O TRANSISTOR BIPOLAR DE JUNÇÃO (TBJ) COM POLARIZAÇÃO POR DIVISÃO DE TENSÃO

Relatório 07 de ELT 315

Wérikson Frederiko de Oliveira Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

30 de outubro de 2020

Introdução:

Este relatório contém uma analise teórica de um circuito com transistor bipolar de junção (TBJ), seguidos de dados coletados a partir da simulação realizada pelo Software **Ques**, tendo por objetivo de conhecer o transistor bipolar, sendo capaz de identificar seus terminais e o seu tipo (**npn** ou **pnp**) com um multímetro. Além de verificar a polarização por divisor de tensão para TBJ **pnp**, e estabelecer uma analogia de funcionamento entre transistores **npn**.

Materiais Utilizados:

- 01 Resistor de 1,2k Ω ;
- 01 Resistor de 10 K Ω :
- 01 resistor de 2,2K Ω ;

- 01 resistor de 4,7K Ω ;
- 01 transistor BD 140;
- 01 transistor BC 549B.

Parte Teórica:

Seja o circuito da Figura 1.

Figura 1: Circuito teórico.

a) Defina algebricamente as equações I_{B_Q} , I_{C_Q} e V_{CE_Q} .

R:

Perceba que o circuito da Figura 1 é um TBJ PNP, ($V_{CC}=-10V$). Calculando o equivalente de thévenin para o terminal a esquerda da base, temos:

• $\mathbf{R_{th}} \rightarrow \text{Curto circuitando a fonte, obtemos:}$

$$R_{th} = R_1 / / R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} \tag{1}$$

• $E_{th} o A$ tensão Thévenin de circuito aberto é determinada aplicando a regra do divisor de tensão, temos:

$$E_{th} = V_{R_2} = V_{CC} \cdot \frac{R_2}{R_1 + R_2} \tag{2}$$

• Com o circuito equivalente, representado pela Figura 2, aplicando LKT, temos:

Figura 2: Circuito equivalente de Thévenin.

$$I_B = \frac{E_{th} - V_{BE}}{R_{th} + (\beta + 1)R_E} \tag{3}$$

$$I_C = \beta \cdot I_B \tag{4}$$

Aplicado LKT e considerando $I_B(\beta + 1) = I_E$, temos

$$V_{CE} = V_{CC} + I_B \cdot \beta (R_C + R_E) \tag{5}$$

b) Para utilizar a análise aproximada, o que deve ser satisfeito no circuito?

R:

Para a utilização da analise aproximada, devemos ter que:

$$\beta R_E \ge 10R_2$$

c) Considerando o circuito para projeto ou análise de defeito, qual deve ser o valor de V_{R_E} e V_{C_E} ?

R

O valor de V_{R_E} será:

$$V_{R_E} = -(\beta + 1)I_B \cdot R_E \tag{6}$$

Para V_{CE} , temos que deverá ser:

$$V_{CE} = V_{CC} + I_B \cdot \beta (R_C + R_E) \tag{7}$$

d) Estabeleça uma analogia utilizando um transistor NPN.

R·

Pode-se perceber que o transistor NPN é muito semelhante ao Transistor PNP se diferenciando apenas na polaridade. Logo, analogamente, para Transistor NPN altera-se apenas a polaridade da tensão.

e) Redesenhe o circuito utilizando um transistor NPN. Conclua.

R:

Figura 3: Circuito redesenhado.

Parte Prática:

Figura 4: Circuito Simulado

a) Usando o circuito da figura 4, constituído por transistor PNP e complete a tabela para os valores medidos.

Tabela 1: Valores Calculados, Simulados e Erro (%).

TBJ: BC549BP	V_B	V_C	V_E	V_{CE}	I_B	I_C	I_E
Valores calculados	-1,80 V	-5,73 V	-1,09 V	-4,64 V	$3,28 \mu A$	908,46 μ A	911,74 μΑ
Valores SIMULADOS	-1,80 V	-5,47 V	-1,16 V	-4,31 V	$3,48 \mu A$	963,00 μΑ	967,00 μΑ
Erro (%)	0,00	4,54	-6,42	7,11	6,10	-6,00	-6,06

Tabela 2: Valores Calculados, Simulados e Erro (%).

TBJ: BC549BP	V_{R1}	V_{R2}	V_{CB}
Valores calculados	-8,2 V	-1,8 V	-3,93 V
Valores SIMULADOS	-8,2 V	-1,8 V	-3,67 V
Erro (%)	0,00	0,00	6,62

b) Calcule o valor de β , utilizando o I_C e I_B obtido na SIMULAÇÃO.

R:

$$\beta = \frac{I_C}{I_R} \approx 276,72$$

c) Com o valor obtido na letra B, calcule os valores de $V_B, V_{R_1}, V_{R_2}, V_C, V_{CE}, V_{CB}, V_E, I_B, I_C, eI_E$ e preencha a Tabela.

R:

- Pela equação 1, temos: $R_{th} = 1,8 \text{ k}\Omega$;
- Pela equação 2, temos: $V_B = V_{R_2} = E_{th} = -1, 8 \text{ V};$
- Pela equação 4, temos: $I_C=908,46\mu$ A;
- Perceba que $V_C = V_{CC} + R_C \cdot I_C$, logo: $V_C = -5,73 \text{ V}$;
- Pela equação 6, temos: $V_{R_E} = V_E = -1,09 \text{ V};$
- Pela equação 5, temos: $V_{CE} = -4,64 \text{ V}$;
- Pela equação 3, temos: $I_B = 3,28\mu$ A;
- Com os valores de I_B e I_C , temos: $I_E = 911,74\mu$ A.
- Perceba que $V_{R_1}=V_{CC}+V_B$, logo: $V_{R_1}=-8,2$ V;
- Perceba que $V_{CB} = V_C V_B$, logo: $V_{CB} = -3,93$ V.
- d) Compare os valores medidos e calculados e conclua.

R:

Perceba que os valores medidos e calculados estão próximos, com uma margem de erro de 6 %.

e) O circuito está em um ponto de polarização bom? Por quê?

R

Sim, pois V_{CE} está entre 25% e 75% de V_{CC} .

f) Você poderia utilizar a análise aproximada? Por quê?

R

Sim, pois como foi comentado na parte teórica, para se utilizar a analise aproximada, deve-se cumprir a condição: $\beta R_E \geq 10 R_2 \rightarrow 332069 \geq 22000$. Perceba, que com esses valores é possível, sim, utilizar a analise aproximada.

Conclusão:

Portanto, podemos concluir que este relatório cumpriu com seus objetivos, no qual foi mostrado tanto teórico quanto na pratica o seu funcionamento. Além de como obter seus parâmetros, além de mostrar a possibilidade de substituição de um TBJ NPN por um PNP.

Além disto, com os resultados obtidos vemos que o TBJ se encontra em um bom ponto de polarização e que os resultados estão bem próximos, tendo uma margem de 6% de erro, confirmando que o valor de β está próximo do esperado.