Introduction to Audio Content Analysis

Module 12: Musical Genre Classification

alexander lerch

introduction overview

corresponding textbook section

Sect. 12

■ lecture content

- musical genre
- processing steps in basic genre classifiers
- example: genre classification with a kNN

learning objectives

- discuss ambiguities in the definition of musical genre and the possible impact on automatic systems
- describe the processing steps for traditional musical genre classifiers
- implement your own music genre classifier with Matlab

introduction overview

corresponding textbook section

Sect. 12

■ lecture content

- musical genre
- processing steps in basic genre classifiers
- example: genre classification with a kNN

■ learning objectives

- discuss ambiguities in the definition of musical genre and the possible impact on automatic systems
- describe the processing steps for traditional musical genre classifiers
- implement your own music genre classifier with Matlab

■ one of the early/seminal research topics in MIR

- classic *machine learning* task
 - features → classification

■ related tasks:

- speech-music classification
- instrument recognition
- artist identification
- music emotion recognition

- one of the early/seminal research topics in MIR
- classic *machine learning* task
 - features → classification
- related tasks:
 - speech-music classification
 - instrument recognition
 - artist identification
 - music emotion recognition

- one of the early/seminal research topics in MIR
- classic *machine learning* task
 - features → classification

related tasks:

- speech-music classification
- instrument recognition
- artist identification
- music emotion recognition

Georgia Center for Music Technology

- large music databases:
 - annotation
 - sorting, browsing, retrieving
- recommendation and music discovery systems
- automatic playlist generation
- improving downstream MIR tasks by using side information/conditioning

Georgia Center for Music Tech Tech Technology

- large music databases:
 - annotation
 - sorting, browsing, retrieving
- recommendation and music discovery systems
- automatic playlist generation
- improving downstream MIR tasks by using side information/conditioning

musical genre classification genre: definition

Georgia Center for Music Tech Tech Technology

what is musical genre

musical genre classification genre: definition

Georgia Center for Music Tech Tech College of Design

what is musical genre

- clusters of musical similarity?
- \rightarrow hard to answer in general, there are many systematic problems

Georgia Center for Music Tech Technology

what is musical genre

- clusters of musical similarity?
- ightarrow hard to answer in general, there are many systematic problems
 - 1 non-agreement on taxonomies
 - e.g., AllMusic vs. Pandora
 - 2 genre label scope
 - e.g., song, album, artist, piece of a song
 - 3 ill-defined genre labels
 - e.g., geographic (indian music), historic (baroque), technical (barbershop), instrumentation (symphonic music), usage (christmas songs)
 - 4 taxonomy scalability
 - e.g., genres and subgenres evolve over time
 - 5 non-orthogonality
 - e.g., several genres for one piece of music

Georgia Center for Music Tech Tech College of Design

musical genre classification observations with humans

Georgia Center for Music Tech Technology

- 1 human classification far from perfect: 75–90 % for limited set of classes
- 2 for many genres, humans need only a fraction of a second to classify
- ⇒ short time timbre features sufficient?

plots from¹,²

¹S. Lippens, J.-P. Martens, T. D. Mulder, et al., "A Comparison of Human and Automatic Musical Genre Classification," in *Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, Montreal, 2004.

²R. O. Gjerdingen and D. Perrott, "Scanning the Dial: The Rapid Recognition of Music Genres," *Journal of New Music Research*, vol. 37, no. 2, pp. 93–100. Jun. 2008. 00067. ISSN: 0929-8215.

musical genre classification observations with humans

Georgia Center for Music Tech Technology

- 1 human classification far from perfect: 75–90 % for limited set of classes
- 2 for many genres, humans need only a fraction of a second to classify
- ⇒ short time timbre features sufficient?

plots from¹,²

¹S. Lippens, J.-P. Martens, T. D. Mulder, et al., "A Comparison of Human and Automatic Musical Genre Classification," in *Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, Montreal, 2004.

²R. O. Gjerdingen and D. Perrott, "Scanning the Dial: The Rapid Recognition of Music Genres," *Journal of New Music Research*, vol. 37, no. 2, pp. 93–100. Jun. 2008. 00067. ISSN: 0929-8215.

feature extraction

- compressed, meaningful representation
- 2 classification
 - map or convert feature to comprehensible domain

feature extraction

compressed, meaningful representation

2 classification

• map or convert feature to comprehensible domain

erview intro genre MGC features example summary

○○ ○○○ ○ ○ ●○○○○○ ○ ○○○○

musical genre classification

Georgia Center for Music Tech Tech College of Design

■ high level similarities?

- melody, hook lines, bass lines, harmony progression
- rhythm & tempo
- structure
- instrumentation & timbre

■ technical feature categories

- tonal
- technical
- timbral
- temporal
- intensity

extracted features should be

- extractable (not: time envelope in polyphonic signals)
- relevant (not: pitch chroma for instrument ID)
- non-redundant
- have discriminative power

musical genre classification

high level similarities?

- melody, hook lines, bass lines, harmony progression
- rhythm & tempo
- structure
- instrumentation & timbre

■ technical feature categories

- tonal
- technical
- timbral
- temporal
- intensity

extracted features should be

- extractable (not: time envelope in polyphonic signals)
- relevant (not: pitch chroma for instrument ID)
- non-redundant
- have discriminative power

rerview intro genre MGC features example summary

musical genre classification feature categories

Georgia Center for Music Tech Tech College of Design

■ high level similarities?

- melody, hook lines, bass lines, harmony progression
- rhythm & tempo
- structure
- instrumentation & timbre

■ technical feature categories

- tonal
- technical
- timbral
- temporal
- intensity

extracted features should be

- extractable (not: time envelope in polyphonic signals)
- relevant (not: pitch chroma for instrument ID)
- non-redundant
- have discriminative power

- spectral features (timbre):
 Spectral Centroid, MFCCs, Spectral Flux, ...
- pitch features (tonal):
 pitch chroma distribution/change, . . .
- rhythm features (temporal): onset density, beat histogram features, . . .
- statistical features (technical): standard deviation, skewness, zero crossings, . . .
- intensity features: level variation, number of "pauses", ...

- spectral features (timbre):
 Spectral Centroid, MFCCs, Spectral Flux, ...
- pitch features (tonal): pitch chroma distribution/change, . . .
- rhythm features (temporal): onset density, beat histogram features, . . .
- statistical features (technical): standard deviation, skewness, zero crossings, . . .
- intensity features: level variation, number of "pauses", ...

- spectral features (timbre):
 Spectral Centroid, MFCCs, Spectral Flux, ...
- pitch features (tonal): pitch chroma distribution/change, . . .
- rhythm features (temporal): onset density, beat histogram features, ...
- statistical features (technical): standard deviation, skewness, zero crossings, . . .
- intensity features: level variation, number of "pauses", ...

- spectral features (timbre):
 Spectral Centroid, MFCCs, Spectral Flux, ...
- pitch features (tonal): pitch chroma distribution/change, . . .
- rhythm features (temporal): onset density, beat histogram features, ...
- statistical features (technical): standard deviation, skewness, zero crossings, ...
- intensity features: level variation, number of "pauses", . . .

- spectral features (timbre):
 Spectral Centroid, MFCCs, Spectral Flux, ...
- pitch features (tonal): pitch chroma distribution/change, . . .
- rhythm features (temporal): onset density, beat histogram features, ...
- statistical features (technical): standard deviation, skewness, zero crossings, . . .
- intensity features: level variation, number of "pauses", . . .

Georgia Center for Music Tech Technology

■ extract instantaneous features

- 2 compute derived features (derivatives etc.)
- 3 compute long term features & subfeatures per texture window or file
- 4 normalize subfeatures
- 5 (select or) transform subfeatures
- 6 feature vector \rightarrow classifier input

Georgia Center for Music Tech Tech College of Pesign

- 1 extract instantaneous features
- 2 compute derived features (derivatives etc.)
- 3 compute long term features & subfeatures per texture window or file
- 4 normalize subfeatures
- **5** (select or) **transform** subfeatures
- **6** feature vector \rightarrow **classifier input**

- 1 extract instantaneous features
- 2 compute derived features (derivatives etc.)
- 3 compute long term features & subfeatures per texture window or file
- 4 normalize subfeatures
- **5** (select or) **transform** subfeatures
- **6** feature vector \rightarrow **classifier input**

- 1 extract instantaneous features
- 2 compute derived features (derivatives etc.)
- 3 compute long term features & subfeatures per texture window or file
- 4 normalize subfeatures
- **5** (select or) **transform** subfeatures
- **6** feature vector \rightarrow **classifier input**

- 1 extract instantaneous features
- 2 compute derived features (derivatives etc.)
- 3 compute long term features & subfeatures per texture window or file
- 4 normalize subfeatures
- **5** (select or) **transform** subfeatures
- **6** feature vector \rightarrow **classifier input**

- 1 extract instantaneous features
- 2 compute derived features (derivatives etc.)
- 3 compute long term features & subfeatures per texture window or file
- 4 normalize subfeatures
- **5** (select or) **transform** subfeatures
- **6** feature vector \rightarrow **classifier input**

Georgia Center for Music Tech Tech Technology

- extract instantaneous features
- 2 compute derived features (derivatives etc.)
- 3 compute long term features & subfeatures per texture window or file
- 4 normalize subfeatures
- 5 (select or) transform subfeatures
- **6** feature vector \rightarrow **classifier input**

musical genre classification long term features 1/2

Georgia Center for Music Technology

derived from beat histogram³

- statistical histogram features
- number and values of top maxima
- location (relation) of top maxima
-

³G. Tzanetakis and P. Cook, "Musical genre classification of audio signals," *Transactions on Speech and Audio Processing*, vol. 10, no. 5, pp. 293–302. Jul. 2002, ISSN: 1063-6676, DOI: 10.1109/TSA.2002.800560.

Georgia Center for Music Tech Technology

derived from pitch histogram or pitch chroma⁴

- statistical histogram features
- number and values of top maxima
- location (relation) of top maxima
-

⁴G. Tzanetakis, A. Ermolinskyi, and P. Cook, "Pitch Histograms in Audio and Symbolic Music Information Retrieval," in *Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR)*, Paris, 2002.

musical genre classification additional possible features

■ stereo features

- mid channel energy vs. side channel energy
- spectral channel differences
- features at higher semantic levels:
 - tempo, structure, harmonic complexity, instrumentation

musical genre classification additional possible features

■ stereo features

- mid channel energy vs. side channel energy
- spectral channel differences
- features at higher semantic levels:
 - tempo, structure, harmonic complexity, instrumentation

- classification results depend on training set, test set, and number of classes
- typical range: $\approx 10 \text{ classes} \Rightarrow 50-80\%$
- main challenges
 - ill-defined genre boundaries
 - non-uniformly distributed classes
 - overfitting through songs from same album or artist
 - . .

- classification results depend on training set, test set, and number of classes
- typical range: ≈ 10 classes $\Rightarrow 50-80\%$
- main challenges
 - ill-defined genre boundaries
 - non-uniformly distributed classes
 - overfitting through songs from same album or artist
 - . .

- classification results depend on training set, test set, and number of classes
- typical range: $\approx 10 \text{ classes} \Rightarrow 50\text{--}80\%$
- main challenges
 - ill-defined genre boundaries
 - non-uniformly distributed classes
 - overfitting through songs from same album or artist
 - ...

musical genre classification speech/music classification baseline example

Georgia Center for Music Tech Technology

binary classification task

- 1 extract features
- 2 represent each file with its 2-dimensional feature vector
- 3 kNN to classify unknown audio files
- 4 evaluate classification performance

 $speech/music \ classification \ example: \ features \ 1/2$

Georgia Center for Music Tech Tech College of Pesign

for each audio file

■ split input signal into (overlapping) blocks

- 2 compute 2 feature series (spectral centroid, RMS)
- 3 aggregate feature series to one value per file
 - ullet mean of Spectral Centroid $\mu_{
 m SC}$
 - standard deviation of RMS $\sigma_{\rm RMS}$
- 4 represent each file as 2-dimensional vector

musical genre classification speech/music classification example: features 1/2

Georgia Center for Music Tech Tech College of Design

for each audio file

- 1 split input signal into (overlapping) blocks
- 2 compute 2 feature series (spectral centroid, RMS)

- 3 aggregate feature series to one value per file
 - mean of Spectral Centroid $\mu_{\rm SC}$
 - standard deviation of RMS $\sigma_{\rm RMS}$
- 4 represent each file as 2-dimensional vector

musical genre classification speech/music classification example: features 1/2

Georgia Center for Music Tech Technology

for each audio file

- 1 split input signal into (overlapping) blocks
- 2 compute 2 feature series (spectral centroid, RMS)
- 3 aggregate feature series to one value per file
 - ullet mean of Spectral Centroid $\mu_{
 m SC}$

$$\mu_{\mathrm{SC}} = \frac{1}{N} \sum_{\forall n} v_{\mathrm{SC}}(n)$$

• standard deviation of RMS $\sigma_{\rm RMS}$

$$\sigma_{\mathrm{RMS}} = \sqrt{\frac{1}{N} \sum_{orall n} (v_{\mathrm{RMS}}(n) - \mu_{\mathrm{RMS}})^2}$$

4 represent each file as 2-dimensional vector

musical genre classification speech/music classification example: features 1/2

Georgia | Center for Music Tech 🛚 Technology

for each audio file

- 1 split input signal into (overlapping) blocks
- 2 compute 2 feature series (spectral centroid, RMS)
- 3 aggregate feature series to one value per file
 - mean of Spectral Centroid μ_{SC}
 - standard deviation of RMS $\sigma_{\rm RMS}$
- 4 represent each file as 2-dimensional vector

$$\left(\mu_{\mathrm{SC}}, \sigma_{\mathrm{RMS}}\right)^{\mathrm{T}}$$

speech/music classification example: training set

- use dataset annotated as speech and music:
 - requirements
 - ► large compared to number of features
 - representative for use case (diverse)
 - here (toy example):
 - 64 speech files
 - 64 music files
- extract the features for the dataset
 - centroid mean
 - rms std
- use 3NN classifier
- procedure: Leave-One-Out-Cross-Validation

speech/music classification example: results (kNN)

Georgia Center for Music Tech
☐ Technology

■ confusion matrix:

	speech	music	# files
gt speech	51	13	64
gt music	11	53	64

■ ⇒ classification rate:

$$\frac{53 + 54}{64 + 64} = 81.25\%$$

- single feature classification results
 - Spectral Centroid: 63.28%
 - RMS: 73.44%

speech/music classification example: results (kNN)

Georgia Center for Music Tech || Technology

■ confusion matrix:

	speech	music	# files
gt speech	51	13	64
gt music	11	53	64

■ ⇒ classification rate:

$$\frac{53+54}{64+64}=81.25\%$$

- single feature classification results
 - Spectral Centroid: 63.28%
 - RMS: 73.44%

Tech 🛚 Technology

ab/computeMusicSpeechClassification.m

musical genre classification

speech/music classification example: results (kNN)

■ confusion matrix:

	speech	music	# files
gt speech	51	13	64
gt music	11	53	64

■ ⇒ classification rate:

$$\frac{53+54}{64+64}=81.25\%$$

- single feature classification results
 - Spectral Centroid: 63.28%
 - RMS: 73.44%

summary lecture content

■ musical genre

- ill-defined, subjective, no general agreement
- some human agreement

MGC: features

- from all possible categories as all categories might depend on genre
- timbre seems most meaningful feature

■ MGC: classifier

- any classifier works, and most have been used
- MGC: standard baseline
 - 1 MFCCs
 - 2 SVM

