BA830 Team Project-Team 13

Antonio Moral Cevallos, Bosoo Kim, Jiajian(Sylar) Guo, Manushi Patel, Ying(Amber) Wu, Yixuan Wang

4/29/2021

Introduction

(Amber)

```
library(data.table)
library(tidyverse)
library(lfe)
library(fixest)
library(ubridate)
library(stargazer)
library(modelsummary)
library(modelsummary)
library(mltools)
library(knitr)
library(broom)
library(purrr)
# load dataset
treatment <- fread('Cognitive_Test_1.csv')
control<- fread('Cognitive_Test_2.csv')</pre>
```

```
# Data cleaning
treatment <- treatment[, treatment := 1]
control <- control[, treatment := 0]
total <- rbind(treatment, control)
total$StartDate <- as.Date(total$StartDate, format= "%Y-%m-%d")
total <- total[!(total$Finished=='False')]
total <- total[c(3:28,31:53), c("StartDate", "IPAddress", "Duration (in seconds)", "L
ocationLatitude", "LocationLongitude", "Q2", "Q3", "Q4", "Q5", "SC0", "treatment")]
IPadd <- split(total,total$IPAddress)
total2 <- data.frame()
for(x in IPadd){total2 <- rbind(total2,x[1,])}
total <- total2</pre>
```

```
# change column names and data type
colnames(total)[c(1,3,6,7,8,9,10)] = c("date","duration","age","gender","GPA","work_e
xperience","score")
total$duration <- as.numeric(total$duration)
total$score <- as.numeric(total$score)
total$age <- as.factor(total$age)
total$gender <- as.factor(total$gender)
total$GPA <- as.factor(total$GPA)
total$work_experience <- as.factor(total$work_experience)</pre>
```

Method

(Manushi, Bosoo)

Data Analysis

(Antonio, Yixuan, Bosoo)

t-test

```
t1 <- t.test(total[treatment == 1, score], total[treatment == 0, score])
t2 <- t.test(total[treatment == 1, duration], total[treatment == 0, duration])
tab <- map_df(list(t1, t2), tidy)
tab</pre>
```

```
## # A tibble: 2 x 10
##
     estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high
##
        <dbl>
                  <dbl>
                             <dbl>
                                        <dbl>
                                                <dbl>
                                                           <dbl>
                                                                    <dbl>
                                                                               <dbl>
       -0.603
                    3.92
                              4.53
                                     -1.42
## 1
                                                0.162
                                                            43.0
                                                                    -1.46
                                                                               0.252
## 2
        4.64
                  315.
                            310.
                                       0.0956
                                                0.924
                                                            42.5
                                                                   -93.3
                                                                            103.
## # ... with 2 more variables: method <chr>, alternative <chr>
```

Since p-value is larger than 0.05, the true difference in mean scores between the control group and treatment group is not statistically significant from 0. In other words, the mean scores between two groups are not significantly different. Similarly, the mean completion time between two groups are also not significantly different.

Randomization check

	Treatment	Control	P-value
Under 20	0.0384615	0.1052632	0.515617
Between 20-30	0.9230769	0.8947368	1.000000
Over 30	0.0384615	0.0000000	0.000000
	Treatment	Control	P-value
Male	0.6153846	0.3157895	0.0022497
Female	0.3461538	0.6315789	0.0037487
NonBinary	0.0384615	0.0000000	0.0000000
	Treatment	Control	P-value
Under 3.0	0.0384615	0.0000000	0.0000000
Under 3.0 Between 3.0-3.5	0.0384615 0.1923077	0.0000000	0.0000000
Between 3.0-3.5	0.1923077	0.5263158	0.0006283
Between 3.0-3.5	0.1923077 0.7692308	0.5263158 0.4736842	0.0006283 0.0027657
Between 3.0-3.5 Over 3.5	0.1923077 0.7692308 Treatment	0.5263158 0.4736842 Control	0.0006283 0.0027657 P-value
Between 3.0-3.5 Over 3.5 No Experience	0.1923077 0.7692308 Treatment 0.3461538	0.5263158 0.4736842 Control 0.3684211	0.0006283 0.0027657 P-value

Regression of Score on treatment

score_reg <- lm(score~treatment, data=total)
score_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE", "T-Sta
t", "P-Value"), digits = c(0, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	4.526	0.340	13.303	0.000
treatment	-0.603	0.448	-1.348	0.185

· Controlling for Age

score_age_reg <- feols(score~treatment + age, data=total, se='white')
score_age_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE", "T
-Stat", "P-Value"), digits = c(0, 3, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	2.583	0.713	3.620	0.001
treatment	-0.748	0.391	-1.914	0.063
age>30	2.165	0.749	2.891	0.006
age20-30	2.172	0.723	3.004	0.005

· Controlling for Gender

score_gender_reg <- feols(score~treatment + gender, data=total, se='white')
score_gender_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE",
"T-Stat", "P-Value"), digits = c(0, 3, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	4.481	0.292	15.335	0.000
treatment	-0.678	0.519	-1.305	0.199
genderMale	0.057	0.533	0.108	0.915
genderNon-binary / third gender	2.197	0.508	4.325	0.000
genderPrefer not to say	0.519	0.292	1.777	0.083

Controlling for GPA

score_gpa_reg <- feols(score~treatment + GPA, data=total, se='white')
score_gpa_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE", "T
-Stat", "P-Value"), digits = c(0, 3, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	3.606	0.424	8.510	0.000
treatment	-0.606	0.424	-1.430	0.160
GPA>3.50	0.984	0.382	2.578	0.014
GPA3.00 - 3.50	0.863	0.412	2.092	0.043

Controlling for Work Experience

score_exp_reg <- feols(score~treatment + work_experience, data=total, se='white')
score_exp_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE", "T
-Stat", "P-Value"), digits = c(0, 3, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	4.560	0.429	10.633	0.000
treatment	-0.603	0.434	-1.391	0.172
work_experience0 years	-0.470	0.529	-0.889	0.379
work_experience2 - 5 years	0.664	0.544	1.221	0.229
work_experience6 - 9 years	0.043	0.409	0.106	0.916

Controlling for All covariates

score_all_reg <- feols(score~treatment + age + gender + GPA + work_experience, data=t
otal, se='white')
score_all_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE", "T
-Stat", "P-Value"), digits = c(0, 3, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	0.839	1.078	0.778	0.442
treatment	-0.646	0.485	-1.333	0.191

age>30	2.019	1.077	1.874	0.070
age20-30	1.954	0.906	2.156	0.038
genderMale	0.026	0.581	0.044	0.965
genderNon-binary / third gender	2.064	0.758	2.725	0.010
genderPrefer not to say	0.706	0.335	2.108	0.042
GPA>3.50	1.789	0.673	2.658	0.012
GPA3.00 - 3.50	1.988	0.825	2.410	0.021
work_experience0 years	-0.487	0.569	-0.855	0.398
work_experience2 - 5 years	0.853	0.632	1.349	0.186

Regression of completion time on treatment

duration_reg <- feols(duration~treatment, data=total, se='white')
duration_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE", "TStat", "P-Value"), digits = c(0, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value	
(Intercept)	310.474	33.163	9.362	0.000	
treatment	4.642	48.536	0.096	0.924	

Controlling for Age

duration_age_reg <- feols(duration~treatment + age, data=total, se='white')
duration_age_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE",
"T-Stat", "P-Value"), digits = c(0, 3, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	244.131	97.794	2.496	0.017
treatment	-7.393	49.258	-0.150	0.881
age>30	258.262	100.750	2.563	0.014
age20-30	74.148	99.127	0.748	0.459

• Controlling for Gender

duration_gender_reg <- feols(duration~treatment + gender, data=total, se='white')
duration_gender_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "S
E", "T-Stat", "P-Value"), digits = c(0, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	319.023	39.133	8.152	0.000
treatment	-3.832	48.228	-0.079	0.937
genderMale	-2.736	49.398	-0.055	0.956
genderNon-binary / third gender	41.809	35.056	1.193	0.240
genderPrefer not to say	-146.023	39.133	-3.731	0.001

Controlling for GPA

duration_gpa_reg <- feols(duration~treatment + GPA, data=total, se='white')
duration_gpa_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE",
"T-Stat", "P-Value"), digits = c(0, 3, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	312.840	45.249	6.914	0.000
treatment	7.160	45.249	0.158	0.875
GPA>3.50	-6.743	41.953	-0.161	0.873
GPA3.00 - 3.50	1.573	42.562	0.037	0.971

Controlling for Work Experience

duration_exp_reg <- feols(duration~treatment + work_experience, data=total, se='white
')
duration_exp_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE",
"T-Stat", "P-Value"), digits = c(0, 3, 3, 3), align = 'c')

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	334.571	51.636	6.479	0.000
treatment	-3.350	50.426	-0.066	0.947
work_experience0 years	-40.874	58.760	-0.696	0.491

work_experience2 - 5 years	-42.932	64.313	-0.668	0.508
work_experience6 - 9 years	163.779	56.781	2.884	0.006

• Controlling for All covariates

```
duration_all_reg <- feols(duration~treatment + age + gender + GPA + work_experience,
data=total, se='white')
duration_all_reg %>% tidy() %>% kable(col.names = c("Predictor", "Coefficient", "SE",
"T-Stat", "P-Value"), digits = c(0, 3, 3, 3), align = 'c')
```

Predictor	Coefficient	SE	T-Stat	P-Value
(Intercept)	301.039	131.732	2.285	0.029
treatment	-21.693	44.671	-0.486	0.630
age>30	265.148	116.742	2.271	0.030
age20-30	93.544	122.479	0.764	0.450
genderMale	9.294	48.805	0.190	0.850
genderNon-binary / third gender	33.604	70.516	0.477	0.637
genderPrefer not to say	-145.559	61.437	-2.369	0.024
GPA>3.50	-49.494	58.948	-0.840	0.407
GPA3.00 - 3.50	-44.008	94.563	-0.465	0.645
work_experience0 years	-32.016	66.221	-0.483	0.632
work_experience2 - 5 years	-52.890	86.304	-0.613	0.544

Limitations

(Sylar)

Conclusion

(Antonio)