Corona
Performance of
High-Voltage
Transmission Lines

TABLE OF CONTENTS

		Page	
	PREFACE	xiii	
	ACKNOWLEDGEMENT	xvii	
	PART 1. BASIC CONCEPTS		
1.	•	3	
	1.1 Electric Power Systems	3	
	1.2 High-Voltage AC Transmission Lines	4	
	1.2.1 History of Development	4	
	1.2.2 Power Transfer Capability	. 5	
	1.2.3 Line Configurations	7	
	1.3 High-Voltage DC Transmission Lines	9	
	1.3.1 History of Development	9	
	1.3.2 Technical and Economic Considerations 1.3.3 Line Configurations	9	
	1.3.3 Line Configurations	10	
	1.4 Electromagnetic Modeling of Transmission Lines	12	
	1.4.1 Idealized Line Configuration	12	
	1.4.2 Modeling Based on Field Theory	13	
	1.4.3 Modeling Based on Circuit Theory	17	
	1.5 Electrical Design Considerations	18	
	1.6 Influence of Weather Conditions and		
	Statistical Description of Corona Effects	19	
	REFERENCES	22	
2.	Conductor Surface Electric Fields	25	
	2.1 Introduction	25	
	2.1.1 Bundled Conductors	26	
	2.1.2 Definition of Terms	27	
	2.2 Calculation of Conductor Surface Electric Fields	28	
	2.2.1 Isolated Conductor	29	
	2.2.2 Single Conductor Above Ground	30	
	2.3 Transmission Lines With Single Conductors	31	
	2.4 Isolated Conductor Bundle	34	
	2.4.1 Equivalent Radius of the Bundle	39	
	2.4.2 Application to Practical Lines	40	
	2.5 Accurate Methods	41	

	2.5.1	Method of Successive Images	41
	2.5.2	Method of Moments	46
	2.5.3	Charge Simulation Method	51
	REFEREN	ICES	. 51
3.		nd Gap Discharges	55
	3.1 Basic 1	Ionization Processes	55
	3.1.1	2011-000 Marie Marie	56
	3.1.2		58
	3.1.3	Recombination	59
	3.1.4	Electron Emission from Conductor Surfaces	60
	3.1.5	Diffusion and Drift of Charged Particles	60
	3.1.6	Basic Discharge Parameters for Air	61
		arge Phenomena	64
	3.3 Coron	a Discharges on Cylindrical Conductors in Air	67
	3.3.1	Negative DC Corona Modes	67
		Trichel Streamer Discharge	69
		Negative Pulseless Glow Discharge	70
		Negative Streamer Discharge	70
	3.3.2	Positive DC Corona Modes	71
		Burst Corona	72
		Onset Streamer Discharge	73
		Positive Glow Discharge	73
		Breakdown Streamer Discharge	74
	3.3.3 AC Corona Modes		75
	3.4 Coron	a Discharge Currents	77
	3.4.1	Shockley-Ramo Theorem	77
	3.4.2		
		Configuration	79
		a Onset Gradients	82
	3.6 Gap Discharges		85
	REFERENCES		86
		PART 2. AC TRANSMISSION LINES	
4.	Corona L	oss and Ozone	91
		s of AC Corona Loss	91
	4.2 Theoretical Analysis of Corona Loss4.3 Corona Loss Generation Function4.4 Factors Influencing Corona Loss		96
			99
			101
	4.5 Empirical Methods for Predicting Corona Loss		104
	4.6 Ozone		108
	DEPENDEN		109

5,	Electromagnetic Interference	111
	5.1 Introduction	111
	5.2 Physical Description of Corona-Generated EMI	113
	5.3 Frequency Domain Analysis of Corona Pulses	113
	5.3.1 Fourier Analysis	115
	5.3.2 Power Spectral Density	118
	5.4 RI Excitation Function	120
	5.5 Propagation Analysis	123
	5.5.1 Single Conductor Line	123
	5.5.2 Multi Conductor Line: Simplified Analysis	128
	5.5.3 Transmission Line with Ground Wires	134
	5.5.4 Modal Attenuation Constants	135
	5.5.5 Multi Conductor Line: More Accurate Methods	137
	5.6 Factors Influencing RI Characteristics of Transmission Lines	144
	5.7 Empirical and Semi-Empirical Methods for Evaluating RI	147
	5.7.1 Empirical Methods	147
	5.7.2 Semi-Empirical Methods	151
	5.8 Prediction of Corona-Generated TVI	154
	Appendix 5A Vectors and Matrix Operators	155
	REFERENCES	159
6.	Audible Noise	
	6.1 Introduction	163
	6.2 Physical Description of Corona-generated AN	164
	6.3 Theoretical Analysis of AN Propagation	165
	6.4 AN Characteristics of Transmission Lines	170
	6.5 Prediction of AN from Transmission Lines	172
	REFERENCES	174
	PART 3. DC TRANSMISSION LINES	
7.	Space Charge Environment and Corona Losses	179
	7.1 Unipolar DC Transmission Lines	179
	7.1.1 Physical Description of Unipolar Corona	179
	7.1.2 Defining Equations of Unipolar Corona	181
	7.1.3 Analysis for Simple Configurations	183
	7.1.4 Simplified Analysis for a Conductor-Plane Configuration	187
	7.1.5 Analysis for General Unipolar Transmission	
	Line Configurations	188
	7.2 Bipolar DC Transmission Lines	192
	7.2.1 Physical Description of Bipolar Corona	192
	7.2.2 Defining Equations of Bipolar Corona	193
	7.2.3 Simplified Analysis	195
	7.2.4 Analysis for General Bipolar Transmission	
	Line Configurations	196

	7.3 Improved Methods of Analysis	199
	7.3.1 Comparison with Experiment	200
	7.3.2 Limitations of Improved Methods	202
	7.4 Factors Influencing Space Charge Fields and Corona Losses	204
	7.5 Empirical Methods	206
	Appendix 7A Some Computational Aspects of Unipolar	
	and Bipolar Space Charge Fields	209
	7A.1 Tracing the Flux Lines of Space-Charge-Free Fields	209
	7A.2 Numerical Solution of Nonlinear Two-Point	
	Boundary Value Problems	211
	REFERENCES	213
8.	Radio Interference and Audible Noise	217
	8.1 Introduction	217
	8.2 Analysis and Characteristics of RI	218
	8.2.1 Unipolar Line	219
	8.2.2 Bipolar Line	219
	8.2.3 RI Characteristics	222
	8.3 Analysis and Characteristics of AN	224
	8.4 Empirical Methods for RI and AN	225
	8.4.1 Radio Interference	226
	8.4.2 Audible Noise	227
	8.5 Hybrid AC/DC Transmission Lines	228
	8.5.1 Electric Field and Space Charge Environment	229
	8.5.2 Evaluation of Corona Performance	230
	REFERENCES	233
	PART 4. TESTING AND DESIGN CONSIDERATIONS	
9.	Measurement Methods and Test Techniques for Corona	
	Performance Evaluation	237
	9.1 Introduction	237
	9.2 Corona Test Methods	238
	9.2.1 Laboratory Cages	238
	9.2.2 Outdoor Test Cages	240
	9.2.3 Outdoor Test Lines	242
	9.2.4 Operating Lines	244
	9.3 Determination of Corona Onset Gradient	245
	9.3.1 Tests on Conductors	245
	9.3.2 Tests on Hardware	246
	9.4 Measurement of Corona Losses	247
	9.4.1 AC Corona Losses	248
	9.4.2 DC Corona Losses	251
	9.5 Measurement and Interpretation of RI and AN on Short Lines	252
	9.5.1 RI from Short Single-Conductor Lines	252
	9.5.2 RI from Short Multi-Conductor Lines	261

		9.5.3	AN from Short Lines	263
	9.6	Instru	nentation and Measurement Methods for RI	264
		9.6.1	Instrumentation	264
			Meter Response to Periodic Pulses	266
			Meter Response to Random Pulse Trains	267
		9.6.2	Measurement Methods	270
	9.7	Instru	mentation and Measurement Methods for AN	271
		9.7.1	Instrumentation	271
		9.7.2	Measurement Methods	273
	9.8 Measurement of Parameters Defining DC Electric Field			
			pace Charge Environment	274
		9.8.1	. -	274
			Ground Level Field-Mill	275
			Above Ground Field-Mill	277
		9.8.2	Ion Current Density	279
			Unipolar Charge Density	280
		9.8.4	Other Parameters	281
		9.8.5	Measurement Methods	282
	RE	FEREN	ICES	283
10.	Des	sign Co	onsiderations	289
			troduction	289
	10.	2 In	fluence of Corona Losses on Line Design	290
	10.		esign Criteria for RI	292
	10.		esign Criteria for AN	295
	10.		esign Criteria for DC Electric Fields and Ion Currents	298
	10.		onsideration of Corona Effects in the	
			verall Transmission Line Design	300
	RE	FERE		304
TN	ne s	,		307