CPM und Gantt

(CPM und Gantt)

Stichwörter: CPM-Netzplantechnik

CPM und Gantt

(a) Gegeben ist folgender (unvollständiger) CPM-Netzplan, sowie die frühesten und spätesten Termine und die Pufferzeiten aller Ereignisse:

Ereignis	1	2	3	4	5
frühester Termin	0	1	2	4	8
spätester Termin	0	1	2	5	8
Puffer	0	0	0	1	0

Vervollständigen Sie den CPM-Netzplan, indem Sie mit Hilfe obiger Tabelle die Zeiten der Vorgänge berechnen.

Lösungsvorschlag

Frühester Termin/Zeitpunkt

— Wir führen eine Vorwärtsterminierung durch und addieren die Dauern. Kann ein Ereignis über mehrere Vorgänge erreicht werden, wählen wir das Maximum aus. **Erläuterungen:** i: Ereignis i; FZ_i : Frühester Zeitpunkt, zu dem Ereignis i eintreten kann.

	i	Nebenrechnung	FZ_i
	1		0
İ	2		1
İ	3		2
	4	$\max(4_2, 2_3)$	4
	5	$\max(8_3,7_4)$	8

Spätester Termin/Zeitpunkt

— Wir führen eine Rückwärtsterminierung durch und subtrahieren die Dauern vom letzten Ereignis aus. Kann ein Ereignis über mehrere Vorgänge erreicht werden, wählen wir das Minimum aus. Erläuterungen: i: Ereignis i; SZ_i : Spätester Zeitpunkt, zu dem Ereignis i eintreten kann. —

i	Nebenrechnung	SZ_i
5	siehe FZ_5	8
4		5
3	$min(2_5, 5_4)$	2
2	$\min(2_5, 5_4)$ $\min(1_3, 2_4)$	1
1		0

(b) Bestimmen Sie zum nachfolgenden CPM-Netzplan für jedes Ereignis den *frühesten Termin*, den *spätesten Termin* sowie die *Gesamtpufferzeit*. Geben Sie außerdem den *kritischen Pfad* an.

Lösungsvorschlag

i	1	2	3	4	5	6	7
FZ_i	0	4	9	11	13	19	21
SZ_i	0	4	10	11	13	19	21
GP	0	0	1	0	0	0	0

Frühester Termin/Zeitpunkt

i	Nebenrechnung	FZ_i
1		0
2		4
3	$\max(8, 4_{(\to 2)} + 5) = \max(8, 9)$	9
4	$\max(9_{(\to 3)} + 1, 4_{(\to 2)} + 7) = \max(10, 11)$	11
5	$\max(4_{(\to 2)} + 8, 11_{(\to 4)} + 2) = \max(12, 13)$	13
6	$\max(13_{(\to 5)} + 6, 11_{(\to 4)} + 5, 9_{(\to 3)} + 6) = \max(19, 16, 15)$	19
7	$\max(13_{(\to 5)} + 7, 19_{(\to 6)} + 2) = \max(20, 21)$	21

Spätester Termin/Zeitpunkt

i	Nebenrechnung	SZ_i
1	$\min(4_{(\to 2)} - 4, 10_{(\to 3)} - 8) = \min(0, 2)$	0
2	$\min(13_{(\to 5)} - 8, 11_{(\to 4)} - 7, 10_{(\to 3)} - 5) = \min(5, 4, 5)$	4
3	$\min(11_{(\to 4)} - 1, 19_{(\to 6)} - 6) = \min(10, 13)$	10
4	$\min(13_{(\to 5)} - 2, 19_{(\to 6)} - 5) = \min(11, 14)$	11
5	$\min(21_{(\to 7)} - 7, 19_{(\to 6)} - 6) = \min(14, 13)$	13
6	$21_{(\to 7)} - 2$	19
7	siehe FZ ₇	21

Kritischer Pfad

$$1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$$

$$4_{(1\to 2)} + 7_{(2\to 4)} + 2_{(4\to 5)} + 6_{(5\to 6)} + 2_{(6\to 7)} = 21$$

(c) Konvertieren Sie das nachfolgende Gantt-Diagramm in ein CPM-Netzwerk. Als Hilfestellung ist die Anordnung der Ereignisse bereits vorgegeben.

Lösungsvorschlag

Die Bschlangaul-Sammlung Hermine Bschlangauland Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike $4.0\,\mathrm{International\text{-}Lizenz}.$

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TpX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Module/40_SOSY/03_Projektplanung/20_CPM-Netzplantechnik/Aufgabe_CPM-Gantt.tex