

Basi di Dati corso A

325

Uno schema non decomponibile in BCNF

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

 $\begin{array}{c} \text{Dirigente} \rightarrow \text{Sede} \\ \text{Progetto Sede} \rightarrow \text{Dirigente} \end{array}$

Basi di Dati corso A

Una possibile riorganizzazione

Dirigente	Progetto	Sede	Reparto
Rossi	Marte	Roma	1
Verdi	Giove	Milano	1
Verdi	Marte	Milano	1
Neri	Saturno	Milano	2
Neri	Venere	Milano	2

Dirigente → Sede Reparto Sede Reparto → Dirigente Progetto Sede → Reparto

Basi di Dati corso A

327

RI

Dirigente	Sede	Reparto
Rossi	Roma	1
Verdi	Milano	1
Neri	Milano	2

2

Progetto	Sede	Reparto
Marte	Roma	1
Giove	Milano	1
Marte	Milano	1
Saturno	Milano	2
Venere	Milano	2

Dirigente -> Sede Rena

Dirigente → Sede Reparto 2 Sede Reparto → Dirigente 2 Progetto Sede → Reparto 3 R X~> Y Ri Somo

Basi di Dati corso A

Analisi inadeguata

► Spesso la non raggiungibilità della forma normale di Boyce e Codd può dipendere da un'analisi non sufficientemente accurata

Basi di Dati corso A

329

Progettazione e normalizzazione

- ▶ la teoria della normalizzazione può essere usata nella progettazione logica per verificare lo schema relazionale finale
- ▶ si può usare anche durante la progettazione concettuale per verificare la qualità dello schema concettuale

Basi di Dati corso A

331

Analisi dell'entità

▶L'entità viola la terza forma normale a causa della dipendenza:

PartitalVA → NomeFornitore Indirizzo

▶Possiamo decomporre sulla base di questa dipendenza

Basi di Dati corso A

Analisi della relationship

La relationship viola la terza forma normale a causa della dipendenza:

Professore → Dipartimento

▶Possiamo decomporre sulla base di questa dipendenza

Basi di Dati corso A

335

Ulteriore analisi sulla base delle dipendenze

► La relationship Tesi è in BCNF sulla base delle dipendenze

Studente → CorsoDiLaurea Studente → Professore

- ▶le due proprietà sono indipendenti
- questo suggerisce una ulteriore decomposizione

Basi di Dati corso A

337

Quante sono le forme normali?

1

almeno

- ► 1NF (First Normal Form)
- 2NF (Second Normal Form)
- ➤ 3NF (Third Normal Form)
- BCNF (Boyce-Codd Normal Form) 4
- ▶4NF (Fourth Normal Form)
- ▶5NF (Fifth Normal Form)

Basi di Dati corso A

339

repetita juvant

- ▶ Dipendenza funzionale:
 - ▶è una dipendenza semantica
 - ▶Data una relazione R, l'attributo Y di R dipende funzionalmente dall'attributo X di R se e solo se ogni valore di X in R ha associato un unico valore di Y in R e si scrive:
 - $\rightarrow X \rightarrow Y$
- ▶In altri termini:
 - ▶Y dipende funzionalmente da X
 - ▶X è il determinante di Y

Basi di Dati corso A

normalizzazione

Insieme di condizioni da rispettare per garantire la qualità di un database, vi sono sei livelli di qualità maggiormente noti:

341

normalizzazione

- ► Processo ripetuto di applicazione di proiezioni per
- ▶ Eliminare ridondanze
- ▶Eliminare anomalie

Basi di Dati corso A

1NF

► Una relazione è in 1NF se e solo se ogni tupla contiene un solo valore per ogni attributo

2,4

Basi di Dati corso A

343

2NF

► Una relazione è in 2NF se è in 1NF e se ogni suo attributo non chiave dipende funzionalmente dalla chiave completa

Basi di Dati corso A

dip. funzionale transitiva (TFD)

- ► In una relazione R(A,B,C)
- ►Se B→C e A→B
- ▶Se B non è chiave candidata di R
- ▶allora C ha TFD da A

347

3NF

► Mediante proiezione si crea una nuova relazione che rimuove la TFD

BCNF

- ▶ Una relazione è in BCNF se tutti i suoi determinanti sono candidati chiave
- ▶ Ogni relazione in 3NF è in BCNF a meno che:
 - ▶abbia 2 o + chiavi candidate
 - ▶le chiavi candidate siano composte

Basi di Dati corso A

349

Dipendenza multivalente

ProdottoTagliaColore		
Prodotto	Taglia	Colore
T-Shirt	S	Bianco
T-Shirt	S	Giallo
T-Shirt	S	Rosso
T-Shirt	M	Bianco
T-Shirt	М	Giallo
T-Shirt	М	Rosso
T-Shirt	L	Bianco
T-Shirt	L	Giallo
T-Shirt	L	Rosso
T-Shirt	ХL	Bianco
T-Shirt	ХL	Giallo
T-Shirt	ХL	Rosso
Camicia	S	Blu
Camicia	S	Verde
Camicia	М	Blu
Camicia	М	Verde
Camicia	L	Blu
Camicia	L	Verde

- Se un attributo determina in modo indipendente più attributi
- ▶ prodotto → → taglia
- ▶prodotto→→colore
- Prodotto 'multidetermina' taglia e colore
- ▶Esiste:
 - ▶Dipendenza multivalente
 - **▶**ridondanza

Basi di Dati corso A

dipendenza multivalente (MVD)

- ▶ Dati U e V sottoinsiemi di attributi di R, se W è l'insieme di attributi di R non compresi in U e in V, la MVD U→→V esiste in R se e solo se
 - ▶R=R(UV) JOIN R(W)
- ►MVD è generalizzazione di FD
 - ▶Tutte le FD sono MVD
 - ▶Non tutte le MVD sono FD
- ►(A→B può essere visto come caso speciale di A→→B)

Basi di Dati corso A

353

MVD

- ▶ Se la MVD è FD non causa ridondanze
 - In prodotti(<u>cod</u>, qtà, prezzo) esistono le seguenti FD: cod→qtà e cod→prezzo
 - ▶Si può effettuare una proiezione di Prodotti in: (cod,qtà) e (cod,prezzo) e ricostruire con equijoin
 - ►In prodotti sussistono cod→→qtà e cod→→prezzo, che sono anche FD

Basi di Dati corso A

355

dipendenza di Join (JD)

- ▶ Esistono relazioni in 4NF con anomalie
 - ►Un concessionario che vende un articolo e rappresenta un produttore. Se il produttore produce quell'articolo, allora il concessionario vende l'articolo del produttore

ConcessionarioArticoloProduttore			
Concessionario	Produttore		
Neri	PC	IBM	
Neri	PC	HP	
Neri	Scanner	HP	
Verdi	PC	HP	

Basi di Dati corso A

JD

- ► Non si tratta di FD, né di MVD ma di dipendenza di join (JD)
- ▶R(X,Y,Z) soddisfa la JD se e solo se
 - ► $R=\pi(X)$ JOIN $\pi(Y)$ JOIN $\pi(Z)$
- ▶JD è la dipendenza più generale
 - ▶FD caso particolare di MVD
 - ▶MVD caso particolare di JD

Basi di Dati corso A

357

5NF

▶R è in 5NF se e solo se ogni dipendenza di join presente in essa è conseguenza delle sue chiavi candidate

Concessionario Articolo Concessionario Articolo		
Neri	PC	
Neri	Scanner	
Verdi	PC	

ConcessionarioProduttore		
Concessionario Produttore		
Neri	IBM	
Neri	HP	
Verdi	HP	

ArticoloProduttore		
Articolo Produttore		
PC	IBM	
PC	HP	
Scanner	HP	

in 5NF

Basi di Dati corso A

JD e 5NF

- ► Se la dipendenza di join è conseguenza delle chiavi candidate, la relazione è già in 5NF
 - ►In dipendenti(<u>matricola</u>,CF,nome) matricola e CF sono chiavi candidate
 - Si può proiettare: (matricola,CF), (CF, nome), (matricola, nome), e ricostruire con join su matricola e CF
 - ▶ Dipendenti contiene JD, ma non presenta anomalie=> è già in 5NF

Basi di Dati corso A

359

First Normal Form

- ▶ Disallows composite attributes, multivalued attributes, and **nested relations**; attributes whose values for an individual tuple are nonatomic
- Considered to be part of the definition of relation

Basi di Dati corso A

Prima forma normale

▶ In una tabella non possono esistere colonne definite per contenere una molteplicità di valori

N. Protocollo	Ufficio
1	Α
1	В
2	Α
2	С
3	В
3	С
	·

Basi di Dati corso A

365

Second Normal Form

- ► A relation schema R is in **second normal form** (2NF) if every non-prime attribute A in R is fully functionally dependent on the primary key
- ▶ R can be decomposed into 2NF relations via the process of 2NF normalization

Basi di Dati corso A

Seconda forma normale

► Tutti gli attributi devono dipendere dall'intera chiave primaria

Codice_citta	Codice_Via	Citta	Via
01	1	ma	Verdi
01	02	Roma	Bianchi
01	03	Roma	Fi
02	9	Milano	G,

Codice_citta	Codice_Via	Via
01	01	Verdi
01	02	Bianchi
01	03	Rossi
02	01	Gialli

Codice_citta	Citta	
01	Roma	
02	Milano	

367

Third Normal Form

Definition:

► Transitive functional dependency - a FD X -> Z that can be derived from two FDs X -> Y and Y -> Z

Basi di Dati corso A

Third Normal Form

- ► A relation schema R is in **third normal form** (**3NF**) if it is in 2NF and no non-prime attribute A in R is transitively dependent on the primary key
- ▶ R can be decomposed into 3NF relations via the process of 3NF normalization

NOTE:

In $X \to Y$ and $Y \to Z$, with X as the primary key, we consider this a problem only if Y is <u>not</u> a candidate key. When Y is a candidate key, there is no problem with the transitive dependency.

E.g., Consider EMP (SSN, Emp#, Salary).

Here, SSN -> Emp# -> Salary and Emp# is a candidate key.

Basi di Dati corso A

369

Terza forma normale

Non devono esserci dipendenze tra gli attributi se non basate sulla chiave primaria

N. Protocollo	Mittente	Tipo	Urgenza
1	001	1	si
2	001	2	2/
3	003	1	
4	002	2	no
5	003	3	si

Tip Descrizione

1 ettera

2 Memo

3 Tele ramma

NP-> T

TipoDescrizioneUrgenza1Letterasi2Memono3Telegrammasi

Basi di Dati corso A

BCNF (Boyce-Codd Normal Form)

- ► A relation schema R is in **Boyce-Codd Normal**Form (BCNF) if whenever an FD X -> A holds
 in R, then X is a superkey of R
- ► Each normal form is strictly stronger than the previous one
 - ▶ Every 2NF relation is in 1NF
 - ▶ Every 3NF relation is in 2NF
 - ▶ Every BCNF relation is in 3NF
- ▶ There exist relations that are in 3NF but not in BCNF
- ▶ The goal is to have each relation in BCNF (or 3NF)

Basi di Dati corso A