Análise de Redes

Aula 03 - Propriedade de Grafos

Prof. Patrick Terrematte

Teoria de Grafos

- Propriedades
 - Ordem e Tamanho
 - Caminhos e medidas
 - Grau e Distribuição de Grau
 - Coeficiente de Clusterização
 - Medidas de Centralidade
- Tipos de Redes
 - Redes Aleatórias
 - Redes 'Mundo Pequeno' (Small Worlds)
 - Redes Livre de Escala

Propriedades de Grafos

Caminho

- Caminho: sequência de vértices consecutivos conectados por arestas <s, u, v, ..., t>.
- Em um grafo direcionado, o caminho segue o sentido da aresta. AB ≠ BA.
- Distância (caminho mínimo, caminho geodésico): o menor caminho entre dois vértices.

Grafo não-direcionado

<B, C, A, D> é caminho de comprimento 3.

<B, A, D, C> não é caminho.

Grafo direcionado

<A, B, C> é caminho.

<A, C, B> não é caminho.

Caminhos

$$l_{1\to 4} = 3$$
 $l_{1\to 5} = 2$

Distância: menor comprimento entre 2 vértices (caminho mínimo).

$$l_{1\to 4}=3$$

Diâmetro: maior distância entre quaisquer 2 vértices (maior caminho mínimo).

$$(l_{1\to 2} + l_{1\to 3} + l_{1\to 4} + l_{1\to 5} + l_{2\to 3} + l_{2\to 4} + l_{2\to 5} + l_{3\to 4} + l_{3\to 5} + l_{4\to 5})/10 = 1.6$$

Caminho médio: média das distâncias entre todos os pares de vértices.

Caminhos

$$l_{1\to 4} = 3$$
 $l_{1\to 5} = 2$

Distância: menor comprimento entre 2 vértices (caminho mínimo).

$$l_{1\to 4} = 3$$

Diâmetro: maior distância entre quaisquer 2 vértices (maior caminho mínimo).

Caminhos

Ciclo: caminho que começa e termina no mesmo vértice.

Caminho Euleriano: caminho que passa por cada aresta uma única vez.

Caminho Hamiltoniano: caminho que passa por cada vértice uma única vez.

Grafos Completos

- Grafo com tamanho $L = L_{max}$ e grau médio $\langle k \rangle = N-1$.
- O maior número de arestas de em um grafo de ordem N:

$$L_{\text{max}} = \begin{pmatrix} N \\ 2 \end{pmatrix} = \frac{N!}{(N-2)!2!} = \frac{N(N-1)}{2}$$

- Densidade: número de arestas L em relação ao grafo completo L_{max} .
- Dado um grafo de ordem N e tamanho L.
 - Grafo esparço: L ~ N.
 - \circ Grafo denso: L \sim N².

Redes Reais são Esparsas

$$L \ll L_{max}$$
 ou $\langle k \rangle \ll N-1$

	Nodes	Links	Lmax	<k></k>
WWW (sample)	e) 325,729		10 ¹²	4.51
Proteina (S. cerevisiae)	1,870	4,470	10 ⁷	2.39
Colaboração (math)	70,975	2 x10 ⁵	3 x10 ¹⁰	3.9
Atores em um filme	212,250	6 x10 ⁶	1.8 x10 ¹³	28.78

Redes Reais são Esparsas

A matriz de adjacência da rede de interação proteína-proteína de levedura, constituída por 2.018 vértices, cada um representando uma proteína.

Coeficiente de Clusterização Local

- Razão entre as arestas existentes e o # máximo de arestas possíveis entre os vizinhos de um dado vértice.
- Não está definido para vértices com grau 0 ou 1.

CC não expressa uma propriedade do vértice e sim dos seus vizinhos!

$$CC = 0/12 = 0$$

$$CC = (2*3)/12 = 0.5$$

$$CC = 12/12 = 1$$

Coeficiente de Clusterização Global

- Média aritmética dos CC de cada vértice: mede o grau com que os vértices de um grafo tendem a agrupar.
- Nas redes sociais, o agrupamento refere-se aos círculos de amigos ou conhecidos onde os seus membros se conhecem, formando um grupo na rede.
 - Comportamentos assortivo: vértices com alto grau se ligam preferencialmente a vértices com alto grau.
 - Comportamento dissasortivo: o contrário.

Medidas de Centralidade

- Centralidade de Grau: grau normalizado'.

- Centralidade de Intermediação (betweenness): pontes entre vértices, 'caminho do meio'.
- Centralidade de Eigenvector: conexão a vértices de alto grau.

Resumo: Propriedades de Redes

- Grau k_i Número de arestas do vértice i
- Distribuição de grau P (k)
 Probabilidade (frequência) dos vértices de grau k
- Distância Média <L>
 Média dos caminhos mínimos entre todos os vértices
- Diâmetro da rede
 Maior caminho mínimo
- Coeficiente de Clusterização CC
 Medida da 'organização' local ou global
- Centralidade de Intermediação (Betweenness)
 Importância relativa do vértice na intermediação dos caminhos

Algumas questões...

Dada uma rede com V vértices e E arestas => rede com topologia estatisticamente idêntica!

Resultado: modela uma rede com topologia estática!

Problema: redes reais são sistemas dinâmicos!

Redes Reais

- Dinâmica de vértices e de arestas (rewiring)
- Envelhecimento (*aging*)
- Respostas a estímulos e perturbações
- Efeitos não-lineares

Objetivo: identificar o processo gerador da dinâmica da rede.

Bônus: representação correta da topologia da rede.

Modelos de Redes

Redes Aleatórias

- Paul Erdös e Alfred Rényi (1959): redes complexas naturais e sociais parecem seguir um padrão aleatório de formação => Grafos Aleatórios.
- Formação: novos nós são randomicamente adicionados à rede, gerando grafos estatisticamente homogêneos. Aparecimento de componente gigante quando <k> = 1.
- $L \sim N^2$ => vértices com aproximadamente mesmo número de arestas.

Redes Aleatórias

- Mark Granovetter (1970): sociedade organizada em componentes bem agrupados, conectados por componentes mais fracos.
- O desafio foi reconciliar a teoria de grafos aleatórios com a realidade agrupada de Granovetter. Isto levou quase três décadas!

Redes Aleatórias

■ Distribuição de grau <k>: Binomial ou Poisson.

Apresentam pico em torno de <k>. Se aumentar p, a rede se torna mais densa, aumentando <k> e movendo o pico para a direita.

A largura da distribuição (dispersão: quanto mais densa a rede, mais ampla é a distribuição e maiores as diferenças de graus.

■ Coeficiente de clusterização (CC)

Diminui com o aumento da rede (~ 1/N).

Independe do grau do nó \Rightarrow C(k) é constante.

■ Distância média <d>, <L>

Média dos caminhos pequenos.

$$\langle d \rangle \approx \frac{\ln N}{\ln \langle k \rangle}$$

Seis graus de separação

- Stanley Milgram (1967) realiza um experimento para determinar a "distância" entre duas pessoas quaisquer dos EUA.
- Envio de cartas partindo de Nebraska KA, com destino a uma pessoa em
 Boston MA, por intermédio de pessoas conhecidas.
- Das 160 cartas preparadas, 42 chegaram.
- O menor caminho foi de 2 conexões e o mais longo de 11.
- O valor médio foi de 5,5 conexões!

Efeito Mundo Pequeno: as informações se propagam rapidamente por toda a rede (L ≤ log n)

Redes Mundo Pequeno (small-world)

- Duncan Watts e Steven Strogatz (1998): sistemas autoorganizáveis não são nem aleatórios nem regulares.
- Formação: a partir de um anel regular com N vértices e k arestas, reconecte cada vértice aleatoriamente com probabilidade p.

Redes Mundo Pequeno (small-world)

Baixo P => Distância média <L> pequena e coeficiente de clusterização <C> alto

Table 1 Empirical examples of small-world networks							
	Lactual	L _{random}	$C_{ m actual}$	Crandom			
Film actors	3.65	2.99	0.79	0.00027			
Power grid	18.7	12.4	0.080	0.005			
C. elegans	2.65	2.25	0.28	0.05			

Modelos Erdos-Renyi e Watts-Strogatz

- Proíbem a presença de vértices com um grau muito acima da média.
- Redes com número de vértices fixo.
- Vértices com grau próximo da média.
- Arestas criadas aleatoriamente.

	Erdos- Renyi	Watts- Strogatz
Caminho <l></l>	PEQUENO	PEQUENO
Coeficiente de Clusterização < <i>C</i> >	PEQUENO	GRANDE

Redes Reais

Network	Size	$\langle k \rangle$	6	Prand	C	C_{rand}
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18-0.3	0.001
Movie actors	225 226	61	3.65	2.99	0.79	0.00027
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}
MEDLINE co-authorship	1 520 251	18.1	4.6	4.91	0.066	1.1×10^{-5}
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}
Math. co-authorship	70 975	3.9	9.5	8.2	0.59	5.4×10^{-5}
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001
Words, synonyms	22 311	13.48	4.5	3.84	0.7	0.0006
Power grid	4941	2.67	18.7	12.4	0.08	0.005
C. Elegans	282	14	2.65	2.25	0.28	0.05

Redes Reais

Redes Reais

Redes Sem Escala (scale-free)

Barabasi e Alberts (1999): a distribuição de graus em redes com um grande número de componentes segue uma **lei de potência**.

Princípios gerativos:

- Crescimento
 A cada passo, um novo vértice é inserido na rede.

 "Senioridade": vértices mais antigos tem maior K.
- Conexão preferencial ("reforço")

 Probabilidade de conexão é proporcional ao grau do vértice.

 "Rico-fica-mais-rico": acelera o crescimento de vértices com alto K.

Redes Sem Escala (scale-free)

■ Distribuição de grau <k>

Lei de potência: **aK**⁻³ Maior parte dos nós com graus baixos. Existência de nós com alto grau (hubs).

Coeficiente de clusterização: baixo.

C(k) é constante. Redes biológicas disasortivas. Redes sociais assortivas.

Distância média: ~ log N ou log log N Caminhos médios pequenos.

"Ultra small world".

Resumo: Tipos de Redes

55

Motivos (motiffs)

- Uri Alon e cols. (2002): padrões recorrentes em redes parecem exercer funções bem definidas.
 - Redes gênicas *E. Coli* e *S. Serevisae*
 - Redes neuronais *C. elegans*
 - Cadeias alimentares
 - Circuitos eletrônicos
 - Subredes www
- Hipótese: motifs surgem devido a requerimentos especiais dos sistemas e podem ser utilizados para definir classes de redes ou homologias.

Motivos (motiffs)

Technical Comment

Artzy-Randrup Y, Fleishman S. J, Ben-Tal N, & Stone L. *Science*, **305**, 2004

Network	Nodes	Edges	$N_{\rm real}$	N _{rand} ± SI	Z score	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulat	9300000000	Edges	''real	X	Feed-	Yreal	Y	Bi-fan	2'real	rand - SD	Z score
(transcription)			V	forward loop							
				Y V Z	ююр	Z	W				
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons				¥	Feed-	X	Y	Bi-fan	14 3	"	Bi-
				Y	forward		\leq		V	7	parallel
				V	loop	Z	W		17	K	
			\Rightarrow	Z					1	V	
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X V	Three	V)	"	Bi-			
				Y	chain	V	Z	parallel			
				V		1	K				
				Z		V	V				
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
St. Martin	42	205	469	450 ± 10		382	130 ± 20	12			
Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8			
Coachella	29	243	279	235 ± 12		181	80 ± 20	5			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			
Electronic circ				X V	Feed-	X	Y	Bi-fan	K.	K 71	Bi-
(forward logic	chips)				forward		<,		Y	Z	parallel
				¥	loop	Z	W		A	K	
			\Rightarrow			L	W		,	W	
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950	264	2 ± 1	200
Electronic cir	cuits		X	l,	Three-	X	Y	Bi-fan	х-	$\rightarrow_{\rm Y}$	Four-
(digital fraction	onal multi	pliers)	1	1	node		/		\wedge		node
			/	4	feedback	VZ	VE			V	feedback
			Y←	— z	loop	Z	W		Z <	—w	loop
s208	122	189	10	1 ± 1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20	1 ± 1	18	10	1 ± 1	10	11	1 ± 1	11
s838±	512	819	40	1 ± 1	38	22	1 ± 1	20	23	1 ± 1	25
World Wide V			>	X	Feedback	X		Fully	X		Uplinked
Jila mae v					with two	1	N.	connected	1	1	mutual
				Y	mutual	K	1	triad	/	1	dyad
				♦	dyads	Y <	\rightarrow z		Y←	\rightarrow z	_,
			_						l		
nd edu8	325 729	1 46e6	1 1e5	2e3 + 1e2	800	6 8 6	504+402	15 000	1 266	104 + 202	5000

Para Saber Mais...

A-L Barabasi. Linked a Nova Ciência dos Networks: como tudo está conectado a tudo e o que isso significa para os negócios, relações sociais e ciência. São Paulo: Leopardo Editora, 2009.

A-L Barabasi. Network Science. http://networksciencebook.com/

B H Junker & F Schreiber. Analysis of Biological Networks. New Jersey: Willey InterScience, 2008.

Complex Systems and Networks. Science, vol 325, 2009.

D J Watts. Seis Graus de Separação. São Paulo: Leopardo Editora, 2009.

D Noble. The Music of Life – Biology Beyond Genes. London: Oxford University Press, 2006.

S Johnson. Emergência – a vida integrada de formigas, cérebros, cidades e softwares. Rio de Janeiro: Jorge Zahar, 2001

U Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton: Chapman & Hall/CRC, 2007.

www.youtube.com/watch?v=TcxZSmzPw8k

www.youtube.com/watch?v=dTzkrJKUo-l

Read Aug. 1, 2014 News at OU article on the popularity of this website.

The Erdös Number Project

oakland.edu/enp/compute/

www.youtube.com/watch?v=BQ7UDWn_uw

