CSE100: Design and Analysis of Algorithms Lecture 25 – Min Cut and Karger's Algorithm

Apr 26th 2022

Min Cut, Karger and Karger-Stein's Algorithms

Question from last time

- Does Prim's algorithm work with negative edge weights?
 - After all, it looks a lot like Dijkstra...
- Answer is yes! Prim works fine with negative edge weights.
 - To convince yourself, go through the proof and make sure it still works.
 - (Where did we use the fact that the weights were nonnegative for Dijkstra?)

Answer – Several places. See proof of Claim 2: When vertex v is marked sure d[v] = d(s, v).

Last time

- Minimum Spanning Trees!
 - Prim's Algorithm
 - Kruskal's Algorithm

Today

- Minimum Cuts!
 - Karger's algorithm
 - Karger-Stein algorithm

When Organizations Cut Cost by Cutting

- Back to randomized algorithms!
 - but in a different way than we've seen so far

*For today, all graphs are undirected and unweighted.

Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty

*For today, all graphs are undirected and unweighted.

Recall: cuts in graphs

A cut is a partition of the vertices into two nonempty

This is not a cut

This is a cut

This is a cut

These edges cross the cut.

They go from one part to the other.

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

Why "global"?

Next lecture we'll talk about min s-t cuts

Minimum cut which separates a specified vertex s from t

 Today, there are no special vertices, so the minimum cut is "global."

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

Why might we care about global minimum cuts?

- Finds global minimum cuts in undirected graphs
- Randomized algorithm
 - But a different sort of randomized algorithm than Quicksort!
- Karger's algorithm might be wrong.
 - While QuickSort, which just might be slow.
- Why would we want an algorithm that might be wrong?
 - With high probability it won't be wrong.
 - Maybe the stakes are low and the cost of a deterministic algorithm is high.

Different sorts of gambling

- QuickSort is a Las Vegas randomized algorithm
 - It is always correct.

• It might be slow.

Yes, this is a technical term.

Formally:

- For all inputs A, QuickSort (A) returns a sorted array.
- For all inputs A, with high probability over the choice of pivots, QuickSort(A) runs quickly.

Different sorts of gambling

- Karger's Algorithm is a Monte Carlo randomized algorithm
 - It is always fast.
 - It might be wrong.

Formally:

- For all inputs G, with probability at least ____ over the randomness in Karger's algorithm, Karger(G) returns a minimum cut.
- For all inputs G, with probability 1 Karger's algorithm runs in time no more than ____.

Algorithms that might be slow and might also be wrong are called "Atlantic City" algorithms

CSE 100 L25 17

- Pick a random edge.
- Contract it.
- Repeat until you only have two vertices left.

CSE 100 L25 26

CSE 100 L25 28

{e,b} {e,d}

Now stop!

There are only two nodes left.

The **minimum cut** is given by the remaining super-nodes:

{a,b,c,d} and {e,h,f,g}

a,b,c,d

The **minimum cut** is given by the remaining super-nodes:

• {a,b,c,d} and {e,h,f,g}

• Does it work?

• Is it fast?

How do we implement this?

- See next slide with pseudocode
 - This maintains a secondary "superGraph" which keeps track of superNodes and superEdges
- Running time?
 - We contract n-2 edges
 - Each time we contract an edge we get rid of a vertex, and we get rid of n-2 vertices total.
 - Naively each contraction takes time O(n)
 - Maybe there are $\Omega(n)$ nodes in the superNodes that we are merging. (We can do better with fancy data structures).
 - So total running time O(n²).
 - We can do $O(m \cdot \alpha(n))$ with a union-find data structure, but $O(n^2)$ is good enough for today.

Pseudocode

Let $\overline{m{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{u},\overline{v}}$ is the SuperEdge between \overline{u} , \overline{v} .

- Karger(G=(V,E)):
 - Γ = { SuperNode(v): v in V }
 - $E_{\overline{u},\overline{v}} = \{(u,v)\}$ for (u,v) in E
 - $E_{\overline{u}.\overline{v}} = \{\}$ for (u,v) not in E.
 - F = copy of E
 - while $|\Gamma| > 2$:
 - (u,v) ← uniformly random edge in F
 - merge(u, v)

// merge the SuperNode containing u with the SuperNode containing v.

• $F \leftarrow F \setminus E_{\overline{u},\overline{v}}$

// remove all the edges in the SuperEdge between those SuperNodes.

- return the cut given by the remaining two superNodes.
- **merge**(u, v):

- // merge also knows about Γ and the $E_{\overline{u},\overline{v}}$'s
- \overline{x} = SuperNode($\overline{u} \cup \overline{v}$)

// create a new supernode

• for each \overline{w} in $\Gamma \setminus \{\overline{u}, \overline{v}\}$:

• $E_{\overline{x},\overline{w}} = E_{\overline{u},\overline{w}} \cup E_{\overline{v},\overline{w}}$

Remove \overline{u} and \overline{v} from Γ and add \overline{x} .

CSE 100 L25 37

// one supernode for each vertex // one superedge for each edge

// we'll choose randomly from F

The while loop runs n-2 times

merge takes time O(n) naively

total runtime O(n²)

We can do a bit better with fancy data structures, but let's go with this for now.

Does it work?

- Is it fast?
 - O(n²)

Create a superedge!

Algorithm:

Randomly contract edges until there are only two supernodes left.

• Does it work?

No?

• Is it fast?

• O(n²)

Randomly contract edges until there are only two supernodes left.

Why did that work?

- We got really lucky!
- This could have gone wrong in so many ways.

Say we had chosen this edge

Say we had chosen this edge

Now there is **no way** we could return a cut that separates b and e.

Even worse

If the algorithm EVER chooses either of these edges,

How likely is that?

• For this particular graph, if do this 10,000 times:

How often does Karger get minimum cuts? (out of 10K trials)

CSE 100 L25 44

That doesn't sound good

 To see why it's good after all, we'll do a case study of this graph.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Choose a completely random cut and hope that it's a minimum cut.

Uniformly random cut

Pick a random way to split the vertices into two parts:

Uniformly random cut

Pick a random way to split the vertices into two parts:

The probability of choosing the minimum cut is*...

$$\frac{\text{number of min cuts in that graph}}{\text{number of ways to split 8 vertices in 2 parts}} = \frac{2}{2^8 - 2} \approx 0.008$$

Aka, we get a minimum cut 0.8% of the time.

Karger is better than completely random!

What's going on?

Thing 1: It's unlikely that Karger will hit the min cut since it's so small!

Which is more likely?

Lucky the lackadaisical lemur

A: The algorithm never chooses either of the edges in **the minimum cut**.

B: The algorithm never chooses any of the edges in **this big cut**.

Neither A nor B are very likely, but A is more likely than B.

What's going on?

Thing 2: By only contracting edges we are ignoring certain really-not-minimal cuts.

Lucky the lackadaisical lemur

A: This cut can be returned by Karger's algorithm.

B: This cut can't be returned by Karger's algorithm!
(Because how would a and g end up in the same super-node?)

This cut actually separates the graph into three pieces, so it's not minimal – either half of it is a smaller cut.

Why does that help?

- Okay, so it's better than completely random...
- We're still wrong about 80% of the time.
- The main idea: repeat!
 - If I'm wrong 20% of the time, then if I repeat it a few times I'll eventually get it right.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Thought experiment

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

3

2

J

2

How many times do you have to push the button, in expectation, before you see the minimum value?

What is the probability that you have to push it more than 5 times? 10 times?

Let's calculate the probabilities

This is the same calculation we've done a bunch of times:

Number of times

This one we've done less frequently:

• Pr[t times and don't] =
$$(1 - 0.2)^t$$
 ever get the min

• Pr[Stimes and don't ever get the min
$$] = (1 - 0.2)^5 \approx 0.33$$

• Pr[10 times and don't] =
$$(1 - 0.2)^{10} \approx 0.1$$
 ever get the min

