Analog Integrated Systems

- 1. Conventional CMOS Digital Design
- Combinational Logic
- Sequential Logic
- ULP Digital Circuit Design #1/4
- 2. Technology Driven:
- (1) Reducing V_{DD} (2) dual-voltage CPUs (3) dynamic voltage scaling (4) undervolting
- (1) Reducing Frequency (2) underclocking (3) dynamic frequency scaling
- (1) Reducing Capacitance (2) reduce transistor size (3) add functionality in IC (replace PCB) (4) low-k dielectric (5) Dual-Vt

3. Design Driven:

- (1) Lower logic Swing (2) Reduce the switching activity (3) Optimizing machine code
- (1) clock gating (2) Power gating (3) globally asynchronous locally synchronous
- Recycling energy stored in the capacitors (1) adiabatic circuit (2) energy recovery logic

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 1

1

Evolution: Bipolar \rightarrow **CMOS**

TÉCNICO LISBOA

Static parameters

- $V_{OH} \rightarrow$ state 1 voltage
- $V_{OL} \rightarrow \text{state 0 voltage}$
- V_{IH} \rightarrow Minimum input voltage interpreted as 1
- $V_{IL} \rightarrow$ Maximum input voltage interpreted as 0
- Noise Margins
 - $NM_H = V_{OH} V_{IH}$
 - $NM_L = V_{IL} V_{OL}$

(note: $V_{OH} \le V_{DD}$ e $V_{OL} \ge 0$)

Static power $P_D = 1/2(P_{DH} + P_{DL})$

for CMOS Inverter

$$P_D \sim 0$$
; $V_{OH} = V_{DD}$; $V_{OL} = 0$

 $V_{OH} = V_{DD}$

Slope = -1

irf@tecnico.ulisboa.pt | Ultra Low power Circuits | 3

TÉCNICO LISBOA

3

Power Consumption CMOS inverter

Static Power \rightarrow average from states 0 and 1 CMOS state $1 \rightarrow P_{DH} = 0$; state $0 \rightarrow P_{DL} = 0$.

[1]
$$v_l: 1 \to 0 \Rightarrow v_o: 0 \to 1$$

 $W_B = \underbrace{QV_{DD}}_{\text{battery}} = C_l V_{DD}^2 = \underbrace{\frac{1}{2}C_l V_{DD}^2}_{C_l} + \underbrace{\frac{1}{2}C_l V_{DD}^2}_{\text{dissipated}}$

[2]
$$v_l: 0 \to 1 \Rightarrow v_0: 1 \to 0$$

$$W_B = \underbrace{\frac{1}{2}C_lV_{DD}^2}_{\textbf{dissipated}}$$

 $\begin{array}{ll} \textbf{Dynamic Power} \\ \textbf{[1]} & v_l \colon 1 \to 0 \Rightarrow v_o \colon 0 \to 1 \\ W_B = \underbrace{QV_{DD}}_{\text{battery}} = C_l V_{DD}^2 = \underbrace{\frac{1}{2}C_l V_{DD}^2}_{\text{stored in}} + \underbrace{\frac{1}{2}C_l V_{DD}^2}_{\text{dissipated}} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

Dynamic power \rightarrow $P = f C_l V_{DD}^2$

Dynamic parameters

 $t_r \rightarrow \text{rise time}$

 $t_f \rightarrow fall \text{ time}$

(measured 10–90% from V_{OH} to V_{OL})

 $t_{PHL} \rightarrow$ delay time from "High" to "Low" $t_{PLH} \rightarrow$ delay time from"Low" to "High" (measured from 50% of v_I to v_O)

$$t_P = \frac{1}{2}(t_{PHL} + t_{PLH}) \rightarrow \text{delay time}$$

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 5

5

Delay: simple model

$$\begin{split} t_{pHL} &= t_{pLH} = t_p(M_1, M_2 \text{ adapted, } \lambda \text{=} \textbf{0}) \\ (i_{D1})_{av} t_{pHL} &= C_l \ \frac{1}{2} (V_{OH} - V_{OL}); \quad (i_{D1})_{av} = \frac{1}{2} \big[(i_{D1})_{\ o = V_{DD}} + (i_{D1})_{v_o = V_{DD}/2} \big] \end{split}$$

Logic Chain

- Problem: Drive of large capacitances (e.g. Output stages)
 - PCB/package capacitance >> IC internal capacitances.
 - · Reduction of propagation times... logical circuit chain sizing

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 7

7

1st order model

Models (1st order approach appropriate to the problem)

 $r_{ds_{-}p} = \frac{1}{k_{p}^{\prime} \left(\frac{W}{L} \right)_{p} \left(V_{DD} - V_{t_{-}p} \right)}$ V_{DD} $C_{o} = C_{GDn} + C_{GDp}$ $+ C_{DBn} + C_{DBp}$ V_{O} V_{I} V_{O} V_{I} V_{O} V_{I} V_{O} V_{O

TÉCNICO LISBOA irf@tecnico.ulisboa.pt | Ultra Low power Circuits | 8

Inverters Logic chain analysis #1

- $t_d \approx RC_o$ assuming $R = r_{ds_p} = r_{ds_n}$
- $R \propto W$: $W \uparrow \Rightarrow R \downarrow$, $C_i \uparrow$, $C_o \uparrow$

Scaling factor: S_j with $S_1 = 1$ and $S_j > 1$ for j > 1

1st stage:
$$\beta_1 = k'^{\left(\frac{W}{L}\right)_1}$$

$$j$$
 – stage: $\beta_i = S_i \beta_1$

 $S_i C_o$, Output capacitance stage j

 $S_{i+1}C_i$, Input capacitance stage j+1

 $S_{j+1}C_w$, Connection capacitance stage j+1

Stage *j* delay: $t_{d,j} = \left(\frac{R}{S_j}\right) \left[S_j C_o + S_{j+1} (C_i + C_w)\right]$

irf@tecnico.ulisboa.pt | Ultra Low power Circuits | 9

9

Inverters Logic chain analysis #2

Total delay:
$$t_d = \sum_{j=1}^{N} \frac{R\left(S_j C_o + S_{j+1}(C_i + C_w)\right)}{S_j}$$

search minimum: $\frac{\partial t_d}{\partial S_j} = 0 \rightarrow \text{recursively } \frac{S_{j+1}}{S_j} = \frac{S_j}{S_{j-1}} = K = \text{constant}$

boundary conditions: $S_1 = 1$ and $S_{N+1} = \frac{C_L}{C_i}$

$$\frac{S_2}{S_1} \frac{S_3}{S_2} \frac{S_4}{S_3} \cdots \frac{S_{N+1}}{S_N} = K^N = \frac{C_L}{C_i}$$

$$K = \left(\frac{C_L}{C_i}\right)^{1/N} \Rightarrow t_{d,min} = \sum_{j=1}^{N} R(C_o + K(C_i + C_w)) = NR(C_o + K(C_i + C_w))$$

Optimal number of stages:

$$\frac{\partial t_{d,\min}}{\partial N} = 0$$
 (if C_0 negligible) $\Rightarrow N = \ln\left(\frac{c_L}{c_i}\right)$ (nearest integer)

Inverters Logic chain analysis #3

- To finish scaling we need to calculate the normalization value.
- It is done by scaling the top floor (e.g. off-chip driver) and then scaling the previous floors.
- Use the expressions that relate the rise and fall time of the inverter depending on sizing and output capacitance

$$\left(\frac{W}{L}\right)_n = \frac{C_{out}}{\tau_n k_n' (V_{DD} - V_{tn})}$$

$$\left(\frac{W}{L}\right)_{p} = \frac{C_{out}}{\tau_{p}k'_{p}(V_{DD} - V_{t_p})}$$

$$t_{HL} = \tau_n \left[\frac{2V_{tn}}{V_{DD} - V_{tn}} + \ln \left(\frac{2(V_{DD} - V_{tn})}{V_o} - 1 \right) \right]$$

$$t_{LH} = \tau_p \left[\frac{2V_{tp}}{V_{DD} - V_{tp}} + \ln \left(\frac{2(V_{DD} - V_{tp})}{V_o} - 1 \right) \right]$$

Note: V_o corresponds to 10% of V_{DD}

TÉCNICO LISBOA irf@tecnico.ulisboa.pt | Ultra Low power Circuits | 11

11

Custom logic functions with CMOS combinational circuits

- Adapted transistors
 - *L*=0.25um
 - *Wn*=0.375um; *Wp*=1.25um
- $\bar{y} = (C + D) \cdot B + A$

TÉCNICO LISBOA

Domino Logic

$$v_A = V_{DD} \rightarrow v_{O1} = V_{DD} - V_t \rightarrow$$

 $\rightarrow Q_P \text{ On } \rightarrow P_d \text{ Static } \neq 0$

Add Q_R to restore $v_{O1} = V_{DD}$ if possible zero $-V_t$ transistors $V_t \approx 0$

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 13

13

Analog Integrated Systems

- ULP Digital Circuit Design #2/4
- 1. Conventional CMOS Digital Design
- Combinational Logic
- Sequential Logic
- 2. Technology Driven:
- (1) Reducing V_{DD} (2) dual-voltage CPUs (3) dynamic voltage scaling (4) undervolting
- (1) Reducing Frequency (2) underclocking (3) dynamic frequency scaling
- (1) Reducing Capacitance (2) reduce transistor size (3) add functionality in IC (replace PCB)
 (4) low-k dielectric (5) Dual-Vt
- 3. Design Driven:
- (1) Lower logic Swing (2) Reduce the switching activity (3) Optimizing machine code
- (1) clock gating (2) Power gating (3) globally asynchronous locally synchronous
- Recycling energy stored in the capacitors (1) adiabatic circuit (2) energy recovery logic

Gated SR Latch

15

Latch D

Inverters and Switches

- φ=1 -> Q=D
- Transition: both switches open: Q value remains due to parasitic capabilities
- φ=0 -> Q stored in the latch "edge-triggered"

TÉCNICO LISBOA

Latch D

· "master-slave" configuration

- D on the fall flank $\phi_{\rm l}$ is stored in the "master"
- On the rise flank of ϕ_2 passes to the "slave"
- stays in Q for a clock period
- $\phi_1 = \phi_2 = 0$ should be short or parasitic capacities discharge

irf@tecnico.ulisboa.pt | Ultra Low power Circuits | 17

17

Static RAM (SRAM)

 Q5 and Q6 access transistors: controlled by the word line selector, connect the cell to the data lines

- CMOS latch
- Two complementary data lines, B and ~B.

Static RAM (SRAM): write

- B e ~B imposed
- Rise and fall times can be calculated similarly to pass-through transistors with capacitive load.

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 19

19

Static RAM (SRAM): read

- · Preload of data lines (latch transition voltage)
- Line enable: |vB-v~B|>0.2V
- Reading amplifier restores levels V_{DD}, 0

Static RAM (SRAM): read amplifier

- CMOS latch activated by ø_S
- Read operation
- Preload+equalization of data line (V_{DD}/2) on Ø_P
- Cell connected to data line: |V_B V_B | ~30 to 500mV, polarity depends on the state of the cel
- Read amplifier activated: restores levels V_{DD},0

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 21

21

Dynamic RAM (DRAM)

- Capacitor + access transistor
- DRAM has greater density (4x)
 than SRAM
- Periodic refresh (requires clock) of cells with logical 1
- 1 data line: C_{BitLine} (~1pF)>>C_S(<50fF)
- Read: Δv tens of mV, amplifier reading reestablishes levels V_{DD}, 0
- Writing: C_S gets 0 or V_{DD} -V_t (NMOS switch)
- Restore: Enabling rows successively, activated row cells are restored.

Dynamic RAM (DRAM): Amplifier

23

Read Only Memory (ROM)

- ROM with 8 words of 4-bit
- Combinational logic system
 - entries=addresses; outputs=contents
- Intersection Lines/Columns
 - Transistor if bit=0, nothing if it is 1
- Pull-up: any load as on NMOS logic
- Mask programming (metallization): Connected only the desired transistors

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 24

2D to 3D memories...

INTERNATIONAL ROADMAP

DIVICES AND SYSTEMS N

2000 EREPRON

EXECUTIVE SUMMANY

Upper selector

Wordline

Lower selector

Substrate

Figure ES43

2D scaling will reach fundamental limits beyond 2020 Figure ES44

♦IEEE

Flash memory aggressively adopts 3D scaling in 2014

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 25

25

Analog Integrated Systems

- ULP Digital Circuit Design #3/4
- 1. Conventional CMOS Digital Design
- Combinational Logic
- Sequential Logic
- 2. Technology Driven:
- (1) Reducing V_{DD} (2) dual-voltage CPUs (3) dynamic voltage scaling (4) undervolting
- (1) Reducing Frequency (2) underclocking (3) dynamic frequency scaling
- (1) Reducing Capacitance (2) reduce transistor size (3) add functionality in IC (replace PCB)
 (4) low-k dielectric (5) Dual-Vt

3. Design Driven

- (1) Lower logic Swing (2) Reduce the switching activity (3) Optimizing machine code
- (1) clock gating (2) Power gating (3) globally asynchronous locally synchronous
- Recycling energy stored in the capacitors (1) adiabatic circuit (2) energy recovery logic

Where to save power?

- Total Power $\rightarrow P_{dyn} + P_{sc} + P_{leak}$
 - Dynamic power $\rightarrow P_{dyn} = f C_l V_{DD}^2$
 - Short circuit power $\rightarrow P_{sc}$
 - Leakage power $\rightarrow P_{leak}$

irf@tecnico.ulisboa.pt | Ultra Low power Circuits | 27

27

Power consumption reduction techniques

Technology Driven:

- (1) Reducing V_{DD} (2) dual-voltage CPUs (3) dynamic voltage scaling (4) undervolting
- (1) Reducing Frequency (2) underclocking (3) dynamic frequency scaling
- (1) Reducing Capacitance (2) reduce transistor size (3) add functionality in IC (replace PCB) (4) low-k dielectric (5) Dual-Vt

Design Driven:

- (1) Lower logic Swing (2) Reduce the switching activity (3) Optimizing machine code
- (1) Clock gating (2) Power gating (3) Globally asynchronous locally synchronous
- Recycling energy stored in the capacitors (1) Adiabatic circuit (2) Energy recovery logic

Technology Driven (V_{DD}): (1) Reducing V_{DD}

LISBOA

29

Technology Driven (V_{DD}): (2) dual-voltage CPUs

Dynamic power $\rightarrow P = f C_l V_{DD}^2$

· Block-level supply assignment

- Higher-performance functions use higher $V_{\rm DD}$
- Lower-performance functions use lower V_{DD}
- · Level conversion at block boundaries

Multiple supplies inside a block

- Non-critical paths use lower V_{DD}
- · Level conversion within the block

[Rabey, Low Power Design Essentials, Springer 2009]

- Two supply voltages per block are optimal
- Optimal ratio between the supply voltages is 0.7
- Best level conversion is performed by a level-converting flip-flop (LCFF)

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 30

Technology Driven (V_{DD}): (2) dual-voltage CPUs

Dynamic power $\rightarrow P = f C_l V_{DD}^2$

- · Conventional with separate wells
- · Only one shared well; less area

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 31

31

Technology Driven (V_{DD}): (2) dual-voltage CPUs

Technology Driven (V_{DD}): (2) dual-voltage CPUs

Level Conversion for Dual-Supply Systems
Fujio Ishihara, Farhana Sheikh, Member, IEEE, and Borivoje Nikolić, Member, IEEE

Level-Converting Flip-Flops

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

Fig. 1. Basic level converter structures. A shaded gate represents a V_{DDL} gate and underlined nodes show V_{DDL}-swing signals. (a) Cross-coupled pMOS pair (CCLC) [11]. (b) Single-supply diode-voltage-limited buffer (SSLC) [12]. (c) Pass-transistor half latch. (d) Precharged circuit.

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 33

33

Technology Driven: (3) dynamic voltage scaling and/or (4) undervolting

Dynamic power $\rightarrow P = f C_l V_{DD}^2$

Dynamic voltage scaling: power management technique in computers, to increase or decrease the voltage in a component, depending on load. It can be Overvolting or **Undervolting.**

Undervolting: lower voltage supplying the circuit core.

- reduce power consumption
- increase battery life
- reduce heat emission

Technology Driven (f): (1) Reducing Frequency (2) underclocking (3) dynamic frequency scaling

Dynamic power $\rightarrow P = f C_l V_{DD}^2$

- (1) Reduce Frequency: work at lower frequency
- (2) Underclocking: modify a computer or electronic circuits' time settings to run at a lower clock rate than specified.
- (3) Dynamic frequency scaling: microprocessor frequency is automatically adjusted "on the fly" depending on the actual load. Can be combined as dynamic voltage and frequency scaling (DVFS).
 - reduce power consumption
 - · increase battery life
 - · reduce heat emission

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 35

35

Technology Driven: (1) Reducing Capacitance (2) Reduce transistor size ★

Dynamic power $\rightarrow P = f \ C_l \ V_{DD}^2$

YEAR OF PRODUCTION	2019	2020	2022	2025	2028	2031	2032	2034
Logic device technology naming [4] NEW node definition	G54M38	G48M36	G45M24	G45M20	G40M16	G38M16T2	G38M16T3	G38M16T4
Logic industry "Node Range" Labeling (nm)	*7*	*5*	"3"	"2.1"	*1.5*	"1.0nm-	"1,0nm-	"0.7nm-
Logic device structure options	FinFET	FinFET	FinFET LGAA	LGAA	LGAA VGAA	LGAA-3D VGAA	LGAA-3D VGAA	LGAA-3D VGAA
LOGIC CELL AND FUNCTIONAL FABRIC TARGETS			ALL DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUM		******************			
Average Cell Width Scaling Factor Multiplier	1	0.9	0.9	0.9	0.9	0.9	0.9	0.9
LOGIC DEVICE GROUND RULES			7,00					
MPU/SoC M0 1/2 Pitch (nm) [1,2]	18	15	12	10.5	8	8	8	8
Physical Gate Length for HP Logic (nm) [3]	20	18	16	14	12	12	12	12
Lateral GAA (nanosheet) Minimum Thickness (nm)				7	6	5	5	5
Minimum Device Width (FinFET fin, nanosheet, SRAM) or Diameter (nm)	9	7	.6	7	6	6	6	6
LOGIC DEVICE Electrical								\rightarrow
Vdd (V)	0.75	0.7	0.7	0.65	0.65	0.6	0.6	0.6
DRAM TECHNOLOGY								
DRAM Min half pitch (nm) [1]	18	17.5	17	14	11	8.4	8.4	7.7
DRAM Min Half Pitch (Calculated Half pitch) (nm) [1]	20.5	17.5	18.5	15	12	10	10	8.5
DRAM Cell Size Factor: aF^2 [4]	6	6	4	4	4	4	4	4
DRAM Gb/1chip target	8	8	16	16	32	32	32	32
NAND Flash								\longrightarrow
Flash 2D NAND Flash uncontacted poly 1/2 pitch - F (nm) 2D [1][2]	15	15	15	15	15	15	15	15
Flash Product highest density (independent of 2D or 3D)	512G	17	1T	1.5T	3T	4T	4T	4T+
Flash Product Maximum bit/cell (2D_3D) [6]	2_4	2_4	2.4	2_4	2_4	2_4	2_4	2_4
Flash 3D NAND Maximum Number of Memory Layers [6]	48-65	64-96	96-128	128-192	256-384	384-512	384-512	512+

Technology Driven: (3) add functionality in IC (replace PCB)

♦IEEE

$\textbf{D}ynamic\ power \rightarrow$	$P = f C_l V_{DD}^2$

YEAR OF PRODUCTION	2020	2022	2025	2028	2031	2034
	G48M36	G45M24	G42M20	G40M16	G38M16T2	G38M16T4
Logic industry "Node Range" Labeling (nm)	"5"	"3"	"2.1"	"1.5"	"1.0 eq"	"0.7 eq"
IDM-Foundry node labeling	i7-f5	i5-f3	i3-f2.1	i2.1-f1.5	i1.5e-f1.0e	i1.0e-f0.7e
Logic device structure options	FinFET	finFET LGAA	LGAA	LGAA	LGAA-3D	LGAA-3D
Mainstream device for logic	finFET	finFET	LGAA	LGAA	LGAA-3D	LGAA-3D
	Coolse	Oxide	Oxide	Oxide	Ovide Ovide	Oxode
Vdd (V)	0.70	0.70	0.65	0.65	0.60	0.60
Gate length (nm)	18	16	14	12	12	12
Number of stacked tiers	1	1	1	1	2	4
Number of stacked devices	1	1	3	3	4	4
Digital block area scaling - node-to-node	-	0.75	0.78	0.79	0.52	0.50
Cell height limitation - HD	M0	M0	M0	M0	M0	M0
SoC area scalling (stacked) - node-to-node	-	0.78	0.82	0.83	0.56	0.59
CPU frequency (GHz)	3.13	3.27	3.51	3.47	3.25	2.93
Frequency scaling - node-to-node	-	0.04	0.08	-0.01	-0.07	-0.10
CPU frequency at constant power density (GHz)	3.13	2.58	2.92	2.19	1.29	0.78
Power at iso frequency - node-to-node	-	-0.08	-0.26	-0.05	-0.07	-0.09
Power density - relative	1.00	1.27	1.20	1.58	2.52	3.73

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 37

37

Technology Driven: (3) add functionality in IC (replace PCB)

Dynamic power

$$\rightarrow \boxed{P = f \ C_l \ V_{DD}^2}$$

YEAR OF PRODUCTION	2020	2022	2025	2028	2031	2034
	G48M36	G45M24	G42M20	G40M16	G38M16T2	G38M16T4
Logic industry "Node Range" Labeling (nm)	"5"	"3"	"2.1"	"1.5"	"1.0 eg"	"0.7 eg"
IDM-Foundry node labeling	17-15	15-13	i3-f2.1	12.1-11.5	i1.5e-f1.0e	i1.0e-f0.7e
Logic device structure options	FinFET	finFET LGAA	LGAA	LGAA	LGAA-3D	LGAA-3D
Mainstream device for logic	finFET	finFET	LGAA	LGAA	LGAA-3D	LGAA-3D
INTERCONNECT TECHNOLOGY						
Number of Mx layers	3	3	3	3	2	2
Number of P80 layers	12	14	14	15	17	17
Number of P720 layers	2	2	2	2	2	2
Routing resources - Mx+P80+P720 - relative	1.00	1.00	0.98	0.98	1.00	1.00
Number of wiring layers - M1+Mx+P80+P720	18	20	20	21	22	22
Mx - tight-pitch interconnect resistance (Ohms/um)	133	301	474	920	1447	1447
Mx - tight-pitch interconnect capacitance (aF/um)	208	208	208	208	208	208
Vx - tight-pitch interconnect via resistance (Ohms/via)	28.4	50.0	52.8	38.3	63.9	63.9
MP80 - 80nm pitch interconnect resistance (Ohms/um)	13.3	13.3	13.3	13.3	13.3	13.3
MP80 - 80nm pitch interconnect capacitance (aF/um)	198	198	198	198	198	198
VP80 - 80nm pitch interconnect via resistance (Ohms/via)	5.0	5.0	5.0	5.0	5.0	5.0
Aspect ratio - M0, M1, Mx, MP80, MP720	1.5-2.5	1.5-2.5	1.5-2.5	1.5-2.5	1.5-2.5	1.5-2.5
Metallization - M0	Co. Cu	Co. Ru	Co. Ru	Co. Ru	Co. Ru	Co, Ru
Barrier - Cu MO	2.0nm TaNRuCo, TaNCo					
Barrier - Non-Cu M0	1.0nm TiN+WC	0.5nm TiN+WC	0.5nm TiN+WC	0.5nm TiN+WC	0.5nm TiN+WC	0.5nm TiN+WC
Di-electrics k value - MO,M1,Mx	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SICOH (2.70-3.20)
Metallization - M1, Mx	Cu	Cu	Cu, Co, Ru	Cu, Co, Ru	Cu, Co, Ru	Cu, Co, Ru
Barrier metal - M1,Mx	2.0nm TaNRuCo, TaNCo	1.5nm TaNRuCo, TaNCo	0.5nm TiN+WC	0.5nm TiN+WC	0.5nm TiN+WC	0.5nm TiN+WC
Di-electrics k value - M0,M1,Mx	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)	SiCOH (2.70-3.20)
Metallization - MP80, MP720	Cu	Cu	Cu	Cu	Cu	Cu
Barrier metal - M1,Mx	2.5nm TaNRuCo, TaNCo	2.5nm TaNRuCo, TaNCo	2.5nm TaNRuCo, TaNCo	2.5nm TaNRuCo, TaNCo	2.5nm TaNRuCo, TaNCo	2.5nm TaNRuCo, TaNCo
Di-electrics k value - MP80	SiCOH (2.40-2.55) Airgap (1.0)	SiCOH (2.40-2.55) Airgap (1.0)	SiCOH (2.20-2.55) Airgap (1.0)	SiCOH (2.20-2.55) Airgap (1.0)	SiCOH (2.20-2.55) Airgap (1.0)	SiCOH (2.20-2.55) Airgap (1.0)
TDDB (MV/cm) - M0,M1,Mx						
Jmax (MA/cm2 at 105C) - M0,M1,Mx						

Technology Driven: (4) low-k dielectric

♦IEEE

Static power → Leakage

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 39

39

Technology Driven: (5) Dual-Vt

♦IEEE

INTERNATIONAL ROADMAP FOR DEVXES AND SYSTEMS**

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 40

decreased leakage by 70x when holding a logical '0.

Analog Integrated Systems

- 1. Conventional CMOS Digital Design
- Combinational Logic
- Sequential Logic
- ULP Digital Circuit Design #4/4
- 2. Technology Driven:
- (1) Reducing V_{DD} (2) dual-voltage CPUs (3) dynamic voltage scaling (4) undervolting
- (1) Reducing Frequency (2) underclocking (3) dynamic frequency scaling
- (1) Reducing Capacitance (2) reduce transistor size (3) add functionality in IC (replace PCB)
 (4) low-k dielectric (5) Dual-Vt

3. Design Driven:

- (1) Lower logic Swing (2) Reduce the switching activity (3) Optimizing machine code
- (1) clock gating (2) Power gating (3) globally asynchronous locally synchronous
- Recycling energy stored in the capacitors (1) adiabatic circuit (2) energy recovery logic

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 41

41

Power consumption reduction techniques

Technology Driven:

- (1) Reducing V_{DD} (2) dual-voltage CPUs (3) dynamic voltage scaling (4) undervolting
- (1) Reducing Frequency (2) underclocking (3) dynamic frequency scaling
- (1) Reducing Capacitance (2) reduce transistor size (3) add functionality in IC (replace PCB) (4) low-k dielectric (5) Dual-Vt

Design Driven:

- (1) Lower logic Swing (2) Reduce the switching activity (3) Optimizing machine code
- (1) Clock gating (2) Power gating (3) Globally asynchronous locally synchronous
- Recycling energy stored in the capacitors (1) Adiabatic circuit (2) Energy recovery logic

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 42

Design Driven: (1) Lower logic Swing

Dynamic power
$$\rightarrow P = \alpha f C_l V_{Swing} V_{DD}$$

- (1) V_{Swing}: Similar to dual-Voltage approach
 - Reduces noise margins
 - · Area and delay overhead
 - · May require level regeneration
- Good technique to apply on clock distribution
 - · Reduced swing
 - Alternative clock distribution schemes
 - Avoid global clock

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 43

43

Design Driven: (2) Reduce the switching activity (3) Optimizing machine code

Dynamic power $\rightarrow P = \alpha f C_l V_{Swing} V_{DD}$

- (2) and (3) α :
 - @coding level: seek
 sequences with less
 0↔1 transitions
 - Bus-Invert Coding; Advanced bus-invert coding; Coding for address busses; Full-fledged channel coding

Design Driven: (2) Reduce the switching activity (3) Optimizing machine code

Dynamic power $\rightarrow P = \alpha f C_l V_{\text{Swing}} V_{DD}$

- (2) and (3) α :
 - Find and optimize repetitive regular structures (Reduce C may increase α)

- Reduce glitching
 - restructuring

· by balancing logic

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 45

TÉCNICO LISBOA

45

Design Driven: (2) Reduce the switching activity (3) Optimizing machine code

Dynamic power $\rightarrow P = \alpha f C_l V_{Swing} V_{DD}$

- (2) and (3) α :
 - @gate level: Custom blocks with more complex custom gates;

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 46

Design Driven: (1) clock gating

- Clock Gating: simple concept, turn off the design when not needed – without affecting the functionality.
 - introduced in the design as part of functionality
 - automatically by the tool
 - reduce switching
 - reduce glitches

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 47

47

Design Driven: (1) clock gating

- AND-based
 - has glitches

Latch-based

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 48

Design Driven: (2) Power gating

- Disconnect module from supply rail(s) during standby
- Most effective with high-Vt transistors

Design Driven: (3) globally asynchronous locally synchronous

- reduce activity
 - reduce clock load driving

jrf@tecnico.ulisboa.pt | Ultra Low power Circuits | 50

Design Driven: (1) adiabatic circuit

Energy charging capacitors

Voltage step: [1]
$$v_{DC}: \mathbf{0} \to \mathbf{1}$$
 $E_B = \underbrace{QV_{DC}}_{battery} = C_l V_{DC}^2 = \underbrace{\frac{1}{2}C_l V_{DC}^2}_{stored in} + \underbrace{\frac{1}{2}C_l V_{DC}^2}_{dissipated in R}$

Current step: [1]
$$I_{DC}$$
: constant $E_B = E_C + E_R = \underbrace{\frac{1}{2}C_lV_{DC}^2}_{\text{stored in}} + \underbrace{\frac{RC}{T}C_lV_{DC}^2}_{\text{dissipated in R}}$

Current more eficiente if T > 2RC

51

Design Driven: (1) adiabatic circuit

Quasi-adiabatic charging capacitors

Design Driven: (2) energy recovery logic

Energy-Efficient GHz-Class Charge-Recovery Logic
Visvesh S. Sathe, Member, IEEE, Juang-Ying Chueh, Member, IEEE, and
Matios C. Paparthymion, Senior Member, IEEE, and

