

ĐẠI HỌC BÁCH KHOA HÀ NỘI TRƯỜNG CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

BÀI 4
HỆ THỐNG TUYẾN TÍNH BẮT BIẾN RỜI RẠC

Khoa Kỹ thuật máy tính

■ Nội dung bài học

- 1. Định nghĩa hệ thống rời rạc
- 2. Hệ thống tuyến tính bất biến rời rạc
- 3. Tổng chập và các tính chất của tổng chập

☐ Mục tiêu bài học

Sau khi học xong bài này, các em sẽ nắm được những vấn đề sau:

- Khái niệm về hệ thống xử lý tín hiệu rời rạc.
- Tính tuyến tính và bất biến của hệ thống rời rạc.
- Đáp ứng xung của hệ tuyến tính bất biến rời rạc.
- Phép tổng chập và các tính chất.

1. Hệ thống xử lý tín hiệu rời rạc

SIGNAL + NOISE

- x(n): tín hiệu vào (tác động)
- y(n): tín hiệu ra (đáp ứng)
- Ví dụ: bộ lọc nhiễu trong ảnh, âm thanh

SIGNAL

2. Hệ thống tuyến tính

Định nghĩa

$$x_1(n) \rightarrow y_1(n)$$
 $T[a. x_1(n) + b. x_2(n)] = a. T[x_1(n)] + b. T[x_2(n)]$
 $x_2(n) \rightarrow y_2(n)$ $= a. y_1(n) + b. y_2(n)$

- Ưu điểm của hệ tuyến tính: cho phép xác định đáp ứng của các tín hiệu đầu vào
 phức tạp dựa trên các đáp ứng thành phần đơn giản đã biết
- Kiểm tra tính tuyến tính của hệ thống
 - Tỷ lệ: $T[ax_1(n)] = aT[x_1(n)] = ay_1(n)$
 - Tổ hợp: $T[x_1(n) + x_2(n)] = T[x_1(n)] + T[x_2(n)] = y_1(n) + y_2(n)$
- Bài tập 4.1. Kiểm tra hệ thống là tuyến tính?

a.
$$y(n) = 2x(n)$$
 b. $y(n) = x^{2}(n)$ c. $y(n) = 2x(n) + 3$

Kỹ thuật phân tích hệ tuyến tính

$$x(n) = \sum_{k=1}^{M-1} a_k x_k(n) \xrightarrow{T} y(n) = \sum_{k=1}^{M-1} a_k y_k(n)$$

$$y_k(n) = T[x_k(n)]$$
 $k = 1, 2, ..., M - 1$

Chọn $x_k(n)$ là xung đơn vị $\delta(n-k)$

Phân tích tín hiệu thành tổ hợp các xung đơn vị

Nguyên lý:

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

• Ví dụ:

$$x(n) = \{2, 4, 3\}$$

$$x(n) = 2\delta(n) + 4\delta(n-1) + 3\delta(n-2)$$

Đáp ứng của hệ tuyến tính

$$y(n) = T[x(n)]$$

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

$$x(n) = 2\delta(n) + 4\delta(n-1) + 3\delta(n-2)$$

$$y(n) = 2h_0(n) + 4h_1(n-1) + 3h_0(n-2)$$

$$x(n) = \{2, 4, 3\}$$

$$x(n) = 2\delta(n) + 4\delta(n-1) + 3\delta(n-2)$$

$$y(n) = 2h_0(n) + 4h_1(n-1) + 3h_2(n-2)$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)T[\delta(n-k)] = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

$$h(n,k) = h_k(n) = T[\delta(n-k)]$$

- Cần phải các định $h(n, k) = h_k(n)$ với mọi $-\infty \le k \le \infty$
- Cần cắt giảm số hàm $h_k(n)$

Hệ thống tuyến tính bất biến

- Nếu hệ bất biến theo thời gian
 - Tác động $\delta(n)$ cho đáp ứng h(n)
 - Tác động $\delta(n-k)$ cho đáp ứng h(n-k)
- Với hệ tuyến tính bất biến (TTBB)

$$y(n) = T[x(n)] = T\left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right]$$

$$= \sum_{k=-\infty}^{\infty} x(k) T[\delta(n-k)] \qquad \qquad y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

- h(n) là đáp ứng xung của hệ
- y(n) = x(n) * h(n), trong đó * là phép tổng chập

Hệ bất biến

$$x(n) \xrightarrow{T} y(n)$$

$$x(n-k) \xrightarrow{T} y(n-k)$$

∀x(n) và ∀k

11

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

Bài tập 4.2a. Tính đáp ứng xung

 Hãy xác định và vẽ đáp ứng xung của hệ thống tuyến tính bất biến có phương trình vào – ra như sau:

$$y(n) = 2.x(n) + 3.x(n-1)$$

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

Bài tập 4.2b. Tính đáp ứng xung

 Hãy xác định và vẽ đáp ứng xung của hệ thống tuyến tính bất biến có phương trình vào – ra như sau:

$$y(n) - a.y(n-1) = x(n)$$

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

Bài tập 4.3. Tính tổng chập

 Tín hiệu vào x(n) và đáp ứng xung h(n) của hệ TTBB như hình vẽ. Hãy tính tín hiệu ra y(n)

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

15

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

3. Các tính chất của tổng chập

Tổng chập

$$y(n) = x(n) * h(n)$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

Tính chất giao hoán (Commutative law)

$$y(n) = x(n) * h(n) = h(n) * x(n)$$

17

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

Tính chất kết hợp (Asociative law)

$$[x(n) * h_1(n)] * h_2(n) = x(n) * [h_1(n) * h_2(n)]$$
$$[x(n) * h_2(n)] * h_1(n) = x(n) * [h_2(n) * h_1(n)]$$

Các hệ tương đương

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

Tính chất phân phối (Distributive law)

$$x(n) * [h_1(n) + h_2(n)] = x(n) * h_1(n) + x(n) * h_2(n)$$

Các hệ tương đương

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

4. Tổng kết

- Hệ thống rời rạc nhận vào tín hiệu rời rạc, xử lý và tạo ra một tín hiệu rời rạc ở
 đầu ra theo mong muốn.
- Hệ thống tuyến tính bất biến là hệ thống thoả mãn cả hai tính chất tuyến tính và bất biến theo thời gian.
- Tổng chập cho phép xác định đáp ứng của hệ TTBB với một tín hiệu vào cho trước khi biết đáp ứng xung của hệ.
- Phép tổng chập có tính giao hoán, kết hợp và phân phối.

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

5. Bài tập

• Bài tập 1: Tính đáp ứng của các hệ thống sau với tín hiệu vào x(n)

$$x(n) = \begin{cases} |n|, & -3 \le n \le 3 \\ 0, & \text{otherwise} \end{cases}$$

- a) y(n) = x(n)
- b) y(n) = x(n-1)
- c) y(n) = x(n + 1)
- d) $y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$
- e) $y(n) = \max[x(n + 1), x(n), x(n 1)]$
- f) $y(n) = \sum_{k=-\infty}^{n} x(k) = x(n) + x(n-1) + x(n-2) + \cdots$

Bài tập 2

- ☐ Cho các hệ thống biểu diễn bằng phương trình vào-ra như sau:
 - (a) y(n) = n.x(n)
 - (b) $y(n) = x(n^2)$
 - $(c) y(n) = x^2(n)$
 - (d) y(n) = A.x(n) + B
 - (e) $y(n) = e^{x(n)}$

☐ Hãy kiểm tra tính chất tuyến tính của các hệ thống này

Bài tập 3

Biết một hệ thống tuyến tính bất biến có hàm đáp ứng xung như sau

$$h(n) = \begin{cases} 1 - \frac{n}{4} & 0 \le n \le 4 \\ 0 & \text{các giá trị còn lại} \end{cases}$$

• Biết $x(n) = rect_3(n)$. Hãy tính y(n)?

IT 4172 Xử lý tín hiệu Chương 1. Tín hiệu và hệ thống

Bài tập 4

Một hệ thống tuyến tính bất biến biểu diễn bằng sơ đồ sau:

$$h_1(n) = \begin{cases} 1 - \frac{n}{2} & 0 \le n \le 2\\ 0 & \text{các giá trị còn lại} \end{cases}$$

$$h_2(n) = \frac{1}{2}\delta(n-1) + u(n-2) - u(n-4)$$

$$h_3(n) = rect_3(n)$$

Câu 1. Hãy xác định và vẽ các đáp ứng xung thành phần $h_1(n)$, $h_2(n)$, $h_3(n)$

Câu 2. Tìm và đáp ứng xung h(n) của hệ thống

Câu 3. Tìm đáp ứng của hệ thống với tín hiệu vào $\delta(n)$ và u(n)

Bài học tiếp theo. BÀI

TÍNH NHÂN QUẢ VÀ ỔN ĐỊNH CỦA HỆ THỐNG RỜI RẠC

Tài liệu tham khảo:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Chúc các bạn học tốt!