

T1040(E)(A11)T APRIL EXAMINATION

NATIONAL CERTIFICATE

MECHANOTECHNICS N4

(8190194)

11 April 2016 (X-Paper) 9:00–12:00

This question paper consists of 6 pages and 1 formula sheet of 3 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNICS N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Candidates are hereby advised to produce good sketches.
- 5. ALL the work done in pencil excluding sketches, drawings and diagrams will be regarded as rough work and will NOT be marked.
- 6. Write neatly and legibly.

QUESTION 1

1.1 State TEN principles for good workshop layout. (10)

- 1.2 State THREE possible causes for each of the following faults that can happen in the spray process:
 - 1.2.1 Excessive paint spray
 - 1.2.2 Uneven spray-painting
 - 1.2.3 Sagging surface
 - 1.2.4 Speckle or orange-peel effect

 (4×3) (12)

- 1.3 Name THREE general methods of lubrication (3)
- 1.4 Make a labeled drawing of a siphon and wick lubricator which can be used for lubricating machine parts. (5)

[30]

QUESTION 2

The thickness of a 4-ply leather belt is 13 mm, it transmits 45 kW from a pulley that is 1,3 m in diameter and the speed of this pulley is 255 r/min. The contact angle is 172° and the coefficient of friction between the belt and the pulley is 0,27. The mass of the belt is 9,75 kg/m and the maximum allowable tension is 8 kN/m width per ply.

Determine the following:

$^{\circ}$	Daltanaad		(2)
<i>/</i>	Belt speed		(/)
	Don opoda		(- /

- 2.2 Centrifugal tension in the belt (2)
- 2.3 Tension in the tight side per width (2)
- 2.4 Tension in the slack side (4)
- 2.5 Power transmitted by 1 m belt width (2)
- 2.6 Belt width

GIVEN: w = total power/power per width (2)
[14]

QUESTION 3

FIGURE 1 shows the setup of the cutting tool that is held in the tool holder of a shaping machine.

The ram of the shaping machine has a mass of 150 kg and is operating with a cutting stroke length of 150 mm. The total work done during one cutting stroke is equal to 175 J and the coefficient of friction between the ram and the slides is 0,3.

Calculate the following:

- 3.1 The work done to overcome the friction between the ram and the slides. (3)
- 3.2 The cutting force exerted on the cutting tool. (3)
- 3.3 The forces exerted on the two contact points A and B if the clamping force in the clamping screw is 2 000 N. (8)

QUESTION 4

4.1 An ISO screw thread with a 3,5 mm pitch has an effective diameter of 30 mm. The three-wire method is used for checking the effective diameter. The best wire size method is used for the test wires.

Calculate the micrometer reading over the three wires. (5)

- 4.2 4.2.1 Explain step-by-step how you would go about checking the correctness of the teeth of a gear wheel that has a module of 10 mm and a pressure angle of 20°. Use a gear tooth vernier calliper and apply the constant-chord method of checking.
- (4)
- 4.2.2 Make the necessary calculations for the test explained in QUESTION 4.2.1 by using the constant-chord method of checking.

(5) **[14]**

QUESTION 5

An epicyclical gear train shown in FIGURE 2 consists of an annulus A having 130 teeth, a sun gear B having 40 teeth and a planetary gear C having 50 teeth that are mounted on arm D.

NR	CONDITIONS	Α	В	С	ARM D
1	Fix arm D and rotates A = + 1 rev				0
2	Multiply by x and add y	х+у			у

Make use of the conditions given in the table above to calculate the following:

- 5.1.1 The velocity ratio of sun gear B (1)
- 5.1.2 The velocity ratio of planetary gear C (1)
- 5.1.3 The speed of planetary gear C when annulus A is fixed and arm D rotated at 50 r/min (4)
- 5.1.4 The speed of annulus A when sun gear B is fixed and arm D rotates at 30 r/min (4)

FIGURE 2

A set of spur gears have a velocity ratio of 5 : 3 and a module of 6 mm if the pinion has 30 teeth.

Calculate the pitch diameter of both gears.

(4) [**14**]

QUESTION 6

Determine the flow rate of water in litres per second (ℓ /s) flowing through a 200 mm diameter pipe equipped with a Venturi meter that has a throat diameter of 130 mm. The coefficient of delivery is 0,97 and the mercury manometer shows a reading of 880 mm.

(7)

Water with a density of 1 000 kg/m³ flows through a tapered pipe which has a large diameter of 0,4 m and a small diameter of 0,2 m. The pressure gauge at the small diameter of the pipe is 16 kPa and the velocity of flow at the small diameter is 20 m/s.

Calculate the pressure at the larger diameter of the pipe

(7) **[14]**

TOTAL: 100

MECHANOTECHNICS N4

FORMULA SHEET

1.
$$m = \frac{PCD}{T}$$

$$2. \quad DO = m \times (T+2)$$

3.
$$C = \frac{m}{2} \times (TA + TB)$$

$$4. \quad Ke = \frac{1}{2} mv^2$$

5.
$$VR = \frac{TA}{TB}$$

6.
$$VR = \frac{PCD \ of \ gear}{PCD \ of \ pinion}$$

7.
$$VR = \frac{NB}{NA}$$

8.
$$NA \times TA = NB \times TB$$

9.
$$Ft = \frac{2 \times T}{PCD}$$

10.
$$Fr = Ft \times Tan \phi$$

11.
$$Fn = Ft \times Sec \phi$$

12.
$$Ie = IA + (VR)^2 IB + (VR)^2 IC + (VR)^2 ID$$

13.
$$T \forall = Ie \times \forall A$$

14.
$$T\alpha = TA + \frac{(NB)}{(NA)} \frac{TBC}{\eta 1} + \frac{(ND)}{(NA)} \frac{TD}{\eta 1\eta 2}$$

15.
$$\frac{NB}{NA} = \frac{\omega B}{\omega A} = \frac{\alpha B}{\alpha A} = \frac{IA}{IB}$$

16.
$$T_{OUTPUT} = T_{INPUT} \times GR \times \eta$$

17.
$$P = \frac{\pi \times PCD}{n}$$

18.
$$Ti + To + Th = 0$$

$$19. \ TA = TS + 2TP$$

20.
$$\frac{Input\ speed}{Output\ speed} = \frac{Teeth\ on\ driving\ gears}{Teeth\ on\ driving\ gears}$$

21.
$$v = \pi \times (d + t) \times N$$

22.
$$P = Te \times v$$

$$23. \quad \frac{T1}{T2} = e^{\mu\theta}$$

$$24. \quad T1 = * \times A$$

25.
$$Tc = m \times v^2$$

26.
$$\frac{T1 - TC}{T2 - TC} = e^{\mu\theta\cos ec \alpha}$$

27.
$$L = \frac{\pi}{2} \times (D+d) + \frac{(D \pm d)^2}{4 \times C} + 2C$$

28.
$$Tg = m \times g \times \sin \phi$$

29.
$$v = T \times r$$

30.
$$v = \sqrt{\mu \times g \times r}$$

32.
$$v = \sqrt{gr \left[\frac{\mu + Tan \theta}{1 - \mu Tan \theta} \right]}$$

34.
$$\frac{T1}{T2} = \left[\frac{1 + \mu Tan \ \theta}{1 - \mu Tan \ \theta} \right]^n$$

$$36. \quad \cos\frac{\phi}{2} = \frac{R+r}{C}$$

38.
$$T1 = w \times n \times ft$$

40.
$$t = \frac{I \times \omega}{T}$$

42.
$$T = F \times r$$

44.
$$do = de + 0.65P$$

46.
$$h = m \left[1 - \frac{\pi}{4} \left(\sin \theta \cos \theta \right) \right]$$

47.
$$\frac{p1}{Rho} + \frac{(v1)^2}{2} + gh1 = \frac{p2}{Rho} + \frac{(v2)^2}{2} + gh2$$

48.
$$Vw(Va) = \sqrt{\frac{gx^2}{2y}}$$

$$50. \quad hf = \frac{4 \times f \times \ell \times v^2}{2 \times g \times d}$$

52.
$$Q = \frac{Cd \times A \times a \times \sqrt{(2gh)}}{\sqrt{(A^2 - a^2)}}$$

54.
$$V = \sqrt{(g \times R \times Cos\theta)}$$

$$56. \ L = 2C + \pi D$$

58. One load =
$$\frac{m2 \times g \times S}{4 \times h}$$

31.
$$v = \sqrt{\frac{g \times b \times r}{2 \times h}}$$

-2-

33.
$$v = \sqrt{gr \left[\frac{hTan\theta + b/2}{h - b/2 \tan \theta} \right]}$$

35.
$$Cos \frac{\theta}{2} = \frac{R - r}{C}$$

37.
$$m = w \times t \times L \times \Delta$$

39.
$$P = Pg + P\mu$$

41.
$$P = \frac{2 \times \pi \times N \times T}{60}$$

43.
$$w = do + 3d - 1.5155P$$

45.
$$w = \frac{\pi \times m}{2} (\cos^2 \theta)$$

49.
$$v = C\sqrt{mi}$$

$$51. \quad hf = \frac{f \times \ell \times O^2}{3.026 \times d^5}$$

53.
$$Q = Cd \times A \times \frac{\sqrt{(2gh)}}{\sqrt{(m^2 - 1)}}$$

55. Vol. bucket =
$$\frac{m \times s}{\rho \times v}$$

57. Self-weight =
$$\frac{m1 \times g \times S^2}{8 \times h}$$

59.
$$T(acc load) = (T1 - T2)R$$

60.
$$T(acc\ drum) = I \times \alpha = mk^2 \times \frac{a}{R}$$

62. $T = 2\pi \times N$

61. $P = T \times T$

64. $Ke = \frac{work \ done}{efficiency}$

63. $Ke = \frac{1}{2}I \times \omega^2$

66. $(I_1 + I_2) T_3 = I_1 T_1 + I_2 T_2$

65. $P = Ke \times operations/sec$

68. $\eta = \frac{Tan \theta}{Tan (\theta + \phi)}$

67. $\mu = Tan \theta$

70. $T = \frac{\mu \times F \times Re}{\sin \theta}$

69. $T = \mu \times F \times Re \times n$

72. $Fc = m \times T^2 \times \gamma$

71. $T = \mu \times n \times (Fc - S)R$

73. $Fc = \frac{mv^2}{\gamma}$

74. Tractive effort = mass on driving wheels $\times \mu \times g$

75. Side thrust = $FcCos\theta - mgSin\theta$

76. $\mu = \frac{FcCos\theta - mgSin\theta}{mgCos\theta + FcSin\theta}$

77. $P_l = CmgL + mgh$