

SISTEMA EN TIEMPO REAL DE PREVENCION Y MITIGACION DE INCENDIOS

Estudiantes:

Rúa Echalar Juan Manuel Ing. Ciencias de la Computación.

Docente: Carlos Walter Pacheco Lora

Materia: Inteligencia Artificial II

Semestre: 02/2024

1. Introducción

El objetivo de un modelo TTS es convertir texto en audio utilizando varias etapas que transforman la entrada textual en ondas sonoras reproducibles. A continuación, se describe cada componente y proceso involucrado.

2. Representación del Mel-Espectrograma

Un mel-espectrograma es una representación visual que captura la información acústica del audio. Sus componentes principales son:

1. Eje Horizontal (Tiempo [s]):

o Representa la evolución temporal del audio. Ejemplo: un gráfico de 3.5 segundos.

2. Eje Vertical (Frecuencia [Hz]):

- Representa las frecuencias en escala mel (logarítmica), que imita la percepción humana del sonido.
- o Rango típico: 512 Hz a 32,768 Hz.

3. Colores (Intensidad en dB):

- Indican la energía o amplitud de las frecuencias:
 - Rojo/Amarillo: Mayor intensidad (sonidos fuertes).
 - Verde/Azul: Intensidad media/baja.
 - Azul oscuro: Baja o nula energía (silencio relativo).

3. Flujo de Información del Modelo TTS

3.1 Preprocesamiento

1. Entrada: Texto.

2. Tokenización fonética:

- o El texto se convierte en una secuencia de fonemas (las unidades mínimas de sonido).
- Ejemplo:
 - Entrada: "Hello, how are you?"
 - Fonemas: [h, ə, l, oʊ, h, aʊ, ɹ, j, uː].

3.2 Embeddings

1. Cada fonema se transforma en un vector en un espacio n-dimensional.

- 2. Los vectores reflejan similitudes fonéticas: fonemas similares tienen representaciones cercanas.
 - o Ejemplo:
 - $h \rightarrow [0.2, 0.5, ...]$
 - $\mathbf{a} \rightarrow [0.3, 0.7, ...]$.

3.3 Codificación Posicional

- Como el modelo no es autoregresivo, carece de información del orden de los fonemas.
- Se suma una codificación posicional a los embeddings para incluir esta información.

Resultado: Representaciones enriquecidas que integran las características del fonema y su posición en la secuencia.

3.4 Procesamiento con Bloques FFT (Feed-Forward Transformer)

- 1. Primer conjunto de bloques FFT:
 - o **Objetivo:** Modelar relaciones contextuales entre los fonemas.
 - Componentes:
 - Atención Multi-Cabezal:
 - Identifica relaciones globales entre los fonemas.
 - Convoluciones 1D:
 - Capturan relaciones locales (patrones entre fonemas cercanos).
 - Conexiones Residuales y Normalización:
 - Evitan pérdida de información y estabilizan el aprendizaje.

Resultado: Representaciones intermedias enriquecidas.

3.5 Regulador de Longitud

- **Función:** Ajusta la longitud de la secuencia de fonemas para coincidir con la duración del melespectrograma.
- Componentes:
 - Predictor de Duración: Predice cuántos frames de audio corresponden a cada fonema.
 - Durante el entrenamiento, las duraciones se extraen de un modelo TTS autoregresivo.
 - o **Expansión Temporal:** Repite cada fonema según la duración predicha.

• Velocidad ajustable: Controlada por un factor $\alpha \alpha (e.g., \alpha=1.0 \alpha=1.0$

3.6 Segundo Conjunto de Bloques FFT

• **Propósito:** Convertir la secuencia expandida en una representación más cercana al melespectrograma.

3.7 Generación del Mel-Espectrograma

- 1. Capa Lineal: Transforma las representaciones de los bloques FFT en un mel-espectrograma.
- 2. Salida: Una representación que describe las características acústicas del audio.

3.8 Conversión del Mel-Espectrograma a Audio

- Un **vocoder** convierte el mel-espectrograma en ondas sonoras reproducibles.
- Ejemplos de vocoders:
 - o Autoregresivos: WaveNet.
 - No autoregresivos: WaveGlow, HiFi-GAN.

4. Tipos de Modelos TTS

4.1 Modelos Autoregresivos (AR)

- Flujo: Cada frame del espectrograma depende de los anteriores.
- **Ejemplo:** Tacotron.
- Ventajas:
 - o Alta calidad y naturalidad.
 - o Manejan bien dependencias de largo alcance.

Desventajas:

- Lentitud debido a la generación secuencial.
- Errores acumulativos.

4.2 Modelos No Autoregresivos (NAR)

- Flujo: Los frames se generan en paralelo.
- **Ejemplo:** FastSpeech.
- Ventajas:
 - o Mayor velocidad, ideal para tiempo real.

o Estabilidad (menos errores acumulativos).

• Desventajas:

o Menor precisión en prosodia y dependencias temporales.

4.3 Modelos Híbridos

- Combinan aspectos de ambos enfoques.
- **Ejemplos:** FastSpeech 2, ParaNet.

• Ventajas:

- o Compromiso entre calidad y velocidad.
- o Mejor control sobre prosodia.

• Desventajas:

o Más complejos de implementar.

5. Relación con los Vocoders

- Autoregresivos: Alta calidad pero más lentos (e.g., WaveNet).
- No autoregresivos: Más rápidos, ideales para tiempo real (e.g., HiFi-GAN).

6. Resumen del Flujo de un Modelo TTS No Autoregresivo

- 1. **Entrada:** Texto → Fonemas → Embeddings → Codificación Posicional.
- 2. **Procesamiento:** Bloques FFT iniciales \rightarrow Regulador de Longitud \rightarrow Bloques FFT finales.
- 3. **Generación:** Mel-espectrograma → Vocoder → Audio.

7. Conclusiones y recomendaciones

- El fine tuning del modelo tiene carencias en la calidad de audio, se recomienda mejorar el modelo entrenando con más datos.
- En general, se cumplió con los objetivos que eran probar y entrenar un modelo de texto a voz