0.1 全同粒子

0.1.1 置换对称性

考虑两粒子体系,一个粒子用 $|k'\rangle$ 描述. 两粒子体系所处的态为 $|k'\rangle_1\otimes|k''\rangle_2$ 描述. 若 $k'\neq k''$,则 $|k'\rangle_1\otimes|k''\rangle_2\neq|k''\rangle_1\otimes|k'\rangle_2$. 约定总是以编号顺序直积各态,便可省去下标与直积符号. 线性组合 $c_1|k'\rangle|k''\rangle+c_2|k''\rangle|k'\rangle$ 会给出等价的本征值.

引入置换算符 P_{12} ,作用为 $P_{12}|k'\rangle|k''\rangle=|k''\rangle|k'\rangle$,显然有 $P_{12}=P_{21}$ 与 $P_{12}^2=\mathbb{I}$. 所以 P_{12} 本征值为 ± 1 .

写出全同两粒子体系的哈密顿量. 坐标 x_i 和动量 p_i 等量对于 i = 1, 2 对称, 如

$$H = \sum_{i}^{2} rac{ec{p}_{i}^{2}}{2m} + V_{ ext{pair}}(|ec{x}_{1} - ec{x}_{2}|) + \sum_{i}^{2} V_{ ext{ext}}(ec{x}_{i})$$

通过构造 $P_{12}HP_{12}=H$ 证明 $[P_{12},H]=0$. 则 P_{12} 的本征态为 $|k'k''\rangle_{\pm}=\frac{1}{\sqrt{2}}(|k'\rangle|k''\rangle_{\pm}|k''\rangle|k'\rangle_{\pm}$, 即要么完全对称, 要么完全反对称. 推广到 N 个全同粒子, 引入置换算符 P_{ij} , 作用是

$$P_{ij}|k'\rangle_1|k''\rangle_2\cdots|k^{(i)}\rangle_i|k^{(i+1)}\rangle_{i+1}\cdots|k^{(j)}\rangle_j\cdots=|k'\rangle_1|k''\rangle_2\cdots|k^{(j)}\rangle_i|k^{(i+1)}\rangle_{i+1}\cdots|k^{(i)}\rangle_j\cdots$$

完全对称态满足玻色-爱因斯坦统计,完全反对称态满足费米-狄拉克统计.

0.1.2 两电子系统

电子具有自旋,因此系统波函数除了空间波函数,还有旋量。通过对 $\left|\frac{1}{2},\frac{1}{2}\right\rangle \left|\frac{1}{2},\frac{1}{2}\right\rangle = |\uparrow\uparrow\rangle$ 使用 $S^- = S^-_{(1)} + S^-_{(2)}$ 可以得到三重态和单态:

$$\psi(\vec{x}_1, \vec{x}_2; s, m) = \phi(\vec{x}_1, \vec{x}_2) | s, m \rangle$$

$$|1, 1\rangle = |\uparrow\uparrow\rangle,$$

$$|1, 0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle),$$

$$|1, -1\rangle = |\downarrow\downarrow\rangle,$$

$$|0, 0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

因为空间波函数和旋量直乘, 而费米-狄拉克要求总函数反对称, 若旋量对称, 对应空间波函数反对称, 反之亦然. 观察可知, 三重态对称, 而单态反对称.

0.1.3 多电子系统

0.1.3.1 多电子系统的哈密顿量

对于大量电子和原子核构成的系统,其哈密顿量一般为

$$H = -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \sum_{i,I} \frac{1}{4\pi\epsilon_{0}} \frac{Z_{I}e^{2}}{|\vec{r}_{i} - \vec{R}_{I}|} + \frac{1}{2} \sum_{i \neq j} \frac{1}{4\pi\epsilon_{0}} \frac{e^{2}}{|\vec{r}_{i} - \vec{r}_{j}|} - \sum_{i \neq J} \frac{\hbar^{2}}{2M_{I}} \nabla_{I}^{2} + \frac{1}{2} \sum_{I \neq J} \frac{1}{4\pi\epsilon_{0}} \frac{Z_{I}Z_{J}e^{2}}{|\vec{R}_{I} - \vec{R}_{J}|}$$

电子使用小写,原子核使用大写.采用波恩-奥本海默近似/绝热近似,即因原子核质量远大于电子质量,而近似忽略原子核的动能项,且视原子核相对静止,从而认为原子核之间的互能为常数.采用 Hartree 原子单位制,多电子哈密顿量可简化为

$$\begin{split} H &= T + V_{ne} + V_{ee} \\ &= \sum_{i} \left(-\frac{1}{2} \nabla_{i}^{2} \right) + \sum_{i} v\left(\vec{r_{i}}\right) + \sum_{i < j} \frac{1}{r_{ij}} \\ v\left(\vec{r_{i}}\right) &= -\sum_{I} \frac{Z_{I}}{r_{iI}} \end{split}$$

0.1.3.2 变分原理

$$\begin{split} \psi &= \sum_i c_i \psi_i, \\ E &= \frac{\sum_i ||c_i||^2 E_i}{\sum_i ||c_i||^2} \geq \frac{\sum_i ||c_i||^2 E_0}{\sum_i ||c_i||^2} = E_0, \quad E = E_0 \iff \psi = \psi_0 \\ \delta \big[\langle \psi | H | \psi \rangle - E(\langle \psi | \psi \rangle - 1) \big] &= 0, \quad \delta (\langle \psi |) : \langle \delta \psi | H - E | \psi \rangle = 0 \end{split}$$

0.1.3.3 Hatree-Fock 近似

设系统波函数可由 Slater 行列式近似, 即 $\Psi = \frac{1}{\sqrt{N!}} \det[\psi_{q(1)}\psi_{q(2)}\cdots\psi_{q(N)}], \psi_q(\vec{x})$ 表示单个电子的波函数(空间直乘自旋), q 标记所有量子数. Hartree-Fock 近似认为, 使得 E 最小化的波函数仍然维持行列式形式, 只是需要通过变分法确定各量子数 q. 通过这样的方法求得的 E_0 被标记为

$$\begin{split} E_{\mathrm{HF}} &= \langle \Psi_{\mathrm{HF}} | H | \Psi_{\mathrm{HF}} \rangle = \sum_{i} H_{i} + \frac{1}{2} \sum_{i,j} (J_{ij} - K_{ij}) \\ H_{i} &= \int \psi_{i}^{*}(\vec{x}) \left[-\frac{1}{2} \nabla^{2} + v(\vec{x}) \right] \psi_{i}(\vec{x}) \mathrm{d}\vec{x} \\ J_{ij} &= \iint \psi_{i}^{*}(\vec{x}_{1}) \psi_{j}^{*}(\vec{x}_{2}) \frac{1}{r_{12}} \psi_{i}(\vec{x}_{1}) \psi_{j}(\vec{x}_{2}) \mathrm{d}\vec{x}_{1} \mathrm{d}\vec{x}_{2}, \quad \text{Coulomb integrals} \\ K_{ij} &= \iint \psi_{i}^{*}(\vec{x}_{1}) \psi_{j}^{*}(\vec{x}_{2}) \frac{1}{r_{12}} \psi_{j}(\vec{x}_{1}) \psi_{i}(\vec{x}_{2}) \mathrm{d}\vec{x}_{1} \mathrm{d}\vec{x}_{2}, \quad \text{exchange integrals} \end{split}$$

省去分母是因为 Slater 行列式的系数已经确保波函数可以归一化.

$$\begin{split} & \left\langle \Psi_{\text{HF}} \left| \frac{1}{r_{ij}} \right| \Psi_{\text{HF}} \right\rangle \\ &= \int \frac{1}{N!} \sum_{PP'} \eta_P \eta_{P'} \left(\psi_{P(1)}^*(\vec{x}_1) \cdots \psi_{P(N)}^*(\vec{x}_N) \right) \frac{1}{r_{ij}} \left(\psi_{P(1)}(\vec{x}_1) \cdots \psi_{P(N)}(\vec{x}_N) \right) \mathrm{d}\vec{x}^N \\ &= \int \frac{1}{N!} \sum_{PP'} \eta_P \eta_{P'} \prod_{k \neq i,j} \delta_{P(k),P'(k)} \psi_{P(i)}^*(\vec{x}_i) \psi_{P(j)}^*(\vec{x}_j) \frac{1}{r_{12}} \psi_{P(i)}(\vec{x}_i) \psi_{P(j)}(\vec{x}_j) \mathrm{d}\vec{x}_i \mathrm{d}\vec{x}_j \\ &= \int \frac{1}{N!} \sum_{PP'} \eta_P \eta_{P'} \left(\delta_{P',P} + \delta_{P',PP_{ij}} \right) \psi_{P(i)}^*(\vec{x}_1) \psi_{P(j)}^*(\vec{x}_2) \frac{1}{r_{12}} \psi_{P'(i)} \psi_{P'(j)}(\vec{x}_2) \mathrm{d}\vec{x}_1 \mathrm{d}\vec{x}_2 \\ &= \int \frac{1}{N!} \sum_{P} \psi_{P(i)}^*(\vec{x}_1) \psi_{P(j)}^*(\vec{x}_2) \frac{1}{r_{12}} \psi_{P(i)}(\vec{x}_1) \psi_{P(i)}(\vec{x}_2) \mathrm{d}\vec{x}_1 \mathrm{d}\vec{x}_2 \\ &- \int \frac{1}{N!} \sum_{P} \psi_{P(i)}(\vec{x}_1)^* \psi_{P(j)}^*(\vec{x}_2) \frac{1}{r_{12}} \psi_{P(j)}(\vec{x}_1) \psi_{P(i)}(\vec{x}_2) \mathrm{d}\vec{x}_1 \mathrm{d}\vec{x}_2 \\ &= \int \frac{1}{N(N-1)} \sum_{i \neq j} \psi_i^*(\vec{x}_1) \psi_j^*(\vec{x}_2) \frac{1}{r_{12}} \psi_i(\vec{x}_1) \psi_j(\vec{x}_2) \mathrm{d}\vec{x}_1 \mathrm{d}\vec{x}_2 \\ &- \int \frac{1}{N(N-1)} \sum_{i \neq j} \psi_i^*(\vec{x}_1) \psi_j^*(\vec{x}_2) \frac{1}{r_{12}} \psi_j(\vec{x}_1) \psi_i(\vec{x}_2) \mathrm{d}\vec{x}_1 \mathrm{d}\vec{x}_2 \end{split}$$

系数 $\frac{1}{N(N-1)}$ 可以通过对 i,j 求和消去. 对 $E_{\rm HF}$ 求 $\delta\psi_i^*$ 变分, 且使用 $\int \psi_i^*(\vec{x})\psi_j(\vec{x}){\rm d}\vec{x}=\delta_{ij}$ 正交条件, 得到 Hatree-Fock 微分方程:

$$\left[-\frac{1}{2} \nabla^2 + v + \hat{j} - \hat{k} \right] \psi_i(\vec{x}) = \sum_j \varepsilon_{ij} \psi_j(\vec{x})$$

$$\Rightarrow \int \psi_i^*(\vec{x}) \left[-\frac{1}{2} \nabla^2 + v + \hat{j} - \hat{k} \right] \psi_i(\vec{x}) d\vec{x} = \int \psi_i^*(\vec{x}) \sum_j \varepsilon_{ij} \psi_j(\vec{x}) d\vec{x} = \varepsilon_{ii} \equiv \varepsilon_i$$

$$\hat{j}(\vec{x}_1) f(\vec{x}_1) = \sum_{k=1}^N \int \psi_k^*(\vec{x}_2) \psi_k(\vec{x}_2) \frac{1}{r_{12}} f(\vec{x}_1) d\vec{x}_2$$

$$\hat{k}(\vec{x}_1) f(\vec{x}_1) = \sum_{k=1}^N \int \psi_k^*(\vec{x}_2) f(\vec{x}_2) \frac{1}{r_{12}} \psi_k(\vec{x}_1) d\vec{x}_2$$

将轨道能量 ε_i 对 i 求和, 与 E_{HF} 比较可知

$$\begin{split} E_{\mathrm{HF}} &= \sum_{i=1}^{N} \varepsilon_{i} - V_{ee} \\ V_{ee} &= \int \Psi_{\mathrm{HF}}^{*}(\vec{x}^{N}) \left(\sum_{i < j} \frac{1}{r_{ij}} \right) \Psi_{\mathrm{HF}}(\vec{x}^{N}) \mathrm{d}\vec{x}^{N} = \frac{1}{2} \sum_{i,j=1}^{N} (J_{ij} - K_{ij}) \end{split}$$

0.1.3.4 均匀电子气

无相互作用的电子气哈密顿量为 $H_0 = \sum_i \left(-\frac{1}{2}\nabla_i^2\right)$, 因为 $[p_i, H_0] = [p_i, p_j] = 0$, 所以具有共同本征态. 动量本征态在 \vec{x} 表象下是平面波 $\psi_{\vec{k}}(\vec{r}) = \frac{1}{\sqrt{V}}e^{i\vec{k}\cdot\vec{r}}$, 使用 Slater 行列式将 N 电子气体波函数写为 $\Psi_0 = \frac{1}{\sqrt{N!}}\det[\psi_{\vec{k}_j,s_j}(\vec{x}_i)]$, 其中 $\psi_{\vec{k},s} = \psi_{\vec{k}}\chi(s)$. 系统能量为 $E = \sum_i \frac{|k_i|^2}{2}$. 求解能量和粒子数密度可参见 **??**, 此处略过.

接下来考虑加入电子相互作用的修正. 首先是 Coulomb 能:

$$E_{\text{Coulomb}} = \frac{1}{2} \sum_{i,j} \iint \psi_{\vec{k}_i}^*(\vec{x}_1) \psi_{\vec{k}_j}^*(\vec{x}_2) \frac{1}{r_{12}} \psi_{\vec{k}_i}(\vec{x}_1) \psi_{\vec{k}_j}(\vec{x}_2) d\vec{x}_1 d\vec{x}_2$$

这部分积分会产生发散. 一般是通过引入正电荷背景以进行抵消. 而 eXchange 能对于修正更具有意义, 它是

$$E_{\rm eXchange} = -\frac{1}{2} \sum_{i,j} \iint \psi_{\vec{k}_i}^*(\vec{x}_1) \psi_{\vec{k}_j}^*(\vec{x}_2) \frac{\delta_{s_i,s_j}}{r_{12}} \psi_{\vec{k}_j}(\vec{x}_1) \psi_{\vec{k}_i}(\vec{x}_2) \mathrm{d}\vec{x}_1 \mathrm{d}\vec{x}_2$$

为了便于计算,将势能写作动量空间的形式.由于傅里叶变化形式众说纷纭,所以约定

$$\begin{cases} F(\vec{k}) = \int f(\vec{x})e^{-i\vec{k}\cdot\vec{x}}d\vec{x} \\ f(\vec{x}) = \left(\frac{1}{2\pi}\right)^3 \int F(\vec{k})e^{i\vec{k}\cdot\vec{x}}d\vec{q} \end{cases}$$

于是汤川势有

$$\mathcal{F}\left[\frac{e^{-ar}}{r}\right] = \int \frac{e^{-ar}}{r} e^{-i\vec{q}\cdot\vec{r}} d\vec{r} = \frac{4\pi}{q^2 + a^2}$$

库伦势是汤川势 a=0 的特例: $\int \frac{1}{r} e^{-i\vec{q}\cdot\vec{r}} d\vec{r} = \frac{4\pi}{q^2}$, 所以其逆变换为

$$\frac{1}{r_{12}} = \left(\frac{1}{2\pi}\right)^3 \int \frac{4\pi}{q^2} e^{i\vec{q}\cdot(\vec{x}_1 - \vec{x}_2)} \mathrm{d}\vec{q}$$

将其代入于 E_{eXchange} 中, 且使用普朗克尔定理 $\int d^3\vec{x} e^{i\vec{k}\cdot\vec{x}} = (2\pi)^3 \delta^{(3)}(\vec{k},\vec{0})$:

$$\begin{split} E_{\text{eXchange}} &= -\frac{\delta_{s_i,s_j}}{2} \sum_{i,j} \iint \frac{1}{\sqrt{V}} e^{-i\vec{k}_i \cdot \vec{x}_1} \frac{1}{\sqrt{V}} e^{-i\vec{k}_j \cdot \vec{x}_2} \left[\left(\frac{1}{2\pi} \right)^3 \frac{4\pi}{q^2} e^{i\vec{q} \cdot (\vec{x}_1 - \vec{x}_2)} \mathrm{d}\vec{q} \right] \frac{1}{\sqrt{V}} e^{i\vec{k}_j \cdot \vec{x}_1} \frac{1}{\sqrt{V}} e^{i\vec{k}_i \cdot \vec{x}_2} \mathrm{d}\vec{x}_1 \mathrm{d}\vec{x}_2 \\ &= -\frac{\delta_{s_i,s_j}}{2} \sum_{i,j} \int \left[\frac{1}{V^2} \left(\int e^{-i\vec{k}_i \cdot \vec{x}_1} e^{i\vec{q} \cdot \vec{x}_1} e^{i\vec{k}_j \cdot \vec{x}_1} \mathrm{d}\vec{x}_1 \right) \left(\int e^{-i\vec{k}_j \cdot \vec{x}_2} e^{-i\vec{q} \cdot \vec{x}_2} e^{i\vec{k}_i \cdot \vec{x}_2} \mathrm{d}\vec{x}_2 \right) \right] \frac{4\pi}{q^2} \frac{\mathrm{d}\vec{q}}{(2\pi)^3} \\ &= -\frac{\delta_{s_i,s_j}}{2} \sum_{i,j} \int \left[\frac{1}{V^2} \left(\iint e^{i(\vec{k}_i - \vec{k}_j) \cdot \vec{r}} e^{-i\vec{q} \cdot \vec{r}} \mathrm{d}\vec{r} \mathrm{d}\vec{x}_1 \right) \right] \frac{4\pi}{q^2} \frac{\mathrm{d}\vec{q}}{(2\pi)^3} \\ &= -\frac{\delta_{s_i,s_j}}{2} \sum_{i,j} \int \left[\frac{1}{V^2} \left(2\pi \right)^{(3)} \delta^{(3)} (\vec{k}_i - \vec{k}_j, \vec{q}) \cdot V \right] \frac{4\pi}{q^2} \frac{\mathrm{d}\vec{q}}{(2\pi)^3} \\ &= -\frac{\delta_{s_i,s_j}}{2} \sum_{i,j} \left[\frac{1}{V} \right] \frac{4\pi}{|\vec{k}_i - \vec{k}_j|^2} \\ &= -\frac{1}{2V} \sum_{i,j} \frac{4\pi \delta_{s_i,s_j}}{|\vec{k}_i - \vec{k}_j|^2} \end{split}$$

每个波矢 \vec{k} 可提供两个自旋态, 所以将其移出 \vec{k}_i , 从而只对波矢求和:

$$\begin{split} E_{\text{eXchange}} &= -\frac{1}{V} \sum_{\vec{k}_m, \vec{k}_n} \frac{4\pi}{|\vec{k}_m - \vec{k}_n|^2} \\ &= -4\pi \sum_{\vec{k}_m} \int_{k_n \leq k_F} \frac{\mathrm{d} \vec{k}_n}{(2\pi)^3} \frac{1}{|\vec{k}_m - \vec{k}_n|^2} \\ &= -4\pi \sum_{\vec{k}_m} \frac{k_F F\left(\frac{k_m}{k_F}\right)}{2\pi^2} \end{split}$$

其中 $F(x) = \frac{1}{2} + \frac{1-x^2}{4x} \ln \left| \frac{1+x}{1-x} \right|$. 进一步使用技巧 $\sum_{\vec{k}_m} = \frac{V}{(2\pi)^3} \int \mathrm{d}\vec{k}_m$, 且使用结论 $k_F = \left(3\pi^2 n\right)^{1/3}$, 即有

$$E_{
m exchange} = \left[-rac{k_F^4 V}{4\pi^3}
ight] = -rac{3}{4} \left(rac{3}{\pi}
ight)^{rac{1}{3}} n^{rac{4}{3}} V$$

0.1.4 二次量子化

0.1.4.1 一次量子化和二次量子化

$$E = \frac{p^2}{2m} + V(\vec{x}, t) \Rightarrow \hat{H} = \frac{1}{2m} \hat{p}^2 + \hat{V} \Rightarrow \hat{H} = \sum_{i,j} \hat{a}_i^{\dagger} \hat{a}_j$$

一次量子化引入算符和波函数,二次量子化引入场算符.

0.1.4.1.1 一次量子化态 一般性地, 设单粒子的 Hilbert 空间维度为 D, 且基矢为 $\{|\psi\rangle\}$, $\psi=\psi_1,\psi_2,\cdots\psi_D$. 那么 N 粒子体系的 Hilbert 空间维度将是 D^N , 基矢为各粒子基矢的直积 $|[\psi]\rangle=|\psi\rangle_{(1)}\otimes|\psi\rangle_{(2)}\otimes\cdots\otimes|\psi\rangle_{(N)}, |\psi\rangle_{(j)}=|\psi_1\rangle, |\psi_2\rangle,\cdots,|\psi_D\rangle$

- 1. 一次量子化中的一般态: $|\Psi\rangle = \sum_{[\psi]} C[\psi] |[\psi]\rangle$, $C[\psi]$ 是多体波函数的系数.
- 2. 全同玻色子: $\mathcal{S}|[\psi] = \sum_{P \in S_N} \prod_{i=1}^N |\psi\rangle_{P(i)}$
- 3. 全同费米子: $\mathcal{A}|[\psi]
 angle = \sum_{P \in S_N} \eta_P \prod_{i=1}^N |\psi
 angle_{P(i)}$

通过组合数计算可知,全同玻色/费米子在总 Hilbert 空间中占据极少,所以使用一次量子化的表述总是不方便的. 而二次量子化使用的 Fock 空间将自动考虑粒子全同性,即在 Fock 空间中任意态都是满足粒子全同性的.

0.1.4.1.2 二次量子化态 二次量子化的观点是占据数表象, 即定义单个粒子态 $|\psi_{\alpha}\rangle$ 占据数为 n_{α} , 那么 N 粒子态波函数可以写为 Fock 态: $|[n]\rangle = |n_1, n_2, \cdots, n_{\alpha}, \cdots, n_D\rangle$. 玻色子可以有任意多个粒子占据同一态, 即 $n_{\alpha} \in \mathbb{N}$; 费米子至多有一个, 即 $n_{\alpha} = 0, 1$. 由于粒子数守恒, 有 $\sum_{\alpha} n_{\alpha} = N$. 使用上述定义的 Fock 态作为基矢, 张成的空间即为 Fock 空间. 如果使用 \mathcal{F} 表示 Fock 空间, 那么

$$\mathcal{F} = \mathcal{F}^0 \oplus \mathcal{F}^1 \oplus \mathcal{F}^2 \oplus \cdots$$
 $\mathcal{F}^{N_j} = \operatorname{span} \left\{ \left| n_1, n_2, \cdots, n_D
ight
angle | \sum_{i=1}^D n_i = N_j
ight\}$

二次量子化下的多体态函数是 Fock 态的线性组合 $|\Psi\rangle = \sum_{[n]} C[n] |[n]\rangle$, 每个 Fock 态都有其一次量子化表示.

0.1.4.1.3 Fock 态的表示 引入下标 *B* 表示玻色统计, *F* 表示费米统计. 占据数均为 0 ($n_i = 0, \forall i$) 的 Fock 态被称为真空态 $|0\rangle = |\cdots, 0\cdots\rangle$, 所以 $|0\rangle_B = |0\rangle_F$. 仅有一个占据数 $n_\psi \neq 0$ 的 Fock 态被称为单模(single-mode) Fock 态.

$$|n_{\psi}\rangle = |\cdots, 0, n_{\psi}, 0, \cdots\rangle$$

 $|1_{\psi}\rangle_B = |1_{\psi}\rangle_F = |\psi\rangle$
 $|n_{\psi}\rangle_B = \prod_{i=1}^{n_{\psi}} |\psi\rangle \equiv |\psi\rangle^{\otimes n_{\psi}}$

对于多模(multi-mode) Fock 态, 则涉及多个粒子态(比如 $|\psi_i\rangle$, $|\psi_j\rangle$). 在一次量子化中已经学习过如何根据交换对称/反对称构造其波函数:

$$\begin{split} |1_{\psi_i},1_{\psi_j}\rangle_B &= \frac{1}{\sqrt{2}}(|\psi_i\rangle\otimes|\psi_j\rangle + |\psi_j\rangle\otimes|\psi_i\rangle) \\ |1_{\psi_i},1_{\psi_j}\rangle_F &= \frac{1}{\sqrt{2}}(|\psi_i\rangle\otimes|\psi_j\rangle - |\psi_j\rangle\otimes|\psi_i\rangle) \\ |2_{\psi_i},1_{\psi_j}\rangle_B &= \frac{1}{\sqrt{3}}(|\psi_i\rangle\otimes|\psi_i\rangle\otimes|\psi_j\rangle + |\psi_i\rangle\otimes|\psi_j\rangle\otimes|\psi_i\rangle + |\psi_j\rangle\otimes|\psi_i\rangle\otimes|\psi_i\rangle\otimes|\psi_i\rangle) \\ |1_{\psi_i},1_{\psi_j},1_{\psi_k}\rangle &= \frac{1}{\sqrt{6}}(|\psi_i\rangle\otimes|\psi_j\rangle\otimes|\psi_k\rangle + |\psi_j\rangle\otimes|\psi_k\rangle\otimes|\psi_i\rangle + |\psi_k\rangle\otimes|\psi_i\rangle\otimes|\psi_j\rangle \\ &- |\psi_k\rangle\otimes|\psi_j\rangle\otimes|\psi_i\rangle - |\psi_j\rangle\otimes|\psi_i\rangle\otimes|\psi_k\rangle - |\psi_i\rangle\otimes|\psi_k\rangle\otimes|\psi_j\rangle) \end{split}$$

1. 玻色子:

$$|[n]
angle_B = \left(rac{1}{N!\prod_{\psi}n_{\psi}!}
ight)^{rac{1}{2}} \mathcal{S} \mathop{\otimes}_{\psi}|\psi
angle^{\otimes n_{\psi}}$$

2. 费米子:

$$|[n]\rangle_F = \left(\frac{1}{N!}\right)^{\frac{1}{2}} \mathcal{A} \underset{\psi}{\otimes} |\psi\rangle^{\otimes n_{\psi}}$$

0.1.5 产生湮灭算符

0.1.6 态的产生和湮灭

下面介绍如何引入产生/湮灭算符, 即在量子多体系统中产生/湮灭一个粒子. 准备单粒子态 $|\psi_i\rangle$, $|\psi_j\rangle$; 单位张量 $|0\rangle=\mathbb{I}$, 一次量子化的态函数 $|\Psi\rangle$, $|\Phi\rangle$. 定义添加(Add)算符 \hat{A}_\pm 和删除(Delete)算符 \hat{D}_\pm , 下标 \pm 表示添加/删除后的态需要对称化/反对称化. 比如, $|\psi_i\rangle\hat{A}_+|\Psi\rangle$ 表示在已有的态函数 $|\Psi\rangle$ 中添加一个粒子且该粒子态为 $|\psi_i\rangle$, 且要求增加后的态函数对称化. 可以总结出 \hat{A}_\pm 和 \hat{D}_\pm 将具有

1. 线性性:
$$\begin{cases} |\psi_i\rangle \hat{A}_\pm(a|\Psi\rangle + b|\Phi\rangle) = a|\psi_i\rangle \hat{A}_\pm|\Psi\rangle + b|\psi_i\rangle \hat{A}_\pm|\Phi\rangle \\ |\psi_i\rangle \hat{D}_\pm(a|\Psi\rangle + b|\Phi\rangle) = a|\psi_i\rangle \hat{D}_\pm|\Psi\rangle + b|\psi_i\rangle \hat{D}_\pm|\Phi\rangle \end{cases}$$

2. 真空态: $|\psi_i\rangle \hat{A}_{\pm}|0\rangle = |\psi_i\rangle$, $|\psi_i\rangle \hat{D}_{\pm}|0\rangle = 0$

3. 直积展开:
$$\begin{cases} |\psi_i\rangle \hat{A}_{\pm}|\psi_j\rangle \otimes |\Psi\rangle = |\psi_i\rangle \otimes |\psi_j\rangle \otimes |\Psi\rangle \pm |\psi_j\rangle \otimes (|\psi_i\rangle \hat{A}_{\pm}|\Psi\rangle) \\ |\psi_i\rangle \hat{D}_{\pm}|\psi_j\rangle \otimes |\Psi\rangle = \langle \psi_i|\psi_j\rangle |\Psi\rangle \pm |\psi_j\rangle \otimes (|\psi_i\rangle \hat{D}_{\pm}|\Psi\rangle) \end{cases}$$

0.1.7 玻色子的产生湮灭算符

1. 玻色产生算符 b_{α}^{\dagger} , 即在 $|\alpha\rangle$ 上添加一个玻色子, 占据数 $n_{\alpha} \rightarrow n_{\alpha} + 1$. 因为在 N+1 个位置对称添加 $|\alpha\rangle$, 所以有

$$b_{\alpha}^{\dagger}|\Psi\rangle = \frac{1}{\sqrt{N+1}}|\alpha\rangle\hat{A}_{+}|\Psi\rangle$$

2. 玻色湮灭算符 b_{α} , 即在 $|\alpha\rangle$ 上移除一个玻色子, 占据数 $n_{\alpha} \to n_{\alpha} - 1$. 因为在 N 个位置对称移除 $|\alpha\rangle$, 所以有

$$b_{\alpha}|\Psi\rangle = \frac{1}{\sqrt{N}}|\alpha\rangle\hat{D}_{-}|\Psi\rangle$$

玻色产生湮灭算符对 Fock 态的作用:

1. 单模 Fock 态:

$$b_{\alpha}^{\dagger}|n_{\alpha}\rangle = \frac{1}{\sqrt{n_{\alpha}+1}}|\alpha\rangle \hat{A}_{+}|\alpha\rangle \otimes^{n_{\alpha}} = \frac{n_{\alpha}+1}{\sqrt{n_{\alpha}+1}}|\alpha\rangle \otimes^{(n_{\alpha}+1)} = \sqrt{n_{\alpha}+1}|n_{\alpha}+1\rangle$$

$$b_{\alpha}|n_{\alpha}\rangle = \frac{1}{\sqrt{n_{\alpha}}}|\alpha\rangle \hat{D}_{+}|\alpha\rangle \otimes^{n_{\alpha}} = \frac{n_{\alpha}}{\sqrt{n_{\alpha}}}|\alpha\rangle \otimes^{(n_{\alpha}-1)} = \sqrt{n_{\alpha}}|n_{\alpha}-1\rangle$$

对于真空态即有 $b_{\alpha}^{\dagger}|0_{\alpha}\rangle = |1_{\alpha}\rangle$, $b_{\alpha}|0_{\alpha}\rangle = 0$. 观察到玻色子的粒子数算符 $b_{\alpha}^{\dagger}b_{\alpha}|\alpha\rangle = n_{\alpha}|n_{\alpha}\rangle$ 单模 Fock 态可以用产生算符 b_{α}^{\dagger} 作用于真空态得到: $|n_{\alpha}\rangle = \frac{1}{\sqrt{n_{\alpha}!}}\left(b_{\alpha}^{\dagger}\right)^{n_{\alpha}}|0_{\alpha}\rangle$

2. 一般 Fock 态:

$$\begin{array}{l} b_{\alpha}^{\dagger}|\cdots,n_{\beta},n_{\alpha},n_{\gamma},\cdots\rangle_{B} = \sqrt{n_{\alpha}+1}|\cdots,n_{\beta},n_{\alpha}+1,n_{\gamma},\cdots\rangle_{B} \\ b_{\alpha}|\cdots,n_{\beta},n_{\alpha},n_{\gamma},\cdots\rangle_{B} = \sqrt{n_{\alpha}}|\cdots,n_{\beta},n_{\alpha}-1,n_{\gamma},\cdots\rangle_{B} \end{array}$$

上述定义可求得对易关系 $\left[b_{\alpha}^{\dagger},b_{\beta}^{\dagger}\right]=\left[b_{\alpha},b_{\beta}\right]=0,$ $\left[b_{\alpha},b_{\beta}^{\dagger}\right]=\delta_{\alpha\beta}.$

0.1.8 费米子的产生湮灭算符

1. 费米产生算符 c_{α}^{\dagger} , 在单粒子态 $|\alpha\rangle$ 上添加一个费米子, 占据数 $n_{\alpha} \to n_{\alpha} + 1$ (因此 $n_{\alpha} = 0$). 因为在 N+1 个位置反对称添加 $|\alpha\rangle$, 所以有

$$c_{\alpha}^{\dagger}|\Psi\rangle = \frac{1}{\sqrt{N+1}}|\alpha\rangle\hat{A}_{-}|\Psi\rangle$$

2. 费米湮灭算符 c_{α} , 在单粒子态 $|\alpha\rangle$ 上移除一个费米子, 占据数 $n_{\alpha}\to n_{\alpha}-1$ (因此 $n_{\alpha}=1$). 因为在 N 个位置反对称移除 $|\alpha\rangle$, 所以有

$$c_{\alpha}|\Psi\rangle = \frac{1}{\sqrt{N}}|\alpha\rangle\hat{D}_{-}|\Psi\rangle$$

玻色产生湮灭算符对 Fock 态的作用:

1. 单模 Fock 态:

$$\begin{split} c_{\alpha}^{\dagger}|0_{\alpha}\rangle &= |\alpha\rangle \hat{A}_{-}\mathbb{I} = |\alpha\rangle = |1_{\alpha}\rangle \\ c_{\alpha}^{\dagger}|1_{\alpha}\rangle &= \frac{1}{\sqrt{2}}|\alpha\rangle \hat{A}_{-}|\alpha\rangle = \frac{1}{\sqrt{2}}(|\alpha\rangle\otimes|\alpha\rangle - |\alpha\rangle\otimes|\alpha\rangle) = 0 \\ c_{\alpha}|0_{\alpha}\rangle &= 0 \\ c_{\alpha}|1_{\alpha}\rangle &= |\alpha\rangle \hat{D}_{-}|\alpha\rangle = |0_{\alpha}\rangle \end{split}$$

总结为 $c_{\alpha}^{\dagger}|n_{\alpha}\rangle = \sqrt{1-n_{\alpha}}|1-n_{\alpha}\rangle$, $c_{\alpha}|n_{\alpha}\rangle = \sqrt{n_{\alpha}}|1-n_{\alpha}\rangle$. 观察到费米子的粒子数算符 $c_{\alpha}^{\dagger}c_{\alpha}|n_{\alpha}\rangle = n_{\alpha}|n_{\alpha}\rangle$. 单模 Fock 态可以用产生算符 c_{α}^{\dagger} 作用于真空态得到: $|n_{\alpha}\rangle = \left(c_{\alpha}^{\dagger}\right)^{n_{\alpha}}|0_{\alpha}\rangle$

2. 一般 Fock 态:

$$c_{\alpha}^{\dagger}|\cdots,n_{\beta},n_{\alpha},n_{\gamma},\cdots\rangle_{F} = (-)^{\beta < \alpha} \sqrt{1 - n_{\alpha}}|\cdots,n_{\beta},1 - n_{\alpha},n_{\gamma},\cdots\rangle_{F}$$

$$\sum_{\alpha} n_{\beta}$$

$$c_{\alpha}|\cdots,n_{\beta},n_{\alpha},n_{\gamma},\cdots\rangle_{F} = (-)^{\beta < \alpha} \sqrt{n_{\alpha}}|\cdots,n_{\beta},1 - n_{\alpha},n_{\gamma},\cdots\rangle_{F}$$

上述定义可求得反对易关系 $\left\{c_{\alpha}^{\dagger},c_{\beta}^{\dagger}\right\}=\left\{c_{\alpha},c_{\beta}\right\}=0,\left\{c_{\alpha},c_{\beta}^{\dagger}\right\}=\delta_{\alpha\beta}$

可以看出玻色子和费米子的(反)对易关系非常相似, 引入 $[a,b]_{-\zeta}=ab-\zeta ba$ 统一 [a,b] 和 $\{a,b\}$:

$$\left[a_{\alpha}^{\dagger},a_{\beta}^{\dagger}\right]_{-\zeta}=\left[a_{\alpha},a_{\beta}\right]_{-\zeta}=0,\quad \left[a_{\alpha},a_{\beta}^{\dagger}\right]_{-\zeta}=\delta_{\alpha\beta},\quad \zeta=\begin{cases} 1, & \text{Boson}\\ -1, & \text{Fermion} \end{cases}$$

0.1.9 产生湮灭算符的表象变换规律

已知单位算符 $\mathbb{I}=\sum_{\alpha}|\alpha\rangle\langle\alpha|$, 基矢变换 $|\widetilde{\alpha}\rangle=\sum_{\alpha}|\alpha\rangle\langle\alpha|\widetilde{\alpha}\rangle$, 真空态涨落 $|\alpha\rangle=a_{\alpha}^{\dagger}|0\rangle$, $|\widetilde{\alpha}\rangle=a_{\widetilde{\alpha}}^{\dagger}|0\rangle$, 得到产生湮灭算符的基矢变换规律

$$a_{\widetilde{\alpha}}^{\dagger} = \sum_{\alpha} \langle \alpha | \widetilde{\alpha} \rangle a_{\alpha}^{\dagger}, \quad a_{\widetilde{\alpha}} = \sum_{\alpha} \langle \widetilde{\alpha} | \alpha \rangle a_{\alpha}$$

这对玻色子和费米子都成立. 比如计算坐标表象 |x> 下的产生湮灭算符, 此时它被称为场算符:

$$\psi^{\dagger}(x) = \sum_{\alpha} \langle \alpha | x \rangle a_{\alpha}^{\dagger} = \sum_{\alpha} \phi_{\alpha}^{*}(x) a_{\alpha}^{\dagger}$$
$$\psi(x) = \sum_{\alpha} \langle x | \alpha \rangle a_{\alpha} = \sum_{\alpha} \phi_{\alpha}(x) a_{\alpha}$$

存在逆变换

$$a_{\alpha}^{\dagger} = \int \langle x | \alpha \rangle \psi^{\dagger}(x) dx = \int \phi_{\alpha}(x) \psi^{\dagger}(x) dx,$$

$$a_{\alpha} = \int \langle \alpha | x \rangle \psi(x) dx = \int \phi_{\alpha}^{*}(x) \psi(x) dx$$

场算符的对易关系为

$$\left[\psi^\dagger(x),\psi^\dagger(y)\right]_{-\zeta} = \left[\psi(x),\psi(y)\right]_{-\zeta} = 0, \quad \left[\psi(x),\psi^\dagger(y)\right]_{-\zeta} = \delta(x-y)$$

如果考虑 α 为动量表象,那么一维长L空间有

$$a_k = \int_0^L \mathrm{d}x \langle k|x \rangle \psi(x), \quad \psi(x) = \sum_k \langle x|k \rangle a_k, \quad \langle k|x \rangle = \frac{1}{\sqrt{L}} e^{-ikx}$$

0.1.10 单体算符的表示

通过产生湮灭算符可能乘积的线性组合来构造任意算符. 对于 N 粒子体系, 希尔伯特空间 \mathcal{F}^N 中的单体算符 \hat{U} 具有形式 $\hat{U} = \sum_{i=1}^{N} \hat{U}_i$, 比如动能算符 $-\frac{1}{2} \nabla_i^2$ 和势能算符 $\hat{v}(\vec{x}_i)$.

考虑 \hat{U} 表象(即选择其本征矢 $|\lambda\rangle$ 为基矢, 此时 \hat{U}_i 将自动对角化为对角矩阵 $\text{Diag}\{U_\lambda\}$), 即 $\hat{U}=\sum_{i=1}^N\sum_\lambda U_\lambda|\lambda\rangle_i\langle\lambda|_i$, 其中 $U_\lambda=\langle\lambda|U_i|\lambda\rangle$, 在占据数表象下的矩阵元将是

$$\langle n'_1, n'_2, \cdots | \hat{U} | n_1, n_2, \cdots \rangle = \sum_{\lambda} U_{\lambda} \langle n'_1, n'_2, \cdots | \left(\sum_{i=1}^{N} |\lambda \rangle \langle \lambda| \right) | n_1, n_2, \cdots \rangle$$

$$= \sum_{\lambda} U_{\lambda} \langle n'_1, n'_2, \cdots | n_{\lambda} | n_1, n_2, \cdots \rangle$$

$$= \langle n'_1, n'_2, \cdots | \sum_{\lambda} U_{\lambda} a^{\dagger}_{\lambda} a_{\lambda} | n_1, n_2, \cdots \rangle$$

因此 $\hat{U} = \sum_{\lambda} U_{\lambda} a_{\lambda}^{\dagger} a_{\lambda} = \sum_{\lambda} \langle \lambda | \hat{U}_{i} | \lambda \rangle a_{\lambda}^{\dagger} a_{\lambda}$. 使用表象变换 $a_{\widetilde{\alpha}}^{\dagger} = \sum_{\alpha} \langle \alpha | \widetilde{\alpha} \rangle a_{\alpha}^{\dagger}$, $a_{\widetilde{\alpha}} = \sum_{\alpha} \langle \widetilde{\alpha} | \alpha \rangle a_{\alpha}$:

$$\begin{split} \hat{U} &= \sum_{\lambda} U_{\lambda} \left(\sum_{\mu} \langle \mu | \lambda \rangle a_{\mu}^{\dagger} \right) \left(\sum_{\nu} \langle \lambda | \nu \rangle a_{\nu} \right) \\ &= \sum_{\mu\nu} \langle \mu | \left(\sum_{\lambda} |\lambda \rangle U_{\lambda} \langle \lambda | \right) |\nu \rangle a_{\mu}^{\dagger} a_{\nu} \\ &= \sum_{\mu\nu} \langle \mu | \hat{U}_{i} |\nu \rangle a_{\mu}^{\dagger} a_{\nu} \end{split}$$

几个单体算符的例子:

1. \vec{x} 表象下的粒子数密度: $\hat{n}(\vec{x}) = \psi^{\dagger}(\vec{x})\psi(\vec{x})$

2.
$$\vec{x}$$
 和 \vec{k} 表象下的总粒子数: $\hat{N} = \int \psi^{\dagger}(\vec{x})\psi(\vec{x})\mathrm{d}\vec{x} = \sum_{\vec{k}} a_{\vec{k}}^{\dagger} a_{\vec{k}}$

3.
$$\vec{x}$$
 和 \vec{k} 表象下的动能算符: $\hat{T}=-\frac{1}{2}\int\psi^{\dagger}(\vec{x})\left(-\frac{1}{2}\nabla^{2}\right)\psi(\vec{x})\mathrm{d}\vec{x}=\sum_{\vec{k}}\frac{k^{2}}{2}a_{\vec{k}}^{\dagger}a_{\vec{k}}$

4.
$$\vec{x}$$
 和 \vec{k} 表象下的势能算符: $\hat{V} = \int \psi^{\dagger}(\vec{x}) v(\vec{x}) \psi(\vec{x}) d\vec{x} = \sum_{\vec{k},\vec{q}} v(\vec{q}) a_{\vec{k}+\vec{q}}^{\dagger} a_{\vec{k}}$, 其中

$$v(\vec{x}) = \sum_{\vec{q}} v(\vec{q}) e^{i \vec{q} \cdot \vec{x}} v(\vec{q}) = \frac{1}{V} \int v(\vec{x}) e^{-i \vec{q} \cdot \vec{x}} \mathrm{d}\vec{x}$$

0.1.11 两体及以上多体算符的表示

考虑一般性的两体算符,在其对角表象下

$$\hat{\mathcal{O}} = \frac{1}{2} \sum_{i \neq j} \hat{\mathcal{O}}_{i,j} = \frac{1}{2} \sum_{i \neq j} \sum_{\alpha,\beta} \mathcal{O}_{\alpha\beta} |\alpha\rangle_i |\beta\rangle_j \langle \alpha|_i \langle \beta|_j, \quad \mathcal{O}_{\alpha\beta} = \langle \alpha\beta|\hat{\mathcal{O}}_{i,j}|\alpha\beta\rangle$$

那么该两体算符在占据数表象下的矩阵元为

$$\begin{split} \langle n_1', n_2', \cdots | \hat{O} | n_1, n_2, \cdots \rangle &= \frac{1}{2} \sum_{\alpha, \beta} \mathcal{O}_{\alpha\beta} \langle n_1', n_2', \cdots | \sum_{i \neq j} (|\alpha\rangle_i |\beta\rangle_j \langle \alpha|_i \langle \beta|_j) | n_1, n_2, \cdots \rangle \\ &= \frac{1}{2} \sum_{\alpha, \beta} \mathcal{O}_{\alpha\beta} \langle n_1', n_2', \cdots | \hat{N}_{\alpha\beta} | n_1, n_2, \cdots \rangle \\ &= \langle n_1', n_2', \cdots | \frac{1}{2} \sum_{\alpha, \beta} \mathcal{O}_{\alpha\beta} \hat{N}_{\alpha\beta} | n_1, n_2, \cdots \rangle \end{split}$$

其中
$$\begin{split} \sum_{i\neq j} (|\alpha\rangle_i |\beta\rangle_j \langle \alpha|_i \langle \beta|_j) |n_1,n_2,\cdots\rangle &= \hat{N}_{\alpha\beta} |n_1,n_2,\cdots\rangle = (\hat{n}_\alpha \hat{n}_\beta - \delta_{\alpha\beta} \hat{n}_\alpha) \, |n_1,n_2,\cdots\rangle \\ &= a_\alpha^\dagger a_\beta^\dagger a_\beta a_\alpha |n_1,n_2,\cdots\rangle \end{split}$$

因此

$$\hat{\mathcal{O}} = \frac{1}{2} \sum_{\alpha\beta} \mathcal{O}_{\alpha\beta} \hat{P}_{\alpha\beta} = \frac{1}{2} \sum_{\alpha\beta} \langle \alpha\beta | \mathcal{O}_{ij} | \alpha\beta \rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\beta} a_{\alpha}$$

使用表象变换,得到一般表象下的两体算符

$$\hat{\mathcal{O}} = \frac{1}{2} \sum_{\lambda \mu \nu \rho} \langle \lambda \mu | \mathcal{O}_{ij} | \nu \rho \rangle a_{\lambda}^{\dagger} a_{\mu}^{\dagger} a_{\nu} a_{\rho}$$

推广至 N 体算符, 有

$$\hat{R} = \frac{1}{N!} \sum_{\lambda_1 \cdots \lambda_N} \sum_{\mu_1 \cdots \mu_N} \langle \lambda_1 \cdots \lambda_N | R | \mu_1 \cdots \mu_N \rangle a_{\lambda_1}^{\dagger} \cdots a_{\lambda_N}^{\dagger} a_{\mu_N} \cdots a_{\mu_1}$$

x 表象下的库伦势是典型的两体算符:

$$\begin{split} \hat{V}_{ee} &= \frac{1}{2} \sum_{\sigma \sigma'} \iint \psi_{\sigma}^{\dagger}(\vec{x}_{1}) \psi_{\sigma'}^{\dagger}(\vec{x}_{2}) \frac{1}{r_{12}} \psi_{\sigma'}(\vec{x}_{2}) \psi_{\sigma}(\vec{x}_{1}) \mathrm{d}\vec{x}_{1} \mathrm{d}\vec{x}_{2} \\ V_{ee} &= \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma \sigma'} \frac{4\pi^{2}}{q^{2}} c_{\vec{k}_{1} + \vec{q}, \sigma}^{\dagger} c_{\vec{k}_{2} - \vec{q}, \sigma'}^{\dagger} c_{\vec{k}_{2}, \sigma'} c_{\vec{k}_{1}, \sigma} \end{split}$$

0.1.12 相互作用电子系统紧束缚模型的一般导出

- 0.1.12.1 Bloch 表象和 Wannier 表象
- 0.1.12.2 紧束缚模型
- 0.1.13 运动方程
- 0.1.14 理想气体
- 0.1.15 巨正则系综
- 0.1.16 理想费米气体
- 0.1.17 理想玻色气体
- 0.1.18 平均场近似
- 0.1.18.1 稀薄玻色气体的 BEC
- 0.1.18.2 Hartree-Fock 近似

将之前讨论的 Hatree-Fock 近似使用二次量子化体系重新表述:

1. 单体算符:
$$F = \sum_{\mu\nu} \langle \mu | f | \nu \rangle a^{\dagger}_{\mu} a_{\nu}$$

2. 两体算符:
$$V = \frac{1}{2} \sum_{\lambda\mu\nu\rho} \langle \lambda\mu|v|\nu\rho \rangle a_{\lambda}^{\dagger} a_{\mu}^{\dagger} a_{\rho} a_{\nu}$$

3. HF 波函数:
$$|\psi_{\mathrm{HF}}\rangle = \prod_{\alpha=1}^{N} a_{\alpha}^{\dagger} |0\rangle$$

那么

$$\begin{split} \langle \psi_{\rm HF} | a_{\mu}^{\dagger} a_{\nu} | \psi_{\rm HF} \rangle &= \delta_{\mu\nu} \\ \langle \psi_{\rm HF} | a_{\lambda}^{\dagger} a_{\mu}^{\dagger} a_{\rho} a_{\nu} | \psi_{\rm HF} \rangle &= \delta_{\lambda\nu} \delta_{\mu\rho} - \delta_{\lambda\rho} \delta_{\mu\nu} \end{split}$$

所以

$$E_{\rm HF} = \sum_{\mu} \langle \mu | f | \mu \rangle + \frac{1}{2} \sum_{\mu\nu} \left(\langle \mu\nu | b | \mu\nu \rangle - \langle \mu\nu | v | \nu\mu \rangle \right)$$

更一般性地, 考虑包含单体或两体算符, 形式为 $H = A^{\dagger}B + C^{\dagger}D^{\dagger}EF$ 的哈密顿量, 则 Hatree-Fock 的思想是将其平均为

$$H_{\mathrm{HF}} = A^{\dagger}B + \langle C^{\dagger}F\rangle D^{\dagger}E + \langle D^{\dagger}E\rangle C^{\dagger}F - \langle C^{\dagger}E\rangle D^{\dagger}F - \langle D^{\dagger}F\rangle C^{\dagger}E + \mathrm{Const}$$

接下来计算的步骤为

- 1. 对角化 Hatree-Fock 平均场哈密顿量: $H_{\mathrm{HF}} = \sum_{\alpha} \varepsilon_{\alpha} a^{\dagger} a_{\alpha}$, 构造 Hatree-Fock 基态波函数 $|\psi_{\mathrm{HF}}\rangle = \prod_{\varepsilon_{\alpha} < 0} a_{\alpha}^{\dagger} |0\rangle$
- 2. 计算平均场参数 $\langle C^\dagger F \rangle$, $\langle D^\dagger E \rangle$, $\langle C^\dagger E \rangle$, $\langle D^\dagger F \rangle$, 重复以上计算直至收敛.
- 3. 或者计算基态能量 $\langle \psi_{\rm HF}|H|\psi_{\rm HF} \rangle = \sum_{\varepsilon_{lpha} < 0} \varepsilon_{lpha} \langle C^{\dagger}F \rangle \langle D^{\dagger}E \rangle + \langle C^{\dagger}E \rangle \langle D^{\dagger}F \rangle$
- 4. 在平均场参数空间极小化基态能量

0.1.18.2.1 Hubbard 模型的 Hartree-Fock 近似 Hubbard 模型哈密顿量为

$$H = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) + U \sum_{i} \underbrace{c_{i\uparrow}^{\dagger} c_{i\uparrow}}_{n_{i\uparrow}} \underbrace{c_{i\downarrow}^{\dagger} c_{i\downarrow}}_{n_{i\perp}}$$

在第二项中由于已经确定自旋表象, 所以可以互换 $c_{i\uparrow}$ 和 $c_{i\downarrow}^{\dagger}$ 位置从而形成粒子数算符. 那么考虑两格点模型, 且选定矩阵基矢为

$$c = \begin{pmatrix} c_{1\uparrow} \\ c_{1\downarrow} \\ c_{2\uparrow} \\ c_{2\downarrow} \end{pmatrix}, \quad c^{\dagger} = \begin{pmatrix} c_{1\uparrow}^{\dagger} & c_{1\downarrow}^{\dagger} & c_{2\uparrow}^{\dagger} & c_{2\downarrow}^{\dagger} \end{pmatrix}$$

于是 Hatree-Fock 近似下的哈密顿量可以改写为矩阵形式

$$H_{\mathrm{MF}} = \begin{pmatrix} c_{1\uparrow}^{\dagger} & c_{1\downarrow}^{\dagger} & c_{2\uparrow}^{\dagger} & c_{2\downarrow}^{\dagger} \end{pmatrix} \begin{pmatrix} U\langle n_{1\downarrow}\rangle & -U\langle S_{1}^{-}\rangle & -t \\ -U\langle S_{1}^{+}\rangle & U\langle n_{1\downarrow}\rangle & -t \\ -t & U\langle n_{2\downarrow}\rangle & -U\langle S_{2}^{-}\rangle \\ & -t & -U\langle S_{2}^{+}\rangle & U\langle n_{2\uparrow}\rangle \end{pmatrix} \begin{pmatrix} c_{1\uparrow} \\ c_{1\downarrow} \\ c_{2\uparrow} \\ c_{2\downarrow} \end{pmatrix} + U\sum_{i} (\langle S_{i}^{+}\rangle\langle S_{i}^{-}\rangle - \langle n_{i\uparrow}\rangle\langle n_{i\downarrow}\rangle)$$

禁用自旋翻转项 $c_{i\uparrow}^{\dagger}c_{i\downarrow}$ 与 $c_{i\downarrow}^{\dagger}c_{i\uparrow}$, 矩阵进一步简化为

$$H_{\mathrm{MF}} = c^{\dagger} \begin{pmatrix} U \langle n_{1\downarrow} \rangle & -t & \\ & U \langle n_{1\uparrow} \rangle & -t \\ -t & & U \langle n_{2\downarrow} \rangle & \\ & -t & & U \langle n_{2\uparrow} \rangle \end{pmatrix} c - U \sum_{i} \langle n_{i\uparrow} \rangle \langle n_{i\downarrow} \rangle$$

1. $\langle n_{i\sigma} \rangle = \frac{1}{2}$ 作为初始值. 则矩阵变为

$$\begin{pmatrix} U/2 & -t & & \\ & U/2 & & -t \\ -t & & U/2 & \\ & -t & & U/2 \end{pmatrix} = VDV^{-1},$$

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & & -1 \\ 1 & & -1 \\ & 1 & & 1 \\ 1 & & 1 \end{pmatrix}, \quad D = \begin{pmatrix} -t + U/2 & & & \\ & & -t + U/2 & \\ & & & t + U/2 \end{pmatrix}$$

注意对角矩阵 D 的对角线上能量本征值是升序排列的,这是为了方便观察基态的能量出现在基矢的什么位置. 如果追加半满条件,即两个格点共有两个电子,后续通过产生算符作用于真空态得到基态波函数时就会使用两个产生算符,具体是什么产生算符需要看能量最低的两个本征值的位置.

根据对角分解有 $H=c^\dagger VDV^{-1}c$, 合并 $V^{-1}c$ 为 γ , 即得到矩阵的新基矢为 $\gamma\equiv V^{-1}c$. 同样的, $c=V\gamma$, 或者写作求和约定 $c_\alpha=\sum_i V_{\alpha i}\gamma_i$. 基态被定义为占据最低能量的态, 而根据对角矩阵可以发现最低能量是二重简并的, 是新基矢 γ 的第

1,2 分量给出的, 因此基态使用产生算符 $\times |0\rangle$ 写出的话将会是 $\prod_{\varepsilon_i < \varepsilon_F} \gamma_i^\dagger |0\rangle = \gamma_1^\dagger \gamma_2^\dagger |0\rangle$. 那么各粒子数平均值为

$$\langle n_{1\uparrow} \rangle = \langle c_{1\uparrow}^{\dagger} c_{1\uparrow} \rangle = \sum_{i,j} (V_{1\uparrow,i})^{\dagger} V_{1\uparrow,j} \langle \gamma_i^{\dagger} \gamma_j \rangle$$

$$= \sum_{i,j} (V_{1\uparrow,i})^{\dagger} V_{1\uparrow,j} \delta_{ij} = \sum_{i} (V_{1\uparrow,i})^{\dagger} V_{1\uparrow,i} = (V_{1\uparrow,1})^{\dagger} V_{1\uparrow,1} + (V_{1\uparrow,2})^{\dagger} V_{1\uparrow,2}$$

$$= \frac{1}{2}$$

同理计算得到 $\langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \frac{1}{2}$. 这是顺磁态, 能量为

$$\begin{split} E_{\mathrm{HF}} &= \sum_{\varepsilon_{\alpha} < 0} \varepsilon_{\alpha} - U \cdot \frac{1}{2} \frac{1}{2} \times 2 = \left(-t + \frac{U}{2} \right) \times 2 - \frac{U}{2} \\ &= -2t + \frac{U}{2} \end{split}$$

2. $\langle n_{1\uparrow} \rangle = \langle n_{2\uparrow} \rangle = 1$, $\langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = 0$ 作为初始值. 那么

$$\begin{pmatrix} & & -t \\ & U & & -t \\ -t & & & \\ & -t & & U \end{pmatrix} = VDV^{-1},$$

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & & \\ & 1 & -1 \\ 1 & 1 & & \\ & & 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} -t & & & \\ & t & & \\ & & -t + U & \\ & & & t + U \end{pmatrix}$$

(a) -t+U < t, 则能量最低态将由新矩阵基矢 γ 的 1,3 分量给出, 那么产生算符 \times $|0\rangle$ 将会是 $|\psi_{HF}\rangle = \gamma_1^{\dagger}\gamma_3^{\dagger}|0\rangle$, 粒子数平均值为

$$\langle n_{1\uparrow} \rangle = \sum_{i,j} (V_{1\uparrow,i})^{\dagger} V_{1\uparrow,j} \langle \gamma_i^{\dagger} \gamma_j \rangle$$

$$= (V_{1\uparrow,1})^{\dagger} V_{1\uparrow,1} + (V_{1\uparrow,3})^{\dagger} V_{1\uparrow,3}$$

$$= \frac{1}{2}$$

$$\langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \frac{1}{2}$$

因此仍处于顺磁态,即

$$\begin{split} E_{\mathrm{MF}} &= \sum_{\varepsilon_{\alpha}} \epsilon_{\alpha} - U \sum_{i} \langle n_{i\uparrow} \rangle \langle n_{i\downarrow} \rangle = -t + (-t + U) + U \cdot \frac{1}{2} \times \frac{1}{2} \times 2 \\ &= -2t + \frac{U}{2} \end{split}$$

(b) -t+U>t, 则能量最低态将由新矩阵基矢的 1,2 分量给出, 那么产生算符 $\times |0\rangle$ 将会是 $|\psi_{HF}\rangle = \gamma_1^\dagger \gamma_2^\dagger |0\rangle$, 粒子数平均值为

$$\begin{split} \langle n_{1\uparrow} \rangle &= \sum_{i,j} (V_{1\uparrow,i})^{\dagger} V_{1\uparrow,j} \langle \gamma_i^{\dagger} \gamma_j \rangle \\ &= (V_{1\uparrow,1})^{\dagger} V_{1\uparrow,1} + (V_{1\uparrow,2})^{\dagger} V_{1\uparrow,2} \\ &= 1 \\ \langle n_{1\uparrow} \rangle &= \langle n_{2\uparrow} \rangle = 1, \quad \langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = 0 \end{split}$$

和初始的假设值一致(即"收敛"). 此时自旋方向相同, 得到铁磁态解. 平均场能量为

$$E_{\mathrm{MF}} = \sum_{\varepsilon_{\alpha}} \varepsilon_{\alpha} - U \sum_{i} \langle n_{i\uparrow} \rangle \langle n_{i\downarrow} \rangle = -t + t + U (0 \cdot 1 + 0 \cdot 1) = 0$$

3. $\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1$, $\langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = 0$ 作为初始值. 那么

$$\begin{pmatrix} -t \\ -t \\ -t \end{pmatrix} = VDV^{-1}, V = \\ \begin{pmatrix} U + \sqrt{4t^2 + U^2} \\ \sqrt{4t^2 + (\sqrt{4t^2 + U^2} - U)^2} \\ \frac{-U + \sqrt{4t^2 + U^2}}{\sqrt{4t^2 + (\sqrt{4t^2 + U^2} - U)^2}} \\ \frac{2t}{\sqrt{4t^2 + (\sqrt{4t^2 + U^2} - U)^2}} \\ U - \sqrt{4t^2 + U^2} \\ U + \sqrt{4t^2$$

能量最低态由新基矢的 1,2 分量给出,产生算符 $\times |0\rangle$ 将会是 $|\psi_{HF}\rangle = \gamma_{1}^{\dagger}\gamma_{2}^{\dagger}|0\rangle$, 粒子数平均值为

$$\begin{split} \langle n_{1\uparrow} \rangle &= \langle c_{1\uparrow}^{\dagger} c_{1\uparrow} \rangle = \sum_{i,j} (V_{1\uparrow,i})^{\dagger} V_{1\uparrow,j} \langle \gamma_i^{\dagger} \gamma_j \rangle = (V_{1\uparrow,1})^{\dagger} V_{1\uparrow,1} + (V_{1\uparrow,2})^{\dagger} V_{1\uparrow,2} \\ &= \frac{(U + \sqrt{4t^2 + U^2})^2}{4t^2 + (\sqrt{4t^2 + U^2} + U)^2} \end{split}$$

发现粒子数平均值并未收敛,需要将粒子数平均值作为变量进行迭代计算.

4. $\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1 - \alpha, \langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \alpha$ 作为初始值, 那么

$$\begin{pmatrix} \alpha U & -t & -t \\ -t & (1-\alpha)U & -t \\ -t & -t & \alpha U \end{pmatrix} = \begin{pmatrix} -t & -t \\ (1-2\alpha)U & -t \\ -t & (1-2\alpha)U \end{pmatrix} + \alpha U \mathbb{I} = VDV^{-1}$$

观察可知, 这种情况相当于将 U 替换为 $\bar{U}=(1-2\alpha)U$, 能量本征值再统一加 αU 值. 能量最低态由新基矢的 1,2 分量给 出,所以平均场能量为

$$\begin{split} E_{\rm MF} &= \frac{1}{2}(\bar{U} - \sqrt{4t^2 + \bar{U}^2} + 2\alpha U) \times 2 - U[\alpha(1 - \alpha) + (1 - \alpha)\alpha] \\ &= (1 - 2\alpha + 2\alpha^2)U - \sqrt{4t^2 + [(1 - 2\alpha)U]^2} \end{split}$$

收敛即代入 $\langle n_{i\sigma} \rangle$ 的值等于最后根据 V 计算得到的 $\langle n_{i\sigma} \rangle$, 这被称作 self-consistent 方程. 比如取 $\langle n_{1\downarrow} \rangle$, 能量最低态由新基 矢的1,2分量给出,那么

$$\begin{split} \langle n_{2\uparrow} \rangle &= \langle c_{2\uparrow}^{\dagger} c_{2\uparrow} \rangle = \sum_{i,j} (V_{2\uparrow,i})^{\dagger} V_{2\uparrow,j} \langle \gamma_i^{\dagger} \gamma_j \rangle = (V_{2\uparrow,1})^{\dagger} V_{2\uparrow,1} + (V_{2\uparrow,2})^{\dagger} V_{2\uparrow,2} \\ &= 0 \cdot 0 + \left(\frac{2t}{\sqrt{4t^2 + (\bar{U} + \sqrt{4t^2 + \bar{U}^2})^2}} \right)^2 \\ &= \frac{4t^2}{4t^2 + (\sqrt{4t^2 + [(1 - 2\alpha)U]^2} + (1 - 2\alpha)U)^2} = \alpha \end{split}$$

取 $U \gg t$ 极限, 即有 $\alpha \to 0$,

0.1.18.2.2 Hubbard 模型在动量空间的平均场 考虑傅里叶变换 $c_{i,\sigma} = \frac{1}{\sqrt{N}} \sum_{k} c_{k,\sigma} e^{i\vec{k}\cdot\vec{r}_i}$, 那么单体算符部分有

$$H_0 = -t \sum_{i,\delta} c^{\dagger}_{i,\sigma} c_{i+\delta,\sigma} - \mu \sum_{i,\sigma} n_{i,\sigma}$$
$$= \sum_{\vec{k}} (\varepsilon_{\vec{k}} - \mu) c^{\dagger}_{\vec{k},\sigma} c_{\vec{k},\sigma}$$

对于两体算符 $n_{i,\uparrow}n_{i,\downarrow} = c^{\dagger}_{i,\uparrow}c_{i,\uparrow}c^{\dagger}_{i,\downarrow}c_{i,\downarrow}$ 部分,

$$\begin{split} H_{U} &= U \sum_{\vec{k}_{1},\vec{k}_{2},\vec{k}_{3},\vec{k}_{4}} c^{\dagger}_{\vec{k}_{1},\uparrow} c_{\vec{k}_{2},\uparrow} c^{\dagger}_{\vec{k}_{3},\downarrow} c_{\vec{k}_{4},\downarrow} \frac{1}{N^{2}} \sum_{i} e^{-i[(\vec{k}_{1} - \vec{k}_{2}) - (\vec{k}_{4} - \vec{k}_{3})] \cdot \vec{r}_{i}} \\ &= U \sum_{\vec{k}_{1},\vec{k}_{2},\vec{k}_{3},\vec{k}_{4}} c^{\dagger}_{\vec{k}_{1},\uparrow} c_{\vec{k}_{2},\uparrow} c^{\dagger}_{\vec{k}_{3},\downarrow} c_{\vec{k}_{4},\downarrow} \frac{1}{N} \delta_{\vec{k}_{1} - \vec{k}_{2},\vec{k}_{4} - \vec{k}_{3}} \\ &= U \sum_{\vec{k}_{2},\vec{q}_{1},\vec{k}_{4},\vec{q}_{2}} c^{\dagger}_{\vec{k}_{2} + \vec{q}_{1},\uparrow} c_{\vec{k}_{2},\uparrow} c^{\dagger}_{\vec{k}_{4} + \vec{q}_{2},\downarrow} c_{\vec{k}_{4},\downarrow} \frac{1}{N} \delta_{\vec{q}_{1},-\vec{q}_{2}} \\ &= U \sum_{\vec{k}_{2},\vec{q}_{1},\vec{k}_{4}} c^{\dagger}_{\vec{k}_{2} + \vec{q}_{1},\uparrow} c_{\vec{k}_{2},\uparrow} c^{\dagger}_{\vec{k}_{4} - \vec{q}_{1},\downarrow} c_{\vec{k}_{4},\downarrow} \frac{1}{N} \end{split}$$

式子中的 $\delta_{\vec{q}_1,-\vec{q}_2}$ 代表的是动量交换守恒. 引入属于动量空间中的 "粒子数算符" $\rho_{\vec{q},\sigma} = \frac{1}{\sqrt{N}} \sum_{\vec{k}} c^{\dagger}_{\vec{k}+\vec{q},\sigma} c_{\vec{k},\sigma}$, 即有

$$\begin{split} H_U &= U \sum_{\vec{q}_1} \left(\frac{1}{\sqrt{N}} \sum_{\vec{k}_2} c^{\dagger}_{\vec{k}_2 + \vec{q}_1,\uparrow} c_{\vec{k}_2,\uparrow} \right) \left(\frac{1}{\sqrt{N}} \sum_{\vec{k}_4} c^{\dagger}_{\vec{k}_2 - \vec{q}_1,\downarrow} c_{\vec{k}_2,\downarrow} \right) \\ &= U \sum_{\vec{q}} \rho_{\vec{q},\uparrow} \rho_{-\vec{q},\downarrow} \\ &\approx U \sum_{\vec{q}} \langle \rho_{\vec{q},\uparrow} \rangle \rho_{-\vec{q},\downarrow} + \rho_{\vec{q},\uparrow} \langle \rho_{-\vec{q},\downarrow} \rangle - \langle \rho_{\vec{q},\uparrow} \rangle \langle \rho_{-\vec{q},\downarrow} \rangle \end{split}$$

最后一行应用了平均场近似. 综合以上讨论, 得到平均场哈密顿量

$$H_{\mathrm{MF}} = \sum_{\vec{k}} (\varepsilon_{\vec{k}} - \mu) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} + U \sum_{\vec{q}} \langle \rho_{\vec{q},\uparrow} \rangle \rho_{-\vec{q},\downarrow} + \rho_{\vec{q},\uparrow} \langle \rho_{-\vec{q},\downarrow} \rangle - \langle \rho_{\vec{q},\uparrow} \rangle \langle \rho_{-\vec{q},\downarrow} \rangle$$