Controladores Programáveis

AUTOMAÇÃO

PROF. GUILHERME FRÓES SILVA

Índice

Controladores Industriais

Arquitetura

Interfaces

Endereçamento

Controladores Industriais

Controladores Industriais

Composto por

- Fontes de Alimentação
- CPU
- Entrada Digital da base
- Saída Digital da base
- Entrada Analógica da base
- Saída Analógica da base
- Entrada Digital de expansão local
- Saída Digital de expansão local
- Portas de Comunicação
- Cartão de memória de backup
- Chave seletora do modo de operação

Controladores Industriais

Alguns controladores necessitam de rack e outros utilizam um trilho DIN

Alguns controladores necessitam de baterias e outros utilizam um super capacitor

Alguns Modelos

PLC Micro800 Controller

PLC MicroLogix 1000

PLC MicroLogix 1100

PLC MicroLogix 1200

PLC MicroLogix 1400

PLC MicroLogix 1500

PLC SLC500

PLC PLC5

PAC CompactLogix / GaurdLogix

PAC ControlLogix / GuardLogix ESCOLA

Exemplos

MicroLogix 1400

Softwares

Software de Programação para CLP/PLC

- CCW (Gratuito) Todos os Micro800, IHM PanelVIEW Component e Inversores de Frequência PowerFlex 4x
- RSLogix 500 Todos MicroLogix e SLC500
- RSLogix Micro Developer Possui ferramentas adicionaris Todos MicroLogix
- RSLogix Micro Starter Lite Gratuito ML1000 e ML1100

http://www.rockwellautomation.com/rockwellsoftware/design/rslogix500/http://www.rockwellautomation.com/rockwellsoftware/design/rslogixmicro/

Software de Programação para CAP/PAC

RSLogix5000 ou Studio5000 – Todos CompactLogix e ControlLogix

http://www.rockwellautomation.com/rockwellsoftware/design/rslogix5000/

Características

-	ControlLogix 5570	ControlLogix XT	GuardLogix			
Maximum Memory	2MB – 32MB	2MB – 32MB	8MB std / 4MB Safety			
Disciplines Supported	Discre	ete, Batch, Motion, Process, Dri	ve, Safety			
Safety Level	SIL	. 2, PLd	SIL 3, Ple			
Non-Volatile Memory	·	rtified Secure Digital (SD) memo all controllers shipped with 1GB	•			
Built-in Communiation Ports		USB				
Communiations Module Options		et, DeviceNet, Data Highway Pl N Fieldbus, HART, legacy and 3r	-			
Serial Port Communications Module Options	ASCII, DF1 full/h	alf-duplex, DF1 radio modem, I	DH-485 and ModBus			
Integrated Motion	Integrated Me	otion on EtherNet/IP, SERCOS, a	analog, hydraulics			
Programming Languages	Relay Ladder logic, Function Block Diagram, Structured Text and Sequential Function Charts					
Certifications	UL, CSA, C-Tick, CE, ATEX, Marine, GOST, Kc					

Arquitetura

DOS CONTROLADORES INDUSTRIAIS

The Four Major Sections of a Programmable Controller

Arquitetura

Constituído de:

- Fonte de alimentação
- Unidade Central de Processamento UCP ou CPU
- Memórias do tipo fixo e volátil
- Bornes de entradas e saídas

Fixa e/ou Modular

CLP (PLC) de pequeno porte

Módulos de Entradas e Saídas de expansão

Modular – PLC

CLP (PLC) de médio porte

Módulos de Entradas e Saídas locais

Modular – PAC

Controlador Industrial

Rack (ou Chassi, ou Bastidor)

Fonte de Alimentação

CPU

Módulos de Comunicação.

Módulos de Entradas e Saídas Digitais

 Módulos de Entradas e Saídas Analógicas

Interfaces

Automação **Interfaces**

Numeração dos Slots ou Ranhuras dos **PLCs**

Terminais de ligação do PAC CompactLogix 1769-L23E-QBFC1B

To begin wiring your embedded I/O removable terminal blocks, loosen the screws at the top and bottom of the removable terminal block and remove the removable terminal block from the packaged controller.

Com os dispositivos

Com os dispositivos

Ligação de entradas e saídas digitais

Endereçamento

DE PLCS

Endereçamento de PLCs

Controladores Industriais

I/O located on the controller (embedded I/O) is slot 0.
 I/O added to the controller (expansion I/O) begins with slot 1.

Format	Expl	anation	
0d:s.w/b	X	File Type	Input (I) or Output (O)
	d	Data File Number (optional)	0 = output, 1 = input
ld:s.w/b	:	Slot delimiter (optional, not required for Data	Files 2 to 255)
	S	Slot number (decimal)	Embedded I/O: slot 0
			Expansion I/O:
			• slots 1 to 4 for MicroLogix 1100 (See page 15 for an illustration.)
		Word delimiter. Required only if a word numb	per is necessary as noted below.
	w	Word number	Required to read/write words, or if the discrete bit number is above 15.
			Range: 0 to 255
	/	Bit delimiter	•
	b	Bit number	0 to 15

Automação

Mapeamento da Memória de I/O dos **PLCs**

8 entradas

ord	Bit F	Bit Position														
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Х	Х	X	Х	Х	Х	Х	Х	Γ	r	Γ	r	Γ	Γ	r	Γ

r = read only, x = not used, always at a 0 or OFF state

16 entradas

pro	Bit P	Bit Position														
Š	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Γ	r	Γ	٢	r	Γ	٢	٢	Γ	Γ	Γ	٢	r	Γ	Γ	r

r = read only

32 entradas

핃	Bit F	Bit Position														
Word	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Γ	r	Γ	r	r	r	Γ	r	r	г	Γ	r	r	r	Γ	r
1	Γ	r	Γ	r	r	г	Γ	r	r	г	Γ	r	r	r	Γ	Γ

r = read only

POLITECNICA

Automação

Mapeamento da Memória de I/O dos **PLCs**

	Bit Position	
8 saídas	15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0
8 Saluas	0 0 0 0 0 0 0	0 r/w r/w r/w r/w r/w r/w r/w
	r/w = read and write, 0 = always at a 0 or OFF state	
	Bit Position	
	Bit Position	8 7 6 5 4 3 2 1 0
16 saídas	0 r/w r/w r/w r/w r/w r/w r/w	r/w r/w r/w r/w r/w r/w r/w r/w
	r/w = read and write	
	Bit Position	
	Bit Position	8 7 6 5 4 3 2 1 0
32 saídas	0 r/w r/w r/w r/w r/w r/w	v r/w r/w r/w r/w r/w r/w r/w r/w r/w
	1 r/w r/w r/w r/w r/w r/w r/w	v r/w r/w r/w r/w r/w r/w r/w r/w r/w

r/w = read and write

Exemplo de Endereçamento dos PLCs

Addressing Examples

Addressing Level	Example Address ⁽¹⁾	Slot	Word	Bit
Bit Addressing	0:0/4 ⁽²⁾	Output Slot 0 (Embedded I/O)	word 0	output bit 4
	0:2/7 ⁽²⁾	Output Slot 2 (Expansion I/O)	word 0	output bit 7
	I:1/4 ⁽²⁾	Input Slot 1 (Expansion I/O)	word 0	input bit 4
	I:0/15 ⁽²⁾	Input Slot 0 (Embedded I/0)	word 0	input bit 15
Word Addressing	0:1.0	Output Slot 1 (Expansion I/O)	word 0	
	1:7.3	Input Slot 7 (Expansion I/O)	word 3	
	I:3.1	Input Slot 3 (Expansion I/O)	word 1	

⁽¹⁾ The optional Data File Number is not shown in these examples.

A word delimiter and number are not shown. Therefore, the address refers to word 0.

Exemplo de Endereçamento dos PACs

Endereços Físicos, ou seja, endereço das entradas e saídas do controlador

	An I/O address follows this format:						
	Location :Slot :Type .Member .SubMember .Bit						
	= Optional						
Where	Is						
Location	Network location						
	LOCAL = same chassis or DIN rail as the controller						
	ADAPTER_NAME = identifies remote communication adapter or bridge module						
Slot	Slot number of I/O module in its chassis or DIN rail						
Туре	Type of data						
	I = input						
	0 = output						
	C = configuration						
	S = status						
Member	Specific data from the I/O module; depends on what type of data the module can store.						
	•For a digital module, a Data member usually stores the input or output bit values.						
	•For an analog module, a Channel member (CH#) usually stores the data for a channel.						
SubMember	Specific data related to a Member.						
Bit	Specific point on a digital I/O module; depends on the size of the I/O module (031 for a 32-point module)						

ESCOLA

Exemplo de Endereçamento de PACs

Term	Definition
Array	A tag that contains a block of multiple pieces of data.
	 An array is similar to a file. Within an array, each individual piece of data is called an element. Each element uses the same data type. An array tag occupies a contiguous block of memory in the controller, each element in sequence. You can use array and sequencer instructions to manipulate or index through the elements of an array. You organize the data into a block of one, two, or three dimensions.

The following example compares a structure to an array.

This is a tag that uses the Timer structure (data type).

Tag Name	Data Type
Timer_1	TIMER
+ Timer_1.PRE	DINT
+ Timer_1.ACC	DINT
Timer_1.EN	BOOL
Timer_1.TT	BOOL
Timer_1.DN	BOOL

This is a tag that uses an array of the Timer data type.

Tag Name	Data Type
Timers	TIMER[3]
+ Timer[0]	TIMER
+ Timer[1]	TIMER
+ Timer[2]	TIMER

Automação

Exemplo de Endereçamento de PACs (I/O)

ESCOLA POLITÉCNICA

Automação

Exemplo de Endereçamento de PACs (memórias)

Exemplo de Endereçamento de PACs

Próxima Aula

CONFIGURAÇÕES E LÓGICAS INICIAIS

Obrigado ©

ATÉ A PRÓXIMA AULA

