LSH

June 1, 2019

Table of Contents

- Introduction
- Review of LSH Search Scheme
 - Entropy-based search
 - Adaptative LSH
 - LSH Forest
 - Multi-Probe LSH
 - Dynamic Collision Counting
- Implementation and Results Analysis

Locality Sensitive Hashing

LSH Families

A family \mathcal{H} of functions from a domain S to a range U is called (r, ϵ, p_1, p_2) -sensitive, with $r, \epsilon > 0$, $p_1 > p_2 > 0$, if for any $p, q \in S$, the following conditions hold:

- if $D(p,q) \le r$, then $Pr_{\mathcal{H}}[h(p) = h(q)] \ge p_1$
- if $D(p,1) > r(1+\epsilon)$ then $Pr_{\mathcal{H}}[h(p) = h(q)] \leq p_2$

Properties of Good LSH

- Accuracy: # of True Near Neightbors # of Retrieved Candidates should be as large as possible.
- Efficient Queries: # of Retrived Candidates should be as small as possible.
- Efficient Maintenance: A single scan to build tables.
- **Domain Independence**: Work well on any data domain.
- Minimum Storage: Storage consummption should be as little as possible.

Entropy-based search Adaptative LSH LSH Forest Multi-Probe LSH Dynamic Collision Counting

Table of Contents

- Introduction
- Review of LSH Search Scheme
 - Entropy-based search
 - Adaptative LSH
 - LSH Forest
 - Multi-Probe LSH
 - Dynamic Collision Counting
- Implementation and Results Analysis

Entropy-based search

- Use one or a few hash table and hash several randomly chosen points in the neighborhood to reduce time and space complexity
- Constraction of hash table: pick $k = \frac{\log n}{\log(1/g)}$ random hash functions $h_1, h_2, ..., h_k$. For each point p in the database compute $H(p) = (h_1(p), h_2(p), ..., h_k(p))$ and store p in a table at location H(p). polylogn is used to construct hash tables.
- **Search**: Given q and r, pick $O(n^{\rho})$ random points v from B(q, r), where $\rho = \frac{M}{\log(1/g)}$, and search in the buckets H(v).

Adaptative LSH

- Based on the idea that the relevance of the hash function used in LSH are the lower the better
- D_8 lattice is the set of points of Z^8 whose sum is even, e.g. $(1,1,1,1,1,1,1,1) \in D_8$

•
$$E_8 = D_8 \cup (D_8 + \frac{1}{2})$$

$$\bullet \ h_i(x) = E_8(\frac{x_{i,8} - b_i}{w})$$

Basic Idea of LSH Forest

- B+ tree is alwayse accurate
- Variance number of hash functions for different queries
- Efficient implementation for main memory and Disk

Figure 1: A prefix tree on the set of LSH labels

Algorithm for Query

```
\begin{aligned} & \text{ALGORITHM DESCEND}(q, x_i, s) \\ & \triangleright \text{Args: query } q \text{ at level } x_i \text{ on node } s \\ & \text{if } (s \text{ is leaf) } \{ \\ & \text{Return } (s, x_i) \\ \} & \text{else } \{ \\ & y = x_i + 1 \\ & \text{Evaluate } g_i(q, y) \\ & t = \text{Child node from branch labeled } h_y(q) \\ & (p, z) = \text{DESCEND}(q, y, t) \\ & \text{Return } (p, z) \\ \} \end{aligned}
```

```
\begin{split} & \text{ALGORITHM SYNCHASCEND}(x[1,\dots,l],s[1,\dots,l]) \\ & \triangleright \text{Args: } x_i \text{ values and corresponding leaf nodes } s_i \text{ for each } T_i \\ & x = \max_i \{x[i]\} \\ & P = \phi \\ & \text{while } (x > 0 \text{ and } (|P| < cl \text{ or } |distinct(P)| < m)) \text{ } \{ \\ & \text{ for } (i = 1 \text{ ; } i \leq l \text{ ; } i + +) \\ & \text{ if } (x[i] = x) \text{ } \{ \\ & P = P \cup Descendants(s[i]) \\ & s[i] = Parent(s[i]) \\ & x[i] = x[i] - 1 \\ \} \\ & \text{Retum } P \end{split}
```

The Idea of Multi-Probe LSH [1]

Trade time for space:

Reduce the number of hash table while achieving similar performance by probing a sequence of buckets in one hash table.

Scheme	Query
Basic	$g(q) = (h_1(q), h_2(q),, h_M(q))$
Multi-Probe	$g(q)+\Delta^{(i)}, i=1,2,,T, \Delta^{(i)}=(\delta_1^{(i)},\delta_2^{(i)},,\delta_M^{(i)})$

Probing Sequence

Step-Wise:

Firstly search all 1-step perturbations, then 2-step ones, and so on. The total number of all *n*-step buckets is $L \times \binom{M}{n} \times 2^n$.

Query Based:

$$h(q) = \lfloor \frac{a \cdot q + b}{W} \rfloor$$
, $f(q) = a \cdot q + b$, $f(p) - f(q)$ follows Gaussian distribution. $P(h(p) = h(q) + \Delta) \approx C \exp(\sum_{i=1}^{T} x_i(\delta_i)^2)$

Algorithm:

- Sort all $x_i(-1), x_i(+1), i=1, 2..., M$
- Find T smallest valid subset

Optimized Probing Sequence Construction

The perturbations sequence generated every query time. Actually a certain sequence can be precomputed.

The idea is use $\mathbb{E}[z_j^2]$ to replace z_j . z_j is the j-th value in the sorted $x_i(\delta)$ sequence. It can be proved that $E[z_j] = \frac{j}{2(M+1)}W$, $E[z_j^2] = \frac{j(j+1)}{4(M+1)(M+2)}W^2$

Entropy-based search Adaptative LSH LSH Forest Multi-Probe LSH Dynamic Collision Counting

Using Dynamic Compound Hash

Traditional LSH scheme use L static compound hash functions to reduce false positives. But it also reduce recall. Many hash tables will be used to improve recall.

The collision counting LSH [2] uses only a set of single hash function. Only data points with large enough collision numbers will be considered as cR-NN candidates.

In case of no data points returned, it uses virtual reranking to equivalently search a neighbor with radius $1, c, c^2, ...$

Table of Contents

- 1 Introduction
- Review of LSH Search Scheme
 - Entropy-based search
 - Adaptative LSH
 - LSH Forest
 - Multi-Probe LSH
 - Dynamic Collision Counting
- 3 Implementation and Results Analysis

Implementation

We choose several representative LSH schemes, implement them and compare their performance.

- Basic LSH
- LSH Forest

- Multi-ProbeLSH
- Bayesian LSH

Dataset. We use MNIST¹ to evaluate the algorithms. We choose 50 dimensions of the original 28×28 images with largest variances as [2] does. Ground truth are got by linear scan in the training set with Euclidean distance.

¹http://yann.lecun.com/exdb/mnist/

Experiment Settings

Algorithm	Basic	LSHForest	MultiProbe	Bayesian
#compounds	8	25	8	
W	8	1	8	
T	-	-	16	_

Error Ratio (1/2)

Error ratio indicates the accuracy of LSH's results and the ground truth. Error ratio is close to 1 means this LSH scheme successfully find the nearest neighbors.

Error Ratio =
$$\frac{1}{N} \frac{1}{K} \sum_{n=1}^{N} \sum_{i=1}^{K} \frac{d(q, p_{lsh}^{(i)})}{d(q, p_{label}^{(i)})}$$
 (1)

We use K = 20.

Error Ratio (2/2)

Recall (1/2)

Recall shows how many nearest neighbors are found by LSH.

$$Recall = \frac{|A_{lsh} \cap A_{label}|}{|A_{label}|}$$
 (2)

Recall (2/2)

Time Usage (1/2)

Time Usage (2/2)

Candidate Number

Observations

- LSHForest and MultiProbeLSH return more candidates with the same number of hash tables. Therefore they have better error ratio and recall than BasicLSH
- MultiProbeLSH takes most time in searching because it has to determine the probe sequence at every query.
- LSHForest suffers from long build time, especially when there are many hash tables.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, "Multi-probe Ish: efficient indexing for high-dimensional similarity search," in *Proceedings of the 33rd international* conference on Very large data bases. VLDB Endowment, 2007, pp. 950-961.

J. Gan, J. Feng, Q. Fang, and W. Ng, "Locality-sensitive hashing scheme based on dynamic collision counting," in Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. ACM, 2012, pp. 541-552

Thank You