PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-343701

(43)Date of publication of application: 24.12.1993

(51)Int.CI.

H01L 29/788 H01L 29/792 G11C 11/406 G11C 16/06 H01L 27/115

(21)Application number: 04-149529

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

09.06.1992

(72)Inventor: MARUYAMA AKIRA

(54) SEMICONDUCTOR STORAGE DEVICE AND MANUFACTURE THEREOF

(57)Abstract:

PURPOSE: To provide a semiconductor storage device capable of selected or unselected erasable operation in a main body, by providing a capacity between a floating gate electrode and a drain region.

CONSTITUTION: After a photoresist 2 is applied to a semiconductor substrate 1, a first conductive impurity material is implanted to form a first conductive impurity region 3. An insulating film 4, a first conductive layer 5, an insulating film 6, and a second conductive layer 7 are formed. With a photoresist 8 applied thereon, the insulating films 4 and 6 and the conductive layers 5 and 7 are etched so that the first conductive layer 5 located on the first conductive impurity region 3 is formed. With a photoreist 9 applied thereon, a conductive impurity is implanted to form a second conductive impurity region 10, and finally an insulating film 11 is formed.

Consequently, the first conductive layer 5 as a floating electrode, the second conductive layer 7 as a control, electrode, the first conductive impurity region 3 as a

drain region, and the second conductive impurity region 10 as a source region are formed.

LEGAL STATUS

[Date of request for examination]

11.12.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]

3206106

06.07.2001

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公·報(A)

(11)特許出願公開番号

特開平5-343701

(43)公開日 平成5年(1993)12月24日

(51)Int.Cl.5

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 1 L 29/788

29/792

G 1 1 C 11/406

H01L 29/78

3 7 1

6741-5L

G 1 1 C 11/34

3 6 3

審査請求 未請求 請求項の数4(全 5 頁) 最終頁に続く

(21)出願番号

(22)出願日

特願平4-149529

平成 4年(1992) 6月 9日

(71)出願人 000002369

セイコーエブソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 丸山 明

長野県諏訪市大和3丁目3番5号セイコー

エブソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外1名)

(54)【発明の名称】 半導体記憶装置及び半導体記憶装置の製造方法

(57)【要約】

【目的】フラッシュEEPROMに選択、非選択の消去 動作を持たせる。

【構成】基板1をGNDレベル、ソース領域10をVP P1レベルとし、コントロールゲート電極7とドレイン 領域3の少なくとも一方をVPP2レベルとすること で、フローティングゲート電極5の電位を上げ、フロー ティングゲート電極5とソース領域10間の電位差を小 さくし、トンネル電流を発生を抑えることで消去動作を 防止する。フローティングゲート電極5、ドレイン領域 3間に十分な容量を持たせたため、データの消去動作時 にドレイン領域3の電位を上げることでも、消去動作を 防止できる。

【効果】また、書き込み動作時においてもドレイン領域 の電位の印加に伴い、フローティングゲート電極の電位 も上がるため、書き込み動作の効率が上がる。

【特許請求の範囲】

【請求項】】 フローティングゲート電極とコントロー ルゲート電極を備え、前記フローティングゲート電極へ 電子を注入する書き込み動作をドレイン領域端部で発生 するホットエレクトロンで行うと共に、前記フローティ ングゲート電極から電子を放出する消去動作をソース領 域のトンネルで行うメモリートランジスタを含んで成る 半導体記憶装置において、前記フローティングゲート電 極と前記ドレイン領域部との間に前記消去動作を制御す る容量を備えたことを特徴とする半導体記憶装置。

1

【請求項2】 消去動作時にドレイン領域に電位を印加 する手段を備えたことを特徴とする請求項1記載の半導 体記憶装置。

【請求項3】 請求項1記載の半導体記憶装置におい て、前記容量を前記フローティングゲート電極端部及び 内部の下に前記ドレイン領域を備えたことで設けたこと を特徴とする半導体記憶装置。

【請求項4】 フローティングゲート電極とコントロー ルゲート電極を備え、前記フローティングゲート電極へ 電子を注入する書き込み動作をドレイン領域端部で発生 20 するホットエレクトロンで行うと共に、前記フローティ ングゲート電極から電子を放出する消去動作をソース領 域のトンネルで行うメモリートランジスタを含んで成る 半導体記憶装置の製造方法において、半導体基板上の一 部に前記ドレイン領域となる第1の導電性の不純物を注 入する工程と、前記半導体基板上に前記第1の導電性の 不純物を注入した領域の少なくとも一部を含む上部に前 記フローティングゲート電極となる第1の導体層を形成 する工程と、前記第1の導体層上に前記コントロールゲ ート電極となる第2の導体層を形成する工程と、前記半 30 導体基板上の一部に前記ソース領域となる第2の導電性 の不純物を注入する工程からなることを特徴とする半導 体記憶装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、不揮発性半導体装置に 関し、特にフラッシュ(一括消去型)EEPROMの記 憶素子の構造およびその製造方法に関するものである。

【従来の技術】図4(e)は従来の半導体記憶装置の断 40 った。 面図である。1は基板、10はソース領域、3はドレイ ン領域、5はフローティングゲート電極、7はコントロ ールゲート電極、11は絶縁膜である。

【0003】書き込み動作を説明する。書き込みはコン トロールゲート電極7をVPPIレベル(約12V)、 ソース領域10、基板1を各々GNDレベル、ドレイン 領域3をVPP2レベル(約7V)とすることで、メモ リー素子にチャンネル電流を発生させる。するとドレイ ン領域3端部にホットエレクトロンが発生し、フローテ ィングゲート電極5に電子が注入されることで書き込み 50 エレクトロンで行うと共に、前記フローティングゲート

が行われる。

【0004】次に消去動作を説明する。消去はコントロ ールゲート電極7、基板1を各々GNDレベル、ソース 領域10をVPP1レベル、ドレイン領域3をオープン レベルとすることで、フローティングゲート電極5とソ ース領域10間にトンネル電流を発生させ、フローティ ングゲート電極5からソース領域10に電子を放出させ るととで消去を行う。

【0005】図4(a)~(e)は従来の半導体記憶装 置の製造方法を工程順に示すための断面図である。との 10 工程を順に追って説明していく。

【0006】まず、図4(a)の如く半導体基板1上に 絶縁膜4、導体層5、絶縁膜6、導体層7を形成する。 次にフォトレジスト12を塗布することで図4(b)の 如く所定の形状にエッチングする。次に図4(c)の如 くフォトレジスト13を塗布してから、導電性の不純物 を注入しその領域3を形成する。次に図4(d)の如く フォトレジスト14を塗布してから、導電性の不純物を 注入しその領域10を形成する。最後に図4(e)の如 く絶縁膜11を形成する。この様にして、導体層5をフ ローティングゲート電極、導体層7をコントロールゲー ト電極、導電性の不純物領域3をドレイン領域、導電性 の不純物領域10をソース領域として形成する。

【0007】また、図4(f)は平面図であり、そのB - Bの断面図が図4 (e) に相当する。

[0008]

【発明が解決しようとする課題】上記従来技術では、消 去動作時に特定の半導体記憶素子の消去を防止する(非 選択状態)には、ソース領域にVPP1レベルの電位を ED加しない、あるいはソース領域、コントロールゲート 電極の両方にVPP1レベルの電位を印加する等を行 い、フローティングゲート電極とソース領域間のトンネー ル電流の発生を抑えることで行っていた。

【0009】通常フラッシュ(一括消去型)EEPRO Mでは複数の記憶素子からなっており、そのソース領 域、コントロールゲート電極は特定な数だけ各々まとめ て接続されている。したがって、消去動作時に半導体記 憶素子の消去を防止する(非選択の消去動作)には、こ の接続された特定な単位毎でしか実行できない問題があ

【0010】本発明はこの様な問題を解決するもので、 その目的とするところは消去動作においても単一の半導 体記憶装置に選択、非選択の消去動作を持たせることを 可能にすることである。

[0011]

【課題を解決するための手段】本発明の半導体記憶装置 は、フローティングゲート電極とコントロールゲート電 極を備え、前記フローティングゲート電極へ電子を注入 する書き込み動作をドレイン領域端部で発生するホット

10

3

電極から電子を放出する消去動作をソース領域のトンネ・ ルで行うメモリートランジスタを含んで成る半導体記憶 装置において、前記フローティングゲート電極と前記ド レイン領域部との間に前記消去動作を制御する容量を備 えたことを特徴とする。

【0012】また、本発明の半導体記憶装置は消去動作 時にドレイン領域に電位を印加する手段を備えたことを 特徴とする。

【0013】また、本発明の半導体記憶装置は、前記容 量を前記フローティングゲート電極端部及び内部の下に 前記ドレイン領域を備えたことで設けたことを特徴とす る。

【0014】本発明の半導体記憶装置の製造方法は、フ ローティングゲート電極とコントロールゲート電極を備 え、前記フローティングゲート電極へ電子を注入する書 き込み動作をドレイン領域端部で発生するホットエレク トロンで行うと共に、前記フローティングゲート電極か ら電子を放出する消去動作をソース領域のトンネルで行 **うメモリートランジスタを含んで成る半導体記憶装置の** 製造方法において、半導体基板上の一部に前記ドレイン 領域となる第1の導電性の不純物を注入する工程と、前 記半導体基板上に前記第1の導電性の不純物を注入した 領域の少なくとも一部を含む上部に前記フローティング ゲート電極となる第1の導体層を形成する工程と、前記 第1の導体層上に前記コントロールゲート電極となる第 2の導体層を形成する工程と、前記半導体基板上の一部 に前記ソース領域となる第2の導電性の不純物を注入す る工程からなることを特徴とする。

[0015]

【作用】上記手段によれば、フローティングゲート電 極、ドレイン領域間に十分な大きさの容量があるため、 データの消去動作時にドレイン領域の電位を上げること でも、ソース領域、フローティングゲート電極間の電位 差を小さくすることができ、トンネル電流の発生を抑え ることで消去動作を防止することが可能である。

[0016]

【実施例】図1 (e) は本発明の第1の実施例における 半導体記憶装置の断面図である。1は基板、10はソー ス領域、3はドレイン領域、5はフローティングゲート 電極、7はコントロールゲート電極、11は絶縁膜であ 40 る。

【0017】書き込み動作を説明する。書き込みはコン トロールゲート電極7をVPP1レベル(約12V)、 ソース領域10、基板1を各々GNDレベル、ドレイン 領域3をVPP2レベル(約7V)とすることで、メモ リー素子にチャンネル電流を発生させる。するとドレイ ン領域3端部にホットエレクトロンが発生し、フローテ ィングゲート電極5に電子が注入されることで書き込み が行われる。

ールゲート電極7、ドレイン領域3、基板1を各々GN Dレベル、ソース領域 I O をV P P I レベルとすること で、フローティングゲート電極5とソース領域10間に トンネル電流を発生させ、フローティングゲート電極5 からソース領域10に電子を放出させることで消去を行

【0019】次に非選択の消去動作を説明する。非選択 の消去は、基板1をGNDレベル、ソース領域10をV PP1レベルとし、コントロールゲート電極7とドレイ ン領域3の少なくとも一方をVPP2レベルとすること で、フローティングゲート電極5の電位を上げ、フロー ティングゲート電極5とソース領域10間の電位差を小 さくし、トンネル電流を発生を抑えることで消去動作を 防止する。本実施例の場合、フローティングゲート電 極、ドレイン領域間に十分な容量を持たせることができ るため、データの消去動作時にドレイン領域の電位を上 げることでも、消去動作を防止することが可能である。 【0020】図2は本発明の第1の実施例を示す回路図 である。20~23は図1(e)で示した構造を持つ半 20 導体記憶装置、BL1、BL2はビットラインであり各 々半導体記憶装置のドレイン(図1(e)の3に相当) に接続されており、WL1、WL2はワードラインであ り各々半導体記憶装置のコントロールゲート(図1 (e)の7に相当)に接続されており、SLはソースラ インであり各々半導体記憶装置のソース(図1(e)の 10に相当)に接続されている。また、24、25、2 6は各々ピットライン、ワードライン、ソースラインの 電位印加回路である。また、ここでは簡単のために4つ の半導体記憶装置の構成とした。

【0021】書き込み動作を説明する。半導体記憶装置 30 20を書き込む場合はWL1をVPP1レベル、BL1 をVPP2レベル、WL2、BL2、SLを各々GND レベルとすることで、半導体記憶装置20にチャンネル 電流を発生させ、そのドレイン領域端部にホットエレク トロンを発生させ、フローティングゲート電極に電子を 注入するととで書き込みを行う。との場合、半導体記憶 装置21~23ではチャンネル電流が発生しないため書 き込みは行われない。

【0022】次に消去動作を説明する。半導体記憶装置 20を消去する場合ははWL1、BL1を各々GNDレ ベル、WL2、BL2を各々VPP2レベル、ソースラ インSLをVPPIレベルとすることで、半導体記憶装 置20のフローティングゲート電極とソース領域間にト ンネル電流を発生させ、フローティングゲート電極から ソース領域に電子を放出させることで消去を行う。この 場合、半導体記憶装置21~23ではフローティングゲ ート電極とソース領域間にトンネル電流が発生しないた め消去は行われない。

【0023】図3は本発明の第2の実施例における半導 【0018】次に消去動作を説明する。消去はコントロ 50 体記憶装置の平面図である。この場合はフローティング

ゲート電極5とドレイン領域3をチャンネル部以外の所・ に張り出させ、そとに容量を形成した。

【0024】次に、本発明の実施例における半導体記憶 装置の製造方法を説明する。図1(a)~(e)は製造 方法を工程順に示すための断面図である。この工程を順 に追って説明して行く。

【0025】まず、図1(a)の如く半導体基板1上に フォトレジスト2を塗布することで所定の位置にイオン 打ち込み法により第1の導電性の不純物を注入しその領 域を形成する。この場合第1の導電性の不純物として燐 10 や砒素を1×1013から1×1014atoms・cm-2 程度注入する。次に図1(b)の如く半導体基板1上に 熱酸化法により絶縁膜4、前記絶縁膜4上にCVD法に より第1の導体層5、前記第1の導体層5上に絶縁膜 6、前記絶縁膜6上に第2の導体層7を形成する。この 場合絶縁膜4、6はゲート絶縁膜として使用し、各々膜 厚を10nm、25nm程度とする。また、第1、第2 の導体層 5、7は多結晶シリコン膜を使う。次にフォト レジスト8を塗布することで図1(c)の如く所定の形 状に絶縁膜4、6、導体層5、7をエッチングし、前記 20 電流の発生を抑えることで消去動作を防止することが可 半導体基板上に前記第1の導電性の不純物を注入した領 域3の少なくとも一部を含む上部に第1の導体層を形成 する。次に図1(d)の如くフォトレジスト9を塗布し てから、イオン打ち込み法により導電性の不純物を注入 しその領域10を形成する。この場合第2の導電性の不 純物として、トンネル電流を発生し易くする為に、燐や 砒素を第1の導電性の不純物の濃度より濃い1×10¹⁵ から1×1016atoms·cm-1程度注入する。最後 に図1(e)の如くCVD法により絶縁膜11を形成す る。この様にして、第1の導体層5をフローティングゲ 30 ート電極、第2の導体層7をコントロールゲート電極、 第1の導電性の不純物領域3をドレイン領域、第2の導 電性の不純物領域10をソース領域として形成する。

【0026】以上述べた様に本実施例ではドレイン領域 の少なくとも一部を含む上部にフローティングゲート電 極を形成するため、フローティングゲート電極、ドレイ ン領域間に十分な大きさの容量を持たせることができ る。図1 (f) は平面図であり、そのA-Aの断面図が 図1(e)に相当するが、ドレイン領域3とフローティ ングゲート電極5との重なりを十分に大きくとること で、前記容量を確保することが可能である。

【0027】以上本発明を前記実施例に基づき説明した が、本発明は前記実施例に限定される物ではなく、その 要旨を逸脱しない範囲において、変形し得ることは勿論 である。

【0028】例えば本半導体記憶装置の実施例では容量

をフローティングゲート電極とドレイン領域との重なり を取ることで形成したが、これは例えばフローティング ゲート電極とドレイン領域に接続された配線層との重な りを取ることで形成しても良い。

【0029】また、例えば本半導体記憶装置の製造方法 での実施例では第1、第2の導電性の不純物を注入する 工程を分けて、説明したが、第2の導電性の不純物を注 入する工程を第1の導電性の不純物を注入する工程と同 時に行っても良い。

【0030】また、例えば本半導体記憶装置の製造方法 での実施例では第1、第2の導体層をエッチングする工 程を同時として説明したが、これは別々の工程として行 っても良い。

[0031]

【発明の効果】以上述べた様に本発明によれば、フロー ティングゲート電極、ドレイン領域間に十分な大きさの 容量があるため、データの消去動作時にドレイン領域の 電位を上げることでも、ソース領域、フローティングゲ ート電極間の電位差を小さくすることができ、トンネル 能である。との結果、消去動作においても単一の半導体 記憶装置に選択、非選択の消去動作を持たせることを可 能になった。

【0032】また、書き込み動作時においてもドレイン 領域の電位の印加に伴い、フローティングゲート電極の 電位も上がるため、書き込み動作の効率が上がる。

【図面の簡単な説明】

【図1】 本発明の第1の実施例における主要断面図及 び平面図。

【図2】 本発明の第1の実施例における回路図。

【図3】 本発明の第2の実施例における平面図。

【図4】 従来の実施例における主要断面図及び平面 図。

【符号の説明】

1 基板

2、8、9、12、13、14 フォトレジスト

3 ドレイン領域

4、6、11 絶縁膜

5 フローティングゲート電極

40 7 コントロールゲート電極

10 ソース領域

20~23 半導体記憶装置

24~26 電位印加回路

WL1、2 ワードライン

BL1、2 ビットライン

SL ソースライン

フロントページの続き				
(51)Int.Cl.' GllC 16/06	識別記号	庁内整理番号	FI	技術表示箇所
HO1L 27/115				
		6741-5L	G11C 17/00	309 D
		8728 4M	HOIL 27/10	4 3 4