

Feature Extraction

CPS592 – Visual Computing and Mixed Reality

Outline

- Introduction
- Features
 - Histograms
 - Tiny images
 - Local Binary Pattern

Introduction

Which images are similar?

Problems

- Need visual features (representation) which can describe the images.
- Note that the images are varied in terms of size, aspect ratio, lighting, etc.

Lots of applications

Features are used for:

- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Application

Transition of the state of the

Image

Google image search

Application

Outline

- Introduction
- Features
 - Histograms
 - Tiny images
 - Local Binary Pattern

What is the dimensionality? 256 dims

Keep in mind that histograms are not unique

How to solve this problem?

• Use more local histograms.

Extract histogram from different local regions.

What is the dimensionality? $256 \times 10 = 2560 \text{ dims}$

Histogram normalization

For images with discrete gray values, compute normalized histogram:

$$p_{in}(r_k) = \frac{n_k}{n} \qquad 0 \le r_k \le 1 \qquad 0 \le k \le L - 1$$

L: Total number of gray levels

 n_k : Number of pixels with gray value r_k

n: Total number of pixels in the image

What is the value of $\sum_{r_k=0}^{L-1} p_{in}(r_k)$?

Tiny Images

• 80 million tiny images: a large dataset for non-parametric object and scene recognition Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008.

http://groups.csail.mit.edu/vision/TinyImages/

Low dimensional image representations

What is the smallest image dimensionality that human still can perform well?

Human Scene Recognition

Low dimensional image representations

32 x 32 is very small

130 x 100 Google

Low dimensional image representations

Segmentation of 32x32 images

How to extract "tiny image" feature?

What is the dimensionality? $32 \times 32 \times 3 = 3072 \text{ dims}$

Local Binary Patterns

 Local Binary Patterns (LBP) is one of the best performing texture descriptors and widely used in various applications.

• It has proven to be highly discriminative and because its invariance to monotonic gray level changes and computational efficiency, make it suitable for demanding image analysis tasks.

How to extract Local Binary Pattern

- For each pixel p, create an 8-bit number b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 , where $b_i = 0$ if neighbor i has value less than or equal to p's value and 1 otherwise.
- Represent the texture in the image (or a region) by the histogram of these numbers.

How to extract Local Binary Pattern

The histogram of the labels used as a texture descriptor.

Q&A