Programme de la semaine 17 (du 03/02 au 09/02).

Limites de fonctions, continuité

Reprise.

Dérivation

- Dérivabilité en un point. Caractérisation par l'existence d'un DL1. La dérivabilité entraîne la continuité. Dérivabilité à gauche et à droite en un point. Dérivabilité sur un intervalle.
- Opérations : somme, multiplication par un scalaire, produit, quotient, composition, réciproque.
- Dérivées d'ordre supérieur à 1. Classe C^n et C^{∞} . Opérations : somme, multiplication par un scalaire, produit, quotient, composition, réciproque, dérivées nièmes de f + g, $\lambda . f$, fg.
- Définition d'un extremum local ou global. Théorème : si f est dérivable en a intérieur à l'intervalle de définition et que f admet un extremum en a, alors f'(a) = 0.
- Théorème de Rolle, théorème des accroissements finis.
- Inégalité des accroissements finis (énoncé pour une fonction f dérivable sur un intervalle I avec |f'| majorée par k).
- Caractérisation des fonctions dérivables constantes/monotones/strictement monotones parmi les fonctions dérivables sur un intervalle.
- Théorème de la limite de la dérivée (si f est continue sur I, dérivable sur $I \setminus \{a\}$ et si f' a une limite ℓ finie ou infinie en a, alors le taux d'accroissement de f en a admet aussi ℓ pour limite.)
- Brève extension aux fonctions à valeurs complexes.

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - Si $f(x) \xrightarrow[x \to a]{} b$ et si $g(y) \xrightarrow[y \to b]{} \ell$ alors $g \circ f(x) \xrightarrow[x \to a]{} \ell$: preuve dans le cas où a, b, ℓ sont finis.
 - Le théorème sur les extrema.
 - Théorème de Rolle.
 - Pour f dérivable sur un intervalle I, preuve de : $f' \ge 0 \Longrightarrow f$ croissante.

Semaine suivante de colle : Dérivation, systèmes linéaires, matrices.