

# RECUPERAÇÃO DE INFORMAÇÃO

Profa. Patrícia Proença patricia.proenca@ifmg.edu.br



## ATENÇÃO!!!

- O material a seguir é uma videoaula apresentada pela professora PATRÍCIA APARECIDA PROENÇA AVILA, como material pedagógico do IFMG, dentro de suas atividades curriculares ofertadas em ambiente virtual de aprendizagem. Seu uso, cópia e ou divulgação em parte ou no todo, por quaisquer meios existentes ou que vierem a ser desenvolvidos, somente poderá ser feito, mediante autorização expressa deste docente e do IFMG. Caso contrário, estarão sujeitos às penalidades legais vigentes".
- Conforme Art. 2°§1° da Nota Técnica n° 1/2020/PROEN/Reitoria/IFMG (SEI 0605498, Processo n° 23208.002340/2020-04

Avaliação da Recuperação ...continuando

### Introdução

- Valores de precisão versus revocação são úteis para comparar a qualidade de algoritmos de recuperação distintos sobre um conjunto de consultas teste.
- Comparar a qualidade de algoritmos para consultas isoladas?

### Introdução

- Existem duas razões para esse calculo isolado:
  - Calcular a média de várias consultas pode encobrir anomalias importantes nos algoritmos.
  - Quando comparamos dois algoritmos, podemos estar interessados em investigar se um deles é melhor do que o outro em todas as consultas de um dado conjunto.

### Introdução

- Nessas situações, um único valor de precisão (para cada consulta) pode ser usado;
- Usualmente, esse valor único é a precisão em um determinado nível de revocação.
  - Por exemplo, poderíamos avaliar a precisão quando observamos o primeiro documento relevante e usá-lo como o sumário de único valor.
  - Porém essa não é uma abordagem boa, e outras estratégias podem ser adotadas.

- Na Web, é comum medir a média da precisão quando n = 5 ou 10 documentos tenham sido vistos;
  - Independente se eles s\u00e3o relevantes ou n\u00e3o.

 Os valores típicos para n são normalmente precisão na posição 5 (P@5), precisão na posição 10 (P@10) e precisão na posição 20 (P@20);

- Essas métricas fornecem uma avaliação da impressão do usuário sobre os resultados e baseiam-se no fato de que raramente as pessoas acessam além da segunda página.
- Assim quanto maior for a concentração de documentos relevantes no topo, mais positiva será a impressão do usuário.

#### Exemplo:

Para a consulta q1, qual é o valor de P@5, P@10 e P@15?

| 1. | d123 | 6. d9   | 11.d38  |
|----|------|---------|---------|
| 2. | d84  | 7. d511 | 12.d48  |
| 3. | d56  | 8. d129 | 13.d250 |
| 4. | d6   | 9. d187 | 14.d113 |
| 5. | d8   | 10.d25  | 15.d3   |

- Exemplo:
  - ► P@5 = 40%
    - p = 2/5
  - ► P@10 = 40%
    - p = 4/10
  - ► P@15 = 33%
    - p = 5/15

#### Outra aplicação

Dados dois algoritmos de ranqueamento para Web, podemos computar para cada um deles a média dos valores P@5 e P@10 para 100 consultas, por exemplo, para ter uma avaliação sobre qual algoritmo seria preferível do ponto de vista do usuário.

#### Exemplo:

- encontrar diferenças entre o google e o bing.
- digite seu nome em ambos os buscadores.
- encontre os documentos relevantes entre os 10 primeiros.
- Calcule P@5 e P@10. Quais são as diferenças?

- Precisão e revocação permitem comparar a relevância dos resultados produzidos por duas funções de ranqueamento. Contudo, existem situações em que:
  - não podemos medir diretamente a relevância (não temos a coleção de referência ou não temos a disponibilidade de avaliadores humanos);
  - ou estamos mais interessados em determinar o quão diferentemente uma função de ranqueamento varia em relação a outra função.
  - Nesses casos, estamos interessados em comparar a ordenação relativa das respostas produzidas pelos dois rankings.

- Isso pode ser conseguido utilizando funções estatísticas chamadas métricas de correlação de ranking.
- Uma métrica de correlação de ranking compara dois rankings e gera um coeficiente de correlação C(R1,R2) com as seguintes propriedades:
  - $-1 \le C(R1,R2) \le 1;$
  - Se C(R1,R2) = 1, a concordância entre os dois rankings é perfeita;
  - Se C(R1,R2) = -1, a discordância entre os dois rankings é perfeita (inverso um do outro).

- Duas métricas de correlação de ranking são mais utilizadas e estudadas:
  - Coeficiente de Spearman;
  - Coeficiente Tau de Kendall;

- Um das métricas de correlação de ranking mais utilizada e estudada é o Coeficiente de Spearman.
- Baseia-se nas diferenças entre as posições de um mesmo documento em dois rankings sob comparação;

Coeficiente de Spearman:

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

- seja s<sub>1,j</sub> a posição de um documento dj no ranking 1 e s<sub>2,j</sub> a posição de um documento dj no ranking 2; e
- K indica o tamanho dos conjuntos ordenados.

#### Coeficiente de Spearman - exemplo

| Documentos     | $s_{1,j}$ | $s_{2,j}$ | $s_{i,j}-s_{2,j}$ | $(s_{i,j}-s_{2,j})^2$ |
|----------------|-----------|-----------|-------------------|-----------------------|
| $d_{123}$      | 1         | 2         | -1                | 1                     |
| $d_{84}$       | 2         | 3         | -1                | 1                     |
| $d_{56}$       | 3         | 1         | +2                | 4                     |
| $d_6$          | 4         | 5         | -1                | 1                     |
| d <sub>8</sub> | 5         | 4         | + 1               | 1                     |
| $d_9$          | 6         | 7         | -1                | 1                     |
| $d_{511}$      | 7         | 8         | -1                | 1                     |
| $d_{129}$      | 8         | 10        | -2                | 4                     |
| $d_{187}$      | 9         | 6         | +3                | 9                     |
| $d_{25}$       | 10        | 9         | +1                | 1                     |
| Soma d         | 24        |           |                   |                       |

- Coeficiente de Spearman exemplo
  - Qual é o grau de correlação entre os dois métodos de ranqueamento?
  - Arr S(R<sub>1</sub>, R<sub>2</sub>) = 1 (6\*24)/(10\*(10<sup>2</sup>-1))
  - Arr S(R<sub>1</sub>, R<sub>2</sub>) = 1 144/990
  - S(R<sub>1</sub>, R<sub>2</sub>) = 0.85

#### ATIVIDADE PARA ENTREGAR -02/08

- Com base na coleção de documentos apresentada na exercício da aula anterior, responda:
- a) Os valores de precisão P@n nas posições 5, 10 e 15 para cada uma das três consultas.
- b)Para qual consulta a impressão dos usuários será mais positiva? Justifique.



Voar não é só para quem tem asas, mas também para quem tem sonhos para realizar.



