

CONHECIMENTOS DO ENSINO MÉDIO SOBRE A LOGÍSTICA REVERSA NO DESCARTE E RECICLAGEM DE PILHAS E BATERIAS

Emille Shanan Kormann Staloch¹; Gabriel Vinicius Franciscon²; Viviane Furtado Velho³

RESUMO

Este estudo tem como objetivo verificar o conhecimento de alunos do ensino médio em relação aos métodos de descarte e reciclagem de pilhas e baterias, e os impactos que estes resíduos podem gerar se dispostos de maneira incorreta, além disso, pretende-se identificar o entendimento sobre a logística reversa de pilhas e baterias. Nesse sentido, está sendo realizada a aplicação de um questionário com a população em estudo, para fazer um comparativo dos conhecimentos sobre a temática deste estudo entre os alunos do ensino médio em três diferentes instituições de ensino: escola técnica, escola estadual e escola privada.

Palavras-chave: Gestão de Resíduos Sólidos. Pilhas e Baterias. Destinação Final. Reciclagem. Logística Reversa. Impactos Ambientais.

INTRODUÇÃO

A pilha, definida como uma miniusina portátil que transforma energia química em elétrica; e a bateria, que é um conjunto de pilhas ligadas em série (WOLFF; CONCEIÇÃO, 2000 apud SILVA; ROHLFS, [2011?]), apresentam características de corrosividade, reatividade e toxicidade, sendo, portanto, classificadas como resíduos perigosos - classe I (BRASIL, 2004). No Brasil, circulam cerca de 10 milhões de baterias de celulares, 12 milhões de baterias automotivas e 200 mil baterias industriais por ano (KEMERICH et al, 2013). Dados apontam um crescimento de 8,4% neste setor, com mais de três bilhões de unidades produzidas por ano (ABINEE, 2015 apud AQUINO et al, 2016), devido principalmente a característica de serem na maioria das vezes descartáveis, e com tendência a trocas periódicas.

¹ Discente do curso Técnico em Controle Ambiental do Instituto Federal Catarinense - Campus Camboriú, e-mail: emille.shanan@gmail.com

 ² Discente do curso Técnico em Controle Ambiental do Instituto Federal Catarinense - Campus Camboriú, e-mail: gabinhofranciscon12@gmail.com
³ Orientadora, doutora em Engenharia Ambiental, docente do Instituto Federal Catarinense - Campus Camboriú,

³ Orientadora, doutora em Engenharia Ambiental, docente do Instituto Federal Catarinense - Campus Camboriú e-mail: viviane.velho@ifc.edu.br

No Brasil, o descarte de pilhas e baterias é regularizado pela Lei 12.305/2010 (BRASIL, 2010), pela Resolução CONAMA n°401 de 2008 (BRASIL, 2008) e pela Instrução Normativa do IBAMA n°8 de 2012 (BRASIL, 2012). A Lei 12.305 que institui a Política Nacional de Resíduos Sólidos, dispõe sobre o gerenciamento de resíduos sólidos, e as responsabilidades dos geradores e do poder público, definindo e atribuindo a realização da logística reversa. Na resolução CONAMA, são estabelecidos os limites máximos de chumbo, cádmio, mercúrio e os critérios para o gerenciamento ambientalmente adequado. E na Instrução Normativa estão instituídos os procedimentos relativos ao controle do recebimento e da destinação final de pilhas e baterias ou produto que as incorporem.

A logística reversa, que é a responsabilidade pelo ciclo de vida dos produtos, juntamente com a responsabilidade compartilhada é um instrumento que viabiliza a coleta, a reciclagem e a destinação final ambientalmente adequada de pilhas e baterias. Segundo a ABINEE já foram recolhidas mais de 15 mil toneladas de pilhas e baterias num total de 1674 postos de coleta no Brasil; em contrapartida, aproximadamente 69 mil toneladas são produzidas por ano (GREEN, 2019).

O descarte inadequado de pilhas e baterias pode acarretar em sérios impactos ao meio ambiente. Devido a sua composição (mercúrio, cádmio, berílio e chumbo) apresentam alto potencial de contaminar o solo, a água e a atmosfera. Estudos apontam que grande parte da população descarta, de maneira errônea, pilhas e baterias no lixo comum, o que pode ocasionar dentro outros: a contaminação de resíduos orgânicos durante processo de compostagem; e a intoxicação de seres humanos por efeitos acumulativos devido inalação ou ingestão (AQUINO et al., 2016; WOLF; CONCEIÇÃO, 2011). Assim, a destinação ambientalmente correta de pilhas e baterias são os aterros industriais, onde estes resíduos são neutralizados, encapsulados e enterrados (MONTEIRO, 2006).

Para reduzir a necessidade da extração de recursos naturais, partindo-se do princípio da ecoeficiência (BRASIL, 2010), o tratamento ideal para pilhas e baterias é a reciclagem de seus componentes. O processo de reciclagem é constituído por duas etapas principais: a preparação da sucata que tem por objetivo concentrar a fração onde se encontram os metais de interesse usando apenas métodos físicos; e os processos hidro e pirometalúrgico que visam recuperar o elemento de interesse por lixiviação e evaporação, respectivamente (MANUTANO, 2011).

Dentro deste contexto, essa pesquisa tem como objetivo verificar o conhecimento da população em estudo sobre os métodos de descarte e reciclagem de pilhas e baterias, e os impactos que podem ser acarretados com a disposição incorreta desses resíduos, e o reconhecimento da logística reversa como um instrumento de auxílio no gerenciamento destes resíduos.

PROCEDIMENTOS METODOLÓGICOS

Este estudo está sendo realizado, em parte, no Instituto Federal Catarinense - Campus Camboriú (IFC – Camboriú). Fundado em 08 de abril de 1953 e até 2008 denominado Colégio Agrícola de Camboriú – CAC, atualmente apresenta cursos superiores, pós-graduação e cursos técnicos profissionalizantes integrados ao ensino médio em Agropecuária, Informática, Turismo e Hospedagem e Controle Ambiental. O campus possui 310 servidores e cerca de 720 alunos do ensino médio, sendo estes últimos os indivíduos foco deste estudo.

A pesquisa também será desenvolvida em outras duas instituições de ensino médio, uma escola estadual e uma escola privada. O objetivo é realizar um comparativo dos conhecimentos sobre a temática deste estudo entre os alunos do ensino médio nas diferentes instituições de ensino.

A coleta de dados está sendo realizada através da aplicação de um questionário com a população em estudo. O questionário (Tabelas 1 e 2) visa avaliar os conhecimentos dos estudantes de ensino médio em relação à correta gestão de pilhas e baterias, os impactos causados ao meio ambiente e o reconhecimento da logística reversa como um instrumento de auxílio neste processo. O questionário é composto por perguntas categorizadas e desenvolvidas pelos autores.

Tabela 1 – Questionário aplicado aos alunos do ensino médio das três instituições de ensino, perfil dos estudantes

Questões pessoais	
1. Qual sua idade?	4. Qual sua renda familiar?
2. Você se considera de qual gênero?	5. Qual sua instituição de ensino?
3. Qual seu grau de escolaridade?	

Tabela 2 – Questionário aplicado aos alunos do ensino médio das três instituições de ensino, conhecimentos específicos na área da pesquisa

Questões relacionadas aos resíduos – pilhas e baterias	
1. O que deve ser feito com as pilhas e baterias após	2. Quais destas opções são resíduos recicláveis no
o consumo? (duas ou mais)	Brasil? (duas ou mais)
() Direcionar a estabelecimentos que o comercializem	() Balões de festa
() Descartar junto ao lixo comum	() Pilhas
() Deixar exposta até que se degrade	() Alimentos
() Acondicionar em casa	() Fita adesiva
() Encaminhar a um posto de coleta	() Tecidos
3. Levando em conta os elementos traço (metais	4. Segundo a Lei 12.305/10 da Política Nacional dos
pesados) presentes nas pilhas, assinale as	Resíduos Sólidos que institui as diretrizes sobre o
verdadeiras: (duas ou mais)	gerenciamento de resíduos sólidos perigosos,
() O mercúrio pode prejudicar a saúde.	assinale a INCORRETA:
() A pilha não tem uma coleta diferente de outros	() Abrange a logística reversa, que institui a
metais, portanto podem ser acondicionadas junto aos	responsabilidade do vendedor de receber os produtos
resíduos domésticos.	(ex. pilhas e baterias) já consumidos.
() O mercúrio não é acumulativo, portanto se for	() O gerenciamento dos resíduos sólidos é dever
absorvido por plantas, pode vir a fazer parte da	somente dos órgãos municipais, estaduais e federais.
alimentação humana.	() A prioridade é a não geração dos resíduos seguidos
() As pilhas são direcionadas aos aterros industriais,	da redução, reutilização, reciclagem e por último sua
pois são consideradas resíduos perigosos.	destinação final.
() A exposição inadequada de pilhas e baterias no	() As embalagens das pilhas e baterias devem ser
solo, podem ocasionar doenças e impactos ambientais	fabricadas de modo que facilitem a reutilização e a
	reciclagem.
	() É proibido a importação de resíduos sólidos
	perigosos, bem como de resíduos sólidos cujas
	características causem danos ao meio ambiente e a
	saúde pública.

RESULTADOS ESPERADOS OU PARCIAIS

Este estudo encontra-se em andamento. Os resultados obtidos até o presente momento referem-se à aplicação do questionário aos alunos do IFC – Camboriú. A população em estudo, parcialmente determinada, é composta por 533 indivíduos. O perfil dos entrevistados está na faixa etária entre 14 a 18 anos, igualmente distribuídos entre os três anos do ensino médio, apresentando indivíduos com renda inferior a um salário mínimo a mais de nove salários mínimos.

Em relação aos conhecimentos específicos da área, das 4 perguntas relacionadas ao tema, apenas uma delas teve um percentual de acerto acima de 75%,

a questão 1 teve 77% de acertos, as demais questões estiveram entre 45 a 55% de acerto. Este resultado parcial aponta que, em média, metade da população em estudo possui os conhecimentos avaliados sobre o tema, ou seja, sabem que as pilhas e baterias podem apresentar impactos ao meio ambiente se descartadas de maneira incorreta, e reconhecem a logística reversa como auxiliar no processo de gestão destes resíduos. A questão 2 mostrou o menor percentual de acerto, com 45%, evidenciando que ainda existe uma grande dúvida em relação a identificação dos resíduos passíveis de reciclagem. Embora mais de 50% da população tenha acertado que as pilhas podem ser recicladas, a possibilidade de reciclagem ou não dos demais resíduos apresentados na questão foi alvo de um grande percentual de erros. A população avaliada não reconhece os alimentos como resíduos passíveis de reciclagem. Acredita-se neste caso, que os indivíduos não realizam a associação do processo de compostagem como uma forma de reciclagem da matéria orgânica, embora seja este de fato o real objetivo da compostagem.

As questões 3 e 4 apresentaram 54% de acertos, ou seja, pouco mais da metade dos indivíduos entrevistados conhecem os impactos que as pilhas e baterias podem causar ao meio ambiente e a saúde da população, e compreendem que a responsabilidade pela gestão dos resíduos sólidos deve ser compartilhada entre geradores, consumidores, poder público.

CONSIDERAÇÕES FINAIS

Tendo como base os resultados parciais, ou seja, a aplicação do questionário a uma parte da população em estudo, foi possível iniciar uma caracterização do perfil dos alunos em relação a temática dos resíduos de pilhas e baterias. Ficou evidenciado, até o momento, que metade do público alvo do projeto apresenta conhecimentos em relação a destinação, a reciclagem e os impactos de pilhas e baterias no meio ambiente e na saúde da população. Seguindo-se no desenvolvimento deste projeto, pretende-se verificar se existe de fato uma diferença nos conhecimentos adquiridos em relação a temática deste estudo nas diferentes instituições de ensino.

REFERÊNCIAS

AQUINO, Jurandy Gomes de et al. **Formas de descarte de pilhas e baterias usadas.** 2016. Disponível em: http://www.institutoventuri.org.br/ojs/index.php/firs/article/view/75/62. Acesso em: 29 mar. 2019.

BRASIL, **Instrução Normativa nº 8** de 03 de setembro de 2012. Diário oficial da união: Brasília, 2012.

BRASIL, **Lei 12.305** de 08 de agosto de 2010. Institui a Política Nacional dos Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998; e dá outras providências. Diário oficial da união: Brasília, 2010.

BRASIL, **Resolução CONAMA nº 401** de 04 de novembro de 2008. Estabelece os limites máximos de chumbo, cádmio e mercúrio para pilhas e baterias comercializadas no território nacional e os critérios e padrões para o seu gerenciamento ambientalmente adequado, e dá outras providências. Diário oficial da união: Brasília, 2008.

BRASIL, **Norma Brasileira ABNT NBR 10004.** Resíduo sólido: classificação. Diário oficial da união: Brasília, 2004.

GREEN eletron. 2019. Dísponivel em:

http://www.gmcons.com.br/gmclog/admin/VisualizarPostosMapaCliente.aspx. Acesso em: 26 abr. 2019.

KEMERICH, Pedro Daniel da Cunha et al. Impactos ambientais decorrentes da disposição inadequado de lixo eletrônico do solo. **Engenharia ambiental - Espírito Santo do Pinhal,** v.10, n.2, p. 208-219, mar./abr. 2013.

MANUTANO, Danuza Pereira. Pilhas e baterias portáteis: legislação, processos de reciclagem e perspectivas. **Revista brasileira de ciências ambientais,** n.21, p. 1-13, set. 2011.

MONTEIRO, Alessandra Elias. **Índice de qualidade de aterros industriais - IQRI.** 2006. Disponível em: http://www.getres.ufrj.br/pdf/MONTEIRO_AE_06_t_M_int.pdf. Acesso em: 24 mai. 2019.

SILVA, Ana Paula Mendes da; ROHLFS, Daniela Buosi. Impactos à saúde humana e ao meio ambiente causado pelo descarte inadequado de pilhas e baterias usadas. PUC Goiás: Goiás, [2011?]. Disponível em:

http://www.cpgls.pucgoias.edu.br/6mostra/artigos/SAUDE/ANA%20PAULA%20MENDES%20DA%20SILVA.pdf. Acesso em 22 mar. 2019.

WOLFF, Eliane; CONCEIÇÃO, Samuel Vieira. **Resíduos sólidos: a reciclagem de pilhas e baterias no brasil.** 2011. Disponível em:

http://www.abepro.org.br/biblioteca/enegep2001_tr104_0146.pdf>. Acesso em: 29 mar. 2019.