```
-- Phase 1 - Block 1: Row Count Validation
-- Project: U.S. Airline Performance & Delay Analysis
-- Author: Shruti Sumadhur Ghosh
-- @ This block confirms the number of rows in each table
-- ✓ Purpose: Ensure all 3 CSVs (airlines, airports, flights)
-- were successfully imported into the SQLite database
SELECT COUNT(*) AS airline_count FROM new_airlines;
SELECT COUNT(*) FROM new airports;
SELECT COUNT(*) FROM new_flights;
--☑ Phase 1: Data Ingestion - Completed
--☆ Block 1: Row Count Validation
--Table Row Count
--new airlines 14
--new_airports 322
--new_flights
             1,048,575
-- ♀ All data has been successfully imported from CSVs into the SQLite database.
-- -----
-- Phase 1 - Block 2: Sample Data Preview
-- Project: U.S. Airline Performance & Delay Analysis
-- @ View a few records from each table to verify column structure & values
SELECT * FROM new airlines LIMIT 5;
SELECT * FROM new airports LIMIT 5;
SELECT * FROM new flights LIMIT 5;
--☑ Phase 1 Completed: Summary
--Table Name
             Status Remarks
--new airlines ✓ Clean
                           2 columns, 14 rows
                          7 columns, 322 rows
--new airports ✓ Clean
--new_flights
             ✓ Clean
                          31 columns, 1,048,575 rows
-- 	✓ Key Validations Done:
--Column names are correct ✓
--Data types are appropriate (we'll confirm in PRAGMA check)
--No blank field names (like field1, field2) ✓
--All data appears to have loaded correctly ✓
-- Phase 1 - Block 3: Table Schema Check
-- Purpose: Confirm correct datatypes are set
```

-- -----

```
-- @ This confirms whether columns are using the correct types like INTEGER,
TEXT, REAL
PRAGMA table info(new airlines);
PRAGMA table info(new airports);
PRAGMA table info(new flights);
--☑ Schema Review Summary
--♦ new airlines
--Column
                     Notes
              Type
--IATA_CODE
                     ✓ Primary Key
              TEXT
--AIRLINE
              TEXT
                     ✓ Clean
--→ Pass - Clean and minimal.
--♦ new_airports
--Column
                     Notes
              Type
--IATA CODE
              TEXT
                     ✓ Primary Key
--LATITUDE/LONGITUDE
                     REAL

☑ Geolocation Ready

--→ Pass - All airport details available and well-typed.
--♦ new flights
--Field Type
              Notes
--Date/Time Fields
                     TEXT/INTEGER
                                   We'll convert properly in Phase 2.
--Delay Fields INTEGER ✓ Good for math/stats
--Distance
              INTEGER ⋈ Accurate
                     ☑ Airline, Reason, Tail No., etc.
--Categorical
              TEXT
                     INTEGER ✓ Boolean-compatible
--Diverted/Cancelled
--→ Pass - Just needs enrichment & cleanup.
-- Phase 2 - Block 1: Initial Clean Flight View
-- Dataset: new_flights
-- Author: Shruti Sumadhur Ghosh
-- @ This view prepares for enrichment by selecting all relevant columns.
CREATE VIEW IF NOT EXISTS v_clean_flight_data AS
SELECT *
FROM new_flights
WHERE airline IS NOT NULL
 AND origin airport IS NOT NULL
 AND destination_airport IS NOT NULL;
  -- -----
-- Phase 2 - Block 2: Add FLIGHT DATE and FLIGHT DATETIME
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v_clean_flight_data
-- Author: Shruti Sumadhur Ghosh
```

```
-- 🚱 Purpose:
-- This block creates a view that adds two new columns:
-- 1. FLIGHT DATE: Combines year, month, and day into 'YYYY-MM-DD'
-- 2. FLIGHT DATETIME: Combines flight date and scheduled departure (HHMM) into
full datetime
     Handles cases where scheduled departure is < 1000 by padding with leading 0
-- ☑ Output View: v_flight_with_datetime
CREATE VIEW IF NOT EXISTS v_flight_with_datetime AS
SELECT
   *,
   -- Format YYYY-MM-DD
   printf('%04d-%02d-%02d', year, month, day) AS flight_date,
    -- Format full datetime: YYYY-MM-DD HH:MM
   printf(
       '%04d-%02d-%02d %02d:%02d',
       year, month, day,
       CAST(SUBSTR('0000' | scheduled departure, -4, 2) AS INTEGER),
       CAST(SUBSTR('0000' || scheduled_departure, -2, 2) AS INTEGER)
    ) AS flight_datetime
FROM v_clean_flight_data;
-- Phase 2 - Block 3: Add CANCELLATION_REASON_DESC
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v flight with datetime
-- Author: Shruti Sumadhur Ghosh
-- 🚱 Purpose:
-- Adds descriptive labels for cancellation reasons using CASE statement
-- ☑ Output View: v flight with cancel desc
CREATE VIEW IF NOT EXISTS v_flight_with_cancel_desc AS
SELECT
    -- Human-readable cancellation reason
   CASE cancellation reason
       WHEN 'A' THEN 'Airline'
       WHEN 'B' THEN 'Weather'
       WHEN 'C' THEN 'National Air System'
       WHEN 'D' THEN 'Security'
       ELSE 'Not Cancelled'
   END AS cancellation_reason_desc
```

```
FROM v_flight_with_datetime;
-- Phase 2 - Block 4: Final Enriched Analytical View
-- Project: U.S. Airline Performance & Delay Analysis
-- Author: Shruti Sumadhur Ghosh
-- -----
-- 😂 Purpose:
-- Join flight data with airline names and origin/destination airport details
-- ☑ Output View: v_flight_data_enriched
CREATE VIEW IF NOT EXISTS v flight data enriched AS
SELECT
   f.*,
   -- Airline Full Name
   al.airline AS airline_name,
   -- Origin Airport Details
   ao.airport AS origin airport name,
   ao.city AS origin city,
   ao.state AS origin_state,
   ao.country AS origin_country,
   -- Destination Airport Details
   ad.airport AS dest_airport_name,
   ad.city AS dest city,
   ad.state AS dest_state,
   ad.country AS dest_country
FROM v_flight_with_cancel_desc f
LEFT JOIN new_airlines al ON f.airline = al.iata_code
LEFT JOIN new airports ao ON f.origin airport = ao.iata code
LEFT JOIN new_airports ad ON f.destination_airport = ad.iata_code;
-- -----
-- Phase 3 - Block 1: Overall Flight Statistics
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v flight data enriched
-- Author: Shruti Sumadhur Ghosh
-- @ Explanation:
-- This block gives a high-level overview of:
-- 1. Total number of flights
-- 2. Number of cancelled flights
-- 3. Cancellation rate (%)
-- 4. (Optional) Diverted flight count and rate
```

```
SELECT
   COUNT(*) AS total_flights,
   SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) AS cancelled flights,
   ROUND(
       100.0 * SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) / COUNT(*),
   ) AS cancellation rate pct
-- Optional: Uncomment to include diverted stats
-- , SUM(CASE WHEN diverted = 1 THEN 1 ELSE 0 END) AS diverted_flights
-- , ROUND(100.0 * SUM(CASE WHEN diverted = 1 THEN 1 ELSE 0 END) / COUNT(*), 2) AS
diversion rate pct
FROM v flight data enriched;
-- ■ Query Output:
--total flights cancelled flights cancellation rate pct
             40,527 3.86%
--1,048,575
-- ✓ Interpretation:
--Out of ~1.05 million domestic flights in 2015, 3.86% were cancelled, representing
a relatively low cancellation rate across the U.S. airline industry for that year.
-- Phase 3 - Block 2: Delay Statistics Summary
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v flight data enriched
-- Author: Shruti Sumadhur Ghosh
--    Explanation:
-- This block provides:
-- 1. Average, minimum, and maximum departure delay
-- 2. Average, minimum, and maximum arrival delay
-- ☑ Excludes cancelled flights to avoid skewed stats
SELECT
   ROUND(AVG(departure_delay), 2) AS avg_departure_delay,
   MIN(departure delay) AS min departure delay,
   MAX(departure delay) AS max departure delay,
   ROUND(AVG(arrival delay), 2) AS avg arrival delay,
   MIN(arrival_delay) AS min_arrival_delay,
   MAX(arrival_delay) AS max_arrival_delay
FROM v flight data enriched
WHERE cancelled = 0;
-- ☑ Phase 3 - Block 2: Delay Statistics Summary
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v flight data enriched
-- Author: Shruti Sumadhur Ghosh
```

```
-- -----
-- ❷ Objective:
-- Analyze the central tendency and range of delays.
-- Specifically:
-- ◇ Average, Minimum, and Maximum Departure Delay
-- ◇ Average, Minimum, and Maximum Arrival Delay
-- ◇ Note: Cancelled flights excluded to avoid skewed delay stats.
-- 📊 Query Output:
-- avg_departure_delay | min_departure_delay | max_departure_delay |
avg arrival delay | min arrival delay | max arrival delay
-----|-----|-----|
--- -----
-- 11.28 | -61 | 1988 |
| -82 | 1971
                                                                 7.61
-- ☑ Interpretation:
-- On average, flights experienced an **11.28-minute departure delay** and a
**7.61-minute arrival delay**.
-- However, the data also includes **extreme delays**, with some flights delayed by
over 30 hours.
-- Negative delay values suggest flights that departed or arrived ahead of
schedule.
-- Next: Block 3 - Delay Type Contribution Breakdown
-- ☑ Phase 3 - Block 3: Delay Type Contribution Breakdown
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v flight data enriched
-- Author: Shruti Sumadhur Ghosh
-- 🕝 Objective:
-- Analyze what portion of total delay is caused by each category:
-- Airline, Weather, Air System (NAS), Security, Late Aircraft
SELECT
   -- Total delay in minutes by category
   SUM(airline delay) AS airline delay total,
   ROUND(100.0 * SUM(airline_delay) / total_delay, 2) AS airline_pct,
   SUM(weather_delay) AS weather_delay_total,
   ROUND(100.0 * SUM(weather_delay) / total_delay, 2) AS weather_pct,
   SUM(air_system_delay) AS nas_delay_total,
   ROUND(100.0 * SUM(air_system_delay) / total_delay, 2) AS nas_pct,
   SUM(security_delay) AS security_delay_total,
```

```
ROUND(100.0 * SUM(security_delay) / total_delay, 2) AS security_pct,
  SUM(late_aircraft_delay) AS late_aircraft_delay_total,
  ROUND(100.0 * SUM(late aircraft delay) / total delay, 2) AS late aircraft pct
FROM v flight data enriched,
-- Subquery to get total delay from all types (cancelled excluded)
(
  SELECT
     SUM(
        airline delay + weather delay + air system delay +
        security_delay + late_aircraft_delay
     ) AS total delay
  FROM v flight data enriched
  WHERE cancelled = 0
) AS delay_totals
WHERE cancelled = 0;
-- In Delay Type Contribution Breakdown:
+-----
------
-----+
-- | airline_delay_total | airline_pct | weather_delay_total | weather_pct |
nas_delay_total | nas_pct | security_delay_total | security_pct
late_aircraft_delay_total | late_aircraft_pct |
+-----
-----
-- | 4,160,027 | 31.16 | 810,195
                                           6.07
3,129,132 | 23.44 |
                        13,101
                                        0.10
           39.24
5,238,195
+-----
------
-----+
-- ✓ Interpretation:
-- In 2015, the most significant contributor to total delay time was:
-- ◇ Late-arriving aircraft (39.24%) - cascading delays from previous flights.
-- ◇ Airline-related delays (31.16%) - internal operational issues.
-- ◇ Airspace/NAS-related delays (23.44%) - air traffic congestion and system
constraints.
-- ◇ Weather and Security delays were minimal contributors at 6.07% and 0.10%,
respectively.
-- 🛪 Together, these figures help identify key pressure points in flight
punctuality.
-- -----
-- ☑ Phase 3 - Block 4: KPI Definitions Summary
```

```
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v_flight_data_enriched
-- Author: Shruti Sumadhur Ghosh
-- 😂 Purpose:
-- Compute key performance indicators (KPIs) for airline operations:
-- ◇ On-Time Performance Rate (OTP)
-- ◇ Average Arrival & Departure Delay (excluding cancelled)
-- ◇ Cancellation Rate (overall)
SELECT
   -- Total number of flights
   COUNT(*) AS total flights,
   -- On-time flights: arrival delay ≤ 15 mins
   SUM(CASE WHEN cancelled = 0 AND arrival_delay <= 15 THEN 1 ELSE 0 END) AS
on_time_flights,
   -- OTP Rate = On-time flights / Total non-cancelled
      100.0 * SUM(CASE WHEN cancelled = 0 AND arrival delay <= 15 THEN 1 ELSE 0
END) /
      SUM(CASE WHEN cancelled = 0 THEN 1 ELSE 0 END), 2
   ) AS otp_rate_pct,
   -- Avg departure and arrival delays
   ROUND(AVG(CASE WHEN cancelled = 0 THEN departure_delay END), 2) AS
avg departure delay,
   ROUND(AVG(CASE WHEN cancelled = 0 THEN arrival_delay END), 2) AS
avg arrival delay,
   -- Cancellation rate
   SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) AS cancelled flights,
   ROUND (
      100.0 * SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) / COUNT(*),
   ) AS cancellation rate pct
FROM v flight data enriched;
-- ■ KPI Definitions Summary:
+-----
-----+
-- | total_flights | on_time_flights | otp_rate_pct | avg_departure_delay |
avg arrival delay | cancelled flights | cancellation rate pct |
+-----
-----+
-- | 1,048,575 | 785,087 | 77.88%
                                                    11.28
```

```
40,527 | 3.86% |
7.61
-----+
-- ✓ Interpretation:
-- ◇ **77.88%** of all non-cancelled flights arrived on time (within 15 minutes
of schedule), indicating a moderate industry-level On-Time Performance (OTP).
-- ◇ The **average departure delay** was **11.28 minutes**, while the **average
arrival delay** was **7.61 minutes**, suggesting partial recovery of delays during
flight.
-- ◇ **3.86%** of flights were cancelled — a relatively low cancellation rate.
in further analysis.
PRAGMA table info(v flight data enriched);
-- ☑ Phase 3 - Block 5: Airline-Level Performance Summary
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v_flight_data_enriched
-- Author: Shruti Sumadhur Ghosh
-- 😂 Objective:
-- Analyze airline-wise performance across key metrics:
-- ◇ Total Flights
-- ◇ On-Time Performance (%)
-- ◇ Average Delays (Departure & Arrival)
-- ◇ Cancellation Rate (%)
SELECT
   airline_name,
   COUNT(*) AS total_flights,
   -- On-time flights: arrival delay <= 15 mins
   SUM(CASE WHEN cancelled = 0 AND arrival_delay <= 15 THEN 1 ELSE 0 END) AS
on time flights,
   ROUND(
      100.0 * SUM(CASE WHEN cancelled = 0 AND arrival_delay <= 15 THEN 1 ELSE 0
END) /
      NULLIF(SUM(CASE WHEN cancelled = 0 THEN 1 ELSE 0 END), 0),
   ) AS otp rate pct,
   -- Average delays (exclude cancelled)
   ROUND(AVG(CASE WHEN cancelled = 0 THEN departure delay END), 2) AS
avg departure delay,
   ROUND(AVG(CASE WHEN cancelled = 0 THEN arrival_delay END), 2) AS
avg arrival delay,
```

```
SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) AS cancelled flights,
     100.0 * SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) / COUNT(*),
   ) AS cancellation rate pct
FROM v_flight_data_enriched
GROUP BY airline_name
ORDER BY total flights DESC;
-- ☑ Phase 3 - Block 5: Airline-Level Performance Summary
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v flight data enriched
-- Author: Shruti Sumadhur Ghosh
-- 🕝 Objective:
-- Analyze airline-wise performance across key metrics:
-- ◇ Total Flights
-- ◇ On-Time Performance (%)
-- ◇ Average Delays (Departure & Arrival)
-- ◇ Cancellation Rate (%)
-- 🖬 Airline Performance Summary Table:
-+-----
         airline name | total flights | on time flights | otp rate pct
 | avg_departure_delay | avg_arrival_delay | cancelled_flights |
cancellation_rate_pct |
-+-----
  | Southwest Airlines Co.
                       221,586
                                       173,933
                                                      80.91%
        10.05
                       3.84
                                    6,606
                                                       2.98%
                            147,486
  Delta Air Lines Inc.
                       120,721
                                                      83.47%
                                     2,861
        9.62
                       2.76
                                                      1.94%
  Atlantic Southeast Airlines
                            111,206
                                         79,331
                                                      75.60%
                       10.34
                                     6,274
        11.27
                                                      5.64%
  | Skywest Airlines Inc.
                       107,099
                                         80,166
                                                      77.00%
        11.22
                       9.85
                                      2,983
                                                       2.79%
                    97,549
-- | American Airlines Inc.
                                    72,193
                                                      77.74%
```

-- Cancellation metrics

1	ı	11.27	1	8.23	1	4,68	5	1		4.80%
	United	Air Lines I 15.03	nc. 	 7.44	87,606 	 2,40	65,458 3	I	l	76.83% 2.74%
	US Air	ways Inc. 7.53	1	 5.52	73,942 	 3,14	56,254 3	1	I	79.46% 4.25%
	America	an Eagle Air 17.96	lines Inc 	. 20.41	65,513 	 7,72	36,898 7	1	I	63.85% 11.79%
	JetBlu	e Airways 15.87	I	 13.94	48,157 	 2,64	31,940 5	l	I	70.18% 5.49%
	l Alaska	Airlines Inc 2.90	c. 	 -0.61	29,614 	 197	25,356	l	I	86.20% 0.67%
	 Spirit	Air Lines 16.03	1	 14.96	19,612 	 461	13,383	1	I	69.88% 2.35%
	Fronti	er Airlines : 23.09	Inc.	 24.33	14,669 	233	9,123	1	I	63.20% 1.59%
	Hawaiia	an Airlines : 1.55	Inc.	 4.39	14,133 	33	12,119	1	1	85.95% 0.23%
	ا Virgin ا	America 10.24	I	 5.24	10,403 	 276	8,212	I	I	81.09% 2.65%
 +	 +		 +	+	+-		+	+-		

^{-- ✓} Interpretation:

^{-- ◇ **}Alaska Airlines** (86.2%) and **Hawaiian Airlines** (85.95%) lead in On-Time Performance, with minimal delays and cancellations.

⁻⁻ \diamond **Frontier** and **American Eagle** report the **worst delays and lowest OTP**, with departure delays averaging over 17–23 minutes.

^{-- ◇ **}Southwest** and **Delta** operate the largest number of flights and maintain strong OTPs (~81-83%) with low cancellation rates (<3%).

^{-- ◇ **}American Eagle** has the **highest cancellation rate** at **11.79%**, highlighting operational inefficiencies.

⁻⁻ \nearrow These airline-level insights will help benchmark future KPIs and inform route/partner optimization.

⁻⁻ Next Step: Airport-level performance analysis (Block 6)

^{-- -----}

^{-- ☑} Phase 3 - Block 6: Airport-Level Performance Summary

⁻⁻ Project: U.S. Airline Performance & Delay Analysis

```
-- Dataset: v_flight_data_enriched
-- Author: Shruti Sumadhur Ghosh
-- 😂 Objective:
-- Analyze origin airport performance on:
-- ◇ Total Departures
-- ◇ On-Time Performance (%)
-- ◇ Average Departure Delay
-- ◇ Cancellation Rate
SELECT
   origin airport,
   origin airport name,
   origin_city,
   origin_state,
   COUNT(*) AS total_departures,
   -- On-time departures: departure delay ≤ 15 mins
   SUM(CASE WHEN cancelled = 0 AND departure_delay <= 15 THEN 1 ELSE 0 END) AS
on time departures,
   ROUND(
      100.0 * SUM(CASE WHEN cancelled = 0 AND departure_delay <= 15 THEN 1 ELSE 0
END) /
      NULLIF(SUM(CASE WHEN cancelled = 0 THEN 1 ELSE 0 END), 0),
   ) AS otp_departure_pct,
   -- Average departure delay
   ROUND(AVG(CASE WHEN cancelled = 0 THEN departure delay END), 2) AS
avg_departure_delay,
   -- Cancellation metrics
   SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) AS cancelled_departures,
   ROUND(
      100.0 * SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) / COUNT(*),
   ) AS cancellation_rate_pct
FROM v_flight_data_enriched
GROUP BY origin_airport
ORDER BY total departures DESC
LIMIT 20;
-- In Top 20 Origin Airports by Departure Volume
----+
-- | ORIGIN | AIRPORT NAME
                                                    CITY
```

STATE AVG DEPART	·	ON-TIME DEPARTURES	OTP %
++	+	•	+
ATL GA 9.27	Hartsfield-Jackson Atla 66,599	nta Intl 53,217	Atlanta 81.64%
ORD IL 20.09	Chicago O'Hare Intl 52,961 	33,345	Chicago 67.07%
DFW TX 13.17	Dallas/Fort Worth Intl 50,933 	35,491	Dallas-Fort Worth 74.95%
LAX CA 9.34	Los Angeles Intl 38,473 	30,655	Los Angeles 81.12%
DEN CO 15.26	Denver Intl 38,254 	26,761	Denver 71.43%
IAH TX 9.33	George Bush Intercontin 29,802 	ental 23,595	Houston 80.64%
PHX AZ 9.13	Phoenix Sky Harbor Intl 29,262 	23,572	Phoenix 81.38%
SFO CA 11.70	San Francisco Intl 28,428 	22,032	San Francisco 79.55%
LAS NV 10.91	McCarran Inti 25,806 	20,164	Las Vegas 79.13%
MCO FL 11.67	Orlando Intl 22,575	17,418	Orlando 79.24%
LGA NY 18.64	LaGuardia (Marine Air T 21,505 	erminal) 13,267	New York 69.93%
DTW MI 14.44	Detroit Metro 21,328 	15,853	Detroit 76.83%
CLT NC 8.20	Charlotte Douglas Intl 20,434	16,380	Charlotte 82.93%
BOS MA 14.42	Logan Intl 20,193	13,794	Boston 75.66%
MSP MN	Minneapolis-Saint Paul 20,073	Intl 16,190	Minneapolis 82.00%

```
10.23
-- | EWR
              | Newark Liberty Intl
                                                       Newark
   l NJ
                 19,608
                                    | 13,211
                                                          | 73.53%
   15.06
              | Salt Lake City Intl
                                                       | Salt Lake City
-- | SLC
   UT
                 19,325
                                     16,601
                                                          86.50%
   5.46
-- | JFK
              | JFK Intl (New York Intl)
                                                       New York
   NY
                 | 18,873
                                    12,862
                                                          72.71%
   18.84
-- | SEA
              | Seattle-Tacoma Intl
                                                       Seattle
   l WA
                 18,839
                                    15,861
                                                          84.80%
   6.93
-- | FLL
              | Fort Lauderdale-Hollywood Intl
                                                       | Ft. Lauderdale
   FL
                 16,187
                                    12,270
                                                          77.92%
   11.66
+-----
----+
-- ✓ Interpretation:
-- ◇ ATL (Atlanta) had the highest total departures (66,599), with a strong OTP
of 81.64% and moderate delays.
-- ◇ ORD (Chicago O'Hare) and DFW (Dallas/Fort Worth) had lower OTPs (67.07% and
74.95%) and high average delays (20.09 mins at ORD).
-- ◇ SLC (Salt Lake City) and SEA (Seattle) demonstrated excellent operational
performance, with OTPs above 84% and very low delay averages (5.46 mins and 6.93
mins).
-- ◇ LGA (LaGuardia) and JFK struggled with longer delays (~18+ mins) and OTPs
under 73%, indicating likely airspace congestion challenges.
-- ◇ Cancellation rates were highest at LGA (11.78%) and EWR (8.36%), possibly
due to poor weather or operational bottlenecks in the NY/NJ corridor.
-- ₹ These metrics highlight the best- and worst-performing airports and help
identify where delay-reduction strategies could be prioritized.
SELECT
   origin airport || ' → ' || destination airport AS route,
   airline name,
   COUNT(*) AS total_flights,
   -- On-time arrivals: arrival delay ≤ 15 mins
   SUM(CASE WHEN cancelled = 0 AND arrival_delay <= 15 THEN 1 ELSE 0 END) AS
on time arrivals,
   ROUND(
       100.0 * SUM(CASE WHEN cancelled = 0 AND arrival_delay <= 15 THEN 1 ELSE 0
END) /
       NULLIF(SUM(CASE WHEN cancelled = 0 THEN 1 ELSE 0 END), 0), 2
   ) AS otp_rate_pct,
```

-- Avg arrival delay (only for non-cancelled)

```
ROUND(AVG(CASE WHEN cancelled = 0 THEN arrival_delay END), 2) AS
avg_arrival_delay,
   -- Cancellation stats
   SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) AS cancelled flights,
   ROUND(
     100.0 * SUM(CASE WHEN cancelled = 1 THEN 1 ELSE 0 END) / COUNT(*), 2
   ) AS cancellation_rate_pct
FROM v_flight_data_enriched
GROUP BY route, airline_name
ORDER BY total_flights DESC
LIMIT 20;
-- -----
-- ☑ Phase 3 - Block 7: Route-Level Performance Summary
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v_flight_data_enriched
-- Author: Shruti Sumadhur Ghosh
■ Route-Level Performance Summary:
+-----
----+
-- Route
                | Airline Name
                                      | Total Flights | On-Time
Arrivals | OTP Rate (%)
                  | Avg Arrival Delay | Cancelled Flights
Cancellation Rate (%)
+-----
| 1801
-- | HNL → OGG
                 | Hawaiian Airlines Inc.
                                                  1608
    89.58
                 2.87
                                                 0.33
       -- | OGG → HNL
                 | Hawaiian Airlines Inc.
                                       1798
                                                  | 1501
    83.95
                6.12
                                                 0.56
-- | DAL → HOU
                 | Southwest Airlines Co.
                                       1340
                                                  1051
    80.97
                4.53
                                                3.13
-- | HOU → DAL
                 | Southwest Airlines Co.
                                       1330
                                                  1067
    83.23
                4.53
                                48
                                                3.61
      -- | HNL → KOA
                 Hawaiian Airlines Inc.
                                       1279
                                                  1157
    90.53
                2.62
                                | 1
                                                0.08
-- | KOA → HNL
                 Hawaiian Airlines Inc.
                                       1276
                                                  1091
    85.70
                5.02
                                | 3
                                                0.24
```

SAN → LAX	Skywest Airlines Inc.	1213	1009
84.44	3.93 18		1.48
LAX → SAN	Skywest Airlines Inc.	1206	969
81.29	6.03 14		1.16
LAX → DFW	American Airlines Inc.	1164	917
81.58	7.35 40		3.44
DFW → LAX	American Airlines Inc.	1158	856
76.70	7.88 42		3.63
	Hawaiian Airlines Inc.	1155	1061
	1.73		0.09
	Hawaiian Airlines Inc.	1150	1000
	3.59 1		0.09
MCO → ATL	Delta Air Lines Inc.	1062	974
92.59	-2.77		0.94
ATL → MCO	Delta Air Lines Inc.	1058	900
85.88	2.21 10		0.95
	Delta Air Lines Inc.	1049	688
	13.03 74		7.05
	Delta Air Lines Inc.	1047	695
	15.16		6.30
DFW → ORD	American Airlines Inc.	1003	694
73.13	13.37 54		5.38
ORD → DFW	American Airlines Inc.	1001	688
72.57	13.31 53		5.29
SAT → DFW	American Airlines Inc.	990	787
84.71	3.99 61		6.16
DFW → SAT	American Airlines Inc.	988	698
74.81	11.14 55		5.57
	+		•
+			

⁻⁻ \bigcirc Interpretation: Route-Level Performance Summary -- \diamond Hawaiian Airlines dominates the list, especially for intra-Hawaii routes (e.g., HNL \rightarrow OGG, HNL \rightarrow LIH) with exceptional OTP (\geq 90%) and extremely low

cancellation rates (<0.1%).

- -- \diamond Delta's MCO \rightarrow ATL route shows a negative average arrival delay (-2.77 mins), indicating early arrivals a sign of schedule efficiency.
- -- ◇ Southwest's DAL-HOU shuttle routes maintain high frequency with solid OTP (~81-83%), though cancellation rates are slightly higher (~3%).
- -- \diamond American Airlines' DFW \rightarrow LAX and DFW \rightarrow ORD routes show lower OTP (\sim 73-76%) and significant delays (avg 7-13 mins), possibly due to congestion or operational strain.
- -- \triangle Routes involving LGA and ORD show high cancellation rates (5-7%), likely impacted by weather or airspace congestion.
- -- \gg This summary highlights top-performing routes and identifies segments where operational improvements could be targeted.
- -- Next Step: Destination Airport-Level Analysis (Arrivals)
- -- ☑ Phase 3 Block 7: Route-Level Performance Summary
- -- Project: U.S. Airline Performance & Delay Analysis
- -- Dataset: v_flight_data_enriched
- -- Author: Shruti Sumadhur Ghosh
- -- -----
- -- 🖬 Route-Level Performance Summary:

+	•	•		•
	Airline Name te (%) Avg Arrival	•	Total Fl:	ights On-Time
+	+			+
+		·		
HNL → OGG 89.58 	Hawaiian Airlir 2.87	nes Inc. 6	1801	1608 0.33
OGG → HNL	Hawaiian Airlir	nes Inc.	1798	1501
83.95	6.12	10		0.56
DAL → HOU	Southwest Airli	nes Co.	1340	1051
80.97	4.53	42		3.13
HOU → DAL	Southwest Airli	nes Co.	1330	1067
83.23	4.53	48		3.61
HNL → KOA	Hawaiian Airlir	nes Inc.	1279	1157
90.53	2.62	1		0.08
KOA → HNL	Hawaiian Airlir	nes Inc.	1276	1091
85.70	5.02	3		0.24

SAN → LAX	Skywest Airlines Inc.	1213	1009
84.44	3.93 18		1.48
LAX → SAN	Skywest Airlines Inc.	1206	969
81.29	6.03 14		1.16
LAX → DFW	American Airlines Inc.	1164	917
81.58	7.35 40		3.44
DFW → LAX	American Airlines Inc.	1158	856
76.70	7.88 42		3.63
	Hawaiian Airlines Inc.	1155	1061
	1.73		0.09
	Hawaiian Airlines Inc.	1150	1000
	3.59 1		0.09
MCO → ATL	Delta Air Lines Inc.	1062	974
92.59	-2.77		0.94
ATL → MCO	Delta Air Lines Inc.	1058	900
85.88	2.21 10		0.95
	Delta Air Lines Inc.	1049	688
	13.03 74		7.05
	Delta Air Lines Inc.	1047	695
	15.16		6.30
DFW → ORD	American Airlines Inc.	1003	694
73.13	13.37 54		5.38
ORD → DFW	American Airlines Inc.	1001	688
72.57	13.31 53		5.29
SAT → DFW	American Airlines Inc.	990	787
84.71	3.99 61		6.16
DFW → SAT	American Airlines Inc.	988	698
74.81	11.14 55		5.57
	+		•
+			

⁻⁻ \bigcirc Interpretation: Route-Level Performance Summary -- \diamond Hawaiian Airlines dominates the list, especially for intra-Hawaii routes (e.g., HNL \rightarrow OGG, HNL \rightarrow LIH) with exceptional OTP (\geq 90%) and extremely low

```
cancellation rates (<0.1%).
-- ◇ Delta's MCO → ATL route shows a negative average arrival delay (-2.77 mins),
indicating early arrivals - a sign of schedule efficiency.
-- ◇ Southwest's DAL-HOU shuttle routes maintain high frequency with solid OTP
(~81-83%), though cancellation rates are slightly higher (~3%).
-- ◇ American Airlines' DFW → LAX and DFW → ORD routes show lower OTP (~73-76%)
and significant delays (avg 7-13 mins), possibly due to congestion or operational
strain.
-- △ Routes involving LGA and ORD show high cancellation rates (5-7%), likely
impacted by weather or airspace congestion.
-- ♦ This summary highlights top-performing routes and identifies segments where
operational improvements could be targeted.
-- Mext Step: Destination Airport-Level Analysis (Arrivals)
PRAGMA table info(new airports);
PRAGMA table info(v flight data enriched);
-- ☑ Phase 3 - Block 8: Destination Airport-Level Arrival Performance
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v_flight_data_enriched + new_airports
-- Author: Shruti Sumadhur Ghosh
-- -----
-- 😂 Objective:
-- Evaluate airport performance as *destinations* based on:
-- ◇ Total Arrivals
-- ◇ On-Time Performance (OTP %)
-- ◇ Average Arrival Delay
-- ◇ Cancellation Rate
SELECT
   v.DESTINATION AIRPORT AS DEST,
   a.AIRPORT AS DEST AIRPORT NAME,
   a.CITY AS DEST CITY,
   a.STATE AS DEST STATE,
   COUNT(*) AS total_arrivals,
   -- On-time arrivals: arrival delay ≤ 15 mins
   SUM(CASE WHEN v.CANCELLED = 0 AND v.ARRIVAL_DELAY <= 15 THEN 1 ELSE 0 END) AS
on time arrivals,
   ROUND(
       100.0 * SUM(CASE WHEN v.CANCELLED = 0 AND v.ARRIVAL_DELAY <= 15 THEN 1 ELSE
0 END) /
       NULLIF(SUM(CASE WHEN v.CANCELLED = 0 THEN 1 ELSE 0 END), 0), 2
   ) AS otp_arrival_pct,
    -- Average arrival delay (excluding cancelled)
   ROUND(AVG(CASE WHEN v.CANCELLED = 0 THEN v.ARRIVAL_DELAY END), 2) AS
avg arrival delay,
```

```
-- Cancellation metrics
   SUM(CASE WHEN v.CANCELLED = 1 THEN 1 ELSE 0 END) AS cancelled_arrivals,
      100.0 * SUM(CASE WHEN v.CANCELLED = 1 THEN 1 ELSE 0 END) / COUNT(*),
   ) AS cancellation rate pct
FROM v_flight_data_enriched v
JOIN new_airports a ON v.DESTINATION_AIRPORT = a.IATA_CODE
GROUP BY v.DESTINATION AIRPORT
ORDER BY total arrivals DESC
LIMIT 20;
-- In Destination Airport-Level Performance Summary:
-- | DEST | DEST_AIRPORT_NAME
                                             | DEST CITY
| STATE | Total Arrivals | On-Time Arrivals | OTP Rate (%) | Avg Arrival Delay
| Cancellation Rate (%)
-- | ATL | Hartsfield-Jackson Atlanta Intl
                                             | Atlanta
| GA | 66,741
                                    83.38
                                                 3.5
                    54,381
2.28
-- | ORD | Chicago O'Hare Intl
                                             | Chicago
IL
      53,060
                    34,926
                                    70.36
                                                 15.41
6.45
-- | DFW | Dallas/Fort Worth Intl
                                             | Dallas-Fort Worth
| TX
       51,037
                    35,947
                                    | 75.99
                                                 10.72
7.32
-- | LAX | Los Angeles Intl
                                             | Los Angeles
                    | 29,915
CA
      38,463
                                    79.28
                                                 5.19
1.89
-- | DEN | Denver Intl
                                             Denver
CO
       38,300
                    28,536
                                    76.15
                                                 8.58
2.16
-- | IAH | George Bush Intercontinental
                                             Houston
| TX
                                    79.59
                                                 | 6.16
       29,820
                    23,221
2.16
-- | PHX | Phoenix Sky Harbor Intl
                                             | Phoenix
                    23,635
AZ
      29,250
                                    81.81
                                                 4.35
1.23
-- | SFO | San Francisco Intl
                                             | San Francisco
CA
       28,437
                    21,029
                                    76.02
                                                 7.78
2.73
-- | LAS | McCarran Intl
                                             Las Vegas
```

```
NV
       25,804
                     20,602
                                      80.84
                                                    4.32
1.24
                                               | Orlando
-- | MCO | Orlando Intl
| FL
       22,586
                     16,996
                                      77.23
                                                    7.34
2.56
-- | LGA | LaGuardia (Marine Air Terminal)
                                               New York
       21,513
                     12,393
NY
                                      65.0
                                                    17.6
| 11.38
-- DTW
       | Detroit Metro
                                               Detroit
                                      78.81
MI
       21,318
                     16,209
                                                    7.83
3.52
-- | CLT | Charlotte Douglas Intl
                                               Charlotte
l NC
       20,474
                     | 16,215
                                      82.24
                                                    3.93
3.7
-- | BOS | Logan Intl
                                               Boston
| MA
       20,167
                                      70.62
                                                    13.48
                     12,866
9.66
-- | MSP | Minneapolis-Saint Paul Intl
                                               | Minneapolis
MN
       20,096
                     | 15,991
                                      81.05
                                                    5.54
| 1.82
-- | EWR | Newark Liberty Intl
                                               Newark
                     | 13,681
l NJ
       19,621
                                      76.36
                                                    8.57
8.68
-- | SLC | Salt Lake City Intl
                                               | Salt Lake City
| UT
       19,342
                     16,452
                                      85.77
                                                    1.42
0.83
-- | JFK | JFK Intl (New York Intl)
                                               New York
                                      72.45
                                                    | 13.91
NY
       18,858
                     12,797
| 6.33
-- | SEA | Seattle-Tacoma Intl
                                               Seattle
                                      83.38
WA
       18,830
                     15,569
                                                    2.12
0.83
-- | FLL | Fort Lauderdale-Hollywood Intl
                                               | Ft. Lauderdale
                                      77.41
| FL
       16,184
                     12,172
                                                    6.22
2.84
```

-- ☑ Interpretation: Destination Airport Arrival Performance

^{-- ◇} ATL (Atlanta), ORD (Chicago), and DFW (Dallas-Fort Worth) are the top 3 destination airports by volume — all over 50,000 arrivals in 2015.

⁻⁻ \diamond SLC and SEA show outstanding on-time performance (OTP ≥ 83%) and minimal delays (avg < 3 mins), indicating operational efficiency.

^{-- ◇} LGA (LaGuardia) has the **lowest OTP** (65%) and **highest cancellation rate** (11.38%) — likely due to congestion and weather impacts.

⁻⁻ \triangle ORD and JFK exhibit long average delays (13-15 mins) and relatively high cancellation rates (6-6.5%), requiring capacity and flow management.

```
needing intervention to improve delay and cancellation metrics.
-- ☑ Phase 3 - Block 9: Carrier vs Airport Delay Responsibility
-- Project: U.S. Airline Performance & Delay Analysis
-- Dataset: v flight data enriched
-- Author: Shruti Sumadhur Ghosh
-- 😂 Objective:
-- Analyze the share of delay causes by airline:
-- ◇ Carrier Delay (airline's responsibility)
-- ◇ External Delay (airport/system/weather/security/late aircraft)
SELECT
   airline_name,
   COUNT(*) AS total_flights,
   -- Total Delayed Flights (departure delay > 15 mins and not cancelled)
   SUM(CASE WHEN CANCELLED = 0 AND DEPARTURE_DELAY > 15 THEN 1 ELSE 0 END) AS
delayed flights,
   -- % of flights delayed
   ROUND(
      100.0 * SUM(CASE WHEN CANCELLED = 0 AND DEPARTURE_DELAY > 15 THEN 1 ELSE 0
END) /
      NULLIF(SUM(CASE WHEN CANCELLED = 0 THEN 1 ELSE 0 END), 0), 2
   ) AS delay_rate_pct,
   -- Average Delay by Type (only delayed flights)
   ROUND(AVG(CASE WHEN DEPARTURE_DELAY > 15 THEN AIRLINE_DELAY ELSE NULL END), 2)
AS avg carrier delay,
   ROUND(AVG(CASE WHEN DEPARTURE DELAY > 15 THEN LATE AIRCRAFT DELAY ELSE NULL
END), 2) AS avg_late_aircraft_delay,
   ROUND(AVG(CASE WHEN DEPARTURE DELAY > 15 THEN WEATHER DELAY ELSE NULL END), 2)
AS avg weather delay,
   ROUND(AVG(CASE WHEN DEPARTURE_DELAY > 15 THEN AIR_SYSTEM_DELAY ELSE NULL END),
2) AS avg air system delay,
   ROUND(AVG(CASE WHEN DEPARTURE DELAY > 15 THEN SECURITY DELAY ELSE NULL END), 2)
AS avg_security_delay
FROM v_flight_data_enriched
GROUP BY airline name
ORDER BY delay rate pct DESC;
-----+
-- | Airline Name
                             | Total Flights | Delayed Flights | Delay Rate
(%) | Avg Carrier Delay | Avg Late Aircraft Delay | Avg Weather Delay | Avg
Air System Delay | Avg Security Delay
```

_	_

+	+	+
+	+	
+		
Frontier Airlines Inc. 14,669	4,671	32.36
19.44 39.44	1.50	25.70
0.00	1	1
American Eagle Airlines Inc. 65,513	17,835	30.86
· . · · · · · · · · · · · · · · · · · ·	8.17	
19.74 33.33	0.1/	12.73
0.14	1 = 4=0	
Spirit Air Lines 19,612	5,159	26.94
16.40 22.90	1.88	32.44
0.13		
JetBlue Airways 48,157	12,194	26.79
22.94 34.30	3.51	13.91
0.22	·	•
United Air Lines Inc. 87,606	22,173	26.02
24.36 24.37	5.38	11.71
0.00	3.30	11.71
·	I 45 005	1 20 07
Southwest Airlines Co. 221,586	45,085	20.97
17.44 28.81	2.11	5.11
0.04		
Atlantic Southeast Airlines 111,206	21,713	20.69
27.06 31.79	2.49	11.32
0.00	•	•
Skywest Airlines Inc. 107,099	21,235	20.40
22.75 38.09	4.06	9.60
0.07	1 1.00	1 3.00
	1 10 622	1 20 06
American Airlines Inc. 97,549	18,633	20.06
29.35 30.13	5.35	8.41
0.07		
Virgin America 10,403	1,758	17.36
14.60 30.25	3.03	29.21
0.10		
Delta Air Lines Inc. 147,486	24,125	16.68
29.08 23.04	9.87	11.71
0.04	1 3.07	/-
· · · · · · · · · · · · · · · · · · ·	11 500	1 16 26
US Airways Inc. 73,942	11,582	16.36
26.31 22.85	3.45	11.86
0.18		
Alaska Airlines Inc. 29,614	3,468	11.79
22.11 31.14	3.84	9.03
0.10		
Hawaiian Airlines Inc. 14,133	1,195	8.48
25.16 24.61	2.68	0.51
0.16	1 2.00	1 0.31
0.10		
+	•	·
+	+	

----+

- -- ☑ Interpretation: Delay Responsibility Analysis
- -- \triangle Frontier Airlines and American Eagle Airlines have the highest delay rates (30-32%),
- -- with substantial average delays due to late aircraft and carrier-related issues —
- indicating significant operational inefficiencies.
- -- \triangle Spirit Airlines and JetBlue also exhibit high delay rates (~27%), primarily driven by
- -- late aircraft and air traffic control (air system) delays.
- -- ◇ American Airlines and Atlantic Southeast Airlines show moderate delay rates (~20%),
- -- but high average carrier delays (~27-29 minutes), hinting at airline-level process gaps.
- -- ☑ Delta, US Airways, and Alaska Airlines maintain relatively low delay rates (12–17%),
- -- reflecting stronger internal operations and scheduling efficiency.
- -- Mawaiian Airlines stands out with the lowest delay rate (8.5%) and minimal external
- -- delay impact consistent with its industry-leading on-time performance.
- --

 ✓ Insight:
- -- This breakdown helps distinguish between delays caused by the airline's own operations
- -- (carrier/late aircraft) versus external factors (weather, air traffic control, security).
- -- ◇ Airlines with high self-induced delays should focus on:
- -- Improving ground operations and turnaround processes
- -- Optimizing fleet scheduling and crew management
- -- Minimizing cascading delays from previous flights
- -- ◇ Airports and regulators can use this view to:
- -- Address recurrent system-level delays (e.g., airspace congestion)
- -- Coordinate with airlines to streamline scheduling at peak hours
- -- ❸ Actionable next step: Deep-dive delay analysis by time of day, route, and region
- -- in subsequent blocks.
- -- ☑ Phase 3: Exploratory Data Analysis (EDA)
- -- Project: U.S. Airline Performance & Delay Analysis
- -- Author: Shruti Sumadhur Ghosh
- -- -----
- -- ⋄ Block 1: Flight Volume Summary
- -- ☑ Interpretation: ATL is the busiest origin with 66K+ departures. ORD, DFW, and LAX follow. High-frequency airports are potential hubs and key for operational focus.
- -- ◇ Block 2: Monthly Trends
- -- ☑ Interpretation: July is the busiest month, followed by June and August—likely due to summer travel. February has the fewest flights.

- -- ◇ Block 3: Weekday Trends
- -- ☑ Interpretation: Fridays have the highest flight volumes, followed by Thursdays. Saturdays and Sundays see the least traffic, suggesting lower business travel.
- -- ◇ Block 4: Time of Day Trends
- -- ☑ Interpretation: Most flights are scheduled between 6 AM and 7 PM. Early morning (6-9 AM) is peak departure time. Red-eye flights are limited.
- -- ◇ Block 5: Airline-Level Performance Summary
- -- ☑ Interpretation: Alaska and Hawaiian Airlines lead with >85% OTP and <1% cancellations. American Eagle and Frontier show weak performance with high delay and cancellation rates. Delta has balanced performance with high volume and good OTP.
- -- ◇ Block 6: Origin Airport-Level Departure Performance
- -- \bigcirc Interpretation: ATL leads in departures with strong OTP (81.6%). ORD shows weakest OTP (67%) and highest avg delay (20 mins). SLC and SEA are top performers with >85% OTP and <7 min delays.
- -- ◇ Block 7: Route-Level Performance Summary
- -- \bigcirc Interpretation: Hawaiian Airlines dominates intra-island routes with ≥90% OTP and negligible cancellations. Delta's MCO \rightarrow ATL shows early arrivals. LGA and ORD routes face high cancellations (5–7%).
- -- ◇ Block 8: Destination Airport-Level Arrival Performance
- -- \bigcirc Interpretation: ATL has highest arrivals with 83% OTP. ORD and DFW have weaker performance with high delays (10–15 mins) and cancellations (6–7%). LGA and BOS show OTP challenges and high cancellation rates.
- -- ◇ Block 9: Delay Causes by Airline
- -- ☑ Interpretation: Frontier and American Eagle have the highest delay rates (~30%). Frontier suffers from systemic and turnaround delays. Hawaiian Airlines is the most reliable (8.48% delay rate). Delta and Southwest manage delays well at scale.
- -- ☑ Phase 4: Dashboard Development (Power BI)
- -- Project: U.S. Airline Performance & Delay Analysis
- -- Author: Shruti Sumadhur Ghosh
- -- -----
- -- \gg All cleaned and enriched data views (e.g., v_flight_data_enriched, new_airports, new_airlines) are now ready for Power BI import.
- -- ★ Next Step:
- -- ➤ Load final views/datasets into Power BI
- -- ➤ Build visuals based on key metrics:
- -- Airline/Route/Airport performance
- -- Delay & Cancellation trends

- -- OTP vs delay type comparison-- ➤ Design an interactive, insight-driven dashboard