

Linear and Discrete Optimization

Paths, Cycles and Flows

- Maximum cardinality bipartite matchings
- Augmenting paths
- ► An $O(m \cdot n)$ algorithm

Exposed and matched nodes

Let G = (V, E) be an <u>undirected bipartite</u> graph. We are interested in a matching of max. cardinality.

Let $M \subseteq E$ be a matching.

- ► A vertex that is an endpoint of an edge in *M* is matched.
- A non-matched vertex is exposed

Alternating paths

An alternating path with respect to a matching M is a path that alternates between edges in M and edges in $E \setminus M$.

Augmenting paths

An alternating path that starts and ends at exposed nodes is a *augmenting path*.

Augmenting path: # of non-thatching edges

Augmenting paths

An alternating path that starts and ends at exposed nodes is a augmenting path.

Augmenting Path is odd.

If one endpoint of an augmenting path is in A, then the other endpoint is in

type A or B or both, in the latter case separated by space

A criterion for maximal cardinality

Theorem

A matching M of a (not necessarily bipartite) graph is of maximum cardinality if and only if there are no augmenting paths with respect to M.

A criterion for maximal cardinality

Theorem

A matching M of a (not necessarily bipartite) graph is of maximum cardinality if and only if there are no augmenting paths with respect to M.

A criterion for maximal cardinality

Theorem

A matching M of a (not necessarily bipartite) graph is of maximum cardinality if and only if there are no augmenting paths with respect to M.

► Turn G = (A + B, E) into a directed graph D = (V, A) as follows.

- ► Turn G = (A + B, E) into a directed graph D = (V, A) as follows.
- ightharpoonup Direct an edge in the matching from A to B.
- ▶ Direct an edge in $E \setminus M$ from B to A.

- ► Turn G = (A + B, E) into a directed graph D = (V, A) as follows.
- ▶ Direct an edge in the matching from *A* to *B*.
- ▶ Direct an edge in $E \setminus M$ from B to A.

Quiz: Suppose v is exposed and v is in A, what is

$$|\delta^+(v)|$$
?

- ► Turn G = (A + B, E) into a directed graph D = (V, A) as follows.
- ▶ Direct an edge in the matching from *A* to *B*.
- ▶ Direct an edge in $E \setminus M$ from B to A.
- Find a path in this directed graph between two exposed nodes.

- ► Turn G = (A + B, E) into a directed graph D = (V, A) as follows.
- ▶ Direct an edge in the matching from *A* to *B*.
- ▶ Direct an edge in $E \setminus M$ from B to A.
- Find a path in this directed graph between two exposed nodes.

Quiz: Such a path starts with an exposed node in

and ends in an exposed

node in

Computing augmenting paths (cont.)

Theorem

There exists an augmenting path in G for M if and only if there exists a path from an exposed node in B to an exposed node in A in the directed graph D.

Using BFS to find augmenting paths

Using BFS to find augmenting paths

Algorithm for max. cardinality bipartite matching

$$M = \emptyset$$
while there exists M -augmenting path
Update M
return M

Assumption: G has no isolated vertices $(\Rightarrow |E| \ge |V|/2)$.

Theorem

A maximum cardinality matching in a bipartite graph G = (V, E) can be computed in time $O(|V| \cdot |E|)$