5. SEMIGROUPS OF DISJOINTNESS PRESERVING OPERATORS

In this section we consider a special case of domination. Recall from C-I,Sec.6 that a linear operator S on E is called <u>lattice</u> homomorphism if

(5.1) |Sf| = S|f| for all $f \in E$.

An operator S (L(E) is called disjointness preserving if

(5.2) $f \cdot g$ implies $Sf \cdot Sg$ for all $f,g \in E$.

Note that an operator S is a lattice homomorphism if and only if S is positive and disjointness preserving.

In the following we will consider <u>disjointness preserving semigroups</u> (by this we mean semigroups of disjointness preserving operators) and lattice semigroups (i.e., semigroups of lattice homomorphisms). For example, the semigroup $(T_{\underline{d}}(t))_{t\geq 0}$ defined in Section 3 is disjointness preserving for all $\underline{d} \in \mathbb{R}$ and a lattice semigroup if $\underline{d} \geq 0$.

<u>Proposition</u> 5.1. A bounded operator S on a complex Banach lattice E is disjointness preserving if and only if there exists a linear operator |S| on E such that

(5.3)
$$|Sf| = |S||f|$$
 ($f \in E$).

In that case the operator |S| is uniquely determined by (5.3). |S| is a lattice homomorphism and the <u>modulus</u> of S (i.e., one has $|S| \le T$ for all $T \in L(E)$ such that $|Sf| \le T|f|$ ($f \in E$).

For the proof of the proposition we refer to Arendt (1983) and de Pagter (1985).

<u>Proposition</u> 5.2. Let $(S(t))_{t\geq 0}$ be a disjointness preserving semigroup. Let T(t) = |S(t)| $(t\geq 0)$. Then $(T(t))_{t\geq 0}$ is a strongly continuous semigroup.

<u>Proof.</u> Let $0 \le s$, t and $f \in E_+$. Then by (5.1), T(s)T(t)f = T(s)|S(t)f| = |S(s)S(t)f| = |S(s+t)f| = T(s+t)f. Since span $E_+ = E$, it follows that $(T(t))_{t\ge 0}$ is a semigroup. Moreover, for $f \in E_+$, $\lim_{t\to 0} T(t)f = \lim_{t\to 0} |S(t)f| = |f| = f$. This implies that $(T(t))_{t\ge 0}$ is strongly continuous.