

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

YoungJoon Yoo^{1,2} Jung-Woo Ha^{1,2} Jonghyun Choi⁴ Jihwan Bang^{1,2,3} Heesu Kim^{1,2}

Problem Set-up

tl;dr. A better method in a realistic continual learning set-up

A Realistic Continual Learning (CL) Set-up

Previous Work

Method	CIL Settings				Knowledge Preserv.	
	Online	Disjoint	Blurry	Memory	Regularize	Distill
EWC ^[a]	X	0	Χ	X	0	Χ
iCaRL ^[b]	X	O	X	O	X	0
Rwalk ^[c]	X	O	X	O	O	X
GSS ^[d]	0	X	0	O	X	X
BiC ^[e]	X	O	X	O	X	0
Gdumb ^[f]	0	O	0	0	X	X
RM (ours)	0	O	O	0	X	X

→ CL understudied on blurry-online setting

References

[a] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017

[b] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, et al. iCaRL: Incremental classifier and representation learning. In CVPR, 2017.

[c] Arslan Chaudhry, Puneet K. Dokania, et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. In ECCV, 2018.

[d] Rahaf Aljundi, Min Lin, et al. Gradient based sample selection for online continual learning. In NeurIPS, pages 11816–11825, 2019

[e] Yue Wu, Yan-Jia Chen, et al. Large scale incremental learning. In CVPR, 2019.

[f] Ameya Prabhu, P. Torr, et al. GDumb: A simple approach that questions our progress in continual learning. In ECCV, 2020.

Method

Increase visual diversity in memory

- . Calculate data uncertainty
- 2. For each class, select data from the lowest uncertainty to the highest with uniform interval
- 3. Train the model with data augmentation

Computing Uncertainty

Uncertainty U = Data Difficulty

$$p(y = c | x) = \int p(y = c | \widetilde{x_t}) p(\widetilde{x_t} | x) d\widetilde{x_t}$$

$$\approx \frac{1}{A} \sum_{t=1}^{A} p(y = c | \widetilde{x_t})$$

$$\to U(x) = 1 - \frac{1}{T} \max_{c} S_c$$

Certain data (uncert. 1) is robust for perturbed images

$$S_{c} = \sum_{t=1}^{T} \mathbb{1}_{c} \arg \max_{\hat{c}} p(y = \hat{c} \mid x_{t})$$

T: Number of perturbed samples

Ablations

- Memory Selection
- +19.7% accuracy improvement by RM compared to Random.
- Data Augmentation (DA)
- +10.3% accuracy improvement by CM+AA compared to not using DA

None CutMix RandAug AutoAug CM+AA * CM+AA: Cutmix + AutoAug

Experiments

Last Accuracy After Training All Tasks

MNIST	CIFAR100	ImageNet
90.98 ± 0.61	26.95 ± 0.36	39.54
90.69 ± 0.62	32.31 ± 0.78	35.26
78.09 ± 0.60	17.39 ± 1.04	17.52
88.51 ± 0.52	27.19 ± 0.65	21.52
77.75 ± 1.27	13.01 ± 0.24	37.20*
92.65 ± 0.33	34.09 ± 1.41	37.96
91.80 ± 0.69	$\textbf{41.35} \pm \textbf{0.95}$	50.11
	90.98 ± 0.61 90.69 ± 0.62 78.09 ± 0.60 88.51 ± 0.52 77.75 ± 1.27 92.65 ± 0.33	90.98 ± 0.61 26.95 ± 0.36 90.69 ± 0.62 32.31 ± 0.78 78.09 ± 0.60 17.39 ± 1.04 88.51 ± 0.52 27.19 ± 0.65 77.75 ± 1.27 13.01 ± 0.24 92.65 ± 0.33 34.09 ± 1.41

Last Accuracy on Various CL Settings on CIFAR10

	Blurry0 (=Disjoint)		Blurry10		Blurry30	
Methods	Online	Offline	Online	Offline	Online	Offline
EWC	55.66 ± 1.18	64.00 ± 1.34	55.65 ± 4.60	$\textbf{78.67} \pm \textbf{1.06}$	60.57 ± 1.15	85.00 ± 0.42
Rwalk	55.91 ± 1.85	65.04 ± 0.11	53.66 ± 3.18	78.59 ± 1.37	59.03 ± 0.05	$\textbf{85.18} \pm \textbf{0.57}$
iCaRL	40.70 ± 5.13	$\textbf{65.61} \pm \textbf{2.57}$	45.98 ± 3.04	57.07 ± 2.74	48.11 ± 4.63	64.90 ± 7.95
GDumb	50.37 ± 1.17	50.37 ± 1.17	46.70 ± 1.53	46.70 ± 1.53	47.78 ± 3.77	47.78 ± 3.77
BiC	44.70 ± 2.12	59.53 ± 4.30	42.06 ± 2.41	61.45 ± 6.25	42.92 ± 1.47	71.93 ± 2.45
RM w/o DA	54.05 ± 4.94	59.47 ± 0.61	60.87 ± 0.88	74.58 ± 0.60	60.92 ± 6.48	83.91 ± 0.40
\mathbf{RM}	$\textbf{66.25} \pm \textbf{0.21}$	61.91 ± 0.63	$\textbf{71.13} \pm \textbf{0.18}$	76.86 ± 0.04	$\textbf{73.90} \pm \textbf{0.80}$	85.10 ± 0.16

Summary

- Tackle blurry setting on continual learning, and analyze various setups
- Propose a memory management scheme using data uncertainty
- Show DA improves significant performance in online blurry CL

Code, Data, Set-ups