

Ţ <u>Help</u>

sandipan_dey ~

<u>Syllabus</u> laff routines **Community Discussion** <u>Outline</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Week 12: Eigenvalues and Eigenvectors / 12.3 The General Case

(

Next >

12.3.2 Eigenvalues of n x n Matrices

☐ Bookmark this page

Previous

■ Calculator

Week 12 due Dec 29, 2023 10:42 IST Completed

12.3.2 Eigenvalues of n x n Matrices

10.0/10.0 points (graded)

If $A \in \mathbb{R}^{n \times n}$, then $\Lambda\left(A\right)$ has n distinct elements.

✓ Answer: FALSE

The characteristic polynomial of $m{A}$ may have roots that have multiplicity greater than one. If $\Lambda\left(A
ight)=\{\lambda_0,\lambda_1,\ldots,\lambda_{k-1}\}$, where $\lambda_i
eq\lambda_j$ if i
eq j , then

$$p_k\left(\lambda
ight) = \left(\lambda - \lambda_0
ight)^{n_0} \left(\lambda - \lambda_1
ight)^{n_1} \cdots \left(\lambda - \lambda_{k-1}
ight)^{n_{k-1}}$$

with $n_0+n_1+\cdots+n_{k-1}=n$. Here n_j is the multiplicity of root λ_j .

Submit

Answers are displayed within the problem

Homework 12.3.2.2

1/1 point (graded)

Let $A\in\mathbb{R}^{n imes n}$ and $\lambda\in\Lambda$ (A). Let S be the set of all vectors that satisfy $Ax=\lambda x$. (Notice that S is the set of all eigenvectors corresponding to λ plus the zero vector.) Then S is a subspace.

✓ Answer: TRUE

The easiest argument is to note that $Ax=\lambda x$ is the same as $(A-\lambda I)\,x=0$ so that S is the null space of $(A-\lambda I)$. But the null space is a subspace, so S is a subspace.

Alternative proof: Let $x,y\in S$ and $lpha\in\mathbb{R}$. Then

• $x+y\in S$: Since $x,y\in S$ we know that $Ax=\lambda x$ and $Ay=\lambda y$. But then

$$A(x + y) = Ax + Ay = \lambda x + \lambda y = \lambda (x + y).$$

Hence $x + y \in S$.

• $lpha x \in S$: Since $x \in S$ we know that $Ax = \lambda x$. But then

$$A(\alpha x) = A(\alpha x) = \alpha Ax = \alpha \lambda x = \lambda(\alpha x).$$

Hence $\alpha x \in S$.

Submit

Answers are displayed within the problem

Previous

Next >

© All Rights Reserved

□ Calculator

edX

About

<u>Affiliates</u>

edX for Business

<u>Open edX</u>

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>