VE475 Homework 10

Liu Yihao 515370910207

Ex. 1 — Group structure on an elliptic curve

$$x_3^3 + bx_3 + c = (m^2 - x_1 - x_2)^3 + b(m^2 - x_1 - x_2) + c$$

$$= m^6 - 3m^4x_1 - 3m^4x_2 + 3m^2x_1^2 + 6m^2x_1x_2 + 3m^2x_2^2 + bm^2$$

$$- x_1^3 - 3x_1^2x_2 - 3x_1x_2^2 - bx_1 - x_2^3 - bx_2 + c$$

$$y_3^2 = m^2(2x_1 + x_2 - m^2)^2 - 2m(2x_1 + x_2 - m^2)y_1 + y_1^2$$

$$= m^6 - 4m^4x_1 - 2m^4x_2 + 2m^3y_1 + 4m^2x_1x_2 + m^2x_2^2 - 4mx_1y_1 - 2mx_2y_1 + y_1^2$$

$$x_3^3 + bx_3 + c - y_3^2 = m^4x_1 - m^4x_2 - 2m^3y_1 - m^2x_1^2 + 2m^2x_1x_2 + 2m^2x_2^2 + bm^2$$

$$+ 4mx_1y_1 + 2mx_2y_1 - x_1^3 - 3x_1^2x_2 - 3x_1x_2^2 - bx_1 - x_2^3 - bx - 2 - y_1^2 + c$$
When $P_1 \neq P_2$, $m = \frac{y_2 - y_1}{2}$

When
$$P_1 \neq P_2$$
, $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$\begin{split} x_3^3 + bx_3 + c - y_3^2 &= -\frac{1}{(x_1 - x_2)^3} (x_1^6 - 3x_1^4 x_2^2 + bx_1^4 - 2bx_1^3 x_2 - 2x_1^3 y_1^2 + 2x_1^3 y_1 y_2 + x_1^3 y_2^2 - cx_1^3 \\ &\quad + 3x_1^2 x_2^4 - 3x_1^2 x_2 y_2^2 + 3cx_1^2 x_2 + 2bx_1 x_2^3 + 3x_1 x_2^2 y_1^2 - 3cx_1 x_2^2 - bx_1 y_1^2 + 2bx_1 y_1 y_2 \\ &\quad - bx_1 y_2^2 - x_2^6 - bx_2^4 - x_2^3 y_1^2 - 2x_2^3 y_1 y_2 + 2x_2^3 y_2^2 + cx_2^3 + bx_2 y_1^2 - 2bx_2 y_1 y_2 + bx_2 y_2^2 \\ &\quad + y_1^4 - 2y_1^3 y_2 + 2y_1 y_2^3 - y_2^4) \end{split}$$

Since $y_1^2 = x_1^3 + bx + c$, $y_2^2 = x_2^3 + bx + c$, we can get

$$\begin{split} x_3^3 + bx_3 + c - y_3^2 &= -\frac{1}{(x_1 - x_2)^3} [x_1^3(x_2^3 + bx_2 + c) - x_2^3(x_1^3 + bx_1 + c) - 2x_1^3(x_1^3 + bx_1 + c) \\ &\quad + 2x_2^3(x_2^3 + bx_2 + c) + 3x_1^2x_2^4 - 3x_1^4x_2^2 + (x_1^3 + bx_1 + c)^2 - (x_2^3 + bx_2 + c)^2 \\ &\quad + bx_1^4 - bx_2^4 - cx_1^3 + cx_2^3 + x_1^6 - x_2^6 - bx_1(x_1^3 + bx_1 + c) + bx_2(x_1^3 + bx_1 + c) \\ &\quad - bx_1(x_2^3 + bx_2 + c) + bx_2(x_2^3 + bx_2 + c) + 2bx_1x_2^3 - 2bx_1^3x_2 - 3cx_1x_2^2 + 3cx_1^2x_2 \\ &\quad + 2y_1y_2(x_2^3 + bx_2 + c) + 2x_1^3y_1y_2 - 2x_2^3y_1y_2 + 3x_1x_2^2(x_1^3 + bx_1 + c) \\ &\quad - 3x_1^2x_2(x_2^3 + bx_2 + c) - y_1y_2(2x_1^3 + 2bx_1 + 2c) + 2bx_1y_1y_2 - 2bx_2y_1y_2] \\ &= 0 \end{split}$$

So

$$y_3^2 = x_3^3 + bx_3 + c$$

When
$$P_1 = P_2$$
, $x_1 = x_2$, $y_1 = y_2$, $m = \frac{3x_1^2 + b}{2y_1}$
$$x_3^3 + bx_3 + c - y_3^2 = x_1^3 + bx_1 - y_1^2 + c$$

Since $y_1^2 = x_1^3 + bx + c$, we can get

$$y_3^2 = x_3^3 + bx_3 + c$$

So the addition law over E is proved.

Then we need to proved the commutative law, which means for $P_1, P_2 \in E$ $P_1 + P_2 = P_2 + P_1$. Suppose $P_1 + P_2 = (x, y)$, $P_2 + P_1 = (x', y')$, first, when $P_1 = P_2$, it is obviously true. Otherwise, we know $m = m' = \frac{y_2 - y_1}{x_2 - x_1}$.

$$x = x' = m^{2} - x_{1} - x_{2}$$

$$y = m(x_{1} - x) - y_{1} = \frac{(x_{1} - x)(y_{2} - y_{1}) - (x_{2} - x_{1})y_{1}}{x_{2} - x_{1}} = \frac{x_{1}y_{2} - x_{2}y_{1} - x(y_{2} - y_{1})}{x_{2} - x_{1}}$$

$$y' = m(x_{2} - x) - y_{2} = \frac{(x_{2} - x)(y_{2} - y_{1}) - (x_{2} - x_{1})y_{2}}{x_{2} - x_{1}} = \frac{x_{1}y_{2} - x_{2}y_{1} - x(y_{2} - y_{1})}{x_{2} - x_{1}}$$

$$y = y'$$

So the commutative law is proved.

At last we need to prove the associative law, which means for $P_1, P_2, P_3 \in E$, $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$.

$$x_4' = m_{1,2}^2 - x_1 - x_2$$
$$x_4 = m_{4',3} - x_4' - x_3$$

Ex. 2 — Number of points on an elliptic curve

1.

$$m_2 \equiv \frac{3x_1^2 + 3}{2y_1} \equiv 9 \mod 11$$

$$x_2 \equiv m_2^2 - 2x_1 \equiv 10 \mod 11$$

$$y_2 \equiv m_2(x_1 - x_2) - y_1 \equiv 6 \mod 11$$

$$[2]P = (10, 6)$$

$$m_4 \equiv \frac{3x_2^2 + 3}{2y_2} \equiv 6 \mod 11$$

$$x_4 \equiv m_4^2 - 2x_2 \equiv 5 \mod 11$$

$$y_4 \equiv m_4(x_4 - x_4) - y_2 \equiv 2 \mod 11$$

$$[4]P = (5, 2)$$

$$m_5 \equiv \frac{y_4 - y_1}{x_4 - x_1} \equiv 6 \mod 11$$

 $x_5 \equiv m_5^2 - x_4 - x_1 \equiv 1 \mod 11$
 $y_5 \equiv m_5(x_4 - x_5) - y_4 \equiv 0 \mod 11$
 $[5]P = (1,0)$

Since $y_5 = 0$,

$$[10]P = (0,0)$$

2. There are 10 points.

3.

$x \mod 11$	$y^2 \mod 11$	$y \mod 11$	Points on E
0	7	/	
1	0	/	
2	10	0	(1,0)
3	10	/	
4	6	/	
5	4	2 or 9	(5,2) or $(5,9)$
6	10	/	
7	8	/	
8	4	2 or 9	(8,2) or $(8,9)$
9	4	2 or 9	(9,2) or $(9,9)$
10	3	5 or 6	(10,5) or $(10,6)$

The elliptic curve E has 10 points: 9 calculated from the equation plus the point at the infinity \mathcal{O} .

Ex. 3 — ECDSA

In the Elliptic Curve Digital Signature Algorithm, we need a curve E, Point $G \in E$ and the order n of G which means $[n]G = \mathcal{O}$. We also need a cryptographic hash function h.

Alice creates a key pair, consisting of a private key integer d_A , randomly selected in the interval [1, n-1], and a public key curve point $Q_A = [d_A]G$.

When Alice wants to sign a message m, the procedure is:

- 1. Calculate e = h(m).
- 2. Let z be L_n leftmost bits of e, where L_n is the bit length of the group order n.
- 3. Generate a random integer k in [1, n-1].
- 4. Calculate $P: (x_1, y_1) = [k]G$.
- 5. Calculate $r \equiv x_1 \mod n$. If r = 0, retry from step 3.
- 6. Calculate $s \equiv k^{-1}(z + rd_A) \mod n$. If s = 0, retry from step 3.

7. The signature is the pair (r, s).

When Bob wants to authenticate Alice's signature, he must have a copy of her public-key curve point Q_A . First he can verify Q_A is a valid curve point as follows:

- 1. Check that Q_A is not equal to the identity element \mathcal{O} .
- 2. Check that Q_A lies on the curve.
- 3. Check that $[n]Q_A = \mathcal{O}$.

After that, Bob follows these steps:

- 1. Verify that r and s are integers in [1, n-1]. If not, the signature is invalid.
- 2. Calculate e = h(m).
- 3. Let z be L_n leftmost bits of e, where L_n is the bit length of the group order n.
- 4. Calculate $w \equiv s^{-1} \mod n$
- 5. Calculate $u_1 \equiv zw \mod n$ and $u_2 \equiv rw \mod n$.
- 6. Calculate the curve point $P:(x_1,y_1)=[u_1]G+[u_2]Q_A$. If $P=\mathcal{O}$, the signature is invalid.
- 7. The signature is valid if $r \equiv x_1 \mod n$, invalid otherwise.