CS C364 Design & Analysis of Algorithms

ALGORITHMS – DESIGN TECHNIQUES

Intractable Problems

- Dealing with hard problems
 - Approaches and Tradeoffs

INTRACTABLE PROBLEMS

- Problems that <u>cannot be solved in polynomial time</u> are referred to as **intractable** problems.
 - **oNP**-Completeness is used as the baseline for "intractable" problems i.e.
 - If a problem can be proven to <u>be NP-Complete</u> then it is treated as "hard evidence" that the problem is <u>intractable</u>.
- NP-Complete problems have been found in numerous real-life application domains
 - What could be done (to solve these problems)?

INTRACTABLE PROBLEMS — BROAD APPROACHES

- 1. Accept exponential complexity for solutions
- 2. Find algorithms for special case inputs that may be more common in real-life
- 3. Accept "inexact" solutions with some guarantees
- 4. Accept "imperfect" solutions with no guarantees, only expecations.

ACCEPTING EXPONENTIAL SOLUTIONS

- Accept exact algorithms of exponential time complexity:
- Implication:
 - Can handle only small inputs:
 - A modern computer can execute (approx.) 2³⁰ instructions per second
 - i.e. an O(2ⁿ) algorithm can be executed in several days for an input of size 50
- Consider:
 - o E.g. Graph Coloring is NP-complete:
 - Given a graph, can its vertices be assigned one of k colors each such that <u>no two</u> <u>adjacent vertices share a color?</u>

ACCEPTING EXPONENTIAL SOLUTIONS

- [2]
- Register Allocation for a program can be modeled as Graph Coloring
 - Each variable is a vertex and
 - an edge captures the relation that
 - there is an overlap in the <u>live intervals</u> of the two variables.

• Practice:

- Compilers may use exact Graph Coloring solutions to solve register allocation.
 - But they <u>perform register allocation for one</u> <u>procedure at a time</u> and
 - in practice, <u>the number of variables in a</u> <u>procedure is small</u>

ALGORITHMS FOR SPECIAL CASE INPUTS

- Find algorithms for special case inputs that may be more common in real-life.
 - For example consider the Graph Coloring problem again
 - Graph Coloring is NP-complete and
 - Graph Coloring for Planar graphs is NP-complete
 - But there exist polynomial time algorithms for special case inputs.

ALGORITHMS FOR SPECIAL CASE INPUTS - GRAPH COLORING

- There exist polynomial time algorithms for special case inputs.
 - a quadratic algorithm for 4-coloring planar graphs (see RSST97)
 - and a linear algorithm for 5-coloring planar graphs (see MKB)
- References:

[RSST97]: Robertson, Sanders, Seymour and Thomas. *Efficiently four-coloring planar graphs*.

[MKB]: Mott, Kandel, and Baker. [The text book for the Discrete Structures course]

ALGORITHMS FOR SPECIAL CASE INPUTS — GRAPH COLORING [2]

- Consider the decision version of the Coloring problem for planar graph:
- Can a Planar Graph be colored with k colors?
- This problem exhibits the following interesting structure:
 - The solution for k>=4 is trivial
 - The solution for k=2 is simple
 - Bipartite graphs (and only bipartite graphs) are 2colorable.
 - There is no known polynomial time solution for k=3:
 - in fact 3-coloring of planar graphs is an NP-complete problem

INEXACT SOLUTIONS WITH GUARANTEES

Accept algorithms that generate inexact solutions:

- 1. **Probabilistic algorithms** (for decision problems)
- Approximation algorithms (for optimization problems)
- 3. Combine both of the above approaches (for optimization problems)

INEXACT SOLUTIONS - PROBABILISTIC ALGORITHMS

Probabilistic solutions (for decision problems)

Monte-Carlo algorithms that run in <u>polynomial time</u> but <u>may generate false positives</u>, false negatives, or both with <u>low probability</u>

[Note:

We have seen Monte Carlo algorithms for reducing time complexity of problems that are in **P**End of Note.]

INEXACT SOLUTIONS — APPROXIMATION ALGORITHMS

Approximation Algorithms (for optimization problems)

Algorithms that run <u>in polynomial time</u> but produce <u>sub-optimal solutions</u> with an <u>approximation</u> <u>guarantee</u>

i.e. that a solution produced by such an algorithm is guaranteed to be

no worse than the optimal solution by an approximation factor

INEXACT SOLUTIONS — PROBABILISTIC APPROXIMATION

Combine the two approaches - of Monte Carlo techniques and approximation -

Monte-Carlo algorithms that run in polynomial time but with a high-probability produce solutions with an approximation.guarantee

INEXACT SOLUTIONS WITH NO GUARANTEES

Accept "inexact" solutions without any guarantees:

<u>Heuristic solutions</u> that are <u>likely to run in polynomial</u>
<u>time for most input instances</u> and are <u>likely to</u>
<u>provide "good" solutions</u>

i.e. good expectations but no guarantees

Definition of a good solution is determined by experimentation or by practice.

Worst case scenarios are ignored