Introduction to moduli problems

1 Moduli problem by representable functors

Moduli space is a geometric space whose points represent isomorphism classes of certain geometric objects. For example, fix a field k, all elliptic curves over k can be classified by the j-invariant, which gives a bijection between isomorphism classes of elliptic curves and elements of k. However, this classification is just a set-theoretic one. We would like to have a geometric "parameter space" such that we can "deform" the objects continuously. This is the initial motivation for moduli spaces.

In algebraic geometry, "deforming objects continuously" is usually described by flat families. Hence the most perfect object to represent this moduli problem is such a flat family $\mathcal{X} \to M$, where M is a variety parameterizing all elliptic curves, and the fiber over each point $m \in M(\mathbb{k})$ is the elliptic curve corresponding to m. Furthermore, we hope that this family is universal, i.e., any other flat family $\mathcal{Y} \to B$ of elliptic curves is obtained by pulling back $\mathcal{X} \to M$ along a unique morphism $B \to M$. (Despite in this example, such a perfect family does not exist; we will discuss this later.) It can be described by the language of functors. Consider the functor

$$\mathcal{M}: \mathbf{Var}^{\mathrm{op}}_{\mathbb{k}} \to \mathbf{Set}, \quad X \mapsto \{\text{flat families of elliptic curves over } X\}/\sim,$$

where \sim is the equivalence relation given by isomorphisms of families over X. If the family $\mathcal{X} \to M$ above exists, then it represents the functor \mathcal{M} . In this case, we say that the moduli problem \mathcal{M} is representable, M is called a *fine moduli space* and $\mathcal{X} \to M$ is called a *universal object*.

Hence, to study a moduli problem, we follow the steps:

- 1. Define the moduli functor \mathcal{M} .
- 2. Check whether \mathcal{M} is representable.

Definition 1. Let S be a noetherian scheme and $\mathcal{M}: \mathbf{Sch}_S^{\mathrm{op}} \to \mathbf{Set}$ be a functor. If \mathcal{M} is representable by a scheme M of finite type over S, then we say that M is a *fine moduli space* for the moduli problem \mathcal{M} . The object $\mathcal{U} \in \mathcal{M}(M)$ corresponding to the identity morphism $\mathrm{id}_M \in \mathrm{Hom}_{\mathbf{Sch}_S}(M,M)$ is called a *universal object* over M.

We give a simple example of a fine moduli space.

Example 2. Consider the moduli problem of lines in the projective plane $\mathbb{P}^2_{\mathbb{k}}$ over a field \mathbb{k} . Define the moduli functor

$$\mathcal{G}: \mathbf{Sch}^{\mathrm{op}}_{\Bbbk} \to \mathbf{Set}, \quad X \mapsto \{L \subset \mathbb{P}^2 \times X | L \text{ is flat over } X, L_x \text{ is a line in } \mathbb{P}^2 \text{ for all } x \in X(\Bbbk)\}.$$

Then the dual projective plane $G = \mathbb{P}^2_k$ is a fine moduli space for the moduli problem \mathcal{G} . The universal object is given by

$$\mathcal{U} = \{([x : y : z], [a : b : c]) \in \mathbb{P}^2_{\mathbb{k}} \times G | ax + by + cz = 0\} \subset \mathbb{P}^2_{\mathbb{k}} \times G.$$

For every $X \in \mathbf{Sch}_{\Bbbk}$ and $f \in G(X)$, we can give a family of lines $L = \mathcal{U} \times_G X \in \mathcal{G}(X)$ by pulling back the universal object \mathcal{U} along $\mathrm{id}_{\mathbb{P}^2_{\Bbbk}} \times f : \mathbb{P}^2_{\Bbbk} \times X \to \mathbb{P}^2_{\Bbbk} \times G$. The difficult part is to construct

Date: October 27, 2025, Author: Tianle Yang, My Homepage

the inverse map, i.e., given a family of lines $L \in \mathcal{G}(X)$, we need to construct a morphism $f: X \to G$ such that L is obtained by pulling back \mathcal{U} along $\mathrm{id}_{\mathbb{P}^2_k} \times f$.

Yang: To be completed.

2 Coarse moduli space

