

Obtenção de Modelos de Deep learning para a Classificação Automática de Leucócitos

Romeu Beato, 7943

Apresentação da Dissertação de Mestrado em Tecnologia Biomédica Orientação: Pedro João Soares Rodrigues (PhD)

Bragança, 7 de Dezembro de 2018

OBJETIVOS DO TRABALHO

- Fornecer uma ferramenta computacional para permitir a classificação de leucócitos de forma automática a partir de imagens obtidas em trabalhos de microscopia
- II. Comparar as **performances de redes** vencedoras do concurso ILSVRC **na classificação de leucócitos**.
- III. Comparar a performance na identificação de leucócitos após realização do treino das **redes treinadas de raiz e com** *Transfer Learning*.

Redes Neuronais

CONTAGEM E IDENTIFICAÇÃO DE LEUCÓCITOS - TIME LINE

1855

CRAMER
CONTAGEM EM ESPAÇO
CAPILAR

1869

POTAINPIPETA DE DILUIÇÃO

~1869

HAVEM

LÂMINA DE ESPESSURA PRECISA E MIRÓMETRO OCULAR 1877

GOWER

MELHORA A CÂMARA DE CONTAGEM DE HAVEM, COLOCANDO DIVISÕES

Contagem e

~1880

THOMA

MELHORA A CÂMARA DE CONTAGEM

MALASSEZ

INTRODUZ UM
HEMATÓCRITO COM
PROPRIEDADES
MICROFOTOGRÁFICAS

1896

HEMATÓCRITO COM BASE NO PRINCÍPIO TURBIDOMÉTRICO (PROPRIEDADES ÓTICAS À LUZ DA VELA) 1903

HEMATÓCRITO COM BASE STRONG & SELIGMAN

CONTAGEM COM
DILUIÇÃO DE 5 ML DE
SANGUE NA PROPORÇÃO
1:100 EM VIOLETA DE
METILO.

~1903

BURKER

INVENTA CÂMARA
PASSÍVEL DE ENCHER POR
CAPILARIDADE APÓS
COLOCADA A
COBERTURA

DISPOSITIVOS DE VARRIMENTO DE RAIOS CATÓDICOS

1966

MICROSCÓPIO **AUTOMATIZADO** IDENTIFICA LEUCÓCITOS COM 90% DE PRECISÃO

COULTER SURGE **COULTER DIFF**

MÉTODOS

FOTOELÉTRICOS

PIONEIROS

1983

JOURNAL OF C.L.A

PRECISÃO DE MÁQUINAS IGUAL OU SUPERIOR À DE **TÉCNICOS**

2012

KAHN

MÉTODO TOTALMENTE BASEADO EM VISÃO POR **COMPUTADOR** (PROPRIEDADES MORFOLÓGICAS)

2016

BHAGAVATHI

FUZZY LOGIC NA IDENTIFICAÇÃO DE HEMÁCIAS E LEUCÓCITOS 2016

ZHAO

SVM, CNN E RANDOM FOREST COM 92,8% DE **PRECISÃO**

2016

FALCÓN-RUIZ

SVM, MLP E K-NN COM 96% DE PRECISÃO

REDES NEURONAIS

- A origem do **Deep Learning** reporta à década de 80. Consiste num **sistema** de computação paralela com um grande número de processadores interligados, organizados por camadas.
- O processo de aprendizagem pode ser visto como um problema de atualização da arquitetura da rede e dos pesos das ligações.
- De entre os **paradigmas básicos de aprendizagem** máquina destacam-se:
 - Supervisionada
 - Não supervisionada
 - De reforço.
- O deep learning, que faculta a utilização de camadas escondidas, facilita uma representação mais complexa de padrões nos dados.

FUNÇÃO STEP E O PERCEPTRÃO

O output de um neurónio, 0 ou 1, é determinado pelo facto de a soma ponderada $\sum_j wjxj$ ser maior ou menor do que um valor limiar (ou threshold).

FUNÇÕES DE ATIVAÇÃO

ReLU

 $\max(0, x)$

Softmax

$$\emptyset_{i} = \frac{e^{z_{i}}}{\sum_{i \in \text{group}} e^{z_{i}}}$$

FEEDFORWARD

As redes em que o output de um neurónio é utilizado como input do neurónio da camada seguinte são chamadas de redes neuronais feedforward.

hidden layer 1 hidden layer 2

Durante o treino, a performance da rede neuronal é avaliada pelo cálculo da diferença entre os seus outputs e o output desejado para todos os exemplos de treino.

\$\text{\text{\$\$\text{\$\tex{\$\$\text{\$\text{\$\exitex{\$\exitex{\$\tex{\$\$\text{\$\tex{\$\$\text{\$\$\$

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}$$

$$E = \frac{1}{2} \sum_{k \in T_r} \sum_{j=1}^{m} (y_j(x_k, w) - d_{jk})^2$$

onde d_{jk} é o elemento j de d_k , $y_j(xk, w)$ é o output j da rede neuronal para o input x_k , e T_r é um índice do conjunto de treino.

Fonte: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

MÉTODOS DE OTIMIZAÇÃO

Stochastic Gradient Descent (SGD)

O SGD é calculado com alguns exemplos (batch) iterativamente (em vez de toda a base de treino).

$$\theta = \theta - \alpha * \sum_{k=i}^{i+m} \nabla_{\theta} J(\theta; x^{(k)}, y^{(k)})$$

onde θ é o parâmetro a atualizar, α é a taxa de aprendizagem e *m* é o tamanho do mini-lote (batch).

RMSprop

O Root Mean Square Propagation é um dos algoritmos de gradiente adaptativo mais usados para o treino de redes neuronais profundas.

$$E[g^2]_t$$
=0,9 $E[g^2]_{t-1}$ + 0,1 g_t^2

$$m{ heta}_{t+1} = m{ heta}_t - rac{n}{\sqrt{\mathsf{E}[g^2]_t + m{arepsilon}}} \; m{g}_t$$

onde g é o gradiente num dado instante t, η é o learning rate θ representa os parâmetros a atualizar ($W \in b$).

Adaptação de modelos polinomiais à equação $y = \sin(x/3) + v$.

DROPOUT

Dropout é uma técnica utilizada para evitar o **overfitting**. O termo **dropout** refere-se à exclusão de unidades (escondidas e visíveis) numa rede neuronal.

Fonte: https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

Giles/3e0a8efc5255abc4f92f8e5f1db2

Overfitting-May-Lawrence

São realizadas transformações ao nível da sua cor e geometria, como a reflexão, recorte, mudança na palete de cores e tradução da imagem.

O *fine-tunning* é um procedimento baseado no conceito de transferência de aprendizagem (*transfer learning*).

Começa-se por treinar uma CNN para aprender características para um domínio amplo com uma função de classificação voltada para minimizar o erro nesse domínio. Em seguida, substitui-se a função de classificação e otimiza-se a rede novamente para minimizar o erro noutro domínio mais específico. Sob esta configuração, é feita a transferência de características e parâmetros da rede do domínio amplo para outro mais específico [Reyes et al., 2015].

Fonte: https://gluon.mxnet.io/chapter08 computer-vision/fine-tuning.html

REDES NEURONAIS CONVOLUCIONAIS

- As redes neuronais convolucionais são úteis na classificação, segmentação e deteção de objetos em imagens [Wu, 2017].
- Ao passar por mais camadas de convolução, obtém-se mapas de ativação que representam recursos cada vez mais complexos [Deshpande, 2016].

Fonte: https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148

A perda de informação espacial é compensada por um número crescente de mapas de recursos nas camadas mais altas [Scherer et al., 2010].

Redes

Resultados

Implementação

Redes Neuronais

Contagem e identificação de leucócitos

PRÉ-PROCESSAMENTO DE DADOS

Proveniência das imagens: GitHub, Google...

∹ Implementação Redes Neuronai

Redes Neuronais

Contagem e identificação

de leucócitos

Neuronais Redes

Contagem e identificação de leucócitos

VGG16 E VGG19

A rede **VGG** utiliza apenas convoluções 3 × 3 . A redução de volume de dados é conseguida através de *max pooling* [Simonyan and Zisserman, 2014].

Fonte: https://www.cs.toronto.edu/~frossard/post/vgg16/

- - - - - Implementação

edes Neuronai

Contagem e identificaç

INCEPTION V3

A micro-arquitetura *Inception* actua como um extrator de features de vários níveis calculando várias convoluções no mesmo módulo [Rosenbrock, 2017].

-<u>^</u> Implementaç

Redes Neuronais

XCEPTION

A **Xception** foi proposta pelo criador do Keras, François Chollete, e é uma extensão da arquitetura *Inception* que substitui os módulos *Inception* por convoluções separáveis por profundidade.

18x18x728 feature maps

- - - - Implementação

Redes Neuronais

DENSENET 121, DENSENET 169 E DENSENET 201

A arquitetura **DenseNet** diferencia explicitamente entre informações adicionadas à rede e informações preservadas. As camadas são muito estreitas adicionando apenas um pequeno conjunto de mapas de recursos ao "conhecimento coletivo" da rede, mantendo inalterados os mapas de recursos restantes.

Layers	Output Size	DenseNet- $121(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201($k = 32$)
Convolution	112 × 112	$7 \times 7 \text{ conv, stride } 2$		
Pooling	56 × 56	3×3 max pool, stride 2		
Dense Block	56 × 56	[1×1 conv]	$ \left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6 $	[1×1conv]
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$		
(1)	28 × 28	2 × 2 average pool, stride 2		
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$		
Transition Layer	28 × 28	$1 \times 1 \text{ conv}$		
(2)	14 × 14	2×2 average pool, stride 2		
Dense Block	14 × 14	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$
(3)				$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$		
(3)	7 × 7	2 × 2 average pool, stride 2		
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$
Classification	1 × 1	7×7 global average pool		
Layer		1000D fully-connected, softmax		

Fonte: https://medium.com/@14prakash/understanding-and-implementing-architectures-ofresnet-and-resnext-for-state-of-the-art-image-cf51669e1624

Resultados

RESNET 50

A ResNet possui uma arquitetura que assenta em módulos de micro-arquitetura (network-in-network architectures).

Esta rede demonstrou que é possível treinar redes extremamente profundas utilizando o SGD padrão através do uso de módulos residuais.

Fonte: https://www.codeproject.com/Articles/1248963/Deep-Learning-using-Python-plus-Keras-Chapter-Re

Implementação

Neuronais

Redes

Resultados

A análise dos resultados centra-se nas accuracy e loss de treino e validação de um conjunto de modelos, bem como nos resultados com o dataset de teste.

MODELOS COM TRANSFER LEARNING

No caso do treino com transfer learning, foi excluído o topo das redes. Utilizaram-se os pesos do treino no ImageNet, e foi então criada uma pequena rede com 3 camadas: uma dense com a ativação ReLu, uma camada de Dropout e uma camada de saída com a função de Softmax para 4 categorias.

> model = models.Sequential() model.add(layers.Dense(256, activation = 'relu', input dim = 7 * 7 * 512)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(4, activation ='softmax'))

Número de epochs: 100

Batch size: 16

Tempo médio de treino: 00:09:59

Rede mais rápida: VGG16 (00:05:47) Rede mais lenta: Xception (00:16:57)

TRANSFER LEARNING: TRAIN ACCURACY AND TRAIN LOSS

TRANSFER LEARNING: VALIDATION ACCURACY AND VALIDATION LOSS

Implementação

Neuronais Redes

Redes Neuronais

MODELOS TREINADOS DE RAIZ

Nos modelos treinados de raiz é necessário treinar a totalidade da rede, sendo indispensável a especificação do número de classes ou categorias.

É um processo muito mais moroso do que o treino com transfer learning.

Número de epochs:100

Batch Size: 16

Tempo total de treino: >18:00:00

Tempo médio de treino: 02:14:00

Rede mais rápida: VGG16 (01:15:00)

Rede mais lenta: Xception (03:24:00)

Redes

0.95

0.90

0.85

0.80

Redes

MODELOS TREINADOS DE RAIZ: TRAIN ACCURACY AND TRAIN LOSS

MODELOS COM TRANSFER LEARNING VS. MODELOS TREINADOS DE RAIZ

Implementação

Neuronais Redes

Redes Neuronais

TREINO DOS MODELOS COM TRANSFER LEARNING POR 5000 EPOCHS

Implementação

Neuronais Redes

Contagem e identificação

de leucócitos

Percentagens de acerto em imagens do dataset de teste obtidas com modelos de Transfer Learning treinados por 100 e 5000 epochs

Implementação

Redes Neuronais

- As redes com transfer learning conseguiram, no seu conjunto, precisões de classificação de 87.8% contra 26.3% das redes treinadas de raiz. As redes com melhores resultados foram as DenseNet169 e DenseNet201 ambas com 98.2% de acerto. O tempo médio de treino dos modelos com transfer learning foi de 9 minutos e 59 segundos, sendo necessárias, em média, 2 horas e 14 minutos para treinar um modelo de raiz.
- A solução para a melhoria dos resultados nos modelos treinados de raiz passaria pela utilização de **regularização** (L2 e L1, dropout e early stopping).
- Os resultados dos modelos com *transfer learning* treinados por 5000 epochs mostram um acréscimo 1.68% na generalidade, na percentagem de acerto destas redes, quando testadas.

Redes Neurona

Limitações: o tempo necessário para testar os modelos e, numa fase inicial, alguma indisponibilidade de recursos computacionais, uma vez que o acesso a GPUs poderosos acelera vertiginosamente o processo de treino.

É concebível que com um conjunto de imagens significativamente maior com o acoplamento de um mecanismo computacional de identificação e segmentação de imagens (podendo também este ser uma rede neuronal) se conseguisse automatizar a identificação, classificação e contagem de todos os tipos de leucócitos existentes a partir de imagens de microscopia.

Implementação

Resultados

N N N

Implementação

Redes Neuronais

Obrigado pela atenção