Annotation & ML

Michael Schatz

October 18, 2023
Lecture 15. Applied Comparative Genomics

Project Proposal Due Wednesday Oct 18 by 11:59pm

https://github.com/schatzlab/appliedgenomics2023/blob/main/project/proposal.md

Assignment 5 Due:Wednesday Oct 25, 2023 by 11:59pm

https://schatz-lab.org/appliedgenomics2023/assignments/assignment5/

Clustering Refresher

Figure 2 | **A synthetic gene-expression data set**. This data set provides an opportunity to evaluate how various clustering algorithms reveal different features of the data. **a** | Nine distinct gene-expression patterns were created with $\log_2(\text{ratio})$ expression measures defined for ten experiments. **b** | For each expression pattern, 50 additional genes were generated, representing variations on the basic patterns.

Euclidean Distance

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

Computational genetics: Computational analysis of microarray data

Quackenbush (2001) Nature Reviews Genetics. doi:10.1038/35076576

Hierarchical Clustering

Principle Components Analysis (PCA)

PC1: "New X"- The dimension with the most variability PC2: "New Y"- The dimension with the second most variability

Principle Components Analysis (PCA)

Figure 4 | **Principal component analysis.** The same demonstration data set was analysed using $\bf a$ | hierarchical (average-linkage) clustering and $\bf b$ | principal component analysis using Euclidean distance, to show how each treats the data, with genes colour coded on the basis of hierarchical clustering results for comparison.

PCA and t-SNE

t-distributed Stochastic Neighborhood Embedding

- Non-linear dimensionality reduction technique: distances are only locally meaningful
- Rather than Euclidean distances, for each point fits a Gaussian kernel to fit the nearest N neighbors (perplexity) that define the probabilities that two points should be close together
- Using an iterative spring embedding system to place high probability points nearby

Visualizing Data Using t-SNE

https://www.youtube.com/watch?v=RJVL80Gg3IA

UMAP

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction McInnes et al (2018) arXiv. 1802.03426

https://www.youtube.com/watch?v=nq6iPZVUxZU

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

Volcano Plot

https://en.wikipedia.org/wiki/Volcano_plot_%28statistics%29

JASPAR Database

ML with Strings

One hot encoding to sequence classification https://kundajelab.github.io/dragonn/tutorials.html