

Algorithms of Scientific Computing

Fast Fourier Transform (FFT)

Michael Bader Summer Term 2013

The Pair DFT/IDFT as Matrix-Vector Product

DFT and IDFT may be computed in the form

$$F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n \omega_N^{-nk}$$
 $f_n = \sum_{k=0}^{N-1} F_k \omega_N^{nk}$

or as matrix-vector products

$$\mathbf{F} = \frac{1}{N} \mathbf{W}^H \mathbf{f} \; , \qquad \qquad \mathbf{f} = \mathbf{W} \mathbf{F} \; ,$$

with a computational complexity of $\mathcal{O}(N^2)$.

Note that

$$\mathsf{DFT}(f) = \frac{1}{N} \overline{\mathsf{IDFT}(\overline{f})} \ .$$

A fast computation is possible via the divide-and-conquer approach.

Fast Fourier Transform for $N = 2^p$

Basic idea: sum up even and odd indices separately in IDFT

$$\rightarrow$$
 first for $n = 0, 1, \dots, \frac{N}{2} - 1$:

$$x_n = \sum_{k=0}^{N-1} X_k \omega_N^{nk} = \sum_{k=0}^{\frac{N}{2}-1} \left(X_{2k} \omega_N^{2nk} + X_{2k+1} \omega_N^{(2k+1)n} \right) .$$

We set $Y_k := X_{2k}$ and $Z_k := X_{2k+1}$, use $\omega_N^{2nk} = \omega_{N/2}^{nk}$, and get a sum of two IDFT on $\frac{N}{2}$ coefficients:

$$X_{n} = \sum_{k=0}^{N-1} X_{k} \omega_{N}^{nk} = \underbrace{\sum_{k=0}^{\frac{N}{2}-1} Y_{k} \omega_{N/2}^{nk}}_{:= V_{0}} + \omega_{N}^{n} \underbrace{\sum_{k=0}^{\frac{N}{2}-1} Z_{k} \omega_{N/2}^{nk}}_{:= Z_{n}}.$$

Note: this formula is actually valid for all $n=0,\ldots,N-1$; however, the IDFTs of size $\frac{N}{2}$ will only deliver the y_n and z_n for $n=0,\ldots,\frac{N}{2}-1$ (but: y_n and z_n are periodic!)

Fast Fourier Transform (FFT)

Do the same even vs. odd separation for indices $\frac{N}{2}, \dots, N-1$:

$$X_{n+\frac{N}{2}} = y_{n+\frac{N}{2}} + \omega_N^{(n+\frac{N}{2})} Z_{n+\frac{N}{2}}$$

Since $\omega_N^{\left(n+\frac{N}{2}\right)}=-\omega_N^n$ and y_n and z_n have a period of $\frac{N}{2}$, we obtain the so-called **butterfly scheme**:

$$x_n = y_n + \omega_N^n z_n$$

 $x_{n+\frac{N}{2}} = y_n - \omega_N^n z_n$

Fast Fourier Transform – Butterfly Scheme

Fast Fourier Transform – Butterfly Scheme (2)

Recursive Implementation of the FFT

$$rekFFT(X) \longrightarrow x$$

(1) Generate vectors Y and Z:

for
$$n = 0, ..., \frac{N}{2} - 1$$
: $Y_n := X_{2n}$ und $Z_n := X_{2n+1}$

(2) compute 2 FFTs of half size:

$$\operatorname{rekFFT}(\mathbf{Y}) \longrightarrow \mathbf{y}$$
 and $\operatorname{rekFFT}(\mathbf{Z}) \longrightarrow \mathbf{z}$

(3) combine with "butterfly scheme":

for
$$k = 0, \dots, \frac{N}{2} - 1$$
:
$$\begin{cases} x_k = y_k + \omega_N^k z_k \\ x_{k+\frac{N}{2}} = y_k - \omega_N^k z_k \end{cases}$$

Observations on the Recursive FFT

• Computational effort C(N) ($N = 2^p$) given by recursion equation

$$C(N) = \begin{cases} \mathcal{O}(1) & \text{for } N = 1 \\ \mathcal{O}(N) + 2C\left(\frac{N}{2}\right) & \text{for } N > 1 \end{cases} \Rightarrow C(N) = \mathcal{O}(N \log N)$$

- Algorithm splits up in 2 phases:
 - resorting of input data
 - combination following the "butterfly scheme"
- ⇒ Anticipation of the resorting enables a simple, iterative algorithm without additional memory requirements.

Sorting Phase of the FFT – Bit Reversal

Observation:

- even indices are sorted into the upper half, odd indices into the lower half.
- distinction even/odd based on least significant bit
- distinction upper/lower based on most significant bit
- ⇒ An index in the sorted field has the reversed (i.e. mirrored) binary representation compared to the original index.

Sorting of a Vector ($N=2^p$ Entries, Bit Reversal)

```
/** FFT sorting phase: reorder data in array X */
for(int n=0; n< N; n++) {
   // Compute p-bit bit reversal of n in j
   int j=0; int m=n;
  for(int i=0; i< p; i++) {
     i = 2*i + m%2: m = m/2:
   // if j>n exchange X[j] and X[n]:
   if (j>n) { complex<double> h;
     h = X[i]: X[i] = X[n]: X[n] = h:
```

Bit reversal needs $\mathcal{O}(p) = \mathcal{O}(\log N)$ operations

- \Rightarrow Sorting results also in a complexity of $\mathcal{O}(N \log N)$
- ⇒ Sorting may consume up to 10–30 % of the CPU time!

Iterative Implementation of the "Butterflies"

Iterative Implementation of the "Butterflies"

```
{Loop over the size of the IDFT}
for(int L=2; L<=N; L*=2)
   {Loop over the IDFT of one level}
   for(int k=0; k<N; k+=L)
       {perform all butterflies of one level}
       for(int j=0; j<L/2; j++) {
          {complex computation:}
          z \leftarrow \omega_{r}^{j} * X[k+j+L/2]
          X[k+j+L/2] \leftarrow X[k+j] - z
          X[k+j] \leftarrow X[k+j] + z
```

- k-loop und j-loop are "commutable"!
- How and when are the ω_r^j computed?

Iterative Implementation – Variant 1

```
/** FFT butterfly phase: variant 1 */
for(int L=2; L<=N; L*=2)
  for(int k=0; k<N; k+=L)
     for(int i=0; i<L/2; i++) {
        complex<double> z = omega(L,i) * X[k+i+L/2];
        X[k+i+L/2] = X[k+i] - z;
        X[k+i] = X[k+i] + z:
```

Advantage: consecutive access to data in field X

- suitable for vectorisation
- ⇒ good cache performance due to prefetching (stream access) and usage of cache lines

Disadvantage: multiple computations of $\omega_{\rm r}^{\rm J}$

Iterative Implementation – Variant 2

```
/** FFT butterfly phase: variant 2 */
for(int L=2; L<=N; L*=2)
  for(int i=0; i<L/2; i++) {
     complex<double> w = omega(L,i);
     for(int k=0; k< N; k+=L) {
        complex<double> z = w * X[k+j+L/2];
        X[k+i+L/2] = X[k+i] - z;
        X[k+i] = X[k+i] + z:
```

Advantage: each ω_{t}^{j} only computed once

Disadvantage: "stride-L"-access to the array X

- ⇒ worse cache performance (inefficient use of cache lines)
- not suitable for vectorisation

L-Oriented Implementation – Illustration

Separate Computation of $\omega_{\rm I}^{\rm J}$

necessary: N – 1 factors

$$\omega_2^0, \omega_4^0, \omega_4^1, \dots, \omega_L^0, \dots, \omega_L^{L/2-1}, \dots, \omega_N^0, \dots, \omega_N^{N/2-1}$$

are computed in advance, and stored in an array w, e.g.:

$$\begin{array}{c} \text{for(int L=2; L<=N; L*=2)} \\ \text{for(int j=0; j$$

- Variant 2: access on w in sequential order
- Variant 1: access on w local (but repeated)

Cache Efficiency – Variant 1 Revisited

```
/** FFT butterfly phase: variant 1 */
for(int L=2; L<=N; L*=2)
  for(int k=0; k<N; k+=L)
    for(int j=0; j<L/2; j++) {
        complex<double> z = w[L-j-1] * X[k+j+L/2];
        X[k+j+L/2] = X[k+j] - z;
        X[k+j] = X[k+j] + z;
}
```

Observation:

- each L-loop traverses entire array X
- in the ideal case $(N \log N)/B$ cache line transfers (B the size of the cache line)

Compare with recursive scheme:

- if L < M (M the cache size), entire FFT of size L could be computed in cache
- ideal case then only L/(MB) cache line transfers

Butterfly Phase with Loop Blocking

```
/** FFT butterfly phase: loop blocking for k */
for(int L=2: L<=N: L*=2)
 for(int kb=0; kb<N; kb+=M)
   for(int k=kb; k< kb+M; k+=L)
     for(int i=0; i<L/2; i++) {
        complex<double> z = w[L-i-1] * X[k+i+L/2];
        X[k+i+L/2] = X[k+i] - z;
        X[k+i] = X[k+i] + z:
```

Question: can we make the L-loop an inner loop?

- kb-loop and L-loop may be swapped, if M > L
- however, we assumed that N > M ("data does not fit into cache")
- we thus need to split the L-loop into a phase L=2..M (in cache) and a phase L=2*M..N (out of cache)

Butterfly Phase with Loop Blocking (2)

```
/** perform all butterfly phases of size M */
for(int kb=0: kb < N: kb+=M)
 for(int L=2: L<=M: L*=2)
   for(int k=kb: k< kb+M: k+=L)
     for(int i=0: i< L/2: i++) {
        complex<double> z = w[L-i-1] * X[k+i+L/2];
        X[k+i+L/2] = X[k+i] - z;
        X[k+i] = X[k+i] + z:
/** perform remaining butterfly levels of size L>M */
for(int L=2*M; L<=N; L*=2)
  for(int k=0: k<N: k+=L)
     for(int i=0; i<L/2; i++) {
        complex<double> z = w[L-i-1] * X[k+i+L/2];
        X[k+i+L/2] = X[k+i] - z:
        X[k+i] = X[k+i] + z:
```


Loop Blocking and Recursion – Illustration

