"Multifunctional linker molecules for tuning electronic charge transport through organicinorganic composite structures and uses thereof"

CLAIMS

1. A multifunctional linker molecule of the general structure

CON₁-FUNC₁-X-FUNC₂-CON₂

in which

X is the central body of the molecule,

FUNC₁ and FUNC₂ independently of each other are molecular groups introducing a dipole moment and/or capable of forming intermolecular and/or intramolecular hydrogen bonding networks, with the *provisio* that they are not of hydrocarbon nature, and

CON 1 and CON 2 independently of each other are molecular groups binding to functional units comprising metal, alloys of metal, semiconductor or semiconductor core shell materials.

2. A multifunctional linker molecule according to claim 1, in which CON_1 and CON_2 are identical or different and $FUNC_1$ and $FUNC_2$ are identical or different.

- 3. A multifunctional linker molecule according to claim 1 or 2, characterized in that it exhibits a length between about 8 Å and about 30 Å.
- 4. A multifunctional linker molecule according to any of claims 1 to 3, characterized in that X comprises a structure having a hydrocarbon skeleton with two identical or different substitu-

ents that are used for connecting to and/or forming of the molecular groups FUNC₁ and FUNC₂.

- 5. A multifunctional linker molecule according to claim 4, characterized in that the substituents of X are selected from the group comprising amines, carboxylic acids, sulfonic acids and phosphonic acids.
- 6. A multifunctional linker molecule according to claim 4 or 5, characterized in that the substituents of X are directed at an angle α relative to one another such that $90^{\circ} < \alpha < 270^{\circ}$.
- 7. A multifunctional linker molecule according to any of claims 4 to 6, characterized in that X comprises a conjugated system, an aromatic π -system and/or contains heteroatoms, like N, O or S, and/or contains at least one electron donating substituent, like CH₃, O⁻, COO⁻, N(CH₃)₂ or NH₂, and/or electron accepting substituent, like CN, COCH₃, CONH₂, CO₂CH₃, N(CH₃)₃⁺, NO₂, F, Cl, Br, I, OCF₃, or SO₂NH₂.
- 8. A multifunctional linker molecule according to any of claims 4 to 7, characterized in that X is selected from the group comprising
- a) linear or branched structures comprising alkanes, alkenes, alkynes and combinations thereof comprising 3-12 carbon atoms and exhibiting at two ends substituents according to claim 5;

51/0 A2

b) structures having the general formula

all I'M E'M I'M I'M I'M I'M I'M I'M I'M

<u>‡</u>å

The state state of

and derivatives thereof containing heteroatoms, like N, S, and/or O, or electron donating or accepting substituents; R can be methyl, phenyl or alkoxyl and wherein $FUNC_1$ and $FUNC_2$ are attached via the N-atoms of the two amine substituents indicated by \underline{N} ; structures having the general formula

and derivatives thereof containing electron donating or accepting substituents wherein FUNC₁ and FUNC₂ are attached via the N-atoms of the amine substituents indicated by \underline{N} ; structures having the general formula

<u>Ċ</u> The first fi The live that the first of CH₃ <u>`C</u>

and derivatives thereof containing heteroatoms, like N, S, and/or O, or electron donating or accepting substituents; and wherein FUNC₁ and FUNC₂ are attached via the carbon atoms of the two carboxylic acid substituents indicated by <u>C</u>; structures having the general formula

wherein $FUNC_1$ and $FUNC_2$ are attached via the carbon atoms of the two carboxylic acid substituents indicated by \underline{C} ; structures having the general formula

and derivatives thereof containing electron donating or accepting substituents wherein $FUNC_1$ and $FUNC_2$ are attached via the N- or S-atoms of the two amine or sulfonic acid substituents indicated by \underline{N} and \underline{S} ; structures having the general formula

The Real speed short comes super

$$Z = N$$

$$Z =$$

in which \underline{Z} represents amine $(\underline{Z} = \underline{N})$ or a carboxymethyl $(\underline{Z} = \underline{CH(R)C})$ residue, wherein R is an amino acid side chain and FUNC₁ and FUNC₂ are attached via \underline{Z} ; and

c) electron donors like hydroquinones and electron acceptors, like quinones and diimides carrying to substituents according to claim 5.

9. A multifunctional linker molecule according to any of claims 1 to 8, characterized in that $FUNC_1$ and $FUNC_2$ independently of each other are connected to X via N, N, N, or N, and are selected from the group comprising

-NH, -NHCO, -NHCONH, -NHCSNH, -NHCONHNH, -NHCSNHNH, -NHCONHNHCO, and -NHCONHNHCO in case of a connection via N;

-CONH, -CONHNH, and -CONHNHCO in case of a connection via C;

-SO₂NH, -SO₂NHNH, and -SO₂NHNHCO in case of a connection via S; and

-PO₂NH, -PO₂NHNH, and -PO₂NHNHCO in case of a connection via P.

10. A multifunctional linker molecule according to any oliciaims 1 to 9, characterized in that CON₁ and CON₂ connected to FUNC₁ and FUNC₂ via NH olico, independently of each other are selected from the groups comprising

 $-(CHR)_nCOOH; -(CHR)_nNC; -(CHR)_nNH_2; -(CHR)_nNHCS_2H; -(CHR)_nOPO_3H_2; -(CHR)_3H_2; -(CHR)_3$

 $(CHR)_nOSO_3H$; $-(CHR)_nPO_3H_2$; $-(CHR)_nSH$; $-(CHR)_nSO_3H$; -CSOH and $-CS_2H$ in case of a connection via NH; and

 $-(CHR)_nCOOH; -(CHR)_nNC; -(CHR)_nNH_2; -(CHR)_nNHCS_2H; -(CHR)_nOPOH_2; -(CHR)_2; -$

 $(CHR)_nOSO_3H$; $-(CHR)_nPO_3H_2$; $-(CHR)_nSH$; and $-(CHR)_nSO_3H$ in case of a conjection via \underline{CO} ; and

where R is H, CH₂OH, or CH₃ and n is 1 or 2, and ionic forms thereof.

- 11. A multifunctional linker molecule according to claim 10, characterized in that CON₁ and CON₂ independently of each other comprise branched molecular structures.
- 12. A multifunctional linker molecule which is selected from the group comprising 1,4-dimercaptoacetamidobenzene of the general formula

SH

The first time that must that my other time that the

 in which R_{1,2} is independently selected from CH₃ and/or Cl, 1,4-dimercaptoacetamidocyclohexane, 1,4-dimercaptoacetamido-9,10-anthraquinone, 1,5-dimercaptoacetamido-9,10-anthraquinone, 1,8-dimercaptoacetamidooctane, 1,4-dithiocarbamatobenzene and 1,4-dithiocarbamatocyclohexane.

13. Multifunctional linker molecule selected from the group comprising

SIM

U

14. 1-, 2-, or 3-dimensional assembly of nanostructured units comprising a multifunctional linker according to any of claims 1 to 13, wherein the conductivity of the assembly is determined by the structure of the multifunctional linker.

15. Assembly according to claim 14, characterized in that the nanostructured units are selected from the group comprising nanoparticles, like metal, semiconductor, or core/shell semiconductor nanoparticles, nanowires, nanotubes, nanobelts, and electrodes.

5 My

16. Assembly according to claim 14 or 15 in the form of a thin film of interconnected nanostructured units.

17. Use of an assembly according to any of claims 14 to 16 as self-assembled electronic circuit elements, electrodes, and metal coatings.