

Atzeni, Ceri, Fraternali, Paraboschi, Torlone Basi di dati Quarta edizione McGraw-Hill, 2013 Capitolo 1: Introduzione

Base di dati

 Insieme organizzato di dati utilizzati per il supporto allo svolgimento di attività (di un ente, azienda, ufficio, persona)

Punti di vista

- Metodologico
- Tecnologico

Che cos'è l'informatica?

 Scienza del trattamento razionale, specialmente per mezzo di macchine automatiche, dell'informazione, considerata come supporto alla conoscenza umana e alla comunicazione (Accad. di Francia)

Due anime:

- metodologica
- -tecnologica

Contenuti

- modelli per l'organizzazione dei dati
- linguaggi per l'utilizzo dei dati
- sistemi per la gestione dei dati
- metodologie di progettazione di basi di dati

Il corso

Metodo di studio

- studio individuale, con riflessione sui concetti e riferimento alle esperienze personali
- svolgimento di esercizi
- sviluppo di progetti o almeno esercitazioni pratiche, con realizzazione con opportuno strumento (DB2, SQLServer, Oracle, PostgreSQL, MySQL, MS Access, ...)

Sistema informativo

- Componente di una organizzazione che gestisce le informazioni di interesse (cioé utilizzate per il perseguimento degli scopi dell'organizzazione)
- Ogni organizzazione ha un sistema informativo, eventualmente non esplicitato nella struttura
- Il sistema informativo è di supporto ad altri sottosistemi, e va quindi studiato nel contesto in cui è inserito

Gestione delle informazioni

- Raccolta, acquisizione
- Archiviazione, conservazione
- Elaborazione, trasformazione, produzione
- Distribuzione, comunicazione, scambio

Sistemi informativi e automazione

- Il concetto di "sistema informativo" è indipendente da qualsiasi automatizzazione:
 - esistono organizzazioni la cui ragion d'essere è la gestione di informazioni (p.es. servizi anagrafici e banche) e che operano da secoli

Sistema Informatico

- Porzione automatizzata del sistema informativo:
 - la parte del sistema informativo che gestisce informazioni con tecnologia informatica

Sistema Informatico

Gestione delle informazioni

- Nelle attività umane, le informazioni vengono gestite in forme diverse:
 - idee informali
 - linguaggio naturale (scritto o parlato, formale o colloquiale, in varie lingue)
 - disegni, grafici, schemi
 - numeri e codici
- e su vari supporti
 - mente umana, carta, dispositivi elettronici

Informazioni e dati

 Nei sistemi informatici (e non solo), le informazioni vengono rappresentate in modo essenziale, spartano: attraverso i dati

Informazioni e dati

(definizioni dal Vocabolario della lingua italiana 1987)

informazione: notizia, dato o elemento che consente di avere conoscenza più o meno esatta di fatti, situazioni, modi di essere.

dato: ciò che è immediatamente presente alla conoscenza, prima di ogni elaborazione; (in informatica) elementi di informazione costituiti da simboli che debbono essere elaborati

Dati e informazioni

Sabato

Festivo

- che cosa significano questi numeri?
- cartelli stradali, in Finlandia; sono orari
- ma la differenza?
- senza "interpretazione," il dato serve a ben poco

Gestione delle informazioni

- I dati sono spesso il risultato di forme di organizzazione e codifica delle informazioni
- Ad esempio, nei servizi anagrafici e nel riferimento a persone
 - descrizioni discorsive
 - nome e cognome
 - estremi anagrafici
 - codice fiscale

Perché i dati?

- La rappresentazione precisa di forme più ricche di informazione e conoscenza è difficile
- I dati costituiscono spesso una risorsa strategica, perché più stabili nel tempo di altre componenti (processi, tecnologie, ruoli umani):
 - ad esempio, i dati delle banche o delle anagrafi

Base di dati

(accezione generica, metodologica)

- insieme organizzato di dati utilizzati per il supporto allo svolgimento delle attività di un ente (azienda, ufficio, persona)
- (accezione specifica, metodologica e tecnologica)
- insieme di dati gestito da un DBMS

Che cos'è l'informatica?

 Scienza del trattamento razionale, specialmente per mezzo di macchine automatiche, dell'informazione, considerata come supporto alla conoscenza umana e alla comunicazione (Accad. di Francia)

Due anime:

- metodologica
- -tecnologica

Base di dati

(accezione generica, metodologica)

 Insieme organizzato di dati utilizzati per il supporto allo svolgimento delle attività di un ente (azienda, ufficio, persona)

(accezione specifica, metodologica e tecnologica)

insieme di dati gestito da un DBMS

Sistema di gestione di basi di dati DataBase Management System (DBMS)

- Sistema che gestisce collezioni di dati:
 - grandi
 - persistenti
 - condivise
 - garantendo
 - privatezza
 - affidabilità
 - efficienza
 - efficacia

DBMS

- Prodotti software (complessi) disponibili sul mercato; esempi:
 - -DB2
 - -Oracle
 - -SQLServer
 - -MySQL
 - -PostgreSQL
 - -Access

Le basi di dati sono ... grandi

- dimensioni (molto) maggiori della memoria centrale dei sistemi di calcolo utilizzati
- il limite deve essere solo quello fisico dei dispositivi
- esempi di dimensioni molto grandi
 - 500 Gigabyte (dati transazionali)
 - 10 Terabyte (dati decisionali)
 - 500 Terabyte (dati scientifici)
 - 100 miliardi di record

Le basi di dati sono ... persistenti

 Hanno un tempo di vita indipendente dalle singole esecuzioni dei programmi che le utilizzano

Le basi di dati sono ... condivise

- Ogni organizzazione (specie se grande)
 è divisa in settori o comunque svolge diverse attività
- Ciascun settore/attività ha un (sotto)sistema informativo (non necessariamente disgiunto)

Problemi

- Ridondanza:
 - -informazioni ripetute
- Rischio di incoerenza:
 - -le versioni possono non coincidere

Archivi e basi di dati

Archivi e basi di dati

Le basi di dati sono condivise

- Una base di dati è una risorsa integrata, condivisa fra applicazioni
- conseguenze
 - -Attività diverse su dati condivisi:
 - meccanismi di autorizzazione
 - –Accessi di più utenti ai dati condivisi:
 - controllo della concorrenza

I DBMS garantiscono ... privatezza

- Si possono definire meccanismi di autorizzazione
 - l'utente A è autorizzato a leggere tutti i dati e a modificare X
 - l'utente B è autorizzato a leggere dati
 X e a modificare Y

I DBMS garantiscono... affidabilità

- Affidabilità (per le basi di dati):
 - resistenza a malfunzionamenti hardware e software
- Una base di dati è una risorsa pregiata e quindi deve essere conservata a lungo termine
- Tecnica fondamentale:
 - -gestione delle transazioni

Transazione

 Insieme di operazioni da considerare indivisibile ("atomico"), corretto anche in presenza di concorrenza e con effetti definitivi

Le transazioni sono ... atomiche

- Una sequenza di operazioni correlate:
 - trasferimento di fondi da un conto A ad un conto B: o si fanno il prelevamento da A e il versamento su B o nessuno dei due
- ... deve essere eseguita per intero o per niente:
 - o si fanno il prelevamento da A e il versamento su B o nessuno dei due

Le transazioni sono ... concorrenti

- L'effetto di transazioni concorrenti deve essere coerente
 - se due assegni emessi sullo stesso conto corrente vengono incassati contemporaneamente
 - ... si deve evitare di trascurarne uno
 - se due agenzie rischiedono lo stesso posto (libero) su un treno
 - ... si deve evitare di assegnarlo due volte

I risultati delle transazioni sono permanenti

 La conclusione positiva di una transazione corrisponde ad un impegno (in inglese commit) a mantenere traccia del risultato in modo definitivo, anche in presenza di guasti e di esecuzione concorrente

I DBMS debbono essere...efficienti

- Cercano di utilizzare al meglio le risorse di spazio di memoria (principale e secondaria) e tempo (di esecuzione e di risposta)
- I DBMS, con tante funzioni, rischiano l'inefficienza e per questo ci sono grandi investimenti e competizione
- L'efficienza è anche il risultato della qualità delle applicazioni

I DBMS debbono essere...efficaci

- Cercano di rendere produttive le attività dei loro utilizzatori, offrendo funzionalità articolate, potenti e flessibili:
 - il corso è in buona parte dedicato ad illustrare come i DBMS perseguono l'efficacia

DBMS vs file system

- La gestione di insiemi di dati grandi e persistenti è possibile anche attraverso sistemi più semplici — gli ordinari file system dei sistemi operativi
- I file system prevedono forme rudimentali di condivisione: "tutto o niente"
- I DBMS estendono le funzionalità dei file system, fornendo più servizi ed in maniera integrata

Descrizione dei dati

- Nei programmi tradizionali che accedono a file, ogni programma contiene una descrizione della struttura del file stesso, con i conseguenti rischi di incoerenza fra le descrizioni (ripetute in ciascun programma) e i file stessi
- Nei DBMS, esiste una porzione della base di dati (il catalogo o dizionario) che contiene una descrizione centralizzata dei dati, che può essere utilizzata dai vari programmi

Descrizioni dei dati nei DBMS

- Rappresentazioni dei dati a livelli diversi
 - permettono l'indipendenza dei dati dalla rappresentazione fisica:
 - i programmi fanno riferimento alla struttura a livello più alto, e le rappresentazioni sottostanti possono essere modificate senza necessità di modifica dei programmi
 - precisiamo attraverso il concetto di
 - modello dei dati

Modello dei dati

- Insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica
- Componente fondamentale: meccanismi di strutturazione (o costruttori di tipo)
- Come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori
- Esempio: il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei

Organizzazione dei dati in una base di dati

Orario

Insegnamento	Docente	Aula	Ora
Analisi matem. I	Luigi Neri	N1	8:00
Basi di dati	Piero Rossi	N2	9:45
Chimica	Nicola Mori	N1	9:45
Fisica I	Mario Bruni	N1	11:45
Fisica II	Mario Bruni	N3	9:45
Sistemi inform.	Piero Rossi	N3	8:00

Basi di dati: schema e istanza

Lo schema della base di dati

Orario

Insegnamento	Docente	Aula	Ora
Analisi matem. I	Luigi Neri	N1	8:00
Basi di dati	Piero Rossi	N2	9:45
Chimica	Nicola Mori	N1	9:45
Fisica I	Mario Bruni	N1	11:45
Fisica II	Mario Bruni	N3	9:45
Sistemi inform.	Piero Rossi	N3	8:00

L'istanza della base di dati

Schema e istanza

- In ogni base di dati esistono:
 - lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura (aspetto intensionale)
 - es.: le intestazioni delle tabelle
 - l'istanza, i valori attuali, che possono cambiare anche molto rapidamente (aspetto estensionale)
 - es.: il "corpo" di ciascuna tabella

Ex

Due tipi (principali) di modelli

- modelli logici
- modelli concettuali

Modelli logici

- Adottati nei DBMS esistenti per l'organizzazione dei dati
 - -utilizzati dai programmi
 - -indipendenti dalle strutture fisiche
- Esempi: relazionale, reticolare, gerarchico, a oggetti, basato su XML

Modelli concettuali

- Permettono di rappresentare i dati in modo indipendente da ogni sistema
 - cercano di descrivere i concetti del mondo reale
 - sono utilizzati nelle fasi preliminari di progettazione
- Il più diffuso è il modello Entity-Relationship

Architettura (semplificata) di un DBMS

Architettura semplificata di un DBMS: schemi

- schema logico: descrizione della base di dati nel modello logico (ad esempio, la struttura della tabella)
- schema interno (o fisico):
 rappresentazione dello schema logico
 per mezzo di strutture memorizzazione
 (file; ad esempio, record con puntatori,
 ordinati in un certo modo)

Indipendenza dei dati

- Il livello logico è indipendente da quello fisico:
 - una tabella è utilizzata nello stesso modo qualunque sia la sua realizzazione fisica (che può anche cambiare nel tempo)
- Perciò in questo corso vedremo solo il livello logico e non quello fisico

Architettura standard (ANSI/SPARC) a tre livelli per DBMS

Architettura ANSI/SPARC: schemi

Schema logico: descrizione dell'intera base di dati nel modello logico "principale" del DBMS

Schema interno (o fisico): rappresentazione dello schema logico per mezzo di strutture fisiche di memorizzazione

Schema esterno: descrizione di parte della base di dati in un modello logico ("viste" parziali, derivate, anche in modelli diversi)

Una vista

Corsi

Corso	Docente	Aula
Basi di dati	Rossi	DS3
Sistemi	Neri	N3
Reti	Bruni	N3
Controlli	Bruni	G

Aule

Nome	Edificio	Piano
DS1	OMI	Terra
N3	OMI	Terra
G	Pincherle	Primo

Corsi Sedi

Corso	Aula	Edificio	Piano
Sistemi	N3	OMI	Terra
Reti	N3	OMI	Terra
Controlli	G	Pincherle	Primo

Indipendenza dei dati

- conseguenza della articolazione in livelli
- l'accesso avviene solo tramite il livello esterno (che può coincidere con il livello logico)
- due forme:
 - -indipendenza fisica
 - -indipendenza logica

Indipendenza fisica

- il livello logico e quello esterno sono indipendenti da quello fisico
 - una relazione è utilizzata nello stesso modo qualunque sia la sua realizzazione fisica
 - la realizzazione fisica può cambiare senza che debbano essere modificati i programmi

Indipendenza logica

- il livello esterno è indipendente da quello logico
- aggiunte o modifiche alle viste non richiedono modifiche al livello logico
- modifiche allo schema logico che lascino inalterato lo schema esterno sono trasparenti

Linguaggi per basi di dati

- Un altro contributo all'efficacia: disponibilità di vari linguaggi e interfacce
 - ⇒ linguaggi testuali interattivi (SQL)
 - ⇒ comandi (SQL) immersi in un linguaggio ospite (Pascal, Java, C ...)
 - comandi (SQL) immersi in un linguaggio ad hoc, con anche altre funzionalità (p.es. per grafici o stampe strutturate)
 - con interfacce amichevoli (senza linguaggio testuale)

SQL, un linguaggio interattivo

Corsi

Corso	Docente	Aula
Basi di dati	Rossi	DS3
Sistemi	Neri	N3
Reti	Bruni	N3
Controlli	Bruni	G

Aule

Nome	Edificio	Piano
DS1	OMI	Terra
N3	OMI	Terra
G	Pincherle	Primo

"Trovare i corsi tenuti in aule a piano terra"

SQL, un linguaggio interattivo

SELECT Corso, Aula, Piano FROM Aule, Corsi WHERE Nome = Aula AND Piano = 'Terra'

Corso	Aula	Piano
Sistemi	N3	Terra
Reti	N3	Terra

SQL immerso in linguaggio ospite


```
write('nome della citta"?'); readln(citta);
EXEC SQL DECLARE P CURSOR FOR
   SELECT NOME, REDDITO
   FROM PERSONE
   WHERE CITTA = :citta ;
EXEC SQL OPEN P;
EXEC SQL FETCH P INTO :nome, :reddito;
while SQLCODE = 0 do begin
  write('nome della persona:', nome, 'aumento?');
  readIn(aumento);
  EXEC SQL UPDATE PERSONE
       SET REDDITO = REDDITO + :aumento
           WHERE CURRENT OF P
  EXEC SQL FETCH P INTO :nome, :reddito
 end:
EXEC SQL CLOSE CURSOR P
```


SQL in linguaggio ad hoc (Oracle PL/SQL)


```
declare Stip number;
begin
   SELECT STIPENDIO INTO STIP FROM IMPIEGATO
   WHERE MATRICOLA = '575488' FOR UPDATE OF STIPENDIO;
   if Stip > 30 then
     UPDATE IMPIEGATO SET STIPENDIO = STIPENDIO * 1.1
        WHERE MATRICOLA = '575488';
   else
     UPDATE IMPIEGATO SET STIPENDIO = STIPENDIO * 1.15
        WHERE MATRICOLA = '575488';
   end if;
   commit:
 exception
   when no data found then
    INSERT INTO ERRORI
        VALUES('MATRICOLA INESISTENTE', SYSDATE);
 end;
```


Interazione non testuale (Access)

Una distinzione (separazione fra dati e programmi)

data manipulation language (DML)

per l'interrogazione e l'aggiornamento di (istanze di) basi di dati

data definition language (DDL)

per la definizione di schemi (logici, esterni, fisici) e altre operazioni generali

Un'operazione DDL (sullo schema)

CREATE TABLE orario (

insegnamento CHAR(20),

docente CHAR(20),

aula CHAR(4),

ora CHAR(5))

Personaggi e interpreti

- progettisti e realizzatori di DBMS
- progettisti della base di dati e amministratori della base di dati (DBA)
- progettisti e programmatori di applicazioni
- utenti
 - utenti finali (terminalisti): eseguono applicazioni predefinite (transazioni)
 - utenti casuali: eseguono operazioni non previste a priori, usando linguaggi interattivi

Database administrator (DBA)

- Persona o gruppo di persone responsabile del controllo centralizzato e della gestione del sistema, delle prestazioni, dell'affidabilità, delle autorizzazioni
- Le funzioni del DBA includono quelle di progettazione, anche se in progetti complessi ci possono essere distinzioni

Transazioni (per l'utente)

- Programmi che realizzano attività frequenti e predefinite, con poche eccezioni, previste a priori.
- Esempi:
 - versamento presso uno presso sportello bancario
 - emissione di certificato anagrafico
 - dichiarazione presso l'ufficio di stato civile
 - prenotazione aerea
- Le transazioni sono di solito realizzate in linguaggio ospite (tradizionale o ad hoc)

Transazioni, due accezioni

- Per l'utente:
 - programma a disposizione, da eseguire per realizzare una funzione di interesse
- Per il sistema:
 - sequenza indivisibile di operazioni (cfr. affidabilità)

Vantaggi e svantaggi dei DBMS, 1

Pro

- dati come risorsa comune, base di dati come modello della realtà
- gestione centralizzata con possibilità di standardizzazione ed "economia di scala"
- disponibilità di servizi integrati
- riduzione di ridondanze e inconsistenze
- indipendenza dei dati (favorisce lo sviluppo e la manutenzione delle applicazioni)

Vantaggi e svantaggi dei DBMS, 2

Contro

- costo dei prodotti e della transizione verso di essi
- non scorporabilità delle funzionalità (con riduzione di efficienza)

Esercizi su Basi di dati e DBMS

- Quali delle seguenti affermazioni sono vere?
 - l'indipendenza dei dati permette di scrivere programmi senza conoscere le strutture fisiche dei dati
 - l'indipendenza dei dati permette di modificare le strutture fisiche dei dati senza dover modificare i programmi che accedono alla base di dati
 - l'indipendenza dei dati permette di scrivere programmi conoscendo solo lo schema concettuale della BD
 - l'indipendenza dei dati permette di formulare interrogazioni senza conoscere le strutture fisiche

- Quali delle seguenti affermazioni sono vere?
 - il fatto che le basi di dati siano condivise favorisce l'efficienza dei programmi che le utilizzano
 - il fatto che le basi di dati siano condivise permette di ridurre ridondanze e inconsistenze
 - il fatto che le basi di dati siano persistenti ne garantisce l'affidabilità
 - il fatto che le basi di dati siano persistenti favorisce l'efficienza dei programmi
 - il fatto che le basi di dati siano condivise rende necessaria la gestione della privatezza e delle autorizzazioni

- la distinzione fra DDL e DML corrisponde alla distinzione fra schema e istanza
- le istruzioni DML permettono di interrogare la base di dati ma non di modificarla
- le istruzioni DDL permettono di specificare la struttura della base di dati ma non di modificarla
- non esistono linguaggi che includono sia istruzioni DDL sia istruzioni DML
- SQL include istruzioni DML e DDL
- le istruzioni DML permettono di interrogare la base di dati e di modificarla

- Quali delle seguenti affermazioni sono vere?
 - gli utenti casuali utilizzano transazioni predefinite
 - i terminalisti utilizzano transazioni predefinite
 - gli utenti casuali progettano la base di dati
 - i progettisti del DBMS realizzano le transazioni che saranno utilizzate dai terminalisti
 - i progettisti della base di dati realizzano il DBMS
 - i progettisti delle applicazioni utilizzano la base di dati come progettata dal progettista del DBMS
 - i progettisti delle applicazioni utilizzano la BD come progettata dal progettista della BD

- Illustrare, in modo sintetico ma chiaro, supponendo di rivolgersi ad un non esperto,le caratteristiche fondamentali delle basi di dati e il ruolo che esse giocano nei sistemi informativi.
- Discutere brevemente (meno di mezza pagina) la seguente affermazione: "i dati sono una risorsa per una organizzazione, e come tali vanno considerati anche separatamente dalle applicazioni che li utilizzano."
- Illustrare brevemente (non più di mezza pagina) il concetto di indipendenza dei dati.