

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

10-2002-0041267 출 원 벍

Application Number

2002년 07월 15일

원 년 월 Date of Application

JUL 15, 2002

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

원 인 : Applicant(s)

경동제약 주식회사

KYUNG DONG PHARM. CO., LTD.

2003 07 일

COMMISSIONER

020041267

출력 일자: 2003/7/30

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2002.07.15

【발명의 명칭】 9-[4- 아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린

의 제조방법

【발명의 영문명칭】 A PROCESS FOR PREPARING

9-[4-ACETOXY-3-(ACETOXYMETHYL)BUT-1-YL]-2-AMINOPURINE

【출원인】

【명칭】 경동제약 주식회사

【출원인코드】 1-1998-000085-9

【대리인】

【성명】 이주기

【대리인코드】 9-1998-000333-0 2002-043164-1

【포괄위임등록번호】

【대리인】

【성명】 이순노

【대리안코드】 9-2002-000227-3

【포괄위임등록번호】 2002-043165-8

【발명자】

【성명의 국문표기】 이병석

【성명의 영문표기】 LEE, Byoung Suk 【주민등록번호】 531228-1148618

【우편번호】 137-755

【주소】 서울특별시 서초구 방배3동 1015 임광아파트 1동 1106호

【국적】 KR

【발명자】

【성명의 국문표기】 신상훈

【성명의 영문표기】 SHIN, Sang Hoon 【주민등록번호】 700120-1121219

【우편번호】 427-040

【주소】 경기도 과천시 별양동 주공아파트 308동 402호

【국적】 KR

【취지】

특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대 리인 이주

기 (인) 대리인

이순노 (인)

【수수료】

【기본출원료】18면29,000 원【가산출원료】0면0

【가산출원료】0면0원【우선권주장료】0건0원

[심사청구료] 0 항 0 원

【합계】 29,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명은 팜시클로버(Famciclovir)로 명명되며, 항바이러스 활성을 갖는 푸린유도 체 약물인 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린 (9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)을 제조하는 방법에 관한 것으로써.

본 발명에 따른 방법은 2-아미노푸린(2-Aminopurine)과 2-아세톡시메틸-4-부로모부 트-1-일-아세테이트(2-Acetoxymethyl-4-bromobut-1-yl-acetate)를 탈륨(I) 에톡시드 (Thallium(I) ethoxide) 하에서 반응시켜 목적 화합물인 팜시클로버를 제조하는 방법이 제공되며,

본 발명에 따른 제조방법은 온화한 반응 조건 하에 높은 위치 선택성을 갖고서 매우 높은 수율로 상기한 목적 화합물을 얻을 수가 있다.

【색인어】

팜시클로버, 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린

【명세서】

【발명의 명칭】

9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린의 제조방법{A PROCESS FOR PREPARING 9-[4-ACETOXY-3-(ACETOXYMETHYL)BUT-1-YL]-2-AMINOPURINE}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 항바이러스 활성을 갖는 푸린유도체의 약물인 하기 구조식(I)의 화합물, 일명 팜시클로버(Famciclovir)인 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸 린(9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)을 제조하는 방법에 관한 것이며,

<2> [구조식 I]

H₂N N N O CH 3

더욱 상세하게는, 항바이러스 활성을 갖는 푸린유도체의 약물인 구조식(I)의 화합물, 일명 팜시클로버(Famciclovir)인 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린(9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)을 하기 구조식(II)의

2-아미노푸린(2-Aminopurine)과 하기 구조식(III)의 2-아세톡시메틸-4-부로모부트-1-일-아세테이트(2-Acetoxymethyl-4-bromobut-1-yl-acetate)로부터 하기 구조식(IV)의 탈륨 (I) 에톡시드(Thallium(I) ethoxide) 하에서 반응시킴으로써, 반응 부생성물인 하기 구조식(V)의 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린 (7-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)의 생성을 최소화하여 높은

선택성을 갖고서 하기 구조식(I)의 화합물을 제조하는 신규 방법에 관한 것이다.

<5> [구조식 I, II, III, IV, V]

$$\begin{array}{c} \text{H}_{2}\text{N} \\ \text{H}_{3}\text{C} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{CH}_{3} \\ \text{H}_{2}\text{N} \\ \text{N} \\ \text$$

생기 구조식(I)의 화합물을 제조하는 종래 기술은 유럽특허 제182,024호, 미국특허 제5,684,153호, 미국특허 제5,138,057호 및 미국특허 제5,917,041호에 개시되어 있다.

이들 중, 유럽특허 제182,024호 및 미국특허 제5,684,153호에 따르면, 하기 반응식
1에 나타낸 바와 같이 하기 구조식(VI)의 2-아미노-6-클로로푸린

(2-Amino-6-chloropurine)과 하기 구조식(VII)의 2-아세톡시메틸-4-할로부트-1-일-아세테이트(2-Acetoxymethyl-4-halobut-1-yl-acetate)로 부터 하기 구조식(VIII)의 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노-6-클로로푸린

(9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-amino-6-chloropurine)을 생성시키고, 환 원제인 팔라듐(Palladium)을 사용하여 하기 구조식(I)의

9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린을 수득하는 제조방법을 제안하고 있다.

<>> [반응식 1]

(VII)

(VII)

(VII)

(VII)

<11> 상기 식에서 X는 할로겐 원자이다.

그러나, 상기한 종래의 방법은 하기 반응식 2에 나타낸 바와 같이, 하기 구조식 (VI)의 화합물과 하기 구조식(VII)의 화합물로부터 하기 구조식(VIII)의 화합물과 반응 부생성물인 하기 구조식(IX)의 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노-6-클로로푸린(7-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-amino-6-chloropurine)이 80%:20%의 비율로 생성되어 선택성이 낮으며, 그 정제가 매우 어려운 문제점이 있다.

<13> [반응식 2]

(VII) (IX)

<15> 상기 식에서 X는 할로겐 원자이다.

또한, 상기 반응식 1에서, 상기 구조식(VIII)의 화합물로부터 최종 목적 생성물인 상기 구조식(I)의 화합물을 제조 시 폭발성이 매우 높은 환원제인 팔라듐(Palladium)을 사용하여야만 하므로 공정상 비효율적이어서 공업적 적용에는 부적합하다는 문제점이 있다.

80%

20%

○ 그리고, 미국특허 제5,138,057호는 하기 반응식 3에 나타낸 바와 같이, 하기 구조식(X)의 2-아미노-6,8-디클로로푸린(2-Amino-6,8-dichloropurine)과 하기 구조식(VII)의 2-아세톡시메틸-4-할로부트-1-일-아세테이트(2-Acetoxymethyl-4-halobut-1-yl-acetate)로부터 하기 구조식(XI)의 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노-6,8-디클로로푸린(9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-amino-6,8-dichloropurine)을 생성시키고, 환원제인 팔라듐(Palladium)을 사용하여 가압 조건 하에서 하기 구조식(I)의 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린을 수득하는 제조방법을 제안하고 있다.

<18> [반응식 3]

<19>

<20> 상기 식에서 X는 할로겐 원자이다.

그러나, 상기한 종래의 방법은 상기 구조식(X)의 화합물과 상기 구조식(VII)의 화합물로부터 상기 구조식(XI)의 화합물과 반응 부생성물인 상기 구조식(XII)의 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노-6,8-디클로로푸린

(7-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-amino-6,8-dichloropurine)이 94%: 6%의 비율로 생성되어서 선택성은 비교적 높으나, 상기 구조식(XI)의 화합물로부터 최종 목적 생성물인 상기 구조식(I)의 화합물을 제조시 앞서 언급한 유럽특허 제182,024호 및 미국 특허 제5,684,153호에서와 마찬가지로 폭발성이 매우 높은 환원제인 팔라듐(Palladium)

을 사용하여야만 하고, 또한 그 반응이 가압 조건(50psi 이상) 하에서 수행되어야 하므로 공업적으로 적용하기가 어렵다는 문제점이 있다.

또한, 미국특허 제5,917,041호는 하기 반응식 4에 나타낸 바와 같이, 하기 구조식
(XIII)의 N-(2-아미노-4,6-디클로로-5-피리미디닐)포름아미드

(N-(2-Amino-4,6-dichloro-5-pyrimidinyl)formamide)와 하기 구조식(XIV)의 2-아세톡시메틸-4-아미노부트-1-일-아세테이트(2-Acetoxymethyl-4-aminobut-1-yl-acetate)로 부터하기 구조식(XV)의 화합물을 제조한 후, 하기 구조식(XVI)의 트리에틸을소포르메이트 (Triethylorthoformate)로부터 하기 구조식(VIII)의 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노-6-클로로푸린

(9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-amino-6-chloropurine)을 생성시키고, 환 원제인 팔라듐(Palladium)을 사용하여 하기 구조식(I)의

9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린을 수득하는 방법을 제안하고 있다.

<23> [반응식 4]

<24>

$$\begin{array}{c} & & \\$$

그러나, 상기한 종래의 방법은, 출발물질로서의 상기 구조식(XIII)의 화합물을 얻기 위하여 하기 반응식 5에 나타낸 바와 같이, 하기 구조식(XVII)의 2,5-디아미노-4,6-디히드록시피리미딘(2,5-Diamino-4,6-dihydroxypyrimidine)과 하기 구조식(XVIII)의 클로로메틸렌이미늄염(Chloromethylenimminium salt)을 사용하여야만 하나 이들 원료 화합물은 고가이며, 또한 하기 구조식(XVII)의 화합물로부터 여러 단계를 거쳐서 최종 목적생성물인 상기 구조식(I)의 화합물을 제조시 그 수율이 약 32%로서 매우 낮고, 앞서 종대의 기술로서 언급한 유럽특허 제182,024호 및 미국특허 제5,684,153호와 마찬가지로 폭발성이 매우 높은 환원제인 팔라듐(Palladium)을 사용하여야만 하므로 반응경로가 길고 공정상 비효율적이어서 공업적으로 적용하기 어렵다는 문제점이 있다.

<27>

【발명이 이루고자 하는 기술적 과제】

약물인 판라서, 항바이러스 활성을 갖는 푸린유도체 약물인 팜시클로버(Famciclovir), 즉
9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린

(9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)을 제조함에 있어서, 반응 부생성물인 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린

(7-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)의 생성을 최소화함으로써 상기한 팜시클로버를 높은 선택성으로 온화한 반응 조건 하에 제조할 수 있는 제법의 개발이 당업계에 요망되어 왔다.

【발명의 구성 및 작용】

본 발명에 따른 제조방법에 의하면, 항바이러스 활성을 갖는 푸린유도체, 일명 팜 시클로버(Famciclovir)인 하기 구조식(I)의

9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린

(9-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)은 이 반응의 핵심물질인 하

기 구조식(IV)의 탈륨(I) 에톡시드(Thallium(I) ethoxide)를 도입함으로써 반응 부생성물인 하기 구조식(V)의 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린 (7-[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)의 생성을 최소화하여 매우높은 선택성(98%)으로 순수하게 제조할 수가 있다.

의> 보다 구체적으로는, 하기 반응식 6에 나타낸 바와 같이, 본 발명의 방법은 하기 구조식(II)의 2-아미노푸린(2-Aminopurine)과 하기 구조식(IV)의 탈륨(I) 에톡시드 (Thallium(I) ethoxide)를 극성 유기용매 중에서 약 0℃ 내지 100℃, 바람직하게는 약 10℃ 내지 30℃의 온도범위에서 약 2시간 내지 50시간, 바람직하게는 약 20시간 내지 40시간동안 반응시키는 것에 의하여 중간체인 하기 구조식(XXI)의 2-아미노푸린・탈륨염 (2-Aminopurine·Thallium salt)을 얻고, 이를 하기 구조식(III)의 2-아세톡시메틸-4-브로모부트-1-일-아세테이트(2-Acetoxymethyl-4-bromobut-1-yl-acetate)와 극성 유기용매중에서 약 0℃ 내지 100℃, 바람직하게는 약 10℃ 내지 30℃의 온도범위에서, 약 50시간내지 200시간, 바람직하게는 약 70시간 내지 100시간 동안 반응시키는 것에 의하여, 최종 목적화합물인 하기 구조식(I)의 팜시클로버(Famciclovir)를 제조할 수 있으며, 또한

하기 구조식(I)의 팜시클로버(Famciclovir)와 반응 부생성물인 하기 구조식(V)의 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린이 98%:2%의 우수한 비율로 위치 선 택적으로 생성되므로 목적 화합물을 매우 순수하게 제조할 수 있다.

<32> [반응식 6]

** 출발물질로 사용되는 상기 구조식(II)의 화합물은 상업적으로 구입하거나 직접 제조하여 사용할 수 있고, 그 제조방법 등은 Heterocycles, 17, 405 (1982) 및 Journal of the Chemistry Society, 2060 (1954)에 상세히 기재되어 있으며, 또한 출발물질로 사용되는 결가지 탄화수소인 상기 구조식(III)의 화합물도 공지의 방법으로써 직접 제조하여 사용할 수 있고, 그 제조방법 등은 유럽특허공고 제141,927호에 상세히 기재되어 있다.

본 발명의 제조방법에 있어서 사용될 수 있는 극성 유기용매로서 바람직한 예는
N,N-디메틸포름아미드, 디페닐술폭시드 및 메탄올, 에탄올, 이소프로판을 등의 탄소수 1

~3의 저급 알콜성 용매 중에서 선택되는 임의의 용매, 또는 이들의 임의의 혼합물을 들수 있다.

다음의 실시예는 본 발명을 실증적으로 예증하기 위한 것으로서 본 발명의 범위를 제한하는 것은 아니다.

<37> [실시예 1] 2-아미노푸린·탈륨염의 제조

6.75g(50mmole)의 2-아미노푸린을 140ml의 무수 에탄올에 혼탁시키고 반응기의 온도를 15℃ 이하로 유지시켰다. 이 반응 혼합액에 18.72g(75 mmole)의 탈륨(I) 에톡시드를 서서히 가한 후 상온에서 36시간 동안 교반하였다. 반응 완결 후, 냉각하여여과하고, 무수 에탄올로 세척한 후, 15.57g (92%)의 2-아미노푸린・탈륨염을 얻었다.

<39> 융점 : 290~292℃(Dec.)

IR: $V_{\text{max}}(cm^{-1})$: 3400, 3180, 3060, 2800, 1650, 1580, 1512, 1421

 41 1 H NMR (DMSO-d₆, 300MHz)(ppm) :

 $^{<42>}$ 6.35 (2H, brs, $-NH_2$)

<43> 8.13 (1H, s, H of C-8)

<44> 8.65 (1H, s, H of C-6)

<45> [실시예 2] 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린의 제조

16.92g(50mmole)의 2-아미노푸린·탈륨염을 140ml의 N,N-디메틸포름아미드에 혼탁시키고, 반응기의 온도를 15℃ 이하로 유지시켰다. 30ml의 N,N-디메틸포름아미드에 용해시킨 16.03g(60mmole)의 2-아세톡시메틸-4-부로모부트-1-일-아세테이트를 이 반응 혼합액에 서서히 가한 후, 상온에서 84시간 동안 교반하였다. 반응 완결 후, 냉각하고 여과시킨 다음, 여액을 감압 농축하여 용매를 제거하였다. 실리카겔크로마토그래피(CHCl3:MeOH=90:1)를 통한 정제에 의하여 r_f=0.82에서 9.80g(61%)의 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린을 얻었다.

<47> 융점 : 101~103℃

IR: $V_{\text{max}}(cm^{-1})$: 3330, 3163, 1746, 1729, 1654, 1612, 1582

 49 1H NMR (DMSO-d₆, 300MHz)(ppm) :

<50> 1.99 \sim 1.95 (3H, m, =NCH₂CH₂CH=)

 $^{<51>}$ 2.00 (6H, s, $-\text{CH}(\text{CH}_2\text{OCOCH}_3)_2$)

 $^{<52>}$ 4.03 (4H, d, $^{-}$ CH(CH₂OCOCH₃)₂)

<53> 4.14 (2H, t, =NCH₂CH₂CH=)

 54 6.45 (2H, brs, $-NH_2$)

<55> 8.09 (1H, s, H of C-8)

<56> 8.57 (1H, s, H of C-6)

또한 r_f =0.49에서 반응 부생성물인 0.19g(1.2%)의 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린을 얻었다.

<58> 융점 : 137~139℃

 59 IR : $V_{max}(cm^{-1})$: 3330, 3160, 1743, 1728, 1645, 1606

 60 1H NMR (DMSO-d₆, 300MHz)(ppm) :

<61> 1.86 ~ 2.03 (9H, m, =NCH₂CH₂CH= and -CH(CH₂OCOCH₃)₂)

 $^{<62>}$ 4.07 (4H, d, $^{-}$ CH(CH₂OCOCH₃)₂)

<63> 4.16 (2H, t, =NCH₂CH₂CH=)

 $^{6.38}$ (2H, brs, $^{-}$ NH₂)

<65> 8.06 (1H, s, H of C-8)

<66> 8.61 (1H, s, H of C-6)

<67> [실시예 3] 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린의 제조

(68> 16.92g(50mmole)의 2-아미노푸린·탈륨염을 140ml의 N,N-디메틸포름아미드에 혼탁시키고, 반응기의 온도를 15℃ 이하로 유지시켰다. 30ml의 N,N-디메틸포름아미드에 용해시킨 16.03g(60mmole)의 2-아세톡시메틸-4-부로모부트-1-일-아세테이트를 이 반응 혼합액에 서서히 가한 후 상은에서 84시간 동안 교반하였다. 반응 완결 후, 냉각하고 여과시킨 다음, 여액에 100ml의 물을 가하였다. 70ml의 CHCl3로 3회 추출한 다음, 황산 마그네슘으로 건조하고 감압 농축하여 용매를 제거한 후, 잔사를 아세트산에틸, 핵산 및 tert-

부탄올의 혼합용매로 결정화하여 8.35g(52%)의 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린을 얻었다.

<69> 여기서 Spectrum data는 실시예 2와 동일하였다.

【발명의 효과】

본 발명에 따른 제조방법에 의하면, 항바이러스 활성을 갖는 푸린유도체, 일명 팜시클로버(Famciclovir)인 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린 (9-[4-Acetoxy-3-(acetoxy methyl)but-1-yl]-2-aminopurine)을 이 반응의 핵심물질인 탈륨(I) 에톡시드(Thallium(I) ethoxide)를 도입함으로써 반응 부생성물인 7-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린(7-[4-

Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine)의 생성을 최소화하여 매우 높은 선택성(98%)으로 온화한 반응 조건 하에 제조할 수가 있다.

【특허청구범위】

【청구항 1】

하기 구조식(XXI)의 화합물과 하기 구조식(III)의 화합물을 극성 유기용매 하에서 반응시키는 것으로 구성되는 하기 구조식(I)의 화합물의 제조방법.

[구조식 I, III, XXI]

【청구항 2】

제1항에 있어서, 상기한 극성 유기용매가 N,N-디메틸포름아미드, 디페닐술폭시드 및, 탄소수 1~3의 저급 알콜성 용매로 이루어지는 군으로부터 선택되는 적어도 1종의 용매인 제조방법.

【청구항 3】

제1항 또는 제2항에 있어서, 상기한 반응이 0℃ 내지 100℃의 온도 범위에서 수행되는 제조방법.

【청구항 4】

제1항에 있어서, 상기 구조식(XXI)의 화합물이 하기 구조식(II)의 화합물을 구조식(IV)의 화합물과 반응시켜 얻어지는 제조방법.

[구조식 II, IV]

【청구항 5】

제4항에 있어서, 상기한 반응이 N,N-디메틸포름아미드, 디페닐술폭시드 및, 탄소수 1~3의 저급 알콜성 용매로 이루어지는 군으로부터 선택되는 적어도 1종의 극성 유기용 매 중에서 수행되는 제조방법.

【청구항 6】

제4항 또는 제5항에 있어서, 상기한 반응이 0℃ 내지 100℃의 온도 범위에서 수행되는 제조방법.

【청구항 7】

탈륨(I) 에톡시드(Thallium(I) ethoxide: TIOEt)를 사용하는 것을 특징으로 하는 하기 구조식(I)의 9-[4-아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미노푸린(9 -[4-Acetoxy-3-(acetoxymethyl)but-1-yl]-2-aminopurine) 의 제조방법.

[구조식 I]

020041267

출력 일자: 2003/7/30

【서지사항】

【서류명】 명세서 등 보정서

【수신처】 특허청장

【제출일자】 2002.11.22

【제출인】

【명칭】 경동제약 주식회사

【출원인코드】 1-1998-000085-9

【사건과의 관계】 출원인

【대리인】

【성명】 이주기

[대리인코드] 9-1998-000333-0

【포괄위임등록번호】 2002-043164-1

【대리인】

【성명】 이순노

【대리인코드】 9-2002-000227-3

【포괄위임등록번호】 2002-043165-8

【사건의 표시】

【출원번호】 10-2002-0041267

【출원일자】 2002.07.15

【발명의 명칭】 9-[4- 아세톡시-3-(아세톡시메틸)부트-1-일]-2-아미

노푸린의제 조방법

【제출원인】

【접수번호】 1-1-02-0224926-12

【접수일자】 2002.07.15

【보정할 서류】 명세서등

【보정할 사항】

【보정대상항목】 별지와 같음

【보정방법】 별지와 같음

【보정내용】 별지와 같음

【취지】 특허법시행규칙 제13조·실용신안법시행규칙 제8조

의 규정에의하여 위와 같 이 제출합니다. 대리인

이주기 (인) 대리인

이순노 (인)

【수수료】

【보정료】0원【추가심사청구료】0원【기타 수수료】0원【합계】0원

【보정대상항목】 식별번호 10

【보정방법】 정정

【보정내용】

【보정대상항목】 식별번호 14

【보정방법】 정정

【보정내용】

【보정대상항목】 식별번호 27

【보정방법】 정정

【보정내용】

$$(XVII) \qquad (XVIII) \qquad (XX)$$

$$R_1 \\ R_2 \\ CI \\ CI \\ R_2 \\ CI \\ CI \\ R_2 \\ (XIX)$$

$$R_1 \\ R_2 \\ (XIX)$$

$$R_1 \\ R_2 \\ (XIX)$$

$$R_1 \\ R_2 \\ (XIX)$$

【보정대상항목】 식별번호 30

【보정방법】 정정

【보정내용】

【보정대상항목】 청구항 1

【보정방법】 정정

【보정내용】

하기 구조식(XXI)의 화합물과 하기 구조식(III)의 화합물을 극성 유기용메하에서 반응시키는 것으로 구성되는 하기 구조식(I)의 화합물의 제조방법.

[구조식 I, III, XXI]

【보정대상항목】 청구항 4

【보정방법】 정정

【보정내용】

제1항에 있어서, 상기 구조식(XXI)의 화합물이 하기 구조식(II)의 화합물을 · 구조식(IV)의 화합물과 반응시켜 얻어지는 제조방법.

[구조식 II, IV]

$$\begin{array}{c|c}
 & N \\
 & N \\$$

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.