Álgebra Linear e Aplicações - Lista 3

Entregar dia 3 de Abril

1. (4 pts) Considera o espaço vectorial $U=\{(x,y)\in\mathbb{R}^2:x>0\}$ da lista 2, com as operações + e · definidas por

$$(x_1, x_2) + (y_1, y_2) = (x_1 y_1, x_1 y_2 + x_2 y_1), \quad \forall (x_1, x_2), (y_1, y_2) \in U$$

 $\alpha(x_1, x_2) = (x_1^{\alpha}, \alpha y_1 x_1^{\alpha - 1}), \quad \forall (x_1, x_2) \in U, \alpha \in \mathbb{R}$

Mostra que o mapa $T: \mathbb{R}^2 \to U$ dado por $T(x,y) = (e^x, ye^x)$ é uma transformação linear.

- 2. As seguintes funções de \mathbb{R}^2 para \mathbb{R}^2 são transformações lineares? Prova ou dá um exemplo que viola a definição.
 - (a) (2 pts) f(x,y) = (x+y,-x)
 - (b) (2 pts) f(x,y) = (xy,y)
 - (c) (2 pts) f(x,y) = (0,0)
 - (d) (2 pts) f(x,y) = (x, 1-x)
- 3. Considera um conjunto de vetores ortonormais $\{v_1, \ldots, v_n\} \in \mathbb{R}^m$ (ortogonais e a norma de cada vector é 1) e a matriz $Q = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$.
 - (a) (3 pts) Mostra que $n \leq m$.
 - (b) (3 pts) Mostra que $Q^TQ = I_{n \times n}$ (matriz identidade $n \times n$).
 - (c) (2 pts) Define $P=QQ^T$. Mostra que $P^2=P$.
 - (d) (6 pts) Mostra que, se $n=m,\,P=I_{n\times n}$, ou seja, $Q^TQ=QQ^T=I_{n\times n}$. Isto prova o facto curioso que, se a colunas duma matriz quadrada são ortonormais, então as linhas também são ortonormais.
 - (e) (4 pts) Mostra que, se n < m, então $QQ^T \neq I_{m \times m}$.
- 4. Dado um espaço vectorial $V,\,b\in V$ e U subespaço de V, calcula a projeção de b em U.
 - (a) (2 pts) $V = \mathbb{R}^2$, b = (1, 2), $U = \text{Span}\{(1, 1)\}$
 - (b) (4 pts) $V = \mathbb{R}^3$, b = (1, 2, 3), $U = \text{Span}\{(1, 1, 1), (1, -1, -1)\}$
- 5. (14 pts) Implementa uma função para calcular a ortogonalização de Gram-Schmidt das colunas de uma matriz. Olha o arquivo ALA24_QR.ipynb no site da disciplina.