# Heuristic Search (Informed Search)

• In uninformed search, we don't try to evaluate which of the nodes on the frontier/OPEN are most promising. We never "look-ahead" to the goal.

E.g., in uniform cost search we always expand the cheapest path. We don't consider the cost of getting to the goal from the end of the current path.

• Often we have some other knowledge about the merit of nodes, e.g., going the wrong direction in Romania.

**Merit** of a frontier/OPEN node: different notions of merit.

- If we are concerned about the cost of the solution, we might want a notion of merit of how costly it is to get to the goal from that search node.
- If we are concerned about minimizing computation in search we might want to consider how easy it is to find the goal from that search node.
- We will focus on the "cost of solution" notion of merit.

 The idea is to develop a domain specific heuristic function h(n).

 h(n) guesses the cost of getting to the goal from node n (the cost of completing the path that is captured bythe state of node n).

 There are different ways of guessing this cost in different domains. I.e., heuristics are domain specific.

# "As the crow flies" – Straight line heuristic



On the map, the numbers between cities represent the driving distance between cities on **potentially wiggly roads**, even though they are drawn as straight lines. Contrast this to the line-of-sight/``as the crow flies" distance which ignores wiggles in the road, cliffs, bridges, and assumes you can just drive in a straight line from one city to another.

## **Example: Straight Line Distance**



Planning a path from Arad to Bucharest, we can utilize the straight line distance from each city to our goal as a heuristic/guess of the actual distance. This lets us plan our trip by picking cities at each time point that minimize the distance to our goal.

 If h(n<sub>1</sub>) < h(n<sub>2</sub>) this means that we guess that it is cheaper to get to the goal from n<sub>1</sub> than from n<sub>2</sub>.

- We require that
  - h(n) = 0 for every node n whose state satisfies the goal.
    - Zero cost of getting to a goal node from n.

# Using only h(n): Greedy best-first search (Greedy BFS)

- We use h(n) to rank the nodes on the frontier/OPEN.
  - Always expand node with lowest h-value.
- We are greedily trying to achieve a low cost solution.
- However, this method **ignores the cost of getting to n**, so it can be lead astray exploring nodes that cost a lot to get to but seem to be close to the goal:



## Using only h(n): Greedy best-first search (Greedy BFS).

- We use h(n) to rank the nodes on the frontier.
  - Always expand node with lowest h-value.
- We are greedily trying to achieve a low cost solution.
- However, this method **ignores the cost of getting to n**, so it can be lead astray exploring nodes that cost a lot to get to but seem to be close to the goal:



Goa

## Greedy best-first search example



When you're at Sibiu and contemplating whether to go to Fagaras or RV, the heuristic value of the successor nodes, i.e., the h value guess of the cost is: h(Fagaras) = 178 and h(RV) = 193), so Fagaras looks like the better choice, but ...

**Actual Cost(Arad-Sibiu-RV-Pitesli-Bucharest):** 140+80+97+101 = 140 + 278 = 418 **Actual Cost (Arad-Sibiu-Fagaras-Bucharest):** 140+99+211 = 140 + 310 = 450

# A\* search

- Take into account the cost of getting to the node as well as our estimate of the cost of getting to the goal from n.
- Define an evaluation function f(n)

```
f(n) = g(n) + h(n)
```

- g(n) is the cost of the path to node n
- h(n) is the heuristic estimate of the cost of getting to a goal node from n.
- Always expand the node with lowest f-value on the frontier.
- The f-value is an estimate of the cost of getting to the goal via this node (path).

$$f(n) = g(n) + h(n),$$

= actual cost to n + heuristic estimate of cost from n to the goal





f(n) = g(n) + h(n), = actual cost to n + heuristic estimate of cost from n to the goal









f(n) = g(n) + h(n), = actual cost to n + heuristic estimate of cost from n to the goal









f(n) = g(n) + h(n), = actual cost to n + heuristic estimate of cost from n to the goal



## A\* search

- Take into account the cost of getting to the node as well as our estimate of the cost of getting to the goal from n.
- Define an evaluation function f(n)

```
f(n) = g(n) + h(n)
```

- g(n) is the cost of the path to node n
- h(n) is the heuristic estimate of the cost of getting to a goal node from n.
- Always expand the node with lowest f-value on the frontier.
- The f-value is an estimate of the cost of getting to the goal via this node (path).

# Conditions on h(n)

- We want to analyze the behavior of the resultant search.
  - Completeness, time and space, optimality?
- To obtain such results we must put some further conditions on the heuristic function h(n) and the search space.

# Conditions on h(n): Admissible

- We always assume that  $c(n1 \rightarrow n2) \ge \epsilon > 0$ . The cost of any transition is greater than zero and can't be arbitrarily small.
- Let h\*(n) be the cost of an optimal path from n to a goal node (∞ if there is no path). Then an admissible heuristic satisfies the condition

```
h(n) \leq h^*(n)
```

admissible heuristic h always underestimates the true cost to reach the goal. i.e., it is optimistic ©

- Hence
  - h(g) = 0, for any goal note, g
  - $h^*(n) = \infty$  if there is not path from n to a goal node

# Consistency (aka monotonicity)

- Is a stronger condition than h(n) ≤ h\*(n).
- A monotone/consistent heuristic satisfies the triangle inequality (for all nodes n1,n2):

$$h(n1) \le c(n1 \rightarrow n2) + h(n2)$$

- Note that there might be more than one transition (action) between n1 and n2, the inequality must hold for all of them.
- Note that monotonicity implies admissibility.
  - (forall n1, n2)  $h(n1) \le c(n1 \to n2) + h(n2) \to (forall n) h(n) \le h^*(n)$

# Intuition behind admissibility

 $h(n) \le h^*(n)$  means that the search won't miss any promising paths.

- If it really is cheap to get to a goal via n (i.e., both g(n) and h\*(n) are low), then f(n) = g(n) + h(n) will also be low, and the search won't ignore n in favour of more expensive options.
- This can be formalized to show that admissibility implies optimality.

# Intuition behind monotonicity

$$h(n1) \le c(n1 \rightarrow n2) + h(n2)$$

 This says something similar, but in addition one won't be "locally" mislead. See next example.

## Consistency → Admissible

Assume consistency: h(n1) ≤ c(n1→n2) + h(n2)
 Prove admissible: h(n) ≤ h\*(n)

#### **Proof:**

If no path exists from n to a goal then  $h^*(n) = \infty$  and  $h(n) \le h^*(n)$ 

**Else** let  $n \rightarrow n1 \rightarrow ... \rightarrow n^*$  be an OPTIMAL path from n to a goal.

Note the cost of this path is  $h^*(n)$ , and each subpath (ni  $\rightarrow$  ...  $\rightarrow$  n\*) has cost equal to  $h^*(ni)$ .

Prove  $h(n) \le h^*(n)$  by induction on the length of this optimal path.

#### Base Case: n = n\*

[optimal path length = 0]

By our conditions on h,  $h(n) = 0 \le h(n^*) = 0$ 

## Induction Hypothesis: $h(n1) \le h^*(n1)$

$$h(n) \leq c(n \rightarrow n1) + h(n1)$$
  
$$\leq c(n \rightarrow n1) + h^*(n1)$$
  
$$= h^*(n)$$

[consistency]

[defn h\*]

## Example: admissible but nonmonotonic

The following h is **not consistent (i.e., not monotone)** since  $h(n2)>c(n2\rightarrow n4)+h(n4)$ . But it is **admissible**.



We **do find** the optimal path as the heuristic is still admissible. **But** we are mislead into ignoring n2 until after we expand n1.

## Example: admissible but nonmonotonic

The following h is **not consistent (i.e., not monotone)** since  $h(n2)>c(n2\rightarrow n4)+h(n4)$ . But it is **admissible**.



We **do find** the optimal path as the heuristic is still admissible. **But** we are mislead into ignoring n2 until after we expand n1.

# "As the crow flies" – Straight line heuristic



• Most admissible heuristics are also monotone. (Indeed it's hard to find an admissible heuristic that is not

monotone!)

The f-values of nodes along a path must be non-decreasing.

```
Let \langle Start \rightarrow n1 \rightarrow n2... \rightarrow nk \rangle be a path.
        We claim that
                 f(ni) \leq f(ni+1)
Proof:
     f(ni) = c(Start \rightarrow ... \rightarrow ni) + h(ni)
               \leq c(Start \rightarrow ... \rightarrow ni) + c(ni \rightarrow ni+1) + h(ni+1) [monotonicity]
                   = c(Start \rightarrow ... \rightarrow ni \rightarrow ni+1) + h(ni+1)
                  = g(ni+1) + h(ni+1)
                  = f(ni+1).
```

 If n2 is expanded after n1, then f(n1) ≤ f(n2) (the f-value increases monotonically)

### Proof (2 cases):

- If n2 was on the frontier/OPEN when n1 was expanded,
   then f(n1) ≤ f(n2) otherwise we would have expanded n2.
- If n2 was added to the frontier/OPEN after n1's expansion, then let n be an ancestor of n2 that was present when n1 was being expanded (this could be n1 itself). We have f(n1) ≤ f(n) since A\* chose n1 while n was present in the frontier/OPEN. Also, since n is along the path to n2, by property (1) we have f(n)≤f(n2). So, we have f(n1) ≤ f(n2).

- 1) The f-values of nodes along a path must be non-decreasing.
- 2) If n2 is expanded after n1, then  $f(n1) \le f(n2)$

**Corollary:** the sequence of f-values of the nodes expanded by  $A^*$  is non-decreasing. I.e, If n2 is expanded after (not necessarily immediately after) n1, then  $f(n1) \le f(n2)$ 

(the f-value of expanded nodes is monotonic non-decreasing)

#### Proof:

- If n2 was on frontier/OPEN when n1 was expanded, then f(n1) ≤ f(n2) otherwise we would have expanded n2.
- If n2 was added to frontier/OPEN after n1's expansion, then let n be an ancestor of n2 that was present when n1 was being expanded (this could be n1 itself). We have f(n1) ≤ f(n) since A\* chose n1 while n was present on frontier/OPEN. Also, since n is along the path to n2, by property (1) we have f(n)≤f(n2). So, we have f(n1) ≤ f(n2).

- 3. When n is expanded every path with lower f-value has already been expanded.
- Proof: Assume <u>by contradiction</u> that there exists a path <Start, n0, n1, ni-1, ni, ni+1, ..., nk> with f(nk) < f(n) and ni is its last expanded node.</li>
  - ni+1 must be on the frontier/OPEN while n is expanded, so
    - a) by (1)  $f(ni+1) \le f(nk)$  since they lie along the same path.
    - b) since f(nk) < f(n) (given) so we have f(ni+1) < f(n) (from a)
    - c) by (2)  $f(n) \le f(ni+1)$  because n is expanded before ni+1.
  - Contradiction from b&c!
- $oldsymbol{1}oldsymbol{)}$  The f-values of nodes along a path must be non-decreasing.
- 2) If n2 is expanded after n1, then  $f(n1) \le f(n2)$
- 3) When n is expanded every path with lower f-value has already been expanded.

- 4. With a monotone heuristic, the first time A\* expands a state, it has found the minimum cost path to that state.
  - Let PATH1 = <Start, s0, s1, ..., sk, s> be the first path to a state s found. We have f(path1) = c(PATH1) + h(s).
  - Let PATH2 = <Start, t0, t1, ..., tj, s> be another path to s found later. we have f(path2) = c(PATH2) + h(s).
    - Note h(s) is dependent only on the state s (terminal state of the path) it does not depend on how we got to s.
  - By the corollar, f(path1) ≤ f(path2)
  - hence:  $c(PATH1) \le c(PATH2)$
- 1) The f-values of nodes along a path must be non-decreasing.
- 2) If n2 is expanded after n1, then  $f(n1) \le f(n2)$
- 3) When n is expanded every path with lower f-value has already been expanded.

**Corollary:** the sequence of f-values of the nodes expanded by  $A^*$  is non-decreasing. I.e, If n2 is expanded **after** (not necessarily immediately after) n1, then  $f(n1) \le f(n2)$ 

<u>(the f-value of expanded nodes is **monotonic** non-decreasing)</u>

4. With a monotone heuristic, the first time A\* expands a state, it has found the minimum cost path to that state.

#### Proof:

- Let PATH1 = <Start, n0, n1, ..., nk, n> be the first path to n found.
   We have f(path1) = c(PATH1) + h(n).
- Let **PATH2** =  $\langle$ **Start**, **m0**,**m1**, ..., **mj**, **n** $\rangle$  be another path to n found later. we have f(path2) = c(PATH2) + h(n).
- By property (3) and its corollary, f(path1) ≤ f(path2)
- hence:  $c(PATH1) \le c(PATH2)$
- 1) The f-values of nodes along a path must be non-decreasing.
- 2) If n2 is expanded after n1, then  $f(n1) \le f(n2)$
- 3) When n is expanded every path with lower f-value has already been expanded.

**Corollary:** the sequence of f-values of the nodes expanded by  $A^*$  is non-decreasing. I.e, If n2 is expanded **after** (not necessarily immediately after) n1, then  $f(n1) \le f(n2)$  (the f-value of expanded nodes is **monotonic** non-decreasing)

#### Complete.

- Yes, consider a least cost path to a goal node
  - SolutionPath =  $\langle Start \rightarrow n1 \rightarrow ... \rightarrow G \rangle$  with cost c(SolutionPath)
  - Since each action has a cost  $\geq \epsilon > 0$ , there are only a finite number of paths that have cost  $\leq$  c(SolutionPath).
  - All of these paths must be explored before any path of cost > c(SolutionPath).
  - So eventually SolutionPath, or some equal cost path to a goal must be expanded.

#### Time and Space complexity.

- When h(n) = 0, for all n, h is monotone. (a very \*un\*informative heuristic!!!)
  - A\* becomes uniform-cost search!
- It can be shown that when h(n) > 0 for some n, the number of nodes expanded can be no larger than uniform-cost.
- Hence the same bounds as uniform-cost apply. (These are worst case bounds). Still exponential unless we have a very good h!
- In real world problems, we run out of time and memory! IDA\* can sometimes be used to address memory issues, but IDA\* isn't very good whenmany cycles are present.

## **Optimality**

- Yes, by (4) the first path to a goal node must be optimal.
  - 4. With a monotone heuristic, the first time A\* expands a state, it has found the minimum cost path to that state.

## Cycle Checking

We can use a simple implementation of cycle checking (multiple path checking)—just reject all search nodes visiting a state already visited by a previously expanded node. By property (4) we need keep only the first path to a node, rejecting all subsequent paths.

# Search generated by monotonicity

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Inside each counter, the f values are less than or equal to counter value!



- For uniform cost search, bands are "circular".
- With more accurate heuristics, bands stretch out more toward the goal.

# Admissibility without monotonicity

#### When "h" is admissible but not monotonic.

- Time and Space complexity remain the same. Completeness holds.
- Optimality still holds (without cycle checking), but need a different argument: don't know that paths are explored in order of cost.

#### Proof (by contradiction) of optimality (without cycle checking):

- Assume the goal path <S,...,G> found by A\* has cost bigger than the optimal cost: i.e. C\*(G) < f(G).</li>
- There must exists a node n in the optimal path that is still in the frontier.
- We have:  $f(n)=g(n)+h(n) \le g(n)+h^*(n) = C^*(G) < f(G)$
- Therefore, f(n) must have been selected before G by A\*. contradiction!

## Admissibility without monotonicity

#### What about Cycle Checking?

- No longer guaranteed we have found an optimal path to a node *the first time* we visit it.  $\square$
- So, cycle checking might not preserve optimality.
  - To fix this: for previously visited nodes, must remember cost of previous path. If new path is cheaper must explore again.

# Admissibility without monotonicity

#### What about Cycle Checking?

- No longer guaranteed we have found an optimal path to a node the first time we visit it.
- So, cycle checking might not preserve optimality.
  - To fix this: for previously visited nodes, must remember cost of previous path. If new path is cheaper must explore again.
- contours of monotonic heuristics don't hold.

# Space Problems with A\*

- A\* has the same potential space problems as BFS or UCS
- IDA\* Iterative Deepening A\* is similar to Iterative
   Deepening Search and similarly addresses space issues.

# IDA\* - Iterative Deepening A\*

#### Objective: reduce memory requirements for A\*

- Like iterative deepening, but now the "cutoff" is the f-value (g+h) rather than the depth
- At each iteration, the cutoff value is the smallest f-value of any node that exceeded the cutoff on the previous iteration
- Avoids overhead associated with keeping a sorted queue of nodes
- Two new parameters:
  - curBound (any node with a bigger f-value is discarded)
  - smallestNotExplored (the smallest f-value for discarded nodes in a round) when frontier/OPEN becomes empty, the search starts a new round with this bound
    - Easier to expand all nodes with f-value EQUAL to the f-limit. This
      way we can compute "smallestNotExplored" more easily.

•

# **Constructing Heuristics**

 One useful technique is to consider an easier problem, and let h(n) be the cost of reaching the goal in the easier problem.

#### 8-Puzzle



- Can move a tile from square A to B if
  - A is adjacent (left, right, above, below) to B
  - and B is blank

#### 8-Puzzle moves (continued)

- Can move a tile from square A to B if
  - A is adjacent (left, right, above, below) to B
  - and B is blank





#### Can relax some of these conditions

- 1. can move from A to B if A is adjacent to B (ignore whether or not position is blank)
- 2. can move from A to B if B is blank (ignore adjacency)
- 3. can move from A to B (ignore both conditions).

• #3 "can move from A to B (ignore both conditions)".

#### leads to the misplaced tiles heuristic.

- To solve the puzzle, we need to move each tile into its final position.
- Number of moves = number of misplaced tiles.
- Clearly h(n) = number of misplaced tiles ≤ the h\*(n) the cost of an optimal sequence of moves from n.
- #1 "can move from A to B if A is adjacent to B (ignore whether or not position is blank)"

#### leads to the manhattan distance heuristic.

- To solve the puzzle we need to slide each tile into its final position.
- We can move vertically or horizontally.
- Number of moves = sum over all of the tiles of the number of vertical and horizontal slides we need to move that tile into place.
- Again h(n) = sum of the manhattan distances ≤ h\*(n)
  - in a real solution we need to move each tile at least that far and we can only move one tile at a time.

The **optimal** cost to nodes in the relaxed problem is an admissible heuristic for the original problem!

Proof Idea: the optimal solution in the original problem is a solution for relaxed problem, therefore it must be at least as expensive as the optimal solution in the relaxed problem.

So admissible heuristics can sometimes be constructed by finding a relaxation whose optimal solution can be **easily computed**.

The optimal cost to nodes in the relaxed problem is an admissible heuristic for the original problem!

**Proof**: the optimal solution in the original problem is a (*not necessarily optimal*) solution for relaxed problem, therefore it must be at least as expensive as the optimal solution in the relaxed problem.

Comparison of IDS and A\* (average total nodes expanded ):

| Depth | IDS       | A*(Misplaced) h1 | A*(Manhattan) h2 |
|-------|-----------|------------------|------------------|
| 10    | 47,127    | 93               | 39               |
| 14    | 3,473,941 | 539              | 113              |
| 24    |           | 39,135           | 1,641            |

Let h1=Misplaced, h2=Manhattan

- Does h2 always expand fewer nodes than h1?
  - Yes! Note that h2 dominates h1, i.e. for all n: h1(n)≤h2(n). From this you can prove h2 is faster than h1.
  - Therefore, among several admissible heuristic the one with highest value expands the fewest nodes. Is it the fastest?

### Building Heuristics: Pattern databases.

- Admissible heuristics can also be derived from solution to subproblems:
   Each state is mapped into a partial specification, e.g. in 15-puzzle only position of specific tiles matters.
  - Here are goals for two sub-problems (called Corner and Fringe) of 15puzzle.
  - Note the location of BLANK!





Fig. 2. The Fringe and Corner Target Patterns.

- ·By searching backwards from these goal states, we can compute the distance of any configuration of these tiles to their goal locations. We are ignoring the identity of the other tiles.
- ·For any state n, the number of moves required to get these tiles into place form a lower bound on the cost of getting to the goal from n.

### Building Heuristics: Pattern databases.

- These configurations are stored in a database, along with the number of moves required to move the tiles into place.
- The maximum number of moves taken over all of the databases can be used as a heuristic.
- On the 15-puzzle
  - The fringe data base yields about a 345 fold decrease in the search tree size.
  - The corner data base yields about 437 fold decrease.
- Sometimes disjoint patterns can be found, then the number of moves can be added rather than taking the max (if we only count moves of the target tiles).

#### **Local Search**

- So far, we keep the paths to the goal.
- For some problems (like 8-queens) we don't care about the path, we only care about the solution. Many real problem like Scheduling, IC design, and network optimizations are of this form.
- Local search algorithms operate using a single current state and generally move to neighbors of that state.
- There is an objective function that tells the value of each state. The goal has the highest value (global maximum).
- Algorithms like Hill Climbing try to move to a neighbour with the highest value.
- Danger of being stuck in a local maximum. So some randomness is added to "shake" out of local maxima.
- Simulated Annealing: Instead of the best move, take a random move and if it improves the situation then always accept, otherwise accept with a probability <1.</li>
- [If interested read these two algorithms from the R&N book].