Отчет о выполненой лабораторной работе 1.1.4

Антон Хмельницкий, Б01-306

September 26, 2023

Изучение статистических закономерностей на примере измерения фона космического излучения

1 Аннотация

В этой работе на примере измерения радиационного фона с помощью счетчика Гейгера-Мюллера, применяются методы обработки экспериментальных данных для изучения статистических закономерностей.

В работе используются: счетчик Гейгера-Мюллера(СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

2 Теоретические сведения

2.1 Оборудование

В любой физической лаборатории всегда присутствует радиоактивное излучение. Это излучение является радиоактивным фоном, с которым складывается излучение других источников, если они присутствуют. Основную часть фона обычно составляет космическое излучение.

Устройство счетчика Гейгера-Мюллера: наполненный газом металлический цилиндр с двумя электродами. Катод - корпус счетчика. Анод - тонкая нить, натянутая вдоль оси цилиндрического корпуса. Необходимое напряжение (400 В) подаётся на счётчик от смонтированного вместе с ним блока питания через повышающий трансформатор. (рис.1)

Космические частицы — в основном, протоны (92%), альфа-частицы (6%) и электроны/позитроны (1%) — ионизуют газ, которым наполнен счётчик, а также выбивают электроны из его стенок. Двигаясь в сильном электрическом ноле между электродами счётчика, образовавшиеся электроны соударяются с молекулами газа, выбивая из них новые. В результате образуется целая лавина электронов, через счётчик протекает кратковременный импульс тока (разряд). Этот импульс и регистрируется установкой, оцифровывается платой аналоговоцифрового преобразователя, и информация о нём через USB интерфейс подаётся на компьютер.

Число зарегистрированных частиц зависит от времени измерения, размеров счётчика, от давления и состава газа и от материала, из которого сделаны стенки счётчика.

Рисунок 1: Схема включения счетчика

2.2 Базовые погрешности

Наиболее важной характеристикой является среднее число регистрируемых частиц в единицу времени. Если $n_1, n_2, ..., n_N$ - результаты N проведённых в одинаковых условиях измерений, можно вычислить выборочное среднее значение числа измерений:

$$\langle n \rangle = \frac{1}{N} \sum_{i=1}^{N} n_i$$

Если продолжать проводить измерения, можно ожидать, что выборочное среднее будет стремиться к некоторому конечному пределу, который можно назвать «истинным» средним значением числа регистрируемых частиц(т.к. в реальном эксперименте N конечно, то возникает погрешность):

$$\overline{n} = \lim_{N \to \infty} \langle n \rangle$$

Poisson Distribution O.40 O.35 O.30 O.25 O.20 O.15 O.00 O.05 O.00 O.

Рисунок 2: График распределения Пуассона

Количественно меру флуктуаций среднего значения от опыта к опыту принято измерять среднеквадратичным (или стандартным) отклонением σ_n По определению, средний квадрат отклонения, называемый также дисперсией, равен:

$$\sigma_n^2 = \frac{1}{N} \sum_{i=1}^{N} (n_i - \langle n \rangle)^2 = \langle (n_i - \langle n \rangle)^2 \rangle$$

Погрешность среднего значения $\langle n \rangle$ при независимых измерениях связана с погрешностью отдельного измерения формулой:

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}}$$

Таким образом, увеличивая количество измерений, среднее значение приближается к «истинному» п. При конечном N истинное среднее с высокой вероятностью лежит в интервале

$$\overline{n} = \langle n \rangle \pm \frac{\sigma_n}{\sqrt{N}}$$

2.3 Пуассоновский процесс

Если события однородны во времени и каждое следующее событие не зависит от прошлого, то последовательность таких событий называют nyaccohosckuŭ npoueccom.

Вероятности ω_n того, что в эксперименте будет обнаружено п частиц, для распределения Пуассона имеют вид:

$$\omega_n = \frac{\overline{n}^n}{n!} e^{-\overline{n}}$$

При больших $\overline{n} > 10$ график распределения (рис.2) стремиться к гладкой симметричной кривой, быстро убывающей к нулю при отдалении от центра.

Для пуассоновского процесса справедливо равенство:

$$\sigma = \sqrt{\overline{n}}$$

То есть среднеквадратичное отклонение равно корню из среднего. На практике можно ожидать приближённое равенство для выборочных значений:

$$\sigma_n \approx \sqrt{\langle n \rangle}$$

При больших \overline{n} распределение Пуассона переходит в так называемое нормальное распределение или распределение Гаусса, которое выражается через \overline{n} , n и среднеквадратическое отклонение σ_n :

$$\rho_n = \frac{1}{\sqrt{2\pi}\sigma_n} e^{-\frac{(n-\overline{n})^2}{2\sigma_n^2}}$$

3 Погрешность эксперимента

Если подставить основное свойство распределения Пуассона в формулу погрешности среднего значения, то получится среднеквадратичная погрешность определения среднего:

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}} = \sqrt{\frac{\langle n \rangle}{N}}$$

Для относительного значения погрешности:

$$\varepsilon_{\langle n \rangle} = \frac{\sigma_{\langle n \rangle}}{\langle n \rangle} = \frac{1}{\sqrt{\langle n \rangle N}}$$

Рассмотрим опыт, в котором интервал измерения t разбит на $N=\frac{t}{\tau}$ промежутков, длительностью τ . В знаменателе полученного выражения, как нетрудно видеть, стоит полное число частиц $N_0=\langle n\rangle N=\sum_{i=1}^N n_i,$ зарегистрированных за всё время измерений t. То есть относительная погрешность опыта не зависит от интервалов τ разбиения серий, и убывает обратно пропорционально корню из общего числа частиц N_0 .

Таким образом, единственный способ увеличить точность опыта — увеличивать общее число регистрируемых частиц за счёт увеличения совокупного времени измерений τ .

4 Обработка результатов

4.1 Вычисление погрешностей

В данном эксперименте будут обработанны данные для 3х времен: $\tau=10\mathrm{c}, \tau=20\mathrm{c}, \tau=40\mathrm{c}$. В силу ограниченности цифровой обработкой, распределения Пуассона и Гаусса будут построенны только для $\tau=20\mathrm{c}, \tau=40\mathrm{c}$

Далее в таблицах 1,2 приведенны данные полученные прибором для $\tau = 20$ с, $\tau = 40$ с, в таблицах 3,4,5 данные для гистограммы полученные на основе данных из таблиц 1,2 для $\tau = 10$ с, $\tau = 20$ с, $\tau = 40$ с. В таблицах 6,7 содержатся данные для гистограммы об распределении Пуассона и Гаусса полученных на основе таблиц 1-5 при $\tau = 20$ с, $\tau = 40$ с. Таблица 8 содержит сравнение отклонений долей случаев от средних значений с теоретическими оценками.

Рисунки 3-5 содержат гистограммы зависимости долей случаев от числа случаев. Рисунки 3,4 содержат также распределения Пуассона и Гаусса для данных параметров, для оценки погрешности.

Вычислим среднее число срабатываний счетчика за 10с,20с,40с:

$$\overline{n_{10}} = \frac{1}{10} \sum_{i=1}^{10} n_i \approx 13,22$$

$$\overline{n_{20}} = \frac{1}{20} \sum_{i=1}^{20} n_i \approx 26,48$$

$$\overline{n_{40}} = \frac{1}{40} \sum_{i=1}^{40} n_i \approx 52,96$$

Вычислим среднеквадратическую погрешность отдельного измерения для 10с,20с,40с:

$$\sigma_{n_{10}} = \sqrt{\frac{1}{10} \sum_{i=1}^{10} (n_i - \overline{n_{10}})^2} \approx 3,53$$

$$\sigma_{n_{20}} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} (n_i - \overline{n_{20}})^2} \approx 4,76$$

$$\sigma_{n_{40}} = \sqrt{\frac{1}{40} \sum_{i=1}^{40} (n_i - \overline{n_{40}})^2} \approx 6,06$$

Рассчитаем среднеквадратическое отклонение по свойству процесса Пуассона и сравним с стандартной:

$$\sigma_{n_{10}} = \sqrt{\overline{n_{10}}} \approx 3,64 \pm 3,53$$

$$\sigma_{n_{20}} = \sqrt{\overline{n_{20}}} \approx 5,15 \pm 4,76$$

$$\sigma_{n_{40}} = \sqrt{\overline{n_{40}}} \approx 7,28 \pm 6,06$$

Определим долю случаев, когда отклонения от среднего значения не превышают σ_n и $2\sigma_n$ и сравним с теоретическими оценками - Таблица 8. Рассчитаем погрешность среднего значения $\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}}$:

$$\sigma_{\langle n_{10}\rangle} = \frac{\sigma_{n_{10}}}{\sqrt{10}} \approx 0, 18$$

$$\sigma_{\langle n_{20}\rangle} = \frac{\sigma_{n_{20}}}{\sqrt{20}} \approx 0,33$$

$$\sigma_{\langle n_{20}\rangle} = \frac{\sigma_{n_{20}}}{\sqrt{20}} \approx 0,606$$

Для каждого τ вычислим среднюю интенсивность регистрируемых частиц в секунду $\overline{j}=\frac{\overline{n}}{\tau}$ и её погрешность $\sigma_j=\frac{\sigma_n}{\tau}$:

$$\langle j_{10} \rangle = \frac{\overline{n_{10}}}{10} \approx 1,32$$

$$\sigma_{j_{10}} = \frac{\sigma_{\langle n_{10} \rangle}}{10} \approx 0,018$$

$$\overline{j_{10}} = \langle j_{10} \rangle \pm \sigma_{j_{10}} = 1,32 \pm 0,018$$

$$\langle j_{20} \rangle = \frac{\overline{n_{20}}}{20} \approx 1,32$$

$$\sigma_{j_{20}} = \frac{\sigma_{\langle n_{20} \rangle}}{20} \approx 0,017$$

$$\overline{j_{20}} = \langle j_{20} \rangle \pm \sigma_{j_{20}} = 1,32 \pm 0,018$$

$$\langle j_{40} \rangle = \frac{\overline{n_{40}}}{40} \approx 1,32$$

$$\sigma_{j_{40}} = \frac{\sigma_{\langle n_{40} \rangle}}{40} \approx 0,015$$

$$\overline{j_{40}} = \langle j_{40} \rangle \pm \sigma_{j_{40}} = 1,32 \pm 0,018$$

$$\overline{j_{40}} = \langle j_{40} \rangle \pm \sigma_{j_{40}} = 1,32 \pm 0,018$$

Заметим, что средняя интенсивность регистрируемых частиц в секунду не зависит от величины интервала τ и числа точек N.

Обработаем данные из вышевычисленных и таблиц с данными и построим гистограммы зависимости долей случаев от их числа. Экспериментальные гистограммы (рисунки 3-5) с большой точностью согласуются с распределениями Пуассона и с несколько меньшей точностью с распределением Гаусса.

Из таблицы 8 и сравнения гистограмм 4,5 можно сделать вывод, что при достаточно больших N распределение Пуассона приближается к нормальному распределению (распределению Гаусса).

4.2 Вывод

В ходе выполнения работы познакомился с основными понятиями статистики. Определил среднее число регистрируемых космических лучей в секунду и определил погрешность результата. Выяснил, что средняя интенсивность регистрируемых частиц в секунду не зависит от величины интервала τ и числа точек N. Исследовал Пуассоновский процесс и распределение Гаусса.

5 Данные, таблицы и гистограммы

	0	1	2	3	4	5	6	7	8	9
0	33	18	36	25	31	23	25	26	24	20
10	19	29	36	21	23	18	27	28	37	24
20	32	35	17	30	24	22	22	27	29	25
30	22	22	17	29	27	30	28	31	26	19
40	30	29	27	22	24	28	21	39	29	33
50	35	21	24	24	26	23	24	22	28	18
60	24	27	36	24	29	28	22	40	26	16
70	30	24	21	32	26	20	26	31	31	28
80	24	29	25	25	26	20	32	21	22	38
90	29	26	28	22	30	24	27	31	32	36
100	25	25	29	27	23	30	28	28	16	28
110	27	24	26	26	27	33	23	21	23	25
120	28	31	37	27	34	24	28	33	30	23
130	29	30	27	23	27	24	23	23	31	32
140	27	20	23	28	25	24	23	26	23	23
150	23	26	28	27	29	22	25	34	24	30
160	28	21	33	23	22	28	31	22	34	29
170	25	32	16	31	19	32	32	24	30	19
180	33	24	27	27	22	22	33	29	18	21
190	25	31	30	24	19	24	29	30	31	26

Таблица 1: Число срабатываний счетчика за $\tau=20~{\rm c}$

	1	2	3	4	5	6	7	8	9	10
0	51	61	54	51	44	48	57	41	55	61
10	67	47	46	49	54	44	46	57	59	45
20	59	49	52	60	62	56	48	49	46	46
30	51	60	57	62	42	54	53	46	57	59
40	53	50	46	53	60	55	50	54	58	68
50	50	56	53	56	44	51	52	60	44	48
60	59	64	58	61	53	59	50	51	46	63
70	47	51	49	49	46	49	55	51	59	54
80	49	56	50	53	63	57	47	51	56	49
90	57	54	44	62	39	56	54	43	59	57

Таблица 2: Число срабатываний счетчика за $\tau = 40~{\rm c}$

Число импульсов, n_i	Доля случаев, ω_n
4	0.0025
5	0.0025
6	0.0175
7	0.0225
8	0.045
9	0.0475
10	0.0725
11	0.095
12	0.105
13	0.16
14	0.1125
15	0.0975
16	0.0625
17	0.04
18	0.0375
19	0.0325
20	0.01
21	0.02
22	0.005
23	0.005
24	0.005
25	0.0025

Таблица 3: Данные для гистограммы распределение при $\tau=10~{\rm c}$

Число импульсов, n_i	Доля случаев, ω_n
16	0.015
17	0.01
18	0.02
19	0.025
20	0.02
21	0.04
22	0.07
23	0.08
24	0.105
25	0.06
26	0.065
27	0.08
28	0.08
29	0.07
30	0.06
31	0.055
32	0.04
33	0.035
34	0.015
35	0.01
36	0.02
37	0.01
38	0.005
39	0.005
40	0.005

Таблица 4: Данные для гистограммы распределение при $\tau=20~{\rm c}$

Число импульсов, n_i	Доля случаев, ω_n
41	0.01
42	0.01
43	0.01
44	0.05
45	0.01
46	0.08
47	0.03
48	0.03
49	0.08
50	0.05
51	0.08
52	0.02
53	0.06
54	0.07
55	0.03
56	0.06
57	0.07
58	0.02
59	0.07
60	0.04
61	0.03
62	0.03
63	0.02
64	0.01
65	0.0
66	0.0
67	0.01
68	0.01

Таблица 5: Данные для гистограммы распределение при $\tau = 40~{\rm c}$

Число импульсов, n_i	Доля случаев при распределении Пуассона, ω_n	Доля случаев при распределении Гаусса, ρ_n
16	0.008829787	0.010199903
17	0.013753691	0.014707503
18	0.020233208	0.020443521
19	0.028198703	0.027393423
20	0.037335083	0.035384314
21	0.047077761	0.044060468
22	0.056664506	0.052888505
23	0.065238092	0.061199424
24	0.071979361	0.068266437
25	0.076240539	0.073407596
26	0.077648057	0.076093686
27	0.076152613	0.076037897
28	0.072018614	0.073246256
29	0.065760445	0.068016554
30	0.058044552	0.060886033
31	0.049581282	0.052540547
32	0.041028511	0.043706432
33	0.032922272	0.035048544
34	0.02564064	0.027093709
35	0.019398976	0.020190209
36	0.014269024	0.014503974
37	0.010211994	0.010044009
38	0.007116147	0.006705034
39	0.004831681	0.00431488
40	0.003198573	0.002676766

Таблица 6: Данные для гистограммы распределение Пуассона и Гаусса при $\tau=20~\mathrm{c}$

Число импульсов, n_i	Доля случаев при распределении Пуассона, ω_n	Доля случаев при распределении Гаусса, ρ_n
41	0.014361584	0.003572789
42	0.018109274	0.005923482
43	0.022303887	0.009396956
44	0.026845769	0.014263879
45	0.031594488	0.020717075
46	0.036374871	0.028791185
47	0.040987514	0.038285206
48	0.045222891	0.048712764
49	0.048877639	0.059305488
50	0.051771195	0.069085567
51	0.053760833	0.07700521
52	0.054753341	0.082128374
53	0.054712017	0.08381209
54	0.053658304	0.081839025
55	0.051668069	0.076463568
56	0.048863231	0.068357947
57	0.045399942	0.058474133
58	0.041454844	0.047860684
59	0.037210992	0.037483001
60	0.032844902	0.028088602
61	0.028515837	0.020140314
62	0.024358044	0.013817921
63	0.020476222	0.00907109
64	0.016944074	0.005697923
65	0.01380551	0.003424633
66	0.011077876	0.001969481
67	0.008756482	0.001083752
68	0.006819754	0.000570622

Таблица 7: Данные для гистограммы распределение Пуассона и Гаусса при $\tau=40~{\rm c}$

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
$\pm \sigma_{n_{20}} = \pm 4,76$	145	72,5	68
$\pm 2\sigma_{n_{20}} = \pm 9,52$	188	94	95
$\pm 3\sigma_{n_{20}} = \pm 14,28$	200	100	99
$\pm \sigma_{n_{40}} = \pm 6,06$	67	67	68
$\pm 2\sigma_{n_{40}} = \pm 12, 12$	97	97	95
$\pm 3\sigma_{n_{40}} = \pm 18, 18$	100	100	99

Таблица 8: Оценка распределения доли случаев

Рисунок 3: Гистограмма с данными при $\tau=10$

Рисунок 4: Гистограмма с данными и распределениями Пуассона и Гаусса при $\tau=20$

Рисунок 5: Гистограмма с данными и распределениями Пуассона и Гаусса при $\tau=40$