Complex Networks

Shoichi Yip

M2 PCS

3 April 2024

Random graphs

The configuration model

Our ensemble

In our particular case, we define a random graph ensemble ${\cal G}$ such that:

- the graph has N nodes;
- the graph is generated using the configuration model;
- the graph doesn't contain self-edges and multiple edges;
- we define a parameter π and the the graph is such that the fraction of the nodes $p_1=1-\pi$ has degree 1, and the remaining fraction $p_4=\pi$ has degree 4.

Examples of random graphs

Figure: Instance of a random graph for $\pi=0.1$

Examples of random graphs

Figure: Instance of a random graph for $\pi=0.3$

Examples of random graphs

Figure: Instance of a random graph for $\pi=0.7$

The size of the giant component

Figure: Comparison between theoretical value and measures from random instances of the size of the giant component

The size of the 3-core

Figure: Comparison between theoretical value and measures from random instances of the size of the 3-core