

1 **WHAT IS CLAIMED IS:**

- 1 1. An actuator arm assembly for a disk drive, the actuator arm assembly being stamped from a single flat sheet of material and comprising:
 - 3 a first actuator arm portion defining a first latch portion;
 - 4 a second actuator arm portion defining a second latch portion configured to latch with the
 - 5 first latch portion, and
 - 6 an actuator arm-joining portion integrally joining the first actuator arm portion to the
 - 7 second actuator arm portion.
- 1 2. The actuator arm assembly of claim 1, wherein the actuator arm assembly is configured to pivot about a pivot axis and wherein the actuator arm-joining portion is configured to bend into an orientation that is substantially parallel to the pivot axis.
- 1 3. The actuator arm assembly of claim 1, wherein the actuator arm assembly is configured to pivot about a pivot axis and wherein the first latch portion is configured to bend into an orientation that is substantially parallel to the pivot axis.
- 1 4. The actuator arm assembly of claim 1, wherein the actuator arm assembly is configured to pivot about a pivot axis and wherein both the actuator arm-joining portion and the first latch portion are configured to bend into orientations that are substantially parallel to the pivot axis.
- 1 5. The actuator arm assembly of claim 1, wherein the first actuator arm portion includes a first surface defined by a thickness and a length of the first actuator arm portion and wherein the second actuator arm portion includes a second surface defined by a thickness and a length of the second actuator arm portion and wherein prior to bending, the first surface faces and is parallel to the second surface.

1 6. The actuator arm assembly of claim 1, wherein the first actuator arm portion
2 defines a first surface that defines a first through bore, the second actuator arm portion defines a
3 second surface that defines a second through bore that is configured to align with the first through
4 bore.

1 7. The actuator arm assembly of claim 1, wherein the actuator arm-joining portion
2 and the first latch portion are configured to bend such that a major surface of the first actuator
3 arm portion faces and is substantially parallel to a major surface of the second actuator arm
4 portion.

1 8. A head stack assembly for a disk drive, the head stack assembly comprising:
2 an actuator arm assembly stamped from a single flat sheet of material and comprising:
3 a first actuator arm portion defining a first latch portion;
4 a second actuator arm portion defining a second latch portion configured to latch
5 with the first latch portion;
6 an actuator arm-joining portion integrally joining the first actuator arm portion to
7 the second actuator arm portion, and
8 a first head gimbal assembly coupled to the actuator arm assembly.

1 9. The head stack assembly of claim 8, further including a second head gimbal
2 assembly coupled to the second actuator arm portion.

1 10. The head stack assembly of claim 8, wherein the actuator arm assembly is
2 configured to pivot about a pivot axis and wherein the actuator arm-joining portion is configured
3 to bend into an orientation that is substantially parallel to the pivot axis.

1 11. The head stack assembly of claim 8, wherein the actuator arm assembly is
2 configured to pivot about a pivot axis and wherein the first latch portion is configured to bend
3 into an orientation that is substantially parallel to the pivot axis.

1 12. The head stack assembly of claim 8, wherein the actuator arm assembly is
2 configured to pivot about a pivot axis and wherein both the actuator arm-joining portion and the
3 first latch portion are configured to bend into orientations that are substantially parallel to the
4 pivot axis.

1 13. The head stack assembly of claim 8, wherein the first actuator arm portion includes
2 a first surface defined by a thickness and a length of the first actuator arm portion and wherein the
3 second actuator arm portion includes a second surface defined by a thickness and a length of the

4 second actuator arm portion and wherein prior to bending, the first surface faces and is parallel to
5 the second surface.

1 14. The head stack assembly of claim 8, wherein the first actuator arm portion defines
2 a first surface that defines a first through bore, the second actuator arm portion defines a second
3 surface that defines a second through bore that is configured to align with the first through bore.

- 1 15. A disk drive, comprising:
 - 2 a disk;
 - 3 a head stack assembly for reading and writing to the disk, the head stack assembly
 - 4 comprising:
 - 5 an actuator arm assembly stamped from a single flat sheet of material and comprising:
 - 6 a first actuator arm portion defining a first latch portion;
 - 7 a second actuator arm portion defining a second latch portion configured to latch
 - 8 with the first latch portion;
 - 9 an actuator arm-joining portion integrally joining the first actuator arm portion to
 - 10 the second actuator arm portion, and
 - 11 a first head gimbal assembly coupled to the actuator arm assembly.
 - 1 16. The disk drive of claim 15, further including a second head gimbal assembly
 - 2 coupled to the second actuator arm portion.
 - 1 17. The disk drive of claim 15, wherein the actuator arm assembly is configured to
 - 2 pivot about a pivot axis and wherein the actuator arm-joining portion is configured to bend into
 - 3 an orientation that is substantially parallel to the pivot axis.
 - 1 18. The disk drive of claim 15, wherein the actuator arm assembly is configured to
 - 2 pivot about a pivot axis and wherein the first latch portion is configured to bend into an
 - 3 orientation that is substantially parallel to the pivot axis.
 - 1 19. The disk drive of claim 15, wherein the actuator arm assembly is configured to
 - 2 pivot about a pivot axis and wherein both the actuator arm-joining portion and the first latch
 - 3 portion are configured to bend into orientations that are substantially parallel to the pivot axis.
 - 1 20. The disk drive of claim 15, wherein the first actuator arm portion includes a first
 - 2 surface defined by a thickness and a length of the first actuator arm portion and wherein the

3 second actuator arm portion includes a second surface defined by a thickness and a length of the
4 second actuator arm portion and wherein prior to bending, the first surface faces and is parallel to
5 the second surface.

1 21. The disk drive of claim 15, wherein the first actuator arm portion defines a first
2 surface that defines a first through bore, the second actuator arm portion defines a second surface
3 that defines a second through bore that is configured to align with the first through bore.

1 22. A method of making an actuator arm assembly for a disk drive, comprising the
2 steps of:

3 providing a flat sheet of material;

4 stamping the actuator arm assembly from the provided sheet of material such that the
5 stamped arm assembly includes:

6 a first actuator arm portion defining a first latch portion;

7 a second actuator arm portion defining a second latch portion configured to latch
8 with the first latch portion, and

9 an actuator arm-joining portion integrally joining the first actuator arm portion to
10 the second actuator arm portion.

1 23. The method of claim 22, further including a step of bending the actuator arm-
2 joining portion such that a major surface of the first actuator arm portion faces and is substantially
3 parallel to a major surface of the second actuator arm portion.

1 24. The method of claim 22, further including a step of bending the first latch portion
2 such that the first latch portion latches with the second latch portion.

1 25. The method of claim 22, wherein the stamping step creates a first through bore in
2 the first actuator arm portion and a second through bore in the second actuator arm portion.

1 26. The method of claim 25, wherein after the bending step, the first through bore is
2 configured to align with the second through bore and wherein the method further includes a step
3 of fitting a collar within the first and second through bores to stiffen the actuator arm assembly.