META-HEURÍSTICAS CCF-480

Prof. Dr. Marcus Henrique Soares Mendes marcus.mendes@ufv.br
UFV - Campus Florestal

http://lattes.cnpq.br/9729345585563115

Roteiro

- Computação Evolutiva.
 - Introdução.
 - Teoria da evolução e os genes.
 - Reprodução e mutação.
 - Características.
 - Nomenclatura.
 - Algoritmo geral.

Computação Evolutiva - Introdução

- Trabalha com o conceito de população.
- O objetivo é estimar a localização do ótimo global.
- Dentre os métodos populacionais, destacam-se os algoritmos evolutivos.
 - São inspirados na teoria da evolução das espécies de Charles Darwin.
- A teoria da evolução diz que indivíduos dentro de um ecossistema competem entre si por recursos limitados.
- Indivíduos mais aptos tendem a ter prole maior, aumentando assim, a probabilidade de propagar suas características ao longo das gerações.
- A combinação entre os genes dos indivíduos que sobrevivem pode produzir um novo indivíduo muito melhor adaptado às características de seu meio ambiente.

Teoria da Evolução e os Genes

- No início do século XX, um padre chamado Gregor Mendel compreendeu o processo de adaptação:
 - A transmissão de características positivas estava associada a uma unidade básica de informação, o gene.
- Todo indivíduo é formado por uma ou mais células.
- Dentro de cada célula, temos um conjunto de cromossomos.
- Cada cromossomo consiste de genes, que são blocos de sequências de DNA.
- Cada gene tem uma posição própria no cromossomo chamada locus.
- O conjunto completo de material genético (todos os cromossomos), é chamado de genoma.
- Um conjunto específico de genes no genoma é chamado de genótipo.
- O genótipo é a base do fenótipo.
- A qualidade do indivíduo é medida pelo seu sucesso (sobrevivência).

Reprodução e Mutação

- Na natureza existem dois tipos de reprodução:
 - Assexuada.
 - Sem diversidade.
 - Sexuada.
 - Gera diversidade.
- A reprodução sexuada é bem utilizada nos algoritmos evolutivos.
- Pequenos erros podem ocorrer ao longo do tempo, gerando mutações dentro do código genético.
- As mutações podem ser boas, ruins ou neutras.
- Existem mecanismos de correção que garantem que a taxa de mutação seja muito baixa.

Computação Evolutiva - Características

- Na computação evolutiva, destacam-se as seguintes metaheurísticas:
 - Estratégias Evolutivas.
 - Programação Evolutiva.
 - Algoritmos Genéticos.
 - Programação Genética.
- Mantem uma população de soluções candidatas, denominadas indivíduos ou cromossomos.
- Comportam-se de forma semelhante à evolução das espécies.
- Aos indivíduos são aplicados os chamados operadores genéticos, como cruzamento e mutação.
- Cada indivíduo recebe uma avaliação.
- Baseado na avaliação são selecionados o indivíduos de forma a simular a sobrevivência do mais aptos.

Computação Evolutiva - Nomenclatura

Indivíduo	Solução candidata
População	Conjunto de soluções candidatas
Gene	Variável de decisão
Locus	Índice da variável de decisão
Alelo	Valor da variável da decisão
Genótipo	Representação computacional da solução
Fenótipo	Solução no contexto real do problema
Fitness	Qualidade do indivíduo
Seleção	Escolher um indivíduo baseado no seu valor de fitness
Geração	Um ciclo de avaliação da fitness, seleção, aplicação de operadores genéticos para e atualização da população

Computação Evolutiva – Algoritmo Geral

```
Entrada: Tamanho da população (\mu), Espaço de busca (\mathcal{X}), Funções
               objetivo e de restrição (f(\cdot), \mathbf{g}(\cdot), \mathbf{h}(\cdot)), Critérios de parada (Q)
Saída: Estimativa(s) da solução ótima (x*) na população final.
início
     P^{(0)} \leftarrow \text{Inicializar população}(\mu, \mathcal{X});
     t \leftarrow 0;
     enquanto \neg Q faça
          \Phi^{(t)} \leftarrow \text{Avaliar}(P^{(t)}, f(\cdot), \mathbf{g}(\cdot), \mathbf{h}(\cdot));
          S^{(t)} \leftarrow \text{Selecionar}(P^{(t)}, \Phi^{(t)});
        V^{(t)} \leftarrow \mathsf{Modificar}(S^{(t)});
        P^{(t+1)} \leftarrow \text{Atualizar População}(P^{(t)}, V^{(t)});
t \leftarrow t + 1;
     fim
fim
Fonte: Referência (1).
```

marcus.mendes@ufv.br

Computação Evolutiva - Comparativo

marcus.mendes@ufv.br

Referências Bibliográficas

- Principais referências bibliográficas desta aula:
 - 1) Jaime Ramírez et al. Notas de aula. UFMG, 2013.
 - 2) Joshua Knowles. Notas de aula. University of Manchester, 2014.
 - 3) Ricardo Linden. Algoritmos Genéticos. Ciência Moderna, 2012. www.algoritmosgeneticos.com.br
 - 4) George B. Dyson. Darwin Among The Machines: The Evolution Of Global Intelligence. Basic Books, 2012.