

3、多表代换与置换密码

主讲人:任方 网络空间安全学院

维吉尼亚密码

单表代换密码---移位密码、仿射密码等等 多表代换密码----维吉尼亚密码(Vigenère cipher),它是由法国人 Blaise de Vigenère在16世纪提出的。

定义 维吉尼亚密码体制:

令是一个正整数, $M = C = K = (Z_{26})^m$ 。 对任意的密钥 $key = (k_1, k_2, \dots, k_m) \in K$ $(x_1, x_2, \dots, x_m) \in M$ $(y_1, y_2, \dots, y_m) \in C$ 定义: $e_{key}(x_1, x_2, \dots, x_m) = (x_1 + k_1, x_2 + k_2, \dots, x_m + k_m) \bmod 26$ $d_{key}(y_1, y_2, \dots, y_m) = (y_1 - k_1, y_2 - k_2, \dots, y_m - k_m) \bmod 26$

如果已经在26个英文字母和之间建立了一一对应的关系,则每一个密钥都相当于一个长度为m的字母串,被称为密钥字。

 $\frac{\text{维吉尼亚密码的密钥空间大小为26}^{m}}{\text{,所以即使 m}}$ 的值较小,相应的密钥空间也会很大。

维吉尼亚方阵密表

	a	b	c	d	e	f	g	h	i	j	k	1	m	п	0	p	q	r	s	t	v	٧	w	X	у	z
A	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
В	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В
D	D	E	F	G	Н	I	J	K	L	M	N	o	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C
E	Е	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D
F	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	\mathbf{v}	W	X	Y	\mathbf{Z}	Α	В	C	D	E
G	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F
Н	Н	1	J	K	L	M	N	O	P	Q	R	S	Т	U	V	W	X	Y	Z	A	В	C	D	E	F	G
I	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	\mathbf{C}	D	E	F	G	Н
J	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	Н	1
K	К	L	M	N	o	P	Q	R	S	T	U	\mathbf{v}	W	X	Y	\mathbf{Z}	Α	В	C	D	E	F	G	Н	I	J
L	L	M	N	0	P	Q	R	S	T	U	v	W	X	Y	Z	A	В	C	D	E	F	G	Н	1	J	K
M	M	N	0	P	Q	R	S	T	U	\mathbf{v}	W	X	Y	Z	A	В	C	D	E	F	G	H	1	J	K	L
N	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	Н	1	J	K	L	M
0	0	P	Q	R	S	T	U	v	W	X	Y	Z	Α	В	C	D	E	F	G	H	1	J	K	L	M	N
P	P	Q	R	S	\mathbf{T}	U	\mathbf{V}	W	X	Y	Z	Α	В	C	D	E	F	G	Н	\mathbf{E}^{\parallel}	J	K	L	M	N	О
Q	Q	R	S	T	U	V	W	\mathbf{X}	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	O	P
R	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	O	P	Q
S	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
T	Т	U	V	W	X	Y	\mathbf{z}	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S
U	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
V	v	W	Х	Y	\mathbf{Z}	A	В	C	D	E	F	G	Н	I	1	K	L	M	N	0	P	Q	R	S	T	U
W	W	X	Y	Z	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	v
X	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
Y	Y	\mathbf{Z}	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	\boldsymbol{U}	V	\mathbf{w}	X
Z	Z	Α	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y

通过重新排列消息中元素的位置而不改变元素本身的方式,对一个消息进行变换。这种加密机制称为置换密码(也称为换位密码)。

定义 置换密码体制

令 $m \ge 2$ 是一个正整数, $M = C = (Z_{26})^m$

 K 是 $Z_m = \{1, 2, \cdots, m\}$ 上所有可能置换构成的集合。对任意的 $(x_1, x_2, \cdots, x_m) \in M$

$$\pi \in K$$
 $(y_1, y_2, \dots, y_m) \in C$, 定义:

$$e_{\pi}(x_1, x_2, \dots, x_m) = (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(m)})$$

$$d_{\pi}(y_1, y_2, \dots, y_m) = (y_{\pi^{-1}(1)}, y_{\pi^{-1}(2)}, \dots, y_{\pi^{-1}(m)})$$

其中π和π¹互为逆置换,m为分组长度。对于长度大于分组长度的明文消息,可对明文消息先按照长度进行分组,然后对每一个分组消息重复进行同样的置乱加密过程,最终实现对明文消息的加密。

对于固定的分组长度m, Z_m 上共有m!种不同的排列,对应产生m!个不同的加密密钥 π ,

所以相应的置换密码共有*m*! 种不同的密钥。

- ◆ 在已经介绍的几个典型的古典密码体制里,含有两个基本操作:代换(Substitution)和置换(Permutation)。
 - 代换实现了英文字母外在形式上的改变,每个英文字母被其它字母替换;
 - 置换实现了英文字母所处位置的改变,但没有改变字母本身。
- ◆ 代换(替换)操作又可以分为单表替换和多表替换两 种方法。
 - ▶ 单表替换的特点是把明文中的每个英文字母正好 映射为一个密文字母,是一种一一映射,不能抵 御基于英文字符出现频率的频率分析攻击法;
 - ➤ 多表替换的特点是明文中的同一字母可能用多个 不同的密文字母来代替,与单表替换的密码体制 相比,形式上增加了加密的安全性。

The end!

