Algorithmique

Sandrine Vial sandrine.vial@uvsq.fr

Octobre 2010

Introduction

3 niveaux d'abstraction

- Les problèmes décrits en langage naturel
- Les algorithmes décrits dans un pseudo-langage de programmation, proche du langage naturel
- Les programmes décrits dans un langage de programmation (C, Caml, Pascal, C++, Java, ...)

Niveaux de difficulté

Conceptuel

- Difficulté du problème?
- Comment le résoudre?
- Quelle démarche utiliser?

Résolution du problème => Algorithme

Technique

- Comment mettre en œuvre mon algorithme sur une machine?
- Quelles sont les ressources à ma disposition?
- Quel est le langage le plus adapté?

Questions relatives aux algorithmes

 Les sorties correspondent-elles à la solution de mon problème?

Preuve de l'algorithme

 Combien de calculs élémentaires doit-on faire pour produire la sortie?

Complexité en temps de l'algorithme

Complexité d'un algorithme

- Mesure intrinsèque de la complexité de l'algorithme indépendamment de l'implémentation.
- Permet la comparaison entre différents algorithmes pour un même problème.

Complexité d'un algorithme (2)

Recherche de l'algorithme avec le moins d'étapes élémentaires.

Somme des nombres de 1 à n

Idée 1 : Utilisation d'une boucle

```
Algorithme 1 i \leftarrow 1 som \leftarrow 0 Tant que i \leq n Faire som \leftarrow som + i i \leftarrow i + 1 Fin Tant que
```

Coût : $2 \times n$ additions

Complexité d'un algorithme (3)

Somme des nombres de 1 à n

Idée 2 : Utilisation des mathématiques

$$\sum_{i=1}^{n} i = \frac{n \times (n+1)}{2}$$

Algorithme 2

$$som \leftarrow n+1$$

$$som \leftarrow som * n$$

$$som \leftarrow som/2$$

Coût: 1 addition, 1 multiplication et 1 division.

Complexité d'un algorithme (4)

Différentes Mesures

- Complexité en temps
- Complexité en espace

But

« Sur toute machine, et quel que soit le langage utilisé, l'algorithme α est meilleur que l'algorithme β pour des données de grande taille. »

Complexité d'un algorithme (5)

- Mesure élémentaire :
 - nombre de comparaisons
 - nombre d'affectations
 - nombre d'opérations arithmétiques
 - ...
- On cherche la complexité d'un algorithme \mathcal{A} en fonction d'un paramètre représentatif des entrées (taille).
- Attention : pas de système complet de règles.

Quelques règles

cout(x): nbre d'op. élémentaires de l'ens. d'instructions x.

• Séquence d'instructions : x_1 ; x_2 ;

$$cout(x_1; x_2;) = cout(x_1;) + cout(x_2;)$$

Exemple

Mesure: nombre d'opérations arithmétiques.

Algorithme \mathcal{A} Début $som \leftarrow n+1$ $som \leftarrow som*n$ $som \leftarrow som/2$ Fin

$$cout(\mathcal{A}) = cout(som \leftarrow n+1) + cout(som \leftarrow som * n) + cout(som \leftarrow som/2) = 3$$

Quelques règles

• Les boucles simples : tant que condition faire x_i ;

$$cout(boucle) = \sum_{i=1}^{n} (cout(x_i) + cout(condition))$$

Exemple

Mesure : nombre de comparaisons.

$$cout(A) = cout(\mathbf{0}; \mathbf{0}) + \sum_{i=1}^{n} (cout(i \le n) + cout(\mathbf{0}; \mathbf{0})) = n$$

Quelques règles

• Conditionnelle : Si condition alors x_{vrai} ; sinon x_{faux} ; $cout(conditionnelle) \le cout(condition) + \max(cout(x_{vrai}); cout(x_{faux}))$

Exemple

Mesure: nombre d'affectations.

```
Algorithme \mathcal{A}
Début

\mathbf{0} u \leftarrow 0
Si \ i \mod 2 = 0 \ Alors
\mathbf{0} u \leftarrow i/2
Sinon
\mathbf{0} u \leftarrow i-1
\mathbf{0} u \leftarrow u/2
Fin \ Si
Fin
```

 $cout(A) \le cout(\mathbf{0}) + cout(i \mod 2 = 0) + \max(cout(\mathbf{0}); cout(\mathbf{0}; \mathbf{0})) = 3$

Un exemple : produit de deux matrices carrées $C = A \times B$

Deux matrices $A = (a_{ii})$ et $B = (b_{ii})$ de dimensions $n \times n$.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj}$$

 ${\bf Algorithme~1~Multiplication~de~deux~matrices~carr\'ees}$

```
\begin{aligned} & \text{Mult } \left( A: \text{matrice } n \times n, \ B: \text{matrice } n \times n \right): \\ & \text{matrice } n \times n \\ & \text{D\'ebut} \\ & \text{pour } i \ \text{de } 1 \ \text{\`a} \ \text{n faire} \\ & \text{pour } j \ \text{de } 1 \ \text{\`a} \ \text{n faire} \\ & \text{C[i][j]} \leftarrow 0 \\ & \text{pour } k \ \text{de } 1 \ \text{\`a} \ \text{n faire} \\ & \text{C[i][j]} \leftarrow \text{C[i][j]} + \text{A[i][k]} \ ^* \ \text{B[k][j]} \\ & \text{fin pour} \\ & \text{fin pour} \\ & \text{fin pour} \end{aligned}
```

- Opération élémentaire : la multiplication.
- Coût de l'algorithme :

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} cout(C[i][j] \leftarrow \dots) = n^{3}$$

Grandeurs

- Caractérisation du comportement d'un algorithme A sur l'ensemble des données D_n de taille n.
- $Cout_{\mathcal{A}}(d)$: coût de l'algorithme \mathcal{A} sur la donnée d.
- Complexité dans le meilleur cas :

$$Min_{\mathcal{A}}(n) = \min\{Cout_{\mathcal{A}}(d), d \in D_n\}$$

Grandeurs

- Caractérisation du comportement d'un algorithme A sur l'ensemble des données D_n de taille n.
- $Cout_{\mathcal{A}}(d)$: coût de l'algorithme \mathcal{A} sur la donnée d.
- Complexité dans le meilleur cas :

$$Min_{\mathcal{A}}(n) = \min\{Cout_{\mathcal{A}}(d), d \in D_n\}$$

• Complexité dans le pire cas :

$$Max_{\mathcal{A}}(n) = \max\{Cout_{\mathcal{A}}(d), d \in D_n\}$$

Grandeurs

- Caractérisation du comportement d'un algorithme A sur l'ensemble des données D_n de taille n.
- $Cout_{\mathcal{A}}(d)$: coût de l'algorithme \mathcal{A} sur la donnée d.
- Complexité dans le meilleur cas :

$$Min_{\mathcal{A}}(n) = \min\{Cout_{\mathcal{A}}(d), d \in D_n\}$$

• Complexité dans le pire cas :

$$Max_{\mathcal{A}}(n) = \max\{Cout_{\mathcal{A}}(d), d \in D_n\}$$

• Complexité en moyenne :

$$\mathit{Moy}_{\mathcal{A}}(n) = \sum_{d \in D_n} p(d) \times \mathit{Cout}_{\mathcal{A}}(d)$$

Remarques

- Comportement à l'extrême pour les complexités dans le meilleur et le pire cas.
- Complexité en moyenne : comportement de l'algorithme en général avec un modèle probabiliste sur les données.

$$Min_{\mathcal{A}}(n) \leq Moy_{\mathcal{A}}(n) \leq Max_{\mathcal{A}}(n)$$

• exemple des matrices :

$$Min_{\mathcal{A}}(n) = Moy_{\mathcal{A}}(n) = Max_{\mathcal{A}}(n) = n^3$$

Ordres de grandeurs

- Une approximation de la fonction de complexité est suffisante.
- Utilisation d'une échelle de comparaison avec les fonctions n^n , n!, 2^n , n^3 , n^2 , $n \log n$, n, $\log n$

Ordres de grandeurs

Notations O

O « Borne Supérieure »

Soient f et $g: \mathbb{N} \to \mathbb{R}_+: f = O(g)$ ssi $\exists c \in \mathbb{R}_+, \exists n_0 \in \mathbb{N}$ tels que :

$$\forall n > n_0, f(n) \leq c \times g(n)$$

Figure:
$$f(n) = O(g(n))$$

Notations Ω

Ω « Borne Inférieure »

Soient f et $g: \mathbb{N} \to \mathbb{R}_+: f = \Omega(g)$ ssi $\exists c \in \mathbb{R}_+, \exists n_0 \in \mathbb{N}$ tels que:

$$\forall n > n_0, 0 \le c \times g(n) \le f(n)$$

Figure: $f(n) = \Omega(g(n))$

Notation Θ

Θ

$$f = \Theta(g)$$
 ssi $f = O(g)$ et $f = \Omega(g)$

 $\exists c,d \in \mathbb{R}_+, \exists \textit{n}_0 \in \mathbb{N} \text{ tels que}$:

$$\forall n > n_0, d \times g(n) \leq f(n) \leq c \times g(n)$$

Figure: $f(n) = \Theta(g(n))$

Exemples

$$2n = O(n^2)$$

$$2n = O(n)$$

$$2n = \Theta(n)$$

$$2n \neq \Theta(n^2)$$

Un algorithme ...

- de complexité O(1) effectue un nombre constant d'opérations
- de complexité O(n) est un algorithme linéaire
- de complexité $O(n^k)$ est un algorithme polynomial

Quelques chiffres ...

		Complexité						
		1	log n	n	n log n	n ²	n ³	2 ⁿ
Taille des données	$n = 10^2$	$1\mu s$	$6.6 \mu s$	0.1 <i>ms</i>	0.6 <i>ms</i>	10ms	1 <i>s</i>	4.10 ¹⁶ a
	$n = 10^3$	1ns	$9.9 \mu s$	1ms	9.9 <i>ms</i>	1 <i>s</i>	16.6 <i>min</i>	∞
	$n = 10^4$	$1\mu s$	$13.2 \mu s$	10 <i>ms</i>	0.1 <i>s</i>	100 <i>s</i>	11.5 <i>j</i>	∞
	$n = 10^5$	$1\mu s$	$16.6 \mu s$	0.1 <i>s</i>	1.66 <i>s</i>	2.7h	31.7 <i>a</i>	∞
	$n = 10^6$	$1\mu s$	$19.9 \mu s$	1 <i>s</i>	19.9 <i>s</i>	11.5 <i>j</i>	$31.7 * 10^3 a$	∞

Temps d'exécution en fonction de la complexité d'un algorithme et de la taille des données.

$$\infty = \text{\ensuremath{\ll}} > 10^{25} \text{ années } \text{\ensuremath{>}}$$

Nombre d'opérations par seconde $= 10^6$

Quelques chiffres ...

		Complexité						
		1	log n	n	n log n	n ²	n ³	2 ⁿ
Taille des données	$n = 10^2$	1ns	6.6 <i>ns</i>	$0.1 \mu s$	$6.6 \mu s$	$10\mu s$	0.001s	4.10 ¹³ a
	$n = 10^3$	1ns	9.9 <i>ns</i>	$1\mu s$	$9.9 \mu s$	0.001 <i>s</i>	1 <i>s</i>	∞
	$n = 10^4$	1ns	13.2 <i>ns</i>	$10\mu s$	1.32 <i>ms</i>	0.1 <i>s</i>	1min 40s	∞
	$n = 10^5$	1ns	16.6 <i>ns</i>	1ms	1.66 <i>ms</i>	10 <i>s</i>	11j 13h 46min 40s	∞
	$n = 10^6$	1ns	19.9 <i>ns</i>	0.001s	0.019 <i>s</i>	1min 40s	> 31 <i>a</i>	∞

Temps d'exécution en fonction de la complexité d'un algorithme et de la taille des données.

$$\infty = \ll > 10^{25}$$
 années »

Nombre d'opérations par seconde $= 10^9$

Quelques chiffres ...

		Complexité							
		1	log n	n	n log n	n ²	n ³	2 ⁿ	
des	$n = 10^2$	1ps	6.64 ps	0.1 ns	0.66 ns	$0.01 \mu s$	$1\mu s$	3.99 10 ¹⁰ a	
Taille d données	$n = 10^3$	1ps	9.96 ps	1 ns	9.96 ns	$1\mu s$	0.001s	∞	
	$n = 10^4$	1ps	13.28 ps	10 ns	132.87 ns	10 ms	1 s	∞	
	$n = 10^5$	1ps	16.6 ps	$0.1 \mu s$	$1.6\mu s$	0.01 s	> 16 min	∞	
	$n = 10^6$	1ps	19.93 ps	$1\mu s$	$19.93 \mu s$	1 <i>s</i>	> 11 jours	∞	

Temps d'exécution en fonction de la complexité d'un algorithme et de la taille des données.

$$\infty = \ensuremath{\,^{\circ}}\xspace < > 10^{25}$$
 années »

Nombre d'opérations par seconde = 10^{12}