La transformée de GELFAND

Lien avec la physique, et théorie des algèbres de Banach

Fabien Delhomme 1

27 avril 2018

1 / 12

Fabien Delhomme La transformée de Gelfand 27 avril 2018

Sommaire

- Introduction et premiers exemples
 - Contexte
 - Premiers théorèmes et applications
 - Lien avec la physique quantique
 - Construction de
- 2 Conclusion

Qu'est-ce qu'une algèbre de Banach?

Définition

Une algèbre de Banach A est un espace vectoriel complexe normé complet, tel que :

$$x(yz) = (xy)z$$

$$(x + y)z = xz + yz$$

$$x(y + z) = xy + yz$$

$$\alpha(xy) = (\alpha x)y = x(\alpha y)$$

Et munit d'une norme d'algèbre :

$$\forall x, y \in A \quad ||xy|| \le ||x|| ||y||$$

Ajout d'une unité

On peut toujours ajouter une unité dans une algèbre de Banach. Soit A une telle Algèbre. On pose : $\hat{A} = \{(x, \alpha) \mid x \in A, \alpha \in \mathbb{C}\}$. On définit :

$$(x,\alpha)(y,\beta) = (xy + \alpha y + \beta x, \alpha \beta)$$

et

$$\|(\mathbf{x},\alpha)\| = \|\mathbf{x}\| + |\alpha|$$

Finalement, on pose e = (0, 1)

Theorème

 \hat{A} est une algèbre de Banach munit d'un élément neutre, et isomorphe à A par l'application $x \to (x,0)$.

Spectres

Résultats sur les spectres

Caractérisation des éléments inversibles

Premiers exemples

Lemme de Wiener - Énoncé

Theorème

Soit f une fonction de \mathbb{R}^n , et soit $(a_m)_{m\in\mathbb{Z}}\in\mathbb{R}^\mathbb{Z}$ telle que

$$f(x) = \sum_{m \in \mathbb{Z}} a_m e^{im*x}$$
 , $\sum_{m \in \mathbb{Z}} |a_m| < \infty$

Si f ne s'annule jamais sur \mathbb{R}^n , alors il existe $(b_m)_{m\in\mathbb{Z}}$ telle que :

$$\frac{1}{f(x)} = \sum_{m \in \mathbb{Z}} b_m e^{im*x}$$
 , $\sum_{m \in \mathbb{Z}} |b_m| < \infty$

Lemme de Wiener - Preuve

Sommaire

- 1 Introduction et premiers exemples
- 2 Conclusion