CS1231S

AY20/21 Sem 1

01. PROOFS

sets of numbers

 \mathbb{N} : natural numbers ($\mathbb{Z}_{\geq 0}$)

 \mathbb{Z} : integers

① : rational numbers

R: real numbers

C: complex numbers

basic properties of integers

closure (under addition and multiplication) $x + y \in \mathbb{Z} \land xy \in \mathbb{Z}$

> commutativity $a + b = b + a \wedge ab = ba$

associativity

a + b + c = a + (b + c) = (a + b) + c

abc = a(bc) = (ab)cdistributivity

a(b+c) = ab + ac

trichotomy

 $(a < b) \lor (a > b) \lor (a = b)$

transitive law

 $(a < b) \land (b < c) \implies (a < c)$

definitions

even/odd

n is even $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k$

 $n \text{ is odd} \leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k + 1$

prime/composite

n is prime $\leftrightarrow n > 1$ and $\forall r, s \in \mathbb{Z}^+, n = rs \to (r = rs)$ $n) \vee (r = s)$

n is composite $\leftrightarrow n > 1$ and $\exists r, s \in \mathbb{Z}^+ s.t.n =$ rs and 1 < r < n and 1 < s < n

divisibility (d divides n)

 $n \mid d \leftrightarrow \exists k \in \mathbb{Z} \mid n = kd$

rationality

r is rational $\leftrightarrow \exists a, b \in \mathbb{Z} \mid r = \frac{a}{1}$ and $b \neq 0$ floor/ceiling

|x|: largest integer y such that y < x $\lceil x \rceil$: smallest integer y such that y > x

rules of inference

generalisation $p, : p \vee q$

elimination $p \vee q$; $\sim q$, $\therefore p$ transitivity

specialisation $p \wedge q$, : p $p \to q$; $q \to r$; $p \to r$

04. METHODS OF PROOF

Proof by Exhaustion/Cases

- 1. list out possible cases
- 1.1. Case 1: n is odd OR If n = 9, ...
- 1.2. Case 2: n is even OR If n = 16....

Proof by Contradiction

Suppose that ...

1.1. <proof>

1.2. ... but this contradicts ...

2. Therefore the assumption that ... is false. Hence

Proof by Contraposition

- 1. Contrapositive statement: $\sim q \rightarrow \sim p$
- 2. let $\sim q$
- 2.1. <proof>
- 2.2. hence $\sim q$
- 3. $\therefore p \rightarrow q$

Proof by Induction

- 1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition ...
- 2. (base step) P(1) is true because <manual method>
- 3. (induction step)
 - 3.1. let $k \in \mathbb{Z}_{\geq 1}$ s.t. P(k) is true
 - 3.2. Then ...
 - 3.3. cproof that P(k+1) is true
 - 3.4. So P(k + 1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} P(n)$ is true by MI.

Proof for Equality of Sets (A=B)

- 1. (⇒)
- 1.1. Take any $z \in A$.
- 1.2. ...
- 1.3. $z \in B$.
- 2. (<=)
- 2.1. Take any $z \in B$.
- 2.2. . . .
- 2.3. $\therefore z \in A$.

02. COMPOUND STATEMENTS

operations

- $1 \sim$: negation (not)
- 2 ∧ : conjunction (and)
- 2 \vee : disjunction (or) coequal to \wedge
- $3 \rightarrow$: if-then

logical equivalence

- · identical truth values in truth table
- · definitions
- · to show non-equivalence:
 - truth table method (only needs 1 row)
 - · counter-example method

conditional statements

hypothesis \rightarrow conclusion

 $antecedent \rightarrow consequent$

- · vacuously true : hypothesis is false
- implication law : $p \rightarrow q \equiv \sim p \vee q$
- contrapositive : $\sim p \rightarrow \sim q$ • inverse : $\sim p \rightarrow \sim q$
 - converse ≡ inverse statement = contra-

- r is a **necessary** condition for s: $\sim r \rightarrow \sim s$ and $s \rightarrow r$
- r is a **sufficient** condition for s: $r \rightarrow s$
- necessary & sufficient : ↔

valid arguments

- · determining validity: construct truth table
 - valid \leftrightarrow conclusion is true when premises are true
- syllogism : (argument form) 2 premises, 1 conclusion
- modus ponens : $p \rightarrow q$; p; $\therefore q$
- modus tollens : $p \rightarrow q$; $\sim q$; $\therefore \sim p$
- · sound argument : is valid & all premises are true

fallacies

converse error inverse error $p \rightarrow q$ $p \rightarrow q$ q $\sim p$.. p $\therefore \sim q$

03. QUANTIFIED STATEMENTS

- truth set of $P(x) = \{x \in D \mid P(x)\}$
- $P(x) \Rightarrow Q(x) : \forall x (P(x) \rightarrow Q(x))$
- $P(x) \Leftrightarrow Q(x) : \forall x (P(x) \leftrightarrow Q(x))$
- relation between \forall , \exists , \land , \lor
- $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \cdots \land Q(x_n)$
- $\exists x \in D \mid Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

05. SETS

notation

- set roster notation [1]: $\{x_1, x_2, \ldots, x_n\}$
- set roster notation [2]: $\{x_1, x_2, x_3, \dots\}$
- set-builder notation: $\{x \in \mathbb{U} : P(x)\}$

definitions

- equal sets : $A = B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$
- empty set, Ø :
- subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$
- proper subset : $A \subseteq B \leftrightarrow (A \subseteq B) \land (A \neq B)$
- power set of A : $\mathcal{P}(A) = \{X \mid X \subseteq A\}$ • $|\mathcal{P}(A)| = 2^{|A|}$, given that A is a finite set
- cardinality of a set. | A | : number of distinct elements
- singleton: sets of size 1
- disjoint : $A \cap B = \emptyset$

boolean operations

• union: $A \cup B = \{x : x \in A \lor x \in B\}$

• complement (of B): \bar{B} or $B^c = U \backslash B$

- intersection: $A \cap B = \{x : x \in A \land x \in B\}$
- complement (of B in A): $A \setminus B = \{x : x \in A \land x \notin B\}$

ordered pairs and cartesian products

- ordered pair : (x, y)
- $(x,y) = (x',y') \leftrightarrow x = x'$ and y = y'Cartesian product :
- $A \times B = \{(x, y) : x \in A \text{ and } x \in B\}$ $\bullet |A \times B| = |A| \times |B|$
- ordered tuples : expression of the form (x_1, x_2, \dots, x_n)

definitions

- function/map from A to B: assignment of each element of A to exactly one element of B.

$$= \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$$

- identity function on A, $id_A : A \rightarrow A$
 - $\mathsf{id}_{\mathsf{\Delta}}: x \to x$
 - range = domain = codomain = A

equality of functions

- · same codomain and domain
- for all $x \in \text{codomain}$, same output

function composition

- $(g \circ f)(x) = g(f(x))$
- for $(g \circ f)$ to be well defined, codomain of f must be equal to the domain of q
- × commutative
- ✓ associative

image & pre-image

- for $f:A\to B$
- if $X \subseteq A$, image of X, $f(X) = \{ y \in B : y = f(x) \text{ for some } x \in X \}$
- if $Y \subseteq B$, pre-image of X,
- $f^{-1}(Y) = \{x \in A : y = f(x) \text{ for some } y \in Y\}$

injection & surjection

- surjective : codomain = range
- $\forall y \in B, \exists x \in A (y = f(x))$
- · injective : one-to-one
 - $\forall x, x' \in A(f(x) = f(x') \Rightarrow x = x')$
- · bijective : both surjective & injective · has an inverse

inverse

• $\forall x \in A, \forall y \in B(f(x) = y \Leftrightarrow g(y) = x)$

07. INDUCTION

mathematical induction

- to prove that $\forall n \in \mathbb{Z}_{\geq m}(P(n))$ is true,
- base step: show that P(m) is true
- induction step: show that $\forall k \in \mathbb{Z}_{\geq m}(P(k) \Rightarrow P(k+1))$
- induction hypothesis: assumption that P(k) is true

• converse : q o ppositive 2. therefore ...

06. FUNCTIONS

- $f:A \to B$: "f is a function from A to B"
- $f: x \rightarrow y$: "f maps x to y"
- domain of f = A
- codomain of f = B
- range/image of f = $\{f(x) : x \in A\}$

- · well-defined function : every element in the domain is assigned to exactly one element in the codomain

strong MI

to prove that $\forall n \in \mathbb{Z}_{\geq 0}(P(n))$ is true,

- base step: show that P(0), P(1) are true
- induction step: show that $\forall k\in\mathbb{Z}_{\geq 0}(P(0)\cdots\wedge P(k+1)\Rightarrow P(k+2)) \text{ is true}.$

iustification

- $P(0) \wedge P(1)$ by base case
- $P(0) \wedge P(1) \rightarrow P(2)$ by induction with k=0
- $P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)$ by induction with k=1
- . . .

- we deduce that $P(0), P(1), \ldots$ are all true by a series of modus ponens

well-ordering principle

- \bullet every nonempty subset of $\mathbb{Z}_{\geq 0}$ has a smallest element.
- · application: recursion has a base case

RECURSION

a sequence is **recursively defined** if the definition of a_n involves a_0,a_1,\ldots,a_{n-1} for all but finitely many $n\in\mathbb{Z}_{>0}$.

recursive definitions

e.g. recursive definition for $\ensuremath{\mathbb{Z}}$

- 1. (base clause) $0 \in \mathbb{Z}_{\geq 0}$
- 2. (recursion clause) If $x \in \mathbb{Z}_{>0}$, then $x + 1 \in \mathbb{Z}_{>0}$
- 3. (minimality clause) Membership for $\mathbb{Z}_{\geq 0}$ can be demonstrated by (finitely many) successive applications of the clauses above

recursion vs induction

- recursion to define the set
- induction to show things about the set

well-formed formulas (WFF)

in propositional logic

define the set of WFF(Σ) as follows

- 1. (base clause) every element ρ of Σ is in WFF(Σ)
- 2. (recursion clause) if x,y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ)
- 3. (minimality clause) Membership for WFF(Σ) can be demonstrated by (finitely many) successive applications of the clauses above

LOGICAL EQUIVALENCES			SET IDENTITIES		
commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$	commutative laws	$A \cap B = B \cap A$	$A \cup B = B \cup A$
associative laws	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	associative laws	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
distributive laws	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	distributive laws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
identity laws	$p \wedge true \equiv p$	$p \lor false \equiv p$	identity laws	$A \cap U = A$	$A \cup \emptyset = A$
idempotent laws	$p \wedge p \equiv p$	$p \lor p \equiv p$	idempotent laws	$A \cap A = A$	$A \cup A = A$
universal bound laws	$p \lor true \equiv true$	$p \land false \equiv false$	universal bound laws	$A \cap \emptyset = \emptyset$	$A \cup U = U$
negation laws	$p \lor \sim p \equiv true$	$p \land \sim p \equiv false$	complement laws	$A \cap \overline{A} = \emptyset$	$A \cup \overline{A} = U$
double negation law	$\sim (\sim p) \equiv p$	_	double complement law	$\overline{(\overline{A})} = A$	_
absorption laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$	absorption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
De Morgan's Laws	$\sim (p \lor q) \equiv \sim p \land \sim q$		De Morgan's Laws	$\overrightarrow{A \cup B} = \overrightarrow{\overline{A}} \cap \overline{B}$	$\overrightarrow{A \cap B} = \overrightarrow{A} \cup \overline{B}$

proven:

- L1E1 the product of 2 consecutive odd numbers is always odd.
- L1E5 the difference between 2 consecutive squares is always odd
- L4E4 the sum of any 2 even integers is even
- L4T4.6.1 there is no greatest integer
- L4T4.3.1 for all positive integers a and b, if a|b, then $a \leq b$.
- L1P4.6.4 for all integers n, if n^2 is even then n is even
- L4T4.2.1 all integers are rational numbers
- L4T4.2.2 the sum of any 2 rational numbers is rational
- L1E7 there exist irrational numbers p and q such that p^q is rational
- L4T4.7.1 $\sqrt{2}$ is irrational.
- L4T4.3.2 the only divisors of 1 are 1 and -1.
- L4T4.3.3 transitivity of divisibility
 - if a|b and b|c, then a|c.
- L3T3.2.1 negation of a universal statement:
 - $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \mid \sim P(x)$
- L3T3.2.2 negation of an existential statement:
 - $\sim (\exists x \in D \mid P(x)) \equiv \forall x \in D, \sim P(x)$
- L5T5.1.14 there exists a unique set with no element. It is denoted by \emptyset .
- L5E5.3.7 for all A, B: $(A \cap B) \cup (A \setminus B) = A$
- L5T5.3.11(1) let A,B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$
- L5T5.3.11(2) let A_1,A_2,\ldots,A_n be pairwise disjoint finite sets. Then $|A_1\cup A_2\cup\cdots\cup A_n|=|A_1|+|A_2|+\cdots+|A_n|$
- L5T5.3.12 Inclusion-Exclusion Principle:
 - for all finite sets A and B, $|A \cup B| = |A| + |B| |A \cap B|$
- L6T6.1.26 associativity of function composition:
 - $f \circ (q \circ h) = (f \circ q) \circ h$
- L6P2.6.16 uniqueness of inverses:
 - If q, q' are inverses of $f: A \to B$, then q = q'.
- L6E6.1.24 $f \circ id_A = f$ and $id_A \circ f = f$
- L6T6.2.18 bijective

 has an inverse
- L7L7.3.19 If $x\in {\sf WFF^+}(\Sigma)$, then assigning false to all elements of Σ makes x evaluate to false.
- L7T7.3.20 \sim $(\forall x \in \mathsf{WFF}(\Sigma), \exists y \in \mathsf{WFF}^+(\Sigma) \ y \equiv x) \equiv \exists x \in \mathsf{WFF}(\Sigma) \ \forall y \in \mathsf{WFF}^+(\Sigma) \ y \not\equiv x \ \mathsf{aka} \sim \mathsf{(not)} \ \mathsf{must} \ \mathsf{be} \ \mathsf{included} \ \mathsf{in} \ \mathsf{the} \ \mathsf{definition} \ \mathsf{of} \ \mathsf{WFF}.$

abbreviations

- L lecture
- L lemma
- E example
- P proposition
- T theorem