ANCOVA merges ANOVA with regression

ANOVA: categorical predictors (factors)

Regression: continuous predictors

ANCOVA: categorical predictors (covariates) and

continuous predictors (factors)

# Analysis of covariance (ANCOVA)

- E.g. testing the effectiveness of different brands of detergents at removing marks on different types of fabric, controlling the effect that detergents may be more effective in warm water
- MANOVA and MANCOVA is the multivariate version of ANOVA and ANCOVA ('M' stands for multivariate), which are used when there is more than one response variable

# Motivating example



# Motivating example (cont.)

Separate regression lines different slopes different intercepts



Setup from yin, olin N(µ1, 02) y12, X12 yu, xu Group 1 Group 2  $\mathcal{N}(\mu_2, \sigma^2)$ y21, >121 Y2n, X2n y22, 2/22  $N(\mu_k, \sigma^2)$ ykn, Xkn Ykz, Dlkz Group K YKI, XKI

 $\begin{aligned} &\mathcal{V}_{ij} \sim \mathcal{N}(\mu_i, \sigma^2) \\ &\mathcal{V}_{ij} = \mu_i + \varepsilon_{ij} \text{ where } \varepsilon_{ij} \sim i \text{ id } \mathcal{N}(0, \sigma^2) \text{ for } i = 1, 2, ..., n_i \end{aligned}$ 

Three cases for M: :

 $\mu_i = \beta_{i0} + \beta_{i1} \times_{ij}$  Separate regression lines

Mi = Bio + Bi stij parallel regression lines

Hi = Bo + B, Xij identical regression lines

The ANCOVA (with separate regression lines) can be set up as a MLR as follows:



Then the parallel and identical regression lines can be specified by, respectively, parallel  $H_1$ : the last k-1 elements of  $\pmb{\beta}$  are zero. The last k-1 columns of  $\mathbf{X}$  are zero. identical  $H_0$ : the last 2(k-1) elements of  $\pmb{\beta}$  are zero. The last 2(k-1) columns of  $\mathbf{X}$  are zero.

### Types of models

Identical regression lines (for all groups):

is the index of the groups 
$$Y_{ij}=\beta_0+\beta_1x_{ij}+\epsilon_{ij}, \quad (\hat{j}=1,2,...,I,\ j=1,2,...,n_i.$$

Parallel regression lines:

$$Y_{ij} = \beta_{00} + \beta_1 x_{ij} + \epsilon_{ij}, \quad i = 1, 2, ..., I, j = 1, 2, ..., n_i.$$

Separate regression lines:

$$Y_{ij} = \beta_{00} + \beta_{01} x_{ij} + \epsilon_{ij}, i = 1, 2, ..., I, j = 1, 2, ..., n_i$$

### Identical regression lines

```
model matrix(mpg, hwy ~ displ)
## # A tibble: 234 x 2
      `(Intercept)` displ
##
               <dbl> <dbl>
##
##
                       1.8
    1
                   1
##
                       1.8
##
    3
                       2
##
    4
##
    5
                       2.8
                       2.8
##
##
                       3.1
##
    8
                       1.8
                       1.8
##
## 10
## # ... with 224 more rows
```

## Identical regression lines (cont.)

We can represent this as the linear model:

hwy 
$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
,

where

$$\epsilon_i \sim i.i.d.N(0,\sigma^2), i = 1, 2, ..., n$$

### Parallel regression lines

```
model matrix(mpg, hwy ~ displ + trans)
## # A tibble: 234 x 3
##
     `(Intercept)` displ transmanual
             <dbl> <dbl>
##
                              <dbl>
##
                     1.8
##
                     1.8
##
## 4
                   2.8
##
##
                   2.8
## 7
                   3.1
##
                     1.8
##
                     1.8
## 10
## # ... with 224 more rows
```

## Parallel regression lines (cont.)

We can represent this as the linear model:

hwy displayer trans
$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i,$$

where  $x_{i1}$  is the displacement,  $x_{i2}$  is 1 for manual and 0 for automatic, and

$$\epsilon_i \sim i.i.d.N(0,\sigma^2), i = 1, 2, ..., n$$

What is the model for a manual? for an automatic?

auto (
$$x_{i2}=0$$
):  $Y_i=\beta_0+\beta_1x_{i1}+\epsilon_i$  manual ( $x_{i2}=1$ ):  $Y_i=\beta_0+\beta_1x_{i1}+\beta_2+\epsilon_i=(\beta_0+\beta_2)+\beta_1x_{i1}+\epsilon_i$ 

### Separate regression lines

```
model matrix(mpg, hwy ~ displ + trans + displ:trans)
## # A tibble: 234 x 4
      `(Intercept)` displ transmanual [displ:transmanual`
##
                                <dbl>
                                                     <dbl>
##
              <dbl> <dbl>
##
                  1
                      1.8
                                                       0
##
                      1.8
                                                       1.8
##
    3
                      2
##
##
                      2.8
##
                      2.8
                                                       2.8
##
                      3.1
                      1.8
##
                                                       1.8
##
                  1
                      1.8
## 10
## # ... with 224 more rows
```

### Separate regression lines

```
model matrix(mpg, hwy \sim displ(\star) trans)
## # A tibble: 234 x 4
      `(Intercept)` displ transmanual `displ:transmanual`
##
               <dbl> <dbl>
                                  <dbl>
##
                                                        <dbl>
##
                   1
                       1.8
                                                          0
##
                       1.8
                                                          1.8
##
    3
                       2
                                                          2
##
##
                       2.8
##
                       2.8
                                                          2.8
##
                       3.1
                       1.8
##
                                                          1.8
##
                       1.8
                                                          0
## 10
## # ... with 224 more rows
```

## Separate regression lines (cont.)

We can represent this as the linear model:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i,$$

where  $x_{i1}$  is the displacement,  $x_{i2}$  is 1 for manual and 0 for automatic, and

$$\epsilon_i \sim i.i.d.N(0,\sigma^2), i = 1, 2, ..., n$$

What is the model for a manual? for an automatic?

auto (
$$x_{i2} = 0$$
):  $Y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$   
manual ( $x_{i2} = 1$ ):  $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 + \beta_3 x_{i1} + \epsilon_i$   
 $= (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x_{i1} + \epsilon_i$ 

#### Model selection

Start with the largest model – separate regression.

```
model sep<- lm(hwy ~ displ * trans, data=mpq)
summary(model sep)
##
## Call:
## lm(formula = hwy ~ displ * trans, data = mpg)
##
## Residuals:
##
      Min
          1Q Median
                            3Q
                                   Max
## -8.1441 -2.2946 -0.2436 2.1184 14.7553
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
                35.39457 0.94674 37.386 <2e-16 ***
## (Intercept)
## displ
                 -3.52217 0.24090 -14.621 <2e-16 ***
## transmanual
                0.02559 1.51343 0.017
                                             0.987
## displ:transmanual 0.27194 0.44143
                                              0.538
                                      0.616
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.828 on 230 degrees of freedom
## Multiple R-squared: 0.5921, Adjusted R-squared: 0.5868
## F-statistic: 111.3 on 3 and 230 DF, p-value: < 2.2e-16
```

### Parallel regression lines

```
model parallel <- update(model sep, .~. - displ:trans)
summary(model parallel)
##
## Call:
## lm(formula = hwy ~ displ + trans, data = mpg)
##
## Residuals:
##
      Min
              10 Median
                            30
                                  Max
## -7.8130 -2.2109 -0.2639 2.0964 14.5517
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 35.0933 0.8096 43.348 <2e-16 ***
## displ -3.4412 0.2016 -17.070 <2e-16 ***
## transmanual 0.8933 0.5531 1.615
                                       0.108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.823 on 231 degrees of freedom
## Multiple R-squared: 0.5914, Adjusted R-squared: 0.5879
## F-statistic: 167.2 on 2 and 231 DF, p-value: < 2.2e-16
```

### Identical regression lines

```
model identical <- update (model parallel, .~. - trans)
summary(model identical)
##
## Call:
## lm(formula = hwy ~ displ, data = mpg)
##
## Residuals:
      Min 1Q Median 3Q
##
                                      Max
## -7.1039 -2.1646 -0.2242 2.0589 15.0105
##
## Coefficients:
## (Intercept) 35.6977 0.7204 49.55 <2e-16*** ## displ -3.5306 0.1945 -18.15 <2e-16*** We will stop and use
                                                          identical regression lines
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.836 on 232 degrees of freedom
## Multiple R-squared: 0.5868, Adjusted R-squared: 0.585
## F-statistic: 329.5 on 1 and 232 DF, p-value: < 2.2e-16
```

#### **ANOVA**

```
anova(model_identical, model_parallel, model_sep)
```

Analysis of Variance Table

```
Model 1: hwy ~ displ

Model 2: hwy ~ displ + trans

Model 3: hwy ~ displ * trans

Res.Df RSS Df Sum of Sq F Pr(>F)

1 232 3413.8
2 231 3375.7 1 38.113 2.6011 0.1082 comparing models 1 and 2
3 230 3370.2 1 5.561 0.3795 0.5385 comparing models 2 and 3
```

We choose Model 1 in this case.

#### AIC

Parallel model has the lowest AIC, hence this model is preferred by AIC.

#### BIC

```
BIC(model_identical, model_parallel, model_sep)
```

```
## model_identical 3 1307.612

## model_parallel 4 1310.440

## model_sep 5 1315.510
```

Identical model has the lowest BIC, hence this model is preferred by BIC.

Note that the *F*-tests, AIC, and BIC may led to different conclusions (as in this case). Always specify the selection criterion used to choose your final model.

# Plot

