1.6. ПОДРЕДЕНИ МНОЖЕСТВА. ОПЕРАЦИИ С НИЗОВЕ. РЕГУЛЯРНИ МНОЖЕСТВА И ИЗРАЗИ

1. Подредени множества и низове

Определение:

Множества, чиито елементи (низове или думи) са подредени в ред, при което са дефинирани първи последен, предходен, следващ елемент и т.н. се наричат подредени множества.

Произволно крайно множество от символи се нарича азбука, която се означава $\Sigma = \{a,b\}$, където a,b са символи или букви на азбуката. Всяка крайна редица от букви от азбуката се нарича низ или дума над Σ .

Пример:

Символни низове (думи) над $\Sigma = \{a,b\}$: u = aabaa, v = bbbabba.

Символни низове над $\Sigma = \{0,1\}$: 001, 0011.

Дума над $\Sigma = \{if, then, else, do, a, b\}$: $\alpha = if b then do a else do a$.

Броят на буквите в една дума α дефинира дължината на думата, означава се с $|\alpha|$.

Пример:

Ако думата е $\alpha = 110011$, то дължината на думата е $|\alpha| = 6$.

Конкатенация на думите α и β над $\Sigma = \{a,b\}$ е думата $\alpha\beta$, получена от последователното дописване на буквите на β след последната буква на α .

Пример:

Ако $\alpha = 1101$ и $\beta = 110$, то $\alpha\beta = 1101110$.

Под α^n се разбира конкатенацията $\underbrace{\alpha.\alpha...\alpha}_{n-\text{пъти}}$, а $\alpha^0=\epsilon$, т.е. празната буква.

Свойства на конкатенацията на думите:

Ако α, β, γ са три думи над Σ^* в сила са следните съотношения

- 1. $\alpha(\beta\gamma) = (\alpha\beta)\gamma$.
- 2. $\varepsilon \alpha = \alpha \varepsilon = \alpha$.
- 3. Думата α е начало (префикс) на думата β , ако съществува дума γ такава, че $\beta = \alpha \gamma$. Думата α е край (суфикс) на думата β , ако съществува дума δ такава, че $\beta = \delta \alpha$. Думата α е поддума на β , ако съществуват думи γ и δ така, че $\beta = \gamma \alpha \delta$.

Означения:

 Λ - празна дума - думата, която не съдържа букви;

 Σ^* - множество от всички думи над Σ , включително и празната дума Λ , ако $\Sigma\{a,b\},\ \Sigma^*=\{\Lambda,a,b,aa,ab,ba,bb,aaa,...\};$

 $\{\ \}, \varnothing$ - празно множество, т.е. множество от думи, което не съдържа нито една дума;

 $\{\Lambda\}$ - непразно множество, състоящо се от една единствена дума – празната дума Λ .

2. Операции с множества от низове

Конкатенация (съединяване или умножаване) UV на две подмножества U , V над Σ^* се дефинира с израза

$$UV = \{x | x = uv, u \in U, v \in V\}.$$

Свойства:

Ако $U = \{a, ab, aab\}$ и $V = \{b, bb\}$ то конкатенацията UV е $UV = \{ab, abb, aabb, aabb, aabbb\}$, а конкатенацията VU е $VU = \{ba, bab, bab, bba, bbab, bbaab\}$. Конкатенацията не е комутативна $(UV \neq VU)$. Конкатенацията е асоциативна, т.е. за произволни подмножества U, V и W на Σ^* е в сила (UV)W = U(VW).

Затворена обвивка (звезда) на множеството S е множеството S^* , състоящо се от празната дума и всички думи, образувани чрез конкатенация на краен брой думи на S .

Пример:

Ако
$$S = \{ab, bb\}$$
, то $S^* = \{\Lambda, ab, bb, abab, abbb, abbb, bbab, bbab, ababab....\}$.

Звезда, дефинирана с обединения на подмножествата S^{i} за i > 0:

$$S^* = S^0 \cup S^1 \cup S^2 \cup S^3 \cup, S^i$$

където $S^0=\{\epsilon\}$ или $S^0=\{\Lambda\}$ е празната буква, $S^i=S^{i-1}S$ за i>0 - конкатенацията има вида $S^i=S.S....S$ (i-пъти).

3. Регулярни множества

Класът на регулярните множества над Σ се дефинират рекурсивно в съответствие с правилата:

Всяко крайно множество от думи над Σ^* (включително празното множество \varnothing) е регулярно множество.

Ако U и V са регулярни множества над Σ , то $U \cup V$ и UV са регулярни.

Ако S е регулярно множество над Σ , то S^* е също регулярно множество.

Множеството е регулярно само, ако се получава чрез краен брой прилагания на правилата от 1 до 3.

Класът от крайни множества над Σ , е най-малкият клас, който съдържа всички крайни множества от думи над Σ и е затворен относно операциите: обединение, конкатенация и звезда.

Множество от всички думи над $\Sigma = \{a,b\}$, съдържащи aa и/или bb, както и множеството от всички думи над $\Sigma = \{a,b\}$, съдържащи четен брой a и четен брой b, са регулярни над Σ : $T = \{aa,aab,abb,abba,baab,...\}$.

Множеството $T = \{a^n b^n | n \ge 0\}$ от всички думи, които се състоят от n "a", последвани от n "b", при $n \ge 0$, не е регулярно множество над Σ .

Дефиниции:

- дума: *bbaba*;

множество от думи: $\{a^nb^n|n\geq 0\}$;

клас от множество от думи:

$$\{\{a^n|n\geq 0\}, \{a^nb^n|n\geq 0\}, \{a^nb^na^n|n\geq 0\}, \{a^nb^na^nb^n|n\geq 0\}, ...\}$$

4. Регулярни изрази

Всеки регулярен израз R над Σ описва множество \widetilde{R} от думи над Σ , т.е. $\widetilde{R} \subseteq \Sigma^*$, което се дефинира рекурсивно по следния начин:

Ако $R = \Lambda$, то $\widetilde{R} = \{\Lambda\}$ - множество, състоящо се от празната дума, ако $R = \emptyset$, то $\widetilde{R} = \{\emptyset\}$ – празно множество.

Ако $R = \sigma$, то $\widetilde{R} = {\sigma}$ – множество, състоящо се от буквата σ .

Ако R_1 и R_2 са регулярни изрази над Σ , описващи множество от думи \widetilde{R}_1 и \widetilde{R}_2 :

при $R = (R_1 + R_2)$, то $\widetilde{R} = \widetilde{R}_1 \cup \widetilde{R}_2 = \{x | x \in \widetilde{R}_1, x \in \widetilde{R}_2\}$ дефинира обединение на двете множества;

при $R = (R_1.R_2)$, то $\widetilde{R} = \widetilde{R}_1.\widetilde{R}_2 = \left\{ xy \middle| x \in \widetilde{R}_1, y \in \widetilde{R}_2 \right\}$ дефинира произведение на двете множества:

при $R = (R_1)^*$, то $\widetilde{R} = \widetilde{R_1}^* = \{\Lambda\} \cup \{x | x \text{ е получено чрез съединяване на краен брой думи от <math>\widetilde{R_1}\}$ е затворената обвивка на множеството $\widetilde{R_1}$.

Взаимно еднозначното съответствие на регулярните изрази над $\Sigma = \{a,b\}$ и регулярните множества може да се илюстрира със следните примери:

 $R = ba * \rightarrow \widetilde{R} =$ Всички думи над Σ , започващи с b, последвано само от a-та.

 $R = a * ba * ba * \to \widetilde{R} =$ Всички думи над Σ , съдържащи точно две b-та; $R = (a + b) * \to \widetilde{R} =$ Всички думи над Σ .

 $R = (a+b)*(aa+bb)(a+b^*) \to \widetilde{R} =$ Всички думи над Σ , съдържащи две последователни a-та и две последователни b-та.

 $R = [aa + bb + (ab + ba) * (aa + bb)(ab + ba)] * \rightarrow \widetilde{R} =$ Всички думи над Σ , съдържащи четен брой a-та и четен брой b-та.

 $R = (b + abb)^* \to \widetilde{R} =$ Всички думи над Σ , в които всяко a е непосредствено последвано поне от две b-та.

Определение: Едно множество е регулярно над Σ точно тогава, когато може да се представи чрез регулярен израз над Σ . Два регулярни израза R_1 и R_2 над Σ са еквивалентни (означава се: $R_1 = R_2$) точно тогава, когато $\widetilde{R}_1 = \widetilde{R}_2$.

За произволни регулярни изрази R, S и T са в сила следните формули за еквивалентност:

1.
$$R + S = S + R$$
, $R + \emptyset = \emptyset + R$, $R + R = R$, $(R + S) + T = R + (S + T)$.
2. $R \Lambda = \Lambda R = R$, $R \varnothing = \varnothing R = \varnothing$, $(R S) T = R (S T)$.
В общия случай: $R S \neq R S$.
3. $R (S + T) = R S + R T$, $(S + T) R = S R + T R$.
 $R^* = R^* R^* = (R^*)^* = (\Lambda + R)^*$, $\varnothing^* = \Lambda^* = \Lambda$.
 $R^* = \Lambda + R + R^2 + \ldots + R^k + R^{k+1} R^* (k \ge 0)$
В частност $R^* = \Lambda + R R^*$. $(R + S)^* = (R^* + S^*)^* = (R^* S) R^* = R^* (S R^*)^*$.

В общия случай $(R + S)^* \neq R^* + S^*$

$$R*R = RR*, R(SR)* = (RS)*R.$$
 $(R*S)* = \Lambda + (R+S)*S, (RS*)* = \Lambda + R(R+S)*.$ Правило на Ардън. Допуска се, $\Lambda \notin S$. Тогава:

R = S R + T точно тогава, когато R = S * T; R = R S + T точно тогава, когато R = T S *.