Student Information

Full Name : Burak YILDIZ

 $Id\ Number:\ 2449049$

Answer 1

a)

р	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg p \lor \neg q$	$(p \land q) \iff (\neg p \lor \neg q)$
T	Т	F	F	Т	F	F
T	F	F	Т	F	Т	F
F	Т	Т	F	F	Т	F
F	F	Т	Т	F	Т	F

The statement is a contradiction.

b)

$$\begin{array}{ll} p \to ((q \vee \neg q) \to (p \wedge q)) \\ \equiv p \to ((T) \to (p \wedge q)) & \text{Negation Law} \\ \equiv p \to ((F) \vee (p \wedge q)) & \text{Table 7 Line 1} \\ \equiv p \to (p \wedge q) & \text{Identity Law} \\ \equiv \neg p \vee (p \wedge q) & \text{Table 7 Line 1} \\ \equiv (\neg p \vee p) \wedge (\neg p \vee q) & \text{Distributive Law} \\ \equiv T \vee (\neg p \vee q) & \text{Negation Law} \\ \equiv \neg p \vee q & \text{Identity Law} \end{array}$$

Answer 2

- a) $\forall x \exists y (W(x,y))$
- b) $\neg(\forall y \exists x (F(x,y)))$
- c) $\forall x(W(x,P) \to A(Ali,x))$
- d) $\exists y(W(Busra,y) \rightarrow F(TUBITAK,y))$
- e) $\exists x \exists y \exists z (S(x,y) \land S(x,z) \land (y \neq z))$
- f) $\forall x \forall y \exists z (W(x, z) \land W(y, z) \land (x = y))$
- g) $\exists x \exists y \exists z (W(x,z) \land W(y,z) \land \forall t (W(t,z) \rightarrow (t=x \lor t=y)))$

Answer 3

The letter 'a' after the step numbers means that we made an assumption and still in that assumption box. 'aa' means assumption inside assumption

1.	$p \to q$	premise
2.	$(q \land \neg r) \to s$	premise
3.	$\neg s$	premise
4.a	$(q \land \neg r)$	assumed
5.a	s	$\rightarrow e, 2, 4$
6.a	\perp	$\neg e, 3, 5$
7.	$\neg (q \land \neg r)$	$\neg i, 4-6$
8.a	p	assumed
9.a	q	$\rightarrow e, 1, 8$
10.aa	$\neg r$	assumed
11.aa	$q \wedge \neg r$	$\wedge i, 9, 10$
12.aa	\perp	$\neg e, 7 - 11$
13.a	r	$\neg i, 10 - 12$
14.	$p \to r$	$\rightarrow i, 8-13$

Answer 4

By using the claims and the facts we can transform the sentences into the following statement to proof.

$$p,p \to (q \land r), r \to s \vdash \neg(s \to \neg q)$$

The letter 'a' after the step numbers means that we made an assumption and still in that assumption box.

1. premise $p \to (q \land r)$ premise 2. $r \rightarrow s$ premise $\rightarrow e, 1, 2$ $q \wedge r$ $\wedge e, 4$ 6. $\rightarrow e, 3, 5$ 7. $\wedge e, 4$ 7. q8. a $s \to \neg q$ assumed $\rightarrow e, 6, 8$ 9. a $\neg q$ 10.a \perp $\neg e, 7, 9$ 11. $\neg (s \rightarrow \neg q)$ $\neg i, 8 - 10$

Answer 5

The letter 'a' after the step numbers means that we made an assumption and still in that assumption box. 'aa' means assumption inside assumption

1.	$\forall x (P(x) \to (Q(x) \to R(x)))$	premise
2.	$\exists x (P(x))$	premise
3.	$\forall x(\neg R(x))$	premise
4.a	P(c)	assumed
5.a	$P(c) \to (Q(c) \to R(c))$	$\forall e, 1$
6.a	$Q(c) \to R(c)$	$\rightarrow e, 4, 5$
7.a	$\neg R(c)$	$\forall e, 3$
8.aa	Q(c)	assumed
9.aa	R(c)	$\rightarrow e, 6, 8$
10.aa	_	$\neg e, 7, 9$
11.a	$\neg Q(c)$	$\neg i8, 8-10$
12.a	$\exists x(\neg Q(x))$	$\exists i, 11$
13.	$\exists x(\neg Q(x))$	$\exists e, 2, 4-12$