Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2024-2025 Professeur : Zakaria Haouzan

Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°3 - S1 2ème année baccalauréat Sciences physiques Durée 2h00

.Chimie 7pts - 45min $_{-}$

Partie 1: Etude d'une solution aqueuse d'un acide carboxylique (7pts)-45min

L'acide lactique est un acide organique qui joue un rôle important dans les divers processus biochimiques. L'acide lactique de formule CH₃CHOHCOOH, est produit par fermentation du lactose du lait à l'aide des bactéries. La teneur d'un lait en acide lactique est un indice de sa fraicheur.

Un lait est considéré comme frais, si la concentration massique C_m en acide lactique ne dépasse pas $1, 8g.L^{-1}$.

Le but de cet exercice est de déterminer l'acidité d'un lait après quelques jours de sa conservation dans une bouteille.

Pour simplifier, on notera le couple (CH₃CHOHCOOH/CH₃CHOHCOO⁻) par (AH/A⁻) et on considère que seul l'acide lactique est responsable de l'acidité.

On donne:

- Masse molaire moléculaire de l'acide lactique : $M(C_3H_6O_3) = 90 \text{ g.mol}^{-1}$
- Produit ionique de l'eau à 25° C : $K_e = 10^{-14}$
- 1- On verse dans un bécher, un volume $V_A = 20$ mL d'une solution aqueuse (S_A) d'acide lactique de concentration molaire $C_A = 2.0\cdot 10^{-2}$ mol.L⁻¹, puis on y ajoute un volume $V_B = 5.0$ mL d'une solution aqueuse (S_B) d'hydroxyde de sodium $(Na^+_{(aq)} + HO^-_{(aq)})$ de concentration molaire $C_B = 5.0\cdot 10^{-2}$ mol.L⁻¹.

La mesure du pH du mélange donne : pH = 4.0.

- 0,5 1.1. Ecrire l'équation modélisant la réaction ayant lieu.
- 1.5 Construire le tableau d'avancement de cette transformation, et déterminer la valeur de son taux d'avancement final τ . Conclure ?
- 1,5 Montrer que la constante pK_A du couple (acide lactique/ion lactate) s'écrit : $pK_A = pH + \log\left(\frac{C_A \cdot V_A}{C_B \cdot V_B} 1\right)$ Calculer la valeur de pK_A .

2- Détermination de la concentration massique C_m d'un lait :

On verse dans un bécher, un volume V=20~mL d'un lait (S), et on le neutralise à l'aide de la solution aqueuse précédente d'hydroxyde de sodium, en utilisant le dispositif du dosage. L'équivalence est atteinte lorsque le volume de la solution d'hydroxyde de sodium versé est $V_{\rm BE}=10~mL$.

La solution S_a est préparée par dissolution de l'acide AH dans l'eau. La mesure du pH de la solution S_a donne : pH = 2,88.

- 0,75 **2.1.** Tracez le schéma du dosage permettant de neutraliser l'acide lactique dans le lait à l'aide d'une solution d'hydroxyde. Assurez-vous de préciser le nom de chaque matériel utilisé
- 1 2.2. Calculer la concentration massique C_m en acide lactique dans le lait (S). Conclure.
- 3. Le pH du mélange à l'équivalence est : $pH_E = 8.0$.
 - 0,5 **3.1.** Indiquer, l'indicateur le plus convenable à ce dosage.
 - 1,25 | **3.2.** Calculer le rapport $\frac{[A^-]}{[AH]}$ des concentrations, dans la solution obtenue à l'équivalence. Déduire l'espèce prédominante.

Incicateur coloré	Zone de virage
Rouge de méthyle	[4,2 - 6,2]
Rouge de phénol	[6,6 - 8,4]
phénolphtaléine	[8,2 - 10]

Les parties sont indépendantes

Partie 1: Vérification de la capacité d'un condensateur C (6,25pts)

On réalise le circuit électrique schématisé sur la figure 1 qui comporte :

• Un générateur de tension de f.e.m. (E). Deux conducteurs ohmiques de résistance $r=20\Omega$ et R et Un condensateur de capacité C initialement déchargé .

A un instant de date t = 0, on place l'interrupteur K en position (1). Un système d'acquisition informatisé permet de tracer la courbe d'évolution de la tension $u_C(t)$. La droite (T) représente la tangente à la courbe à la date t = 0.

- 1 1.1. Etablir l'équation différentielle vérifiée par $u_C(t)$.
- 1.2. Trouver les expressions de A et de τ , pour que
- $u_C(t) = A.(1 e^{-\frac{t}{\tau}})$ soit solution de cette équation différentielle.
- 1.3. L'intensité du courant électrique s'écrit sous forme $i(t) = I_0 \cdot e^{-\frac{t}{\tau}}$ | Trouver l'expression de I_0 en fonction de E, r et R.
- 1 **1.4.** En exploitant la courbe, Trouver la valeur de la résistance R sachant que $I_0 = 0, 20A$.
- 1 **1.5.** En exploitant la courbe, Déterminer la valeur de τ .
- 0.5 | **1.6.** Vérifier que la capacité du condensateur est $C = 10\mu.F$.
- 0,75 | **1.7.** Trouver l'énergie E emmagasinée par le condensateur à l'instant $t = \frac{\tau}{2}$.

Partie 2 :Détermination expérimentale de la capacité d'un condensateur

1. En utilisant un générateur de courant

Un premier groupe d'élèves d'une classe réalise, sous les directives du professeur, le montage expérimental de la figure 1 constitué des éléments suivants

- \bullet un générateur idéal de courant qui alimente le circuit par un courant électrique d'intensité ${\rm I}_0$
- un conducteur ohmique de résistance R et deux condensateurs (c₁) et (c₂) montés en parallèle, respectivement de capacités $C_1=7,5\mu F$ et C_2 inconnue

À l'instant $t_0=0$, un élève ferme le circuit. A l'aide d'un système d'acquisition informatisé, le groupe d'élèves obtient la courbe des variations de la charge q du condensateur équivalent à l'association des deux condensateurs (c_1) et (c_2) en fonction de la tension U_{AB} (figure 2).

20 10 10 Figure 2

304**Aq(µC)**

Figure 1

- ,75 **2.1.** Quel est l'intérêt de monter des condensateurs en parallèle ?
- 2.2. En exploitant la courbe de la figure 2, déterminer la valeur de la capacité C_{eq} du condensateur équivalent aux deux condensateurs (c_1) et (c_2) .
- 2.3 En déduire la valeur de la capacité C₂. Etablir l'équation différentielle vérifiée par l'intensité du courant électrique i(t) traversant le circuit.

Partie 3: En étudiant la réponse du dipôle RC à un échelon de tension

Un deuxième groupe d'élèves de la même classe réalise le montage représenté par la figure 3 constitué par:

- Un générateur idéal de tension de force électromotrice E
- Un conducteur ohmique de résistance $R=1600\Omega$
- \bullet Le condensateur précédent de capacité C_2
- Un interrupteur K à double position

Après avoir chargé totalement le condensateur, un élève bascule l'interrupteur K sur la position (2) à l'instant $t_0=0$. A l'aide d'un système d'acquisition informatisé, le groupe d'élèves obtient la courbe des variations de la tension $U_{C_2}(t)$ aux bornes du condensateur (figure 4).

- 0.75 3.1. Établir l'équation différentielle vérifiée par la tension $U_{C_2}(t)$ au cours de la décharge du condensateur.
 - 3.2. La solution de cette équation différentielle est de la forme :
 - 1 $U_{C_2}(t) = \frac{E}{R} \cdot e^{-\frac{t}{\tau}}$ Trouver l'expression de la constante de temps τ en fonction de R et C_2 .
- 0.5 3.3 Déterminer de nouveau la valeur de la capacité C_2 .
- 0,75 | **3.4** Déterminer l'expression de la charge q(t) et l'expression de l'intensité du courant i(t)
 - 1 3.5 Comment choisir la valeur de la résistance R pour avoir une décharge rapide