

2º Grado Informática Estructura de Computadores Ensayo Enero 2016

Nombre:	
DNI:	Grupo:

Examen de Problemas (puntuaría sobre 3.0p)

1. Acceso a arrays (0.5 puntos). Considerar el código C mostrado abajo, donde H y J son constantes declaradas mediante #define.

```
int array1[H][J];
int array2[J][H];
void copy array(int x, int y) { array2[y][x] = array1[x][y]; }
```

Suponer que ese código C genera el siguiente código ensamblador x86-64:

```
copy array:
    movslq %esi,%rsi
    movslq %edi,%rdi
    leaq
           (%rsi,%rsi,8), %rdx
           %rdi, %rdx
    addq
           %rdi, %rax
    movq
           $4, %rax
    salq
    subq
           %rdi, %rax
    addq
            %rsi, %rax
            array1(,%rax,4), %eax
    movl
    movl
            %eax, array2(,%rdx,4)
    ret
```

¿Cuáles son los valores de H y J?

```
H = J =
```

2. Representación y acceso a estructuras (0.5 puntos). En el siguiente código C, las declaraciones de los tipos type1_t y type2_t se han hecho mediante typedef's, y la constante CNT se ha declarado mediante #define.

```
typedef struct {
    type1_t y[CNT];
    type2_t x;
} a_struct;

void p1(int i, a_struct *ap) { ap->y[i] = ap->x; }
```

La compilación del código para IA32 produce el siguiente código ensamblador:

```
p1:
    pushl %ebp
    movl %esp, %ebp
    movl 12(%ebp), %eax
    movsbl 28(%eax),%ecx
    movl 8(%ebp), %edx
    movl %ecx, (%eax,%edx,4)
    popl %ebp
    ret
```

Indicar una combinación de valores para los dos tipos y CNT que pueda producir el código ensamblador mostrado arriba:

```
type1_t:
type2_t:
CNT:
```

- **3. Memoria cache** (0.5 puntos). Los parámetros que definen la memoria de un computador son los siguientes:
 - Tamaño de la memoria principal: 32 K palabras.
 - Tamaño de la memoria cache: 4 K palabras.
 - Tamaño de bloque: 64 palabras.

Dibujar el formato de una dirección de memoria desde el punto de vista del sistema cache, determinando el tamaño de cada campo, y anotar los cálculos realizados para obtener dichos tamaños, para las siguientes políticas de colocación:

- A. Totalmente asociativa.
- B. Por correspondencia directa.
- C. Asociativa por conjuntos con 16 bloques por conjunto.
- **4. Diseño del sistema de memoria** (0.5 puntos). Disponemos de una CPU con buses de datos y direcciones de 16bit. Diseñar un sistema de memoria para la misma a partir de módulos SRAM de 16Kx8 y ROM de 8Kx4. La memoria ROM debe ocupar las direcciones 0x0000 a 0x3FFF y la SRAM 0x4000 a 0xFFFF. Se valorará la simplicidad del diseño.
- **5. Entrada/Salida** (0.5 puntos). Disponemos de un microprocesador de 8 bits (bus de datos de 8 bits y bus de direcciones de 16 bits) con E/S independiente. Diseñar un sistema de E/S que permita acceder a los siguientes puertos: puerto 0x0240 de entrada y 0x0241 de salida. Utilizar lógica de decodificación distribuida. No emplear decodificadores.

6. Unidad de control microprogramada (0.5 puntos). La figura de la derecha muestra el camino de datos de un procesador. Todas las instrucciones del procesador ocupan una palabra. Escriba en pseudocódigo la parte del microprograma correspondiente a la captación y decodificación de instrucción.

