

Grafika komputerowa i komunikacja człowiek-komputer

Laboratorium nr 4

Interakcja z użytkownikiem, transformacje wierzchołków

Szymon Datko

szymon.datko@pwr.edu.pl

Wydział Elektroniki, Politechnika Wrocławska

semestr zimowy 2020/2021

Cel ćwiczenia

- 1. Zapoznanie się z mechanizmem obsługi urządzeń peryferyjnych.
- 2. Zrozumienie zasady działania przekształceń wierzchołków.
- 3. Implementacja transformacji w reakcji na działania użytkownika.

Obsługa zdarzeń z klawiatury/myszy

- Zagadnienie to nie jest częścią specyfikacji OpenGL.
- ► W naszym programie całą obsługą zdarzeń zajmuje się biblioteka GLFW.
- Zasadniczo chodzi o to, aby:
 - zdefiniować funkcję do wykonania w reakcji na zdarzenie,
 - musi ona przyjmować odpowiednią liczbę i rodzaj argumentów,
 - uaktywnić ją podpiąć do określonego rodzaju zdarzenia,
 - stosowany jest tu mechanizm wywołań zwrotnych (ang. callback).
- Funkcja bezpośredniej reakcji na zdarzenie powinna być możliwie szybka,
 - często rejestruje się same akcje, a obsługę realizuje osobny proces.
- ► Więcej informacji: https://www.glfw.org/docs/latest/input_guide.html.

Współrzędne jednorodne

- Podstawowym pojęciem w grafice komputerowej **wierzchołek**. Jest to punkt z określonym położeniem w przestrzeni 3D.
- W reprezentacji jednorodnej do zapisu położenia stosuje się wektory o liczbie elementów większej niż wymiar przestrzeni,

$$\begin{bmatrix} x & y & z & w \end{bmatrix} \leftrightarrow \begin{pmatrix} \frac{x}{w}, \frac{y}{w}, \frac{z}{w} \end{pmatrix}.$$

- Typowo ostatnia składowa w dla położenia ma wartość 1.
- ➤ Zastosowanie takiej reprezentacji pozwala na bardzo łatwą realizację podstawowych przekształceń geometrycznych.

Podstawowe rodzaje przekształceń

- ► Afiniczne¹:
 - ▶ identyczność,
 - skalowanie,
 - translacja,
 - obrót.
- Nieafiniczne:
 - rzutowanie ortogonalne,
 - rzutowanie perspektywiczne.

 $^{^1}$ czyli takie, które zachowują (w ogólności) proprorcje odległości między punktami na tej samej linii przed i po wykonaniu transformacji, ale nie muszą zachować położenia punktu początkowego; może być zareprezentowane jako iloczyn macierzy $n \times n$ i wektora $n \times 1$ z dodatkowym przesunięciem o wektor; n – wymiar przestrzeni.

Macierz przekształceń – identyczność

Macierz I jest także nazywana macierzą jednostkową.

$$\mathbf{I} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

Z reguły jest to domyślna macierz, od której rozpoczynamy wszelkie dalsze przekształcenia lub inne obliczenia.

Przykład obliczeń:

$$\begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1.0 \end{bmatrix} = \begin{bmatrix} x & y & z & 1.0 \end{bmatrix}$$

Macierz przekształceń – skalowanie

$$\mathbf{S} = \begin{bmatrix} S_x & 0.0 & 0.0 & 0.0 \\ 0.0 & S_y & 0.0 & 0.0 \\ 0.0 & 0.0 & S_z & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

- Gdy $S_x = S_y = S_z$ to mówimy o skalowaniu jednorodnym.
- Przykład obliczeń:

$$\begin{bmatrix} S_x & 0.0 & 0.0 & 0.0 \\ 0.0 & S_y & 0.0 & 0.0 \\ 0.0 & 0.0 & S_z & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1.0 \end{bmatrix} = \begin{bmatrix} S_x \cdot x & S_y \cdot y & S_z \cdot z & 1.0 \end{bmatrix}$$

Macierz przekształceń – translacja

$$\mathbf{T} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & T_x \\ 0.0 & 1.0 & 0.0 & T_y \\ 0.0 & 0.0 & 1.0 & T_z \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

- Reprezentacja jednorodna punktu pozwala wyrazić operację przez macierz.
- Przykład obliczeń:

$$\begin{bmatrix} 1.0 & 0.0 & 0.0 & T_x \\ 0.0 & 1.0 & 0.0 & T_y \\ 0.0 & 0.0 & 1.0 & T_z \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1.0 \end{bmatrix} = \begin{bmatrix} x + T_x & y + T_y & z + T_z & 1.0 \end{bmatrix}$$

Macierz przekształceń – obrót wokół osi x

$$\mathbf{R}_{\mathbf{x},\gamma} \; = \; \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & \cos \gamma & -\sin \gamma & 0.0 \\ 0.0 & \sin \gamma & \cos \gamma & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

- Współrzędne w osi wokół której następuje obrót nie ulegają zmianie!
- Przykład obliczeń:

$$\begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0.0 \\ 0.0 & \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1.0 \end{bmatrix} = \begin{bmatrix} x & -z & y & 1.0 \end{bmatrix}$$

Macierz przekształceń – obrót wokół osi y i z

$$\mathbf{R}_{\mathbf{y},\theta} \ = \begin{bmatrix} \cos\theta & 0.0 & \sin\theta & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ -\sin\theta & 0.0 & \cos\theta & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{z},\phi} \; = \; \begin{bmatrix} \cos\phi & -\sin\phi & 0.0 & 0.0 \\ \sin\phi & \cos\phi & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

Macierz przekształceń – obrót wokół wektora

Obrót o kąt skierowany ϕ (reguła prawej dłoni) wokół wektora ${f v}$.

$$\mathbf{v}^T = \begin{bmatrix} v_x & v_y & v_z & 0.0 \end{bmatrix}, \quad \|\mathbf{v}\| = 1$$

$$\begin{bmatrix} v_x^2(1-\cos\phi) + \cos\phi & v_x v_y (1-\cos\phi) - v_z \sin\phi & v_x v_z (1-\cos\phi) + v_y \sin\phi & 0.0 \\ v_x v_y (1-\cos\phi) + v_z \sin\phi & v_y^2(1-\cos\phi) + \cos\phi & v_y v_z (1-\cos\phi) - v_x \sin\phi & 0.0 \\ v_x v_z (1-\cos\phi) - v_y \sin\phi & v_y v_z (1-\cos\phi) + v_x \sin\phi & v_z^2 (1-\cos\phi) + \cos\phi & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}$$

Lewa górna część (3x3) powyższej macierzy może zostać wyrażona w prostszy sposób:

$$\mathbf{v} \ \mathbf{v}^{\mathsf{T}} \ (1 - \cos \phi) \ + \ \mathbf{I} \cos \phi \ + \begin{bmatrix} 0.0 & -v_z & v_y \\ v_z & 0.0 & -v_x \\ -v_y & v_x & 0.0 \end{bmatrix} \sin \phi$$

Uwaga!

Wektor v określa oś obrotu, przechodzącą przez początek układu współrzędnych!

Macierz patrzenia

Chcemy opisać położenie kamery jednoznacznie w przestrzeni:

- współrzędne położenia kamery $\mathbf{e} = (e_x, e_y, e_z)$,
- współrzędne punktu zainteresowania $\mathbf{p} = (p_x, p_y, p_z)$,
- ightharpoonup wektor orientacji, wskazujący górę dla kamery $\mathbf{u}=(u_x,u_y,u_z)$.

Kierunek patrzenia można opisać wektorem $\mathbf{f} = \frac{\mathbf{p} - \mathbf{e}}{\|\mathbf{p} - \mathbf{e}\|}; \ \mathbf{s} = (\mathbf{f} \times \mathbf{u}).$

Rzut wektora \mathbf{u} na płaszycznę prostopadłą do \mathbf{f} to $\mathbf{u}' = (\mathbf{f} \times \mathbf{u}) \times \mathbf{f}$.

$$\mathbf{M_{lookAt}} = \begin{bmatrix} s_{x} & u'_{x} & f_{x} & -e_{x} \\ s_{y} & u'_{y} & f_{y} & -e_{y} \\ s_{z} & u'_{z} & f_{z} & -e_{z} \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

Oznaczenia: s – side vector, u – up vector, f – forward vector, e – eye position.

Macierz rzutowania prostopadłego

$$\mathbf{P_{ortho}} = \begin{bmatrix} \frac{2}{right-left} & 0.0 & 0.0 & -\frac{right+left}{right-left} \\ 0.0 & \frac{2}{top-bottom} & 0.0 & -\frac{top+bottom}{top-bottom} \\ 0.0 & 0.0 & -\frac{2}{far-near} & -\frac{far+near}{far-near} \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

Macierz nie opisuje wprost przekształcenia nieafinicznego, a bryłę widzenia!

Rzutowanie perspektywiczne

Obszar pomiędzy zNear a zFar to tak zwana bryła widzenia.

Przy rzutowaniu perspektywicznym to tak zwany stożek ścięty (ang. frustum).

Macierz rzutowania perspektywicznego

$$\mathbf{P_{frustum}} = \begin{bmatrix} \frac{2 \cdot near}{right-left} & 0.0 & \frac{right+left}{right-left} & 0.0 \\ 0.0 & \frac{2 \cdot near}{top-bottom} & \frac{top+bottom}{top-bottom} & 0.0 \\ 0.0 & 0.0 & -\frac{far+near}{far-near} & -\frac{2 \cdot far \cdot near}{far-near} \\ 0.0 & 0.0 & -1.0 & 0.0 \end{bmatrix}$$

W szczególności to przekształcenie może być zadane przez:

- pole widzenia jako kąt fovy,
- ▶ proporcji obrazu $aspect = \frac{width}{height}$,
- odległości bliższej near i dalszej far przestrzeni przycięcia;
- wtedy obliczamy $top = near * tan(fovy \cdot \frac{\pi}{360})$ oraz bottom = -top, right = top * aspect, left = -right.

Realizacja w Legacy OpenGL (1/3)

Zasadniczo prawdziwe jest następujące wyrażenie:

$$ec{p}_{wyj$$
ściowe} = $M_{transformacji} \cdot ec{p}_{wej$ ściowe

- Współrzędne wyjściowe to faktycznie rysowane położenie wierzchołka.
- ► Współrzędne wejściowe stanowią argumenty funkcji glVertex().
- Zmianę macierzy transformacji uzyskuje się za pomocą szeregu funkcji...

Realizacja w Legacy OpenGL (2/3)

- ▶ Identyczność / cofnięcie wszystkich przekształceń: glLoadIdentity()
- Skalowanie:
 glScalef(S_x, S_y, S_z)
- Translacja / przesunięcie o wektor: glTranslatef(T_x, T_y, T_z)
- ► Obrót wokół osi X: glRotatef(angle, 1.0, 0.0, 0.0)
- Obrót wokół osi Y: glRotatef(angle, 0.0, 1.0, 0.0)
- ► Obrót wokół osi Z: glRotatef(angle, 0.0, 0.0, 1.0)

Realizacja w Legacy OpenGL (3/3)

- Obrót wokół osi wyznaczonej przez wektor $[V_x, V_y, V_z]$ i punkt [0, 0, 0]: glRotatef(angle, V_x, V_y, V_z)
- Przekształcenie patrzenia / przemieszczenie kamery na scenie: gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)
- Rzutowanie ortogonalne: gl0rtho(left, right, bottom, top, zNear, zFar)
- Rzutowanie perspektywiczne: gluPerspective(fovy, aspect, zNear, zFar)
- Określenie rozmiaru rzutni w pikselach: glViewport(x, y, width, height)

Nowości w przykładowym programie (1/3)

Wprowadzono szereg zmiennych pomocniczych.

```
1| viewer = [0.0, 0.0, 10.0]
2|
3| theta = 0.0
4| pix2angle = 1.0
5|
6| left_mouse_button_pressed = 0
7| mouse_x_pos_old = 0
8| delta_x = 0
```

- Zmienna viewer przechowuje informacje o położeniu obserwatora.
- Zmienna theta zawiera wartość kąta obrotu.
- Zmienna pix2angle to czynnik skalujący na potrzeby obliczeń,
 - żeby maksymalny ruch myszą odpowiadał obrotowi o 360°.
- Zmienna left_mouse_button_pressed zawiera stan przycisku myszy.
- Zmienna mouse_x_pos_old przechowuje ostatnie położenie w poziomie.
- Zmienna delta_x zawiera informację o różnicy położeń myszy.

Nowości w przykładowym programie (2/3)

Dodano funkcje związane z obsługą zdarzeń klawiatury i myszy.

```
1| def keyboard_key_callback(window, key, scancode, action, mods):
      if key == GLFW_KEY_ESCAPE and action == GLFW_PRESS:
          glfwSetWindowShouldClose(window, GLFW TRUE)
3
1 def mouse_motion_callback(window, x_pos, y_pos):
      global delta x
2
      global mouse x pos old
3
41
51
      delta x = x pos - mouse x pos old
      mouse_x_pos_old = x_pos
1| def mouse_button_callback(window, button, action, mods):
      global left mouse button pressed
3
      if button == GLFW_MOUSE_BUTTON_LEFT and action == GLFW_PRESS:
4
          left mouse button pressed = 1
51
      else:
6
          left mouse button pressed = 0
```

W funkcji main() dodano wywołania do obsługi zdarzeń.

```
1| def main():
2| # (...)
3| glfwSetKeyCallback(window, keyboard_key_callback)
4| glfwSetCursorPosCallback(window, mouse_motion_callback)
5| glfwSetMouseButtonCallback(window, mouse_button_callback)
6| # (...)
```


Nowości w przykładowym programie (3/3)

- ► Zmieniono parametry rzutowania perspektywiczne w zakresie [0.1; 300].
- Dodano funkcję example_object(), rysującą przykładowy model.
- W funkcji render() wykonano transformacje wierzchołków.

```
def render(time):
       global theta
3
       glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT)
4
       glLoadIdentity()
5
6
       gluLookAt(viewer[0], viewer[1], viewer[2],
                 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
8
9
10
       if left mouse button pressed:
           theta += delta x * pix2angle
11
12
       glRotatef(theta, 0.0, 1.0, 0.0)
13
14
       axes()
15
       example object()
16
17
18
       glFlush()
```


Poruszanie kamerą dookoła obiektu

Współrzędne kamery można określić za pomocą następujących równań,

$$\begin{aligned} x_{\text{eye}}(R, \theta, \phi) &= R \cdot \cos(\theta) \cdot \cos(\phi) \,, \\ y_{\text{eye}}(R, \theta, \phi) &= R \cdot \sin(\phi) \,, \\ z_{\text{eye}}(R, \theta, \phi) &= R \cdot \sin(\theta) \cdot \cos(\phi) \,. \end{aligned}$$

- ▶ Zakresy wartości kątów θ i ϕ to przedziały $0 \le \theta \le 2\pi$ oraz $0 \le \phi \le 2\pi$.
- lacktriangle Parametr heta to tak zwany kąt alewacji.

Uwaga na wektor wskazujący górę

Dla pewnego zakresu kąta elewacji, góra kamery powinna być odwrócona!

Koniec wprowadzenia.

Zadania do wykonania...

Zadania do wykonania (1)

Na ocenę 3.0 należy wprowadzić obracanie obiektu wokół osi X.

- ${\ -\ }$ przestudiować w jaki sposób zrealizowano obrót wokół osi Y o kąt theta,
- dodać zmienną pomocniczą phi i obsłużyć ruch myszą w pionie,
 - nadal bazować tylko na wciśniętym lewym przycisku myszy,
- intuicyjnie: obrót wokół osi X to obrót "góra-dół",
- wymagane będzie zmodyfikowanie funkcji:
 - mouse_motion_callback(),
 - render().

Zadania do wykonania (2)

Na ocenę 3.5 należy wprowadzić obsługę drugiego przycisku myszy.

- obsługa nowego przycisku w funkcji mouse_button_callback(),
- postać funkcji mouse_motion_callback() nie ulegnie zmianie,
- wprowadzić zmienną pomocniczą scale,
- w funkcji render():
 - wykonać zmianę wartości zmiennej scale,
 - przy ruchu z wciśniętym prawym przyciskiem myszy,
- użyć wartości scale do przeskalowania obiektu glScalef().

Zadania do wykonania (3)

Na ocenę 4.0 należy zrealizować poruszanie kamerą wokół modelu.

- nie powinno być konieczności modyfikacji funkcji obsługujących zdarzenia,
- zakomentować funkcje glRotatef() i glScalef() w funkcji render(),
- wykorzystać wartości zmiennych theta i phi do obliczenia $x_{
 m eye},\,y_{
 m eye}$ i $z_{
 m eye},\,y_{
 m eye}$
- $-\,$ zdarzenia prawego przycisku myszy użyć do zmiany wartości parametru R,
- użyć wartości x_{eye} , y_{eye} i z_{eye} jako argumentów funkcji <code>gluLookAt()</code>,
- wartości theta i phi przeskalować w funkcjach sin() i cos() przez $\frac{\pi}{180}$.

Zadania do wykonania (4)

Na ocenę 4.5 należy usprawnić poruszanie kamerą wokół modelu.

- wprowadzić ograniczenia w zakresie przybliżania/oddalania kamery,
- zapewnić poprawność przejść kamery wokół modelu,
 - w szczególności zwrócić uwagę co dzieje się "nad" i "pod" obiektem,
 - pomoce może być użycie modułu do ograniczenia wartości kątów do przedziału $[0;2\pi]$,
- wprowadzić możliwość przełączania między trybem obracania obiektu i trybem poruszania kamerą – na przykład za pomocą klawiatury.

Zadania do wykonania (5)

Na ocenę 5.0 należy zrealizować zadanie dodatkowe.

Wskazówka:

- wybrać jeden z przykładów zaproponowanych jako "zadania domowe",
 - dokument znajduje się na stronie prowadzącego,
 - uściślenie odnośnie Zadania 4.5 (Trójkat Sierpińskiego):
 - ruch ma działać analogicznie, jak w opisie poniżej,
- alternatywnie można wykonać swobodny pierwszoosobowy ruch kamery,
 - cel: ruch podobny do znanego z gier pierwszoosobowych,
 - wprowadzić zmienną pomocniczą dla kierunku patrzenia,
 - klawisze [w][s][a][d] posłużą do zmiany położenia obserwatora,
 - ruch myszką powinien wpływać na kierunek patrzenia,
 - punkt zainteresowania / kierunek patrzenia można wyznaczyć analogicznie do przypadku z kamerą poruszaną dookoła obiektu.