

Mark Scheme (Results)

January 2025

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2025
Question Paper Log Number P76395A
Publications Code WST03_01_2501_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number		Scheme	Marks
1 (a)	Rankings 2, 9, 7, 8, 6, 5, 1, 4, 3, 10		
	_	9+0+16+0+16+16+25+0+16+0[= 98]	M1
	$r_s = 1 - \frac{6 \times '98'}{10(10^2 - 1)} = 0.4060$ awrt 0.406		M1 A1
			(4)
(b)	$H_0: \rho =$	$0 H_1: \rho > 0$	B1
	Critical '	Value $r_s = 0.7455$ or CR: $r_s 0.7455$	B1
	Not in th	ne critical region/not significant/Do not reject H ₀	M1
		insufficient evidence of a positive correlation between the final position of a team in the English Premier League and their average match day attendance .	A1ft
		· · · · · · · · · · · · · · · · · · ·	(4)
		Notes	Total 8
(a)	B1	For all 8 correct missing rankings. If in the table and in the working space and different award the highest scoring response.	ent then
	M1	For an attempt at $\sum d^2$ (at least 5 correct values seen, with an attempt to add) May by 98	e implied
	M1	For using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$ (you will need to check their $\sum d^2$ if no val	ue shown)
	A1	awrt 0.406 Allow $\frac{67}{165}$ NB awrt 0.406 or $\frac{67}{165}$ scores 4/4	
<i>a</i>)	B1	For both hypotheses correct. Must be in terms of ρ or ρ_s (Condone p). Must be attack	ched to H ₀
(b)		and H ₁	
	B1	For CV of 0.7455	
	M1	A correct statement ft part (a) and their CV- no context needed but do not allow cont non contextual statements. This may be implied by a correct contextual conclusion or	_
	A1ft	Correct conclusion in context. Must mention words in bold oe, ft their r in part (a) are critical value.	

Question Number		Scheme		
2 (a)	[0×5]	$\frac{+1\times38+2\times32+3\times17+4\times7+5\times1}{100} [=1.86] *$	B1*	
			(1)	
(b)	[r = 1.2]	203] because total expected frequency must equal 100	B1	
			(1)	
(c)	[The manager needed to do this] to ensure that [all] expected frequencies were greater than 5			
			(1)	
(4)	$H_0: Pc$	bisson (distribution) is [a] suitable/ sensible (model)	D1	
(d)	H ₁ : Poisson (distribution) is not [a] suitable/ sensible (model)		B1	
	v = [5-1-1] = 3		B1	
	$c_3^2(0.01)$	1) = 11.345 \Rightarrow CR: $X^2 \dots 11.345$	M1	
	_	n the CR/Reject H ₀]	A1ft	
	Suffici	ent evidence to say that Poisson is not a suitable model		
		N	(4)	
		Notes For a correct method to show the mean is 1.86 (Janera use of 6 × 0)	Total 7	
(2)	D1*	For a correct method to show the mean is 1.86 (Ignore use of 6×0)		
(a)	B1* Allow $\frac{[0]+38+64+51+28+5}{100}$			
		100	1 , , 1	
(b)	B1	A correct explanation referring to the fact that total/sum expected frequency/ E_i must C_i		
		observed frequency e.g. $100 - (15.567 + 28.955 + 26.928 + 16.696 + 7.763 + 2.888) = 7$		
(a)	D1	A correct explanation referring to the fact that [all] E_i /expected frequencies/values nee		
(c)	B1	greater than 5 e.g because expected 5 customers and [expected] 6 or more customers a than 5 Allow $2.88 < 5$ and $1.203/r < 5$ or $4.091 < 5$	re both less	
(d)	B1	Both hypotheses correct. Must mention Poisson/Po at least once.		
	B1	v = 3 This mark can be implied by a correct critical value of 11.345 if no DoF given		
	M1	For 11.345 or ft their degrees of freedom $\left[c_{4}^{2}(0.01) = 13.277\right]$		
	A1ft	A correct conclusion based on their χ^2 critical value. Must mention Poisson		

Question Number		Scheme	Marks
3 (a)	$p = \frac{118}{40}$		B1
	$[q=]^{350}$	$\frac{0.05 - 40('2.95')^2}{39} = 0.05$	M1 A1
			(3)
(b)		$\mathbf{H}_{1}: \mu_{A} < \mu_{B}$	B1
	2.	.65-'2.95'	
	$z = \pm \frac{1}{\sqrt{0}}$	$\frac{0.65 - 2.95'}{0.07 + 0.05'}$	M1 M1
	· · · · · · · · · · · · · · · · · · ·		Al
	= 3.827 CV = 1.64		B1
	-	There is significant evidence to support the biologist's belief	M1 A1ft
	Kejeci II	1 There is significant evidence to support the biologist's benef	(7)
(c)	I arge car	mple sizes so	(1)
(c)		1	B1
		nple means are normally distributed (CLT)	
	$S_A^2 = \sigma_A^2$	and $s_B^2 = \sigma_B^2$	B1
			(2)
		Notes	Total 12
(a)	B1	2.95 only	
	M1	For use of $\frac{\sum x^2 - n\overline{x}^2}{n-1}$ oe ft their \overline{x} May be implied 0.05 provided no incorrect work	king seen
	A1	cao	
(b)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	
. ,	M1	For the denominator. Ft their 0.05	
	M1	Fully correct. Ft their 2.95 and their 0.05	
	A1	awrt 5.83 allow $ z = 5.827$ accept $p = 2.8(1) \times 10^{-9}$	
	B1	CV = 1.6449 or better	
	M1	A correct conclusion not in context ft their z value and CV or a correct p value (2 sf)	
		ft their z value and their CV (NB their CV must be consistent with their z value) or a	
	A1ft	value (2 sf). Correct conclusion in context, need belief/claim . May be in words with	weights and
	D4	region e.g. the weights in region A are smaller	1
(c)	B1	Must comment on both sample means e.g. the sample means are normally distributed	
	B1	Must comment on both variances/standard deviations e.g. sample variances can be u values for the population variances	sed as

Question		Cl	Maulea	
Number		Scheme	Marks	
4 (a)	$2 \times awrt$	$2.5758 \times SE = 0.964 - 0.9$ or awrt $2.5758 \times x = 0.032$	M1 B1	
	$\Rightarrow \frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758} [= 0.0124] * \text{ or } x = \frac{0.032}{\text{awrt } 2.5758} [= 0.0124] *$			
	$2\times av$	vrt 2.5758 awrt 2.5758 $vrt 2.5758$ $vrt 2.5758$	A1*	
			(3)	
	$[-7]^{0.9}$	$\left[\frac{64+0.9}{2}\right] = 0.932$ or $\left[\overline{x}\right] = 0.964 - 2.5758 \times 0.0124 = \text{awrt} = 0.932$ or		
(b)	$\begin{bmatrix} x - y \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} \text{ or } \begin{bmatrix} x - y - 304 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.932 \\ 3 \end{bmatrix} = \begin{bmatrix} -0.93$			
	$[\overline{x} =]0.9$	$+'2.5758' \times 0.0124[= awrt0.932]$		
	'0.932'±	1.96×0.0124	M1 B1	
	(0.9076.	, 0.9563) awrt (0.908, 0.956)	A1	
		,	(4)	
(c)	$2\times z\times 0.0$	0124 = 0.04	M1	
	z = 1.612		A1	
	P(Z > '1)	A(61') = P(Z < -'1.61') = 1 - '0.9463'	M1	
	= 0.0537	7 (Calculator gives 0.05371) awrt 0.0537		
		nce level = $[100 \times](1-2 \times 0.0537)$ or $[100 \times](0.9463 \times 2-1)$	M1	
	= 89.26	awrt 89.3	A1	
	- 67.20	awit 67.3	(5)	
		Notes	Total 12	
		Notes For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value \times x = 0.032 oe where $2 < z < 3$		
(a)	M1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$		
(a)	M1			
(a)	M1 B1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$	Total 12	
(a)	B1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of co	Total 12	
(a)		For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by	Total 12	
	B1 A1*	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242	Total 12	
(a) (b)	B1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by	Total 12 Direct awrt	
	B1 A1*	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method.	Total 12 Direct awrt	
	B1 A1*	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96	Total 12 Direct awrt	
	B1 A1* M1 M1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value \times $x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value \times 0.0124 ft their \overline{x} and where $1.5 < z < 2$	Total 12 Direct awrt	
	B1 A1* M1 M1 B1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of convoking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96 for (awrt 0.908 , awrt 0.956) Allow awrt $0.908 < \mu < \text{awrt } 0.956$ For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61	Total 12 Direct awrt	
(b)	B1 A1* M1 M1 B1 A1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96 for (awrt 0.908, awrt 0.956) Allow awrt $0.908 < \mu < \text{awrt } 0.956$ For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61	Total 12 Direct awrt	
(b)	B1 A1* M1 M1 B1 A1 M1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96 for (awrt 0.908 , awrt 0.956) Allow awrt $0.908 < \mu <$ awrt 0.956 For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61 For awrt 0.946 or awrt 0.947 or awrt 0.053 or awrt 0.054	Total 12 Direct awrt	
(b)	B1 A1* M1 B1 A1 M1 A1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value \times x = 0.032 oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value \times 0.0124 ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96 for (awrt 0.908, awrt 0.956) Allow awrt 0.908 $< \mu <$ awrt 0.956 For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61 For z = awrt 1.61 For awrt 0.946 or awrt 0.947 or awrt 0.053 or awrt 0.054 scores M1A1M1	Total 12 Direct awrt	
(b)	B1 A1* M1 B1 A1 M1 A1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value \times $x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96 for (awrt 0.908 , awrt 0.956) Allow awrt $0.908 < \mu <$ awrt 0.956 For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61 For $z = \text{awrt } 1.61$ For awrt 0.946 or awrt 0.947 or awrt 0.053 or awrt 0.054 NB awrt 0.946 or or awrt 0.947 or awrt 0.053 or awrt 0.054 scores M1A1M1 For $[100 \times](1-2 \times 0.0537')$ or $[100 \times](0.9463' \times 2-1)$ ft their $P(Z > 1.61')$	Total 12 Dirrect awrt	
(b)	B1 A1* M1 B1 A1 M1 A1 M1 A1 M1 M1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value $\times x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96 for (awrt 0.908 , awrt 0.956) Allow awrt $0.908 < \mu < \text{awrt } 0.956$ For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61 For awrt 0.946 or awrt 0.947 or awrt 0.053 or awrt 0.054 NB awrt 0.946 or or awrt 0.947 or awrt 0.053 or awrt 0.054 scores M1A1M1 For $[100 \times](1-2 \times '0.0537')$ or $[100 \times]('0.9463' \times 2-1)$ ft their $P(Z > '1.61')$ (May be implied by 89.26 or awrt 89.2 or awrt 89.3 or 0.8926 or awrt 0.892 or	Total 12 Dirrect awrt	
(b)	B1 A1* M1 B1 A1 M1 A1 M1 A1 M1	For $2 \times z$ value \times SE = $0.964 - 0.9$ oe or z value \times $x = 0.032$ oe where $2 < z < 3$ May be implied by $\frac{0.964 - 0.9}{2 \times \text{awrt } 2.5758}$ or $\frac{0.032}{\text{awrt } 2.5758}$ awrt 2.5758 Answer is given so no incorrect working must be seen. Must be at least one line of coworking between M1 and the final answer. Must use awrt 2.5758 May be implied by 0.01242 Accept awrt 0.932 to imply a correct method. If using a z value, then this must be awrt 2.5758 or consistent with the z value used in For $\overline{x} \pm z$ value $\times 0.0124$ ft their \overline{x} and where $1.5 < z < 2$ awrt 1.96 for (awrt 0.908 , awrt 0.956) Allow awrt $0.908 < \mu <$ awrt 0.956 For $2 \times z \times 0.0124 = 0.04$ oe May be implied by awrt 1.61 For $z = \text{awrt } 1.61$ For awrt 0.946 or awrt 0.947 or awrt 0.053 or awrt 0.054 NB awrt 0.946 or or awrt 0.947 or awrt 0.053 or awrt 0.054 scores M1A1M1 For $[100 \times](1-2 \times 0.0537')$ or $[100 \times](0.9463' \times 2-1)$ ft their $P(Z > 1.61')$	Total 12 Dirrect awrt	

Question Number		Scheme			Marks
5 (a)(i)	Quota sar	npling would i	remove the need for a	sampling frame oe	B1
(ii)	-	Quota sampling [can be/introduce] bias		, ,	B1
					(2)
(b)(i)	$\frac{(66+40)\times120}{200} = 63.6$			M1 A1	
(ii)	(66+40)	$(66+40)-63.6=42.4$ or $\frac{(66+40)\times 80}{200}=42.4$			A1
					(3)
(c)				d place lived are independent/not associated d placed lived are not independent/associated	B1
	Ob	served	Expected	$\frac{(O-E)^2}{E}$	
		66	63.6	$\frac{(66-63.6)^2}{63.6} \left[= \frac{24}{265} = 0.09056 \right]$	M1
		40	'42.4'	$\left \frac{(40 - '42.4')^2}{'42.4'} \left[= \frac{36}{265} = 0.13584 \right] \right $	
	$\sum \frac{(O-E)^{-1}}{E}$	$\frac{(E)^2}{(E)^2} = 4.549 + \frac{(E)^2}{(E)^2}$	'0.09056'+ '0.13584	'	M1
	= 4.7			awrt 4.78	A1
	,	1)(3-1) = 2			B1
	$c_{2}^{2}(0.1) =$	$4.605 \Rightarrow CF$	$R: X^2 4.605$		B1ft
	_	_	_	sufficient evidence to suggest that students' ent of the place they live.	dA1ft
			N	Intos	(7) Total 12
(a)(i)	B1	For a correct advantage Possible advantages (but not an exhaustive list): includes all key			
(ii)	B1		disadvantage. Possiblection], difficulty in se	le disadvantages (but not an exhaustive list): [risk of the tring quotas	of] non-
(b)(i)	M1	For a correct	method to find either	expected frequency May be implied by 63.6 or 42	.4
(ii)	A1	For either 63			
	A1	For both 63.			
(c)	B1	• •		mention subject and place at least once. Do not all llow dependent to imply not independent	low
	M1	A correct me	ethod for finding both	contributions to the χ^2 value ft their 63.6 and their	r 42.4
	M1	Adding their	two values to 4.549 (1	may be implied by a full χ^2 calculation, do not IS	SW)
	A1		B This implies M1M1		
	B1			y a correct critical value of 4.605	
	B1ft	4.605 or bett	er ft their degrees of f	reedom [$c_3^2(0.1) = 6.251$]	
	Dependent on both M marks being awarded. A correct contextual conclusion, which have words subject and place (Allow 'where they live' to imply 'the place they live'). Allow answer in terms of association. Do not allow correlation to imply association. Allow do				
		to imply not	independent ft their	$\sum \frac{(O-E)^2}{E}$ and their χ^2 critical value This mark	is
			of hypotheses		

Question Number		Scheme	Marks
6 (a)	$\left[\mathbb{E}\left(\overline{X}\right) = \right] \frac{2a+3+4a+9}{2}$		M1
	=-	$\frac{6a+12}{2} = 3a+6 \neq a * $ (So biased)	A1*
			(2)
(b)	(3a+6)	1 - a = 2a + 6	B1ft
			(1)
(c)	$c = \frac{1}{3}$		B1ft
	$\frac{1}{3}$ '×'(3a	(a+6)'+d=a	M1
	d = -2		A1
			(3)
(d)	$\frac{1}{3}$ × 7.32	$2-'2'[=0.44]$ or $3a+6=7.32[\Rightarrow a=0.44]$	M1
	4×'0.44	'+9	M1
	=10.76		A1
			(3)
		Notes	Total 9
(a)	M1	For using the formula $\left(\frac{a+b}{2}\right)$ May be implied by $\frac{6a+12}{2}$ or $3a+6$	
	A1*	For $\frac{6a+12}{2}$ or $3a+6$ and $\neq a$ (Allow $3a+6-a$ or $2a+6$ and $\neq > 0$)	
(b)	B1ft	For $2a+6$ or ft their part (a)	
(c)	B1	For $2a + 6$ or ft their part (a) For $\frac{1}{3}$ or $\frac{1}{\text{coefficient of } a \text{ (from part a)}}$	
	M1	For $c \times \text{their } (3a+6) + d = a$ oe written or used May be implied by $d = -2$	
	A1	Cao	
(d)	M1	For their $c \times 7.32$ – their d oe or $7.32 = 3a + 6$	
	M1	For 4 × their 0.44 + 9	
	A1	cao Do not ISW but condone rounding	

Question Number		Scheme	Marks
7 (a)	$W = S_1$	$+S_2+S_3+L_1+L_2+L_3+L_4$	
•	$W \square N(3 \times 7.7 + 4 \times 20, 3 \times 0.01^2 + 4 \times 0.02^2)$ So $W \square N(103.1, 0.0019)$		
	P(W >	$[-103.15] = P\left(Z > \frac{103.15 - 103.1'}{\sqrt{0.0019}}\right) = P(Z > 1.1470)$	M1
	[1-0.87	[749] = 0.1251 (Calculator gives 0.12567) awrt 0.13	A1
			(4)
(b)	Let $Y =$	$L_1 - L_2$	
	$Y \square N(0)$	$(0, 2 \times 0.02^2)$ So $Y \square N(0, 0.0008)$	M1 A1
		$P\left(Z < \frac{-0.01 - 0'}{\sqrt{0.0008}}\right)$ or $P\left(Z < \frac{-0.01 - 0'}{\sqrt{0.0008}}\right)$	M1
	2×(1-0	$(0.6368) = 0.7264$ (Calculator gives 2×0.36183) awrt $0.724 \square 0.726$	M1 A1
		<u> </u>	(5)
(c)	$T \square N()$	(μ, σ^2)	
(0)	· /		M1
	$\mu = 7.7n - 7.7n [= 0]$		
	$\sigma^2 = 0.0001n^2 + 0.0001n$		
	$\frac{2-0'}{\sqrt{0.0001n^2+0.0001n'}} = 1.99$		
	$0.0001n^2 + 0.0001n - 1.01[00755] = 0$		
	n = 100		
			(6)
		Notes	Total 15
(a)	M1	For setting up a normal distribution with a mean 103.1	
	A1	For a correct expression for variance (0.0019) or standard deviation (0.04358) Important correct variance or a correct standard deviation	olied by a
	M1	For standardising using 103.15, their mean and their standard deviation	
			. 1 1
	Δ1	If their mean and/or their standard deviation/variance are incorrect then working must	st be shown
(b)	A1 M1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13	st be shown
(b)	A1 M1 A1	If their mean and/or their standard deviation/variance are incorrect then working must	st be shown
(b)	M1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied)	
(b)	M1 A1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382)	
(b)	M1 A1 M1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times p where $2p$ is a probability (Calculator gives 2×0.36183) For answers in the range awrt 0.724 – awrt 0.726	
(b)	M1 A1 M1 A1 M1 A1 A1 M1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times p where $2p$ is a probability (Calculator gives 2×0.36183) For answers in the range awrt 0.724 – awrt 0.726 For a correct expression for μ Implied by a mean of 0	
	M1 A1 M1 A1 A1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times p where $2p$ is a probability (Calculator gives 2×0.36183) For answers in the range awrt 0.724 – awrt 0.726 For a correct expression for μ Implied by a mean of 0 For a correct expression for σ^2	ed by awrt
	M1 A1 M1 A1 M1 A1 A1 M1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times p where $2p$ is a probability (Calculator gives 2×0.36183) For answers in the range awrt 0.724 – awrt 0.726 For a correct expression for μ Implied by a mean of 0	ed by awrt
	M1 A1 M1 A1 M1 A1 M1 A1 M1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times p where $2p$ is a probability (Calculator gives 2×0.36183) For answers in the range awrt 0.724 – awrt 0.726 For a correct expression for μ Implied by a mean of 0 For a correct expression for σ^2 For standardising using 2, their mean and their standard deviation and set = to a z value.	ed by awrt
	M1 A1 M1 A1 M1 A1 M1 A1 M1 M1	If their mean and/or their standard deviation/variance are incorrect then working must awrt 0.13 For $L_1 - L_2$ May be implied by a correct mean or variance For N(0, 0.0008) For standardising using 0.01, their mean and their standard deviation (May be implied 0.6368 or awrt 0.3632 or awrt 0.3618 or awrt 0.6382) For 2 times p where $2p$ is a probability (Calculator gives 2×0.36183) For answers in the range awrt 0.724 – awrt 0.726 For a correct expression for μ Implied by a mean of 0 For a correct expression for σ^2 For standardising using 2, their mean and their standard deviation and set = to a z value $1.95 < z < 2$	ed by awrt