Análise Matemática II Cálculo Diferencial Exercícios

1 Domínios, curvas de nível e gráficos

1. Determina e desenha (caso f tenha 2 variáveis) D_f , onde:

(a)
$$f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$$
;

(b)
$$f(x,y) = \frac{1}{\sqrt{4-x^2-y^2}};$$

(c)
$$f(x,y) = \ln((1-x^2)y);$$

(d)
$$f(x,y) = \frac{\ln(2y - x^2) + \sqrt{8 - x^2 - y^2}}{(x^2 - 1)(y^2 + 1)};$$

(e)
$$f(x, y, z) = \ln\left(\frac{x+y}{z}\right)$$
;

(f)
$$f(x, y, z) = \sqrt{\sin(x^2 + y^2 + z^2)}$$
.

2. Desenhe as curvas de nível e tente desenhar o gráfico da função f, onde:

(a)
$$f(x,y) = x + y$$
;

(b)
$$f(x,y) = x^2 - y^2$$
;

(c)
$$f(x,y) = 1 - |x| - |y|$$
;

(d)
$$f(x,y) = \frac{2x}{x^2 + y^2}$$
.

2 Limites e continuidade

3. Verifique a existência dos seguintes limites:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x-4y}{7x+6y}$$
;

(b)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
;

(c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}};$$

(d)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin\left(\frac{1}{xy}\right);$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{e^{\sqrt{x^2+y^2}}-1}{\sqrt{x^2+y^2}}$$
.

4. Verifique se as seguintes funções são contínuas na origem:

(a)
$$f(x,y) = \begin{cases} \frac{4x^3 + 3y^3}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{xy^3}{x^3 + y^6} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

(a)
$$f(x,y) = \begin{cases} \frac{4x^3 + 3y^3}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

(b) $f(x,y) = \begin{cases} \frac{xy^3}{x^3 + y^6} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$
(c) $f(x,y) = \begin{cases} \frac{4x^2y}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$

(d)
$$f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

3 Derivadas parciais, diferenciabilidade e plano tangente

5. Calcule as derivadas parciais das seguintes funções:

(a)
$$f(x,y) = x^3 + y^3 - 3xy$$
;

(b)
$$f(x,y) = \frac{x}{y};$$

(c)
$$f(x,y) = \frac{x+y}{x-y}$$
;

(d)
$$f(x,y) = x^y$$
;

(e)
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0); \end{cases}$$

(f)
$$f(x, y, z) = \ln(xy + z)$$
:

(g)
$$f(x, y, z) = x^3yz + e^{x+yz}$$
;

6. Seja $f(x,y) = (x^2 + y^2)^{2/3}$. Mostre que

$$f'_x(x,y) = \begin{cases} \frac{4x}{3(x^2 + y^2)^{1/3}}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

7. Verifique a diferenciabilidade das seguintes funções:

(a)
$$f(x,y) = x^3 + y^3 - 3xy$$
;

(b)
$$f(x,y) = \frac{x}{y}$$
;

(c)
$$f(x,y) = \frac{x+y}{x-y}$$
;

(d)
$$f(x,y) = x^y$$
;

(e)
$$f(x, y, z) = \ln(xy + z)$$
;

(f)
$$f(x, y, z) = x^3yz + e^{x+yz}$$
;

8. Seja

$$f(x,y) = \begin{cases} \frac{3x^2y^2}{x^4 + y^4}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

- (a) Mostre que f é descontínua em (0,0).
- (b) Prove que $f'_x(0,0)$ e $f'_y(0,0)$ existem.
- (c) O que conclui acerca da diferenciabilidade de f em (0,0)?

9.
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0); \end{cases}$$

- (a) Verifique se f é contínuo em (0,0).
- (b) Verifique se f'_x e f'_y são contínuas em (0,0).
- (c) Verifique se f é diferenciável em (0,0).
- 10. Seja

$$f(x,y) = \begin{cases} \frac{x^4 + 2y^4}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- (a) Mostre que f é contínua em (0,0).
- (b) Calcule $f'_x(0,0) \in f'_y(0,0)$.
- (c) Verifique se f é diferenciável em (0,0).
- 11. Determine a equação do plano tangente
 - (a) ao hiperbolóide de equação $z^2 2x^2 2y^2 = 12$, no ponto (1, -1, 4);
 - (b) à esfera de equação $x^2+y^2+z^2=4$ no ponto $(1,\sqrt{2},1)$.

4 Regra da Cadeia e aplicações

12. Usando a Regra da Cadeia, calcule $g'(t_0)$, onde g(t) = f(x(t), y(t)):

(a)
$$f(x,y) = 3x + 4y$$
, $x = t^2$, $y = 2t$, $t_0 = 1$;

- (b) $f(x,y) = \frac{x}{y^2 + 1}$, $x = \cos(t)$, $y = \sin(t)$, $t_0 = \frac{\pi}{2}$.
- 13. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável.
 - (a) Calcule g(3) e g'(3), onde $g(t) = f(t^3 5t, 11t 1)$ tal que f(12, 32) = 0, $f'_x(12, 32) = -3$ e $f'_y(12, 32) = 2$.
 - (b) Calcule g(0) e g'(0), onde $g(t) = f(\sin(t), \cos(t))$ tal que f(0, 1) = 50, $f'_x(0, 1) = 10$ e $f'_y(0, 1) = -7$.
- 14. Usando a Regra da Cadeia, calcule $g'_s(s_0, t_0)$ e $g'_t(s_0, t_0)$, onde g(s, t) = f(x(s, t), y(s, t)):
 - (a) $f(x,y) = x^2y$, x = s t, y = 2s + 4t, $(s_0, t_0) = (1,0)$;
 - (b) $f(x,y) = e^{-(x^2+y^2)}, x = t, y = st^2, (s_0, t_0) = (1, 1).$
- 15. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável.
 - (a) Calcule g(0,0), $g'_s(0,0)$ e $g'_t(0,0)$, onde $g(s,t) = f(t\sin(s), s\sin(t))$ tal que f(0,0) = 4, $f'_x(0,0) = 10$ e $f'_y(0,0) = 2$.
 - (b) Calcule $g_s'(0,2)$ e $g_t'(0,2)$, onde g(s,t)=f(x(s,t),y(s,t)) com $x(s,t)=st^2$ e $y(s,t)=te^s$ e tal que $f_x'(0,2)=10$ e $f_y'(0,2)=-5$.
- 16. Determine a derivada direcional de
 - (a) $f(x,y) = \ln(\sqrt{x^2 + y^2})$, no ponto (1,1), ao longo do vetor unitário na direção da bissetriz do primeiro ângulo coordenado;
 - (b) $f(x,y) = x^3 + xy$ em qualquer ponto de \mathbb{R}^2 e ao longo do vetor unitário que faz um ângulo de $\pi/3$ com o eixo-x no plano-xy.
- 17. Utilizando o gradiente, determine
 - (a) qual é a direção de maior/menor crescimento de f no ponto (2,1), onde $f(x,y)=-x^2y+xy^2+xy$;
 - (b) quais são os vetores unitários \vec{v} tais que $f'_{\vec{v}}(3,1)=0$, onde $f(x,y)=x^2+2y^2-xy-7x$.
- 18. Seja

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- (a) Determine $f_{\vec{v}}(0,0)$ para todo o vetor unitário $\vec{v} \in \mathbb{R}^2$.
- (b) Verifique se f é diferenciável em (0,0).
- 19. Determine
 - (a) a equação do plano tangente à superfície S de equação $x^2-2y^2+z^2=3$ no ponto (-1,1,2);

- (b) os pontos do hiperbolóide S de equação $x^2 2y^2 4z^2 = 16$ em que o plano tangente é paralelo ao plano V de equação 4x 2y + 4z = 5;
- (c) os pontos do parabolóide S de equação $z=4x^2+9y^2$ em que a reta normal é paralela à reta ℓ que passa pelos pontos P=(-2,4,3) e Q=(5,-1,2).

5 Derivadas de ordem superior, extremos e pontos de sela

- 20. Determine a matriz hessiana das seguintes funções:
 - (a) $f(x,y) = x^4 4x^2y^2 + y^5$;
 - (b) $f(x,y) = \sin(xy)$;
 - (c) $f(x,y) = \ln(x^2 + y)$;
 - (d) $f(x, y, z) = ye^x + x \ln(z)$.
- 21. Considere a função

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

- (a) Prove que $f_{xy}''(0,0) = -1$ e $f_{yx}''(0,0) = +1$;
- (b) O que é que se pode concluir acerca de f'_x e f'_y ?
- 22. Determine os extremos locais e os pontos de sela das seguintes funções:
 - (a) $f(x,y) = 2x^2 + y^2 + 8x 6y + 20$;
 - (b) $f(x,y) = -x^3 + 4xy 2y^2 + 1;$
 - (c) $f(x,y) = x^4 + y^4 4xy + 1$;
 - (d) $f(x,y) = 3x^2y + y^3 3x^2 3y^2 + 2$.
- 23. Uma empresa quer encomendar caixas de ângulos direitos para embalar os seus produtos. Cada caixa deve ter um volume de 0,5 litros. O preço de cada caixa depende apenas da área total dos seus lados. Para minimizar o preço da encomenda, quais devem ser o comprimento, a largura e a altura de cada caixa?