

# **How to Solve a Linear System**

#### Goran Flegar

Hartwig Anzt, Yen-Chen Chen, Terry Cojean, Jack Dongarra, Nick Higham, Pratik Nayak, Enrique S. Quintana-Ortí, Mike Tsai



- Real-world problem transformed into a linear system via:
  - PDE discretizations, graph representations
  - Large number of unknowns (1M+, full matrix 8TB)
  - Most matrix elements are zero



- Real-world problem transformed into a linear system via:
  - PDE discretizations, graph representations
  - Large number of unknowns (1M+, full matrix 8TB)
  - Most matrix elements are zero
- Possible approach: iterative methods
  - Krylov-subspace based linear solvers
    - SpMV
    - BLAS-1 operations
  - Sparse matrix formats & SpMV
    - accelerate each iteration of the solver
  - Preconditioners
    - reduce the number of iterations



- Real-world problem transformed into a linear system via:
  - PDE discretizations, graph representations
  - Large number of unknowns (1M+, full matrix 8TB)
  - Most matrix elements are zero
- Possible approach: iterative methods
  - Krylov-subspace based linear solvers
    - SpMV
    - BLAS-1 operations
  - Sparse matrix formats & SpMV
    - accelerate each iteration of the solver
  - Preconditioners
    - reduce the number of iterations
  - Special hardware (e.g. GPUs)
  - Probably not a good idea to implement everything from scratch...



- Real-world problem transformed into a linear system via:
  - PDE discretizations, graph representations
  - Large number of unknowns (1M+, full matrix 8TB)
  - Most matrix elements are zero
- Possible approach: iterative methods
  - Krylov-subspace based linear solvers
    - SpMV
    - BLAS-1 operations
  - Sparse matrix formats & SpMV
    - accelerate each iteration of the solver
  - Preconditioners
    - reduce the number of iterations
  - Special hardware (e.g. GPUs)
  - Probably not a good idea to implement everything from scratch...
  - Use a library instead:







- Real-world problem transformed into a linear system via:
  - PDE discretizations, graph representations
  - Large number of unknowns (1M+, full matrix 8TB)
  - Most matrix elements are zero
- Possible approach: iterative methods
  - Krylov-subspace based linear solvers
    - SpMV
    - BLAS-1 operations
  - Sparse matrix formats & SpMV
    - accelerate each iteration of the solver
  - Preconditioners
    - reduce the number of iterations
  - Special hardware (e.g. GPUs)
  - Probably not a good idea to implement everything from scratch...
  - Use a library instead:





## The Ginkgo library

- Linear operator algebra library:
  - Matrix formats, preconditioners, (Krylov) solvers

Joint effort: Innovative Computing Lab at University of Tennessee, Knoxvile; Karlsruhe Institute of Technology; University Jaume I









## The Ginkgo library

- Linear operator algebra library:
  - Matrix formats, preconditioners, (Krylov) solvers
- Goals:
  - Backends for various devices (executors)
  - Easy composability even when using building blocks from a different category (e.g. using a matrix or a solver as a preconditioner)
  - Easy extensibility
  - Support for matrix-free methods

Joint effort: Innovative Computing Lab at University of Tennessee, Knoxvile; Karlsruhe Institute of Technology; University Jaume I







Matrix-vector product

$$x = Ab$$

Matrix-vector product

Preconditioner

$$x = Ab$$

$$x = M^{-1}b$$

$$M \approx A$$

Matrix-vector product

Preconditioner

$$x = Ab$$

$$x = M^{-1}b$$

$$M \approx A$$
$$M^{-1} = \Pi(A)$$

Matrix-vector product

Preconditioner

Solver

Ax = b

$$x = Ab$$

$$x = M^{-1}b$$

$$M \approx A$$
$$M^{-1} = \Pi(A)$$

Matrix-vector product

Preconditioner

Solver

$$x = Ab$$

$$x = M^{-1}b$$

$$Ax = b$$
$$x = Sb$$

$$M \approx A$$
$$M^{-1} = \Pi(A)$$

$$S = A^{-1}$$

Matrix-vector product

Preconditioner

Solver

$$x = Ab$$

$$x = M^{-1}b$$

$$Ax = b$$
$$x = Sb$$

$$M \approx A$$
$$M^{-1} = \Pi(A)$$

$$S = A^{-1}$$
$$S = \Sigma(A)$$

Matrix-vector product

Preconditioner

Solver

$$x = Ab$$

$$x = M^{-1}b$$

$$Ax = b$$

$$x = Sb$$

$$M \approx A$$
$$M^{-1} = \Pi(A)$$

$$S = A^{-1}$$
$$S = \Sigma(A)$$

All of them can be expressed as:

applications of linear operators\* (LinOp)

$$L: \mathbb{F}^m \to \mathbb{F}^n$$

\* can be realized as a (non-linear) approximation



Matrix-vector product

Preconditioner

Solver

$$(x = Ab)$$

$$\boxed{x = M^{-1}b}$$

$$Ax = b$$

$$x = Sb$$

$$M \approx A$$

$$M^{-1} = \Pi(A)$$

$$S = A^{-1}$$
$$S = \Sigma(A)$$

#### All of them can be expressed as:

- applications of linear operators\* (LinOp)
- (non-linear) transformations applied to linear operators (Factory)

$$L: \mathbb{F}^m \to \mathbb{F}^n$$

$$\Phi: \mathbb{L}^{mn}(\mathbb{F}) \to \mathbb{L}^{kl}(\mathbb{F})$$

\* can be realized as a (non-linear) approximation

 Solving a symmetric positive definite linear system using the conjugate gradient (CG) solver, preconditioned with a block-Jacobi (BJ) preconditioner, with a system matrix stored in CSR format



- Solving a symmetric positive definite linear system using the conjugate gradient (CG) solver, preconditioned with a block-Jacobi (BJ) preconditioner, with a system matrix stored in CSR format
- 1. Read the system matrix operator, right hand side and initial guess from file, standard input, or use existing data from the application

- Solving a symmetric positive definite linear system using the conjugate gradient (CG) solver, preconditioned with a block-Jacobi (BJ) preconditioner, with a system matrix stored in CSR format
  - 1. Read the system matrix operator, right hand side and initial guess from file, standard input, or use existing data from the application
  - 2. Build the block-Jacobi preconditioner factory (no computation, binding parameters)

A<sub>CSR</sub> b<sub>D</sub> x<sub>D</sub>

BJ

- Solving a symmetric positive definite linear system using the conjugate gradient (CG) solver, preconditioned with a block-Jacobi (BJ) preconditioner, with a system matrix stored in CSR format
- 1. Read the system matrix operator, right hand side and initial guess from file, standard input, or use existing data from the application
- 2. Build the block-Jacobi preconditioner factory (no computation, binding parameters)
- 3. Use the preconditioner factory to build the preconditioned conjugate gradient factory (no computation, binding parameters)

A<sub>CSR</sub> b<sub>D</sub> x<sub>D</sub>

BJ

 $CG_{BJ}$ 

- Solving a symmetric positive definite linear system using the conjugate gradient (CG) solver, preconditioned with a block-Jacobi (BJ) preconditioner, with a system matrix stored in CSR format
- 1. Read the system matrix operator, right hand side and initial guess from file, standard input, or use existing data from the application

 $A_{CSR} b_D x_D$ 

2. Build the block-Jacobi preconditioner factory (no computation, binding parameters)

BJ

3. Use the preconditioner factory to build the preconditioned conjugate gradient factory (no computation, binding parameters)

- $CG_{BJ}$
- 4. Generate the solver operator from the system matrix using the solver factory (preprocessing needed for the solver and preconditioner)
- $S_A = CG_{BJ}(A_{CSR})$

- Solving a symmetric positive definite linear system using the conjugate gradient (CG) solver, preconditioned with a block-Jacobi (BJ) preconditioner, with a system matrix stored in CSR format
- 1. Read the system matrix operator, right hand side and initial guess from file, standard input, or use existing data from the application

 $A_{CSR}$   $b_D$   $x_D$ 

2. Build the block-Jacobi preconditioner factory (no computation, binding parameters)

BJ

3. Use the preconditioner factory to build the preconditioned conjugate gradient factory (no computation, binding parameters)

- $CG_{BJ}$
- 4. Generate the solver operator from the system matrix using the solver factory (preprocessing needed for the solver and preconditioner)
- $S_A = CG_{BJ}(A_{CSR})$

5. Solve the system (actual computation)

 $x_D = S_A b_D$ 

#### **Example source code**

```
int main() {
  // Instantiate a CUDA executor
  auto gpu = gko::CudaExecutor::create(0, gko::OmpExecutor::create());
  // Read data
  auto A = gko::read<gko::matrix::Csr<>>(std::cin, gpu);
  auto b = gko::read<gko::matrix::Dense<>>(std::cin, gpu);
  auto x = gko::read<gko::matrix::Dense<>>(std::cin, gpu);
  // Create the solver
  auto solver = gko::solver::Cg<>::build()
    .with preconditioner(
      gko::preconditioner::Jacobi<>::build().with_max_block_size(32).on(gpu))
    .with criteria(
        gko::stop::Iteration::build().with_max_iters(20u).on(gpu),
        qko::stop::ResidualNormReduction<>::build()
          .with_reduction_factor(1e-15).on(gpu))
    .on(gpu);
  // Solve system
  solver->generate(give(A))->apply(lend(b), lend(x));
  // Write result
  write(std::cout, lend(x));
```

#### **Library features**



### **Library features: extensibility**



users can provide new matrices, solvers, preconditioners, stopping criteria, loggers

Without recompiling the library!



- Real-world problem transformed into a linear system via:
  - PDE discretizations, graph representations
  - Large number of unknowns (1M+, full matrix 8TB)
  - Most matrix elements are zero
- Possible approach: iterative methods
  - Krylov-subspace based linear solvers
    - SpMV
    - BLAS-1 operations
  - Sparse matrix formats & SpMV
    - accelerate each iteration of the solver
  - Preconditioners
    - reduce the number of iterations
  - Special hardware (e.g. GPUs)
  - Probably not a good idea to implement everything from scratch...
  - Use a library instead:





$$Ax = b, \ A \in \mathbb{R}^{n \times n}$$



$$Ax = b, A \in \mathbb{R}^{n \times n}$$
 
$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$Ax = b, A \in \mathbb{R}^{n \times n}$$
 
$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$
  $M^{-1}$  easy to compute

$$Ax = b, \ A \in \mathbb{R}^{n \times n}$$



$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M \approx A$$
  $M^{-1}$  easy to compute



Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$



$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute



$$y := (M^{-1}A)x$$

Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$



$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$





Do not compute the preconditioned system matrix explicitly!

$$y := (M^{-1}A)x$$

$$z := Ax$$

$$y := M^{-1}z$$

**Preconditioner application** 

$$Ax = b, A \in \mathbb{R}^{n \times n}$$



$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute



 $y := (M^{-1}A)x$ 

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \rightsquigarrow M^{-1}$$

**Preconditioner setup** 

$$z := Ax$$

$$y := M^{-1}z$$

**Preconditioner application** 

$$Ax = b, A \in \mathbb{R}^{n \times n}$$



$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute



 $y := (M^{-1}A)x$ 

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \rightsquigarrow M^{-1}$$

**Generation via factory** 



**Linear operator application** 



## **Example: Block-Jacobi preconditioning**



- Block-Jacobi preconditioning
  - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$

$$M := \operatorname{diag}(D_1, \dots, D_k)$$

Anzt, Dongarra, Flegar, Quintana-Ortí, Variable-size batched Gauss—Jordan elimination for block-Jacobi preconditioning on graphics processors, ParCo

#### **Benefits of block-Jacobi**

- 56 matrices from SuiteSparse with inherent block structure
- MAGMA-sparse open source library
  - IDR solver
  - Supervariable agglomeration
    - Detects block structure of the matrix
- Improves the robustness of the solver



### **Benefits of block-Jacobi**

- 56 matrices from SuiteSparse with inherent block structure
- MAGMA-sparse open source library
  - IDR solver
  - Supervariable agglomeration
    - Detects block structure of the matrix
- Improves the robustness of the solver
- Improves convergence of the solver







## **Complete solver runtime**



Chebyshev3



nd24k



G3\_circuit



bcsstk38



ship\_003





Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$



Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Preconditioner application is memory bounded

- Most of the cost comes from reading the matrix from memory
- Idea: use lower precision to store the matrix

Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Preconditioner application is memory bounded

- Most of the cost comes from reading the matrix from memory
- Idea: use lower precision to store the matrix

Adaptive precision in inversion-based block-Jacobi:

- All computation is done in double precision
- Preconditioner matrix is stored in lower precision, with roundoff error "u"
- Frror bound:

$$\frac{||\delta z_i||}{||z_i||} \lesssim (c_i \kappa(D_i) u_d + u) \kappa(D_i)$$



Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Preconditioner application is memory bounded

- Most of the cost comes from reading the matrix from memory
- Idea: use lower precision to store the matrix

Adaptive precision in inversion-based block-Jacobi:

- All computation is done in double precision
- Preconditioner matrix is stored in lower precision, with roundoff error "u"
- Error bound:

$$\frac{||\delta z_i||}{||z_i||} \lesssim (c_i \kappa(D_i) u_d + u) \kappa(D_i)$$

Assuming the preconditioner block is relatively well conditioned

- The error is determined by the product of u, and the condition number
- Choose the precision for each block independently, such that at least 1 digit of the result is correct



## **Experimental results**

#### Determining the precision:

$$\begin{cases} \text{fp16} & \text{if } 0 < \kappa_1(D_i) \le 10^2, \\ \text{fp32} & \text{if } 10^2 < \kappa_1(D_i) \le 10^6, \text{ and} \\ \text{fp64} & \text{otherwise,} \end{cases}$$

## **Experimental results**

#### Determining the precision:

$$\begin{cases} \text{fp16} & \text{if } 0 < \kappa_1(D_i) \le 10^2, \\ \text{fp32} & \text{if } 10^2 < \kappa_1(D_i) \le 10^6, \text{ and} \\ \text{fp64} & \text{otherwise,} \end{cases}$$

#### % of diagonal blocks stored in each precision \*:



\* Prototype implementation in MATLAB, Results on 63 matrices from SuiteSparse

## **Experimental results**

#### Determining the precision:

$$\begin{cases} \text{fp16} & \text{if } 0 < \kappa_1(D_i) \le 10^2, \\ \text{fp32} & \text{if } 10^2 < \kappa_1(D_i) \le 10^6, \text{ and} \\ \text{fp64} & \text{otherwise,} \end{cases}$$



Usually < 5% iteration increase

% of diagonal blocks stored in each precision \*:



\* Prototype implementation in MATLAB, Results on 63 matrices from SuiteSparse

## **Energy efficiency of adaptive precision block-Jacobi**

Memory access is an order of magnitude more expensive than computation! [Shalf 2013]



## **Energy efficiency of adaptive precision block-Jacobi**

Memory access is an order of magnitude more expensive than computation! [Shalf 2013]

#### Energy model assumptions:

- Accessing 1 bit of data has a cost of 1 (energy unit)
- Disregard energy cost of arithmetic operations
- Total energy cost of each iteration:

vector memory transfers + 
$$\underbrace{(2n + n_z) \cdot \text{fp64} + (n + n_z) \cdot \text{int32}}_{\text{CSR-SpMV memory transfers}} + \underbrace{2n \cdot \text{fp64} + \sum_{i=1}^{N} m_i^2 \cdot \text{fpxx}_i}_{\text{preconditioner memory transfers}}$$

## **Energy efficiency of adaptive precision block-Jacobi**

Memory access is an order of magnitude more expensive than computation! [Shalf 2013]

#### Energy model assumptions:

- Accessing 1 bit of data has a cost of 1 (energy unit)
- Disregard energy cost of arithmetic operations
- Total energy cost of each iteration:

$$\underbrace{14n \cdot \text{fp64}}_{\text{vector memory transfers}} + \underbrace{(2n + n_z) \cdot \text{fp64} + (n + n_z) \cdot \text{int32}}_{\text{CSR-SpMV memory transfers}} + \underbrace{2n \cdot \text{fp64} + \sum_{i=1}^{N} m_i^2 \cdot \text{fpxx}_i}_{\text{preconditioner memory transfers}}$$

#### Predicted energy savings of adaptive precision block-Jacobi:



### **Overflow and underflow**

- Storing the block in lower precision can cause underflow or overflow in some values.
- This is not accounted for by the numerical analysis shown in the previous slides

### Overflow and underflow

- Storing the block in lower precision can cause underflow or overflow in some values.
- This is not accounted for by the numerical analysis shown in the previous slides
- Two possible solutions:
  - 1. Check the condition number of the low precision block to verify there were no catastrophic overflows or underflows.



#### Overflow and underflow

- Storing the block in lower precision can cause underflow or overflow in some values.
- This is not accounted for by the numerical analysis shown in the previous slides
- Two possible solutions:
  - 1. Check the condition number of the low precision block to verify there were no catastrophic overflows or underflows.
  - 2. Use a custom storage format that preserves the number of exponent bits:





# **Initial GPU implementation**





## **Sources of linear systems**

- Real-world problem transformed into a linear system via:
  - PDE discretizations, graph representations
  - Large number of unknowns (1M+, full matrix 8TB)
  - Most matrix elements are zero
- Possible approach: iterative methods
  - Krylov-subspace based linear solvers
    - SpMV
    - BLAS-1 operations
  - Sparse matrix formats & SpMV
    - accelerate each iteration of the solver
  - Preconditioners
    - reduce the number of iterations
  - Special hardware (e.g. GPUs)
  - Probably not a good idea to implement everything from scratch...
  - Use a library instead:





























... leads to CSC



... leads to CSC



"Standard" approach

# First things first

#### THERE IS NO "BEST" SPARSE MATRIX FORMAT / SpMV ALGORITHM



Maximum slowdown factor over fastest



```
3.2 1.2 0.4 2.7 1.3 4.1 0.1 2.7 Values (val)

0 2 2 0 1 3 0 3 Column indexes (colidx)

0 2 3 6 Row pointers (rowptr)

y := Ax
1 void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y)
```

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
for (int i = 0; i < m; ++i) {
   for (int j = rowptr[i]; j < rowptr[i+1]; ++j)
      y[i] += val[j] * x [ colidx[j] ];
}</pre>
```

~ cuSPARSE SpMV

```
3.2 1.2 0.4 2.7 1.3 4.1 0.1 2.7 Values (val)

0 2 2 0 1 3 0 3 Column indexes (colidx)

0 2 3 6 Row pointers (rowptr)

y := Ax
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
for (int i = 0; i < m; ++i) {
```

for (int j = rowptr[i]; j < rowptr[i+1]; ++j)</pre>

y[i] += val[j] \* x [ colidx[j] ];

Load imbalance!

Bell & Garland '08

parallelize outer loop

~ cuSPARSE SpMV

# **Example**

#### Freescale/transient



## **Example**

\* GTX 1080





Can we do better than HYB using CSR?

## **Example**

\* GTX 1080







Can we do better than HYB using CSR?

55x speedup

YES!

Flegar, Anzt, Overcoming Load Imbalance for Irregular Sparse Matrices, IA3'17

Flegar, Quintana-Ortí, Balanced CSR Sparse Matrix-Vector Product on Graphics Processors, Euro-Par'17

#### How to do it

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
   for (int i = 0; i < m; ++i) {
      for (int j = rowptr[i]; j < rowptr[i+1]; ++j)
        y[i] += val[j] * x [ colidx[j] ];
}
</pre>
```

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    for (int i = 0; i < m; ++i) {
        for (int j = rowptr[i]; j < rowptr[i+1]; ++j)

            y[i] += val[j] * x [ colidx[j] ];
}

Merge the two loops into one.

void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int i = 0; i < nnz; ++i) {
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
}
```

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
   for (int i = 0; i < m; ++i) {
     for (int j = rowptr[i]; j < rowptr[i+1]; ++j)</pre>
        y[i] += val[j] * x [ colidx[j] ];
    }
                               Merge the two loops into one.
  void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int i = 0; i < nnz; ++i) {
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 }}
                               Split the loop into equal chunks.
  const int T = thread_count;
  void SpMV_CSRI(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int k = 0; k < T; ++k) {
      for (int i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
6
7
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 | }}}
```

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
   for (int i = 0; i < m; ++i) {
      for (int j = rowptr[i]; j < rowptr[i+1]; ++j)</pre>
        y[i] += val[j] * x [ colidx[j] ];
    }
                               Merge the two loops into one.
  void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int i = 0; i < nnz; ++i) {
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 }}
                               Split the loop into equal chunks.
  const int T = thread_count;
  void SpMV_CSRI(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
3
    int row = -1, next_row = 0, nnz = rowptr[m];
   for (int k = 0; k < T; ++k) { Parallelize this!
5
      for (int i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
6
7
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 | }}}
```

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
   for (int i = 0; i < m; ++i) {
      for (int j = rowptr[i]; j < rowptr[i+1]; ++j)</pre>
        y[i] += val[j] * x [ colidx[j] ];
    }
                                Merge the two loops into one.
  void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int i = 0; i < nnz; ++i) {
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 }}
                               Split the loop into equal chunks.
  const int T = thread_count;
  void SpMV_CSRI(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
3
    int row = -1, next_row = 0, nnz = rowptr[m];
   for (int k = 0; k < T; ++k) { Parallelize this!}
5
      for (int i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
6
7
        while (i >= next_row) next_row = rowptr[++row+1];
       y[row] += val[i] * x[ colidx[i] ];
 | }}}
```

Race conditions!

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
   for (int i = 0; i < m; ++i) {
      for (int j = rowptr[i]; j < rowptr[i+1]; ++j)
        y[i] += val[j] * x [ colidx[j] ];
    }
                                Merge the two loops into one.
  void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int i = 0; i < nnz; ++i) {
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 }}
                               Split the loop into equal chunks.
  const int T = thread_count;
  void SpMV_CSRI(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
3
    int row = -1, next_row = 0, nnz = rowptr[m];
   for (int k = 0; k < T; ++k) { Parallelize this!}
5
      for (int i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
6
7
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 }}}

    Use atomics

      Race conditions! • Accumulate partial
                         result in the registers
```

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
   for (int i = 0; i < m; ++i) {
      for (int j = rowptr[i]; j < rowptr[i+1]; ++j)
        y[i] += val[j] * x [ colidx[j] ];
    }
                                Merge the two loops into one.
  void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int i = 0; i < nnz; ++i) {
        while (i >= next_row) next_row = rowptr[++row+1];
        y[row] += val[i] * x[ colidx[i] ];
 }}
                               Split the loop into equal chunks.
  const int T = thread_count;
  void SpMV_CSRI(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
3
    int row = -1, next_row = 0, nnz = rowptr[m];
   for (int k = 0; k < T; ++k) { Parallelize this!}
5
      for (int i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
                                                               State between outer
6
7
        while (i >= next_row) next_row = rowptr[++row+1];
                                                               loop iterations!
        y[row] += val[i] * x[ colidx[i] ];
 | }}}

    Use atomics

      Race conditions! • Accumulate partial
                         result in the registers
```

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    for (int i = 0; i < m; ++i) {
      for (int j = rowptr[i]; j < rowptr[i+1]; ++j)
4
        y[i] += val[j] * x [ colidx[j] ];
5
                                Merge the two loops into one.
  void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int i = 0; i < nnz; ++i) {
        while (i >= next_row) next_row = rowptr[++row+1];
        v[row] += val[i] * x[ colidx[i] ];
 }}
                               Split the loop into equal chunks.
  const int T = thread_count;
  void SpMV_CSRI(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
3
    int row = -1, next_row = 0, nnz = rowptr[m];
    for (int k = 0; k < T; ++k) { Parallelize this!}
5
      for (int i = k*nnz / T; i < (k+1)*nnz / T; ++i) {
                                                               State between outer
6
7
        while (i >= next_row) next_row = rowptr[++row+1];
                                                               loop iterations!
        y[row] += val[i] * x[ colidx[i] ];
 }}}

    Use atomics

                                                              Precompute starting value
      Race conditions! • Accumulate partial
                                                             of "row" for each thread.
```

result in the registers

CUDA thread = 1 lane of a 32-wide SIMD unit (warp)



CUDA thread = 1 lane of a 32-wide SIMD unit (warp)

Spreading out threads causes strided memory access.



CUDA thread = 1 lane of a 32-wide SIMD unit (warp)

Spreading out threads causes strided memory access.





CUDA thread = 1 lane of a 32-wide SIMD unit (warp)

Spreading out threads causes strided memory access.



CUDA thread = 1 lane of a 32-wide SIMD unit (warp)

Spreading out threads causes strided memory access.



CUDA thread = 1 lane of a 32-wide SIMD unit (warp)

Spreading out threads causes strided memory access.



CUDA thread = 1 lane of a 32-wide SIMD unit (warp)

Spreading out threads causes strided memory access.



### **Performance of CSR-I**

### 100 matrices from SuiteSparse



# Speed-up / slowdown over cuSPARSE CSR





### Speed-up / slowdown over cuSPARSE CSR



#### No format conversion!

- try both, and use the fastest later on!
- sometimes 1 cuSPARSE SpMV = 100 CSR-I SpMVs



CSR-I designed for irregular patterns



CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.



CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.

Is "5" regular or irregular?

Depends on the density of the matrix (mean #rows)



CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.

Is "5" regular or irregular?

Depends on the density of the matrix (mean #rows)

Scatter plot of speedup vs normalized std. dev.





CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.

Is "5" regular or irregular?

Depends on the density of the matrix (mean #rows)

Scatter plot of speedup vs normalized std. dev.





# **Combining both approaches**





CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.

Is "5" regular or irregular?

Depends on the density of the matrix (mean #rows)

Scatter plot of speedup vs normalized std. dev.





CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.

Is "5" regular or irregular?

Depends on the density of the matrix (mean #rows)

Scatter plot of speedup vs normalized std. dev.





# **Combining both approaches**





### **Outlook**



Choosing the correct combination of

matrix format solver preconditioner

... requires expert knowledge or significant trial and error.

Design a tool that does it (semi-)automatically?



### Thank you! Questions?

- Krylov-subspace based linear solvers
  - Performance depends on SpMV and Preconditioners
- Sparse matrix formats & SpMV
  - There is no "holy grail" best format depends on the problem
- Preconditioners
  - Accelerate the solution of the solver
  - Only an approximation, can use lower precision storage
- Do not implement from scratch, use a library. For example:



- github.com/ginkgo-project/ginkgo
- Open source license (BSD-3)
- Modern C++
- High performance GPU backend
- reference CPU implementation
- High performance CPU backend on the way

#### Slides:















github.com/gflegar/talks/tree/master/cmu\_pittsburgh\_2018\_11

