Analys i en variabel

SF1673 (HT25)

Contents

-	m1	D 1	NT 1	
Ι.	The	Keal	Numbers	١

- 1.1. Reals
 - 1.1.1. Prerequisites
 - 1.1.2. Comparison
 - 1.1.3. Bounds
- 1.2. Cardinality
- 1.3. Topology
 - 1.3.1. Points
 - 1.3.2. Open and Closed Sets
- 1.3.3. Compactness

2. Limits

- 2.1. SEQUENCES
 - 2.1.1. Bounded
 - 2.1.2. Cauchy
- 2.2. Series
- 2.3. Functions
- 2.4. Continuity
 - 2.4.1. Existence
 - 2.4.2. Composition
 - 2.4.3. Results

3. Calculus

- 3.1. The Derivative
 - 3.1.1. Differentiation
 - 3.1.2. Function Character
 - 3.1.3. The Mean Value Theorems
 - 3.2. Function Graphs
 - 3.2.1. Asymptotes
 - 3.2.2. Convexity
 - 3.2.3. Points
 - 3.3. Taylor's Theorem
 - 3.3.1. Function Order
 - 3.4. The Riemann Integral
 - 3.4.1. Definition
 - 3.4.2. Properties
 - 3.4.3. Techniques
 - 3.5. Ordinary Differential Equations

1. The Real Numbers

1.1. Reals

1.1.1. Prerequisites

Theorem 1.1.1 (Induction)

(ii) $n \in S \Longrightarrow n+1 \in S$ (inductive step), then $S = \mathbb{N}$.

Let $S \subseteq \mathbb{N}$. If (i) $1 \in S$, and

Definition 1.1.2 (Injective/Surjective/Bijective)

equivalently if $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$.

 $f: X \to Y$ is injective (or one-to-one) if $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$ or

f is surjective if $\forall y \ \exists x : f(x) = y$. f is bijective if is both injective and surjective or equivalently if each y is

mapped to exactly one x. 1.1.2. Comparison

Definition 1.1.3 (Equality) $a = b \iff (\forall \varepsilon > 0 \Rightarrow |a - b| < \varepsilon)$ Theorem 1.1.4 (Triangle Inequalities)

Axiom 1.1.5 (Supremum Property or Axiom of Completeness) Every bounded, nonempty set of real numbers has a least upper bound.

 $s = \sup A \iff \forall \varepsilon > 0 \ \exists a \in A : s - \varepsilon < a.$

 $A_n = \{ \pm p/q : p, q \in \mathbb{N}_+, \gcd(p, q) = 1, p + q = n \}$

 $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$

 $\bigcap_{n=1}^{\infty}I_{n}\neq\emptyset$

1.2. CARDINALITY Definition 1.2.1 (Cardinality) A has the same *cardinality* as B if there exists a bijective $f: A \to B$.

Theorem 1.2.3 (Countability of \mathbb{Q} , \mathbb{R}) O is countable. *Proof.* Let $A_1 = \{0\}$ and let for all $n \geq 2$. Each A_n is finite and every rational numbers appears in

 \mathbb{R} is uncountable. *Proof.* Cantor's diagonalization method. \mathbb{I} is uncountable. *Proof.* $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ where \mathbb{Q} is countable.

Theorem 1.3.3 (Nested Interval Property) Let (I_n) be a nested sequence of nonempty closed and bounded intervals with . Then

1.3.2. Open and Closed Sets

Theorem 1.3.5 (Clopen Sets) \mathbb{R} and \emptyset are *clopen* (both opened and closed).

A set K in a topological space is *compact* if every open cover has a finite subcover.

(i) $|a+b| \le |a| + |b|$ (ii) $|a-b| \le |a-c| + |c-b|$ (iii) $|a-b| \ge ||a| - |b||$ The reverse triangle inequality (iii) is seldom used. 1.1.3. Bounds

(i) Note The same does not apply for the rationals. Definition 1.1.6 (Least Upper Bound) Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then,

Definition 1.2.2 (Countable/Uncountable) A is countably infinite if $\mathbb{N} \sim A$. A is *countable* if it is finite or countably infinite. Otherwise, A is uncountable.

exactly one set.

Theorem 1.2.4 (Density of \mathbb{Q} in \mathbb{R}) (ii) $\forall y \in \mathbb{R} \ \exists (r_n) \in \mathbb{Q} : (r_n) \to y$ 1.3. Topology 1.3.1. Points

(i) $\forall a < b \in \mathbb{R} \ \exists r \in \mathbb{Q} : a < r < b$

Definition 1.3.1 (Limit Point)

Definition 1.3.4 (Open/Closed Set)

x is a limit point of A if every $V_{\varepsilon}(x)$ intersects A at some point other than x. Theorem 1.3.2 (Sequential Limit Point) x is a limit point of A if $x = \lim a_n$ for some $(a_n) \subseteq A : a_n \neq x \ \forall n \in \mathbb{N}$.

. In particular, there exists $a \in \bigcap_{n=1}^{\infty} I_n$.

 $A \subseteq \mathbb{R}$ is open if $\forall a \in A \ \exists V_{\varepsilon}(a) \subseteq A$ or equivalently if its complement is closed. $A \subseteq \mathbb{R}$ is *closed* if it contains its limit points or equivalently if its complement is open.

Theorem 1.3.6 (Unions/Intersections) (i) Arbitrary unions of open sets are open; finite intersections of open

A set $K \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded. (i) Note

sets are open. (ii) Arbitrary intersections of closed sets are closed; finite unions of closed sets are closed. 1.3.3. Compactness Definition 1.3.7 (Compact)

Theorem 1.3.8 (Heine–Borel)

Compactness is like a generalization of closed intervals.

Definition 2.1.2 (Convergence) A sequence converges to a if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : n \ge N \Longrightarrow |a_n - a| < \varepsilon$ or equivalently if for any $V_{\varepsilon}(a)$ there exists a point in the sequence after which all terms are in $V_{\varepsilon}(a)$. In other words if every ε -neighborhood contains all but a finite number of the terms in (a_n) . We write this $\lim_{n\to\infty} a_n = \lim a_n = a$ or $a_n \to a$. Example. Template of a typical convergence proof: (i) Let $\varepsilon > 0$ be arbitrary. (ii) Propose an $N \in \mathbb{N}$ (found before writing the proof).

2. Limits

2.1. SEQUENCES

(iii) Assume $n \geq N$.

(iv) Show that $|a_n - a| < \varepsilon$.

Theorem 2.1.3 (Uniqueness of Limits)

Definition 2.1.1 (Sequence)

A sequence is a function whose domain is \mathbb{N} .

The limit of a sequence, if it exists, is unique. 2.1.1. Bounded Definition 2.1.4 (Bounded) A sequence is bounded if $\exists M > 0 : |a_n| < M \ \forall n \in \mathbb{N}$. Theorem 2.1.5 (Convergent) Every convergent sequence is bounded. If a sequence is monotone and bounded it converges. Subsequences of a convergent sequence converge to the same limit.

Theorem 2.1.6 (Bolzano–Weierstrass) Every bounded sequence contains a convergent subsequence. 2.1.2. Cauchy Definition 2.1.7 (Cauchy Sequence) A sequence (a_n) is a Cauchy sequence if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : m,n \geq N \Longrightarrow |a_n - a_m| < \varepsilon.$ Theorem 2.1.8 (Cauchy Criterion)

A sequence converges if and only if it is a Cauchy sequence. 2.2. SERIES Definition 2.2.1 (Infinite Series) Let $(a_j)_{i=0}^{\infty}$ and let $(s_n)_{n=0}^{\infty}$. The sum of the infinite series is defined as $\sum_{j=0}^{\infty} a_j = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{j=0}^n a_j.$ If $a_i \geq 0$ for every j we say that the series is positive. Caution Beware of treating infinite series like elementary algebra, e.g., by

rearranging terms. Theorem 2.2.2 (Cauchy Criterion for Series) The series $\sum_{k=0}^{\infty} a_k$ converges if and only if $\forall \varepsilon > 0 \; \exists N : n > m > N \Longrightarrow \left| a_m + a_{m+1} + \dots + a_{n-1} + a_n \right| < \varepsilon.$ Corollary 2.2.3 (Series Term Test) If $\sum_{k=1}^{\infty} a_k$ converges, then $a_k \to 0$. However, the reverse implication is Theorem 2.2.4 The series $\sum_{j=1}^{\infty} 1/j$ is divergent.

Theorem 2.2.5 The series $\sum_{j=1}^{\infty} 1/j^p$ converges if and only if p > 1. Theorem 2.2.6 (Ratio Test) Let (a_n) be a sequence of positive terms and define $L = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$ Then: (i) If L < 1, the series $\sum_{n=1}^{\infty} a_n$ converges.

(ii) If L > 1 (including $L = \infty$), the series diverges. (iii) If L=1, the test is inconclusive. Theorem 2.2.7 (Cauchy Condensation Test) Let (a_n) be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges. Theorem 2.2.8 Let $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} b_j$ be positive series with terms such that $\lim_{j \to \infty} \frac{a_j}{b_i} = K$ for some $K \neq 0$. Then, $\sum_{j=0}^{\infty} a_j$ converges if and only if $\sum_{j=0}^{\infty} b_j$ converges.

Theorem 2.2.9 (Comparison Test) Let (a_k) and (b_k) satisfy $0 \le a_k \le b_k$. Then, (i) $\sum_{k=1}^{\infty} (a_k)$ converges if $\sum_{k=1}^{\infty} (b_k)$ converges. (ii) $\sum_{k=1}^{\infty} (b_k)$ diverges if $\sum_{k=1}^{\infty} (a_k)$ diverges. Theorem 2.2.10 (Alternating Series Test) Let (a_n) satisfy (i) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$ and (ii) $(a_n) \to 0$. Then, $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. Definition 2.2.11 (Absolutely Convergent) A series $\sum_{j=0}^{\infty} a_j$ is absolutely convergent if $\sum_{j=0}^{\infty} |a_j|$ is convergent. Theorem 2.2.12 If a series is absolutely convergent then it is convergent. Theorem 2.2.13 (Geometric Series) If |x| < 1, then $\sum_{i=0}^{\infty} x^j = \frac{1}{1-x}$

since $s_n = \sum_{i=0}^n x^j = \frac{1 - x^{n+1}}{1 - x}.$ 2.3. Functions Theorem 2.3.1 (Function Limit) Given $f: A \to \mathbb{R}$ with the limit point c, (i) $\lim_{x\to c} f(x) = L$ is equivalent to (ii) if $\forall (x_n) \subseteq A : (x_n \neq c \text{ and } x_n \to c)$ it follows that $f(x_n) \to L$. (i) Note

In the $\varepsilon\delta$ -definition of limits, the additional restriction that 0 < |x-a| is just a way to say $x \neq c$. Definition 2.3.2 (Infinite Limit) Given a limit point $c \in D_f$, we say that $\lim_{x\to c} f(x) = \infty$ if $\forall M \; \exists \delta > 0 : 0 < |x - c| < \delta \Longrightarrow f(x) \ge M.$ 2.4. Continuity 2.4.1. Existence Theorem 2.4.1 (Continuity) The following are equivalent: (i) $f: A \subseteq \mathbb{R} \to \mathbb{R}$ is continuous at $c \in A$. (ii) $\forall \varepsilon > 0 \ \exists \delta > 0 : |x - c| < \delta \Longrightarrow |f(x) - f(c)| < \varepsilon$, where $x \in A$. (iii) $\forall V_{\varepsilon}(f(c)) \exists V_{\delta}(c) : x \in V_{\delta}(c) \cap A \Longrightarrow f(x) \in V_{\varepsilon}(f(c))$

(iv) $x_n \to c$, where $(x_n) \subseteq A$, implies $f(x_n) \to f(c)$. If c is a limit point of A: (v) $\lim_{x\to c} f(x) = f(c)$, also written $\lim_{h\to 0} f(c+h) - f(c) = 0$. Note that (ii) defines (i). Mostly (v) is used in practice.

Corollary 2.4.2 (Isolated Continuity) All functions are continuous at isolated points. Theorem 2.4.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = 1 if $x \in \mathbb{Q}$ and f(x) = 0 if $x \in \mathbb{I}$ is discontinuous everywhere.

Definition 2.4.4 (Uniform Continuity) We say f is uniformly continuous on I if $\forall \varepsilon > 0 \ \exists \delta > 0 : x, y \in I, |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$

Theorem 2.4.5 If a function is uniformly continuous, it is also continuous. Theorem 2.4.6 (Heine–Cantor)

If f is continuous and defined on a compact set K, then it is also uniformly continuous on K. 2.4.2. Composition Theorem 2.4.7 (Composition)

Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in$

 $\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(y).$

If f is continuous on [a, b], then for any y between f(a) and f(b), there

If f is continuous on the compact set K, then f attains a maximum and

A and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

Theorem 2.4.8 (Composition Limit)

Theorem 2.4.9 (Intermediate Value)

exists some $c \in (a, b)$ such that f(c) = y.

If f is bounded then $\lim_{h\to 0} f(h)h = 0$.

a minimum value on K.

Theorem 2.4.10 (Weierstrass Extreme Value)

Theorem 2.4.11 (Limit of Bounded Function)

2.4.3. Results

If f is continuous at y and $\lim_{x\to c} g(x) = y$, then

$\frac{\mathrm{d}}{\mathrm{d}x}$ (8	$(g \circ f)'(c) = g'(f(c))f'(c).$ In 3.1.3 (Basic Derivatives) $(x) = \frac{1}{\sqrt{1-x^2}}$ $(x) = \frac{1}{dx}$ $(x) = \cos x$
$\frac{\mathrm{d}}{\mathrm{d}x}(\epsilon)$ $\frac{\mathrm{d}}{\mathrm{d}x}(\epsilon)$	$\arccos x) = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$ $\arctan x) = \frac{1}{1 + x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \frac{1}{\cos^2 x}$ $\arctan x = -\frac{1}{1 + x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$ $(x - 1)'(x) = \frac{1}{x}$
Theore Let f are possibly	$(x^a) = ax^{a-1} (a \neq 0)$ $(f^{-1})'(y) = \frac{1}{f'(x)} (y = f(x), f'(x) \neq 0)$ $(x^a) = ax^{a-1} (a \neq 0)$ $(x^a) = (x^a)^{a-1} (y = f(x), f'(x) \neq 0)$ $(x^a) = ax^{a-1} (a \neq 0)$ $(x^a) = (x^a)^{a-1} (y = f(x), f'(x) \neq 0)$ $(x^a) = ax^{a-1} (x^a) = (x^a)^{a-1} (y = f(x), f'(x) \neq 0)$ $(x^a) = ax^{a-1} (x^a) = (x^a)^{a-1} (y = f(x), f'(x) \neq 0)$ $(x^a) = ax^{a-1} (x^a) = (x^a)^{a-1} (y = f(x), f'(x) \neq 0)$ $(x^a) = ax^{a-1} (x^a) = (x^a)^{a-1} (y = f(x), f'(x) \neq 0)$ $(x^a) = ax^{a-1} (x^a) = (x^a)^{a-1} (x^a) = $
(ii) \lim_{a} Then	$f(x) = \lim_{x \to c} g(x) = 0$ (or both $\pm \infty$), and $f'(x) = L$ exists (or $\pm \infty$). $\lim_{x \to c} \frac{f(x)}{g'(x)} = L.$ If the zero case. Assume the limits are zero.
for some	functions be differentiable on the open interval (c, x) . Then, g and applying Theorem 3.1.10 gives $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x\to c} \frac{f'(p)}{g'(p)} = \lim_{p\to c} \frac{f'(p)}{g'(p)}$ f between f and f .
This is of other so	contant contains an implication, not an equivalence, so there may exist some lution if this method fails.
Let $f: ($ Then f'	$(a,b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a,b)$. $(x) = 0$.
If f is d $f'(b)$, the In other	ifferentiable on $[a, b]$ and if y lies strictly between $f'(a)$ and hen $\exists c \in (a, b) : f'(c) = y$. words, if f is differentiable on an interval, then f' satisfies the diate Value Property (IVP).
Let $g(x)$ g'(c) = 0 Theorem	assume that $f'(a) < y < f'(b)$. $a = f(x) - yx$ with $g'(x) = f'(x) - y$. Note that $f'(c) = y$ if 0 for some $c \in (a, b)$. $a = 2.4.10$ states that g must have a minimum point $c \in [a, b]$. The ecisely $c \in (a, b)$ since, from the assumption, $g'(a) < 0$ and 0. Furthermore, $g'(c) = 0$ according to Theorem 3.1.5.
Theore Find roo	on 3.1.7 (Newton's Method) buts to a differentiable function $f(x)$. In with the coordinates $(x_n, f(x_n))$, the tangent line is given by $T(x) = f'(x_n)(x - x_n) + f(x_n)$
The met	ersects the x -axis at $T(x_{n+1})=0 \iff x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}.$ thod fails if it iterates endlessly or $f'(x_n)=0.$ the Mean Value Theorems
Theore Proof. f	g be continuous on $[a,b]$ and differentiable on (a,b) . \mathbf{m} 3.1.8 (Rolle's) $f(a) = f(b) \Longrightarrow \exists c \in (a,b) : f'(c) = 0$ (x) is bounded and $f'(x) = 0$ at its interior extreme points.
Proof. L	at $f(x)$ the first value $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ between the function value $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$
Theore	the that $d(a) = d(b) = 0$. Then apply Theorem 3.1.8. Then 3.1.10 (Generalized Mean Value) $\exists c \in (a,b) : [f(b)-f(a)]g'(c) = [g(b)-g(a)]f'(c)$ The above can be stated as
Theorem	NCTION GRAPHS
— Info (i) syn (ii) spl (iii) do (iv) fac	(Sketching Graphs) rmation mmetries lit into cases main \rightarrow vertical asymptotes etorize \rightarrow oblique asymptotes & roots
(vi) sig (vii) cal no po	st and second derivative and their roots in tables culate interesting points: intersection with y-axis, defined indifferentiable points, local extremums, endpoints, inflection ints sching
(ii) syn (iii) asy (iv) inte (v) cur	nmetries mptotes eresting points
The line	ion 3.2.1 (Asymptote) $y = kx + m \text{ is an } oblique \text{ asymptote of } f \text{ if}$ $\lim_{x \to \infty} (f(x) - (kx + m)) = 0.$ $e \ x = c \text{ is a } vertical \text{ asymptote of } f \text{ if}$ $\lim_{x \to c+} f(x) = \pm \infty \text{ or } \lim_{x \to c-} f(x) = \pm \infty.$
Theore	$y=b$ is a $horizontal$ asymptote of f if $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.
If $f(x)$ land	has an oblique asymptote $y=kx+m,$ then $k=\lim_{x\to\infty}\frac{f(x)}{x}$ $m=\lim_{x\to\infty}(f(x)-kx).$
Let f be convex G	m 3.2.3 (Convexity) e twice differentiable on (a, b) . Then, $f''(x) \ge 0$ if and only if f is on (a, b) .
On [a, b] .2.3. Poi Definit A local	ion 3.2.5 (Local Extremum) maximum of $f: D \subseteq \mathbb{R} \to \mathbb{R}$ is a point c for which there exists a
Definit The point	ighborhood $N(c)\subseteq D$ such that $f(c)\geq f(x) \forall x\in N(c).$ ion 3.2.6 (Stationary) and c is a stationary point of f if $f'(c)=0$.
The star	tionary order is the smallest $n \geq 2$ such that $f'(c) = f''(c) = \cdots = f^{(n-1)}(c) = 0$ but $f^{(n)}(c) \neq 0$. ion 3.2.7 (Critical) Int c is a critical point if $f(c)$ is stationary or undefined.
A point convex of	ion 3.2.8 (Inflection) c is an inflection point of f if f is continuous at c and if f is on one side of c and concave on the other side. m 3.2.9 (First Nonzero Derivative)
 If n i Furth maximaximaximaximaximaximaximaximaximaxi	stationary order n , then: s $even \to f$ has a local extremum at c . hermore: $f^{(n)}(c) > 0 \to \text{local minimum}, f^{(n)}(c) < 0 \to \text{local mum}.$ s $odd \to c$ is a stationary inflection point. The Taylor series with remainder simplifies to $f^{(n)}(c)$
	$f(c+h)=f(c)+\frac{f^{(n)}(c)}{n!}h^n+O(h^{n+1}).$ ge close to c is thus $f(c+h)-f(c)\approx\frac{f^{(n)}(c)}{n!}h^n,$ nanges sign if and only if n is odd. Similarly,
for the f	$f'(c+h)-f'(c)\approx\frac{f^{(n-1)}(c)}{(n-1)!}h^{n-1}$ first derivative and $f''(c+h)-f''(c)\approx\frac{f^{(n-2)}(c)}{(n-2)!}h^{n-2}$
Corolla If f'' is • $f''(c)$ • $f''(c)$	second derivative. Tary 3.2.10 (Second Derivative Test) continuous at c and $f'(c) = 0$, then: $c > 0 \rightarrow \text{local minimum}$. $c < 0 \rightarrow \text{local maximum}$.
• $f''(c)$ Note: f' change s Examples.	$f'(c)=0$ and $f^{(3)}(c)\neq 0 \to { m stationary}$ inflection point. $f'(c)=0$ alone is insufficient for an inflection; the curvature must sign. $f''(0)=f''(0)=0, \ f^{(3)}(0)=6\neq 0 \ ({ m odd}\ n=3) \to { m stationary}$
inflection $f(x) = 1$ local m $f(x) = 1$ local. TAY	on at 0. x^4 : $f'(0) = f''(0) = f^{(3)}(0) = 0$, $f^{(4)}(0) = 24 > 0$ (even $n = 4$) — inimum at 0, no inflection. $-x^4$: local maximum at 0, no inflection. CLOR'S THEOREM m 3.3.1 (Taylor's)
Suppose on (a, b)	of f is continuously differentiable n times on $[a,b]$ and $n+1$ times f . Fix $c \in [a,b]$. Then, $f(x) = P_n(x) + R_n(x),$ he Taylor polynomial of degree n around c is $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$
	$P_n(x)=\sum_{k=0}^n \frac{1}{k!}(x-c)^n$ $Lagrange\ remainder\ of\ degree\ n\ around\ c\ is$ $R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}$ e ξ strictly between c and x .
Proof. L $f(x)$ where p	at other remainder forms exist. Let $h=x-c$ be the deviation from the point. Then, $=f(c+h)=\sum_{k=0}^n\frac{f^{(k)}(c)}{k!}h^k+\frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}=p_n(h)+r_n(h),$ $n(h)$ and $r_n(h)$ correspond to $P_n(x)$ and $R_n(x)$.
Define with $F_{n,}$	$F_{n,h}(t)=\sum_{k=0}^n\frac{f^{(k)}(t)}{k!}(c+h-t)^k,$ $h(c)=p_{n(h)}\text{ and }F_{n,h}(c+h)=f(c+h),\text{ and derivative}$ $F'_{n,h}(\xi)=\frac{f^{(n+1)}(\xi)}{n!}(c+h-\xi)^n.$
	$g_{n,h}(t)=(c+h-t)^{n+1},$ $h(c)=h^{n+1} \text{ and } g_{n,h}(c+h)=0 \text{ and}$ $g'_{n,h}(\xi)=-(n+1)(c+h-\xi)^n.$
	$\frac{F_{n,h}(c+h) - F_{n,h}(c)}{g_{n,h}(c+h) - g_{n,h}(c)} = \frac{F'_{n,h}(\xi)}{g'_{n,h}(\xi)}$ $e \ \xi \ \text{between} \ c \ \text{and} \ c+h. \ \text{Substituting},$ $\frac{f(c+h) - p_n(h)}{0 - h^{n+1}} = \frac{f^{(n+1)}(\xi)(c+h-\xi)^n/n!}{-(n+1)(c+h-\xi)^n}$
so Hence	$f(c+h) - p_n(h) = \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}.$ $f(c+h) = p_n(h) + r_n(h)$
Definit	$f(x) = P_n(x) + R_n(x)$ trictly between c and x . [ion 3.3.2 (Radius of Convergence)
The rad	x) be the remainder to the Taylor polynomial around a point c . its of convergence R is the supremum of $r \geq 0$ such that $\forall x: x-c < r \Longrightarrow \lim_{n \to \infty} R_n(x) = 0,$ uplies that the Taylor series converges to $f(x)$ for all such x (so $P_{\infty}(x)$).
The following converge $e^x = \sum_{k=0}^{\infty}$	owing functions have a Maclaurin series with radius of ence $r = \infty$: $\frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
$\cos x = \frac{1}{2}$ $\arctan x$	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{\{2k+1\}}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$ $\sum_{k=0}^{\infty} (-1)^k \frac{x^{\{2k\}}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ $= \sum_{k=0}^{\infty} (-1)^k \frac{x^{\{2k+1\}}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots (x \le 1)$ $\xrightarrow{\infty} x^k + x^2 - x^3 - x^4$
$(1+x)^a$.3.1. Fur	$\begin{aligned} & = \sum_{k=1}^{\infty} (-1)^{\{k+1\}} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots (x < 1) \\ & = \sum_{k=0}^{\infty} {a \choose k} x^k (x < 1) \end{aligned}$ Example 2.2.4 (Pig. 0 at Infinity)
Let f and g as $x - 1$	ion 3.3.4 (Big O at Infinity) and g be defined on (c, ∞) . We say that f belongs to the set O of f or f or f or f writing f or f in f or f and f or f or f in f or
Let f ar	ion 3.3.5 (Big O at a Point) and g be defined on a neighborhood of c . We say that f belongs to O of g around c , writing $O(g(x))$, if there exists M and $\delta > 0$ at $ f(x) \leq M g(x) $
Theore If $h(x) = h(x)k(x)$ If $m \le n$	$x \in (c - \delta, c + \delta).$ Im 3.3.6 (Big O Behavior) $= O(f(x)) \text{ and } k(x) = O(g(x)) \text{ (same limiting regime), then}$ $= O(f(x)g(x)).$ In then as $x \to 0$, $x^n = O(x^m)$ so $O(x^m) + O(x^n) = O(x^m)$. As
$x \to \infty$, Theore Let $f(x)$	$x^m = O(x^n)$ so $O(x^m) + O(x^n) = O(x^n)$. m 3.3.7 $O(x^n) : [a,b] \to \mathbb{R}$ and fix $c \in [a,b]$. Suppose f is continuously stable f times on f and f and f and f and f times on f and f times on f and f are f and f and f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f and f are f and f are f and f are f are f are f are f and f are f are f and f are f are f are f are f and f are f are f are f and f are f are f are f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f
.4. THI	
A partit	$a=x_0 < x_1 < \dots < x_n = b,$
of which	tition P has $subintervals$ $[x_{i-1},x_i] i=1,2,,n$ In the length of the largest is its $mesh$ or $norm$ $\ P\ =\max_{1\leq i\leq n}(x_i-x_{i-1}).$ Her such is indicative of a finer partition.
$\mathrm{et}\;f:[a, \ \mathbf{Definit}$	er such is indicative of a finer partition. $b] \to \mathbb{R}$ be bounded. We now define its definite integral. ion 3.4.2 (Darboux Integral) the lower sum $L(f,P) = \sum_{i=1}^{n} (\inf\{f(x): x \in [x_{i-1},x_i]\})(x_i-x_{i-1}).$
The fun	$upper\ sum$ $U(f,P)=\sum_{i=1}^n(\sup\{f(x):x\in[x_{i-1},x_i]\})(x_i-x_{i-1})$ ction f is $Darboux\ integrable$ if $\sup_PL(f,P)=\inf_PU(f,P)$. Th
Definit Let Φ an	ion 3.4.3 (Alternative Darboux Integral) and Ψ be the lower and upper step functions such that $\Phi(x) \leq f(x) \leq \Psi(x) \forall x \in [a,b],$ the lower integral
and the	the lower integral $L(f) = \sup \left\{ \int_a^b \Phi(x) \mathrm{d}x : \Phi \text{ is a lower step function to } f \right\}$ $upper integral$ $L(f) = \inf \left\{ \int_a^b \Psi(x) \mathrm{d}x : \Psi \text{ is an upper step function to } f \right\}$
which, i	$(f) = \inf \left\{ \int_a \Psi(x) \mathrm{d}x : \Psi \text{ is an upper step function to } f \right\}$ If equal, give the definite integral. In the integral of a step function is simply its signed area. In the integral of a step function is simply its signed area. In the integral of $[a,b]$ pick sample points
and form	partition P of $[a,b]$ pick $sample\ points$ $t_i \in [x_{i-1},x_i], i=1,2,,n$ In the (tagged) $Riemann\ sum$ $S(f,P,(t_i)) = \sum_{i=1}^n f(t_i)(x_i-x_{i-1}).$ f is $Riemann\ integrable$ if there exists $L \in \mathbb{R}$ such that
	f is $Riemann\ integrable$ if there exists $L\in\mathbb{R}$ such that $\forall \varepsilon>0\ \exists \delta>0: \ P\ <\delta\Longrightarrow S(f,P,(t_i))-L <\varepsilon$ y choice of sample points $(t_i).$ In that case we write $L=\int_a^b f(x)\mathrm{d}x.$
The Dan Theore Let $f:[$	m 3.4.5 rboux and Riemann integrals are equivalent. m 3.4.6 (Integrability) $[a,b] \to \mathbb{R}$ be bounded. ction is integrable if and only if:
(i) $\forall \varepsilon$ (ii) $\forall (I$ (iii) when	$>0 \; \exists P: U(f,P)-L(f,P)<\varepsilon.$ $P_n): \ P_n\ \to 0 \Longrightarrow U(f,P_n)-L(f,P_n)\to 0.$ $\forall \varepsilon>0 \; \exists \Phi,\Psi: \int_a^b \Psi(x) \mathrm{d}x - \int_a^b \Phi(x) \mathrm{d}x < \varepsilon,$ ere Φ and Ψ are lower and upper step functions.
The fun (iii) f is (iv) (Let f is disconnected at f in f	ction is integrable if: $s \text{ monotone}$ on $[a, b]$ s
poi jum Theore If f is co (i) Let	nts, or at countably many points where it has only removable of ap discontinuities. m 3.4.7 (Fundamental Theorems of Calculus) ontinuous on $[a, b]$, then the two theorems follow: $F(x) = \int_a^x f(t) dt$ for $x \in [a, b]$. Then, F is continuous on $[a, b]$,
diffe (ii) If <i>F</i>	erentiable on (a,b) , and $F'(x)=f(x)$. $f'(x)=f(x) \text{ for } x\in(a,b), \text{ then}$ $\int_a^b f(x)\mathrm{d}x=F(b)-F(a).$ operties
Theore If f, g and	om 3.4.8 (Linearity) re integrable and $\alpha, \beta \in \mathbb{R}$, then $\int_a^b (\alpha f(x) + \beta g(x)) \mathrm{d}x = \alpha \int_a^b f(x) \mathrm{d}x + \beta \int_a^b g(x) \mathrm{d}x .$
If $c \in (a$	and 3.4.9 (Additivity of the Interval) $\int_a^b f(x) \mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x .$ The stat $\int_a^a f(x) \mathrm{d}x = 0$ and $\int_b^a f(x) \mathrm{d}x = -\int_a^b f(x) \mathrm{d}x .$
Theore If f, g in	m 3.4.10 (Order / Comparison) stegrable and $f(x) \leq g(x)$ on $[a,b]$, then $\int_a^b f(x) \mathrm{d}x \leq \int_a^b g(x) \mathrm{d}x .$
If $f(x) \ge$ and the	ary 3.4.11 (Positivity) $\geq 0 \text{ on } [a,b], \text{ then } \int_a^b f(x) \mathrm{d}x \geq 0. \text{ Moreover, if } f \text{ is continuous}$ integral is 0, then $f \equiv 0$. Im 3.4.12 (Bounding by a Supremum) $\leq M \text{ on } [a,b], \text{ then}$
Theore	$\leq M$ on $[a,b]$, then $\left \int_a^b f(x)\mathrm{d}x\right \leq M(b-a).$ em 3.4.13 (Absolute Value / Triangle) egrable, then $ f $ integrable and
	egrable, then $ f $ integrable and $\left \int_a^b f(x)\mathrm{d}x\right \leq \int_a^b f(x) \mathrm{d}x.$ em 3.4.14 (Products and Composition) attegrable, then fg is integrable.
If f	grable and φ continuous on a set containing $f([a,b]),$ then $\varphi\circ f$
If f integrates in the second Theore	$\int_{a}^{b} a \left(\cdot \right) \cdot \int_{a}^{b} a \left(\cdot \right) \cdot da$
If f integrated is integrated T heoremather T and T	$\int_a^b f_n(x) \mathrm{d}x \to \int_a^b f(x) \mathrm{d}x .$ Im 3.4.16 (Mean Value for Integrals) Ontinuous on $[a,b]$,
If f integral is integral. Theore If (f_n) a and Theore If f is continuous.	ontinuous on $[a,b]$, $\exists \xi \in (a,b) : \int_a^b f(x) \mathrm{d}x = f(\xi)(b-a).$ ontinuous and g is integrable and does not change sign on $[a,b]$,
If f integrals in tegrals f in the result of f is constant. Theorem If f is constant. Theorem If f is constant.	om 3.4.16 (Mean Value for Integrals) ontinuous on $[a,b],$ $\exists \xi \in (a,b): \int_a^b f(x) \mathrm{d}x = f(\xi)(b-a).$ om 3.4.17 (Generalized Mean Value for Integrals)