8. Понятие комбинатора, примеры комбинаторов. Реализация арифметики и логических функций в рамках комбинаторной логики

Билет: 4,11,21

Комбинатор-терм без свободного вхождения переменных.

Переменная в терме называется <u>связанной</u>, если она находится в области действия λ -абстрактора по этой переменной. В противном случае-<u>свободной</u>.

Примеры полезных комбинаторов:

Определение	Название	Характеристика
$I \equiv \lambda x.x$	тождественный	$IX \rightarrow_{\beta} X$
$B \equiv \lambda xyz.x(yz)$	композитор	$\mathbf{B} x y z \to_\beta x (y z)$
c ≡ λ xyz.xzy	пермутатор	$\mathbf{C} \mathbf{x} \mathbf{y} \mathbf{z} \rightarrow_{\beta} \mathbf{x} \mathbf{z} \mathbf{y}$
κ ≡ λ xy.x	канцелятор	$\mathbf{K} \mathbf{x} \mathbf{y} \rightarrow_{\beta} \mathbf{x}$
$S \equiv \lambda xyz.xz(yz)$	коннектор	$\mathbf{S} x y z \to_\beta x z (y z)$
w ≡ λ xy.xyy	дупликатор	W xy → _β xyy

Реализация арифметики:

Нумералы Чёрча:

$$\mathbf{0} = \lambda f x. \ x (= \lambda f. \lambda x. \ x)$$

1=
$$\lambda f x$$
. $f x$

$$2 = \lambda f x. f^2 x$$

•••

$$\mathbf{n} = \lambda f x. f^n x = \lambda f. f(f^{n-1}x) = \lambda f x. f^{n-1}(fx)$$

1) Добавление единицы:

Succ=
$$\lambda nfx$$
. $f(nfx)$

Док-во: Succ
$$\mathbf{n} = (\lambda n f x. f(n f x)) \mathbf{n} \rightarrow \beta \lambda f x. f(n f x) \rightarrow \beta \lambda f x. f(f^n x) \equiv \lambda f x. f^{n+1} x \equiv \mathbf{n+1}$$

2) Сложение:

Plus= $\lambda mnfx.nf(mfx)$

3) Умножение:

Mult= $\lambda mn. m(Plus n)$ **0**

4) Предыдущий:

Pred= $\lambda nfx. n(\lambda gh. h(gf))(\lambda u. x)(\lambda u. u)$

Логические функции:

- 1) True= λxy . x
- 2) False= λxy . y
- 3) And= $\lambda pq. pqFalse$
- 4) Or= $\lambda pq. pTrueq$
- 5) Not= $\lambda p. pFalseTrue$

Примеры:

NotTrue= $(\lambda p. pFalseTrue)True = TrueFalseTrue = False$ NotFalse= $(\lambda p. pFalseTrue)False = FalseFalseTrue = True$