Mathematical Engineering - A.Y. 2022-23

Real and Functional Analysis - Written exam - June 20, 2023

Exercise 1. Consider the functions $f, f_n : [0,1] \to \mathbb{R}, n \in \mathbb{N}$, defined respectively by

$$f(x) = \begin{cases} x \cos\left(\frac{1}{x}\right), & 0 < x \le 1 \\ 0, & x = 0 \end{cases}, \qquad f_n(x) = \begin{cases} x \cos\left(\frac{1}{x}\right) & \frac{1}{2\pi n} < x \le 1 \\ \frac{1}{2\pi n}, & 0 \le x \le \frac{1}{2\pi n} \end{cases}.$$

- (1) Is f of bounded variation in [0,1]? Is f absolutely continuous in [0,1]? Justify the answers.
- (2) Prove that f_n converges pointwisely a.e. to f as $n \to +\infty$. Does f_n converges to f in L^{∞} as $n \to +\infty$? Justify the answers.
- (3) Considering that $f_n \in AC([0,1])$ for any $n \in \mathbb{N}$ (not to be proven), use items (1),(2) to answer to the following question: is the normed space $(AC([0,1]), \|\cdot\|_{\infty})$ complete? Justify the answer.

Solution.

(1) We show that f is not of bounded variation in [0,1], hence it is not absolutely continuous in [0,1] as well (recall that $AC([0,1]) \subset BV([0,1])$). Indeed, for $n \in \mathbb{N}$, $n \geq 2$, consider for instance the following partition P_n of [0,1]:

$$P_n = \{x_k\}_{k=0}^n,$$
 $x_k = \begin{cases} 1, & k = 0\\ \frac{1}{k\pi}, & k = 1, \dots, n-1\\ 0, & k = n \end{cases}$

Then

$$f(x_k) = \begin{cases} \cos 1, & k = 0\\ \frac{(-1)^k}{\pi k}, & k = 1, \dots, n - 1, \\ 0, & k = n \end{cases}$$

so that we get

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \ge \sum_{k=2}^{n-1} |f(x_k) - f(x_{k-1})|$$

$$= \sum_{k=2}^{n-1} \left| \frac{(-1)^k}{\pi k} - \frac{(-1)^{k-1}}{\pi (k-1)} \right| = \sum_{k=2}^{n-1} \frac{2k-1}{\pi k (k-1)}$$

In conclusion,

$$V_0^1(f) \ge \sup_n \sum_{k=1}^n |f(x_k) - f(x_{k-1})| \ge \sum_{k=2}^\infty \frac{2k-1}{\pi k(k-1)} = +\infty.$$

Hence, f does not belong to BV([0,1]).

(2) The pointwise convergence of f_n to f follows immediately by noting that for any $x \in [0, 1]$, we have $\frac{1}{2\pi n} \to 0$ as $n \to +\infty$. Concerning the convergence in $L^{\infty}([0, 1])$, we notice that both f_n and f are continuous in [0, 1] and they coincide in $\left[\frac{1}{2\pi n}, 1\right]$. So that $f_n - f$ is continuous

and, for any $n \in \mathbb{N}$, we have

$$||f_n - f||_{\infty} = \operatorname{esssup}_{x \in [0,1]} |f_n(x) - f(x)|$$

$$= \sup_{x \in [0,1]} |f_n(x) - f(x)|$$

$$= \sup_{x \in [0,\frac{1}{2\pi n}]} \left| \frac{1}{2\pi n} - x \cos\left(\frac{1}{x}\right) \right|$$

$$\leq \frac{1}{2\pi n} + \sup_{x \in [0,\frac{1}{2\pi n}]} \left| x \cos\left(\frac{1}{x}\right) \right|$$

$$= \frac{1}{\pi n} \to 0, \quad \text{as } n \to +\infty.$$

In particular, f_n converges to f in $L^{\infty}([0,1])$, as $n \to +\infty$.

(3) The normed space $(AC([0,1]), \|\cdot\|_{\infty})$ cannot be complete, since we found a sequence $\{f_n\}$ of absolutely continuous function that is convergent in L^{∞} , hence it is a Cauchy sequence in L^{∞} , however the limit f is not absolutely continuous by item (1).

Exercise 1. Consider the functions $f, f_n : [0,1] \to \mathbb{R}, n \in \mathbb{N}$, defined respectively by

$$f(x) = \begin{cases} x \cos\left(\frac{1}{x}\right), & 0 < x \le 1\\ 0, & x = 0 \end{cases}, \qquad f_n(x) = \begin{cases} x \cos\left(\frac{1}{x}\right) & \frac{1}{2\pi n} < x \le 1\\ \frac{1}{2\pi n}, & 0 \le x \le \frac{1}{2\pi n} \end{cases}$$

- (1) Is f of bounded variation in [0,1]? Is f absolutely continuous in [0,1]? Justify the answers
- (2) Prove that f_n converges pointwisely a.e. to f as $n \to +\infty$. Does f_n converges to f in L^{∞} as $n \to +\infty$? Justify the answers.
- (3) Considering that $f_n \in AC([0,1])$ for any $n \in \mathbb{N}$ (not to be proven), use items (1),(2) to answer to the following question: is the normed space $(AC([0,1]), \|\cdot\|_{\infty})$ complete? Justify the answer.

(4) Consider the partition:
$$P = \{x_k\}_{k \in [0; N]}$$
 with

$$x_k := \begin{cases} 0 & \text{if } k = 0 \\ 2 & \text{if } k \in [1; N-2] \end{cases}$$
Thu: $V^1(\frac{1}{4}, P) = \sum_{k=1}^{N} \left| f(x_k) - f(x_{k-1}) \right|$

$$V^1(\frac{1}{4}, P) = \sum_{k=1}^{N} \left| \frac{1}{\pi k} \cos (\pi k) - \frac{1}{\pi (k-1)} \cos (\pi (k-1)) \right|$$

$$= \sum_{k=1}^{N} \left| \frac{(-1)^k}{\pi k} - \frac{(-1)^{k-1}}{\pi (k-1)} \right| = \sum_{k=1}^{N} \left| (-1)^k \left(\frac{1}{\pi k} + \frac{1}{\pi (k-1)} \right) \right|$$

$$= \sum_{k=1}^{N} \frac{1}{\pi k} + \sum_{k=1}^{N} \frac{1}{\pi (k-1)} > \frac{1}{\pi (k-1)} = \sum_{k=1}^{N} \left| (-1)^k \left(\frac{1}{\pi k} + \frac{1}{\pi (k-1)} \right) \right|$$

$$= \sum_{k=1}^{N} \frac{1}{\pi k} + \sum_{k=1}^{N} \frac{1}{\pi (k-1)} > \frac{1}{\pi (k-1)} = \sum_{k=1}^{N} \left| (-1)^k \left(\frac{1}{\pi k} + \frac{1}{\pi (k-1)} \right) \right| = \sum_{k=1}^{N} \frac{1}{\pi (k-1)} + \sum_{k=1}^{N} \frac{1}{\pi (k-1)} > \frac{1}{\pi (k-1)} = \sum_{k=1}^{N} \frac{1}{\pi (k-1)} = \sum_{k=1}^{$$

(2)
$$\int_{\Gamma} \left(\frac{1}{x} \right) = \begin{cases} \frac{1}{\pi x} \cos \left(\frac{1}{x} \right) \frac{1}{\pi x} \sin \left(\frac{1}{x} \right) \\ \frac{1}{\pi x} \cos \left(\frac{1}{\pi x} \right) \cos \left(\frac{1}{\pi x} \right) & 0 \leq x \leq 1 \end{cases}$$
When $x \to +\infty$, $\int_{\Gamma} \frac{\Re \cos \left(\frac{1}{x} \right)}{\Pi x \sin \left(\frac{1}{x} \right) \cos \left(\frac{1}{x} \right)} \cos \left(\frac{1}{x} \right) \cos \left(\frac{1}{x}$

•
$$\|H_{n}-H\|_{\infty} = \sup_{x \in [0,1]} \left| \int_{n}^{\infty} f(x) \right| = \sup_{x \in [0,1]} \frac{1}{2\pi n} - x \cos(\frac{1}{x}) \right| \leq \frac{1}{2\pi n} + \sup_{x \in [0,1]} |x \cos(\frac{1}{x})|$$

$$\left| \int_{n}^{\infty} -1 \|_{\infty} \leq \frac{1}{2\pi n} + \frac{1}{2\pi n} = \frac{1}{1\pi n} \xrightarrow{n \to +\infty} 0$$

(9) It is given that: WhEIN,
$$f_n \in AC([0,1])$$
.

Well, $[f_u]_n \subset AC([0,1])$ which garage in L^{∞} to $f \notin AC([0,1])$.

As
$$f_n \xrightarrow{L^{\infty}} f^{(1)m^2}$$
, $\{f_n\}_n$ is a boughy sequente. So we found

a banchy sequence
$$\{f_u\}_n \subset Ac([0,1])$$
 in L^∞ , but converging to a limit which is NOT in $A(([0,1]),(i7m.1)$

Exercise 2. Consider the sequence $\{x_n\}_{n\in\mathbb{N}}$ with $x_n\in\ell^2$ for any $n\in\mathbb{N}$, defined by

$$x_n = (x_n^{(k)})_{k \in \mathbb{N}}, \text{ with } x_n^{(k)} := \begin{cases} \frac{k}{n+1}, & \text{if } n \le k \le n+1\\ 0, & \text{otherwise} \end{cases}.$$

- (1) Study the pointwise convergence of $\{x_n\}_{n\in\mathbb{N}}$.
- (2) Denoted by $x = (x^{(k)})_{k \in \mathbb{N}}$ the pointwise limit of the sequence $\{x_n\}_{n \in \mathbb{N}}$ of item (1), prove that $\{x_n\}_{n\in\mathbb{N}}$ converges weakly in ℓ^2 to x as $n\to+\infty$.

Solution.

(1) We first observe that

$$x_1 = (1/2, 1, 0, \dots)$$

 $x_2 = (0, 2/3, 1, 0, \dots)$
 $x_3 = (0, 0, 3/4, 1, 0, \dots)$.

Therefore for each fixed $k \in \mathbb{N}$, $x_n^{(k)} = 0$ for every n > k. Thus, the sequence $\{x_n\}_n$ converges pointwisely to $x = \mathbf{0} = (0, 0, \dots)$, as $n \to +\infty$.

(2) Since weak convergence in ℓ^2 implies pointwise convergence, then if $\{x_n\}_{n\in\mathbb{N}}$ converges weakly in ℓ^2 to x, then x = 0, by item (1). Let $\varphi \in (\ell^2)^*$, by the Riesz representation theorem, there exists $z = (z^{(k)})_{k \in \mathbb{N}} \in \ell_2$ such that

$$\varphi(y) = \sum_{k=1}^{\infty} z^{(k)} y^{(k)},$$

for each $y = (y^{(k)})_{k \in \mathbb{N}} \in \ell_2$. Hence, x_n converges weakly to x in ℓ^2 if and only if

$$\left| \sum_{k=1}^{\infty} z^{(k)} x^{(k)} - \sum_{k=1}^{\infty} z^{(k)} x_n^{(k)} \right| = \left| \sum_{k=1}^{\infty} z^{(k)} x_n^{(k)} \right| \to 0, \quad \text{for any } z = (z^{(k)})_{k \in \mathbb{N}} \in \ell^2.$$

Let $z \in \ell^2$ be arbitrarily fixed, we have

$$\left| \sum_{k=1}^{\infty} z^{(k)} x^{(k)} - \sum_{k=1}^{\infty} z^{(k)} x_n^{(k)} \right| = \left| \sum_{k=1}^{\infty} z^{(k)} x_n^{(k)} \right| = \frac{n}{n+1} z^{(n)} + z^{(n+1)} \to 0$$

indeed $\frac{n}{n+1} \to 1$ as $n \to +\infty$, and $z^{(n)} \to 0$ by necessary condition of convergence of series (remind that $z \in \ell^2$, so the series $\sum_{k=1}^{+\infty} |z^{(k)}|^2$ converges). By the above observations we get the weak convergence of the sequence $\{x_n\}_{n\in\mathbb{N}}$ to $x\in\ell^2$.

Exercise 2: {xn}new with xnel2 4new.

$$x_n = (x_n^{(k)})_{k \in \mathbb{N}}$$
, with $x_n^{(k)} := \begin{cases} \frac{k}{n+1} & \text{if } n \leq k \leq n+1 \end{cases}$

1) Pointuise convergence: Let hEIN arbitrailly fixed.

We obscere that, then, $x_n^{(k)} = 0$.

Addity to this the fact that: $\frac{k}{n+1} \xrightarrow{n \to +\infty} 0$, we have that

 $x_n \xrightarrow{h \to +\infty} 0$, $\forall k \in \mathbb{N}$. So: $\{x_n\}_{n \in \mathbb{N}}$ (sometre pointwisely to $\{0\}_{n=1}^{\infty}$.

2) If $[x_i]_{n\in\mathbb{N}}$ converges weakly in ℓ^2 , this is to x=(0) here. Very Riesz Representation Theorem for l'(12p2+00), we can identify $(\ell^2)^*$ to ℓ^2 and:

$$x_{n} \xrightarrow{n \to +\infty} x \text{ in } \ell^{2} \text{ (=)} \quad \sum_{k=1}^{+\infty} x_{n}^{(k)} y^{(k)} \xrightarrow{n \to +\infty} \sum_{k=1}^{+\infty} x^{(k)} y^{(k)},$$

$$\forall u \in J^{2}$$

Let y El 2 be unbitrarily fixed.

• $\sum_{k=1}^{\infty} x_{n}^{(k)} y^{(k)} = \frac{n}{n+1} y^{(n)} + 1 \times y^{(n+1)} = \left(\frac{1}{1+1/n}\right) \cdot y^{(n)} + y^{(n+1)} \xrightarrow[n-1+\infty]{} 0$ k=1 $\frac{+\infty}{\sum_{k=1}^{\infty} \chi(k) \zeta(k)} = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ k=1 $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$ $\int_{k=1}^{\infty} \chi(k) \zeta(k) = 0 \quad \text{since } \chi_{=}(0) \text{ hein}$

As a conclusion: $\{x_n\}_{n\in\mathbb{N}}$ converges weakly to $x=\{0\}_{n\in\mathbb{N}}$ in $\{x_n\}_{n\in\mathbb{N}}$.

Exercise 3. Let $X_1 = L^{\infty}([-1,1])$ and $X_2 = C([-1,1])$ both endowed with the norm $\|\cdot\|_{\infty}$. Consider the linear operators $T_i: X_i \to X_i, i = 1, 2$, defined by

$$T_i g = \int_{-1}^1 \frac{x}{1+x^2} g(x) dx, \quad \forall g \in X_i.$$

- (1) Show that T_1 is a continuous operator.
- (2) Compute the operator norm of T_1 .
- (3) Compute the operator norm of T_2 .
- (4) Let $g(x) = x^2$. Does g belong to the kernel of T_1 ? Is T_1 injective? Justify the answer.

Solution.

(1) Let $g \in L^{\infty}[-1, 1]$,

$$||T_1g||_{\infty} = \left\| \int_{-1}^1 \frac{x}{1+x^2} g(x) dx \right\|_{\infty}.$$

Since Tg is a constant function, we obtain

$$||T_1g||_{\infty} = \left| \int_{-1}^1 \frac{x}{1+x^2} g(x) \, dx \right| \le \int_{-1}^1 \frac{|x|}{1+x^2} |g(x)| \, dx \le ||g||_{\infty} \int_{-1}^1 \frac{|x|}{1+x^2} \, dx.$$

The function $f(x) = \frac{|x|}{1+x^2}$ is even in the symmetric interval [-1,1], therefore we obtain

$$||g||_{\infty} \int_{-1}^{1} \frac{|x|}{1+x^2} dx = 2 ||g||_{\infty} \int_{0}^{1} \frac{x}{1+x^2} dx = \log(2) ||g||_{\infty}.$$

Thus we obtain

$$||T_1g||_{\infty} \le \log(2) ||g||_{\infty}.$$

This proves the boundedness of the operator T_1 ; since T_1 is linear, it is a continuous operator. The same computation holds for the operator T_2 .

(2) By item (1), we have

$$||T_1g||_{\infty} \le \log(2)||g||_{\infty}$$
, for any $g \in L^{\infty}[-1, 1]$.

Consider the function $g \in L^{\infty}[-1,1]$ defined by

$$g(x) = \begin{cases} 1, & x \in [0, 1], \\ -1, & x \in [-1, 0), \end{cases}$$

and notice that $||g||_{\infty} = 1$. We obtain

$$||T_1g||_{\infty} = \int_{-1}^1 \frac{|x|}{1+x^2} dx = \log(2).$$

Therefore, recalling the definition of operator norm, we deduce that the norm of T_1 is equal to $\log(2)$.

(3) The function g defined in the above item is not continuous, therefore we define, for each $n \in \mathbb{N}$, $g_n \in X_2$ by

$$g_n(x) = \begin{cases} 1, & x \in [1/n, 1], \\ nx, & x \in (-1/n, 1/n) \\ -1, & x \in [-1, -1/n]. \end{cases}$$

Notice that, for any $n \in \mathbb{N}$, we have $||g_n||_{\infty} = 1$ and

$$||T_2 g_n||_{\infty} \ge 2 \int_{1/n}^1 \frac{x}{1+x^2} dx = \log(2) - \log(1+1/n^2).$$

Thus, since the sequence $(\log(1+1/n^2))_{n\in\mathbb{N}}$ converges to zero, the operator norm of T_2 is equal to $\log(2)$ as well, by using the definition of operator norm.

(4) Let $g(x) = x^2$. We compute

$$T_1 g = \int_{-1}^1 \frac{x^3}{1+x^2} \, \mathrm{d}x = 0.$$

Then g belongs to the kernel of T_1 . Therefore, since $\ker T_1 \neq \{0\}$, T_1 is not injective.

Exercise 3: $\chi_1 = L^{\infty}([-1;1])$ and $\chi_2 = \mathcal{C}([-1;1])$ both indowed by the

11.100 horm. Consider tit \$1.24,

$$T_i: X_i \rightarrow X_i$$
 $W/$ $\forall g \in X_i, T_i g = \int_{-1}^{2} \frac{x}{1+x^2} g(x) dx$.

2) let g = [([-1;1]),

$$||T_{2}g||_{\infty} = \left| \int_{\frac{\pi}{1+\pi^{2}}}^{4\pi} g(x) dx \right| \leq \int_{\frac{\pi}{1+\pi^{2}}}^{2\pi} ||g(x)||_{\infty} \leq ||g||_{\infty} \cdot \int_{\frac{\pi}{1+\pi^{2}}}^{4\pi} dx$$

$$\leq ||g||_{\infty} \times \frac{2}{2} \int_{\frac{\pi}{1+\pi^{2}}}^{2\pi} dx = ||g||_{\infty} \times \ln(2)$$

tyclo([-1/2]), II Tag Iloo < M | Ig Iloo with M= lutz). Have Ta # bounded. Since Ta # bounded. Since Ta # bounded. Since Ta # bounded. Since Ta # bounded. Mak :

Ta # continuous appearor.

$$\|T_{2}\|_{X(X_{1})} = \sup_{x_{1}} \|T_{1}\|_{X_{1}} = \sup_{x_{2}} \|T_{1}\|_{X_{2}} = \sup_{x_{3}} \|T_{1}\|_{X_{3}} = \sup_{x_{4}} \|T_{1}\|_{X_{4}} = \sup_{x_{5}} \|T_{1}\|_{X_{4}} = \sup_{x_{5}} \|T_{1}\|_{X_{5}} = \sup_{x_{$$

$$\left\| T_{1} g_{0} \right\|_{\infty} = \left\| \int_{0}^{2} \frac{\pi}{4i\pi^{2}} d\pi - \int_{-1}^{0} \frac{\pi}{4i\pi^{2}} d\pi \right\| = 2 \left\| \int_{0}^{2} \frac{\pi}{4i\pi^{2}} d\pi \right\| = h(2).$$

As a conclusion:
$$\|T_2\|_{\mathcal{L}(X_2)} = \ln(2)$$
.

3) • using (2), we have: | ||Tz|| (xz) & lu(2).

• For \gg we cannot use g_0 since g_0 d^2h^2 touthward on [-1;1].

Therefore, we define them,
$$g_n \in X_2$$
 by $g_n \in X_1$, $g_n \in X_2$ by $g_n (x) = \begin{cases} 1, & n \in (1/n; 1) \\ n \in (-1/n; 1/n) \\ -1, & \infty \in (-1/n; 1/n) \end{cases}$

Notice that, for any news, we have I gallo = 1. And:

$$\|Tag_n\|_{\infty} > 2 \int_{\frac{\pi}{1+\pi^2}}^{\frac{\pi}{2}} d\pi = h(2) - h(1+\frac{\pi}{1+\pi^2}) \xrightarrow{\text{nesses}} h(2)$$

So the appearer norm of T2 is equal to lu(2) as well

4) $g(n)=x^2$. $g \in X_1$. $T_1g = \int_{-1}^{\infty} \frac{x}{1+n^2} x x^2 dx = \int_{-1}^{\infty} \frac{x^3}{1+n^2} dx = 0$ since we integrate an

"odd" function $\left(\frac{x^2}{1+\chi^2} = \frac{(x)^3}{1+(x)^2}\right)$ on a symmetric interval.

So: $f \ker (T_1)$. Since $g \neq [x \mapsto 0]$, $\ker (T_1) \neq \{0\}$,

As a Conclusion: T1 is not syjective.

Theory

Question 1. (4 points) (i) Let $(X_1, \mathcal{A}_1, \mu_1), (X_2, \mathcal{A}_2, \mu_2)$ be measure spaces. Define the product σ -algebra $\mathcal{A}_1 \times \mathcal{A}_2$, and the product measure $\mu_1 \times \mu_2$.

(ii) Let $(\mathbb{R}^k, \mathcal{L}(\mathbb{R}^k), \lambda_k)$ be the standard Lebesgue measure space on \mathbb{R}^k . What is the relation between $(\mathbb{R}^{m+n}, \mathcal{L}(\mathbb{R}^m) \times \mathcal{L}(\mathbb{R}^n), \lambda_m \times \lambda_n)$ and $(\mathbb{R}^{m+n}, \mathcal{L}(\mathbb{R}^{m+n}), \lambda_{m+n})$?

Solution. See Lecture 10.

Question 2. (4 points) State and prove the (Lebesgue) dominated convergence theorem. State a sufficient condition in order to apply the theorem, when the sequence of functions is defined on a set with finite measure.

Solution. See Lectures 8 and 9.

Question 3. (4 points) Let $(X, \|\cdot\|)$ be a Banach space. Is it true that $C \subset X$ is compact $\iff C$ is closed and bounded? Is it true under some assumption on X?

State and prove the Riesz theorem (about the compactness of the unit ball; if you use a lemma, state it, but it is not necessary to write its proof).

Solution. See Lecture 15.

Question 4 (4 points) Let (X, \mathcal{A}, μ) be a measure space. Show that the normed space $L^p(X, \mathcal{A}, \mu)$, endowed with the usual norm $\|\cdot\|_p$, is a Banach space.

Solution. See Lecture 16.