Cálculo de los ángulos de Euler a partir del cuaternion de la orientación del porta-herramienta en el programa de simulación RoKiSim

- Descargue el programa de simulación
- Cargue el robot default (ABB_IRB120.xml)
- Del menú FILE, remueva la herramienta
- Presione INIT para resetear la posición del robot
- Para cada uno de los ejemplos de posición en este tutorial, copie los valores angulares de cada articulación
- Una vez en posición, copie el cuaternión a esta hoja de cálculo y observe los resultados de MathCAD de las ecuaciones para los ángulos de Euler; deben ser iguales a los de RoKiSim
- Por razones de cálculo, es posible que en algunos casos los resultados sean los valores angulares complementarios

POSICIÓN#

For Euler angles we get:

$$egin{bmatrix} \phi \ heta \ heta \end{bmatrix} = egin{bmatrix} rctanrac{2(q_0q_1+q_2q_3)}{1-2(q_1^2+q_2^2)} \ rcsin(2(q_0q_2-q_3q_1)) \ rctanrac{2(q_0q_3+q_1q_2)}{1-2(q_2^2+q_3^2)} \end{bmatrix}$$

Copio el Quaternion: 0.34290,0.09578,0.81353,0.45979

$$q := \begin{pmatrix} 0.34290 \\ 0.09578 \\ 0.81353 \\ 0.45979 \end{pmatrix}$$

Euler_{$$\phi$$} := 180 + 57.3·atan $\left[2 \cdot \frac{\left(q_0 \cdot q_1 + q_2 \cdot q_3 \right)}{1 - 2 \cdot \left[\left(q_1 \right)^2 + \left(q_2 \right)^2 \right]} \right] = 112.79$

sumo 180 para ver el lado +

Euler_{$$\theta$$} := 57.3·asin $\left[2\cdot\left(q_{0}\cdot q_{2} - q_{3}\cdot q_{1}\right)\right]$ = 28.026

Euler_{$$\psi$$} := 180 + 57.3·atan $2 \cdot \left[\frac{q_0 \cdot q_3 + q_1 \cdot q_2}{1 - 2 \cdot \left[(q_2)^2 + (q_3)^2 \right]} \right] = 147.738$

sumo 180 para ver el lado +

Copio el Quaternion: 0.50007, -0.56168, -0.65777, 0.04232

$$q := \begin{pmatrix} 0.50007 \\ -0.56168 \\ -0.65777 \\ 0.04232 \end{pmatrix}$$

Euler_{$$\phi$$} := -180 + 57.3·atan $\left[2 \cdot \frac{\left(q_0 \cdot q_1 + q_2 \cdot q_3 \right)}{1 - 2 \cdot \left[\left(q_1 \right)^2 + \left(q_2 \right)^2 \right]} \right] = -128.789$

resto 180 para ver el lado -

Euler_{$$\theta$$} := 57.3·asin $\left[2 \cdot \left(q_0 \cdot q_2 - q_3 \cdot q_1\right)\right] = -37.616$

Euler_{$$\psi$$} := 57.3·atan $2 \cdot \left[\frac{q_0 \cdot q_3 + q_1 \cdot q_2}{1 - 2 \cdot \left[\left(q_2 \right)^2 + \left(q_3 \right)^2 \right]} \right] = 80.48$

Copio el Quaternion: 0.55580, 0.34778, 0.50386, 0.56238

$$q := \begin{pmatrix} 0.55580 \\ 0.34778 \\ 0.50386 \\ 0.56238 \end{pmatrix}$$

Euler_{$$\phi$$} := 57.3·atan $\left[2 \cdot \frac{\left(q_0 \cdot q_1 + q_2 \cdot q_3 \right)}{1 - 2 \cdot \left[\left(q_1 \right)^2 + \left(q_2 \right)^2 \right]} \right] = 75.291$

$$\mathrm{Euler}_{\theta} \coloneqq 57.3 \cdot \mathrm{asin} \left[2 \cdot \left(\mathbf{q}_0 \cdot \mathbf{q}_2 - \mathbf{q}_3 \cdot \mathbf{q}_1 \right) \right] = 9.726$$

Euler_{$$\psi$$} := 180 + 57.3·atan $\left[2 \cdot \left[\frac{q_0 \cdot q_3 + q_1 \cdot q_2}{1 - 2 \cdot \left[\left(q_2 \right)^2 + \left(q_3 \right)^2 \right]} \right] = 98.177$

Copio el Quaternion: 0.64507, -0.65441, -0.17692, -0.35261

$$q := \begin{pmatrix} 0.64507 \\ -0.65441 \\ -0.17692 \\ -0.35261 \end{pmatrix}$$

Euler_{$$\phi$$} := 57.3·atan $\left[2 \cdot \frac{\left(q_0 \cdot q_1 + q_2 \cdot q_3 \right)}{1 - 2 \cdot \left[\left(q_1 \right)^2 + \left(q_2 \right)^2 \right]} \right] = -83.591$

Euler_{$$\theta$$} := 57.3·asin $\left[2 \cdot \left(q_0 \cdot q_2 - q_3 \cdot q_1\right)\right] = -43.614$

Euler_{$$\psi$$} := 57.3·atan $2 \cdot \left[\frac{q_0 \cdot q_3 + q_1 \cdot q_2}{1 - 2 \cdot \left[(q_2)^2 + (q_3)^2 \right]} \right] = -17.97$