General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

RAYTHEON

Technical Report

PT-2305

THERMIONIC CATHODE EVALUATION STUDY INTERIM REPORT NO. 8

N69-38656

(ACCESSION NUMBER)

(PAGES)

(PAGES)

(RABA CR OR TMX OR AD NUMBER)

(CATEGORY)

MICROWAVE AND POWER TUBE DIVISION

MICROWAVE TUBE OPERATION, WALTHAM, MASS. 02154

RAYTHEON COMPANY Microwave and Power Tube Division Waltham, Massachusetts

INTERIM REPORT NO. 8 THERMIONIC CATHODE EVALUATION STUDY

NASA Prime Contract No. NAS7-100 Subcontract No. 951810

April 1 - June 30, 1969

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100

Prepared by F.T. Hill. Approved by:

A. E. Paladino, Manager, Materials and Techniques Group

L. L. Clampitt, Manager of Engineering, Microwave Tube Operation

> PT-2305 7 August, 1969

PT-2305

NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- a. Makes warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or
- b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employees or contractor of NASA, or employee of such contractor, prepared, disseminates, or provides access to, any information pursuant to his employment with such contractor.

Request for copies of this report should be referred to:

National Aeronautics and Space Administration Office of Scientific and Technical Information Washington 25, D.C.

Attn: AFSS-A

ABSTRACT

During the eighth interim period of thermionic-cathode evaluation, diodes using pore-dispenser cathodes have completed at least 14,784 hours of satisfactory life burning at cathode temperatures of 950°C to 1100°C and at current densities of 0.2 A/cm² to 1.6 A/cm².

Diodes using standard oxide cathodes have completed life burning cycles varying from 11,605 to 13,925 hours. The diodes are showing cathode emission slump at current densities above $0.15~\text{A/cm}^2$ and cathode temperature of 825 and 850°C.

The diodes constructed with oxide-coated and coated particle cathodes with three different nickel alloys according to Modification No. l of the contract show slumping emission with the exception of the coated-particle cathode with A33 nickel alloy. In this case, the emission is showing stability up to $0.45~\text{A/cm}^2$ for 655 hours.

1.0 INTRODUCTION

The Materials and Techniques Group of Raytheon's Microwave and Power Tube Operation is performing a study of the life capabilities of three different types of thermionic emitters under varying cathode temperature and current loading conditions for the Jet Propulsion Laboratory, California Institute of Technology.

The life capabilities of the following electron-tube cathodes are being evaluated for extended periods of time.

- a. Pore-Dispenser Cathode
- b. Coated-Particle Cathode
- C. Standard Oxide Cathode

The life burning results, for this interim period of study, are reported in Section 2.0 (Pore-Dispenser Cathode) and Section 3.0 (Standard Oxide Cathodes.

The initial testing and life burning results for oxide-coated and coatedparticle cathodes with three different alloys constructed according to Modification No. 1 of the contract are reported in Section 4.

2.0 LIFE BURNING AND TESTING OF PORE-DISPENSER CATHODES

The test diodes with pore-dispenser cathodes and operating under T1, T2 and T3 life-test conditions have completed 15,051 hours as of the end of the interim period of study, June 30, 1969.

The test diodes under T4 conditions have completed 14, 784 hours of life burning. The life-test results are shown in Tables 1(T1), 2(T2), 3(T3), 4(T4).

The last three sets of readings for each diode are the readings for the months of April, May, and June, 1969.

The diodes were tested for cathode current at a specified constant anode voltage and cathode temperature as noted in each table. The cathode current is also recorded for \pm 20% of the specified anode voltage.

The diodes were removed from the life-test rack, at each test interval, and were read for dip temperature at the specified operating current and current at 95% of the operating temperature, according to the procedures described in the First Interim Report, Thermionic Cathode Evaluation Study, January 1 - June 30, 1967.

The diodes operating under T1 conditions (950°C, 0.2 and 0.4 A/cm²) have not shown any significant changes in life burning or test conditions up to 15,051 hours.

The diodes operating under T2 conditions (985°C, 0.4 A/cm²) have not shown any changes in characteristics up to this point of life burning. The diodes operating under T2 conditions (985°C, 0.8 A/cm²) have shown a slump of 19.5% and 14.3% up to 15,051 hours of life burning.

The diodes operating at T3 conditions (1035°C, 0.6 and 1.2 A/cm²) are satisfactory in operation and test conditions up to this point in life burning.

One diode under T4 conditions (1100°C, 0.8 and 1.6 A/cm²) has shown a slump of 27.8% in operating characteristics. The other two diodes are showing satisfactory performance at 14,784 hours of life burning.

In summary, the pore-dispenser cathodes have operated satisfactorily for 14,784 hours with the current varying from 0.2 A/cm² to 1.6 A/cm² with cathode temperature varying from 950°C to 1100°C.

TABLE 1
LIFE TEST RESULTS
PORE-DISPENSER CATHODES

Test	Diode	Fours	Ip (ma)	Volts	$Ip \pm 20\% V$	Dip TOC	Ip @ 95%T
2	M1 Ef=10.2V	0 2688 13048 13809 14423 15051	10.0 11.0 11.0 10 11.3 11.8	39	8. 4 - 12.0 8. 9 - 13.2 9. 0 - 13.2 8. 9 - 13.1 9. 4 - 13.8 9. 9 - 14.0	880 891 848 891 831 910	8. 75 8. 00 8. 90 8. 62 9. 41 8. 63
	M4 Ef=10.2V	0 2688 13048 13809 14423 15051	10.0 10.0 9.8 9.8 10.7	26	8.3 - 12.5 8.4 - 12.2 8.2 - 11.9 8.2 - 11.9 9.2 - 13.2 9.2 - 13.2	888 906 820 835 825 858	8. 81 8. 25 8. 90 8. 94 9. 22 9. 06
T1-950°C M2 0.4 A/cm ² Ef=10.2V M3 Ef=10.2V	A STATE OF THE STA	0 2688 13048 13809 14423 15051	20.0 21.2 20.6 20.2 20.2 22.0	49	15.1 - 27.3 16.1 - 25.9 16.4 - 24.4 15.9 - 24.0 15.9 - 25.4 17.9 - 27.9	916 896 838 916 860 862	19.3 17.5 18.8 17.5 18.1 17.8
	0 2688 13048 13809 14423 15051	20.0 20.7 20.2 19.0 21.0 21.2	35	16.5 - 27.0 16.2 - 25.2 16.0 - 24.2 15.0 - 22.9 16.5 - 26.4 16.7 - 26.2	897 907 870 900 880 909	15.0 16.6 17.6 17.6 18.2 16.9	

TABLE 2
LIFE TEST RESULTS
PORE-DISPENSER CATHODES

Test	Diode	Hours	Ip (ma)	Volts	Ip ± 20% V	D.p TOC	Ip (a 95%T
72-985°C 0.4 A/cm ²	M7 Ef=10.2V	0 2688 13048 13809 14423 15051	20. 0 20. 0 23. 2 22. 7 23. 2 22. 5	34. 5	16.8 - 27.5 15.8 - 24.4 18.2 - 28.8 18.0 - 28.2 18.4 - 29.0 18.0 - 28.1	899 957 906 921 906 959	19.3 16.6 18.2 17.9 18.8 16.2
	M9 Ef=10.2V	0 2688 13048 13809 14423 15051	20.0 22.5 21.9 22.0 23.0 22.8	40	14.6 - 28.5 15.9 - 29.1 15.8 - 28.1 15.6 - 28.6 16.2 - 30.2 16.2 - 29.9	910 935 908 919 902 949	18.8 17.7 18.1 18.1 13.8 17.0
T2-985°C 0.8 A/cm ²	M11 Ef=10.2V	0 2688 13048 13809 14423 15051	40.0 37.5 34.8 34.8 34.6 32.2	65	32.0 - 49.5 30.8 - 45.8 30.2 - 40.3 29.0 - 40.7 29.0 - 40.4 28.1 - 36.0	964 979 964 954 960 962	28. 0 30. 3 33. 4 34. 5 34. 0 34. 5
	M12 Ef=10.2V	0 2688 13048 13809 14423 15051	40.0 37.0 32.1 33.2 36.2 34.3	54	31.0 - 50.0 29.2 - 45.0 26.0 - 37.9 26.8 - 39.7 28.9 - 44.8 27.5 - 41.8	913 957 891 888 873 889	38. 0 32. 0 35. 3 35. 5 36. 5 31. 5

TABLE 3
LIFE TEST RESULTS
PORE-DISPENSER CATHODES

Test	Diode	Fours	Ip (ma)	Volts	Ip ± 20% V	Dip T ^O C	Ip (a 95%)
T3-1035°C 0.6 A/cm ²	M-13 Ef=10.2V	0 2688 13048 13809 14423 15051	30.0 30.0 32.4 32.1 33.0 32.6	45	22.5 - 38.5 23.9 - 39.8 24.0 - 40.2 24.0 - 40.2 25.0 - 41.9 24.9 - 40.3	965 961 913 942 895 1013	29. 2 26. 4 28. 2 27. 6 26. 8 31. 0
	M-18 Ef=10.2V	0 2688 13048 13809 14423 15051	30.0 30.0 31.8 31.8 33.1 33.1	48. 5	21.5 - 38.0 23.0 - 37.8 24.7 - 40.1 24.7 - 40.1 26.4 - 41.2 26.4 - 41.2	949 1003 961 1017 974 975	29. 2 25. 6 27. 8 24. 6 24. 8 17. 0
T3-1035°C 1.2 A/cm ²	M-17 Ef=10.2V	0 2688 13048 13809 14423 15051	60.0 61.2 62.4 62.2 62.2 61.0	90	45.0 - 78.5 47.8 - 77.4 50.9 - 78.8 50.9 - 78.6 50.9 - 78.7 48.4 - 71.9	993 1020 1013 1010 1035 1028	55.5 51.6 53.6 54.4 51.2 52.0
	M-14 Ef=10.2V	0 2688 13048 13809 14423 15051	60.0 54.9 60.9 60.9 64.0 64.1	98	44.5 - 69.0 41.2 - 70.2 42.0 - 76.9 42.0 - 76.9 45.6 - 80.0 45.3 - 79.0	995 977 965 946 927 938	56.0 55.2 53.6 57.2 53.6 57.0

TABLE 4
LIFE TEST RESULTS
PORE-DISPENSER CATHODES

Test [4-1100°C 0.8 A/cm ²	Diode M-21 Ef=10. 2V	Fours		37 . 14	T- 1 2007 17	Dip T ^o C	Ip (a 95%)
	E1=10. 2V	0 2521 12781 13506 14120 14784	Ip (ma) 40.0 46.4 51.9 51.0 54.0 54.0	Volts 67	Ip ± 20% V 23.8 - 52.0 28.8 - 59.5 32.0 - 63.9 31.4 - 63.9 33.4 - 67.2 33.4 - 67.2	957 1055 1016 970 925 985	37. 6 34. 6 34. 5 36. 2 37. 5 32. 5
	M-23 Ef=10.2V	0 2521 12781 13506 14120 14784	40.0 37.2 38.2 37.0 25.9 28.9	73	24.0 - 51.0 23.9 - 45.8 25.3 - 47.0 24.9 - 46.3 18.5 - 30.2 20.3 - 33.0	997 1079 1100 1069 1027 1100	38. 0 31. 8 29. 5 35. 2 32. 2 32. 0
T4-1100°C 1.6 A/cm ²	M-22 Ef=10.2V	0 2521 12781 13506 14120 14784	80.0 86.5 86.8 85.0 83.0 81.9	106	59.0 - 100.0 71.7 - 110.0 74.4 - 110.0 74.0 - 110.0 71.0 - 110.0 66.4 - 97.3	1039 1051 1100 1045 985 1040	73.0 66.0 61.0 68.5 75.0 72.5

3.0 LIFE BURNING AND TESTING OF OXIDE-COATED CATHODES

The test diodes with oxide-coated cathodes operating under T1 and T2 conditions have completed 11,605 hours of life burning.

The test diodes with oxide-coated cathodes operating under T3 and T4 conditions have completed 13,925 hours of life burning.

The life-test results are shown in Tables 5(T1), 6(T2), 7(T3), 8(T4). The last three sets of readings for each diode are for the months of April, May, and June, 1969.

The diodes operating under Tl conditions (800°C, 0.075 and 0.15 A/cm²) have shown a slump in cathode operating current of 8.4 to 25.0%.

The diodes operating under T2 conditions (825°C, 0.15 A/cm² and 0.30 A/cm²) have shown a change in cathode operating current from 5% to 43.9%. It should be noted that the dip temperatures are at 825°C.

The diodes operating under T3 conditions (825°C, 0.225 A/cm² and 0.45 A/cm²) are showing cathode current slumps from 0% to 43.3%. The dip temperature is also at 825°C (operating temperature).

Diode No. O-22 operating under T4 conditions (850°C, 0.3 A/cm²) was a complete emission failure at 13,297 hours of life burning.

The two diodes operating under T4 conditions (850°C, 0.6 A/cm²) are showing cathode current slumps of 26.8% and 46.1%. The dip temperatures are at 850°C (operating temperature).

An analysis of the test results show the diodes with oxide-coated cathodes to be slumping at current densities above 0.15 A/cm².

TABLE 5
LIFE TEST RESULTS
OXIDE-COATED CATHODES

Test	Diode	Fours	Ip (ma)	Volts	$Ip \pm 20\% V$	Dip T ^O C	Ip (a 95% I
T1-800°C O-32 0.075 A/cm ² Ef=8.0V	O-32	0 1371 9638 10363 10977 11605	6.0 6.0 5.7 5.4 5.5	19.5	4.7 - 7.9 4.9 - 7.4 4.9 - 6.2 4.6 - 6.0 4.7 - 6.1 4.7 - 6.1	722 666 764 750 732 760	4. 13 5. 14 4. 76 4. 27 4. 95 4. 88
	C-35 Ef=8.0V	0 1371 9638 10363 10977 11605	8.0 7.8 7.2 7.2 7.2 7.2	18.5	7.1 - 9.7 7.2 - 8.9 6.8 - 8.6 6.8 - 8.6 6.8 - 8.6 6.8 - 8.6	750 740 793 790 784 785	4.13 5.14 4.50 4.30 4.84 4.88
T1-800°C 0.15 A/cm ² Ef=8.0V O-40 Ef=8.0V		0 1371 9638 10363 10977 11605	12.0 11.8 8.9 9.0 9.0	36	9.0 - 15.1 8.9 - 14.3 7.0 - 11.6 7.2 - 10.6 7.1 - 10.9 7.1 - 10.9	655 680 738 739 742 706	10.9 10.5 10.1 10.2 10.1 10.1
	0 1371 9638 10363 10977 11605	12.0 12.0 9.9 9.9 8.8 9.0	29	9.6 - 14.7 9.9 - 14.1 8.3 - 12.1 8.4 - 12.1 7.1 - 10.2 7.1 - 10.9	769 703 770 772 780 766	9.3 10.1 9.8 9.6 9.9	

TABLE 6
LIFE TEST RESULTS
OXIDE-COATED CATHODES

Test	Diode	Fours	Ip (ma)	Volts	$Ip \pm 20\% V$	Dip TOC	Ip (a 95% I
T2-825°C 0.15 A/cm ²	O-38 Ef=8.0V	0 1371 9638 10363 10977 11605	12.0 11.0 12.0 12.2 12.2 11.4	29	9.3 - 15.2 8.0 - 13.0 12.1 - 15.8 11.2 - 13.5 10.9 - 13.4 10.1 - 12.9	741 804 825 825 825 825	11.0 10.2 5.6 6.9 6.4 7.7
	O-41 Ef=8.0V	0 1371 9638 10363 10977 11605	12.0 12.0 9.0 8.9 9.0 8.5	34	9.1 - 14.7 9.3 - 14.9 7.0 - 11.0 7.0 - 11.0 7.1 - 10.8 7.0 - 10.4	727 758 825 825 825 825 825	10.8 10.8 8.8 8.6 9.5 9.5
T2-825°C 0.3 A/cm ²	O-33 Ef=8.0V	0 1371 9638 10363 10977 11605	24.0 20.9 15.0 12.0 13.9 13.5	45	19.0 - 30.4 16.2 - 25.4 12.3 - 18.0 10.0 - 13.8 11.5 - 16.1 11.2 - 15.8	787 825 825 825 825 825	21. 0 20. 8 16. 2 19. 5 16. 6 16. 8
	O-37 Ef=8.0V	0 1371 9638 10363 10977 11605	24.0 21.0 20.2 19.4 19.5 21.0	56	19.1 - 30.7 17.0 - 24.7 16.8 - 23.5 16.2 - 23.4 16.2 - 23.3 17.2 - 28.3	735 825 825 825 825 781	22. 6 18. 0 20. 8 21. 6 18. 0 21. 3

TABLE 7
LIFE TEST RESULTS
OXIDE-COATED CATHODES

Test	Diode	Fours	Ip (ma)	Volts	$Ip \pm 20\% V$	Dip T ^O C	Ip (a 95%T
T3-825°C 0. 225 A/cm ²	O-11 Ef=8.0V	0 3439 11958 12683 13297 13925	18.0 11.0 10.4 10.0 10.0	31	14.0 - 22.2 9.0 - 12.4 8.7 - 12.2 8.6 - 12.1 8.3 - 12.1 8.8 - 12.5	779 825 825 825 825 825	16. 4 11. 6 12. 4 12. 4 14. 2 15. 7
	O-15 Ef=8.0V	0 3439 11958 12683 13297 13925	18.0 14.2 12.5 12.0 12.0 12.2	28	13.9 - 23.5 11.3 - 18.0 10.0 - 14.7 10.0 - 14.4 10.0 - 13.9 10.0 - 14.2	769 825 825 825 825 825	16.6 13.5 11.3 11.2 12.4 15.7
T3-825°C O-7 0.45 A/cm ² Ef=8.0V		0 3439 11958 12683 13297 13925	36.0 20.0 17.3 17.0 17.0 37.2	34	28.0 - 45.5 17.0 - 22.4 14.5 - 20.4 14.2 - 20.2 14.2 - 20.2 28.2 - 48.5	783 825 825 825 825 825 797	33. 5 32. 8 23. 0 21. 5 25. 1 31. 5
	0 3439 11958 12683 13297 13925	36. 0 35. 4 29. 2 23. 2 20. 4 27. 2	67	28.0 - 44.5 27.0 - 46.2 24.0 - 44.2 19.9 - 32.4 17.9 - 28.0 22.6 - 41.5	768 825 825 825 825 825	31.7 29.3 24.5 21.4 23.2 23.6	

TABLE 8
LIFE TEST RESULTS
OXIDE-COATED CATHODES

Test	Diode	Fours	Ip (ma)	Volts	Ip ± 20% V	Dip TOC	Ip @ 95%T
T4-850°C 0.3 A/cm ²	O-22 Ef=8.0V	0 3439 11958 12683 13297	24.0 15.8 10.2 8.0 8.6	46	19.7 - 28.0 13.1 - 21.2 9.9 - 12.3 7.2 - 9.0 7.5 - 8.9	775 850 850 850 TUBE	18. 2 19. 3 13. 8 13. 5 FAILURE
T4-850°C 0.6 A/cm ²	O-19 Ef=8. 9V	0 3439 11958 12683 13297 13925	48.0 41.9 36.9 35.2 33.8 35.2	57. 5	35. 0 - 59. 3 31. 4 - 64. 5 29. 2 - 50. 0 28. 5 - 48. 8 27. 3 - 42. 2 28. 8 - 47. 0	796 850 850 850 850 850	42. 0 36. 0 31. 8 33. 6 28. 5 25. 8
	O-20 Ef=8.0V	0 3439 11958 12683 13297 13925	48.0 41.4 28.7 13.9 23.4 25.9	70	36.8 - 60.0 32.0 - 55.3 23.9 - 31.9 11.8 - 15.2 20.8 - 26.5 22.2 - 29.0	769 850 850 850 850 850	42. 6 37. 5 30. 0 24. 0 29. 7 22. 5

4.0 LIFE BURNING AND TESTING OF OXIDE-COATED AND COATED-PARTICLE CATHODES WITH THREE DIFFERENT CATHODE ALLOYS

These diodes, which were constructed with three different cathode alloys according to the specifications described in Table 9, Life Test Procedures, Modification No. 1, were pretested and placed on life burning during June, 1969, of the eighth interim period of this study.

All the diodes showed the dip temperature to be the same as the operating temperature.

The test diodes were selected and placed on life burning with the highest possible cathode current that they would operate at in the space-charge region, in accordance with the specifications in Table No. 9.

The selected test conditions and life-burning characteristics are shown in Tables 10 (coated-particle cathodes) and 11 (oxide-coated cathodes).

The coated-particle cathodes with two cathode alloys show slumping above 0.3 A/cm² at 353 to 655 hours of life burning.

The oxide cathodes with three different cathode alloys show slumping in eight out of ten cases at all selected current densities.

TABLE 9
LIFE TEST PROCEDURES
MODIFICATION NO. 1

CATHODE	LIFE TEST TEMP.	REQ'D UNITS	CURRENT DENSITY ma/cm ²
Oxide Cathode	T2	1	150
Using 220 Alloy	T2	1	300
Nickel Base	T ₃	1	225
(4 Units)	T ₃	1	450
Oxide Cathode	T ₂	1	150
Using Cathalloy	T ₂	1	300
A-33 Nickel Base	T ₃	. 1	225
(4 Units)	T ₃	1	450
Oxide Cathode	T2	1	150
Using 0.1% Zr in	T ₂	1	300
Ni-pure Nickel Base	T ₃	1	225
(4 Units)	T ₃	1	450
Coated Particle	T ₂	1	275
Cathode Using Cath-	T ₂	1	550
alloy A-33 Nickel Base	т ₃	1	415
(4 Units)	т ₃	1	830
Coated Particle	T ₂	1	275
Cathode Using 0.1%	T ₂	1	550
Zr in Ni-pure Nickel Base	т ₃	1	415
(4 Units)	T ₃	1	830

TABLE 10
LIFE BURNING
COATED-POWDER CATHODES

Test	Diode	Fours	Ip (ma)	Volts	$Ip \pm 20\% V$	Dip T ^O C	Ip (a 95%, T
CPC with 0.15 A cm ² Ni-pure N-20	N-16 0.15 A/ cm ²	0 46 353	12.0 11.5 11.0	52	9.9 - 14.6 9.6 - 13.9 8.9 - 12.9		
	N-26 0.30 A/ cm ²	0 46 353	24.0 18.2 15.2	25	19.0 - 28.0 15.3 - 20.8 13.2 - 16.9		
T3-850°C CPC with 0.1% Zr in Ni-pu re	No.13 0.225 A/ cm ²	0 46 353	18.0 15.1 14.9	72	13.9 - 20.5 12.0 - 18.5 11.1 - 16.2		
	N-17 0.45 A/ cm ²	0 46 353	36.0 25.2 23.0	57	26.6 - 43.0 25.2 - 36.4 23.0 - 31.3		
T2-825°C CPC with A33 Nickel	N-21 0.275 A/ cm ²	0 23 655	19.0 14.2 36.4	38	17.0 - 21.8 12.4 - 16.3 30.0 - 43.2		
	N-31 0.55 A/ cm ²	0 23 655	37.0 36.0 29.1	61	29.8 - 48.9 28.4 - 45.2 23.8 - 35.2		
T3-825°C CPC with A33 Nickel	N-4 0.415 A/ cm ²	0 23 655	33. 0 36. 0 29. 8	15	30. 4 - 49. 5 23. 8 - 37. 7 22. 9 - 36. 8		
	N-6 0.830 A/ cm ²	0 23 655	66.0 63.2 31.9	49	54. 2 - 86. 0 49. 8 - 81. 0 27. 8 - 36. 9		

TABLE 11
LIFE BURNING
OXIDE-COATED CATHODES

Test	Diode	Fours	Ip (ma)	Volts	Ip ± 20% V	Dip T ^O C	Ip @ 95%1
T2-825°C Oxide with O.1% Zr in	No.3 0.30 A/ cm ²	0 24 307	24.0 17.0 13.4	39	19.0 - 29.9 14.3 - 25.4 10.8 - 16.0		
Ni-pure	No.1 0.15 A/ cm ²	0 24 307	12.0 10.3 5.9	38	10.2 - 13.9 8.9 - 11.2 5.1 - 6.0		
T3-850°C Oxide with 0.1% Zr in Ni-pure	No.2 0. 225 A/ cm ²	0 23 330	18.0 16.4 6.2	38	15.4 - 26.2 13.0 - 19.8 5.8 - 6.7		1
	No.4 0.45 A/ cm ²	0 23 330	36.0 16.4 8.9	35	28.5 - 51.7 13.0 - 18.4 7.9 - 10.0		
T2-825°C Oxide with A33 Nickel	No.11 0.30 A/ cm ²	0 47 353	24. 0 22. 8 20. 4	58	18.0 - 30.6 17.6 - 28.3 15.9 - 24.8		
	No.22 0.15 A/ cm ²	0 47 353	12.0 12.4 11.2	36	9.5 - 13.9 9.5 - 14.9 9.0 - 13.2		
T3-850°C Oxide with A33 Nickel	No.24 0.225 A/ cm ²	0 47 353	18.0 16.9 9.2	36	14.0 - 22.4 13.1 - 20.4 7.9 - 10.0		
	No.12 0.45 A/ cm ²	0 47 353	36. 0 34. 5 22. 2	45	27.8 - 44.8 26.8 - 42.7 19.0 - 25.0		
T3-850°C Oxide with 220 Nickel	No.5 0.225 A/ cm ²	0 77 268	18.0 12.0 4.9	34	14.2 - 24.8 10.4 - 13.4 4.2 - 4.9		
	No.1 0.45 A/ cm ²	0 77 268	36.0 7.8 3.5	65	28.4 - 41.5 6.4 - 7.9 3.2 - 3.6		

5.0 PLANS FOR THE NINTH INTERIM PERIOD

During the next interim period of study from July 1 - September 30, 1969, the following programs will be followed:

- Continue life testing of pore-dispenser cathodes now on life burning.
- b. Continue life testing of oxide cathodes now on life burning.
- c. Continue life testing of diodes constructed according to Modification No. 1 of the study.

6.0 CONCLUSIONS AND SUMMARY

The Raytheon Materials and Techniques Group, in conducting a study of the life capabilities of the pore-dispenser cathode and the oxide cathode, has drawn the following conclusions from 21 months of life burning under the conditions noted in Tables 1 through 11.

- a. The pore-dispenser method is suitable for dc operation for at least 14,784 hours at current ranges of 0.2 A/cm² to 1.6 A/cm² and temperatures ranging from 950°C to 1100°C.
- b. The standard barium/strontium-oxide cathodes are showing emission slump at current densities above 0.15 A/cm² from 11,605 to 13,925 hours. Though the emission level in these diodes is decaying, they should not be counted as failures at this point of life.
- c. The diodes constructed with the cathode alloy modifications listed in Table 9 are showing slumping emission with oxide-coated cathodes. The coated-particle cathodes with A33 nickel alloy are showing some stability up to 0.45 A/cm² at 655 hours.
- d. At this point, the only candidate for satisfying the objective of 1 A/cm² is the pore-dispenser cathode.