Week 02 - Boston Housing Example

This example loads the Boston Housing data example and performs regression in Python.

Author: Chris Kennedy

```
In [3]: import pandas as pd
    from sklearn.linear_model import LinearRegression, Ridge
    from sklearn import metrics
```

Prepare the Data

```
In [5]: dfBoston = pd.read excel(r'W2 - Boston Housing.xlsx')
In [7]: dfBoston.head(5)
Out[7]:
               CRIM
                      ZN INDUS CHAS NOX
                                                RM AGE
                                                            DIS TAX PTRATIO
                                                                                 MEDV
          0 0.00632 18.0
                            2.31
                                     0 0.538 6.575 65.2 4.0900
                                                                 296
                                                                          15.3 561.120
                                     0 \quad 0.469 \quad 6.421 \quad 78.9 \quad 4.9671 \quad 242
          1 0.02731
                      0.0
                            7.07
                                                                          17.8 505.008
          2 0.02729
                      0.0
                            7.07
                                     0 0.469 7.185 61.1 4.9671
                                                                 242
                                                                          17.8 811.286
          3 0.03237
                                     0 0.458 6.998 45.8 6.0622 222
                                                                          18.7 780.892
                      0.0
                            2.18
          4 0.06905
                                                                          18.7 846.356
                      0.0
                            2.18
                                     0 0.458 7.147 54.2 6.0622 222
```

In [9]: dfBoston.describe()

Out[9]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	408.23
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	168.53
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	187.00
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	279.00
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	330.00
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	666.00
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	711.00

Check for missing/null values

```
In [12]: dfBoston.isnull().sum()
Out[12]: CRIM
         ZN
                    0
                    Ω
         INDUS
                   0
         CHAS
         NOX
         RM
         AGE
                    0
         DIS
                    0
         TAX
                    0
         PTRATIO
                    0
         MEDV
                    Ω
         dtype: int64
```

Check datatypes for regression

```
In [14]: dfBoston.dtypes
Out[14]: CRIM
               float64
               float64
              float64
       INDUS
       CHAS
                 int64
               float64
       NOX
       RM
               float64
       AGE
               float64
               float64
       DIS
       TAX
                 int64
       PTRATIO float64
       MEDV float64
       dtype: object
```

Split the data into X and y:

```
In [23]: y = dfBoston['MEDV']
X = dfBoston.drop(columns=['MEDV'])
```

Prepare the Regressions

Specify Hyperparameters

Normally we would calibrate the regularization parameter using a grid-search or cross-validation; however, for simplicity we are just using $\lambda = 10.0$.

```
In [44]: regLambda = 10.0 # Note that lambda is a protected word in python
```

Given hyperparameters, initialize the models - no hyperparameters for classical linear regression.

```
In [45]: classicLR = LinearRegression()
    ridgeLR = Ridge(alpha = regLambda)
```

Fit the models

```
In [24]: model_CLR = classicLR.fit(X, y)
In [46]: model_RLR = ridgeLR.fit(X, y)
```

Build predictions (in-sample)

```
In [47]: yp = model_CLR.predict(X)
   ypr = model_RLR.predict(X)
```

Simple performance metrics

We are not using a validation/holdout set this week. Typically cross-validation or train/validate/test splits would apply when evaluating machine learning models.

Output intercepts and coefficients for comparison

```
In [49]: # Simple vs. Regularized (Ridge)
        cols= len(X.columns)
        coeffs = [model_CLR.coef_, model_RLR.coef_]
        print ("%8s" % "VAR", "%9s" % "SIMPLE", "%9s" % "RIDGE", "%9s" % "Delta")
        print ("%8s" % "CONSTANT", "%9.4f" % model CLR.intercept , "%9.4f" % model RLR.inte
        rcept , "%9.4f" % (model CLR.intercept - model RLR.intercept ))
        for i in range(0,cols):
            print("%8s" % X.columns[i], "%9.4f" % coeffs[0][i], "%9.4f" % coeffs[1][i], "%
        9.4f" % (coeffs[0][i] - coeffs[1][i]))
             VAR
                   SIMPLE
                            RIDGE
                                      Delta
        CONSTANT 460.8067 287.9152 172.8914
            CRIM -2.9659 -3.0527 0.0868
                 0.6512 0.7459 -0.0947
              ZN
           INDUS -1.8057 -3.3139
                                     1.5083
                 49.9448 36.7983 13.1466
            CHAS
             NOX -388.1702 -54.2600 -333.9102
             RM 150.8887 147.7418
                                     3.1469
                  -1.2088 -1.5286
             AGE
                                      0.3198
             DIS -32.8275 -28.1377 -4.6898
             TAX -0.0966 -0.1630 0.0664
         PTRATIO -21.9390 -18.9238 -3.0152
```

Plots and visualizations

```
In [50]: %matplotlib inline
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    mpl.rc('axes', labelsize=14)
    mpl.rc('xtick', labelsize=12)
    mpl.rc('ytick', labelsize=12)
```

Plot Y vs. Prediction using Classical and Ridge

```
In [64]: plt.plot(yp, y, "b.", label="Classical")
   plt.scatter(ypr, y, s=80, facecolors='none', edgecolors='r', label="Ridge")
   plt.xlabel("$y_{predicted}$")
   plt.ylabel("$y$")
   plt.legend(loc="upper left", fontsize=14)
   plt.show()
```


Plot residuals for classical and ridge

```
In [60]: plt.plot(y, (yp - y), "b.")
          plt.xlabel("$y$")
          plt.ylabel("residuals")
          plt.show()
               200
           residuals
              -200
              -400
              -600
                       200
                               400
                                      600
                                              800
                                                     1000
                                                            1200
                                          у
In [63]: | plt.plot(y, (ypr-y), "b.")
          plt.show()
             200
               0
            -200
            -400
            -600
                                                         1200
                     200
                            400
                                    600
                                           800
                                                  1000
```

End of Notebook!

5 of 5