#13 Equilibrium, Dynamics Post-class

#13 Equilibrium, Dynamics Post-class

Due: 11:00am on Friday, September 21, 2012

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy

Exercise 5.20

A 8.30-kg block of ice, released from rest at the top of a 1.41-m-long frictionless ramp, slides downhill, reaching a speed of 2.83 m/s at the bottom.

Part A

What is the angle between the ramp and the horizontal?

ANSWER:

Part B

What would be the speed of the ice at the bottom if the motion were opposed by a constant friction force of 11.0 N parallel to the surface of the ramp?

ANSWER:

$$v = 2.07$$
 m/s

Correct

Exercise 5.19: Atwood's Machine

A load of bricks with mass m_1 = 15.2kg hangs from one end of a rope that passes over a small, frictionless pulley. A counterweight of mass m_2 = 29.0kg

is suspended from the other end of the rope, as shown in the figure. The system is released from rest. Use $g = 9.80 \,\mathrm{m/s^2}$ for the magnitude of the acceleration due to gravity.

Part A

What is the magnitude of the upward acceleration of the load of bricks?

ANSWER:

 $3.06 \ \text{m}{m/s}^{2}$

Correct

Part B

What is the tension in the rope while the load is moving?

ANSWER:

#13 Equilibrium, Dynamics Post-class

195 N

Correct

Exercise 5.9

Find the tension in each cord in the figure if the weight of the suspended object is w.

Part A

Find the tension of the cord A in the figure (a).

Express your answer in terms of w.

ANSWER:

 $T_A = .732w$

#13 Equilibrium, Dynamics Post-cla	SS
------------------------------------	----

Part B

Find the tension of the cord B in the figure (a).

Express your answer in terms of w.

ANSWER:

$$T_B = .897w$$

Correct

Part C

Find the tension of the cord C in the figure (a).

Express your answer in terms of w.

ANSWER:

Correct

Part D

Find the tension of the cord A in the figure (b).

#13 Equilibrium, Dynamics Post-clas	S
-------------------------------------	---

Express	your	answer	in	terms	of	w

ANSWER:

$$T_A = 2.73w$$

Part E

Find the tension of the cord B in the figure (b).

Express your answer in terms of w.

ANSWER:

$$T_B = 3.35w$$

Correct

Part F

Find the tension of the cord C in the figure (b).

Express your answer in terms of w.

ANSWER:

Exercise 5.23

A 800-kg boulder is raised from a quarry 180m deep by a long uniform chain having a mass of 580 $\{\mbox{\sc kg}\}\$. This chain is of uniform strength, but at any point it can support a maximum tension no greater than 2.60 times its weight without breaking.

Part A

What is the maximum acceleration the boulder can have and still get out of the quarry?

ANSWER:

$$a_{\text{nm max}} = 0.909 \text{ m/s}^2$$

Correct

Part B

How long does it take to be lifted out at maximum acceleration if it started from rest?

AN	SW	/ER
----	----	-----

$$t = 19.9 \text{ s}$$

Score Summary:

Your score on this assignment is 98.4%. You received 39.35 out of a possible total of 40 points.