Notes on Behavioural Economics

Jason Collins

For any x > y there exists a number $\varepsilon > 0$ such that every bundle a that is less distant from x than ε and every bundle b that is less distant from y than ε results in a > b.

For any x > y there are *some* neighbourhoods $N_{\varepsilon}x$ and $N_{\varepsilon}y$ around x and y such that for every $a \in N_{\varepsilon}x$ and $b \in N_{\varepsilon}y$ we have a > b.

Let x, y and z be lotteries with $x \ge y \ge z$. Then there exists a probability p such that y is equally good as a mix of x and z. That is, there exists p such that:

$$px + (1 - p)z \sim y$$


```
A. (1, 1)
```

```
A. (1, 1) C > B > A
```

B. (1, 2)

C. (1.1, 1)

A.
$$(1, 1)$$
 $C > B > A$

B. (1, 2)

C. (1.1, 1)

There is no p for which:

$$pA + (1-p)C \sim B$$

A.
$$(1, 1)$$
 $C > B > A$