一、单项选择题 (每题 2 分, 共 30 分) 1. 在同一时间不同统计单位的相同统计指标组成的数据组合,是 (D) A、原始数据 B、时点数据 C、时间序列数据 D、截面数据

- 2. 设 OLS 法得到的样本回归直线为 $Y_i = \hat{\beta_1} + \hat{\beta_2} X_i + e_i$, 以下说法不正确的是(D)
 - A. $\sum e_i = 0$ B. $(\overline{X}, \overline{Y})$ 在回归直线上
 - C. $\overline{\hat{Y}} = \overline{Y}$ D. $COV(X_i, e_i) \neq 0$
- 3. 对多元线性回归方程的显著性检验, 所用的 F 统计量可表示为(B)

A,
$$\frac{ESS /(n-k)}{RSS /(k-1)}$$
 B, $\frac{ESS /k}{RSS /(n-k-1)}$

C,
$$\frac{R^2/(n-k)}{(1-R^2)/(k-1)}$$
 D, $\frac{ESS}{RSS/(n-k)}$

- 4. 在古典假设成立的条件下用 0LS 方法估计线性回归模型参数,则参数估计量具有(C)的统计性质。
- A、有偏性 B、非线性
- C、有效性 D、 非一致性性
- 5. 根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为
- $\ln \hat{Y}_i = 2.00 + 0.75 \ln X_i$,这表明人均收入每增加 1%,人均消费支出将增加(B)
- A、0.2% B、0.75%
- C、2% D、7.5%
- 6. 二元回归模型中,经计算有相关系数 $R_{x_2x_3} = 0.9985$, 则表明 (B)。
- A、 X_2 和 X_3 间存在完全共线性 B、 X_2 和 X_3 间存在近似共线性

- C、 X_2 对 X_3 的拟合优度等于 0.9985 D、不能说明 X_2 和 X_3 间存在多重共线性
- 7. 如果回归模型违背了同方差假定,最小二乘估计量(A)
- A、无偏的, 非有效的

B、有偏的, 非有效的

C、无偏的, 有效的

- D、有偏的, 有效的
- 8. D. W. 检验方法用于检验(B))
- A、异方差性

- B、自相关性
- C、随机解释变量
- D、多重共线性
- 9. 所谓自相关是指(
- A. Cov $(\mu_i, \mu_j) \neq 0, i \neq j$
- B. $Cov(\mu_i, \mu_i) = 0, i \neq j$
- C. Cov $(x_i, x_j) \neq 0, i \neq j$
- D. Cov $(x_i, u_j) \neq 0, i \neq j$
- 10. 在 D. W. 检验中, 当 d 统计量为 2 时, 表明(C)
- A、存在完全的正自相关 B、存在完全的负自相关
- C、不存在自相关
- D、不能判定
- 11. 设线性回归模型为, $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \mu_i$ 下列表明变量之间具有完全 多重共线性的是(A)

$$A_{3} = 0 * x_{1} + 2x_{2} + 0 * x_{3} = 0$$

B,
$$0 * x_1 + 2x_2 + 0 * x_3 + v = 0$$

$$C_{x} = 0 * x_{x} + 0 * x_{y} + 0 * x_{y} = 0$$

$$D_{x} = 0 * x_{1} + 0 * x_{2} + 0 * x_{3} + v = 0$$

- 12. 如果解释变量是随机的,并且与随机干扰项同期相关,得到的参数估计量是 (A)
- A、有偏且非一致的

B、无偏且一致的

C、有偏, 但一致的

- D、无偏, 非一致的
- 13. 对于有限分布滞后模型 $Y_{i} = \alpha_{o} + \beta_{o} X_{i} + \beta_{1} X_{i-1} + \beta_{2} X_{i-2} + \Lambda + \beta_{k} X_{i-k} + \mu_{i}$

在一定条件下,参数 β_i 可近似用一个关于 i 的多项式表示 (i=0, 1, 2, \wedge , k), 其中多项式的阶数 m 必须满足 (A)

A,
$$m < k$$
 B, $m = k$ C, $m > k$ D, $m \ge k$

14. 大学教授薪金回归方程: $Y_i = \alpha_1 + \alpha_2 D_{2i} + \alpha_3 D_{3i} + \beta X_i + \mu_i$, 其中 Y_i 为大学教授年

A.
$$E(Y_i | D_{2i} = 1, D_{3i} = 0, X_i) = (\alpha_1 + \alpha_2) + \beta X_i$$

B.
$$E(Y_i | D_{2i} = 0, D_{3i} = 0, X_i) = \alpha_1 + \beta X_i$$

C,
$$E(Y_i|D_{2i} = 1, D_{3i} = 1, X_i) = (\alpha_1 + \alpha_2 + \alpha_3) + \beta X_i$$

D.
$$E(Y_1 | D_{2i} = 0, D_{3i} = 1, X_i) = (\alpha_1 + \alpha_3) + \beta X_i$$

- 15. 局部调整模型不具有如下特点(D)
- A、对应的原始模型中被解释变量为期望变量,它不可观测
- B、模型是一个一阶自回归模型
- C、模型中含有一个滞后被解释变量 Y_{t-1} ,但它与随机扰动项不相关

- D、模型的随机扰动项存在自相关
- 二、多项选择题 (每题 2 分, 共 10 分)
- 1、对于二元样本回归模型 $Y_i = \hat{\beta_1} + \hat{\beta_2} X_{2i} + \hat{\beta_3} X_{3i} + e_i$,下列各式成立的有(ABC)

A,
$$\sum e_i = 0$$
 B, $\sum e_i X_{2i} = 0$

C,
$$\sum e_i X_{3i} = 0$$
 D $\sum e_i Y_i = 0$

$$\mathsf{E},\ \sum X_{2i}X_{3i}=0$$

- 2、能够检验多重共线性的方法有(ACDE
 - A、简单相关系数矩阵法
- C、t 检验与F 检验综合判断法

- E、逐步回归法
- 3、如果模型中存在序列自相关现象,则会引起如下后果(BCE
 - A. 参数估计值有偏
- B. 参数估计值的方差不能正确确定
- C. 变量的显著性检验失效
- D. 预测精度降低
- E. 参数估计值仍是无偏的
- 4、对美国储蓄与收入关系的计量经济模型分成两个时期分别建模,重建时期是1946—1954; 重建后时期是 1955-1963, 模型如下:

重建时期:
$$Y_i = \lambda_1 + \lambda_2 X_i + \mu_1$$

重建后时期:
$$Y_1 = \lambda_3 + \lambda_4 X_1 + \mu_2$$

关于上述模型,下列说法正确的是(ABCD)

- A $λ_1 = λ_3; λ_2 = λ_4$ 时则称为重合回归 B $λ_1 ≠ λ_3; λ_2 = λ_4$ 时称为平行回归
- C $λ_1 = λ_3; λ_2 ≠ λ_4$ 时称为汇合回归 D $λ_1 ≠ λ_3; λ_2 ≠ λ_4$ 时称为相异回归
- E $λ_1 ≠ λ_3; λ_2 = λ_4$ 时,表明两个模型没有差异
- 5、科伊克模型存在的问题有(CE)
- A、增加了解释变量的个数
- B、加重了解释变量的多重共线性
- C、随机干扰项的一阶自相关性
- D、解释变量与随机干扰项独立
- E、解释变量与随机干扰项不独立

- 三、判断改错题 (每题 3 分, 共 15 分)
- 1、随机干扰项μ,和残差项e,是一回事?

答: 错误。随机干扰项是针对总体回归模型而言的,它是模型中其他没有包含的因素的综合体,而残差项是针对样本回归模型而言的,它是实际观测值与样本回归线上值得离差,两者的含义不同,后者只能说成是对前者的一个估计。

- 2、总体回归函数给出了对应于每一个自变量的因变量的值?
- 答:错误,总体回归函数给出了对应于每一个自变量的被解释变量的均值。
- 3、在存在自相关的情况下, 普通最小二乘法 (OLS) 估计量是有偏的和无效的?
- 答:错,当存在自相关的情况下,OLS法估计量是无偏的但不具有有效性
- 4、一旦模型中的解释变量是随机变量,则违背了基本假设,使得模型的 0LS 估计量有偏且 不一致?

答:模型中的基本假设是, 当解释变量是随机变量时, 进一步假设它们与随机干扰项不相关。 事实上, 当解释变量是随机变量且与随机干扰项同期相关时, 才会使得 OLS 估计量有偏且 不一致

5、在回归模型中 $Y_i = \beta_1 + \beta_2 D_i + \mu_i$ 中,如果虚拟变量 D_i 的取值为 0 或 2,而非通常情况下的 0 或 1,那么参数 β ,的估计值将减半,其 t 值也将减半?

答: 错, 理由是 β, 的估计值减半, 其标准差也要减半, 因此, t值保持不变

四、分析计算题(共45分)

1、根据8 个企业的广告支出X 和销售收入Y 的观测值, 求得:

$$\sum X_i = 108$$
 $\sum Y_i = 480$ $\sum X_i^2 = 1620$ $\sum X_i Y_i = 6870$ $\sum Y_i^2 = 30000$

试用普通最小二乘法确定销售收入Y 对广告支出X 的样本回归函数。(10分)

解:根据样本数据可以得出:

$$\sum x_i y_i = \sum X_i Y_i - \frac{1}{n} \sum X_i \sum Y_i = 6870 - \frac{108 \times 480}{8} = 390$$

$$\sum X_i^2 = \sum X_i^2 - \frac{1}{n} \left(\sum X_i \right)^2 = 1620 - \frac{(108)^2}{8} = 162$$

进而可得:

$$\hat{\beta}_i = \sum x_i y_i / \sum x_i^2 = 162 / 390 = 0.415$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} = 60 - 13.5 \times 0.415 = 54.4$$

所以,样本回归函数为 $\hat{Y}_i = 54.4 + 0.415 X_i$

2、下面是 1978-1998 年我国消费(CONS) 对国内生产总值(GDP)的回归结果。

Dependent Variable: CONS Method: Least Squares Sample: 1978 1998

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	620.6414	1)	6.568933	0.0000
GDP	0.573004	0.002688	2	0.0000
R-squared	0.999582	Mean dependent var		14984.05
Adjusted R-squared	0.999560	S.D. dependent var		14470.05
S.E. of regression	303.5092	Akaike info criterion		14.35909
Sum squared resid	1750239.	Schwarz criterion		14.45857
Log likelihood	-148.7705	F-statistic		3
Durbin-Watson stat	0.805802	Prob(F-statistic		0.000000

- 1) 根据回归结果中的数据,补齐表中的空格。(每空2分)
 - ① 94.48 ② 213.17 ③ 2391.34
- 2) 写出回归方程,并解释回归系数的经济意义。(2分)

答: 回归方程为 cons, = 620.64 + 0.57 × gdp, + e, 620.64 可以解释为自发性消费支出,

0.57 为边际消费倾向。

- 3) 假设 1999 年 GDP 为 100000 亿,请估计当年的消费额? (2分)
- 答: 当 GDP 为 100000 亿时, 当年消费额估计值为 620.64+0.57×100000=57620.64 亿
- 4) 判断该回归模型是否存在序列相关性? (1分)请说明理由。(当 n=21, k=2 时, $d_i = 1.22$

 $d_u = 1.42$)(2分)如果存在序列相关性,可以采用哪些方法补救?(2分)

答:可以得出回归中存在序列相关性,因为 D. W. 统计量低于下界。存在序列相关时可以用广义最小二乘法和广义差分法就行补救。

3、下面是是 1978 到 1997 年我国钢材产量 Y(万吨)对生铁产量 X1,发电量 X2(亿千瓦时),固定资产投资 X3,国内生产总值 X4(亿元),铁路运输 X5(万吨)的回归结果。

Dependent Variable: Y Method: Least Squares

Date: 12/09/09 Time: 21:02

Sample: 1978 1997

Included observations: 20

Variable	Coefficien t	Std. Error	t-Statistic	Prob.
С	354.5884	435.6968	0.813842	0.4294
X1	0.026041	0.120064	0.216892	0.8314
X2	0.994536	0.136474	7.287380	0.0000
X3	0.392676	0.086468	4.541271	0.0005
X4	-0.085436	0.016472	-5.186649	0.0001
X5	-0.005998	0.006034	-0.994019	0.3371

R-squared	0.999098	Mean dependent var	5153.450
Adjusted R-squared	0.998776	S.D. dependent var	2512.131
S.E. of regression	87.87969	Akaike info criterion	12.03314
Sum squared resid	108119.8	Schwarz criterion	12.33186
Log likelihood	-114.3314	F-statistic	3102.411
Durbin-Watson stat	1.919746	Prob(F-statistic)	0.000000

1)、判断该回归模型中是否存在多重共线形? (1分)说明理由(2分)

答:可以判断该回归模型中存在多重共线性,因为方程总体线性的F检验非常显著,但是解释变量 X1(生铁产量)和 X5(铁路运输量)的t 检验不显著。

2)、一般用什么方法来检验多重共线性的存在? (2 分)如何检验多重共线性的范围? (2 分)

答:检验多重共线性的方法有简单相关系数法和综合统计检验法,检验多重共线性范围的方法有判定系数检验法和逐步回归法

3)、如果要检验模型中是否存在异方差性,可以采用哪些方法? (3分)

答: 检验异方差性的方法主要有: 图示法、帕克-戈里瑟检验、G-Q 检验和 White 检验

4、设联立方程模型为:

$$M_{t} = a_{0} + a_{1}Y_{t} + a_{2}P_{t} + \varepsilon_{1t}$$

$$Y_{t} = b_{0} + b_{1}M_{t} + b_{2}Y_{t-1} + \varepsilon_{2t}$$

其中, M 为货币供给量, Y 为国内生产总值, P 为价格指数。

1)、指出模型中的内生变量、外生变量、前定变量(3分)

答:模型中的内生变量为M,、Y,,外生变量为P,,前定变量为P,、Y,

2)、写出简化式模型(3分)

答:模型的结构式形式为

$$(M ext{ } Y) \begin{bmatrix} 1 & -b_1 \\ -a_1 & 1 \end{bmatrix} - (1 ext{ } P ext{ } Y_{-1}) \begin{bmatrix} a_0 & b_0 \\ a_2 & 0 \\ 0 & b_2 \end{bmatrix} = N$$

从而其简化式形式为

$$(M Y) = (1 P Y_{-1}) \begin{bmatrix} a_0 & b_0 \\ a_2 & 0 \\ 0 & b_2 \end{bmatrix} \begin{bmatrix} 1 & -b_1 \\ -a_1 & 1 \end{bmatrix}^{-1} + N \begin{bmatrix} 1 & -b_1 \\ -a_1 & 1 \end{bmatrix}^{-1}$$

$$= (1 P Y_{-1}) \bullet \begin{pmatrix} 1 \\ 1 - a_1 b_1 \end{pmatrix} \begin{bmatrix} a_0 & b_0 \\ a_2 & 0 \\ 0 & b_2 \end{bmatrix} \begin{bmatrix} 1 & a_1 \\ b_1 & 1 \end{bmatrix} + E$$

$$= (1 P Y_{-1}) \bullet \begin{pmatrix} \frac{1}{1 - a_1 b_1} \\ 1 - a_1 b_1 \end{pmatrix} \begin{bmatrix} a_0 + b_0 b_1 & a_0 a_1 + b_0 \\ a_2 & a_1 a_2 \\ b_1 b_2 & b_2 \end{bmatrix} + E$$

3)、根据识别的定义判断模型的识别性(4分)

答:模型包含 2 个内生变量: M、Y; 2 个前定变量: P、 Y_{-1} , 因此 g=2,k=2。 第一个方程 $g_1=2,k_1=1 \ , \qquad k-k_1=g_1- \ , \qquad$ 因此第一个方程恰好识别; 第二个方程中, $g_2=2,k_2=1 \ , \qquad k-k_2=g_2-1 \ , \qquad$ 因此第二个方程也是恰好识别的。

