

Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Στατιστική στην Πληροφορική

Ακαδημαϊκό έτος: 2019-20

4η Άσκηση: παράδοση Τετάρτη 29/1

- 1. Εδώ θα χρησιμοποιήσετε τα δεδομένα του αρχείου βαθμών από κάποιο μάθημα (για το ακαδ. έτος 2014-15) για να εξετάσετε τη σχέση μεταξύ του βαθμού στη εξέταση προόδου (μεταβλητή *MIDTERM*) με τον τελικό βαθμό (μεταβλητή *GRADE*) που επιτυγχάνουν οι φοιτητές στο μάθημα αυτό.
 - α. Χρησιμοποιώντας διερευνητική ανάλυση, σχολιάστε κατά πόσο η σχέση μεταξύ των δύο μεταβλητών φαίνεται να είναι γραμμική και εάν ικανοποιούνται η ομοσκεδαστικότητα και κανονικότητα.
 - b. Υποθέτοντας ότι οι μεταβλητές σχετίζονται γραμμικά ως εξής: $GRADE = \beta_1 \times MIDTERM + \beta_0 + άλλοι παράγοντες, \\ εκτιμήστε τον συντελεστή <math>\beta_1$ και δώστε ένα 95% διάστημα εμπιστοσύνης για αυτόν.
 - c. Υπάρχει σχέση μεταξύ των δύο μεταβλητών; Χρησιμοποιήστε έναν έλεγχο σημαντικότητας για να απαντήσετε.
 - d. Εκτιμήστε το τελικό βαθμό που θα επιτύγχαναν φοιτητές οι οποίοι στην εξέταση προόδου έλαβαν 7. Δώστε ένα 95% διάστημα εμπιστοσύνης.
 - Ε. Προβλέψτε τον τελικό που θα επετύγχανε ένας τυχαία επιλεγμένος φοιτητής που πήρε 7 στην πρόοδο, δίνοντας ένα 95% διάστημα πρόβλεψης.
- 2. Για τους φοιτητές του ΟΠΑ, στην άσκηση αυτή θα διερευνήσετε εάν το ύψος σχετίζεται με την προτίμηση χρώματος, εξετάζοντας τα 3 περισσότερο δημοφιλή χρώματα στα δεδομένα του ερωτηματολογίου 2019.
 - a. Κάντε οπτική σύγκριση με πλάϊ πλαϊ boxplots και σχολιάστε το αποτέλεσμα.
 - b. Χρησιμοποιήστε κατάλληλο ελέγχο σημαντικότητας.
- 3. Στην άσκηση αυτή θα εξετάσετε κατά πόσο από τον βαθμό της προόδου σε ένα μάθημα μπορεί να προβλεφθεί η επιτυχία (= τελικός βαθμός τουλάχιστον 5) στο μάθημα αυτό.
 - α. Φτιάξτε ένα υπόδειγμα για τη σχέση μεταξύ βαθμού προόδου και επιτυχίας χρησιμοποιώντας λογιστική παλινδρόμηση στα δεδομένα που προέκυψαν από κάποιο μάθημα κατά το ακαδ. έτος 2014-15. Θεωρείτε ότι η λογιστική παλινδρόμηση είναι κατάλληλη ως υπόδειγμα;
 - b. Βάσει του υποδείγματος αυτού, πόσο εκτιμάτε ότι είναι το ποσοστό επιτυχίας των φοιτητών όταν παίρνουν βαθμό 5 στην πρόοδο;
 - c. Απαντήστε εάν σχετίζεται ο βαθμός προόδου με την επιτυχία, χρησιμοποιώντας ένα έλεγχο σημαντικότητας.
 - d. Χρησιμοποιώντας το παραπάνω υπόδειγμα, μπορείτε να προβλέψετε εάν θα περάσει το μάθημα ένας φοιτητής που πήρε 5 στην πρόοδο;

- e. Υπολογίστε την ακρίβεια της μεθόδου πρόβλεψης επιτυχίας στο ερώτημα (d), συγκρίνοντας την πρόβλεψη με τα τελικά αποτελέσματα για τα δεδομένα του ακαδ. έτους στα δεδομένα του ακαδ. έτους 2016-17.
- 4. Ρίχνοντας ένα νόμισμα 100 φορές, εμφανίζονται 44 κορώνες. Εάν η πιθανότητα εμφάνισης κορώνας είναι $\theta \in (0,1)$, τότε η συνάρτηση πιθανοφάνειας $L(\theta)$ δίδεται ως $L(\theta) = \binom{100}{44} \theta^{44} (1-\theta)^{56}$. (Σημειώστε ότι η πιθανοφάνεια είναι ίση με την πιθανότητα να εμφανιστούν 44 κορώνες στις 100 ρίψεις όταν η πιθανότητα κορώνας είναι ίση με θ .)
 - a. Εκτιμήστε την πιθανότητα εμφάνισης κορώνας σύμφωνα με την Αρχή της Μέγιστης Πιθανοφάνειας. Δικαιολογήστε την απάντηση σας.
 - b. Εκτιμήστε την πιθανότητα εμφάνισης κορώνας χρησιμοποιώντας Μπεϋζιανή στατιστική εάν γνωρίζετε ότι η πιθανότητα αυτή είναι ίση με ³/₄ , ½ ή ¼ με ίση πιθανότητα.
 - c. Εκτιμήστε την πιθανότητα εμφάνισης κορώνας χρησιμοποιώντας Μπεϋζιανή στατιστική εάν γνωρίζετε ότι η πιθανότητα αυτή είναι ίση με ½, ½ ή ¾ με πιθανότητα 1/10, 1/10 και 8/10 αντίστοιχα.

Σχόλια/οδηγίες:

- 1. Πριν την εξαγωγή συμπερασμάτων (διαστήματα εμπιστοσύνης ή ελέγχους σημαντικότητας), είναι πολύ σημαντικό να διαπιστώνετε αν τα δεδομένα είναι κατάλληλα για την ακρίβεια των εκάστοτε μεθόδων, σύμφωνα με τα κριτήρια που έχουν ειπωθεί στις διαλέξεις.
- 2. Μπορείτε να χρησιμοποιήσετε όποιο λογισμικό στατιστικών υπολογισμών θέλετε.
- 3. Μπορείτε να κάνετε τις ασκήσεις ομαδικά σε ομάδες έως 2 το πολύ ατόμων. Εργασίες ομάδων με δύο μέλη θα παραδίνονται μόνο από το ένα μέλος (μην ξεχάσετε να αναφέρετε τα ονόματα/ΑΜ όλων των μελών!)

Percentage Points of the ℓ Distribution; $\ell_{v\,,\,\alpha}$ P(T> $\ell_{v\,,\,\alpha})=\alpha$

3	Casses.	CONTRACTOR	1200000	10000000	V200000	WANTED	V-18191704	0	AND BUSINESS	- 100 c. 200 c.	M. GC COSCOLORY	C. 1005 C. 1402	COLUMN NOTATION	TOWN THE PERSON
>	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0,005	0.0025	0.0005
2	0.325	0.727	1.376	1.963	3.078	6.314	12,706	15.895	21.205	31.821	42,434	63,657	127,322	636,590
N	0.289	0.617	1001	1.386	1.886	2.920	4,303	4.849	5,643	6.965	8.073	9.925	14,089	31,598
	0.277	0.584	0.978	1.250	1.638	2.353	3,182	3.482	3.896	4.541	5,047	5.841	7,453	12.924
	0.271	0.569	0.941	1.190	1.533	2.132	2,776	2,999	3.298	3,747	4.088	4.604	8.598	8.610
w	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2,757	3.003	3.365	3,634	4.032	4,773	6.869
1	0.265	0.553	90670	1.134	1.440	1.943	2,447	2.612	2.829	3.143	3.372	3,707	4.317	5,959
-	0.263	0.549	0.896	1.119	1,415	1.895	2,365	2.517	2.715	2.998	3.203	3,499	4.029	5,408
20	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
6	0.261	0.543	0.883	1,100	1.383	1.833	2,262	2,398	2.574	2.821	2.998	3.250	3.690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2,932	3.169	3,581	F80.4
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3,497	4,437
2	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3,428	4.318
13	0.259	-	0.870	1.079	1.350	1,771	2,160	2,282	2,436	2.650	2.801	3.012	3.372	4.221
7	0.258	-	0.868	1.076	1,345	1.761	2,145	2,264	2.415	2.624	2.771	2,977	3.326	4.140
130	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2,746	2,947	3,286	4.073
91	0.258	0.535	0.865	1.001	1.337	1.746	2,120	2,235	2.382	2.583	2.724	2.921	3,252	4.015
1.5	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2,706	2.898	3,222	3,965
18	0.257	0.534	0.862	1,067	1.330	1.734	2.101	2.214	2.356	2.552	2,689	2.878	3,197	3.922
19	0.257	0.533	0.861	1.066	1.328	1,729	2.093	2.205	2.346	2.539	2.674	2.861	3.174	3.883
97	0.257	0.533	0.860	1,064	1.325	1.725	2.086	2,197	2.336	2.528	2,661	2.845	3.153	3,850
	0.257	0.532	0.859	1.063	1,323	1.721	2,080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	0.256	0.532	0.858	1901	1.321	1.717	2,074	2.183	2.320	2.508	2.639	2.819	3.119	3.792
	0.256	0.532	0.858	1.060	1,319	1,714	2,069	2.177	2.313	2.500	2,629	2.807	3,104	3,768
24	0.256	0.531	0.857	1.059	1.318	1.733	2.064	2,172	2.307	2.492	2.620	2.797	3.091	3,745
25	0.256	0.531	0.856	1.058	1.316	1.708	2,066	2.167	2,301	2.485	2,612	2.787	3.078	3,725
92	0.256	-	0.856	1.058	1315	1.706	2.056	2.162	2,296	2.479	2,605	2,779	3,067	3.707
	0.256	0.531	0.855	1,057	1.314	1,703	2,052	2,158	2.201	2.473	2.598	2.771	3.057	3,690
22	0.256	0.530	0.855	1.056	1,313	1.701	2:048	2.154	2.286	2:467	2.592	2,763	3,047	3.674
-	0.256	0.530	0.854	1.055	1.311	1.699	2,045	2.150	2.282	2.462	2.586	2.756	3,038	3,659
30	0.236	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
9	0.255	0.529	0.851	1.050	1,303	1.684	2.021	2,123	2.250	2,423	2.542	2.704	2.971	3,551
99	0.254	0.527	0.848	1.045	1.296	1.671	2,000	2.099	2.223	2.390	2.504	2,660	2.915	3,460
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2,617	2.860	3.373
8	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2,432	2.576	2.807	3.291