Courbes algébriques

Alexandre Guillemot

 $28\ {\rm septembre}\ 2022$

Table des matières

Introduction

ana-maria.castravet@uvsq.fr k un corps, on considère $P_1, \dots, P_r \in k[x_1, \dots, x_n]$. $V(P_1, \dots, P_r) \subseteq \mathbb{A}^n_k$ sont les zéros de P_1, \dots, P_r . Courbe algébrique = variété algébrique de dimension 1. Les courbes elliptiques sont des cas particuliers de courbes algébriques.

Chapitre 1

Ensembles algébriques affines

1.1 Définition

k un corps, $n \in \mathbb{Z}$.

Définition 1.1.1. (Espace affine) $\mathbb{A}^n_k := k^n$ est l'espace affine sur le corps k de dimension n.

Rq 1.1.1. Ce n'est pas vraiment la définition de l'espace affine, c'est la définition de l'ensemble sous-jacent à l'espace affine, sachant que les espaces affines sont des variétés algébriques.

Ex 1.1.1. Si n = 1, c'est une "droite". Si n = 2, c'est un "plan".

Définition 1.1.2. Soit $S \subseteq k[x_1, \dots, x_n]$, on définit

$$V(S) := \{ a \in \mathbb{A}^n_k \mid \forall P \in S, P(a) = 0 \}$$

On appelle de tels ensembles des ensembles algébriques affines.

Rq 1.1.2. Si $S = \{P_1, \dots, P_r\}$, on écrit $V(P_1, \dots, P_r) := V(S)$.

Ex 1.1.2. 1. $V(\emptyset) = \mathbb{A}^n_k$

- 2. $V(1) = \emptyset$
- 3. $P = X^4 1 \in k[X]$, si $k = \mathbb{R}$, $V(P) = \{1, -1\}$. Si $k = \mathbb{C}$, $V(P) = \{1, -1, i, -i\}$. Si $k = \mathbb{F}_2$, $V(P) = \{1\}$.
- 4. $P = X^2 + Y^2 + 1 \in k[X, Y]$, si $k = \mathbb{R}$, $V(P) = \emptyset$. Si $k = \mathbb{C}$, V(P) est isomorphe (en tant que variété algébrique, même si cela n'a pour le moment aucun sens) au cercle complexe (en considérant le changement de variables $a_i = ib_i$).

5.
$$P_i = \sum a_{ij} x_j - b_i \in k[x_1, \dots, x_n], i \in [1, r].$$

$$V(P_i) = \{x \in k^n \mid (a_{ij})x = b\} \simeq \mathbb{A}_k^n$$
 ou \emptyset

Exercice. Les ensembles algébriques de \mathbb{A}^1_k sont : \emptyset , \mathbb{A}^1_k , tous les sous-ensembles finis.

Ex 1.1.3. Les sous-ensembles algébriques de \mathbb{A}^2_k sont \emptyset , tout le plan, les sous-ensembles finis et des réunions finies des sous-ensembles finis avec des courbes planes, i.e. $V(P) \neq \emptyset$ les zéros d'un seul polynôme non constant. Donnons des exemples de courbes planes :

- 1. Les droites $V(ax + by + c) \in \mathbb{A}^2_k$, avec $a \neq 0$ ou $b \neq 0$.
- 2. Les coniques $V(ax^2 + by^2 + cxy + dx + ey + f) \subseteq \mathbb{A}^2_k$ $(a \neq 0 \text{ ou } b \neq 0 \text{ ou } c \neq 0)$. Dans $\mathbb{P}^2_{\mathbb{C}}$, toutes les coniques sont de type cercle, droite ou droites qui se croisent.
- 3. $y^2 = x^3 + ax + b$, $a, b \in k$ définissent ce qu'on appelle des courbes elliptiques.

Rq 1.1.3. V(S) = V(T) n'implique pas que S = T. Par exemple $V(x^2 + y^2 + 1) = V(x^4 + 1) \subseteq \mathbb{A}^2_{\mathbb{R}}$. Plus généralement, sur n'importe quel corps, $V(P^2) = V(P)$ avec $P = k[x_1, \dots, x_n]$.

Proposition 1.1.1. 1. Si $S \subseteq T \subseteq k[x_1, \dots, x_n]$, alors $V(T) \subseteq V(S) \subseteq \mathbb{A}^n_k$.

- 2. $S \subseteq k[x_1, \dots, x_n], I = (S)$ idéal engendré par S, alors V(S) = V(I)
- 3. $S \subseteq k[x_1, \cdots, x_n]$, alors

$$V(S) = \bigcap_{p \in S} V(P)$$

4.

$$\bigcap_{j \in J} V(S_j) = V\left(\bigcup_{j \in J} S_j\right), S_j \subseteq k[x_1, \cdots, x_n]$$

- 5. $V(PQ) = V(P) \cup V(Q)$ pour $P, Q \in k[x_1, \dots, x_n]$
- 6. Plus généralement, $V(IJ) = V(I) \cup V(J) = V(I \cap J)$ avec $I, J \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$

Démonstration. Prouvons $6: IJ \subseteq I \cap J \subseteq I$ donc $V(I) \subseteq V(I \cap J) \subseteq V(IJ)$ et donc par symétrie $V(I) \cup V(J) \subseteq V(I \cap J) \subseteq V(IJ)$. Supposons qu'il existe $x \in V(IJ)$ tq $x \notin V(I) \cup V(J)$. Alors $\exists P \in I, \ Q \in J \ \text{tq} \ P(x) \neq 0$ et $Q(x) \neq 0$. Mais $PQ \in IJ$ donc PQ(x) = 0, contradiction. Les autres points sont en exercice.

Corollaire 1.1.1. Les ensembles algébriques de \mathbb{A}^n_k forment les fermés d'une topologie. On appelera cette topologie la topologie de Zariski.

Définition 1.1.3. Soit $E \subseteq \mathbb{A}^n_k$. On définit

$$I(E) = \{ P \in k[x_1, \dots, x_n] \mid P(a) = 0, \forall a \in E \}$$

Ex 1.1.4. 1. $I(\emptyset) = k[x_1, \dots, x_n]$

- 2. $I(a) = (x_1 a_1, \dots, x_n a_n) =: \mathfrak{m}_a$. Remarquons que cet idéal est un idéal maximal.
- 3. $I(\mathbb{A}^n_k) = \{0\}$ si le corps est infini.

Définition 1.1.4. $I \stackrel{\text{id}}{\subseteq} A$, alors

$$\sqrt{I} = \{ f \in A \mid \exists n > 0, \ f^n \in I \}$$

est le radical de I.~I est un idéal radical si $I=\sqrt{I}$

Proposition 1.1.2. 1. $E \subseteq E' \subseteq \mathbb{A}_k^n$, alors $I(E') \subseteq I(E)$

- 2. $I(E \cup E') = I(E) \cap I(E')$
- 3. $J \subseteq I(V(J))$ pour tout $J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$.
- 4. $E \subseteq V(I(E))$ pour tout $E \subseteq \mathbb{A}_k^n$.
- 5. $V(I) = V(\sqrt{I}) \subseteq \mathbb{A}^n_k$, pour tout $I \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$

Démonstration. Exercice

Lemme 1.1.1. $E = V(I(E)) \iff E \text{ est un ensemble alg\'ebrique}.$

Démonstration. Montrons $V(I(E)) \subseteq E$: Supposons que E = V(J), $J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$. ALors $J \subseteq I(V(J))$ et ainsi $V(I(E)) \subseteq E$.

Ex 1.1.5. Le segment ouvert $(0,1) \subseteq \mathbb{A}^1_{\mathbb{R}}$ n'est pas un ensemble algébrique.

Théorème 1.1.1. (Nullstellensatz, 1) Si $k = \bar{k}$, alors on a $I(V(J)) = \sqrt{J}$ pour tout $J \subseteq k[x_1, \dots, x_n]$

Ex 1.1.6. Si $k = \mathbb{R}$, $P = x^2 + y^2 + 1 \in \mathbb{R}[x, y]$ irréductible. I = (P) est un idéal premier, donc radical, mais $I(V(P)) = I(\emptyset) = \mathbb{R}[x, y] \neq (P)$.

Théorème 1.1.2. Pour tout $n \ge 1$, $k[x_1, \dots, x_n]$ est un anneau noéthérien.

Corollaire 1.1.2. Chaque ensemble algébrique $V \subseteq \mathbb{A}^n_k$ est de la forme $V = V(P_1, \dots, P_r)$ avec $P_i \in k[x_1, \dots, x_n]$

Ainsi V et I nous donnent des applications entre les idéaux radicaux de $k[x_1, \dots, x_n]$ et les sous espaces algébriques de \mathbb{A}^n_k . Vérifier que I(E) est un idéal radical. De plus, si k est algébriquement clos, d'après le nullstellensatz I et V sont inverses l'une de l'autre. Par cette bijection, les idéaux premiers vont correspondre aux ensembles irréductibles. Les idéaux maximaux vont correspondre à des points.

Définition 1.1.5. $V \subseteq \mathbb{A}_k^n$ ensemble algébrique. V est irréductible si pour toute décomposition $V = V_1 \cup V_2$ avec V_1, V_2 ensembles algébriques, on a $V = V_1$ ou $V = V_2$. On dit sinon que V est réductible.

Proposition 1.1.3. $V \subseteq \mathbb{A}^n_k$ ensemble algébrique. Alors tfae

- 1. V est irréductible
- 2. I(V) est un idéal premier
- 3. $k[x_1, \dots, x_n]/I(V)$ est un anneau intègre

 $D\'{e}monstration.$ $1 \Rightarrow 2$: Soient $f, g \in k[x_1, \dots, x_n]$ tq $fg \in I(V)$. Mais $V(fg) = V(f) \cup V(g)$, puis soit $V_1V \cap V(f)$, $V_2 = V \cap V(g)$, alors $V_1 \cup V_2 = V \cap V(fg) = V$. Ainsi $V_1 = V$ ou $V_2 = V$, donc $f \in V$ ou $g \in V$.

 $2 \Rightarrow 1$: Soit $V \subseteq \mathbb{A}^n_k$ ensemble algébrique tq I(V) est un idéal premier. Supposons que V est réductible, alors $V = V_1 \cup V_2$ avec $V \neq V_1, V \neq V_2$. Comme V_1, V_2 sont algébriques, alors V(I(V)) = V, $V(I(V_i)) = V_i$, et ainsi $V(I(V)) \neq V(I(V_1))$ et $I(V) \subseteq I(V_1)$. Donc il existe $f_1 \in I(V_1)$ tq $f \notin I(V)$. De même, il existe $f_2 \in I(V_2)$ tq $f_2 \notin I(V)$. Mais $f_1 f_2 \in I(V_1) \cap I(V_2) = I(V)$ et ainsi I(V) n'est pas premier.

Théorème 1.1.3. Soit $V \subseteq \mathbb{A}^n_k$ un ensemble algébrique. Alors $\exists V_1, \dots, V_m \subseteq \mathbb{A}^n_k$ irréductibles tels que

- 1. $V = V_1 \cup V_2 \cup \cdots \cup V_m$
- 2. $\forall i \neq j, \ V_i \not\subseteq V_i$

Les $\{V_i\}_{i\in [\![1,m]\!]}$ avec ces propriétés sont uniques à ordre près, on les appelle les composantes irréductibles de V.

Ex 1.1.7. Soit $V := V(xy, (x-1)z) \subseteq \mathbb{A}_k^n$, k de caractéristique 0. Sur V, on a

$$(x = 0 \lor z = 0) \land (x = 1 \lor y = 0)$$

$$\iff (x = 0 \land y = 0) \lor (z = 0 \land x = 1) \lor (z = 0 \land y = 0)$$

Ainsi $V = V_1 \cup V_2 \cup V_3$ avec $V_1 = V(x,y), V_2 = V(x-1,z)$ et $V_3 = V(y,z)$. On peut alors prouver que ce sont les composantes irréductibles de V.

 $D\acute{e}monstration$. Soit $V \subseteq \mathbb{A}^n_k$ un ensemble algébrique. Si V est irréductible, on a terminé. Sinon il existe des sous-ensembles algébriques propres de $V_1, V_2 \nsubseteq V$ tels que $V = V_1 \cup V_2$. Si V_1, V_2 sont irréductibles, alors on a finit. Sinon on itère le procédé sur V_1 et V_2 . Alors supposons que le procédé ne termine pas, il va exister une suite strictement décroissante $\cdots \not\subseteq W_2 \not\subseteq W_1 \not\subseteq V$ d'ensembles algébriques. Ainsi on obtiens une suite croissante

$$I(W) \subseteq I(W_1) \subseteq I(W_2) \subseteq \cdots$$

Remarquons alors qu'elle es strictement croissante puisque $V(I(W_i)) = W_i$ et la suite des W_i est strictement décroissante. Ainsi on obtiens une contradiction avec le fait que $k[x_1, \cdots, x_n]$ est noéthérien.

Occupons nous maintenant de l'unicité : Supposons que

$$V = \bigcup_{i=1}^{s} V_i = \bigcup_{i=1}^{t} W_i$$

On veut montrer que l'ensemble $\{V_i\}_{i\in \llbracket 1,s\rrbracket}$ est égal à l'ensemble $\{W_i\}_{i\in \llbracket 1,t\rrbracket}$. On va montrer une inclusion : montrons qu'il existe $j \in [1, t]$ tel que $V_i = W_j$, avec $i \in [1, s]$. Comme $V_i \subseteq \bigcup_{j \in [1,t]} W_j$, on a

$$V_i \subseteq \bigcup_{j \in [\![1,t]\!]} W_j \cap V_i$$

Mais V_i est irréductible, donc $\exists j \in [1, t]$ tel que $V_i = W_j \cap V_j$, et en particulier $V_i \subseteq W_j$. Maintenant de la même manière on peut prouver qu'il existe $i' \in [1, s]$ tel que $W_i \subseteq V_{i'}$. Mais alors $V_i \subseteq W_j \subseteq V_{i'}$ et donc i = i', d'où $V_i = W_j$.

Donnons 2 reformulations du Nullstellensatz

Proposition 1.1.4. (Nullstellensatz 2,3) Considérons l'anneau $k[x_1, \dots, x_n]$. Tfae :

- 1. Pour tout $J \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n], \ I(V(J)) = \sqrt{J}$ 2. Pour tout $J \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n], \ J \ propre \ implique \ que \ V(J) \neq \emptyset$

3. Les idéaux maximaux de $k[x_1, \dots, x_n]$ sont exactement les idéaux

$$\mathfrak{m}_a = (x_1 - a_1, \cdots, x_n - a_n)$$

 $D\'{e}monstration$. $2 \Rightarrow 3$: Soit $\mathfrak{m} \stackrel{\max}{\subseteq} k[x_1, \cdots, x_n]$. C'est un idéal propre, donc $V(\mathfrak{m}) \neq \emptyset$. Alors soit $a \in V(\mathfrak{m})$, remarquons que pour tout $f \in \mathfrak{m}$, f(a) = 0 donc $f \in \mathfrak{m}_a$ (vu que l'on peut écrire $f = Q_1(x_1 - a_1) + \cdots + Q_i(x_i - a_i) + c$). Ainsi $\mathfrak{m} \subseteq \mathfrak{m}_a$ mais \mathfrak{m} est maximal donc $\mathfrak{m} = \mathfrak{m}_a$ ce qui prouve simultanément que $(x_1 - a_1, \cdots, x_n - a_n)$ est un idéal maximal et que \mathfrak{m} est cet idéal.

 $1 \Rightarrow 2$: Soit $J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$ idéal propre. On a $\sqrt{J} = I(V(J))$. Supposons que $V(J) = \emptyset$, alors $\sqrt{J} = I(V(J)) = k[x_1, \dots, x_n]$ et donc $J = k[x_1, \dots, x_n]$, contradiction.

 $3\Rightarrow 1$: Soit $I\stackrel{\mathrm{id}}{\subseteq} k[x_1,\cdots,x_n]$, on veut mq $\sqrt{I}=I(V(I))$. Comme $I\subseteq I(V(I))$, on a directement le première inclusion du fait que $\sqrt{I(V(I))}=I(V(I))$. Dans l'autre sens, si $I=k[x_1,\cdots,x_n]$, l'égalité est claire. Sinon soit $f\in I(V(I))$, écrivons $I=(P_1,\cdots,P_r)$. Maintenant considérons l'anneau $k[x_1,\cdots,x_n,x_{n+1}]$, puis l'idéal

$$(P_1, \dots, P_r, 1 - x_{n+1}f) =: J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_{n+1}]$$

Si J est un idéal propre, alors d'après le théorème de Krull il existe $\mathfrak{m} \stackrel{\max}{\subseteq} k[x_1, \cdots, x_{n+1}]$ tel que $J \subseteq \mathfrak{m}$. Maintenant par hypothèse il existe $(a_1, \cdots, a_n, b) \in \mathbb{A}_k^{n+1}$ tel que

$$\mathfrak{m} = (x_1 - a_1, \cdots, x_n - a_n, x_{n+1} - b)$$

Mais alors pour tout $i \in [1, r]$, $P_i(a) = 0$ et 1 - bf(a) = 0. Mais alors la première série d'égalités nous indique que $a \in V(I)$, et comme $f \in I(V(I))$, f(a) = 0, ce qui est absurde. Ainsi J est $k[x_1, \dots, x_{n+1}]$ tout entier, donc en particulier il existe $Q_1, \dots, Q_n, Q \in k[x_1, \dots, x_{n+1}]$ tels que

$$1 = P_1 Q_1 + \dots + P_r Q_r + Q(1 + x_{n+1} f)$$
(1.1)

Maintenant le morphisme de localisation $k[x_1, \cdots, x_n] \to k[x_1, \cdots, x_n, 1/f]$ et le choix de l'élément 1/f induit un morphisme d'évaluation

$$k[x_1, \cdots, x_n] \xrightarrow{} k[x_1, \cdots, x_n, 1/f] \longleftrightarrow k(x_1, \cdots, x_n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Ainsi au travers de ce morphisme l'égalité ?? deviens

$$1 = P_1(x_1, \dots, x_n)Q_1(x_1, \dots, x_n, 1/f) + \dots + P_r(x_1, \dots, x_n)Q_r(x_1, \dots, x_n, 1/f)$$

Alors écrivons les Q_i comme des éléments de $k[x_1, \dots, x_n][x_{n+1}]$,

$$Q_{i} = \sum_{l=0}^{d_{i}} R_{i,l}(x_{1}, \cdots, x_{n}) x_{n+1}^{l}$$

En les passant au travers du morphisme d'évaluation précédent on peut les réécrire

$$Q_i = \frac{R_i(x_1, \cdots, x_n)}{f^{d_i}}$$

et alors?? deviens

$$1 = \sum_{i=1}^{r} \frac{P_i R_i}{f^{d_i}}$$

et ainsi en notant $d = \max\{d_i\}$

$$f^d = \sum_{i=1}^r P_i R_i f^{d-d_i}$$

dans $k(x_1, \dots, x_n)$ donc dans $k[x_1, \dots, x_n]$. Finalement si d = 0, alors $1 \in I$ absurde puisque l'on avait supposé I propre. Sinon, $f^d \in I$ et donc $f \in \sqrt{I}$.

Théorème 1.1.4. (Nullstellensatz, 0) Soit une extension de corps $K \hookrightarrow L$, avec L une k-algèbre de type fini. Alors $[L:K] < \infty$.

Rq 1.1.4. L K-algèbre de type fini ssi $L \simeq k[x_1, \cdots, x_n]/I$.

Montrons que ?? implique ?? :

Démonstration. Soit k un corps algébriquement clos. Soit $\mathfrak{m} \subseteq k[x_1, \cdots, x_n]$. Soit $L := k[x_1, \cdots, x_n]/\mathfrak{m}$ (qui est un corps et une k-algèbre de type fini). Considérons les morphismes $i: k \hookrightarrow k[x_1, \cdots, x_n]$, $\pi: k[x_1, \cdots, x_n] \twoheadrightarrow L$. On note $\varphi = \pi \circ i$. $k \to L$ est un morphisme de k-algèbres, donc de corps et donc d'après ??, $[L:K] < \infty$. Mais comme k est algébriquement clos, on doit avoir $k \simeq L$ (car $K \hookrightarrow L$ est alors une extension algébrique de k). Soit $a_i := \pi(x_i) \in L \simeq k$. Maitenant $\pi(x_i - i(\varphi^{-1}(a_i))) = \pi(x_i) - \varphi(a_i) = a_i - a_i = 0$, donc $\mathfrak{m}_a \subseteq \mathfrak{m}$ et comme \mathfrak{m}_a est maximal, $\mathfrak{m} = \mathfrak{m}_a$.

Prouvons $\ref{eq:caso}$ dans le cas où k est non dénombrable :

Démonstration. (Nullstellensatz, 0, corps K non dénombrable) Soit $K \hookrightarrow L$ une extension de corps, avec L k-algèbre de type fini. Ecrivons $L \simeq k[x_1, \cdots, x_n]/I = k[a_1, \cdots, a_n]$. Il suffit de montrer que $K \hookrightarrow L$ est algébrique, car dans ce cas a_1, \cdots, a_n est un élément algébrique et donc $K \hookrightarrow K(a_1) \hookrightarrow \cdots \hookrightarrow K(a_1, a_2, \cdots, a_n) = L$ est finie et chaque extension de cette suite d'extension est finie puisque chaque a_i est algébrique. Pour prouver que $K \hookrightarrow L$ est algébrique, supposons le contraire. Alors soit $z \in L$ un élément transcendant, puis considérons $K \hookrightarrow K(z) \hookrightarrow L$, et $K(z) \simeq K(T)$ le corps des fractions de k[T]. Maintenant $L \simeq K[a_1, \cdots, a_n]$ est un isom de K-algèbres, L admet une base dénombrable comme K-espace vectoriel. Mais K(T) comme K-ev admets une famille libre non dénombrable

$$\left\{\frac{1}{T-\lambda}\right\}_{\lambda \in k}$$

car K est non dénombrable. Vérifions que cette famille est bien libre : écrivons

$$\sum_{\text{finie}} a_i \frac{1}{T - \lambda_i} = 0$$

dans $K(T) \hookrightarrow L$. Ainsi

$$\sum_{\text{finia}} a_i (T - \lambda_i) \cdots (\widehat{T - \lambda_i}) \cdots (T - \lambda_l) = 0$$

dans k[T], puis on évalue en λ_i et on obtiens $a_i = 0$ pour tout i.

Définition 1.1.6. $V \subseteq \mathbb{A}^n_k$ ensemble algébrique. L'algèbre des fonctions régulières sur V est

$$k[V] := k[x_1, \cdots, x_n]/I(V)$$

Rq 1.1.5. Comme $I(V) = \sqrt{I(V)}$, K[V] est une k-algèbre de type fini et réduite ($\sqrt{\{0\}} = \{0\}$). Observons que si $k = \bar{k}$, on a

 $\{k-\text{alg de type finies réduites}\} = \{k[V] \mid V \text{ ensemble algébrique}\}$

 $V,W\subseteq \mathbb{A}^n,\mathbb{A}^m$ ensembles algébriques affines

Définition 1.1.7. $V \subseteq \mathbb{A}^n_k$ ensemble algébrique. Une fonction régulière $f: V \to k$ est une fonction $\operatorname{tq} \exists P \in k[x_1, \cdots, x_n] \operatorname{tq} f(a) = P(a)$ pour tout $a \in V$.

Lemme 1.1.2. Il existe une bijection

$$\chi: k[V] \rightarrow \{f: V \rightarrow k \mid f \text{ fonction régulière sur } V\}$$

$$[P] \mapsto (a \mapsto f_P(a))$$

Rq 1.1.6. χ est un isomorphisme de k-algèbres (On vérifie que I(V) est inclus dans le noyau de $k[x_1, \dots, x_n] \to \{f : V \to k \mid f \text{ fonction régulière sur } V\}$, et donc cette application passe au quotient par propriété universelle du quotient)

Définition 1.1.8. Soient $V,W\subseteq \mathbb{A}^n_k, \mathbb{A}^l_k$ des ensembles algébriques. Une application $\varphi:V\to W$ est dite régulière (ou morphisme d'ensembles algébriques) si pour tout $f:W\to k$ fonction régulière, on a que $f\circ\varphi:V\to k$ est une fonction régulière. C'est la même chose que demander que

$$\begin{array}{ccc} k[W] & \to & k[V] \\ f & \mapsto & f \circ \varphi \end{array}$$

est bien définie.

Notation. On note φ^* l'application définie dans la définition précédente.

Rq 1.1.7. φ^* est un morphisme de k-algèbres.

Soient $V, W \subseteq \mathbb{A}_k^n, \mathbb{A}_k^l$ ensembles algébriques, puis $\varphi : V \to W$. Notons $\varphi = (\varphi_1, \dots, \varphi_l)$, où $\varphi_i = \pi_i \circ \varphi \ (\pi_i : \mathbb{A}_k^l \to k)$.

Lemme 1.1.3. φ est un morphisme $\iff \varphi_i$ est une fonction régulière pour tout i.

 $D\'{e}monstration. \Rightarrow : \pi_i, \pi_{i|W}$ sont des fonctions régulières. Ainsi $\varphi_i = \pi_i \circ \varphi$ est une fonction régulière (comme φ est un morphisme, par définition).

 $\Leftarrow: f: W \to k$ fonction régulière, alors $\exists Q \in k[y_1, \dots, y_l]$ tq f(b) = Q(b) pour tout $b \in W$. Maintenant φ_i est régulière, donc $\exists R_i \in k[x_1, \dots, x_n]$ tq $\varphi_i(a) = R_i(a)$ pour tout $a \in V$. Soit $P \in Q(R_1, \dots, R_n) \in k[x_1, \dots, x_n]$ On a alors

$$P(a) = Q(R_1(a), \dots, R_n(a))$$

= $f(\varphi_1(a), \dots, \varphi_n(a)) = f \circ \varphi(a)$

pour tout $a \in V$, et donc φ est un morphisme.

Ex 1.1.8. Soit $\varphi: \mathbb{A}^n \to \mathbb{A}^l$ définie par $\varphi(x_1, \dots, x_n) = (P_1(x), \dots, P_l(x))$ avec les $P_i \in k[x_1, \dots, x_n]$.

Rq 1.1.8. $\varphi:V\to W\subseteq \mathbb{A}^l$ est un morphisme ssi $V\to \mathbb{A}^l$ est un morphisme.

Ex 1.1.9. 1. $\varphi: \mathbb{A}^1 \to V := \{(x,y) \mid y=x^2\} \subseteq \mathbb{A}^2$ donné par $\varphi(t)=(t,t^2)$ est un morphisme.

2. $\varphi: \mathbb{A}^1 \to V := \{(x,y) \mid y^2 = x^3\} \subseteq \mathbb{A}^2$ donné par $\varphi(t) = (t^2,t^3)$ est un morphisme.

Exercice. Les morphismes d'ensembles algébriques affines sont stables par composition.

Définition 1.1.9. $\varphi: V \to W$ est un isomorphisme si φ est un morphisme bijectif et $\varphi^{-1}: W \to V$ est un morphisme.

- **Ex 1.1.10.** 1. Reprenons l'exemple précédent : c'est un isomorphisme puisque $\varphi^{-1}: V \to \mathbb{A}^1$ donné par $\varphi^{-1}(x,y) = x$ est un morphisme et est une inverse de φ dans **Sets**.
 - 2. Forcément, une inverse de φ est une inverse dans **Sets** au travers du foncteur d'oubli qui envoie un ensemble algébrique sur son ensemble sous-jacent. Ainsi $\phi^{-1}: V \to \mathbb{A}^1$ doit forcément être définie comme

$$\varphi^{-1}(x,y) = \begin{cases} y/x & \text{si } (x,y) \neq 0\\ 0 & \text{sinon} \end{cases}$$

Mais φ^{-1} n'est pas un morphisme : supposons qu'il existe $P \in k[X,Y]$ tq $P(x,y) = \varphi^{-1}(x,y)$, alors P(x,y) = y/x pour tout $(x,y) \in V$ et $V = \{(t^2,t^3) \mid t \in k\}$, et ainsi $P(t^2,t^3) = t$ pour tout $t \in k \setminus \{0\}$, ce qui est clairement impossible. On peut aussi vérifier que le morphisme induit sur les algèbres de fonctions régulières n'est pas un isomorphisme.

Théorème 1.1.5. Soient $V, W \subseteq \mathbb{A}^n_k, \mathbb{A}^l_k$ ensembles algébriques. Alors il existe une bijection

$$F: \mathbf{Hom_{EnsAlg}}(V, W) \to \mathbf{Hom}_{k-\mathbf{CAlg}}(k[W], k[V))$$

qui envoie φ sur φ^* est une bijection. De plus cette bijection est fonctorielle, i.e. $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$, $et \operatorname{id}_V^* = \operatorname{id}_{k[V]}$.

Corollaire 1.1.3. Soit $\varphi: V \to W$ morphisme. C'est un isomorphisme ssi $\varphi^*: k[W] \to k[V]$ est un isomorphisme. En particulier V non isomorphe à W ssi k[V] non isomorphe à k[W].

Rq 1.1.9. Si $k = \bar{k}$, on a une équivalence de catégories entre **EnsAlg** et les k-algèbres de type fini réduites (catégorie notée $k - \mathbf{CAlg_{ft,red}}$).

 $D\acute{e}monstration.$ (??) Les foncteurs pleinements fidèles préservent et réfléchissent les isomorphismes.

Démonstration. (??) Soit $\varphi: V \to W \subseteq \mathbb{A}^l$, écrivons $\varphi = (\varphi_1, \dots, \varphi_l)$, avec $\varphi_i: V \to k$. φ morphisme, donc

$$\varphi^*: k[W] \simeq k[y_1, \cdots, y_l]/I(W) \rightarrow k[V]$$

$$[y_i] \mapsto \varphi_i$$

Montrons que F est injective : soient φ, ψ telles que $\varphi^* = \psi^*$. Alors $\varphi_i = \psi_i$ et donc $\varphi = \psi$. Montrons que F est surjective : soit $\alpha: k[W] \to k[V]$ un morphisme de k-algèbres. Alors notons $\varphi_i := \alpha([y_i]) \in k[V]$, ainsi $\varphi_i: V \to k$ est une fonction régulière. Posons alors $\varphi = (\varphi_1, \dots, \varphi_l)$. Il suffit de montrer que l'image de φ est contenue dans W. En effet, si c'est le cas, on peut définit $\tilde{\varphi}: V \to W$ qui fait commuter

et ainsi $\tilde{\varphi}^* = \alpha$. Soit $W = V(P_1, \dots, P_r) \subseteq \mathbb{A}^l$, $P_i \in k[y_1, \dots, y_l]$. En particulier, $P_i \in I(W)$ pour tout i. On doit vérifier que $P_i(\varphi_1(a), \dots, \varphi_l(a)) = 0$ pour tout i et $a \in V$. Comme $P_i \in I(W)$, $\alpha([P_i]) = 0$. Mais $\alpha([y_i]) = \varphi_i$, donc

$$0 = \alpha([P_i]) = P_i(\alpha([y_1]), \cdots, \alpha([y_l])) = P_i(\varphi_1, \cdots, \varphi_l) \in k[V]$$

 \mathbb{A}^n_k est muni d'une topologie, dont les fermés sont les V(I) pour I un idéal de $k[x_1, \dots, x_n]$. Ainsi on définit la topologie de Zariski sur $V \subseteq \mathbb{A}^n_k$ un esnemble algébrique comme la topologie induite sur V. Plus concrètement, les fermés de V sont les $V(I) \cap V$, pour I un idéal de $k[x_1, \dots, x_n]$ (i.e. les ensembles algébriques $W \subseteq V$).

Exercice. Les ouverts distingués D(f) forment une base pour la topologie de zariski de \mathbb{A}^n .

Ainsi $\{D(f) \cap V\}_f$ est une base des ouverts pour la topologie de Zariski sur V un ensemble algébrique fixé.

Proposition 1.1.5. Soient $V, W \subseteq \mathbb{A}^n, \mathbb{A}^l$. $\varphi : V \to W$ morphisme est continu pour la topologie de zariski induite sur V et W.

 $D\acute{e}monstration$. Exercice

Exercice. Soit $f: X \to Y$ un morphisme dans **Top**, si X est irréductible, alors $\overline{f(X)}$ irréductible.

Ex 1.1.11. $(k = \bar{k})$ $f: \mathbb{A}^1 \to V := \{(x,y) \mid y^2 = x^3\}$ est surjectif, donc V est irréductible.

Ex 1.1.12. $V = \{(x,y) \mid xy = 1\} \subseteq \mathbb{A}^2$. Notons $f: V \to \mathbb{A}^1$ la projection sur la première coordonnée, alors $f(V) = \mathbb{A}^1 \setminus \{0\}$ n'est pas fermé (si $|k| = \infty$) et donc ne peut pas être un ensemble algébrique.

Exercice. $E \subseteq \mathbb{A}_k^n$ ensemble quelconque, alors $\bar{E} = V(I(E))$.

Définition 1.1.10. (Variété affine) Une variété affine est un ensemble algébrique affine irréductible.

Ainsi si V est une variété affine, alors $k[V] = k[x_1, \dots, x_n]/I(V)$ est intègre (vu que I(V) est un idéal premier).

Définition 1.1.11. $k(V) := \operatorname{Frac} k[V]$ est le corps de fonctions rationnelles sur V.

$$k(V) = \left\{ \frac{P}{Q} \mid P, Q \in k[V], \ Q \neq 0 \right\}$$

Définition 1.1.12. $(k = \bar{k}) V$ variété affine. $\dim V := \operatorname{trdeg}_k k(V)$ degré de transcendance de k(V) sur k.

Définition 1.1.13. $k \subseteq K$ extension de corps.

- 1. Une partie $S \subseteq K$ est algébriquement indépendante si pour tout $m \geq 1$, tout $s_1, \dots, s_m \in S$, si $P \in k[x_1, \dots, x_m]$ est tel que $P(s_1, \dots, s_m) = 0$, alors P = 0.
- 2. $S \subseteq K$ est une base de transcendance de K (sur k) si S est algébriquement indépendante et $k(S) \subseteq K$ est algébrique.
- 3. On dit que $k \subseteq K$ est purement transcendante si $\exists S$ base de transcendance $k \subseteq k(S) = K$.

Rq 1.1.10. Si |S| = n, alors $k(S) \simeq k(x_1, \dots, x_n)$. Si S_1, S_2 sont deux bases de transcendance de K/k, alors $|S_1| = |S_2|$.

Définition 1.1.14. $\operatorname{trdeg}_k(K) = |S|, S$ base de transcendance de K/k.

Ex 1.1.13. 1. dim $\mathbb{A}^n_k = n : V = \mathbb{A}^n_k$, $k[V] = k[x_1, \dots, x_n]$. $I(V) = \{0\}$. Ainsi $k(V) = k(x_1, \dots, x_n)$. Et $\{x_1, \dots, x_n\}$ est une base de transcendance de k(V), donc dim V = n.

2. $V = \{(x,y) \mid xy = 1\} \subseteq \mathbb{A}^1$. Alors V = V(XY - 1) est irréductible; Ainsi V est une variété affine. k[V] = k[X,Y]/(XY - 1) = k[x,y] où x = [X], y = [Y] (et xy = 1). $k(V) = \operatorname{Frac}(k[x,y]) =: k(x,y)$. Maintenant k(x,y) = k(x) vu que y = 1/x. Maintenant $\{x\}$ est une base de trascendance de k(x): sinon il existe $P \in k[X]$ non nul tel que $P(x) = 0 \in k(x)$, et en particulier dans $k[x] \subseteq k[V]$. Ainsi $P \in I(V)$ donc P(X) = (XY - 1)Q(X,Y) dans k[X,Y] avec $Q \in k[X,Y]$, ce qui est absudre puisque $\deg_V P = 0$. Ainsi $\dim V = 1$

Lemme 1.1.4. $(k = \bar{k})$ Soit $f \in k[X_1, \dots, X_n]$ irréductible. Alors $V := V(f) \subseteq \mathbb{A}^n_k$ est une variété affine de dimension n-1.

 $\begin{array}{l} \textit{D\'{e}monstration.} \ f \ \text{non constant.} \ \text{On peut supposer que} \ \deg_{X_n}(f) > 0. \ \text{Notons} \ k[V] = k[x_1, \cdots, x_n]. \\ \text{Ainsi} \ f(x_1, \cdots, x_n) = 0 \ \text{vu que} \ I(V) = (f). \ \text{Maoitenant} \ k \subseteq k(x_1, \cdots, x_{n-1}) \subseteq k(x_1, \cdots, x_{n-1})(x_n) \\ \text{est alg\'{e}brique} \ \text{car} \ f(x_1, \cdots, x_n) = 0. \ \text{Montrons que} \ \{x_1, \cdots, x_{n-1}\} \ \text{sont alg\'{e}brique} \\ \text{minimized pendants} \ \text{sur} \ k : \text{si} \ g \in k[X_1, \cdots, X_{n-1}] \ \text{tel que} \ g(x_1, \cdots, x_{n-1}) = 0 \ \text{dans} \ k(V) \ \text{(doncommons)} \\ \text{dans} \ k[V]). \ \text{Alors} \ g(X_1, \cdots, X_{n-1}) \in I(V) = (f) \ \text{mais} \ \text{deg}_{X_n} = 0, \ \text{absurde.} \end{array}$