Making randomized measurements a universal measurement toolbox for quantum technologies

Joint Harvard-Innsbruck Seminar

Benoît Vermersch

October 19, 2021

LPMMC Grenoble & IQOQI Innsbruck

Outline

Presentation of Randomized measurements

Access new quantities: Spectral form factors

Extend system sizes: Importance sampling of randomized measurements

Adapting RM to new platforms: Rydberg atoms

Randomized Measurements (RM)

- Original RM proposal for the purity: van Enk and Beenakker (2012, Phys. Rev. Lett.)
- Protocol for qubits Elben et al. (2018, Phys. Rev. Lett.)
- Extended to many quantities: OTOCs, Topological invariants, Symmetry-Resolved Entropies, Entanglement negativites, . . .
- Recent development: Classical shadows formalism to access many local observables Huang et al. (2020, Nat. Phys.)

RM protocol for qubits Elben et al. (2018, Phys. Rev. Lett.)

Protocol: (i) apply random single qubit rotations, (ii) measure bitstrings, (iii) postprocess bitstrings:

$$\operatorname{Tr}(\rho^2) = 2^N E_u \big[\sum_{s,s'} (-2)^{-D(s,s')} P_U(s) P_U(s') \big] \quad P_U(s) = \langle s | u \rho u^{\dagger} | s \rangle$$

- State-agnostic estimation without reconstructing the state (i.e no tomography, no machine learning or matrix-product-state (MPS) ansatz)
- Cheap postprocessing of the measurement data (ie no fitting, etc)
- Info on the unitaries does not appear in the formula \rightarrow estimations are *robust*.

Entanglement probing with the purity

- Purity detects entanglement: $\operatorname{Tr}(\rho_A^2) < \operatorname{Tr}(\rho_{AB}^2) \to AB$ entangled.
- Purity quantifies entanglement for pure states via the second Rényi entropy $S_2(\rho_A) = -\log_2[\text{Tr}(\rho_A^2)]$
- Demonstration with trapped ions Brydges et al. (2019, Science)

Entanglement probing with the purity (2)

- Purity detects universal features of quantum matter in and out-of equilibirum: quantum phase transitions, topology, many-body localization, etc
- Demonstration of intrinsic topological order in the toric code with Google's Sycamore: Satzinger et al. (2021, arxiv)

Cross-platform verification of quantum computers

- Proposals theory-experiment: Flammia and Liu (2011, Phys. Rev. Lett.)
- Proposal experiment-experiment: Elben et al. (2020, Phys. Rev. Lett.)

Demonstration: trapped ions versus superconducting qubits Zhu et al. (2021, arxiv)

Today's talk: making RM a universal measurement toolbox

- Three aspects
 - Try to access any *physical quantity* of interest w.r.t quantum computing and quantum simulation.
 - Extend the range of system sizes where RM can be applied: From 13 qubits to 25 30 qubits (without fitting models).
 - Adapt the protocols, sampling strategies and error mitigation, to the constraints of each physical platform.
- Practical interest for experiments but also important conceptual questions: what limits our abilities to probe quantum systems?

Outline

Presentation of Randomized measurements

Access new quantities: Spectral form factors

Extend system sizes: Importance sampling of randomized measurements

Adapting RM to new platforms: Rydberg atoms

Spectral form factors and RM

- Innsbruck-Maryland Collaboration: L. Joshi, A. Elben (\rightarrow Caltech), A. Vikram, BV, V. Galitski, P. Zoller (Joshi *et al.*, 2021, arxiv:2106.15530)
- Motivation 1: we have a good experience with probing quantum states: what about time-evolution operators? $|\psi(t)\rangle = T(t) |\psi(0)\rangle$.
- Motivation 2: the spectral form factor is the central quantity in many-body quantum chaos

$$K(t) = \operatorname{Tr}[T(t)]\operatorname{Tr}[T^{\dagger}(t)]$$

Spectral form factors and quantum chaos

• The SFF probes level repulsion in quantum chaos (see eg. F. Haake's book), e.g with $T(t) = \sum_m e^{-i\epsilon_m t} |\epsilon_m\rangle \langle \epsilon_m|$:

$$K(t) = \sum_{m,n} e^{-i(\epsilon_m - \epsilon_n)t}$$

• For a chaotic evolution, universal ramp-plateau structure

 Probe also aspects of many-body quantum chaos: Eigenstate thermalization Hypothesis, Many-body localization, etc

Randomized measurements of the SFF

- Approach 1: Quantum Process Tomography: Reconstruct the unitary T(t) matrix from information complete measurements with ϵ accuracy. Cost: $\sim 32^{N_A}$...
- Approach 2: Ancilla-based (D. Vasilyev et al, PRX Quantum 2021)
- Approach 3: RM
 - Insight: We want to study how 'various' initial states evolved via T(t).

- Chaotic evolution: the RM should be 'featureless'— Non-Chaotic: the RM should be correlated around $|0\rangle^{\otimes N}$.
- Note: such measurements are not information-complete

Connection between the RM and the SFF

• Statistical correlations between unitaries can be expressed analytically as

$$\mathbb{E}_{U}\left[(U^{*}\otimes U)(O^{T}\otimes\rho_{0})(U^{T}\otimes U^{\dagger})\right] = 2^{-N}|\Phi_{N}^{+}\rangle\langle\Phi_{N}^{+}|, \quad |\Phi_{N}^{+}\rangle = 2^{-N/2}\sum_{s}|\mathbf{s}\rangle\otimes|\mathbf{s}\rangle$$
with $O = (|0\rangle\langle 0| - \frac{1}{2}|1\rangle\langle 1|)^{\otimes N}$

• 'Surgery' on the quantity of interest

$$K(t) = \langle \Phi_N^+ | \mathbf{1} \otimes T(t) | \Phi_N^+ \rangle \langle \Phi_N^+ | \mathbf{1} \otimes T^{\dagger}(t) | \Phi_N^+ \rangle. \tag{2}$$

Finally,

$$K(t) = \mathbb{E}_{U} \left[\operatorname{Tr} \left[O \underbrace{U^{\dagger} T(t) U \rho_{0} U^{\dagger} T^{\dagger}(t) U}_{\rho_{f}(t)} \right] \right]$$
(3)

Illustration

- Measurement cost: $\sim 10^N$
- The characteristic ramp can be seen with N=6, $M=10^5$ measurements in current devices!
- Useful information from reduced systems measurements: partial SFF $K_A(t)$.
- Error mitigation can be applied based on purity measurements, if needed

Outline

Presentation of Randomized measurements

Access new quantities: Spectral form factors

Extend system sizes: Importance sampling of randomized measurements

Adapting RM to new platforms: Rydberg atoms

Statistical errors in RM protocols

- Main challenge for RM: statistical errors, with two crucial parameters who scale exponentially with system size
 - N_u number of applied unitaries
 - ullet N_M number of measurement for each unitary

 \bullet Access to \sim 15 qubits, assumption free, cost in postprocessing: few seconds.

Importance sampling for probing entanglement

- Work with A. Rath, A. Elben, R. van Bijnen, and P. Zoller (arXiv:2102.13524, PRL in press)
- Our goal: reduce the required $N_U N_M$ exponentially (in particular N_u) \to access to 30-35 qubits.
- Why? Access universal regimes for entanglement: scaling laws, central charge, topological entropy, etc Assess fundamental limits about measurements
- Our idea:
 - Importance Sampling: we use/learn information about the state *before* we measure
 - We still have unbiased estimators, i.e assumption-free, and cheap data postprocesing). We simply boost the convergence w.r.t statistical errors.

Importance sampling for probing entanglement: The basic idea

Interpet RM as the evaluation of an integral

$$\operatorname{Tr}(\rho^2) = 2^N \int dU \left[\sum_{s,s'} (-2)^{-D(s,s')} P_U(s) P_U(s') \right]$$

• Consider a 'well-chosen' probability distribution, instead of the uniform one

$$\operatorname{Tr}(\rho^{2}) = 2^{N} \int p_{\mathrm{IS}}(U) dU \left[\frac{\sum_{s,s'} (-2)^{-D(s,s')} P_{U}(s) P_{U}(s')}{p_{\mathrm{IS}}(U)} \right]$$

- The unitaries u are sampled according to $p_{\rm IS}(U)$, this will change the convergence properties of the integral evaluation with finite number of samples, i.e measurements.
- The experimental and the postprocessing task remain unchanged.

Importance sampling for probing entanglement: A concrete example

- Instead of the ideal pure *N*-qubit GHZ state $|\psi\rangle = (|0\rangle^{\otimes N} + |1\rangle^{\otimes N})/\sqrt{2}$, we realize a mixed-state version ρ of $|\psi\rangle$.
- ullet To measure the purity of ho, define the importance sampler

$$p_{\rm IS}(U) = 2^{N} \left[\sum_{s,s'} (-2)^{-D(s,s')} P_U^{(\psi)}(s) P_U^{(\psi)}(s') \right]$$
 (4)

ullet Sample N_u unitaries according to $p_{\mathrm{IS}}(U)$ and estimate

$$[\text{Tr}(\rho^2)]_e = \sum_{U} \left[\frac{\sum_{s,s'} (-2)^{-D(s,s')} P_U(s) P_U(s')}{p_{\text{IS}}(U)} \right]$$
 (5)

- As $\rho \approx |\psi\rangle \langle \psi|$, the integrand has been 'flattened'
 - Exponential reduction of the required number of unitaries N_u .
 - The effect of 'shot noise' exponentially reduced for well-conditioned states.

The full protocol Rath et al. (2021, arxiv:2102.13524)

Performances Rath et al. (2021, arxiv:2102.13524)

Example: GHZ states

 \rightarrow Exponential reduction of the number of measurements, with $N_u = O(1)$.

Example: 20 *qubit* many-body entangled states, 10 qubits sampled via MPS

ightarrow Better approximations lead to better performances

- Also tested on topological entropy of 2D topological ground states.
- Tutorial and python scripts: https://github.com/bvermersch/RandomMeas

Outline

Presentation of Randomized measurements

Access new quantities: Spectral form factors

Extend system sizes: Importance sampling of randomized measurements

Adapting RM to new platforms: Rydberg atoms

RM with Rydberg atoms

- Rydberg atoms:
 - A scalable platform with strongly interacting qubits
 - Dipolar & van der Waals interactions → quantum magnetism, spin liquids, lattice gauge theories, topology, classical/quantum optimization.
- Being able to apply RM would allow:
 - benchmarking, cross-platform comparison with superconducting qubits and trapped ions.
 - measure non-local order parameters (entanglement entropies, topological invariants, etc)
 - Hamiltonian \(\lambda H \rangle \) cost functions in quantum optimization

RM with Rydberg atoms

 Problem for RM: the Rydberg interations are always 'on'. How to apply local unitaries?

- Approach 1: Map to hyperfine ground state→possible interacting induced errors during the mapping.
- Approach 2: Realize quasi-local unitaries via quantum quenches Elben et al. (2018);
 Hu et al. (2021)→ generating procedure is system-dependent.
- Approach 3: 'Fast' generation of local unitaries in presence of residual interactions.

The Rydberg RM protocol

 Work with S. Notarnicola, A. Elben, S. Montangero, T. Lahaye, A. Browaeys, and P. Zoller (to appear soon on arxiv).

- Idea: Generate with optical and MW controls X, Y and Z measurements
- Single qubit Clifford measurements are sufficient to apply randomized measurements Huang *et al.* (2020), with similar required N_u .

The Rydberg RM protocol

- How to realize three measurement settings as fast as possible, i.e faster w.r.t the interaction timescales?
- Each qubit is subject to X, Y, Z measurement
 - A fixed disorder pattern from a SLM induces a light shift $\delta_{X,Y,Z}$
 - MW drives put sequentially the group X, Y,
 Z on resonance and realizes the required rotation.
- The number of controls does not increase with qubit number.

The Rydberg RM protocol

- Case study: a XY model with Rydberg s and p levels
- The required time scales match the experimental possibilities
- Protocol tested on the purity and Hamiltonian variance $\langle H^2 \rangle$ estimations.
- If needed, measurement error mitigation can be applied in RM protocols.

Conclusion

- RM become more well suited to probe large synthetic quantum systems.
 - Remarkable ability to treat large datasets in a state-agnostic way and to extract key quantities (e.g SFF, quantum Fisher information Rath et al. arxiv:2105.13164)
 - Can be coupled to other measurement protocols: eg. Entanglement Hamiltonian Tomography (Kokail et al, Nature Physics 2021), Machine-Learning methods for importance sampling.
 - Copes well with the specificities of each experimental platform

Thank you for your attention!

References

- S. J. van Enk and C. W. J. Beenakker, Phys. Rev. Lett. 108, 110503 (2012).
- A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 120, 50406 (2018).
- H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050–1057 (2020).
- T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, and C. F. Roos, Science **364**, 260 (2019).
- K. J. Satzinger, Y. Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth, C. Gidney, et al., "Realizing topologically ordered states on a quantum processor," (2021), arXiv:2104.01180.
- S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011).
- A. Elben, B. Vermersch, R. Van Bijnen, C. Kokail, T. Brydges, C. Maier, M. K. Joshi, R. Blatt, C. F. Roos, and P. Zoller, Phys. Rev. Lett. **124**, 10504 (2020).
- D. Zhu, Z.-P. Cian, C. Noel, A. Risinger, D. Biswas, L. Egan, Y. Zhu, A. M. Green, C. H. Alderete, N. H. Nguyen, Q. Wang, A. Maksymov, Y. Nam, M. Cetina, N. M.