Finite Element Method Derivation For InkFEM

Ángel Sola Orbaiceta

May 2021

Abstract

InkFEM is a software package written in the Go programming language to compute the displacements and stresses over linear structures using the Finite Element Method. This document discusses the formulation used in the software.

1 Axial Elements

An *axial element* is a linear resistant element whose deformation happens in the direction or its directrix only. The linear elements used by *InkFEM* are a combination of axial and beam elements (see Section 2).

1.1 Energy Formulation

The total energy of an axial element...

1.2 Displacement Field And Interpolation Functions

Let $\vec{u}(x)$ be the displacements field in the axial finite element of length L. u_1 is the displacement of the element's node 1 in the X direction, and u_2 the displacement of node 2 in the X direction. The displacements field can be chosen to vary linearly inside the finite element, so it can be interpolated from the values of u_1 and u_2 like so:

$$\vec{u}(x) = N_1 u_1 + N_2 u_2 \tag{1}$$

where:

$$N_1(x) = 1 - \frac{x}{L}$$

$$N_2(x) = \frac{x}{L}$$
(2)

1.3 Distributed Loads

We consider distributed axial loads that vary linearly with respect to the X direction:

$$q_x(x) = a + bx (3)$$

The work done by these forces can be obtained by the following integration:

$$W_{q_x} = \int_0^L q_x \vec{u}(x) dx = \int_0^L (a + bx) \left[\left(1 - \frac{x}{L} \right) u_1 + \left(\frac{x}{L} \right) u_2 \right] dx$$

Which yields a result of:

$$W_{q_x} = \begin{bmatrix} \frac{aL}{2} + \frac{bL^2}{6} & \frac{aL}{2} + \frac{bL^2}{3} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Therefore, a linear axial load $q_x(x)$ can be distributed over the two nodes in the finite element adding the forces:

$$F_x^1 = \frac{aL}{2} + \frac{bL^2}{6}$$

$$F_x^2 = \frac{aL}{2} + \frac{bL^2}{3}$$
(4)

1.4 Axial Stress

Each element's axial stress...

2 Beam Elements

From the mechanics of materials beam theory, the shear stress V in a beam is related to the vertical distributed load $f_y(x)$ as shown by Equation 5:

$$\frac{dV}{dx} = f_y(x) \tag{5}$$

Let v(x) be the vertical displacement of the beam's centroidal axis. Then, the bending moment M(x) can be expressed in terms of this displacement (Equation 6):

$$M(x) = EI\frac{d^2v(x)}{dx^2} \tag{6}$$

The relationship between the shear stress V(x) and the bending moment M(x) is given by Equation 7:

$$V(x) = \frac{dM(x)}{dx} = \frac{d}{dx} \left(EI \frac{d^2 v(x)}{dx^2} \right)$$
 (7)

And hence, the beam's governing differential equation, provided EI is constant, is given by Equation 8:

$$EI\frac{d^4v(x)}{dx^4} = f_y(x) \tag{8}$$

2.1 Energy Formulation

Energy...

2.2 Displacement Field And Interpolation Functions

The vector $\{q^e\}$ contains the beam finite element start and end nodes vertical displacements and rotations:

$$\{q^e\} = \begin{cases} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{cases} = \begin{cases} v_1 \\ \left(\frac{dv}{dx}\right)_1 \\ v_2 \\ \left(\frac{dv}{dx}\right)_2 \end{cases}$$

Let v(x) be the vertical displacements field in the beam finite element of length L. We can assume a cubic displacement field inside the element, as described by Equation 9:

$$v(x) = N_1 v_1 + N_2 \theta_1 + N_3 v_2 + N_4 \theta_2 \tag{9}$$

where:

$$N_{1}(x) = \frac{1}{L^{3}} \left(2x^{3} - 3x^{2}L + L^{3} \right)$$

$$N_{2}(x) = \frac{1}{L^{2}} \left(x^{3} - 2x^{2}L + xL^{2} \right)$$

$$N_{3}(x) = \frac{1}{L^{3}} \left(-2x^{3} - 3x^{2}L \right)$$

$$N_{4}(x) = \frac{1}{L^{2}} \left(x^{3} - x^{2}L \right)$$
(10)

These N interpolation functions fulfill the following conditions:

$$N_1(0) = 1$$
 $N'_1(0) = 0$ $N_1(L) = 0$ $N'_1(L) = 0$
 $N_2(0) = 0$ $N'_2(0) = 1$ $N_2(L) = 0$ $N'_2(L) = 0$
 $N_3(0) = 0$ $N'_3(0) = 0$ $N_3(L) = 1$ $N'_3(L) = 0$
 $N_4(0) = 0$ $N'_4(0) = 0$ $N_4(L) = 0$ $N'_4(L) = 1$

The displacement field can be rewritten as:

$$v(x) = [N] \{q^e\} = \begin{bmatrix} N_1 & N_2 & N_3 & N_4 \end{bmatrix} \begin{cases} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{cases}$$

2.3 Distributed Loads

loads...