Network Method of Moments

Yuan Zhang

Joint work with Dong Xia (HKUST)

MATLAB code: github.com/yzhanghf

Parametric network analysis:

• Parametric model \rightarrow point estimation $\stackrel{?}{\rightarrow}$ inference

Challenges:

- Inference may be difficult to derive
- Method is model-specific

Non-parametric methods:

- Less ambitious goal: not learning every detail of network model, just numerical features
- More flexibility: model-free/applicable to many models; weak model assumptions
- Computation efficiency: easier/faster than fitting some models

Network method of moments

- Network moments extension of the classical moments in i.i.d. setting
- Fast and straightforward computation
- Model-free
- Universal and principled inference

Question: How to define network moments?

Network moments (Bickel et al. 2011)

- Network moments are indexed by motifs
- Example: edge: mean_{ij}(A_{ij})
- Example: triangles: $\binom{n}{3}^{-1} \sum_{1 \le i < j < k \le n} A_{ij} A_{jk} A_{ki}$
- More examples (directed networks, Jayavelu et al. (2014)):

Descriptive power of network moments

- Network comparison:
 Different network moments ⇒ different network models
- Knowing all moments determines exchangeable network model?
 "Nearly yes" ("Yes" for practitioners) (Borgs et al, 2010)
- May service some parametric models: ERGM:

likelihood of
$$A \propto \exp \left\{ \sum_{k} \operatorname{Motif}_{k}(A) \right\}$$

- Related topics:
 - One sample inference (*This paper*), (*Shao, Xia & Z., 2022+*)
 - Two sample inference (network comparison) (Ghoshdastidar et al, 2017), (Shao et al, 2022+)

Major challenge: distribution of network moments?

To better illustrate, we first describe the base model

Data:

• Adjacency matrix: $A \in \mathbb{R}^{n \times n}$

$$A_{ij} = A_{ji} = \begin{cases} 1 & i \leftrightarrow j \\ 0 & \text{otherwise} \end{cases}$$

• Symmetric edge probability matrix: $W \in \mathbb{R}^{n \times n}$:

$$A_{ij}|W \stackrel{\text{independent}}{\sim} \text{Bernoulli}(W_{ij})$$

Exchangeable networks (Aldous-Hoover representation):

- Latent graphon function $f:[0,1]^2 \rightarrow [0,1]$
- Latent node position X_i ∼ Uniform[0, 1]:

$$W_{ij} = \rho_n \cdot f(X_i, X_j)$$

 ρ_n : sparsity multiplier

• f encodes structures; X_i encodes node's role; both inestimable

Formulation of network motif:

- Motif R: r nodes and s edges
- Corresponding sample moment is the count statistic

$$\widehat{U}_n := \binom{n}{r}^{-1} \sum_{1 \leq i_1 < \dots < i_r \leq n} h(A_{i_1,\dots,i_r}),$$

where

$$h(A_{i_1,\ldots,i_r}):=\mathbb{1}_{[A_{i_1,\ldots,i_r}\supseteq R]}$$

Question: How to characterize \widehat{U}_n ?

• Design a proper variance estimator \hat{S}_n^2 , and studentize:

$$\widehat{T}_n := \frac{\widehat{U}_n - \mathbb{E}[\widehat{U}_n]}{\widehat{S}_n}$$

What's next?

- How to design $\widehat{S}_n = ?$
- ② Distribution of \widehat{T}_n ?

Before introducing our method, a quick literature review...

Distribution approximation

Existing literature

- Asymptotic normality (Bickel et al, 2011)
- Network bootstraps:
 - Node sub-sampling: (Bhattacharyya & Bickel, 2015)
 - Node re-sampling: (Green & Shalizi, 2017)
 - Low-rank approximation then bootstrap estimated low-rank structure: (Levin & Levina, 2019)
- Limitations:
 - No finite sample accuracy guarantee, only consistency

$$\widehat{T}_n \rightarrow N(0,1)$$

in $\stackrel{d}{\rightarrow}$, $\stackrel{p}{\rightarrow}$, etc

Slow computation (bootstrap methods)

Our method

Our paper:

- Analytical, higher-order accurate approximation to $F_{\hat{T}_a}$
- Fast computation (eliminates bootstrap)
- Model-free & Versatility: applicable to non-smooth graphons (Choi, 2017)
- New theoretical insights
- Rate-optimal inference power + higher-order accurate risk control

Key intuition

Example: R = Edge:

$$\widehat{U}_{n} = \binom{n}{2}^{-1} \sum_{1 \leq i < j \leq n} W_{ij} + \sum_{1 \leq i < j \leq n} (A_{ij} - W_{ij})$$

$$=: \binom{n}{2}^{-1} \sum_{1 \leq i < j \leq n} f(X_{i}, X_{j}) + \binom{n}{2}^{-1} \sum_{1 \leq i < j \leq n} \eta_{ij}$$

Key intuition

Decomposition of randomness

$$\widehat{U}_n = U_n + (\widehat{U}_n - U_n)$$

Here:

- $U_n = U_n(X_1, \dots, X_n)$: variations of W, due to nodes' roles
- $\widehat{U}_n U_n$: observational errors in A|W
- Under mild conditions, $Var(U_n) \gg Var(\widehat{U}_n U_n)$, so we use U_n to design variance estimator

Key intuition

Example: R = Triangle:

$$\widehat{U}_{n} = \binom{n}{3}^{-1} \sum_{1 \leq i < j < k \leq n} A_{ij} A_{jk} A_{ki}$$

$$= \binom{n}{3}^{-1} \sum_{1 \leq i < j < k \leq n} W_{ij} W_{jk} W_{ki}$$

$$+ \binom{n}{3}^{-1} \sum_{1 \leq i < j < k \leq n} \left\{ \eta_{ij} W_{jk} W_{ki} + W_{ij} \eta_{jk} W_{ki} + W_{ij} W_{jk} \eta_{ki} \right\}$$

$$+ (Product \eta \text{ terms, remainder})$$

Noiseless version of the problem

• $U_n := \mathbb{E}[\widehat{U}_n | W]$ is a noiseless U-statistic and admits a **Hoeffding's** ANOVA decomposition

$$U_n - \mathbb{E}[U_n] = \frac{r}{n} \sum_{i=1}^n g_1(X_i) + \frac{r(r-1)}{n(n-1)} \sum_{1 \leq i < j \leq n} g_2(X_i, X_j) + \cdots$$

where the uncorrelated g_k 's are:

$$g_1(X_1) := \mathbb{E}[h(X_1, \dots, X_r)|X_1] - \mathbb{E}[h]$$

$$g_2(X_1, X_2) := \mathbb{E}[h(X_1, \dots, X_r)|X_1, X_2] - g_1(X_1) - g_1(X_2) - \mathbb{E}[h]$$
.....

Design of variance estimator

Design

$$\widehat{S}_{n}^{2} = \frac{r^{2}}{n^{2}} \cdot \sum_{i=1}^{n} \left\{ \underbrace{\frac{1}{\binom{n-1}{r-1}} \sum_{\substack{1 \leq i_{1} < \dots < i_{r-1} \leq n \\ i_{1}, \dots, i_{r-1} \neq i}} h(A_{i,i_{1},\dots,i_{r-1}}) - \widehat{U}_{n} \right\}^{2}$$
Estimates $g_{1}(X_{1})$

• Theorem 3.3 Z. & Xia, (2022) \hat{S}_n^2 is equivalent to network jackknife (Maesono, 1997), but computes faster and more convenient for analysis

Next: Distribution of \widehat{T}_n ?

Distribution of \widehat{T}_n ?

If we simplify it (we can't, but just for this moment)...

$$U_n - \mathbb{E}[U_n] = \frac{r}{n} \sum_{i=1}^n g_1(X_i) + \frac{r(r-1)}{n(n-1)} \sum_{1 < i < j < n} g_2(X_i, X_j) + \cdots$$

 Edgeworth expansion for i.i.d. data (need Cramer's condition!):

$$\mathrm{CDF}\Big(\frac{\bar{g}_1(X) - \mu}{\sigma_{g_1(X_1)}/\sqrt{n}}; u\Big) = \Phi(u) - \varphi(u) \frac{\mathbb{E}[g_1(X_1)^3](u^2 - 1)}{6\sqrt{n} \cdot \sigma_{g_1(X_1)}^3} + O(n^{-1})$$

Edgeworth expansion for noiseless U-statistics

Cramer's condition:

• For noiseless U-statistic, $g_1(X_1)$ satisfies:

$$\limsup_{t o\infty}\left|\mathbb{E}[e^{\mathrm{i}tg_1(X_1)}]
ight|<1$$

- Cramer's condition $\approx g_1(X_1)$ is **continuous**
- **Violation:** block model (think R = Edge, then $n(g_1(X_i) + \mu) = \text{expected degree of node } i)$

Key insight

$$\widehat{U}_n = \underbrace{U_n}_{\text{Randomness from } X_1, \dots, X_n} + \underbrace{(\widehat{U}_n - U_n)}_{\text{Randomness from } A \mid W}$$

Key findings: $\hat{U}_n - U_n$ provides a self-smoothing effect

- Observational error: behaves like a Gaussian smoother
- Sparsity: amplifies the smoothing effect to eliminate potential discontinuity in Un

Observational noise smooths CDF

IID case illustration: data X_1, \ldots, X_{10} are Bernoulli. Blue: original \bar{X} , Red: plus uniform noise, bandwidth $n^{-1/2}$, Green: mixed with normal noise, bandwidth $(\log n/n)^{1/2}$, Brown, normal noise bandwidth $n^{-1/2}$

Expansion expansion

Network Edgeworth expansion:

$$G_n(x) := \Phi(x) - \frac{\varphi(x)}{\sqrt{n} \cdot \xi_1^3} \cdot \left\{ \frac{2x^2 + 1}{6} \cdot \mathbb{E}[g_1^3(X_1)] + \frac{r - 1}{2} \cdot (x^2 + 1) \mathbb{E}[g_1(X_1)g_1(X_2)g_2(X_1, X_2)] \right\}$$

where $\xi_1^2 := \mathbb{E}[g_1^2(X_1)]$, $\Phi(x)$ and $\varphi \colon N(0,1)$ CDF and PDF

• $\widehat{G}_n(x) :=$ empirical version

Main theorems

- Theorems 3.1 & 3.2 (Z. & Xia, (2022)) Assume

 - **Dense regime:** Either *R* is acyclic and $\rho_n = \omega(n^{-1/2})$, or *R* is cyclic and $\rho_n = \omega(n^{-1/r})$
 - **3** Either $\rho_n = O((\log n)^{-1})$ or Cramer's condition holds

We have

$$\sup_{u\in\mathbb{R}}\left|F_{\widehat{T}_n}(u)-G_n(u)\right|=O(\mathscr{M}(\rho_n,n;R))\ll n^{-1/2}$$

where

$$\mathscr{M}(\rho_n, n; R) := \begin{cases} (\rho_n \cdot n)^{-1} \log^{1/2} n + n^{-1} \log^{3/2} n & \text{for acyclic } R \\ \rho_n^{-r/2} \cdot n^{-1} \log^{1/2} n + n^{-1} \log^{3/2} n & \text{for cyclic } R \end{cases}$$

Result also holds: $G_n(u)$ replaced by $\widehat{G}_n(u)$ (O replaced by O_p with n^{-1} tail probability)

Main theorems (continued)

- Theorem 3.4 (Z. & Xia, (2022)) Assume
 - (same as before)
 - Sparse regime: Either *R* is acyclic and $n^{-1} < \rho_n \le n^{-1/2}$, or *R* is cyclic and $n^{-2/r} < \rho_n \le n^{-1/r}$
 - (same as before)

We have

$$\sup_{u \in \mathbb{R}} \left| F_{\widehat{T}_n}(u) - G_n(u) \right| \approx \sup_{u \in \mathbb{R}} \left| F_{\widehat{T}_n}(u) - \Phi(u) \right|$$
$$= O(\mathscr{M}(\rho_n, n; R)) \bigwedge o_p(1) \gg n^{-1/2}$$

• **Sparse regime:** Berry-Esseen bound dominates $n^{-1/2}$; using N(0,1) approximation is good enough

Applications

One-sample inference:

- Hypothesis testing:
 - Type I error = $\alpha + O(\mathcal{M}(\rho_n, n; R))$:

Estimated p-value =
$$2 \min \left\{ \widehat{G}_n(t^{(\text{obs})}), 1 - \widehat{G}_n(t^{(\text{obs})}) \right\}$$

- Optimal separation condition under H_a.
- Length-optimal CI; nominal level = $1 \alpha + O(\mathcal{M}(\rho_n, n; R))$:

$$\left(\widehat{U}_n\pm\widehat{q}_{\widehat{T}_n;\alpha/2}\cdot\widehat{S}_n\right)$$

where (Cornish-Fisher expansion):

$$\widehat{q}_{\widehat{T}_{n};\alpha} := z_{\alpha} - \frac{1}{\sqrt{n} \cdot \widehat{\xi}_{1}^{3}} \left\{ \frac{2z_{\alpha}^{2} + 1}{6} \cdot \widehat{E}[g_{1}^{3}(X_{1})] + \frac{r - 1}{2} (z_{\alpha}^{2} + 1) \widehat{\mathbb{E}}[g_{1}(X_{1})g_{1}(X_{2})g_{2}(X_{1}, X_{2})] \right\}$$

Computes much faster than bootstrap iteration (Beran, 1987, 1988)

Applications

Understanding the accuracy of network bootstraps:

- Old theory (Bhattacharya & Bickel, 2015), (Green & Shalizi, 2017), (Levin & Levina, 2019):
- o(1) (only consistency, no finite-sample error rate)

 Our theory implies: $o(n^{-1/2})$ (when $\rho_n \gg n^{-1/2}$)
- Our method vs network bootstraps:
 - Our error bound ≪ network bootstraps
 - Our computation time

 ≪ network bootstraps

Simulations

Set up:

- Graphons: SBM, smooth graphon, "non-smooth graphon"
- Motifs: edge, triangle, V-shape

Benchmarks:

- N(0,1) approximation
- Node re-sampling (Green & Shalizi, 2017), Alg. 1
- Node sub-sampling (Bhattacharya & Bickel, 2015), Alg. 1

Performance measured by:

- $\|\widehat{F}_{\widehat{T}_n} F_{\widehat{T}_n}\|_{\infty}$ on (-2,2)
- 500 experiments, within each iteration: 10⁵ Monte Carlo repeats to evaluate true CDF

Figure: CDF curves, n=80, SBM, triangle, bootstrap sample: 500. TrueA is $F_{\widehat{T}_n}$; TrueAJack is $F_{\widehat{T}_{n,jackknife}}$; TrueW is F_{T_n} ; Edgeworth is our EEE; Re-sample is *Green & Shalizi*, (2017); Sub-sample is *Bhattacharyya & Bickel*, (2015); Levin-Levina is *Levin & Levina*, (2019).

28/33

Figure: **Motifs:** row 1: Edge; row 2: Triangle; row 3: Vshape. CDF approximation errors. Our method, N(0,1), Green & Shalizi (2017), Bhattacharrya & Bickel (2015), Levina & Levina (2019)

Figure: Log-time, Our method, Green & Shalizi (2017), Bhattacharrya & Bickel (2015), Levina & Levina (2019)

Table: Performance measures of 95% confidence intervals n = 80, $\rho_n \approx 1$, graphon: block model

Method	Edge	Triangle	V-shape	Three star
Our method	Coverage = $0.957(0.202)$	0.953(0.211)	0.956(0.205)	0.952(0.213)
	Length = 0.097(0.010)	0.040(0.008)	0.200(0.033)	0.145(0.033)
	LogTime = -8.448(0.110)	-7.214(0.083)	-7.165(0.082)	-7.180(0.353)
Norm. Approx.	0.950(0.218)	0.934(0.248)	0.942(0.235)	0.932(0.251)
	0.097(0.010)	0.040(0.008)	0.200(0.033)	0.145(0.033)
	No time cost*	No time cost	No time cost	No time cost
Bhattacharrya & Bickel (2015)	0.842(0.365)	0.870(0.337)	0.852(0.355)	0.852(0.355)
	0.068(0.009)	0.031(0.007)	0.147(0.026)	0.113(0.025)
	-2.591(0.008)	-2.160(0.026)	-2.127(0.024)	-0.992(0.006)
Green & Shalizi (2017)	0.938(0.241)	0.944(0.230)	0.934(0.249)	0.938(0.241)
	0.096(0.013)	0.044(0.010)	0.204(0.038)	0.150(0.037)
	-1.198(0.007)	0.499(0.032)	0.142(0.035)	0.383(0.010)
Levina & Levina (2019)	0.942(0.234)	0.942(0.234)	0.942(0.234)	0.942(0.234)
	0.099(0.013)	0.043(0.010)	0.209(0.039)	0.155(0.038)
	-1.188(0.004)	0.507(0.028)	0.142(0.027)	0.489(0.004)

^{*} N(0,1) costs the same time as ours in evaluating the studentization

Figure: Scalability of our method on large networks.

Thank you!

Edgeworth expansions for network moments Z. and Xia, *Annals of Statistics (2022)*

Thank you! Any questions?