A simple way to explain phenomena at the event horizon of a static Black Hole

Joachim Pomper, Philipp Schreiner

Karl-Franzens University Graz

18.01.2022

Topic overview

- Advanced concepts of relativistic kinematics
 - Spacetime as manifold
 - Concept of Observer
- A thought experiment
 - In Schwarzschild coordinates
 - In Kruskal-Szekeres coordinates

Spacetime as smooth manifold

A spacetime is a smooth manifold (M, τ, A, T, g) where

- M a point set (physical events in spacetime)
 - τ a topology (a notion of neighborhood and continuity)
- \mathcal{A} an oriented atlas (a collection of charts)
- g a Lorentzian metric (notion of size and shape e.g. geometry)
- T time orientation (global vector field of time flow)

Charts: coordinate systems

A chart is a 1 to 1 (bi-)continuous map, mapping a portion of physical spacetime onto a picture in \mathbb{R}^d .

$$x: U \subset M \to x(U) \subset \mathbb{R}^2$$

$$p \mapsto (x^1(p), x^2(p))$$

Physical descriptions happen mostly in charts e.g. a specific choice of coordinate system.

Chart ambiguities: Coordinate Stretch

In principle all coordinate space \mathbb{R}^d might be used to only parametrize a portion $U \subset M$ of spacetime.

Change of charts: coordinate transformations

Chart ambiguities: disconnected charts

Observer

An **observer** is a tuple $(\gamma, e_0, e_1, \dots)$ where

- γ a smooth curve on the manifold $\gamma:(0,1) o M$
- e_i a orthogonormal frame at every point $g(e_i, e_i) = \eta_{ii}$
- e_0 is tangent to the curve e.g. $e_0 = v_{\gamma}$

The observers eigentime is defined as curve length

$$\tau(\lambda) = \int_0^\lambda \sqrt{g_x(e_0(x), e_0(x))} \, \mathrm{d}x$$

Example: Not so special relativity

Statements:

- (M) $M \cong \mathbb{R}^4$
- (P) g is **flat** lorentzian metric
- (C) $g = c^2 dx^0 dx^0 dx^1 dx^1$

Example: Not so special relativity

Statements:

- (M) $M \cong \mathbb{R}^4$
- (P) g is **flat** lorentzian metric

(C)
$$g = c^2 dx^0 dx^0 - dx^1 dx^1$$

- (P) Observer (γ, e_i) is inertial
- (C) Observer (γ, e_i) is resting

Example: Not so special relativity

Statements:

- (M) $M \cong \mathbb{R}^4$
- (P) g is **flat** lorentzian metric

(C)
$$g = c^2 dx^0 dx^0 - dx^1 dx^1$$

- (P) Observer (γ, e_i) is inertial
- (C) Observer (γ, e_i) is resting

(C)
$$x^0 = \tau$$

- (P) speed of light = c = const.
- (C) $\Delta x_{light} = \frac{\Delta \tau_{light}}{2} c$

A thought experiment

Scharzschild solution

Schwarzschild metric

$$ds^{2} = \frac{r-a}{r} dt^{2} - \frac{r}{r-a} dr^{2} - r^{2} \left(d\theta^{2} + \sin(\theta)^{2} d\phi^{2}\right)$$

- Neglect angular motion \rightarrow reduce to 2D problem
- metric is singular at $r = a \rightarrow 2$ separate domains

Domain
$$I \mid r \in (a, \infty) \mid t \in (-\infty, \infty)$$

Domain $II \mid r \in (0, a) \mid t \in (-\infty, \infty)$

Free falling particle in Schwarzschild chart

Free falling particle in Schwarzschild chart correctly

Null geodesics

The trajectories of light are give by the null geodesics

- ullet $\gamma:(0,1) o M$ is a geodesic
- $g(v_{\gamma}, v_{\gamma}) = 0$

Light (double)cone :

- ullet Defined by null tangent vectors $oldsymbol{v}_{\gamma}$
- time orientation selects future-cone
- timelike vectors inside cone
- spacelike vectors outside cone

Null geodesics of Schwarzschild spacetime

Lightcones for Schwarzschild spacetime

Kruskal-Szekeres lightcone-coordinates

Metric in Kruskal-Szekeres lightcone-coordinates

$$g = \underbrace{\frac{a}{r(u,v)}} \exp\left(\frac{a-r(u,v)}{a}\right) dudv$$
$$=:\Omega(u,v)$$

Explict equation for t(u, v)

$$t(u,v) = \frac{a}{2} \ln \left(\frac{u^2}{v^2} \right)$$

Implict equation for r(u, v)

$$uv = -4a^2 \frac{r-a}{a} \exp\left(\frac{r-a}{a}\right)$$

Extended domains

Discuss solubility of implicit equation for r(u, v)

Kruskal-Szekeres coordinates

Introduce new coordinates:

• timelike coordinate

$$T = \frac{v + u}{2}$$

spacelike coordinate

$$R = \frac{v - u}{2}$$

Metric in Kruskal-Szekeres coordinates

$$g = \Omega(T, U) \left(dT^2 - dR^2 \right)$$

Kruskal-Szekeres-Diagramm

Thought experiment in Kruskal-Szekeres coordinates

Transmission of light signals

Signal transmission times

Transition time measured from by observer

$$\Delta \tau_{\textit{Rocket}} = \sqrt{\Omega \textit{C}^2} \left(\sinh^{-1} \left(\frac{\textit{T}_+}{\textit{C}} \right) - \sinh^{-1} \left(\frac{\textit{T}_-}{\textit{C}} \right) \right)$$

- C Position where the probe is dropped ($C = R_{Rocket}(T = 0)$)
- T_ Kruskal time when the signal is sent.
- T_{+} Kruskal time when the signal is recieved.

$$\Delta au_{Rocket}(T_+) \xrightarrow[T_+ o \infty]{} \infty$$

Redshifts

What is the redshift of the probes light signal?

Transition time measured by observer

$$z(r_{rocket}, r_{probe}) = \sqrt{\frac{g_{00}(r_{rocket})}{g_{00}(r_{probe})}} - 1 = \sqrt{\frac{(r_{rocket} - a)r_{probe}}{(r_{probe} - a)r_{rocket}}} - 1$$

The redshift diverges when the probe is too close to the horizion

$$z = \xrightarrow{r_{probe} \rightarrow a} \infty \implies \text{information loss}$$

Consistent time orientation

We want to establish an over all consistent notion of future.

We can choose

$$\mathcal{T} = \frac{\partial}{\partial \mathcal{T}}$$

This fulfills the condition

$$g(\mathcal{T},\mathcal{T}) > 0$$

Then we select light cones in direction of ${\mathcal T}$ as future light cones

Summary

- Chart ambiguities in Schwarzschild coordinates
- A non pathological chart for black hole spacetime
- What a probe will measure while falling into the black hole
- Light signal transmission to an outside observer
- Consistent notion of future and time orientation