EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Recap

•	To make probabilistic inference practical on a large scale, there are two key ideas. First, in most scenarios, most random variables				
•	Second, given the above, a joint pdf can be represented as a Then the of the can be used to make the inference				
•	These ideas lead to				
•	A BN is a way to represent the over as a				
	The nodes are The edges are				
•	A BN is a This makes sense because				
•	However a BN is not This is because				
•	An arbitrary DAG represent the joint distribution if for all nodes i , This is called the				
•	An edge in a BN represents but not Networks constructed to be will typically be, but general are not				
•	What is explaining away?				

Today

Inference in Bayesian Networks (Ch 14, Russell and Norvig)

BNA and the Chain rule

So for an arbitrary DAG,

$$Pr(x_1,...,x_n)$$
= $Pr(x_n) \prod_{i=1}^{n-1} Pr(x_i | \{x_j\}_{j=i+1}^n)$

$$= \prod_{i=1}^{n} \Pr(x_i \mid Pa(x_i))$$
 By BNA

The Markov Blanket

- The Markov Blanket of a node is defined as:
 - Its parents
 - Its children
 - Its children's other parents

 Result: A node in a BN is conditionally independent of all other nodes given its Markov Blanket

Markov Blanket

Representing Probabilities

- How to represent $Pr(x_i/Pa(x_i))$?
 - (Assume all the r.v.'s are discrete)
- Often represented as a table, the "conditional probability table"
- For each value of x_i and $Pa(x_i)$, write down the probability

Conditional Probability Tables

Inference in Bayesian Networks

- How to answer queries $Pr(V=v \mid E=e)$, given a BN?
- Two kinds of algorithms:
 - Exact
 - Always returns exact answer, but may take a long time
 - Approximate
 - Returns approximate answer. More time=better answers ("anytime")

Suppose we had the BN:

• And we want Pr(D)

$$\Pr(D) = \sum_{A,B,C} \Pr(A,B,C,D) \leftarrow \text{Inference by enumeration}$$

$$= \sum_{A,B,C} \Pr(A) \Pr(B \mid A) \Pr(C \mid B) \Pr(D \mid C) \leftarrow \text{By BNA}$$

$$= \sum_{C} \Pr(D \mid C) \sum_{B} \Pr(C \mid B) \sum_{A} \Pr(B \mid A) \Pr(A)$$

Each term here is a table, called a "factor". A factor may not be a probability distribution (though in this case it is). Notice that factors are computed by eliminating variables. The efficiency of VE comes from "pushing in" the sums as far as possible.

- Order the variables in the network with the variable(s) in the query coming last
- For each elimination variable in the ordering
 - Multiply the tables involving this variable
 - Then sum out this variable by adding all the rows where this variable is the only one changing and the others are fixed
 - Store the resulting "factor" or "potential"

Incorporating evidence

 If we know the value of a variable, just select that value instead of summing out

Burglary	Earthquake	A=true	A=false
False	False	0.2	0.8
False	True	0.5	0.5
True	False	0.75	0.25
True	True	0.9	0.1

Find Pr(P/B=true) using VE

- The efficiency of this procedure depends on the order of the variables
 - Finding an optimal order is NP-complete
 - However there are good heuristics to choosing a reasonable ordering

Approximate Inference

- Sometimes a BN can be very complex
- Sometimes we don't really need the exact probabilities

- In these cases, we can use sampling methods to answer queries
 - Often very fast, very easy to implement
 - But convergence is only asymptotic in general

Approximate Inference

CloudyTomorrow	RainTomorrow	WetGrass	Probability
No	No	No	
No	No	Yes	
No	Yes	No	
No	Yes	Yes	
Yes	No	No	
Yes	No	Yes	
Yes	Yes	No	
Yes	Yes	Yes	

Pr(CloudyTomorrow = Yes)?

Approximate Inference (Monte Carlo)

- Generate lots of atomic events from the pdf
- Count samples of desired event, divide by total

Approximate Inference 1 (Monte Carlo)

How to generate a sample from a BN?

Approximate Inference 1 (Monte Carlo)

- How to generate a sample from a BN?
- Idea: Topologically sort the variables according to the graph structure
- Sample each according to the conditional distribution (well-defined due to the sorting)
- Count the samples with desired values
- Easy!
 - Right?