| Date |  |  |  |  |  |  |  |  |  |  |  |  |
|------|--|--|--|--|--|--|--|--|--|--|--|--|
| Date |  |  |  |  |  |  |  |  |  |  |  |  |

#### NO.1 INSTITUTE FOR IAS/IFoS EXAMINATIONS



## MATHEMATICS CLASSROOM TEST

2022-2023

IAS/IFoS

# **MATHEMATICS**

Under the guidance of K. Venkanna

**VECTOR ANALYSIS CLASS TEST** 

**DATE: 07 APRIL-2022** 

Time: 3:00 Hours Maximum Marks: 250

#### **INSTRUCTIONS**

- 1. Write your details in the appropriate space provided on the right side.
- 2. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- 3. Candidates should attempt All Questions.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 5. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 6. All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 7. All rough work should be done in the space provided and scored out finally.
- 8. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

| READ | INSIR | UCI | IONS C | )N IHE |
|------|-------|-----|--------|--------|
| LEFT | SIDE  | ΟF  | THIS   | PAGE   |
| CARE | ULLY  |     |        |        |
|      |       |     |        |        |
| Name |       |     |        |        |

| Name |  |  |  |
|------|--|--|--|
|      |  |  |  |
|      |  |  |  |

| Roll No. |  |  |
|----------|--|--|

| Test Centre |  |
|-------------|--|
| 1000 00     |  |

| Medium |  |  |
|--------|--|--|
|        |  |  |

| Do not write your Roll Number or Name |
|---------------------------------------|
| anywhere else in this Question Paper- |
| cum-Answer Booklet.                   |

| 1 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| L |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

I have read all the instructions and shall abide by them

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

2 of 34

INDEX TABLE

| Question | Page No. | Max. Marks | Marks Obtained |
|----------|----------|------------|----------------|
| 1.       |          | 15         |                |
| 2.       |          | 16         |                |
| 3.       |          | 16         |                |
| 4.       |          | 16         |                |
| 5.       |          | 14         |                |
| 6.       |          | 15         |                |
| 7.       |          | 16         |                |
| 8.       |          | 10         |                |
| 9.       |          | 10         |                |
| 10.      |          | 14         |                |
| 11.      |          | 16         |                |
| 12.      |          | 10         |                |
| 13.      |          | 10         |                |
| 14.      |          | 10         |                |
| 15.      |          | 10         |                |
| 16.      |          | 17         |                |
| 17.      |          | 10         |                |
| 18.      |          | 10         |                |
| 19.      |          | 15         |                |
|          |          |            |                |

**Total Marks** 

| 1. | (i) In what direction from the point (2, 1, -1) is the directional derivative of $\phi = x^2 yz^3$ a maximum? |
|----|---------------------------------------------------------------------------------------------------------------|
|    | φ - x yz a maximum?  (ii) What is the magnitude of this maximum?                                              |
|    | (iii) If A and B are invariant under rotation show that A $\bullet$ B and A $\times$ B are also               |
|    | invariant. [15]                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |
|    |                                                                                                               |



| 2. | (i) Show that the Frenet-Serret formulae can be written in the $\frac{\mathrm{d}\mathbf{T}}{\mathrm{d}\mathbf{s}} = \boldsymbol{\omega} \times \mathbf{T}, \frac{\mathrm{d}\mathbf{N}}{\mathrm{d}\mathbf{s}} = \boldsymbol{\omega} \times \mathbf{N}, \frac{\mathrm{d}\mathbf{B}}{\mathrm{d}\mathbf{s}} = \boldsymbol{\omega} \times \mathbf{B} \text{ and determine } \boldsymbol{\omega}.$ (ii) Prove that $\operatorname{grad} \left(\mathbf{A} \cdot \mathbf{B}\right) = \left(\mathbf{B} \cdot \nabla\right) \mathbf{A} + \left(\mathbf{A} \cdot \nabla\right) \mathbf{B} + \mathbf{B} \times \operatorname{curl} \mathbf{A} + \mathbf{A} \times \operatorname{curl} \mathbf{B}.$ | e form |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |







| 3. | Verify Green's theorem in the plane for $\oint_C (2x - y^3) dx - xy dy$ , where C is the boundary of the region enclosed by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$ . [16] |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                    |
|    |                                                                                                                                                                                    |
|    |                                                                                                                                                                                    |







| 4. | <ul> <li>(i) Find the work done by the force F = -4xyi + 8yj + 2k as the point of application moves along the parabola y = x², z = 1 from A(0, 0, 1) to B(2, 4, 1).</li> <li>(ii) Show that A = (2x² + 8xy² z) i + (3x³ y - 3xy) j - (4y² z² + 2x³ z) k is not solenoidal but B = xyz² A is solenoidal. [16]</li> </ul> |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|







| 5. | (i) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$ .  (ii) Find curl ( $\mathbf{r}$ f( $\mathbf{r}$ )) where f( $\mathbf{r}$ ) is differentiable.  [14] |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|







| 6. | If ${\bf A}({\bf x},{\bf y},z)$ is an invariant differentiable vector field with respect to a rotation of axes, prove that curl ${\bf A}$ is invariant vector field under the transformation. [15] |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|







| 7. | (i)  | Prove that curl $[\mathbf{r}^n (\mathbf{a} \times \mathbf{r})] = (\mathbf{n} + 2) \mathbf{r}^n \mathbf{a} - \mathbf{n} \mathbf{r}^{n-2} (\mathbf{r} \cdot \mathbf{a}) \mathbf{r}$ , where a is <b>a</b> constant |
|----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (ii) | vector. Represent the vector $A = z\mathbf{i} - 2x\mathbf{j} + y\mathbf{k}$ in cylindrical coordinates. Thus determine                                                                                           |
|    | (11) | $A_{p}$ , $A_{\phi}$ and $A_{z}$ . [16]                                                                                                                                                                          |
|    |      | <sub>ρ</sub> , <sub>φ</sub>                                                                                                                                                                                      |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |
|    |      |                                                                                                                                                                                                                  |







| 8. | Prove that a cylindrical coordinate system is orthogonal. | [10] |
|----|-----------------------------------------------------------|------|
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |
|    |                                                           |      |



| 9. | Find the total work done in moving a particle in a force field given by $\mathbf{F} = 3xy \mathbf{i} -$     |
|----|-------------------------------------------------------------------------------------------------------------|
|    | $5z$ <b>j</b> +10x <b>k</b> along the curve x = $t^2$ + 1, y = $2t^2$ , z = $t^3$ from t = 1 to t = 2. [10] |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |
|    |                                                                                                             |



| 10. | (i)  | What is the directional derivative of $\phi = xy^2 + yz^3$ at the point $(2, -1, 1)$ in the                                                                   |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (ii) | direction of the normal to the surface $x \log z - y^2 = -4$ at $(-1, 2, 1)$ ?<br>For a solenoidal vector F, show that curl curl curl F = $\nabla^4 F$ . [14] |
|     | , ,  |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |
|     |      |                                                                                                                                                               |







| 11. | Evaluate $\iint_{S} r \cdot n \ dS$ where (i) S is the sphere of radius 2 with centre at (0, 0, 0), (ii)                                                                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | S is the surface of the cube bounded by $x = -1$ , $y = -1$ , $z = -1$ , $x = 1$ , $y = 1$ , $z = 1$ , (iii)S is the surface bounded by the paraboloid $z = 4 - (x^2 + y^2)$ and the xy plane. |
|     | [16]                                                                                                                                                                                           |







| 12. | Applying Stoke's theorem to prove that                                             |      |
|-----|------------------------------------------------------------------------------------|------|
|     | $\int_{C} (ydx + zdy + xdz) = -2\sqrt{2}\pi a^{2}$ , where C is the curve given by |      |
|     | $x^2 + y^2 + z^2 - 2ax - 2ay = 0$ , $x + y = 2a$                                   |      |
|     | and begins at the point (2a, 0, 0) and goes at first below the z-plane.            | [10] |



| 13. | Find the curvature and the torsion of the space curve |      |
|-----|-------------------------------------------------------|------|
|     | $z = a(3u + u^3).$                                    | [10] |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |
|     |                                                       |      |



|     | 24 Of 34                                                                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 14. | Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar |
|     | potential for $\vec{F}$ and the work done in moving an object in this field from (1, -2, 1)                         |
|     | to (3, 1, 4). [10]                                                                                                  |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |



| 15. | Find the work done in moving the particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1, z = 0$    |
|-----|------------------------------------------------------------------------------------------------------------------|
|     | under the field of force given by $\vec{F} = (2x - y + z)\hat{i} + (x + y - z^2)\hat{j} + (3x - 2y + 4z)\hat{k}$ |
|     | [10]                                                                                                             |



| <b>16.</b> (a) | (i) | The position vector of a moving point at time t is $\vec{r} = \sin t \hat{i} + \cos 2t \hat{j} + (t^2 + 2t)\hat{k}$ . |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------|
|                |     | Find the components of acceleration $\bar{a}$ in the directions parallel to the velocity                              |

vector  $\overline{v}$  and perpendicular to the plane of  $\overline{r}$  and  $\overline{v}$  at time t = 0.

- (ii) Prove that vector f(r) **r** is irrotational.
- (iii) Prove that curl  $(\psi \nabla \phi) = \nabla \psi \times \nabla \phi = \text{curl } (\phi \nabla \psi)$ .

[17]







| 17. | Show that $F = (\sin y + z) \mathbf{i} + (x \cos y - z) \mathbf{j} + (x - y) \mathbf{k}$ is a conservative vector field |
|-----|-------------------------------------------------------------------------------------------------------------------------|
|     | and find a function $\phi$ such that $F = \nabla \phi$ . [10]                                                           |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |



| 18. | By using divergence theorem evaluate                                     |      |
|-----|--------------------------------------------------------------------------|------|
|     | $\iint_{S} \left( a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2} \right)^{1/2} dS$ |      |
|     | over the ellipsoid $ax^2 + by^2 + cz^2 = 1$ .                            | [10] |



| 19. | Verify Stoke's theorem for                                                            |
|-----|---------------------------------------------------------------------------------------|
|     | $F = (x^2 + y - 4) \mathbf{i} + 3xy \mathbf{j} + (2xz + z^2) \mathbf{k}$              |
|     | where S is the upper half of the sphere $x^2 + y^2 + z^2 = 16$ and C is its boundary. |

[15]















#### No. 1 INSTITUTE FOR IAS/IFoS EXAMINATIONS



### OUR ACHIEVEMENTS IN IAS (FROM 2008 TO 2020)



HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152