P = 10 sites

VD(P)

P = 10 sites

The sweep line λ moves downward and halts only at the event points. At each event point some computation is done — will see next.

λ 10 8

P = 10 sites

The sites, while given as input, may be arbitrarily ordered.

So, we need to store them in order, properly in a suitable data structure Q so that while moving the sweep line $-\lambda$ from top to bottom (say, along -y direction), the sites are encountered and processed one by one (precessing of *site events*). And accordingly related computation is done.

We shall also have to store more points (*circle events* — will see soon) in the same data structure, avoiding duplicate entry, in top-to-bottom order.

Q: Q should be efficient w.r.t. which operations?

A: insertion, deletion, stopping duplicate entry, ...

Q: Can you tell what will be this data structure?

A: Priority queue (see next slides)

Event queue (priority queue) Q is initialized with P

It's not a heap but an AVL tree! Why?

Event queue Q

(Its structure may vary)

(You should work out the actual)

Each node stores the site ID. The site coordinates are in a linear array of points. You can think that the array index is the site ID.

 ${\it Q}$ will contain circle events when they occur (see later slides).

This is the 1st site event: λ meets the 1st site.

In the 1st site event, λ just touches the 1st site. At that point of time, β_1 is a degenerate parabola (width 0). In this figure (and in later figures as well), λ is drawn a little downward for a better visualization.

(it's balanced after the dequeue opr.)

 β is just β_1 at this point of time.

 β will consist of more parabolas when λ encounters more sites down below (see next slides).

Event queue Q

- Q: How to know which one of the existing parabolas will be intersected by the new parabola (here, β_2)?
- A: From the data structure *B* of beach line.

B will contain the break points and the foci of the parabolas in β , in left-to-right order. So, B is also a height-balanced BST.

For the new site, its *x*-coordinate acts as the search-key to find that parabola, using binary search in *B* (discussed later).

Event queue Q

It's still balanced after the 2nd dequeue opr.

How to check it's balanced?

Can be checked & re-balanced in $O(\log n)$ time. (Find out why)

Vertex is inserted in DCEL.

Each incident half-edge is also inserted in DCEL.

The other endpoint, when found, is updated for the half-edge.

Its corresponding incident face is inserted in DCEL.

The half-edges on the boundary of the bounding box can be inserted now or later when the algorithm ends.

β is x-monotone.

That is, if you once start traversing from the leftmost end of β , you sometimes move up and sometimes down, but you never move left.

That means, there will be exactly one point of intersection between a vertical line and β .

Event queue Q

Data structure B for β

B contains break points (as non-leaf nodes) and foci (i.e., site ID's, as leaf nodes) of parabolas in β , in left-to-right order.

So, in the inorder traversal of B, the x-coordinates of the sites and the break points stored in B will be in increasing order. For example, here $x_2 < x_{(\beta_1,\beta_2)} < x_1$.

For the current position of λ , you know its y-coordinate, and so you can compute everything related with β —that's the trick :-)

