

Mise en œuvre de techniques d'apprentissage supervisé pour l'analyse automatique de marquages routiers

HOLLER Colin

Master 2 CSMI

Encadrants: Valérie Muzet, Christophe Heinkelé

25 Août, 2022

Signalisation horizontale

- Fonction de guidage et d'alerte
- Règles de circulation

Signalisation horizontale

- Fonction de guidage et d'alerte
- Règles de circulation

- * Conforme à la réglementation
- * Entretenu

Signalisation horizontale

- Fonction de guidage et d'alerte
- Règles de circulation

- **★** Conforme à la réglementation
- * Entretenu
- Étude quantitative et qualitative

Signalisation horizontale

- Fonction de guidage et d'alerte
- Règles de circulation

- **★** Conforme à la réglementation
- * Entretenu
- Étude quantitative et qualitative
- Appareil d'évaluation : Ecodyn

Signalisation horizontale

- Fonction de guidage et d'alerte
- Règles de circulation

- ⋆ Conforme à la réglementation
- * Entretenu
- Étude quantitative et qualitative
- Appareil d'évaluation : Ecodyn
- Traitement des données long et fastidieux

Plan de l'exposé

Mise en œuvre de techniques d'apprentissage supervisé pour l'analyse automatique de marquages routiers

- Introduction
- 2 Contexte et objectifs
- Segmentation des marquages routiers
- 4 Identification des marquages routiers
- 6 Analyse sémantique

Cerema

Cerema

Centre d'Etudes et d'expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement

* 23 sites en France

Cerema

Cerema

Centre d'Etudes et d'expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement

- * 23 sites en France
- ★ Missions d'essai, de contrôles, de recherches et d'innovations

Cerema

Cerema

Centre d'Etudes et d'expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement

- ★ 23 sites en France
- Missions d'essai, de contrôles, de recherches et d'innovations
- ⋆ 5 groupes d'activités

ENDSUM

ENDSUM

Evaluation Non Destructive des StrUctures et Matériaux 3 sites : Angers, Rouen, **Strasbourg**

Contexte

Contexte: La perception des marquages routiers

Éléments de guidage pour les conducteurs et les véhicules automatisés

Contexte

Contexte: La perception des marquages routiers

Caractérisé par leur géométrie (IISR), couleur et leur performance

Contexte

Contexte: La perception des marquages routiers

Sa performance est définie dans une norme (EN1436)

• Visibilité de jour : Q_d en $mcd.m^{-2}.lx^{-1}$

• Visibilité de nuit : **rétroréflexion** R_L en $mcd.m^{-2}.lx^{-1}$

Appareil de mesure : Ecodyn

 Réflectomètre mobile à grand rendement

25 Août. 2022

Appareil de mesure : Ecodyn

- Réflectomètre mobile à grand rendement
- Géométrie réduite d'un conducteur regardant un marquage éclairé

25 Août. 2022

Appareil de mesure : Ecodyn

- Réflectomètre mobile à grand rendement
- Géométrie réduite d'un conducteur regardant un marquage éclairé
- Zone de mesure :
 - * 40cm de long
 - 90cm de large

Signaux sous forme d'images

Rétro réflexion

Luminance

Objectifs du stage

• Valider et industrialiser les méthodes de segmentation

Objectifs du stage

- Valider et industrialiser les méthodes de segmentation
- Identification de la typologie des marquages

Objectifs du stage

- Valider et industrialiser les méthodes de segmentation
- Identification de la typologie des marquages
- Analyse sémantique des marquages routiers

Objectifs du stage

- Valider et industrialiser les méthodes de segmentation
- Identification de la typologie des marquages
- Analyse sémantique des marquages routiers
- → Développement solution logicielle :
 - Besoins des utilisateurs
 - ★ Traitement automatisé des mesures

Outils et logiciels utilisés

- Programmation: Python sous un environnement Anaconda
- Bibliothèque Tensorflow et Keras pour l'implémentation des modèles de deep learning
- Expériences réalisées sur une station de travail avec deux processeurs graphiques (GPU) NVIDIA Quadro RTX 5000
- Logiciel d'annotation existant : Vérité Terrain Ecodyn

Segmentation

Segmentation

→ étiqueter chaque pixel d'une image avec une classe correspondante à ce qui est représenté.

Travail réalisé

Recherches bibliographiques

Segmentation

Segmentation

→ étiqueter chaque pixel d'une image avec une classe correspondante à ce qui est représenté.

Travail réalisé

- Recherches bibliographiques
- Données:
 - * Spécificité des données
 - ⋆ Spécificité du jeu d'apprentissage/test

Segmentation

Segmentation

→ étiqueter chaque pixel d'une image avec une classe correspondante à ce qui est représenté.

Travail réalisé

- Recherches bibliographiques
- Données :
 - * Spécificité des données
 - ⋆ Spécificité du jeu d'apprentissage/test
- Apprentissage supervisé :
 - ⋆ Mise en place d'un UNet
 - ★ Influence du nombre de paramètres du UNet
 - ★ Évaluation des réseaux

Jeu de données

- Concaténation des données de rétroréflexion et de luminance
 - → Images à 2 canaux

Jeu de données

- Concaténation des données de rétroréflexion et de luminance → Images à 2 canaux
- Division des données en patchs

Jeu de données

25 Août, 2022

Jeu de données

- Concaténation des données de rétroréflexion et de luminance
 → Images à 2 canaux
- Division des données en patchs
- Valeurs de luminance hétérogènes entre 5 et 100 000 cd. m⁻²
 - → Normalisation des données

Jeu de données

- Concaténation des données de rétroréflexion et de luminance

 → Images à 2 canaux
- Division des données en patchs
- Valeurs de luminance hétérogènes entre 5 et 100 000 cd. m⁻²
 - → Normalisation des données

	Base d'entraînement	Base test
Taille (km)	218.37	48.71
Nombre de patchs	15 173	5 001

Olaf Ronneberger, Phillip Fischer, et Thomas Brox (2015)

Olaf Ronneberger, Phillip Fischer, et Thomas Brox (2015)

Olaf Ronneberger, Phillip Fischer, et Thomas Brox (2015)

25 Août. 2022

Olaf Ronneberger, Phillip Fischer, et Thomas Brox (2015)

Olaf Ronneberger, Phillip Fischer, et Thomas Brox (2015)

25 Août. 2022

Simplification du UNet

Plusieurs profondeurs du UNet testées

Profondeur	Nombre de paramètres	Temps d'entraînement pour 200 époques (s)
0	2 786	619
1	26 066	893
2	118 194	1 213
3	484 722	1762
4	1 354 077	2 103

Métriques d'évaluation

• Rappel : Pourcentage de vrai positifs bien prédits

- Rappel : Pourcentage de vrai positifs bien prédits
 - → Ne dit rien sur le nombre de pixels mal classifiés en classe *marquage*

- Rappel : Pourcentage de vrai positifs bien prédits
 - → Ne dit rien sur le nombre de pixels mal classifiés en classe marquage
- Précision : Pourcentage de prédictions positives bien effectuées

- Rappel : Pourcentage de vrai positifs bien prédits → Ne dit rien sur le nombre de pixels mal classifiés en classe marquage
- Précision : Pourcentage de prédictions positives bien effectuées → Ne dit rien sur le nombre de pixels qui n'ont pas été classifiés en classe marquage

- Rappel : Pourcentage de vrai positifs bien prédits
 - → Ne dit rien sur le nombre de pixels mal classifiés en classe marquage
- Précision : Pourcentage de prédictions positives bien effectuées
 - → Ne dit rien sur le nombre de pixels qui n'ont pas été classifiés en classe marquage
- Score F1 : Moyenne harmonique entre le Rappel et la Précision

- Rappel : Pourcentage de vrai positifs bien prédits
 → Ne dit rien sur le nombre de pixels mal classifiés en classe marquage
- Précision : Pourcentage de prédictions positives bien effectuées

 → Ne dit rien sur le nombre de pixels qui n'ont pas été classifiés en classe marquage
- Score F1 : Moyenne harmonique entre le Rappel et la Précision
 - → Compromis selon le problème

Performances sur base test								
		Précision (%)	Rappel (%)	F1 (%)	Nombre de paramètres	Temps d'inférence (s)		
	0	90.91	88.76	90.91	2 786	0.0018		
	1	93.17	92.41	92.88	26 066	0.026		
	2	94.23	91.88	92.69	118 194	0.034		
	3	93.22	92.12	92,71	484 722	0.039		
	4	94.81	91.82	93.21	1 354 077	0.061		

Performances sur base test							
		Précision (%)	Rappel (%)	F1 (%)	Nombre de paramètres	Temps d'inférence (s)	
	0	90.91	88.76	90.91	2 786	0.0018	
	1	93.17	92.41	92.88	26 066	0.026	
	2	94.23	91.88	92.69	118 194	0.034	
	3	93.22	92.12	92,71	484 722	0.039	
	4	94.81	91.82	93.21	1 354 077	0.061	

25 Août. 2022

25 Août, 2022

Identification

25 Août. 2022

25 Août. 2022

Identification

 \hookrightarrow étiqueter chaque marquage selon son type suivant la norme (IISR)

Travail réalisé

• Classification avec **UNet multi-classes** (?)

Identification

→ étiqueter chaque marquage selon son type suivant la norme (IISR)

Travail réalisé

• Classification avec **UNet multi-classes** (?) **NON**

Identification

→ étiqueter chaque marquage selon son type suivant la norme (IISR)

Travail réalisé

- Classification avec **UNet multi-classes** (?)
- Identification **géométrique** :
 - * Statistiques sur les marquages
 - * Création d'intervalles d'appartenances

25 Août. 2022

Identification

→ étiqueter chaque marquage selon son type suivant la norme (IISR)

Travail réalisé

- Classification avec UNet multi-classes (?) NON
- Identification **géométrique** :
 - * Statistiques sur les marquages
 - * Création d'intervalles d'appartenances
- Évaluation de l'identification :
 - * Matrice de confusion

Identification

→ étiqueter chaque marquage selon son type suivant la norme (IISR)

Travail réalisé

- Classification avec UNet multi-classes (?) NON
- Identification **géométrique** :
 - * Statistiques sur les marquages
 - * Création d'intervalles d'appartenances
- Évaluation de l'identification :
 - * Matrice de confusion
- Limites

Identification géométrique sans apprentissage

Marquage rectangulaire caractérisé par

- Longueur
- Inter-distance

Intervalles d'appartenance

- Marquages rares et non rectangulaires classés en type inconnu (UNK)
- Plusieurs intervalles testés

Intervalles d'appartenance

- Marquages rares et non rectangulaires classés en type inconnu (UNK)
- Méthode retenue :
 - * Lister les valeurs théoriques de chaque type de façon croissante et calculer la moyenne arithmétique deux par deux

Intervalles d'appartenance

- Marquages rares et non rectangulaires classés en type inconnu (UNK)
- Méthode retenue :
 - ★ Lister les valeurs théoriques de chaque type de façon croissante et calculer la moyenne arithmétique deux par deux
 - → Plus grande étendue pour chaque intervalle

Traitement automatique des marquages routiers

Intervalles d'appartenance

- Marquages rares et non rectangulaires classés en type inconnu (UNK)
- Méthode retenue :
 - * Lister les valeurs théoriques de chaque *type* de façon croissante et calculer la **moyenne arithmétique** deux par deux
 - → Plus grande étendue pour chaque intervalle
 - → Meilleurs résultats

Évaluation de l'identification

Mise en place d'une matrice de confusion

Prédiction

	T ₁	T ₂	T ₃	T ₄	T' ₃	LC	UNK	
T ₁	6 695	19	57	0	0	4	321	
T ₂	13	4 5 1 4	46	0	3	1	8	
T ₃	39	81	4 837	0	0	0	64	
T ₄	0	0	0	499	2	3	121	
T' ₃	1	1	1	0	74	0	40	
LC	2	15	51	0	3	70	76	
UNK	16	150	229	1	0	8	108	

Limites de l'identification

Limites de l'identification

Analyse sémantique

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

Analyse sémantique

Analyse sémantique

25 Août. 2022

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

→ Problème : Un marquage dépend des marquages qui l'entourent

Analyse sémantique

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

 \hookrightarrow Problème : Un marquage dépend des marquages qui l'entourent \hookrightarrow

Solution : Méthodes du traitement de langage naturel

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

Travail réalisé

 Mise en place d'un lien entre la sémantique des marquages et le traitement naturel du langage

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

- Mise en place d'un lien entre la sémantique des marquages et le traitement naturel du langage :
 - ★ Mise en place d'un alphabet représentant la route

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

- Mise en place d'un lien entre la sémantique des marquages et le traitement naturel du langage :
 - ★ Mise en place d'un alphabet représentant la route
- Recherches bibliographiques et mise en place de modèles pour le traitement naturel du langage

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

- Mise en place d'un lien entre la sémantique des marquages et le traitement naturel du langage :
 - * Mise en place d'un alphabet représentant la route
- Recherches bibliographiques et mise en place de modèles pour le traitement naturel du langage :
 - ★ Réseaux de neurones récurrents (RNN, LSTM)

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

- Mise en place d'un lien entre la sémantique des marquages et le traitement naturel du langage :
 - * Mise en place d'un alphabet représentant la route
- Recherches bibliographiques et mise en place de modèles pour le traitement naturel du langage :
 - ★ Réseaux de neurones récurrents (RNN, LSTM)
 - * Mécanisme d'attention des Transformers

Analyse sémantique

→ détecter des erreurs issues de la segmentation, de l'identification ou bien liées à la route

- Mise en place d'un lien entre la sémantique des marquages et le traitement naturel du langage :
 - ⋆ Mise en place d'un alphabet représentant la route
- Recherches bibliographiques et mise en place de modèles pour le traitement naturel du langage :
 - ★ Réseaux de neurones récurrents (RNN, LSTM)
 - ★ Mécanisme d'attention des Transformers
- Évaluation des modèles

Réseaux récurrents

• Réseaux de neurones récurrents simples (RNN)

Réseaux récurrents

• Réseaux de neurones récurrents simples (RNN)

→ couche **Dense** possédant une mémoire

- Réseaux de neurones récurrents simples (RNN)
 - → couche **Dense** possédant une mémoire
 - → MAIS à court terme

- Réseaux de neurones récurrents simples (RNN)
 - → couche Dense possédant une mémoire
 - → MAIS à court terme
- Réseaux de neurones récurrents LSTM

- Réseaux de neurones récurrents simples (RNN)
 - → couche **Dense** possédant une mémoire
 - → MAIS à court terme
- Réseaux de neurones récurrents LSTM
 - → mémoire à court terme ET à long terme

- Réseaux de neurones récurrents simples (RNN)
 - → couche **Dense** possédant une mémoire
 - → MAIS à court terme
 - Réseaux de neurones récurrents LSTM
 - → mémoire à court terme ET à long terme
 - → notion d'oubli de l'information

Réseaux récurrents

- Réseaux de neurones récurrents simples (RNN)
 - → couche **Dense** possédant une mémoire
 - → MAIS à court terme
- Réseaux de neurones récurrents LSTM
 - → mémoire à court terme ET à long terme
 - → notion d'oubli de l'information

Mécanisme d'attention

• Mécanisme d'attention des Transformers

Réseaux récurrents

- Réseaux de neurones récurrents simples (RNN)
 - → couche **Dense** possédant une mémoire
 - → MAIS à court terme
- Réseaux de neurones récurrents LSTM
 - → mémoire à court terme ET à long terme
 - → notion d'oubli de l'information

Mécanisme d'attention

- Mécanisme d'attention des Transformers
 - → Basé sur la similitude de deux vecteurs euclidiens à travers le produit scalaire

Réseaux récurrents

- Réseaux de neurones récurrents simples (RNN)
 - → couche Dense possédant une mémoire
 - → MAIS à court terme
- Réseaux de neurones récurrents LSTM
 - → mémoire à court terme ET à long terme
 - → notion d'oubli de l'information

Mécanisme d'attention

- Mécanisme d'attention des Transformers
 - → Basé sur la similitude de deux vecteurs euclidiens à travers le produit scalaire
 - → Notion de **tête** → se focaliser sur plusieurs **caractéristiques** et parallélisme

Association des marquages à des lettres

$$\mathcal{A}_{marquage} = \left\{ \begin{array}{ll} \texttt{M}_1 & \longrightarrow \{ \texttt{marquages de 3 mètres} \} \equiv \{ \texttt{T}_1, \texttt{T}_2, \texttt{T}_3 \} \\ \texttt{M}_2 & \longrightarrow \{ \texttt{marquage de 20 mètres} \} \equiv \{ \texttt{T}_3' \} \\ \texttt{M}_3 & \longrightarrow \{ \texttt{marquage de 39 mètres} \} \equiv \{ \texttt{T}_4 \} \\ \texttt{LC} & \longrightarrow \{ \texttt{ligne continu} \} \equiv \{ \texttt{LC} \} \\ \texttt{UNK} & \longrightarrow \mathcal{E}_{\texttt{UNK}} \end{array} \right.$$

25 Août. 2022

Association des inter-marquages à des lettres

$$\mathcal{E}_{type} = \{T_1, T_2, T_3, T_4, T_3', LC, UNK\}$$

$$\mathcal{A}_{\text{inter-marquage}} = \left\{ \texttt{BG_x} \ \middle| \ x \in \mathcal{E}_{\text{type}} \right\} \cup \left\{ \texttt{BG_x_y} \ \middle| \ x, y \in \mathcal{E}_{\text{type}}, \ x \neq y \right\}$$

Association des inter-marquages à des lettres

$$\mathcal{E}_{type} = \{T_1, T_2, T_3, T_4, T_3', LC, UNK\}$$

$$\mathcal{A}_{\texttt{inter-marquage}} = \left\{ \texttt{BG_x} \ \big| \ x \in \mathcal{E}_{\texttt{type}} \right\} \cup \left\{ \texttt{BG_x_y} \ \big| \ x, y \in \mathcal{E}_{\texttt{type}}, \ x \neq y \right\}$$

$$A = A_{\text{marquage}} \cup A_{\text{inter-marquage}}$$

	Ø				Canal 1
		LC			Canal 2
BG_T ₁	M ₁	BG_T ₁	M ₁	BG_T ₁	Canal 3

Base Axe					
	Train	Test			
Taille	100.88	43.04			
(km)					
Nombre de séquences	8124	8368			

Base Rive					
	Train	Test			
Taille	29.47	15.9			
(km)					
Nombre de séquences	1736	1873			

Base mélangée					
	Train	Test			
Taille	146.54	75.39			
(km)					
Nombre de séquences	9819	16621			

25 Août, 2022

Évaluation

ase Axe					
	Précision (%)	Rappel (%)	F1 (%)	Nombre de paramètres	Temps (s)
RNN	99.57	99.87	99.72	6 593	0.033
LSTM	99.59	100.0	99.81	15 905	0.011
Trans ₂	99.84	99.74	99.79	43 486	0.025
T rans ₁	99.72	99.87	99.79	26 910	0.019

Évaluation

Base Rive						
		Précision (%)	Rappel (%)	F1 (%)	Nombre de paramètres	Temps (s)
RNI	V	94.66	89.06	91.76	6 593	0.027
LSTI	M	93.68	90.86	92.25	15 905	0.012
Tran	s ₂	95.42	90.53	92.91	43 486	0.015
Tran	s_1	94.23	91.09	92.63	26 910	0.017

Évaluation

Base mélangée								
		Précision (%)	Rappel (%)	F1 (%)	Nombre de paramètres	Temps (s)		
R	NN	99.12	94.46	96.73	6593	0.028		
LS	TM	99.05	94.76	96.87	15 905	0.016		
Tr	ans ₂	99.30	94.21	96.09	43486	0.071		
Tr	ans ₁	99.31	94.23	96,71	26 910	0.031		

Modification du logiciel Vérité Terrain Ecodyn

Conclusion et Perspectives

Travail réalisé

- Mise en œuvre d'une segmentation **UNet**
- Identification géométrique
- Analyse sémantique satisfaisante

- Incorporation des algorithmes dans le logiciel
- Perfectionnement des modèles
 - → Apprentissage incrémentiel, architecture
- Outil d'analyse automatique d'un itinéraire complet

Bibliographie I

M. Soilán, B. Riveiro, J. Martínez-Sánchez, and P. Arias, "Segmentation and classification of road markings using MLS data," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 123, pp. 94–103, Jan. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0924271616303173

C. Chun, T. Lee, S. Kwon, and S.-K. Ryu, "Classification and Segmentation of Longitudinal Road Marking Using Convolutional Neural Networks for Dynamic Retroreflection Estimation," *Sensors*, vol. 20, no. 19, p. 5560, Jan. 2020, number: 19 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/20/19/5560

J. S. Sepp Hochreiter, "Long shot-term memory."

Bibliographie II

- "Attention Is All You Need." [Online]. Available: https://ar5iv.labs.arxiv.org/html/1706.03762
- "[1505.04597] U-Net: Convolutional Networks for Biomedical Image Segmentation." [Online]. Available: https://arxiv.org/abs/1505.04597
- "Overfitting Wikipedia." [Online]. Available: https://en.wikipedia.org/wiki/Overfitting
- "Incremental learning," Apr. 2022, page Version ID: 1080634548. [Online]. Available: https://en.wikipedia.org/w/index.php?title= Incremental_learning&oldid=1080634548
- "Instruction interministÉrielle sur la signalisation routiÈre," Oct. 1963.

Bibliographie III

https://keras.io/examples/nlp/text_classification_with_transformer/

"TensorFlow." [Online]. Available: https://www.tensorflow.org/?hl=fr

