(Goal of procedure) Quantum Constraint anomaly physical Hilbert space $C \longrightarrow \hat{C} = 0$ $2e_{j} = C_{j} \longrightarrow \hat{C}_{j} = 0$ $| \text{look for solutions } \hat{Y} \text{ which span of phys}$ Naive proposal of solving countraints at quantum level problem 1: egus are hard + solve: both (, C; are nonpolynomial operators dep. on $V_{\nu} = (\hat{Q}_{\nu}^2)^{1/4}$, one heads to diagonalized \hat{Q}_{ν}^{\dagger} to Compute o.g. matrix elements of \hat{V}_{ν} , but \hat{Q}^2 is hard to be diagonalized analytically, so it's hard to compute matrix elements of C. Cj. solving quantum constraint egn. is even harder. problem 2: quantum anomaly classically C, C; are 1st class constraints C2 = { < (x), Cj (x) } I= (j,x) {C1, C3} = f 1 (9) Ck Suppose out quartization gives [Ĉ], Ĉ]] = fij Ck \forall solution \exists , $C_1 \exists = 0 \ \forall \ 1 \Rightarrow [C_2, G_1] = 0 \ \text{first by}$ 294-994 secondly from Cx I = 0 however, our quantization actually gives $\begin{bmatrix} \hat{C}_{1}, \hat{C}_{3} \end{bmatrix} = \hat{f}_{23} \hat{C}_{k} + \mu \hat{O}_{1} + \hat{f}_{2} \hat{O}_{2}$

7

⇒ ginen GJ=0 => left: [c, cj] 4 =0 right: (fight: (fight: che + pô, + tô) I = (\(\hat{O}_1 + \hat{O}_2 \) \(\hat{V} \) \(\frac{1}{2} \) => inconsistency unless we impose in addition 0,4 = Q4 = 0 hard to silve & no classical analog too many guantum constraints. -> Solution space Hopps
is too small. Constraint anomaly is problematic. constant (Lie algebra) In general, QFT: glabel symm classical {Qz,Qj} = fzjkQk Symm charge e.g. H P J quantum. $[\hat{Q}_1 \hat{Q}_1] = f_{ij} \hat{Q}_k + f_{ij} \hat{Q}_k$ grantum Correction (guartur anomaly) because in QM (4) ~ ei8 (4) $e^{[\hat{Q}_{1}\hat{Q}_{1}]}|\mathcal{L}\rangle = e^{i\theta}e^{f_{W}\hat{Q}_{1}}|\mathcal{L}\rangle$ a symmety broken by quantum effect is called a quantum anomaly leg axial aboundy and is fine brecking scaling in. in aft

but	for gauge symm, $Q_1 = C_1$ constraint.
	gange anomaly or constraint anomaly is NOT fine
	because [C2, C3] = fro Ck + t3
	→ additional constraints & I=0 → Aphys is too small
	Small Small
	in our case [cz, cj] = fn ch + pô, + tô
	A
	discretization quartum aboutly aboutly
	a wolkery woon or
	so far there is no better proposal to quantize C.Cj.
How.	to accept anomaly but make Alphy not small.
id	ea: weakly imposing quantum comptraints
	Strongly imposing CI; CZ 4=0 4EH
	Solutions 4 span Hopeys
	2 ways of imposing Cz
	1) Gupta-Bleuler formalism; look for subspace Hphys C H
	5.t. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	<41 C1 12>=0
	\
	not nacessarily zero but orthogonal to
	Ψ ∈ H(ω)
	(used in e.g. covariant quantization of strings)
	Continue Annual strings

therefor M can be viewed as self-adj. operator.
À con be diagondized in principle
[M.M] = 0 trivially no anomaly
quantum constraint egn. MI = 0, solutions span Hphys.
eigenspare of M with zono eigenvalue
Hphys is well-defined
M = 0 is weaker than $\hat{C}_{\nu} = \hat{C}_{i,\nu} = 0$
$ \frac{1}{\hat{N} \sim \sum_{i} \hat{C}_{i} \hat{C}_{i}} \qquad \hat{C}_{i} \hat{q} = 0 \Rightarrow \sum_{i} \hat{C}_{i} \hat{C}_{i} \hat{q} = 0 $
but not the inverse
but not the inverse
M neg be a resolution of quartum constraint anomaly.
How to resolve both problem 1 & 2
How to resolve both problem 1 & 2 — radiced phase space quantization (solve Constraints classically) then quantize
Giesel - Thiemann 2007, useful recently