

Szeregi czasowe

Żak Maciej

Inżynieria i analiza danych

Rzeszów 16.06.2022r.

Spis treści

1.	Dane	2
2.	Wizualizacja	4
3.	Dekompozycja na podstawie modelu regresji	8
4.	Eliminacja trendu i sezonowości	. 14
5.	Uczynienie szeregów stacjonarnymi	. 15
6.	Wyznaczenie współczynników modelu AR	. 19
7.	Wyznaczenie współczynników dla modelu MA(q)	. 27
8.	Wyznaczenie i porównywanie modeli z wykorzystaniem auto.arima	. 29
9.	Prognozowanie	. 30
10.	Źródła	. 34

1. Dane

Dane, które wykorzystałem w projekcie pochodzą ze strony https://finance.yahoo.com oraz ze strony https://www.kaggle.com . Dane są dostępne w domenie publicznej tzn. nie są objęte prawami autorskimi.

Szeregi, które wykorzystane zostały w projekcie to:

- Kurs Nifty 50 S&P CNX Nifty główny indeks giełdowy dużych spółek notowanych na Indyjskiej Narodowej Giełdzie Papierów Wartościowych (National Stock Exchange of India). W jego skład wchodzi 50 spółek reprezentujących 24 sektory gospodarki i reprezentujących około 77% kapitalizacji całej giełdy. Nifty 50 został wprowadzony 22 kwietnia 1996 roku i jest jednym z wielu indeksów giełdowych Nifty. Analiza kursu giełdowego, może nam pomóc przewidzieć wahania cen i dzięki temu dać nam okazję zarobić. Dane te obejmują okres od 2007-10-01 do 2022-06-01 roku.
- Jakość powietrza w Indiach Zanieczyszczenie powietrza w Indiach jest porównywalne lub nawet większe niż w Chinach. Monitorowanie go i zrozumienie jego jakości ma ogromne znaczenie dla naszego dobrego samopoczucia. Korzystając z tego zestawu danych, można przeanalizować, jak zanieczyszczenie wygląda na przestrzeni roku. Zestaw danych zawiera godzinowe dane dotyczące jakości powietrza (PM 2,5) w Indiach. Aby ułatwić pracę na danych wezmę tylko jeden rekord z każdego dnia, zwykle mierzony o północy. Danę obejmują okres od 2017-11-07 do 2022-06-04 roku.

Wizualizacja szeregów

Jakość powietrza w Indiach

Kurs akcji Nifty50

2. Wizualizacja

Wykres sezonowy jakość powietrza w Indiach

Wykres sezonowy dla kursu NIFTY50

Jakość powietrza w Indiach

kurs NIFTY50

Wykres rozrzutu dla jakości powietrza

Wykres rozrzutu dla kursu NIFTY50

Wykres tsdisplay dla jakości powietrza w Indiach

Wykres tsdisplay dla kursu NIFTY50

3. Dekompozycja na podstawie modelu regresji

Pierwszy wykres dotyczy jakości powietrza, drugi kursu NIFTY50.

Dekompozycja jakości powietrza w Indiach

Na czerwono sezonowość, na niebiesko trend

Lag

Lag

Dekompozycja kursu NIFTY50

Na czerwono sezonowość, na czarno trend.

Dekompozycja na podstawie modelu regresji w trendzie wielomianowym

Trend wielomianowy - powietrze w Indiach

Trend wielomianowy - kurs NIFTY50

4. Eliminacja trendu i sezonowości

eliminacja trendu i sezonowosci - powietrze w Indiach

eliminacja trendu i sezonowosci - kurs NIFTY50

5. Uczynienie szeregów stacjonarnymi

Szereg jakość powietrza w Indiach nie jest realizacją szumu białego.

Series air_tsl1

Series kurs_tsl1

Szereg kurs NIFTY50 nie jest realizacją szumu białego.

Series kurs_tsl1

6. Wyznaczenie współczynników modelu AR

Series air_ts2LST

Series air_ts2LST

Wyznaczamy współczynnik przy użyciu metod yule-walker oraz mle, najpierw z określonym p, później z automatycznym.

```
call:
ar(x = air_ts2LST, aic = FALSE, order.max = 84, method = "yule-walker")
                                                                                            10
-0.0422
                                                                                                       11
-0.0082
                                                                                                                  12
-0.8882
                              -0.2002
-0.3506
         -0.2889
                   -0.2263
                                        -0.1701
                                                   -0.1341
                                                             -0.0578
                                                                       -0.0912
                                                                                  -0.0913
                                                                        21
-0.0527
-0.2763
                                         -0.1148
                              -0.1797
                                                                                   -0.0312
                                          31
0.0075
27
0.1504-
          28
-0.0856
                   29
-0.1162
                                                               33
0.0022
                                                                                                                            39
0.0865-
                               -0.0848
                                                   -0.0199
                                                                         0.0076
                                                                                    0.0670
                                                                                             -0.5151
                                                                                                       -0.1509
                                                                                                                  -0.0987
                     -0.0505
                                         -0.0241
                                                     0.0279
                                                                         0.0125
                                                                                   -0.4190
                                                                                                                             0.0388
                               56
0.0297
                                                                        60
-0.3334
                                                                                  61
-0.0824
                                                                                                        63
0.0570-
                                                                                                                            65
0.0115-
                                          0.0487
                                                   -0.0484
                                                               0.0121
                                                                                             -0.0056
                                                                                                                   0.0486
           0.0567
                                                    71
0.0094
                                                             72
-0. 2262
                                                                       73
-0.0567
 0.0503
                                                                                   -0.0320
                                          83
0.0457
           0.0202
                     0.0558
                                0.0334
                                                   -0.0794
Order selected 84 sigma^2 estimated as 0.03429
```

```
Call:
ar(x = air_ts2LST, aic = FALSE, order.max = 24, method = "mle")
Coefficients:
                                                                                               -0.6879 -0.2467
-0.3466 -0.2614 -0.2063 -0.2089
                                 -0.1527
                                          -0.1350 -0.0691 -0.0906
                                                                    -0.0958 -0.0328 -0.0003
-0.1615 -0.1347 -0.1007 -0.1081 -0.0636 -0.0096 -0.0358 -0.0288
                                                                      0.0019
                                                                              0.0373 -0.2709
Order selected 24 sigma^2 estimated as 0.03981
```

Dajemy automatyczne p.

```
> air_yw2<- ar(air_ts2LST, aic = TRUE,order.max = 100, method = "yule-walker")
> print(air_yw2)
call:
ar(x = air_ts2LST, aic = TRUE, order.max = 100, method = "yule-walker")
Coefficients:
        -0.2889
                                       -0.1701 -0.1341
                                                                    -0.0912
                                                          -0.0578
                   -0.2263 -0.2002
-0.3506
                                                                             -0.0913
                                                                                        -0.0422
                                                                                                  -0.0082
                                                                                                            -0.8882
                   -0.1575
                                               -0.0305
                                                                    -0.0527
                                                                                                                      -0.1831
         -0.2197
                            -0.1797
                                      -0.1148
                                                          -0.0641
                                                                              -0.0312
                                                                                         0.0261
                                                                                                  -0.6909
                                                                                                            -0.2271
-0.2763
                                               32
-0.0199
                                                           33
         28
-0.0856
                   -0.1162
                                                                     0.0076
-0.1504
                            -0.0848
                                        0.0075
                                                                               0.0670
                                                                                        -0.5151
                                                                                                                      -0.0865
                                                                                                            -0.0987
-0.0295
         -0.0695
                   -0.0505
                              0.0744
                                       -0.0241
                                                 0.0279
                                                           -0.0436
                                                                     0.0125
                                                                              -0.4190
                                                                                        -0.1050
                                                                                                  -0.0999
                                                                                                            -0.0464
                                                                                                                      0.0388
53
-0.0439
                                                 58
-0.0484
                                                           59
0.0121
                                                                    60
-0.3334
                                                                              61
-0.0824
                                                                                                                      65
0.0115-
          0.0567
                                                                                                            0.0486
                                                 71
0.0094
                                                           72
-0.2262
                                                                   73
-0.0567
                                        -0.0154
                                                                              -0.0320
                                                                                       -0.0444
                                                                                                                      0.0350
          0.0893
Order selected 84 sigma^2 estimated as 0.03429
```

Do metody mle niestety nie działało.

```
> air_mie2<- ar(air_ts2LST, aic = TRUE,order.max = 100, method = "mle")
Error in optim(init[mask], arma0f, method = "BFGS", hessian = TRUE, control = optim.control) :
    non-finite finite-difference value [11]
> |
```


Series kurs_ts1LST

Series kurs_ts1LST

Wyznaczamy współczynnik przy użyciu metod yule-walker oraz mle, najpierw z określonym p, później z automatycznym.

Dajemy automatyczne p.

7. Wyznaczenie współczynników dla modelu MA(q)

Model arima dla jakości powietrza

```
> air_arLST<- Arima(air_ts2LST, order = c(23,0,0))
> summary(air_arLST)
Series: air_ts2LST
ARIMA(23,0,0) with non-zero mean

Coefficients:

    ar1    ar2    ar3    ar4    ar5    ar6    ar7    ar8    ar9    ar10    ar11    ar12    ar13
    -0.3843   -0.2816   -0.2147   -0.2149   -0.1622   -0.1259    -0.0427   -0.0686   -0.0643    0.0132    0.0731   -0.5404   -0.2655
s.e.    0.0252    0.0269    0.0279    0.0284    0.0289    0.0292    0.0293    0.0292    0.0291    0.0288    0.0280    0.0244    0.0280
    ar14    ar15    ar16    ar17    ar18    ar19    ar20    ar21    ar22    ar23    mean
    -0.1644    -0.1164    -0.0823    -0.0967    -0.0287    0.0343    0.0217    0.0291    0.0786    0.1416    0.0001
s.e.    0.0288    0.0290    0.0291    0.0292    0.0291    0.0288    0.0283    0.0278    0.0269    0.0251    0.0015

sigma^2 = 0.0437: log likelihood = 236.01
AIC=-422.02    AICC=-421.17    BIC=-288.41

Training set error measures:

    ME    RMSE    MAE    MPE    MAPE    MASE    ACF1
Training set 4.520074e-05 0.2074174 0.1553256 92.88191 239.7471 0.5410859 0.03839131
```


Model Arima dla kursu NIFTY50

```
> kurs_arLST<- Arima(kurs_ts1LST, order = c(23,0,0))
> summary(kurs_arLST)
Series: kurs_ts1LST
ARIMA(23,0,0) with non-zero mean

Coefficients:

arl ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 ar10 ar11 ar12 ar13
-0.0307 0.0044 0.0868 0.0643 -0.0131 0.0193 0.0059 0.0067 -0.1010 0.1048 -0.250 -0.6340 -0.0044
s.e. 0.0810 0.0811 0.0844 0.0856 0.0854 0.0880 0.0875 0.0869 0.0867 0.0865 0.087 0.0665 0.0864
ar14 ar15 ar16 ar17 ar18 ar19 ar20 ar21 ar22 ar23 mean
-0.0944 0.1655 0.0180 -0.0113 -0.0203 0.0498 -0.0092 -0.0310 -0.0015 -0.1595 0.0389
s.e. 0.0865 0.0934 0.0949 0.0951 0.0951 0.0955 0.0957 0.0959 0.0964 0.0966 0.0660

sigmaA2 = 2.534: log likelihood = -299.82
AIC=649.64 AICC=659.06 BIC=727.14

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.02168771 1.470788 1.055357 491.4414 656.1482 0.4364495 -0.07278298
```


8. Wyznaczenie i porównywanie modeli z wykorzystaniem auto.arima

```
Series: kurs_ts1LST
ARIMA(1,0,0)(1,0,0)[12] with zero mean
Coefficients:
ar1 sar1
-0.0545 -0.6276
s.e. 0.0822 0.0681
Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.09241925 1.557782 1.129978 586.0447 700.7459 0.4673095 -0.02904176
Series: kurs_ts1L
ARIMA(1,1,0)(2,0,0)[12] with drift
Coefficients:

ar1 sar1 sar2 drift

-0.0474 -0.1951 -0.0346 0.1578

s.e. 0.0738 0.0590 0.0712 0.0743
sigma^2 = 1.599: log likelihood = -289.27
AIC=588.54 AICc=588.9 BIC=604.4
Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1

Training set -0.00631286 1.246702 0.9019191 -0.06710615 1.596275 0.2410128 -0.004442961
Series: kurs_ts1L
ARIMA(1,1,0)(2,0,0)[12] with drift
Coefficients:

ar1 sar2 drift

-0.0474 -0.1951 -0.0346 0.1578

s.e. 0.0738 0.0590 0.0712 0.0743
sigma^2 = 1.599: log likelihood = -289.27
AIC=588.54 AICC=588.9 BIC=604.4
Training set error measures:
Training Set error measures:

ME RMSE MAE MPE MAPE MASE ACFI
Training Set -0.00631286 1.246702 0.9019191 -0.06710615 1.596275 0.2410128 -0.004442961
Series: kurs_tsl_arcc)
Series: kurs_tsl
ARIMA(1,1,0)(2,0,0)[12] with drift
Box Cox transformation: lambda= 0.34102
Coefficients:

ar1 sar2 drift

-0.0483 -0.1962 -0.0345 0.1579

s.e. 0.0780 0.0784 0.0921 0.0742
sigma^2 = 1.599: log likelihood = -289.27
AIC=588.54 AICC=588.9 BIC=604.4
```


9. Prognozowanie

Prognozowanie jakosci poweitrza na podstawie sredniej

prognozowanie kursu na podstawie sredniej

Prognoza jakosci powietrza z wykorzystaniem metody naiwnej

Prognoza kursu Nifty z wykorzystaniem metody naiwnej

Prognoza jakosci powietrza na podstawie metody naiwnej sezonowej

Prognoza kursu Nifty na podstawie metody naiwnej sezonowej

Prognoza jakosci powietrza na podstawie metody uwzgl. dryf

Prognoza kursu Nifty na podstawie metody uwzgl. dryf


```
ME
                              RMSE
                                        MAF
                                                                   MASE
                                                                              ACF1
Training set -2.304987e-15 23.3397 19.03301 -31.55826 56.85458 1.593311 0.8815051
                     ME
                             RMSE
                                       MAE
                                                 MPE
Training set -0.03294231 11.31044 5.733596 -1.618543 12.45824 0.4799765 -0.3142835
Training set -4.141463 18.00664 11.94558 -14.39369 28.63967
                                                               1 0.5249599
                             RMSE
                                                                               ACF1
Training set 3.732073e-16 11.3104 5.734445 -1.525603 12.45414 0.4800475 -0.3142835
```

Najlepsza metoda dla przewidywania jakości powietrza to medoda naiwna sezonowa.

```
ME
                              RMSE
                                         MAE
                                                           MAPE
                                                                    MASE
                                                   MPE
                                                                              ACF1
Training set -5.391394e-13 3617.839 2923.803 -19.96192 41.83716 2.106965 0.9743575
                  ME
                         RMSE
                                   MAE
                                             MPE
                                                     MAPE
                                                               MASE
Training set 65.75512 473.4713 338.4767 0.4653284 4.581187 0.2439147 -0.04718614
 (accuracy(kurs_snaive))

ME RMSE
                                   MAE
                                            MPE
                                                    MAPE MASE
                                                                   ACF1
Training set 866.1327 1893.338 1387.685 5.895166 17.69829
                                                           1 0.9055516
 (accuracy(kurs_dryf))
                       ME
                                        MAE
                              RMSE
                                                   MPE
                                                           MAPE
                                                                      MASE
                                                                                  ACF1
Training set -3.565284e-13 468.8831 332.8774 -0.4808434 4.562074 0.2398797 -0.04718614
```

Najlepsza metoda dla przewidywania kursu NIFTY50 to metoda uwzględniająca dryf.

10.Źródła

- https://finance.yahoo.com/quote/%5ENSEI?p=^NSEI&.tsrc=fin-srch
- https://www.kaggle.com/datasets/fedesoriano/air-quality-data-in-india
- https://pl.wikipedia.org/wiki/Monitoring powietrza atmosferycznego

