The Euler-Lagrange Equation

Forest Kobayashi

Harvey Mudd College

April 1st, 2018

Optimal Fuel Use

Shortest Time Path

Shortest Path

The statement

Theorem (Euler-Lagrange)

Let $q(t): \mathbb{R} \to \mathbb{R}^n$ be a path. Then if q(t) is an extreme value of the functional

$$S(\mathbf{q}) = \int_{a}^{b} \mathcal{L}(t, \mathbf{q}(t), \dot{\mathbf{q}}(t)) dt$$

then q is a solution to the differential equation

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} \right) = 0$$

