<u>SPRAWOZDANIE</u> SIECI ROZPROSZONE

Osoba wykonująca	Grupa	Data
Osoba wykonująca	О гира	Data
Uczelnia	Wydział	Kierunek
Politechnika Lubelska	Elektrotechniki i Informatyki	Informatyka I. stopnia, stacjonarne
Temat		
LABORATORIUM NR 4		

Częśd I: DHCP

4. Weryfikacja poprawności wykonanych konfiguracji.

a. Na komputerach PC1 oraz PC2 wykonaj polecenie ipconfig /all.
Wynik działania tego polecenia dla jednego z PC proszę umieścid w sprawozdaniu.

PC1

b. Na konsoli routera R1 wykonaj polecenie show ip dhcp binding. Pozwala ono na stwierdzenie obecnie istniejących powiązao interfejs klienta - adres IP (dzierżaw adresów). Wynik działania tego polecenia proszę umieścid w sprawozdaniu.

```
R1#show ip dhcp binding
Bindings from all pools not associated with VRF:
IP address Client-ID/ Lease
IP address
                                                                Lease expiration
                                                                                                    Type
                             Hardware address/
                            User name
0063.6973.636f.2d33.
3461.382e.3465.3561.
2e63.3434.302d.566c.
192.168.10.11
                                                                Nov 09 2018 12:19 PM
                                                                                                    Automatic
                             31
192.168.10.12
                             0100.2618.8ba6.f7
                                                                Nov 09 2018 12:27 PM
Nov 09 2018 12:21 PM
                                                                                                    Automatic
                            0100.2018.80a6.17
0063.6973.636f.2d32.
3033.612e.3037.3739.
2e39.3634.302d.566c.
192.168.11.11
                                                                                                    Automatic
                             31
0100.2618.8ba4.fd
192.168.11.12
                                                                Nov 09 2018 12:26 PM
                                                                                                    Automatic
```

c. Na konsoli routera wykonaj polecenie show ip dhcp pool. Wynik działania tego polecenia prosze umieścid w sprawozdaniu

```
R1#show ip dhcp pool
Pool R1g0 :
                                                        : 100 / 0
: 0 / 0
: 254
: 2
 Utilization mark (high/loн)
Subnet size (first/next)
  Total addresses
  Leased addresses
 Pending event : none
1 subnet is currently in the pool:
Current index IP address range
192.168.10.13 192.168.10.1
                                                                                                      Leased addresses
                                                                    - 192.168.10.254
 ool R1g1 :
                                                        : 100 / 0
: 0 / 0
: 254
: 2
 Utilization mark (high/low)
Subnet size (first/next)
  Total addresses
  Leased addresses
 Leased duuress
Pending event
1 subnet is currently in the pool:
Current index IP address range
102 168 11 13 192 168 11 1
                                                                                                      Leased addresses
                                                                     - 192.168.11.254
```

d. Do rozwiązywania problemów dotyczących działania serwera DHCP można używad polecenia debug ip dhcp server events. Użycie tego polecenia spowoduje wyświetlenie informacji o tym, czy serwer okresowo sprawdza wygaśnięcia dzierżawy adresów. Wyświetlone zostaną także procesy związane z adresami zwracanymi oraz przypisywanymi. W sprawozdaniu proszę umieścid wynik działania tego polecenia i zaznaczyd linie dowodzące, że adres został przypisany do konkretnego interfejsu komputera PC.

```
R1#debug ip dhcp server events
DHCP server event debugging is on.
 R1#
                      8 12:37:22.027; DMCPD: checking for expired leases.
8 12:39:22.027; DMCPD: checking for expired leases.
8 12:39:40.199; ZLINESPROTS-5-UPDOWN: Line protocol on Interface SigabitEthernetU/1, changed state to down 21:39:50.199; ZLINES-3-UPDOWN: Interface SigabitEthernetU/1, changed state to up 21:39:55.199; ZLINES-3-UPDOWN: Interface SigabitEthernetU/1, changed state to up 21:39:55.199; ZLINES-3-UPDOWN: Line protocol on Interface SigabitEthernetU/1, changed state to up 21:39:55.199; ZLINESPROTS-5-UPDOWN: Line protocol on Interface SigabitEthernetU/1, changed state to down 22:39:55.199; ZLINES-3-UPDOWN: Interface SigabitEthernetU/10, changed state to up 22:40:03.199; ZLINES-3-UPDOWN: Interface SigabitEthernetU/10, changed state to up 22:40:03.199; ZLINES-3-UPDOWN: Line protocol on Interface SigabitEthernetU/10, changed state to up 22:40:03.199; ZLINES-3-UPDOWN: Line protocol on Interface SigabitEthernetU/10, changed state to up 22:40:03.199; ZLINES-3-UPDOWN: Line protocol on Interface SigabitEthernetU/10, changed state to up 22:40:03.199; ZLINES-3-UPDOWN: Line protocol on Interface SigabitEthernetU/10, changed state to up 22:40:03.199; ZLINES-3-UPDOWN: Line protocol on Interface SigabitEthernetU/10, changed state to up 22:40:16.851; DMCPD: Sending notification of TERNINGTON: 22:42:16.851; DMCPD: Sending notification of TERNINGTON: 22:42:16.851; DMCPD: reason flags: RELEASE 22:42:16.851; DMCPD: sending notification of DISCOVER: 22:42:21.307; DMCPD: circuit id 00000000 22:42:22:307; DMCPD: circuit id 00000000 22:42:22:307; DMCPD: circuit id 00000000 22:42:22:307; DMCPD: sending notification of DISCOVER: DMCPD: Redding binding to radix tree (192:168.11.12) 22:42:22.307; DMCPD: Sending notification of DISCOVER: DMCPD: Redding binding to radix tree (192:168.11.12) 22:42:23.307; DMCPD: circuit id 00000000 22:42:22:307; DMCPD: Redding binding to radix tree (19
                              8 12:37:22.027: DHCPD: checking for expired leases.
  R1#
    Nov
     łοv
    Nov
     łοv
    Nov
     łοv
    Nov
     łοv
    Nov
                         łоv
     lov.
     Yov
     Yov
     Yov
     Yov
```

e. Aby sprawdzid, czy komunikaty są odbierane lub wysyłane przez router, należy użyd polecenia show ip dhcp server statistics. Użycie tego polecenia spowoduje wyświetlenie informacji o liczbie wysłanych i odebranych komunikatów DHCP. Prosze podad w sprawozdaniu odpowiedź jaką uzyskano za pomocą tego polecenia. Jednocześnie prosze zaznaczyd komunikaty DHCP, jakie są w nim widoczne. Czy ich kolejnośd wystąpienia jest zgodna z oczekiwaniami teoretycznymi i czy statystyki są kompletne (czy statystyki zawierają wszystkie komunikaty) ? Odpowiedź proszę b. krótko uzasadnid.

R1>enable	
R1#show ip dhop serv	ver statistics
Menory usage	107769
Address pools	2
Database agents	0
Automatic bindings	4
Manual bindings	4 0
Expired bindings	0
Malformed messages	0
Secure arp entries	0
Hessage	Received
BOOTRÉQUEST	0
DHCPD ISCOVER	40
DHCPREQUEST	11
DHCPDECL INE	0
DHCPRELEASE	6
DHCP INFORM	42
Hessage	Sent
B00TRÉPLY	0
DHCPOFFER	10
DHCPACK	53
DHCPNAK	Õ
R1#	

Statystyki są kompletne. Kolejnośd wystąpienia jest zgodna z oczekiwaniami teoretycznymi jeżeli uwzględnimy, że komunikaty są podzielone na oddzielne tabele komunikatów wysłanych i odebranych. Odczytując dane w formacie Otrzymane*i+-> Wysłane*i+-> Otrzymane[i+1] -> Wysłane*i+1+ -> ... (naprzemiennie z tabel Received i Sent - kolejne ich pozycje) , będą one w odpowieniej kolejności.

Częśd II: IPv6 (Packet Tracer)

2. Konfiguracja ręczna adresów IPv6 na routerze

b. Należy wprowadzid polecenie show ipv6 interface brief w celu weryfikacji konfiguracji interfejsów.

```
R1(config) #show ipv6 interface brief
& Invalid input detected at '^' marker.
R1(config) #exit
%SYS-5-CONFIG_I: Configured from console by console
Rl#show ipv6 interface brief
GigabitEthernet0/0
                          [up/up]
   FE80::2D0:97FF:FEC5:B901
    2001:DB8:ACAD:A::1
GigabitEthernet0/1
                          [up/up]
   FE80::2D0:97FF:FEC5:B902
   2001:DB8:ACAD:1::1
GigabitEthernet0/2 [administratively down/down]
                         [administratively down/down]
Vlan1
R1#
```

c. Należy wydad polecenie show ipv6 interface g0/0 (zamiast g0/0 proszę wpisad właściwą nazwę wykorzystanych interfejsów routera). Przykładowy wynik działania polecenia przedstawiony jest poniżej. Proszę zwrócid uwagę na to do jakich grup multicastowych został przyłaczony każdy z interfejsów. W sprawozdaniu umieśd wynik działania tego polecenia dla jednego z interfejsów Ethernet routera R1 i podaj co oznaczają poszczególne, obecne w listingu, grupy multicastowe.

```
Rl#show ipv6 interface g0/0
GigabitEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::260:70FF:FEE2:A201
 No Virtual link-local address(es):
  Global unicast address(es):
    2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
  Joined group address(es):
   FF02::1
   FF02::1:FF00:1
   FF02::1:FFE2:A201
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
Rl#show ipv6 interface g0/l
GigabitEthernet0/l is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::260:70FF:FEE2:A202
 No Virtual link-local address(es):
 Global unicast address(es):
    2001:DB8:ACAD:1::1, subnet is 2001:DB8:ACAD:1::/64
  Joined group address(es):
   FF02::1
   FF02::1:FF00:1
   FF02::1:FFE2:A202
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
```

FF02::1 stanowi adres dla wszystkich węzłów (urządzeo) z zakresu lokalnego. Druga grupa służy do wykrywania sąsiednich węzłów. Trzeci z adresów odpowiada adresowi typu link-local.

d. W celu uzyskania zgodności pomiędzy adresem typu link-local a adresem można ręcznie przypisad do każdego z interfejsów Ethernet routera R1 adres link-local. Wyjaśnij dlaczego można obu interfejsom przypisad ten sam adres typu link-local tj. FE80::1.

Adresy lokalne są wykorzystywane tylko do komunikacji w jednym segmencie sieci lokalnej. Nie muszą byd one unikalne, ponieważ routery nie przekazują pakietów z tego rodzaju adresem – nie będą więc one przekazywane przez R1 pomiędzy interfejsami i, tym sposobem, nie wywołają konfliktu adresów, ponieważ nie nastąpi pomiędzy nimi komunikacja. Są one wyróżniane z puli pozostałych adresów przez prefiks FE80::.

e. Wydaj ponownie polecenie show ipv6 interface dla każdego z interfejsów Ethernet routera R1. Czy przypisanie do grup multicastowych uległo zmianie w stosunku do punktu e. Jeśli tak to proszę podad co się zmieniło i powód tej zmiany (na przykładzie wybranego interfejsu).

```
Rl#show ipv6 interface g0/0
GigabitEthernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::1
 No Virtual link-local address(es):
 Global unicast address(es):
   2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
 Joined group address(es):
   FF02::1
   FF02--1-FF00-1
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
Rl#show ipv6 interface g0/l
GigabitEthernetO/l is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
 No Virtual link-local address(es):
 Global unicast address(es):
   2001:DB8:ACAD:1::1, subnet is 2001:DB8:ACAD:1::/64
 Joined group address(es):
   FF02::1
   FF02::1:FF00:1
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachables are sent
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
```

Tak, uległo ono zmianie – interfejsy przestały byd przypisane do grup FF02::1:FFE2:A201 i (...):A202, zmienił się również link-local address na ten, który ustawiliśmy.

Stało się tak dlatego, że zmieniliśmy adres typu link-local, który wcześniej odpowiadał usuniętym grupom multicastowym, są wiec one już niepotrzebne.

3. Konfiguracja routingu statycznego IPv6 na routerze

c. Wydaj ponownie polecenie show ipv6 interface dla każdego z interfejsów Ethernet routera R1. Czy przypisanie do grup multicastowych uległo zmianie w stosunku do punktu 2e. Jeśli tak to proszę podad co się zmieniło i powód tej zmiany (na przykładzie wybranego interfejsu).

```
Rl#show ipv6 interface g0/0
 GigabitEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
  No Virtual link-local address(es):
  Global unicast address(es):
    2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64
  Joined group address(es):
   FF02::1
   _FF02::2
    FF02::1:FF00:1
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
   ICMP redirects are enabled
  ICMP unreachables are sent
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 (unspecified)
  ND advertised retransmit interval is 0 (unspecified)
  ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
  ND advertised default router preference is Medium
  Hosts use stateless autoconfig for addresses.
 Rl#show ipv6 interface g0/l
GigabitEthernetO/l is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
  No Virtual link-local address(es):
  Global unicast address(es):
    2001:DB8:ACAD:1::1, subnet is 2001:DB8:ACAD:1::/64
   Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:1
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
   ICMP unreachables are sent
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 (unspecified)
  ND advertised retransmit interval is 0 (unspecified)
  ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
  ND advertised default router preference is Medium
  Hosts use stateless autoconfig for addresses.
```

Po uruchomieniu przez nas routingu statycznego IPv6 (unicast) dodane zostało przypisanie do grupy mulitcastowej **FF02::2**, która adresuje wszystkie **routery** z zakresu łącza lokalnego.

d. Jeżeli w poprzednim punkcie potwierdziło się, że router R1 należy do grupy multicastowej all-router multicast group to można na komputerach PC-A i PC-B odświeżyd konfigurację interfejsów sieciowych.

Wyjaśnij dlaczego PC-A i PC-B przypisane zostały: Global Routing Prefix oraz Subnet ID takie same jak skonfigurowano je na R1?

Adresy Ipv6 składają się z Global Routing Prefix, subnet ID oraz ID interfejsu, gdzie tylko ID interfejsu określa poszczególnych hostów w danej sieci, GRP określa sied, a Subnet ID jej segment. Jako, że obydwa PC znajdują się w tej samej sieci co R1 – tylko interface ID będzie dla nich, jako hostów, unikalne, a GRP i Subnet ID zostaną im przydzielone według przynależności do danej sieci i danego segmentu, a więc z routera R1.

4. Konfiguracja adresu statycznego IPv6 na PC.

b. Za pomocą polecenia ipconfig należy sprawdzid konfigurację interfejsów sieciowych na obu komputerach PC. Wynik działania tego polecenia dla PC-A oraz PC-B należy umieścid w sprawozdaniu.

c. Wykorzystaj komend ping do sprawdzenia łączności pomiedzy hostami: PC-A i PC-B. Czy test ping zakonczył się sukcesem? Tak. W sprawozdaniu proszę umieścid zrzut ekranowy działania polecenia ping.

5. ZADANIA DO SAMODZIELNEGO OPRACOWANIA

5.1 DHCP pozwala na przypisywanie konkretnego adresu IPv4 na podstawie adresu MAC. Jak skonfigurowad taki przypadek na serwerze DHCP uruchomionym na routerze Cisco.

W tym celu musimy (z trybu konfiguracji globalnej):

- 1. Utworzyd pulę adresów DHCP poleceniem **ip dhcp pool** nazwa_puli
- 2. Określid adres IP hosta poleceniem **host** adres_hosta maska_hosta
- 3. Określid unikalny identyfikator hosta poleceniem **client-identifier** *identyfikator_hosta*
- 4. Określid adres MAC (i ew. używany protokół) poleceniem hardware-address adres_hosta protokół

Protokołem może byd Ethernet (wybierany domyślnie przy braku określenia protokołu przez użytkownika) lub IEEE 802.