This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- BLURRY OR ILLEGIBLE TEXT
- SKEWED/SLATED IMAGES
- COLORED PHOTOS
- BLACK OR VERY DARK BLACK AND WHITE PHOTOS
- UNDECIPHERABLE GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

08/903486

CLIPPEDIMAGE= JP407226507A

PAT-NO: JP407226507A

DOCUMENT-IDENTIFIER: JP 07226507 A

TITLE: SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF

PUBN-DATE: August 22, 1995

INVENTOR-INFORMATION:

NAME

NAKAISHI, MASAFUMI

ASSIGNEE-INFORMATION:

NAME FUJITSU LTD COUNTRY N/A

APPL-NO: JP06015638

APPL-DATE: February 10, 1994

INT-CL_(IPC): H01L029/78; H01L029/43

PURPOSE: To improve the operating speed of a semiconductor device of a MIS structure and to improve the evenness of the characteristics of the device.

CONSTITUTION: A method of manufacturing a semiconductor device of a MIS structure has a process wherein a gate electrode 5G is formed into a structure consisting of an α-Ta film 5α, the gate electrode is formed into a structure consisting of a laminated film of a TiN film and an Galpha; Ta film, a gate insulating film consists of a poly-crystalline SiC film and the gate electrode is formed into a structure consisting of an Galpha; Ta film, a region only, which consists of a β -Ta film formed by sputtering, of the gate electrode is selectively formed into an Galpha; - Ta film and an Galpha; - Ta gate electrode is patterned from the above calpha; -Ta film using a etching selectively between the α -Ta film and the β -Ta film.

COPYRIGHT: (C) 1995, JPO

por Sic gate

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開 号

特開平7-226507

(43)公開日 平成7年(1995)8月22日

(51) Int.Cl. ⁶ H 0 1 L 29/78	識別記号	庁内整理番号	FI	FI			技術表示箇所		
29/43		7514 – 4M 8826 – 4M	H01L	29/ 78 29/ 62	301	G G			
			審查請求	未請求	請求項の数8	OL (全	8 頁)		
(21)出願番号	特職平6-15638		(71)出職人						
(22)出顧日	平成6年(1994)2月10日		(72)発明者	中石	泉川崎市中原区。 雅文 東川崎市中原区。 朱式会社内				
			(74)代理人		井桁 貞一				
			<u> </u>						

(54) 【発明の名称】 半導体装置及びその製造方法

(57) 【要約】

【目的】 MIS構造の半導体装置及びその製造方法に 関し、動作速度の向上及び特性の均一性を向上する。

【構成】 MIS構造の半導体装置において、ゲート電極56が α -Ta膜5 α よりなる構造、ゲート電極がTINと α -Taの積層膜よりなる構造、ゲート絶録膜が多結晶SiC よりなりゲート電極が α -Ta膜よりなる構造、及びスパッタ形成した β -Ta膜のゲート電極領域のみ選択的に α -Taとなし、 α -Taと β -Taとの選択エッチング性を用いて上配Ta膜から α -Taゲート電極をパターニングする工程を有する上記半導体装置の製造方法。

太帝明の第10実施例の工程断面 図

【特許請求の範囲】

【請求項1】 半導体基板上にゲート絶縁膜を介してゲ ート電極が配設されるMIS構造を有し、

該ゲート電極がα-タンタル膜よりなることを特徴とす る半導体装置。

【請求項2】 半導体基板上にゲート絶縁膜を介してゲ ート電極が配設されるMIS構造を有し、

該ゲート電権がパリア膜上にαータンタル膜が積層され た2層構造を有することを特徴とする半導体装置。

【請求項3】 半導体基板上にゲート絶縁膜を介してゲ 10 ート電極が配設されるMIS構造を有し、

該ゲート絶縁膜が炭化珪素膜よりなり、且つ該ゲート電 極がαータンタル膜よりなることを特徴とする半導体装 置。

【請求項4】 半導体基板上にゲート絶縁膜を形成する 工程、該ゲート絶縁膜上にβータンタル膜を形成する工 程、核βータンタル膜のゲート電極に対応する領域に通 択的に不活性物質のイオン注入を行い該領域のβータン タルをαータンタルに変質せしめる工程、全面エッチン グ手段によりβ-タンタル膜を選択的に除去し残留する 20 α-タンタル膜によるゲート電極を形成する工程を有す ることを特徴とする半導体装置の製造方法。

【請求項5】 半導体基板上にゲート絶縁膜を形成する 工程、該ゲート絶縁上に窒化チタン膜を形成する工程、 該室化チタン膜を選択的にエッチング除去して肢ゲート 紙録簿上にゲート電極に対応する形状を有する室化チタ ン膜パターンを形成する工程、該空化チタン膜パターン を有するゲート絶縁膜上に該窒化チタン膜パターン上が 選択的にαータンタルになりゲート絶縁膜上がβータン タルになるタンタル膜を形成する工程、全面エッチング 30 城を示す。 手段により該タンタル膜のβ-タンタルの領域を選択的 に除去し該空化チタン膜とαタンタル膜が積層されたゲ 一ト電標を形成する工程を有することを特徴とする半導 体装置の製造方法。

【請求項6】 半導体基板上にゲート絶縁膜となる多結 晶構造の炭化珪素膜を成長させる工程、選択的な不活性 物質のイオン注入により該炭化珪素膜のゲート電極が配 設される部分を除く領域の表面部を非晶質化する工程、 該炭化珪素膜上に非晶質化された領域上でβータンタル になり多結晶構造を有するゲート配設部においてαータ 40 ンタルになるタンタル膜を形成する工程、全面エッチン グ手段により該タンタル膜のβタンタルの領域を選択的 に除去し該炭化珪素よりなるゲート絶縁膜上にαータン タル膜よりなるゲート電極を形成する工程を有すること を特徴とする半導体装置の製造方法。

【請求項7】 前記タンタル膜の成膜方法がスパッタリ ング法によることを特徴とする請求項4、5、または6 記載の半導体装置の製造方法。

【請求項8】 前記タンタル膜の全面エッチング手段 が、塩素を含むガスのプラズマを用いたドライエッチン 50 によりゲート電極に対応するパターン形状を有するレジ

グ方法によることを特徴とする請求項4、5、6、また は7記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体装置及びその製造 方法、特にMIS型半導体装置及びその製造方法に関す

【0002】超LSI等において集積度の増大により、 回路パターンの設計ルールは微小化の一途を辿ってお り、超LSI等の内部に配設される電極や配線の幅は極 度に微細化されている。かかる状況において微細化され る電極や配線の抵抗増大による超LSIの動作遅延が問 **題になっており、超LSIを構成するMIS型半導体素** 子においては、微細で且つ低抵抗のゲート電極を形成す る技術が強く望まれている。

[0003]

【従来の技術】従来、MIS型半導体装置には多くはゲ ート絶縁膜が熱酸化による酸化シリコン(SiOz)膜からな るMOS型半導体装置が用いられており、且つ、該MO S型半導体装置のゲート電極を低抵抗化して動作遅延を 防止するために、ポリサイド構造のゲート電極が多く用 いられていた。

【0004】図5は従来のポリサイドゲートを有するM OS型半導体装置(MOSFET)の代表例の要部を示 した模式断面図で、図中、51は例えばp型シリコン(Si) 基板、52は素子領域、53はフィールド酸化膜、54はゲー ト酸化膜、55A はポリSI膜、55B はタングステンシリサ イド(WSir) 膜、55はタングステンポリサイドゲート電 極、56S はn・型ソース傾域、56D はn・型ドレイン領

[0005] そして、上記MOSFETは次に図6のエ 程断面図を参照して述べる方法により形成されていた。 図6(a)参照

即ち、通常の選択酸化(LOCOS 法と称する)手段により Si基板51の主面に、素子領域52を画定分離するフィール ド酸化膜53を形成し、次いで通常の熱酸化手段により素 子領域52上に例えば厚さ10nm程度のゲート酸化膜54を形 成する。

【0006】図6(b)参照

次いで上記基板上に、通常の気相成長手段により例えば 厚さ 100mm程度のポリSi膜55A を形成し、このポリSi膜 55A に高濃度に例えばn型不純物を導入する。

[0007] 図6(c) 参照

次いで上記ポリSI膜55A 上に、通常のスパッタリング手 段により例えば 100nm程度の厚さを有する WSi. 膜55B を堆積し、次いで所定の高温熱処理により前記WSi。膜5 58 を低抵抗化する.

【0008】図6(d) 参照

次いで上記 WSi. 膜55B 上に、通常のリソグラフィ手段

ストパターン61を形成する。 [0009] 図6(e) 参照

次いで上記レジストパターン61をマスクにし、通常の塩 素(CI)系のガスによるリアクティブイオンエッチング(R IB) 処理により WSi, 膜55B 及びポリSi膜55Aを一括パ ターニングし、ポリSi膜55A と WSiz 膜55B とが積層さ れたタングステンポリサイドゲート電極55を形成する。

[0010] 図5参照

次いで前記レジストパターン61を除去した後、前配タン グステンポリサイドゲート電板55をマスクにしSi基板51 10 の素子領域52面に、例えば砒素(As)を高濃度にイオン注 入してn・型のソース領域56S 及びドレイン領域56D を 形成する方法である。

[0011]

【発明が解決しようとする課題】しかし上記方法で形成 される従来のMOSFETにおいては、前配タングステ ンポリサイド構造のゲート電極55の配線抵抗率が 200 μ Ω·cπ前後の比較的高い値を有することにより、配線幅 が極度に縮小された際には前記の比較的高い抵抗率によ る配線抵抗の増大によって、該MOSFETを用いて構 20 成される超LSI等の動作速度が許容範囲を越えて低下 するという問題を生ずる。

【0012】また、上記製造方法において、図6(e) を 参照して説明したように、ポリサイドゲートの形成に際 して、下層のポリSi膜55A と上層の WSi: 膜55B とから なる厚い積層膜が、同一マスクであるレジストパターン 61に整合して一括パターニングされるため、配線幅が極 度に縮小された場合、上記パターニングに際してのサイ ドエッチングの影響を大きく受けてパターン精度が低下 し、それに伴うチャネル長や配線抵抗の変動により動作 30 速度がばらつくという問題もあった。

[0013] そこで本発明は、配線抵抗率が低く、且つ 高いパターン特度が得られるゲート電極の形成方法及び 該方法により形成される微細且つ低抵抗のゲート電極を 有する半導体装置を提供し、超しSI等の動作速度及び その信頼性を向上させることを目的とする。

[0014]

【課題を解決するための手段】上記課題の解決は、半導 体基板上にゲート絶縁膜を介してゲート電極が配設され るMIS構造を有し、該ゲート電極がα-タンタル膜よ 40 りなる本発明による半導体装置、若しくは、半導体基板 上にゲート絶縁膜を介してゲート電極が配設されるMI S構造を有し、該ゲート電極が窒化チタン膜上にα-タ ンタル膜が積層された2層構造を有する本発明による半 導体装置、若しくは、半導体基板上にゲート絶縁膜を介 してゲート電極が配設されるMIS構造を有し、該ゲー ト絶縁膜が炭化珪素膜よりなり、且つ酸ゲート電極がα **ータンタル膜よりなる本発明による半導体装置、若しく** は、半導体基板上にゲート絶縁膜を形成する工程、該ゲ ート絶縁膜上にetaータンタル膜を形成する工程、etaeta eta eta

タンタル膜のゲート電極に対応する領域に選択的に不活 性物質のイオン注入を行い該領域のβータンタルをαー タンタルに変質せしめる工程、全面エッチング手段によ りβ-タンタル膜を選択的に除去し残留するα-タンタ ル膜によるゲート電極を形成する工程を有する本発明に よる半導体装置の製造方法、若しくは、半導体基板上に ゲート絶縁膜を形成する工程、該ゲート絶縁上に空化チ タン膜を形成する工程、胰窒化チタン膜を選択的にエッ チング除去して眩ゲート絶縁膜上にゲート電極に対応す る形状を有する空化チタン膜パターンを形成する工程、 該室化チタン膜パターンを有するゲート絶縁膜上に該窒 化チタン膜パターン上が選択的にα-タンタルになり且 つゲート絶縁膜上が B タンタルになるタンタル膜を形成 する工程、全面エッチング手段により抜タンタル膜のβ - タンタルの領域を選択的に除去し該室化チタン膜とα タンタル膜が積層されたゲート電極を形成する工程を有 する本発明による半導体装置の製造方法、若しくは、半 導体基板上にゲート絶縁膜をとなる多結晶構造の炭化珪 素膜を成長させる工程、選択的な不活性物質のイオン注 入により該炭化珪素膜のゲート電極が配設される部分を 除く領域の表面部を非晶質化する工程、該炭化珪素膜上 に非晶質化された領域上でβータンタルになり多結晶構 造を有するゲート配設部においてα-タンタルになるタ ンタル膜を形成する工程、全面エッチング手段により該 タンタル膜のβタンタルの領域を選択的に除去し該炭化 珪素よりなるゲート絶縁膜上にα-タンタル膜よりなる ゲート電極を形成する工程を有する本発明による半導体 装置の製造方法、によって達成される。

[0015]

【作用】本発明に係る半導体装置においては、ゲート電 極を構成する導電膜にα-タンタル(Τ a)を用いる。 α-Taは、高融点で化学的な耐性が高く安定なゲート 材料であると同時に、その抵抗率が20μΩ・εm程度で通 常のタングステンポリサイドに対して1/10程度である。 従って、このαーTaをゲート電極に用いることによ り、ゲートの信頼性を高めると同時に、ゲート遅延を少 なくとも従来の1/10程度に低下させ、高速のMIS型半 導体装置の形成が可能になる。

【0016】通常Taの釋膜は、常温真空中でのスパッ タリング法によって形成されるが、この方法により絶縁 膜上に形成された薄いTa膜は通常、柱状の結晶構造を 持ったB-Ta膜と呼ばれるもので、塊状の結晶構造を 有するα-Taとは結晶構造を異にしている。そのた め、 $\alpha - Ta と \beta - Ta との間には、電気的及び化学的$ 性質に大きな相違が現れる。

[0017] 電気的性質においては、α-Taの抵抗率 が前記のように20μΩ·cm程度の低抵抗率を有するのに 対して、β-Ταにおいては抵抗率を 200μΩ程度にし か低下できない。

5

用いたプラズマエッチングにより、β-Taは容易にエ ッチングされるのに対して、α-Taは極めて不活性で 非常にエッチングされ難い。従って、ゲート電極となる パターン領域に選択的にαーTaを形成することができ れば、塩素系プラズマを用いたドライエッチングにより 選択的にB-Taを除去し、 $\alpha-T$ aからなるゲート電 極を形成することが可能になる。

[0019] 図1は、α-Ta及びβ-Taに対して、 塩素とトリクロロメタン(クロロホルム)との混合ガス (Cl2/CECl3) を用いてリアクティブイオンエッチング(R 10 IE)処理を行った際のエッチング速度を示した図で、縦 軸はエッチング速度、横軸は上記混合ガス中に含まれる CHCI、の割合を示している。

【0020】この図から、例えばCHCl: の混合割合が 0.2付近で、α-Taのエッチング速度が 100mm/min以 下であるのに対して B-Taのエッチング速度は1000mm /min以上の値で、10以上の大きなエッチングの選択比が 得られることがわかる。

[0021] 一方、β-Ta膜の一部に選択的にα-T aを形成することが可能であることは実験的に確認され 20 減少し、MIS型半導体装置の高速化が図れる。 た。即ち、β-Taの結晶構造は準安定状態なので均一 なβ-Ta膜は特殊な条件下におけるスパッタ手段によ ってのみ形成される。例えば、スパッタリングガスの鈍 度や、スパッタ成職に用いる真空容器の予備真空引きの 真空度が良いこと、成膜される基板の表面状態が適切で あること、成膜時に基板温度の上昇がないこと、成膜後 に高エネルギーの付与がなされないこと等である。従っ て、これらの条件が満足されない場合はβ-Taにはな り得ず、成膜されたTaはα-Taに転移する。

 $\{0\ 0\ 2\ 2\}$ 以下に、実験的に確認した $\alpha-\mathrm{Ta}$ の形成 30 項4 (7.8を含む)に対応する実施例である。 される条件を述べる。

(1) 冷却された (イオン衝撃による発熱を避けた) 鏡面 のシリコン(Si)ウエーハ上に成膜したTaはβ-Taで あるが、冷却を行わずに高電力でスパッタする等、基板 温度を故意に上昇させる条件下ではα-Taが形成され る.

(2) 窒化チタン(TiN) 上に普通に成膜されたΤαはα-Taである。また、Siウエーハ上にヘテロエピタキシャ ル成長した多結晶状の炭化珪素(SiC) 膜上に成膜したT aはα-Taである。一方、前配 SIC膜の表面を例えば 40 スパッタエッチングを施す等により非晶質化した面に成 膜したTaはβ-Taである。

(3) 成膜した β - Υ aに高エネルギーのイオン注入を施 すと、 $\alpha-Ta$ に転移する。

【0023】なお、α-Taを形成する時、膜質の再現 性が低い場合が多いが、上記(1)~(3)の方法によって 形成された $\alpha-T$ aの膜質は安定である。以上の実験に より確認されたTaの諸性質を有効に用いれば、β-T aの一部に選択的に α -Taを成長させたり、或いは β - Taの一部を選択的にα-Taに転移させることが可 50 【0032】図1(c)参照

能になる。

[0024] 本発明においては上配Taの性質を活用 **し、例えばゲート酸化膜上にゲート電極に対応する一部** 領域が選択的にlphaー ${f T}$ ${f a}$ になっており他の領域は ${f eta}$ ー ${f T}$ aからなるTa膜を形成し、次いで前記塩睾系のガスに よるRIE 処理におけるα-Taに対するβ-Taの大き なエッチングの選択性を利用して上記Ta膜中のβ-T a の部分を選択的にエッチング除去し、残留する α-T aの部分によってゲート電極を形成するものである。

6

【0025】以上のように本発明の方法においては、ゲ ート電飯のパターニングがエッチングマスクを介しての 選択エッチングによってなされるのではなく、ゲート電 極材料のTa膜のα構造とβ構造との高いエッチングの 選択性によってなされるので、パターンの転写精度が高 まり且つサイドエッチングによるパターン変形も防止さ れて高精度で微観なゲート電極パターンの形成が可能に なる。

【0026】また、抵抗率が極めて低いα-Taにより ゲート電極が構成されるので、ゲート電極の配線抵抗が

[0027]

【実施例】以下本発明を、図示実施例により具体的に脱 明する。図1は本発明の第1の実施例の工程断面図、図 2は本発明の第2の実施例の工程断面図、図3は本発明 の第3の実施例の工程断面図である。全図を通じ同一対 象物は同一符合で示す。

【0028】図1に示す本発明の第1の実施例は、例え ば酸化シリコン(SiO2)からなるゲート絶縁膜上にα-Taからなるゲート電極が配設される請求項1及び請求

【0029】図1(a) 参照

通常の方法に従って例えばp型SI基板1上に素子領域2 を分離画定するフィールド酸化膜3を形成し、次いで素 子領域2上に厚さ10mm前後のゲートSiOz膜4を形成す

[0030] 図1(b) 參照

次いで上記基板上に、スパッタリング法によりβーTa の形成される条件で厚さ 100mm程度のTa膜5を成膜し た。スパッタリングの条件は次の通りである。

【0031】ターゲット スパッタリングガス アルゴン(Ar) 高純度Ta

成膜室内のガス圧

20mTorr

スパッタ電力(DC)

1 KW

基板温度

< 70 ℃

上記条件で、均一な β - $Ta膜5\beta$ が形成される。な お、上記スパッタリングに際しての基板1の温度は最高 でも70℃であった。従ってTa膜5の温度上昇による局 部的な $\alpha-T$ aへの転移は発生せず、形成される $\beta-T$ a膜5βは均一な結晶構造を有する。

7

次いで上記β-Τα膜5βにおける形成しようとするゲ 一ト電極に対応する領域に、例えば走査手段により選択 的にAr原子のイオン注入を行い、このイオン注入を行 った領域の β -Ta膜 5β を選択的に α -Ta膜 5α に 転移せしめた。

[0033] このα-Ta膜5αへの転移はTa膜の底 面まで完全になされることが望ましく、約 100mm程度の 膜厚を有する本実施例においては、Arのイオン注入を 加速電圧 200KV、イオン電流 400 u A 以上の条件で、10 16 ions/cm3 のドーズ量で行った。なおこのイオン注入 10 図2(b) 参照 に蘇し、イオン注入のなされている領域のTa膜はイオ ン注入のエネルギーによって選択的に 170℃以上に昇温 するので、このイオン注入領域でのβ-Ταからα-Τ aへの転移は、イオンの衝撃エネルギーと上記昇温とに よって推進される。

【0034】なおここで、イオン注入の方法は、上配注 入条件が充たされ且つ高パターン精度で注入が可能な方 法ならば如何なる方法でもよく、現在実用されている葉 置としては、収束イオンピーム装置、イオンプロジェク ション露光装置等がある。また注入マスクを用い通常の 20 イオン注入装置によってゲート電極領域へ選択的にイオ ン注入を行ってもよい。

【0035】図1(d) 参照

次いで、前述したCHCls の混合割合 0.2程度の〔Cls/CH Cl。) 混合ガスをエッチングガスとするRIE 処理(α-Taに対するB-Taのエッチングの選択比10以上)に より前配Ta膜5の全面エッチングを行い、β-Taの 領域 (5 B) を選択的にエッチング除去し、ゲートSiO2 膜4上に α - Υ a (5 α) からなるゲート電極5Gを残留 形成させる。 上記RIE 処理における条件は、例えば次の 30 通りである。

[0036] エッチングガス

160 scc□ Cb 49 sccm CEC13 200 mTorr エッチングガス圧 エッチング温度 50 °C

エッチング電力(スタ) 0.8 W/cm2

図1(e)参照

次いで、上記α-Taゲート電極5Gをマスクにし案子領 40 域2に例えば砒素(As)をイオン注入しn 型のソース領 域6S及びドレイン領域6Dを形成し、本発明の請求項1及 び4(7、8を含む)に係るMOS型半導体装置が完成 する.

【0037】凶2に示す本発明の第2の実施例は、窒化 チタン(TiN) とα-Taの2層構造のゲート電極を有す る請求項2及び請求項5 (7、8を含む) に対応する実 施例である。

[0038] 図2(a) 参照

前記実施例同様に、例えばp型Si基板1の表面に素子領 50 を含む)に対応する実施例である。

域2を固定分離するフィールド酸化膜3を形成し、次い で素子領域2上に厚さ10m前後のゲート酸化膜を形成し た後、この基板上にスパッタリング法により拡散パリア となる高融点金属SiaNa 膜、例えば厚さ50nm程度のTiN 膜7を形成する。成膜条件は例えば次の通りである。

8

【0039】ターゲット

TIN

スパッタリングガス År 10mTorr 成膜室内のガス圧 スパッタ電力(DC) 1 KW

次いで、通常のフォトリソグラフィを用い上記TiN 膜? 上にゲート電極に対応するパターン形状を有するレジス トパターン8を形成する。

【0040】図2(c) 参照

次いで、上記レジストパターン8をマスクにし例えば3 弗化窒素(NF1) をエッチングガスを用いるRIE 処理によ りTiN 膜7を底部までエッチングし、上記素子領域2の ゲートSiOz膜4上にゲート電極に対応するパターン形状 を有するTiN 電極バターン7Gを形成し、次いで上記レジ ストパターン8を01アッシング等の方法により除去す

【0041】図2(d) 参照

次いで、この基板上に、前記B-Taが形成される条件 を満足し、且つ下記のスパッタ成膜条件によって厚さ 1 00m程度のTa膜を成膜する。

【0042】スパッタ成膜の条件は例えば次の通りであ る.

Ta ターゲット スパッタリングガス ٨r 20 mTorr 成膜室内のガス圧 1 KW スパッタ電力(DC) < 70 ℃ 基板温度

この条件で形成されたTa膜5は、TiN 電極パターン7G 上がα-Ta (5 α) に転移し、そのゲート酸化膜4上 $M\beta$ -Ta (5 β) からなる膜となる。

[0043] 図2(e) 参照

次いで前配実施例同様の例えばCHC1. の混合割合 0.2程 度の〔Cl2/CHCla 〕混合ガスをエッチングガスとするRI Ε 処理 (α-Ταに対するβ-Ταのエッチングの選択 比10以上) により前配Ta膜5の全面エッチングを行 い、 $\beta - Ta$ の領域 (5 β) を選択的にエッチング除去 し、TiN 電極パターン7G上にαーTa (5 α) が積層さ れたゲート電艦9を形成する。そして、その後肢ゲート 電板 9 をマスクにし案子倒坡 2 に例えば砒素(As)をイオ ン注入しn・型のソース領域6S及びドレイン領域6Dを形 成し、本発明の請求項2及び請求項5(7、8を含む) に係るMOS型半導体装置が完成する。

【0044】図3に示す本発明の第3の実施例は、ゲー ト絶縁膜にSiC を用いる請求項3及び請求項6(7、8

g

図3(a) 参照

上記構造のMIS型半導体装置を形成するに際しては、 例えばp型Si基板1の表面に素子領域2を画定分離する フィールド酸化膜3を形成した後、この基板上に、Si上 でヘテロエピタキシャル成長が行われる条件で厚さ10mg 程度のゲート絶縁膜となるSiC 膜10を成膜した。成膜条 件は例えば下記の通りである。

[0045]

成長ガス

700 sccm ジクロルシラン(SiEcCl2) 30 sccm プロパン(CaLL) 7 slm 水素(肚) 成長ガス圧 300 mTort 1000 ℃ 成長温度(基板温度)

この成長でSi面が表出している素子領域2上にはヘテロ エピタキシャル成長により多結晶SiC 膜10P が成長し、 フィールド酸化膜3上には非晶質SiC 膜10A が成長す る.

[0046] 図3(b) 参照

次いで、通常のフォトリソグラフィ技術を用い上記SiC 膜10のゲート電極を形成する領域11上にゲート電極のパ ターン形状を有するレジストバターン12を形成し、次い でこのレジストパターン12をマスクにし、Arガスによる スパッタエッチングにより、ゲート電極形成領域以外の SiC 膜10の表面部を選択的に僅かにエッチングする。エ ッチング条件は例えば次の通りである。

【0047】エッチングガス

エッチングガス圧

200 mTorr 0.8 W/cm2

エッチング電力(RF)

このスパッタエッチングにより、素子領域2上の多結晶 30 SiC 膜10P のレジストパターン12でマスクされていない 領域の表面部は選択的に非晶質化される。10AAは前記ス パッタエッチングにより新たに非晶質化された領域を示 す.

【0048】図3(c)参照

次いでレジストバターン12を0, アッシング手段等で除去 した後、SiC 膜10上に、前配したβ-Taを形成する条 件(図1(b)の項参照)でのスパッタリングにより厚さ 100m型度のTa膜5を形成する。なおここで、SiC 膜 10の表面部まで多結晶SiC 膜10P の状態を維持している 40 ゲート形成領域11上にはα-Τα膜5αが堆積され、ま た該SiC 膜10の表面が非晶質化されている領域10AA及び 非晶質状態で成長した領域10A 上にはβ-Τα膜5βが 堆積される。

[0049] 凶3(d) 參照

次いで、前記実施例同様の例えばCHC1,の混合割合 0.2 程度の(Cl2/CHCl3)混合ガスをエッチングガスとする RIE 処理 $(\alpha - Ta に対する<math>\beta - Ta$ のエッチングの選 10

択比10以上)により前配了a膜5の全面エッチングを行 い、 β -Taの領域 (5 β) を選択的にエッチング除去 し、ゲート絶縁膜であるSIC 膜10の表面部まで多結晶状 態を維持している領域10P 上にα-Ta膜(5α)から なるTaゲート電極10G を残留形成せしめる。

[0050] その後、フィールド酸化膜3及び上記α-Ta膜 (5 α) からなるゲート電極10G マスクにしSiC 膜10(表面部に非晶質化領域10AAを有する領域)を通し てSi基板1内に例えば砒素(As)をイオン注入しn。型の 10 ソース領域6S及びドレイン領域6Dを形成し、本発明の請 求項3及び請求項6 (7、8を含む)に係るMOS型半 進体装置が完成する。

【0051】以上第1~第3の実施例に示したように、 本発明によれば抵抗率が極めて低いα-Taにより配線 抵抗の小さいゲート電極を形成することが容易に可能に なると共に、ゲート電極のパターニングがエッチングマ スクを介しての選択エッチングによってなされるのでは なく、ゲート電極材料のTa膜のα構造とβ構造との高 いエッチングの選択性によってなされるので、パターン 20 の転写精度が高まり且つサイドエッチングによるパター ン変形も防止されて高精度で微細なゲート電極パターン の形成が可能になる。

[0052]

【発明の効果】以上説明したように本発明によれば、抵 抗率の極めて低いα-Ταを用いて高精度で微細なゲー ト電極を形成することが可能になる。

【0053】従って本発明は、高集積化により配線幅の 極度に縮小される超LSI等の動作速度の向上及び特性 の均一化に寄与するところが大きい。

【図面の簡単な説明】

- 【図1】 本発明の第1の実施例の工程断面図
- 【図2】 本発明の第2の実施例の工程断面図
- 【図3】 本発明の第3の実施例の工程衡面図
- 【図4】 α-Taとβ-TaのCl2/CBCl: プラズマに 対するエッチング速度
- 【図5】 従来のMOS型半導体装置の模式断面図
- 【図6】 従来のMOSFETの製造工程断面図 【符号の説明】
- 1 p型Si基板
- 2 索子領域
 - 3 フィールド酸化膜
 - 4 ゲートSiO₂膜
 - 5 Talk
 - 5α α-ТаЩ
- 5 B B-Ta膜
- 5G α-Taゲート電極
- 6S n・型ソース領域
- 6D n・型ドレイン領域

[図1]

太安明の第10実施制の工程断面図

[図5]

従来のMOS型牛等体兼置の模式断面図

[図2]

本発明の第2の実施例の工程断面図

[図4]

α-Taとβ-TaのCl2/CHCl3プラズフに対するエッチング速度

(図3)

木会明の第3の実施側の工程断面図

[図6]

従来のMOSF ETの製造1程断面 図

