dimanche 15 décembre 2019 19:12

racer cf et / ainsi que la tangente a cf en (0,0)

Partie II - Nombres Complexes

★ Exercice 2: Résoudre dans C l'une des équations suivantes

$$z^4 + 4z^3 + 6z^2 + (6-2i)z + 3 - 2i$$
 ou $iz^3 - (1+i)z^2 + (1-2i)z + 6 + 8i = 0$

Indication : Pour la première, il existe une racine imaginaire pure et une racine réelle. Pour la seconde, il existe une racine réelle.

★ Exercice 3: Problème complexe...

Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$, nous considérons l'équation (E) : $(z+1)^n - e^{2ina} = 0$

 $\,\triangleright\,$ Question 1: Résoudre (E). Nous noterons $z_1,z_2,...,z_{n-1}$ les solutions

 \triangleright Question 2: Calculer $\prod_{k=0}^{n-1} z_k$

 \triangleright Question 3: Calculer $A_n = \prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n})$

★ Exercice 4: Racine n-ième

Résoudre dans $\mathbb C$ l'une des équations suivantes :

$$z^3 = (z-1)^3 i$$
 ; $z^8 = \bar{z}$

★ Exercice 5: Donner le module et l'argument des nombres complexes suivants

 $1 + e^{i\theta}$; $1 + \sin\theta + i\sin\theta$; $\sin 2\theta + 2i\sin^2\theta$

Partie I - Nombres Complexes

★ Exercice 1: Résoudre dans C l'équation suivante (2 Pts)

cercice 2: Imaginaire ou non (4 Pts) Pour tout complexe $z\neq 1$, on pose $Z=\frac{z+2}{z-1}$. Déterminer l'ensemble des éléments z de C tel que : a) $Z \in \mathbb{R}$ b) $Z \in i\mathbb{R}$ c) |Z| = 1

★ Exercice 3: Problème complexe... (5 Pts)

On pose $\mathbb{C}_1 = \mathbb{C} \setminus \{-i; i\}$ et $f : \mathbb{C}_1 \to \mathbb{C}$ avec $f(z) = \frac{z}{z^2 + 1}$

 \triangleright Question 1: Résoudre l'équation $f(z) = \frac{1}{\sqrt{3}}$

De Question 2: Montrer que

 $\forall (z; z') \in \mathbb{C}^2_1$ $(f(z) = f(z')) \Leftrightarrow (z = z' \text{ ou } zz' = 1)$

 ${\,\vartriangleright\,}$ Question 3: On pose $D=\{z\in\mathbb{C}\ ,\ |z|=1\},$ montrer que

 $\forall (z;z') \in D \quad (f(z) = f(z')) \Leftrightarrow (z = z')$

 \triangleright Question 4: Déterminer l'ensemble des complexes tel que $z\in\mathbb{C}_1$ et $f(z)\in\mathbb{R}$ $\qquad \qquad \text{$\triangleright$ $\mathbf{Question 5: On pose z tel que $|z|=1$ et on choisit θ tel que $\theta=\arg(z)$ et $\theta\in[-\pi;\pi]\backslash\{-\frac{\pi}{2};\frac{\pi}{2}\}$.} \\ \text{Montrer que $f(z)\in\mathbb{R}$ et calculer $f(z)$ en fonction de θ }$

Partie II - Les fonctions

+ Evereice 4: C'est plutôt limite... (3 Pts)

1 of 1 10/13/20, 11:50 AM