WrStat

Braun & Co, Rast, Körner, Gwerder, Badertscher, Niedermann, Leuenberger, Walker

11. Dezember 2019

Inhaltsverzeichnis

1	Kombinatorik	2
2	Ereignisse und ihre Wahrscheinlichkeit	3
3	Erwartungswert und Varianz	5
4	Wahrscheinlichkeitsverteilung	7
5	Schätzen Skript S.??	11
6	Hypothesentest Skript S.??	13
7	Prozessverbesserungen Skript S.??	15
8	Wichtige Formeln	16
9	Auswahl der Verteilung	16
10	Statistik / Wahrscheinlichkeit	17
11	Tabellen	18

1 Kombinatorik

1.1 Produktregel

Für-jedes-gibt-es-Regel k Positionen müssen unabhängig von einander markiert werden, wobei n_i verschiedene Markierungen zur Verfügung stehen.

$$n_1 \cdot n_2 \cdots n_k = \prod_{i=1}^k n_i$$

Beispiel: Wie viele mögliche Augenzahlbilder können entstehen, wenn zwei verschiedenfarbige Würfel geworfen werden? Antwort: Der erste Würfel kann $n_1 = 6$ verschiedene Augenzahlen anzeigen, der zweite $n_2 = 6$. Da die beiden unabhängig sind gibt es $n_1 \cdot n_2 = 36$ verschiedene Augenzahlbilder.

1.2 Permutation

Grundfrage: Auf wie viele Arten lassen sich n verschiedene Objekte anordnen? resp. Wie viele Permutationen von n Objekten gibt es?

$$P_n = n(n-1)(n-2)\dots 2\cdot 1 = n!$$
 oder Rekursiv: $P_n = n\cdot P_{n-1}$

Beispiel: In wie vielen verschiedenen Reihenfolgen können acht Läufer eines Rennens im Ziel eintreffen?

Antwort: Jede Reihenfolge ist möglich, also 8! = 40'320 mögliche Reihenfolgen.

1.3 Kombination

Grundfrage: Auf wie viele Arten kann k aus n verschiedenen Objekte auswählen.

$$\frac{n!}{k!(n-k)!} = C_k^n = \binom{n}{k}$$

Beispiel: Für ein Projekt stellt eine Firma mit 30 Mitarbeitern ein Team aus 5 Leuten zusammen. Auf wie viele Arten ist dies möglich?

Antwort: Es geht darum 5 von 30 Mitarbeitern auszuwählen, was auf $\binom{30}{5} = 142'506$ möglich ist.

1.4 Variation

Grundfrage: Auf wie viele Arten kann man k mal unter n verschiedenen Objekten auswählen?

$$V_{n,k} = n^k$$

Beispiel: Auf wie viele Arten kann man eine Perlenkette der Länge k = 10 aus n = 5 Farben von Perlen herstellen? **Antwort:** Die Variation Formel lässt sich auch über die Produktregel herleiten. Für jede Perle stehen wieder n verschiedene folge Perlen zur Auswahl. $V_{n,k} = n^k = 5^10 = 9'765'625$

2 Ereignisse und ihre Wahrscheinlichkeit

Begriff	Beschreibung	
Elementarereignis	Der Ausgang eines Experiments	
alle Elementarereignisse	Alle mögliche Ausgänge eines Experiments	Ω
Ereignis	Teilmenge von Ω – A eingetreten \Leftrightarrow Versuchsausgang $\omega \in A$	$A \subset \Omega$

Begriff	Beschreibung	Bild	Modell
Sicheres Ereignis	tritt immer ein	Ω	Ω
		Ω	
Unmögliches Ereignis	kann nicht eintreten		$\emptyset = \{\}$
		Ω	
A und B	Schnittmenge	AB	$A \cap B$
		Ω_{A}	
$A ext{ oder } B$	Vereinigung		$A \cup B$
		Ω	
A hat B zur folge	A ist in B enthalten	B(A)	$A \subset B$
		Ω	
nicht A	Komplementär Ereignis	A	$\Omega \setminus A$

2.1 Wahrscheinlichkeit & Rechenregeln

Wertebereich:	$0 \le P(A) \le 1$
Sicheres Ereignis:	$P(\Omega) = 1$
unmögliches Ereignis:	$P(\emptyset) = 0$
komplementär Ereignis:	$P(\bar{A}) = P(\Omega \setminus A) = 1 - P(A)$
Differenz der Ereignisse A und B:	$P(A \setminus B) = P(A) - P(A \cap B)$
Vereinigung zweier Ereignisse:	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$P(A) = \lim_{\text{Anzahl Versuche} \to \infty} \frac{\text{Anzahl Versuche bei der A eingetreten ist}}{\text{Anzahl Versuche}}$$

2.2 Laplace-Experiment

In einem endlichen Wahrscheinlichkeitsraum Ω haben alle Elementarereignisse die gleiche Wahrscheinlichkeit.

$$P(A) = \frac{|A|}{|\Omega|}$$

Beispiele: Münzen werfen wenn der Rand vernachlässigt wird, Würfeln...

2.3 Bedingte Wahrscheinlichkeit

Die Wahrscheinlichkeit für das Eintreten des Ereignisses A unter der Bedingung, dass das Ereignis B bereits eingetreten ist.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \underbrace{\frac{P(A) \cdot P(B)}{P(B)}}_{\text{nur wenn unabhängig}} = P(A)$$

$$P(\overline{A}|B) = 1 - P(A|B)$$

Unabhängige Ereignise 2.4

Für sie gilt $P(A \cap B) = P(A)P(B)$

Die Tatsache, dass A eingetreten ist, hat keinen Einfluss auf die Wahrscheinlichkeit von B.

Unabhängige Ereignisse A und B liegen vor, wenn: $P(A \mid B) = P(A \mid \overline{B})$

Wenn Ereignisse nicht gleichzeitig eintreten können, so sind sie abhängig.

Unabhänige Ereignisse

Abhänige Ereignisse

Beim Beispiel mit abhängigen Ereignissen wird A unwahrscheinlicher, wenn bereits B eingetroffen ist.

Totale Wahrscheinlichkeit

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) \cdot P(B_i)$$

in Matrixform:

m Matrixform:
$$\begin{pmatrix}
P(A_1) \\
P(A_2) \\
\vdots \\
P(A_n)
\end{pmatrix} =
\begin{pmatrix}
P(A_1|B_1) & P(A_1|B_2) & \dots & P(A_1|B_n) \\
P(A_2|B_1) & P(A_2|B_2) & \dots & P(A_2|B_n) \\
\vdots & \vdots & \ddots & \dots \\
P(A_m|B_1) & P(A_m|B_2) & \dots & P(A_m|B_n)
\end{pmatrix}
\cdot
\begin{pmatrix}
P(B_1) \\
P(B_2) \\
\vdots \\
P(B_n)
\end{pmatrix}$$
Wholtematrix

Satz von Bayes

$$P(B \mid A) = P(A \mid B) \cdot \frac{P(B)}{P(A)}$$

Tauscht die Ereignisse der Bedingten Wahrscheinlichkeit.

2.7Google Matrix

Es gibt folgende Ereignisse: $P(S_i) = \{\text{Ein User ist auf der Seite i}\}\$ und

 $P(S_i) = \{ \text{Ein User ist nach einem Klick auf der Seite j} \}$

nach einiger Zeit ergibt sich ein Gleichgewicht $P(S_i) = P(S_i')$

$$\begin{pmatrix}
P(S'_1) = P(S'_j|S_1)P(S_1) + P(S'_j|S_2)P(S_2) + \dots \\
P(S'_1) = \begin{pmatrix}
P(S'_1|S_1)P(S_1) & P(S'_1|S_2)P(S_2) & \dots \\
P(S'_2|S_1)P(S_1) & P(S'_2|S_2)P(S_2) & \dots \\
\vdots & \vdots & \vdots & \vdots
\end{pmatrix}
\begin{pmatrix}
P(S_1) \\
P(S_2) \\
\vdots \\
P$$

Wird der freie Wille noch einberechnet, dann gilt: $H' = \alpha H + \frac{1-\alpha}{Anzahl}$ $\frac{-\alpha}{\text{Seiten}}A$ wobei A nur aus 1en besteht.

3 Erwartungswert und Varianz

3.1 Erwartungswert

Sei X eine Funktion auf Ω , und lasse sich Ω in endlich viele Ereignisse A_i zerlegen, auf denen $X(\omega)$ konstant ist, dann ist der Erwartungswert von X

 $Erwartungswert = \sum Wert \cdot Wahrscheinlichkeit$

$$E(X) = \sum_{i=0}^{n} \underbrace{X(A_i)}_{\text{Wert}} \cdot \underbrace{P(A_i)}_{\text{W'keit}}$$

$$E(X) = \int_{-\infty}^{x} x \cdot \varphi(x) dx$$
 mit $\varphi(x) = \text{Dichtefunktion}$

$$\begin{array}{l} E(X+Y) = E(X) + E(Y) \\ E(\lambda X + \mu) = \lambda \cdot E(X) + \mu \quad \lambda, \mu \in \mathbb{R} \\ E(XY) = E(X) \cdot E(Y) \quad \text{wenn X,Y unabhängig sind} \end{array}$$

3.2 Varianz

$$var(X) = E(X^2) - E(X)^2 = E[(X - E(X))^2]$$

Standardabweichung $\sigma = \sqrt{var(X)}$

Achtung: Wenn endliche Werte vorliegen muss die Formel der Stichprobenvarianz angewendet werden, Kapitel 5.2 Seite 11.

3.2.1 Kovarianz

$$cov(X,Y) = E(XY) - E(X)E(Y) = \underbrace{0}_{\text{falls X,Y unabhängig}}$$

Ist die Kovarianz positiv so tendieren höhere X-Werte zu höheren Y-Werten.

3.2.2 Rechenregeln

$$var(\lambda X) = \lambda^2 var(X)$$
 $\lambda, \mu \in \mathbb{R}$
 $var(X_1 + X_2 + \dots + X_n) \neq var(nX)$

$$var(X+Y) = \begin{cases} var(X) + var(Y) & \text{(X,Y unabh.)} \\ var(X) + var(Y) + 2 \cdot cov(X,Y) & \text{(X,Y abhängig)} \end{cases}$$

$$var(XY) = var(Y)var(X) + var(Y)E(X)^2 + var(X)E(Y)^2 \\$$

Erwartungswert und Varianz des arithmetischen Mittels 3.3

Es sei eine Folge von unabhängigen Zufallsvariablen X_1, X_2, \dots, X_n mit gleichem Erwartungswert μ und gleicher Varianz σ^2 gegeben.

Mittelwert:
$$M_n = \frac{X_1 + ... + X_n}{n}$$

Erwartungswert:
$$E(X) = E(M_n) = \mu$$
 Varianz: $var(M_n) = \frac{1}{n}var(X) = \frac{\sigma^2}{n}$

Varianz:
$$var(M_n) = \frac{1}{n}var(X) = \frac{\sigma^2}{n}$$

Satz von Tschebyscheff 3.4

$$P(|X - E(X)| > \varepsilon) \le \frac{var(X)}{\varepsilon^2}$$

Wahrscheinlichkeit, dass X um mehr als ε vom Erwartungswert E(X) abweicht.

$$P(|M_n - \mu| > \varepsilon) \le \frac{\sigma^2}{\varepsilon^2 n}$$

W'keit, dass M_n von n unab. ZV mit Mittelwert μ und Varianz σ^2 mehr als ε von μ abweicht.

3.5 Regression

Allgemein: X,Y Zufallsvariable

Gesucht: Regressionsgerade y = ax + b mit min. Fehler

E(Y - (aX + b)) = 0Fehler:

Regressionskoeffizient r

r ist ein Mass für die Qualität der Regression (standardisiert)

$$r^{2} = \frac{cov(X,Y)^{2}}{var(X)var(Y)} = a^{2} \cdot \frac{var(X)}{var(Y)}$$

Liegt r nahe bei 1 = gute Approximation

Mittlerer quadratischer Fehler

$$\Delta^2 = var(Y)(1 - r^2) = var(Y)\left(1 - \frac{cov(X, Y)^2}{var(X)var(Y)}\right)$$

Vorgehen: mit Fehlerberechnung

1. Tabelle mit bekannten Werten aufstellen:

Vorlage-Tabelle ist auf GitHub

k	x	x^2	y	y^2	xy
1	x_1	x_1^2	y_1	y_1^2	x_1y_1
:	:	:	:		:
n	x_n	y_n^2	y_n	y_n^2	$x_n y_n$
Σ	$\sum x_k$	$\sum x_k^2$	$\sum y_k$	$\sum y_k^2$	$\sum x_k y_k$
E	$\frac{\sum x_k}{n}$	$\frac{\sum x_k^2}{n}$	$\frac{\sum y_k}{n}$	$\frac{\sum y_k^2}{n}$	$\frac{\sum x_k y_k}{n}$

2. Varianzen, Kovarianz berechnen:

$$var(X) = E(X^2) - E^2(X)$$

 $var(Y) = E(Y^2) - E^2(Y)$
 $cov(X,Y) = E(XY) - E(X)E(Y)$

3. Koeffizienten und Fehler der Gerade berechnen

Koeffizienten und Fehler der Gerade berechnen:
$$a = \frac{cov(X,Y)}{var(X)} \qquad \Delta^2 = var(Y) \left(1 - \frac{cov(X,Y)^2}{var(X)var(Y)}\right)$$
$$b = E(Y) - aE(X)$$

4. Gerade:

y = ax + b

3.5.1Beispiel Regression

Je wärmer es ist, desto schneller zirpen die Grillen.

Folgende Daten wurden erhoben:

$T [^{\circ} \mathrm{C}]$	N[Zirpen/15 Sekunden]
15	20
19	23
22	30
25	39

Es wird vermutet, dass die Anzahl der Zirplaute pro 15 Sekunden linear von der Temperatur abhängt. Finden Sie eine solche Gesetzmässigkeit und beurteilen Sie ihre Qualität.

1. Tabelle ausfüllen:

k	t	t^2	n	n^2	tn
1	15	225	20	400	300
2	19	361	23	529	437
3	22	484	30	900	660
4	25	625	39	1521	975
Σ	81	1695	112	3350	2372
E	20.25	423.75	28	837.5	593

2. Varianzen und Kovarianzen berechnen:

$$var(t) = E(t^2) - E^2(t) = 423.75 - 20.25^2 = 13.6875$$

 $var(n) = E(n^2) - E^2(n) = 837.5 - 28^2 = 53.5$
 $cov(t, n) = E(tn) - E(t)E(n) = 593 - 20.25 \cdot 28 = 26$

3. Koeffizienten und Fehler der Gerade berechnen:
$$a = \frac{cov(t,n)}{var(t)} = \frac{26}{13.6875} = 1.8995$$

$$b = E(n) - aE(t) = 28 - 1.8995 \cdot 20.25 = -10.4649$$

$$r = \sqrt{\frac{cov(t,n)^2}{var(t)var(n)}} = \sqrt{\frac{26^2}{13.6875 \cdot 53.5}} = 0.9608$$

${f Wahrscheinlichkeitsverteilung}$ 4

Verteilungsfunktion 4.1

allgemein	diskret	kontinuierlich
$P(X \le x) = F(x)$	$=\sum_{k=-\infty}^{x} p_k$	$=\int_{-\infty}^{x}\varphi(\tilde{x})d\tilde{x}$
$P(X > x) = 1 - P(X \le x)$		_
$P(a \le X < b) = F(b) - F(a)$	$=\sum_{k=a}^{b} p_k$	$=\int_{a}^{b}\varphi(\tilde{x})d\tilde{x}$

Verteilungsfunktion der Normalverteilung

4.1.1 Eigenschaften

Bei einem Sprung gilt: Sprunghöhe = Wahrscheinlichkeit des Wertes x

$$\boxed{\mathbb{D}(F) = \mathbb{R}}$$
Definitions bereio

$$\underbrace{\mathbb{W}(F) \in [0,1] }_{\text{Wertebereich}}$$

$$F(-\infty) = 0$$

$$F(\infty) = 1$$

F(x) ist monoton steigend

4.2Wahrscheinlichkeitsdichte

Dichtefunktion oder Wahrscheinlichkeitsdichte:

 $\varphi(x) = F'(x)$

Bei Sprungstellen von F(x):

 $\varphi(x) = \text{Dirac mit Gewichtung der Sprunghöhe}$

Allgemein gilt:

$$\int_{-\infty}^{\infty} \varphi(x) dx = 1$$

Erwartungswert: Wert mal W'keit

$$E(X) = \int_{-\infty}^{\infty} x \cdot \varphi(x) dx \quad \text{bzw. } \sum_{-\infty}^{\infty} x \cdot p_k$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 \cdot \varphi(x) dx \quad \text{bzw. } \sum_{-\infty}^{\infty} x^2 \cdot p_k$$

$$E(X^N) = \int_{-\infty}^{\infty} x^N \cdot \varphi(x) dx \quad \text{bzw. } \sum_{-\infty}^{\infty} x^N \cdot p_k$$

Wahrscheinlichkeitsdichte der Normalverteilung

Rechenregeln für φ und F4.3

Gegeben: X, Y Zufallsvariablen und φ_X , φ_Y bekannt

Verteilungsfunktion:

Dichte:

$$F_{X+a}(x) = F_X(x-a)$$

$$\varphi_{X+a}(x) = \varphi_X(x-a)$$

$$F_{\lambda X}(x) = F_X(\frac{x}{\lambda})$$

$$\varphi_{\lambda X}(x) = \varphi_X(\frac{x}{\lambda})\frac{1}{\lambda}$$

$$F_{X+Y}(x) = F_X * \varphi_Y(y) = F_Y * \varphi_X(x) \qquad \varphi_{X+Y}(x) = \varphi_X * \varphi_Y(x)$$

$$F_{XX}(x) = F_X(x^2)$$

$$\varphi_{X+Y}(x) = \varphi_X * \varphi_Y(x)$$

$$E_{-}(x) = E_{-}(\sqrt{x}) = E_{-}(\sqrt{x})$$

$$\varphi_{X+I}(x) = 2x\varphi_X(x^2)$$

$$F_{X^2}(x) = F_X(\sqrt{x}) - F_X(-\sqrt{x})$$
 $\varphi_{X^2}(x) = \frac{1}{2}x^{-\frac{1}{2}}(\varphi_X(\sqrt{x}) + \varphi_X(-\sqrt{x}))$

4.3.2 Maximalwert eines Intervalls

 $X_1, \ldots X_i$ sind auf dem Intervall [0, l] mit $F_X(x)$ verteilt $M=\max\{X_1,\ldots,X_i\}$

 $F_M(x) = F_X(x)^n$

4.3.1 Algorithmus Bsp.

- 1. Definition von F anwenden: $F_{\lambda X}(x) = P(\underbrace{\lambda X \leq x}_{*})$
- 2. Bedingung * umformen: $P(X \leq \frac{x}{\lambda}) = F_X(\frac{x}{\lambda})$
- 3. für Dichte: $\frac{d}{dx}$

$$\varphi_{\lambda X}(x) = \frac{d}{dx} F_{\lambda X}(x) = \frac{d}{dx} F_{X}(\frac{x}{\lambda}) = \varphi_{X}(\frac{x}{\lambda}) \frac{1}{\lambda}$$

4.3.3 Median Skript S.??

Der Median med(X) von X ist eine Zufallsvariable, welche für $F(med(X)) = \frac{1}{2}$ ist.

4.4 Normalverteilung

Viele kleine, unabhängige Zufallsvariable sammeln sich zu einer normalverteilten Zufallsvariable.

$$\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} = N(\mu; \sigma)$$
$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \int_{-\infty}^{x} e^{-\frac{(\bar{x}-\mu)^2}{2\sigma^2}} d\tilde{x}$$

Addieren von Normalverteilungen:

$$N(\mu_1; \sigma_1) + N(\mu_2; \sigma_2) = N(\mu_1 + \mu_2; \sqrt{\sigma_1^2 + \sigma_2^2})$$

Für $F(-x)$ gilt $F(-x) = 1 - F(x)$

Dichtefunktion (oben) und Verteilungsfunktion (unten) der Normalverteilung.

4.4.1 Standardisierung

Erwartungswert: $E(X) = \mu$ (=0 bei Standardnormalver.) $var(X) = \sigma^2$ (=1 bei Standardnormalver.)

$$F_Z(z) = P(Z \le z) = F_X(\sigma z + \mu)$$

$$F_X(x) = F_Z(\frac{x - \mu}{\sigma})$$

$$\varphi_Z(z) = \sigma \cdot \varphi_X(\sigma z + \mu)$$

$$\varphi_X(x) = \frac{1}{\sigma} \cdot \varphi_Z(\frac{x - \mu}{\sigma})$$

$$Z = \frac{X - \mu}{\sigma}$$
 mit $E(Z) = 0$ und $var(Z) = 1$

68% der Werte liegen im Intervall $[\mu - \sigma, \mu + \sigma]$ 95\% in $[\mu - 2\sigma, \mu + 2\sigma]$ 99.7\% in $[\mu - 3\sigma, \mu + 3\sigma]$

Rezept: (Berechnen der W'keit das $X \in [x_{min}, x_{max}]$)

- 1. W'keit Formel hinschreiben $P(x_{min} \le X \le x_{max})$

2. Standardisieren:
$$P_Z\left(\frac{x_{min} - \mu}{\sigma} \le Z \le \frac{x_{max} - \mu}{\sigma}\right)$$

3. In Verteilungsfunktion einfüllen:
$$P_Z = F\left(\frac{x_{max} - \mu}{\sigma}\right) - F\left(\frac{x_{min} - \mu}{\sigma}\right)$$

4. Werte aus der Tabelle auf Seite 18 auslesen:

Bei negativen Werten:

$$F(-0.7) = 1 - F(0.7) = 1 - 0.7580 = 0.2420$$

Ist der gesuchte Wert zwischen zwei Werten der Tabelle, dann der Wert aus den benachbarten Werten abschätzen. Bsp:

$$F(0.72) = 0.7642, \quad F(0.73) = 0.7673 \rightarrow F(0.725) \approx 0.765$$

Beispiel:

Ein Signal mit normalverteilten Werten X mit Erwartungswert 1 und Standardabweichung 2 wird über einen Eingangsverstärker geleitet, der Werte zwischen ± 3.3 verarbeiten kann, bevor er übersteuert wird. Wie häufig wird der Verstärker übersteuert?

$$\mu = 1, \, \sigma = 2$$

- 1. $P(-3.3 \le X \le 3.3)$
- $2. \ P\left(\frac{-3.3 \mu}{\sigma} \le \frac{X \mu}{\sigma} \le \frac{3.3 \mu}{\sigma}\right)$ $P\left(\frac{-3.3 1}{2} \le Z \le \frac{3.3 1}{2}\right)$
- 3. F(1.15) F(-2.15) = F(1.15) 1 + F(2.15)
- 4. 0.8749 + 0.9842 1 = 0.8591

Zentraler Grenzwertsatz

 X_1, X_2, \dots, X_n sind lauter identisch verteilte (nicht notwendig normalverteilt!) unabhängige Zufallsvariablen mit demselben Erwartungswert μ und derselben Varianz σ^2 und mit $Z = \frac{X - \mu}{\sigma}$. Dann hat die Summe

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i$$

den Erwartungswert $n\mu$ und die Varianz $n\sigma^2$.

Die damit verbundene standardisierte $(E(S_n) = 0, var(S_n) = 1)$ Variable S_n ist somit wie folgt definiert:

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma} = \frac{1}{\sqrt{n} \cdot \sigma} \left[\left(\sum_{i=1}^n X_i \right) - n\mu \right] = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Für $n \to \infty$ strebt die Verteilung von S_n gegen die Standardnormalverteilung.

4.5 Exponentialverteilung

Zur Ermittlung der Dauer bis zum Ausfall/Zerfall von Bauteilen/Stoffen ohne Gedächnis

(W'keit, dass X in der nächsten Minute defekt geht = const.). Beispiele:

- Lebensdauer von Atomen beim radioaktiven Zerfall
- Lebensdauer von Bauteilen, Maschinen & Geräten (MTBF - Mean Time Between Failure = $\frac{1}{a}$)

gilt
$$P(X \le t) = P(X \le t_0 + t | X > t_0)$$

 $P(X > t) = P(X > t_0 + t | X > t_0)$

Dichtefunktion und Verteilungsfunktion

$$\varphi(x) = \begin{cases} ae^{-ax} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-ax} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-ax} & x \ge 0\\ 0 & x < 0 \end{cases}$$
Erwartungswert und Varianz
$$E = \begin{cases} x = \frac{1}{2} & x = 0\\ 0 & x < 0 \end{cases}$$
Lebensdauer von me

Erwartungswert und Varianz

Lebensdauer von mehreren unabhängigen Bauteilen

$$E(X) = \frac{1}{a}$$

$$var(X) = \frac{1}{a^2}$$

$$P(X > x) = P(X_1 > x_1 \cap X_2 > x_2 \cap X_3 > x_3 \dots)$$

$$= P(X_1 > x_1) \cdot P(X_2 > x_2) \cdot P(X_3 > x_3) \dots$$

$$= (1 - P(X_1 \le x_1)) \cdot (1 - P(X_2 \le x_2)) \cdot (1 - P(X_3 \le x_3)) \dots$$

$$= (1 - F(x_1)) \cdot (1 - F(x_2)) \cdot (1 - F(x_3)) \dots$$

4.6 Hypergeometrische Verteilung

Ist die Wahrscheinlichkeit dass in einer m Elemente umfassenden Stichprobe aus einer Grundgesamtheit von n Elementen, von denen r eine spezielle Eigenschaft besitzen, kElemente mit der Eigenschaft zu finden sind.

$$p(k) = P(X = k) = \frac{\binom{r}{k} \binom{n-r}{m-k}}{\binom{n}{m}} \quad \text{für } 0 \le k \le r \text{ und } k \le n$$

Erwartungswert:

 $E(X) = m\frac{r}{n}$ $var(X) = m\frac{r(n-r)(n-m)}{n^2(n-1)}$ Varianz:

Lotto, n = 45 Zahlen, r = 6 (die gezogenen Zahlen), m = 6 (meine Zahlen)

$$P(X = 4) = P(\text{Ein Vierer}) = \frac{\binom{6}{4}\binom{39}{2}}{\binom{45}{6}} = 0.001364$$

Poissonverteilung Skript S.??

 $P_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}$ W'keit dass k Ereignisse im Intervall [0,x] auftreten

Erwartungswert: $E(X) = \lambda$

 $\begin{array}{l} P(X < k) \leq \sum_{0}^{k} P_{\lambda}(k) = \sum_{0}^{k} \frac{\lambda^{k}}{k!} e^{-\lambda} \\ P(X > k) = 1 - P(X < k) \end{array}$

x = Anzahl Versuche

 $\lambda = \text{Ereignisse} \text{ pro Intervall im Mittel}$

Anwendungsbeispiele:

Für die Häufigkeiten seltener Ereignisse. Anzahl Anrufe bei einer Telefonzentrale in einer gewissen Periode. Anzahl grosse Versicherungsschäden in einer gewissen Periode. Anzahl Jobs, die bei einem Server ankommen. Anzahl Ereignisse in einem Zeitintervall. Anzahl Lokomotiven der SBB, die in der nächsten Woche einen Defekt haben. Anzahl der Gewinner mit 4 Richtigen im Lotto.

4.8 Binomialverteilung Skript S.??

Wird angewendet bei einem Experiment mit nur zwei Ausgängen (Ereignis mit W'keit p tritt ein, Ereignis tritt nicht ein). Eine Zufallsvariable mit diskreten Werten $k \in \{0, \dots, n\}$ heisst binomialverteilt zum Parameter p, wenn die Wahrscheinlichkeit des Wertes k wie folgt ist:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 $\mu = E(X) = p \cdot n$ $\sigma^2 = var(X) = n \cdot p(1 - p)$

n: Versuche

k: k-mal erfolgreich

p: Wahrscheinlichkeit

Approximation mit Normalverteilung: $P(a \le x \le b) \simeq \underbrace{P(a-0.5 \le x \le b+0.5)}_{\text{Normalverteilung}}$

Beispiel: Wie hoch ist die Wahrscheinlichkeit, dass bei 350 Leuten genau k $(k \le 350)$ heute Geburtstag haben? $P(k) = \binom{350}{k} \left(\frac{1}{365}\right)^k \left(\frac{364}{365}\right)^{350-k}$

4.9 Gleichverteilung

Stetig Skript S.??

$$\varphi(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & x \in [a, b] \\ 0 & x > b \end{cases}$$

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a, b] \\ 1 & x > b \end{cases}$$

Erwartungswert: $E(X) = \frac{a+b}{2}$

Varianz: $var(X) = \frac{(b-a)^2}{12}$

Diskret Skript S.??

$$F(x) = \begin{cases} 0 & x \le 1\\ \frac{|x|}{n} & 1 \le x \le n\\ 1 & x \ge n \end{cases}$$

Wahrscheinlichkeit: $p(k) = \frac{1}{n}$

Erwartungswert: $E(X) = \frac{n+1}{2}$

Varianz: $var(X) = \frac{n^2 - n^2}{12}$

 $E(X^2) = \frac{2n^2 + 3n + 1}{6}$

Verteilungsfunktion(oben) und Wahrscheinlichkeitsdichte (unten) der Gleichverteilung

4.10 Potenzgesetze (Power-Laws) Skript S.??

Die Normalverteilung beschreibt (physikalische) Grössen, die vor allem in einer bestimmten Grössenordnung vorkommen. Die Potenzgesetze dienen dazu, Grössen welche einen grossen Wertebereich annehmen können, zu beschreiben.

$$\varphi(x) = \begin{cases} \frac{\alpha - 1}{x_{min}^{1 - \alpha}} \cdot x^{-\alpha} & x > x_{min} \\ 0 & sonst \end{cases} \quad \text{mit } \alpha > 1$$

$$E(X) = \frac{\alpha - 1}{\alpha - 2} \cdot x_{min}$$

$$E(X^2) = \frac{\alpha - 1}{\alpha - 3} \cdot x_{min}^2$$

$$var(X) = \left(\frac{\alpha - 1}{\alpha - 3} - \left(\frac{\alpha - 1}{\alpha - 2}\right)^2\right) \cdot x_{min}^2$$

$$x_{\frac{1}{2}} = 2^{\frac{1}{\alpha - 1}} \cdot x_{min}$$

Eine nach dem Potenzgesetz verteilte Zufallsvariable kann man daran erkennen, dass die Dichtefunktion in doppelt logarithmischer Darstellung eine Gerade ist. Wegen $\log p(x) = -\alpha \log x + \log C$ ist die Steigung der Geraden $-\alpha$.

Der Parameter α kann mithilfe eines Maximum-Likelihood Schätzers bestimmt werden. Es gilt: $\alpha = 1 + \frac{n}{\sum_{i=1}^{n}} \log \frac{x_i}{x_m i n}$

5 Schätzen _{Skript S.??}

Konsistente Schätzer Skript S.??

Ein Schätzer ist konsistent, wenn $\lim_{n\to\infty} = E(X)$ ergibt

Der Mittelwert der Stichprobe ist ein konsistenter Schätzer. $\lim_{n\to\infty} = \frac{X_1+\ldots+X_n}{n} = E(X)$ Der Schätzer $\bar{X} = \frac{X_1+\ldots+X_n}{n}$ heisst der Stichprobenmittelwert der Stichprobe X_1,\ldots,X_n .

5.2 Erwartungstreue Schätzer Skript S.??

Ein Schätzer ist erwartungstreu, wenn E(Schätzer) = E(realer Wert)

Ist der Stichprobenmittelwert ein konsistenter $E(\mu(X_1,\ldots,X_n)) = \frac{E(X_1)+\ldots+E(X_n)}{n} = E(X)$ Schätzer, aber er ist sogar erwartungstreu:

Erwartungstreue Schätzer für var(x) ist:

$$S^{2} = \frac{n}{n-1} \left(\underbrace{\frac{1}{n} \sum_{E(X^{2})} X_{i}^{2}}_{E(X^{2})} - \underbrace{\left(\frac{1}{n} \sum_{E(X)^{2}} X_{i} \right)^{2}}_{E(X)^{2}} \right)$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Stichprobenvarianz, empirische Varianz

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 $\bar{X} = M_n$ heisst Stichprobenmittelwert

5.2.1 Kleinstmöglicher Fehler

$$E((E(X) - \frac{x_1 + \dots + x_n}{n})^2) = minimal$$

5.3 Maximum Likelihood Schätzer Skript S.??

Sinn des Likelihoodschäzers ist einen unbekannten Parameter ϑ einer Dichtefunktion $\phi(x,\vartheta)$ zu schätzen.

$$L(x_1, \dots, x_n; \vartheta) = \phi(x_1, \vartheta) \cdot \dots \cdot \phi(x_n, \vartheta) \implies \frac{d}{d\vartheta} L(x_1, \dots, x_n; \vartheta) = 0 \implies \vartheta = ?$$
 (Maximum-Likelihood-Schätzer)

Für eine normalverteilte Grösse lautet die Likelihood Funktion: $L(x_1, \ldots, x_n; \vartheta) = \frac{1}{(\sqrt{2}\pi)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \vartheta)^2}$ Der unbekannte Parameter ϑ konn must in die Likelihood Funktion: $L(x_1, \ldots, x_n; \vartheta) = \frac{1}{(\sqrt{2}\pi)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \vartheta)^2}$

Der unbekannte Parameter ϑ kann nun durch suchen des Maximums der Funktion ermittelt werden (ϑ wird variert). Die Funktion wird maximal, wenn die Summe im Exponent minimal wird. Das ϑ , das die Summe minimiert, kann durch ableiten nach ϑ und null setzen ermittelt werden. Es können auch Stichprobenvarianz S^2 oder Ähnliches ermittelt werden.

Verteilung der Schätzwerte Skript S.??

 X_1, \ldots, X_n sind unabhängige, normalverteilte Zufallsvariablen mit Erwartungswert μ und Varianz σ^2 . Dann gilt

- 1. \bar{X} und S^2 sind unabhängig
- 2. $\bar{X} = \frac{X_1 + ... X_n}{n}$ ist normalverteilt mit $E(\bar{X}) = \mu$ und $var(\bar{X}) = \frac{\sigma^2}{2}$
- 3. $\left[\frac{n-1}{\sigma^2} \cdot S^2 \text{ ist } \chi^2_{n-1}\text{-verteilt}\right] \text{ mit } S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$

5.5 Konfidenzintervall von Messwerten

5.5.1 Konfidenzintervall Skript S.??

Ein Intervall $[L(X_1, \ldots, X_n), R(X_1, \ldots, X_n)]$ heisst ein $1 - \alpha$ - Konfidenzintervall für den Parameter ϑ , wenn der wahre Wert des Parameters ϑ höchstens mit Wahrscheinlichkeit α ausserhalb des Intervalls liegt.

Es gilt:
$$P(L \le \vartheta \le R) = 1 - \alpha$$

5.5.2 Bei bekannter Varianz σ^2

Falls Varianz σ^2 von Messwerten bekannt ist, handelt es sich bei \bar{X} um **normalverteilte** Zufallsvariable mit Varianz σ^2/n . Also kann sehr einfach ein x für das Konfidenzinter- $P\left(\left|\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right| \leq x\right) = 1 - \alpha \Rightarrow F(x) = 1 - \frac{\alpha}{2}$

vall gefunden werden:

Daraus ergibt sich folgendes Konfidenzintervall
$$\mu \in \left[\bar{X} - x \frac{\sigma}{\sqrt{n}}, \bar{X} + x \frac{\sigma}{\sqrt{n}} \right] \text{ mit W'keit } 1 - \alpha$$

5.5.3 Bei geschätzter Varianz S^2

t-Verteilung

Der Mittelwert $(\frac{x_1+\ldots+x_n}{n})$ normalverteilter Daten ist t-Verteilt, wenn Varianz mit Stichprobenvarianz geschätzt wurde. Ab einer gewissen Anzahl Messungen $(n \ge 30)$ kann näherungsweise auch mit der Normalverteilung gerechnet werden.

Checkliste

- 1) \bar{X}, S als Schätzungen aus x_i bestimmen
- 2) taus $t\text{-}\mathit{Tabelle}\;(k=n-1)$ für $1-\frac{\alpha}{2}$ = W'keit für eine Seite
- 3) Intervall $\left[\bar{X} t\frac{S}{\sqrt{n}}, \bar{X} + t\frac{S}{\sqrt{n}}\right], (1-\alpha)$ Konfidenzintervall

Anwendung

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}$$
 t-Verteilt

 $\lim_{x\to\infty} = 0$ aber langsamer wie bei Gaussverteilung

Beispiel:

10 Messungen ergeben Durchschnittswert 4,7 und eine Standardabweichung 0,1. Finde ein 99% Konfidenzintervall für μ .

Finde t:

k=n-1		0,995
:	:	•
9		3,2498

$$\left[\overline{\bar{X}} - 3,2498 \frac{s}{\sqrt{n}}, \overline{\bar{X}} + 3,2498 \frac{s}{\sqrt{n}} \right] \Rightarrow \left[4,7 - 3,2498 \frac{0,1}{\sqrt{10}}, 4,7 + 3,2498 \frac{0,1}{\sqrt{10}} \right]$$

 $\mu \in [4,\!5072,4,\!8028]$ mit Wahrscheinlichkeit 99%

Hypothesentest Skript S.?? 6

6.1 Grundsätze

- "Man braucht Aussagen, die man widerlegen könnte."
- Irrtum ist möglich (Irrtumsw'keit α)
- Beweis durch Widerlegen des Gegenbeweises

6.2Vorgehen (Nullhypothese)

- 1. Hypothese, die der Test widerlegen soll
 - → Nullhypothese ⇒ Keine Wirkung/Effekt
- 2. Festlegung der Irrtumswahrscheinlichkeit $\alpha = 0.05, 0.01, \dots (\text{Niveau}=1-\alpha)$
- 3. Testgrösse X, W'keitsverteilung → Nur Werte bis zum getesteten Ereignis betrachten! (Nicht Zukunft mit einbeziehen)
- 4. Bestimmung der Schranken x_{krit} für:
 - Einseitiger Test $P(X > x_{krit}) = \alpha$
 - Zweiseitiger Test $P(|X| > x_{krit}) = \alpha/2$
- 5. Wert für $F\left(\frac{x_{krit}-\mu}{\sigma}\right)$ aus Tabelle 11.1 (S. 18)
- 6. Falls Messungen ergeben $X > x_{krit} \Longrightarrow$ Hypothese falsch mit W'keit 1α

6.3 Testen einer diskreten Verteilung Skript S.??

χ^2 -Test mit k-möglichen Ausgängen

Mögliche Ausgänge: I_i , i = 1, ..., k

Wahrscheinlichkeit von Ausgang i: $P(X \in I_i) = p_i$

n Beobachtungen, davon jeweils n_i mit Ausgang i

$$D = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}$$

 $D = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}$ ist χ_{k-1}^2 , mit k-1 Freiheitsgrade

Durchführung des χ^2 -Tests

1. Daten erfassen:

Damit der Test optimal funktioniert muss folgende Bedingung erfüllt sein: $n_i \geq 5 \ \forall \ i$

2. **Diskrepanz** D berechnen

i	Ausgang	p_i	n_i	$(n_i - np_i)$	$(n_i - np_i)^2/np_i$
1					
2					
3					
4					
5					
			n		$D = \sum$

3. Schwellenwert für D

 $x_{1-\alpha}$ für $F_{\chi^2_{k-1}}(x) = 1-\alpha$ aus $\chi^2_{k-1}\text{-Tabelle lesen.}$

Wenn α nicht vorgegeben, dann α z.B. 0.1 oder 0.05 wählen.

Anzahl Freiheitsgrade= Anzahl Ausgänge-1 = k - 1

Nachteile: -Grob verpixeltes Bild der Verteilung

-wenn wenig Messwerte ⇒ geringe Aussagekraft

6.4 Testen einer stetigen Verteilungskript S.??

Mit χ^2 -Test 6.4.1

Der χ^2 -Test kann im Prinzip nur diskrete Wahrscheinlichkeitsverteilungen testen. \rightarrow Will man eine stetige Verteilung testen, muss man zunächst Klassen von Werten bilden. \rightarrow Anschliessend deren Wahrscheinlichkeiten berechnen und dann prüfen ob die künstlich diskrete Verteilung im χ^2 -Test Bestand hat.

⇒ Achtung: Durch die Klassenbildung wird eine künstliche Diskretisierung eingeführt.

Kolmogorov-Smirnov Test

Nullhypothese Messwerte $x_1, ..., x_n$ haben Verteilungsfunktion F_X

Idee: Vergleiche Verteilungsfunktionen (statt der Dichtefunktionen)

Daten: X Zufallsvariable, Verteilungsfunktion F_X , n Messungen ergeben Stichprobe x_i

 F_X theoretische Verteilungsfunktion von X

empirische Verteilungsfunktion $\frac{Anzahl\{x_i \leq x\}}{n}$

 $\max (F_{emp}(\mathbf{x}) - F_x(\mathbf{x}))$ $\min (F_{emp}(x) - F_x(x))$

Durchführen des Kolmogorov-Smirnov Test

Werte $x_1, ..., x_n$ in aufsteigender Reihenfolge sortieren

$\mathbf{K}_{\mathbf{n}}^{\pm}$ berechnen

$$K_n^+ = \sqrt{n} \max_{1 < x < n} \left(\frac{i}{n} - F_X(x_i) \right)$$
$$K_n^- = \sqrt{n} \max_{1 < x < n} \left(F_X(x_i) - \frac{i-1}{n} \right)$$

Mit Tabelle:

i	x_i	i/n	$F_X(x_i)$	(i - 1)/n
1	$min(x_i)$			
	:			
n	$max(x_i)$			

- Finde $t_{n,1-\alpha},t_{n,\alpha}$ in der Tabelle 11.3 (S. 19)
- Falls $K_n^+ > t_{n,1-\alpha}$ oder $K_n^- < t_{n,\alpha}$, verwerfe die Hypothese, dass X die Verteilungsfunktion F_X hat.

Vergleichen von Mittelwerten (t-Test)_{Skript} S.?? 6.5

 $\Rightarrow E(X) = E(Y)$ Nullhypothese

n Messungen von $x_i \Rightarrow \bar{X}$; S_X^2 Daten

 $\begin{aligned} \mathbf{m} \text{ Messungen von } y_i &\Rightarrow \bar{Y} \; ; \; S_Y^2 \\ T &= \frac{\bar{X} - \bar{Y}}{\sqrt{(n-1) \cdot S_X^2 + (m-1) \cdot S_Y^2}} \cdot \sqrt{\frac{nm(n+m-2)}{n+m}} \end{aligned}$ Testgrösse

T ist t-verteilt

Schwellenwert t_{krit} aus Tabelle 11.4 mit Freiheitsgrad n+m-2 und $p=1-\alpha$

Test Falls $T > t_{krit}$ wird die Hypothese E(X) = E(Y) verworfen

7 Prozessverbesserungen Skript S.??

7.1 Gewichteter Mittelwert

Besitzt man die Möglichkeit Messwerte aus zwei Messsystemen X_1 und X_2 mit unterschiedlicher Genauigkeit $(var(X_1)/var(X_2))$ zu beziehen, so kann man die Messwerte so gewichten, dass eine optimale Genauigkeit besteht.

$$X_{opt} = t \cdot X_1 + (1-t) \cdot X_2$$
 $\rightarrow t$ so wählen, dass $var(X_{opt})$ minimal wird

$$var(X_{opt}) = t^2 \cdot var(X_1) + (1-t)^2 \cdot var(X_2)$$
 \rightarrow nach t ableiten und Null setzen

$$\Rightarrow \boxed{t = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}}; \boxed{1 - t = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}} \qquad var(X_{opt}) = \frac{\sigma_1^2 \cdot \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

7.2 Kalman-Filter

Prinzip: bestmögliche Schätzung für Systemzustand auf Grund von fehlerbehafteter Messung und Systementwicklung.

7.2.1 Datenfluss im Kalman-Filter Skript S.??

 u_k : Systemungenauigkeiten

 w_k : Messfehler

 x_k : Unbeobachtete Zustandsvariable

 z_k : Fehlerbehaftete Messung von x_k

 $\hat{x}_{k|k-1}$: Vorhersage: $\hat{x}_{k|k-1} = \varphi_{k-1}\hat{x}_{k-1}$

 \hat{x}_k : Schätzer für x_k (aus $\hat{x}_{k|k-1}$ und z_k)

$$\varphi_{k-1}$$
: Systementwicklung: $x_{k+1} = \varphi_k x_k + u_k$

 H_k : Messung der Zustandsvariablen: $z_k = H_k x_k + w_k$

 K_k : Kalman-Matrix: $\hat{x}_k = (I - K_k H_k) \hat{x}_{k|k-1} + K_k z_k$

$$Q_k = E(u_k u_k^t) = \begin{pmatrix} \sigma_1^2 & 0 & \dots \\ 0 & \sigma_2^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$R_k = E(w_k w_k^t) = \begin{pmatrix} \rho_1^2 & 0 & \dots \\ 0 & \rho_2^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$P_k = E(\tilde{x}_k \tilde{x}_k^t) = \begin{pmatrix} \tilde{x}_{k,1}^2 & \tilde{x}_{k,1} \tilde{x}_{k,2} & \dots \\ \tilde{x}_{k,2} \tilde{x}_{k,1} & \tilde{x}_{k,2}^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

 Q_k : Systemfehler-Kovarianzmatrix

 u_k : Systemungenauigkeiten

 σ_i : Varianz der Systemungenauigkeiten

 R_k : Messfehler-Kovarianzmatrix

 w_k : Messfehler

 ρ_i : Varianz der Messungen

 P_k : Schätzfehler-Kovarianzmatrix

 \tilde{x}_k : Schätzfehler: $\tilde{x}_k = \hat{x}_k - x_k$

7.2.2 Vorgehen

- 1. Bestimmung des Zustandsvektors x_k und des Messvektors z_k
- 2. Aufstellen der Messmatrix H_k aus: $z_k = H_k x_k$
- 3. Berechnen der Systementwicklung φ_k damit $x_{k+1} = \varphi_k x_k$
- 4. Aufstellen der Fehler-Kovarianzmatrixen Q_k und R_k
- 6. Korrektur-Schritt: $\hat{x}_{k} = (I K_{k}H_{k})\hat{x}_{k|k-1} + K_{k}z_{k} \qquad P_{k} = (I K_{k}H_{k})P_{k|k-1}(I K_{k}H_{k})^{t} + K_{k}R_{k}K_{k}^{t}$
- 7. Bestimmung des optimalen K_k : $K_k = P_{k|k-1}H_k^t(H_kP_{k|k-1}H_k^t + R_k)^{-1}$
- 8. Damit wird P_k vereinfacht zu: $P_k = (I K_k H_k) P_{k|k-1}$ $\rightarrow P_k$ bleibt variabel

7.2.3 Vereinfachung

In der Praxis kann meist davon ausgegangen werden, dass φ_k , R_k , Q_k und H_k konstant sind. Damit werden auch P_k und K_k konstant und die Vorhersage wird vereinfacht zu: $\hat{x}_k = \hat{x}_{k|k-1} + K(z_k - H\hat{x}_{k|k-1})$

8 Wichtige Formeln

8.1 Reihenentwicklungen

9 Auswahl der Verteilung

Gleichverteilung	Alle möglichen Werte haben die gleiche Wahrscheinlichkeit
Exponentialverteilung	Dauer von zufälligen Zeitintervallen ohne Gedächtnis
Normalverteilung	Viele kleine, unabhängige Zufallsprozesse sammeln sich zu einer normalverteilten Zufallsvariable
Binomialverteilung	Experiment mit zwei Ausgängen
Hypergeometrische Verteilung	Wahrscheinlichkeit, dass in einer Stichprobe, Elemente einer Teilmenge zu finden sind
Poissonverteilung	Häufigkeiten seltener Ereignisse
t-Verteilung	Varianz aus Stichproben geschätzt (für grosse n kann Normalverteilung verwendet werden)
χ^2 -Verteilung	Test ob eine Zufallsvariable Normalverteilt ist. Anwendung bei Hypothesentests

10 Statistik / Wahrscheinlichkeit

10.1 Funktionen

$mean(\{\})$	Berechnet das arithmetische Mittel der Elemente der Liste.
$mean(\{\},\{\})$	Mit einer zweiten Liste lassen sich die Elemente einzeln gewichten.
mean(A)	Gibt einen Zeilenvektor mit den arith. Mitteln der Spalten zurück.
mean(A, B)	Mit einer Matrix B lassen sich die Elemente von A gewichten.
$median(\{\})$	Berechnet den Median der Elemente der Liste.
median(A)	Gibt einen Zeilenvektor mit den Medianwerten der Spalten zurück.
$stdDev(\{\})$	Berechnet die Standardabweichung σ der Liste
$variance(\{\}$	Berechnet die Varianz σ^2 der Liste
nCr(n,k)	Binominalkoeffizient $\binom{n}{k}$ - funktioniert auch für Listen und Matrizen
nPr(n,k)	Anzahl Möglichkeiten unter Berücksichtigung der Reihenfolge k Elemente aus n auszuwählen.
OneVarL1, [L2], [L3], [L4]	Berechnet die Statistiken der Liste L1. Die Statistik wird mit ShowStat eingeblendet.
ShowStat	Folgende Werte werden berechnet: \bar{x} , $\sum x$, $\sum x^2$, σx ,
	Optionale Listen: $L2$: Häufigkeit, $L3$: Klassencodes, $L4$: Klassenliste
TwoVarL1, L2, [L3], [L4], [L5]	Gleich wie $OneVar$, einfach für 2 Variablen.
ShowStat	L1, L2: Variablen X und Y, $L3-5$: wie bei $OneVar$

10.2 Regression

Zur Berechnung einer Regression muss eine Liste ($\{...\}$) die x-Werte enthalten und eine zweite Liste die y-Werte. Der Befehl $LinReg\,L1, L2$ berechnet die lineare Regression. Mit ShowStat werden die berechneten Werte angezeigt. Es ist auch möglich, die Datenpunkte und die Regressionskurve zu plotten: $Regeq(x) \rightarrow y1(x)$ und $NewPlot\,1,1,L1,L2$ Optional können weitere Listen angegeben werden: L3: Häufigkeit, L4: Klassencodes, L5: Klassenliste, wobei alle Listen ausser L5 die gleiche Dimension besitzen müssen. 'Iterationen' gibt die maximale Anzahl Lösungsversuche an. (standardmäsig: 64)

Lineare Regression	$LinReg\ L1, L2, [L3], [L4, L5]$
Logarithmische Regression	$LnReg\ L1, L2, [L3], [L4, L5]$
Logistische Regression	$Logistic\ L1, L2, [Iterationen], [L3], [L4, L5]$
Potenz-Regression	$PowerReg\ L1, L2, [L3], [L4, L5]$
Quadratische Polynomische Regression	$QuadReg\ L1, L2, [L3], [L4, L5]$
Kubische Regression	$CubReg\ L1, L2, [L3], [L4, L5]$
Polynomische Regression 4-ter Ordnung	$QuartReg\ L1, L2, [L3], [L4, L5]$

10.3 Zufallszahlen

RandSeed~1147	Setzt die Ausgangsbasis (Seed) für den Zufallszahl-Generator
rand()	Gibt eine Zufallszahl zwischen 0 und 1 zurück.
rand(n)	Gibt eine Zufallszahl zwischen 0 und n (für n pos.)
	bzw. zwischen n und 0 (für n neg.) zurück.
randMat(n,m)	Erzeugt eine ganzzahlige Matrix mit n Zeilen und m Spalten mit Werten $-9 < x < +9$.
randNorm(a, sd)	Gibt eine reelle Zufallszahl um den Mittelwert a mit der Standardabweichung sd aus.
randPoly(x, n)	Erzeugt ein Polynom der Variable x der Ordnung n mit Koeffizienten $-9 < x < +9$

11 Tabellen

© Prof. Dr. Andreas Müller

11.1 Quantilen der Normalverteilung

p	x
0.75	0.6745
0.8	0.8416
0.9	1.2816
0.95	1.6449
0.975	1.9600
0.99	2.3263
0.995	2.5758
0.999	3.0902
0.9995	3.2905

11.2 Verteilungsfunktion der Normalverteilung

	+0.00	+ 0.01	+0.02	+0.03	+0.04	10.05	+0.06	+0.07	10.00	+0.09
$\frac{x}{x}$	+0.00	+0.01				+0.05		+0.07	+0.08	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

11.3 Quantilen für den Kolmogorov-Smirnov-Test

n	p = 0.01	p = 0.05	p = 0.1	p = 0.25	p = 0.5	p = 0.75	p = 0.9	p = 0.95	p = 0.99
1	0.01000	0.05000	0.10000	0.25000	0.50000	0.75000	0.90000	0.95000	0.99000
2	0.01400	0.06749	0.12955	0.29289	0.51764	0.70711	0.96700	1.09799	1.27279
3	0.01699	0.07919	0.14714	0.31117	0.51469	0.75394	0.97828	1.10166	1.35889
4	0.01943	0.08789	0.15899	0.32023	0.51104	0.76419	0.98531	1.13043	1.37774
5	0.02152	0.09471	0.16750	0.32490	0.52449	0.76741	0.99948	1.13916	1.40242
6	0.02336	0.10022	0.17385	0.32717	0.53193	0.77028	1.00520	1.14634	1.41435
7	0.02501	0.10479	0.17873	0.32804	0.53635	0.77552	1.00929	1.15373	1.42457
8	0.02650	0.10863	0.18256	0.32802	0.53916	0.77971	1.01346	1.15859	1.43272
9	0.02786	0.11191	0.18560	0.32745	0.54109	0.78246	1.01731	1.16239	1.43878
10	0.02912	0.11473	0.18803	0.32975	0.54258	0.78454	1.02016	1.16582	1.44397
11	0.03028	0.11718	0.19000	0.33304	0.54390	0.78633	1.02249	1.16885	1.44837
12	0.03137	0.11933	0.19160	0.33570	0.54527	0.78802	1.02458	1.17139	1.45207
13	0.03239	0.12123	0.19291	0.33789	0.54682	0.78966	1.02649	1.17357	1.45527
14	0.03334	0.12290	0.19396	0.33970	0.54856	0.79122	1.02823	1.17552	1.45810
15	0.03424	0.12439	0.19482	0.34122	0.55002	0.79259	1.02977	1.17728	1.46060
16	0.03509	0.12573	0.19552	0.34250	0.55123	0.79377	1.03113	1.17888	1.46283
17	0.03589	0.12692	0.19607	0.34360	0.55228	0.79482	1.03237	1.18032	1.46483
18	0.03665	0.12799	0.19650	0.34454	0.55319	0.79578	1.03351	1.18162	1.46664
19	0.03738	0.12895	0.19684	0.34535	0.55400	0.79667	1.03457	1.18282	1.46830
20	0.03807	0.12982	0.19709	0.34607	0.55475	0.79752	1.03555	1.18392	1.46981
30	0.04354	0.13510	0.20063	0.35087	0.56047	0.80362	1.04243	1.19164	1.48009
50	0.05005	0.13755	0.20794	0.35713	0.56644	0.80988	1.04933	1.19921	1.48969
100	0.05698	0.14472	0.21370	0.36331	0.57269	0.81634	1.05627	1.20666	1.49864
200	0.06049	0.14887	0.21816	0.36784	0.57725	0.82099	1.06117	1.21180	1.50458

11.4 Quantilen der t-Verteilung

<i>l</i> ₂ 22 1	0.75	0.8	0.9	0.95	0.975	0.99	0.995
k = n - 1				6.3138		31.8205	63.6567
	1.0000	1.3764	3.0777		12.7062		9.9248
2	0.8165	1.0607	1.8856	2.9200	4.3027	6.9646	
3	0.7649	0.9785	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	0.9410	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	0.9195	1.4759	2.0150	2.5706	3.3649	4.0321
6 7	0.7176	0.9057	1.4398	1.9432	2.4469	3.1427	3.7074
	0.7111	0.8960	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064	0.8889	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	0.8834	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	0.8791	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	0.8755	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	0.8726	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	0.8702	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	0.8681	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	0.8662	1.3406	1.7531	2.1314	2.6025	2.9467
16	0.6901	0.8647	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	0.8633	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	0.8620	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	0.8610	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	0.8600	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.6864	0.8591	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.6858	0.8583	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.6853	0.8575	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.6848	0.8569	1.3178	1.7109	2.0639	2.4922	2.7969
25	0.6844	0.8562	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.6840	0.8557	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.6837	0.8551	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.6834	0.8546	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.6830	0.8542	1.3114	1.6991	2.0452	2.4620	2.7564
30	0.6828	0.8538	1.3104	1.6973	2.0423	2.4573	2.7500
50	0.6794	0.8489	1.2987	1.6759	2.0086	2.4033	2.6778
100	0.6770	0.8452	1.2901	1.6602	1.9840	2.3642	2.6259
$\frac{500}{10^3}$	0.6750	0.8423	1.2832	1.6479	1.9647	2.3338	2.5857
	0.6747	0.8420	1.2824	1.6464	1.9623	2.3301	2.5808
10^4	0.6745	0.8417	1.2816	1.6450	1.9602	2.3267	2.5763
10^{5}	0.6745	0.8416	1.2816	1.6449	1.9600	2.3264	2.5759
10^{6}	0.6745	0.8416	1.2816	1.6449	1.9600	2.3264	2.5758

Studenten der HSR \bigcirc Github: HSR-Stud 11. Dezember 2019

11.5 Quantilen der χ^2 -Verteilung

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		-	_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	k = n - 1	p = 0.01	p = 0.05	p = 0.1	p = 0.25	p = 0.5	p = 0.75	p = 0.9	p = 0.95	p = 0.99
3 0.115 0.352 0.584 1.213 2.366 4.108 6.251 7.815 11.345 4 0.297 0.711 1.064 1.923 3.357 5.385 7.779 9.488 13.277 5 0.554 1.145 1.610 2.675 4.351 6.626 9.236 11.070 15.086 6 0.872 1.635 2.204 3.455 5.348 7.841 10.645 12.592 16.812 7 1.239 2.167 2.833 4.255 6.346 9.037 12.017 14.067 18.475 8 1.646 2.733 3.490 5.071 7.344 10.219 13.362 15.507 20.099 9 2.088 3.325 4.168 5.899 8.343 11.389 14.684 16.919 21.666 10 2.558 3.940 4.865 6.737 9.342 12.549 15.987 18.307 23.209 11 3.053 <	1	0.000	0.004	0.016	0.102	0.455	1.323	2.706	3.841	6.635
4 0.297 0.711 1.064 1.923 3.357 5.385 7.779 9.488 13.277 5 0.554 1.145 1.610 2.675 4.351 6.626 9.236 11.070 15.086 6 0.872 1.635 2.204 3.455 5.348 7.841 10.645 12.592 16.812 7 1.239 2.167 2.833 4.255 6.346 9.037 12.017 14.067 18.475 8 1.646 2.733 3.490 5.071 7.344 10.219 13.362 15.507 20.090 9 2.088 3.325 4.168 5.899 8.343 11.389 14.684 16.919 21.666 10 2.558 3.940 4.865 6.737 9.342 12.549 15.987 18.307 23.209 11 3.053 4.575 5.578 7.584 10.341 13.701 17.275 19.675 24.725 12 3.571	2	0.020	0.103	0.211	0.575	1.386	2.773	4.605	5.991	9.210
5 0.554 1.145 1.610 2.675 4.351 6.626 9.236 11.070 15.086 6 0.872 1.635 2.204 3.455 5.348 7.841 10.645 12.592 16.812 7 1.239 2.167 2.833 4.255 6.346 9.037 12.017 14.067 18.475 8 1.646 2.733 3.490 5.071 7.344 10.219 13.362 15.507 20.090 9 2.088 3.325 4.168 5.899 8.343 11.389 14.684 16.919 21.666 10 2.558 3.940 4.865 6.737 9.342 12.549 15.987 18.307 23.209 11 3.053 4.575 5.578 7.584 10.341 13.701 17.275 19.675 24.725 12 3.571 5.226 6.304 8.438 11.340 14.845 18.549 21.026 26.217 13 4.107	3	0.115	0.352	0.584	1.213	2.366	4.108	6.251	7.815	11.345
6 0.872 1.635 2.204 3.455 5.348 7.841 10.645 12.592 16.812 7 1.239 2.167 2.833 4.255 6.346 9.037 12.017 14.067 18.475 8 1.646 2.733 3.490 5.071 7.344 10.219 13.362 15.507 20.090 9 2.088 3.325 4.168 5.899 8.343 11.389 14.684 16.919 21.666 10 2.558 3.940 4.865 6.737 9.342 12.549 15.987 18.307 23.209 11 3.053 4.575 5.578 7.584 10.341 13.701 17.275 19.675 24.725 12 3.571 5.226 6.304 8.438 11.340 14.845 18.549 21.026 26.217 13 4.107 5.892 7.042 9.299 12.340 15.984 19.812 22.362 2.76.88 14 4.660	4	0.297	0.711	1.064	1.923	3.357	5.385	7.779	9.488	13.277
7 1.239 2.167 2.833 4.255 6.346 9.037 12.017 14.067 18.475 8 1.646 2.733 3.490 5.071 7.344 10.219 13.362 15.507 20.090 9 2.088 3.325 4.168 5.899 8.343 11.389 14.684 16.919 21.666 10 2.558 3.940 4.865 6.737 9.342 12.549 15.987 18.307 23.209 11 3.053 4.575 5.578 7.584 10.341 13.701 17.275 19.675 24.725 12 3.571 5.226 6.304 8.438 11.340 14.845 18.549 21.026 26.217 13 4.107 5.892 7.042 9.299 12.340 15.984 19.812 22.362 27.688 14 4.660 6.571 7.790 10.165 13.339 17.17 21.064 23.685 29.141 15 5.2	5	0.554	1.145	1.610	2.675	4.351	6.626	9.236	11.070	15.086
8 1.646 2.733 3.490 5.071 7.344 10.219 13.362 15.507 20.090 9 2.088 3.325 4.168 5.899 8.343 11.389 14.684 16.919 21.666 10 2.558 3.940 4.865 6.737 9.342 12.549 15.987 18.307 23.209 11 3.053 4.575 5.578 7.584 10.341 13.701 17.275 19.675 24.725 12 3.571 5.226 6.304 8.438 11.340 14.845 18.549 21.026 26.217 13 4.107 5.892 7.042 9.299 12.340 15.984 19.812 22.362 27.688 14 4.660 6.571 7.790 10.165 13.339 17.117 21.064 23.685 29.141 15 5.229 7.261 8.547 11.037 14.339 18.245 22.307 24.996 30.578 16 <t< td=""><td>6</td><td>0.872</td><td>1.635</td><td>2.204</td><td>3.455</td><td>5.348</td><td>7.841</td><td>10.645</td><td>12.592</td><td>16.812</td></t<>	6	0.872	1.635	2.204	3.455	5.348	7.841	10.645	12.592	16.812
9 2.088 3.325 4.168 5.899 8.343 11.389 14.684 16.919 21.666 10 2.558 3.940 4.865 6.737 9.342 12.549 15.987 18.307 23.209 11 3.053 4.575 5.578 7.584 10.341 13.701 17.275 19.675 24.725 12 3.571 5.226 6.304 8.438 11.340 14.845 18.549 21.026 26.217 13 4.107 5.892 7.042 9.299 12.340 15.984 19.812 22.362 27.688 14 4.660 6.571 7.790 10.165 13.339 17.117 21.064 23.685 29.141 15 5.229 7.261 8.547 11.037 14.339 18.245 22.307 24.996 30.578 16 5.812 7.962 9.312 11.912 15.338 19.369 23.542 26.296 32.000 17	7	1.239	2.167	2.833	4.255	6.346	9.037	12.017	14.067	18.475
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1.646	2.733	3.490	5.071	7.344	10.219	13.362	15.507	20.090
11 3.053 4.575 5.578 7.584 10.341 13.701 17.275 19.675 24.725 12 3.571 5.226 6.304 8.438 11.340 14.845 18.549 21.026 26.217 13 4.107 5.892 7.042 9.299 12.340 15.984 19.812 22.362 27.688 14 4.660 6.571 7.790 10.165 13.339 17.117 21.064 23.685 29.141 15 5.229 7.261 8.547 11.037 14.339 18.245 22.307 24.996 30.578 16 5.812 7.962 9.312 11.912 15.338 19.369 23.542 26.296 32.000 17 6.408 8.672 10.085 12.792 16.338 20.489 24.769 27.587 33.409 18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19	9	2.088	3.325	4.168	5.899	8.343	11.389	14.684	16.919	21.666
12 3.571 5.226 6.304 8.438 11.340 14.845 18.549 21.026 26.217 13 4.107 5.892 7.042 9.299 12.340 15.984 19.812 22.362 27.688 14 4.660 6.571 7.790 10.165 13.339 17.117 21.064 23.685 29.141 15 5.229 7.261 8.547 11.037 14.339 18.245 22.307 24.996 30.578 16 5.812 7.962 9.312 11.912 15.338 19.369 23.542 26.296 32.000 17 6.408 8.672 10.085 12.792 16.338 20.489 24.769 27.587 33.409 18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 </td <td>10</td> <td>2.558</td> <td>3.940</td> <td>4.865</td> <td>6.737</td> <td>9.342</td> <td>12.549</td> <td>15.987</td> <td>18.307</td> <td>23.209</td>	10	2.558	3.940	4.865	6.737	9.342	12.549	15.987	18.307	23.209
13 4.107 5.892 7.042 9.299 12.340 15.984 19.812 22.362 27.688 14 4.660 6.571 7.790 10.165 13.339 17.117 21.064 23.685 29.141 15 5.229 7.261 8.547 11.037 14.339 18.245 22.307 24.996 30.578 16 5.812 7.962 9.312 11.912 15.338 19.369 23.542 26.296 32.000 17 6.408 8.672 10.085 12.792 16.338 20.489 24.769 27.587 33.409 18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.61	11	3.053	4.575	5.578	7.584	10.341	13.701	17.275	19.675	24.725
14 4.660 6.571 7.790 10.165 13.339 17.117 21.064 23.685 29.141 15 5.229 7.261 8.547 11.037 14.339 18.245 22.307 24.996 30.578 16 5.812 7.962 9.312 11.912 15.338 19.369 23.542 26.296 32.000 17 6.408 8.672 10.085 12.792 16.338 20.489 24.769 27.587 33.409 18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 27.141 32	12	3.571	5.226	6.304	8.438	11.340	14.845	18.549	21.026	26.217
14 4.660 6.571 7.790 10.165 13.339 17.117 21.064 23.685 29.141 15 5.229 7.261 8.547 11.037 14.339 18.245 22.307 24.996 30.578 16 5.812 7.962 9.312 11.912 15.338 19.369 23.542 26.296 32.000 17 6.408 8.672 10.085 12.792 16.338 20.489 24.769 27.587 33.409 18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 27.141 32	13	4.107	5.892	7.042	9.299	12.340	15.984	19.812	22.362	27.688
16 5.812 7.962 9.312 11.912 15.338 19.369 23.542 26.296 32.000 17 6.408 8.672 10.085 12.792 16.338 20.489 24.769 27.587 33.409 18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 26.039 30.813 33.924 40.289 23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241	14	4.660	6.571	7.790	10.165	13.339	17.117	21.064	23.685	29.141
17 6.408 8.672 10.085 12.792 16.338 20.489 24.769 27.587 33.409 18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 26.039 30.813 33.924 40.289 23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980	15	5.229	7.261	8.547	11.037	14.339	18.245	22.307	24.996	30.578
18 7.015 9.390 10.865 13.675 17.338 21.605 25.989 28.869 34.805 19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 26.039 30.813 33.924 40.289 23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980 25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435	16	5.812	7.962	9.312	11.912	15.338	19.369	23.542	26.296	32.000
19 7.633 10.117 11.651 14.562 18.338 22.718 27.204 30.144 36.191 20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 26.039 30.813 33.924 40.289 23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980 25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528	17	6.408	8.672	10.085	12.792	16.338	20.489	24.769	27.587	33.409
20 8.260 10.851 12.443 15.452 19.337 23.828 28.412 31.410 37.566 21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 26.039 30.813 33.924 40.289 23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980 25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 <td>18</td> <td>7.015</td> <td>9.390</td> <td>10.865</td> <td>13.675</td> <td>17.338</td> <td>21.605</td> <td>25.989</td> <td>28.869</td> <td>34.805</td>	18	7.015	9.390	10.865	13.675	17.338	21.605	25.989	28.869	34.805
21 8.897 11.591 13.240 16.344 20.337 24.935 29.615 32.671 38.932 22 9.542 12.338 14.041 17.240 21.337 26.039 30.813 33.924 40.289 23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980 25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800	19	7.633	10.117	11.651	14.562	18.338	22.718	27.204	30.144	36.191
22 9.542 12.338 14.041 17.240 21.337 26.039 30.813 33.924 40.289 23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980 25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 </td <td>20</td> <td>8.260</td> <td>10.851</td> <td>12.443</td> <td>15.452</td> <td>19.337</td> <td>23.828</td> <td>28.412</td> <td>31.410</td> <td>37.566</td>	20	8.260	10.851	12.443	15.452	19.337	23.828	28.412	31.410	37.566
23 10.196 13.091 14.848 18.137 22.337 27.141 32.007 35.172 41.638 24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980 25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141	21	8.897	11.591	13.240	16.344	20.337	24.935	29.615	32.671	38.932
24 10.856 13.848 15.659 19.037 23.337 28.241 33.196 36.415 42.980 25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.14	22	9.542	12.338	14.041	17.240	21.337	26.039	30.813	33.924	40.289
25 11.524 14.611 16.473 19.939 24.337 29.339 34.382 37.652 44.314 26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	23	10.196	13.091	14.848	18.137	22.337	27.141	32.007	35.172	41.638
26 12.198 15.379 17.292 20.843 25.336 30.435 35.563 38.885 45.642 27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	24	10.856	13.848	15.659	19.037	23.337	28.241	33.196	36.415	42.980
27 12.879 16.151 18.114 21.749 26.336 31.528 36.741 40.113 46.963 28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	25	11.524	14.611	16.473	19.939	24.337	29.339	34.382	37.652	44.314
28 13.565 16.928 18.939 22.657 27.336 32.620 37.916 41.337 48.278 29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	26	12.198	15.379	17.292	20.843	25.336	30.435	35.563	38.885	45.642
29 14.256 17.708 19.768 23.567 28.336 33.711 39.087 42.557 49.588 30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	27	12.879	16.151	18.114	21.749	26.336	31.528	36.741	40.113	46.963
30 14.953 18.493 20.599 24.478 29.336 34.800 40.256 43.773 50.892 50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	28	13.565	16.928	18.939	22.657	27.336	32.620	37.916	41.337	48.278
50 29.707 34.764 37.689 42.942 49.335 56.334 63.167 67.505 76.154 100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	29	14.256	17.708	19.768	23.567	28.336	33.711	39.087	42.557	49.588
100 70.065 77.929 82.358 90.133 99.334 109.141 118.498 124.342 135.807 500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	30	14.953	18.493	20.599	24.478	29.336	34.800	40.256	43.773	50.892
500 429.388 449.147 459.926 478.323 499.333 520.950 540.930 553.127 576.493	50	29.707	34.764	37.689	42.942	49.335	56.334	63.167	67.505	76.154
	100	70.065	77.929	82.358	90.133	99.334	109.141	118.498	124.342	135.807
1000 898.912 927.594 943.133 969.484 999.333 1029.790 1057.724 1074.679 1106.969	500	429.388	449.147	459.926	478.323	499.333	520.950	540.930	553.127	576.493
	1000	898.912	927.594	943.133	969.484	999.333	1029.790	1057.724	1074.679	1106.969

Studenten der HSR \bigcirc Github: HSR-Stud 11. Dezember 2019