HOCHSCHULE LUZERN

Technik & Architektur

TA.ING+TO.FS16 Matrizenrechnung- Übungsblatt 1

Testatbedingung: Die gelöste Übung ist zu Beginn der nächsten Vorlesung abzugeben (bitte heften Sie die Blätter)

Inhalt: Addition, Subtraktion, Transposition und Multiplikation von Matrizen

Aufgabe 1.1: Führen Sie mit den Matrizen

$$A = \begin{pmatrix} 3 & 4 & 0 \\ -1 & 5 & 3 \end{pmatrix} B = \begin{pmatrix} -3 & 3 \\ 1 & -1 \\ 0 & 2 \end{pmatrix} C = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 1 & 3 \end{pmatrix}$$

die folgenden Rechenoperationen durch (soweit dies überhaupt möglich ist):

a) $A+3\cdot B$

b) $2A + C - B^T$ c) $A^T + B - 3C^T$ d) A - 2C + B

Aufgabe 1.2: Gegeben sind die Matrizen

$$A = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 3 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ -1 & 5 & 1 \end{pmatrix} \quad C = \begin{pmatrix} -2 & 0 & 3 \\ 2 & 5 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

Berechen Sie, falls möglich

a) $A \cdot B$ b) $A \cdot (B + C)^T$ c) $(A \cdot B)^T$ d) A^2

Aufgabe 1.3:

Das *Skalarprodukt* von zwei Vektoren $\vec{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$ ist ja bekanntlich definiert als

$$\vec{a} \bullet \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

Wie könnte man das Skalarprodukt als *Matrizenprodukt* von \vec{a} und \vec{b} schreiben?

Aufgabe 1.4:

Geben Sie in dieser Aufgabe an, welche der aufgeführten Operationen für die gegebenen Matrizen möglich sind und führen Sie diese aus.

$$A = \begin{pmatrix} -5 & 0 & 1 \\ 1 & 10 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 0 \\ 5 & -1 & 1 \\ 0 & -3 & 3 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 0 \\ 5 & -1 & 1 \\ 0 & -3 & 3 \end{pmatrix}$$

Operation	möglich	nicht möglich
$A \cdot B$		
$B \cdot A$		
$A \cdot C$		
$C \cdot A$		
A^2		
B^2		
C^2		
$A \cdot A^T$		
$B \cdot B^{T}$		
$C \cdot C^{T}$		