

Prof. Marcus Vinicius Lamar

Universidade de Brasília

Departamento de Ciência da Computação

Aula 0 Apresentação e Motivação

Perguntas que serão respondidas no curso:

- Como os programas escritos em linguagem de alto nível (C, Java, etc), são traduzidos em linguagem do processador e como o processador os executa?
- Qual é a interface entre software e hardware e como o software diz ao hardware o que fazer?
- O que determina o desempenho de um programa e como o programador pode melhorá-lo?
- Quais técnicas são usadas pelos projetistas de hardware para aumentar o desempenho e a eficiência energética?
- Quais são as razões e as consequências da troca do paradigma de processamento sequencial para o processamento paralelo?

Por que aprender esse assunto?

Você deseja entender como os modernos processadores funcionam 🙉

Você deseja criar seu próprio processador 😂

Você deseja desenvolver softwares eficientes 😏

- Você precisa tomar uma decisão em relação a uma compra ou prestar consultoria 🐽
- Está no currículo como disciplina obrigatória

O que é:

Organização e Arquitetura de Computadores?

Arquitetura do conjunto de instruções

Organização da máquina

Introdução

Computadores:

- **Diferentes tipos**: Servidores, desktops, notebooks, tablets, smartphones.
- **Diferentes usos**: escritório, design gráfico, bancos de dados, computação científica (simulação), redes sociais, CP2077, CS, games, games,
- Diferentes fabricantes: HP, IBM, Dell, ASUS, Sun, Apple, Samsung,...
- **Diferentes processadores:** Intel, AMD, IBM, Motorola, HP, Sun, MIPS, ARM, Apple (IBM, Intel, ARM(Samsung, TSMC)), ...
- Diferentes tecnologias subjacentes : SSD, HD, Placa-mãe, RAM, GPU,

Assim: diferentes custos e diferentes desempenhos!

- Melhor maneira de aprender:
 - Concentrar em um exemplo específico, aprender como ele funciona e generalizar, exemplificando os conceitos em dispositivos modernos.

Ciência ×Tecnologia

- Servidores
- Pessoais
- Embarcados

Servidores

- □ Recursos compartilhados entre vários usuários
- □ Geralmente sistemas de software específicos
- Ex.: Desde simples servidores de arquivo, webservers, servidores em nuvem, supercomputadores
- Alta dependabilidade (confiabilidade, segurança, disponibilidade e mantenabilidade), geralmente alto custo.
- Pessoais

https://www.google.com/about/datacenters/inside/streetview/

Embarcados

FaceBook

Fugaku (7.630.848 cores ARM)

- Servidores
- Pessoais
 - □ Recursos utilizados geralmente por um único usuário
 - □ Geralmente programas de terceiros
 - Ex.: Desktops, notebooks, tablets, smartphones, etc.
 - □ Compromisso entre custo e desempenho para o usuário
- Embarcados

- Servidores
- Pessoais

Casa inteligente

- □ Recursos projetados para fins específicos
- Software de difícil customização, geralmente integrado ao hardware.
- Ex.: Eletroeletrônicos (TV, DVD, Conversores, eletrodomésticos,...),
 Automóveis/Barcos/Aviões, Industriais, Brinquedos, Robôs, IoT.
- Geralmente baixo custo e baixa dependabilidade, embora alguns precisem de baixa taxas de falhas (sistemas redundantes).

Aeronaves

Veículos autônomos

Era Pós-PC

1940 - 1970: *Criação*. Grandes computadores (ENIAC)

1970 - 2000: Popularização. Computadores pessoais (PCs)

2000 - hoje: *Individualização*. Dispositivos portáteis pessoais (celular), embarcados (TV), internet das coisas (IoT),

computação vestível, computação em nuvem

As oito grandes ideias (do Patterson) na Arquitetura e Organização de Computadores

Projetos considerando a Lei de Moore

Uso da abstração para simplificar os projetos

Tornar o caso comum rápido

Aumentar o desempenho via paralelismo

Aumentar o desempenho via pipeline

Aumentar o desempenho via predição

Hierarquia da memória

Dependabilidade via redundância

Placa mãe para Pentium IV

Placa mãe para Core2

Placa mãe para Core i7

Obs.: AMD Fusion 16

Placa mãe para Core i7 de 3ª Geração

Placa mãe para Core i7 6ª geração

Placa mãe para Core i9 8ª geração

Placa mãe para Core i9 9ª geração

SoC – System on Chip Chipset integrado

Usado em portáteis e embarcados

Placa mãe para Core i9 10^a geração

Comet Lake Ice Lake

Z490 – mesma do 10^a geração

Tiger Lake

Processamento Heterogêneo: CPU+µCPU+GPU+DSP+ASIC+FPGA+Interfaces

Ex.: Smartphones ⇒ Arm big.LITTLE