Generic Plaintext Equality and Inequality Proofs

Olivier Blazy ¹ Xavier Bultel ² Pascal Lafourcade ³ Octavio Perez Kempner 4,5

¹Université de Limoges, XLIM, Limoges, France

²INSA Centre Val de Loire, LIFO lab, France

³University Clermont Auvergne, LIMOS, France

⁴DIENS, École normale supérieure, CNRS, PSL University, Paris, France

⁵be-vs Research, France

Agenda

- Motivation
- 2 Generic Randomizable Encryption
- 3 Protocols
- 4 Comparisons for ElGamal
- 5 Conclusions and Future Work

Generic zero knowledge proofs for PET-PIT

Reputation systems

Voting

Reputation systems

Storage

Prover

Prover

Agenda

- Motivation
- 2 Generic Randomizable Encryption
- 3 Protocols
- 4 Comparisons for ElGamal
- **5** Conclusions and Future Work

• Ciphertexts (Rand),

• Ciphertexts (Rand), messages (MsgRand),

 Ciphertexts (Rand), messages (MsgRand), encryption keys (KeyRand)

 Ciphertexts (Rand), messages (MsgRand), encryption keys (KeyRand) and combinations

- Ciphertexts (Rand), messages (MsgRand), encryption keys (KeyRand) and combinations
- Formal definitions: randomizabily and strong randomizability, message-randomizability, key-randomizability and random coin decryption (RCD)

- Ciphertexts (Rand), messages (MsgRand), encryption keys (KeyRand) and combinations
- Formal definitions: randomizabily and strong randomizability, message-randomizability, key-randomizability and random coin decryption (RCD)
- Two flavours: computational and perfect

Agenda

- Motivation
- 2 Generic Randomizable Encryption
- 3 Protocols
- 4 Comparisons for ElGamal
- 5 Conclusions and Future Work

• Simple cut-and-choose protocols

- Simple cut-and-choose protocols
- Completeness, soundness and perfect zero knowledge

- Simple cut-and-choose protocols
- Completeness, soundness and perfect zero knowledge
- PIT: Rand

- Simple cut-and-choose protocols
- Completeness, soundness and perfect zero knowledge
- PIT: Rand
- PET: Rand & MsgRand

- Simple cut-and-choose protocols
- Completeness, soundness and perfect zero knowledge
- PIT: Rand
- PET: Rand & MsgRand
- Sigma PET's: Rand, MsgRand & (KeyRand ∨ RCD)

 pk₀ = pk₁ and the prover knows sk₀

 pk₀ = pk₁ and the prover knows sk₀
 → HPEQ, PEQ

- pk₀ = pk₁ and the prover knows sk₀
 → HPEQ, PEQ
- $pk_0 \neq pk_1$ and the prover knows sk_0 and sk_1

- $pk_0 = pk_1$ and the prover knows sk_0
 - → HPEQ, PEQ
- pk₀ ≠ pk₁ and the prover knows sk₀ and sk₁
 MATCHPEQ, SIGPEQ

- pk₀ = pk₁ and the prover knows sk₀
 → HPEQ, PEQ
- pk₀ ≠ pk₁ and the prover knows sk₀ and sk₁
 MATCHPEQ, SIGPEQ
- $pk_0 \neq pk_1$ and the prover knows r_0 and r_1

- $\begin{tabular}{ll} \bullet & {\sf pk}_0 = {\sf pk}_1 \ {\sf and} \ {\sf the} \ {\sf prover} \\ & {\sf knows} \ {\sf sk}_0 \end{tabular}$
 - → HPEQ, PEQ
- $\label{eq:pk0} \mbox{$\stackrel{}{$}$} \mbox{p} \mbox{k_0} \neq \mbox{p} \mbox{k_1} \mbox{ and s} \mbox{k_1}$
 - → MATCHPEQ, SIGPEQ
- $pk_0 \neq pk_1$ and the prover knows r_0 and r_1
 - → RSPEQ

- $\begin{tabular}{ll} \bullet & {\sf pk}_0 = {\sf pk}_1 \ {\sf and the prover} \\ & {\sf knows sk}_0 \end{tabular}$
 - → HPEQ, PEQ
- pk₀ ≠ pk₁ and the prover knows sk₀ and sk₁
 MATCHPEQ, SIGPEQ
- pk₀ ≠ pk₁ and the prover knows r₀ and r₁
 → RSPEQ

 pk₀ = pk₁ and the prover knows sk₀
 → HPINEQ, PINEQ

Alice (sk, pk, c_0, c_1)

Bob (pk, c_0, c_1)

Alice (sk, pk, c_0 , c_1)

 $\textbf{Bob} \ (\mathsf{pk}, \mathit{c}_0, \mathit{c}_1)$

 $r \stackrel{\$}{\leftarrow} \mathcal{R};$

Alice (sk, pk, c_0 , c_1)

 $\frac{\mathsf{Bob}\;(\mathsf{pk},c_0,c_1)}{r \overset{\$}{\leftarrow} \mathcal{R};\; b \overset{\$}{\leftarrow} \{0,1\}}$

Alice (sk, pk, c_0 , c_1)

if
$$Dec_{sk}(c_b') = Dec_{sk}(c_0) \leftarrow c_b'$$

Bob (pk, c_0, c_1)

$$\frac{(\mathsf{pk}, c_0, c_1)}{r \overset{\$}{\leftarrow} \mathcal{R}; \ b \overset{\$}{\leftarrow} \{0, 1\}}$$
$$c_b' \leftarrow \mathsf{Rand}(c_b, r)$$

Bob (pk, c_0, c_1)

$$r \stackrel{\$}{\leftarrow} \mathcal{R}; \ b \stackrel{\$}{\leftarrow} \{0,1\}$$

if
$$\operatorname{Dec}_{sk}(c'_b) = \operatorname{Dec}_{sk}(c_0) \leftarrow c_b$$

then $z = 0$ else $z = 1$

$$c_b' \leftarrow \mathsf{Rand}(c_b, r)$$

 \xrightarrow{z} **if** (z = b) **then** Accept **else** Reject

Alice (sk, pk, c_0 , c_1)

Bob (pk, c_0, c_1)

$$r \stackrel{\$}{\leftarrow} \mathcal{R}; \ b \stackrel{\$}{\leftarrow} \{0,1\}$$

if
$$\operatorname{Dec}_{\operatorname{sk}}(c'_b) = \operatorname{Dec}_{\operatorname{sk}}(c_0) \longleftrightarrow c'_b \leftarrow \operatorname{Rand}(c_b, r)$$

then $z = 0$ else $z = 1$ \xrightarrow{z} if $(z = b)$ then Accept else Reject

Theorem

If the PKE scheme is (computationally) randomizable, then HPINEQ is complete, computationally sound and perfect HVZK.

Bob (pk, c_0, c_1)

 $r \stackrel{\$}{\leftarrow} \mathcal{R};$

 $\frac{\mathbf{Bob}\;(\mathsf{pk},c_0,c_1)}{r \overset{\$}{\leftarrow} \mathcal{R}; r_{\mathsf{m}} \overset{\$}{\leftarrow} \mathcal{R}_{\mathsf{M}};}$

 $\frac{\mathbf{Bob}\;(\mathsf{pk},c_0,c_1)}{r \overset{5}{\leftarrow} \mathcal{R}; r_{\mathsf{m}} \overset{5}{\leftarrow} \mathcal{R}_{\mathsf{M}};\; b \overset{5}{\leftarrow} \{0,1\}}$

Bob (pk, c_0, c_1)

 $r \overset{\$}{\leftarrow} \mathcal{R}; r_{\mathsf{m}} \overset{\$}{\leftarrow} \mathcal{R}_{\mathsf{M}}; \ b \overset{\$}{\leftarrow} \{0, 1\}$ $c_b' \leftarrow \mathsf{Rand}(c_b, r)$

Alice (sk, pk, c_0 , c_1)

Bob
$$(pk, c_0, c_1)$$

$$r \stackrel{\xi}{\leftarrow} \mathcal{R}; r_{\mathsf{m}} \stackrel{\xi}{\leftarrow} \mathcal{R}_{\mathsf{M}}; b \stackrel{\xi}{\leftarrow} \{0, 1\}$$

$$c'_{b} \leftarrow \mathsf{Rand}(c_{b}, r)$$

$$c_b'' \leftarrow \mathsf{MsgRandC}(c_b', r_\mathsf{m})$$

$$\frac{ \text{Bob } (\mathsf{pk}, c_0, c_1) }{r \overset{\$}{\leftarrow} \mathcal{R}; r_{\mathsf{m}} \overset{\$}{\leftarrow} \mathcal{R}_{\mathsf{M}}; \ b \overset{\$}{\leftarrow} \{0, 1\} } \\ c_b' \leftarrow \mathsf{Rand}(c_b, r)$$

$$m' \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c''_b); m \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c_0) \leftarrow c''_b \leftarrow \mathsf{MsgRandC}(c'_b, r_{\mathsf{m}})$$
 $z \leftarrow \mathsf{MsgRandExt}(m', m) \xrightarrow{z} \mathsf{if} (z = r_{\mathsf{m}}) \mathsf{then} \mathsf{Accept} \mathsf{else} \mathsf{Reject}$

Alice (sk, pk, c_0 , c_1)

$$\begin{array}{c} \textbf{Bob} \; (\mathsf{pk}, c_0, c_1) \\ \hline r \overset{\$}{\leftarrow} \mathcal{R}; \; r_\mathsf{m} \overset{\$}{\leftarrow} \mathcal{R}_\mathsf{M}; \; b \overset{\$}{\leftarrow} \{0, 1\} \\ c_b' \leftarrow \mathsf{Rand}(c_b, r) \end{array}$$

$$m' \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c''_b); m \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c_0) \leftarrow c'_b \leftarrow \mathsf{MsgRandC}(c'_b, r_m)$$

 $z \leftarrow \mathsf{MsgRandExt}(m', m) \xrightarrow{z} \mathsf{if} (z = r_m) \mathsf{then} \; \mathsf{Accept} \; \mathsf{else} \; \mathsf{Reject}$

Theorem

If the PKE scheme is (computationally) randomizable, (computationally) message-randomizable and message-random-extractable, then HPEQ is complete, computationally sound and perfect HVZK.

RSPEQ

Bob $V(pk_1, pk_2, c_1, c_2)$

$$\begin{array}{lll} \textbf{Alice} & (r_1, r_2, \mathsf{pk}_1, \mathsf{pk}_2, c_1, c_2) & \textbf{Bob V}(\mathsf{pk}_1, \mathsf{pk}_2, c_1, c_2) \\ r_m \stackrel{\xi}{\leftarrow} \mathcal{R}_{\mathsf{M};} & (r_1', r_2') \stackrel{\xi}{\leftarrow} \mathcal{R}^2 \\ r_1'' \leftarrow \mathsf{RandR}(r_1, r_1'); \ r_2'' \leftarrow \mathsf{RandR}(r_2, r_2') \\ c_1' \leftarrow \mathsf{Rand}(c_1, r_1'); \ c_2' \leftarrow \mathsf{Rand}(c_2, r_2') \\ c_1'' \leftarrow \mathsf{MsgRandC}(c_1', r_m) & \\ c_2'' \leftarrow \mathsf{MsgRandC}(c_2', r_m) & \\ & \stackrel{b}{\longleftarrow} & b \stackrel{\xi}{\leftarrow} \{0, 1\} \\ \\ \textbf{if } (b = 0) \ \textbf{then } z = (r_1'', r_2'') & \\ & \stackrel{z}{\longrightarrow} & \textbf{if } b = 0 \ \textbf{then return} \ (\mathsf{CDec}_{r_1''}(c_1'', \mathsf{pk}_1) = \mathsf{CDec}_{r_2''}(c_2'', \mathsf{pk}_2)) \\ \textbf{else } z = (r_1', r_2', r_m) & \\ & & \text{else } \vec{c}_1' \leftarrow \mathsf{Rand}(c_1, r_1'); \ \vec{c}_2' \leftarrow \mathsf{MsgRandC}(\vec{c}_2', r_m) \\ & & return \ ((\vec{c}_1'' = c_1''), (\vec{c}_1'' = c_1''), (\vec{c}_2'' = c_1'')) \end{array}$$

RSPEQ

Alice
$$(r_1, r_2, pk_1, pk_2, c_1, c_2)$$

$$\begin{split} r_m & \stackrel{\xi}{\sim} \mathcal{R}_{M}; \ (r_1', r_2') \stackrel{\xi}{\sim} \mathcal{R}^2 \\ r_1'' \leftarrow \mathsf{RandR}(r_1, r_1'); \ r_2'' \leftarrow \mathsf{RandR}(r_2, r_2') \\ c_1' \leftarrow \mathsf{Rand}(c_1, r_1'); \ c_2' \leftarrow \mathsf{Rand}(c_2, r_2') \\ c_1'' \leftarrow \mathsf{MsgRandC}(c_1', r_m) \\ c_2'' \leftarrow \mathsf{MsgRandC}(c_2', r_m) \end{split}$$

$$\xrightarrow{b}$$

$$\begin{array}{ccc} & & & & & b \stackrel{\xi}{\leftarrow} \{0,1\} \\ & \xrightarrow{z} & & \text{if } b = 0 \text{ then return } (\mathsf{CDec}_{r_i''}(c_1'',\mathsf{pk}_1) = \mathsf{CDec}_{r_i''}(c_2'',\mathsf{pk}_2)) \end{array}$$

return $((\widetilde{c}_1'' = c_1'') \land (\widetilde{c}_2'' = c_2''))$

if
$$(b = 0)$$
 then $z = (r''_1, r''_2)$
else $z = (r'_1, r'_2, r_m)$

else
$$\tilde{c}'_1 \leftarrow \text{Rand}(c_1, r'_1); \ \tilde{c}'_2 \leftarrow \text{Rand}(c_2, r'_2);$$

 $\tilde{c}''_1 \leftarrow \text{MsgRandC}(\tilde{c}'_1, r_m); \ \tilde{c}''_2 \leftarrow \text{MsgRandC}(\tilde{c}'_2, r_m)$

$\mathsf{Theorem}$

If the PKE scheme is perfectly strong randomizable, random-extractable, perfectly message-randomizable and RCD. then RSPEQ is complete, special sound, and perfect zero-knowledge.

Protocols' Compatibility

Protocols' Compatibility

					Perfect ZK		ZKPoK			
Scheme	Security	RCD	Rand	MsgRand	KeyRand	PEQ	PINEQ	MATCHPEQ	SIGPEQ	RSPEQ
ElGamal [ElG85]	IND-CPA	√	√	√	√	√	√	✓	√	✓
Paillier [Pai99]	IND-CPA	√	✓	✓		✓	✓	✓		✓
GM [GM82]	IND-CPA		✓	✓		✓	√	✓		
DEG [Dam91]	IND-CCA1	√	√	√	√	√	√	✓	√	✓
CS-lite [CS98]	IND-CCA1	√	√	√		✓	√			√
DSCS [PR07]	RCCA	√	√				√			

Agenda

- Motivation
- 2 Generic Randomizable Encryption
- 3 Protocols
- 4 Comparisons for ElGamal
- 5 Conclusions and Future Work

Comparisons for ElGamal

		PET	PIT			
Protocol	[CP93]	PEQ	RSPEQ	[CS03]	PINEQ	
Prover	2EXP	6EXP	4EXP	6EXP	6EXP	
Verifier	2EXP	4EXP	4EXP	4EXP	4EXP	
Rounds	3	4	3	3	4	

Comparisons for ElGamal

Protocol	HPEQ	PEQ	HPINEQ	PINEQ	RSPEQ	SIGPEQ
Avg. time (ms)	27.47	70.31	26.13	68.75	62.12	112.98
Deviation	0.21	1.28	0.15	0.6	2.06	3.70

Agenda

- Motivation
- 2 Generic Randomizable Encryption
- 3 Protocols
- 4 Comparisons for ElGamal
- 5 Conclusions and Future Work

• Formal definitions for randomizability properties

- Formal definitions for randomizability properties
- Intuitive constructions of zero-knowledge PET-PIT protocols

- Formal definitions for randomizability properties
- Intuitive constructions of zero-knowledge PET-PIT protocols
- Non-interactive variants for sigma protocols via Fiat-Shamir

- Formal definitions for randomizability properties
- Intuitive constructions of zero-knowledge PET-PIT protocols
- Non-interactive variants for sigma protocols via Fiat-Shamir
- Applicable to real-world problems in a "plug & play" manner

• Design non-interactive protocols for plaintext inequality

- Design non-interactive protocols for plaintext inequality
- Improve the number of rounds

- Design non-interactive protocols for plaintext inequality
- Improve the number of rounds
- Build generic plaintext inequality tests $(<, \le, \ge, >)$

- Design non-interactive protocols for plaintext inequality
- Improve the number of rounds
- Build generic plaintext inequality tests $(<, \le, \ge, >)$

Thank you for your time!

References I

In Ernest F. Brickell, editor, *Advances in Cryptology* — *CRYPTO' 92*, pages 89–105. Springer Berlin Heidelberg, 1993.

Ronald Cramer and Victor Shoup.

A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack.

In Hugo Krawczyk, editor, *Advances in Cryptology* — *CRYPTO '98*, pages 13–25. Springer Berlin Heidelberg, 1998.

Jan Camenisch and Victor Shoup.

Practical Verifiable Encryption and Decryption of Discrete Logarithms.

In CRYPTO 2003. Springer, 2003.

References II

Ivan Damgård.

Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks.

In Proceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO '91, page 445–456. Springer-Verlag, 1991.

Taher ElGamal.

A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.

In George Robert Blakley and David Chaum, editors, *Advances in Cryptology*, pages 10–18. Springer Berlin Heidelberg, 1985.

References III

Shafi Goldwasser and Silvio Micali.

Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information.

In *Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing*, STOC '82, pages 365–377, New York, NY, USA, 1982. Association for Computing Machinery.

Pascal Paillier.

Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.

In Jacques Stern, editor, *Advances in Cryptology* — *EUROCRYPT '99*, pages 223–238. Springer Berlin Heidelberg, 1999.

References IV

Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA Encryption.

In Alfred Menezes, editor, *Advances in Cryptology - CRYPTO* 2007, pages 517–534. Springer Berlin Heidelberg, 2007.