5.1

for (i=0; i<8; i++) for (j=0; j<8000; j++) A[][]=3[]=0]+A[][];

5.1.1 How many 32 bit into in 16 byte caelice block?

5.1.2 Which variables exhibit temporal locality?

5.1.3 Spatial locality

C codes gets stored rows first

So we have spatial locality when accessing several items on the same vow.

5.1.4 How many 16-byte cache blocks are needed to stare all 32-ballens referenced? $(8\times8000+8000+8000\times8-8\times8) + = 33984$

5.1.5 Temporal

ijj

5.1.6 Spectial A(j,i), B(j,o)

5.5,

512 KiB working set with address scream: "O 2 4 6 8 1012...

5.5.1 Assume 64 KiB dreet mapped cache with 32-byte block. What is the MR? How is it sensitive to the set size or cache size?

64 = 2K blocks

1 bytes per elem 32 bytes per block

512 K.B

First access => Miss, read 16 elems to cause (1,3,5,... garbage) 17th access=> - 11-

Miss every 16th access. Only cold misses due to streams not having locality.

5.52 MR fer 16-byte, 64 and 128-byte block size.

16 byte: 1/8 64 byte: 1/32 128 byte: 1/64

What limb of locality is explocited? Spatial. We read sequentially.

5.5.3 Assume a two-entry stream buffer.

First read would give a miss then no misses.

Cache block size (B) can affect both miss rate and miss latency. Assuming CPI=1 and an avg of 1.35 references per instruction find the optimal block size given the following MR fer block sizes: B: 8 | 16 | 32 | 41% | 3% | 2%

5.5.4 What is the optimal block size for Miss Catency of 20xB cycles?

B=8: 0.04(8:20) B=16: 0.03(16:20) 8 Wins!

5.5.5 24+B cycles. 24 units of time to fetch the first elem cula the consequiative elems tales 1 unit.

B=8: 0.04(24+8) B=8: 0.03(24+16)

5.5.6 For const miss latency?

Only the missrate matters!

5.11

5.11 As described in Section 5.7, virtual memory uses a page table to track the mapping of virtual addresses to physical addresses. This exercise shows how this table must be updated as addresses are accessed. The following data constitutes a stream of virtual addresses as seen on a system. Assume 4 KiB pages, a 4-entry fully associative TLB, and true LRU replacement. If pages must be brought in from disk, increment the next largest page number.

4669, 2227, 13916, 34587, 48870, 12608, 49225

TLE

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
0	4	9

Page table

Valid	Physical Page or in Disk
1	5
0	Disk
0	Disk
1	6
1	9
1	11
0	Disk
1	4
0	Disk
0	Disk
1	3
1	12

5.11.1 Show the final stage of the system given the above into Also show if it's a hit in TZB Page table or page fault.

4 KiB pages => 4.2° => 12 bits to eneade

4669: 000 0010 0011 1101

Byte office in page Tog 1 is not in 7273 => TLB miss (Tag = Virtual Page)

5.112 Use 16 KiB instead of Pages. Advantages/Disadvantages?

- + Fewer misses since you load larger churus. Larger misspenalty!