

Overview: States & Rates

Structure

- Divide population into relevant compartments (<u>states</u>)
- People flow between states as per differential equations (<u>rates</u>)
 - Fixed parameters
 - Dynamic parameters: Parameter value changes with state value

Application

- Simulate scenarios
- Statistical inference to better understand disease dynamics

Defining the Model Structure

Two key features in infectious disease epidemiology:

- 1. <u>Susceptibility/Immunity</u>: What is the probability the subject will get infected if exposed to a pathogen?
- 2. <u>Infectiousness</u>: What is the probability a person will get infected if someone contacts the subject?

The model structure represents:

- 1. How the pathogen is transmitted in the population
- 2. Which dynamics are relevant to our research question

Common Model Structures: SI

Description:

Susceptible individuals become chronically infected

Potential Application:

Equilibrium dynamics of uncontrolled HIV in a population

Common Model Structures: SIS

Description:

 Susceptible individuals are infected and become resusceptible upon recovery from infection

Potential Application:

 Pathogens where infections confer short-term immunity (common cold)

Common Model Structures: SIR

Description:

 Susceptible individuals are infected and gain long-term immunity upon recovery

Potential Application:

Measles

Common Model Structures: SIRS

Description:

 Susceptible individuals are infected, have temporary immunity which wanes over time.

Potential Application:

 Pathogens where infections confer "medium-term" immunity (S. Pneumoniae)

Common Model Structures: SEIR

Description:

 Dynamics are similar to SIR but the "Exposed" class represents individuals with a latent infection. "Exposed" individuals are infected but do not transmit.

Potential Application:

Varicella (Chickenpox)

Common Model Structures: SEIRS

Description:

Same as SEIR, but immunity wanes.

Potential Application:

RSV

The SIR Model

- Force of Infection (λ_t) : The average rate at which susceptible individuals become infected
- Rate of Recovery (σ) : The average rate at which infected individuals recover from infection. The reciprocal is the duration of infection!

The SIR Model

$$S_{t+1} = S_t - \lambda_t * S_t$$

$$I_{t+1} = I_t + \lambda_t * S_t - I_t * \sigma$$

$$R_{t+1} = R_t + I_t * \sigma$$

The SIR Model

$$\begin{split} S_{t+1} &= S_t - \lambda_t * S_t & \frac{dS}{dt} = -\lambda_t * S_t \\ I_{t+1} &= I_t + \lambda_t * S_t - I_t * \sigma & \frac{dI}{dt} = \lambda_t * S_t - I_t * \sigma \\ R_{t+1} &= R_t + I_t * \sigma & \frac{dR}{dt} = I_t * \sigma \end{split}$$

The Force of Infection

The rate at which susceptible individuals become infected per unit time

$$\lambda_t = a * \beta * \frac{I}{N}$$

 α = number of contacts/unit time β = probability of transmission per contact N = population size

The Force of Infection

$$S \xrightarrow{\lambda} I$$

$$\lambda(t) = lpha * eta * I$$
 Frequency Dependent

$$\lambda(t) = \alpha * \beta * \frac{I}{N}$$
 Density Dependent

Population Dynamics in Models of Infectious Disease

- Static populations are great for equilibrium dynamics
- Static populations make sense for:
 - Shorter time scales (<10 years)
 - Rare infections
 - Pathogens with low infectiousness
- In reality:
 - Populations age (India: $23.6 \rightarrow 27.0$ in $2010 \rightarrow 2020$)
 - Populations grow (India: 1.24 bn \rightarrow 1.40 bn in 2010 \rightarrow 2020)

Population Dynamics in Models of Infectious Disease

Dynamic populations: births & deaths

- Birth rate: crude birth rate vs. fertility rate
- Deaths: crude mortality rate

Population Dynamics in Models of Infectious Disease

Dynamic populations: births & deaths

- Birth rate: crude birth rate vs. fertility rate
- Deaths: crude mortality rate or cause specific mortality rate

Age Structure in Models of Infectious Diseases

- Susceptibility to infection or disease can meaningfully vary across ages
 - Maternal immunity
 - Higher disease incidence amongst older adults

Age Structure in Models of Infectious Diseases

Age Structure in Models of Infectious Diseases

What is another factor across which susceptibility varies?