Programare logică

Sintaxa logicii ecuaționale Teorema de completitudine

(S,Σ) signatură, Xşi Y mulţimi de variabile

$$t$$
, t_i , $t_i' \in T_{\Sigma}(X)$ or. i E mulţime de ecuaţii

Regulile deducției ecuaționale (Birkhoff)

Reflexivitate	$\overline{(\forall X)t \doteq_s t}$	
Simetrie	$\frac{(\forall X)t_1 \doteq_s t_2}{(\forall X)t_2 \doteq_s t_1}$	
Tranzitivitate	$\frac{(\forall X)t_1 \doteq_s t_2, \ (\forall X)t_2 \doteq_s t_3}{(\forall X)t_1 \doteq_s t_3}$	
${\sf Compatibilitate}_\Sigma$	$\frac{(\forall X)t_1 \doteq_{s_1} t'_1, \dots, (\forall X)t_n \doteq_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) \doteq_{s} \sigma(t'_1, \dots, t'_n)}$	$\sigma: s_1 \cdots s_n \to s$
Substituţie $_E$		$ heta:X o T_\Sigma(Y),$

 $(\forall Y)\theta(t_1) \doteq_s \theta(t_2)$

 $(\forall X)t_1 \stackrel{\cdot}{=}_s t_2 \in E$

Exemplu

$$E = \{x + 0 \stackrel{.}{=} x, x + succ(y) \stackrel{.}{=} succ(x + y)\}$$

$$E \vdash 0 + succ(0) \stackrel{.}{=} succ(0)$$

$$\frac{x + succ(y) \stackrel{.}{=} succ(x + y)}{0 + succ(0) \stackrel{.}{=} succ(0 + 0)} (Sub\{x, y \leftarrow 0\}) \frac{\frac{x + 0 \stackrel{.}{=} x}{0 + 0 \stackrel{.}{=} 0} Sub\{x \leftarrow 0\}}{succ(0 + 0) \stackrel{.}{=} succ(0)} (C)}{succ(0) \stackrel{.}{=} succ(0)} (T)$$

$$0 + succ(0) \stackrel{.}{=} succ(0)$$

(1)
$$x + succ(y) \stackrel{\cdot}{=} succ(x + y) \in E$$

(2)
$$0 + succ(0) \doteq succ(0+0) (1, Sub\{x, y \leftarrow 0\})$$

(3)
$$x + 0 = x \in E$$

(4)
$$0 + 0 \doteq 0 (3, Sub\{x \leftarrow 0\})$$

(5)
$$succ(0+0) \doteq succ(0) \ (4,C)$$

(6)
$$0 + succ(0) \stackrel{\cdot}{=} succ(0) (2, 5, T)$$

Axiomele sunt ecuaţii condiţionate

Fie Γ o multime de ecuații condiționate.

$$\begin{array}{ll} \text{Substituţie}_{\Gamma} & \frac{(\forall Y)\theta(u_1) \stackrel{.}{=}_{s_1} \theta(v_1), \dots, (\forall Y)\theta(u_n) \stackrel{.}{=}_{s_1} \theta(v_n)}{(\forall Y)\theta(t_1) \stackrel{.}{=}_{s} \theta(t_2)} \end{array}$$

unde
$$(\forall X)t_1 \stackrel{.}{=}_s t_2 \ if \ H \in \Gamma$$
, $H = \{u_1 \stackrel{.}{=}_{s_1} v_1, \dots, u_n \stackrel{.}{=}_{s_n} v_n\} \ \text{si} \ \theta : X \to T_{\Sigma}(Y) \ \text{substituţie}$

■dacă
$$H = \emptyset$$
 atunci Substituţie $_{\Gamma}$ $\overline{(\forall Y)\theta(t_1) \doteq_s \theta(t_2)}$

Axiomele sunt ecuaţii condiţionate

$$NATBOOL = (S, \Sigma), S = \{n, b\}, \Sigma = \{T, F, 0, s, *, *, *\}$$

$$\Gamma = \{\gamma, e_1, e_2\}$$

$$\gamma := \forall \{x, y, z\}x \stackrel{.}{=}_n y \text{ if } \{z * x \stackrel{.}{=}_n z * y, z > 0 \stackrel{.}{=}_b T\}$$

$$e_1 := \forall \{a, c\}s(s(s(0))) * a \stackrel{.}{=}_n s(s(s(0))) * c,$$

$$e_2 := \forall \{a, c\}s(s(s(0))) > 0 \stackrel{.}{=}_b T$$

$$\Gamma \vdash \forall \{a, c\}a \stackrel{.}{=}_n c$$

$$\text{Sub}_{\Gamma} \frac{e_1, e_2}{a \stackrel{.}{=}_s c}$$

$$\gamma \in \Gamma, \theta_n(x) := a, \theta_n(y) := c, \theta_n(z) := s(s(s(0)))$$

Deducţia sintactică

Fie Γ o mulţime de ecuaţii, numite axiome sau ipoteze. Spunem că ecuaţia $e := (\forall X)t \doteq_s t'$ se deduce sintactic din Γ dacă există o secvenţă de ecuaţii e_1, \ldots, e_n a. î.

- $lacksquare e_n = e \ \S i$
- ■pentru orice $i \in \{1, \dots, n\}$
 - $e_i \in \Gamma$ sau
 - \mathbf{e}_i se obţine din ecuaţiile e_1, \ldots, e_{i-1} aplicând una din regulile R, S, T, C_{Σ} , Sub $_{\Gamma}$.

În acest caz scriem $\Gamma \vdash e$ şi spunem că e este deductibilă (sintactic), demonstrabilă, derivabilă din Γ . Secvenţa $e_1, \ldots, e_n = e$ este o demonstraţie pentru e din ipotezele Γ .

Corectitudinea regulilor de deducție

 Γ multime de ecuații condiționate

O regula de deductie $\left| \begin{array}{c} e_1, \dots, e_n \\ e \end{array} \right|$ este corectă dacă

$$\frac{e_1,\ldots,e_n}{e}$$

$$\Gamma \models e_1, \ldots, \Gamma \models e_n \Rightarrow \Gamma \models e$$

Propoziție. Regulile deducției ecuaționale

 $R, S, T, C_{\Sigma}, Sub_{\Gamma}$

sunt corecte.

Corectitudinea deducţiei ecuaţionale

 Γ multime de ecuații condiționate, e ecuație

Teoremă.
$$\Gamma \vdash e \Rightarrow \Gamma \models e$$

Demonstraţie: Fie $e_1, \ldots, e_n = e$ este o demonstraţie pentru e din ipotezele Γ . Demonstrăm prin inducţie după $i = 1, \ldots, n$ că $\Gamma \models e_i$. Observăm că $e_1 \in \Gamma$ sau $e_1 = (\forall X)t \doteq_s t$, deci $\Gamma \models e_1$.

Presupunem că $\Gamma \models e_1, ..., \Gamma \models e_{i-1}$. Atunci $\Gamma \models e_i$, deoarece e_i se obţine din ecuaţiile $e_1, ..., e_{i-1}$ aplicând una din regulile R, S, T, C_{Σ} , Sub $_{\Gamma}$, iar regulile de deducţie sunt corecte.

Γ -algebre

 (S, Σ, Γ) specificaţie, A algebră şi \equiv o congruenţă pe A

Spunem că = satisface proprietatea $CS(\Gamma, A)$ dacă $CS(\Gamma, A)$

or.
$$(\forall Y)t \doteq_s t' \ if \ H \in \Gamma$$
, or. $h: T_{\Sigma}(Y) \to A$ morfism $h_{s'}(u) \equiv_{s'} h_{s'}(v)$ or. $u \doteq_{s'} v \in H \Rightarrow h_s(t) \equiv_s h_s(t')$.

(≡ este închisă la substituţie)

■Teoremă. Dacă A este o algebră şi = este o congruență pe A care satisface $CS(\Gamma,A)$ atunci $A/_{\equiv} \models \Gamma$.

Completitudinea deducţiei ecuaţionale

 Γ mulţime de ecuaţii condiţionate, $e = (\forall X)t_1 \doteq_s t_2$ ecuaţie

Teoremă. $\Gamma \models e \Rightarrow \Gamma \vdash e$

Demonstraţie: Pe $T_{\Sigma}(X)$ definim următoarea relaţie S-sortată $t\sim_{\Gamma_s} t' \Leftrightarrow \Gamma \vdash (\forall X)t \doteq_s t'$ oricare $s \in S$.

Regulile de deducţie R, S, T, C_{Σ} , $\operatorname{Sub}_{\Gamma}$ asigură faptul că \sim_{Γ} este o congruenţă care verifică condiţia $\operatorname{CS}(\Gamma,T_{\Sigma}(X))$. În consecinţă, $T_{\Sigma}(X)/_{\sim_{\Gamma}}$ este o Γ -algebră. Deoarece $\Gamma \models e$, deducem că $T_{\Sigma}(X)/_{\sim_{\Gamma}} \models e$. Fie $p:T_{\Sigma}(X) \to T_{\Sigma}(X)/_{\sim_{\Gamma}}$ surjecţia canonică, p(t):=[t] oricare $t\in T_{\Sigma}(X)$, unde [t] este clasa de echivalenţă a lui t determinată de \sim_{Γ} . Ştim că $T_{\Sigma}(X)/_{\sim_{\Gamma}} \models e=(\forall X)t_1 \doteq_s t_2$, deci $p_s(t_1)=p_s(t_2)$, i.e. $[t_1]=[t_2]$. Obţinem $t_1\sim_{\Gamma_s}t_2$, deci $\Gamma \vdash (\forall X)t_1 \doteq_s t_2$.

Teorema de completitudine

 (S,Σ) signatura, X mulţime de variabile, $t,t'\in T_{\Sigma}(X)_s$

- $t \sim_{\Gamma} t' \Leftrightarrow \Gamma \vdash (\forall X)t \doteq_{s} t'$ (echiv. sintactică)
- $\blacksquare t \equiv_{\Gamma} t' \Leftrightarrow \Gamma \models (\forall X)t \doteq_{s} t' \text{ (echiv. semantică)}$
- ■Corectitudinea regulilor de deducţie: $\sim_{\Gamma} \subseteq \equiv_{\Gamma}$
- ■Completitudinea regulilor de deducţie: $\equiv_{\Gamma} \subseteq \sim_{\Gamma}$

Teorema de completitudine. $\equiv_{\Gamma} = \sim_{\Gamma}$

$$\Gamma \models (\forall X)t \doteq_s t' \Leftrightarrow \Gamma \vdash (\forall X)t \doteq_s t'$$

Reguli de deducție

 (S,Σ) signatură, Γ mulţime de ecuaţii X, Y mulţimi disjuncte de variabile

Abstractizarea
$$\frac{(\forall X)t_1 \stackrel{.}{=}_s t_2}{(\forall X \cup Y)t_1 \stackrel{.}{=}_s t_2}$$

Abstractizarea şi Concretizarea sunt reguli de deducţie corecte.