CONTENTS CONTENTS

Notation and Nomenclature

```
\mathbf{A}
            Matrix
  \mathbf{A}_{ij}
            Matrix indexed for some purpose
   \mathbf{A}_i
            Matrix indexed for some purpose
  \mathbf{A}^{ij}
            Matrix indexed for some purpose
  \mathbf{A}^n
            Matrix indexed for some purpose or
            The n.th power of a square matrix
  \mathbf{A}^{-1}
            The inverse matrix of the matrix A
  \mathbf{A}^{+}
            The pseudo inverse matrix of the matrix A (see Sec. 3.6)
 \mathbf{A}^{1/2}
            The square root of a matrix (if unique), not elementwise
 (\mathbf{A})_{ij}
            The (i, j).th entry of the matrix A
            The (i, j).th entry of the matrix A
  A_{ij}
 [\mathbf{A}]_{ij}
            The ij-submatrix, i.e. A with i.th row and j.th column deleted
             Vector (column-vector)
             Vector indexed for some purpose
   \mathbf{a}_i
             The i.th element of the vector a
   a_i
            Scalar
   a
  \Re z
            Real part of a scalar
            Real part of a vector
  \Re z
  \Re \mathbf{Z}
            Real part of a matrix
            Imaginary part of a scalar
  \Im z
   \Im z
            Imaginary part of a vector
  \Im \mathbf{Z}
            Imaginary part of a matrix
det(\mathbf{A})
            Determinant of A
Tr(\mathbf{A})
            Trace of the matrix A
diag(\mathbf{A})
            Diagonal matrix of the matrix A, i.e. (\operatorname{diag}(\mathbf{A}))_{ij} = \delta_{ij}A_{ij}
eig(\mathbf{A})
            Eigenvalues of the matrix \bf A
vec(\mathbf{A})
            The vector-version of the matrix \mathbf{A} (see Sec. 10.2.2)
            Supremum of a set
  sup
            Matrix norm (subscript if any denotes what norm)
 ||\mathbf{A}||
  \mathbf{A}^{T}
            Transposed matrix
 \mathbf{A}^{-T}
            The inverse of the transposed and vice versa, \mathbf{A}^{-T} = (\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}.
  \mathbf{A}^*
            Complex conjugated matrix
  \mathbf{A}^H
             Transposed and complex conjugated matrix (Hermitian)
 \mathbf{A} \circ \mathbf{B}
            Hadamard (elementwise) product
\mathbf{A} \otimes \mathbf{B}
            Kronecker product
   0
            The null matrix. Zero in all entries.
   Ι
            The identity matrix
  \mathbf{J}^{ij}
            The single-entry matrix, 1 at (i, j) and zero elsewhere
   \Sigma
            A positive definite matrix
```

Λ

A diagonal matrix

Basics 1

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{-1} = ...\mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$$

$$(\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}$$

$$(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{T} = ...\mathbf{C}^{T}\mathbf{B}^{T}\mathbf{A}^{T}$$

$$(\mathbf{A}^{H})^{-1} = (\mathbf{A}^{-1})^{H}$$

$$(\mathbf{A}^{H})^{H} = \mathbf{A}^{H} + \mathbf{B}^{H}$$

$$(\mathbf{A}\mathbf{B})^{H} = \mathbf{B}^{H}\mathbf{A}^{H}$$

$$(\mathbf{A}\mathbf{B})^{H} = \mathbf{B}^{H}\mathbf{A}^{H}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{H} = ...\mathbf{C}^{H}\mathbf{B}^{H}\mathbf{A}^{H}$$

$$(10)$$

1.1 Trace

$$Tr(\mathbf{A}) = \sum_{i} A_{ii}$$

$$Tr(\mathbf{A}) = \sum_{i} \lambda_{i}, \quad \lambda_{i} = eig(\mathbf{A})$$

$$Tr(\mathbf{A}) = Tr(\mathbf{A}^{T})$$

$$Tr(\mathbf{AB}) = Tr(\mathbf{BA})$$

$$Tr(\mathbf{A} + \mathbf{B}) = Tr(\mathbf{A}) + Tr(\mathbf{B})$$

$$Tr(\mathbf{ABC}) = Tr(\mathbf{BCA}) = Tr(\mathbf{CAB})$$

$$\mathbf{a}^{T}\mathbf{a} = Tr(\mathbf{aa}^{T})$$

$$(11)$$

$$(12)$$

$$(13)$$

$$(14)$$

$$(15)$$

$$(16)$$

$$(16)$$

1.2 Determinant

Let **A** be an $n \times n$ matrix.

$$det(\mathbf{A}) = \prod_{i} \lambda_{i} \quad \lambda_{i} = eig(\mathbf{A}) \tag{18}$$

$$det(c\mathbf{A}) = c^{n} \det(\mathbf{A}), \quad \text{if } \mathbf{A} \in \mathbb{R}^{n \times n} \tag{19}$$

$$det(\mathbf{A}^{T}) = \det(\mathbf{A}) \tag{20}$$

$$det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B}) \tag{21}$$

$$det(\mathbf{A}^{-1}) = 1/\det(\mathbf{A}) \tag{22}$$

$$\det(\mathbf{A}^n) = \det(\mathbf{A})^n \tag{23}$$

$$\det(\mathbf{A}) = \det(\mathbf{A}) \tag{23}$$

 $\det(\mathbf{I} + \mathbf{u}\mathbf{v}^T) = 1 + \mathbf{u}^T\mathbf{v}$ (24)

For n=2:

$$det(\mathbf{I} + \mathbf{A}) = 1 + det(\mathbf{A}) + Tr(\mathbf{A})$$
(25)

For n = 3:

$$\det(\mathbf{I} + \mathbf{A}) = 1 + \det(\mathbf{A}) + \operatorname{Tr}(\mathbf{A}) + \frac{1}{2}\operatorname{Tr}(\mathbf{A})^2 - \frac{1}{2}\operatorname{Tr}(\mathbf{A}^2)$$
 (26)

For n=4:

$$\det(\mathbf{I} + \mathbf{A}) = 1 + \det(\mathbf{A}) + \operatorname{Tr}(\mathbf{A}) + \frac{1}{2}$$

$$+ \operatorname{Tr}(\mathbf{A})^{2} - \frac{1}{2}\operatorname{Tr}(\mathbf{A}^{2})$$

$$+ \frac{1}{6}\operatorname{Tr}(\mathbf{A})^{3} - \frac{1}{2}\operatorname{Tr}(\mathbf{A})\operatorname{Tr}(\mathbf{A}^{2}) + \frac{1}{3}\operatorname{Tr}(\mathbf{A}^{3})$$
(27)

For small ε , the following approximation holds

$$\det(\mathbf{I} + \varepsilon \mathbf{A}) \cong 1 + \det(\mathbf{A}) + \varepsilon \operatorname{Tr}(\mathbf{A}) + \frac{1}{2} \varepsilon^2 \operatorname{Tr}(\mathbf{A})^2 - \frac{1}{2} \varepsilon^2 \operatorname{Tr}(\mathbf{A}^2)$$
 (28)

1.3 The Special Case 2x2

Consider the matrix A

$$\mathbf{A} = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

Determinant and trace

$$\det(\mathbf{A}) = A_{11}A_{22} - A_{12}A_{21} \tag{29}$$

$$Tr(\mathbf{A}) = A_{11} + A_{22} \tag{30}$$

Eigenvalues

$$\lambda^2 - \lambda \cdot \text{Tr}(\mathbf{A}) + \det(\mathbf{A}) = 0$$

$$\lambda_1 = \frac{\operatorname{Tr}(\mathbf{A}) + \sqrt{\operatorname{Tr}(\mathbf{A})^2 - 4\det(\mathbf{A})}}{2} \qquad \lambda_2 = \frac{\operatorname{Tr}(\mathbf{A}) - \sqrt{\operatorname{Tr}(\mathbf{A})^2 - 4\det(\mathbf{A})}}{2}$$
$$\lambda_1 + \lambda_2 = \operatorname{Tr}(\mathbf{A}) \qquad \lambda_1 \lambda_2 = \det(\mathbf{A})$$

Eigenvectors

$$\mathbf{v}_1 \propto \left[egin{array}{c} A_{12} \\ \lambda_1 - A_{11} \end{array}
ight] \qquad \mathbf{v}_2 \propto \left[egin{array}{c} A_{12} \\ \lambda_2 - A_{11} \end{array}
ight]$$

Inverse

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$
 (31)

2 Derivatives

This section is covering differentiation of a number of expressions with respect to a matrix \mathbf{X} . Note that it is always assumed that \mathbf{X} has no special structure, i.e. that the elements of \mathbf{X} are independent (e.g. not symmetric, Toeplitz, positive definite). See section 2.8 for differentiation of structured matrices. The basic assumptions can be written in a formula as

$$\frac{\partial X_{kl}}{\partial X_{ij}} = \delta_{ik}\delta_{lj} \tag{32}$$

that is for e.g. vector forms,

$$\left[\frac{\partial \mathbf{x}}{\partial y}\right]_i = \frac{\partial x_i}{\partial y} \qquad \left[\frac{\partial x}{\partial \mathbf{y}}\right]_i = \frac{\partial x}{\partial y_i} \qquad \left[\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right]_{ij} = \frac{\partial x_i}{\partial y_j}$$

The following rules are general and very useful when deriving the differential of an expression ([19]):

$$\begin{array}{rclcrcl} \partial \mathbf{A} &=& 0 & (\mathbf{A} \text{ is a constant}) & (33) \\ \partial (\alpha \mathbf{X}) &=& \alpha \partial \mathbf{X} & (34) \\ \partial (\mathbf{X} + \mathbf{Y}) &=& \partial \mathbf{X} + \partial \mathbf{Y} & (35) \\ \partial (\mathrm{Tr}(\mathbf{X})) &=& \mathrm{Tr}(\partial \mathbf{X}) & (36) \\ \partial (\mathbf{X}\mathbf{Y}) &=& (\partial \mathbf{X})\mathbf{Y} + \mathbf{X}(\partial \mathbf{Y}) & (37) \\ \partial (\mathbf{X} \circ \mathbf{Y}) &=& (\partial \mathbf{X}) \circ \mathbf{Y} + \mathbf{X} \circ (\partial \mathbf{Y}) & (38) \\ \partial (\mathbf{X} \otimes \mathbf{Y}) &=& (\partial \mathbf{X}) \otimes \mathbf{Y} + \mathbf{X} \otimes (\partial \mathbf{Y}) & (39) \\ \partial (\mathbf{X}^{-1}) &=& -\mathbf{X}^{-1}(\partial \mathbf{X})\mathbf{X}^{-1} & (40) \\ \partial (\det(\mathbf{X})) &=& \mathrm{Tr}(\mathrm{adj}(\mathbf{X})\partial \mathbf{X}) & (41) \\ \partial (\det(\mathbf{X})) &=& \det(\mathbf{X})\mathrm{Tr}(\mathbf{X}^{-1}\partial \mathbf{X}) & (42) \\ \partial (\ln(\det(\mathbf{X}))) &=& \mathrm{Tr}(\mathbf{X}^{-1}\partial \mathbf{X}) & (43) \\ \partial \mathbf{X}^T &=& (\partial \mathbf{X})^T & (44) \\ \partial \mathbf{X}^H &=& (\partial \mathbf{X})^H & (45) \end{array}$$

2.1 Derivatives of a Determinant

2.1.1 General form

$$\frac{\partial \det(\mathbf{Y})}{\partial x} = \det(\mathbf{Y}) \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \tag{46}$$

$$\sum_{k} \frac{\partial \det(\mathbf{X})}{\partial X_{ik}} X_{jk} = \delta_{ij} \det(\mathbf{X}) \tag{47}$$

$$\frac{\partial^{2} \det(\mathbf{Y})}{\partial x^{2}} = \det(\mathbf{Y}) \left[\operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] + \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] \operatorname{Tr} \left[\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right] - \operatorname{Tr} \left[\left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \left(\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \right) \right] \tag{48}$$

2.1.2 Linear forms

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(\mathbf{X}^{-1})^T \tag{49}$$

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(\mathbf{X}^{-1})^{T}$$

$$\sum_{k} \frac{\partial \det(\mathbf{X})}{\partial X_{ik}} X_{jk} = \delta_{ij} \det(\mathbf{X})$$
(49)

$$\frac{\partial \det(\mathbf{AXB})}{\partial \mathbf{X}} = \det(\mathbf{AXB})(\mathbf{X}^{-1})^T = \det(\mathbf{AXB})(\mathbf{X}^T)^{-1}$$
 (51)

2.1.3 Square forms

If X is square and invertible, then

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = 2 \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) \mathbf{X}^{-T}$$
 (52)

If **X** is not square but **A** is symmetric, then

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = 2 \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) \mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{A} \mathbf{X})^{-1}$$
 (53)

If X is not square and A is not symmetric, then

$$\frac{\partial \det(\mathbf{X}^T \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X}^T \mathbf{A} \mathbf{X}) (\mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{A} \mathbf{X})^{-1} + \mathbf{A}^T \mathbf{X} (\mathbf{X}^T \mathbf{A}^T \mathbf{X})^{-1})$$
(54)

2.1.4 Other nonlinear forms

Some special cases are (See [9, 7])

$$\frac{\partial \ln \det(\mathbf{X}^{T}\mathbf{X})|}{\partial \mathbf{X}} = 2(\mathbf{X}^{+})^{T} \qquad (55)$$

$$\frac{\partial \ln \det(\mathbf{X}^{T}\mathbf{X})}{\partial \mathbf{X}^{+}} = -2\mathbf{X}^{T} \qquad (56)$$

$$\frac{\partial \ln |\det(\mathbf{X})|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^{T} = (\mathbf{X}^{T})^{-1} \qquad (57)$$

$$\frac{\partial \det(\mathbf{X}^{k})}{\partial \mathbf{X}} = k \det(\mathbf{X}^{k})\mathbf{X}^{-T} \qquad (58)$$

$$\frac{\partial \ln \det(\mathbf{X}^T \mathbf{X})}{\partial \mathbf{X}^+} = -2\mathbf{X}^T \tag{56}$$

$$\frac{\partial \ln|\det(\mathbf{X})|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^T = (\mathbf{X}^T)^{-1}$$
(57)

$$\frac{\partial \det(\mathbf{X}^k)}{\partial \mathbf{X}} = k \det(\mathbf{X}^k) \mathbf{X}^{-T}$$
 (58)

2.2Derivatives of an Inverse

From [27] we have the basic identity

$$\frac{\partial \mathbf{Y}^{-1}}{\partial x} = -\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \mathbf{Y}^{-1} \tag{59}$$

from which it follows

$$\frac{\partial (\mathbf{X}^{-1})_{kl}}{\partial X_{ij}} = -(\mathbf{X}^{-1})_{ki}(\mathbf{X}^{-1})_{jl} \qquad (60)$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T} \qquad (61)$$

$$\frac{\partial \det(\mathbf{X}^{-1})}{\partial \mathbf{X}} = -\det(\mathbf{X}^{-1})(\mathbf{X}^{-1})^T \qquad (62)$$

$$\operatorname{Tr}(\mathbf{A} \mathbf{X}^{-1} \mathbf{B}) \qquad (62)$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T}$$
(61)

$$\frac{\partial \det(\mathbf{X}^{-1})}{\partial \mathbf{X}} = -\det(\mathbf{X}^{-1})(\mathbf{X}^{-1})^T$$
(62)

$$\frac{\partial \mathbf{X}}{\partial \mathbf{X}} = \operatorname{det}(\mathbf{A}^{-1})(\mathbf{A}^{-1})$$

$$\frac{\partial \operatorname{Tr}(\mathbf{A}\mathbf{X}^{-1}\mathbf{B})}{\partial \mathbf{X}} = -(\mathbf{X}^{-1}\mathbf{B}\mathbf{A}\mathbf{X}^{-1})^{T}$$

$$\frac{\partial \operatorname{Tr}((\mathbf{X} + \mathbf{A})^{-1})}{\partial \mathbf{X}} = -((\mathbf{X} + \mathbf{A})^{-1}(\mathbf{X} + \mathbf{A})^{-1})^{T}$$
(62)

$$\frac{\partial \text{Tr}((\mathbf{X} + \mathbf{A})^{-1})}{\partial \mathbf{X}} = -((\mathbf{X} + \mathbf{A})^{-1}(\mathbf{X} + \mathbf{A})^{-1})^{T}$$
(64)

From [32] we have the following result: Let **A** be an $n \times n$ invertible square matrix, W be the inverse of A, and J(A) is an $n \times n$ -variate and differentiable function with respect to A, then the partial differentials of J with respect to Aand W satisfy

$$\frac{\partial J}{\partial \mathbf{A}} = -\mathbf{A}^{-T} \frac{\partial J}{\partial \mathbf{W}} \mathbf{A}^{-T}$$

2.3 Derivatives of Eigenvalues

$$\frac{\partial}{\partial \mathbf{X}} \sum \operatorname{eig}(\mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}) = \mathbf{I}$$
 (65)

$$\frac{\partial}{\partial \mathbf{X}} \prod \operatorname{eig}(\mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \det(\mathbf{X}) = \det(\mathbf{X}) \mathbf{X}^{-T}$$
(66)

If **A** is real and symmetric, λ_i and \mathbf{v}_i are distinct eigenvalues and eigenvectors of **A** (see (276)) with $\mathbf{v}_i^T \mathbf{v}_i = 1$, then [33]

$$\partial \lambda_i = \mathbf{v}_i^T \partial(\mathbf{A}) \mathbf{v}_i \tag{67}$$

$$\partial \mathbf{v}_i = (\lambda_i \mathbf{I} - \mathbf{A})^+ \partial (\mathbf{A}) \mathbf{v}_i \tag{68}$$

2.4Derivatives of Matrices, Vectors and Scalar Forms

2.4.1First Order

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{69}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T \tag{70}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T \tag{71}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^T$$
 (72)

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij} \tag{73}$$

$$\frac{\partial (\mathbf{X}\mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{im}(\mathbf{A})_{nj} = (\mathbf{J}^{mn}\mathbf{A})_{ij}$$
 (74)

$$\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^{T} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \qquad (69)$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^{T} \qquad (70)$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^{T} \qquad (71)$$

$$\frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^{T} \mathbf{X}^{T} \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^{T} \qquad (72)$$

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij} \qquad (73)$$

$$\frac{\partial (\mathbf{X} \mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{im}(\mathbf{A})_{nj} = (\mathbf{J}^{mn} \mathbf{A})_{ij} \qquad (74)$$

$$\frac{\partial (\mathbf{X}^{T} \mathbf{A})_{ij}}{\partial X_{mn}} = \delta_{in}(\mathbf{A})_{mj} = (\mathbf{J}^{nm} \mathbf{A})_{ij} \qquad (75)$$

Second Order 2.4.2

$$\frac{\partial}{\partial X_{ij}} \sum_{klmn} X_{kl} X_{mn} = 2 \sum_{kl} X_{kl} \tag{76}$$

$$\frac{\partial \mathbf{b}^T \mathbf{X}^T \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{X} (\mathbf{b} \mathbf{c}^T + \mathbf{c} \mathbf{b}^T)$$
 (77)

$$\frac{\partial \mathbf{b}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{X} (\mathbf{b} \mathbf{c}^{T} + \mathbf{c} \mathbf{b}^{T}) \tag{77}$$

$$\frac{\partial (\mathbf{B} \mathbf{x} + \mathbf{b})^{T} \mathbf{C} (\mathbf{D} \mathbf{x} + \mathbf{d})}{\partial \mathbf{x}} = \mathbf{B}^{T} \mathbf{C} (\mathbf{D} \mathbf{x} + \mathbf{d}) + \mathbf{D}^{T} \mathbf{C}^{T} (\mathbf{B} \mathbf{x} + \mathbf{b}) \tag{78}$$

$$\frac{\partial (\mathbf{X}^{T} \mathbf{B} \mathbf{X})_{kl}}{\partial X_{ij}} = \delta_{lj} (\mathbf{X}^{T} \mathbf{B})_{ki} + \delta_{kj} (\mathbf{B} \mathbf{X})_{il} \tag{79}$$

$$\frac{\partial (\mathbf{X}^T \mathbf{B} \mathbf{X})_{kl}}{\partial X_{ij}} = \delta_{lj} (\mathbf{X}^T \mathbf{B})_{ki} + \delta_{kj} (\mathbf{B} \mathbf{X})_{il}$$
 (79)

$$\frac{\partial (\mathbf{X}^T \mathbf{B} \mathbf{X})}{\partial X_{ij}} = \mathbf{X}^T \mathbf{B} \mathbf{J}^{ij} + \mathbf{J}^{ji} \mathbf{B} \mathbf{X} \qquad (\mathbf{J}^{ij})_{kl} = \delta_{ik} \delta_{jl} \quad (80)$$

See Sec 9.7 for useful properties of the Single-entry matrix \mathbf{J}^{ij}

$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$
 (81)

$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$

$$\frac{\partial \mathbf{b}^T \mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{D}^T \mathbf{X} \mathbf{b} \mathbf{c}^T + \mathbf{D} \mathbf{X} \mathbf{c} \mathbf{b}^T$$
(82)

$$\frac{\partial}{\partial \mathbf{X}} (\mathbf{X}\mathbf{b} + \mathbf{c})^T \mathbf{D} (\mathbf{X}\mathbf{b} + \mathbf{c}) = (\mathbf{D} + \mathbf{D}^T) (\mathbf{X}\mathbf{b} + \mathbf{c}) \mathbf{b}^T$$
(83)

Assume **W** is symmetric, then

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{A}^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
(84)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
 (85)

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
 (86)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
(87)

$$\frac{\partial}{\partial \mathbf{A}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})\mathbf{s}^T$$
(88)

As a case with complex values the following holds

$$\frac{\partial (a - \mathbf{x}^H \mathbf{b})^2}{\partial \mathbf{x}} = -2\mathbf{b}(a - \mathbf{x}^H \mathbf{b})^*$$
(89)

This formula is also known from the LMS algorithm [14]

2.4.3Higher-order and non-linear

$$\frac{\partial (\mathbf{X}^n)_{kl}}{\partial X_{ij}} = \sum_{r=0}^{n-1} (\mathbf{X}^r \mathbf{J}^{ij} \mathbf{X}^{n-1-r})_{kl}$$
(90)

For proof of the above, see B.1.3.

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{a}^T \mathbf{X}^n \mathbf{b} = \sum_{r=0}^{n-1} (\mathbf{X}^r)^T \mathbf{a} \mathbf{b}^T (\mathbf{X}^{n-1-r})^T$$
(91)

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{a}^{T} (\mathbf{X}^{n})^{T} \mathbf{X}^{n} \mathbf{b} = \sum_{r=0}^{n-1} \left[\mathbf{X}^{n-1-r} \mathbf{a} \mathbf{b}^{T} (\mathbf{X}^{n})^{T} \mathbf{X}^{r} + (\mathbf{X}^{r})^{T} \mathbf{X}^{n} \mathbf{a} \mathbf{b}^{T} (\mathbf{X}^{n-1-r})^{T} \right]$$
(92)

See B.1.3 for a proof.

Assume s and r are functions of x, i.e. s = s(x), r = r(x), and that A is a

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{s}^T \mathbf{A} \mathbf{r} = \left[\frac{\partial \mathbf{s}}{\partial \mathbf{x}} \right]^T \mathbf{A} \mathbf{r} + \left[\frac{\partial \mathbf{r}}{\partial \mathbf{x}} \right]^T \mathbf{A}^T \mathbf{s}$$
 (93)

$$\frac{\partial}{\partial \mathbf{x}} \frac{(\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x})}{(\mathbf{B}\mathbf{x})^T (\mathbf{B}\mathbf{x})} = \frac{\partial}{\partial \mathbf{x}} \frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}}{\mathbf{x}^T \mathbf{B}^T \mathbf{B}\mathbf{x}}$$
(94)

$$= 2\frac{\mathbf{A}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{B} \mathbf{B} \mathbf{x}} - 2\frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} \mathbf{B}^T \mathbf{B} \mathbf{x}}{(\mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x})^2}$$
(95)

Gradient and Hessian

Using the above we have for the gradient and the Hessian

$$f = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} \tag{96}$$

$$f = \mathbf{x}^{T} \mathbf{A} \mathbf{x} + \mathbf{b}^{T} \mathbf{x}$$
 (96)
$$\nabla_{\mathbf{x}} f = \frac{\partial f}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{T}) \mathbf{x} + \mathbf{b}$$
 (97)

$$\frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^T} = \mathbf{A} + \mathbf{A}^T \tag{98}$$

2.5 **Derivatives of Traces**

Assume $F(\mathbf{X})$ to be a differentiable function of each of the elements of X. It then holds that

$$\frac{\partial \text{Tr}(F(\mathbf{X}))}{\partial \mathbf{X}} = f(\mathbf{X})^T$$

where $f(\cdot)$ is the scalar derivative of $F(\cdot)$.

2.5.1 First Order

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}) = \mathbf{I} \tag{99}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}\mathbf{A}) = \mathbf{A}^T \tag{100}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X} \mathbf{B}) = \mathbf{A}^T \mathbf{B}^T$$
 (101)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^T \mathbf{B}) = \mathbf{B} \mathbf{A}$$
 (102)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^T \mathbf{A}) = \mathbf{A} \tag{103}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^T) = \mathbf{A} \tag{104}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \otimes \mathbf{X}) = \text{Tr}(\mathbf{A})\mathbf{I}$$
 (105)

2.5.2 Second Order

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr}(\mathbf{X}^2) = 2\mathbf{X}^T \tag{106}$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^2 \mathbf{B}) = (\mathbf{X} \mathbf{B} + \mathbf{B} \mathbf{X})^T$$
 (107)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{B} \mathbf{X}) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (108)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B} \mathbf{X} \mathbf{X}^T) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (109)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X} \mathbf{X}^T \mathbf{B}) = \mathbf{B} \mathbf{X} + \mathbf{B}^T \mathbf{X}$$
 (110)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X} \mathbf{B} \mathbf{X}^T) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (111)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B} \mathbf{X}^T \mathbf{X}) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (112)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{X} \mathbf{B}) = \mathbf{X} \mathbf{B}^T + \mathbf{X} \mathbf{B}$$
 (113)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}) = \mathbf{A}^T \mathbf{X}^T \mathbf{B}^T + \mathbf{B}^T \mathbf{X}^T \mathbf{A}^T \qquad (114)$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^T \mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X} \mathbf{X}^T) = 2\mathbf{X} \quad (115)$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B}) = \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T + \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T$$
 (116)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[\mathbf{X}^T \mathbf{B} \mathbf{X} \mathbf{C} \right] = \mathbf{B} \mathbf{X} \mathbf{C} + \mathbf{B}^T \mathbf{X} \mathbf{C}^T$$
 (117)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^T \mathbf{C}) = \mathbf{A}^T \mathbf{C}^T \mathbf{X} \mathbf{B}^T + \mathbf{C} \mathbf{A} \mathbf{X} \mathbf{B}$$
(118)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr} \Big[(\mathbf{A}\mathbf{X}\mathbf{B} + \mathbf{C})(\mathbf{A}\mathbf{X}\mathbf{B} + \mathbf{C})^T \Big] = 2\mathbf{A}^T (\mathbf{A}\mathbf{X}\mathbf{B} + \mathbf{C})\mathbf{B}^T$$
(119)

$$\frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X} \otimes \mathbf{X}) = \frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X}) \mathrm{Tr}(\mathbf{X}) = 2 \mathrm{Tr}(\mathbf{X}) \mathbf{I}(120)$$

See [7].

2.5.3 Higher Order

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{X}^k) = k(\mathbf{X}^{k-1})^T$$
 (121)

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^k) = \sum_{r=0}^{k-1} (\mathbf{X}^r \mathbf{A} \mathbf{X}^{k-r-1})^T$$
 (122)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{Tr} \left[\mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B} \right] = \mathbf{C} \mathbf{X} \mathbf{X}^T \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T \mathbf{X}^T \mathbf{C}^T \mathbf{X} + \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} + \mathbf{C} \mathbf{X} \mathbf{B} \mathbf{B}^T \mathbf{X}^T \mathbf{C} \mathbf{X} + \mathbf{C}^T \mathbf{X} \mathbf{X}^T \mathbf{C}^T \mathbf{X} \mathbf{B} \mathbf{B}^T$$

$$(123)$$

2.5.4 Other

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr}(\mathbf{A} \mathbf{X}^{-1} \mathbf{B}) = -(\mathbf{X}^{-1} \mathbf{B} \mathbf{A} \mathbf{X}^{-1})^T = -\mathbf{X}^{-T} \mathbf{A}^T \mathbf{B}^T \mathbf{X}^{-T}$$
(124)

Assume \mathbf{B} and \mathbf{C} to be symmetric, then

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr} \Big[(\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{A} \Big] = -(\mathbf{C} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}) (\mathbf{A} + \mathbf{A}^T) (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (125)$$

$$\frac{\partial}{\partial \mathbf{X}} \text{Tr} \Big[(\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{B} \mathbf{X}) \Big] = -2\mathbf{C} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{B} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}$$

$$+2\mathbf{B} \mathbf{X} (\mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{B} \mathbf{X}) \Big] = -2\mathbf{C} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1}$$

$$+2\mathbf{B} \mathbf{X} (\mathbf{A} + \mathbf{X}^T \mathbf{C} \mathbf{X})^{-1} (127)$$

See [7].

$$\frac{\partial \text{Tr}(\sin(\mathbf{X}))}{\partial \mathbf{X}} = \cos(\mathbf{X})^T \tag{128}$$

2.6 Derivatives of vector norms

2.6.1 Two-norm

$$\frac{\partial}{\partial \mathbf{x}}||\mathbf{x} - \mathbf{a}||_2 = \frac{\mathbf{x} - \mathbf{a}}{||\mathbf{x} - \mathbf{a}||_2} \tag{129}$$

$$\frac{\partial}{\partial \mathbf{x}} \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|_{2}} = \frac{\mathbf{I}}{\|\mathbf{x} - \mathbf{a}\|_{2}} - \frac{(\mathbf{x} - \mathbf{a})(\mathbf{x} - \mathbf{a})^{T}}{\|\mathbf{x} - \mathbf{a}\|_{2}^{3}}$$
(130)

$$\frac{\partial ||\mathbf{x}||_2^2}{\partial \mathbf{x}} = \frac{\partial ||\mathbf{x}^T \mathbf{x}||_2}{\partial \mathbf{x}} = 2\mathbf{x}$$
 (131)

2.7 Derivatives of matrix norms

For more on matrix norms, see Sec. 10.4.

2.7.1 Frobenius norm

$$\frac{\partial}{\partial \mathbf{X}} ||\mathbf{X}||_{\mathrm{F}}^2 = \frac{\partial}{\partial \mathbf{X}} \mathrm{Tr}(\mathbf{X} \mathbf{X}^H) = 2\mathbf{X}$$
 (132)

See (248). Note that this is also a special case of the result in equation 119.

2.8 Derivatives of Structured Matrices

Assume that the matrix \mathbf{A} has some structure, i.e. symmetric, to eplitz, etc. In that case the derivatives of the previous section does not apply in general. Instead, consider the following general rule for differentiating a scalar function $f(\mathbf{A})$

$$\frac{df}{dA_{ij}} = \sum_{kl} \frac{\partial f}{\partial A_{kl}} \frac{\partial A_{kl}}{\partial A_{ij}} = \text{Tr} \left[\left[\frac{\partial f}{\partial \mathbf{A}} \right]^T \frac{\partial \mathbf{A}}{\partial A_{ij}} \right]$$
(133)

The matrix differentiated with respect to itself is in this document referred to as the *structure matrix* of \mathbf{A} and is defined simply by

$$\frac{\partial \mathbf{A}}{\partial A_{ij}} = \mathbf{S}^{ij} \tag{134}$$

If **A** has no special structure we have simply $\mathbf{S}^{ij} = \mathbf{J}^{ij}$, that is, the structure matrix is simply the single-entry matrix. Many structures have a representation in singleentry matrices, see Sec. 9.7.6 for more examples of structure matrices.

The Chain Rule

Sometimes the objective is to find the derivative of a matrix which is a function of another matrix. Let $\mathbf{U} = f(\mathbf{X})$, the goal is to find the derivative of the function $g(\mathbf{U})$ with respect to \mathbf{X} :

$$\frac{\partial g(\mathbf{U})}{\partial \mathbf{X}} = \frac{\partial g(f(\mathbf{X}))}{\partial \mathbf{X}} \tag{135}$$

Then the Chain Rule can then be written the following way:

$$\frac{\partial g(\mathbf{U})}{\partial \mathbf{X}} = \frac{\partial g(\mathbf{U})}{\partial x_{ij}} = \sum_{k=1}^{M} \sum_{l=1}^{N} \frac{\partial g(\mathbf{U})}{\partial u_{kl}} \frac{\partial u_{kl}}{\partial x_{ij}}$$
(136)

Using matrix notation, this can be written as:

$$\frac{\partial g(\mathbf{U})}{\partial X_{ij}} = \text{Tr}\left[\left(\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}} \right)^T \frac{\partial \mathbf{U}}{\partial X_{ij}} \right]. \tag{137}$$

Symmetric

If **A** is symmetric, then $\mathbf{S}^{ij} = \mathbf{J}^{ij} + \mathbf{J}^{ji} - \mathbf{J}^{ij}\mathbf{J}^{ij}$ and therefore

$$\frac{df}{d\mathbf{A}} = \left[\frac{\partial f}{\partial \mathbf{A}}\right] + \left[\frac{\partial f}{\partial \mathbf{A}}\right]^T - \operatorname{diag}\left[\frac{\partial f}{\partial \mathbf{A}}\right]$$
(138)

That is, e.g., ([5]):

$$\frac{\partial \text{Tr}(\mathbf{A}\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A} + \mathbf{A}^{T} - (\mathbf{A} \circ \mathbf{I}), \text{ see } (142)$$

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I}))$$

$$\frac{\partial \ln \det(\mathbf{X})}{\partial \mathbf{X}} = 2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I})$$
(140)

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I}))$$
 (140)

$$\frac{\partial \ln \det(\mathbf{X})}{\partial \mathbf{X}} = 2\mathbf{X}^{-1} - (\mathbf{X}^{-1} \circ \mathbf{I})$$
 (141)

2.8.3Diagonal

If X is diagonal, then ([19]):

$$\frac{\partial \text{Tr}(\mathbf{AX})}{\partial \mathbf{X}} = \mathbf{A} \circ \mathbf{I} \tag{142}$$

2.8.4 Toeplitz

Like symmetric matrices and diagonal matrices also Toeplitz matrices has a special structure which should be taken into account when the derivative with respect to a matrix with Toeplitz structure.

As it can be seen, the derivative $\alpha(\mathbf{A})$ also has a Toeplitz structure. Each value in the diagonal is the sum of all the diagonal valued in \mathbf{A} , the values in the diagonals next to the main diagonal equal the sum of the diagonal next to the main diagonal in \mathbf{A}^T . This result is only valid for the unconstrained Toeplitz matrix. If the Toeplitz matrix also is symmetric, the same derivative yields

$$\frac{\partial \text{Tr}(\mathbf{AT})}{\partial \mathbf{T}} = \frac{\partial \text{Tr}(\mathbf{TA})}{\partial \mathbf{T}} = \boldsymbol{\alpha}(\mathbf{A}) + \boldsymbol{\alpha}(\mathbf{A})^T - \boldsymbol{\alpha}(\mathbf{A}) \circ \mathbf{I}$$
(144)