To print higher-resolution math symbols, click the **Hi-Res Fonts for Printing** button on the jsMath control panel.

CMSC 478 — Fall 2018 — C. S. Marron Lab 7: Regularization and Dimension Reduction

Data Description

In this lab, you will work with the College dataset of college admissions data. The dataset is part of the ISLR package; if you have not already installed the package, you may download the CSV file of the College dataset. Use ?ISLR::College in R to see a description of the dataset.

Exercises

In all of the exercises, you will be trying to predict the number of applications received, Apps, using all of the other variables. The training and test sets created in Exercise 1 should be used for all of the exercises.

Exercise 1: Compare Linear Regression to the regularization methods, Ridge Regression and The Lasso.

- 1. Split the data into a training set and a test set.
- 2. Fit a linear model on the training set using least squares and report the test error obtained.
- 3. Fit a ridge regression model on the training set, with λ chosen using cross-validation. Report the test error obtained.
- 4. Fit a lasso model on the training set, with λ chosen using cross-validation. Report the test error obtained along with the number of non-zero coefficient estimates.
- 5. Get the coefficients for the lasso model with the best λ values. What do you notice?
- 6. Compare your results. Of the three, which model is best?
- 7. Plot the test error with respect to λ for both ridge regression and the lasso. Do you notice any relationship?

Exercise 2: Compare the two rank reduction methods, PCR and PLS.

1. Fit a PCR model on the training set with M chosen by cross-validation. Report the test error obtained along with the value of M selected.

1 of 2 11/23/21, 12:17

- 2. Fit a PLS model on the training set with M chosen by cross-validation. Report the test error obtained along with the value of M selected.
- 3. Is one of the methods preferable? Discuss how the results for PCR and PLS compare.

Exercise 3: Comment on the results obtained for *all* of the models. How accurately can we predict the number of college applications received? Is there much difference among the test errors resulting from these five approaches?

2 of 2 11/23/21, 12:17