Reinforcement Learning with OpenAl Gym

Dennis Tran 9/21/21

Problem Statement

A Robotics company is looking for ways to reduce costs in training its robots. It is wondering whether or not Reinforcement Learning in simulated environments is a viable alternative for training.

What is Reinforcement Learning?

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward.

Classic Control

Cart Pole: balance pole

a. PPO (Proximal Policy Optimization)

b. Score: avg 200, std 0

Pendulum: swing pendulum so it stays upright

a. A2C (variant of Asynchronus Advantage Actor Critic)

b. Score: avg -175.399, std 56.19

Atari Games

Breakout

- a. DDPG (Deep Deterministic Policy Gradient)
- b. Avg score 16.9, std 6.86

Car Racing

- a. PPO
- b. Avg score -76.54, std 2.75

Why Simulate?

- 1. Overcome hardware limitations
- 2. Generate more data/scenarios
 - a. Tesla: https://www.youtube.com/watch?v=j0z4FweCy4M&t=5784s

Results and Recommendations

Simple environments are easily solvable, but mastery requires much more More complex environments need more resources(time/computation)

- a. Will also require custom implementations for greater functionality
- b. Simulation may still be cheaper than real world training

Real world applications exist

- a. Faster progress with human feedback?
- b. https://venturebeat.com/2021/07/16/openai-disbands-its-robotics-research-team/

