Единый государственный экзамен по ИНФОРМАТИКЕ и ИКТ

Инструкция по выполнению работы

Экзаменационная работа состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение экзаменационной работы по информатике и ИКТ отводится 3 часа 55 минут (235 минут).

Экзаменационная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения экзамена в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всего экзамена текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении сдачи экзамена доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В экзаменационных заданиях используются следующие соглашения.

- 1. Обозначения для логических связок (операций):
- а) *отрицание* (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) *дизъюнкция* (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \mid B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) *тождество* обозначается \equiv (например, $A \equiv B$). Выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащих переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и ($\neg A$) \lor В равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и (($\neg A$) \land B) \lor ($C \land D$).

Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизъюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.

4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле – как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

Часть 1

Ответами к заданиям 1–23 являются число, последовательность букв или цифр, которые следует записать в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки, <u>без пробелов, запятых и других дополнительных символов</u>. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами.

На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о дорогах между населенными пунктами (звездочка означает, что дорога между соответствующими городами есть).

	1	2	3	4	5	6
1		*		*		
2	ηt			ağe.		200
3	- A			*	塘	
4	神	*	非		3fc	300
5			非	神		
6		*		s ķ c		

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите номера населенных пунктов А и G в таблице. В ответе запишите числа в порядке возрастания без разделителей.

Миша заполнял таблицу истинности функции (¬х /\¬у) √ (у=z) √ w, но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

				$(\neg x \land \neg y) \lor (y \equiv z) \lor w$
	0	0	1	0
1		1		0
1	0		1	0

Определите,	какому	столбцу	таблицы	соответствует	каждая	из перем	енных
W, X, Y, Z.							

В ответе напишите буквы w, x, y, z в том порядке, в котором идут
соответствующие им столбцы (сначала буква, соответствующая первому
столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в
ответе пишите подряд, никаких разделителей между буквами ставить не
нужно.

-			
Ответ:			

Ниже представлены две таблицы из базы данных. Каждая строка таблицы 2 содержит информацию о ребёнке и об одном из его родителей. Информация представлена значением поля ID в соответствующей строке таблицы 1. Определите на основании приведённых данных ID племянницы Куцко С.С. В ответе запишите только цифры ID.

Пояснение: племянницей считается дочь брата или сестры.

Табли	ца 1		Таблица 2	
ID	Фамилия_И.О.	Пол	ID_Родителя	ID_Ребёнка
1101	Ямкин В.П.	М	1101	1381
1201	Борода А.П.	ж	1201	1101
1381	Волкова К.В.	ж	1381	2017
1401	Борода П.П.	М	1381	2019
1781	Палей П.А.	ж	1401	1201
2007	Волкова В.Д.	ж	2011	1781
2009	Ямкин П.К.	М	2007	1381
2011	Палей А.П.	М	2009	1101
2017	Куцко С.С.	ж	2019	1781
2019	Печкина С.С.	Ж	2019	2029
2027	Печкин С.Ф.	М	2011	2029
2029	Палей А.А.	М	2027	2017
2047	Кипучева Л.Д.	ж	2027	2019

C	твет:					

По каналу связи передаются сообщения, содержащие только шесть букв: A, Б, B, Γ , Д, E; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв A, Б, B, Γ , Д используются такие кодовые слова: A -111; B-011; B-10; $\Gamma-001$; D-000.

Укажите кратчайшее кодовое слово для буквы Е, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

- Б На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
 - 1. Строится двоичная запись числа N.
 - 2. К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописывается сначала ноль, а затем единица. В противном случае, если N нечётное, справа дописывается сначала единица, а затем ноль.

Например, двоичная запись 100 числа 4 будет преобразована в 10001, а двоичная запись 111 числа 7 будет преобразована в 11110.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R — результата работы данного алгоритма.

Укажите минимальное число R, которое больше 102 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

_		
Ответ:		

Запишите число, которое будет напечатано в результате выполнения следующей программы. Определите, при каком наибольшем введённом значении переменной d программа выведет число 89. Для Вашего удобства программа представлена на четырёх языках программирования.

C++	Паскаль
#include <iostream></iostream>	var d, n, s: integer;
using namespace std;	begin
int main()	readln (d);
{	n := 5;
int d, n, s;	s := 83;
cin >> d;	while s <= 1200 do
n = 5;	begin
s = 83;	s := s + d;
while (s \leq 1200) {	n := n + 6
s = s + d;	end;
n = n + 6;	writeln(n)
BOOKEN ASSESSMENT	end.
cout << n << endl;	
return 0;	
NCTOPAS	
Python	Алгоритмический язык
d = int(input())	алг
n=5	нач
s = 83	цел n, d, s
while s <= 1200:	ввод d
s = s + d	n := 5
n = n + 6	s := 83

Ответ:

print(n)

Рисунок размером 512 на 128 пикселей занимает в памяти 96 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.

ни пока s <= 1200

s := s + d

n := n + 6

кц вывод п

-	
-	
~	ĺ
	•
	١
\sim	
u	
T C	
	١
<u></u>	
_	
=	
IJ	
\simeq	
_	
_	۰
_	
_	
一人	۰
—	
_	•
\geq	
_	,
īC	١
	•
- I <i>\</i>	į
	۰
_	•
	١
	١
_	

Все 3-буквенные слова, составленные из букв А,Б,В,Г, записаны в алфавитном порядке и пронумерованы, начиная с 1. Начало списка выглядит так:	11 При регистрации в ког пароль, состоящий из Л, А (таким образом,
1. AAA	пароль в компьютерн одинаковым целым ко кодирование и все
2. ААБ ВСЕРОССИЙСКИЙ ШКОЛЬНЫЙ ПРОЕКТ	возможным количеств
3. AAB VK.COM/EGE100BALLOV	Определите объём пам
4. ΑΑΓ	паролей. Ответ:
5. АБА	12 Какая строка получи
	программы к строке, запишите полученную
Под каким номером в списке идёт последнее слово, в котором в начале нет буквы Γ ?	начало
Ответ:	ПОКА нашлось (222)
Откройте файл электронной таблицы, содержащей вещественные числа –	HORA Hamslock (222)
результаты ежечасного измерения температуры воздуха на протяжении трёх	ЕСЛИ нашлось (
месяцев. Найдите количество суток, в которых среднее значение температуры не превышало 20 °C.	ТО заменить (2
Ответ:	ИНАЧЕ замен
Задание выполняется с использованием прилагаемых файлов.	конец е <mark>сл</mark> и
С помощью текстового редактора определите, сколько раз, не считая сносок,	конец пока
встречается слово «бог» или «Бог»в тексте романа в стихах А.С. Пушкина «Сказка о царе Салтане, о сыне его славном и могучем богатыре князе	КОНЕЦ
Казка о царе Салтане, о евине его славном и могу юм обгатыре князе Гвидоне Салтановиче и о прекрасной царевне Лебеди». Другой формы слова «бог» учитывать не следует. В ответе укажите только число.	Ответ:
Ответ:	

На рисунке — схема дорог, связывающих города A, Б, B, Γ , Д, E, Ж, 3, И, К, Л, М.

По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.

Сколько существует различных путей из города А в город М, не проходящих ни через город Д, ни через город Ж?

Ответ: _____

14 3_H

Значение арифметического выражения:

$$4^{14} + 64^{16} - 81$$

записали в системе счисления с основанием 4. Сколько цифр «3» содержится в этой записи?

Ответ: _____

15

Для какого наибольшего целого неотрицательного числа А выражение

$$(99 \neq y + 2x) \ \lor (A < x) \lor (A < y)$$

тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных х и у?

Ответ:

© 2020 Всероссийский проект «ЕГЭ 100БАЛЛОВ» <u>vk.com/ege100ballov</u> Составитель: Иосиф Дзеранов

16 Алгоритм вычисления значения функций F(n) и G(n), где n — натуральное число, задан следующими соотношениями:

$$F(n) = n-1$$
, при $n < 4$;

$$F(n) = F(n-2) + G(n-1)$$
, при $n > 3$;

Тренировочный вариант №7 от 30.11.2020

$$G(n) = n + 1$$
, $\pi p u n < 3$;

$$G(n) = G(n-2) + F(n-1)$$
, если $n > 2$.

Чему равно значение функция F(25)?

Ответ:

Pассматривается множество целых чисел, принадлежащих числовому отрезку [1024; 2048], которые делятся на 7 и не делятся на 11, 19. Найдите количество таких чисел и минимальное из них.

В ответе запишите два целых числа без пробелов и других дополнительных символов: сначала количество, затем минимальное число.

18 Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: влево или вниз. По команде влево Робот перемещается в соседнюю левую клетку, по команде вниз − в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из правой верхней клетки в левую нижнюю. В ответе укажите одно число – сумму максимальной и минимальной сумм.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата. Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должен быть чисел 50.

Ответ:		 		 ٠.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 37. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 37 или больше камней. В начальный момент в куче было S камней, $1 \le S \le 36$.

Укажите минимальное значение *S*, когда Петя может выиграть в один ход.

- Для игры, описанной в предыдущем задании, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
 - Петя не может выиграть за один ход;
 - Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

- Два игры, описанной в задании 19, найдите максимальное значение S, при котором одновременно выполняются два условия:
 - у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
 - у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Ответ:	74							

2 Укажите наименьшее натуральное число, при вводе которого эта программа напечатает сначала 3, потом – 18.

Python	Паскаль	
x = int(input())	var x, a, b: longint;	
a, b = 0, 1	begin	
while $x > 0$:	readln(x);	
a = a + 1	a := 0; b := 1;	
b = b * (x % 9)	while $x > 0$ do begin	
x = x // 9	a := a + 1	
print(a)	$b := b * (x \mod 9);$	
print(b)	x := x div 9;	
	end;	
	writeln(a); write(b);	
	end.	
Алгоритмический язык	C++	
алг	#include <iostream></iostream>	
начало	using namespace std;	
цел x, a, b		
ввод х	int main(){	
a := 0	int x, a, b;	
b := 1	cin>> x;	
нц пока х > 0	a = 0; $b = 1$;	
a := a + 1	while $(x > 0)$	
b := b * mod(x, 9)	a = a + 1;	
x := div(x, 9)	b = b * (x % 9)	
кц	x = x / 9;	
вывод а, нс, ь	}	
кон	cout<< a < <endl<< b;<="" td=""><td></td></endl<<>	
10.19	(70) }	

Ответ: _____

- 3 Исполнитель Май15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на

2. Программа для исполнителя Май
15 — это последовательность команд.

Сколько существует программ, для которых при исходном числе 3 результатом является число 31 и при этом траектория вычислений содержит число 10 и число 15?

Траектория вычислений программы – это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 16, 17.

Ответ: ______

Задание выполняется с использованием прилагаемых файлов.

24 Текстовый файл состоит не более чем из 10⁶ символов X, Y и Z. Определите длину самой длинной последовательности, состоящей из символов X. Хотя бы один символ X находится в последовательности. Для выполнения этого задания следует написать программу.

Ответ: _______.

Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [19960; 20000], числа, имеющие ровно два различных натуральных делителя, не считая единицы и самого числа. Для каждого найденного числа запишите эти два делителя в две соседних столбца на экране с новой строки в порядке возрастания произведения этих двух делителей. Делители в строке также должны следовать в порядке возрастания.

Например, в диапазоне [5; 9] ровно два различных натуральных делителя имеют числа 6 и 8, поэтому для этого диапазона вывод на экране должна содержать следующие значения:

23

2 4.

Ответ: ______.

Задание выполняется с использованием прилагаемых файлов.

По итогам проверочной работы учащиеся школ города получили определённое количество баллов, различное у каждого из участников. К учеников с самым высоким результатом относят к группе отличников, а К следующих за ними — к группе хорошистов.

По заданной информации о результатах каждого из учащихся, а также количеству учащихся в каждой группе определите целую часть среднего балла в группе отличников и группе хорошистов.

Входные данные.

В первой строке входного файла находится два числа, записанные через пробел: N – общее количество результатов учащихся (натуральное число, не превышающее 10 000), K – количество учащихся в каждой из групп.

В следующих N строках находятся количества баллов конкретных учащихся (все числа натуральные, не превышающие 1000), каждое в отдельной строке. Запишите в ответе два числа через пробел: сначала целую часть среднего балла у хорошистов, а затем целую часть среднего балла у отличников.

Пример входного файла:

102

298

28

293

214209

54

24

157

247

52

При таких исходных данных ответ должен содержать 2 числа -230 и 295. Пояснение: Отличники набрали 298 и 293 балла, а хорошисты 247 и 214 баллов. Тогда средний балл хорошистов 203,5, а средний балл отличников 295,5.

Ответ:	

Задание выполняется с использованием прилагаемых файлов.

На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности, находящихся на расстоянии не меньше, чем 3 (разница в индексах элементов пары должна быть 3 или более, порядок элементов в паре неважен). Необходимо определить количество таких пар, для которых произведение элементов делится на 17.

Описание входных и выходных данных.

Даны два входных файла (файл 27-А и файл 27-В). В первой строке файла задаётся количество чисел N (6 ≤ N ≤ 1000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10000.

В качестве результата программа должна вывести одно число: количество пар элементов, находящихся в последовательности на расстоянии не меньше, чем 3, в которых произведение элементов кратно 17.

В ответе запишите два числа через пробел: ПЕРВОЕ - число полученное из первого файла; ВТОРОЕ - число полученное из второго файла.

O		
Ответ:		

О проекте «Пробный ЕГЭ каждую неделю»

Данный ким составлен командой всероссийского волонтёрского проекта 100баллов» https://vk.com/ege100ballov безвозмездно распространяется для любых некоммерческих образовательных целей.

Нашли ошибку в варианте?

Напишите нам, пожалуйста, и мы обязательно её исправим! Для замечаний и пожеланий: https://vk.com/topic-10175642 41259310 (также доступны другие варианты для скачивания)

СОСТАВИТЕЛЬ ВАРИАНТА:					
ФИО: Дзеранов Иосиф Витальевич					
Предмет:	Информатика				
Стаж:	6 лет				
Регалии:	Основатель онлайн-школы BeeGeek. Преподаватель информатики и программирования в онлайн-школе BeeGeek				
Аккаунт ВК:	https://vk.com/josefdzeranov				
Сайт и доп. информация:	https://taplink.cc/iron_programmer - все мои продукты				

Система оценивания экзаменационной работы по информатике и ИКТ

За правильный ответ на задания 1-24 ставится 1 балл; за неверный ответ или его отсутствие – 0 баллов.

За верный ответ на задание 25 ставится 2 балла; за ошибочные значения только в одной строке ответа ИЛИ за отсутствие не более одной строки ответа ИЛИ присутствие не более одной лишней строки ответа ставится 1 балл. В остальных случаях – 0 баллов.

За верный ответ на задание 26 ставится 2 балла; если значения в ответе перепутаны местами ИЛИ в ответе присутствует только одно верное значение (второе неверно или отсутствует) – ставится 1 балл. В остальных случаях – 0 баллов.

За верный ответ на задание 27 ставится 2 балла; если значения в ответе перепутаны местами ИЛИ в ответе присутствует только одно верное значение (второе неверно или отсутствует) – ставится 1 балл. В остальных случаях - 0 баллов.

