Experimento 5

June 29, 2021

Contents

1	Res	Resultados		
	1.1	Os grá	áficos conjuntos de $R(\Omega)$ vs Deformação $(\frac{\Delta l}{l_0})$	1
	1.2	Cálcul	ulo dos erros médios e o desvio padrão (resíduos)	
			Modelagem polinomial Alumínio 203	
		1.2.2	Modelagem polinomial Titânio	4
		1.2.3	Modelagem polinomial Teflon	4
		1.2.4	Modelagem polinomial da Platina 1000	5

1 Resultados

À partir dos dados, obtém-se dois tipos de gráficos, Resistência vs Deformação, para o Titânio, Alumínio e Teflón; e, um gráfico de Temperatura vs Resistência, da Platina. Nota-se que a variação da Resistência é diretamente e exclusivamente influenciada pela temperatura.

1.1 Os gráficos conjuntos de $R(\Omega)$ v
s Deformação $(\frac{\Delta l}{l_0})$

Grafamos os materiais em conjunto, a partir de pontos, e de curvas. Utilizouse do LsqFit.jl e Polynomials.jl os quais fazem o ajuste da melhor curva, à partir do método dos Mínimos Quadrados [?]. Porém, poderia-se fazer um melhor ajuste[?], utilizando-se bibliotecas que optimizam a curva não linear, usando-se LOVO (Lower Order Value Optimization) [?].

Escolhemos modelar as curvas com polinômios de segundo grau, $\frac{\Delta l}{l_0}(R)$, da deformação em relação a resistência.

1.2 Cálculo dos erros médios e o desvio padrão (resíduos)

Escreveu-se uma função em Julia para o cálculo do erro médio, e o desvio padrão,

```
# poli_data is data of the polynome;
#exp_data is the experimental data.
function error_calc(poli_data,exp_data)
```

```
sum_diff = 0
sum_diff_2 = 0
for i in length(exp_data)
    sum_diff += abs(poli_data[i] - exp_data[i])
    sum_diff_2 += (poli_data[i]-exp_data[i])^2
end
mean_sum_diff = sum_diff/2
mean_mod_sum_diff = sqrt(sum_diff_2)/length(exp_data)
return mean_sum_diff, mean_mod_sum_diff
end
```

1.2.1 Modelagem polinomial Alumínio 203

O polinômio encontrado, para o Alumínio 203, modelando a relação $\frac{\Delta l}{l_0}(R)$,

$$f(x) = -5,020239.10^{-3}(9) + 2,8813.10^{-5}(9).x - 1,6.10^{-8}(9).x^{2}$$
 (1)

O erro médio (módulo) e o desvio: $(\mu, \sigma)_{\text{erro}} = (1, 12879(9).10^{-4}, 1, 980.10(9)^{-7}).$

Os valores que desejamos medir são da ordem de 10^{-3} . Portanto, um erro de 10^{-4} faz com que as medidas sejam 90% confiáveis.

1. Primeira derivada do polinômio Como o valor variante possui coeficiente da ordem 10^{-8} , praticamente esse valor é constante, 2, 8813. 10^{-5} . Esse seria nosso $\alpha_{\rm alumínio}$.

$$f'(x) = 2,8813.10^{-5}(9) - 3,2.10^{-8}(9).x$$
 (2)

1.2.2 Modelagem polinomial Titânio

O polinômio encontrado, para o Titânio, modelando a relação $\frac{\Delta l}{l_0}(R)$,

$$f(x) = -6,15289.10^{-4}(9) + 3.2824.10^{-5}(9).x - 1,6.10^{-8}(9).x^{2}$$
 (3)

O erro médio (módulo) e o desvio: $(\mu, \sigma)_{\rm erro} = (4,77115(9).10^{-5}, 8, 24.10(9)^{-8})$. Os valores que desejamos medir são da ordem de 10^{-3} . Portanto, um erro da ordem de 5.10^{-5} faz com que as medidas sejam 95% confiáveis.

1. Primeira derivada do polinômio Como o valor variante possui coeficiente da ordem 10^{-8} , praticamente esse valor é constante, $3.2824.10^{-5}(9)$. Esse seria nosso $\alpha_{\rm tit\hat{a}nio}$.

$$f'(x) = 3.2824.10^{-5}(9) - 3, 2.10^{-8}(9).x$$
(4)

1.2.3 Modelagem polinomial Teflon

O polinômio encontrado, para o Teflon, modelando a relação $\frac{\Delta l}{l_0}(R)$,

$$f(x) = -6,24966.10^{-4}(9) + 3.580.10^{-6}(9).x - 8.10^{-9}(9).x^{2}$$
 (5)

O erro médio (módulo) e o desvio: $(\mu, \sigma)_{\rm erro} = (2, 54016(9).10^{-4}, 4, 38.10(9)^{-7})$. Os valores que desejamos medir são da ordem de 10^{-3} . Portanto, um erro da ordem de $2, 54.10^{-4}$ faz com que as medidas sejam 90% confiáveis.

1. Derivada do Polinômio

$$f(x) = -6,24966.10^{-4}(9) + 3.580.10^{-6}(9).x - 8.10^{-9}(9).x^{2}$$
 (6)

Como o valor variante possui coeficiente da ordem 10^{-8} , praticamente esse valor é constante, $3.2824.10^{-5}(9)$. Esse seria nosso α_{teflon} .

$$f'(x) = 3.580.10^{-6}(9) - 1,6.10^{-8}(9).x$$
(7)

Nota-se que esse valor é uma ordem de grandeza menor do que os outros dois materiais metálicos.

1.2.4 Modelagem polinomial da Platina 1000

Para Platina, utilizou-se de uma modelagem linear, pois suas medidas foram feitas entre Resistência e Temperatura. Como o aparato foi feito de forma à resistência variar exatamente conforme a temperatura varia, obteve-se uma reta.

O polinômio encontrado, para a Platina, modelando a relação T(R),

$$f(x) = -250,407(3) + 2,52.10^{-1}(3).x$$
 (8)

O erro médio (módulo) e o desvio: $(\mu, \sigma)_{\rm erro} = (1.449(3), 0.01(3))$. As medidas possuem grandeza de 10^3 . Assim, um erro de ordem 10^1 representa uma confiabilidade da ordem de 99%.