### An Invitation to

# **Mathematical Quantum Physics**

Lancaster University Postgraduate Forum

Luke Mader

Lancaster University

### A quantum particle living in $\mathbb R$

Suppose that we have a quantum particle contained inside of  $\ensuremath{\mathbb{R}}.$ 

This particle has things we can observe: e.g. *position*, *momentum*, and *energy*. Such things are called *observables*.

### Wave-particle duality

Quantum objects can be observed to have both wave-like and particle-like properties. This is known as *wave-particle duality*.



### Wave-particle duality

Quantum objects can be observed to have both wave-like and particle-like properties. This is known as wave-particle duality.



### Probabilistic behaviour of quantum objects

In the double-slit experiment, electrons that are 'identical' do not hit the screen at the same point.

### Probabilistic behaviour of quantum objects

In the double-slit experiment, electrons that are 'identical' do not hit the screen at the same point.

This suggests that we *cannot predict the outcome* of a quantum experiment; we can only predict *the probabilities of an outcome* of a quantum experiment.

The wavefunction combines the probabilistic nature and wave-particle duality of a quantum object.

It is a *mathematical* encoding of what we know about the particle.

The wavefunction combines the probabilistic nature and wave-particle duality of a quantum object.

It is a mathematical encoding of what we know about the particle.

For a particle moving in  $\mathbb R$  dependent on time  $t\in\mathbb R$ , the wavefunction is some map  $\psi\colon\mathbb R\times\mathbb R\to\mathbb C.$ 

4

The wavefunction combines the probabilistic nature and wave-particle duality of a quantum object.

It is a mathematical encoding of what we know about the particle.

For a particle moving in  $\mathbb R$  dependent on time  $t\in\mathbb R$ , the wavefunction is some map  $\psi\colon\mathbb R\times\mathbb R\to\mathbb C.$ 

•  $\mathbb{P}(\text{The position of the particle is in } E \subset \mathbb{R}) = \int_{E} |\psi(x)|^{2} dx$ .

4

The wavefunction combines the probabilistic nature and wave-particle duality of a quantum object.

It is a mathematical encoding of what we know about the particle.

For a particle moving in  $\mathbb R$  dependent on time  $t\in\mathbb R$ , the wavefunction is some map  $\psi\colon\mathbb R\times\mathbb R\to\mathbb C.$ 

- $\mathbb{P}(\text{The position of the particle is in } E \subset \mathbb{R}) = \int_{E} |\psi(x)|^{2} dx$ .
- The time-evolution of the particle is wave-like:

$$\frac{\partial \psi}{\partial t} = \frac{1}{i\hbar} H \psi.$$

This is the famous Schrödinger equation.

Л

### An underlying space for wavefunctions

As  $\mathbb{P}(\text{The position of the particle is in } E \subset \mathbb{R}) = \int_{E} |\psi(x)|^{2} dx$ , clearly

$$\mathbb{P} \big( \text{The position of the particle is in } \mathbb{R} \big) = 1 = \int_{\mathbb{R}} |\psi(x)|^2 \, \mathrm{d}x.$$

### An underlying space for wavefunctions

As  $\mathbb{P}(\text{The position of the particle is in } E \subset \mathbb{R}) = \int_{E} |\psi(x)|^{2} dx$ , clearly

$$\mathbb{P}\big(\text{The position of the particle is in }\mathbb{R}\big) = 1 = \int_{\mathbb{R}} \lvert \psi(x) \rvert^2 \, \mathrm{d}x.$$

Therefore, it makes sense to associate the wavefunctions with the space  $L^2(\mathbb{R}), \text{ where}$ 

$$f \in L^2(\mathbb{R}) \longleftrightarrow \int_{\mathbb{R}} |f(x)|^2 dx < \infty.$$

This is not technically the definition of  $L^2(\mathbb{R})$ , but it is good enough as a working definiton. To make this more precise, we need measure theory.

5

# Properties of $L^2(\mathbb{R})$

•  $L^2(\mathbb{R})$  is an infinite-dimensional vector space.

## Properties of $L^2(\mathbb{R})$

- $L^2(\mathbb{R})$  is an infinite-dimensional vector space.
- $\langle \phi, \psi \rangle \coloneqq \int_{\mathbb{R}} \overline{\phi(x)} \psi(x) \, \mathrm{d}x$  is an inner product on  $L^2(\mathbb{R})$ , and

$$\|\psi\| \coloneqq \left(\int_{\mathbb{R}} |\psi(x)|^2 dx\right)^{\frac{1}{2}} = \sqrt{\langle \psi, \psi \rangle}$$

defines a norm on  $L^2(\mathbb{R})$  where every Cauchy sequence converges.

## Properties of $L^2(\mathbb{R})$

- $L^2(\mathbb{R})$  is an infinite-dimensional vector space.
- $\langle \phi, \psi \rangle \coloneqq \int_{\mathbb{R}} \overline{\phi(x)} \psi(x) \, \mathrm{d}x$  is an inner product on  $\mathrm{L}^2(\mathbb{R})$ , and

$$\|\psi\| \coloneqq \left(\int_{\mathbb{R}} |\psi(x)|^2 dx\right)^{\frac{1}{2}} = \sqrt{\langle \psi, \psi \rangle}$$

defines a norm on  $L^2(\mathbb{R})$  where every Cauchy sequence converges.

•  $L^2(\mathbb{R})$  has a non-trivial dense subset.

### The position operator

As  $\langle \phi, \psi \rangle = \int_{\mathbb{R}} \overline{\phi(x)} \psi(x) \, \mathrm{d}x$ , we can express the expectation of the position as

$$\mathbb{E}(x) := \int_{\mathbb{R}} x |\psi(x)|^2 dx = \langle \psi(x), x \psi(x) \rangle.$$

### The position operator

As  $\langle \phi, \psi \rangle = \int_{\mathbb{R}} \overline{\phi(x)} \psi(x) \, \mathrm{d}x$ , we can express the expectation of the position as

$$\mathbb{E}(x) := \int_{\mathbb{R}} x |\psi(x)|^2 dx = \langle \psi(x), x \psi(x) \rangle.$$

We therefore have a natural operator describing the position of our particle:

$$X \colon \mathrm{Dom}(X) \to \mathrm{L}^2(\mathbb{R}), \qquad X(\psi) := x\psi(x).$$

7

### The position operator

As  $\langle \phi, \psi \rangle = \int_{\mathbb{R}} \overline{\phi(x)} \psi(x) \, \mathrm{d}x$ , we can express the expectation of the position as

$$\mathbb{E}(x) := \int_{\mathbb{R}} x |\psi(x)|^2 dx = \langle \psi(x), x \psi(x) \rangle.$$

We therefore have a natural operator describing the position of our particle:

$$X \colon \mathrm{Dom}(X) \to \mathrm{L}^2(\mathbb{R}), \qquad X(\psi) := x\psi(x).$$

An issue:  $\mathrm{Dom}(X) \neq \mathrm{L}^2(\mathbb{R})$ , as

$$rac{1}{x}\chi_{[1,\infty)}(x)\in\mathrm{L}^2(\mathbb{R})\quad \mathrm{but}\quad \chi_{[1,\infty)}(x)
ot\in\mathrm{L}^2(\mathbb{R})$$

7

Quantum particles behave both as waves and particles, and have a
 probabilistic nature. We describe this through wavefunctions, which
 encode everything we know about the particle.

- Quantum particles behave both as waves and particles, and have a
   probabilistic nature. We describe this through wavefunctions, which
   encode everything we know about the particle.
- A natural space for wavefunctions is  $L^2(\mathbb{R})$ .

- Quantum particles behave both as waves and particles, and have a
   probabilistic nature. We describe this through wavefunctions, which
   encode everything we know about the particle.
- A natural space for wavefunctions is  $L^2(\mathbb{R})$ .
- $\bullet$  For a wavefunction  $\psi,\ \left|\psi\right|^2$  can be interpreted as a probability density function.

- Quantum particles behave both as waves and particles, and have a
  probabilistic nature. We describe this through wavefunctions, which
  encode everything we know about the particle.
- A natural space for wavefunctions is  $L^2(\mathbb{R})$ .
- For a wavefunction  $\psi$ ,  $\left|\psi\right|^2$  can be interpreted as a *probability* density function.
- Through the inner product of  $L^2(\mathbb{R})$ , we can get an operator describing the position of a particle. This operator cannot be defined on the whole space.

### Hilbert spaces

A (complex, infinite-dimensional)  $Hilbert\ space\ \mathcal{H}$  is a (complex, infinite-dimensional) vector space such that:

- For a given inner product  $\langle \cdot, \cdot \rangle$ ,  $\| \cdot \| \coloneqq \sqrt{\langle \cdot, \cdot \rangle}$  is a norm.
- Every Cauchy sequence converges with respect to this norm (*H* is complete).
- If  ${\cal H}$  has a dense countable subset, then it is *separable*.

### **Operators on Hilbert Spaces**

A linear map  $T: \mathcal{H} \to \mathcal{H}$  is a *bounded operator* if there exists some M>0 such that for all  $x\in\mathcal{H}$ ,

$$||Tx|| \leq M||x||.$$

### **Operators on Hilbert Spaces**

A linear map  $T: \mathcal{H} \to \mathcal{H}$  is a *bounded operator* if there exists some M > 0 such that for all  $x \in \mathcal{H}$ ,

$$||Tx|| \leq M||x||.$$

For a subspace  $\mathrm{Dom}\,(T)\subset\mathcal{H}$ , an *(unbounded) operator* is any linear map  $T\colon\mathrm{Dom}\,(T)\to\mathcal{H}$ .

An (unbounded) operator is *densely-defined* if Dom(T) is dense in  $\mathcal{H}$ .

### Adjoints of bounded operators

For a bounded operator  $T \colon \mathcal{H} \to \mathcal{H}$ , there exists an *adjoint* operator

 $T^*\colon \mathcal{H} \to \mathcal{H}$  defined by

$$\langle x, Ty \rangle = \langle T^*x, y \rangle$$

for any  $x, y \in \mathcal{H}$ . Furthermore, the adjoint operator is unique.

### Existence of adjoints of bounded operators

### Theorem (Riesz-Fréchet theorem)

For a Hilbert space  $\mathcal H$  and a continuous linear map  $\psi:\mathcal H\to\mathbb C$ , there is a unique  $z\in\mathcal H$  such that for all  $y\in\mathcal H$ ,

$$\psi(y) = \langle z, y \rangle.$$

Fix  $x \in \mathcal{H}$ . Then,  $\psi \colon \mathcal{H} \to \mathbb{C}$ ,  $\psi(y) = \langle x, Ty \rangle$  is a continuous linear map.

By the Riesz-Fréchet theorem, there exists a unique  $z \in \mathcal{H}$  such that

$$\langle z, y \rangle = \langle x, Ty \rangle$$
.

Define  $T^*$  by  $T^*x = z$  to get a linear bounded operator.

### What about adjoints of unbounded operators?

Let  $T : \mathrm{Dom}(T) \to \mathcal{H}$  be a *densely-defined* operator. Define

 $\mathrm{Dom}\left(T^{*}\right):=\left\{ x\in\mathcal{H}\colon y\mapsto\left\langle x,Ty\right\rangle \text{ where }y\in\mathrm{Dom}\left(T\right)\text{ is a continuous map}\right\} .$ 

- Dom ( $T^*$ ) is a subspace.
- As  $\mathrm{Dom}\,(T)$  is dense, there exists a unique extension of  $x\mapsto \langle x,\,Ty\rangle$  to the entirety of  $\mathcal H$  for every  $y\in \mathcal H$ .

By the Riesz-Fréchet theorem, there then exists a unique vector  $z \in \mathcal{H}$  such that

$$\langle z, y \rangle = \langle x, Ty \rangle$$

for all  $y \in \text{Dom}(T)$  and  $x \in \text{Dom}(T^*)$ . Define  $T^*$  by  $T^*x = z$ .

 We need the denseness of Dom (T) or else the uniqueness of the adjoint fails. Therefore, only densely-defined operators have adjoints.

- We need the denseness of Dom (T) or else the uniqueness of the adjoint fails. Therefore, only densely-defined operators have adjoints.
- In general,  $\operatorname{Dom}(T) \neq \operatorname{Dom}(T^*)$ . Nightmarishly,

- We need the denseness of Dom (T) or else the uniqueness of the adjoint fails. Therefore, only densely-defined operators have adjoints.
- In general,  $Dom(T) \neq Dom(T^*)$ . Nightmarishly,
  - 1.  $Dom(T^*)$  may not be dense, so  $(T^*)^*$  may not exist.

- We need the denseness of Dom (T) or else the uniqueness of the adjoint fails. Therefore, only densely-defined operators have adjoints.
- In general,  $\mathrm{Dom}(T) \neq \mathrm{Dom}(T^*)$ . Nightmarishly,
  - 1. Dom  $(T^*)$  may not be dense, so  $(T^*)^*$  may not exist.
  - 2. There exist operators such that  $Dom(T) \cap Dom(T^*) = \{0\}.$

- We need the denseness of Dom (T) or else the uniqueness of the adjoint fails. Therefore, only densely-defined operators have adjoints.
- In general,  $\mathrm{Dom}(T) \neq \mathrm{Dom}(T^*)$ . Nightmarishly,
  - 1.  $Dom(T^*)$  may not be dense, so  $(T^*)^*$  may not exist.
  - 2. There exist operators such that  $\mathrm{Dom}\,(T)\cap\mathrm{Dom}\,(T^*)=\{0\}.$
  - 3. For two densely-defined operators T and S on  $\mathcal{H}$ , as

$$Dom(T + S) = Dom(T) \cap Dom(S),$$

T + S may have no adjoint.

## Symmetric and self-adjoint operators

An operator  $T: \mathrm{Dom}(T) \to \mathcal{H}$  is *symmetric* if for all  $x, y \in \mathrm{Dom}(T)$ ,

$$\langle x, Ty \rangle = \langle Tx, y \rangle$$
.

If T is densely-defined, symmetric, and if  $\mathrm{Dom}\,(T)=\mathrm{Dom}\,(T^*)$ , then T is *self-adjoint*.

## Symmetric and self-adjoint operators

An operator  $T: \mathrm{Dom}(T) \to \mathcal{H}$  is *symmetric* if for all  $x, y \in \mathrm{Dom}(T)$ ,

$$\langle x, Ty \rangle = \langle Tx, y \rangle$$
.

If T is densely-defined, symmetric, and if  $Dom(T) = Dom(T^*)$ , then T is *self-adjoint*.

#### **Theorem**

A densely-defined operator  $T \colon \mathrm{Dom}\,(T) \to \mathcal{H}$  is symmetric if and only if  $T^*$  is an extension of T.

### **Essentially self-adjoint operators**

An operator  $T: \mathrm{Dom}(T) \to \mathcal{H}$  is essentially self-adjoint if:

- T is symmetric:  $\langle x, Ty \rangle = \langle Tx, y \rangle$  for all  $x, y \in \text{Dom}(T)$ .
- The operator  $\overline{T}$  whose *graph* is given by the *closure of the graph of* T,

$$\mathrm{G}(\overline{T})=\overline{\mathrm{G}(T)}=\overline{\{(x,Tx)\in\mathcal{H}\oplus\mathcal{H}\colon x\in\mathrm{Dom}\,(T)\}},$$

is self-adjoint.

#### **Essentially self-adjoint operators**

An operator  $T : \mathrm{Dom}(T) \to \mathcal{H}$  is essentially self-adjoint if:

- T is symmetric:  $\langle x, Ty \rangle = \langle Tx, y \rangle$  for all  $x, y \in \text{Dom}(T)$ .
- The operator  $\overline{T}$  whose graph is given by the closure of the graph of T,

$$\mathrm{G}(\,\overline{T}\,) = \overline{\mathrm{G}(\,T\,)} = \overline{\{(x,\,Tx) \in \mathcal{H} \oplus \mathcal{H} \colon x \in \mathrm{Dom}\,(\,T\,)\}},$$

is self-adjoint.

If T is essentially self-adjoint, then  $\overline{T}$  is the unique self-adjoint extension of T.

#### Our friend the position operator

Recall the position operator  $X \colon \mathrm{Dom}\,(X) o \mathrm{L}^2(\mathbb{R})$  given by

$$X(\psi)=x\psi(x).$$

#### Our friend the position operator

Recall the position operator  $X \colon \mathrm{Dom}\,(X) o \mathrm{L}^2(\mathbb{R})$  given by

$$X(\psi) = x\psi(x).$$

• X is self-adjoint on

$$Dom(X) = \{ \psi \in L^{2}(\mathbb{R}) \colon x\psi(x) \in L^{2}(\mathbb{R}) \}.$$

# Our friend the position operator

Recall the position operator  $X \colon \mathrm{Dom}\,(X) \to \mathrm{L}^2(\mathbb{R})$  given by

$$X(\psi) = x\psi(x).$$

• X is self-adjoint on

$$\mathrm{Dom}(X) = \left\{ \psi \in \mathrm{L}^2(\mathbb{R}) \colon x \psi(x) \in \mathrm{L}^2(\mathbb{R}) \right\}.$$

X is not self-adjoint but is essentially self-adjoint on

$$\mathcal{S}(\mathbb{R}) \coloneqq \left\{ \psi \in \mathrm{C}^{\infty}(\mathbb{R}) \colon \forall \alpha, \beta \in \mathbb{N}, \sup_{\mathbf{x} \in \mathbb{R}} \left| \mathbf{x}^{\alpha} \frac{\mathrm{d}^{\beta} \psi(\mathbf{x})}{\mathrm{d} \mathbf{x}^{\beta}} \right| < \infty \right\}.$$

#### What have we seen so far?

 Bounded operators always have an adjoint and are always either self-adjoint or not self-adjoint.

#### What have we seen so far?

- Bounded operators always have an adjoint and are always either self-adjoint or not self-adjoint.
- For unbounded operators, only densely-defined operators have adjoints. There are different families of unbounded operators between self-adjoint and not self-adjoint.

#### What have we seen so far?

- Bounded operators always have an adjoint and are always either self-adjoint or not self-adjoint.
- For unbounded operators, only densely-defined operators have adjoints. There are different families of unbounded operators between self-adjoint and not self-adjoint.
- Changing the domain of an unbounded operator can change key properties of the operator.

#### The axioms of quantum mechanics

To formalise what we originally saw in quantum physics, we introduce the following 'axioms':

The possibile states of a quantum system are associated with vectors
in a complex and separable Hilbert space that have norm 1.

#### The axioms of quantum mechanics

To formalise what we originally saw in quantum physics, we introduce the following 'axioms':

- The possibile states of a quantum system are associated with vectors
  in a complex and separable Hilbert space that have norm 1.
- 2. *Observables* in our quantum system are associated with *self-adjoint linear operators*.

# The axioms of quantum mechanics

To formalise what we originally saw in quantum physics, we introduce the following 'axioms':

- The possibile states of a quantum system are associated with vectors
  in a complex and separable Hilbert space that have norm 1.
- 2. *Observables* in our quantum system are associated with *self-adjoint linear operators*.
- 3. If an observation a has the corresponding operator A and if our quantum system is in the state  $\psi \in \mathrm{Dom}\,(A)$ , then the expected value for the measurement of a is

$$\mathbb{E}_{\psi}(A) = \langle \psi, A\psi \rangle.$$

#### The 1D quantum harmonic oscillator

The *Hamiltonian* operator describes the *energy* of a quantum system.

#### The 1D quantum harmonic oscillator

The *Hamiltonian* operator describes the *energy* of a quantum system.

For the quantum harmonic oscillator, it is the operator

 $H \colon \mathrm{Dom}\,(H) o \mathrm{L}^2(\mathbb{R})$  given by

$$H=\frac{1}{2m}\big(P^2+(m\omega X^2)\big),$$

where:

- ullet  $P\psi=-i\hbarrac{\mathrm{d}\psi}{\mathrm{d}x}$  is the momentum operator
- $X\psi = x\psi(x)$  is the *position operator*

#### The mathematical problem

A natural domain for our Hamiltonian is the Schwartz space,

$$\mathrm{Dom}(H) = \mathcal{S}(\mathbb{R}) = \left\{ \psi \in \mathrm{C}^{\infty}(\mathbb{R}) \colon \forall \alpha, \beta \in \mathbb{N}, \sup_{x \in \mathbb{R}} \left| x^{\alpha} \frac{\mathrm{d}^{\beta} \psi(x)}{\mathrm{d} x^{\beta}} \right| < \infty \right\}.$$

#### The mathematical problem

A natural domain for our Hamiltonian is the Schwartz space,

$$\mathrm{Dom}\left(\mathcal{H}\right) = \mathcal{S}(\mathbb{R}) = \left\{\psi \in \mathrm{C}^{\infty}(\mathbb{R}) \colon \forall \alpha, \beta \in \mathbb{N}, \sup_{x \in \mathbb{R}} \left| x^{\alpha} \frac{\mathrm{d}^{\beta} \psi(x)}{\mathrm{d} x^{\beta}} \right| < \infty \right\}.$$

Our goals:

• Find the eigenvalues (if they exist) of our Hamiltonian on  $\mathcal{S}(\mathbb{R})$ : these are the energy levels of the quantum harmonic oscillator.

#### The mathematical problem

A natural domain for our Hamiltonian is the Schwartz space,

$$\mathrm{Dom}\left(\mathit{H}\right) = \mathcal{S}(\mathbb{R}) = \left\{\psi \in \mathrm{C}^{\infty}(\mathbb{R}) \colon \forall \alpha, \beta \in \mathbb{N}, \sup_{x \in \mathbb{R}} \left| x^{\alpha} \frac{\mathrm{d}^{\beta} \psi(x)}{\mathrm{d} x^{\beta}} \right| < \infty \right\}.$$

Our goals:

- Find the *eigenvalues* (if they exist) of our Hamiltonian on  $\mathcal{S}(\mathbb{R})$ : these are the energy levels of the quantum harmonic oscillator.
- Confirm that the Hamiltonian is either essentially self-adjoint or self-adjoint on  $\mathcal{S}(\mathbb{R})$  so that we satisfy our axioms.

Lowering Operator: 
$$a \colon \mathcal{S}(\mathbb{R}) \to \mathrm{L}^2(\mathbb{R}), \quad a = \frac{1}{\sqrt{2\hbar m\omega}} \Big( m\omega X + iP \Big)$$
  
Raising Operator:  $a^* \colon \mathcal{S}(\mathbb{R}) \to \mathrm{L}^2(\mathbb{R}), \quad a^* = \frac{1}{\sqrt{2\hbar m\omega}} \Big( m\omega X - iP \Big)$ 

Raising Operator: 
$$a^*: \mathcal{S}(\mathbb{R}) \to L^2(\mathbb{R}), \quad a^* = \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega X - iP\right)$$

We introduce the following two operators:

Lowering Operator: 
$$a \colon \mathcal{S}(\mathbb{R}) \to \mathrm{L}^2(\mathbb{R}), \quad a = \frac{1}{\sqrt{2\hbar m\omega}} \Big( m\omega X + iP \Big)$$
  
Raising Operator:  $a^* \colon \mathcal{S}(\mathbb{R}) \to \mathrm{L}^2(\mathbb{R}), \quad a^* = \frac{1}{\sqrt{2\hbar m\omega}} \Big( m\omega X - iP \Big)$ 

•  $a^*$  is the adjoint of a on  $\mathcal{S}(\mathbb{R})$ .

Lowering Operator: 
$$a: \mathcal{S}(\mathbb{R}) \to L^2(\mathbb{R}), \quad a = \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega X + iP\right)$$

Raising Operator: 
$$a^* \colon \mathcal{S}(\mathbb{R}) \to \mathrm{L}^2(\mathbb{R}), \quad a^* = \frac{1}{\sqrt{2\hbar m \omega}} \Big( m \omega X - i P \Big)$$

- $a^*$  is the adjoint of a on  $\mathcal{S}(\mathbb{R})$ .
- $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ .

Lowering Operator: 
$$a: \mathcal{S}(\mathbb{R}) \to \mathrm{L}^2(\mathbb{R}), \quad a = \frac{1}{\sqrt{2\hbar m\omega}} \Big( m\omega X + iP \Big)$$

$$\text{Raising Operator:} \qquad a^* \colon \mathcal{S}(\mathbb{R}) \to \mathrm{L}^2(\mathbb{R}), \quad a^* = \frac{1}{\sqrt{2\hbar m \omega}} \Big( m \omega X - i P \Big)$$

- $a^*$  is the adjoint of a on  $\mathcal{S}(\mathbb{R})$ .
- $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ .
- $H = \hbar\omega \left(a^*a + \frac{1}{2}I\right)$  on  $\mathcal{S}(\mathbb{R})$ .

Lowering Operator: 
$$a: \mathcal{S}(\mathbb{R}) \to L^2(\mathbb{R}), \quad a = \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega X + iP\right)$$

Raising Operator: 
$$a^* : \mathcal{S}(\mathbb{R}) \to L^2(\mathbb{R}), \quad a^* = \frac{1}{\sqrt{2\hbar m\omega}} \Big( m\omega X - iP \Big)$$

- $a^*$  is the adjoint of a on  $\mathcal{S}(\mathbb{R})$ .
- $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ .
- $H = \hbar\omega \left(a^*a + \frac{1}{2}I\right)$  on  $\mathcal{S}(\mathbb{R})$ .
- $\lambda \mapsto \hbar\omega \left(\lambda + \frac{1}{2}\right)$  takes us from the eigenvalues of  $a^*a$  to all of the eigenvalues of H on  $\mathcal{S}(\mathbb{R})$ .

Suppose  $(\lambda, \psi)$  is an eigenvalue-eigenvector pair for  $a^*a$  when defined on  $\mathcal{S}(\mathbb{R})$ . Then,

- $a^*a(a\psi) = (\lambda 1)a\psi$ .
- $a^*a(a^*\psi) = (\lambda + 1)a^*\psi$ .

Therefore,

- $a\psi = 0$  or  $(\lambda 1, a\psi)$  is an eigenvalue-eigenvector pair for  $a^*a$ .
- $a^*\psi=0$  or  $(\lambda+1,a^*\psi)$  is an eigenvalue-eigenvector pair for  $a^*a$ .

Important consequence: if we have an eigenvalue-eigenvector pair for a\*a, we can repeatedly apply a to the eigenvector to get an eigenvalue of 0.

Suppose that  $a^*a$  has eigenvectors when defined on  $\mathcal{S}(\mathbb{R})$ .

Suppose that  $a^*a$  has eigenvectors when defined on  $\mathcal{S}(\mathbb{R})$ .

• Every eigenvalue of a\*a is non-negative.

Suppose that  $a^*a$  has eigenvectors when defined on  $\mathcal{S}(\mathbb{R})$ .

- Every eigenvalue of a\*a is non-negative.
- There is an eigenvector  $\psi_0$  such that

$$a\psi_0=a^*a\psi_0=0.$$

Suppose that  $a^*a$  has eigenvectors when defined on  $\mathcal{S}(\mathbb{R})$ .

- Every eigenvalue of a\*a is non-negative.
- There is an eigenvector  $\psi_0$  such that

$$a\psi_0=a^*a\psi_0=0.$$

As  $a^*a$  has no negative eigenvalues,  $\psi_0$  is the eigenvector with the lowest possible eigenvalue. We call this the ground state for  $a^*a$ .

Suppose that  $a^*a$  has eigenvectors when defined on  $\mathcal{S}(\mathbb{R})$ .

- Every eigenvalue of a\*a is non-negative.
- There is an eigenvector  $\psi_0$  such that

$$a\psi_0=a^*a\psi_0=0.$$

As  $a^*a$  has no negative eigenvalues,  $\psi_0$  is the eigenvector with the lowest possible eigenvalue. We call this the ground state for  $a^*a$ .

Furthermore, for  $n \ge 0$  define the excited states by  $\psi_n := (a^*)^n \psi_0$ .

- 1. Any distinct pair  $(\psi_n, \psi_m)$  are orthogonal.
- 2.  $a^*\psi_n = \psi_{n+1}$  and  $a\psi_n = n\psi_{n-1}$ , so  $a^*a\psi_n = n\psi_n$ .

#### The eigenvalues

The ground state of  $a^*a$  when defined on  $\mathcal{S}(\mathbb{R})$  is

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \exp\left(-\frac{m\omega}{2\hbar}x^2\right).$$

#### The eigenvalues

The ground state of  $a^*a$  when defined on  $\mathcal{S}(\mathbb{R})$  is

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \exp\left(-\frac{m\omega}{2\hbar}x^2\right).$$

The excited states are given by

$$\psi_n(x) = H_n\left(x\sqrt{\frac{m\omega}{\hbar}}\right)\psi_0(x),$$

where  $H_n$  is the physicist's Hermite polynomial

$$H_n(y) = \begin{cases} 1 & \text{if } n = 1. \\ \frac{1}{\sqrt{2}} \left( 2x H_{n-1}(y) - \frac{d}{dx} H_{n-1}(y) \right) & \text{if } n \ge 2. \end{cases}$$

 $a^*a$  is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

 $a^*a$  is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

- $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ .
- The eigenvectors  $\psi_n$  of  $a^*a$  form an orthogonal basis of  $L^2(\mathbb{R})$ .

 $a^*a$  is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

- $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ .
- The eigenvectors  $\psi_n$  of  $a^*a$  form an orthogonal basis of  $L^2(\mathbb{R})$ .

$$H=\hbar\omega\left(a^*a+rac{1}{2}I
ight)$$
 is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

 $a^*a$  is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

- $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ .
- The eigenvectors  $\psi_n$  of  $a^*a$  form an orthogonal basis of  $L^2(\mathbb{R})$ .

 $H = \hbar\omega\left(a^*a + \frac{1}{2}I\right)$  is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

- As  $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ , H is as well.
- The eigenvectors for H are the same as for  $a^*a$  on  $\mathcal{S}(\mathbb{R})$ .

 $a^*a$  is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

- $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ .
- The eigenvectors  $\psi_n$  of  $a^*a$  form an orthogonal basis of  $L^2(\mathbb{R})$ .

 $H = \hbar\omega\left(a^*a + \frac{1}{2}I\right)$  is essentially self-adjoint on  $\mathcal{S}(\mathbb{R})$ :

- As  $a^*a$  is symmetric on  $\mathcal{S}(\mathbb{R})$ , H is as well.
- The eigenvectors for H are the same as for  $a^*a$  on  $\mathcal{S}(\mathbb{R})$ .

The energy levels of the Hamiltonian on  $\mathcal{S}(\mathbb{R})$  are given by

$$E_n = \hbar\omega\left(n + \frac{1}{2}\right)$$
 for  $n \in \mathbb{N}$ .

# Thanks for listening!

## References i