Lógicas Modales: Clásicas y Dinámicas

Raúl A. Fervari

Supervisor: Carlos Areces

Primer año de Doctorado (Desde mayo)

fervari@famaf.unc.edu.ar

Oficina 403

Grupo de Procesamiento de Lenguaje Natural Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

4 de diciembre de 2010

Área de interés

En que trabajamos?

Nuestro principal área de estudio es la lógica, vista como una disciplina que estudia diferentes lenguajes formales teniendo en cuenta aspectos semánticos, sintácticos, de teoría de modelos y computacionales.

Área de interés

En que trabajamos?

Nuestro principal área de estudio es la lógica, vista como una disciplina que estudia diferentes lenguajes formales teniendo en cuenta aspectos semánticos, sintácticos, de teoría de modelos y computacionales.

Lógica Computacional

Particularmente trabajamos en lógica computacional: no nos interesan solamente los "por qué?", sino que prestamos especial atención a los "cómo?", los "para qué?" y los "cuánto cuesta?".

 Aún para este lenguaje muy simple, decidir si una fórmula es un teorema (es decir, siempre cierta) es

PSPACE-complete.

 Aún para este lenguaje muy simple, decidir si una fórmula es un teorema (es decir, siempre cierta) es

 A veces nos interesa definir lenguajes que nos permitan decir más cosas.

 A veces nos interesa definir lenguajes que nos permitan decir más cosas.

 A veces nos interesa definir lenguajes que nos permitan decir más cosas.

- A veces nos interesa definir lenguajes que nos permitan decir más cosas.
- En nuestro área, investigamos todos aquellos lenguajes que nos sirven para describir estructuras relacionales.

- A veces nos interesa definir lenguajes que nos permitan decir más cosas.
- En nuestro área, investigamos todos aquellos lenguajes que nos sirven para describir estructuras relacionales.
- La preguntas más importantes son:
 - Podemos definir algoritmos de inferencia para estos lenguajes?
 - Cual es la complejidad de estos algoritmos?
 - Cuáles son los límites de expresividad de estos lenguajes?

- A veces nos interesa definir lenguajes que nos permitan decir más cosas.
- En nuestro área, investigamos todos aquellos lenguajes que nos sirven para describir estructuras relacionales.
- La preguntas más importantes son:
 - Podemos definir algoritmos de inferencia para estos lenguajes?
 - Cual es la complejidad de estos algoritmos?
 - Cuáles son los límites de expresividad de estos lenguajes?
- La tarea no es fácil, porque los distintos operadores del lenguaje pueden interactuar de formas inesperadas.
 Por ejemplo, agregar el operador S* transforma el problema de satisfacibilidad del lenguaje en EXPTIME-complete!

• Los lenguajes de la familia de las lógicas modales pueden usarse en áreas muy diversas:

- Los lenguajes de la familia de las lógicas modales pueden usarse en áreas muy diversas:
 - Verificación de Software y Hardware.
 - Representación de Conocimientos.
 - Criptografía.
 - Inteligencia Artificial.
 - Filosofía.
 - Linguística Computacional.
 - Epistemología.
 - . . .

- Los lenguajes de la familia de las lógicas modales pueden usarse en áreas muy diversas:
 - Verificación de Software y Hardware.
 - Representación de Conocimientos.
 - Criptografía.
 - Inteligencia Artificial.
 - Filosofía.
 - Linguística Computacional.
 - Epistemología.
 - ...
- Por qué?

- Los lenguajes de la familia de las lógicas modales pueden usarse en áreas muy diversas:
 - Verificación de Software y Hardware.
 - Representación de Conocimientos.
 - Criptografía.
 - Inteligencia Artificial.
 - Filosofía.
 - Linguística Computacional.
 - Epistemología.
 - . . .
- **Por qué?** Muchas cosas pueden ser representadas como grafos!! (o sea, estructuras relacionales).

- Los lenguajes de la familia de las lógicas modales pueden usarse en áreas muy diversas:
 - Verificación de Software y Hardware.
 - Representación de Conocimientos.
 - Criptografía.
 - Inteligencia Artificial.
 - Filosofía.
 - Linguística Computacional.
 - Epistemología.
 - . . .
- **Por qué?** Muchas cosas pueden ser representadas como grafos!! (o sea, estructuras relacionales).
 - Y antes dijimos que los lenguajes modales están diseñados especialmente para razonar y describir propiedades de grafos.

Las fórmulas del lenguaje modal básico se contruyen a partir de:

- El lenguaje proposicional: p, q, \land, \neg , etc.
- Los operadores modales: ♦, □.

Las fórmulas del lenguaje modal básico se contruyen a partir de:

- El lenguaje proposicional: p, q, \land, \neg , etc.
- Los operadores modales: ♦, □.

Las fórmulas son interpretadas sobre modelos relacionales:

$$\mathcal{M} = \langle W, R, V \rangle$$

- W es un conjunto no vacío de elementos.
- R es una relación binaria sobre W.
- $V: PROP \rightarrow \wp(W)$ el conjunto de proposiciones que son verdaderas en cada estado.

Las fórmulas del lenguaje modal básico se contruyen a partir de:

- El lenguaje proposicional: p, q, \land, \neg , etc.
- Los operadores modales: ♦, □.

Las fórmulas son interpretadas sobre modelos relacionales:

$$\mathcal{M} = \langle W, R, V \rangle$$

- W es un conjunto no vacío de elementos.
- R es una relación binaria sobre W.
- $V: PROP \rightarrow \wp(W)$ el conjunto de proposiciones que son verdaderas en cada estado.

Intuitivamente, un modelo es un grafo dirigido etiquetado.

• Dado un modelo \mathcal{M} , un estado w en \mathcal{M} y una fórmula φ escribimos \mathcal{M} , $w \models \varphi$ para decir que w satisface φ en \mathcal{M} .

- Dado un modelo \mathcal{M} , un estado w en \mathcal{M} y una fórmula φ escribimos $\mathcal{M}, w \models \varphi$ para decir que w satisface φ en \mathcal{M} .
- Los operadores proposicionales se interpretan como siempre:

$$\mathcal{M}, w \models \varphi \land \varphi'$$
: si w satisface ambas $\varphi \lor \varphi'$

- Dado un modelo \mathcal{M} , un estado w en \mathcal{M} y una fórmula φ escribimos $\mathcal{M}, w \models \varphi$ para decir que w satisface φ en \mathcal{M} .
- Los operadores proposicionales se interpretan como siempre:

$$\mathcal{M}, w \models \varphi \land \varphi'$$
: si w satisface ambas φ y φ'

• \mathcal{M} , $w \models \Diamond \varphi$: φ se satisface en algún sucesor de w.

- Dado un modelo \mathcal{M} , un estado w en \mathcal{M} y una fórmula φ escribimos $\mathcal{M}, w \models \varphi$ para decir que w satisface φ en \mathcal{M} .
- Los operadores proposicionales se interpretan como siempre:

$$\mathcal{M}, w \models \varphi \land \varphi'$$
: si w satisface ambas φ y φ'

- \mathcal{M} , $w \models \Diamond \varphi$: φ se satisface en algún sucesor de w.
- $\mathcal{M}, w \models \Box \varphi$: φ se satisface en todos los sucesores de w.

- Dado un modelo \mathcal{M} , un estado w en \mathcal{M} y una fórmula φ escribimos $\mathcal{M}, w \models \varphi$ para decir que w satisface φ en \mathcal{M} .
- Los operadores proposicionales se interpretan como siempre:

$$\mathcal{M}, \textit{w} \models \varphi \land \varphi' \text{: si } \textit{w} \text{ satisface ambas } \varphi \text{ y } \varphi'$$

- \mathcal{M} , $w \models \Diamond \varphi$: φ se satisface en algún sucesor de w.
- \mathcal{M} , $w \models \Box \varphi$: φ se satisface en todos los sucesores de w.

Qué sabemos hasta ahora?

Qué sabemos hasta ahora?

- La lógica modal básica nos da una perspectiva de las características internas del grafo.
- Las fórmulas nos permiten, a partir de un estado dado, explorar el modelo y sus propiedades.
- Puede ser interesante no solo explorar el modelo, sino ver como reacciona ante cambios.

Qué sabemos hasta ahora?

- La lógica modal básica nos da una perspectiva de las características internas del grafo.
- Las fórmulas nos permiten, a partir de un estado dado, explorar el modelo y sus propiedades.
- Puede ser interesante no solo explorar el modelo, sino ver como reacciona ante cambios.
- Existen diversos lenguajes que explotan estas ideas:
 - Memory Logic.
 - Swap Logic.

• Son lógicas que pueden memorizar y luego consultar información acerca de los estados del modelo.

- Son lógicas que pueden memorizar y luego consultar información acerca de los estados del modelo.
- Extendamos un modelo $\mathcal{M} = \langle W, R, V \rangle$ con una memoria M: $\mathcal{M} = \langle W, R, V, M \rangle$, $M \subseteq W$.

- Son lógicas que pueden memorizar y luego consultar información acerca de los estados del modelo.
- Extendamos un modelo $\mathcal{M} = \langle W, R, V \rangle$ con una memoria M: $\mathcal{M} = \langle W, R, V, M \rangle$, $M \subseteq W$.
- Sea $\mathcal{M}[w] = \langle W, R, V, M \cup \{w\} \rangle$ definimos los siguientes operadores:

remember
$$\mathcal{M}, \mathbf{w} \models \mathbf{\widehat{x}} \varphi \text{ sii } \mathcal{M}[\mathbf{w}], \mathbf{w} \models \varphi.$$

- Son lógicas que pueden memorizar y luego consultar información acerca de los estados del modelo.
- Extendamos un modelo $\mathcal{M} = \langle W, R, V \rangle$ con una memoria M: $\mathcal{M} = \langle W, R, V, M \rangle$, $M \subseteq W$.
- Sea $\mathcal{M}[w] = \langle W, R, V, M \cup \{w\} \rangle$ definimos los siguientes operadores:

remember
$$\mathcal{M}, w \models \widehat{\mathbb{T}}\varphi$$
 sii $\mathcal{M}[w], w \models \varphi$.
known $\mathcal{M}, w \models \widehat{\mathbb{R}}$ sii $w \in M$.

- El operador unario (remember), marca el estado corriente como visitado, y lo almacena en la memoria.
- El operador cero-ario (k) (known), verifica si el estado corriente ha sido guardado en memoria.

- El operador unario (remember), marca el estado corriente como visitado, y lo almacena en la memoria.
- El operador cero-ario (k) (known), verifica si el estado corriente ha sido guardado en memoria.
- Consideremos la fórmula

- El operador unario (remember), marca el estado corriente como visitado, y lo almacena en la memoria.
- El operador cero-ario (k) (known), verifica si el estado corriente ha sido guardado en memoria.
- Consideremos la fórmula

La fórmula es satisfecha por un estado w del modelo $\langle W, R, V, \emptyset \rangle$ sii R(w, w).

- El operador unario (remember), marca el estado corriente como visitado, y lo almacena en la memoria.
- El operador cero-ario (k) (known), verifica si el estado corriente ha sido guardado en memoria.
- Consideremos la fórmula

La fórmula es satisfecha por un estado w del modelo $\langle W, R, V, \emptyset \rangle$ sii R(w, w).

No existe una fórmula equivalente en lógica modal básica (las memory logics son estrictamente más expresivas que la lógica modal básica).

• Consideremos ahora un lenguaje en el cual podemos modificar las relaciones de un grafo.

- Consideremos ahora un lenguaje en el cual podemos modificar las relaciones de un grafo.
- Sea $\mathcal{M} = \langle W, R, V \rangle$ y w, w' elementos de W tal que R(w, w'). Denotaremos $\mathcal{M}[w' \mapsto w]$ el modelo idéntico a \mathcal{M} , cambiando a R por $(R \setminus (w, w')) \cup \{(w', w)\}$.

- Consideremos ahora un lenguaje en el cual podemos modificar las relaciones de un grafo.
- Sea $\mathcal{M} = \langle W, R, V \rangle$ y w, w' elementos de W tal que R(w, w'). Denotaremos $\mathcal{M}[w' \mapsto w]$ el modelo idéntico a \mathcal{M} , cambiando a R por $(R \setminus (w, w')) \cup \{(w', w)\}$.

- Consideremos ahora un lenguaje en el cual podemos modificar las relaciones de un grafo.
- Sea $\mathcal{M} = \langle W, R, V \rangle$ y w, w' elementos de W tal que R(w, w'). Denotaremos $\mathcal{M}[w' \mapsto w]$ el modelo idéntico a \mathcal{M} , cambiando a R por $(R \setminus (w, w')) \cup \{(w', w)\}$.

- Consideremos ahora un lenguaje en el cual podemos modificar las relaciones de un grafo.
- Sea $\mathcal{M} = \langle W, R, V \rangle$ y w, w' elementos de W tal que R(w, w'). Denotaremos $\mathcal{M}[w' \mapsto w]$ el modelo idéntico a \mathcal{M} , cambiando a R por $(R \setminus (w, w')) \cup \{(w', w)\}$.
- Extendemos la sintaxis del lenguaje modal básico con dos nuevos operadores $(\langle s \rangle, [s])$, con la siguiente semántica:

- Consideremos ahora un lenguaje en el cual podemos modificar las relaciones de un grafo.
- Sea $\mathcal{M} = \langle W, R, V \rangle$ y w, w' elementos de W tal que R(w, w'). Denotaremos $\mathcal{M}[w' \mapsto w]$ el modelo idéntico a \mathcal{M} , cambiando a R por $(R \setminus (w, w')) \cup \{(w', w)\}$.
- Extendemos la sintaxis del lenguaje modal básico con dos nuevos operadores ($\langle s \rangle$, [s]), con la siguiente semántica:
 - $\mathcal{M}, w \models \langle s \rangle \varphi$ sii existe un sucesor w' t.q. $\mathcal{M}[w' \mapsto w], w' \models \varphi$.

- Consideremos ahora un lenguaje en el cual podemos modificar las relaciones de un grafo.
- Sea $\mathcal{M} = \langle W, R, V \rangle$ y w, w' elementos de W tal que R(w, w'). Denotaremos $\mathcal{M}[w' \mapsto w]$ el modelo idéntico a \mathcal{M} , cambiando a R por $(R \setminus (w, w')) \cup \{(w', w)\}$.
- Extendemos la sintaxis del lenguaje modal básico con dos nuevos operadores ($\langle s \rangle$, [s]), con la siguiente semántica:
 - $\mathcal{M}, w \models \langle s \rangle \varphi$ sii existe un sucesor w' t.q. $\mathcal{M}[w' \mapsto w], w' \models \varphi$.
 - $\mathcal{M}, w \models [s] \varphi$ sii para todo sucesor $w', \mathcal{M}[w' \mapsto w], w' \models \varphi$.

$$\mathcal{M}, w \models \langle s \rangle \Diamond q$$
 iff

Algunas de las cosas que nos interesan acerca de este lenguaje:

• Es swap logic equivalente a un fragmento de FOL?

- Es swap logic equivalente a un fragmento de *FOL*?
- Construir una noción de (bi)simulación adecuada, y estudiar la relación entre ésta y equivalencia entre modelos.

- Es swap logic equivalente a un fragmento de FOL?
- Construir una noción de (bi)simulación adecuada, y estudiar la relación entre ésta y equivalencia entre modelos.
- Establecer relaciones entre los modelos de swap logic, y modelos con múltiples modalidades.

- Es swap logic equivalente a un fragmento de FOL?
- Construir una noción de (bi)simulación adecuada, y estudiar la relación entre ésta y equivalencia entre modelos.
- Establecer relaciones entre los modelos de swap logic, y modelos con múltiples modalidades.
- Probar decidibilidad del lenguaje.

- Es swap logic equivalente a un fragmento de FOL?
- Construir una noción de (bi)simulación adecuada, y estudiar la relación entre ésta y equivalencia entre modelos.
- Establecer relaciones entre los modelos de swap logic, y modelos con múltiples modalidades.
- Probar decidibilidad del lenguaje.
- Dar una axiomatización completa para la lógica.

• Un resultado conocido dentro de lógica modal, es que toda fórmula modal básica es equivalente a una fórmula de FO².

 Un resultado conocido dentro de lógica modal, es que toda fórmula modal básica es equivalente a una fórmula de FO².

Teorema: Existe una función computable ST que asigna a cada fórmula de swap logic una fórmula equivalente de FOL.

 Un resultado conocido dentro de lógica modal, es que toda fórmula modal básica es equivalente a una fórmula de FO².

Teorema: Existe una función computable ST que asigna a cada fórmula de swap logic una fórmula equivalente de FOL.

• La traducción usa un número no limitado de variables.

 Un resultado conocido dentro de lógica modal, es que toda fórmula modal básica es equivalente a una fórmula de FO².

Teorema: Existe una función computable ST que asigna a cada fórmula de swap logic una fórmula equivalente de FOL.

- La traducción usa un número no limitado de variables.
- TODO: Mostrar que esto es necesario o dar una traducción que use solo un número finito.

• Dentro de lógica modal la manera de definir equivalencia entre modelos es a través de bisimulación.

- Dentro de lógica modal la manera de definir equivalencia entre modelos es a través de bisimulación.
- Ya hemos definido la noción adecuada de swap-bisimulación.

- Dentro de lógica modal la manera de definir equivalencia entre modelos es a través de bisimulación.
- Ya hemos definido la noción adecuada de swap-bisimulación.

Teorema: Si dos modelos son swap bisimilares entonces ambos satisfacen las mismas fórmulas de swap logic.

- Dentro de lógica modal la manera de definir equivalencia entre modelos es a través de bisimulación.
- Ya hemos definido la noción adecuada de swap-bisimulación.

Teorema: Si dos modelos son swap bisimilares entonces ambos satisfacen las mismas fórmulas de swap logic.

- TODO:
 - Estudiar el cómputo de swap bisimulaciones desde el punto de vista algorítmico.
 - Probar la equivalencia en modelos "image finite".

• Existe una axiomatización completa para lógica modal básica.

• Existe una axiomatización completa para lógica modal básica.

Teorema: Las siguientes swap fórmulas son válidas en la clase de todos los modelos.

$$\mathsf{K} \vdash [\mathsf{s}] (\varphi \to \psi) \to ([\mathsf{s}] \varphi \to [\mathsf{s}] \psi)$$

S1
$$\vdash \Diamond p \leftrightarrow \langle s \rangle p$$

S2
$$\vdash p \rightarrow [s] \Diamond p$$

S3
$$\vdash \Diamond \varphi \rightarrow \langle s \rangle \top$$

S4
$$\vdash \langle s \rangle \varphi \rightarrow \Diamond \top$$

• Existe una axiomatización completa para lógica modal básica.

Teorema: Las siguientes swap fórmulas son válidas en la clase de todos los modelos.

$$\mathsf{K} \vdash [\mathsf{s}] (\varphi \to \psi) \to ([\mathsf{s}] \varphi \to [\mathsf{s}] \psi)$$

S1
$$\vdash \Diamond p \leftrightarrow \langle s \rangle p$$

S2
$$\vdash p \rightarrow [s] \Diamond p$$

S3
$$\vdash \Diamond \varphi \rightarrow \langle s \rangle \top$$

S4
$$\vdash \langle s \rangle \varphi \rightarrow \Diamond \top$$

 TODO: Demostrar completitud con respecto a este conjunto de axiomas, o agregar los necesarios para obtener un sistema completo.