

VOLUME I

Submitted To:

Montana Department of Natural Resources and Conservation 1520 E. 6th Avenue Helena, MT 59620

AUGUST 1987

PLEASE RETURN

MULTITECH

This report was prepared under an agreement funded by the Montana Department of Natural Resources and Conservation. Neither the Department, nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Natural Resources and Conservation or any employee thereof. The reviews and opinion of authors expressed herein do not necessarily state or reflect those of the Department or any employee thereof.

LIVINGSTON WIND SHEAR AND TURBULENCE STUDY

MILESTONE NO. 5

FINAL REPORT

VOLUME I

Steven R. Heck, Principal Investigator
Gloyd Simmons
Dave Shoop
Jerry Shea
Desiree Keeler
Suze Krause
Joe Beardsley
Cindy McGreevy
Sandra Fitch
Robert Frey

Submitted To:

Montana Department of Natural Resources and Conservation 1520 E. 6th Avenue Helena, MT 59620

Submitted By:

MultiTech
Division of MSE, Inc.
P.O. Box 4078
Butte, MT 59702

August 1987

TABLE OF CONTENTS

VOLUME I

3.3.6

VOLU.	ME I			
	EXEC	UTIVE SUMM	ARY	
1.0	INTR	ODUCTION .		1-1
	1.1		and Environmental Features Affecting Wind Turbulence	1-2
	1.2		of Meteorological Factors to Wind Shear lence	1-3
	1.3		n of Turbulence and Wind Shear istics and Statistics	1-6
			Turbulence Intensity	
2.0	MONI	TORING SYS	TEM DESIGN	2-1
	2.1	Data Colle	ection and Analysis Procedures	2-1
	2.2	Monitorin	g Parameters and Equipment	2-5
3.0	RESU	LTS AND DI	SCUSSIONS	3-1
	3.1	Developme	nt of Statistics	3-1
	3.2	Turbulence	e Intensity	3-7
		3.2.1 3.2.2 3.2.3 3.2.4	General Turbulence Characteristics Variation of Turbulence With Time of Day. Variation of Turbulence With Wind Speed . Variation of Turbulence with Wind	3-17
		3.2.5	Direction	3-27
		3.2.6	Stability	3-30
		0.2.0	Thunderstorms	3-33
	3.3	Wind Shea	r	3-35
		3.3.1	General Wind Shear Characteristics Variations in Wind Shear with Time of	3-35
			Day	3-45
		3.3.3	Variation of Wind Shear with Wind Speed . Variation of Wind Shear with Wind	3-49
		3.3.5	Direction	3-54

Variation of Wind Shear with Thunder-

		3.3.7	Relationship Between Average 2-Minute Wind Shears and Maximum Instantaneous Wind Shear	62
	3.4	Variation	of Wind Shear with Turbulence Intensity . 3-	65
	3.5	Summarize	d Wind Speed and Direction Statistics 3-	66
	3.6	Comparison	n of Current and Historical Wind Data 3-	67
	3.7	Conclusion	ns	72
		3.7.1 3.7.2	Turbulence Intensity	
4.0	BIBLIOGRAPHY			
APPENDIX A: Equipment Spec			Equipment Specifications	
	APPE	NDIX B:	Seasonal Wind Roses	
	ATTA	CHMENT A:	Site Operator's Logbook and Maintenance Check Sheets	

VOLUME II

APPENDIX C: Monthly Wind Roses

Monthly Wind Speed, Wind Direction, and Wind Energy Statistics APPENDIX D:

APPENDIX E: Wind Shear and Turbulence Data

LIST OF TABLES

Table	1-1	Definition of Atmospheric Stability Classes 1-4
Table	1-2	Summary of Factors Affecting Wind Shear and Turbulence
Table	2-1	Joint Frequency Distribution 2-3
Table	2-2	Parameters Monitored at Livingston 2-6
Table	3-1	Joint Frequency Count of Alongwind Turbulence Intensity and Wind Speed at Livingston, Montana
Table	3-2	Joint Frequency Distribution of Alongwind Turbulence Intensity and Wind Speed at Livingston, Montana
Table	3-3	Percent Frequency Distribution of Alongwind Turbulence Intensity by Wind Speed Ranges at Livingston, Montana
Table	3-4.	Cumulative Percent Frequency of Alongwind Turbulence Intensity by Wind Speed Range at Livingston, Montana
Table	3-5.	Monthly Average Turbulence Intensity at Livingston, Montana
Table	3-6.	Frequency Distribution of Turbulence Intensity at Livingston, Montana
Table	3-7.	Frequency of Occurrence of Alongwind Turbulence Intensity Ranges at Livingston, Montana by Month
Table	3-8.	Frequency of Occurrence of Acrosswind Turbulence Intensity Ranges at Livingston, Montana by Month
Table	3-9.	Average Turbulence Intensity by Hour of the Day at Livingston, Montana
Table	3-10.	Average Turbulence Intensity by Wind Speed Ranges at Livingston, Montana 3-21
Table	3-11.	Average Turbulence Intensity by Wind Direction Category at Livingston, Montana 3-28
Table	3-12.	Average Turbulence Intensity by Delta T at Livingston, Montana

Table	3-13.	Summary of Turbulence Intensity During Thunder- storm Conditions at Livingston, Montana 3-34
Table	3-14.	Monthly Average Wind Shear at Livingston, Montana
Table	3-15.	Frequency Distribution of Wind Shear at Livingston, Montana
Table	3-16.	Frequency of Occurrence of Absolute Wind Shear Ranges at Livingston, Montana by Month 3-44
Table	3-17.	Average Wind Shear by Hour of the Day at Livingston, Montana
Table	3-18.	Average Wind Shear by Wind Speed Range at Livingston, Montana
Table	3-19.	Regression of AWS Against Wind Speed 3-52
Table	3-20.	Average Wind Shear by Wind Direction Range at Livingston, Montana
Table	3-21.	Average Wind Shear by Delta T Range at Livingston, Montana
Table	3-22.	Summary of Wind Shear at Livingston, Montana During Thunderstorm Conditions 3-61
Table	3-23.	Average Maximum Instantaneous Wind Shear and Average Turbulence Intensity by Average Wind Shear Categories at Livingston, Montana 3-64
Table	3-24.	Regression of Maximum Instantaneous Wind Shear Against Average 2-Minute Wind Shear 3-63
Table	3-25.	Summary of Current and Historical Wind Data at Livingston, Montana
Table	3-26.	Regression Analysis of Historical Wind Data Against Current Wind Data

LIST OF FIGURES

Figure	3-1.	Frequency Distributionof Alongwind Turbulence Intensity at Livingston, Montana 3-11
Figure	3-2.	Frequency Distribution of Acrosswind Turbulence Intensity at Livingston, Montana 3-12
Figure	3-3.	Frequency Distribution of Alongwind Turbulence Intensity at Livingston, Montana 3-14
Figure	3-4.	Cumulative Frequency Distribution of Acrosswind Turbulence Intensity at Livingston, Montana 3-15
Figure	3-5.	Average Turbulence Intensity by Time of Day at Livingston, Montana
Figure	3-6.	Percent Frequency of Occurrence of Alongwind Turbulence Intensities Versus Wind Speed 3-23
Figure	3-7.	Percent Frequency of Alongwind Turbulence Intensities Above Indicated Values for Wind Speeds
Figure	3~8.	Percent Frequency of Acrosswind Turbulence Intensities Above Indicated Values for Wind Speeds
Figure	3-9.	Average Turbulence Intensity by Wind Direction Category at Livingston, Montana 3-29
Figure	3-10.	Frequency Distribution of Absolute Wind Shear at Livingston, Montana
Figure	3-11.	Frequency Distribution of Wind Shear at Livingston, Montana
Figure	3-12.	Cumulative Frequency Distribution of Absolute Wind Shear at Livingston, Montana 3-42
Figure	3-13.	Cumulative Frequency Distribution of Wind Shear (P) at Livingston, Montana
Figure	3-14.	Average Wind Shear by Time of Day at Livingston, Montana
Figure	3-15.	Average Wind Shear Versus Wind Speed at Livingston, Montana
Figure	3-16.	Average Wind Shear by Wind Direction Category at Livingston, Montana
Figure	3-17.	Average Monthly Wind Speed and Wind Energy at

EXECUTIVE SUMMARY

The Livingston Wind Shear and Turbulence study was performed by MultiTech for the Montana Department of Natural Resources and Conservation (DNRC), with funds provided by a grant from the Renewable Energy Program. The objective was to obtain and analyze data to define the wind shear and turbulence characteristics of the Livingston bench area, so potential developers would have sufficient information on which to base their siting and engineering decisions. Data were collected at two-minute intervals for a 16-month period at three levels on a 46-meter tower located on the Livingston bench. The data were processed by a datalogger, recorded onto magnetic tape, and sent to MultiTech's Offices in Butte for computer analysis. Monthly wind shear and turbulence statistics have been submitted quarterly to DNRC throughout the course of this project. This final report summarizes these statistics and analyzes the wind shear and turbulence characteristics of the Livingston bench area. Massive amounts of data were collected and analyzed, but the project had numerous meteorological equipment and tower hardware problems.

The turbulence characteristics of the Livingston site were found to be generally favorable and should not discourage future development of the area's wind resources. The wind shear characteristics are of greater concern, and an accurate understanding of these is necessary for potential future developers to ensure machine performance.

1.0 INTRODUCTION

A substantial amount of historical wind monitoring has been performed on the Livingston bench, with the objective of quantifying the available wind resource. In 1979, DNRC contracted MultiTech to perform systematic wind monitoring with a 10-meter meteorological tower. Later that same year, the U.S. Department of Energy (DOE) also contracted with MultiTech to monitor wind energy in the area, which resulted in the designation of Livingston as a MOD-2 candidate site and the initiation of tri-level monitoring on a 45-meter tower. The results of both studies indicated favorable conditions for wind energy development at Livingston and led to the installation of wind machines by several manufacturers.

These machines suffered numerous breakdowns for reasons not fully understood. Potential developers had expressed concern that meteorological conditions may have been the cause of poor machine performance at Livingston, particularly wind shear and turbulence. In response to these concerns, DNRC contracted MultiTech to quantify the wind shear and turbulence characteristics on the Livingston bench. The following sections briefly define wind shear and turbulence phenomena and the physical, environmental, and climatic conditions that contribute to them.

1.1 PHYSICAL AND ENVIRONMENTAL FEATURES AFFECTING WIND SHEAR AND TURBULENCE

Both wind shear and turbulence are strongly affected by natural terrain and man-made features. These factors are often referred to by the term "surface roughness". In general, both wind shear and turbulence tend to increase with increasing surface roughness (Hiester 1981). An example of extreme surface roughness is a downtown urban area with skyscrapers. In this case, the strong frictional effects of the skyscrapers would cause wind speeds near the ground to be much lower than those above the building tops, resulting in a strong wind shear. Similarly, the buildings would induce wake effects and favor the formation of turbulent eddies; they would cause the flow to be less smooth.

At the other extreme is airflow over a flat plains region, or over a calm ocean. In these cases, the surface roughness is very low, so that frictional effects would largely disappear a short distance above the surface. In this case, in the absence of other meteorological factors, wind speed would tend to change slowly with increasing height beyond a short distance above ground. Furthermore, the absence of wake-inducing features would not favor the formation of turbulent eddies, and the magnitude of turbulence would tend to be much less than in a downtown urban area. Intermediate examples include small, rolling hills and flat wooded terrain. In these cases, one would expect the turbulence and wind shear to be greater than that over an ocean, but less than in an

urban area, as the surface roughness is intermediate between these extremes.

The Livingston study area, while located on a relatively flat, open bench, is nearly surrounded by high, steep mountains where the near-surface airflow is largely dictated by terrain features. It was speculated that the rough terrain could at times induce significant surface frictional effects out to the bench area, resulting in strong wind shears. Similarly, the mountainous terrain could favor the formation of turbulent eddies during certain wind regimes. Thus, ample reason existed for concern about wind shear and turbulence phenomena.

1.2 RELATION OF METEOROLOGICAL FACTORS TO WIND SHEAR AND TURBULENCE

In addition to terrain features, wind shear and turbulence also are strongly related to meteorological conditions. A very important factor affecting wind shear is atmospheric stability, defined by the rate of change of temperature with height (Thresher 1984). The following table shows a scheme used by the Nuclear Regulatory Commission (Atomic Energy Commission 1972).

TABLE 1-1. DEFINITION OF ATMOSPHERIC STABILITY CLASSES

Classification	Pasquill Stability Category	T100m - T10m
Very unstable	A	<-1.7°C
Moderately unstable	В	-1.7 to -1.5 °C
Slightly unstable	С	-1.5 to -1.3 ^o C
Neutral	D	-1.3 to -0.4 $^{\circ}$ C
Slightly stable	E	-0.4 to $+1.3$ °C
Moderately stable	F	$+1.3$ to $+3.6^{\circ}$ C
Very stable	G	>+3.6 ^o C

The relation of wind shear to stability tends to be well defined. In unstable and neutral conditions high momentum air is mixed down near the surface. This reduces the amount of wind shear across a typical wind machine rotor disk (normally located at least 20 meters above ground) because much of the shear occurs in the lowest 10 meters of the atmosphere. During stable conditions, by contrast, the mixing of high momentum air down to the ground is less. Thus, less of the wind shear occurs in the lowest 10 meters, resulting in greater shear across a rotor disk than would occur during neutral or unstable conditions (Hiester 1981). This relationship could be affected by other factors, such as wind speed.

The impact of stability on turbulence previously had not been widely studied and was investigated during this project. One type of meteorological phenomenon well known for producing extremely gusty conditions with high winds is the thunderstorm. Because a weather observation station is located at the Livingston airport,

this study provided an opportunity to study turbulence and wind shear during thunderstorm conditions. The airport observers record the beginning and ending times of all precipitation episodes, including thunderstorms. Wind shear and turbulence data collected during thunderstorm episodes were examined to determine whether they differed from data obtained during other periods. The relationship between wind shear and turbulence also was investigated during this study.

Extensive analyses of the results are presented in Section 3.0. However, a brief summary of meteorological conditions that affect wind shear and turbulence at Livingston, based on the study results, is given below. The meteorological conditions that cause increases in wind shear tend to decrease turbulence, and vice versa.

TABLE 1-2. SUMMARY OF FACTORS AFFECTING WIND SHEAR AND TURBULENCE

Factor Wind Shear Turbulence	e
Low wind speeds Decrease Increase	
High wind speeds Increase Decrease	
Daytime hours Decrease Increase	
Nighttime hours Increase Decrease	
Southerly and northerly	
winds Decrease Increase	
Southwesterly and easterly	
winds Increase Decrease	
Stable conditions Decrease Increase	
Unstable conditions Decrease Increase	
Thunderstorms Insignificant Insignifi	cant

1.3 DEFINITION OF TURBULENCE AND WIND SHEAR CHARACTERISTICS AND STATISTICS

1.3.1 Turbulence

Turbulence, with respect to wind in an atmospheric flow, can be considered as random fluctuations in wind speed about a mean value. These fluctuations are often described as gusts, and can be defined and interpreted in several ways. As an example, consider an atmospheric flow with a mean magnitude, x, of 5 meters per second (ms^{-1}) over a period of two minutes, with variations of up to $mathbb{1}$ $mathbb{1}$ $mathbb{2}$ $mathbb{3}$ $mathbb{3}$ mathb

A more useful way of describing gustiness for wind-energy potential is in terms of the standard deviation of the wind speed over a given averaging period (Kelly 1984). For example, knowing that the mean wind speed (determined vectorially) over a two-minute period was $5~{\rm ms}^{-1}$, with a standard deviation of $0.5~{\rm ms}^{-1}$, would be useful information about the gustiness of the wind.

Two types of turbulence intensity satistics were calculated: alongwind turbulence intensity (ALT) and acrosswind turbulence intensity (ACT). ALT is defined as the standard deviation of wind speed along the mean wind vector divided by the mean vector wind speed. ACT is defined as the standard deviation of the wind speed

perpendicular to the mean wind vector divided by the mean vector wind speed.

Turbulence intensities are calculated as follows:

$$ACT = \frac{[(A-B^2)(C^2)+(D-C^2)(B^2)-2(E-(B)(C))(B)(C)]^{1/2}}{B^2+C^2}$$

ALT =
$$\frac{[(A-B^2)(B^2)+(D-C^2)(C^2)+2(E-(B)(C))(B)(C)]^{1/2}}{B^2+C^2}$$

Variables A-E are defined as follows:

Let U = Mean easterly wind component

V = Mean northernly wind component

Then $A = Average of U^2$

B = Average of U

C = Average of V

 $D = Average of V^2$

E = Average of (U)(V)

Previous studies have indicated that the magnitude of the acrosswind turbulence intensity is generally less than that of the alongwind turbulence intensity (Akins 1978). However, at Livingston the opposite was usually found to be true, except during high wind speeds.

1.3.2 Wind Shear

Wind shear is defined as the change in wind speed with height. Two types of wind shear statistics, termed absolute wind shear (AWS) and the power law exponent (PWS), were calculated for this study. AWS is simply the difference in absolute wind speed between two heights. For example, if the wind speed at 9 meters were 8 ms⁻¹ and the speed at 46 meters were 10 ms⁻¹, the AWS would be 2 ms⁻¹ (Elliott 1984).

PWS is an attempt to logarithmically define the change in wind speed with height using the following equation:

$$V(Z_1) = V(Z_0) (Z_1)^P (\bar{Z}_0)$$

where $V(Z_1) = Wind speed at height <math>Z_1$ $V(Z_0) = Wind speed at height <math>Z_0$ P = Power law exponent (PWS).

Using the above example, $V(Z_1) = 10 \text{ ms}^{-1}$, $V(Z_0) = 8 \text{ ms}^{-1}$, $Z_1 = 46$ meters, and $Z_0 = 9$ meters. Solving for P, one obtains a value of 0.145.

2.0 MONITORING SYSTEM DESIGN

The design of the monitoring system was dictated by the data requirements to adequately define wind shear and turbulence at Livingston. At the onset of the project, several individuals who are actively involved in wind monitoring and development were contacted to determine how wind shear and turbulence data should be obtained to be useful to a developer. They recommended that both alongwind and acrosswind turbulence intensity be measured at three tower levels and reported at 2-minute intervals (Akins 1984). They also recommended that maximum instantaneous wind shears over these same 2-minute intervals be measured. These requirements necessitated a very sophisticated data collection system, described in the following sections.

2.1 DATA COLLECTION AND ANALYSIS PROCEDURES

Monitoring was performed at heights of 9 meters, 30 meters, and 46 meters above ground level on the 46 meter tower located on the Livingston bench. Wind data were collected by wind speed and direction sensors at each level, and processed by a data logger to obtain the needed raw wind statistics at 2-minute intervals. The data were dumped onto cassette tapes, forwarded weekly to MultiTech's office in Butte, and read into the mainframe computer. These statistics then were used to calculate the required wind shear and turbulence data for each 2-minute period. Additionally, atmospheric stability was monitored by temperature sensors located

at the 9 meter and 46 meter tower levels. All data were printed out in daily reports and checked for validity; any data suspected to be invalid were flagged and not used in any subsequent data analyses.

The massive amount of data collected during this study was stored both in its raw form and as frequency counts in joint distributions to facilitate easier access and manipulation. Table 2-1 shows an example of this second data storage technique: joint frequency counts of alongwind turbulence intensity and wind speed at the 30-meter level for the month of September 1985. Each number within the array represents the number of coincident occurrences during the month of both wind speed and alongwind turbulence intensity falling within their respective ranges. For example, the number in the top left corner of the array, 83, indicates the frequency of simultaneous occurrences of wind speeds between 0 and 2 ms⁻¹ and alongwind turbulence intensities of between 0 and 5% during the month of September. Monthly arrays of this type were generated for the following combinations of variables, at all three tower levels:

1. Turbulence Intensity and:

Time of Day
Wind Speed
Wind Direction
Atmospheric Stability
Wind Shear

Joint Frequency Distribution Table SEP, 1985

TURBULENCE_INTENSITY_ALONG_WIND_30M versus WIND_SPEED_30M (2nd Parameter)

	Std	000000000000000000000000000000000000000	
	Avg		
	0.0	7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	0.95	N H O O O O O O O O O O O O O O O O O O	
	0.80	N N O O O O O O O O O O O O O O O O O O	,
	0.80	H H H O O O O O O O O O O O O O O O O O	,
	0.75	N M O O M O O O O O O O O O O O O O O O	,
	0.70	w w o o o o o o o o o o o o o o o o o o)
	0.70	N M H O O O O O O O O O O O O O O O O O O)
	0.65	m + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
	0.55	w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
	0.55	4 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
	0.50	4 @ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
	0.40	N m a o o o o o o o o o o o o o o o o o o)
Range	0.35	m)
30M 1	0.30	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
WIND	30.30	17480	
TY_ALONG_WIND	.25 0	# 0 0 4 7 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9)
\vdash	.15 0	υω Γυνου συνο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	
TURBULENCE_INTENS	.150	111111111111111111111111111111111111111	
NCELI	.10 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
RBULE	0 50.		
TO	0	H H H H H H H H H H H H H H H H H H H	
	nd aram ange	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	<1 €' Œ	H H H H H H A A A A A A A A A A A A A A	'

Table Statistics
Total Count
Monthly Count, 21600
Fercent Peccheny 88.52 %

TABLE 2-1

2.0

1.9

2.1

2.1 3.5 3.4 0.5 3.0 1.4

2.6

1.8

0 . 8

2.3

2.4

2.1

2.8

3.0

3.4

2.9

3.6

3.5

3.6

5.7

WIND_SPEED_30M Average Std Dev

2. Wind Shear and:

Time of Day
Wind Speed
Wind Direction
Atmospheric Stability
Maximum Wind Shear
(During the same 2-minute
period)
Maximum Wind Speed
(During the same 2-minute
period)

- 3. Alongwind Turbulence Intensity and Acrosswind Turbulence Intensity
- 4. Wind Speed and Wind Direction

Since a primary objective of this study was to define the influence of other meteorological parameters on wind shear and turbulence, this type of data storage system generally worked very well. Most of the subsequent data analyses involved various manipulations of these arrays. Additionally, statistics on the duration of wind shear and turbulence intensities above given levels were generated.

Finally, a variety of wind speed, wind direction, and wind energy statistics were generated for each month, as listed below:

- Daily average wind speed and direction for each tower level;
- Monthly average wind speed and direction for each tower level;
- Hourly average wind speed and direction for each tower level;
- Daily and monthly average wind energy for each tower level;

Wind speed and direction joint frequency distribution for each tower level.

These statistics were correlated with historical data collected at Livingston between 1980 and 1982 (see Section 3.6).

2.2 MONITORING PARAMETERS AND EQUIPMENT

Wind direction, wind speed, and temperature were monitored directly approximately every second; average values of these parameters were calculated by the datalogger and recorded onto magnetic tape every two minutes. A variety of other wind statistics required for wind shear and turbulence calculations also were calculated by the datalogger every two minutes. The actual wind shear and turbulence values were computed by MultiTech's mainframe computer in Butte. Table 2-2 lists the parameters that were monitored during this study. Parameters that were used to calculate wind shear statistics are denoted by an asterisk (*); those used to calculate turbulence are marked with a plus (+).

The monitoring of these parameters, particularly the parameters used to calculate turbulence, required a very sophisticated datalogging system. The data logger chosen for this project was a Campbell Scientific Model CR21X. In addition to accommodating a large number of sensor inputs, it had the extensive in-field algebraic programming capabilities necessary to monitor the parameters needed to calculate the wind shear and turbulence

TABLE 2-2. PARAMETERS MONITORED AT LIVINGSTON

DIRECTLY MONITORED PARAMETERS

Parameter	Sample Frequency	Tower Levels Monitored
Wind Direction	1 second	9m, 30m, 46m
Wind Speed	1 second	9m, 30m, 46m
Temperature	2 minutes	9m, 46m

INDIRECTLY MONITORED PARAMETERS (CALCULATED BY DATALOGGER)

Parameter	Sample Frequency	Reporting Frequency	Tower Levels
Wind Direction Standard Deviation	1 second	2 minutes	9m, 30m, 46m
Wind Speed Average*	1 second	2 minutes	9m, 30m, 46m
Wind Speed Maximum	1 second	2 minutes	9m, 30m, 46m
U_Component Average+	1 second	2 minutes	9m, 30m, 46m
U ² -Component Average+	1 second	2 minutes	9m, 30m, 46m
V-Component Average+	1 second	2 minutes	9m, 30m, 46m
V ² -Component Average+	1 second	2 minutes	9m, 30m, 46m
U-V Component Average+	1 second	2 minutes	9m, 30m, 46m
Wind Shear Maximum*	1 second	2 minutes	9m-46m, 9-30m, 30m-46m
Temperature Average	1 second	2 minutes	9m, 46m

PARAMETERS CALCULATED BY MAINFRAME COMPUTER 1

Parameter	Tower Levels
Alongwind Turbulence Intensity	9m, 30m, 46m
Acrosswind Turbulence Intensity	9m, 30m, 46m
Wind Shear Average	9-30m, 9m-46m, 30m-46m
Atmospheric Stability (Delta T)	9m-46m
Wind Direction Average	9m, 30m, 46m

 $^{^{1}\,\,{}^{\}text{T}}\text{hese parameters were all calculated for 2-minute averaging periods.}$

^{*} Used for wind shear calculations.

Used for turbulence calculations.

statistics. Campbell Scientific Model CS101 sensors were used to monitor temperature at 9 meters and 46 meters, necessary for the calculation of atmospheric stability.

The selection of wind sensors was also of critical importance, as the measurement of turbulence and wind shear requires sensors that respond quickly to changes in wind direction and speed. To meet this objective, Met One Model 010 and Model 020 sensors were used to monitor wind speed and wind direction. Both are made to respond quickly to changes in the wind and have distance constants of approximately 5 feet. This statistical term commonly is used to describe the responsiveness of wind sensors, and it is the distance travelled by the air after a sharp-edged gust has occurred before the sensors react to 63% of the change in wind speed and direction. Met One sensors were chosen because of their high performance and reliability on several previous projects. Originally, plastic anemometer cups were used because of their high responsiveness; however, large amounts of data were lost because of cups blowing off during extremely windy periods. Efforts were made to correct this problem, first by reinforcing the plastic cups with epoxy, and finally by replacing the plastic cups with metal cups. these corrective measures solved the problem, and the data loss caused by the problem was an impediment throughout the project.

Specifications for the equipment used in the project are shown in Appendix A.

3.0 RESULTS AND DISCUSSION

3.1 DEVELOPMENT OF STATISTICS

The monthly joint frequency count arrays described in Section 2.1 provided the basis for most of the wind shear and turbulence data analyses performed for this project. Four principal types of analyses were generated: annual joint frequency count arrays, joint frequency distribution arrays, percent frequency distribution arrays, and cumulative percent frequency distribution arrays.

First, most of the monthly arrays were added together by type to obtain joint frequency counts for the entire data period. For example, joint frequency counts of alongwind turbulence intensity and wind direction at 30 meters for the entire data period (annual joint frequency count arrays) were generated by adding together all of the monthly joint frequency counts of these two parameters. This step was necessary to reduce the data base to a manageable size as, during the period monitoring was performed, nearly 1,000 of these monthly joint frequency count tables were generated.

Second, while the joint frequency counts were useful for determining the number of occurrences of ranges of variables, the percentage of the time given conditions occurred also was desired. Therefore, the joint frequency count arrays were used to generate joint frequency distribution arrays, showing the percentage of the time that different combinations of variables were present.

Since a primary objective of this study was to examine the variation of turbulence and wind shear with other meteorological variables, these joint frequency distribution arrays were in turn used to generate two other types of arrays. The first, percent frequency distribution arrays, were calculated to show the behavior of wind shear and turbulence with other meteorological variables. For example, the array combining alongwind turbulence intensity and wind speed at 9 meters gives a frequency distribution of alongwind turbulence intensity at 9 meters for each wind speed range that occurred at 9 meters. Similarly, cumulative percent frequency arrays were generated. For the above example, this type of array shows the percentage of the time that the alongwind turbulence intensity at 9 meters exceeded given values, for given wind speed ranges.

Examples of each array type are shown in Tables 3-1 through 3-4.

All annual array tables that were generated are presented in Appendix E.

The monthly arrays and annual arrays, respectively, were used to calculate frequency distributions of wind shear and turbulence for each level by month and for the entire data period. The wind speed, wind direction, and wind energy statistics already had been reduced to a manageable form for the quarterly analyses; final analysis required some compilation and summarization of statistics, but no additional computer data reduction, except for the generation of seasonal and annual wind roses.

TABLE 3-1

		2	ı	, , , , , , , , , , , , , , , , , , ,	5	9	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		6 ^	1	12	54	P4																						
	-	90-95	1 1 1 1	2	4.5	4	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(85-90	1 1 1 1	7	4 4	ሮን	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(80-85		133	57	2	m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(75-80		15	75	C)	0	П	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0
		70-75	ı	14	88	7	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	5-70	1	56	85	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		60-65 6		16	66	7	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERCENT		55~60 e	1 1 1 1 1	24	152	2	2	1	1	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RANGE, P		50-55 5	1 1 1 1	<u>ო</u>	202	17	~4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		5-50	1	38	288	5.9	6	n	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTENSITY		0-45 4	1 1 1 1	55	358	65	00	n	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
TURBULENCE		5-40 4	1																0									
TURBU		30-35 3	1	98	735	203	6.2	17	10	9	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		5-30		149	1308	423	144	79	46	22	90	[7	ന	n	0	₩	0	0	0	0	0	0	0	0	0	0	0	0
		20-25 2	1	~	10	1046	584	315	168	87	61	41	15	9	e=1	-	0	0	0	0	0	0	0	0	0	0	0	0
		15-20 2	ı	557	4703	75	1918	36	795	472	269	185	100	51	32	σι	2	П	0	0	0	0	0	0	0	0	0	0
		S		1511	7859	6307	6704	6121	4339	2669	1440	1030	673	400	250	96	40	22	C1	2	0	0	0	0	0	0	0	0
		5-10		5708	10480	9427	12964	(,)	10835	7603	4159	2596	1925	1522	775	473	216	36	13	n	-	0	0	0	0	0	0	0
		9-0		1634	070	2595	044		712	1049	576	260	160	138	8	53	23	7	2	2	0	0	0	0	0	0	0	0
0	Ea.2			2.0	0.4	6.0	8.0	0.0	2.0	0.4	0.0	9.0	0.0	2.0	0.5	0.0	9.0	0.0	2.0	0.4	6.0	8.0	0.0	5.0	0.4	9.0	8.0	0.0
SPEE	52	W/S	^	0.	0.	0	0	0	0	.0	0.	.0	.0	.0 2	.0	0.	.0	.03	30.03	.03	0	0.	0.	0.	0,	0.	.0	.0.5

JOINT FREQUENCY COUNT OF ALONGWIND TUPBULENCE INTENSITY(46 METERS) AND WIND SPEED(46 METERS) AT LIVINGSTON, MONTANA.

DATA PEPICE PEP.1985 - NOT. 1986

MIND

ç	1
	ı
ſ	~
į	
0	Y
	4

		1	0.2	33	0.1	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	000	00			0 0	00	0 (0
	11		Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	C	C) (0 0	<u> </u>	0 1) (Ö
	35-35	1 2 2				0.0			0.00	0.00			0.00															
	C)	11111	0.01	0.03	00.0	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.00	00.0	00.0	00.0				0 0	00.0	0.00	0.0	00.0	00.00
	94-18	1 1 1 1											00.0							4								0.00
	29-5	1111	0.03										00.0							4			4		4		00.0	
	70-75 7	1 1 1 1	0.01										00.0															
	02-0	1 1 1 1											00.00					4		-		-						
	A 63-14	1 1 1	0.01	0.06	00.0	00.0			000	000	00.0	000	00.0	000	000								0 0	00.0	00.0	00.0	00.0	00.0
RCERT	5, -61 F	1 1 1	0.03	500	000					000	000	000	00.0		000								0 .	00.0	00.0	00.0	00.00	00.0
GE, PE	50-48 5												000															
TY RANG	6-56	1 1 1																										
INTENSITY	2 (3 5 -1)	+				4			4												4							
	6-40 4	1										4																
TURBULENCE	30-35 3		0.05	45		1 0										00.0	000	000	0 0	00.00	00.0	00.0	00.00	00.0	00.0	0.00	00.0	00.0
	24 30 3	1	00	0 0) u	2 0		000	5 6	- C						00.	0 0	00.	0 0	00.	00.	00.	00.	00.	00.	00.	00.	00.
				. 0 5	1 4	\$ C	000	7 (0 1 0	0 5	4 0	2 6	3.0	000	0 0	00.	000	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.
			2.4	1 1	9 0	0 0	9 0	ກ (ພ	00 C	R7.	01.	7 .	90.	n 0	70.	10.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00	00.	00.00
	0-15 1		0																					4				00.0
	5-11: 1	1	1 0	0 0	י ת טיני	6.7.	. 91	0.4	19.	. 04	. 54	ω . Ω .	27.	. y	14.	. 29	ლ —	.02	.01	00.	00.	00.	00.	00.	00	00	00	00.0
		;	1	0 0	2	28	9	9	0	64	i С	16	10	0.0	90.	. 03	.01	00.	00.	00.	00.	00.	00.	00.	00		0	00.00
			I																									0
WIND	BANGE N o		 	. 7	ý.	0.	0.	0 10.	0	. 0 14	.0 16.	.0.	.0 20.	.0 22.	.0 24.	.0.26.	.0 28.	.080.	.0 32.	.0 34.	.0 3€.	.0 38.	.040.	0.42	77	7 7 0		.0 50.
L ()				D +	7	4	9	OC.	10	C 3	7 4	16	18	20	63	64	26	28	30	3.2	34	36	(0)	4	, ,	1 40	77	1 1

JOINT FREQUENCY DISTRIBUTION OF ALONGWIND TURBULENCE INTENSITY(46 METERS) AND WIND SPEED/46 METERS! AT LIVINGSTON, MONTANA. (VALUES SHOWN ARE PERCENT OF TOTAL OUSEFVATIONS FALLING WITHIN CORFESPONDING WIND SPEED ARE TURBULENCE PANGES!

	ŀ	
ĺ	~)
		ı
J	4	ł
ì	-	1
ı	1)
١	q	ζ

		1 1	1.17	1.65	0.07	0.01	00.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00							
	96-06																		00.0		٠	٠	٠		٠		
	85-90	1 1 1 1 1	0.16	0.13	0.01	0.01	0.00	00.00	0.00	0.00	00.00	00.0	00.00	0.00	00.0	0.00	00.00	00.0	00.0	0.00			٠		٠		٠
	80-85	1	4														-		00.0				٠	٠			
	75-80	1	4										- 0						00.0					٠		٠	٠
	70-75					-		0											0.00		٠	٠		٠	٠	٠	٠
	65-70	1																	00.0		٠			٠			
	60-65	1																	00.0				-		-		
ERCENT	99-39																		00.0		٠						
RANGE, P	56-55												4						0.00							٠	
	46-50	1				4						- 0							00.00		٠		٠	٠			
INTENSITY	40-45			4						4				4					0.00		٠	٠	٠	٠	٠		٠
TURBULENCE	35-40	Į.			4		4												0.00			٠		٠	٠	٠	٠
TURBU	36-38	1																	0.00							٠	٠
	06-12	1 1																	00.00		٠		٠	٠	-		
	20-21	1-1-1-1																	0.00								
	15-20	1		2	6		.5		0	e-1		4	4		4				00.0		٠		٠	٠	٠	٠	٠
	1(-15	1 1 1	. U		4.	.3	ا ا	4.2	4	2	0	3.4	00	1.6	5.4	0.4	Ο.	1.7	28.57	0.	٠	٠	٠			٠	٠
	5-10	1	1 1	1.6	0	0.0	6.4	0.4	3.	ω.	01	6.9	1.5	7.0	Δ.	0.9	10	6.4	42.86	00.00				٠			
	0-5	ı	37.	9.28	1.27	95	1.10	9.56	00	00	F1 (C)	.56	. 51	8	89	10	0.61	.76	8.57	.001	٠	٠	٠	٠	٠		
a di	ıl o vo	11							4	9	60	c	0	4	9	00	0	0	4	36.0	80					- 4	
SPEE	< 2	^.						0	0.0	0.4	0.9	0	0.0	0.0	0.	0	0.8	0.0	2.0	34.0 3	0.9	0.8	0.0	0	4.0	0.9	0.

PERCENT FREQUENCY DISTRIBUTION OF ALONGWIND TURBULENCE INTENSITY(46 METERS) BY WIND SPEED/46 METERS) KANGES AT LIVINGSTON, MONTANK.

"VALUES OF " " ARE SHOWN FOR WINI SPEED RANCE" THAT HEVER OCCUPRED

MATE PEPICE SEP 1985 - MOV. 9--

									_	_	_			_													
	>=95	1					0.00														-				٠		
	06=<	1 1 1 1					00.0			- 4															٠		
	>=85						00.00																٠		٠		
	>=80	i					00.0														٠		٠	٠			
	3=75	!!!!					0.01					4														٠	
	>=70						0.01															٠			٠		
	7≡65	1	.04	.86	.21	.03	0.01	.01	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	00.	00.		٠		-			
	09	1	5	.16	. 24	.04	0.01	.01	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00	00.			٠		٠		
	>=55	1 1 1 1 1	. 42	.62	.27	.04	0.01	.01	.01	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.							
RCENT	09=7	1 1 1 1 1	. 74	.23	.34	.05	0.02	.01	.01	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.							
U.	>=45	1	111	.10	.47	.08	0,03	.01	.01	.02	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	٠				٠		
INTERSITY		1 1111	.64	00	.75	-1	0.04	.01	.01	.02	00.	00.	00.	00.	.16	00.	00.	00.	00.	00.	٠				٠	-	
	>=36=<		0.7	.75	.16	61.	90.	.03	.03	.02	00.	00.	00.	00.	.16	00.	00.	00.	00.	00.							
TURBULENCE	-30 >	İ	90.	76.	.04	44	.13 0	60.	.08	.05	.05	00.	00.	00.	.16	00.	00.	00.	00.	00.							
H	1.7	1 111	. 50	85.	. 88	00.	.45 0	ග ප	.21	. 17	. 22	.10	.14	00.	.31	00.	00.	00.	.00	00.							
	1011	1 1 1 1	. 14	.04 1	. 42	200	.74 0	. 28	66.	10	.21	.63	.38	50.	.47	00.	00.	00.	00.	00.							
	-15 -	1 1 1 1	. 52	.26 2	.31	62	.33 1	.72	. 95	. 23	. 70	.10	. 78	. 85	. 80	.76	. 52	00.	00.	.00							
	-10 >	ï	1 1	8	7 2	5 1	.43 7	10	10	m	0	0	in.	m	0	ın	10	10	7								
	10 0	1	2	CI	3	5	90 32	2	Q1 C4	6	6	4	9	2	7 1	0 1	9	4 1	3 2	0							
	Ä		84.	90	88	88.	ω	06	G:	6	93.	94.	93.	91	91.	91.	89.	88.	71.	60							
)=/	i	01	01	6.5	91	66.66	0.	6.6	о О	6.6	9.9	6.0	9.9	6.0	9.9	6.5	9.9	9.9	6.6		٠		•			
6.4 (LI)	L*	11					10.0				- 6	4															
SPEE	(N.		0	0	0.	0	6.0	0	0	0	0.	0.	0.	0	0	0	0.	0.	0.	0.	0.	0.	0.	0	C.	0.	0
								-	*1	0.76	F	\rightarrow	N	Ĉ4	C-I	N	CA.	3	(1)	3	3	0	A.	4	4	4	4

CUMDIATIVE REPOENT FREQUENCY OF ALONGMIND TURBULENCE INTENSITY(46 METERS) BY WIND SPEED(46 METERS) PANGE AT LIVINGSTON, MOTTANA TVALUES OF "" ARE SPOOD FOR WIND SPEED WANGES THAT BEVEN OCCURRED)

The second of th

3.2 TURBULENCE INTENSITY

Alongwind and acrosswind turbulence intensity data were collected at heights of 9 meters, 30 meters, and 46 meters every 2 minutes during this study. The following sections present and discuss the summarized turbulence data, beginning with a general discussion of the turbulence characteristics at Livingston. Next, turbulence characteristics are related to time of day, wind speed, wind direction, atmospheric stability, wind shear, and thunderstorm conditions. An overall assessment of the turbulence environment at Livingston is presented in Section 3.7, Conclusions.

3.2.1 General Turbulence Characteristics

In general, the turbulence intensity at Livingston can be classified as low to moderate, based on a classification system developed by Baker et al. 1986. In this system, turbulence intensities below 10% are classified as "low"; those between 10 and 20% as "moderate"; and those over 20% as "high". The average alongwind turbulence intensity (ALT) for the period of study ranged from 12.9% at the 9-meter level down to 11.7% at the 46-meter level. Average acrosswind turbulence intensities (ACT) ranged from 15.1% at 9 meters down to 13.9% at 46 meters. The Baker classification system is based on the standard deviation of the wind speed divided by the average wind speed, a statistic which is nearly identical to the alongwind turbulence intensity. The acrosswind turbulence intensity is somewhat related to the standard

deviation of wind direction, but does not lend itself to any existing system of strength classification. However, Baker's system is used in this report for data comparison purposes.

Table 3-5 presents average turbulence intensities for each month that data were collected; several trends can be observed. first is that turbulence intensities tend to decrease with height, particularly between 9 and 30 meters. This is to be expected, as ground-induced mechanical turbulence effects normally decrease logarithmically with height. This also explains why differences in turbulence between 9 and 30 meters are much more apparent than those between 30 and 46 meters. A second trend is that of higher turbulence during late spring and summer months, and lower turbulence during the winter, which reflects the role of solar heating in generating atmospheric turbulence and also the effects of wind speed, discussed in Section 3.2.3. Finally, in nearly all cases the ACT is higher than the corresponding ALT. surprising, as a previous study in New Mexico had found the opposite to be true (Akins 1984). The ACT observed in New Mexico was similar to that in Livingston, but the ALT intensities were much higher in New Mexico. However, the monthly average ALT at Livingston never exceeded the midrange (15%) of the moderate category defined by Baker.

Frequency distributions of ALT and ACT are presented in Table 3-6 and Figures 3-1 and 3-2. Intensities between 5 and 15% are the most common, occurring about 75% of the time; the higher turbulence

TABLE 3-5. MONTHLY AVERAGE TURBULENCE INTENSITY AT LIVINGSTON, MONTANA DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Average Turbulence Intensity

Month*	Alongwind 9 Meters	Acrosswind 9 Meters	Alongwind 30 Meters	Acrosswind 30 Meters	Alongwind 46 Meters	Acrosswind 46 Meters
March	12.3	13.2	10.8	12.1	10.0	11.0
April	12.0	13.3	11.2	12.6	11.3	12.8
May	14.2	18.7	13.1	15.1	12.7	15.6
June	13.8	17.8	13.5	17.3	12.8	16.8
July	14.0	18.0	12.5	16.1	12.2	15.9
August	13.8	18.6	13.3	17.5	13.3	17.5
September	12.4	14.1	11.3	12.8	11.5	13.2
October	12.9	14.8	12.7	13.4	12.0	14.3
November	11.1	12.0	10.0	11.1	10.7	10.9
December	12.5	12.3	11.0	11.3	10.4	11.2
Annua ?	12.9	15.1	11.9	14.0	11.7	13.9

^{*} Because of equipment malfunctions, no turbulence data were collected during the months of January or February.

TABLE 3-6. FREQUENCY DISTRIBUTION OF TURBULENCE INTENSITY
AT LIVINGSTON, MONTANA
DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Turbulence			Danaanh E			
Intensity Range Percent	Alongwind 9 Meters	Acrosswind 9 Meters	Percent F Alongwind 30 Meters	Acrosswind 30 Meters	Alongwind 46 Meters	Acrosswind 46 Meters
0-5	4.78	2.66	8.23	6.42	10.45	9.52
5-10	39.62	40.41	49.18	46.03	50.33	46.15
10-15	36.69	31.21	26.95	24.10	24.08	21.63
15-20	11.25	11.36	8.29	9.60	8.06	8.76
20-25	3.71	5.23	3.16	4.79	3.02	4.60
25-30	1.50	2.74	1.43	2.74	1.34	2.70
30-35	0.71	1.74	0.74	1.67	0.69	1.70
35-40	9.40	1.11	0.43	1.12	0.43	1.13
40-45	0.27	0.76	0.33	0.74	0.30	0.75
45-50	0.17	0.53	0.20	0.55	0.22	0.59
50-55	0.12	0.40	0.16	0.39	0.16	0.44
55-60	0.08	0.29	0.13	0.31	0.12	0.32
60-65	0.07	0.24	0.09	0.22	0.08	0.27
65-70	0.05	0.22	0.08	0.18	0.08	0.20
70-75	0.05	0.14	0.05	0.15	0.07	0.17
75-80	0.05	0.12	0.05	0.12	0.06	0.13
80-85	0.03	0.10	0.05	0.11	0.05	0.11
85-90	0.03	0.08	0.04	0.09	0.04	0.10
90-95	0.3	0.07	0.04	0.07	0.03	0.07
95<	0.37	0.61	0.41	0.60	0.42	0.67

FREQUENCY DISTRIBUTION OF ALONGWIND TURBULENCE INTENSITY AT LIVINGSTON, MONTANA FOR:

A) 46 METERS B) 30 METERS C) 9 METERS

DATA PERIOD SEP. 1985 - NOV. 1986 A-70 V50101

FIGURE 3-2
FREQUENCY DISTRIBUTION OF ACROSSWIND TURBULENCE INTENSITY
AT LIVINGSTON, MONTANA FOR:

A) 46 METERS B) 30 METERS C) 9 METERS

DATA PERIOD SEP. 1985 - NOV. 1986

intensity ranges occur very infrequently. The higher ALT levels become slightly more common with increasing height, although the average ALT levels decrease. Possible reasons for this behavior are discussed later in this report. Overall, the higher ACT ranges occur more often than the corresponding ALT ranges; this follows the pattern of ACT generally being higher than ALT. Figures 3-3 and 3-4 show the frequency of occurrence of ALT and ACT above specified values. Less than 10% of the ALT's are above 20%, Baker's "high" range; roughly 1% of the ALT's exceed 50%. At 30 meters and 46 meters, fewer than half of the measured ALT's exceeded Baker's "low" range.

An additional analysis is presented in Tables 3-7 and 3-8, showing the percentage of turbulence intensities within each of Baker's categories by month. In several months (generally late spring and summer) ALT's in the high range occurred over 10% of the time; they were least common during the late fall and winter, occurring less than 5% of the time in several months. ACT shows a much greater month-to-month variation, with high ranges becoming much more frequent during the summer months. At 9 meters for example, ACT's above 10% occurred only 6.9% of the time in November, but 27.0% of the time in August. All three tower levels exhibit fairly consistent month-to-month behavior for both ALT and ACT.

Based on these results, several conclusions can be drawn regarding the turbulence characteristics at Livingston. Turbulence is generally low to moderate, with less than 10% of the ALT's falling

CUMULATIVE FREQUENCY DISTRIBUTION OF ALONGWIND TURBULENCE INTENSITY AT LIVINGSTON, MONTANA FOR:

A) 46 METERS

B) 30 METERS

C) 9 METERS

DATA PERIOD SEP. 1985 - NOV. 1986

A-71V50107

FIGURE 3-4
CUMULATIVE FREQUENCY DISTRIBUTION OF ACROSSWIND TURBULENCE
INTENSITY AT LIVINGSTON, MONTANA FOR:

A) 46 METERS

B) 30 METERS

C) 9 METERS

DATA PERIOD SEP. 1985 - NOV. 1986

TABLE 3-7. FREQUENCY OF OCCURRENCE OF ALONGWIND TURBULENCE INTENSITY
RANGES AT LIVINGSTON, MONTANA BY MONTH
DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

L = LOW (<10%) M = MODERATE (10% - 20%) H = HIGH (>20%)

	Alongwind 9 Meters			Alongwind 30 Meters			Alongwind 46 Meters		
Month*	Ĺ	M	Ħ	L	M	Ħ	<u>L</u>	₩	Я́
March	39.7	54.5	5.8	58.4	37.0	4.6	62.3	33.5	4.2
April	47.6	45.4	7.0	61.4	29.8	€.8	63.1	30.4	6.5
May	39.7	50.0	11.3	52.7	36.7	10.6	56.2	33.7	10.1
June	41.1	48.9	10.0	54.6	35.7	9.7	56.8	34.0	9.2
July	38.2	50.5	11.3	51.6	38.7	9.7	54.8	36.4	8.8
August	43.3	43.7	13.0	51.1	37.6	11.3	50.7	39.0	10.3
September	42.8	51.4	5.8	59.6	35.3	5.1	60.6	33.6	5.8
October	45.3	47.0	7.7	53.8	35.8	10.4	61.0	30.9	8.1
November	56.0	40.3	3.7	66.8	29.6	3.5	69.7	25.9	4.4
December	37.6	55.4	7.0	57.5	37.2	5.3	62.8	32.3	4.9

TABLE 3-8. FREQUENCY OF OCCURRENCE OF ACROSSWIND TURBULENCE INTENSITY
RANGES AT LIVINGSTON, MONTANA BY MONTH
DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

L = LOW (<10%) M = MODERATE (10% - 20%) H = HIGH (>20%)

		Acrosswind	!	Acrosswind			Alongwind		
	9 Mcters			30 Meters			46 Meters		
Month*	<u>L</u>	М	Ä	L	Ħ	Ä		M	H
March	40.4	50.3	9.3	54.3	37.9	7.8	58.0	35.2	6.8
April	49.8	40.1	11.1	57.3	31.7	11.0	58.6	30.0	11.4
May	36.9	43.7	19.4	45.1	36.0	18.9	49.6	32.1	18.3
June	31.0	47.4	21.6	42.0	38.0	20.0	43.9	35.5	20.6
July	29.8	46.8	23.4	40.9	39.0	20.1	44.2	36.0	19.8
August	30.1	42.9	27.0	37.3	38.5	24.2	40.7	35.9	23.4
September	58.0	30.9	11.1	55.8	34.0	10.2	58.4	30.5	11.1
October	57.0	28.7	14.3	54.9	30.4	14.7	55.8	29.4	14.8
November	50.4	32.7	6.9	67.1	25.6	7.3	70.1	24.4	5.5
December	50.8	39.8	9.4	62.7	28.7	8.6	62.1	29.6	8.3

^{*}Because of equipment malfunctions, no turbulence data were collected during the months of January or February.

in the high range. The turbulence intensity generally decreases with height, with most of the decrease occurring between 9 and 30 meters. Turbulence intensity is highest in the late spring and summer, and lowest during the late fall and winter months. Finally, ACT tends to be higher than ALT, particularly during the summer months.

3.2.2 Variation of Turbulence With Time of Day

Average values of ALT and ACT were calculated for each hour of the day using the entire data set, to determine whether a significant relation exits. The results are shown in Table 3-9 and Figure 3-5. Both ALT and ACT show fairly consistent behavior at all three tower levels, with the highest values occurring in mid-day and the lowest during the early evening hours. This diurnal phenomenon probably is related to both solar heating and the formation of the nocturnal temperature inversion. The peak in ALT and ACT during the mid-day hours probably coincides with the peak in solar heating, when solar-induced turbulence is at its maximum. Also, the minimum in ALT and ACT observed during the early evening coincides with the nocturnal temperature inversion's formation period. These inversions tend to form abruptly (although their dissolution may take several hours), resulting in a very stable atmosphere near the ground immediately after their formation and therefore lower turbulence. The reasons for the increase in turbulence between early evening and midnight are not readily apparent.

TABLE 3-9. AVERAGE TURBULENCE INTENSITY BY HOUR OF THE DAY AT LIVINGSTON, MONTANA

DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Hour of The Day	Alongwind 9 Meters	Acrosswind 9 Meters	Alongwind 30 Meters	Acrosswind 30 Meters	Alongwind 46 Meters	Acrosswind 46 Meters
0 1	11.7	14.2	10.8	13.3	11.0	13.7
02	11.6	14.4	10.4	13.2	10.6	13.5
0.3	12.0	14.8	11.1	13.9	10.8	13.8
04	11.9	14.8	11.2	14.0	11,1	13.9
05	11.9	14.4	11.1	13.6	11.1	13.4
96	11.8	13.7	11.6	13.8	11.3	13.6
07	12.0	14.4	12.0	14.7	11.6	14.2
08	12.4	14.7	11.6	14.2	11.3	14.1
0 9	12.4	14.9	11.5	14.4	11.4	14.3
10	13.1	15.4	12.0	14.5	11.9	14.7
1 1	13.6	16.3	12.4	15.0	11.8	14.4
12	13.6	15.7	12.2	14.3	11.6	13.8
13	13.7	15.4	12.3	14.1	11.5	13.5
1.4	13.8	15.5	12.5	14.3	11.7	13.6
15	13.4	14.7	12.2	13.8	11.4	13.0
16	13.0	14.4	12.0	13.6	11.1	12.7
17	12.2	13.2	11.3	12.6	10.5	11.7
10	11.4	12.2	10.5	11.6	9.9	10.9
٠ ٥	16 7	11.7	10.1	11.2	9.7	11.1
30	10.7	11.8	9.9	11.0	9.7	10.9
2 '	10.9	12.3	10.1	11.3	10.0	11.3
2.2	11.3	12.9	10.4	11.8	10.4	11.9
23	11.5	13.8	10.7	12.6	11.0	13.3
24	11.8	14.4	11.4	13.9	11.4	14.2

These diurnal variations in turbulence are greatest at 9 meters, where solar heating of the ground has its greatest impact, although all three levels show a very similar trend. Similarly, more variation is observed for ACT than for ALT, although both fluctuate in nearly identical patterns. While the ALT at 9 meters varies considerably with time of day, even its highest average value of 13.8% is well below the midrange of Baker's moderate category.

3.2.3 Variation of Turbulence with Wind Speed

Before any formal data analyses were performed, a very strong relationship between turbulence intensity and wind speed was observed. This correlation dictated a fairly extensive analysis of the effects of wind speed on turbulence intensity. Table 3-10 shows the average ALT and ACT for each 2 ms⁻¹ wind speed range observed at Livingston. ALT and ACT are shown to react somewhat differently to increases in wind speed.

ALT is fairly low in the 0-2 ms⁻¹ wind speed range, and peaks in the 2-4 ms⁻¹ range. At speeds above 6 ms⁻¹ the average ALT remains nearly constant at each level, ranging from approximately 11.5% at 9 meters to 8.8% at 46 meters. This distribution is favorable, as it shows that the windy conditions of concern to developers are usually accompanied by low turbulence intensities, especially at typical wind machine hub heights (e.g., 30 meters).

TABLE 3-10. AVERAGE TURBULENCE INTENSITY BY WIND SPEED RANGES AT LIVINGSTON, MONTANA DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Average Turbulence Intensity

Wind		A CONTRACT OF THE CONTRACT OF									
Speed (m/s)	Alongwind 9 Meters	Acrosswind 9 Meters	Alongwind 30 Meters	Acrosswind 30 Meters	Alongwind 46 Meters	Acrosswind 46 Meters					
0-2	9.6	21.9	13.2	25.8	11.4	24.4					
2-4	14.8	20.6	15.9	19.9	16.3	22.3					
4-6	11.6	12.2	10.9	12.1	11.3	12.3					
6-8	11.4	11.2	9.6	10.0	9.6	9.8					
8-10	11.4	10.9	9.4	9.5	9.1	9.2					
10-12	11.4	10.5	9.4	9.3	8.9	8.9					
12-14	11.5	10.2	9.5	9.0	8.7	8.5					
14-16	11.8	10.0	9.7	9.0	8.8	8.4					
16-18	11.5	9.4	9.9	8.8	9.1	8.3					
18-20	11.3	8.9	9.6	8.2	8.8	7.8					
20-22	11.4	8.5	9.3	7.6	8.4	7.4					
22-24	11.2	8.1	9.3	7.0	8.4	6.9					
24-26	10.8	8.2	9.2	6.9	8.1	7.0					
26-28	12.9	7.9	9.8	6.8	8.0	6.4					
28-30	12.5	17.5	10.1	7.3	8.8	6.1					
30-32			9.2	6.9	7.5	6.0					
32-34			7.5	12.5	7.5	5.4					
34-36					7.5	12.5					

The response of ACT to increases in wind speed is quite different. ACT is at its maximum in the lowest speed range, 0-2 ms⁻¹, and shows a continual decrease with increasing wind speed. It does not exhibit as much of the leveling behavior shown by ALT for high wind speeds. Another feature is that at speeds above 10 ms⁻¹, the ACT was actually lower than the ALT although the ACT is higher on the average. This indicates that higher wind speeds are accompanied by smaller variations in wind direction. Consistent with results discussed previously, both ALT and ACT generally decreased with height except at very low wind speeds (below 4 ms⁻¹). The decrease with height generally becomes more pronounced with increasing wind speeds, particularly for ALT. For example, the average ALT for wind speeds between 6 and 8 ms⁻¹ is 11.4% at 9 meters and 9.6% at 46 meters; the respective values for wind speeds between 22 and 24 ms⁻¹ are 11.2% and 8.4%.

The ALT data also were analyzed to determine the percentage of intensities falling within each strength category for each wind speed range. The results are presented in Figure 3-6. The most striking feature is the almost complete absence of high turbulence intensities at speeds above 10 ms⁻¹, particularly at 46 meters. At 30 and 46 meters, the majority of ALT's at speeds above 5 ms⁻¹ fall within the low range. At 9 meters, values in the medium range are more common, although these are generally in the low end of the medium range. High values occur over 5% of the time only at speeds below 6 ms⁻¹, which are not generally of concern to wind

OCCURRENCE OF ALONGWIND TURBULENCE **INTENSITIES** VERSUS WIND SPEED

L= LOW (0-10%)

M=MODERATE (10-20%)

H=HIGH ()20%)

A) 46 METERS

B) 30 METERS

C) 9 METERS

DATA PERIOD SEP. 1985 - NOV. 1986

developers. This analysis reinforces previous indications of a generally favorable turbulence regime at Livingston.

Finally, cumulative frequency distributions of ALT and ACT were plotted for wind speed ranges of 2-4 ms^{-1} , 6-8 ms^{-1} , and 12-14 ms^{-1} for the 30-meter level. These speeds were selected because they represent approximate values of non-operating speeds, cut-in speeds and rated speeds for commonly used wind-powered generators. The results are presented in Figures 3-7 and 3-8. Each curve shows the percentage of the time that turbulence intensities exceeded given values for the indicated wind speed range. These curves reinforce the finding that high turbulence intensities occur almost exclusively with low wind speeds, which are not generally of concern to developers. For the speed ranges of $6-8~\mathrm{ms}^{-1}$ and 12-14ms-1, ALT intensities in the high range (>20%) occur less than 5% of the time; these intensities exceed 30% less than 1% of the time. Cumulative frequencies for higher wind speed categories were not plotted, because they would essentially superimpose on curve C. The results shown for the $12-14 \text{ ms}^{-1}$ range are descriptive of the ALT behavior at higher wind speeds.

Several conclusions can be drawn regarding the effects of wind speed on turbulence intensity. The first is that high ALT and ACT intensities are generally associated with low wind speeds, and that ALT and ACT intensities are usually low during high wind speeds. Secondly, ACT is generally lower than ALT during the higher wind speeds, although it is higher on the average. Third, both ALT and

FIGURE 3-7

A-7DV 50114

(PERCENT) **LKEGNENCY** DCCNKKENCE OL

PERCENT FREQUENCY OF ACROSSWIND TURBULENCE INTENSITIES (30 METERS)
ABOVE INDICATED VALUES FOR WIND SPEED OF:
A) 12-14 M/S B) 6-8 M/S C) 2-4 M/S

FIGURE 3-8

A-7DV50715

ACT show a decrease with height for given wind speed categories; this decrease with height becomes more pronounced as wind speed increases. Probably the most important finding is that at power generating wind speeds, turbulence intensities are nearly always in the low or moderate range.

3.2.4 Variation of Turbulence with Wind Direction

Turbulence intensity was found to vary significantly with wind direction. In general, the highest intensities occurred with winds from the northerly and southeasterly directions, and the lowest with southwesterly and easterly winds. Results of this analysis are presented in Table 3-11 and Figure 3-9. One striking feature is that the variation in turbulence with wind direction increases greatly with height. At 9 meters for example, the average ALT ranges from 11-12% for southwesterly and easterly winds, up to 15.3% for north-northeasterly winds. At 46 meters average ALT values range from 9.7% for easterly winds up to 19.4% for south-southeasterly winds.

For southeasterly directions, both ALT and ACT increase greatly with height, which seems to contradict previous findings. However, winds from the southeast tend to be very light, so the high ALT and ACT intensities associated with this direction are not really of concern to developers. Because winds from this direction are light, they often are presumed to be associated with temperature inversion conditions, when airflow in the atmosphere near the

TABLE 3-11. AVERAGE TURBULENCE INTENSITY BY WIND DIRECTION CATEGORY AT LIVINGSTON, MONTANA DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Average Turbulence Intensity

Wind Direction	Alongwind 9 Meters	Acrosswind 9 Meters	Alongwind 30 Meters	Acrosswind 30 Meters	Alongwind 46 Meters	Acrosswind 46 Meters
N	14.3	18.8	14.7	18.4	14.2	18.5
NNE	14.5	22.5	14.3	20.7	13.6	22.0
NE	13.3	18.5	12.5	17.4	12.3	18.6
ENE	11.1	13.1	10.2	12.3	9.7	11.8
Ε	11.5	11.4	11.1	10.7	11.5	9.9
ESE	12.0	15.2	12.5	15.6	14.5	16.2
SE	11.6	16.6	15.5	23.1	17.6	26.8
SSE	12.8	19.4	16.6	23.9	19.4	28.2
S	12.0	13.0	10.5	10.5	10.8	11.5
SSW	11.7	11.4	10.5	11.1	9.9	10.5
SW	11.5	13.0	10.2	12.4	10.1	12.5
WSW	11.1	12.5	9.8	11.4	9.2	11.1
W	13.3	15.5	11.4	13.6	10.7	13.3
WNW	15.1	20.0	14.2	19.1	13.3	19.1
ММ	15.3	22.4	15.7	22.3	15.2	23.0
NNW	15.3	20.7	14.3	17.7	14.3	19.1

WIND DIRECTION (9 METERS)
FIGURE 3-9

AVERAGE TURBULENCE INTENSITY BY WIND DIRECTION

CATEGORY AT LIVINGSTON, MONTANA

= ALONGWIND ----- = ACROSSWIND

A) 46 METERS B) 30 METERS C) 9 METERS

DATA PERIOD SEP. 1985 - NOV. 1986

A-7DW50111

ground is dominated by surface terrain features. This results in less consistent airflow with height above ground, as the channeling effects of the surface terrain weaken. This mechanism is suspected as the cause of the increase in ALT and ACT with height during southeasterly winds.

It is probably no coincidence that the wind directions associated with the highest turbulence intensities tend to have the lowest wind speeds and vice versa. The association of wind direction with turbulence intensity, while well-defined, is probably indirect. That is, turbulence intensity is very strongly correlated with wind speed, which in turn is strongly correlated with wind direction. The higher turbulence levels associated with winds from the northerly and southeasterly directions are of little concern, because these winds are almost invariably light.

3.2.5 Variation of Turbulence with Atmospheric Stability

Several methods have been used to define atmospheric stability. A system developed by Pasquill considers cloud cover, sun angle, and wind speed to classify stability by seven categories ranging from very unstable (Category A) to very stable (Category G). At Livingston, a scheme developed by the Atomic Energy Commission was more practical; it estimates the Pasquill stability category from the change in temperature with height.

Turbulence varies considerably with atmospheric stability, as shown in Table 3-12. The highest ALT and ACT levels occurred during very unstable and very stable conditions. In Pasquill's scheme, these categories are associated with very light winds, so this finding is consistent. Average turbulence intensities did not vary greatly through the other stability categories, which are usually associated with higher wind speeds.

At 9 meters, the highest ALT levels occurred during Category A conditions but at 46 meters they occurred during Category G conditions. This probably is because during Category A conditions intense solar heating is occurring, causing high turbulence at the ground that decrease with height. During Category G conditions, a strong temperature inversion is present. As discussed in Section 3.2.4, this often results in more consistent airflow near the ground because of surface terrain effects. Another feature is that ACT is significantly greater than ALT during Category A and Category G conditions, but they are nearly equal during Category D and E conditions. Again, this probably relates to the low wind speeds observed during A and G conditions, and the higher wind speeds during D and E conditions. ACT is considerably higher than ALT during low wind speeds, but somewhat lower during high wind speeds.

It is not clear whether atmospheric stability has its own effect on turbulence intensity, or whether these effects merely reflect variations in wind speed and wind direction consistency through the

TABLE 3-12. AVERAGE TURBULENCE INTENSITY BY DELTA T (TEMPERATURE @ 46M MINUS TEMPERATURE @ 9M) AT LIVINGSTON, MONTANA DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Delta I Average Turbulence Intensity (Pasquill Alongwind Acrosswind Alongwind Acrosswind Alongwind Acrosswind Stability 9 Meters 9 Meters 30 Meters 30 Meters 46 Meters 46 Meters Category) <-0.9 15.0 18.8 13.3 16.9 12.5 16.4 (A-8) -0.8 to -0.6 12.7 11.2 12.9 10.6 12.3 14.3 -0.5 to -0.2 12.3 11.2 12.5 11.0 12.2 13.3 (0) -0 2 to +0.5 11.3 11.8 10.2 11.6 12.3 10.4 (E) 14.0 +0.5 to +1.4 10.6 13.9 10.7 13.9 10.5 (F) 1+1.4 13.5 20.0 13.5 18.2 13.4 18.6

(NO. 9 2007 AND WATER TO AND A STOCK STATE OF THE STATE O

30							
91							
0							
-1							
.11							
.00							

stability categories. However, the variation of turbulence intensity with atmospheric stability appears to be well defined, based on this analysis.

3.2.6 Variation of Turbulence with Thunderstorms

At the beginning of this study, concerns were expressed that the strong, gusty winds often associated with thunderstorms could be of concern to wind developers. At the Livingston airport, located only two miles from the wind shear and turbulence study site, weather observations are performed and recorded by the Federal Aviation Administration (FAA), including notations of thunderstorms and other weather phenomena. Therefore, the Livingston study provided a good opportunity to investigate the impact of thunderstorm conditions on atmospheric turbulence.

Starting times and ending times of thunderstorm events at Livingston were obtained from the FAA records and catalogued. Next, the alongwind and acrosswind turbulence intensity data for the 30-meter level at the study site were recorded for these same data periods at 10-minute intervals. The 30-meter level was selected because it represents a typical hub height for wind machines commonly in use today. Table 3-13 shows a comparison of the turbulence data collected during thunderstorm periods in June, July, and August with all turbulence data for those months.

TABLE 3-13. SUMMARY OF TURBULENCE INTENSITY DURING THUNDERSTORM CONDITIONS AT LIVINGSTON. MONTANA

Percent Frequency								
of:	0-5	5-10	10-15	15-20	20-25	25-30	30<	Avg.
ALT 30 meters during thunderstorms	5.6	41.6	33.1	8.4	6.2	1.1	3.9	12.6%
ALT 30 meters overall	8.2	44.2	27.3	10.1	4.3	1.8	3.5	13.1%
ACT 30 meters during thunderstorms	2.8	32.0	36.0	12.9	6.7	3.4	5.1	14.2%
ACT 30 meters overall	4.3	35.7	25.5	21.5	7.2	4.2	11.3	17.0%

This analysis indicates that during thunderstorm episodes, ALT tends to remain about the same as during other periods and that ACT decreases significantly. This is actually consistent with the earlier analyses, because thunderstorms are not generally accompanied by either light winds or stable atmospheric stability, conditions which were shown to contribute to increases in turbulence intensity. While strong gusty winds often do accompany thunderstorms, they seldom attain the duration or intensity of those occurring during the winter months at Livingston. In fact, all three sets of anemometer cups stayed on throughout the thunderstorm season.

3.3 WIND SHEAR

Wind shear data were collected every two minutes during this study, between heights of 9 meters and 30 meters, 9 meters and 46 meters, and 30 meters and 46 meters. These data were calculated both in terms of absolute ms⁻¹ differences in wind speed and in terms of the power law exponent (P) discussed in Chapter 1.0. The following sections present and discuss the summarized wind shear characteristics at Livingston. Next, wind shear characteristics are related to time of day, wind speed, wind direction, atmospheric stability, and turbulence intensity. A comparison of the average 2-minute wind shears with the maximum instantaneous wind shears during these same periods also is presented.

3.3.1 General Wind Shear Characteristics

The wind shear at Livingston appears to be comparable to that observed at other wind energy study sites, based on the power law exponent. The average P-value (PWS) ranged from 0.078 between 9 and 30 meters to 0.098 between 30 and 46 meters; a value of 0.100 is considered typical for windy sites. The absolute wind shear (AWS) averages were 0.84 ms⁻¹ between 9 and 30 meters, and 0.42 ms⁻¹ between 30 and 46 meters.

Average monthly wind shear data are presented in Table 3-14. For both P-values and absolute wind shears, the highest values occurred during the winter and the lowest values during the summer. The

TABLE 3-14. MONTHLY AVERAGE WIND SHEAR AT LIVINGSTON, MONTANA DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Month*	Average Shear Between 9-30 Meters (m/s) (P)		Average Shear Between 30-46 Meters (m/s) (P)	
March	1.17 0.096	1.54 0.099	0.36 0.092	
April	0.75 0.082	1.00 0.086	0.23 0.085	
May	0.71 0.067	1.02 0.074	0.25 0.095	
June	0.63 0.076	0.82 0.078	0.19 0.083	
July	0.66 0.076	0.87 0.077	0.22 0.085	
August	0.51 0.065	0.67 0.068	0.17 0.084	
September	0.72 0.076	0.90 0.074	0.19 0.081	
October	0.77 0.075	1.21 0.082	0.32 0.108	
November	0.95 0.075	1.36 0.079	0.40 0.094	
December	1.46 0.103	2.11 0.106	0.67 0.124	

^{*}Because of equipment malfunctions, no wind shear data were collected during the months of January or February.

largest variations were observed for AWS between 9 and 46 meters (AWS 9-46), which ranged from 0.82 ms⁻¹ in June up to 2.11 ms⁻¹ in December. The range in PWS between the same levels (PWS 9-46) ranged from 0.068 in August up to 0.106 in December. The AWS showed a large decrease with height; approximately 70% of the total AWS between 9 and 46 meters generally occurred between 9 and 30 meters. By contrast, PWS tended to increase with height; the average annual value between 30 and 46 meters was 0.093, versus only 0.078 between 9 and 30 meters. Only two months, October and December, had average PWS values exceeding 0.100, the highest being 0.124 between 30 and 46 meters. In no cases can the mean monthly PWS values be considered significantly above average.

Frequency distributions of AWS and PWS are presented in Table 3-15 and in Figures 3-10 and 3-11. AWS values between 0 and 2 ms⁻¹ were quite common at all levels, with peaks occurring between 0 and 1 ms⁻¹. As would be expected, the higher ranges were most common between 9 and 46 meters. Shears between 3 and 4 ms⁻¹ occurred nearly 5% of the time between 9 and 46 meters, but less than 1% of the time between the other levels. Since velocity tends to increase logarithmically with height, one would expect AWS values between 30 and 46 meters to be the lowest.

PWS values were usually between 0 and 0.200 for all levels, but more scatter in the data occurred for PWS between 30 and 46 meters. Negative PWS values, indicating a decrease in wind speed with height, occurred 14.6% of the time between 9 and 46 meters, and

TABLE 3-15. FREQUENCY DISTRIBUTION OF HIND SHEAR AT LIVINGSTON, MONTANA
DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Exp	r Law onent (P)	Percent Fre 9m-30m	quency She	ar Between 30m-46m	Wind Shear (m/s)	Percent Fr 9m-30m	equency Sh 9m-46m	near Between 30m-46m
>	<	311 3011	3111 40111	3011 4011	111/3/	3111 00111	311 4011	30m 40m
	-0.2	2.11	1.38	3.93	<0	14.58	12.99	21.10
-0.2	-0.1	3.25	2.2?	3.61	0 – 1	48.88	39.27	72.52
-0.1	0	9.22	9.35	13.56	1-2	29.50	28.98	6.10
0	0.1	44.97	49.29	36.71	2-3	6.44	12.89	0.24
0.1	0.2	33.61	30.93	26.02	3-4	0.58	4.64	0.04
0.2	0.3	4.97	4.84	8.52	4-5	0.02	1.07	*
0.3	0.4	1.12	1.26	3.12	5-6	*	0.14	*
0.4	0.5	0.43	0.45	1.53	6-7	*	0.02	0
0.5	0.6	0.19	0.16	0.95	7-8	0	*	0
0.6	0.7	0.08	0.05	0.63				
0.7	8.0	0.04	0.02	0.43				
0.8	0.9	0.01	0.01	0.29				
0.9	1.0	*	*	0.20				
1.0	1.1	*	*	0.14				
1.1	1.2	*	*	9.08				
1.2	1.3	*	*	0.06				
1.3	1.4	*	*	0.04				
1.4	1.5	*	*	0.03				
1.5	1.6	*	*	0.02				
1.6		*	*	0.13				

^{*}Denotes occurrences less than 0.005% of the time.

DATA PERIOD SEP. 1985 - NOV. 1986

FREQUENCY DISTRIBUTION OF WIND SHEAR (P)
AT LIVINGSTON, MONTANA FOR:

A) 30-46 METERS

B) 9-30 METERS

C) 9-46 METERS

DATA PERIOD SEP. 1985 - NOV. 1986

A-7DV50103

over 20% of the time between 30 and 46 meters. Values above 0.200 and values below 0 occurred with nearly equal frequencies. Figures 3-12 and 3-13 show the frequency of occurrence of AWS and PWS above specified levels. Well under half of the PWS values exceed 0.100 and less than one-fifth exceed 0.200 at all levels. AWS values above 2 ms⁻¹ occurred over 7% of the time between 9 and 30 meters, but less than 1% of the time between 30 and 46 meters. This reinforces earlier indications that most of the AWS occurs below 30 meters.

In Table 3-16 occurrence frequencies of AWS for different categories are presented by month. These follow a pattern similar to that shown by the monthly averages. During the months with higher average shears, shears in the higher ranges become much more common. This is particularly noticeable for December, when the AWS 9-46 meters exceeded 3 ms⁻¹ 23% of the time, versus less than 1% in August. Different ranges were used for AWS 30-46, because of the generally lower values as compared to shears between other tower levels. On a month-by-month basis, the frequency of AWS 9-46 above 3 ms⁻¹ is almost identical to the frequency of AWS 30-46 meters above 1 ms⁻¹.

In conclusion, the wind shear at Livingston appears to be comparable to that at other windy sites, based on PWS values. Both PWS and AWS tend to be lowest during the summer months, and highest in the winter. A slight increase in PWS with height also was noticed. Over 70% of the observed AWS, by contrast, occurred

CUMULATIVE FREQUENCY DISTRIBUTION OF ABSOLUTE WIND SHEAR (M/S) AT LIVINGSTON, MONTANA FOR:

A) 30-46 METERS

B) 9-30 METERS

C) 9-46 METERS

A-7DV50106

DATA PERIOD SEP. 1985 - NOV. 1986

DATA PERIOD SEP. 1985 - NOV. 1986 A-7DW50104

TABLE 3-16. FREQUENCY OF OCCURRENCE OF ABSOLUTE WIND SHEAR RANGES
AT LIVINGSTON, MONTANA BY MONTH
DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

		Shear Bets			Shear Bety		2.0	Shear 8et	
Manak		d 30 Meters			d 46 Meters			and 46 Mete	
Month*	_<1	1-3	23	<1	1-3	>3	<0	0-1	<u>->1</u>
March	40.2	59.4	0.4	27.9	57.1	5.0	13.0	83.5	3.5
April	65.1	34.6	0.3	53.1	44.4	2.5	22.1	75.2	2.7
₩ay.	65.2	34.6	0.2	54.9	40.0	5.1	22.4	73.3	4.3
June	74.4	25.3	0.3	85.1	32.9	2.0	26.6	70.6	2.9
	70.8	29.1	0.1	61.5	35.9	2.6	25.1	72.1	2.7
August	77.5	22.4	<0.1	70.4	28.2	1.4	31.3	65.9	2.8
September	67.4	32.8	<0.1	59.6	39.6	0.9	23.8	74.3	2.0
October	84.2	35.4	0.4	47.6	45.1	7.3	20.0	73.1	6.9
November	50.9	37.5	1.8	49.4	41.9	8.7	16.9	73.0	10.1
December	27.5	69.8	2.7	16.9	60.1	23.0	7.1	68.2	24.7

^{*}Because of equipment malfunctions, no wind shear data were collected during the months of January or February.

between the 9 and 30 meter levels; between 30 and 46 meters AWS values above 1 ms⁻¹ were generally infrequent. In general PWS and AWS appear to have a positive correlation. The months with the highest wind shear values also tended to have the lowest turbulence levels.

3.3.2 Variations in Wind Shear with Time of Day

Both AWS and PWS show a strong relationship with time of day. Table 3-17 and Figure 3-14 show average values for each hour of the day, based on the entire data set. Nearly identical patterns were observed for both AWS and PWS; the highest values occurred around dawn and particularly at dusk, and the lowest values around midday. A slight secondary minimum was observed around midnight. Variations in AWS 30-46 were fairly minimal compared to AWS 9-30 and AWS 9-46. As with turbulence, the diurnal variations in wind shear are probably related to the nocturnal temperature inversion cycle.

Because of radiational cooling on clear nights, the Livingston area is expected to experience a high frequency of nighttime temperature inversions. During these periods, airflow at the surface becomes uncoupled from the airflow aloft and is dominated by local terrain features rather than the large-scale airflow. Winds near the surface also become very light during these periods, as they are not enhanced by the stronger winds aloft. This results in less wind shear near the ground, and more shear aloft (e.g., above 9)

TABLE 3-17. AVERAGE MIND SHEAR BY HOUR OF THE DAY AT LIVINGSTON, MONTANA (P) DENOTES POWER LAW EXPONENT DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

	Average From 9-3	Average From 9-4	Shear 6 Meters	Average Shear From 30-46 Meters		
Hour of the Day	(m/s)	(P)	(m/s)	(P)	(m/s)	(P)
0 1	0.84	0.087	1.15	0.090	0.44	0.125
02	0.85	0.085	1.20	0.089	0.46	0.131
03	0.84	0.082	1.19	0.089	0.45	0.135
04	0.87	0.084	1.23	0.091	0.45	0.142
05	0.90	0.084	1.26	0.089	0.45	0.124
06	0.90	0.086	1.30	0.089	0.47	0.125
07	0.89	0.082	1.24	0.087	0.47	0.123
08	0.81	0.067	1.13	0.075	0.43	0.113
09	0.74	0.059	1.04	0.066	0.40	0.087
10	0.70	0.054	0.95	0.058	0.37	0.070
11	0.71	0.054	0.98	0.055	0.38	0.057
12	0.73	0.056	0.96	0.056	0.37	0.054
13	0.74	0.058	0.97	0.053	0.36	0.047
14	0.77	0.059	1.01	0.056	0.37	0.052
15	0.77	0.065	0.99	0.061	0.37	0.054
16	0.80	0.067	1.05	0.064	0.38	0.057
17	0.86	0.077	1.15	0.074	0.41	0.069
18	0.91	0.093	1.22	0.089	0.43	0.084
19	0.96	0.097	1.30	0.093	0.43	0.095
20	1.00	0.104	1.33	0.099	0.43	0.104
21	0.98	0.104	1.34	0.099	0.45	0.104
22	0.89	0.099	1.25	0.101	0.45	
23	0.85	0.099	1.16	0.092	0.40	0.132 0.131
24	0.84	0.086	1.09	0.092		
6 7	0.04	0.000	1.09	0.093	0.41	0.133

LIVINGSTON, MONTANA FROM 46-9 METERS FROM 46-30 METERS DAY AT
BY AWS
DY AWS F 4 BY TIME METERS METERS SHEAR 9-46 30-9 FROM FROM WIND AVERAGE V A) PWS C) AWS F

DATA PERIOD SEP, 1985 - NOV. 1986

FIGURE 3-14

3-47

meters). In contrast, during the daytime the large-scale airflow is present even at ground level. This results in greater frictional effects at ground level; i.e., most of the increase in wind speed takes place very near the ground (e.g., below 9 meters). These inversion phenomena are suspected to be responsible in large part for the diurnal variations in wind shear.

Similarly, the sharp peak observed around dusk for AWS 9-30 and AWS 9-46 probably results from the tendency for nocturnal temperature inversions to form at that time. Inversions generally form at the surface, and gradually deepen with time. The sharp peak in wind shear at dusk is probably associated with periods when the temperature inversion is present at 9 meters, but has not yet deepened to encompass the 30 meter or 46 meter levels. These periods would have very light winds at 9 meters, and much stronger winds at 30 and 46 meters. Later in the evening, as the inversion deepens, these sharp variations in wind speed would tend to subside, but still remain greater than during the daytime.

In terms of PWS 9-46 on an annual basis, all hours show values that can be considered low to moderate. Values below 0.060 were observed for several hours around mid-day, and the highest average value, observed at 2200, was only 0.101. Also it is evident that wind shear behaves in a nearly opposite manner from turbulence intensity. Periods of the day with the higher turbulence intensities tended to have the lower wind shears, and vice versa.

3.3.3 Variation of Wind Shear with Wind Speed

As with turbulence intensity, a very strong relationship was observed between wind shear and wind speed. Average wind shears between each of the three tower levels were calculated for each observed 2 ms⁻¹ wind speed range at given levels. Average wind shears between 9 and 30 meters were related to the wind speed at 9 meters; average shears between 9 and 46 meters were related to the wind speed at 30 meters; and average shears between 30 and 46 meters were related to the wind speed at 46 meters. The results are presented in Table 3-18 and Figure 3-15. Shears between 9 and 46 meters were related to wind speeds at 30 meters, rather than speeds at 9 or 46 meters (although the speeds at 9 and 46 meters were used to calculate these shears) because 30 meters is near the middle of the layer across which the shears were calculated. The intention was to relate the wind shear across this layer to the approximate average wind speed within this layer.

In terms of AWS, a very consistent increase was observed with increasing wind speed. As indicated by the previous analyses in this report, most of the observed shear occurred between 9 and 30 meters; for any given wind speed category above 4 ms⁻¹, the AWS 30-46 was only slightly over one third of the AWS 9-30. In fact, AWS appears to be a nearly linear function of wind speed. A linear regression of average AWS values against the midpoints of the corresponding wind speed ranges was performed to quantify this correlation, using only wind speeds above 6 ms⁻¹ (a typical wind

TABLE 3-18. AVERAGE WIND SHEAR BY WIND SPEED RANGE AT LIVINGSTON, MONTANA
DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Wind Speed (m/s)	From 9-3	Average Shear From 9-30 Meters 1 (m/s) (P)		Average Shear From 9-46 Meters ² (m/s) (P)		Average Shear From 30-46 Meters ³ (m/s) (P)	
0-2	0.10	0.013	0.11	0.016	0.30	0.078	
2-4	0.35	0.045	0.43	0.061	0.28	0.135	
4 - 6	0.73	0.101	0.80	0.098	0.33	0.093	
6-8	0.92	0.010	1.08	0.099	0.37	0.079	
9-10	1.10	0.094	1.32	0.093	0.42	0.082	
10-12	1.34	0.093	1.62	0.092	0.47	0.084	
12-14	1.58	0.092	1.98	0.095	0.54	0.092	
14-16	1.79	0.090	2.42	0.102	0.67	0.110	
16-18	2.03	0.091	2.72	0.101	0.81	0.117	
18-20	2.30	0.093	3.02	0.101	0.89	0.115	
20-22	2.60	0.094	3.35	0.104	0.99	0.114	
22-24	2.81	0.090	3.69	0.107	1.12	0.116	
24-26	2.96	0.082	3.93	0.101	1.17	0.112	
26-29	3.33	0.092	4.24	0.110	1.20	0.104	
28-30	3.50	0.050	4.77	0.115	1.41	0.121	
30-32			5.28	0.117	1.68	0.138	
32-34					1.64	0.150	
34-36							

^{1.} By wind speed at 9 meters.

^{2.} By wind speed at 30 meters.

^{3.} By wind speed at 46 meters.

FIGURE 3-15

generator cut-in speed). The highest observed wind speed category at each level was excluded from this analysis, because each occurred so unfrequently as to lack statistical significance. The results are presented in Table 3-19.

TABLE 3-19. REGRESSION OF AWS AGAINST WIND SPEED

	Slope	Y-Intercept	R_2
AWS 9-30 versus speed @ 9 meters	0.120	0.03	0.9973
AWS 9-46 versus speed @ 30 meters	0.166	-0.13	0.9973
AWS 30-46 versus speed @ 46 meters	0.051	-0.07	0.9730

The correlations are extremely high at all tower levels, showing that on the average, wind speed is an excellent predictor of AWS. The strong positive correlation of wind speed and AWS should be of concern to developers, because it indicates that worst case conditions for both of these parameters tend to occur simultaneously. For example, at wind speeds between 28 and 30 ms⁻¹ the average wind shear between 9 and 46 meters was 4.77 ms⁻¹. This combination could produce a very severe operating environment, with very high differential stresses between the upper and lower part of a wind machine rotor. This is the opposite of what was observed for turbulence, as the highest turbulence values usually occurred with the lower wind speeds. Also, high shears can persist for significant durations. For example, AWS 9-46 values above 4 ms⁻¹ persisted for as long as 1 hour, and values above 5 ms⁻¹ for as

long as 34 minutes during this study, based on the number of consecutive 2-minute average readings above these values.

Average PWS values for wind speed ranges show a much different behavior. At speeds above 6 ms⁻¹, PWS 9-30 values remained nearly constant, around 0.090, while PWS 30-46 values showed a slight increasing trend. As was noted in previous analyses, PWS 30-46 values were slightly higher than PWS 9-30 values, on the average. The higher values observed at the highest wind speed ranges should be regarded cautiously because they are not statistically significant. In general, the PWS values were very close to the typical 0.100 value even at high wind speeds. This indicates that in terms of PWS, the wind shears observed at Livingston are no more severe than those observed at other sites. The point which must be emphasized is that for a given PWS value, higher wind speeds coincide with higher absolute wind shears. A PWS value of 0.100 with a wind speed of 30 ms⁻¹ is of much greater concern than a PWS value of 0.200 with a wind speed of 10 ms⁻¹. Therefore, while the increase in wind speed with height at Livingston appears comparable to that observed at other sites under the same wind speed conditions, the real issue is the more frequent occurrence of extremely high wind speeds at Livingston. This indicates a high probability that more extreme AWS conditions also occur at Livingston. In conclusion, the behavior of wind shear with wind speed at Livingston can be summarized as follows:

- At speeds above 6 ms⁻¹, AWS shows a very strong, linear, positive correlation with wind speed.
- At all speeds above 6 ms^{-1} , AWS 9-30 is much greater than AWS 30-46.
- PWS 30-46 (power law exponent between 30 and 46 meters) is usually greater than PWS 9-30 and PWS 9-46, particularly at the higher wind speeds, even though the absolute wind shear between 30 and 46 meters is generally much lower than between the other levels.
- At speeds above 6 ms⁻¹, PWS 9-30 and PWS 9-46 remain nearly constant; PWS 30-46 increases slightly with increasing wind speed.

3.3.4 Variation of Wind Shear with Wind Direction

Average values of AWS and PWS were calculated for each of the 16 wind directions, and are presented in Table 3-20 and Figure 3-16. A very strong relationship exists between wind shear and wind direction. For AWS between all levels, the highest values were observed during southwesterly winds, with a secondary maximum during easterly winds. Low values were present during southeasterly and northeasterly winds.

TABLE 3-20. AVERAGE WIND SHEAR BY WIND DIRECTION RANGE AT LIVINGSTON, MONTANA (P) DENOTES POWER LAW EXPONENT DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

lind Direction	Average From 9-3 (m/s)	Average Shear From 9-46 Meters ² (m/s) (P)		Average Shear From 30-46 Meters ³ (m/s) (P)		
N	0.34	0.032	0.47	0.050	0.32	0.099
NNE	0.26	0.022	0.34	0.035	0.29	0.090
NE	0.30	0.019	0.40	0.028	0.26	0.068
ENE	0.62	0.058	0.80	0.056	0.32	0.056
Е	0.71	0.071	0.85	0.066	0.28	0.054
ESE	0.55	0.069	0.59	0.050	0.18	0.043
SE	0.29	0.005	0.47	0.044	0.32	0.149
SSE	0.22	0.006	0.39	0.029	0.33	0.159
S	1.24	0.088	2.10	0.101	0.63	0.130
SSW	1.35	0.095	1.67	0.093	0.61	0.110
SH	0.97	0.098	1.26	0.095	0.44	0.106
WSW	0.90	0.102	1.18	0.099	0.43	0.113
W	0.88	0.099	1.08	0.093	0.41	0.111
WNW	0.68	0.091	0.71	0.077	0.35	0.114
N₩	0.39	0.064	0.52	9.060	0.33	0.116
NNW	0.53	0.056	0.79	0.068	0.38	0.117

^{1.} By wind direction at 9 meters.

^{2.} By wind direction at 30 meters.

^{3.} By wind direction at 46 meters.

DATA PERIOD SEP. 1985 - NOV. 1986

=AWS PWS B) C) 9-30 METERS 30-46 METERS 9-46 METERS

AVERAGE WIND SHEAR BY WIND DIRECTION CATEGORY AT LIVINGSTON,

3-16

DIRECTION (9 METERS)

As was postulated for turbulence, this behavior is suspected to actually relate to wind speed rather than wind direction per se. The wind directions that have high average AWS values also tend to have high wind speeds, and vice versa. For example, AWS 9-46 values ranged from only 0.34 ms⁻¹ during north-northeasterly winds up to 2.10 ms⁻¹ during southerly winds. This behavior was observed fairly consistently between all tower levels.

The relationship between PWS and wind direction is less easily understood. Average PWS values for southwesterly directions are generally around 0.100; these directions are generally associated with moderate to high wind speeds, making this result consistent with behavior observed in Section 3.3.3. PWS values for directions associated with light winds tend to be more unpredictable, and vary considerably between the different levels. In veering from the northerly to southeasterly wind directions, a steady decrease in PWS 30-46 is observed, with values declining from 0.117 to 0.043. In contrast, PWS 9-30 and PWS 9-46 values are more irregular. Also, values for PWS 30-46 are much higher than for PWS 9-30 and PWS 9-46 during south-southeasterly winds. The reason for this behavior is not clear, but it is inconsequential, because winds from southeasterly directions are generally very light.

In summary, a fairly strong relationship appears to exist between wind shear and wind direction, although it is probably indirect.

AWS values are generally highest for wind directions associated with the highest wind speeds, and lowest for directions associated

with low speeds. For nearly all directions, AWS 9-30 values are much higher than AWS 30-46 values. PWS values between all levels are around 0.100 for wind directions that normally occur with moderate to high speeds. They are quite variable for directions associated with low speeds.

3.3.5 Variation of Wind Shear with Atmospheric Stability

The relationship of wind shear and atmospheric stability was investigated by examining the behavior of wind shear during each Pasquill stability category condition, as defined by the temperature difference between the 9 meter and 46 meter tower The results are presented in Table 3-21. A fairly consistent relationship is present for AWS at all levels. The highest values occurred during Category E (slightly stable) conditions, and the lowest during Category A conditions. relationship is to be expected as winds during Category A conditions are generally light, resulting in low AWS values. During Category E conditions, winds are generally much stronger, producing higher AWS values. AWS values are also fairly high during Category F conditions, which is at first surprising because these conditions are usually associated with fairly low wind speeds. However, Category F conditions are common when evening inversion formation is occurring. As was discussed previously, high wind shears may have occurred during these periods because of markedly decreased wind speeds at 9 meters, while speeds at 30 and 46 meters (above the inversion layer) were still fairly high.

TABLE 3-21. AVERAGE WIND SHEAR BY DELTA T (TEMP. 0 46M MINUS TEMP 0 9M) RANGE AT LIVINGSTON, MONTANA DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Average Wind Shear Delta T Range (Pasquill Stability 9-30 Meters 9-46 Meters 30-46 Meters Category) (m/s) (P)(m/s) (P)(m/s) (P)<-0.8°C 0.58 0.051 0.71 0.049 0.30 0.050 (A-8) -0.8 to -0.6°C 0.84 0.056 0.33 0.67 0.060 0.045 (C) -0.6 to -0.2°C 0.97 0.066 0.39 0.075 0.73 0.068 (0) -0.2 to $+0.5^{\circ}$ C 1.10 0.097 1.58 0.101 0.53 0.119 (E) +0.5 to +1.4°C 0.43 0.134 0.91 0.090 1.23 0.093 (F) >+1.4°C 0.70 0.090 0.97 0.100 0.41 0.191 (G)

Although distinct, the variations in AWS with atmospheric stability were much less pronounced than those observed with wind speed and wind direction. AWS 9-46 for example varied from 0.71 ms⁻¹ during Category A conditions up to 1.58 ms⁻¹ during Category E conditions. PWS values also were very low during Category A conditions, but otherwise behaved differently at the various levels. PWS 9-30 and PWS 9-46 values were highest during Category E conditions, and remained nearly as high during Category F and G conditions. By contrast, PWS 30-46 values were by far highest during Category G conditions, averaging 0.191. While high, this particular PWS value is not of concern, because wind speeds during these conditions are invariably light. In fact, during stability conditions associated with moderate to strong winds (C, D, E, and occasionally F) average PWS values were usually near or below 0.100. When wind speeds are low, small difference in speed with height (AWS) can result in large PWS values.

As with wind direction, the relationship between atmospheric stability and wind shear is an indirect one. The stability classes associated with the highest wind speeds tend to have the highest AWS values; classes with low wind speeds generally have low AWS values. Similarly, PWS values tend to be around 0.100 for stability categories associated with moderate to high wind speeds, and are more variable for classes associated with light winds. PWS 30-46 values average only 0.050 during Category A conditions, but 0.191 during Category G conditions, although both conditions are usually associated with low wind speeds. This probably occurs

because AWS 30-46 is slightly higher during Category G conditions, and this small increase in absolute shear results in a much larger PWS value because of the low wind speeds.

3.3.6 Variation of Wind Shear with Thunderstorms

At the beginning of this study, concern was expressed that the thunderstorm conditions often observed at Livingston during the summer months might contribute to severe wind shear conditions. The concern had been corroborated by several nationally publicized aviation accidents involving wind shear near the ground over the past ten years. Therefore, AWS data collected during periods that thunder was reported at the Livingston airport were compared with data taken during other periods during the months of May-September 1986 to determine whether significant differences existed. The results are presented in Table 3-22.

TABLE 3-22. SUMMARY OF WIND SHEAR AT LIVINGSTON, MONTANA DURING THUNDERSTORM CONDITIONS

Percent Wind Shear Rar					e (m/s)		
Frequency of:	<0	0-1	1-2	2-3	3<	Average	
AWS 9-46 during thunderstorms	8.5	51.4	32.2	6.8	1.1	0.93	
AWS 9-46 overall	16.9	48.8	24.1	8.3	1.8	0.79	
AWS 30-46 during thunderstorms	34.3	63.5	2.2	-		0.17	
AWS 30-46 overall	27.6	69.5	2.7	-	-	0.19	

AWS during thunderstorm conditions is similar to that observed at On the average, AWS 9-46 is slightly higher, while other times. AWS 30-46 is slightly lower. The important result is that the highest wind shear categories were actually less frequent during thunderstorm conditions. AWS 9-46 values above 3 ms⁻¹ occurred 1.1% of the time during thunderstorms, versus 1.8% of the time during other periods. For AWS 30-46 values above 1 ms⁻¹, respective values are 2.2% and 2.7%. These results indicate that thunderstorm conditions are probably not an area of concern to wind developers. Also, as discussed in Section 3.2.6, the gusty winds that often occur during thunderstorm episodes do not approach the severe conditions often present during the winter months. Therefore, with the very predictable relationship shown between AWS and wind speed, wind shears during summertime thunderstorm episodes would be expected to be less than those observed during typical windy periods during the winter months.

3.3.7 Relationship Between Average 2-Minute Wind Shears and Maximum Instantaneous Wind Shear

In addition to defining the relationship of average 2-minute wind shears to other meteorological variables, defining the behavior of maximum instantaneous wind shears was also desirable. As an example, if a developer knew that the average wind shear over a 2-minute period was 2 ms⁻¹, he also would want to know the maximum instantaneous wind shear during that period. Even during periods with low average wind shears, high, short-term wind shears might occur.

To address this problem, comparisons between average wind shear and maximum instantaneous wind shear were made. Summaries of these results are presented in Table 3-23. The relationship between average wind shear and maximum instantaneous wind shear is fairly consistent; higher average shears generally result in higher maximum shears. However, some difference exists between the different levels. For example, an average wind shear between 2 and 3 ms⁻¹ results in an average maximum shear of 6.21 ms⁻¹ between 9 and 46 meters; 5.18 ms⁻¹ between 9 and 30 meters; and only 4.62 ms⁻¹ between 30 and 46 meters.

Linear regressions were performed for maximum instantaneous wind shear as a function of average wind shear. The results are presented below in Table 3-24. The maximum value of 3.95 ms⁻¹ for average AWS 30-46 values between 3 and 4 ms⁻¹ was not included because of its infrequent occurrence and lack of statistical significance.

TABLE 3-24. REGRESSION OF MAXIMUM INSTANTANEOUS WIND SHEAR AGAINST AVERAGE 2-MINUTE WIND SHEAR

Type of Shear	Slope	<u>Y-Intercept</u>	<u>R</u> ²
AWS 9-30	1.86	0.42	0.9958
AWS 9-46	2.00	1.05	0.9894
AWS 30-46	1.69	0.64	0.9669

A very strong linear relationship exists between average 2-minute wind shear and average maximum instantaneous wind shear. Roughly

TABLE 3-23. AVERAGE MAXIMUM INSTANTANEOUS WIND SHEAR AND AVERAGE TURBULENCE
INTENSITY BY AVERAGE WIND SHEAR CATEGORIES
AT LIVINGSTON, MONTANA
DATA PERIOD SEPTEMBER 1985 - NOVEMBER 1986

Average Wind Shear (m/s)	Average Maximum Instantaneous Wind Shear 9-30 Meters (m/s)	Average Maximum Instantaneous Wind Shear 9-46 Meters (m/s)	Average Maximum Instantaneous Wind Shear 30-46 Meters (m/s)	Average Alongwind Turbulence Intensity (30 meters)	Average Acrosswind Furbulence Intensity (30 meters)
< 0	-0.01	1.07	0.35	13.8	20.3
0 - 1	1.31	1.58	1.17	11.9	14.9
1-2	3.15	3.74	3.67	10.1	10.5
2-3	5.18	6.21	4.62	9.8	9.3
3-4	7.25	8.39	3.95	10.6	9.1
4-5	8.46	9.81		11.1	9.0

¹ Based on 9-46 meter wind shear.

speaking, the maximum instantaneous wind shear during a 2-minute period is about twice the average wind shear. Thus, during windy (e.g., 25 ms⁻¹) winter days, with AWS 9-46 values around 4 ms⁻¹, maximum instantaneous shears of around 8-9 ms⁻¹ would be expected. This type of information should be helpful to potential developers for analyzing worst-case shear conditions.

3.4 VARIATON OF WIND SHEAR WITH TURBULENCE INTENSITY

In the preceding analyses, the variations of wind shear and turbulence with other meteorological parameters were investigated. In general, meteorological conditions that produced an increase in turbulence intensity tended to decrease the amount of wind shear, and vice versa. An inverse relation between turbulence intensity and wind shear generally exists, as shown in Table 3-23.

Average values of turbulence intensity at 30 meters were calculated for each AWS 9-46 range that occurred during the study. Both ALT and ACT were highest during negative wind shear conditions, averaging 13.8% and 20.3% respectively. ACT shows a consistent decrease with increasing wind shear, averaging only 9.0% for shears between 4 and 5 ms⁻¹. ALT decreases to 9.8% for shears between 2 and 3 ms⁻¹, but then increases to 11.1% for shears between 4 and 5 ms⁻¹. Still, this value is at the low end of the moderate range, and indicates that during severe wind shear episodes turbulence is normally not high. In fact, during periods that the AWS 9-46 exceeded 1.0 ms⁻¹, the ALT exceeded 20% less than 5% of the time,

and exceeded 30% less than 3% of the time. In other words, most occurrences of ALT above 20% (high) were associated with AWS 9-46 values below 1 ms^{-1} .

These findings are entirely consistent with earlier results. Both wind shear and turbulence intensity correlated most strongly with wind speed. High wind speeds generally resulted in higher wind shears and lower turbulence intensities; lower wind speeds usually resulted in lower wind shears and higher turbulence intensities. These analyses indicate that conditions of high wind shear and high turbulence intensity do not generally occur simultaneously. No meteorological conditions were found that contribute to both high turbulence intensity and strong wind shear.

3.5 SUMMARIZED WIND SPEED AND DIRECTION STATISTICS

Joint frequency distributions of wind speed and wind direction were calculated by month and by season for each tower level. The seasonal distributions are presented in Appendix B; monthly results are presented in Appendix C.

Additionally, a variety of monthly wind speed, wind direction, and wind energy statistics, listed below, are presented in Appendix D:

Daily and monthly average wind speed and direction for each tower level.

- . Hourly average wind speed and direction for each tower level.
- Daily and monthly average wind energy for each tower level.

3.6 COMPARISON OF CURRENT AND HISTORICAL WIND DATA

In addition to quantifying the wind shear and turbulence characteristics of the Livingston bench, a primary objective of this study was to compare the summarized wind speed, wind direction, and wind energy data with historical data collected by MultiTech at the site between September 1980 and September 1982. Overall, the current and historical data were very similar, as can be seen in Table 3-25. Graphical comparisons of the data for the 30 meter level are presented in Figure 3-17. Some caution should be used in making direct monthly comparisons, because the data recovery percentages were not generally outstanding during either study period.

The average annual wind speed at all tower levels was nearly identical during both periods, and interannual variations for most months were small, usually 1 ms⁻¹ or less. The largest observed variation occurred in March, but is of doubtful significance because the overall data recovery for March 1986 was less than 15%. The average differences in wind speed between the 9 meter and 46 meter levels were generally larger during the historical period; no obvious explanation exists for this behavior. The interannual

TABLE 3-25. SUMMARY OF CURRENT (LIVINGSTON WIND SHEAR AND TURBULENCE STUDY) AND HISTORICAL (SEPTEMBER 1980 - SEPTEMBER 1982) WIND DATA AT LIVINGSTON, MONTANA

		JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEP	<u>OCT</u>	NOV	DEC	ANNUAL
	eed - September 1985 - January 1987 Historical													6.9 6.7 (6.2)
	ed - September 1985 - January 1987 Historical													7.9 7.9 (7.6)
Average Wind Spe (46 meters)	ed - September 1985 - January 1987 Historical	10.4	11.7	10.6	7.3 7.1	7.3 6.4	6.0	6.4	5.3	6.9	8.2	9.4 10.3	13.4 12.3	7.9 8.5 (8.0)
	ection - September 1985 - January 1987 Historical			235 182	224 164	228 184	212 171		154 139	200 192	220 202		213 190	*
	ection - September 1985 - January 1987 Historical			232 199	224 169	233 196	210 175	212 176	152 144	200 209	236 203	272 200		*
	ection - September 1985 - January 1987 Historical			233 207	225 167	228 195	212 179	_	154 161	155 208	217 204	187 200	213 191	*
	rgy - September 1985 - January 1987 Historical			584 528	242 265		135 187		110 153		371 473		1240 1271	410 500 (393)
	ergy - September 1985 - January 1987 Historical		1738	829 707	347 368	392 199	198 267	264 270		330 189	398 667		1580 1682	608 705 (611)
*	ergy - September 1985 - January 1987 Historical		1919	930 590	383 432	568 262	218 333	293 333	174 284	324 241		1057 1058	2060 2231	662 8 4 9 (661)

All wind speed values are in meters per second.

Annual historical averages in parentheses are averages incorporating only those months of the year for which current averages exist.

All wind direction values are in degrees.

All wind energy values are in watts per square meter.

AVERAGE MONTHLY WIND SPEED AND WIND ENERGY
AT LIVINGSTON, MONTANA.

DATA FOR SEP. 1985 - JAN. 1987 (----)

SEP. 1980 - SEP. 1982 (____)

FIGURE 3-17

variations in monthly average wind speeds appear to be random, and show no clear pattern related to time of year.

The annual average wind direction cannot be calculated from monthly average values; however, a comparison of monthly averages from both study periods reveals similar behavior. South-southwesterly directions predominated between spring and fall; during the summer months more southerly directions often occurred. A comparison of monthly average directions for the two study periods shows, qualitatively, that wind directions tended to be slightly more southerly during the historical period. Slight differences in the alignment of the wind direction sensors and/or the 46 meter tower probably are the source of these differences.

A comparison of the wind energy statistics for both data periods shows trends very similar to those observed for wind speed. Significant interannual monthly variations were observed, but the overall annual averages were nearly identical. The greatest percent variations (e.g., 38.7% in August at 46 meters) occurred during the months that wind speeds were lowest, when small variations in wind speed result in large percentage differences in wind energy. These months are not the highest wind energy production months. By contrast, interannual variations during the windiest months (November-March) were generally on the order of 10%. Because wind energy is proportional to the cube of the wind speed, and monthly average wind energy values were calculated based on hourly wind speed data, there were several occurrences of years

with slightly higher monthly average wind speeds having slightly lower monthly average wind energy potential, and vice versa. The month of January was one example of this.

Another comparison of the summarized data was made by performing linear regressions of the monthly averages for wind speed and wind energy. The results are listed in Table 3-26.

TABLE 3-26. REGRESSION ANALYSIS OF HISTORICAL WIND DATA AGAINST CURRENT WIND DATA

			R ²
	Slope	Y-Intercept	(Correlation Coefficient)
Wind Speed 9 meters	0.784	0.802	0.708
Wind Speed 30 meters	0.895	0.486	0.855
Wind Speed 46 meters	0.803	1.474	0.900
Wind Energy 9 meters	0.994	-13.4	0.936
Wind Energy 30 meters	0.913	32.7	0.926
Wind Energy 46 meters	1.020	-13.7	0.903

These regressions represent the best fit of the current data against the historical data. Overall correlations were much higher for the wind energy data than for the wind speed data. Also, the wind speed data showed an increasing correlation with height, ranging from 0.708 at 9 meters up to 0.900 at 46 meters.

Correlation coefficients for wind energy were over 0.900 at all levels. These statistics indicate that, with the exception of wind speed data at 9 meters, the historical monthly averages were a fairly good predictor of monthly averages during the wind shear and turbulence study.

3.7 CONCLUSIONS

The analyses performed during this study provided a good characterization of the wind shear and turbulence characteristics of the Livingston site. Both were found to vary considerably with other meteorological parameters, particularly wind speed. The following paragraphs summarize the more important conclusions regarding the behavior of turbulence and wind shear at Livingston.

3.7.1 Turbulence

In general, the turbulence intensity at Livingston can be described as low to moderate, based upon Baker's classification system, and is comparable to that observed at other windy sites. It is generally highest during the summer months and lowest during the winter. A slight decrease in turbulence occurs with height, which is generally more pronounced during periods of higher wind speed. Some relation exists between turbulence intensity and the diurnal cycle; turbulence intensity tends to be highest around mid-day when solar heating is at its peak, and lowest during the evening when nocturnal temperature inversion formation is often occurring.

By far, the most reliable meteorological predictor of turbulence is wind speed. Nearly all episodes of high (>20%) turbulence intensity occurred during wind speeds insufficient to power a wind machine. At the 30-meter level, for example, wind speeds above 6 ms⁻¹ were accompanied by high turbulence intensities less than 2% of the time. At speeds above 16 ms⁻¹ high turbulence intensities were almost unknown. Periods with winds above 6 ms⁻¹ generally had turbulence intensities of around 10%. On the average, acrosswind turbulence was greater than alongwind turbulence, but this situation was reversed at wind speeds above 10 ms⁻¹.

A strong relationship also was observed between turbulence intensity and wind direction, but this is suspected to be an indirect relationship that is primarily driven by wind speed. The lowest turbulence intensities occurred during southwesterly and easterly winds, which are generally associated with moderate to high speeds. Conversely, the highest turbulence intensities occurred with southeasterly and northerly winds, which tend to be the lightest. The high turbulence intensities present with these directions are not of great concern, because of the low wind speeds.

Similarly, the relationship observed between turbulence intensity and atmospheric stability is suspected to be largely a result of wind speed. During both very stable (Category G) and very unstable (Category A) conditions the turbulence intensity tends to be higher; both of these conditions are usually associated with low

wind speeds. Similarly, other stability categories usually have higher wind speeds, resulting in lower turbulence intensities. As was discussed previously, there does appear to be some correlation of turbulence to atmospheric stability that is not related to wind speed; at 9 meters the highest turbulence intensities occurred during Category A conditions, while at 46 meters Category G conditions produced the greatest turbulence. The effect of thunderstorm conditions on turbulence intensity also was investigated. No definite relationships were observed. During the thunderstorm season (May through September) the pattern of turbulence intensity during thunderstorm conditions was very similar to that occurring at other times. Therefore, from the standpoint of turbulence affecting machine performance, thunderstorm conditions do not seem to warrant concern.

In summary, the turbulence characteristics of Livingston appears to be favorable for wind energy development. The overall turbulence intensity can be classified as low to moderate, and is comparable to that observed at other windy sites. More importantly, periods of high turbulence intensity are generally accompanied by low (non-power producing) wind speeds. The analyses performed during this study disclosed no meteorological conditions that typically result in high turbulence intensities and high wind speeds.

3.7.2 Wind Shear

At Livingston, the wind shear can generally be classified as moderate, based on a comparison to that observed at other sites in terms of the power law exponent. However, in terms of the absolute wind shear (i.e., the change in meters per second of wind speed with height) conditions at Livingston can be fairly severe. is because absolute wind shear at Livingston is a nearly linear function of wind speed, and the wind speeds at Livingston can be very high (over 25 ms^{-1}) at times, particularly during the late fall and winter months. The similarity between power law exponents at Livingston and other sites indicates similar amounts of absolute wind shear, provided that the wind speeds are similar. However, the Livingston site is subject to greater amounts of absolute wind shear than many other sites, because of the higher wind speeds that occur during the late fall and winter months. The magnitude of absolute wind shears that can occur at Livingston is important to any potential developer. Whereas most periods of high turbulence intensity occur at wind speeds insufficient to power a generator, virtually all periods of high absolute wind shear occur with high wind speeds.

In terms of the power law exponent, wind shear at Livingston shows a slight increase with height, but the absolute wind shear decreases markedly. Over 70% of the absolute wind shear between 9 and 46 meters occurs between 9 and 30 meters. Average wind shear was highest during the late fall and winter months and lowest

during the summer. This is opposite from the distribution observed for turbulence intensity. Wind shear tended to be highest during the early evening hours and lowest around mid-day. Again, this is the opposite of the pattern for turbulence intensity.

A strong relationship was observed between wind shear and wind direction. Absolute wind shear was generally strongest during southwesterly and easterly winds, and lowest during southerly and northeasterly winds. This correlation is primarily a consequence of wind speed; wind directions associated with high speeds had the highest average wind shears, and vice versa. In terms of the power law exponent, wind shears were generally near 0.100 for directions associated with moderate to strong winds, and varied considerably for other directions.

Some correlation was found between wind shear and atmospheric stability. During very stable and very unstable conditions, absolute wind shears were usually low; again, these conditions are usually present during light winds. Conversely, other stability conditions, which are usually associated with higher wind speeds, produced higher wind shears.

The impact of thunderstorm conditions on wind shear also was investigated. No significant correlation was observed; both the average and frequency distribution of wind shear were nearly identical during thunderstorm conditions and at other times. It can be stated that the strong wind shears occurring with the high

late fall and winter wind speeds are of much greater concern than the brief gusts that may occur during thunderstorms.

Potential developers need to understand the magnitude of wind shear occurring at Livingston, because the highest wind shears and highest wind speeds tend to occur simultaneously. While the wind profile (as defined by the power law exponent) is comparable to that at other sites, very high absolute wind shears can occur at Livingston because of frequent high wind speeds. Also, in a given 2-minute period with an average wind shear (X), a maximum instantaneous wind shear of 2X is likely to occur. The strong positive correlation of wind shear and wind speed demands a careful analysis of these characteristics by potential developers, to ensure that their machines are adequately designed to withstand Livingston's environment.

The correlation of wind speed, wind direction, and wind energy data obtained during the wind shear and turbulence study with historical data was generally very high. Although some interannual monthly variations occurred, overall annual averages were nearly identical.

4.0 GRANT ADMINISTRATION

Monitoring at the Livingston site commenced on September 7, 1985, and the first quarterly data report was scheduled for completion on January 15, 1986, or 45 days after the corresponding period of monitoring ended. Unfortunately, the development of computer programs to reduce the data took much longer to complete than had been originally anticipated. Consequently, the first quarterly reports were not submitted until June 30, 1986. After this date, all subsequent quarterly reports were completed on schedule.

The other major departure from the projected work schedule involved the early termination of the project. Numerous, extremely frustrating problems with the tower elevator mechanism and anemometer cups resulted in severe data losses, and made it nearly impossible to collect data during the winter months. Therefore, a decision was made in January 1987 to terminate the monitoring, seven months before the originally scheduled completion date of September 1987.

BIBLIOGRAPHY

Akins, Robert E. 1978. Wind Characteristics at the Vawt Test Facility. SAND78-0-0760 Sandia Laboratories. Alburquerque, New Mexico.

Akins, Robert E. 1984. Personal communication. Washington and Lee University, Lexington, Virginia.

Atomic Energy Commission. 1972.

Baker, Robert W., et al. 1986. <u>Wind Turbine Performance and Array Spacing</u>, p. 3-7. Bonneville Power Administration, Portland, Oregon.

Elliott, D. C. 1984. Wind Shear for Large Wind Turbine Generators at Selected Tall Tower Sites. PNL-4895, Pacific Northwest Laboratory. Richland, Washington.

Hiester, T. R. and W. T. Pennell. 1981. <u>The Siting Handbook for Large Wind Energy Systems</u>. Pacific Northwest Laboratory. Richland, Washington.

Kelley, Neal. 1984. Personal communication. Solar Energy Research Institute. Golden, Colorado.

Thresher, Robert W. 1984. Personal communication. Oregon State University, Corvallis, Oregon.

WIND DIRECTION SENSOR SPECIFICATIONS, MODEL 020

Performance

Electrical 0-3560*-Mechanical 0-3600 Azimuth

0.6 MPH Threshold

+1/2% of full scale Linearity

+3 Accuracy

0.4 - 0.6Damping Ratio

Less than 3 feet Delay Distance

*360° or 540° range is determined by the translator range card, not the Wind Direction Transducer.

Electrical Characteristics

12 VDC at 10 MA Input Power

0-5 volts for $0-360^{\circ}$ (or 540°) Output*

Output Impedance 100 ohms maximum

Maximum Line Length 1500' (consult factory if longer line

is to be used)

Mechanical Characteristics

1.5 lbs. Weight

White gloss baked enamel Finish

WIND SPEED SENSOR SPECIFICATIONS, MODEL 010

Performance Characteristics

Maximum Operating Range 0-60 meters/sec or 0-125 mph Starting Speed .2 meters/sec or 0.5 mph Calibrated Range 0-50 meters/sec or 0-100 mph

+ or 0.15 mph -50°C to +85°C Accuracy Temperature Range

Distance constant less than 5 feet of Response

flow

*The distance travelled by the air after a sharp edged gust has occurred for the anemometer rate to reach 63% of the new speed.

Electrical Characteristics

Power Requirements 12 VDC at 10 MA 11-volt pulse Output Signal 100 ohms maximum Output Impedance

Physical Characteristics

Weight 1.5 lbs.

White gloss baked enamel Finish Use with #C1120 Crossarm Mounting Fixtures

APPENDIX B SEASONAL WIND ROSES -MultiTech-

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SPRING - 9 METER LEVEL

	PERCENT	FREQ			0	0	ó	0.	ς.	7.	₽.	,	7	0.	Ξ.	Ξ.	ε,	ů.	9.	. 7	6.	6	0	. 7	. 7	J.	en .	=	S.	4	0	ω.	.7	Θ,	€,	6.	æ	0.61	47
	TOTAL	FREQ			1	0	0		2843	66	32	0.5	947	917	928	040	98	0.5	0.8	0.9	16	16	21	10	1112	90	986	888	765	714	618	539	505	412	388	270	239	180	125
	326	4			0	0	0	7	145	2	72	61	53	40	39	27	30	25	23	38	28	30	25	30	58	29	28	24	33	23	22	€0	35	17	13	80	7	9	er,
	303	326			0	0	0	H	133	0	70	26	62	42	30	30	16	12	11	7	6	9	œ	4	e	2	€—1	2	0	2	-	0	0	0	0	0	-	0	0
	281	0			0	0	0	0	73	63	99	43	52	23	26	42	41	37	49	44	47	43	53	4.5	44	36	40	36	35	24	13	15	10	11	7	-	-	1	0
	258	00			0	0	0	0	91	8 2	20	22	28	72	79	64	76	66	0	0	\vdash	막	S	3	140	5	4	S	d.	9	0	0	06	74	62	47	4 1	2.5	5.
	236	S)			0	0	0	0	114	8 8	80	84	ത	-	€	7	1	0	ന	9	œ	S	2	જ	240	9	0	$^{\circ}$	[-	1-	4	α	83	693	99	59	42	38	20
EES)	213	ë			0	0	0	0	151	112	87	96	116	110	145	169	204	232	195	187	209	210	227	192	188	142	108	110	92	74	84	97	64	53	43	38	40	29	18
(DEGREES	191	-			0	0	0	0	139	\vdash	81	73	7.5	65	8	61	28	63	0		3	Ω	0	5	146	\vdash	3	$\overline{}$	91	00	98	61	77	49	75	53	57	99	53
RANGE	168	6			0	0	0	0	177	4	73	54	45	46	4.1	24	21	2.5	23	24	33	14	25	37	39	59	47	39	32	35	37	33	35	28	51	2 1	18	14	10
ECTION	146	9			0	0	0	0	154	84	62	20	24	16	9	10	2	H	4	2	2	0	0	г	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WIND DIRECTION RANGE	123	4			0	0	0	0	3	119	79	99	42	26	27	37	26	300	28	27	13	7	11	4	0	0		0	0	0	0	0	0	0	0	0	0	0	0
WII	101	2			0	0	0	0	00	119	~	65	99	57	48	56	99	8 2	82	70	54	26	25	10	н	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	78	101			0	0	0	0	∞	∞	131	88	65	62	68	99	85	7.5	84	78	0	2	3	H	114	\leftarrow	82	6.4	34	24	39	20	29	18	14	9	4	6	_
	56	78			0	0	0	0	~	S	103	9	55	71	54	46	09	76	76	70	7.5	94	93	26	S	134	∞	S	\sim	96	77	83	74	62	51	35	23	00	r-1
	33	56			-	0	0	0	S	4	112	87	49	58	63	69	54	28	23	18	23	20	15	20	29	14	16	H	2	7	7	П	9	9	ω.	0	2	0	0
		33			0	0	0	0	10	148	0	48	44	37	29	29	27	25	16	10	6	00	4	-	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	£.				C	0 0	0	0	7	156	00	72	51	42	24	36	37	30	40	27	26	2 8	23	13	15	ι _Ω	10	10	9	00	-	60	2	-	I e-1	. ~	0	0	0
	^	V	(M/S)		, C	0	1.2	9.1	2.0	2.4	2.8	3.2	3.6	4.0	4.4	90	5.2	2.0	5.0	6.4	6.8	7.2	7.6	0.0	4.6	00	9.2	9.6	0	0	0	-	-	10	10	10	1 (*)	13.6	14.0
		WIND	DARED PORTE	TOMON	Λ.																	, ,								0	0	C		-		, 0	, ,	13.2	m

TABLE B-1

SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA. JOINT FREQUENCY DISTRIBUTION OF WIND

SPRING - 9 METER LEVEL

PERCENT FREQ TOTAL 326 303 281 258 236 213 (DEGREES) 191 WIND DIRECTION RANGE 168 146 168 123 101 78 33 348 B V (M/S) WIND SPEED RANGE

TABLE B-1 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SPRING - 9 METER LEVEL

WIND DIRECTION RANGE (DEGREES)

123 146 1146 1146 1146 1146 1146 1146 1146	46 168 19 68 191 21	1 213 3 236	236 258 258 281	303 320	33 326 26 348	TOTAL FREQ	PERCENT FREQ
146 1	8 191 2	3 23	58 28	03	34	FREQ	FREQ
				•		(
				0		0 (0.
				0		0	0
				0		0	0
				0		0	0
				0		0	0
				0		0	
	0 0			0		0	0
				0		0	
				0		0	00.0
				0		0	0
				0		0	0
				0		0	0
				0		0	0
				0		0	0
				0		0	0
				0		0	0.
				0		0	0
				0		0	0.
				0		0	0
				0		0	٥.
				0		0	0
				0		0	0
				0		0	0.
				0		0	0
				0		0	0
				0		0	00.00
				0		0	
				0		0	0
				0		0	0
				0		0	0.00
		1 1			1		1
1195 787 3	89 1311 369	2 3878	4774 2974	1079 63	14 1096	9650	00.00
4.03 2.65 1.	31 4.42 12.4	5 13.08 1	6.10 10.03	3.64 2.0	07.8.70	100.00	
3.9 3.3 2	.6 6.3 9.	5 6.9	7.4 7.8	5.8	3 5.6		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00) en	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE B-1 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SUMMER - 9 METEP LEVEL

	PERCENT FREQ			0	0	0	0	9.13	4 (N L	7.	n (7 4	9 -	- 1		٦.	7		00	9.	9 1	3 .	9 1	9 1	٦ (D u			- α	. 0	0 4		٦	9	œ ۱	. 7	7
	TOTAL			0	4	1		3606	48	21	70	1 6	7 0	מ מ ת	200	8	00 0	83	8	9	σ ()	η (2)	41	15	ρ. Ο	0.40	821	000))) (4 C.	1 0	0 0	707	197	208	154	111	72
	326			0	0	0		232	On 1	ഗ	D (06	00	7.5	n (e e	ന ന	31	10	17	13	O	12	On t	9 (2 1	- (v) e	→ •	⊣ c	7 (7	η (י פי	r-1	2	0	0
	303			0	0	0		191	VP	P .	\dashv	7.1	4, 1	900	90 0	36	44	20	0	14	11	6 0	7	00	9	ı,	ന	*) (*	7 .		⊣ (> •	- (0 .	-1	0	0	0
	281			0	0	0	0	149	σ.	9	4	0 1	D) (0	л Эн с	20	98	9.6	98	87	82	49	7.5	65	20	51	56	7.0	0 0	ס תכ	J) (0 1	Ω ·	op :	ო -	4	2	ന	2
	258			0	0	0	0	141	~	210	~	∞ .	T) 1	9	9	ထ	0	@	0	ത	N	0	0	잭	4	-	00 1	57	20 (20 CE	0 5	26	50	6	2	9	7	e-1
	236			0	0	0	0	166	304	164	189	221	238	261	296	297	248	287	287	264	209	205	174	131	125	110	9	83	54	44 C	3.5	23	18	11	12	2	9	2
EES)	213			0	0	-1	0	231	\cap	230	(Th	m.	\circ	7	ω.	(II)	10	00	A.	\circ	$\overline{}$	\sim	$\overline{}$	S	2	\sim	78	O 1	5.7	29	10	18	7	œ	4	7	0	0
(DEGREES)	191			0	0	0	0	204	0	O.	4	9	ZP.	7	9	2	8	0	9	3	9	0	0	0	0	8	~	Ω.	ന	223	D.	9	8	91	72	52	33	2.1
DIRECTION RANGE	168			0	0	0	0	247	80	176	0	0	76	16	67	54	70	98	98	85	06	106	06	8 1	an .	\sim	4	ന	~	119	$^{\circ}$	-	\circ	$\overline{}$	0	83	64	45
ECTION	146	1		0	0	0	0	256	ω	175	0	99	62	29	22	24	18	00	10	77	10	7	9	2	9	(F)	S	0	-	0	0	0	0	0	-	+-1	0	•-1
WIND DIR	123			0	-	0	0	278	0	183	9	2	0	-	84	52	96	27	31	19	13	6	10	8	2	4	7	2	0	0	2	0	0	-	0	0	0	0
3	101	ı		0	0	0	0	277	(O)	234	4	0	103	0	70	85	102	71	62	56	64	47	30	19	16	7	2	0	0	0	0	0	0	0	0	0	0	0
	78)		C	0 0	0	0	313	0	307	4	8	5	4	4	00	S	4	্ৰ		0	S	S	$^{\odot}$	83	68	52	4.1	48	26	20	10	4	7	_	0	0	0
	56			C	0 0	0 0	0	227	43	273	4	644	4	S	φ	- ω	0	୍ଦ		-	1 4	- 40	4	N		9	99	31	17	2	4	0	0	-	0	0	0	0
	e ଏ			C	0 0	0 0	0 0	200	ന	191	9	4	-1	0	9.5	91	40	5.4	37	30	9 8	6	10	23	12	7	2	4	E	-	H	0	0	0	C	0	0	0
	11			C	0 0	4 () ←	ന	N	184	S	CV	00	68	38	17	12	000	000	σ	0		-	0	0	0	-	0	0	0	0	0	0	0	C	0 0	C	0
	348	٦		(> -	٠ (0 0	Ψ	(F)	177	ന	-	0	7	65	43	31	0 0	000	0 0	2 2 2			ď	9	2	-	4	-	2	2	2	0		· C	0 0) C	0
	^		-																									ó	0	Ö	-1	-1	N.	N	ا د	1 () ("	14.0
	6	SPEED	RANGE	^															4	0									0	o.	0	i				ic	, , c	9 00 00 00 00 00 00 00 00 00 00 00 00 00

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SUMMER - 9 METER LEVEL

							MIM	WIND DIRECTION		RANGE ((DEGREES	S)							
	H ^	60		e 13	56	7.8	101	123	146	168	191	213	236	258	281	303	326	TOTAL	PERCENT
WIND	· ·	11	83			101	123	4	9	6	_	236	'n	00	303	C)	4		FREQ
RANGE	(S.W) 3																		
^	H											(-	•	٠	((ų	•
	-	0	0	0	0	0	0	0	0		7	0 1	0 (- (r=1 =	> 0	0 (J (
4	4	0	0	0	0	0	0	0	0		16	2	2	7	_	0	0	4. U	7.1
	5	0	0	0	0	0	0	0	0		6	0	0	m	0	0	0	8	0
	10	0	0	0	0	0	0	0	0		11	0	0	2	0	0	0	.T	0
15.6	16.0	0	0	0	0	0	0	0	1	14	9	0	2	2	0	0	0	25	90.0
	9	0	0	0	0	0	0	0	0		6	0	0	2		0	0	24	o.
		0	0	0	0	0	0	0	0	ന	12	0	0	-1	0	0	0	16	o.
	7	0	0	0	0	0	0	0	0	9	7	0	0	-	0	0	0	14	0
	. 7	0	0	0	0	0	0	0	0	J.	4	0	0	0	0	0	0	o	6
	00	0	0	0	0	0	0	0	0	2	5	0	~	0	0	0	0	ın ı	
	00	0	0	0	0	0	0	0	0	0	ιΩ	0	0	0	0	0	0	2	0.1
00	ω,	0	0	0	0	0	0	0	0	0	ed	0	0	0	0	0	0	-	0, 1
α	G	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	mi	0
0	G	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0
ď	C	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0		0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	7	ō.
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	ed	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
0	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1
т С	m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (0 (9 (
ω.	4.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (. (
4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0	0 (0 (4
4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (, (
4.	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Э (O (
ιO.	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (00.00
5	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 () c	
9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0 (O (. (
9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0 (0 (9. (
9	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (D (9.0
7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (> (0 (0 (
27.6	- 4	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	٥	>

TABLE B-2 (CONTINUED)

SUMMER - 9 METER LEVEL

WIND DIRECTION RANGE (DEGREES)

							MIM	WIND DIRECTION		RANGE	(DEGREES)	ES)							
	H ^	348	11			7.8	0	123	146	168	191	213	236	258	281	303	326	TOTAL	PERCENT
WIND	~	11	33	56	78	101	123	146	9	191	-1	m	5	281	0	326	348	FREQ	FREQ
RANGE (N	M/S)																		
, ac , a	, 7	C	C	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.0	P 00	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 8	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.0	. (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
9.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
0.8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.2 3	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.6 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2.0 3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
2.4 3	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 8 3		C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
0.00	2 (2	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1 4		C	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.4	۵ ۵	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
A A 3	00	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.2	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
6.0 3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.4	- 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 2	0	C	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
37.2 37.	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
7.6 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.0 3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3.8	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8 8 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. (2	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō.
7.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
																			1
TOTAL FREO	,	1521	1282	1749	3787	4048	1986	1705	1148	3485	6093	4504	4564	3806	1991	208	1231		0.00
	,																		
PERCENT F	REQ	3.45	2.91	3.97	8.59	9.18	4.50	3.67	2.60	7.90 1	3.81 1	0.21 1	0.35	8.63	4.51	2.74	2.79	100.00	
AVERAGE W	WIND (S)	3.5	2.9	(C)	5.0	5.2	4.1	3.4	3.1	8.7	7.5	9.9	8 . 8	0.9	4.7	3.3	3.7		
1 1111	-																		

TABLE B-2 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

FALL - 9 METER LEVEL

	PERCENT	FREQ															4								4	2.94							4				4	
	TOTAL	FREQ		0	ന	e		75	87	61	64	13	8 9	0.4	27	35	4.1	0.0	43	55	54	3	17	0	0	2718	57	43	27	0.4	80	70	4	16	7	3	S	9
	326	d ₀		0	0	0	H	0	483	2	9	3	2	98	80	64	46	4 1	42	32	34	32	20	16	23	13	16	വ	11	80	00	2	80	49	e	9	-	ო
	303	326		0	0	0		291	$^{\circ}$	\neg	\sim	5	\leftarrow	92	72	42	45	4 1	22	17	20	17	12	10	Ω	æ	4	2	T	7	0	0	0	0	ed	0	0	0
	281	0		0	0	0	0	\sim	385	4	On .	4	4	\sim		prod	89	94	87	77	72	62	28	22	28	64	67	65	20	33	30	27	21	19	9	0	10	Ω
	258	00		0	0	0	0	224	390	276	217	257	300	304	354	361	351	419	381	394	407	364	403	402	396	441	357	324	305	287	200	182	163	94	63	20	42	15
	236	Ω		0	0	0	0	S	0	9	1	S	8	-	644	9	5	4	4	3	α	9	d,	S	₽.	474	r-d	2	2	\Box	1	2	$^{\circ}$	82	62	35	36	22
EES)	213	236		0	0	0	0	5	S	8	\vdash	O)	4	4	2	7	8	5	9	0	7	~	538	3	9	416	ന	2	9	9	\circ	9	226	\neg	0	0	4	4
(DEGREES	191	-		0	0	0	0	313	381	221	157	160	173	187	205	188	179	155	174	199	234	247	342	367	398	466	478	564	584	535	575	537	474	446	405	364	298	00
RANGE	168	on .		0	0	0	0	321	438	199	126	84	69	63	53	57	76	65	79	82	73	7.1	49	76	6	26	98	81	87	16	68	80	73	69	99	99	58	20
DIRECTION	146	Ğ.		0	2	e-4	П	-	422	2	S	71	48	33	20	20	43	17	2	г	2	2	2	7	2	2	0	0	0	2	2	~	0		c	0	0	0
	123	4		0	0	-	0	9	462	0	9	2	7.8	4.1	22	23	13	7	n	60	ო	n	-	٦	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MIND	101	2		0	0	0	0	2	593	ന	O	3	0	ന	5-4	26	66	70	63	57	55	4 1	2 1	12	12	14	11	9	11	1	ıΩ	0	2	0	0	0	0	0
	78			0	0	0	-	ന	1	-	10	10	5	5	9	9	8	9	8	S	5	~	\Box	1	7	413	7	4	$^{\circ}$	O	0	8	2	9	2	81	57	36
	56	76		0	0	0	0	276	564	353	325	330	307	318	334	399	396	403	335	391	459	472	416	351	347	294	311	286	214	177	143	134	8.7	9	35	20	1.1	L
	33	26		0	0	0	0	326	538	300	257	199	135	114	111	87	82	9	52	4.5	39	21	17	15	en	e	2	0	0	2	2	2	2	0	0	0	0	0
	11			С	0	0	0	00	510	$^{\circ}$	80	$^{\circ}$	7	28	28	23	19	20	13	ന	4	-	ed	0	0	0	-	0	0	0	0	0	0	0	7	0	0	0
	348	13		С	,		0	49	573	~	~	0	(7)	00	73	57	99	51	4 4	51	28	28	34	30	19	13	1	7	2	4	9	2	-1	2	2	2	0	Н
	11	~	(M/S)	,				2.0																				0	0	0		-	2	2	2	(1)	(0)	14.0
		WIND	RANGE	` c	9 0	• a	0.0	1 (4)	2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8	5.2	5.6	0.9	6.4	6.8	7.2	7.6	8.0	4.8	8.8	9.2	9.	0.0	4.0	8.0	1.2	1.6	2.0	2.4	2.8	2.5	13.6

TABLE B-3

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON. MONTANA.

FALL - 9 METER LEVEL

	PERCENT FREQ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00
	TOTAL	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0
	326 348	m = m m 0 = = = = 0 0 0 0 0 0 0 0 0 0 0	0
	303	000000000000000000000000000000000000000	0
	303	m o o o o o o o o o o o o o o o o o o o	0
	258	L M Q 4 H 4 H O O O O O O O O O O O O O O O O	0
	236 258	mrrnnn-000000000000000000000000000000000	0
EES)	213	0 0 0 0 0 0 0 0 0 4 4 6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
(DEGREES	191	$\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$	0
RANGE	168	0 4 7 8 8 9 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	0
DIRECTION	146	000000000000000000000000000000000000000	0
WIND DIR	123	000000000000000000000000000000000000000	0
3	101	000000000000000000000000000000000000000	0
	78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	78	000000000000000000000000000000000000000	0
	33	000000000000000000000000000000000000000	0
	33		0
	348	000000000000000000000000000000000000000	0
	WIND SPEED RANGE	4448898677888888888888888888888888888888	7

TABLE B-3 (CONTINUED)

FALL - 9 METER LEVEL

	PERCENT FREQ	0000	000000			100.00
	TOTAL	0000	00000	00000		92414 1
	326 348	0000	00000	00000	 	2.30
	303	0000	00000	00000		2.23
	281	0000	00000	00000		2.99
	258	0000	000000	00000		8758 9.48 6.9
	236	0000	00000	00000		12796 13.85 6.6
DEGREES)	213	0000	00000	00000		13389
_	191 213	0000	00000	00000		13423
I RANGE	168	0000	000000	00000	000000000000000000000000000000000000	3550 3.84 7.9
DIRECTION	146	0000	00000	00000		1406
MIND DIE	123	0000	00000	00000		1426
W	101	0000	00000	00000		2,71
	78	0000	00000	00000		13064 14.14 6.8
	78	0000	00000	00000		8562 9.26 6.3
	23	0000	00000	00000		2.62
	33	0000	000000	00000		1.79
	348	0000	00000	00000		2538 2.75 3.5
	(M/S)	8 8 6 6	0000000		3 4 4 4 4 4 4 4 6 6 6 6 6 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9	FREQ HI FREQ GE WIND
	WIND SPEEI	0000	00001		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL PERCEN AVERAGI

TABLE B-3 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

WINTER - 9 METER LEVEL

	ENT	Y		4	0	3	_1	-	0	2	2	6	2	an	1	C1	0	2	7	CJ	2	2	2	2	2	2	m	2	m	2	0		2		C.	2		ις.
	PERCENT		,	0	0	0	0	4	0	٣.	0	0	6.	. 7	6	Φ.	0	3	9.	8	0	Φ.	Π.	ů.	9.	3.6	9.	ς.	۲.	٦.	00	9	9.	9	. 7	. 29	9	
	TOTAL	7	1	'n	0	4	2	335	277	188	149	141	133	108	126	114	139	175	232	252	281	397	438	495	503	506	504	468	434	440	389	362	369	369	378	356	368	354
	326) P		0	0	0	0	28	23	25	14	16	13	10	16	7	14	9	13	14	10	22	23	19	25	2.5	1.5	20	0	Ŋ	— I	7	0	0	0	0	0	0
	303	vi .		0	0	0	0	29	37	32	30	27	23	15	19	6	7	13	ന	7	3	_	-	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0
	281	5		0	0	0	0	22	46	40	33	24	21	18	14	12	11	9	2	2	7	0	0	~	0	0	0	0	0	0	2	0	2	₽~4	0	0	0	0
	258	0		0	0	0	0	17	33	2.5	2.1	24	25	16	25	23	29	33	46	38	39	33	32	26	17	18	19	18	20	18	17	9	Ω.	00	6	6	10	(C)
	236	7		0	0	0	0	32	19	8	16	16	21	2.5	24	37	49	77	100	123	137	190	206	209	223	231	217	153	153	134	06	70	45	46	51	36	2.1	18
EES)	213	2		0	0	0	0	2.7	15	ιΩ	1	14	6	13	18	17	2.5	30	45	09	62	0	0	137	3	142	S	9	5	4	2	2	0	26	105	81	70	70
(DEGREE	191	-1		ന	0	m	~	19		11	ന	7	4	2	m	ιΩ	2	8	16	12	28	42	67	92	06	82	9.5	0	0	3	LO.	Ω	0	-1	207	N	ĽΩ	4
RANGE	168	ת		2	0	г	П	35	90	(C)	2	-	e	0	0	0	0	ı	2	0	0	2	2	4	n	m	7	H	2	e	г	0	സ	S	9	6	12	
DIRECTION	146	0		0	0	0	0	22	12	4	Н	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WIND DIR	123	4		0	0	0	0	13	00	α)	c	e-I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	101	N		0	0	0	0	7	89	0	2	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	78			0	0	0	0	14	9	8	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	56	9		0	0	0	0	00	7	1	г	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8			0	0	0	0	19	6	4	e	-	0	- 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11	m m		0	0	0	0	18	17	11	10	0	10	e	-	g-ri	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	348	М		0	0	0	0	25	2.2	00	80	10		ıΩ	9	n	2	r-1	ıω	2		-	4	7	9	90	e	ιΩ	0	0	0	0	0	0	0	0	0	0
	^11		(S, Z)																							9.5		0	0	0	-	el	S.	0		(C)	ω.	4
		SPEED	RANGE >	0.0	4.0	0.8		9.1	2.0	2 . 4	2 . 8	3.0	20	0.4		00	0 0	 	0.0	6.4	8.9	7.2	7.6	0 0	. 4	. 00	9.2	9.	0.0	4.0	0.8	1.2	9.	2.0	2.4	2.8	. 2	3.6

TABLE B-4

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

WINTER - 9 METER LEVEL

56 78 101 123 146 168 191 213 236 288 281 303 326 TUTAL 78 101 123 146 168 191 213 236 281 303 326 774 101 123 146 168 191 213 216 281 303 326 348 776 304						WIND	Ω		NGE	(DEGREES	-					,		
2 2 2 2 2 8 8 10 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 3		e 4	56 7.8	∠	00	0.4	4 6	90	0 -	213	236	258 281	281 303	303 326	326 348	TOTAL FREC	PERCENT FREQ
20))	0)	ı)	l .	l							,	
25																		•
2.1			0	0	0	0	0	0	20	2	99		-	0	0 (0 (0	۰.
25. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	0		0	0	0	0	0	0	2.1	\sim	23		4	0	0	0	0 .	Ξ.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0		0	0	0	0	0	0	29	\sim	36	00	~	0	0	0	0	٦.
213 14 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	2.7	0	24	9		0	0	0	0	αο
10.00	0		0	0	0	0	0	0	32	\rightarrow	14	7	0	0	0	0	0	6
9	0		0	0	0	0	0	0	31	9	1.2	4	0	0	0	0	3	. 7
10.00	0		0	0	0	0	0	0	48	9	10	2	0	0	0	0	S	ω.
1.0 1.0	0		0	0	0	0	0	0	38	∞	11	2	0	0	0	0	3	φ.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	54	Θ	2	0	0	0	0	0	N	9.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	54	α	S	0	-1	0	0	0	42	7.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	0	0	0	0	0	59	5		0	0	0	0	0	\Box	. 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	53	4	4	1	0	0	0	0	(J)	4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	0	0	0	0	0	63	9 8	4	0	0	0	0	0	ω	Ξ.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	20	86	2	0	0	0	0	0	3	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	0	0	0	0	0	8 4	71	2	0	0	0	0	0	N	αο.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	4.7	54	0	0	0	0	0	0	0	7.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	0	0	0	0	0	38	37	2	0	0	0	0	0	77	S.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	34	25		0	0	0	0	0	9	4.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	28	2.2	П	0	0	0	0	0	56	4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	30	26	€-1	0	0	0	0	0	2.2	4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	2.1	10	0	0	0	0	0	0	31	. 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0	20	9	0	0	0	0	0	0	26	7
0.00 0.00	0		0	0	0	0	0	0	26	7	0	0	0	0	0	0	ന	. 2
	0		0	0	0	0	0	0	20	œ	0	0	0	0	0	0	28	. 5
	0		0	0	0	0	0	0	10	9	0	0	0	0	0	0	16	٦.
		0		0	0	0	0	0	7	4	0	0	0	0	0	0	11	0
			0	0	0	0	0	0	2	5	0	0	0	0	0	0	10	0
	0		0	0	0	0	0	0	9	2	0	0	0	0	0	0	00	0
	C		0	0	0	0	0	0	00	0	0	0	0	0	0	0	00	0
	0 0		0	0	0	0	0	0	m	e	0	0	0	0	0	0	9	o,
	0		0	0	0	0	0	0	2	ო	0	0	0	0	0	0	2	0.
0 0 0 0 0 1 3 0 0 0 0 0 0 4 0.0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō.
			0	0	0	0	0	0	€-5	en	0	0	0	0	0	0	4	0
	0		0	0	0	0	0	0	rd	1	0	0	0	0	0	0	2	0.01
) C		0	С	0	0	0	0	0	1	0	0	0	С	0	0	1	0.01

TABLE B-4 (CONTINUED)

WINTER - 9 METER LEVEL

							MIND		DIRECTION	RANGE	(DEGREES	SES)							
	11	348			56	78	101	123	146	168	191	213	236	258	281	303	326	TOTAL	PERCENT
WIND	~	11	33	56	78	101	2	4	168	6	-	3	5	00	0		42"	FREQ	FREQ
(+)	(S)																		
11												(((((c	(
8.0 28		0	0	0	0	0	0	0	0	0	0	0	O (Э () C	0 () (0 (
8.4 28		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.8 29		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
9.2 29		0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	1	
9.6		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
0.4 30		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.8 31		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.2 31		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
1.6 32		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2.0 32		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2.4 32		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
2.8 33		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3.2 33		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3.6 34		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4.0 34		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4.4 34		C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4.8 35		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5.2 35		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5.6 36		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.0 36		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.4 36		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.8 37		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7.2 37		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
7.6 38		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.0 38		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.4 38		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.8 39		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9.2 39		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
39.6 40.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
	i	1	1 1 1		1	-	1	1		1 1 1 1 1	1		1	- i	1	į.	i i	1	1
TOTAL FREQ		138	99	37	17	24	21	33	4.1	1071	5430	2631	2834	667	258	251	362	13881	100.00
PERCENT FREQ		56.0	0.48	0.27	0.12	0.17	0.15	0.24	0.30	7.72 3	39.12 1	8.95	20.42	4.81	1.86	1.81	2.61	100.00	
AVERAGE WIN SPEED (M'S)	£	3 5	¢4	2	(4	. 1	61 60	c: 	c1 •-1	17.6	14.2	10.2	8 9	6.8	ы Б.	6) 10.	ري ري		

TABLE B-4 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

ANNUAL - 9 METER LEVEL

	PERCENT FREQ	00000 000 000 000 000 000 000 000 000	7 9
	TOTAL FREQ	6 111536 15569 7336 7336 7336 7336 7336 6417 6617 6617 6652 6652 6652 6652 6652 6652 6652 665	7 =
	326 348	7 6 9 6 6 7 7 1 1 1 1 1 1 1 1 1 1 2 2 3 5 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ý Ú
	303	0 0 0 1 4 4 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00
	281	4	14
	258	$\begin{array}{c} 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	20 E.
	236	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99
EES)	213	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	232
(DEGREES	191	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	602
RANGE	168	0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	148
DIRECTION	146	7	0 -1
WIND DIR	123	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00
3	101	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00
	101	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37
	78	1 2 3 3 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 00
	33	1007 1007 1007 1007 1007 1007 1007 1007	00
	333	000046001 00000000004401 000000000044000000000	0 C
	348	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 11
	÷	4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ი 4
	WIND SPEED RANGE	0001117786444566677788886666777777777777777777	m m

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

ANNUAL - 9 METER LEVEL

							WIND	DIREC	DIRECTION R	RANGE ((DEGREES	(S)							
WIND	# V	348	33	33	56	78	101	123	146 168	168	191 213	213 236	236 258	258 281	281 303	303	326 348	TOTAL	PERCENT FREQ
RANGE	(M/S)																		
	/ .	0	0	0	m	36	0	0	0	124	0	7	3.7		5	0	4	1007	4,
	. 4	0	0	0	(7)	27	0	0	0	6	43	9	28		-	0	₩	878	4
. 4		0	0	0	<u></u>	21	0	0	0	103	\sim	S	2.1	18	0	0	m	894	4,
3		0	0	0	П	19	0	0	0	79	\sim	\blacksquare	16		0	0	ന	770	4
		0	0	0	1	15	0	0	-	81	493	102	12	4	0	0	0	709	
		0	0	0	0	10	0	0	0	69	O	0	9	9	٦	0	-	969	(-)
	9	-	0	0	0	13	0	0	0	69	~	7.5	9	2	0	0	1	689	
		0	0	0	0	13	0	0	0	09	439	58	4	₩.	0	0	-	576	C.J.
7	7	0	0	0	0	S	0	0	0	7.5	4	51	0	0	0	0	0	575	
	00	0	0	0	0	p1	0	0	0	7.5	0	42	1	-	0	0	0	527	
00		0	0	0	0		0	0	0	76	O	37	0	0	0	0	O	436	
000	00	0	0	0	0	0	0	0	0	6.2	$^{\circ}$	36	1	0	0	0	0	384	
00	0	-	0	0	0	0	0	0	0	86	\vdash	21	_	0	0	0	0	321	Ξ.
0	6	0	0	0	0	0	0	0	0	69	204	16	0	0	0	0	0	289	Π.
0	0	0	0	0	0	0	0	0	0	61	00)	20	-	0	0	0	0	264	Ξ.
	0	0	0	0	0	0	0	0	0	56	$^{\circ}$	12	0	0	0	0	0	197	Π.
0	0	0	0	0	0	0	0	0	0	48	0	11	0	1	0	0	0	163	٧.
0	-	0	0	0	0	0	0	0	0	4.7	83	α)	0	0	0	0	0	138	٧.
-	-	0	0	0	0	0	0	0	0	4.5	104	O	0	0	0	0	0	158	٠.
		0	0	0	0	0	0	0	0	49	77	က	0	0	0	0	0	129	٧.
1 6		0	0	0	0	0	0	0	0	30	46	1	0	0	0	0	0	77	0.
	2	0	0	0	0	0	0	0	0	26	38	0	0	0	0	0	0	64	0.
	 	0	0	0	0	0	0	0	0	32	36	0	0	0	0	0	0	68	0
m	ω.	0	0	0	0	0	0	0	0	26	2.5	0	0	0	0	0	0	51	0
9	4	0	0	0	0	0	0	0	0	13	15	0	0	0	0	0	0	28	0
4	4	0	0	0	0	0	0	0	0	13	16	0	0	0	0	0	0	29	0
4	4	0	0	0	0	0	0	0	0	O	7	0	0	0	0	0	0	16	0
. 4	2	0	0	0	0	0	0	0	0	9	2	0	0	0	0	0	0	00	0
	2	С	С	0	0	0	0	0	0	80	0	0	0	0	0	0	0	α)	0
) (C	9	0	0	0	0	0	0	0	0	٣	7	0	0	0	0	0	0	7	0.
٠) (2	C	0	C	0	0	0	0	0	2	ന	0	0	0	0	0	0	S	0
. u	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
	, ,	0	0	0	0	0	0	0	C	1	ന	0	0	0	0	0	0	4	0.
7		0	0	0	0	0	0	٥	0	-	-	0	0	0	0	0	0	2	00.00
27.5	28.0	0	C	0	0	0	0	0	0	0	1	0	0	0	0	0	0	—	0.

TABLE B-5 (CONTINUED)

ANNUAL - 9 METER LEVEL

	303 326 TOTAL PERCENT 326 348 FREQ FREQ	000	000000000000000000000000000000000000000	000	00	000	000	000		000	0 0	0 0	0 0	0 0 0.	0 0		0.0	0.0 0 0	0.0	0	4112 4812 180053 100.0	2.28 2.57 100.00	3.3 4.3
	281	000	000	00	00	00	00	00	0	00	0	0 0	0	0	0 0	o c	0	0	0	0	6095	3.39	0
	258	000	000	00	00	00	00	00	0	00	0	0 0	0	0	0 0	0 0	0	0	0		16205	9.00	6.8
	236	000	000	00	00	00	00	00	0	00	0	0 0	0	0	0 0	o c	0	0	0		24968	13.87	6.8
(EES)	213	000	000	00	00	00	00	00	00	00	0	0 0	0	0	0 0	0 0	0	0	0		24402	13.55	7.4
E (DEGREES	191	000	0 110	00	00	00	00	00	00	00	0	00	0	0	0 (0 0	0	0	0		28638	15.91	10.5
N RANGE	168	000	000	00	00	00	00	00	00	00	0	00	0	0	0 (0 0	0	0	0	0	9417	5.23	ຕ <u>າ</u> ຫ
DIRECTION	146	000	000	00	00	00	00	00	0	00	0	00	0	0	0 (0 0	0	0	0		2984	1.66	2.9
WIND DI	123	001	000	00	00	00	00	00	00	00	0	00	0	0	0 (0 0	00	0	0		3951	2.19	6)
3	101	00	000	000	00	00	00	00	0	00	0	00	0	0	0 (0 0	0 0	0	0		5709	3.17	00 (°)
	101	00	000	000	00	00	00	00	00	00	0	00	0	0	0	0 0	0 0	0	0		19434	10.70	φ.
	56	00	000	000	00	00	00	0 (00	00	0	00	0	0	0	0 0	0 0	0	0		15157	8.42	6.1
	33	00	000	000	00	00	00	000	00	00	0	00	00	0	0	0 0	0 0	0	0		5347	2.97	3.7
	33	00	000	000	00	00	00	000	00	00	0	0 0	00	0	0	0 0	0 0	0	0	0	3696	2.05	2.9
	348	00	000	000	00	00	00	0 0	00	00	0	0 0	0	0	0	0 0	0 0	0	0	0	5127	2.85	67
	^ (S/E)	28.	000	0000	9 6 6	32.	32.	 	 4 4.	34.	35.	36.	 ວິດ ຕ	37.	37.	38	D	 	000	40.	L FREQ	ENT FREQ	AGE WIND
	N S P P P P P P P P P P P P P P P P P P	ω ω	28.8	000	0 -	40	20	 (ෆ	 M 4	4 4		0	 Q Q	9	7	7	xo a		0	6	TOTA	DERC	SPEER CE

TABLE B-5 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SPRING - 30 METER LEVEL

PRANCE (H/S) RANGE (H/S) RANG								WINI	WIND DIRECTION		RANGE ((DEGREE	(83)							
PRINCE (M/S) ANNUE (M/S) ANNU		^	<₽	11		56	78	0	~ ~	44	9	ത		(2)	2	00	0	N	OTA	PERCENT
The control of the co	MIND			8		78	0	N	42	9	o	-	m	2	00	0	N	4	저	FREQ
		×																		
0.4 0.9 <th>^</th> <th>11</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>4</th> <th>4</th> <th>(</th> <th>(</th> <th>(</th> <th>(</th> <th>(</th> <th>(</th> <th>C</th> <th>c</th> <th>c</th> <th>(</th>	^	11							4	4	((((((C	c	c	(
1.0		0.4	0	0	0	0	0	0	0	0	0	> (O	> <	> C	0 0	> 0	0 () r	, (
1.7. 2.0 0 <td></td> <td>0.8</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Э (</td> <td>0 (</td> <td>O</td> <td>0 (</td> <td>⊣ ¢</td> <td>9 (</td>		0.8	0	0	1	0	0	0	0	0	0	0	0	0	Э (0 (O	0 (⊣ ¢	9 (
2.6 2.7 2.6 2.6 2.6 2.7 2.6 2.6 2.7 2.6 2.6 2.7 2.6 2.6 2.7 2.7 2.6 2.6 2.7 2.7 2.6 2.6 2.7 2.7 2.6 2.6 2.7 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 <td></td> <td>1.2</td> <td>0</td> <td>0</td> <td>0</td> <td>7</td> <td>0</td> <td>1</td> <td>0</td> <td>- (</td> <td>Ö,</td>		1.2	0	0	0	7	0	1	0	0	0	0	0	0	0	0	0	0	- (Ö,
6 16 </td <td></td> <td>1.6</td> <td>28</td> <td>39</td> <td>25</td> <td>58</td> <td>58</td> <td>15</td> <td>18</td> <td>31</td> <td>18</td> <td>\sim</td> <td>n</td> <td>17</td> <td>444</td> <td>19</td> <td>N</td> <td>-</td> <td>43</td> <td>4</td>		1.6	28	39	25	58	58	15	18	31	18	\sim	n	17	444	19	N	-	43	4
1.0 2.4 99 105 138 123 40 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 78 69 87 66 49 48 48 49 52 73 66 49 48 48 48 65 30 87 79 70 <t< td=""><td></td><td>2.0</td><td>9</td><td>9</td><td>0</td><td>5</td><td>3</td><td>S</td><td></td><td>88</td><td>103</td><td>LO:</td><td>\sim</td><td>130</td><td>$^{\circ}$</td><td>86</td><td>9</td><td>S</td><td>50</td><td>ଫ ।</td></t<>		2.0	9	9	0	5	3	S		88	103	LO:	\sim	130	$^{\circ}$	86	9	S	50	ଫ ।
4 2.8 73 66 89 15.2 74 49 75 66 49 46 78 46 78 48 78 48 7		2.4	O	0	3	4	2	68	35	40	68	78	06	87	78	99	06	ෆ ගෙ	ල ල	۲.
8 9 6 6 6 9 7 4 6 2 2 7 4 4 9 6 9 9 7 4 5 1 1 9 6 4 4 5 1 1 9 6 4 2 2 1 9 9 4 2 1 9 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1		2.8	73	9	00	5	7	47	24	31	49	75	69	82	99	49	46	78	07	9.
2. 3. 6 4. 4 2. 5 5. 6 5. 1 2. 3. 6 6. 5 5. 1 2. 6 5. 1 2. 6 5. 1 2. 6 5. 1 2. 6 5. 1 2. 6 4. 4 4. 6 6. 6 5. 1 1. 1 2. 6 7. 9 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 6 5. 7 5. 6 5. 6 5. 7 5. 6 5. 7 5. 6 5. 7 5. 6 5. 7 5. 6 5. 7 5. 6 5. 7 5. 7 5. 6 5. 7		3	0 4	65	80	0	75	46	22	25	62	73	62	74	49	52	48	4 4	\sim	Ξ.
6 4.0 4.2 2.6 3.7 5.3 6.7 7.9 105 105 105 105 105 105 105 105 105 105 105 105 105 6.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 11 11 3.1 6.4 4.4 4.5 11.9 17.9 17.9 17.9 17.0 10.9 <		3.6	44	4.2	58	56	99	51	2.1	12	36	62	77	63	54	51	20	53	S	ω.
4.6 2.3 4.6 2.3 4.6 4.7 4.6 2.5 4.6 4.7 4.6 4.8 2.5 4.6 4.8 4.2 1.1 1.1 3.1 67 100 119 70 4.8 3.0 700 4.8 4.8 5.6 2.2 2.7 4.6 4.8 1.5	, .	4.0	4.2	26	37	53	82	51	13	00	30	6.7	4	0	56	39	29	4.1	∞	9.
4 8 25 27 50 64 59 38 5 13 24 19 179 86 43 29 36 18 22 36 163 179 86 43 29 36 18 52 26 48 165 163 165		4.4	48	23	4.5	54	43	42	11	11	31	29	0	-	70	48	38	30	00	9,
8 5 2 3 7 2 4 5 6 4 3 3 164 163 163 164 163 163 164 163 163 164 163 164 163 164 164 163 164 164 164 164 164 164 164 164 164 164 164 164		00	2.5	27	20	64	59	38	2	13	24	54	end	7	9 8	13	29	36	6	σ.
5 5 6 1 5 2 4 155 165 165 36 20 21 81 8 20 44 155 163 65 36 20 21 81 8 20 44 155 165 36 20 21 81 8 20 6 29 845 20 20 21 81 84 172		5 2	28	31	72	4.5	69	43	O	80	32	38	0	5	99	3.7	27	31	(D)	σ.
6 6 9 1 7 7 7 8 9 2 4 155 172 30 6 2 44 155 172 30 6 2 9 6 4 155 172 30 6 2 19 108 172 172 30 6 2 19 108 172 172 30 6 2 19 108 170 225 110 27 30 4 18 3 10 23 30 4 30		20.00	22	24	5.7	53	61	50	12	2	26	8 4	S	9	65	36	20	2.1	\Box	. 7
6.4 27 15 14 78 115 56 8 4 27 68 172 199 82 26 3 24 918 3.1 4 6.8 41 15 29 79 96 48 13 1 26 103 106 35 4 36 39 8 4 15 26 103 35 3 1 28 121 190 218 106 35 4 36 304 30 6 25 24 18 3 16 28 121 190 218 106 35 96 30 6 8.4 18 3 1 28 135 160 25 14 35 104 36 37 6 8.4 18 3 14 2 4 3 1117 3 4 3 11115 3 3 <td></td> <td>6.0</td> <td>1 (2)</td> <td>80</td> <td>23</td> <td>7.9</td> <td>77</td> <td>78</td> <td>9</td> <td>e</td> <td>20</td> <td>44</td> <td>2</td> <td>7</td> <td>7.2</td> <td>30</td> <td>9</td> <td>5.0</td> <td>4</td> <td>Θ.</td>		6.0	1 (2)	80	23	7.9	77	78	9	e	20	44	2	7	7.2	30	9	5.0	4	Θ.
4 6 8 41 15 29 79 96 48 13 1 26 108 141 184 84 36 10 23 934 3.1 1 2 1 1 1 2 1 2 1 1 28 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 3 3 1 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 4 1 4 1 4 4 1 4 1 1 <td></td> <td>6.4</td> <td>27</td> <td>15</td> <td>14</td> <td>78</td> <td>944</td> <td>56</td> <td>00</td> <td>4</td> <td>27</td> <td>68</td> <td>~</td> <td>O</td> <td>82</td> <td>26</td> <td></td> <td>24</td> <td>41</td> <td>-</td>		6.4	27	15	14	78	944	56	00	4	27	68	~	O	82	26		24	41	-
8 7.2 24 11 18 77 89 38 6 2 19 108 170 225 119 27 6 25 964 3.2 7.6 27 3 13 76 17 89 16 2 1 28 15 10 25 14 4 2 1 28 15 10 25 14 4 2 1 28 15 10 4 10 2 1 28 15 4 4 10 1 4 10 14 4 1 14 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 1 4 1 4		6.8	41	15	29	79	O	48		1	26	0	937	α	84	36		23	m	Ξ.
2 7.6 27 3 13 76 75 46 2 1 28 121 190 218 106 35 4 35 39 3.3 6 8.0 25 9 19 96 103 35 3 1 28 135 160 248 112 29 7 32 1042 3 3 3 1 28 135 160 248 112 40 6 29 4 30 1 28 142 126 125 14 40 6 111 40 6 29 4 30 111 3 14 30 111 40 6 111 40 6 111 40 6 111 40 6 111 40 6 111 40 6 111 40 6 111 40 6 111 40 111 40 111 <td< td=""><td></td><td>7.2</td><td>2.4</td><td>11</td><td>18</td><td>77</td><td>89</td><td>38</td><td></td><td>2</td><td>19</td><td>0</td><td>7</td><td>S</td><td>900-0</td><td>27</td><td>9</td><td>25</td><td>9</td><td>. 2</td></td<>		7.2	2.4	11	18	77	89	38		2	19	0	7	S	900-0	27	9	25	9	. 2
6 8.0 25 9 19 96 103 35 3 1 28 135 160 248 112 29 7 32 1042 3.5 6 8.4 18 3 19 97 112 30 1 28 135 160 248 112 29 7 32 1042 3.5 4 8.8 1.6 147 116 4 0 1 48 131 182 248 128 35 4 3.6 2 9.2 5 21 147 116 4 0 1 48 127 13 148 27 7 38 1108 3.7 2 9.6 14 1 4 1 4 1 4 4 2 3 1108 3.7 10.0 4 1 4 1 4 1 4 1 4 <td></td> <td>7.6</td> <td>27</td> <td>m</td> <td>13</td> <td>76</td> <td>75</td> <td>46</td> <td>2</td> <td>1</td> <td>28</td> <td>Ø</td> <td>O</td> <td>\neg</td> <td>\circ</td> <td>35</td> <td>4</td> <td>35</td> <td>8</td> <td>en.</td>		7.6	27	m	13	76	75	46	2	1	28	Ø	O	\neg	\circ	35	4	35	8	en.
8.4 18 3 19 97 112 30 1 41 193 255 141 40 6 21 115 3.8 4 8.8 15 0 28 107 89 12 3 41 142 223 236 152 35 4 30 31.17 3.8 9.2 5 5 11 147 116 4 0 0 10 4 128 22 248 133 2 4 30 31.7 3.8 10.0 4 1 16 183 34 0 0 0 13 12 2 4 29 903 3.0 10.0 4 1 16 183 34 0 0 0 13 105 205 13 10 3 3 3 3 3 3 3 4 29 3 3 3		0.8	2.5	6	19	96	0	35	m	-	28	$^{\circ}$	9	Ą,	-4	5.9	7	32	04	. 2
4 8.6 15 0 28 107 89 12 3 41 142 223 236 152 35 4 30 1117 3.8 9.2 5 21 147 116 4 0 1 48 131 182 248 128 27 7 38 1108 3.7 10.0 6 11 148 17 16 13 21 13 21 108 3.7 38 3.0 3.2 3.0 3.2 </td <td></td> <td></td> <td>18</td> <td>e</td> <td>19</td> <td>26</td> <td>\Box</td> <td>30</td> <td>_</td> <td>0</td> <td>37</td> <td>d,</td> <td>ത</td> <td>2</td> <td>527</td> <td>40</td> <td>9</td> <td>2.1</td> <td>11</td> <td>ω,</td>			18	e	19	26	\Box	30	_	0	37	d,	ത	2	527	40	9	2.1	11	ω,
8 9.2 5 2.1 147 116 4 0 1 48 131 182 248 128 27 7 38 1108 3.7 2 9.6 6 1 142 71 4 1 0 40 110 142 22 113 5 4 29 3.7 6 10.0 4 1 0 0 0 5 31 2 2 4 3.7 3.6 3.7 3.2 3.0 3.0 3.0 3.7 3.0 3.		00.	12	0	28	0	00	12	m	0	41	4	C/I	9	S	35	7"	30	11	ω.
2 9.6 6 1 13 142 71 4 1 142 71 4 10 40 110 142 222 113 5 4 29 903 3.0 6 10.0 4 1 16 183 34 0 0 6 131 1 2 94 2 3.2 137 1 2 94 2 3.2 137 1 2 94 2 3.2 137 1 2 3 3.2 3.2 3		9.2	2	2	2.1	4	\vdash	4	0	1	48	3	00	4	CI.	2.7	7	38	10	. 7
6 10.0 4 1 16 183 34 0 0 53 127 134 219 137 21 13 20 37 967 3.2 10.4 2 0 12 149 19 0 0 1 64 117 105 205 136 13 1 20 844 2.8 4 10.8 2 0 0 0 6 184 1 2 3 844 2.8 11.2 0 0 0 0 0 0 2 27 7 2 3 2 2 3 2 2 3 3 2 3 3 2 3 4 3		9.6	9	1	13	4	7.1	4	-	0	40	\vdash	4	C/I	qued .	2	4	29	0	0
10.4 2 0 12 149 19 0 1 64 117 105 205 136 13 1 20 844 2.8 4 10.8 2 0 0 0 6 2 201 137 16 2 30 844 2.8 8 11.2 0 0 0 6 1 84 92 201 137 16 2 30 728 2.7 8 11.2 0 0 6 1 83 75 159 108 9 2 2 7 728 2.2 10 0 0 0 6 1 83 75 159 108 9 2 2 4 657 2.2 10 0 0 0 0 0 0 1 4 6 1 2 5 5 1 9 1	9.	0	4	-	16	α	34	0	0	0	23	$^{\circ}$	(7)	-	(C)	2.1	П	37	9	5
4 10.8 2 0 14 148 27 0 6 94 92 201 137 16 2 30 813 2.7 11.2 0 0 7 89 22 0 0 61 86 104 191 128 10 2 27 728 2.4 11.6 0 0 0 61 86 150 91 7 19 569 1.9 2 24 657 2.2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 4 3 3 4	0	0	2	0	12	4	19	0	0	e4	64	\vdash	0	0	3	13	-	20	マ	00
11.2 0 0 7 89 22 0 0 61 85 104 191 128 10 2 27 728 2.4 11.6 0 0 6 108 22 0 0 61 83 75 159 108 9 2 24 657 2.2 12.0 1 0 0 0 0 51 59 80 124 107 6 1 25 562 1.9 12.4 0 0 0 0 0 0 1 4 65 1 25 562 1.9 12.4 0 0 0 0 0 0 0 1 4 0 25 562 1.9 13.2 0 0 0 0 0 0 4 0 25 484 1.6 13.2 0 0 0 0 <td>٧</td> <td>C</td> <td>2</td> <td>0</td> <td>1.4</td> <td>4</td> <td>2.7</td> <td>0</td> <td>0</td> <td>0</td> <td>50</td> <td>94</td> <td>35</td> <td>0</td> <td>3</td> <td>16</td> <td>2</td> <td>30</td> <td>\vdash</td> <td>. 7</td>	٧	C	2	0	1.4	4	2.7	0	0	0	50	94	35	0	3	16	2	30	\vdash	. 7
11.6 0 6 108 22 0 0 61 83 75 159 108 9 2 24 657 2.2 6 12.0 1 0 0 54 67 69 150 91 7 1 19 569 1.9 10 12.4 0 0 0 51 59 80 124 107 6 1 25 1.9	00		0	0	7	ထ	22	0	0	0	62	98	0	0	N	10	2	2.7	\sim	4
.6 12.0 1 0 7 90 13 0 0 54 67 69 150 91 7 1 19 569 1.9 56 12.0 1 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		0	0	9	108	22	0	0	0	61	83	7.5	S	0	O	2	24	LC)	2
12.4 0 0 51 59 80 124 107 6 1 25 562 1.9 4 12.8 0 4 8 15 0 0 61 48 65 110 70 4 0 25 484 11.6 1.2 1.2 0 0 4 7 53 86 8 4 1 43 1.3 1.3 0 0 6 6 6 0 0 32 57 74 53 3 0 26 36.8 1.2 2 13.0 0 6 6 6 0 0 32 53 57 74 53 3 0 26 36.8 1.2 2 13.0 0 0 0 3 6 41 67 46 1 0 12 32.8 1.1 6 14.0 0 <td>9</td> <td>. 0</td> <td>-</td> <td>0</td> <td>7</td> <td>06</td> <td>13</td> <td>0</td> <td>0</td> <td>0</td> <td>54</td> <td>29</td> <td>69</td> <td>ιΩ.</td> <td>91</td> <td>7</td> <td>g-rel</td> <td>50 €</td> <td>9</td> <td>σ.</td>	9	. 0	-	0	7	06	13	0	0	0	54	29	69	ιΩ.	91	7	g-rel	50 €	9	σ.
4 12.8 0 0 61 48 65 110 70 4 0 25 484 1.6 .4 12.8 13.2 0 0 6 68 20 0 0 47 53 45 88 58 4 1 13 403 1.3 .2 13.6 0 0 32 53 57 74 53 3 0 26 368 1.2 .6 14.0 0 3 42 9 0 0 38 69 41 67 46 1 0 12 32.8 1.1 .6 14.0 0 0 36 69 41 67 46 1 0 12 32.8 1.1	0	N	0	0	2	9.6	10	0	0	0	51	59	80	$^{\circ}$	0	9		2.5	9	σ.
.8 13.2 0 0 6 68 20 0 0 47 53 45 88 58 4 1 13 403 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.	4.	□ €V	0	0	4	82	15	0	0	0	61	48	65	qued.	70	4	0	25	∞	9.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	(7)	0	0	9	68	20	0	0	0	47	53	45	88	28	4	ı	13	0	m.
6 14.0 0 0 3 42 9 0 0 0 38 69 41 67 46 1 0 12 328 1.1	. 2	(17)	0	0	α0	56	9	0	0	0	32	53	57	7 4	53	m	0	26	9	2
	9.	4	0	0	e	4.2	O	0	0	С	38	69	4 1	29	46	1	0	12	328	Ξ.

TABLE B-6

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

LEVEL
METER
30
1
SPRING

							WIND		DIRECTION R	RANGE ((DEGREES	(S							
	11	3.48	11	33	56	78	101	123	146	168	191	213	236	258	281	303	326	OTAL	PERCENT
WIND		11	33		78		2	4	9	0	_	96	2	81	03	56	マ	FREQ	FREQ
RANGE	E (M.S)																		
^ <	∨ 11 =	c	C	-	27	ú	С	С	С		57	30	52		0	7	6	226	
	• ¬	0 0	0 0	4 (7)		S LO	0	0	0	53	4.5	28	34	17	-	0	6	7	0.59
	e Pu	0 0	0	0 0	. 6	0	0	0	0		56	15	23		0	0	00	A.	
	, ,	0	0	0	4	п	0	0	0		65	12	21		0	0	2	140	
		0	0	0	П	0	0	0	0		51	10	15	00	0	0	2	0	
		0	0	0	0	П	0	0	0	80	61	9	9	00	~ 1	0	1	92	
	9	0	0	0	0	0	0	0	0	4	46	11	9	4	0	0	0	71	
	7	0	0	С	0	0	0	0	0	_	48	7	4	1	0	0	0	61	
	~	0	0	0	0	0	0	0	0	1	51	4	ന	7	0	0	0	09	
	00	0	0	0	0	0	0	0	0	0	30	2	2	0	0	0	0	46	
	80	0	0	0	0	0	0	0	0	60	43	ෆ	0	0	0	0	0	67	
	00	0	0	0	0	0	0	0	0	2	34	0	2	0	0	0	0	80	
	6	0	0	0	0	0	0	0	0	0	36	П	-T	0	0	0	0	30	
		0	0	0	0	0	0	0	0	0	36	1	0	0	0	0	0	3.7	
	0	C	0	0	0	0	0	0	0	г	28	0	0	0	0	0	0	5.8	٦.
		0	0	0	0	0	0	0	0	ෆ	5.9	0	0	0	0	0	0	32	
	0	0	0	0	0	0	0	0	0	2	18	0	0	0	0	0	0	20	0
		0	0	0	0	0	0	0	0	7	24	0	0	0	0	0	0	25	0
		0	0	0	0	0	0	0	0	2	15	0	0	0	0	0	0	17	0
		0	0	0	0	0	0	0	0	_	14	0	0	0	0	0	0	15	0
		0	0	0	0	0	0	0	0	e	13	0	0	0	0	0	0	16	0
		0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	14	0
		0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7	0
	س	0	0	0	0	0	0	0	0	0	m	0	0	0	0	0	0	ტ (
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4	0	0	0	0	0	0	0	0	0	~	0	0	0	0	0	0	-	
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '	0.00
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
'n	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (0 (0 0	
	F	0	0	0	0	0	0	0	0	0	0	0 '	0 (0 0	0 (0 0	0 0	D (9.0
27.2	27.6	0	0	0	0	0	0	0	0	0	0	0 (0	0 (0 (0 (0 0	0 0	00.0
	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	

TABLE B-6 (CONTINUED)

SPRING - 30 METER LEVEL

							MIND		DIRECTION	RANGE	(DEGREES	ES)							
WIND SPEED	ii ∨	348	33	33	56 78	78	101	123	146	168	191	213	236 258	258	303	303	326	TOTAL	PERCENT FREQ
	(8)																		
8.0 28.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.4 28.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.8 29.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9.2 29.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9.6 30.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0 3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
0.4 30.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.8 31.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.2 31.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.6 32.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2.0 32.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2.4 32.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2.8 33.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3.2 33.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3.6 34.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4.0 34.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4.4 34.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4.8 35.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5.2 35.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5.6 36.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.0 36.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.4 36.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.8 37.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7.2 37.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7.6 38.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	0	
8.0 38.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.4 38.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.8 39.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9.2 39.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9.6 40.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ŀ	1 0	1 7 7 1	1047	2166	1 000	400	305	1 986	1497	3534	3795	5173	3016	924	1 80	1 65	29350	100.00
OINL FRE		9	D)	¥) -	9	4	J)	r)	3	4	1	J)	1)	
PERCENT FRE	2	. 91	2.36	4.25 1	62.01	7.13	3.15	1.11	0.97	5.10 1	2.04 1	2.93 1	7.63 1	0.28	3.15	2.24	3.97	100.00	
AVERAGE WIND SPEED (M/S)	e	0 7	(m)	44	r .	o. 0	4.6	3.2	2.7	8.5	10.0	7.6		8.2	5.4	3.5	6.3		

TABLE B-6 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SUMMEP - 30 METER LEVEL

	PERCENT	71		0	0	0.	0.0	σ.	7.33	. 7	0	. 5	σ.	0	9.	9.	φ.	4	Φ.	0	4.	9	4	. 5	σ, ι	Φ.	4 (n. (ρ,	. 5	e.		0	7 .	7.	9.	S.	4
	TOTAL	r r r r		1	1	0		90	3210	53	22	87	73	76	61	58	57	52	99	76	S	57	51	43	30	2.4	90	♥ (י תכ	ത	ത	જ	S.	જ	$^{\circ}$	ത	ഗ	0
	326	4		0	0	0		00	144	0	82	70	69	64	37	31	37	31	33	37	26	18	1 89	12	αö	10	7	2	۱۵	7	4	7	2	4	4	4	en	c)ř
	303	N		0	0	0	0	297	167	111	06	81	2.5	39	28	46	23	19	2.5	15	9	10	2	11	Ω	೮	-	7 (m	2	m	0	r-1	←		2	e-t	0
	281	Ó		0	0	0	0	€	204	3	4	88	16	88	68	52	4.5	55	62	58	4 B	56	45	49	35	37	22	21	10	7	[~	œ)	4	୯୨	ෆ	೮	4	4
	258	10		0	0	0	0	-	212	Φ)	[~	~	5	4	\mathcal{C}_{1}	ന	Q	マ	Φ.	0	ω	\vdash		0	-	0	CA	0	95	62	55	44	30	56	19	19	2.1	1.1
	236	Ω		0	0	0	0	325	195	197	183	219	198	197	252	268	274	251	280	269	220	209	232	208	148	141	127	91	98	7.5	61	9	46	34	18	14	12	12
GREES)	213	7)		0	0	0	0	N	275	S	8	Ø	8	3	3	5	2	S	9	ω	0	S	-	8	9	3	\mathcal{C}^{1}	76	9	51	3.7	2.7	25	2	11	7	4	m
(DEGRE	191	H		0	0	0	0	290	156	160	129	131	149	157	157	168	158	179	198	215	214	252	253	279	289	297	258	268	243	218	212	198	162	119	112	91	7.1	40
RANGE	168	o		-	0	0	0	00	135	6	9.6	71	70	72	56	52	58	58	55	7.5	26	76	66	9.5	101	0	122	O	ന	S	4	2	-4	S	154	먁	ന	C.A
DIRECTION	146	9		С	0	0	0	4	137	6	63	58	36	36	17	00	12	14	11	4	9	9	Ø	4	5	5	10	S	ന	4	0	0	e	0	0	0	0	П
	123	44		С	0	0	0	0	159	00	76	57	56	67	4 8	30	30	27	18	28	10	15	Ф	7	13	9	3	47		3	←4	0	0	2	0	0	0	0
MIND	101	N		C	0	C	0	S	186	ന	S	7	55	83	06	96	102	00	65	63	48	52	47	26	32	38	28	22	17	9	2	0	⊢	0	0	0	0	0
	78	101		C) C	0 0	0	- 4	306	LC)	S	(A)	ന	C	. 0	0	N	ന	ω,	ന	ത	7	Φ	- Φ	ιQ	2	0	S	51	65	28	33	30	18	14	on I	4	7
	56			C	0 0) C) C	^	297	-		-	0	10	-		10	10	\cap	-	-	_ m	- 49		9.9	-	\circ	~	56	38	29	13	er.	2	-	C) C	0
	33			C	0 0	0 0	0 0	- 12	228	1	. 5	(0)) -	. 0) -	0	8	74	4 8	44	41	4.2	. e	40	24	32	18	13	O	9	40	4	0	-	(C) C) C	0
	11			C	> ⊩		0 0	-	197	(C)	0	-	1 0	101	200	000	16	σ	0	4	4	9	0 6		0	0	0	0	0	0	C	· C	· C	C	0 0	0 0	0 0	0
	348			C	0 0		0 0	40	212	4 LC) (T) C) [1 41	1 40	30	000	0	000	22	1 -	· 65	1 40	9	S	n	m	(1)) C) (°) (°	O C	·	4 C	0 0	00
	^																				+							0	0	c	·) -	1 r-			10	1 c) c	14.0
		WIND	RANGE	\wedge														4								*			0	0	·	·		• 6	i c	, (i	13.5

TABLE B-7

SUMMER - 30 METER LEVEL

	PERCENT FREQ								60.0												4											4			ō.		ō.
	TOTAL		0	155	CV	7.5	73	42	040	30 0	36	23	17	11	13	17	O	S.	S.	2	4	1	2	1	0	0	0	7	0	0	0	0	Н	0	0	0	0
	326 348		-	0	2	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	303		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	281		г	2	-	2	2	0	0 (⊣	-	0	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	258		10	4	S	2	2	-	0	0	~	2	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	236		00	80	2	2	2	2	e 1	2	0	2	2	0	0	0	П	0	0	⊢	0	0	0	ı	0	0	0	0	0	0	0	0	0	0	0	0	0
EES)	213		2		0	e-4	0	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(DEGREES	191			33		9	00	9	ന	S	7	ന	4	2	9	6	n	3	e	=	2	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RANGE	168		(4)	100	78	62	58	32	33	30	27	15	11	2	9	2	ιΩ	2	2	0	2	0	2	0	0	0	0	-	0	0	0	0	7	0	0	0	0
DIRECTION	146 168		0	0	0	0	П	0	П	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	123		==	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WIND	101		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	78		2	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	56		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5 9		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	348		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	^ ^		4	4	52	Ω.	9	9	16.8	P=	5	ω,	80	ω.	0	g)	0	0	0				0		m	9	4	4	47	5	5	9	9	9	7	~	00
	MIM	SPEED RANGE	- 43	7	4	0		9		9	[~		ω,	α0	00	6	6	0	0			1 -				ش	3	44	4	4	0	10	9	2			27.6

TABLE B-7 (CONTINUED)

SUMMER - 30 METER LEVEL

RANGE (DEGREES)	168 191 213 236 258 281 303 326 TOTAL PERCENT 191 213 236 258 281 303 326 348 FREQ FREQ			0 0 0 0 0 0 0 0							0 0 0 0 0 0 0													0 0 0 0 0 0									9.16 13.71 10.75 11.27 9.35 3.98 2.41 2.64 100.00	04 7 8 8 7 6 1 6 2 4.6 3.3 4.0
DIRECTION	123 146 146 168																															947 796 4	2.16 1.82 9	0 0
QNIM	78 101 101 123																															3926 1707	8.96 3.90	
	33 56 56 78								0 0																							984 3945	.53 9.01	
	33 13		0	0	С	0 0	0 0	0 (0 (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0 0) C	0	0	0	0	0	0	1291	2.95 4	0
	348		0	0	0	0	0 0	0 (0 0	0 0		00	0	0	0	0	0	0	0	0	0	0 (0 0	0 0	0 0	0	0	0	0	0	0	1494	3.41	(
	> IND PEED	RANGE (M/S)	8.0 28	28.0	2000	0.0	9.2 29	9.6 30	30.0 30.4	0.4	1000	3.1	2.0 32	2.4 32	2.8 33	3.2 33	3.6 34	4.0 34	4.4 34	4.8 35	5.2 35	5.6 36	6.0 36	0.00	2000	7.6 38	8.0 38	8.4 38	8.8 39	9.2 39	9.6 40	TOTAL FREQ	PERCENT FREQ	CIVILIA GO COLLAND

TABLE B-7 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

FALL - 30 METER LEVEL

	PERCENT FREQ	0.1	ې د		Π.	(*)	3,68	, -	. 0	O,	Ε.	Π.	64	C,	(,)	Θ.	(1)	Θ.	4	n	S	1	8	~	0	5	ω.	-	0	0	7	4	2	0
	TOTAL FEREQ	10	111	669	50	40	2041	υ 1- Ω Ω	2 0	65	7.3	75	1825	82	85	88	87	85	92	8	79	1718	59	50	45	30	E3	21	60	0.5	950	779	672	528
	326	0 1	٦,	25	Ψ	u)	123	4 C	94	71	70	68	20	36	43	37	40	29	93	4.2	36	26	21	2.2	11	13	15	4	9	9	ω	2	2	-
	303	0	٦ ٥	32	290	u)	26	0 0	89	85	64	51	35	29	34	23	22	16	12	9	Z	φ	m	4	4	3	0	2	0	0	0	0	-	0
	281	0 (V C	41	[~	\sim	114) M	- αο	92	84	74	20	54	(n)	34	2.7	20	21	2.5	32	20	22	19	20	23	31	12	14	15	0	14	16	13
	258	0 0	o -	4 8	279	150	118	145	173	163	191	191	194	193	217	239	231	227	220	206	196	225	221	225	200	181	170	152	143	144	112	73	64	51
	236 258	0	o c	4 0	315	144	147	130	190	209	238	279	356	384	377	405	428	369	382	372	309	270	251	235	213	218	193	161	126	111	111	4	48	37
EES)	213	0	0 0	51	323	183	116	14	146	155	173	177	213	209	237	248	227	262	291	251	256	248	247	246	235	190	206	177	148	154	135	110	104	104
(DEGREES	191	ന) C	41	225	(,)	97	128	(O)	٦	115	හ ග	26	8	\neg	$^{\circ}$	\sim	ന	4	ന	00	201	ത	7	ത	3	\leftarrow	9	\vdash		2	N	2	2
RANGE	168	9	at (1)	99	233	98	986	9 49	50	51	43	44	34	42	53	49	48	9	57	56	43	49	69	79	81	80	81	71	84	83	93	64	09	59
DIRECTION	146	0 0	- c	41	200	84	06	200	30	16	11	12	11	9	9	m	2	7	₩1	2	2	2	0	0	-	0	0	0	0	0	0	0	0	0
WIND DIR	123	0 (o c	45	217	72	22	* e	26	20	17	6	00	2	2	0	0	m	ന	2	-	-		0	0	0	0	0	0	0	0	0	0	0
N	101	0 0	0 0	59	4	111	118	0 60	52	54	57	54	31	33	21	18	20	16	6	10		2	ന	Φ	00	4	₽	0	0	0	0	0	0	0
	78	-	7 -	71	Ġ.	4	240	0 6	. 0		0	ന	5	3	\sim	57	5	8	~	0	0	0	N	-	0	e^{-1}	O	3	ന	00	S	\sim	89	7.4
	78	0 () -	34	\leftarrow	00	161	, r	P-1	186	0	2	ω.	9	0	8	9	8	2	0	~	4	2	ω	~	N	ത	α	ω	$^{\circ}$	9.5	78	99	3.2
	8 9 8 9	0 0	0 0	53	380	204	131	122	122	81	88	82	82	55	41	30	38	23	34	21	20	9	2	m	0	0		-	0	S	S	2	_	0
	H 60 H 60	0 +		31	00	-	159	0.00	77	53	28	20	13	14	12	11	16	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	348	0 0	0 0	23	~	00	189) 4	- O	83	51	52	44	46	34	30	35	22	11	19	14	6	O	14	L	ന	0	-	0	4	1	0	0	0
	(S/k	4.0					0 c																	Ö	Ö	Ö	Ξ.	ä	2	2	2	3		1,21
	WIND SPEED RANGE	0.0	4 8	1.2	1.6	2.0	2 c	2 C	3.6	4.0	4.4	00.4	5.2	5.6	0.9	6.4	6.8	7.2	7.6	8.0	8.4	8.8	9.2	9.	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	. 2	3.6

TABLE B-8

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

FALL - 30 METER LEVEL

	PERCENT FREQ	000000000000000000000000000000000000000	
	TOTAL	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	326	000000000000000000000000000000000000000	
	303	000000000000000000000000000000000000000	
	303	m w m m m n n n n n n n n n n n n n n n	
	256 281	0 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 1	1
	236	887711780000000000000000000000000000000	
EES)	213	Q Q T T T T R Q 4 4 8 8 8 4 4 8 8 4 4 8 8 4 8 8 8 8 8	1
(DEGREES	191	1111 1111 Φ 10 0 0 1 16 11 68 0 10 73 4 48 4 15 15 15 15 15 15 15 15 15 15 15 15 15	1
RANGE	168	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	í
DIRECTION	146	000000000000000000000000000000000000000	
WIND DIR	123		,
WI	101	000000000000000000000000000000000000000	,
	78	4 7 8 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	١
	78	0 % 6 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
	33	000000000000000000000000000000000000000)
	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000)
	348	0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
		4 4 4 6 6 6 6 7 8 4 7 9 9 9 8 8 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0
	WIND SPEEI RANGI	44400000000000000000000000000000000000	-

TABLE B-8 (CONTINUED)

FALL - 30 METER LEVEL

WIND DIRECTION RANGE (DEGREES)

							WII	WIND DIRECTION	CCTION	RANGE	(DEGRE	EES)							
	^	3.4		8	56	78	101	123	146	168	191	213	236	258	281	303	326	TOTAL	PERCENT
CHIND	-	< 11	33	26	78	101		146	9	191	-1	3	2	281	0	326	4	FREC	7. 11
SPEED																			
RANC	-																		
- (il q	(0	((C	C		_	C	C	<u></u>	C	С	С	0	0	0	
D (o a		0 0	0 0	0 0	> <	0 0	0 0	0 0) C	o C	0 0) C	0	C	0	0	0	00.00
00	00 (0 (0 (> 0	0 (0 0		0 0	0 0	0 0	· c	0 0) (· C	· C	C	C	
φ.	o	0	0	0	0 ') () (0 0	> 0	> <	0 (0 0	0	0 0	S C) (9 (0	
on	თ	0	0	0	0	0	0	0	0	0	0 (> () (0 (> 0	> 0	0 0		
9	0	0	0	0	0	0	0	0	0	0	0	0 (0	> 0	> 0	> 0	> 0	0 (
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	> (0 (
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (
0	$\stackrel{\cdot}{\mapsto}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (0	00.00
-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6-
, , ,	1 6	0	C	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	·	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
) (. 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
. 4	. 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
. d	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
·) L		С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
. L		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
) (c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
·) (2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	, ,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
, ,		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	· α	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· α	· ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
α α	α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
) (0)	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0 0	0 0	C	C	0	0	0	0	0	0	0	0	0	0	0	0	0	Õ.
39.6	40.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
												1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1	1	
TOTAL	FREQ	1561	1137	1767	7012	8146	1104	557	909	2958	6328	_	7332	5579	1712	1264	1570	55450	100.00
PERCEN	TEREO	2.82	2.05	9.19	12.65	14.69	66	1.00	1.09	5.33	11.41 1	2.29	13.22	10.06	3.09	2.28	2.83	100.00	
AVERAC	GRIN SO	2.7	C1 Q.	ω 1.	1"	4	e.	C4 L+	2.3	10.0	10.1	0)		7 . 4	4.8	(C)	4. 0		
- 1	ď.																		

TABLE B-8 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

WINTER - 30 METER LEVEL

							MIND		DIRECTION RANGE		(DEGREES	ES)							
	\ 10	34	1.1	33	56	78	101	123	146	169	191	213	236	258	281	303	326	TOTAL	DC.
MIND	~		88	56	78	101	123	146	9	0	\vdash	3	258	8	0	326	4	FREQ	FREQ
SPEED	- 2																		
KANGE	(c/u)																		
	, O	C	C	C	0	0	0	0	0	21	0	0	0	0	0	0	0	21	
	8	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	80	
	2 2	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	16	
	9.1		2	ıΩ	0	0	0	0	0	1.4	1	4	7	-	-	2	0	38	
	2.0	33	1.4	0	11	11	18	10	10	27	28	15	17	32		2.7	17	312	
	2,4	1.7		m	7	4		4	5	13	0	00	11	33	35	16	20	189	
	2.8	7	0	0	0	2	4	-1	2	4	6	7	11	30		24	ω	144	
	0,5	10	6	7	0	0	7	m	-	7	9	0	14	28		2.4	12	150	
	3.6	2	4	0	0	0	0	0	2	ന	2	80	11	30		29	11	127	
	4.0	m	0	0	0	0		0	0	г	ෆ	م	16	23		14	13	9.7	
	4.4	4	7	0	0	0	0	0	0	2	0	7	18	26	2	18	7	88	
	4.8	2	0	0	0	0	0	0	0	2	4	2	26	11		2.1	6	91	
	5.2	m	-	0	0	0	0	0	0	2	4	10	19	15	11	16	11	9.2	
	19.0	e	0	0	0	0	0	0	0	0	(7)	16	23	14	2	1.4	Φ	8.7	
	6.0	0	0	0	0	0	0	0	0		4	10	36	2.5	2	80	7	66	
	6.4	2	0	0	0	0	0	0	0	П	9	25	44	2.1	5	00	13	125	
	6.8	2	0	0	0	0	0	0	0	0	1.4	36	7.5	16	ന	14	9	166	
	7.2	2	0	0	0	0	0	0	0	0	19	4 4	9.8	15	2	4	80	192	
	7.6	0	0	0	0	0	0	0	0	0	2.4	64	122	18	0	ლ	9	237	
	8.0	0	0	0	0	0	0	0	0	2	3.7	68	137	19	0	2	14	279	
	. 4		0	0	0	0	0	0	0	4	4.7	8.7	135	18	0	5	11	308	
	00	-	0	0	0	0	0	0	0	80	64	120	165	14	0	7	20	399	
	9.5	7	0	0	0	0	0	0	0	2	8.7	131	178	11	0	ന	22	438	3.14
	9.6	4	0	0	0	0	0	0	0	7	9-6	134	175	9	0	1	23	444	
9.	0	0	0	0	0	0	0	0	0	10	26	147	164	9	0	4	29	457	
0.	0	0	0	0	0	0	0	0	0	10	102	194	158	9	0	1	1.4	485	
0.4	0	0	0	0	0	0	0	0	0	7	81	165	179	7	0	೮	25	467	
0.8		0	0	0	0	0	0	0	0	7	107	152	140	9	0	-	12	425	
. 2	+ 1	0	0	0	0	0	0	0	0	2	9.2	161	117	9	0	0	8	386	
9.	S	0	0	0	0	0	0	0	0	4	151	146	115	7	0	0	4	427	
0.	\sim	0	0	0	0	0	0	0	0	9	156	123	58	7	0	0	ღ	353	
4.	CA	0	0	0	0	0	0	0	0	10	9	118	4.2	H	0	0	0	337	
00	ന	0	0	0	0	0	0	0	0	9	201	8.5	46	e)	0	0	П	342	
Ci	ന	0	0	0	0	0	0	0	0	18	0	06	24	rS	0	0	0	345	
(C)	14.0	С	С	0	0	0	0	0	0	2.7	(J)	7.0	50	ďΣ	0	0	0	322	

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

WINTER - 30 METER LEVEL

	PERCENT FREQ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 7
	TOTAL	3315 3315 3315 3310 3310 3310 3310 3310	0 4 0
	326 348		000
	303	000000000000000000000000000000000000000	000
	303	000000000000000000000000000000000000000	000
	258	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	> 0 0
	236	000000000000000000000000000000000000000	00
EES)	213	7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00
(DEGREES	191	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 11
RANGE	168	00 00 00 00 00 00 00 00 00 00	୨୯୦
DIRECTION	146	000000000000000000000000000000000000000	00
WIND DIR	123	000000000000000000000000000000000000000	00
WI	101	000000000000000000000000000000000000000	00
	78	000000000000000000000000000000000000000	00
	78	000000000000000000000000000000000000000	00
	33	000000000000000000000000000000000000000	00
	H 60		00
	348		00
	D (M/S)	11	N (0)
	WIND SPEEI RANGI	4 4 4 6 6 6 6 6 7 7 8 8 8 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	

TABLE B-9 (CONTINUED)

WINTER - 30 METER LEVEL

MIND	331	8 8 8 8	56	78	101	123	146	168	191	213	236	258	281	303	326	TOTAL	PERCENT FREO
WIND SPEED (M/S) > 1 SPEED (M/S) > 8.0 28.4 88.4 28.8 88.8 29.2 99.5 30.0 99.5 30.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	т т		78	C	C1		L	c			4	∞	303	$^{\circ}$	45	FREQ	
RANGE (M/S) 8.0 28.4 8.4 28.8 8.8 29.2 9.2 29.6 0.0 30.4 31.2	00)		4	٥	j),	-1	236	3						
V 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00																
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	((((c	C	C		C	<	0	C	C	C	σ	0
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	_	0	0	0	0) (0 (0 (- (0	0 () () (0	0 0	0 0	
9.8 8 29.2 99.0 99.5 99.5 99.6 99.6 99.6 99.6 99.6 99.6	>	0	0	0	0	0	0	7)	0	0	0	0	0	0 (0 (2 1	70.0
99.2 29.6 99.6 30.0 0.0 30.4 0.4 30.8	0	0	0	0	0	0	0	4	г	0	0	0	0	0	0	Ω	0.0
00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0	0	0	0	0	0	0	ന	0	0	0	0	0	0	0	က	0.02
0.0 30.4	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	1	0.01
0.4 30.8	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0.01
0.8 31.2	0	· C	C	C	С	0	0	2	2	0	0	0	0	0	0	4	0.03
7.10 0.0) C	0 0	0 0	0	C	0	0	2	-	0	0	0	0	0	0	9	0.02
4	0) (0 0	0 0) C	0 0) C	ı C	C	0	C	0	0	0	0	0	00.00
0.10	0	0 0) C) C	0 0	0 0	0 0	· C	C	C	0	0	0	0	0	0	00.0
0.00	0 0	0 0	0 0	· C	0 0	0	C	C	C	0	0	0	0	0	0	0	00.0
2.00	0 0	0 0) C) C	0 0	0 0) C	C	- (0	0	0	0	0	0		0.01
0.75 4.7	0 0	0 (0 0	0 0	0 0	0 0) () C	1 (0	C	С	С	C	0	0	00.00
2.00 00.0		o c	0 0	> <	0 0	0 0	0 0) C) C) C	0	0	0	0	0	0	00.00
0.52 5.50		0 (0 0	0 0	> <	0 0) C	0 0	0 0	· C	· C	C	0	0	0	0	00.00
3,6 34.0	0 0	0 0	0 0	0 0	0 0) C) C) C) C) C	0	0	0	0	0	0	00.00
4. C C C C C C C C C C C C C C C C C C C) C	> <) C	o c	0	0 0) C	0	0	0	0	0	0	0	0	0	00.00
0.40	0 0	0 0	o C	o C	0	0	0	0	0	0	0	0	0	0	0	0	00.00
N W W	0) C) C	0 0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
2.00) C	0) C	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
0.00) C	0 0) C	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
30.00	0) C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
0.00	0	0	0	C	C	0	0	0	0	0	0	0	0	0	0	0	00.0
2.7.0	0) C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
7 6 38 0) () C	C	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
2000	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
) C C C C C C C C C C C C C C C C C C C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
14.00.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
0.04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
		1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	-			-	1	1	- 1	-1	- 1	ŀ	1
TOTAL FPEQ 98	47	18	18	17	2.7	18	20	2654	4606	2639	2508	469	216	269	343	13967	100.00
PERCENT FREQ 0.70	0.34	0.13	0.13	0.12	0.19	0.13	0.14 1	19.00	32.98 1	8.89 1	7.96	3.36	1.55	1.93	2.46	100.00	
AVERAGE WINT 2.8	CI.	α: r1	on	σ·	C1 	C1 C1	ci	19.4	14 5	11.0	4.0	5 8	3.2	4.	17		

TABLE B-9 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

ANNUAL - 30 METER LEVEL

							WIND		DIRECTION	RANGE	(DEGREES	ES)							
	H \	348	11	8 A	56	7.8	101	123	146	168	191	213	236 258	258	281	303	326	TOTAL	PERCENT
SPEED	(W/S)	4		2	2		1	r	5	ì	4)))	1		í	ĺ
\wedge	× 11						(((0	C	((((((c	(
		0	0	0	0	Н	0	0	0	28	n	0	0	0 (0 (> .	0 ,	32	<u>٠</u> (
		0	2	Н	0	2	0	0	0	11	H	0	0	0	2	e-4	1	2.1	0
	- 4	0	1	0	2	1	1	0	ed	19	0	0	0	1	0	61	_	2	0
	1.6	52	72	83	9.5	129	7.4	63	72	80	67	8	9	20	0	2	댁	117	Φ.
4		N	4	O	903	980	0	529	d,	5	700	785	787	762	691	776	712	12123	. 2
		-	00	~	637	919	9	270	266	\vdash	376	5	3	473	(A)	S	0	20	0.
		N	9	ത	592	574	0	167	\neg	3	335	(1)	d,	400	S		\Box	79	0.
		(1)	0	~	524	496	9	135	4	3	306	O	O	395	0	5	S	20	ω.
		(C)	5		414	399	00	111	96	~	326	0	ω.	402	ത	S	\Box	4597	2
		-Sp	0	~	377	421	S	9 2	74	151	312	419	0	411	3	\neg	ν -4	31	0.
		Z)	\sim	3	403	384	~	8	63	2	338	O	4	404	3	00	5	28	0
		157	117	252	414	468	185	70	41	S	330	N	O	409	0	A.	S	4292	0
		(1)	(C)	4	411	527	O	48	28	3	293	0	N	406	~	S.	4	28	0
4		0	53	S	465	537	8	20	28	-	306	4	4-4	439	ω	92	\leftarrow	30	?
		0	41	5	534	539	ത	38	23	$^{\circ}$	320	3	4	435	4	62	0	4289	0
		O	36	0	586	623	Z,	31	21	3	384	O	0	504	O.	70	113	4562	2
		92	30	0	590	699	$^{\circ}$	4.1	80	Ω	462	(J)	3	548	(7)	62	103	74	ω.
		79	31	26	562	643	0	16	10	03	462	3	~	530	0	38	5	56	. 5
		71	17	78	543	635	\vdash	20	80	00	529	3	\Box	566	\rightarrow	ლ ლ	88	64	2
4		53	11	98	565	629	5	14	11	00	570	3	(C)	562	92	56	26	75	m.
		51	5	80	589	658	99	10	9	00	909	\vdash	~	267	114	28	86	4739	m
		35	0	7.2	621	557	58	17	7	ത	682	9	3	536	0	23	8	61	2
6.8		2.1	S	59	616	571	47	7	89	197	716	695	837	530	84	19	96	20	3.16
		24	П	36	574	396	35	S	10	m	656	3	P-	467	4		80	00	Φ.
4	Ö	21	-	32	520	300	30	4	2	3	667	0	0	475	61	13	92	3774	9
	0	12	0	2.1	475	276	2.5		2	ത	629	0	9	437	₽		20	57	. 5
	0	00	0	20	407	311	10	m	4	8	624	(C)	[~	387	46	10	7.5	3364	e.
	Ϊ.	0	0	13	317	244	9	1	0	9	622	ത	00	359	48	9	58	0.5	-
		4	0	11	304	244	0	0	0	8	636	4	O	310	29	49	37	2800	6
	N.	4	0	OI	262	229	e⊢l	0	e	8	596	00	$^{\circ}$	271	25	2	31	2547	7
	0	4	0	11	227	208	0	2	0	~	549	9	N	284	24	2	38	30	9
		2	0	O	175	191	0	0	0	\vdash	548	329	281	202	16	Н	37	2109	4
	ω,	0	0	11	146	157	0	0	0	(C)	571	4	S	153	21	ന	20	1820	2
	ω.	0	0	Ø	122	66	0	0	0	7.75	553	3	3	143	23	5	₩	1641	p-4
	4	0	0	m	74	06	0	0	1	4	457	\vdash	ZP	113	18	0	17	1381	o.

TABLE B-10

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

ANNUAL - 30 METER LEVEL

	PERCENT	1		8	7	9	D	D.	4	4.	4 (n c	V (NC	4 6	Ä	.1 C	i c	N e	٦.		վ ։		4 (ے د	, (. 0	. 0	٠.	٥.	0	٧.	9	٧.	0.01	٠. ١	٧.	
	TOTAL	y 1		-	00	0.1	_	10	687	Oh I	0 1	N (Th (Th 1	c# 1	~ (ת ת	Y) ($m \cdot \epsilon$	η.		~ (00	י רי	\sim	ין ת	0.00	67	53	4.7	35	36	24	12	19	18	10	
	326				11		80	ന	2	5	2	- 0	n .	П) i	0 '	н (0 (0	0	0	0 (0 0) (0 0	> 0	o c	0	0	0	0	0	0	0	0	0	0	
	303	4		-	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0 (0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	
	281	5		4	1 -1	4	2	ഹ	2	-	-	-	0	0	0	0	←	0	0	0	0	0	0 (0	0 0	0 0	>	0 0	0	0	0	0	0	0	0	0	0	
	258	0		77	3.4	37	26	18	12	9	e	2	ന	0	2	-	0	0	0	0	0	7	0	0	0	0	0 0) C	0	0	0	0	0	0	0	0	0	
	236	ñ		108	~	4.5	46	31	20	12	13	9	'n	n	m			e	0	0	₩	0	0	0	7	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	
EES)	213	7)		O	1	0	131	\neg	ια	103	71	49	41	35	20	22	8	13	4	00	4	2	2	-1	0	-	0 1	- C	0 0) C	0 0	0 0	0	0	0	0	0	
(DEGREES	191	_		458	426	434	365	381	393	310	303	290	207	215	169	180	149	127	109	87	64	55	49	34	29	21	12	77	7 ~	0	1 C	> ←	0	-	0	•	0	
RANGE	168	On .		- (*		0	10	- 00	147	4	S	Θ	n	$^{\circ}$	44	w	(,)	77	(~	-2	4		117	\sim	95	75	19	44 n 20 t	7 0	ο α ο α	2 0	ייי ני	200	: -	61	17	10	
DIRECTION	146	9		C	0 C	0 0	0 0	-	4 0	2	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0		0 0	0 0	0 0	0	0	0	
WIND DIR	123	4		-	→ C	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 (0 0	0 0	0 0	0 0	0 0	0	0	0	
M	101	N																																				
	78	101			d, ≠ U +	→ (p (3 0) c	2 4	16	0	12	7	14	80	O	e	1	2	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0		0 0) C) C	0	
	56			•	d, (7 (-																														00	
	33	56																																			00	
		33																																			00	
					0	-	0 (0 (0 0	00	0 0	0 0) C	0 0	0 0) C	0 C	0 C	0 0) -	٠ .	0 0	0 0	0	0 0	0	0	0	0	0	0	0 (0 (0 0	> 0	00	
	^			Ĭ		4						٠.	٠,						٠,	٠,	÷ -				i o	10	m	99	37	7.9	LD.	ω.	w	ú	0 1	P 1	27.6	
		WIND	RANGE	^			*				٠.	٠.	٠.							٠,	÷.	٠.	· -		v c	v c		m	49	44	ų,	'n	'n	Ġ.	9	ا ي	27.2	

TABLE B-10 (CONTINUED)

ANNUAL - 30 METER LEVEL

						WIND	DI	RECTION	RANGE	(DEGREE	ES)							
	ω 4			56		0	CA	146	9	191	e-1	236	258	281	303	326	TOTAL	PERCENT
MIND	-	33	56	78	101	123	146	168	191	213	236	258	00	0	2	4	FREQ	FREQ
=	-																	
										1		(((((C	(
8.0 28.	_	0	0	0	0	0	0	0	00	-	0	0 (0 (0 0	0 0	0 0	on (0.01
8.4 28.)		0	0	0	0	0	0	ന	0	0	0	0	0	0) (.) i	
8.8 29.	~		0	0	0	0	0	0	4	-1	0	0	0	0	0	0	S	0
9.2 29.)		0	0	0	0	0	0	e	0	0	0	0	0	0	0	ന	0
9.6 30.	7		0	0	0	0	0	0	-	0	0	0	0	0	0	0	1	0.
0.0 30.)		0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0.
0.4 30.)		0	0	0	0	0	0	2	2	0	0	0	0	0	0	₽	00.0
30.8 31.2			0	0	0	0	0	0	2	-	0	0	0	0	0	0	e	
1 2 31)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1 6 20			C	C	С	С	C	0	0	0	0	0	0	0	0	0	0	
30 0 0) C	C	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
200			0	0 0	0 0) C	· C	C	0	-	0	0	0	0	0	0	Н	- 4
. 70			0 0	0 0) C) C	· C	· C	· C	ı C	C	C	C	C	0	0	0	
2.6 55.			0 0	0	0 0	0	> <) C) C) C	· c) C) (· C	· C	· C	С	
3.2 33.			0	0) () (0 () (0 (0	0) (0 () (0 0	0 0	> <	
3.6 34.)		0	0	0	0	0	0	0	0	0	0	0	0	>) C	0 (4
4.0 34.)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0
4.4 34.	~		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4.8 35.	~		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5.2 35.	7		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5.6 36.	_		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.0 36.	_		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6.4 36.	3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
6.8 37.)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7.2 37.	,		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7 6 38				C	С	C	С	0	0	0	0	0	0	0	0	0	0	
. α . α . α			0	· C	C	C	С	C	0	0	0	0	0	0	0	0	0	00.00
			0	0	· C	· C	· C	· C	C	C	С	C	С	0	0	0	0	
			0	0) C) C	· C	· C	C	C	C	C	С	0	0	0	0	00.00
0.0				0 0	> 0	0 0	> <) C	> <) C) C	· c) (· C	C	C	С	
9.2 39.			0	0	0	0) i	0 (0 () (0 () (0 () () (0	> <	
9.6 40.			0	0	0	0	0	0	0	0	>	0	0	>	>	0	>	
	1	1	1	1	1 1 1 1 1	1 1 1 1	1	1 1	1	1 1 1		1	1	1 1 1 1 1 1	1 1 1 1 1 1	1	1	1
TOTAL FREQ	4006	6 3168	5016	14141	14183	3762	1847	1708 1	1121 2	0472 1	7960 1	9951 1	3162	4594	3248	4234	142573	100.00
PERCENT FREQ	2.8	2.25	3.52	26.6	9.95	2.64	1.30	1.20	7.80 1	4.36.1	2.60 1	3.99	9.23	5.22	2.28	2.97	100.00	
	(4)	0.0	4.0	ē. 9	6.7	** 	3.2	3.0		10.4	7.9	7 . 4	7.2	8.8	3.5	5.1		

TABLE B-10 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SPRING - 46 METER LEVEL

	PERCENT FREQ	00.00	0.00	ت س ش	या चा	. L. a		. 1	5. 4.	. 5	9	٥.	. 9	φ.υ.	(A)	. 0	6.	5.0	. ·	٦.
	TOTAL	000	G 69 ·	4 0 8 8 3 8	-0 -	100) -1	\vdash	94	2 5	P 0	9 0	4 14	40	10	D 0	\vdash	90	o -	di.
	326	000	127	6 0 0 0 0	ω ω ι ω 4 ι	200	21	16	31	2 4 2 5 5 5	26	3 6	34	18	23	23	20	22	2.4	0 [
	303	000	126 86	32 32 32	3 29	200	9 9	4 1	∢ თ	ωα	. 23	4 0	2 -1	- 0	-	0 0	0	e4 (0 ()
	281	000	113	63 53	35	4 0 0	3.6	19	& € 4 €	88	37	17	12	111	9	01	7	ന	ω (Z
	258	000	129	83 76	74	D 00 0	7.4	00 00	00	138	1001	N Q	4 (1)	(r) (r)		\circ	9	68	20	19
	236	000	116 106	95	0 -1	196	D [~	00	00	0 4	P 1	m m	N H	- O	0	4 0	4	26	e 9	99
EES)	213	000	131	73 62 82	78	109	144	140	147	182	100	195	138	117	70	77	80	63	48	54
(DEGR	191	000	127 109	71 88 62	62	37	ა 4. ი ი	9 0 0 0	00	120	⊣ m :	2 3	0 0	00	00	72	65	4.7	53	63
RANGE	168	000	108	3 5 5 2 4 5 5 4	27	2 2 6	22	22	22	25	22	32	4 4 5 5	4 4	4 6	50	53.0	49	4 1	21
DIRECTION	146 168	000	88 t	40 18	9	1100	D 00	ന ന	m m) ← -	7 7	00	00	00	0	00	0	0	0	0
WIND DIR	123 146	000	63	23	14	ယြေးဂ	യ	13		101	⊣ m	0 -	00	00	0	00	0	0	0	0
M	101	000	0 8 9 9 9	5 C 4	36	46	38	3 4 8 8	52	44.0	0 4	ღ ⊣	00	00	0	00	0	0	0	0
	101	000	188 128	89 80 61	71	87	80	90	120	4 (117	1	61	100	25	21	21	2.4	15	10
	78	000	235 182	1 0 0	44	4 8 8 8	57	69	600	000	00	0 4	4. €	154) O	06	86	82	59	42
	33	000		105	3.44	38	33	14	· C) u	0 0 0	13	15	96	10	വ	4 4	P 7	4	2	Ω
	H (0)	000	0 186 139	60	24	30	23	18	10	9 (9)	0 0	2 6		000	00	00	0	0	0	0
	348	000	150	71 45	4.0	33	30	22	* & ()) () (25.0	17	14	υΩ¬	r == 0	20	00	0	0	0	0
	_) 0 0 0 . 4 0 . 8 . 0 . 1 . 2	2.0								4 5					9.0	, 0	 m	ю (r)	4
	WIND SPEED RANGE	A	2 9 0 0												5 -	-i 0	i c		ω.	ω.

TABLE B-11

JOINT FREQUENCY DISTFIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

\vdash
딢
-
41
J.
-
œ
f+1
田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田
E E S
(±1
e
4.
C
4
4
1
C)
2.
ING
SPR
Ω,
0.1
w/

	L PERCENT FREQ		0.0
	TOTAL	00000000000000000000000000000000000000	0
	326 348	$\begin{smallmatrix} 1 & 1 & 2 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4$	0
	303		0
	303	NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	258		
	236	N 4 W W H H	0
EES)	236	W 4 W W H H H H H W W W W O O O O O O O O O	0
(DEGREES	191	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
N RANGE	168	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
DIRECTION	146		0
WIND DIE	123		0
3	101		0
	101	W O F O F O O O O O O O O O O O O O O O	0
	78	$ \begin{picture}(60,0) \put(0,0){\line(1,0){10}} \put(0,$	0
	33	000000000000000000000000000000000000000	0
	= e		0
	348		0
		4 4 B S S B S S C C C C C C C C C C C C C C	ω.
	WIND SPEED RANGE		1.

TABLE B-11 (CONTINUED)

SPRING - 46 METER LEVEL

	PERCENT FREQ					4			00.0					4					00.00										0	100.00			
	TOTAL	0	0	0 (0 (0 0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0 (0 (0 (0 0	> 0		29471	00		
	326 348	0	0	0 (0 0	0 0	0 0	0	0	0	0	0 0	> 0	0 0) C	0	0	0	0	0	0	0	0	0 (0 0	0	0 0	0 (0	1139	a c	0	6.7
	303	0	0	0 (0 0	0 0	0 0	0	0	0	0	0 0	0 0	0 0) C	0	0	0	0	0	0	0	0	0	0 (0 0	0	> 1	0	582	100	D.	3.5
	303	0	0	0	0 0	0 0	0 0) C	0	0	0	0 (0 0	0 0) C	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	970	c	ν.	5.3
	258	0	0	0	0 (0 0	0 0	0 0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	3261	,	0	ω
	236	0	0	0	0 (0 0	0 0	0 0	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	5396	ć		ω
EES)	213	0	0	0	0	0 0	0	0 0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	3702	(12.56	8.0
(DEGREES	191	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3794	t c	12.87	11.3
RANGE	168	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1340		4.55 C	8.7
DIRECTION	146 168	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	267	-	0.91	3.0
ND DIR	123	0	0	0	0	0 (0 0	0 0	0	0	0	0	0	0 (0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	252	4	0.86	ω
WII	101	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 (0 0	0 0) C	0	0	0	0	0	0	0	0	0	0	0	799		2.71	4.7
	78	0	0	0	0	0	0 (0 0	00	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	2230		7.57	6.4
	56	С	0	0	0	0	0	0 (0 0	0	0	0	0	0	0 1	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	3060		10.38	7.8
	33	C	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0	С	0	0	0	0	0	0	0	1166		3.96	€.
	333	C	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0 0	0 0) C	0 0	0	C	0	0	0	0	0	0	0	969		2.36	6.0
	348	C	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0 0	0 0	0 (0 0	0 0	0	0 0	0	0	0	0	0	0	0	817		2.77	2.2
	3	- 11 a	00 00	. 6	0	Ö	0		31.2			2	о О	3	4	÷.	qr u	ก็แ	o u	, (٠. د	, ,		00	00	00	0	0	0	FREO		IT FREQ	SE WIND
	WIND	× ^ ,	n or		0	σ.	ó	ď	30.8		10		ζ.	6	e C	· ·	di 4	de i	. v	2 K	5 G	5 u	, ,			00	ω,	6	6	TOTAL	3	PERCENT	AVERAGE SPEED (1

TABLE B-11 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

SUMMEP - 46 METER LEVEL

							MIND	DIRE	CTION	RANGE	(DEGREES	ES)							
	^	348	11	33	56	78	101	123	146	168	191	213	236	258	281	303	326	TOTAL	PERCENT
WIND	×		<u>ო</u>				CI.	4	9	o	\leftarrow	m	ω.	8	0	N	Zh.	FREQ	FREQ
AN	(M/S)																		
	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		N	3	3	3	0	S	0	$^{\circ}$	4	00	211	9	251	\vdash	[8	13	٦.
		228	235	296	~	0	254	169	174	161	0	369	S	285	251	200	208	4103	ω.
		9	S	Ω	1	ത	4	0	94	0	Z,	276	S	201	3	0	\vdash	72	.2
		4	(7)	S	4	-	0	81	63	Θ	$^{\circ}$	210	S	144	\leftarrow	0	86	23	۲.
		0	0	(1)	4	[73	46	46	26	Z)	197	3	185	0	8.7	74	93	4
		9	Ö	C	3	N	7.2	54	34	82	Θ	198	(")	160	93	53	65	1790	0
		86	0	O	S	N	96	55	36	70	ળ	232	\vdash	148	98	35	4.2	71	0
		81	W	66	(7)	-	84	4.1	23	51	3	235		128	70	3.4	3.7	61	9.
	4	56	37	72	ω,	N	87	2.2	11	49	3	252	0	142	55	43	3.4	57	S
		30	22	73	9	\leftarrow	9 2	2.7	10	27	3	213	00	156	53	35	24	4.5	S
	4	30	11	51	~	40	06	21	8	39	~	224	7	136	49	16	28	47	n
		32	5	4.2	9	8	65	16	0	36	O	237	ത	183	62	19	18	58	9.
		2.5	5	36	-	(N	63	18	8	58	$^{\circ}$	240	0	213	29	18	39	74	σ.
		2.1	4	24	0	8	58	16	4	69	0	202	N	199	48	11	32	50	4
		2.1	4	29	~	0	59	8	89	72	4	219	O.	179	61	9	24	54	S.
		22	1	32	9	0	29	10	4	19	7	192	47	238	47	10	16	52	å
		15	0	23	150	190	34	0	80	69	9	193	221	219	54	14	16	1508	₹.
		7	2	25	(1)	0	32	7	4	58	7	183	00	176	46	m	9	35	0.
		S	0	14	N	Ø	31	0	m	65	8	156	₹P	167	37	m	10	2 2	7
		σ	0	11	N	3	32	9	2	83	0	136	N	144	33	2	11	17	9.
9.	0	-	0	S	85	00	29	m	m	79	2	94	0	132	18	0	m	906	0
0.	0	2	0	2	67	70	15	m	1	2	5	74	7.4	91	15	1	2	801	8
4	0	9	0	4	39	72	14	0	-	\neg	2	58	82	74	10	m	m	737	9
ω.	<u>.</u>	2	0	e	32	58	Ø	-	m	0	4	48	57	64	7	9	9	646	4
. 2		4	0	4	20	31	2	0	0	0	8	26	59	52	7	-	<u></u>	504	٦.
9.	0	m	0	0	8	(A)	0	-	0	(1)	0	56	99	36	4	0	e-t	516	Η.
0.	2	0	0	2	9	21	0	0	0	3	5	16	36	30	9	-	4	410	o,
4.	0	2	0	0	2	19	0	0	1	0	(7)	11	26	28	4	m	2	332	7.
12.8		7	0	0	0	0	0	0	2	127	132	2	20	22	Ŋ	0	2	330	0.75
C4	ω,	0	0	0	0	7	0	0	0	$^{\circ}$	\vdash	89	14	15	S	0	9	306	~
9.	4	0	0	0	0	2	0	0	0	$^{\circ}$	83	9	11	20	2	7	2	256	5

TABLE B-12

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

듸
ZEV
E1
Σ
46
1
UMMER
VI.

	PERCENT FREQ	4 6 4 4 7 7 7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
	TOTAL	210 1726 1726 6 6 9 5 6 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1	
	326 348	000000000000000000000000000000000000000	
	303	0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	281	000000000000000000000000000000000000000	
	258	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,
	236		,
EES)	213	H H M O H O H O O O O O O O O O O O O O	
(DEGREE	191	© ω υ ω α α α α α α α α α α α α α α α α α	•
RANGE	168	1	,
DIRECTION	146 168	0 - 0 0 0 0 - 0 - 0 - 0 - 0 0 0 0 0 0 0	,
WIND DIR	123	00 + 00 00 00 00 00 00 00 00 00 00 00 00	,
N	101	000000000000000000000000000000000000000	J
	101	w w o o o o o o o o o o o o o o o o o o	ì
	78		>
	33		2
	H E)
	348)
	0.61	H 444 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
	WIND SPEED RANGE	44400000000000000000000000000000000000	

TABLE B-12 (CONTINUED)

SUMMER - 46 METER LEVEL

							WIND		DIRECTION	RANGE	(DEGREES	EES)							
WIND	H \	348	33	5.03	56 78	101	101	123	146	168	191	213	236	258	281	303 326	326 348	TOTAL	PERCENT FREQ
	(S)																		
8.0 28.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8.4 28.	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
8.8 29.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9.2 29.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9.6		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0
0.0 30.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.4 30.	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.6 31.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.2 31.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1.6 32.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.0 32.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.4 32.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0.
2.8 33.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
3.2 33.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.6 34.	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
4.4 34.	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.8 35.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ó
5.2 35.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.6 36.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.0 36.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.4 36.	-	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0
6.8 37.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.2 37.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7.6 38.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.0 38.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.4 38.	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.8 39.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
9.2 39.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9.6 40.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
																			1
TOTAL FREQ	i	427	1219	1748	3929	4081	173	829	069	7 4	6355	4756	5426	4259	1770	994	 i	43800	00.00
PERCENT FRE	8 03	.26	2.78	g	8.97	9.32	3.95	1.89	1.58	7.93 1	14.51	10.86	12.39	9.72	4.04	2.27	2.54	100.00	
AVERAGE WIND SPEED (M S)		3.7	en en	9.0	5.5	e.	₩.		4.	7.6	8	ω. Θ.	6.0	@ 4	8 .	(O)	4.		

TABLE B-12 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

FALL - 46 METER LEVEL

							MIM	WIND DIRECTION RANGE (DEGREES	CTION	RANGE	(DEGRE	ES)							
	îi ^			9	56	7.8	101	123	146	168	191	213	236	258	281	303	326	TOTAL	RC I
IND	~	11	33	56	78	101	0	4	9	თ	-	236	5	œ	0	0	4	FREQ	FREQ
RANGE	(M/S)																		
		13	0	0	2	0	0	-	0	14	34	0	0	0	0	0	1	7.1	0
		0	0	0	0	0	0	0	0	19	16	Ħ	0	0	0	0	0	36	0.
		0	0	0	0	0	0	-	0	13	2.7	0	0	0	0	0	0	4.1	0.
		2	0	13	O	13	6	2	11	20	30	1.7	$^{\circ}$	-4	\Box			20	. 5
1.6	2.0	264	274	361	390	447	305	194	141	198	244	308	368	330	266	222	208	4520	5.87
		348	355	408	376	433	285	165	ന	181	197	357	2	ന	2	~	0 1	75	۲.
		00	230	$^{\circ}$	226	358	$^{\circ}$	0	8	0	135	(2)	9	4	9	4	S	08	0.
		0	148	$^{\circ}$	212	276	7	51	52	92	117	0	$^{\circ}$	_	4	0	16	9 0	H (
		$^{\circ}$	9.5	\Box	210	285	\Box	38	4.1	4.2	119	0	P.	_	5	80	9	17	φ,
	- 4	0	64	Θ	179	254	9.8	4.1	26	40	80	100	2	ന	0	7.4	85	86	9 1
		77	49	100	187	283	87	22	19	43	9.2	$\overline{}$	-4	$^{\circ}$	96	7.5	9	9	. 2
		68	30	9	272	396	44	1.7	1.4	33	106	4	$^{\circ}$	$^{\circ}$	9.5	73	68	=	. 7
		4.5	2.2	85	287	421	7.2	6	9	42	100	\sim	0	S	92	44	89	20	φ.
		4 4	17	06	261	430	65	S	2	43	80	3	S	(n)	83	40	2.2	23	0
		43	6	29	311	451	4.2	m	S	41	80	-	0	4	83	43	38	28	6.
		4.1	89	52	324	457	20	2	ო	48	91	S	(1)	マ	49	40	32	26	σ,
		24	15	33	284	508	30	ಣ	e	32	96	9	~	$^{\circ}$	52	25	40	37	0
		31	11	32	282	520	34	7	٣	56	111	10	8	on .	4.1	28	28	თ ი	-
	4	27	12	16	306	492	29	0	-	44	139	9	8	-	32	21	35	41	٦.
		19	9	26	377	522	23	4	٦	99	152	æ	ω	ന	38	12	24	5.7	m -
		20	0	15	391	418	16	2	4	54	167	~	N	ത	19	20	30	4.5	٦.
	- 4	26	0	6	382	401	7	e-d	2	55	189	349	[~ ·	O 1	37	S	2.4	4 0	9.0
		18	0	4	333	378	80	e-1 -	_	52	230	8	540	~ [2.5	മ	6.7	7977	n c
		20	٦	0	348	329	11	0	4	က က	235	0 1	77) (, m,	51	י ת	0 7	7 (י מ
9.	Ö	23	0	0	258	279	7			3.7	276	9 (0 ,	4 (ان م	4 (9 0	9 0	. u
0.	0	14	0	0	244	288	9	0	2	3.4	310	ו ת	⊣ 1	D (n () F	7 (N G	
4	0	2	0	0	271	265	m	0		25	323	5	Ω	0	X) (~ (ָח ת	0 0	9 (
8.	-	2	0	П	265	237	-	0	0	99	364	00	\vdash	$^{\circ}$	7-	2	12	1793	
. 2	-	0	0	0	239	242	0	0	0	49	348	\neg	0	σı ı	25	_	7	9 1	٦.
9.	2	2	0	0	224	222	0	0	0	70	382	ന	9	L-	16	5	9 1	59	0.
0.	ς.	0	0		190	224	0	0	0	73	340	$\overline{}$	0	4	20	-	ഹ	1416	Φ.
4.	0	1.1	0	rH	166	212	0	0	0	76	388	$^{\circ}$	~	4	13		S	1418	8
8	3		-	0	115	184	0	0	0	0	363	3	157	<₽	16	0	ന	1323	7 .
. 2		0	0	-7	80	142	0	0	0	102	346	177	0	0	15	0	S)	1075	4
9	4		0	0	51	96	0	0	0	$^{\circ}$	327	C	78	7.5	0	0	2	971	. 2

TABLE B-13

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

FALL - 46 METER LEVEL

							MIN	WIND DIRECTION RANGE	CTION		(DEGREES	(S)							
	۸	34	F		56	78	101	123	146	168	191	213	236	258	281	303	326	TOTAL	000
SPEE		< 11	33	56			2	4	168	6	\vdash	(1)	258	œ	0	N	T)	FREO	FREQ
RAN	- 61																		
^																(۰
4	70	3		0		67	0	0	C	107	4	169	69		12	0 (- 0	~ (٦.
4	1	r		0		37	0	0	0	5	~	3	40		12	0	<u>(15)</u>	NI	י עכ
4	ω.	0		0		36	0	0	0	\sim	9	4	35		12	0	4	-	00
2	ω.	0		0	11	30	0	0	0	=	\sim	2	27		ന	0	2	565	. 7
	100	6		0		2.7	0	0	0	98	Š	9.5	16		2	0	0	α	9
 1 W		0		0	9	15	0	0	0	77	201	83	19	18	2	0	ന	424	.2
	·	0		0	4	19	0	0	0	76	4	86	4			0	0	4	5
	-	0		0	2	10	0	0	0	80	₹P	76	4	9	0	0	2	N	. 22
		0		0	П	10	0	0	0	81	$^{\circ}$	53	79	2	0	0	⊢	~	40
	60	0		0	-	13	0	0	0	55	\sim	68	4	-	0	0	С.	-	4
00	an	2		0	П	α)	0	0	0	55	\vdash	6.5	7	7	0	0	0	S	4
00	60	П		0	0	11	0	0	0	3.7	~	44	7	-	0	0	2	-	en .
00	ന	0		0			0	0	0	30	9	57	0	1	0	0	0	(C)	m
	G	0		0	0	S	0	0	0	32	~	30	-	0	0	0	2	3	т. С
	0	0		0	0	2	0	0	0	28	3	31	0	0	0	0	0	0	ς.
0	0	0		0	0	0	0	0	0	32	α	3.2	0	0	0	0		4	n .
0	0	0		0	0	7	0	0	0	24	જ	2.5	0	0	0	0	0	on i	2
0		0		0	0	0	0	0	0	18	\vdash	17	0	0	0	0	0	154	Ŋ,
	-	0		0	0	0	0	0	0	16	80 (5)	12	0	0	0	0	0	N	7
	α.			0	0	0	0	0	0	15	16	7	0	0	0	0	0		Ξ.
ν.	2	0		0	0	0	0	0	0	Φ	68	ð	0	0	0	0	0	00	-
		0		0	0	0	0	0	0	1.4	8 2	7	0		0	0	0	107	Η.
	· М	0		0	0	0	0	0	0	Φ	83	0	0	0	0	0	0	91	٦.
т С	ω.	0		0	0	0	0	0	0	13	45	2	0	0	0	0	0	40	7
σ.	40	0		0	0	0	0	0	0	18	69	-	0	0	0	0 '	0 (30 U	Ξ.
4	4	0		0	0	0	0	0	0	16	00 00	2	0	0	0	0	0 (-	Ξ.
-	4	0		0	0	0	0	0	0	2.2	78	0	0	0	0	0	0 '	100	Ξ.
4	5	0		0	0	0	0	0	0	26	51	0	0	0	0	0	0	1.1	Ξ.
5	5	0		0	0	0	0	0	0	26	38	0	0	0	0	0	0	64	0.
5	9	0		0	0	0	0	0	0	18	28	0	0	0	0	0	0	46	9.1
9	Θ.	0		0	0	0	0	0	0	14	34	0	0	0	0	0	0	4 0 00 ⋅	0 '
9	9	0		0	0	0	0	0	0	19	15	0	0	0	0	0	0	34	0
ω.	~	0		0	0	0	0	0	0	12	2.7	0	0	0	0	٥	0	90	0, 1
27.2	27.6	0	0	0	0	0	0	0	0	9	11	0	0	0	0	0	0	17	0.02
	ω	0		0	0	С	0	0	0	7	6	0	0	0	0	0	0	16	0

TABLE B-13 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA

FALL - 46 METER LEVEL

8. 8.	F (0	e 4	56	78	101	123	146	168	191	213	236 258	258	281	303	326 348	TOTAL	PERCENT
			0)	1	-	>)	4)							
0	0	0	0	0	0	0	0	1	4	0	0	0	0	0	0	5	0.01
0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	0	9	
0	0	0	0	0	0	0	0	2		0	0	0	0	0	0	3	
0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	e-I	0.00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0.1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (9 (
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.00
1 0	1 4	1 4	1 0	1 0	10	1 4	1 4	1 0	1000	1020	100	7 7 1	1 -	1 0	1 9	1 0	100 00
20	n n	D D	ח	9	7	0	٥	200	0000	0270	7 C -1	5	4	2			
2.38	1.76	2.56 1	0.60	13.99	2.22	0.87	0.74	4.66 1	4.79	3.42	15.56	9.83	2.75	1.79	2.08	100.00	
o ()	60 .	ω 4	7.4	7.3	ы	2.7	69 .	11.7	13.0	2.8	7.6	7.5	0.0	3.7	4.5		
	00000000000000000000000000000000000000	18 1 2 2 3 8 1 3 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1828 1.76 2.56	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1828 1356 10.60 13.99 2.22 0.87 0.74 4.66	1	1				1	Color Colo	1828 1.76 2.56 10.60 13.99 2.22 0.87 0.74 4.66 14.79 13.42 15.56 9.83 2.75 1.79 2.08 10.00

TABLE B-13 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA

PERCENT FREQ

		TOTAL	FREQ		40	37	16	2	P= 1	172	n 4	0 0	4 C	0	# C	7 (1 C	7 7	82	m	$^{\circ}$	00	00	10	P~-	N	P 1	N	0 1	Ω	P-0	m	P	0	on.	361	m	00	(2)
		326	458		0	0	0			1.1				4 4			12				~	0	11	11	10	13	18	28	56	2.7	19	21	77	00	2	m	0		0
		303	N		0	0	0	0	26	23	O +	7 7 6	17	7 -	\$ 4 -1 r	0 4	9 0	12	on 1	2	o :	Ø	~	0	□	0	2	0	0	0	0	0	0	0	0	0	0	0	0
		281	0		0	0	0	0	25	22	ກ ເ	2 6	1 2) <	\$* W		10	9	2	9	2		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		258	00		0	0	0	0	27	21	97	4 (J () (0 7	7 1	12	0 !	12	16	22	23	21	4.2	18	25	23	12	10				13				e	9	y.
		236	S		0	0	0		20	co (ه م	0 0	7	-1 C	2 5	7 (27	61	29	32	20	84	ന	N	Ω	0	186	0		w-1	N	\rightarrow	W)	5	422	0	9.5	52	59
	EES)	213	C.		0	0	0	7	21	iO i	0	י ת	0 0	0 =	di (ا ۵	7	0 1	7	17	24	36	30	54	63	7.1	00	0	\vdash	2	$^{\circ}$	\neg		d,	3	126	0	9.5	123
LEVEL	(DEGREES	191	e-1		14	10	Ω	9	15	10	en 1	~ (7 4	0 -	de (י ני	ო -		m	11	4	15	17	20	23	4.5	5.5	19	82	73	68	52	62	9.6	66	-	ന	132	1
METER	RANGE	168	0		26	27	11	12	26	19	20 (01	de C	n (n (2			-1	2	0	0	0	-	0	0	-	m	2	4	2		m	0	0	0	e-1	-1	П
R - 46	ECTION	146	9		0	0	0	0	0	e	2	-4 (0 0	> 0	O (0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
WINTE	WIND DIRE	123	4		0	0	0	0	7	7	m .	- ←	0 0	> 0	0 1	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	N.	101	N		0	0	0	0	12	2	m	-	0 0	> (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		78			0	0	0	0	4	m	0	0	0 (Э (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		56			0	0	0	0	15	4		0	0 (Э.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		8	56		0	0	0		15	n	_	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
			33		0	0	0	0	15	7	11	 -	m ·	eti	2	-	П	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		3.4	11		0	0	0	0		18		9	7	9	2	3	2	n	c	2	2	6		0	2	0	0	2	0	2		9	0	0	0	0	0	0	0
		^	~	(M/S)						2.4																			0	0	0	y-4	d	N.	2		с С	(n)	
			MIND	RANGE	0.0																								9.	0.0	4.0	8.0	1.2	1.6	2.0	2.4	2.8	3.2	13.6

TABLE B-14

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

ZE C	
5	
E	
Δi	
Ш	
ME	
Σ	
9	
4	
1	
œ	
(±)	
⊣	
H	
3	

							WIND		DIRECTION F	RANGE	(DEGREES	:S)							
MIND	11 ~	348	33	33	56	78	101	123	146 168	168	191	213	236	258	281	303	326 348	TOTAL	PERCENT FREQ
SPEED RANGE																			
4	4	0	0	0	0	0	0	0	0	2	[84	5.8	9	0	0	0	ത	0.
4	4	0	0	0	0	0	0	0	0	e-t	9	84	35	1	0	0	0	60	٥.
4	5.	0	0	0	0	0	0	0	0	m	8	69	24	2	0	0	0	00	0
5	5	0	0	0	0	0	0	0	0	4	\leftarrow	55	20	9	0	0	0	0	
5	16.0	0	0	0	0	0	0	0	0	2	221	53	20	4	а	0	0	300	7
9	9	0	0	0	0	0	0	0	0	7	r=1	53	10	7	0	0	0	∞ -	0
9	9	0	0	0	0	0	0	0	0	13	2	53		ന	0	0	0	\circ	□.
9	-	0	0	0	0	0	0	0	0	15	2	32	10	7	0	0	0	~	σ.
7	7	0	0	0	0	0	0	0	0	18	-	33	9	0	0	0	0	ω.	0
7	ω.	0	0	0	0	0	0	0	0	23	2	27	4	0	0	0	0	~	<u>ත</u> I
80	8	0	0	0	0	0	0	0	0	17	0	19	0	0	0	0	0	m i	1 .
ω,	8	0	0	0	0	0	0	0	0	59	~		2	0	0	0	0	N 1	. 5
ω,	6	0	0	0	0	0	0	0	0	25	O	10	e-t	0	0	0	0	\sim	9
0	о О	0	0	0	0	0	0	0	0	25	Θ		2	0	0	0	0	\circ	4
о О	0	0	0	0	0	0	0	0	0	4.1	~	ω	0	0	0	0	0	2	9.
0	0	0	0	0	0	0	0	0	0	38	9	9	-	0	0	0	0		*.
0	0	0	0	0	0	0	0	0	0	32	2	4	e-4	0	0	0	0	ന	Θ.
0	-	0	0	0	0	0	0	0	0	4.5	4	2	0	0	0	0	0	ത	*
		0	0	0	0	0	0	0	0	52	3	9	0	0	0	0	0	00	0
	2	0	0	0	0	0	0	0	0	4.5	~	2	0	0	0	0	0	0	-1
N	2	0	0	0	0	0	0	0	0	34	\sim	-	0	0	0	0	0	928	0
8	2	0	0	0	0	0	0	0	0	4.5	98	4	0	0	0	0	0	m	0
2	(5)	0	0	0	0	0	0	0	0	40	61	2	0	0	0	0	0	\cap	1.
9	6	0	0	0	0	0	0	0	0	4.5	99	2	0	0	0	0	0	e-4 -	00
т т	4	0	0	0	0	0	0	0	0	37	54	г	0	0	0	0	0	92	9
4	436	0	0	0	0	0	0	0	0	23	94	2	0	0	0	0	0	74	
4	4	0	0	0	0	0	0	0	0	26	32	.	0	0	0	0	0	9	4
4	5	0	0	0	0	0	0	0	0	2.2	27		0	0	0	0	0	20	ر ب
2	ŝ	0	0	0	0	0	0	0	0	22	12	0	0	0	0	0	0	34	
5	9	0	0	0	0	0	0	0	0	28	2.1	0	0	0	0	0	0	40	<u>ო</u>
9	9	0	0	0	0	0	0	0	0	26	14	0	0	0	0	0	0	40	
9	9	0	0	0	0	0	0	0	0	2.7	10	0	0	0	0	0	0	37	. 2
26.8	27.2	0	0	0	0	0	0	0	0	1.3	2	0	0	0	0	0	0	16	0.11
7	7	0	0	0	0	0	0	0	0	12	9	0	0	0	0	0	0	30 (H	7
-	00	0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	0	19	

TABLE B-14 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

WINTER - 46 METER LEVEL

	PERCENT FREQ		
	TOTAL	113 115 111 111 111 111 111 111 111 111	100.00
	326	00000000000000000000000000000000000000	2.81
	303	121	3.9
	303		3.2
	258		7 .03
	236 258	3 1	21.75
EES)	213	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	18.15
(DEGREES	191	1	40.68 16.8
RANGE	168	100 000 000 000 000 000 000 000 000 000	7 . 5 . 5 . 5 . 4 5
ECTION	146		0.11
WIND DIR	123		0.14
M	101		0.13
	101	7	0.05
	56		0.14
	6 9		0.14
	33	2	0 2
	348		0.78
	ΩШ	FF EC.	NT FREQ GE WIND (M/S)
	WIND SPEE RANG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PERCENT AVERAGE SPEED (M

TABLE B-14 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

ANNUAL - 46 METER LEVEL

							WIND		DIRECTION	RANGE	(DEGREES	(S)							
	ii ^		11	8	56	78	0	123	146	168	191	213	236	258	281	303	326	TOTAL	\circ
WIND	~	=	83	56	78		123	146	9	0	p-4	(2)	(C)	00	0	0	4	FREQ	FREQ
RANGE	(M/S)																		
	4.0	13	n	0	2	0	0	-1	0	40	48	0	0	0	0	0	1	111	0.07
	9	0	0	0	0	0	0	0	0	46	26	-	0	0	0	0	0	7.3	0.
		0	0	0	0	0	0	1	0	24	32	0	0	0	0	0	0	40	0.
		5	6	1.4	6	13	6	Ŋ	11	32	α	80	20	$\overline{}$				\triangle	۲.
		648	\vdash	9	~	ngh.	2	7	355	~	9	671	764	3	\rightarrow	3	D.	Offi	. 2
4	4	691	736	869	4	C/I	209	378	363	420	0	865	793	S	624	587	614	690	3
		436	9	00	N	922	O.	N	229	7	9	593	618	S	0	$^{\circ}$	5	_	3
		386	5	9	4	(0)	3	0	134	3	4	475	541	9	中	0	4	CD.	. 2
4		281	S)	0	\vdash	C)	C)	0	26	7	\sim	479	594	0	$^{\circ}$	マ	N ·	h	0
		252	00	d.	5	S	0	0	99	2	0	449	564	~	S.	0	0	~	7.
	4	216	~	$^{\circ}$	0	NO.	3	87	62	Ø.	00	532	651	α)	$^{\circ}$	3	2	P	-
		185	=	$^{\circ}$	9	[~	0	64	48	e-4	0	593	802	~	-	S	N/F	0.1	00
	4	125	06	0	ω	m	0	37	23	-	7	646	030	Z,	0	3	덱	Pour	00
		101	62	$^{\circ}$	00	N	0	37	21	9	マ	681	962	S	00	0	C)	\sim	00
		115	40	S	5	\sim	[~	30	21	0	0	069	985	~	~	74	0		ω.
		2.6	31	0	00	$^{\circ}$	-1	24	15	0	S	714	0.5	N	4	65	78	44	00
		85	33	8	~	LO.	978	54	14	\vdash	\vdash	773	12	0	4	29	111	.0	Ξ.
		93	31	69	47	O.	ZP.	2.1	10	\leftarrow	O.	758	0.0	\neg	S	55	94	0.1	0
4		7.9	23	09	P	0	3	10	12	3	0	794	11	3	3	37	80	meli	□.
		99	13	69	3	0	26	16	9	~	9	816	15	S	\neg	27	93	\sim	2
		54	2	51	O	ത	73	12	13	d,	6	791	25	0	0	43	87		اسا ه
4		20	2	51	\leftarrow	C/I	43	11	90	3	Z,	196	1197	O.	N	10	69	\sim	Ξ.
		40	2	33	\odot	LCI	42	10		3	0	819	10	CV.	80	14	00	. ^	0
		35	(T)	19	O	3	44	7	11	S	C)	773	10	S	69	17	9.4	Pro-	6
9.	0	32	-	14	O	m	36	4	4	9	(2)	715	03	(7)	64	9	16	_	9
0.0	0	28	0	14	0	ത	21	3	m	0	9	597	919	0	43	12	7.5	0	4
0.4	0	13	0	14	ø	P~	17	0	2	\leftarrow 1	2	612	875	00	39	11	49	~ 1	e.
0.8	*	16	0	0	0	N	10	1	ෆ	\sim	~	539	781	434	30	00	67	~~	7
1.2	-	7	0	6	S	ന	2	2	0	0	00	428	727	~	38	ෆ	5.1	000	6
1.6	ci	2	0	4	CA		0	ı	0	2	2	481	629	N	30	4	40	0.1	6
0.1	2	0	0	7	0	LO.	0	0	0	9	φ	427	541	0	35	2	35	0.1	7
2.4	ς.	13	0	2	S	S	0	0	-	3	0	442	449	00	24	7	30	~	φ.
2.8	3	2	1	4	197	9000	0	0	2	~	~	412	366	3	2.4	-	30	and a	4
13.2 1	3.6	0	0	80	139	164	0	0	0	276	650	325	256	171	26	0	36	2051	1.25
3.6	4	1	0	Ŋ	00	0	0	0	0	P-	5	8 8 8	130	ω .	17		14	_	e t

TABLE B-15

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA.

-
FUF
Ĺ
-
Ω
CL
Ē.
2
MET
M C MI
7 0
7 7 7
AT - AG
AT - AG
7 7 7
A C. INT.

	PERCENT FREQ	1.02	0.86	0.78	0.70	0.61	0.55	0.55	0.50	0.46	0.46	0.42	0.34	0.37	0.32	0.30	20.0	0.29	67.0	0.22	0.20	0.15	0.16	0.14	0.13	0.12	50.0	0.10	0.08	90.0	90.0	0.05	0.04	0.03	0.02	0.02	
	TOTAL	φ.	1411	S	~	\circ	898	911	814	750	748	694	559	612	523	488	ນ ຜູ	473	409	366	328	253	268	225	218	192	153	160	130	86	95	88	71	55	35	35	
	326	23	17	17	10	en	89	erri	2		ന	0	2	0	2	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	303	0	e~4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	303	17	1.2	1.4	47	9	47	4	0	0	0		1	0	0	0	0	0	- -1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	258 281	128	00	09	- KO	42	29	2.5	10	9	2	2	2	6	2	0 −3	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	· C) C	0 0) ()	0	
	236	ے	130	0	7 6	5 4	20	19	24	17	11	6	13	ന	m	П	2	_	0	0	-	0	0	0	0	П	0	0	C	0	0	0 C	0 0	0 0) C	0	
ES)	213	CT.	1 10) =	* ~	4 LC	152) 💔	, (7	- 0	103	01	56	69	50	39	38	30	24	18	12	10	11	ι Ω	4	2	4	1	-	٠ -) C	> <) C	0 0	> <	0	
(DEGRE	191	0.4) a	2 4	0 4 6	100 100 100 100 100 100 100 100 100 100	1 7 7	0 00	517	403	508	486	300	459	400	368	430	379	315	276	253	200	195	170	155	134	110	111	101	n (0 0	n c	3 C	0 0	17	7 7	,
RANGE	168	C	707	707	0 % 0	7 7 9	17.0	120	100	4 F	104	0 0	0 6	0 9	2 6	7.4	72	6.2	69	7.5	6.1	4 6	9 - 0	200	0 40	. KD	000	4 B) C	0 0	0 4	0 4	4, 4	QP (200	2 C	1
CTION	146	(> -	→ <	> 0	> (0 0	0 -	⊸ ⊂	0 0	o -	- C	> -	- C) C	0	· C	0 0	· C) C) C	0 0) C	0 0) C	0	· C	0	> <	0 0	0 (> 0	0 0	0 1	5 0	0 0	5
ND DIRE	123	•	0 0)	~ (0 0	> 0	0 0	0 0	> 0	0 0	0 0	0 0	0 0	0 0	0 0) C	0 0) C	0 0	0 0	0 0		0 0	0 0	0 0) C	0 0	0 0	0	0 (0	0	0	0 0	00	0
MIN	101	,	0	0	0	0 (0 0	0 0	> C	> 0	0 0	0	> <	0 0	0 0	0 0		0 0		0 0	> <	0 0	> <	0 0	0 0	0 0	0 0		0 (0	0 1	0	0	0	0	0 0	0
	78		78	45	37	30	28	5	61	0 0	0.	50	Φ :	I I	30 t	വ	2 0) ·	- ·	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0) (0	0	0	0	0	0	0	0 (С
	56		74	4.5	2 2	20	7	9	7 1	21	p(-)	← ·	-	0 '		0 0	> <	O (> (0 (0 0	0	0	0 (0 (0 0	0 0	0 (0	0	0	0	0	0	0	0	С
	33		2	0	e~1	0	0	0	0	0	0	0	0	0	0	0 0	0 (0	0	0	0	0	0	0	0	0 0	0 (0	0	0	0	0	0	0	0	0	O
	# E		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	348		4		0	0	€	0	0	0	0	0	2	-	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ii ∨																													-10	10	1.0	10	1.0) [~	27.6	CC
	WIND	RANGE			-														_	-						770	an.				1.0	10	1 10	5 (0.40	27 2	P-4

TABLE B-15 (CONTINUED)

JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND WIND DIRECTION AT LIVINGSTON, MONTANA

ANNUAL - 46 METEP LEVEL

ì			
1			
į			
į			
4			
1			
)			
٦			
1			
į			
5			
:			
:			
¢			

						MIND		DIRECTION	RANGE	(DEGREES	ES)							
^	II М	8 1	1 33	56	78	101	123	146	168	191	213	236	258	281	303	326	TOTAL	PERCENT
WIND	V	1 3	3	7	101	2	4	9	on .	_	7)	Ô	20	5	N	OP.	4 1 2) 1 1
(a)																		
78.					0	0	0	0	11	7	0	0	0	0	0	0		0.
20.00					0	0	0	0	1.1	10	0	0	0	0	0	0	2.1	
					0	0	0	0	10	4	0	0	0	0	0	0		0.
9.2 29.					0	0	0	0	2	4	0	0	0	0	0	0	9	Ō.
9.6					0	0	0	0	3	42	0	0	0	0	0	0	7	Ō.
0.0					0	0	0	0	e	e	0	0	0	0	0	0	9	0.
0.4 30.					0	0	0	0	2	en	0	0	0	0	0	0	വ	0
0.8 31.					0	0	0	0	e-I	2	0	0	0	0	0	0	m	0
1.2 31.					0	0	0	0	_	0	0	0	0	0	0	0	7	0
1.6 32.					0	0	0	0	-	П	0	0	0	0	0	0	2	0
2.0 32.					0	0	0	0	e	ന	0	0	0	0	0	0	4	0
2.4 32.					0	0	0	0	0	0	0	0	0	0	0	0	0	Ó.
2.8 33.					0	0	0	0	0	ო	0	0	0	0	0	0	m	Ō.
3.2					0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.6 34.					0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.0 34.					0	0	0	0	0	p-d	0	0	0	0	0	0	ei	Ō.
4.4 34.					0	0	0	0	0	0	0	0	0	0	0	0	0	0.
4.8 35.					0	0	0	0	0	0	0	0	0	0	0 (0	0	0 (
5.2 35.					0	0	0	0	0	0	0	0	0	0	0	0 (0 (0. (
35.6 36.0		0	0	0	0	0	0	0	0	0 1	0 (0 (0 (0 0	0 0	0 0	0 0	000
6.0 36.					0	0	0	0	0	0	0	0	0 (0 0	0 (> 0	0 (9.0
6.4 36.					0	0	0	0	0	0	0	0 (0 (0 (> •	> 0	0 0	. (
6.8 37.					0	0	0	0	0 (0 1	0 (0 0	0 () (0 0	> 0	0 0	
7.2 37.					0	0	0	0	0 (0 (> (> 0	> 0	> 0	> 0	0 0		5 0
7.6 38.					0	0	0	0 (0 (0 (0 0	0 0	> 0	> 0	> 0	> 0		
8.0 38.					0 (0 (> 0	> <	> 0	> 0	> 0	> 0	0 0	0 0	> <	0 0		
8.4 38.					0	0	0	> 0	> 0	> 0	> <	> <	0 0	0 0	0 0	0 0		
8.8 39.					0	0	0	0	O (O	> (> 0	> <	> 0	> 0	> 0		. 0
9.2 39.					0	0	0	0	0	0	0	0) ·	> 1	> (> 0) (9 (
9.6 40.			0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1			1 1		1	Ţ		1	İ	į	1		1 - 1 -
TOTAL FREQ	418	82 332	3 4902	15168	17083	4258	1769	1542	9461	27256 2	1338 2	5860 1	5698	5039	3175	4249	164303	100.00
PERCENT FREQ	2 . 5	55 2.0	2 2.98	9.23	10.40	2.59	1.08	96.0	5.76 1	6.59 1	2,99 1	5.74	9.55	3.07	1.93	2.59	100.00	
AVERAGE WIND SPEED (N.S)	6)	Ø.	0 3.7	7 . 0	9.00	4 . 2	e.	en 	11.6	12.4	8.4	7.7	7.3	0.4	3.6	5.2		

TABLE B-15 (CONTINUED)

	٠.