

Univerzite u Novom Sadu Fakultet Tehničkih Nauka Katedra za računarsku tehniku i međuračunarske komunikacije

Algoritmi i arhitekture DSP I

MEMORIJSKI PODSISTEM

JEDINICA ZA GENERISANJE ADRESA 1/3

- Zbog specifične harvard arhitekture uvode se JEDINICE ZA GENERISANJE ADRESA AG
- Kod AG <u>instrukcija</u>, osnova je PC:
- * AG mora obavljati izvesne aritmetičke operacije
- * AG mora da podrži hardversku petlju
 - ❖ Brojač ciklusa (smanjuje se kada se izvrši segment koda)
 - Registar početka segmenta- START
 - ❖ Registar kraja segmenta STOP (ili registar dužine segmenta)
- AG mora da obezbedi skokove na adrese vektora prekida:
 - 1) PC se smesta na sistemski stek
 - 2) U PC se smesta početna reč rutine za obradu prekida
 - 3) Po završetku obrade prekida, u PC se smešta vrh steka

JEDINICA ZA GENERISANJE ADRESA 2/3

- Jedinica za generisanje adresa podataka:
 - Odgovorna za generisanje adrese u memoriji za podatke na osnovu adrese u adresnom delu instrukcije
 - Podržano adresiranje:
 - Kružno ili modulo adresiranje
 - Bit-obrnuto adresiranje

JEDINICA ZA GENERISANJE ADRESA 3/3

- Adresiranje je operacija kojom se definišu lokacije OPERANADA u memoriji
- **❖** ADRESNI REŽIMI
 - ❖ PRETPOSTAVLJENO ADRESIRANJE (IMPLIED ADDRESSING) (podazumeva se da je operand u nekoj lokaciji, npr: namenskim registrima za tu inst.)
 - ❖ DIREKTNI PODACI (immediate data) NEPOSREDNA ADRESA. Sam operand (a ne njegova adresa) se nalazi u instrukcionoj reči.(male reči u instr.)
 - MEMORIJSKO DIREKTNO ADRESIRANJE (MEMORY DIRECT ADDRESSING), naziva se i apsolutno adresiranje, podaci koji se adresiraju, stoje u memoriji na lokaciji čija je adresa kodirana u instrukciji.

❖ ADRESNI REŽIMI

- ❖ REGISTARSKO DIREKTNO ADRESIRANJE (REGISTER DIRECT ADDRESSING), adresirani podaci su u registru, u adresnom delu instrukcije se definiše adresa registra u kom su podaci.
- ❖ REGISTARSKO INDIREKTNO ADRESIRANJE je adresiranje kod koga se adresirani podaci nalaze u memoriji, a adresa memorijske lokacije koja ih sadrži nalazi se u registru.
 - ❖REGISTARSKOG INDIREKTNOG ADRESIRANJA SA POST ILI PRE-INKREMENTOM
- ❖ REGISTARSKO INDIREKTNO ADRESIRANJE SA INDEKSACIJOM se odnosi na adresiranje u kome su vrednosti smeštene u dva adresna registra i sabiraju se radi formiranja efektivne adrese

- ❖ADRESNI REŽIMI
 - ❖REGISTARSKO INDIREKTNO ADRESIRANJE SA MODULO ADRESNOM ARITMETIKOM
 - Primene kružnog bafera
 - Za rukovanje kružnim baferom, koriste se:
 - Startna adresa
 - ❖Adresa kraja/dužine
 - ❖Pokazivač upisa
 - ❖Pokazivač čitanja

a)

*REGISTARSKO-INDIREKTNO ADRESIRANJE SA BIT OBRNUTIM REDOSLEDOM

❖FFT česta primena:tranformacija vremenskog u frekventi domen->nedostatak je skremblovani ulaz/izlaz

❖Najneobičniji adresni režim, adresiranje obrtanjem bita koristi se za sračunavanje FFT

a)

ARHITEKTURA MEMORIJA

- Koraci kod FIR filtriranja
 - Prihvatiti MAC instrukciju
 - ❖ Očitati vrednost iz kružnog bafera
 - Očitati vrednost koeficijenta
 - Upisati novo pristiglu vrednost u kružni bafer

STRUKTURA MEMORIJE

Harvard arhitektura

MEMORIJE SA VIŠE PRISTUPA U JEDNOM INST. CIKLUSU

- U jednom instrukcijskom ciklusu procesor može da pristupi dvema mem. lokacijama. Ultra brze memorije.
- Harvard arhitektura, dve memorije, dva pristupa u jednom inst. ciklusu ukupno 4 podatka u jednom ciklusu.

MEMORIJE SA VIŠE FIZIČKIH PRISTUPA U JEDNOM INST. CIKLUSU

- Dvopristupne memorije (DPM)dva <u>istovremena</u> pristupa
- Potrebno urediti podatke za dobijanje max performansi
- Velika cena
- Na slici: Harvard arhitektura sa dvopristupnom memorijom A i jednopristupnom memorijom B

SPECIJALIZOVANA OPERACIJA UPISA U MEMORIJU

- Specijalan mehanizam radi dozvole upisa u memoriju podataka paralelno sa čitanjem instrukcije i čitanjem podatka
- Skrivena memorija
 - ❖se znatno razlikuju po načinu rada i kapacitetu (manje i prostije)
 - prihvatna memorija sa jednom instrukcijom ponavljanja
 - instrukcioni bafer sa ponavljanjem je prosta skrivena memorija sektora instrukcija
 - zaključavanje sadržaja skrivene memorije

STANJA ČEKANJA

- Nastaje u stanjima u kojima procesor ne može da izvrši svoj program zato što čeka pristup memoriji
 - ❖Konflikt (contention),
 - Spora memorija i
 - Deljenje magistrale
- *PROGRAMIRANA STANJA ČEKANJA

Registar za kontrolu stanja čekanja

15	14-12	11–9	8-6	5-3	2-0
Reserved/XPA	I/O	Data	Data	Program	Program
R	R/W	R/W	R/W	R/W	R/W

ROM U DSP-u

- Digitalni signal procesori namenjeni za jeftine, namenske primene u profesionalnoj elektronici i telekomunikacijama, poseduju ROM memoriju u kućištu radi smeštanja aplikacionih programa i konstanti.
- Na kućištu, veličina ROM-a je tipično od 256 reči do 36 KW

SPOLJNA SPREGA SA MEMORIJOM

Razlikuje se po:

- broju memorijskih prolaza
- složenosti
- fleksibilnosti
- zahtevima u pogledu vremena Tipicno jedan spoljni izlaz za dresnu, magistralu podataka i

adresnu, magistralu podataka i kontrolne linije.

Na slici: 3 nezavisna skupa magistrala na kućištu, dele jednu memorisjku spregu

SPOLJNA SPREGA SA MEMORIJOM Signal name Des

- jednostavne sprege samo sa kontrolnim izvodima

-Složene sprege imaju izvod za stanja čekanja (wait pin), izvod za dodelu magistrale (bus grant) i stranični režim DRAM-a

-Za visoke performanse statička RAM van kućišta

Signal name	Description		
A0-A15	Address bus		
D0-D15	Data bus		
MSTRB	External memory access strobe		
PS	Program space select		
DS	Data space select		
IOSTRB	I/O access strobe		
IS	I/O space select		
R/W	Read/write signal		
READY	Data ready to complete cycle		
HOLD	Request for control of memory interface		
HOLDA	Acknowledge HOLD request		
IACK	Interrupt acknowledge		

DIREKTNI MEMORIJSKI PRISTUP (DMA)

- je tehnika kojom se podaci mogu prenositi iz/u memoriju bez uključenja procesora u taj proces
- Konfiguracioni parametri DMA kanala:
 - Startna memorijska adresa
 - ❖ Dužina podataka za prenos ﷺ
 ❖ Smer prenosa i

 - Odredišna ili polazna perifernu jedinicu

