Riguardo le matrici

$$R = \{(a,b), (b,b), (b,d), (c,a), (d,a)\}$$

$$S = \{(a,d), (a,b), (b,c), (d,b)\}$$

Vediamo le matrici di queste due relazioni :

M_R	а	b	С	d
а	0	1	0	0
b	0	1	0	1
С	1	0	0	0
d	1	0	0	0

M_{S}	а	b	С	d
а	0	1	0	1
b	0	0	1	0
С	0	0	0	0
d	0	1	0	0

Vediamo la matrice equivalente al prodotto delle due matrici :

M_{RS}	а	b	С	d
а	0	0	1	0
b	0	1	1	0
С	0	1	0	1
d	0	1	0	1

Ma come si ottiene il prodotto di due matrici?

Partendo dalla prima riga, si moltiplica ogni valore di essa con ogni valore nella stessa posizione di ogni colonna, i vari prodotti vengono sommati ed il valore in quella posizione della matrice nuova assumerà tale somma. Esempio :

RIGA a

M_R	а	b	С	d
а	0	1	0	0
b	0	1	0	1
С	1	0	0	0
d	1	0	0	0

COLONNA a

M_{S}	а	b	С	d
а	0	1	0	1
b	0	0	1	0
С	0	0	0	0
d	0	1	0	0

Primo valore riga a * primo valore colonna a + Secondo valore riga a * Secondo valore colonna a + Terzo valore riga a * Terzo valore colonna a + Quarto valore riga a * Quarto valore colonna a Cioè :

$$0 \times 0 + 1 \times 0 + 0 \times 0 + 0 \times 0 = 0$$

Quindi nella nuova matrice, la posizione (a, a) assumerà valore 0.

Possiamo dire che ad occhio, quando si confronta la riga X con la colonna Y, la nuova matrice in posizione (X, Y) assumerà valore 1 se e solo se almeno 2 dei valori confrontati fra le varie posizioni sono entrambi 1.

Relazioni Transitive

"Gli amici dei miei amici sono miei amici"

aAb se a è amico di b.

bAc se c è amico di a.

Se la relazione è transitiva, allora aAc.

Una relazione xMy $M \subseteq \mathbb{N}x\mathbb{N}$

Ha come regola x<y. $M=\{(2,5),(1,4),(2,11),(45,100),(1,100),(14,100)\}$

Aggiungiamo un valore z.

Per ogni a, b, e c, se xMy e yMz, allora sicuramente xMz.

Infatti se x<y e y<z, sicuramente x<z.