MAT 115B Number Theory

Winter 2025

January 24, 2025

Lecture 8

Lecturer: Elena Fuchs

Scribe: Avery Li

Lecture 7 Recap

Theorem 8.1. Let p be an odd prime, then $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$, 2 is a quadratic residue mod p iff $p \equiv 1, 7 \pmod{8}$, and is not when $p \equiv 3, 5 \pmod{8}$.

Lecture 8

Example 8.2. p = 17, $(\frac{2}{17}) = 1$ because $17 \equiv 1 \pmod{8}$, $6^2 \equiv 2 \pmod{1}7$.

Proof of Theorem 8.1. We count the values of $2k > \frac{p}{2}$ iff $k > \frac{p}{4}$. There are $n = \frac{p-1}{2} - \lfloor \frac{p}{4} \rfloor$ total k. Then, Gauss's lemma gives us that $\left(\frac{2}{p}\right) = (-1)^n = (-1)^{\frac{p-1}{2} - \lfloor \frac{p}{4} \rfloor}$. Now, we want to show that $n = \frac{p-1}{2} - \lfloor \frac{p}{4} \rfloor = \frac{p^2-1}{8} \pmod{2}$. We know that p can be $1, 3, 5, 7 \pmod{8}$. We will consider 5, the other cases can be shown similarly. Suppose p = 8k + 5 for some $k \in \mathbb{Z}$. Then we have

$$LHS = \frac{8k+5-1}{2} - \lfloor \frac{8k+5}{4} \rfloor$$

$$= 4k+2-\lfloor 2k+\frac{5}{4} \rfloor$$

$$= 4k+2-2k-1$$

$$\equiv 1 \pmod{2}$$

$$RHS = \frac{(8k+5)^2-1}{8}$$

$$= \frac{64k^2+80k+25-1}{8}$$

$$= 8k^2+10k+3$$

$$\equiv 1 \pmod{2}$$

$$\implies LHS \equiv RHS \pmod{2}.$$

Quadratic Reciprocity

Theorem 8.3 (Quadratic Reciprocity). Let p, q be distinct odd primes, then $\binom{p}{q} \cdot \binom{q}{p} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

$$= \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}$$

Equivalently, $\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)$, i.e.

$$\left(\frac{q}{p}\right) = \begin{cases} \left(\frac{p}{q}\right) & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -\left(\frac{p}{q}\right) & \text{otherwise.} \end{cases}$$

How is this theorem useful?

Example 8.4. We can now switch large "denominators" to the numerator, and vice versa. $\left(\frac{3}{101}\right) = \left(\frac{101}{3}\right) = \left(\frac{2}{3}\right)$ because $101 \equiv 1 \pmod{4}$ and $101 \equiv 2 \pmod{3}$.

Example 8.5. When is $\left(\frac{5}{p}\right) = 1$? We have that $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)$ by the theorem. $\left(\frac{p}{5}\right) = 1$ iff $p \equiv 1, 4 \pmod{5}$ by observation, therefore, $\left(\frac{5}{p}\right) = 1$ iff $p \equiv 1, 4 \pmod{5}$.

Example 8.6. When is $\left(\frac{3}{p}\right) = 1$ and $\left(\frac{3}{p}\right) = -1$? We have that p = 2 works. if p is odd, $p \neq 3$. Then, $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)$ iff $p \equiv 1 \pmod{4}$. We have that $\left(\frac{3}{p}\right) = 1$ iff $p \equiv 1 \pmod{3}$, so $\left(\frac{3}{p}\right) = 1$ iff $p \equiv 1 \pmod{12}$ by Chinese remainder theorem. This can be computed similarly for $\left(\frac{3}{p}\right) = -1$ to get $p \equiv 11 \pmod{12}$.

Remark 8.7. Note that 8.3 does not work for p = 2.

Example 8.8. Compute $\left(\frac{-57}{103}\right)$.

$$\begin{pmatrix} \frac{-57}{103} \end{pmatrix} = \begin{pmatrix} \frac{-1}{103} \end{pmatrix} \begin{pmatrix} \frac{3}{103} \end{pmatrix} \begin{pmatrix} \frac{19}{103} \end{pmatrix}
= -1 \cdot - \begin{pmatrix} \frac{103}{3} \end{pmatrix} \cdot - \begin{pmatrix} \frac{103}{19} \end{pmatrix}$$

$$= -1 \cdot \begin{pmatrix} \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} \frac{8}{19} \end{pmatrix}$$
By LOGIC (using mod)
$$= -1 \cdot 1 \cdot \begin{pmatrix} \frac{2}{19} \end{pmatrix}^3$$
Properties of legendre symbol
$$= -1 \cdot \begin{pmatrix} \frac{2}{19} \end{pmatrix}^3$$

$$= -1 \cdot -1$$

$$= 1.$$
8.1