

ЭТИКЕТКА

<u>СЛКН.431253.011 ЭТ</u> Микросхема интегральная 564 ТМ2ТЭП Функциональное назначение – Два триггера Д-типа

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход Q1	8	Вход S2
2	Выход $\overline{\mathrm{Q1}}$	9	Вход D2
3	Вход С1	10	Вход R2
4	Вход R1	11	Вход С2
5	Вход D1	12	Выход $\overline{\mathrm{Q2}}$
6	Вход S1	13	Выход Q2
7	Общий 0V	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)^{\circ}$ C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение	Норма	
паименование параметра, единица измерения, режим измерения		не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC}=5$ B, $U_{IH}=U_{CC},U_{IL}=0$ B $U_{CC}=10$ B, $U_{IH}=U_{CC},U_{IL}=0$ B	Uol	-	0,01 0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B	U _{OH}	4,99 9,99	
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	Uoh min	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 10~B, U_{IL} = 0~B, U_{IH} = 10~B$ $U_{CC} = 15~B, U_{IL} = 0~B, U_{IH} = 15~B$	I_{IL}	-	/-0,05/ /-0,10/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 10~B,U_{IL} = 0~B,U_{IH} = 10~B$ $U_{CC} = 15~B,U_{IL} = 0~B,U_{IH} = 15~B$	I_{IH}	-	0,05 0,10

Продолжение таблицы 1			
1	2	3	4
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5~B,~U_{IL} = 0~B,~U_{IH} = 5~B,~U_{O} = 0,5~B$ $U_{CC} = 10~B,~U_{IL} = 0~B,~U_{IH} = 10~B~U_{O} = 0,5~B$	I_{OL}	0,5 0,9	
8 . Выходной ток высокого уровня, мА, при: $U_{CC} = 5~B,~U_{IL} = 0~B,~U_{IH} = 5~B,~U_{O} = 4,5~B$ $U_{CC} = 10~B,~U_{IL} = 0~B,~U_{IH} = 10~B~U_{O} = 9,5~B$	I_{OH}	/-0,25/ /-0,60/	
9. Ток потребления, мкА, при: $U_{CC} = 5 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 5 \; B$ $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 10 \; B$ $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	I_{CC}	- - -	1,00 2,00 4,00
10. Время задержки распространения при включении, нс, при: U_{CC} = 5 B, U_{IL} = 0 B, U_{IH} = 5 B, C_L = 50 пФ U_{CC} = 10 B, U_{IL} = 0 B, U_{IH} = 10 B, C_L = 50 пФ	$t_{ m PHL}$		420 150
11. Время задержки распространения при выключении, нС, при: U_{CC} = 5 B, U_{IL} = 0 B, U_{IH} = 5 B, C_L = 50 пФ U_{CC} = 10 B, U_{IL} = 0 B, U_{IH} = 10 B, C_L = 50 пФ	$t_{\rm PLH}$	-	420 150
12. Входная емкость, п Φ , при: $U_{CC} = 10~B$	C_{I}	-	10

. 1.2 Содержание драгоценных металлов в 1000 шт. изделий:

3олото Γ , серебро Γ , в том числе: 3олото $\Gamma/$ мм на 14 выводах, длиной MM.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10B)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости (T_{Cγ}) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.610-01ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ТМ2ТЭП соответствуют техническим услов	иям АЕЯР.431200.610-01ТУ и признаны годными для эксплуатации.
Приняты по от от (дата)	-
Место для штампа ОТК	Место для штампа ВП
Место для штампа « Перепроверка произведена	
Приняты по от от (дата)	_
Место для штампа ОТК	Место для штампа ВП

Цена договорная

- 5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ
- 5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход общая точка, выход общая точка, вход выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ