第二章 静 电 场

本章我们把电磁场的基本理论应用到最简单的情况:电荷静止,相应的电场不随时间而变化的情况.本章研究的主要问题是:在给定的自由电荷分布以及周围空间介质和导体分布的情况下,怎样求解静电场.

静电场的标势是一个很重要的概念.静电问题通常都是通过标势来求解的.第一节我们引入标势及其微分方程和边值关系,然后在以后几节中说明解静电场问题的几种方法——分离变量法、镜像法和格林函数法.最后一节我们计算在局部范围内的电荷分布所激发的电场在远处的展开式,从而引入电多极矩的概念.电多极矩在原子物理、原子核物理以及电磁辐射问题中都有重要的应用.

§ 1 静电场的标势及其微分方程

1. 静电场的标势

在静止情况下,电场与磁场无关,麦克斯韦方程组的电场部分为

$$\nabla \times \mathbf{E} = 0 \tag{1.1}$$

$$\nabla \cdot \mathbf{D} = \rho \tag{1.2}$$

(1.1)式表示静电场的无旋性,(1.2)式表示自由电荷分布 ρ 是电位移 D 的源. 这两方程连同介质的电磁性质方程是解决静电问题的基础.

静电场的无旋性是它的一个重要特性,由于无旋性,我们可以引入一个标势来描述静电场,和力学中用势函数描述保守力场的方法一样.无旋性的积分形式是电场沿任一闭合回路 L 的环量等于零:

$$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = 0 \tag{1.3}$$

设 C_1 和 C_2 为由 P_1 点到 P_2 点的两条不同路径. C_1 与 $-C_2$ 合成闭合回路,因此

$$\int_{C_1} \mathbf{E} \cdot d\mathbf{l} - \int_{C_2} \mathbf{E} \cdot d\mathbf{l} = 0$$

即

$$\int_{C_1} \mathbf{E} \cdot d\mathbf{l} = \int_{C_2} \mathbf{E} \cdot d\mathbf{l}$$

因此,电荷由 P_1 点移至 P_2 点时电场对它所作的功与路径无关,而只和两端点有关,把单位正电荷由 P_1 点移至 P_2 点,电场 E 对它所作的功为

$$\int_{P}^{P_2} \boldsymbol{E} \cdot d\boldsymbol{l}$$

这功定义为 P_1 点和 P_2 点的电势差. 若电场对电荷作了正功,则电势 φ 下降. 由此,

$$\varphi(P_2) - \varphi(P_1) = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\mathbf{l}$$
 (1.4)

由这定义,只有两点的电势差才有物理意义,一点上的电势的绝对数值是没有物理意义的.

相距为dl的两点的电势差为

$$\mathrm{d}\varphi = -\mathbf{E} \cdot \mathrm{d}\mathbf{l}$$

由于

$$d\varphi = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz = \nabla \varphi \cdot dl$$

因此,电场强度 E 等于电势 φ 的负梯度:

$$\mathbf{E} = -\nabla \varphi \tag{1.5}$$

只有势的差值才有物理意义. 但在实际计算中,为了方便,常常选取某个参考点,规定其上的电势为零,这样整个空间的电势就单值地确定了. 参考点的选择是任意的,在电荷分布于有限区域的情况下,常常选无穷远点作为参考点. 令 $\varphi(\infty)=0$,由(1.4)式得

$$\varphi(P) = \int_{0}^{\infty} \mathbf{E} \cdot d\mathbf{l} \tag{1.4a}$$

公式(1.4)和(1.5)是电场强度和电势相互关系的一般公式. 由这些公式,当已知电场强度时,可以求出电势;反过来,已知电势 φ 时,通过求梯度就可以求得电场强度.

下面我们计算给定电荷分布所激发的电势. 已知点电荷 Q 激发的电场强度为

$$E = \frac{Q}{4\pi\varepsilon_0 r^3} r$$

其中r为源点到场点的距离. 把此式沿径向由场点到无穷远点积分, 把积分变数写为r',由(1.4a)式得

$$\varphi(P) = \int_{r}^{\infty} \frac{Q}{4\pi\epsilon_{0} r'^{2}} dr' = \frac{Q}{4\pi\epsilon_{0} r}$$
 (1.6)

由电场的叠加性,多个电荷激发的电势 φ 等于每个电荷激发的电势的代数和. 设有一组点电荷 Q_i ,与场点 P 的距离为 r_i ,则这组点电荷激发的电势为

$$\varphi(P) = \sum_{i} \frac{Q_{i}}{4\pi\varepsilon_{0} r_{i}}$$

若电荷连续分布于有限区域 V, 电荷密度为 ρ , 设 r 为由源点 \mathbf{x}' 到场点 \mathbf{x} 的 • 38 •

距离(参看图 1-1),则场点 x 处的电势为

$$\varphi(\mathbf{x}) = \int_{V} \frac{\rho(\mathbf{x}') dV'}{4\pi\varepsilon_{0} r}$$
 (1.7)

其中,已把无穷远处取为电势零点,由上式,假如空间中所有电荷分布都给定,电 势 φ ,因而电场E就完全确定。但是实际情况往往不是所有电荷分布都能够预 先给定的,例如,在某一给定电荷附近放着一个导体,则导体表面上就会产生感 应电荷分布,这个电荷分布正是要从电场与电荷相互作用的规律求出来,而不是 预先给定的.由于导体表面上的电荷分布是未知函数,因而就不能应用(1.7)式 来计算空间中的电势和电场,问题在干(1,7)式只反映电荷激发电场这一方面, 而没有反映场对电荷作用的方面,在上述例子中,实际上包括了下面一些物理 过程:给定电荷激发了电场,电场作用到导体自由电子上,引起它们运动,使电荷 在导体上重新分布,最后在总电场(包括给定电荷和导体上感应电荷激发的电 场)作用下达到平衡静止状态, 在这静止状态下, 导体表面上的感应电荷有确定 的分布密度,而空间中的电场也同时确定,由这例子看出,电荷和电场是互相制 约着的,一方面感应电荷的出现是由电场引起的,另一方面电场又受到感应电荷 的影响.我们要同时解出这问题中的电场和感应电荷密度,就必须再深入一步, 研究一个电荷对它邻近的电场是怎样作用的,一点上的电场和它邻近的电场又 是怎样联系的,即要找出电荷和电场相互作用规律的微分形式,而在导体表面或 其他边界上场和电荷的相互关系则由边值关系或边界条件反映出来, 这种问题 在数学上称为边值问题,即求微分方程的满足给定边界条件的解,下面我们来研 究这问题.

2. 静电势的微分方程和边值关系

在均匀各向同性线性介质中, $\mathbf{D} = \varepsilon \mathbf{E}$,把(1.5)式代入(1.2)式得

$$\nabla^2 \varphi = -\frac{\rho}{\varepsilon} \tag{1.8}$$

 ρ 为自由电荷密度. 上式是静电势满足的基本微分方程, 称为泊松(Poisson)方程. 给出边界条件就可以确定电势 φ 的解.

在两介质界面上,电势 φ 必须满足边值关系. 我们需要把电场的边值关系

$$\boldsymbol{e}_{n} \times (\boldsymbol{E}_{2} - \boldsymbol{E}_{1}) = 0 \tag{1.9}$$

$$\boldsymbol{e}_{n} \cdot (\boldsymbol{D}_{2} - \boldsymbol{D}_{1}) = \sigma \tag{1.10}$$

化为电势的边值关系,其中 e_n 是由介质 1 指向介质 2 的法向单位矢量. 如图 2-1 ,考虑介质 1 和介质 2 分界面两侧相邻的两点 P_1 和 P_2 . 由于电场强度有限,而 $P_1P_2 \rightarrow 0$,把电荷由 P_1 移至 P_2 所作的功亦趋于零,因此界面两侧的电势相等

$$\varphi_1 = \varphi_2 \tag{1.11}$$

即在界面上,电势 φ 是连续的. 电势连续条件(1.11)式可以代替电场边值关系(1.9)式. 因为,设 P_1 和 P_2 为边界两侧相邻的另外两点,由电势连续条件有 $\varphi_1'=\varphi_2'$,因而

$$arphi'_1-arphi_1=arphi'_2-arphi_2$$

设 P_1 和 P_1' 相距 Δl ,则 $\varphi_1' - \varphi_1 = -E_1$ • Δl ,同样, $\varphi_2' - \varphi_2 = -E_2$ • Δl ,因此

$$E_1 \cdot \Delta l = E_2 \cdot \Delta l$$

由于 Δl 为界面上任一线元,上式表示界面 两边电场的切向分量相等,与(1.9)式一 致.

图 2-1

另一边值关系(1.10)式用势表出为

$$\varepsilon_2 \frac{\partial \varphi_2}{\partial n} - \varepsilon_1 \frac{\partial \varphi_1}{\partial n} = -\sigma \tag{1.12}$$

式中 $\frac{\partial}{\partial n}$ 是法线方向的偏导数, σ 为界面上的自由电荷面密度. (1.11)和(1.12)式是在界面上静电势所满足的边值关系.

以上给出边值关系的一般形式.在静电问题中,常常有一些导体存在,由于导体的特殊性质,在导体表面上的边值关系有它的特点.导体内部有自由电子,在电场作用下这些电子就会运动.因此,在静止情况下,导体内部电场必须为零,而且导体表面上的电场亦不能有切向分量,否则电子将沿表面运动.导体内部没有电场的必要条件是导体内部不带净电荷,导体所带电荷只能分布于表面上.因此,导体的静电条件归结如下:

- (1) 导体内部不带净电荷,电荷只能分布于导体表面上;
- (2) 导体内部电场为零;
- (3) 导体表面上电场必沿法线方向,因此导体表面为等势面.整个导体的电势相等.

设导体表面所带自由电荷面密度为 σ ,设它外面的介质电容率为 ε ,由 (1.11)和(1.12)式和导体静电条件得导体表面的边界条件

$$\varphi = 常量$$
 (1.11a)

$$\varepsilon \frac{\partial \varphi}{\partial n} = -\sigma \tag{1.12a}$$

静电学的基本问题是求出在每个均匀区域内满足泊松方程,在所有分界面上满足边值关系和在所研究的整个区域边界上满足边界条件的电势的解. 在第二节中我们将证明,给定区域V内的自由电荷分布 ρ ,给定区域边界 S上的电势 $\varphi|_S$ 或作为区域边界的导体所带的总电荷,即能唯一地确定电场. 以后几节我

们将具体讨论静电场边值问题的求解方法.

3. 静电场能量

由第一章 § 6 可知,在线性介质中静电场的总能量为

$$W = \frac{1}{2} \int_{\infty} \mathbf{E} \cdot \mathbf{D} dV \tag{1.13}$$

在静电情形下,W 可以用电势和电荷分布表出. 由 $E = -\nabla \varphi$ 和 $\nabla \cdot \mathbf{D} = \rho(\rho)$ 为自由电荷密度)得

$$\begin{split} \boldsymbol{E} \boldsymbol{\cdot} \boldsymbol{D} = & - \nabla \varphi \boldsymbol{\cdot} \boldsymbol{D} = - \nabla \boldsymbol{\cdot} (\varphi \boldsymbol{D}) + \varphi \nabla \boldsymbol{\cdot} \boldsymbol{D} \\ = & - \nabla \boldsymbol{\cdot} (\varphi \boldsymbol{D}) + \rho \varphi \end{split}$$

因此

$$W = \frac{1}{2} \int_{V} \rho \varphi \, dV - \frac{1}{2} \int_{V} \nabla \cdot (\varphi \mathbf{D}) \, dV$$

式中右边第二项是散度的体积分,它可以化为面积分(见附录 1.7 式)

$$\int_{V} \nabla \cdot (\varphi \mathbf{D}) \, dV = \oint_{S} \varphi \mathbf{D} \cdot d\mathbf{S}$$

面积分遍及无穷远界面. 由于 $\varphi\sim\frac{1}{r}$, $D\sim\frac{1}{r^2}$,而面积 $\sim r^2$,所以面积分当 $r\to\infty$ 时 趋于零,因此

$$W = \frac{1}{2} \int_{V} \rho \varphi \, \mathrm{d}V \tag{1.14}$$

积分只需遍及电荷分布区域 V. 这公式是通过自由电荷分布和电势表示出来的静电场总能量. 注意这公式只有作为静电场总能量才有意义,不应该把 $\frac{1}{2}\rho\varphi$ 看作能量密度,因为我们知道能量是分布于电场内,而不仅在电荷分布区域内.

(1.14)式中的 φ 是由电荷分布 ρ 激发的电势 . 若全空间充满均匀介质,介电常数为 ε ,由(1.7)和(1.14)式可以得到电荷分布 ρ 所激发的电场总能量为

$$W = \frac{1}{8\pi\epsilon} \int dV \int dV' \frac{\rho(\mathbf{x})\rho(\mathbf{x}')}{r}$$
 (1.15)

式中r为x与x'点的距离.

我们可以应用(1.13)—(1.15)各式中任一公式来计算静电场总能量.在静电场中之所以能够通过电荷分布来表示电场能量,是因为在这种情况下电场决定于电荷分布,在场内没有独立的运动,因而场的能量就由电荷分布所决定.在非恒定情况下,电场和磁场互相激发,其形式就是独立于电荷分布之外的电磁波运动,因而场的总能量不可能完全通过电荷或电流分布表示出来.由第一章 § 6我们知道(1.13)式在普遍情况下仍然可以表示电场的能量,但(1.14)和(1.15)式只在静电场情况下成立.

例1 求均匀电场 E_0 的电势.

解 均匀电场每一点强度 E_0 相同,其电场线为平行直线. 选空间任一点为原点,并设该点上的电势为 φ_0 ,由(1.4)式求得任一点 P 处的电势

$$\varphi(P) = \varphi_0 - \int_0^P \mathbf{E}_0 \cdot d\mathbf{l} = \varphi_0 - \mathbf{E}_0 \cdot \int_0^P d\mathbf{l}$$
$$= \varphi_0 - \mathbf{E}_0 \cdot \mathbf{x}$$
(1.16)

x 为 P 点的位矢. 注意均匀电场可以看作由无穷大平行板电容器产生,其电荷分布不在有限区域内,因此不能选 $\varphi(\infty)=0$. 若选 $\varphi_0=0$,则有

$$\varphi = -\mathbf{E}_0 \cdot \mathbf{x}$$

例 2 均匀带电的无限长直导线的电荷线密度为 τ, 求电势.

解 如图 2-2,设场点 P 到导线的垂直距离为 R,电荷元 τ dz 到 P 点的距离为 $\sqrt{z^2+R^2}$,由(1,7)式得

$$\begin{split} \varphi(P) &= \int_{-\infty}^{\infty} \frac{\tau \mathrm{d}z}{4\pi\varepsilon_0 \sqrt{z^2 + R^2}} \\ &= \frac{\tau}{4\pi\varepsilon_0} \ln (z + \sqrt{z^2 + R^2}) \Big|_{-\infty}^{\infty} \end{split}$$

积分结果是无穷大. 无穷大的出现和电荷不是有限区域内的分布有关. 计算两点 P 和 P。的电势差可以不出现无穷大. 设 P。点与导线的垂直距离为 R。则 P 点和 P。点的电势差为

图 2-2

$$\begin{split} \varphi(P) - \varphi(P_0) &= \lim_{M \to \infty} \frac{\tau}{4\pi\epsilon_0} \ln \frac{z + \sqrt{z^2 + R^2}}{z + \sqrt{z^2 + R_0^2}} \Big|_{-M}^{M} \\ &= \lim_{M \to \infty} \frac{\tau}{4\pi\epsilon_0} \ln \left[\frac{1 + \sqrt{1 + R^2/M^2}}{1 + \sqrt{1 + R_0^2/M^2}} \cdot \frac{-1 + \sqrt{1 + R_0^2/M^2}}{-1 + \sqrt{1 + R^2/M^2}} \right] \\ &= \frac{\tau}{4\pi\epsilon_0} \ln \frac{R_0^2}{R^2} = -\frac{\tau}{2\pi\epsilon_0} \ln \frac{R}{R_0} \end{split}$$

若选 P_0 点为参考点,规定 $\varphi(R_0)=0$,则

$$\varphi(R) = -\frac{\tau}{2\pi\epsilon_0} \ln \frac{R}{R_0} \tag{1.17}$$

取φ的负梯度得

$$E_R = -\frac{\partial \varphi}{\partial R} = \frac{\tau}{2\pi\epsilon_0 R}, E_\theta = E_z = 0$$

用高斯定理也可以得出这结果.

例 3 求带电荷量为 Q、半径为 a 的导体球的静电场总能量.

解 导体球的电荷分布于球面上,整个导体为等势体. 用(1.14)式求总能量最为方便. 球面上的电势为 $\varphi_a = Q/4\pi\epsilon_0 a$,因此静电场总能量为

$$W=rac{1}{2}Q\varphi_a=rac{Q^2}{8\piarepsilon_0a}$$

静电场总能量也可以由(1.13)式求出.因为球内电场为零,故只需对球外积分:

$$W = rac{arepsilon_0}{2} \int rac{Q^2}{(4\piarepsilon_0 r^2)^2} r^2 dr d\Omega = rac{Q^2}{8\piarepsilon_0} \int_a^{\infty} rac{1}{r^2} dr$$

$$= rac{Q^2}{8\piarepsilon_0 a}$$

§ 2 唯一性定理

在上节中我们说明静电学的基本问题是求出在所有边界上满足边值关系或给定边界条件的泊松方程的解.本节我们把这问题确切地表述出来,即需要给出哪一些条件,静电场的解才能唯一地被确定.

静电场的唯一性定理对于解决实际问题有着重要的意义。因为它首先告诉我们,由哪些因素可以完全确定静电场,这样在解决实际问题时就有所依据。其次,对于许多实际问题,往往需要根据给定的条件作一定的分析,提出尝试解。如果所提出的尝试解满足唯一性定理所要求的全部条件,它就是该问题的唯一正确的解。下面我们先提出并证明一般形式的唯一性定理,然后再证明有导体存在时的唯一性定理。

1. 静电问题的唯一性定理

下面我们研究可以均匀分区的区域 V,即 V 可以分为若干个均匀区域 V_i ,每一均匀区域的电容率为 ε_i . 设 V 内有给定的自由电荷分布 $\rho(\mathbf{x})$. 电势 φ 在均匀区域 V_i 内满足泊松方程:

$$\nabla^2 \varphi = -\rho/\varepsilon_i \tag{2.1}$$

在两区域 V_i 和 V_i 的分界面上满足边值关系:

$$\varphi_{i} = \varphi_{j}$$

$$\varepsilon_{i} \left(\frac{\partial \varphi}{\partial n} \right)_{i} = \varepsilon_{j} \left(\frac{\partial \varphi}{\partial n} \right)_{i}$$
(2.2)

泊松方程(2.1)式和边值关系(2.2)式是电势所必须满足的方程,它们属于电场的基本规律。除此之外,要完全确定V内的电场,还必须给出V的边界S上的一些条件。下面提出的唯一性定理具体指出所需给定的边界条件。

唯一性定理:设区域 V 内给定自由电荷分布 $\rho(x)$, 在 V 的边界 S 上给定 (1) 电势 $\rho(s)$

或

(2) 电势的法线方向偏导数 $\frac{\partial \varphi}{\partial n}$

则 V 内的电场唯一地确定. 也就是说,在 V 内存在唯一的解,它在每个均匀区域内满足泊松方程(2.1),在两均匀区域分界面上满足边值关系,并在 V 的边界 S 上满足给定的 φ 或 $\partial \varphi/\partial n$ 值.

证明 设有两组不同的解 φ' 和 φ'' 满足唯一性定理的条件. 令

$$\varphi = \varphi' - \varphi'' \tag{2.3}$$

则由 $\nabla^2 \varphi' = -\rho/\epsilon_i$, $\nabla^2 \varphi'' = -\rho/\epsilon_i$,得

$$\nabla^2 \varphi = 0$$
 (每个均匀区域 V_i 内) (2.4)

在两均匀区域界面上有

$$\varphi_{i} = \varphi_{j}$$

$$\varepsilon_{i} \left(\frac{\partial \varphi}{\partial n} \right)_{i} = \varepsilon_{j} \left(\frac{\partial \varphi}{\partial n} \right)_{i}$$
(2.5)

在整个区域V的边界S上有

$$\varphi|_{S} = \varphi'|_{S} - \varphi''|_{S} = 0$$
 (2.6a)

或

$$\frac{\partial \varphi}{\partial n} \Big|_{s} = \frac{\partial \varphi'}{\partial n} \Big|_{s} - \frac{\partial \varphi''}{\partial n} \Big|_{s} = 0 \tag{2.6b}$$

考虑第i个均匀区域 V_i 的界面 S_i 上的积分

$$\oint_{S_i} \boldsymbol{\varepsilon}_i \varphi \; \boldsymbol{\nabla} \; \varphi \cdot \mathrm{d} \boldsymbol{S}$$

由附录([.7)式,这积分可以变换为体积分

$$\oint_{S_i} \varepsilon_i \varphi \, \nabla \varphi \cdot d\mathbf{S} = \int_{V_i} \nabla \cdot (\varepsilon_i \varphi \, \nabla \varphi) \, dV$$

$$= \int_{V_i} \varepsilon_i (\nabla \varphi)^2 \, dV + \int_{V_i} \varphi \varepsilon_i \, \nabla^2 \varphi \, dV$$

由(2.4)式,右边最后一项为零,因此

$$\oint_{S_i} \varepsilon_i \varphi \, \nabla \varphi \cdot d\mathbf{S} = \int_{V_i} \varepsilon_i (\nabla \varphi)^2 \, dV$$

对所有分区域 V. 求和得

$$\sum_{i} \oint_{S_{i}} \boldsymbol{\varepsilon}_{i} \varphi \, \nabla \varphi \cdot d\mathbf{S} = \sum_{i} \int_{V_{i}} \boldsymbol{\varepsilon}_{i} (\nabla \varphi)^{2} dV$$
 (2.7)

在两均匀区域 V_i 和 V_j 的界面上,由(2.5)式, φ 和 ε $\nabla \varphi$ 的法向分量分别相等,但 d S_i =一d S_j .因此,在(2.7)式左边的和式中,内部分界面的积分互相抵消,因而只剩下整个 V 的边界面 S 上的积分.但在 S 上,由(2.6)式,或者 $\varphi|_S=0$,或者 $\frac{\partial \varphi}{\partial x}|_S=0$,两情形下面积分都等于零.因此由(2.7)式有

$$\sum_{i} \int_{V_{i}} \varepsilon_{i} (\nabla \varphi)^{2} \, \mathrm{d}V = 0$$

由于被积函数 $\varepsilon_i(\nabla \varphi)^2 \geqslant 0$,上式成立的条件是在 V 内各点上都有

$$\nabla \varphi = 0$$

$$\varphi =$$
常量

由(2.3)式, φ' 和 φ'' 至多只能相差一个常量.但电势的附加常量对电场没有影响,这就证明了唯一性定理.

2. 有导体存在时的唯一性定理

当有导体存在时,由实践经验我们知道,为了确定电场,所需条件有两种类型:一类是给定每个导体上的电势 φ_i ,另一类是给定每个导体上的总电荷 Q_i .

为简单起见,我们只讨论区域内含一种均匀介质的情形.如图 2-3,设在某区域 V 内有一些导体,我们把除去导体内部以后的区域称为 V',因而 V'的边界包括界面 S 以及每个导体的表面 S_i .设 V'内有给定电荷分布 ρ ,S 上给定 $\varphi|_S$ 或 $\frac{\partial \varphi}{\partial n}|_S$ 值.对上述第一种类型的问题,每个导体上的电势 φ_i 亦给定,即给出了 V' 所有边界上的 φ 或 $\frac{\partial \varphi}{\partial n}$ 值,因而由上一小节证明了的唯一性定理可知,V' 内的电场唯一地被确定.

图 2-3

对于第二种类型的问题,唯一性定理表述如下:

设区域V内有一些导体,给定导体之外的电荷分布 ρ ,给定各导体上的总电荷 Q_i 以及V的边界S上的 φ 或 $\frac{\partial \varphi}{\partial n}$ 值,则V内的电场唯一地确定。也就是说,存在唯一的解,它在导体以外满足泊松方程

$$\nabla^2 \varphi = -\frac{\rho}{\varepsilon} \tag{2.8}$$

在第 i 个导体上满足总电荷条件

$$-\oint_{S_i} \frac{\partial \varphi}{\partial n} dS = \frac{Q_i}{\varepsilon}$$
 (2.9)

和等势面条件

以及在 V 的边界 S 上具有给定的 $\varphi |_{S}$ 或 $\frac{\partial \varphi}{\partial n}|_{S}$ 值.

证明 设有两个解 φ' 和 φ'' 满足上述条件,令

$$\varphi=\varphi'-\varphi''$$

则φ满足

$$\nabla^2 \varphi = 0 \quad (V' \ \begin{picture}(10,10) \put(0,0){\line(1,0)} \put($$

$$-\oint_{S_i} \frac{\partial \varphi}{\partial n} dS = 0 \tag{2.12}$$

$$\varphi|_{S_i} = 常量$$

$$\varphi|_S = 0 \quad 或 \quad \frac{\partial \varphi}{\partial n}|_S = 0 \tag{2.13}$$

对区域 V'用公式

$$\oint \varphi \nabla \varphi \cdot d\mathbf{S} = \int_{V'} \nabla \cdot (\varphi \nabla \varphi) dV$$

$$= \int_{V'} (\nabla \varphi)^2 dV + \int_{V} \varphi \nabla^2 \varphi dV \qquad (2.14)$$

上式左边的面积分包括 V 的边界 S 以及每个导体的表面 S_i 上的积分.作为 V' 的边界, S_i 的法线指向导体内部.若我们用 $\frac{\partial}{\partial n}$ 表示导体表面的法向偏导数,由 (2.12) 式,在 S_i 上的积分为

$$\oint_{S_i} \varphi \, \nabla \varphi \cdot d\mathbf{S} = - \varphi_i \oint_{S_i} \frac{\partial \varphi}{\partial n} dS = 0$$

由(2.13)式,在S上的面积分亦为零.因而(2.14)式左边等于零.该式右边最后一项由(2.11)式得零,因此有

$$\int_{V'} (\nabla \varphi)^2 \, \mathrm{d}V = 0$$

由此得

$$\nabla \varphi = 0$$

即 φ' 和 φ'' 至多只能相差一个常量,因而电场唯一确定.

当导体外的电势确定后,由边值关系

$$-\varepsilon \frac{\partial \varphi}{\partial n}\Big|_{S_i} = \sigma \tag{2.15}$$

可知导体上的电荷面密度亦同时确定.

由本定理的证明可以看出电场与电荷的相互制约关系.若空间内有一些导体,给定各导体上的总电荷后,在空间中就激发了电场.同时导体上的电荷受到电场作用.在静止情况,导体上的电荷分布使得导体表面为一个等势面.因此,由导体上的总电荷和导体面为等势面的条件,同时确定空间中的电场以及导体上的电荷面密度.

例 如图 2-4,两同心导体球壳之间充以两种介质,左半部电容率为 ϵ_1 ,右半部电容率为 ϵ_2 . 设内球壳带总电荷 Q,外球壳接地,求电场和球壳上的电荷分布.

解 设两介质内的电势、电场强度和电位移分别为 φ_1 , E_1 , D_1 和 φ_2 , E_2 , D_2 . 由于左右两半是不同介质,因此电场一般不同于只有一种均匀介

图 2-4

质时的球对称解. 在找尝试解时,我们先考虑两介质分界面上的边值关系:

$$E_{2t} = E_{1t} (2.16)$$

$$D_{2n} = D_{1n} (2.17)$$

如果我们假设 E 仍保持球对称性,即

$$E_{1} = \frac{A}{r^{3}} \mathbf{r} \quad (左半部)$$

$$E_{2} = \frac{A}{r^{3}} \mathbf{r} \quad (右半部)$$
(2.18)

(A) 为待定常数),则在分界面两侧电场与界面相切,并有相同数值,因而边值关系(2.16)得到满足.而且由于 $D_{2n} = D_{1n} = 0$,因而(2.17)式亦被满足. 球对称的 E 在导体球面上处处与球面垂直,因而保证导体球面为等势面. 为了满足内导体总电荷等于 Q 的条件,我们计算内导体球面上的积分:

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{S_{1}} \varepsilon_{1} \mathbf{E}_{1} \cdot d\mathbf{S} + \int_{S_{2}} \varepsilon_{2} \mathbf{E}_{2} \cdot d\mathbf{S} = Q$$
(2. 19)

其中 S_1 和 S_2 分别为左右半球面. 把(2.18)式代入得

$$2\pi(\varepsilon_1 + \varepsilon_2)A = Q$$

解出

$$A = \frac{Q}{2\pi(\varepsilon_1 + \varepsilon_2)}$$

代入(2.18)式得

$$E_{1} = \frac{Qr}{2\pi(\varepsilon_{1} + \varepsilon_{2})r^{3}} \quad (左半部)$$

$$E_{2} = \frac{Qr}{2\pi(\varepsilon_{1} + \varepsilon_{2})r^{3}} \quad (右半部)$$

此解满足唯一性定理的所有条件,因此是唯一正确的解.

虽然 E 仍保持球对称性,但是 D 和导体面上的自由电荷面密度 σ 不具有球对称性.设内导体球半径为 α ,则球面上的自由电荷面密度为

$$\sigma_1 = D_{1r} = \epsilon_1 E_{1r} = rac{\epsilon_1 Q}{2\pi(\epsilon_1 + \epsilon_2)a^2}$$
 (左半部)
 $\sigma_2 = D_{2r} = \epsilon_2 E_{2r} = rac{\epsilon_2 Q}{2\pi(\epsilon_1 + \epsilon_2)a^2}$ (右半部)

注意导体两半球面上的自由电荷分布是不同的,但 E 却保持球对称性.读者试解释这一点.

§ 3 拉普拉斯方程 分离变量法

以上两节给出静电问题的一般公式,并说明静电学的基本问题是求满足给

定边界条件的泊松方程的解. 只有在界面形状是比较简单的几何曲面时,这类问题的解才能以解析形式给出,而且视具体情况不同而有不同解法. 本节和以下几节我们研究几种求解的解析方法.

在许多实际问题中,静电场是由带电导体决定的. 例如电容器内部的电场是由作为电极的两个导体板上所带电荷决定的;又如电子光学系统的静电透镜内部,电场是由分布于电极上的自由电荷决定的. 这些问题的特点是自由电荷只出现在一些导体的表面上,在空间中没有其他自由电荷分布. 因此,如果我们选择这些导体表面作为区域V的边界,则在V内部自由电荷密度 $\rho=0$,因而泊松方程化为比较简单的拉普拉斯(Laplace)方程:

$$\nabla^2 \varphi = 0 \tag{3.1}$$

产生这电场的电荷都分布于区域 V 的边界上,它们的作用通过边界条件反映出来.因此,这类问题的解法是求拉普拉斯方程的满足边界条件的解。

(3.1)式的通解可以用分离变量法求出. 先根据界面形状选择适当的坐标系,然后在该坐标系中用分离变量法解拉普拉斯方程. 最常用的坐标系有球坐标系和柱坐标系. 这里我们写出用球坐标系得出的通解形式(见附录 II). 球坐标用 (R,θ,ϕ) 表示,R为半径, θ 为极角, ϕ 为方位角. 拉氏方程在球坐标中的通解为

$$\varphi(R,\theta,\phi) = \sum_{n,m} \left(a_{mn} R^n + \frac{b_{nm}}{R^{n+1}} \right) P_n^m(\cos\theta) \cos m\phi$$

$$+ \sum_{n,m} \left(c_{mn} R^n + \frac{d_{mn}}{R^{n+1}} \right) P_n^m(\cos\theta) \sin m\phi \qquad (3.2)$$

式中 a_{mm} , b_{mm} , c_{mm} 和 d_{mm} 为任意常数,在具体问题中由边界条件定出. $P_{n}^{mm}(\cos\theta)$ 为缔合勒让德(Legendre)函数. 若该问题中具有对称轴,取此轴为极轴,则电势 φ 不依赖于方位角 ϕ ,这情形下通解为

$$\varphi = \sum_{n} \left(a_n R^n + \frac{b_n}{R^{n+1}} \right) P_n(\cos \theta)$$
 (3.3)

 $P_n(\cos\theta)$ 为勒让德函数, a_n 和 b_n 是任意常数,由边界条件确定.

在每一个没有电荷分布的区域内, φ 满足拉普拉斯方程,其通解已由(3.2)或(3.3)式给出,剩下的问题就是由边界条件确定这些通解中所含的任意常数,得到满足边界条件的特解.下面举一些具体例子说明定特解的方法.

例1 一个内径和外径分别为 R_2 和 R_3 的导体球壳,带电荷 Q,同心地包围着一个半径为 R_1 的导体球($R_1 < R_2$). 使这个导体球接地,求空间各点的电势和这个导体球的感应电荷.

解 这问题有球对称性,电势 φ 不依赖于角度 θ 和 ϕ ,因此可以只取(3.3)式的 n=0 项. 设导体壳外和壳内的电势为

$$\varphi_1 = a + \frac{b}{R} \quad (R > R_3)$$

$$\varphi_2 = c + \frac{d}{R} \quad (R_2 > R > R_1)$$
(3.4)

边界条件为:

(1) 因内导体球接地,故有

$$\varphi_2 \mid_{R=R_1} = \varphi_1 \mid_{R \to \infty} = 0 \tag{3.5}$$

(2) 因整个导体球壳为等势体,故有

$$\varphi_2 \mid_{R=R_2} = \varphi_1 \mid_{R=R_2}$$
 (3.6)

(3) 球壳带总电荷 Q,因而

$$-\oint_{R=R_3} \frac{\partial \varphi_1}{\partial R} R^2 d\Omega + \oint_{R=R_2} \frac{\partial \varphi_2}{\partial R} R^2 d\Omega = \frac{Q}{\varepsilon_0}$$
 (3.7)

把(3.4)式代入这些边界条件中,得

$$a=0$$
, $c+rac{d}{R_1}=0$ $c+rac{d}{R_2}=rac{b}{R_3}$, $b-d=rac{Q}{4\pi\epsilon_0}$

由此解出

$$d = \frac{Q_1}{4\pi\epsilon_0}, \quad b = \frac{Q}{4\pi\epsilon_0} + \frac{Q_1}{4\pi\epsilon_0}$$

$$c = -\frac{Q_1}{4\pi\epsilon_0 R_1}$$
(3.8)

其中

$$Q_1 = -\frac{R_3^{-1}}{R_1^{-1} - R_2^{-1} + R_3^{-1}} Q$$

把这些值代入(3.4)式中,得电势的解

$$\varphi_{1} = \frac{Q + Q_{1}}{4\pi\epsilon_{0}R} \quad (R > R_{3})$$

$$\varphi_{2} = \frac{Q_{1}}{4\pi\epsilon_{0}} \left(\frac{1}{R} - \frac{1}{R_{1}}\right) \quad (R_{2} > R > R_{1})$$
(3.9)

导体球上的感应电荷为

$$-\varepsilon_0 \int_{R=R_1} \frac{\partial \varphi_2}{\partial R} R^2 d\Omega = Q_1$$
 (3.10)

例 2 电容率为 ε 的介质球置于均匀外电场 E_0 中,求电势.

解 介质球在外电场中极化,在它表面上产生束缚电荷.这些束缚电荷激发的电场叠加在原外电场 E_0 上,得总电场 E_0 束缚电荷分布和总电场 E_0 互相制约,边界条件正确地反映这种制约关系.

设球半径为 R_0 ,球外为真空(图 2 - 5). 这问题具有轴对称性,对称轴为通过球心沿外电场 E_0 方向的轴线,取此轴线为极轴.

介质球的存在使空间分为两均匀区域——球外区域和球内区域.两区域内部都没有自由电荷,因此电势 φ 都满足拉普拉斯方程.以 φ_1 代表球外区域的电势, φ_2 代表球内的电势.由(3.3)式,两区域的通解为

$$\varphi_1 = \sum_{n} \left(a_n R^n + \frac{b_n}{R^{n+1}} \right) P_n(\cos \theta)$$
 (3.11)

$$\varphi_2 = \sum_{n} \left(c_n R^n + \frac{d_n}{R^{n+1}} \right) P_n(\cos \theta)$$
 (3.12)

 a_n,b_n,c_n 和 d_n 是待定常数. 边界条件包括:

(1) 无穷远处, $E \rightarrow E_0$,由第一节例 1 得

$$\varphi_1 \longrightarrow -E_0 R \cos \theta = -E_0 R P_1 (\cos \theta)$$
 (3.13)

因而

$$a_1 = -E_0, \quad a_n = 0 \quad (n \neq 1)$$
 (3.14)

(2) R=0 处, φ_2 应为有限值,因此

$$d_n = 0 \tag{3.15}$$

(3) 在介质球面上 $(R=R_0)$:

$$\varphi_1 = \varphi_2, \quad \varepsilon_0 \frac{\partial \varphi_1}{\partial R} = \varepsilon \frac{\partial \varphi_2}{\partial R}$$
(3.16)

把(3.11)和(3.12)式代入得

$$-E_{0}R_{0}P_{1}(\cos\theta) + \sum_{n} \frac{b_{n}}{R_{0}^{n+1}}P_{n}(\cos\theta) = \sum_{n} c_{n}R_{0}^{n}P_{n}(\cos\theta)$$

$$-E_{0}P_{1}(\cos\theta) - \sum_{n} \frac{(n+1)b_{n}}{R_{0}^{n+2}}P_{n}(\cos\theta)$$

$$= \frac{\varepsilon}{\varepsilon_{0}} \sum_{n} nc_{n}R_{0}^{n-1}P_{n}(\cos\theta)$$
(3.17)

比较 P₁ 的系数得

$$-E_{0}R_{0}+\frac{b_{1}}{R_{0}^{2}}=c_{1}R_{0}$$

$$-E_0 - \frac{2b_1}{R_0^3} = \frac{\varepsilon}{\varepsilon_0} c_1 \tag{3.18}$$

由(3.18)式解出

$$b_1 = \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} E_0 R_0^3, \quad c_1 = -\frac{3\epsilon_0}{\epsilon + 2\epsilon_0} E_0$$
 (3.19)

比较(3.17)式其他 P_n 项的系数可解出

$$b_n = c_n = 0, \quad n \neq 1$$
 (3.20)

所有常数已经定出,因此本问题的解为

$$\varphi_{1} = -E_{0}R \cos \theta + \frac{\varepsilon - \varepsilon_{0}}{\varepsilon + 2\varepsilon_{0}} \frac{E_{0}R_{0}^{3} \cos \theta}{R^{2}}$$

$$\varphi_{2} = -\frac{3\varepsilon_{0}}{\varepsilon + 2\varepsilon_{0}} E_{0}R \cos \theta$$
(3.21)

现在讨论此解的物理意义.由(3.21)式,球内电场为 $\frac{3\varepsilon_0}{\varepsilon+2\varepsilon_0}$ **E**₀,因为 $\frac{3\varepsilon_0}{\varepsilon+2\varepsilon_0}$ 总 小于 1,所以球内电场比原外电场 **E**₀为弱,这是由于介质球极化后在右半球面上产生正束缚电荷,在左半球面上产生负束缚电荷,因而在球内束缚电荷激发的场与原外场反向,使总电场减弱,在球内总电场作用下,介质的极化强度为

$$\mathbf{P} = \chi_{\epsilon} \varepsilon_0 \mathbf{E} = (\varepsilon - \varepsilon_0) \mathbf{E} = \frac{\varepsilon - \varepsilon_0}{\varepsilon + 2\varepsilon_0} 3\varepsilon_0 \mathbf{E}_0$$
 (3. 22)

介质球的总电偶极矩为

$$\boldsymbol{p} = \frac{4\pi}{3} R_0^3 \boldsymbol{P} = \frac{\varepsilon - \varepsilon_0}{\varepsilon + 2\varepsilon_0} 4\pi \varepsilon_0 R_0^3 \boldsymbol{E}_0$$
 (3. 23)

(3.21)式 φ_1 中的第二项正是这个电偶极矩所产生的电势

$$\frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \mathbf{R}}{R^3} = \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} \frac{E_0 R_0^3}{R^2} \cos \theta \tag{3.24}$$

例 3 半径为 R_0 的接地导体球置于均匀外电场 E_0 中,求电势和导体上的电荷面密度.

解 用导体表面边界条件(1.11a)和(1.12a),照上例方法可解出导体球外电势为

$$\varphi = -E_0 R \cos \theta + \frac{E_0 R_0^3}{R^2} \cos \theta \tag{3.25}$$

导体面上自由电荷面密度为

$$\sigma = -\epsilon_0 \frac{\partial \varphi}{\partial R}\Big|_{R=R_0} = 3\epsilon_0 E_0 \cos \theta \tag{3.26}$$

读者可自行推导并讨论所得结果.

静电学某些应用和以上两例有关.例如静电选矿就是利用非均匀电场对介质颗粒的吸引力来分选矿粒的.在非均匀电场中,若在颗粒体积之内电场变化

不大,则介质颗粒的偶极矩大致上由(3.23)式表示,其中 E。为颗粒所在处的外电场.颗粒极化后受到非均匀电场的吸引力,吸引力的大小依赖于 ϵ ,由此可以分选不同矿质的颗粒.

例 4 导体尖劈带电势 V,分析它的尖角附近的电场.

解 用柱坐标系.取 z 轴沿尖边.设尖劈以外的空间,即电场存在的空间为 $0 \le \phi \le 2\pi^{-\alpha}(\alpha)$ 为小角).因 φ 不依赖于 z ,柱坐标下的拉氏方程为

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\varphi}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2\varphi}{\partial\phi^2} = 0 \tag{3.27}$$

用分离变量法解此方程.设 φ 的特解为 $\varphi = R(r)\Omega(\phi), 则上式分解为两个方程$

$$r^{2} \frac{\mathrm{d}^{2} R}{\mathrm{d}r^{2}} + r \frac{\mathrm{d}R}{\mathrm{d}r} = \nu^{2} R$$
$$\frac{\mathrm{d}^{2} \widehat{\underline{\boldsymbol{U}}}}{\mathrm{d}r^{2}} + \nu^{2} \widehat{\underline{\boldsymbol{U}}} = 0$$

其中 ν 为某些正实数或 0. 把 φ 的特解叠加得 φ 的通解

$$\varphi = (A_0 + B_0 \ln r) (C_0 + D_0 \phi) + \sum_{\nu} (A_{\nu} r^{\nu} + B_{\nu} r^{-\nu}) (C_{\nu} \cos \nu \phi + D_{\nu} \sin \nu \phi)$$
 (3.28)

各待定常量和 ν 的可能值都由边界条件确定.

在尖劈 $\phi=0$ 面上, $\varphi=V$,与 r 无关,由此

$$A_0 C_0 = V$$
, $B_0 = 0$
 $C_{\nu} = 0$ $(\nu \neq 0)$

因 r→0 时 φ 有限,得

$$B_0 = B_0 = 0$$

在尖劈 $\phi=2\pi-\alpha$ 面上,有 $\varphi=V$,与 r 无关,必须

$$D_0 = 0$$

$$\sin\nu(2\pi-\alpha)=0$$

因此」的可能值为

$$\nu_n = \frac{n}{2 - \frac{\alpha}{\pi}} \quad (n = 1, 2, \dots)$$
 (3.29)

考虑这些条件, φ 可以重写为

$$\varphi = V + \sum A_n r^{\nu_n} \sin \nu_n \phi \tag{3.30}$$

为了确定待定常量 A_n ,还必须用某一大曲面包围着电场存在的区域,并给定这曲面上的边界条件.因此,本题所给的条件是不完全的,还不足以确定全空间的电场.但是,我们可以对尖角附近的电场作出一定的分析.

在尖角附近, $r \rightarrow 0$,(3.30)式的求和式的主要贡献来自r最低幂次项,即n • 52 •

=1项.因此,

$$\varphi \approx V + A_1 r^{\nu_1} \sin \nu_1 \phi \tag{3.31}$$

电场为

$$E_{r} = -\frac{\partial \varphi}{\partial r} \approx -\nu_{1} A_{1} r^{\nu_{1}-1} \sin \nu_{1} \phi$$

$$E_{\phi} = -\frac{1}{r} \frac{\partial \varphi}{\partial \phi} \approx -\nu_{1} A_{1} r^{\nu_{1}-1} \cos \nu_{1} \phi$$
(3.32)

尖劈两面上的自由电荷面密度为

$$\sigma = \varepsilon_0 E_n = \begin{cases} \varepsilon_0 E_{\phi} & (\phi = 0) \\ -\varepsilon_0 E_{\phi} & (\phi = 2\pi - \alpha) \end{cases}$$

$$\approx -\varepsilon_0 \nu_1 A_1 r^{\nu_1 - 1}$$
(3.33)

若 α 很小,有 $\nu_1 \approx \frac{1}{2}$,尖角附近的场强和电荷面密度都近似地正比于 $r^{-\frac{1}{2}}$. 由此可见,尖角附近可能存在很强的电场和电荷面密度. 相应的三维针尖问题就是 尖端放电现象.

§ 4 镜 像 法

上节研究了拉普拉斯方程的解法,它适用于所考虑的区域内没有自由电荷分布的情况. 若求解电场的区域内有自由电荷,我们必须解泊松方程. 一种重要的特殊情形是区域内只有一个或几个点电荷,区域边界是导体或介质界面. 现在介绍解这类问题的一种特殊方法.

设点电荷 Q 附近有一导体,在点电荷的电场作用下,导体面上出现感应电荷.我们希望求出导体外面空间中的电场,这电场包括点电荷 Q 所激发的电场和导体上感应电荷所激发的电场.我们设想,导体面上的感应电荷对空间中电场的影响能否用导体内部某个或某几个假想电荷来代替?注意我们在作这种代换时并没有改变空间中的电荷分布(在求解电场的区域,即导体外部空间中仍然是只有一个点电荷 Q),因而并不影响泊松方程,问题的关键在于能否满足边界条件.如果用这代换确实能够满足边界条件,则我们所设想的假想电荷就可以用来代替导体面上的感应电荷分布,从而问题的解可以简单地表示出来.下面举一些例子说明这方法的应用.

例1 接地无限大平面导体板附近有一点电荷 Q,求空间中的电场.

解 从物理上分析,在点电荷 Q 的电场作用下,导体板上出现感应电荷分布. 若 Q 为正的,则感应电荷为负的. 空间中的电场是由给定的点电荷 Q 以及导体面上的感应电荷共同激发的,而另一方面感应电荷分布又是在总电场作用下达到平衡的结果. 平衡的条件就是导体的静电条件,即导体表面为一等势面. 所

$$\varphi = 常数 (导体面上)$$

或者说,电场线必须与导体平板垂直.

怎样才能满足这一边界条件呢?我们设想,感应电荷对空间电场的作用能

否用一个假想电荷来代替?如图 2-6,设想在导体板下方与电荷 Q对称的位置上放一个假想电荷 Q',然后把导体板抽去.若 Q'=-Q.则假想电荷 Q'与给定电荷 Q 激发的总电场如图所示,由对称性容易看出,在原导体板平面上,电场线处处与它正交,因而边界条件得到满足.因此,导体板上的感应电荷确实可以用板下方一个假想电荷 Q'代替. Q'称为 Q的镜像电荷.

导体板上部空间的电场可以看作原电荷 Q 与镜像电荷 Q'=-Q 共同激发的电场. 以 r 表示 Q 到场点 P 的距离,r'表示镜像电荷 Q'到 P 的距离,P 点的电势为

$$\varphi(P) = \frac{1}{4\pi\epsilon_0} \left(\frac{Q}{r} - \frac{Q}{r'} \right) \tag{4.1a}$$

选 Q 到导体板上的投影点 O 作为坐标原点,设 Q 到导体板的距离为 a,有

$$\varphi(x,y,z) = \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{x^2 + y^2 + (z-a)^2}} - \frac{Q}{\sqrt{x^2 + y^2 + (z+a)^2}} \right]$$
(4.1b)

例 2 真空中有一半径为 R_0 的接地导体球,距球心为 $a(a>R_0)$ 处有一点电荷 Q,求空间各点的电势(图 2 - 7).

解 假设可以用球内一个假想点电荷 Q'来代替球面上感应电荷对空间电场的作用,由对称性,Q'应在 QQ 连线上,关键是能否选择 Q'的大小和位置使得

球面上 $\varphi=0$ 的条件得到满足?

考虑球面上任一点 P(图 2-7(a)). 边界条件要求

$$\frac{Q}{r} + \frac{Q'}{r'} = 0$$

式中r为Q到P的距离,r'为Q'到P的距离.因此对球面上任一点,应有

$$\frac{r'}{r} = -\frac{Q'}{Q} = 常数 \tag{4.2}$$

由图 2-7(a)看出,只要选 Q'的位置使 $\triangle OQ'P \triangle \triangle OPQ$,即

$$\frac{r'}{r} = \frac{R_0}{a} = \dagger$$

设 Q' 距球心为 b,两三角形相似的条件为 $\frac{b}{R_0} = \frac{R_0}{a}$,或

$$b = \frac{R_0^2}{a} \tag{4.4}$$

由(4,2)式和(4,3)式求出

$$Q' = -\frac{R_0}{a}Q\tag{4.5}$$

(4.4)式和(4.5)式确定假想电荷 Q'的位置和大小.

由 Q 和镜像电荷 Q' 激发的总电场能够满足在导体面上 $\varphi=0$ 的边界条件,因此是空间中电场的正确解答. 球外任一点 $P(\mathbb{R}\ 2-7(b))$ 的电势为

$$\varphi = \frac{1}{4\pi\epsilon_{0}} \left(\frac{Q}{r} - \frac{R_{0}Q}{ar'} \right)$$

$$= \frac{1}{4\pi\epsilon_{0}} \left(\frac{Q}{\sqrt{R^{2} + a^{2} - 2Ra \cos \theta}} - \frac{R_{0}Q/a}{\sqrt{R^{2} + b^{2} - 2Rb \cos \theta}} \right)$$
(4.6)

式中r为由Q到P点的距离,r'为由Q'到P点的距离,R为由球心O到P点的距离, θ 为OP与OQ的夹角.

简单讨论一下所得结果. 由高斯定理,收敛于球面上的电场强度通量为一 Q'/ε_0 ,因此,Q'等于球面上的总感应电荷,它是由于受电荷 Q的电场吸引而从接地处传至导体球上的. 由(4.5)式,|Q'| < Q,由 Q 发出的电场线只有一部分收敛于球面上,剩下的部分伸展至无穷远. 电场线如图 2-8 所示.

例 3 如上例,但导体球不接地而带 电荷 Q₀,求球外电势,并求电荷 Q 所受

图 2-8

的力.

解 这里给出的条件是导体上的总电荷.这条件包括

- (1) 球面为等势面(电势待定);
- (2) 从球面发出的总电场强度通量为 Q_0/ϵ_0 .

由上例可知,若在球外有电荷 Q 而在球内放置假想电荷 Q',其位置和大小如前,则球面上电势为零.若在球心处再放一个假想电荷 Q_0-Q' ,则导体球所带总电荷为 Q_0 ,同时球面仍为等势面,其电势为(Q_0-Q')/ $4\pi\epsilon_0$ R_0 . 因此,条件(1)和(2)都被满足,在图(2-7(b))中,球外任一点 P 的电势为

$$\varphi = \frac{1}{4\pi\epsilon_0} \left(\frac{Q}{r} - \frac{R_0 Q}{ar'} + \frac{Q_0 + R_0 Q/a}{R} \right) \tag{4.7}$$

因为空间中的电场相当于点电荷 Q、镜像电荷 Q'和球心处的电荷 $Q_0 - Q'$ 所激发的电场,因此电荷 Q 所受的力等于 Q'和球心处的电荷 $Q_0 - Q'$ 对它的作用力 P,即有

$$4\pi\varepsilon_{0}F = \frac{Q(Q_{0} - Q')}{a^{2}} + \frac{QQ'}{(a - b)^{2}} = \frac{QQ_{0}}{a^{2}} - \frac{Q^{2}R_{0}^{3}(2a^{2} - R_{0}^{2})}{a^{3}(a^{2} - R_{0}^{2})^{2}}$$

式中第二项是吸引力,而且当 $a \to R_0$ 时这项的数值大于第一项. 由此可见,即使 Q 与 Q_0 同号,只要 Q 距球面足够近,它就可能受到导体球的吸引力. 这是由于 感应作用,虽然整个导体的总电荷是正的,但在靠近 Q 的球面部分可能出现负电荷.

由上节和本节的例子看出边值关系和边界条件对于解电场问题的重要性. 概括起来,大致有以下几种类型的边界条件:

(1) 两绝缘介质界面上,边值关系为

$$\varphi_1 = \varphi_2 \tag{4.8}$$

$$\epsilon_1 \frac{\partial \varphi_1}{\partial n} = \epsilon_2 \frac{\partial \varphi_2}{\partial n} \tag{4.9}$$

应用这条件可以把界面两边的电势衔接起来.

(2) 给出导体上的电势,导体面上的边界条件为

$$\varphi = \varphi_0$$
 (给定常数) (4.10)

(3) 给出导体所带总电荷 Q,在导体面上的边界条件为

$$\varphi =$$
 常数 (待定) (4.11)

$$-\oint_{\varepsilon} \frac{\partial \varphi}{\partial n} dS = Q \tag{4.12}$$

应用上述边界条件可以唯一地解出静电场,用导体面上的另一边界条件

$$-\varepsilon \frac{\partial \varphi}{\partial n} = \sigma \tag{4.13}$$

可以得出导体面上的自由电荷面密度 σ.

§ 5 格 林 函 数

上节研究了一种特殊类型静电问题的解法. 这类问题是:空间某区域 V 内有一个点电荷,V 的边界上具有一定的边界条件(例如 φ =0),求出这点电荷激发的满足给定边界条件的电场,即解一个点电荷的特殊边值问题.

求解一个点电荷的边值问题在静电学中是有重要意义的. 因为这不仅意味着有关该点电荷的特殊问题得到解决,而且还意味着有更广的一类边值问题可以借此而得到解决.

本节研究较普遍的边值问题:给定 V 内电荷分布 ρ 和 V 的边界 S 上各点的电势 φ_S 或电场法向分量 $\frac{\partial \varphi}{\partial n}\Big|_S$,求 V 内各点电势值. 如果边界条件是给定 S 上的电势,这类边值问题称为第一类边值问题;如果给定 S 上的 $\frac{\partial \varphi}{\partial n}\Big|_S$,这类边值问题称为第二类边值问题.

本节研究这些边值问题是怎样借助于有关点电荷的较简单的边值问题而得到解决的.为此,我们先说明点电荷密度的数学表示,然后利用格林公式把一般边值问题和有关点电荷的相应问题联系起来.

1. 点电荷密度的 δ 函数表示

点电荷是电荷分布的极限情况,它可以看作一个体积很小而电荷密度很大的带电小球的极限. 若电荷分布于小体积 ΔV 内,当体积 $\Delta V \to 0$ 时,体积内的电荷密度 $\rho \to \infty$,而保持总电荷不变,所谓点电荷就是这种电荷分布. 处于原点上的单位点电荷的密度用函数 $\delta(x)$ 表示. δ 函数定义如下

$$\delta(\mathbf{x}) = 0$$
, 当 $\mathbf{x} \neq 0$
$$\int_{V} \delta(\mathbf{x}) \, dV = 1$$
, 若积分区域 V 包含 $\mathbf{x} = 0$ 点 (5.1)

由这定义可见,在 x=0 点上 $\delta(x)$ 必须为无穷大. 因此, $\delta(x)$ 不是通常意义上的函数,但是我们可以把它作为某些连续函数的极限来理解.图 2-9 示意地表示 δ 函数作为连续函数的极限.当宽度 $2a \rightarrow 0$,而保持曲线下的面积等于 1 时,这极限就可以看作 δ 函数. δ 函数在近代物理学中有着广泛的应用.数学上它是一种广义函数,可以用严格的数学方法处理.

处于x'点上的单位点电荷的密度用函数 $\delta(x)$

$$\rho(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{x}') \tag{5.2}$$

此式当 $x \neq x'$ 时其值为零,而对包括 x'点在内的区域积分值等于 1.

$$\delta(\mathbf{x} - \mathbf{x}') = 0, \quad \stackrel{\text{def}}{=} \mathbf{x} \neq \mathbf{x}'$$

$$\int_{V} \delta(\mathbf{x} - \mathbf{x}') d\mathbf{x} = 1, \quad \stackrel{\text{def}}{=} \mathbf{x}' \in V$$
(5.3)

 δ 函数有如下重要性质: 若 f(x) 为在原点附近的连续函数, V 包括原点在内, 有

$$\int_{V} f(\mathbf{x}) \delta(\mathbf{x}) \, \mathrm{d}V = f(0)$$

同样,若V包括x'点在内,而f(x)在x=x'点附近连续,有

$$\int_{V} f(\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}') d\mathbf{x} = f(\mathbf{x}')$$
(5.4)

上式可以由 δ 函数定义推出. 由于 $\delta(x-x')$ 仅在 x=x' 点上不为零,所以上式左 边的积分实际上仅需对包围 x' 点的任意小区域积分. 在该处 f(x) 的值为 f(x'),而 δ 函数积分值为 1,因此积分结果得出 f(x').

2. 格林函数

一个处于 x'点上的单位点电荷所激发的电势 $\phi(x)$ 满足泊松方程:

$$\nabla^2 \psi(\mathbf{x}) = -\frac{1}{\varepsilon_0} \delta(\mathbf{x} - \mathbf{x}') \tag{5.5}$$

设有包含 x'点的某空间区域 V,在 V 的边界 S 上有边界条件

$$\psi|_{S} = 0 \tag{5.6}$$

则(5.5)式的满足边界条件(5.6)式的解称为泊松方程在区域V的第一类边值问题的格林(Green)函数. 若在S上有另一边界条件

$$\frac{\partial \psi}{\partial n}\Big|_{S} = -\frac{1}{\epsilon_0 S} \tag{5.7}$$

则(5.5)式的满足边界条件(5.7)式的解称为泊松方程在区域V的第二类边值问题的格林函数.

格林函数一般用 G(x,x')表示,其中 x'代表源点,即点电荷所在点,x 代表 场点. 在(5.5)式中把 $\phi(x)$ 写为 G(x,x'),得格林函数所满足的微分方程:

$$\nabla^2 G(\mathbf{x}, \mathbf{x}') = -\frac{1}{\varepsilon_0} \delta(\mathbf{x} - \mathbf{x}')$$
 (5.8)

这方程中的∇² 算符是对 x 点的微分算符.

上节中我们实际上已求出一些区域的格林函数. 现列举几种区域的格林函数为例.

(1) 无界空间的格林函数.

在 x'点上一个单位点电荷在无界空间中激发的电势为

$$\varphi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0 r} = \frac{1}{4\pi\epsilon_0 \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$

式中r为源点x'到场点x的距离.因此,无界空间的格林函数为

$$G(x,x') = \frac{1}{4\pi\epsilon_0} \frac{1}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}}$$
 (5.9)

现在我们证明此式满足格林函数方程(5.8)式. 为计算方便, 选电荷所在点 \mathbf{x}' 为 坐标原点, 即 $\mathbf{x}'=0$. 在球坐标中, $G(\mathbf{x},0)=\frac{1}{4\pi\varepsilon_0 r}$, 由直接计算得

$$\nabla^2 \frac{1}{r} = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial}{\partial r} \left(\frac{1}{r} \right) \right] = 0, \quad \stackrel{\text{def}}{=} r \neq 0$$

在 r=0 点, $\frac{1}{r}$ 奇异,上式不成立. 因此, $\nabla^2 \frac{1}{r}$ 是这样一个函数,它在 $r\neq 0$ 处的值为 零,只有在 r=0 点上可能不等于零. 为了进一步确定这一函数,我们采用极限方法.

$$\int_{V} \nabla^{2} \frac{1}{r} dV = \lim_{a \to 0} \int \nabla^{2} \frac{1}{(r^{2} + a^{2})^{1/2}} dV$$
$$= \lim_{a \to 0} \int d\Omega \int_{0}^{\infty} \frac{-3a^{2} r^{2} dr}{(r^{2} + a^{2})^{5/2}}$$

作积分变数变换 $r=a\rho$,可见上式的极限存在:

$$\int_{V} \nabla^{2} \frac{1}{r} dV = -12\pi \int_{0}^{\infty} \frac{\rho^{2} d\rho}{(\rho^{2} + 1)^{5/2}} = -4\pi \frac{\rho^{3}}{(\rho^{2} + 1)^{3/2}} \Big|_{0}^{\infty}$$

$$= -4\pi$$

因此我们证明了

$$\nabla^2 \frac{1}{r} = -4\pi\delta(\mathbf{x})$$

一般情形下,若源点为x',r为x'到x的距离,有

$$\nabla^2 \frac{1}{r} = -4\pi\delta(\mathbf{x} - \mathbf{x}') \tag{5.10}$$

因此证明了(5.9)式为无界空间的格林函数.

(2) 上半空间的格林函数.

当 Q=1 时,由上节(4.1)式可得上半空间第一类边值问题的格林函数.以导体平面上任一点为坐标原点,设点电荷 Q 所在点的坐标为(x',y',z'),场点坐标为(x,y,z),则(4.1)式中的 r 为由 x'点到 x 点的距离,r'为由镜像点(x',y',-z')到场点的距离.上半空间格林函数为

$$G(x,x') = \frac{1}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}} - \frac{1}{\sqrt{(x-x')^2 + (y-y')^2 + (z+z')^2}} \right]$$
(5.11)

(3) 球外空间的格林函数.

当 Q=1 时由(4.6)式可得球外空间的格林函数. 如图 2-10,以球心 O 为坐标原点. 设电荷所在点 P' 的坐标为(z',y',z'),场点 P 的坐标为(x,y,z). 令

$$R = \sqrt{x^2 + y^2 + z^2},$$

$$R' = \sqrt{x'^2 + y'^2 + z'^2}$$

则上节例 2 中 a 对应于 R', b 对应于 R_0^2 , R', 镜像电荷所在点的坐标为 $\frac{b}{a}x' = \frac{R_0^2}{R'^2}x'$.

图 2 - 10

$$r = |\mathbf{x} - \mathbf{x}'| = \sqrt{R^2 + R'^2 - 2RR' \cos \alpha}$$

$$r' = \left| \mathbf{x} - \left(\frac{R_0}{R'}\right)^2 \mathbf{x}' \right| = \frac{1}{R'} \sqrt{R^2 R'^2 + R_0^4 - 2R_0^2 RR' \cos \alpha}$$

式中 α 为x与x'的夹角. 若P点的球坐标为 (R,θ,ϕ) , P'点的球坐标为 (R',θ',ϕ') , 有 $\cos\alpha = \cos\theta\cos\theta' + \sin\theta\sin\theta'\cos(\phi - \phi')$. 把(4.6)式作以上代换得球外空间格林函数为

$$G(x, x') = \frac{1}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{R^2 + R'^2 - 2RR' \cos \alpha}} - \frac{1}{\sqrt{\left(\frac{RR'}{R_0}\right)^2 + R_0^2 - 2RR' \cos \alpha}} \right]$$
(5.12)

3. 格林公式和边值问题的解

现在阐明如何从格林函数获得一般边值问题的解. 先考虑第一类边值问题. 设 V 内有电荷分布 ρ , 边界 S 上给定电势 $\varphi(s)$,求 V 内的电势 $\varphi(x)$.

相应的格林函数问题是:V 内在 \mathbf{x}' 点上有一点电荷,边界 S 上给定电势 = 0,则 V 内电势的解为 $\psi(\mathbf{x}) = G(\mathbf{x}, \mathbf{x}')$.

用格林公式可以把这两问题的解联系起来. 设区域 V 内有两个函数 $\varphi(x)$ 和 $\psi(x)$,有格林公式

$$\int_{V} (\psi \nabla^{2} \varphi - \varphi \nabla^{2} \psi) dV = \oint_{S} \left(\psi \frac{\partial \varphi}{\partial n} - \varphi \frac{\partial \psi}{\partial n} \right) dS$$
 (5. 13)

格林公式证明如下:由

$$abla ullet (\psi
abla arphi) =
abla \psi ullet
abla arphi + \psi
abla^2 arphi$$

减去 ϕ 和 φ 互换位置的相应公式得

$$\psi \nabla^2 \varphi - \varphi \nabla^2 \psi = \nabla \cdot (\psi \nabla \varphi - \varphi \nabla \psi)$$

因此(5.13)式左边是一个散度的体积分,它可化为面积分

$$\int_{V} (\boldsymbol{\psi} \nabla^{2} \varphi - \varphi \nabla \psi^{2}) \, \mathrm{d}V = \oint_{S} (\boldsymbol{\psi} \nabla \varphi - \varphi \nabla \psi) \cdot \mathrm{d}S$$

格林公式得证.

格林公式对两任意函数 φ 和 ϕ 适用. 现在我们取 φ 满足泊松方程:

$$\nabla^2 \varphi = -\frac{1}{\varepsilon_0} \rho \tag{5.14}$$

取 ϕ 为格林函数G(x,x'),它满足方程(5.8),为方便起见,我们把格林公式中的积分变量x改为x',G中的x与x'互换,得

$$\int_{V} \left[G(\mathbf{x}', \mathbf{x}) \nabla^{\prime 2} \varphi(\mathbf{x}') - \varphi(\mathbf{x}') \nabla^{\prime 2} G(\mathbf{x}', \mathbf{x}) \right] dV'$$

$$= \oint_{S} \left[G(\mathbf{x}', \mathbf{x}) \frac{\partial \varphi(\mathbf{x}')}{\partial n'} - \varphi(\mathbf{x}') \frac{\partial}{\partial n'} G(\mathbf{x}', \mathbf{x}) \right] dS' \tag{5.15}$$

由(5.8)式和(5.4)式,上式左边第二项为

$$\frac{1}{\varepsilon_0} \int \varphi(\mathbf{x}') \delta(\mathbf{x}' - \mathbf{x}) \, \mathrm{d}V' = \frac{1}{\varepsilon_0} \varphi(\mathbf{x})$$

(5.15)式左边第一项用(5.14)式代入,即得

$$\varphi(\mathbf{x}) = \int_{V} G(\mathbf{x}', \mathbf{x}) \rho(\mathbf{x}') \, dV' + \varepsilon_{0} \oint_{S} \left[G(\mathbf{x}', \mathbf{x}) \frac{\partial \varphi}{\partial n'} - \varphi(\mathbf{x}') \frac{\partial}{\partial n'} G(\mathbf{x}', \mathbf{x}) \right] dS'$$
(5. 16)

在第一类边值问题中,格林函数满足边界条件

$$G(\mathbf{x}',\mathbf{x}) = 0, \quad \stackrel{\cdot}{=} \mathbf{x}' \stackrel{\cdot}{=} \mathbf{S} \stackrel{\cdot}{\perp} \tag{5.17}$$

由(5.16)式得第一类边值问题的解:

$$\varphi(\mathbf{x}) = \int_{V} G(\mathbf{x}', \mathbf{x}) \rho(\mathbf{x}') dV'$$

$$- \varepsilon_{0} \oint_{\varepsilon} \varphi(\mathbf{x}') \frac{\partial}{\partial \mathbf{n}'} G(\mathbf{x}', \mathbf{x}) dS'$$
(5. 18)

由这公式,只要知道格林函数 G(x',x),在给定边界上的 $\varphi|_s$ 值情形下就可算出区域内的 $\varphi(x)$,因而第一类边值问题完全解决.

对第二类边值问题,由于 G(x',x)是 x 点上单位点电荷所产生的电势,其电场强度通量在边界面 S 上应等于 $\frac{1}{s}$,即

$$-\oint_{S} \frac{\partial G(\mathbf{x}', \mathbf{x})}{\partial n'} dS' = \frac{1}{\varepsilon_{0}}$$

满足上式的最简单的边界条件是(5.7)式,即

$$\frac{\partial G(\mathbf{x}', \mathbf{x})}{\partial n'} \bigg|_{\mathbf{x}' \in S} = -\frac{1}{\varepsilon_0 S} \tag{5.19}$$

其中 S 是界面的总面积. 由(5.16)式得第二类边值问题的解:

$$\varphi(\mathbf{x}) = \int_{V} G(\mathbf{x}', \mathbf{x}) \rho(\mathbf{x}') dV'$$

$$+ \varepsilon_{0} \oint_{S} G(\mathbf{x}', \mathbf{x}) \frac{\partial \varphi(\mathbf{x}')}{\partial n'} dS' + \langle \varphi \rangle_{S} \qquad (5.20)$$

其中 $\langle \varphi \rangle_s$ 是电势在界面 S 上的平均值.

由(5.18)式和(5.20)式可见,只要求出区域V内的格林函数,则一般边值问题就得到解决.但是,求格林函数本身一般不是容易的,只有当区域具有简单几何形状时才能得出解析的解.上节介绍的镜像法就是解格林函数的一种方法.

格林函数法也可以用来解拉普拉斯方程的边值问题. 当 ρ =0 时,(5.18)式和(5.20)式就是拉普拉斯方程的相应边值问题的解.

例 在无穷大导体平面上有半径为 a 的圆,圆内和圆外用极狭窄的绝缘环绝缘.设圆内电势为 V_0 ,导体板其余部分电势为 0,求上半空间的电势.

解 以圆心为柱坐标系原点,z 轴与平板垂直,R 为空间点到 z 轴的距离. x 点的直角坐标为 $(R\cos\phi,R\sin\phi,z)$,x'点的直角坐标为 $(R'\cos\phi',R'\sin\phi',z')$,上半空间格林函数 (5.11) 式用柱坐标表出为

$$G(x,x') = \frac{1}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{R^2 + z^2 + R'^2 + z'^2 - 2zz' - 2RR'\cos(\phi - \phi')}} - \frac{1}{\sqrt{R^2 + z^2 + R'^2 + z'^2 + 2zz' - 2RR'\cos(\phi - \phi')}} \right]$$
(5. 21)

因为在上半空间 ρ =0,因此这问题是拉普拉斯方程第一类边值问题.由(5.18)式,上半空间的电势为

$$\varphi(\mathbf{x}) = -\varepsilon_0 \oint_{S} \varphi(\mathbf{x}') \frac{\partial}{\partial n'} G(\mathbf{x}', \mathbf{x}) \, \mathrm{d}S'$$
 (5. 22)

积分面 $S \neq z' = 0$ 的无穷大平面. 法线沿一z'方向. 先计算格林函数的法向导数:

$$-\frac{\partial G}{\partial n'} = \frac{\partial G}{\partial z'}\Big|_{z'=0} = \frac{1}{2\pi\epsilon_0} \frac{z}{\lceil R^2 + z^2 + R'^2 - 2RR'\cos(\phi - \phi')\rceil^{3/2}}$$
(5. 23)

由于 S 上只有圆内部分电势不为零,因此(5.22)式中的积分只需对 $r \leq a$ 积分.

$$\begin{split} &-\varepsilon_0 \int \frac{\partial G}{\partial n'} \varphi(\mathbf{x'}) \, \mathrm{d}S' \\ &= \frac{V_0}{2\pi} \int_0^a R' \, \mathrm{d}R' \int_0^{2\pi} \mathrm{d}\phi' \, \frac{z}{\left[R^2 + z^2 + R'^2 - 2RR' \, \cos(\phi - \phi')\right]^{3/2}} \\ &= \frac{V_0 z}{2\pi} \int_0^a R' \, \mathrm{d}R' \int_0^{2\pi} \mathrm{d}\phi' \, \frac{1}{\left(R^2 + z^2\right)^{3/2}} \left[1 + \frac{R'^2 - 2RR' \, \cos(\phi - \phi')}{R^2 + z^2}\right]^{-3/2} \end{split}$$

当 $R^2 + z^2 \gg a^2$ 时,可以把被积函数展开,得

$$\varphi(\mathbf{x}) = \frac{V_0 z}{2\pi (R^2 + z^2)^{3/2}} \int_0^a R' dR'$$

$$\begin{split} & \cdot \int_{0}^{2\pi} \mathrm{d}\phi' \Big[1 - \frac{3}{2} \, \frac{R'^2 - 2RR'\cos(\phi - \phi')}{R^2 + z^2} \\ & + \frac{15}{8} \, \frac{\left[R'^2 - 2RR'\cos(\phi - \phi') \right]^2}{(R^2 + z^2)^2} + \cdots \Big] \\ & = \frac{V_0 \, a^2}{2} \, \frac{z}{(R^2 + z^2)^{3/2}} \Big[1 - \frac{3}{4} \, \frac{a^2}{R^2 + z^2} + \frac{15R^2 \, a^2}{8(R^2 + z^2)^2} + \cdots \Big] \end{split}$$

§ 6 电 多 极 矩

1. 电势的多极展开

在§1中我们导出了真空中给定电荷密度 $\rho(x')$ 激发的电势

$$\varphi(\mathbf{x}) = \int_{V} \frac{\rho(\mathbf{x}') dV'}{4\pi\varepsilon_{0} r}$$
 (6.1)

式中体积分遍及电荷分布区域,r 为场点 x 与源点 x' 的距离.

在许多物理问题中,电荷只分布于一个小区域内,而需要求电场强度的地点 x 又距离电荷分布区域比较远,即在(6.1)式中,r 远大于区域 V 的线度 l. 在这种情况下,可以把(6.1)式表为 l/r 的展开式,由此得出电势 φ 的各级近似值. 例如原子核的电荷分布于 $\sim 10^{-13}$ cm 线度的范围内,而原子内电子到原子核的距离 $\sim 10^{-8}$ cm,因此原子核作用到电子上的电场可以用本节方法求得各级近似值.

在区域V内取一点O作为坐标原点,以R表示由原点到场点P的距离,有

$$R = \sqrt{x^2 + y^2 + z^2}$$

$$r = |\mathbf{x} - \mathbf{x}'| = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$

x'点在区域 V 内变动. 由于区域线度远小于 R,可以把 x'各分量看作小参量,把 x-x'的函数对 x'展开. 设 f(x-x')为 x-x'的任一函数,在 x'=0 点附近 f(x-x')的展开式为

$$f(\mathbf{x} - \mathbf{x}') = f(\mathbf{x}) - \sum_{i=1}^{3} x'_{i} \frac{\partial}{\partial x_{i}} f(\mathbf{x}) + \frac{1}{2!} \sum_{i,j} x'_{i} x'_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\mathbf{x}) + \cdots$$
$$= f(\mathbf{x}) - \mathbf{x}' \cdot \nabla f(\mathbf{x}) + \frac{1}{2!} (\mathbf{x}' \cdot \nabla)^{2} f(\mathbf{x}) + \cdots$$

取
$$f(\mathbf{x} - \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{r}$$
,有
$$\frac{1}{r} = \frac{1}{R} - \mathbf{x}' \cdot \nabla \frac{1}{R} + \frac{1}{2!} \sum_{i,i} x_i' x_j' \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} + \cdots$$
(6.2)

把展开式(6.2)代入(6.1)式中得

$$\varphi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \int_{V} \rho(\mathbf{x}') \left[\frac{1}{R} - \mathbf{x}' \cdot \nabla \frac{1}{R} + \frac{1}{2!} \sum_{i,j} x_i' x_j' \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} + \cdots \right] dV'$$
(6.3)

$$Q = \int_{V} \rho(\mathbf{x}') \, \mathrm{d}V' \tag{6.4}$$

$$\mathbf{p} = \int_{V} \rho(\mathbf{x}') \mathbf{x}' \, \mathrm{d}V' \tag{6.5}$$

$$\mathcal{D}_{ij} = \int_{V} 3x_i' x_j' \rho(\mathbf{x}') \, dV'$$
 (6.6)

(6.3)式可写为

$$\varphi(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \left(\frac{Q}{R} - \mathbf{p} \cdot \nabla \frac{1}{R} + \frac{1}{6} \sum_{i,j} \mathcal{D}_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} + \cdots \right)$$
(6.7)

上式是电荷体系激发的势在远处的多极展开式. p 称为体系的电偶极矩,张量 \mathfrak{D}_{ii} 称为体系的电四极矩.电四极矩也可以用并矢形式(附录 I. 6)写为

$$\widehat{\mathcal{D}} = \int_{V} 3\mathbf{x}' \mathbf{x}' \rho(\mathbf{x}') \, \mathrm{d}V' \tag{6.6a}$$

而展开式(6.7)的第三项用并矢形式写为

$$\varphi^{(2)} = \frac{1}{4\pi\epsilon_0} \frac{1}{6} \stackrel{\frown}{\mathfrak{D}} : \nabla \nabla \frac{1}{R}$$

2. 电多极矩

现在我们讨论展开式(6.7)各项的物理意义,展开式的第一项

$$\varphi^{(0)} = \frac{Q}{4\pi\varepsilon_0 R} \tag{6.8}$$

是在原点的点电荷 Q 激发的电势. 因此作为第一级近似,可以把电荷体系看作集中于原点上,它激发的电势就是(6.8)式.

展开式的第二项

$$\varphi^{(1)} = -\frac{1}{4\pi\varepsilon_0} \mathbf{p} \cdot \nabla \frac{1}{R} = \frac{\mathbf{p} \cdot \mathbf{R}}{4\pi\varepsilon_0 R^3}$$
 (6.9)

是电偶极矩 p 产生的电势. 电荷分布的电偶极矩 p 由(6.5)式定义.

如果一个体系的电荷分布对原点对称,它的电偶极矩为零. 因为由(6.5)式,若x'点和-x'点有相同的电荷密度,则积分值为零. 因此,只有对原点不对称的电荷分布才有电偶极矩. 总电荷为零而电偶极矩不为零的最简单的电荷体系是一对正负点电荷. 设x'点上有一点电荷+Q,-x'点上有一点电荷-Q,由(6.5)式,这体系的电偶极矩为

$$\mathbf{p} = 2\mathbf{Q}\mathbf{x}' = \mathbf{Q}\mathbf{l} \tag{6.10}$$

1 为由负电荷到正电荷的矢径.

图 2-11 所示为具有偶极矩 $p_a=Ql$ 的电偶极子,它产生的电势为

$$arphi = rac{Q}{4\pi arepsilon_0} \Big(rac{1}{r_+} - rac{1}{r_-}\Big)$$

图 2-11

由图可知,若l << R,有

$$r_{+} \approx R - \frac{l}{2} \cos \theta, \quad r_{-} \approx R + \frac{l}{2} \cos \theta$$

$$\frac{1}{r_{+}} - \frac{1}{r_{-}} \approx \frac{1}{R^{2}} l \cos \theta = \frac{lz}{R^{3}} = -l \frac{\partial}{\partial z} \left(\frac{1}{R}\right)$$
(6.11)

因此这电偶极子产生的电势是

$$\varphi \approx -\frac{Ql}{4\pi\epsilon_0} \frac{\partial}{\partial z} \frac{1}{R} = -\frac{1}{4\pi\epsilon_0} p_z \frac{\partial}{\partial z} \frac{1}{R}$$
 (6.12)

与(6.9)式相符.

展开式(6.7)的第三项

$$\varphi^{(2)} = \frac{1}{4\pi\epsilon_0} \frac{1}{6} \sum_{i,i} \mathcal{D}_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R}$$
 (6.13)

是电四极矩 \mathcal{Q}_{ij} 产生的电势. 电荷体系的四极矩 \mathcal{Q}_{ij} 由 (6.6)式定义. 根据此式,电四极矩张量 \mathcal{Q}_{ij} 是对称张量,它有 6 个分量 \mathcal{Q}_{11} , \mathcal{Q}_{22} , \mathcal{Q}_{33} , $\mathcal{Q}_{12} = \mathcal{Q}_{21}$, $\mathcal{Q}_{23} = \mathcal{Q}_{32}$, $\mathcal{Q}_{31} = \mathcal{Q}_{13}$ (下面将看出实际上只有 5 个独立分量). 现在我们来讨论这些分量的物理意义.

图 2-12 示出 z 轴上一对正电荷和一对负电荷组成的体系. 这体系可以看作由一对电偶极子+p 和一p 组成. 设正电荷位于 $z=\pm b$, 负电荷位于 $z=\pm a$. 这体系的总电荷为零, 总电偶极矩为零, 它的电四极矩由(6.6)式算出:

$$\mathcal{D}_{33} = 6Q(b^2 - a^2)$$
$$= 6Q(b - a)(b + a)$$
$$= 6pl$$

其中 p=Q(b-a)是其中一对电荷的电偶极矩,l=b+a 是两个电偶极子中心的距离. 这电荷体系产生的电势是一对反向电偶极子所产生的电势. 由图 2-12 和 (6.12)式得

图 2-12

$$\begin{split} \varphi \approx & -\frac{1}{4\pi\epsilon_0} p \frac{\partial}{\partial z} \frac{1}{r_+} + \frac{1}{4\pi\epsilon_0} p \frac{\partial}{\partial z} \frac{1}{r_-} \\ = & -\frac{1}{4\pi\epsilon_0} p \frac{\partial}{\partial z} \left(\frac{1}{r_+} - \frac{1}{r_-} \right) \approx \frac{1}{4\pi\epsilon_0} p l \frac{\partial^2}{\partial z^2} \frac{1}{R} \\ = & \frac{1}{4\pi\epsilon_0} \frac{1}{6} \mathcal{D}_{33} \frac{\partial^2}{\partial z^2} \frac{1}{R} \end{split}$$

与(6.13)式相符.

同理,具有 \mathcal{D}_{11} 分量的最简单的电荷体系由 x 轴上两对正负电荷组成,具有 \mathcal{D}_{22} 分量的体系由 y 轴上两对正负电荷组成. 具有 \mathcal{D}_{12} 分量的电荷体系由 xy 平面上两对正负电荷组成,余类推. 这些电荷体系如图 2-13 所示.

图 2-13

下面我们证明电四极矩只有 5 个独立分量. 当 $R \neq 0$ 时有

$$\nabla^2 \frac{1}{R} = 0 \tag{6.14}$$

引入符号δij,定义为

$$\delta_{ij} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$
 (6.15)

则(6.14)式可写为

$$\sum_{i,j} \delta_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} = 0$$
 (6.16)

展开式(6.3)的第三项可以写为

$$\frac{1}{4\pi\epsilon_0} \frac{1}{6} \left[\int_V (3x_i' x_j' - r'^2 \delta_{ij}) \rho(\mathbf{x}') \, dV' \right] \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R}$$
 (6.17)

我们重新定义电四极矩张量

$$\mathcal{D}_{ij} = \int_{V} (3x_i'x_j' - r'^2 \delta_{ij}) \rho(\mathbf{x}') dV'$$
(6.18)

则势展开式的第三项仍可写为

$$\frac{1}{4\pi\epsilon_0} \frac{1}{6} \sum_{i,j} \mathcal{D}_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R}$$

(6.18)式定义的电四极矩张量满足关系

$$\mathcal{D}_{11} + \mathcal{D}_{22} + \mathcal{D}_{33} = 0 \tag{6.19}$$

因而只有5个独立分量.以后我们将沿用定义(6.18)式,此式用并矢形式写为

$$\widehat{\mathcal{D}} = \int_{V} (3\mathbf{x}'\mathbf{x}' - r'^{2} \widehat{\mathcal{J}}) \rho(\mathbf{x}') \, dV'$$
 (6. 20)

其中 🖁 为单位张量.

若电荷分布有球对称性,则

$$\int_{V} x'^{2} \rho(\mathbf{x}') \, dV' = \int_{V} y'^{2} \rho(\mathbf{x}') \, dV' = \int_{V} z'^{2} \rho(\mathbf{x}') \, dV'$$
$$= \frac{1}{3} \int_{V} r'^{2} \rho(\mathbf{x}') \, dV'$$

因而 $\mathcal{Q}_{11} = \mathcal{Q}_{22} = \mathcal{Q}_{33} = 0$,而且显然有 $\mathcal{Q}_{12} = \mathcal{Q}_{23} = \mathcal{Q}_{31} = 0$,因此球对称电荷分布没有电四极矩. 事实上这结果是更普遍的. 球对称电荷分布的电场也是球对称的,由高斯定理可知,球外电场和集中于球心处的点电荷电场一致,因此球对称电荷分布没有各级电多极矩. 反之,若电荷分布偏离球对称性,一般就会出现电四极矩. 例如沿 z 轴方向拉长了的旋转椭球体,若其内电荷分布均匀,则

$$\int_{V} 3z'^{2} \rho(\mathbf{x}') \, \mathrm{d}V' > \int_{V} r'^{2} \rho(\mathbf{x}') \, \mathrm{d}V'$$

因而出现电四极矩

$$\mathcal{D}_{33} > 0$$
, $\mathcal{D}_{11} = \mathcal{D}_{22} = -\frac{1}{2}\mathcal{D}_{33} < 0$

电四极矩的出现标志着电荷分布对球对称的偏离,因此我们测量远场的四极势项,就可以对电荷分布形状作出一定的推论.在原子核物理中,电四极矩是重要的物理量,它反映着原子核形变的大小.

八极矩和更高级的多极矩实际上较少用到,这里不详细讨论.

例 均匀带电的长形旋转椭球体半长轴为 a,半短轴为 b,带总电荷 Q,求它的电四极矩和远处的电势.

解 取 z 轴为旋转轴,椭球方程为

$$\frac{x^2+y^2}{b^2}+\frac{z^2}{a^2}\leqslant 1$$

椭球所带电荷密度为

$$\rho_0 = \frac{3Q}{4\pi ab^2}$$

由(6,18)式,电四极矩为

$$\mathcal{D}_{ij} = \rho_0 \int (3x_i x_j - r^2 \delta_{ij}) \, \mathrm{d}V$$

由对称性

$$\int xy\,\mathrm{d}V = \int yz\,\mathrm{d}V = \int zx\,\mathrm{d}V = 0$$

因此

$$\mathcal{D}_{12} = \mathcal{D}_{23} = \mathcal{D}_{31} = 0$$

$$\int x^2 dV = \int y^2 dV = \frac{1}{2} \int s^2 dV$$

$$= \frac{1}{2} \int_{-a}^a dz \int_0^b \left(1 - \frac{z^2}{a^2}\right)^{\frac{1}{2}} ds \cdot 2\pi s^3$$

$$= \frac{4\pi ab^4}{15}$$

$$\int z^2 dV = \frac{4\pi a^3 b^2}{15}$$

因此

电四极矩产生的势为

$$\begin{split} &\frac{1}{24\pi\epsilon_0} \Big(\mathcal{D}_{11} \, \frac{\partial^2}{\partial x^2} + \mathcal{D}_{22} \, \frac{\partial^2}{\partial y^2} + \mathcal{D}_{33} \, \frac{\partial^2}{\partial z^2} \Big) \frac{1}{R} \\ = &\frac{1}{24\pi\epsilon_0} \mathcal{D}_{33} \Big[-\frac{1}{2} \Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \Big) + \frac{\partial^2}{\partial z^2} \Big] \frac{1}{R} \\ = &\frac{1}{24\pi\epsilon_0} \, \frac{3}{2} \mathcal{D}_{33} \, \frac{\partial^2}{\partial z^2} \, \frac{1}{R} = \frac{Q}{40\pi\epsilon_0} (a^2 - b^2) \, \frac{3z^2 - R^2}{R^5} \end{split}$$

在上面的计算中,我们用了关系式 $\nabla^2 \frac{1}{R} = 0$.

椭球的电偶极矩为零,总电荷为 Q. 在远处的势准确至四极项为

$$\varphi = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{R} + \frac{a^2 - b^2}{10} \frac{3 \cos^2 \theta - 1}{R^3} \right)$$

3. 电荷体系在外电场中的能量

设外电场电势为 φ_e ,具有电荷分布 $\rho(x)$ 的体系在外电场中的能量为

$$W = \int \rho \varphi_{e} dV \tag{6.21}$$

设电荷分布于小区域内,取区域内适当点为坐标原点,把 $\varphi_{e}(x)$ 对原点展开:

$$\varphi_{e}(\mathbf{x}) = \varphi_{e}(0) + \sum_{i=1}^{3} x_{i} \frac{\partial}{\partial x_{i}} \varphi_{e}(0)$$

$$+ \frac{1}{2!} \sum_{i,j=1}^{3} x_{i} x_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \varphi_{e}(0) + \cdots$$
(6. 22)

代入(6.21)式中得

$$W = \int \rho(\mathbf{x}) \left[\varphi_{e}(0) + \sum_{i} x_{i} \frac{\partial}{\partial x_{i}} \varphi_{e}(0) + \frac{1}{2!} \sum_{i,j} x_{i} x_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \varphi_{e}(0) + \cdots \right] dV$$

$$= Q \varphi_{e}(0) + \sum_{i} p_{i} \frac{\partial}{\partial x_{i}} \varphi_{e}(0) + \frac{1}{6} \sum_{i,j} \mathcal{D}_{ij} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \varphi_{e}(0) + \cdots$$

$$= Q \varphi_{e}(0) + \mathbf{p} \cdot \nabla \varphi_{e}(0) + \frac{1}{6} \widehat{\mathcal{D}} : \nabla \nabla \varphi_{e}(0) + \cdots$$

$$(6.23)$$

式中 Q, p 和 $\widehat{\mathcal{D}}$ 的定义如前面(6.4),(6.5)和(6.20)式. 上式是小区域内电荷体系在外电场中的能量展开式.

展开式的第一项

$$W^{(0)} = Q_{\alpha_0}(0) \tag{6.24}$$

是设想体系的电荷集中于原点上时在外场中的能量,展开式的第二项

$$W^{(1)} = \mathbf{p} \cdot \nabla \varphi_e(0) = -\mathbf{p} \cdot \mathbf{E}_e(0) \tag{6.25}$$

是体系的电偶极矩在外电场中的能量,由此式可求出电偶极子在外电场中所受

的力 F 和力矩 L:

$$\mathbf{F} = -\nabla W^{(1)} = \nabla (\mathbf{p} \cdot \mathbf{E}_{e}) = \mathbf{p} \cdot \nabla \mathbf{E}_{e}$$
 (6. 26)

(见附录 I.23 式). 设 p 与 E 的夹角为 θ ,则力矩为

$$L_{\theta} = -\frac{\partial W^{(1)}}{\partial \theta} = \frac{\partial}{\partial \theta} (pE_{e} \cos \theta) = -pE_{e} \sin \theta$$

计及力矩的方向,得

$$L = \mathbf{p} \times \mathbf{E}_{e} \tag{6.27}$$

展开式(6.23)的第三项是四极子在外电场中的能量

$$W^{(2)} = -\frac{1}{6} \stackrel{\frown}{\Im} : \nabla E_{e}$$
 (6. 28)

由此式可见,只有在非均匀场中四极子的能量才不为零.例如在分子或晶格中的原子核,它处于周围电子所产生的非均匀电场中,因而有不为零的四极矩能量. 在不同旋转状态下原子核的四极矩不同,能量亦不同.用微波技术可以测量出这种能量差别,由此得出原子核的电四极矩.

习 题

- 1. 一个半径为 R 的电介质球,极化强度为 $P=K\frac{r}{r^2}$,电容率为 ϵ .
- (1) 计算束缚电荷的体密度和面密度;
- (2) 计算自由电荷体密度;
- (3) 计算球外和球内的电势;
- (4) 求该带电介质球产生的静电场总能量.

答案.

(1)
$$\rho_{\rm P} = -K/r^2$$
, $\sigma_{\rm P} = K/R$

(2)
$$\rho_f = \varepsilon K/(\varepsilon - \varepsilon_0) r^2$$

(3)
$$\varphi_{N} = \frac{\varepsilon KR}{(\varepsilon - \varepsilon_{0}) \varepsilon_{0} r}, \quad \varphi_{N} = \frac{K}{\varepsilon - \varepsilon_{0}} \left(\ln \frac{R}{r} + \frac{\varepsilon}{\varepsilon_{0}} \right)$$

(4)
$$W = 2\pi \epsilon R \left(1 + \frac{\epsilon}{\epsilon_0}\right) \left(\frac{K}{\epsilon - \epsilon_0}\right)^2$$

- 2. 在均匀外电场中置入半径为 R₀ 的导体球,试用分离变数法求下列两种情况的电势:
- (1) 导体球上接有电池,使球与地保持电势差 Φ ;
- (2) 导体球上带总电荷 Q.

答案:

(1)
$$\varphi = -E_0 R \cos \theta + \varphi_0 + \frac{(\Phi_0 - \varphi_0) R_0}{R} + \frac{E_0 R_0^3}{R^2} \cos \theta \quad (R > R_0)$$

(2)
$$\varphi = -E_0 R \cos \theta + \varphi_0 + \frac{Q}{4\pi\epsilon_0 R} + \frac{E_0 R_0^3}{R^2} \cos \theta \quad (R > R_0)$$

其中 φ_0 为未置入导体球前坐标原点的电势.

3. 均匀介质球的中心置一点电荷 Q_i ,球的电容率为 ε ,球外为真空,试用分离变数法求空间电势,把结果与使用高斯定理所得结果比较.

提示:空间各点的电势是点电荷 Q_i 的电势 $Q_i/4\pi\epsilon R$ 与球面上的极化电荷所产生的电势的叠加,后者满足拉普拉斯方程.

4. 均匀介质球(电容率为 ε_1)的中心置一自由电偶极子 p_i ,球外充满了另一种介质(电容率为 ε_2),求空间各点的电势和极化电荷分布.

提示:同上题,
$$\varphi = \frac{\mathbf{p}_i \cdot \mathbf{R}}{4\pi\varepsilon_1 R^3} + \varphi'$$
,而 φ' 满足拉普拉斯方程.

答案:

$$\varphi = \begin{cases} \frac{3(\textbf{p}_{\text{f}} \cdot \textbf{R})}{4\pi(\epsilon_1 + 2\epsilon_2)R^3} & (R > R_0) \\ \frac{\textbf{p}_{\text{f}} \cdot \textbf{R}}{4\pi\epsilon_1 R^3} + \frac{2(\epsilon_1 - \epsilon_2)}{4\pi\epsilon_1(\epsilon_1 + 2\epsilon_2)R_0^3} (\textbf{p}_{\text{f}} \cdot \textbf{R}) & (R < R_0) \end{cases}$$
球心有极化偶极子 $\textbf{p} = \left(\frac{\epsilon_0}{\epsilon_1} - 1\right)\textbf{p}_{\text{f}}$

球面(
$$R = R_0$$
) 有极化面电荷 $\sigma_p = \frac{3(\epsilon_1 - \epsilon_2)\epsilon_0 p_f}{2\pi\epsilon_1(\epsilon_1 + 2\epsilon_2)R_0^3}\cos\theta$

5. 空心导体球壳的内外半径为 R_1 和 R_2 ,球中心置一偶极子 p,球壳上带电 Q,求空间各点电势和电荷分布.

答案:

$$\varphi = \begin{cases} \frac{Q}{4\pi\epsilon_0 R} & (R > R_2) \\ \frac{1}{4\pi\epsilon_0} \left[\frac{\boldsymbol{p} \cdot \boldsymbol{R}}{R^3} + \frac{Q}{R_2} - \frac{\boldsymbol{p} \cdot \boldsymbol{R}}{R_1^3} \right] & (R < R_1) \end{cases}$$

$$\sigma = \begin{cases} \frac{Q}{4\pi R_2^2} & (R = R_2) \\ -\frac{3p}{4\pi R_1^3} \cos \theta & (R = R_1) \end{cases}$$

- 6. 在均匀外电场 E_0 中置人一带均匀自由电荷密度 ρ_i 的绝缘介质球(电容率 ϵ),求空间各点的电势.
- 7. 在一很大的电解槽中充满电导率为 σ_2 的液体,使其中流着均匀的电流 J_{0} . 今在液体中置入一个电导率为 σ_1 的小球,求恒定时电流分布和面电荷分布,讨论 $\sigma_1 \gg \sigma_2$ 及 $\sigma_2 \gg \sigma_1$ 两种情况的电流分布的特点.

答案:

$$\mathbf{J} = \begin{cases} \frac{3\sigma_1}{\sigma_1 + 2\sigma_2} \mathbf{J}_{f0} & (R < R_0) \\ \mathbf{J}_{f0} + \frac{(\sigma_1 - \sigma_2)R_0^3}{\sigma_1 + 2\sigma_2} \left\lceil \frac{3(\mathbf{J}_{f0} \cdot \mathbf{R})\mathbf{R}}{R^5} - \frac{\mathbf{J}_{f0}}{R^3} \right\rceil & (R > R_0) \end{cases}$$

球面(R=R。)有电荷面密度

$$\omega_{\mathrm{f}} = \frac{3(\sigma_{1} - \sigma_{2})\varepsilon_{0}}{(\sigma_{1} + 2\sigma_{2})\sigma_{2}} J_{\mathrm{f0}} \cos \theta$$

8. 半径为 R_0 的导体球外充满均匀绝缘介质 ε ,导体球接地,离球心为 a 处($a > R_0$)置一点电荷 Q_0 ,试用分离变数法求空间各点电势,证明所得结果与镜像法结果相同.

提示:

$$\frac{1}{r} = \frac{1}{\sqrt{R^2 + a^2 - 2Ra \cos \theta}} = \frac{1}{a} \sum_{n=0}^{\infty} \left(\frac{R}{a}\right)^n P_n(\cos \theta) \quad (R < a)$$

9. 接地的空心导体球的内外半径为 R_1 和 R_2 ,在球内离球心为 $a(a < R_1)$ 处置一点电荷 Q. 用镜像法求电势. 导体球上的感应电荷有多少? 分布在内表面还是外表面?

答案:

$$arphi = rac{1}{4\pi \epsilon_0} \Biggl[rac{Q}{\sqrt{R^2 + a^2 - 2Ra \; \cos heta}} - rac{QR_1/a}{\sqrt{R^2 + rac{R_1^4}{a^2} - rac{2R_1^2R}{a} \cos heta}} \Biggr]$$

感应电荷分布于内表面,总电荷量为-Q(注意镜像电荷并不等于感应电荷).

10. 上题的导体球壳不接地,而是带总电荷 Q_0 ,或使其有确定电势 φ_0 ,试求这两种情况的电势. 又问 φ_0 与 Q_0 是何种关系时,两情况的解是相等的?

答案:(1)

$$\varphi = \begin{cases} \frac{Q + Q_0}{4\pi\epsilon_0 R} & (R > R_2) \\ \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{R^2 + a^2 - 2Ra \cos \theta}} - \frac{QR_1/a}{\sqrt{R^2 + \frac{R_1^4}{a^2} - \frac{2R_1^2R}{a}\cos \theta}} + \frac{Q + Q_0}{R_2} \right] & (R < R_1) \end{cases}$$

- (2) $\varphi_0 = \frac{Q + Q_0}{4\pi\epsilon_0 R_2}$ 时,两情况的解相等.
- 11. 在接地的导体平面上有一半径为a的半球凸部(如图),半球的球心在导体平面上,点电荷Q位于系统的对称轴上,并与平面相距为b(b>a),试用电像法求空间电势.
- 12. 有一点电荷 Q 位于两个互相垂直的接地导体平面所围成的直角空间内,它到两个平面的距离为 a 和 b,求空间电势.
- 13. 设有两平面围成的直角形无穷容器,其内充满电导率为 σ 的液体. 取该两平面为xz面和yz面,在 (x_0,y_0,z_0) 和 $(x_0,y_0,-z_0)$ 两点分别置正负电极并通以电流I,求导电液体中的电势.

- 14. 画出函数 $\frac{\mathrm{d}\delta(x)}{\mathrm{d}x}$ 的图,说明 $\rho=-(p\cdot\nabla)\delta(x)$ 是一个位于原点的偶极子的电荷密度.
- 15. 证明
- (1) $\delta(ax) = \frac{1}{a}\delta(x), a > 0.$ (若 a < 0,结果如何?)
- (2) $x\delta(x) = 0$.
- 16. 一块极化介质的极化强度为 P(x'),根据偶极子静电势的公式,极化介质所产生的静电势为

$$\varphi = \int_{V} \frac{\mathbf{P}(\mathbf{x}') \cdot \mathbf{r}}{4\pi\varepsilon_{0} r^{3}} dV'$$

另外,根据极化电荷公式 $\rho_P = -\nabla' \cdot p(x')$ 及 $\sigma_P = e_n \cdot P$,极化介质所产生的电势又可表为

$$\varphi = -\int_{V} \frac{\nabla' \cdot \mathbf{P}(\mathbf{x}')}{4\pi\epsilon_{0} r} dV' + \oint_{S} \frac{\mathbf{P}(\mathbf{x}') \cdot d\mathbf{S}'}{4\pi\epsilon_{0} r}$$

试证明以上两表达式是等同的.

- 17. 证明下述结果,并熟悉面电荷和面偶极层两侧电势和电场的变化,
- (1) 在面电荷两侧,电势法向微商有跃变,而电势是连续的,
- (2) 在面偶极层两侧,电势有跃变

$$arphi_2-arphi_1=rac{1}{oldsymbol{arepsilon}_0}oldsymbol{e}_{\mathrm{n}}oldsymbol{\cdot}oldsymbol{P}$$

而电势的法向微商是连续的. (各带等量正负面电荷密度 $\pm \sigma$ 而靠得很近的两个面,形成面偶极层. 面偶极矩密度 $P=\lim_{r\to 0}d$.)

18. 一半径为 R_0 的球面,在球坐标 $0<\theta<\frac{\pi}{2}$ 的半球面上电势为 φ_0 ,在 $\frac{\pi}{2}<\theta<\pi$ 的半球面上电势为 $-\varphi_0$,求空间各点电势.

提示:
$$\int_{0}^{1} P_{n}(x) dx = \frac{P_{n+1}(x) - P_{n-1}(x)}{2n+1} \Big|_{0}^{1}$$

$$P_{n}(1) = 1$$

$$P_{n}(0) = \begin{cases} 0 & (n = 奇数) \\ (-1)^{\frac{n}{2}} \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots n} & (n = 偶数) \end{cases}$$

答案:

$$\varphi = \begin{cases} \sum_{n=0}^{\infty} a_n \left(\frac{R}{R_0}\right)^n P_n(\cos \theta) & (R < R_0) \\ \sum_{n=0}^{\infty} a_n \left(\frac{R_0}{R}\right)^{n+1} P_n(\cos \theta) & (R > R_0) \end{cases}$$

$$a_n = \begin{cases} 0 & (n = \mathbf{q}\mathbf{x}) \\ (-1)^{\frac{n-1}{2}} \frac{1 \cdot 3 \cdot 5 \cdots (n-2)}{2 \cdot 4 \cdot 6 \cdots (n+1)} (2n+1) \varphi_0 & (n = \mathbf{f}\mathbf{x}) \end{cases}$$

19. 上题能用格林函数方法求解吗? 结果如何?