GRAPHE ET ONTOLOGIES

FOURMOND Jérôme

Sous la direction de Dr. RICHER Jean-Michel Dr. AIT EL MEKKI Touria

L'auteur du présent document vous autorise à le partager, reproduire, distribuer et communiquer selon les conditions suivantes :

- Vous devez le citer en l'attribuant de la manière indiquée par l'auteur (mais pas d'une manière qui suggérerait qu'il approuve votre utilisation de l'œuvre).
- Vous n'avez pas le droit d'utiliser ce document à des fins commerciales.
- Vous n'avez pas le droit de le modifier, de le transformer ou de l'adapter.

Consulter la licence creative commons complète en français : http://creativecommons.org/licences/by-nc-nd/2.0/fr/

Mes remerciements s'adressent en particulier à mes encadrants et tuteurs, Jean-Michel Richer et Touria Ait El Mekki, qui ont su se montrer présents et intéressés, et m'ont soutenu dans ce projet.

Merci à la faculté des Sciences de l'Université d'Angers qui nous a, à mes collègues d'autres projets et moi-même, autorisés à utiliser leurs locaux.

Je n'oublie pas mes compagnons de promotion, qui ont su se montrer distrayant durant des périodes nécessaires mais tout aussi sérieux et inspirant lorsque le besoin se faisait sentir.

Merci.

TABLE DES MATIERES

INTRODUCTION

- 1. Le sujet
- 2. Les objectifs
- 3. Les prérequis
- 4. N.B
- I. VISION UNE SANS ONTOLOGIE
- 1. Le Framework
- 2. La Visualisation
- 3. Conclusion
- II. VISION DEUX AVEC ONTOLOGIE
- 1. XML, DTD et XSD
- 1.1. XML
- 1.2. DTD et XSD
- 2. Le nouveau Framework
- 2.1. Les sommets
- 2.2. Les relations
- 2.3. Le graphe
- 3. Graphe & Ontologies
- III. L'APPLICATION
- IV. CONCLUSION
- V. BIBLIOGRAPHIE

Introduction

1. Le sujet

On désire créer une application en **JAVA** pour la navigation dans un document électronique à l'aide d'un graphe d'ontologie afin d'en faciliter l'étude.

2. Les objectifs

Il est demandé dans un premier temps de développer un modèle pour la gestion des graphes ainsi que la partie visualisation (affichage des sommets, des arcs, zoom, clic sur un sommet, sur un arc...).

Cette première partie fait abstraction des données stockées au sein des sommets et des arcs et elle doit pouvoir être adaptée en fonction du sujet à traiter.

Dans un second temps, on désire mettre en œuvre ce modèle en l'appliquant aux graphes d'ontologie :

- Elaborer un graphe à partir d'une ontologie (XML)
- Faire le lien entre le texte (le document, fichier XML DocBook) et les nœuds du graphe.

3. Les prérequis

Il est nécessaire de savoir manipuler **Java**, la librairie **Swing** de ce dernier, et les fichiers **XML**.

4. N.B

Le développement du projet a pu être suivi sur **GitHub** au lien suivant :

https://github.com/jfourmond/Graphe-Et-Ontologies

Il est à noter que la librairie **Java FX** pour les interfaces graphiques a été utilisée en remplacement de la libraire **Swing** dont le ressenti et le visuel n'était pas suffisant pour une application qui devait s'avérer agréable pour l'utilisateur.

Dans le cadre de la lecture et de l'écriture de fichier **XML**, la libraire externe **JDOM** a été utilisée. Fournissant des outils simples d'accès et rapides, elle semblait adéquate au projet.

I. Vision Une - Sans Ontologie

1. Le Framework

La première partie de développement a débuté par la mise en place d'un framework pour la gestion de graphe. Ce dernier s'est donc tout d'abord composé de trois principales classes :

- *Tree*, représentant un arbre / graphe non orienté, composée de deux listes, l'une de sommets, l'autre d'arcs
 - *Vertex*, représentant une interface qui devait être implémenté pour être utilisé dans le graphe
 - *Edge*, représentant un arc, composée de deux sommets et d'une valeur (le libellé de l'arc).

2. La Visualisation

Le développement de l'interface graphique lors de cette première vision s'est effectuée à l'aide de Swing, quatre classes ont été produites dans ce but :

- *VertexView*: un **JComponent** dessinant un sommet du graphe sous la forme d'un cercle, uniquement.
- EdgeView: un JComponent dessinant un arc entre deux VertexView
- *TreeView*: un **JPanel** associant les sommets du **Tree** avec les **VertexView** et les arcs avec les **EdgeView**, et attribuant également différents listeners.
- Window: la fenêtre contenant TreeView

3. Conclusion

La réalisation a rapidement été faîte que l'interface ainsi produite manquait de confort et d'intérêt pour l'utilisateur. **Java FX**, permettant de réaliser des interfaces graphiques évoluées et modernes, s'est avéré être un candidat plus qu'acceptable au remplacement de la librairie **Swing**. Cette perturbation a donc mené à une découverte de la librairie et à de nombreux essais.

L'interface n'était pas le seul changement à opérer. Après avoir produit le framework, il s'est avéré qu'il ne sciait pas à l'idée du projet. Ce dernier était générique, le développeur pouvait manipuler des entiers comme des chaînes de caractères, mais le rôle de remplacement des ontologies n'était pas appliqué, elles devaient pouvoir se lire dans un graphe. Il devait donc devenir plus relationnel.

II. Vision Deux - Avec Ontologie

1. XML, DTD et XSD

1.1. XML

Le fichier XML d'une ontologie se présente ainsi :

```
<?xml version="1.0" encoding="UTF-8"?>
<IndexSource>
    <ENTREE id="1" nom="Pays-De-La-Loire">
        <RELATION nom="appartient à la région" />
        <RELATION nom="appartient au département du" />
    </ENTREE>
    <ENTREE id="2" nom="Maine-Et-Loire">
        <RELATION nom="appartient à la région">
            <LIEN>1</LIEN>
        </RELATION>
        <RELATION nom="appartient au département du" />
    </ENTREE>
    <ENTREE id="3" nom="Loire-Atlantique">
        <RELATION nom="appartient à la région">
            <LIEN>1</LIEN>
        </RELATION>
        <RELATION nom="appartient au département du" />
        </ENTREE>
</IndexSource>
```

La déduction étant que la définition d'un sommet s'effectue par la balise ENTREE. La balise RELATION représente une relation et peut contenir une ou plusieurs balises LIEN qui effectuent un lien/un arc vers un second sommet dont l'identifiant est détaillé.

Par exemple, correspondant au fichier précédent :

Deux relations:

- appartient à la région
- appartient au département du

Trois sommets:

- Pays-De-La-Loire, portant l'identifiant 1
- *Maine-Et-Loire*, portant l'identifiant 2
- Loire-Atlantique, portant l'identifiant 3

Des arcs/liens:

- Maine-Et-Loire appartient à la région Pays-De-La-Loire (1)
- Loire-Atlantique appartient à la région Pays-De-La-Loire (1)

1.2. DTD et XSD

Pour une utilisation aisée et une validation du fichier XML dans l'application, il était nécessaire de créer un ou des documents permettant de décrire un modèle à respecter.

Une **Document Type Definition** ¹a donc été produite à cet effet :

```
<!ELEMENT IndexSource (ENTREE*) >
<!ELEMENT ENTREE (ATTRIBUT*, RELATION*, RENVOIS?) >
```

¹ **DTD** dans la suite du document

```
<!ELEMENT RELATION (LIEN*) >
<!ELEMENT ATTRIBUT EMPTY>
<!ELEMENT LIEN (#PCDATA) >
<!ELEMENT RENVOIS (LIEN*) >
<!ATTLIST IndexSource
                                                   CDATA #IMPLIED >
                                  corpus
<!ATTLIST ENTREE
                                                   CDATA #REQUIRED
                                  id
                                  nom
                                                   CDATA #REQUIRED >
<!ATTLIST ATTRIBUT
                                                   CDATA #REQUIRED
                                  valeur
                                                   CDATA #REQUIRED >
<!ATTLIST RELATION
                                                   CDATA #REQUIRED >
                                  nom
```

Tout fichier **XML** sera validé sur cette **DTD** avant de pouvoir être modélisé par l'application. **JDOM** ne bénéficiant pas encore d'une fonctionnalité de validation à l'exécution sur **DTD**, il a fallu convertir ce fichier sous la forme d'un **XML Schema**².

2. Le nouveau Framework

La notion de relation a modifié l'utilité du framework. Un graphe (**Tree**) ne contenait plus une liste d'arcs mais désormais une liste de **Relation**.

Le code a donc été profondément modifié.

Des exceptions ont également été créées pour la gestion de chacune des classes principales.

2.1. Les sommets

L'interface **Vertex** est devenu une classe à part entière. Un sommet est désormais composé d'un identifiant devant être unique une fois ajouté au graphe, d'un nom et d'une collection associant clé et valeur (**Map**).

```
Vertex sommet = new Vertex("1"); // Création d'un sommet avec l'ID "1"
sommet.add("Nom"); // Création d'un attribut "Nom"
sommet.set("Nom", "Jerome"); // Edition de la valeur de l'attribut "Nom"
String nom = sommet.get("Nom"); // Récupération de la valeur de l'attribut "Nom"
```

2.2. Les relations

La classe **Relation** est une nouveauté de cette seconde vision de l'application. Elle décrit une relation. Elle est définie par un nom, devant être unique une fois ajouté au graphe, et d'une liste de paire de **Vertex**.

A cet effet une classe générique Pair a été écrite.

Une paire de sommet décrit un arc de cette relation.

```
Vertex v1 = new Vertex("1");
Vertex v2 = new Vertex("2");
Relation relation = new Relation("est voisin de");// Création d'une relation
Pair<Vertex, Vertex> pair = new Pair<>(v1, v2);
relation.add(pair); // Ajout de la paire à la relation
```

² **XSD** dans la suite du document

2.3. Le graphe

La nouvelle modélisation de **Tree** comporte désormais une liste de **Vertex**, une liste de **Relation** ainsi qu'un fichier nécessaire pour le chargement et la sauvegarde.

L'ajout de sommet :

L'ajout d'un arc, après création d'une relation :

2.4. Lecture & Ecriture

JDOM permet une lecture et une écriture aisée des fichiers **XML**. Deux classes, chacune dans un traitement précis, respectivement **TreeLoader** et **TreeSaver**, sont utilisées. Elles héritent de la classe **Task** de la librairie **Java FX**, ce qui permet de les utiliser tel des threads ou d'envoyer des *mises à jour* aux composants graphiques.

2.4.1. **Lecture**

La procédure de lecture d'un fichier XML se découpe en plusieurs étapes :

- 1. Validation du fichier sur le schéma
- 2. Lecture de toutes les balises *ENTREE*
 - 1. Construction des Vertex en récupérant les attributs id et nom
 - 2. Lecture de toutes les balises *ATTRIBUT* pour ajout dans le sommet courant
- 3. Nouvelle lecture de toutes les balises *ENTREE*
 - 1. Lecture de toutes les balises *RELATION* pour création des relations
 - a. Construction des Relation en récupérant l'attribut nom
 - b. Lecture de toutes les balises LIEN et construction des arcs en récupérant le contenu de la balise

2.4.2. **Ecriture**

La procédure d'écriture du graphe dans un fichier **XML** s'effectue par une écriture de tous les **Vertex** et des relations.

Pour chaque sommet, une balise *ENTREE* est créée. Les attributs de cette dernière, *id* et *nom*, sont remplis à partir des propriétés *id* et *nom* du sommet. A l'intérieur de cette balise, on ajoutera pour chaque paire clé/valeur de la **Map** d'attributs, une balise *ATTRIBUT* ayant pour attributs :

nom : la clévaleur : la valeur

L'écriture de la balise *ENTREE* se conclut par l'insertion de toutes les balises *RELATION* correspondantes aux relations du graphe. Pour chacune de ses relations, une vérification et une écriture est effectuée quant à la présence de paires dont l'origine est le sommet actuel sous la forme de balise *LIEN*.

3. La visualisation

Nouvelle librairie dit nouvelle gestion de la visualisation. Les classes produites lors de la première vision grâce à la librairie **Swing** ont donc été profondément modifiées, seules ces dernières seront traitées et détaillées

3.1. VertexView

Le modèle visuel d'un sommet est construit dans la classe *VertexView*. La classe hérite de *Group*, et est composé d'un cercle et de deux labels, respectivement pour l'identifiant et le nom du *Vertex* (affichables à tour de rôle).

Le Vertex ainsi modélisé est lié à son visuel par un attribut.

3.2. EdgeView

EdgeView hérite également de *Group*. La classe est composée d'une ligne et d'un label, construit sur la base de deux **VertexView** (origine et fin), et du nom de la relation associée. Une couleur peut également lui être attribuée, étant par défaut du noir.

3.3. TreeView

TreeView permet de faire le lien entre la visualisation complète et les composants graphiques du graphe. Héritant de *BorderPane*, le panel contient le visuel de l'application : barre de menu, graphe, liste des sommets et liste des relations.

Les évènements pouvant être déclenchés, y sont créés en son sein.

3.4. Autre

De nombreuses autres classes ont été mises en place.

Des interfaces pour :

- L'ajout de sommet
- L'ajout de relation
- L'ajout d'arcs...
- SplashScreen

${\bf III.} \textbf{L'Application}$

IV.Conclusion

V.Bibliographie

Android: http://developer.android.com/reference/packages.html

Scripts: http://developer.android.com/tools/help/adb.html

Qt: http://doc.qt.io/qt-4.8/ et Qt Assistant

ENGAGEMENT DE NON PLAGIAT

Nous, soussignons **FOURMOND Jérôme** et **NOEL Florentin** déclarons être pleinement conscients que le plagiat de documents ou d'une partie d'un document publiée sur toutes formes de support, y compris l'internet, constitue une violation des droits d'auteur ainsi qu'une fraude caractérisée. En conséquence, nous nous engageons à citer toutes les sources que nous avons utilisées pour écrire ce rapport.

signé par les étudiants le ../../....

Cet engagement de non plagiat doit être signé et joint à tous les rapports, dossiers, mémoires.

Présidence de l'université 40 rue de rennes – BP 73532 49035 Angers cedex Tél. 02 41 96 23 23 | Fax 02 41 96 23 00

