العلامة		/ 1 Ext
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		الجزء الأول(13 نقطة)
0,5		التمرين الأول: (06 نقاط)
0,5	0,5	I -1- النشاط الإشعاعي التلقائي: هو تحول طبيعي تلقائي وعشوائي في الأنوية غير المستقرة لتعطي
		أنوية أكثر استقرار بإصدار جسيمات eta ، eta .
		2- أنماط التحولات الموضحة في المعادلة:
01	0,5	$\left(\begin{array}{c} ^4He \end{array}\right)$ ، وهو عبارة عن أنوية الهيليوم (α) تحول ألفا
	0,5	$\begin{pmatrix} 0 & e \end{pmatrix}$ ، وهو عبارة عن إلكترونات (β^-)
	0,25	$^{238}_{92}U \rightarrow ^{206}_{82}\mathrm{Pd} + x_2^4He + y_{-1}^0e$ (*) لدينا : y من x من x من x من x حديد قيمتي كل من x
0,5	0,25	238 = 206 + 4x ، $92 = 82 + 2x - y$ حسب قانونا الإنحفاظ فإن
		y = 6 , $x = 8$ each
		$N=rac{A}{\lambda}=rac{t_{1/2}}{\ln 2}.A$ ومنه $A=\lambda.N$ الأنوية المشعة في العينة: لدينا $A=\lambda.N$
0,5	0,25	$4.47 \times 10^{9} \times 365 \times 24 \times 3600$
	0,25	$N = \frac{4.47 \times 10^9 \times 365 \times 24 \times 3600}{\ln 2} \times 2.35 \times 10^5 = 4.78 \times 10^{22} noyeaux$
	0,25	$\frac{N}{N_A} = \frac{m}{M}$ نسبة اليورانيوم (238) في العينة الصخرية: لدينا كتلة اليورانيوم في العينة -5
1,25	0,75	$p = \frac{m}{m_0} \times 100 = \frac{18.9}{47000} \times 100 = 0.04\% \text{oais} m = \frac{N.M}{N_A} = \frac{4.78 \times 10^{22} \times 238.05}{6.02 \times 10^{23}} = 18.9 \; g$ ومنه
	0,25	$p{>}0.01\%$ نعم المنجم مازال قابل للاستغلال لأن
0,5	0,25	$E_{lib} = ig E_l(initial) - E_l(final)ig $ الطاقة المحررة من نواة اليورانيوم: لدينا -1
0,5	0,25	$E = 7.590 \times 235 - (8.290 \times 140 + 8.593 \times 94) = 184.7 Mev$ نجد:
	0,25	$E_T = P \times t \times 100/85$ الطاقة المستهلكة الكلية خلال شهر: لدينا (-2
	0,5	$E_T = 25.10^6.30.24.3600 \times 100 / 85 = 7.62 \times 10^{13} \ jouls = 4.76 \times 10^{26} \ Mev$ ومنه
		: m حساب مقدار الكتلة $= m$
1,75	0,5	$N = \frac{4.76 \times 10^{26}}{184.7} = 2.57 \times 10^{24}$ ومنه $N = \frac{E_T}{E_{lib}}$ عدد الأنوية المستهلكة خلال شهر $N = \frac{E_T}{E_{lib}}$
	0,5	$m = \frac{N.M}{N_A} = \frac{2.57 \times 10^{24} \times 235.04}{6.02.10^{23}} = 1003 \ g$ ومنه الكتلة المستهلكة

مجزأ	عناصر الإجابة (الموضوع الأول)			
25	عناصر الإجابة (الموضوع الأول)			
,25	$\stackrel{E}{\longrightarrow}$ $\stackrel{u_R}{\longleftarrow}$ (07 نقاط)			
,25	$\bigcap^{+} \stackrel{\frown}{i}$			
,25	u_{C} U_{C			
,25	 			
,25	المعادلة التفاضلية للشحنة q :			
,25	$i=rac{dq}{dt}$ حيث $R.i+rac{1}{C}q=E$ ومنه $u_R+u_C=E$			
,25	$\frac{dq}{dt} + \frac{1}{R.C}q - \frac{E}{R} = 0$ نجد			
,25	بالمطابقة نجد خبارة b ، A : نشتق الحل نجد $\frac{dq}{dt} = Abe^{-bt}$			
,25	$Abe^{-bt} + \frac{A}{R.C} - \frac{A}{R.C}e^{-bt} = \frac{E}{R}$			
,25	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$			
,25	$i\left(t ight)=rac{E}{R}e^{-rac{t}{R.C}}$ عبارة شدة التيار: لدينا $i=rac{dq}{dt}$ بالاشتقاق نجد -4			
,25	$u_R=R.i=E$ ومنه $u_C=0$ عند اللحظة $t=0$ عند اللحظة أ $t=0$			
,25	$R = \frac{E}{i_0} = \frac{6}{4.8 \times 10^{-3}} = 1250 \ \Omega$ نجد			
,25	ب) إثبات قيمة سعة المكثفة: من المماس عند $t=0$ نجد $ au=R.C$ من البيان			
,25	$C = \frac{\tau}{R} = \frac{2.5 \times 10^{-3}}{1250} = 2\mu F$			
,25	$u_C + L \frac{di}{dt} = 0$ ومنه $u_C + u_L = 0$ حيث ومنه التفاضلية: لدينا $u_C + u_L = 0$			
,25	$\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$ بالاشتقاق والتعويض نجد $i = \frac{dq}{dt} = C\frac{du_C}{dt}$			
,25	ar = 10			
,25	ب) المنحنى الموافق لحل المعادلة التفاضلية هو الشكل -4			
), 5	التعليل: المعادلة التفاضلية حلها جيبي والوشيعة مثالية (لا تحتوي مقاومة داخلية) حيث لا تستهلك الطاقة ومنه لا يحدث تخامد في الاهتزازات (ثبات في السعة)			
25	حساب ذاتية الوشيعة: تعطى عبارة الدور الذاتي بالعلاقة: $T_0 = 2\pi\sqrt{L.C}$			
,25	$L = \frac{{T_0}^2}{{(2\pi)}^2 \times C} = 0.1 H$ ومن المنحنى البياني $T_0 = 2.8 \times 10^{-3} s$ بالمطابقة نجد			
,25	$L - \frac{1}{(2\pi)^2 \times C}$ - 0,1 11 بالمصبعة نجت $I_0 - 2,0 \times 10^{-3}$ بالمصبعة نجت			
· · · · · · · · · · · · · · · · · · ·	25 25 25 25 25 25 25 25			

		(1 Št. a. t. 10 T. 1 Nt 1:a							
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)							
	0,25	$E(C)=rac{1}{2}C.{u_C}^2$: المكثفة (عند الطاقة المخزنة في المكثفة المخزنة في المكثفة (عند الطاقة المخزنة في المكثفة)				د)			
	0,25				_		عند $t=0$ s عند		
	0,25				E(C	= 0 joules	عند $t = \frac{T}{4}s$ نجد		
		11 (6V)	ا مامرة ا	المكثفة من قرمته الا			4 التفسير: خلال ربع الد	()	
	0,5	ر ۵۷) ایسی	2 عصي		•		الصفر بسب انتقال	ھ)	
				- C = - O)	۽ جي جي جي		رَءِ الثّاني:(07 نقاط)	الد	
						قاط)	ر		
0,25	0,25			تسريع التفاعل	, الكبريت هو	•	1- الفائدة من إضافة ن		
0,25	0,25				سترية	ية لـ(A): وظيفة أ	- تحديد الوظيفة الكيميائب	-2	
0,25	0,25					ستر .	- يسمى التفاعل إماهة أ	-3	
0,25	0,25		-4 تحديد الوظيفة الكيميائية لـ(C): وظيفة كحولية.				-4		
							5- جدول التقدم:		
	0,75		عادلة	مأا	CH_3COOC_3	• •	• • •	H₃COOH(I) +	
		- 71 71	m., 11			₃ H ₇ OH(I)			
0,75		الحالة	التقدم	0.02		n (mol)	0		
		الابتدائية الانتقالية	0 x	0.02 0.02-x	0.02 - x	<i>0</i>	X		
			ا لا تتعالیہ	^	0.02 x	0.02	Α	7	
		النهائية	X_f	0.02 – x_f	X_f	X_f	X_f		
		, L	\sim			يبي للمعايرة:	-1- رسم التجهيز التجر	-II	
							1: حامل		
			3		••	•	2: سحاحة مدرجة تح		
0,5	0,5				ر	•	3: بيشر يحتوي على		
		4				(4: مخلاط مغناطيسي		
						•	- معادلة تفاعل المعايرة	-2	
0,5	0,5	$CH_3COOH(l) + OH^{-}(aq) = CH_3COO^{-}(aq) + H_2O(l)$							
<u> </u>									

العلامة		عناصر الإجابة (الموضوع الأول)				
مجموع	مجزأة					
0,5	0,25 0,25	$n_A=C_B.V_{BE}$ ومنه ومنه عند التعديل يتحقق $n_A=0.08\ mol$				
0,75	0,5 0,25	$ ho = \frac{n_f}{n_0} \times 100 = \frac{0.008}{0.02} \times 100 = 40\%$ لدينا $ ho = \frac{n_f}{n_0} \times 100 = \frac{0.008}{0.02} \times 100 = 40\%$ بما ان مردود الإماهة $ ho = 40\%$ والمزيج الابتدائي متساوي المولات فإن الكحول ثانوي				
1,5	0,25 0,25 0,25 0,25 0,5	تركيب المزيج بالمول عند التوازن: $\frac{CH_3COOH}{[CH_3COOC_3H_7]_f} = 0.4$ المنتر $\frac{[CH_3COOC_3H_7]_f}{[CH_3COOC_3H_7]_f} = 0.4$ المنتر : لدينا $\frac{[CH_3COOC_3H_7]_f}{[CH_3COOC_3H_7]_f} = 0.4$				
0,5	0,25 0,25	C ، A تسمية المركبين C ، A : المركب A : إيثانوات A - مثيل أيثيل المركب C : بروبان A - أول				
0,5	0,25 0,25	III-1- تفسير ما يحدث: يتغير لون المزيج من الأحمر البنفسجي إلى عديم اللون بسبب انزياح تفاعل الإماهة من جديد نحو نقطة توازن جديدة يتشكل عندها كمية جديدة من الحمض تجعل الوسط حامضي فيكون عديم اللون بوجود كاشف الفينول فتالين.				
0,5	0,25 0,25	2- نتوقع زيادة في مردود التفاعل بسبب زيادة كمية الحمض والكحول ونقصان الأستر والماء. نستنتج أن إضافة قاعدة قوية إلى تفاعل الأماهة يؤدي إلى زيادة مردودها.				

العلامة		/ *****
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	الجزء الأول(13 نقطة) التمرين الأول: (06 نقاط) 1- أ- الظاهرة الكهربائية : شحن المكثفة
1,75	0,75	E C UC R UR
	0,5	
	0,25	$rac{dU_c}{dt}+rac{1}{RC}U_c=rac{E}{RC}$:ج) المعادلة التفاضلية $u_c(t)=E(\ 1-e^{-(t/RC)}$ (ع
	0,5	: المعادلة التفاضلية التي تحققها شدة التيار $\frac{di(t)}{dt}+rac{R}{L}i(t)=rac{E}{L}$
1,5	0,25 0,25 0,25 0,25	$B otin A$: $i(t) = Ae^{-\frac{R}{L}t} + B$ $\frac{di(t)}{dt} = -\frac{AR}{L}e^{-\frac{R}{L}t}$ $-\frac{AR}{L}e^{-\frac{R}{L}t} + \frac{R}{L}(Ae^{-\frac{R}{L}t} + B) = \frac{E}{L}$ $\frac{RB}{L} = \frac{E}{L} \Rightarrow B = \frac{E}{R}$ $i(0) = A + B = 0 \Rightarrow A = -\frac{E}{R}$

العلامة		/ *1**ti - * * ***
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		3- أ) ارفاق كل منحنى بالوضع المناسب للبادلة شدة التيار في الوشيعة تتزايد مع مرور الزمن بينما
	0,5	في المكثفة تتناقص و بالتالي البيان (a) يوافق البادلة في الوضع (a) و البيان (b) يوافق البادلة في
		$u_c(t)$ و هو (I) و الوضع
		E,R,C,L ب $-$ قيم المقادير
	0,25	$u_{cmax} = E = 6 \ V : (b)$ من البيان
	0,25	$R = \frac{E}{I_{max}}$ من البيان (a):
2,75	0,25	$R = 500 \Omega$
	0,25	$ au_b = 10ms$ من البيان (b):
	0,25	$C = \frac{\tau_b}{R}$
	0,25	$C = 2 \times 10^{-5} F$
	0,25	$\tau_a = 1ms$
	0,25	$ au_a = rac{L}{R}$ من البيان (a) :
	0,25	L = 500mH = 0.5H
	0,25	التمرين الثاني: (07 نقاط)
1	0,25	$Mg=Mg^{2+}+2e^{-}$ المعاداتين النصفيتين -1
1	0,25	$2H_3O^+ + 2e^- = H_2 + 2H_2O$
	0,25	$Mg^{2+}\!/\!Mg)$, $(H_3O^+\!/\!H_2)$ -
		$n_0(Mg)$ = (m/M) = $(2/24) = 8,33.10^{-2}mol$ محدول التقدم -2
		$n_0(H_3O^+) = (C_0.V) = (10^{-2}.50.10^{-3}) = 5.10^{-4} mol$
		H_{S} $+2H_{3}O$ $ H_{S}$ $+2H_{2}O$
		كميات المادة (mol) التقدم الحالة
	0,75	بوفرة 0 8,33. 10 ⁻² 5 10 ⁻⁴ 0 حالة ابتدائية
		x $= \begin{cases} 8,33. \ 10^{-2} - x(t) \\ x(t) \end{cases}$ $= \begin{cases} 8,33. \ 10^{-2} - x(t) \\ x(t) \end{cases}$ حالة انتقالية
		بوفرة x_{max} x_{max} x_{max} x_{max} x_{max} x_{max} x_{max}
	0.25	ب- نبين ان المغنيزيوم موجود بالزيادة نعين المتفاعل المحد
	0,25	$8,33.10^{-2} - x_{max} = 0$ $x_{max} = 8,33.10^{-2} mol$ lace $x_{max} = 8,33.10^{-2} - x_{max} = 0$
	0,25	أو شوارد الهيدرونيوم هي المتفاعل المحد $x_{max} = 2.510^{-4} mol$ او شوارد الهيدرونيوم هي المتفاعل محد وعليه المغنيزيوم موجود بالزيادة

العلامة		/ c1201							
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)							
	0,75	$x(t)=(5.10^{-4})/2$ - $n(H_3O^+)/2$ من جدول النقدم $Mg^{2+}=(x(t)/V)$ من جدول النقدم $Mg^{2+}=0.5~(10^{-2}-[~H_3O^+])$ من المدداء							
		اكمال الجدول t(min) 0 2 4 6 8 10 12 14							
	1	PH 2,00 2,12 2,2 2,44 2,66 2,95 3,41 4,36							
		$[H_3O^+](mol/l).10^{3} 10 7,6 5,3 3,63 2,18 1,12 0,39 0,04$							
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
5	0,5	$[Mg^{2+}]=f(t)$ $[H_3O^+]=g(t)$ رسم البيانين $[Mg^{2+}]=f(t)$ $[Mg^{2+}]=g(t)$ المحتمد $[Mg^{2+}]=g(t)$							
	0,25	Mg^{2+} لسرعة الحجمية لتشكل Mg^{2+} لسرعة الحجمية لتشكل $V_{\nu}(Mg^{2+}) = (d[Mg^{2+}]/dt) = 0,54.10^{-3} mol.l^{-1}.min^{-1}$ السرعة الحجمية لاختفاء H_3O^+ ومنه Mg^{2+} ومنه Mg^{2+} ومنه							
	0,25	$(d[Mg^{2+}]/dt) = d(0.5 (10^2 - [H_3O^+])/dt) = -0.5d[H_3O^+]/dt)$							
	0,25	$v_{\nu}(H_3O^+) = 2.v_{\nu}(Mg^{2+}) = 2.\ 0.54.10^{-3} = 1.08.10^{-3} \text{mol.}l^{-1}.\text{min}^{-1}$							
	0,25	و – التأكد من قيمة $v_{v}(H_{3}O^{+})$ برسم المماس للمنحنى $v_{v}(H_{3}O^{+})$ نجد $v_{v}(H_{3}O^{+})=-d[H_{3}O^{+}]/dt$ $=1.08\ 10^{-3}\ mol.L^{-1}.min^{-1}$							

العلامة		/ *i*ti ~ * *ti> ** 1 ***
مجموع	مجزأة	عناصر الإجابـة (الموضوع الثاني)
	0,25	x_f تعریف زمن نصف التفاعل $x(t)$ قیمة التقدم $x(t)$ نصف قیمته النهائیة $t_{1/2}$
1	0,25	$[H_3O^+](t_{1/2}) = \frac{0.0005 - \frac{2x_{max}}{2}}{V} = 5. 10^{-3} \text{ mol/L}$
	0,25	$[Mg^{2+}](t_{1/2}) = \frac{x_{max}}{2V} = 2.5 \ 10^{-3} \ mol/L$
	0,25	$t_{1/2} = 2V$ 2,3 10 $t_{1/2} = 4.4 min$ بیانیا نجد $t_{1/2} = 4.4 min$
		الجزء الثاني (07 نقطة)
		التمرين التجريبي: (07 نقاط)
	0,5	- التمثيل (3) لأن موجهة نحو الأسفل . 1 - أ - التمثيل (3) لأن موجهة نحو الأسفل .
	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G$: بتطبيق القانون الثاني لنيوتن في معلم غاليلي: (1)
	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G \qquad \Rightarrow \vec{P} + \vec{\pi} + \vec{f} = m\vec{a}$
		بالإسقاط على محور الحركة نجد:
	0,25	$P - \pi - f = ma \Rightarrow mg - \rho vg - f = m \frac{dv}{dt}$
	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g(1 - \frac{\rho V}{m})$
03	0,25	
		$\sum \vec{F}_{ext} = m\vec{a}_G \implies \vec{P} + \vec{f} = m\vec{a}$: (2)
	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g$
	0,5	v=0 . $v=0$ عند $t=0$
	0,5	$a_0 = g(1 - \frac{\rho v}{m})$: (1) الحالة
		$a_0 = g$: (2) الحالة (2)
01	0,5	$a_0 = 8 m/s^2$ $t=0$ عند . 2
0.07	0,5	. التمثيل (1) هو الموافق $a_0 < g \Leftarrow$
0,25	0,25	$V_L=6\ m/s$: من المنحنى dv
		$rac{dv}{dt} = 0$ يكون $v = v_L$: عندما - 4
01	0,5	$\Rightarrow g(1 - \frac{\rho V}{m}) = \frac{k}{m} v_L \Rightarrow v_{L=} \frac{mg}{k} \left(1 - \frac{\rho V}{m} \right)$
	0,25	$k=rac{mg}{V_L}\left(l-rac{ ho v}{m} ight)$ فيمة ثابت الإحتكاك :
	0,25	$k=3,48.10^{-3}~kg/s$: تطبیق عددی $k=3,48.10^{-3}~kg/s$

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	tالحظة t الحظة على الكرية في اللحظة t الحظة على الكرية في اللحظة t الحظة t الحظة t الحظة على الكرية في الكرية في اللحظة t الحظة t الحلية t ال
	0,25	$F{=}ma$: طريقة $a{=}~\Delta v/\Delta t$ من البيان
	0,25	a=21ر میں
1,75	0,25	$F=2.8.10^{-3}N$
	0,25	Arr $ Arr$
	0,25	بالاسقاط على OZ
	0,25	$F = p - f - \pi \rightarrow F = mg - kv - \rho_{air} \cdot Vg \rightarrow F = 2.8 \cdot 10^{-3} N$