

Estudo e Comparação de Técnicas de Compressão de Imagens Baseadas em Transformadas Discretas

Adinan Alves de Brito Filho Kenji Nose Filho

Comprimindo imagens com a Transformada Discreta de Cosseno (DCT)

Sistema Visual Humano e o espaço de cores YCbCr

ASSI, A.; SHANWAR, B.; ZARKA, N. Detection of Abandoned Objects in Crowded Environments. [S.I.], 2016.

DCT

Transforma a informação do **domínio espacial** para o **domínio das frequências**.

Seja um sinal F(u, v) com u = 0, 1, ..., 7 e com v = 0, 1, ..., 7 a transformada discreta inversa do cosseno c(u, v) para duas dimensões é dada por:

$$C(u,v) = \sum_{u=0}^{7} \sum_{v=0}^{7} g(u)g(v)F(u,v)\cos\left(\frac{(2x+1)u\pi}{16}\right)\cos\left(\frac{(2y+1)u\pi}{16}\right)$$

onde:

$$g(k) = \begin{cases} \frac{1}{2} \frac{1}{\sqrt{2}} & \text{se } k = 0, \\ \frac{1}{2} & \text{se } k \neq 0 \end{cases}$$

Base ortogonal dos 64 vetores da DCT bidimensional. Fonte: <u>DCT e JPEG - Prof. Miguel Frasson.</u>

Quantização

Quantificamos a importância das **baixas frequências**, preservando-as, e das **altas frequências**, atenuando suas magnitudes.

Redução do número de bits necessário para a representação da DCT.

Mascaramento

Tabelas de Quantização

Sponsors:

Hipótese:

Certas classes de imagens podem ser mais comprimidas.

Metodologia:

Dataset com 60 imagens distribuídas em 5 classes:

Paisagem (15)

Retrato (15)

Padrões Geométricos (10)

Contexto Social (10)

Tipografia (10)

Mascaramento

Taxa de coeficientes DCT nulos

Matrizes de quantização

KDN (autorais)

Luminância (Y)

Crominância (Cb e Cr)

4	9	16	25	36	49	64	81
9	16	25	36	49	64	81	99
16	25	36	49	64	81	99	99
25	36	49	64	81	99	99	99
36	49	64	81	99	99	99	99
49	64	81	99	99	99	99	99
64	81	99	99	99	99	99	99
81	99	99	99	99	99	99	99

6	16	32	56	89	99	99	99
16	32	56	89	99	99	99	99
32	56	89	99	99	99	99	99
56	89	99	99	99	99	99	99
89	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

JPEG Standard

Luminância (Y)

Crominância (Cb e Cr)

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

Criação das matrizes KDN

Questões determinantes:

- Sistema Visual Humano
- Quantificar/reduzir é melhor que eliminar?

Algoritmo 1 Matriz proposta para luminância

```
1: for ii = 1 : 8 do
      for jj = 1:8 do
         Q(ii,jj) = (ii + jj)^{2}
         if Q(ii, jj) > 99 then
             Q(ii, jj) = 99
         end if
      end for
8: end for
```

Algoritmo 2 Matriz proposta para crominância

```
1: for ii = 1:8 do
      for jj = 1 : 8 do
     Q(ii,jj) = (ii + jj)^{2.5}
         if Q(ii, jj) > 99 then
            Q(ii, jj) = 99
         end if
      end for
8: end for
```


Sponsors:

Fator de compressão *k*

- 10 fatores de compressão k(n); n={0,1,2,...,9}
- Varredura linear de 20% a 80%
- Adobe Photoshop

$$k(n) = Round(0.05 * 1.459^{n-1})$$

 $k = \{0.05, 0.07, 0.11, 0.16, 0.23, 0.33, 0.48, 0.70, 1.03, 1.50\}$

Sponsors:

Métricas de avaliação da degradação

- PSNR (Peak signal-to-noise ratio)
 Relação de ruído adquirido pela imagem reconstruída.
- UIQI (Universal Image Quality Index)
 Perda de correlação, distorção de luminância e contraste.

Avaliação da compressão obtida

Entropia
 Estimação da taxa de compressão sem a codificação da imagem.

Qualidade da imagem comprimida em função da taxa de compressão

Resultado geral para todas as categorias

Taxa de compressão (Redução da Entropia)

Qualidade da imagem comprimida em função da taxa de compressão

Resultado geral para todas as categorias

Taxa de compressão (Redução da Entropia)

Relação Sinal Ruído-de-Pico em função da taxa de compressão

Taxa de compressão (Redução da Entropia)

--- Mascaramento Quadrado --- Mascaramento Triangular **JPEG** ---KDN

Relação Sinal Ruído-de-Pico em função da taxa de compressão

Taxa de compressão (Redução da Entropia)

Imagem 45 (paisagem) com k = 0.48

Imagem original

Mascaramento quadrado 90%

PSNR: 22,97 dB

UIQI: 87,73

Compressão: 72,7%

Mascaramento triangular 90%

PSNR: 23,24 dB

UIQI: 87,93

Compressão: 74,8%

Imagem 45 (paisagem) com k = 0.48

Imagem original

Tabelas KDN

PSNR: 30,82 dB

UIQI: 81,4

Compressão: 76,37%

Tabelas JPEG

PSNR: 31,58 dB

UIQI: 81,1

Compressão: 73,99%

Qualidade da imagem comprimida em função da taxa de compressão

Categoria: Padrões Geométricos

Imagem 25 (padrões geométricos)

Imagem 25 (padrões geométricos)

Masc. Triangular 90%

PSNR: 14,45 dB

UIQI: 82,64

Compressão: 82,4%

Imagem 25 (padrões geométricos)

Masc. Quadrado 90%

PSNR: 14,35 dB

UIQI: 82,53

Compressão: 80,3%

Imagem 25 (padrões geométricos) com k = 1,03

Tabelas JPEG com k = 1,03

PSNR: 21,98 dB

UIQI: 86,42

Compressão: 78%

Imagem 25 (padrões geométricos) com k = 1,03

Tabelas KDN com k = 1,03

PSNR: 21,09 dB

UIQI: 89,1

Compressão: 81,1%

Conclusão

Taxa de compressão	Métrica	Tabelas de Quantização	Categoria					
			Paisagem	Retrato	Padrões Geométricos	Contexto Social	Tipografia	
70%	UIQI	KDN	97,637023	98,382789	97,144879	97,61641	99,911081	
		UIQI	JPEG	97,549134	98,314917	97,059185	97,531637	99,906591

Linhas de tendência polinomiais de quarta ordem.

Interface Interativa Educacional

Adinan Alves de Brito Filho

Estudante dos Bacharelados em Ciência e Tecnologia e Engenharia da Informação na Universidade Federal do ABC, Santo André/SP.

Estagiário de Desenvolvimento de Software no laboratório IBM Research Brasil. Técnico em Informática pela ETEC de Sapopemba, São Paulo/SP.

adinan.brito@aluno.ufabc.edu.br linkedin.com/in/adinanfilho

Agradecimentos

