Компьютерный практикум по статистическому анализу данных

Лабораторная работа № 4. Линейная алгебра

Демидова Екатерина Алексеевна

Содержание

1	Введение	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	6
4	Выводы	14
Сп	исок литературы	15

Список иллюстраций

3.1	Поэлементные операции над многомерными массивами	6
3.2	Примеры. Транспонирование, след, ранг, определитель и инверсия	
	матрицы	7
3.3	Примеры. Вычисление нормы векторов и матриц, повороты, вра-	
	щения	7
3.4	Примеры. Матричное умножение, единичная матрица, скалярное	
	произведение	8
3.5	Примеры. Факторизация. Специальные матричные структуры	8
3.6		9
3.7	Примеры. Общая линейная алгебра	9
3.8	Задание 1, 2	0
3.9	Задание 2	0
3.10	Задание 3	1
3.11	Задания 3	1
3.12	Задание 3	2
3.13	Задания 4	2
3.14	Залание 4	3

1 Введение

Цель работы

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

Задачи

- 1. Используя Jupyter Lab, повторите примеры.
- 2. Выполните задания для самостоятельной работы.

2 Теоретическое введение

Julia — высокоуровневый свободный язык программирования с динамической типизацией, созданный для математических вычислений.[1]. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков, однако имеет некоторые существенные отличия.

Для выполнения заданий была использована официальная документация Julia[2].

3 Выполнение лабораторной работы

Выполним примеры из лабораторной работы для изучения циклов и функций(рис. 3.1 - 3.7)

```
## Code + Manddown | Do Run All | Sector All Outputs | Section |

Binding (beattiflyinfridiagonal) does not exist.

## a = rand(1:20.(4,3))

(a)

## a = rand(1:20.(4,3))

## a = rand(1:20.(4,3))
```

Рис. 3.1: Поэлементные операции над многомерными массивами

```
## Code + Manifoldon | D Anni All ## Clear All Dutton | ## Outline ...

## Value | Using LinearAlgebra

## Placton 4c4 co chywalanana uphawa vachawa (or 1 go 20):

## Flacton 4c4 co chywalanana uphawa vachawa (or 1 go 20):

## Tantonoporanana:

## Tantonoporana:

## Tantonoporanana:

## Tantonoporanana:

## Tantonoporana:

## Tantonoporanana:

## Tantonoporanana:

## Tantonoporanana:

## Tantonoporanana:

## Tantonoporanana:

## Tantonoporanana:

## Tantonoporanana:
```

Рис. 3.2: Примеры. Транспонирование, след, ранг, определитель и инверсия матрицы

```
# Yron Heaty Dayler Sectopase:

# Yron Heaty Dayler Sectopase:

# Sycil Heaty Dayler Sectopase:

# Socil Heaty Dayler Sectopase:

# Soci (Transpose (X) Y) / (sort (X) Heaty Dayler)

# Cassawria Anylers

# Security Dayler Sectopase:

p1

specific Security Dayler Sectopase:

# Daylers Daylers

# Response:

# Daylers

# Response:

# The Specific Sectopase:

# The Specific Sectopase:

# Response:

# Response:

# Part (State):

# Sycil Heaty Daylers

# Part (State):

# Sycil Heaty Daylers

# Part (State):

# Part (Stat
```

Рис. 3.3: Примеры. Вычисление нормы векторов и матриц, повороты, вращения

Рис. 3.4: Примеры. Матричное умножение, единичная матрица, скалярное произведение

```
| Try/Asymiles| Market | Daniel | Elevis Al Outputs | Elevis Al Ou
```

Рис. 3.5: Примеры. Факторизация. Специальные матричные структуры

Рис. 3.6: Примеры. Факторизация. Специальные матричные структуры

Рис. 3.7: Примеры. Общая линейная алгебра

Затем выполним задания(рис. 3.8 - 3.14)

Рис. 3.8: Задание 1, 2

```
A = [1 1; 2 2; 3]

# [1; 2; 2]

printin(AB)

A = [1 1; 2 1; 3]

printin(AB)

A = [1 1; 2 1; 3 2]

printin(AB)

A = [1 1; 2 1; 3 2]

printin(AB)

A = [1 1; 2 1; 3 2]

printin(AB)

A = [1 1; 2 1; 3 2]

printin(AB)

NE 2

A = [1 1; 2 1; 3 2]

# [2 2; 3]

printin(AB)

A = [1 1; 1 2 2 3; 3 1 1]

B = [1 1; 1 2 2 3; 3 1 1]

B = [1 1; 1 2 2 3; 3 1 1]

B = [1 1; 1 1; 2 2 3]

B = [1; 0:1]

If det(A) = 0

printin(*Peneuwe ine cymectsyst*)

else

printin(AB)

A = [1 1; 1; 1; 2 2 3]

B = [1; 0:9]

Fig. (1)

Fig. (2)

Fig. (2)

Fig. (3)

Fig. (3)

Fig. (4)

Fig. (4)

Fig. (5)

Fig. (5)

Fig. (6)

Fig. (7)

Fig. (6)

Fig. (7)

Fig.
```

Рис. 3.9: Задание 2

Рис. 3.10: Задание 3

Рис. 3.11: Задания 3

```
| State | Stat
```

Рис. 3.12: Задание 3

```
Net x - Ax = y

A = [1 2; 3 4]

G = (12); 1 2; 3 4]

C = (12); 1 2; 3 4]

C = (10); 1 2; 3 4]

Note = 0.1 0.2

A = [1 2; 3 1]

G = (12); 1 2; 3 3]

A = [1 2; 3 1]

G = (12); 1 2; 3 3]

C = (10); 1 2; 3 3]

E = Natrix([1,2; 3])

Inv(E-A) She mponyatasnas

Inv(E-A) She mponyatasnas

Inv(E-B) She mponyatasnas

Inv(E-
```

Рис. 3.13: Задания 4

Рис. 3.14: Задание 4

4 Выводы

В результате выполнения работы освоили применение циклов функций и сторонних для Julia пакетов для решения задач линейной алгебры и работы с матрицами.

Список литературы

- 1. JuliaLang [Электронный ресурс]. 2024 JuliaLang.org contributors. URL: https://julialang.org/ (дата обращения: 11.10.2024).
- 2. Julia 1.11 Documentation [Электронный pecypc]. 2024 JuliaLang.org contributors. URL: https://docs.julialang.org/en/v1/ (дата обращения: 11.10.2024).