Processos aleatoris estacionaris

Molts processos tenen la propietat de no canviar el seu comportament aleatori al llarg del temps. És a dir, una observació del procés en un interval (t_0, t_k) mostra el mateix tipus de comportament aleatori que una observació en l'interval $(t_0 + \nu, t_k + \nu)$. De manera que podem dir que, per a aquest tipus de procés, les probabilitats associades als temps t_1, t_2, \ldots, t_k són les mateixes que les associades als temps $t_1 + \nu, t_2 + \nu, \ldots, t_k + \nu$.

Un procés aleatori X(t) (ja sigui en temps discret o continu) es diu **estacionari** si:

$$F_{X(t_1)X(t_2)\cdots X(t_k)}(x_1, x_2, \dots, x_k) = F_{X(t_1+\nu)X(t_2+\nu),\dots, X(t_k+\nu)}(x_1, x_2, \dots, x_k) \qquad \forall t_1, \dots, t_k, \nu$$
 (1)

on

$$F_{X(t_1)...X(t_k)}(x_1, x_2, ..., x_k) = P(X(t_1) \le x_1, ..., X(t_k) \le x_k)$$

i

$$F_{X(t_1+\nu)\cdots X(t_k+\nu)}(x_1, x_2, \dots, x_k) = P(X(t_1+\nu) \le x_1, \dots, X(t_k+\nu) \le x_k)$$

Propietats dels processos estacionaris

1. Com a conseqüència de (1):

$$F_{X(t_1)}(x_1) = F_{X(t_1+\nu)}(x_1) \iff P(X(t_1) \le x_1) = P(X(t_1+\nu) \le x_1)$$

llavors:

- a) $m_X(t) = E(X(t)) = m$ $\forall t$ (l'esperança és constant).
- b) $Var(X(t)) = E((X(t) m)^2) = \sigma^2 \quad \forall t \quad (\text{la variància és constant}).$
- 2. Com a conseqüència de (1):

$$F_{X(t_1)X(t_2)}(x_1, x_2) = F_{X(t_1+\nu)X(t_2+\nu)}(x_1, x_2) \qquad \forall t_1, t_2, \nu$$

en particular, si $\nu = -t_1$ tenim:

$$F_{X(t_1)X(t_2)}(x_1, x_2) = F_{X(0)X(t_2-t_1)}(x_1, x_2)$$
 $\forall t_1, t_2$

de manera que:

- a) $R_X(t_1, t_2) = R_X(t_2 t_1) = R_X(\tau)$ $\forall t_1, t_2 \text{ (on } \tau = t_2 t_1).$
- b) $C_X(t_1, t_2) = C_X(t_2 t_1) = C_X(\tau)$ $\forall t_1, t_2 \quad \text{(on } \tau = t_2 t_1).$

Un procés aleatori que verifica les propietats

- i) $m_X(t) = m$ (constant)
- ii) $R_X(t_1, t_2) = R_X(t_2 t_1)$ (o bé $C_X(t_1, t_2) = C_X(t_2 t_1)$), $\forall t_1, t_2$

es diu procés estacionari en sentit ampli.

Propietat. Si X(t) és un procés estacionari, llavors X(t) és estacionari en sentit ampli. La implicació contrària no és certa en general.

Propietat. Si X(t) és un procés gaussià, llavors: X(t) estacionari $\iff X(t)$ estacionari en sentit ampli.

Exemple 12:

(Febrer 2005). Definim el procés aleatori en temps continu X(t) com

$$X(t) = A\cos\omega t + B\sin\omega t$$

on A i B són v.a. iid amb mitjana zero. Demostrau que X(t) és estacionari en sentit ampli. (Nota: $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$; $\sin(\alpha-\beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$; $\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$; $\cos(\alpha-\beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$.)

Exemple 13:

(Setembre 2005). Siguin X(t) i Y(t) dos processos aleatoris independents i estacionaris en sentit ampli. Es defineix el nou procés Z(t) = aX(t) + bY(t), on a i b són constants. És Z(t) estacionari en sentit ampli? Justificau la resposta.

Exemple 14:

(Setembre 2007). Consideram el procés aleatori $Z(t) = t^2 + X$, on X és una v.a. uniforme en l'interval [-0.5, 0.5].

- a) Calculau la probabilitat que Z(t) sigui major que 1 per a valors de t positius.
- b) Calculau la mitjana i l'autocovariància del procés. Es tracta d'un procés estacionari?.
- c) Consideram el procés W(t) = 3Y + t, on Y és una v.a. exponencial de paràmetre $\frac{1}{2}$. Si X i Y són v.a. independents, estan incorrelats els processos? Justificau la resposta.

Mitjanes en temps i mitjanes estadístiques. Processos ergòdics.

L'esperança de la variable aleatòria associada a un procés $X(t,\Omega) = X(t)$ en un instant de temps t_i es calcula com (cas continu):

$$E(X(t_i)) = m_X(t_i) = \int_{-\infty}^{+\infty} x f_{X(t_i)}(x) dx$$

 $m_X(t)$ rep el nom de mitjana estocàstica, estadística o probabilística i no coincideix, en principi, amb la mitjana temporal de cada una de les realitzacions del procés:

$$\bar{X}(t,\omega_i) = \langle X(t,\omega_i) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} X(t,\omega_i) dt$$

No obstant, per a un tipus molt especial de processos, aquestes mitjanes són iguals. Són els anomenats **processos ergòdics**. Per a un procés ergòdic es té:

- $\langle X(t,\omega_i)\rangle = E(X(t))$ $\forall \omega_i$
- $\langle X^2(t,\omega_i)\rangle = E(X^2(t))$ $\forall \omega_i$
- $\langle X(t,\omega_i)X(t-\tau,\omega_i)\rangle = \lim_{T\to\infty} \frac{1}{T} \int_{-T/2}^{T/2} X(t,\omega_i)X(t-\tau,\omega_i) dt = E(X(t)X(t-\tau)) = R_X(t,t-\tau) = R_X(\tau) \quad \forall \omega_i$

Propietats.

- 1. Si un procés és ergòdic, llavors és estrictament estacionari. L'implicació contrària no és certa en general.
- 2. Si X(t) és un procés gaussià, llavors: X(t) ergodic $\iff X(t)$ estrictament estacionari $\iff X(t)$ estacionari.
- 3. En un procés ergòdic, una realització del procés és representativa de tot el procés. Aquesta propietat és molt útil ja que simplifica l'estudi d'aquests processos.