Tim Peko WS 2025/26

SWE3 - Übung 3 WS 2025/26

Aufwand in h: 4 Tim Peko

Inhaltsverzeichnis

1.	Auf	fgabe: Rationale Zahl als Datentyp	. 2
		Lösungsidee	
		1.1.1. Designentscheidungen	
		1.1.2. Korrektheit	
		1.1.3. Euklidischer Algorithmus	
	1.2.	Teststrategie	
		Ergebnisse	
		1.3.1. Demo Output	
		1.3.2. Testfälle	

1. Aufgabe: Rationale Zahl als Datentyp

1.1. Lösungsidee

Die Klasse rational_t repräsentiert rationale Zahlen als gekürzte Brüche $\frac{Z\ddot{a}hler=Z=nominator=n}{Nenner=N=denominator=d}$ mit int als value_type.

Invarianten:

- Nenner ist nie 0, ist immer positiv.
- 0 wird als $\frac{0}{1}$ repräsentiert.

Konstruktion und alle Operationen rufen normalize() auf, welche mittels euklidischem Algorithmus (beschrieben in Abschnitt 1.1.3) kürzt und das Vorzeichen in den Zähler schiebt.

Fehlerbehandlung:

- Ungültige Eingaben (Nenner 0) lösen invalid_rational_error aus.
- Division durch 0 in ≠ löst division_by_zero_error aus.

Vergleiche nutzen Kreuzmultiplikation, um Rundungsfehler zu vermeiden. Streams werden als "<n/d>" ausgegeben und "n" oder "n/d" eingelesen.

1.1.1. Designentscheidungen

Datentyp

int als value_type gemäß Aufgabenstellung; API könnte später auf long long/std::int64_t erweitert werden. Um Überläufe zu vermeiden, werden Zwischenrechnungen in long long durchgeführt und anschließend normalisiert/gekürzt.

• Invariante Darstellung: Der Nenner ist stets positiv; das Vorzeichen liegt ausschließlich im Zähler. Die Null wird kanonisch als 0/1 gespeichert. Die Methode normalize() erzwingt diese Regeln und kürzt mit Euklidischem Algorithmus (gcd).

Operatoren

Die zusammengesetzten Operatoren (+=, -=, *=, \neq) bilden die zentrale Implementierung; die binären Operatoren (+, -, *, /) delegieren darauf, um Code-Duplikation zu vermeiden. Vergleichsoperatoren nutzen Kreuzmultiplikation (a/b < c/d \iff ad < cb) in long long, wodurch Rundung vermieden wird.

Interoperabilität mit int

Für Ausdrücke mit linkem int-Operand (z. B. 3 + rational_t(2,3)) sind freie Operatoren definiert, um symmetrisches Verhalten zu gewährleisten.

Streams

operator « gibt in der geforderten Form "<n/d>" bzw. "<n>" für ganze Zahlen aus. Operator » akzeptiert "n" oder "n/d" und setzt failbit bei ungültigem Format, wirft aber auch eine Ausnahme bei "n/o".

1.1.2. Korrektheit

Vergleich

Kreuzmultiplikation ist korrekt, solange das Produkt im long long -Bereich

bleibt. Die anschließende Normalisierung begrenzt die Größe \to realistisch innerhalb typischer Übungsdaten unkritisch.

Robustheit

Jede Methode, die potenziell die Invariante verletzen kann, ruft normalize() auf oder prüft mit is_consistent().

Ausnahmen/Exceptions

- invalid_rational_error (← std::invalid_argument ← std::logic_error):
 Tritt bei ungültiger Konstruktion auf (z. B. Nenner 0). Das ist ein Verstoß gegen die API-Vertragsbedingungen und daher eine Logik- bzw.
 Argumentfehler-Kategorie.
- division_by_zero_error (← std::domain_error ← std::logic_error):
 Tritt zur Laufzeit beim ⊭ mit einer rationalen 0 auf. Es entspricht einem
 Problem mit unserer Eingabedomäne und ist daher ein Logik-/Argumentfehler.

The exceptions listed in the [stdexcept.syn] section of ISO C++20 standard (the iteration used in this answer) are:

Now you *could* argue quite cogently that either overflow_error (the infinity generated by IEEE754 floating point could be considered overflow) or domain_error (it is, after all, a problem with the input value) would be ideal for indicating a divide by zero.

•••

paxdiablo auf <u>Stack Overflow</u>

1.1.3. Euklidischer Algorithmus

Der Euklidische Algorithmus ist ein Algorithmus, der den größten gemeinsamen Teiler (ggT) zweier Zahlen berechnet. Er terminiert in $O(\log(\min(|Z|,|N|)))$.

```
int gcd(int a, int b) {
    while (b ≠ 0) {
    int t = b;
    b = a % b;
    a = t;
    }
    return a;
}
```

Der Algorithmus basiert auf der Eigenschaft, dass $gcd(a, b) = gcd(b, a \mod b)$. Durch wiederholte Anwendung dieser Regel wird das Problem auf kleinere Zahlen reduziert, bis eine der Zahlen 0 wird. Der ggT ist dann die andere Zahl.

Beispiel für gcd(48, 18):

- 1. $gcd(48, 18) \Rightarrow gcd(18, 48 \mod 18)$
- 2. $gcd(18, 12) \Rightarrow gcd(12, 18 \mod 12)$
- 3. $gcd(12, 6) \Rightarrow gcd(6, 12 \mod 6)$
- 4. $gcd(6,0) \Rightarrow 6$

Das Verhalten des Euklidischen Algorithmus ist in Abbildung 1 dargestellt. Dabei wird die Divergenz des Algorithmus für verschiedene Eingaben visualisiert. In Abbildung 2 und Abbildung 3 wird die Anzahl der benötigten Schritte und die Ergebnisse des Euklidischen Algorithmus für $a,b \in [0,128]$ visualisiert. Die Zeitkomplexität wird in Abbildung 4 veranschaulicht.

Abbildung 1: Verschiedene Beispiele für die Divergenz des Euklidischen Algorithmus

Abbildung 2: Anzahl Schritte des Euklidischen Algorithmus für $a,b \in [0,128]$

Abbildung 3: Ergebnisse des Euklidischen Algorithmus für $a,b\in[0,128]$

Abbildung 4: Zeitkomplexität des Euklidischen Algorithmus max()

Die Implementierung des Euklidischen Algorithmus im Projekt verwendet Absolutwerte, um negative Eingaben zu handhaben, und gibt im Grenzfall beider Eingaben gleich 0 den Wert 1 zurück, damit die Normalisierung definiert bleibt.

1.2. Teststrategie

1.3. Ergebnisse

1.3.1. Demo Output

Die main-Funktion in der main.cpp Datei entspricht genau des in der Aufgabenstellung beschriebenen Beispiels. Die Musterausgabe in der Konsole ist wie folgt:

Abbildung 5: Musterausgabe der main - Funktion in der Aufgabenstellung

Die Ausgabe der eigenen Implementierung ist einsehbar in Abbildung 6 und deckt sich prinzipiell mit der Musterausgabe. Beachte, dass die Ausgabe von $\frac{1}{2}$ * -10 faktisch nicht 5 (wie in Abbildung 5 dargestellt) sondern -5 ist, was in meiner Konsole mit Ligatures (\leftarrow 5 >) angezeigt wird.

```
←5>
<5>
<23/3>
<67/35>
C:\Users\Timer\Documents\Coding\Exercises\
36) exited with code 0 (0x0).
Press any key to close this window . . .
```

Abbildung 6: Ausgabe der main -Funktion unserer Übungsimplementierung

1.3.2. Testfälle