Sumas en subarreglos.

Bitman tiene un arreglo de n elementos, $a=[a_0,a_1,\ldots,a_{n-1}]$. Para algun subarreglo, b, de a, defininimos G(b) como:

$$G(b) = \max_{\substack{i,j \ 0 \leq i \leq j < ext{length}(b)}} |b_i - b_j|^2$$

donde length(b) es la longitud de b, y b_i es el i^{th} elemento de b.

Bitman calcula la suma de G(b) para todos los posibles subarreglos b de a calculando

$$\sum_{\substack{l,r \ 0 \leq l \leq r < n}} G(a_{l \dots r})$$

donde $a_{l\dots r}$ es el subarreglo de a del indice l al indice r.

Dado a , imprima la suma descrita arriba modulo 2^{64}

Entrada

La primera linea de la entrada contiene un entero n (el tamaño del arreglo). La segunda línea contiene n enteros separados por espacio los que representan respectivamente los valores de a_0,a_1,\ldots,a_{n-1}

Restricciones

- $1 \le n \le 2.10^5$
- $1 \le a_i \le 2.10^5$

Salida

Imprima un entero denotando la suma, modulo 2^{64} .

Ejemplo # 1 de Entrada

5 1 2 3 4 5

Ejemplo # 1 de Salida

50

Explicación # 1

$$egin{aligned} a_{1...1} &= [1] \quad G(a_{1...1}) &= 0 \ a_{1...2} &= [1,2] \quad G(a_{1...2}) &= 1 \ a_{1...3} &= [1,2,3] \quad G(a_{1...3}) &= 4 \ a_{1...4} &= [1,2,3,4] \quad G(a_{1...4}) &= 9 \ a_{1...5} &= [1,2,3,4,5] \quad G(a_{1...5}) &= 16 \ a_{2...2} &= [2] \quad G(a_{2...2}) &= 0 \ a_{2...3} &= [2,3] \quad G(a_{2...2}) &= 1 \ a_{2...4} &= [2,3,4] \quad G(a_{2...4}) &= 4 \ a_{2...5} &= [2,3,4,5] \quad G(a_{2...4}) &= 4 \ a_{2...5} &= [3] \quad G(a_{3...3}) &= 0 \ a_{3...3} &= [3] \quad G(a_{3...3}) &= 0 \ a_{3...4} &= [3,4] \quad G(a_{3...4}) &= 1 \ a_{3...5} &= [3,4,5] \quad G(a_{3...5}) &= 4 \ a_{4...4} &= [4] \quad G(a_{4...4}) &= 0 \ a_{4...5} &= [4,5] \quad G(a_{4...5}) &= 1 \ a_{5...5} &= [5] \quad G(a_{5...5}) &= 0 \ \ \end{aligned}$$

La suma de esos valores es 0+1+4+9+16+0+1+4+9+0+1+4+0+1+0=50, entonces imprima como la respuesta el resultado de $50 \bmod 2^{64}=50$.

Ejemplo # 2 de Entrada

4 3 1 4 2

Ejemplo # 2 de Salida

44

Explicación # 2

$$egin{aligned} a_{1...1} &= [3] \quad G(a_{1...1}) = 0 \ a_{1...2} &= [3,1] \quad G(a_{1...2}) = 4 \ a_{1...3} &= [3,1,4] \quad G(a_{1...3}) = 9 \ a_{1...4} &= [3,1,4,2] \quad G(a_{1...4}) = 9 \ a_{2...2} &= [1] \quad G(a_{2...2}) = 0 \ a_{2...3} &= [1,4] \quad G(a_{2...3}) = 9 \ a_{2...4} &= [1,4,2] \quad G(a_{2...4}) = 9 \ a_{3...3} &= [4] \quad G(a_{3...3}) = 0 \ a_{3...4} &= [4,2] \quad G(a_{3...4}) = 4 \ a_{4...4} &= [2] \quad G(a_{4...4}) = 0 \end{aligned}$$

La suma de esos valores es 0+4+9+9+0+9+9+0+4+0=44, entonces imprima el resultado de 44 mod $2^{64}=44$ como la respuesta.