Infraestructura Computacional **Protección**

Sandra Rueda

Protección

 Cualquier mecanismo para controlar el acceso de programas, procesos o usuarios a recursos definidos en un sistema.

Metas de la Protección

- En un sistema operativo con múltiples usuarios es necesario controlar el acceso de usuarios y procesos a los recursos
- Soportar la confiabilidad de cualquier sistema completo que maneja recursos compartidos

Evolución

• Multiusuario vs. Multiproceso

Elementos

- Procesos
 - elementos activos

- Objetos
 - elementos pasivos
 - memoria, archivos, impresoras, discos, programas

Control de Acceso

- Un mecanismo de control de acceso tiene dos componentes fundamentales

 Política
 - medio para la especificación
 - medio para hacer cumplir la especificación

Mecanismo

Dominio de protección

Conjunto de derechos de acceso

Cambio de Dominio

Especificación

- Matriz de Control de Acceso
 - Representación abstracta de la política de un sistema de control de acceso

	archivo1	archivo2	programa1	programa2
proceso1	read,write,own	read	read,write, execute,own	write
proceso2	append	read,own	read	read,write, execute,own

Implementación

Tabla Global

	archivo1	archivo2	programa1	programa2
proceso1	read,write,own	read	read,write, execute,own	write
proceso2	append	read,own	read	read,write, execute,own

•••

Implementación

Lista de capacidades

...

Implementación

• Lista de acceso

Listas de Acceso

- Implementación más común
 - Sistemas operativos (Linux y Windows)
 - Firewalls
 - Aplicaciones web

Tabla vs. Listas

- Suponga que se tiene un sistema con 1000 recursos y 100 usuarios (en cierto momento). 1% de los recursos son accesibles (r,w,x o una combinación) para todos los usuarios. 10% son accesibles para dos usuarios y 89% son accesibles para un usuario. Se requiere una unidad de espacio para almacenar un permiso de acceso (o una combinación de permisos), o un identificador de usuario o un identificador de recurso.
- ¿Cuánto espacio se requiere para almacenar toda la matriz de acceso? ¿la lista de control de acceso? ¿La lista de capacidades?

Lista de Acceso vs. Lista de Capacidades

	Lista de Acceso	Lista de Capacidades
Ventajas		
Desventajas		

Ejercicio

- Suponga que se tiene un sistema en el que es posible etiquetar un archivo como sensible. Cuando se borra uno de estos archivos, su área de almacenamiento se sobrescribe con bits aleatorios.
 - ¿Por qué? [SGG]

Protección en Anillos

En MULTICS (1964) los dominios de protección están organizados jerárquicamente en una estructura de anillo. Los anillos están numerados del 0 al 7, siendo 0 el anillo con más privilegios. Los privilegios en otros niveles son subconjuntos de los privilegios de niveles anteriores.

Ejercicio

- En un sistema de protección de anillo, el nivel 0 tiene mayor acceso y el nivel n tiene menos derechos de acceso. Los derechos de acceso de un programa en un nivel particular en la estructura de anillo se consideran como un conjunto de capacidades.
 - ¿Cuál es la relación entre las capacidades de un programa en el nivel j y un programa en el nivel i para un objeto, con j>i? [SGG]

- Proveer evidencia que pruebe que alguien es quien dice ser
 - Algo que se tiene
 - Algo que se es
 - Algo que se conoce

UNIX

- Login/clave
- ¿Cómo mantener la clave secreta?
 - El sistema tiene una función de hash f que no tiene inversa, pero que es sencilla de calcular
 - El sistema aplica f a la clave de cada usuario y almacena f(clave)
 - Ataques de diccionario

- Cajeros
 - Tarjeta
 - Número de identificación personal

Biométricos

- Huellas digitales
- Scan de retina
- Reconocimiento facial
- Lector de mano
- Reconocimiento de voz
- Firma

Clasificación

	Ser	Saber	Tener
Clave			
PIN			
Dirección en un paquete IP			
Llave criptográfica simétrica			
Llave criptográfica asimétrica			
Huella digital			

Autorización

- Definición de los permisos asignados a cada usuario
 - Quién
 - Qué
 - Cómo

Autenticación y Autorización

- La etapa de autenticación establece la identidad de un usuario o proceso
- La etapa de autorización asigna permisos con base en la identidad del usuario o proceso

Autorización y Control de Acceso

- Un usuario o proceso solicita acceso a un objeto en un modo determinado
- El manejador del control de acceso autoriza o rechaza la solicitud
 - recibe la solicitud
 - consulta la política definida (los permisos establecidos)
 - informa la decisión

Control de Acceso

- ¿Cuándo tomar decisiones de control de acceso?
 - La primera vez que se solicita acceso a un recurso, por ejemplo al abrir un archivo para lectura
 - Cada vez que se ejecute una operación relevante para la seguridad del sistema, por ejemplo al abrir un archivo y cada vez que se realice una lectura sobre el mismo

Autorización

	Primera Vez	Cada Vez
Ventajas		
Desventajas		

Caso MS-DOS

- No maneja un sistema de control de acceso
- Sistema operativo diseñado para computadores personales
 - individuos

Caso Unix/Linux

 Implementa una versión simplificada de listas de acceso

UNIX/Linux

- UNIX/Linux
 - Cada usuario
 - uid
 - gid


```
infracomp@seguridad1:~$ id -u infracomp
1004
infracomp@seguridad1:~$ id -g infracomp
1004
infracomp@seguridad1:~$
```

UNIX/Linux

- UNIX/Linux
 - Cada archivo
 - id del propietario
 - gid del propietario

Manejo de Permisos


```
infracomp@seguridad1:~$ ls -l
total 8
drwxr-xr-x 2 infracomp infracomp 4096 Jan 17 22:22 apps
-rw-r--r-- 1 infracomp infracomp 0 Jan 17 22:22 archivo1
-rw-r--r-- 1 infracomp infracomp 0 Jan 17 22:22 archivo2
-rw-r--r-- 1 infracomp infracomp 179 Jan 17 22:21 examples.desktop
```



```
si ( UID usuario = UID archivo )
  permisos = bits usuario
si_no si ( algún GID usuario = GID archivo )
  permisos = bits grupo
si_no permisos = bits otros

si ( acción en permisos )
  efectuar acción
```


UNIX/Linux

- Procesos
 - Los procesos se crean con UID del usuario
 - Los procesos hijos heredan UID del padre
 - Los procesos pueden efectuar las mismas acciones que su propietario
 - Los permisos de acceso dependen de
 - quién lanzó el proceso y
 - del propietario del archivo

UNIX/Linux

- Atributos de los procesos
 - 2 UID (y 2 GID):
 - UID real (RUID): UID del usuario que lo lanzó
 - UID efectivo (EUID):
 - UID del usuario que lo lanzó O
 - UID del archivo binario que se ejecutó, SI este tiene activo el bit setuid
 - » Permite cambio de dominio (en particular, root)
 - Los permisos de acceso se revisan contra el EUID

Archivos

- Tipos de acceso a los archivos
 - Los archivos también tienen especificado si son un directorio o no
 - Hay 3 bits "misceláneos":
 - su = setuid
 - sg = setgid
 - t = sticky

Permite cambio de dominio (en particular, root)

Ejercicio

- Elabore una lista de seis mecanismos de protección relacionados con la seguridad del sistema de cómputo de un banco.
 - Para cada uno indique si éste se relaciona con seguridad física, seguridad humana o seguridad del sistema operativo.

Referencias

- [SGG] Sistemas Operativos. Siberschatz, Galvin y Gagne. Editorial Wiley.
- Sistemas Operativos Modernos. Andrew Tanenbaum.