Übung 3

3.1 Prädikatenlogische Äquivalenzen (2pt)

Bestimme Sie, ob die folgenden Prädikate äquivalent sind und begründen Sie Ihre Antwort:

$$\forall x : (P(x) \leftrightarrow Q(x))$$

 $\forall x : P(x) \leftrightarrow \forall x : Q(x)$

3.2 Negation in der Prädikatenlogik (2pt)

Negieren Sie die folgenden prädikatenlogischen Aussagen. In der Lösung sollen alle Negationen jeweils unmittelbar vor den Prädikaten stehen (also z.B. $\forall x: \neg P(x)$), aber jedoch nicht $\neg \exists x: P(x)$). Zeigen Sie Ihre Lösungswege.

- a) $\forall x \exists y : P(x,y)$
- b) $\exists y : (Q(y) \land \forall x : R(x,y))$
- c) $\forall x \forall y : Q(x,y) \land \exists x \exists y : P(x,y)$
- d) $\exists x \exists y : (Q(x,y) \leftrightarrow Q(y,x))$

3.3 Implikationen in Prädikatenlogik (3pt)

Gegeben sind zwei prädikatenlogische Aussagen:

$$p \stackrel{\text{def}}{=} \forall x : (Q(x) \lor P(x))$$
$$q \stackrel{\text{def}}{=} \exists x : Q(x) \lor \forall x : P(x)$$

Bestimmen Sie den Wahrheitswert folgenden Implikationen und begründen Sie Ihre Lösungen:

- a) $p \rightarrow q$
- b) $q \rightarrow p$

3.4 Beweismethoden (3pt)

Zeigen Sie die folgenden Aussagen auf drei verschiedene Arten (direkter Beweis, durch Kontraposition, durch Kontradiktion):

Sind $c \in \mathbb{N}$ und $d \in \mathbb{N}$ ungerade, dann ist cd ungerade.

Formalisieren Sie die Aussage zuerst in der Prädikatenlogik. Beschreiben Sie dann im Detail jeden Schritt des Beweises.