Project Proposal - Rubik's Cube Solver

Gordon Guan G2GUAN 20711917
Callum Moseley CJMOSELE 20708287
Robbie Zhuang BRZHUANG 20710951

Abstract: (What is it and what will it do)

Our project is going to be a Rubik's Cube solving robot. The final project should be able to:

- Take in a standard Rubik's Cube, and capture the state using a camera
- Use a computer algorithm to compute the solution from that position
- Use stepper motors to perform the series of moves required to solve the cube
- Additionally, we may choose to implement some other features if we have time:
 - Display the current state and remaining moves on a small LCD screen
 - Be able to perform set algorithms to the cube to put it into various fun patterns

Major software components:

- Rubik's Cube Solver
 - Must be able to represent the unique state of a Rubik's cube in memory
 - Use that state to generate a sequence of moves that will return the cube to solved position
 - Relay the sequence of moves to the motion systems
- Webcam Vision
 - Use a USB webcam to capture each side of the cube
 - Analyze different regions of the face to determine the colour at each cubie
 - Store the results into a cube state compatible with the solver
 - Mathematically determine whether the cube is in a solvable state
- Motion System
 - Control individual stepper motors through the GPIOs
 - Implement timing to make motors move together in unison to perform moves
 - Provide functions to make individual moves, to work with the solving component
 - Work with the webcam system to scan all sides before the cube is solved

Prototype plan: Experimental

By the prototype due date, we are hoping to have tested the following components:

- Electronics: connected the 6 steppers + drivers and BeagleBone Black on a breadboard, and turned the motors simultaneously (completed)
- Hardware: Assemble motion axes, try turning 3D printed components with motors (in progress)
- Computer vision: Be able to take a photo of a Rubik's cube, and be able to determine each of the 6 colours in each of the 9 positions on the face
- Cube solver: At least be able to represent a cube state in memory, possibly begin trying to implement phase 1 of the 2-phase algorithm for solving (documentation is available online: http://kociemba.org/cube.htm)

Hardware:

- BeagleBone Black(acquired): Main controller, running a lightweight distribution of linux and using C
- 6 Stepper motors + stepper motor driver chips: 4 rotate the sides of the cube, 2 are used to disengage the grippers so the cube can be rotated (acquired)
- 5V@2A power supply: maximum current draw shouldn't be above 1A (acquired)
- 3D printed mechanical components (being designed)
- USB webcam (acquired)

Challenges: Software & Hardware

We feel that this is a very ambitious project, so it is very likely we'll run into many challenges

Hardware	Software
 Fabricating components to proper specification Timing hardware actions to software commands 	 Developing an optimal solving algorithm Determining cube state accurately and quickly via webcam input

