

Past Papers Nat 5 Chemistry

2019 Marking Scheme

Grade	Mark R	equired	% soudidated salaisuina anada
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
Α	89+	71.2%	34.6%
В	74+	59.2%	21.6%
С	59+	47.2%	20.7%
D	44+	35.2%	15.9%
No award	<44	<35.2%	7.2%

Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	17.2	41.5	18.2

2019 National 5 Chemistry Marking Scheme							
M <i>C</i> Qu	Answer	% Pupils Correct					
1	С		Rate = $\frac{\Delta Quantity}{\Delta Time} = \frac{5 \text{ cm}^3}{2 \text{ min}} = 2.5 \text{ cm}^3 \text{ min}^{-1}$				
2	В		$\frac{1}{\Delta \text{Time}} = \frac{1}{2 \text{ min}} = 2.5 \text{ cm}^3 \text{ min}^3$				
3	C		 ☑A All elements in group 1 have 1 electron in outer shell ☑B All elements in group 2 have 2 electrons in outer shell ☑C All elements in group 7 have 7 electrons in outer shell ☑D All elements in group 8 (apart from Helium) have 8 electrons in outer shell 				
4	D		 ☒A This ion has a negative charge as it has more electrons than protons ☒B This atom has no charge as it has equal numbers of protons and electrons ☒C This atom has no charge as it has equal numbers of protons and electrons ☒D This ion has a 2+ positive charge as it has 2 less electrons than protons 				
5	В		 ☑A 40°C is above the critical temperature to CO₂ is a gas at 40°C ☑B NH₃ and CO₂ are compounds and have the highest critical temperatures ☑C Ammonia NH₃ has the highest critical temperature but is medium in mass ☑D Hydrogen H₂ is has a lower critical temperature than the noble gas Helium He 				
6	D		HF F20 CF4 PF3 F Linear Angular Tetrahedral Trigonal Pyramidal				
7	A		☑A Na ⁺ electron arrangement is 2,8 and O ²⁻ electron arrangement is 2,8 ☑B Li ⁺ electron arrangement is 2 and F ⁻ electron arrangement is 2,8 ☑C K ⁺ electron arrangement is 2,8,8 and Br ⁻ electron arrangement is 2,8,18,8 ☑D Mg ²⁺ electron arrangement is 2,8 and Cl ⁻ electron arrangement is 2,8,8				
8	В		☑A ionic copper sulphate in the solid state is a non-conductor ☑B ionic compounds will conduct is both the molten/liquid state and in solution ☑C ionic potassium nitrate in the solid state is a non-conductor ☑D hexane C ₆ H ₁₄ is a hydrocarbon and is covalent molecular and is a non-conductor				
9	Α		☑A Calcium hydroxide is the solute as it is the solid which is dissolved ☑B Water is the solvent as it is the liquid doing the dissolving ☑C Calcium hydroxide solution is the solution with the solute dissolved in solvent ☑D Calcium hydroxide must be soluble if it dissolves				
10	В		gfm NH ₄ NO ₃ = (1×14)+(4×1)+(1×14)+(3×16) = 14+4+14+48 = 80 %N = \frac{\text{mass of nitrogen}}{\text{gfm}} \times 100 = \frac{28}{80} \times 100 = 35\%				
11	D		 ☑A The pH of an alkaline solution will decrease to pH=7 on dilution ☑B The pH of an alkaline solution will decrease to pH=7 on dilution ☑C The concentration of OH⁻ ions decreases on dilution ☑D The concentration of OH⁻ ions decreases on dilution 				

		✓ A sodium oxide is a metal oxide (a type of base) and neutralises an acid to form water						
12	Δ	☑B calcium chloride does not react with acids and is not a base						
	<i>,</i> , ,	🗷 C potassium nitrate does not react with acids and is not a base						
		🗷 D ammonium sulphate does not react with acids and is not a base						
		■A Cyclopropane C ₃ H ₆ has an isomer called propene C ₃ H ₆						
13 D	☑B But-1-ene C4H8 has isomers including but-2-ene C4H8							
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $							
		☑D Ethene C2H4 has no isomers						
		\blacksquare A Formula is C_6H_{12} so does not fit the general formula of alkanes C_nH_{2n+2}						
4.4		\blacksquare B Formula is C_6H_{12} so does not fit the general formula of alkanes C_nH_{2n+2}						
14		$\square C$ C=C double bond between C_2 & C_3 (numbered from right) and methyl group on C_3						
		☑D C=C takes the lower number system so Pent-3-ene should be pent-2-ene						
		✓ A Oct-2-ene produces two products on hydration (octan-2-ol and octan-3-ol)						
		☑B Hex-3-ene produces one product on hydration (hexan-3-ol)						
15	Α	⊠ C But-2-ene produces one product on hydration (hexan-2-ol)						
		☑D Ethene produces one product on hydration (ethanol)						
		Reaction removes the C=O group and replaces it with a CH2 group.						
16	B	Alkane produced has 6 carbons in main chain and a methyl group on C_2						
		: 2-methylhexane produced						
		Carboxylic Methanoic Ethanoic Propanoic Butanoic Pentanoic Hexanoic Heptanoic Octanoic						
		acid Acid Acid Acid Acid Acid Acid Acid A						
47	D	Formula HCOOH CH_3COOH C_2H_5COOH C_3H_7COOH C_4H_9COOH $C_5H_{11}COOH$ $C_6H_{13}COOH$ $C_7H_{15}COOH$						
17	В	Mass low high						
		Melting Point low						
		Solubility high - low						
		🗷 A Largest voltage = largest separation on electrochemical series (magnesium-silver)						
10								
18	D	☑B 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver)						
18	D	☑B 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) ☑C 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver)						
18	D	 ■ B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ■ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ■ D Smallest voltage = smallest separation on electrochemical series (copper-silver) 						
	D	 ☑B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ☑C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑A Metal Y is least reactive metal as it is only one which had no reaction with acid 						
18 19	D B	 ■ B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ■ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) □ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ■ A Metal Y is least reactive metal as it is only one which had no reaction with acid □ B Metal Z is most react metal and Metal Y is least reactive metal 						
	D B	 ☑B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ☑C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑A Metal Y is least reactive metal as it is only one which had no reaction with acid ☑B Metal Z is most react metal and Metal Y is least reactive metal ☑C Metal Y is least reactive metal as it is only one which had no reaction with acid 						
	D B	 ☑ B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ B Metal Z is most react metal and Metal Y is least reactive metal ☑ C Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ D Metal Z is most reactive metal as it is only one which reacts with water 						
	D B	 ☑B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ☑C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑A Metal Y is least reactive metal as it is only one which had no reaction with acid ☑B Metal Z is most react metal and Metal Y is least reactive metal ☑C Metal Y is least reactive metal as it is only one which had no reaction with acid 						
	D B	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal EC Metal Y is least reactive metal as it is only one which had no reaction with acid ED Metal Z is most reactive metal as it is only one which reacts with water CH ₃ H CH ₃ CH						
19	D B	 ☑ B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ B Metal Z is most react metal and Metal Y is least reactive metal ☑ C Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ D Metal Z is most reactive metal as it is only one which reacts with water 						
	D В	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal EC Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH ₃ H						
19	D В	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal EC Metal Y is least reactive metal as it is only one which had no reaction with acid ED Metal Z is most reactive metal as it is only one which reacts with water CH ₃ H CH ₃ CH						
19	B C	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH ₃ H CH CH CH CH CH CH CH CH CH						
19	D B	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH ₃ H CO-polymer						
19	B C	 ☑B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ☑C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑D 5 mallest voltage = smallest separation on electrochemical series (copper-silver) ☑A Metal Y is least reactive metal as it is only one which had no reaction with acid ☑B Metal Z is most react metal and Metal Y is least reactive metal ⓒC Metal Y is least reactive metal as it is only one which had no reaction with acid ☑D Metal Z is most reactive metal as it is only one which reacts with water ☐CH3 H ☐						
19	B C	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH ₃ H CO-polymer EA Nitrogen dioxide is soluble and would dissolve in water rather than collect. EB Nitrogen dioxide is soluble and would dissolve in water rather than collect.						
19	D В С	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH ₃ H CO-polymer EA Nitrogen dioxide is soluble and would dissolve in water rather than collect. EB Nitrogen dioxide is more dense than air and would collect in bottom of cylinder						
19	В С	EB 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) EC 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D 5mallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH₃ H CO-polymer EA Nitrogen dioxide is soluble and would dissolve in water rather than collect. EB Nitrogen dioxide is more dense than air and would escape out of the cylinder						
19	В С	 ☑B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ☑C 3nd Largest voltage = 3nd largest separation on electrochemical series (iron-silver) ☑D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑A Metal Y is least reactive metal as it is only one which had no reaction with acid ☑B Metal Z is most react metal and Metal Y is least reactive metal ⓒC Metal Y is least reactive metal as it is only one which had no reaction with acid ⓒD Metal Z is most reactive metal as it is only one which reacts with water ☐CH3 H ☐C						
19 20 21	B C	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3nd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH3 H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. B Nitrogen dioxide is soluble and would dissolve in water rather than collect. C Nitrogen dioxide is more dense than air and would collect in bottom of cylinder No Nitrogen dioxide is more dense than air and would escape out of the cylinder No Nitrogen dioxide is more dense than air and would escape out of the cylinder A Ba²+ ions give a green colour in a flame test B Ca²+ ions give a orange-red colour in a flame test						
19	B C A	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3nd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH3 H CH3 H CH3 H CH3 H CH3 H CH3 H CO-C H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. CN Nitrogen dioxide is more dense than air and would collect in bottom of cylinder D Nitrogen dioxide is more dense than air and would escape out of the cylinder A Ba²⁺ ions give a green colour in a flame test B Ca²⁺ ions give a orange-red colour in a flame test CC K⁺ ions give a lilac colour in a flame test						
19 20 21	B C A	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3nd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH3 H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. B Nitrogen dioxide is soluble and would dissolve in water rather than collect. C Nitrogen dioxide is more dense than air and would collect in bottom of cylinder No Nitrogen dioxide is more dense than air and would escape out of the cylinder No Nitrogen dioxide is more dense than air and would escape out of the cylinder A Ba²+ ions give a green colour in a flame test B Ca²+ ions give a orange-red colour in a flame test						
19 20 21	B C A	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3nd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH3 H CH3 H CH3 H CH3 H CH3 H CH3 H CO-C H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. CN Nitrogen dioxide is more dense than air and would collect in bottom of cylinder D Nitrogen dioxide is more dense than air and would escape out of the cylinder A Ba²⁺ ions give a green colour in a flame test B Ca²⁺ ions give a orange-red colour in a flame test CC K⁺ ions give a lilac colour in a flame test						
19 20 21 22	B C C	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid Mometal Z is most reactive metal as it is only one which reacts with water CH3 H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. B Nitrogen dioxide is soluble and would dissolve in water rather than collect. CN Nitrogen dioxide is more dense than air and would collect in bottom of cylinder Nother actions give a green colour in a flame test B Ca² ions give a orange-red colour in a flame test CC K⁺ ions give a lilac colour in a flame test CC Na⁺ ions give a yellow colour in a flame test CC Na⁺ ions give a yellow colour in a flame test CC Na⁺ ions give a yellow colour in a flame test						
19 20 21	B C A D	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 nd Largest voltage = 3nd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal EC Metal Y is least reactive metal as it is only one which had no reaction with acid D Metal Z is most reactive metal as it is only one which reacts with water CH₃ H						
19 20 21 22	B C A D	EB 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver) EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Y is least reactive metal as it is only one which had no reaction with acid B Metal Z is most react metal and Metal Y is least reactive metal C Metal Y is least reactive metal as it is only one which had no reaction with acid Mometal Z is most reactive metal as it is only one which reacts with water CH3 H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. B Nitrogen dioxide is soluble and would dissolve in water rather than collect. CN Nitrogen dioxide is more dense than air and would collect in bottom of cylinder Nother actions give a green colour in a flame test B Ca² ions give a green colour in a flame test CC K⁺ ions give a lilac colour in a flame test CA oxygen gas relights a glowing splint						

24	С	 ☒A Addition reactions happen when a molecule adds across as C=C double bond ☒B Combustion reactions happen when chemicals split up and react with oxygen ☒C Precipitation reactions form an insoluble solid when solutions are added together ☒D Neutralisation reactions happen when an acid reacts with a base to form water
25	В	$AgNO_3(aq) + NaBr(aq) \rightarrow NaNO_3(aq) + AgBr(s)$ $Split solutions into ions$ $Ag(aq) + NO_3^-(aq) + Na^+(aq) + Br^-(aq) \rightarrow Na^+(aq) + NO_3^-(aq) + AgBr(s)$ $Indentify Spectator Ions and cancel out Spectator Ions$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2019 National 5 Chemistry Marking Scheme						
Long Qu	Answer	Reasoning				
1a	network	SiO_2 is a covalent compound as both elements in the compound are non-metals. If the covalent compound has a high melting point it is a covalent network compounds. If it has a low melting and boiling point then it is covalent molecular.				
1b(i)	Isotope	Same Atomic number Number of protons Different Mass number Number of neutrons				
1b(ii)	Different number of neutrons	Both isotopes of boron have 5 protons as they have an atomic number of 5. The 10 B isotope has 5 neutrons and the 11 B isotope has 6 neutrons, calculated by number of neutrons = mass number – atomic number				
1b(iii)	More ¹¹ B isotope	The RAM (Relative Atomic Mass) is the average mass of the different isotopes. As the average is much closer to 11, there must be more ¹¹ B isotope in the sample.				
1c	120	24% of 500g = $\frac{24}{100}$ × 500 = 120g				
2a	Hydroxyl	O O O O O O O O O O				
2b	enzyme	Problem Solving: Retrieving information from a passage				
2c	calcium oxalate	Acids react with bases to form salts. Oxalic acid reacts with calcium ions to form the salt calcium oxalate				
2d	90	Lactic acid is the harmless product mentioned in the text. Formula of lactic acid = $C_3H_6O_3$ 1 mol = (3×12) + (6×1) + (3×16) = 36 + 6 + 48 = 90				
За	One diagram from:	N N N N N				
3b	Blue or purple	Ammonia NH3 gas dissolves in water to form alkaline ammonium hydroxide solution. Alkali on the damp/moist pH paper will turn blue/purple. NH3(g) + H2O(l) NH4 [†] (aq) + OH ⁻ (aq) ammonia water ammonium ion hydroxide ion				
3c(i)	Increase in temperature decrease in percentage	One From: As the temperature decreases as the temperature decreases. Cause and Effect: It must be a change of temperature and its effect on yield so "as yield of ammonia decreases, temperature gets higher" is incorrect				
3c(ii)	Graph showing:	1 mark One mark is awarded for a graph which shows points plotted rather than bars. 1 mark 1 mark				
3d(i)	Electrolysis and lithium nitride	Processes are in the circular boxes. Electrolysis is the circular box answer Chemicals are in the square boxes. Lithium nitride is formed from lithium and nitrogen.				

		waten					1		
3d(ii)	One arrow	water lithium hydroxide							
	drawn from:	or							
		wo	ater	lit	hium hydroxide				
4 a	nucleus	All nuclear reactions take place in the nucleus.							
4b(i)	One answer from:	The time for half of the mass to decay (radio)activity to decay nuclei to decay							
		Time (days) Percentage Demoising 40.5%							
		0		12.5% remaining after 24 days			days		
4b(ii)	87.5%	8 50% 87.5% must have deco			have decayed	by 24 days			
		16	25						
		24	12.	'					
4b(iii)	Stays the same	Half-life is indeper liquid, gas or soluti		тсептгатю	n, temperature	e and state of	matter (solia,		
5a	Bromine decolourises	Bromine adds acro	ss C=C doub	le bonds a	and bromine is	decolourised ir	n the process.		
5b(i)	Hydrogenation	The addition of hy The addition of wa	ter across (C=C double	e bond is knowr	as hydration.			
5b(ii)	Chlorine	Two chlorine atoms used to be. Cl2 is the	•						
5b(iii)	Poly(propene)	If propene is the n					, ,		
		1mol C ₆ H ₁₀ = (6×12)	+ (10×1) =	72 + 10 = 8	82g				
		$mo. of mol = \frac{mass}{gfm} = \frac{410g}{82g mol^{-1}} = 5mol$							
			<i>~</i>	~ · ·	-				
5c(i)	140			C ₄ H ₆	→	C ₆ H ₁₀			
5c(i)	140		1mol	C ₄ H ₆		C ₆ H ₁₀			
5c(i)	140	1mol C ₂ H ₄ = (2×12)	1mol 5mol + (4×1) = 24	4 + 4 = 28 <u>c</u>	9	C ₆ H ₁₀ 1mol 5mol			
5c(i)	140	1mol C ₂ H ₄ = (2×12)	1mol 5mol + (4×1) = 24 ass = n o. of	4 + 4 = 28g mol × gfm	g ı = 5 mol × 28g	C ₆ H ₁₀ 1mol 5mol mol ⁻¹ = 140g			
5c(i) 5c(ii)	140 Answer to include:	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen	1mol 5mol + (4x1) = 24 ass = n o. of rene has we	4 + 4 = 28 <u>0</u> mol × gfm aker (forc	9	C ₆ H ₁₀ 1mol 5mol mol ⁻¹ = 140g pn)	tioned		
		1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen	Imol 5mol + (4x1) = 24 ass = n o. of ene has we etween mol	4 + 4 = 28g mol × gfm aker (forc ecules/int	g n = 5 mol × 28g ces of attractio	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men	tioned a answer		
		1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark answ Demonstrates a good	1mol 5mol + (4x1) = 24 ass = no. of rene has we etween mol ver	4 + 4 = 28g mol × gfm aker (forcecules/int 2 mar emonstrates o	g n = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men 1 mark Demonstrates a	answer		
5c(ii)	Answer to include:	1mol C ₂ H ₄ = (2x12) 1 mark: Cyclopen 1 mark: Forces be 3 mark answ Demonstrates a good understanding of the ch involved. A good compre	Amol 5mol + (4x1) = 24 ass = no. of rene has we etween mol ver pemistry mension of in	4 + 4 = 28g mol × gfm aker (forcecules/int 2 markemonstrates anderstanding volved, making	g a = 5 mol × 28g ces of attraction cermolecular at k answer a reasonable of the chemistry g some	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men 1 mark Demonstrates a understanding of involved. The can	answer limited f the chemistry ndidate has made		
		1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark anso Demonstrates a good understanding of the che involved. A good compre the chemistry has provi- logically correct, includi	Amol 5mol + (4x1) = 24 ass = no. of rene has we etween mol ver bemistry enension of inded in a stage a	1 + 4 = 28g mol x gfm aker (forcecules/int 2 mar emonstrates anderstanding avolved, making attement(s) with a situation	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant a, showing that the	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men 1 mark Demonstrates a l understanding of involved. The car some statement(relevant to the s	limited f the chemistry adidate has made (s) which are fituation, showing		
5c(ii)	Answer to include:	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark ansu Demonstrates a good understanding of the ch involved. A good compre the chemistry has provi- logically correct, includi statement of the princip involved and the applica-	Amol 5mol + (4x1) = 24 ass = no. of tene has we etween mol ver Demistry mension of inded in a ind	4 + 4 = 28g mol × gfm aker (forcecules/int 2 mark emonstrates of derstanding of volved, making atement(s) wi	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant a, showing that the	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men 1 mark Demonstrates a understanding of involved. The car some statement(limited I the chemistry Indidate has made I which are I wation, showing I the of the		
5c(ii)	Answer to include: Open Question:	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark anso Demonstrates a good understanding of the che involved. A good compre the chemistry has provi logically correct, includi statement of the princip involved and the applicat these to respond to the Members of the so	amol 5mol + (4x1) = 24 ass = no. of rene has we etween mol ver menistry mension of ded in a stag a to les prion of problem. me homolog	mol x gfm aker (forcecules/int 2 mar emonstrates anderstanding avolved, making attement(s) with the situation roblem is under a column to the situation of the situation roblem is under a column to the situation to the situation roblem is under a column to the situation to	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant n, showing that the erstood.	The construction of the co	limited f the chemistry adidate has made s) which are situation, showing ttle of the the problem is		
5c(ii)	Answer to include:	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark answ Demonstrates a good understanding of the che involved. A good compre the chemistry has provious logically correct, includi statement of the princip involved and the applicat these to respond to the Members of the soalkenes will decolor	amol 5mol + (4x1) = 24 ass = no. of rene has we etween mol ver emistry nension of in ded in a st ag a to problem. me homolog urise bromin	4 + 4 = 28g mol x gfm aker (force ecules/int 2 mar emonstrates a aderstanding a volved, making attement(s) w to the situation roblem is unde	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant a, showing that the erstood. s have the same a quickly.	Tactions ment of involved. The car some statement of relevant to the standard with t	I answer Ilimited If the chemistry Indidate has made Is which are Initiation, showing Itle of the Ithe problem is Interest e.g. all		
5c(ii)	Answer to include: Open Question: Same/similar chemical	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark anso Demonstrates a good understanding of the che involved. A good compre the chemistry has provi logically correct, includi statement of the princip involved and the applicat these to respond to the Members of the so	Amol 5mol + (4x1) = 24 ass = no. of Tene has we tetween mol ver Demistry mension of inded in a ing a illes prion of problem. me homolog urise bromin a must fit o	1 + 4 = 28g mol x gfm aker (force ecules/int 2 mar emonstrates anderstanding volved, making attement(s) who the situation roblem is under the solution all members.	g a = 5 mol x 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant n, showing that the erstood. s have the same a quickly. rs of the homo	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men 1 mark Demonstrates a lunderstanding of involved. The car some statement relevant to the state a lid chemistry within understood. e/similar properling of the car some statement of the state a lid chemistry within understood.	Ilimited If the chemistry Ididate has made Is) which are Itituation, showing Ittle of the Ithe problem is erties e.g. all e.g. all alkanes		
5c(ii) 6 7a	Answer to include: Open Question: Same/similar chemical properties and same general formula.	1mol C ₂ H ₄ = (2x12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark anse Demonstrates a good understanding of the che involved. A good compre the chemistry has provi- logically correct, includi statement of the princip involved and the applicat these to respond to the Members of the so alkenes will decolor The general formu fit the general for The hydrocarbon C	Amol 5mol + (4x1) = 24 ass = no. of rene has we extween mol ver memistry mension of inded in a stag a to iles prion of problem. me homolog urise bromin a must fit of mula CnH2n4 25H52 must	1 + 4 = 28g mol x gfm aker (force ecules/int 2 mar emonstrates of the statement (s) who the situation roblem is under the statement (s) who the situation roblem is under the solution all members are gous method to the situation roblem is under the solution all members are gous method to the situation roblem is under the solution and the solution all members are gous method to the situation roblem is under the solution and the solution are solution and the solution are solution as the solution are soluti	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant a, showing that the erstood. s have the same a quickly. rs of the homo mane CH4, ethan	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men 1 mark Demonstrates a lunderstanding of involved. The car some statement (relevant to the state at least a litchemistry within understood. e/similar properties of C2H6, propantic state of the care care C2H6, propantic state of the care care care care care care care car	Imited It the chemistry Indidate has made Is which are It to fithe It the problem is It to g. all It alkanes		
5c(ii)	Answer to include: Open Question: Same/similar chemical properties and same	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopent 1 mark: Forces by 3 mark answ Demonstrates a good understanding of the che involved. A good compre the chemistry has provice logically correct, including statement of the princip involved and the application these to respond to the Members of the soalkenes will decolor. The general formute fit the general formute formula of alkanes	amol 5mol + (4x1) = 24 ass = no. of rene has we etween mol ver emistry mension of inded in a standard ga to ided in a standard ided	mol x gfm aker (force ecules/int 2 mar 2 mar emonstrates anderstanding avolved, making attement(s) with a situation roblem is under the solution all member e.e.g. metholog to	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant n, showing that the erstood. s have the same a quickly. rs of the homo mane CH4, ethan the alkane fam	C6H10 1mol 5mol mol ⁻¹ = 140g on) tractions men 1 mark Demonstrates a lunderstanding of involved. The car some statement (relevant to the state at least a litchemistry within understood. e/similar properties of C2H6, propantic state of the care care C2H6, propantic state of the care care care care care care care car	Imited It the chemistry Indidate has made Is which are It to fithe It the problem is It to g. all It alkanes		
5c(ii) 6 7a 7b(i)	Answer to include: Open Question: Same/similar chemical properties and same general formula. Alkane	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark ansu Demonstrates a good understanding of the ch involved. A good compre the chemistry has provi- logically correct, includi statement of the princip involved and the applica- these to respond to the Members of the sa alkenes will decolor The general formu- fit the general for The hydrocarbon C formula of alkanes In n=35 then 2n+2 General Formula C _r	Amol 5mol + (4x1) = 24 ass = no. of Tene has we etween mol ver memistry mension of intended in a intended in a intended problem. The homologurise bromin a must fit a mula CnH2n+2. = (2x25) +2 H2n+2 where	mol x gfm aker (force ecules/int 2 mariemonstrates of adderstanding aratement(s) who the situation roblem is under solution all member 2 e.g. methology to 2 = 50+2 = 2 number of a limited and the solution of a limited and the solution and the	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant h, showing that the erstood. s have the same a quickly. rs of the homo mane CH4, ethan the alkane fam 52 : C25H52 of H atoms = 76	The carson street a lichard to the street a lichard will be carried a lichard to the street a lichard	imited f the chemistry diddate has made (s) which are itituation, showing ttle of the the problem is erties e.g. all e.g. all alkanes ne C3H8. he general		
5c(ii) 6 7a	Answer to include: Open Question: Same/similar chemical properties and same general formula.	1mol C ₂ H ₄ = (2x12) m 1 mark: Cyclopent 1 mark: Forces by 3 mark answ Demonstrates a good understanding of the che involved. A good compre the chemistry has provice logically correct, including statement of the princip involved and the application these to respond to the Members of the soalkenes will decolor. The general formula it the general formula it the general formula of alkanes. In n=35 then 2n+2 General Formula Cr. Hydrogen number 20	Imol 5mol + (4x1) = 24 ass = no. of rene has we extween mol ver emistry nension of ded in a stag a to les problem. me homolog urise bromin a must fit a mula CnH2n+2 25H52 must of CnH2n+2 = (2x25) +2 H2n+2 where 2n+2 = 72	mol x gfm aker (force ecules/int 2 mar 2 mar 2 mar 2 mar 2 mar 2 mar 2 volved, making a tement(s) with a situation polymous series are solution all member a e.g. methology to the situation of the situat	g a = 5 mol × 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant h, showing that the erstood. s have the same a quickly. rs of the homo hane CH4, ethan the alkane fam 52 C25H52 of H atoms = 72 n=35	The state of the s	imited Ithe chemistry Ididate has made Is) which are Ithe of the Ithe problem is Ithe problem is Ithe gall alkanes Ine C3H8. Ine general		
5c(ii) 6 7a 7b(i) 7b(ii)	Answer to include: Open Question: Same/similar chemical properties and same general formula. Alkane C35H72	1mol C ₂ H ₄ = (2×12) m 1 mark: Cyclopen 1 mark: Forces be 3 mark ansu Demonstrates a good understanding of the che involved. A good compre the chemistry has provi logically correct, includi statement of the princip involved and the applicat these to respond to the Members of the sa alkenes will decolor The general formu fit the general for The hydrocarbon of formula of alkanes In n=35 then 2n+2 General Formula Cr Hydrogen number and	Amol 5mol + (4x1) = 24 ass = no. of Tene has we etween mol ver menistry mension of line led in a sta ga a sta les prion of problem. me homolog urise bromin a must fit a mula CnH2n+2 25H52 must of CnH2n+2 = (2x25) +2 H2n+2 where 2n+2 = 72 20	A + 4 = 28g mol x gfm aker (force ecules/int 2 mariemonstrates and estanding aratement(s) who the situation roblem is under the solution all member are general member are general member are number are considered. 2 = 50+2 = considered and are number are considered are solution all member are general member are general member are general member are considered are number are considered are solutions.	g a = 5 mol x 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant h, showing that the rerstood. s have the same a quickly. rs of the homo mane CH4, ethan the alkane fam 52 :: C25H52 of H atoms = 72 :: n=35 :: 22	The care of the control of the contr	imited f the chemistry diddate has made (s) which are itituation, showing ttle of the the problem is erties e.g. all e.g. all alkanes ne C3H8. he general		
5c(ii) 6 7a 7b(i)	Answer to include: Open Question: Same/similar chemical properties and same general formula. Alkane	1mol C ₂ H ₄ = (2x12) m 1 mark: Cyclopent 1 mark: Forces by 3 mark answ Demonstrates a good understanding of the che involved. A good compre the chemistry has provice logically correct, including statement of the princip involved and the application these to respond to the Members of the soalkenes will decolor. The general formula it the general formula it the general formula of alkanes. In n=35 then 2n+2 General Formula Cr. Hydrogen number 20	Imol 5mol + (4x1) = 24 ass = no. of rene has we extween mol ver emistry nension of ded in a stag a to les problem. me homolog urise bromin a must fit a mula CnH2n+2 25H52 must of CnH2n+2 = (2x25) +2 H2n+2 where 2n+2 = 72	mol x gfm aker (force ecules/int 2 mar 2 mar 2 mar 2 mar 2 mar 2 mar 2 volved, making a tement(s) with a situation polymous series are solution all member a e.g. methology to the situation of the situat	g a = 5 mol x 28g ces of attraction rermolecular at k answer a reasonable of the chemistry g some hich are relevant h, showing that the rerstood. s have the same a quickly. rs of the homo mane CH4, ethan the alkane fam 52 :: C25H52 of H atoms = 72 :: n=35 :: 22	The state of the s	imited Ithe chemistry Ididate has made Is) which are Ithe of the Ithe problem is Ithe problem is Ithe gall alkanes Ine C3H8. Ine general		

8a	Supernova	Problem Solving: Gathering information from a passage					
8b	beryllium aluminium silicon oxygen	Beryl is beryllium aluminium silicate. Silicate means both silicon and oxygen are also found in the compound.					
8c	$BeCl_2 + K \rightarrow Be + KCl$	Beryllium chloride + Potassium \rightarrow Beryllium + Potassium chloride Be Cl_2 + K \rightarrow Be + K Cl Be Cl_2 + 2K \rightarrow Be + 2K Cl					
8d	Reduction	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
8e	¹ ₀ n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
9a	Exothermic	Type of Reaction Definition Exothermic Reaction which releases energy Endothermic Reaction which takes in energy from the surroundings					
9b(i)	0.05	heat energy = specific heat capacity \times mass \times change in Temperature $E_h = C \times m \times \Delta T$ $8.36 = 4.18 \times m \times 40$ $m = \frac{8.36}{4.18 \times 40} = 0.05 kg$					
9b(ii)	Both answers:	Copper is a better conductor of heat Lower heat loss to surroundings					
9c(i)	One answer from:	if the -OH group is at the end of lif the -OH group is in the middle alcohols an aldehyde is produced of alcohol an ketone is produced					
9c(ii)	H-C-C-C-C-C-H	If OH is on the end carbon then an aldehyde is formed. Starting chemical is pentan-1-ol with -OH hydroxyl group on the end of molecule. Five carbon aldehyde is formed with C=O group on the end carbon.					
10a	Ion bridge or salt bride	The ion bridge is a piece of filter paper soaked in electrolyte. Electrolyte is a salt solution which provides the ions to complete the circuit and allow current to flow through the wires.					
10b(i)	Arrow through wires from right to left	Electrons flow through wires and ions flow through the solution. Electrons are generated in the reaction in beaker B: $ 2I^{(aq)} \longrightarrow I_{2(l)} + 2e^- $ Electrons flow through voltmeter to Beaker A and join up by the Fe³+ ions $ Fe^{3+}_{(aq)} + e^- \longrightarrow Fe^{2+}_{(aq)} $					
10b(ii)	oxidation	$2I^{-}_{(aq)} \longrightarrow I_{2(l)} + 2e^{-}$					

		27- 7 . 2						
10b(iii)	2Fe ³⁺ +2I ⁻	$ ext{2I}^{ ext{-}} ightarrow ext{I}_2 + 2e^{ ext{-}} \ ext{Fe}^{3+} + e^{ ext{-}} ightarrow ext{Fe}^{2+}$						
	216 +21	Multiple equations to get same number of electrons						
	\downarrow	$2I^{-} \rightarrow I_{2} + 2e^{-}$						
	2Fe ²⁺ +I ₂	$2Fe^{3+}$ + $2e^{-}$ \rightarrow $2Fe^{2+}$						
	216 +12	Cancel out electrons add equations together $2 extstyle{ extstyle{Fe}}^{ extstyle{3}+} + 2 extstyle{ extstyle{I}^-} ightarrow 2 extstyle{ extstyle{Fe}}^{ extstyle{2}+} + extstyle{ extstyle{I}_2}$						
40		Graphite has delocalised electrons that do not take part in the covalent bonding	a					
10c	Conducts electricity	and are free to jump from atom to atom to allow electrical conduction.						
		Write down Valency below Put in Cross-over Follow arrows to						
		each element's symbol Arrows get formula						
11a	Ca ²⁺ CO ₃ ²⁻	$oxed{Ca CO_3 Co_3 Co_2(CO_3)_2}$						
114	04 003	Cancel Down						
		2 2 2 2 CaCO ₃						
		$egin{array}{cccccccccccccccccccccccccccccccccccc$						
11b	propanoic acid	propanoic calcium calcium carbon	-					
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e					
		no more solid reacts/ solid remains/is left a gas is no longer produc						
11c	One answer from:	until it no longer reacts (at bottom of the beaker) no more fizzing/bubbli						
		calcium carbonate left no more neutral/neutralised wit (at the bottom) calcium carbonate reacts description of testing p						
44.1	Filtration	Filtration is needed to separate the unreacted calcium carbonate from the products. The						
11d	Evaporation	residue of filtration is calcium propanoate solution. The solid propanoate is recovered by evaporating the water in the solution using an evaporating basin and a Bunsen burner.						
		A standard solution is a solution whose concentration is accurately know. It can						
12a(i)	standard	then be used to work out the concentration of another solution with which it						
		reacts with. no. of mol = volume × concentration = 0.2 litres × 1 mol l-1 = 0.2 mol						
12a(ii)	21,2	qfm Na ₂ CO ₃ = $(2\times23)+(1\times12)+(3\times16)=46+12+48=106q \text{ mol}^{-1}$						
124(11)	·	mass = no of mol \times gfm = 0.2mol \times 106 g mol ⁻¹ = 21.2g						
12h/3	One answer from:	Move burette/ Reduce distance Use white Clamp the bure sodium carbonate (reading) between flask and tile/paper towards the						
12b(i)	One answer from.	sodium carbonate (reading) between flask and tile/paper towards the to eye level burette centre	e					
126	One andmore frame	To show point of To show completion of the	he					
12b(ii)	One answer from:	To show the end-point neutralisation reaction						
		Titrations using a burette allow exact volumes of solutions to be worked out. After the initial titration allow a rough volume for the reaction to be found, the experiment is repeated exactly in a more accura						
12b(iii)	concordant	way to work out the exact volume of solution needed to completely react. This is repeated until two volumes within ±0.2cm³ of each other are achieved. These are described as concordant.						
		The concordant volumes are averaged and the rough titre is ignored.						
		no. of mol Na ₂ CO ₃ = volume x concentration = 0.015 itres x 1mol l ¹ = 0.015mol						
		$Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$						
12b(iv)		1mol 2mol						
		0.015mol						
		concentration = $\frac{\text{No of Moles}}{\text{volume}} = \frac{0.030 \text{Mol}}{0.02 \text{litres}} = 1.5 \text{ mol l}^{-1}$						
		3 mark answer 2 mark answer 1 mark answer						
		Demonstrates a <u>good</u> understanding of the chemistry Demonstrates a <u>reasonable</u> understanding of the chemistry Understanding of the chemistry Demonstrates a <u>limited</u> understanding of the chemistry	,					
13	Open Question:	involved. A good comprehension of involved, making some involved. The candidate has made the chemistry has provided in a statement(s) which are relevant some statement(s) which are						
15	open wassion	logically correct, including a to the situation, showing that the relevant to the situation, showing	ng					
		statement of the principles problem is understood. that at least a little of the chemistry within the problem is	,					
		these to respond to the problem. understood.						