Özdeğerler ve Özvektörler

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı

Dr. Öğr. Üyesi İşık İlber Sırmatel sirmatel.github.io

Kaynak (source)

Lecture slides for Introduction to Linear Dynamical Systems Stephen Boyd

Konu listesi

1. Determinant

2. Özdeğerler ve özvektörler

3. Köşegenleştirme

Bölüm 1

Determinant

Minör ve kofaktör

A bir $n\times n$ matris olsun. A'nın i. satır ve j. sütununun (yani, A'nın A_{ij} elemanını bulunduran satır ve sütunun) silinmesiyle elde edilen $(n-1)\times (n-1)$ matrisi M_{ij} ile gösterelim. M_{ij} 'nin determinantına A_{ij} 'nin minörü (minor) denir. A_{ij} 'nin kofaktörü ($\mathit{cofactor}$)

$$(-1)^{i+j}\det(M_{ij})$$

olarak tanımlanır

Determinant

 $n \times n$ bir A matrisinin determinantı

$$\det(A) = \begin{cases} a_{11} & n = 1 \text{ ise} \\ a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n} & n > 1 \text{ ise} \end{cases}$$

olarak tanımlı bir skalerdir. buradaki A_{1j} terimleri A'nın birinci satırındaki elemanlarla ilişkili kofaktörlerdir

 2×2 matrisin determinanti:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

(not: bu formülü bilmeniz gerekiyor)

Determinantın bazı özellikleri

- ightharpoonup n imes n A matrisi ancak ve ancak $\det(A) = 0$ ise tekildir (singular) (yani, tersi alınabilir değildir)
- ightharpoonup n imes n A ve B matrisleri için: $\det(AB) = \det(A)\det(B)$
- ightharpoonup n imes n A matrisi bir üçgen matris ise:

$$\det(A) = \prod_{i=1}^{n} A_{ii}$$

▶ determinant homojen (çarpımla ölçeklenme özelliği olan) bir fonksiyondur: $n \times n$ A matrisi için: $\det(cA) = c^n \det(A)$

Determinant ve alan arası ilişki

Bölüm 2

Özdeğerler ve özvektörler

bir $A \in \mathbb{C}^{n \times n}$ matrisi için

$$\det(\lambda I - A) = 0$$

şartını sağlayan $\lambda \in \mathbb{C}$ sayısına A matrisinin bir özdeğeri (eigenvalue) denir. bu ifade şunlara denktir:

- $lackbox (\lambda I-A)v=0$ 'ı (yani $Av=\lambda v$ 'yı) sağlayan ve sıfır olmayan bir $v\in\mathbb{C}^n$ vektörü mevcuttur. bu şartı sağlayan her v vektörüne A matrisinin (özdeğer λ ile ilişkili) bir özvektörü (eigenvector) denir
- ▶ $w^T(\lambda I A) = 0$ 'ı (yani, $w^TA = \lambda w^T$ 'yı) sağlayan ve sıfır olmayan bir $w \in \mathbb{C}^n$ vektörü mevcuttur. bu şartı sağlayan her w vektörüne A matrisinin (özdeğer λ ile ilişkili) bir sol özvektörü ($left\ eigenvector$) denir

(not 1: sıfır vektörü özvektör olarak kabul edilmez) (not 2: C: karmaşık sayıların kümesi)

lacktriangleq A gerçel olsa da özdeğerleri ve özvektörleri karmaşık olabilir

örnek:
$$A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$$
 $\lambda_1 = 2 + 3j$ $\lambda_2 = 2 - 3j$
$$v_1 = \begin{bmatrix} 0.71 \\ 0.71j \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 0.71 \\ -0.71j \end{bmatrix}$

▶ v, A matrisinin özdeğeri λ ile ilişkili bir özvektör ise, αv de bir özvektördür (her $\alpha \in \mathbb{C}, \ \alpha \neq 0$ için)

örnek:
$$A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$$
 $\lambda_1 = 2 + 3j$ $v_1 = \begin{bmatrix} 0.71 \\ 0.71j \end{bmatrix}$
$$\alpha = 1 + j$$
 $\alpha v_1 = \begin{bmatrix} 0.71 + 0.71j \\ -0.71 + 0.71j \end{bmatrix}$ $A\alpha v_1 = \lambda \alpha v_1$

▶ A ve λ gerçel ise, λ ile ilişkili bir gerçel özvektör v daima bulabiliriz: $Av = \lambda v$ $(A \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{R}, v \in \mathbb{C}^n)$ ise

$$A\Re(v) = \lambda\Re(v)$$
 $A\Im(v) = \lambda\Im(v)$

olur; dolayısıyla $\Re(v)$ ve $\Im(v)$ (sıfır olmayan (nonzero) iseler) gerçel özvektörlerdir (içlerinden en az birisi sıfır olmayandır)

örnek:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 $\lambda_1 = -0.37$ $v_1 = \begin{bmatrix} -2.5 - 3.3j \\ 1.7 + 2.3j \end{bmatrix}$
$$\Re(v) = \begin{bmatrix} -2.5 \\ 1.7 \end{bmatrix}$$
 $\Im(v) = \begin{bmatrix} -3.3 \\ 2.3 \end{bmatrix}$

▶ eşlenik simetri (conjugate symmetry): A matrisi gerçel ise ve $v \in \mathbb{C}^n$ özdeğer $\lambda \in \mathbb{C}$ ile ilişkili özvektör ise, \overline{v} $\overline{\lambda}$ ile ilişkili özvektördür: $Av = \lambda v$ denkleminde her iki tarafın eşleniğini alırsak:

$$\overline{Av} = \overline{\lambda v} \longrightarrow A\overline{v} = \overline{\lambda}\overline{v}$$
 örnek:
$$A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \quad \lambda_1 = 2 + 3j \quad v_1 = \begin{bmatrix} 0.71 \\ 0.71j \end{bmatrix}$$

$$\overline{\lambda_1} = 2 - 3j \quad \overline{v_1} = \begin{bmatrix} 0.71 \\ -0.71j \end{bmatrix}$$

buradan itibaren A'nın gerçel (yani, $A \in \mathbb{R}^{n \times n}$) olduğunu varsayacağız

Karmaşık sayılar (hatırlatma)

- **>** sanal birim (imaginary unit): $j = \sqrt{-1}$ (veya $i = \sqrt{-1}$)
- \blacktriangleright karmaşık sayı: $c \in \mathbb{C}$, örnek: c = 2 + 3j
- ► karmaşık sayının eşleniği:

$$"ornek: \quad c = 2 + 3j \quad \overline{c} = 2 - 3j$$

- karmaşık vektör: $z \in \mathbb{C}^n$, örnek: $z = \begin{vmatrix} 2+j \\ 3+4j \end{vmatrix}$
- ► karmaşık vektörün gerçel ve sanal kısımları:

► karmaşık vektörün eşleniği:

Ölçekleme yorumu

($\lambda \in \mathbb{R}$ varsayalım) v bir özvektör ise, A'nın v üzerindeki etkisi λ ile ölçeklemedir

(resimdeki örnek $A \in \mathbb{R}^{2 \times 2}$ için)

bir $A \in \mathbb{R}^{n \times n}$ ve skaler λ için şu ifadeler denktir:

- \blacktriangleright λ , A'nın bir özdeğeridir
- $ightharpoonup \mathcal{N}(A \lambda I) \neq 0$
- $ightharpoonup A \lambda I$ matrisi tekildir
- $det(A \lambda I) = 0$

 $\det(A-\lambda I)=0$ denklemine A matrisinin karakteristik denklemi (*characteristic equation*) denir

A matrisinin özdeğerleri karakteristik denkleminin kökleridir. bu özdeğerler ile ilişkili özvektörler $(A-\lambda I)x=0$ denkleminin sıfır olmayan çözümleridir

örnek: $A \in \mathbb{R}^{2 \times 2}$ matrisinin özdeğerlerinin hesaplanması

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}$$

$$\det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$$

$$\det(A - \lambda I) = (a - \lambda)(d - \lambda) - bc$$

$$\det(A - \lambda I) = \lambda^2 - (a + d)\lambda + (ad - bc)$$
 özdeğerler:
$$\lambda^2 - (a + d)\lambda + (ad - bc) = 0 \text{ denkleminin kökleri}$$

bir $A \in \mathbb{R}^{n \times n}$ matrisini ele alalım. $\det(A - \lambda I)$, derecesi n ve bilinmeyeni λ olan bir polinomdur (polynomial):

$$\det(A - \lambda I) = (-1)^n \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n$$

 $\det(A-\lambda I)$ polinomuna A matrisinin karakteristik polinomu (characteristic polynomial) denir

(not: $n \times n$ bir matrisin en fazla n adet özdeğeri vardır)

örnek:
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 $\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 0$

$$(2 - \lambda)^2 - 1 = 0 \implies \lambda_1 = 1, \ \lambda_2 = 3$$

$$(A - \lambda_1 I)x = 0 \iff \left(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff x_1 + x_2 = 0$$

$$(A - \lambda_2 I)x = 0 \iff \left(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff x_1 - x_2 = 0$$

 $\iff \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff x_1 - x_2 = 0$ $x_1 + x_2 = 0 \text{'yi sağlayan } v_1 = \begin{bmatrix} -1 & 1 \end{bmatrix}^T \text{ özdeğer } \lambda_1 \text{ ile,}$ $x_1 - x_2 = 0 \text{'yi sağlayan } v_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \text{ ise özdeğer } \lambda_2 \text{ ile ilişkili bir özvektördür}$

Bölüm 3

Köşegenleştirme

Köşegen matrisler

bir $A \in \mathbb{R}^{n \times n}$ matrisini ele alalım. ancak ve ancak \mathbb{R}^n 'deki standart taban vektörleri (e_1, e_2, \dots, e_n) A'nın özvektörleri ise A köşegendir.

bu durumda A'nın köşegen üzerindeki elemanları bu özvektörlere karşılık gelen özdeğerdir:

$$A = \begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix} \iff Ae_i = \lambda_i e_i, \ i = 1, 2, \dots, n$$

örnek:
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & -5 \end{bmatrix} \quad \underbrace{\lambda(A) = \{2, -3, 4, -5\}}_{\text{A'nın özdeğerleri}}$$

 v_1, v_2, \dots, v_n , $A \in \mathbb{R}^{n \times n}$ matrisi için bir doğrusal bağımsız özvektörler kümesi olsun:

$$Av_i = \lambda_i v_i, \quad i = 1, 2, \dots, n$$

bu durumu şu şekilde ifade edebiliriz:

$$A \underbrace{\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}}_{T} = \underbrace{\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}}_{T} \underbrace{\begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix}}_{\Lambda}$$

$$T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$
 ve $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ ile $AT = T\Lambda$

ve sonuç olarak

$$T^{-1}AT = \Lambda$$

yazabiliriz

- $ightharpoonup v_1, v_2, \ldots, v_n$ doğrusal bağımsız olduğundan T tersi alınabilirdir
- lacktriangleq T ile benzerlik dönüşümü (yani, $T^{-1}AT$) A'yı köşegenleştirir

diğer taraftan, eğer

$$T^{-1}AT = \Lambda = \mathbf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

ifadesini sağlayan bir $T=\begin{bmatrix}v_1&v_2&\dots&v_n\end{bmatrix}$ mevcutsa $AT=T\lambda$ olur, yani

$$Av_i = \lambda_i v_i, \quad i = 1, 2, \dots, n$$

dolayısıyla v_1,v_2,\ldots,v_n , $A\in\mathbb{R}^{n\times n}$ matrisi için bir doğrusal bağımsız özvektörler kümesidir

aşağıdaki şartlar sağlanıyorsa A'ya köşegenleştirilebilir (diagonalizable) denir (bu şartlar denktir)

- $ightharpoonup T^{-1}AT = \Lambda'$ nın köşegen olmasını sağlayan T mevcuttur
- ► A'nın bir doğrusal bağımsız özvektörler kümesi mevcuttur

(not: A matrisi köşegenleştirilebilir değilse, A'ya bazen **kusurlu** (defective) matris denir)

her matris köşegenleştirilebilir değildir

örnek:
$$A=\begin{bmatrix}0&1\\0&0\end{bmatrix}$$
. karakteristik polinom $\det(\lambda I-A)=\lambda^2$, dolayısıyla tek özdeğer 0'dadır ($\lambda_1=\lambda_2=0$)

özvektörler Av=0v=0 şartını $\left(Av=\lambda v\right)$ sağlar, yanı

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

dolayısıyla bütün özvektörler $v=\begin{bmatrix}v_1\\0\end{bmatrix}$ formundadır $(v_1\neq 0)$

sonuç olarak, A'nın iki özvektörü doğrusal bağımsız bir vektör kümesi oluşturamaz

Belirgin özdeğerler

A'nın belirgin (distinct) özdeğerleri varsa (yanı, $i \neq j$ için $\lambda_i \neq \lambda_j$ ise), A köşegenleştirilebilirdir

bu ifadenin olumsuz versiyonu (yani, "A'nın belirgin özdeğerleri yoksa A köşegenleştirilebilir değildir") yanlıştır: A'nın tekrarlanmış (repeated) özdeğerleri olabilir ancak yine de köşegenleştirilebilir olabilir