Kickstarter Campaigns Analysis

Predicting Success with Machine

CMPE 257

Prof Dr. Jahan Ghofraniha

San Jose State University

Team Members

Darshan Jani

Rohit Sharma

Charika Bansal

Problem Statement

 Analyzing Kickstarter campaigns dataset to predict the success of a campaign using only information from project launch

Investigating the relationship between funding and GDP (Add-on)

Motivation

 Importance of understanding factors contributing to successful crowdfunding campaigns

• Analyzing GDP impact on funding to better understand the economic landscape

Improving prediction models for future campaigns

Dataset

 Kickstarter campaigns dataset as of February 1st, 2017, containing 20,632 records with attributes such as funding goal, project name, blurb, pledged amount, backers, state, deadlines, and more

Source: Kaggle
 (https://www.kaggle.com/datasets/sripaadsrinivasan/kickstarter-campaigns-dataset)

Additional data: GDP for respective countries and years

Source: World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.CD)

Word Cloud of Successful Project Names Bluetooth Charging Easy Audio Build. Bring Case Platform School Stage OriginalNYC Affordable Computer Intelligent Code Making " Sleep Open = Headphone Personal

GDP vs Funding

For **2015**, a bar plot of total Kickstarter funding is shown alongside a line plot of GDP (in trillions) for all countries, highlighting the relationship between each country's economic performance and crowdfunding activity.

As the GDP increases, we observe a corresponding rise in the 'USD_Pledged' for Kickstarter campaigns in the USA up until 2015.
However, there is a noticeable decline in the pledged amounts following 2015, despite the continued growth in GDP.

On further investigation it was found that factors like corporate changes and debt flows affected the investment stats.

This plot reveals the trend of app-related projects over the years, with a notable rise, beginning in 2013. This aligns with the growing popularity of smartphones and mobile technology.

Top 4 Categories Attracting 80% of Pledged Funds

Hardware

Categorical values encoded using label and one-hot encoding

Reduced dataset from 68 features to 46 after data cleaning

 Identified top 25 features using a decision tree, accounting for 98.84% of the data's importance

Selected	Features

C	blurb_len_clean	0.0025
S	launched_at_month	0.0022
	state_changed_at_day	0.0022
	launched_at_day	0.0022
	static usd rate	0.0021

0.0026

0.0026

blurb_len

deadline_month

<u>Feature</u>	<u>Importance</u>	static_usd_rate	0.0021
backers_count	0.2397	created_at_day	0.0020
launch_to_state_change_days	0.2004	created_at_hr	0.0020
idunon_to_otato_onango_daye	0.2001	created_at_month	0.0020
goal	0.1657	create_to_launch_days	0.0019
pledged	0.1245	name_len	0.0018
launch_to_deadline_days	0.1051	state_changed_at_hr	0.0018
und pladged	0.0476	founder_name	0.0018
usd_pledged	0.0476	name_len_clean	0.0016
launched_at_yr	0.0394	state_changed_at_yr	0.0015
disable_communication_b	0.0317	Deadline_yr	0.0014
		Total Importance	98.84

Methodology: Model Selection

- Models used:
- 1. Logistic Regression
- 2. Support Vector Classifier
- 3. Decision Tree
- 4. AdaBoost
- 5. Random Forest
- 6. Bagging,
- 7. XGBoost

- Rationale: Chosen models perform well with high-dimensional data
- Data splitting: Stratified sampling used during train-test split to prevent skewed data
- Evaluation metrics: Precision, Recall, F1-Score, and Accuracy

3D PCA Clustering of Project States

- Applied PCA on top 25 features to reduce dimensionality
- Extracted 3 principal components
- Created a 3D scatter
 plot to reveal
 relationships and
 patterns in the
 transformed dataset

Results: Base Classifiers vs Fine-Tuned

Classifiers	Test Accuracy (%)	F1 Score (%)	Scaled Features (Accuracy)	Scaled Features (F1 Score)
Random Forest	96.02 %	95.88 %		
XGBoost	98.61 %	98.41 %		
Decision Tree	95.68 %	93.49 %		
Logistic Regression	78.89 %	34.63 %	84.07%	89.41%
Bagging	97.26%	95.58%		
ADABoost	71.98%	53.46%		
SVM	64.54%	24.95%	78.40%	83.92%

Classifiers	Test Accuracy (%)	F1 Score (%)	Scaled Features (Accuracy)	Scaled Features (F1 Score)
Random Forest	97.81 %	97.92 %		
XGBoost	98.73 %	98.74 %		
Decision Tree	95.90 %	96.25 %		
Logistic Regression	80.05 %	35.60 %	83.78%	89.35%
Bagging	97.60%	97.84%		
ADABoost	96.02%	96.43%		
SVM	64.44%	24.87%	78.49%	24.87%

Voting Classifier and Performance Metrics

Combined individual fine tuned classifiers using Voting Classifier

 Enhanced model performance by taking a vote of each classifier and selecting the prediction having highest vote.

- Evaluated the voterclassifier model using performance metrics:
- 1. Precision
- 2. Recall
- 3. F1-Score
- 4. Accuracy

Voting Classifier and Performance Metrics

Base Model Voter Classifier (XGB, Bagging, Random Forest)

precision re	call f1-sc	ore supp	ort	
0	1.00	0.87	0.93	491
1	0.98	0.99	0.98	2283
2	0.99	1.00	1.00	102
3	0.98	1.00	0.99	1204
4	1.00	0.98	0.99	46
accuracy			0.98	4126
macro avg	0.99	0.97	0.98	4126
weighted avg	0.98	0.98	0.98	4126

Test Accuracy: 97.93% F1 Score: 97.89%

Fine-tuned Model Voter Classifier (XGB, Bagging, Random Forest)

		1.0		
0	1.00	0.90	0.95	491
1	0.98	0.99	0.99	2283
2	0.99	1.00	1.00	102
3	0.98	1.00	0.99	1204
4	1.00	1.00	1.00	46
accuracy			0.98	4126
macro avg	0.99	0.98	0.98	4126
veighted avg	0.98	0.98	0.98	4126

Test Accuracy: 98.35% F1 Score: 98.32%

SMOTE

Classifiers	Test Accuracy (%)	F1 Score (%)
Random Forest	97.81 %	97.92 %
XGBoost	98.73 %	98.74 %
Decision Tree	95.90 %	96.25 %
Logistic Regression	70.74 %	30.53 %
Bagging	97.60%	97.84%
ADABoost	96.02%	96.43%
SVM	64.44%	24.87%

Classifiers with SMOTE	Test Accuracy (%)	F1 Score (%)
Random Forest	97.96 %	98.03 %
XGBoost	98.44%	98.36 %
Decision Tree	95.68 %	93.49 %
Logistic Regression	78.89 %	34.63 %
Bagging	97.60%	97.88%
ADABoost	95.15%	95.66%
SVM	62.57%	31.17%

Thank You