Inferring the properties of parent BHs from the remnant's spin using Deep Learning

Sayan NeogiMatthew Mould
Davide Gerosa

Goal:

Simple NN's can learn the Forward model well.

Problem!

Gameplan:

Instead of making point estimates for parent values, output distributions (pdf's) instead.

Gameplan:

So given a value of chi_f, the network should give us the probability distribution of q (and chi_1, chi_2)

Strategies:

1) Use Tensorflow Probability.a) St. dev of predictions = approx 0.3

Strategies:

Works poorly with inverse model.

- a) Gaussian is too simple to capture the posterior.
- a) Possible Idea (not explored yet): Combine N
 Gaussians with diff. loc and scales
 (N tbd by network)

2) Use "Invertible Neural Networks"

(Analysing Inverse Problems with INN, Ardizzone et al (2019))

Drawback:

Failed to train it even for simple mappings

3) Use Normalizing Flows

Idea:

Take a normal distribution and apply successive invertible transformations to it to better approximate your desired distribution

We use Conditional Masked Autoregressive Flows.

So for every value of chi_f, we get a different posterior distribution

Spin-Aligned Case (for chi_f=0.62)

MAFs (Masked Autoregressive Flow)

MCMC

(Not) Full Param Space (for chi_f=0.62)

MAFs (Masked Autoregressive Flow)

MCMC

Full Param Space (for chi_f=0.62)

MAFs (Masked Autoregressive Flow)

Comparing Distributions

Using the Jensen Shannon Divergence

- a) Modified form of KL
- a) Constrained between [0,1] (0 for identical)
- a) For the full param case, JSD for q dist. is 0.03

Comparing the MAF and MCMC dist.

Next Step:

- 1) Robust statistic to compare the MCMC and MAF distributions
 - a) Candidates: KS Test (too sensitive)
 - b) Suggestions?
- 1) Improving the convergence of NN for the full param space.
 - a) Tweaking the architecture
- 1) Using NR data to train the model.
 - a) Training data only about 1e3
- 1) Investigating the posterior to infer constraints.

Thank You!