Базовые АТД и структуры данных

Гусев Илья, Булгаков Илья

Московский физико-технический институт

Москва, 2018

Содержание

① АТД vs структуры данных

- Отруктуры данных
 - Куча

АТД vs структуры данных

АТД - абстрактный тип данных.

Набор функций, независимых от конкретной реализации типа, для оперирования его значениями.

Реализация скрыта, по сути представляет из себя интерфейс.

В C++ это абстрактный класс, все функции которого чисто виртуальны (pure virtual).

АТД vs структуры данных

Примеры

- Стек (push_back, pop_back)
 - Реализация динамическим массивом
 - 2 Реализация связным списком
- Очередь (push_back, pop_front)
 - Реализация динамическим массивом
 - Реализация связным списком
 - Реализация двумя стеками
- Очередь с приоритетами (insert(ключ, значение), extract_minimum \rightarrow (ключ, значение))
 - Реализация динамическим массивом
 - Реализация связным списком
 - Реализация двоичной кучей
 - Реализация биномиальной кучей
 - Реализация фибоначчиевой кучей

АТД vs структуры данных

Подробнее про стек и очередь

 ${\sf External/stacks-algs4.cs.princeton.edu.pdf}$

Двоичная куча (heap)

- Двоичное дерево (связный ациклический граф, у которого у любой вершины не больше 2 потомков)
- Если узел В являетсея потомком узла А, то A.key ≥ B.key (тах-куча). Для тіп-кучи наоборот.
- Глубина всех листьев (расстояние до корня) отличается не более чем на 1 слой.
- Последний слой заполняется слева направо без «дырок».

Реализация

- A[0] корень
- $\forall i \ A[2i+1]$ левый потомок A[i]
- $\forall i \ A[2i+2]$ правый потомок A[i]

Действия и сложность

- Добавить элемент в кучу. Сложность $\mathcal{O}(\log n)$
- ullet Исключить максимальный элемент из кучи. Время работы $\mathcal{O}(\log n)$
- Изменить значение любого элемента. Время работы $\mathcal{O}(\log n)$
- Превратить неупорядоченный массив элементов в кучу. Сложность $\mathcal{O}(n)$

Построение за $\mathcal{O}(n)$

 $\lceil \frac{n}{2^{h+1}}
ceil$ - максимум количества элементов на уровне h $\mathcal{O}(h)$ - сложность вставки элемента на уровень h $\lfloor \lg(n) \rfloor$ - высота n-элементной пирамиды

$$\sum_{h=0}^{\lfloor \lg(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil \mathcal{O}(h) = \mathcal{O}(n \sum_{h=0}^{\lfloor \lg(n) \rfloor} \frac{h}{2^h})$$
$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$
$$\mathcal{O}(n \sum_{h=0}^{\lfloor \lg(n) \rfloor} \frac{h}{2^h}) = \mathcal{O}(n \sum_{h=0}^{\infty} \frac{h}{2^h}) = \mathcal{O}(2n) = \mathcal{O}(n)$$

Вставка и extract min

Полезные ссылки І

Т.Кормен, Ч.Лейзерсон, Р.Ривест, К.Штайн - Алгоритмы. Построение и анализ. Глава 6 https://bit.ly/2wFzphU

Lecture Slides for Algorithm Design https://algs4.cs.princeton.edu/lectures/