Finitary Projections の作る同型について

@myuon

2019年3月23日

定義 1. domain D の finitary projection p とは、次の条件を満たすもののこと.

- $1. p: D \rightarrow D$ は連続写像
- 2. $p \circ p = p \sqsubseteq id$
- 3. im(p) \$\psi\$ domain

定義 2. N が poset P の normal subset であるとは, $N \subseteq P$ であって, 任意の $y \in P$ に対し $\downarrow y \cap N$ が directed なことをいう. このとき $N \triangleleft P$ とかく.

定理. 任意の domain D に対し, cpt のなす poset $\mathbf{K}(D)$ の normal subset と, D の finitary projections のなす poset $\mathbf{Fp}(D)$ の間に包含関係を保つ同型が存在する.

Proof. $\{N \mid N \triangleleft \mathbf{K}(D)\}$ と $\mathbf{Fp}(D)$ の間の同型を定義する. まず normal subset N に対し, 写像 q を,

$$q:D\to D$$

$$q(x)=\bigsqcup(\downarrow x\cap N)$$

によって定義する.

補題 3. この q は finitary projection である.

Proof. はじめに continuous であることを示す。D の任意の directed subset M を 1 つ fix する。 $\bigsqcup q(M) = \bigsqcup_{y \in M} q(y) = \bigsqcup_{y \in M} \bigsqcup(\downarrow y \cap N) \sqsubseteq \bigsqcup(\downarrow (\bigsqcup M) \cap N) = q(\bigsqcup M)$ であることは明らかであろう。逆をみる。 $\bigsqcup q(M)$ が \downarrow ($\bigsqcup M$) \cap N の upper bound であることを示せばよい。 $\alpha \in \downarrow$ ($\bigsqcup M$) \cap N とすると, $\alpha \sqsubseteq \bigsqcup M$ かつ $\alpha \in N$ である。ところで N は $\mathbf{K}(D)$ の normal subset だったから N の点 α は cpt である。ゆえにある $z \in M$ が存在して, $\alpha \sqsubseteq z$ となり,すなわち $\alpha \sqsubseteq \bigsqcup(\downarrow z \cap N) = q(z)$ である。よって, $\alpha \sqsubseteq \bigsqcup q(M)$ となり, $\bigsqcup q(M) = q(\bigsqcup M)$ であることがわかった。

次に, $q \circ q = q \sqsubseteq id$ を示す. q の作り方から $q \sqsubseteq id$ は明らか.

$$\begin{split} q(q(x)) &= q(\bigsqcup \downarrow x \cap N) \\ &= \bigsqcup q(\downarrow x \cap N) \qquad \qquad (q \ \text{l\sharp continuous)} \\ &= \bigsqcup_{z \in \downarrow x \cap N} q(z) \\ &= \bigsqcup_{z \in \downarrow x \cap N} \bigsqcup (\downarrow z \cap N) \\ &= \bigsqcup_{z \in \downarrow x \cap N} z \qquad \qquad (下で説明する) \\ &= q(x) \end{split}$$

ただし最後から 2 つ目の式は, $z \in \downarrow x \cap N$ に対し, $\bigsqcup(\downarrow z \cap N) = z$ であることを用いた. このことは次のようにしてわかる: $\bigsqcup(\downarrow z \cap N) \sqsubseteq z$ であることは明らかであり, また z は N の元でもあるから $z \in \downarrow z \cap N$ でもあることより逆もわかる.

最後に、 $\operatorname{im}(q)$ が domain であることをいう.ここでは、 $N\cap\operatorname{im}(q)$ が $\operatorname{im}(q)$ の basis となること、すなわち、任意の $y\in\operatorname{im}(q)$ に対して $\bigsqcup(\downarrow y\cap N\cap\operatorname{im}(q))=y$ となることを示す. $x\in D$ を、q(x)=y となるものとしてとる.

順に示す。 (a) $z \in (\downarrow x \cap N \cap \operatorname{im}(q))$ に対し、 $z \sqsubseteq x$ かつ $z \in \operatorname{im}(q)$ であるから、両辺を q で写すと $z = q(z) \sqsubseteq q(x)$ となり、 $z \in (\downarrow q(x) \cap N \cap \operatorname{im}(q))$ である。 (b) $q(x) \sqsubseteq x$ により、 $\bigsqcup(\downarrow q(x) \cap N) \sqsubseteq \bigsqcup(\downarrow x \cap N \cap \operatorname{im}(q))$ であることはよい。 $z \in (\downarrow x \cap N \cap \operatorname{im}(q))$ に対し、 $z \sqsubseteq x$ かつ $z \in \operatorname{im}(q)$ であるから、先程と同様にして $z \sqsubseteq q(x)$ であり、 $z \in (\downarrow q(x) \cap N)$. (c) $z \in (\downarrow x \cap N)$ に対し、 $z \sqsubseteq \bigsqcup(\downarrow x \cap N) = q(x)$ であり、 $z \in N$ でもあるから $z \in (\downarrow q(x) \cap N)$ となる。よって $\operatorname{im}(q)$ は domain.

以上のことより,
$$q$$
 は finitary projection である.

次に, D の finitary projection p に対し, $L = \operatorname{im}(p) \cap \mathbf{K}(D)$ によって定義する.

事実. D を domain, p を D 上の finitary projection とすると, $\mathbf{K}(\operatorname{im}(p)) = \operatorname{im}(p) \cap \mathbf{K}(D)$ である.

補題 4. 次の等式が成り立つ.

$$p(x) = \bigsqcup (\downarrow p(x) \cap L)$$

Proof. p は finitary projection であるから $\operatorname{im}(p)$ は domain であり、このことと上の事実により、任意の $y \in \operatorname{im}(p)$ に対し $y = \bigsqcup(\downarrow y \cap L)$ が成り立つ.

補題 5. L は $\mathbf{K}(D)$ の normal subset である.

Proof. subset であることはよい. $x \in \mathbf{K}(D)$ を 1 つ fix する. $\downarrow x \cap L$ が directed であることを示す. $\downarrow x \cap L$ の任意の元 x_1, x_2 に対しその upper bound が存在すればよい. ところで, $i \in \{1,2\}$ とすると $x_i \sqsubseteq x$ であり, これらを p で写すと $p(x_i) = x_i \sqsubseteq p(x)$ が成り立つ $(x_i \in \operatorname{im}(p))$ であることとと $p \circ p = p$ を用いた). 補題の右辺の $\downarrow p(x) \cap L$ は directed であり, $x_i \in \downarrow p(x) \cap L$ であることより, x_1, x_2 の upper bound が存在する. よって $\downarrow x \cap L$ は directed.

参考文献

[1] Carl A. Gunter. (1992). Semantics of Programming Languages, Theorem 10.12.