11. Optimization in Smart Cities

金力 Li Jin li.jin@sjtu.edu.cn

上海交通大学密西根学院 Shanghai Jiao Tong University UM Joint Institute

Outline

- Optimization problems in smart cities
 - Path planning for vehicles
 - Routing for transportation networks
 - Location of urban facilities
 - Rebalancing of shared bikes
 - Trajectory planning for CAVs
 - Balancing for smart grids
- Optimization problems and methods
 - Linear programming
 - Convex optimization
 - Dynamic programming
- Course project instructions

Optimization 优化

- Typically refers to decision-making at one time.
- That is, once the decision is made, it cannot be changed soon.
- Search the best action or sequence of actions to minimize some cost or maximize some reward.
- Here are examples of one-time actions.

Path planning

Routing for transportation networks

Location of urban facilities

Rebalancing of shared bikes

Trajectory planning for CAVs

Balancing for smart grids

Outline

- Optimization problems in smart cities
 - Path planning for CAVs
 - Routing for transportation networks
 - Location of urban facilities
 - Rebalancing of shared bikes
 - Balancing for smart grids
- Optimization problems and methods
 - Linear programming
 - Convex optimization
 - Dynamic programming
- Course project instructions

Optimization

Architecture of optimization problems:

- Data
 - Prior information that defines the environment in which you make decisions
- Decision variables
 - Quantities that you need to specify/select
- Constraints
 - Conditions that the decision variable must satisfy
- Objective function
 - Criterion you use to evaluate decisions

Standard form

$$\min z = f(x)$$

s.t. $g(x) \le 0$.

- z = objective value.
- f(x) = objective function.
- x = decision variable; continuous or discrete, scalar or vector.
- $g(x) \le 0$: constraints.

Note: equality constraints can always be reformulated as inequality constraints:

$$g(x) = 0 \Leftrightarrow g(x) \ge 0, g(x) \le 0.$$

Linear programming (LP)

$$\min c^T x$$
s.t. $Ax \le b$,
$$x \in \mathbb{R}^n$$
.

- Decision variable: n-dimensional real-valued vector.
- Objective function: linear in x.
- Constraints: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
- Both objective function & constraints are linear!
- Simplest optimization problem.
- Comprehensive theory.
- Extensive applications.

Mixed-integer linear programming (MILP)

min
$$c^T x$$

s.t. $Ax \leq b$,
 $x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$.

- Decision variable: n-dimensional mixed-valued vector.
- Objective function: linear in x.
- Constraints: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
- Significantly more complex than LP
- Very limited theoretical guarantees.
- Extensive applications.

Convex optimization

min
$$z = f(x)$$

s.t. $g(x) \le 0$,
 $x \in \mathbb{R}^n$.

- f(x) = objective function convex in x.
- **Recall**: f(x) is convex in x if $f(\lambda x_1 + (1 \lambda)x_2) \le \lambda f(x_1) + (1 \lambda)f(x_2)$, $\forall x \in \mathbb{R}^n$, $\forall \lambda \in [0,1]$.
- g(x): convex in x.
- For a problem to be convex:
- 1. Minimization, convex objective function;
- 2. Non-positivity, convex left-hand side.

Convex optimization

Consider an unconstrained convex problem

$$\min z = f(x)$$

s.t. $x \in \mathbb{R}^n$.

• The optimal solution x^* can be obtained by analytically solving the first-order optimality condition

$$\nabla_{x} f(x) \Big|_{x=x^{*}} = 0.$$

- Practically, people also use gradient-descent approach to obtain numerical solutions.
- Solution to constrained convex problem is significantly more complex than solving the first-order optimality condition.

Dynamic optimization

- Overlap between control and optimization
- State s[t] with state space S.
- Action a[t] with action space \mathbb{A} or $\mathbb{A}(s[t])$.
- Dynamics:
- 1. Deterministic: s[t+1] = f(s[t]);
- 2. Stochastic: $\Pr\{s[t+1] = s' | s[t] = s, a[t] = a\} = p(s' | s, a)$.
- Reward r[t] depends on s[t-1] and a[t-1].
- Objective:

maximize $\sum_t r[t]$ by selecting a[0], a[1], ...

Dynamic optimization

• You can indeed consider a[0], a[1], ... as individual decision variables and formulate a huge optimization problem:

$$\max_{a[0],a[1],\dots} \sum_{t} r[t]$$
s.t. $s[t+1] = f(s[t]), t = 0,1,\dots$

$$r[t] = g(s[t-1], a[t-1]), t = 1,2,\dots$$

$$a[t] \in \mathbb{A}(s[t]), t = 0,1,\dots$$

- Unfortunately, such a brutal-force method may be hard to code and hard to compute, even with state-of-theart computation capability.
- Need more structural and efficient methods.

Dynamic optimization

There are three typical ways of solving a dynamic optimization problem:

1. Optimal control

- a) Linear dynamics with quadratic reward function
- b) Analytical solution available (linear-quadratic regulation)

2. Dynamic programming

- a) Iteration-based algorithm converging to optimal solution
- Requires full knowledge of model parameters & strong computation/storage capability

3. Reinforcement learning

- a) Iteration-based algorithm converging to optimal solution
- b) Synthesis of experimental sampling and dynamic programming

Outline

- Optimization problems in smart cities
 - Path planning for CAVs
 - Routing for transportation networks
 - Location of urban facilities
 - Rebalancing of shared bikes
 - Balancing for smart grids
- Optimization problems and methods
 - Linear programming
 - Convex optimization
 - Dynamic programming
- Course project instructions

Grouping

- 48 students registered
- 12 groups of 4 students
- First round: self-motivated grouping.
 - Send your grouping preferences to Yumeng
 - Partial grouping (i.e., cluster of 2 or 3) is allowed
- Second round: random grouping for the rest of the students.
- Deadline for self-motivated grouping: 7.1
- Random grouping to be published on 7.3

Topic selection

- Option 1: learning-based adaptive cruise control
- Option 2: rebalancing shared bikes on campus
- Option 3: whatever topic you are interested in
- Expectation: simulation, computation, and exploration
- Beyond expectation: theoretical analysis
- Project proposal
 - one-page write-up including title, objective, methodology, and expected results.
 - Due on 7.13 in class

Evaluation

Presentation: 10 min + 5 min Q&A, 5 points of total grade

- 2 students present, and the other 2 students answer questions.
- Presenters are not allowed to answer questions.

Report: 15 points of total grade.

- Will provide word template with recommended font style/size and page format.
- No more than 8 pages, everything included.

Summer 2021 mean: 88%

Peer evaluation

- Opportunity for feedback on group member(s) with inadequate contribution.
- Every one needs to submit a peer evaluation through CANVAS.
- You only need to indicate the team member(s) that contribute(s) significantly more or significantly less than the others, along with a brief description.
- Otherwise, just say that "every one contributes about equally".
- This will partially affect the distribution of credits awarded to your team, so think about this carefully before responding.