Elektronikpraktikum Auswertung: Versuchstag 8 Analog/Digital-Wandlung

Gruppe 01 Patrick Heuer Benjamin Lotter

Übersicht

- Digital-zu-Analog-Wandler (DAC)
 - R-2R-Netzwerk
 - DAC-Chip DAC0909
- 2 Analog-zu-Digital-Wandler (ADC)
 - Manuelle Analog-zu-Digital-Wandlung
 - Computergestützte Analog-zu-Digital-Wandlung
- 3 A/D-Wandlerchip ADC0804
 - A/D-Wandlerchip ADC0804
- 4 A/D-D/A-Wandlerstrecke
 - Auflösung und Bitfehler
 - Shannon-Nyquist-Abtasttheorem

Übersicht

- Digital-zu-Analog-Wandler (DAC)
 - R-2R-Netzwerk
 - DAC-Chip DAC0909
- 2 Analog-zu-Digital-Wandler (ADC)
 - Manuelle Analog-zu-Digital-Wandlung
 - Computergestützte Analog-zu-Digital-Wandlung
- 3 A/D-Wandlerchip ADC0804
 - A/D-Wandlerchip ADC0804
- 4 A/D-D/A-Wandlerstrecke
 - Auflösung und Bitfehler
 - Shannon-Nyquist-Abtasttheorem

R-2R-Netzwerk

Funktionsweise

$$I_{out} = \frac{U_{in}}{2R} \left(\frac{x_0}{8} + \frac{x_1}{4} + \frac{x_2}{2} + \frac{x_3}{1} \right)$$

$$U_{out} = -U_{in} \frac{x}{x_{max} + 1}$$

- lineare Schaltung
- 4-bit Zahl bestimmt Ausgangsstrom und Spannung

Theorie

• linearer Verlauf \rightarrow für Theoriekurve ist nur I_{max} nötig

$$I_{max} = \frac{U_{in}}{2R} \left(\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + \frac{1}{1} \right) = \frac{15U_{in}}{16R} = 458.75\mu A$$

$$I_{Theorie} = 458.75 \mu A \cdot x$$

Eigentlich ist die Theoriekurve stufenförmig!

Messung

- Nullpunktsfehler: $0.003\mu A$
- Sehr guter linearer Verlauf

DAC-Chip

DAC-Chip

geringe Ausgangsspannung
 → Operationsverstärker

Messung

- starke Linearität
- hoher Nullpunktfehler: -0.496mV
- Abweichung im hohen Bereich durch Begrenzung der Versorgungsspannung

Übersicht

- Digital-zu-Analog-Wandler (DAC)
 - R-2R-Netzwerk
 - DAC-Chip DAC0909
- 2 Analog-zu-Digital-Wandler (ADC)
 - Manuelle Analog-zu-Digital-Wandlung
 - Computergestützte Analog-zu-Digital-Wandlung
- 3 A/D-Wandlerchip ADC0804
 - A/D-Wandlerchip ADC0804
- 4 A/D-D/A-Wandlerstrecke
 - Auflösung und Bitfehler
 - Shannon-Nyquist-Abtasttheorem

Manuelle A/D Wandlung

Manuelle A/D Wandlung

- Annährung der Referenzspannung durch digitale Schaltung
- LED and Komparator leuchtet solange digitales Signal kleiner als Referenzspannung
- Welcher Schaltvorgang ist am schnellsten?

Verfahren

Approximationsverfahren

- Zählverfahren: Binärzahl wird hochgezählt solange LED leuchtet
- Sukzessive Approximation: Beginnend beim MSB wird jeder Schalter getestet

Zählverfahren

- Spannungswert wird langsam hochgezählt
- im schlimmsten Fall: 2^n (= 255) Schritte
- Genauigkeit $\Delta U = \frac{1}{2} \frac{1}{256} V_{cc}$

Sukzessive Approximation

- Schaltung wird von MSB nach LSB getestet
- Konstant n (= 8)Schritte
- Genauigkeit $\Delta U = \frac{1}{2} \frac{1}{256} V_{cc}$

Ergebnis

 Sukzessive Approximation sehr viel effizienter

Spannung zwischen 4.5V und 5V

- DAC kann die benötigte Spannung nicht aufbringen
- Schaltung S = 0b111111111 am Limit
- V_{cc} , V_{ee} muss erhöht werden

Computergestützter DAC

Sive to file = SCOPOL-6

Sive Real Default Press to Quick Print
Sive Sive

Figure: Zählverfahren

Figure: Sukzessive Approximation

₽ 0.0s 50.00g/ Stop £ 6 -1.72V

Vergleich

- Komplexität beim Zählverfahren steigt mit 2ⁿ (n: Anzahl der Bits)
- Komplexität bei sukzessiver Approximation steigt mit n
- → Sukzessive Approximation ist fast immer schneller
- Zählverfahren ist schneller falls $U_{analog} < 8 \cdot U_{LSB}$

Störungen

Die Spannung wird während der Approximation auf U_{neu} geändert

- Zählverfahren:
 - ist $U_{neu} < U_{Zaehl}$ wird das Verfahren abgebrochen
 - ist $U_{neu} > U_{Zaehl}$ wird bis U_{neu} weitergezählt
- Sukzessive Approximation:
 - ist $U_{neu} < U_{SApr}$ bleiben alle gesetzten Bits bestehem, alle restlichen Bits werden auf 0 gesetzt
 - ist $U_{neu} > U_{SApr}$ wird bis U_{neu} fortgesetzt
- relevant falls sich Referenzspannung schneller als Abtastrate verändert

Übersicht

- Digital-zu-Analog-Wandler (DAC)
 - R-2R-Netzwerk
 - DAC-Chip DAC0909
- 2 Analog-zu-Digital-Wandler (ADC)
 - Manuelle Analog-zu-Digital-Wandlung
 - Computergestützte Analog-zu-Digital-Wandlung
- 3 A/D-Wandlerchip ADC0804
 - A/D-Wandlerchip ADC0804
- 4 A/D-D/A-Wandlerstrecke
 - Auflösung und Bitfehler
 - Shannon-Nyquist-Abtasttheorem

A/D Wandlerchip

Theorie

Theoretischer Wert

• Aufteilung der Spannung V_{cc} in 255 Teile

$$U_{out} = \frac{n}{255} \cdot V_{cc}$$
$$n = \left\lfloor \frac{U_{out}}{V_{cc}} \cdot 255 \right\rfloor$$

U	Bin	Dez	Theorie
1 <i>V</i>	00110011	51	51

U	Binl	Dez	Theorie
$\overline{1V}$	00110011	51	51
2 <i>V</i>	01100111	103	102

U	Bin	Dez	Theorie
$\overline{1V}$	00110011	51	51
2 <i>V</i>	01100111	103	102
3 <i>V</i>	10011010	154	153

Umbau

- Widerstand zwischen 20 und 3 wird zwischen 3 und 5 eingebaut
- sobal INTR Spannung ausgibt wird der Wandlungsprozess durch WR neu gestartet
- geeignet für Wechselspannung

Sinusfunktion 100Hz

Sinusfunktion 1kHz

Sinusfunktion 4khz

Sinusfunktion 10kHz

Ergebnis

Figure: 100Hz

Figure: 10kHz

- Je höher die Referenzfrequenz, desto Ungenauer wird die Wandlung
- Kurve kann nicht mehr ausreichend abgetastet werden

Wandlungsrate

Wandlungsrate

Aus Messung:

$$f_s = 5.7 kHz$$

Störung

$$f_s = \frac{1}{1.1 \cdot R \cdot C}$$

 Körperkontakt verringert Kapazität
 → Vergrößerung der
 Abtastrate

Übersicht

- Digital-zu-Analog-Wandler (DAC)
 - R-2R-Netzwerk
 - DAC-Chip DAC0909
- 2 Analog-zu-Digital-Wandler (ADC)
 - Manuelle Analog-zu-Digital-Wandlung
 - Computergestützte Analog-zu-Digital-Wandlung
- 3 A/D-Wandlerchip ADC0804
 - A/D-Wandlerchip ADC0804
- 4 A/D-D/A-Wandlerstrecke
 - Auflösung und Bitfehler
 - Shannon-Nyquist-Abtasttheorem

Aufbau

Aufbau

Tonunterschiede

- deutliche Tonuntschiede und Rauschen beim Abschalten einzelner Bits
- starke Veränderung bei MSB, schwächste bei LSB

- Zunächst wird der Tiefpassfilter überbrückt
- Erhöhung der Frequenz mit allen Bits gesetzt

Beobachtungen

Signalentwicklung

- Je höher die Signalfrequenz, desto weniger Zeit bleibt einen Wellenberg abzutasten (Signal wird "eckiger")
- liegt Signalfrequenz nah an Abtastfrequenz enstehen Schwebungseffekte
- sehr hohe Spannung verzerren das Signal, aber Periodizität bleibt

Frequenzentwicklung

- je mehr das digitalisierte Signal vom Sinus abweicht desto mehr Peaks enstehen durch die Furrieranalyse
- ullet gegenläufige Frequenzpeaks o oszillierender Ton

Einbauf von Tiefpassfilter

Nun wird der Tiefpassfilter eingebaut

Tiefpassfilter l Vergleich 1500Hz

Figure: Ohne Tiefpassfilter

Figure: Mit Tiefpassfilter

Vergleich

- Tiefpassfilter filtert ungewünschte hohe Frequenzen heraus
- deutlich besseres Signal
- ullet schwächeres Gegeneinanderlaufen o weniger Ton-Oszillation

Zusätzlicher Tiefpassfilter

- Zusätzlicher Tiefpassfilter am Eingang des A/D Wandlers
- es wurde keine Veränderung des Signals beobachtet