Household Energy Prediction

Project Overview

Saving energy is key to solving environmental problems

such as climate and energy crisis.

Therefore, it is necessary to improve Energy prediction

Goal:

Forecast Energy usage with weather features and time

Data

- Hourly **energy consumption** from January 1, 2017 December 31, 2018
 - Source: Dataport
 - Variables are: localminute, dataid, and use (energy usage).
- Hourly Climate data for the same period.
 - Features include: temperature, dewpoint, relative humidity, windspeed, mean sea level pressure, precipitation, etc.
 - Source: http://www.frontierweather.com

Data Preprocessing

Data Structure Check

Dealing with Missing data

```
$ localminute: POSIXct, format: "2017-01-01 00:00:00" "2017-01-01 01:00:00" ...
            : Factor w/ 3 levels "1", "2", "3": 1 1 1 1 1 1 1 1 1 1 . . .
§ dataid
            : num 0.388 0.593 0.591 0.464 0.295 ...
$ Temperature: num 52 52 51 51 50 50 50 50 50 53 ...
$ Dewpoint : num 47 46 47 47 46 45 45 44 44 45 ...
            : num 83 80 86 86 86 83 83 80 80 74 ...
$ Windspeed
            : num 0503003636...
            : num 1 0.7 0.7 0.7 0.7 0.4 0.7 0.4 0.4 0.4 ...
$ CldFrac
            : num 29.9 29.9 29.9 29.9 29.9 ...
$ MSLP
            : num 1e-02 1e-02 0e+00 0e+00 1e-04 0e+00 0e+00 0e+00 0e+00 0e+00 ...
$ Precip
            : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
§ Month
            : Factor w/ 7 levels "1","2","3","4",...: 7 7 7 7 7 7 7 7 7 7 7 7 ...
$ Day
```

Correlation between Weather Variables and Energy Consumption

Data Visualization

Time Series Visualization

Time Series Visualization

Time Series Visualization

Trend analysis / seasonal variation

Lag plot

Autocorrelation

ACF & PACF & Stationery

0 30 60 Lag

Augmented Dickey-Fuller Test

data: count_ma
Dickey-Fuller = -2.8292, Lag order = 8, p-value = 0.2273
alternative hypothesis: stationary

ACF & PACF & Stationery for Differenced Series

p-value smaller than printed p-value Augmented Dickey-Fuller Test

data: count_d1
Dickey-Fuller = -7.3477, Lag order = 8, p-value = 0.01
alternative hypothesis: stationary

ARIMA with Seasonality

Series: deseasonal_use ARIMA(5,1,2) with drift

Coefficients:

arl ar2 ar3 ar4 ar5 mal ma2 drift 0.5144 0.6098 -0.2465 0.0321 -0.1908 0.0585 -0.4719 0.0019 0.0970 0.0853 0.0701 0.0445 0.0385 0.0948 0.0775 0.0076

sigma^2 estimated as 0.00965: log likelihood=655.32 AIC=-1292.64 AICc=-1292.39 BIC=-1251.39

ARIMA Forecasting

ARIMA Prediction & Accuracy

	Predicted value	SE	Actual Value
2019/01/01	3.392099	0.09769617	3.590859
2019/01/02	3.484767	0.18209222	3.251024
2019/01/03	3.530264	0.26748686	3.215609
2019/01/04	3.592768	0.35129686	3.585437
2019/01/05	3.606636	0.43657021	3.847791
2019/01/06	3.627345	0.51201976	3.265519
2019/01/07	3.614837	0.58065545	3.153457

ME RMSE MAE MAE MAE MAE MAE

Training set -3.606931e-05 0.09762437 0.07076282 1.743486e-03 2.335626

Test set -5.614305e-01 1.27007409 0.66902933 -3.652872e+02 368.175579

MASE ACF1

Training set 0.7597808 -0.007271974

Test set 7.1833713 NA

THANK YOU.....

DO YOU HAVE ANY QUESTIONS !