Recanto do Guerreiro

Gabriel Alejandro Figueiro Galindo ¹, João Gabriel Perez Monteiro ², Pedro Henrique Moreira Caixeta Ferreira ³

¹Instituto de Ciências Exatas e Informática Pontifícia Universidade de Minas Gerais (PUC Minas) Belo Horizonte – MG – Brasil

{gabrielfgalindo@gmail.com 1 , jgpmgin31@gmail.com 2 }@sga.pucminas.br {pedro.caixeta@sga.pucminas.br 3 }@sga.pucminas.br

Resumo. O objetivo do projeto é desenvolver um software que gerencia um local que é alugado para a realização de cerimônias e outros tipos de eventos na forma de uma agenda virtual. Por meio desse aplicativo, o administrador será capaz de gerenciar o local, junto com as suas reservas e os seus custos.

1. Introdução

A engenharia de *software* desempenha um papel fundamental na modernização e otimização de processos em diversos setores da sociedade. No contexto específico do Recanto Guerreiro, um local frequentemente alugado para eventos e cerimônias, a demanda crescente por seus serviços destacou a necessidade de uma gestão mais eficiente e simplificada. Atualmente, a administração depende de uma agenda em papel, cujas limitações incluem falta de controle, susceptibilidade à perda de informações e dificuldade de acesso.

Diante dessa realidade, o projeto proposto busca desenvolver um *software* que ofereça uma solução mais eficaz e conveniente do que a tradicional agenda em papel. Através dessa ferramenta digital, os usuários serão capazes de realizar todo o processo administrativo de forma mais organizada e formalizada. O aplicativo será especialmente projetado para dispositivos móveis, visando atender às necessidades do usuário a qualquer momento a partir do seu celular. Além disso, sua *interface* será intuitiva, levando em consideração a provável falta de familiaridade tecnológica de seus usuários.

As justificativas para o desenvolvimento deste trabalho são fundamentadas na importância de fornecer soluções tecnológicas acessíveis para todos os membros da sociedade, independentemente de sua idade ou conhecimento técnico. A implementação desta aplicação não apenas resolverá os desafios enfrentados pelo Recanto Guerreiro, mas também poderá ser adaptada e reaproveitada no futuro para ajudar outras pessoas que enfrentam problemas semelhantes, demonstrando assim o potencial transformador da engenharia de *software* na vida cotidiana.

2. Referencial Teórico

Aplicações como o *Sympla* e o *booking.com* foram selecionados como base para o desenvolvimento do projeto, devido ao seu *design* simples e intuitivo, além de também terem um foco no gerenciamento de reservas. Para adquirir mais conhecimento, ferramentas de pesquisa, como o *Google Acadêmico*, foram utilizadas para adquirir artigos de referência

para o desenvolvimento de uma *interface* simples e adequada para os usuários inexperientes.

Esses artigos focam nas dificuldades que usuários mais idosos possuem ao utilizarem *softwares*, fornecendo um *framework* para encapsular um bom *design* de *interface* para pessoas idosas [Zajicek 2004] e identificando deficiências comuns nas *interfaces* eletrônicas para usuários da mesma faixa etária [Wirtz et al. 2009]. Também foi pesquisado um artigo que investiga o uso de símbolos e palavras em *interfaces* e como elas podem ajudar pessoas mais velhas e pessoas com baixo conhecimento prévio na utilização de *softwares* [Reddy et al. 2020].

2.1. Extensão Universitária

A Extensão Universitária visa ligar a universidade aos outros setores da sociedade por meio de atividades de prática extensionista com o objetivo de facilitar o compartilhamento do conhecimento produzido no ambiente acadêmico. A Extensão é fundamental para a experiência acadêmica, encorajando o protagonismo estudantil e incentivando a abordagem de desafios socioambientais importantes na atualidade [PUC-Minas 2023].

Em virtude da importância da Extensão Universitária, o projeto desenvolvido não apenas responde às necessidades operacionais da PUC, mas também visa contribuir para ao resto da sociedade e para a inclusão social de pessoas inexperientes e com falta de conhecimento tecnológico. O projeto visa reafirmar a importância da Extensão no ensino superior, por meio de sua inclusão no Proex, demonstrando sua capacidade de promover a construção de uma sociedade mais justa e inclusiva.

2.2. A Engenharia de Software

Atualmente, a Engenharia de *Software* tem um papel vital no desenvolvimento, implementação e manutenção de sistemas essenciais para a sociedade moderna. Dada a dependência cada vez maior em sistemas de *software*, é essencial aplicar com precisão os princípios da Engenharia de *Software* e as práticas de desenvolvimento ágil para criar sistemas robustos e intuitivos.

Segundo um estudo pesquisado, micro e pequenas empresas de *soft-ware* enfrentam desafios significativos durante o processo de desenvolvimento [Fernandes et al. 2012]. Portanto, é fundamental adotar uma metodologia ágil, devido ao tamanho reduzido da equipe e à necessidade de flexibilidade para lidar com mudanças nos requisitos. Para tratar essas questões, dois outros artigos foram buscados por oferecerem modelos e arquiteturas de referência direcionados às pequenas empresas brasileiras, com o objetivo de facilitar o desenvolvimento de projetos [Colenci and Walmir 2011] [Varoto 2002].

2.3. Trabalhos relacionados

Uma revisão da literatura revelou trabalhos relevantes que abordam questões semelhantes de gestão de eventos e desenvolvimento de aplicativos para esse fim. Um desses exemplos é um artigo que aborda o desenvolvimento de um sistema *web* para a gestão de eventos de um cerimonial, apresentando em sua documentação a análise de requisitos, a metodologia utilizada e seus resultados, fornecendo *insights* valiosos para o nosso projeto [Silva 2020].

Outro exemplo, inclui uma pesquisa que examinou a usabilidade de aplicativos móveis para agendamento de eventos, o que pode fornecer orientação adicional para o desenvolvimento da *interface* do usuário no projeto [Souza et al. 2018]. Esses trabalhos destacam a importância de abordar os desafios específicos enfrentados por pequenas empresas no contexto do gerenciamento de eventos e fornecem um ponto de partida sólido para o trabalho.

3. Metodologia

O desenvolvimento do projeto seguiu a metodologia ágil *Scrum*, que proporciona flexibilidade e adaptabilidade ao longo do processo de desenvolvimento de aplicações [Schwaber and Sutherland 2017]. A metodologia *Scrum* foi aplicada por meio da organização do trabalho em *sprints*, períodos de tempo fixos e curtos no qual o time trabalha para completar uma quantidade específica de trabalho, com a ajuda do painel de projetos do *GitHub* para a organização e acompanhamento das atividades, com a divisão de tarefas sendo realizada com base nas habilidades e preferências individuais de cada membro da equipe.

Para o desenvolvimento do *front-end*, foram selecionadas as tecnologias *web* HTML, CSS e JavaScript, enquanto o Node.js foi escolhido para o desenvolvimento do *back-end*, devido à sua alta performance e escalabilidade. O gerenciamento do banco de dados foi realizado utilizando o MySQL e a plataforma *Amazon Web Services*, também conhecida como AWS, da *Amazon* foi escolhida para hospedar o banco de dados externo.

3.1. Sprint 1

Na primeira *sprint*, o projeto foi iniciado com uma contextualização de seus o objetivos, junto com o levantamento dos requisitos e a assinatura dos termos. Também foi realizada uma reunião entre os membros da equipe e o cliente, para adquirir uma visão mais profunda e precisa do projeto e seus objetivos.

Além disso, a documentação do *software* começou a ser desenvolvida, por meio do editor *LaTeX Overleaf*, junto com a apresentação do trabalho no *powerpoint*. O repositório *GitHub* também foi criado para armazenar todo o código e os artefatos do projeto e dar inicio ao planejamento da *sprint* 2 por meio do *dashboard* do *GitHub*.

3.2. Sprint 2

Continuando o desenvolvimento do projeto, na *sprint* 2 os diagramas de casos de uso, o diagrama ER e os protótipos de tela do *software* foram realizados, assim dando uma imagem visual de como as funcionalidades do aplicativo devem ser implementadas. Correções na documentação e no diagrama ER foram realizadas posteriormente, tornando-as mais precisas e mais alinhadas com o que foi solicitado.

O *front-end* e o *back-end* do aplicativo tiveram o seu desenvolvimento iniciado, com a implementação dos seguintes requisitos: a gestão das reservas, a gestão dos clientes, o estabelecimento da conexão com o banco de dados local e o processo de verificação das datas disponíveis.

3.3. Sprint 3

Na *sprint* 3, a documentação, o diagrama ER e os protótipos de tela foram atualizados para incluir os requisitos da gestão do local. O *back-end* e o *front-end* para a gestão do local

também foram implementadas, junto com correções na integração dos outros requisitos do sistema.

Enquanto isso, como nas *sprint* anteriores, o planejamento da proxima *sprint* e a reorganização do *GitHub* foram realizados para que o desenvolvimento do projeto possa continuar.

3.4. Sprint 4

Continuando o desenvolvimento do *front-end*, mudanças no logo e no *design* da aplicação foram realizadas para deixar a *interface* mais estética. Isso também inclui mudanças na formatação do texto e na paleta de cores utilizada pelo sistema.

Ajustes também foram realizados para garantir uma experiência de usuário otimizada em dispositivos móveis, independentemente do tamanho da tela. Agora, a *interface* se adapta automaticamente às dimensões do dispositivo, proporcionando uma visualização e usabilidade de melhor qualidade para os usuários.

A respeito dos testes da aplicação, foram realizados testes de integração entre as partes do *front-end*, *back-end* e banco de dados. Os testes de integração revelaram que todas as partes estão devidamente conectadas e se comunicam sem problemas. Além dos testes de integração, também foram realizados testes para verificar se cada botão executa o comando ao qual foi designado e se o sistema exibe ao usuário corretamente as informações salvas no banco de dados.

3.5. Sprint 5

Concluindo o desenvolvimento do trabalho, o *software* foi conectado ao banco de dados externo, correções no *front-end* para criar uma uniformidade entre as páginas foram realizas e a documentação do produto foi atualizada.

4. Resultados

4.1. Testes

O processo de teste do *software* foi realizado por dois indivíduos por meio da ferramenta *Postman* e utilizando o *localhost*. Todas as funcionalidades do sistema foram testadas, incluindo o processo de *login*, *logout* e o *CRUD* de todos os objetos da aplicação.

4.1.1. Login e Logout

O botão da página de *login* funciona sem nenhuma complicação, sendo testada por meio de uma conta de usuário inserida previamente no sistema. Em conjunto, o botão de *logout* do sistema foi testado e validado, funcionando corretamente em todas as páginas em que ele está disponível.

4.1.2. Create

Depois do processo de *login* e *logout*, a operação *create* foi testada para verificar se o usuário é capaz de criar novas entidades na aplicação. Caso a operação seja realizada com sucesso, uma mensagem de confirmação é exibida na tela do usuário.

4.1.3. Read

Após realizar o processo de criação de entidades do *software*, foi verificado se os objetos criados aparecem na lista da página como requisitado. Como pode ser visto na imagem abaixo, os objetos adicionados são exibidos corretamente.

4.1.4. Update

Além de criar entidades, o usuário também deve ser capaz de editá-las. Por causa disso, páginas de edição das entidades criadas foram adicionadas ao sistema e utilizadas para testar e validar o processo de *update* dos objetos.

4.1.5. Delete

Por último, foi testado se o usuário é capaz de deletar entidades da aplicação, removendoas também de suas respectivas listas no sistema. Como em todos às funcionalidades anteriores, a operação *delete* foi testada e validado com sucesso.

Link do vídeo:

Link do repositório: https://github.com/ICEI-PUC-Minas-PPLES-TI/plf-es-2024-1-ti4-0648100-recanto-do-guerreiro

Link da apresentação:

5. Conclusões e trabalhos futuros

6. Sobre as referências

Referências

- Colenci, A. and Walmir, E. (2011). A referencial model for small companies of development software. *IEEE Latin America Transactions*, 9(1):823–829.
- Fernandes, D. B., Tait, T. F. C., and Bruzarosco, D. C. (2012). Uma contribuição para o processo de desenvolvimento de software em micro e pequenas empresas desenvolvedoras de software. In *Anais do VIII Simpósio Brasileiro de Sistemas de Informação*, pages 145–156. SBC.
- PUC-Minas, E. (2023). Vídeo institucional 2023.
- Reddy, G. R., Blackler, A., Popovic, V., Thompson, M. H., and Mahar, D. (2020). The effects of redundancy in user-interface design on older users. *International Journal of Human-Computer Studies*, 137:102385.
- Schwaber, K. and Sutherland, J. (2017). Guia do scrum: Um guia definitivo para o scrum: As regras do jogo. *Available (in.)*, page 39.
- Silva, L. E. D. (2020). Desenvolvimento de um sistema web para a gestão de eventos de um cerimonial.
- Souza, R. P., Silva, T. R. B., Oliveira, J. M., and de Oliveira, G. A. A. (2018). Avaliação conjunta de facilidade de uso em aplicativos móveis para apoio à participação em eventos.
- Varoto, A. C. (2002). *Visões em arquitetura de software*. PhD thesis, Universidade de São Paulo.
- Wirtz, S., Jakobs, E.-M., and Ziefle, M. (2009). Age-specific usability issues of software interfaces. In *Proceedings of the IEA*, volume 17.

Zajicek, M. (2004). Successful and available: interface design exemplars for older users. *Interacting with Computers*, 16(3):411–430.