Prova scritta di Fisica II - Appello Straordinario - 10 Novembre 2023

Nome Cognome
Matricola Orale in questo appello \Box
Nota Bene: Il formulario vuole essere un supporto qualora non ricordiate alcune formule e
non abbiate tempo per ricavarle. Tenete presente che il solo scrivere la formula giusta trovata
nel formulario per rispondere ad una domanda non porta ad avere alcun punteggio in quella
domanda. Si ricorda anche che tutte le risposte vanno correttamente motivate, la sola risposta
numerica non è sufficiente per avere punti relativi alla domanda in questione.

Primo Esercizio

Il circuito di condensatori mostrato in figura ($C_1 = 6$ nF, $C_2 = 12$ nF, $C_3 = 4$ nF) è inizialmente connesso ad un generatore che eroga una differenza di potenziale $\mathcal{E} = 10$ V. In questa configurazione:

- Determinare la capacità equivalente "vista" dal generatore (5 punti).
- Determinare la carica immagazzinata in ciascuno dei condensatori (5 punti).

In un secondo momento, la batteria viene disconnessa e il circuito viene collegato ad una resistenza, a destra in figura.

• Determinare l'energia totale dissipata nella resistenza durante la scarica del circuito (6 punti). Nota Bene: non è necessario conoscere il valore di R per risolvere l'esercizio.

Secondo Esercizio

Una particella di carica q, massa m ed energia cinetica $K=0.5\times 10^{-5}$ J entra nell'apparato mostrato in figura, che consiste di due stadi: un selettore di velocità con campo elettrico di modulo E=100 V/m diretto verso l'alto e campo magnetico di modulo B=1 T uscente dal foglio, e una zona magnetica con lo stesso \vec{B} . La particella esce dall'apparato nella direzione mostrata in figura. Le dimensioni dell'apparato indicate in figura sono d=10 cm e R=15 cm.

- 1. Determinare la massa, la carica e la velocità della particella (6 punti).
- 2. Determinare il tempo che impiega la particella ad attraversare l'apparato (5 punti).
- 3. Determinare l'energia cinetica della particella in uscita (5 punti).

Soluzione del primo esercizio

La capacità equivalente vista dal generatore è data dal parallelo di C_1 con la serie di C_2 e C_3 :

$$C_{\text{eq}} = C_1 + \frac{C_2 C_3}{C_2 + C_3} = 9 \,\text{nF}.$$

La differenza di potenziale ai capi di C_1 è data da \mathcal{E} , dunque

$$Q_1 = C_1 \mathcal{E} = 6 \times 10^{-8} \,\mathrm{C}.$$

La differenza di potenziale ai capi della serie di C_2 e C_3 è anche data da \mathcal{E} , dunque

$$\frac{Q_2}{C_3} + \frac{Q_3}{C_3} = \mathcal{E} \,.$$

D'altronde il conduttore che collega C_2 e C_3 è neutro, dunque dobbiamo avere $Q_2=Q_3$, e quindi

$$Q_2 = Q_3 = \frac{C_2 C_3}{C_2 + C_3} \mathcal{E} = 3 \times 10^{-8} \,\mathrm{C}.$$

Prima di far scaricare il circuito, l'energia elettrostatica immagazzinata nei condensatori è pari a:

$$\begin{split} U &= \frac{Q_1^2}{2C_1} + \frac{Q_2^2}{2C_2} + \frac{Q_3^2}{2C_3} \\ &= \frac{C_1 \mathcal{E}^2}{2} + \frac{C_2 C_3^2}{2(C_2 + C_3)^2} \mathcal{E}^2 + \frac{C_2^2 C_3}{2(C_2 + C_3)^2} \mathcal{E}^2 \\ &= \frac{C_1 \mathcal{E}^2}{2} + \frac{C_2 C_3}{2(C_2 + C_3)} \mathcal{E}^2 \\ &= \frac{C_{\text{eq}} \mathcal{E}^2}{2} \end{split}$$

Alla fine del processo di scarica, l'energia immagazzinata nei condensatori è zero. Dunque l'energia dissipata nel resistore è proprio pari a $C_{\rm eq}\mathcal{E}^2/2=4.5\times 10^{-7}~{\rm J}.$

Soluzione del secondo esercizio

Le tre incognite si possono ricavare dalle tre seguenti equazioni:

$$K = \frac{mv^2}{2}$$

$$vB = E$$

$$R = \frac{mv}{qB}$$

che rappresentano, rispettivamente: la definizione dell'energia cinetica, il bilanciamento tra forza di Lorentz e forza di Coulomb nel selettore di velocità, e il raggio di ciclotrone nella zona magnetica. Occorre poi notare che, affinchè la traiettoria sia come disegnata in figura, per la regola della mano destra la carica q deve essere negativa. Dunque si ottiene:

$$v = E/B = 100 \,\text{m/s}$$

 $m = \frac{2K}{v^2} = 10^{-9} \,\text{Kg}$
 $q = -\frac{mv}{BR} = -6.7 \times 10^{-7} \,\text{C}$

La velocità all'interno dell'apparato rimane costante e uguale a v: né il selettore né la zona magnetica compiono lavoro sulla particella. D'altra parte, la lunghezza della traiettoria è pari a $d + \pi R/2 = 33.6$ cm. Dunque il tempo necessario ad attraversare l'apparato è

$$t = \frac{d + \pi R/2}{v} = 3.36 \times 10^{-3} \,\mathrm{s}$$

Per lo stesso motivo, l'energia cinetica in uscita è la stessa di quella in entrata $(0.5 \times 10^{-5} \text{ J})$.