ISTAT201B Lecture 1 Introduction to Inference

|1 Inference 的类型

| 1.1 Inference methods 的类型

- Nonparametric inference 非参数推断
- Parametric inference 参数推断
 - Frequentist inference 频率学派推断
 - 使用 long-run frequencies of events 来 interprets probability
 - 将 parameters 视为 unknown 且 fixed 的
 - 关注 point estimation, confidence intervals, 和 hypothesis testings
 - Bayesian inference 贝叶斯学派推断
 - 使用 degree of belief 来 interprets probability
 - 作出 probability statements about parameters, 用来翻译 beliefs
 - 使用 posterior distribution 来进行 inference

| 1.2 Inference problems 的类型

- point estimation 点估计
- confidence set 置信区间
- hypothesis testing 假设检验

| 1.3 Inference models 的类型

令 statistical model F 表示 (这个模型所能覆盖的) 一系列 possible distributions, 则有以下模型类型

• Parametric models 参数模型:

使用有限数量的参数, 通常研究 a family of distributions indexed by those parameters, 如 $Y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$

- 使用 θ 来表示 an arbitrary parameter
- 使用 θ 作为下标来表示 F_Y 取决于 θ , 如 $P_{\theta}(Y \in A)$
- Nonparametric models 非参数模型:

使用无限数量 (能表示无限阶 moments) 的参数, 通常被称为 distribution free (表示对于 distribution family 的限制很少)

2 Point estimation

2.1 Definition: point estimator

- statistic 是一个 function of data
- point estimator是一个 function of data, 用来表示单个 "best guess" of parameter θ

| 2.2 Estimator 和 estimate 的 notation

- $\hbar \hat{\theta}(X_1, \ldots, X_n)$ (一个 r.v.) 为 estimator
- 称 $\hat{\theta}(x_1, \dots x_n)$ (一个 realization) 为 estimate

使用 $\hat{\theta}$ 和 $\hat{\theta}_n$ 皆可

| 2.3 Point estimator 的 evaluation

将在 decision theory 处详细讲解, 此处只是简单介绍部分 properties

Bias:

$$bias(\hat{ heta}_n) = \mathbb{E}_{ heta}[\hat{ heta}_n] - heta$$

若 bias 为 0, 则称 $\hat{\theta}_n$ 为 unbiased

Standard error:

$$se(\hat{ heta}_n) = \sqrt{V_{ heta}(\hat{ heta}_n)}$$

Mean squared error:

$$egin{aligned} MSE(\hat{ heta}_n) &= \mathbb{E}_{ heta}[(\hat{ heta}_n - heta)^2] \ &= bias^2(\hat{ heta}_n) + V_{ heta}[\hat{ heta}_n] \end{aligned}$$

2.4 Definition: Consistency

若 $\hat{\theta}_n \stackrel{p}{\rightarrow} \theta$, 则称 $\hat{\theta}_n$ 为 (weakly) consistent

∃ Example ∨

令 X_1,\ldots,X_n 为 iid, 且 $\mathbb{E}[X_1]=\mu, Var[X_1]=\sigma^2<\infty;$ 则 (使用 Chebyshev inequality 易证)

- $\bar{X}_n \stackrel{p}{ o} \mu$
- $S_n^2 \stackrel{p}{ o} \sigma^2$

若 $MSE_n \rightarrow 0$, 则 $\hat{\theta}_n \stackrel{p}{\rightarrow} \theta$

| 2.5 Theorem: continuous mapping theorem (连续映射定理)

若函数 $g: R \rightarrow R$ 为continuous, 则

1.
$$X_n \stackrel{d}{\rightarrow} X \Rightarrow g(X_n) \stackrel{d}{\rightarrow} g(X)$$

2.
$$X_n \stackrel{p}{\to} X \Rightarrow g(X_n) \stackrel{p}{\to} g(X)$$

| 2.6 Theorem: Slutsky's theorem (斯拉茨基定理)

- 1. 若 $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{p}{\to} c$ ($Y_n \stackrel{d}{\to} c$ 可直接推出 $Y_n \stackrel{p}{\to} c$), 则
 - $\bullet \ \ X_n + Y_n \stackrel{d}{\to} X + c$
 - $ullet X_n Y_n \stackrel{d}{ o} c X$
 - $\frac{X_n}{Y_n} \stackrel{d}{ o} \frac{X}{c}$ (若 $c \neq 0$)

2. 若 $X_n \stackrel{p}{\to} X$, $Y_n \stackrel{p}{\to} Y$,

则

•
$$X_n + Y_n \stackrel{p}{\rightarrow} X + Y$$

•
$$X_nY_n \stackrel{p}{ o} XY$$

3. 若 $X_n \stackrel{L^p}{\to} X$, $Y_n \stackrel{L^p}{\to} Y$,

则

$$ullet X_n + Y_n \stackrel{L^p}{
ightarrow} X + Y_n$$

若 $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{d}{\to} Y$, 则无法推出 $X_n + Y_n \stackrel{d}{\to} X + Y$

2.7 Definition: Asymptotic normality

若

$$rac{\hat{ heta}_n - heta}{se(\hat{ heta}_n)} \stackrel{d}{
ightarrow} \mathcal{N}(0,1)$$

则称 $\hat{ heta}_n$ 为 asymptotic normal

通常可以使用 Slutsky's theorem 将 $se(\hat{\theta}_n)$ 替换成某个 weakly consistent 的 estimator $\hat{\sigma}_n$

3 Confidence Sets

3.1 Definition: Confidence sets

 θ 的 $1-\alpha$ confidence set 为一个 (根据 data 计算得到的) interval C_n , 其满足对于任意 θ

$$\mathbb{P}_{ heta}(heta \in C_n) \geq 1 - lpha$$

其中 $1-\alpha$ 被称为 coverage of the interval

上述 probability statement 是关于 C_n 的, 不是关于 θ (此处被视作 fixed true value) 的

4 Hypothesis testing

4.1 Definition: Hypothesis testing

Hypothesis testing 是一种用来 evaluating evidence against some default theory (null hypothesis) 的方法

| 4.2 Hypothesis testing 的流程

- 1. 构造 test statistics (一个关于 data 的 function)
- 2. 考虑 test statistics 的 sampling distribution
- 3. 求出 test statistics 的某个 "extreme" value 来作为 evidence against the null hypothesis

| 4.3 Neyman-Pearson framework 下的 hypothesis testing

在 Neyman-Pearson framework 下, hypothesis testing 通常采用以下 decision rule:

若 test statistics 超过某个预先设置的 threshold, 则 reject null hypothesis

• 否则 do not reject null hypothesis

| 4.4 Hypothesis 的 evaluation

Hypothesis 可以根据 4 种 possible outcomes 来进行 evaluation:

- null hypothesis true 或 null hypothesis false
- reject null hypothesis 或 retain null hypothesis