(6) Pruebe todo Γ consistente maximal realiza la disyunción: para toda φ, ψ , se tiene $\varphi \lor \psi \in \Gamma$ si y sólo si $[\varphi \in \Gamma \text{ ó } \psi \in \Gamma]$.

$$(\Rightarrow)$$

$$\varphi \vee \psi \in \Gamma \implies \varphi \in \Gamma \vee \psi \in \Gamma$$

$$\equiv h(\operatorname{aracterización} de (\Longrightarrow) \}$$

$$\varphi \vee \psi \in \Gamma \implies (\varphi \not \in \Gamma \Longrightarrow \psi \in \Gamma)$$

Probemos que $\Psi \in \Gamma$ suponiendo $\Psi \vee \Psi \in \Gamma$ & $\Psi \not\in \Gamma$.

Como Γ es consistente maximal & $P \not\in \Gamma$ Vego por Lema 33 $\neg P \in \Gamma$

Por definición 23 D atestiqua MHV

Como Γ es consistente maximal, por lema 32 Γ es certado por derivaciones i.e. $\Gamma \vdash \Psi \implies \Psi \in \Gamma$

$$(\Leftarrow)$$

$$\varphi \vee \psi \in \Gamma \iff \varphi \in \Gamma \vee \psi \in \Gamma$$

Probemos que $\Psi \vee \Psi \in \Gamma$ suponiendo $\Psi \in \Gamma \vee \Psi \in \Gamma$

Sea
$$\mathbb{D} \in \mathbb{D}$$
 tal que $\mathbb{D} := \frac{\psi}{\psi \vee \phi} \mathbb{I}_{v}$

Wego
$$concl(D) = \Psi \vee \varphi$$

 $Hip(D)$
 $= \{Def de Hip con respecto a (VI) \}$
 $\{\Psi\}$
 $\subseteq \{Hipotesis\}$

Por definición 23 D atestiqua (T - 4 v P

Como Γ es consistente maximal, por lema 32 Γ es certado por derivaciones i.e. $\Gamma \vdash \psi \lor \varphi \implies \psi \lor \varphi \in \Gamma$

Queda probado que todo consunto consistente maximal realiza la disjunción