

University of Engineering & Management, Kolkata

Subject Name: Computer Organization & Architecture Laboratory

Subject Code: PCCCS492

ASSIGNMENT - 6

6.1. TITLE: Implementation of Full Adder using VHDL (Dataflow and Behavioral Model).

6.2. APPARATUS REQUIRED:

a. ModelSim software.

6.3. THEORY:

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full adder adds three one-bit numbers, often written as A, B, and C_{in} ; A and B are the operands, and C_{in} is a bit carried in from the previous less-significant stage. The circuit produces a two-bit output such as sum (S) and carry (C_{out}).

6.3.1. TRUTH TABLE FOR FULL ADDER:

Input			Output	
A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

6.3.2. K-MAP FOR SUM AND CARRY FOR FULL ADDER:

K-Map for carry:

6.3.3. FULL ADDER USING BASIC GATES:

6.3.4. VHDL CODE:

6.3.4.1. Dataflow Model:

library IEEE; use IEEE.std_logic_1164.all;

-- Entity declaration

entity FA_DATAFLOW_1 is

port(A: in std_logic; -- FA input
B: in std_logic; -- FA input
CIN: in std_logic; -- FA input
SUM: out std_logic; -- FA output
CARRY: out std_logic); -- FA output

end FA_DATAFLOW_1;

- -- Dataflow Modelling Style
- -- Architecture definition

architecture DATAFLOW of FA_DATAFLOW_1 is

begin

SUM <= A XOR B XOR CIN; CARRY <= (A AND B) OR (A AND CIN)OR (B AND CIN);

end DATAFLOW;

6.3.4.2. Testbench waveform:

6.3.4.3. Behavioral Model:

library IEEE; use IEEE.std_logic_1164.all;

-- Entity declaration

entity FA_BEHAVE_2 is

port(A : in std_logic; -- FA input

```
B: in std_logic; -- FA input
     CIN: in std_logic; -- FA input
     SUM: out std_logic; -- FA output
     CARRY : out std_logic); -- FA output
end FA_BEHAVE_2;
-- Behavioural Modelling Style
-- Architecture definition
architecture BEHAVIOURAL of FA_BEHAVE_2 is
process (A,B,CIN)
begin
if A = '0' then
  if B = 0 then
    SUM <= CIN;
    CArry <='0';
  else
     SUM <= not CIN;
     CArry <= CIN;
  end if;
else
   if B = 0 then
    SUM <= not CIN;
    CArry <= CIN;
  else
     SUM \ll CIN;
    CArry <='1';
  end if;
end if;
end process;
end BEHAVIOURAL;
```

6.3.4.4. Testbench waveform:

6.4. PROCEDURE:

- I. Create a new project in ModelSim platform.
- II. Create a new file under this project.
- III. Write the VHDL code in the editor window.
- IV. Save and compile the written code.
- V. Simulate the code and generate the testbench waveform.

6.5. CONCLUSION: