

- (6) M Recall and apply the equations for KE and GPE (7) S Derive the equation for KE and GPE from first principles
- (8) C Apply ideas about energy exchange between KE and GPE to problems

Deriving the GPE equation

In raising an object upwards in gravitational field, work is done. This work is equal to the energy gained (GPE)

 $Ep = W = F \times distance$ move in the direction of the force

Deriving the KE equation

constant force acting on a mass, after time t and distance s it has speed v.

$$S = \frac{V^2}{20}$$
 suvat

Work done by force is transferred to KE

$$W = f \times S = \frac{F V^2}{2a} = \frac{MaV^2}{2a} = \frac{1}{2} M V^2$$

Force = mass x acceleration...

Extension: Use the KE equation to derive the base unit for KE.

 (6) M - Recall and apply the equations for KE and GPE (7) S - Derive the equation for KE and GPE from first principles (8) C - Apply ideas about energy exchange between KE and GPE to problems
Energy exchange demo
In this situation GPE is transferring into KE
M— as the hall falls
h= atructured this
h= GPE=structured s= 2
$ggh = \frac{1}{2}gv^2$ t= 0.91
h = 2 2 V=
20h= v2
V = -(-)
2m
Predict by calculation the exit speed at the bottom of the ramp. $V = 3.57 \text{ Ms}^{-1}$
Measure the exit speed. $\sqrt{2.19}$
Extension: What is the percentage difference
between the values? Can you suggest 3 reasons for
any difference?
-friction does work to GPE = LE reduce speed of ball. 2 als 22
TEred los in bounding
- No accounting for deceleration. = 729h
· · · · · · · · · · · · · · · · · · ·

- (6) M Recall and apply the equations for KE and GPE
- (7) S Derive the equation for KE and GPE from first principles
- (8) C Apply ideas about energy exchange between KE and GPE to problems

Try the summary questions 1-7 P78

Plenary Q

- 8 Dan has a mass of 62 kg. He is travelling at a speed of 11 m s⁻¹ at the top of a rollercoaster loop, which is 21.8 m above the ground.
 - a Calculate:
 - i his kinetic energy at the top of the loop (1 mark)
 - ii his change in gravitational potential energy between the top and bottom of the loop 0.8 m above the ground
 - (2 marks)
 - iii his kinetic energy at the bottom of the loop, stating any assumption you have made in calculating your answer
- (3 marks)

iv his speed at the bottom of the loop.

(2 marks)

(1 mark)

Answers

- 8 a i $E_K = \frac{1}{2}mv^2 = \frac{1}{2}(62 \text{ kg})(11 \text{ m s}^{-1})^2 = 3751 \text{ J} = 3.8 \text{ kJ (two significant figures)}$ (1 mark)
 - ii $\Delta E_{P} = mg\Delta h$

$$= (62 \text{ kg}) (9.81 \text{ m s}^{-2}) (21.8 \text{ m} - 0.8 \text{ m})$$
 (1 mark)

$$= 12 772 J = 13 kJ \text{ (two significant figures)}$$
 (1 mark)

- iii E_K at bottom of slide = E_K at top of slide + E_K gained going down slide
 - or E_K at bottom of slide = E_K at top of slide + decrease in E_P going down slide (1 mark)

Assumption: increase in kinetic energy going down slide is equal to the decrease in E_P going down slide, assuming frictional forces are negligible.

$$E_{K} = 3750 \text{ J} + 12800 \text{ J} = 16550 \text{ J} = 17 \text{ kJ (two significant figures)}$$
 (1 mark)

iv
$$E_{K} = \frac{1}{2}mv^{2}$$

= $\frac{1}{2}(62 \text{ kg}) v^{2}$

$$v = \sqrt{2 \times \frac{16600 \text{ J}}{62 \text{ kg}}}$$

=
$$23 \,\mathrm{m \, s}^{-1}$$
 (two significant figures) (1 mark)

- (6) M Recall and apply the equations for KE and GPE
- (7) S Derive the equation for KE and GPE from first principles
- (8) C Apply ideas about energy exchange between KE and GPE to problems

MC plenary

A ski jumper of mass 50.0 kg uses a launch track as shown in the figure. The initial drop in height is 40.0 m down a ramp and then the skier travels back up a launch ramp regaining 10.0 m of height before taking off. The total length of the launch track is 200 m, and the air resistance and contact with the ice cause an average frictional force of 10.0 N throughout the length of the track.

Calculate the launch speed of the skier as they leave the ramp.

Acceleration due to free fall = $9.81 \,\mathrm{m \, s^{-2}}$

- \circ 28.0 m s⁻¹
- \circ 22.6 m s⁻¹
- \circ 24.3 m s⁻¹

