EECS240 - Spring 2010

Lecture 5: Electronic Noise

Elad Alon Dept. of EECS

Noise in Amplifiers

- · All amplifiers generate noise
 - Comes from carrier random thermal motion and discreteness of charge
- · Noise is random
 - Has to be treated statistically can't predict actual value
 - · Deal with mean (average), variance, spectrum

EECS240 Lecture 5

Electronic Noise

- . Why is noise important?
 - Sets minimum signals we can deal with often sets lower limit on power
- · Signal-to-noise ratio

 - Signal Power P_{sig} ~ (V_{DD})²
 Noise Power P_{noise} ~ k_BT/C
 - SNR = P_{siq} / P_{noise}
- Technology Scaling
 - V_{DD} goes down → lower signal
 - Increase C to compensate → increases power

EECS240 Lecture 5

Thermal Noise of a Resistor

- · Origin: Brownian Motion
 - · Thermally agitated particles
 - . E.g. ink in water, electrons in a conductor
- Available noise power: $P_N = k_B T \Delta f$
 - Noise power in bandwidth Δf delivered to a matched load
 - Example: $\Delta f = 1 \text{Hz} \rightarrow P_N = 4 \times 10^{-21} \text{W} = -174 \text{ dBm}$
 - Reference: J.B. Johnson, "Thermal Agitation of Electricity in conductors," Phys. Rev., pp. 97-109, July 1928.

EECS240 Lecture 5

Types of "Noise"

- Interference
 - Not "fundamental" deterministic
 - Signal coupling
 - · Capacitive, inductive, subtrate, etc.
 - Supply noise
- Device noise
 - Caused by discreteness of charge
 - "fundamental" thermal noise
 - "manufacturing process related" flicker noise

EECS240 Lecture 5

Resistor Noise Model

$$P_N = k_B T \Delta f = \frac{v_n^2}{4R}$$

Mean square noise voltage: $v_n^2 = 4k_B TR\Delta f$

EECS240 Lecture 5

Thermal Noise

- · Present in all dissipative elements
 - · I.e., resistors
- · Independent of DC current flow
- Random fluctuations of v(t) or i(t)

 - Mean is 0 Distribution (pdf) is Gaussian
 - Power spectral density is "white"
 Up to ~THz frequencies
 k_BT = 4 x 10⁻²¹ J (T = 290K = 16.9°C)
- Example: $R = 1k\Omega \rightarrow \frac{4nV/rt-Hz}{1MHz bandwidth} \sigma = \frac{4uV}{1}$

EECS240 Lecture 5

Calculating Noise in Passive Networks

• Capacitors and inductors only shape spectrum:

$$\overline{v_{on,T}^2(f)} = \sum_{x} \left| H_x(s) \right|_{s=2\pi i f}^2 \overline{v_x^2(f)}$$

EECS240 Lecture 5

Thermal Noise in Capacitors?

EECS240 Lecture 5

Noise in Diodes

· Shot noise

 $G \ngeq \bigoplus_{i = n}^{n} \overline{i_n^2}$

- · Zero mean, Gaussian pdf, white
- · Proportional to current
- · Independent of temperature
- Example:

 $I_D = 1 \text{mA} \rightarrow \frac{17.9 \text{pA/rt-Hz}}{}$ 1MHz bandwidth $\rightarrow \sigma = 17.9$ nA

- · Shot noise versus thermal noise
 - $g_{diode} = I_d/(k_bT/q)$
 - Thermal noise density: $4k_bTg_{diode} = 4qI_d$
 - . Shot noise half of this (current flow in 1 direction)

EECS240 Lecture 5 11

 $\overline{i_n^2} = 2qI_D \Delta f$

Noise Calculations

- Noise calculations
 - · Instantaneous voltages add
 - · Power spectral densities add
 - RMS voltages do NOT add
- Example: R₁+R₂ in series

EECS240 Lecture 5

BJT Noise

- Just like diodes: shot noise
 - · Collector and base noise partially correlated
- · Extrinsic resistors contribute noise
 - Small signal resistors (e.g., r_o) don't
 - These aren't physical resistors

EECS240 12 Lecture 5

Triode MOSFET Noise

- Channel resistance contributes thermal noise
- Channel conductance when V_{ds} = 0:

$$g_{ds0} = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})$$

• Device is truly a resistor when V_{ds} = 0, so:

$$\overline{i_d^2} = 4kTg_{ds0}\Delta f$$

EECS240 Lecture 5

Weak Inversion Noise

EECS240 Lecture 5

Saturation Noise

· Noise distributed along the channel:

$$\overline{i_d^2}=4kT\frac{2W}{3L}\mu C_{ox}(V_{GS}-V_T)\Delta f$$
 • For long channel model, can substitute $\gamma {m g_m}$ for ${\bf g_{ds0}}$

$$\overline{i_d^2} = 4kT\gamma g_m \Delta f$$

- · More correct formulation uses inversion charge in the channel [Tsividis]
 - . This is what SPICE/BSIM use

EECS240 14

FET Noise Model

- · Model neglects intrinsic gate noise
- BSIM3 does not directly include α

EECS240 17 Lecture 5

Thermal Noise for Short Channels

- Strong inversion > thermal noise
 - Drain current: g_{ds0} is what you really care about

$$\overline{i_d^2} = 4kT\gamma g_{ds0}\Delta f = 4kT\frac{\gamma}{\alpha}g_m\Delta f$$

- \mathbf{g}_{m} more convenient for input-referred noise
 - For low field (long L), γ = 2/3 relates g_m to g_{ds} For high field, use α to capture increase in noise
 - · High-field noise can be 2-3 times larger than low field
- MOS actually has intrinsic gate induced noise (142/242 topic)
- Gate leakage → shot noise

EECS240 Lecture 5 15

1/f Noise

- Flicker noise

 - K_{f,NMOS} = 2.0 x 10⁻²⁹ AF K_{f,PMOS} = 3.5 x 10⁻³⁰ AF
 Strongly process dependent

$$\overline{i_{1/f}^2} = \frac{K_f I_D}{L^2 C_{ox}} \frac{\Delta f}{f}$$

- Example: $I_D = 10\mu A$, $L = 1\mu m$,
 - $C_{ox} = 5.3 fF/\mu m^2$, $f_{hi} = 1 MHz$

$$\sigma = 722p$$

$$\overline{i_{1/f,total}^2} = \int_{f_{lo}}^{f_{hi}} \frac{K_f I_D \, df}{L^2 C_{ox} \, f} = \frac{K_f I_D}{L^2 C_{ox}} \ln \frac{f_{hi}}{f_{lo}}$$

EECS240

18

1/f Noise Corner Frequency

• Definition (MOS)

$$\begin{split} \frac{K_f I_D}{L^2 C_{ox}} \frac{\Delta f}{f_{co}} &= 4k_B T_r \gamma g_m \Delta f \qquad f_{co} = \frac{K_f I_D}{L^2 C_{ox}} \frac{1}{4k_B T_r \gamma g_m} \\ &= \frac{K_f}{4k_B T_r \gamma C_{ox}} \frac{1}{L^2} \frac{1}{\frac{s}{2} f_D} \\ &= \frac{K_f}{8k_B T_r \gamma C_{ox}} \frac{V^*}{L^2} \end{split}$$

• Example: • V* = 200mV, γ = 1

L = 0.35µm L = 1.00µm NMOS 192kHz 24kHz

PMOS 34kHz 4kHz

20

EECS240

Lecture 5

Noise Calculations with Actives

- · Method:
 - 1) Create small-signal model
 - 2) All inputs = 0 (linear superposition)

 - 3) Pick output v_o or i_o
 4) For each noise source v_x, i_x
 Calculate H_x(s) = v_o(s) / v_x(s) (... i_o, i_x)
 5) Total noise at output is:

$$\overline{v_{on,T}^2(f)} = \sum_{x} \left| H_x(s) \right|_{s=2\pi jf}^2 \overline{v_x^2(f)}$$

simpler notation: $\overline{v_{on,T}^2(f)} = S_n(f)$

Tedious but simple ...

EECS240 Lecture 5

