Digital Image Processing

Lecture # 2A: Fundamentals

Digital Image

a grid of squares, each of which contains a single color

each square is called a pixel (for *picture element*)

Digital Image

Color images have 3 values per pixel; monochrome images have 1 value per pixel.

a grid of squares, each of which contains a single color

each square is called a pixel (for *picture element*)

 Digital Image is an approximation of a real world scene

 Digital Image is an approximation of a real world scene

pixel grid

real image

sampled

quantized

sampled & quantized

Quantization: Example

Return change using only these notes

Quantization: Example

For Rs. 2	Return 5
For Rs. 7	Return 5
For Rs. 9	Return 10
For Rs. 12	Return 10
For Rs. 23	Return 25

Image Formation - Quantization

continuous color input

Sampling

Sampling

 Digital Image is an approximation of a real world scene

- Sampling:
 - Digitization of the spatial coordinates (x,y)
- Quantization:
 - Digitization in amplitude (also known as gray level quantization)

- Quantization
 - 8 bit quantization: $2^8 = 256$ gray levels (0: black, 255: white)
 - 1 bit quantization: 2 gray levels (0: black, 1: white) binary
- Sampling
 - Commonly used number of samples (resolution)
 - Digital still cameras: 640x480, 1024x1024, up to 4064 x 2704

CS Dept, MCS-NUST

• Digital video cameras: 640x480 at 30 frames/second (fps)

N: No of Columns

M: No of Rows

$$\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

183	160	94	153	194	163	132	165
				187 179			
				179 182			
				183 183			
180	179	181	179	181	170	130	169

Divided into 8x8 blocks

◆ Number of intensity levels — An integer power of 2

$$L=2^k$$

Intensity levels

$$[0, L-1]$$

◆ Dynamic range — Range of values spanned by the gray scale

- Image Size
 - Number of bits required to store an image

$$b = M \times N \times k$$

- Image having 2^k intensity levels
 - k bit image
 - 256 intensity levels 8 bit image

Spatial Resolution

- The spatial resolution of an image is determined by how sampling was carried out
- Three measures we come across when talking about
 - Image Size/Resolution
 - Pixel count e.g 3000x2000 pixels
 - Physical size e.g. 8" x 10"
 - Resolution e.g. 240 pixels per inch (PPI)

Difference/Relation between these three?

Spatial Resolution

256

512

1024

Spatial Resolution

- Intensity level resolution refers to the number of intensity levels used to represent the image
 - The more intensity levels used, the finer the level of detail discernable in an image
 - Intensity level resolution is usually given in terms of the number of bits used to store each intensity level

Number of Bits	Number of Intensity Levels	Examples
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	00110011, 01010101
16	65,536	1010101010101010

16 million colors

16 colors

EE 481 DIP, Fall 2010 CS Dept, MCS-NUST 3

8 bits 256 levels

4 bits 16 levels

7 bits 128 levels

3 bits 8 levels

6 bits 64 levels

2 bits 4 levels

5 bits 32 levels

1 bit 2 levels

Resolution: How much is enough?

- How many samples and gray levels are required for a good approximation?
 - Quality of an image depends on number of pixels and graylevel number
 - The more these parameters are increased, the closer the digitized array approximates the original image
 - But: Storage & processing requirements increase rapidly as a function of N, M, and k

Resolution: How much is enough?

 Depends on what is in the image and what you would like to do with it

The picture on the right is fine for counting the number of cars, but not for reading the number plate

Acknowledgements

- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002
- Peters, Richard Alan, II, Lectures on Image Processing, Vanderbilt University, Nashville, TN,
 April 2008
- Brian Mac Namee, Digitial Image Processing, School of Computing, Dublin Institute of Technology
- Computer Vision for Computer Graphics, Mark Borg