LET'S START WITH DBMS:)

How to normalise table

In normalisation we generally break/decompose the table into 2 or more tables.

Steps to normalize a table

- 1.Write down all the attributes of table, CK, Prime and non-prime attributes and start analyzing with the FD.
- 2. For table to be in 1NF: Table should have atomic (indivisible) values and a primary key
- 3.For table to be in 2NF: No Partial dependency(LHS proper subset of CK and RHS non-prime attribute should be false)
- 4. For table to be in 3NF: No transitive dependency(LHS must be a CK or RHS a prime attribute should be true)
- 5. For table to be in BCNF: LHS must be a CK or SK
- 6. If it fails at any of these steps decompose the table on a common attribute which is CK (lossless)

LET'S START WITH DBMS:)

How to normalise table

1.Write down all the attributes of table, CK, PA,NPA and start analyzing with the FD.

- 2. For table to be in 1NF: Table should have atomic (indivisible) values and a primary key 3. For table to be in 2NF: No Partial dependency (LHS proper subset of CK and RHS non-prime attribute should be false)
- 4. For table to be in 3NF: No transitive dependency(LHS must be a CK or RHS a prime attribute should be true)
- 5. For table to be in BCNF: LHS must be a CK or SK
- 6. If it fails at any of these steps decompose the table on a common attribute which is CK (lossless)

R(A,B,C,D) and assume we have the following functional dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$

Step 1: ABCD , CK-> A , Prime Attribute={A} , Non-Prime Attribute ={B,C,D}

Step 2: ABCDE, Since we are assuming our relation R is in a standard relational model, it is already in 1NF

Step 3: Check for 2NF

A→B=(no pd as A is not a proper subset of CK and B is non prime(False and True=false))

 $B\rightarrow C=$ (no pd as B is not a proper subset of CK and C is non prime (False and True=false))

C->D=(no pd as C is not a proper subset of CK and D is non prime (False and True=false))

LET'S START WITH DBMS:).

How to normalise table

1.Write down all the attributes of table, CK, PA,NPA and start analyzing with the FD.

- 2. For table to be in 1NF: Table should have atomic (indivisible) values and a primary key 3. For table to be in 2NF: No Partial dependency (LHS proper subset of CK and RHS non-prime attribute should be false)
- 4. For table to be in 3NF: No transitive dependency(LHS must be a CK or RHS a prime attribute should be true)
- 5. For table to be in BCNF: LHS must be a CK or SK
- 6. If it fails at any of these steps decompose the table on a common attribute which is CK (lossless)

ABCD, CK-> A, Prime Attribute={A}, Non-Prime Attribute ={B,C,D}

Step 4: Check for 3NF

A→B=(no td as LHS is a CK)

 $B\rightarrow C=(td is there as LHS is not CK and RHS non-prime)$

C->D=(td is there as LHS is not CK and RHS non-prime)

So lets decompose the table R1(A,B), R2(B,C), R3(C,D)

LET'S START WITH DBMS:)

How to normalise table

1.Write down all the attributes of table, CK, PA,NPA and start analyzing with the FD.

- 2. For table to be in 1NF: Table should have atomic (indivisible) values and a primary key 3. For table to be in 2NF: No Partial dependency (LHS proper subset of CK and RHS non-prime attribute should be false)
- 4. For table to be in 3NF : No transitive dependency(LHS must be a CK or RHS a prime attribute should be true)
- 5. For table to be in BCNF: LHS must be a CK or SK
- 6. If it fails at any of these steps decompose the table on a common attribute which is CK (lossless)

ABCD, CK-> A, Prime Attribute={A}, Non-Prime Attribute ={B,C,D}

Step 4: Check for BCNF

R1(AB) $A \rightarrow B = (A \text{ is a candidate key OR a super key, so R1 is in BCNF})$

R2(BC) B \rightarrow C=(B is a candidate key OR a super key, so R2 is in BCNF)

R3(CD) C->D=(C is a candidate key OR a super key, so R3 is in BCNF)

Now, all decomposed relations R1, R2, and R3 are in BCNF