

$$\Delta y_1 = \Delta y_1' + \Delta y_1''$$

$$\Delta y_1' = \kappa E_1 l_1^{2}, \kappa = \frac{e}{m} (c \beta)^{-2} > 0$$

$$\Delta y_1'' = v_1 \Delta t_1 = 2 \kappa E_1 l_1 (c \beta)^{-1} \Delta z_1' = \kappa' E_1 l_1 \Delta z_1', \kappa' > 0$$

$$\Delta y_1 = E_1 l_l (\kappa l_1 + \kappa' \Delta z_1') = E_1 l_1 \alpha_{1,\alpha_1} > 0$$

$$\Delta Y_{\Sigma} = \sum_i \Delta y_i = \sum_i E_i l_i \alpha_i = \langle E \rangle_l \sum_i E_i l_i \alpha_i'$$

Proposition: $\Delta Y_{\Sigma} = 0 \rightarrow \langle E \rangle_{l} = 0$

Equivalent: $\langle E \rangle_l \neq 0 \rightarrow \Delta Y_{\Sigma} \neq 0$

Proof: $l_i, \Delta z_i', \kappa, \kappa' > 0 \rightarrow \alpha_i > 0$

Let
$$\langle E \rangle_l = \frac{1}{l_{\Sigma}} \sum_i E_i l_i > 0$$
, $\exists E_i < 0$;

 $\alpha'_{i} = h(l_{i}, \Delta z_{i}')$, hence by adjusting

 l_i , Δz_i , it is possible to make $\sum_l E_i l_i \alpha_i = 0$, even when $\langle E \rangle_l \neq 0$.