Ample line bundles

Let \mathscr{L} be an ample line bundle on X with $\dim X = n$. Assume that \mathscr{L} is globally generated. We have seen in the proof of Beilinson's theorem (10.1) that

$$\bigoplus_{i=0}^{n} \mathscr{L}^{-i}$$

spans $D^{\mathrm{b}}(X)$. In particular, for every ample line bundle \mathscr{L} on X,

$$\Omega = \{\mathcal{O}_X, \mathcal{L}^k, \dots, \mathcal{L}^{nk}\}$$

spans $D^{\mathrm{b}}(X)$ whenever $k \gg 0$ (such that \mathcal{L}^k is globally generated).

13.3 Some applications

Theorem 13.4. Let $F: \mathcal{C} \to \mathcal{D}$ be an exact functor between triangulated categories. Assume that $G \dashv F \dashv H$. Let Ω be a spanning class of \mathcal{C} . Assume that for any $A, B \in \Omega$ and for any $i \in \mathbb{Z}$, the map

$$F: \operatorname{Hom}(A, B[i]) \to \operatorname{Hom}(F(A), F(B)[i])$$

is an isomorphism. Then $F: \mathcal{C} \to \mathcal{D}$ is fully faithful.

Proof. As $G \dashv F \dashv H$ and F is exact, both G and H are exact. For any $A, B \in \mathcal{C}$ and for any $i \in \mathbb{Z}$ we have the commutative diagram

$$\operatorname{Hom}(A,B[i]) \xrightarrow{\hspace{1cm}} \operatorname{Hom}(A,HF(B)[i])$$

$$\downarrow^{\natural}$$

$$\operatorname{Hom}(GF(A),B[i]) \xrightarrow{\hspace{1cm}} \operatorname{Hom}(F(A),F(B)[i]).$$

Complete $GF(A) \to A$ to a distinguished triangle

Apply Hom(-, B[i]) to the triangle, we get

$$\cdots \longrightarrow \operatorname{Hom}(C, B[i]) \longrightarrow \operatorname{Hom}(A, B[i]) \longrightarrow \operatorname{Hom}(GF(A), B[i]) \longrightarrow \cdots$$

$$\downarrow^{\wr}$$

$$\operatorname{Hom}(F(A), F(B)[i]).$$

Now assume $A, B \in \Omega$, then the F in the above diagram becomes an isomorphism. So Hom(C, B[i]) = 0, and thus C = 0. Hence $GF(A) \xrightarrow{\sim} A$ if $A \in \Omega$.

Still assuming $A \in \Omega$. For each $B \in \mathcal{C}$, we now have

$$\operatorname{Hom}(A,B[i]) \xrightarrow{\sim} \operatorname{Hom}(A,HF(B)[i])$$

$$\downarrow^{\natural} \qquad \qquad \downarrow^{\natural}$$

$$\operatorname{Hom}(GF(A),B[i]) \xrightarrow{\sim} \operatorname{Hom}(F(A),F(B)[i])$$

Consider the distinguished triangle

We get

$$\cdots \longrightarrow \operatorname{Hom}(A, B[i]) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}(A, HF(B)[i]) \longrightarrow \operatorname{Hom}(A, C'[i]) \longrightarrow \cdots$$

So $\operatorname{Hom}(A, C') = 0$, and hence C' = 0. This gives $B \xrightarrow{\sim} HF(B)$. Hence, for any $A, B \in \mathcal{C}$,

$$F: \operatorname{Hom}(A,B) \xrightarrow{\sim} \operatorname{Hom}(A,HF(B)) \xrightarrow{\sim} \operatorname{Hom}(F(A),F(B))$$

is an isomorphism.

Recall that an equivalence of triangulated categories $F: \mathcal{C} \to \mathcal{D}$ commutes with Serre functors whenever they exist (8.8). We show that the converse is also true, and that verifying the commutativity for a spanning class is enough.

Theorem 13.5. Let \mathcal{C} and \mathcal{D} be triangulated categories with Serre functors $S_{\mathcal{C}}$ and $S_{\mathcal{D}}$, respectively. Let $F: \mathcal{C} \to \mathcal{D}$ be an exact functor and assume that $G \dashv F$. Let Ω be a spanning class of \mathcal{C} . Assume that $\mathcal{C} \not\cong 0$ and \mathcal{D} is indecomposable. If $F \circ S_{\mathcal{C}}(A) \cong S_{\mathcal{D}} \circ F(A)$ for all $A \in \Omega$, then $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of category.

We first prove another criterion:

Theorem 13.6. Let $F: \mathcal{C} \to \mathcal{D}$ be a fully faithful exact functor of triangulated categories. Assume that \mathcal{D} is indecomposable and $\mathcal{C} \ncong 0$. Then F defines an equivalence of categories if and only if $G \dashv F \dashv H$ and $H(B) \cong 0$ implies $G(B) \cong 0$ for each $B \in \mathcal{D}$.

Proof. Assume that F defines an equivalence of categories. Then $F^{-1} \dashv F \dashv F^{-1}$ and the only if part is now clear.

Lemma 13.7. If $F \dashv H$ and F is fully faithful, then $HF \cong id_{\mathcal{C}}$.

Proof of Lemma. For all $A, B \in \mathcal{C}$, we have

$$\operatorname{Hom}(B, HF(A)) \cong \operatorname{Hom}(F(B), F(B)) \cong \operatorname{Hom}(B, A)$$

and these isomorphisms are functorial in A, B. Thus $HF \cong id_{\mathcal{C}}$ by Yoneda's lemma.

Assume that $G \dashv F \dashv H$ and $H(B) \cong 0$ implies $G(B) \cong 0$ for each $B \in \mathcal{D}$. Let $B \in \mathcal{D}$. Let $C \in D$ such that

$$FH(B) \to B \to C \to FH(B)[1]$$

is a distinguished triangle. Apply H to this triangle, we get the distinguished triangle

$$HFH(B) \to H(B) \to H(C) \to HFH(B)[1],$$

where $HFH(B) \to H(B)$ is an isomorphism by the lemma. Hence $H(C) \cong 0$. We also have $FHFH(B) \cong FH(B)$.

Consider the full subcategories

$$\mathcal{D}_1 = \{ B \in \mathcal{D} \mid FH(B) \cong B \} \subseteq \mathcal{D}$$

$$\mathcal{D}_2 = \{ B \in \mathcal{D} \mid H(B) \cong 0 \} \subseteq \mathcal{D}$$

We just showed that for each $B \in \mathcal{D}$, there exists a distinguished triangle

$$B_1 \rightarrow B \rightarrow B_2 \rightarrow B_1[1]$$

with $B_1 \in \mathcal{D}_1$ and $B_2 \in \mathcal{D}_2$. But for any $B_1 \in \mathcal{D}_1$ and any $B_2 \in \mathcal{D}_2$, we have

$$\operatorname{Hom}(B_1, B_2) \cong \operatorname{Hom}(FH(B_1), B_2) \cong \operatorname{Hom}(H(B_1), H(B_2)) \cong 0.$$

$$\operatorname{Hom}(B_2, B_1) \cong \operatorname{Hom}(B_2, FH(B_1)) \cong \operatorname{Hom}(G(B_2), H(B_1)) \cong 0$$

since $H(B_2) = 0$ and $G(B_2) = 0$ by assumption. Hence \mathcal{D} decompses into \mathcal{D}_1 and \mathcal{D}_2 . As $\mathcal{C} \neq 0$, $HF \cong \mathrm{id}_{\mathcal{C}}$ gives $\mathcal{D}_2 \ncong \mathcal{D}$. Since \mathcal{D} is indecomposable, $\mathcal{D}_1 \cong \mathcal{D}$. So $F : \mathcal{C} \to \mathcal{D}$ is essentially surjective.

We continue the proof of (13.5).

Proof. We want to show that: If $FS_{\mathcal{C}}(A) \cong S_{\mathcal{D}}F(A)$ for all $A \in \Omega$, then $F : \mathcal{C} \to \mathcal{D}$. We have $G \dashv F \dashv H := S_{\mathcal{C}} \circ G \circ S_{\mathcal{D}}^{-1}$. By the previous theorem, it is enough to show that for each $B \in \mathcal{D}$, $H(B) \cong 0$ implies $G(B) \cong 0$. Suppose $H(B) \cong 0$, then for each $A \in \Omega$,

$$\operatorname{Hom}(A, G(B)[i]) \cong \operatorname{Hom}(G(B)[i], S_{\mathcal{C}}(A))^{\vee} \cong \operatorname{Hom}(B[i], FS_{\mathcal{C}}(A))^{\vee}$$
$$\cong \operatorname{Hom}(B[i], S_{\mathcal{D}}F(A))^{\vee} \cong \operatorname{Hom}(F(A), B[i])$$
$$\cong \operatorname{Hom}(A, H(B)[i]) \cong 0.$$

Hence
$$G(B) \cong 0$$
.

14 Autoequivalence

14.1 Definition, first examples

Let \mathcal{D} be a triangulated category.

Definition 14.1. The group of autoequivalence is defined by

$$Aut(\mathcal{D}) := \{ \text{ isomorphism classes of equivalences } \mathcal{D} \to \mathcal{D} \}.$$

Examples of autoequivalences:

- $[1]: \mathcal{D} \xrightarrow{\sim} \mathcal{D}$
- $f^*: \mathcal{D}^?(X) \xrightarrow{\sim} \mathcal{D}^?(X)$, where X is a noetherian scheme and $f: X \xrightarrow{\sim} X$ is a morphism.
- $\otimes L : \mathcal{D}^{?}(X) \xrightarrow{\sim} \mathcal{D}^{?}(X)$, where X is a noetherian scheme and L is a line bundle over X.

Lemma 14.2. Let X be a variety over a field k. We have an injective group homomorphism

$$\mathbb{Z} \times (\operatorname{Aut}(X) \ltimes \operatorname{Pic}(X)) \hookrightarrow \operatorname{Aut}(D^{?}(X))$$
$$(i, f, \mathscr{L}) \longmapsto [\mathscr{F}^{\bullet} \mapsto f^{*}(\mathscr{F}^{\bullet} \otimes \mathscr{L})[i]].$$

Proof. The group homomorphism part is clear. Assume that $\Phi: D^{?}(X) \to D^{?}(X)$ defined by $\mathscr{F}^{\bullet} \mapsto f^{*}(\mathscr{F}^{\bullet} \otimes \mathscr{L})[i]$ satisfies $\Phi \cong \mathrm{id}$. Then we have

$$\mathcal{O}_X \longrightarrow f^* \mathscr{L}[i] \longrightarrow \mathcal{O}_X.$$

This implies $\operatorname{Ext}^i(\mathcal{O}_X, f^*L) \neq 0$, $\operatorname{Ext}^{-i}(f^*\mathcal{L}, \mathcal{O}_X) \neq 0$. This implies i = 0. So we get $H^0(X, f^*\mathcal{L}) \neq 0$ and $H^0(X, f^*\mathcal{L}^{\vee}) \neq 0$, which gives $f^*L \cong \mathcal{O}_X$, and thus $L \cong \mathcal{O}_X$. Finally, for each closed point $x \in X$, we have

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{O}_{X,f(x)}[i] \longrightarrow \mathcal{O}_{X,x}.$$

So x = f(x). Hence $f = id_X$.

Proposition 14.3 (Bondal-Orlov). Let X be a smooth projective variety with ω_X or ω_X^{\vee} . Then

$$\operatorname{Aut}(D^{\operatorname{b}}(X)) \cong \mathbb{Z} \times (\operatorname{Aut}(X) \ltimes \operatorname{Pic}(X)).$$

14.2 Spherical twists

14.2.1 Historical origin

Let X and X^{\vee} be mirror pairs of Calabi-Yau manifolds. The homological mirror symmetry conjecture asserts that there should be an equivalence

$$D^{\mathrm{b}}(X) \cong D^{\mathrm{b}}(\mathrm{Fuk}(X^{\vee})).$$

The Dehn twists along a Lagrangian sphere S on $D^{\mathrm{b}}(\mathrm{Fuk}(X^{\vee}))$ should give us spherical twists on $D^{\mathrm{b}}(X)$ associated to spherical objects \mathscr{E}^{\bullet} , and \mathscr{E}^{\bullet} corresponds to S.

14.2.2 Spherical objects

Let X be a smooth projective variety over a field k.

Definition 14.4. An object $\mathscr{E}^{\bullet} \in D^{\mathrm{b}}(X)$ is called spherical if

- (i) $\mathscr{E}^{\bullet} \otimes \omega_X \cong \mathscr{E}^{\bullet}$,
- (ii) $\operatorname{Hom}(\mathscr{E}^{\bullet}, \mathscr{E}^{\bullet}[i]) = k$ if i = 0 or $\dim X$ and equals to 0 otherwise.

Let $\mathscr{E}^{\bullet} \in D^{\mathrm{b}}(X)$ be a spherical object. For each $\mathscr{F}^{\bullet} \in D^{\mathrm{b}}(X)$, choose $T_{\mathscr{E}^{\bullet}}(\mathscr{F}^{\bullet})$ such that

$$\mathsf{R}\mathscr{H}om(\mathscr{E}^{\bullet},\mathscr{F}^{\bullet})\otimes\mathscr{E}^{\bullet}\to\mathscr{F}^{\bullet}\to T_{\mathscr{E}^{\bullet}}(\mathscr{F}^{\bullet})\to\mathsf{R}\mathscr{H}om(\mathscr{E}^{\bullet},\mathscr{F}^{\bullet})\otimes\mathscr{E}^{\bullet}[1]$$

is a distinguished triangle.

Theorem 14.5. The functor

$$T_{\mathscr{E}^{\bullet}}: D^{\mathrm{b}}(X) \to D^{\mathrm{b}}(X)$$

defines an equivalence.

We call $T_{\mathscr{E}^{\bullet}}$ the spherical twist associated to \mathscr{E}^{\bullet} . Let's first look at some example before proving the theorem.

14.2.3 Examples

(a) Let X be Calabi-Yau: $\omega_X \cong \mathcal{O}_X$ and $H^i(X, \mathcal{O}_X) = 0$ for all $0 < i < \dim X$. Every line bundle \mathscr{L} on X is spherical.

Interlude 4: T-structures and torsion pairs

14.3 T-structures

Let \mathcal{D} be a triangulated category. We want to find some abelian category \mathcal{A} in \mathcal{D} .

Definition 14.6. A *t*-structure on \mathcal{D} is a pair $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ of full additive subcategory such that we have:

- Define $\mathcal{D}^{\leq n} = \mathcal{D}^{\leq 0}[-n]$, $\mathcal{D}^{\geq n} = \mathcal{D}^{\geq 0}[-n]$. $D^{\leq 0} \subseteq \mathcal{D}^{\leq 1}$ and $\mathcal{D}^{\geq 1} \subseteq \mathcal{D}^{\geq 0}$.
- $\operatorname{Hom}(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 1}) = 0.$
- For each $E \in \mathcal{D}$, there exists a distinguished triangle

$$t_{\leq 0}E \to E \to t_{\geq 1}E \to t_{\leq 0}E[1]$$

with $t_{\leq 0}E \in \mathcal{D}^{\leq 0}$ and $t_{\geq 1}E \in \mathcal{D}^{\geq 1}$.

Example 14.7 (standard t-structure). Assume that $\mathcal{D} = D^{?}(\mathcal{A})$ for some abelian category \mathcal{A} . Define

$$\mathcal{D}^{\leq 0} = \{ E \in \mathcal{D} \mid H^{i}(E) = 0 \ \forall i > 0 \},$$
$$\mathcal{D}^{\geq 0} = \{ E \in \mathcal{D} \mid H^{i}(E) = 0 \ \forall i < 0 \}.$$

Then $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ is a t-structure of \mathcal{D} and $\mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0} \cong \mathcal{A}$.

Theorem 14.8. Let $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ be a t-structure of \mathcal{D} . Then $\mathcal{A} := \mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0}$ is an abelian category. We call \mathcal{A} the **heart** of the t-structure $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$.

Let $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ be a t-structure of \mathcal{D} and let \mathcal{A} be its heart. Define

$$H^i_{\mathcal{A}}: \mathcal{D} \to \mathcal{A}$$
 $E \mapsto t_{\geq i}t_{\leq i}E,$

where $t_{\leq i}E = (t_{\leq 0}(E[i]))[-i]$ and $t_{\geq i}E = (t_{\geq 1}(E[1-i]))[i-1]$. Then $H_{\mathcal{A}}^i$ is a cohomological functor, namely for each distinguished triangle

the induced sequence

$$\cdots \longrightarrow H^{i}_{\mathcal{A}}(X) \longrightarrow H^{i}_{\mathcal{A}}(Y) \longrightarrow H^{i}_{\mathcal{A}}(Z) \longrightarrow H^{i+1}_{\mathcal{A}}(X) \longrightarrow \cdots$$

is exact. Assume $X, Y \in \mathcal{A}$, then $H^i_{\mathcal{A}}(X) = H^i_{\mathcal{A}}(Y) = 0$ for each $i \neq 0$, so

$$0 \longrightarrow H_{\mathcal{A}}^{-1}(Z) \longrightarrow H_{\mathcal{A}}^{0}(X) \longrightarrow H_{\mathcal{A}}^{0}(Y) \longrightarrow H_{\mathcal{A}}^{0}(Z) \longrightarrow 0$$
$$0 \longrightarrow \ker f \longrightarrow X \xrightarrow{f} Y \longrightarrow \operatorname{coker} f \longrightarrow 0.$$

In particular, for any $X, Y, Z \in \mathcal{A}$,

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

is exact in \mathcal{A} if and only if

in \mathcal{D} .

Remark. We have $\operatorname{Ext}^1_{\mathcal{A}}(X,Y) \cong \operatorname{Ext}^1_{\mathcal{D}}(X,Y)$, but in general $\operatorname{Ext}^i_{\mathcal{A}}(X,Y) \not\cong \operatorname{Ext}^i_{\mathcal{D}}(X,Y)$. So $D^?(\mathcal{A}) \not\cong \mathcal{D}$ in general.

Definition 14.9. A t-structure $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ of \mathcal{D} is called bounded if

$$\mathcal{D} = \bigcup_{i,j \in \mathbb{Z}} (\mathcal{D}^{\leq i} \cap \mathcal{D}^{\geq j}).$$

Proposition 14.10. Let $A \subseteq \mathcal{D}$ be a full additive subcategory. Then A is the heart of a bounded t-structure if and only if the following conditions are satisfied:

- for each $k \in \mathbb{Z}_{<0}$ and for any $A, B \in \mathcal{A}$, $\operatorname{Hom}_{\mathcal{D}}(A, B[k]) = 0$;
- for each $E \in \mathcal{D}$ with $E \neq 0$, there exists integers $k_1 > \cdots > k_n$ and

$$0 = E_0 \longrightarrow E_1 \longrightarrow \cdots \longrightarrow E_{n-1} \longrightarrow E$$

such that $Cone(E_{i-1} \to E_i) \in \mathcal{A}[k_i]$.

In this case, we have $K(\mathcal{D}) \cong K(\mathcal{A})$.

14.4 Torsion pairs

Let \mathcal{A} be an abelian category.

Definition 14.11. A torsion pair is a pair $(\mathcal{T}, \mathcal{F})$ of full subcategories of \mathcal{A} such that:

- $\operatorname{Hom}(\mathcal{T}, \mathcal{F}) = 0;$
- for each $E \in \mathcal{A}$, there exists a short exact sequence

$$0 \longrightarrow T \longrightarrow E \longrightarrow F \rightarrow 0$$

with $T \in \mathcal{T}$ and $F \in \mathcal{F}$.

Proposition 14.12. Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair of \mathcal{A} . Then $\mathcal{T} = {}^{\perp}\mathcal{F}$ and $\mathcal{F} = \mathcal{T}^{\perp}$. For each $E \in \mathcal{A}$, the objects $T \in \mathcal{T}$ and $F \in \mathcal{F}$ such that

$$0 \longrightarrow T \longrightarrow E \longrightarrow F \longrightarrow 0$$

is a short exact sequence are unique up to isomorphisms.

Example 14.13. Let X be a variety. In Coh(X),

$$\mathcal{T} = \{ \text{ torsion sheaf} \}, \quad \mathcal{F} = \{ \text{ torsion free sheaf} \},$$

form a torsion pair.

14.5 Tilting

Let \mathcal{D} be a triangulated category, \mathcal{A} the heart of a t-structure $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$. Suppose that \mathcal{A} admits a torsion pair $(\mathcal{T}, \mathcal{F})$. Define

$$^{\dagger}\mathcal{D}^{\leq 0} = \{ E \in \mathcal{D}^{\leq 0} \mid H^0(E) \in \mathcal{T} \}$$
$$^{\dagger}\mathcal{D}^{\geq 0} = \{ E \in \mathcal{D}^{\geq -1} \mid H^{-1}(E) \in \mathcal{F} \}$$

Theorem 14.14 (Happel-Reiten-Smal \varnothing). The pair $({}^{\dagger}\mathcal{D}^{\leq 0}, {}^{\dagger}\mathcal{D}^{\geq 0})$ is a t-structure on \mathcal{D} . We call it the **tilted** t-structure with respect to $(\mathcal{T}, \mathcal{F})$.