COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 7AhttpsQ/peweindgrdissoiplines

Add WeChat powcoder

Queuing disciplines

- We have focused on *first-come first-serve* (FCFS) queues Assignment Project Exam Help so far
- However, sometimes:you may want to give some jobs a higher priority than others
- Priority queues can be classified as
 - Non-preemptive
 - Preemptive resume

COMP9334

What is priority queueing?

- A job with low priority will only get served if the high priority queue is empty
- Each priority queue is a FCFS queue
- Exercise: If the server has finished a job and finds 1 job in the high priority queue and 3 jobs in the low priority queue, which job will the server start to work on?
 - Repeat the exercise when the high priority queue is empty and there are 3 jobs in the low priority queue.

COMP9334 3

Preemptive and non-preemptive priority (1)

T1,2021 COMP9334 4

processing

Preemptive and non-preemptive priority (2)

- Non-preemptive:
 - A job being served will not be interrupted (even if a higher priority job arrives in the mean time)
- Example: High priority job (red), low priority job (green)
 Assignment Project Exam Help

Preemptive and non-preemptive priority (3)

• Preemptive resume:

• Higher priority job will interrupt a lower priority job under service. Once all higher priorities served, an interrupted lower priority job is resumed.

• Example: High priority job (red), low priority job (green) Assignment Project Exam Help

Time t = 10: A high priority job requiring 1s of processing arrives.

The server starts processing the high priority job immediately

Time t = 11: Server finishes processing the high priority job. Since no high priority job arrives in (10,11], the high priority job queue is empty, it resumes processing the low priority job that is pre-empted at time t = 10

Example of non-preemptive priority queueing

- Example: In the output port of a router, you want to give some packets a higher priority priority
 - In Differentiated Service
 - Real-time voice and video packets are given higher priority because they need a lower end-to-end delay
 - Other packets are given lower priority
- You cannot preempt a packet transmission and resume its transmission later
 - A truncated packet will have a wrong checksum and packet length etc.

T1,2021 **COMP9334**

Example of preemptive resume priority queueing

- E.g. Modelling multi-tasking of processors
- Can interrupt a job but you need to do context switching (i.e. save the registers for the current job so that it can be resumed later)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

M/G/1 with priorities

- Separate queue for each priority (see picture next page)
 - Classified into P priorities before entering a queue
 - Priorities numbered 1 to P, Queue 1 being the highest priority
- Arrival rate of priority class p is Assignment Project Exam Help

$$\lambda_p$$
 wherepoweder from P

• Average service time and second moment of class p requests is given by

$$E[S_p]$$
 and $E[S_p^2]$

Priority queue

Lecture 4A: Deriving the P-K formula

- Let
 - W = Mean waiting time
 - N = Mean number of customers in the queue

 - R = Mean residual service time

• 1/ μ = Mean service time Assignment Project Exam Help • R = Mean residual

https://powcoder.com $N = \lambda W$

- We can prove that
 - W = N * $(1/\mu)$ + Rdd WeChat powcoder Substitution

$$W = \lambda \times W \times \frac{1}{\mu} + R$$

Mean residual time R

$$R = \frac{1}{2}\lambda E[S^2]$$

T1,2021 **COMP9334** 11

Deriving the non-preemptive queue result (1)

- S₁ service time for Class 1 with mean E[S₁]

 https://powcoder.com

 W₁ = mean waiting time for Class 1 customers
- N₁ = number of Class Westernewicother queue
- R = mean residual service time when a customer arrives
- We have for Class 1: W₁ = N₁ E[S₁] + R
- Little's Law: $N_1 = \lambda_1 W_1$

$$W_1 = rac{R}{1-
ho_1}$$
 where $ho_1 = \lambda_1 E[S_1]$

COMP9334 12 T1,2021

Deriving the non-preemptive queue result (2)

 To find the residual service time R, note that the customer in the server can be a high or low priority customer, we have

$$R = \begin{bmatrix} & \text{Add WeChat powcoder} \\ & + \end{bmatrix}$$

The waiting time is therefore

$$W_1 =$$

Deriving the non-preemptive queue result (3)

- S₂ service time for Class 2 with mean E[S₂]

 https://powcoder.com

 W₂ = mean waiting time for Class 2 customers
- N₂ = number of Class 2 Westbaters vir the rqueue
- R = mean residual service time when a customer arrives

T1,2021 **COMP9334** 14

Deriving the non-preemptive queue result (4)

 For Class 2 customers: https://powcoder.com

Question:

Add WeChat powcoder

Consider a customer arriving at the low priority queue, when can this customer receive service? This customer has to wait for

- The customer at the server to finish
- The customers who are already in the low priority queue when this customer arrives
- ?????
- ?????

Deriving the non-preemptive queue result (5)

$$W_2 =$$

• Little's Law to Queue 1: Project Exam Help aw to Queue 2:

$$N_1 = \lambda_1 W_1^{
m Mttps://powcoder.com} N_2 = \lambda_2 W_2$$
 Add WeChat powcoder

Combining all of the above

$$W_2 = rac{R +
ho_1 W_1}{1 -
ho_1 -
ho_2} \quad {}^{ ext{Where}} \quad egin{array}{c}
ho_2 = \lambda_2 E[S_2] \\
ho_1 = \lambda_1 E[S_1] \end{array}$$

Deriving the non-preemptive queue result (6)

$$W_2 = \frac{ \text{https://pBwcoder.com}}{(1 - \text{Add)WeChat/ppowcoder})}$$

$$W_1 = \frac{R}{1 - \rho_1} \qquad \text{where} \qquad \begin{array}{l} \rho_1 = \lambda_1 E[S_1] \\ \rho_2 = \lambda_2 E[S_2] \\ R = \frac{1}{2} E[S_1^2] \lambda_1 + \frac{1}{2} E[S_2^2] \lambda_2 \end{array}$$

Non-preemptive Priority with P classes

Waiting time of priority class k

$$W_k = \frac{R}{(1-\rho_1-\ldots-\rho_{k-1})(1-\rho_1-\ldots-\rho_k)}$$

$$\frac{R}{(1-\rho_1-\ldots-\rho_{k-1})(1-\rho_1-\ldots-\rho_k)}$$

$$\frac{R}{(1-\rho_1-\ldots-\rho_{k-1})(1-\rho_1-\ldots-\rho_k)}$$

$$\frac{R}{(1-\rho_1-\ldots-\rho_{k-1})(1-\rho_1-\ldots-\rho_k)}$$

where

https://powcoder.com
$$RAdd$$
 We Chat powcoder $_i$

$$\rho_i = \lambda_i E[S_i] \text{ for } i = 1, ..., P$$

Example

- Router receives packet at 1.2 packets/ms (Poisson), only one outgoing link
- Assume 50% packet of priority1, 30% of priority 2 and 20% of priority 3. Mean and second moment given in the table below.
 Assignment Project Exam Help
- What is the average waiting time per class?
- Solution to be discussed in class.

Add WeChat powcoder

Priority	Mean (ms)	2nd Moment (ms²)
1	0.5	0.375
2	0.4	0.400
3	0.3	0.180

Pre-emptive resume priority (1)

- Can be derived using a similar method to that used for nonpreemptive priority
- The key issue to note is that a job with priority k can be interrupted by a job of higher priority even when it is in the server
 Assignment Project Exam Help
- For k = 1 (highest priority), the response time T_1 is: https://powcoder.com

Add WeChat powcoder

$$T_1 = E[S_1] + \frac{R_1}{(1-\rho_1)}$$
 where $R_1 = \frac{1}{2}E[S_1^2]\lambda_1$ $\rho_1 = E[S_1]\lambda_1$

A highest priority job only has to wait for the highest priority jobs in front of it.

Preemptive resume priority (2)

For k ≥ 2, we have response time for a job in Class k:

Question:

Consider a customer arriving in priority class k (≥ 2), what are the components of the waiting time footbis customer?

Add WeChat powcoder

Preemptive resume priority (3)

 Solving these equations, we have the response time of Class k jobs is:

$$T_k = T_{k,1} + T_{k,2}$$

where

$$T_{k,1} = \frac{Assignment \text{ Project Exam Help}}{(1-\rho_1 - \frac{\text{https://powco}}{\rho_{k-1}})}$$

$$Add \text{ WeChat powcoder}$$

$$T_{k,2} = \frac{Add \text{ WeChat powcoder}}{(1-\rho_1 - \ldots - \rho_{k-1})(1-\rho_1 - \ldots - \rho_k)}$$

$$R_k = \frac{1}{2} \sum_{i=1}^k E[S_i^2] \lambda_i$$

Other queuing disciplines

- There are many other queueing disciplines, examples include
 - Shortest processing time first
 - Shortest remaining processing time first
 - Shortest expected precessing time first Help
- Optional: For an advanced exposition on queueing disciplines, see Klerkioth, Wordering Systems Volume 2", Chapter 3.

 Add WeChat powcoder

References

- Recommended reading
 - Bertsekas and Gallager, "Data Networks"
 - Section 3.5.3 for priority queuing
- Optional reading gnment Project Exam Help
 - Harchol-Balter, Chapter 22

https://powcoder.com

Add WeChat powcoder