525 Rec'd PCT/PTO 17 OCT 2000

FORM PTO-1390 (REV 10-95)		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY'S DOCKET NUMBER							
<u>'</u>		I ETTED TO THE UNITED STATES	SCH 1780						
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)			U.S. APPLICATION NO (If known, see 37 CFR §1.5)						
	CERNING	09/673395							
INTERNATIONAL AP	PLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED						
PCT/DE99/01	1174	17 April 1998							
TITLE OF INVENTION HUMAN NUCLEIC ACID SEQUENCES FROM ENDOMETRIAL TUMOR TISSUE									
APPLICANT(S) FOR DO/EO/US SPECHT, Thomas, et al.									
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following forms and other information:									
1. Manual This is a FIRST submission of items concerning a filing under 35 U.S.C. §371.									
2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. §371.									
This express request to begin national examination procedures (35 U.S.C. §371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. §371(b) and PCT Articles 22 and 39(1).									
4. [⊠] A prope	r Demand for Ir	nternational Preliminary Examination was made by the 19th mon	th from the earliest claimed priority date.						
5. 🖾 A copy o	A copy of the International Application as filed (35 U.S.C. §371(c)(2))								
a. 🗆	a. \square is transmitted herewith (required only if not transmitted by the International Bureau).								
b. 🗵	b. 🛮 has been transmitted by the International Bureau.								
c. 🗆									
1,	A translation of the International Application into English (35 U.S.C. §371(c)(2)).								
	7. A copy of the International Search Report (PCT/ISA/210).								
¶8. ⊠ Amendr									
a. U	(-1								
-	b. \square have been transmitted by the International Bureau.								
	c. have not been made; however, the time limit for making such amendments has NOT expired.								
	d. A have not been made and will not be made.								
	A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. §371(c)(3)).								
j									
\									
12. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. §371(c)(5)). Items 13. to 19. below concern document(s) or information included:									
1									
_									
1 _ `	• • • • • • • • • • • • • • • • • • • •								
1	- · · ·								
i									
	•								
1									
Other it	ems or informa	цоп.							
}									
1									

529 Rec'd PCT/PTC 17 OCT 2000

U.S. APPLICATION NO. (if kn	ICATION NO. (if known, see 37 CFR \$1.5) INTERNATIONAL APPLICATION NO.			ATTORNEY'S DOCKET NUMBER				
<u> 1976</u>	(3395	PCT/DE99/01174	PCT/DE99/01174		SCH 1780			
The following	fees are submitted:	CALCULATIONS	PTO USE ONLY					
	IONAL FEE (37 CFR §1.							
Search Report	has been prepared by the E		İ					
International p	International preliminary examination fee paid to USPTO (37 CFR §1.482) \$690.00							
No internation but internation	1							
Neither intern international s								
International pand all claims	preliminary examination fee satisfied provisions of PCT	paid to USPTO (37 CFR §1.48 Article 33(2)-(4)	\$100.00					
	\$860.00							
Surcharge of \$130.00 for months from the earlies	or furnishing the oath or dec tt claimed priority date (37 o	elaration later than C.F.R. §1.492(e)).	□ 30	\$0.00				
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE					
Total claims	38 - 20 =	18	x \$ 18.00	\$324.00				
Independent claims	6 - 3 =	3	x \$80.00	\$240.00				
MULTIPLE DEPENDE	ENT CLAIM(S) (if applicab	le)	+ \$ 270.00					
	TOTAL OF ABOVE CALCULATIONS =							
Reduction of ½ for filin	ng by small entity, if applica	ble. A Verified Small Entity St	tatement must also be					
med (Note 57 C.F.K. 3.	\$1,424.00							
Processing fee of \$130.	00 for furnishing the Englist claimed priority date (37)	h translation later than 20 C.F.R. §1.492(f)).	□ 30					
	\$1,424.00							
Fee for recording the er by an appropriate cover	Ψ1,121.00							
by an appropriate cover	\$1,424.00							
		TOTTELLE	S ENCLOSED =	Amount to be				
				refunded:				
				charged:				
a. 🛛 A check in	the amount of \$1,424	.00 to cover the above fees	is enclosed.					
b. Please cha	b. Please charge my Deposit Account No. 13-3402 in the amount of \$\\$ to cover the above fees. A duplicate copy of this sheet is enclosed.							
c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 13-3402. A duplicate copy of this sheet is enclosed.								
NOTE: Where revive (37 C.F.	e an appropriate time l .R. §1.137(a) or (b)) m	limit under 37 C.F.R. §§1. ust be filed and granted to	494 or 1.495 has n restore the applic	ot been met, a petiti cation to pending sta	ion to itus.			
SEND ALL CORRESPON	DENCE TO:							
MILLEN, WHIT	/	***********						
Arlington Courth								
2200 Clarendon E Arlington, Virgini	7							
(703) 243-6333	J. Zelano							
Filed: October 1	7, 2000		name 27,969					
	80\natl phase transmlt	ON NUMBER						
Early DTO 1200 (November 1998)								

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Atty. Docket No: ALBRE-12

In re patent application of

SPECHT, THOMAS et al.

Serial No. 09/673,395

Filed: October 17, 2000

For: HUMAN NUCLEIC ACID SEQUENCES FROM UTERUS TUMOR TISSUE

STATEMENT TO SUPPORT FILING AND SUBMISSION IN ACCORDANCE WITH 37 C.F.R. §§ 1.821-1.825

Assistant Commissioner for Patents Washington, D.C. 20231

Box SEQUENCE

Sir:

In connection with a Sequence Listing submitted concurrently herewith, the undersigned hereby states that:

- 1. the submission, filed herewith in accordance with 37
 C.F.R. § 1.821(g), does not include new matter;
- 2. all statements made herein of their own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent resulting therefrom.

Respectfully submitted,

James A. Coburn

MARBOR CONSULTING

Intellectual Property Services 1500A Lafayette Road Suite 262 Portsmouth, N.H. 800-318-3021

2

Sequence Protocol

```
metaGen Gesellschaft für Genomforschung mbH
       <110>
       <120>
               Human Nucleic Acid Sequences from Uterus Tumor Tissue
  <130> 51586AWOM1XX24-P
  <140> PCT/DE99/01174
  <141> 1999-04-14
 <160> 635
 <210> 1
 <211> 1046
 <212> DNA
 <213> homo sapiens
 <400> 1
  teggaacgag ggateactaa teaacaaace agettteggg gtetgaegeg ateettgeet 60
caggeetete gaggteeaga cageegeeca geeegetetg egaegeagea gtgaatagtg 120
tggtacetec ttgteteggt teaggteeag aceteceegt etteeggetg ceetgaacgt 180
caggegaeet caggaeeetg tgattggege etgegeegge ggaeegtgae egaggaaace 240
  cctggaggga cttgggcatt ccttgggctc cgtgcctgtt cttcgtgctc ctttcggggc 300
  aaggatetea cattateagt etttgacega cacagaatge etggeatttg ataaatgttt 360
gttgaacttg aagagacata tggacaatga atctgcaaag atactgggga gagataccaa 420
tatcatcaag ccagaccaac agaagtteet tegatttget cecaegggag tteegtetgg 480
tggaagtcca tgacccaccc ctgcaccaac cctcagccaa caagccgaag ccccccacta 540
tgctggacat cccctcagag ccatgtagtc tcaccatcca tacgattcag ttgattcagc 600
acaaccgacg tettegeaac ettattgeca cageteagge ecagaateag cageagacag 660
aaggtgtaaa aactgaagag agtgaacctc ttccctcgtg ccctgggtca cctcctctcc 720
ctgatgacet cetgeettta gattgtaaga ateceaatge accattecag ateeggeaca 780
gtgacccaga gagtgacttt tatcgtggga aaggggaacc tgtgactgaa ctcagctggc 840
  actcetgteg geageteete taccaaggea gtggcacaaa teetggeeaa eggegggett 900
  ttgactgtgc taatgagagt gtcctggaag accctaactt gatgttggca catgagtatt 960
  ggccttaaag tttaccaaag tttgctgcgt ttttgctgtt gagcgggaag cccgggtggg1020
agagacttcc ttttgccgaa tgtgat
 <210> 2
 <211> 373
 <212> DNA
 <213> homo sapiens
 <400> 2
  cgaaggcaga gttcaacagg gatcttttgt aaatgttcaa caagggccac aggagccatt 60
  tattgaattt atccatcagt taacccaggc aattaagagc acacatggaa catcgaccat120
 tccacgggta tctcgtataa ccctcaagga caagccatag tggaacgttg cccattccac180
 gcttaaaaat atgctttaaa aaaaggggga atatgaataa ggaccctaca acactactag240
 cacaagtgtt attcaccctt aatttcttaa atttagataa ttaaatttcc aatcagccct300
 agaaaagcac ttttgcttaa aacctcccca ggtagcaagg ctttcagtgt tttgggaagg360
 tgttaatagt atc
<210> 3
<211> 1571
<212> DNA
<213> homo sapiens
<400> 3
```

```
cagcgggctt gtaggtgtcc ggctttgctg gcccagcaag cctgataagc atgaagctct 120
tatetttggt ggetgtggte gggtgtttge tggtgcccce agetgaagee aacaagagtt 180
ctgaagatat ccggtgcaaa tgcatctgtc caccttatag aaacatcagt gggcacattt 240
acaaccagaa tgtatcccag aaggactgca actgcctgca cgtggtggag cccatgccag 300
tgcctggcca tgacgtggag gcctactgcc tgctgtgcga gtgcaggtac gaggagcgca 360
gaccaccacc atcaaggtca tcattgtcat ctacctgtcc gtggtgggtg ccctgttgct 420
ctacatggcc ttcctgatgc tggtggaccc tctgatccga aagccggatg catacactga 480
gcaactgcac aatgaggagg agaatgagga tgctcgctct atggcagcag ctgctgcatc 540
cctcggggga ccccgagcaa acacagtcct ggagcgtgtg gaaggtgccc agcagcggtg 600
gaagetgeag gtgeaggage ageggaagae agtettegat eggeacaaga tgeteageta 660
gatgggctgg tgtggttggg tcaaggcccc aacaccatgg ctgccagett ccaggctgga 720
caaagcaggg ggctacttct cccttccctc ggttccagtc ttccctttaa aagcctgtgg 780
catttttcct ccttctccct aactttagaa atgttgtact tggctatttt gattagggaa 840
gagggatgtg gtctctgatc tccgttgtct tcttgggtct ttggggttga agggagggg 900
aaggcaggcc agaagggaat ggagacattc gaggcggcct caggagtgga tgcgatctgt 960
eteteetgge tecaetettg eegeetteea getetgagte ttgggaatgt tgttaccett1020
ggaagataaa gctgggtctt caggaactca gtgtctggga ggaaagcatg gcccagcatt1080
cagcatgtgt teetttetge agtggttett tateaceaec teetteecag ceceagegeel140
teageceeag ecceagetee agecetgagg acagetetga tgggagaget gggeeeeetg1200
ageceaetgg gtetteaggg tgeaetggaa getggtgtte getgteeeet gtgeaettet1260
cgcactgggg catggagtgc ccatgcatac tctgctgccg gtcccctcac ctgcacttgal320
ggggtctggg cagtccctcc tctccccagt gtccacagtc actgagccag acggtcggtt1380
ggaacatgag actcgaggct gagcgtggat ctgaacacca cagcccctgt acttgggttg1440
cctcttgtcc ctgaacttcg ttgtaccagt gcatggagag aaaattttgt cctcttgtct1500
tagagttgtg tgtaaatcaa ggaagccatc attaaattgt tttatttctc tccaaaaaaa1560
aaaaaaaaa a
                                                                 1571
```

<210> 4 <211> 1789 <212> DNA <213> homo sapiens

<400> 4

```
agaccatgct ggaaaaaatt ccaaaggaag agcaagaaga gacgtctgca attcgagtgg
gttttatcac atataacaaa gttctccatt tctttaatgt gaagagtaat ctggcccagc 120
ctcagatgat gggggtgact gatgttggag aagtctttgt tcctttgttg gatggtttcc 180
ttgtcaacta tcaagaatcc caatctgtga ttcataattt gttggaccag attccagaca 240
tgtttgcaga ctctaatgaa aatgagactg tctttgctcc tgtcatccag gctggcatgg 300
aagcactaaa ggcagcagac tgtcctggga agctgttcat cttccattct tccttgccaa 360
ctgctgaagc accagggaag ctcaaaaaca gagatgacaa aaaactggtt aatacagaca 420
aagagaagat acttttccag ccccaaacaa atgtctatga ctcattggcc aaggactgcg 480
tggctcaccg gctgctctgt gacactcttc ctctttccta gtcagtatgt ggacgtggcc 540
tegetgggge tggtteetea geteaetgga ggaaceettt acaaatacaa caattteeag 600
atgcacttgg atagacaaca atttttgaac gacctcagaa atgatattga aaagaaaata 660
ggctttgatg ctattatgag ggttcgtacc agcacaggtt tcagagccac tgatttcttt 720
ggtggaatct tgatgaacaa caccaccgat gtagaaatgg ctgccatcga ttgtgacaag 780
gcagtgaccg tggagttcaa gcacgatgac aaactcagtg aagacagtgg agccttaatc 840
cagtgtgctg tgctttacac gacaatcagt ggtcaaagaa gacttcggat tcacaatctt 900
ggcttaaact gcagctctca gctagctgat ctttataaga gctgtgagac agatgctctt 960
atcaacttct ttgccaagtc agcttttaaa gcagttctcc accagccttt gaaggtcatc1020
cgggaaattc tagttaatca gactgcccat atgttggcat gttaccggaa gaattgtgca1080
agtecttetg cageaageca gettatteta ecagatteca tgaaagtatt gecagtgtac1140
atgaattgct tgttgaaaaa ctgtgtacta ctcagcagac cagagatctc aactgatgaa1200
egageatace agagaeaget ggteatgace atgggtgtgg etgaetetea gettttette1260
tacccacaac ttctgcccat acacacgtta gatgtcaaga gtacaatgtt acctgctgcc1320
gttcgttgct ctgagtcccg tctttcagaa gaaggaatat tcttactggc taatggtcta1380
cacatgttcc tgtggttggg agtaagcagc ccaccagaac tgatccaagg aatatttaat1440
gtgccatctt ttgcacatat caacacagat atgacattgc tgcctgaagt gggaaaccca1500
tactctcaac aactcagaat gataatgggt attatccaac aaaagaggcc atattcaatg1560
aageteacaa ttgtaaagea gegagaacaa eeagaaatgg tttteegaca gtteetggta1620
gaagacaaag gactttacgg aggctcttct tatgttggatt tcctttgttg tgttcacaag1680
gagatetgte agetgettaa ttaattggaa aeteeeeggg caatggaggt tgegttgeea1740
```

<210> 5 <211> 2361

```
<212> DNA
<213> homo sapiens
<400> 5
 gggccagccg gctcgcccgg gggccatggc agcagcggct actgcagccg agggggtccc 60
 cagtcggggg cctcccgggg aagtcatcca tctgaatgtg ggaggcaaga gattcagtac 120
 ctctcgccag actctcacct ggatcccaga ctccttcttc tccagtcttc tgagcggacg 180
 catctcgacg ctgaaagatg agaccggagc aatcttcatc gacagggacc ctacagtctt 240
 cgccccatc ctcaacttcc tgcgcaccaa agagttggat cccaggggtg tccacggttc 300
 cagecteete catgaageee agttetatgg geteacteet etggttegte geetgeaget 360
 tcgagaggag ttggatcgat cttcttgtgg aaacgtcctc ttcaatggtt acctgccgcc 420
 accagtgttc ccagtgaagc ggcggaaccg gcacagccta gtggggcctc agcagctagg 480
 aggacggcca gcccctgtcc gacggagcaa cacgatgccc cccaaccttg gcaatgcagg 540
 gctgctgggc cgaatgctgg atgagaaaac ccctccctca ccctcaggac aacctgagga 600
 gccggggatg gtgcgcctgg tgtgtggaca ccataattgg atcgctgtgg cctataccca 660
 gtttctagtc tgctacaggt tgaaggaagc ctctggcggg cagctggtgt tttccagccc 720
 ccgcctggac tggcccatgc gaacgactgg cgcttcacag cccgggtgca tggtggggct 780
 ttgggtgaac atgacaagat ggtggcagca gccaccggca gcgagatcct gctatgggct 840
 ctgcaggcgg aaggcggtgg ctccgagata ggggtctttc atctgggggt gcctgtggag 900
 gcettgttet tegtegggaa ceageteatt getaeaagee acacagggeg categggqtq 960
 tggaatgccg tcaccaagca ctggcaggtc caggaggtgc agcccatcac cagttatgac1020
 gcggcaggct ccttcctcct cctgggctgc aacaacggct ccatttacta cgtggatgtg1080
 cagaagttcc ccttgcgcat gaaagacaac gacctccttg tcagcgagct ctatcgggac1140
 ccagcggagg atggggtcac cgccctcagt gtctacctca cccccaagac cagtgacagt1200
 gggaactgga tcgagatcgc ctatggcacc agctcagggg gcgtgcgggt catcgtgcag1260
 cacceggaga etgtgggete ggggeeteag etetteeaga eetteaetgt geacegeage1320
 cctgtcacca agatcatgct gtcggagaag cacctcatct cagtctgtgc cgacaacaac1380
 cacgtgcgga catggtctgt gactcgcttc cgcggcatga tttccaccca gcccggctcc1440
 accecaeteg etteetttaa gateetgget etggagtegg cagatgggea tggeggetge1500
 agtgctggca atgacattgg cccctacggt gagcgggacg accagcaagt gttcatccag1560
 aaggtggtgc ccagtgccag ccagctcttc gtgcgtctct catctactgg gcagcgggtg1620
 tgctccgtgc gctccgtgga cggctcaccc acgacagcct tcacagtgct ggagtgcgag1680
 ggctcccggc ggctcggctc tcggccccgg cgctacctgc tcactggcca ggccaacggc1740
 agettggeca tgtgggacet aaccacegee atggacggee teggecagge ceetgeaggt1800
 ggcctgacgg agcaagagct gatggaacag ctggaacact gtgagctggc cccgccggct1860
 cetteagete ceteatgggg etgteteece ageceeteae eeegeatete ceteaceage1920
 ctccactcag cctccagcaa cacctccttg tctggccacc gtgggagccc aagcccccg1980
 caggctgagg cccggcgccg tggtggggc agctttgtgg aacgctgcca ggaactggtg2040
 cggagtgggc cagaceteeg acggecacee acaceageee cgtggeeete cageggtete2100
 ggcactcccc tcacacctcc caagatgaag ctcaatgaaa cttccttttg aacaacgcag2160
 ctgccatgat gccttgggat gccctggtcc tgggggactc aggtgcctcc ctgattcctg2220
 tgggaacccc gggttcaggg ccagggcctc cttggaataa atggttattg ttactaggtc2280
 cccaccttcc ctctttctg gaagccaaag tcaccctccc caataaagtc ctcactgcca2340
 <210> 6
<211> 1638
<212> DNA
<213> homo sapiens
<400> 6
ggctgcggat ttcgccggaa atcccggaag tgacagcttt gggggtttgc tgctggctct 60
gactecegte etgegatggg ttgegaeggg ggaacaatee eeaagaggea tgaactggtg 120
aaggggccga agaaggttga gaaggtcgac aaagatgctg aattagtggc ccaatggaac 180
tattgtactc taagtcagga aatattaaga cgaccaatag ttgcctgtga acttggcaga 240
ctttataaca aagatgccgt cattgaattt ctcttggaca aatctgcaga aaaggctctt 300
gggaaggcag catctcacat taaaagcatt aagaatgtga cagagctgaa gctttctgat 360
```

```
aateetgeet gggaagggga taaaggaaac actaaaggtg acaagcaega tgaeeteeag 420
  cgggcgcgtt tcatctgccc cgttgtgggc ctggagatga acggccgaca caggttctgc 480
  ttccttcggt gctgcggctg tgtgttttct gagcgagcct tgaaagagat aaaagcggaa 540
  gtttgccaca cgtgtggggc tgccttccag gaggatgatg tcatcgtgct caatggcacc 600
  aaggaggatg tggacgtgct gaagacaagg atggaggaga gaaggctgag agcgaattgg 660
  aaaagaaaac aaagaaaccc aaggcagcag agtctgtttc aaaaccagat gtcagtgaag 720
  aagccccagg gccatcaaaa gttaagacag ggaagcctga agaagccagc cttgattcta 780
  gagagaagaa aaccaacttg gctcccaaaa gcacagcaat gaatgagagc tcttctggaa 840
  aagctgggaa geeteegtgt ggageeacaa agaggteeat egetgaeagt gaagaategg 900
  aggectacaa gteeetettt accaeteaca geteegeeaa gegeteeaag gaggagtetg 960
 cccactgggt cacccacacg tcctactgct tctgaagccc gcactgccac cgctcctgcc1020
 ccagaaggtt gtttagtttc cacgtaggca ggtcgctttg tgcctctgag tgcgctgctg1080
 tgtgttctct ctatagttct gtgtcataaa gctgtcctgg ccagccttca agctggtgt1140
 gccactcttg atgtgaggcg tgtcggttcc aggggggaca tgggaggggc tgcacagtgg1200
 cccgaggtca tgcttgcttc cacctgcagg tgcatttggt cctttccatg gccaggaagc1260
 cctgtgggct gcacttttta tgcttgcagt aacaagagac tccagagtcc tcaccggtgc1320
 agagttggca catattaatt aactaaaatt ctaatgatct tgctaccagc aataaatcaa1380
 gtaggccaag tgaaactggg ctttaaaaag gatggatttc aaatacactg tgcccactag1440
 aagettegaa gggeetegte eetetgetae ageeetggga ggageeagga teettgttgg1500
 tctagctaaa tactgttagg ggagtgtgcc ccatctcatc atttcgaaga tagcagagtc1560
 atagttgggc acceggtgat tgggttcaaa aataaagctg gtctgcctct tcaaaaaaaa1620
 aaaaaaaaa aaaaaaaa
<210> 7
<211> 1034
<212> DNA
<213> homo sapiens
<400> 7
 cgcctgcgcg ctgagtgcgt gccgctccgc cgaccgaaga ggctggacat gacaccagtg
 gcatatcacg gccatggggt ctcagcattc cgctgctgct cgcccctcct cctgcaggcg 120
 aaagcaagaa gatgacaggg acggtttgct ggctgaacga gagcaggaag aagccattgc 180
 tcagttccca tatgtggaat tcaccgggag agatagcatc acctgtctca cgtgccaggg 240
 gacaggetae attecaacag ageaagtaaa tgagttggtg getttgatee cacacagtga 300
 tcagagattg cgccctcagc gaactaagca atatgtcctc ctgtccatcc tgctttgtct 360
 cctggcatct ggtttggtgg ttttcttcct gtttccgcat tcagtccttg tggatgatga 420
 cggcatcaaa gtggtgaaag tcacatttaa taagcaagac tcccttgtaa ttctcaccat 480
 catggccacc ctgaaaatca ggaactccaa cttctacacg gtggcagtga ccagcctgtc 540
 cagccagatt cagtacatga acacagtggt gaattttacc gggaaggccg agatgggagg 600
 accgttttcc tatgtgtact tcttctgcac ggtacctgag atcctggtgc acaacatagt 660
 gatetteatg egaaetteag tgaagattte atacattgge eteatgaeee agageteett 720
 ggagacacat cactatgtgg attgtggagg aaattccaca gctatttaac aactgctatt 780
 ggttcttcca cacagegeet gtagaagaga geacageata tgtteecaag geetgagtte 840
 tgggacctac ccccacgtgg gtgttaaggc agagggaagg aattggttca ctttaacttc 900
 ccaggcaaac attectectg gecaettagg gagggaaaca cettecetat gggttaccat 960
 ttgttgtttg ttcaggaacc aggcggattc agttgcctag gcgtgttgcc ccagcaatta1020
 gtttgggcat tgca
<210> 8
<211> 947
<212> DNA
<213> homo sapiens
<400> 8
 cgaggccctg gcatgtgcaa agagtactga gtgggattcc cagcaggata ccatcaagta 60
 ctacaccatg cacctgacca cattgtgcaa cacgtgattg gacaacccaa cccagagaaa120
caaggatcag ctgatccggg cagccgtgaa gtttctggac accgacacca tctgctacag180
ggtggaggag cccgagacat tagtggaact tcaaaggaat gagtgggatc caatcatcga240
atgggctgag aaaagatacg gcgtggagat cagctcctcc accagcataa tgggacccag300
catccctgcc aaaactcggg aggtgctcgt cagccacctg gcatcttaca acacatgggc360
tttacaaggg attgagtttg tagctgccca gctcaagtcc atggtgctaa ccttgggcct420
```

```
gattgacctg cgcctgacag tggagcaggc cgtgctgctg tcacgcctgg aggaggagta480
 ccagatccag aagtggggca acattgagtg ggcccatgac tatgagctgc aggagctgcg540
 ggcccgcacc gccgccggca ccctcttcat ccatctctgc tccgagagca ccacagtcaa600
 gcacaagctc ctgaaggagt gaggcctggg cagagcacac tcagcaggat agaggcagtg660
 cagccacage tecceeggee tteagggete eccageetgt ggggetgget teettggett720
 ttggggactc ggcctcagcg tcaccctgag attccccccg agacacagtg cgctagtacg780
 gctgtccgga ggtcagcctg atttcaaccc aggtgcccct ggcctggcca gcagtgaatg840
 taggagatga attgtgcaag tgactttctc tcgactctga ttttattaaa tatttctcca900
 <210> 9
<211> 497
<212> DNA
<213> homo sapiens
<400> 9
 ctcgtggcga gagactgaga taaaagagca actcactgaa cacctttgta cgatcataca 60
 gcaaaatgag ctccgaaagg ccaagaagtt ggaggagttg atgcaacaac tagatgtaga120
 agccgatgaa gagactttgg agcttgaggt ggaggtcgag agattgctac acgaacaaga180
 agtagaatca aggagaccag tggttcgttt agagaggcca tttcagcctg cggaggagag240
 tgtgacatta gaatttgcta aagagaacag aaagtgtcaa gaacaagctg tttccccaaa300
 ggtagatgac cagtgtggaa attccagtag catccccttt cttagtccaa actgcccaaa360
 tcaagaaggt aatgacattt cagctgcttt ggccacatga agttctggta ttcttttgag420
 ctaatatggt attgagtaaa gtatactttt tgcagtagat catgccctga cctccaataa480
 aaacctcttt aaaacaa
<210> 10
<211> 269
<212> DNA
<213> homo sapiens
<400> 10
cggggagagg tgggctgggc tgcaggtcct ggcgttgtgc tggatcatcg cgcccgtact 60
ctgaagtttt ctccgtggcg ctccttgaga ggggttcctc ctgcatcttg agaatatttt120
gcatttegge tecettetet tetegetgee ateggatgee ceaaataggt cetgteecet180
cggtgaatca gacttcggaa accgcctcgc ttcagggtca gagtccaagt acagatgagc240
ttgagaggga ttctgaaatg caacggccc
<210> 11
<211> 1717
<212> DNA
<213> homo sapiens
<400> 11
attotaggac caacactect gtggagacgt ggaaaggtte caaaggcaaa cagtectata 60
cctacatcat tgaggagaac actaccacga gcttcacctg ggccttccag aggaccactt 120
ttcatgaggc aagcaggaag tacaccaatg acgttgccaa gatctactcc atcaatgtca 180
ccaatgttat gaatggcgtg gcctcctact gccgtccctg tgccctagaa gcctctgatg 240
tgggctcctc ctgcacctct tgtcctgctg gttactatat tgaccgagat tcaggaacct 300
gccactcctg cccccctaac acaattctga aagcccacca gccttatggt gtccaggcct 360
gtgtgccctg tggtccaggg accaagaaca acaagatcca ctctctgtgc tacaatgatt 420
gcaccttctc acgcaacact ccaaccagga ctttcaacta caacttctcc gctttggcaa 480
acaccgtcac tettgetgga gggccaaget teaetteeaa agggttgaaa taetteeate 540
actttaccct cagtctctgt ggaaaccagg gtaggaaaat gtctgtgtgc accgacaatg 600
tcactgacct ccggattcct gagggtgagt cagggttctc caaatctatc acagcctacg 660
tctgccaggc agtcatcatc cccccagagg tgacaggcta caaggccggg gtttcctcac 720
agcctgtcag ccttgctgat cgacttattg gggtgacaac agatatgact ctggatggaa 780
tcacctcccc agctgaactt ttccacctgg agtccttggg aataccggac gtgatcttct 840
tttataggtc caatgatgtg acccagtcct gcagttctgg gagatcaacc accatccgcg 900
```

tcaggtgcag tccacagaaa actgtccctg gaagtttgct gctgccagga acgtgctcag 960

```
atgggacetg tgatggetge aacttecaet teetgtggga gagegegget gettgeeege1020
 tetgeteagt ggetgaetae catgetateg teageagetg tgtggetggg atccagaaga1080
 ctacttacgt gtggcgagaa cccaagctat gctctggtgg catttctctg cctgagcagal140
 gagtcaccat ctgcaaaacc atagatttct ggctgaaagt gggcatctct gcaggcacct1200
 gtactgccat cctgctcacc gtcttgacct gctacttttg gaaaaagaat caaaaactag1260
 agtacaagta ctccaagctg gtgatgaatg ctactctcaa ggactgtgac ctgccagcag1320
 ctgacagctg cgccatcatg gaaggcgagg atgtagagga cgacctcatc tttaccagcal380
 agaagtcact ctttgggaag atcaaatcat ttacctccaa gaggactcct gatggatttg1440
 actcagtgcc gctgaagaca tcctcaggag gcccagacat ggacctgtga gaggcactgc1500
 ctgcctcacc tgcctcctca ccttgcatag cacctttgca agcctgcggc gatttgggtg1560
 ccagcatect gcaacaceca etgetggaaa tetetteatt gtggeettat cagatgtttg1620
 aatttcagat cttttttat agagtaccca aaccctcctt tctgcttgcc tcaaacctgc1680
 caaatatacc cacactttgt ttgtaaatta aaaaaaa
<210> 12
<211> 1419
<212> DNA
<213> homo sapiens
<400> 12
 ggcagaggta ttacctgaaa acttaaaaga aggcctgaag gaatcttcct ggagttcatt 60
 accatgtact aaaaacagac cttttgattt tcattcagtg atggaagagt ctcagtctct 120
 caatgaacct agcccaaagc agagtgaaga aataccagag gtcacttcag agcctgtcaa 180
 aggaagetta aaccgtgete agteageaca gtetataaat teaacagaaa tgeetgeeag 240
 agaggactgt ttgaaaaaag agtgccctca gaacctgttc tgtcagttca agaaaaaggt 300
 gttctgctga aaagaaagtt gtctctttta gaacaggatg tgattgtaaa tgaagatgga 360
 agaaataagc tgaaaaaaca aggagaaact cccaatgaag tctgtatgtt ttccttagct 420
 tatggtgata ttccagaaga attaatcgat gtctcagatt tcgagtgttc tctctgcatg 480
 aggttgtttt ttgagccagt aacaacccct tgcggacatt cgttctgtaa gaattgtctt 540
 gagcgttgtt tagatcatgc accatattgt cctctttgca aagaaagctt aaaagagtat 600
 ctagcagata ggaggtactg tgtcacacag ctgttggaag gaattaatag tgaagtatct 660
 gcctgatgaa ctgtctgaga gaaaaaaaat atatgatgaa gaaactgctg aactctcaca 720
 cttgaccaag aatgttccaa tatttgtttg cactatggcc taccccactg tgccttgccc 780
 tctccatgta tttgagccaa gatacagatt gatgattcga agaagtatac agactggaac 840
 caaacagttt ggcatgtgtg tcagtgatac acaaaatagt tttgcagatt atggttgtat 900
 gttacaaatt agaaacgtgc atttcttacc ggacggaagg tctgtggttg atacagttgg 960
 aggaaagcgg tttagggttt taaaaagagg aatgaaagat ggatattgca ctgccgacat1020
 tgaatatctg gaagatgtta aggttgagaa tgaagatgag attaagaatc tcagagagct1080
 tcatgatttg gtttactctc aagcctgcag ctggtttcag aatttaagag acagatttcg1140
 aagccaaatt cttcagcatt tcggatcaat gcccgagagg agggaaaacc ttcaggcagc1200
 ccctaatgga cctgcatggt gttggtggct tcttgcagtt ctccctgtag acccacgata1260
 ccagctgtcg gttttgtcaa tgaagtcttt gaaagaacgg ttgaccaaga tacagcatat1320
 actgacctat ttttctagag accaattcta agtaactaac tctttgggat cttccctttg1380
 aaagttgacc cctaattctt gggctgccat ttggttggg
<210> 13
<211> 671
<212> DNA
<213> homo sapiens
<400> 13
agcgcggtga agcggggtg ggatctgaac atggcggcgg tggtagctgc tacggcgctg 60
aagggccggg gggcgagaaa tgcccgcgtc ctccggggga ttctcgcagg agccacagct120
aacaaggett eteataacag gaecegggee etgeaaagee acageteece agagggeaag180
gaggaacetg aacccctate eeeggagetg gaatacatte eeagaaagag gggcaagaac240
cccatgaaag ctgtgggact ggcctgggcc atcggcttcc cttgtggtat cctcctcttc300
atcctcacca agcgggaagt ggacaaggac cgtgtgaagc agatgaaggc tcggcagaac360
atgcggttgt ccaacacggg cgagtatgag agccagaggt tcagggcttc ctcccagagt420
gccccgtccc ctgatgttgg gtctggggtg cagacctgag gagcgctgcg accctcctag480
gctattgact gttaagtcct caggtttggc ccagattcca gttcgtgcct ctgaggtcca540
ccagagggcg catgaagccc aggctgttgc caaaccctac cctgccccac accaaggagc600
```

```
aaaaqtcgac c
<210> 14
<211> 524
<212> DNA
<213> homo sapiens
<400> 14
aagtgttctc agatgctgat gtttgtaagg tcccggtggg gccatgagga agaagaggag 60
ctgaaggtaa gagactcata aacaagatga ctctttgatg catgaacaag atttgaaaat120
ctcaagcctg taaagaatac ccctgctatt taaataaagc tcataccaag aggtaacatt180
 ttgccccggg ccaaattcag gggtctagtg ccctgcattc ctttgaggca aaaaataaat240
gggctatgac tggttaaatg tccaaaaggt gaattctcat ttcattcaaa caaagacaga300
tttgcgcatt cactcaagca gaatgtggcc atgaatattc agcccctgca tacatacaaa360
gatgtacgca tgattccccc caccaagcac acacacagtc acacacgcac acacacacac420
 atgcacacac gcgcgtgcac acacggacac atgcacacac acacgcacac gtaaacacat480
 gcacacatgc acacacgtgc acacatgcac acacggacac actt
<210> 15
<211> 345
<212> DNA
<213> homo sapiens
<400> 15
 aaactttctt tctacaaaaa atcaaaagct tagctgatag atcatgaaaa tagattatga 60
 acagtgaaat tootgagaag gotgaaagtg oggggaacca aagcagggga gattagcott120
 agtccggagg agggagaagc agatggaagt cagcagcctg ccttgttttt acgtgtaata180
 tttaaatttg caaattgtat tacaggaggg cctactttct gtttttatca agagtttttc240
 ttttgttcaa agacactggt tatgggaata ttttgaaagg gtaagaaacg ctggtataaa300
 aaggtgttgc agattaattt tgaaggtcct tacggaacca gtccc
<210> 16
<211> 1060
<212> DNA
<213> homo sapiens
<400> 16
 ggeggteeca ggeaggeeca gaagetggge ageetetgee gggtteeggg aaaaggaget 60
 cetgetgeca etgetettee ggageetgea geatggggee eetgeegege acegtggage 120
 tettetatga egtgetgtee eectacteet ggetgggett egagateetg tgeeggtate 180
 agaatatctg gaacatcaac ctgcagttgc ggcccagcct cataacaggg atcatgaaag 240
 acagtggaaa caagcctcca ggtctgcttc cccgcaaagg actatacatg gcaaatgact 300
 taaagctcct gagacaccat ctccagattc ccatccactt ccccaaggat ttcttgtctg 360
 tgatgcttga aaaaggaagt ttgtctgcca tgcgtttcct caccgccgtg aacttggagc 420
 atccagagat gctggagaaa gcgtcccggg agctgtggat gcgcgtctgg tcaaggaatg 480
 aagacatcac cgagccgcag agcatcctgg cggctgcaga gaaggctggt atgtctgcag 540
 aacaagccca gggacttctg gaaaagatcg caacgccaaa ggtgaagaac cagctcaagg 600
 agaccactga ggcagcctgc agatacggag cetttgggct gcccatcacc gtggcccatg 660
 tggatggcca aacccacatg ttatttggct ctgaccggat ggagctgctg gcgcacctgc 720
 tgggagagaa gtggatgggc cctatacctc cagccgtgaa tgccagactt taagattgcc 780
 cggaggaagc aaactetteg tataaaaaaa geaggeeate tgettaaece ttggeteeac 840
 cataaggcac tgggactcgg atttctctat ctgatagagg tattttctgt ggccctggga 900
 gctgtctgtc tttcccctac ccccaaggat gccaggaaga cgtccaccat tagccatgtg 960
 gcaacettta ettetatgee teacaagtge ettteagaga geeceaatte tgettteeca1020
 <210> 17
 <211> 1721
 <212> DNA
```

<400> 17

```
gtgcataaag tctctgtcgc tcccggaact tgttggcaat gcctattttt tggctttccc 120
ccgcgttctc taaactaact atttaaaggt ctgcggtcgc aaatggtttg actaaacgta 180
ggatgggact taagttgaac ggcagatata tttcactgat cctcgcggtg caaatagcgt 240
atctggtgca ggccgtgaga gcagcgggca agtgcgatgc ggtcttcaag ggcttttcgg 300
actgtttgct caagetggge gacacatgge caactaceeg caggeetgga egacaagaeg 360
aacatcaaga cogtgtgcac atactgggag gatttccaca gctgcacggt cacagccctt 420
acggattgcc aggaagggc gaaagatatg tgggataaac tgagaaaaga atccaaaaac 480
ctcaacatcc aaggcagctt attcgaactc tgcggcagcg gcaacggggc ggcggggtcc 540
tecttetgag egtggggeea getececeeg egegeeeace cacacteact ceatgeteee 660
ggaaatcgag aggaagatcc attagttctt tggggacgtt gtgattctct gtgatgctga 720
aaacactcat ataggattgt gggaaatcct gattctcttt tttatttcgt ttgatttctt 780
gtgttttatt tgccaaatgt taccaatcag tgagcaagca agcacagcca aaatcggacc 840
tcagctttag tccgtcttca cacacaaata agaaaacggc aaacccaccc cattttttaa 900
ttttattatt attaattttt tttgttggca aaagaatctc aggaacggcc ctgggccacc 960
tactatatta atcatgctag taacatgaaa aatgatgggc tcctcctaat aggaaggcga1020
ggagaggaga aggccagggg aatgaattca agagagatgt ccacggacga aacatacggt1080
gaataattca cgctcacgtc gttcttccac agtatcttgt tttgatcatt tccactgcac1140
atttctcctc aagaaaagcg aaaggacaga ctgttggctt tgtgtttgga ggataggagg1200
gagagaggga aggggctgag gaaatctctg gggtaagagt aaaggcttcc agaagacatg1260
ctgctatggt cactgagggg ttagctttat ctgctgttgt tgatgcatcc gtccaagttc1320
actgccttta ttttccctcc tccctcttgt tttagctgtt acacacacag taatacctga1380
atatccaacg gtatagatca caaggggggg atgttaaatg ttaatctaaa atatagctaa1440
aaaaagattt tgacataaaa gagccttgat tttaaaaaaa aaagagagag agatgtaatt1500
taaaaagttt attataaatt aaattcagca aaaaaagatt tgctacaaag tatagagaag1560
tataaaataa aagttattgt ttgaaaaaaa agtgtcgttt gtttcctacc ccaacctgct1620
ttcttgaccc agttctcagg gaacctgaag ggacacagga tgccggtgat aagctcacct1680
cttcaggaag ccgcttcaag cagacctgcc accttcaagc a
```

<210> 18 <211> 2367 <212> DNA <213> homo sapiens

<400> 18

accetgtggt ceegggttte tgeagagtet aetteagaag eggaggeaet gggagteegg tttgggattg ccaggctgtg gttgtgagtc tgagcttgtg agcggctgtg gcgccccaac 120 tettegecag catateatee eggeaggega taaactacat teagttgagt etgeaagaet 180 gggaggaact ggggtgataa gaaatctatt cactgtcaag gtttattgaa gtcaaaatgt 240 ccaaaaaaat cagtggcggt tctgtggtag agatgcaagg agatgaaatg acacgaatca 300 tttgggaatt gattaaagag aaactcattt ttccctacgt ggaattggat ctacatagct 360 atgatttagg catagagaat cgtgatgcca ccaacgacca agtcaccaag gatgctgcag 420 aagctataaa gaagcataat gttggcgtca aatgtgccac tatcactcct gatgagaaga 480 gggttgagga gttcaagttg aaacaaatgt ggaaatcacc aaatggcacc atacgaaata 540 ttctgggtgg cacggtcttc agagaagcca ttatctgcaa aaatatcccc cggcttgtga 600 gtggatgggt aaaacctatc atcataggtc gtcatgctta tggggatcaa tacagagcaa 660 ctgattttgt tgttcctggg cctggaaaag tagagataac ctacacacca agtgacggaa 720 cccaaaaggt gacatacctg gtacataact ttgaagaagg tggtggtgtt gccatgggga 780 tgtataatca agataagtca attgaagatt ttgcacacag ttccttccaa atggctctgt 840 ctaagggttg gcctttgtat ctgagcacca aaaacactat tctgaagaaa tatgatgggc 900 gttttaaaga catctttcag gagatatatg acaagcagta caagtcccag tttgaagctc 960 aaaagatctg gtatgagcat aggctcatcg acgacatggt ggcccaagct atgaaatcag1020 agggaggett catctgggec tgtaaaaact atgatggtga cgtgcagtcg gactctgtgg1080 cccaagggta tggctctctc ggcatgatga ccagcgtgct ggtttgtcca gatggcaaga1140 cagtagaagc agaggctgcc cacgggactg taacccgtca ctaccgcatg taccagaaag1200 gacaggagac gtccaccaat cccattgctt ccatttttgc ctggaccaga gggttagccc1260 acagagcaaa gettgataae aataaagage ttgeettett tgeaaatget ttggaagaag1320

```
tetetattga gacaattgag getggettea tgaccaagga ettggetget tgcattaaag1380
gtttacccaa tgtgcaacgt tctgactact tgaatacatt tgagttcatg gataaacttg1440
 gagaaaactt gaagatcaaa ctagctcagg ccaaacttta agttcatacc tgagctaaga1500
 aggataattg tcttttggta actaggtcta caggtttaca tttttctgtg ttacactcaa1560
ggataaaggc aaaatcaatt ttgtaatttg tttagaagcc agagtttatc ttttctataa1620
gtttacagcc tttttcttat atatacagtt attgccacct ttgtgaacat ggcaagggac1680
 ttttttacaa tttttatttt attttctagt accagcctag gaattcggtt agtactcatt1740
 tqtattcact qtcacttttt ctcatqttct aattataaat gaccaaaatc aagattgctc1800
 aaaaqqqtaa atqataqcca caqtattqct ccctaaaata tqcataaaqt agaaattcac1860
 tgccttcccc tcctgtccat gaccttgggc acagggaagt tctggtgtca tagatatccc1920
gttttgtgag gtagagctgt gcattaaact tgcacatgac tggaacgaag tatgagtgca1980
actcaaatgt gttgaagata ctgcagtcat ttttgtaaag accttgctga atgtttccaa2040
 tagactaaat actgtttagg ccgcaggaga gtttggaatc cggaataaat actacctgga2100
ggtttgtcct ctccattttt ctctttctcc tcctggcctg gcctgaatat tatactactc2160
 taaatagcat atttcatcca agtgcaataa tgtaagctga atcttttttg gacttctgct2220
ggcctgtttt atttctttta tataaatgtg atttctcaga aattgatatt aaacactatc2280
 ttatcttctc ctgaactgtt gattttaatt aaaattaagt gctaattacc attaaaaaaa2340
aaaaaaaaa aaaaaaaaa aaaaaaa
<210> 19
<211> 1321
<212> DNA
<213> homo sapiens
<400> 19
cctggaaaca agatccaaac ccaagtgacc ccgccggaaa gtgacccagt caggtttaaa
aattccaaca aaccgacgtg aacaaataga ccgaccaacc aaatatacaa tccgtcaaaa 120
tacattcact tccactacga aaccccaaca aagggtgtga atgcccgccc aggagagacg 180
gttttggttt catcaagtgt gtggatcgtg atgttcgtat gttcttccac ttcagtgaaa 240
ttctggatgg gaaccagctc catattgcag atgaagtaga gtttactgtg gttcctgata 300
 tgctctctgc tcaaagaaat catgctatta ggattaaaaa acttcccaag ggcacggttt 360
cattleatte ceatteagat cacegittie tgggcaeggit agaaaaagaa gecaettiit 420
ccaatcctaa aaccactage ccaaataaag gcaaagagaa ggaggetgag gatggeatta 480
ttgcttatga tgactgtggg gtgaaactga ctattgcttt tcaagccaag gatgtggaag 540
gatctacttc tcctcaaata ggagataagg ttgaatttag tattagtgac aaacagaggc 600
ctggacagca ggttgcaact tgtgtgcgac ttttaggtcg taattctaac tccaagaggc 660
tettgggtta tgtggcaact etgaaggata attttggatt tattgaaaca gecaateatg 720
ataaggaaat ctttttccat tacagtgagt tctctggtga tgttgatagc ctggaactgg 780
gggacatggt cgagtatagc ttgtccaaag gcaaaggcaa caaagtcagt gcagaaaaag 840
 tgaacaaaac acactcagtg aatggcatta ctgaggaagc tgatcccacc atttactctg 900
gcaaagtaat tegeceetg aggagtgttg atceaacaca gactgagtae caaggaatga 960
 ttgagattgt ggaggaggc gatatgaaag gtgaggtcta tccatttggc atcgttggga1020
 tggccaacaa aggggattgc ctgcagaaag gggagagcgt caagttccaa ttgtgtgtcc1080
 tgggccaaaa tgcacaaact atggcttaca acatcacacc cctgcgcagg gccacagtgg1140
aatgtgtgaa agatcagttt ggcttcatta actatgaagt aggagatagc aagaagctct1200
 ttttccatgt gaaagaagtt caggatggca ttgagctaca ggcaggagat gaggtggagt1260
 teteagtgat teetaagagt teaggeggae tggeagggte aggegeetgt agatgttttg1320
g
<210> 20
<211> 384
<212> DNA
<213> homo sapiens
<400> 20
ggtcgaatcc aaatcactca ttgtgaaagc tgagctcaca gccgaataag ccaccatgag 60
 getgtcagtg tgtctcctga tggtctcgct ggccctttgc tgctaccagg cccatgctct120
tgtctgccca gctgttgctt ctgagatcac agtcttctta ttcttaagtg acgctgcggt180
aaacctccaa gttgccaaac ttaatccacc tccagaagct cttgcagcca agttggaagt240
gaagcactgc accgatcaga tatcttttaa gaaacggctt ctcatttgaa aaagtcctgg300
gtgggaatag tgaaaaaatg tgggtgtgtg acatgtaaaa atgctcaacc tgggtttcca360
```

```
<210> 21
<211> 367
<212> DNA
<213> homo sapiens
<400> 21
```

gggcactggt ggtccggttc ctcaccaaac gattcatcgg tgactatgaa agaaatgcag 60 gtaatctcta tactagacaa gttcagatag aaggtgaaac cctggctctt caggttcaag120 acactccagg tattcaggtc catgagaaca gcctgagctg cagtgaacag ctgaataggt180 gcattcgctg ggcagatgct gtggtgatcg ttttctccat cactgactac aagagctatg240 aactcatcag ccagctccac cagcacgtgc agcagctaca ccttgggcac ccggctgcct300 gtgggtggtc gtgggccaac aaaagtgacc tgttgcacat caaacaggtt gaccctcagc360 ttggact

<210> 22 <211> 2621 <212> DNA <213> homo sapiens

<213> nomo sapiens

<400> 22

gggcctttgc ccgccttggc ggccggctct acgttccctg ttctcgcctg cagctccgcc 60 atggctccta aaggcagctc caaacagcag tctgaggagg acctgctcct gcaggatttc 120 agccgcaatc tctcggccaa gtcctccgcg ctcttcttcg gaaacgcgtt catcgtgtct 180 gccatcccca tctggttata ctggcgaata tggcatatgg atcttattca gtctgctgtt 240 ttgtatagtg tgatgaccct agtaagcaca tatttggtag cctttgcata caagaatgtg 300 aaatttgttc tcaagcacaa agtagcacag aagagggagg atgctgtttc caaagaagtg 360 actcgaaaac tttctgaagc tgataataga aagatgtctc ggaaggagaa agatgaaaga 420 atcttgtgga agaagaatga agttgctgat tatgaagcta caacattttc catcttctat 480 aacaacactc tgttcctggt cgtggtcatt gttgcttcct tcttcatatt gaagaacttc 540 aaccccacag tgaactacat attgtccata agtgcttcat caggactcat cgccctcctg 600 tctactggct ccaaatagac catgtcagct tcaccccctg gctttgtgtc tatgggtggc 660 ctgtggtata tggaaaagta gcagggtggt cagggtggga gacacaagat gtttttatag 720 tctagagcct ttaaaaaacc cagcagaatg taattcagta tttgtttatt ggctgttttt 780 tgacagattg ttgaaattaa atgaattgaa agggaaactc agagtactag gacgtttatt 840 aaaaggaaaa aaatgtcttg caatgtgctg taatcacaag aggagaaaat aacttgtttc 900 cttgatctgt cagaggtcac agtaacctgg gccgagctgt tattatttat tatataatag 960 tagtaggaag ttaataactg gttctctgtg ttccaagcac aatattacaa cttcttttga1020 accgtaaata tcagaatgaa tcctcttccc aggggattga acagaagctt aatgtttaca1080 agtgtttgaa tttgtgatct gaaataacac aaaattaaaa acatgatttc tctaattttc1140 caactagagg aagagaaact tgtggaaaag ttcttttttt ttcgtttttt tttcttaaag1200 aagggcagcc aaggtagtaa cctaaaaata gtgcccaggc atatgagagt tgtcctacga1260 qqttaaaqaa cacactgttc cactgtatgg ctttggccct gagtggccag ggaggtcaac1320 ttgaccctgc catgttggtt tgacttacta agacacagga atcattgttt tccttgacca1380 qqqtctcaca ccctggagga atgttaagta agagaaagaa cctctttcct gaatattgac1440 atgtaaaaqa ccaaagtaat ttttctgaac ttctgcaatt ctgagaactc tccaaggaat1500 ttacagtgat tttagtgctt gtcagcattt ttccatgagg actttcatac atttgactct1560 ttagttcaca ggttcccatt gattgtgagc aagatattta tctctttagc ccttggggat1620 ccagctgaga gcaatctctt gcattttttt acccgtgtat gtacagatat catttcttgt1680 gtatgccatg acttgaaaaa gtttgggaag ctctttagca atatcagcta aaaggatatg1740 aaatcacagg tgatagcagt tgtcattcag taatttccta caagcagcac cccaaaggaa1800 atatagteet aatetttaet atecaettet aaatttaatg tgaattteat acatgttatt1860 agttgttttc tttataattt tataaaaatt attcatcggg agtttaactt ccacttccat1920 gctatcggat gtgttgggct ccatgcaaga acttggaaga aaaacaggca ggaatgcatt1980 tgcataatga cccagatcat cattttctgc aactgagaat tatatttcat cattgcttct2040 agaagtctgc aattctttac ttttctttgg tgcattatta tctaggtgcc atcactggat2100 aatgtggagt gactagagaa gtcacatatc actgtaaggt acagttaggg taacacttta2160 gaggtttatt atttttaaaa aacttttctt gaactcctgg ccaacatggt gaaaccccgt2220 ctctactaaa aataccaaaa ttagccaggc gtgatggtgg gtgcctgtaa tctcagctac2280 ttgggagget gaageaggag aactgeetga acceaggagg cagaggttge agtgagtega2340

```
gatcgtgcta ctactgcctg ggtggcaagg gtgagactcc atctcaaaaa agaaacaaaa2400
gtggcatgga atttgtgtat caaataaatg catttgctta tttgacaaac aaaaagtgtc2520
cactattggt gaccgaggtg gggccgtttt tttgaaattg ggggggaaat ttgcccgtgg2580
gtgggagggc ctttgtgggg ggggaaaaat tgcccccttg g
<210> 23
<211> 2019
<212> DNA
<213> homo sapiens
<400> 23
 ctgtatccta atttcttggt gaatgaactc attcttaaac agaagcaaag atttgaggaa 60
 aagaggttca aattggacca ctcagtgagt agcaccaatg gccacaggtg gcagatattt 120
 caagattggt tgggaactga ccaagataac cttgatttgg ccaatgtcaa tcttatgttg 180
 gagttactag tgcagaagaa gaaacaactg gaagcagaat cacatgcagc ccaactacag 240
 attettatgg aatteeteaa ggttgeaaga agaaataaga gagageaact ggaacagate 300
 cagaaggagc taagtgtttt ggaagaggat attaagagag tggaagaaat gagtggctta 360
 tactctcctg tcagtgagga tagcacagtg cctcaatttg aagctccttc tccatcacac 420
 agtagtatta ttgattccac agaatacagc caacctccag gtttcagtgg cagttctcag 480
 acaaagaaac agccttggta taatagcacg ttagcatcaa gacgaaaacg acttactgct 540
 cattttgaag acttggagca gtgttacttt tctacaagga tgtctcgtat ctcagatgac 600
 agtogaactg caagocagtt ggatgaattt caggaatgot tgtccaagtt tactogatat 660
 aattcagtac gacctttagc cacattgtca tatgctagtg atctctataa tggttccagt 720
 atagteteta gtattgaatt tgacegggat tgtgaetatt ttgegattge tggagttaea 780
 aagaagatta aagtotatga atatgacact gtcatccagg atgcagtgga tattcattac 840
 cctgagaatg aaatgacctg caattcgaaa atcagctgta tcagttggag tagttaccat 900
 aagaacctgt tagctagcag tgattatgaa ggcactgtta ttttatggga tggattcaca 960
 ggacagaggt caaaggtcta tcaggagcat gagaagaggt gttggagtgt tgactttaat1020
 ttgatggatc ctaaactctt ggcttcaggt tctgatgatg caaaagtgaa gctgtggtct1080
 accaatctag acaactcagt ggcaagcatt gaggcaaagg ctaatgtgtg ctgtgttaaa1140
 ttcagcccct cttccagata ccatttggct ttcggctgtg cagatcactg tgtccactac1200
 tatgatette gtaacactaa acagecaate atggtattea aaggacaeeg taaageagte1260
 tcttatgcaa agtttgtgag tggtgaggaa attgtctctg cctcaacaga cagtcagcta1320
 aaactgtgga atgtagggaa accatactgc ctacgttcct tcaagggtca tatcaatgaa1380
 aaaaactttg taggcctggc ttccaatgga gattatatag cttgtggaag tgaaaataac1440
 totototaco tgtactataa aggactttot aagactttgc taacttttaa gtttgataca1500
 gtcaaaagtg ttctcgacaa agaccgaaaa gaagatgata caaatgaatt tgttagtgct1560
 gtgtgctgga gggcactacc agatggggag tccaatgtgc tgattgctgc taacagtcag1620
 ggtacaatta aggtgctaga attggtatga agggttaact caagtcaaat tgtacttgat1680
 cctgctgaaa tacatctgca gctgacaatg agagaagaaa cagaaaatgt catgtgatgt1740
 ctctccccaa agtcatcatg ggttttggat ttgttttgaa tatttttttc ttttttctt1800
 ttccctcctt tatgaccttt gggacattgg gaatacccag ccaactctcc accatcaatg1860
 taactccatg gacattgctg ctcttggtgg tgttatctaa tttttgtgat agggaaacaa1920
 attettttga ataaaaataa ataacaaaac aataaaagtt tattgageca caaaaaaaaa1980
 aaaaaaaaa aaaaaagaaa agaagggagg agggaaagg
<210> 24
<211> 1866
<212> DNA
<213> homo sapiens
<400> 24
 gtggttgctg tgacaggcac tatttgaagt gctttatcat ggattaactc ttaatcctca 60
 gctaccgtat aaagtaggac ataaccccat ttcacatgca ctacactgag acttgcctcc 120
 tctccccca cattgaagat gttcttttt cataactata tactattcca ttgcatgaat 180
 attctgtaat ttatttaatc ccctatggat tgataattag gttcattata gatagaagtg 240
 taattaacat tootgtacat gtattttgct acttgtgtgg gtatttctgt aggatgaata 300
 actagaaatt tattggatca ggtttcacat ttgcagtttt gaaaactact accaaaaaga 360
```

tttcaccaat ttacaactcc atcattagta agaatgcctg tttgcctata gtctgccaac 420 cctgaatcct taaaaatttt tgccaatctg gtaggcaaaa tttctttctt ttctttgaat 480

```
attaatgagg aggaacatct tttcatgttt cttggccatt tgcatttcct attatgaatt 540
gettttgece atttteettt ttttaattat gaaagtetaa tgaetaeett eteattgtat 600
aaaaaacaca gttctttgaa tagagagacc cttttctcca atgctaccaa tcacattcca 660
cttaccacag tttaacatac atcctctagt cacctttccg tacgaatata catacacata 720
aaaacacttt ttacataaat aggatctcat attctgtagc tttttaaaaat tttggtctca 780
aaaaaagata acaggtettt aaatttettt aatggttgaa tatgattaaa taetatgaaa 840
atgccattat ttattccctt aatttttttc ctctcgctat tacattgcca aagtaaacat 900
cctattcaga tgtctttgtg catgtgtgtg aatatttctt tagtctggag tccagtaagg 960
tggatttttg gatcaaaggg tttgttctct gtccaccttc agtcttccca aaggccttca1020
taactgtatt ttcaccaagt gtatggagaa tgttcatttc cccatataac catacctaca1080
cttgatagtt tttatctgtt gggcgaaaaa gaaccttttc ttattttgca tttccctgat1140
tataaaaaaa aatggtgaga ttggggttat tttcatgttt attggccatt tatagtttac1200
tgtggattgt ttgtatccct tacctgcttt ctattgggtt atgtgtggat atattgtttt1260
tatttgttca gcatctcctt ccccatcttc tggtaacaca acctttattt atttgtggggg1320
aacctattcc ctgtggctta ggtgagcatg tgaccaggcc tggcctcctg agtcccacag1380
cttcctagcc acagtgataa aagaatgggt atataactta agccaggcta aggaaagccc1440
ttaacagaac ttctgctgga actactggaa agaaggcttt atggagatcc caggaaccaa1500
ggaccatgta agcctgaatt tgtgccatgt ggagagagtc tgtctgagga gaaactcgga1560
tgctagcaga aatggaaaga gaactaagtt ctgatgtcat ttttctggag gccctagatc1620
cagctgtgcc taaagcctgc cctacctccg gactttaaag ttttgtgagc caataaagtc1680
ttttcttatt gatttgtaga aaacctttgt aattttaaat tctagacttt atgcactata1800
1866
aaaaaa
<210> 25
<211> 1189
<212> DNA
<213> homo sapiens
<400> 25
ctagcaagca ggtaaacgag ctttgtacaa acacacacag accaacacat ccggggatgg 60
 ctgtgtgttg ctagagcaga ggctgattaa acactcagtg tgttggctct ctgtgccact 120
cctggaaaat aatgaattgg gtaaggaaca gttaataaga aaatgtgcct tgctaactgt 180
 gcacattaca acaaagaget ggcageteet gaaggaaaag ggettgtgee getgeegtte 240
 aaacttgtca gtcaactcat gccagcagcc tcagcgtctg cctccccagc acaccctcat 300
 tacatgtgtc tgtctggcct gatctgtgca tctgctcgga gacgctcctg acaagtcggg 360
 aattteteta ttteteeact ggtgeaaaga geggatttet eeetgettet ettetgteac 420
 ccccgctcct ctcccccagg aggctccttg atttatggta gctttggact tgcttccccg 480
 tctgactgtc cttgacttct agaatggaag aagctgagct ggtgaaggga agactccagg 540
 ccatcacaga taaaagaaaa atacaggaag aaatctcaca gaagcgtctg aaaatagagg 600
 aagacaaact aaagcaccag catttgaaga aaaaggcctt gagggagaaa tggcttctag 660
 atggaatcag cagcggaaaa gaacaggaag agatgaagaa gcaaaatcaa caagaccagc 720
 accagatcca ggttctagaa caaagtatcc tcaggcttga gaaagagatc caagatcttg 780
 aaaaagctga actgcaaatc tcaacgaagg aagaggccat tttaaagaaa ctaaagtcaa 840
 ttgagcggac aacagaagac attataagat ctgtgaaagt ggaaagagaa gaaagagcag 900
 aagagtcaat tgaggacatc tatgctaata teeetgaeet teeaaagtee tacataeett 960
 ctaggttaag gaaggagata aatgaggaaa aagaagatga tgaacaaaat aggaaagctt1020
 tatatgccat ggaaattaaa gttgaaaaag acttgaggac tggagaaagt acagttctgt1080
 cttcaatacc tctgccatca gatgacttta aaaggtccag gagtaaaagt ttatgatgat1140
 gggcaaaagt ccagtgtatt cagtaaagtg ctaatcacaa gttggaggt
<210> 26
<211> 1418
<212> DNA
<213> homo sapiens
<400> 26
 gagetegeag eteegeegge geetggteee agegeeegeg gegeegegte eeeggeeeaa 60
```

ccatggcgtc ctccgcggcc ggctgcgtgg tgatcgttgg cagtggagtc attgggcgaa 120 gtggggccatg ctgtttgcca gtggaggctt ccaggtgaaa ctctatgaca ttgagcaaca 180

```
gcagataagg aacgccctgg aaaacatcag aaaggagatg aagttgctgg agcaggcagg 240
ttetetgaaa ggeteeetga gtgtggaaga geagetgtea eteateagtg gttgteeeaa 300
tatccaagaa gcagtagagg gtgccatgca cattcaggaa tgtgttccag aagatctaga 360
actgaagaag aagatttttg ctcagttaga ttccatcatt gatgatcgag tgatcttaag 420
cagttccact tcttgtctca tgccttccaa gttgtttgct ggcttggtcc atgtgaagca 480
atgcatcgtg gctcatcctg tgaatccgcc atactacatc ccgctggttg agctggtccc 540
ccacccggag acggccccta cgacagtgga cagaacccac gccctgatga agaagattgg 600
acagtgcccc atgcgagtcc agaaggaggt ggccggcttc gttctgaacc gcctgcaata 660
tgcaatcatc agcgaggcct ggcggctagt ggaggaagga atcgtgtctc ctagtgacct 720
ggaccttgtc atgtcagaag ggttgggcat gcggtatgca ttcattggac ccctggaaac 780
catgcatctc aatgcagaag gtatgttaag ctactgcgac agatacagcg aaggcataaa 840
acatgtccta cagacttttg gacccattcc agagttttcc agggccactg ctgagaaggt 900
taaccaggac atgtgcatga aggtccctga tgacccggag cacttagctg ccaggaggca 960
gtggagggac gagtgcctca tgagactcgc caagttgaag agtcaagtgc agccccagtg1020
aatttettgt aatgeagett ecaeteetet eattggagge eetatttggg aacaetgeaa1080
gcccttaatc agccctctgt gacataggta gcagcccacg gagatcctaa gctggctgtc1140
ttgtgtgcag cctgagtggg gtggtgcagg ccggtagtct gcccgtcact ttggatcata1200
gecetgggce tggcggcaca gcagcacttg cgttctcggg gctgtcgatt tcctgccacc1260
tgggcagata acctggagat tttcaccttt tctttttcag cttgattgca tttgagtatg1320
atttgacage cagtgattgt agttttcatg ttaatatgtg ggcaaaatat ttttgtaatt1380
 atttttgtaa tccctttctg agtaatctgg gggtcctt
<210> 27
<211> 814
<212> DNA
<213> homo sapiens
<400> 27
 gcagcaacgg ggtgcggcag ggtggggaac gcgggagggg gccagctccc aggaaagctg 60
 gtctgcgagc ggcccctgcc cggctcccag gtccctgcgc gaccccgccc ttcccgagac120
 cccagccggg ctgccgcccg cgtcccggaa gctccagcct gaaccatgtt tttcacttgt180
 ggcccaaatg aggccatggt ggtctccggg ttctgccgaa gcccccagt catggtggct240
 ggagggcgtg tctttgtcct gccctgcatc caacagatcc agaggatctc tctcaacaca300
 ctgaccetca atgtcaagag tgaaaaggtt tacactegee atggggteee cateteagte360
 actggcattg cccaggtgaa gctttcagag ccttttcccc acagtccact tccccatcac420
 cctctctccc agacattaag acatcttctg gccacagtct tctcaaccct tgcctgcaga480
 gaagtteete tgetagtete atetttteea ggeaceceaa ggeacttgee teeteeteet540
 ttctttccct gaaatggaag aagcatttct gagagggctc tcccttctct ctctgctttt600
 cctctgactt catgagaccc ccaccacacc tttcctaccc ctactctggc tacaggtaaa660
 aatccagggg cagaacaagg agatgttggc ggccgcctgt cagatgttgc tggggaagac720
 ggaggctgag attgcccaca ttgccctgga gacgttagag ggccaccaga gggccatcat780
 ggcccacatg acttgtggga gggttgggct taga
<210> 28
<211> 3039
<212> DNA
<213> homo sapiens
<400> 28
 gaactgagat attgtaatca aatagttaac atcaggaagt taatttggct ggcaaaattc 60
 tagggaaact tggccagaaa actggtgttg aaggcttttg ctcatataaa caagtgccat 120
 tgagtttcaa atgaccagca aatatattta gaaccettee tgttttatgt etgtaceteg 180
 tccacccctc aggtaatacc tgcctctcac aggtacagct gtttcttgga aatcctccaa 240
 ccaaatagca gttttcctaa cttgattagc ttgagctgac agactgttag aatacagttc 300
 tctggccaca gctgatgagg gctttctgta ctgcacacag attgtgtact gcaccccagt 360
 ccaggtgact ggtacccact cgagttgtgc cgtgcaaaac ctgtccagta tatgcatgtg 420
 gtggccctac tgactggtaa tggttagagg catttatgga ttttaagctt tgaggaaaaa 480
 ccatgacttt taacaaattt ttatgggtta tatgcctaaa cccttatgcc acatagtggt 540
 aaataattat gaaaaatggt ctgttcataa ttggtaggtg ccttttgtga gcagggagca 600
 taattattgg tttattatgg taattatggt gattttttaa atatcatgta atgttaaaac 660
```

gttttctaac agtttactgt tgcttatctc caagatatta tggaattaag aatttttcca 720

```
gatgagtgtt acatagattc tttgaattta gtataaaagt actgagaatt aagtttgtac 780
ttccataagc ttggatttta aacactgata gtatctcatg agtaatgtgt gttttgggag 840
agggagggat gctgattgat atttcacatt gtatgaaata ccatgtttga aactcatagc 900
aataatgeta tgetgttgtg atccetetea agttetgeat ttaaaaatata ttttttettt 960
ataggaattg atgtatacca tgaagtcatt gtcagttgta gtagctctga tgttgaatga1020
gatatcatgt tttagcattc cattttactg actagggtag aagaacactt ttcttggcta1080
catttggagg atacccaggg agtcttgggt gttccttatc tggggaagca aacatttcac1140
tagtetettt ttttcateet ttaaattgta aattaaggat taeteaaget caccattatt1200
caagattggg actogottcc cagtcgacac totgccctgc ctgtcattgc tgcaaagagc1260
tgctgctttg ccaacctaag caaagaaaat acggcttctc ttgcattatt ttcccttttg1320
gttggtttgt tttctagaag tacgttcaga tgctttgggg aatgcaatgt atgatttgct1380
agetetetea ceaettaaet caetgtgagg ataaatatge atgetttttg taattaaetg1440
gtgctttgaa aatctttttt aagggagaaa aatctcaacc aaagttatgc tcatccagac1500
aagctgacct ttgagttaat ttcagcacaa ctcattcttc agtgcctcat gactgaaaac1560
aaaaaacaaa aaaacqaaag catcttcaca atgaagcttc cagatagcac cgttttgcta1620
aaaqatacat totoattqtt ttocaacaqt gatggottoo acataaggtt aaacaaacta1680
qqtqcttqta aataatttat tacagtttac tctatcgcat ttctgtaaca tgaaatgcat1740
gcccttcttc aggggaagac tgtggtcaag ttaaaaaaaa aaaacaatat taaacaacat1800
qaaactqcaq tctqtttttq aaaatqaqaa tqtcctaaqt gattcagaag agaggaggga1860
aqttqtqcac tctqaaaatq catqaaaaac aaaqqcaaaa actagtggga aatgtgtaga1920
actgttaact gagacggctt cgagtcttcc ttctggaatc tgttaaattt cacaaagtca1980
tgagggtaaa tggagaaaat atttctggga ttacaatgaa tgtaagccca aattgtggaa2040
ttqccaqtaa cctqqatqqq qaaaagcatt tcccataqca ctccatgtaa tatgagtgct2100
ctgtgagatg ttcatcagtg ttttatagaa atggtgttgc tgggaaacca agtttgcacc2160
tggaaactta caatgcactt tagcgcagta agggcttggc atccggtagt gaaaaactgt2220
ctaacccagc attgcccaaa ctattttgac accaggacct ttttctcctt tgggatactt2280
atgaacctct cactaatgtc ctgtggagaa cattttggga aacactatgt tagatagttc2340
tttaaggaga caaaacggta atgaacagat agcactgggg cagaatatgc atgcattttg2400
taacgtccag tgtggcgttg aatagatgtg tatttcctcc cctgcagaaa ataagcacag2460
aaaattataa tgtaggtgat cggagctctt tcctttgata gagagaacag ccccaatgat2520
cctggctttt tcactgaacg tatcagaata catggatgaa ttggggtaaa taaggtttta2580
attcagatct agaagaaagt attgtacgtt tgaatgcaga tttttatcca cagatagttg2640
tagtgtttag acatgacaqq acctatcgtt gaggtttcta agacttacta tgggctgtaa2700
acctgttttt taaaactatt ttagaaacct gagacttgcc gtctggcatt ttagtttaat2760
acaaactaat gattgcattt gaaagagatt cttgacctta tttctaaacg tctagagctc2820
tgaaatgtct tgatggaagg tattaaacta tttgcctgtt gtacaaagaa atgttaagac2880
tegtgaaaag aattactata aggtaetgtg aaataaetge gattttgtga geaaaacata2940
cttggaaatg ctgattgatt tttatgcttg ttagtgtatt gcaagaaaca cagaaaatgt3000
agttttgttt taataaacca aaaattgaac ataaaaacc
```

```
<210> 29
<211> 1448
<212> DNA
```

<213> homo sapiens

<400> 29

```
taccaatetg aagggggaag eggegeegee ategeeteee ggegeteeet eeeegaetee 60
taagteette ggeegeeace atgteegeet eggetgtett cattetggae gttaagggea 120
agccattgat cagccgcaac tacaagggcg atgtggccat gagcaagatt gagcacttca 180
tgcctttgct ggtacacggg gaggaggaag gcgccctggc cccgctgctg agccacggcc 240
aggiccacti cciatggate aaacacagca accictacti ggiggecace acategaaga 300
atgccaatgc ctccctggtg tactccttcc tgtataagac aatagaggta ttctgcgaat 360
acttcaagga gctggaggag gagagcatcc gggacaactt tgtcatcgtc tacgagttgc 420
tggacgaget catggacttt ggetteeege agaccacega cagcaagate etgeaggagt 480
acatcactca gcagagcaac aagctggaga cgggcaagtc acgggtgcca cccactgtca 540
ccaacgctgt gtcctggcgc tccgagggta tcaagtataa gaagaacgag gtcttcattg 600
atgtcataga gtctgtcaac ctgctggtca atgccaacgg cagcgtcctt ctgagcgaaa 660
tegteggtac cateaagete aaggtgttte tgteaggaat gecagagetg eggetgggee 720
teaatgaceg egtgetette gageteactg geegeageaa gaacaaatca gtagagetgg 780
aggatgtaaa attocaccag tgogtgoggo tototogott tgacaacgac cgcaccatot 840
cetteatece geetgatggt gaetttgage teatgteata eegeeteage acceaggtea 900
agccactgat ctggattgag tctgtcattg agaagttctc ccacagccgc gtggagatca 960
```

cagaccccaa tttt

```
tggtcaaggc caaggggcag tttaagaaac agtcagtggc caacggtgtg gagatatctg1020
tgcctgtacc cagcgatgcc gactccccca gattcaagac cagtgtgggc agcgccaagt1080
atgtgccgga gagaaacgtc gtgatttgga gtattaagtc tttcccgggg ggcaaggagt1140
acttgatgcg agcccacttt ggcctcccca gtgtggaaaa ggaagaggtg gagggccggc1200
ccccatcgg ggtcaagttt gagatcccct acttcaccgt ctctgggatc caggtccgat1260
acatgaagat cattgagaaa agtggttacc agggccctgc cctgggggttt cgctacattc1320
acccagagtg ggcgattacc aactttcgtt accagctagg aaggggagaa gagatggggg1380
ggttttaaca cggggtttgc tttacagccc cggatgcaga tttttagaag ggagggcagg1440
tgcgggtt
<210> 30
<211> 1394
<212> DNA
<213> homo sapiens
<400> 30
atgaatacaa ggctgcaagt ggaacatcct gttactgaga tgatcacagg aactgacttg 60
 gtggagtggc agcttagaat tgcagcagga gagaagattc ctttgagcca ggaagaaata 120
 actctgcagg gccatgcctt cgaagctaga atatatgcag aagatcctag caataacttc 180
 atgectgtgg caggeceatt agtgeacete tetaeteete gageagaeee ttecaecagg 240
 attgaaactg gagtacggca aggagacgaa gtttccgtgc attatgaccc catgattgcg 300
 aagtgggteg tgtgggcage agategeeag geggeattga caaaactgag gtacageett 360
 cgtcagtaca atattgttgg actgcccacc aacattgact tcttactcaa cctgtctggc 420
 cacccagagt ttgaagctgg gaacgtgcac actgatttca tccctcaaca ccacaaacag 480
 ttgttgctca gtcggaaggc tgcagccaaa gagtctttat gccaggcagc cctgggtctc 540
 atcctcaagg agaaagccat gaccgacact ttcactcttc aggcacatga tcaattctct 600
 ccattttcgt ctagcagtgg aagaagactg aatatctcgt ataccagaaa catgactctt 660
 aaagatggta aaaacaatgt agccatagct gtaacgtata accatgatgg gtcttatagc 720
 atgcagattg aagataaaac tttccaagtc cttggtaatc tttacagcga gggagactgc 780
 acttacctga aatgttctgt taatggagtt gctagtaaag cgaagtgatt atcctggaaa 840
 acactattta cctattttcc aaggaaggaa gtattgagat tgacattcca gtccccaaat 900
 acttatette tgtgagetea caagaaacte agggeggeee ettageteet atgaetggaa 960
 ccattgaaaa ggtgtttgtc aaagctggag acaaagtgaa agcgggagat tccctcatgg1020
 ttatgatcgc catgaagatg gagcatacca taaagtctcc aaaggatggc acagtaaaga1080
 aagtgttcta cagagaaggt gctcaggcca acagacacac tcctttagtc gagtttgagg1140
 aggaagaatc agacaaaagg gaatcggaat aaactccagc aaggaaatgg ccagttaagt1200
 agtgtcttct ctctccacca aaaagaggaa gtgcctccag cttttctggg ggtctcataa1260
 agagcagttt tactaaatga ttgtatgctt atgctgaaca cctttcatat tggagaatca1320
 tgcatttggg tcactaatta tctcaaaata tttcatacta ataaagttga attattttt1380
 attggaagcc aaaa
<210> 31
<211> 734
<212> DNA
<213> homo sapiens
<400> 31
 geegacaaga tgttettget geetetteeg getgegggge gagtagtegt eegacgtetg 60
 geegtgagae gtttegggag eeggagtete teeacegeag acatgaegaa gggeettgtt120
 ttaggaatct attccaaaga aaaagaagat gatgtgccac agttcacaag tgcaggagag180
 aattttgata aattgttagc tggaaagctg agagagactt tgaacatatc tggaccacct240
 ctgaaggcag ggaagactcg aaccttttat ggtctgcatc aggacttccc cagcgtggtg300
 ctagttggcc tcggcaaaaa ggcagctgga atcgacgaac aggaaaactg gcatgaaggc360
 aaagaaaaca tcagagctgc tgttgcagcg gggtgcaggc agattcaaga cctggagctc420
 tcgtctgtgg aggtggatcc ctgtggagac gctcaggctg ctgcggaggg agcggtgctt480
 ggtctctatg aatacgatga cctaaagcaa aaaaagaaga tggctgtgtc ggcaaagctc540
 tatggaagtg gggatcagga ggcctggcag aaaggagtcc tgtttgcttc tgggcaagaa600
 cttgggcacg ccaatttgat gggagacgcc agccaattga gattgacgcc aaccagattt660
 tgccgaaatt atttgagaag attttcaaaa ttggtagtta gttaaaaccg aggtcctttt720
```

```
<210> 32
<211> 692
<212> DNA
<213> homo sapiens
<400> 32
 tgcagcgcgt gcgtgctgcg ctactgagca gcgccatgga ggactctgaa gcactgggct 60
 tegaacacat gggeetegat ecceggetee tteaggetgt cacegatetg ggetggtege120
 gacctacgct gatccaggag aaggccatcc cactggccct agaagggaag gacctcctgg180
 ctegggeeeg caegggetee gggaagaegg cegettatge tatteegatg etgeagetgt240
 tgctccatag gaaggcgaca ggtccggtgg tagaacaggc agtgagaggc cttgttcttg300
 ttcctaccaa ggagctggca cggcaagcac agtccatgat tcagcagctg gctacctact360
 gtgctcggga tgtccgagtg gccaatgtct cagctgctga agactcagtc tctcagagag420
 ctgtgctgat ggagaagcca gatgtggtag tagggacccc atctcgcata ttaagccact480
 tgcagcaaga cagcctgaaa cttcgtgact ccctggagct tttggtggtg gacgaagctg540
 accttctttt ttccctttgg ctttgaagaa gagctcaaga agtcttcctc tggtcacttt600
 gcccccggat tttaacaagg cttttctcat gtcagctact tttaacgagg acgtacaagc660
 actcaaggag ctgatattac ataagccggt at
<210> 33
<211> 517
<212> DNA
<213> homo sapiens
<400> 33
ctgccacgca cgactgaaca cagacagcag ccgcctcgcc atgaagctgc tgatggtcct 60
 catgctggcg gccctcctcc tgcactgcta tgcagattct ggctgcaaac tcctggagga120
 catggttgaa aagaccatca attccgacat atctatacct gaatacaaag agcttcttca180
 agagttcata gacagtgatg ccgctgcaga ggctatgggg aaattcaagc agtgtttcct240
 caaccagtca catagaactc tgaaaaactt tggactgatg atgcatacag tgtacgacag300
 catttggtgt aatatgaaga gtaattaact ttacccaagg cgtttggctc agagggctac360
 agactatggc cagaactcat ctgttgattg ctagaaacca cttttctttc ttgtgttgtc420
 tttttatgtg gaaactgcta gacaactgtt gaaacctcaa attcatttcc atttcaataa480
                                                                  517
 actaactgca aatcacaaaa aaaaaaaaa gtcgacg
<210> 34
<211> 322
<212> DNA
<213> homo sapiens
<400> 34
 tcaagetgtg ggtgagaage tetetageag ggaetetgae ettatggagg ategetgttt 60
 cccccatttt tccttttcac ccaaaaaagt cctgcttctg tcacccttca aacagcctgt120
 gagcctaaat ttttgtggcc atgggacaga caaggacccc gtcttcagct gaactaagga180
 aaagteetge gacatetttg gecateaaac tecaacecag teacecaace agageetetg240
 aggaatggcc cettettgcg gggaaccett tacaatgggc etettgactg atgttteccc300
 aaaacagtgc ccctgtcatc ag
<210> 35
<211> 1559
<212> DNA
<213> homo sapiens
<400> 35
gcacgagttg agagtgagtg tgtgtgtgtg cgtgtgcacg tgcacacatg tgcacggttg 60
 tatgtatggg aaataaactt ataaatgggg acgtattgga gaaggaaata catagaccta 120
caactttgag caaatagcag tgatgtttta ggaactgaaa tgtcacactt aaagtcttca 180
 geccagetae tteeetattt ttggegggga gaagagggee tgattagaae tgttetggtt 240
 gtgtttggcg ggaggggaat aatttttgtt cagtccttct tagtgaccaa actttaattt 300
```

```
ttaagaataa tatattgact tactgaactg aagcattctg agttgaaagg agctccagag 360
gagtggagtt ctgtgttgct cacatgttaa aagcttgctc accttcagag cagagggaat 420
acctatette agatateege ceattiteat etetteatta tagteaaaca gigtgaetig 480
agagtgttgc tctggtgtct gtattctggc ttatgaagat tatttgaaaa agaactctta 540
ctacattgaa atgcagactt ttaaaaattt aaatattgga ttaggcagtc aaaaaaccaa 600
acaagcataa aaggtcaata agttgtaatc ttaaaagtaa aggtggaaaa ctcattataa 660
atggaagaaa agttttgatt toottttttg tttgatgggc agtatgccat attataccca 720
aagttotttt aaaaaatatt tooatcaaco atttttattt aaaataaaca tttgagggaa 780
gttaccaagg cagctttttt cctcaaaagt aacctgttcc tctttggaat agcacatttt 840
aggggcatgg ttaatacctg agatttttac tcagtaaatc ctgatggtta ctgtgtgtaa 900
aatatcttta agtaggattg aaggcctctg tgggggaata aaatattacc aaagtctata 960
aaaataaatt ttacatgttc tcttttatga cagagagcag cactggttct gttattttta1020
aaatgaataa ttgatttott gataggtgtt taatatttot tooctcactg ctgattotta1080
gatagaaacc attetttata tttgatagac tgettteaga aaaccettat caacaagtgt1140
acaatactta tctaaaacta tacatttaga atggagcagt ttaatactag atctcagaag1200
ttttgaaaaa tagcaaagaa gactggattt ggaaagcatg gtctacaatt ggttgttaaa1260
 ttotgaagot atgaagaata aatgtttoaa otttggatta tgaaacccca tttatgattt1320
tttaaataca cttgaaataa aaatgattaa actaaatttt ggtccagtga cattactttg1380
agttttgtgt gaagctacgg catatctaac cggagaattt cggatgcctt atacggtgat1500
 tatattatat gggggcattt gtagtgcagc ggaagacgga atttatgcct ttgggaaac 1559
<210> 36
<211> 1072
<212> DNA
<213> homo sapiens
<400> 36
 cacacgtgct gacggcgggg acattcacat ccataagaag aaatctcagc aagtgttcgc
 gtcccccagt aaacacccca tggacagcaa gggggaggag tccaagatca gctaccccaa 120
 catcttcttc atgattgaca gettcgagga ggtgttcagc gacatgaccg tagggaagga 180
 gagatggtct gtgtggagct ggtggctagt gacaaaacca acacgttcca gggggtcatc 240
 tttcagggct ccatccgcta cgaggcgctc aagaaggtgt atgacaaccg ggtgagcgtg 300
 gccgcccgca tggcacagaa gatgtcgttt ggcttctaca agtacagcaa catggagttt 360
 gtgcgcatga agggccccca gggcaagggc cacgccgaga tggcggtcag ccgagtgtct 420
 acaggtgaca cagececetg tgggaetgaa gaggaeteca geceagette geceatgeae 480
 gagcgggtga cctccttcag cagacccccc accccagaac ggaacaaccg gcctgccttc 540
 ttctccccat ccctcaagag gaaggtgccc cggaaccgga tcgctgagat gaagaagtcg 600
 cacteggeca acgaeagega ggagttette egggaggaeg aeggtggage egatetgeae 660
 aatgcaacca acctgcggtc tcggtccctg tcgggcacag gacggtccct ggtcgggtcc 720
 tggctgaagc tgaacagagc agatggaaac ttccttctct atgcacactt aacctacgtc 780
 acgttgccgc tgcatcggat tttaacagac atcctggaag ttcggcagaa gcccatcctg 840
 atgacctage egegtgegga geetgegeag agecceggee gggeecagee eteggagtge 900
 tgccaagtgc ctacctgtcc accgccaccg gggtctgcga tggcacgcca gtgttggagc 960
 cgcagccagg cgaggccact cgactgccgg ggccggggcc gactgcacga acaccagccc1020
 aaactgaagt gcctctgacg ggccctgctg gcgctgcttc cgccctgtgc cc
<210> 37
<211> 454
<212> DNA
<213> homo sapiens
<400> 37
 gtgctgcatg gagtgagtgg cggcatccac cgtgaggagg agaggagctc tgataccctc 60
 aggacccgcc aggagggca tcacggaggc ttctggacga cttggagctg tgtcctgggg120
 agaaaaccgc tcctgtgtgg gccctgagtg ctgaggagga agctgccatg cacttttccc180
 tggcattttt cctgcatggt tcgtctgttt ttttgcaaat aacatgttgt catgaatttt240
 tatgcatgag gcatatttca tcatgtctgt atgctgaagt ccccttcatc ctttcaattg300
```

gttggtggac aggagagag ggtccaaggt gccctacatc gtgcgccagt gccgtgggag360 gagatcgagc gccgaggcac ggaggaggtg ggcatctacc gcatgtctgg ggtggccgca420

gacatccagg cactgaaggc agccttcaac gtca

```
<210> 38
<211> 700
<212> DNA
<213> homo sapiens
<400> 38
 cttgtcggag ccctaaccag gggtatctct gagcctggtg ggatccccgg agcgtcacat 60
 cactttccga tcacttcaaa gtggttaaaa actaatattt atatgacaga agaaaaagat120
 qtcattccgt aaagtaaaca tcatcatctt ggtcctggct gttgctctct tcttactggt180
 tttgcaccat aacttcctca gcttgagcag tttgttaagg aatgaggtta cagattcagg240
 aattgtaggg cctcaaccta tagactttgt cccaaatgct ctccgacatg cagtagatgg300
 gagacaagag gagatteetg tggteatege tgeatetgaa gaeaggettg ggggggeeat360
 tgcagctata aacagcattc agcacaacac tcgctccaat gtgattttct acattgttac420
 teteaacaat acageagace ateteeggte etggeteaac agtgatteee tgaaaageat480
 cagatacaaa attgtcaatt ttgaccctaa acttttggaa ggaaaagtaa aggaggatcc540
 tgaccagggg gaatccatga aacctttaac ctttgcaagg ttctacttgc caattctggg600
 ttcccagcgg caaaggaagg cccgtttaca tggggttgat gatgttattt gtggcaggtg660
ggattttttg ccctttacat tacagcagtg aggccggggc
<210> 39
<211> 914
<212> DNA
<213> homo sapiens
<400> 39
coggectgcg gtgggcagca gctcaggttc tccaaatcat tgcgtagttc cgaataccct 60
eggecacace tggcettete catgetegga ataactteet geagegacea acaggetaaa120
gagggggaag ggatccagca ccggctcctc ctccggcaac cacggtggga gcggcggagg180
aaatggacat aaacccgggt gtgaaaagcc agggaatgaa gcccgcggga gcgggaaatc240
 tgggattcag ggcttcagag gacagggagt ttccagcaac atgagggaaa taagcaaaga300
gggcaatcgc ctccttggag gctctggaga caattatcgg gggcaagggt cgagctgggg360
cagtggagga ggtgacgctg ttggtggagt caatactgtg aactctgaga cgtctcctgg420
gatgtttaac tttgacactt tctggaagaa ttttaaatcc aagctgggtt tcatcaactg480
ggatgccata aacaagaacc aggtcccgcc ccccagcacc cgagccctcc tctacttcag540
 ccgactctgg gaggatttca aacagaacac tcctttcctc aactggaaag caattattga600
 gggtgcggac gcgtcatcac tgcagaaacg tgcaggcaga gccgagtcag aactacaatt660
 acaaccagca tgcgtatccc actgcctatg gtgggaagta ctcagtcaag acccctgcaa720
 agggggggag teteacette tteetegget teeegggtge aacetgggee tgettgeagt780
 tgggtgaagt tttggtaagg caatttcttg caaccaacca ccgaaggccc cggaaaaagc840
 actgggttcg tcaagggaag ctccttcccc ctttggggcc cccagccttg tggcaggccc900
ctgggcccgg gttg
<210> 40
<211> 1669
<212> DNA
<213> homo sapiens
<400> 40
gagetgeage agageaggta acagetettg cacetgttte tettgeacet gaegtgeage
 tgctcctacc cacctctcct ggctgagcct tgcctgatac agcagcccgg aggcaccact 120
 tgcttcccga gtctcaccct cccaggcagc tcctacactc aactgcttct ctaggaaagg 180
 teteacetee ageetggage agtegggatt acagaaagee ceateettgg ettagggage 240
gccatgacga ctgaaattgg ttggtggaag ctgactttcc tccggaaaaa gaaatccact 300
cccaaagtgc tgtatgagat ccctgacacc tatgcccaaa cagagggaga tgcagaaccc 360
ccgaggcctg acgctggagg ccccaacagc gactttaaca cccgcctgga gaagattgtg 420
gacaagagca caaagggcaa gcacgtcaag gtctccaact caggacgctt caaggagaag 480
aagaaagtga gagccacgct ggcagagaac cctaacctct ttgatgatca cgaggaagga 540
cggtcatcaa agtgaagggc tgaggagggt gctagcacct cttggctccc tgccatcagc 600
```

cagatetgag acaggacett gecaegetgg cetetttgge catagetgaa getgtgggge 660

```
cagttgatac ctgctggcag gaaatggctg ttttttaggt ttgtatttat gtgccgccac 720
ttttgtaagg cctgggagat cccagggtcc tccaccctcc ccctgaccac atacaaaggc 780
actotagtto aagagtgaaa agtotoacco aggaggaaca goootoottg aagcaatggo 840
agggccagca gggaggtggg catggcaggg aatggagaga gtgagccaga cagacttcac 900
ctccttactg gacacagggt caagggcgag tttcaattgc tgctcccttt actttctcta 960
cctgtgacta ctccctggac caatcctgag gagggcacat tttccagaag ccacgtgata1020
ggggctggtt tctgtggagc cagaggcaga gacactgaac ttgagctcac ctcctaacac1080
cggcagtaaa cttcctggaa ctttgccctc aggtgcggag gggacagagg accctggcac1140
totgttaggg tgctgtagaa gactagattg atggtagttt ggcctgttag ttcctgtttt1200
ggccatgact tttgcagatg gcaagtcaca caccctcaaa gggaagctac acgggccaaa1260
tcgggggagt gggtggggaa ttttctcctc tccctttcct actataatag tatttaagac1320
atatcagete cagagatgag teetggagee ttgaattttg tttaacaaaa taattgtagg1380
tttctctctg taataacaac gctggaaagg cagagaacct cttttatgct catgtcttgc1440
atttattgag atgactgttt ctcatgcctt tatgttcctt catgtaagta aagtggacct1500
ttgtgctcaa aaaaaaaatt tcaagcttca ggaaggggtt cccaaggtgt gacaatgtag1560
gaacctgggt cactaatttt taccatcaaa cctagcctta gtatggggat ggggcaagca1620
gaaggageta gttacacete agtggteagt teteteeagt caacagaga
<210> 41
<211> 355
<212> DNA
<213> homo sapiens
<400> 41
ccqqcctccc ctcqctctga ggctcggggt ccccagctcc gcgtaaactg cacgatttcg 60
contetgete agetececte tgececetet ttecaagaga gaettecaga teccacattt120
tcttgactga ttttgaagct gtctgtttgc attctgattg ggaacactgg gatcattttc180
atcatgccga cagtggtggt aatggatgta tccctttcca tgacccgacc tgtgtctatt240
gaggggtccg aggaatacca gcgtaagacc tagcagccca tggtttaacg atgcttgttt300
tgagcacatg gccacaaatt acaagcttga atttacagca cttgtggttt tttca
<210> 42
<211> 2628
<212> DNA
<213> homo sapiens
<400> 42
gggtgcgcct gctttcgccc tccttctcca gcgggagggg cgcggacttc cgcggggcgg
 agtecgteta gtgetgaegt tggeageega acceaaagta gategaggeg gegggetgea 120
 cattecegtt gttgegttge gttteettee tettteaete egegeteaeg geggeggeea 180
 aageggegge gaeggegge egagaaegae eeggeggeea gttetettee teetgegeae 240
 ctgccctgct cggtcagtca gtcggcggcc ggcgcccggc ttgtgctcag acctcgcgct 300
 tgcggcgccc aggcccagcg gccgtagcta gcgtctggcc tgagaacctc ggcgctccgg 360
 cggcgcgggc accacgagcc gagcctcgca gcggctccag aggaggcagg cgagtgagcg 420
 agtccgaggg gtggccgggg caggtggtgg cgccgcgaag atggtcgcca agcaaaggat 480
 ccgtatggcc aacgagaagc acagcaagaa catcacccag cgcggcaacg tcgccaagac 540
 ctcgagaaat gcccccgaag agaaggcgtc tgtaggaccc tggttattgg ctctcttcat 600
 ttttgttgtc tgtggttctg caattttcca gattattcaa agtatcagga tgggcatgtg 660
 aagtgactga ccttaagatg tttccattct cctgtgaatt ttaacttgaa ctcattcctg 720
 atgtttgata ccctggttga aaacaattca gtaaagcatc ctgcctcaga atgactttcc 780
 tatcatgctt catgtgtcat tccaaggttt cttcatgagt cattccaagt tttctagtcc 840
 ataccacagt gccttgcaaa aaacaccaca tgaataaagc aataaaattt gattgttaag 900
 atacagtagt ggaccctact tattcagtca attaagagta agttttttta tgtggttatt 960
 aaaacagtat gaacaattag tctaactctg catagacagg gtctagattt tgttaaccca1020
 aatgtataac tgcagttagc ttaaattaca atttgaagtc ttgtggtttt tatatagcta1080
 ggcactttat tactettttg aactgaaage acactecett ataggtteat gtaactgtee1140
 tgtaataagg tgcttataaa tggaacaact acacagccta gttttgccac aacctttagc1200
 atctaaaaag ttttaaaagc ttctaaatgt ctaatataaa gggagatgct tatagccaca1260
 acatctattt taccaatatt gtttccatta cactaccttg gattttgcat gagtgagtat1320
 agtaacccaa gatgccataa aaaaaaactt gatcgttttc tgacttaatc agttactgtg1380
```

gtttcactaa aagctaccgt ggtggagtga agtcagtcag ggaaggtttg tttatgttac1440

```
atttatttca ccagaactat tttaatatat caaaggggtt tactatgcca aacaaaattc1500
tagggaaaaa tactgctaaa aatggatgcc tcatcagaac atgctgttga gtccaatgtg1560
ccataagaca ttttagcatg ttaaatagca cttttaatag caaaaaaagg cacatcaact1620
gcgaagttat ccttagtttg caaatgcttt ttctagatta atgatttttc aatcattagg1680
gtactagaca catcagccta aagtggcatc tggaattgaa tggatttact gataatgatc1740
agtctttagt cttccctttg ttatatgact ttataggtta tgattgatca aatttacgtt1800
ttactaatgg taagggtgag ggtcataggg caggttttgg gttttctagt actgttgaaa1860
actgcaagta ttggctattt gtatacttag ccataacttg gtgaaaaaaa acctgagcag1920
tgtctatgta ttaatgcgtt ggaaagaaag ctgcttgtgt ttgctttgtt aattgcctca1980
ggatatttct tttaaaataa gctgttttaa gaggaacaga agggaaatct gctacctagt2040
ctatacacag cgtgaacete acaggggget tetgatacee teaaacatgg agaacagtaa2100
gggagcagag tggttaagga ctttcaggaa cttaactatt ctggaataag gaatgaatca2160
actgaccttg ggccagcagg tttttaacta aattgttact tgcctttctc acccagttaa2220
teagtetetg tacttgttte cetttttgaa acaagtgtet tggttaacta attetgtttt2280
atggttgtgc taaattcata gcaggtgcct tattctttgc ttttagtcaa accattccat2340
atcagaattt teettggttt actatagata tttggettta agttgttgtt tgtgtttttt2400
aatgtacaat gttctgataa atttgactgt taaattgcta tagctagcaa tcattttaca2460
tatgtaaaat tgcattccct ttgtatttca tgtgtaattc accaattaag tgcagtttat2520
attcaggttg gattatgcat gtttaggtaa acgaaagctg tgtcttactt gatttattct2580
ttaaaaataa agttccctga atatttgaaa aaaaaaaaa aaaaaaaaa
<210> 43
<213> homo sapiens
```

<211> 2535 <212> DNA

<400> 43

agtteggeac agggggagga acetggeect gggaggagge tgttgegtge teetacagaa 60 tecegttetg aagggaagag catgtttgeg ggegteecea ecatgegtga gageteecec 120 aaacagtaca tgcagctcgg aggcagggtc ttgctggttc tgatgttcat gaccctcctt 180 cactttgacg ccagettett ttetattgte cagaacateg tgggcacage tetgatgatt 240 ttagtggcca ttggttttaa aaccaagctg gctgctttga ctcttgttgt gtggctcttt 300 gecatcaacg tatatttcaa egecttetgg accattecag tetacaagee catgeatgae 360 ttcctgaaat acgacttett ccagaccatg tcggtgattg ggggcttgct cctggtggtg 420 gccctgggcc ctgggggtgt ctccatggat gagaagaaga aggagtggta acagtcacag 480 atccctacct gcctggctaa gacccgtggc cgtcaaggac tggttcgggg tggattcaac 540 aaaactgcca gcttttatgt atcctcttcc cttcccctcc cttggtaaag gcacagatgt 600 tttgagaact ttatttgcag agacacctga gaatcgatgg ctcagtctgc tctggagcca 660 cagtetggeg tetgaceett cagtgeagge cageetggea getggaagee teeeceaege 720 cgaggetttg gagtgaacag cccgettgge tgtggcatet cagtectatt tttgagtttt 780 tttgtggggg tacaggaggg ggccttcaag ctgtactgtg agcagacgca ttggtattat 840 cattcaaagc agtctccctc ttatttgtaa gtttacattt ttagcggaaa ctactaaatt 900 attttgggtg gttcagccaa acctcaaaac agttaatctc cctggtttaa aatcacacca 960 gtggctttga tgttgtttct gccccgcatt gtattttata ggaatagtga aaacatttag1020 ggacacccaa agaatgatgc agtattaaag gggtggtaga agctgctgtt tatgataaaa1080 gtcatcggtc agaaaatcag cttggattgg tgccaagtgt tttattgggt aacaccctgg1140 gagttttagt agcttgaggc aaggtggagg ggcaagaagt ccttggggaa gctgctggtc1200 tgggtgctgc tggcctccaa gctggcagtg ggaagggcta gtgagaccac acaggggtag1260 ccccagcage ageaccetge aagecageet ggccagetge teagaccage ttgcagagee1320 gcagccgctg tgggcaggg gtgtggcagg agctcccagc actggagacc cacggactca1380 acccagttac ctcacatggg gccttttctg agcaaggtct cgaaagcgca ggccgccctg1440 gctgagcagc accgcccttt cccagctgca ctcgccctgt ggacagcccc gacacaccac1500 tttcctgagg ctgtcgctca ctcagattgt ccgtttgcta tgccgaatgc agccaaaatt1560 cctttttaca atttgtgatg ccttaccgat ttgatcttaa tcctgtattt aaagttttct1620 aacactgcct tatactgtgt ttctcttttt gggggagctt aactgcttgt tgctccctgt1680 cgtctgcacc atagtaaatg ccacaagggt agtcgaacac ctctctggcc cctagaccta1740 tetggggaca ggetggetea geetgtetee agggetgetg eggeecagee eegageetge1800 ataagtgett ttggaagtea ectacetttt taacacagee gaactagtee caacgegttt1920 gcaaatattc ccctggtagc ctacttcctt acccccgaat attggtaaga tcgagcaatg1980 getteaggae atgggttete tteteetgtg atcatteaag tgeteactge atgaagaetg2040 gcttgtctca gtgtttcaac ctcaccaggg ctgtctcttg gtccacacct cgctccctgt2100

```
tagtgccgta tgacagcccc catcaaatga ccttggccaa gtcacggttt ctctgtggtc2160
aaggttggtt ggctgattgg tggaaagtag ggtggaccaa aggaggccac gtgagcagtc2220
agcaccagtt ctgcaccage agcgcctccg tectagtggg tgtteetgtt teteetggcc2280
atctaccaat tgattctggc aaaacaattt ctaagatttt tttgctttat gtgggaaaca2400
gatctaaatc tcattttatg ctgtatttta tatcttagtt gtgtttgaaa acgttttgat2460
aaaaaaaaa aaaaa
<210> 44
<211> 805
<212> DNA
<213> homo sapiens
<400> 44
ggcacgagcg gcacgagcca tctccatccc cggagcatct gtatgattca gaagtacaac 60
cacgatgggg aagcaggtcg gctggaggct tttagccaag gggaaagtgt cctaaaggaa120
cccaagtacc aggaagagct ggaggacagg ctgcatttct acgtggagga atgtgactac180
ttgcagggct tccagatcct gtgtgacctg cacgatggct tctctggggt aggcgcgaag240
gcggcagagc tgctacaaga tgaatattca gggcggggaa taataacctg gggcctgcta300
cctggtccct accatcgtgg ggaggcccag agaaacatct atcgtctatt aaacacagct360
tttggtctcg tgcacctgac tgctcacagc tctcttgtct gccccttgtc cttgggtggg420
 agectgggee tgegaecega gecaectgte agetteeett acetgeatta tgatgecaet480
 ctgcccttcc actgcagtgc catcctggct acagccctgg acacagtcac tgttccttat540
cgcctgtgtt cctctccagt ttccatggtt catctggctg acatgctgag cttctgtggg600
 aaaaaggtgg tgacagcagg agcaatcatc cettteeeet tggeteeagg ceagteeett660
 cctgattccc tgatgcagtt tggaggagcc accccatgga ccccactgtg tgcatgtggg720
 gageettetg gaacaegttg etttgeeeag teagtggtge tgagggggta tagacagage780
 atgccacaca agccacagac ttaat
<210> 45
<211> 1279
<212> DNA
<213> homo sapiens
<400> 45
 cggaagtagc cgcaggcatg gcggcggcta tgccgctgtt gctctgctcg tcctgttgct
 cctggggccc ggcggctggt gccttgcaga acccccacgc gacagcctgc gggaggaact 120
 tgtcatcacc ccgctgcctt ccggggacgt agccgccaca ttccagttcc gcacgcgctg 180
 ggattcggag cttcagcggg aaggagtgtc ccattacagg ctctttccca aagccctggg 240
 gcagctgatc tccaagtatt ctctacggga gctgcacctg tcattcacac aaggcttttg 300
 gaggacccga tactgggggc caccetteet geaggeeeea teaggtgeag agetgtgggt 360
 ctggttccaa gacactgtca ctgatgtgga taaatcttgg aaggagctca gtaatgtcct 420
 ctcagggatc ttctgcgcct ctctcaactt catcgactcc accaacacag tcactcccac 480
 tgcctccttc aaacccctgg gtctggccaa tgacactgac cactactttc tgcgctatgc 540
 tgtgctgccg cgggaggtgg tctgcaccga aaacctcacc ccctggaaga agctcttgcc 600
 ctgtagttcc aaggcaggcc tetetgtgct getgaaggca gategettgt tecacaccag 660
 ctaccactcc caggcagtgc atatccgccc tgtttgcaga aatgcacgct gtactagcat 720
 ctcctgggag ctgaggcaga ccctgtcagt tgtatttgat gccttcatca cggggcaggg 780
 aaagaaagac tggtccctct tccggatgtt ctcccgaacc ctcacggagc cctgccccct 840
 ggcttcagag agccgagtct atgtggacat caccacctac aaccaggaca acgagacatt 900
 agaggtgcac ccaccccga ccactacata tcaggacgtc atcctaggca ctcggaagac 960
 ctatgccatc tatgacttgc ttgacaccgc catgatcaac aactctcgaa acctcaacat1020
 ccagctcaag tggaagagac ccccagagaa tgaggccccc ccagtgccct tcctgcatgc1080
 ccagcggtac gtgagtggct atgggctgca gaagggggag ctgagcacac tgctgtacaa1140
 cacccaccca taccgggcct tcccggtgct gctgctggac accgtaccct ggtatctgcg1200
 gctgttacat ccactaccag cctgcccagg accggctgca accccacctc ctggagatgc1260
                                                                1279
 tgattcagct gccggccaa
```

<210> 46
<211> 1923

<213> homo sapiens

```
<212> DNA
<213> homo sapiens
<400> 46
qcqcaaqaca caqqaqqccc aqqccqgcaq tcaqqacatq qcgqcqattt gcagattcca 60
atctctctqt ttctqcqqcq attqaacacc caacattqqc qaccqqqatc qcggaaagtg 120
atgqctqtcq tcccqqcqtc tctctcaqqa caqqacqtgg gatcatttgc atatcttaca 180
attaaaqaca qaataccaca qatcttaact aaqqttattq atacattqca tcqacataaa 240
aqtqaatttt ttgagaaaca cggagaggaa ggcgtggaag ctgaaaagaa agctatctct 300
ctcctttcta aattacggaa tgaattgcaa acagataaac catttatccc cttggttgag 360
aaatttgttg atactgatat atggaatcag tacctagaat atcaacagag tcttttaaat 420
qaaaqtqatg gaaaatcaag atggttctac tcaccgtggt tgttggtaga atgttacatg 480
tatcqaaqaa ttcatqaaqc aattatccaq aqtccaccaa tcgattactt tgatgtattt 540
aaagaatcaa aagagcaaaa tttctatggg tcacaggaat ccatcattgc tttatgtact 600
cacctqcaac aattgataag aactattgaa gacctagatg aaaatcagct gaaagatgag 660
ttttttaaac ttctqcaqat ttcactgtqq qqaaataaqt gtgatctgtc tctctcaggt 720
qqaqaaaqta qttctcaqaa taccaatqta ctaaattcat tggaagacct aaaacctttc 780
attttattga atgatatgga acatctttgg tcattgctta gcaattgcaa gaaaacaaga 840
gaaaaagctt ctgctactag agtgtatatt gttctcgata attctggatt tgagcttgtt 900
acagatttaa tattagccga cttcttqttq tcctctqaac tqqctactqa qqttcatttt 960
tatggaaaaa caattccatg gtttgtttct gatactacta tacatgattt taattggtta1020
attgaacagg taaaacacag taatcataag tggatgtcca agtgtggggc tgactgggaa1080
gagtatatta aaatgggtaa atgggtttac cacaatcata tattttggac tctgcctcat1140
gagtactgtg caatgcctca ggttgcacct gacttatatg ctgaactaca gaaggcacat1200
ttaattttat tcaagggtga tttgaattac aggaagttga caggtgacag aaaatgggag1260
ttttctgttc catttcatca ggctctgaat ggcttccatc ctgcaccact ctgtaccata1320
agaacattaa aagctgaaat tcaggttggt ctgcagcctg ggcaagggga acagctcctg1380
gcctctgagc ccagctggtg gaccactgga aaatatggaa tatttcagta cgatggtccc1440
ctttgacttg atttaggagc tctcagttgc atagaaagat ctggtgagca ccttttcatc1500
cccagaaaag gagcacgtga attgagtcgc ctggcggctc tgtacgcgct cagggaagct1560
tagettettg gtgeecatet aegtgeactg gatgattttt ettttgaaca ttttgeecca1620
ctacactgtt tttggggata gctgggttaa gcaagttaaa gatatttaca tttatattgg1680
agattttaag caactttttt ttcagggtaa atatataatt tcaaagtgct tttaaatgga1740
ccttaatttt gaagtgggta gggccaaaaa ataaagggag ggctcctttg aggtaggtac1800
ccttggcctt tcctaaaaag cccctcaatg ggatttagat ccgggggggt ggggttattt1860
tccttggttt ggccatgaaa atccttggaa ccggcttatg cccttttgaa aaggggggtt1920
ttt
<210> 47
<211> 706
<212> DNA
<213> homo sapiens
<400> 47
cattttacga caggcgggat tgttttgtgg ctgtcagctt tctccgtggt ctgagtttgt 60
ggctgcattt ttatctctgg tggctctgct acggcggcgc agaaatgagg cagaagcgga120
aaggagatct cagccctgct gagctgatga tgctgactat aggagatgtt attaaacaac180
tgattgaagc ccacgagcag gggaaagaca tcgatctaaa taaggtgaaa accaagacag240
ctgccaaata tggcctttct gcccagccc gcctggtgga tatcattgct gccgtccctc300
ctcagtatcg caaggtcttg atgcccaagt taaaggcgaa acccatcaga actgctagtg360
ggattgctgt cgtggctgtg atgtgcaaac cccacagatg tccacacatc agttttacag420
gaaatatatg tgtatactgc cctggtggac ctgattctga ttttgagtat tccacccagt480
cttacactgg ctatgagcaa cctccatgag agctattccg tgccagatat ggaccctttt540
ccttacagga caaggacacc ggattaggaa cagtttaaaa caagttgggt tcgtagtgtg600
gggttaagtg ggagtttgtt tgtggatggg gtgggaactt tttggggccg ttccagagga660
                                                                  706
ttacagagtt atttttattt cggaagttta cgtgatgggt tttccg
<210> 48
<211> 749
<212> DNA
```

```
gacctatect catetgtgca aggaggagtg gecaactetg gageceagge tgttgettee 60
tggtctggtg gtgaatcctc catagtctgg tgagtgtagt gcccaactct ggagcccagg120
atgttgcttc ccggtctggt ggtgaatcct ccatagtctg gagatctcag ccctgctgag180
ctgatgatgc tgactatagg agatgttatt aaacaactga ttgaagccca cgagcagggg240
aaagacatcg atctaaataa ggtgaaaacc aagacagctg ccaaatatgg cctttctgcc300
cageceegee tggtggatat cattgettge egteceteet cagtategea aggtettgat360
gcccaagtta aaggcgaaac ccatcagaac tgctagtggg attgctgtcg tggctgtgat420
gtgcaaaccc cacagatgtc cacacatcag ttttacagga aatatatgtg tatactgccc480
tgggtgggac ctgattctga ttttgagtat tccacccagt cttacactgg gctatgagcc540
aacctccatg aggagctatt ccgtgccaga tatggaccct tttccttaca ggacaaggac600
accggattag gaacagttta aaacaagttg ggttcgtagt gtgggggttaa gtgggagttt660
gtttgtggat ggggtgggaa ctttttgggg ccgttccaga ggattacaga gttattttta720
tttcggaagt ttacgtgatg ggttttccg
<210> 49
<211> 857
<212> DNA
<213> homo sapiens
<400> 49
 accttaccaa ggggagaaaa aaaccctcca ctttggctca ctgtgggttt ggcactaaga 60
ggcacgatat ctgaaggagg tcattccagt tttaaaagta cggacagtgc tgttggaact120
gaccacaaaa atgtattgtt aaaaaaaaat tgaaaaccag cagtgatttg ggtccccctg180
 aaacctctgt gaatcggagg tgggcccagg agggtgcagg acgcagcaga aatagtccca240
 gaaaggagag acgggtcatg cagcgggctt gtgctttttt gtgtgtgttt gtgtgtttta300
 caccatacat ctccaaatga agtatttatt aacaattgta gtgtaagcct gtgataaaat360
 agcacaaagg ttctttaaag aagttcactt ttaaggcatc agaaaagtta atgtggcaaa420
 cattttaatt aaaacatcag aagtaaattt tattttaaac tttaggcctc tgaatttttc480
 cagtaaacac agttcagcta tgtggcaaag tcaatgggtg gcatctaaaa tgacttttta540
 cattctacaa aaaaataaaa taaaataagg acacagcccc aaacggtgtc acctcttcgc600
 ggccgctcca catgcacaga atctactagg atttgtcacg gccgggtggc acccgatttg660
 ttttgactat acaacaaact ttttttcaa aagtatttgt tcaggataac tttaaaaaata720
 atataaaaat aaacaatgga tttgactttt ccctcaaaat tgaaaagaaa ggggtggggg780
 gaggtgttaa ccattggcct ttttttttt ggaggggccc cattgggatt gtaaggccct840
 ggggttccgg cctttcc
<210> 50
<211> 268
<212> DNA
<213> homo sapiens
<400> 50
 ccgcgcccgg cccccaggca attttaataa taaatcttaa tagatggggt aagagctgcc 60
 ttcatcccat acagagaata caatggtgct agactaagta gagattttat ttcagcttaa120
 agattctgtt tgatgtctga aattacatgt ttaggcggca tggggaacag gactgttctt180
 tagcatcagt ttcacaatta ctttaatcta ctaggtttca ttcaccttat aattctgaaa240
                                                                   268
 tttcatcagc agtggggaac agaaaagg
<210> 51
<211> 297
<212> DNA
<213> homo sapiens
<400> 51
 ctgatgtgca ctctaggtta gtaaccattt ttgtgaaaaa tttagagaaa ttctttgagc 60
 agottocact qaaacactaa aacccaatag ggocaaaggo ccataacctg aggaaacctt120
```

atttattget taateeaaca taggetatga aagttttgag ttteetettg tgtattagaa180

<213> homo sapiens

```
tttcattcct atttgttgta gagagtatag tacggggaat cagtaaatta aatgaagtaa240
actaaagatt acacctttgc tgctggcact aagcgaaaag caaaaccagt ggctgtc
<210> 52
<211> 590
<212> DNA
<213> homo sapiens
<400> 52
acggtcaaaa tgataactca tgtattttat tccaacaaca tttggtttat aaaggaatac 60
aaacaggcac aaaacatggt tcagaagatt tattaagtaa acttgctaaa atatggacag120
 atacacttag cagtcaaaca gttgaatatt cattgctacc tcattaaagt ttttgtatct180
 gtattaccag gtccaaacat aaaaaccacc tctgttcaaa aaataaatgt tcagagagct240
 gtatgttett tgttetggta tgtacatttt aaaaaaacae etettteeag tettgetaae300
 caagaatatt agtcatataa aagaacttag aatttttttc cccaagtaca agctatcttt360
 tgctccaaaa cagttctgaa ggttttattt atattttatc ttatcccgag ggaccaacag420
 caggcatacc tttgccaggc cttcttgcag aaagacacag agccgtaaag gcaaaaataa480
 aattgcaata aagtatatgg tattgggggc agggagaacc agaaaccctc aaggggacca540
 atttttagca cgttctttt ttagggttta ccctgtggag taagaactag
<210> 53
<211> 1714
<212> DNA
<213> homo sapiens
<400> 53
 ggaaggggaa gtttcgcctc agaaggctgc ctcgctggtc cgaattcggt ggcgccacgt 60
 cegecegtet eegecttetg categegget teggeggett ceaectagac acetaacagt 120
 cgcggagccg gccgcgtcgt gagggggtcg gcacggggag tcgggcggtc ttgtgcatct 180
 tggctacctg tgggtcgaag atgtcggaca tcggagactg gttcaggagc atcccggcga 240
 teaegegeta ttggttegee gecaeegteg eegtgeeett ggteggeaaa eteggeetea 300
 teageeegge etacetette etetggeeeg aageetteet ttategettt cagatttgga 360
 ggccaatcac tgccaccttt tatttccctg tgggtccagg aactggattt ctttatttgg 420
 tcaatttata tttcttatat cagtattcta cgcgacttga aacaggagct tttgatggga 480
 ggccagcaga ctatttattc atgctcctct ttaactggat ttgcatcgtg attactggct 540
 tagcaatgga tatgcagttg ctgatgattc ctctgatcat gtcagtactt tatgtctggg 600
 atttaccctg ggttatcctt ggattcaact atatcatcgg aggctcggta atcaatgagc 720
 ttattggaaa tctggttgga catctttatt ttttcctaat gttcagatac ccaatggact 780
 tgggaggaag aaattttcta tccacacctc agtttttgta ccgctggctg cccagtagga 840
 gaggaggagt atcaggattt ggtgtgcccc ctgctagcat gaggcgagct gctgatcaga 900
 atggcggagg cgggagacac aactggggcc agggctttcg acttggagac cagtgaaggg 960
 geggeetegg geageegete eteteaagee acattteete ceagtgetgg gtgegettaa1020
 caactgcgtt ctggctaaca ctgttggacc tgacccacac tgaatgtagt ctttcagtac1080
 gagacaaagt ttcttaaatc ccgaagaaaa atataagtgt tccacaagtt tcacgattct1140
 cattcaagtc cttactgctg tgaagaacaa ataccaactg tgcaaattgc aaaactgact1200
 acattttttg gtgtcttctc ttctcccctt tccgtctgaa taatgggttt tagcgggtcc1260
 tagtctgctg gcattgagct ggggctgggt caccaaaccc ttcccaaaag gacccttatc1320
 tetttettge acacatgeet eteteceact ttteecaace eccacatttg caactagaag1380
 aggttgccca taaaattgct ctgcccttga caggttctgt tatttattga cttttgccaa1440
 ggcttggtca caacaatcat attcacgtaa ttttccccct ttggtggcag aactgtagca1500
 atagggggag aagacaagca gcggatgaag cgttttctca gcttttggaa ttgcttcgac1560
 ctgacatccg ttgtaaccgt ttgccacttc ttcagatatt tttataaaaa agtaccactg1620
 agtcagtgag ggccacagat tggtattaat gagatacgag ggttgttgct gggtgtttgt1680
  tccgagtaag tgagaaggtg agtggattga ctac
 <210> 54
 <211> 1340
 <212> DNA
```

```
ctcgagccgc tcgagccgaa tcggctcgag ctgaaaaagg gctacctgac cctgtcagac 60
agtggggaca aggtggccgt ggaatgggac aaagaccatg gggtcctgga gtcccacctg 120
geggagaagg ggagaggeat ggagetatee gacetgattg ttttcaatgg gaaactetae 180
teegtggatg aceggacggg ggtegtetae cagategaag geageaaage egtgeeetgg 240
gtgattetgt eegaeggega eggeaeegtg gagaaagget teaaggeega atggetggea 300
gtgaaggacg agcgtctgta cgtgggcggc ctgggcaagg agtggacgac cactacgggt 360
gatgtggtga acgagaaccc ggagtgggtg aaggtggtgg gctacaaggg cagcgtggac 420
cacgagaact gggtgtccaa ctacaacgcc ctgcgggctg ctgccggcat ccagccgcca 480
ggtaacctca tocatgagto tgcctgctgg agtgacacgo tgcagogctg gttcttcctg 540
cegegeegeg ceagecagga gegetacage gaggaaggae gaegagegea agggegecaa 600
cetgetgetg agegeeteec etgaettegg egacateget gtgageeaeg teggggeggt 660
ggtccccact cacggcttct cgtccttcaa gttcatcccc aacaccgacg accagatcat 720
tgtggccctc aaatccgagg aggacagcgg cagagtcgcc tcctacatca tggccttcac 780
gctggacggg cgcttcctgt tgccggagac caagatcgga agcgtgaaat acgaaggcat 840
cgagttcatt taactcaaaa cggaaacact gagcaaggcc atcaggactc agcttttata 900
aaaacaagag gagtgcactt ttgttttgtt ttgttctttt tggaactgtg cctgggttgg 960
aggtctggac agggagccca gtcccgggcc ccatagtggt gcgggcactg gacccccggg1020
ccccacggag gccgcggtct gaactgcttt ccatgctgcc atctggtggt gatttcggtc1080
acttcaggca ttgactcaag gcctgcctaa ctggctgggt cgtttcttcc atccgacctc1140
gtttcttttc tttcctatgt tcttttgttc agtgaatatc cctagagctc ctaccatatg1200
tcaggcccta tgcctcaccc tgagaacgca gtaagcatga aggtggacct ggtttgctgg1260
gaacccgagg gctaaccccc tttttcttcc caaatttggt gccttggaag aatcaggtcc1320
agccctgaag atccttgggg
<210> 55
<211> 765
<212> DNA
<213> homo sapiens
<400> 55
caggattgaa acaagatggc gggttcgtgg tgagaagccg tcaaggagta gaaattggta 60
tgcttagaag cagattctaa aagcagtttc tcttcagaac atctttttc ataccacttg120
ataagcatct tgaaacacca tggctgtagc tgcagtaaaa tgggtgatgt caaagagaac180
tatcttgaaa catttatttc cagtccaaaa tggagcttta tattgtgttt gtcataaatc240
 tacgtattct cctctaccag atgactataa ttgcaacgta gagcttgctc tgacttctga300
 tggcaggaca atagtatgct accaccette tgtggacatt ccatatgaac acacaaaacc360
 tatccctcgg ccagatcctg tgcataataa tgaagaaaca catgatcaag tgctgaaaac420
 cagattggaa gaaaaagttg aacaccttga ggaaggacct atgatagaac aacttagcaa480
 aatgttettt actactaage accgttggta teeteatgga eggtateaca gatgtegtaa540
 gaatctgaat cctccaaaag acagatgatg cggaggttcc tgggggaatc aaagagaaat600
 gtgcctcatt tgccatttga gaaaatgcag tctggtgtat tcagtaatat atagtaaagt660
 aataatgata aaatatcttt tcatatatta gaatgtgtac ttttatataa agtaattctg720
                                                                  765
 gatttgacat tctcatttag ggggacctat tccttttttc gtttt
<210> 56
<211> 1647
<212> DNA
<213> homo sapiens
<400> 56
 gcagccggag taagatggcg gcgctgaggg ctttgtgcgg cttccggggc gtcgcggccc
 aggtgctgcg gcctggggct ggagtccgat tgccgattca gcccagcaga ggtgttcggc 120
 agtggcagcc agatgtggaa tgggcacagc agtttggggg agctgttatg tacccaagca 180
 aagaaacagc ccactggaag cctccacctt ggaatgatgt ggaccctcca aaggacacaa 240
 ttgtgaagaa cattaccctg aactttgggc cccaacaccc agcagcgcat ggtgtcctgc 300
 gactagtgat ggaattgagt ggggagatgg tgcggaagtg tgatcctcac atcgggctcc 360
 tgcaccgagg cactgagaag ctcattgaat acaagaccta tcttcaggcc cttccatact 420
```

ttgaccggct agactatgtg tccatgatgt gtaacgaaca ggcctattct ctagctgtgg 480 agaagttgct aaacatccgg cctcctcctc gggcacagtg gatccgagtg ctgtttggag 540

```
aaatcacacg tttgttgaac cacatcatgg ctgtgaccac acatgccctg gaccttgggg 600
 ccatgacccc tttcttctgg ctgtttgaag aaagggagaa gatgtttgag ttctacgagc 660
gagtgtctgg agcccgaatg catgctgctt atatccggcc aggaggagtg caccaggacc 720
 taccccttgg gcttatggat gacatttatc agttttctaa gaacttctct cttcggcttg 780
atgagttgga ggagttgctg accaacaata ggatctggcg aaatcggaca attgacattg 840
gggttgtaac agcagaagaa gcacttaact atggttttag tggagtgatg cttcggggct 900
caggcatcca gtgggacctg cggaagaccc agccctatga tgtttacgac caggttgagt 960
 ttgatgttcc tgttggttct cgaggggact gctatgatag gtacctgtgc cgggtggagg1020
agatgegeca gteectgaga attategeae agtgtetaaa caagatgeet eetggggaga1080
 tcaaggttga tgatgccaaa gtgtctccac ctaagcgagc agagatgaag acttccatgg1140
agtcactgat tcatcacttt aagttgtata ctgagggcta ccaagttcct ccaggagcca1200
catatactgc cattgaggct cccaagggag agtttggggt gtacctggtg tctgatggca1260
gcagccgccc ttatcgatgc aagatcaagg ctcctggttt tgcccatctg gctggtttgg1320
acaagatgtc taagggacac atgttggcag atgtcgttgc catcataggt acccaagata1380
ttgtatttgg agaagtagat cggtgagcag gggagcagcg tttgatcccc cctgcctatc1440
agettettet gtggageetg tteeteactg gaaattggee tetgtgtgtg tgtgtgtgt500
 tgtgtgtgtg tgtgtgtatg ttcatgtaca cttggctgtc aggctttctg tgcatgtact1560
aaaaaaaaa aaaaaaaa aaaaaaa
<210> 57
<211> 1166
<212> DNA
<213> homo sapiens
<400> 57
egecgeetge gegggggga geceageaca gacegeegee gggaceeega gtegegeace
ccagccccac cgcccaccc gcgcgccatg gaccccaagg accgcaagaa gatccagttc 120
teggtgeeeg egeceetag ceagetegae eecegeeagg tggagatgat eeggegeagg 180
agaccaacgc ctgccatgct gttccggctc tcagagcact cctcaccaga ggaggaagcc 240
tecececace agagageete aggagagggg caccatetea agtegaagag acceaaceee 300
tgtgcctaca caccaccttc gctgaaagct gtgcagcgca ttgctgagtc tcacctgcag 360
tctatcagca atttgaatga gaaccaggcc tcagaggagg aggatgagct gggggagctt 420
cgggagctgg gttatccaag agaggaagat gaggaggaag aggaggatgc agccaggctg 480
aagteetgaa ggteateagg eagtetgetg ggeaaaagae aacetgtgge eagggtetgg 540
aagggccctg ggagcgccca cccctctgg atgagtccga gagagatgga ggctctgagg 600
accaagtgga agacccagca ctaagtgagc ctggggagga acctcagcgc ccttccccct 660
ctgagcctgg cacataggca cccagcctgc atctcccagg aggaagtgga ggggacatcg 720
ctgttcccca gaaacccact ctatcctcac cctgttttgt gctcttcccc tcgcctgcta 780
gggctgcggc ttctgacttc tagaagacta aggctggtct gtgtttgctt gttttgcccac 840
etttggetga tacccagaga acctgggeac ttgctgcctg atgcccaccc ctgccagtca 900
ttcctccatt cacccagcgg gaggtgggat gtgagacagc ccacattgga aaatccagaa 960
 aaccgggaac agggatttgc ccttcacaat tctactcccc agatcctctc ccctggacac1020
aggagaccca cagggcagga ccctaagatc tggggaaagg aggtcctgag aaccttgagg1080
taccettaga teettteeta eccaetttee tatggaggat teeaagteaa catttgtetg1140
aacggcttgt aacagggttc aggttg
<210> 58
<211> 487
<212> DNA
<213> homo sapiens
<400> 58
ctcagategg tggacgtgct cgcctccact cggggccagg tctatgtccc ggtttcccgc 60
agtegeggge agggegeeaa ggeggeagga ggagggtgag eggteaagag acetecagga120
agageggete teggetgttt geategeega tagagaagag aaaggatgea egteeeagga180
gggaggaact actccaactt ttcctattca gaaacaaaga aaaaagatta ttcaagctgt240
cccaaaatat ctatatgaag cagggttttc acaacatggt atgattggtg taactcaacc360
acgaaaagta gctgctatat cagttgctca gagagtagct gaagaaatga aatgcacttt420
```

gggatccaaa gtaggatacc aagttcgttt tgatgattgc agttctaagg agacagcaat480

```
caaatat
                                                                   487
<210> 59
<211> 1630
<212> DNA
<213> homo sapiens
<400> 59
 aaactgtgta atgccccatg taatccataa aattttaact tttcccccta acgtttttgc 60
 tgaaaaatgt tgggaaaccc tcaacacgcc ttcctgaaaa caattaaaat acttgaaacc 120
 tgtgaacctt tcaaaaaacc ctcaggttgg gaaaagaccc ccaaaccttc ttttaaggat 180
 catttgtctc gcccatcaca ggatcttgga aatgtttccc tagggtgtgt aaaaattaac 240
 ccagggggga atgaagcaca tttttctggc aaccaaactt gagttcctca gagaacagat 300
 gcagagagac etgeteetge ttgecegget acaggggeca etgtggagte acaetgagge 360
 tgtgaccggc cataagccca ggagagcccg tggcagctgt gccgaggcgc caggacctct 420
 aagcggaagc ttcccaagct aggaatggag caacactgca atgaaatgtg tccaccaagc 480
 tcattgttcc tcccgggtgc ttataaagct cagatgtata gtgacgtatg gacaaataca 540
 aaaaaaaaaa aaaaaaaaa aaaaaaaaaa gcctttcttt ctcacaggca taagacacaa 600
 attatatatt gttatgaagc actttttacc aacggtcagt ttttacattt tatagctgcg 660
 tgcgaaaggc ttccagatgg gagacccatc tctcttgtgc tccagacttc atcacaggct 720
 getttttate aaaaagggga aaacteatge ettteettt taaaaaatge ttttttgtat 780
 ttgtccatac gtcactatac atctgagctt tataagcgcc cgggaggaac aatgagcttg 840
 gtggacacat ttcattgcag tgttgctcca ttcctagctt gggaagcttc cgcttagagg 900
 teetggegee teggeacage tgecaeggge teteetggge ttatggeegg teacageete 960
 agtgtgactc cacagtggcc cctgtagccg ggcaagcagg agcaggtctc tctgcatctg1020
 ttctctgagg aactcaagtt tggttgccag aaaaatgtgc ttcattcccc cctggttaat1080
 ttttacacac cctaggaaac atttccaaga tcctgtgatg gcgagacaaa tgatccttaa1140
 agaaggtgtg gggtctttcc caacctgagg atttctgaaa ggttcacagg ttcaatattt1200
 aatgcttcag aagcatgtga ggttcccaac actgtcagca aaaaccttag gagaaaactt1260
 aaaaatatat gaatacatgc gcaatacaca gctacagaca cacattctgt tgacaaggga1320
 aaaccttcaa agcatgtttc tttccctcac cacaacagaa catgcagtac taaagcaata1380
 tatttgtgat tccccatgta attcttcaat gttaaacagt gcagtcctct ttcgaaagct1440
 aagatgacca tgcgcccttt cctctgtaca tataccctta agaacgcccc ctccacacac1500
 tgcccccag tatatgccgc attgtactgc tgtgttatat gctatgtaca tgtcagaaac1560
 cattagcatt gcatgcaggt ttcatattct ttctaagatg gaaagtaata aaatatattt1620
 gaaatgtacc
<210> 60
<211> 1272
<212> DNA
<213> homo sapiens
<400> 60
 tgcgcgcgag cccgtgtccc cacggcgggc agcagcggcg gcggcggcgg ctgaacgcgg 60
 agggggcgga gggagcccgc ggcggcggca gcagctacag cgaaatggcg gagaccgtgg 120
 ctgacacccg geggetgate accaageege agaacetgaa tgaegeetae ggaeeecea 180
gcaactteet egagategat gtgageaace egeaaaeggt gggggtegge eggggeeget 240
 tcaccactta cgaaatcagg gtcaagacaa atcttcctat tttcaagctg aaagaatcta 300
 ctgttagaag aagatacagt gactttgaat ggctgcgaag tgaattagaa agagagagca 360
 aggtegtagt tecceegete eetgggaaag egtttttgeg teagtteett ttagaggaga 420
 tgatggaata tttgatgaca attttattga ggaaagaaaa caagggctgg agcagtttat 480
 aaacaaggtc gctggtcatc ctctggcaca gaacgaacgt tgtcttcaca tgtttttaca 540
agatgaaata atagataaaa gctatactcc atctaaaata agacatgcct gaaatttggc 600
aagaaggggc aaaaacgtga ctattaatga ttgataagca ccagtgaaga agttctaact 660
tttagcatgc tgcacagaaa ctggtataac atgccttcag tatactaaca ctcatatgct 720
cagttttgtt ttgttttggc agttgacaag aagttaattt gctttagtaa aaatccctca 780
ttccagcctt tctatataaa tagctctttc ttgctgtttt aatgtggtgc acactatagc 840
ctcacaaacc tgttattcca gtgtaatctg cagtgtcgta actaaagtta ctggcttggt 900
cttatttgca cagtttttgc gtcttgtttg cttcttgcat ctgattaact agaatatttc 960
```

tettteecee tittaatitg tgatgteact tgacceeatt tatgtgtagg agcactacae1020 cattggttte caatactgea cacataagat acatacttgt gtgcagaaag tatetteete1080

gaagtacc

```
caggettgta ataccettca catggaagat taatgaggga aatetttata ttetgtataa1140
 aaacaaaagc aaatttatat actaaaatca tttgtctaaa aatttaagtt qttttcaaat1200
 ggcggccgct ct
<210> 61
<211> 1914
<212> DNA
<213> homo sapiens
<400> 61
 tgcagcgcgt gcgtgctgcg ctactgagca gcgccatgga ggactctgaa gcactgggct
 tegaacacat gggeetegat eeceggetee tteaggetgt cacegatetg ggetggtege 120
 gacctacgct gatccaggag aaggccatcc cactggccct agaagggaag gacctcctgg 180
 ctcgggcccg cacgggctcc gggaagacgg ccgcttatgc tattccgatg ctgcagctgt 240
 tgctccatag gaaggcgaca ggtccggtgg tagaacaggc agtgagaggc cttgttcttg 300
 ttcctaccaa ggagctggca cggcaagcac agtccatgat tcagcagctg gctacctact 360
 gtgctcggga tgtccgagtg gccaatgtct cagctgctga agactcagtc tctcagagag 420
 ctgtgctgat ggagaagcca gatgtggtag tagggacccc atctcgcata ttaagccact 480
 tgcagcaaga cagcctgaaa cttcgtgact ccctggagct tttggtggtg gacgaagctg 540
 acettetttt tteetttgge tttgaagaag ageteaagag teteetetgg gaaggeagag 600
 tcacttgccc cggatttacc aggcttttct catgtcagct acttttaacg aggacgtaca 660
 agcactcaag gagctgatat tacataaccc ggttaccctt aagttacagg agtcccagct 720
 gcctgggcca gaccagttac agcagtttca ggtggtctgt gagactgagg aagacaaatt 780
 cetectgetg tatgecetge teaagetgte attgattegg ggeaagtete tgetetttgt 840
 caacactcta gaacggagtt accggctacg cctgttcttg gaacagttca gcatcccac 900
 ctgtgtgctc aatggagagc ttccactgcg ctccaggtgc cacatcatct cacagttcaa 960
 ccaaggette tacgactgtg teatageaac tgatgetgaa gteetggggg ccccagteaa1020
 gggcaagcgt cggggccgag ggcccaaagg ggacaaggcc tctgatccgg aagcaggtgt1080
ggcccggggc atagacttcc accatgtgtc tgctgtgctc aactttgatc ttcccccaac1140
 ccctgaggcc tacatccatc gagctggcag gacagcacgc gctaacaacc caggcatagt1200
 cttaaccttt gtgcttccca cggagcagtt ccacttaggc aagattgagg agcttctcag1260
 tggagagaac aggggcccca ttctgctccc ctaccagttc cggatggagg agatcgaggg1320
 etteegetat egetgeaggg atgeeatgeg eteagtgaet aageaggeea ttegggagge1380
 aagattgaag gagatcaagg aagagcttct gcattctgag aagcttaaga catactttga1440
 agacaaccct agggacctcc agctgctgcg gcatgaccta cctttgcacc ccgcagtggt1500
gaagccccac ctgggccatg ttcctgacta cctggttcct cctgctctcc gtggcctggt1560
acgccctcac aagaagcgga agaagctgtc ttcctcttgt aggaaggcca agagagcaaa1620
gtcccagaac ccactgcgca gcttcaagca caaaggaaag aaattcagac ccacagccaa1680
gccctcctga ggttgttggg cctctctgga gctgagcaca ttgtggagca caggcttaca1740
cccttcgtgg acaggcgagg ctctggtgct tactgcacag cctgaacaga cagttctggg1800
gccggcagtg ctgggccctt tagctccttg gcacttccaa gctggcatct tgccccttga1860
<210> 62
<211> 608
<212> DNA
<213> homo sapiens
<400> 62
aatggaacca ggaattetta attaageeeg aagtteecaa gteteettag eggaaacegg 60
aaattgccca aggaaagcaa agagggagat gaccagtgat acctccagtg ccagaggtca120
ctttgtggag ccaaatgcgt gacatgggca gtcgagactc ggcatcttct gtcccccgca180
ttaatgactc tcaggaagga ggatgtaatt caaggcaagt ttctaattcc gaagctgcct240
gttcatgtta acaggacttc tttttattcg tcaagatgta ctggttccct ggcaccttaa300
gggaaatcct gataaaggca aacctgttga gccatttggt cccataggat cccaggaccc360
aagtcctgtg tttcatcgtt actaccatgt gttccgtgag ggagaactgg aaggtgcctg420
caggactgtg agtgatgtca gaattctgca aagctactac gatcaaggaa actggtgtgt480
gattetteaa aaggeetgat tatttaeetg aacacateat atataaagaa gaaatgetea540
cttaaaaaaa aaagaggga taaattaatt acccgtttaa ttaaagagaa aacttgtggg600
```

```
<210> 63
<211> 2674
<212> DNA
<213> homo sapiens
<400> 63
 tgaagagaag ttaaggtgaa gagccgaaga gcctgatgcg tgatgagcgt ctaagaaagg
 agaagcaaga gcagagaaga gagagagaaa gaacgggaga gagaaaggga agaaagagaa 120
 aggaaaagac gaagggaaga ggaagaaaga gaaaaagaaa gggctcgtga cagagaaaga 180
 agaaagagaa gtcgttcacg aagtagacac tcaagccgaa catcagacag aagatgcagc 240
 aggtctcggg accacaaaag gtcacgaagt agagaaagaa ggcggagcag aagtagagat 300
 cgacgaagaa gcagaagcca tgatcgatca gaaagaaaac acagatctcg aagtcgggat 360
 cgaagaagat caaaaagccg ggatcgaaag tcatataagc acaggagcaa aagtcgggac 420
 agagaacaag atagaaaatc caaggagaaa gaaaagaggg gatctgatga taaaaaaagt 480
 agtgtgaagt ccggtagtcg agaaaagcag agtgaagaca caaacactga atcgaaggaa 540
 agtgatacta agaatgaggt caatgggacc agtgaagaca ttaaatctga aggtgacact 600
 ctcactttga ttagggcttt ttgttactgt ttgacagtgc agcgtaagta tgcacagatg 720
 aagatggaac taagccgagt aagaagacat acaaaagcct cttctgaagg aaaagacagt 780
 gtagtcctgc aaaacatttt gaggtacatt gttttgtctc agctattttg tagcagactc 840
 gtgcccccat tagtgtgcct ctttggaaat tatcgcccac atttgtaata tagtcgccat 900
 tgaaaagtta attatccttt ttttagggat tttgatgtca tttctttttt ttttttaata 960
 aaaaggttga actgtttttt tttttctttt tggtattaag tccatcttgt gttggtacat1020
 tggcagagac atatgcttta aaaacttaaa tatttcggag gcacatgttg gactactttg1080
 ttttaattaa actgctagta tttctttgtc aaggatgttt ctagtttttt gctttattgc1140
 cttgcattct aatgcagttt gttctgtaac tcgagagcca gtagcattgg attgatggaa1200
 gtgtagggtt tatgaattat tgcagctgac taccatacct cacacagcgt tggtgttgtg1260
 agcggcccat gaaaagccaa attaaaaatc aaggattcag tcaaactaag caggtactca1320
 tgccaggtac tcctttctct acccacatcc atgtttgaat gctattgcct gtgatcttta1380
 cgcttaactg ttgtgtatct tttttgttct ttacaagaag tgcagagggg ttttttgtgt1440
 attgcgtgaa aacttataaa acaaatgtta acagaatgga attttttttc aactgtatgt1500
 agggctgcag tggtggccag aattagatat ctttaaagaa ttttaaatac aataaacact1560
 tcatattatt cgccttgtta cactcaatgc aattctcaag tctataagag gtatgtgctt1620
 aatatttcct actgtgtagg agaatttgca gtcagccata ggtatgtagg aatagtcact1680
 cactggctga tacatttaaa gcagcagtgt gaatagcaag gacagacacc ttcaatttgt1740
 gaaatcaaag aactgatgca ctatatagaa cgaatttggg tttttaaaga aatattaaaa1800
 gttaggtact gtaagtgttc ttaaaacctg taaacttcat tctgtgggct agtggtgtgg1860
 gacaaaatat tootaatgaa aggaagtaco aattagttga tttgttggtg gcattcccct1920
 tttgggaaag caatgtaagg ttatgtctgt gtatgtcatt cacacttagg caagcataca1980
 caggcacatg gctttaagaa ccacactgat gccttgataa ttaaaaagaa tacaagcatt2040
 ccatgtacac atgttaatta gcagttagtg actgggccaa cactttctca taaaaattgg2100
 ccttttacat gttgtctaat tatcattttt ccccaaattt tgcgttgtag gactactgtt2160
 cgaagatttt tggaagaata ctgagaacgg cataaagtga agatcgacat ttaaaaaatg2220
 aggtgaaaga aagctatagt ggcatagaaa aagtataaag ctcagttagt ttttttatta2280
 ttattattat taaaagttaa ttcaggactg atgtgaccta ccagatttca gaacatgtgt2340
 taatagtata tatgccactg aaaacttagg tcctgtatca tacttttttc tttaagactt2400
 tttaagaaat attacttaaa catgtggctt gctcagtgtt taattgcaag ttttcaatct2460
 tggactttga aaacaggatt aaacgttagt attcgtgtga atcagactaa gtgggatttc2520
 atttttacaa ctctgctcta cttagccttt ggatttagaa gtaaaaataa agtatctctg2580
 actttctgtt acaaagttga ttgtctctgt cattgaaaag ttttagtatt aatctttttc2640
 taataaagtt attgactctg aaaaaaaaa aaaa
<210> 64
<211> 326
<212> DNA
<213> homo sapiens
<400> 64
```

gacaaatgag ggtttggcat gcagctcgtc atcttaagag ttactatctt cttgccctgg 60 tgtttcgccg ttccagtgcc ccctgctgca gaccataaag gatgggactt tgttgagggc120

```
tatttccatc aatttttcct gaccgagaag gagtcgccac tccttaccca qqaqacacaa180
 acacagetee tgcaacaatt ccateggaat gggacagace taettgacat gcagatgcat240
 gettetgeta cageageece aetgtggggt geetgatggg teegacaaet geatetegee300
 aggaagatgc aagtggatta agcaca
<210> 65
<211> 888
<212> DNA
<213> homo sapiens
<400> 65
 ctcgtgcggt gatgttgagc agaagataca attcaaaaga gaaacagcca gtttgaaact 60
 gttaccccac cagccccgaa ttgtggagat gaagaaagga agcaatggct atggtttcta120
 tctgagggca ggctcagaac agaaaggtca aatcatcaag gacatagatt ctggaagtcc180
 agcagaggag gctggcttga agaacaatga tctggtagtt gctgtcaacg gcgagtctgt240
 ggaaaccctg gatcatgaca gtgtggtaga aatgattaga aagggtggag atcagacttc300
 actgttggtg gtagacaaag agacggacaa catgtacaga ctggctcatt tttctccatt360
 tctctactat caaagtcaag aactgcccaa tggctctgtc aaggaggctc cagctcctac420
 tcccacttct ctggaagtct caagtccacc agatactaca gaggaagtag atcataagcc480
 taaactetge aggetggeta aaggtgaaaa tggetatgge tttcaettaa atgegatteg540
 gggtctgcca ggctcattca tcaaagaggt acagaagggc ggtcctgctg acttggctgg600
 gctagaggat gaggatgtca tcattgaagt gaatggggtg aatgtgctag atgaacccta660
 tgagaaggtg gtggatagaa tccagagcag tgggaagaat gtcacacttc tagtctgtgg720
 aaagaaggee tatgattatt tecaageeta agaaaateee tattgtteee tgeetggetg780
 atgccagttg acagccctgc aggttctaaa gaaggaatag tggtggagtc aaaccatgac840
 tegcacatgg caaaagaaeg ggeggetatt geagaegget aatttatg
<210> 66
<211> 202
<212> DNA
<213> homo sapiens
<400> 66
atcacagggg tacaaccaga acacatacag tacttgaaaa attatttcca cctttggaca 60
cgacagttag cgcatattta tcactactat attcatggcc caaaaggaaa tgaaatacga120
acatcaaaag aagttgaacc tttcaacaat attgatattg aaatttctat gtttgaaaaa180
gggaaggtac ctaagattgt ca
<210> 67
<211> 1225
<212> DNA
<213> homo sapiens
<400> 67
ggccggtgga ggcggcggct gcggcacgga aggggaagcg ctgaggcggt ggggccaca 60
gccatggcgg agctgttgca ggaggagctc tcggtcctgg ccgcgatttt ctgcaggccc 120
cacgagtggg aggtgctgag ccgctcagag acagatggga ccgtgttcag aattcacaca 180
aaagctgaag gatttatgga tgcggatata cctctggaat tggtgttcca tttgccagtc 240
aattateett catgtetace tggtateteg attaactetg aacagttgae cagggeecag 300
tgtgtgactg tgaaagagaa gttacttgag caagcagaga gccttttgtc ggagcctatg 360
gttcatgagc tggttctctg gattcagcag aatctcaggc atatcctcag ccaaccagaa 420
actggcagtg gcagtgaaaa gtgtactttt tcaacaagca cgaccatgga tgatggattg 480
tggataactc ttttgcattt agatcacatg agagcaaaga ctaaatatgt caaaattgtg 540
gagaagtggg cttcagattt aaggctgaca ggaagactga tgttcatggg taaaataata 600
cttgatttta ctacagggag acagaaacaa cctcaaggtg tacttgattc ttcagaaaac 660
ctccaaagta gatgtggact caagtggaaa gaaatgcaaa gagaaaatga ttagtgtact 720
gtttgaaaca aaagtacaga cagaacacaa aaggtttctg gcatttgaag tcaaagagta 780
ttcagcgttg gatgaattac aaaaggaatt tgaaactgca ggacttaaga agcttttctc 840
cgaatttgta cttgctctgg taaaatgaaa tggaagacag gaatctttta gtaaaatagc 900
agtgtttttt gttgtttttg cattggattt ggggagtggt taattgaaat agtcaatttt 960
```

```
aaagtttctc tgaagcaaaa tgataggcat cattctaact tcaggaacaa aagccagttc1020
 tgttttatga aatattaaac atgaagaaaa cttgtatatt ctaatgtttg ccaggaaagg1080
 ctaggttcag tagatgagac attatttaaa agataaattt aaaaagatgg taaatgaaca1140
 cttgttttta tagacaatat ttgtttgaaa ctatgtaatt ttctggctaa ttttcttgta1200
 attaaatgat tttttaaaaa aagaa
<210> 68
<211> 1093
<212> DNA
<213> homo sapiens
<400> 68
 gagggeggge etgttteegg ggaggegegt ggggettgag geegagaaeg geeettgetg
 ccaccaacat ggagactttg taccgtgtcc cgttcttagt gctcgaatgt cccaacctga 120
 agetgaagaa geegeeetgg ttgeacatge egteggeeat gaetgtgtat getetggtgg 180
 tggtgtctta cttcctcatc accggaggaa taatttatga tgttattgtt gaacctccaa 240
 gtgtcggttc tatgactgat gaacatgggc atcagaggcc agtagctttc ttggcctaca 300
 gagtaaatgg acaatatatt atggaaggac ttgcatccag cttcctattt acaatgggag 360
gtttaggttt cataatcctg gaccgatcga atgcaccaaa tatcccaaaa ctcaatagat 420
 teettettet gtteattgga ttegtetgtg teetattgag tttttteatg getagagtat 480
 tcatgagaat gaaactgccg ggctatctga tgggttagag tgcctttgag aagaaatcag 540
 tggatactgg atttgctcct gtcaatgaag ttttaaaggc tgtaccaatc ctctaatatg 600
 aaatgtggaa aagaatgaag agcagcagta aaagaaatat ctagtgaaaa aacaggaagc 660
 gtattgaagc ttggactaga atttcttctt ggtattaaag agacaagttt atcacagaat 720
 tttttttcct gctggcctat tgctatacca atgatgttga gtggcatttt ctttttagtt 780
 tttcattaaa atatattcca tatctacaac tataatatca aataaagtga ttatttttta 840
 caaccctctt aacatttttt ggagatgaca tttctgattt tcagaaatta acataaaatc 900
 cagaagcaag attccgtaag ctgagaactc tggacagttg atcagcttta cctatggtgc 960
 tttgccttta actagagtgt gtgatggtag attatttcag atatgtatgt aaaactgttt1020
 cctgaacaat aagatgtatg aacggagcag aaataaatac tttttctaat taaaaaaaaa1080
aaaaaaaaa aaa
                                                                  1093
<210> 69
<211> 309
<212> DNA
<213> homo sapiens
<400> 69
cacaaagtga ttgtggtatg gaacaatatt ggagagaagg caccagatga gttatggaat 60
 tetetaggge cecaecetat ecetgtgate tteaaacaac agacageaaa caggatgaga120
 aatcgactcc aggtctttcc tgaactggaa accaatgcag tgttgatggt agatgatgac180
 acactcatca gcaccccaga cettgttttt getttetcag tttggcagca atttectgat240
caaattgtag ggatttgttt cctagaaagc acgtctttta ctttcattca aggtatctac300
agttattgg
<210> 70
<211> 380
<212> DNA
<213> homo sapiens
<400> 70
ctcatctgat cccttttatg gccaaatcat ccttcagagt agggaacact cagacattct 60
gtgcatgttg ttcccccaaa gcatggtcat cacaaagtcc tgagttctgg tgtgtgctcc120
cgcctcctgg gtatacagag agaaggcagg aatcaggagt tccagaagca tatacatgtg180
gctaccccag caacaagcgg catcctgtgc tcagataagc tgcatggttg ggaagtgttt240
ttcctcgcac gttgaggctt agtggagatg ggcaccactg ccatttgctc agaagaaggc300
tggtctggtc ctaactgcat cccacactgc ccagatcatt ctagataggt tattttctga360
atgtttatag atttcttata
```

```
<211> 1253
<212> DNA
<213> homo sapiens
<400> 71
geggeeegae teeagttagg ageettgatg eeggaggga eagtgggteg eegagagege
ccggagggaa ccgcctggcc ttcggggacc accaattttg tctggaacca ccctcccggc 120
gtatectact coetgtgccg cgaggccate getteactgg aggggtegat ttgtgtgtag 180
tttggtgaca agatttgcat tcacctggcc caaacccttt ttgtctcttt gggtgaccgg 240
 aaaactccac ctcaagtttt cttttgtggg gctgcccccc aagtgtcgtt tgttttactg 300
tagggtetee eegeeeggeg eeceeagtgt tttetgaggg eggaaatgge eaatteggge 360
 gccatcccgc agtggcagat gagctcctat gcgggtgaca acatcatcac ggcccaggcc 480
 atgtacaagg ggctgtggat ggactgcgtc acgcagagca cggggatgat gagctgcaaa 540
 atgtacgact cggtgctcgc cctgtccgcg gccttgcagg ccactcgagc cctaatggtg 600
gtctccctgg tgctgggctt cctggccatg tttgtggcca cgatgggcat gaagtgcacg 660
 cgctgtgggg gagacgacaa agtgaagaag gcccgtatag ccatgggtgg aggcataatt 720
 ttcatcgtgg caggtcttgc cgccttggta gcttgctcct ggtatggcca tcagattgtc 780
 acagactttt ataaccettt gatccctacc aacattaagt atgagtttgg ccctgccatc 840
 tttattggct gggcagggtc tgccctagtc atcctgggag gtgcactgct ctcctgttcc 900
 tgtcctggga atgagagcaa ggctgggtac cgtgcacccc gctcttaccc taagtccaac 960
 tettecaagg agtatgtgtg acetgggate teettgeece ageetgacag getatgggag1020
 tgtctagatg cctgaaaggg cctggggctg agctcagcct gtgggcaggg tgccggacaa1080
 aggestestg gtsactstgt costgeasts catgtatagt cotsttgggt tggggggggg1140
 ggggtgccgt tggtgggaga gacaaaaaga gggagagtgt gctttttgta cagtaataaa1200
 <210> 72
<211> 439
<212> DNA
<213> homo sapiens
<400> 72
 ctaaggggag gacaggcaga aaccaggaat gccaacttaa acctgtttgg tgctctgact 60
 gtttgttagt atcactctca agaatgaaga gaaacctcaa cctttctgtt tccggccaac120
 tttattgaat ttgtttttt aaatgcagtt tacatgcagt ttctttgaaa agtcatgttg180
 aatttagatc tgttctctga gtaagacttg gcgagtatgt gaaacttgac tcaagttaca240
 tttcttttt tctgtccccc aaacgttcac gcttcttata ggctccactt tgaggctctg300
 atgaacattc cagtgctggt gttggatgtc aatgatgatt ttgctgagga agtaaccaaa360
 caagaagacc tcatgagaga ggtgggaagg actttaactc ctgtttttct ggtggtttcc420
 ctttggttgt accttttaa
<210> 73
<211> 1252
<212> DNA
<213> homo sapiens
<400> 73
 tggacctgcc cgacgcctg ctgcccgact tgcccgcgct ggtgggcccc aagcagctga
 tegtgetggg aaacaaagtg gaceteetge eecaggatge teetggetae eggeagagge 120
 tgcgggagcg actgtgggag gactgtgccc gcgccgggct cctgctggcc cctggcacca 180
 agggccacag cgcccgtca aggacgagcc acaggacggg gagaatccga atccgccgaa 240
 ctggtcccgc acagtggtca gggacgtgcg gctgatcagc gccaagaccg gctatggagt 300
 ggaagagttg atctctgccc ttcagcgctc ctggcgctac cgtggggacg tctacttagt 360
 gggcgccacc aacgccggca aatccactct ctttaacacg ctcctggagt ccgattactg 420
 cactgocaag ggotcogagg coatogacag agocaccate teceettgge caggtactae 480
 attaaacctt ctgaagtttc ctatttgcaa cccaactcct tacagaatgt ttaaaaggca 540
 tcaaagactt aaaaaagatt caactcaagc tgaagaagat cttagtgagc aagaacaaaa 600
 tcagcttaat gtcctcaaaa agcatggtta tgtcgtagga agagttggaa ggacattctt 660
```

gtattcagaa gaacagaagg ataacattcc ctttgagttt gatgctgatt cacttgcctt 720

```
tgacatggaa aatgaccctg ttatgggtac acacaaatcc accaaacaag tagaattgac 780
 tgcacaagat gtgaaagatg cccactggtt ttatgacacc cctggaatta caaaagaaaa 840
 ttgtatttta aatcttctaa cagaaaaaga agtaaatatt gttttgccaa cacagtccat 900
 tgttccaaga acttttgtgc ttaaaccagg aatggttctg tttttgggtg ctataggccg 960
 catagatttc ctgcagggaa atcagtcagc ttggtttaca gtcgtggctt ccaacatcct1020
 ccctgtgcat atcacctcct tggacagggc agacgctctg tatcagaagc atgcaggtca1080
 tacgttactc cagattccaa tgggtggaaa agaacgaatg ggcaggattt cctcctcttg1140
 ttgctgaaga cattaatggt taaaagaaag gactgggggc aacctggaag cagtgggccg1200
 acatcaaagt ttcctctgca ggtaatttta tgccaagcac tttttaaaaa gt
<210> 74
<211> 695
<212> DNA
<213> homo sapiens
<400> 74
 tgttcattgc ctcctgagcg tagtccagtt actttcaggc tcggggagtg aaggcctcgt 60
 tgagagaagg teteattegg tgttttggga agagagtegt gtgggeecag gtategtage120
 ggcgacacga gagagacggg cggtgtgaca gccttccact acctgcacga gtgtattggt180
 ctgtctgcta tcagctatgc cgctgcccgt tgcgctgcag acccgcttgg ccaagagagg240
 catcctcaaa catctggagc ctgaaccaga ggaagagatc attgccgagg actatgacga300
 tgatcctgtg gactacgagg ccaccaggtt ggagggccta ccaccaagct ggtacaaggt360
 gttegaccet teetgeggge teeettaeta etggaatgea gacacagace ttgtateetg420
 gctctcccca catgacccca actccgtggt taccaaatcg gccaagaagc tcagaagcag480
 taatgcagat gctgaagaaa agttggaccg gagccatgac aagtcggaca ggggccatga540
 caagteggae egeageeatg agaaactaga caggggeeae gacaagteag aceggggeea600
 cgacaagtct gacagggatc gagagcgtgg ctatgacaag tccaggaacg ggattcggga660
 ccgcgggtat gaccaagcag accgggaaga gggcc
<210> 75
<211> 2514
<212> DNA
<213> homo sapiens
<400> 75
 cggcgacggc gcgggggcag ctgggaatcc ggaatgctgc ccgatggccc tgggtcctcg 60
 ctgtggggca atccgggctt gcagacgagt tttagaaaga gcgttttcgc tacgtaaagc 120
 acattegata aaggatatgg aaaataettt geagetggtg agaaatatea taceteetet 180
 gtcttccaca aagcacaaag ggcaagatgg aagaataggc gtagttggag gctgtcagga 240
 gtacactgga gccccatatt ttgcagcaat ctdagctctc aaagtgtgac agccccaatg 300
 ctgttcatga ggtggagaag tggctgcccc ggctgcatgc tcttgtcgta ggacctggct 360
 tgggtagaga tgatgcgctt ctcagaaatg tccagggcat tttggaagtg tcaaaggcca 420
 gggacatece tgttgteate gaegeggtga gttgaettet etecteetgg eteggaetee 480
 eggaaggeet gtgeagtgag caeggeteet tgttetgtge aggatggeet gtggtaggte 540
 getcageage eggeceteat ceatggetae eggaaggetg tgetcaetee caaccaegtg 600
 gagttcagca gactgtatga cgctgtgctc agaggcccta tggacagcga tgacagccat 660
 ggatctgtgc taagactcag ccaagccctg ggcaacgtga cggtggtcca gaaaggagag 720
 cgcgacatcc tctccaacgg ccagcaggtg cttgtgtgca gccaggaagg cagcagccgc 780
 aggtgtggag ggcaagggga cctcctgtcg ggctccctgg gcgtcctggt acactgggcg 840
 ctccttgctg gaccacagaa aacaaatggg tccagccctc tcctggtggc cgcgtttggc 900
geotgetete teaceaggea gtgeaaceae eaageettee agaageaegg tegeteeaee 960
 accaccteeg acatgatege egaggtgggg geegeettea geaagetett tgaaacetga1020
gcccgcgcag accagaagta aacaggcacc ttggacgggg gagagcgtgt gtgtgatggg1080
aaaatccgga cccacgcgtg tgctgaaggc gtacggtgct tgccagattt tcaacttgag1140
cataaattgg ttgccattga gaatttaaga atctggaata ttgcagcttt tggttaaact1200
taatgcatgg ttggagatgt tatggcgaca ctaaacaaag tattcctgaa ctttccttag1260
ctccttggta gtaactggga agacagaaat gaagaaaatc acatgagaat gaagaattct1320
ttagcagete aacagagttt eteggeetge teecagateg gegaagttte taettgttae1380
tetetetgee ggegeeette gtteeteete tgetteeett eectagtett teeteeggea1440
gggagctggg caggggtccc cgggtgtctc cctgagtccc gactgcactg actgggtcca1500
```

tcagagggct gcttcgttct ccagctcatc ttcttttaaa gtggtgacta gcttggtggt1560

<212> DNA

```
atctggctgc tggtgtttgg cttattgaca tactccaggg taatcaatga tgactttgtt1620
 tggaaaccct tttggaggca ccatgggaac agaaggaaac atgagtgacg ctgacccttg1680
 agtgtgtggg tggggagete tgagaegeet cetgteceae geteteeggt gteegtgtet1740
acacagggt coccatgata cocaceggec ccageagggc agaceggace ggggacgggc1800
acggtgaagg gctgcagcct ggggtctgac gtggccccta gtgctgtctc aggagaaggc1860
tctggaggac ttgaggcatg ctgggcctgg tgcagtgatg gcgctaagga gacccgggga1920
aagacagtat cgtggtcacg tatgcttagg aagcagcaca gccgtgtcct tagggatgtt1980
cgcgtccagt aaagacactg gtaactgcgg tttcagccaa cactcttcat ggcagtgtcg2040
 acctegggtt agettetgtt gtetttgtgg atggttttee tggageggee tgaegttgae2100
gtgttctctg gtcccatgtc ttagcggggc atggtacggt ttcgtgcctg acgcgtgcat2160
 tagggtgttc tcttatactt tcagtagcat ctttccacag caagggccaa accctcctgg2220
 ttcccttcag agtctttttg gcctgatgat gactcttgag tgataccctg tgatgcagac2280
 atgccccaga tggattctac tttctttaaa actagggact ttcaagatta aaaaaaagat2340
 tgtcactact aatttgacgc ctaacttcag aagettcact gtctacatgt gaacttttcc2400
 agaaaaactg tgccatggac atttttcctc tggggaatta acatctaaat tctggtaact2460
<210> 76
<211> 274
<212> DNA
<213> homo sapiens
<400> 76
caqaqatctq ctgtgattat tccttttcac aaaccacaat gactctggaa aacctggctg 60
 taaacaccag cactgccacc agctaaggat ctgtgatcag gagtgccatc tcacggtaac120
 aggcagaaga caaaagtgaa accgggctga tgcgaatcac tgggaaactg gctttggcac180
ctccagagaa tgaactgttt catagcctag ctgaccatcc atgaaaatgg ctgcctggag240
aggcagtgat cagcccattc cctgcaaggt gaag
<210> 77
<211> 449
<212> DNA
<213> homo sapiens
<400> 77
egggtttage ggeagetett egggattgtt tecattgeea eeetaacegt getggeetat 60
 gaacggtaca ttcgcgtggt ccatgccaga gtgatcaatt tttcctgggc ctggagggcc120
 attacctaca tetggeteta eteaetggeg tgggeaggag caceteteet gggatggaac180
aggtacatcc tggacgtaca cggactaggc tgcactgtgg actggaaatc caaggatgcc240
aacgatteet cetttgtget tttettattt ettggetgee tggtggtgee cetgggtgte300
 atageceatt getatggeea tattetatat tteeattega atgettegtt ggtgtggaag360
 atcttcagac aattcaagtg atcaagattt taaaatatga aaagaaactg gccaaaatgt420
gcttttaatg atattcacct tcctggtcg
<210> 78
<211> 346
<212> DNA
<213> homo sapiens
<400> 78
 atataacatc tgaattggga gatagctcat tgtggcctgg gtgctggact tttcatatta 60
 agtcctgtct tagccaaggg agaagaatgt aaggataaga ccaccaatat cacaggggct120
 gtctgagcct ttacctgtga ttttgtacca ctctgtggcc ttctggagca atggacaacc180
 aagtcagcta tgcagttcat aaaagtggac ctggttatat gtcatccaac agcatatggt240
 ccctgcaagc ctgttttgga agccaatatt ctataaccta caggaatcca cttgaatctg300
atgtctttgg aagcaatata ttttcccagg gttccaatgg actacg
<210> 79
<211> 1329
```

```
<213> homo sapiens
<220>
<223> Beschreibung für Symbol "n": leer oder Lücke
<400> 79
nececcatea qtteqaattt etqeaqtgaq aqeatetggg gttattgtga ecaactgaaa 60
qtctcaqaqa qtacccacqt qctccaqccc ttcctcccca qcatccttqa tqqcttaatt 120
cacctagcag cccagttcag ctcagaggtc ctcaacctgg tgatggagac cctgtgcatc 180
gtttgtacag tagaccccga attcacagca agcatggaaa gcaaaatctg ccccttcacc 240
ategecattt tectaaagta eagtaatgat eeegtegteg eeteaetgge teaggacate 300
ttcaaggagc tgtcccagat tgaagcctgt cagggcccaa tgcaaatgag gctgattccc 360
actotggtca gcataatgca ggccccagca gacaagattc ctgcagggct ttgtgcgaca 420
ccattgatat cctgacaaca gtagtacgaa atacaaagcc tcccctttcc cagcttctca 480
 tetgecaage titteeetget giggeacagi giaccettea cacagaigae aaigecaica 540
gtgcagaatg gcggagagtg cttgcgggcc tatgtgtcag tgaccctgga acaagtagcc 600
 cagtggcatg atgagcaggg ccacaatgga ctgtggtatg tgatgcaagt ggtgagccag 660
 etectggace ecegeacete agagtteact geggeetttg tgggeegeet tgttteeace 720
 ctcatctcca aggcagggcg ggaactcggg gagaatctag accagattct tcgtgccatc 780
ctcagtaaga tgcagcaggc agagacgctc agtgtcatgc agtccctgat catggtgttc 840
gctcatctgg tgcacactca gctagaacct ctcttggagt tcctgtgtag cctcccagga 900
cctactqqca aacctqctct agaqtttqtq atqqctqaqt ggacaagccg acagcacctg 960
ttctatggac agtatgaagg caaagtcagc tctgtggcac tctgtaagct gctccagcat1020
ggcatcaatg cagatgacaa acggctacag gatatccgtg tgaagggaga ggagatctac1080
agcatggatg agggcatccg cacccgctct aagtcagcca aaaacccaga acgctggacal140
aacatteett tgetggteaa gateetaaag etgateatea aegagetete caaegteatg1200
ggaggetaat geegeteege caggeeacte etgeagagtg ggagteaaag gtgeacgaag1260
gccccttact tcccaggaag acttttagcc tgggcagatc aagttacaaa ttgtcaaatt1320
atccaggaa
<210> 80
<211> 805
<212> DNA
<213> homo sapiens
<400> 80
gcccccatca gttcgaattt ctgcagtgag agcatctggg gttattgtga ccaactgaaa 60
gtctcagaga gtacccacgt gctccagccc ttcctcccca gcatccttga tggcttaatt120
cacctageag cccagttcag ctcagaggtc ctcaacctgg tgatggagac cctgtgcatc180
gtttgtacag tagaccccga attcacagca agcatggaaa gcaaaatctg ccccttcacc240
ategecattt tectaaagta eagtaatgat eeegtegteg eeteaetgge teaggacate300
ttcaaggagc tgtcccagat tgaagcctgt cagggcccaa tgcaaatgag gctgattccc360
actotggtca gcataatgca ggccccagca gacaagattc ctgcagggct ttgtgcgaca420
cccattgata tcctgacaac agtagtacga aatacaaagc ctcccctttc ccagcttctc480
atotgocaag ctttccctgc tgtggcacag tgtacccttc acacagatga caatgccacc540
atgcagaatg geggagagtg cttgegggcc tatgtgteag tgaccetgga acaagtagec600
cagtggcatg atgagcaggg ccacaatgga ctgtggtatg tgatgcaagt ggtgagccag660
ctcctggacc cccgcacctc agagttcact gcggcctttg tgggccgcct ttgtttccac720
ceteatetee aaggeagge gggaactegg ggagaateta gaccagattt ettegtgeca780
tccttcagtt aagatggcag gaggt
<210> 81
<211> 420
<212> DNA
<213> homo sapiens
<400> 81
accaggtcaa gctcacccca aactattacc ttcgatgcat gtgttgtcat accctgtgga 60
gatctccaaa gtcaaaagca actgtcagac tcagagaagt atctgtgccc ctttaagata120
aaaggctccc cctatcaaga cccttgttcc ttaacgaatg caggaaaaca ggtctgccat180
```

```
agctggaatg aggtggtgtg gacaactgaa tatcaaggct ggacctcgtc aaccggtggt240
 tgtatgtcct taaaaccata cattcacttc actaaagaaa gtacccccca taattgccag300
 tataaccaat gtaatccagt gcaaatttct attctcattc caacttctac tqaccctaaa360
 cctactttaa gttgcggtat atggcatggg agccgaaata gcaggggcac atcttattgg420
<210> 82
<211> 2143
<212> DNA
<213> homo sapiens
<400> 82
 eggeegeect tttttttttt ttttttaagt tgaacagaac attttattte tcageaatte 60
 tatgcgtaca aattaaacat gagatgaata gagactttat tgagaaagca agagaaaatt 120
 cctatcaacc ccaaggagga ctcaaagtga ggctggaaga ggacttagaa gagtatgaaa 180
 gtactctaag attttatcta agttgccttt tctgggtggg aaagtttaac cttagtgact 240
 aaggacatca catatgaaga atgtttaagt tggaggtggc aacgtgaatt gcaaacaggg 300
 cetgetteag tgactgtgtg cetgtagtee eagetacteg ggagtetgtg tgaggeeagg 360
 ggtgccagcg caccagctag atgctctgta acttctaggc cccattttcc cctctgaaaa 420
 taagagggtt ggatcaaacg atctctgggg ccttagcatc tcaaatcctg tggatcctcc 480
 tacttacccc ttagagagcc ttactgggaa gtcagtcatt aatgatgtgg ccagttattt 540
 gcaagtggta agagcctatt taccataaat aatactaaga accaactcaa gtcaaacctt 600
 aatgccattg ttattgtgaa ttaggattaa gtagtaattt tcaaaattca cattaacttg 660
 attttaaaat cagttttgtg agtcatttac cacaagctaa atgtgtacac tatgataaaa 720
 acaaccattg tattcctgtt tttctaaaca gtcctaattt ctaacactgt atatatcctt 780
 cgacatcaat gaactttgtt ttcttttact ccagtaataa agtaggcaca gatctgtcca 840
 caacaaactt geeeteteat geettgeete teaccatget etgeteeagg teageeeeet 900
 tttggcctgt ttgttttgtc aaaaacctaa tctgcttctt gcttttcttg gtaatatata 960
 tttagggaag atgttgcttt gcccacacac gaagcaaagt aaataaagac cacaaatgtt1020
 caaattctaa gccacttaat agcgttttgt acattaaaaa tgacaagggt tattatacaa1080
 gtagcctttt aaaaaattct cacacagaac agctttgtat ttagacttaa agctgttgct1140
 actttgctag tgacgtttgt gttaacagtc agtgctctag gccattgatt gattgattgt1200
 cagaatcaga agtgactaca caagagcatt agccagactt ttcagtgaga acaggtaaca1260
 ggctggcacc agcacttggt acagcacgtg gacaggacga cggaacccag agttctctgt1320
 ctctccttca cagcagatgg actcttctat aggtggctgt taatttacac aaagttatat1380
 tccagaatca ggaagccccg tgtcgccaac acttgaagga gaactatgtt ccagttttgg1440
 tgttgaactt ctcacgaaat acctactacc aaaaattgtg acaccttatt agacacttcc1500
 aaagtacccc ccaaaagctg tttaaaaagac cattccattt tttcctacac aaagtgcata1560
 ctaaaatttc acaataatca tcttcagatg tacattttat ttagtacatt tcacagtttt1620
 cagtattcag tccctcatga acattttata gtcatctctt cggccctgtt gtgaaatatg1680
 tgattccagt tcaattcaga gtgtatgatt ccgcttttca cgctgatcaa gtaaatttat1740
 ggtgtctctt ttctgatctt caacattaaa aadatctatg tttctgtcat tccctgccag1800
 ggctgcttgc ttgtctgtct cagattctgc ttcattttca tccatgttgt agtcatcttc1860
 teeteteagt ttetgetggt ttetecette eeeggeaget teetgeteet ceteetgtee1920
 gtcggggatg acaagctggt ctcgctcagg gccctccatc tctggatttt cctggctcac1980
 tgacagggca gcctgcacct gtggggtctg gcccagttct ccggctcccc cgaagcctct2040
 tccacctaca ggtctgtctt caacacctgc tcccggcctg gctcctgcgg cagcctgtcc2100
 ctctgaggct ccgatcaaca ctgatctcat ggttcccttc cca
<210> 83
<211> 450
<212> DNA
<213> homo sapiens
<400> 83
 tttttttaaa gccagctttt cttcagattt ttttggtggg caggtcgtga aagacaggtg 60
 aggaagtaga tettgggete ageatgeete taaaagtata atttetttt tttaatgtgg120
 aaagaaatgc ataactetgt ttetgtteet gteeeeetet etgeetetgt ggtgeetgag180
 atactgggga tcccacagct ggggccactc agaggctacc aggaacgctt ccagtttgca240
 totggotgtt agtgocagga ccagaaccc acagacctct tcacagacct cctgaccgtg300
atgtccctga agcctggaag gtgtccacac aatgaagcag aattgagtga tggggtgttt360
```

tgtggaaccc agtgaaactg tgttaacaca gtggaactgt gttaattttg agtggaagtt420

```
caagttccgt ggagttcatt gggcccgttt
                                                                   450
<210> 84
<211> 408
<212> DNA
<213> homo sapiens
<400> 84
 tgcaactgtg cacccagett gccagatttt tececattac accccagtg tggcatatec 60
 ttggtcccca gaggcacacc cettgatetg tggaceteca ggcctggaca agaggetget120
 accagaaacc ccaggcccct gttactcaaa ttcacagcca gtgtggttgt gcctgactcc180
 tcgccagccc ctggaaccac atccacctgg ggaggggcct tctgaatgga gttctgacac240
 cgcagagggc aggccatgcc cttatccgca ctgccaggtg ctgtcggccc agcctggctc300
 agaggaggaa ctcgaggagc tgtgtgaaca ggctgtgtga gatgttcagg gctagttcca360
 accaagagtg tgctccagat gtgttggggc cctaacttgg cacagagt
<210> 85
<211> 311
<212> DNA
<213> homo sapiens
<400> 85
 tacagttttt atcagtgatc acattttagt gtaatacatg aaactgaggc ttgatagaaa 60
 acaggagaga aggcatgagt gcatggggta catagggaga tgagggcaag catcaccaag120
 gagcggcagt gagatagacg ctctcatgga ctgctgcttt acaacctccc tggagagcaa180
 tttaaaaata tgaatcaaga tccttttgat ccactaatca tccagaaatc tacacagaaa240
 tatgcacaaa aatatgtggg catccattga ctttccaacc tcttctcttt ccagggggaa300
 tattccttaa a
<210> 86
<211> 487
<212> DNA
<213> homo sapiens
<400> 86
 gtcttttgaa atctgtttcc actacagcta tggtcaagtc tatcagccgg tgctaccagg 60
 agtcactgcc agggctgccg ttctcctgaa ccccagtggc cagaatcata agccctgacc120
 ccatccctag aaagatgagg tcccagcaat ggccagagca tttctcacca gttctgtgag180
 atagcacata aaaatagagt tetttgggea aaacttttgg gaagcaatge atectacatg240
 ggctgatatt cagcctgagc tgttctcaag aggagagtgg tactggcagt ttatggctga300
 aatccattct gattggttgg agtctatgct ataccagttg ttaaacattt tgagtatcac360
 tcttgcatac tgttactatt atatttcctc tatatataga cagaaaggcc atttttagga420
 tattaaaggc tctgaaaatt tctgcagtag acccaactga aggttctatt aaggcagggt480
 tcctaaa
<210> 87
<211> 1902
<212> DNA
<213> homo sapiens
<400> 87
 gaggaaaaag aacaatgaac agcaacgatc ttgactgtgc aactcagaca ttcctgcaga 60
 aaagacatat gttgctttac aagaaggcca aagaactatg gggccttccc agcatttgac 120
 tgttcattgc atagaatgaa ttaaatatcc agttacttga atgggtataa cgcatgaatg 180
 tgtgatttta ttaggggcat ctgccaattc tctcactgtg gttccttctc tgactttgcc 240
 tgttcatcat ctaaggaggc tagatccttc gctgacttca ccattcctca aacctgtaag 300
 tttctcactt cttccaaatt ggctttggct ctttcttcaa cctttccatt caagagcaat 360
 ctttgctaag gagtaagtga atgtgaagag taccaactac aacaattcta cagataatta 420
```

gtggattgtg ttgtttgttg agagtgaagg tttcttggca tctggtgcct gattaaggct 480

```
tgagtattaa gttctcagca tatctctcta ttgtcttgac ttgagtttgc tgcattttct 540
 atgtgctgtt cgtgacttgg agaacttaaa gtaatcgagc tatgccaact tggggtggta 600
 acagagtact teccaceaca gtgttgaaag ggagageaaa gtettatgga taaaceetee 660
 tttcttttgg ggacacatgg ctctcacttg agaagctcac ctgtgctgaa tgtccacatg 720
 gtcactaaac atgttatcct taaacccccc gtatgcctga gttgaaaggg ctctctctta 780
 ttaggttttc atgggaacat gaggcagcaa atctattgct aagactttac caggctcaaa 840
 tcatctgagg ctgatagata tttgacttgg taagacttaa gtaaggctct ggctcccagg 900
 ggcataagca acagtttett gaatgtgeca tetgagaagg gagacecagg ttgtgagttt 960
 teetttgaae acattggtet titeteaaag tieetgeett getagaetgt tagetettig1020
 aggacaggga ctatgtctta tcaatcacta ttattttcct gttacctagc atgggacaag1080
 tacacaacac atatttgtgt agtcttctaa aagactcctc tgattgggag accatatctal140
 taattgggat gtgaatcatt tcttcagtgg aataagagca caacggcaca accttcaagg1200
 acatattatc tactatgaac attttactgt gagactcttt attttgcctt ctacttgcgc1260
 tgaaatgaaa ccaaaacagg ccgttgggtt ccacaagtca atatatgttg gatgaggatt1320
 ctgttgcctt attgggaact gtgagactta tctggtatga gaagccagta ataaaccttt1380
 gacctgtttt aaccaatgaa gattatgaat atgttaatat gatgtaaatt gctatttaag1440
 tgtaaagcag ttctaagttt tagtatttgg gggattggtt tttattattt ttttcctttt1500
 tgaaaaatac tgagggatct tttgataaag ttagtaatgc atgttagatt ttagttttgc1560
 aagcatgttg tttttcaaat atatcaagta tagaaaaagg taaaacagtt aagaaggaag1620
 gcaattatat tattettetg tagttaagea aacaettgtt gagtgeetge tatgtgeaeg1680
gcatgggccc atatgtgtga ggagcttgtc taattatgta ggaagcaata gatctcggta1740
 gttacgtatt gggcagatac ttactgtatg aatgaaagaa catcacagta atcacaatat1800
 cagagetgag ttatececag tgtagetteg ttggggatte cagtttetgg gaacgagagt1860
 tagggccatt ttatttaaaa gaaactcccg gttgagaccg gt
<210> 88
<211> 1048
<212> DNA
<213> homo sapiens
<400> 88
 ctcaccgtcg tctacaccgt gttctacgcg ctgctcttcg tgttcatcta cgtgcagctc
 tggctggtgc tgcgttaccg ccacaagcgg ctcagctacc agagcgtctt cctctttctc 120
 tgcctcttct gggcctcccg gcggaccgtc ctcttctcct tctacttcaa agacttcgtg 180
 geggecaatt egeteagece ettegtette tggetgetet aetgetteee tgtgtgeetg 240
 cagtttttca ccctcacgct gatgaacttg tacttcacgc aggtgatttt caaagccaag 300
 tcaaaatatt ctccagaatt actcaaatac cggttgcccc tctacctggc ctccctcttc 360
 atcagccttg ttttcctgtt ggtgaattta acctgtgctg tgctggtaaa gacgggaaat 420
 tgggagagga aggttategt etetgtgega gtggeeatta atgacaeget ettegtgetg 480
 tgtgccgtct ctctctccat ctgtctctac aaaatctcta agatgtcctt agccaacatt 540
 tacttggagt ccaagggctc ctccgtgtgt caagtgactg ccatcggtgt caccgtgata 600
 ctgctttaca cctctcgggc ctgctacaac ctgttcatcc tgtcattttc tcagaacaag 660
 agcgtccatt cctttgatta tgactggtac aatgtatcag accaggcaga tttgaagaat 720
 cagctgggag atgctggata cgtattattt ggagtggtgt tatttgtttg ggaactctta 780
 cctaccacct tagtcgttta tttcttccga gttagaaatc ctacaaagga ccttaccaac 840
 cetggaatgg tececageca tggatteagt eccagatet tatttetttg acaacceteg 900
 aagatatgac agtgatgatg accttgcctg gaacattgcc cctcagggac ttcagggaag 960
 gttttgctcc agattactat gagttgggga caacaaacta acagcttcct ggcagaagca1020
 gggacttttg aaagcctcaa agtttgga
<210> 89
<211> 804
<212> DNA
<213> homo sapiens
<400> 89
gcccccatca gttcgaattt ctgcagtgag agcatctggg gttattgtga ccaactgaaa 60
 gtctcagaga gtacccacgt gctccagccc ttcctcccca gcatccttga tggcttaatt120
 cacctagcag cccagttcag ctcagaggtc ctcaacctgg tgatggagac cctgtgcatc180
```

gtttgtacag tagaccccga attcacagca agcatggaaa gcaaaatctg ccccttcacc240 atcgccattt tcctaaagta cagtaatgat cccgtcgtcg cctcactggc tcaggacatc300

```
ttcaaggagc tgtcccagat tgaagcctgt cagggcccaa tgcaaatgag gctgattccc360
actotggtca gcataatgca ggccccagca gacaagatto ctgcagggct ttgtgcgaca420
qccattgata tcctgacaac agtagtacga aatacaaagc ctcccctttc ccagcttctc480
atctqccaag ctttccctgc tgtggcacag tgtacccttc acacagatga caatgccacc540
atgcagaatg gcggagagtg cttgcgggcc tatgtgtcag tgaccctgga acaagtagcc600
cagtggcatg atgagcaggg ccacaatgga ctgtggtatg tgatgcaagt ggtgagccag660
ctcctggacc cccgcacctc agagttcact gcggcctttg tgggcgcctt tgtttccacc720
ctcatctcca aggcaggcg ggaactcggg gagaatctag accagatttc ttcgtgccat780
ccttcagtta agatggcagg aggt
<210> 90
<211> 581
<212> DNA
<213> homo sapiens
<400> 90
tctttqatca qatttaqtqt cttaqqtaat taaatcagaa agtctattta gctattctag 60
aagtgtatgt gtaggtattg ggtggttggg gttctttgag cgaacttgtc agaaactcca120
ttcttaacat cagaatcagg gcaggattga aaacattgtg gctggatctt gaaattgcta180
taacatctat tgcagaaaat gataggtcag atggatagca ataataatta tatatcagat240
cttagtaaca aaattaccaa gctttatcta gtggatatat gtaaaagaat atttttaaat300
gtccagcatt gatgtatttt ctttaagaat tattacagta tataagcatt ctttgggaat360
acagtataaa aacataaatt ttttcgtatt tttaattttt tttattttt tggtcaagga420
tgaatcctcc cctgtaaaat attgattttc gcctaaattt cggggtttcc ctggcacata480
atagcactgg ccccaacttc ggagatggcg gatgcgggta aaaagccaaa aggatggatg540
gggatccgga aatacgtggt ggaatggaag cgaatccaat a
<210> 91
<211> 2042
<212> DNA
<213> homo sapiens
<400> 91
tggagatatt agtcagtttc tttagtgata tttgtttcct tgatgtgcct ttttgttttt 60
 ctttggggtt tttggaatcc ggatgctgtt gaagggcaat agcagactcc tccagctaag 120
agacaggaca tgttcttgag ccactgtagc tgttgaagct ggacaccaga cgctccctat 180
aaccccccg ccaggccata gcgtgtatgc atgtgcactt ccacccacag aggagggtgt 240
gaageettga gaaceteaag aaagggetgg attetgeeat acetttgggt etacettggg 300
 actgctggtt gccaacgtgt caaccagect gtgttecetg ccacceaege acttgctgag 360
 gtgtggctga ggcagaatca tgtgaatggg tgcatccaag gagttcaggg ccctgcttgg 420
 agaagaaata etttageate atgaaaggga aagaaegtge acceettttt tgttteettta 480
gtgaatgcaa gatttaataa aagtgaataa tgagcttccc ctttgggagt ggagcccagt 540
 gcagctcact gacagggttg acatcagtat gatgtgttgg actgaaactg tatgtctgta 600
 ggtaggtgtg tgccttttag ggcagaccac ggtggccacc ccatttctcc aaggtggttt 660
 acctagettg tgtatattag acattgeeae eeteaeetet ggeeaaaaat tettgattta 720
 aaaagaaaag totattttgt taacgacagg ototgttgta tgtgttacta toccaagcot 780
 ggattatttt atttatttaa aagtatttta atttccatat tggctttatt ctaatcccat 840
 ccatccctgt ggagctgcag agcatcttca tgtgagtaga cggatggaca taaatagatt 900
 catgctcatt taggaagctg ggagtttcgt gaagctgagg gtgagttcct gtgattcttg 960
 ttcgcttcaa caaaaagtgg gagaccaagt ttttatagca aaagaccaaa ttagctgtag1020
 agtettgaat geagaaaaaa attaeeetag etttettage aettagggtt ttgtgaggat1080
 tcagtgttta gcacagtgct tggcacatag taagccctag taaatgttaa atattgttat1140
 tagtgtttcg taaaacttga gaaatagagc tgagctcatt cccttcctgt tgattcaaaa1200
 ataataccta catgaaaaca tgattccaag ttgattgaat gttgtaggaa ttactggttt1260
 agagtagece agttetegge etaceetget ggttgggate ttactgtatt ettgaatgea1320
 ctggtttgaa aatatgccag acttcagccc ccaaggaaac aaggctgcaa gaatttatga1380
 actccagctg gaaaaggtaa aggtgacctt tggctagcca catactggac cttaccccac1440
 tgacgtcttt cagaacattc caagggtttt cctcaaggaa catttttgag ctagaaatta1500
 aaatgggttc tctggcagac tgcacccctt gagtcaaagt taacagtatt cctttgaatg1560
 caataataga ggcttttctg cgttaaggga gaaggaatga ccaattgaac ttacacattc1620
```

cccaggcagg tecetttgcc ggccctaca ggctggggtg gcccctcctg tectcaggga1680

```
tragacters agastggtta gttetgeatg tttecateaa attaaaggtt attecetgge1740
 cgcctcctgg agaaaaccaa ccccaccctg ccagctgggg gcaatggggc agggattttg1800
 gcctctcaga acagctccta gaggctgctc atgactgaat gttttcccaa atcacctaaa1860
 tatcggtttg ctttttgttt tgggggagag gatttagcct cttacttccc tgatggattc1920
 aaagttttat ctatctcctt atctcctgcc ctgtcttggc acaactctgg atagattgca1980
ggtgtggaat ttgctggagt ttggtggctc cccaaattcc ttgatctgtc cgcaaagaga2040
ag
<210> 92
<211> 430
<212> DNA
<213> homo sapiens
<400> 92
gttaaaaacc tagtattcat ttttttttt cctgtaccaa aacaatcatc ttcctttatt 60
 tttcctggag cgggaagagg agagtggaga agaagggaag aatgcaaagt gtcactttga120
acttetegtt caccacaca gtgggagtec acteatgtea geageeteeg tgeacaggee180
ccaggtgaaa gaaagaatga ggtctagttg gaccagctaa cactgcctgc cttgtgttta240
cgaaaggcag ctgcctctgt ggtgtgattt caggggagcc agacagggcc ggggccacga300
acctgcatcc tgcatcctaa gcacctattt gccatgcggt gaggcttaac ttgggaaact360
 tcaatttgct tggggtgcag attagctttc caaactattg tgatgctcat gcttgacttc420
ccaaggactt
<210> 93
<211> 592
<212> DNA
<213> homo sapiens
<400> 93
aattaaaata aatagaaaca tacggagatt cttttatgtt ggatttatta taccctccac 60
cattttggtc cctgaaaagg gaaaagatac acggtcgagt agtacaggta tgtgtttccc120
 actacacatt atggctataa tggagttgaa ttgcaaacag taaaattttg ttttggattg180
gtttcccctg atcccccag acaggagett cctctcccac cctacctgcc tgcccttaag240
ttgtgtccta ttaaactgga cacaaatctc accggctttt agtctaataa ttgaatcata300
gctacacacg gtgacaccag aatagctact tgttttttta tgttaccagt gagtaacttg360
 tttatccttg tatgtagaaa ctaatttcac catgatcaca gatctgtgta acatctctag420
tttgaatttc cacacaattt taaaatgtct actaggaaaa cttacacctt tttgttccaa480
gggtgctctt catctattaa aaccgtgggg gcatacttcc agtgttgctt ctgagggcca540
 aattttgtgg gtcgtggggg acaattttgt attaacatac gttattttgt aa
<210> 94
<211> 674
<212> DNA
<213> homo sapiens
<400> 94
 aaggeegege aagtgeaett gegtgteaee gttaeegtag egaetggget tetggaetgt 60
 atatectage tgeettgtea acatettega geateggeag eteeggagge eggggtaaet120
ggcagcaggt aggaaactat gtgaaagaat ctcctgatgt cataatttcc gggtgtcacc180
ggaacatttg atcatcattc ctttggcaat tccagccttc tgtggaaagg ccagtagaaa240
gcattgattt attcacctct acaggaatca gactcagcct cttttggttt tcagtgaagt300
 atgeetttte aatttggaac ceageeaagg aggttteeag tggaaggagg agattettea360
 attgagetgg aacetggget gageteeagt getgeetgta atgggaagga gatgteacea420
 accaggeaac teeggaggtg ceetggaagt cattgeetga caataactga tgtteeegte480
actgtttatg caacaacgag aaagccacct gcacaaagca gcaaggaaat gcatcctaaa540
 tagcaccatt aagtettttg teaaggtetg actaggteaa gggtaatgga ceagtateat600
ctggtgatct ggtaaacaaa taaaagtggt ggcaccttta gatgatgaaa aaaaaaaaa660
aaaaaaaaa aaaa
```

```
<211> 324
<212> DNA
<213> homo sapiens
<400> 95
 qttcttttca ttccatcact ttaggtgatg ggtaagattt ttgaaagcct tatattttt 60
 gattttgttg tctagtttaa tcctaccttt aatagttgtg tttggtaaaa ttcccacttg120
 aatgtgacac tgataataat tatgctgatt tttagcatct cttataggaa tcaaagttta180
 ttaaagttac atagaggatt gaaaaatgta tatcactcaa tttttatcta aggagggata240
 gggtataaag ggaggtacct aaatagctca aataatggat ataatccttt tttccataac300
 catttgggat gctttaaggc aatt
<210> 96
<211> 709
<212> DNA
<213> homo sapiens
<400> 96
 ggatgcggca ctataacatc cccgtcagag tgtgtgagga gaccagtcta tgagagacgc 60
 atgeteetga eageetggeg aegtggegaa gatgeacagg tggeteetgg gettgggetg120
 caggtttggg ggtctctaag aacaatctct gagaagaacc cttgggcccc tgggagccaa180
 gttggacagg atgtcctgaa gactagettt tgataagaga aattaaccaa gtetttcccc240
 tcatctatga tgcaatatat ttcagtgggg gccttcagag cacacctgtt ggacggtgca300
 aaccatatct tctccagaag gcaaatactt ttgtatcaga ggaaactcag ttttggagag360
gaatatgttc tttatatctc aaatcaaaac tctctctaat ggtaaactgg cttctaattt420
 ttttaagtac agtattttt tttccccttt agtagtaacg ggtttctata gatcttccta480
 tacagtctgc tttaactcag gaccttgaga ttatgagact gacgtgctgc ccactgcact540
 gagggggctt ctaacagtct gctttaagtg gtataattct gggatagatc tgttactggc600
 atagtcatga caacctctgg taatcttacc ttctcctttt tatgaaggga agagcaatgg660
 tttggactta catctaaatt aaggctattt taagcagatt gttttgcaa
<210> 97
<211> 562
<212> DNA
<213> homo sapiens
<400> 97
 gtccagatgg aatgactccc atcctctct catctcccct ttgacgagcc tcaaactgct 60
 cageteatea aagageeatt gecaacttee gtatgtggtt etgggteeca gggageettg120
 gaacctggca ccctggggtg gtttaattcc ggcacgagag cattcctgct tctcaaggga180
 cacagtggcc tgcatgggcc agcatggacc ctgggctgat catgtgcatt cctgcttctc240
 tggggacaca gtgggcccac atgggccagc atggaccctg ggctagagca agcacatctc300
 catctcttcc acctcaggca gtgtggctcc agatgtcagg agggactgac ctcaggacct360
 tccaggttcc tctgtgccag gaatgagagg ccaggcccga tcctaccacc tcgccttgac420
 cctgaagtca gagcaggcca gccaagcagg aagcacactg tttaattttt tgcatggaaa480
 gtaaatgtgt actttgatag ggttaaaata tggtcttttt taagttgctc aaccccataa540
 tttgagccat tgccttgctt aa
                                                                   562
<210> 98
<211> 1948
<212> DNA
<213> homo sapiens
<400> 98
 gatcaccaag acacacaag tagaccttgg gctcccagag aagaaaaaga agaagaaagt
 ggtcaaagaa ccagagactc gatactcagt tttaaacaat gatgattact ttgctgatgt 120
 ttctccttta agagctacat cccctctaa gagtgtggcc catgggcagg cacctgagat 180
 gcctctagtg aagaaaaaga agaagaaaaa gaagggtgtc agcacccttt gcgaggagca 240
 tgtagaacet gagaccacge tgeetgetag aeggacagag aagteaceea geeteaggaa 300
```

```
gcaggtgttt ggccacttgg agttcctcag tggggaaaag aaaaataaga agtcacctct 360
 agccatgtcc catgcctctg gggtgaaaac ctccccagac cctagacagg gtgaggagga 420
 aaccagagtt ggcaagaagc tcaaaaaaca caagaaggaa aaaaaggggg cccaggaccc 480
 cacageette teggteeagg accettggtt etgtgaggee agggaggeea gggatgttgg 540
 ggacacttgc tcagtgggga agaaggatga ggaacaggca gccttggggc agaaacggaa 600
 gcggaagagc cccagagaac acaatgggaa ggtgaagaag aaaaaaaaa tccaccagga 660
 gggagatgec eteccaggec actecaagee etecaggtee atggagagea geectaggaa 720
 aggaagtaaa aagaagccag tcaaagttga ggctccggaa tacatcccca taagtgatga 780
 ccctaaggcc tccgcaaaga aaaagatgaa gtccaaaaag aaggtagagc agccagtcat 840
 cgaggagcca gctctgaaaa ggaagaaaaa gaaggagaga gagagtgggg tagcaggaga 900
 cccttggaag gaggaaacag acacggactt agaggtggtg ttggaaaaaa aaggcaacat 960
 ggatgaggcg cacatagacc aggtgaggcg aaaggccttg caagaagaga tcgatcgcga1020
 gtcaggcaaa acggaagctt ctgaaaccag gaagtggacg ggaacccagt ttggccagtg1080
 ggatactgct ggttttgaga acgaggacca aaaactgaaa tttctcagac ttatgggtgg1140
 cttcaaaaac ctgtcccctt cgttcagccg ccccgccagc acgattgcaa ggcccaacat1200
 ggccctcggc aagaaggcgg ctgacagcct gcagcagaat ctgcagcggg actacgaccg1260
 ggccatgagc tggaagtaca gccggggagc cggcctcggc ttctccaccg cccccaacaa1320
 gatettttae attgacagga aegetteeaa gteagteaag etggaagatt aaaetetaga1380
 gttttgtccc cccaaaactg ccacaattgc tttgattatt ccatttatgc tggagattac1440
 aaattttttt tgtgaaaaaa tcagatcttg gtgaggacct cgagcagtaa gatataaata1500
 actcccataa gcttagcgtt ccagtaatgg aacactaggc ataaatggtt tattcagttg1560
 tgcaaatgaa agccatctga cagttggctc acattgaaca cctgtggaga ttaaggacga1620
 ggacaactat attgatgggc ttggatgaac tggggcaggg cagctcatat ttcgggagcc1680
 aggagaacga gtgagtgcta aaacctcctg ttttctgtgt taaacattcc gtccctgttt1740
 gagacatcag tatgtacagt taacttttgt tgagtgttta gcaggtacta gggacatact1800
 agtgttttcc ttaatgtatt taatcttcat aattatgaaa tgggtgctat tattagcccc1860
 atcttataga tgaggcaact gaggttcagg gataaagtaa taaaattgcc tggggtcacc1920
 cagccactaa aaaaaaaaa aaaaaaaa
                                                                   1948
<210> 99
<211> 483
<212> DNA
<213> homo sapiens
<400> 99
 aatttatggg gtctatcttt gaccacgtga taccacttac ctgattctat gtactgatta 60
 atgtatctaa cagttttata gtgaaagtac tttttaaaaa agtatttgaa tggtcatttc120
 tatttttccc cctttgctgt acaagttaat ttttactcat cttttgctgt acaaattaac180
 tttcatcaat acaaataaga ggctagtttt aagtcaattt atttgtcatg agcccaggaa240
 caattaaatt ctataaagta atgtattaaa atagtacact ttaaaaaatta ttttccttct300
 ttttttctct ttaaatttta agaccatcat aataaattat cattacaaag tcaaacatac360
 tatatactac tatcagtcaa tggggaaaaa ataagtccat atgttttatg ggtaaaatgc420
 tgtaatagat tgggattgtc caatttgcct tgaaaaaaat cacagcagtt tttaggtttc480
<210> 100
<211> 437
<212> DNA
<213> homo sapiens
<400> 100
cccgcttgag gcgtaggggg tggcgctctc cgttcggcgg cgctcccatg gcgcacatta 60
ccattaacca gtacctgcag caggtgtacg aagccatcga cagcagagat ggagcatctt120
gtgcagagtt ggtgtctttt aaacatcctc atgttgcaaa cccacgactt caaatggcct180
ctccagagga gaagtgtcaa caagtcttgg aaccccctta tgatgaaatg tttgcagctc240
atttaaggtg cacttatgca gtggggaatc atgacttcat agaggcatac aagtgccaga300
ccgtgatagt ccaatcattc ttgcgagcat tccaggccca caaagaagaa aactgggctc360
tgctgtcatg tatgcagtag cgcttgacct ttcgagtgtt tgccaataat gcagttcaac420
cagttggtta aggaagg
```

```
<211> 359
<212> DNA
<213> homo sapiens
<400> 101
cagatetagg ggetteaget gtgtgeagae eccatgeeae tteagggaag tgaeaeagge 60
ctgtgtcatc tcgctttggc agcaggtggg tggccttcct caggggagga ggtggcctga120
gatgtgtttc aggtctttga cccatcactc cctacacaca cgacgtgaac accactcctg180
qagcattete agaatggaga tttgaattee atgtggeage tteteacaca caaacetgee240
atcattcccc acacacccac tcacgacatt caacagccat gagccaaaag aagttccttg300
 tttcagattt gaaggtttta tgaatccact tcttccggat gtagctcttt aatgatttt 359
<210> 102
<211> 501
<212> DNA
<213> homo sapiens
<400> 102
 teggegteae atcetgagte gegeetetge egaggeggag eggaeatgea ggeteeeege 60
 ggcaccctag tottogccct ggtgatcgcg ctcgttcccg tcggccggga accttctagc120
 caaggatete agagtgettt acagacatat gagetgggaa gtgaaaaegt gaaagteeet180
 atttttgagg aagatacacc ctctgttatg gaaattgaaa tggaagagct tgataaatgg240
 atgaacagca tgaatagaaa tgccgacttt gaatgtttac ctaccttgaa ggaagagaag300
 gaatcaaatc acaacccaag tgacagtgaa tcctaaacct gaatggcgct catgttttcc360
 aagagaagca gcccctgagg gagtctgctg aggctgccaa cagaggatga agaggataca420
 aatttaatta atttcaaatc aacatagaca caagaacctt ttgctgtttc ttccaacgcc480
 cactcttcct aatgatggca t
<210> 103
<211> 1102
<212> DNA
<213> homo sapiens
<400> 103
 cgggatetee egaaggaatt taeggggatt eeteggaeea ttateeteag geaagaaaea
 aaaccaaact tggactctcg tgcagaaaat gtagcccatt accacatgta gccttggaga 120
 cccaggcaag gacaagtaca cgtgtactca cagagggaga gaaagatgtg tacaaaggat 180
 atgtataaat attctattta gtcatcctga tatgaggagc cagtgttgca tgatgaaaag 240
 atggtatgat totacatatg tacccattgt ottgctgttt ttgtactttc ttttcaggtc 300
 atttacaatt gggagatttc agaaacattc ctttcaccat catttagaaa tggtttgcct 360
 taatggagac aatagcagat cctgtagtat ttccagtaga catggccttt taatctaagg 420
 gcttaagact gattagtctt agcatttact gtagttggag gatggagatg ctatgatgga 480
 agcataccca gggtggcctt tagcacagta tcagtaccat ttatttgtct gccgctttta 540
 aaaaataccc attggctatg ccacttgaaa acaatttgag aagttttttt gaagtttttc 600
 tcactaaaat atggggcaat tgttagcctt acatgttgtg tagacttact ttaagtttgc 660
 accettgaaa tgtgtcatat caatttetgg atteataata geaagattag caaaggataa 720
 atgccgaagt cacttcattc tggacacagt tggatcaata ctgattaagt agaaaatcca 780
 agetttgett gagaaetttt gtaaegtgga gagtaaaaag tateggtttt attetttget 840
 gatgtccttt ctgcttgaaa taacagtcac catacagcta aaggagagga gtttctttcc 900
 ttctaagtag gcagaaatgg tatcattatg ttgccgctct ccaatctccc agagctcgct 960
 gttgccccaa gactaggcct gggaactgtt ggggggccaa ggggattgct cccgtcccgc1080
                                                                 1102
 aggcctcccg agtaggccgg ga
<210> 104
<211> 306
<212> DNA
<213> homo sapiens
<400> 104
```

```
gaccaacett ecetgecatt tataeggeat aaaaceetea ateteaceag tatggetaee 60
 aaaattatag gttcacctga aacaaagtgg attgatgcaa cttctggaat ttacaactca120
 gaaaaatett caaatetate tgtaacaaet gattteteeg aaageettea gagttetaat180
 attgaatcca aagaaatcaa tggaattcat gatgaaagca atgcttttga atcaaaagca240
 tettgaatee attittitig aaaaaeetta aaaagggega teacaattit titgaacaag300
ggtcat
<210> 105
<211> 2042
<212> DNA
<213> homo sapiens
<400> 105
 tggagatatt agtcagtttc tttagtgata tttgtttcct tgatgtgcct ttttgttttt 60
 ctttggggtt tttggaatcc ggatgctgtt gaagggcaat agcagactcc tccagctaag 120
 agacaggaca tgttcttgag ccactgtagc tgttgaagct ggacaccaga cgctccctat 180
 aacccccccg ccaggccata gcgtgtatgc atgtgcactt ccacccacag aggagggtgt 240
 gaagcettga gaaceteaag aaagggetgg attetgeeat acetttgggt etacettggg 300
 actgctggtt gccaacgtgt caaccagcct gtgttccctg ccacccacgc acttgctgag 360
 gtgtggctga ggcagaatca tgtgaatggg tgcatccaag gagttcaggg ccctgcttgg 420
 agaagaaata ctttagcatc atgaaaggga aagaacgtgc accccttttt tgtttcttta 480
 gtgaatgcaa gatttaataa aagtgaataa tgagcttccc ctttgggagt ggagcccagt 540
 gcagctcact gacagggttg acatcagtat gatgtgttgg actgaaactg tatgtctgta 600
 ggtaggtgtg tgccttttag ggcagaccac ggtggccacc ccatttctcc aaggtggttt 660
 acctagcttg tgtatattag acattgccac cctcacctct ggccaaaaat tcttgattta 720
 aaaagaaaag totattttgt taacgacagg ctctgttgta tgtgttacta tcccaagcct 780
 ggattatttt atttatttaa aagtatttta atttccatat tggctttatt ctaatcccat 840
 ccatccctgt ggagctgcag agcatcttca tgtgagtaga cggatggaca taaatagatt 900
 catgctcatt taggaagctg ggagtttcgt gaagctgagg gtgagttcct gtgattcttg 960
 ttcgcttcaa caaaaagtgg gagaccaagt ttttatagca aaagaccaaa ttagctgtag1020
 agtettgaat geagaaaaaa attaceetag etttettage aettagggtt ttgtgaggat1080
 tcagtgttta gcacagtgct tggcacatag taagccctag taaatgttaa atattgttat1140
 tagtgtttcg taaaacttga gaaatagagc tgagctcatt cccttcctgt tgattcaaaa1200
 ataataccta catgaaaaca tgattccaag ttgattgaat gttgtaggaa ttactggttt1260
 agagtagece agttetegge etaccetget ggttgggate ttactgtatt ettgaatgca1320
 ctggtttgaa aatatgccag acttcagccc ccaaggaaac aaggctgcaa gaatttatga1380
 actccagctg gaaaaggtaa aggtgacctt tggctagcca catactggac cttaccccac1440
 tgacgtcttt cagaacattc caagggtttt cctcaaggaa catttttgag ctagaaatta1500
 aaatgggttc tctggcagac tgcacccctt gagtcaaagt taacagtatt cctttgaatg1560
 caataataga ggcttttctg cgttaaggga gaaggaatga ccaattgaac ttacacattc1620
 cccaggcagg tecetttgcc ggcccctaca ggctggggtg gcccctcctg tcctcaggga1680
 tcagactccc agactggtta gttctgcatg tttccatcaa attaaaggtt attccctggc1740
 cgcctcctgg agaaaaccaa ccccaccctg ccagctgggg gcaatggggc agggattttg1800
 gcctctcaga acagctccta gaggctgctc atgactgaat gttttcccaa atcacctaaa1860
 tateggtttg etttttgttt tgggggagag gatttageet ettaetteee tgatggatte1920
 aaagttttat ctatctcctt atctcctgcc ctgtcttggc acaactctgg atagattgca1980
 ggtgtggaat ttgctggagt ttggtggctc cccaaattcc ttgatctgtc cgcaaagaga2040
 ag
                                                                   2042
<210> 106
<211> 320
<212> DNA
<213> homo sapiens
<400> 106
 aatettttta eeatgaaatt tetteeagaa tttteeecet ttgacacaaa tteeatgeat 60
 gtttcaacct tcgagactca gccaaatgtc atttctgtaa aatcttccct gagtcttcca120
 agcagtaatt tgccttctcc tagagtttac ctgccatttt gtgcacattt gagttacagt180
 ageatgttat tttacaattg tgacteteet gggagtetgg gagecatata aagtggteaa240
```

tagtgtttgc tgccttgaga gttgaatgac attttctctc tgttttggta ttactgtaga300

```
320
tttcgatcat tctttggtta
<210> 107
<211> 506
<212> DNA
<213> homo sapiens
<400> 107
gtcgaacagc aaagccaaga cttgttaaaa aggtttgaag aggaaggacc ataacaattg 60
 aaagggggaa attataagat acagtaaatt cctcttcaaa gatttagcct gttgacttcc120
 ttattctttg ttctcaaact cgacttcctt gttgtccatg cctccttgtc cctagttact180
gtgaacaacc ttcccaccag ttctaatcaa taactcacat ctgctccctt ggttacccac240
 tetgeaceca ttetteccae tgaaactgea etteccaeca etgtaactea catecceett300
 cccttcctta tttggaaaag tattcacaaa tagccaatcg ggtcaactta gaatgagcgg360
 tccaacccca gcccctgggg gagtgacaca gaggtaggga ctgtgttagg gataaaaacc420
 ttttcctttc tttgttcagt gtgctgctgt gatcatgatt gatgcaggca gcagcctttt480
 tgcagaagta aattgccttg ctgagg
<210> 108
<211> 1276
<212> DNA
<213> homo sapiens
<400> 108
 gcgcggccgg cgcctgcggg gcgagaggt cggggcgaag gggaagctac gtcccggagg
 tgcggtgtgg ggcaccgggc ggggccgcgg gaaccggcgc cccacggagc tgctgctgtc 120
 agaccaaccc cgggccccca tcatcactgc gccgcgcttt caggcgccga gaactaccgt 180
 teceggeatg ceatgaaatt ggeeteggeg etgaggeggg gteeggeeet ceaecegete 240
 ccgccgcgcg cgaatcgcgg tcgcgagcca tggaggagga ggcatcgtcc ccggggctgg 300
 gctgcagcaa gccgcacctg gagaagctga ccctgggcat cacgcgcatc ctagaatctt 360
 ccccaggtgt gactgaggtg accatcatag aaaagcctcc tgctgaacgt catatgattt 420
 cttcctggga acaaaagaat aactgtgtga tgcctgaaga tgtgaagaac ttttacctga 480
 tgaccaatgg cttccacatg acatggagtg tgaagctgga tgagcacatc attccactgg 540
 gaagcatggc aattaacagc atctcaaaac tgactcagct cacccagtct tccatgtatt 600
 cacttectaa tgcacccact etggcagace tggaggacga tacacatgaa gccagtgatg 660
 atcagccaga gaagcctcac tttgactctc gcagtgtgat atttgagctg gattcatgca 720
 atggcagtgg gaaagtttgc cttgtctaca aaagtgggaa accagcatta gcagaagaca 780
 ctgagatctg gttcctggac agagcgttat actggcattt tctcacagac acctttactg 840
 cctattaccg cctgctcatc acccacctgg gcctgcccca gtggcaatat gccttcacca 900
 gctatggcat tagcccacag gccaagcaat ggttcagcat gtataaacct atcacctaca 960
 acacaaacct gctcacagaa gagaccgact cctttgtgaa taagctagat cccagcaaag1020
 tgtttaagag caagaacaag atcgtaatcc caaaaaagaa agggcctgtg cagcctgcag1080
 gtggccagaa agggccctca ggaccctccg gtccctccac ttcctccact tctaaatcct1140
 cctctggctc tggggaaacc ccacccggga agttgaggca cccttccttc caatttgcct1200
 aaccagtttc caggagtggg gtgggttttt ccgtggcaca ggttggggcc ttaggggggg1260
                                                                   1276
 ttggacgttc catttt
<210> 109
<211> 373
<212> DNA
<213> homo sapiens
<400> 109
 aaatacattt atgtttcttg aaatgtgtta agtggccttt gtcaaggtgt ttataataga 60
 agagtatata aaaatgaatt tototagaga tgoagcatac totaaagato catcattaga120
 taattaaaaa tatgtaagtc atgctaacat ttccatatat aaatggagaa cattaactct180
 cctactgttt agttataaaa taccaaattt tgtaattatc ctatctggaa ttacactata240
```

ctgcaaaaat gccagttact tcacttttaa atttgacaat gtatgtgatg aattataaaa300 tttaatagcc tacatctttt cctccttgta tccaaatttc tccggacctt aatgcttaaa360

ccttttggtt acc

```
<210> 110
<211> 492
<212> DNA
<213> homo sapiens
<400> 110
 gtcttttgaa atctgtttcc actacagcta tggtcaagtc tatcagccgg tgctaccagg 60
 agtcactgcc agggctgccg ttctcctgaa ccccagtggc cagaatcata agccctgacc120
 ccatccctag aaagatgagg tcccagcaat ggccagagca tttctcacca gttctgtgag180
 atagcacata aaaatagagt tetttgggea aaaettttgg gaagcaatge ateetacatg240
ggctgatatt cagcctgagc tgttctcaag aggagagtgg tactggcagt ttatggctga300
 aatccattct gattggttgg agtctatgct ataccagttg ttaaacattt tgagtatcac360
 tettgeatae tgttaetatt atattteete tatatataga cagaaaggee attttaggaa420
 tatttaaagg gctcttgaaa attttctggc attagaccca actgaaggtt ctattaaggc480
 agggttccta aa
<210> 111
<211> 1678
<212> DNA
<213> homo sapiens
<400> 111
 geeteageag acteettggg eggtageagg gagatggtge aaeggeeeca geetgeacag 60
 gaaccgagca ggcctggatc tgccaaccat agacacggga tatgattccc agccccagga 120
 tgtcctgggc atcaggcagc tggaaaggcc cctgcccctc acctccgtgt gttaccccca 180
 ggacctcccc agacctctca ggtccaggga gttccctcag tttgaacctc agaggtatcc 240
 agcatgtgca cagatgctgc ctcccaatct ttccccacat gctccatgga actatcatta 300
 ccattgtcct ggaagtcccg atcaccaggt gccatatggc catgactacc ctcgagcagc 360
 ctaccagcaa gtgatccagc cggctctgcc tgggcagccc ctgcctggag ccagtgtgag 420
 aggectgeae ectgtgeaga aggttateet gaattateee ageceetggg accaagaaga 480
 gaggcccgca cagagagact gctcctttcc ggggcttcca aggcaccagg accagccaca 540
 tcaccagcca cctaatagag ctggtgctcc tggggagtcc ttggagtgcc ctgcagagct 600
 gagaccacag gttccccagc ctccgtcccc agctgctgtg cctagacccc ctagcaaccc 660
 tecagecaga ggaactetaa aaacaageaa tttgecagaa gaattgegga aagtetttat 720
 cacttattcg atggacacag ctatggaggt ggtgaaattc gtgaactttt tgttggtaaa 780
 tggcttccaa actgcaattg acatatttga ggatagaatc cgaggcattg atatcattaa 840
 atggatggag cgctacctta gggataagac cgtgatgata atcgtagcaa tcagccccaa 900
 atacaaacag gacgtggaag gcgctgagtc gcagctggac gaggatgagc atggcttaca 960
 tactaagtac attcatcgaa tgatgcagat tgagttcata aaacaaggaa gcatgaattt1020
 cagattcatc cctgtgctct tcccaaatgc taagaaggag catgtgccca cctggcttca1080
 gaacactcat gtctacagct ggcccaagaa taaaaaaaac atcctgctgc ggctgctgag1140
 agaggaagag tatgtggctc ctccacgggg gcctctgccc acccttcagg tggttccctt1200
 gtgacaccgt tcatccccag atcactgagg ccaggccatg tttggggcct tgttctgaca1260
 gcattctggc tgaggctggt cggtagcact cctggctggt ttttttctgt tcctccccga1320
 gaagccctct ggcccccagg aaacctgttg tgcagagctc ttccccggag acctccacac1380
 accetggett tgaagtggag tetgtgaetg etetgeatte tetgetttta aaaaaaccat1440
 tgcaggtgcc agtgtcccat atgttcctcc tgacagtttg atgtgtccat tctgggcctc1500
 tcagtgctta gcaagtagat aatgtaaggg atgtggcagc aaatggaaat gactacaaac1560
 actetectat caateaette aggetaettt tatgagttag ecagatgett gtgtateete1620
 agaccaaact gattcatgta caaataataa aatgtttact cttttgtaaa aaaaaaaa 1678
 <210> 112
 <211> 866
 <212> DNA
 <213> homo sapiens
 <400> 112
 gtcgccatga ctgccaagga ctgctccatc atgattgcac tgtctccctg tctgcaggat 60
```

gccagctctg atcaaaggcc tgtggtccct tcatcgaggt ccaggtttgc cttttccgtg120

```
tctgtgctgg accttgacct caagccctac gagagcattc cccatcagta taaactggac180
ggcaagatcg tcaactatta ttcaaagact gtacgtgcca aagacaacgc cgtgatgtcg240
actoggttca aggaaagoga agattgcaca ttagttctcc acaaggtcta actotttccc300
tgcagtgtct ttgaaacttg aacataatgt gaaggctgaa tgatagagat attttctgtt360
gtgttgggtg acctttggtt gtgaatgttt ttgcttttaa ccccttttga ggtgggattg420
cctcttggag acatggaatt gaagagcact agaaacaact tcctggacaa ggaatgtagg480
aagtgagtgc tgtgtcccag gaagctgctc acactcttaa aatggaagtg tccgttaagc540
cctgggaaga cgttctggat agttcttctt tcccaaccag ggctcatgtc tgattctcta600
atgcgaaaag ccttattcta agacccaagg tttggatctg ctaccaccag actcctaaca660
tagaaaactt gaattgtcac atacatttta cagtttggac ttttaagaaa acatggatac720
tactgggaac ttcccccagc tgagttacat gggcactttt tcagtgcaag ccacatatca780
acacagggtt ttaaggtggg tgcctggctg cacacgtgaa ccccgtggcc ccccagatgc840
cgattctgag ccagtgtaga cccagg
<210> 113
<211> 1434
<212> DNA
<213> homo sapiens
<400> 113
gcgcggccgg cgcctgcggg gcgagagggt cggggcgaag gggaagctac gtcccggagg
tgcggtgtgg ggcaccgggc ggggccgcgg gaaccggcgc cccacggagc tgctgctgtc 120
 agaccaaccc cgggccccca tcatcactgc gccgcgcttt caggcgccga gaactaccgt 180
 teceggeatg ceatgaaatt ggeeteggeg etgaggeggg gteeggeeet eeaceegete 240
 ccgccgcgcg cgaatcgcgg tcgcgagcca tggaggagga ggcatcgtcc ccggggctgg 300
getgeageaa geegeacetg gagaagetga eeetgggeat caegegeate etagaatett 360
 ccccaggtgt gactgaggtg accatcatag aaaagcctcc tgctgaacgt catatgattt 420
 cttcctggga acaaaagaat aactgtgtga tgcctgaaga tgtgaagaac ttttacctga 480
 tgaccaatgg cttccacatg acatggagtg tgaagctgga tgagcacatc attccactgg 540
gaagcatggc aattaacagc atctcaaaac tgactcagct cacccagtct tccatgtatt 600
 cacttectaa tgcacccact etggcagace tggaggacga tacacatgaa gecagtgatg 660
 atcagccaga gaagcctcac tttgactctc gcagtgtgat atttgagctg gattcatgca 720
 atggcagtgg gaaagtttgc cttgtctaca aaagtgggaa accagcatta gcagaagaca 780
 ctgagatctg gttcctggac agagcgttat actggcattt tctcacagac acctttactg 840
 cctattaccg cctgctcatc acccacctgg gcctgcccca gtggcaatat gccttcacca 900
 gctatggcat tagcccacag gccaagcaat ggttcagcat gtataaacct atcacctaca 960
 acacaaacct gctcacagaa gagaccgact cctttgtgaa taagctagat cccagcaaag1020
 tgtttaagag caagaacaag atcgtaatcc caaaaaagaa agggcctgtg cagcctgcag1080
 gtggccagaa agggccctca ggaccctccg gtccctccac ttcctccact tctaaatcct1140
 cctctggctc tggaaacccc acccggaagt gagcacccct ccctccaact ccctaccagc1200
 tccagagtgg tggtttccat gcacagatgg ccdtaggggt gacctccagt tttgcgtgtg1260
 gaccgtaggc ctctttctag ttgaatgacc aaaattgtaa ggcttttagt cccaccgaca1320
 ttagccaggc tcgtagtgag gcctccagag caggttgtgc tgtcccctgc ctctggaagc1380
 aatggggaat gtggaatcaa gacaatgccc aaaaaatttt taatgcagct ggtc
<210> 114
<211> 914
<212> DNA
<213> homo sapiens
<400> 114
 ttggcagcgg ggagagggaa agaggaggaa atggggtttg aggaccatgg cttacctttc 60
 ctgcctttga cccatcacac cccatttcct cctctttccc tctccccgct gccaaaaaaa120
 aaaaaaaagg aaacgtttat catgaatcaa cagggtttca gtccttatca aagagagatg180
 tggaaagagc taaagaaacc accetttgtt cccaactcca ctttacccat attttatgca240
 acacaaacac tgtccttttg ggtccctttc ttacagatgg acctcttgag aagaattatc300
 gtattccacg tttttagccc tcaggttacc aagataaata tatgtatata taacctttat360
```

```
catttttact attaagaaga ccagtgataa tttaataatg ccaccaactc tggcttagtt660
 aagtgagagt gtgaactgtg tggcaagaga gcctcacacc tcactaggtg cagagagccc720
 aggeettatg ttaaaateat geacttgaaa ageaaacett aatetgeaaa gacageagea780
 aaaatcaagc ctgaggctgg gtggaaacag gtagcctaca caccccaaat tgggggtggt900
 cccgggggaa tgtt
<210> 115
<211> 685
<212> DNA
<213> homo sapiens
<400> 115
gaaaatccag gggtgaagaa tagatctgtg gtggcagggg tgggaaaggc ggggaggatt 60
 tgcctactga ggggcagcac aagagaattt tgcggggcga tggatctgtc tgtatcttga120
 ccatagtgat gatacatgac tgtgcatttg tcagaactca caggactgaa tgaaaagaga180
 agtgaatttt actgcatgtg aattgttaaa ataaatgcta gacagtattt taaaaaatcaa240
 gcccagatcc tgcaagacat tatggctccc caccagaagg ggagagacgg ggaaagagaa300
gtgtccccaa agttaaccca cgttccctgg gacccacctc cctccccact gccacttccc360
 accagectea egeaeggee aggeeettee etttgeaget caeageeeag eagatgttag420
gtcagaatgc gtcccctcac ttgactaaag gtttacagcc agcagggtgg gaaatgaacc480
agatattaac acccctcct ccatgccctg cccaccttct gggccagtac cagtgaaggc540
 aggaagccac ttctcccacc cccaggctgt tcccaaagcc ctggaagaac ccaaggaaag600
gcaggagcca agttgggagt tgaccttgat gaccaggggc cagttggccc agtttccctt660
gtttagttgg ggggagggaa ccctt
<210> 116
<211> 2646
<212> DNA
<213> homo sapiens
<400> 116
 ttaatttaat agettteatg tgattaaaaa tagetaaeta gaeteaagga tteacaatat
 ttaggtgtat tttcaatacc tccagaaagg aaacctcagt taatcagagg aaatagtttc 120
agtetteatt tgageatgte tttecatete aaaaaaatae tettagtagg ttggagtgaa 180
gatagcaagg ttttgaagca tatttgtcct aatccacagt gacacttttt atcttccagg 240
agcactccta ggaggttccg tgcctaatca atgttgactg ctttgcagat ctcaagggaa 300
 taaaatgaca aaagcaggga aagttacaga ttcaaacagc attttaactc atgttgatct 360
 ggataattaa tottttotaa agatgtgtag tttottggaa aacagtgata toacatgatt 420
 aaaattacat ttttatcaac ataattgtct ggaaaagata agcccctcaa ttttctacca 480
 gttgactttt attcattaga tacagaaggt gcagtattac acatcaccag ctgcctttgt 540
gaatggctca ctacacagcc attggggtac aactgtgtgc atgggcagaa acagcaagtg 600
 ccctcattgt ggtcattggg tggggagtgc cttttgtcaa ggagtctgca ggaattggct 660
 tatttctgta tgccaaagtg atcaacaca caaagtctct gccataaaga atgtggcttc 720
 cttgcatcct ccatcctgtt actctgggcc cagtaatttg atgtaactgt ctgattgtac 780
 tagagacagg agtataccca gcttattcat aatcaagtaa agagactcag attagatttg 840
 attttttagc ctcctctaga gccaatcagg cagttaagag taataaagga aaagggtttg 900
 gtcacaaacc ctaccattat ctggagatta cttcctgctg cactcctgtc ttgccatgca 960
 cgtcttgccc cctcactttt gctcagccta gcagtctact tcactttatt gccttgtaag1020
 tgtcaggcct cctgggcgct ctggaaaaga cagggagcca ggccctctca cccctactgg1080
 taacaggtca ttgctgggtg cacaagaggg aggtgatttg catcatggtc atgctgcatg1140
 ggcttcactg ggatgctgtt aaacaccaga ggagccaacc tatcagaatc ccagcagcaal200
 aggaaaactc agattttaga ggctttttac aataaagtag cgtaactcta ggtcatgatt1260
 gatttcaaat gcctgccatg aatgatttgt aagtaattat gtaggatcca tcaaagcagt1320
attgtagget tttgaattgt eeeagtggat eegggaeeee attteaetgt etetettgat1380
cgtgttaatg atgcaatcag agttcaagac aggccccatg aagtctgact gcactgggat1440
ggagaaatga atttcttccc actgaaggaa actctttctc attcgcagcc aagacgggag1500
 tgccactgtt cctctcttca ctcctgagat actgcttctg gaagegggtg tcacttcctc1560
 tctagtacct cttctcttct ctgaagtgtg tgactatctc ctagtgttta aatttggcag1620
 ttactcgcca tgtatgtcag catagaaaag gaaatgtttt taccttatct cctgtatgta1680
```

tgatagaact taaaagaaat gtgcatttgt tttcatagcc ccagcagaga aaatcctctt1740

```
catagattaa atgtgctgct gtggacagga gggaaaaaaa aaccctctac atattgaaag1800
gcaccaaatg taatatctga cactgttaag atgcccaaaa gagcaaagtt gtagtggaga1860
tgcagggtca tttccccatg ccatccacag tgtttgttag tgagtccacg gctgacttgc1920
agtgataaag aaaagcatgg agctgtgtct gcagacaatg gtggctgcat ctgtaagtgg1980
cttcagaggc agcagccctg gggaaattga tgggtgtggc agtggacctg tgaagaggga2040
quatctagec ttcagectqt ccaqtqttaa ccactagaga aactgagett tatateettt2100
tttaatqcct qtqaatttta qcatattgaa acattagagc aaatactcag gggatttttc2160
attaaacatc cctcaqataa tttaqctata tatcattaqa aagggaaagc tatcattttt2220
attttaaaac taaacaaqqc catcttataa actqtcacca aaqtcttccc ttttttattq2280
catqtqtqcc ttgaatttca taaaacatta attcacaatq qqqgtcaqaa tgtactcttg2340
ttqaaacact tottgtacca ttttatgttc atattatgtt tgagagggta aaaatgtatg2400
agcagettaa etgaagtaga aetatteatg atgettttea eacattgtgg cataagatgt2460
aaagtttgta attaatgtta atttctgtgc attttaatat tcttttataa ttattaatgt2520
taatttctgt gcattttaat attcttttat aattatgagc attttaataa attcattttt2580
aggaag
```

<210> 117 <211> 2667 <212> DNA <213> homo sapiens

~

<400> 117

ttatcttgga agtctgtgta tcaaaatgaa gaattcagat ggtaggaggt tctatagtcc ttttaaagct gactcttgag tgtcagttga atatccatta aattggattt ggaaataacc 120 tgaggaaagt attatgaatt cgatctgcac agatgcctct tagctgatag gtggcaggcc 180 tgtgggtttg ggttctccct cttttctctg gaacatatga caattccaga ttaaagaaaa 240 atgtttttta ataaataccc ttggtctttc ttctagtcac ctttgaggta gatattgtga 300 ttttctggag tatagtatat cogtgtctct gtgtcttagg tttactagat gcaataatac 360 ttctctttga catttgtact gaagtgattt gatattaagt aaaacagtta atgtttgaat 420 ataggcatat ttataggttt tttccqctcc cccccaaccc acccttttta aaaaatctat 480 acaaaqccct tqtttqaqtc tcatcatqca catcaaatca tqqaqttaqq tcttctctqa 540 gctcagggga acacaagtgc acagagagag atgtcttgag ggtcactacc aaagaattac 600 ceteattgte ceteacteag gecatgtgta catgegatge tgetgagtgt getggggtgg 660 gtggtggcca cgtggctccc ccagagcact tcctaactgg caagctggga gacccattac 720 tggtgaactt tgtggaaatt agaactgtat cttttacata atcttggcat attacatttc 780 ataataaaaa catacattta gttgcatgct acatcactat tgattttata attaatttct 840 taagetteaa eeatgttta taeettattt egttacatea tatatttgta atgtgtaata 900 tgaaatettt tgetttaatg tettttttta aaatgtagaa tgttetaaae ttgaaaggea 960 attgaatgta gtatgatgaa aatgtgaatg ttttgctgct ttcatgacca aagatacagg1020 gctagtggac atttagaata ataattaaag ctagagtctt gtatgtcttt tctttgaagg1080 agttctaacc ttgtaaattg agaatgactt cagagaattt tgattaagaa aacattaaaa1140 tettaacegg cacaaacact ecaatttttt teaetgtgaa geegeaagea attttttte1200 tttttctttc aaaagcctgc cttctgaatt tatttcttgt ttactcattt cagagagggt1260 agtaaagaag atctatttct ggtagtcata tcgcttgaaa ggtattggta aatgtgtttt1320 cagtcgtgac catgtggaaa gtgaacagtg ttggcaaaca ttaccgagaa aatcatgctt1380 aattgtgaat tccatttctt atttcagttt ctgctgcagt aatgggttcc cacccactat1500 aattcccagc atttatgttc tgttgtattc tccccttagc ccagtaacat ttttatctaa1560 taccccattc cccaagtttt gagacagatt gaccccctac tcattatgtg gctctagttg1620 aattttaaaa tgtggaatat tgggcttgca ggcagtagga gctgcaaatc tggtagagtg1680 ggagtgtgga gttaatggtg agtatgttaa taaagggaaa ctgtctctga cagaatctca1740 gtaatgttta ccaaaacatg tctttctaca gctggtagga taaatgatgc taccctgtag1800 ctcagctaca ggctgcagtg caaacttttc ttccatccag agaaagcaga attccctcct1860 agtaacctca ttacaaatac tgttactaga agggcatgtg ctgtctgtca ccttcagtaa1920 tatttgtgcc atctcttgat gactgatgac ctggatcgag tatttctatg aagggtcttc1980 ttaggcccct tacatacgca agagggtgc tctagtgcca tagctgtagt tcacaggaag2040 gacaccagga gaagttatac ctagggctac tgagcagctc atcatccctg tttctgcaca2100 gtttcctgaa actggccatc agggcctctg aggcactcaa atcagtttac ttttagcatg2160 cccccatcag ggtgggtctc actgttagtg aggatacggg tctggtttga tgtttttcta2220 ggcaaaatgc ttaagtgttc tggttatgcc attcattcat acgatgtgtg aaatttgctt2280 aaaagggaat tttcatgatt tgatttagat tagtatttaa atatctgctt tagatagcaa2340

```
ttaattttat tgtaaaaata aggaaaaata tgtgaatatg tgaatttttt aagcctgaga2400
gatgatagaa tgttcccata tttttcttgt aaagaaaata atattttaac ttacacatcc2460
 tgtagaaaat accacctttt ccccttgtat tacagtacaa tgtttacatt actatactgt2520
caagctgaaa gtataaaaaa tgtacatata cattttgagt tatgtatcct ttttttaaaa2580
aaaggtgcgg ggctgtggca ctgggctgga catgactaaa gttgacagag gctatgctag2640
atttataatc actagttctg ggacttg
<210> 118
<211> 544
<212> DNA
<213> homo sapiens
<400> 118
catctgtgca tggatgagtg gccgactttg gagcccaggc tgttacttcc tggtctggtg 60
gtgaatcctc catagtctga gagtaagatc cttgatactg gctcagcatg gaacatctgg120
cacacagtat gcactgagga aatacttgtt ggaataatca gtgaatcata gatgaaaact180
 taaccttgga attaattatg agactgctca gaggaagaga atgggagaca aaggacctgg240
 tgattagacc cccaagacac tgggctgtct gcttgtgtct cgggtggaac aggcccagcg300
agagtettta gggccagaac teaaggaatt tattgageca tggcaaacag gcagtaaaca360
gcccattctg gctgctgtat tgagaagaga atgtggtgga cagatataga agcatggaaa420
cctgataggg ctattgcaat cactcagaaa agaggcgatg gcagcttgga cctgttgaag480
cagtagagtg ctttccaggg aggagaaagg acctgaaggt taatttgatc accatgggcc540
atga
<210> 119
<211> 1340
<212> DNA
<213> homo sapiens
<400> 119
gtttgatact ttcctgcact taggtttgtc ctattcttca tttattcaga ctaggataga 60
aaattttgga atcagaaaat agatccagtg tttagctaca tacaatctag tacaagtgaa 120
tttttattet taaacatagg tgtgttggct ettttttaa aagatgeget etacetgaaa 180
aggaaattgg attttagaac tggatgtggt gcagtgaagt attttaggcc caggtctgtg 240
tacacatttt atagaagaaa tgaagtactc tgaagtattt tggttgcctt ttcatttcaa 300
ctgtgttttg aatttgtcag atcacacata tattgtgtta ttgggcgctg tggtatcttt 360
tataaaaacct cttgcttgtg tgcaaaagtt cctaaaagga aacacaagta atgcctatcc 420
attactagca tgctatgctg catgctttac tgccattgct gtatgcttta ctgtctttgt 480
aaaaatcccc ctctcccctt ttctggtaac tggaaaagca tgctaaaaat agtcttatat 540
 tttcacccca taagtgcaga atcaqtaatt ccttggctta aagctcttat ataatcaata 600
ttattggtgg taaataccaa gtttggtatc tcatagctat cttttttaa agaaattaag 660
ttcttgaaaa tttagccaaa tcccgtttta tgggaatgct ctttagaatt cattttgttc 720
agreectttg ttetatggtt gagaaatetg aggeettacg aaggttaaga gaacttteec 780
cqtqtctcac aqqtaqqtaq aqqcaqaqct qqaactaqat atctqqtctq ttqactctaq 840
ctcagtgtct tctggtaact gttgaaaatt gtcttagttt gagagatggc tgaaataatg 900
aacataaaat gctatttata ataacaagta tatgtgaaat ttcttattgt aagactacta 960
ccggcttact gttgaatagt ttggttatag tgtttaggct agaaatgcct cccacattgg1020
taataaacat tacaaaatac aatgtatttt taggtaggca ttttataaaa tgcattatgc1080
catggttgct tttgagatag attgtagtct gggtagcatc tttaaaatgt atgtgggctt1140
aactgttgtt catatcagga gatgctctga ttgtataggt gagactctgt ttctgttatt1200
tttaattgct gtatgaaatg tgatcagatt attttactac caacagttat agtttgaaag1260
tccaactgta ttaattgact gataatatga taatatagag attaaattgt ttgtcttcat1320
tccttaaaaa aaaaaaaaa
<210> 120
<211> 2376
<212> DNA
<213> homo sapiens
<400> 120
```

```
ggatatgaat aaattgttaa tataaagtcc tacagaaatt aatttatgaa atttctctaa
 atcacacaaa acttaaatac agatgactac taccctgaga ctgaaaaata tgttctaatt 120
 tatagtgeta tittigggea gittiggigi cagaatacet atcaacacat tettittita 180
 ttaggaaaaa aaggatgtct acataacaat ttgtaaagtg ataaaatcca ttagttttta 240
 aqtcttctga tagcattggc tattataaga aacaagtatt tgctctcgtt tttaacggga 300
 taataatget atgtetaeat aaaatgattt etaceaeett aaatagetea etgtagaaat 360
tcatgtataa atggaaccat atagtacata catatcatac tcttaggtct ggcaaatatt 420
tgaggttcat ccatatttta tattcactca tcagtagttg taaacacatt cttaaagtag 480
cattttcaga tatgaataag cagggatgaa ataagtatta gggtaaggga aatggttgag 540
gctttcctaa gtgaagtgta aaaaccacag ctttcttttt aatgggatgt ctaatatgca 600
 tttatctgtt caagcatttt aagatttcca tgaaaatgtc ctgaaaaatc aagattcttc 660
attgagggtg aggatetece aatgggagae tgetetgaaa agageatgtg etttttgaat 720
 tagataacct actataatca tggatgttct tgaatactta gcaaacatac cagcatccca 780
 aagtcaccaa gataaaccct cctactccaa catcacatga tcttctaatt ctacctgtaa 840
 aaataagcat aacaattaat tagaatataa ttacgttata tacattactc cacctagaaa 900
 aaaaaatagt tcattatgta gagaaatgct ttttttagta catagagaaa taaaaaatac 960
 agatactcac tagtgaacaa aaaatgtcca aagccagcca caacagatcc taatgaacca1020
 tacaatattg aatgccgggc gcagggagta ttttcaacat ctaaaaatcc taggagctta1080
 agggactaga atgaaaaaaa agaacctaga ttgagtaaga aagtatttca ttttggggtg1140
 ctttggcaaa aatgacaata caccatttct tttcttgtag ttgagggttt aaactagagt1200
 atgtgccacg tgacaaccta aatcagcttg cgttgtcttt gtccaccttt ggtatgcagt1260
 ctgaatcttt aaatccgaaa accttacaaa ttggaccgga aaacccttaa gcagtagggt1320
 aacttggagc tgtatcttaa tttgctaatc aactgacttg gaaataggat aattcatttt1380
 atgagetett taaatgagtt tatttgggaa tatgeetate attggaattg aaageageat1440
 agcttgcttc agtaactcca ataatttggg aagcagaaat ggaaaaagta atttgagtca1500
 tgtttgctta tgtagtgccg tttaaaattc ccctagtaat tacctttcat attttattaa1560
 ctaggttaac atcaactgtg gttgtaagag taaatgtttc accttaagat aaacatgggc1620
 aatatattaa actctagtct gttttcttgc ctgtgaagtg aggctgcact tgattatatt1680
 tgattctttg ttcgtaatac atgggaacga cagctaagtg tggtgaaaaa cgcggggatc1740
 caaagagetg gatttttate teagatetge egetaaettt tgtateetat aggetaettt1800
 aagtgctaaa attctttttc tacagtcttc attggattta tgtatttctt attcctaata1920
 tgtttaactg ggatgtctgt cactctaggg cggcaagaca gacatttaaa agtaacagtc1980
 acactgctga actggcattt ctgttaacac aaaagtttag aaaactcacg gtaactgtta2040
 cttgatttaa gtgtatataa aattttcagt aaggctgctt ttaaaaaggaa ccactgtcca2100
 tttaaaggtt tcatagttat cttcaatggg ttagtattgt ttggggcagg acattaaact2160
 agaagggatt ctataggatg aggtgatacc tagaaggtaa tatattgtaa ggcaaaagag2220
 attagaagaa atggggggaa aggatagtaa aaggcaagtc agattaaagg gttgaaacat2280
 gaagatatcc ccattgtatt ccggccccat gtttgccctt tttggctcca gcatcgtgtt2340
                                                                 2376
 tggaagaggc caatgtgccc tgggtcccta ataaag
<210> 121
<211> 225
<212> DNA
<213> homo sapiens
<400> 121
 cagttgtgaa gttttgtaaa atggtcaccc aacttaaaac taggaaatta cgaagaagag 60
 aaaattgccc ggtatctgtt aaggtctgcc tgtagatctg ctgtagggct tgtcaccatt120
 ggaagcaagg tcctacttca gtggcagatc ttgtggcctt tgagtggctg aagaccacca180
 ccctgcacag ggctggggcc atgcacaggc atccttccct acctt
<210> 122
<211> 1967
<212> DNA
<213> homo sapiens
<400> 122
 acgggcgcg cccgcgctcg caggccactc tetgctgtcg cccgtcccgc gcgctcctcc
```

gaccegetee geteegetee geteggeece gegeegeeeg teaacatgat cegetgegge 120 etggeetgeg agegetgeeg etggateetg cecetgetee tacteagege categeette 180

```
gacatcateg egetggeegg eegeggetgg ttgeagteta gegaceaegg eeagaegtee 240
 tegetgtggt ggaaatgete ceaagaggge ggeggeageg ggteetaega ggagggetgt 300
 cagageetea tggagtaege gtggggtaga geageggetg ceatgetett etgtggette 360
 atcatectgg tgatetgttt catectetee ttettegeee tetgtggace ceagatgett 420
 gtetteetga gagtgattgg aggteteett geettggetg etgtgtteea gateatetee 480
 ctggtaattt accccgtgaa gtacacccag accttcaccc ttcatgccaa ccgtgctgtc 540
 acttacatet ataactggge etacggettt gggtgggeag ceaegattat cetgategge 600
 tgtgccttct tcttctgctg cctccccaac tacgaagatg accttctggg caatgccaag 660
 cccaggtact tctacacatc tgcctaactt gggaatgaat gtgggagaaa atcgctgctg 720
 ctgagatgga ctccagaaga agaaactgtt tctccaggcg actttgaacc cattttttgg 780
 cagtgttcat attattaaac tagtcaaaaa tgctaaaata atttgggaga aaatattttt 840
 taagtagtgt tatagtttca tgtttatctt ttattatgtt ttgtgaagtt gtgtcttttc 900
 actaattacc tatactatgc caatatttcc ttatatctat ccataacatt tatactacat 960
 ttgtaagaga atatgcacgt gaaacttaac actttataag gtaaaaatga ggtttccaag1020
 atttaataat ctgatcaagt tcttgttatt tccaaataga atggactcgg tctgttaagg1080
 gctaaggaga agaggaagat aaggttaaaa gttgttaatg accaaacatt ctaaaagaaa1140
 tgcaaaaaaa aagtttattt tcaagccttc gaactattta aggaaagcaa aatcatttcc1200
 taaatgcata tcatttgtga gaatttctca ttaatatcct gaatcattca ttttagctaa1260
 ggcttcatgt tgactcgata tgtcatctag gaaagtacta tttcatggtc caaacctgtt1320
 gccatagttg gtaaggcttt cctttaagtg tgaaatattt agatgaaatt ttctctttta1380
 aagttettta tagggttagg gtgtgggaaa atgetatatt aataaatetg tagtgttttg1440
 tgtttatatg ttcagaacca gagtagactg gattgaaaga tggactgggt ctaatttatc1500
 atgactgata gatctggtta agttgtgtag taaagcatta ggagggtcat tcttgtcaca1560
 aaagtgccac taaaacagcc tcaggagaat aaatgacttg cttttctaaa tctcaggttt1620
 atctgggctc tatcatatag acaggcttct gatagtttgc aactgtaagc agaaacctac1680
 atatagttaa aatoctggtc tttcttggta aacagatttt aaatgtctga tataaaacat1740
 gccacaggag aattcgggga tttgagtttc tctgaatagc atatatatga tgcatcggat1800
 aggtcattat gattttttac catttcgact tacataatga aaaccaattc attttaaata1860
 tcagattatt attttgtaag ttgtggaaaa agctaattgt agttttcatt atgaagtttt1920
cccaataaac caggtattct aaacttgaaa aaaaaaaag tcgacgc
<210> 123
<211> 612
<212> DNA
<213> homo sapiens
<400> 123
 cctagctgtc cccctgagat gaagaaagag ctccctgttg acagctgcct gccccgctca 60
 ctcgagcttc accctcagaa gatggatccc aagagacagc acattcagct cctgagcagc120
 etgactgagt gcctgacggt ggaccccctc agtgccagcg tctggaggca gctgtaccct180
 aagcacctgt cacagtccag ccttctgctg gagcacttgc tcagctcctg ggagcagatt240
 cccaagaagg tacagaagtc tttgcaagaa accattcagt ccctcaagct taccaaccag300
 gagetgetga ggaagggtag cagtaacaac caggatgteg teacetgtga catggeetge360
 aagggcctgt tgcagcaggt tcagggtcct cggctgccct ggacgcggct cctcctgttg420
 ctgctggtct tcgctgtagg cttcctgtgc catgacetec ggtcacacag ctccttccag480
 gecteeetta etggeeggtt gettegatea tetggettet tacetgetag eeaacaageg540
 tgttccaagt ttactcctac agtctgcaag gttacaggtt ggttggggga gaaatgccgt600
tttggggttc ca
<210> 124
<211> 1183
<212> DNA
<213> homo sapiens
<400> 124
 tttcggcaca gcatgaatgg ctgcgagaag gacagctcgt ccacagattc tgctaacgaa 60
 aaaccagece ttateeeteg tgagaaaaag atetegatae ttgaggaace tteaaaggea 120
 cttcgtgggg tcacaggccc aaatattgag aaatcagtga aggatttgca acgctgcacc 180
gtttctctaa ctagatatcg cgtcatgatt aaggaagaag tggatagttc cgtgaagaag 240
atcaaagctg cctttgctga attacacaac tgcatcattg acaaagaagt ttcattaatg 300
```

gcagaaatgg ataaagttaa agaagaagcc atggaaatcc tgactgctcg tcagaagaaa 360

```
gcagaagaac taaagagact cactgacctt gccagtcaga tggcagagat gcagctggcc 420
gaactcaggg cagaaattaa gcactttgtc agcgagcgta aatatgacga ggagctcggg 480
aaagctgccc ggttttcctg tgacatcgaa cagctgaagg cccaaatcat gctctgcgga 540
gaaattacac atccaaagaa caactattcc tcaagaactc cctgcagctc cctgctgcct 600
ctgctgaatg cgcacgcagc aacctctggg aaacagagta acttttcccg aaaatcatcc 660
actcacaata agccctctga aggcaaagcg gcaaacccca aaatggtgag cagtctcccc 720
agcaccgccg acccctctca ccagaccatg ccggccaaca agcagaatgg atcttctaac 780
caaagacgga gatttaatcc acagtatcat aacaacaggc taaatgggcc tgccaagtcg 840
cagggcagtg ggaatgaage cgagccactg ggaaagggca acagccgcca cgaacacaga 900
agacagccgc acaacggctt ccggcccaaa aacaaaggcg gtgccaaaaa tcaagaggct 960
tccttgggga tgaagacccc cgaggccccg gcccattctg aaaagccccg gcgaaggcag1020
gcacgctgca ggacacctcg ggagggccag gggcctttcc ggggttagtt ttcggttagg1080
ggttttcaca gttgcatttt tttgccccca cggaggatta ggaagttttt ccacagatgg1140
caggeatttt ttttgagttc cccggttttt gacgttttgg ttg
<210> 125
<211> 891
<212> DNA
<213> homo sapiens
<400> 125
eggaggeage ggaaageega geeaggegee tgegegetgg gaagagtagg tteagagtge 60
atteeggaac ceggggegeg gegeactgeg caggeggeeg gacteegete agttteeggt120
gcggcgaaca ccaaagtccg ggaacttaag cattttcggt ttctagggtt gttacgaagc180
tgcaggagcg agatggaggt ggacgcaccg ggtgttgatg gtcgagatgg tctccgggag240
cggcgaggct ttagcgaggg agggaggcag aacttcgatg tgaggcctca gtctggggca300
aatgggcttc ccaaacactc ctactggttg gacctctggc ttttcatcct tttcgatgtg360
gtggtgtttc tctttgtgta ttttttgcca tgacttgttc gctgatatct aaattaagaa420
gttggttctt gagtgaattc tgaaaatggc tacaaacttc ttgaataaag aagacaggac480
totcaataga agaatttcac atotccaagg gaccottcct ttcattttac actttgttac540
taatttgcag aactctatta attgggtagg atttcaccca ttcctagcta agttcttaaa600
attaaaccct ttggttcgtg tttaaaaact ttcaaacatc tgatggcttt acaggggctg660
aatataaaag catttgtact taaaggtctt gtgtattcat taagaaatat agtaatgtct720
tttaatgttt taagagttga tcaggggttt actatggatt gcaagtaata gggatgatta780
ataaggggaa ggtttttatg gaatttcaaa agtcaattta tttcaaaagc gggggaaagg840
gttttgagag gagggggcc caaggtgttc ctggggtttg ccgagggagg c
<210> 126
<211> 482
<212> DNA
<213> homo sapiens
<400> 126
tetetaaata gtaeetttte agtettgeee cagaagttee eteaatttea geageaeega 60
gcggtttata attcattcag ttttccaggc caggcagccc gctatccttg gatggccttt120
ccacgcaata gcatcatgca cttgaaccac acagcaaacc ccacctcaaa tagtaatttc180
ttggacttga atctcccgcc acagcacaac acaggtctgg gagggatccc tgtagcaggg240
gaagaagagg tgaaggtttc gaccatgcca ctgtcaacct cttcccattc attacaacaa300
attagactet ggggtgettg catgggcaac tggatttttg catgatteet ttatgatttt420
aa
                                                               482
<210> 127
<211> 610
<212> DNA
<213> homo sapiens
<400> 127
```

ctegageegt gggeagtgge egegaatgeg eggagaeact gaeetteage geeteggete 60

```
cagegecatg gegeceteca ggaagttett egttggggga aactggaaga tgaacgggeg120
 gaagcagagt ctgggggagc tcatcggcac tctgaacgcg gccaaggtgc cggccgacac180
 cgaggtggtt tgtgctcccc ctactgccta tatcgacttc gcccggcaga agctagatcc240
 caagattgct gtggctgcgc agaactgcta caaagtgact aatggggctt ttactgggga300
 gatcagccct ggcatgatca aagactgcgg agccacgtgg gtggtcctgg ggcactcaga360
 gagaaggcat gtctttgggg agtcagatga gctgattggg cagaaagtgg cccatgctct420
 ggcagaggga ctcggagtaa tcgcctgcat tggggagaag cttagatgaa agggaagctg480
 gcatcactga gaaggttgtt ttcgagcaga cagagggtca tcgcagataa cgtgaaggac540
 tgtggcaagg tcgtcctggc ctatgagcct ttttttgggc catttggtgc ctggcaaggc600
 cttcaaacag
<210> 128
<211> 2072
<212> DNA
<213> homo sapiens
<400> 128
 gggtcatgta ggtacaacag caaccaagaa gatcgatgtc tacctgccct ctgcactcga 60
 gccaggacag actgctgcca atgaccgtgg tgacaatggc cagcgccagg gtgcaggacc 120
 tgatcgggct catctgctgg cagtatacaa gcgaaggacg ggagccgaag ctcaatgaca 180
 atgtcagtgc ctactgcctg catattgctg aggatgatgg ggaggtggac accgatttcc 240
 ccccgctgga ttccaatgag cccattcata agtttggctt cagtactttg gcccctggtt 300
 gaaaagtact catctcctgg tctgacatcc aaagagtcac tctttgttcg aataaatgct 360
 geteatggat tetecettat teaggtggae aacacaaagg ttaccatgaa ggaaatetta 420
 ctgaaggcag tgaagcgaag aaaaggatcc cagaaagttt caggccctca gtaccgcctg 480
 gagaagcaga gcgagcccaa tgtcgccgtt gacctggaca gcactttgga gagccagagc 540
 gcatgggagt tctgcctggt ccgcgagaac agttcaaggg cagacggggt ttttgaggag 600
 gattcgcaaa ttgacatagc cacagtacag gatatgctta gcagccacca ttacaagtca 660
 ttcaaagtca gcatgatcca cagactgcga ttcacaaccg acgtacagct aggtatctct 720
 ggagacaaag tagagataga ccctgttacg aatcagaaag ccagcactaa gttttggatt 780
 aagcagaaac ccatctcaat cgattccgac ctgctctgtg cctgtgacct tgctgaagag 840
 aaaagcccca gtcacgcaat atttaaactc acgtatctaa gcaatcacga ctataaacac 900
 ctctactttg aatcggacgc tgctaccgtc aatgaaattg tgctcaaggt taactacatc 960
 ctggaatcgc gagctagcac tgcccgggct gactactttg ctcaaaaaca aagaaaactg1020
 aacagacgta cgagcttcag cttccagaag gagaagaaat ccgggcagca gtgacactgg1080
 cetecageet caatetytte egtageteag ageetgeetg ceagggeeaa gtgeeetaga1140
 gcccacccgg tgtcctgaag tcctcggggg gaggccagcc cctggctcac tggcacaggg1200
 caggtgggct ctcggggaag gtgtcggggg ccccctagga gggagcgctg gggacattgc1260
 catgggacgg aagtctgctt ggcagtggct ttgataagcg atgcttgggg gtcagaccac1320
 cccctagagg agccacgtgc cgcccagcca ccttcaatgc ctgccaccct gcccgaggat1380
 gtacagagec gtgcccacac atttccttgc aacttgatca aatttcttaa agcaaacaac1440
 aaaaatgtac atttctgttt ttccttttaa taaacaggtg tactctttat catggttggt1500
 atgatggacc attctttggg gcggaggatt gattatgtta ctctctttaa aatctgttcc1560
 catattgaac aggcagattg gaaaagctat ggttcgattt ctcagaagaa atgtttaggt1620
 cttagtcaat agttttaact atgccatttg tttaaatgag tgcatttgct tcgagggtag1680
 tgtcttacta aaagttagga acagagacct agtggtgtgt ccaaggccgt gtcactttcc1740
 cetteageac acceeagett etgaceteag ageceaggag etgegtggae agtgtggggt1800
 gccaggagga ggggcggtgg ctggtcctca ggcacgctgc actcccagcc agacatggtc1860
 tttccgtttc ttaagtagca agtgtaggtt tcagctggca gttccacctg catgttctct1920
 gettegetge ettggaaggg gecacattee ceatteetet teteettaca gegeetgeet1980
 cctttttaag caggcggaaa gctgctgttt ctcacgtttc agggagaggg gtgaccagga2040
 gactgtgtcg tgcgtcggtc ctgggtggac ag
<210> 129
<211> 980
<212> DNA
<213> homo sapiens
<400> 129
```

tttatggagt tagagcaggg gaacttaaaa acaaaagtgt atttaataac ttcatgagac 60 tgtgataacc agtttatatt tgaaatatat acagcacttt gggagactga gggttgaccc120

```
tgatagtcct ttgcacagtg atcttcagat cttaaaagaa aaagaaggca tagaatatat180
 tttgcttaac ttctctttta aggataactt tccatttgat cctccatttg ttcgagtggt240
 gttacctgtt ctctcaggag ggtatgtatt gggtggagga gcattatgta tggaacttct300
 cacaaaacag ggctggagca gtgcctactc aatagaatcg gtcatcatgc aaataaatgc360
 caccttagtc aaaggcaaag ccagagtgca gtttggagca aataagaatc aatataatct420
 agcaagagcc caacaatcct ataattccat tgtacagata catgagaaaa atggctggta480
 cacccctcca aaggaagatg gctaaatatg ttgactgttg tatgtttgga ctaatgttgc540
 tttaaagaaa atctttccaa catgcagaca aaagctttga gtgcccctat tacagcagta600
 ccgaagatgt tagttaatag atattttagt ggataatctg tcatctgaca tccagtataa660
 gttacageet tegeattitig eteattitag atatettigga etgageagtig gggeetttae720
 tgtatttttc ctgataaata cacatactgg ccactcctta tctctttttc ttgaaaagtg780
 aactttttaa aggcagccaa gtcaacatca gggctactga agttggaggg ctttaggggt840
 aactttccta tattgagccc atggggttac aagggtttgg caatatattg ttccctttta900
 cagccaatac aggttttaat cggatgtttc aatattgggt ttaggggatt ttaagggccc960
 tcttaagtca taatagccct
<210> 130
<211> 792
<212> DNA
<213> homo sapiens
<400> 130
 etgtttggca gggcggggcg cetegegaag atggtggcge gegeggegtg tggetecegt 60
 cgtctggcca agtctcagcg cacgcaaccg gccggcgtct cgttggcctg gagcccacac120
 ccaccgggtc cctgaccccg cgcccccgc gcccggttcc cggcatgcct cgcgcccgta180
 agggaaacac gctccggaag ggtggtcagc gccgtggagg aggtgcccgg agcagtgccc240
 aagctgactc gggttccagt gacgatgagg cagccagtga ggcccgcagc accgccagtg300
 aatgccccag ccttctcagc accactgcag aggacagcct tgggggggat gtcgtggatg360
agcaagggcc agcaggaaga ccttgaggaa aagctgaagg agtatgtgga ctgtctcaca420
gacaagagtg ccaagacccg gcaggtgcct cttgagagcc tgcgcctggc cctagcgtcc480
egectaetce eegacttett getggagege egecteaege tageegatge eetggaaaag540
 tgcctcaaga aagggaaggg cgaggaacaa gccctggctg ctgctgtgct aggcctgctc600
 tgcgtgcagc tgggccctgg acctaagggt gaggagctgt ttcacagcct gcagcctctg660
ctggtctctg tgctcagtga cagcacagct agccctgctg cccggctcca cgtgagttgc720
ctgtgcccca tgaaaccctt cctgcaactt atccctcagc agagtggtgg gttcccccta780
tcttcagcct cc
<210> 131
<211> 1092
<212> DNA
<213> homo sapiens
<400> 131
gtgggtcccc ccggttccgg cgcggttgag gccttcggtg gtgaacgagt ctccagcacc
atgtctggtt tgtctggccc accagecegg egeggeeett tteegttage gttgetgett 120
 ttgttcctgc tcggccccag attggtcctt gccatctcct tccatctgcc cattaactct 180
 cgcaagtgcc tccgtgagga gattcacaag gacctgctag tgactggcgc gtacgagatc 240
 teegaceagt etgggggege tggeggeetg egeageacet caagateaca gattetgetg 300
gccatattct ctactccaaa gaggatgcaa ccaaggggaa atttgccttt accactgaag 360
 attatgacat gtttgaagtg tgttttgaga gcaagggaac agggcggata cctgaccaac 420
 tcgtgatcct agacatgaag catggagtgg aggcgaaaaa ttacgaagag attgcaaaag 480
 ttgagaaget caaaccatta gaggtagage tgegaegeet agaagaeett teagaateta 540
 ttgttaatga ttttgcctac atgaagaaga gagaagagga gatgcgtgat accaacgagt 600
 caacaaacac tegggteeta taetteagea tetttteaat gttetgtete attggaetag 660
 ctacctggca ggtcttctac ctgcgacgct tcttcaaggc caagaaattg attgagtaat 720
gaatgaggca tattctcctc ccaccttgta cctcagccag cagaacatcg ctgggacgtg 780
cctggcctaa ggcatcctac caacagcacc atcaaggcac gttggagctt tcttgccaga 840
actgatetet tttggtgtgg gaggaeatgg ggtaecaeet acaeceaaca agteaatgag 900
ggacttcttt ttaatttggt aggattttga ctggttttgc aacaataggt ctattattag 960
agtcacctat gacaaaaaat agggggttac ctagataatg ccaaagtcag catttgtccc1020
```

gggtcccett gtgggagetg tgggaegatg ttttetttte tgeccetttt eeggagegtg1080

gggggccaaa ta 1092 <210> 132 <211> 1523 <212> DNA <213> homo sapiens <400> 132 ctcatgtcta aagaaattcc tttttgtgtg aaaaagacta agagcatctt caacagtgcc 60 atgcaagaga tggaggttta cgtggagaac atccgcagaa gtttggggtt tttaattact 120 ctccatttag gacaccctac acacccaaca gccagtatca aatgctgctc gatcccacca 180 accccagege eggeactgee aagatagaca ageaggagaa ggteaagete aactttgaca 240 tgacggcatc ccccaagatc ctgatgagca agcctgtgct gagtgggggc acaggccgcc 300 ggatttcctt gtcggatatg ccgcgctccc ccatgagcac aaactcttct gtgcacacgg 360 geteegaegt ggageaggat getgagaaga aggeeaegte gageeaette agtgegageg 420 aggagtccat ggacttccag ggataagagc acagcttcac cagccatcca ccaagacggg 480 acaagcaggg agtttatccg gcagcccaaa gcccttctct cctcaactgt cagctcctat 540 cacgacgaaa acggacaaaa cctccaccac cqqcaqcatc ctqaatctta acctqqatcq 600 aagcaaagct gagatggatt tgaaggagct gagcgagtcg gtccagcaac agtccacccc 660 tgttcctctc atctctccca agcgccagat tcgtagcagg ttccagctga atcttgacaa 720 gaccatagag agttgcaaag cacaattagg cataaatgaa atctcggaag atgtctatac 780 ggccgtagag cacagcgatt cggaggattc tgagaagtca gatagtagcg atagtgagta 840 tatcagtgat gatgagcaga agtctaagaa cgagccagaa gacacagagg acaaagaagg 900 ttgtcagatg gacaaagage catctgctgt taaaaaaaag cccaagccta caaacccagt 960 ggagattaaa gaggagctga aaagcacgtc accagccagc gagaaggcag accctggagc1020 agtcaaggac aaggccagcc ctgagcctga gaaggacttt tccgaaaagg caaaaccttc1080 acctcaccc ataaaggata aactgaaggg aaaagatgag acggattccc caacagtccal140 tttgggcctg gactctgatt cagagagcga acttgtcata gatttaggag aagaccattc1200 tgggcgggag ggtcgaaaaa ataagaagga acccaaagaa ccatctccca aacaggatgt1260 tgtaggtaaa actccaccat ccacgacggt gggcagccat tctcccccgg aaacaccggt1320 gctcacccgc tcttccgccc aaacttccgc ggctggcgcc acagccacca ccagcacgtc1380 ctccacggtc accgtcacgg ccccggcccc cgccgccaca ggaagcccag tgaaaaagca1440 gaggccgctt ttaccgaagg aggactgccc cggccgtgca gcgggtccgt gtggaactca1500 tcaagtaaag tttcaaacgt cct <210> 133 <211> 2241 <212> DNA <213> homo sapiens <400> 133 cgccgcccaa gcgccagaag ccgagctggg aaaagggagg cagaggaggc ggaggcagag gcagaggcag agcccggtgc cgagaccaag cgacagaccg gcggggctgg gcctcgcaaa 120 gccggctcgg cgagctctcc cgacacccga gccggggagg aaaagcagcg actcctcgct 180 cgcatccccg ggagccgcac tccagactgg cccggtagtc aggggctcag gagcagatcc 240 egaggeagge titgeteage eteegaegag ggetggeeet titggaaggeg eetteaacag 300 ccggaccaga caggccacca tgaccgagaa ttccacgtcc gcccctgcgg ccaagcccaa 360 gcgggccaag gcctccaaga agtccacaga ccaccccaag tattcagaca tgatcgtggc 420 tgccatccag gccgagaaga accgcgctgg ctcctcgcgc cagtccattc agaagtatat 480 caagagccac tacaaggtgg gtgagaacgc tgactcgcag atcaagttgt ccatcaagcg 540 cctggtcacc accggtgtcc tcaagcagac caaaggggtg ggggcctcgg ggtccttccg 600 gctagccaag agcgacgaac ccaagaagtc agtggccttc aagaagacca agaaggaaat 660 caagaaggta gccacgccaa agaaggcatc caagcccaag aaggctgcct ccaaagcccc 720 aaccaagaaa cccaaagcca ccccggtcaa gaaggccaag aagaagctgg ctgccacgcc 780 caagaaagcc aaaaaaccca agactgtcaa agccaagccg gtcaaggcat ccaagcccaa 840 aaaggccaaa ccagtgaaac ccaaagcaaa gtccagtgcc aagagggccg gcaagaagaa 900 gtgacaatga agtettttet tgeggacaet eeeteetgte teetatttte tgtaaataat 960 ttteteettt tttetetett gatgeteace accaeetttt geeceettet gttetgaett1020 tataagagac aggatttgga ttcttcagaa attacagaat aattcatttt tccttaacca1080

gttgtgcaag gacagcaaca accaatctaa tgatgagaat gtacttatat tttgttttgc1140 tattaaccta cttacggggt tagggatttg cgggggggct tgtgtgtttt gttggcttgt1200

```
ttgccatgaa ggtagatgtg ggtgggaga agacacaagg cagtttgttc tggctagatg1260
 agagggaacc caggaattgt gaggttagca ggaatatett tagggtgagt gagttttect1320
 tgagttgggc acccgttgtg agagtttcag aacctttggc cagcaggaga gaggtggtag1380
 ggagcagcca gccggcaaag gaaggaggtg gaaaaaaacc gccaccgggc tgacttccac1440
 ctcccagtgg tgagcagtgg gggcccaaac ccagtttcct tctcattttt gttagtttgc1500
 cctttcggcc tccctatttt cttagggaag gggagtgggg tccaagtgac agctggatgg1560
 gagaagccat agtttctccc agtcagctag gatgtagcca ttgggggatc tttgtggctt1620
 cagcaaattc tettgttaaa eeggagtgaa aaetteaggg gaagggtggg gagteageea1680
 agtgcctcag tgtgccctgt tgaaacttag gtttttccac gcaatcgatg gattgtgtcc1740
 taggaagact tttcttttcc tctggatttt tgttcctcct gtacaagagg tgtctttgct1800
 tggtttggtg gggctgcggc cacttaaaac ctcccgatct ctttttgagt cctttattat1860
 aagtagttgt agctgcggga gggggagggg gagtgggcgg gcagtggata gtaagactta1920
 ctgcagtcga tttgggattt gctaagtagt tttacagagc tagatctgtg tgcatgtg1980
 tgtttgtgta tatatacata tctagggcta gtacttagtt tcacacccgg gagctgggag2040
 aaaaaacctg tacagttgtc tttctcttat ttttaataaa atagaaaaat cgcgcacttg2100
 cgcgtccccc ccccaccccc ttttttaaac aagtgttact tgtgccggga aaattttgct2160
 gtctttgtaa ttttaaaact ttaaaataaa ttggaaaagg gagaaactga aaaaaaaaa2220
 aaaaaaaaaa aaaaaaaaa a
<210> 134
<211> 631
<212> DNA
<213> homo sapiens
<400> 134
 tgacaatggc ttctttaaaa tactcagagg acaggatcac ggtggaatcg aatcagaagt 60
 ggtggctgga attccacgca ccgatcagta ctgggaaaag atctaatctg ccgtgggcct120
 gtcgtgccag tcctgggggc gagatggggg tagaaatgca tgtgatgcgt taagttcacg180
 taagatacaa gtttcagaca gggtcggaag gactggattg gccaaacatc agacctgtct240
 tccaaggaga ccaagtcctg gctacatccc agcctgtggt tacagtgcag acaggccatg300
 tgagccaccg ctgccagcac agagcgtcct tccccctccg tgatccatcc atctccaggg360
 agcaagacag agacgcagga atggaaagcg gagttcctaa caggatgaaa gttcccccat420
 cagttccccc agtacctcca agcaagtagc tttccacatt tgtcacagaa atcagaggag480
 agatggtgtt gggagccctt tggagaacgc cagtctccca ggccccctgc atctatcgag540
 tttgcaatgt caaacctctc tgatcttgtg tcagatgatt cttaatagga gtttattttt600
 cgggcagctg cgaatcaggg gggtaaccag g
<210> 135
<211> 980
<212> DNA
<213> homo sapiens
<400> 135
 ggggccggga gggtacttag ggccgggget ggcccaggct acggcggctg cagggctccg 60
gcaaccgctc cggcaacgcc aaccgctccg ctgcgcgcag gctgggctgc aggctctcgg120
 ctgcagcgct gggtggatct aggatccggc ttccaacatg tggcagctct gggcctccct180
 ctgctgcctg ctggtgttgg ccaatgcccg gagcaggccc tctttccatc ccctgtcgga240
 tgagctggtc aactatgtca acaaacggaa taccacgtgg caggccgggc acaacttcta300
caacgtggac atgagctact tgaagaggct atgtggtacc ttcctgggtg ggcccaagcc360
accccagaga gttatgttta ccgaggacct gaagctgcct gcaagcttcg atgcacggga420
acaatggcca cagtgtccca ccatcaaaga gatcagagac cagggctcct gtggctcctg480
ctgggccttc ggggctgtgg aagccatctc tgaccggatc tgcatccaca ccaatgcgca540
egteagegtg gaggtgtegg eggaggaeet geteaeetge tgtggcagea tgtgtgggga600
cggctgtaat ggtggctatc ctgctgaagc ttggaacttc tggacaagaa aaggcctggt660
ttctggtggc ctctatgaat cccatgtagg gtgcagaccg tactccatcc ctccctgtga720
gcaccacgtc aacggctccc ggcccccatg cacgggggag ggagataccc ccaagtgtag780
caagatetgt gageetgggt acageeegae etacaaacag gacaageaet acggatacaa840
ttctacagcg tctccaatag cgagaaggac atcatggccg agatctacaa aaacggcccc900
gtggagggag gttctctgtg tattcggact tctgcctaga gtcagggggt acaaaagtcc960
cgggaatttg gggggccgcc
```

<211> 1084

<210> 136

```
<211> 2238
<212> DNA
<213> homo sapiens
<400> 136
cacatgttcg gggaccgagt ggggtcaatc ttctggtgct gcctctccag gtctcttcca 60
ggccggtcat agacgtactc cctctgaggc cgaccgatgg ttagaagagg tgtctaagag 120
egteeggget cageageece aggeeteage tgeteetetg cagecagtte tecageetee 180
tccacccact gccatctccc agccagcatc acctttccaa gggaatgcat tcctcacctc 240
teagectgtg ceagtgggtg tggteecage cetgeaacea geetttgtee etgeecagte 300
ctatectgtg gecaatggaa tgecetatee ageceetaat gtgeetgtgg tgggeateae 360
teceteceag atggtggeca acgtatttgg caetgeagge caeceteagg etgeecatee 420
ccatcagtca cccagcctgg tcaggcagca gacattccct cactacgagg caagcagtgc 480
 taccaccagt cccttcttta agcctcctgc tcagcacctc aacggttctg cagctttcaa 540
 tggtgtagat gatggcaggt tggcctcagc agacaggcat acagaggttc ctacaggcac 600
ctgcccagtg gatccttttg aagcccagtg ggctgcatta gaaaataagt ccaagcagcg 660
 tactaatece teceetacea accetteete eagtgaceta eagaagaegt tegaaatega 720
actttaagca atcattatgg ctatgtatct tgtccatacc agacagggag cagggggtag 780
cqqtcaaaqq aqcaaaacaq actttqtctc ctqattagta ctcttttcac taatcccaaa 840
ggtcccaagg aacaagtcca ggcccagagt actgtgaggg gtgattttga aagacatggg 900
aaaaagcatt cctagagaaa agctgccttg caattaggct aaagaagtca aggaaatgtt 960
gctttctgta ctccctcttc ccttaccccc ttacaaatct ctggcaacag agaggcaaag1020
tatctgaaca agaatctata ttccaagcac atttactgaa atgtaaaaca caacaggaag1080
caaagcaatc teeetttgtt tttcaggeca ttcacetgec teetgtcagt agtggectgt1140
attagagatc aagaagagtg gtttgtgctc aggctgggga acagagaggc acgctatgct1200
gccagaattc ccaggagggc atatcagcaa ctgcccagca gagctatatt ttgggggaga1260
agttgagctt ccattttgag taacagaata aatattatat atatcaaaag ccaaaatctt1320
tatttttatg catttagaat attttaaata gttctcagat attaagaagt tgtatgagtt1380
gtaagtaatc ttgccaaagg taaaggggct agttgtaaga aattgtacat aagattgatt1440
tatcattgat gcctactgaa ataaaaagag gaaaggctgg aagctgcaga caggatccct1500
agettgtttt etgteagtea tteattgtaa gtageacatt geaacaacaa teatgettat1560
gaccaataca gtcactaggt tgtagttttt tttaaataaa ggaaaagcag tattgtcctg1620
gttttaaacc tatgatggaa ttctaatgtc attattttaa tggaatcaat cgaaatatgc1680
totatagaga atatatottt tatatattgc tgcagtttcc ttatgttaat cctttaacac1740
taaggtaaca tgacataatc ataccataga agggaacaca ggttaccata ttggtttgta1800
atatgggtct tggtgggttt tgttttatcc tttaaatttt gttcccatga gttttgtggg1860
gatggggatt ctggttttat tagctttgtg tgtgtcctct tcccccaaac ccccttttgg1920
 tgagaacatc cccttgacag ttgcagcctc ttgacctcgg ataacaataa gagagctcat1980
 ctcattttta cttttgaacg ttggccttac aatcaaatgt aagttatata tatttgtact2040
 gatgaaaatt tataatctgc tttaacaaaa ataaatgttc atggtagaaa aatttgccca2100
 tgaagggctg ttctttcccc tttcctttat tagtaaatga atttattttt cgttcttttg2160
gtcttactct ccattctact gctgctgtaa atccctagtt tagtgactag aaaaataccc2220
ttaagattca tattttca
<210> 137
<211> 398
<212> DNA
<213> homo sapiens
<400> 137
 tgcagattgg ttggggcagc ccggggaggc tggctccgac acacgactga gtgtgcctac 60
 actggtccca caggttttca gctgtggagt ttgggatctg agcttggagc ccatttgttt120
 ctggcagttc cgctcatatt ttccacttga agacatcgcc tccgttcctt ccaagctggg180
agaccagaag tcaacaacag gagggtggag aggccgggtc tcacaatccg cttggctggg240
gagtccactg aggttcttgc atcctgaagc aaaccatgga gagctggtgg ggacttccct300
gttttgcgtt cctgtgtttt ctaatgcacg cccgaggtca aagagacttt gattttggca360
gatgcccttg atgaccctga aacccaccaa gaagccaa
<210> 138
```

```
<212> DNA
<213> homo sapiens
<400> 138
ggcggtggcg gaagtgggag cgggcctgga gtcttggcca taaagcctga ggcggcggca
cggcggagtt ggcggcttgg agagctcggg agagttccct ggaaccagaa cttggacctt 120
gagcccccag cgcaggcccg cgtttgaagg atgacctcta ggaagaaagt gttgctgaag 240
gttatcatcc tgggagattc tggagtcggg aagacatcac tcatgaacca gtatgtgaat 300
aagaaattca gcaatcagta caaagccaca ataggagctg actttctgac caaggaggtg 360
atggtggatg acaggctagt cacaatgcag atatgggaca cagcaggaca ggaacggttc 420
cagteteteg gtgtggeett etacagaggt geagaetget gegttetggt atttgatgtg 480
actgcccca acacattcaa aaccctagat agctggagag atgagtttct catccaggcc 540
agtccccgag atcctgaaaa cttcccattt gttgtgttgg gaaacaagat tgacctcgaa 600
aacagacaag tggccacaaa gcgggcacag gcctggtgct acagcaaaaa caacattccc 660
tactttgaga ccagtgccaa ggaggccatc aacgtggagc aggcgttcca gacgattgca 720
cggaatgcac ttaagcagga aacggaggtg gagctgtaca acgaatttcc tgaacctatc 780
aaactggaca agaatgaccg ggccaaggcc tcggcagaaa gctgcagttg ctgagggggc 840
agtgagagtt gagcacagag tccttcacaa accaagaaca cacgtaggcc ttcaacacaa 900
ttcccctctc ctcttccaaa caaaacatac attgatctct cacatccagc tgccaaaaga 960
aaaccccatc aaacacagtt acaccccaca tattctctca cacacacaca cacacggcac1020
acacacaca acaggtttgg acgttattca gattgcggcc tttgccgtgt tgggttcgtg1080
                                                                 1084
gggg
<210> 139
<211> 1259
<212> DNA
<213> homo sapiens
<400> 139
taaaatacag aagaagagtc cacacactgt ttcacgagaa ggagtgtatc atgatttgta
gtaatcgaag aacatgttta tgggaacagg gtgactcagc tctcctgggg aggatggatg 120
 aggagttagc aggaagagag ggtaccaagt gaggggaaag cagcagggtg ggtctggggc 180
 atggacagga agcagaggct gggaaaagct acatctttta ttcatgcttt ttcacaggag 240
 ctgaagtggg aatcagtaca tcgagaatcc acggccgggg accagtagga cttgagggac 300
 tgcttactac taagtggctg ctgcgaggga aggaccacgt ggtctcagat ttctcagagc 360
 atggaagttt aaaatatett catgagaace teeetattee teagagaaac accaactgaa 420
 aagagccagg aaaacccggg aattttccaa aaggtcttca cgttaaactt gtcttatctc 480
 aggagagage cegetettgt eteccagtte etggtagggt etgeetgttg gaaagtgtae 540
 ctggatgctt ctgggctccg tttggcaata gcaatcttgg ctgatgtgca cagtctggct 600
 cccagctcac ccttttttt taaaagtaag aaaatagttg ctaccgatag ggactttgcc 660
 aagtccaatt atcttctagg attgaaaggt gcattttccc cataaaaaag gcgaggaaaa 720
 cccatggctg ctttgtgtca cctcagtgac ttacagtccc ccttggcatt tagttggtac 780
 tagagecagt cateettaae aaatettite acattitatt tetticacat gtagteatet 840
 tcaaaaagga aagatttgga attttagaaa aggggcaact cttctttta gcattctcat 900
 cagaaagtca caaaaatcga tggaatcatt tccactggga agattgacct tttgtattta 960
 tttgtggggt aaattaataa gcattccaga tgcttgcagc ttcctgcatc caggagatgc1020
 tgtgttcccc gtgatgcagc tggaacccaa gctgcagcag gagatgcaag tttcaggatg1080
 ttccccactg agctggagga atatctacag cagtgatgct tgaaaattttt gtatgaattal140
 ttttgtcgtc ctaccctttt cctccaaaac aaaaattaga ggattatttt aatactttgg1200
 attetteece ettttttgag aaataaagtt ttttatgaaa agecaaaaaa aaaaaaaaa 1259
<210> 140
<211> 1938
<212> DNA
<213> homo sapiens
<400> 140
 ccaagatggc ggcacgatgc ctgcccggct gttggggtgg cggtgacgac aggcagcaaa
```

agaccagetg gteccagatt egetgetgga gtgetggatg gageetttet etgecetetg 120

```
tgacatttcc aattttagat aatgeeteae atetetgtee eeeegggaee eeetggagee 180
cccatgatcc ctaagaagac agettgaacc tagatctcac ccccaggatg ttgcggaggc 240
tgctggagcg gccttgcacg ctggccctgc ttgtgggctc ccagctggct gtcatgatgt 300
acctqtcact ggggggcttc cgaagtctca gtgccctatt tggccgagat cagggaccga 360
catttgacta ttctcaccct cgtgatgtct acagtaacct cagtcacctg cctggggccc 420
cagggggtcc tocagetect caaggtetge cetactgtee agaacgatet cetetettag 480
tgggtcctgt gtcggtgtcc tttagcccag tgccatcact ggcagagatt gtggagcgga 540
atocoogggt agaaccaggg ggooggtaco goootgoagg ttgtgagcoo ogotooogaa 600
cagccatcat tgtgcctcat cgtgcccggg agcaccacct gcgcctgctg ctctaccacc 660
tgcacccctt cttgcagcgc cagcagcttg cttatggcat ctatgtcatc caccaggctg 720
gaaatggaac atttaacagg gcaaaactgt tgaacgttgg ggtgcgagag gccctgcgtg 780
atgaagagtg ggactgcctg ttcttgcacg atgtggacct cttgccagaa aatgaccaca 840
atctgtatgt gtgtgacccc cggggacccc gccatgttgc cgttgctatg aacaagtttg 900
gatacageet ecegtaceee cagtactteg gaggagtete ageaettaet eetgaceagt 960
acctgaagat gaatggcttc cccaatgaat actggggctg gggtggtgag gatgacgaca1020
ttgctaccag ggtgcgcctg gctgggatga agatctctcg gcccccaca tctgtaggac1080
actataagat ggtgaagcac cgaggagata agggcaatga ggaaaatccc cacagatttg1140
acctcctggt ccgtacccag aattcctgga cgcaagatgg gatgaactca ctgacatacc1200
agttgctggc tcgagagctg gggcctcttt ataccaacat cacagcagac attgggactg1260
accetegggg teeteggget cettetggge caegttacce acctggttee teecaageet1320
tccgtcaaga gatgctgcaa cgccggcccc cagccaggcc tgggcctcta tctactgcca1380
accacage ceteegaggt teacactgae tecteettee tgtetacett aatcatgaaa1440
ccgaattcat ggggttgtat tctccccacc ctcagctcct cactgttctc agagggatgt1500
qaqqqaactg aactetggtg ccgtgctagg gggtaggggc ctctccctca ctgctggact1560
qqaqctqqqc tcctgtagac ctgaggggtc cctctctcta gggtctcctg tagggcttat1620
gactgtgaat cettgatgte atgattttat gtgacgatte ctaggagtee ctgeecetag1680
agtaggagca gggctggacc ccaagcccct ccctcttcca tggagagaag agtgatctgg1740
cttctcctcg gacctctgtg aatatttatt ctatttatgg ttcccgggaa gttgtttggt1800
gaaggaagcc cctccctggg cattttctgc ctatgctgga atagctccct cttctggtcc1860
tggctcaggg ggctgggatt ttgatatatt ttctaataaa ggactttgtc tcgcaaaaaa1920
aaaaaaaaa aaaaaaaa
```

<210> 141 <211> 1874 <212> DNA

<213> homo sapiens

<400> 141

```
caaaaaaacc tottaatatt otggagtoat cattocotto gacagcattt toototgott
tgaaagcccc agaaatcagt gttggccatg atgacaacta cagaaaaacc agaggcagct 120
tetttgecaa gaeettteaa ageeatttta ggetgttagg ggeagtggag gtagaatgae 180
tccttgggta ttagagtttc aaccatgaag tctctaacaa tgtattttct tcacctctgc 240
tactcaagta gcatttactg tgtctttggt ttgtgctagg cccccgggtg tgaagcacag 300
accectteca ggggtttaca gtetatttga gaeteeteag ttettgeeae ttttttttt 360
aatctccacc agtcattttt cagacctttt aactcctcaa ttccaacact gatttcccct 420
tttgcattct ccctccttcc cttccttgta gccttttgac tttcattgga aattaggatg 480
taaatctgct caggagacct ggaggagcag aggataatta gcatctcagg ttaagtgtga 540
gtaatctgag aaacaatgac taattcttgc atattttgta acttccatgt gagggttttc 600
agcattgata tttgtgcatt ttctaaacag agatgaggtg gtatcttcac gtagaacatt 660
ggtattcgct tgagaaaaaa agaatagttg aacctatttc tctttcttta caagatgggt 720
ccaggattcc tcttttctct gccataaatg attaattaaa tagcttttgt gtcttacatt 780
ggtagccagc cagccaaggc tetgtttatg ettttggggg gcatatattg ggttccattc 840
tcacctatcc acacaacata tccgtatata tcccctctac tcttacttcc cccaaattta 900
aagaagtatg ggaaatgaga ggcatttccc ccaccccatt tctctcctca cacacagact 960
catattactg gtaggaactt gagaacttta tttccaagtt gttcaaacat ttaccaatca1020
tattaataca atgatgctat ttgcaattcc tgctcctagg ggaggggaga taagaaaccc1080
tcactctcta caggtttggg tacaagtggc aacctgcttc catggccgtg tagaagcatg1140
gtgccctggc ttctctgagg aagctggggt tcatgacaat ggcagatgta aagttattct1200
tgaagtcaga ttgaggctgg gagacagccg tagtagatgt tctactttgt tctgctgttc1260
tctagaaaga atatttggtt ttcctgtata ggaatgagat taattccttt ccaggtattt1320
tataattctg ggaagcaaaa cccatgcctc cccctagcca tttttactgt tatcctattt1380
agatggccat gaagaggatg ctgtgaaatt cccaacaaac attgatgctg acagtcatgc1440
```

agtctgggag tggggaagtg atctttgtt cccatcctct tctttagca gtaaaatagc1500 tgagggaaaa gggagggaaa aggaagttat gggaatacct gtggtggttg tgatccctag1560 gtcttgggag ctcttggagg tgtctgtatc agtggatttc ccatccctg tgggaaatta1620 gtaggctcat ttactgtttt aggtctagcc tatgtggatt ttttcctaac atacctaagc1680 aaacccagtg tcaggatggt aattcttatt ctttcgttca gttaagttt tcccttcatc1740 tgggcactga agggatatgt gaaacaatgt taacattttt ggtagtcttc aaccagggat1800 tgtttctgtt taacttctta taggaaagct tgagtaaaat aaatattgtc tttttgtatg1860 tcaaaaaaaa aaat

<210> 142

<211> 198

<212> PRT

<213> homo sapiens

<400> 142

Arg 1	Asp	Ile	Trp	Thr 5	Met	Asn	Leu	Gln	Arg 10	Tyr	Trp	Gly	Glu	Ile 15	Pro
Ile	Ser	Ser	Ser 20	Gln	Thr	Asn	Arg	Ser 25	Ser	Phe	Asp	Leu	Leu 30	Pro	Arg
Glu	Phe	Arg 35	Leu	Val	Glu	Val	His 40	Asp	Pro	Pro	Leu	His 45	Gln	Pro	Ser
Ala	Asn 50	Lys	Pro	Lys	Pro	Pro 55	Thr	Met	Leu	Asp	Ile 60	Pro	Ser	Glu	Pro
Cys 65	Ser	Leu	Thr	Ile	His 70	Thr	Ile	Gln	Leu	Ile 75	Gln	His	Asn	Arg	Arg 80
Leu	Arg	Asn	Leu	Ile 85	Ala	Thr	Ala	Gln	Ala 90	Gln	Asn	Gln	Gln	Gln 95	Thr
Glu	Gly	Val	Lys 100	Thr	Glu	Glu	Ser	Glu 105	Pro	Leu	Pro	Ser	Cys 110	Pro	Gly
Ser	Pro	Pro 115	Leu	Pro	Asp	Asp	Leu 120	Leu	Pro	Leu	Asp	Cys 125	Lys	Asn	Pro
Asn	Ala 130	Pro	Phe	Gln	Ile	Arg 135	His	Ser	Asp	Pro	Glu 140	Ser	Asp	Phe	Tyr
Arg 145	Gly	Lys	Gly	Glu	Pro 150	Val	Thr	Glu	Leu	Ser 155	Trp	His	Ser	Cys	Arg 160
Gln	Leu	Leu	Tyr	Gln 165	Gly	Ser	Gly	Thr	Asn 170	Pro	Gly	Gln	Arg	Arg 175	Ala
Phe	Asp	Cys	Ala 180	Asn	Glu	Ser	Val	Leu 185	Glu	Asp	Pro	Asn	Leu 190	Met	Leu
Ala	His	Glu 195	Tyr	Trp	Pro										

<210> 143

<211> 92

<212> PRT

<213> homo sapiens

<400> 143

Ile Val Trp Met Val Arg Leu His Gly Ser Glu Gly Met Ser Ser Ile

5 10 15 1 Gly Gly Phe Gly Leu Leu Ala Glu Gly Trp Cys Arg Gly Gly Ser 25 Ser Glu Trp Thr Asn Ser Arg Gly Ser Lys Lys Leu Thr Ser Arg Arg 40 45 35 ${\tt Trp}$ Asp Ile Gly Ile Ser Pro Gln Tyr Leu Val Leu Asp Leu Leu 55 60 His Met Ser Leu Gln Val Gln Gln Thr Phe Ile Lys Arg Phe Ile Val 75 80 65 70 Gln Ala Phe Cys Val Gly Gln Arg Leu Ile Met 85 90 <210> 144 <211> 96 <212> PRT <213> homo sapiens <400> 144 Cys Pro Glu Arg Ser Thr Lys Asn Arg His Gly Ala Gln ${\tt Pro}$ Asp 10 Gly Arg Ser Arg Ser Ala Ala Leu Gln Gly Phe Pro Pro Ser Met Lys 25 20 Arg Asn His Arg Val Leu Arg Ser Pro Asp Val Gln Gly Ser Gly Ala 35 40 45 Gly Thr Thr Gln Gly Lys Thr Gly Arg Ser Gly Pro Glu Pro Arg 60 55 Cys Glu Gln Ser Gly Leu Gly Gly Leu Asp Leu Phe Thr Ala Ala Ser 75 80 65 70 Ile Ala Ser Asp Pro Glu Ser Trp Phe Val Asp Pro Glu Ala Arg 90 85 <210> 145 <211> 52 <212> PRT <213> homo sapiens <400> 145 Glu Gly Arg Val Gln Gln Gly Ser Phe Val Asn Val Gln Gln Gly Pro 10 15 Ala Phe Ile Glu Phe Ile His Gln Leu Thr Gln Ile Lys Gln Glu Pro 25 30 20 Thr Ser Thr Ile Pro Arg Val Ser Arg Ile Thr Ser Thr His Gly 45 35 40 Lys Asp Lys Pro 50

<210> 146 <211> 47

<212> <213>		sapie	ns												
<400>	146														
Pro 1	Ser	Arg	Thr	Ser 5	His	Ser	Gly	Thr	Leu 10	Pro	Ile	Pro	Arg	Leu 15	Lys
Ile	Cys	Phe	Lys 20	Lys	Arg	Gly	Asn	Met 25	Asn	Lys	Asp	Pro	Thr 30	Thr	Leu
Leu	Ala	Gln 35	Val	Leu	Phe	Thr	Leu 40	Asn	Phe	Leu	Asn	Leu 45	Asp	Asn	
<210><211><211><212><213>	66 PRT	sapie	ns												
<400>	147														
Leu 1	Ser	Lys	Phe	Lys 5	Lys	Leu	Arg	Val	Asn 10	Asn	Thr	Cys	Ala	Ser 15	Ser
Val	Val	Gly	Ser 20	Leu	Phe	Ile	Phe	Pro 25	Leu	Phe	Leu	Lys	His 30	Ile	Phe
Lys	Arg	Gly 35	Met	Gly	Asn	Val	Pro 40	Leu	Trp	Leu	Val	Leu 45	Glu	Gly	Tyr
Thr	Arg 50	Tyr	Pro	Trp	Asn	Gly 55	Arg	Cys	Ser	Met	Cys 60	Ala	Leu	Asn	Cys
Leu 65	Gly														
<210><211><212><213>	187 PRT	sapie	ns												
<400>	148						•								
Arg 1	Glu	Gly	Glu	Gly 5	Arg	Pro	Glu	Gly	Asn 10	Gly	Asp	Ile	Arg	Gly 15	Gly
Leu	Arg	Ser	Gly 20	Cys	Asp	Leu	Ser	Leu 25	Leu	Ala	Pro	Leu	Leu 30	Pro	Pro
Ser	Ser	Ser 35	Glu	Ser	Trp	Glu	Cys 40	Cys	Tyr	Pro	Trp	Lys 45	Ile	Lys	Leu
Gly	Leu 50	Gln	Glu	Leu	Ser	Val 55	Trp	Glu	Glu	Ser	Met 60	Ala	Gln	His	Ser
Ala 65	Cys	Val	Pro	Phe	Cys 70	Ser	Gly	Ser	Leu	Ser 75	Pro	Pro	Pro	Ser	Gln 80
Pro	Gln	Arg	Leu	Ser 85	Pro	Ser	Pro	Ser	Ser 90	Ser	Pro	Glu	Asp	Ser 95	Ser
Asp	Gly	Arg	Ala 100	Gly	Pro	Pro	Glu	Pro 105	Thr	Gly	Ser	Ser	Gly 110	Cys	Thr

Gly	Ser	Trp 115	Cys	Ser	Leu	Ser	Pro 120	Val	His	Phe	Ser	His 125	Trp	Gly	Met ·
Glu	Cys 130	Pro	Cys	Ile	Leu	Cys 135	Cys	Arg	Ser	Pro	His 140	Leu	His	Leu	Arg
Gly 145	Leu	Gly	Ser	Pro	Ser 150	Ser	Pro	Gln	Cys	Pro 155	Gln	Ser	Leu	Ser	Gln 160
Thr	Val	Gly	Trp	Asn 165	Met	Arg	Leu	Glu	Ala 170	Glu	Arg	Gly	Ser	Glu 175	His
His	Ser	Pro	Cys 180	Thr	Trp	Val	Ala	Ser 185	Cys	Pro					
<210><211><212><212><213>	147 PRT	sapie	ns												
<400>	149														
Arg 1	Glu	Asp	Trp	Asn 5	Arg	Gly	Lys	Gly	Glu 10	Val	Ala	Pro	Cys	Phe 15	Val
Gln	Pro	Gly	Ser 20	Trp	Gln	Pro	Trp	Cys 25	Trp	Gly	Leu	Asp	Pro 30	Thr	Thr
Pro	Ala	His 35	Leu	Ala	Glu	His	Leu 40	Val	Pro	Ile	Glu	Asp 45	Cys	Leu	Pro
Leu	Leu 50	Leu	His	Leu	Gln	Leu 55	Pro	Pro	Leu	Leu	Gly 60	Thr	Phe	His	Thr
Leu 65	Gln	Asp	Cys	Val	Cys 70	Ser	Gly	Ser	Pro	Glu 75	Gly	Cys	Ser	Ser	Cys 80
Cys	His	Arg	Ala	Ser 85	Ile	Leu	Ile	Leu	Leu 90	Leu	Ile	Val	Gln	Leu 95	Leu
Ser	Val	Cys	Ile 100	Arg	Leu	Ser	'Asp	Gln 105	Arg	Val	His	Gln	His 110	Gln	Glu
Gly	His	Val 115	Glu	Gln	Gln	Gly	Thr 120	His	His	Gly	Gln	Val 125	Asp	Asp	Asn
Asp	Asp 130	Leu	Asp	Gly	Gly	Gly 135	Leu	Arg	Ser	Ser	Tyr 140	Leu	His	Ser	His
Ser 145	Arg	Gln													
<210><211><212><213>	142 PRT	sapie	ens												
<400>	150														
Phe 1		Phe	Phe	Phe 5	Trp	Arg	Glu	Ile	Lys 10	Gln	Phe	Asn	Asp	Gly 15	Phe

Leu	Asp	Leu	His 20	Thr	Thr	Leu	Arg	Gln 25	Glu	Asp	Lys	Ile	Phe 30	Ser	Pro .
Cys	Thr	Gly 35	Thr	Thr	Lys	Phe	Arg 40	Asp	Lys	Arg	Gln	Pro 45	Lys	Tyr	Arg
Gly	Cys 50	Gly	Val	Gln	Ile	His 55	Ala	Gln	Pro	Arg	Val 60	Ser	Cys	Ser	Asn
Arg 65	Pro	Ser	Gly	Ser	Val 70	Thr	Val	Asp	Thr	Gly 75	Glu	Arg	Arg	Asp	Cys 80
Pro	Asp	Pro	Ser	Ser 85	Ala	Gly	Glu	Gly	Thr 90	Gly	Ser	Arg	Val	Cys 95	Met
Gly	Thr	Pro	Cys 100	Pro	Ser	Ala	Arg	Ser 105	Ala	Gln	Gly	Thr	Ala 110	Asn	Thr
Ser	Phe	Gln 115	Cys	Thr	Leu	Lys	Thr 120	Gln	Trp	Ala	Gln	Gly 125	Ala	Gln	Leu
Ser	His 130	Gln	Ser	Cys	Pro	Gln 135	Gly	Trp	Ser	Trp	Gly 140	Trp	Gly		
<210><211><211><212><213>	464 PRT	sapie	ens												
<400>	151														
Arg 1	Gln	Gln	Thr	Val 5	Leu	Gly	Ser	Cys	Ser 10	Ser	Ser	Ile	Leu	Pro 15	Cys
Gln	Leu	Leu	Lys 20	His	Gln	Gly	Ser	Ser 25	Lys	Thr	Glu	Met	Thr 30	Lys	Asn
Trp	Leu	Ile 35	Gln	Thr	Lys	Arg	Arg 40	Tyr	Phe	Ser	Ser	Pro 45	Lys	Gln	Met
Ser	Met 50	Thr	His	Trp	Pro	Arg 55	Thr	Ala	Trp	Leu	Thr 60	_	Cys	Ser	Val
Thr 65	Leu	Phe	Leu	Phe	Pro 70	Ser	Gln	Tyr	Val	Asp 75	Val	Ala	Ser	Leu	Gly 80
Leu	Val	Pro	Gln	Leu 85	Thr	Gly	Gly	Thr	Leu 90	Tyr	Lys	Tyr	Asn	Asn 95	Phe
Gln	Met	His	Leu 100	Asp	Arg	Gln	Gln	Phe 105	Leu	Asn	Asp	Leu	Arg 110	Asn	Asp
Ile	Glu	Lys 115	Lys	Ile	Gly	Phe	Asp 120	Ala	Ile	Met	Arg	Val 125	Arg	Thr	Ser
Thr	Gly 130	Phe	Arg	Ala	Thr	Asp 135	Phe	Phe	Gly	Gly	Ile 140	Leu	Met	Asn	Asn
Thr 145		Asp	Val	Glu	Met 150	Ala	Ala	Ile	Asp	Cys 155	Asp	Lys	Ala	Val	Thr 160
Val	Glu	Phe	Lys	His 165	Asp	Asp	Lys	Leu	Ser 170		Asp	Ser	Gly	Ala 175	Leu

Ile	Gln	Cys	Ala 180	Val	Leu	Tyr	Thr	Thr 185	Ile	Ser	Gly	Gln	Arg 190	Arg	Leu ·
Arg	Ile	His 195	Asn	Leu	Gly	Leu	Asn 200	Cys	Ser	Ser	Gln	Leu 205	Ala	Asp	Leu
Tyr	Lys 210	Ser	Cys	Glu	Thr	Asp 215	Ala	Leu	Ile	Asn	Phe 220	Phe	Ala	Lys	Ser
Ala 225	Phe	Lys	Ala	Val	Leu 230	His	Gln	Pro	Leu	Lys 235	Val	Ile	Arg	Glu	Ile 240
Leu	Val	Asn	Gln	Thr 245	Ala	His	Met	Leu	Ala 250	Cys	Tyr	Arg	Lys	Asn 255	Cys
Ala	Ser	Pro	Ser 260	Ala	Ala	Ser	Gln	Leu 265	Ile	Leu	Pro	Asp	Ser 270	Met	Lys
Val	Leu	Pro 275	Val	Tyr	Met	Asn	Cys 280	Leu	Leu	Lys	Asn	Cys 285	Val	Leu	Leu
Ser	Arg 290	Pro	Glu	Ile	Ser	Thr 295	Asp	Glu	Arg	Ala	Tyr 300	Gln	Arg	Gln	Leu
Val 305	Met	Thr	Met	Gly	Val 310	Ala	Asp	Ser	Gln	Leu 315	Phe	Phe	Tyr	Pro	Gln 320
Leu	Leu	Pro	Ile	His 325	Thr	Leu	Asp	Val	Lys 330	Ser	Thr	Met	Leu	Pro 335	Ala
Ala	Val	Arg	Cys 340	Ser	Glu	Ser	Arg	Leu 345	Ser	Glu	Glu	Gly	Ile 350	Phe	Leu
Leu	Ala	Asn 355	Gly	Leu	His	Met	Phe 360	Leu	Trp	Leu	Gly	Val 365	Ser	Ser	Pro
Pro	Glu 370	Leu	Ile	Gln	Gly	Ile 375	Phe	Asn	Val	Pro	Ser 380	Phe	Ala	His	Ile
Asn 385	Thr	Asp	Met	Thr	Leu 390	Leu	Pro	Glu	Val	Gly 395	Asn	Pro	Tyr	Ser	Gln 400
Gln	Leu	Arg	Met	Ile 405	Met	Gly	Ile	Ile	Gln 410	Gln	Lys	Arg	Pro	Tyr 415	Ser
Met	Lys	Leu	Thr 420	Ile	Val	Lys	Gln	Arg 425	Glu	Gln	Pro	Glu	Met 430	Val	Phe
Arg	Gln	Phe 435	Leu	Val	Glu	Asp	Lys 440	Gly	Leu	Tyr	Gly	Gly 445	Ser	Ser	Tyr
Val	Asp 450	Phe	Leu	Cys	Cys	Val 455	His	Lys	Glu	Ile	Cys 460	Gln	Leu	Leu	Asn
<210><211><212><213>	172 PRT	sapie	ens												
<400>	152														

Thr Met Leu Glu Lys Ile Pro Lys Glu Glu Glu Glu Glu Thr Ser Ala

15 5 10 1 Ile Arg Val Gly Phe Ile Thr Tyr Asn Lys Val Leu His Phe Phe Asn 25 Leu Ala Gln Pro Gln Met Met Gly Val Thr Asp Val Val Lys Ser Asn 45 40 Asp Gly Phe Leu Val Asn Tyr Val Pro Leu Leu Glu Val Phe 55 His Gln Ile Pro Asp Met Glu Ser Gln Ser Val Ile Asn Leu Leu Asp 75 80 70 Gln Ser Asn Glu Asn Glu Thr Val Phe Ala Pro Val Ile Ala Asp 95 90 Pro Gly Met Glu Ala Leu Lys Ala Ala Asp Cys Gly Lys Leu Phe Ala 110 Thr Ala Glu Gly Lys Leu Lys Pro Ala Pro Ile Phe His Ser Ser Leu 120 115 Lys Leu Val Asn Thr Asp Lys Glu Lys Ile Arg Asp Asp Lys Asn 135 140 130 Lys Val Ser Leu Ala Asp Cys Val Thr Asn Tyr Asp Phe Gln Pro Gln 155 150 145 Leu Cys Asp Thr Leu Pro Leu Ser His Arg Leu Ala 170 165 <210> 153 <211> 141 <212> PRT <213> homo sapiens <400> 153 Thr Glu Phe Val Ile Val Leu Glu Leu His Gly Gly Ser Thr Val Phe 10 Gly Ser Phe Tyr Ile Gly Val His Cys Leu Val Thr Ile Asp Gly His 30 20 25 Val His Gln Ser Thr Lys Glu Ile Ser Gly Ser Glu Thr Cys Ala Asp 40 45 Gly Thr Asn Pro His Asn Ser Ile Lys Ala Tyr Phe Leu Phe Asn Ile 60 50 55 Ile Gln Val His Glu Ile Glu Val Val Gln Lys Leu Leu Ser Leu Ser 75 80 Gln Ile Val Val Phe Val Lys Gly Ser Ser Ser Glu Leu Arg Asn Pro 90 95 Glu Gly His Val His Ile Leu Thr Arg Lys Glu Glu Cys Gln Arg 105 110 Ser His Arq Ala Ala Gly Glu Pro Arq Ser Pro Trp Pro Met Arg His 115 120 125

Leu	Phe 130	Gly	Ala	Gly	Lys	Val 135	Ser	Ser	Leu	Cys	Leu 140	Tyr			
<210><211><212><213>	504 PRT	sapie	ns												
<400>	154														
Leu 1	Asp	Arg	Cys	Gly 5	Leu	Tyr	Pro	Val	Ser 10	Ser	Leu	Leu	Gln	Val 15	Glu
Gly	Ser	Leu	Trp 20	Arg	Ala	Ala	Gly	Val 25	Phe	Gln	Pro	Pro	Pro 30	Gly	Leu
Ala	His	Ala 35	Asn	Asp	Trp	Arg	Phe 40	Thr	Ala	Arg	Val	His 45	Gly	Gly	Ala
Leu	Gly 50	Glu	His	Asp	Lys	Met 55	Val	Ala	Ala	Ala	Thr 60	Gly	Ser	Glu	Ile
Leu 65	Leu	Trp	Ala	Leu	Gln 70	Ala	Glu	Gly	Gly	Gly 75	Ser	Glu	Ile	Gly	Val 80
Phe	His	Leu	Gly	Val 85	Pro	Val	Glu	Ala	Leu 90	Phe	Phe	Val	Gly	Asn 95	Gln
Leu	Ile	Ala	Thr 100	Ser	His	Thr	Gly	Arg 105	Ile	Gly	Val	Trp	Asn 110	Ala	Val
Thr	Lys	His 115	Trp	Gln	Val	Gln	Glu 120	Val	Gln	Pro	Ile	Thr 125	Ser	Tyr	Asp
Ala	Ala 130	_	Ser	Phe	Leu	Leu 135	Leu	Gly	Cys	Asn	Asn 140	Gly	Ser	Ile	Tyr
Tyr 145		Asp	Val	Gln	Lys 150	Phe		Leu		Met 155	Lys	Asp	Asn	Asp	Leu 160
Leu	. Val	Ser	Glu	Leu 165			•		170			Gly		Thr 175	Ala
Leu	. Ser	Val	Tyr 180	Leu	Thr	Pro	Lys	185				Gly	190		
Glu	Ile	195	Tyr	Gly	Thr	Ser	200	_	Gly			205	Ile	Val	Gln
His	210		Thr	Val	Gly	Ser 215	_		Gln		220	Gln	Thr	Phe	Thr
Val 225		Arg	Ser	Pro	230				Met	235				His	240
Ile	e Ser	Val	Cys	Ala 245	Asp	Asn	Asn	His	Val 250	Arg	Thr	Trp	Ser	Val 255	Thr
Arg	, Phe	e Arg	Gly 260	Met	Ile	Ser	Thr	Gln 265	Pro	Gly	Ser		Pro 270	Leu	Ala
Ser	: Phe	Lys 275	Ile	Leu	Ala	Leu	Glu 280	Ser	Ala	Asp	Gly	His 285	Gly	Gly	Cys

Ser	Ala 290	Gly	Asn	Asp	Ile	Gly 295	Pro	Tyr	Gly	Glu	Arg 300	Asp	Asp	Gln	Gln ·
Val 305	Phe	Ile	Gln	Lys	Val 310	Val	Pro	Ser	Ala	Ser 315	Gln	Leu	Phe	Val	Arg 320
Leu	Ser	Ser	Thr	Gly 325	Gln	Arg	Val	Cys	Ser 330	Val	Arg	Ser	Val	Asp 335	Gly
Ser	Pro	Thr	Thr 340	Ala	Phe	Thr	Val	Leu 345	Glu	Cys	Glu	Gly	Ser 350	Arg	Arg
Leu	Gly	Ser 355	Arg	Pro	Arg	Arg	Tyr 360	Leu	Leu	Thr	Gly	Gln 365	Ala	Asn	Gly
Ser	Leu 370	Ala	Met	Trp	Asp	Leu 375	Thr	Thr	Ala	Met	Asp 380	Gly	Leu	Gly	Gln
Ala 385	Pro	Ala	Gly	Gly	Leu 390	Thr	Glu	Gln	Glu	Leu 395	Met	Glu	Gln	Leu	Glu 400
His	Cys	Glu	Leu	Ala 405	Pro	Pro	Ala	Pro	Ser 410	Ala	Pro	Ser	Trp	Gly 415	Cys
Leu	Pro	Ser	Pro 420	Ser	Pro	Arg	Ile	Ser 425	Leu	Thr	Ser	Leu	His 430	Ser	Ala
Ser	Ser	Asn 435	Thr	Ser	Leu	Ser	Gly 440	His	Arg	Gly	Ser	Pro 445	Ser	Pro	Pro
Gln	Ala 450	Glu	Ala	Arg	Arg	Arg 455	Gly	Gly	Gly	Ser	Phe 460	Val	Glu	Arg	Cys
Gln 465	Glu	Leu	Val	Arg	Ser 470	Gly	Pro	Asp	Leu	Arg 475	Arg	Pro	Pro	Thr	Pro 480
Ala	Pro	Trp	Pro	Ser 485	Ser	Gly	Leu	Gly	Thr 490	Pro	Leu	Thr	Pro	Pro 495	Lys
Met	Lys	Leu	Asn 500	Glu	Thr	Ser	Phe '								
<210><211><211><212><213>	289 PRT	sapie	ens												
<400>	155														
Gly 1	Gln	Pro	Ala	Arg 5	Pro	Gly	Ala	Met	Ala 10	Ala	Ala	Ala	Thr	Ala 15	Ala
Glu	Gly	Val	Pro 20	Ser	Arg	Gly	Pro	Pro 25	Gly	Glu	Val	Ile	His 30	Leu	Asn
Val	Gly	Gly 35	Lys	Arg	Phe	Ser	Thr 40	Ser	Arg	Gln	Thr	Leu 45	Thr	Trp	Ile
Pro	Asp 50	Ser	Phe	Phe	Ser	Ser 55	Leu	Leu	Ser	Gly	Arg 60	Ile	Ser	Thr	Leu
															_

Lys Asp Glu Thr Gly Ala Ile Phe Ile Asp Arg Asp Pro Thr Val Phe

65					70					75					80
Ala	Pro	Ile	Leu	Asn 85	Phe	Leu	Arg	Thr	Lys 90	Glu	Leu	Asp	Pro	Arg 95	Gly
Val	His	Gly	Ser 100	Ser	Leu	Leu	His	Glu 105	Ala	Gln	Phe	Tyr	Gly 110	Leu	Thr
Pro	Leu	Val 115	Arg	Arg	Leu	Gln	Leu 120	Arg	Glu	Glu	Leu	Asp 125	Arg	Ser	Ser
Cys	Gly 130	Asn	Val	Leu	Phe	Asn 135	Gly	Tyr	Leu	Pro	Pro 140	Pro	Val	Phe	Pro
Val 145	Lys	Arg	Arg	Asn	Arg 150	His	Ser	Leu	Val	Gly 155	Pro	Gln	Gln	Leu	Gly 160
Gly	Arg	Pro	Ala	Pro 165	Val	Arg	Arg	Ser	Asn 170	Thr	Met	Pro	Pro	Asn 175	Leu
Gly	Asn	Ala	Gly 180	Leu	Leu	Gly	Arg	Met 185	Leu	Asp	Glu	Lys	Thr 190	Pro	Pro
Ser	Pro	Ser 195	Gly	Gln	Pro	Glu	Glu 200	Pro	Gly	Met	Val	Arg 205	Leu	Val	Cys
Gly	His 210	His	Asn	Trp	Ile	Ala 215	Val	Ala	Tyr	Thr	Gln 220	Phe	Leu	Val	Cys
Tyr 225	Arg	Leu	Lys	Glu	Ala 230	Ser	Gly	Gly	Gln	Leu 235	Val	Phe	Ser	Ser	Pro 240
Arg	Leu	Asp	Trp	Pro 245	Met	Arg	Thr	Thr	Gly 250	Ala	Ser	Gln	Pro	Gly 255	Cys
Met	Val	Gly	Leu 260	Trp	Val	Asn	Met	Thr 265	Arg	Trp	Trp	Gln	Gln 270	Pro	Pro
Ala	Ala	Arg 275	Ser	Cys	Tyr	Gly	Leu 280	Cys	Arg	Arg	Lys	Ala 285	Val	Ala	Pro
Arg							•								
<210><211><211><212><213>	161 PRT	sapie	ens												
<400>	156														
Val 1	Pro	Gln	Asp	Gln 5	Gly	Ile	Pro	Arg	His 10	His	Gly	Ser	Cys	Val 15	Val
Gln	Lys	Glu	Val 20	Ser	Leu	Ser	Phe	Ile 25	Leu	Gly	Gly	Val	Arg 30	Gly	Val
Pro	Arg	Pro 35	Leu	Glu	Gly	His	Gly 40	Ala	Gly	Val	Gly	Gly 45	Arg	Arg	Arg
Ser	Gly 50	Pro	Leu	Arg	Thr	Ser 55	Ser	Trp	Gln	Arg	Ser 60	Thr	Lys	Leu	Pro
Pro	Pro	Arg	Arg	Arg	Ala	Ser	Ala	Cys	Gly	Gly	Leu	Gly	Leu	Pro	Arg

65					70					75					80 .
Trp	Pro	Asp	Lys	Glu 85	Val	Leu	Leu	Glu	Ala 90	Glu	Trp	Arg	Leu	Val 95	Arg
Glu	Met	Arg	Gly 100	Glu	Gly	Leu	Gly	Arg 105	Gln	Pro	His	Glu	Gly 110	Ala	Glu
Gly	Ala	Gly 115	Gly	Ala	Ser	Ser	Gln 120	Cys	Ser	Ser	Cys	Ser 125	Ile	Ser	Ser
Cys	Ser 130	Val	Arg	Pro	Pro	Ala 135	Gly	Ala	Trp	Pro	Arg 140	Pro	Ser	Met	Ala
Val 145	Val	Arg	Ser	His	Met 150	Ala	Lys	Leu	Pro	Leu 155	Ala	Trp	Pro	Val	Ser 160
Arg															
<210><211><212><212><213>	262 PRT	sapie	ns												
<400>	157														
Gln 1	Leu	Trp	Gly	Phe 5	Ala	Ala	Gly	Ser	Asp 10	Ser	Arg	Pro	Ala	Met 15	Gly
Cys	Asp	Gly	Gly 20	Thr	Ile	Pro	Lys	Arg 25	His	Glu	Leu	Val	Lys 30	Gly	Pro
Lys	Lys	Val 35	Glu	Lys	Val	Asp	Lys 40	Asp	Ala	Glu	Leu	Val 45	Ala	Gln	Trp
Asn	Tyr 50	Cys	Thr	Leu	Ser	Gln 55	Glu	Ile	Leu	Arg	Arg 60	Pro	Ile	Val	Ala
Cys 65	Glu	Leu	Gly	Arg	Leu 70	Tyr	Asn	Lys	Asp	Ala 75	Val	Ile	Glu	Phe	Leu 80
Leu	Asp	Lys	Ser	Ala 85	Glu	Lys	'Ala	Leu	Gly 90	Lys	Ala	Ala	Ser	His 95	Ile
Lys	Ser	Ile	Lys 100	Asn	Val	Thr	Glu	Leu 105	Lys	Leu	Ser	Asp	Asn 110	Pro	Ala
Trp	Glu	Gly 115	Asp	Lys	Gly	Asn	Thr 120	Lys	Gly	Asp	Lys	His 125	Asp	Asp	Leu
Gln	Arg 130		Arg	Phe	Ile	Cys 135	Pro	Val	Val	Gly	Leu 140	Glu	Met	Asn	Gly
Arg 145	His	Arg	Phe	Cys	Phe 150	Leu	Arg	Cys	Cys	Gly 155	Cys	Val	Phe	Ser	Glu 160
Arg	Ala	Leu	Lys	Glu 165	Ile	Lys	Ala	Glu	Val 170	Cys	His	Thr	Cys	Gly 175	Ala
Ala	Phe	Gln	Glu 180	Asp	Asp	Val	Ile	Val 185	Leu	Asn	Gly	Thr	Lys 190	Glu	Asp
Val	Asp	Val	Leu	Lys	Thr	Arg	Met	Glu	Glu	Arg	Arg	Leu	Arg	Ala	Asn

Ser Leu

40

25

Leu

His

Glu His Asp Asp Ile

Pro

Cys

45

Leu

30

Ile Leu

Gln

His

200

215

Lys Lys

Ser

Ile Leu Leu Gly Ala Ile

Ile Arg

35

20

Gln Pro

230

Trp Lys Arg Lys Gln Arg Asn Pro Arg Gln Gln Ser Leu Phe Gln Asn

Pro Gln Gly His

Pro Ala Leu Ile Leu Glu Arg Arg Lys Pro

195

Met Ser Val

Lys

Lys

210

Gln

225

Phe

Pro

Val His

205

Gln

Thr

Gly

240

220

235

Gln Lys Leu Arg

Glu	Gly 50	Ser	Pro	Thr	Arg	Val 55	Ala	Asn	Phe	Arg	Phe 60	Tyr	Leu	Phe	Gln ·
Gly 65	Ser	Leu	Arg	Lys	His 70	Thr	Ala	Ala	Ala	Pro 75	Lys	Glu	Ala	Glu	Pro 80
Val	Ser	Ala	Val	His 85	Leu	Gln	Ala	His	Asn 90	Gly	Ala	Asp	Glu	Thr 95	Arg
Pro	Leu	Glu	Val 100	Ile	Val	Leu	Val	Thr 105	Phe	Ser	Val	Ser	Phe 110	Ile	Pro
Phe	Pro	Gly 115	Arg	Ile	Ile	Arg	Lys 120	Leu	Gln	Leu	Cys	His 125	Ile	Leu	Asn
Ala	Phe 130	Asn	Val	Arg	Cys	Cys 135	Leu	Pro	Lys	Ser	Leu 140	Phe	Cys	Arg	Phe
Val 145	Gln	Glu	Lys	Phe	Asn 150	Asp	Gly	Ile	Phe	Val 155	Ile	Lys	Ser	Ala	Lys 160
Phe	Thr	Gly	Asn	Tyr 165	Trp	Ser	Ser								
<210><211><211><212><213>	238 PRT	sapie	ns												
<400>	160														
His 1	Gln	Trp	His	Ile 5	Thr	Ala	Met	Gly	Ser 10	Gln	His	Ser	Ala	Ala 15	Ala
Arg	Pro	Ser	Ser 20	Cys	Arg	Arg	Lys	Gln 25	Glu	Asp	Asp	Arg	Asp 30	Gly	Leu
Leu	Ala	Glu 35	Arg	Glu	Gln	Glu	Glu 40	Ala	Ile	Ala	Gln	Phe 45	Pro	Tyr	Val
Glu	Phe 50	Thr	Gly	Arg	Asp	Ser 55	'Ile	Thr	Cys	Leu	Thr 60	Cys	Gln	Gly	Thr
Gly 65	Tyr	Ile	Pro	Thr	Glu 70	Gln	Val	Asn	Glu	Leu 75	Val	Ala	Leu	Ile	Pro 80
His	Ser	Asp	Gln	Arg 85	Leu	Arg	Pro	Gln	Arg 90	Thr	Lys	Gln	Tyr	Val 95	Leu
Leu	Ser	Ile	Leu 100	Leu	Cys	Leu	Leu	Ala 105	Ser	Gly	Leu	Val	Val 110	Phe	Phe
Leu	Phe	Pro 115	His	Ser	Val	Leu	Val 120	Asp	Asp	Asp	Gly	Ile 125	Lys	Val	Val
Lys	Val 130	Thr	Phe	Asn	Lys	Gln 135	Asp	Ser	Leu	Val	Ile 140	Leu	Thr	Ile	Met
Ala 145	Thr	Leu	Lys	Ile	Arg 150	Asn	Ser	Asn	Phe	Tyr 155	Thr	Val	Ala	Val	Thr 160
Ser	T 011	Ser	Ser	Gln	Ile	Gln	ጥኒፖ	Met	Δen	Thr	Val	Val	Asn	Phe	Thr

Gly	Lys	Ala	GIu 180	Met	GIÀ	GIŸ	Pro	185	ser	Tyr	vai	IÀL	190	rne	Cys
Thr	Val	Pro 195	Glu	Ile	Leu	Val	His 200	Asn	Ile	Val	Ile	Phe 205	Met	Arg	Thr
Ser	Val 210	Lys	Ile	Ser	Tyr	Ile 215	Gly	Leu	Met	Thr	Gln 220	Ser	Ser	Leu	Glu
Thr 225	His	His	Tyr	Val	Asp 230	Cys	Gly	Gly	Asn	Ser 235	Thr	Ala	Ile		
<210><211><212><213>	91 PRT	sapie	ns												
<400>	161														
Ser 1	Ser	His	Glu	Asp 5	His	Tyr	Val	Val	His 10	Gln	Asp	Leu	Arg	Tyr 15	Arg
Ala	Glu	Glu	Val 20	His	Ile	Gly	Lys	Arg 25	Ser	Ser	His	Leu	Gly 30	Leu	Pro
Gly	Lys	Ile 35	His	His	Cys	Val	His 40	Val	Leu	Asn	Leu	Ala 45	Gly	Gln	Ala
Gly	His 50	Cys	His	Arg	Val	Glu 55	Val	Gly	Val	Pro	Asp 60	Phe	Gln	Gly	Gly
His 65	Asp	Gly	Glu	Asn	Tyr 70	Lys	Gly	Val	Leu	Leu 75	Ile	Lys	Cys	Asp	Phe 80
His	His	Phe	Asp	Ala 85	Val	Ile	Ile	His	Lys 90	Asp					
<210><211><212><213>	133 PRT	sapie	ens												
<400>	162														
Met 1	Arg	Lys	Gln	Glu 5	Glu	Asn	His	Gln	Thr 10	Arg	Cys	Gln	Glu	Thr 15	Lys
Gln	Asp	Gly	Gln 20	Glu	Asp	Ile	Leu	Leu 25	Ser	Ser	Leu	Arg	Ala 30	Gln	Ser
Leu	Ile	Thr 35	Val	Trp	Asp	Gln	Ser 40	His	Gln	Leu	Ile	Tyr 45	Leu	Leu	Cys
Trp	Asn 50	Val	Ala	Cys	Pro	Leu 55	Ala	Arg	Glu	Thr	Gly 60	Asp	Ala	Ile	Ser

Pro Gly Glu Phe His Ile Trp Glu Leu Ser Asn Gly Phe Phe Leu Leu

Ser Phe Ser Gln Gln Thr Val Pro Val Ile Phe Leu Leu Ser Pro Ala

Gly Lys Ala Glu Met Gly Gly Pro Phe Ser Tyr Val Tyr Phe Phe Cys

Gly	Gly	Gly	Ala 100	Ser	Ser	Ser	Gly	Met 105	Leu	Arg	Pro	His	Gly 110	Arg	Asp
Met	Pro	Leu 115	Val	Ser	Cys	Pro	Ala 120	Ser	Ser	Val	Gly	Gly 125	Ala	Ala	Arg
Thr	Gln 130	Arg	Ala	Gly											
<210><211><211><212><213>	91 PRT	sapie	ns												
<400>	163														
Ala 1	Ala	Gly	Ala	Ala 5	Gly	Pro	His	Arg	Arg 10	Arg	His	Pro	Leu	His 15	Pro
Ser	Leu	Leu	Arg 20	Glu	His	His	Ser	Gln 25	Ala	Gln	Ala	Pro	Glu 30	Gly	Val
Arg	Pro	Gly 35	Gln	Ser	Thr	Leu	Ser 40	Arg	Ile	Glu	Ala	Val 45	Gln	Pro	Gln
Leu	Pro 50	Arg	Pro	Ser	Gly	Leu 55	Pro	Ser	Leu	Trp	Gly 60	Trp	Leu	Pro	Trp
Leu 65	Leu	Gly	Thr	Arg	Pro 70	Gln	Arg	His	Pro	Glu 75	Ile	Pro	Pro	Glu	Thr 80
Gln	Cys	Ala	Ser	Thr 85	Ala	Val	Arg	Arg	Ser 90	Ala					
<210><211><212><212><213>	174 PRT	sanie	ns												
<400>		<u>F</u>													
Leu 1	_	Asn	Pro	Thr 5	Gln	Arg	Asn	Lys	Asp 10	Gln	Leu	Ile	Arg	Ala 15	Ala
Val	Lys	Phe	Leu 20	Asp	Thr	Asp	Thr	Ile 25	Cys	Tyr	Arg	Val	Glu 30	Glu	Pro
Glu	Thr	Leu 35	Val	Glu	Leu	Gln	Arg 40	Asn	Glu	Trp	Asp	Pro 45	Ile	Ile	Glu
Trp	Ala 50	Glu	Lys	Arg	Tyr	Gly 55	Val	Glu	Ile	Ser	Ser 60	Ser	Thr	Ser	Ile
Met 65	-	Pro	Ser	Ile	Pro 70	Ala	Lys	Thr	Arg	Glu 75	Val	Leu	Val	Ser	His 80
Leu	Ala	Ser	Tyr	Asn 85	Thr	Trp	Ala	Leu	Gln 90	Gly	Ile	Glu	Phe	Val 95	Ala
Ala	Gln	Leu	Lys 100	Ser	Met	Val	Leu	Thr 105	Leu	Gly	Leu	Ile	Asp 110	Leu	Arg

Leu	Thr	Val 115	Glu	Gln	Ala	Val	Leu 120	Leu	Ser	Arg	Leu	Glu 125	Glu	Glu	Tyr
Gln	Ile 130	Gln	Lys	Trp	Gly	Asn 135	Ile	Glu	Trp	Ala	His 140	Asp	Tyr	Glu	Leu
Gln 145	Glu	Leu	Arg	Ala	Arg 150	Thr	Ala	Ala	Gly	Thr 155	Leu	Phe	Ile	His	Leu 160
Cys	Ser	Glu	Ser	Thr 165	Thr	Val	Lys	His	Lys 170	Leu	Leu	Lys	Glu		
<210><211><212><213>	66 PRT	sapie	ns												
<400>	165														
Cys 1	Leu	Gly	Leu	Leu 5	His	Pro	Val	Ala	Asp 10	Gly	Val	Gly	Val	Gln 15	Lys
Leu	His	Gly	Cys 20	Pro	Asp	Gln	Leu	Ile 25	Leu	Val	Ser	Leu	Gly 30	Trp	Val
Val	Gln	Ser 35	Arg	Val	Ala	Gln	Cys 40	Gly	Gln	Val	His	Gly 45	Val	Val	Leu
Asp	Gly 50	Ile	Leu	Leu	Gly	Ile 55	Pro	Leu	Ser	Thr	Leu 60	Cys	Thr	Cys	Gln
Gly 65	Leu														
<210><211><211><212><213>	132 PRT	sapie	ns												
<400>	166														
Ser 1	Trp	Arg	Glu	Thr 5	Glu	Ile	`Lys	Glu	Gln 10	Leu	Thr	Glu	His	Leu 15	Cys
Thr	Ile	Ile	Gln 20	Gln	Asn	Glu	Leu	Arg 25	Lys	Ala	Lys	Lys	Leu 30	Glu	Glu
Leu	Met	Gln 35	Gln	Leu	Asp	Val	Glu 40	Ala	Asp	Glu	Glu	Thr 45	Leu	Glu	Leu
Glu	Val 50	Glu	Val	Glu	Arg	Leu 55	Leu	His	Glu	Gln	Glu 60	Val	Glu	Ser	Arg
Arg 65	Pro	Val	Val	Arg	Leu 70	Glu	Arg	Pro	Phe	Gln 75	Pro	Ala	Glu	Glu	Ser 80
Val		T	~ 7	Dl	7.1.	Larg	Glu	Δan	Ara	Lvs	Cys	Gln	Glu	<i>α</i> 1	77.7
	Thr	Leu	Glu	Phe 85	Ala	цув	010	11011	90	-2 -	-1-		O C4	95	Ala
Val	Thr Ser	Pro	Lys		Asp	_	Gln		90	Asn	-	Ser	Ser		Pro

Ala Leu Ala Thr 130 <210> 167 <211> 67 <212> PRT <213> homo sapiens <400> 167 Ser His Ser Pro Pro Gln Ala Glu Met Ala Ser Leu Gln Ile Leu Met 10 Leu Asn Glu Pro Leu Val Ser Leu Ile Leu Leu Val Arg Val Ala 20 25 Arg Pro Pro Pro Gln Ala ProLys Ser Leu His Arq Leu Leu His 40 Leu Val Val Ala Ser Thr Pro Pro Thr Ser Trp Pro Phe Gly Ala His 55 60 Phe Ala Val 65 <210> 168 <211> 74 <212> PRT <213> homo sapiens <400> 168 Asn Gly Leu Ser Lys Arg Thr Thr Gly Leu Leu Asp Ser Thr Ser Cys 1 10 15 Ser Cys Ser Asn Leu Ser Thr Ser Thr Ser Ser Ser Lys Val Ser 20 25 30 Ser Ala Ser Thr Cys Ile Ser Ser Cys Asn Ser Ser Asn Phe Leu Ala 40 35 45 Phe Arg Ser Ser Phe Cys Cys Met Ile Val Gln Arg Cys Ser Val Ser Cys Ser Phe Ile Ser Val Ser Arg His Glu 65 70 <210> 169 <211> 89 <212> PRT <213> homo sapiens <400> 169 Gly Arg Gly Gly Leu Gly Cys Arg Ser Trp Arg Cys Ala Gly Ser Ser 10 15 Arg Pro Tyr Ser Glu Val Phe Ser Val Ala Leu Leu Glu Arg Gly 25 Ser Cys Ile Leu Arg Ile Phe Cys Ile Ser Ala Pro Phe Ser Ser Arg

45 35 40

Cys His Arg Met Pro Gln Ile Gly Pro Val Pro Ser Val Asn Gln Thr Glu Thr Ala Ser Leu Gln Gly Gln Ser Pro Ser Thr Asp Glu Leu Ser 75 65 70

Glu Arg Asp Ser Glu Met Gln Arg Pro 85

<210> 170

<211> 74

<212> PRT

<213> homo sapiens

<400> 170

Gly Pro Leu His Phe Arg Ile Pro Leu Lys Leu Ile Cys Thr Trp Thr Arg Gly Gly Phe Arg Ser Leu Ile His Gly Thr Lys Arg Asp Leu Leu 20 25 Tyr Leu Gly His Pro Met Ala Ala Arg Arg Glu Gly Ser Arg Thr Arg 35 40 45 Ala Gly Gly Thr Pro Leu Lys Glu Arg Lys Asn Ala Tyr Ser Gln Asp 55 60

His Gly Glu Asn Phe Arg Val Arg Ala Arg 65 70

<210> 171

<211> 89

<212> PRT

<213> homo sapiens

<400> 171

Ala Val Ala Phe Gln Asn Pro Ser Gln Ala His Leu Tyr Leu Asp Ser 15 Gly Gln Asp Pro Glu Ala Arg Arg Phe Pro Lys Ser Asp Ser Pro Arg Phe Gly Ala Gly Ser Glu Lys Arg Arg Glu Pro Lys Asp Leu Ser Asp 35 Cys Lys Ile Phe Ser Arg Cys Arg Arg Asn Pro Ser Gln Gly Ala Gln Ser Thr Gly Ala Met Ile Gln His Asn Ala Arg Arg Arg Lys Leu 65 75 80 Thr Cys Ser Pro Ala His Leu Ser Pro

<210> 172

<211> 100

<212> PRT

<213> homo sapiens

<400>	112														
Pro 1	Ser	Pro	Ala	Val 5	Leu	Gly	Asp	Gln	Pro 10	Pro	Ser	Ala	Ser	Gly 15	Ala
Val	His	Arg	Lys 20	Leu	Ser	Leu	Glu	Val 25	Cys	Cys	Cys	Gln	Glu 30	Arg	Ala
Gln	Met	Gly 35	Pro	Val	Met	Ala	Ala 40	Thr	Ser	Thr	Ser	Cys 45	Gly	Arg	Ala
Arg	Leu 50	Leu	Ala	Arg	Ser	Ala 55	Gln	Trp	Leu	Thr	Thr 60	Met	Leu	Ser	Ser
Ala 65	Ala	Val	Trp	Leu	Gly 70	Ser	Arg	Arg	Leu	Leu 75	Thr	Cys	Gly	Glu	Asn 80
Pro	Ser	Tyr	Ala	Leu 85	Val	Ala	Phe	Leu	Cys 90	Leu	Ser	Arg	Glu	Ser 95	Pro
Ser	Ala	Lys	Pro 100												
<210><211><212><212><213>	495 PRT	sapie	ens												
<400>	173														
Ser 1	Arg	Thr	Asn	Thr 5	Pro	Val	Glu	Thr	Trp 10	Lys	Gly	Ser	Lys	Gly 15	Lys
Gln	Ser	Tyr	Thr 20	Tyr	Ile	Ile	Glu	Glu 25	Asn	Thr	Thr	Thr	Ser 30	Phe	Thr
Trp	Ala	Phe 35	Gln	Arg	Thr	Thr	Phe 40	His	Glu	Ala	Ser	Arg 45	Lys	Tyr	Thr
Asn	Asp 50	Val	Ala	Lys	Ile	Tyr 55	Ser	Ile	Asn	Val	Thr 60	Asn	Val	Met	Asn
Gly 65	Val	Ala	Ser	Tyr	Cys 70	Arg	Pro	Cys	Ala	Leu 75	Glu	Ala	Ser	Asp	Val 80
Gly	Ser	Ser	Cys	Thr 85	Ser	Cys	Pro	Ala	Gly 90	Tyr	Tyr	Ile	Asp	Arg 95	Asp
Ser	Gly	Thr	Cys 100	His	Ser	Cys	Pro	Pro 105	Asn	Thr	Ile	Leu	Lys 110	Ala	His
Gln	Pro	Tyr 115	Gly	Val	Gln	Ala	Cys 120	Val	Pro	Cys	Gly	Pro 125	Gly	Thr	Lys
Asn	Asn 130	Lys	Ile	His	Ser	Leu 135	Cys	Tyr	Asn	Asp	Cys 140	Thr	Phe	Ser	Arg
Asn 145	Thr	Pro	Thr	Arg	Thr 150	Phe	Asn	Tyr	Asn	Phe 155	Ser	Ala	Leu	Ala	Asn 160
Thr	Val	Thr	Leu	Ala 165	Gly	Gly	Pro	Ser	Phe 170	Thr	Ser	Lys	Gly	Leu 175	Lys

Tyr	Phe	His	His 180	Phe	Thr	Leu	Ser	Leu 185	Cys	Gly	Asn	Gln	Gly 190	Arg	Lys
Met	Ser	Val 195	Cys	Thr	Asp	Asn	Val 200	Thr	Asp	Leu	Arg	Ile 205	Pro	Glu	Gly
Glu	Ser 210	Gly	Phe	Ser	Lys	Ser 215	Ile	Thr	Ala	Tyr	Val 220	Cys	Gln	Ala	Val
Ile 225	Ile	Pro	Pro	Glu	Val 230	Thr	Gly	Tyr	Lys	Ala 235	Gly	Val	Ser	Ser	Gln 240
Pro	Val	Ser	Leu	Ala 245	Asp	Arg	Leu	Ile	Gly 250	Val	Thr	Thr	Asp	Met 255	Thr
Leu	Asp	Gly	Ile 260	Thr	Ser	Pro	Ala	Glu 265	Leu	Phe	His	Leu	Glu 270	Ser	Leu
Gly	Ile	Pro 275	Asp	Val	Ile	Phe	Phe 280	Tyr	Arg	Ser	Asn	Asp 285	Val	Thr	Gln
Ser	Cys 290	Ser	Ser	Gly	Arg	Ser 295	Thr	Thr	Ile	Arg	Val 300	Arg	Cys	Ser	Pro
Gln 305	Lys	Thr	Val	Pro	Gly 310	Ser	Leu	Leu	Leu	Pro 315	Gly	Thr	Cys	Ser	Asp 320
Gly	Thr	Cys	Asp	Gly 325	Cys	Asn	Phe	His	Phe 330	Leu	Trp	Glu	Ser	Ala 335	Ala
Ala	Cys	Pro	Leu 340	Cys	Ser	Val	Ala	Asp 345	Tyr	His	Ala	Ile	Val 350	Ser	Ser
Cys	Val	Ala	Gly	Ile	Gln	Lys	Thr	Thr	Tyr	Val	Trp	Arg	Glu	Pro	Lys
		355	•				360					365			
Leu	Cys 370		Gly	Gly	Ile	Ser 375	360 Leu	Pro	Glu	Gln	Arg 380	365 Val	Thr	Ile	Cys
Leu Lys 385	Cys	355	-	Gly	Ile Trp 390	375 Leu	Leu	Pro Val	Glu	Gln Ile 395	_		Thr	Ile Thr	Cys Cys 400
Lys	Cys 370	355 Ser	Gly	_	Trp 390	375 Leu	Leu Lys			Ile 395	380	Val Ala			Cys
Lys 385	Cys 370 Thr	355 Ser Ile	Gly	Phe Leu 405	Trp 390	375 Leu Val	Leu Lys Leu	Val	Gly Cys 410	Ile 395	380 Ser	Val Ala	Gly	Thr	Cys 400
Lys 385 Thr	Cys 370 Thr	355 Ser Ile	Gly Asp Leu Glu	Phe Leu 405	Trp 390 Thr	375 Leu Val	Leu Lys Leu	Val Thr Lys	Gly Cys 410 Leu	Ile 395 Tyr Val	380 Ser Phe	Val Ala Trp	Gly Lys Ala	Thr Lys 415	Cys 400 Asn
Lys 385 Thr	Cys 370 Thr Ala Lys	355 Ser Ile Ile Leu	Gly Asp Leu Glu 420	Phe Leu 405	Trp 390 Thr	375 Leu Val Tyr	Leu Lys Leu Ser	Val Thr Lys 425	Gly Cys 410 Leu	Ile 395 Tyr Val	380 Ser Phe Met	Val Ala Trp Asn	Gly Lys Ala 430	Thr Lys 415 Thr	Cys 400 Asn Leu
Lys 385 Thr Gln Lys	Cys 370 Thr Ala Lys Asp	Ser Ile Ile Leu Cys 435	Gly Asp Leu Glu 420 Asp	Phe Leu 405 Tyr	Trp 390 Thr Lys	375 Leu Val Tyr Ala	Leu Lys Leu Ser Ala 440	Val Thr Lys 425 Asp	Gly Cys 410 Leu Ser	Ile 395 Tyr Val Cys	380 Ser Phe Met Ala	Val Ala Trp Asn Ile 445	Gly Lys Ala 430 Met	Thr Lys 415 Thr	Cys 400 Asn Leu Gly

<210> 174 <211> 118 <212> PRT

<213> homo sapiens

<400> 174

Gly 1	His	Asn	Glu	Glu 5	Ile	Ser	Ser	Ser	Gly 10	Cys	Cys	Arg	Met	Leu 15	Ala
Pro	Lys	Ser	Pro 20	Gln	Ala	Cys	Lys	Gly 25	Ala	Met	Gln	Gly	Glu 30	Glu	Ala
Gly	Glu	Ala 35	Gly	Ser	Ala	Ser	His 40	Arg	Ser	Met	Ser	Gly 45	Pro	Pro	Glu
Asp	Val 50	Phe	Ser	Gly	Thr	Glu 55	Ser	Asn	Pro	Ser	Gly 60	Val	Leu	Leu	Glu
Val 65	Asn	Asp	Leu	Ile	Phe 70	Pro	Lys	Ser	Asp	Phe 75	Leu	Leu	Val	Lys	Met 80
Arg	Ser	Ser	Ser	Thr 85	Ser	Ser	Pro	Ser	Met 90	Met	Ala	Gln	Leu	Ser 95	Ala
Ala	Gly	Arg	Ser 100	Gln	Ser	Leu	Arg	Val 105	Ala	Phe	Ile	Thr	Ser 110	Leu	Glu
Tyr	Leu	Tyr 115	Ser	Ser	Phe										

<210> 175 <211> 172 <212> PRT <213> homo sapiens

<400> 175

Arg 1	Asn	Thr	Arg	Gly 5	His	Phe	Arg	Ala	Cys 10	Gln	Arg	Lys	Leu	Lys 15	Pro
Cys	Ser	Val	Ser 20	Thr	Val	Tyr	Lys	Phe 25	Asn	Arg	Asn	Ala	Cys 30	Gln	Arg
Gly	Leu	Phe 35	Glu	Lys	Arg	Val	'Pro 40	Ser	Glu	Pro	Val	Leu 45	Ser	Val	Gln
Glu	Lys 50	Gly	Val	Leu	Leu	Lys 55	Arg	Lys	Leu	Ser	Leu 60	Leu	Glu	Gln	Asp
Val 65	Ile	Val	Asn	Glu	Asp 70	Gly	Arg	Asn	Lys	Leu 75	Lys	Lys	Gln	Gly	Glu 80
Thr	Pro	Asn	Glu	Val 85	Cys	Met	Phe	Ser	Leu 90	Ala	Tyr	Gly	Asp	Ile 95	Pro
Glu	Glu	Leu	Ile 100	Asp	Val	Ser	Asp	Phe 105	Glu	Cys	Ser	Leu	Cys 110	Met	Arg
Leu	Phe	Phe 115	Glu	Pro	Val	Thr	Thr 120	Pro	Cys	Gly	His	Ser 125	Phe	Cys	Lys
Asn	Cys 130	Leu	Glu	Arg	Cys	Leu 135	Asp	His	Ala	Pro	Tyr 140	Cys	Pro	Leu	Cys
Lys	Glu	Ser	Leu	Lys	Glu	Tyr	Leu	Ala	Asp	Arg	Arg	Tyr	Cys	Val	Thr

145 150 155 160

Gln Leu Leu Glu Gly Ile Asn Ser Glu Val Ser Ala 165 170

<210> 176

<211> 248

<212> PRT

<213> homo sapiens

<400> 176

Gln Ile Gly Gly Thr Val Ser His Ser Cys Trp Lys Glu Leu Ile Val 10 15 Lys Tyr Leu Pro Asp Glu Leu Ser Glu Arg Lys Lys Ile Tyr Asp Glu 25 30 Glu Thr Ala Glu Leu Ser His Leu Thr Lys Val Pro Ile Asn Phe Val 35 40 45 Thr Val Cys Met Ala Tyr Pro Thr ProCys Pro Leu His Val Phe Glu 50 55 60 Arg Pro Tyr Arg Met Ile Arg Leu Arg Ser Ile Gln Thr Gly Thr Lys 65 70 75 80 Gln Phe Gly Met Cys Val Ser Thr Gln Asp Asn Ser Phe Ala Asp Tyr 85 90 Gly Cys Met Leu Gln Ile Arg Asn Val His Phe Gly Leu Pro Asp Arg 100 105 110 Ser Val Val Asp Thr Val Gly Gly Lys Arg Phe Arg Val Leu Lys Arg 115 120 125 Gly Met Lys Asp Gly Tyr Cys Thr Ala Asp Ile Glu Tyr Leu Glu Asp 130 135 140 Val Lys Val Glu Asn Glu Asp Glu Ile Lys Asn Leu Arg Glu Leu His 145 150 155 160 Asp Leu Val Tyr Ser Gln Ala Cys Ser Trp Phe Gln Asn Leu Arg Asp 165 170 175 Arg Phe Arg Ser Gln Ile Leu Gln His Phe Gly Ser Met Pro Glu 185 190 Glu Arg Asn Leu Gln Ala Ala Gly Pro Asn Pro Ala Trp Cys Trp Trp 195 200 205 Leu Leu Ala Val Leu Val Pro Asp Pro Arg Tyr Gln Leu Ser Val 210 215 220 Ser Met Lys Ser Leu Lys Glu Arg Leu Thr Lys Ile Gln His Ile 225 230 235 240 Thr Tyr Phe Ser Arg Asp Gln Phe

<210> 177

245

<211> 133

<212> PRT

<400> 177 Leu Leu Asp Thr Leu Leu Ser Phe Leu His Ser Thr Ser Tyr Cys Lys Glu Asp Asn Met Val His Asp Leu Asn Asn Ala Gln Asp Asn Ser Tyr 20 30 25 Arq Thr Asn Val Arg Lys Gly Leu Leu Leu Ala Gln Lys Thr Thr Ser 35 40 Glu Leu Ile Cys Arg Asn Thr Arg Asn Arg His Arg Leu Leu Leu 50 55 Lys Tyr Arg Leu Arq Lys Thr Leu His Trp Glu Phe Leu 75 80 Leu Val Phe Ser Ala Tyr Phe Phe His Leu His Leu Gln Ser His Pro 90 Glu Thr Ser Val Leu Lys Thr Phe Phe Ala Glu His Leu Phe Leu Glu 100 105 110 Glu Gln Val Leu Arg Thr Leu Ala Leu Phe Phe Gln Thr Val Leu 115 120 125 Gly Arg His Phe Cys 130 <210> 178 <211> 152 <212> PRT <213> homo sapiens <400> 178 Ser Ala Val Lys Arg Gly Trp Asp Leu Asn Met Ala Ala Val Val 1 Ala Thr Ala Leu Lys Gly Arg Gly Ala Arg Asn Ala Arg Val Leu 20 Gly Ile Leu Ala Ala Gly Ala Thr Asn Lys Ala Ser His Asn Arg Thr 35 40 45 Arg Ala Leu Gln Ser His Ser Ser Pro Glu Gly Lys Glu Glu Pro Tyr Pro Leu Ser Pro Glu Leu Glu Ile Pro Arg Lys Arg Gly Lys Asn 65 70 80 Ala Val Gly Leu Ala Gly Lys Trp Ala Ile Gly Phe Pro Cys Ile Leu Leu Phe Ile Leu Thr Lys Arg Glu Val Asp Lys Asp Arg Val 100 105 110 Lys Gln Met Lys Ala Arg Gln Asn Met Thr Arg Leu Ser Asn Gly Glu 120 125

Tyr Glu Ser Gln Arg Phe Arg Ala Ser Ser Gln

Ser

Ala

Pro

Ser

Pro

130 135 140

Asp Val Gly Ser Gly Val Gln Thr 145 150

<210> 179

<211> 114

<212> PRT

<213> homo sapiens

<400> 179

Glu Gly Arg Ser Ala Pro Gln Val Cys Thr Pro Asp Pro Thr Ser Gly 10 15 Asp Gly Ala Leu Trp Glu Glu Ala Leu Tyr Asn Leu Trp Leu Ser Ser 20 25 30 Asp Arg Pro Leu Asn Arg Met Phe Cys Ala Phe Ile Cys Phe Thr 40 45 Ser Leu Thr Arg Ser Ser Arg Leu Val Met Lys Arg Arg Arg Ile Pro 55 60 Gln Gly Lys Pro Met Ala Gln Ala Ser Thr Pro Ala Phe Met Gly Phe 65 70 75 80 Leu Pro Phe Gly Leu Leu Met Tyr Ser Ser Ser Gly Asp Arg Gly Ser 85 90 Gly Ser Ser Leu Pro Ser Gly Glu Leu Trp Leu Cys Ala Arg Arg Val 100 105

Leu Leu

<210> 180

<211> 126 <212> PRT

<213> homo sapiens

<400> 180

Gly Leu Ala Thr Ala Trp Ala Ser Cys Ala Leu Trp Trp Thr Ser Glu 5 15 Ala Arg Thr Gly Ile Trp Ala Lys Pro Glu Leu Asp Thr Val Asn Ser 20 25 30 Gly Gly Ser Leu Gln Arq Ser Ser Gly Leu His Pro Arq Pro Asn Ile 35 40 45 Gly Leu Gly Arg Gly Arg Thr Ser Pro Gly Glu Pro Leu Ala Leu Ile Leu Ala Arg Val Gly Gln Pro His Val Leu Pro Ser Leu His Leu Leu 65 70 75 80 His Gly Thr Val Leu Val His Phe Pro Leu Glu Glu Glu Asp Glu Asp 85 90 Thr Thr Arg Gly Gln Ser His Ser Glu Ala Asp Gly Pro Phe His Gly 100 105 110

Val	Leu	Ala 115	Pro	Leu	Ser	Gly	Asn 120	Val	Phe	Gln	Leu	Arg 125	Gly		
<210><211><212><213>	74 PRT	sapie	ens												
<400>	181														
Leu 1	Val	Lys	Cys	Pro 5	Lys	Gly	Glu	Phe	Ser 10	Phe	His	Ser	Asn	Lys 15	Asp
Arg	Phe	Ala	His 20	Ser	Leu	Lys	Gln	Asn 25	Val	Ala	Met	Asn	Ile 30	Gln	Pro
Leu	His	Thr 35	Tyr	Lys	Asp	Val	Arg 40	Met	Ile	Pro	Pro	Thr 45	Lys	His	Thr
His	Ser 50	His	Thr	Arg	Thr	His 55	Thr	His	Met	His	Thr 60	Arg	Ala	Cys	Thr
His 65	Gly	His	Met	His	Thr 70	His	Thr	His	Thr						
<210><211><212><213>	84 PRT	sapie	ns												
<400>	182														
Ile 1	Leu	Ile	Ser	Phe 5	Lys	Gln	Arg	Gln	Ile 10	Cys	Ala	Phe	Thr	Gln 15	Ala
Glu	Cys	Gly	His 20	Glu	Tyr	Ser	Ala	Pro 25	Ala	Tyr	Ile	Gln	Arg 30	Cys	Thr
His	Asp	Ser 35	Pro	His	Gln	Ala	His 40	Thr	Gln	Ser	His	Thr 45	His	Thr	His
Thr	His 50	Ala	His	Thr	Arg	Val 55	'His	Thr	Arg	Thr	His 60	Ala	His	Thr	His
Ala 65	His	Val	Asn	Thr	Cys 70	Thr	His	Ala	His	Thr 75	Cys	Thr	His	Ala	His 80
Thr	Asp	Thr	Leu												
<210><211><211><212><213>	70 PRT	sapie	ns												
<400>	183														
Val 1	Cys	Pro	Cys	Val 5	His	Val	Cys	Thr	Cys 10	Val	His	Val	Cys	Met 15	Cys
Leu	Arg	Val	Arg 20	Val	Cys	Val	His	Val 25	Ser	Val	Cys	Ala	Arg 30	Ala	Cys
Val	His	Val	Cys	Val	Cys	Ala	Cys	Val	Thr	Val	Cys	Val	Leu	Gly	Gly

Glu Phe His Cys Ser

35 45 40 Gly Asn His Ala Tyr Ile Phe Val Cys Met Gln Gly Leu Asn Ile His 55 60 Gly His Ile Leu Leu Glu <210> 184 <211> 71 <212> PRT <213> homo sapiens <400> 184 Thr Val Lys Phe Leu Arg Arg Leu Lys Val Arg Gly Thr Lys Ala Gly Glu Ile Ser Leu Ser Pro Glu Glu Gly Glu Ala Asp Gly Ser Gln Gln 20 25 Pro Ala Leu Phe Leu Arg Val Ile Phe Lys Phe Ala Asn Cys Ile 40 45 Gly Gly Thr Pro Phe Cys Phe Tyr Gln Glu Phe Phe Phe Cys Ser Lys 50 55 60 Thr Leu Val Met Gly Ile Phe 70 65 <210> 185 <211> 55 <212> PRT <213> homo sapiens <400> 185 Tyr Leu Asn Leu Gln Ile Val Leu Gln Glu Gly Leu Leu Ser Val Phe 5 10 Ile Lys Ser Phe Ser Phe Val Gln Arg His Trp Leu Trp Glu Tyr 20 25 30 Glu Arg Val Arg Asn Ala Gly Ile Lys Arg Cys Cys Arg Leu Ile Leu 35 Lys Val Leu Thr Glu Pro Val 50 55 <210> 186 <211> 37 <212> PRT <213> homo sapiens <400> 186 Lys Gln Gly Arg Leu Leu Thr Ser Ile Cys Phe Ser Leu Leu Arg Thr 15 Lys Ala Asn Leu Pro Cys Phe Gly Ser Pro His Phe Gln Pro Ser 25 30

```
<210> 187
<211> 37
<212> PRT
<213> homo sapiens
<400> 187
  Ser Pro Leu Leu Trp Phe Pro Ala Leu Ser Ala Phe Ser Gly Ile
                                                                        Ser
                                             10
 Leu Phe
          Ile Ile
                    Tyr Phe His Asp Leu Ser Ala Lys Leu Leu Ile
                                                                        Phe
                                        25
                                                               30
  Cys Arg
          Lys
              Lys Val
            35
<210> 188
<211> 100
<212> PRT
<213> homo sapiens
<400> 188
 Met
      Pro Asp
               Phe
                   Lys
                         Ile Ala Arg Arg Lys Gln Thr Leu Arg Ile Lys
                                            10
 Lys
     Ala Gly
               His
                    Leu
                        Leu Asn Pro
                                       Trp
                                           Leu His His
                                                                       Gly
                                                         Lys Ala
                                                                  Leu
                20
                                        25
                                                               30
 Leu Gly Phe
                                      Val
                             Ile Glu
               Leu
                    Tyr Leu
                                           Phe Ser
                                                    Val Ala Leu
                                                                  Gly
                                                                       Ala
            35
                                   40
                                                          45
      Cys
           Leu Ser
 Val
                         Thr
                                       Asp
                                                Arg
                                                         Thr
                   Pro
                             Pro
                                  Lys
                                           Ala
                                                     Lys
                                                              Ser
                                                                   Thr
                                                                       Ile
       50
                              55
                                                      60
                    Thr
     His Val
                             Thr
 Ser
               Ala
                         Phe
                                 Ser Met
                                           Pro
                                               His
                                                     Lys
                                                         Cys
                                                             Leu
                                                                  Ser
                                                                        Glu
                                                 75
                          70
                                                                         80
                    Ala Phe Pro Gln Asn Lys Pro Asn Ala Ile
      Pro Asn
               Ser
                                                                       Gln
                                                                  Arg
                     85
                                            90
                                                                    95
 Lys Lys Lys
               100
<210> 189
<211> 256
<212> PRT
<213> homo sapiens
<400> 189
 Arg
      Ser
          Gln Ala
                    Gly
                         Pro Glu Ala Gly Gln Pro Leu Pro Gly Ser
 Lys
      Arg
          Ser
               Ser
                    Cys
                         Cys
                             His
                                  Cys
                                       Ser
                                           Ser Gly
                                                    Ala
                                                         Cys
                                                              Ser
                                                                       Gly
                                                                   Met
                20
                                        25
                                                               30
 Pro
      Leu
          Pro Arg
                    Thr Val
                             Glu Leu
                                       Phe
                                           Tyr Asp Val
                                                         Leu
                                                              Ser
                                                                   Pro
                                                                       Tyr
```

Ser Trp Leu Gly Phe Glu Ile Leu Cys Arg Tyr Gln Asn Ile Trp

50 55 60 Pro Ser Leu Ile Thr Gly Ile Met Lys Asp Ile Asn Leu Gln Leu Arg 65 70 75 80 Pro Pro Gly Leu Leu Pro Arg Lys Gly Leu Tyr Met Ser Gly Asn Lys 90 95 Leu Lys Leu Leu Arg His His Leu Gln Ile Pro Ala Asn Asp 110 100 105 Gly Phe Pro Lys Phe Ser Val Met Leu Glu Lys Ser Leu Ser Asp Leu 115 120 125 Val Glu His Pro Glu Met Leu Ala Met Phe Leu Thr Ala Asn Leu 135 Glu Lys Ala Ser Arg Glu Leu Trp Met Arg Val Trp Ser Arq Asn Glu 155 160 145 Ala Gly Glu Pro Gln Ser Ile Leu Ala Ala Ala Glu Lys Asp Ile Thr 175 165 170 Ser Ala Glu Gln Ala Gln Gly Leu Leu Glu Lys Ile Ala Thr Pro Met 180 185 Arg Tyr Gln Leu Lys Glu Thr Thr Glu Ala Ala Cys Val Lys Asn Lys 200 205 195 Gly Ala Gly Pro Ile Thr Val Ala His Val Asp Gln Thr Gly Phe Leu 210 215 220 Glu Leu Leu Ala His Leu Leu His Met Leu Phe Gly Ser Asp Arg Met 235 240 225 230 Pro Ala Val Asn Ala Arg Gly Glu Lys Trp Met Gly Pro Ile Pro Leu 245 250 255 <210> 190 <211> 196 <212> PRT <213> homo sapiens <400> 190 Ser Leu Ala Phe Thr Ala Gly Gly Ile Gly Pro Ile His Phe Ser Pro 10 Ser Cys Ala Ser Ser Ser Ile Arg Ser Glu Pro Asn Asn Met Trp Arg 20 25 30 Trp Trp Pro Thr Ala Thr Val Met Gly Ser Pro Lys Ala Pro Val Ser 45 Trp Phe Thr Tyr Leu Gln Ala Ala Ser Val Val Ser Leu Ser Phe Phe 50 55 60 Gly Val Ile Phe Ser Arg Ser Pro Trp Ala Cys Ser Ala Ile Ala 75 80 Pro Ala Phe Ser Ala Ala Arq Met Leu Cys Gly Ser Val Met

90

85

<u>.</u>

Ser	Phe	Leu	Asp 100	Gln	Thr	Arg	Ile	His 105	Ser	Ser	Arg	Asp	Ala 110	Phe	Ser
Ser	Ile	Ser 115	Gly	Cys	Ser	Lys	Phe 120	Thr	Ala	Val	Arg	Lys 125	Arg	Met	Ala
Asp	Lys 130	Leu	Pro	Phe	Ser	Ser 135	Ile	Thr	Asp	Lys	Lys 140	Ser	Leu	Gly	Lys
Trp 145	Met	Gly	Ile	Trp	Arg 150	Trp	Cys	Leu	Arg	Ser 155	Phe	Lys	Ser	Phe	Ala 160
Met	Tyr	Ser	Pro	Leu 165	Arg	Gly	Ser	Arg	Pro 170	Gly	Gly	Leu	Phe	Pro 175	Leu
Ser	Phe	Met	Ile 180	Pro	Val	Met	Arg	Leu 185	Gly	Arg	Asn	Cys	Arg 190	Leu	Met
Phe	Gln	Ile 195	Phe												
<210><211><211><212><213>	116 PRT	sapie	ns												
<400>	191														
Glu 1	Gln	Arg	Ala	Ser 5	Ala	Met	Arg	Ser	Ser 10	Arg	Ala	Phe	Arg	Thr 15	Val
Cys	Ser	Ser	Trp 20	Ala	Thr	His	Gly	Gln 25	Leu	Pro	Ala	Gly	Leu 30	Asp	Asp
Lys	Thr	Asn 35	Ile	Lys	Thr	Val	Cys 40	Thr	Tyr	Trp	Glu	Asp 45	Phe	His	Ser
Cys	Thr 50	Val	Thr	Ala	Leu	Thr 55	Asp	Cys	Gln	Glu	Gly 60	Ala	Lys	Asp	Met
Trp 65	Asp	Lys	Leu	Arg	Lys 70	Glu	Ser ,	Lys	Asn	Leu 75	Asn	Ile	Gln	Gly	Ser 80
Leu	Phe	Glu	Leu	Cys 85	Gly	Ser	Gly	Asn	Gly 90	Ala	Ala	Gly	Ser	Leu 95	Leu
Pro	Ala	Phe	Pro 100	Val	Leu	Leu	Val	Ser 105	Leu	Ser	Ala	Ala	Leu 110	Ala	Thr
Trp	Leu	Ser 115	Phe												
<210><211><211><212><213>	182 PRT	sapie	ns												
<400>	192														
Lys 1	Arg	Glu	Ser	Gly 5	Phe	Pro	Thr	Ile	Leu 10	Tyr	Glu	Cys	Phe	Gln 15	His

His Arg Glu Ser Gln Arg Pro Gln Arg Thr Asn Gly Ser Ser Ser Arg

20 25 30

Phe	Pro	Gly 35	Ala	Trp	Ser	Glu	Cys 40	Gly	Trp	Ala	Arg	Gly 45	Gly	Ser	Trp
Pro	His 50	Ala	Gln	Lys	Glu	Ser 55	Gln	Val	Ala	Lys	Ala 60	Ala	Glu	Arg	Asp
Thr 65	Arg	Ser	Thr	Gly	Asn 70	Ala	Gly	Ser	Arg	Asp 75	Pro	Ala	Ala	Pro	Leu 80
Pro	Leu	Pro	Gln	Ser 85	Ser	Asn	Lys	Leu	Pro 90	Trp	Met	Leu	Arg	Phe 95	Leu
Asp	Ser	Phe	Leu 100	Ser	Leu	Ser	His	Ile 105	Ser	Phe	Ala	Pro	Ser 110	Trp	Gln
Ser	Val	Arg 115	Ala	Val	Thr	Val	Gln 120	Leu	Trp	Lys	Ser	Ser 125	Gln	Tyr	Val
His	Thr 130	Val	Leu	Met	Phe	Val 135	Leu	Ser	Ser	Arg	Pro 140	Ala	Gly	Ser	Trp
Pro 145	Cys	Val	Ala	Gln	Leu 150	Glu	Gln	Thr	Val	Arg 155	Lys	Ala	Leu	Glu	Asp 160
Arg	Ile	Ala	Leu	Ala 165	Arg	Cys	Ser	His	Gly 170	Leu	His	Gln	Ile	Arg 175	Tyr
Leu	His	Arg	Glu 180	Asp	Gln										

<210> 193 <211> 105 <212> PRT <213> homo sapiens

<400> 193

His 1	Leu	Ala	Asn	Lys 5	Thr	Gln	Glu	Ile	Lys 10	Arg	Asn	Lys	Lys	Glu 15	Asn
Gln	Asp	Phe	Pro 20	Gln	Ser	Tyr	Met	Ser 25	Val	Phe	Ser	Ile	Thr 30	Glu	Asn
His	Asn	Val 35	Pro	Lys	Glu	Leu	Met 40	Asp	Leu	Pro	Leu	Asp 45	Phe	Arg	Glu
His	Gly 50	Val	Ser	Val	Gly	Gly 55	Arg	Ala	Gly	Gly	Ala 60	Gly	Pro	Thr	Leu
Arg 65	Arg	Lys	Ala	Arg	Ser 70	Leu	Lys	Leu	Pro	Arg 75	Glu	Thr	Pro	Gly	Ala 80
Pro	Gly	Thr	Pro	Gly 85	Ala	Gly	Thr	Pro	Pro 90	Pro	Arg	Cys	Arg	Cys 95	Arg
Arg	Val	Arg	Ile 100	Ser	Cys	Leu	Gly	Cys 105							

<210> 194 <211> 426 <212> PRT

<400> 194

Glu 1	Ile	Tyr	Ser	Leu 5	Ser	Arg	Phe	Ile	Glu 10	Val	Lys	Met	Ser	Lys 15	Lys
Ile	Ser	Gly	Gly 20	Ser	Val	Val	Glu	Met 25	Gln	Gly	Asp	Glu	Met 30	Thr	Arg
Ile	Ile	Trp 35	Glu	Leu	Ile	Lys	Glu 40	Lys	Leu	Ile	Phe	Pro 45	Tyr	Val	Glu
Leu	Asp 50	Leu	His	Ser	Tyr	Asp 55	Leu	Gly	Ile	Glu	Asn 60	Arg	Asp	Ala	Thr
Asn 65	Asp	Gln	Val	Thr	Lys 70	Asp	Ala	Ala	Glu	Ala 75	Ile	Lys	Lys	His	Asn 80
Val	Gly	Val	Lys	Cys 85	Ala	Thr	Ile	Thr	Pro 90	Asp	Glu	Lys	Arg	Val 95	Glu
Glu	Phe	Lys	Leu 100	Lys	Gln	Met	Trp	Lys 105	Ser	Pro	Asn	Gly	Thr 110	Ile	Arg
Asn	Ile	Leu 115	Gly	Gly	Thr	Val	Phe 120	Arg	Glu	Ala	Ile	Ile 125	Cys	Lys	Asn
Ile	Pro 130	Arg	Leu	Val	Ser	Gly 135	Trp	Val	Lys	Pro	Ile 140	Ile	Ile	Gly	Arg
His 145	Ala	Tyr	Gly	Asp	Gln 150	Tyr	Arg	Ala	Thr	Asp 155	Phe	Val	Val	Pro	Gly 160
Pro	Gly	Lys	Val	Glu 165	Ile	Thr	Tyr	Thr	Pro 170	Ser	Asp	Gly	Thr	Gln 175	Lys
Val	Thr	Tyr	Leu 180	Val	His	Asn	Phe	Glu 185	Glu	Gly	Gly	Gly	Val 190	Ala	Met
Gly	Met	Tyr 195	Asn	Gln	Asp	Lys	Ser '200	Ile	Glu	Asp	Phe	Ala 205	His	Ser	Ser
Phe	Gln 210	Met	Ala	Leu	Ser	Lys 215	Gly	Trp	Pro	Leu	Tyr 220	Leu	Ser	Thr	Lys
Asn 225	Thr	Ile	Leu	Lys	Lys 230	Tyr	Asp	Gly	Arg	Phe 235	Lys	Asp	Ile	Phe	Gln 240
Glu	Ile	Tyr	Asp	Lys 245	Gln	Tyr	Lys	Ser	Gln 250	Phe	Glu	Ala	Gln	Lys 255	Ile
Trp	Tyr	Glu	His 260	Arg	Leu	Ile	Asp	Asp 265	Met	Val	Ala	Gln	Ala 270	Met	Lys
Ser	Glu	Gly 275	Gly	Phe	Ile	Trp	Ala 280	Cys	Lys	Asn	Tyr	Asp 285	Gly	Asp	Val
Gln	Ser 290	Asp	Ser	Val	Ala	Gln 295	Gly	Tyr	Gly	Ser	Leu 300	Gly	Met	Met	Thr
Ser 305	Val	Leu	Val	Cys	Pro 310	Asp	Gly	Lys	Thr	Val 315	Glu	Ala	Glu	Ala	Ala 320

His	Gly	Thr	Val	Thr 325	Arg	His	Tyr	Arg	Met 330	Tyr	Gln	Lys	Gly	Gln 335	Glu
Thr	Ser	Thr	Asn 340	Pro	Ile	Ala	Ser	Ile 345	Phe	Ala	Trp	Thr	Arg 350	Gly	Leu
Ala	His	Arg 355	Ala	Lys	Leu	Asp	Asn 360	Asn	Lys	Glu	Leu	Ala 365	Phe	Phe	Ala
Asn	Ala 370	Leu	Glu	Glu	Val	Ser 375	Ile	Glu	Thr	Ile	Glu 380	Ala	Gly	Phe	Met
Thr 385	_	Asp	Leu	Ala	Ala 390	Cys	Ile	Lys	Gly	Leu 395	Pro	Asn	Val	Gln	Arg 400
Ser	Asp	Tyr	Leu	Asn 405	Thr	Phe	Glu	Phe	Met 410	Asp	Lys	Leu	Gly	Glu 415	Asn
Leu	Lys	Ile	Lys 420	Leu	Ala	Gln	Ala	Lys 425	Leu						
<210><211><211><212><213>	97 PRT	sapie	ens												
<400>	195														
Arg 1	Leu	Leu	Pro	Lys 5	His	Leu	Gln	Arg	Arg 10	Gln	Ala	Leu	Tyr	Cys 15	Tyr
Gln	Ala	Leu	Leu 20	Cys	Gly	Leu	Thr	Leu 25	Trp	Ser	Arg	Gln	Lys 30	Trp	Lys
Gln	Trp	Asp 35	Trp	Trp	Thr	Ser	Pro 40	Val	Leu	Ser	Gly	Thr 45	Cys	Gly	Ser
Asp	Gly 50	Leu	Gln	Ser	Arg	Gly 55	Gln	Pro	Leu	Leu	Leu 60	Leu	Ser	Cys	His
Leu 65	Asp	Lys	Pro	Ala	Arg 70	Trp	Ser	Ser	Cys	Arg 75	Glu	Ser	His	Thr	Leu 80
Gly	Pro	Gln	Ser	Pro 85	Thr	Ala	Arg	His	His 90	His	Ser	Phe	Tyr	Arg 95	Pro
Arg															
<210><211><212><213>	93 PRT	sapie:	ns												
<400>	196														
Leu 1	Ile	Leu	Ile	Ile 5	His	Pro	His	Gly	Asn 10	Thr	Thr	Thr	Phe	Phe 15	Lys
Val	Met	Tyr	Gln 20	Val	Cys	His	Leu	Leu 25	Gly	Ser	Val	Thr	Trp	Cys	Val

Gly Tyr Leu Tyr Phe Ser Arg Pro Arg Asn Asn Lys Ile Ser Cys Ser

35 40 45

Val	Leu 50	Ile	Pro	Ile	Ser	Met 55	Thr	Thr	Tyr	Asp	Asp 60	Arg	Phe	Tyr	Pro
Ser 65	Thr	His	Lys		Gly 70	Asp	Ile	Phe	Ala	Asp 75	Asn	Gly	Phe	Ser	Glu 80
Asp	Arg		Thr						_	Ala	Ile	Trp			

<210> 197
<211> 410
<212> PRT

<213> homo sapiens

<400> 197

Thr 1	Asp	Gln	Pro	Asn 5	Ile	Gln	Ser	Val	Lys 10	Ile	His	Ser	Leu	Pro 15	Leu
Arg	Asn	Pro	Asn 20	Lys	Gly	Cys	Glu	Cys 25	Pro	Pro	Arg	Arg	Asp 30	Gly	Phe
Gly	Phe	Ile 35	Lys	Cys	Val	Asp	Arg 40	Asp	Val	Arg	Met	Phe 45	Phe	His	Phe
Ser	Glu 50	Ile	Leu	Asp	Gly	Asn 55	Gln	Leu	His	Ile	Ala 60	Asp	Glu	Val	Glu
Phe 65	Thr	Val	Val	Pro	Asp 70	Met	Leu	Ser	Ala	Gln 75	Arg	Asn	His	Ala	Ile 80
Arg	Ile	Lys	Lys	Leu 85	Pro	Lys	Gly	Thr	Val 90	Ser	Phe	His	Ser	His 95	Ser
Asp	His	Arg	Phe 100	Leu	Gly	Thr	Val	Glu 105	Lys	Glu	Ala	Thr	Phe 110	Ser	Asn
Pro	Lys	Thr 115	Thr	Ser	Pro	Asn	Lys 120	Gly	Lys	Glu	Lys	Glu 125	Ala	Glu	Asp
Gly	Ile 130	Ile	Ala	Tyr	Asp	Asp 135	Cys	Gly	Val	Lys	Leu 140	Thr	Ile	Ala	Phe
Gln 145	Ala	Lys	Asp	Val	Glu 150	Gly	Ser	Thr	Ser	Pro 155	Gln	Ile	Gly	Asp	Lys 160
Val	Glu	Phe	Ser	Ile 165	Ser	Asp	Lys	Gln	Arg 170	Pro	Gly	Gln	Gln	Val 175	Ala
Thr	Cys	Val	Arg 180	Leu	Leu	Gly	Arg	Asn 185	Ser	Asn	Ser	Lys	Arg 190	Leu	Leu
Gly	Tyr	Val 195	Ala	Thr	Leu	Lys	Asp 200	Asn	Phe	Gly	Phe	Ile 205	Glu	Thr	Ala
Asn	His 210	Asp	Lys	Glu	Ile	Phe 215	Phe	His	Tyr	Ser	Glu 220	Phe	Ser	Gly	Asp
Val 225	Asp	Ser	Leu	Glu	Leu 230	Gly	Asp	Met	Val	Glu 235	Tyr	Ser	Leu	Ser	Lys 240

Gly															
CLY	Lys	Gly	Asn	Lys 245	Val	Ser	Ala	Glu	Lys 250	Val	Asn	Lys	Thr	His 255	Ser
Val	Asn	Gly	Ile 260	Thr	Glu	Glu	Ala	Asp 265	Pro	Thr	Ile	Tyr	Ser 270	Gly	Lys
Val	Ile	Arg 275	Pro	Leu	Arg	Ser	Val 280	Asp	Pro	Thr	Gln	Thr 285	Glu	Tyr	Gln
Gly	Met 290	Ile	Glu	Ile	Val	Glu 295	Glu	Gly	Asp	Met	Lys 300	Gly	Glu	Val	Tyr
Pro 305	Phe	Gly	Ile	Val	Gly 310	Met	Ala	Asn	Lys	Gly 315	Asp	Cys	Leu	Gln	Lys 320
Gly	Glu	Ser	Val	Lys 325	Phe	Gln	Leu	Cys	Val 330	Leu	Gly	Gln	Asn	Ala 335	Gln
Thr	Met	Ala	Tyr 340	Asn	Ile	Thr	Pro	Leu 345	Arg	Arg	Ala	Thr	Val 350	Glu	Cys
Val	Lys	Asp 355	Gln	Phe	Gly	Phe	Ile 360	Asn	Tyr	Glu	Val	Gly 365	Asp	Ser	Lys
Lys	Leu 370	Phe	Phe	His	Val	Lys 375	Glu	Val	Gln	Asp	Gly 380	Ile	Glu	Leu	Gln
Ala 385	Gly	Asp	Glu	Val	Glu 390	Phe	Ser	Val	Ile	Pro 395	Lys	Ser	Ser	Gly	Gly 400
Leu	Ala	Gly	Ser	Gly 405	Ala	Cys	Arg	Cys	Phe 410						
<210><211><211><212><213>	126 PRT	sapie	ns												
<211> <212>	126 PRT homo	sapie	ns												
<211> <212> <213> <400>	126 PRT homo	sapie Ala	ns Ile	Leu 5	Asn	Phe	Phe	His	Met 10	Glu	Lys	Glu	Leu	Leu 15	Ala
<211><212><213><400>	126 PRT homo 198 Asn	-		5			•		10		Lys		Leu His 30		Ala
<211> <212> <213> <400> Leu 1	126 PRT homo 198 Asn	Ala	Ile Phe	5 Ile		Asn	Glu	Ala 25	10	Leu	-		His	15	
<211> <212> <213> <400> Leu 1	126 PRT homo 198 Asn	Ala Tyr Gly	Ile Phe 20	5 Ile Ala	Val	Asn Gly	Glu Cys 40	Ala 25	10 Lys Val	Leu Val	Ile	Phe His	His 30	15 Thr	Phe
<211><212><212><213> 400 Leu 1 Ile His	126 PRT homo 198 Asn Ser Cys	Ala Tyr Gly 35	Ile Phe 20 Pro	5 Ile Ala	Val Gln	Asn Gly Gln 55	Glu Cys 40 Leu	Ala 25 Asp	10 Lys Val Leu	Leu Val Asp	Ile Ser	Phe His 45	His 30 Ser	15 Thr Leu	Phe Cys
<211><212><212><213> 400 Leu 1 Ile His Ile Gln	126 PRT homo 198 Asn Ser Cys	Ala Tyr Gly 35 Ala	Ile Phe 20 Pro	5 Ile Ala Asp	Val Gln Thr	Asn Gly Gln 55	Glu Cys 40 Leu	Ala 25 Asp Glu	10 Lys Val Leu	Leu Val Asp	Ile Ser Ala	Phe His 45	His 30 Ser Pro	15 Thr Leu Phe	Phe Cys Leu Asp
<211><212><213> 400 Leu 1 Ile His Ile Gln 65	126 PRT homo 198 Asn Ser Cys Leu 50	Ala Tyr Gly 35 Ala Ile	Ile Phe 20 Pro Gln Pro	5 Ile Ala Asp Phe	Val Gln Thr Val 70	Asn Gly Gln 55 Gly Leu	Glu Cys 40 Leu	Ala 25 Asp Glu Pro	Lys Val Leu Asn	Leu Val Asp Asp 75 Leu	Ile Ser Ala 60	Phe His 45 Leu Lys	His 30 Ser Pro	Thr Leu Phe Ile	Phe Cys Leu Asp 80

<210><211><212><213>	85 PRT	sapie	ens												
<400>	199														
Lys 1	Ser	His	Thr	Ser 5	Cys	Asn	Leu	Leu	Ser 10	Arg	Pro	Leu	Phe	Val 15	Thr
Asn	Thr	Lys	Phe 20	Asn	Leu	Ile	Ser	Tyr 25	Leu	Arg	Arg	Ser	Arg 30	Ser	Phe
His	Ile	Leu 35	Gly	Leu	Lys	Ser	Asn 40	Ser	Gln	Phe	His	Pro 45	Thr	Val	Ile
Ile	Ser 50	Asn	Asn	Ala	Ile	Leu 55	Ser	Leu	Leu	Leu	Phe 60	Ala	Phe	Ile	Trp
Ala 65	Ser	Gly	Phe	Arg	Ile 70	Gly	Lys	Ser	Gly	Phe 75	Phe	Phe	Tyr	Arg	Ala 80
Gln	Lys	Thr	Val	Ile 85											
<210><211><212><213>	79 PRT	sapie	ns												
<400>	200														
Ala 1	Thr	Met	Arg	Leu 5	Ser	Val	Cys	Leu	Leu 10	Met	Val	Ser	Leu	Ala 15	Leu
Cys	Cys	Tyr	Gln 20	Ala	His	Ala	Leu	Val 25	Cys	Pro	Ala	Val	Ala 30	Ser	Glu
Ile	Thr	Val 35	Phe	Leu	Phe	Leu	Ser 40	Asp	Ala	Ala	Val	Asn 45	Leu	Gln	Val
Ala	Lys 50	Leu	Asn	Pro	Pro	Pro 55	Glu	Ala	Leu	Ala	Ala 60	Lys	Leu	Glu	Val
Lys 65	His	Сув	Thr	Asp	Gln 70	Ile	Ser	Phe	Lys	Lys 75	Arg	Leu	Leu	Ile	
<210><211><212><213>	50 PRT	sapie	ns												
<400>	201														
Ser 1	Val	Gln	Cys	Phe 5	Thr	Ser	Asn	Leu	Ala 10	Ala	Arg	Ala	Ser	Gly 15	Gly
Gly	Leu	Ser	Leu 20	Ala	Thr	Trp	Arg	Phe 25	Thr	Ala	Ala	Ser	Leu 30	Lys	Asn
Lys	Lys	Thr 35	Val	Ile	Ser	Glu	Ala 40	Thr	Ala	Gly	Gln	Thr 45	Arg	Ala	Trp

50

```
Ala Trp
      50
<210> 202
<211> 72
<212> PRT
<213> homo sapiens
<400> 202
 Gln Val Ala Val Glu Lys Thr Leu Glu Thr Gln Val Glu His Phe
                                                                     Tyr
                                           10
                                                                 15
 Met Ser His Thr His Ile Phe Ser
                                     Leu Phe
                                              Pro Pro
                                                       Arg
                                                            Thr
                                                                 Phe
                                                                     Ser
                20
                                      25
 Asn Glu Lys
               Pro
                   Phe Leu Lys Arg
                                     Tyr Leu
                                              Ile
                                                   Gly Ala
                                                            Val
                                                                Leu
                                  40
                                                        45
     Gln Leu Gly Cys
                                 Phe
                       Lys
                            Ser
                                     Trp Arg Trp Ile Lys Phe Gly Asn
                             55
 Leu Glu Val Tyr Arg Ser Val
                                 Thr
  65
                         70
<210> 203
<211> 53
<212> PRT
<213> homo sapiens
<400> 203
 Ser Phe Ser Pro Ser Leu Thr Thr Arg Ala Met Asn Ser Ser Ala Ser
  1
                     -5
                                           10
 Ser
     Thr Ser
               Thr
                   Cys
                       Ser Ser Tyr Thr Leu Gly
                                                           Leu
                                                   Thr
                                                       Arg
                                                                Pro
                                                                     Val
               20
                                      25
                                                             30
               Gly
 Gly Gly Arg
                   Pro Thr Lys Val
                                    Thr Cys Cys Thr
                                                       Ser Asn Arg Leu
           35
                                 40
 Thr Leu Ser Leu Asp
      50
<210> 204
<211> 121
<212> PRT
<213> homo sapiens
<400> 204
 Ala Leu Val Val Arg
                        Phe Leu Thr Lys Arg Phe Ile Gly Asp Tyr
                                                                    Glu
 Arg Asn Ala Gly
                   Asn Leu Tyr Thr Arg
                                         Gln Val Gln Ile Glu
                                                                Gly
                                      25
 Thr
     Leu Ala Leu
                   Gln Val
                            Gln Asp
                                     Thr
                                         Pro Gly
                                                   Ile
                                                       Gln Val
                                                                His
                                                                     Glu
           35
                                                        45
     Ser Leu Ser Cys Ser Glu Gln Leu Asn Arg Cys
                                                       Ile Arg Trp Ala
```

Asp 65	Ala	Val	Val	Ile	Val 70	Phe	Ser	Ile	Thr	Asp 75	Tyr	Lys	Ser	Tyr	Glu · 80
Leu	Ile	Ser	Gln	Leu 85	His	Gln	His	Val	Gln 90	Gln	Leu	His	Leu	Gly 95	His
Pro	Ala	Ala	Cys 100	Gly	Trp	Ser	Trp	Ala 105	Asn	Lys	Ser	Asp	Leu 110	Leu	His
Ile	Lys	Gln 115	Val	Asp	Pro	Gln	Leu 120	Gly							
<210><211><211><212><213>	205 PRT	sapie	ns												
<400>	205														
Gly 1	Pro	Leu	Pro	Ala 5	Leu	Ala	Ala	Gly	Ser 10	Thr	Phe	Pro	Val	Leu 15	Ala
Cys	Ser	Ser	Ala 20	Met	Ala	Pro	Lys	Gly 25	Ser	Ser	Lys	Gln	Gln 30	Ser	Glu
Glu	Asp	Leu 35	Leu	Leu	Gln	Asp	Phe 40	Ser	Arg	Asn	Leu	Ser 45	Ala	Lys	Ser
Ser	Ala 50	Leu	Phe	Phe	Gly	Asn 55	Ala	Phe	Ile	Val	Ser 60	Ala	Ile	Pro	Ile
Trp 65	Leu	Tyr	Trp	Arg	Ile 70	Trp	His	Met	Asp	Leu 75	Ile	Gln	Ser	Ala	Val 80
Leu	Tyr	Ser	Val	Met 85	Thr	Leu	Val	Ser	Thr 90	Tyr	Leu	Val	Ala	Phe 95	Ala
Tyr	Lys	Asn	Val 100	Lys	Phe	Val	Leu	Lys 105	His	Lys	Val	Ala	Gln 110	Lys	Arg
Glu	Asp	Ala 115	Val	Ser	Lys	Glu	'Val 120	Thr	Arg	Lys	Leu	Ser 125	Glu	Ala	Asp
Asn	Arg 130	Lys	Met	Ser	Arg	Lys 135	Glu	Lys	Asp	Glu	Arg 140	Ile	Leu	Trp	Lys
Lys 145	Asn	Glu	Val	Ala	Asp 150	Tyr	Glu	Ala	Thr	Thr 155	Phe	Ser	Ile	Phe	Tyr 160
Asn	Asn	Thr	Leu	Phe 165	Leu	Val	Val	Val	Ile 170	Val	Ala	Ser	Phe	Phe 175	Ile
Leu	Lys	Asn	Phe 180	Asn	Pro	Thr	Val	Asn 185	Tyr	Ile	Leu	Ser	Ile 190	Ser	Ala
Ser	Ser	Gly 195	Leu	Ile	Ala	Leu	Leu 200	Ser	Thr	Gly	Ser	Lys 205			

<210> 206

<211> 106

<212> PRT

<213> homo sapiens

<400>	206														
Val 1		His	Gln	Asp 5	Ser	Ser	Pro	Ser	Cys 10	Leu	Leu	Ala	Pro	Asn 15	Arg
Pro	Cys	Gln	Leu 20	His	Pro	Leu	Ala	Leu 25	Cys	Leu	Trp	Val	Ala 30	Cys	Gly
Ile	Trp	Lys 35	Ser	Ser	Arg	Val	Val 40	Arg	Val	Gly	Asp	Thr 45	Arg	Cys	Phe
Tyr	Ser 50	Leu	Glu	Pro	Leu	Lys 55	Asn	Pro	Ala	Glu	Cys 60	Asn	Ser	Val	Phe
Val 65	Tyr	Trp	Leu	Phe	Phe 70	Asp	Arg	Leu	Leu	Lys 75	Leu	Asn	Glu	Leu	Lys 80
Gly	Lys	Leu	Arg	Val 85	Leu	Gly	Arg	Leu	Leu 90	Lys	Gly	Lys	Lys	Cys 95	Leu
Ala	Met	Cys	Cys 100	Asn	His	Lys	Arg	Arg 105	Lys						
<210><211><212><213>	105 PRT	sapie	ens												
<400>	207														
Ser 1	Thr	Tyr	Gly	Gln 5	Tyr	Val	Val	His	Cys 10	Gly	Val	Glu	Val	Leu 15	Gln
Tyr	Glu	Glu	Gly 20	Ser	Asn	Asn	Asp	His 25	Asp	Gln	Glu	Gln	Ser 30	Val	Val
Ile	Glu	Asp 35	Gly	Lys	Cys	Cys	Ser 40	Phe	Ile	Ile	Ser	Asn 45	Phe	Ile	Leu
Leu	Pro 50	Gln	Asp	Ser	Phe	Ile 55	Phe	Leu	Leu	Pro	Arg 60	His	Leu	Ser	Ile
Ile 65	Ser	Phe	Arg	Lys	Phe 70	Ser	Ser	His	Phe	Phe 75	Gly	Asn	Ser	Ile	Leu 80
Pro	Leu	Leu	Cys	Tyr 85	Phe	Val	Leu	Glu	Asn 90	Lys	Phe	His	Ile	Leu 95	Val
Cys	Lys	Gly	Tyr 100	Gln	Ile	Cys	Ala	Tyr 105							
<210><211><211><212><213>	549 PRT	sapie	ns												
<400>	208														
Leu 1	Tyr	Pro	Asn	Phe 5	Leu	Val	Asn	Glu	Leu 10	Ile	Leu	Lys	Gln	Lys 15	Gln
Arg	Phe	Glu	Glu	Lys	Arg	Phe	Lys	Leu	Asp	His	Ser	Val	Ser	Ser	Thr

20 25 30

Asn	Gly	His . 35	Arg	Trp	Gln	Ile	Phe 40	Gln	Asp	Trp	Leu	Gly 45	Thr	Asp	Gln
Asp	Asn 50	Leu	Asp	Leu	Ala	Asn 55	Val	Asn	Leu	Met	Leu 60	Glu	Leu	Leu	Val
Gln 65	Lys	Lys	Lys	Gln	Leu 70	Glu	Ala	Glu	Ser	His 75	Ala	Ala	Gln	Leu	Gln 80
Ile	Leu	Met	Glu	Phe 85	Leu	Lys	Val	Ala	Arg 90	Arg	Asn	Lys	Arg	Glu 95	Gln
Leu	Glu	Gln	Ile 100	Gln	Lys	Glu	Leu	Ser 105	Val	Leu	Glu	Glu	Asp 110	Ile	Lys
Arg	Val	Glu 115	Glu	Met	Ser	Gly	Leu 120	Tyr	Ser	Pro	Val	Ser 125	Glu	Asp	Ser
Thr	Val 130	Pro	Gln	Phe	Glu	Ala 135	Pro	Ser	Pro	Ser	His 140	Ser	Ser	Ile	Ile
Asp 145	Ser	Thr	Glu	Tyr	Ser 150	Gln	Pro	Pro	Gly	Phe 155	Ser	Gly	Ser	Ser	Gln 160
Thr	Lys	Lys	Gln	Pro 165	Trp	Tyr	Asn	Ser	Thr 170	Leu	Ala	Ser	Arg	Arg 175	Lys
Arg	Leu	Thr	Ala 180	His	Phe	Glu	Asp	Leu 185	Glu	Gln	Cys	Tyr	Phe 190	Ser	Thr
Arg	Met	Ser 195	Arg	Ile	Ser	Asp	Asp 200	Ser	Arg	Thr	Ala	Ser 205	Gln	Leu	Asp
Glu	Phe 210	Gln	Glu	Cys	Leu	Ser 215	Lys	Phe	Thr	Arg	Tyr 220	Asn	Ser	Val	Arg
Pro 225	Leu	Ala	Thr	Leu	Ser 230	Tyr	Ala	Ser	Asp	Leu 235	Tyr	Asn	Gly	Ser	Ser 240
Ile	Val	Ser	Ser	Ile 245	Glu	Phe	'Asp	Arg	Asp 250	Cys	Asp	Tyr	Phe	Ala 255	Ile
Ala	Gly	Val	Thr 260	Lys	Lys	Ile	Lys	Val 265	Tyr	Glu	Tyr	Asp	Thr 270	Val	Ile
Gln	Asp	Ala 275	Val	Asp	Ile	His	Tyr 280	Pro	Glu	Asn	Glu	Met 285	Thr	Cys	Asn
Ser	Lys 290	Ile	Ser	Cys	Ile	Ser 295	Trp	Ser	Ser	Tyr	His 300	Lys	Asn	Leu	Leu
Ala 305	Ser	Ser	Asp	Tyr	Glu 310	Gly	Thr	Val	Ile	Leu 315	Trp	Asp	Gly	Phe	Thr 320
Gly	Gln	Arg	Ser	Lys 325	Val	Tyr	Gln	Glu	His 330	Glu	Lys	Arg	Cys	Trp 335	Ser
Val	Asp	Phe	Asn 340	Leu	Met	Asp	Pro	Lys 345	Leu	Leu	Ala	Ser	Gly 350	Ser	Asp
Asp	Ala	Lys	Val	Lys	Leu	Trp	Ser	Thr	Asn	Leu	Asp	Asn	Ser	Val	Ala

		355									365				
Ser	Ile 370	Glu	Ala	Lys	Ala	Asn 375	Val	Cys	Cys	Val	Lys 380	Phe	Ser	Pro	Ser
Ser 385		Tyr	His	Leu	Ala 390	Phe	Gly	Cys	Ala	Asp 395	His	Cys	Val	His	Tyr 400
Tyr	Asp	Leu	Arg	Asn 405	Thr	Lys	Gln	Pro	Ile 410	Met	Val	Phe	Lys	Gly 415	His
Arg	Lys	Ala	Val 420	Ser	Tyr	Ala	Lys	Phe 425	Val	Ser	Gly	Glu	Glu 430	Ile	Val
Ser	Ala	Ser 435	Thr	Asp	Ser	Gln	Leu 440	Lys	Leu	Trp	Asn	Val 445	Gly	Lys	Pro
Tyr	Cys 450	Leu	Arg	Ser	Phe	Lys 455	Gly	His	Ile	Asn	Glu 460	Lys	Asn	Phe	Val
Gly 465	Leu	Ala	Ser	Asn	Gly 470	Asp	Tyr	Ile	Ala	Cys 475	Gly	Ser	Glu	Asn	Asn 480
Ser	Leu	Tyr	Leu	Tyr 485	Tyr	Lys	Gly	Leu	Ser 490	Lys	Thr	Leu	Leu	Thr 495	Phe
Lys	Phe	Asp	Thr 500	Val	Lys	Ser	Val	Leu 505	Asp	Lys	Asp	Arg	Lys 510	Glu	Asp
Asp	Thr	Asn 515	Glu	Phe	Val	Ser	Ala 520	Val	Cys	Trp	Arg	Ala 525	Leu	Pro	Asp
Gly	Glu 530	Ser	Asn	Val	Leu	Ile 535	Ala	Ala	Asn	Ser	Gln 540	Gly	Thr	Ile	Lys
Val 545	Leu	Glu	Leu	Val											
<210><211><211><212><213>	90 PRT	sapie	ns												
<400>	209														
Gly 1	Thr	Val	Leu	Ser 5	Ser	Leu	Thr	Gly	Glu 10	Tyr	Lys	Pro	Leu	Ile 15	Ser
Ser	Thr	Leu	Leu 20	Ile	Ser	Ser	Ser	Lys 25	Thr	Leu	Ser	Ser	Phe 30	Trp	Ile
Cys	Ser	Ser 35	Cys	Ser	Leu	Leu	Phe 40	Leu	Leu	Ala	Thr	Leu 45	Arg	Asn	Ser
Ile	Arg 50	Ile	Cys	Ser	Trp	Ala 55	Ala	Cys	Asp	Ser	Ala 60	Ser	Ser	Cys	Phe
Phe 65	Phe	Cys	Thr	Ser	Asn 70	Ser	Asn	Ile	Arg	Leu 75	Thr	Leu	Ala	Lys	Ser 80
Arg	Leu	Ser	Trp	Ser 85	Val	Pro	Asn	Gln	Ser 90						

<u> (</u>

<210> <211> <212> <213>	95 PRT	sapie	ens												
<400>	210														
Phe 1	Pro	Ser	Ser	Leu 5	Leu	Phe	Phe	Phe	Phe 10	Phe	Phe	Phe	Phe	Phe 15	Cys
Gly	Ser	Ile	Asn 20	Phe	Tyr	Cys	Phe	Val 25	Ile	Tyr	Phe	Tyr	Ser 30	Lys	Glu
Phe	Val	Ser 35	Leu	Ser	Gln	Lys	Leu 40	Asp	Asn	Thr	Thr	Lys 45	Ser	Ser	Asn
Val	His 50	Gly	Val	Thr	Leu	Met 55	Val	Glu	Ser	Trp	Leu 60	Gly	Ile	Pro	Asn
Val 65	Pro	Lys	Val	Ile	Lys 70	Glu	Gly	Lys	Glu	Lys 75	Lys	Lys	Lys	Ile	Phe 80
Lys	Thr	Asn	Pro	Lys 85	Pro	Met	Met	Thr	Leu 90	Gly	Arg	Asp	Ile	Thr 95	
<210><211><212><213>	80 PRT	sapie	ns												
<400>	211														
Lys 1	Lys	Met	Val	Arg 5	Leu	Gly	Leu	Phe	Ser 10	Cys	Leu	Leu	Ala	Ile 15	Tyr
Ser	Leu	Leu	Trp 20	Ile	Val	Cys	Ile	Pro 25	Tyr	Leu	Leu	Ser	Ile 30	Gly	Leu
Cys	Val	Asp 35	Ile	Leu	Phe	Leu	Phe 40	Val	Gln	His	Leu	Leu 45	Pro	His	Leu
Leu	Val 50	Thr	Gln	Pro	Leu	Phe 55	`Ile	Cys	Gly	Glu	Pro 60	Ile	Pro	Cys	Gly
Leu 65	Gly	Glu	His	Val	Thr 70	Arg	Pro	Gly	Leu	Leu 75	Ser	Pro	Thr	Ala	Ser 80
<210><211><212><213>	67 PRT	sapie	ns												
<400>	212														
Leu 1	Lys	Lys	Gly	Lys 5	Trp	Ala	Lys	Ala	Ile 10	His	Asn	Arg	Lys	Cys 15	Lys
Trp	Pro	Arg	Asn 20	Met	Lys	Arg	Cys	Ser 25	Ser	Ser	Leu	Ile	Phe 30	Lys	Glu
Lys	Lys	Glu 35	Ile	Leu	Pro	Thr	Arg 40	Leu	Ala	Lys	Ile	Phe 45	Lys	Asp	Ser

```
Gly Leu Ala Asp Tyr Arg Gln Thr Gly Ile Leu Thr Asn Asp Gly Val
                               55
  Val Asn Trp
   65
<210> 213
<211> 78
<212> PRT
<213> homo sapiens
<400> 213
  Ser Pro Glu Val Gly Gln Ala Leu Gly Thr Ala Gly Ser Arg Ala Ser
  Arg Lys Met
               Thr
                    Ser Glu Leu Ser
                                      Ser Leu
                                                Ser Ile
                                                         Ser
                                                              Ala
                                                                  Ser
                                                                       Ile
                20
                                        25
                                                               30
  Arq Val Ser
               Pro
                   Gln Thr
                             Asp
                                  Ser
                                      Leu
                                          His
                                               Met Ala Gln
                                                              Ile
                                                                  Gln Ala
                                   40
                                                          45
           Val Leu Gly
                                 Asp
                         Ser
                             Trp
                                                        Phe
                                      Leu His
                                                    Ala
                                               Lys
                                                              Phe
                                                                  Pro
                                                                      Val
                              55
                                                     60
      Pro Ala Glu Val Leu Leu Arg Ala Phe Leu Ser Leu Ala
  Val
                          70
                                                 75
<210> 214
<211> 105
<212> PRT
<213> homo sapiens
<400> 214
 Gln Ala Gly Lys Arg
                        Ala Leu Tyr Lys His Thr Gln Thr Asn
                                                                  Thr
                                                                       Ser
                                            10
 Gly
               Cys
                    Val
      Asp
           Gly
                        Leu Leu Glu Gln Arg Leu
                                                    Ile Lys
                                                             His
                                                                  Ser
                                                                       Val
                20
                                       25
 Cys
      Trp
          Leu
               Ser
                   Val
                        Pro Leu Leu
                                      Glu Asn Asn
                                                    Glu Leu
                                                              Gly
                                                                  Lys
                                                                       Glu
            35
                                   40
     Leu Ile Arg Lys
 Gln
                        Cys
                             Ala Leu
                                      Leu
                                          Thr
                                               Val
                                                    His
                                                         Ile
                                                             Thr
                                                                  Thr
                                                                       Lys
       50
                              55
                                                     60
 Ser
      Trp
          Gln Leu
                   Leu Lys
                             Glu Lys Gly Leu
                                               Cys
                                                    Arg
                                                         Cys
                                                             Arg
                                                                  Ser
                                                                       Asn
  65
                         70
                                                75
                                                                        80
 Leu Ser
                        Cys Gln Gln Pro Gln Arg Leu Pro Pro Gln His
         Val
               Asn Ser
                     85
                                            90
                                                                   95
 Thr Leu Ile Thr Cys Val Cys Leu
                                      Ala
               100
                                      105
<210> 215
<211> 216
```

<212> PRT

<213> homo sapiens

Leu 1	Ser	Leu	Thr	Ser 5	Arg	Met	Glu	Glu	Ala 10	Glu	Leu	Val	Lys	Gly 15	Arg
Leu	Gln	Ala	Ile 20	Thr	Asp	Lys	Arg	Lys 25	Ile	Gln	Glu	Glu	Ile 30	Ser	Gln
Lys	Arg	Leu 35	Lys	Ile	Glu	Glu	Asp 40	Lys	Leu	Lys	His	Gln 45	His	Leu	Lys
Lys	Lys 50	Ala	Leu	Arg	Glu	Lys 55	Trp	Leu	Leu	Asp	Gly 60	Ile	Ser	Ser	Gly
Lys 65	Glu	Gln	Glu	Glu	Met 70	Lys	Lys	Gln	Asn	Gln 75	Gln	Asp	Gln	His	Gln 80
Ile	Gln	Val	Leu	Glu 85	Gln	Ser	Ile	Leu	Arg 90	Leu	Glu	Lys	Glu	Ile 95	Gln
Asp	Leu	Glu	Lys 100	Ala	Glu	Leu	Gln	Ile 105	Ser	Thr	Lys	Glu	Glu 110	Ala	Ile
Leu	Lys	Lys 115	Leu	Lys	Ser	Ile	Glu 120	Arg	Thr	Thr	Glu	Asp 125	Ile	Ile	Arg
Ser	Val 130	Lys	Val	Glu	Arg	Glu 135	Glu	Arg	Ala	Glu	Glu 140	Ser	Ile	Glu	Asp
Ile 145	Tyr	Ala	Asn	Ile	Pro 150	Asp	Leu	Pro	Lys	Ser 155	Tyr	Ile	Pro	Ser	Arg 160
Leu	Arg	Lys	Glu	Ile 165	Asn	Glu	Glu	Lys	Glu 170	Asp	Asp	Glu	Gln	Asn 175	Arg
Lys	Ala	Leu	Tyr 180	Ala	Met	Glu	Ile	Lys 185	Val	Glu	Lys	Asp	Leu 190	Arg	Thr
Gly	Glu	Ser 195	Thr	Val	Leu	Ser	Ser 200	Ile	Pro	Leu	Pro	Ser 205	Asp	Asp	Phe
Lys	Arg 210	Ser	Arg	Ser	Lys	Ser 215	Leu								
<210><211><212><213>	112 PRT	sapie	ns												
<400>	216														
Phe 1	Cys	Phe	Phe	Ile 5	Ser	Ser	Cys	Ser	Phe 10	Pro	Leu	Leu	Ile	Pro 15	Ser
Arg	Ser	His	Phe 20	Ser	Leu	Lys	Ala	Phe 25	Phe	Phe	Lys	Cys	Trp 30	Cys	Phe
Ser	Leu	Ser 35	Ser	Ser	Ile	Phe	Arg 40	Arg	Phe	Cys	Glu	Ile 45	Ser	Ser	Cys
Ile	Phe 50	Leu	Leu	Ser	Val	Met 55	Ala	Trp	Ser	Leu	Pro 60	Phe	Thr	Ser	Ser
Ala 65	Ser	Ser	Ile	Leu	Glu 70	Val	Lys	Asp	Ser	Gln 75	Thr	Gly	Lys	Gln	Val 80

Gln	Ser	Tyr	His	Lys 85	Ser	Arg	Ser	Leu	Leu 90	Gly	Glu	Arg	Ser	Gly 95	Gly
Asp	Arg	Arg	Glu 100	Ala	Gly	Arg	Asn	Pro 105	Leu	Phe	Ala	Pro	Val 110	Glu	Lys
<210><211><211><212><213>	339 PRT	sapie	ns												
<400>	217														
Ser 1	Ser	Gln	Leu	Arg 5	Arg	Arg	Leu	Val	Pro 10	Ala	Pro	Ala	Ala	Pro 15	Arg
Pro	Arg	Pro	Asn 20	His	Gly	Val	Leu	Arg 25	Gly	Arg	Leu	Arg	Gly 30	Asp	Arg
Trp	Gln	Trp 35	Ser	His	Trp	Ala	Lys 40	Trp	Ala	Met	Leu	Phe 45	Ala	Ser	Gly
Gly	Phe 50	Gln	Val	Lys	Leu	Tyr 55	Asp	Ile	Glu	Gln	Gln 60	Gln	Ile	Arg	Asn
Ala 65	Leu	Glu	Asn	Ile	Arg 70	Lys	Glu	Met	Lys	Leu 75	Leu	Glu	Gln	Ala	Gly 80
Ser	Leu	Lys	Gly	Ser 85	Leu	Ser	Val	Glu	Glu 90	Gln	Leu	Ser	Leu	Ile 95	Ser
Gly	Cys	Pro	Asn 100	Ile	Gln	Glu	Ala	Val 105	Glu	Gly	Ala	Met	His 110	Ile	Gln
Glu	Cys	Val 115	Pro	Glu	Asp	Leu	Glu 120	Leu	Lys	Lys	Lys	Ile 125	Phe	Ala	Gln
Leu	Asp 130	Ser	Ile	Ile	Asp	Asp 135	Arg	Val	Ile	Leu	Ser 140	Ser	Ser	Thr	Ser
Cys 145	Leu	Met	Pro	Ser	Lys 150	Leu	'Phe	Ala	Gly	Leu 155	Val	His	Val	Lys	Gln 160
Cys	Ile	Val	Ala	His 165	Pro	Val	Asn	Pro	Pro 170	Tyr	Tyr	Ile	Pro	Leu 175	Val
Glu	Leu	Val	Pro 180	His	Pro	Glu	Thr	Ala 185	Pro	Thr	Thr	Val	Asp 190	Arg	Thr
His	Ala	Leu 195	Met	Lys	Lys	Ile	Gly 200	Gln	Cys	Pro	Met	Arg 205	Val	Gln	Lys
Glu	Val 210	Ala	Gly	Phe	Val	Leu 215	Asn	Arg	Leu	Gln	Tyr 220	Ala	Ile	Ile	Ser
Glu 225	Ala	Trp	Arg	Leu	Val 230	Glu	Glu	Gly	Ile	Val 235	Ser	Pro	Ser	Asp	Leu 240
Asp	Leu	Val	Met	Ser 245	Glu	Gly	Leu	Gly	Met 250	Arg	Tyr	Ala	Phe	Ile 255	Gly

Pro Leu Glu Thr Met His Leu Asn Ala Glu Gly Met Leu Ser Tyr Cys

			260					265					270		
Asp	Arg	Tyr 275	Ser	Glu	Gly	Ile	Lys 280	His	Val	Leu	Gln	Thr 285	Phe	Gly	Pro
Ile	Pro 290	Glu	Phe	Ser	Arg	Ala 295	Thr	Ala	Glu	Lys	Val 300	Asn	Gln	Asp	Met
Cys 305	Met	Lys	Val	Pro	Asp 310	Asp	Pro	Glu	His	Leu 315	Ala	Ala	Arg	Arg	Gln 320
Trp	Arg	Asp	Glu	Cys 325	Leu	Met	Arg	Leu	Ala 330	Lys	Leu	Lys	Ser	Gln 335	Val
Gln	Pro	Gln													
<210><211><211><212><213>	109 PRT	sapie	ens												
<400>	218														
Lys 1	Asp	Pro	Gln	Ile 5	Thr	Gln	Lys	Gly	Ile 10	Thr	Lys	Ile	Ile	Thr 15	Lys
Ile	Phe	Cys	Pro 20	His	Ile	Asn	Met	Lys 25	Thr	Thr	Ile	Thr	Gly 30	Cys	Gln
Ile	Ile	Leu 35	Lys	Cys	Asn	Gln	Ala 40	Glu	Lys	Glu	Lys	Val 45	Lys	Ile	Ser
Arg	Leu 50	Ser	Ala	Gln	Val	Ala 55	Gly	Asn	Arg	Gln	Pro 60	Arg	Glu	Arg	Lys
Cys 65	Cys	Cys	Ala	Ala	Arg 70	Pro	Arg	Ala	Met	Ile 75	Gln	Ser	Asp	Gly	Gln 80
Thr	Thr	Gly	Leu	His 85	His	Pro	Thr	Gln	Ala 90	Ala	His	Lys	Thr	Ala 95	Ser
Leu	Gly	Ser	Pro 100	Trp	Ala	Ala	Thr	Tyr 105	Val	Thr	Glu	Gly			
<210><211><211><212><213>	98 PRT	sapie	ns												
<400>	219														
Leu 1	Asn	Ile	Pro	Ser 5	Ala	Leu	Arg	Cys	Met 10	Val	Ser	Arg	Gly	Pro 15	Met
Asn	Ala	Tyr	Arg 20	Met	Pro	Asn	Pro	Ser 25	Asp	Met	Thr	Arg	Ser 30	Arg	Ser
Leu	Gly	Asp 35	Thr	Ile	Pro	Ser	Ser 40	Thr	Ser	Arg	Gln	Ala 45	Ser	Leu	Met
Ile	Ala 50	Tyr	Cys	Arg	Arg	Phe 55	Arg	Thr	Lys	Pro	Ala 60	Thr	Ser	Phe	Trp

Thr 65	Arg	Met	Gly	His	Cys 70	Pro	Ile	Phe	Phe	Ile 75	Arg	Ala	Trp	Val	Leu 80
Ser	Thr	Val	Val	Gly 85	Ala	Val	Ser	Gly	Trp 90	Gly	Thr	Ser	Ser	Thr 95	Ser
Gly	Met														
<210><211><211><212><213>	129 PRT	sapie	ns												
<400>	220														
Thr 1	Met	Phe	Phe	Thr 5	Cys	Gly	Pro	Asn	Glu 10	Ala	Met	Val	Val	Ser 15	Gly
Phe	Cys	Arg	Ser 20	Pro	Pro	Val	Met	Val 25	Ala	Gly	Gly	Arg	Val 30	Phe	Val
Leu	Pro	Cys 35	Ile	Gln	Gln	Ile	Gln 40	Arg	Ile	Ser	Leu	Asn 45	Thr	Leu	Thr
Leu	Asn 50	Val	Lys	Ser	Glu	Lys 55	Val	Tyr	Thr	Arg	His 60	Gly	Val	Pro	Ile
Ser 65	Val	Thr	Gly	Ile	Ala 70	Gln	Val	Lys	Leu	Ser 75	Glu	Pro	Phe	Pro	His 80
Ser	Pro	Leu	Pro	His 85	His	Pro	Leu	Ser	Gln 90	Thr	Leu	Arg	His	Leu 95	Leu
Ala	Thr	Val	Phe 100	Ser	Thr	Leu	Ala	Cys 105	Arg	Glu	Val	Pro	Leu 110	Leu	Val
Ser	Ser	Phe 115	Pro	Gly	Thr	Pro	Arg 120	His	Leu	Pro	Pro	Pro 125	Pro	Phe	Phe
Pro															
<210><211><212><213>	118 PRT	sapie	ns												
<400>	221														
Asp 1	Gly	Asp	Pro	Met 5	Ala	Ser	Val	Asn	Leu 10	Phe	Thr	Leu	Asp	Ile 15	Glu
Gly	Gln	Cys	Val 20	Glu	Arg	Asp	Pro	Leu 25	Asp	Leu	Leu	Asp	Ala 30	Gly	Gln
Asp	Lys	Asp 35	Thr	Pro	Ser	Ser	His 40	His	Asp	Trp	Gly	Ala 45	Ser	Ala	Glu
Pro	Gly 50	Asp	His	His	Gly	Leu 55	Ile	Trp	Ala	Thr	Ser 60	Glu	Lys	His	Gly
Ser 65	Gly	Trp	Ser	Phe	Arg 70	Asp	Ala	Gly	Gly	Ser 75	Pro	Ala	Gly	Val	Ser 80

Gly	Arg	Ala	Gly	Ser 85	Arg	Arg	Asp	Leu	Gly 90	Ala	Gly	Gln	Gly	Pro 95	Leu
Ala	Asp	Gln	Leu 100	Ser	Trp	Glu	Leu	Ala 105	Pro	Ser	Arg	Val	Pro 110	His	Pro
Ala	Ala	Pro 115	Arg	Cys	Cys										
<210><211><212><213>	119 PRT	sapie	ens												
<400>	222														
Trp 1	Pro	Ser	Gly	Gly 5	Pro	Leu	Thr	Ser	Pro 10	Gly	Gln	Cys	Gly	Gln 15	Ser
Gln	Pro	Pro	Ser 20	Ser	Pro	Ala	Thr	Ser 25	Asp	Arg	Arg	Pro	Pro 30	Thr	Ser
Pro	Cys	Ser 35	Ala	Pro	Gly	Phe	Leu 40	Pro	Val	Ala	Arg	Val 45	Gly	Val	Gly
Lys	Val 50	Trp	Trp	Gly	Ser	His 55	Glu	Val	Arg	Gly	Lys 60	Ala	Glu	Arg	Glu
Gly 65	Arg	Ala	Leu	Ser	Glu 70	Met	Leu	Leu	Pro	Phe 75	Gln	Gly	Lys	Lys	Gly 80
Gly	Gly	Gly	Lys	Cys 85	Leu	Gly	Val	Pro	Gly 90	Lys	Asp	Glu	Thr	Ser 95	Arg
Gly	Thr	Ser	Leu 100	Gln	Ala	Arg	Val	Glu 105	Lys	Thr	Val	Ala	Arg 110	Arg	Cys
Leu	Asn	Val 115	Trp	Glu	Arg	Gly									
<210><211><212><213>	93 PRT	sapie	ns												
<400>	223														
Gly 1	Arg	Arg	Thr	Leu 5	Phe	Leu	Ala	Thr	Phe 10	Gly	Gly	Tyr	Pro	Gly 15	Ser
Leu	Gly	Cys	Ser 20	Leu	Ser	Gly	Glu	Ala 25	Asn	Ile	Ser	Leu	Val 30	Ser	Phe
Phe	His	Pro 35	Leu	Asn	Cys	Lys	Leu 40	Arg	Ile	Thr	Gln	Ala 45	His	His	Tyr
Ser	Arg 50	Leu	Gly	Leu	Ala	Ser 55	Gln	Ser	Thr	Leu	Cys 60	Pro	Ala	Cys	His
Cys 65	Cys	Lys	Glu	Leu	Leu 70	Leu	Cys	Gln	Pro	Lys 75	Gln	Arg	Lys	Tyr	Gly 80
Phe	Ser	Cys	Ile	Ile	Phe	Pro	Phe	Gly	Trp	Phe	Val	Phe			

<210> 224 <211> 94

<212> PRT

<213> homo sapiens

<400> 224

Asn Leu Ile Tyr Pro Asn Ser Ser Met Tyr Ser Asp Thr Phe Ser Glu 10 Lys Ala Arg Ile Ile Gly Ala Val Leu Ser Ile Lys Gly Ser Lys Ser 25 30 Asp His Leu His Tyr Asn Phe Leu Cys Leu Phe Ser Ala Gly Glu 35 40 Ile His Ile Tyr Ser Thr Pro His Trp Thr Leu Gln Asn Ala Cys 55 Phe Cys Pro Ser Ala Ile Cys Leu Leu Lys Ser Leu Pro Phe Cys Glu 65 75 80 Ile Val Phe Pro Lys Met Phe Ser Thr Gly His

<210> 225

<211> 92

<212> PRT

<213> homo sapiens

<400> 225

Gly His His Met His Ile Leu Asp Arg Phe Cys Thr Ala Gln Leu Glu 10 15 Trp Val Pro Val Thr Thr Gly Val Trp Gln Tyr Thr Ile Cys Val Gln 20 25 30 Tyr Arg Lys Pro Ser Ala Val Ser Ala Arg Glu Tyr Leu Ser Asn Ser 35 40 45 Ser Ala Gln Ala Leu Asn Gln Val Arg Lys Thr Ala Ile Trp Leu Glu 55 60 Asp Phe Gln Glu Thr Ala Val Pro Val Arg Gly Arg Tyr Tyr Leu Arg 65 70 75 80 Gly Gly Arg Gly Thr Asp Ile Lys Gln Glu Gly Phe 85

<210> 226

<211> 458

<212> PRT

<213> homo sapiens

<400> 226

Arg Gly Lys Arg Arg His Arg Leu Pro Ala Leu Pro Pro Arg Leu 10 15

Leu Ser Pro Ser Ala Ala Thr Met Ser Ala Ser Ala Val Phe Ile Leu

20 25 30

Asp	Val	Lys 35	Gly	Lys	Pro	Leu	Ile ,40	Ser	Arg	Asn	Tyr	Lys 45	Gly	Asp	Val
Ala	Met 50	Ser	Lys	Ile	Glu	His 55	Phe	Met	Pro	Leu	Leu 60	Val	His	Gly	Glu
Glu 65	Glu	Gly	Ala	Leu	Ala 70	Pro	Leu	Leu	Ser	His 75	Gly	Gln	Val	His	Phe 80
Leu	Trp	Ile	Lys	His 85	Ser	Asn	Leu	Tyr	Leu 90	Val	Ala	Thr	Thr	Ser 95	Lys
Asn	Ala	Asn	Ala 100	Ser	Leu	Val	Tyr	Ser 105	Phe	Leu	Tyr	Lys	Thr 110	Ile	Glu
Val	Phe	Cys 115	Glu	Tyr	Phe	Lys	Glu 120	Leu	Glu	Glu	Glu	Ser 125	Ile	Arg	Asp
Asn	Phe 130	Val	Ile	Val	Tyr	Glu 135	Leu	Leu	Asp	Glu	Leu 140	Met	Asp	Phe	Gly
Phe 145	Pro	Gln	Thr	Thr	Asp 150	Ser	Lys	Ile	Leu	Gln 155	Glu	Tyr	Ile	Thr	Gln 160
Gln	Ser	Asn	Lys	Leu 165	Glu	Thr	Gly	Lys	Ser 170	Arg	Val	Pro	Pro	Thr 175	Val
Thr	Asn	Ala	Val 180	Ser	Trp	Arg	Ser	Glu 185	Gly	Ile	Lys	Tyr	Lys 190	Lys	Asn
Glu	Val	Phe 195	Ile	Asp	Val	Ile	Glu 200	Ser	Val	Asn	Leu	Leu 205	Val	Asn	Ala
Asn	Gly 210	Ser	Val	Leu	Leu	Ser 215	Glu	Ile	Val	Gly	Thr 220	Ile	Lys	Leu	Lys
Val 225	Phe	Leu	Ser	Gly	Met 230	Pro	Glu	Leu	Arg	Leu 235	Gly	Leu	Asn	Asp	Arg 240
Val	Leu	Phe	Glu	Leu 245	Thr	Gly	'Arg	Ser	Lys 250	Asn	Lys	Ser	Val	Glu 255	Leu
Glu	Asp	Val	Lys 260	Phe	His	Gln	Cys	Val 265	Arg	Leu	Ser	Arg	Phe 270	Asp	Asn
Asp	Arg	Thr 275	Ile	Ser	Phe	Ile	Pro 280	Pro	Asp	Gly	Asp	Phe 285	Glu	Leu	Met
Ser	Tyr 290	Arg	Leu	Ser	Thr	Gln 295	Val	Lys	Pro	Leu	Ile 300	Trp	Ile	Glu	Ser
Val 305	Ile	Glu	Lys	Phe	Ser 310	His	Ser	Arg	Val	Glu 315	Ile	Met	Val	Lys	Ala 320
Lys	Gly	Gln	Phe	Lys 325	Lys	Gln	Ser	Val	Ala 330	Asn	Gly	Val	Glu	Ile 335	Ser
Val	Pro	Val	Pro 340	Ser	Asp	Ala	Asp	Ser 345	Pro	Arg	Phe	Lys	Thr 350	Ser	Val
Gly	Ser	Ala	Lys	Tyr	Val	Pro	Glu	Arg	Asn	Val	Val	Ile	Trp	Ser	Ile

		355					360					365			
Lys	Ser 370	Phe	Pro	Gly	Gly	Lys 375	Glu	Tyr	Leu	Met	Arg 380	Ala	His	Phe	Gly
Leu 385		Ser	Val	Glu	Lys 390	Glu	Glu	Val	Glu	Gly 395	Arg	Pro	Pro	Ile	Gly 400
Val	Lys	Phe	Glu	Ile 405	Pro	Tyr	Phe	Thr	Val 410	Ser	Gly	Ile	Gln	Val 415	Arg
Tyr	Met	Lys	Ile 420	Ile	Glu	Lys	Ser	Gly 425	Tyr	Gln	Gly	Pro	Ala 430	Leu	Gly
Phe	Arg	Tyr 435	Ile	His	Pro	Glu	Trp 440	Ala	Ile	Thr	Asn	Phe 445	Arg	Tyr	Gln
Leu	Gly 450	Arg	Gly	Glu	Glu	Met 455	Gly	Gly	Phe						
<210><211><212><213>	120	sapie	ens												
<400>	227														
Leu 1	Val	Thr	Lys	Val 5	Gly	Asn	Arg	Pro	Leu 10	Trp	Val	Asn	Val	Ala 15	Lys
Pro	Gln	Gly	Arg 20	Ala	Leu	Val	Thr	Thr 25	Phe	Leu	Asn	Asp	Leu 30	His	Val
Ser	Asp	Leu 35	Asp	Pro	Arg	Asp	Gly 40	Glu	Val	Gly	Asp	Leu 45	Lys	Leu	Asp
Pro	Asp 50	Gly	Gly	Pro	Ala	Leu 55	His	Leu	Phe	Leu	Phe 60	His	Thr	Gly	Glu
Ala 65	Lys	Val	Gly	Ser	His 70	Gln	Val	Leu	Leu	Ala 75	Pro	Arg	Glu	Arg	Leu 80
Asn	Thr	Pro	Asn	His 85	Asp	Val	Ser	Leu	Arg 90	His	Ile	Leu	Gly	Ala 95	Ala
His	Thr	Gly	Leu 100	Glu	Ser	Gly	Gly	Val 105	Gly	Ile	Ala	Gly	Tyr 110	Arg	His
Arg	Tyr	Leu 115	His	Thr	Val	Gly	His 120								
<210><211><212><213>	246 PRT	sapie	ns												
<400>	228														
Gly 1	Ile	Ser	Asn	Leu 5	Thr	Pro	Met	Gly	Gly 10	Arg	Pro	Ser	Thr	Ser 15	Ser
Phe	Ser	Thr	Leu 20	Gly	Arg	Pro	Lys	Trp 25	Ala	Arg	Ile	Lys	Tyr 30	Ser	Leu

Pro	Pro	Gly 35	Lys	Asp	Leu	Ile	Leu 40	Gln	Ile	Thr	Thr	Phe 45	Leu	Ser	Gly
Thr	Tyr 50	Leu	Ala	Leu	Pro	Thr 55	Leu	Val	Leu	Asn	Leu 60	Gly	Glu	Ser	Ala
Ser 65	Leu	Gly	Thr	Gly	Thr 70	Asp	Ile	Ser	Thr	Pro 75	Leu	Ala	Thr	Asp	Cys 80
Phe	Leu	Asn	Cys	Pro 85	Leu	Ala	Leu	Thr	Met 90	Ile	Ser	Thr	Arg	Leu 95	Trp
Glu	Asn	Phe	Ser 100	Met	Thr	Asp	Ser	Ile 105	Gln	Ile	Ser	Gly	Leu 110	Thr	Trp
Val	Leu	Arg 115	Arg	Tyr	Asp	Met	Ser 120	Ser	Lys	Ser	Pro	Ser 125	Gly	Gly	Met
Lys	Glu 130	Met	Val	Arg	Ser	Leu 135	Ser	Lys	Arg	Glu	Ser 140	Arg	Thr	His	Trp
Trp 145	Asn	Phe	Thr	Ser	Ser 150	Ser	Ser	Thr	Asp	Leu 155	Phe	Leu	Leu	Arg	Pro 160
Val	Ser	Ser	Lys	Ser 165	Thr	Arg	Ser	Leu	Arg 170	Pro	Ser	Arg	Ser	Ser 175	Gly
Ile	Pro	Asp	Arg 180	Asn	Thr	Leu	Ser	Leu 185	Met	Val	Pro	Thr	Ile 190	Ser	Leu
Arg	Arg	Thr 195	Leu	Pro	Leu	Ala	Leu 200	Thr	Ser	Arg	Leu	Thr 205	Asp	Ser	Met
Thr	Ser 210	Met	Lys	Thr	Ser	Phe 215	Phe	Leu	Tyr	Leu	Ile 220	Pro	Ser	Glu	Arg
Gln 225	Asp	Thr	Ala	Leu	Val 230	Thr	Val	Gly	Gly	Thr 235	Arg	Asp	Leu	Pro	Val 240
Ser	Ser	Leu	Leu	Leu 245	Cys										
<210> <211>															
<212> <213>	PRT	sapie	ns												
<400>		•													
Met 1	Asn	Thr	Arg	Leu 5	Gln	Val	Glu	His	Pro 10	Val	Thr	Glu	Met	Ile 15	Thr
Gly	Thr	Asp	Leu 20	Val	Glu	Trp	Gln	Leu 25	Arg	Ile	Ala	Ala	Gly 30	Glu	Lys
Ile	Pro	Leu 35	Ser	Gln	Glu	Glu	Ile 40	Thr	Leu	Gln	Gly	His 45	Ala	Phe	Glu
Ala	Arg 50	Ile	Tyr	Ala	Glu	Asp 55	Pro	Ser	Asn	Asn	Phe 60	Met	Pro	Val	Ala

Gly Pro Leu Val His Leu Ser Thr Pro Arg Ala Asp Pro Ser Thr Arg

65 70 75 80 Ser Val His Glu Thr Gly Val Arg Gln Gly Asp Glu Val Tyr Ile Asp 90 Ile Ala Lys Trp Val Val Trp Ala Ala Asp Arg Gln Ala Ala Met Pro 100 105 110 Leu Lys Leu Arg Tyr Ser Leu Arg Gln Tyr Asn Ile Val Gly 120 125 Ser Gly His Pro Phe Leu Leu Asn Leu Glu Pro Thr Asn Ile Asp 140 130 135 Glu Ala Gly Asn Val His Thr Asp Phe Ile Pro Gln His His Lys Gln 155 160 145 150 Glu Ser Cys Gln Ala Leu Leu Leu Lys Ala Ala Lys Leu Ser Arg 170 175 165 Lys Ala Thr Thr Phe Thr Leu Gly Leu Ile Leu Lys Glu Met Asp Ala 190 180 185 Gly Arg Gln Ala Gln Phe Pro Phe Ser Ser Ser Ser Leu His Asp Ser 205 195 200 Lys Gly Lys Arg Asn Ile Ser Tyr Thr Arg Asn Met Thr Leu Asp 215 220 Asn Asn Val Ala Ile Ala Val Thr Tyr Asn His Asp Gly Ser Tyr Ser 235 240 225 230 Phe Gln Val Leu Gly Asn Leu Tyr Met Gln Ile Glu Asp Lys Thr 250 255 245 Glu Cys Ser Val Asn Gly Val Ala Gly Asp Cys Thr Tyr Leu Lys 260 265 Lys Ala Lys 275 <210> 230 <211> 117 <212> PRT <213> homo sapiens <400> 230 Ser Glu Val Ile Ile Leu Glu Asn Thr Ile Tyr Leu Phe Ser Lys Glu 15 10 1 Val Gly Ser Ile Glu Ile Ile Pro Val Pro Lys Tyr Leu Ser Ser Asp 20 25 3.0 Gly Gly Thr Pro Pro Met Gly Thr Ser Gln Glu Thr Gln Leu Ala Ser 45 40 35 Glu Val Lys Ala Gly Asp Lys Val Lys Ala Gly Asp Ile Lys Val Phe 50 55 60 Ile Ala Met Lys Met Glu His Thr Ile Lys Ser Ser Leu Met Val Met 65 70 75 80

Pro	Lys	Asp	Gly	Thr 85	Val	Lys	Lys	Val	Phe 90	Tyr	Arg	Glu	Gly	Ala 95	Gln
Ala	Asn	Arg	His 100	Thr	Pro	Leu	Val	Glu 105	Phe	Glu	Glu	Glu	Glu 110	Ser	Asp
Lys	Arg	Glu 115	Ser	Glu											
<210><211><212><213>	103 PRT	sapie	ns												
<400>	231														
Ser 1	Leu	Arg	Phe	Thr 5	Ser	Asn	Ser	Ile	Asn 10	Arg	Thr	Phe	Gln	Val 15	Ser
Ala	Val	Ser	Leu 20	Ala	Val	Lys	Ile	Thr 25	Lys	Asp	Leu	Glu	Ser 30	Phe	Ile
Phe	Asn	Leu 35	His	Ala	Ile	Arg	Pro 40	Ile	Met	Val	Ile	Arg 45	Tyr	Ser	Tyr
Gly	Tyr 50	Ile	Val	Phe	Thr	Ile 55	Phe	Lys	Ser	His	Val 60	Ser	Gly	Ile	Arg
Asp 65	Ile	Gln	Ser	Ser	Ser 70	Thr	Ala	Arg	Arg	Lys 75	Trp	Arg	Glu	Leu	Ile 80
Met	Cys	Leu	Lys	Ser 85	Glu	Ser	Val	Gly	His 90	Gly	Phe	Leu	Leu	Glu 95	Asp
Glu	Thr	Gln	Gly 100	Cys	Leu	Ala									
<210><211><211><212><213>	234 PRT	sapie	ns												
<400>	232						¥								
Ala 1	Asp	Lys	Met	Phe 5	Leu	Leu	Pro	Leu	Pro 10	Ala	Ala	Gly	Arg	Val 15	Val
Val	Arg	Arg	Leu 20	Ala	Val	Arg	Arg	Phe 25	Gly	Ser	Arg	Ser	Leu 30	Ser	Thr
Ala	Asp	Met 35	Thr	Lys	Gly	Leu	Val 40	Leu	Gly	Ile	Tyr	Ser 45	Lys	Glu	Lys
Glu	Asp 50	Asp	Val	Pro	Gln	Phe 55	Thr	Ser	Ala	Gly	Glu 60	Asn	Phe	Asp	Lys
Leu 65	Leu	Ala	Gly	Lys	Leu 70	Arg	Glu	Thr	Leu	Asn 75	Ile	Ser	Gly	Pro	Pro 80
Leu	Lys	Ala	Gly	Lys 85	Thr	Arg	Thr	Phe	Tyr 90	Gly	Leu	His	Gln	Asp 95	Phe

Pro Ser Val Val Leu Val Gly Leu Gly Lys Lys Ala Ala Gly Ile Asp

			100					105					110		
Glu	Gln	Glu 115	Asn	Trp	His	Glu	Gly 120	Lys	Glu	Asn	Ile	Arg 125	Ala	Ala	Val
Ala	Ala 130	Gly	Cys	Arg	Gln	Ile 135	Gln	Asp	Leu	Glu	Leu 140	Ser	Ser	Val	Glu
Val 145	Asp	Pro	Cys	Gly	Asp 150	Ala	Gln	Ala	Ala	Ala 155	Glu	Gly	Ala	Val	Leu 160
Gly	Leu	Tyr	Glu	Tyr 165	Asp	Asp	Leu	Lys	Gln 170	Lys	Lys	Lys	Met	Ala 175	Val
Ser	Ala	Lys	Leu 180	Tyr	Gly	Ser	Gly	Asp 185	Gln	Glu	Ala	Trp	Gln 190	Lys	Gly
Val	Leu	Phe 195	Ala	Ser	Gly	Gln	Glu 200	Leu	Gly	His	Ala	Asn 205	Leu	Met	Gly
Asp	Ala 210	Ser	Gln	Leu	Arg	Leu 215	Thr	Pro	Thr	Arg	Phe 220	Cys	Arg	Asn	Tyr
Leu 225	Arg	Arg	Phe	Ser	Lys 230	Leu	Val	Val	Ser						
<210><211><211><212><213>	108 PRT	sapie	ns												
<400>	233														
Leu 1	Pro	Ile	Leu	Lys 5	Ile	Phe	Ser	Asn	Asn 10	Phe	Gly	Lys	Ile	Trp 15	Leu
	Pro Ser	Ile Ile	Leu Ser 20		Ile			Asn Leu 25		Phe Ser	_	Lys	Ile Arg 30	_	Leu Gln
1	Ser		Ser 20	5 Ile	Gly	Trp		Leu 25	10 Pro	Ser	Asn	Trp	Arg	15	Gln
1 Ala	Ser Leu	Ile Ala 35	Ser 20	5 Ile Lys	Gly	Trp	Arg Gly 40	Leu 25 Leu	10 Pro	Ser Ser	Asn Ala	Trp Arg 45	Arg 30	15 Ala Pro	Gln Asp
1 Ala Val	Ser Leu His 50	Ile Ala 35	Ser 20 Gln His	5 Ile Lys Arg	Gly Gln Ala	Trp Thr Leu 55	Arg Gly 40	Leu 25 Leu Thr	10 Pro Leu Gln	Ser Ser Pro	Asn Ala Ser 60	Trp Arg 45	Arg 30 Pro	15 Ala Pro Phe	Gln Asp Ala
1 Ala Val Pro Leu	Ser Leu His 50	Ile Ala 35 Phe	Ser 20 Gln His	5 Ile Lys Arg	Gly Gln Ala His 70	Trp Thr Leu 55	Gly 40	Leu 25 Leu Thr	10 Pro Leu Gln Ala	Ser Ser Pro Pro 75	Asn Ala Ser 60	Trp Arg 45 Ser	Arg 30 Pro Phe	15 Ala Pro Phe Gln	Gln Asp Ala Gln
1 Ala Val Pro Leu 65	Ser Leu His 50 Gly	Ile Ala 35 Phe	Ser 20 Gln His Arg	5 Ile Lys Arg Ile His 85	Gly Gln Ala His 70 Arg	Trp Thr Leu 55 Arg	Gly 40 . Pro	Leu 25 Leu Thr Gln	10 Pro Leu Gln Ala Pro	Ser Ser Pro Pro 75	Asn Ala Ser 60 Leu Thr	Trp Arg 45 Ser	Arg 30 Pro Phe	15 Ala Pro Phe Gln Pro	Gln Asp Ala Gln 80
Ala Val Pro Leu 65	Ser Leu His 50 Gly Glu Glu 234 68 PRT	Ile Ala 35 Phe His Arg	Ser 20 Gln His Arg Leu Ala 100	5 Ile Lys Arg Ile His 85	Gly Gln Ala His 70 Arg	Trp Thr Leu 55 Arg	Gly 40 Pro	Leu 25 Leu Thr Gln Pro	10 Pro Leu Gln Ala Pro 90	Ser Pro Pro 75 Gln	Asn Ala Ser 60 Leu Thr	Trp Arg 45 Ser	Arg 30 Pro Phe	15 Ala Pro Phe Gln Pro	Gln Asp Ala Gln 80
1 Ala Val Pro Leu 65 Pro Leu <210> <211> <212>	Ser Leu His 50 Gly Glu Glu 234 68 PRT homo	Ile Ala 35 Phe His Arg	Ser 20 Gln His Arg Leu Ala 100	5 Ile Lys Arg Ile His 85	Gly Gln Ala His 70 Arg	Trp Thr Leu 55 Arg	Gly 40 Pro	Leu 25 Leu Thr Gln Pro	10 Pro Leu Gln Ala Pro 90	Ser Pro Pro 75 Gln	Asn Ala Ser 60 Leu Thr	Trp Arg 45 Ser	Arg 30 Pro Phe	15 Ala Pro Phe Gln Pro	Gln Asp Ala Gln 80

Pro	Phe	Cys	Arg 20	Gly	Gln	Leu	Ala	Pro 25	Arg	Trp	Gly	Ser	Pro 30	Asp	Ala ·
Asp	His	Lys 35	Arg	Phe	Glu	Ser	Ser 40	Leu	Pro	Ser	Glu	Val 45	Val	Gln	Ile
Cys	Ser 50	Lys	Ser	Leu	Ser	Ala 55	Phe	Gln	Leu	Thr	Ile 60	Tyr	Gln	Asn	Ser
Leu 65	Leu	His	Leu												
<210><211><212><213>	187 PRT	sapie	ns												
<400>	235														
Gln 1	Arg	Val	Arg	Ala 5	Ala	Leu	Leu	Ser	Ser 10	Ala	Met	Glu	Asp	Ser 15	Glu
Ala	Leu	Gly	Phe 20	Glu	His	Met	Gly	Leu 25	Asp	Pro	Arg	Leu	Leu 30	Gln	Ala
Val	Thr	Asp 35	Leu	Gly	Trp	Ser	Arg 40	Pro	Thr	Leu	Ile	Gln 45	Glu	Lys	Ala
Ile	Pro 50	Leu	Ala	Leu	Glu	Gly 55	Lys	Asp	Leu	Leu	Ala 60	Arg	Ala	Arg	Thr
Gly 65	Ser	Gly	Lys	Thr	Ala 70	Ala	Tyr	Ala	Ile	Pro 75	Met	Leu	Gln	Leu	Leu 80
Leu	His	Arg	Lys	Ala 85	Thr	Gly	Pro	Val	Val 90	Glu	Gln	Ala	Val	Arg 95	Gly
Leu	Val	Leu	Val 100	Pro	Thr	Lys	Glu	Leu 105	Ala	Arg	Gln	Ala	Gln 110	Ser	Met
Ile	Gln	Gln 115	Leu	Ala	Thr	Tyr	·Cys 120	Ala	Arg	Asp	Val	Arg 125	Val	Ala	Asn
Val	Ser 130	Ala	Ala	Glu	Asp	Ser 135	Val	Ser	Gln	Arg	Ala 140	Val	Leu	Met	Glu
Lys 145		Asp	Val	Val	Val 150	Gly	Thr	Pro	Ser	A rg 155	Ile	Leu	Ser	His	Leu 160
Gln	Gln	Asp	Ser	Leu 165	Lys	Leu	Arg	Asp	Ser 170	Leu	Glu	Leu	Leu	Val 175	Val
Asp	Glu	Ala	Asp 180	Leu	Leu	Phe	Ser	Leu 185	Trp	Leu					
<210>	236														

<210> 236 <211> 76 <212> PRT <213> homo sapiens

Ile Gly His Ser Asp Ile Pro Ser Thr Val Gly Ser Gln Leu Leu 10 His Gly Leu Cys Leu Pro Asn Leu Leu Gly Arg Cys Gln Asn Lys Asn 20 25 Lys Ala Ser His His Cys Leu Phe Tyr Cys Arg Thr Arg Leu Pro Met Glu Gln Gln Leu Gln His Arg Asn Ser Ile Ser Gly Arg Leu Pro Gly 50 60 Ala Arg Ala Gly Pro Ser Gln Glu Val Leu Pro Phe 70 <210> 237 <211> 112 <212> PRT <213> homo sapiens <400> 237 Asn Ile Ser Ser Leu Ser Ala Cys Thr Ser Ser Thr Gly Leu Cys Leu 10 15 Lys Val Ala Asp Met Arg Lys Ala Leu Leu Lys Ser Gly Gly Lys Val 25 30 Thr Gly Arg Leu Leu Glu Leu Phe Phe Lys Ala Lys Gly Lys Lys 40 Glu Gly Gln Leu Arg Pro Pro Pro Lys Ala Pro Gly Ser His Glu 55 60 Ser Gly Cys Ala Gly Leu Leu Ala Ser Cys Ile Glu Met Gly Ser Leu 65 70 75 Leu Pro His Ser Leu Ala Pro Ser Ala Gln Leu Ser Glu Arq Leu Ser 85 90 Leu Gln Gln Leu Arg His Trp Pro Leu Gly His Pro Glu His Ser Arg 100 105 <210> 238 <211> 108 <212> PRT <213> homo sapiens <400> 238 Cys His Ala Arg Leu Asn Thr Asp Ser Ser Arg Leu Ala Met Lys Leu 15 Leu Met Val Leu Met Leu Ala Ala Leu Leu Leu His Tyr Cys Ala Asp 20 25 Gly Ser Cys Lys Leu Leu Glu Asp Met Val Glu Lys Thr Ile Asn Ser 35 40 45 Ile Asp Ser Ile Pro Glu Tyr Lys Glu Leu Leu Gln Glu Phe Ile 55

Ser Asp Ala Ala Glu Ala Met Gly Lys Phe Lys Gln Cys

Phe

65 70 75 Asn Gln Ser His Arg Thr Leu Lys Asn Phe Gly Leu Met Met His Thr 85 90 Tyr Asp Ser Ile Trp Cys Asn Met Lys Ser Asn 100 105 <210> 239 <211> 82 <212> PRT <213> homo sapiens <400> 239 Leu Val Glu Glu Thr Leu Leu Glu Phe Pro His Ser Leu Cys Ser Gly 5 15 Ile Thr Val Tyr Glu Leu Leu Lys Lys Leu Phe Val Phe Arq Tyr Arg 20 25 30 Tyr Val Gly Ile Asp Gly Leu Phe Asn His Val Leu Gln Glu Phe Ala 35 40 45 Ile Cys Ile Ala Val Gln Glu Glu Gly Arg Gln His Glu Ala Arg Asp 55 60 His Gln Gln Leu His Gly Glu Ala Ala Val Cys Val Gln Ser Cys 70 75 80 Val Ala <210> 240 <211> 48 <212> PRT <213> homo sapiens <400> 240 Leu Leu Phe Ile Leu His Gln Met Leu Ser Tyr Thr Val Cys Ile Ile 10 Phe Phe Arg Val Leu Cys Asp Ser Pro Lys Trp Leu Arg Lys His Cys 20 25 30 Leu Asn Phe Pro Ile Ala Ser Ala Ala Ser Leu Ser Met Asn Ser 35 40 <210> 241 <211> 56 <212> PRT <213> homo sapiens <400> 241 Gln Ala Val Gly Glu Lys Leu Ser Ser Arg Asp Ser Asp Leu Met Glu Asp Arg Cys Phe Pro His Phe Ser Phe Ser Pro Lys Lys Val Leu Leu 20 25 30 Leu Ser Pro Phe Lys Gln Pro Val Ser Leu Asn Phe Cys Gly His Gly 35 40

Thr Asp Lys Asp Pro Val Phe Ser 50 <210> 242 <211> 52 <212> PRT <213> homo sapiens <400> 242 Ile Phe Val Ala Met Gly Gln Thr Arg Thr Pro Ser Ser Ala Glu Leu 10 Arg Lys Ser Pro Ala Thr Ser Leu Ala Ile Lys Leu Gln Pro Ser His 20 25 30 Pro Thr Arg Ala Ser Glu Glu Trp Pro Leu Leu Ala Gly Asn Pro Leu 35 45 40 Gln Trp Ala Ser 50 <210> 243 <211> 67 <212> PRT <213> homo sapiens <400> 243 Trp Pro Lys Met Ser Gln Asp Phe Ser Leu Val Gln Leu Lys Thr Gly 5 10 Trp Pro Gln Lys Phe Arg Leu Thr Gly Cys Ser Leu Ser Val Pro Leu 20 25 Lys Trp Gly Lys Gly Asp Ser Arg Thr Phe Leu Gly Glu Lys Glu Arg 35 45 40 Lys Gln Arg Ser Ser Ile Arg Ser Glu Ser Leu Leu Glu Ser Phe Ser 50 55 Pro Thr Ala 65 <210> 244 <211> 64 <212> PRT <213> homo sapiens <400> 244 Gly Ser Ser Trp Ala Glu Asp Phe Lys Cys Asp Ile Ser Val Pro Lys 1 10 15 Thr Ser Leu Leu Cys Phe Ala Gln Ser Arg Ser Met Tyr Phe Leu Leu 20 25 30 Gln Tyr Val Pro Ile Tyr Lys Phe Ile Ser His Thr Tyr Asn Arg Ala 35 40 45 His Val Cys Thr Cys Thr Arg Thr His Thr His Ser Leu Ser Thr Arq

55

<210><211><212><213>	74 PRT	sapie	ns												
<400>	245														
Ser 1	Gly	Pro	Leu	Leu 5	Pro	Ala	Lys	Asn	Arg 10	Glu	Val	Ala	Gly	Leu 15	Lys
Thr	Leu	Ser	Val 20	Thr	Phe	Gln	Phe	Leu 25	Lys	His	His	Cys	Tyr 30	Leu	Leu
Lys	Val	Val 35	Gly	Leu	Cys	Ile	Ser 40	Phe	Ser	Asn	Thr	Ser 45	Pro	Phe	Ile
Ser	Leu 50	Phe	Pro	Ile	His	Thr 55	Thr	Val	His	Met	Cys 60	Ala	Arg	Ala	His
Ala 65	His	Thr	His	Thr	His 70	Ser	Gln	Leu	Val						
<210><211><211><212><213>	69 PRT	sapie	ns												
<400>	246														
Ala 1	Arg	Ile	Gln	Thr 5	Pro	Glu	Gln	His	Ser 10	Gln	Val	Thr	Leu	Phe 15	Asp
Tyr	Asn	Glu	Glu 20	Met	Lys	Met	Gly	Gly 25	Tyr	Leu	Lys	Ile	Gly 30	Ile	Pro
Ser	Ala	Leu 35	Lys	Val	Ser	Lys	Leu 40	Leu	Thr	Cys	Glu	Gln 45	His	Arg	Thr
Pro	Leu 50	Leu	Trp	Ser	Ser	Phe 55	Gln	Leu	Arg	Met	Leu 60	Gln	Phe	Ser	Lys
Ser 65	Ile	Tyr	Tyr	Ser											
<210><211><212><213>	236 PRT	sapie	ns												
<400>	247														
Gln 1	Leu	Arg	Gly	Gly 5	Val	Gln	Arg	His	Asp 10	Arg	Arg	Glu	Gly	Glu 15	Met
Val	Cys	Val	Glu 20	Leu	Val	Ala	Ser	Asp 25	Lys	Thr	Asn	Thr	Phe 30	Gln	Gly
Val	Ile	Phe 35	Gln	Gly	Ser	Ile	Arg 40	Tyr	Glu	Ala	Leu	Lys 45	Lys	Val	Tyr
Asp	Asn 50	Arg	Val	Ser	Val	Ala 55	Ala	Arg	Met	Ala	Gln 60	Lys	Met	Ser	Phe

Gly 65	Phe	Tyr	Lys	Tyr	Ser 70	Asn	Met	Glu	Phe	Val 75	Arg	Met	Lys	Gly	Pro 80
Gln	Gly	Lys	Gly	His 85	Ala	Glu	Met	Ala	Val 90	Ser	Arg	Val	Ser	Thr 95	Gly
Asp	Thr	Ala	Pro 100	Cys	Gly	Thr	Glu	Glu 105	Asp	Ser	Ser	Pro	Ala 110	Ser	Pro
Met	His	Glu 115	Arg	Val	Thr	Ser	Phe 120	Ser	Arg	Pro	Pro	Thr 125	Pro	Glu	Arg
Asn	Asn 130	Arg	Pro	Ala	Phe	Phe 135	Ser	Pro	Ser	Leu	Lys 140	Arg	Lys	Val	Pro
Arg 145	Asn	Arg	Ile	Ala	Glu 150	Met	Lys	Lys	Ser	His 155	Ser	Ala	Asn	Asp	Ser 160
Glu	Glu	Phe	Phe	Arg 165	Glu	Asp	Asp	Gly	Gly 170	Ala	Asp	Leu	His	Asn 175	Ala
Thr	Asn	Leu	Arg 180	Ser	Arg	Ser	Leu	Ser 185	Gly	Thr	Gly	Arg	Ser 190	Leu	Val
Gly	Ser	Trp 195	Leu	Lys	Leu	Asn	Arg 200	Ala	Asp	Gly	Asn	Phe 205	Leu	Leu	Tyr
Ala	His 210	Leu	Thr	Tyr	Val	Thr 215	Leu	Pro	Leu	His	Arg 220	Ile	Leu	Thr	Asp
Ile	Leu	Glu	Val	Arg	Gln	Lys	Pro	Ile	Leu	Met	Thr				
225				_	230					235					
<210><211><211>	161	sapie	ns		230					235					
<210><211><211>	161 PRT homo	sapie	ns		230					235					
<210><211><211><212><213>	161 PRT homo	sapie Glu		Ala 5		Gly	∙Gln	Arg	Gln 10		Gly	Val	Leu	Pro 15	Gly
<210><211><211><212><213><400> Asp	161 PRT homo	Glu		5	Leu	_	-Gln Ala	_	10	Arg	_		Leu Ala 30		•
<210><211><211><212><213><400> Asp	161 PRT homo 248 Glu	Glu	Val Trp 20	5	Leu	_		Gln	10 Cys	Arg	Gln		Ala 30	15	Ser
<210> <211> <212> <213> <400> Asp 1 Gly	161 PRT homo 248 Glu Arg	Glu Arg Val	Val Trp 20	5 Ser	Leu	Ser	Ala Val	Gln 25	10 Cys	Arg Asn	Gln	Pro	Ala 30	15 Val	Ser
<210> <211> <212> <213> <400> Asp 1 Gly Val	161 PRT homo 248 Glu Arg Pro	Glu Arg Val 35 Ser	Val Trp 20 Gly	5 Ser His	Leu Arg	Ser Thr	Ala Val 40 Pro	Gln 25 Pro	10 Cys Gly Leu	Arg Asn Arg	Gln Val	Pro Leu 45 Leu	Ala 30 Ala Asn	15 Val Glu	Ser
<210> <211> <212> <213> <400> Asp 1 Gly Val Glu	161 PRT homo 248 Glu Arg Pro	Glu Arg Val 35 Ser	Val Trp 20 Gly Arg	5 Ser His Trp	Leu Arg Arg Lys Ser	Ser Thr Leu 55	Ala Val 40 Pro	Gln 25 Pro Ser Asn	10 Cys Gly Leu Arg	Arg Asn Arg Cys His	Gln Val Thr	Pro Leu 45 Leu Gly	Ala 30 Ala Asn	15 Val Glu Leu	Ser Ala Arg
<210> <211> <212> <213> <400> Asp 1 Gly Val Glu His 65	161 PRT homo 248 Glu Arg Pro Gln 50 Val	Glu Arg Val 35 Ser	Val Trp 20 Gly Arg	Ser His Trp Ala Asp	Leu Arg Arg Lys Ser	Ser Thr Leu 55 Asp	Ala Val 40 Pro	Gln 25 Pro Ser Asn	Cys Gly Leu Arg	Arg Asn Arg Cys His	Gln Val Thr 60 Pro	Pro Leu 45 Leu Gly	Ala 30 Ala Asn Ser	Val Glu Leu Ser	Ser Ala Arg Ala 80

115 120 125 Glu Ala Thr Arg Leu Pro Gly Pro Gly Pro Thr Ala Arg Thr Pro Ala 140 130 135 Thr Glu Val Pro Leu Thr Gly Pro Ala Gly Ala Ala Ser Ala Leu 155 160 145 150 Cys <210> 249 <211> 218 <212> PRT <213> homo sapiens <400> 249 Val Cys Ile Glu Lys Glu Val Ser Ile Cys Ser Val Gln Leu Gln Pro 5 10 Gln Gly Pro Ser Cys Ala Arg Gln Gly Pro Arg Pro Gly Pro Asp 30 25 Gly Val Cys Ile Val Gln Ile Gly Ser Thr Val Val Leu Pro Glu 35 40 Val His Leu Ala Val Val Gly Arg Arg Leu Leu Ser Asp Pro Leu Leu 50 55 Val Pro Gly His Leu Pro Leu Glu Gly Trp Gly Glu Glu Gly Arg Pro 65 70 75 Gly Gly Gly Ser Ala Glu Gly Gly His Pro Leu Val Val Pro Phe Trp 90 85 Gly Val His Gly Arg Trp Ala Gly Val Leu Phe Ser Pro Thr Gly Ser 105 110 100 Leu Gly Val Thr Cys Ser Ala Ala Cys Val His Asp Arg His Leu Arg 125 115 120 Ala 'His Lys Leu His Val Ala Val Leu Val Ala Leu Gly Ala Leu His 130 135 140 Glu Ala Gly Gly His Ala His Pro Lys Arg His Leu Leu Cys His Ala 145 150 155 160 Leu Glu Arg Leu Val Ala Asp Gly Ala Leu Val Val Ile His Leu Lys 165 170 Gln Pro Leu Glu Arq Val Gly Phe Val Thr Ser His Leu His Asp Asp 180 185 190 Thr Asp His Leu Ser Phe Pro Thr Val Met Ser Leu Asn Thr Ser Ser 195 200 205 Lys Leu Ser Ile Met Lys Lys Met Leu Gly 210 215

<210> 250

<211> 133

<212> PRT

<213> homo sapiens

<400>	250														
Tyr 1	Pro	Gln	Asp	Pro 5	Pro	Gly	Gly	Ala	Ser 10	Arg	Arg	Leu	Leu	Asp 15	Asp
Leu	Glu	Leu	Cys 20	Pro	Gly	Glu	Lys	Thr 25	Ala	Pro	Val	Trp	Ala 30	Leu	Ser
Ala	Glu	Glu 35	Glu	Ala	Ala	Met	His 40	Phe	Ser	Leu	Ala	Phe 45	Phe	Leu	His
Gly	Ser 50	Ser	Val	Phe	Leu	Gln 55	Ile	Thr	Cys	Cys	His 60	Glu	Phe	Leu	Cys
Met 65	Arg	His	Ile	Ser	Ser 70	Cys	Leu	Tyr	Ala	Glu 75	Val	Pro	Phe	Ile	Leu 80
Ser	Ile	Gly	Trp	Trp 85	Thr	Gly	Glu	Arg	Gly 90	Pro	Arg	Cys	Pro	Thr 95	Ser
Cys	Ala	Ser	Ala 100	Val	Gly	Gly	Asp	Arg 105	Ala	Pro	Arg	His	Gly 110	Gly	Gly
Gly	His	Leu 115	Pro	His	Val	Trp	Gly 120	Gly	Arg	Arg	His	Pro 125	Gly	Thr	Glu
Gly	Ser 130	Leu	Gln	Arg											
<210>															
<212> <213>	PRT	sapie	ns												
	PRT homo	sapie	ns												
<213>	PRT homo 251	sapie Pro		Val 5	Pro	Gly	Cys	Leu	Arg 10	Pro	Pro	Gln	Thr	Cys 15	Gly
<213> <400> Arg	PRT homo 251 Leu	_			Pro Pro	-	Cys Leu		10		Pro		Thr Pro 30	_	Gly Ala
<213> <400> Arg 1 Arg	PRT homo 251 Leu Cys	Pro	Ser Pro 20	5 Pro	Pro	Cys	Leu ,	Gly 25	10 Ala	Arg	Ser	Pro	Pro 30	15 Thr	Ala
<213> <400> Arg 1 Arg	PRT homo 251 Leu Cys Ala	Pro Pro His	Ser Pro 20	5 Pro Val	Pro Gly	Cys	Leu Leu 40	Gly 25 Gly	10 Ala	Arg Leu	Ser Ser	Pro Pro 45	Pro 30 Val	15 Thr	Ala Gln
<213> <400> Arg 1 Arg Leu Pro	PRT homo 251 Leu Cys Ala Ile 50	Pro Pro His	Ser Pro 20 Asp	5 Pro Val Met	Pro Gly Lys	Cys His	Leu Leu 40	Gly 25 Gly	10 Ala Pro	Arg Leu	Ser Ser Arg	Pro Pro 45	Pro 30 Val	Thr	Ala Gln
<213> <400> Arg 1 Arg Leu Pro Cys	PRT homo 251 Leu Cys Ala Ile 50 Leu 252 95 PRT	Pro Pro His 35 Glu Met	Ser Pro 20 Asp Arg	5 Pro Val Met	Pro Gly Lys Asn	Cys His Gly	Leu Leu 40	Gly 25 Gly	10 Ala Pro	Arg Leu	Ser Ser Arg	Pro Pro 45	Pro 30 Val	Thr	Ala Gln
<213> <400> Arg 1 Arg Leu Pro Cys 65 <210> <211> <212>	PRT homo 251 Leu Cys Ala Ile 50 Leu 252 95 PRT homo	Pro Pro His 35 Glu Met	Ser Pro 20 Asp Arg	5 Pro Val Met	Pro Gly Lys Asn	Cys His Gly	Leu Leu 40	Gly 25 Gly	10 Ala Pro	Arg Leu	Ser Ser Arg	Pro Pro 45	Pro 30 Val	Thr	Ala Gln
<213> <400> Arg 1 Arg Leu Pro Cys 65 <210> <211> <212> <213>	PRT homo 251 Leu Cys Ala Ile 50 Leu 252 95 PRT homo 252	Pro Pro His 35 Glu Met	Ser Pro 20 Asp Arg His	Fro Val Met Lys	Pro Gly Lys Asn 70	Cys His Gly 55 Ser	Leu Leu 40 Thr	Gly 25 Gly Ser	10 Ala Pro Ala	Arg Leu Tyr	Ser Ser Arg 60	Pro Pro 45 His	Pro 30 Val Asp	Thr His	Ala

30 20 25 Lys Met Pro Gly Lys Ser Ala Trp Gln Leu Pro Pro Gln His Ser Gly 35 40 45 Thr Ala Pro Ser Arg Thr Gln Glu Arg Phe Ser Pro Gln Asp

55

Glu Ala Ser Val Met Pro Leu Leu Ala Gly Pro Glu Gly Ile Arq Ala 75 80 65 70

60

Pro Leu Leu Thr Val Asp Ala Ala Thr His Ser Met Gln His 85 90 95

<210> 253

<211> 194

<212> PRT

<213> homo sapiens

50

<400> 253

Ser Phe Arg Lys Val Asn Ile Ile Leu Val Gln Lys Lys Met 15 Ala Leu Phe Leu Leu Val Leu His His Asn Phe Leu Leu Ala Val Glu Val Ser Gly Ile Val Gly Ser Leu Arg Asn Thr Asp Leu Ser Leu 40 45 35 Pro His Pro Gln Ile Asp Phe Val Pro Asn Ala Leu Arg Ala Val Asp 50 55 60 Ala Ala Gly Arg Gln Glu Glu Ile Pro Val Val Ile Ser Glu Asp Arg 70 75 65 Ile Ala Ala Ile Ser Ile Gln His Thr Arg Leu Gly Gly Ala Asn Asn 95 85 90 Thr Thr Asn Val Ile Phe Tyr Ile Val Leu Asn Ala Asp His Asn Ser 100 105 110 Ile Arg Lys Leu Arg Ser Trp Leu Asn Ser Asp Ser Leu Lys Ser Tyr 125 115 120 Gly Lys Val Lys Glu Ile Val Asn Phe Asp Pro Lys Leu Leu Glu Asp 140 130 135 Pro Asp Gln Gly Glu Ser Met Lys Pro Leu Thr Phe Ala Arg Phe Tyr 155 160 145 150

Gln Gln

<210> 254

Leu

Val

<211> 109

<212> PRT

<213> homo sapiens

Pro

Asp

Ile

Asp

Leu

Val

180

Gly

165

Ile

Ser

Gln Arg

Cys Gly Arg

Gln

Trp

185

Arg

170

Asp

Lys

Phe

Ala

Leu

Leu

Phe

190

Arg

Pro

His

175

Thr

Gly

Leu

<400>	254														
Arg 1	Phe	His	Gly	Phe 5	Pro	Leu	Val	Arg	Ile 10	Leu	Leu	Tyr	Phe	Ser 15	Phe
Gln	Lys	Phe	Arg 20	Val	Lys	Ile	Asp	Asn 25	Phe	Val	Ser	Asp	Ala 30	Phe	Gln
Gly	Ile	Thr 35	Val	Glu	Pro	Gly	Pro 40	Glu	Met	Val	Cys	Cys 45	Ile	Val	Glu
Ser	Asn 50	Asn	Val	Glu	Asn	His 55	Ile	Gly	Ala	Ser	Val 60	Val	Leu	Asn	Ala
Val 65	Tyr	Ser	Cys	Asn	Gly 70	Pro	Pro	Lys	Pro	Val 75	Phe	Arg	Cys	Ser	Asp 80
Asp	His	Arg	Asn	Leu 85	Leu	Leu	Ser	Pro	Ile 90	Tyr	Cys	Met	Ser	Glu 95	Ser
Ile	Trp	Asp	Lys 100	Val	Tyr	Arg	Leu	Arg 105	Pro	Tyr	Asn	Ser			
<210><211><212><213>	57 PRT	sapie	ns												
<400>	255														
Asn 1	Leu	Ala	Lys	Val 5	Lys	Gly	Phe	Met	Asp 10	Ser	Pro	Trp	Ser	Gly 15	Ser
Ser	Phe	Thr	Phe 20	Pro	Ser	Lys	Ser	Leu 25	Gly	Ser	Lys	Leu	Thr 30	Ile	Leu
Tyr	Leu	Met 35	Leu	Phe	Arg	Glu	Ser 40	Leu	Leu	Ser	Gln	Asp 45	Arg	Arg	Trp
Ser	Ala 50	Val	Leu	Leu	Arg	Val 55	Thr	Met							
<210><211><212><213>	230 PRT	sapie	ens												
<400>	256														
Leu 1	Pro	Ala	Ala	Thr 5	Asn	Arg	Leu	Lys	Arg 10	Gly	Lys	Gly	Ser	Ser 15	Thr
Gly	Ser	Ser	Ser 20	Gly	Asn	His	Gly	Gly 25	Ser	Gly	Gly	Gly	Asn 30	Gly	His
Lys	Pro	Gly 35	Cys	Glu	Lys	Pro	Gly 40	Asn	Glu	Ala	Arg	Gly 45	Ser	Gly	Lys
Ser	Gly 50	Ile	Gln	Gly	Phe	Arg 55	Gly	Gln	Gly	Val	Ser 60	Ser	Asn	Met	Arg
Glu	Ile	Ser	Lys	Glu	Gly	Asn	Arg	Leu	Leu	Gly	Gly	Ser	Gly	Asp	Asn

80 70 75 65 Ser Ser Trp Gly Ser Gly Gly Asp Arg Gly Gln Gly Ala Val 85 90 95 Gly Thr Val Ser Glu Thr Ser Pro Gly Met Phe Asn Gly Val Asn Asn 100 105 110 Thr Phe Trp Phe Lys Ser Lys Leu Gly Phe Ile Lys Asn Phe Asp 125 115 120 Gln Val Pro Pro Ser Thr Arg Ala Trp Asp Ala Ile Asn Lys Asn Pro 140 130 135 Phe Ser Arg Leu Trp Glu Asp Phe Lys Gln Asn Thr Pro Tyr 160 145 150 155 Ala Ile Ile Glu Gly Ala Asp Ala Ser Ser Leu Phe Leu Asn Trp Lys 175 165 170 Glu Ser Glu Leu Gln Leu Gln Pro Ala Gly Arg Ala Gln Lys Arg 185 180 Trp Trp Glu Val Leu Ser Gln Asp Pro Cys His Cys Leu Val Ser Cys 200 205 195 Cys Pro Gly Gly Leu Leu Pro Arg Leu Asn Leu Lys Gly Glu Ser His 220 215 210 Gly Gly Leu Leu Ala Val 225 230 <210> 257 <211> 141 <212> PRT <213> homo sapiens <400> 257 Thr Glu Pro Ser Ser Ser Ser Arg Pro Pro Ala Pro Thr Arg Thr Arg 15 10 Ala Gly Arg Ile Ser Asn Arg Thr Leu Leu Ser Ser Thr Gly Asp Ser 25 30 Val Thr Arg His His Cys Arg Asn Val Gln Lys Gln Leu Leu Arg Arg Asn Gln His Ala Tyr Pro Thr Ala Glu Pro Ser Gln Asn Tyr Asn Tyr 50 60 Val Thr Pro Ala Lys Gly Gly Ser Ala Gly Gly Lys Tyr Ser Lys Tyr 75 80 Gly Thr Phe Phe Leu Gly Phe Pro Ala Thr Trp Ala Cys Leu Gln Leu 90 95 85 Gln Phe Ala Thr His Gly Glu Val Val Arg Leu Asn Leu Leu 100 105 Gln Gly Lys Arq Lys Lys His Trp Val Arg Leu Leu Pro Pro Leu Pro 120 125 115

Gly	Pro 130	Pro	Ala	Leu	Trp	Gln 135	Ala	Pro	Gly	Pro	Gly 140	Leu			
<210><211><212><213>	165 PRT	sapie	ns												
<400>	258														
Arg 1	Val	Arg	Thr	Leu 5	Asn	Asn	Cys	Phe	Pro 10	Val	Glu	Glu	Arg	Ser 15	Val
Leu	Phe	Glu	Ile 20	Leu	Pro	Glu	Ser	Ala 25	Glu	Val	Glu	Glu	Gly 30	Ser	Gly
Ala	Gly	Gly 35	Arg	Asp	Leu	Val	Leu 40	Val	Tyr	Gly	Ile	Pro 45	Val	Asp	Glu
Thr	Gln 50	Leu	Gly	Phe	Lys	Ile 55	Leu	Pro	Glu	Ser	Val 60	Lys	Val	Lys	His
Pro 65	Arg	Arg	Arg	Leu	Arg 70	Val	His	Ser	Ile	Asp 75	Ser	Thr	Asn	Ser	Val 80
Thr	Ser	Ser	Thr	Ala 85	Pro	Ala	Arg	Pro	Leu 90	Pro	Pro	Ile	Ile	Val 95	Ser
Arg	Ala	Ser	Lys 100	Glu	Ala	Ile	Ala	Leu 105	Phe	Ala	Tyr	Phe	Pro 110	His	Val
Ala	Gly	Asn 115	Ser	Leu	Ser	Ser	Glu 120	Ala	Leu	Asn	Pro	Arg 125	Phe	Pro	Ala
Pro	Ala 130	Gly	Phe	Ile	Pro	Trp 135	Leu	Phe	Thr	Pro	Gly 140	Phe	Met	Ser	Ile
Ser 145	Ser	Ala	Ala	Pro	Thr 150	Val	Val	Ala	Gly	Gly 155	Gly	Ala	Gly	Ala	Gly 160
Ser	Leu	Pro	Pro	Leu 165			*								
<210><211><212><213>	126 PRT	sapie	ens												
<400>	259														
Glu 1	Arg	Ser	His	Leu 5	Gln	Pro	Gly	Ala	Val 10	Gly	Ile	Thr	Glu	Ser 15	Pro
Ile	Leu	Gly	Leu 20	Gly	Ser	Ala	Met	Thr 25	Thr	Glu	Ile	Gly	Trp 30	Trp	Lys
Leu	Thr	Phe 35	Leu	Arg	Lys	Lys	Lys 40	Ser	Thr	Pro	Lys	Val 45	Leu	Tyr	Glu
Ile	Pro 50	Asp	Thr	Tyr	Ala	Gln 55	Thr	Glu	Gly	Asp	Ala 60	Glu	Pro	Pro	Arg

Pro Asp Ala Gly Gly Pro Asn Ser Asp Phe Asn Thr Arg Leu Glu Lys

65					70					75					80
Ile	Val	Asp	Lys	Ser 85	Thr	Lys	Gly	Lys	His 90	Val	Lys	Val	Ser	Asn 95	Ser
Gly	Arg	Phe	Lys 100	Glu	Lys	Lys	Lys	Val 105	Arg	Ala	Thr	Leu	Ala 110	Glu	Asn
Pro	Asn	Leu 115	Phe	Asp	Asp	His	Glu 120	Glu	Gly	Arg	Ser	Ser 125	Lys		
<210><211><211><212><213>	121 PRT	sapie	ns												
<400>	260														
Tyr 1	Val	Leu	Asn	Thr 5	Ile	Ile	Val	Gly	Lys 10	Gly	Glu	Glu	Lys	Ile 15	Pro
His	Pro	Leu	Pro 20	Arg	Phe	Gly	Pro	Cys 25	Ser	Phe	Pro	Leu	Arg 30	Val	Cys
Asp	Leu	Pro 35	Ser	Ala	Lys	Val	Met 40	Ala	Lys	Thr	Gly	Thr 45	Asn	Arg	Pro
Asn	Tyr 50	His	Gln	Ser	Ser	Leu 55	Leu	Gln	His	Pro	Asn 60	Arg	Val	Pro	Gly
Ser 65	Ser	Val	Pro	Ser	Ala 70	Pro	Glu	Gly	Lys	Val 75	Pro	Gly	Ser	Leu	Leu 80
Pro	Val	Leu	Gly	Gly 85	Glu	Leu	Lys	Phe	Ser 90	Val	Ser	Ala	Ser	Gly 95	Ser
Thr	Glu	Thr	Ser 100	Pro	Tyr	His	Val	Ala 105	Ser	Gly	Lys	Cys	Ala 110	Leu	Leu
Arg	Ile	Gly 115	Pro	Gly	Ser	Ser	His 120	Arg							
<210><211><211><212><213>	86 PRT	sapie	ns												
<400>	261														
Thr 1	Arg	Val	Pro	Leu 5	Tyr	Val	Val	Arg	Gly 10	Arg	Val	Glu	Asp	Pro 15	Gly
Ile	Ser	Gln	Ala 20	Leu	Gln	Lys	Trp	Arg 25	His	Ile	Asn	Thr	Asn 30	Leu	Lys
Asn	Ser	His 35	Phe	Leu	Pro	Ala	Gly 40	Ile	Asn	Trp	Pro	His 45	Ser	Phe	Ser
Tyr	Gly 50	Gln	Arg	Gly	Gln	Arg 55	Gly	Lys	Val	Leu	Ser 60	Gln	Ile	Trp	Leu
Met 65	Ala	Gly	Ser	Gln	Glu 70	Val	Leu	Ala	Pro	Ser 75	Ser	Ala	Leu	His	Phe 80

```
Asp Asp Arg Pro Ser Ser
                    85
<210> 262
<211> 73
<212> PRT
<213> homo sapiens
<400> 262
 Gly Ser Gly Ser Pro Ala Pro Arg Lys Leu His Asp Phe Ala Leu Cys
                                                                 15
                                           10
                   Cys Pro Leu Phe Pro Arg Glu Thr Ser
                                                            Arg
                                                                Ser
 Ser Ala Pro Leu
                                      25
                       Phe Glu Ala Val Cys Leu His Ser
                                                            Asp
                                                                Trp
 Ile Phe Leu
              Thr
                   Asp
                                  40
                       His His Ala Asp Ser Gly Gly Asn Gly Cys Ile
              His
                   Phe
      Trp
          Asp
                                                    60
                             55
 Pro Phe His Asp Pro
                       Thr Cys Val
                                     Tyr
  65
<210> 263
<211> 106
<212> PRT
<213> homo sapiens
<400> 263
 Phe Val Ala Met Cys Ser Lys Gln Ala Ser Leu Asn His Gly Leu Leu
                                           10
                       Phe Leu Gly Pro Leu
                                                   Arg His
                                                            Arg
                                                                Ser
                                                                     Gly
 Gly Leu Thr Leu Val
                                              Asn
                                      25
                20
               Gly
                        Ile
                            His Tyr
                                     His
                                         His
                                              Cys
                                                   Arg His
                                                            Asp
                                                                Glu
      Gly Lys
                   Tyr
 His
                                 40
                                                   Gln
                                                       Leu Gln Asn
                            Gln Asn Ala Asn
                                              Arg
 Asp
      Pro
          Ser Val
                  Pro
                       Asn
                             55
                                                    60
       50
                            Trp Lys Ser Leu Leu Glu Arg Gly Gly
                                                                     Arq
 Ser
      Arg Lys
              Cys
                  Gly Ile
                                               75
                         70
                       Gly Arg Asn Arg Ala Val Tyr Ala Glu Leu
                                                                    Gly
 Gly Glu Leu
               Ser
                   Arg
                                           90
                    85
 Thr Pro Ser Leu Arg Ala Arg Gly Gly
                                          Arg
               100
<210> 264
<211> 66
<212> PRT
<213> homo sapiens
<400> 264
 Val Leu Arg Trp Tyr Ser Ser Asp Pro Ser Ile Asp Thr Gly Arg
                                                                     Val
```

Met	Glu	Arg	Asp 20	Thr	Ser	Ile	Thr	Thr 25	Thr	Val	Gly	Met	Met 30	Lys	Met ·
Ile	Pro	Val 35	Phe	Pro	Ile	Arg	Met 40	Gln	Thr	Asp	Ser	Phe 45	Lys	Ile	Ser
Gln	Glu 50	Asn	Val	Gly	Ser	Gly 55	Ser	Leu	Ser	Trp	Lys 60	Glu	Gly	Ala	Glu
Gly 65	Ser														
<210><211><212><213>	108 PRT	sapie	ns												
<400>	265														
Gly 1	Cys	Ala	Cys	Phe 5	Arg	Pro	Pro	Ser	Pro 10	Ala	Gly	Gly	Ala	Arg 15	Thr
Ser	Ala	Gly	Arg 20	Ser	Pro	Ser	Ser	Ala 25	Asp	Val	Gly	Ser	Arg 30	Thr	Gln
Ser	Arg	Ser 35	Arg	Arg	Arg	Ala	Ala 40	His	Ser	Arg	Cys	Cys 45	Val	Ala	Phe
Pro	Ser 50	Ser	Phe	Thr	Pro	Arg 55	Ser	Arg	Arg	Arg	Pro 60	Lys	Arg	Arg	Arg
Arg 65	Arg	Arg	Glu	Asn	Asp 70	Pro	Ala	Ala	Ser	Ser 75	Leu	Pro	Pro	Ala	His 80
Leu	Pro	Cys	Ser	Val 85	Ser	Gln	Ser	Ala	Ala 90	Gly	Ala	Arg	Leu	Val 95	Leu
Arg	Pro	Arg	Ala 100	Cys	Gly	Ala	Gln	Ala 105	Gln	Arg	Pro				
<210><211><212><213>	109	sapie	ens				•								
<400>	266														
Gly 1	Ala	Pro	Ala	Phe 5	Ala	Leu	Leu	Leu	Gln 10	Arg	Glu	Gly	Arg	Gly 15	Leu
Pro	Arg	Gly	Gly 20	Val	Arg	Leu	Val	Leu 25	Thr	Leu	Ala	Ala	Glu 30	Pro	Lys
Val	Asp	Arg 35	Gly	Gly	Gly	Leu	His 40	Ile	Pro	Val	Val	Ala 45	Leu	Arg	Phe
Leu	Pro 50	Leu	Ser	Leu	Arg	Ala 55	His	Gly	Gly	Gly	Gln 60	Ser	Gly	Gly	Asp
Gly 65	Gly	Ala	Arg	Thr	Thr 70	Arg	Arg	Pro	Val	Leu 75	Phe	Leu	Leu	Arg	Thr 80

Cys	Pro	Ala	Arg	Ser 85	Val	Ser	Arg	Arg	Pro 90	Ala	Pro	Gly	Leu	Cys 95	Ser .
Asp	Leu	Ala	Leu 100	Ala	Ala	Pro	Arg	Pro 105	Ser	Gly	Arg	Ser			
<210><211><212><213>	157 PRT	sapie	ns												
<400>	267														
Ile 1	Glu	Ala	Ala	Gly 5	Cys	Thr	Phe	Pro	Leu 10	Leu	Arg	Cys	Val	Ser 15	Phe
Leu	Phe	His	Ser 20	Ala	Leu	Thr	Ala	Ala 25	Ala	Lys	Ala	Ala	Ala 30	Thr	Ala
Ala	Arg	Glu 35	Arg	Pro	Gly	Gly	Gln 40	Phe	Ser	Ser	Ser	Cys 45	Ala	Pro	Ala
Leu	Leu 50	Gly	Gln	Ser	Val	Gly 55	Gly	Arg	Arg	Pro	Ala 60	Cys	Ala	Gln	Thr
Ser 65	Arg	Leu	Arg	Arg	Pro 70	Gly	Pro	Ala	Ala	Val 75	Ala	Ser	Val	Trp	Pro 80
Glu	Asn	Leu	Gly	Ala 85	Pro	Ala	Ala	Arg	Ala 90	Pro	Arg	Ala	Glu	Pro 95	Arg
Ser	Gly	Ser	Arg 100	Gly	Gly	Arg	Arg	Val 105	Ser	Glu	Ser	Glu	Gly 110	Trp	Pro
Gly	Gln	Val 115	Val	Ala	Pro	Arg	Arg 120	Trp	Ser	Pro	Ser	Lys 125	Gly	Ser	Val
Trp	Pro 130	Thr	Arg	Ser	Thr	Ala 135	Arg	Thr	Ser	Pro	Ser 140	Ala	Ala	Thr	Ser
Pro 145	Arg	Pro	Arg	Glu	Met 150	Pro	Pro	Lys	Arg	Arg 155	Arg	Leu			
<210><211><212><213>	156 PRT	sapie	ns												
<400>	268														
Ser 1	Ser	Ala	Gln	Gly 5	Glu	Glu	Pro	Gly	Pro 10	Gly	Arg	Arg	Leu	Leu 15	Arg
Ala	Pro	Thr	Glu 20	Ser	Arg	Ser	Glu	Gly 25	Lys	Ser	Met	Phe	Ala 30	Gly	Val
Pro	Thr	Met 35	Arg	Glu	Ser	Ser	Pro 40	Lys	Gln	Tyr	Met	Gln 45	Leu	Gly	Gly
Arg	Val 50	Leu	Leu	Val	Leu	Met 55	Phe	Met	Thr	Leu	Leu 60	His	Phe	Asp	Ala

Ser Phe Phe Ser Ile Val Gln Asn Ile Val Gly Thr Ala Leu Met Ile

		130					133				
	Gly 145	Gly	Val	Ser	Met	Asp 150	Glu	Lys	Lys	Lys	Glu 155
	<210><211><211><212><213>	112 PRT	sapie	ns							
	<400>	269									
M M ~1	Leu 1	Gly	Ala	Cys	Ser 5	Trp	Trp	Trp	Pro	Trp 10	Ala
	Trp	Met	Arg	Arg 20	Arg	Arg	Ser	Gly	Asn 25	Ser	His
	Trp	Leu	Arg 35	Pro	Val	Ala	Val	Lys 40	Asp	Trp	Phe
t Tu	Lys	Leu 50	Pro	Ala	Phe	Met	Tyr 55	Pro	Leu	Pro	Phe
The limit than the limit of the	Gly 65	Thr	Asp	Val	Leu	Arg 70	Thr	Leu	Phe	Ala	Glu 75
**************************************	Trp	Leu	Ser	Leu	Leu 85	Trp	Ser	His	Ser	Leu 90	Ala
	Gln	Ala	Ser	Leu 100	Ala	Ala	Gly	Ser	Leu 105	Pro	His
	<210><211><212><213>	130 PRT	sapie	ns							

35

70

65

<400> 270

Ser

75

90

Leu Val Ala Ile Gly Phe Lys Thr Lys Leu Ala Ala Leu Thr Leu Val

Pro Val Tyr Lys Pro Met His Asp Phe Leu Lys Tyr Asp Phe Phe Gln

Thr Met Ser Val Ile Gly Gly Leu Leu Val Val Ala Leu Gly Pro

Ser Gln Arg Val Cys Lys Tyr Ser Pro Gly Ser Leu Leu Pro Tyr Pro

Arg Ile Leu Val Arg Ser Ser Asn Gly Phe Arg Thr Trp Val Leu Phe

Cys Phe Asn Leu Thr Arg Ala Val Ser Trp Ser Thr Pro Arg Ser Leu

Cys Asp His Ser Ser Ala His Cys Met Lys

120

Val Trp Leu Phe Ala Ile Asn Val Tyr Phe Asn Ala Phe Trp

135

80

Ile

Thr

110

Leu Gly Val Ser Pro

Arg Ser Leu Pro Ala 30

Gly Val Asp Ser Thr

Pro Ser Leu Gly Lys

Thr Pro Glu Asn Arg

Ser Asp Pro Ser Val

Ala Glu Ala Leu Glu 110

Thr Gly Leu Ser Gln

95

80

45

60

125

Trp

Leu 65	Val	Pro	Tyr	Asp	Ser 70	Pro	His	Gln	Met	Thr 75	Leu	Ala	Lys	Ser	Arg · 80
Phe	Leu	Cys	Gly	Gln 85	Gly	Trp	Leu	Ala	Asp 90	Trp	Trp	Lys	Val	Gly 95	Trp
Thr	Lys	Gly	Gly 100	His	Val	Ser	Ser	Gln 105	His	Gln	Phe	Cys	Thr 110	Ser	Ser
Ala	Ser	Val 115	Leu	Val	Gly	Val	Pro 120	Val	Ser	Pro	Gly	Pro 125	Gly	Trp	Ala
Arg	Ala 130														
<210><211><211><212><213>	267 PRT	sapie	ns												
<400>	271														
Gly 1	Thr	Ser	Gly	Thr 5	Ser	His	Leu	His	Pro 10	Arg	Ser	Ile	Cys	Met 15	Ile
Gln	Lys	Tyr	Asn 20	His	Asp	Gly	Glu	Ala 25	Gly	Arg	Leu	Glu	Ala 30	Phe	Ser
Gln	Gly	Glu 35	Ser	Val	Leu	Lys	Glu 40	Pro	Lys	Tyr	Gln	Glu 45	Glu	Leu	Glu
Asp	Arg 50	Leu	His	Phe	Tyr	Val 55	Glu	Glu	Cys	Asp	Tyr 60	Leu	Gln	Gly	Phe
Gln 65	Ile	Leu	Cys	Asp	Leu 70	His	Asp	Gly	Phe	Ser 75	Gly	Val	Gly	Ala	Lys 80
Ala	Ala	Glu	Leu	Leu 85	Gln	Asp	Glu	Tyr	Ser 90	Gly	Arg	Gly	Ile	Ile 95	Thr
Trp	Gly	Leu	Leu 100	Pro	Gly	Pro		His 105		Gly	Glu	Ala	Gln 110	Arg	Asn
Ile	Tyr	Arg 115	Leu	Leu	Asn	Thr	Ala 120	Phe	Gly	Leu	Val	His 125	Leu	Thr	Ala
His	Ser 130	Ser	Leu	Val	Cys	Pro 135	Leu	Ser	Leu	Gly	Gly 140	Ser	Leu	Gly	Leu
Arg 145	Pro	Glu	Pro	Pro	Val 150	Ser	Phe	Pro	Tyr	Leu 155	His	Tyr	Asp	Ala	Thr 160
Leu	Pro	Phe	His	Cys 165	Ser	Ala	Ile	Leu	Ala 170	Thr	Ala	Leu	Asp	Thr 175	Val
Thr	Val	Pro	Tyr 180	Arg	Leu	Cys	Ser	Ser 185	Pro	Val	Ser	Met	Val 190	His	Leu
Ala	Asp	Met 195	Leu	Ser	Phe	Cys	Gly 200	Lys	Lys	Val	Val	Thr 205	Ala	Gly	Ala
Ile	Ile	Pro	Phe	Pro	Leu	Ala	Pro	Gly	Gln	Ser	Leu	Pro	Asp	Ser	Leu

	210					215					220				
Met 225	Gln	Phe	Gly	Gly	Ala 230	Thr	Pro	Trp	Thr	Pro 235	Leu	Cys	Ala	Cys	Gly 240
Glu	Pro	Ser	Gly	Thr 245	Arg	Cys	Phe	Ala	Gln 250	Ser	Val	Val	Leu	Arg 255	Gly
Tyr	Arg	Gln	Ser 260	Met	Pro	His	Lys	Pro 265	Gln	Thr					
<210><211><212><213>	118 PRT	sapie	ns												
<400>	272														
Gln 1	Val	Ala	Arg	Val 5	Ala	Gly	Pro	Gly	Ser 10	His	Pro	Arg	Thr	Arg 15	Gly
Arg	Gln	Glu	Ser 20	Cys	Glu	Gln	Ser	Gly 25	Ala	Arg	Asp	Gln	Lys 30	Leu	Cys
Leu	Ile	Asp 35	Asp	Arg	Cys	Phe	Ser 40	Gly	Pro	Pro	His	Asp 45	Gly	Arg	Asp
Gln	Val 50	Ala	Gly	Pro	Arg	Leu 55	Leu	Phe	Pro	Ala	Leu 60	Asn	Ile	His	Leu
Val 65	Ala	Ala	Leu	Pro	Pro 70	Ser	Arg	Leu	Pro	Gln 75	Arg	Ser	His	Arg	Ala 80
Gly	His	Thr	Gly	Ser 85	Gly	Ser	Pro	Ala	Ser 90	Ser	His	Ile	Pro	Pro 95	Arg
Arg	Asn	Ala	Ala 100	Cys	Pro	Pro	Ala	Leu 105	Pro	Gly	Thr	Trp	Val 110	Pro	Leu
Gly	His	Phe 115	Pro	Leu	Gly		•								
<210><211><212><213>	133 PRT	sapie	ens												
<400>	273														
Leu 1	Gly	Lys	Ala	Thr 5	Cys	Ser	Arg	Arg	Leu 10	Pro	Thr	Cys	Thr	Gln 15	Trp
Gly	Pro	Trp	Gly 20	Gly	Ser	Ser	Lys	Leu 25	His	Gln	Gly	Ile	Arg 30	Lys	Gly
Leu	Ala	Trp 35	Ser	Gln	Gly	Glu	Arg 40	Asp	Asp	Cys	Ser	Cys 45	Cys	His	His
Leu	Phe 50	Pro	Thr	Glu	Ala	Gln 55	His	Val	Ser	Gln	Met 60	Asn	His	Gly	Asn
Trp 65	Arg	Gly	Thr	Gln	Ala 70	Ile	Arg	Asn	Ser	Asp 75	Cys	Val	Gln	Gly	Cys 80

Ser	Gln	Asp	Gly	Thr 85	Ala	Val	Glu	Gly	Gln 90	Ser	Gly	Ile	Ile	Met 95	Gln ·
Val	Arg	Glu	Ala 100	Asp	Arg	Trp	Leu	Gly 105	Ser	Gln	Ala	Gln	Ala 110	Pro	Thr
Gln	Gly	Gln 115	Gly	Ala	Asp	Lys	Arg 120	Ala	Val	Ser	Ser	Gln 125	Val	His	Glu
Thr	Lys 130	Ser	Cys	Val											
<210><211><211><212><213>	124 PRT	sapie	ns												
<400>	274														
Pro 1	Gln	Ala	Trp	Arg 5	Arg	Leu	Cys	Arg	Cys 10	Cys	Ser	Ala	Arg	Pro 15	Val
Ala	Pro	Gly	Ala 20	Arg	Arg	Leu	Val	Pro 25	Cys	Arg	Thr	Pro	Thr 30	Arg	Gln
Pro	Ala	Gly 35	Gly	Thr	Cys	His	His 40	Pro	Ala	Ala	Phe	Arg 45	Gly	Arg	Ser
Arg	His 50	Ile	Pro	Val	Pro	His 55	Ala	Leu	Gly	Phe	Gly 60	Ala	Ser	Ala	Gly
Arg 65	Ser	Val	Pro	Leu	Gln 70	Ala	Leu	Ser	Gln	Ser 75	Pro	Gly	Ala	Ala	Asp 80
Leu	Gln	Val	Phe	Ser 85	Thr	Gly	Ala	Ala	Pro 90	Val	Ile	His	Thr	Arg 95	Leu
Leu	Glu	Asp	Pro 100	Ile	Leu	Gly	Ala	Thr 105	Leu	Pro	Ala	Gly	Pro 110	Ile	Arg
Cys	Arg	Ala 115	Val	Gly	Leu	Val	'Pro 120	Arg	His	Cys	His				
<210><211><211><212><213>	426 PRT	sapie	ns												
<400>	275														
Gly 1	Ser	Ser	Arg	Arg 5	His	Gly	Gly	Gly	Tyr 10	Ala	Ala	Val	Ala	Leu 15	Leu
Val	Leu	Leu	Leu 20	Leu	Gly	Pro	Gly	Gly 25	Trp	Cys	Leu	Ala	Glu 30	Pro	Pro
Arg	Asp	Ser 35	Leu	Arg	Glu	Glu	Leu 40	Val	Ile	Thr	Pro	Leu 45	Pro	Ser	Gly
Asp	Val 50	Ala	Ala	Thr	Phe	Gln 55	Phe	Arg	Thr	Arg	Trp 60	Asp	Ser	Glu	Leu

Gln 65	Arg	Glu	Gly	Val	Ser 70	His	Tyr	Arg	Leu	Phe 75	Pro	Lys	Ala	Leu	Gly 80
Gln	Leu	Ile	Ser	Lys 85	Tyr	Ser	Leu	Arg	Glu 90	Leu	His	Leu	Ser	Phe 95	Thr
Gln	Gly	Phe	Trp 100	Arg	Thr	Arg	Tyr	Trp 105	Gly	Pro	Pro	Phe	Leu 110	Gln	Ala
Pro	Ser	Gly 115	Ala	Glu	Leu	Trp	Val 120	Trp	Phe	Gln	Asp	Thr 125	Val	Thr	Asp
Val	Asp 130	Lys	Ser	Trp	Lys	Glu 135	Leu	Ser	Asn	Val	Leu 140	Ser	Gly	Ile	Phe
Cys 145	Ala	Ser	Leu	Asn	Phe 150	Ile	Asp	Ser	Thr	Asn 155	Thr	Val	Thr	Pro	Thr 160
Ala	Ser	Phe	Lys	Pro 165	Leu	Gly	Leu	Ala	Asn 170	Asp	Thr	Asp	His	Tyr 175	Phe
Leu	Arg	Tyr	Ala 180	Val	Leu	Pro	Arg	Glu 185	Val	Val	Cys	Thr	Glu 190	Asn	Leu
Thr	Pro	Trp 195	Lys	Lys	Leu	Leu	Pro 200	Cys	Ser	Ser	Lys	Ala 205	Gly	Leu	Ser
Val	Leu 210	Leu	Lys	Ala	Asp	Arg 215	Leu	Phe	His	Thr	Ser 220	Tyr	His	Ser	Gln
Ala 225	Val	His	Ile	Arg	Pro 230	Val	Cys	Arg	Asn	Ala 235	Arg	Cys	Thr	Ser	Ile 240
Ser	Trp	Glu	Leu	Arg 245	Gln	Thr	Leu	Ser	Val 250	Val	Phe	Asp	Ala	Phe 255	Ile
Thr	Gly	Gln	Gly 260	Lys	Lys	Asp	Trp	Ser 265	Leu	Phe	Arg	Met	Phe 270	Ser	Arg
Thr	Leu	Thr 275	Glu	Pro	Cys	Pro	Leu 280	Ala	Ser	Glu	Ser	Arg 285	Val	Tyr	Val
Asp	Ile 290	Thr	Thr	Tyr	Asn	Gln 295	Asp	Asn	Glu	Thr	Leu 300	Glu	Val	His	Pro
Pro 305	Pro	Thr	Thr	Thr	Tyr 310	Gln	Asp	Val	Ile	Leu 315	Gly	Thr	Arg	Lys	Thr 320
Tyr	Ala	Ile	Tyr	Asp 325	Leu	Leu	Asp	Thr	Ala 330	Met	Ile	Asn	Asn	Ser 335	Arg
Asn	Leu	Asn	Ile 340	Gln	Leu	Lys	Trp	Lys 345	Arg	Pro	Pro	Glu	Asn 350	Glu	Ala
Pro	Pro	Val 355	Pro	Phe	Leu	His	Ala 360	Gln	Arg	Tyr	Val	Ser 365	Gly	Tyr	Gly
Leu	Gln 370	Lys	Gly	Glu	Leu	Ser 375	Thr	Leu	Leu	Tyr	Asn 380	Thr	His	Pro	Tyr
Arg 385	Ala	Phe	Pro	Val	Leu 390	Leu	Leu	Asp	Thr	Val 395	Pro	Trp	Tyr	Leu	Arg 400

Leu	Leu	His	Pro	Leu 405	Pro	Ala	Cys	Pro	Gly 410	Pro	Ala	Ala	Thr	Pro 415	Pro
Pro	Gly	Asp	Ala 420	Asp	Ser	Ala	Ala	Gly 425	Gln						
<210><211><211><212><213>	128 PRT	sapie	ns												
<400>	276														
Ser 1	Pro	Ser	Ile	Leu 5	Tyr	Gly	Ser	Cys	Thr 10	Cys	His	Ser	His	Lys 15	Ala
Phe	Gly	Gly	Pro 20	Asp	Thr	Gly	Gly	His 25	Pro	Ser	Cys	Arg	Pro 30	His	Gln
Val	Gln	Ser 35	Cys	Gly	Ser	Gly	Ser 40	Lys	Thr	Leu	Ser	Leu 45	Met	Trp	Ile
Asn	Leu 50	Gly	Arg	Ser	Ser	Val 55	Met	Ser	Ser	Gln	Gly 60	Ser	Ser	Ala	Pro
Leu 65	Ser	Thr	Ser	Ser	Thr 70	Pro	Pro	Thr	Gln	Ser 75	Leu	Pro	Leu	Pro	Pro 80
Ser	Asn	Pro	Trp	Val 85	Trp	Pro	Met	Thr	Leu 90	Thr	Thr	Thr	Phe	Cys 95	Ala
Met	Leu	Cys	Cys 100	Arg	Gly	Arg	Trp	Ser 105	Ala	Pro	Lys	Thr	Ser 110	Pro	Pro
Gly	Arg	Ser 115	Ser	Cys	Pro	Val	Val 120	Pro	Arg	Gln	Ala	Ser 125	Leu	Cys	Cys
<210><211><211><212><213>	481 PRT	sapie	ns												
<400>	277						•								
Ala 1	Gln	Asp	Thr	Gly 5	Gly	Pro	Gly	Arg	Gln 10	Ser	Gly	His	Gly	Gly 15	Asp
Leu	Gln	Ile	Pro 20	Ile	Ser	Leu	Phe	Leu 25	Arg	Arg	Leu	Asn	Thr 30	Gln	His
Trp	Arg	Pro 35	Gly	Ser	Arg	Lys	Val 40	Met	Ala	Val	Val	Pro 45	Ala	Ser	Leu
Ser	Gly 50	Gln	Asp	Val	Gly	Ser 55	Phe	Ala	Tyr	Leu	Thr 60	Ile	Lys	Asp	Arg
Ile 65	Pro	Gln	Ile	Leu	Thr 70	Lys	Val	Ile	Asp	Thr 75	Leu	His	Arg	His	Lys 80
Ser	Glu	Phe	Phe	Glu 85	Lys	His	Gly	Glu	Glu 90	Gly	Val	Glu	Ala	Glu 95	Lys

Lys Ala Ile Ser Leu Leu Ser Lys Leu Arg Asn Glu Leu Gln Thr Asp

			100					105					110		
Lys	Pro	Phe 115	•Ile	Pro	Leu	Val	Glu 120	Lys	Phe	Val	Asp	Thr 125	Asp	Ile	Trp
Asn	Gln 130	Tyr	Leu	Glu	Tyr	Gln 135	Gln	Ser	Leu	Leu	Asn 140	Glu	Ser	Asp	Gly
Lys 145	Ser	Arg	Trp	Phe	Tyr 150	Ser	Pro	Trp	Leu	Leu 155	Val	Glu	Cys	Tyr	Met 160
Tyr	Arg	Arg	Ile	His 165	Glu	Ala	Ile	Ile	Gln 170	Ser	Pro	Pro	Ile	Asp 175	Tyr
Phe	Asp	Val	Phe 180	Lys	Glu	Ser	Lys	Glu 185	Gln	Asn	Phe	Tyr	Gly 190	Ser	Gln
Glu	Ser	Ile 195	Ile	Ala	Leu	Сув	Thr 200	His	Leu	Gln	Gln	Leu 205	Ile	Arg	Thr
Ile	Glu 210	Asp	Leu	Asp	Glu	Asn 215	Gln	Leu	Lys	Asp	Glu 220	Phe	Phe	Lys	Leu
Leu 225	Gln	Ile	Ser	Leu	Trp 230	Gly	Asn	Lys	Cys	Asp 235	Leu	Ser	Leu	Ser	Gly 240
Gly	Glu	Ser	Ser	Ser 245	Gln	Asn	Thr	Asn	Val 250	Leu	Asn	Ser	Leu	Glu 255	Asp
Leu	Lys	Pro	Phe 260	Ile	Leu	Leu	Asn	Asp 265	Met	Glu	His	Leu	Trp 270	Ser	Leu
Leu	Ser	Asn 275	Cys	Lys	Lys	Thr	Arg 280	Glu	Lys	Ala	Ser	Ala 285	Thr	Arg	Val
Tyr	Ile 290	Val	Leu	Asp	Asn	Ser 295	Gly	Phe	Glu	Leu	Val 300	Thr	Asp	Leu	Ile
Leu 305	Ala	Asp	Phe	Leu	Leu 310	Ser	Ser	Glu	Leu	Ala 315	Thr	Glu	Val	His	Phe 320
Tyr	Gly	Lys	Thr	Ile 325	Pro	Trp	'Phe	Val	Ser 330	Asp	Thr	Thr	Ile	His 335	Asp
Phe	Asn	Trp	Leu 340	Ile	Glu	Gln	Val	Lys 345	His	Ser	Asn	His	Lys 350	Trp _.	Met
Ser	Lys	Cys 355	Gly	Ala	Asp	Trp	Glu 360	Glu	Tyr	Ile	Lys	Met 365	Gly	Lys	Trp
Val	Tyr 370	His	Asn	His	Ile	Phe 375	Trp	Thr	Leu	Pro	His 380	Glu	Tyr	Cys	Ala
Met 385	Pro	Gln	Val	Ala	Pro 390	qaA	Leu	Tyr	Ala	Glu 395	Leu	Gln	Lys	Ala	His 400
Leu	Ile	Leu	Phe	Lys 405	Gly	Asp	Leu	Asn	Tyr 410	Arg	Lys	Leu	Thr	Gly 415	Asp
Arg	Lys	Trp	Glu 420	Phe	Ser	Val	Pro	Phe 425	His	Gln	Ala	Leu	Asn 430	Gly	Phe
His	Pro	Ala	Pro	Leu	Cys	Thr	Ile	Arg	Thr	Leu	Lys	Ala	Glu	Ile	Gln

Gln

Asp

55

Pro

40

Pro Ile Phe Cys His Leu Ser

Glu

Gly Ser His

Phe

Gln

Ser

75

Leu

Glu

Thr

60

Leu

Pro

Ser

45

Met

Asp

Cys

440

455

Val Gly Leu Gln Pro Gly Gln Gly Gln Leu Leu Ala Ser Glu Pro

435

Trp

Thr

Thr

Gly

470

450

Trp

Ala Gln

Tyr

50

35

Arg

Gln Lys Thr

Leu

Trp

Glu

65

Ala

Val

Ala

Val

Asp

Gln

70

Ser

465

Leu

<210> 278 <211> 128 445

Gly

Pro

480

Ala

Ser

Pro

Arg

Cys

Cys

Pro

Leu

Met

Ser

80

Phe

Glu

Asn

80

ä

460

Lys Tyr Gly Ile Phe Gln Tyr Asp

Leu

65

Ile Ser Ala Pro

Pro

70

Asn His Pro

<210> 280 <211> 168 <212> PRT <213> homo sapiens <400> 280 Asp Cys Phe Val Ala Val Ser Phe Leu Arg Gly Phe Tyr Asp Arg Arg 10 Trp Leu Trp Leu His Phe Tyr Trp Leu Cys Tyr Gly Gly Leu Ser Leu 25 Arg Gln Lys Gly Asp Leu Ser Pro Ala Glu Leu Ala Glu Met Arg Lys Ile Glu Ala His Asp Val Ile Lys Gln Leu Met Thr Ile Gly Lys Glu Gln Gly Lys Ile Asp Leu Asn Lys Val Thr Lys Thr Ala Asp 75 Asp Ala Tyr Ser Ala Gln Pro Arg Leu Val Ile Lys Gly Leu 85 Tyr Arg Lys Val Leu Pro Lys Leu Lys Val ${\tt Pro}$ Pro Gln Met Ala 105 100 Ala Lys Pro Ile Arg Thr Ala Ser Gly Ile Ala Val Val Val Met Cys 120 125 115 Ile Ser Phe Thr Gly Asn Ile Cys Val His Arg Cys Pro His Lys Pro 140 130 135 Ser Asp Phe Glu Tyr Ser Thr Gln Tyr Cys Pro Gly Gly Pro Asp Ser 155 160 145 150 Tyr Thr Gly Tyr Glu Gln Pro Pro 165 <210> 281 <211> 70 <212> PRT <213> homo sapiens <400> 281 Arg Gly Trp Ala Glu Arg Thr Ala Ala Met Ile Ser Thr Arg Gly 10 Ala Phe Thr Phe Arg Ser Met Ser Pro Tyr Leu Ala Val Leu Val Leu 20 25 30 Ile Thr Pro Phe Pro Cys Ser Trp Ala Ser Ile Ser Cys Leu Ser Ile 40 45 Val Ser Ile Ile Ser Ser Ala Gly Leu Arg Ser Pro Phe Arg Phe 50 55 60

<210><211><212><213>	71 PRT	o sapiens														
<400>	282															
Ile 1	Asp	Val	Phe	Pro 5	Leu	Leu	Val	Gly	Phe 10	Asn	Gln	Leu	Phe	Asn 15	Asn	
Ile	Ser	Tyr	Ser 20	Gln	His	His	Gln	Leu 25	Ser	Arg	Ala	Glu	Ile 30	Ser	Phe	
Pro	Leu	Leu 35	Pro	His	Phe	Cys	Ala 40	Ala	Val	Ala	Glu	Pro 45	Pro	Glu	Ile	
Lys	Met 50	Gln	Pro	Gln	Thr	Gln 55	Thr	Thr	Glu	Lys	Ala 60	Asp	Ser	His	Lys	
Thr 65	Ile	Pro	Pro	Val	Val 70	Lys										
<210><211><212><213>	114 PRT	sapie	ns													
<400>	283															
Lys 1	Pro	Arg	Gln	Leu 5	Pro	Asn	Met	Ala	Phe 10	Leu	Pro	Ser	Pro	Ala 15	Trp	
Trp	Ile	Ser	Leu 20	Leu	Ala	Val	Pro	Pro 25	Gln	Tyr	Arg	Lys	Val 30	Leu	Met	
Pro	Lys	Leu 35	Lys	Ala	Lys	Pro	Ile 40	Arg	Thr	Ala	Ser	Gly 45	Ile	Ala	Val	
Val	Ala 50	Val	Met	Cys	Lys	Pro 55	His	Arg	Cys	Pro	His 60	Ile	Ser	Phe	Thr	
Gly 65	Asn	Ile	Cys	Val	Tyr 70	Cys	Pro	Gly	Trp	Asp 75	Leu	Ile	Leu	Ile	Leu 80	
Ser	Ile	Pro	Pro	Ser 85	Leu	Thr	Leu	Gly	Tyr 90	Glu	Pro	Thr	Ser	Met 95	Arg	
Ser	Tyr	Ser	Val 100	Pro	Asp	Met	Asp	Pro 105	Phe	Pro	Tyr	Arg	Thr 110	Arg	Thr	
Pro	Asp															
<210><211><212><213>	127 PRT	27														
<400>	284															
Trp 1	Val	Ser	Pro	Leu 5	Thr	Trp	Ala	Ser	Arg 10	Pro	Cys	Asp	Thr	Glu 15	Glu	

Gly	Arg	Gln	Ala 20	Met	Ile	Ser	Thr	Arg 25	Arg	Gly	Trp	Ala	Glu 30	Arg	Pro .
Tyr	Leu	Ala 35	Ala	Val	Leu	Val	Phe 40	Thr	Leu	Phe	Arg	Ser 45	Met	Ser	Phe
Pro	Cys 50	Ser	Trp	Ala	Ser	Ile 55	Ser	Cys	Leu	Ile	Thr 60	Ser	Pro	Ile	Val
Ser 65	Ile	Ile	Ser	Ser	Ala 70	Gly	Leu	Arg	Ser	Pro 75	Asp	Tyr	Gly	Gly	Phe 80
Thr	Thr	Arg	Pro	Gly 85	Ser	Asn	Ile	Leu	Gly 90	Ser	Arg	Val	Gly	His 95	Tyr
Thr	His	Gln	Thr 100	Met	Glu	Asp	Ser	Pro 105	Pro	Asp	Gln	Glu	Ala 110	Thr	Ala
Trp	Ala	Pro 115	Glu	Leu	Ala	Thr	Pro 120	Pro	Cys	Thr	Asp	Glu 125	Asp	Arg	
<210><211><212><213>	92 PRT	sapie	ns												
<400>	285														
Pro 1	His	Thr	Thr	Asn 5	Pro	Thr	Cys	Phe	Lys 10	Leu	Phe	Leu	Ile	Arg 15	Cys
Pro	Cys	Pro	Val 20	Arg	Lys	Arg	Val	His 25	Ile	Trp	His	Gly	Ile 30	Ala	Pro
His	Gly	Gly 35	Trp	Leu	Ile	Ala	Gln 40	Cys	Lys	Thr	Gly	Trp 45	Asn	Thr	Gln
Asn	Gln 50	Asn	Gln	Val	Pro	Pro 55	Arg	Ala	Val	Tyr	Thr 60	Tyr	Ile	Ser	Cys
Lys 65	Thr	Asp	Val	Trp	Thr 70	Ser	Val ,	Gly	Phe	Ala 75	His	His	Ser	His	Asp 80
Ser	Asn	Pro	Thr	Ser 85	Ser	Ser	Asp	Gly	Phe 90	Arg	Leu				
<210><211><212><213>	76 PRT	sapie	ens												
<400>	286														
Asp 1	Leu	Ser	Arg	Pro 5	Gly	Gly	Thr	Arg	Phe 10	Val	Leu	Thr	Ile	Gln 15	Gln
Thr	Phe	Phe	Ser 20	Lys	Val	Phe	Val	Gln 25	Asp	Asn	Phe	Lys	Asn 30	Asn	Ile
Lys	Ile	Asn 35	Asn	Gly	Phe	Asp	Phe 40	Ser	Leu	Lys	Ile	Glu 45	Lys	Lys	Gly

Val Gly Gly Val Asn His Trp Pro Phe Phe Trp Arg Gly Pro

50 55 60 Ile Gly Ile Val Arg Pro Trp Gly Ser Gly Leu Ser 70 <210> 287 <211> 97 <212> PRT <213> homo sapiens <400> 287 Arg Thr Phe Val Leu Phe Tyr His Arg Leu Thr Leu Gln Leu Leu Ile 10 Thr Ser Phe Gly Asp Val Trp Cys Lys Thr His Lys His Thr Gln Asn 25 30 Lys Ser Thr Ser Pro Leu His Asp Pro Ser Leu Leu Ser Gly Thr 35 40 Gly Leu Gly Pro Pro Pro Ile His Cys Thr Leu Arg Ser Ala Ala Ser 60 50 55 Phe Arg Gly Thr Gln Ile Thr Ala Gly Phe Gln Phe Phe Phe Asn Asn 75 80 65 70 Phe Leu Trp Ser Val Pro Thr Ala Leu Ser Val Leu Leu Lys Leu Thr 85 90 Glu <210> 288 <211> 77 <212> PRT <213> homo sapiens <400> 288 Ile Leu His Leu Glu Met Tyr Gly Val Lys His Thr Asn Thr His Lys 10 Ala Gln Ala Cys Met Thr Arg Leu Ser Phe Leu Gly Leu Phe Lys Arg 25 30 Trp Ala His Leu Arg Phe Thr Glu Leu Leu Arg Pro Ala Pro Ser Gly Gly Pro Leu Leu Val Phe Asn Phe Phe Leu Thr Ile Ser Lys Ser 50 60 His Phe Cys Gly Gln Phe Gln Gln His Cys Pro Tyr Phe 65 70 75 <210> 289 <211> 28 <212> PRT <213> homo sapiens <400> 289 Ile Leu Ile Asp Gly Val Arg Ala Ala Phe Ile Pro Tyr Arg Glu Tyr 10

<213> homo sapiens

```
Asn Gly Ala Arg Leu Ser Arg Asp Phe Ile Ser Ala
               20
<210> 290
<211> 28
<212> PRT
<213> homo sapiens
<400> 290
 His Gln Phe His Asn Tyr Phe Asn Leu Leu Gly Phe Ile His Leu Ile
                                          10
 Ile Leu Lys Phe His Gln Gln Trp Gly Thr Glu Lys
                                      25
<210> 291
<211> 29
<212> PRT
<213> homo sapiens
<400> 291
 Ala Pro Gly Pro Gln Ala Ile Leu Ile Ile Asn Leu Asn Arg Trp Gly
                                          10
 Lys Ser Cys Leu His Pro Ile Gln Arg Ile Gln Trp Cys
                                      25
               20
<210> 292
<211> 30
<212> PRT
<213> homo sapiens
<400> 292
 Ala Glu Ile Lys Ser Leu Leu Ser Leu Ala Pro Leu Tyr Ser Leu Tyr
                                          10
 Gly Met Lys Ala Ala Leu Thr Pro Ser Ile Lys Ile Tyr Tyr
                20
                                      25
<210> 293
<211> 33
<212> PRT
<213> homo sapiens
<400> 293
 Ala Met Lys Val Leu Ser Phe Leu Leu Cys Ile Arg Ile Ser Phe Leu
                                                                 15
 Phe Val Val Glu Ser Ile Val Arg Gly Ile Ser Lys Leu Asn Glu Val
                20
 Asn
<210> 294
<211> 38
<212> PRT
```

<400> 294 Ala Ile Asn Lys Val Ser Ser Gly Tyr Gly Pro Leu Ala Leu Leu Gly 10 Glu Ala Ala Gln Arg Ile Ser Leu Asn Phe Ser Val Ser Val Phe Ser 25 Gln Lys Trp Leu Leu Thr 35 <210> 295 <211> 40 <212> PRT <213> homo sapiens <400> 295 Phe Thr Ser Phe Asn Leu Leu Ile Pro Arg Thr Ile Leu Ser Thr Thr 10 Asn Arg Asn Glu Ile Leu Ile His Lys Arg Lys Leu Lys Thr Phe 25 30 Ala Tyr Val Gly Leu Ser Asn Lys 35 <210> 296 <211> 71 <212> PRT <213> homo sapiens <400> 296 Val Asn Leu Leu Lys Tyr Gly Gln Ile His Leu Ala Val Lys Gln Leu 1 Tyr Leu Ile Lys Val Phe Val Ser Val Leu Pro Gly Asn Ile His Cys 25 20 Thr Thr Ser Val Gln Lys Ile Asn Val Gln Arg Ala Pro Asn Ile Lys 40 45 35 Tyr Val His Phe Lys Lys Thr Pro Leu Ser Trp Val Cys Ser Leu Phe 60 55 Ser Leu Ala Asn Gln Glu Tyr 65 70 <210> 297 <211> 67 <212> PRT <213> homo sapiens <400> 297 Phe Ile Leu Ser Arg Gly Thr Asn Ser Arg His Arg Phe Tyr Leu Tyr 10 15 Gly Thr Phe Ala Arg Pro Ser Cys Arg Lys Thr Gln Ser Arg Lys 25

Asn Lys Ile Ala Ile Lys Tyr Met Val Leu Gly Ala Gly Arg Thr Arg

35 40 45

Asn Pro Gln Gly Asp Gln Phe Leu Ala Arg Ser Phe Phe Arg Val Tyr 50 55 60

Pro Val Glu 65

<210> 298

<211> 56

<212> PRT

<213> homo sapiens

<400> 298

Lys Asn Leu Glu Phe Phe Ser Pro Ser Thr Ser Tyr Leu Leu Gln
1 5 10

Asn Ser Ser Glu Gly Phe Ile Tyr Ile Leu Ser Tyr Pro Glu Gly Pro 20 25 30

Thr Ala Gly Ile Pro Leu Pro Gly Leu Leu Ala Glu Arg His Arg Ala 35

Val Lys Ala Lys Ile Lys Leu Gln 50 55

<210> 299

<211> 140

<212> PRT

<213> homo sapiens

<400> 299

Thr Pro Asn Ser Arg Gly Ala Gly Arg Val Val Arg Gly Ser Ala Arg 1 5 10 15

Gly Val Gly Arg Ser Cys Ala Ser Trp Leu Pro Val Gly Arg Arg Cys

Arg Thr Ser Glu Thr Gly Ser Gly Ala Ser Arg Arg Ser Arg Ala Ile 35 · 40 45

Gly Ser Pro Pro Pro Ser Pro Cys Pro Trp Ser Ala Asn Ser Ala Ser 50 55 60

Ser Ala Arg Pro Thr Ser Ser Ser Gly Pro Lys Pro Ser Phe Ile Ala 65 70 75 80

Phe Arg Phe Gly Gln Ser Leu Pro Pro Phe Ile Ser Leu Trp Val 85 90 95

Gln Glu Leu Asp Phe Phe Ile Trp Ser Ile Tyr Ile Ser Tyr Ile Ser 100 105 110

Ile Leu Arg Asp Leu Lys Gln Glu Leu Leu Met Gly Gly Gln Gln Thr 115 120 125

Ile Tyr Ser Cys Ser Ser Leu Thr Gly Phe Ala Ser 130 135

<210> 300

<211> 279

<212> PRT <213> homo sapiens

<400> 300

Gln 1	Ser	Arg	Ser	Arg 5	Pro	Arg	Arg	Glu	Gly 10	Val	Gly	Thr	Gly	Ser 15	Arg
Ala	Val	Leu	Cys 20	Ile	Leu	Ala	Thr	Cys 25	Gly	Ser	Lys	Met	Ser 30	Asp	Ile
Gly	Asp	Trp 35	Phe	Arg	Ser	Ile	Pro 40	Ala	Ile	Thr	Arg	Tyr 45	Trp	Phe	Ala
Ala	Thr 50	Val	Ala	Val	Pro	Leu 55	Val	Gly	Lys	Leu	Gly 60	Leu	Ile	Ser	Pro
Ala 65	Tyr	Leu	Phe	Leu	Trp 70	Pro	Glu	Ala	Phe	Leu 75	Tyr	Arg	Phe	Gln	Ile 80
Trp	Arg	Pro	Ile	Thr 85	Ala	Thr	Phe	Tyr	Phe 90	Pro	Val	Gly	Pro	Gly 95	Thr
Gly	Phe	Leu	Tyr 100	Leu	Val	Asn	Leu	Tyr 105	Phe	Leu	Tyr	Gln	Tyr 110	Ser	Thr
Arg	Leu	Glu 115	Thr	Gly	Ala	Phe	Asp 120	Gly	Arg	Pro	Ala	Asp 125	Tyr	Leu	Phe
Met	Leu 130	Leu	Phe	Asn	Trp	Ile 135	Cys	Ile	Val	Ile	Thr 140	Gly	Leu	Ala	Met
Asp 145	Met	Gln	Leu	Leu	Met 150	Ile	Pro	Leu	Ile	Met 155	Ser	Val	Leu	Tyr	Val 160
Trp	Ala	Gln	Leu	Asn 165	Arg	Asp	Met	Ile	Val 170	Ser	Phe	Trp	Phe	Gly 175	Thr
Arg	Phe	Lys	Ala 180	Cys	Tyr	Leu	Pro	Trp 185	Val	Ile	Leu	Gly	Phe 190	Asn	Tyr
Ile	Ile	Gly 195	Gly	Ser	Val	Ile	Asn 200	Glu	Leu	Ile	Gly	Asn 205	Leu	Val	Gly
His	Leu 210	Tyr	Phe	Phe	Leu	Met 215	Phe	Arg	Tyr	Pro	Met 220	Asp	Leu	Gly	Gly
Arg 225	Asn	Phe	Leu	Ser	Thr 230	Pro	Gln	Phe	Leu	Tyr 235	Arg	Trp	Leu	Pro	Ser 240
Arg	Arg	Gly	Gly	Val 245	Ser	Gly	Phe	Gly	Val 250	Pro	Pro	Ala	Ser	Met 255	Arg
Arg	Ala	Ala	Asp 260	Gln	Asn	Gly	Gly	Gly 265	Gly	Arg	His	Asn	Trp 270	Gly	Gln
Gly	Phe	Arg 275	Leu	Gly	Asp	Gln									

<210> 301 <211> 106 <212> PRT <213> homo sapiens

<400>	301														-
Ile 1	Asp	Gln	Ile	Lys 5	Lys	Ser	Ser	Ser	Trp 10	Thr	His	Arg	Glu	Ile 15	Lys
Gly	Gly	Ser	Asp 20	Trp	Pro	Pro	Asn	Leu 25	Lys	Ala	Ile	Lys	Glu 30	Gly	Phe
Gly	Pro	Glu 35	Glu	Glu	Val	Gly	Arg 40	Ala	Asp	Glu	Ala	Glu 45	Phe	Ala	Asp
Gln	Gly 50	His	Gly	Asp	Gly	Gly 55	Gly	Glu	Pro	Ile	Ala 60	Arg	Asp	Arg	Arg
Asp 65	Ala	Pro	Glu	Pro	Val 70	Ser	Asp	Val	Arg	His 75	Leu	Arg	Pro	Thr	Gly 80
Ser	Gln	Asp	Ala	Gln 85	Asp	Arg	Pro	Thr	Pro 90	Arg	Ala	Asp	Pro	Leu 95	Thr
Thr	Arg	Pro	Ala 100	Pro	Arg	Leu	Leu	Gly 105	Val						
<210><211><212><212><213>	207 PRT	sapie	ens												
<400>	302														

400>	302														
Leu 1	Glu	Pro	Leu	Glu 5	Pro	Asn	Arg	Leu	Glu 10	Leu	Lys	Lys	Gly	Tyr 15	Leu
Thr	Leu	Ser	Asp 20	Ser	Gly	Asp	Lys	Val 25	Ala	Val	Glu	Trp	Asp 30	Lys	Asp
His	Gly	Val 35	Leu	Glu	Ser	His	Leu 40	Ala	Glu	Lys	Gly	Arg 45	Gly	Met	Glu
Leu	Ser 50	Asp	Leu	Ile	Val	Phe 55	Asn	Gly	Lys	Leu	Tyr 60	Ser	Val	Asp	Asp
Arg 65	Thr	Gly	Val	Val	Tyr 70	Gln	Ile	Glu	Gly	Ser 75	Lys	Ala	Val	Pro	Trp 80
Val	Ile	Leu	Ser	Asp 85	Gly	Asp	Gly	Thr	Val 90	Glu	Lys	Gly	Phe	Lys 95	Ala
Glu	Trp	Leu	Ala 100	Val	Lys	Asp	Glu	Arg 105	Leu	Tyr	Val	Gly	Gly 110	Leu	Gly
Lys	Glu	Trp 115	Thr	Thr	Thr	Thr	Gly 120	Asp	Val	Val	Asn	Glu 125	Asn	Pro	Glu
Trp	Val 130	Lys	Val	Val	Gly	Tyr 135	Lys	Gly	Ser	Val	Asp 140	His	Glu	Asn	Trp
Val 145	Ser	Asn	Tyr	Asn	Ala 150	Leu	Arg	Ala	Ala	Ala 155	Gly	Ile	Gln	Pro	Pro 160
Gly	Asn	Leu	Ile	His 165	Glu	Ser	Ala	Cys	Trp 170	Ser	Asp	Thr	Leu	Gln 175	Arg

Trp	Phe	Phe	Leu 180	Pro	Arg	Arg	Ala	Ser 185	Gln	Glu	Arg	Tyr	Ser 190	Glu	Glu '
Gly	Arg	Arg 195	Ala	Gln	Gly	Arg	Gln 200	Pro	Ala	Ala	Glu	Arg 205	Leu	Pro	
<210><211><212><213>	153 PRT	sapie	ns												
<400>	303														
Arg 1	Trp	Trp	Ala	Thr 5	Arg	Ala	Ala	Trp	Thr 10	Thr	Arg	Thr	Gly	Cys 15	Pro
Thr	Thr	Thr	Pro 20	Cys	Gly	Leu	Leu	Pro 25	Ala	Ser	Ser	Arg	Gln 30	Val	Thr
Ser	Ser	Met 35	Ser	Leu	Pro	Ala	Gly 40	Val	Thr	Arg	Cys	Ser 45	Ala	Gly	Ser
Ser	Cys 50	Arg	Ala	Ala	Pro	Ala 55	Arg	Ser	Ala	Thr	Ala 60	Arg	Lys	Asp	Asp
Glu 65	Arg	Lys	Gly	Ala	Asn 70	Leu	Leu	Leu	Ser	Ala 75	Ser	Pro	Asp	Phe	Gly 80
Asp	Ile	Ala	Val	Ser 85	His	Val	Gly	Ala	Val 90	Val	Pro	Thr	His	Gly 95	Phe
Ser	Ser	Phe	Lys 100	Phe	Ile	Pro	Asn	Thr 105	Asp	Asp	Gln	Ile	Ile 110	Val	Ala
Leu	Lys	Ser 115	Glu	Glu	Asp	Ser	Gly 120	Arg	Val	Ala	Ser	Tyr 125	Ile	Met	Ala
Phe	Thr 130	Leu	Asp	Gly	Arg	Phe 135	Leu	Leu	Pro	Glu	Thr 140	Lys	Ile	Gly	Ser
Val 145	-	Tyr	Glu	Gly	Ile 150	Glu	'Phe	Ile							
<210><211><212><213>	174	sapie	ens												
<400>	304														
Val 1	. Gly	Thr	Thr	Ala 5	Pro	Thr	Trp	Leu	Thr 10	Ala	Met	Ser	Pro	Lys 15	Ser
Gly	r Glu	Ala	Leu 20	Ser	Ser	Arg	Leu	Ala 25	Pro	Leu	Arg	Ser	Ser 30	Ser	Phe
Leu	ı Ala	Val 35	Ala	Leu	Leu	Ala	Gly 40	Ala	Ala	Arg	Gln	Glu 45	Glu	Pro	Ala
Leu	ı Gln 50	_	Val	Thr	Pro	Ala 55	Gly	Arg	Leu	Met	Asp 60	Glu	Val	Thr	Trp

Arg 65	Leu	Asp	Ala	Gly	Ser 70	Ser	Pro	Gln	Gly	Val 75	Val	Val	Gly	His	Pro 80
Val	Leu	Val	Val	His 85	Ala	Ala	Leu	Val	Ala 90	His	His	Leu	His	Pro 95	Leu
Arg	Val	Leu	Val 100	His	His	Ile	Thr	Arg 105	Ser	Gly	Arg	Pro	Leu 110	Leu	Ala
Gln	Ala	Ala 115	His	Val	Gln	Thr	Leu 120	Val	Leu	His	Cys	Gln 125	Pro	Phe	Gly
Leu	Glu 130	Ala	Phe	Leu	His	Gly 135	Ala	Val	Ala	Val	Gly 140	Gln	Asn	His	Pro
Gly 145	His	Gly	Phe	Ala	Ala 150	Phe	Asp	Leu	Val	Asp 155	Asp	Pro	Arg	Pro	Val 160
Ile	His	Gly	Val	Glu 165	Phe	Pro	Ile	Glu	Asn 170	Asn	Gln	Val	Gly		
<210><211><211><212><213>	61 PRT	sapie	ns												
<400>	305														
Lys 1	Leu	Val	Cys	Leu 5	Glu	Ala	Asp	Ser	Lys 10	Ser	Ser	Phe	Ser	Ser 15	Glu
His	Leu	Phe	Ser 20	Tyr	His	Leu	Ile	Ser 25	Ile	Leu	Lys	His	His 30	Gly	Cys
Ser	Cys	Ser 35	Lys	Met	Gly	Asp	Val 40	Lys	Glu	Asn	Tyr	Leu 45	Glu	Thr	Phe
Ile	Ser 50	Ser	Pro	Lys	Trp	Ser 55	Phe	Ile	Leu	Cys	Leu 60	Ser			
<210> <211> <212> <213>	144 PRT	sapie	ens												
<400>	306														
Asn 1	Thr	Met	Ala	Val 5	Ala	Ala	Val	Lys	Trp 10	Val	Met	Ser	Lys	Arg 15	Thr
Ile	Leu	Lys	His 20	Leu	Phe	Pro	Val	Gln 25	Asn	Gly	Ala	Leu	Tyr 30	Cys	Val
Cys	His	Lys 35	Ser	Thr	Tyr	Ser	Pro 40	Leu	Pro	Asp	Asp	Tyr 45	Asn	Cys	Asn
Val	Glu 50	Leu	Ala	Leu	Thr	Ser 55	Asp	Gly	Arg	Thr	Ile 60	Val	Cys	Tyr	His
Pro 65	Ser	Val	Asp	Ile	Pro 70	Tyr	Glu	His	Thr	Lys 75	Pro	Ile	Pro	Arg	Pro 80
Asp	Pro	Val	His	Asn	Asn	Glu	Glu	Thr	His	Asp	Gln	Val	Leu	Lys	Thr

90 95 85 Arg Leu Glu Glu Lys Val Glu His Leu Glu Glu Gly Pro Met Ile 100 105 110 Trp Thr Thr Lys His Gln Leu Ser Lys Met Phe Phe Arq Tyr Pro His 125 115 120 Arg Lys Asn Leu Asn Pro Pro Lys Asp Arg Tyr His Arg Cys 140 130 135 <210> 307 <211> 128 <212> PRT <213> homo sapiens <400> 307 Ile His Gln Thr Ala Phe Ser Gln Met Ala Asn Glu Ala His Phe 1 5 10 Ile Gly Thr Ser Ala Ser Ser Val Phe Trp Arg Gln Pro Leu Ile Pro25 30 20 Thr Thr Ser Val Ile Pro Ser Met Arg Ile Pro Thr Val Leu Ile Leu 35 40 45 Phe Tyr His Arg Ser Phe Lys Glu His Phe Ala Lys Leu Leu Ser Ser 60 55 50 Phe Phe Phe Gln His Leu Ile Met Lys Val Phe Asn Phe Gln Ser Gly 65 70 75 80 Phe Phe Ile Ile Met His Arg Ile Trp Pro Arg Asp Arg Phe Cys Cys 90 Tyr Cys Ile Trp Asn Val His Arg Arg Val Val Ala Tyr Pro Val Phe 100 105 110 Ser Gln Ser Lys Leu Tyr Val Ala Ile Ile Val Ile Trp Ile Arq 120 125 <210> 308 <211> 467 <212> PRT <213> homo sapiens <400> 308 Ser Arg Ser Lys Met Ala Ala Leu Arg Ala Leu Cys Gly Phe Arg Gly 10 Val Leu Arg Pro Gly Gly Leu Ile Val Ala Ala Gln Val Ala Arg Pro 20 25 Gln Pro Ser Arg Gly Val Arg Gln Trp Gln Pro Asp Val Glu Trp Ala 45 40 Gln Gln Phe Gly Gly Ala Val Met Tyr Pro Ser Lys Glu Thr Ala His 50 60 Trp Asn Asp Val Asp Trp Lys Pro Pro Pro Pro Pro Lys Asp Thr Ile

70

75

Val	Lys	Asn	Ile	Thr 85	Leu	Asn	Phe	Gly	Pro 90	Gln	His	Pro	Ala	Ala 95	His
Gly	Val	Leu	Arg 100	Leu	Val	Met	Glu	Leu 105	Ser	Gly	Glu	Met	Val 110	Arg	Lys
Cys	Asp	Pro 115	His	Ile	Gly	Leu	Leu 120	His	Arg	Gly	Thr	Glu 125	Lys	Leu	Ile
Glu	Tyr 130	Lys	Thr	Tyr	Leu	Gln 135	Ala	Leu	Pro	Tyr	Phe 140	Asp	Arg	Leu	Asp
Tyr 145	Val	Ser	Met	Met	Cys 150	Asn	Glu	Gln	Ala	Tyr 155	Ser	Leu	Ala	Val	Glu 160
Lys	Leu	Leu	Asn	Ile 165	Arg	Pro	Pro	Pro	Arg 170	Ala	Gln	Trp	Ile	Arg 175	Val
Leu	Phe	Gly	Glu 180	Ile	Thr	Arg	Leu	Leu 185	Asn	His	Ile	Met	Ala 190	Val	Thr
Thr	His	Ala 195	Leu	Asp	Leu	Gly	Ala 200	Met	Thr	Pro	Phe	Phe 205	Trp	Leu	Phe
Glu	Glu 210	Arg	Glu	Lys	Met	Phe 215	Glu	Phe	Tyr	Glu	Arg 220	Val	Ser	Gly	Ala
Arg 225	Met	His	Ala	Ala	Tyr 230	Ile	Arg	Pro	Gly	Gly 235	Val	His	Gln	Asp	Leu 240
Pro	Leu	Gly	Leu	Met 245	Asp	Asp	Ile	Tyr	Gln 250	Phe	Ser	Lys	Asn	Phe 255	Ser
Leu	Arg	Leu	Asp 260	Glu	Leu	Glu	Glu	Leu 265	Leu	Thr	Asn	Asn	Arg 270	Ile	Trp
Arg	Asn	Arg 275	Thr	Ile	Asp	Ile	Gly 280	Val	Val	Thr	Ala	Glu 285	Glu	Ala	Leu
Asn	Tyr 290	Gly	Phe	Ser	Gly	Val 295	Met	Leu	Arg	Gly	Ser 300	Gly	Ile	Gln	Trp
Asp 305	Leu	Arg	Lys	Thr	Gln 310	Pro	Tyr	Asp	Val	Tyr 315	Asp	Gln	Val	Glu	Phe 320
Asp	Val	Pro	Val	Gly 325	Ser	Arg	Gly	Asp	Cys	Tyr	Asp	Arg	Tyr	Leu 335	Cys
Arg	Val	Glu	Glu 340	Met	Arg	Gln	Ser	Leu 345	Arg	Ile	Ile	Ala	Gln 350	Cys	Leu
Asn	Lys	Met 355	Pro	Pro	Gly	Glu	Ile 360	Lys	Val	Asp	Asp	Ala 365	Lys	Val	Ser
Pro	Pro 370	Lys	Arg	Ala	Glu	Met 375	Lys	Thr	Ser	Met	Glu 380	Ser	Leu	Ile	His
His 385	Phe	Lys	Leu	Tyr	Thr 390	Glu	Gly	Tyr	Gln	Val 395	Pro	Pro	Gly	Ala	Thr 400
Tyr	Thr	Ala	Ile	Glu 405	Ala	Pro	Lys	Gly	Glu 410	Phe	Gly	Val	Tyr	Leu 415	Val

Ser	Asp	Gly	Ser 420	Ser	Arg	Pro	Tyr	Arg 425	Cys	Lys	Ile	Lys	Ala 430	Pro	Gly ·
Phe	Ala	His 435	Leu	Ala	Gly	Leu	Asp 440	Lys	Met	Ser	Lys	Gly 445	His	Met	Leu
Ala	Asp 450	Val	Val	Ala	Ile	Ile 455	Gly	Thr	Gln	Asp	Ile 460	Val	Phe	Gly	Glu
Val 465	Asp	Arg													
<210><211><211><212><213>	131	sapie	ens												
<400>	309														
Gln 1	Pro	Ser	Val	His 5	Glu	His	Thr	His	Thr 10	His	Thr	His	Thr	His 15	Thr
His	Thr	Gln	Arg 20	Pro	Ile	Ser	Ser	Glu 25	Glu	Gln	Ala	Pro	Gln 30	Lys	Lys
Leu	Ile	Gly 35	Arg	Gly	Asp	Gln	Thr 40	Leu	Leu	Pro	Cys	Ser 45	Pro	Ile	Tyr
Phe	Ser 50	Lys	Tyr	Asn	Ile	Leu 55	Gly	Thr	Tyr	Asp	Gly 60	Asn	Asp	Ile	Cys
Gln 65	His	Val	Ser	Leu	Arg 70	His	Leu	Val	Gln	Thr 75	Ser	Gln	Met	Gly	Lys 80
Thr	Arg	Ser	Leu	Asp 85	Leu	Ala	Ser	Ile	Arg 90	Ala	Ala	Ala	Ala	Ile 95	Arg
His	Gln	Val	His 100	Pro	Lys	Leu	Ser	Leu 105	Gly	Ser	Leu	Asn	Gly 110	Ser	Ile
Cys	Gly	Ser 115	-	Arg	Asn	Leu	'Val 120	Ala	Leu	Ser	Ile	Gln 125	Leu	Lys	Val
Met	Asn 130	Gln													
<210><211><212><213>	100 PRT	sapie	ns												
<400>	310														
Ser 1	Gln	Asp	Thr	Met 5	Arg	Cys	Trp	Val	Leu 10	Gly	Pro	Lys	Val	Gln 15	Gly
Asn	Val	Leu	His 20	Asn	Сув	Val	Leu	Trp 25	Arg	Val	His	Ile	Ile 30	Pro	Arg
Trp	Arg	Leu 35	Pro	Val	Gly	Cys	Phe 40	Phe	Ala	Trp	Val	His 45	Asn	Ser	Ser

Pro	Lys 50	Leu	Leu	Cys	Pro	Phe 55	His	Ile	Trp	Leu	Pro 60	Leu	Pro	Asn	Thr
Ser 65	Ala	Gly	Leu	Asn	Arg 70	Gln	Ser	Asp	Ser	Ser 75	Pro	Arg	Pro	Gln	His 80
Leu	Gly	Arg	Asp	Ala 85	Pro	Glu	Ala	Ala	Gln 90	Ser	Pro	Gln	Arg	Arg 95	His
Leu	Thr	Pro	Ala 100												
<210><211><211><212><213>	162 PRT	sapie	ns												
<400>	311														
Arg 1	Arg	Leu	Arg	Gly 5	Gly	Glu	Pro	Ser	Thr 10	Asp	Arg	Arg	Arg	Asp 15	Pro
Glu	Ser	Arg	Thr 20	Pro	Ala	Pro	Pro	Pro 25	Thr	Pro	Arg	Ala	Met 30	Asp	Pro
Lys	Asp	Arg 35	Lys	Lys	Ile	Gln	Phe 40	Ser	Val	Pro	Ala	Pro 45	Pro	Ser	Gln
Leu	Asp 50	Pro	Arg	Gln	Val	Glu 55	Met	Ile	Arg	Arg	Arg 60	Arg	Pro	Thr	Pro
Ala 65	Met	Leu	Phe	Arg	Leu 70	Ser	Glu	His	Ser	Ser 75	Pro	Glu	Glu	Glu	Ala 80
Ser	Pro	His	Gln	Arg 85	Ala	Ser	Gly	Glu	Gly 90	His	His	Leu	Lys	Ser 95	Lys
Arg	Pro	Asn	Pro 100	Cys	Ala	Tyr	Thr	Pro 105	Pro	Ser	Leu	Lys	Ala 110	Val	Gln
Arg	Ile	Ala 115	Glu	Ser	His		Gln 120	Ser	Ile	Ser	Asn	Leu 125	Asn	Glu	Asn
Gln	Ala 130	Ser	Glu	Glu	Glu	Asp 135	Glu	Leu	Gly	Glu	Leu 140	Arg	Glu	Leu	Gly
Tyr 145	Pro	Arg	Glu	Glu	Asp 150	Glu	Glu	Glu	Glu	Glu 155	Asp	Ala	Ala	Arg	Leu 160
Lys	Ser														
<210><211><211><212><213>	154 PRT	sapie	ns												
<400>	312														
Val 1	Ser	Leu	Gly	Arg 5	Asn	Leu	Ser	Ala	Leu 10	Pro	Pro	Leu	Ser	Leu 15	Ala
His	Arg	His	Pro 20	Ala	Cys	Ile	Ser	Gln 25	Glu	Glu	Val	Glu	Gly 30	Thr	Ser

Leu	. Phe	Pro 35	Arg	Asn	Pro	Leu	Tyr 40	Pro	His	Pro	Val	Leu 45	Cys	Ser	Ser
Pro	Arg 50	Leu	Leu	Gly	Leu	Arg 55	Leu	Leu	Thr	Ser	Arg 60	Arg	Leu	Arg	Leu
Val 65	-	Val	Cys	Leu	Phe 70	Ala	His	Leu	Trp	Leu 75	Ile	Pro	Arg	Glu	Pro 80
Gly	His	Leu	Leu	Pro 85	Asp	Ala	His	Pro	Cys 90	Gln	Ser	Phe	Leu	His 95	Ser
Pro	Ser	Gly	Arg 100	Trp	Asp	Val	Arg	Gln 105	Pro	Thr	Leu	Glu	Asn 110	Pro	Glu
Asn	Arg	Glu 115	Gln	Gly	Phe	Ala	Leu 120	His	Asn	Ser	Thr	Pro 125	Gln	Ile	Leu
Ser	Pro 130	Gly	His	Arg	Arg	Pro 135	Thr	Gly	Gln	Asp	Pro 140	Lys	Ile	Trp	Gly
Lys 145		Val	Leu	Arg	Thr 150	Leu	Arg	Tyr	Pro						
<210><211><212><213>	101	sapie	ns												
<400>	313														
Ala 1	Gln	Gly	Leu	Gly 5	Leu	Phe	Asp	Leu	Arg 10	Trp	Cys	Pro	Ser	Pro 15	Glu
Ala	Leu	Trp	Trp 20	Gly	Glu	Ala	Ser	Ser 25	Ser	Gly	Glu	Glu	Cys 30	Ser	Glu
Ser	Arg	Asn 35	Ser	Met	Ala	Gly	Val 40	Gly	Leu	Leu	Arg	Arg 45	Ile	Ile	Ser
Thr	Trp 50	Arg	Gly	Ser	Ser	Trp 55	·Leu	Gly	Gly	Ala	Gly 60	Thr	Glu	Asn	Trp
Ile 65	Phe	Leu	Arg	Ser	Leu 70	Gly	Ser	Met	Ala	Arg 75	Gly	Val	Gly	Gly	Gly 80
Ala	Gly	Val	Arg	Asp 85	Ser	Gly	Ser	Arg	Arg 90	Arg	Ser	Val	Leu	Gly 95	Ser
Pro	Pro	Arg	Arg 100	Arg											
<210><211><211><212><213>	162 PRT	sapie:	ns												
<400>	314														
Ser 1	Asp	Arg	Trp	Thr 5	Cys	Ser	Pro	Pro	Leu 10	Gly	Ala	Arg	Ser	Met 15	Ser

Arg	Phe	Pro	Ala 20	Val	Ala	Gly	Arg	Ala 25	Pro	Arg	Arg	Gln	Glu 30	Glu	Gly
Glu	Arg	Ser 35	Arg	Asp	Leu	Gln	Glu 40	Glu	Arg	Leu	Ser	Ala 45	Val	Cys	Ile
Ala	Asp 50	Arg	Glu	Glu	Lys	Gly 55	Cys	Thr	Ser	Gln	Glu 60	Gly	Gly	Thr	Thr
Pro 65		Phe	Pro	Ile	Gln 70	Lys	Gln	Arg	Lys	Lys 75	Ile	Ile	Gln	Ala	Val 80
Arg	Asp	Asn	Ser	Phe 85	Leu	Ile	Val	Thr	Gly 90	Asn	Thr	Gly	Ser	Gly 95	Lys
Thr	Thr	Gln	Leu 100	Pro	Lys	Tyr	Leu	Tyr 105	Glu	Ala	Gly	Phe	Ser 110	Gln	His
Gly	Met	Ile 115	Gly	Val	Thr	Gln	Pro 120	Arg	Lys	Val	Ala	Ala 125	Ile	Ser	Val
Ala	Gln 130	Arg	Val	Ala	Glu	Glu 135	Met	Lys	Cys	Thr	Leu 140	Gly	Ser	Lys	Val
Gly 145	Tyr	Gln	Val	Arg	Phe 150	Asp	Asp	Cys	Ser	Ser 155	Lys	Glu	Thr	Ala	Ile 160
Lys	Tyr														
<210><211><212>	79														
<213>		sapie	ns												
	homo	sapie	ns												
<213> <400>	homo	sapie Gly		Arg 5	Ala	Arg	Leu	His	Ser 10	Gly	Pro	Gly	Leu	Cys 15	Pro
<213> <400> Gln 1	homo	Gly	Gly	5			Leu Gly		10	_	Pro Gly	_		15	
<213> <400> Gln 1	homo 315 Ile Phe	Gly	Gly Gln 20	5 Ser	Arg	Ala	Gly	Arg 25	10 Gln	Gly	Gly	Arg	Arg 30	15	Val
<213> <400> Gln 1 Gly	homo 315 Ile Phe	Gly Pro Gln 35	Gly Gln 20 Glu	5 Ser Thr	Arg	Ala Arg	Gly Lys 40	Arg 25 Ser	10 Gln	Gly	Gly	Arg Leu 45	Arg 30	15 Arg Ala	Val Ser
<213> <400> Gln 1 Gly Ser	homo 315 Ile Phe Gly Ile 50	Gly Pro Gln 35 Glu	Gly Gln 20 Glu	5 Ser Thr	Arg Ser Lys	Ala Arg Asp 55	Gly Lys 40	Arg 25 Ser Arg	Gln Gly Pro	Gly Ser Arg	Gly Arg Arg 60	Arg Leu 45	Arg 30 Phe Glu	Arg Ala Leu	Val Ser
<213> <400> Gln 1 Gly Ser Pro	homo 315 Ile Phe Gly Ile 50 Leu 316 69 PRT	Gly Pro Gln 35 Glu Phe	Gly Gln 20 Glu Lys Leu	5 Ser Thr	Arg Ser Lys	Ala Arg Asp 55	Gly . Lys 40	Arg 25 Ser Arg	Gln Gly Pro	Gly Ser Arg	Gly Arg Arg 60	Arg Leu 45	Arg 30 Phe Glu	Arg Ala Leu	Val Ser
<213> <400> Gln 1 Gly Ser Pro Gln 65 <210> <211> <212>	homo 315 Ile Phe Gly Ile 50 Leu 316 69 PRT homo	Gly Pro Gln 35 Glu Phe	Gly Gln 20 Glu Lys Leu	5 Ser Thr	Arg Ser Lys	Ala Arg Asp 55	Gly . Lys 40	Arg 25 Ser Arg	Gln Gly Pro	Gly Ser Arg	Gly Arg Arg 60	Arg Leu 45	Arg 30 Phe Glu	Arg Ala Leu	Val Ser
<213> <400> Gln 1 Gly Ser Pro Gln 65 <210> <211> <212> <213> <400>	homo 315 Ile Phe Gly Ile 50 Leu 316 69 PRT homo 316	Gly Pro Gln 35 Glu Phe	Gly Gln 20 Glu Lys Leu	Ser Thr Arg	Arg Ser Lys Arg 70	Ala Arg Asp 55 Asn	Gly Lys 40 Ala Lys	Arg 25 Ser Arg Glu	Gln Gly Pro Lys	Gly Ser Arg Arg 75	Gly Arg Arg 60	Arg Leu 45 Glu Phe	Arg 30 Phe Glu Lys	Arg Ala Leu	Val Ser Leu

Ser Leu Asp Arg Ser Pro Ser Ser Cys Arg Leu Gly Ala Leu Pro Ala 35 40 Thr Ala Gly Asn Arg Asp Ile Asp Leu Ala Pro Ser Gly Glu His 55 60 Val His Arg Ser Glu 65 <210> 317 <211> 173 <212> PRT <213> homo sapiens <400> 317 Ala Gln Glu Ser Pro Trp Gln Leu Cys Arg Gly Ala Arg Thr Ser Lys 10 15 Gly Met Arg Lys Leu Pro Lys Leu Glu Gln His Cys Asn Glu Met Cys 25 30 Pro Pro Ser Ser Leu Phe Leu Pro Gly Ala Tyr Lys Ala Gln Met Tyr 40 45 Ser Asp Val Trp Thr Thr Lys Asn Lys Lys Lys Lys Lys Lys Lys Lys 55 60 Lys Ala Phe Leu Ser His Arg His Lys Thr Gln Ile Ile Tyr Cys Tyr 65 70 75 80 Glu Ala Leu Thr Phe Asn Gly Gln Phe Leu His Phe Ile Ala Ala Cys 85 90 Glu Arg Leu Pro Asp Gly Arg Pro Ile Ser Leu Val Leu Gln Thr Ser 100 105 Gln Ala Ala Ser Phe Tyr Gln Lys Gly Glu Asn Ser Cys Leu Ser Phe 115 120 125 Leu Lys Asn Ala Phe Leu Tyr 'Leu Ser Ile Arq His Tyr Thr Glu Ser 130 135 140 Leu Tyr Gly Lys Arg Pro Gly Thr Met Ser Leu Val Asp Thr Phe His 145 150 155 160 Cys Ser Val Ala Glu Ala Ser Ala Pro Phe Leu Ala Trp 165 170 <210> 318 <211> 96 <212> PRT <213> homo sapiens <400> 318 Ala Gln Glu Ser Pro Trp Gln Leu Cys Arg Gly Ala Arg Thr Ser Lys Arg Lys Leu Pro Lys Leu Gly Met Glu Gln His Cys Asn Glu Met Cys

25

30

20

Pro	Pro	Ser 35	Ser	Leu	Phe	Leu	Pro 40	Gly	Ala	Tyr	Lys	Ala 45	Gln	Met.	Tyr .
Ser	Asp 50	Val	Trp	Thr	Asn	Thr 55	Lys	Lys	His	Phe	Leu 60	Lys	Arg	Lys	Gly
Met 65	Ser	Phe	Pro	Leu	Phe 70	Asp	Lys	Lys	Gln	Pro 75	Val	Met	Lys	Ser	Gly 80
Ala	Gln	Glu	Arg	Trp 85	Val	Ser	His	Leu	Glu 90	Ala	Phe	Arg	Thr	Gln 95	Leu
<210><211><212><213>	105 PRT	sapie	ens												
<400>	319														
Thr 1	Cys	Glu	Pro	Phe 5	Arg	Asn	Pro	Gln	Val 10	Gly	Lys	Asp	Pro	Thr 15	Pro
Ser	Leu	Arg	Ile 20	Ile	Cys	Leu	Ala	Ile 25	Thr	Gly	Ser	Trp	Lys 30	Cys	Phe
Leu	Gly	Cys 35	Val	Lys	Ile	Asn	Gln 40	Gly	Gly	Met	Lys	His 45	Ile	Phe	Leu
Ala	Thr 50	Lys	Leu	Glu	Phe	Leu 55	Arg	Glu	Gln	Met	Gln 60	Arg	Asp	Leu	Leu
Leu 65	Leu	Ala	Arg	Leu	Gln 70	Gly	Pro	Leu	Trp	Ser 75	His	Thr	Glu	Ala	Val 80
Thr	Gly	His	Lys	Pro 85	Arg	Arg	Ala	Arg	Gly 90	Ser	Cys	Ala	Glu	Ala 95	Pro
Gly	Pro	Leu	Ser 100	Gly	Ser	Phe	Pro	Ser 105							
<210><211><212><212><213>	82 PRT	sapie	ns				•								
<400>	320														
Ile 1	Arg	Lys	Arg	Glu 5	Gln	Gly	Arg	Ser	Ser 10	Pro	Ala	Pro	Trp	Glu 15	Ser
Val	Phe	Ala	Ser 20	Val	Pro	Phe	Arg	Gly 25	Asp	Asp	Gly	Ile	Phe 30	Asp	Asp
Asn	Phe	Ile 35	Glu	Glu	Arg	Lys	Gln 40	Gly	Leu	Glu	Gln	Phe 45	Ile	Asn	Lys
Val	Ala 50	Gly	His	Pro	Leu	Ala 55	Gln	Asn	Glu	Arg	Cys 60	Leu	His	Met	Phe
Leu 65	Gln	Asp	Glu	Ile	Ile 70	Asp	Lys	Ser	Tyr	Thr 75	Pro	Ser	Lys	Ile	Arg 80
His	Ala														

<210><211><212><213>	159 PRT	sapi	ens												-
<400>	321														
Arg 1		Ser	Pro	Cys 5	Pro	His	Gly	Gly	Gln 10	Gln	Arg	Arg	Arg	Arg 15	Arg
Leu	Asn	Ala	Glu 20	Gly	Ala	Glu	Gly	Ala 25	Arg	Gly	Gly	Gly	Ser 30	Ser	Tyr
Ser	Glu	Met 35	Ala	Glu	Thr	Val	Ala 40	Asp	Thr	Arg	Arg	Leu 45	Ile	Thr	Lys
Pro	Gln 50	Asn	Leu	Asn	Asp	Ala 55	Tyr	Gly	Pro	Pro	Ser 60	Asn	Phe	Leu	Glu
Ile 65	Asp	Val	Ser	Asn	Pro 70	Gln	Thr	Val	Gly	Val 75	Gly	Arg	Gly	Arg	Phe 80
Thr	Thr	Tyr	Glu	Ile 85	Arg	Val	Lys	Thr	Asn 90	Leu	Pro	Ile	Phe	Lys 95	Leu
Lys	Glu	Ser	Thr 100	Val	Arg	Arg	Arg	Tyr 105	Ser	Asp	Phe	Glu	Trp 110	Leu	Arg
Ser	Glu	Leu 115	Glu	Arg	Glu	Ser	Lys 120	Val	Val	Val	Pro	Pro 125	Leu	Pro	Gly
Lys	Ala 130	Phe	Leu	Arg	Gln	Phe 135	Leu	Leu	Glu	Glu	Met 140	Met	Glu	Tyr	Leu
Met 145	Thr	Ile	Leu	Leu	Arg 150	Lys	Glu	Asn	Lys	Gly 155	Trp	Ser	Ser	Leu	
<210><211><212><213>	114 PRT	sapie	ns												
<400>	322														
Phe 1	Thr	Ser	Gln	Pro 5	Phe	Lys	Val	Thr	Val 10	Ser	Ser	Ser	Asn	Ser 15	Arg
Phe	Phe	Gln	Leu 20	Glu	Asn	Arg	Lys	Ile 25	Cys	Leu	Asp	Pro	Asp 30	Phe	Val
Ser	Gly	Glu 35	Ala	Ala	Pro	Ala	Asp 40	Pro	His	Arg	Leu	Arg 45	Val	Ala	His
Ile	Asp 50	Leu	Glu	Glu	Val	Ala 55	Gly	Gly	Ser	Val	Gly 60	Val	Ile	Gln	Val
Leu 65	Arg	Leu	Gly	Asp	Gln 70	Pro	Pro	Gly	Val	Ser 75	His	Gly	Leu	Arg	His 80
Phe	Ala	Val	Ala	Ala 85	Ala	Ala	Ala	Ala	Gly 90	Ser	Leu	Arg	Pro	Leu 95	Arg

Val	Gln	Pro	Pro 100	Pro	Pro	Pro	Leu	Leu 105	Pro	Ala	Val	Gly	Thr 110	Arg	Ala
Arg	Ala														
<210><211><211><212><213>	374 PRT	sapie	ns												
<400>	323														
Arg 1	Arg	Ala	Gln	Glu 5	Ser	Pro	Leu	Gly	Arg 10	Gln	Ser	His	Leu	Pro 15	Arg
Ile	Tyr	Gln	Ala 20	Phe	Leu	Met	Ser	Ala 25	Thr	Phe	Asn	Glu	Asp 30	Val	Gln
Ala	Leu	Lys 35	Glu	Leu	Ile	Leu	His 40	Asn	Pro	Val	Thr	Leu 45	Lys	Leu	Gln
Glu	Ser 50	Gln	Leu	Pro	Gly	Pro 55	Asp	Gln	Leu	Gln	Gln 60	Phe	Gln	Val	Val
Cys 65	Glu	Thr	Glu	Glu	Asp 70	Lys	Phe	Leu	Leu	Leu 75	Tyr	Ala	Leu	Leu	Lys 80
Leu	Ser	Leu	Ile	Arg 85	Gly	Lys	Ser	Leu	Leu 90	Phe	Val	Asn	Thr	Leu 95	Glu
Arg	Ser	Tyr	Arg 100	Leu	Arg	Leu	Phe	Leu 105	Glu	Gln	Phe	Ser	Ile 110	Pro	Thr
Cys	Val	Leu 115	Asn	Gly	Glu	Leu	Pro 120	Leu	Arg	Ser	Arg	Cys 125	His	Ile	Ile
Ser	Gln 130	Phe	Asn	Gln	Gly	Phe 135	Tyr	Asp	Cys	Val	Ile 140	Ala	Thr	Asp	Ala
Glu 145	Val	Leu	Gly	Ala	Pro 150	Val	Lys ,	Gly	Lys	Arg 155	Arg	Gly	Arg	Gly	Pro 160
Lys	Gly	Asp	Lys	Ala 165	Ser	Asp	Pro	Glu	Ala 170	Gly	Val	Ala	Arg	Gly 175	Ile
Asp	Phe	His	His 180	Val	Ser	Ala	Val	Leu 185	Asn	Phe	Asp	Leu	Pro 190	Pro	Thr
Pro	Glu	Ala 195	Tyr	Ile	His	Arg	Ala 200	Gly	Arg	Thr	Ala	Arg 205	Ala	Asn	Asn
Pro	Gly 210	Ile	Val	Leu	Thr	Phe 215	Val	Leu	Pro	Thr	Glu 220	Gln	Phe	His	Leu
Gly 225	Lys	Ile	Glu	Glu	Leu 230	Leu	Ser	Gly	Glu	Asn 235	Arg	Gly	Pro	Ile	Leu 240
Leu	Pro	Tyr	Gln	Phe 245	Arg	Met	Glu	Glu	Ile 250	Glu	Gly	Phe	Arg	Tyr 255	Arg
Cys	Arg	Asp	Ala 260	Met	Arg	Ser	Val	Thr 265	Lys	Gln	Ala	Ile	Arg 270	Glu	Ala

Arg	Leu	Lys 275	Glu	Ile	Lys	Glu	Glu 280	Leu	Leu	His	Ser	Glu 285	Lys	Leu	Lys
Thr	Tyr 290	Phe	Glu	Asp	Asn	Pro 295	Arg	Asp	Leu	Gln	Leu 300	Leu	Arg	His	Asp
Leu 305	Pro	Leu	His	Pro	Ala 310	Val	Val	Lys	Pro	His 315	Leu	Gly	His	Val	Pro 320
Asp	Tyr	Leu	Val	Pro 325	Pro	Ala	Leu	Arg	Gly 330	Leu	Val	Arg	Pro	His 335	Lys
Lys	Arg	Lys	Lys 340	Leu	Ser	Ser	Ser	Cys 345	Arg	Lys	Ala	Lys	Arg 350	Ala	Lys
Ser	Gln	Asn 355	Pro	Leu	Arg	Ser	Phe 360	Lys	His	Lys	Gly	Lys 365	Lys	Phe	Arg
Pro	Thr 370	Ala	Lys	Pro	Ser										
<210><211><211><212><213>	224 PRT	sapie	ns												
<400>	324														
Gln 1	Arg	Val	Arg	Ala 5	Ala	Leu	Leu	Ser	Ser 10	Ala	Met	Glu	Asp	Ser 15	Glu
Ala	Leu	Gly	Phe 20	Glu	His	Met	Gly	Leu 25	qaA	Pro	Arg	Leu	Leu 30	Gln	Ala
Val	Thr	Asp 35	Leu	Gly	Trp	Ser	Arg 40	Pro	Thr	Leu	Ile	Gln 45	Glu	Lys	Ala
Ile	Pro 50	Leu	Ala	Leu	Glu	Gly 55	Lys	Asp	Leu	Leu	Ala 60	Arg	Ala	Arg	Thr
Gly 65	Ser	Gly	Lys	Thr	Ala 70		Tyr	Ala	Ile	Pro 75	Met	Leu	Gln	Leu	Leu 80
Leu	His	Arg	Lys	Ala 85	Thr	Gly	Pro	Val	Val 90	Glu	Gln	Ala	Val	Arg 95	Gly
Leu	Val	Leu	Val 100	Pro	Thr	Lys	Glu	Leu 105	Ala	Arg	Gln	Ala	Gln 110	Ser	Met
Ile	Gln	Gln 115	Leu	Ala	Thr	Tyr	Cys 120	Ala	Arg	Asp	Val	Arg 125	Val	Ala	Asn
Val	Ser 130	Ala	Ala	Glu	Asp	Ser 135	Val	Ser	Gln	Arg	Ala 140	Val	Leu	Met	Glu
Lys 145	Pro	Asp	Val	Val	Val 150	Gly	Thr	Pro	Ser	Arg 155	Ile	Leu	Ser	His	Leu 160
Gln	Gln	Asp	Ser	Leu 165	Lys	Leu	Arg	Asp	Ser 170	Leu	Glu	Leu	Leu	Val 175	Val
Asp	Glu	Ala	Asp 180	Leu	Leu	Phe	Ser	Phe 185	Gly	Phe	Glu	Glu	Glu 190	Leu	Lys

Ser	Leu	Leu 195	Trp	Glu	Gly	Arg	Val 200	Thr	Cys	Pro	Gly	Phe 205	Thr	Arg	Leu ·
Phe	Ser 210	Cys	Gln	Leu	Leu	Leu 215	Thr	Arg	Thr	Tyr	Lys 220	His	Ser	Arg	Ser
<210><211><211><212><213>	115 PRT	sapie	ns												
<400>	325														
Phe 1	Phe	Phe	Phe	Phe 5	Phe	Phe	Phe	Phe	Gly 10	Ala	Ala	Lys	Ile	Phe 15	Ile
Leu	Leu	Ser	Arg 20	Gly	Lys	Met	Pro	Ala 25	Trp	Lys	Cys	Gln	Gly 30	Ala	Lys
Gly	Pro	Ser 35	Thr	Ala	Gly	Pro	Arg 40	Thr	Val	Cys	Ser	Gly 45	Cys	Ala	Val
Ser	Thr 50	Arg	Ala	Ser	Pro	Val 55	His	Glu	Gly	Cys	Lys 60	Pro	Val	Leu	His
Asn 65	Val	Leu	Ser	Ser	Arg 70	Glu	Ala	Gln	Gln	Pro 75	Gln	Glu	Gly	Leu	Ala 80
Val	Gly	Leu	Asn	Phe 85	Phe	Pro	Leu	Cys	Leu 90	Lys	Leu	Arg	Ser	Gly 95	Phe
Trp	Asp	Phe	Ala 100	Leu	Leu	Ala	Phe	Leu 105	Gln	Glu	Glu	Asp	Ser 110	Phe	Phe
Arg	Phe	Leu 115													
<210><211><211><212><213>	66 PRT	sapie	ns												
<400>	326														
Tyr 1	Leu	Gln	Cys	Gln 5	Arg	Ser	Leu	Cys	Gly 10	Ala	Lys	Cys	Val	Thr 15	Trp
Ala	Val	Glu	Thr 20	Arg	His	Leu	Leu	Ser 25	Pro	Ala	Leu	Met	Thr 30	Leu	Arg
Lys	Glu	Asp 35	Val	Ile	Gln	Gly	Lys 40	Phe	Leu	Ile	Pro	Lys 45	Leu	Pro	Val
His	Val 50	Asn	Arg	Thr	Ser	Phe 55	Tyr	Ser	Ser	Arg	Cys 60	Thr	Gly	Ser	Leu
Ala 65	Pro														
<210> <211> <212>	90														

<213>	homo	sapie	ns												
<400>		_													٠
Phe 1	Arg	Ser	Cys	Leu 5	Phe	Met	Leu	Thr	Gly 10	Leu	Leu	Phe	Ile	Arg 15	Gln
Asp	Val	Leu	Val 20	Pro	Trp	His	Leu	Lys 25	Gly	Asn	Pro	Asp	Lys 30	Gly	Lys
Pro	Val	Glu 35	Pro	Phe	Gly	Pro	Ile 40	Gly	Ser	Gln	Asp	Pro 45	Ser	Pro	Val
Phe	His 50	Arg	Tyr	Tyr	His	Val 55	Phe	Arg	Glu	Gly	Glu 60	Leu	Glu	Gly	Ala
Cys 65	Arg	Thr	Val	Ser	Asp 70	Val	Arg	Ile	Leu	Gln 75	Ser	Tyr	Tyr	Asp	Gln 80
Gly	Asn	Trp	Cys	Val 85	Ile	Leu	Gln	Lys	Ala 90						
<210><211><211><212><213>	83 PRT	sapie	ns												
<400>	328														
Ser 1	Gly	Leu	Leu	Lys 5	Asn	His	Thr	Pro	Val 10	Ser	Leu	Ile	Val	Val 15	Ala
Leu	Gln	Asn	Ser 20	Asp	Ile	Thr	His	Ser 25	Pro	Ala	Gly	Thr	Phe 30	Gln	Phe
Ser	Leu	Thr 35	Glu	His	Met	Val	Val 40	Thr	Met	Lys	His	Arg 45	Thr	Trp	Val
Leu	Gly 50	Ser	Tyr	Gly	Thr	Lys 55	Trp	Leu	Asn	Arg	Phe 60	Ala	Phe	Ile	Arg
Ile 65	Ser	Leu	Lys	Val	Pro 70	Gly	·Asn	Gln	Tyr	Ile 75	Leu	Thr	Asn	Lys	Lys 80
Lys	Ser	Cys													
<210><211><212><213>	185 PRT	sapie	ens												
<400>	329														
Glu 1	Arg	Arg	Ser	Lys 5	Ser	Arg	Glu	Glu	Arg 10	Glu	Lys	Glu	Arg	Glu 15	Arg
Glu	Arg	Glu	Glu 20	Arg	Glu	Arg	Lys	Arg 25	Arg	Arg	Glu	Glu	Glu 30	Glu	Arg
Glu	Lys	Glu 35	Arg	Ala	Arg	Asp	Arg 40	Glu	Arg	Arg	Lys	Arg 45	Ser	Arg	Ser

Arg Ser Arg His Ser Ser Arg Thr Ser Asp Arg Arg Cys Ser Arg Ser

50 55 60 Asp His Lys Arg Ser Arg Ser Arg Glu Arg Arg Ser Arg Ser Arg 65 70 75 80 Ser Asp Ser Glu Arg Arg Asp Arg Arg Arg Arg Ser His Arg Lys His 85 90 95 Asp Arq Ser Arg Ser Arg Arg Arg Arg Ser Lys Ser Arg Asp Arg 100 105 110 Arg Glu Gln Ser Tyr Lys His Arg Ser Lys Ser Arg Asp Asp Arg Lys 115 120 125 Lys Glu Lys Gly Ser Lys Glu Arg Lys Ser Val Ser Lys Asp Asp Ser 135 140 Ser Gly Lys Gln Ser Glu Thr Glu Ser Lys Ser Arg Glu Asp Asn Thr 145 160 150 155 Glu Thr Glu Val Asn Gly Thr Ser Glu Ser Asp Lys Asn Asp 165 170 175 Lys Ser Glu Gly Asp Thr Gln Ser Asn 180 <210> 330 <211> 178 <212> PRT <213> homo sapiens <400> 330 Ile Gln Cys Leu Cys Leu His Ser Tyr His Phe Pro Ser Ala Phe Leu 10 His Gln Pro Thr Phe Tyr Ile Ser Asp Tyr Arg Ser His Tyr Phe Phe 30 20 25 ${\tt Pro}$ Trp Ile Phe Tyr Leu Val Leu Cys Pro Asp Phe Cys Ser Leu Ser 35 40 Cys Ala Tyr Met Thr Phe Asp ProGly Phe Leu Ile Phe Phe Asp Pro 50 55 60 Ile Asp Phe Glu Cys Val Asp His Gly Phe Cys Phe Phe Leu Ile Phe 65 75 80 70 Val Phe Val Asp Leu Tyr Phe Cys Ser Ala Phe Phe Leu Tyr Phe Thr 95 85 90 Cys Gly Glu Thr Cys Ile Phe Pro Cys Phe Cys Leu Met Phe Gly Leu 100 105 110 Val Tyr Phe Phe Cys Ser Val Asn Asp Ser Phe Phe Phe Leu His Glu 115 120 125 Pro Phe Phe Phe Leu Phe Val Leu Leu Pro Leu Pro Phe Ser Phe Leu 130 135 140 Phe Leu Phe Ser Pro Val Ser Cys Pro Leu Leu Ser Leu Leu Leu Ser 145 150 155 160

Cys	Phe	Ser	Phe	Leu 165	Arg	Arg	Ser	Ser	Arg 170	Ile	Arg	Leu	Phe	Gly 175	Ser
Ser	Pro														
<210><211><211><212><213>	182 PRT	sapie	ns												
<400>	331														
Val 1	Ser	Pro	Ser	Asp 5	Leu	Met	Ser	Ser	Leu 10	Val	Pro	Leu	Thr	Ser 15	Phe
Leu	Val	Ser	Leu 20	Ser	Phe	Asp	Ser	Val 25	Phe	Val	Ser	Ser	Leu 30	Cys	Phe
Ser	Arg	Leu 35	Pro	Asp	Phe	Thr	Leu 40	Leu	Phe	Leu	Ser	Ser 45	Asp	Pro	Leu
Phe	Ser 50	Phe	Ser	Leu	Asp	Phe 55	Leu	Ser	Cys	Ser	Leu 60	Ser	Arg	Leu	Leu
Leu 65	Leu	Cys	Leu	Tyr	Asp 70	Phe	Arg	Ser	Arg	Leu 75	Phe	Asp	Leu	Leu	Arg 80
Ser	Arg	Leu	Arg	Asp 85	Leu	Cys	Phe	Leu	Ser 90	Asp	Arg	Ser	Trp	Leu 95	Leu
Leu	Leu	Arg	Arg 100	Ser	Leu	Leu	Leu	Leu 105	Arg	Leu	Leu	Ser	Leu 110	Leu	Arg
Asp	Leu	Leu 115	Trp	Ser	Arg	Asp	Leu 120	Leu	His	Leu	Leu	Ser 125	Asp	Val	Arg
Leu	Glu 130	Cys	Leu	Leu	Arg	Glu 135	Arg	Leu	Leu	Phe	Leu 140	Leu	Ser	Leu	Ser
Arg 145	Ala	Leu	Ser	Phe	Ser 150	Leu	Ser	Ser	Ser	Ser 155	Leu	Arg	Leu	Phe	Leu 160
Ser	Leu	Ser	Ser	Leu 165	Ser	Leu	Ser	Arg	Ser 170	Phe	Ser	Leu	Ser	Ser 175	Leu
Leu	Leu	Leu	Leu 180	Leu	Ser										
<210><211><212><213>	88 PRT	sapie	ns												
<400>	332														
Gly 1	Phe	Gly	Met	Gln 5	Leu	Val	Ile	Leu	Arg 10	Val	Thr	Ile	Phe	Leu 15	Pro
Trp	Cys	Phe	Ala 20	Val	Pro	Val	Pro	Pro 25	Ala	Ala	Asp	His	Lys 30	Gly	Trp
Asp	Phe	Val 35	Glu	Gly	Tyr	Phe	His 40	Gln	Phe	Phe	Leu	Thr 45	Glu	Lys	Glu

Ser	Pro 50	Leu	Leu	Thr	Gln	Glu 55	Thr	Gln	Thr	Gln	Leu 60	Leu	Gln	Gln	Phe -
His 65	Arg	Asn	Gly	Thr	Asp 70	Leu	Leu	Asp	Met	Gln 75	Met	His	Ala	Ser	Ala 80
Thr	Ala	Ala	Pro	Leu 85	Trp	Gly	Ala								
<210><211><211><212><213>	61 PRT	sapie	ns												
<400>	333														
Pro 1	Arg	Arg	Ser	Arg 5	His	Ser	Leu	Pro	Arg 10	Arg	His	Lys	His	Ser 15	Ser
Cys	Asn	Asn	Ser 20	Ile	Gly	Met	Gly	Gln 25	Thr	Tyr	Leu	Thr	Cys 30	Arg	Cys
Met	Leu	Leu 35	Leu	Gln	Gln	Pro	His 40	Cys	Gly	Val	Pro	Asp 45	Gly	Ser	Asp
Asn	Cys 50	Ile	Ser	Pro	Gly	Arg 55	Cys	Lys	Trp	Ile	Lys 60	His			
<210><211><211>	62														
<213>		sapie	ns												
	homo	sapie	ns												
<213>	homo	_		Phe 5	Leu	Ala	Arg	Cys	Ser 10	Cys	Arg	Thr	His	Gln 15	Ala
<213> <400> Ser	homo 334 Thr	_	Ile				Ala		10	_	Arg Ile		His Met 30		Ala Ser
<213> <400> Ser 1	homo 334 Thr His	Cys	Ile Gly 20	5	Ala	Val	Ala	Glu 25	10	Cys	Ile	Cys	Met 30	15	Ser
<213> <400> Ser 1 Pro	homo 334 Thr His	Cys Ser Val	Ile Gly 20 Pro	5 Ala	Ala Arg	Val Trp	Ala Asn 40	Glu 25 Cys	10 Ala Cys	Cys Arg	Ile	Cys Cys 45	Met 30	15 Ser	Ser
<213> <400> Ser 1 Pro Arg	homo 334 Thr His Ser Trp 50 335 61 PRT	Cys Ser Val 35 Val	Ile Gly 20 Pro	5 Ala Phe	Ala Arg	Val Trp Asp	Ala Asn 40	Glu 25 Cys	10 Ala Cys	Cys Arg	Ile Ser Arg	Cys Cys 45	Met 30 Val	15 Ser	Ser
<213> <400> Ser 1 Pro Arg Ser <210> <211> <212>	homo 334 Thr His Ser Trp 50 335 61 PRT homo	Cys Ser Val 35 Val	Ile Gly 20 Pro	5 Ala Phe	Ala Arg	Val Trp Asp	Ala Asn 40	Glu 25 Cys	10 Ala Cys	Cys Arg	Ile Ser Arg	Cys Cys 45	Met 30 Val	15 Ser	Ser
<213> <400> Ser 1 Pro Arg Ser <210> <211> <212> <213> <400>	homo 334 Thr His Ser Trp 50 335 61 PRT homo	Cys Ser Val 35 Val	Ile Gly 20 Pro Arg	5 Ala Phe Ser	Ala Arg Gly	Val Trp Asp 55	Ala Asn 40 Ser	Glu 25 Cys Phe	10 Ala Cys Ser	Cys Arg Val	Ile Ser Arg 60	Cys Cys 45 Lys	Met 30 Val Asn	15 Ser	Ser
<213> <400> Ser 1 Pro Arg Ser <210> <211> <212> <213> <400> Val 1	homo 334 Thr His Ser Trp 50 335 61 PRT homo 335 Cys	Cys Ser Val 35 Val	Ile Gly 20 Pro Arg	5 Ala Phe Ser	Ala Arg Gly Met	Val Trp Asp 55	Ala Asn 40 Ser	Glu 25 Cys Phe	10 Ala Cys Ser	Cys Arg Val	Ile Ser Arg 60	Cys 45 Lys Cys	Met 30 Val Asn	Ser Cys Cys	Ser

```
Trp Asn Gly Glu Thr Pro Gly Gln Glu Asp Ser Asn
                                                   60
                             55
<210> 336
<211> 63
<212> PRT
<213> homo sapiens
<400> 336
 Ala Glu Asp Thr Ile Gln Lys Arg Asn Ser Gln Phe Glu Thr Val
                                                                15
                                          10
              Pro Asn Cys Gly Asp Glu Glu Arg Lys Gln
                                                          Trp
                                                               Leu
 Pro Pro Ala
                                      25
                                     Thr Glu Arg Ser Asn
                                                           His
                                                               Gln Gly
                  Gly Arg Leu Arg
 Phe Leu Ser
              Glu
                                                       45
           35
                                 40
         Phe Trp Lys Ser Ser Arg Gly Gly Trp Leu Glu Glu
 His Arg
                                                   60
<210> 337
<211> 65
<212> PRT
<213> homo sapiens
<400> 337
 Lys Gly Trp Arg Ser Asp Phe Thr Val Gly Gly Arg Gln Arg
                                                               Asp Gly
                   Thr Gly Ser Phe Phe Ser Ile Ser
                                                       Leu Leu
                                                                Ser
  Gln His Val Gln
                                      25
                20
                                                                Tyr
                                Cys Gln Gly Gly
                                                  Ser
                                                       Ser
                                                           Ser
      Arg
          Thr
               Ala
                   Gln Trp Leu
  Ser
           35
                                  40
                                                  Tyr
                                                      Arg Gly Ser Arg
          Ser Gly Ser Leu Lys
                                Ser Thr Arg Tyr
  His
     Phe
                                                   60
                             55
  Ser
  65
<210> 338
<211> 249
<212> PRT
<213> homo sapiens
<400> 338
                       Glu Gln Lys Ile Gln Phe Lys Arg Glu Thr
                                                                    Ala
  Ser Cys Gly Asp Val
                                                                 15
                                           10
                       Pro His Gln Pro
                                             Ile Val Glu Met
                                                                Lys
                                                                   Lys
                                         Arg
  Ser Leu Lys Leu
                   Leu
                20
                                 Tyr
                                     Leu Arg Ala Gly
                                                       Ser
                                                           Glu Gln Lys
  Gly Ser Asn Gly Tyr Gly Phe
                                                        45
            35
  Gly Gln Ile Ile Lys Asp Ile Asp Ser Gly Ser Pro Ala Glu Glu Ala
```

50

60

<210> 340 <211> 44 <212> PRT <213> homo sapiens

Gly 65	Leu	Lys	Asn	Asn	Asp 70	Leu	Val	Val	Ala	Val 75	Asn	Gly	Glu	Ser	Val ⁻ 80
Glu	Thr	Leu	Asp	His 85	Asp	Ser	Val	Val	Glu 90	Met	Ile	Arg	Lys	Gly 95	Gly
Asp	Gln	Thr	Ser 100	Leu	Leu	Val	Val	Asp 105	Lys	Glu	Thr	Asp	Asn 110	Met	Tyr
Arg	Leu	Ala 115	His	Phe	Ser	Pro	Phe 120	Leu	Tyr	Tyr	Gln	Ser 125	Gln	Glu	Leu
Pro	Asn 130	Gly	Ser	Val	Lys	Glu 135	Ala	Pro	Ala	Pro	Thr 140	Pro	Thr	Ser	Leu
Glu 145	Val	Ser	Ser	Pro	Pro 150	Asp	Thr	Thr	Glu	Glu 155	Val	Asp	His	Lys	Pro 160
Lys	Leu	Cys	Arg	Leu 165	Ala	Lys	Gly	Glu	Asn 170	Gly	Tyr	Gly	Phe	His 175	Leu
Asn	Ala	Ile	Arg 180	Gly	Leu	Pro	Gly	Ser 185	Phe	Ile	Lys	Glu	Val 190	Gln	Lys
Gly	Gly	Pro 195	Ala	Asp	Leu	Ala	Gly 200	Leu	Glu	Asp	Glu	Asp 205	Val	Ile	Ile
Glu	Val 210	Asn	Gly	Val	Asn	Val 215	Leu	Asp	Glu	Pro	Tyr 220	Glu	Lys	Val	Val
Asp 225	Arg	Ile	Gln	Ser	Ser 230	Gly	Lys	Asn	Val	Thr 235	Leu	Leu	Val	Cys	Gly 240
Lys	Lys	Ala	Tyr	Asp 245	Tyr	Phe	Gln	Ala							
<210><211><211><212><213>	67 PRT	sapie	ens												
<400>	339														
Ile 1	Thr	Gly	Val	Gln 5	Pro	Glu	His	Ile	Gln 10	Tyr	Leu	Lys	Asn	Tyr 15	Phe
His	Leu	Trp	Thr 20	Arg	Gln	Leu	Ala	His 25	Ile	Tyr	His	Tyr	Tyr 30	Ile	His
Gly	Pro	Lys 35	Gly	Asn	Glu	Ile	Arg 40	Thr	Ser	Lys	Glu	Val 45	Glu	Pro	Phe
Asn	Asn 50	Ile	Asp	Ile	Glu	Ile 55	Ser	Met	Phe	Glu	Lys 60	Gly	Lys	Val	Pro
Lys 65	Ile	Val													

<40	00>	340														
Ĭ	Arg 1	Ile	Phe	Ile	Thr 5	Thr	Ile	Phe	Met	Ala 10	Gln	Lys	Glu	Met	Lys 15	Tyr
(3lu	His	Gln	Lys 20	Lys	Leu	Asn	Leu	Ser 25	Thr	Ile	Leu	Ile	Leu 30	Lys	Phe
]	Leu	Cys	Leu 35	Lys	Lys	Gly	Arg	Tyr 40	Leu	Arg	Leu	Ser				
<23 <23	11> 12>	PRT	sapie	ns												
<40	>00	341														
]	Lys 1	Val	Gln	Leu	Leu 5	Leu	Met	Phe	Val	Phe 10	His	Phe	Leu	Leu	Gly 15	His
(3lu	Tyr	Ser	Ser 20	Asp	Lys	Tyr	Ala	Leu 25	Thr	Val	Val	Ser	Lys 30	Gly	Gly
Ĩ	Asn	Asn	Phe 35	Ser	Ser	Thr	Val	Cys 40	Val	Leu	Val	Val	Pro 45	Leu		
<2: <2:	11> 12>	342 237 PRT homo	sapie	ns												
<40	>00	342														
(Gly 1	Arg	Trp	Arg	Arg 5	Arg	Leu	Arg	His	Gly 10	Arg	Gly	Ser	Ala	Glu 15	Ala
7	Val	Gly	Pro	Thr 20	Ala	Met	Ala	Glu	Leu 25	Leu	Gln	Glu	Glu	Leu 30	Ser	Val
]	Leu	Ala	Ala 35	Ile	Phe	Cys	Arg	·Pro 40	His	Glu	Trp	Glu	Val 45	Leu	Ser	Arg
\$	Ser	Glu 50	Thr	Asp	Gly	Thr	Val 55	Phe	Arg	Ile	His	Thr 60	Lys	Ala	Glu	Gly
1	Phe 65	Met	Asp	Ala	Asp	Ile 70	Pro	Leu	Glu	Leu	Val 75	Phe	His	Leu	Pro	Val 80
1	Asn	Tyr	Pro	Ser	Cys 85	Leu	Pro	Gly	Ile	Ser 90	Ile	Asn	Ser	Glu	Gln 95	Leu
	Thr	Arg	Ala	Gln 100	Cys	Val	Thr	Val	Lys 105	Glu	Lys	Leu	Leu	Glu 110	Gln	Ala
(3lu	Ser	Leu 115	Leu	Ser	Glu	Pro	Met 120	Val	His	Glu	Leu	Val 125	Leu	Trp	Ile
(3ln	Gln 130	Asn	Leu	Arg	His	Ile 135	Leu	Ser	Gln	Pro	Glu 140	Thr	Gly	Ser	Gly

Ser Glu Lys Cys Thr Phe Ser Thr Ser Thr Thr Met Asp Asp Gly Leu

145					150					155					160
Trp	Ile	Thr	Leu	Leu 165	His	Leu	Asp	His	Met 170	Arg	Ala	Lys	Thr	Lys 175	Tyr
Val	Lys	Ile	Val 180	Glu	Lys	Trp	Ala	Ser 185	Asp	Leu	Arg	Leu	Thr 190	Gly	Arg
Leu	Met	Phe 195	Met	Gly	Lys	Ile	Ile 200	Leu	Asp	Phe	Thr	Thr 205	Gly	Arg	Gln
Lys	Gln 210	Pro	Gln	Gly	Val	Leu 215	Asp	Ser	Ser	Glu	Asn 220	Leu	Gln	Ser	Arg
Cys 225	Gly	Leu	Lys	Trp	Lys 230	Glu	Met	Gln	Arg	Glu 235	Asn	Asp			
<210><211><212><212><213>	89 PRT	sapie	ns												
<400>	343														
Tyr 1	Leu	Ile	Leu	Leu 5	Gln	Gly	Asp	Arg	Asn 10	Asn	Leu	Lys	Val	Tyr 15	Leu
Ile	Leu	Gln	Lys 20	Thr	Ser	Lys	Val	Asp 25	Val	Asp	Ser	Ser	Gly 30	Lys	Lys
Cys	Lys	Glu 35	Lys	Met	Ile	Ser	Val 40	Leu	Phe	Glu	Thr	Lys 45	Val	Gln	Thr
Glu	His 50	Lys	Arg	Phe	Leu	Ala 55	Phe	Glu	Val	Lys	Glu 60	Tyr	Ser	Ala	Leu
Asp 65	Glu	Leu	Gln	Lys	Glu 70	Phe	Glu	Thr	Ala	Gly 75	Leu	Lys	Lys	Leu	Phe 80
Ser	Glu	Phe	Val	Leu 85	Ala	Leu	Val	Lys							
<210><211><212><213>	95 PRT	sapie	ns												
<400>	344														
Pro 1	Leu	Pro	Lys	Ser 5	Asn	Ala	Lys	Thr	Thr 10	Lys	Asn	Thr	Ala	Ile 15	Leu
Leu	Lys	Asp	Ser 20	Cys	Leu	Pro	Phe	His 25	Phe	Thr	Arg	Ala	Ser 30	Thr	Asn
Ser	Glu	Lys 35	Ser	Phe	Leu	Ser	Pro 40	Ala	Val	Ser	Asn	Ser 45	Phe	Cys	Asn
Ser	Ser 50	Asn	Ala	Glu	Tyr	Ser 55	Leu	Thr	Ser	Asn	Ala 60	Arg	Asn	Leu	Leu
Cys 65	Ser	Val	Cys	Thr	Phe 70	Val	Ser	Asn	Ser	Thr 75	Leu	Ile	Ile	Phe	Ser 80

Leu	His	Phe	Phe	Pro 85	Leu	Glu	Ser	Thr	Ser 90	Thr	Leu	Glu	Val	Phe 95	-
<210><211><212><213>	72 PRT	sapie	ns												
<400>	345														
Arg 1	Ala	Gly	Leu	Phe 5	Pro	Gly	Arg	Arg	Val 10	Gly	Leu	Glu	Ala	Glu 15	Asn
Gly	Pro	Cys	Cys 20	His	Gln	His	Gly	Asp 25	Phe	Val	Pro	Cys	Pro 30	Val	Leu
Ser	Ala	Arg 35	Met	Ser	Gln	Pro	Glu 40	Ala	Glu	Glu	Ala	Ala 45	Leu	Val	Ala
His	Ala 50	Val	Gly	His	Asp	Cys 55	Val	Cys	Ser	Gly	Gly 60	Gly	Val	Leu	Leu
Pro 65	His	His	Arg	Arg	Asn 70	Asn	Leu								
<210><211><212><213>	171 PRT	sapie	ns												
<400>	346														
Gly 1	Arg	Ala	Cys	Phe 5	Arg	Gly	Gly	Ala	Trp 10	Gly	Leu	Arg	Pro	Arg 15	Thr
Ala	Leu	Ala	Ala 20	Thr	Asn	Met	Glu	Thr 25	Leu	Tyr	Arg	Val	Pro 30	Phe	Leu
Val	Leu	Glu 35	Cys	Pro	Asn	Leu	Lys 40	Leu	Lys	Lys	Pro	Pro 45	Trp	Leu	His
Met	Pro 50	Ser	Ala	Met	Thr	Val 55	Tyr	Ala	Leu	Val	Val 60	Val	Ser	Tyr	Phe
Leu 65	Ile	Thr	Gly	Gly	Ile 70	Ile	Tyr	Asp	Val	Ile 75	Val	Glu	Pro	Pro	Ser 80
Val	Gly	Ser	Met	Thr 85	Asp	Glu	His	Gly	His 90	Gln	Arg	Pro	Val	Ala 95	Phe
Leu	Ala	Tyr	Arg 100	Val	Asn	Gly	Gln	Tyr 105	Ile	Met	Glu	Gly	Leu 110	Ala	Ser
Ser	Phe	Leu 115	Phe	Thr	Met	Gly	Gly 120	Leu	Gly	Phe	Ile	Ile 125	Leu	Asp	Arg
Ser	Asn 130	Ala	Pro	Asn	Ile	Pro 135	Lys	Leu	Asn	Arg	Phe 140	Leu	Leu	Leu	Phe
Ile 145	Gly	Phe	Val	Cys	Val 150	Leu	Leu	Ser	Phe	Phe 155	Met	Ala	Arg	Val	Phe 160

Met	Arg	Met	Lys	Leu 165	Pro	Gly	Tyr	Leu	Met 170	Gly					
<210><211><212><213>	82 PRT	sapie	ns												
<400>	347														
Glu 1	Ala	Gly	Cys	Lys 5	Ser	Phe	His	Asn	Ile 10	Leu	Ser	Ile	Tyr	Ser 15	Val
Gly	Gln	Glu	Ser 20	Tyr	Trp	Pro	Leu	Met 25	Pro	Met	Phe	Ile	Ser 30	His	Arg
Thr	Asp	Thr 35	Trp	Arg	Phe	Asn	Asn 40	Asn	Ile	Ile	Asn	Tyr 45	Ser	Ser	Gly
Asp	Glu 50	Glu	Val	Arg	His	His 55	His	Gln	Ser	Ile	His 60	Ser	His	Gly	Arg
Arg 65	His	Val	Gln	Pro	Gly 70	Arg	Leu	Leu	Gln	Leu 75	Gln	Val	Gly	Thr	Phe 80
Glu	His														
<210><211><211><212><213>	103 PRT	sapie	ns												
<400>	348														
<400> His 1		Val	Ile	Val 5	Val	Trp	Asn	Asn	Ile 10	Gly	Glu	Lys	Ala	Pro 15	Asp
His	Lys	Val Trp	Ile Asn 20	5		Trp		Asn His 25			Glu Pro		Ala Ile 30		-
His 1 Glu	Lys		Asn	5 Ser	Leu	_	Pro	His 25	10 Pro		Pro	Val	Ile	15	-
His 1 Glu	Lys	Trp Thr 35	Asn 20 Ala	5 Ser	Leu Arg	Gly	Pro Arg · 40	His 25 Asn	10 Pro Arg	Ile Leu	Pro Gln	Val Val 45	Ile 30 Phe	15 Phe	Lys Glu
His 1 Glu Gln	Lys Leu Gln Glu 50	Trp Thr 35	Asn 20 Ala Asn	5 Ser Asn Ala	Leu Arg	Gly Met Leu 55	Pro Arg · 40	His 25 Asn Val	10 Pro Arg	Ile Leu	Pro Gln Asp	Val Val 45 Thr	Ile 30 Phe Leu	15 Phe Pro	Lys Glu Ser
His 1 Glu Gln Leu Thr	Lys Leu Gln Glu 50 Pro	Trp Thr 35	Asn 20 Ala Asn Leu	5 Ser Asn Ala Val	Leu Arg Val Phe	Gly Met Leu 55	Pro Arg . 40 Met	His 25 Asn Val	10 Pro Arg Asp Val	Ile Leu Asp	Pro Gln Asp 60	Val Val 45 Thr	Ile 30 Phe Leu	15 Phe Pro	Lys Glu Ser
His 1 Glu Gln Leu Thr 65 Gln	Lys Leu Gln Glu 50 Pro	Trp Thr 35 Thr	Asn 20 Ala Asn Leu Gly	Ser Asn Ala Val Ile 85	Leu Arg Val Phe	Gly Met Leu 55 Ala Phe	Pro Arg . 40 Met	His 25 Asn Val Ser	10 Pro Arg Asp Val Ser	Ile Leu Asp Trp 75	Pro Gln Asp 60	Val Val 45 Thr	Ile 30 Phe Leu Phe	Phe Pro Ile Pro Phe	Lys Glu Ser Asp
His 1 Glu Gln Leu Thr 65 Gln	Lys Leu Gln Glu 50 Pro Ile Gly 349 50 PRT	Trp Thr 35 Thr Asp Val	Asn 20 Ala Asn Leu Gly Tyr 100	Ser Asn Ala Val Ile 85	Leu Arg Val Phe 70 Cys	Gly Met Leu 55 Ala Phe	Pro Arg . 40 Met	His 25 Asn Val Ser	10 Pro Arg Asp Val Ser	Ile Leu Asp Trp 75	Pro Gln Asp 60	Val Val 45 Thr	Ile 30 Phe Leu Phe	Phe Pro Ile Pro Phe	Lys Glu Ser Asp
His 1 Glu Gln Leu Thr 65 Gln Gln <210> <211> <212>	Lys Leu Gln Glu 50 Pro Ile Gly 349 50 PRT homo	Trp Thr 35 Thr Asp Val	Asn 20 Ala Asn Leu Gly Tyr 100	Ser Asn Ala Val Ile 85	Leu Arg Val Phe 70 Cys	Gly Met Leu 55 Ala Phe	Pro Arg . 40 Met	His 25 Asn Val Ser	10 Pro Arg Asp Val Ser	Ile Leu Asp Trp 75	Pro Gln Asp 60	Val Val 45 Thr	Ile 30 Phe Leu Phe	Phe Pro Ile Pro Phe	Lys Glu Ser Asp

10 15 5 1 His Gln His Cys Ile Gly Phe Gln Phe Arg Lys Asp Leu Glu Ser 20 Pro Val Cys Cys Leu Leu Phe Glu Asp His Arg Asp Arg Val Ser His 40 Gly Pro 50 <210> 350 <211> 79 <212> PRT <213> homo sapiens <400> 350 Ser Gly Asn Cys Cys Gln Thr Glu Lys Ala Lys Thr Arg Ser Gly Val 10 Thr Ala Leu Val Ser Ser Val Ser Ser Ser Thr Ile Asn Leu Met Ser 25 30 Phe Ala Val Cys Cys Trp Ser Arg Phe Leu Ile Leu Gly Lys Thr Ser 45 35 40 Trp Gly Pro Arg Glu Phe His Thr Gly Ile Gly Ile Leu Lys 55 Ser Gly Ala Phe Ser Pro Ile Leu Phe His Thr Thr Ile Thr Leu 75 65 70 <210> 351 <211> 70 <212> PRT <213> homo sapiens <400> 351 Ser Val His Val Val Pro Pro Lys His Gly His Thr Leu Arg His Gly 10 Gly Ile Ser Gly Val Cys Ser Arg Leu Leu His Lys Val Leu Ser 25 20 Val Ala Thr Gln Lys His Ile His Arg Glu Gly Arg Asn Gln Glu Phe 45 35 40 Thr Ser Gly Ile Leu Cys Ser Asp Lys Leu His Gly Trp Glu Pro Ala Val Phe Phe Leu Ala Arg <210> 352 <211> 71 <212> PRT <213> homo sapiens <400> 352 His Leu Ile Pro Phe Met Ala Lys Ser Ser Phe Arg Val Gly Asn Thr

1				5					10					15	
Gln	Thr	Phe	Cys 20	Ala	Cys	Cys	Ser	Pro 25	Lys	Ala	Trp	Ser	Ser 30	Gln	Ser
Pro	Glu	Phe 35	Trp	Cys	Val	Leu	Pro 40	Pro	Pro	Gly	Tyr	Thr 45	Glu	Arg	Arg
Gln	Glu 50	Ser	Gly	Val	Pro	Glu 55	Ala	Tyr	Thr	Cys	Gly 60	Tyr	Pro	Ser	Asn
Lys 65	Arg	His	Pro	Val	Leu 70	Arg									
<210><211><212><213>	60 PRT	sapie	ns												
<400>	353														
Ser 1	Gly	Gln	Cys	Gly 5	Met	Gln	Leu	Gly	Pro 10	Asp	Gln	Pro	Ser	Ser 15	Glu
Gln	Met	Ala	Val 20	Val	Pro	Ile	Ser	Thr 25	Lys	Pro	Gln	Arg	Ala 30	Arg	Lys
Asn	Thr	Ser 35	Gln	Pro	Cys	Ser	Leu 40	Ser	Glu	His	Arg	Met 45	Pro	Leu	Val
Ala	Gly 50	Val	Ala	Thr	Cys	Ile 55	Cys	Phe	Trp	Asn	Ser 60				
<210><211><211><212><213>	225 PRT	sapie	ns												
<400>	354														
Gly 1	Leu	Pro	Ala	Arg 5	Arg	Pro	Gln		Phe 10		Arg	Ala	Glu	Met 15	
Asn	Ser	Gly	Leu 20	Gln	Leu	Leu	Gly	Phe 25	Ser	Met	Ala	Leu	Leu 30	Gly	Trp
Val	Gly	Leu 35	Val	Ala	Cys	Thr	Ala 40	Ile	Pro	Gln	Trp	Gln 45	Met	Ser	Ser
Tyr	Ala 50	Gly	Asp	Asn	Ile	Ile 55	Thr	Ala	Gln	Ala	Met 60	Tyr	Lys	Gly	Leu
Trp 65	Met	Asp	Cys	Val	Thr 70	Gln	Ser	Thr	Gly	Met 75	Met	Ser	Cys	Lys	Met 80
Tyr	Asp	Ser	Val	Leu 85	Ala	Leu	Ser	Ala	Ala 90	Leu	Gln	Ala	Thr	Arg 95	Ala
Leu	Met	Val	Val 100	Ser	Leu	Val	Leu	Gly 105	Phe	Leu	Ala	Met	Phe 110	Val	Ala
Thr	Met	Gly 115	Met	Lys	Cys	Thr	Arg 120	Cys	Gly	Gly	Asp	Asp 125	Lys	Val	Lys

Lys	Ala 130	Arg	Ile	Ala	Met	Gly 135	Gly	Gly	Ile	Ile	Phe 140	Ile	Val	Ala	Gly -
Leu 145	Ala	Ala	Leu	Val	Ala 150	Cys	Ser	Trp	Tyr	Gly 155	His	Gln	Ile	Val	Thr 160
Asp	Phe	Tyr	Asn	Pro 165	Leu	Ile	Pro	Thr	Asn 170	Ile	Lys	Tyr	Glu	Phe 175	Gly
Pro	Ala	Ile	Phe 180	Ile	Gly	Trp	Ala	Gly 185	Ser	Ala	Leu	Val	Ile 190	Leu	Gly
Gly	Ala	Leu 195	Leu	Ser	Cys	Ser	Cys 200	Pro	Gly	Asn	Glu	Ser 205	Lys	Ala	Gly
Tyr	Arg 210	Ala	Pro	Arg	Ser	Tyr 215	Pro	Lys	Ser	Asn	Ser 220	Ser	Lys	Glu	Tyr
Val 225															
<210><211><211><212><213>	111 PRT	sapie	ns												
<400>	355														
Gln 1	His	His	His	Gly 5	Pro	Gly	His	Val	Gln 10	Gly	Ala	Val	Asp	Gly 15	Leu
Arg	His	Ala	Glu 20	His	Gly	Asp	Asp	Glu 25	Leu	Gln	Asn	Val	Arg 30	Leu	Gly
Ala	Arg	Pro 35	Val	Arg	Gly	Leu	Ala 40	Gly	His	Ser	Ser	Pro 45	Asn	Gly	Gly
Leu	Pro 50	Gly	Ala	Gly	Leu	Pro 55	Gly	His	Val	Cys	Gly 60	His	Asp	Gly	His
Glu 65	Val	His	Ala	Leu	Trp 70	Gly	·Arg	Arg	Gln	Ser 75	Glu	Glu	Gly	Pro	Tyr 80
Ser	His	Gly	Trp	Arg 85	His	Asn	Phe	His	Arg 90	Gly	Arg	Ser	Cys	Arg 95	Leu
Gly	Ser	Leu	Leu 100	Leu	Val	Trp	Pro	Ser 105	Asp	Cys	His	Arg	Leu 110	Leu	
<210><211><211><212><213>	154 PRT	sapie	ens												
<400>	356														
Cys 1	Cys	His	Pro	His 5	Arg	Ser	Ser	Ser	Ala 10	Thr	Ala	Gly	Trp	Arg 15	Cys
Arg	Pro	Pro	Asp 20	Pro	Pro	Ser	Pro	Ala 25	Gly	Pro	Trp	Arg	Ser 30	Pro	Ala

Thr	Ala	Gly 35	Pro	Asn	Trp	Pro	Phe 40	Pro	Pro	Ser	Glu	Asn 45	Thr	Gly	Gly .
Ala	Gly 50	Arg	Gly	Asp	Pro	Thr 55	Val	Lys	Gln	Thr	Thr 60	Leu	Gly	Gly	Gln
Pro 65	His	Lys	Arg	Lys	Leu 70	Glu	Val	Glu	Phe	Ser 75	Gly	His	Pro	Lys	Arg 80
Gln	Lys	Gly	Phe	Gly 85	Pro	Gly	Glu	Cys	Lys 90	Ser	Cys	His	Gln	Thr 95	Thr
His	Lys	Ser	Thr 100	Pro	Pro	Val	Lys	Arg 105	Trp	Pro	Arg	Gly	Thr 110	Gly	Ser
Arg	Ile	Arg 115	Arg	Glu	Gly	Gly	Ser 120	Arg	Gln	Asn	Trp	Trp 125	Ser	Pro	Lys
Ala	Arg 130	Arg	Phe	Pro	Pro	Gly 135	Ala	Leu	Gly	Asp	Pro 140	Leu	Ser	Pro	Pro
Ala 145	Ser	Arg	Leu	Leu	Thr 150	Gly	Val	Gly	Pro						
<210><211><211><212><213>	72 PRT	sapie	ens				(
<400>	357														
Asn 1	Leu	Thr	Gln	Val 5	Thr	Phe	Leu	Phe	Phe 10	Cys	Pro	Pro	Asn	Val 15	His
Ala	Ser	Tyr	Arg 20	Leu	His	Phe	Glu	Ala 25	Leu	Met	Asn	Ile	Pro 30	Val	Leu
Val	Leu	Asp 35	Val	Asn	Asp	Asp	Phe 40	Ala	Glu	Glu	Val	Thr 45	Lys	Gln	Glu
Asp	Leu 50	Met	Arg	Glu	Val	Gly 55	Arg	Thr	Leu	Thr	Pro 60	Val	Phe	Leu	Val
Val 65	Ser	Leu	Trp	Leu	Tyr 70	Leu	Leu								
<210><211><212><213>	69 PRT	sapie	ens												
<400>	358														
Ser 1	Pro	Ser	His	Leu 5	Ser	His	Glu	Val	Phe 10	Leu	Phe	Gly	Tyr	Phe 15	Leu
Ser	Lys	Ile	Ile 20	Ile	Asp	Ile	Gln	His 25	Gln	His	Trp	Asn	Val 30	His	Gln
Ser	Leu	Lys 35	Val	Glu	Pro	Ile	Arg 40	Ser	Val	Asn	Val	Trp 45	Gly	Thr	Glu
Lys	Lys	Lys	Cys	Asn	Leu	Ser	Gln	Val	Ser	His	Thr	Arg	Gln	Val	Leu

```
Leu Arg Glu Gln Ile
  65
<210> 359
<400> 359
000
<210> 360
<211> 53
<212> PRT
<213> homo sapiens
<400> 360
 Lys Arg Tyr Asn Gln Arg Glu Thr Thr Arg Lys Thr Gly Val Lys Val
                                          10
                                                       Thr
                                                            Ser
                                                                Ser Ala
                                     Ser Cys Leu Val
                                Ser
          Thr Ser
                   Leu Met Arg
 Leu
     Pro
                                                             30
                20
                                     Ser Thr Gly Met Phe
                                                            Ile Arg Ala
                   Thr Ser Asn Thr
 Lys Ser Ser Leu
                                                        45
                                  40
           35
  Ser Lys Trp Ser Leu
<210> 361
<211> 111
<212> PRT
<213> homo sapiens
<400> 361
  Ser Cys Trp Glu Thr Lys Trp Thr Ser Cys Pro Arg Met Leu Leu Ala
                                           10
                                                            Pro
                                                  Thr
                                                       Val
                                     Cys Gly Arg
  Thr Gly Arg Gly
                   Cys Gly Ser Asp
                                                             30
                                      25
                                     Arg Ala Thr Ala Pro
                                                            Arg
                                                                Gln
               Trp Pro Leu Ala 'Pro
  Gly Ser Cys
                                Ser Glu Ser Ala Glu Leu Val
                                                                Pro His
          Thr Gly Arg Gly Glu
  Arg Ala
                                                    60
       50
  Ser Gly Gln Gly Arg Ala Ala Asp Gln Arg Gln
                                                  Asp Arg Leu
                                                                 Trp
                                                75
                                                                 Trp
                                                                     Gly
                                          Leu Leu Ala Leu Pro
                        Cys Pro Ser Ala
  Gly Arg Val Asp Leu
                                           90
```

Arg Leu Leu Ser Gly Arg His Gln Arg Arg Gln Ile His Ser

105

<210> 362

<211> 109

<212> PRT

<213> homo sapiens

100

<400> 362

Thr 1	Arg	Asn	Gly	Ser 5	Val	Phe	Gly	Cys	Tyr 10	Arg	Pro	His	Arg	Phe 15	Pro
Ala	Gly	Lys	Ser 20	Val	Ser	Leu	Val	Tyr 25	Ser	Arg	Gly	Phe	Gln 30	His	Pro
Pro	Cys	Ala 35	Tyr	His	Leu	Leu	Gly 40	Gln	Gly	Arg	Arg	Ser 45	Val	Ser	Glu
Ala	Cys 50	Arg	Ser	Tyr	Val	Thr 55	Pro	Asp	Ser	Asn	Gly 60	Trp	Lys	Arg	Thr
Asn 65	Gly	Gln	Asp	Phe	Leu 70	Leu	Leu	Leu	Leu	Lys 75	Thr	Leu	Met	Val	Lys 80
Arg	Lys	Asp	Trp	Gly 85	Gln	Pro	Gly	Ser	Ser 90	Gly	Pro	Thr	Ser	Lys 95	Phe
Pro	Leu	Gln	Val 100	Ile	Leu	Cys	Gln	Ala 105	Leu	Phe	Lys	Lys			
<210><211><211><212><213>	381 PRT	sapie	ns												
<400>	363														
Gly 1	Pro	Ala	Arg	Arg 5	Pro	Ala	Ala	Arg	Leu 10	Ala	Arg	Ala	Gly	Gly 15	Pro
Gln	Ala	Ala	Asp 20	Arg	Ala	Gly	Lys	Gln 25	Ser	Gly	Pro	Pro	Ala 30	Pro	Gly
Cys	Ser	Trp 35	Leu	Pro	Ala	Glu	Ala 40	Ala	Gly	Ala	Thr	Val 45	Gly	Gly	Leu
Cys	Pro 50	Arg	Arg	Ala	Pro	Ala 55	Gly	Pro	Trp	His	Gln 60	Gly	Pro	Gln	Arg
Pro 65	Val	Lys	Asp	Glu	Pro 70	Gln	Asp	Gly	Glu	Asn 75	Pro	Asn	Pro	Pro	Asn 80
Trp	Ser	Arg	Thr	Val 85	Val	Arg	Asp	Val	Arg 90	Leu	Ile	Ser	Ala	Lys 95	Thr
Gly	Tyr	Gly	Val 100	Glu	Glu	Leu	Ile	Ser 105	Ala	Leu	Gln	Arg	Ser 110	Trp	Arg
Tyr	Arg	Gly 115	Asp	Val	Tyr	Leu	Val 120	Gly	Ala	Thr	Asn	Ala 125	Gly	Lys	Ser
Thr	Leu 130	Phe	Asn	Thr	Leu	Leu 135	Glu	Ser	Asp	Tyr	Cys 140	Thr	Ala	Lys	Gly
Ser 145	Glu	Ala	Ile	Asp	Arg 150	Ala	Thr	Ile	Ser	Pro 155	Trp	Pro	Gly	Thr	Thr 160
Leu	Asn	Leu	Leu	Lys 165	Phe	Pro	Ile	Cys	Asn 170	Pro	Thr	Pro	Tyr	Arg 175	Met
Phe	Lys	Arg	His 180	Gln	Arg	Leu	Lys	Lys 185	Asp	Ser	Thr	Gln	Ala 190	Glu	Glu

Asp	Leu	Ser 195	Glu	Gln	Glu	Gln	Asn 200	Gln	Leu	Asn	Val	Leu 205	Lys	Lys	His '
Gly	Tyr 210	Val	Val	Gly	Arg	Val 215	Gly	Arg	Thr	Phe	Leu 220	Tyr	Ser	Glu	Glu
Gln 225	Lys	Asp	Asn	Ile	Pro 230	Phe	Glu	Phe	Asp	Ala 235	Asp	Ser	Leu	Ala	Phe 240
Asp	Met	Glu	Asn	Asp 245	Pro	Val	Met	Gly	Thr 250	His	Lys	Ser	Thr	Lys 255	Gln
Val	Glu	Leu	Thr 260	Ala	Gln	Asp	Val	Lys 265	Asp	Ala	His	Trp	Phe 270	Tyr	Asp
Thr	Pro	Gly 275	Ile	Thr	Lys	Glu	Asn 280	Cys	Ile	Leu	Asn	Leu 285	Leu	Thr	Glu
Lys	Glu 290	Val	Asn	Ile	Val	Leu 295	Pro	Thr	Gln	Ser	Ile 300	Val	Pro	Arg	Thr
Phe 305	Val	Leu	Lys	Pro	Gly 310	Met	Val	Leu	Phe	Leu 315	Gly	Ala	Ile	Gly	Arg 320
Ile	Asp	Phe	Leu	Gln 325	Gly	Asn	Gln	Ser	Ala 330	Trp	Phe	Thr	Val	Val 335	Ala
Ser	Asn	Ile	Leu 340	Pro	Val	His	Ile	Thr 345	Ser	Leu	Asp	Arg	Ala 350	Asp	Ala
Leu	Tyr	Gln 355	Lys	His	Ala	Gly	His 360	Thr	Leu	Leu	Gln	Ile 365	Pro	Met	Gly
Gly	Lys 370	Glu	Arg	Met	Gly	Arg 375	Ile	Ser	Ser	Ser	Cys 380	Cys			
<210><211><211><212><213>	182 PRT	sapie	ns												
<400>	364						•								
Gln 1	Pro	Ser	Thr	Thr 5	Cys	Thr	Ser	Val	Leu 10	Val	Cys	Leu	Leu	Ser 15	Ala
Met	Pro	Leu	Pro 20	Val	Ala	Leu	Gln	Thr 25	Arg	Leu	Ala	Lys	Arg 30	Gly	Ile
Leu	Lys	His 35	Leu	Glu	Pro	Glu	Pro 40	Glu	Glu	Glu	Ile	Ile 45	Ala	Glu	Asp
Tyr	Asp 50	Asp	Asp	Pro	Val	Asp 55	Tyr	Glu	Ala	Thr	Arg 60	Leu	Glu	Gly	Leu
Pro 65	Pro	Ser	Trp	Tyr	Lys 70	Val	Phe	Asp	Pro	Ser 75	Cys	Gly	Leu	Pro	Tyr 80
Tyr	Trp	Asn	Ala	Asp 85	Thr	Asp	Leu	Val	Ser 90	Trp	Leu	Ser	Pro	His 95	Asp

Pro Asn Ser Val Val Thr Lys Ser Ala Lys Lys Leu Arg Ser Ser Asn

5

100 105 110 Ala Asp Ala Glu Glu Lys Leu Asp Arg Ser His Asp Lys Ser Asp Arq 115 120 125 Gly His Asp Lys Ser Arg Ser His Glu Lys Leu Asp Arg Gly Asp His 130 135 140 Asp Lys Ser Asp Arg Gly His Asp Lys Ser Asp Arg Glu Arg Asp Arg 145 150 155 160 Gly Tyr Ser Arg Asn Gly Ile Arg Asp Arg Gly Tyr Gln Asp Lys Asp 170 175 Ala Asp Arg Glu Glu Gly 180 <210> 365 <211> 149 <212> PRT <213> homo sapiens <400> 365 Arg Arg His Glu Arg Asp Gly Arg Cys Asp Ser Leu Pro Leu Pro Ala 10 15 Gln Tyr Trp Arg Arg Val Ser Val Cys Tyr Leu Cys Cys Pro Arg Leu 25 20 30 Arg Cys Pro Ala Trp Pro Arg Glu Ala Ser Ser Asn Ile Trp Ser Leu 35 40 45 Thr Gln Ser Leu Pro Arg Thr Met Ile Trp Asn Arg Lys Arg Met Leu 50 55 60 Gly Thr Thr Thr Arg Pro Pro Trp Arg Ala Tyr His Gln Ala Gly Arg 65 70 75 80 Cys Ser Thr Pro Ala Gly Ser Thr Thr Gly Gln Thr Leu Leu Met Gln 8.5 90 95 Thr Pro Leu Tyr Gly Ser Pro His Met Thr Pro Thr Pro Trp Leu Pro 100 105 110 Asn Arg Pro Arg Ser Ser Glu Ala Val Met Gln Met Leu Lys Lys Ser 115 120 125 Trp Thr Gly Ala Met Thr Ser Arq Thr Gly Ala Met Thr Ser Arg 130 135 140 Ala Ala Met Arg Asn 145 <210> 366 <211> 80 <212> PRT <213> homo sapiens <400> 366 Pro Arg Ser Arg Ser Leu Ser Asp Leu Ser Trp Pro Arg Ser Asp Leu

Ser	Trp	Pro	Leu 20	Ser	Ser	Phe	Ser	Trp 25	Leu	Arg	Ser	Asp	Leu 30	Ser	Trp ·
Pro	Leu	Ser 35	Asp	Leu	Ser	Trp	Leu 40	Arg	Ser	Asn	Phe	Ser 45	Ser	Ala	Ser
Ala	Leu 50	Leu	Leu	Leu	Ser	Phe 55	Leu	Ala	Asp	Leu	Val 60	Thr	Thr	Glu	Leu
Gly 65	Ser	Cys	Gly	Glu	Ser 70	Gln	Asp	Thr	Arg	Ser 75	Val	Ser	Ala	Phe	Gln 80
<210><211><212><213>	160 PRT	sapie	ns												
<400>	367														
Val 1		Gln	Gln	Pro 5	Ala	Leu	Ile	His	Gly 10	Tyr	Arg	Lys	Ala	Val 15	Leu
Thr	Pro	Asn	His 20	Val	Glu	Phe	Ser	Arg 25	Leu	Tyr	Asp	Ala	Val 30	Leu	Arg
Gly	Pro	Met 35	Asp	Ser	Asp	Asp	Ser 40	His	Gly	Ser	Val	Leu 45	Arg	Leu	Ser
Gln	Ala 50	Leu	Gly	Asn	Val	Thr 55	Val	Val	Gln	Lys	Gly 60	Glu	Arg	Asp	Ile
Leu 65	Ser	Asn	Gly	Gln	Gln 70	Val	Leu	Val	Cys	Ser 75	Gln	Glu	Gly	Ser	Ser 80
Arg	Arg	Cys	Gly	Gly 85	Gln	Gly	Asp	Leu	Leu 90	Ser	Gly	Ser	Leu	Gly 95	Val
Leu	Val	His	Trp 100	Ala	Leu	Leu	Ala	Gly 105	Pro	Gln	Lys	Thr	Asn 110	Gly	Ser
Ser	Pro	Leu 115	Leu	Val	Ala	Ala	'Phe 120	Gly	Ala	Cys	Ser	Leu 125	Thr	Arg	Gln
Cys	Asn 130	His	Gln	Ala	Phe	Gln 135	Lys	His	Gly	Arg	Ser 140	Thr	Thr	Thr	Ser
Asp 145	Met	Ile	Ala	Glu	Val 150	Gly	Ala	Ala	Phe	Ser 155	Lys	Leu	Phe	Glu	Thr 160
<210><211><212><213>	164 PRT	sapie	ns												
<400>	368														
Ile 1	Leu	Asn	Gly	Asn 5	Gln	Phe	Met	Leu	Lys 10	Leu	Lys	Ile	Trp	Gln 15	Ala
Pro	Tyr	Ala	Phe 20	Ser	Thr	Arg	Val	Gly 25	Pro	Asp	Phe	Pro	Ile 30	Thr	His

Thr	Leu	Ser 35	Pro	Val	Gln	Gly	Ala 40	Cys	Leu	Leu	Leu	Val 45	Cys	Ala	Gly
Ser	Gly 50	Phe	Lys	Glu	Leu	Ala 55	Glu	Gly	Gly	Pro	His 60	Leu	Gly	Asp	His
Val 65	Gly	Gly	Gly	Gly	Gly 70	Ala	Thr	Val	Leu	Leu 75	Glu	Gly	Leu	Val	Val 80
Ala	Leu	Pro	Gly	Glu 85	Arg	Ala	Gly	Ala	Lys 90	Arg	Gly	His	Gln	Glu 95	Arg
Ala	Gly	Pro	Ile 100	Cys	Phe	Leu	Trp	Ser 105	Ser	Lys	Glu	Arg	Pro 110	Val	Tyr
Gln	Asp	Ala 115	Gln	Gly	Ala	Arg	Gln 120	Glu	Val	Pro	Leu	Pro 125	Ser	Thr	Pro
Ala	Ala 130	Ala	Ala	Phe	Leu	Ala 135	Ala	His	Lys	His	Leu 140	Leu	Ala	Val	Gly
Glu 145	Asp	Val	Ala	Leu	Ser 150	Phe	Leu	Asp	His	Arg 155	His	Val	Ala	Gln	Gly 160
Leu	Ala	Glu	Ser												
<210><211><211><212><213>	187 PRT	sapie	ns												
<400>	369														
<400> Lys 1	369 Ser	Gly	Lys	His 5	Arg	Thr	Pro	Ser	Ala 10	His	Ala	Trp	Val	Arg 15	Ile
Lys		Gly	Lys His 20		Arg Arg			Ser Pro 25				Trp Pro	Val Val 30	_	Ile Phe
Lys 1	Ser Pro		His	5 Thr	_	Ser	Pro	Pro	10 Ser			Pro	Val	15	Phe
Lys 1 Phe	Ser Pro	Ser Ala	His 20	5 Thr	Arg	Ser	Pro Ser 40	Pro 25	10 Ser Ser	Lys	Val Leu	Pro	Val 30	15 Tyr	Phe
Lys 1 Phe Trp	Ser Pro Ser	Ser Ala 35	His 20 Arg	5 Thr Ala	Arg	Ser Val Glu 55	Pro Ser 40 Val	Pro 25 Lys	10 Ser Ser Val	Lys Leu Glu	Val Leu Arg	Pro Lys 45	Val 30 Ala	15 Tyr Ala	Phe Pro
Lys 1 Phe Trp Thr	Ser Pro Ser Ser 50	Ser Ala 35 Ala	His 20 Arg	5 Thr Ala Met	Arg Gln Ser	Ser Val Glu 55 Cys	Pro Ser 40 . Val	Pro 25 Lys Val	10 Ser Ser Val	Lys Leu Glu Glu 75	Val Leu Arg 60	Pro Lys 45 Pro	Val 30 Ala Cys	15 Tyr Ala Phe	Phe Pro Trp
Lys 1 Phe Trp Thr Lys 65	Ser Pro Ser Ser 50	Ser Ala 35 Ala Trp	His 20 Arg	Thr Ala Met Leu Gly	Arg Gln Ser His	Ser Val Glu 55 Cys	Pro Ser 40 . Val	Pro 25 Lys Val	ser Ser Val Arg	Lys Leu Glu Glu 75	Val Leu Arg 60 Gln	Pro Lys 45 Pro	Val 30 Ala Cys	Tyr Ala Phe Asn	Phe Pro Trp Ala 80
Lys 1 Phe Trp Thr Lys 65 Ala	Ser Ser Ser Ala	Ser Ala 35 Ala Trp Arg	His 20 Arg Ile Trp Arg	Thr Ala Met Leu Gly 85	Arg Gln Ser His 70 Leu	Ser Val Glu 55 Cys Asp	Pro Ser 40 Val Leu Pro	Pro 25 Lys Val Val	Ser Ser Val Arg Val 90	Lys Leu Glu Glu 75 Phe	Val Leu Arg 60 Gln Cys	Pro Lys 45 Pro Ala Gly	Val 30 Ala Cys Pro	Tyr Ala Phe Asn Ala 95	Phe Pro Trp Ala 80 Arg
Lys 1 Phe Trp Thr Lys 65 Ala	Ser Pro Ser Ser 50 Ala Thr	Ser Ala 35 Ala Trp Arg Gln Pro	His 20 Arg Ile Trp Arg Cys 100	Thr Ala Met Leu Gly 85 Thr	Arg Gln Ser His 70 Leu Arg	Ser Val Glu 55 Cys Asp	Pro Ser 40 Val Leu Pro Pro	Pro 25 Lys Val Val Phe	Ser Ser Val Arg Val 90 Glu	Lys Leu Glu 75 Phe	Val Leu Arg 60 Gln Cys	Pro Lys 45 Pro Ala Gly Arg	Val 30 Ala Cys Pro Pro	Tyr Ala Phe Asn Ala 95 Ser	Phe Pro Trp Ala 80 Arg

Ser Leu Ser Ile Gly Pro Leu Ser Thr Ala Ser Tyr Ser Leu Leu Asn 165 170 175 Ser Thr Trp Leu Gly Val Ser Thr Ala Phe Arg <210> 370 <211> 40 <212> PRT <213> homo sapiens <400> 370 Leu Phe Leu Phe Thr Asn His Asn Asp Ser Gly Lys Pro Gly Cys Lys His Gln His Cys His Gln Leu Arg Ile Cys Asp Gln Glu Cys His Leu 25 20 Thr Val Thr Gly Arg Arg Gln Lys 35 <210> 371 <211> 34 <212> PRT <213> homo sapiens <400> 371 Gln Ala Glu Asp Lys Ser Glu Thr Gly Leu Met Arg Ile Thr Gly Lys 10 15 Leu Ala Leu Ala Pro Pro Glu Asn Glu Leu Phe His Ser Leu Ala Asp 30 20 25 His Pro <210> 372 <211> 38 <212> PRT <213> homo sapiens <400> 372 Asn Ser Ser Phe Ser Gly Gly Ala Lys Ala Ser Phe Pro Val Ile Arg Ile Ser Pro Val Ser Leu Leu Ser Ser Ala Cys Tyr Arg Glu Met Ala 20 25 30 Leu Leu Ile Thr Asp Pro 35 <210> 373 <211> 123 <212> PRT <213> homo sapiens <400> 373 Arg Gln Leu Phe Gly Ile Val Ser Ile Ala Thr Leu Thr Val Leu Ala

Tyr	Glu	Arg	Tyr 20	Ile	Arg	Val	Val	His 25	Ala	Arg	Val	Ile	Asn 30	Phe	Ser .
Trp	Ala	Trp 35	Arg	Ala	Ile	Thr	Tyr 40	Ile	Trp	Leu	Tyr	Ser 45	Leu	Ala	Trp
Ala	Gly 50	Ala	Pro	Leu	Leu	Gly 55	Trp	Asn	Arg	Tyr	Ile 60	Leu	Asp	Val	His
Gly 65	Leu	Gly	Cys	Thr	Val 70	Asp	Trp	Lys	Ser	Lys 75	Asp	Ala	Asn	Asp	Ser 80
Ser	Phe	Val	Leu	Phe 85	Leu	Phe	Leu	Gly	Cys 90	Leu	Val	Val	Pro	Leu 95	Gly
Val	Ile	Ala	His 100	Cys	Tyr	Gly	His	Ile 105	Leu	Tyr	Phe	His	Ser 110	Asn	Ala
Ser	Leu	Val 115	Trp	Lys	Ile	Phe	Arg 120	Gln	Phe	Lys					
<210><211><212><213>	121 PRT	sapie	ens												
<400>	374														
Thr 1		His	Ser	Arg 5	Gly	Pro	Cys	Gln	Ser 10	Asp	Gln	Phe	Phe	Leu 15	Gly
Leu	Glu	Gly	His 20	Tyr	Leu	His	Leu	Ala 25	Leu	Leu	Thr	Gly	Val 30	Gly	Arg
Ser	Thr	Ser 35	Pro	Gly	Met	Glu	Gln 40	Val	His	Pro	Gly	Arg 45	Thr	Arg	Thr
Arg	Leu 50	His	Cys	Gly	Leu	Glu 55	Ile	Gln	Gly	Cys	Gln 60	Arg	Phe	Leu	Leu
Cys 65	Ala	Phe	Leu	Ile	Ser 70	Trp	Leu	Pro	Gly	Gly 75	Ala	Pro	Gly	Cys	His 80
Ser	Pro	Leu	Leu	Trp 85	Pro	Tyr	Ser	Ile	Phe 90	Pro	Phe	Glu	Cys	Phe 95	Val
Gly	Val	Glu	Asp 100	Leu	Gln	Thr	Ile	Gln 105	Val	Ile	Lys	Ile	Leu 110	Lys	Tyr
Glu	Lys	Lys 115	Leu	Ala	Lys	Met	Cys 120	Phe							
<210><211><211><212><213>	58 PRT	sapie	ns												
<400>	375														
His 1	Pro	Gly	Ala	Pro 5	Pro	Gly	Ser	Gln	Glu 10	Ile	Arg	Lys	Ala	Gln 15	Arg
Arg	Asn	Arg	Trp	His	Pro	Trp	Ile	Ser	Ser	Pro	Gln	Cys	Ser	Leu	Val

20 25 30 Arg Val Arg Pro Gly Cys Thr Cys Ser Ile Pro Gly Glu Val Leu Leu 35 40 Thr Pro Val Ser Arg Ala Arg Cys Arg Pro <210> 376 <211> 49 <212> PRT <213> homo sapiens <400> 376 Phe Val Pro Leu Cys Gly Leu Leu Glu Gln Ala Phe Thr Cys Asp Thr Lys Ser Ala Met Gln Phe Ile Lys Val Asp Leu Val Cys 25 20 His Pro Thr Ala Tyr Gly Pro Cys Lys Pro Val Leu Glu Ala Asn 40 45 Leu <210> 377 <211> 68 <212> PRT <213> homo sapiens <400> 377 Phe Cys Thr Thr Leu Trp Pro Ser Gly Ala Met Asp Asn Gln Val Ser 10 Tyr Ala Val His Lys Ser Gly Pro Gly Tyr Asn Ser Met Ser Ser Ile 20 25 30 Phe Gly Ser Leu Gln Ala Cys Ser Gln Tyr Ser Ile Thr Tyr 40 45 Asn Pro Leu Glu Ser Asp Val Phe Gly Ser Asn Ile Phe Ser Gln Gly 50 55 Ser Asn Gly Leu 65 <210> 378 <211> 64 <212> PRT <213> homo sapiens <400> 378 His Ile Thr Arg Ser Thr Phe Met Asn Cys Ile Ala Asp Leu Val Val His Cys Ser Arg Pro Gln Ser Gly Thr Lys Ser Gln Val Ala Arg Lys 20 25 30

Val

Val Leu Ser

Leu

Ser

His

Ser

Gln Thr Ala Pro Val Ile Leu

Leu	Ala 50	Lys	Thr	Gly	Leu	Asn 55	Met	Lys	Ser	Pro	Ala 60	Pro	Arg	Pro	Gln ·
<210><211><211><212><213>	144 PRT	sapie	ens												
<400>	379														
Ala 1	Pro	Ile	Ser	Ser 5	Asn	Phe	Cys	Ser	Glu 10	Ser	Ile	Trp	Gly	Tyr 15	Cys
Asp	Gln	Leu	Lys 20	Val	Ser	Glu	Ser	Thr 25	His	Val	Leu	Gln	Pro 30	Phe	Leu
Pro	Ser	Ile 35	Leu	Asp	Gly	Leu	Ile 40	His	Leu	Ala	Ala	Gln 45	Phe	Ser	Ser
Glu	Val 50	Leu	Asn	Leu	Val	Met 55	Glu	Thr	Leu	Cys	Ile 60	Val	Cys	Thr	Val
Asp 65	Pro	Glu	Phe	Thr	Ala 70	Ser	Met	Glu	Ser	Lys 75	Ile	Cys	Pro	Phe	Thr 80
Ile	Ala	Ile	Phe	Leu 85	Lys	Tyr	Ser	Asn	Asp 90	Pro	Val	Val	Ala	Ser 95	Leu
Ala	Gln	Asp	Ile 100	Phe	Lys	Glu	Leu	Ser 105	Gln	Ile	Glu	Ala	Cys 110	Gln	Gly
Pro	Met	Gln 115	Met	Arg	Leu	Ile	Pro 120	Thr	Leu	Val	Ser	Ile 125	Met	Gln	Ala
Pro	Ala 130	Asp	Lys	Ile	Pro	Ala 135	Gly	Leu	Cys	Ala	Thr 140	Pro	Leu	Ile	Ser
<210><211><212><213>	254 PRT	sapie	ns												
<400>	380														
Tyr 1	Glu	Ile	Gln	Ser 5	Leu	Pro	Phe	Pro	Ser 10	Phe	Ser	Ser	Ala	Lys 15	Leu
Ser	Leu	Leu	Trp 20	His	Ser	Val	Pro	Phe 25	Thr	Gln	Met	Thr	Met 30	Pro	Ser
Val	Gln	Asn 35	Gly	Gly	Glu	Cys	Leu 40	Arg	Ala	Tyr	Val	Ser 45	Val	Thr	Leu
Glu	Gln 50	Val	Ala	Gln	Trp	His 55	Asp	Glu	Gln	Gly	His 60	Asn	Gly	Leu	Trp
Tyr 65	Val	Met	Gln	Val	Val 70	Ser	Gln	Leu	Leu	Asp 75	Pro	Arg	Thr	Ser	Glu 80
Phe	Thr	Ala	Ala	Phe 85	Val	Gly	Arg	Leu	Val 90	Ser	Thr	Leu	Ile	Ser 95	Lys

Ala	Gly	Arg	Glu 100	Leu	Gly	Glu	Asn	Leu 105	Asp	Gln	Ile	Leu	Arg 110	Ala	Ile .
Leu	Ser	Lys 115	Met	Gln	Gln	Ala	Glu 120	Thr	Leu	Ser	Val	Met 125	Gln	Ser	Leu
Ile	Met 130	Val	Phe	Ala	His	Leu 135	Val	His	Thr	Gln	Leu 140	Glu	Pro	Leu	Leu
Glu 145	Phe	Leu	Cys	Ser	Leu 150	Pro	Gly	Pro	Thr	Gly 155	Lys	Pro	Ala	Leu	Glu 160
Phe	Val	Met	Ala	Glu 165	Trp	Thr	Ser	Arg	Gln 170	His	Leu	Phe	Tyr	Gly 175	Gln
Tyr	Glu	Gly	Lys 180	Val	Ser	Ser	Val	Ala 185	Leu	Cys	Lys	Leu	Leu 190	Gln	His
Gly	Ile	Asn 195	Ala	Asp	Asp	Lys	Arg 200	Leu	Gln	Asp	Ile	Arg 205	Val	Lys	Gly
Glu	Glu 210	Ile	Tyr	Ser	Met	Asp 215	Glu	Gly	Ile	Arg	Thr 220	Arg	Ser	Lys	Ser
Ala 225	Lys	Asn	Pro	Glu	Arg 230	Trp	Thr	Asn	Ile	Pro 235	Leu	Leu	Val	Lys	Ile 240
Leu	Lys	Leu	Ile	Ile 245	Asn	Glu	Leu	Ser	Asn 250	Val	Met	Gly	Gly		
<210><211><211><212><213>	95 PRT	sapie	ens												
<400>	381														
Ser 1	Leu	Ser	Gly	Pro 5	Asn	Ala	Asn	Glu	Ala 10	Asp	Ser	His	Ser	Gly 15	Gln
His	Asn	Ala	Gly 20	Pro	Ser	Arg	.Gln	Asp 25	Ser	Cys	Arg	Ala	Leu 30	Cys	Asp
Thr	Ile	Asp 35	Ile	Leu	Thr	Thr	Val 40	Val	Arg	Asn	Thr	Lys 45	Pro	Pro	Leu
Ser	Gln 50	Leu	Leu	Ile	Cys	Gln 55	Ala	Phe	Pro	Ala	Val 60	Ala	Gln	Cys	Thr
Leu 65	His	Thr	Asp	Asp	Asn 70	Ala	Ile	Ser	Ala	Glu 75	Trp	Arg	Arg	Val	Leu 80
Ala	Gly	Leu	Cys	Val 85	Ser	Asp	Pro	Gly	Thr 90	Ser	Ser	Pro	Val	Ala 95	
<210><211><211><212><213>	263 PRT	sapie	ns												
<400>	382														
Ala	Pro	Ile	Ser	Ser	Asn	Phe	Cys	Ser	Glu	Ser	Ile	Trp	Gly	Tyr	Cys

1				5					10					15	
Asp	Gln	Leu	Lys 20	Val	Ser	Glu	Ser	Thr 25	His	Val	Leu	Gln	Pro 30	Phe	Leu
Pro	Ser	Ile 35	Leu	Asp	Gly	Leu	Ile 40	His	Leu	Ala	Ala	Gln 45	Phe	Ser	Ser
Glu	Val 50	Leu	Asn	Leu	Val	Met 55	Glu	Thr	Leu	Cys	Ile 60	Val	Cys	Thr	Val
Asp 65	Pro	Glu	Phe	Thr	Ala 70	Ser	Met	Glu	Ser	Lys 75	Ile	Cys	Pro	Phe	Thr 80
Ile	Ala	Ile	Phe	Leu 85	Lys	Tyr	Ser	Asn	Asp 90	Pro	Val	Val	Ala	Ser 95	Leu
Ala	Gln	Asp	Ile 100	Phe	Lys	Glu	Leu	Ser 105	Gln	Ile	Glu	Ala	Cys 110	Gln	Gly
Pro	Met	Gln 115	Met	Arg	Leu	Ile	Pro 120	Thr	Leu	Val	Ser	Ile 125	Met	Gln	Ala
Pro	Ala 130	Asp	Lys	Ile	Pro	Ala 135	Gly	Leu	Cys	Ala	Thr 140	Pro	Ile	Asp	Ile
Leu 145	Thr	Thr	Val	Val	Arg 150	Asn	Thr	Lys	Pro	Pro 155	Leu	Ser	Gln	Leu	Leu 160
Ile	Cys	Gln	Ala	Phe 165	Pro	Ala	Val	Ala	Gln 170	Cys	Thr	Leu	His	Thr 175	Asp
Asp	Asn	Ala	Thr 180	Met	Gln	Asn	Gly	Gly 185	Glu	Cys	Leu	Arg	Ala 190	Tyr	Val
Ser	Val	Thr 195	Leu	Glu	Gln	Val	Ala 200	Gln	Trp	His	Asp	Glu 205	Gln	Gly	His
Asn	Gly 210	Leu	Trp	Tyr	Val	Met 215	Gln	Val	Val	Ser	Gln 220	Leu	Leu	Asp	Pro
Arg 225	Thr	Ser	Glu	Phe	Thr 230	Ala	'Ala	Phe	Val	Gly 235	Arg	Leu	Cys	Phe	His 240
Pro	His	Leu	Gln	Gly 245	Arg	Ala	Gly	Thr	Arg 250	Gly	Glu	Ser	Arg	Pro 255	Asp
Phe	Phe	Val	Pro 260	Ser	Phe	Ser									
<210><211><211><212><213>	68 PRT	sapie	ns												
<400>	383														
Thr 1	Leu	Arg	Cys	Gly 5	Gly	Pro	Gly	Ala	Gly 10	Ser	Pro	Leu	Ala	Ser 15	His
Thr	Thr	Val	His 20	Cys	Gly	Pro	Ala	His 25	His	Ala	Thr	Gly	Leu 30	Leu	Val

Pro Gly Ser Leu Thr His Arg Pro Ala Ser Thr Leu Arg His Ser Ala 40 Cys Glu Gly Tyr Trp Trp His Cys His **Leu** Thr Val Pro Gln Gln Gly 55 Lys Leu Gly Arg 65 <210> 384 <211> 97 <212> PRT <213> homo sapiens <400> 384 His Ile Gly Pro Gln Ala Leu Ser Ala Ile Leu His Gly Gly Ile Val 10 Ile Cys Val Lys Gly Thr Leu Cys His Ser Arg Glu Ser Leu Ala Asp 20 25 Leu Gly Lys Gly Arg Tyr Leu Cys Ile Ser Tyr Cys Glu Lys Cys Gln 45 40 Ile Asn Gly Cys Arg Thr Lys Pro Cys Arg Asn Leu Val Cys Trp Asp 50 55 60 Gly Gln Ser Gly Asn Gln Pro Leu His Tyr Ala Asp His Leu His Trp 65 70 75 80 Ala Leu Thr Gly Phe Asn Leu Gly Gln Leu Leu Glu Asp Val Leu Ser 85 90 Gln <210> 385 <211> 140 <212> PRT <213> homo sapiens <400> 385 Thr Arg Ser Ser Ser Pro Gln Thr Ile Thr Phe Asp Ala Cys Val Val Ile Gly Gln Gln Glu ProCys Asp Leu Gln Ser Lys Leu Ser Asp Ser 25 30 Lys Tyr Leu Cys Pro Phe Lys Ile Lys Gly Ser Pro Tyr Gln Asp Pro Cys Ser Leu Thr Ala Gly Lys Gln Val Cys His Trp Asn Ser Asn Glu 50 Val Val Thr Thr Glu Thr Gly Trp Tyr Gln Gly Trp Ser Ser Thr Gly 75 80 Lys His Phe Thr Cys Met Ser Leu Pro Tyr Ile Lys Glu Ser Thr Pro 95 His Asn Cys Gln Tyr Asn Gln Cys Asn Pro Val Gln Ile Ser Leu

105

```
Ile Pro Thr Ser Thr Asp Pro Lys Pro Thr Leu Ser Cys Gly Ile Trp
                                                       125
          115
                                120
 His Gly Ser Arg Asn Ser Arg Gly Thr Ser Tyr
                                                  Trp
                            135
                                                  140
<210> 386
<211> 49
<212> PRT
<213> homo sapiens
<400> 386
 Asp Val Pro Leu Leu Phe Arg Leu Pro Cys His Ile Pro Gln Leu Lys
                                          10
                                         Met Arg Ile Glu Ile Cys
                                                                    Thr
 Val Gly Leu Gly
                   Ser
                       Val Glu Val Gly
               20
                                      25
 Gly Leu His Trp Leu Tyr Trp Gln Leu Trp Gly Val Leu Ser Leu Val
                                                        45
                                 40
           35
 Lys
<210> 387
<211> 51
<212> PRT
<213> homo sapiens
<400> 387
  Ser Glu Cys Met Val Leu Arg Thr Tyr Asn His Arg Leu Thr Arg
                                                                 15
                                          10
                     5
                                                                Gly
                                         Pro His Ser
                                                       Ser
                                                           Tyr
                                                                    Arg
              Ile Gln Leu Ser
                                Thr Pro
  Ser
      Leu Asp
                                                            30
                                      25
                20
                                                           Arg Gly Ser
          Phe Leu His Ser Leu Arg Asn Lys Gly Leu Asp
 Pro Val
                                 40
  Leu Leu
          Ser
<210> 388
<211> 97
<212> PRT
<213> homo sapiens
<400> 388
  Ser Ser Pro Leu Ser Phe Cys Trp Phe Leu Pro Ser Pro Ala Ala
                                           10
                                                       Trp
                                                           Ser
                                                                Arg
                                                                    Ser
          Ser Ser
                   Ser
                       Cys Pro
                                 Ser Gly
                                         Met
                                              Thr
                                                  Ser
  Ser Cys
                                                            30
                                      25
                20
                                                           Ala Ala
                                                                    Cys
  Gly Pro Ser Ile Ser Gly Phe Ser
                                     Trp Leu
                                              Thr
                                                  Asp
                                                       Arg
                                                        45
                                  40
  Thr Cys Gly Val Trp Pro Ser Ser Pro Ala Pro Pro Lys
                                                          Pro Leu
                                                                    Pro
```

Pro 65	Thr	Gly	Leu	Ser	Ser 70	Thr	Pro	Ala	Pro	Gly 75	Leu	Ala	Pro	Ala	Ala 80
Ala	Cys	Pro	Ser	Glu 85	Ala	Pro	Ile	Asn	Thr 90	Asp	Leu	Met	Val	Pro 95	Phe
Pro															
<210><211><212><213>	148 PRT	sapie	ns												
<400>	389														
Gly 1	Lys	Gly	Thr	Met 5	Arg	Ser	Val	Leu	Ile 10	Gly	Ala	Ser	Glu	Gly 15	Gln
Ala	Ala	Ala	Gly 20	Ala	Arg	Pro	Gly	Ala 25	Gly	Val	Glu	Asp	Arg 30	Pro	Val
Gly	Gly	Arg 35	Gly	Phe	Gly	Gly	Ala 40	Gly	Glu	Leu	Gly	Gln 45	Thr	Pro	Gln
Val	Gln 50	Ala	Ala	Leu	Ser	Val 55	Ser	Gln	Glu	Asn	Pro 60	Glu	Met	Glu	Gly
Pro 65	Glu	Arg	Asp	Gln	Leu 70	Val	Ile	Pro	Asp	Gly 75	Gln	Glu	Glu	Glu	Gln 80
Glu	Ala	Ala	Gly	Glu 85	Gly	Arg	Asn	Gln	Gln 90	Lys	Leu	Arg	Gly	Glu 95	Asp
Asp	Tyr	Asn	Met 100	Asp	Glu	Asn	Glu	Ala 105	Glu	Ser	Glu	Thr	Asp 110	Lys	Gln
Ala	Ala	Leu 115	Ala	Gly	Asn	Asp	Arg 120	Asn	Ile	Asp	Val	Phe 125	Asn	Val	Glu
Asp	Gln 130	Lys	Arg	Asp	Thr	Ile 135	Asn	Leu	Leu	Asp	Gln 140	Arg	Glu	Lys	Arg
Asn 145	His	Thr	Leu												
<210><211><211><212><213>	84 PRT	sapie	ns												
<400>	390														
Gly 1	Pro	Arg	Asp	Arg 5	Leu	Ile	Gln	Pro	Ser 10	Tyr	Phe	Gln	Arg	Gly 15	Lys
Trp	Gly	Leu	Glu 20	Val	Thr	Glu	His	Leu 25	Ala	Gly	Ala	Leu	Ala 30	Pro	Leu
Ala	Ser	His 35	Arg	Leu	Pro	Ser	Ser 40	Trp	Asp	Tyr	Arg	His 45	Thr	Val	Thr
Glu	Ala	Gly	Pro	Val	Cys	Asn	Ser	Arg	Cys	His	Leu	Gln	Leu	Lys	His

Ser Ser Tyr Val Met Ser Leu Val Thr Lys Val Lys Leu Ser His Pro 65 70 75 Glu Lys Ala Thr <210> 391 <211> 59 <212> PRT <213> homo sapiens <400> 391 Cys Gly Lys Lys Cys Ile Thr Leu Phe Leu Phe Leu Ser Pro Ser 10 Pro Leu Trp Cys Leu Arg Tyr Trp Gly Ser His Ser Trp Gly His Ser 20 25 30 Glu Ala Thr Arg Asn Ala Ser Ser Leu His Leu Ala Val Ser Ala Arg 35 40 45 Thr Arg Asn Pro Gln Thr Ser Ser Gln Thr Ser 50 55 <210> 392 <211> 107 <212> PRT <213> homo sapiens <400> 392 Thr Pro Arg Asn Leu Asn Phe His Ser Lys Leu Thr Gln Phe His Cys 1 5 10 15 Val Asn Thr Val Ser Leu Gly Ser Thr Lys His Pro Ile Thr Gln 25 Cys Phe Ile Val Trp Thr Pro Ser Arg Leu Gln Gly His His Gly Gln 35 40 45 Cys 'Gly Glu Val Cys Glu Glu Val Phe Leu Val Leu Ala Leu Thr Leu Glu Ala Phe Leu Val Ala Ser Glu Trp Pro Gln Arg Cys Lys Leu 65 75 Trp Asp Pro Gln Tyr Leu Arg His His Arg Gly Arg Glu Gly Asp Arq 90 Asn Arg Asn Arg Val Met His Phe Pro His 100 <210> 393 <211> 61 <212> PRT <213> homo sapiens <400> 393 Val Ala Pro Ala Val Gly Ser Pro Val Ser Gln Ala Pro Gln Arg 10

Arg	Gly	Gly	Gln 20	Glu	Gln	Lys	Gln	Ser 25	Tyr	Ala	Phe	Leu	Ser 30	Thr	Leu
Lys	Lys	Arg 35	Asn	Tyr	Thr	Phe	Arg 40	Gly	Met	Leu	Ser	Pro 45	Arg	Ser	Thr
Ser	Ser 50	Pro	Val	Phe	His	Asp 55	Leu	Pro	Thr	Lys	Lys 60	Ile			
<210><211><211><212><213>	74 PRT	sapie	ns												
<400>	394														
Cys 1	Asn	Cys	Ala	Pro 5	Ser	Leu	Pro	Asp	Phe 10	Ser	Pro	Leu	His	Pro 15	Gln
Cys	Gly	Ile	Ser 20	Leu	Val	Pro	Arg	Gly 25	Thr	Pro	Leu	Asp	Leu 30	Trp	Thr
Ser	Arg	Pro 35	Gly	Gln	Glu	Ala	Ala 40	Thr	Arg	Asn	Pro	Arg 45	Pro	Leu	Leu
Leu	Lys 50	Phe	Thr	Ala	Ser	Val 55	Val	Val	Pro	Asp	Ser 60	Ser	Pro	Ala	Pro
Gly 65	Thr	Thr	Ser	Thr	Trp 70	Gly	Gly	Ala	Phe						
<210><211><212><213>	112 PRT	sapie	ns												
<400>	395														
Ala 1	Thr	Val	His	Pro 5	Ala	Cys	Gln	Ile	Phe 10	Pro	His	Tyr	Thr	Pro 15	Ser
Val	Ala	Tyr	Pro 20	Trp	Ser	Pro	'Glu	Ala 25	His	Pro	Leu	Ile	Cys 30	Gly	Pro
Pro	Gly	Leu 35	Asp	Lys	Arg	Leu	Leu 40	Pro	Glu	Thr	Pro	Gly 45	Pro	Cys	Tyr
Ser	Asn 50	Ser	Gln	Pro	Val	Trp 55	Leu	Cys	Leu	Thr	Pro 60	Arg	Gln	Pro	Leu
Glu 65	Pro	His	Pro	Pro	Gly 70	Glu	Gly	Pro	Ser	Glu 75	Trp	Ser	Ser	Asp	Thr 80
Ala	Glu	Gly	Arg	Pro 85	Cys	Pro	Tyr	Pro	His 90	Cys	Gln	Val	Leu	Ser 95	Ala
Gln	Pro	Gly	Ser 100	Glu	Glu	Glu	Leu	Glu 105	Glu	Leu	Cys	Glu	Gln 110	Ala	Val
<210>	396														

<210> 396 <211> 45 <212> PRT <213> homo sapiens

<400> 396 Asp Arg Arg Ser His Gly Leu Leu Leu Tyr Asn Leu Pro Gly Glu Gln 10 15 Phe Lys Asn Met Asn Gln Asp Pro Phe Asp Pro Leu Ile Ile Gln Lys 25 Ser Thr Gln Lys Tyr Ala Gln Lys Tyr Val Gly Ile His 35 40 <210> 397 <211> 43 <212> PRT <213> homo sapiens <400> 397 Glu Arg Leu Ser His Cys Arg Ser Leu Val Met Leu Ala Leu Ile Ser 10 Leu Cys Thr Pro Cys Thr His Ala Phe Ser Pro Val Phe Tyr Gln Ala 20 25 Ser Val Ser Cys Ile Thr Leu Lys Cys Asp His 40 35 <210> 398 <211> 64 <212> PRT <213> homo sapiens <400> 398 Ile Lys Arg Ile Leu Ile His Ile Phe Lys Leu Leu Ser Arg Trp Glu 10 Val Lys Gln Gln Ser Met Arg Ala Ser Ile Ser Leu Pro Leu Leu Val 30 25 20 Ser Cys Gly Asp Ala Cys Pro His Leu 'Pro Met Tyr Pro Met His Leu 45 35 40 Leu Ser Cys Phe Leu Ser Ser Leu Ser Phe Met Tyr Tyr Thr Lys Met 60 50 55 <210> 399 <211> 77 <212> PRT <213> homo sapiens <400> 399 His Ile Lys Ile Glu Phe Phe Gly Gln Asn Phe Trp Glu Ala Met His 15 10 Pro Thr Trp Ala Asp Ile Gln Pro Glu Leu Phe Ser Arg Gly Glu Trp 25 30 Tyr Trp Gln Phe Met Ala Glu Ile His Ser Asp Trp Leu Glu Ser Met 45 35 40

<211> 63 <212> PRT

Leu Tyr Gln Leu Leu Asn Ile Leu Ser Ile Thr Leu Ala Tyr Cys Tyr 60 Tyr Tyr Ile Ser Ser Ile Tyr Arg Gln Lys Gly His Phe <210> 400 <211> 48 <212> PRT <213> homo sapiens <400> 400 Ser Ser Leu Gly Lys Thr Phe Gly Lys Gln Cys Ile Leu His Gly Leu 15 Ile Phe Ser Leu Ser Cys Ser Gln Glu Glu Ser Gly Thr Gly Ser 20 25 Trp Leu Lys Ser Ile Leu Ile Gly Trp Ser Leu Cys Tyr Thr Ser Cys 40 35 <210> 401 <211> 48 <212> PRT <213> homo sapiens <400> 401 Phe Arg Asn Pro Ala Leu Ile Glu Pro Ser Val Gly Ser Thr Ala Glu 10 Ile Phe Arg Ala Phe Asn Ile Leu Lys Met Ala Phe Leu Ser Ile Tyr 30 20 25 Arg Gly Asn Ile Ile Val Thr Val Cys Lys Ser Asp Thr Gln Asn Val 45 40 <210> 402 <211> 70 <212> PRT <213> homo sapiens <400> 402 Glu Gln Leu Arg Leu Asn Ile Ser Pro Cys Arg Met His Cys Phe Pro Lys Val Leu Pro Lys Glu Leu Tyr Phe Tyr Val Leu Ser His Arg Thr 20 25 30 Trp Asp Leu Ile Phe Leu Gly Met Gly Glu Lys Cys Ser Gly His Cys 40 Gly Ser Gly Leu Met Ile Leu Ala Thr Gly Val Gln Glu Asn Gly Ser 55 60 50 Pro Gly Ser Asp Ser Trp 65 <210> 403

<400> 406

<213>	homo	sapie	ns												
<400>	403														
Met 1	Cys	Asp	Phe	Ile 5	Arg	Gly	Ile	Cys	Gln 10	Phe	Ser	His	Cys	Gly 15	Ser
Phe	Ser	Asp	Phe 20	Ala	Cys	Ser	Ser	Ser 25	Lys	Glu	Ala	Arg	Ser 30	Phe	Ala
Asp	Phe	Thr 35	Ile	Pro	Gln	Thr	Cys 40	Lys	Phe	Leu	Thr	Ser 45	Ser	Lys	Leu
Ala	Leu 50	Ala	Leu	Ser	Ser	Thr 55	Phe	Pro	Phe	Lys	Ser 60	Asn	Leu	Cys	
<210><211><212><213>	71 PRT	sapie	ns												
<400>	404														
Met 1	Gly	Ile	Thr	His 5	Glu	Cys	Val	Ile	Leu 10	Leu	Gly	Ala	Ser	Ala 15	Asn
Ser	Leu	Thr	Val 20	Val	Pro	Ser	Leu	Thr 25	Leu	Pro	Val	His	His 30	Leu	Arg
Arg	Leu	Asp 35	Pro	Ser	Leu	Thr	Ser 40	Pro	Phe	Leu	Lys	Pro 45	Val	Ser	Phe
Ser	Leu 50	Leu	Pro	Asn	Trp	Leu 55	Trp	Leu	Phe	Leu	Gln 60	Pro	Phe	His	Ser
Arg 65	Ala	Ile	Phe	Ala	Lys 70	Glu									
<210><211><212><213>	63 PRT	sapie	ns												
<400>	405														
Leu 1	Gly	Asp	His	Ile 5	Tyr	Asn	Trp	Asp	Val 10	Asn	His	Phe	Phe	Ser 15	Gly
Ile	Arg	Ala	Gln 20	Arg	His	Asn	Leu	Gln 25	Gly	His	Ile	Ile	Tyr 30	Tyr	Glu
His	Phe	Thr 35	Val	Arg	Leu	Phe	Ile 40	Leu	Pro	Ser	Thr	Cys 45	Ala	Glu	Met
Lys	Pro 50	Lys	Gln	Ala	Val	Gly 55	Phe	His	Lys	Ser	Ile 60	Tyr	Val	Gly	
<210><211><212><213>	88 PRT	sapie	ns												

Leu 1	Val	Glu	Pro	Asn 5	Gly	Leu	Phe	Trp	Phe 10	His	Phe	Ser	Ala	Ser 15	Arg '
Arg	Gln	Asn	Lys 20	Glu	Ser	His	Ser	Lys 25	Met	Phe	Ile	Val	Asp 30	Asn	Met
Ser	Leu	Lys 35	Val	Val	Pro	Leu	Cys 40	Ser	Tyr	Ser	Thr	Glu 45	Glu	Met	Ile
His	Ile 50	Pro	Ile	Ile	Asp	Met 55	Val	Ser	Gln	Ser	Glu 60	Glu	Ser	Phe	Arg
Arg 65	Leu	His	Lys	Tyr	Val 70	Leu	Cys	Thr	Cys	Pro 75	Met	Leu	Gly	Asn	Arg 80
Lys	Ile	Ile	Val	Ile 85	Asp	Lys	Thr								
<210><211><212><213>	296 PRT	sapie	ns												
<400>	407														
Leu 1	Thr	Val	Val	Tyr 5	Thr	Val	Phe	Tyr	Ala 10	Leu	Leu	Phe	Val	Phe 15	Ile
Tyr	Val	Gln	Leu 20	Trp	Leu	Val	Leu	Arg 25	Tyr	Arg	His	Lys	Arg 30	Leu	Ser
Tyr	Gln	Ser 35	Val	Phe	Leu	Phe	Leu 40	Cys	Leu	Phe	Trp	Ala 45	Ser	Arg	Arg
Thr	Val 50	Leu	Phe	Ser	Phe	Tyr 55	Phe	Lys	Asp	Phe	Val 60	Ala	Ala	Asn	Ser
Leu 65	Ser	Pro	Phe	Val	Phe 70	Trp	Leu	Leu	Tyr	Cys 75	Phe	Pro	Val	Cys	Leu 80
Gln	Phe	Phe	Thr	Leu 85	Thr	Leu	'Met	Asn	Leu 90	Tyr	Phe	Thr	Gln	Val 95	Ile
Phe	Lys	Ala	Lys 100	Ser	Lys	Tyr	Ser	Pro 105	Glu	Leu	Leu	Lys	Tyr 110	Arg	Leu
Pro	Leu	Tyr 115	Leu	Ala	Ser	Leu	Phe 120	Ile	Ser	Leu	Val	Phe 125	Leu	Leu	Val
Asn	Leu 130	Thr	Cys	Ala	Val	Leu 135	Val	Lys	Thr	Gly	Asn 140	Trp	Glu	Arg	Lys
Val 145	Ile	Val	Ser	Val	Arg 150	Val	Ala	Ile	Asn	Asp 155	Thr	Leu	Phe	Val	Leu 160
Cys	Ala	Val	Ser	Leu 165	Ser	Ile	Cys	Leu	Tyr 170	Lys	Ile	Ser	Lys	Met 175	Ser
Leu	Ala	Asn	Ile 180	Tyr	Leu	Glu	Ser	Lys 185	Gly	Ser	Ser	Val	Cys 190	Gln	Val
Thr	Ala	Ile	Gly	Val	Thr	Val	Ile	Leu	Leu	Tyr	Thr	Ser	Arg	Ala	Cys

<400> 409

		195					200					205			
Tyr	Asn 210	Leu	Phe	Ile	Leu	Ser 215	Phe	Ser	Gln	Asn	Lys 220	Ser	Val	His	Ser
Phe 225	Asp	Tyr	Asp	Trp	Tyr 230	Asn	Val	Ser	Asp	Gln 235	Ala	Asp	Leu	Lys	Asn 240
Gln	Leu	Gly	Asp	Ala 245	Gly	Tyr	Val	Leu	Phe 250	Gly	Val	Val	Leu	Phe 255	Val
Trp	Glu	Leu	Leu 260	Pro	Thr	Thr	Leu	Val 265	Val	Tyr	Phe	Phe	Arg 270	Val	Arg
Asn	Pro	Thr 275	Lys	Asp	Leu	Thr	Asn 280	Pro	Gly	Met	Val	Pro 285	Ser	His	Gly
Phe	Ser 290	Pro	Gln	Ile	Leu	Phe 295	Leu								
<210><211><212><213>	152 PRT	sapie	ns												
<400>	408														
His 1	Arg	Arg	Leu	His 5	Arg	Val	Leu	Arg	Ala 10	Ala	Leu	Arg	Val	His 15	Leu
Arg	Ala	Ala	Leu 20	Ala	Gly	Ala	Ala	Leu 25	Pro	Pro	Gln	Ala	Ala 30	Gln	Leu
Pro	Glu	Arg 35	Leu	Pro	Leu	Ser	Leu 40	Pro	Leu	Leu	Gly	Leu 45	Pro	Ala	Asp
Arg	Pro 50	Leu	Leu	Leu	Leu	Leu 55	Gln	Arg	Leu	Arg	Gly 60	Gly	Gln	Phe	Ala
Gln 65	Pro	Leu	Arg	Leu	Leu 70	Ala	Ala	Leu	Leu	Leu 75	Pro	Cys	Val	Pro	Ala 80
Val	Phe	His	Pro	His 85	Ala	Asp	Glu	Leu	Val 90	Leu	His	Ala	Gly	Asp 95	Phe
Gln	Ser	Gln	Val 100	Lys	Ile	Phe	Ser	Arg 105	Ile	Thr	Gln	Ile	Pro 110	Val	Ala
Pro	Leu	Pro 115	Gly	Leu	Pro	Leu	His 120	Gln	Pro	Cys	Phe	Pro 125	Val	Gly	Glu
Phe	Asn 130	Leu	Cys	Cys	Ala	Gly 135	Lys	Asp	Gly	Lys	Leu 140	Gly	Glu	Glu	Gly
Tyr 145	Arg	Leu	Cys	Ala	Ser 150	Gly	His								
<210><211><212><212><213>	100 PRT	sapie	ns												

Leu 1	Gly	Phe	Glu	Asn 5	His	Leu	Arg	Glu	Val 10	Gln	Val	His	Gln	Arg 15	Glu ·
Gly	Glu	Lys	Leu 20	Gln	Ala	His	Arg	Glu 25	Ala	Val	Glu	Gln	Pro 30	Glu	Asp
Glu	Gly	Ala 35	Glu	Arg	Ile	Gly	Arg 40	His	Glu	Val	Phe	Glu 45	Val	Glu	Gly
Glu	Glu 50	Asp	Gly	Pro	Pro	Gly 55	Gly	Pro	Glu	Glu	Ala 60	Glu	Lys	Glu	Glu
Asp 65	Ala	Leu	Val	Ala	Glu 70	Pro	Leu	Val	Ala	Val 75	Thr	Gln	His	Gln	Pro 80
Glu	Leu	His	Val	Asp 85	Glu	His	Glu	Glu	Gln 90	Arg	Val	Glu	His	Gly 95	Val
Asp	Asp	Gly	Glu 100												
<210><211><211><212><213>	268 PRT	sapie	ns												
<400>	410														
Ala 1	Pro	Ile	Ser	Ser 5	Asn	Phe	Cys	Ser	Glu 10	Ser	Ile	Trp	Gly	Tyr 15	Cys
Asp	Gln	Leu	Lys 20	Val	Ser	Glu	Ser	Thr 25	His	Val	Leu	Gln	Pro 30	Phe	Leu
Pro	Ser	Ile 35	Leu	Asp	Gly	Leu	Ile 40	His	Leu	Ala	Ala	Gln 45	Phe	Ser	Ser
Glu	Val 50	Leu	Asn	Leu	Val	Met 55	Glu	Thr	Leu	Cys	Ile 60	Val	Cys	Thr	Val
Asp 65	Pro	Glu	Phe	Thr	Ala 70	Ser	'Met	Glu	Ser	Lys 75	Ile	Cys	Pro	Phe	Thr 80
Ile	Ala	Ile	Phe	Leu 85	Lys	Tyr	Ser	Asn	Asp 90	Pro	Val	Val	Ala	Ser 95	Leu
Ala	Gln	Asp	Ile 100	Phe	Lys	Glu	Leu	Ser 105	Gln	Ile	Glu	Ala	Cys 110	Gln	Gly
Pro	Met	Gln 115	Met	Arg	Leu	Ile	Pro 120	Thr	Leu	Val	Ser	Ile 125	Met	Gln	Ala
Pro	Ala 130	Asp	Lys	Ile	Pro	Ala 135	Gly	Leu	Cys	Ala	Thr 140	Ala	Ile	Asp	Ile
Leu 145	Thr	Thr	Val	Val	Arg 150	Asn	Thr	Lys	Pro	Pro 155	Leu	Ser	Gln	Leu	Leu 160
Ile	Cys	Gln	Ala	Phe 165	Pro	Ala	Val	Ala	Gln 170	Cys	Thr	Leu	His	Thr 175	Asp

Asp Asn Ala Thr Met Gln Asn Gly Gly Glu Cys Leu Arg Ala Tyr Val

190 180 185 Ser Val Thr Leu Glu Gln Val Ala Gln Trp His Asp Glu Gln Gly His 205 195 200 Gln Val Val Ser Gln Gly Leu Trp Tyr Val Met Leu Leu Asp Pro Asn 210 215 220 Thr Ser Glu Phe Thr Ala Ala Phe Val Gly Ala Phe Val Thr Ara 235 240 225 230 Ala Gly Arg Glu Leu Gly Glu Asn Leu Asp Gln Leu Ile Ser шys 250 245 255 Met Ala Gly Gly Ser Ser Cys His Pro Ser Val Lys 260 265 <210> 411 <211> 97 <212> PRT <213> homo sapiens <400> 411 His Ile Gly Pro Gln Ala Leu Ser Ala Ile Leu His Gly Gly Ile Val 5 1 Glu Ala Val Lys Gly Thr Leu Cys His Ser Arg Ser Leu Asp Ile Cys 30 25 20 Tyr Glu Lys Leu Gly Lys Gly Arg Leu Cys Ile Ser Tyr Cys Cys Gln 35 40 Asn Trp Thr Lys Pro Cys Arg Leu Val Cys Ile Asn Gly Cys Arg Asp 60 55 Gln Ser Gly Asn Gln Gly Leu His Tyr Ala Asp Pro His Leu His Trp 80 75 65 70 Ala Leu Thr Gly Phe Asn Leu Gly Gln Leu Leu Glu Asp Val Leu Ser 90 85 Gln <210> 412 <211> 77 <212> PRT <213> homo sapiens <400> 412 Pro Pro Ala Ile Leu Thr Glu Gly Trp His Glu Glu Ile Trp Ser 10 Arg Glu Phe Ser Pro Ser Ser Pro Ala Leu Glu Met Arg Val Thr Lys 20 25 30 Ala Pro Thr Lys Ala Ala Val Asn Ser Glu Val Arg Gly Ser Arg 40 Trp Leu Thr Thr Cys Ile Thr Tyr His Ser Pro Leu Trp Pro Cys

55

Ser 65	Cys	His	Trp	Ala	Thr 70	Cys	Ser	Arg	Val	Thr 75	Asp	Thr			
<210><211><211><212><213>	62 PRT	sapie	ns												
<400>	413														
Ile 1	Gly	Phe	Ala	Ser 5	Ile	Pro	Pro	Arg	Ile 10	Ser	Gly	Ser	Pro	Ser 15	Ile
Leu	Leu	Ala	Phe 20	Tyr	Pro	His	Pro	Pro 25	Ser	Pro	Lys	Leu	Gly 30	Pro	Val
Leu	Leu	Cys 35	Ala	Arg	Glu	Thr	Pro 40	Lys	Phe	Arg	Arg	Lys 45	Ser	Ile	Phe
Tyr	Arg 50	Gly	Gly	Phe	Ile	Leu 55	Asp	Gln	Lys	Asn	Lys 60	Lys	Asn		
<210><211><212><213>	65 PRT	sapie	ns												
<400>	414														
Asp 1	Leu	Ile	Tyr	Asn 5	Tyr	Tyr	Cys	Tyr	Pro 10	Ser	Asp	Leu	Ser	Phe 15	Ser
Ala	Ile	Asp	Val 20	Ile	Ala	Ile	Ser	Arg 25	Ser	Ser	His	Asn	Val 30	Phe	Asn
Pro	Ala	Leu 35	Ile	Leu	Met	Leu	Arg 40	Met	Glu	Phe	Leu	Thr 45	Ser	Ser	Leu
Lys	Glu 50	Pro	Gln	Pro	Pro	Asn 55	Thr	Tyr	Thr	Tyr	Thr 60	Ser	Arg	Ile	Ala
Lys 65							•								
<210><211><212><213>	94 PRT	sapie	ns												
<400>	415														
Leu 1	Asp	Ser	Leu	Pro 5	Phe	His	His	Val	Phe 10	Pro	Asp	Pro	His	Pro 15	Ser
Phe	Trp	Leu	Phe 20	Thr	Arg	Ile	Arg	His 25	Leu	Arg	Ser	Trp	Gly 30	Gln	Cys
Tyr	Tyr	Val 35	Pro	Gly	Lys	Pro	Arg 40	Asn	Leu	Gly	Glu	Asn 45	Gln	Tyr	Phe
Thr	Gly 50	Glu	Asp	Ser	Ser	Leu 55	Thr	Lys	Lys	Ile	Lys 60	Lys	Ile	Lys	Asn

Thr 65	Lys	Lys	Phe	Met	Phe 70	Leu	Tyr	Cys	Ile	Pro 75	Lys	Glu	Cys	Leu	Tyr 80
Thr	Val	Ile	Ile	Leu 85	Lys	Glu	Asn	Thr	Ser 90	Met	Leu	Asp	Ile		
<210><211><211><212><213>	83 PRT	sapie.	ns												
<400>	416														
Gly 1	Arg	Arg	Asn	Asp 5	Gln	Leu	Asn	Leu	His 10	Ile	Pro	Gln	Ala	Gly 15	Pro
Phe	Ala	Gly	Pro 20	Tyr	Arg	Leu	Gly	Trp 25	Pro	Leu	Leu	Ser	Ser 30	Gly	Ile
Arg	Leu	Pro 35	Asp	Trp	Leu	Val	Leu 40	His	Val	Ser	Ile	Lys 45	Leu	Lys	Val
Ile	Pro 50	Trp	Pro	Pro	Pro	Gly 55	Glu	Asn	Gln	Pro	His 60	Pro	Ala	Ser	Trp
Gly 65	Gln	Trp	Gly	Arg	Asp 70	Phe	Gly	Leu	Ser	Glu 75	Gln	Leu	Leu	Glu	Ala 80
Ala	His	Asp													
<210><211><211><212><213>	93 PRT	sapie	ns												
<400>	417														
Arg 1	Arg	Lys	Ala	Ser 5	Ile	Ile	Ala	Phe	Lys 10	Gly	Ile	Leu	Leu	Thr 15	Leu
Thr	Gln	Gly	Val 20	Gln	Ser	Ala	Arg	Glu 25	Pro	Ile	Leu	Ile	Ser 30	Ser	Ser
Lys	Met	Phe 35	Leu	Glu	Glu	Asn	Pro 40	Trp	Asn	Val	Leu	Lys 45	Asp	Val	Ser
Gly	Val 50	Arg	Ser	Ser	Met	Trp 55	Leu	Ala	Lys	Gly	His 60	Leu	Tyr	Leu	Phe
Gln 65	Leu	Glu	Phe	Ile	Asn 70	Ser	Cys	Ser	Leu	Val 75	Ser	Leu	Gly	Ala	Glu 80
Val	Trp	His	Ile	Phe 85	Lys	Pro	Val	His	Ser 90	Arg	Ile	Gln			
<210><211><211><212><213>	96 PRT	sapie	ens												
<400>	418														
Thr	Leu	Asn	Pro	His	Lys	Thr	Leu	Ser	Ala	Lys	Lys	Ala	Arg	Val	Ile

<212> PRT

<213> homo sapiens

5 10 15 1 Phe Cys Ile Gln Asp Ser Thr Ala Asn Leu Val Phe Cys Tyr Lys 25 30 Leu Val Ser His Leu Leu Lys Arg Thr Arg Ile Thr Gly Thr Phe Asn 35 40 Thr ProSer Phe Leu Asn Glu His Glu Gln Leu His Glu Ser His Pro 55 60 50 Leu Cys Thr Ile Tyr Val His Pro Ser Thr His Met Lys Met Ser Ser 80 70 75 65 Gly Met Asp Gly Ile Arg Ile Lys Pro Ile Trp Lys Leu Lys Tyr Phe 90 <210> 419 <211> 68 <212> PRT <213> homo sapiens <400> 419 Tyr Ser Phe Phe Phe Phe Leu Tyr Gln Asn Asn His Leu Pro Leu Phe 15 10 1 Glu Glu Gly Glu Glu Glu Ser Gly Lys Asn Ala Lys Phe Glu Arg Leu 25 30 20 Phe Glu Leu Val His His Thr Arg Gly Ser ${\tt Pro}$ Leu Met Cys His Leu 35 40 45 Ser Ala Ala Ser Val His Arg Pro Gln Val Lys Glu Arg Met Arg Ser 50 55 60 Ser Trp Thr Ser 65 <210> 420 <211> 60 <212> PRT <213> homo sapiens <400> 420 Phe Ser Cys Thr Lys Thr Ile Ile Lys Pro Ser Ile His Phe Phe Leu Tyr Phe Ser Trp Ser Gly Lys Arg Arg Val Glu Lys Lys Gly Arq Val Gly Val Thr Thr His Met Gln Ser Val Thr Leu Phe Ser Phe Asn 35 40 His Ser Cys Gln Gln Pro Pro Cys Thr Gly Pro Arg 55 60 <210> 421 <211> 52

```
<400> 421
 Asp Ala Gly Cys Arg Phe Val Ala Pro Ala Leu Ser Gly Ser Pro Glu
                                         10
 Ile Thr Pro Gln Arg Gln Leu Pro Phe Val Asn
                                                 Thr Arg
                                                         Gln Ala
                                                                  Val
                                                           30
                                     25
 Leu Ala Gly Pro Thr Arg Pro His Ser Phe Phe His Leu Gly Pro Val
                                40
                                                      45
 His Gly Gly Cys
     50
<210> 422
<211> 52
<212> PRT
<213> homo sapiens
<400> 422
 Val Leu Gly Lys Ser Ser Met Ser Ile Thr Ile Val Trp Lys Ala Asn
                                         10
                    5
 Leu His Pro Lys Gln Ile Glu Val Ser Gln Val Lys Pro His Arg
                                                                  Met
                                     25
                                                           30
               20
 Ala Asn Arg Cys Leu Gly Cys Arg Met Gln Val Arg Gly Pro Gly Pro
                                                      45
                                40
 Val Trp Leu Pro
      50
<210> 423
<211> 59
<212> PRT
<213> homo sapiens
<400> 423
 Tyr Arg Tyr Val Phe Pro Thr Thr His Tyr Gly Tyr Asn Gly Val Glu
                                         10
                                                               15
 Leu Gln Thr Val
                  Lys Phe Cys Phe Gly Leu Val Ser Pro Asp
                                                              Pro
 Arg Gln Glu Leu Pro Leu Pro
                               Pro Tyr Leu Pro Ala Leu Lys Leu Cys
           35
                                40
 Pro Ile Lys Leu Asp Thr Asn Leu Thr Gly Phe
                            55
<210> 424
<211> 79
<212> PRT
<213> homo sapiens
<400> 424
 Val Thr Cys Leu Ser Leu Tyr Val Glu Thr Asn Phe Thr Met Ile
                                                                   Thr
                                         10
 Asp Leu Cys Asn Ile Ser Ser Leu Asn Phe His Thr Ile Leu Lys
```

Lys

20 30 25 Leu Leu Gly Lys Leu Thr Pro Phe Cys Ser Lys Gly Ala Leu His Leu 40 Trp Gly Val Ala Ser Glu Gly Gln Pro His Thr Ser Ser Leu Lys 50 55 Leu Trp Val Val Gly Asp Asn Phe Val Leu Thr Tyr Val Ile Leu 70 75 <210> 425 <211> 102 <212> PRT <213> homo sapiens <400> 425 His Lys Lys Thr Ser Ser Tyr Ser Gly Val Thr Val Cys Ser Tyr Asp 10 Leu Lys Ala Gly Glu Ser Ile Ile Arg Ile Cys Val Gln Phe Asn Arg 30 20 25 Gly Arg Gln Val Gly Trp Glu Arg Lys Gln Leu Lys Leu Leu Ser Thr 35 40 45 Gly Gly Asn Gln Ser Thr Lys Phe Tyr Cys Leu Gln Gly Ile Arg Lys 55 60 Gly Phe Asn Ser Ile Ile Ala Ile Met Cys Ser Lys His Ile Pro Val 65 70 75 80 Arg Val Ser Phe Pro Phe Ser Gly Thr Lys Met Val Leu Leu Asp 90 Gly Ile Ile Asn Pro Thr 100 <210> 426 <211> 81 <212> PRT <213> homo sapiens <400> 426 Ser Met Pro Phe Gln Phe Gly Thr Gln Pro Arg Arg Phe Pro Val Glu 1 15 Gly Gly Asp Ser Ser Ile Glu Leu Glu Pro Gly Leu Ser Ser Ser Ala 25 Ala Cys Asn Gly Lys Glu Met Ser Pro Thr Arg Gln Leu Arg Arg Cys 35 40 Gly Ser His Cys Thr Ile Thr Asp Val Pro Val Thr Val Pro Leu 55 Ala Thr Thr Arg Lys Pro Pro Ala Gln Ser Ser Lys Glu Met His Pro 65 70 75 80

<210><211><212><213>	62 PRT	sapie	ns												
<400>	427														
Gly 1	Arg	Ala	Ser	Ala 5	Leu	Ala	Cys	His	Arg 10	Tyr	Arg	Ser	Asp	Trp 15	Ala
Ser	Gly	Leu	Tyr 20	Ile	Leu	Ala	Ala	Leu 25	Ser	Thr	Ser	Ser	Ser 30	Ile	Gly
Ser	Ser	Gly 35	Gly	Arg	Gly	Asn	Trp 40	Gln	Gln	Val	Gly	Asn 45	Tyr	Val	Lys
Glu	Ser 50	Pro	Asp	Val	Ile	Ile 55	Ser	Gly	Cys	His	Arg 60	Asn	Ile		
<210><211><211><212><213>	100 PRT	sapie	ns												
<400>	428														
Arg 1	Glu	His	Gln	Leu 5	Leu	Ser	Gly	Asn	Asp 10	Phe	Gln	Gly	Thr	Ser 15	Gly
Val	Ala	Trp	Leu 20	Val	Thr	Ser	Pro	Ser 25	His	Tyr	Arg	Gln	His 30	Trp	Ser
Ser	Ala	Gln 35	Val	Pro	Ala	Gln	Leu 40	Lys	Asn	Leu	Leu	Leu 45	Pro	Leu	Glu
Thr	Ser 50	Leu	Ala	Gly	Phe	Gln 55	Ile	Glu	Lys	Ala	Tyr 60	Phe	Thr	Glu	Asn
Gln 65	Lys	Arg	Leu	Ser	Leu 70	Ile	Pro	Val	Glu	Val 75	Asn	Lys	Ser	Met	Leu 80
Ser	Thr	Gly	Leu	Ser 85	Thr	Glu	'Gly	Trp	Asn 90	Cys	Gln	Arg	Asn	Asp 95	Asp
Gln	Met	Phe	Arg 100												
<210><211><212><213>	40 PRT	sapie	ns												
<400>	429														
Asn 1	Ser	His	Leu	Asn 5	Val	Thr	Leu	Ile	Ile 10	Ile	Met	Leu	Ile	Phe 15	Ser
Ile	Ser	Tyr	Arg 20	Asn	Gln	Ser	Leu	Leu 25	Lys	Leu	His	Arg	Gly 30	Leu	Lys
Asn	Val	Tyr 35	His	Ser	Ile	Phe	Ile 40							•	

```
<210> 430
<211> 31
<212> PRT
<213> homo sapiens
<400> 430
 Gly Gly Ile Gly Tyr Lys Gly Arg Tyr Leu Asn Ser Ser Asn Asn Gly
 Tyr Asn Pro Phe Phe His Asn His Leu Gly Cys Phe Lys Ala
               20
                                      25
<210> 431
<211> 53
<212> PRT
<213> homo sapiens
<400> 431
 Thr Leu Ile Pro Ile Arg Asp Ala Lys Asn Gln His Asn Tyr
                                                               Tyr Gln
   1
                                          10
                                                                15
 Cys His
         Ile Gln Val Gly Ile Leu Pro Asn Thr Thr Ile Lys
                                                               Gly Arg
                                      25
 Ile Lys Leu Asp Asn Lys Ile Lys Lys Tyr Lys Ala Phe Lys Asn Leu
 Thr His His Leu Lys
      50
<210> 432
<211> 31
<212> PRT
<213> homo sapiens
<400> 432
 Ile Ala Leu Lys His Pro Lys Trp Leu Trp Lys Lys Gly Leu Tyr Pro
                                          10
 Leu Phe Glu Leu Phe Arg Tyr Leu Pro Leu Tyr Pro Ile Pro
                                                               Pro
               20
                                      25
<210> 433
<211> 85
<212> PRT
<213> homo sapiens
<400> 433
 Cys Asn Ile Phe Gln Trp Gly Pro Ser Glu His Thr Cys Trp Thr Val
                                          10
 Gln Thr Ile Ser Ser Pro Glu Gly
                                     Lys Tyr
                                             Phe
                                                  Cys
                                                      Ile
                                                          Arg
                                                               Gly
                                                                    Asn
               20
                                      25
 Ser Val Leu Glu Arg Asn Met Phe
                                     Phe
                                        Ile Ser Gln Ile
                                                           Lys
                                                               Thr
                                 40
                                                       45
     Asn Gly Lys Leu Ala
                            Ser
                                Asn
                                     Phe Phe Lys
                                                  Tyr
                                                      Ser
                                                          Ile Phe
```

55

Ser 65	Pro	Leu	Val	Val	Thr 70	Gly	Phe	Tyr	Arg	Ser 75	Ser	Tyr	Thr	Val	Cys 80
Phe	Asn	Ser	Gly	Pro 85											
<210><211><211><212><213>	81 PRT	sapie	ns												
<400>	434														
Leu 1	Leu	Ile	Arg	Glu 5	Ile	Asn	Gln	Val	Phe 10	Pro	Leu	Ile	Tyr	Asp 15	Ala
Ile	Tyr	Phe	Ser 20	Gly	Gly	Leu	Gln	Ser 25	Thr	Pro	Val	Gly	Arg 30	Cys	Lys
Pro	Tyr	Leu 35	Leu	Gln	Lys	Ala	Asn 40	Thr	Phe	Val	Ser	Glu 45	Glu	Thr	Gln
Phe	Trp 50	Arg	Gly	Ile	Cys	Ser 55	Leu	Tyr	Leu	Lys	Ser 60	Lys	Leu	Ser	Leu
Met 65	Val	Asn	Trp	Leu	Leu 70	Ile	Phe	Leu	Ser	Thr 75	Val	Phe	Phe	Phe	Pro 80
Leu															
<210><211><212><213>	95 PRT	sapie	ns												
<400>	435														
Tyr 1	Lys	Ser	Ile	Cys 5	Leu	Leu	Glu	Lys	Ile 10	Trp	Phe	Ala	Pro	Ser 15	Asn
Arg	Cys	Ala	Leu 20	Lys	Ala	Pro	Thr	Glu 25	Ile	Tyr	Cys	Ile	Ile 30	Asp	Glu
Gly	Lys	Asp 35	Leu	Val	Asn	Phe	Ser 40	Tyr	Gln	Lys	Leu	Val 45	Phe	Arg	Thr
Ser	Cys 50	Pro	Thr	Trp	Leu	Pro 55	Gly	Ala	Gln	Gly	Phe 60	Phe	Ser	Glu	Ile
Val 65	Leu	Arg	Asp	Pro	Gln 70	Thr	Cys	Ser	Pro	Ser 75	Pro	Gly	Ala	Thr	Cys 80
Ala	Ser	Ser	Pro	Arg 85	Arg	Gln	Ala	Val	Arg 90	Ser	Met	Arg	Leu	Ser 95	
<210><211><212>	81														

Ser 1	Cys	Ala	Phe	Leu 5	Leu	Leu	Trp	Gly	His 10	Ser	Gly	Pro	Thr	Trp 15	Ala .
Ser	Met	Asp	Pro 20	Gly	Leu	Glu	Gln	Ala 25	His	Leu	His	Leu	Phe 30	His	Leu
Arg	Gln	Cys 35	Gly	Ser	Arg	Cys	Gln 40	Glu	Gly	Leu	Thr	Ser 45	Gly	Pro	Ser
Arg	Phe 50	Leu	Cys	Ala	Arg	Asn 55	Glu	Arg	Pro	Gly	Pro 60	Ile	Leu	Pro	Pro
Arg 65	Leu	Asp	Pro	Glu	Val 70	Arg	Ala	Gly	Gln	Pro 75	Ser	Arg	Lys	His	Thr 80
Val															
<210><211><211><212><213>	94 PRT	sapie	ns												
<400>	437														
Ser 1	Arg	Trp	Asn	Asp 5	Ser	His	Pro	Leu	Leu 10	Ile	Ser	Pro	Leu	Thr 15	Ser
Leu	Lys	Leu	Leu 20	Ser	Ser	Ser	Lys	Ser 25	His	Cys	Gln	Leu	Pro 30	Tyr	Val
Val	Leu	Gly 35	Pro	Arg	Glu	Pro	Trp 40	Asn	Leu	Ala	Pro	Trp 45	Gly	Gly	Leu
Ile	Pro 50	Ala	Arg	Glu	His	Ser 55	Cys	Phe	Ser	Arg	Asp 60	Thr	Val	Ala	Cys
Met 65	Gly	Gln	His	Gly	Pro 70	Trp	Ala	Asp	His	Val 75	His	Ser	Cys	Phe	Ser 80
Gly	Asp	Thr	Val	Gly 85	Pro	His	Gly	Pro	Ala 90	Trp	Thr	Leu	Gly		
<210><211><211><212><213>	91 PRT	sapie	ens												
<400>	438														
His 1	Leu	Glu	Pro	His 5	Cys	Leu	Arg	Trp	Lys 10	Arg	Trp	Arg	Cys	Ala 15	Cys
Ser	Ser	Pro	Gly 20	Ser	Met	Leu	Ala	His 25	Val	Gly	Pro	Leu	Cys 30	Pro	Gln
Arg	Ser	Arg 35	Asn	Ala	His	Asp	Gln 40	Pro	Arg	Val	His	Ala 45	Gly	Pro	Cys
Arg	Pro 50	Leu	Cys	Pro	Leu	Arg 55	Ser	Arg	Asn	Ala	Leu 60	Val	Pro	Glu	Leu
Asn 65	His	Pro	Arg	Val	Pro 70	Gly	Ser	Lys	Ala	Pro 75	Trp	Asp	Pro	Glu	Pro 80

His Thr Glu Val Gly Asn Gly Ser Leu Met Ser 85 90 <210> 439 <211> 456 <212> PRT <213> homo sapiens <400> 439 Ile Thr Lys Thr His Lys Val Asp Leu Gly Leu Pro Glu Lys Lys Lys 15 Val Lys Glu Pro Glu Lys Lys Lys Val Thr Arg Tyr Ser Val Leu Asn 20 25 30 Asn Asp Asp Tyr Phe Ala Asp Val Ser Pro Leu Ala Thr Arg Ser Pro 35 40 45 Lys Ser Val Ala His Gly Gln Ala Glu Met Pro Ser Pro Leu Val Lys 50 60 Lys Lys Lys Lys Lys Lys Gly Val Ser Thr Leu Cys Glu Glu His Lys 65 70 75 80 Thr Val Glu Pro Glu Thr Leu Pro Ala Arg Arg Thr Glu Lys Ser Pro 85 90 95 Gln Ser Arq Lys Val Phe Gly His Leu Glu Phe Leu Ser Gly Glu 100 105 110 Lys Lys Asn Lys Lys Ser Pro Leu Ala Met Ser His Ala Ser Gly Val 115 120 125 Lys Thr Ser Pro Asp Pro Arg Gln Gly Glu Glu Glu Thr Arg Val Gly 130 135 140 Lys Lys Leu Lys Lys His Lys Lys Glu Lys Lys Gly Ala Gln Asp Pro 145 155 160 Thr Ala Val Gln Phe Phe Ser Asp `Pro Trp Cys Glu Ala Arg Glu Ala 165 170 175 Asp Gly Arg Val Asp Thr Cys Ser Val Gly Lys Lys Asp Glu Glu Gln 185 190 Ala Ala Leu Gly Glu Gln Arg Lys Arg Ser Pro Arg His Lys Lys Asn 195 200 205 Gly Lys Val Gln Glu Gly Lys Lys Lys Lys Lys Ile His Asp Ala Leu 210 215 220 Pro Gly His Glu Ser Lys Pro Ser Ser Met Ser Arg Ser Pro Arg Lys 225 230 235 240 Gly Ser Lys Pro Val Glu Lys Lys Val Lys Ala Pro Glu Tyr Ile Pro 245 250 255 Ile Ser Asp Pro Ala Asp Lys Ala Ser Lys Lys Lys Met Lys Ser Lys 260 265 270

Lys Lys Val Glu Gln Pro Val Ile Glu Glu Pro Ala Leu Lys

Arg

275 280 285 Lys Lys Glu Arg Glu Ser Gly Val Ala Gly Asp Pro Trp Lys 290 295 Glu Thr Asp Thr Lys Lys Asp Leu Glu Val Val Leu Glu Asn Gly Met 305 310 320 Asp Glu Ala His Ile Asp Gln Val Arg Arg Lys Ala Leu Gln Glu Glu 325 330 335 Glu Asp Arg Ser Gly Lys Thr Glu Ala Ser Glu Thr Arg Lys 340 345 350 Gly Thr Thr Gln Phe Gly Gln Trp Asp Thr Ala Gly Phe Glu Asn Glu 355 360 365 Asp Gln Lys Leu Lys Phe Leu Arg Leu Met Gly Gly Phe Lys Asn Leu 370 375 Ser Pro Ser Phe Ser Arq Pro Ala Ala Arg Ser Thr Ile Pro Asn Met 385 390 395 400 Leu Gly Ala Leu Gln Gln Asn Lys Lys Ala Asp Ser Gln Leu Arg 405 410 415 Asp Tyr Asp Arq Ala Met Ser Trp Ala Lys Tyr Ser Arg Gly Gly Leu 420 425 Gly Phe Ser Thr Ala Pro Asn Lys Ile Phe Tyr Ile Asp Arg 435 440 445 Ser Lys Ser Val Lys Leu Glu Asp 450 455 <210> 440 <211> 125 <212> PRT <213> homo sapiens <400> 440 Val Arg Val Cys Phe Leu Leu Pro Arg Val Ser Cys Tyr Pro Thr Len 10 Ser Leu Leu Leu Phe Leu Pro Phe Gln Ser Trp Leu Leu Asp Asp Trp 20 30 Leu Leu Tyr Leu Leu Phe Gly Leu His Leu Phe Leu Cys Gly Gly Leu 35 40 45 Arq Val Ile Thr Tyr Gly Asp Val Arg Phe Ser Leu Asn Phe Asp Trp 50 55 60 Leu Leu Phe Thr Ser Phe Pro Arg Ala Ala Leu His Gly Gly Pro Gly 75 80 Leu Gly Val Ala Trp Glu Gly Ile Val Asp Ser Leu Leu Phe Phe Phe 85 90 95 Leu Leu His Leu Pro Ile Val Phe Ser Gly Ala Leu Pro Leu Pro 100 105 110

Leu	Pro	Gln 115	Gly	Cys	Leu	Phe	Leu 120	Ile	Leu	Leu	Pro	His 125			-
<210><211><212><213>	381 PRT	sapie	ens												
<400>	441														
Ser 1	Arg	Cys	Arg	Phe 5	Cys	Cys	Arg	Leu	Ser 10	Ala	Ala	Phe	Leu	Pro 15	Arg
Ala	Met	Leu	Gly 20	Leu	Ala	Ile	Val	Leu 25	Ala	Gly	Arg	Leu	Asn 30	Glu	Gly
Asp	Arg	Phe 35	Leu	Lys	Pro	Pro	Ile 40	Ser	Leu	Arg	Asn	Phe 45	Ser	Phe	Trp
Ser	Ser 50	Phe	Ser	Lys	Pro	Ala 55	Val	Ser	His	Trp	Pro 60	Asn	Trp	Val	Pro
Val 65	His	Phe	Leu	Val	Ser 70	Glu	Ala	Ser	Val	Leu 75	Pro	Asp	Ser	Arg	Ser 80
Ile	Ser	Ser	Cys	Lys 85	Ala	Phe	Arg	Leu	Thr 90	Trp	Ser	Met	Cys	Ala 95	Ser
Ser	Met	Leu	Pro 100	Phe	Phe	Ser	Asn	Thr 105	Thr	Ser	Lys	Ser	Val 110	Ser	Val
Ser	Ser	Phe 115	Gln	Gly	Ser	Pro	Ala 120	Thr	Pro	Leu	Ser	Leu 125	Ser	Phe	Phe
Phe	Phe 130	Leu	Phe	Arg	Ala	Gly 135	Ser	Ser	Met	Thr	Gly 140	Cys	Ser	Thr	Phe
Phe 145	Leu	Asp	Phe	Ile	Phe 150	Phe	Phe	Ala	Glu	Ala 155	Leu	Gly	Ser	Ser	Leu 160
Met	Gly	Met	Tyr	Ser 165	Gly	Ala	Ser	Thr	Leu 170	Thr	Gly	Phe	Phe	Leu 175	Leu
Pro	Phe	Leu	Gly 180	Leu	Leu	Ser	Met	Asp 185	Leu	Glu	Gly	Leu	Glu 190	Trp	Pro
Gly	Arg	Ala 195	Ser	Pro	Ser	Trp	Trp 200	Ile	Phe	Phe	Phe	Phe 205	Phe	Thr	Phe
Pro	Leu 210	Cys	Ser	Leu	Gly	Leu 215	Phe	Arg	Phe	Arg	Phe 220	Cys	Pro	Lys	Ala
Ala 225	Cys	Ser	Ser	Ser	Phe 230	Phe	Pro	Thr	Glu	Gln 235	Val	Ser	Pro	Thr	Ser 240
Leu	Ala	Ser	Leu	Ala 245	Ser	Gln	Asn	Gln	Gly 250	Ser	Trp	Thr	Glu	Lys 255	Ala
Val	Gly	Ser	Trp 260	Ala	Pro	Phe	Phe	Ser 265	Phe	Leu	Cys	Phe	Leu 270	Ser	Phe
Leu	Pro	Thr 275	Leu	Val	Ser	Ser	Ser 280	Pro	Cys	Leu	Gly	Ser 285	Gly	Glu	Val

Phe	Thr 290	Pro	Glu	Ala	Trp	Asp 295	Met	Ala	Arg	Gly	Asp 300	Phe	Leu	Phe	Phe ·
Phe 305	Ser	Pro	Leu	Arg	Asn 310	Ser	Lys	Trp	Pro	Asn 315	Thr	Cys	Phe	Leu	Arg 320
Leu	Gly	Asp	Phe	Ser 325	Val	Arg	Leu	Ala	Gly 330	Ser	Val	Val	Ser	Gly 335	Ser
Thr	Cys	Ser	Ser 340	Gln	Arg	Val	Leu	Thr 345	Pro	Phe	Phe	Phe	Phe 350	Phe	Phe
Phe	Phe	Thr 355	Arg	Gly	Ile	Ser	Gly 360	Ala	Cys	Pro	Trp	Ala 365	Thr	Leu	Leu
Glu	Gly 370	Asp	Val	Ala	Leu	Lys 375	Gly	Glu	Thr	Ser	Ala 380	Lys			
<210><211><211><212><213>	43 PRT	sapie	ens												
<400>	442														
Asp 1	His	His	Asn	Lys 5	Leu	Ser	Leu	Gln	Ser 10	Gln	Thr	Tyr	Tyr	Ile 15	Leu
Leu	Ser	Val	Asn 20	Gly	Glu	Lys	Ile	Ser 25	Pro	Tyr	Val	Leu	Trp 30	Val	Lys
Cys	Cys	Asn 35	Arg	Leu	Gly	Leu	Ser 40	Asn	Leu	Pro					
<210><211><211><212><213>	45 PRT	sapie	ens												
<400>	443														
Met 1	Val	Ile	Ser	Ile 5	Phe	Pro	Pro	Leu	Leu 10	Tyr	Lys	Leu	Ile	Phe 15	Thr
His	Leu	Leu	Leu 20	Tyr	Lys	Leu	Thr	Phe 25	Ile	Asn	Thr	Asn	Lys 30	Arg	Leu
Val	Leu	Ser 35	Gln	Phe	Ile	Cys	His 40	Glu	Pro	Arg	Asn	Asn 45			
<210><211><212><213>	40 PRT	sapie	ns												
<400>	444														
Gly 1	Lys	Pro	Lys	Asn 5	Cys	Cys	Asp	Phe	Phe 10	Gln	Gly	Lys	Leu	Asp 15	Asn
Pro	Asn	Leu	Leu 20	Gln	His	Phe	Thr	His 25	Lys	Thr	Tyr	Gly	Leu 30	Ile	Phe

<213> homo sapiens

<400> 447

Ser Pro Leu Thr Asp Ser Ser Ile 35 <210> 445 <211> 78 <212> PRT <213> homo sapiens <400> 445 Val Gly Gly Gly Ala Leu Arg Ser Ala Ala Leu Pro Trp Thr Arg 10 15 Leu Pro Leu Thr Ser Thr Cys Cys Thr Thr Ser Arg Lys Pro Ser Ala 20 25 30 Glu Met Glu His Leu Val Gln Ser Trp Cys Leu Leu Asn Ile Leu 35 40 45 Leu Gln Thr His Asp Phe Lys Trp Pro Leu Gln Arq Arg Ser Val Asn 50 55 60 Ser Lys Trp Asn Pro Leu Met Met Lys Cys Leu Gln Leu Ile 65 70 75 <210> 446 <211> 125 <212> PRT <213> homo sapiens <400> 446 Arg Gly Trp Arg Ser Pro Phe Gly Gly Ala Pro Leu Arg Arg Arg Met 15 10 Ala His Ile Thr Ile Asn Gln Tyr Leu Gln Gln Val Tyr Glu Ala Ile 20 25 30 Arg Asp Ser Asp Gly Ala Ser Cys Ala Glu Leu Val Ser Phe Lys 45 40 Pro His Val Ala Pro Gln Asn Arg Leu Met Ala Ser Pro Glu Glu 50 55 Cys Gln Gln Val Glu Pro Leu Pro Tyr Asp Glu Met Phe Ala 65 70 75 Leu Arg Cys Thr Tyr Ala Val Gly Asn His Asp Phe Ile Glu Ala Tyr 90 Cys Gln Thr Val Ile Val Gln Ser Lys Phe Leu Arg Ala Phe Gln Ala 100 105 110 Glu Glu Asn Trp Ala Leu Leu Ser Cys Met Gln 120 125 <210> 447 <211> 80 <212> PRT

<213> homo sapiens

<400> 450

```
Met Ser Cys Lys His Phe Ile Ile Arg Gly Phe Gln Asp Leu Leu
                                                                       Thr '
                                            10
     Leu Leu Trp Arg Gly His Leu Lys
  Leu
                                           Ser
                                                Trp
                                                    Val
                                                         Cys
                                                              Asn
                                                                  Met
                                                                       Arq
                 20
                                        25
                                                               30
                                           Arg Cys
      Phe Lys Arg His Gln Leu Cys
                                      Thr
                                                         Ile
                                                    Ser
                                                              Ser Ala Val
                                   40
      Gly
           Phe Val His Leu Leu Gln Val Leu Val
                                                    Asn Gly Asn Val
                                                                      Arg
       50
                              55
                                                     60
  His Gly Ser Ala Ala Glu Arg Arg Ala Pro Pro Pro Thr Pro Gln Ala
  65
                          70
                                                 75
                                                                        80
<210> 448
<211> 67
<212> PRT
<213> homo sapiens
<400> 448
  Arg
      Ser Arg Gly
                    Phe Ser Cys Val Gln Thr Pro Cys His Phe Arg
                                                                      Glu
                                            10
                                           Trp
  Val
      Thr Gln Ala
                    Cys Val Ile Ser Leu
                                               Gln Gln Val
                                                              Gly
                                                                  Gly
                                                                       Leu
                20
                                       25
                                                               30
      Gln Gly
               Arg
                    Arg
  Pro
                                  Glu Met
                        Trp
                             Pro
                                           Cys Phe
                                                         Ser
                                                              Leu
                                                                  Thr His
                                                   Arg
            35
                                   40
                                                          45
 His
      Ser
          Leu His Thr Arg Arg
                                 Glu His His Ser
                                                    Trp
                                                         Ser Ile Leu Arg
       50
                              55
                                                     60
 Met Glu Ile
  65
<210> 449
<211> 60
<212> PRT
<213> homo sapiens
<400> 449
                    Tyr
                        Thr His Asp Val Asn Thr Thr Pro Gly Ala
              Pro
                                                                       Phe
                                            10
                                                                   15
 Ser
      Glu
          Trp
                    Phe
               Arg
                        Glu
                             Phe
                                 His
                                      Val
                                          Ala Ala
                                                    Ser
                                                              Thr
                                                                       Thr
                                                         His
                                                                  Gln
                20
                                       25
                                                               30
 Cys
     His
           His
               Ser
                    Pro
                        His
                             Thr
                                  His
                                      Ser
                                          Arg His
                                                         Thr Ala Met
                                                    Ser
                                                                       Ser
            35
                                   40
                                                          45
 Gln Lys
          Lys Phe Leu Val
                             Ser
                                 Asp Leu Lys Val
                                                    Leu
                              55
                                                     60
<210> 450
<211> 67
<212> PRT
```

Arg 1	Ala	Thr	Ser	Gly 5	Arg	Ser	Gly	Phe	Ile 10	Lys	Pro	Ser	Asn	Leu 15	Lys '
Gln	Gly	Thr	Ser 20	Phe	Gly	Ser	Trp	Leu 25	Leu	Asn	Val	Val	Ser 30	Gly	Cys
Val	Gly	Asn 35	Asp	Gly	Arg	Phe	Val 40	Cys	Glu	Lys	Leu	Pro 45	His	Gly	Ile
Gln	Ile 50	Ser	Ile	Leu	Arg	Met 55	Leu	Gln	Glu	Trp	Cys 60	Ser	Arg	Arg	Val
Cys 65	Arg	Glu													
<210><211><211><212><213>	111 PRT	sapie	ns												
<400>	451														
Ser 1	Ala	Ser	His	Pro 5	Glu	Ser	Arg	Leu	Cys 10	Arg	Gly	Gly	Ala	Asp 15	Met
Gln	Ala	Pro	Arg 20	Gly	Thr	Leu	Val	Phe 25	Ala	Leu	Val	Ile	Ala 30	Leu	Val
Pro	Val	Gly 35	Arg	Glu	Pro	Ser	Ser 40	Gln	Gly	Ser	Gln	Ser 45	Ala	Leu	Gln
Thr	Tyr 50	Glu	Leu	Gly	Ser	Glu 55	Asn	Val	Lys	Val	Pro 60	Ile	Phe	Glu	Glu
Asp 65	Thr	Pro	Ser	Val	Met 70	Glu	Ile	Glu	Met	Glu 75	Glu	Leu	Asp	Lys	Trp 80
Met	Asn	Ser	Met	Asn 85	Arg	Asn	Ala	Asp	Phe 90	Glu	Cys	Leu	Pro	Thr 95	Leu
Lys	Glu	Glu	Lys 100	Glu	Ser	Asn	His	Asn 105	Pro	Ser	Asp	Ser	Glu 110	Ser	
<210><211><211><212><213>	51 PRT	sapie	ns												
<400>	452														
Glu 1	Glu	Trp	Ala	Leu 5	Glu	Glu	Thr	Ala	Lys 10	Gly	Ser	Cys	Val	Tyr 15	Val
Asp	Leu	Lys	Leu 20	Ile	Lys	Phe	Val	Ser 25	Ser	Ser	Ser	Ser	Val 30	Gly	Ser
Leu	Ser	Arg 35	Leu	Pro	Gln	Gly	Leu 40	Leu	Leu	Leu	Glu	Asn 45	Met	Ser	Ala
Ile	Gln 50	Val													

<210><211><212>	59 PRT														
<213>		sapie	ns												
<400>		_	1	_	_	_,	_	7		_	•	_		-	
Phe 1	Asp	Ser	Phe	Ser 5	Ser	Pne	Lys	Val	10	гЛs	HIS	Ser	Lys	Ser 15	Ala
Phe	Leu	Phe	Met 20	Leu	Phe	Ile	His	Leu 25	Ser	Ser	Ser	Ser	Ile 30	Ser	Ile
Ser	Ile	Thr 35	Glu	Gly	Val	Ser	Ser 40	Ser	Lys	Ile	Gly	Thr 45	Phe	Thr	Phe
Ser	Leu 50	Pro	Ser	Ser	Tyr	Val 55	Cys	Lys	Ala	Leu					
<210><211><212><213>	107 PRT	sapie	ns												
<400>	454														
Pro 1	Ile	Thr	Thr	Cys 5	Ser	Leu	Gly	Asp	Pro 10	Gly	Lys	Asp	Lys	Tyr 15	Thr
Cys	Thr	His	Arg 20	Gly	Arg	Glu	Arg	Cys 25	Val	Gln	Arg	Ile	Cys 30	Ile	Asn
Ile	Leu	Phe 35	Ser	His	Pro	Asp	Met 40	Arg	Ser	Gln	Cys	Cys 45	Met	Met	Lys
Arg	Trp 50	Tyr	Asp	Ser	Thr	Tyr 55	Val	Pro	Ile	Val	Leu 60	Leu	Phe	Leu	Tyr
Phe 65	Leu	Phe	Arg	Ser	Phe 70	Thr	Ile	Gly	Arg	Phe 75	Gln	Lys	His	Ser	Phe 80
His	His	His	Leu	Glu 85	Met	Val	.CA2	Leu	Asn 90	Gly	Asp	Asn	Ser	Arg 95	Ser
Cys	Ser	Ile	Ser 100	Ser	Arg	His	Gly	Leu 105	Leu	Ile					
<210><211><211><212><213>	73 PRT	sapie	ns												
<400>	455														
Arg 1	Arg	Gly	Val	Ser 5	Phe	Leu	Leu	Ser	Arg 10	Gln	Lys	Trp	Tyr	His 15	Tyr
Val	Ala	Ala	Leu 20	Gln	Ser	Pro	Arg	Ala 25	Arg	Ser	Leu	Glu	Asn 30	His	Leu
Leu	Ser	Arg 35	Phe	Phe	Phe	Phe	Leu 40	Arg	Val	Gly	Val	Ser 45	Leu	Cys	Cys

Pro Lys Thr Arg Pro Gly Asn Cys Trp Gly Ala Lys Gly Ile Ala Pro 55 Val Pro Gln Ala Ser Arg Val Gly Arg 70 <210> 456 <211> 67 <212> PRT <213> homo sapiens <400> 456 Ser Trp Gly Asn Ile Val Arg Leu Leu Pro Ser Lys Lys Lys Lys Asn 15 10 Ala Lys Glu Gly Asp Ser Leu Glu Ser Glu Leu Trp Glu Ile Gly Glu 20 25 30 Ile Ser Ala Tyr Leu Glu Gly Arg Gln His Asn Asp Thr Lys Lys 35 40 Phe Ser Cys Met Val Thr Val Ile Ser Ser Arg Lys Asp Leu Ser 50 55 Ser Lys Glu 65 <210> 457 <211> 81 <212> PRT <213> homo sapiens <400> 457 Asp Gln Pro Ser Leu Pro Phe Ile Arg His Lys Thr Leu Asn Leu Thr 10 Pro Glu Thr Ser Ile Ile Gly Ser Trp Met Ala Thr Lys Ile Lys Asp 20 30 25 Ala Thr Ser Gly Ile Tyr Asn Ser Glu Lys Ser Ser Asn Leu Ser Val 35 40 Thr Thr Asp Phe Ser Glu Ser Leu Gln Ser Ile Glu Ser Ser Asn 55 60 Glu Ile Asn Gly Ile His Asp Glu Ser Asn Ala Phe Glu Ser Lys Ala 65 70 75 80 Ser <210> 458 <211> 41 <212> PRT <213> homo sapiens <400> 458 Gln Leu Ile Ser Pro Lys Ala Phe Arg Val Leu Ile Leu Asn Pro Lys 10 15

Lys Ser Met Glu Phe Met Met Lys Ala Met Leu Leu Asn Gln Lys His

20 25 30

Leu Glu Ser Ile Phe Phe Glu Lys Pro

<210> 459

<211> 36

<212> PRT

<213> homo sapiens

<400> 459

Ile Pro Glu Val Ala Ser Ile His Phe Val Ser Gly Glu Pro Ile Ile 1 5 10 15

Leu Val Ala Ile Leu Val Arg Leu Arg Val Leu Cys Arg Ile Asn Gly 20 25 30

Arg Glu Gly Trp 35

<210> 460

<211> 36

<212> PRT

<213> homo sapiens

<400> 460

Asn Ser Glu Gly Phe Arg Arg Asn Gln Leu Leu Gln Ile Asp Leu Lys 1 5 10 15

Ile Phe Leu Ser Cys Lys Phe Gln Lys Leu His Gln Ser Thr Leu Phe 20 25 30

Gln Val Asn Leu 35

<210> 461

<211> 83

<212> PRT

<213> homo sapiens

<400> 461

Gly Arg Arg Asn Asp Gln Leu Asn Leu His Ile Pro Gln Ala Gly Pro 1 5 10

Phe Ala Gly Pro Tyr Arg Leu Gly Trp Pro Leu Leu Ser Ser Gly Ile
20 25 30

Arg Leu Pro Asp Trp Leu Val Leu His Val Ser Ile Lys Leu Lys Val

Ile Pro Trp Pro Pro Pro Gly Glu Asn Gln Pro His Pro Ala Ser Trp 50 55 60

Gly Gln Trp Gly Arg Asp Phe Gly Leu Ser Glu Gln Leu Leu Glu Ala 65 70 75 80

Ala His Asp

<210> 462

<211> 93

<212> <213>		sapie	ns												
<400>	462														
Arg 1	Arg	Lys	Ala	Ser 5	Ile	Ile	Ala	Phe	Lys 10	Gly	Ile	Leu	Leu	Thr 15	Leu
Thr	Gln	Gly	Val 20	Gln	Ser	Ala	Arg	Glu 25	Pro	Ile	Leu	Ile	Ser 30	Ser	Ser
Lys	Met	Phe 35	Leu	Glu	Glu	Asn	Pro 40	Trp	Asn	Val	Leu	Lys 45	Asp	Val	Ser
Gly	Val 50	Arg	Ser	Ser	Met	Trp 55	Leu	Ala	Lys	Gly	His 60	Leu	Tyr	Leu	Phe
Gln 65	Leu	Glu	Phe	Ile	Asn 70	Ser	Cys	Ser	Leu	Val 75	Ser	Leu	Gly	Ala	Glu 80
Val	Trp	His	Ile	Phe 85	Lys	Pro	Val	His	Ser 90	Arg	Ile	Gln			
<210><211><212><213>	96 PRT	sapie	ns												
<400>	463														
Thr 1	Leu	Asn	Pro	His 5	Lys	Thr	Leu	Ser	Ala 10	Lys	Lys	Ala	Arg	Val 15	Ile
Phe	Phe	Cys	Ile 20	Gln	Asp	Ser	Thr	Ala 25	Asn	Leu	Val	Phe	Cys 30	Tyr	Lys
Asn	Leu	Val 35	Ser	His	Phe	Leu	Leu 40	Lys	Arg	Thr	Arg	Ile 45	Thr	Gly	Thr
His	Pro 50	Gln	Leu	His	Glu	Thr 55	Pro	Ser	Phe	Leu	Asn 60	Glu	His	Glu	Ser
Ile 65	Tyr	Val	His	Pro	Ser 70	Thr	His	Met	Lys	Met 75	Leu	Cys	Ser	Ser	Thr 80
Gly	Met	Asp	Gly	Ile 85	Arg	Ile	Lys	Pro	Ile 90	Trp	Lys	Leu	Lys	Tyr 95	Phe
<210><211><212><213>	76 PRT	sapie	ns												
<400>	464														
Asn 1	Leu	Phe	Thr	Met 5	Lys	Phe	Leu	Pro	Glu 10	Phe	Ser	Pro	Phể	Asp 15	Thr
Asn	Ser	Met	His 20	Val	Ser	Thr	Phe	Glu 25	Thr	Gln	Pro	Asn	Val 30	Ile	Ser
Val	Lys	Ser 35	Ser	Leu	Ser	Leu	Pro 40	Ser	Ser	Asn	Leu	Pro 45	Ser	Pro	Arg

<212> PRT

<213> homo sapiens

```
Val Tyr Leu Pro Phe Cys Ala His Leu Ser Tyr Ser Ser Met Leu Phe
      50
                            55
 Tyr Asn Cys Asp Ser Pro Gly Ser Leu Gly Ala Ile
                        70
<210> 465
<211> 59
<212> PRT
<213> homo sapiens
<400> 465
 Asn Gln Arg Met Ile Glu Ile Tyr Ser Asn Thr Lys Thr Glu Arg Lys
                                          10
                                                                15
              Thr Leu Lys Ala Ala Asn Thr Ile Asp His Phe
                                                               Ile
 Cys His Ser
                                     25
                                                           30
               20
                                                 Ile Thr Cys
                                                               Tyr Cys
 Leu Pro Asp
              Ser Gln Glu Ser His Asn Cys Lys
           35
                                 40
                                                       45
 Asn Ser Asn Val His Lys Met Ala Gly Lys Leu
<210> 466
<211> 40
<212> PRT
<213> homo sapiens
<400> 466
 His Ala Thr Val Thr Gln Met Cys Thr Lys Trp Gln Val Asn Ser Arg
                                          10
 Arg Arg Gln Ile Thr Ala Trp Lys
                                    Thr Gln Gly Arg Phe Tyr Arg
                                                                  Asn
                                                            30
               20
                                     25
 Asp Ile Trp Leu Ser Leu Glu Gly
           35
<210> 467
<211> 41
<212> PRT
<213> homo sapiens
<400> 467
 Ile Pro Leu Gln Arg Phe Ser Leu Leu Thr Ser Leu Phe Phe Val Leu
                                                                15
                                          10
                                                               Thr Val
                   Leu Val Val His Ala Ser Leu Ser Leu Val
 Lys Leu Asp Phe
                                                            30
                                     25
 Asn Asn Leu Pro Thr Ser Ser Asn Gln
           35
                                 40
<210> 468
<211> 65
```

<400>	468														
Leu 1	Ser	Lys	Ala	Ile 5	Tyr	Phe	Cys	Lys	Lys 10	Ala	Ala	Ala	Cys	Ile 15	Asn
His	Asp	His	Ser 20	Ser	Thr	Leu	Asn	Lys 25	Glu	Arg	Lys	Arg	Phe 30	Leu	Ser
Leu	Thr	Gln 35	Ser	Leu	Pro	Leu	Cys 40	His	Ser	Pro	Arg	Gly 45	Trp	Gly	Trp
Thr	Ala 50	His	Ser	Lys	Leu	Thr 55	Arg	Leu	Ala	Ile	Cys 60	Glu	Tyr	Phe	Ser
Lys 65															
<210><211><211><212><213>	56 PRT	sapie	ns												
<400>	469														
Pro 1	Asp	Trp	Leu	Phe 5	Val	Asn	Thr	Phe	Pro 10	Asn	Lys	Glu	Gly	Lys 15	Gly
Asp	Val	Ser	Tyr 20	Ser	Gly	Gly	Lys	Cys 25	Ser	Phe	Ser	Gly	Lys 30	Asn	Gly
Cys	Arg	Val 35	Gly	Asn	Gln	Gly	Ser 40	Arg	Cys	Glu	Leu	Leu 45	Ile	Arg	Thr
Gly	Gly 50	Lys	Val	Val	His	Ser 55	Asn								
<210><211><212><212><213>	109 PRT	sapie	ns												
<400>	470														
Ala 1	Arg	Pro	Ala	Pro 5	Ala	Gly	Arg	Glu	Gly 10	Arg	Gly	Glu	Gly	Glu 15	Ala
Thr	Ser	Arg	Arg 20	Cys	Gly	Val	Gly	His 25	Arg	Ala	Gly	Pro	Arg 30	Glu	Pro
Ala	Pro	His 35	Gly	Ala	Ala	Ala	Val 40	Arg	Pro	Thr	Pro	Gly 45	Pro	His	His
His	Cys 50	Ala	Ala	Leu	Ser	Gly 55	Ala	Glu	Asn	Tyr	Arg 60	Ser	Arg	His	Ala
Met 65	Lys	Leu	Ala	Ser	Ala 70	Leu	Arg	Arg	Gly	Pro 75	Ala	Leu	His	Pro	Leu 80
Pro	Pro	Arg	Ala	Asn 85	Arg	Gly	Arg	Glu	Pro 90	Trp	Arg	Arg	Arg	His 95	Arg
Pro	Arg	Gly	Trp 100	Ala	Ala	Ala	Ser	Arg 105	Thr	Trp	Arg	Ser			

<210> 471

275

Pro

Leu Gly Leu

<211> 399 <212> PRT <213> homo sapiens <400> 471 Ala Ala Gly Ala Gly Ala Arg Gly Ser Gly Arg Arg Gly Cys Ser Tyr 15 Val Pro Glu Val Arg Cys Gly Ala Pro Gly Gly Ala Ala Gly Thr 25 30 Ala Pro Arg Ser Cys Cys Cys Gln Thr Asn ProGly Pro Pro Ser Ser 35 40 45 Leu Arq Arg Ala Phe Arg Arg Arg Glu Leu Pro Phe Pro Ala Cys His Glu Ile Gly Leu Gly Ala Glu Ala Gly Ser Gly Pro Pro Pro Ala Pro 65 70 75 80 Ala Ala Arg Glu Ser Arq Ser Arg Ala Met Glu Glu Glu Ala Ser Ser 85 90 Gly Leu Gly Pro Cys Ser Lys Pro His Leu Glu Lys Leu Thr Leu Gly 100 105 110 Ile Thr Arg Ile Leu Glu Ser Ser Pro Gly Val Thr Glu Val Thr Ile 115 120 125 Ile Glu Lys Pro Pro Ala Glu Arg His Ile Met Ser Ser Trp Glu 130 135 140 Lys Asn Asn Cys Val Met Pro Glu Asp Val Lys Asn Phe Tyr Leu Met 145 150 155 160 Gly Thr Asn Phe His Thr Met Trp Ser Val Lys Leu Asp Glu His Ile 165 170 175 Ile Gly Pro Leu Ser Met Ala 'Ile Asn Ser Ile Ser Lys Thr Leu Gln 180 185 Thr Gln Leu Ser Ser Tyr Met Ser Leu Pro Asn Ala Pro Thr Leu Ala 195 200 205 Asp Leu Glu Asp Thr His Asp Glu Ala Ser Asp Asp Gln Pro Glu Lys 210 215 220 Pro His Phe Asp Ser Arg Ser Val Ile Phe Glu Leu Asp Ser Cys Asn 225 230 235 240 Gly Gly Ser Val Lys Cys Leu Val Tyr Lys Ser Gly Lys Pro Ala Leu 245 250 255 Ala Glu Asp Thr Glu Ile Trp Phe Leu Arg Asp Ala Leu Tyr Trp His 260 265 270 Phe Leu Thr Asp Thr Phe Thr Ala Tyr Arg Tyr Leu Leu Ile Thr His

280

Ala

Phe

Thr

Ser

Gln Trp Gln Tyr

285

Tyr

Gly

Ile

Ser

	290					295					300				
Pro 305		Ala	Lys	Gln	Trp 310	Phe	Ser	Met	Tyr	Lys 315	Pro	Ile	Thr	Tyr	Asn 320
Thr	Asn	Leu	Leu	Thr 325	Glu	Glu	Thr	Asp	Ser 330	Phe	Val	Asn	Lys	Leu 335	Asp
Pro	Ser	Lys	Val 340	Phe	Lys	Ser	Lys	Asn 345	Lys	Ile	Val	Ile	Pro 350	Lys	Lys
Lys	Gly	Pro 355	Val	Gln	Pro	Ala	Gly 360	Gly	Gln	Lys	Gly	Pro 365	Ser	Gly	Pro
Ser	Gly 370	Pro	Ser	Thr	Ser	Ser 375	Thr	Ser	Lys	Ser	Ser 380	Ser	Gly	Ser	Gly
Glu 385	Thr	Pro	Pro	Gly	Lys 390	Leu	Arg	His	Pro	Ser 395	Phe	Gln	Phe	Ala	
<210><211><212><213>	96 PRT	sapie	ens												
<400>	472														
Arg 1	Ser	Ala	Gly	Gly 5	Phe	Ser	Met	Met	Val 10	Thr	Ser	Val	Thr	Pro 15	Gly
Glu	Asp	Ser	Arg 20	Met	Arg	Val	Met	Pro 25	Arg	Val	Ser	Phe	Ser 30	Arg	Cys
Gly	Leu	Leu 35	Gln	Pro	Ser	Pro	Gly 40	Asp	Asp	Ala	Ser	Ser 45	Ser	Met	Ala
Arg	Asp 50	Arg	Asp	Ser	Arg	Ala 55	Ala	Gly	Ala	Gly	Gly 60	Gly	Pro	Asp	Pro
Ala 65	Ser	Ala	Pro	Arg	Pro 70	Ile	Ser	Trp	His	Ala 75	Gly	Asn	Gly	Ser	Ser 80
Arg	Arg	Leu	Lys	Ala 85	Arg	Arg	Ser	Asp	Asp 90	Gly	Gly	Pro	Gly	Leu 95	Val
<210><211><212><213>	56 PRT	sapie	ns												
<400>	473														
Lys 1	Tyr	Val	Ser	His 5	Ala	Asn	Ile	Ser	Ile 10	Tyr	Lys	Trp	Arg	Thr 15	Leu
Thr	Leu	Leu	Leu 20	Phe	Ser	Tyr	Lys	Ile 25	Pro	Asn	Phe	Val	Ile 30	Ile	Leu
Ser	Gly	Ile 35	Thr	Leu	Tyr	Cys	Lys 40	Asn	Ala	Ser	Tyr	Phe 45	Thr	Phe	Lys
Phe	Asp 50	Asn	Val	Cys	Asp	Glu 55	Leu								

```
<210> 474
<211> 37
<212> PRT
<213> homo sapiens
<400> 474
  Trp Ile Phe Arg Val Cys Cys Ile Ser Arg Glu Ile His Phe Tyr
                                            10
                                                                    15
           Tyr
               {\tt Tyr}
  Leu Phe
                    Lys His Leu Asp Lys Gly His Leu Thr His
                                                                   Phe Lys
                 20
                                        25
                                                               30
  Lys His Lys Cys
                    Ile
            35
<210> 475
<211> 33
<212> PRT
<213> homo sapiens
<400> 475
  Pro Lys Gly Leu Ser Ile Lys Val Arg Arg Asn Leu Asp
                                                              Thr Arg
                                                                       Arg
                                            10
                                                                    15
 Lys Arg Cys Arg Leu Leu Asn Phe Ile Ile His His Ile His Cys
                                                                       Gln
                20
                                        25
 Ile
<210> 476
<211> 80
<212> PRT
<213> homo sapiens
<400> 476
 His Ile Lys Ile Glu Phe Phe Gly Gln Asn Phe Trp Glu Ala Met His
                      5
 Pro
      Thr Trp
               Ala
                    Asp
                         Ile Gln Pro Glu
                                           Leu
                                                Phe
                                                     Ser
                                                              Gly
                                                                   Glu
                                                         Arg
                                                                       Trp
                                        25
                                                               30
           Gln
 Tyr
               Phe
                    Met Ala Glu
                                  Ile
                                      His
                                           Ser
                                                Asp
                                                     Trp
                                                         Leu
                                                              Glu Ser
                                                                       Met
            35
                                   40
                                                          45
 Leu Tyr
           Gln Leu Leu
                         Asn
                             Ile
                                 Leu Ser Ile
                                                Thr
                                                                  Cys
                                                     Leu
                                                         Ala
                                                              Tyr
                                                                       Tyr
                              55
                                                      60
           Ile Ser Ser
                         Ile
                             Tyr Arg Gln Lys
                                                Gly His Phe Arg Asn
                                                                      Ile
  65
                          70
                                                 75
                                                                        80
<210> 477
<211> 48
<212> PRT
<213> homo sapiens
<400> 477
 Ser Ser Leu Gly Lys Thr Phe Gly Lys Gln Cys Ile Leu His Gly Leu
```

Ile Phe Ser Leu Ser Cys Ser Gln Glu Glu Ser Gly Thr Gly Ser Leu 20 25 Trp Leu Lys Ser Ile Leu Ile Gly Trp Ser Leu Cys Tyr Thr Ser Cys 40 45 <210> 478 <211> 70 <212> PRT <213> homo sapiens <400> 478 Glu Gln Leu Arg Leu Asn Ile Ser Pro Cys Arg Met His Cys Phe Pro 10 15 Lys Val Leu Pro Lys Glu Leu Tyr Phe Tyr Val Leu Ser His Arg Thr 20 25 30 Gly Glu Lys Cys Ser Gly His Cys Trp Asp Leu Ile Phe Leu Gly 35 40 Gly Leu Met Ile Leu Ala Thr Gly Val Gln Glu Asn Gly Gly Ser Ser 55 60 Pro Gly Ser Asp Ser Trp 65 70 <210> 479 <211> 400 <212> PRT <213> homo sapiens <400> 479 Pro Gln Gln Thr Pro Trp Ala Val Ala Gly Arg Trp Cys Gly Asn Pro 1 10 15 Ser Leu His Arg Asn Arg Ala Gly Leu Asp Leu Pro Thr Ile Thr Asp 25 30 Gly Tyr Asp Ser Gln Pro Gln Asp Gly Val Leu Arg Ile Gln Leu Glu 35 40 Arg Pro Leu Pro Val Leu Thr Ser Cys Tyr Pro Gln Asp Leu Pro Arg 50 55 60 Leu Arg Pro Ser Arg Glu Phe Pro Gln Phe Glu Pro Gln Arg Tyr Pro 65 70 75 80 Cys Ala Gln Met Leu Pro Pro Ser Asn Leu Pro His Ala Pro Trp 85 90 95 Asn Tyr His Tyr His Cys Pro Gly Pro Asp Ser His Gln Val Pro Tyr 100 105 110 Gly His Asp Tyr Pro Arg Ala Ala Tyr Gln Gln Val Ile Gln Pro Ala 115 120 125 Leu Pro Gly Gln Pro Leu Pro Gly Ala Ser Val Arg Gly Leu His

135

Val 145		Lys	Val	Ile	Leu 150	Asn	Tyr	Pro	Ser	Pro 155	Trp	Asp	Gln	Glu	Glu 160
Arg	Pro	Ala	Gln	Arg 165	Asp	Cys	Ser	Phe	Pro 170	Gly	Leu	Pro	Arg	His 175	Gln
Asp	Gln	Pro	His 180	His	Gln	Pro	Pro	Asn 185	Arg	Ala	Gly	Ala	Pro 190	Gly	Glu
Ser	Leu	Glu 195	Cys	Pro	Ala	Glu	Leu 200	Arg	Pro	Gln	Val	Pro 205	Gln	Pro	Pro
Ser	Pro 210	Ala	Ala	Val	Pro	Arg 215	Pro	Pro	Ser	Asn	Pro 220	Pro	Ala	Arg	Gly
Thr 225		Lys	Thr	Ser	Asn 230	Leu	Pro	Glu	Glu	Leu 235	Arg	Lys	Val	Phe	Ile 240
Thr	Tyr	Ser	Met	Asp 245	Thr	Ala	Met	Glu	Val 250	Val	Lys	Phe	Val	Asn 255	Phe
Leu	Leu	Val	Asn 260	Gly	Phe	Gln	Thr	Ala 265	Ile	Asp	Ile	Phe	Glu 270	Asp	Arg
Ile	Arg	Gly 275	Ile	Asp	Ile	Ile	Lys 280	Trp	Met	Glu	Arg	Tyr 285	Leu	Arg	Asp
Lys	Thr 290	Val	Met	Ile	Ile	Val 295	Ala	Ile	Ser	Pro	Lys 300	Tyr	Lys	Gln	Asp
Val 305	Glu	Gly	Ala	Glu	Ser 310	Gln	Leu	Asp	Glu	Asp 315	Glu	His	Gly	Leu	His 320
Thr	Lys	Tyr	Ile	His 325	Arg	Met	Met	Gln	Ile 330	Glu	Phe	Ile	Lys	Gln 335	Gly
Ser	Met	Asn	Phe 340	Arg	Phe	Ile	Pro	Val 345	Leu	Phe	Pro	Asn	Ala 350	Lys	Lys
Glu	His	Val 355	Pro	Thr	_	Leu	Gln 360	Asn	Thr	His	Val	Tyr 365	Ser	Trp	Pro
_	Asn 370	Lys	Lys	Asn		375	Leu		Leu	Leu	Arg 380	Glu	Glu	Glu	Tyr
Val 385	Ala	Pro	Pro	Arg	Gly 390	Pro	Leu	Pro	Thr	Leu 395	Gln	Val	Val	Pro	Leu 400
<210><211><212><213>	225	sapie	ns												
<400>	480														
Ser 1	Ser	Ser	Gly	Trp 5	Arg	Val	Ala	Arg	Gly 10	Ser	Arg	His	Ser	Ser 15	Trp
Gly	Arg	Arg	Leu 20	Gly	Asn	Leu	Trp	Ser 25	Gln	Leu	Cys	Arg	Ala 30	Leu	Gln
Gly	Leu	Pro 35	Arg	Ser	Thr	Ser	Ser 40	Ile	Arg	Trp	Leu	Val 45	Met	Trp	Leu

Val	Leu 50	Val	Pro	Trp	Lys	Pro 55	Arg	Lys	Gly	Ala	Val 60	Ser	Leu	Cys	Gly
Pro 65	Leu	Phe	Leu	Val	Pro 70	Gly	Ala	Gly	Ile	Ile 75	Gln	Asp	Asn	Leu	Leu 80
His	Arg	Val	Gln	Ala 85	Ser	His	Thr	Gly	Ser 90	Arg	Gln	Gly	Leu	Pro 95	Arg
Gln	Ser	Arg	Leu 100	Asp	His	Leu	Leu	Val 105	Gly	Cys	Ser	Arg	Val 110	Val	Met
Ala	Ile	Trp 115	His	Leu	Val	Ile	Gly 120	Thr	Ser	Arg	Thr	Met 125	Val	Met	Ile
Val	Pro 130	Trp	Ser	Met	Trp	Gly 135	Lys	Ile	Gly	Arg	Gln 140	His	Leu	Cys	Thr
Cys 145	Trp	Ile	Pro	Leu	Arg 150	Phe	Lys	Leu	Arg	Glu 155	Leu	Pro	Gly	Pro	Glu 160
Arg	Ser	Gly	Glu	Val 165	Leu	Gly	Val	Thr	His 170	Gly	Gly	Glu	Gly	Gln 175	Gly
Pro	Phe	Gln	Leu 180	Pro	Asp	Ala	Gln	Asp 185	Ile	Leu	Gly	Leu	Gly 190	Ile	Ile
Ser	Arg	Val 195	Tyr	Gly	Trp	Gln	Ile 200	Gln	Ala	Cys	Ser	Val 205	Pro	Val	Gln
Ala	Gly 210	Ala	Val	Ala	Pro	Ser 215	Pro	Cys	Tyr	Arg	Pro 220	Arg	Ser	Leu	Leu
Arg 225															
<210><211><211><212><213>	125 PRT	sapie	ens												
<400>	481						•								
Lys 1	Gln	Arg	Met	Gln 5	Ser	Ser	His	Arg	Leu 10	His	Phe	Lys	Ala	Arg 15	Val
Cys	Gly	Gly	Leu 20	Arg	Gly	Arg	Ala	Leu 25	His	Asn	Arg	Phe	Pro 30	Gly	Gly
Gln	Arg	Ala 35	Ser	Arg	Gly	Gly	Thr 40	Glu	Lys	Asn	Gln	Pro 45	Gly	Val	Leu
Pro	Thr 50	Ser	Leu	Ser	Gln	Asn 55	Ala	Val	Arg	Thr	Arg 60	Pro	Gln	Thr	Trp
Pro 65	Gly	Leu	Ser	Asp	Leu 70	Gly	Met	Asn	Gly	Val 75	Thr	Arg	Glu	Pro	Pro 80
Glu	Gly	Trp	Ala	Glu 85	Ala	Pro	Val	Glu	Glu 90	Pro	His	Thr	Leu	Pro 95	Leu

Ser Ala Ala Ala Gly Cys Phe Phe Tyr Ser Trp Ala Ser Cys Arg

100 105 110

His Glu Cys Ser Glu Ala Arg Trp Ala His Ala Pro Ser 115 120 125

<210> 482

<211> 96

<212> PRT

<213> homo sapiens

<400> 482

Val Ala Met Thr Ala Lys Asp Cys Ser Ile Met Ile Ala Leu Ser Pro 1 5 10

Cys Leu Gln Asp Ala Ser Ser Asp Gln Arg Pro Val Val Pro Ser Ser 20 25 30

Arg Ser Arg Phe Ala Phe Ser Val Ser Val Leu Asp Leu Asp Leu Lys

Pro Tyr Glu Ser Ile Pro His Gln Tyr Lys Leu Asp Gly Lys Ile Val 50 55 60

Asn Tyr Tyr Ser Lys Thr Val Arg Ala Lys Asp Asn Ala Val Met Ser 65 70 75 80

Thr Arg Phe Lys Glu Ser Glu Asp Cys Thr Leu Val Leu His Lys Val 85 90 95

<210> 483

<211> 66

<212> PRT

<213> homo sapiens

<400> 483

Leu His Cys Leu Pro Val Cys Arg Met Pro Ala Leu Ile Lys Gly Leu 1 5 10 15

Trp Ser Leu His Arg Gly Pro Gly Leu Pro Phe Pro Cys Leu Cys Trp 20 . 25 . 30

Thr Leu Thr Ser Ser Pro Thr Arg Ala Phe Pro Ile Ser Ile Asn Trp 35 40 45

Thr Ala Arg Ser Ser Thr Ile Ile Gln Arg Leu Tyr Val Pro Lys Thr
50 55 60

Thr Pro

<210> 484

<211> 109

<212> PRT

<213> homo sapiens

<400> 484

Asn Lys Ala Phe Arg Ile Arg Glu Ser Asp Met Ser Pro Gly Trp Glu 1 5 15

Arg Arg Thr Ile Gln Asn Val Phe Pro Gly Leu Asn Gly His Phe His

20 25 30 Phe Lys Ser Val Ser Ser Phe Leu Gly His Ser Thr His Phe Leu His 35 40 Leu Ser Arg Ser Lys Phe Leu Val Leu Phe Leu Asn Ser Met Ser 55 60 Arg Gly Asn Pro Thr Ser Lys Gly Val Lys Ser Lys Asn Ile 65 80 Thr Thr Glu Asn Ile Gln Arg Ser Pro Asn Ser Ile Ile Gln Pro Ser 85 90 Tyr Val Gln Val Ser Lys Thr Leu Gln Gly Lys Ser 100 105 <210> 485 <211> 66 <212> PRT <213> homo sapiens <400> 485 Cys Ser Ser Ile Pro Cys Leu Gln Glu Ala Ile Pro Pro Gln Lys Gly 1 Leu Lys Ala Lys Thr Phe Thr Thr Lys Gly His Pro Thr Gln Gln 20 25 30 Ile Ser Leu Ser Phe Ser Leu His Ile Met Phe Lys Phe Gln Arg His 35 40 Glu Arg Val Arg Pro Cys Gly Glu Leu Met Cys Arg Cys Asn Leu Arg 55 Phe Pro 65 <210> 486 <211> 109 <212> PRT <213> homo sapiens <400> 486 Ala Arg Pro Ala Pro Ala Gly Arg Glu Gly Arg Glu Gly Glu Thr Ser Arg Gly Arg Cys Gly Val Gly His Arg Ala Pro Arg Glu Pro 20 25 30 Ala Pro His Gly Ala Ala Ala Val Arg Pro Thr Pro Gly Pro His His 40 45 Ala Glu Asn His Cys Ala Ala Leu Ser Gly Tyr Ser Arg Arg His Ala 50 55 60 Met Lys Leu Ala Ser Ala Leu Arg Arg Gly Pro Ala Leu His Pro Leu 65 70 75 80 Pro Pro Arg Ala Asn Arg Gly Arg Glu Pro Trp Arg Arg Arg His Arg

90

95

Ala Glu

Asp

Phe Leu Thr Asp

Thr

260

Glu

Thr

Ile

Phe

Trp

Thr

Phe

Ala

Leu

265

Tyr

Asp

Tyr

Arg

Arg

Ala

Leu Leu

Leu

Tyr

270

Ile

Trp

Thr

His

Pro Arg Gly Trp Ala Ala Ala Ser Arg Thr Trp Arg Ser 100 105 <210> 487 <211> 389 <212> PRT <213> homo sapiens <400> 487 Ala Ala Gly Ala Cys Gly Ala Arg Gly Ser Gly Arg Arg Gly Ser Tyr Val Pro Glu Val Arg Cys Gly Ala Pro Gly Gly Ala Ala Gly Thr Gly 20 25 30 Ala Pro Arg Ser Gln Thr Pro Cys Cys Cys Asn Pro Gly Pro Ser Ser 35 40 45 Glu Leu Arg Arg Ala Phe Arg Arg Arg Leu Pro Phe Pro Ala Cys His 50 55 Glu Ile Gly Leu Gly Ala Glu Ala Gly Ser Gly Pro Pro Pro Ala Pro 65 70 75 80 Ala Ala Arq Glu Ser Arg Ser Arg Ala Met Glu Glu Glu Ala Ser Ser 90 85 95 Pro Gly Leu Gly Cys Ser Lys Pro His Leu Glu Lys Thr Gly Leu Leu 100 105 110 Ile Thr Arg Ile Glu Ser Ser Gly Leu Pro Val Thr Glu Val Thr Ile 115 120 125 Ile Glu Lys Pro Pro Ala Glu Arg His Ser Ser Trp Met Ile Glu Gln 130 135 140 Lys Asn Pro Glu Asp Asn Cys Val Met Tyr Val Lys Asn Phe Leu Met 145 150 155 160 Thr Asn Gly Phe His Met Thr 'Trp Ser Val Lys Glu His Ile Leu Asp 165 170 175 Gly Ile Pro Leu Ser Met Ala Ile Asn Ser Ile Ser Thr Lys Leu Gln 180 185 190 Leu Thr Gln Ser Ser Ser Leu Met Tyr Pro Asn Ala Pro Thr Leu Ala 195 200 205 Asp Leu Glu Asp Asp Thr His Glu Ala Ser Asp Asp Gln Pro Glu Lys 210 215 220 Pro His Phe Asp Ser Arg Ser Val Ile Phe Glu Leu Asp Ser Cys Asn 225 230 235 240 Gly Ser Gly Cys Gly Lys Lys Val Leu Val Tyr Lys Ser Pro Ala Leu 245 250

		275					280					285			
Leu	Gly 290	Leu	Pro	Gln	Trp	Gln 295	Tyr	Ala	Phe	Thr	Ser 300	Tyr	Gly	Ile	Ser
Pro 305	Gln	Ala	Lys	Gln	Trp 310	Phe	Ser	Met	Tyr	Lys 315	Pro	Ile	Thr	Tyr	Asn 320
Thr	Asn	Leu	Leu	Thr 325	Glu	Glu	Thr	Asp	Ser 330	Phe	Val	Asn	Lys	Leu 335	Asp
Pro	Ser	Lys	Val 340	Phe	Lys	Ser	Lys	Asn 345	Lys	Ile	Val	Ile	Pro 350	Lys	Lys
Lys	Gly	Pro 355	Val	Gln	Pro	Ala	Gly 360	Gly	Gln	Lys	Gly	Pro 365	Ser	Gly	Pro
Ser	Gly 370	Pro	Ser	Thr	Ser	Ser 375	Thr	Ser	Lys	Ser	Ser 380	Ser	Gly	Ser	Gly
Asn 385	Pro	Thr	Arg	Lys											
<210><211><212><213>	96	sapie	ns												
<400>	488														
Arg 1	Ser	Ala	Gly	Gly 5	Phe	Ser	Met	Met	Val 10	Thr	Ser	Val	Thr	Pro 15	Gly
Glu	Asp	Ser	Arg 20	Met	Arg	Val	Met	Pro 25	Arg	Val	Ser	Phe	Ser 30	Arg	Cys
Gly	Leu	Leu 35	Gln	Pro	Ser	Pro	Gly 40	Asp	Asp	Ala	Ser	Ser 45	Ser	Met	Ala
Arg	Asp 50	Arg	Asp	Ser	Arg	Ala 55	Ala	Gly	Ala	Gly	Gly 60	Gly	Pro	Asp	Pro
Ala 65	Ser	Ala	Pro	Arg	Pro 70	Ile	Ser	Trp	His	Ala 75	Gly	Asn	Gly	Ser	Ser 80
Arg	Arg	Leu	Lys	Ala 85	Arg	Arg	Ser	Asp	Asp 90	Gly	Gly	Pro	Gly	Leu 95	Val
<210><211><212><213>	152 PRT	sapie	ns												
<400>	489														
Leu 1	Ala	Ala	Gly	Arg 5	Gly	Lys	Glu	Glu	Glu 10	Met	Gly	Phe	Glu	Asp 15	His
Gly	Leu	Pro	Phe 20	Leu	Pro	Leu	Thr	His 25	His	Thr	Pro	Phe	Pro 30	Pro	Leu
Ser	Leu	Ser 35	Pro	Leu	Pro	Lys	Lys 40	Lys	Lys	Lys	Glu	Thr 45	Phe	Ile	Met

Asn	Gln 50	Gln	Gly	Phe	Ser	Pro 55	Tyr	Gln	Arg	Glu	Met 60	Trp	Lys	Glu	Leu
Lys 65	-	Pro	Pro	Phe	Val 70	Pro	Asn	Ser	Thr	Leu 75	Pro	Ile	Phe	Tyr	Ala 80
Thr	Gln	Thr	Leu	Ser 85	Phe	Trp	Val	Pro	Phe 90	Leu	Gln	Met	Asp	Leu 95	Leu
Arg	Arg	Ile	Ile 100	Val	Phe	His	Val	Phe 105	Ser	Pro	Gln	Val	Thr 110	Lys	Ile
Asn	Ile	Cys 115	Ile	Tyr	Asn	Leu	Tyr 120	Tyr	Cys	Tyr	Ile	Phe 125	Val	Asp	Asn
Thr	Phe 130	Arg	Trp	Cys	Trp	Val 135	Ile	Tyr	Tyr	Asn	Leu 140	Asn	Leu	Gly	Ile
Ser 145		Gly	Leu	Pro	Gln 150	Ser	Cys								
<210><211><212><213>	91	sapie	ns												
<400>		-													
Gly 1		Trp	Leu	Thr 5	Phe	Pro	Ala	Phe	Asp 10	Pro	Ser	His	Pro	Ile 15	Ser
Ser	Ser	Phe	Pro 20	Leu	Pro	Ala	Ala	Lys 25	Lys	Lys	Lys	Lys	Gly 30	Asn	Val
Tyr	His	Glu 35	Ser	Thr	Gly	Phe	Gln 40	Ser	Leu	Ser	Lys	Arg 45	Asp	Val	Glu
Arg	Ala 50	Lys	Glu	Thr	Thr	Leu 55	Cys	Ser	Gln	Leu	His 60	Phe	Thr	His	Ile
Leu 65	Cys	Asn	Thr	Asn	Thr 70	Val	'Leu	Leu	Gly	Pro 75	Phe	Leu	Thr	Asp	Gly 80
Pro	Leu	Glu	Lys	Asn 85	Tyr	Arg	Ile	Pro	Arg 90	Phe					
<210><211><212><213>	64	sapie	ns												
<400>	491														
Lys 1	Trp	Gly	Thr	Gln 5	Arg	Ala	Gly	Asn	Phe 10	His	Tyr	Pro	Ile	Leu 15	Gly
Leu	Asn	Leu	Lys 20	Glu	Tyr	Ile	His	Tyr 25	Gln	Glu	Leu	Ser	Thr 30	Lys	Ala
Gly	Val	Lys 35	Leu	His	Tyr	Thr	Trp 40	Leu	Phe	Thr	Ile	Pro 45	Gly	Ser	Pro

```
Pro Gln His Asp Cys Gly Arg Pro Lys Asp Ile Pro Arg Phe Arg Leu
<210> 492
<211> 79
<212> PRT
<213> homo sapiens
<400> 492
  Arg Phe Thr Ala Ser Arg Val Gly Asn Glu Pro Asp Ile Asn Thr Pro
                                                                15
      Ser
          Met
               Pro
                   Cys Pro Pro Ser Gly Pro Val Pro Val Lys Ala
                                      25
  Ser His Phe Ser His Pro Gln Ala Val Pro Lys Ala Leu
                                                           Glu Glu Pro
           35
                                 40
                                                       45
 Lys Glu Arg Gln Glu Pro Ser Trp Glu Leu Thr Leu
                                                           Thr Arg Gly
                                                     Met
                             55
                                                   60
 Gln Leu Ala Gln Phe Pro Leu Phe Ser Trp Gly Glu Gly Thr Leu
  65
                        70
                                              75
<210> 493
<211> 100
<212> PRT
<213> homo sapiens
<400> 493
 Lys Ser Ser Pro Asp Pro Ala Arg His Tyr Gly Ser Pro Pro Glu Gly
   1
                                          10
                                                                15
 Glu Arg Arg Gly
                   Lys Arg Ser Val Pro Lys Val Asn Pro
                                                          Arg
                                                               Ser
                                                                   Leu
                20
                                                           30
 Gly Pro
          Thr
              Ser
                   Leu Pro
                           Thr Ala
                                    Thr Ser His Gln Pro
                                                          His Ala Arg
           35
                                 40
                                                       45
 Ala Arg Pro
              Phe Pro Leu Gln Leu Thr Ala Gln Gln Met Leu Gly Gln
       50
                             55
     Ala Ser Pro His Leu Thr Lys Gly Leu Gln Pro Ala Gly
 Asn
                                                               Trp
  65
                                              75
     Asn Gln Ile Leu Thr Pro Pro Pro Pro Cys Pro Ala His
                                                               Leu
                    85
                                          90
 Gly Gln Tyr Gln
              100
<210> 494
<211> 83
<212> PRT
<213> homo sapiens
<400> 494
 Lys Gly Ser Leu Pro Pro Thr Lys Gln Gly Lys Leu Gly Gln Leu Ala
```

Pro Gly His Gln Gly Gln Leu Pro Thr Trp Leu Leu Pro Phe Leu Gly 25 Phe Phe Gln Gly Phe Gly Asn Ser Leu Gly Val Gly Glu Val Ala Ser 35 45 40 Leu His Trp Trp Ala Gly His Gly Gly Cys Trp Pro Arg Arg Gly Tyr 50 Gly Ile Ser His Pro Ala Gly Cys Lys Pro Val Asn Ile Trp Phe 70 75 Val Lys <210> 495 <211> 79 <212> PRT <213> homo sapiens <400> 495 Val Pro Ser Pro Gln Leu Asn Lys Gly Asn Trp Ala Asn Trp Pro 10 15 Leu Val Ile Lys Val Asn Ser Gln Leu Gly Ser Cys Leu Ser Leu Gly 20 30 Ala Leu Gly Thr Ala Trp Gly Trp Glu Lys Trp Ser Arg Leu Pro Gly Thr Gly Ala Phe Thr Pro Glu Gly Gly Gln Gly Met Glu Glu Gly 50 Ile Ser Gly Val Leu Ser Phe Pro Thr Leu Leu Ala Val Asn Leu 65 70 75 <210> 496 <211> 88 <212> PRT <213> homo sapiens <400> 496 Ile Gln Lys Val Gln Tyr Tyr Thr Ser Pro Ala Ala Phe Val Asn Gly 1 10 Ser Leu His Ser His Trp Gly Thr Thr Val Gly Cys Met Arg Asn 20 25 Cys Pro His Trp Val Gly Phe Lys Cys Gly His Ser Ala Cys Gln 35 40 Val Cys Arg Asn Trp Leu Ile Ser Val Cys Gln Ser Asp Gln 55 Val Lys Ser Ala Ile Lys Asn Val Ala Ser Leu His Pro Pro Cys 65 70 75 Tyr Ser Gly Pro Ser Asn Leu Met

Ę.

<210> 497

<211> 98

<212> <213>		sapie	ns												
<400>	497														
Ser 1	His	Thr	Ser	Glu 5	Lys	Arg	Arg	Gly	Thr 10	Arg	Glu	Glu	Val	Thr 15	Pro
Ala	Ser	Arg	Ser 20	Ser	Ile	Ser	Gly	Val 25	Lys	Arg	Gly	Thr	Val 30	Ala	Leu
Pro	Ser	Trp 35	Leu	Arg	Met	Arg	Lys 40	Ser	Phe	Leu	Gln	Trp 45	Glu	Glu	Ile
His	Phe 50	Ser	Ile	Pro	Val	Gln 55	Ser	Asp	Phe	Met	Gly 60	Pro	Val	Leu	Asn
Ser 65	Asp	Cys	Ile	Ile	Asn 70	Thr	Ile	Lys	Arg	Asp 75	Ser	Glu	Met	Gly	Ser 80
Arg	Ile	His	Trp	Asp 85	Asn	Ser	Lys	Ala	Tyr 90	Asn	Thr	Ala	Leu	Met 95	Asp
Pro	Thr														
<210><211><212><213>	83 PRT	sapie	ns												
<400>	498														
Ala 1	Gly	Tyr	Thr	Pro 5	Val	Ser	Ser	Thr	Ile 10	Arg	Gln	Leu	His	Gln 15	Ile
Thr	Gly	Pro	Arg 20	Val	Thr	Gly	Trp	Arg 25	Met	Gln	Gly	Ser	His 30	Ile	Leu
Tyr	Gly	Arg 35	Asp	Phe	Gly	Val	Leu 40	Ile	Thr	Leu	Ala	Tyr 45	Arg	Asn	Lys
Pro	Ile 50	Pro	Ala	Asp	Ser	Leu 55	·Thr	Lys	Gly	Thr	Pro 60	His	Pro	Met	Thr
Thr 65	Met	Arg	Ala	Leu	Ala 70	Val	Ser	Ala	His	Ala 75	His	Ser	Cys	Thr	Pro 80
Met	Ala	Val													
<210><211><211><212><213>	85 PRT	sapie	ns												
<400>	499														
Gly 1	Lys	Ile	Cys	Glu 5	Tyr	Val	Asn	Phe	Leu 10	Ser	Leu	Arg	Asp	Asp 15	Arg
Met	Phe	Pro	Tyr 20	Phe	Ser	Cys	Lys	Glu 25	Asn	Asn	Ile	Leu	Thr 30	Tyr	Thr

Ser Cys Arg Lys Tyr His Leu Phe Pro Leu Tyr Tyr Ser Thr Met Phe

35 40 45

Thr Leu Leu Tyr Cys Gln Ala Glu Ser Ile Lys Asn Val His Ile His 50

Phe Glu Leu Cys Ile Leu Phe Leu Lys Lys Gly Ala Gly Leu Trp His 65

Trp Ala Gly His Asp

<210> 500

<211> 98 <212> PRT

<213> homo sapiens

<400> 500

Ser Tyr Arg Leu Lys Gly Ile Gly Lys Cys Val Phe Ser Arg Asp His 15 1 10 Ser Glu Ser Glu Gln Cys Trp Gln Thr Leu Pro Arg Lys Cys Phe 25 Ser Arq Cys Pro Cys Phe Gly Ile Ser Phe Leu Gly Arg Lys Lys 35 40 45 Val Ser Ile Ser Phe Ser Ser Leu Thr Ile Asn Tyr Phe Cys Cys Ser 55 50 Ser Ile Tyr Val Ser Asn Gly Phe Pro Pro Thr Ile Ile Pro Leu Leu 80 65 70 75 Ser Pro Val Thr Phe Leu Ser Thr Pro Phe Pro Ser Pro Leu Asn Tyr 85 90 95

Lys Phe

<210> 501

<211> 87

<212> PRT

<213> homo sapiens

<400> 501

Ser Asn His Gly Val Arg Ser Ser Leu Ser Val Ser Ser Cys Ser Thr 1 10 Gly Glu His Val Leu Arg Val Thr Thr Lys Cys Thr Glu Arg Asp Lys 2.0 25 30 Cys Glu Leu Pro Ser Leu Ser Leu Thr Gln Ala Met Cys Thr Asp Ala 35 45 40 Ala Glu Cys Ala Gly Val Gly Gly Gly His Val Ala Pro ProGlu 55 60 Gly Asp Pro Leu Leu Val Asn Phe Val Glu Phe Leu Thr Gly Lys Leu 65 70 75 80 Ile Arg Thr Val Ser Phe Thr

```
<210> 502
<211> 53
<212> PRT
<213> homo sapiens
<400> 502
 Thr Pro Lys Thr Leu Gly Cys Leu Leu Val Ser Arg Val Glu Gln Ala
                                                       Ile Glu
                  Leu Gly Pro Glu Leu Lys Glu Phe
                                                                Pro
                                                                     Trp
 Gln Arg Glu Ser
                                                             30
     Thr Gly
              Ser Lys Gln Pro Ile Leu Ala Ála Val Leu Arg Arg Glu
                                  40
 Cys Gly Gly Gln Ile
       50
<210> 503
<211> 91
<212> PRT
<213> homo sapiens
<400> 503
 Pro Ser Gly Pro Phe Ser Ser Leu Glu Ser Thr Leu Leu Gln Gln
                     5
                                                                 15
  1
                                           10
                   Ile Ala Ser Phe Leu Ser Asp Cys Asn
                                                            Ser
                                                                Pro
 Val
      Gln Ala Ala
                                                                     Ile
                                      25
                                                             30
 Arg
      Phe Pro
              Cys
                   Phe
                        Tyr
                            Ile Cys
                                     Pro
                                         Pro His
                                                   Ser Leu
                                                            Leu
                                                                Asn
                                                                     Thr
           35
                                  40
                                                        45
 Ala
     Ala Arg Met
                   Gly Cys
                            Leu Leu Pro Val Cys
                                                   His Gly
                                                            Ser Ile Asn
       50
                             55
                                                    60
 Ser
     Leu Ser Ser
                   Gly Pro
                            Lys Asp Ser Arg Trp
                                                  Ala Cys Ser Thr Arg
  65
                                               75
                                                                      80
      Thr Ser Arg
                   Gln Pro Ser 'Val Leu Gly Val
                    85
                                           90
<210> 504
<211> 59
<212> PRT
<213> homo sapiens
<400> 504
 Val Phe Ile Tyr Asp
                       Ser Leu Ile Ile Pro Thr Ser Ile Ser
                                                                Ser Val
                                           10
                                                                 15
              Cys
 His
      Thr Val
                   Gln Met
                            Phe His Ala
                                         Glu Pro
                                                   Val
                                                       Ser
                                                            Arg
                                                                Ile
                                                                     Leu
                                                             30
                                      25
 Leu Ser Asp
               Tyr
                   Gly Gly
                            Phe
                                 Thr
                                     Thr
                                         Arg Pro Gly Ser
                                                           Asn
                                                                Ser Leu
           35
                                  40
                                                        45
 Gly Ser Lys Val Gly His Ser Ser Met His Arg
```

<210><211><211><212><213>	72 PRT	sapie	ens												
<400>	505														
Asp 1	Arg	Lys	Phe	Trp 5	Asn	Gln	Lys	Ile	Asp 10	Pro	Val	Phe	Ser	Tyr 15	Ile
Gln	Ser	Ser	Thr 20	Ser	Glu	Phe	Leu	Phe 25	Leu	Asn	Ile	Gly	Val 30	Leu	Ala
Leu	Phe	Leu 35	Lys	Asp	Ala	Leu	Tyr 40	Leu	Lys	Arg	Lys	Leu 45	Asp	Phe	Arg
Thr	Gly 50	Cys	Gly	Ala	Val	Lys 55	Tyr	Phe	Arg	Pro	Arg 60	Ser	Val	Tyr	Thr
Phe 65	Tyr	Arg	Arg	Asn	Glu 70	Val	Leu								
<210><211><212><213>	102 PRT	sapie	ns												
<400>	506														
Ser 1	Ile	Leu	Gly	Pro 5	Gly	Leu	Cys	Thr	His 10	Phe	Ile	Glu	Glu	Met 15	Lys
Tyr	Ser	Glu	Val 20	Phe	Trp	Leu	Pro	Phe 25	His	Phe	Asn	Cys	Val 30	Leu	Asn
Leu	Ser	Asp 35	His	Thr	Tyr	Ile	Val 40	Leu	Leu	Gly	Ala	Val 45	Val	Ser	Phe
Ile	Lys 50	Pro	Leu	Ala	Cys	Val 55	Gln	Lys	Phe	Leu	Lys 60	Gly	Asn	Thr	Ser
Asn 65	Ala	Tyr	Pro	Leu	Leu 70	Ala	·Cys	Tyr	Ala	Ala 75	Cys	Phe	Thr	Ala	Ile 80
Ala	Val	Cys	Phe	Thr 85	Val	Phe	Val	Lys	Ile 90	Pro	Leu	Ser	Pro	Phe 95	Leu
Val	Thr	Gly	Lys 100	Ala	Cys										
<210><211><212><213>	68 PRT	sapie	ns												
<400>	507														
Asn 1	Asn	Glu	His	Lys 5	Met	Leu	Phe	Ile	Ile 10	Thr	Ser	Ile	Cys	Glu 15	Ile
Ser	Tyr	Cys	Lys 20	Thr	Thr	Thr	Gly	Leu 25	Leu	Leu	Asn	Ser	Leu 30	Val	Ile

```
Val Phe Arg Leu Glu Met Pro Pro Thr Leu Val Ile Asn Ile Thr Lys
                                                      45
 Tyr Asn Val Phe Leu Gly Arg His Phe Ile Lys Cys Ile Met Pro Trp
                            55
                                                  60
 Leu Leu Leu Arg
  65
<210> 508
<211> 65
<212> PRT
<213> homo sapiens
<400> 508
 Leu Lys Phe Leu Gln Val Leu Lys Phe Phe Phe Tyr Ser Leu His Trp
                    5
                                         10
 Ile Tyr Val Phe Leu Ile Pro Asn Met Phe Asn Trp Asp Val Cys
               20
                                     25
                                                          3.0
 Ser Arg Ala Ala Arg Gln Thr Phe Lys Ser Asn Ser His
                                                         Thr Ala Glu
           35
                                40
                                                      45
 Leu Ala Phe Leu Leu Thr Gln Lys Phe Arg Lys Leu Thr Val Thr Val
      50
                            55
                                                  60
 Thr
  65
<210> 509
<211> 78
<212> PRT
<213> homo sapiens
<400> 509
 Gly Pro Arg Ala His Trp Pro Leu Pro Asn Thr Met Leu Glu Pro Lys
                                         10
 Arg Ala Asn Met Gly Pro Glu Tyr Asn Gly Asp Ile Phe Met Phe
                                                                 Gln
                                                          30
                                     25
                                                         Ile Ser Ser
 Pro Phe Asn Leu Thr Cys Leu Leu Ser Phe Pro Pro
           35
                                40
                                                      45
 Asn Leu Phe Cys Leu Thr
                          Ile Tyr Tyr Leu Leu Gly Ile Thr Ser Ser
                            55
                                                  60
 Tyr Arg Ile Pro Ser Ser Leu Met Ser Cys Pro Lys Gln Tyr
                        70
                                             75
<210> 510
<211> 63
<212> PRT
<213> homo sapiens
<400> 510
 Ser Leu Lys Leu Gly Phe Leu Asp Val Glu Asn Thr Pro Cys Ala
```

<212> PRT

```
Arg His Ser Ile Leu Tyr Gly Ser Leu Gly Ser Val Val Ala Gly Phe
                                     25
 Gly His Phe Leu
                  Phe Thr Ser Glu Tyr Leu Tyr Phe Leu
                                                          Phe
                                                             Leu Tyr
                                                      45
                                40
 Val Leu Lys Lys Ala Phe Leu Tyr Ile Met Asn Tyr Phe Phe Phe
<210> 511
<211> 53
<212> PRT
<213> homo sapiens
<400> 511
 Ser Phe Val Lys Trp Ser Pro Asn Leu Lys Leu Gly Asn Tyr Glu Glu
 Glu Lys Ile Ala Arg Tyr Leu Leu Arg Ser Ala Cys Arg Ser Ala
              Thr Ile Gly Ser Lys Val Leu Leu Gln Trp Gln Ile
 Gly Leu Val
                                                      45
                                 40
           35
 Trp Pro Leu Ser Gly
      50
<210> 512
<211> 43
<212> PRT
<213> homo sapiens
<400> 512
 Ile Cys Cys Arg Ala Cys His His Trp Lys Gln Gly Pro Thr Ser Val
                                         10
                                             Thr Thr Leu His Arg
 Ala Asp Leu Val Ala Phe Glu Trp Leu Lys
                                     25
                                                           30
 Ala Gly Ala Met His Arg His Pro Ser Leu Pro
           35
<210> 513
<211> 37
<212> PRT
<213> homo sapiens
<400> 513
 Gln Ala Leu Gln Gln Ile Tyr Arg Gln Thr Leu Thr Asp Thr Gly Gln
 Phe Ser Leu Leu Arg Asn Phe Leu Val Leu Ser Trp Val Thr
                                                              Ile Leu
                                     25
 Gln Asn Phe Thr Thr
           35
<210> 514
<211> 228
```

<213> homo sapiens

<400> 514

(400>	514														
Thr 1	Gly	Gly	Ala	Arg 5	Ala	Arg	Arg	Pro	Leu 10	Ser	Ala	Val	Ala	Arg 15	Pro
Ala	Arg	Ser	Ser 20	Asp	Pro	Leu	Arg	Ser 25	Ala	Pro	Leu	Gly	Pro 30	Ala	Pro
Pro	Val	Asn 35	Met	Ile	Arg	Cys	Gly 40	Leu	Ala	Cys	Glu	Arg 45	Cys	Arg	Trp
Ile	Leu 50	Pro	Leu	Leu	Leu	Leu 55	Ser	Ala	Ile	Ala	Phe 60	Asp	Ile	Ile	Ala
Leu 65	Ala	Gly	Arg	Gly	Trp 70	Leu	Gln	Ser	Ser	Asp 75	His	Gly	Gln	Thr	Ser 80
Ser	Leu	Trp	Trp	Lys 85	Cys	Ser	Gln	Glu	Gly 90	Gly	Gly	Ser	Gly	Ser 95	Tyr
Glu	Glu	Gly	Cys 100	Gln	Ser	Leu	Met	Glu 105	Tyr	Ala	Trp	Gly	Arg 110	Ala	Ala
Ala	Ala	Met 115	Leu	Phe	Cys	Gly	Phe 120	Ile	Ile	Leu	Val	Ile 125	Cys	Phe	Ile
Leu	Ser 130	Phe	Phe	Ala	Leu	Cys 135	Gly	Pro	Gln	Met	Leu 140	Val	Phe	Leu	Arg
Val 145	Ile	Gly	Gly	Leu	Leu 150	Ala	Leu	Ala	Ala	Val 155	Phe	Gln	Ile	Ile	Ser 160
Leu	Val	Ile	Tyr	Pro 165	Val	Lys	Tyr	Thr	Gln 170	Thr	Phe	Thr	Leu	His 175	Ala
Asn	Arg	Ala	Val 180	Thr	Tyr	Ile	Tyr	Asn 185	Trp	Ala	Tyr	Gly	Phe 190	Gly	Trp
Ala	Ala	Thr 195	Ile	Ile	Leu	Ile	Gly -200	Cys	Ala	Phe	Phe	Phe 205	Cys	Cys	Leu
Pro	Asn 210	Tyr	Glu	Asp	Asp	Leu 215	Leu	Gly	Asn	Ala	Lys 220	Pro	Arg	Tyr	Phe
Tyr 225	Thr	Ser	Ala												
<210><211><211><212><213>	94 PRT	sapie	ens												
<400>	515														
Asp 1	Pro	Leu	Pro	Pro 5	Pro	Ser	Trp	Glu	His 10	Phe	His	His	Ser	Glu 15	Asp
Val	Trp	Pro	Trp 20	Ser	Leu	Asp	Cys	Asn 25	Gln	Pro	Arg	Pro	Ala 30	Ser	Ala

Met Met Ser Lys Ala Met Ala Leu Ser Arg Ser Arg Gly Arg Ile Gln

35 40 45

Arg Gln Arg Ser Gln Ala Arg Pro Gln Arg Ile Met Leu Thr Gly Gly 50

Ala Gly Pro Ser Gly Ala Glu Arg Ser Gly Ser Glu Glu Arg Ala Gly 65

Arg Ala Thr Ala Glu Ser Gly Leu Arg Ala Arg Ala Pro Pro

<210> 516

<211> 208

<212> PRT

<213> homo sapiens

<400> 516

Thr Leu Pro Lys Asn Gly Phe Lys Val Ala Trp Arg Asn Ser Phe 1 Phe Ser Gln Gln Gln Arg Phe Ser Pro Thr Ile Pro Ser Pro Gly Leu Gly Ile Cys Val Glu Val Ala Gln Lys Lys Leu Gly Arg 45 35 40 Glu Ala Ala Glu Glu Gly Thr Ala Asp Ile Val Val Gly Val Phe 55 Gly Pro Val Gly Pro Pro Lys Ala Val Ile Asp Gln Cys Asp Asn Arg 75 80 65 Thr Val Gly Met Lys Gly Glu Gly Leu Gly Val Leu Val Asp Ser Ser 90 Tyr Gln Gly Asp Ser Gln Gly Asp Leu Glu His Ser His Gly Val Asn 105 110 Ser Gln Glu Asp Lys His Leu Gly Ser Lys Glu Thr Asn His Ser 115 120 125 His Gln Asp Asp Glu Ala Glu Gly Glu Glu Gly Glu Asp Glu Thr Asp 130 135 Thr Pro Arg Val Leu His Glu Gly Ser Arg Cys Ser Thr Glu Glu His 145 150 155 160 Leu Leu Val Gly Pro Ala Ala Ala Ala Leu Leu Gly Ala Leu Thr Ala 170 175 Leu Ala Val Val Ala Arq Leu Pro Gln Arg Gly Arg Ala Phe Pro 180 185 Asp Val Glu Gly Asp Gly Ala Glu Pro Ala Ala Gly Gln Arg Asp 205 200 195

<210> 517

<211> 204

<212> PRT

<213> homo sapiens

Pro 1	Ser	Cys	Pro	Pro 5	Glu	Met	Lys	Lys	Glu 10	Leu	Pro	Val	Asp	Ser 15	Cys ·
Leu	Pro	Arg	Ser 20	Leu	Glu	Leu	His	Pro 25	Gln	Lys	Met	Asp	Pro 30	Lys	Arg
Gln	His	Ile 35	Gln	Leu	Leu	Ser	Ser 40	Leu	Thr	Glu	Cys	Leu 45	Thr	Val	Asp
Pro	Leu 50	Ser	Ala	Ser	Val	Trp 55	Arg	Gln	Leu	Tyr	Pro 60	Lys	His	Leu	Ser
Gln 65	Ser	Ser	Leu	Leu	Leu 70	Glu	His	Leu	Leu	Ser 75	Ser	Trp	Glu	Gln	Ile 80
Pro	Lys	Lys	Val	Gln 85	Lys	Ser	Leu	Gln	Glu 90	Thr	Ile	Gln	Ser	Leu 95	Lys
Leu	Thr	Asn	Gln 100	Glu	Leu	Leu	Arg	Lys 105	Gly	Ser	Ser	Asn	Asn 110	Gln	Asp
Val	Val	Thr 115	Cys	Asp	Met	Ala	Cys 120	Lys	Gly	Leu	Leu	Gln 125	Gln	Val	Gln
Gly	Pro 130	Arg	Leu	Pro	Trp	Thr 135	Arg	Leu	Leu	Leu	Leu 140	Leu	Leu	Val	Phe
Ala 145	Val	Gly	Phe	Leu	Cys 150	His	Asp	Leu	Arg	Ser 155	His	Ser	Ser	Phe	Gln 160
Ala	Ser	Leu	Thr	Gly 165	Arg	Leu	Leu	Arg	Ser 170	Ser	Gly	Phe	Leu	Pro 175	Ala
Ser	Gln	Gln	Ala 180	Cys	Ser	Lys	Phe	Thr 185	Pro	Thr	Val	Cys	Lys 190	Val	Thr
Gly	Trp	Leu 195	Gly	Glu	Lys	Cys	Arg 200	Phe	Gly	Val	Pro				
<210><211><211><212><213>	90 PRT	sapie	ns				•								
<400>	518														
Pro 1	Glu	Val	Met	Ala 5	Gln	Glu	Ala	Tyr	Ser 10	Glu	Asp	Gln	Gln	Gln 15	Gln
Glu	Glu	Pro	Arg 20	Pro	Gly	Gln	Pro	Arg 25	Thr	Leu	Asn	Leu	Leu 30	Gln	Gln
Ala	Leu	Ala 35	Gly	His	Val	Thr	Gly 40	Asp	Asp	Ile	Leu	Val 45	Val	Thr	Ala
Thr	Leu 50	Pro	Gln	Gln	Leu	Leu 55	Val	Gly	Lys	Leu	Glu 60	Gly	Leu	Asn	Gly
Phe 65	Leu	Gln	Arg	Leu	Leu 70	Tyr	Leu	Leu	Gly	Asn 75	Leu	Leu	Pro	Gly	Ala 80

Glu Gln Val Leu Gln Gln Lys Ala Gly Leu

<210><211><212><213>	76 PRT	sapie	ns												-
<400>	519														
Gly 1	Thr	Pro	Lys	Arg 5	His	Phe	Ser	Pro	Asn 10	Gln	Pro	Val	Thr	Leu 15	Gln
Thr	Val	Gly	Val 20	Asn	Leu	Glu	His	Ala 25	Cys	Trp	Leu	Ala	Gly 30	Lys	Lys
Pro	Asp	Asp 35	Arg	Ser	Asn	Arg	Pro 40	Val	Arg	Glu	Ala	Trp 45	Lys	Glu	Leu
Cys	Asp 50	Arg	Arg	Ser	Trp	His 55	Arg	Lys	Pro	Thr	Ala 60	Lys	Thr	Ser	Ser
Asn 65	Arg	Arg	Ser	Arg	Val 70	Gln	Gly	Ser	Arg	Gly 75	Pro				
<210><211><212><213>	355 PRT	sapie	ns												
<400>	520														
Phe 1	Arg	His	Ser	Met 5	Asn	Gly	Cys	Glu	Lys 10	Asp	Ser	Ser	Ser	Thr 15	Asp
Ser	Ala	Asn	Glu 20	Lys	Pro	Ala	Leu	Ile 25	Pro	Arg	Glu	Lys	Lys 30	Ile	Ser
Ile	Leu	Glu 35	Glu	Pro	Ser	Lys	Ala 40	Leu	Arg	Gly	Val	Thr 45	Gly	Pro	Asn
Ile	Glu 50	Lys	Ser	Val	Lys	Asp 55	Leu '	Gln	Arg	Cys	Thr 60	Val	Ser	Leu	Thr
Arg 65	Tyr	Arg	Val	Met	Ile 70	Lys	Glu	Glu	Val	Asp 75	Ser	Ser	Val	Lys	Lys 80
Ile	Lys	Ala	Ala	Phe 85	Ala	Glu	Leu	His	Asn 90	Cys	Ile	Ile	Asp	Lys 95	Glu
Val	Ser	Leu	Met 100	Ala	Glu	Met	Asp	Lys 105	Val	Lys	Glu	Glu	Ala 110	Met	Glu
Ile	Leu	Thr 115	Ala	Arg	Gln	Lys	Lys 120	Ala	Glu	Glu	Leu	Lys 125	Arg	Leu	Thr
Asp	Leu 130	Ala	Ser	Gln	Met	Ala 135	Glu	Met	Gln	Leu	Ala 140	Glu	Leu	Arg	Ala
Glu 145	Ile	Lys	His	Phe	Val 150	Ser	Glu	Arg	Lys	Tyr 155	Asp	Glu	Glu	Leu	Gly 160
Lys	Ala	Ala	Arg	Phe 165	Ser	Cys	Asp	Ile	Glu 170	Gln	Leu	Lys	Ala	Gln 175	Ile

Met	Leu	Cys	Gly 180	Glu	Ile	Thr	His	Pro 185	Lys	Asn	Asn	Tyr	Ser 190	Ser	Arg ·
Thr	Pro	Cys 195	Ser	Ser	Leu	Leu	Pro 200	Leu	Leu	Asn	Ala	His 205	Ala	Ala	Thr
Ser	Gly 210	Lys	Gln	Ser	Asn	Phe 215	Ser	Arg	Lys	Ser	Ser 220	Thr	His	Asn	Lys
Pro 225	Ser	Glu	Gly	Lys	Ala 230	Ala	Asn	Pro	Lys	Met 235	Val	Ser	Ser	Leu	Pro 240
Ser	Thr	Ala	Asp	Pro 245	Ser	His	Gln	Thr	Met 250	Pro	Ala	Asn	Lys	Gln 255	Asn
Gly	Ser	Ser	Asn 260	Gln	Arg	Arg	Arg	Phe 265	Asn	Pro	Gln	Tyr	His 270	Asn	Asn
Arg	Leu	Asn 275	Gly	Pro	Ala	Lys	Ser 280	Gln	Gly	Ser	Gly	Asn 285	Glu	Ala	Glu
Pro	Leu 290	Gly	Lys	Gly	Asn	Ser 295	Arg	His	Glu	His	Arg 300	Arg	Gln	Pro	His
Asn 305	Gly	Phe	Arg	Pro	Lys 310	Asn	Lys	Gly	Gly	Ala 315	Lys	Asn	Gln	Glu	Ala 320
Ser	Leu	Gly	Met	Lys 325	Thr	Pro	Glu	Ala	Pro 330	Ala	His	Ser	Glu	Lys 335	Pro
Arg	Arg	Arg	Gln 340	Ala	Arg	Cys	Arg	Thr 345	Pro	Arg	Glu	Gly	Gln 350	Gly	Pro
Phe	Arg	Gly 355													
<210><211><211><212><213>	120	sapie	ns												
<400>	521						•								
Asn 1	Gln	Asn	Val	Lys 5	Asn	Arg	Gly	Thr	Gln 10	Lys	Lys	Cys	Leu	Pro 15	Ser
Val	Glu	Lys	Leu 20	Pro	Asn	Pro	Pro	Trp 25	Gly	Gln	Lys	Asn	Ala 30	Thr	Val
Lys	Thr	Pro 35	Asn	Arg	Lys	Leu	Thr 40	Pro	Glu	Arg	Pro	Leu 45	Ala	Leu	Pro
Arg	Cys 50	Pro	Ala	Ala	Cys	Leu 55	Pro	Ser	Pro	Gly	Leu 60	Phe	Arg	Met	Gly
Arg 65	Gly	Leu	Gly	Gly	Leu 70	His	Pro	Gln	Gly	Ser 75	Leu	Leu	Ile	Phe	Gly 80
Thr	Ala	Phe	Val	Phe 85	Gly	Pro	Glu	Ala	Val 90	Val	Arg	Leu	Ser	Ser 95	Val
Phe	Val	Ala	Ala	Val	Ala	Leu	Ser	Gln	Trp	Leu	Gly	Phe	Ile	Pro	Thr

110 100 105

Ala Leu Arg Leu Gly Arg Pro Ile 120 115

<210> 522

<211> 116

<212> PRT

<213> homo sapiens

<400> 522

Arg 1	Ala	Val	Arg	Ile 5	Ser	Met	Ala	Ser	Ser 10	Leu	Thr	Leu	Ser	Ile 15	Ser
Ala	Ile	Asn	Glu 20	Thr	Ser	Leu	Ser	Met 25	Met	Gln	Leu	Cys	Asn 30	Ser	Ala
Lys	Ala	Ala 35	Leu	Ile	Phe	Phe	Thr 40	Glu	Leu	Ser	Thr	Ser 45	Ser	Leu	Ile
Met	Thr 50	Arg	Tyr	Leu	Val	Arg 55	Glu	Thr	Val	Gln	Arg 60	Cys	Lys	Ser	Phe
Thr 65	Asp	Phe	Ser	Ile	Phe 70	Gly	Pro	Val	Thr	Pro 75	Arg	Ser	Ala	Phe	Glu 80
Gly	Ser	Ser	Ser	Ile 85	Glu	Ile	Phe	Phe	Ser 90	Arg	Gly	Ile	Arg	Ala 95	Gly
Phe	Ser	Leu	Ala 100	Glu	Ser	Val	Asp	Glu 105	Leu	Ser	Phe	Ser	Gln 110	Pro	Phe
Met		Cys 115	Arg												

<210> 523

<211> 130 <212> PRT <213> homo sapiens

<400> 523

Arg 1	Arg	Gln	Arg	Lys 5	Ala	Glu	Pro	Gly	Ala 10	Cys	Ala	Leu	Gly	Arg 15	Val
Gly	Ser	Glu	Cys 20	Ile	Pro	Glu	Pro	Gly 25	Ala	Arg	Arg	Thr	Ala 30	Gln	Ala
Ala	Gly	Leu 35	Arg	Ser	Val	Ser	Gly 40	Ala	Ala	Asn	Thr	Lys 45	Val	Arg	Glu
Leu	Lys 50	His	Phe	Arg	Phe	Leu 55	Gly	Leu	Leu	Arg	Ser 60	Cys	Arg	Ser	Glu
Met 65	Glu	Val	Asp	Ala	Pro 70	Gly	Val	Asp	Gly	Arg 75	Asp	Gly	Leu	Arg	Glu 80
Arg	Arg	Gly	Phe	Ser 85	Glu	Gly	Gly	Arg	Gln 90	Asn	Phe	Asp	Val	Arg 95	Pro
Gln	Ser	Gly	Ala 100	Asn	Gly	Leu	Pro	Lys 105	His	Ser	Tyr	Trp	Leu 110	Asp	Leu

Trp	Leu	Phe 115	Ile	Leu	Phe	Asp	Val 120	Val	Val	Phe	Leu	Phe 125	Val	Tyr	Phe '
Leu	Pro 130														
<210><211><211><212><213>	78 PRT	sapie	ns												
<400>	524														
Ile 1	Ser	Ala	Asn	Lys 5	Ser	Trp	Gln	Lys	Ile 10	His	Lys	Glu	Lys	His 15	His
His	Ile	Glu	Lys 20	Asp	Glu	Lys	Pro	Glu 25	Val	Gln	Pro	Val	Gly 30	Val	Phe
Gly	Lys	Pro 35	Ile	Cys	Pro	Arg	Leu 40	Arg	Pro	His	Ile	Glu 45	Val	Leu	Pro
Pro	Ser 50	Leu	Ala	Lys	Ala	Ser 55	Pro	Leu	Pro	Glu	Thr 60	Ile	Ser	Thr	Ile
Asn 65	Thr	Arg	Cys	Val	His 70	Leu	His	Leu	Ala	Pro 75	Ala	Ala	Ser		
<210><211><211>	95														
<213>		sapie	ns												
<213> <400>	homo	sapie	ns												
<400>	homo	sapie Thr		Lys 5	Phe	Cys	Leu	Pro	Pro 10	Ser	Leu	Lys	Pro	Arg 15	Arg
<400>	homo 525 Leu	-		_		Cys Pro		Pro Thr 25	10		Leu Ala		Pro Thr 30	_	Arg Ile
<400> Gly 1	homo 525 Leu	Thr Arg	Ser Pro 20	5	Arg	Pro	Ser	Thr 25	10 Pro	Gly	Ala	Ser	Thr	15 Ser	Ile
<400> Gly 1 Ser	homo 525 Leu Arg Leu	Thr Arg Leu 35	Ser Pro 20 Gln	5 Ser	Arg Arg	Pro Asn	Ser Asn	Thr 25 Pro	10 Pro Arg	Gly Asn	Ala Arg	Ser Lys 45	Thr 30	15 Ser Leu	Ile
<400> Gly 1 Ser	homo 525 Leu Arg Leu Arg 50	Thr Arg Leu 35	Ser Pro 20 Gln Leu	5 Ser Leu Val	Arg Arg Phe	Pro Asn Ala 55	Ser Asn 40	Thr 25 Pro	10 Pro Arg Glu	Gly Asn Thr	Ala Arg Glu 60	Ser Lys 45 Arg	Thr 30 Cys	15 Ser Leu Pro	Ile
<400> Gly 1 Ser Ser Ala	homo 525 Leu Arg Leu Arg 50	Thr Arg Leu 35 Thr	Ser Pro 20 Gln Leu Val	5 Ser Leu Val	Arg Phe Arg 70	Pro Asn Ala 55	Ser Asn 40 Ala	Thr 25 Pro Pro	10 Pro Arg Glu Ser	Gly Asn Thr Gly 75	Ala Arg Glu 60 Met	Ser Lys 45 Arg	Thr 30 Cys Ser	15 Ser Leu Pro	Ile Ser Ala
<400> Gly 1 Ser Ser Ala 65	homo 525 Leu Arg Leu Arg 50 Cys Leu 526 112 PRT	Thr Arg Leu 35 Thr Ala	Pro 20 Gln Leu Val	Ser Leu Val Arg	Arg Phe Arg 70	Pro Asn Ala 55	Ser Asn 40 Ala	Thr 25 Pro Pro	10 Pro Arg Glu Ser	Gly Asn Thr Gly 75	Ala Arg Glu 60 Met	Ser Lys 45 Arg	Thr 30 Cys Ser	Ser Leu Pro Glu Leu	Ile Ser Ala
<pre><400> Gly 1 Ser Ser Ser Ala 65 Thr <210> <211> <212></pre>	homo 525 Leu Arg Leu Arg 50 Cys Leu 526 112 PRT homo	Thr Arg Leu 35 Thr Ala	Pro 20 Gln Leu Val	Ser Leu Val Arg	Arg Phe Arg 70	Pro Asn Ala 55	Ser Asn 40 Ala	Thr 25 Pro Pro	10 Pro Arg Glu Ser	Gly Asn Thr Gly 75	Ala Arg Glu 60 Met	Ser Lys 45 Arg	Thr 30 Cys Ser	Ser Leu Pro Glu Leu	Ile Ser Ala

Gln	Gln	His	Arg 20	Ala	Val	Tyr	Asn	Ser 25	Phe	Ser	Phe	Pro	Gly 30	Gln	Ala ·
Ala	Arg	Tyr 35	Pro	Trp	Met	Ala	Phe 40	Pro	Arg	Asn	Ser	Ile 45	Met	His	Leu
Asn	His 50	Thr	Ala	Asn	Pro	Thr 55	Ser	Asn	Ser	Asn	Phe 60	Leu	Asp	Leu	Asn
Leu 65	Pro	Pro	Gln	His	Asn 70	Thr	Gly	Leu	Gly	Gly 75	Ile	Pro	Val	Ala	Gly 80
Glu	Glu	Glu	Val	Lys 85	Val	Ser	Thr	Met	Pro 90	Leu	Ser	Thr	Ser	Ser 95	His
Ser	Leu	Gln	Gln 100	Gly	Gln	Gln	Pro	Thr 105	Ser	Leu	His	Thr	Thr 110	Val	Ala
<210><211><211><212><213>	72 PRT	sapie	ns												
<400>	527														
Arg 1	Phe	Arg	Pro	Cys 5	His	Cys	Gln	Pro	Leu 10	Pro	Ile	His	Tyr	Asn 15	Lys
Asp	Ser	Ser	Leu 20	Gln	Val	Ser	Thr	Leu 25	Leu	Trp	Pro	Asp	Asn 30	Arg	Thr
Glu	Arg	Arg 35	Gly	Leu	Asp	Ser	Gly 40	Val	Leu	Ala	Trp	Ala 45	Thr	Gly	Phe
Leu	His 50	Asp	Ser	Phe	Met	Ile 55	Leu	Leu	Leu	Met	Tyr 60	Thr	Pro	Arg	Arg
Ala 65	Asn	Ile	Asn	Val	Pro 70	His	Ala								
<210><211><212><213>	102 PRT	sapie	ens				•								
<400>	528														
Arg 1	Asn	His	Ala	Lys 5	Ile	Gln	Leu	Pro	Met 10	Gln	Ala	Pro	Gln	Ser 15	Leu
Ile	Leu	Ser	Ser 20	Gln	Phe	Cys	Cys	Gln 25	Ala	Thr	Val	Val	Trp 30	Arg	Leu
Val	Gly	Cy s 3 5	Cys	Pro	Cys	Cys	Asn 40	Glu	Trp	Glu	Glu	Val 45	Asp	Ser	Gly
Met	Val 50	Glu	Thr	Phe	Thr	Ser 55	Ser	Ser	Pro	Ala	Thr 60	Gly	Ile	Pro	Pro
Arg 65	Pro	Val	Leu	Cys	Cys 70	Gly	Gly	Arg	Phe	Lys 75	Ser	Lys	Lys	Leu	Leu 80

```
Phe Glu Val Gly Phe
                         Ala Val Trp Phe Lys Cys Met Met
                                                                 Leu Leu
                                                90
                Ile Gln Glv
 Gly Lys
           Ala
                 100
<210> 529
<400> 529
000
<210> 530
<400> 530
000
<210> 531
<211> 1708
<212> DNA
<213> homo sapiens
<400> 531
 cctggaaaca agatccaaac ccaagtgacc ccgccggaaa gtgacccagt caggtttaaa
 aattccaaca aaccgacgtg aacaaataga ccgaccaacc aaatatacaa tccgtcaaaa 120
 tacattcact tecaetacga aaccccaaca aagggtgtga atgcccgccc aggagagacg 180
 gttttggttt catcaagtgt gtggatcgtg atgttcgtat gttcttccac ttcagtgaaa 240
 ttctggatgg gaaccagete catattgeag atgaagtaga gtttactgtg gttcctgata 300
 tgctctctgc tcaaagaaat catgctatta ggattaaaaa acttcccaag ggcacggttt 360
 catttcattc ccattcagat caccgttttc tgggcacggt agaaaaagaa gccacttttt 420
 ccaatcctaa aaccactagc ccaaataaag gcaaagagaa ggaggctgag gatggcatta 480
 ttgcttatga tgactgtggg gtgaaactga ctattgcttt tcaagccaag gatgtggaag 540
 gatctacttc tcctcaaata ggagataagg ttgaatttag tattagtgac aaacagaggc 600
 ctggacagca ggttgcaact tgtgtgcgac ttttaggtcg taattctaac tccaagaggc 660
 tettgggtta tgtggeaact etgaaggata attttggatt tattgaaaca gecaateatg 720
 ataaggaaat ettitteeat taeagtgagt tetetggtga tgttgatage etggaactgg 780
 gggacatggt cgagtatagc ttgtccaaag gcaaaggcaa caaagtcagt gcagaaaaag 840
 tgaacaaaac acactcagtg aatggcatta ctgaggaagc tgatcccacc atttactctg 900
 gcaaagtaat tegeeceetg aggagtgttg atccaacaca gactgagtac caaggaatga 960
 ttgagattgt ggaggagggc gatatgaaag gtgaggtcta tccatttggc atcgttggga1020
 tggccaacaa aggggattgc ctgcagaaag gggagagcgt caagttccaa ttgtgtgtcc1080
 tgggccaaaa tgcacaaact atggcttaca acatcacacc cctgcgcagg gccacagtgg1140
 aatgtgtgaa agatcagttt ggcttcatta actatgaagt aggagatagc aagaagctct1200
 ttttccatgt gaaagaagtt caggatggca ttgagctaca ggcaggagat gaggtggagt1260
 totcagtgat tottaatcag cgcactggca agtgcagcgc ctgtaatgtt tggcgagtct1320
 gtgagggccc caaggetgtt gcagctcctc gacctgatcg gttggtcaat cgcttgaaga1380
 atateactet ggatgatgee agtgeteete geetaatggt tettegteag ceaaggggac1440
 cagataactc aatggggttt ggtgcagaaa gaaagatccg tcaagctggt gtcattgact1500
 aaccacatec acaaagcaca ccattaatec actatgatea agttgggggg aatetggtga1560
 agggttctga atatctccct cttcatccct cccgaaatct ggaatactta ttctattgag1620
 ctattacacc agttttaaca ccttcctcgt gttatgttta aaaaaataaa taaatttaag1680
 aaaaccattt taaataatga aaagttgg
<210> 532
<211> 2128
<212> DNA
<213> homo sapiens
<400> 532
 ctgtatccta atttcttggt gaatgaactc attcttaaac agaagcaaag atttgaggaa
 aagaggttca aattggacca ctcagtgagt agcaccaatg gccacaggtg gcagatattt 120
 caagattggt tgggaactga ccaagataac cttgatttgg ccaatgtcaa tcttatgttg 180
 gagttactag tgcagaagaa gaaacaactg gaagcagaat cacatgcagc ccaactacag 240
```

95

```
attottatgg aattootoaa ggttgcaaga agaaataaga gagagcaact ggaacagatc 300
cagaaggagc taagtgtttt ggaagaggat attaagagag tggaagaaat gagtggctta 360
tactctcctg tcagtgagga tagcacagtg cctcaatttg aagctccttc tccatcacac 420
agtagtatta ttgattccac agaatacagc caacctccag gtttcagtgg cagttctcag 480
acaaagaaac agccttggta taatagcacg ttagcatcaa gacgaaaacg acttactgct 540
cattttgaag acttggagca gtgttacttt tctacaagga tgtctcgtat ctcagatgac 600
agtcgaactg caagccagtt ggatgaattt caggaatgct tgtccaagtt tactcgatat 660
aattcagtac gacctttagc cacattgtca tatgctagtg atctctataa tggttccagt 720
atagteteta gtattgaatt tgacegggat tgtgactatt ttgegattge tggagttaea 780
aagaagatta aagtetatga atatgacact gtcatccagg atgcagtgga tattcattac 840
cctgagaatg aaatgacctg caattcgaaa atcagctgta tcagttggag tagttaccat 900
aagaacctgt tagctagcag tgattatgaa ggcactgtta ttttatggga tggattcaca 960
ggacagaggt caaaggtcta tcaggagcat gagaagaggt gttggagtgt tgactttaat1020
ttgatggatc ctaaactctt ggcttcaggt tctgatgatg caaaagtgaa gctgtggtct1080
accaatctag acaactcagt ggcaagcatt gaggcaaagg ctaatgtgtg ctgtgttaaa1140
ttcagcccct cttccagata ccatttggct ttcggctgtg cagatcactg tgtccactac1200
tatgatette gtaacactaa acagecaate atggtattea aaggacaeeg taaageagte1260
tcttatgcaa agtttgtgag tggtgaggaa attgtctctg cctcaacaga cagtcagcta1320
aaactgtgga atgtagggaa accatactgc ctacgttcct tcaagggtca tatcaatgaa1380
aaaaactttg taggcctggc ttccaatgga gattatatag cttgtggaag tgaaaataac1440
totototaco tgtactataa aggactttot aagactttgc taacttttaa gtttgataca1500
gtcaaaagtg ttctcgacaa agaccgaaaa gaagatgata caaatgaatt tgttagtgct1560
qtqtqctqqa qqqcactacc agatggggag tccaatgtgc tgattgctgc taacagtcag1620
ggtacaatta aggtgctaga attggtatga agggttaact caagtcaaat tgtacttgat1680
cctgctgaaa tacatctgca gctgacaatg agagaagaaa cagaaaatgt catgtgatgt1740
ctctccccaa aqtcatcatg ggttttggat ttgttttgaa tatttttttc ttttttctt1800
ttccctcctt tatgaccttt gggacattgg gaatacccag ccaactctcc accatcaatg1860
taactccatg gacattgctg ctcttggtgg tgttatctaa tttttgtgat agggaaacaa1920
attettttga ataaaaataa ataacaaaac aataaaagtt tattgagcca caaaaaaaaa1980
aaaaaaaaaa aaaaaaaaa acaaaagaga aaacaaaggt tacgaagtag catatgtgaa2040
ctataatgta acagtgaata atttgtaaag ttcgtatttc ccaacctctt tgggaattac2100
acatatcaat ataaacaaaa tataaagt
                                                                 2128
```

```
<210> 533
<211> 2640
<212> DNA
<213> homo sapiens
```

```
ctagcaagca ggtaaacgag ctttgtacaa acacacag accaacacat ccggggatgg
ctgtgtgttg ctagagcaga ggctgattaa acactcagtg tgttggctct ctgtgccact 120
cctggaaaat aatgaattgg gtaaggaaca gttaataaga aaatgtgcct tgctaactgt 180
gcacattaca acaaagaget ggcageteet gaaggaaaag ggcttgtgee getgeegtte 240
aaacttgtca gtcaactcat gccagcagcc tcagcgtctg cctccccagc acaccctcat 300
tacatgtgtc tgtctggcct gatctgtgca tctgctcgga gacgctcctg acaagtcggg 360
aattteteta titeteeact ggtgeaaaga geggatttet eectgettet ettetgteae 420
ccccgctcct ctcccccagg aggctccttg atttatggta gctttggact tgcttccccg 480
totgactgtc cttgacttct agaatggaag aagctgagct ggtgaaggga agactccagg 540
ccatcacaga taaaagaaaa atacaggaag aaatctcaca gaagcgtctg aaaatagagg 600
aagacaaact aaagcaccag catttgaaga aaaaggcctt gagggagaaa tggcttctag 660
atggaatcag cagcggaaaa gaacaggaag agatgaagaa gcaaaatcaa caagaccagc 720
accagateca ggttetagaa caaagtatee teaggettga gaaagagate caagatettg 780
aaaaagctga actgcaaatc tcaacgaagg aagaggccat tttaaagaaa ctaaagtcaa 840
ttgagcggac aacagaagac attataagat ctgtgaaagt ggaaagagaa gaaagagcag 900
aagagtcaat tgaggacate tatgctaata teeetgaeet teeaaagtee tacatacett 960
ctaggttaag gaaggagata aatgaagaaa aagaagatga tgaacaaaat aggaaagctt1020
tatatgccat ggaaattaaa gttgaaaaag acttgaagac tggagaaagt acagttctgt1080
cttccaatac ctctggccat cagatgactt taaaaggtac aggagtaaaa gtttaagatg1140
atgggcaaaa gtccagtgta ttcagtaaag tgctaatcac aagttggagg tcaatggcac1200
cgatggcctg gcaccagttg aagtagagga acttctaaga caagcctcag agagaaactc1260
taaatcccca acagagtatc atgagcctgt atatgccaat cccttttaca ggcctacaac1320
```

```
cccacagaga gaaacggtga cccctggacc aaactttcaa gaaaggataa agattaaaac1380
taatggactg ggtattggtg taaatgaatc catacacaat atgggcaatg gtctttcaga1440
ggaaagggga aacaacttca atcacatcag teccatteeg ecagtgeete ateccegate1500
agtgattcaa caagcagaag agaagcttca caccccgcaa aaaaggctaa tgactccttg1560
ggaagaatcg aatgtcatgc aggacaaaga tgcaccctct ccaaagccaa ggctgagccc1620
cagagagaca atatttggga aatctgaaca ccagaattct tcacccactt gtcaggagga1680
cgaggaagat gtcagatata atatcgttca ttccctgcct ccagacataa atgatacaga1740
accggtgaca atgattttca tggggtatca gcaggcagaa gacagtgaag aagataagaa1800
gtttctgaca ggatatgatg ggatcatcca tgctgagctg gttgtgattg atgatgagga1860
ggaggaggat gaaggagaag cagagaaacc gtcctaccac cccatagctc cccatagtca1920
ggtgtaccag ccagccaaac caacaccact tcctagaaaa agatcagaag ctagtcctca1980
tgaaaacaca aatcataaat cccccacaa aaattccata tctctgaaag agcaagaaga2040
aagettagge agecetgtee accatteece atttgatget cagacaactg gagatgggac2100
tgaggatcca tccttaacag ctttaaggat gagaatggca aagctgggaa aaaaggtgat2160
ctaagagttg taccacctat ataaacatcc tttgaagaag aaactaagaa gcatttgcaa2220
atttctcttc tggatatttt gtttattttt tctgaagtcc aaaaaattat cattacagtg2280
taccatatta agccatgtga ataagtagta gtcattattt gtgaaaaatt cccaaaaagc2340
tggggaaaac aaatgtgtaa cttttccagt tacttgacac gattcagtgg gggaaaacca2400
gcatttttta ttctattgat accaaagcat ttctaataag agcttgttaa atttaagaat2460
aaagttattt aaaatattct gagtatagta tattaactgg cattgtaatt ttgatgatac2520
aaagattgaa agatcatagg aaagcattgc ccttcatcac agaagtattc aactctgaca2580
aataaatatg tcatcctgaa ttaataatgc cttaataaaa gtacatcctc ctgctaaaaa2640
<210> 534
<211> 1245
<212> DNA
<213> homo sapiens
<400> 534
 tgcagcgcgt gcgtgctgcg ctactgagca gcgccatgga ggactctgaa gcactgggct
 togaacacat gggcotogat cocoggotoc ttcaggctgt caccgatctg ggctggtcgc 120
gacctacgct gatccaggag aaggccatcc cactggccct agaagggaag gacctcctgg 180
 ctcgggcccg cacgggctcc gggaagacgg ccgcttatgc tattccgatg ctgcagctgt 240
 tgctccatag gaaggcgaca ggtccggtgg tagaacaggc agtgagaggc cttgttcttg 300
 ttcctaccaa ggagctggca cggcaagcac agtccatgat tcagcagctg gctacctact 360
 gtgctcggga tgtccgagtg gccaatgtct cagctgctga agactcagtc tctcagagag 420
 ctgtgctgat ggagaagcca gatgtggtag tagggacccc atctcgcata ttaagccact 480
 tgcagcaaga cagcctgaaa cttcgtgact ccctggagct tttggtggtg gacgaagctg 540
 accttctttt ttcctttggc tttgaagaag agctcaagag tctcctctag tcacttgccc 600
 cggatttacc aggcttttct catgtcagct acttttaacg aggacgtaca agcactcaag 660
 gagetgatat tacataacce ggttaccett aagttacagg agteecaget geetgggeca 720
 gaccagttac agcagtttca ggtggtctgt gagactgagg aagacaaatt cctcctgctg 780
 tatgccctgc tcaagctgtc attgattcgg ggcaagtctc tgctctttgt caacactcta 840
 gaacggagtt accggctacg cetgttettg gaacagttea geateceeae etgtgtgete 900
 aatggagage ttccactgeg ctccaggtge cacatcatet cacagttcaa ccaaggette 960
 tacgactgtg tcatagcaac tgatgctgaa gtcctggggg ccccacgtca acgggcaatg1020
 cgaccccggc gacgagccaa aacggggaca atggcctctc gattcctgga acgcacggtc1080
 gtggccctgg ggcactagac cttccaccat cgtgtctgca tgtgctcaac ttttgatctt1140
 ccccccaac ccctgaggcc taacatccat cgagcttggc aggacagcaa cgcgctaaca1200
 acccagggca taggtcttaa cctttggtgc tttcccacgg aggcg
                                                                  1245
<210> 535
<211> 822
<212> DNA
<213> homo sapiens
<400> 535
```

aagatcggtc tttgtcctta tccttatcct tattctaatg gcagttagat gcnnttcttt 60 agagggggca atgagacagc caggtgggaa ggggtcccca gagaaactcc agcctgcaca120 ctgggaggag tgtgcactgg ggtgaagcca ccggaagttt gcgccatctc cagtggggaa180

```
gageceagec cetectete etgggtgga aactgegatt caaactgeca ggtgggaagt240 ceatgggeag gaaacagget etegntitge taagagtete tgttteece tttttteett300 tatgeetaat taataaatte cattttee accetteaaa cageetgtga geetaaattt360 ttgtggeeat gggacagaca aggaceegt etteagetga actaaggaga aagteecea420 acaatgggaa gaaaggeagg gagtagacat ecaattteet ggegtggatt gtggaggggt480 accatggtte tgaceagatg tgtateagga getgtgttge aggaagtete aggaatgaag540 ttgatagett teetteeate acatgatgae tgaaaagaeg aaggeateta atgagttaga600 gtcacaccat eteatgeetg tatacetatea aacaactttt gggaaggetag eettggttgg660 gaaaacatea tttettaaet gaatgeetgg atgeaageaa agteteatte ttgateatga720 tgagggttae catggttaat teettggata geaaataget eg 822
```

<210> 536 <211> 2703 <212> DNA <213> homo sapiens

<400> 536

agttcggcac agggggagga acctggccct gggaggaggc tgttgcgtgc tcctagagaa tecegttetg aagggaagag catgtttgeg ggegteecea ceatgegtga gageteecee 120 aaacagtaca tgcagctcgg aggcagggtc ttgctggttc tgatgttcat gaccctcctt 180 cactttgacg ccagettett ttetattgte cagaacateg tggngcacan getetgatga 240 ttttnagtgg ccattggttt taaaaccaag ctggctgctt tgactcttgt tgtgtggctc 300 tttqccatca acgtatattt caacgccttc tggaccattc cagtctacaa ngcccatgca 360 tgacttccnt gaaatacgac nttcttccag accatgtcgg tgattggggg cttgctcctg 420 gntggntggc cctgggccct ngggggtgtc tccatggatg agaagaagaa ggagtggtaa 480 cagtcacaga tecetacetg cetggentna agaccengtn ggeegtcaag gnactggntt 540 cnggggtgga ttcaacnaaa anctgnccag cttttnatgt atcctcttcc cttcccctcc 600 cttggtaaag gcacagatgt tttgagaanc tttatttgca gagacacctg agaatncgat 660 ggnctcagtc tgctctggag ccacagtctg gcgtctgacc cttcagtngc aggccnagcc 720 tggcangetg gnaagcente eccenaegee gaggetttng gnagtgaane agneeegett 780 nggnctgtgg catchtcagt contatttt gagttttttt gtgggggtan ncaggagggg 840 gccttcaagc tgtactgtga ngcagacgca nttggtatta tcattcaaag cagtctccct 900 cttnatttgt aagtttnaca tttttnnagc ggaaactact aaattatttt gggntggttc 960 agccaaacct caaaacagtt aatctcccnt ggntttnaaa atcacaccag tggnctttng1020 atgttgtttc tgccccgcat tngtatttta taggnnaata gtgaaaacat ttagggnaca1080 cccaanagaa tgatngcagt attaaagggg tggtagaagc tgctgtttat gataaaagtc1140 atcggtcaga aaatcagctt ggattnggtg ccaagtgnnn ttttattggg taacaccctg1200 ggagttttag tagcttgagg caaggtggag ggġcaagaag tccttgggga agctgctggt1260 ctgggtngct ngctggcctc caagctggca gtgggaaggg ctagtgnaga ccacacangg1320 ggtagccccn agcagcagca ccctgcaang ccagccntgg ccnagctnng ctcnagacca1380 genttngcag angeegeagn eegetgtnng ggeanggggg tgtnggeagg ageteeenag1440 cactnggnag acccacggac ntcaacccag ttnacctcac atggggccnt tttcntgagc1500 aaggtetneg aaagegeagg eegeeetggn etgageagea eegeeettte eeagetgeae1560 tegecetgtg gaeageeeeg acaccane ttteetngag getgtegete acteagattg1620 tccgtttgct atgccgaatg cagccaaaan ttccttttta caatttgtga tgccttaccg1680 atttgatett aateetgtat ttaaagtttt etaacaetgn neettaaaet gtgtttetet1740 ttttggggga gcttaactgc ttgttgctcc ctgtcgtctn gcaccatagt aaatgccaca1800 agggtagteg aacacetete tggcccctag acetatetgg ggacaggetg geteagnetg1860 tetnecangg getgetgegg cecageceeg ageetgeete cetettggne eteteateca1920 ttggnctctg cagggcangg ggtgaggcag gtttctngcn tcataagtgc ttttnggaag1980 tcacctacct ttttaacaca gccgaactan gtcccaacgc gntttgcaaa tattcccctn2040 ggtagcctac ttnccttanc ccccgaanta ttggtaagat cgagcaatgg nncttcagga2100 ncatngggtt ctcttctcct gtgatcattn caagtgctca ctgcnatnga angactnggc2160 ttgntcntca gtgtttcnaa cctncaccag ggcntgtctc ttggtccacn acctcgctcc2220 ctgttagtgc cgtatgacag ccccnatcn aaatgacctt ggccnaagtn cacnggtttc2280 tctgtggtnc aaggttggtt ggctgattgg tggaaangtn agggtgngac cnaaanggag2340 gnccacgtga ngcagntcna gcaccanngt tnctgcancc agcagcngcc tccgtnccta2400 gtgggtgttn cetngttten tneetggeee ntgggtnggg etnagggnee tgattegggn2460 aangatgeet ttgneanggg aggggaggan taagtgggat etacenaant tngattetgg2520

<210> 537 <211> 2664 <212> DNA <213> homo sapiens

<400> 537

ctcccaggga gtgctgagta gtgatggtgt ctggagggtc aaatccattc ccaatggcaa 60 aggtteetea ecaeteecea eegetaeaae tecaaaaeea ettateeeta eagaggeeag 120 catcagggtc tggggcacga gcggcacgag ccatctccat ccccggagca tctgtatgat 180 tcagaagtac aaccacgatg gggaagcagg tcggctggag gcttttagcc aaggggaaag 240 tgtcctaaag gaacccaagt accaggaaga gctggaggac aggctgcatt tctacgtgga 300 ggaatgtgac tacttgcagg gettccagat eetgtgtgac etgcaegatg gettetetgg 360 ggtaggcgcg aaggcggcag agctgctaca agatgaatat tcagggcggg gaataataac 420 ctggggcctg ctacctggtc cctaccatcg tggggaggcc cagagaaaca tctatcgtct 480 attaaacaca gettttggte tegtgeacet gaetgeteae agetetettg tetgeecett 540 gtccttgggt gggagcctgg gcctgcgacc cgagccacct gtcagcttcc cttacctgca 600 ttatgatgcc actctgccct tccactgcag tgccatcctg gctacagccc tggacacagt 660 cactgtteet tategeetgt gtteetetee agttteeatg gtteatetgg etgacatget 720 gagettetgt gggaaaaagg tggtgaeage aggageaate atecetttee eettggetee 780 aggecagtee etteetgatt ceetgatgea gtttggagga gecaceceat ggaceceaet 840 gtctgcatgt ggggagcctt ctggaacacg ttgctttgcc cagtcagtgg tgctgagggg 900 gtatagacag agcatgccac acaagccaca gaaccaaagg gacacctcca ccctctgccc 960 ttcatgcatg taccactggg gaagaaatct tggctcagta tttacaacag cagcagcctg1020 gagtcatgag ttcttcccat ctgctgctga ctccctgcag ggtggctcct ccttaccccc1080 acctettete aagetgeagt ceaeegggta tggttetgga tggtteeece aagggageag1140 gtcctctgtt tccctctccc ttccacagca gtggagagca tcccagtgtt tggggcactg1200 tgttcctctt cgtccctgca ccagaccctg gaagccttgg ccagagacct caccaaactc1260 gacttgcggc gctgggccag cttcatggat gctggagtgg agcacgatga cgtagcagag1320 ctgctgcagg agctacaaag cctggcccag tgctaccagg gtggtgacag cctcgtggac1380 taaagttccc agtgtgggag aaaggagcta gtttgcaata aaaacagctg gatgcaggag1440 cccagtgtct tcatgcagag gagctcaatg tcgcgggact agctacacca acatatgcac1500 tttttacatt tagaaacact gtgattagac cacagaacaa taaatatgtg ccatcagacc1560 aaaaaaaagt agagaaagga gctgaactcc actctcgatg ctatttacag aggacatctg1620 taaagtette ataaaagace ttgaatgatg eetaggatgg eagageeeet gggteetaet1680 ccatcctcca gectttgtcc ttgtcctggc ctcctgctct ccagatctgt aaactgggct1740 caaggactgt acaagcagag tacaactacc ccctccccgg tgccagggcg cctgttgggt1800 ttggtcctgt gtagatgatt cccagagtct cattcatcca gctcctcttc agacagaagg1860 tececatggt cagacagetg gtetgeattg etggtactgg ttgcateate eteatectca1920 gagctggctt cacaggcagt gtggaagagc tgcatgagtt ctcgaaaacg gtgggaaacc1980 tcagcagggg tcttatttcc cagctgctgg gagatgatgt tgaaggtctg tggctgtgcc2040 cettgetect ggcacatggt gaggateaca eggteagett ecettgteca eaggacaace2100 ttttccccag tggagctgac cttgctgttg ttggcacaca ccgtagcttc tgcggccttt2160 ggctgctgct ccccctctgg acccttggcc tgtgttccac tgtctttagc caaaccccct2220 ctaggggctt tgggagaagt ctctgaggtg tcaattcctg atggagattc atggacaggg2280 cacgtcctgt ctcttgtctt caccctagct ctgcttgagg gcagccatct ctcttgagtg2340 totggtttcc cggacacatg tottctccct gcatctctgg totttgagga aacaggactc2400 aggaaggaag cagggggttc cacggtacca ggcaatttct cagtttctga tgcatcccag2460 accagcatca aagcctctga ctcactcact gccttttggc cctccctctc tttctgaagt2520 ctgggggatg ccttggggca ggagcgaacc tcaggcccaa cctggtttct cttaacagtg2580 tacagtacag ctccagttgt ggggggaaat tgaggagtct ctggtgaatg aggtggtggg2640 2664 ccatccagga ggagccgttc tgta

<210> 538 <211> 3888 <212> DNA gaatteeege eeggaetgae ggageeeact geggtgeggg egttggegeg ggeaeggagg 60 accegggcag gcagegcaag egacecegag eggageceeg gagecatgge eetgagegag 120 ctggegetgg teegetgget geaggagage egeegetege ggaageteat cetgtteate 180 gtgttcctgg cgctgctgct ggacaacatg ctgctcactg tcgtggtccc catcatccca 240 qtqcacactg cctccatctc agacagcttc cagagcatct tctcctatta tgataactcg 360 actatggtca cegggaatgc taccagagac etgacacttc atcagacegc cacacageac 420 atggtgacca acgcgtccgc tgttccttcc gactgtccca gtgaagacaa agacctcctg 480 aatgaaaacg tgcaagttgg tctgttgttt gcctcgaaag ccaccgtcca gctcatcacc 540 aaccetttea taggaetaet gaecaacaga attggetate caatteecat atttgeggga 600 ttctgcatca tgtttgtctc aacaattatg tttgccttct ccagcagcta tgccttcctg 660 etgattgeca ggtegetgea gggeategge tegteetget eetetgtgge tgggatggge 720 atgcttgcca gtgtctacac agatgatgaa gagagaggca acgtcatggg aatcgccttg 780 ggaggcctgg ccatgggggt cttagtgggc cccccttcg ggagtgtgct ctatgagttt 840 gtggggaaga cggctccgtt cctggtgctg gccgccctgg tactcttgga tggagctatt 900 cagetetttg tgetecagee gtecegggtg cagecagaga gteagaaggg gacacceeta 960 accacgetge tgaaggacce gtacatecte attgetgeag getecatete etttgeaaac1020 atgggcatcg ccatgctgga gccagccctg cccatctgga tgatggagac catgtgttcc1080 cgaaagtggc agctgggcgt tgccttcttg ccagctagta tctcttatct cattggaacc1140 aatatttttg ggatacttgc acacaaatg gggaggtggc tttgtgctct tctgggaatg1200 ataattgttg gagtcagcat tttatgtatt ccatttccaa aaaacattta tggactcata1260 gctccgaact ttggagttgg ttttgcaaat ggaatggtgg attcgtcaat gatgcctatc1320 atgggctacc tegtagacet geggeaegtg teegtetatg ggagtgtgta egecattgeg1380 gatgtggcat tttgtatggg gtatgctata ggtccttctg ctggtggtgc tattgcaaag1440 gcaattggat ttccatggct catgacaatt attgggataa ttgatattct ttttgcccct1500 ctctgctttt ttcttcgaag tccacctgcc aaagaagaaa aaatggctat tctcatggat1560 cacaactgcc ctattaaaac aaaaatgtac actcagaata atatccagtc atatccgata1620 ggtgaagatg aagaatctga aagtgactga gatgagatcc tcaaaaatca tcaaagtgtt1680 taattgtata aaacagtgtt tocagtgaca caactcatcc agaactgtct tagtcatacc1740 atccatccct ggtgaaagag taaaaccaaa ggttattatt tcctttccat ggttatggtc1800 gattgccaac agccttataa agaaaaagaa gcttttctag gggtttgtat aaatagtgtt1860 gaaactttat tttatgtatt tcattttatt aaatatcata caatatattt tgatgaaata1920 taacaaacat ttgggcaaaa atcatattgg taatgagtgt ttaaaattaa agcacacatt2040 atctctgaga ctcttccaac aaagagaaac tagaatgaag tctgaaaaac agaatcaagt2100 aagacagcat gttatatagt gacactgaat gttatttaac ttgtagttac tatcaatata2160 tttatgcgtt aaacagctag ttctctcaag tgtagaggac aagaacttgt gtcagttatc2220 ttttgaatcc ataaatctta gctggcatta gtfttctatg taatcaccta cctagagaga2280 gttgtaaatt atatgttaac atgttatctg gttggcagca aacactaaag ccaataaagg2340 aaaaacagta aatgtteega aageagagaa aageaaceaa acatattgtt atgaactaaa2400 agettteeet ttaagatgea taettgtett aetggatgaa gaaaattgag ggtaeatgta2460 ccttatactg tcaaggttgt ttaaacatga taaggttaat cgccatctac ttcaagtttt2520 agaaaaggaa acaagaagct aaaaacagct gctctgactt taatatctga ctatatcttt2580 gatctgtttg caggtcatcc aagtgttttc taggaatata tttattttag gttgtctgaa2640 actactattt tttagactcc tgaaagttgt tcacatcaat gtgaagacaa attttaaatg2700 aaaatgaaga atgaaattat gtcttgaatc atatattaag aagtaaaaat aatagtgatc2760 aggcagaaaa gaaaaatgga acatctaaaa atgtatgtgc taactatatc atccagtgtg2820 cagtgttgtg tatttttcta agcatgacaa cattgatgtg ccttttcagt gtaacagcaa2880 atactgttag tgaacattgt caatttatgt cattttgtta agagatatga ctggagtgtg2940 cagtgtggaa tgtctctaat actacttgag aatcctgcag ttctataatc ataaacaaaa3000 attacttagt ttcgttaagc taagattgtg tttgtgttaa cttcgacatc aaggagcaaa3060 gaactttaga acagactcct caatcttgtg actttcttat tctctaggaa agtaacactt3120 cgtttcatga agcttttctg tggggcttcg attatttcaa gtctggtttc taagtgcagt3180 gtgtttgaag caaacgaact tccaactcac ttatttggca ttgggcaact tggccaagtc3240 tgctactttg gaagatggct ctggaggaaa ctctcatatg gctaaaaagg caggctagtt3300 tettaettet acaggggtag ageettaaaa aagaaegtge tacaaattgg ttetetttga3360 gggtttctgg ttctccctgc ccccaatacc atatacttta ttgcaatttt atttttgcct3420 ttacggetet gtgtetttet geaagaagge etggeaaagg tatgeetget gttggteeet3480 cgggataaga taaaatataa ataaaacctt cagaactgtt ttggagcaaa agatagcttg3540

tacttgggga aaaaaattct aagttctttt atatgactaa tattcttggt tagcaagact3600 ggaaagaggt gtttttttaa aatgtacata ccagaacaaa gaacatacag ctctctgaac3660 atttattttt tgaacagagg tggtttttat gtttggacct ggtaatacag atacaaaaac3720 tttaatgagg tagcaatgaa tattcaactg tttgactgct aagtgtatct gtccatattt3780 tagcaagttt acttaataaa tottotgaac catgttttgt gootgtttgt attootttat3840 aaaccaaatg ttgttggaat aaaatacata aggtatcatt ttgaccgt

<210> 539 <211> 3304 <212> DNA

<213> homo sapiens

<400> 539

aaaccetett ggetgtetge tgteeaggga gtegeeacte eetteattat ageettgete 60 agagtgcagc ggcaggcctg gggatggcct cgggagaggg accacagagc accagcctgc 120 atggaacttc cttcctcact cagcttccca cgttgccagc tgggacaggg gagatggagt 180 aattttgctg tggaaagact tcacgtcttg ccgaatgaaa gtcccgcctg tctgtcacgc 240 tgatgcccgt gcagctgtct gagcacccgg aatggaatga gtctatgcac tccctccgga 300 tcagtgtggg gggccttcct gtgctggcgt ccatgaccaa ggccgcggac ccccgcttcc 360 gccccgctg gaaggtgatc ctgacgttct ttgtgggtgc tgccatcctc tggctgctct 420 geteceaceg eceggeece ggeaggeece ceacecacaa tgeacacaac tggaggeteg 480 gccaggcgcc cgccaactgg tacaatgaca cctacccct gtctccccca caaaggacac 540 eggetgggat teggtatega ategeagtta tegeagacet ggacacagag ceaacegece 600 aagacgaaaa cacctggcgc agcgacctga aaaagggcta cctgaccctg tcagacagtg 660 gggacaaggt ggccgtggaa tgggacaaag accatggggt cctggagtcc cacctggcgg 720 agaaggggag aggcatggag ctatccgacc tgattgtttt caatgggaaa ctctactccg 780 tggatgaccg gacgggggtc gtctaccaga tcgaaggcag caaagccgtg ccctgggtga 840 ttctgtccga cggcgacggc accgtggaga aaggcttcaa ggccgaatgg ctggcagtga 900 aggacgagcg tetgtacgtg ggcggcetgg gcaaggagtg gacgaccact acgggtgatg 960 tggtgaacga gaacccggag tgggtgaagg tggtgggcta caagggcagc gtggaccacg1020 agaactgggt gtccaactac aacgccctgc gggctgctgc cggcatccag ccgccagcta1080 acctcatcca tgagtctgcc tgctggagtg acacgctgca gcgctggttc ttcctgccgc1140 geogegecag ceaggagege tacagegaga aggacgaega gegeaaggge gecaacetgc1200 tqctqaqcqc ctcccctqac ttcqqcqaca tcqctgtgag ccacgtcggg gcggtggtcc1260 ccactcacgg cttctcgtcc ttcaagttca tccccaacac cgacgaccag atcattgtgg1320 ccctcaaatc cgaggaggac agcggcagag tcgcctccta catcatggcc ttcacgctgg1380 acgggcgctt cetgttgccg gagaccaaga teggaagcgt gaaatacgaa ggcatcgagt1440 tcatttaact caaaacggaa acactgagca aggccatcag gactcagctt ttataaaaac1500 aagaggagtg cacttttgtt ttgttttgtt ctttttggaa ctgtgcctgg gttggaggtc1560 tggacaggga geceagteee gggeeecata gtggtgeggg caetggaeee cegggeeeca1620 eggaggeege ggtetgaact getttecatg etgecatetg gtggtgattt eggteactte1680 aggcattgac tcaaggcctg cctaactggc tgggtcgttt cttccatccg acctcgtttc1740 ttttctttcc tatgttcttt tgttcagtga atatccctag agctcctacc atatgtcagg1800 ccctatgcct caccctgaga acgcagtgag catgaggtgg acctgtttgc tgggaacccc1860 aggtcacccc cttttcttcc caaacttggt gccttggaag aatcaggtcc agccctgaag1920 atccttgggg aagaaaatgt ttatgttgca gggtattgca tggtcacgag tgaggggcag1980 gcccctgggg gacacatctg cccacagctg cacaggccag gggcacaggc acatctgttg2040 gttctcaggc ctcagataaa accatctccg catcatatgg ccagtgaccg ctttctccct2100 tcaagaaaat tctgtggctg tgcagtactt tgaagtttta attattaacc tgctttaatt2160 aaagcagttt cetttettat aaagtggaat caccaaatet tatcacacag agcacagtcc2220 tgtagttacc cagecegete cageagtgeg ggagattgta aggaageggt ggeggetggt2280 gaagcaagtc tcacatgtcg gcgttcttgg ccaatggata caaagataaa gaaaatgttg2340 cctttttcta ggaactgtca gaaatcctca tgcctttcaa gacttctgtg aatgacttga2400 attititatt ccctgcctag ggtctgtgaa cgaggcctgt ctcttccctg gggtttcttt2460 ccatggcett tattteteet ettecagtgg gagttttgca ggetettete tgtggaaact2520 tcacqaqcqt tqqctqqqcc tcggcttcgc tggagtgtac tccagggtga aggcagagtg2580 ggatttgaga cccaggttag gcacgaccca ggctgagaag ggacgtttcc atcattcaca2640 gtgccctccc cacagcaact acctcacccc gacccccacc ctcactccta ccccaccccg2700 cgatcgtcag gggtgccacg gtgggccgga gggtgccggc tctggctgtc cctgtgccgg2760 teceteacaa aceteteece etttgaaact caageacage tgegaggagg geagegagga2820 gggacccctc teteatggtt gtetetttee eeegetatgt cataggtagt ggaggaageg2880

```
aaggaagtga acgctgaatg tgacgcattt ctgaagagct cagctgtcac cgggcatagc2940
 ctggaageee caagtetgtt etgaetttge etggetgtet eettgaeeeg ceteetagat3000
 cattgtcctt gatgtccagg ctgggtcatt taaaatagag atgcaatcag gaaggttggg3060
 ggacttggga ctgtggctga attgagacct tgctgatgta ttcatgtcag cacctgagtc3120
 acageceagg tgeeeggaag cageetette geataggeag tgatttgega ttaetttaaa3180
gctcaccttt tttcttcccc tctctgttcg ctgctgtcag cataatgatt gtgttccttc3240
 cctatgggat ccatctgttt tgtaaacaat aaagcgtctg agggagtgta aaaaacagat3300
 ggat
<210> 540
<211> 863
<212> DNA
<213> homo sapiens
<400> 540
 caggattgaa acaagatggc gggttcgtgg tgagaagccg tcaaggagta gaaattggta 60
 tgcttagaag cagattctaa aagcagtttc tcttcagaac atctttttc ataccacttg120
 ataagcatct tgaaacacca tggctgtagc tgcagtaaaa tgggtgatgt caaagagaac180
 tatcttgaaa catttatttc cagtccaaaa tggagcttta tattgtgttt gtcataaatc240
 tacgtattct cctctaccag atgactataa ttgcaacgta gagcttgctc tgacttctga300
 tggcaggaca atagtatgct accaccette tgtggacatt ccatatgaac acacaaacc360
 tatccctcgg ccagatcctg tgcataataa tgaagaaaca catgatcaag tgctgaaaac420
 cagattggaa gaaaaagttg aacaccttga ggaaggacct atgatagaac aacttagcaa480
 aatgttettt actactaage accgttggta teeteatgga eggtateaca gatgtegtaa540
 gaatctgaat cctccaaaag acagatgatg cggaggttcc tgggggaatc aaagagaaat600
 gtgcctcatt tgccatttga gaaaatgcag tctggtgtat tcagtaatat atagtaaagt660
 aataatgata aaatatcttt tcatatatta gaatgtgtac ttttatataa agtaattctg720
 gatttgacat tctcatttag agagacctat tccttttttc gttttctatt ttagtgtttc780
 atttatgtgc ggtctccaat ttaggacttt tccatagtgc caaagccata catattcagt840
 agaacatcaa taaaaaaaaa aaa
<210> 541
<211> 1962
<212> DNA
<213> homo sapiens
<400> 541
 accgacggcc gccccttttc gtctttttt tttttacatt tcaaatatat tttattactt 60
 tccatcttag aaagaatatg aaacctgcat gcaatgctaa tggtttctga catgtacata 120
 gcatataaca cagcagtaca atgcggcata tactgggggg cagtgtgtgg agggggggtt 180
 cttaagggta tatgtacaga ggaaagggcg catggtcatc ttagctttcg aaagaggact 240
 gcactgttta acattgaaga attacatggg gaatcacaaa tatattgctt tagtactgca 300
 tgttctgttg tggtgaggga aagaaacatg ctttgaaggt tttcccttgt caacagaatg 360
 tgtgtctgta gctgtgtatt gcgcatgtat tcatatattt ttaagttttc tcctaaggtt 420
 tttgctgaca gtgttgggaa cctcacatgc ttctgaagca ttaaatattg aacctgtgaa 480
 cctttcagaa atcctcaggt tgggaaagac cccacacctt ctttaaggat catttgtctc 540
 gccatcacag gatcttggaa atgtttccta gggtgtgtaa aaattaacca ggggggaatg 600
 aagcacattt ttctggcaac caaacttgag ttcctcagag aacagatgca gagagacctg 660
 ctcctgcttg cccggctaca ggggccactg tggagtcaca ctgaggctgt gaccggccat 720
 aagcccagga gagcccgtgg cagctgtgcc gaggcgccag gacctctaag cggaagcttc 780
 ccaagctagg aatggagcaa cactgcaatg aaatgtgtcc accaagctca ttgttcctcc 840
 cgggcgctta taaagctcag atgtatagtg acgtatggac aaatacaaaa aaaaaaaaa 900
 aaaaaaaaaa aaaaaaagcc tttctttctc acaggcataa gacacaaatt atatattgtt 960
 atgaagcact ttttaccaac ggtcagtttt tacattttat agctgcgtgc gaaaggcttc1020
 cagatgggag acceatetet ettgtgetee agaetteate acaggetget ttttateaaa1080
 aaggggaaaa ctcatgcctt tcctttttaa aaaatgcttt tttgtatttg tccatacgtc1140
 actatacatc tgagctttat aagcgcccgg gaggaacaat gagcttggtg gacacatttc1200
```

attgeagtgt tgeteeatte etagettggg aagetteege ttagaggtee tggegeeteg1260 geacagetge caegggetet eetgggetta tggeeggtea cageeteagt gtgaeteeae1320

```
agtggcccct gtagccgggc aagcaggagc aggtctctct gcatctgttc tctgaggaac1380
tcaagtttgg ttgccagaaa aatgtgcttc attccccct ggttaatttt tacacaccct1440
aggaaacatt tecaagatee tgtgatggeg agacaaatga teettaaaga aggtgtggggg1500
tettteccaa eetgaggatt tetgaaaggt teacaggtte aatatttaat getteagaag1560
catgtgaggt teceaacaet gteagcaaaa acettaggag aaaaettaaa aatatatgaa1620
tacatgcgca atacacagct acagacacac attctgttga caagggaaaa ccttcaaagc1680
atgtttcttt ccctcaccac aacagaacat gcagtactaa agcaatatat ttgtgattcc1740
ccatgtaatt cttcaatgtt aaacagtgca gtcctctttc gaaagctaag atgaccatgc1800
gccctttcct ctgtacatat acccttaaga acgcccctc cacacactgc ccccagtag1860
tacgcaggca ttggtaccgg ctggtgttaa aatggctatg ggacatggtc aggaaaccat1920
 ttaggcattg gcattgaggg ttccataatc cgtttctaag ga
<210> 542
<211> 1772
<212> DNA
<213> homo sapiens
<400> 542
 tgggcgctgt agtccggccg gaacctgttt gcgaccccga gtcccatgac accgcttctc
 ctcacacccc agtccgcagt gccctcccc agcctcggcc gggcctcccg ggagccgggc 120
 gtggcgttcc agctagtgag ccgtttctcc cctgggctcg gaggcggaag cttgaggggc 180
 geggggagga gettegegtg eggggtgaac geeegeteta egtgetegtt etettegega 240
 ccgctgcgcg cgagccccgt gtccccacgg cgggcagcag cgccggcggc ggcggctgaa 300
 cgcggagggg gcggagggag cccgcggcgg cggcagcagc tacagcgaaa tggcggagac 360
 cgtggctgac acccggcggc tgatcaccaa gccgcagaac ctgaatgacg cctacggacc 420
 ccccagcaac ttcctcgaga tcgatgtgag caacccgcaa acggtggggg tcggccgggg 480
 ccgcttcacc acttacgaaa tcagggtcaa gacaaatctt cctattttca agctgaaaga 540
 atctactgtt agaagaagat acagtgactt tgaatggctg cgaagtgaat tagaaagaga 600
 gagcaaggtc gtagttcccc cgctccctgg gaaagcgttt ttgcgtcagt tccttttaga 660
 ggagatgatg gaatatttga tgacaatttt attgaggaaa gaaaacaagg gctggagcag 720
 tttataaaca aggtcgctgg tcatcctctg gcacagaacg aacgttgtct tcacatgttt 780
 ttacaagatg aaataataga taaaagctat actccatcta aaataagaca tgcctgaaat 840
 ttggcaagaa ggggcaaaaa cgtgactatt aatgattgat aagcaccagt gaagaagttc 900
 taacttttag catgetgeac agaaactggt ataacatgee tteagtatae taacacteat 960
 atgctcagtt ttgttttgtt ttggcagttg acaagaagtt aatttgcttt agtaaaaatc1020
 cctcattcca gcctttctat ataaatagct ctttcttgct gttttaatgt ggtgcacact1080
 atagecteae aaacetgtta tteeagtgta atetgeagtg tegtaaetaa agttaetgge1140
 ttggtcttat ttgcacagtt tttgcgtctt gtttgcttct tgcatctgat taactagaat1200
 atttctcttt ccccctttta atttgtgatg tcacttgacc ccatttatgt gtaggagcac1260
 tacaccattg gtttccaata ctgcacacat aagatacata cttgtgtgca gaaagtatct1320
 tcctccaggc ttgtaatacc cttcacatgg aagattaatg agggaaatct ttatattctg1380
 tataaaaaca aaagcaaatt tatatactaa aatcatttgt ctaaaaattt aagttgtttt1440
 caaataaaaa ttaaaaatgca tttctgatat gcactgattg tgttgcctcc agctttttt1500
 gctctctatg agtgactact taagtcactt gttgagaggg attatttact aattatatac1560
 ttctcattcc tgtaactcca ttccctttaa acagtggtga tatcaaatat acttccatcc1620
 attgaatggg gtatttttaa caacaacaaa agtgatatac taaaaaatgt attgcttaag1680
 gcttattgaa tcattttgaa gcactttgtg tatttgaaaa ctgctttata atctcattta1740
                                                                   1772
 ttaaaaggac tttcaaagat aaaaccaaaa aa
<210> 543
<211> 1009
<212> DNA
<213> homo sapiens
<400> 543
 ctcgtgcggt gatgttgagc agaagataca attcaaaaga gaaacagcca gtttgaaact 60 \
```

gttaccccac cagccccgaa ttgtggagat gaagaaagga agcaatggct atggtttcta 120 tctgagggca ggctcagaac agaaaggtca aatcatcaag gacatagatt ctggaagtcc 180 agcagaggag gctggcttga agaacaatga tctggtagtt gctgtcaacg gcgagtctgt 240

```
ggaaaccctg gatcatgaca gtgtggtaga aatgattaga aagggtggag atcagacttc 300
 actgttggtg gtagacaaag agacggacaa catgtacaga ctggctcatt tttctccatt 360
 tetetaetat caaagteaag aaetgeecaa tggetetgte aaggaggete cageteetae 420
 tcccacttct ctggaagtct caagtccacc agatactaca gaggaagtag atcataagcc 480
 taaactctgc aggctggcta aaggtgaaaa tggctatggc tttcacttaa atgcgattcg 540
gggtctgcca ggctcattca tcaaagaggt acagaagggc ggtcctgctg acttggctgg 600
gctagaggat gaggatgtca tcattgaagt gaatggggtg aatgtgctag atgaacccta 660
 tgagaaggtg gtggatagaa tccagagcag tgggaagaat gtcacacttc tagtctgtgg 720
 aaagaaggee tatgattatt teeaagetaa gaaaateeet attgtteeet eeetggetga 780
 tgccagttga cagccctgca ggttctaaag aaggaatagt ggtggagtca aaccatgact 840
 cgcacatggc aaaagaacgg gcggctattg cagacggcta atttatgctt aacttaggaa 900
 gagataaggt teettgagea eeaaagatga tteataaete tgtataggtg acagetgett 960
 ataaaagcat cttagcagat aagcctatta aaattgtgct tttgtaaca
                                                                  1009
<210> 544
<211> 2834
<212> DNA
<213> homo sapiens
<400> 544
 cactttgcgg gcggcacttt ttccaggttg ttaatccagc taatggagaa ggatagatgc
 acgctacttg gtttagaaaa aaaaacaaaa atgagcaaac gagacgcccc ttccgtttta 120
 tgataactaa gctgcaggga aataaatcgg ctggccctac tgcaatctac tgcactcgag 180
 aaacatcaca gaaaattett tgatttatet taatagtgae aagtgageet gettetgtea 240
 attactgaag ctataaggag attttttaaa aattaaactt caacacaatg aggtgttgcc 300
 acatetgeaa aetteetggg agagtaatgg ggattegagt gettegatta tetttggtgg 360
 tcatcctcgt attattactg gtagctggtg ctttgactgc cttacttccc agtgttaaag 420
 aagacaagat geteatgttg egtagggaaa taaaateeea gggeaagtee accatggaet 480
 cctttactct cataatgcag acgtacaaca gaacagatct cttattgaaa cttttaaatc 540
 attatcaggc tgtaccaaat ctgcacaaag tgattgtggt atggaacaat attggagaga 600
 aggcaccaga tgagttatgg aattetetag ggccccacce tatecetgtg atetteaaac 660
 aacagacagc aaacaggatg agaaatcgac tccaggtctt tcctgaactg gaaaccaatg 720
 cagtgttgat ggtagatgat gacacactca tcagcacccc agaccttgtt tttgctttct 780
 cagtttggca gcaatttcct gatcaaattg taggatttgt tcctagaaag cacgtctcta 840
 cttcatcagg tatctacagt tatggaagtt ttgaaatgca agcaccaggg tctggaaatg 900
 gtgaccagta ctctatggtg ctgattggag cctcattctt caatagcaaa tatcttgaat 960
 tatttcagag gcaacctgca gctgtccatg ctttgataga tgatactcaa aactgtgatg1020
 atattgccat gaattttatc attgccaagc atattggcaa gacttcaggg atatttgtga1080
 agcctgtaaa catggacaat ttggaaaaag aaaccaacag tggctattct ggaatgtggc1140
 atcgagctga gcacgctctg cagaggtctt attgtataaa taagcttgtt aatatctatg1200
 atagcatgcc cttaagatac tccaacatta tgatttccca gtttggtttt ccatatgcca1260
 actacaaaag aaaaatataa aagtaaaaca aacaaaaaca aacctgaaaa ctgcttggca1320
 tttgagtagc ttctccatgc tatgtatttt tttaagcaac atcatgaatt ttatctactc1380
 cagaagtete tacaatagaa aaaaaagtge agtgetteta ggatataaaa tteacattac1440
 ttttgaaagc caagaagttg gtcttatcca gttaggtctt cttatgaaga gttttcatcc1500
 agggatataa ctccttggtc agtgatttta ttgtttacat cctgagactg ttctacagtt1560
```

tetttgacte etggeatttg cettaaggae etatageaag etgtttetag gateagaaac1620 tcaagagagg catttctctg ctttttcact aaaggtcagt tgttttaatt tgaaacctga1680 aatgeetett tageaaaage etgtggtatg gggtaaagee atgtaagaag agaatagtet1740 cagtcacata tgaagaggaa aatttgcagc tgccagtgct ttccttgtgg ccctgccaac1800 cagetettee aggacgaact cagtecagea tggttttgat gtaaccatee atgettttat1860 ttttgttaag tcttttgtga ctgggacagt taattttagt agctgaagaa cgtctagttg1920 tttgcttgat atttgtgaac atttactgca tggatcacaa aacaatatac cctgtatttc1980 ttacacgcca cttatatgca gcaaggagta aatgtgttac tagattcggg tagtgcattt2040 tgtcactgaa tctgaccttg agaatgtaca ttaattctta tattttacat aatgtatgtg2100 ttgtttaaga aatgtataaa aaacctgaaa aaaatgagta agaactggca gaagttaaaa2160 ccctttgtat caaaagatct ttattggtag agcactggtt atcttctgga tactaaaaag2220 ttgtattaca aagccaaaca cttgcattca caactttaaa aaaagatcca aggaactatt2280 cataatgatg aaattccaac tacatacaag gaggagaaaa taagaaccca gtcataacag2340 aggaatteta taggagtetg catcaattea ttettaaggt tgeetaetet etgttatgtg2400 aattagegte tgtgttteae ceattgtetg tgtttagtee ttgtteaeca etaaggeaag2460 gaattettaa etaggeetet gtttaccaac ttetettet eeteettee etettattee2520

```
tccttctct cttcctt atataatgct agtatattct caaaaattgca aagctgtgag2580 aatattaaaa taatcatggc taatgttcca ataatgaggt ctttgtgcat ttagttccgc2640 atatgatggt tttttttta cattaaagag tatatgtgtc ttaatgcagt cagattgtaa2700 aaaacaaaaaa caaagaaact aagaatctta ctaaaaatcg ataatgtcag ttatctgttt2760 tgtccaatat tggtagtact tttttgcctc ttatgattcc tctagcagat aaataaaaga2820 aacttttgcc atcc 2834
```

<210> 545 <211> 2319 <212> DNA <213> homo sapiens

<400> 545

aacgtcattg gtaacagcaa gtcccagaca ccagccccca gttccgaagt ggttttggat tcaaagagac aagttgagag agaggaaacc aaccatgaga tccaggaggg gaaagaagag 120 cctcagaggg acaggetgcc gcaggagcca ggccgggagc aggtngtgga agacagacct 180 gtaggtggaa gaggettegg gggageegga gaactgggee agaeeecaca ggtgcagget 240 gccctgtcag tgagnccagg aaaatccaga gatggagggc cctgagcgag accagcttgt 300 catccccgac ggacaggagg aggagcagga agctgccggg gaagggagaa accagcagaa 360 actgagagga gaagatgact acaacatgga tgaaaatgaa gcagaatctg agacagacaa 420 gcaagcagcc ctggcaggga atgacagaaa catagatgtt tttaatgttg aagatcagaa 480 aagagacacc ataaatttac ttgatcagcg tgaaaagcgg aatcatacac tctgaattga 540 actggaatca catatttcac aacagggccg aagagatgac tataaaatgt tcatgaggga 600 ctgaatactg aaaactgtga aatgtactaa ataaaatgta catctgaang atgattattg 660 tgnaaatttt agtatgcact ttgtgtagga aaaaatggna atnggtcttt taaacagctt 720 ttggggggnt actttnggaa gtgtctnaat aanggtgtca cnaatttttg gntagtangg 780 tatttcgtga gnaagnnttc aacaccaaaa ctnggaacat agttctcctt caagtgttgg 840 cgacancggg nngcttcctg attctggaat ataactttgt gtaaattaac agccacctat 900 agaagagtee atetgetgtg aaggagagae agagaactet gggtteegte gteetgteea 960 cgtgctgtac caagtgctgg tgccagcctg ttacctgttc tcactgaaaa gtctggctaa1020 tgctcttgtg tagtcacttc tgattctgac aatcaatcaa tcaatggncc tagangcact1080 gactgttaac acaaacgtca ctagncaaag tagncaacna gctttaagtc taaatacaaa1140 gctgttctgt gtgagaattt tttaaaaggc tacttgtata ataaccettg tcatttttaa1200 tgtacaaaac gctattaagt ggcttagaat ttgaacattt gtggntcttt atttactttg1260 cttncgtgtg tgggcaaagc aacatcttcc ctaaatatat attaccaaga aaangcaaga1320 agcagattag gntttttgac nnaaaacana acaggccnna aaagggggcn tgnacctggal380 gcagagcatg gtgnagaggc aaggcatgna gagggcaagt ttgttgtgga cagatctgtg1440 cctactttat tactggagta aaangaaaac aaagttncat tgatgtcgna aggatatata1500 cagtgttnag aaattnnagg nactngtttn agaaaaacag gaatacnnaa tggnttgntt1560 tttatcatan gtgntacaca tttagcttgt ggntaaatng actcacaaaa ctgantttta1620 aaatcaagtt aatgtgaatt ttgaaaatta ctacttaatc ctaattcaca ataacaatgg1680 cattaaggtt tgacttgagt tggttcttag tattatttat ggtaaatagg ctcttaccac1740 ttgcnaaata actggnccac atcattaatg actgacttcc cnagtaangg ctctctaaagg1800 ggtaagtnag gaggatccac aggatttgag atgctaaggc cccagagatc gtttgatncc1860 aaccctctta ttttcnagag gggaaaatgg ggcctnagna agttacanga gcatcntnag1920 cntggtgcgc tggncacccc ntggccntcn acacnagact cccngagtag ctgggancta1980 caggcacaca gtcactgaag caggcccntg tttgcaattc acgttgccna cctnccaacn2040 ttaaacattn cttcatatgt gatgtcctta gtcacntaag gttaaanctt tncccaccca2100 gaaaaggcaa cttagataaa atcttagagt actttcatac tcttctaang tcctcttcca2160 gcctcacttt gagtcctcct tnggggttga tnnnaggaat tttctcttgc tttctcaata2220 aagtototat toatotoatg tttaatttgt acgcatagaa ttgctgagaa ataaaatgtt2280 ctgttcaact tannnnnaaa aaaaaaanaa aaaaaaaaa

<210> 546

<211> 2456

<212> DNA

<213> homo sapiens

```
tgcaactgtg cacccagett gccagatttt tececattae acceecagtg tggcatatee 60
ttggtcccca gaggcacacc ccttgatctg tggacctcca ggcctggaca agaggctgct 120
accagaaacc ccaggecect gttactcaaa ttcacageca gtgtggttgt geetgactee 180
togocageco etggaaceae atecacetgg ggaggggcet tetgaatgga gttetgacae 240
cgcagagggc aggccatgcc cttatccgca ctgccaggtg ctgtcggccc agcctggctc 300
agaggaggaa ctcgaggagc tgtgtgaaca ggctgtgtga gatgttcagg cctagctcca 360
accaagagtg tgctccagat gtgttggggc cctaacttgg cacagagtcc tgctcctggg 420
aaaggaaagg accacagcaa acaccattct ttttgccgta cttcctagaa gcactggaag 480
aggactggtg atggtgggag ggtgagaggg tgccgttttc ctgctccagc tccagacctt 540
gtotgoagaa aacatotgoa gtgoagoaaa tooatgtooa gooaggoaac cagotgotgo 600
ctgtggcgtg tgtgggctgg atcccttgaa ggctgagttt ttgagggcag aaagctagct 660
atgggtagec aggtgttaca aaggtgctgc teetteteca acceetaett ggttteeete 720
accccaagec teatgiteat accagecagt gggtteagea gaaegeatga cacettatea 780
cctccctcct tgggtgagct ctgaacacca gctttggccc ctccacagta aggctgctac 840
attcaggggc aaccetgggc tetateattt teetttttttg ccaaaaggac cagtagcata 900
ggtgagccct gagcactaaa aggagggtc cctgaagctt tcccactata gtgtggagtt 960
ctgtccctga ggtgggtaca gcagccttgg ttcctctggg ggttgagaat aagaatagtg1020
gggagggaaa aactcctcct tgaagatttc ctgtctcaga gtcccagaga ggtagaaagg1080
aggaatttet getggaette atetgggeag aggaaggatg gaatgaaggt agaaaaggea1140
gaattacagc tgagcgggga caacaaagag ttcttctctg ggaaaagttt tgtcttagag1200
caaggatgga aaatggggac aacaaaggaa aagcaaagtg tgacccttgg gtttggacag1260
cccagaggcc cagctcccca gtataagcca tacaggccag ggacccacag gagagtggat1320
tagagcacaa gtctggcctc actgagtgga caagagctga tgggcctcat cagggtgaca1380
ttcaccccag ggcagcctga ccactcttgg cccctcaggc attatcccat ttggaatgtg1440
aatqtqqtqq caaagtggqc agaggacccc acctgggaac ctttttccct cagttagtgg1500
qqaqactaqc acctaqqtac ccacatgggt atttatatct gaaccagaca gacgcttgaa1560
tcaqqcacta tqttaaqaaa tatatttatt tgctaatata tttatccaca aatgtggtct1620
ggtcttgtgg ttttgttctg tcgtgactgt cactcagggt aacaacgtca tctctttcta1680
catcaagaga agtaaattat ttatgttatc agaggctagg ctccgattca tgaaaggata1740
gggtagagta gagggcttgg caataagaac tggtttgtaa gcccctaaaa gtgtggctta1800
gtgagatcag ggaaggagaa agcatgactg gattcttact gtgcttcagt cattattatt1860
atactgttca cttcacacat tatcatactt cagtgactca gaccttgggc aaatactctg1920
tgcctcgctt tttcagtcca taaaatgggc ctacttaata gttgttgcag gacttacatg1980
agataataga gtgtagaaaa tatgttccaa agtggaaagt tttattcagt gatagaaaac2040
atccaaacct gtcacagage ccatctgaac acagcatggg accgccaaca agaagaaagc2100
ccgcccggaa gcagctcaat caggaggctg ggctggaatg acagcgcagc ggggcctgaa2160
actatttata teccaaaget ceteteagat aaacacaaat gaetgegtte tgeetgeact2220
cgggctattg cgaggacaga gagctggtgc tccattggcg tgaagtctcc agggccagaa2280
ggggcctttg tegetteete acaaggcaca agtteeeett etgetteece gagaaaggtt2340
tggtaggggt ggtggtttag tgcctataga acaaggcatt tcgcttccta gacggtgaaa2400
tgaaagggaa aaaaaggaca cctaatctcc tacaaatggt ctttagtaaa ggaacc
```

```
<210> 547
<211> 2218
<212> DNA
```

<213> homo sapiens

gaggaaaaag	aacaatgaac	agcaacgatc	ttgactgtgc	aactcagaca	ttcctgcaga	60
					agcatttgac	
					cgcatgaatg	
					tgactttgcc	
					aacctgtaag	
					caagagcaat	
					cagataatta	
					gattaaggct	
					tgcattttct	
					tggggtggta	
					taaaccctcc	
					tgtccacatg	
					ctctctctta	

```
ttaggttttc atgggaacat gaggcagcaa atctattgct aagactttac caggctcaaa 840
tcatctgagg ctgatagata tttgacttgg taagacttaa gtaaggctct ggctcccagg 900
ggcataagca acagtttett gaatgtgeca tetgagaagg gagacceagg ttatgagttt 960
tcctttgaac acattggtct tttctcaaag ttcctgcctt gctagactgt tagctctttg1020
aggacaggga ctatgtctta tcaatcacta ttattttcct gttacctagc atgggacaag1080
tacacaacac atatttgtgt agtcttctaa aagactcctc tgattgggag accatatcta1140
taattgggat gtgaatcatt tetteagtgg aataagagea caaeggeaca acetteaagg1200
acatattatc tactatqaac attttactqt qagactcttt attttgcctt ctacttgcgc1260
tqaaatqaaa ccaaaacaqq ccqttqqqtt ccacaaqtca atatatgttg gatgaggatt1320
ctqttqcctt attqggaact gtgagactta tctggtatga gaagccagta ataaaccttt1380
gacctgtttt aaccaatgaa gattatgaat atgttaatat gatgtaaatt gctatttaag1440
tgtaaagcag tictaagtit tagtatitgg gggattggti titattatti tittccttt1500
tgaaaaatac tgagggatct tttgataaag ttagtaatgc atgttagatt ttagttttgc1560
aagcatgttg tttttcaaat atatcaagta tagaaaaagg taaaacagtt aagaaggaag1620
gcaattatat tattettetg tagttaagea aacaettgtt gagtgeetge tatgtgcaeg1680
gcatgggccc atatgtgtga ggagcttgtc taattatgta ggaagcaata gatctcggta1740
gttacgtatt gggcagatac ttactgtatg aatgaaagaa catcacagta atcacaatat1800
cagagetgag ttateeecag tgtagetteg ttggggatte cagtttetgg gaaegagagt1860
tagggccatt ttatttaaaa gaaactcccg gttgagaccg gttcttatga acctctgaaa1920
cgtacaagcc ttcacaagtt taactaaatt gggattaatc tttctgtagt tatctgcata1980
attettgttt ttettteeat etggeteetg ggttgacaat ttgtggaaac aactetattg2040
ctactattta aaaaaaatca gaaatctttc cctttaagct atgttaaatt caaactattc2100
ctqctattcc tqttttgtca aagaattata tttttcaaaa tatgtttatt tgtttgatgg2160
```

<210> 548 <211> 2196 <212> DNA <213> homo sapiens

```
cggcgcgatg cgcggagacc cccgcggggg cggcggccc cgtgagcccc gatgaggccc
gagegteece ggeegegeg cagegeece ggeecgatgg agacecegee gtgggaceca 120
gcccgcaacg actcgctgcc gcccacgctg accccggccg tgccccccta cgtgaagctt 180
ggcctcaccg tegtetacac egtgttctac gegetgetet tegtgttcat etacgtgcag 240
ctctggctgg tgctgcgtta ccgccacaag cggctcagct accagagcgt cttcctcttt 300
ctctgcctct tctgggcctc cctgcggacc gtcctcttct ccttctactt caaagacttc 360
gtggcggcca attcgctcag ccccttcgtc ttctggctgc tctactgctt ccctgtgtgc 420
ctgcagtttt tcaccctcac gctgatgaac ttgtacttca cgcaggtgat tttcaaagcc 480
aagtcaaaat attotocaga attactcaaa tadoggttgo coctotacct ggcctccctc 540
ttcatcagcc ttgttttcct gttggtgaat ttaacctgtg ctgtgctggt aaagacggga 600
aattgggaga ggaaggttat cgtctctgtg cgagtggcca ttaatgacac gctcttcgtg 660
etgtgtgeeg tetetetete catetgtete tacaaaatet etaagatgte ettageeaac 720
atttacttgg agtccaaggg ctcctccgtg tgtcaagtga ctgccatcgg tgtcaccgtg 780
atactgettt acaccteteg ggeetgetae aacctgttea teetgteatt tteteagaac 840
aagagegtee atteetttga ttatgactgg tacaatgtat cagaccagge agatttgaag 900
aatcagctgg gagatgctgg atacgtatta tttggagtgg tgttatttgt ttgggaactc 960
ttacctacca cettagtegt ttatttette egagttagaa atectacaaa ggacettace1020
aaccotggaa tggtccccag ccatggattc agtcccagat cttatttctt tgacaaccct1080
cgaagatatg acagtgatga tgaccttgcc tggaacattg cccctcaggg acttcagggal140
ggttttgctc cagattacta tgattgggga caacaaacta acagcttcct ggcacaagca1200
ggaactttgc aaagactcaa ctttggatcc tgacaaacca agccttgggt agcatcagtt1260
aacagtttta tggacgattc ctcagatgaa aagcttcaga aaagcatagt gacagctgaa1320
tttttagggc acttttcctt aagaaataga acttgatttt tatttgttac aggtttccaa1380
tggccccata ggaataagca ataatgtaga ctgataaacc cttattttag tactaaagag1440
ggagcettge tattteagtg ggtataattt aaacttttta aagaaaatet gtacttttat1500
tgagaatgtt actgcaatca tgttgtagtt tgcacagact tttatgcata attcacttta1620
aaaatataga atatatggtc taatagtttt ttaaagcttt tggactaaag tattccacaa1680
atcttacete tttaggteac tgatggteac teegattetg agtgeeacat tggtagaete1740
ctaaaataca gttgacaact tagccaattg caactccagt gttgataatt aaaatgaaat1800
```

```
ggtaaagcag cagactgtaa ggtctttaga gatttttttt ttaaggttca ggccgtaggt1860
 tcctcaagga atctcttaag ttttgcccaa agactggtac ttcctttcag tagggcgcta1920
 atgtatacac attaatgata agttgataac attaaaaatg tagctgactt atcctattaa1980
 acctcctctg ctatgttcac agaaccccca taactttttt tcagcctaat gaaatctaat2040
 atgcattacc tcagggccac atcaagaata cacccctttc cgaactcact gaatgttcat2100
 tacattcaag gagaaaataa gagggtccat aaagggcatt aataacaaat accccaagcc2160
 gttgagctaa gactatgtgg aatcctaata gttttt
<210> 549
<211> 701
<212> DNA
<213> homo sapiens
<400> 549
 aattaaaata aatagaaaca tacggagatt cttttatgtt ggatttatta taccctccac 60
 cattttggtc cctgaaaagg gaaaagatac acggtcgagt agtacaggta tgtgtttccc120
 actacacatt atggctataa tggagttgaa ttgcaaacag taaaattttg ttttggattg180
 gtttcccctg atcccccag acaggagett ceteteccae cetacetgee tgccettaag240
 ttgtgtccta ttaaactgga cacaaatctc accggctttt agtctaataa ttgaatcata300
 gctacacaca gtgacaccag aatagctact tgttttttta tgttaccagt gagtaacttg360
 tttatccttg tatgtagaaa ctaatttcac catgatcaca gatctgtgta acatctctag420
 tttgaatttc cacacaattt taaaatgtct actagaaaac ttacaccttt ttgttccaag480
 gtgctcttca tctataaaac cgtgggcata cttcagtgtt cttctgaggc caaattttgt540
 gggfcgtggg ggacaatttt gtattaacat acgttatttt gtaattcatt ctccaaattt600
 gaagetttat taaaggtatt etattteeac tggetteect taaettgaat aaaatttaet660
 cccagtgccg tggctcatgc ctgctgcaat cccagccctt t
<210> 550
<211> 2214
<212> DNA
<213> homo sapiens
<400> 550
 gctaaagagg aggatgctat acttttctaa atggcaagag atggggagag aaggggatta 60
 agagttgacc cgcaacctcc cggtggattc tttgttctta ccagatctct tggccactcc 120
 cctattctga agtcgtcttg gctctcttga ctgctcccct attctgaagt cgtcttggct 180
 ctcttgacta ctcccctatt ctgaagtcgt cttggctctc ctgactacac tatttcaagg 240
 aatgatcacc aagacacaca aagtagacct tgggctccca gagaagaaaa agaagaagaa 300
 agtggtcaaa gaaccagaga ctcgatactc agttttaaac aatgatgatt actttgctga 360
 tgtttctcct ttaagagcta catcccctc ntaagagtgt ggcccatggg caggcacctg 420
 agatgcctct agtgaagaaa aagaagaaga aaaagaaggg tgtcagcacc ctttgcgagg 480
 agcatgtaga acctgagacc acgctgcctg ctagacggac agagaagtca cccagcctca 540
 ggaagcaggt gtttggccac ttggagttcc tcagtgggga aaagaaaaan taagaagtca 600
 cctctagcca tgtcccatgc ctctggggtg aaaacctccc cagnaccent agacagggtg 660
 aggaggaaac cagagttggc aagaagctca aaaaancaca agaaggaaaa aaagggggnc 720
 ccaggaccce achagectte teggtecagg accettggtt etgtgaggee agggaggeea 780
 gggatgttgg ggacaettge tncagtgggg aagaaggatg aggaacagge agcettgggg 840
 ncagaaacgg aagncggaag agccccagag aacacaatgg gaaggtgaag aagaaaaaaa 900
 aaatccacca ggagggagat gccctcccag gccactccaa gccctccagg tccatggaga 960
 gcagccctag gaaaggaagt aaaaagaagc cagtcaaagt tgaggctccg gaatacatcc1020
 ccataagtga tgaccctaag tcctccgcaa agaaaaagat gaagtccaaa aagaaggtag1080
 agcagccagt catcgaggag ccagctctga aaaggaagac gaggaagaag aggaaagaga1140
 gtggggtagc aggagacct tggagggagg aaacagacac ggacttagag gtggtgttgg1200
 aaaaaaaagg caacatggat gaggcgcaca tagaccaggt gaggcgaaag gccttgcaag1260
 aagagatega tegegagtea ggeaaaaegg aagettetga aaceaggaag tggaegggaa1320
 cccagtttgg ccagtgggat actgctggtt ttgagaacga ggaccaaaaa ctgaaatttc1380
 tcagacttat gggtggcttc aaaaacctgt ccccttcgtt cagccgcccc gccagcacga1440
```

ttgcaaggcc caacatggcc ctcggcaaga aggcggctga cagcctgcag cagaatctgc1500 agcgggacta cgaccgggcc atgagcttgg aagtacagcc ggggagccgg cttgcggtgt1560

```
totocacogo coccaacaag atottttaca ttgacaggaa cgottocaag tcagtcaagc1620
tggaagatta aactctagag ttttgtcccc ccaaaactgc cacaattgct ttgattattc1680
catttatgct ggagattaca aatttttttt ggtgaacaaa tcagatcttg gtgaggacct1740
cgagcagtaa gatataaata actcccnata agcttagncg ttcccagtaa tggaacacta1800
ggcataaant ggtttattnc agttgtgcaa atgaaagcca tctgacagtt ggctncacat1860
tgaacacctg tggagattaa ggacgaggac aactatattg atgggcttgg atgaactggg1920
gcagggcagc tcatatttcg ggagccagga gaacgagtga gtgctaaaac ctcctgtttt1980
ctgtgttaaa cattccgtcc ctgtttgaga catcagtatg tacagttaac ttttgttgag2040
tgtttagcag gtactaggga catactagtg ttttccttaa tgtatttaat cttcataatt2100
atgaaatggg tgctattatt agccccatct tatagatgag gcaactgagg ttcagggata2160
<210> 551
<211> 1434
<212> DNA
<213> homo sapiens
<400> 551
gcgcggccgg cgcctgcggg gcgagaggt cggggcgaag gggaagctac gtcccggagg
tgcggtgtgg ggcaccgggc ggggccgcgg gaaccggcgc cccacggagc tgctgctgtc 120
agaccaacce egggeeeca teateactge geegegettt eaggegeega gaactacegt 180
tcccggcatg ccatgaaatt ggcctcggcg ctgaggcggg gtccggccct ccacccgctc 240
ccgccgcgcg cgaatcgcgg tcgcgagcca tggaggagga ggcatcgtcc ccggggctgg 300
gctgcagcaa gccgcacctg gagaagctga ccctgggcat cacgcgcatc ctagaatctt 360
ccccaggtgt gactgaggtg accatcatag aaaagcctcc tgctgaacgt catatgattt 420
cttcctggga acaaaagaat aactgtgtga tgcctgaaga tgtgaagaac ttttacctga 480
tgaccaatgg cttccacatg acatggagtg tgaagctgga tgagcacatc attccactgg 540
gaagcatggc aattaacagc atctcaaaac tgactcagct cacccagtct tccatgtatt 600
cacttectaa tgeacceact etggcagace tggaggaega tacacatgaa gecagtgatg 660
atcagccaga gaagcctcac tttgactctc gcagtgtgat atttgagctg gattcatgca 720
atggcagtgg gaaagtttgc cttgtctaca aaagtgggaa accagcatta gcagaagaca 780
ctgagatctg gttcctggac agagcgttat actggcattt tctcacagac acctttactg 840
cctattaccg cctgctcatc acccacctgg gcctgcccca gtggcaatat gccttcacca 900
gctatggcat tagcccacag gccaagcaat ggttcagcat gtataaacct atcacctaca 960
acacaaacct getcacagaa gagaccgact cetttgtgaa taagctagat cecagcaaag1020
tgtttaagag caagaacaag atcgtaatcc caaaaaagaa agggcctgtg cagcctgcag1080
gtggccagaa agggccctca ggaccctccg gtccctccac ttcctccact tctaaatcct1140
cctctggctc tggaaacccc acccggaagt gagcacccct ccctccaact ccctaccagc1200
 tccagagtgg tggtttccat gcacagatgg ccctaggggt gacctccagt tttgcgtgtg1260
 gaccgtaggc ctctttctag ttgaatgacc aaaattgtaa ggcttttagt cccaccgaca1320
 ttagccaggc tcgtagtgag gcctccagag caggttgtgc tgtcccctgc ctctggaagc1380
 aatggggaat gtggaatcaa gacaatgccc aaaaaatttt taatgcagct ggtc
<210> 552
<211> 2434
<212> DNA
<213> homo sapiens
<400> 552
 cccggagaag gtggaggag acgagaagcc gccgagagcc gactaccctc cgggcccagt 60
 ctgtctgtcc gtggtggatc taagcctcat ctgtatcctc ttgtgatggc gtgaaggaaa 120
 gccatggcag atttccagcc tggtgatgct gtacagaaca caggtggcct gcttccatgc 180
 ctcctcagct tcaagaaact agaatgaacc gaagcattcc tgtggaggtt gatgaatcag 240
 aaccataccc aagtcagttg ctgaaaccaa tcccagaata ttccccggaa gaggaatcag 300
 aaccacctgc tecaaatata aggaacatgg cacccaacag cttgtctgca cccacaatgc 360
 ttcacaattc ctccggagac ttttctcaag ctcactcaac cctgaaactt gcaaatcacc 420
 ageggeetgt ateceggeag gteacetgee tgegeactea agttetggag gaeagtgaag 480
```

acagtttctg caggagacac ccaggcctgg gcaaagcttt cccttctggg tgctctgcag 540 tcagcgagcc tgcgtctgag tctgtggttg gagccctccc tgcagagcat cagttttcat 600

```
ttatggaaaa acgtaatcaa tggctggtat ctcagctttc agcggcttct cctgacactg 660
 gccatgacte agacaaatea gaccaaagtt tacctaatge etcagcagae teettgggeg 720
 gtagccagga gatggtgcaa cggccccagc ctncacagga accgagcagg cctggatctg 780
 ccaaccatag acacgggata tgattcccag ccccaggatg tcctgggcat caggcagctg 840
 gaaaggcccc tgnccctcac ctccgtgtgt tacccccagg acctccccag acctctcagg 900
 tccagggagt tccctcagtt tgaacctcag aggtatccag catgtgcaca gatgctgcct 960
 cccaatettt ccccacatgc tccatggaac tatcattacc attgtcctgg aagtcccgat1020
 caccaggtgc neatatggcc atgactaccc tcgagcagcc taccagcaag tgatccagcc1080
 ggctctgcct gggncagccc ctnngcctgg agccagtgtq agaqqcctqc accctqtqcal140
 gaannggtta teetgaatta teecageeee tgggaeeaag aagagagee egeaeagaga1200
 gactgeteet tteegggget teeaaggeac caggaccage cacateacca gecacetaat1260
 agagetggtg etectgggga gteettggag tgeeetgeag agetgagace acaggtteee1320
 cagceteegt ecceagetge tgtgeetaga ecceetagea acceteeage cagaggaact1380
 ctaaaaacaa gcaatttgcc agaagaattg cggaaagtct ttatcactta ttcgatggac1440
 acagctatgg aggtggtgaa attcgtgaac tttttgttgg taaatggctt ccaaactgca1500
 attgancant atttgaggat agaatccgag gcattgatat cattnaaatg gatggagcgc1560
 taccttangg gataagaccg tgatgataat cgtagcaatc agccccnaaa ntacaaannc1620
 aggacgtngg naaggneget gangtengea getggaegag gatgageatg gettaeatae1680
 taagtacatt catcgaatga tgcagattga gttcataaaa caaggaagca tgaatttcag1740
 atteateeet gtgetettee caaatgetaa gaaggageat gtgeeeacet ggetteagaa1800
 cacnicatgi ctacagetgg cccaagaain aaaaaaaaca tcctgctgcg gctgcingag1860
 agaggaagag tatgtggctc ctccacgggg gcctctgccc accncttcag gtggttccct1920
 tgtgancacc gttcatcccc agatcactga ggccnaggcc atgtttgggn gccttgttct1980
 gnacageatt etggetgagg etnggteggt ageannetee tggetggttt ttnttetgtt2040
 conteceega ngaageeete tggnnccccc anggaaacet gttgtgcaga getettcccc2100
 ggagacetee nacacaneee tggnetttga agtggagtet gtgnaetgne tetgeattne2160
 tctgcttttn aaaaaaacca ttgcaggtgn ccagtgtccc atatgttncc tcctngacag2220
 ntttgatgtn gtnccattet ngggcctctc agtgcttagc aagtagataa tgtaagggat2280
 gtnggcagca aatggaaatg actacaaaca ctctcctatc aatcacttca ggctactttt2340
 atgagttage cagatgettg tgtateetea ngaccaaact gatteatgta caaataataa2400
 aatgtttact cttttgtaaa aaaaaaaaaa aaaa
<210> 553
<400> 553
<210> 554
<211> 1457
<212> DNA
<213> homo sapiens
<400> 554
actaacccag agttgtggca ttattaatta tcactggtct tcttaatcgt aaaacggggg 60
accccagagg caaggaaatt tccattaccc tatattgggc ttaaacttaa aggagtatat 120
ccactatcaa gagcttagta caaaggctgg ggtgaagtta cattatacct gggcgtttta 180
ccataccagg gaccccacct caacaatgac tgtggaagac caaaggagat acctaggttc 240
agattataat aaatcaccca gcaccacctg aatgtattat ccacaaagat atagcaataa 300
taaaggttat atatacatat atttatcttg gtaacctgag ggctaaaaac gtggaatacg 360
ataattette teaagaggte catetgtaag aaagggacee aaaaggacag tgtttgtgtt 420
gcataaaata tgggtaaagt ggagttggga acaaagggtg gtttctttag ctctttccac 480
atctctcttt gataaggact gaaaccctgt tgattcatga taaacgtttc ctttttttt 540
ttttttggca gcggggagag ggaaagagga ggaaatgggg tttgaggacc atggcttacc 600
tttcctgcct ttgacccatc acaccccatt tcctcctctt tccctctccc cqctqccaaa 660
aaaaaaaaa aggaaacgtt tatcatgaat caacagggtt tcagtcctta tcaaagagag 720
atgtggaaag agctaaagaa accaccettt gttcccaact ccactttacc catattttat 780
gcaacacaaa cactgtcctt ttgggtccct ttcttacaga tggacctctt gagaagaatt 840
atcgtattcc acgtttttag ccctcaggtt accaagataa atatatgtat atataacctt 900
tattattgct atatctttgt ggataataca ttcaggtggt gctgggtgat ttattataat 960
ctgaacctag gtatatcctt tggtcttcca cagtcatgtt gaggtgggct ccctggtatg1020
gtaaaaagcc aggtataatg taacttcacc ccagcctttg tactaagctc ttgatagtgg1080
```

atatactett ttaagtttag eeccaatata gggtaatgga aattteetge eetetgggtt1140

35

```
ccccattttt actattaaga agaccagtga taatttaata atgccaccaa ctctggctta1200
 gttaagtgag agtgtgaact gtgtggcaag agagcctcac acctcactag gtgcagagag1260
 cccaggeett atgttaaaat catgcacttg aaaagcaaac cttaatctgc aaagacagca1320
 qcaaqcatta tacqqtcatc ttqaatqatc cctttgaaag tttttttttg gttggtttgg1380
 tttaaaatca agcctgaggc tgggtggaaa caggtagcct acacacccca aattgggggt1440
ggtcccgggg gaatgtt
<210> 555
<211> 741
<212> DNA
<213> homo sapiens
<400> 555
 cctcctaaaa gactgggaaa gcagctttgg gctttgggtc ctcctaaaaa aaccaaggcg 60
 gatgacttgg ggtttggatc cccttcggat gtcactcgaa aaagccttag cagacctgat120
 tgagaaggaa ctgtcccgtt caaagaccaa ccttcccttt cgccccacat ctcttcagaa180
 ctcctcttca cacactacaa ccgccaaagg tcccaggctc tggattcctg catcctgctg240
 cagetacaaa tgecaattet etaaatagta cetttteagt ettgececag aggttecete300
 aatttcagca gcaccgagcg gtttataatt cattcagttt tccaggccag gcagcccgct360
 atcettggat ggeettteea negeaatage atcatgenae ttgaaccaca cageaaacce420
 cacctcaaat agtaatttct tggacttgaa tctcccgcca cagcacaaca caggtctggg480
 agggatecet gtageagggg aagaagaggt gaaggttteg accatgecae tgtcaacete540
 ttcccattca ttacaacaag gacagcagcc tacaagtctc cacactactg tggcctgaca600
 acagaactga gaggagagga ttagactctg gggtgcttgc atgggcaact ggatttttgc660
 atgattcctt tatgattttg cttttaatgt atacacccag aagagccaat ataaacgttc720
 ctcatqccta aaaaaaaaa a
<210> 556
<400> 556
000
<210> 557
<400> 557
000
<210> 558
<400> 558
000
<210> 559
<400> 559
000
<210> 560
<400> 560
000
<210> 561
<211> 470
<212> PRT
<213> homo sapiens
<400> 561
                                                    Ile His Ser Leu Pro
                                                                             Leu
  Thr Asp Gln Pro Asn Ile Gln Ser Val Lys
                                                                         15
                                                                              Phe
                                     Glu Cys
                                                                        Gly
  Arg
      Asn
            Pro
                Asn
                      Lys
                           Gly
                                Cys
                                               Pro
                                                    Pro
                                                         Arg
                                                              Arg
                                                                   Asp
                  20
                                           25
                                                                     30
                                                                   Phe
                                                                        His
      Phe
            Ile Lys
                      Cys
                          Val
                                Asp
                                     Arg
                                          Asp
                                               Val Arg Met
                                                              Phe
```

40

45

Ser	Glu 50	Ile	Leu	Asp	Gly	Asn 55	Gln	Leu	His	Ile	Ala 60	Asp	Glu	Val	Glu
Phe 65	Thr	Val	Val	Pro	Asp 70	Met	Leu	Ser	Ala	Gln 75	Arg	Asn	His	Ala	Ile 80
Arg	Ile	Lys	Lys	Leu 85	Pro	Lys	Gly	Thr	Val 90	Ser	Phe	His	Ser	His 95	Ser
Asp	His	Arg	Phe 100	Leu	Gly	Thr	Val	Glu 105	Lys	Glu	Ala	Thr	Phe 110	Ser	Asn
Pro	Lys	Thr 115	Thr	Ser	Pro	Asn	Lys 120	Gly	Lys	Glu	Lys	Glu 125	Ala	Glu	Asp
Gly	Ile 130	Ile	Ala	Tyr	Asp	Asp 135	Cys	Gly	Val	Lys	Leu 140	Thr	Ile	Ala	Phe
Gln 145	Ala	Lys	Asp	Val	Glu 150	Gly	Ser	Thr	Ser	Pro 155	Gln	Ile	Gly	Asp	Lys 160
Val	Glu	Phe	Ser	Ile 165	Ser	Asp	Lys	Gln	Arg 170	Pro	Gly	Gln	Gln	Val 175	Ala
Thr	Cys	Val	Arg 180	Leu	Leu	Gly	Arg	Asn 185	Ser	Asn	Ser	Lys	Arg 190	Leu	Leu
Gly	Tyr	Val 195	Ala	Thr	Leu	Lys	Asp 200	Asn	Phe	Gly	Phe	Ile 205	Glu	Thr	Ala
Asn	His 210	Asp	Lys	Glu	Ile	Phe 215	Phe	His	Tyr	Ser	Glu 220	Phe	Ser	Gly	Asp
Val 225	Asp	Ser	Leu	Glu	Leu 230	Gly	Asp	Met	Val	Glu 235	Tyr	Ser	Leu	Ser	Lys 240
Gly	Lys	Gly	Asn	Lys 245	Val	Ser	Ala	Glu	Lys 250	Val	Asn	Lys	Thr	His 255	Ser
Val	Asn	Gly	Ile 260	Thr	Glu	Glu	Ala	Asp 265	Pro	Thr	Ile	Tyr	Ser 270	Gly	Lys
Val	Ile	Arg 275	Pro	Leu	Arg	Ser	Val 280	Asp	Pro	Thr	Gln	Thr 285	Glu	Tyr	Gln
Gly	Met 290	Ile	Glu	Ile	Val	Glu 295	Glu	Gly	Asp	Met	Lys 300	Gly	Glu	Val	Tyr
Pro 305	Phe	Gly	Ile	Val	Gly 310	Met	Ala	Asn	Lys	Gly 315	Asp	Cys	Leu	Gln	Lys 320
Gly	Glu	Ser	Val	Lys 325	Phe	Gln	Leu	Cys	Val 330	Leu	Gly	Gln	Asn	Ala 335	Gln
Thr	Met	Ala	Tyr 340	Asn	Ile	Thr	Pro	Leu 345	Arg	Arg	Ala	Thr	Val 350	Glu	Cys
Val	Lys	Asp 355	Gln	Phe	Gly	Phe	Ile 360	Asn	Tyr	Glu	Val	Gly 365	Asp	Ser	Lys
Lys	Leu 370	Phe	Phe	His	Val	Lys 375	Glu	Val	Gln	Asp	Gly 380	Ile	Glu	Leu	Gln

Ala 385	Gly	Asp	Glu	Val	Glu 390	Phe	Ser	Val	Ile	Leu 395	Asn	Gln	Arg	Thr	Gly 400
Lys	Cys	Ser	Ala	Cys 405	Asn	Val	Trp	Arg	Val 410	Cys	Glu	Gly	Pro	Lys 415	Ala
Val	Ala	Ala	Pro 420	Arg	Pro	Asp	Arg	Leu 425	Val	Asn	Arg	Leu	Lys 430	Asn	Ile
Thr	Leu	Asp 435	Asp	Ala	Ser	Ala	Pro 440	Arg	Leu	Met	Val	Leu 445	Arg	Gln	Pro
Arg	Gly 450	Pro	Asp	Asn	Ser	Met 455	Gly	Phe	Gly	Ala	Glu 460	Arg	Lys	Ile	Arg
Gln 465	Ala	Gly	Val	Ile	Asp 470										
<210><211><211><212><213>	126 PRT	sapie	ns												
<400>	562														
Leu 1	Asn	Ala	Ile	Leu 5	Asn	Phe	Phe	His	Met 10	Glu	Lys	Glu	Leu	Leu 15	Ala
Ile	Ser	Tyr	Phe 20	Ile	Val	Asn	Glu	Ala 25	Lys	Leu	Ile	Phe	His 30	Thr	Phe
His	Cys	Gly 35	Pro	Ala	Gln	Gly	Cys 40	Asp	Val	Val	Ser	His 45	Ser	Leu	Cys
Ile	Leu 50	Ala	Gln	Asp	Thr	Gln 55	Leu	Glu	Leu	Asp	Ala 60	Leu	Pro	Phe	Leu
Gln 65	Ala	Ile	Pro	Phe	Val 70	Gly	His	Pro	Asn	Asp 75	Ala	Lys	Trp	Ile	Asp 80
Leu	Thr	Phe	His	Ile 85	Ala	Leu	'Leu	His	Asn 90	Leu	Asn	His	Ser	Leu 95	Val
Leu	Ser	Leu	Cys 100	Trp	Ile	Asn	Thr	Pro 105	Gln	Gly	Ala	Asn	Tyr 110	Phe	Ala
Arg	Val	Asn 115	Gly	Gly	Ile	Ser	Phe 120	Leu	Ser	Asn	Ala	Ile 125	His		
<210><211><212><213>	85 PRT	sapie	ns												
<400>	563														
Lys 1	Ser	His	Thr	Ser 5	Cys	Asn	Leu	Leu	Ser 10	Arg	Pro	Leu	Phe	Val 15	Thr
Asn	Thr	Lys	Phe 20	Asn	Leu	Ile	Ser	Tyr 25	Leu	Arg	Arg	Ser	Arg 30	Ser	Phe

His	Ile	Leu 35	Gly	Leu	Lys	Ser	Asn 40	Ser	Gln	Phe	His	Pro 45	Thr	Val	Ile .
Ile	Ser 50	Asn	Asn	Ala	Ile	Leu 55	Ser	Leu	Leu	Leu	Phe 60	Ala	Phe	Ile	Trp
Ala 65	Ser	Gly	Phe	Arg	Ile 70	Gly	Lys	Ser	Gly	Phe 75	Phe	Phe	Tyr	Arg	Ala 80
Gln	Lys	Thr	Val	Ile 85											
<210><211><211><212><213>	549 PRT	sapie	ns												
<400>	564														
Leu 1	Tyr	Pro	Asn	Phe 5	Leu	Val	Asn	Glu	Leu 10	Ile	Leu	Lys	Gln	Lys 15	Gln
Arg	Phe	Glu	Glu 20	Lys	Arg	Phe	Lys	Leu 25	Asp	His	Ser	Val	Ser 30	Ser	Thr
Asn	Gly	His 35	Arg	Trp	Gln	Ile	Phe 40	Gln	Asp	Trp	Leu	Gly 45	Thr	Asp	Gln
Asp	Asn 50	Leu	Asp	Leu	Ala	Asn 55	Val	Asn	Leu	Met	Leu 60	Glu	Leu	Leu	Val
Gln 65	Lys	Lys	Lys	Gln	Leu 70	Glu	Ala	Glu	Ser	His 75	Ala	Ala	Gln	Leu	Gln 80
Ile	Leu	Met	Glu	Phe 85	Leu	Lys	Val	Ala	Arg 90	Arg	Asn	Lys	Arg	Glu 95	Gln
Leu	Glu	Gln	Ile 100	Gln	Lys	Glu	Leu	Ser 105	Val	Leu	Glu	Glu	Asp 110	Ile	Lys
Arg	Val	Glu 115	Glu	Met	Ser	Gly	Leu '120	Tyr	Ser	Pro	Val	Ser 125	Glu	Asp	Ser
Thr	Val 130	Pro	Gln	Phe	Glu	Ala 135	Pro	Ser	Pro	Ser	His 140	Ser	Ser	Ile	Ile
Asp 145	Ser	Thr	Glu	Tyr	Ser 150	Gln	Pro	Pro	Gly	Phe 155	Ser	Gly	Ser	Ser	Gln 160
Thr	Lys	Lys	Gln	Pro 165	Trp	Tyr	Asn	Ser	Thr 170	Leu	Ala	Ser	Arg	Arg 175	Lys
Arg	Leu	Thr	Ala 180	His	Phe	Glu	Asp	Leu 185	Glu	Gln	Cys	Tyr	Phe 190	Ser	Thr
Arg	Met	Ser 195	Arg	Ile	Ser	Asp	Asp 200	Ser	Arg	Thr	Ala	Ser 205	Gln	Leu	Asp
Glu	Phe 210	Gln	Glu	Cys	Leu	Ser 215	•	Phe		Arg	Tyr 220		Ser	Val	Arg
Pro 225	Leu	Ala	Thr	Leu	Ser 230	Tyr	Ala	Ser	Asp	Leu 235	Tyr	Asn	Gly	Ser	Ser 240

Ile	Val	Ser	Ser	Ile 245	Glu	Phe	Asp	Arg	Asp 250	Cys	Asp	Tyr	Phe	Ala 255	Ile
Ala	Gly	Val	Thr 260	Lys	Lys	Ile	Lys	Val 265	Tyr	Glu	Tyr	Asp	Thr 270	Val	Ile
Gln	Asp	Ala 275	Val	Asp	Ile	His	Tyr 280	Pro	Glu	Asn	Glu	Met 285	Thr	Cys	Asn
Ser	Lys 290	Ile	Ser	Cys	Ile	Ser 295	Trp	Ser	Ser	Tyr	His 300	Lys	Asn	Leu	Leu
Ala 305	Ser	Ser	Asp	Tyr	Glu 310	Gly	Thr	Val	Ile	Leu 315	Trp	Asp	Gly	Phe	Thr 320
Gly	Gln	Arg	Ser	Lys 325	Val	Tyr	Gln	Glu	His 330	Glu	Lys	Arg	Cys	Trp 335	Ser
Val	Asp	Phe	Asn 340	Leu	Met	Asp	Pro	Lys 345	Leu	Leu	Ala	Ser	Gly 350	Ser	Asp
Asp	Ala	Lys 355	Val	Lys	Leu	Trp	Ser 360	Thr	Asn	Leu	Asp	Asn 365	Ser	Val	Ala
Ser	Ile 370	Glu	Ala	Lys	Ala	Asn 375	Val	Cys	Cys	Val	Lys 380	Phe	Ser	Pro	Ser
Ser 385	Arg	Tyr	His	Leu	Ala 390	Phe	Gly	Cys	Ala	Asp 395	His	Cys	Val	His	Tyr 400
Tyr	Asp	Leu	Arg	Asn 405	Thr	Lys	Gln	Pro	Ile 410	Met	Val	Phe	Lys	Gly 415	His
Arg	Lys	Ala	Val 420	Ser	Tyr	Ala	Lys	Phe 425	Val	Ser	Gly	Glu	Glu 430	Ile	Val
Ser	Ala	Ser 435	Thr	Asp	Ser	Gln	Leu 440	Lys	Leu	Trp	Asn	Val 445	Gly	Lys	Pro
Tyr	Cys 450	Leu	Arg	Ser	Phe	Lys 455	.Gly	His	Ile	Asn	Glu 460	Lys	Asn	Phe	Val
Gly 465	Leu	Ala	Ser	Asn	Gly 470	Asp	Tyr	Ile	Ala	Cys 475	Gly	Ser	Glu	Asn	Asn 480
Ser	Leu	Tyr	Leu	Tyr 485	Tyr	Lys	Gly	Leu	Ser 490	Lys	Thr	Leu	Leu	Thr 495	Phe
Lys	Phe	Asp	Thr 500	Val	Lys	Ser	Val	Leu 505	Asp	Lys	Asp	Arg	Lys 510	Glu	Asp
Asp	Thr	Asn 515	Glu	Phe	Val	Ser	Ala 520	Val	Cys	Trp	Arg	Ala 525	Leu	Pro	Asp
Gly	Glu 530	Ser	Asn	Val	Leu	Ile 535	Ala	Ala	Asn	Ser	Gln 540	Gly	Thr	Ile	Lys
Val 545	Leu	Glu	Leu	Val											

<210> 565 <211> 132

<212> PRT <213> homo sapiens <400> 565 Thr Leu Tyr Phe Val Tyr Ile Asp Met Cys Asn Ser Gln Arg Gly Trp 10 Val His Gln Ile Ile His Cys Tyr Ile Ile Ile Thr Leu Ile Arg Phe Phe Val Thr Phe Val Phe Ser Phe Val Phe Phe Phe Phe Cys Tyr 45 Gly Ser Ile Asn Phe Tyr Cys Phe Val Phe Phe Phe Phe Cys 55 Ser Val Gln Lys Leu Asp Asn Thr Phe Tyr Lys Glu Phe Ser Leu Ser 65 70 75 80 Val His Gly Val Thr Leu Met Val Glu Ser Trp Thr Lys Ser Ser Asn 90 85 Val Ile Lys Glu Gly Lys Glu Lys Gly Ile Pro Asn Val Pro Lys Leu 110 105 100 Ile Thr Leu Gly Lys Lys Lys Phe Lys Thr Asn Pro Lys Pro Met Met 125 120 115 Arg Asp Ile Thr 130 <210> 566 <211> 90 <212> PRT <213> homo sapiens <400> 566 Thr Val Leu Ser Ser Leu Thr Gly Glu Tyr Lys Pro Leu Ile Ser Gly Lys Thr Ser Ser Phe Trp Ile Ser Thr Leu Leu Ile Ser Ser Ser Leu 20 25 30 Ser Leu Leu Phe Ala Thr Leu Arg Asn Ser Cys Ser Ser Cys Leu Leu Ser Ile Arg Ile Cys Ser Trp Ala Ala Cys Asp Ser Ala Ser Cys Phe 50 60 Ser Asn Ile Arg Leu Thr Leu Ala Lys Ser Phe Phe Cys Thr Ser Asn 70 75 Ser Val Pro Asn Gln Ser Arg Leu Ser Trp 85 <210> 567

<211> 331

<212> PRT

<213> homo sapiens

<400> 567

Ser 1	Ala	Asn	His	Lys 5	Leu	Glu	Val	Asn	Gly 10	Thr	Asp	Gly	Leu	Ala 15	Pro
Val	Glu	Val	Glu 20	Glu	Leu	Leu	Arg	Gln 25	Ala	Ser	Glu	Arg	Asn 30	Ser	Lys
Ser	Pro	Thr 35	Glu	Tyr	His	Glu	Pro 40	Val	Tyr	Ala	Asn	Pro 45	Phe	Tyr	Arg
Pro	Thr 50	Thr	Pro	Gln	Arg	Glu 55	Thr	Val	Thr	Pro	Gly 60	Pro	Asn	Phe	Gln
Glu 65	Arg	Ile	Lys	Ile	Lys 70	Thr	Asn	Gly	Leu	Gly 75	Ile	Gly	Val	Asn	Glu 80
Ser	Ile	His	Asn	Met 85	Gly	Asn	Gly	Leu	Ser 90	Glu	Glu	Arg	Gly	Asn 95	Asn
Phe	Asn	His	Ile 100	Ser	Pro	Ile	Pro	Pro 105	Val	Pro	His	Pro	Arg 110	Ser	Val
Ile	Gln	Gln 115	Ala	Glu	Glu	Lys	Leu 120	His	Thr	Pro	Gln	Lys 125	Arg	Leu	Met
Thr	Pro 130	Trp	Glu	Glu	Ser	Asn 135	Val	Met	Gln	Asp	Lys 140	Asp	Ala	Pro	Ser
Pro 145	Lys	Pro	Arg	Leu	Ser 150	Pro	Arg	Glu	Thr	Ile 155	Phe	Gly	Lys	Ser	Glu 160
His	Gln	Asn	Ser	Ser 165	Pro	Thr	Cys	Gln	Glu 170	Asp	Glu	Glu	Asp	Val 175	Arg
Tyr	Asn	Ile	Val 180	His	Ser	Leu	Pro	Pro 185	Asp	Ile	Asn	Asp	Thr 190	Glu	Pro
Val	Thr	Met 195	Ile	Phe	Met	Gly	Tyr 200	Gln	Gln	Ala	Glu	Asp 205	Ser	Glu	Glu
Asp	Lys 210	Lys	Phe	Leu	Thr	Gly 215	.Tyr	Asp	Gly	Ile	Ile 220	His	Ala	Glu	Leu
Val 225	Val	Ile	Asp	Asp	Glu 230	Glu	Glu	Glu	Asp	Glu 235	Gly	Glu	Ala	Glu	Lys 240
Pro	Ser	Tyr	His	Pro 245	Ile	Ala	Pro	His	Ser 250	Gln	Val	Tyr	Gln	Pro 255	Ala
Lys	Pro	Thr	Pro 260	Leu	Pro	Arg	Lys	Arg 265	Ser	Glu	Ala	Ser	Pro 270	His	Glu
Asn	Thr	Asn 275	His	Lys	Ser	Pro	His 280	Lys	Asn	Ser	Ile	Ser 285	Leu	Lys	Glu
Gln	Glu 290	Glu	Ser	Leu	Gly	Ser 295	Pro	Val	His	His	Ser 300	Pro	Phe	Asp	Ala
Gln 305	Thr	Thr	Gly	Asp	Gly 310	Thr	Glu	Asp	Pro	Ser 315	Leu	Thr	Ala	Leu	Arg 320
Met	Arg	Met	Ala	Lys 325	Leu	Gly	Lys	Lys	Val 330	Ile					

<210><211><212><213>	216 PRT	sapi	ens												
<400>	568														
Leu 1	Ser	Leu	Thr	Ser 5	Arg	Met	Glu	Glu	Ala 10	Glu	Leu	Val	Lys	Gly 15	Arg
Leu	Gln	Ala	Ile 20	Thr	Asp	Lys	Arg	Lys 25	Ile	Gln	Glu	Glu	Ile 30	Ser	Gln
Lys	Arg	Leu 35	Lys	Ile	Glu	Glu	Asp 40	Lys	Leu	Lys	His	Gln 45	His	Leu	Lys
Lys	Lys 50	Ala	Leu	Arg	Glu	Lys 55	Trp	Leu	Leu	Asp	Gly 60	Ile	Ser	Ser	Gly
Lys 65	Glu	Gln	Glu	Glu	Met 70	Lys	Lys	Gln	Asn	Gln 75	Gln	Asp	Gln	His	Gln 80
Ile	Gln	Val	Leu	Glu 85	Gln	Ser	Ile	Leu	Arg 90	Leu	Glu	Lys	Glu	Ile 95	Gln
Asp	Leu	Glu	Lys 100	Ala	Glu	Leu	Gln	Ile 105	Ser	Thr	Lys	Glu	Glu 110	Ala	Ile
Leu	Lys	Lys 115	Leu	Lys	Ser	Ile	Glu 120	Arg	Thr	Thr	Glu	Asp 125	Ile	Ile	Arg
Ser	Val 130	Lys	Val	Glu	Arg	Glu 135	Glu	Arg	Ala	Glu	Glu 140	Ser	Ile	Glu	Asp
Ile 145	Tyr	Ala	Asn	Ile	Pro 150	Asp	Leu	Pro	Lys	Ser 155	Tyr	Ile	Pro	Ser	Arg 160
Leu	Arg	Lys	Glu	Ile 165	Asn	Glu	Glu	Lys	Glu 170	Asp	Asp	Glu	Gln	Asn 175	Arg
Lys	Ala	Leu	Tyr 180	Ala	Met	Glu	·Ile	Lys 185	Val	Glu	Lys	Asp	Leu 190	Lys	Thr
Gly	Glu	Ser 195	Thr	Val	Leu	Ser	Ser 200	Asn	Thr	Ser	Gly	His 205	Gln	Met	Thr
Leu	Lys 210	Gly	Thr	Gly	Val	Lys 215	Val								
<210> ! <211> ! <212> ! <213> !	132 PRT	sapie	ns												
<400>	569														
Leu 1	Glu	Lys	Leu	His 5	Ile	Cys	Phe	Pro	Gln 10	Leu	Phe	Gly	Asn	Phe 15	Ser
Gln	Ile	Met	Thr 20	Thr	Thr	Tyr	Ser	His 25	Gly	Leu	Ile	Trp	Tyr 30	Thr	Val

Met	Ile	Ile 35	Phe	Trp	Thr	Ser	Glu 40	Lys	Ile	Asn	Lys	Ile 45	Ser	Arg	Arg
Glu	Ile 50	Cys	Lys	Cys	Phe	Leu 55	Val	Ser	Ser	Ser	Lys 60	Asp	Val	Tyr	Ile
Gly 65	Gly	Thr	Thr	Leu	Arg 70	Ser	Pro	Phe	Phe	Pro 75	Ala	Leu	Pro	Phe	Ser 80
Ser	Leu	Lys	Leu	Leu 85	Arg	Met	Asp	Pro	Gln 90	Ser	His	Leu	Gln	Leu 95	Ser
Glu	His	Gln	Met 100	Gly	Asn	Gly	Gly	Gln 105	Gly	Cys	Leu	Ser	Phe 110	Leu	Leu
Ala	Leu	Ser 115	Glu	Ile	Trp	Asn	Phe 120	Cys	Gly	Gly	Ile	Tyr 125	Asp	Leu	Cys
Phe	His 130	Glu	Asp												
<210><211><211><212><213>	199 PRT	sapie	ens												
<400>	5 70														
Asn 1	Phe	Val	Thr	Pro 5	Trp	Ser	Phe	Trp	Trp 10	Trp	Thr	Lys	Leu	Thr 15	Phe
Phe	Phe	Pro	Leu 20	Ala	Leu	Lys	Lys	Ser 25	Ser	Arg	Val	Ser	Ser 30	Ser	His
Leu	Pro	Arg 35	Ile	Tyr	Gln	Ala	Phe 40	Leu	Met	Ser	Ala	Thr 45	Phe	Asn	Glu
Asp	Val 50	Gln	Ala	Leu	Lys	Glu 55	Leu	Ile	Leu	His	Asn 60	Pro	Val	Thr	Leu
Lys 65	Leu	Gln	Glu	Ser	Gln 70	Leu	Pro	Gly	Pro	Asp 75	Gln	Leu	Gln	Gln	Phe 80
Gln	Val	Val	Cys	Glu 85	Thr	Glu	Glu	Asp	Lys 90	Phe	Leu	Leu	Leu	Tyr 95	Ala
Leu	Leu	Lys	Leu 100	Ser	Leu	Ile	Arg	Gly 105	Lys	Ser	Leu	Leu	Phe 110	Val	Asn
Thr	Leu	Glu 115	Arg	Ser	Tyr	Arg	Leu 120	Arg	Leu	Phe	Leu	Glu 125	Gln	Phe	Ser
Ile	Pro 130	Thr	Cys	Val	Leu	Asn 135	Gly	Glu	Leu	Pro	Leu 140	Arg	Ser	Arg	Cys
His 145	Ile	Ile		Gln	Phe 150	Asn	Gln	Gly	Phe	Tyr 155	Asp	Cys	Val	Ile	Ala 160
Thr	Asp	Ala	Glu	Val 165	Leu	Gly	Ala	Pro	Arg 170	Gln	Arg	Ala	Met	Arg 175	Pro
Arg	Arg	Arg	Ala 180	Lys	Thr	Gly	Thr	Met 185	Ala	Ser	Arg	Phe	Leu 190	Glu	Arg

Thr Val Val Ala Leu Gly His 195 <210> 571 <211> 195 <212> PRT <213> homo sapiens <400> 571 Gin Arg Val Arg Ala Ala Leu Leu Ser Ser Ala Met Glu Asp Ser Glu 10 15 Ala Leu Gly Phe Glu His Met Gly Leu Asp Pro Arg Leu Leu Gln Ala 25 30 Val Trp Ser Arg Asp Leu Gly Pro Thr Ile Gln Leu Glu Lys Ala 40 45 Ile Pro Leu Ala Leu Glu Gly Lys Asp Leu Leu Ala Arg Ala Arg Thr 50 55 60 Gly Ser Gly Lys Thr Ala Ala Tyr Ala Ile Pro Met Leu Gln Leu Leu 65 70 75 Leu His Arg Lys Ala Thr Gly Pro Val Val Glu Gln Ala Val Gly Arg 85 Val Leu Val Thr Lys Glu Leu Ala Arg Gln Ala Gln Ser Leu Pro 100 105 Ile Gln Gln Leu Ala Thr Tyr Cys Ala Arg Asp Val Arg Val Ala Asn 115 120 125 Val Ser Ala Ala Glu Asp Ser Val Ser Gln Arg Ala Val Leu Met 130 135 140 Lys Pro Asp Val Val Val Gly Thr Pro Ile Leu Ser His Leu Ser Arg 145 150 155 160 Gln Gln Asp Ser Leu Lys Leu 'Arg Asp Ser Leu Glu Leu Leu Val Val 165 170 Glu Ala Asp Leu Leu Phe Ser Phe Gly Phe Glu Glu Leu Lys Asp 180 185 Ser Leu Leu 195 **<210> 57**2 <211> 76 <212> PRT <213> homo sapiens <400> 572 Asp Ile Gly His Ser Asp Ile Pro Ser Thr Val Gly Ser Gln Leu Leu 15 Asn His Gly Leu Cys Leu Pro Cys Gln Leu Leu Gly Arg Asn Lys

25

20

Asn

30

Lys Ala Ser His Cys Leu Phe Tyr His Arg Thr Cys Arg Leu Pro Met 40 45 Glu Gln Gln Leu Gln His Arg Asn Ser Ile Ser Gly Arg Leu Pro Gly 60 Ala Arg Ala Gly Pro Ser Gln Glu Val Leu Pro <210> 573 <211> 91 <212> PRT <213> homo sapiens <**400> 5**73 Asp Ser Gln Val Gly Arg Gly Pro Gln Arg Asn Ser Ser Leu His Thr Gly Arg Ser Val His Trp Gly Glu Ala Thr Gly Ser Leu Arg His 20 25 Gln Trp Gly Arg Ala Gln Pro Leu Leu Phe Leu Gly Gly Lys Leu Arg 35 40 Leu Pro Gly Gly Lys Phe Lys Ser Met Gly Arg Lys Gln Ala Leu Xxx Leu Leu Arg Val Ser Val Ser Pro Phe Phe Pro Leu Cys Leu Ile Asn 65 Lys Phe His Phe Ser His Pro Ser Asn Ser 85 <210> 574 <211> 89 <212> PRT <213> homo sapiens <400> 574 Glu Lys Trp Asn Leu Leu Ile 'Arg His Lys Gly Lys Lys Gly Glu Thr 15 Glu Thr Leu Ser Lys Xxx Arg Ala Cys Phe Leu Pro Met Asp Phe Pro 20 30 Pro Gly Ser Leu Asn Arg Ser Phe Pro Pro Arg Lys Arg Arg Gly 40 Ala Leu Pro His Trp Arg Trp Arg Lys Leu Pro Val Ala Ser Pro Gln 50 60 Cys Thr Leu Leu Cys Arg Leu Glu Phe Leu Trp Gly Pro Pro Val Leu 75 80 Pro Thr Trp Leu Ser His Cys Pro Leu 85

<210> 575

<211> 80

<212> PRT

<213> homo sapiens

<210> 578 <211> 160

<400>	5 75														
Leu 1	Ile	Arg	Cys	Leu 5	Arg	Leu	Phe	Ser	His 10	His	Val	Met	Glu	Arg 15	Lys
Leu	Ser	Thr	Ser 20	Phe	Leu	Arg	Leu	Pro 25	Ala	Thr	Gln	Leu	Leu 30	Ile	His
Ile	Trp	Ser 35	Glu	Pro	Trp	Tyr	Pro 40	Ser	Thr	Ile	His	Ala 45	Arg	Lys	Leu
Asp	Val 50	Tyr	Ser	Leu	Pro	Phe 55	Phe	Pro	Leu	Phe	Gly 60	Asp	Phe	Leu	Leu
Ser 65	Ser	Ala	Glu	Asp	Gly 70	Val	Leu	Val	Cys	Pro 75	Met	Ala	Thr	Lys	Ile 80
<210> <400> 000															
<210><211><211><212><213>	161 PRT	sapie	ens												
<400>	577														
Leu 1	Leu	Pro	Leu	Leu 5	Leu	Leu	Leu	Ile	His 10	Gly	Asp	Thr	Pro	Xxx 15	Gly
Pro	Gly	Pro	Xxx 20	Xxx	Gln	Glu	Gln	Ala 25	Pro	Asn	His	Arg	His 30	Gly	Leu
Glu	Glu	Xxx 35	Arg	Ile	Ser	Xxx	Lys 40	Ser	Cys	Met	Gly	Xxx 45	Val	Asp	Trp
Asn	Gly 50	Pro	Glu	Gly	Val	Glu 55	Ile	Tyr	Val	Asp	Gly 60	Lys	Glu	Pro	His
Asn 65	Lys	Ser	Gln	Ser	Ser 70	Gln	`Leu	Gly	Phe	Lys 75	Thr	Asn	Gly	His	Xxx 80
Lys	Ser	Ser	Glu	Xxx 85	Val	Xxx	His	Asp	Val 90	Leu	Asp	Asn	Arg	Lys 95	Glu
Ala	Gly	Val	Lys 100	Val	Lys	Glu	Gly	His 105	Glu	His	Gln	Asn	Gln 110	Gln	Asp
Pro	Ala	Ser 115	Glu	Leu	His	Val	Leu 120	Phe	Gly	Gly	Ala	Leu 125	Thr	His	Gly
Gly	Asp 130	Ala	Arg	Lys	His	Ala 135	Leu	Pro	Phe	Arg	Thr 140	Gly	Phe	Ser	Arg
Ser 145	Thr	Gln	Gln	Pro	Pro 150	Pro	Arg	Ala	Arg	Phe 155	Leu	Pro	Leu	Cys	Arg 160
Thr															

<212> <213>		sapie	ens												
<400>	5 78														
Gln 1	Thr	Asp	Asn	Leu 5	Ser	Glu	Arg	Gln	Pro 10	Xxx	Gly	Lys	Xxx	Val 15	Cys
Arg	Gly	Cys	Pro 20	Gln	Gly	Glu	Cys	Ser 25	Trp	Glu	Arg	Ala	Val 30	Leu	Leu
Xxx	Pro	Gly 35	Arg	Pro	Ala	Leu	Ser 40	Xxx	Thr	Leu	Leu	Xxx 45	Lys	Xxx	Ala
Pro	Cys 50	Glu	Val	Asn	Trp	Val 55	Xxx	Val	Arg	Gly	Ser 60	Xxx	Xxx	Cys	Xxx
Gly 65	Ala	Pro	Ala	Xxx	Thr 70	Pro	Xxx	Pro	Xxx	Gln 75	Arg	Xxx	Ala	Ala	Ser 80
Ala	Xxx	Ala	Gly	Leu 85	Glu	Xxx	Ser	Xxx	Ala 90	Xxx	Ala	Gly	Xxx	Ala 95	Gly
Cys	Cys	Cys	Xxx 100	Gly	Leu	Pro	Xxx	Val 105	Trp	Ser	Xxx	Leu	Ala 110	Leu	Pro
Thr	Ala	Ser 115	Leu	Glu	Ala	Ser	Xxx 120	Xxx	Pro	Arg	Pro	Ala 125	Ala	Ser	Pro
Arg	Thr 130	Ser	Cys	Pro	Ser	Thr 135	Leu	Pro	Gln	Ala	Thr 140	Lys	Thr	Pro	Arg
Val 145	Leu	Pro	Asn	Lys	Xxx 150	Xxx	Leu	Gly	Thr	Xxx 155	Ser	Lys	Leu	Ile	Phe 160
<210><211><212><212><213>	437 PRT	sapi e	ns												
<400>	57 9						•								
Ser 1	Gln	Gly	Val	Leu 5	Ser	Ser	Asp	Gly	Val 10	Trp	Arg	Val	Lys	Ser 15	Ile
Pro	Asn	Gly	Lys 20	Gly	Ser	Ser	Pro	Leu 25	Pro	Thr	Ala	Thr	Thr 30	Pro	Lys
Pro	Leu	Ile 35	Pro	Thr	Glu	Ala	Ser 40	Ile	Arg	Val	Trp	Gly 45	Thr	Ser	Gly
Thr	Ser 50	His	Leu	His	Pro	Arg 55	Ser	Ile	Cys	Met	Ile 60	Gln	Lys	Tyr	Asn
His 65	Asp		Glu	Ala	Gly 70	Arg	Leu	Glu	Ala	Phe 75	Ser	Gln	Gly	Glu	Ser 80
Val	Leu	Lys	Glu	Pro 85	Lys	Tyr	Gln	Glu	Glu 90	Leu	Glu	Asp	Arg	Leu 95	His
Phe	Tyr	Val	Glu 100	Glu	Cys	Asp	Tyr	Leu 105	Gln	Gly	Phe	Gln	Ile 110	Leu	Cys

Asp	Leu	His 115	Asp	Gly	Phe	Ser	Gly 120	Val	Gly	Ala	Lys	Ala 125	Ala	Glu	Leu .
Leu	Gln 130	Asp	Glu	Tyr	Ser	Gly 135	Arg	Gly	Ile	Ile	Thr 140	Trp	Gly	Leu	Leu
Pro 145	Gly	Pro	Tyr	His	Arg 150	Gly	Glu	Ala	Gln	Arg 155	Asn	Ile	Tyr	Arg	Leu 160
Leu	Asn	Thr	Ala	Phe 165	Gly	Leu	Val	His	Leu 170	Thr	Ala	His	Ser	Ser 175	Leu
Val	Cys	Pro	Leu 180	Ser	Leu	Gly	Gly	Ser 185	Leu	Gly	Leu	Arg	Pro 190	Glu	Pro
Pro	Val	Ser 195	Phe	Pro	Tyr	Leu	His 200	Tyr	Asp	Ala	Thr	Leu 205	Pro	Phe	His
Cys	Ser 210	Ala	Ile	Leu	Ala	Thr 215	Ala	Leu	Asp	Thr	Val 220	Thr	Val	Pro	Tyr
Arg 225	Leu	Cys	Ser	Ser	Pro 230	Val	Ser	Met	Val	His 235	Leu	Ala	Asp	Met	Leu 240
Ser	Phe	Cys	Gly	Lys 245	Lys	Val	Val	Thr	Ala 250	Gly	Ala	Ile	Ile	Pro 255	Phe
Pro	Leu	Ala	Pro 260	Gly	Gln	Ser	Leu	Pro 265	Asp	Ser	Leu	Met	Gln 270	Phe	Gly
Gly	Ala	Thr 275	Pro	Trp	Thr	Pro	Leu 280	Ser	Ala	Cys	Gly	Glu 285	Pro	Ser	Gly
Thr	Arg 290	Cys	Phe	Ala	Gln	Ser 295	Val	Val	Leu	Arg	Gly 300	Tyr	Arg	Gln	Ser
Met 305	Pro	His	Lys	Pro	Gln 310	Asn	Gln	Arg	Asp	Thr 315	Ser	Thr	Leu	Cys	Pro 320
Ser	Cys	Met	Tyr	His 325	Trp	Gly	Arg	Asn	Leu 330	Gly	Ser	Val	Phe	Thr 335	Thr
Ala	Ala	Ala	Trp 340	Ser	His	Glu	Phe	Phe 345	Pro	Ser	Ala	Ala	Asp 350	Ser	Leu
Gln	Gly	Gly 355	Ser	Ser	Leu	Pro	Pro 360	Pro	Leu	Leu	Lys	Leu 365	Gln	Ser	Thr
Gly	Tyr 370	Gly	Ser	Gly	Trp	Phe 375	Pro	Gln	Gly	Ser	Arg 380	Ser	Ser	Val	Ser
Leu 385	Ser	Leu	Pro	Gln	Gln 390	Trp	Arg	Ala	Ser	Gln 395	Cys	Leu	Gly	His	Cys 400
Val	Pro	Leu	Arg	Pro 405	Cys	Thr	Arg	Pro	Trp 410	Lys	Pro	Trp	Pro	Glu 415	Thr
Ser	Pro	Asn	Ser 420	Thr	Cys	Gly	Ala	Gly 425	Pro	Ala	Ser	Trp	Met 430	Leu	Glu
Trp	Ser	Thr 435	Met	Thr											

<210> 580

<211> 277 <212> PRT <213> homo sapiens <400> 580 Thr Glu Arg Leu Leu Asp Gly Pro Pro Pro His Ser Glu Pro Thr 5 15 Gln Pro Pro Phe Pro Thr Thr Gly Ala Val Leu Tyr Val Arg Thr Lys 30 Asn Gln Val Gly Pro Glu Val Arg Ser Cys Pro Lys Ala Ser Pro Arg 40 45 Leu Gln Lys Glu Arg Glu Gly Gln Lys Glu Ala Val Ser Ser Glu Ala 55 60 Leu Met Leu Val Trp Asp Ala Ser Glu Thr Glu Gly Lys Leu Pro Thr 65 70 75 Glu Pro Pro Val Pro Ala Ser Phe Val Leu Ser Ser Ser Lys Thr Arg 85 90 95 Ala Gly Arg Asp Arg His Val Ser Gly Lys Pro Asp Thr Gln Arg Glu 100 105 Arg Trp Leu Pro Ser Ser Ala Arg Val Lys Thr Arg Asp Arg Thr Cys 115 120 125 Pro Val His Glu Ser Pro Ser Gly Ile Asp Thr Ser Glu Thr Ser Pro 130 135 140 Gly Lys Ala Pro Arg Gly Leu Ala Lys Asp Ser Gly Thr Gln Ala Lys 145 155 160 Gly Pro Glu Gly Glu Gln Gln Pro Lys Ala Ala Glu Ala Thr Val 165 170 175 Ala Asn Asn Ser Val Ser Ser Thr Lys Gly Glu Lys Val Val Leu Trp 180 185 190 Thr Arq Glu Ala Asp Arg Val Ile Thr Gln Leu Met Cys Glu Gln Gly 195 200 205 Ala Gln Pro Gln Thr Phe Asn Ile Ile Gln Gln Ser Leu Gly Asn Lys 210 215 220 Thr Pro Ala Glu Val Ser His Phe Glu Arg Arg Leu Met Gln Leu Phe 225 230 235 240 His Thr Ala Cys Glu Ala Ser Ser Glu Asp Glu Asp Asp Ala Thr 245 250 255 Thr Ser Ala Asp Asn Gln Leu Ser Asp His Gly Asp Leu Leu Ser 260 265 270 Glu Glu Leu Asp Glu 275

<210> 581 <211> 172

<212> PRT <213> homo sapiens

<400> 581

Phe 1	Pro	Glu	Ser	His 5	Ser	Ser	Ser	Ser	Ser 10	Ser	Asp	Arg	Arg	Ser 15	Pro
Trp	Ser	Asp	Ser 20	Trp	Ser	Ala	Leu	Leu 25	Val	Leu	Val	Ala	Ser 30	Ser	Ser
Ser	Ser	Glu 35	Leu	Ala	Ser	Gln	Ala 40	Val	Trp	Lys	Ser	Cys 45	Met	Ser	Ser
Arg	Lys 50	Arg	Trp	Glu	Thr	Ser 55	Ala	Gly	Val	Leu	Phe 60	Pro	Ser	Cys	Trp
Glu 65	Met	Met	Leu	Lys	Val 70	Cys	Gly	Cys	Ala	Pro 75	Cys	Ser	Trp	His	Met 80
Val	Arg	Ile	Thr	Arg 85	Ser	Ala	Ser	Leu	Val 90	His	Arg	Thr	Thr	Phe 95	Ser
Pro	Val	Glu	Leu 100	Thr	Leu	Leu	Leu	Leu 105	Ala	His	Thr	Val	Ala 110	Ser	Ala
Ala	Phe	Gly 115	Cys	Cys	Ser	Pro	Ser 120	Gly	Pro	Leu	Ala	Cys 125	Val	Pro	Leu
Ser	Leu 130	Ala	Lys	Pro	Pro	Leu 135	Gly	Ala	Leu	Gly	Glu 140	Val	Ser	Glu	Val
Ser 145	Ile	Pro	Asp	Gly	Asp 150	Ser	Trp	Thr	Gly	His 155	Val	Leu	Ser	Leu	Val 160
Phe	Thr	Leu	Ala	Leu 165	Leu	Glu	Gly	Ser	His 170	Leu	Ser				

<210> 582

<211> 549 <212> PRT

<213> homo sapiens

Glu 1	Phe	Pro	Pro	Gly 5	Leu	Thr	Glu	Pro	Thr 10	Ala	Val	Arg	Ala	Leu 15	Ala
Arg	Ala	Arg	Arg 20	Thr	Arg	Ala	Gly	Ser 25	Ala	Ser	Asp	Pro	Glu 30	Arg	Ser
Pro	Gly	Ala 35	Met	Ala	Leu	Ser	Glu 40	Leu	Ala	Leu	Val	Arg 45	Trp	Leu	Gln
Glu	Ser 50	Arg	Arg	Ser	Arg	Lys 55	Leu	Ile	Leu	Phe	Ile 60	Val	Phe	Leu	Ala
Leu 65	Leu	Leu	Asp	Asn	Met 70	Leu	Leu	Thr	Val	Val 75	Val	Pro	Ile	Ile	Pro 80
Ser	Tyr	Leu	Tyr	Ser 85	Ile	Lys	His	Glu	Lys 90	Asn	Ala	Thr	Glu	Ile 95	Gln

Thr	Ala	Arg	Pro 100	Val	His	Thr	Ala	Ser 105	Ile	Ser	Asp	Ser	Phe 110	Gln	Ser .
Ile	Phe	Ser 115	Tyr	Tyr	Asp	Asn	Ser 120	Thr	Met	Val	Thr	Gly 125	Asn	Ala	Thr
Arg	Asp 130	Leu	Thr	Leu	His	Gln 135	Thr	Ala	Thr	Gln	His 140	Met	Val	Thr	Asn
Ala 145	Ser	Ala	Val	Pro	Ser 150	Asp	Cys	Pro	Ser	Glu 155	Asp	Lys	Asp	Leu	Leu 160
Asn	Glu	Asn	Val	Gln 165	Val	Gly	Leu	Leu	Phe 170	Ala	Ser	Lys	Ala	Thr 175	Val
Gln	Leu	Ile	Thr 180	Asn	Pro	Phe	Ile	Gly 185	Leu	Leu	Thr	Asn	Arg 190	Ile	Gly
Tyr	Pro	Ile 195	Pro	Ile	Phe	Ala	Gly 200	Phe	Cys	Ile	Met	Phe 205	Val	Ser	Thr
Ile	Met 210	Phe	Ala	Phe	Ser	Ser 215	Ser	Tyr	Ala	Phe	Leu 220	Leu	Ile	Ala	Arg
Ser 225	Leu	Gln	Gly	Ile	Gly 230	Ser	Ser	Cys	Ser	Ser 235	Val	Ala	Gly	Met	Gly 240
Met	Leu	Ala	Ser	Val 245	Tyr	Thr	Asp	Asp	Glu 250	Glu	Arg	Gly	Asn	Val 255	Met
Gly	Ile	Ala	Leu 260	Gly	Gly	Leu	Ala	Met 265	Gly	Val	Leu	Val	Gly 270	Pro	Pro
Phe	Gly	Ser 275	Val	Leu	Tyr	Glu	Phe 280	Val	Gly	Lys	Thr	Ala 285	Pro	Phe	Leu
Val	Leu 290	Ala	Ala	Leu	Val	Leu 295	Leu	Asp	Gly	Ala	Ile 300	Gln	Leu	Phe	Val
Leu 305	Gln	Pro	Ser	Arg	Val 310	Gln	Pro	Glu	Ser	Gln 315	Lys	Gly	Thr	Pro	Leu 320
Thr	Thr	Leu	Leu	Lys 325	Asp	Pro	Tyr	Ile	Leu 330	Ile	Ala	Ala	Gly	Ser 335	Ile
Ser	Phe	Ala	Asn 340	Met	Gly	Ile	Ala	Met 345	Leu	Glu	Pro	Ala	Leu 350	Pro	Ile
Trp	Met	Met 355	Glu	Thr	Met	Cys	Ser 360	Arg	Lys	Trp	Gln	Leu 365	Gly	Val	Ala
Phe	Leu 370	Pro	Ala	Ser	Ile	Ser 375	Tyr	Leu	Ile	Gly	Thr 380	Asn	Ile	Phe	Gly
Ile 385	Leu	Ala	His	Lys	Met 390	Gly	Arg	Trp	Leu	Cys 395	Ala	Leu	Leu	Gly	Met 400
Ile	Ile	Val	Gly	Val 405	Ser	Ile	Leu	Cys	Ile 410	Pro	Phe	Pro	Lys	Asn 415	Ile
Tyr	Gly	Leu	Ile 420	Ala	Pro	Asn	Phe	Gly 425	Val	Gly	Phe	Ala	Asn 430	Gly	Met

Val	Asp	Ser 435	Ser	Met	Met	Pro	Ile 440	Met	Gly	Tyr	Leu	Val 445	Asp	Leu	Arg
His	Val 450	Ser	Val	Tyr	Gly	Ser 455	Val	Tyr	Ala	Ile	Ala 460	Asp	Val	Ala	Phe
Cys 465	Met	Gly	Tyr	Ala	Ile 470	Gly	Pro	Ser	Ala	Gly 475	Gly	Ala	Ile	Ala	Lys 480
Ala	Ile	Gly	Phe	Pro 485	Trp	Leu	Met	Thr	Ile 490	Ile	Gly	Ile	Ile	Asp 495	Ile
Leu	Phe	Ala	Pro 500	Leu	Cys	Phe	Phe	Leu 505	Arg	Ser	Pro	Pro	Ala 510	Lys	Glu
Glu	Lys	Met 515	Ala	Ile	Leu	Met	Asp 520	His	Asn	Cys	Pro	Ile 525	Lys	Thr	Lys
Met	Tyr 530	Thr	Gln	Asn	Asn	Ile 535	Gln	Ser	Tyr	Pro	Ile 540	Gly	Glu	Asp	Glu
Glu 545	Ser	Glu	Ser	Asp											
<210><211><212><213>	121 PRT	sapie	ns												
<400>	583														
Tyr 1	Leu	Leu	Ser	His 5	Trp	Asn	Gln	Tyr	Phe 10	Trp	Asp	Thr	Cys	Thr 15	Gln
Asn	G 1		TT - 7	Ala	T.eu	Cys	Ser	Ser	~ 1	Asn	_	71	Cys	Trp	Ser
	GIÀ	Glu	Val 20	ALU	ncu	-		25	Gly	ASII	Asp	Asn	30	-	
Gln	His	Glu Phe 35		Tyr	Ser	Ile	Ser 40		Lys	His	Leu	Trp	_	His	Ser
Gln Ser		Phe	20			Ile		25 Lys	Lys	His		Trp 45	30 Thr		
	His Glu 50	Phe 35	20 Met Trp	Tyr Ser	Ser Trp	Ile Phe 55	40	25 Lys Lys	Lys Trp	His Asn	Leu	Trp 45 Gly	30 Thr	Val	Ser
Ser Asp	His Glu 50 Ala	Phe 35 Leu Tyr	20 Met Trp	Tyr Ser Gly	Ser Trp Leu 70	Ile Phe 55	40 Cys	25 Lys Lys Arg	Lys Trp	His Asn Ala	Leu Gly 60	Trp 45 Gly	30 Thr	Val Arg	Ser Asn Leu
Ser Asp 65	His Glu 50 Ala	Phe 35 Leu Tyr	20 Met Trp His	Tyr Ser Gly Arg	Ser Trp Leu 70	Phe 55	40 Cys ·	25 Lys Lys Arg Cys	Lys Trp Pro Gly 90	His Asn Ala 75 Ile	Leu Gly 60 Ala	Trp 45 Gly Arg	30 Thr Phe Val	Val Arg Val	Ser Asn Leu 80
Ser Asp 65 Trp	His Glu 50 Ala Glu	Phe 35 Leu Tyr	20 Met Trp His Val Phe 100	Tyr Ser Gly Arg	Ser Trp Leu 70	Ile Phe 55 Pro Cys	Cys Cys Arg	Lys Lys Arg Cys	Lys Trp Pro Gly 90	His Asn Ala 75 Ile	Leu Gly 60 Ala Leu	Trp 45 Gly Arg	30 Thr Phe Val Gly Trp	Val Arg Val 95	Ser Asn Leu 80 Cys
Ser Asp 65 Trp	His Glu 50 Ala Glu Arg Ala 584 106 PRT	Phe 35 Leu Tyr Cys Ser His 115	20 Met Trp His Val Phe 100 Asp	Tyr Ser Gly Arg 85 Cys	Ser Trp Leu 70 His	Ile Phe 55 Pro Cys	Cys Arg Gly Cys	Lys Lys Arg Cys Tyr	Lys Trp Pro Gly 90	His Asn Ala 75 Ile	Leu Gly 60 Ala Leu	Trp 45 Gly Arg	30 Thr Phe Val Gly Trp	Val Arg Val 95	Ser Asn Leu 80 Cys

Asp Gly Gly Ser Val His Trp Pro Gly Arg Leu Asp Phe Cys Ser Ile

1				5					10					15	
Leu	Leu	Met	Leu 20	Asn	Ala	Val	Gln	Ile 25	Thr	Trp	Asp	Asp	Gly 30	Asp	His
Asp	Ser	Glu 35	Gln	His	Val	Val	Gln 40	Gln	Gln	Arg	Gln	Glu 45	His	Asp	Glu
Gln	Asp 50	Glu	Leu	Pro	Arg	Ala 55	Ala	Ala	Leu	Leu	Gln 60	Pro	Ala	Asp	Gln
Arg 65	Gln	Leu	Ala	Gln	Gly 70	His	Gly	Ser	Gly	Ala 75	Pro	Leu	Gly	Val	Ala 80
Cys	Ala	Ala	Cys	Pro 85	Gly	Pro	Pro	Cys	Pro 90	Arg	Gln	Arg	Pro	His 95	Arg
Ser	Gly	Leu	Arg 100	Gln	Ser	Gly	Arg	Glu 105	Phe						
<210><211><212><213>	409 PRT	sapie	ens												
<400>	585														
Lys 1	Ser	Arg	Leu	Ser 5	Val	Thr	Leu	Met	Pro 10	Val	Gln	Leu	Ser	Glu 15	His
Pro	Glu	Trp	Asn 20	Glu	Ser	Met	His	Ser 25	Leu	Arg	Ile	Ser	Val 30	Gly	Gly
Leu	Pro	Val 35	Leu	Ala	Ser	Met	Thr 40	Lys	Ala	Ala	Asp	Pro 45	Arg	Phe	Arg
Pro	Arg 50	Trp	Lys	Val	Ile	Leu 55	Thr	Phe	Phe	Val	Gly 60	Ala	Ala	Ile	Leu
Trp 65	Leu	Leu	Cys	Ser	His 70	Arg	Pro	Ala	Pro	Gly 75	Arg	Pro	Pro	Thr	His 80
Asn	Ala	His	Asn	Trp 85	Arg	Leu	Gly	Gln	Ala 90	Pro	Ala	Asn	Trp	Tyr 95	Asn
Asp	Thr	Tyr	Pro 100	Leu	Ser	Pro	Pro	Gln 105	Arg	Thr	Pro	Ala	Gly 110	Ile	Arg
Tyr	Arg	Ile 115	Ala	Val	Ile	Ala	Asp 120	Leu	Asp	Thr	Glu	Pro 125	Thr	Ala	Gln
Asp	Glu 130	Asn	Thr	Trp	Arg	Ser 135	Asp	Leu	Lys	Lys	Gly 140	Tyr	Leu	Thr	Leu
Ser 145	Asp	Ser	Gly	Asp	Lys 150	Val	Ala	Val	Glu	Trp 155	Asp	Lys	Asp	His	Gly 160
Val	Leu	Glu	Ser	His 165	Leu	Ala	Glu	Lys	Gly 170	Arg	Gly	Met	Glu	Leu 175	Ser
Asp	Leu	Ile	Val 180	Phe	Asn	Gly	Lys	Leu 185	Tyr	Ser	Val	Asp	Asp 190	Arg	Thr

Gly	Val	Val 195	Tyr	Gln	Ile	Glu	Gly 200	Ser	Lys	Ala	Val	Pro 205	Trp	Val.	Ile
Leu	Ser 210	Asp	Gly	Asp	Gly	Thr 215	Val	Glu	Lys	Gly	Phe 220	Lys	Ala	Glu	Trp
Leu 225	Ala	Val	Lys	Asp	Glu 230	Arg	Leu	Tyr	Val	Gly 235	Gly	Leu	Gly	Lys	Glu 240
Trp	Thr	Thr	Thr	Thr 245	Gly	Asp	Val	Val	Asn 250	Glu	Asn	Pro	Glu	Trp 255	Val
Lys	Val	Val	Gly 260	Tyr	Lys	Gly	Ser	Val 265	Asp	His	Glu	Asn	Trp 270	Val	Ser
Asn	Tyr	Asn 275	Ala	Leu	Arg	Ala	Ala 280	Ala	Gly	Ile	Gln	Pro 285	Pro	Ala	Asn
Leu	Ile 290	His	Glu	Ser	Ala	Cys 295	Trp	Ser	Asp	Thr	Leu 300	Gln	Arg	Trp	Phe
Phe 305	Leu	Pro	Arg	Arg	Ala 310	Ser	Gln	Glu	Arg	Tyr 315	Ser	Glu	Lys	Asp	Asp 320
Glu	Arg	Lys	Gly	Ala 325	Asn	Leu	Leu	Leu	Ser 330	Ala	Ser	Pro	Asp	Phe 335	Gly
Asp	Ile	Ala	Val 340	Ser	His	Val	Gly	Ala 345	Val	Val	Pro	Thr	His 350	Gly	Phe
Ser	Ser	Phe 355	Lys	Phe	Ile	Pro	Asn 360	Thr	Asp	Asp	Gln	Ile 365	Ile	Val	Ala
Leu	Lys 370	Ser	Glu	Glu	Asp	Ser 375	Gly	Arg	Val	Ala	Ser 380	Tyr	Ile	Met	Ala
Phe 385	Thr	Leu	Asp	Gly	Arg 390	Phe	Leu	Leu	Pro	Glu 395	Thr	Lys	Ile	Gly	Ser 400
Val	Lys	Tyr	Glu	Gly 405	Ile	Glu	Phe	Ile							
<210>															
<211> 249 <212> PRT															
<213>		sapie	ns												
		-													

Lys 1	Leu	Ser	Pro	Asp 5	Gly	Leu	Ala	Gln	Cys 10	Phe	Arg	Phe	Glu	Leu 15	Asn
Glu	Leu	Asp	Ala 20	Phe	Val	Phe	His	Ala 25	Ser	Asp	Leu	Gly	Leu 30	Arg	Gln
Gln	Glu	Ala 35	Pro	Val	Gln	Arg	Glu 40	Gly	His	Asp	Val	Gly 45	Gly	Asp	Ser
Ala	Ala 50	Val	Leu	Leu	Gly	Phe 55	Glu	Gly	His	Asn	Asp 60	Leu	Val	Val	Gly
Val 65	Gly	Asp	Glu	Leu	Glu 70	Gly	Arg	Glu	Ala	Val 75	Ser	Gly	Asp	His	Arg 80

Pro	Asp	Val	Ala	His 85	Ser	Asp	Val	Ala	Glu 90	Val	Arg	Gly	Gly	Ala 95	Gln
Gln	Gln	Val	Gly 100	Ala	Leu	Ala	Leu	Val 105	Val	Leu	Leu	Ala	Val 110	Ala	Leu
Leu	Ala	Gly 115	Ala	Ala	Arg	Gln	Glu 120	Glu	Pro	Ala	Leu	Gln 125	Arg	Val	Thr
Pro	Ala 130	Gly	Arg	Leu	Met	Asp 135	Glu	Val	Ser	Trp	Arg 140	Leu	Asp	Ala	Gly
Ser 145	Ser	Pro	Gln	Gly	Val 150	Val	Val	Gly	His	Pro 155	Val	Leu	Val	Val	His 160
Ala	Ala	Leu	Val	Ala 165	His	His	Leu	His	Pro 170	Leu	Arg	Val	Leu	Val 175	His
His	Ile	Thr	Arg 180	Ser	Gly	Arg	Pro	Leu 185	Leu	Ala	Gln	Ala	Ala 190	His	Val
Gln	Thr	Leu 195	Val	Leu	His	Cys	Gln 200	Pro	Phe	Gly	Leu	Glu 205	Ala	Phe	Leu
His	Gly 210	Ala	Val	Ala	Val	Gly 215	Gln	Asn	His	Pro	Gly 220	His	Gly	Phe	Ala
Ala 225	Phe	Asp	Leu	Val	Asp 230	Asp	Pro	Arg	Pro	Val 235	Ile	His	Gly	Val	Glu 240
Phe	Pro	Ile	Glu	Asn 245	Asn	Gln	Val	Gly							

<210> 587 <211> 157 <212> PRT <213> homo sapiens

<400> 587

Leu 1	Glu	Phe	Phe	Ile 5	Pro	Cys	`Leu	Gly	Ser 10	Val	Asn	Glu	Ala	Cys 15	Leu
Phe	Pro	Gly	Val 20	Ser	Phe	His	Gly	Leu 25	Tyr	Phe	Ser	Ser	Ser 30	Ser	Gly
Ser	Phe	Ala 35	Gly	Ser	Ser	Leu	Trp 40	Lys	Leu	His	Glu	Arg 45	Trp	Leu	Gly
Leu	Gly 50	Phe	Ala	Gly	Val	Tyr 55	Ser	Arg	Val	Lys	Ala 60	Glu	Trp	Asp	Leu
Arg 65	Pro	Arg	Leu	Gly	Thr 70	Thr	Gln	Ala	Glu	Lys 75	Gly	Arg	Phe	His	His 80
Ser	Gln	Cys	Pro	Pro 85	His	Ser	Asn	Tyr	Leu 90	Thr	Pro	Thr	Pro	Thr 95	Leu
Thr	Pro	Thr	Pro 100	Pro	Arg	Asp	Arg	Gln 105	Gly	Cys	His	Gly	Gly 110	Pro	Glu
Gly	Ala	Gly	Ser	Gly	Cys	Pro	Cys	Ala	Gly	Pro	Ser	Gln	Thr	Ser	Pro

115 120 125 Pro Leu Lys Leu Lys His Ser Cys Glu Glu Gly Ser Glu Glu Gly Pro 135 140 Leu Ser His Gly Cys Leu Phe Pro Pro Leu Cys His Arg 145 150 155 <210> 588 <211> 144 <212> PRT <213> homo sapiens <400> 588 Asn Thr Met Ala Val Ala Ala Val Lys Trp Val Met Ser Lys Arg Thr 15 Ile Leu Lys His Leu Phe Pro Val Gln Asn Gly Ala Leu Tyr Cys Val 25 30 Cys His Lys Ser Thr Tyr Ser Pro Leu Pro Asp Tyr Asp Asn Cys Asn 35 40 45 Val Glu Leu Ala Leu Thr Ser Asp Gly Arg Thr Val Cys Ile Tyr His 55 60 Ser Val Pro Asp Ile Pro Tyr Glu His Thr Pro Lys Ile Pro Arg Pro 65 75 Asp Pro Val His Asn Asn Glu Glu Thr His Asp Gln Val Leu Lys Thr 85 90 Arg Leu Glu Glu Lys Val Glu His Leu Glu Glu Gly Pro Met Ile 105 Gln Leu Ser Lys Met Phe Phe Thr Thr Trp Lys His Arq Pro Tyr His 120 125 Gly Arg Tyr His Arg Cys Arg Lys Asn Leu Asn Pro Pro Lys Asp Arg 130 135 140 <210> 589 <211> 128 <212> PRT <213> homo sapiens <400> 589 Ile His Gln Thr Ala Phe Ser Gln Met Ala Asn Glu Ala His Phe Ser Ile Pro Pro Gly Thr Ser Ala Ser Ser Val Phe Arg Trp Ile Gln 20 25 30 Ile Thr Leu Thr Ser Val Ile Pro Ser Met Arg Ile Pro Thr Val 35 45 Ser Lys Glu His Phe Ala Lys Leu Phe Tyr His Arg Ser Phe 50 55 60 Lys Val Phe Asn Phe Phe Phe Gln Ser Gly Phe Gln His Leu Ile Met 65 70 75 80

Cys	Phe	Phe	Ile	Ile 85	Met	His	Arg	Ile	Trp 90	Pro	Arg	Asp	Arg	Phe 95	Cys ·
Val	Phe	Ile	Trp 100	Asn	Val	His	Arg	Arg 105	Val	Val	Ala	Tyr	Tyr 110	Cys	Pro
Ala	Ile	Arg 115	Ser	Gln	Ser	Lys	Leu 120	Tyr	Val	Ala	Ile	Ile 125	Val	Ile	Trp
<210><211><212><213>	61 PRT	sapie	ens												
<400>	590														
Lys 1	Leu	Val	Cys	Leu 5	Glu	Ala	Asp	Ser	Lys 10	Ser	Ser	Phe	Ser	Ser 15	Glu
His	Leu	Phe	Ser 20	Tyr	His	Leu	Ile	Ser 25	Ile	Leu	Lys	His	His 30	Gly	Cys
Ser	Cys	Ser 35	Lys	Met	Gly	Asp	Val 40	Lys	Glu	Asn	Tyr	Leu 45	Glu	Thr	Phe
Ile	Ser 50	Ser	Pro	Lys	Trp	Ser 55	Phe	Ile	Leu	Cys	Leu 60	Ser			
<210><211><212>	173														
<213>	homo	sapie	ens												
<213> <400>		sapie	ens												
	591	sapie Glu		Pro 5	Trp	Gln	Leu	Cys	Arg 10	Gly	Ala	Arg	Thr	Ser 15	Lys
<400> Ala	591 Gln	Glu		5	Trp Leu				10	Gly			Thr Glu 30		Lys Cys
<400> Ala 1	591 Gln Lys	Glu Leu	Ser Pro	5 Lys	Leu	Gly	Met	Glu 25	10 Gln		Cys	Asn	Glu 30	15	Cys
<400> Ala 1 Arg	591 Gln Lys Pro	Glu Leu Ser	Ser Pro 20	5 Lys Leu	Leu	Gly	Met Pro 40	Glu 25 Gly	10 Gln	His Tyr	Cys	Asn Ala 45	Glu 30 Gln	15 Met	Cys Tyr
<400> Ala 1 Arg	591 Gln Lys Pro Asp 50	Glu Leu Ser 35	Ser Pro 20 Ser	5 Lys Leu	Leu Phe	Gly Leu Thr 55	Met Pro 40	Glu 25 Gly Lys	10 Gln Ala	His Tyr	Cys Lys Lys	Asn Ala 45 Lys	Glu 30 Gln	15 Met Met Lys	Cys Tyr
<400> Ala 1 Arg Pro Ser Lys 65 Glu	591 Gln Lys Pro Asp 50 Ala Ala	Glu Leu Ser 35 Val	Ser Pro 20 Ser Trp	5 Lys Leu Thr	Leu Phe Asn His 70	Gly Leu Thr 55 Arg	Met Pro 40 Lys	Glu 25 Gly Lys	10 Gln Ala Lys	His Tyr Lys Gln	Cys Lys Lys 60	Asn Ala 45 Lys	Glu 30 Gln Lys	15 Met Met Lys Cys	Cys Tyr Lys
<400> Ala 1 Arg Pro Ser Lys 65 Glu Glu	591 Gln Lys Pro Asp 50 Ala Ala Ala	Glu Leu Ser 35 Val	Ser Pro 20 Ser Trp Leu	5 Lys Leu Thr Ser Thr 85	Leu Phe Asn His 70	Gly Leu Thr 55 Arg	Met . Pro 40 Lys	Glu 25 Gly Lys	10 Gln Ala Lys Thr	His Tyr Lys Gln 75	Cys Lys 60 Ile	Asn Ala 45 Lys	Glu 30 Gln Lys	15 Met Met Lys Cys	Cys Tyr Lys Tyr 80
<400> Ala 1 Arg Pro Ser Lys 65 Glu Glu	Gln Lys Pro Asp 50 Ala Ala Arg	Glu Leu Ser 35 Val Phe	Ser Pro 20 Ser Trp Leu Phe	5 Lys Leu Thr Ser Thr 85	Leu Phe Asn His 70 Asn Gly	Gly Leu Thr 55 Arg	Met . Pro 40 Lys His Gln Pro	Glu 25 Gly Lys Lys Phe	10 Gln Ala Lys Thr Leu 90	His Tyr Lys Gln 75 His	Cys Lys 60 Ile	Asn Ala 45 Lys Ile	Glu 30 Gln Lys Tyr Ala	15 Met Met Lys Cys	Cys Tyr Lys Tyr 80 Cys

Leu 145		Lys	Arg	Pro	Gly 150	Gly	Thr	Met	Ser	Leu 155	Val	Asp	Thr	Phe	His 160
Cys	Ser	Val	Ala	Pro 165	Phe	Leu	Ala	Trp	Glu 170	Ala	Ser	Ala			
<210><211><212><213>	105 PRT	sapie	ens												
<400>	592														
Thr 1	Cys	Glu	Pro	Phe 5	Arg	Asn	Pro	Gln	Val 10	Gly	Lys	Asp	Pro	Thr 15	Pro
Ser	Leu	Arg	Ile 20	Ile	Cys	Leu	Ala	Ile 25	Thr	Gly	Ser	Trp	Lys 30	Cys	Phe
Leu	Gly	Cys 35	Val	Lys	Ile	Asn	Gln 40	Gly	Gly	Met	Lys	His 45	Ile	Phe	Leu
Ala	Thr 50	Lys	Leu	Glu	Phe	Leu 55	Arg	Glu	Gln	Met	Gln 60	Arg	Asp	Leu	Leu
Leu 65	Leu	Ala	Arg	Leu	Gln 70	Gly	Pro	Leu	Trp	Ser 75	His	Thr	Glu	Ala	Val 80
Thr	Gly	His	Lys	Pro 85	Arg	Arg	Ala	Arg	Gly 90	Ser	Cys	Ala	Glu	Ala 95	Pro
Gly	Pro	Leu	Ser 100	Gly	Ser	Phe	Pro	Ser 105							
<210><211><211><212><213>	105 PRT	sapie	ns												
<400>	5 93														
Thr 1	Cys	Glu	Pro	Phe 5	Arg	Asn	·Pro	Gln	Val 10	Gly	Lys	Asp	Pro	Thr 15	Pro
Ser	Leu	Arg	Ile 20	Ile	Cys	Leu	Ala	Ile 25	Thr	Gly	Ser	Trp	Lys 30	Cys	Phe
Leu	Gly	Cys 35	Val	Lys	Ile	Asn	Gln 40	Gly	Gly	Met	Lys	His 45	Ile	Phe	Leu
Ala	Thr 50	Lys	Leu	Glu	Phe	Leu 55	Arg	Glu	Gln	Met	Gln 60	Arg	Asp	Leu	Leu
Leu 65	Leu	Ala	Arg	Leu	Gln 70	Gly	Pro	Leu	Trp	Ser 75	His	Thr	Glu	Ala	Val 80
Thr	Gly	His	Lys	Pro 85	Arg	Arg	Ala	Arg	Gly 90	Ser	Cys	Ala	Glu	Ala 95	Pro
Gly	Pro	Leu	Ser 100	Gly	Ser	Phe	Pro	Ser 105							

<211> <212> <213>	PRT	sapi	ens												
<400>	594														
Thr 1	Pro	Ala	Leu	Arg 5	Ala	Arg	Ser	Leu	Arg 10	Asp	Arg	Cys	Ala	Arg 15	Ala
Pro	Cys	Pro	His 20	Gly	Gly	Gln	Gln	Arg 25	Arg	Arg	Arg	Arg	Leu 30	Asn	Ala
Glu	Gly	Ala 35	Glu	Gly	Ala	Arg	Gly 40	Gly	Gly	Ser	Ser	Tyr 45	Ser	Glu	Met
Ala	Glu 50	Thr	Val	Ala	Asp	Thr 55	Arg	Arg	Leu	Ile	Thr 60	Lys	Pro	Gln	Asn
Leu 65	Asn	Asp	Ala	Tyr	Gly 70	Pro	Pro	Ser	Asn	Phe 75	Leu	Glu	Ile	Asp	Val 80
Ser	Asn	Pro	Gln	Thr 85	Val	Gly	Val	Gly	Arg 90	Gly	Arg	Phe	Thr	Thr 95	Tyr
Glu	Ile	Arg	Val 100	Lys	Thr	Asn	Leu	Pro 105	Ile	Phe	Lys	Leu	Lys 110	Glu	Ser
Thr	Val	Arg 115	Arg	Arg	Tyr	Ser	Asp 120	Phe	Glu	Trp	Leu	Arg 125	Ser	Glu	Leu
Glu	Arg 130	Glu	Ser	Lys	Val	Val 135	Val	Pro	Pro	Leu	Pro 140	Gly	Lys	Ala	Phe
Leu 145	Arg	Gln	Phe	Leu	Leu 150	Glu	Glu	Met	Met	Glu 155	Tyr	Leu	Met	Thr	Ile 160
Leu	Leu	Arg	Lys	Glu 165	Asn	Lys	Gly	Trp	Ser 170	Ser	Leu				
<210><211><211><212><213>	127 PRT	sapie	ns				•								
<400>	59 5														
Ser 1	Ala	Ala	Gly	Cys 5	Gln	Pro	Arg	Ser	Pro 10	Pro	Phe	Arg	Cys	Ser 15	Cys
Cys	Arg	Arg	Arg 20	Gly	Leu	Pro	Pro	Pro 25	Pro	Pro	Arg	Ser	Ala 30	Ala	Ala
Ala	Gly	Ala 35	Ala	Ala	Arg	Arg	Gly 40	Asp	Thr	Gly	Leu	Ala 45	Arg	Ser	Gly
Arg	Glu 50	Glu	Asn	Glu	His	Val 55	Glu	Arg	Ala	Phe	Thr 60	Pro	His	Ala	Lys
Leu 65	Leu	Pro	Ala	Pro	Leu 70	Lys	Leu	Pro	Pro	Pro 75	Ser	Pro	Gly	Glu	Lys 80
Arg	Leu	Thr	Ser	Trp 85	Asn	Ala	Thr	Pro	Gly 90	Ser	Arg	Glu	Ala	Arg 95	Pro

Arg	Leu	Gly	Arg 100	Gly	Thr	Ala	Asp	Trp 105	Gly	Val	Arg	Arg	Ser 110	Gly	Val
Met	Gly	Leu 115	Gly	Val	Ala	Asn	Arg 120	Phe	Arg	Pro	Asp	Tyr 125	Ser	Ala	
<210><211><212><213>	123 PRT	sapie	ens												
<400>	596														
Phe 1	Thr	Ser	Gln	Pro 5	Phe	Lys	Val	Thr	Val 10	Ser	Ser	Ser	Asn	Ser 15	Arg
Phe	Phe	Gln	Leu 20	Glu	Asn	Arg	Lys	Ile 25	Cys	Leu	Asp	Pro	Asp 30	Phe	Val
Ser	Gly	Glu 35	Ala	Ala	Pro	Ala	Asp 40	Pro	His	Arg	Leu	Arg 45	Val	Ala	His
Ile	Asp 50	Leu	Glu	Glu	Val	Ala 55	Gly	Gly	Ser	Val	Gly 60	Val	Ile	Gln	Val
Leu 65	Arg	Leu	Gly	Asp	Gln 70	Pro	Pro	Gly	Val	Ser 75	His	Gly	Leu	Arg	His 80
Phe	Ala	Val	Ala	Ala 85	Ala	Ala	Ala	Ala	Gly 90	Ser	Leu	Arg	Pro	Leu 95	Arg
Val	Gln	Pro	Pro 100	Pro	Pro	Ala	Leu	Leu 105	Pro	Ala	Val	Gly	Thr 110	Arg	Gly
Ser	Arg	Ala 115	Ala	Val	Ala	Lys	Arg 120	Thr	Ser	Thr					
<210><211><212><213>	262 PRT	sapie	ns												
<400>	597														
Ser 1	Cys	Gly	Asp	Val 5	Glu	Gln	Lys	Ile	Gln 10	Phe	Lys	Arg	Glu	Thr 15	Ala
Ser	Leu	Lys	Leu 20	Leu	Pro	His	Gln	Pro 25	Arg	Ile	Val	Glu	Met 30	Lys	Lys
Gly	Ser	Asn 35	Gly	Tyr	Gly	Phe	Tyr 40	Leu	Arg	Ala	Gly	Ser 45	Glu	Gln	Lys
Gly	Gln 50	Ile	Ile	Lys	Asp	Ile 55	Asp	Ser	Gly	Ser	Pro 60	Ala	Glu	Glu	Ala
Gly 65	Leu	Lys	Asn	Asn	Asp 70	Leu	Val	Val	Ala	Val 75	Asn	Gly	Glu	Ser	Val 80
Glu	Thr	Leu	Asp	His 85	Asp	Ser	Val	Val	Glu 90	Met	Ile	Arg	Lys	Gly 95	Gly

Asp	Gln	Thr	Ser 100	Leu	Leu	Val	Val	Asp 105	Lys	Glu	Thr	Asp	Asn 110	Met	Tyr .
Arg	Leu	Ala 115	His	Phe	Ser	Pro	Phe 120	Leu	Tyr	Tyr	Gln	Ser 125	Gln	Glu	Leu
Pro	Asn 130	Gly	Ser	Val	Lys	Glu 135	Ala	Pro	Ala	Pro	Thr 140	Pro	Thr	Ser	Leu
Glu 145	Val	Ser	Ser	Pro	Pro 150	Asp	Thr	Thr	Glu	Glu 155	Val	Asp	His	Lys	Pro 160
Lys	Leu	Cys	Arg	Leu 165	Ala	Lys	Gly	Glu	Asn 170	Gly	Tyr	Gly	Phe	His 175	Leu
Asn	Ala	Ile	Arg 180	Gly	Leu	Pro	Gly	Ser 185	Phe	Ile	Lys	Glu	Val 190	Gln	Lys
Glý	Gly	Pro 195	Ala	Asp	Leu	Ala	Gly 200	Leu	Glu	Asp	Glu	Asp 205	Val	Ile	Ile
Glu	Val 210	Asn	Gly	Val	Asn	Val 215	Leu	Asp	Glu	Pro	Tyr 220	Glu	Lys	Val	Val
Asp 225	Arg	Ile	Gln	Ser	Ser 230	Gly	Lys	Asn	Val	Thr 235	Leu	Leu	Val	Cys	Gly 240
Lys	Lys	Ala	Tyr	Asp 245	Tyr	Phe	Gln	Ala	Lys 250	Lys	Ile	Pro	Ile	Val 255	Pro
Ser	Leu	Ala	Asp 260	Ala	Ser										
<210><211><211><212><213>	65 PRT	sapie	ens												
<400>	598														
Lys 1	Gly	Trp	Arg	Ser 5	Asp	Phe	Thr	Val	Gly 10	Gly	Arg	Gln	Arg	Asp 15	Gly
Gln	His	Val	Gln 20	Thr	Gly	Ser	Phe	Phe 25	Ser	Ile	Ser	Leu	Leu 30	Ser	Lys
Ser	Arg	Thr 35	Ala	Gln	Trp	Leu	Cys 40	Gln	Gly	Gly	Ser	Ser 45	Ser	Tyr	Ser
His	Phe 50	Ser	Gly	Ser	Leu	Lys 55	Ser	Thr	Arg	Tyr	Tyr 60	Arg	Gly	Ser	Arg
Ser 65															
<210><211><212><213>	63 PRT	sapie	ens												
<400>	599														

Ala Glu Asp Thr Ile Gln Lys Arg Asn Ser Gln Phe Glu Thr Val Thr

1				5					10					15	
Pro	Pro	Ala	Pro 20	Asn	Cys	Gly	Asp	Glu 25	Glu	Arg	Lys	Gln	Trp 30	Leu	Trp
Phe	Leu	Ser 35	Glu	Gly	Arg	Leu	Arg 40	Thr	Glu	Arg	Ser	Asn 45	His	Gln	Gly
His	Arg 50	Phe	Trp	Lys	Ser	Ser 55	Arg	Gly	Gly	Trp	Leu 60	Glu	Glu	Gln	
<210><211><211><212><213>	336 PRT	sapie	ns												
<400>	600														
Lys 1	Leu	Asn	Phe	Asn 5	Thr	Met	Arg	Cys	Cys 10	His	Ile	Cys	Lys	Leu 15	Pro
Gly	Arg	Val	Met 20	Gly	Ile	Arg	Val	Leu 25	Arg	Leu	Ser	Leu	Val 30	Val	Ile
Leu	Val	Leu 35	Leu	Leu	Val	Ala	Gly 40	Ala	Leu	Thr	Ala	Leu 45	Leu	Pro	Ser
Val	Lys 50	Glu	Asp	Lys	Met	Leu 55	Met	Leu	Arg	Arg	Glu 60	Ile	Lys	Ser	Gln
Gly 65	Lys	Ser	Thr	Met	Asp 70	Ser	Phe	Thr	Leu	Ile 75	Met	Gln	Thr	Tyr	Asn 80
Arg	Thr	Asp	Leu	Leu 85	Leu	Lys	Leu	Leu	Asn 90	His	Tyr	Glņ	Ala	Val 95	Pro
Asn	Leu	His	Lys 100	Val	Ile	Val	Val	Trp 105	Asn	Asn	Ile	Gly	Glu 110	Lys	Ala
Pro	Asp	Glu 115	Leu	Trp	Asn	Ser	Leu 120	Gly	Pro	His	Pro	Ile 125	Pro	Val	Ile
Phe	Lys 130	Gln	Gln	Thr	Ala	Asn 135	Arg	Met	Arg	Asn	Arg 140	Leu	Gln	Val	Phe
Pro 145	Glu	Leu	Glu	Thr	Asn 150	Ala	Val	Leu	Met	Val 155	Asp	Asp	Asp	Thr	Leu 160
Ile	Ser	Thr	Pro	Asp 165	Leu	Val	Phe	Ala	Phe 170	Ser	Val	Trp	Gln	Gln 175	Phe
Pro	Asp	Gln	Ile 180	Val	Gly	Phe	Val	Pro 185	Arg	Lys	His	Val	Ser 190	Thr	Ser
Ser	Gly	Ile 195	Tyr	Ser	Tyr	Gly	Ser 200	Phe	Glu	Met	Gln	Ala 205	Pro	Gly	Ser
Gly	Asn 210	Gly	Asp	Gln	Tyr	Ser 215	Met	Val	Leu	Ile	Gly 220	Ala	Ser	Phe	Phe
Asn 225	Ser	Lys	Tyr	Leu	Glu 230	Leu	Phe	Gln	Arg	Gln 235	Pro	Ala	Ala	Val	His 240

Ala	Leu	Ile	Asp	Asp 245	Thr	Gln	Asn	Cys	Asp 250	Asp	Ile	Ala	Met	Asn 255	Phe .
Ile	Ile	Ala	Lys 260	His	Ile	Gly	Lys	Thr 265	Ser	Gly	Ile	Phe	Val 270	Lys	Pro
Val	Asn	Met 275	Asp	Asn	Leu	Glu	Lys 280	Glu	Thr	Asn	Ser	Gly 285	Tyr	Ser	Gly
Met	Trp 290	His	Arg	Ala	Glu	His 295	Ala	Leu	Gln	Arg	Ser 300	Tyr	Cys	Ile	Asn
Lys 305	Leu	Val	Asn	Ile	Tyr 310	Asp	Ser	Met	Pro	Leu 315	Arg	Tyr	Ser	Asn	Ile 320
Met	Ile	Ser	Gln	Phe 325	Gly	Phe	Pro	Tyr	Ala 330	Asn	Tyr	Lys	Arg	Lys 335	Ile
<210> <211> <212> <213>	101 PRT	sapie	ns												
<400>	601														
His 1	Ala	Leu	Lys	Ile 5	Leu	Gln	His	Tyr	Asp 10	Phe	Pro	Val	Trp	Phe 15	Ser
Ile	Cys	Gln	Leu 20	Gln	Lys	Lys	Asn	Ile 25	Lys	Val	Lys	Gln	Thr 30	Lys	Thr
Asn	Leu	Lys 35	Thr	Ala	Trp	His	Leu 40	Ser	Ser	Phe	Ser	Met 45	Leu	Cys	Ile
Phe	Leu 50	Ser	Asn	Ile	Met	Asn 55	Phe	Ile	Tyr	Ser	Arg 60	Ser	Leu	Tyr	Asn
Arg 65	Lys	Lys	Ser	Ala	Val 70	Leu	Leu	Gly	Tyr	Lys 75	Ile	His	Ile	Thr	Phe 80
Glu	Ser	Gln	Glu	Val 85	Gly	Leu	.Ile	Gln	Leu 90	Gly	Leu	Leu	Met	Lys 95	Ser
Phe	His	Pro	Gly 100	Ile											
<210><211><212><213>	90 PRT	sapie	ens												
<400>	602														
Phe 1	Lys	Ser	Phe	Asn 5	Lys	Arg	Ser	Val	Leu 10	Leu	Tyr	Val	Cys	Ile 15	Met
Arg	Val	Lys	Glu 20	Ser	Met	Val	Asp	Leu 25	Pro	Trp	Asp	Phe	Ile 30	Ser	Leu
Arg	Asn	Met 35	Ser	Ile	Leu	Ser	Ser 40	Leu	Thr	Leu	Gly	Ser 45	Lys	Ala	Val
Lys	Ala	Pro	Ala	Thr	Ser	Asn	Asn	Thr	Arg	Met	Thr	Thr	Lys	Asp	Asn

60 50 55 Ser Thr Arg Ile Pro Ile Thr Leu Pro Gly Ser Leu Gln Met Trp 75 80 70 Val Leu Lys Phe Asn Phe Gln His Leu Ile 90 85 <210> 603 <211> 163 <212> PRT <213> homo sapiens <400> 603 Ile Tyr Gly Val Ser Phe Leu Ile Phe Asn Ile Lys Asn Ile Tyr Val 15 10 Ser Val Ile Pro Cys Gln Gly Cys Leu Leu Val Cys Leu Arg Phe 25 Ile Ile Phe Ser Gln Phe Leu His Val Val Val Ser Ile Phe Phe 40 45 35 Leu Pro Gly Ser Phe Leu Leu Leu Leu Ser Val Gly Ser Pro Phe Val 60 50 55 His Trp Ile Phe Leu Leu Val Ser Leu Arg Ala Leu Asp Asp Lys Leu 75 70 65 Gly Gln Pro Ala Pro Val Gly Ser Gly Pro Val Leu xxXSer Leu Thr 95 85 90 xxxLeu Pro Arg Ser Leu Phe His Leu Gln Val Cys Leu Pro Pro Arg 105 Glu Ala Gly Ala Ala Ala Ala Cys Pro Ser Leu Leu Ala Pro Leu Pro 120 125 115 Val Gly Trp Phe Pro Leu Ser Gln Leu Ser Ser Pro Pro Gly Ser His 135 140 Lys Pro Leu Arg Asn Trp Gly Leu Val Ser Gly Thr Cys Leu Asn Pro145 150 155 160 Cys Tyr Gln <210> 604 <211> 150 <212> PRT <213> homo sapiens <400> 604 Pro Leu Ser Phe Leu Met Tyr Lys Thr Leu Leu Ser Gly Leu Glu 1 10 Phe Ile Tyr Phe Ala Xxx Val Cys Gly Gln Ser Glu His Leu Trp xxx25 20 Ile Leu Pro Arg Lys Xxx Lys Lys Gln Ile Ile Phe Pro Lys Tyr Asn

40

Arg	Xxx 50	Phe	Asp	Xxx	Lys	Xxx 55	Asn	Arg	Pro	Xxx	Lys 60	Gly	Ala	Xxx	Thr .
Trp 65	Ser	Arg	Ala	Trp	Xxx 70	Arg	Gly	Lys	Ala	Xxx 75	Arg	Gly	Gln	Val	Cys 80
Cys	Gly	Gln	Ile	Cys 85	Ala	Tyr	Phe	Ile	Thr 90	Gly	Val	Lys	Xxx	Lys 95	Gln
Ser	Xxx	Ile	Asp 100	Val	Xxx	Arg	Ile	Tyr 105	Thr	Val	Xxx	Arg	Asn 110	Xxx	Arg
Xxx	Xxx	Phe 115	Xxx	Lys	Asn	Arg	Asn 120	Thr	Xxx	Trp	Xxx	Xxx 125	Phe	Tyr	His
Xxx	Xxx 130	Tyr	Thr	Phe	Ser	Leu 135	Trp	Xxx	Asn	Xxx	Leu 140	Thr	Lys	Leu	Xxx
Phe 145	Lys	Ile	Lys	Leu	Met 150										
<210><211><211><212><213>	108 PRT	sapie	ns												
<400>	605														
Leu 1	Asp	Phe	Lys	Xxx 5	Gln	Phe	Cys	Glu	Ser 10	Ile	Xxx	Pro	Gln	Ala 15	Lys
Cys	Val	Xxx	Xxx 20	Met	Ile	Lys	Xxx	Xxx 25	Pro	Xxx	Xxx	Ile	Pro 30	Val	Phe
Leu	Lys	Xxx 35	Val	Pro	Xxx	Ile	Ser 40	Xxx	His	Cys	Ile	Tyr 45	Pro	Xxx	Asp
Ile	Asn 50	Xxx	Thr	Leu	Phe	Ser 55	Phe	Tyr	Ser	Ser	Asn 60	Lys	Val	Gly	Thr
Asp 65	Leu	Ser	Thr	Thr	Asn 70	Leu	Pro.	Ser	Xxx	Cys 75	Leu	Ala	Ser	Xxx	Pro 80
Cys	Ser	Ala	Pro	Gly 85	Xxx	Xxx	Pro	Leu	Xxx 90	Xxx	Pro	Val	Xxx	Phe 95	Xxx
Val	Lys	Xxx	Pro 100	Asn	Leu	Leu	Leu	Ala 105	Phe	Ser	Trp				
<210><211><211><212><213>	203 PRT	sapie	ens												
<400>	606														
Gly 1	Pro	Ser	Ala	Leu 5	Val	His	Ser	Val	Arg 10	Pro	Asp	Leu	Cys	Ser 15	Asn
Pro	Leu	Ser	Cys 20	Gly	Ser	Leu	Ala	Cys 25	Met	Ala	Tyr	Thr	Gly 30	Glu	Leu
Gly	Leu	Trp	Ala	Val	Gln	Thr	Gln	Gly	Ser	His	Phe	Ala	Phe	Pro	Leu

35 40 45 Leu Ser Pro Phe Ser Ile Leu Ala Leu Arg Gln Asn Phe Ser Gln Arg 60 Thr Pro Arg Ser Ala Val Ile Leu Pro Phe Pro Arq Leu Cys Cys Leu 65 70 75 Phe His Ser Ser Ala Gln Met Lys Ser Ser Ser Ser Ser Pro Arg Asn 85 90 Gly Phe Leu Pro Leu Trp Asp Ser Glu Thr Gly Asn Leu Gln Gly Val 100 105 110 Phe Ser Pro Leu Phe Leu Phe Ser Thr Pro Arg Gly Thr Lys 115 120 125 Gly Thr Glu Leu His Thr Ile Val Gly Lys Ala Val Pro Thr Ser 130 135 Val His Leu Gln Gly Pro Leu Leu Leu Leu Arg Ala Cys Tyr Trp Ser 145 150 155 160 Pro Cys Met Ile Glu Pro Arg Val Ala Glu Phe Trp Gln Lys Arg Lys 165 170 175 Thr Val Glu Gly Pro Lys Leu Val Phe Arg Ala His Ser Ser Leu Pro 180 185 190 Glu Val Ile Arg Cys His Ala Phe Cys Arg Arg 195 200 <210> 607 <211> 154 <212> PRT <213> homo sapiens <400> 607 Glu Val Arg Gln Lys Glu Trp Cys Leu Leu Trp Ser Phe Pro Phe Pro Gly Ala Gly Leu Cys Ala Lys Leu Gly Pro Gln His Ile Trp Ser Thr 25 30 Leu Leu Val Glu His Thr Gln Pro Val His Thr Gly Ala Arg Pro Leu 40 Arg Pro Ala Pro Val Pro Pro Leu Ser Gln Ala Gly Thr Ala Pro Gly 50 55 Ile Ser Ala Lys Gly Met Ala Cys Pro Leu Arg Cys Gln Asn Ser Asp 70 Gln Lys Ala Pro Pro Gln Val Asp Val Val Pro Gly Ala Gly Glu Glu 90 Gly Ser Gly Thr Thr Thr Leu Ala Val Asn Leu Ser Asn Arg Leu 100 105 Phe Leu Val Ala Ala Ser Cys Pro Gly Leu Glu Val His Arg Ser Arg

120

125

Gly	Val 130	Pro	Leu	Gly	Thr	Lys 135	Asp	Met	Pro	His	Trp 140	Gly	Cys	Asn	Gly .
Glu 145	Lys	Ser	Gly	Lys	Leu 150	Gly	Ala	Gln	Leu						
<210><211><211><212><213>	123 PRT	sapie	ns												
<400>	608														
Cys 1	Gly	Val	Leu	Ser 5	Leu	Arg	Trp	Val	Gln 10	Gln	Pro	Trp	Phe	Leu 15	Trp
Gly	Leu	Arg	Ile 20	Arg	Ile	Val	Gly	Arg 25	Glu	Lys	Leu	Leu	Leu 30	Glu	Asp
Phe	Leu	Ser 35	Gln	Ser	Pro	Arg	Glu 40	Val	Glu	Arg	Arg	Asn 45	Phe	Cys	Trp
Thr	Ser 50	Ser	Gly	Gln	Arg	Lys 55	Asp	Gly	Met	Lys	Val 60	Glu	Lys	Ala	Glu
Leu 65	Gln	Leu	Ser	Gly	Asp 70	Asn	Lys	Glu	Phe	Phe 75	Ser	Gly	Lys	Ser	Phe 80
Val	Leu	Glu	Gln	Gly 85	Trp	Lys	Met	Gly	Thr 90	Thr	Lys	Glu	Lys	Gln 95	Ser
Val	Thr	Leu	Gly 100	Phe	Gly	Gln	Pro	Arg 105	Gly	Pro	Ala	Pro	Gln 110	Tyr	Lys
Pro	Tyr	Arg 115	Pro	Gly	Thr	His	Arg 120	Arg	Val	Asp					
<210><211><212><213>	88 PRT	sapie	ens												
<400>	609						•								
Leu 1		Glu	Pro	Asn 5	Gly	Leu	Phe	Trp	Phe 10	His	Phe	Ser	Ala	Ser 15	Arg
Arg	Gln	Asn	Lys 20	Glu	Ser	His	Ser	Lys 25	Met	Phe	Ile	Val	Asp 30	Asn	Met
Ser	Leu	Lys 35	Val	Val	Pro	Leu	Cys 40	Ser	Tyr	Ser	Thr	Glu 45	Glu	Met	Ile
His	Ile 50	Pro	Ile	Ile	Asp	Met 55	Val	Ser	Gln	Ser	Glu 60	Glu	Ser	Phe	Arg
Arg 65	Leu	His	Lys	Tyr	Val 70	Leu	Cys	Thr	Cys	Pro 75	Met	Leu	Gly	Asn	Arg 80
Lys	Ile	Ile	Val	Ile 85	Asp	Lys	Thr								

<211> <212> <213>	PRT	sapie	ns												-
<400>	610														
Ser 1	Cys	Phe	His	Lys 5	Leu	Ser	Thr	Gln	Glu 10	Pro	Asp	Gly	Lys	Lys 15	Asn
Lys	Asn	Tyr	Ala 20	Asp	Asn	Tyr	Arg	Lys 25	Ile	Asn	Pro	Asn	Leu 30	Val	Lys
Leu	Val	Lys 35	Ala	Cys	Thr	Phe	Gln 40	Arg	Phe	Ile	Arg	Thr 45	Gly	Leu	Asn
Arg	Glu 50	Phe	Leu	Leu	Asn	Lys 55	Met	Ala	Leu	Thr	Leu 60	Val	Pro	Arg	Asn
Trp 65	Asn	Pro	Gln	Arg	Ser 70	Tyr	Thr	Gly	Asp	Asn 75	Ser	Ala	Leu	Ile	Leu 80
<210><211><212><213>	71 PRT	sapie	ns												
<400>	611														
Met 1	Gly	Ile	Thr	His 5	Glu	Cys	Val	Ile	Leu 10	Leu	Gly	Ala	Ser	Ala 15	Asn
Ser	Leu	Thr	Val 20	Val	Pro	Ser	Leu	Thr 25	Leu	Pro	Val	His	His 30	Leu	Arg
Arg	Leu	Asp 35	Pro	Ser	Leu	Thr	Ser 40	Pro	Phe	Leu	Lys	Pro 45	Val	Ser	Phe
Ser	Leu 50	Leu	Pro	Asn	Trp	Leu 55	Trp	Leu	Phe	Leu	Gln 60	Pro	Phe	His	Ser
Arg 65	Ala	Ile	Phe	Ala	Lys 70	Glu	•								
<210><211><212><213>	395 PRT	sapie	ns												
<400>	612														
Ala 1	Pro	Met	Arg	Pro 5	Glu	Arg	Pro	Arg	Pro 10	Arg	Gly	Ser	Ala	Pro 15	Gly
Pro	Met	Glu	Thr 20	Pro	Pro	Trp	Asp	Pro 25	Ala	Arg	Asn	Asp	Ser 30	Leu	Pro
Pro	Thr	Leu 35	Thr	Pro	Ala	Val	Pro 40	Pro	Tyr	Val	Lys	Leu 45	Gly	Leu	Thr
Val	Val 50	Tyr	Thr	Val	Phe	Tyr 55	Ala	Leu	Leu	Phe	Val 60	Phe	Ile	Tyr	Val

Gln Leu Trp Leu Val Leu Arg Tyr Arg His Lys Arg Leu Ser Tyr Gln

65					70					75					80
Ser	Val	Phe	Leu	Phe 85	Leu	Cys	Leu	Phe	Trp 90	Ala	Ser	Leu	Arg	Thr 95	Val
Leu	Phe	Ser	Phe 100	Tyr	Phe	Lys	Asp	Phe 105	Val	Ala	Ala	Asn	Ser 110	Leu	Ser
Pro	Phe	Val 115	Phe	Trp	Leu	Leu	Tyr 120	Cys	Phe	Pro	Val	Cys 125	Leu	Gln	Phe
Phe	Thr 130	Leu	Thr	Leu	Met	Asn 135	Leu	Tyr	Phe	Thr	Gln 140	Val	Ile	Phe	Lys
Ala 145	Lys	Ser	Lys	Tyr	Ser 150	Pro	Glu	Leu	Leu	Lys 155	Tyr	Arg	Leu	Pro	Leu 160
Tyr	Leu	Ala	Ser	Leu 165	Phe	Ile	Ser	Leu	Val 170	Phe	Leu	Leu	Val	Asn 175	Leu
Thr	Cys	Ala	Val 180	Leu	Val	Lys	Thr	Gly 185	Asn	Trp	Glu	Arg	Lys 190	Val	Ile
Val	Ser	Val 195	Arg	Val	Ala	Ile	Asn 200	Asp	Thr	Leu	Phe	Val 205	Leu	Cya	Ala
Val	Ser 210	Leu	Ser	Ile	Cys	Leu 215	Tyr	Lys	Ile	Ser	Lys 220	Met	Ser	Leu	Ala
Asn 225	Ile	Tyr	Leu	Glu	Ser 230	Lys	Gly	Ser	Ser	Val 235	Cys	Gln	Val	Thr	Ala 240
Ile	Gly	Val	Thr	Val 245	Ile	Leu	Leu	Tyr	Thr 250	Ser	Arg	Ala	Cys	Tyr 255	Asn
Leu	Phe	Ile	Leu 260	Ser	Phe	Ser	Gln	Asn 265	Lys	Ser	Val	His	Ser 270	Phe	Asp
Tyr	Asp	Trp 275	Tyr	Asn	Val	Ser	Asp 280	Gln	Ala	Asp	Leu	Lys 285	Asn	Gln	Leu
Gly	Asp 290	Ala	Gly	Tyr	Val	Leu 295	'Phe	Gly	Val	Val	Leu 300	Phe	Val	Trp	Glu
Leu 305	Leu	Pro	Thr	Thr	Leu 310	Val	Val	Tyr	Phe	Phe 315	Arg	Val	Arg	Asn	Pro 320
Thr	Lys	Asp	Leu	Thr 325	Asn	Pro	Gly	Met	Val 330	Pro	Ser	His	Gly	Phe 335	Ser
Pro	Arg	Ser	Tyr 340	Phe	Phe	Asp	Asn	Pro 345	Arg	Arg	Tyr	Asp	Ser 350	Asp	Asp
Asp	Leu	Ala 355	Trp	Asn	Ile	Ala	Pro 360	Gln	Gly	Leu	Gln	Gly 365	Gly	Phe	Ala
Pro	Asp 370	Tyr	Tyr	Asp	Trp	Gly 375	Gln	Gln	Thr	Asn	Ser 380	Phe	Leu	Ala	Gln
Ala 385	Gly	Thr	Leu	Gln	Arg 390	Leu	Asn	Phe	Gly	Ser 395					

<210> 613

<211> <212> <213>	PRT	sapie	ns												
<400>	613														
Ala 1	Arg	Cys	Ala	Glu 5	Thr	Pro	Ala	Gly	Ala 10	Ala	Ala	Ala	Val	Ser 15	Pro
Asp	Glu	Ala	Arg 20	Ala	Ser	Pro	Ala	Ala 25	Arg	Gln	Arg	Pro	Arg 30	Pro	Asp
Gly	Asp	Pro 35	Ala	Val	Gly	Pro	Ser 40	Pro	Gln	Arg	Leu	Ala 45	Ala	Ala	His
Ala	Asp 50	Pro	Gly	Arg	Ala	Pro 55	Leu	Arg	Glu	Ala	Trp 60	Pro	His	Arg	Arg
Leu 65	His	Arg	Val	Leu	Arg 70	Ala	Ala	Leu	Arg	Val 75	His	Leu	Arg	Ala	Ala 80
Leu	Ala	Gly	Ala	Ala 85	Leu	Pro	Pro	Gln	Ala 90	Ala	Gln	Leu	Pro	Glu 95	Arg
Leu	Pro	Leu	Ser 100	Leu	Pro	Leu	Leu	Gly 105	Leu	Pro	Ala	Asp	Arg 110	Pro	Leu
Leu	Leu	Leu 115	Leu	Gln	Arg	Leu	Arg 120	Gly	Gly	Gln	Phe	Ala 125	Gln	Pro	Leu
Arg	Leu 130	Leu	Ala	Ala	Leu	Leu 135	Leu	Pro	Cys	Val	Pro 140	Ala	Val	Phe	His
Pro 145	His	Ala	Asp	Glu	Leu 150	Val	Leu	His	Ala	Gly 155	Asp	Phe	Gln	Ser	Gln 160
Val	Lys	Ile	Phe	Ser 165	Arg	Ile	Thr	Gln	Ile 170	Pro	Val	Ala	Pro	Leu 175	Pro
Gly	Leu	Pro	Leu 180	His	Gln	Pro	Cys	Phe 185	Pro	Val	Gly	Glu	Phe 190	Asn	Leu
Cys	Cys	Ala 195	Gly	Lys	Asp	Gly	Lys 200	Leu	Gly	Glu	Glu	Gly 205	Tyr	Arg	Leu
Cys	Ala 210	Ser	Gly	His											
<210><211><212><213>	161 PRT	sapie	ens												
<400>	614														
Leu 1	Gly	Phe	Glu	Asn 5	His	Leu	Arg	Glu	Val 10	Gln	Val	His	Gln	Arg 15	Glu
Gly	Glu	Lys	Leu 20	Gln	Ala	His	Arg	Glu 25	Ala	Val	Glu	Gln	Pro 30	Glu	Asp

Glu Gly Ala Glu Arg Ile Gly Arg His Glu Val Phe Glu Val Glu Gly 35 40 45

Glu	Glu 50		Gly	Pro	Gln	Gly 55	Gly	Pro	Glu	Glu	Ala 60	Glu	Lys	Glu	Glu
Asp 65		Leu	Val	Ala	Glu 70	Pro	Leu	Val	Ala	Val 75	Thr	Gln	His	Gln	Pro 80
Glu	Leu	His	Val	Asp 85	Glu	His	Glu	Glu	Gln 90	Arg	Val	Glu	His	Gly 95	Val
Asp	Asp	Gly	Glu 100	Ala	Lys	Leu	His	Val 105	Gly	Gly	His	Gly	Arg 110	Gly	Gln
Arg	Gly	Arg 115	Gln	Arg	Val	Val	Ala 120	Gly	Trp	Val	Pro	Arg 125	Arg	Gly	Leu
His	Arg 130		Gly	Gly	Ala	Ala 135	Ala	Arg	Pro	Gly	Thr 140	Leu	Gly	Pro	His
Arg 145	-	Ser	Arg	Pro	Pro 150	Pro	Pro	Pro	Arg	Gly 155	Ser	Pro	Arg	Ile	Ala 160
Pro															
<210> <211> <212> <213>	102 PRT	sapie	ens												
<400>	615														
His 1	Lys	Lys	Thr	Ser 5	Ser	Tyr	Ser	Gly	Val 10	Thr	Val	Cys	Ser	Tyr 15	Asp
Ser	Ile	Ile	Arg 20	Leu	Lys	Ala	Gly	Glu 25	Ile	Cys	Val	Gln	Phe 30	Asn	Arg
Thr	Gln	Leu 35	Lys	Gly	Arg	Gln	Val 40	Gly	Trp	Glu	Arg	Lys 45	Leu	Leu	Ser
Gly	Gly 50	Ile	Arg	Gly	Asn	Gln 55	Ser	Lys	Thr	Lys	Phe 60	Tyr	Cys	Leu	Gln
Phe 65	Asn	Ser	Ile	Ile	Ala 70	Ile	Met	Cys	Ser	Gly 75	Lys	His	Ile	Pro	Val 80
Leu	Leu	Asp	Arg	Val 85	Ser	Phe	Pro	Phe	Ser 90	Gly	Thr	Lys	Met	Val 95	Glu
Gly	Ile	Ile	Asn 100	Pro	Thr										
	86 PRT homo	sapie	ns												
<400>	616														
Val 1	Thr	Cys	Leu	Ser 5	Leu	Tyr	Val	Glu	Thr 10	Asn	Phe	Thr	Met	Ile 15	Thr

Asp Leu Cys Asn Ile Ser Ser Leu Asn Phe His Thr Ile Leu Lys Cys

IJ

T.

22

Ħ

Ser Met Leu

Pro

100

Phe

20 25 30 Leu Leu Glu Asn Leu His Leu Phe Val Pro Arg Cys Ser Ser Ser Ile 35 40 45 Pro Lys Trp Ala Tyr Phe Ser Val Leu Leu Arg Pro Asn Phe Val Gly 50 55 Gly Gly Gln Phe Cys Ile Asn Ile Arg Tyr Phe Val Ile His Ser 65 70 75 80 Tyr Pro Asn Leu Lys Leu <210> 617 <211> 76 <212> PRT <213> homo sapiens <400> 617 Arg Met Leu Ile Gln Asn Cys Pro Pro Arg Pro Thr Lys Phe Gly Leu 10 15 Leu Lys Gly Ile Arg Arg Thr Tyr Ala His Phe Asp Glu Glu His Leu 20 25 30 Gly Thr Lys Arg Cys Phe Ser Ser Phe Lys Arg His Lys Ile Val Trp 35 40 45 Lys Phe Lys Leu Glu Met Leu His Arg Ser Val Ile Met Val Lys 50 55 60 Val Ser Thr Tyr Lys Asp Lys Gln Val Thr His 65 70 <210> 618 <211> 378 <212> PRT <213> homo sapiens <400> 618 Ser Arg Cys Arg Phe Cys Cys Arg Leu Ser Ala Ala Phe Leu Pro Arq Ala Met Leu Gly Leu Ala Ile Val Leu Ala Gly Gly Arg Leu Asn Glu 20 25 30 Asp Arg Phe Leu Lys ProPro Ile Ser Leu Arg Asn Phe Ser Phe Trp 40 Ser Ser Phe Ser Ala Val Trp Lys Pro Ser His Trp Pro Asn Val Pro 50 55 60 Val His Phe Leu Val Ser Glu Ala Ser Val Leu Pro Ser Ser Asp Arg 65 70 75 80 Ile Ser Ser Cys Lys Ala Phe Thr Trp Arg Leu Ala Ser Met Cys Ser 85 90 95

Phe Ser Asn

Thr

105

Thr

Ser Lys

Ser

Val

110

Ser

Ser	Ser	Leu 115	Gln	Gly	Ser	Pro	Ala 120	Thr	Pro	Leu	Ser	Phe 125	Leu	Phe	Phe ·
Leu	Val 130	Phe	Leu	Phe	Arg	Ala 135	Gly	Ser	Ser	Met	Thr 140	Gly	Cys	Ser	Thr
Phe 145	Phe	Leu	Asp	Phe	Ile 150	Phe	Phe	Phe	Ala	Glu 155	Asp	Leu	Gly	Ser	Ser 160
Leu	Met	Gly	Met	Tyr 165	Ser	Gly	Ala	Ser	Thr 170	Leu	Thr	Gly	Phe	Phe 175	Leu
Leu	Pro	Phe	Leu 180	Gly	Leu	Leu	Ser	Met 185	Asp	Leu	Glu	Gly	Leu 190	Glu	Trp
Pro	Gly	Arg 195	Ala	Ser	Pro	Ser	Trp 200	Trp	Ile	Phe	Phe	Phe 205	Phe	Phe	Thr
Phe	Pro 210	Leu	Cys	Ser	Leu	Gly 215	Leu	Phe	Arg	Leu	Pro 220	Phe	Leu	Xxx	Pro
Arg 225	Leu	Pro	Val	Pro	His 230	Pro	Ser	Ser	Pro	Leu 235	Xxx	Gln	Val	Ser	Pro 240
Thr	Ser	Leu	Ala	Ser 245	Leu	Ala	Ser	Gln	Asn 250	Gln	Gly	Ser	Trp	Thr 255	Glu
Lys	Ala	Xxx	Gly 260	Val	Leu	Gly	Pro	Pro 265	Phe	Phe	Pro	Ser	Cys 270	Xxx	Phe
Leu	Ser	Phe 275	Leu	Pro	Thr	Leu	Val 280	Ser	Ser	Ser	Pro	Cys 285	Leu	Xxx	Val
Leu	Gly 290	Arg	Phe	Ser	Pro	Gln 295	Arg	His	Gly	Thr	Trp 300	Leu	Glu	Val	Thr
Ser 305	Xxx	Phe	Phe	Phe	Ser 310	Pro	Leu	Arg	Asn	Ser 315	Lys	Trp	Pro	Asn	Thr 320
Cys	Phe	Leu	Arg	Leu 325	Gly	Asp	Phe '	Ser	Val 330	Arg	Leu	Ala	Gly	Ser 335	Val
Val	Ser	Gly	Ser 340	Thr	Cys	Ser	Ser	Gln 345	Arg	Val	Leu	Thr	Pro 350	Phe	Phe
Phe	Phe	Phe 355	Phe	Phe	Phe	Thr	Arg 360	Gly	Ile	Ser	Gly	Ala 365	Cys	Pro	Trp
Ala	Thr 370	Leu	Leu	Xxx	Gly	Gly 375	Cys	Ser	Ser						
<210><211><212><213>	269 PRT	sapie	ns												
<400>	619														
Gly 1	Thr	Gly	Ser	Leu 5	Gly	Xxx	Arg	Asn	Gly 10	Xxx	Arg	Lys	Ser	Pro 15	Arg

Glu His Asn Gly Lys Val Lys Lys Lys Lys Lys Ile His Gln Glu Gly

Asp	Ala	Leu 35	Pro	Gly	His	Ser	Lys 40	Pro	Ser	Arg	Ser	Met 45	Glu	Ser	Ser
Pro	Arg 50	Lys	Gly	Ser	Lys	Lys 55	Lys	Pro	Val	Lys	Val 60	Glu	Ala	Pro	Glu
Tyr 65	Ile	Pro	Ile	Ser	Asp 70	Asp	Pro	Lys	Ser	Ser 75	Ala	Lys	Lys	Lys	Met 80
Lys	Ser	Lys	Lys	Lys 85	Val	Glu	Gln	Pro	Val 90	Ile	Glu	Glu	Pro	Ala 95	Leu
Lys	Arg	Lys	Thr 100	Arg	Lys	Lys	Arg	Lys 105	Glu	Ser	Gly	Val	Ala 110	Gly	Asp
Pro	Trp	Arg 115	Glu	Glu	Thr	Asp	Thr 120	Asp	Leu	Glu	Val	Val 125	Leu	Glu	Lys
Lys	Gly 130	Asn	Met	Asp	Glu	Ala 135	His	Ile	Asp	Gln	Val 140	Arg	Arg	Lys	Ala
Leu 145	Gln	Glu	Glu	Ile	Asp 150	Arg	Glu	Ser	Gly	Lys 155	Thr	Glu	Ala	Ser	Glu 160
Thr	Arg	Lys	Trp	Thr 165	Gly	Thr	Gln	Phe	Gly 170	Gln	Trp	Asp	Thr	Ala 175	Gly
Phe	Glu	Asn	Glu 180	Asp	Gln	Lys	Leu	Lys 185	Phe	Leu	Arg	Leu	Met 190	Gly	Gly
Phe	Lys	Asn 195	Leu	Ser	Pro	Ser	Phe 200	Ser	Arg	Pro	Ala	Ser 205	Thr	Ile	Ala
Arg	Pro 210	Asn	Met	Ala	Leu	Gly 215	Lys	Lys	Ala	Ala	Asp 220	Ser	Leu	Gln	Gln
Asn 225	Leu	Gln	Arg	Asp	Tyr 230	Asp	Arg	Ala	Met	Ser 235	Leu	Glu	Val	Gln	Pro 240
Gly	Ser	Arg	Leu	Ala 245	Val	Phe	·Ser	Thr	Ala 250	Pro	Asn	Lys	Ile	Phe 255	Tyr
Ile	Asp	Arg	Asn 260	Ala	Ser	Lys	Ser	Val 265	Lys	Leu	Glu	Asp			

<400> 620

Val 1	Arg		Cys					Arg		Ser		Tyr			Leu
Phe	Pro	Leu		Pro		Leu	Pro	Phe 25	Gln	Ser	Trp	Leu	Leu 30	Asp	Asp
Trp	Leu	Leu 35		Leu	Leu	Phe	Gly 40	Leu	His	Leu	Phe	Leu 45	Cys	Gly	Gly

<210> 620 <211> 218 <212> PRT

<213> homo sapiens

Leu	Arg 50	Val	Ile	Thr	Tyr	Gly 55	Asp	Val	Phe	Arg	Ser 60	Leu	Asn	Phe	Asp .
Trp 65	Leu	Leu	Phe	Thr	Ser 70	Phe	Pro	Arg	Ala	Ala 75	Leu	His	Gly	Pro	Gly 80
Gly	Leu	Gly	Val	Ala 85	Trp	Glu	Gly	Ile	Ser 90	Leu	Leu	Val	Asp	Phe 95	Phe
Phe	Leu	Leu	His 100	Leu	Pro	Ile	Val	Phe 105	Ser	Gly	Ala	Leu	Pro 110	Xxx	Ser
Val	Ser	Xxx 115	Pro	Lys	Ala	Ala	Cys 120	Ser	Ser	Ser	Phe	Phe 125	Pro	Thr	Xxx
Ala	Ser 130	Val	Pro	Asn	Ile	Pro 135	Gly	Leu	Pro	Gly	Leu 140	Thr	Glu	Pro	Arg
Val 145	Leu	Asp	Arg	Glu	Gly 150	Xxx	Trp	Gly	Pro	Gly 155	Xxx	Pro	Phe	Phe	Ser 160
Phe	Leu	Xxx	Phe	Phe 165	Glu	Leu	Leu	Ala	Asn 170	Ser	Gly	Phe	Leu	Leu 175	Thr
Leu	Ser	Xxx	Gly 180	Xxx	Gly	Glu	Val	Phe 185	Thr	Pro	Glu	Ala	Trp 190	Asp	Met
Ala	Arg	Gly 195	Asp	Phe	Leu	Xxx	Phe 200	Leu	Phe	Pro	Thr	Glu 205	Glu	Leu	Gln
Val	Ala 210	Lys	His	Leu	Leu	Pro 215	Glu	Ala	Gly						
<210><211><211><212><213>	389 PRT	sapie	ns												
<400>	621														
Ala 1	Ala	Gly	Ala	Cys 5	Gly	Ala	Arg	Gly	Ser 10	Gly	Arg	Arg	Gly	Ser 15	Tyr
Val	Pro	Glu	Val 20	Arg	Cys	Gly	Ala	Pro 25	Gly	Gly	Ala	Ala	Gly 30	Thr	Gly
Ala	Pro	Arg 35	Ser	Cys	Cys	Cys	Gln 40	Thr	Asn	Pro	Gly	Pro 45	Pro	Ser	Ser
Leu	Arg 50	Arg	Ala	Phe	Arg	Arg 55	Arg	Glu	Leu	Pro	Phe 60	Pro	Ala	Cys	His
Glu 65	Ile	Gly	Leu	Gly	Ala 70	Glu	Ala	Gly	Ser	Gly 75	Pro	Pro	Pro	Ala	Pro 80
Ala	Ala	Arg	Glu	Ser 85	Arg	Ser	Arg	Ala	Met 90	Glu	Glu	Glu	Ala	Ser 95	Ser
Pro	Gly	Leu	Gly 100	Cys	Ser	Lys	Pro	His 105	Leu Gly		Lys	Leu	Thr 110	Leu	Gly

Ala 1

Ile	Glu 130	Lys	Pro	Pro	Ala	Glu 135	Arg	His	Met	Ile	Ser 140	Ser	Trp	Glu	Gln -
Lys 145	Asn	Asn	Cys	Val	Met 150	Pro	Glu	Asp	Val	Lys 155	Asn	Phe	Tyr	Leu	Met 160
Thr	Asn	Gly	Phe	His 165	Met	Thr	Trp	Ser	Val 170	Lys	Leu	Asp	Glu	His 175	Ile
Ile	Pro	Leu	Gly 180	Ser	Met	Ala	Ile	Asn 185	Ser	Ile	Ser	Lys	Leu 190	Thr	Gln
Leu	Thr	Gln 195	Ser	Ser	Met	Tyr	Ser 200	Leu	Pro	Asn	Ala	Pro 205	Thr	Leu	Ala
Asp	Leu 210	Glu	Asp	Asp	Thr	His 215	Glu	Ala	Ser	Asp	Asp 220	Gln	Pro	Glu	Lys
Pro 225	His	Phe	Asp	Ser	Arg 230	Ser	Val	Ile	Phe	Glu 235	Leu	Asp	Ser	Cys	Asn 240
Gly	Ser	Gly	Lys	Val 245	Cys	Leu	Val	Tyr	Lys 250	Ser	Gly	Lys	Pro	Ala 255	Leu
Ala	Glu	Asp	Thr 260	Glu	Ile	Trp	Phe	Leu 265	Asp	Arg	Ala	Leu	Tyr 270	Trp	His
Phe	Leu	Thr 275	Asp	Thr	Phe	Thr	Ala 280	Tyr	Tyr	Arg	Leu	Leu 285	Ile	Thr	His
Leu	Gly 290	Leu	Pro	Gln	Trp	Gln 295	Tyr	Ala	Phe	Thr	Ser 300	Tyr	Gly	Ile	Ser
Pro 305	Gln	Ala	Lys	Gln	Trp 310	Phe	Ser	Met	Tyr	Lys 315	Pro	Ile	Thr	Tyr	Asn 320
Thr	Asn	Leu	Leu	Thr 325	Glu	Glu	Thr	Asp	Ser 330	Phe	Val	Asn	Lys	Leu 335	Asp
Pro	Ser	Lys	Val 340	Phe	Lys	Ser	Lys ·	Asn 345	Lys	Ile	Val	Ile	Pro 350	Lys	Lys
Lys	Gly	Pro 355	Val	Gln	Pro	Ala	Gly 360	Gly	Gln	Lys	Gly	Pro 365	Ser	Gly	Pro
Ser	Gly 370	Pro	Ser	Thr	Ser	Ser 375	Thr	Ser	Lys	Ser	Ser 380	Ser	Gly	Ser	Gly
Asn 385	Pro	Thr	Arg	Lys											
<210><211><212><213>	109 PRT	sapie:	ns												
<400>	622														

Arg Pro Ala Pro Ala Gly Arg Glu Gly Arg Glu Gly Glu Ala 5 10 15

Thr Ser Arg Arg Cys Gly Val Gly His Arg Ala Gly Pro Arg Glu Pro

4.4

Į.j

1 H

ž

į

ĩŲ

20 25 30 Ala Pro His Gly Ala Ala Val Arg Pro Thr Pro Gly Pro His His 35 40 45 Cys Ser Gly Ala Glu Asn Ala Ala Leu Tyr Arg Ser Arg His Ala 50 55 60 Lys Leu Ala Ser Ala Leu Arg Arg Gly Pro Ala Leu His Pro Leu 75 80 Pro Arg Pro Ala Asn Arg Gly Arg Glu Pro Trp Arg Arg Arg His Arg 90 Pro Arg Gly Arg Thr Trp Ala Ala Ala Ser Trp Arg Ser 100 105 <210> 623 <211> 96 <212> PRT <213> homo sapiens <400> 623 Gly Gly Val Thr Ser Val Arg Ser Ala Phe Ser Met Met Thr Pro Gly 10 15 Glu Ser Arg Arg Val Val Asp Met Met Pro Arg Ser Phe Ser Arg Cys 2.0 25 30 Gly Gln Leu Leu Pro Ser Pro Gly Asp Asp Ala Ser Ser Ser Met Ala 35 40 45 Asp Ser Arg Arg Arg Ala Ala Gly Ala Gly Gly Gly Asp Pro Asp Pro 50 55 60 Ala Gly Asn Gly Ala Ser Ala ProArg Pro Ile Ser Trp His Ser Ser 65 70 75 80 Arg Arg Leu Lys Ala Arg Arg Ser Asp Asp Gly Gly Pro Gly Leu 85 90 <210> 624 <211> 218 <212> PRT <213> homo sapiens <400> 624 Cys Cys Thr Glu His Arg Trp Pro Ala Ser Met Pro Pro Gln Leu Glu Thr Arg Met Asn Arg Ser Ile Pro Val Glu Val Glu Asp Ser Glu 20 Pro Tyr Pro Ser Gln Ser Leu Leu Lys Pro Ile Pro Glu Tyr Pro Glu 40 Glu Glu Ser Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn 50 55 60 Ser Leu Ser Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser 65 70

75

80

Gln	Ala	His	Ser	Thr 85	Leu	Lys	Leu	Ala	Asn 90	His	Gln	Arg	Pro	Val 95	Ser·
Arg	Gln	Val	Thr 100	Cys	Leu	Arg	Thr	Gln 105	Val	Leu	Glu	Asp	Ser 110	Glu	Asp
Ser	Phe	Cys 115	Arg	Arg	His	Pro	Gly 120	Leu	Gly	Lys	Ala	Phe 125	Pro	Ser	Gly
Cys	Ser 130	Ala	Val	Ser	Glu	Pro 135	Ala	Ser	Glu	Ser	Val 140	Val	Gly	Ala	Leu
Pro 145	Ala	Glu	His	Gln	Phe 150	Ser	Phe	Met	Glu	Lys 155	Arg	Asn	Gln	Trp	Leu 160
Val	Ser	Gln	Leu	Ser 165	Ala	Ala	Ser	Pro	Asp 170	Thr	Gly	His	Asp	Ser 175	Asp
Lys	Ser	Asp	Gln 180	Ser	Leu	Pro	Asn	Ala 185	Ser	Ala	Asp	Ser	Leu 190	Gly	Gly
Ser	Gln	Glu 195	Met	Val	Gln	Arg	Pro 200	Gln	Pro	Xxx	Gln	Glu 205	Pro	Ser	Arg
Pro	Gly 210	Ser	Ala	Asn	His	Arg 215	His	Gly	Ile						
<210><211><212><212>	212	sapie	ns												
~213/															
<400>															
		Gln		Thr 5	Ser	Gly	Leu	Tyr	Pro 10	Gly	Arg	Ser	Pro	Ala 15	Cys
<400> Asn	625				Ser Arg	_	Leu Val	Tyr Lys 25		Gly Val	Arg Ser				Cys Thr
<400> Asn 1	625 Leu Leu	Gln	Ile Phe 20	5 Trp	Arg	Thr		Lys 25	10 Thr	Val	Ser	Ala	Gly 30	15	Thr
<400> Asn 1 Ala	625 Leu Leu	Gln Lys Trp 35	Ile Phe 20	5 Trp Lys	Arg Leu	Thr	Val Leu 40	Lys 25 Leu	10 Thr	Val Ala	Ser	Ala Gln 45	Gly 30 Ser	15 Asp	Thr
<400> Asn 1 Ala Gln	625 Leu Leu Ala	Gln Lys Trp 35 Leu	Ile Phe 20 Ala	5 Trp Lys Leu	Arg Leu	Thr Ser Leu 55	Val Leu 40	Lys 25 Leu Pro	10 Thr Gly Ser	Val Ala	Ser Leu Gln 60	Ala Gln 45	Gly 30 Ser	15 Asp Ala Ser	Thr Ser Phe
<400> Asn 1 Ala Gln Leu His	Leu Ala Arg 50 Leu	Gln Lys Trp 35 Leu	Ile Phe 20 Ala Ser	5 Trp Lys Leu	Arg Leu Trp Val	Thr Ser Leu 55	Val Leu 40 Glu	Lys 25 Leu Pro	10 Thr Gly Ser	Val Ala Leu Tyr	Ser Leu Gln 60	Ala Gln 45 Ser	Gly 30 Ser	15 Asp Ala Ser	Thr Ser Phe
<400> Asn 1 Ala Gln Leu His 65	Leu Ala Arg 50 Leu	Gln Lys Trp 35 Leu Trp	Ile Phe 20 Ala Ser Lys	5 Trp Lys Leu Asn	Arg Leu Trp Val	Thr Ser Leu 55	Val ·Leu 40 Glu Asn	Lys 25 Leu Pro	Thr Gly Ser Trp	Val Ala Leu Tyr 75 Asn	Ser Leu Gln 60 Leu	Ala Gln 45 Ser Ser	Gly 30 Ser Ile	Asp Ala Ser Gln Val	Thr Ser Phe Arg
<400> Asn 1 Ala Gln Leu His 65 Leu Leu	Leu Ala Arg 50 Leu Leu	Gln Lys Trp 35 Leu Trp	The Phe 20 Ala Ser Lys Thr	5 Trp Lys Leu Asn Leu 85	Arg Leu Trp Val 70 Ala	Thr Ser Leu 55 Ile	Val ·Leu 40 Glu Asn Thr	Lys 25 Leu Pro Gly Gln Ala 105	Thr Gly Ser Trp Thr 90	Val Ala Leu Tyr 75 Asn Ala	Ser Leu Gln 60 Leu Gln Arg	Ala Gln 45 Ser Ser Thr	Gly 30 Ser Ile Phe Lys	Asp Ala Ser Gln Val 95	Thr Ser Phe Arg 80 Tyr
<400> Asn 1 Ala Gln Leu His 65 Leu Leu	Leu Ala Arg 50 Leu Leu Met	Gln Lys Trp 35 Leu Trp Leu Pro	Ile Phe 20 Ala Ser Lys Thr Gln 100 Leu	5 Trp Lys Leu Asn Leu 85 Gln	Arg Leu Trp Val 70 Ala	Thr Ser Leu 55 Ile Met	Val ·Leu 40 Glu Asn Thr Trp	Lys 25 Leu Pro Gly Gln Ala 105 Ala	Thr Gly Ser Trp Thr 90 Val	Val Ala Leu Tyr 75 Asn Ala	Ser Leu Gln 60 Leu Gln Arg	Ala Gln 45 Ser Ser Thr Arg	Gly 30 Ser Ile Phe Lys Trp 110 Pro	Asp Ala Ser Gln Val 95 Cys	Thr Ser Phe Arg 80 Tyr Asn

155

160

145

ı.

Ш

u

II III

Ξ

ļ.

Leu

Tyr

130

Tyr

Cys

Tyr

Ile

Phe

135

Val Asp Asn

Thr

Phe

140

Arg Trp

Cys

Val 145	Ile	Tyr	Tyr	Asn	Leu 150	Asn	Leu	Gly	Ile	Ser 155	Phe	Gly	Leu	Pro	Gln - 160
Ser	Leu	Leu	Arg	Trp 165	Gly	Pro	Trp	Tyr	Gly 170	Lys	Thr	Pro	Arg	Tyr 175	Asn
Val	Thr	Ser	Pro 180	Gln	Pro	Leu	Tyr								
<210><211><211><212><213>	138 PRT	sapie	ns												
<400>	631														
Gly 1	Pro	Trp	Leu	Thr 5	Phe	Pro	Ala	Phe	Asp 10	Pro	Ser	His	Pro	Ile 15	Ser
Ser	Ser	Phe	Pro 20	Leu	Pro	Ala	Ala	Lys 25	Lys	Lys	Lys	Lys	Glu 30	Thr	Phe
Ile	Met	Asn 35	Gln	Gln	Gly	Phe	Ser 40	Pro	Tyr	Gln	Arg	Glu 45	Met	Trp	Lys
Glu	Leu 50	Lys	Lys	Pro	Pro	Phe 55	Val	Pro	Asn	Ser	Thr 60	Leu	Pro	Ile	Phe
Tyr 65	Ala	Thr	Gln	Thr	Leu 70	Ser	Phe	Trp	Val	Pro 75	Phe	Leu	Gln	Met	Asp 80
Leu	Leu	Arg	Arg	Ile 85	Ile	Val	Phe	His	Val 90	Phe	Ser	Pro	Gln	Val 95	Thr
Lys	Ile	Asn	Ile 100	Cys	Ile	Tyr	Asn	Leu 105	Tyr	Tyr	Cys	Tyr	Ile 110	Phe	Val
Asp	Asn	Thr 115	Phe	Arg	Trp	Cys	Trp 120	Val	Ile	Tyr	Tyr	Asn 125	Leu	Asn	Leu
Gly	Ile 130	Ser	Phe	Gly	Leu	Pro 135	·Gln	Ser	Cys						
<210><211><212><213>	91 PRT	sapie	ns												
<400>	632														
Trp 1	Val	Lys	Gly	Arg 5	Lys	Gly	Lys	Pro	Trp 10	Ser	Ser	Asn	Pro	Ile 15	Ser
Ser	Ser	Phe	Pro 20	Leu	Pro	Ala	Ala	Lys 25	Lys	Lys	Lys	Lys	Gly 30	Asn	Val
Tyr	His	Glu 35	Ser	Thr	Gly	Phe	Gln 40	Ser	Leu	Ser	Lys	Arg 45	Asp	Val	Glu
Arg	Ala 50	Lys	Glu	Thr	Thr	Leu 55	Cys	Ser	Gln	Leu	His 60	Phe	Thr	His	Ile

Leu 65	Cys	Asn	Thr	Asn	Thr 70	Val	Leu	Leu	Gly	Pro 75	Phe	Leu	Thr	Asp	Gly 80·
Pro	Leu	Glu	Lys	Asn 85	Tyr	Arg	Ile	Pro	Arg 90	Phe					
<210><211><212><213>	111 PRT	sapie	ens												
<400>	633														
Arg 1	Asn	His	Ala	Lys 5	Ile	Gln	Leu	Pro	Met 10	Gln	Ala	Pro	Gln	Ser 15	Leu
Ile	Leu	Ser	Ser 20	Gln	Phe	Cys	Cys	Gln 25	Ala	Thr	Val	Val	Trp 30	Arg	Leu
Val	Gly	Cys 35	Cys	Pro	Cys	Cys	Asn 40	Glu	Trp	Glu	Glu	Val 45	Asp	Ser	Gly
Met	Val 50	Glu	Thr	Phe	Thr	Ser 55	Ser	Ser	Pro	Ala	Thr 60	Gly	Ile	Pro	Pro
Arg 65	Pro	Val	Leu	Cys	Cys 70	Gly	Gly	Arg	Phe	Lys 75	Ser	Lys	Lys	Leu	Leu 80
Phe	Glu	Val	Gly	Phe 85	Ala	Val	Trp	Phe	Lys 90	Xxx	His	Asp	Ala	Ile 95	Ala
Xxx	Glu	Arg	Pro 100	Ser	Lys	Asp	Ser	Gly 105	Leu	Pro	Gly	Leu	Glu 110	Asn	
<210><211><212><213>	89 PRT	sapie	ns												
<400>	634														
Leu 1	Arg	Arg	Asn	Cys 5	Pro	Val	-Gln	Arg	Pro 10	Thr	Phe	Pro	Phe	Ala 15	Pro
His	Leu	Phe	Arg 20	Thr	Pro	Leu	His	Thr 25	Leu	Gln	Pro	Pro	Lys 30	Val	Pro
Gly	Ser	Gly 35	Phe	Leu	His	Pro	Ala 40	Ala	Ala	Thr	Asn	Ala 45	Asn	Ser	Leu
Asn	Ser 50	Thr	Phe	Ser	Val	Leu 55	Pro	Gln	Arg	Phe	Pro 60	Gln	Phe	Gln	Gln
His 65	Arg	Ala	Val	Tyr	Asn 70	Ser	Phe	Ser	Phe	Pro 75	Gly	Gln	Ala	Ala	Arg 80
Tyr	Pro	Trp	Met	Ala 85	Phe	Pro	Xxx	Gln							

<210> 635

<211> 89

<212> PRT <213> homo sapiens

Phe Ile Gln Phe Ser Arg Pro Gly Ser Pro Leu Ser Leu Asp Gly Leu Ser Xxx Ala Ile Ala Ser Cys Xxx Leu Asn His Thr Ala Asn Pro Ser Asn Ser Asn Phe Leu Asp Leu Asn Leu Pro Pro Gln His Asn Gly Leu Gly Gly Ile Pro Val Ala Gly Glu Glu Val Lys Val Ser Thr Met Pro Leu Ser Thr Ser Ser His Ser Leu Gln Gln Gln Gln Pro Thr Ser Leu His Thr Thr Val Ala

<400> 635

09/673395 529 Rec'd PCT/PTC 17 0CT 2000

IN THE UNITED STATES DESIGNATED/ELECTED OFFICE

International Application No. : PCT/DE99/01174

International Filing Date : 15 April 1999

Priority Date(s) Claimed : 17 April 1998

Applicant(s) (DO/EO/US) : SPECHT, Thomas, et al.

Title: HUMAN NUCLEIC ACID SEQUENCES FROM ENDOMETRIAL TUMOR TISSUE

PRELIMINARY AMENDMENT

Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to calculating the national fee, and prior to examination in the National Phase of the above-identified International application, please amend this application as follows:

IN THE CLAIMS:

Claims 5 and 6, line 1: Change "claims 1 to 4" to -- claim 3 --.

Claim 7: Please rewrite as follows:

7. (Amended) A nucleic acid sequence comprising a portion of the nucleic acid sequences named in claim[s 1 to 6]3, in such a sufficient amount that they hybridize with the sequences [according to claims 1 to 6] of claim 3 or a sequence having 90% homology thereto.

Claims 8 and 9, line 1: Change "claims 1 to 7" to -- claim 3 --.

Claim 10, lines 1 and 2: Change "claims 1 to 9" to -- claim 3 --.

Claim 11, line 2: Change "claims 1 to 9" to -- claim 3 --.

Claim 13, lines 1 and 2: Change "claims 11 and 12" to -- claim 11 --

Claim 14, lines 1 and 2: Change "claims 1 to 10" to -- claim 3 --.

Claim 16, line 3: Change "claims 1 to 10" to -- claim 3 --.

Claim 18, line 1: Change "claims 16 or 17" to -- claim 16 --.

Claim 19, line 2: Change "claims 16 to 18" to -- claim 16 --.

Claim 27, line 3: After "630-635" insert -- of claim 23 --.

Claim 28, line 3: After "555" insert -- of claim 3 --.

Claim 29, line 2: After "555" insert -- of claim 3 --.

Claims 30 and 31, line 2: After "630-635" insert -- of claim 23 --.

Claim 32, line 3: After "630-635" insert -- of claim 23 --.

Claims 33 and 34, line 1: Change "claims 1 to 10" to -- claim 3 --.

Claim 35 line 4: After "555" insert -- of claim 3 --.

Claim 38, line 1: Change "claims 1 to 7" to -- claim 3 --.

Remarks

The purpose of this Preliminary Amendment is to eliminate multiple and improper multiple dependent claims to avoid additional fees. Applicants reserve the right to reintroduce claims directed to canceled combined subject matter.

Respectfully submitted,

Anthony Zelano, Reg. No. 27,969

Attorney for Applicants

MILLEN, WHITE, ZELANO & BRANIGAN, P.C.

Arlington Courthouse Plaza 1

2200 Clarendon Boulevard, Suite 1400

Arlington, VA 22201 Direct Dial: 703-812-5311 Facsimile: 703-243-6410 Email: zelano@mwzb.com

AJZ:aek

Filed: OCTOBER 17, 2000

k:\pat\sch\1780\prelm amdt

09/678395

WO 99/54461

PCT/DE99/01174

Human Nucleic Acid Sequences from Endometrial Tumor Tissue

The invention relates to human nucleic acid sequences from endometrial tumors, which code for gene products or portions thereof, their functional genes that code at least one bioactive polypeptide and their use.

In addition, the invention relates to the polypeptides that can be obtained by way of the sequences and their use.

One of the main causes of death by cancer in women is the endometrial tumor, for control of which new therapies are necessary. Previously used therapies, such as, e.g., chemotherapy, hormone therapy or surgical removal of tumor tissue, frequently do not result in a complete cure.

The cancer phenomenon often goes along with overexpression or underexpression of certain genes in degenerated cells, it still being unclear whether these altered expression rates are the cause or the result of the malignant transformation.

Identification of these genes would be an important step for development of new therapies against cancer. Spontaneous formation of cancer is often preceded by a host of mutations.

They can have the most varied effects on the expression pattern in the affected tissue, such as, e.g., underexpression or overexpression, but also expression of shortened genes. Several such changes due to these mutation cascades can ultimately lead to malignant degeneration. The complexity of these relationships makes an experimental approach very difficult.

A database that consists of so-called ESTs is used to look for candidate genes, i.e., genes that compared to the tumor tissue are more strongly expressed in normal tissue. (expressed sequence tags) are sequences of cDNAs, i.e., mRNAs transcribed in reverse, therefore molecules that reflect gene expression. The EST sequences are determined for normal and degenerated tissue. These databases are offered to some extent commercially by various companies. The ESTs of the LifeSeq database, which is used here, are generally between 150 and 350 nucleotides long. They represent a pattern that is unmistakable for a certain gene, although this gene is normally very much longer (> 2000 nucleotides). By comparison of the expression patterns of normal and tumor tissue, ESTs can be identified that are important for tumor formation and proliferation. however, the following problem: Since the EST sequences that are found can belong to different regions of an unknown gene due to different constructions of cDNA libraries, in this case a completely incorrect ratio of the occurrence of these ESTs in the respective tissue would arise. This would only be noticed when the complete gene is known and thus ESTs can be assigned to the same gene.

It has now been found that this possibility of error can be reduced if all ESTs from the respective tissue type are assembled beforehand, before the expression patterns are compared to one another. Overlapping ESTs of the same gene were thus combined into longer sequences (see Figure 1, Figure 2a and Figure 3). This lengthening and thus coverage of an essentially larger gene

region in each of the respective bases are intended to largely avoid the above-described error. Since there were no existing software products for this purpose, programs for assembling genomic sections were employed, which were used modified and to which our own programs were added. A flow chart of the assembly procedure is shown in Figures 2b1-2b4.

Nucleic acid sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555, which play a role as candidate genes in endometrial tumors, have now been found.

Nucleic acid sequences Seq. ID Nos. 1-126 and Seq. ID Nos. 531-552, 554, and 555 are of special interest.

The invention thus relates to nucleic acid sequences that code a gene product or a portion thereof, comprising

- a) a nucleic acid sequence selected from the group of nucleic acid sequences Seq. ID Nos. 1-126 and Seq. ID Nos. 531-552, 554, and 555,
- b) an allelic variation of the nucleic acid sequences named under a)

or

c) a nucleic acid sequence that is complementary to the nucleic acid sequences named under a) or b).

In addition, the invention relates to a nucleic acid sequence according to one of the sequences Seq. ID Nos. 1-126 or a complementary or allelic variant thereof and the nucleic acid sequences thereof, which have 90% to 95% homology to a human nucleic acid sequence.

The invention also relates to nucleic acid sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555, which are expressed elevated in the endometrial tumor.

The invention further relates to nucleic acid sequences comprising a portion of the above-mentioned nucleic acid sequences in such a sufficient amount that they hybridize with sequences Seq. ID Nos. 1-126 and Seq. ID Nos. 531-552, 554, and 555.

The nucleic acid sequences according to the invention generally have a length of at least 50 to 4500 bp, preferably a length of at least 150 to 4000 bp, especially a length of 450 to 3500 bp.

With the partial sequences Seq. ID Nos. 1-126 and Seq. ID Nos. 531-552, 554, and 555 according to the invention, expression cassettes can also be built using current process practice, whereby on the cassette at least one of the nucleic acid sequences according to the invention is combined with at least one control or regulatory sequence generally known to one skilled in the art, such as, e.g., a suitable promoter. The sequences according to the invention can be inserted in a sense or antisense orientation.

A large number of expression cassettes or vectors and promoters which can be used are known in the literature.

Expression cassettes or vectors are defined as:

1. bacterial, such as, e.g., phagescript, pBs, φX174, pBluescript
SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene), pTrc99A,
pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), 2. eukaryotic,

such as, e.g., pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene),
pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Control or regulatory sequences are defined as suitable promoters. Here, two preferred vectors are the pKK232-8 and the PCM7 vector. In particular, the following promoters are intended: lacI, lacZ, T3, T7, gpt, lambda P_R , trc, CMV, HSV thymidine-kinase, SV40, LTRs from retrovirus and mouse metallothionein-I.

The DNA sequences located on the expression cassette can code a fusion protein which comprises a known protein and a bioactive polypeptide fragment.

The expression cassettes are likewise the subject matter of this invention.

The nucleic acid fragments according to the invention can be used to produce full-length genes. The genes that can be obtained are likewise the subject matter of this invention.

The invention also relates to the use of the nucleic acid sequences according to the invention and the gene fragments that can be obtained from use.

The nucleic acid sequences according to the invention can be moved with suitable vectors into host cells, in which as the heterologous part, the genetic information which is contained on the nucleic acid fragments and which is expressed is located.

The host cells containing the nucleic acid fragments are likewise the subject matter of this invention.

Suitable host cells are, e.g., prokaryotic cell systems such as $\underline{E.\ coli}$ or eukaryotic cell systems such as animal or human cells or yeasts.

The nucleic acid sequences according to the invention can be used in the sense or antisense form.

Production of polypeptides or their fragments is done by cultivation of the host cells according to current cultivation methods and subsequent isolation and purification of the peptides or fragments, likewise using current methods. The invention further relates to nucleic acid sequences, which code at least a partial sequence of a bioactive polypeptide.

This invention further relates to polypeptide partial sequences, so-called ORF (open-reading-frame)-peptides, according to the sequence protocols Seq. ID Nos. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635.

The invention further relates to the polypeptide sequences that have at least 80% homology, especially 90% homology to the polypeptide partial sequences of ORF ID Nos. 142-528 and Seq. ID Nos. ORF 561-575, 577-625, and 630-635 according to the invention.

The invention also relates to antibodies that are directed against a polypeptide or a fragment thereof and that are coded by the nucleic acids of sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555 according to the invention.

Antibodies are defined especially as monoclonal antibodies.

The antibodies according to the invention can be identified by, i.a., a phage display process. These antibodies are also the subject matter of the invention.

The polypeptide partial sequences according to the invention can be used in a phage display process. The polypeptides that are identified with this process and that bind to the polypeptide partial sequences according to the invention are also the subject matter of the invention.

The nucleic acid sequences according to the invention can also be used in a phage display process.

The polypeptides of sequences Seq. ID Nos. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635 according to the invention can also be used as tools for finding active ingredients against endometrial tumors, which is likewise the subject matter of this invention.

Likewise the subject matter of this invention is the use of nucleic acid sequences according to sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555 for expression of polypeptides, which can be used as tools for finding active ingredients against endometrial tumors.

The invention also relates to the use of the found polypeptide partial sequences Seq. ID Nos. 142-528 and Seq. ID Nos. 561-575, 577-625, and 630-635 as pharmaceutical agents in the gene therapy for treatment of uterus tumors or for the production of a pharmaceutical agent for treatment of uterus tumors.

The invention also relates to pharmaceutical agents that contain at least one polypeptide partial sequence Seq. ID Nos. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635.

The nucleic acid sequences found according to the invention can also be genomic or mRNA sequences.

The invention also relates to genomic genes, their exon and intron structures and their splice variants that can be obtained from cDNAs of sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555, and their use together with suitable regulatory elements, such as suitable promoters and/or enhancers.

With the nucleic acids according to the invention (cDNA sequences) Seq. ID Nos. 1-141 and Seq. ID Nos. 531-552, 554, and 555, genomic BAC, PAC and cosmid libraries are screened, and specifically human clones are isolated via complementary base pairing (hybridization). The BAC, PAC and cosmid clones isolated in this way are hybridized using fluorescence-in-situ hybridization on metaphase chromosomes, and the corresponding chromosome sections on which the corresponding genomic genes lie are identified. BAC, PAC and cosmid clones are sequenced in order to clarify the corresponding genomic genes in their complete structure (promoters, enhancers, silencers, exons and introns). BAC, PAC and cosmid clones can be used as independent molecules for gene transfer (see Figure 5).

The invention also relates to BAC, PAC and cosmid clones containing functional genes and their chromosomal localization according to sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq.

ID Nos. 531-552, 554, and 555, for use as vehicles for gene transfer.

Meanings of Technical Terms and Abbreviations

Nucleic acids = Nucleic acids in this invention are defined as:

mRNA, partial cDNA, full-length cDNA and genomic

genes (chromosomes)

ORF = Open Reading Frame, a defined sequence of amino acids which can be derived from the cDNA sequence

Contig = A set of DNA sequences that can be combined as a
 result of very great similarities into one
 sequence (consensus)

Singleton = A contig that contains only one sequence

Module = Domain of a protein with a defined sequence, which
represents one structural unit and which occurs in
various proteins

N = selectively the nucleotide A, T, G or C

X = selectively one of the 20 naturally occurring
amino acids

Explanation of the Alignment Parameters

minimal initial match = minimal initial identity area
maximum pads per read = maximum number of insertions
maximum percent mismatch = maximum deviation in %

Explanation of Figures

Figure 1 shows the systematic gene search in the Incyte LifeSeq database

Figure 2a shows the principle of EST assembling
Figures 2b1-2b4 show the entire principle of EST assembling

Figure 3	shows the in-silico subtraction of gene
	expression in various tissues
Figure 4a	shows the determination of tissue-specific
	expression via electronic Northern
Figure 4b	shows the electronic Northern
Figure 5	shows the isolation of genomic BAC and PAC
	clones.

The following examples explain the production of the nucleic acid sequences according to the invention without limiting the invention to these examples and nucleic acid sequences.

Example 1

Search for Tumor-related Candidate Genes

First, all ESTs of the corresponding tissue from the LifeSeq database (from October 1997) were extracted. They were then assembled by means of the GAP4 program of the Staden package with the parameters 0% mismatch, 8 pads per read and a minimal match The sequences (fails) not recorded in the GAP4 database were assembled first at 1% mismatch and then again at 2% mismatch with the database. Consensus sequences were computed from the contigs of the database that consisted of more than one sequence. The singletons of the database, which consisted of only one sequence, were re-assembled at 2% mismatch with the sequences not recorded in the GAP4 database. In turn, the consensus sequences were determined for the contigs. All other ESTs were reassembled at 4% mismatch. The consensus sequences were extracted once again and finally assembled with the previous consensus sequences and the singletons and the sequences not recorded in the database at 4% mismatch. The consensus sequences were formed and used with the singletons and fails as the initial basis for tissue comparisons. This procedure ensured that among the parameters used, all sequences represented gene regions independent of one another.

Figures 2b1-2b4 illustrate the lengthening of the uterus tissue ESTs.

The sequences of the respective tissue assembled in this way were then compared to one another by means of the same program (Figure 3). To do this, first all sequences of the first tissue were input into the database. (It was therefore important that they were independent of one another.)

Then, all sequences of the second tissue were compared to all those of the first. The result was sequences that were specific to the first or the second tissue as well as those which occurred in both. In the latter, the ratio of the frequency of occurrence in the respective tissue was evaluated. All programs pertaining to the evaluation of the assembled sequences were themselves developed.

All sequences that occurred more than four times in respectively one of the compared tissues and all that occurred at least five times as often in one of the two tissues were further studied. These sequences were subjected to an electronic Northern (see Example 2.1), by which the distribution in all tumor and normal tissues was studied (see Figure 4a and Figure 4b). The relevant candidates were then lengthened using all Incyte ESTs and all ESTs of public databases (see Example 3). Then, the sequences and their translation into possible proteins were compared to all nucleotide and protein databases and were studied for possible regions that code for proteins.

Example 2

Algorithm for Identification and Lengthening of Partial cDNA Sequences with Altered Expression Pattern

An algorithm for finding overexpressed or underexpressed genes will be explained below. The individual steps are also summarized in a flow chart for the sake of clarity (see Figure 4b).

2.1. Electronic Northern Blot

By means of a standard program for homology search, e.g., BLAST (Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W. and Lipman, D. J. (1990) J. Mol. Biol. 215, 403-410), BLAST2 (Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W., and Lipman, D. J. (1997) Nucleic Acids Research 25 3389-3402) or FASTA (Pearson, W. R. and Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85 2444-2448), the homologous sequences in various EST libraries (private or public) arranged by tissues are determined for a partial DNA sequence S, e.g., an individual EST or a contig of ESTs. The (relative or absolute) tissue-specific occurrence frequencies of this partial sequence S which were determined in this way are called electronic Northern Blots.

2.1.1

Analogously to the procedure described under 2.1, the sequence Seq. ID No. 136 was found, which occurs 15.6 x more strongly in the endometrial tumor than in normal tissue.

09/673395 529 Rec'd PCT/PTC 17 OCT 2000

The result is as follows:

Electronic Northern for SEQ. ID NO.: 136

		DRMAL	TUMOR	Ratios
	%	frequency	<pre>% frequency</pre>	N/T T/N
Bladder				
Breast		0.0000	0.0026	0.0000 undef
Small intestine		0.0102	0.0038	2.7221 0.3674
		0.0092	0.0165	0.5561 1.7982
Ovary		0.0090	0.0078	1.1513 0.8686
Endocrine tissue		0.0000	0.0150	0.0000 undef
Gastrointestinal		0.0019	0.0093	0.2071 4.8289
Brain		0.0059	0.0031	1.9199 0.5209
Hematopoietic		0.0040	0.0379	0.1059 9.4460
Skin		0.0073	0.0000	undef 0.0000
Hepatic		0.0048	0.0065	0.7353 1.3600
Heart		0.0000	0.0000	undef undef
Testicles		0.0000	0.0117	0.0000 undef
Lung		0.0114	0.0041	2.7942 0.3579
Stomach-esophagus		0.0097	0.0153	0.6303 1.5866
Muscle-skeleton		0.0103	0.0120	0.8567 1.1673
Kidney		0.0081	0.0000	undef 0.0000
Pancreas		0.0050 0.0060	0.0000 0.0000	undef 0.0000
Penis		0.0000		undef 0.0000
Prostate		0.0068	0.0064 0.1055	0.0000 undef
Uterus-endometrium		0.0000	0.0000	0.0640 15.6211
Uterus-myometrium		0.0000	0.0000	undef undef
Uterus-general		0.0000	0.0000	undef undef
Breast hyperplasia		0.0030		
Prograta hyperpiasia		0.0000		
Prostate hyperplasia Seminal vesicle		0.0000		
		0.0104		
Sensory organs		0.0000		
White blood cells Cervix		• . •		

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0056 0.0000 0.0079 0.0000 0.0000 0.0142 0.0108 0.0254 0.0000 0.0061 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0068 0.0000 0.0000 0.0000 0.0076 0.0000 0.0171 0.0000 0.0164 0.0060 0.0068 0.0000 0.0125

In an analogous procedure, the following Northerns were also found:

Electronic Northern				
		ORMAL	TUMOR	Ratios
	웅	frequency	% frequency	T/N
Bladder		0.0039	0.0026	1.5254 0.6555
Breast		0.0038	0.0056	0.6805 1.4694
Small intestine		0.0061	0.0000	undef 0.0000
Ovary		0.0030	0.0104	0.2878 3.4745
Endocrine tissue		0.0017	0.0000	undef 0.0000
Gastrointestinal		0.0019	0.0000	undef 0.0000
Brain		0.0030	0.0031	0.9599 1.0417
Hematopoietic		0.0040	0.0000	undef 0.0000
Skin		0.0037	0.0000	undef 0.0000
Hepatic		0.0000	0.0000	undef undef
Heart		0.0011	0.0000	undef 0.0000 0.0000 undef
Testicles		0.0000 0.0031	0.0117 0.0000	undef 0.0000
Lung		0.0001	0.0077	0.0000 undef
Stomach-esophagus		0.0000	0.0060	0.0000 undef
Muscle-skeleton		0.0000	0.0000	undef undef
Kidney		0.0000	0.0000	undef undef
Pancreas		0.0000	0.0000	undef undef
Penis		0.0022	0.0000	undef 0.0000
Prostate		0.0068	0.1055	0.0640 15.6211
Uterus-endometrium		0.0000	0.0000	undef undef
Uterus-myometrium		0.0000	0.0000	undef undef
Uterus-general		0.0000		
Breast hyperplasia		0.0000		
Prostate hyperplasia	l.	0.0000		
Seminal vesicle		0.0000		
Sensory organs		0.0000		
White blood cells		0.0000		
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0036 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0077 0.0000 0.0077 0.0000

% frequency % frequency N/T T/	
Bladder	

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0122 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern for SEQ. ID NO.: 3 NORMAL TUMOR Ratios % frequency % frequency T/NT/N Bladder Breast 0.0078 0.0291 0.2774 3.6055 Small intestine 0.0090 0.0188 0.4764 2.0992 Ovary 0.0031 0.0000 undef 0.0000 Endocrine tissue 0.0030 0.0052 0.5756 1.7372 Gastrointestinal 0.0085 0.0176 0.4852 2.0611 Brain 0.0019 0.0093 0.2071 4.8289 Hematopoietic 0.0118 0.0123 0.9599 1.0417 Skin 0.0027 0.0000 undef 0.0000 Hepatic 0.0073 0.0000 undef 0.0000 0.0000 Heart 0.0000 undef undef Testicles 0.0042 0.0000 undef 0.0000 Lung 0.0058 0.0117 0.4920 2.0326 0.0073 0.0020 3.5562 0.2812 Stomach-esophagus 0.0097 0.0153 0.6303 1.5866 Muscle-skeleton 0.0240 0.0034 0.1428 7.0040 Kidney 0.0136 0.0274 0.4956 2.0176 Pancreas 0.0050 0.0000 undef 0.0000 Penis 0.0090 undef 0.0000 0.0000 Prostate 0.0109 0.0149 0.7312 1.3677 Uterus-endometrium 0.0068 0.1583 0.0427 23.4317 Uterus-myometrium 0.0076 0.0272 0.2806 3.5642 Uterus-general 0.0102 0.0000 undef 0.0000 Breast hyperplasia 0.0160 Prostate hyperplasia 0.0119 Seminal vesicle 0.0178 Sensory organs White blood cells 0.0000 0.0009 0.0000 Cervix

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	TED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0278 0.0194 0.0063 0.0157 0.0000 0.0000 0.0107 0.0145 0.0254 0.0124 0.0121 0.0249 0.0000	Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate	0.0272 0.0000 0.0203 0.0000 0.0076 0.0000 0.0114 0.0194 0.0000 0.0164 0.0120 0.0137 0.0155 0.0083

Electronic Northern			
	NORMAL	TUMOR	Ratios
	% frequen	cy % frequ	ency N/T T/N
m3 73			
Bladder			
Breast	0.0039	0.0000	undef 0.0000
Small intestine	0.0026	0.0000	undef 0.0000
Ovary	0.0000	0.0165	0.0000 undef
Endocrine tissue	0.0030	0.0000	undef 0.0000
Gastrointestinal	0.0017	0.0000	undef 0.0000
Brain	0.0077	0.0000	undef 0.0000
Hematopoietic	0.0015	0.0021	0.7200 1.3890
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0048	0.0000	undef 0.0000
Testicles	0.0011	0.0000	undef 0.0000
Lung	0.0000	0.0000	undef undef
Stomach-esophagus	0.0021	0.0020	1.0161 0.9842
Muscle-skeleton	0.0193	0.0077	2.5211 0.3967
Kidney	0.0000	0.0060	0.0000 undef
Pancreas	0.0000	0.0000	undef undef
Penis	0.0017	0.0000	undef 0.0000
Prostate	0.0030	0.0000	undef 0.0000
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.1055	0.0000 undef
Uterus-general	0.0076	0.0068	1.1223 0.8911
Breast hyperplasia	0.0000 0.0000	0.0000	undef undef
Prostate hyperplasia			
Seminal vesicle	0.0030		
	0.0000 0.0000		
Sensory organs White blood cells	0.0000		
Cervix	0.0213		
CETATY	0.0213		

	FETUS % frequency	LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0036 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0041 0.0000 0.0000 0.0032 0.0000 0.0082 0.0020 0.0000 0.0000

Electronic Northern	NORMAL	TUMOR	Ratios	
	% freque	ncy % frequ	lency N/T	T/N
Bladder				
Breast				
Small intestine	0.0039	0.0026	1.5254 0.6555	
	0.0038	0.0038	1.0208 0.9796	
Ovary	0.0031	0.0000	undef 0.0000	
Endocrine tissue	0.0060	0.0000	undef 0.0000	
Gastrointestinal	0.0000	0.0025	0.0000 undef	
Brain	0.0000	0.0093	0.0000 undef	
Hematopoietic	0.0015	0.0021	0.7200 1.3890	
Skin	0.0053	0.0000	undef 0.0000	
Hepatic	0.0000 0.0000	0.0000	undef undef	
Heart	0.0053	0.0000 0.0137	undef undef 0.3855 2.5941	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0193	0.0000	undef 0.0000	
Muscle-skeleton	0.0017	0.0000	undef 0.0000	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0017	0.0055	0.2991 3.3428	
Penis	0.0060	0.0267	0.2246 4.4517	
Prostate	0.0065	0.0021	3.0709 0.3256	
Uterus-endometrium	0.0135	0.1055	0.1280 7.8106	
Uterus-myometrium	0.0000	0.0068	0.0000 undef	
Uterus-general	0.0051	0.0000	undef 0.0000	
Breast hyperplasia	0.0096			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0178			
Sensory organs	0.0000			
White blood cells	0.0078			
Cervix	0.0000			

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0083 0.0000 0.0079 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0759 0.0000 0.0029 0.0122 0.0057 0.0000 0.0000 0.0000 0.0040 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 6 TUMOR cy % freque	Ratios ency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0156 0.0051 0.0123 0.0120 0.0085 0.0096 0.0133 0.0120 0.0073 0.0000 0.0170 0.0058 0.0197 0.0193 0.0034 0.0054 0.0054 0.0066 0.0240 0.0054 0.0066 0.0240 0.0029 0.0102 0.0192 0.0192 0.0059 0.0089 0.00104 0.0106	0.0077 0.0075 0.0331 0.0104 0.0075 0.0278 0.0164 0.0000 0.0000 0.0000 0.0117 0.0164 0.0000 0.0180 0.0274 0.0055 0.0267 0.0192 0.1055 0.0272 0.0000	2.0339 0.4917 0.6805 1.4694 0.3707 2.6973 1.1513 0.8686 1.1321 0.8833 0.3451 2.8974 0.8100 1.2346 undef 0.0000 undef 0.0000 undef undef undef 0.0000 0.4920 2.0326 1.2066 0.8288 undef 0.0000 0.1904 5.2530 0.1983 5.0439 1.1966 0.8357 0.8985 1.1129 0.2275 4.3961 0.0000 undef 0.8417 1.1881 undef 0.0000	

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0250 0.0063 0.0157 0.0000 0.0260 0.0178 0.0036 0.0000 0.0000 0.0121 0.0000 0.0251	Breast 0.0136 Ovary_n 0.0000 Ovary_t 0.0354 Endocrine tissue 0.0000 Fetal 0.0244 Gastrointestinal 0.0244 Hematopoietic 0.0551 Skin-muscle 0.0386 Testicles 0.0082 Lung 0.0181 Nerves 0.0068 Prostate 0.0000 Sensory Organs 0.0167	0 4 0 5 4 1 5 5 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1

Electronic Northern for SEQ. ID NO.: 7 Ratios NORMAL TUMOR T/N % frequency % frequency N/T Bladder Breast 0.0000 0.0000 undef undef Small intestine 0.0026 0.0019 1.3611 0.7347 Ovary 0.0061 0.0000 undef 0.0000 Endocrine tissue 2.3025 0.4343 undef 0.0000 0.0060 0.0026 Gastrointestinal 0.0051 0.0000 Brain 0.0096 0.0139 0.6903 1.4487 Hematopoietic 0.0037 0.0092 0.4000 2.5001 Skin 0.0013 0.0000 undef 0.0000 undef undef 0.0000 0.0000 Hepatic undef undef 0.0000 0.0000 Heart 0.0042 0.0000 undef 0.0000 Testicles 0.0000 undef undef 0.0000 Lung 0.0042 0.0041 1.0161 0.9842 Stomach-esophagus 0.0097 0.0153 0.6303 1.5866 Muscle-skeleton 0.0000 0.0120 0.0000 undef Kidney 0.0027 0.0000 undef 0.0000 Pancreas 0.0017 undef 0.0000 0.0000 Penis 0.0150 0.0000 undef 0.0000 Prostate 2.0473 0.4885 0.0087 0.0043 Uterus-endometrium 0.0068 0.1055 0.0640 15.6211 Uterus-myometrium 0.0076 0.0000 undef 0.0000 Uterus-general Breast hyperplasia 0.0000 0.0000 undef undef 0.0032 Prostate hyperplasia 0.0000 Seminal vesicle 0.0089 Sensory organs 0.0000 0.0000 White blood cells 0.0000 Cervix

	FETUS % frequency	LIBRARIES % frequency	RACIED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.1595 0.0000 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0155 0.0000

CONTRACTOR / CHECK A CORD

Electronic Northern	for SEQ. ID NO NORMAL % frequency	TUMOR	Ratios cy N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0026 0.0019 0.0000 0.0000 0.0025 0.0046 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 undef 0.0000 undef undef 0.0000 undef undef 0.0000 undef 0.4142 2.4145 0.0000 undef

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0108 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0068 0.0000 0.0203 0.0000 0.0047 0.0000 0.0057 0.0000 0.0000 0.0050 0.0137 0.0000 0.0000

NORMAL TUMOR Ratios % frequency % frequency N/T T/N Bladder Breast 0.0000 0.0000 0.0000 undef undef	Electronic Northern	for SEQ. ID NO	0.: 9		
Bladder 0.0000 0.0000 undef undef Breast 0.0000 0.0000 undef undef Small intestine 0.0000 0.0000 undef undef Ovary 0.0000 0.0000 undef undef				Ratios	
Bladder 0.0000 0.0000 undef undef Breast 0.0000 0.0000 undef undef Small intestine 0.0000 0.0000 undef undef Ovary 0.0000 0.0000 undef undef		% frequency	% frequenc	T\N V	T/N
Breast 0.0000 0.0000 under under under undef Small intestine 0.0000 0.0000 undef undef Ovary 0.0000 0.0000 undef undef			•	.	-,
Breast 0.0000 0.0000 under under under undef Small intestine 0.0000 0.0000 undef undef Ovary 0.0000 0.0000 undef undef	Bladder	2 2222	0.0000		
Small intestine 0.0000 0.0000 undef undef Ovary 0.0000 0.0000 undef undef					
Ovary 0.0000 0.0000 undef undef	Small intestine				
Endocrine tissue 0.0000 0.0000 undef undef	Endocrine tissue				
Gastrointestinal 0.0019 0.0000 undef 0.0000					
Brain 0.0000 0.0000 undef undef					
Hematopoietic 0.0000 0.0000 undef undef					
Skin 0.0000 0.0000 undef undef	Skin			undef undef	
Hepatic 0.0000 0.0000 undef undef		0.0000	0.0000	undef undef	
Heart 0.0000 0.0000 undef undef		0.0000	0.0000	undef undef	
Testicles 0.0000 0.0000 undef undef	Testicles	0.0000	0.0000	undef undef	
Lung 0.0000 0.0000 undef undef		0.0000	0.0000	undef undef	
Stomach-esophagus 0.0000 0.0000 undef undef		0.0000	0.0000		
Muscle-skeleton 0.0000 0.0000 under under					
Kidney 0.0000 0.0000 undef undef					
Pancreas 0.0000 0.0000 under under					
Denis 0.0000 0.0000 under under					
Prostato 0.0000 0.0000 under under	 -				
Ut crisc and emotive 0.0000 0.1035 0.0000 dider					
Uterus-myometrium 0.0000 0.0000 undef undef Uterus-myometrium 0.0000 0.0000 undef undef					
Uterus-general 0.0000 0.0000 under under			0.0000	dider dider	
Breast hyperplasia 0.0000	Breast hyperplasia				
Prostate hyperplasia 0.0000	Prostate hyperplasia				
Seminal vesicle 0.0000	Seminal vesicle				
Sensory organs 0.0000					
White blood cells 0.0000	White blood cells				
Cervix					

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern f	or SEQ. ID NO NORMAL % frequency	TUMOR	Ratios ncy N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium	NORMAL % frequency 0.0000	TUMOR % frequer 0.0000	undef	T/N
Uterus-myometrium	0.0000 0.0000 0.0000	0.0000	undef undef undef undef	
Uterus-general Breast hyperplasia Prostate hyperplasia	0.0000 0.0000 0.0000 0.0000	0.0000	undef undef	
Seminal vesicle Sensory organs White blood cells	0.0000 0.0000 0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 11 TUMOR ncy % frequ	encv	Ratios	TT / NI
Bladder Breast Small intestine Ovary	0.0000 0.0090 0.0153 0.0000	0.0000 0.0188 0.0000 0.0000	undef 0.4764	2.0992	T/N
Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart	0.0051 0.0038 0.0000 0.0000 0.0000 0.0000	0.0050 0.0000 0.0000 0.0000 0.0000 0.0000		undef undef undef	
Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas	0.0115 0.0000 0.0000 0.0000 0.0000 0.0066	0.0117 0.0000 0.0000 0.0000 0.0000 0.0055	0.9839 undef undef undef undef	1.0163 undef undef undef	
Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general	0.0000 0.0131 0.0000 0.0000 0.0000	0.0000 0.0213 0.1583 0.0000 0.0000	undef 0.6142 0.0000 undef undef	1.6282 undef undef	
Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0178 0.0000 0.0000 0.0017 0.0106				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0154 0.0000 0.0342 0.0000

Electronic Northern				
	NORMAL	TUMOR	Ratios	
	% frequen	cy % frequ	ency N/T	T/N
				-
Bladder	0.0000	0.0026	0.0000 undef	
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0019	0.0000	undef 0.0000	
Brain	0.0007	0.0000	undef 0.0000	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0037	0.0000	undef 0.0000	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0021	0.0000	undef 0.0000	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000 0.0000	0.0000	undef undef	
Uterus-endometrium	0.0000	0.1055 0.0000	0.0000 undef undef undef	
Uterus-myometrium	0.0000	0.0000	under under undef undef	
Uterus-general	0.0000	0.0000	ander ander	
Breast hyperplasia	0.0000			
Prostate hyperplasia				
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0072 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0051 0.0000 0.0035 0.0000 0.0057 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	0.: 13		
	NORMAL	TUMOR	Ratios	
	% frequency	% frequenc		T/N
		v zzogacno	1 11/1	-/14
Bladder				
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0038	0.0019	2.0416 0.4898	
Ovary	0.0061	0.0000	undef 0.0000	
Endocrine tissue	0.0000	0.0208	0.0000 undef	
Gastrointestinal	0.0034		0.1698 5.8889	
Brain	0.0057		undef 0.0000	
Hematopoietic	0.0081	0.0072	1.1314 0.8839	
Skin	0.0000		undef undef	
Hepatic	0.0037		undef 0.0000	
Heart	0.0000		undef undef	
Testicles	0.0021		undef 0.0000	
Lung	0.0058		undef 0.0000	
Stomach-esophagus	0.0010		0.5080 1.9684	
Muscle-skeleton	0.0000 0.0051		undef undef	
Kidney	0.0054		undef 0.0000 undef 0.0000	
Pancreas	0.0017		undef 0.0000	
Penis	0.0030		undef 0.0000	
Prostate	0.0065		1.5354 0.6513	
Uterus-endometrium	0.0068		0.0427 23.4317	
Uterus-myometrium	0.0152		undef 0.0000	
Uterus-general	0.0051		undef 0.0000	
Breast hyperplasia	0.0096			
Prostate hyperplasia	0.0149			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix	0.0000			

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0039 0.0000 0.0000 0.0036 0.0036 0.0036 0.0000 0.0062 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0093 0.0000 0.0057 0.0032 0.0309 0.0000 0.0100 0.0000 0.0077 0.0250

Electronic Northern	NORMAL	D NO.: 14 TUMOR ncy % frequ	Ratios nency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells	0.0000 0.0000	0.0000 0.0000	undef	
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO NORMAL % frequency	TUMOR	Ratios ncy N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef	1,11
Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1055 0.0000	undef	

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID N	0.: 16		
	NORMAL	TUMOR	Ratios	
	% frequency	% frequenc	y N/T	T/N
		_	-	•
Bladder	-			
Breast	0.0078	0.0128	0.6102 1.6389	
Small intestine	0.0153	0.0188	0.8166 1.2245	
Ovary	0.0184	0.0000	undef 0.0000	
Endocrine tissue	0.0090	0.0182	0.4934 2.0268	
Gastrointestinal	0.0187	0.0100	1.8679 0.5354 0.5917 1.6901	
Brain	0.0192	0.0324	0.3240 3.0866	
Hematopoietic	0.0067 0.0147	0.0205 0.0379	0.3882 2.5762	
Skin	0.0147	0.0000	undef 0.0000	
Hepatic	0.0073	0.0323	0.4412 2.2666	
Heart	0.0143	0.0323	0.5397 1.8529	
Testicles	0.0115	0.0000	undef 0.0000	
Lung	0.0156	0.0102	1.5241 0.6561	
	0.0290	0.0307	0.9454 1.0578	
Stomach-esophagus Muscle-skeleton	0.0154	0.0120	1.2850 0.7782	
	0.0407	0.0068	5.9478 0.1681	
Kidney	0.0132	0.0110	1.1966 0.8357	
Pancreas	0.0120	0.0267	0.4493 2.2259	
Penis	0.0153	0.0085	1.7913 0.5582	
Prostate	0.0000	0.1055	0.0000 undef	
Uterus-endometrium	0.0229	0.0068	3.3668 0.2970	
Uterus-myometrium	0.0153	0.0000	undef 0.0000	
Uterus-general	0.0192			
Breast hyperplasia	0.0059			
Prostate hyperplasia				
Seminal vesicle	0.0353			
Sensory organs	0.0165			
White blood cells	0.0319			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0278 0.0056 0.0000 0.0393 0.0000 0.0000 0.0000 0.0072 0.0000 0.0124 0.0061 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0476 0.0000 0.1114 0.0245 0.0175 0.0244 0.0114 0.0292 0.0000 0.0082 0.0020 0.0000 0.0310 0.0167

Electronic Northern	for SEQ. II NORMAL	NO.: 17 TUMOR	Ra [.]	tios
	% frequer	ncy % frequ	ency N/	T/N
	•			
Bladder				
Breast	0.0039	0.0026	1.5254 0.6	
Small intestine	0.0051	0.0000	undef 0.0	
Ovary	0.0031 0.0030	0.0000	undef 0.0	
Endocrine tissue	0.0030	0.0000 0.0025	undef 0.0	
Gastrointestinal	0.0000	0.0023	0.6792 1.4	
Brain	0.0000	0.0048	3.5998 0.2	
Hematopoietic	0.0000	0.0000	undef und	
Skin	0.0037	0.0000	undef 0.0	
Hepatic	0.0000	0.0129	0.0000 und	
Heart	0.0011	0.0000	undef 0.0	
Testicles	0.0000	0.0000	undef und	ef
Lung	0.0031	0.0041	0.7621 1.3	122
Stomach-esophagus	0.0000	0.0000	undef und	ef
Muscle-skeleton	0.0034	0.0060	0.5711 1.7	510
Kidney	0.0000	0.0000	undef und	
Pancreas	0.0000	0.0000	undef und	
Penis	0.0000	0.0000	undef und	
Prostate	0.0022	0.0000	undef 0.0	
Uterus-endometrium	0.0000 0.0076	0.1055 0.0000	0.0000 und undef 0.0	
Uterus-myometrium	0.0000	0.0000	under U.U	
Uterus-general	0.0096	0.0000	under und	.e.r
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0035			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0079 0.0000 0.0000 0.0036 0.0036 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID N	IO.: 18 TUMOR	Ratios
	% frequency	% frequer	ncy N/T T/N
	• •	-	- ,
Bladder			
Breast	0.0078	0.0256	0.3051 3.2777
Small intestine	0.0090	0.0113	0.7939 1.2595
Ovary	0.0092	0.0000	undef 0.0000
Endocrine tissue	0.0090	0.0286	0.3140 3.1849
Gastrointestinal	0.0255	0.0050	5.0944 0.1963
Brain	0.0096	0.0185	0.5177 1.9316
Hematopoietic	0.0044	0.0082	0.5400 1.8520
Skin	0.0134	0.0379	0.3529 2.8338
Hepatic	0.0073	0.0000	undef 0.0000
Heart	0.0285	0.0194	1.4706 0.6800
Testicles	0.0042 0.0000	0.0275	0.1542 6.4853 0.0000 undef
Lung	0.0083	0.0117 0.0184	0.4516 2.2144
Stomach-esophagus	0.0000	0.0184	0.0000 undef
Muscle-skeleton	0.0000	0.0060	0.0000 undef
Kidney	0.0109	0.0274	0.3965 2.5219
Pancreas	0.0017	0.0110	0.1496 6.6857
Penis	0.0060	0.0533	0.1123 8.9035
Prostate	0.0262	0.0192	1.3648 0.7327
Uterus-endometrium	0.0068	0.1583	0.0427 23.4317
Uterus-myometrium	0.0000	0.0068	0.0000 undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0128		
Prostate hyperplasia	0.0297		
Seminal vesicle	0.0356		
Sensory organs	0.0000		
White blood cells	0.0113		
Cervix	0.0000		

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0278 0.0028 0.0188 0.0039 0.0000 0.0000 0.0107 0.0000 0.0000 0.0124 0.0182 0.0000 0.0126	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0068 0.0000 0.0152 0.0245 0.0064 0.0244 0.0057 0.0389 0.0077 0.0000 0.0080 0.0274 0.0000 0.0458

Bladder 0.0195 0.0102 1.9068 0.5244 Breast 0.0115 0.0132 0.8750 1.1429 Small intestine 0.0123 0.0165 0.7415 1.3487 Ovary 0.0060 0.0078 0.7675 1.3029 Endocrine tissue 0.0119 0.0125 0.9509 1.0516 Gastrointestinal 0.0096 0.0139 0.6903 1.4487 Brain 0.0096 0.0041 2.3399 0.4274
Breast 0.0195 0.0102 1.9068 0.5244 Small intestine 0.0115 0.0132 0.8750 1.1429 Ovary 0.0123 0.0165 0.7415 1.3487 Endocrine tissue 0.0119 0.0125 0.9509 1.0516 Gastrointestinal 0.0096 0.0139 0.6903 1.4487 Brain 0.0096 0.0041 2.3399 0.4274
Breast 0.0195 0.0102 1.9068 0.5244 Small intestine 0.0115 0.0132 0.8750 1.1429 Ovary 0.0123 0.0165 0.7415 1.3487 Endocrine tissue 0.0119 0.0125 0.9509 1.0516 Gastrointestinal 0.0096 0.0139 0.6903 1.4487 Brain 0.0096 0.0041 2.3399 0.4274
Small intestine 0.0115 0.0132 0.8750 1.1429 Ovary 0.0123 0.0165 0.7415 1.3487 Endocrine tissue 0.0019 0.0078 0.7675 1.3029 Gastrointestinal 0.0096 0.0139 0.6903 1.4487 Brain 0.0096 0.0041 2 3399 0.4274
Ovary 0.0123 0.0165 0.7415 1.3487 0.0060 0.0078 0.7675 1.3029 0.0119 0.0125 0.9509 1.0516 0.0096 0.0139 0.6903 1.4487 0.0096 0.0096 0.0041 2.3399 0.4274
Endocrine tissue 0.0119 0.0125 0.9509 1.0516 Gastrointestinal 0.0096 0.0139 0.6903 1.4487 Brain 0.0096 0.0041 2 3399 0.4274
Gastrointestinal 0.0096 0.0139 0.6903 1.4487 Brain 0.0096 0.0041 2 3399 0.4274
Brain 0.0096 0.0041 2.3399 0.4274
**
Hematopoietic 0.0080 0.0379 0.2117 4.7230
Skin 0.0330 0.2542 0.1300 7.6946
Hepatic 0.0048 0.0000 undef 0.0000
Heart 0.0127 0.0000 undef 0.0000
Testicles 0.0115 0.0468 0.2460 4.0652
Lung 0.0052 0.0082 0.6350 1.5747
Stomach-esophagus 0.0000 0.0153 0.0000 undef
Muscle-skeleton 0.0086 0.0060 1.4278 0.7004
Kidney 0.0081 0.0000 undef 0.0000 0.0055 0.8974 1.1143
Pancreas 0.0150 0.0267 0.5616.1.7007
Penis 0.0087 0.0106 0.8189.1.2211
Prostate 0.0000 0.1055 0.0000 undef
Uterus-endometrium 0,0000 0,0000 undef undef
Uterus-myometrium 0.0458 0.0000 undef 0.0000
Uterus-general 0.0384
Breast hyperplasia 0.0030
Prostate hyperplasia 0.0000
Seminal vesicle 0.0353
Sensory organs 0.0113
White blood cells 0.0000
Cervix

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0056 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000 0.0000 0.0121 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0000 0.0000 0.0070 0.0122 0.0000 0.0065 0.0077 0.0000 0.0040 0.0040 0.0077 0.0000

Electronic Northern				
	NORMAL	TUMOR	Ratios	
	% frequency	% frequer	ncy N/T	T/N
Bladder	0.0000	0.0000	undef undef	
Breast	0.0000	0.0000	under under under	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0027	0.0000	undef 0.0000	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000 0.0000	0.0000	undef undef	
Penis	0.0000	0.0000 0.0000	undef undef	
Prostate	0.0000	0.2111	undef undef	
Uterus-endometrium	0.0000	0.0000	0.0000 undef undef undef	
Uterus-myometrium	0.0000	0.0000	under under under	
Uterus-general	0.0000	0.000	dider dider	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRALIES & frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	O.: 21 TUMOR % frequency	Ratios y N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern for SEQ. ID NO.: 22 NORMAL TUMOR Ratios % frequency % frequency N/T T/N Bladder 0.0000 0.0128 0.0000 undef Breast 0.0051 0.0075 0.6805 1.4694 Small intestine 0.0123 0.0000 undef 0.0000 Ovary 0.0060 0.0104 0.5756 1.7372 Endocrine tissue 0.0102 0.0125 0.8151 1.2268 Gastrointestinal 0.0172 0.0093 1.8638 0.5365 Brain 0.0052 0.0010 5.0397 0.1984 Hematopoietic 0.0027 undef 0.0000 undef undef 0.0000 Skin 0.0000 0.0000 Hepatic 0.0000 0.0065 0.0000 undef Heart 0.0201 0.0412 0.4883 2.0480 Testicles 0.0288 0.0234 1.2299 0.8130 Lung 0.0114 0.0184 0.6209 1.6105 0.0097 Stomach-esophagus 0.0077 1.2605 0.7933 0.0086 Muscle-skeleton 0.0180 0.4759 2.1012 0.0217 0.0000 undef 0.0000 Kidney 0.0221 0.0149 0.6731 1.4857 Pancreas 0.0150 0.0000 undef 0.0000 Penis 0.0065 0.0170 0.3839 2.6051 Prostate 0.0000 0.1055 0.0000 undef Uterus-endometrium 0.0000 0.0068 0.0000 undef Uterus-myometrium 0.0000 0.0000 undef undef Uterus-general 0.0192 Breast hyperplasia 0.0149 Prostate hyperplasia 0.0000 Seminal vesicle 0.0118 Sensory organs 0.0130 White blood cells 0.0000 Cervix

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0111 0.0000 0.0000 0.0000 0.0000 0.0071 0.0072 0.0000 0.0000 0.0000 0.0061 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0203 0.0000 0.0052 0.0244 0.0057 0.0227 0.0154 0.0164 0.0030 0.0205 0.0000

Electronic Northern for SEQ. ID NO.: 23 TUMOR NORMAL Ratios % frequency % frequency N/T T/N Bladder 0.0078 0.0026 Breast 3.0509 0.3278 0.0026 0.0000 Small intestine undef 0.0000 0.0184 0.0000 undef 0.0000 Ovary 0.0000 0.0026 0.0000 undef Endocrine tissue 0.0017 undef 0.0000 undef undef 0.0000 Gastrointestinal 0.0000 0.0000 Brain 0.0007 0.0041 0.1800 5.5559 Hematopoietic 0.0000 0.0000 undef undef Skin 0.0073 0.0000 undef 0.0000 Hepatic 0.0000 0.0000 undef undef Heart 0.0032 0.0137 0.2313 4.3235 Testicles 0.0000 0.0117 0.0000 undef Lung 0.0021 0.0020 1.0161 0.9842 Stomach-esophagus 0.0097 0.0000 undef 0.0000 0.0000 Muscle-skeleton 0.0060 0.0000 undef 0.0000 0.0205 Kidney 0.0000 undef 0.0066 0.0055 Pancreas 1.1966 0.8357 0.0120 0.0000 undef 0.0000 Penis 0.0000 0.0000 undef undef Prostate 0.0000 0.1055 0.0000 undef Uterus-endometrium 0.0076 0.0068 1.1223 0.8911 Uterus-myometrium 0.0051 0.0000 undef 0.0000 Uterus-general 0.0096 Breast hyperplasia 0.0030 Prostate hyperplasia 0.0000 Seminal vesicle 0.0000 Sensory organs 0.0017 White blood cells 0.0106 Cervix

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0063 0.0000 0.0000 0.0000 0.0000 0.0072 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0154 0.0000 0.030 0.0030 0.0030 0.0000

Electronic Northern	for SEQ. ID No	0.: 24	
	NORMAL	TUMOR	Ratios
	% frequency	% frequence	cy N/T T/N
		-	
Bladder	_		
Breast	0.0000	0.0077	0.0000 undef
Small intestine	0.0064	0.0019	3.4026 0.2939
Ovary	0.0031	0.0000	undef 0.0000
Endocrine tissue	0.0030	0.0000	undef 0.0000
Gastrointestinal	0.0068	0.0025	2.7170 0.3681
Brain	0.0019	0.0000	undef 0.0000
Hematopoietic	0.0118	0.0031	3.8398 0.2604
Skin -	0.0053 0.0000	0.0000	undef 0.0000
Hepatic	0.0000	0.0000	undef undef
Heart	0.0042	0.0000 0.0000	undef undef
Testicles	0.0000	0.0000	undef 0.0000
Lung	0.0010	0.0020	undef undef 0.5080 1.9684
Stomach-esophagus	0.0000	0.0077	0.0000 1.9884 0.0000 undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0109	0.0000	undef 0.0000
Pancreas	0.0017	0.0000	undef 0.0000
Penis	0.0030	0.0000	undef 0.0000
Prostate	0.0044	0.0085	0.5118 1.9538
Uterus-endometrium	0.0000	0.1583	0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0051	0.0000	undef 0.0000
Breast hyperplasia	0.0032		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000 0.0000		
Sensory organs	0.0000		
White blood cells	0.0000	•	
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRAGLIBRARIES & frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0063 0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0000 0.0000 0.0111 0.0000 0.0194 0.0000 0.0082 0.0082 0.0080 0.0000 0.0000

Electronic Northern fo	NORMAL	TUMOR	Ratios	m /x
	% frequency	% frequen	cy N/T	T/N
Bladder				
Breast	0.0000	0.0000		
Small intestine	0.0064	0.0000	undef undef undef 0.0000	
Ovary	0.0004	0.0000	undef undef	
Endocrine tissue	0.0030	0.0006	1.1513 0.8686	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0019	0.0000	undef 0.0000	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0110	0.0000	undef 0.0000	
Heart	0.0048	0.0000	undef 0.0000	
Testicles	0.0042	0.0000	undef 0.0000	
	0.0000	0.0000	undef undef	
Lung Stomagh-ocombagus	0.0000	0.0041	0.0000 undef	
Stomach-esophagus Muscle-skeleton	0.0097	0.0000	undef 0.0000	
	0.0051	0.0000	undef 0.0000	
Kidney	0.0027	0.0000	undef 0.0000	
Pancreas	0.0017	0.0000	undef 0.0000	
Penis Prostate	0.0030	0.0000	undef 0.0000	
Uterus-endometrium	0.0022 0.0000	0.0000 0.1055	undef 0.0000	
	0.0000	0.0000	0.0000 undef undef undef	
Uterus-myometrium	0.0000	0.0000	under under undef undef	
Uterus-general	0.0064	0.0000	dider dider	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0089			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	STANDARDIZED/ FETUS LIBRARIES % frequency % frequency		SUBTRACTED	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0052 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

Electronic Northern	for SEQ. ID	NO.: 26		
	NORMAL	TUMOR	Ratios	
	% frequenc	v % freque	ency N/T	T/N
	4	1	1 , 1	•
Bladder				
Breast	0.0117	0.0102	1.1441 0.8741	
Small intestine	0.0038	0.0038	1.0208 0.9796	
Ovary	0.0061	0.0000	undef 0.0000	
Endocrine tissue	0.0000	0.0026	0.0000 undef	
Gastrointestinal	0.0051 0.0038	0.0025	2.0377 0.4907	
Brain	0.0038	0.0185 0.0031	0.2071 4.8289 1.1999 0.8334	
Hematopoietic	0.0027	0.0000	undef 0.0000	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0095	0.0065	1.4706 0.6800	
Heart	0.0011	0.0000	undef 0.0000	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0062	0.0041	1.5241 0.6561	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0017	0.0000	undef 0.0000	
Kidney	0.0136	0.0068	1.9826 0.5044	
Pancreas	0.0000	0.0110	0.0000 undef	
Penis	0.0030	0.0000	undef 0.0000	
Prostate	0.0044	0.0021	2.0473 0.4885	
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0102	0.0954	0.1067 9.3678	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0030 1 0.0000			
Seminal vesicle	0.0118			
Sensory organs	0.0026			
White blood cells	0.0000			
Cervix	3.3000			

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0056 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0101 0.0000 0.0140 0.0000 0.0000 0.0680 0.0000 0.0070 0.0068 0.0000 0.0042

Electronic Northern for SEQ. ID NO.: 27 NORMAL TUMOR Ratios % frequency % frequency T/N $T \setminus N$ Bladder 0.0000 0.0000 undef undef Breast 0.0000 0.0019 0.0000 undef Small intestine 0.0000 undef undef 0.0000 Ovary 0.0030 0.0026 1.1513 0.8686 Endocrine tissue 0.0000 0.0125 0.0000 undef Gastrointestinal 0.0019 0.0000 undef 0.0000 Brain 0.0059 0.0041 1.4399 0.6945 Hematopoietic undef undef 0.0000 0.0000 Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef Heart 0.0011 0.0000 undef 0.0000 Testicles 0.0058 0.0000 undef 0.0000 Lung 0.0010 0.0020 0.5080 1.9684 Stomach-esophagus 0.0000 0.0000 undef undef 0.0000 Muscle-skeleton 0.0000 undef undef 0.0000 0.0000 undef undef Kidney 0.0000 0.0000 Pancreas undef undef 0.0030 0.0000 undef 0.0000 Penis 0.0044 0.0000 undef 0.0000 Prostate 0.0068 0.1055 0.0640 15.6211 Uterus-endometrium 0.0076 0.0068 1.1223 0.8911 Uterus-myometrium 0.0000 0.0000 undef undef Uterus-general 0.0032 Breast hyperplasia 0.0000 Prostate hyperplasia 0.0000 Seminal vesicle 0.0118 Sensory organs 0.0009 White blood cells 0.0000 Cervix

	FETUS % frequency	LIBRARIES % frequency	MCIED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0204 0.0000 0.0051 0.0000 0.0064 0.0000 0.0032 0.0000 0.0020 0.0020 0.0020 0.00232 0.0083

STANDARDIZED/SUBTRACTED

Electronic Northern		UMOR Ratio	s T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasis Seminal vesicle Sensory organs White blood cells Cervix	0.0153	0051 0.0000 undef 0094 1.6333 0.612 0000 undef undef 0130 0.2303 4.343 0025 1.3585 0.736 0000 undef 0.000 0000 undef undef 0020 0.0000 undef 0020 0.0000 undef 00000 undef undef 00000 undef undef 00000 undef 0.000 0000 undef 0.000 0000 undef 0.000 0000 undef 0.000 0000 undef undef 0.000 0000 undef undef	3 1 1 0 0 0 0 0 0 0 0 0

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0520 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0204 0.0000 0.0000 0.0000 0.0105 0.0000 0.0171 0.0162 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 29 TUMOR cy % freque		Ratios N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0013 0.0031 0.0000 0.0034 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0017 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0128 0.0038 0.0000 0.0078 0.0025 0.0046 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef 0.0000 1.3585 0.8283 undef undef undef undef undef undef undef undef undef undef	2.9389 0.0000 undef 0.7361 1.2072 undef undef 0.0000 undef u	
Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells	0.0037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0017 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0096 0.0119 0.0089 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef undef undef undef 0.0000 undef undef undef undef undef undef undef	0.0000 undef undef undef undef undef undef 0.0000 0.0000 undef 3.9077 undef undef	

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0051 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0082 0.0000 0.0137 0.0000

Electronic Northern	NORMAL	TUMOR	Ratios	т/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	% frequency 0.0000 0.0026 0.0000 0.0034 0.0038 0.0022 0.0000 0.0048 0.0032 0.0000 0.0021 0.0000			T/N
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0082 0.0020 0.0000 0.0000

Electronic Northern f	for SEQ. ID NO NORMAL	O.: 31 TUMOR	Ratios	
	% frequency	% freque	ncy N/T $T/$	N
Bladder	•			
Breast	0.0039	0.0026	1.5254 0.6555	
Small intestine	0.0013	0.0056	0.2268 4.4083	
Ovary	0.0061	0.0000	undef 0.0000	
Endocrine tissue	0.0000	0.0078	0.0000 undef	
Gastrointestinal	0.0017	0.0050	0.3396 2.9444	
Brain	0.0038	0.0046	0.8283 1.2072	
Hematopoietic	0.0037	0.0041	0.8999 1.1112 undef 0.0000	
Skin	0.0067 0.0000	0.0000 0.0000	under 0.0000 undef undef	
Hepatic	0.0000	0.0065	0.0000 undef	
Heart	0.0033	0.0000	undef 0.0000	
Testicles	0.0000	0.0117	0.0000 undef	
Lung	0.0042	0.0041	1.0161 0.9842	
Stomach-esophagus	0.0000	0.0077	0.0000 undef	
Muscle-skeleton	0.0034	0.0060	0.5711 1.7510	
Kidney	0.0027	0.0137	0.1983 5.0439	
Pancreas	0.0017	0.0000	undef 0.0000	
Penis	0.0000	0.0267	0.0000 undef	
Prostate	0.0022	0.0000	undef 0.0000	
Uterus-endometrium	0.0000	0.1055	0.0000 undef	
Uterus-myometrium	0.0076	0.0000	undef 0.0000	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0224			
Prostate hyperplasia	0.0030			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0035 0.0000			
Cervix	0.000			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0036 0.0036 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0051 0.0000 0.0000 0.0000 0.0000 0.0077 0.0082 0.0010 0.0068 0.0000

Electronic Northern for SEQ. ID NO.: 32 NORMAL TUMOR Ratios % frequency % frequency T/N N/TBladder Breast 0.0000 0.0000 undef undef Small intestine 0.0000 0.0038 0.0000 undef Ovary undef 0.0000 undef undef 0.0031 0.0000 Endocrine tissue 0.0000 0.0000 Gastrointestinal 0.0068 1.3585 0.7361 0.0050 Brain 0.0038 0.0000 undef 0.0000 Hematopoietic 0.0022 0.0041 0.5400 1.8520 0.0027 undef 0.0000 0.0000 Skin Hepatic 0.0000 0.0000 undef undef 0.0048 0.0129 0.3676 2.7200 Heart 0.0032 0.0000 undef 0.0000 Testicles 0.0000 0.0000 undef undef Lung 0.0000 0.0020 0.0000 undef Stomach-esophagus 0.0000 0.0000 undef undef Muscle-skeleton 0.0000 undef undef undef undef 0.0000 0.0000 Kidney 0.0054 0.0000 Pancreas 0.0000 0.0110 0.0000 undef Penis 0.0000 0.0000 undef undef Prostate 0.0022 0.0043 0.5118 1.9538 Uterus-endometrium 0.0068 0.1055 0.0640 15.6211 Uterus-myometrium 0.0000 undef undef 0.0000 Uterus-general 0.0000 0.0000 undef undef Breast hyperplasia 0.0000 Prostate hyperplasia 0.0030 Seminal vesicle 0.0000 0.0000 Sensory organs 0.0009 White blood cells 0.0000 Cervix

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0062 0.0000 0.0249	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern				
		ORMAL	TUMOR	Ratios
	૪	frequency	% frequency	N/T T/N
				•
Bladder		_	_	
Breast		0.0000	0.0000	undef undef
Small intestine		0.0013	0.0000	undef 0.0000
Ovary		0.0000	0.0000	undef undef
Endocrine tissue		0.0000	0.0000	undef undef
Gastrointestinal		0.0000	0.0000	undef undef
Brain		0.0000	0.0000	undef undef
Hematopoietic		0.0000	0.0000	undef undef
Skin		0.0000	0.0000	undef undef
Hepatic		0.0000 0.0000	0.0000	undef undef
Heart		0.0000	0.0000	undef undef
Testicles		0.0000	0.0000	undef undef
Lung		0.0000	0.0000 0.0000	undef undef
Stomach-esophagus		0.0000	0.0000	undef undef
Muscle-skeleton		0.0000	0.0000	undef undef
Kidney		0.0000	0.0000	undef undef undef undef
Pancreas		0.0017	0.0000	undef 0.0000
Penis		0.0000	0.0000	undef undef
Prostate		0.0000	0.0000	undef undef
Uterus-endometrium		0.0068	0.2639	0.0256 39.0528
Uterus-myometrium		0.0000	0.0000	undef undef
Uterus-general		0.0051	0.0000	undef 0.0000
Breast hyperplasia		0.0000		
Prostate hyperplasia		0.0000		
Seminal vesicle		0.0000		
		0.0000		
Sensory organs White blood cells		0.0000		
Cervix		0.0000		
CELATY				

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES y % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0154 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 34 TUMOR / % frequen	Ratios cy N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0025 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0060 0.0068 0.0000 0.0000 0.0000 0.1055 0.0000	undef	

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency		
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
		Uterus n	5.5000	

Electronic Northern			
	NORMAL	TUMOR	Ratios
	<pre>% frequency</pre>	% freque	ency N/T T/N
Bladder			
Breast	0.0000	0.0000	undef undef
Small intestine	0.0026	0.0038	0.6805 1.4694
Ovary	0.0000	0.0165	0.0000 undef
Endocrine tissue	0.0000	0.0026	0.0000 undef
Gastrointestinal	0.0034	0.0000	undef 0.0000
Brain	0.0057	0.0000	undef 0.0000
Hematopoietic	0.0007	0.0021 0.0000	0.3600 2.7779 undef undef
Skin	0.0000 0.0000	0.0000	under under undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef 0.0000
Testicles	0.0000	0.0000	undef undef
Lung	0.0010	0.0082	0.1270 7.8735
Stomach-esophagus	0.0000	0.0077	0.0000 undef
Muscle-skeleton	0.0034	0.0000	undef 0.0000
Kidney	0.0081	0.0479	0.1699 5.8845
Pancreas	0.0000	0.0000	undef undef
Penis	0.0060	0.0000	undef 0.0000
Prostate	0.0044	0.0021	2.0473 0.4885
Uterus-endometrium	0.0068	0.2639	0.0256 39.0528
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0059		
Seminal vesicle	0.0089		
Sensory organs	0.0052		
White blood cells	0.0000		
Cervix	5.000		

	FETUS % frequency	STANDARDIZED/SUBTRACTE LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0340 0.0000 0.0000 0.0000 0.0029 0.0000 0.0171 0.0000 0.0000 0.0246 0.0030 0.0000 0.0000

Electronic Northern		UMOR Ratios	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0038	0.026	

	FETUS % frequency	STANDARDIZED/SUBTRACTE LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0122 0.0000 0.0032 0.0000 0.0030 0.0000 0.0000

Electronic Northern for SEQ. ID NO.: 37 NORMAL TUMOR Ratios % frequency % frequency N/T T/N Bladder 0.0000 undef undef 0.0000 Breast 0.0000 0.0000 undef undef Small intestine undef undef 0.0000 0.0000 Ovary undef undef 0.0000 0.0000 Endocrine tissue 0.0000 0.0000 undef undef Gastrointestinal undef undef 0.0000 0.0000 Brain 0.0010 0.0000 0.0000 undef Hematopoietic 0.0000 0.0000 undef undef Skin undef undef 0.0000 0.0000 Hepatic undef undef 0.0000 0.0000 Heart 0.0000 0.0000 undef undef Testicles 0.0000 undef undef 0.0000 undef undef undef undef Lung 0.0000 0.0000 Stomach-esophagus 0.0000 0.0000 undef undef Muscle-skeleton 0.0000 0.0000 undef undef Kidney 0.0000 0.0000 undef undef Pancreas 0.0000 0.0000 0.0000 undef undef 0.0000 Penis Prostate 0.0044 0.0021 2.0473 0.4885 0.0000 undef 0.0000 0.1055 Uterus-endometrium undef undef 0.0000 0.0000 Uterus-myometrium 0.0000 undef undef 0.0000 Uterus-general 0.0032 Breast hyperplasia 0.0000 Prostate hyperplasia 0.0000 Seminal vesicle 0.0118 Sensory organs White blood cells 0.0000 0.0000 Cervix

	FETUS % frequency	STANDARDIZED/SUBTRACTE LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern for SEQ. ID NO.: 38 NORMAL TUMOR Ratios % frequency % frequency N/T T/N Bladder 0.0000 0.0000 undef undef Breast 0.0019 0.0000 undef 0.0000 Small intestine 0.0000 0.0000 undef undef Ovary undef 0.0000 0.0030 0.0000 Endocrine tissue undef 0.0000 0.0034 0.0000 Gastrointestinal 0.0019 0.0000 undef 0.0000 0.0000 Brain undef 0.0000 0.0007 undef undef undef Hematopoietic 0.0000 0.0000 0.0000 0.0000 Skin undef undef 0.0000 Hepatic 0.0000 0.0011 0.0000 undef 0.0000 Heart Testicles 0.0058 0.0000 undef 0.0000 undef undef 0.0000 0.0000 Lung 0.0000 undef undef 0.0000 Stomach-esophagus 0.5711 1.7510 0.0069 0.0120 Muscle-skeleton undef undef 0.0000 0.0000 Kidney 0.0000 undef undef 0.0000 Pancreas undef 0.0000 0.0000 0.0030 Penis 0.0000 undef undef 0.0000 Prostate 0.0000 0.1055 0.0000 undef Uterus-endometrium 0.0000 undef 0.0000 0.0068 Uterus-myometrium undef undef 0.0000 0.0000 Uterus-general Breast hyperplasia 0.0032 0.0000 Prostate hyperplasia 0.0000 Seminal vesicle Sensory organs White blood cells 0.0000 0.0000 0.0000 Cervix

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency		
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0063 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0023 0.0000 0.0032 0.0077 0.0000 0.0030 0.0030 0.0077	

Electronic Northern for SEQ. ID NO.: 39 TUMOR NORMAL Ratios % frequency % frequency N/T T/N Bladder 0.0051 0.0000 0.0000 undef Breast 0.3403 2.9389 0.0038 0.0013 Small intestine 0.0000 0.0000 undef undef Ovary 0.0030 0.0052 0.5756 1.7372 Endocrine tissue 0.0075 0.0000 undef 0.0000 Gastrointestinal 0.4142 2.4145 0.0019 0.0046 Brain 0.0000 0.0010 0.0000 undef undef undef undef 0.0000 0.0000 Hematopoietic 0.0000 0.0000 0.0404 Skin 0.0000 undef Hepatic 0.0000 0.0065 undef undef 0.0000 0.0000 Heart undef undef 0.0000 0.0000 Testicles 3.5562 0.2812 0.0073 0.0020 Lung undef undef undef undef 0.0000 0.0000 Stomach-esophagus 0.0000 0.0000 Muscle-skeleton 0.0000 undef 0.0068 0.0000 Kidney 0.8974 1.1143 0.0050 0.0055 Pancreas 0.2527 3.9571 0.0269 0.1066 Penis 0.0021 1.0236 0.9769 0.0022 Prostate 0.0000 0.1055 0.0000 undef Uterus-endometrium undef undef 0.0000 0.0000 Uterus-myometrium undef undef 0.0000 0.0000 Uterus-general 0.0064 Breast hyperplasia Prostate hyperplasia 0.0000 0.0000 Seminal vesicle 0.0000 0.0000 Sensory organs White blood cells 0.0106 Cervix

	FETUS % frequency	STANDARDIZED/SUBTRACTE LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0108 0.0000 0.0062 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0101 0.0000 0.0064 0.0000 0.0000 0.0000 0.0000 0.0082 0.0000 0.0068 0.0000 0.0042

Electronic Northern	for SEQ. ID NO NORMAL % frequency	TUMOR	Ratios ncy N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasis Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000 0.0184 0.0030 0.0000	0.0026 0.0019 0.0000 0.0156 0.0000 0.0231 0.0000	0.0000 undef 0.0000 undef undef 0.0000 0.1919 5.2117 undef undef 0.4142 2.4145 undef 0.3965 2.5219 undef 0.0000 undef undef 0.2047 4.8846 0.0000 undef undef undef undef

	FETUS % frequency	STANDARDIZED/SUBTRACTE LIBRARIES % frequency		
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0072 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

Electronic Northern	NORMAL	TUMOR		Ratios	
	% freque	ncy % frequ	ency	N/T	T/N
Bladder					
Breast	0.0000	0.0026	0.0000	undef	
Small intestine	0.0000	0.0000	undef		
Ovary	0.0000	0.0000	undef	undef	
Endocrine tissue	0.0000	0.0000	undef	undef	
Gastrointestinal	0.0000	0.0000	undef	undef	
Brain	0.0000	0.0000	undef	undef	
	0.0000	0.0000	undef	undef	
Hematopoietic Skin	0.0000	0.0000	undef	undef	
	0.0000	0.0000	undef	undef	
Hepatic	0.0000	0.0000	undef		
Heart	0.0011	0.0000		0.0000	
Testicles	0.0000	0.0000	undef		
Lung	0.0000	0.0000	undef	· -	
Stomach-esophagus	0.0000	0.0000	undef		
Muscle-skeleton	0.0000	0.0000	undef		
Kidney	0.0000	0.0000	undef		
Pancreas	0.0000	0.0000	undef		
Penis	0.0000	0.0000	undef		
Prostate	0.0000	0.0000 0.1055	undef		
Uterus-endometrium	0.0000	0.0000	0.0000 undef		
Uterus-myometrium	0.0000	0.0000	under		
Uterus-general	0.0032	0.0000	- under	under	
Breast hyperplasia	0.0000				
Prostate hyperplasia	0.0000				
Seminal vesicle	0.0000				
Sensory organs	0.0000				
White blood cells	0.0000				
Cervix					

FETUS % frequency	STANDARDIZED/SUBTRACTEI LIBRARIES % frequency	
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.00057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	% frequency 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	FETUS LIBRARIES % frequency % frequency O.0000 Ovary_n O.0000 Ovary_t O.0000 Endocrine tissue Fetal O.0000 Gastrointestinal O.0000 Hematopoietic O.0000 Skin-muscle O.0000 Testicles O.0000 Lung O.0000 Nerves O.0000 Prostate

Electronic Northern	for SEQ. ID NO NORMAL % frequency	TUMOR	Ratios y N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium	NORMAL % frequency 0.0156 0.0051 0.0092 0.0000 0.0136 0.0153 0.0118 0.0067 0.0073 0.0095 0.0064 0.0000 0.0187 0.0000 0.0187 0.0000 0.0187 0.0000 0.0182 0.0120 0.0131 0.0135 0.0000	TUMOR % frequency 0.0077 0.0113 0.0165 0.0208 0.0251 0.0185 0.0041 0.0000 0.0000 0.0129 0.0275 0.0234 0.0164 0.0000 0.0000 0.0060 0.0205 0.0205 0.0267 0.0213 0.1583 0.0000	2.0339 0.4917 0.4537 2.2042 0.5561 1.7982 0.0000 undef 0.5434 1.8403 0.8283 1.2072 2.8798 0.3472 undef 0.0000 undef 0.0000 0.7353 1.3600 0.2313 4.3235 0.0000 undef 1.1431 0.8748 undef undef 1.1422 0.8755 0.3965 2.5219 3.2906 0.3039 0.4493 2.2259 0.6142 1.6282 0.0854 11.7158 undef undef
Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0192 0.0089 0.0089 0.0000 0.0199 0.0106	0.0000	undef undef

	FETUS % frequency	STANDARDIZED/SUBTRACT: LIBRARIES % frequency		
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0039 0.0000 0.0000 0.0071 0.0072 0.0000 0.0000 0.0182 0.0499 0.0126	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0204 0.0000 0.0101 0.0490 0.0122 0.0000 0.0399 0.0454 0.0231 0.0082 0.0301 0.0068 0.0000 0.0167	

Electronic Northern f	for SEQ. ID NO).: 43 TUMOR	Ratios
	- ·	% frequency	
	* ireducticy	% lleddelic	N/I I/N
Bladder			
Breast	0.0117	0.0102	1.1441 0.8741
Small intestine	0.0102	0.0226	0.4537 2.2042
Ovary	0.0123	0.0165	0.7415 1.3487
Endocrine tissue	0.0030	0.0078	0.3838 2.6058
Gastrointestinal	0.0136	0.0150	0.9057 1.1042
Brain	0.0153	0.0046	3.3134 0.3018
Hematopoietic	0.0074	0.0103	0.7200 1.3890
Skin	0.0053	0.0379	0.1412 7.0845
Hepatic	0.0000	0.0000	undef undef
Heart	0.0143 0.0074	0.0129 0.0137	1.1029 0.9067
Testicles	0.0074	0.0000	0.5397 1.8529 undef 0.0000
Lung	0.0173	0.0164	0.7621 1.3122
Stomach-esophagus	0.0123	0.0153	0.6303 1.5866
Muscle-skeleton	0.0154	0.0060	2.5700 0.3891
Kidney	0.0109	0.0137	0.7930 1.2610
Pancreas	0.0083	0.0276	0.2991 3.3428
Penis	0.0150	0.0533	0.2808 3.5614
Prostate	0.0196	0.0149	1.3161 0.7598
Uterus-endometrium	0.000	0.1055	0.0000 undef
Uterus-myometrium	0.0000	0.0136	0.0000 undef
Uterus-general	0.0153	0.0000	undef 0.0000
Breast hyperplasia	0.0032		
Prostate hyperplasia	0.0208		
Seminal vesicle	0.0178		
Sensory organs	0.0706		
White blood cells	0.0251 0.0106		
Cervix	0.0100		

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0139 0.0125 0.0118 0.0000 0.0000 0.0000 0.0217 0.0254 0.0185 0.0303 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0272 0.0000 0.0557 0.0245 0.0402 0.0610 0.0342 0.0486 0.0309 0.0328 0.0100 0.0274 0.0310 0.0291

Electronic Northern for SEQ. ID NO.: 44 NORMAL TUMOR Ratios % frequency % frequency T/N N/T Bladder 0.0000 0.0026 0.0000 undef Breast 0.0026 0.0019 1.3611 0.7347 Small intestine undef undef 0.0000 0.0000 Ovary undef 0.0000 0.0030 0.0000 Endocrine tissue undef 0.0000 0.0017 0.0000 Gastrointestinal 0.0019 0.0000 undef 0.0000 Brain 0.0007 0.0000 undef 0.0000 Hematopoietic undef undef 0.0000 0.0000 Skin 0.0037 undef 0.0000 0.0000 Hepatic 0.0000 0.0000 undef undef Heart 0.0000 0.0000 undef undef Testicles 0.0000 undef 0.0000 0.0117 Lung 0.0000 0.0020 0.0000 undef undef undef Stomach-esophagus 0.0000 0.0000 undef undef 0.0000 Muscle-skeleton 0.0000 0.0027 0.0000 undef 0.0000 Kidney 0.0000 0.0000 undef undef Pancreas undef undef undef 0.0000 0.0000 Penis 0.0000 0.0000 Prostate 0.1583 0.0000 undef 0.0000 Uterus-endometrium 0.0000 0.0000 undef undef Uterus-myometrium undef 0.0000 0.0051 0.0000 Uterus-general 0.0000 Breast hyperplasia 0.0000 Prostate hyperplasia 0.0000 Seminal vesicle 0.0000 Sensory organs 0.0000 White blood cells 0.0000 Cervix

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern			Datina
	NORMAL	TUMOR	Ratios
	% frequency	% frequency	N/T T/N
Bladder	0.0039	0.0051	0.7607.1.7111
Breast	0.0013	0.0094	0.7627 1.3111 0.1361 7.3472
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0030	0.0026	1.1513 0.8686
Endocrine tissue	0.0017	0.0100	0.1698 5.8889
Gastrointestinal	0.0134	0.0093	1.4496 0.6898
Brain	0.0052	0.0062	0.8400 1.1905
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0073	0.0000	undef 0.0000
Hepatic	0.0000	0.0000	undef undef
Heart	0.0053	0.0412	0.1285 7.7824
Testicles	0.0058	0.0117	0.4920 2.0326
Lung	0.0052	0.0000	undef 0.0000
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0069	0.0060	1.1422 0.8755
Kidney	0.0027	0.0068	0.3965 2.5219
Pancreas	0.0017 0.0090	0.0221 0.0000	0.0748 13.3713
Penis	0.0090	0.0000	undef 0.0000 1.0236 0.9769
Prostate	0.0000	0.1583	0.0000 undef
Uterus-endometrium	0.0152	0.0204	0.7482 1.3366
Uterus-myometrium	0.0051	0.0000	undef 0.0000
Uterus-general	0.0032		4
Breast hyperplasia	0.0059		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0035		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0063 0.0000 0.0000 0.0000 0.0036 0.0072 0.0000 0.0000 0.0000 0.0182 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0051 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 0.0000

Electronic Northern	for SEQ. ID NORMAL % frequence	TUMOR	Ratios ency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000 0.0061 0.0000 0.0000 0.0000 0.0000 0.0000 0.0048 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0026 0.0025 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef undef undef undef 0.0000 undef 0.0000 undef	

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0039 0.0000 0.0000 0.0107 0.0036 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 47 TUMOR cy % frequ	Ratios mency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	C.0000 C.0013 C.0000 C.0001 C.0000 C.0000 C.0000 C.0000 C.0000 C.0000 C.0000 C.0011 C.0000 C.0017 C.0000	0.0000 0.0000	undef undef undef 0.0000 undef 0.0000 undef 0.0000 undef	

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	O.: 48 TUMOR % frequen	Ratios cy N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia	NORMAL % frequency 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0011 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TUMOR		T/N
Seminal vesicle Sensory organs White blood cells	0.0000 0.0000 0.0000 0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency		
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

Electronic Northern	NORMAL	TUMOR	Ratios
	% frequency	% frequenc	y N/T T/N
Bladder	_		
Breast	0.0000	0.0000	undef undef
Small intestine	0.0013	0.0000	undef 0.0000
	0.0000	0.0165	0.0000 undef
Ovary Endocrine tissue	0.0000	0.0000	undef undef
	0.0017	0.0050	0.3396 2.9444
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.0000	0.0010	0.0000 undef
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000 0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef undef undef
Lung	0.0000	0.0000	under under undef undef
Stomach-esophagus	0.0000	0.0000	under under under
Muscle-skeleton	0.0000	0.0000	under under undef undef
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0030	0.0000	undef 0.0000
Penis	0.0000	0.0000	undef undef
Prostate	0.0068	0.1055	0.0640 15.6211
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000		
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0204 0.0000 0.0000 0.0000 0.0012 0.0000 0.0065 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	<pre>for SEQ. ID NO NORMAL % frequency</pre>	TUMOR	Ratios ncy N/T	T/N
	• • • • • • • • • • • • • • • • • • • •	·	1 1 1	- , -
Bladder	0.0000	0.0000	undef undef	
Breast	0.0000	0.0000	under under under	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000 0.0000	0.0000 0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef undef undef	
Kidney	0.0000	0.0000	under under under	
Pancreas	0.0000	0.0000	under under	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.1055	0.0000 undef	
Uterus-endometrium	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000			
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

FETUS % frequency		STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Bladder 0.0000 0.0000 undef undef Small intestine 0.0000 0.0000 undef undef Ovary 0.0000 0.0000 undef	Electronic Northern	NORMAL	O.: 51 TUMOR % frequen	Ratios cy N/T	T/N
Gastrointestinal 0.0000 0.0000 undef undef Brain 0.0000 0.0000 undef undef Hematopoietic 0.0000 0.0000 undef undef Skin 0.0000 0.0000 undef undef Hepatic 0.0000 0.0000 undef undef Heart 0.0000 0.0000 undef undef Heart 0.0000 0.0000 undef undef Undef Heart 0.0000 0.0000 undef undef Undef Elung 0.0000 0.0000 undef undef Undef Stomach-esophagus 0.0000 0.0000 undef undef Undef Stomach-esophagus 0.0000 0.0000 undef undef Undef Muscle-skeleton 0.0000 0.0000 undef undef Undef Elung 0.0000 0.0000 undef undef Undef Elung 0.0000 0.0000 undef Undef Undef Elung O.0000 0.0000 undef Undef Elung Element 0.0000 0.0000 undef Elung Element El	Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells	0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef	

	FETUS % frequency		
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
		Uterus n	

Electronic Northern	for SEQ. ID NO) .: 52	
	NORMAL	TUMOR	Ratios
	<pre>% frequency</pre>	% frequency	N/T T/N
	1 1		
Bladder	•		
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0030	0.0000	undef 0.0000
	0.0000	0.0125	0.0000 undef
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.0044	0.0000	undef 0.0000
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef
Lung	0.0010	0.0000	undef 0.0000
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0027	0.0000	undef 0.0000
Pancreas	0.0000	0.0000	undef undef
Penis	0.0000	0.0000	undef undef
Prostate	0.0022	0.0021	1.0236 0.9769
Uterus-endometrium	0.0000	0.1583 0.0068	0.0000 undef 0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	duder duder
Breast hyperplasia	0.0030		
Prostate hyperplasia			
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0106		
Cervix	3.0100		
CETATY			

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	TED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0068 0.0000 0.0000

Electronic Northern	for SEQ. ID NO NORMAL		Dation
		TUMOR	Ratios
	% frequency	% frequen	cy N/T T/N
Bladder	0.0039	0.0051	
Breast	0.0059	0.0051	0.7627 1.3111
Small intestine	0.0000	0.0000	undef 0.0000
Ovary	0.0000	0.0000 0.0000	undef undef
Endocrine tissue	0.0034	0.0005	undef undef
Gastrointestinal	0.0019	0.0025	1.3585 0.7361
Brain	0.0015	0.0031	undef 0.0000 0.4800 2.0835
Hematopoietic	0.0067	0.0000	undef 0.0000
Skin	0.0441	0.0000	undef 0.0000 undef 0.0000
Hepatic	0.0048	0.0065	0.7353 1.3600
Heart	0.0064	0.0000	undef 0.0000
Testicles	0.0000	0.0000	undef undef
Lung	0.0010	0.0020	0.5080 1.9684
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0017	0.0060	0.2856 3.5020
Kidney	0.0027	0.0000	undef 0.0000
Pancreas	0.0000	0.0000	undef undef
Penis	0.0000	0.0267	0.0000 undef
Prostate	0.0044	0.0000	undef 0.0000
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0954	0.0000 undef
Breast hyperplasia	0.0032 0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0026		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRALIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0254 0.0000 0.0061 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0101 0.0000 0.0017 0.0244 0.0000 0.0065 0.0077 0.0082 0.0010 0.0000 0.0000

<pre>% frequency % frequency N/T T/</pre>	/ N
Bladder Breast	

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0126	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0122 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NORMAL	NO.: 55 TUMOR	Ratios	
	% frequenc	y % freque	ency N/T	T/N
		-		
Bladder	_	_		
Breast	0.0000	0.0000	undef undef	
Small intestine	C.0013	0.0019	0.6805 1.4694	
Ovary	0.0031	0.0000	undef 0.0000	
Endocrine tissue	0.0060	0.0026	2.3025 0.4343	
Gastrointestinal	0.0017	0.0050	0.3396 2.9444	
Brain	0.0057 0.0022	0.0093	0.6213 1.6096	
Hematopoietic	0.0022	0.0041 0.0000	0.5400 1.8520	
Skin	0.0000	0.0000	undef 0.0000	
Hepatic	0.0048	0.0000	undef undef undef 0.0000	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0117	0.0000 undef	
Lung	0.0010	0.0020	0.5080 1.9684	
Stomach-esophagus	0.0000	0.0077	0.0000 undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0054	0.0068	0.7930 1.2610	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0087	0.0000	undef 0.0000	
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0030 0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix	0.000			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0039 0.0000 0.0000 0.0036 0.0036 0.0000 0.0062 0.0062 0.0061 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0017 0.0000 0.0032 0.0000 0.0030 0.0030 0.0000 0.0000

Electronic Northern	for SEQ. ID N	0.: 56	
	NORMAL	TUMOR	Ratios
	% frequency	% frequence	cy N/T T/N
		•	- , ,
Bladder			
Breast	0.0117	0.0128	0.9153 1.0926
Small intestine	0.0051	0.0132	0.3889 2.5715
Ovary	0.0061	0.0000	undef 0.0000
Endocrine tissue	0.0000	0.0208	0.0000 undef
Gastrointestinal	0.0102	0.0125	0.8151 1.2268
Brain	0.0134	0.0046	2.8992 0.3449
Hematopoietic	0.0103	0.0113	0.9163 1.0913
Skin	0.0027	0.0000	undef 0.0000
Hepatic	0.0037 0.0000	0.0000	undef 0.0000
Heart	0.0085	0.0194	0.0000 undef
Testicles	0.0033	0.0234	undef 0.0000
Lung	0.0145	0.0123	0.7380 1.3551 1.1854 0.8436
Stomach-esophagus	0.0097	0.0077	1.2605 0.7933
Muscle-skeleton	0.0069	0.0000	undef 0.0000
Kidney	0.0190	0.0000	undef 0.0000
Pancreas	0.0050	0.0055	0.8974 1.1143
Penis	0.0090	0.0000	undef 0.0000
Prostate	0.0022	0.0085	0.2559 3.9077
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211
Uterus-myometrium	0.0076	0.0068	1.1223 0.8911
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0096 0.0030		
Prostate hyperplasia	0.0178		
Seminal vesicle	0.0000		
Sensory organs	0.0052		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0063 0.0000 0.0000 0.0260 0.0107 0.0000 0.0000 0.0062 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0051 0.0000 0.0012 0.0366 0.0000 0.0000 0.0000 0.0082 0.0020 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	.: 57	
	NORMAL	TUMOR	Ratios
	% frequency	% frequency	N/T T/N
			,
Bladder	0.0078	0 0000	
Breast	0.0078	0.0000	undef 0.0000
Small intestine	0.0038	0.0075	0.5104 1.9593
Ovary	0.0000	0.0000	undef 0.0000
Endocrine tissue	0.0000	0.0078 0.0000	0.0000 undef
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.0096	0.0000	0.4142 2.4145
	0.0000	0.0000	undef 0.0000
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0000	0.0000	undef undef undef undef
Hepatic	0.0011	0.0000	under under under
Heart	0.0000	0.0117	0.0000 undef
Testicles	0.0010	0.0000	undef 0.0000
Lung	0.0000	0.0153	0.0000 undef
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000	undef undef
Penis	0.0109	0.0085	1.2795 0.7815
Prostate	0.0000	0.1583	0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.1908	0.0000 undef
Uterus-general	0.0032		
Breast hyperplasia	0.0089		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0106		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRAGLIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0072 0.0000 0.0124 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0068 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000 0.0000

Electronic Northern	NORMAL	O.: 58 TUMOR % frequenc	Ratios cy N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia	NORMAL	TUMOR % frequence 0.0000		T/N
Seminal vesicle Sensory organs White blood cells	0.0000 0.0000 0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRACTE LIBRARIES % frequency		
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

Electronic Northern	NORMAL	O.: 59 TUMOR % frequen	Ratios cy N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0039 0.0281 0.0307 0.0000 0.0085 0.0153 0.0044 0.0053 0.0257 0.0048 0.0032 0.0000 0.0000 0.0000 0.0154 0.0217 0.0000 0.0030 0.0030 0.0000 0.0135 0.0000 0.0128 0.0000 0.0128 0.0000 0.0235 0.0000 0.0106	0.0026 0.0226 0.0000 0.0026 0.0000 0.0324 0.0072 0.0000 0.0065 0.0000 0.0061 0.0153 0.0180 0.0068 0.0166 0.0000 0.0021 0.1055 0.0000	1.5254 0.6555 1.2476 0.8015 undef 0.0000 0.0000 undef undef 0.0000 0.4733 2.1127 0.6171 1.6205 undef 0.0000 undef 0.8567 1.1673 3.1722 0.3152 0.0000 undef undef 0.0000 0.0000 undef undef undef

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0181 0.0254 0.0000 0.0303 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0476 0.0000 0.0101 0.0000 0.0151 0.0000 0.0057 0.0000 0.0082 0.0050 0.0137 0.0000 0.0208

Bladder 0.0156 0.0102 1.5254 0.6555 Small intestine 0.0115 0.0207 0.5568 1.7960 Ovary 0.0215 0.0165 1.2976 0.7707 Ovary 0.0240 0.0260 0.9210 1.0858 Endocrine tissue 0.0119 0.0176 0.6792 1.4722 Gastrointestinal 0.0172 0.0139 1.2425 0.8048 Brain 0.0170 0.0246 0.6900 1.4494 Hematopoietic 0.0040 0.0000 undef 0.0000 Skin 0.0184 0.0000 undef 0.0000 Heart 0.0238 0.0194 1.2255 0.8160 Heart 0.0180 0.0275 0.6553 1.5260 Testicles 0.0058 0.0117 0.4920 2.0326 Lung 0.0156 0.0164 0.9526 1.0498 Stomach-esophagus 0.0193 0.0000 undef 0.0000 Muscle-skeleton 0.0081 0.0411 0.1983 5.0439 Rancreas 0.0116 0.0055 2.0940 0.4775	Electronic Northern f	for SEQ. ID N NORMAL % frequency	TUMOR	Ratios ency N/T	T/N
Penis 0.0150 0.0267 0.5616 1.7807 Prostate 0.0131 0.0043 3.0709 0.3256 Uterus-endometrium 0.0135 0.1055 0.1280 7.8106 Uterus-myometrium 0.0153 0.0068 0.0000 undef Uterus-general 0.0096 Breast hyperplasia 0.0059 Prostate hyperplasia 0.0000 Seminal vesicle 0.0118 Sensory organs 0.0061 White blood cells 0.0426 Cervix	Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells	0.0115 0.0215 0.0240 0.0119 0.0172 0.0170 0.0040 0.0184 0.0238 0.0180 0.0058 0.0156 0.0193 0.0103 0.0081 0.0116 0.0150 0.0131 0.0135 0.0000 0.0153 0.0096 0.0059 0.0000 0.0118 0.0061	0.0207 0.0165 0.0260 0.0176 0.0139 0.0246 0.0000 0.0000 0.0194 0.0275 0.0117 0.0164 0.0000 0.0060 0.0411 0.0055 0.0267 0.0043 0.1055 0.0068	0.5568 1.7960 1.2976 0.7707 0.9210 1.0858 0.6792 1.4722 1.2425 0.8048 0.6900 1.4494 undef 0.0000 undef 0.0000 1.2255 0.8160 0.6553 1.5260 0.4920 2.0326 0.9526 1.0498 undef 0.0000 1.7133 0.5837 0.1983 5.0439 2.0940 0.4775 0.5616 1.7807 3.0709 0.3256 0.1280 7.8106 0.0000 undef	

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0139 0.0125 0.0157 0.0000 0.0260 0.0213 0.0036 0.0000 0.0062 0.0062 0.0061 0.0000 0.0126	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0245 0.0151 0.0122 0.0000 0.0194 0.0000 0.0246 0.0211 0.0274 0.0000 0.0125

Electronic Northern	NORMAL	NO.: 61 TUMOR y % freque	Ratios ency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000 0.0000 0.0061 0.0030 0.0119 0.0057 0.0059 0.0067 0.0037 0.0058 0.0058 0.0053 0.0058 0.0017 0.0136 0.0031 0.0193 0.0017 0.0136 0.0033 0.0058 0.0030 0.0030 0.0058	0.0128 0.0056 0.0000 0.0000 0.0075 0.0000 0.0072 0.0000 0.0129 0.0000 0.0020 0.0020 0.0020 0.0020 0.0020 0.0120 0.0000 0.0120 0.0000 0.0120 0.0000	0.0000 undef 0.0000 undef undef 0.0000 undef 0.0000 1.5849 0.6309 undef 0.0000 0.8228 1.2153 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000 1.5241 0.6561 undef 0.0000 0.1428 7.0040 undef 0.0000 0.1197 8.3571 undef 0.0000 0.8957 1.1165 0.0640 15.6211 undef undef	

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0083 0.0000 0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 0.0124 0.0061 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0136 0.0000 0.0000 0.0000 0.0058 0.0122 0.0057 0.0000 0.0154 0.0000 0.0030 0.0000 0.0000

Electronic Northern	NORMAL	D.: 62 TUMOR % frequency	Ratios N/T T/N
Bladder	0.0000	0.0000	undef undef
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0017	0.0000	undef 0.0000
Gastrointestinal	0.000	0.0000	undef undef
Brain	0.0000	0.0000	undef undef
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef
Lung	0.0000	0.0000	undef undef
Stomach-esophagus	0.0000 0.0000	0,0000 0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef undef undef
Kidney	0.0000	0.0000	under under undef undef
Pancreas	0.0000	0.0000	under under under
Penis	0.0000	0.0000	under under under
Prostate	0.0000	0.1055	0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000		
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells Cervix	0.0000		

	FETUS % frequency	LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	D.: 63	
	NORMAL	TUMOR	Ratios
	% frequency	% frequency	N/T T/N
			,
Bladder	á.	_	
Breast	0.0078	0.0051	1.5254 0.6555
Small intestine	0.0038	0.0094	0.4083 2.4491
Ovary	0.0031	0.0331	0.0927 10.7893
Endocrine tissue	0.0150	0.0208	0.7195 1.3898
Gastrointestinal	0.0136		1.3585 0.7361
Brain	0.0230	0.0046	4.9700 0.2012
Hematopoietic	0.0096	0.0082	1.1699 0.8547
Skin	0.0094	0.0000	undef 0.0000
Hepatic	0.0110	0.0000	undef 0.0000
Heart	0.0000	0.0065 0.0000	0.0000 undef undef 0.0000
Testicles	0.0053 0.0173	0.0000	undef 0.0000 undef 0.0000
Lung	0.0173	0.0041	1.2701 0.7873
Stomach-esophagus	0.032	0.0077	5.0421 0.1983
Muscle-skeleton	0.0051	0.0120	0.4283 2.3347
Kidney	0.0081	0.0274	0.2974 3.3626
Pancreas	0.0083	0.0110	0.7479 1.3371
Penis	0.0150	0.0267	0.5616 1.7807
Prostate	0.0044	0.0043	1.0236 0.9769
Uterus-endometrium	0.0068	0.2111	0.0320 31.2422
Uterus-myometrium	0.0076	0.0068	1.1223 0.8911
Uterus-general	0.0051	0.0000	undef 0.0000
Breast hyperplasia	0.0256		
Prostate hyperplasia	0.0089		
Seminal vesicle	0.000		
Sensory organs	0.0235		
White blood cells	0.0061		
Cervix	0.0000		
CCLATY			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0278 0.0056 0.0000 0.0236 0.0000 0.0000 0.0356 0.0289 0.0000 0.0124 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0204 0.1595 0.0000 0.00047 0.0000 0.0228 0.0097 0.0231 0.0000 0.0100 0.0100 0.0000 0.0000

Electronic Northern fo	r SEQ. ID NO. NORMAL I	: 64 CUMOR	Ratios
	% frequency %	frequency	N/T T/N
Bladder	0.0000	0.0000	undef undef
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0000	undef undef
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.0000	0.0000	undef undef
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef
Lung	0.0000	0.0000	undef undef
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000 0.0000	undef undef undef undef
Penis	0.0000	0.0000	under under undef undef
Prostate	0.0000	0.1055	0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.0000	under under undef
Uterus-general	0.0000	0.0000	ander ander
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix			
COLITA			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern f	or SEQ. ID N	0.: 65	
	NORMAL	TUMOR	Ratios
	% frequency	% frequence	cy N/T T/N
		_	-
Bladder	2 2222		
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0019	0.0000 undef
Ovary	0.0000 0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0000	undef undef
Gastrointestinal	0.0000	0.0000 0.0000	undef undef
Brain	0.0007	0.0000	undef undef undef 0.0000
Hematopoietic	0.0000	0.0000	under 0.0000 undef undef
Skin	0.0000	0.0000	under under under
Hepatic	0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef
Lung	0.0000	0.0000	undef undef
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0244	0.0137	1.7843 0.5604
Pancreas	0.0000	0.0000	undef undef
Penis	0.0000	0.0000	undef undef
Prostate	0.0000	0.0000	undef undef
Uterus-endometrium	0.0000	0.1055	0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000 0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix	3.3000		
CETATY			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0041 0.0000 0.0057 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID	NO.: 66		
	NORMAL	TUMOR	Ratios	
	% frequenc	cy % freque	ency N/T	T/N
		-1	-1.01	- / - 1
Bladder				
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000 0.0000	0.0000	undef undef	
Uterus-endometrium	0.0000	0.1055	0.0000 undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix	0.000			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern				
	NORMAL	TUMÓR	Ratios	
	<pre>% frequency</pre>	% frequen	cy N/T	T/N
Bladder	0.0000			
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0038	0.0000 undef	
Ovary	0.0031	0.0000	undef 0.0000	
Endocrine tissue	0.0000	0.0052	0.0000 undef	
Gastrointestinal	0.0034	0.0000	undef 0.0000	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0022	0.0010	2.1599 0.4630	
Skin	0.0013	0.0000	undef 0.0000	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0032 0.0058	0.0000	undef 0.0000	
	0.0038	0.0000	undef 0.0000	
Lung		0.0020	0.5080 1.9684	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000 0.0030	0.0000	undef undef	
Penis	0.0044	0.0000	undef 0.0000	
Prostate	0.0000	0.0000	undef 0.0000	
Uterus-endometrium	0.0000	0.1055 0.0000	0.0000 undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0009			
White blood cells	0.0009			
Cervix	0.0000			
001 TA				

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	TED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0068 0.0000 0.0125

Electronic Northern	for SEQ. ID NO.: 68	
	NORMAL TUMOR	Ratios
	<pre>% frequency % frequency</pre>	V N/T T/N
	1 1 1	
Bladder		
Breast	0.0078 0.0128	0.6102 1.6389
Small intestine	0.0038 0.0188	0.2042 4.8982
Ovary	0.0153 0.0331	0.4634 2.1579
Endocrine tissue	0.0120 0.0208	0.5756 1.7372
Gastrointestinal	0.0136 0.0125	1.0868 0.9201
Brain	0.0077 0.0000	undef 0.0000
Hematopoietic	0.0052 0.0041 0.0027 0.0000	1.2599 0.7937
Skin	0.0027 0.0000 0.0000 0.0847	undef 0.0000 0.0000 undef
Hepatic	0.0000 0.0047	0.4902 2.0400
Heart	0.0307 0.0275	1.1179 0.8945
Testicles	0.0000 0.0351	0.0000 undef
	0.0042 0.0286	0.1452 6.8893
Lung	0.0000 0.0000	undef undef
Stomach-esophagus	0.0051 0.0120	0.4283 2.3347
Muscle-skeleton	0.0054 0.0137	0.3965 2.5219
Kidney	0.0116 0.0110	1.0470 0.9551
Pancreas	0.0030 0.0000	undef 0.0000
Penis	0.0044 0.0106	0.4095 2.4423
Prostate	0.0135 0.1583	0.0854 11.7158
Uterus-endometrium	0.0076 0.0204	0.3741 2.6732
Uterus-myometrium	0.0102 0.1908	0.0534 18.7357
Uterus-general	0.0160	
Breast hyperplasia	0.0119	
Prostate hyperplasia	0.0089	
Seminal vesicle	0.0000	
Sensory organs	0.0130	
White blood cells	0.0000	
Cervix		

	STANDARDIZED/SU FETUS LIBRARIES % frequency % frequency		JBTRACTED	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0557 0.0194 0.0000 0.0079 0.0000 0.0000 0.0142 0.0108 0.0254 0.0000 0.0061 0.0748 0.0126	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0245 0.0105 0.0122 0.0000 0.0421 0.0077 0.0082 0.0030 0.0137 0.0000 0.0083	

Electronic Northern	NORMAL	NO.: 69 TUMOR y % frequency	Ratios N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000 unde	

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	O.: 70 TUMOR % frequency	Ratios N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0019 0 0.0000 un 0.00000 un 0.0000	ndef undef .0000 undef ndef undef	

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	D.: 71	
	NORMAL	TUMOR	Ratios
	% frequency	% frequency	N/T T/N
Bladder	0.0000	0 0020	0.0000 undef
Breast	0.0000 0.0051	0.0230 0.0056	0.9074 1.1021
Small intestine	0.0031	0.0000	undef 0.0000
Ovary	0.0060	0.0182	0.3289 3.0402
Endocrine tissue	0.0068	0.0000	undef 0.0000
Gastrointestinal	0.0728	0.0185	3.9346 0.2542
Brain	0.0000	0.0010	0.0000 undef
Hematopoietic	0.0027	0.0000	undef 0.0000
Skin	0.0000	0.0000	undef undef
Hepatic	0.0048	0.0259	0.1838 5.4400
Heart	0.0011	0.0000	undef 0.0000
Testicles	0.0173	0.0000	undef 0.0000
Lung	0.0114	0.0061	1.8628 0.5368
Stomach-esophagus	0.0387	0.0000	undef 0.0000
Muscle-skeleton	0.0017	0.0000	undef 0.0000
Kidney	0.0081	0.0068	1.1896 0.8406
Pancreas	0.0033	0.0055	0.5983 1.6714 undef undef
Penis	0.0000 0.0065	0.0000 0.0106	0.6142 1.6282
Prostate	0.0000	0.1055	0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.000		
Breast hyperplasia	0.0030		
Prostate hyperplasia	0.0089		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0083 0.0000 0.0000 0.0000 0.0000 0.0072 0.0000 0.0062 0.0061 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0608 0.0000 0.0047 0.0000 0.0000 0.0000 0.0164 0.0000 0.0068 0.0000

Electronic Northern			D. E. S.
	NORMAL	TUMOR	Ratios
	% frequency	% frequen	cy N/T T/N
Bladder	0.0000	0.0000	
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef undef undef
Ovary	0.0000	0.0000	0.0000 undef
Endocrine tissue	0.0000	0.0020	0.0000 under
Gastrointestinal	0.0019	0.0000	undef 0.0000
Brain	0.0007	0.0000	undef 0.0000
Hematopoietic	0.0013	0.0000	undef 0.0000
Skin	0.0037	0.0000	undef 0.0000
Hepatic	0.0000	0.0000	undef undef
Heart	0.0021	0.0000	undef 0.0000
Testicles	0.0000	0.0000	undef undef
Lung	0.0010	0.0000	undef 0.0000
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0034	0.0000	undef 0.0000
Kidney	, 0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000	undef undef
Penis	0.0030	0.0000	undef 0.0000
Prostate	0.0000	0.0000	undef undef
Uterus-endometrium	0.0068	0.2111	0.0320 31.2422
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0030 0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix	5.0000		
JOI TIN			

cy % frequency
Breast 0.0068 Ovary_n 0.0000 Ovary_t 0.0051 Endocrine tissue 0.0000 Fetal 0.0047 Gastrointestinal 0.0366 Hematopoietic 0.0000 Skin-muscle 0.0000 Testicles 0.0154 Lung 0.0000 Nerves 0.0040 Prostate 0.0000 Sensory Organs 0.0125

Electronic Northern f	or SEQ. ID N	0.: 73		
	NORMAL	TUMOR	Ratios	
	% frequency	% frequen	cy N/T	T/N
		_		
Bladder				
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0013	0.0019	0.6805 1.4694	
Ovary	0.0000	0.0165	0.0000 undef	
Endocrine tissue	0.0000	0.0078	0.0000 undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0019	0.0000	undef 0.0000	
Hematopoietic	0.0007 0.0000	0.0021 0.0000	0.3600 2.7779 undef undef	
Skin	0.0000	0.0000	under under undef	
Hepatic	0.0000	0.0000	under under undef undef	
Heart	0.0021	0.0000	undef 0.0000	
Testicles	0.0000	0.0234	0.0000 undef	
Lung	0.0021	0.0061	0.3387 2.9526	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
	0.0000	0.0000	undef undef	
Kidney Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0043	0.0000 undef	
Uterus-endometrium	0.0000	0.1055	0.0000 undef	
	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000			
Breast hyperplasia	0.0030			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0017			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0063 0.0039 0.0000 0.0000 0.0071 0.0072 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0136 0.0000 0.0000 0.0000 0.0029 0.0000 0.0114 0.0000 0.0000 0.0000 0.0100 0.0137 0.0000 0.0000

Electronic Northern			D-+
	NORMAL	TUMOR	Ratios
	<pre>% frequency</pre>	% frequency	N/T T/N
Bladder	0.0078	0.0051	1.5254 0.6555
Breast	0.0078	0.0051	0.6805 1.4694
Small intestine	0.0031	0.0073	undef 0.0000
Ovary	0.0031	0.0000	undef 0.0000
Endocrine tissue	0.0090	0.0125	0.9509 1.0516
Gastrointestinal	0.0057	0.0046	1.2425 0.8048
Brain	0.0059	0.0051	1.1519 0.8681
Hematopoietic	0.0187	0.0379	0.4940 2.0241
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0085	0.0000	undef 0.0000
Testicles	0.0000	0.0117	0.0000 undef
Lung	0.0073	0.0041	1.7781 0.5624
Stomach-esophagus	0.0000	0.0077	0.0000 undef
Muscle-skeleton	0.0000	0.0120	0.0000 undef
Kidney	0.0000	0.0068	0.0000 undef
Pancreas	0.0033	0.0000	undef 0.0000
Penis	0.0030	0.0000	undef 0.0000
Prostate	0.0065	0.0043	1.5354 0.6513
Uterus-endometrium	0.0000	0.1583	0.0000 undef
Uterus-myometrium	0.0229 0.0204	0.0000 0.0000	undef 0.0000 undef 0.0000
Uterus-general	0.0204	0.0000	ander 0.0000
Breast hyperplasia	0.0000		
Prostate hyperplasi	a 0.0089		
Seminal vesicle	0.0000		
Sensory organs	0.0035		
White blood cells	0.0000		
Cervix			
· 			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0079 0.2513 0.0000 0.0072 0.0000 0.0124 0.0061 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0068 0.0000 0.0000 0.0000 0.0023 0.0000 0.0005 0.0154 0.0246 0.0010 0.0000 0.0077 0.0083

Electronic Northern	for SEQ. ID No	0.: 75	
	NORMAL	TUMOR	Ratios
	% frequency	% frequen	cy N/T T/N
		_	
Bladder	•		
Breast	0.0039	0.0051	0.7627 1.3111
Small intestine	0.0026	0.0038	0.6805 1.4694
Ovary	0.0000	0.0000	undef undef 1.1513 0.8686
Endocrine tissue	0.0090	0.0078	0.6792 1.4722
Gastrointestinal	0.0051 0.0019	0.0075 0.0231	0.0828 12.0723
Brain	0.0019	0.0031	2.8798 0.3472
Hematopoietic	0.0083	0.0000	undef 0.0000
Skin	0.0000	0.0000	undef undef
Hepatic	0.0048	0.0000	undef 0.0000
Heart	0.0032	0.0000	undef 0.0000
Testicles	0.0058	0.0000	undef 0.0000
Lung	0.0031	0.0061	0.5080 1.9684
Stomach-esophagus	0.0000	0.0077	0.0000 undef
Muscle-skeleton	0.0034	0.0060	0.5711 1.7510
Kidney	0.0054	0.0000	undef 0.0000
Pancreas	0.0000	0.0055	0.0000 undef
Penis	0.0090	0.0000	undef 0.0000
Prostate	0.0022	0.0043	0.5118 1.9538
Uterus-endometrium	0.0000	0.1055	0.0000 undef
Uterus-myometrium	0.0000	0.0068	0.0000 undef undef 0.0000
Uterus-general	0.0051 0.0032	0.0000	didei 0.0000
Breast hyperplasia	0.0032		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0017		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0000 0.0254 0.0000 0.0050 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0151 0.0000 0.0114 0.0130 0.0000 0.0082 0.0060 0.0137 0.0000 0.0208

Electronic Northern	for SEQ. ID NO NORMAL	D.: 76 TUMOR	Ratios	
	% frequency	% frequency	T\N T	T/N
Bladder	2 2222			
Breast	0.0000	0.0000 0.0000	undef undef undef	
Small intestine	0.0000 0.0000	0.0000	under under undef undef	
Ovary	0.0000	0.0000	under under under	
Endocrine tissue	0.0000	0.0000	under under	
Gastrointestinal	0.0000	0.0000	under under	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0020	0.0000 undef	
Stomach-esophagus	0.000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0000	undef undef	
Uterus-endometrium	0.0000	0.2111	0.0000 undef	
Uterus-myometrium	0.0000	0.0000	undef undef undef	
Uterus-general	0.0000	0.0000	under under	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix	••••			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern f	for SEQ. ID NORMAL	O.: 77 TUMOR	Ratios	
	% frequency	% frequenc	y N/T	T/N
		-	- ,	•
Bladder	-			
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000 0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000 0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0000	undef undef	
Uterus-endometrium	0.0000	0.1055	0.0000 undef	
	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000			
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	FETUS LIBRARIES % frequency % frequency		OBTRACTED	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

Electronic Northern	for SEQ. ID NO NORMAL % frequency	TUMOR	Ratios ency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	C.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef	
· 				

	FETUS % frequency	STANDARDIZED/SUBTRACT LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

or SEQ. ID NO.: 79 NORMAL TUMOR Ratios % frequency % frequency N/T T/N
0.0000
NORMAL TUMOR Ratios % frequency % frequency N/T T/ 0.0000 0.0000 undef undef 0.0013 0.0000 undef 0.0000 0.0000 0.0000 undef 0.0000 0.0017 0.0050 0.3396 2.9444 0.0019 0.0000 undef 0.0000 0.0007 0.0031 0.2400 4.1669 0.0000 0.0000 undef undef 0.0000 0.0000 undef undef 0.00048 0.0129 0.3676 2.7200 0.0000 0.0000 undef undef 0.0004 0.0000 undef undef 0.0004 0.0000 undef undef 0.0004 0.0000 undef undef 0.0004 0.0000 undef undef 0.0000 0.0000 undef undef

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0278 0.0056 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0068 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0164 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NORMAL	NO.: 80 TUMOR	Ratios	
	% frequenc	cy % frequ	ency N/T	T/N
Bladder				
Breast	0.0000	0.0000		
Small intestine	0.0013	0.0000	undef undef undef 0.0000	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000 0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000 0.0000	undef undef	
Pancreas	0.0000	0.0055	undef undef 0.0000 undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0000	under under undef undef	
Uterus-endometrium	0.0000	0.1583	0.0000 undef	
Uterus-myometrium	0.0000	0.0068	0.0000 undef	
Uterus-general	0.0000	0.000	undef undef	
Breast hyperplasia	0.0032			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix	0.0000			

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0278 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0068 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	0.: 81		
	NORMAL	TUMOR	Ratios	
	% frequency	% frequency	y N/T	T/N
	1		1 7 -	- / - 1
Bladder				
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0000	undef undef	
Uterus-endometrium	ι 0.0000	0.1055	0.0000 undef	
Uterus-myometrium	ι 0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	5.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix	0.0000			

	FETUS % frequency	LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 82 TUMOR cy % frequ	Ratios lency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal	0.0000 0.0077 0.0184 0.0090 0.0068	0.0051 0.0150 0.0000 0.0208 0.0150	0.0000 undef 0.5104 1.9593 undef 0.0000 0.4317 2.3163 0.4528 2.2083	
Brain Hematopoietic	0.0268 0.0081 0.0027	0.0231 0.0123 0.0000	1.1597 0.8623 0.6600 1.5152 undef 0.0000	
Skin Hepatic Heart	0.0000 0.0095 0.0011	0.0000 0.0065 0.0412	undef undef 1.4706 0.6800 0.0257 38.9118	
Testicles Lung Stomach-esophagus	0.0058 0.0031 0.0290	0.0000 0.0123 0.0000	undef 0.0000 0.2540 3.9367 undef 0.0000	
Muscle-skeleton Kidney	0.0103 0.0054 0.0050	0.0060 0.0000 0.0166	1.7133 0.5837 undef 0.0000 0.2991 3.3428	
Pancreas Penis Prostate	0.0060 0.0305 0.0000	0.0000 0.0554	undef 0.0000 0.5512 1.8143	
Uterus-endometrium Uterus-myometrium Uterus-general	0.0000 0.0051	0.1055 0.0000 0.0000	0.0000 undef undef undef undef 0.0000	
Breast hyperplasia Prostate hyperplasia Seminal vesicle				
Sensory organs White blood cells Cervix	0.0000 0.0026 0.0000			

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0028 0.0125 0.0039 0.0000 0.0000 0.0036 0.0000 0.0507 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0253 0.0000 0.0070 0.0122 0.0000 0.0097 0.0000 0.0082 0.0131 0.0205 0.0000 0.0083

Electronic Northern	for SEQ. II	NO.: 83		Ratios	
		ncy % freque	ncv	N/T	T/N
	% lleque	icy & rreque	eric y	14/1	1/14
Bladder					
Breast	0.0000	0.0000		undef	
Small intestine	0.0000	0.0000		undef	
Ovary	0.0000	0.0000		undef	
Endocrine tissue	0.0000	0.0000		undef	
Gastrointestinal	0.0000	0.0000		undef	
Brain	0.0000	0.0000		undef	
	0.0000 0.0000	0.0000		undef	
Hematopoietic Skin	0.0000	0.0000		undef	
	0.0000	0.0000 0.0000		undef	
Hepatic	0.0000	0.0000	_	undef undef	
Heart	0.0000	0.0000		under	
Testicles	0.0000	0.0000		undef	
Lung	0.0000	0.0000		under undef	
Stomach-esophagus	0.0000	0.0000		under undef	
Muscle-skeleton	0.0000	0.0000		under undef	
Kidney	0.0000	0.0000		under	
Pancreas	0.0000	0.0000	-	undef	
Penis	0.0000	0.0000		undef	
Prostate	0.0000	0.1055		under undef	
Uterus-endometrium	0.0000	0.0000		undef	
Uterus-myometrium	0.0000	0.0000	undef		
Uterus-general	0.0000	3.3333	unacı	411461	
Breast hyperplasia	0.0000				
Prostate hyperplasia					
Seminal vesicle	0.0000				
Sensory organs	0.0000				
White blood cells	0.0000				
Cervix					

	FETUS % frequency	STANDARDIZED/SUBTRAG LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO NORMAL		Dotina	
		TUMOR	Ratios	- /s-
	% frequency	% frequen	cy N/T	$I \setminus I$
Bladder				
— —	0.0000	0.0000	undef undef	
Breast	0.0000	0.0019	0.0000 undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000 0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0022	0.0000	undef undef	
Prostate	0.0000	0.1055	undef 0.0000	
Uterus-endometrium	0.0000	0.0000	0.0000 undef undef undef	
Uterus-myometrium	0.0000	0.0000	under under under	
Uterus-general	0.0000	0.0000	ander ander	
Breast hyperplasia	0.0000			
Prostate hyperplasia				
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	IES	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0254 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

Electronic Northern	NORMAL	.: 85 TUMOR % frequency	Ratios N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000 0.0000	undef

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.000U 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 86 TUMOR y % frequency	Ratios T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasis Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 un	ndef undef

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NORMAL TUMOR Ratios % frequency % frequency N/T T	/N
Bladder 0.0039 0.0204 0.1907 5.2444 Breast 0.0128 0.0075 1.7013 0.5878 Small intestine 0.0123 0.0165 0.7415 1.3487 Ovary 0.0030 0.0078 0.3938 2.6058 Endocrine tissue 0.0000 0.0000 undef undef Gastrointestinal 0.0038 0.0139 0.2761 3.6217 Brain 0.0007 0.0000 undef undef 0.0000 Hematopoietic 0.0000 0.0000 undef undef Skin 0.0110 0.0000 undef undef Heart 0.0000 0.0000 undef undef Heart 0.0000 0.0000 undef undef Testicles 0.0000 0.0000 undef undef Undef Muscle-skeleton 0.0054 0.0000 undef undef Miscle-skeleton 0.0055 0.0000 undef undef Penis 0.0050 0.0000 undef undef Penis 0.0004 0.0000 undef 0.0000 Finance 0.0005 0.0000 undef undef Penis 0.0004 0.0000 undef undef Uterus-endometrium 0.0000 0.0000 undef undef Uterus-myometrium 0.0000 0.0000 undef undef Uterus-myometrium 0.0000 0.0000 undef undef Uterus-myometrium 0.0000 0.0000 undef undef Uterus-general 0.0089 Prostate hyperplasia 0.0089 Prostate hyperplasia 0.0089 Seminal vesicle 0.0000 White blood cells 0.0106	

Development Breast 0.0006 Gastrointestinal 0.0000 Ovary_n 0.000 Brain 0.0000 Ovary_t 0.005	3D
Brain 0.0000 Endocrine tissue 0.000 Skin 0.0000 Fetal 0.000 Hepatic 0.0000 Gastrointestinal 0.012 Heart-blood vessels 0.0000 Hematopoietic 0.000 Lung 0.0000 Skin-muscle 0.000 Suprarenal gland 0.0000 Testicles 0.000 Kidney 0.0000 Lung 0.000 Placenta 0.0000 Nerves 0.000 Prostate 0.0000 Prostate 0.000 Sensory organs 0.0000 Sensory Organs 0.000	000 051 000 000 122 000 000 000 082 000 068

Electronic Northern	for SEQ. ID NO NORMAL	D.: 88 TUMOR	Ratios
	% frequency	% frequer	ncy N/T T/N
79.7 - 7.7			
Bladder			
Breast	0.0000	0.0026	0.0000 undef
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0000	undef undef
Gastrointestinal	0.000	0.0050	0.0000 undef
Brain	0.0019	0.0000	undef 0.0000
Hematopoietic	0.0007	0.0010	0.7200 1.3890
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0048 0.0011	0.0000 0.0000	undef 0.0000
Testicles	0.0011	0.0000	undef 0.0000 undef undef
Lung	0.0000	0.0020	0.0000 undef
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0017	0.0000	undef 0.0000
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000	undef undef
Penis	0.0000	0.0000	undef undef
Prostate	0.0000	0.0021	0.0000 undef
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0118		
White blood cells	0.0017		
Cervix	0.0000		

	FETUS % frequency	LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0006 0.0000 0.0114 0.0032 0.0000 0.0000 0.0000 0.0000

Electronic Northern for SEQ. ID NO.: 89 NORMAL TUMOR Ratios % frequency % frequency N/T T/N Bladder 0.0000 0.0000 undef undef Breast 0.0013 0.0000 undef 0.0000 Small intestine undef undef undef undef 0.0000 0.0000 Ovary 0.0000 0.0000 Endocrine tissue 0.0000 0.0000 undef undef Gastrointestinal 0.0000 0.0000 undef undef Brain 0.0000 0.0000 undef undef Hematopoietic 0.0000 0.0000 undef undef Skin 0.0000 0.0000 undef undef Hepatic 0.0000 undef undef 0.0000 Heart 0.0000 0.0000 undef undef Testicles 0.0000 0.0000 undef undef Lung 0.0000 undef undef 0.0000 undef undef undef Stomach-esophagus 0.0000 0.0000 0.0000 Muscle-skeleton 0.0000 Kidney 0.0000 0.0000 undef undef 0.0000 0.0055 Pancreas 0.0000 undef 0.0000 0.0000 undef undef Penis 0.0000 undef undef 0.0000 Prostate 0.0000 0.1583 0.0000 undef Uterus-endometrium 0.0000 0.0000 undef 0.0068 Uterus-myometrium 0.0000 0.0000 undef undef Uterus-general 0.0032 Breast hyperplasia 0.0000 Prostate hyperplasia 0.0000 Seminal vesicle 0.0000 Sensory organs White blood cells 0.0000 0.0000 Cervix

	FETUS % frequency	STANDARDIZED/SUBTRALIBRARIES & frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0278 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0068 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern f	NORMAL	NO.: 90 TUMOR y % freque	Ratios ency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef	

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 91 TUMOR / % freque	Ratios ency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0090 0.0000 0.0030 0.0034 0.0096 0.0037 0.0027 0.0110 0.0095 0.0042 0.0000 0.0010 0.0000 0.0017 0.0030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0039 0.0000 0.0052 0.0025 0.0000 0.0021 0.0000 0.0847 0.0065 0.0000 0.0117 0.0020 0.0077 0.0000 0.0077 0.0000 0.0166 0.0000 0.0166 0.0000 0.0021 0.1055 0.0000	undef undef 2.3818 0.4198 undef undef 0.5756 1.7372 1.3585 0.7361 undef 0.0000 1.7999 0.5556 undef 0.0000 0.1300 7.6946 1.4706 0.6800 undef 0.0000 0.0000 undef 0.5080 1.9684 0.0000 undef undef undef undef undef undef 0.0000 0.0997 10.0285 undef 0.0000 0.0000 undef 0.0000 undef undef undef	

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0111 0.0063 0.0000 0.0000 0.0000 0.0036 0.0108 0.0000 0.0000 0.0000 0.0061 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0041 0.0005 0.0055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO.: 92 NORMAL TUMOR Ratios % frequency % frequency N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000	

	FETUS % frequency	STANDARDIZED/SUBTF LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 93 TUMOR / % freque	Ratios ncy N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef undef 0.0000 undef 0.0000 undef	
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Bladder 0.0000 0.0000 undef undef Breast 0.0013 0.0000 undef 0.0000 Small intestine 0.0000 0.0165 0.0000 undef Ovary 0.0000 0.0000 undef undef Endocrine tissue 0.0051 0.0075 0.6792 1.4722 Gastrointestinal 0.0000 0.0000 undef undef Brain 0.0022 0.0010 2.1599 0.4630 Hematopoietic 0.0000 0.0000 undef undef Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef
Small intestine 0.0013
Ovary 0.0000 0.0000 undef undef Endocrine tissue 0.0051 0.0075 0.6792 1.4722 Gastrointestinal 0.0000 0.0000 undef undef Brain 0.0022 0.0010 2.1599 0.4630 Hematopoietic 0.0000 0.0000 undef undef Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef
Endocrine tissue 0.0051 0.0075 0.6792 1.4722 Gastrointestinal 0.0000 0.0000 undef undef Brain 0.0022 0.0010 2.1599 0.4630 Hematopoietic 0.0000 0.0000 undef undef Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef
Gastrointestinal 0.0000 0.0000 undef undef Brain 0.0022 0.0010 2.1599 0.4630 Hematopoietic 0.0000 0.0000 undef undef Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef
Brain 0.0022 0.0010 2.1599 0.4630 Hematopoietic 0.0000 0.0000 undef undef Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef
Hematopoietic 0.0000 0.0000 undef undef Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef
Skin 0.0037 0.0000 undef 0.0000 Hepatic 0.0000 0.0065 0.0000 undef
Hepatic 0.0000 0.0065 0.0000 undef
Heart 0.0021 0.0000 undef 0.0000 Testicles 0.0115 0.0000 undef 0.0000
100010101
Hully Control of the
beomach-esophagus
MUSCIE-SKETECOII
Ridney
Pancreas
Penis 0.0044 0.0000 277455 0.0000
0.0000 0.1055 0.0000 undef
Oterus-endometrium 0.0076 0.0136 0.5611 1.7821
Uterus-myometrium 0.0051 0.0000 undef 0.0000
Uterus-general 0.0000
Breast hyperplasia 0.0000
Prostate hyperplasia 0.0089
Seminal vesicle 0.0000
Sensory organs 0.0000
White blood cells 0.0000 Cervix

	FETUS % frequency	LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.2513 0.0000 0.0107 0.0036 0.0000 0.0000 0.0121 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0029 0.0000 0.005 0.0154 0.0000 0.0010 0.0010

Electronic Northern	NORMAL	O.: 95 TUMOR % frequenc	Ratios y N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000 0.0000 0.0000 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern				
	NORMAL	TUMOR	Ratios	
	% frequen	cy % frequ	ency N/T	T/N
Bladder				
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0030	0.0000	undef 0.0000	
Gastrointestinal	0.0017	0.0000	undef 0.0000	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0007	0.0000	undef 0.0000	
Skin	0.0000 0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef undef undef	
Lung	0.0000	0.0000	under under undef undef	
	0.0000	0.0000	under under undef undef	
Stomach-esophagus Muscle-skeleton	0.0000	0.0000	under under under	
	0.0000	0.0000	under under under	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0022	0.0000	undef 0.0000	
Prostate	0.0000	0.1055	0.0000 undef	
Uterus-endometrium	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000			
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0009			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0006 0.0000

Electronic Northern	for SEQ. ID N NORMAL % frequency	TUMOR	Ratios ncy N/T	T/N
Bladder	2 2022	2 2222		
Breast	0.0000 0.0013	0.0000 0.0019	undef undef 0.68051.4694	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	under under	
Endocrine tissue	0.0000	0.0000	under under under	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0022	0.0000	undef 0.0000	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0117	0.0000 undef	
	0.0000	0.0000	undef undef	
Lung Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
	0.0000	0.0000	undef undef	
Kidney Pancreas	0.0000	0.0055	0.0000 undef	
Penis	0.0000 0.0000	0.0000	undef undef undef undef	
Prostate	0.0000	0.1583	0.0000 undef	
Uterus-endometrium	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.000	ander ander	
Breast hyperplasia	0.0000			
Prostate hyperplasi	a 0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0009			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000

Electronic Northern				
	NORMAL	TUMOR	Ratios	
	% frequenc	y % freque	ncy N/T	T/N
Bladder	0.0000			
Breast	0.0000 0.0000	0.0026	0.0000 undef	
Small intestine	0.0000	0.0000 0.0000	undef undef	
Ovary	0.0030	0.0006	undef undef	
Endocrine tissue	0.0000	0.0026	1.1513 0.8686	
Gastrointestinal	0.0038	0.0000	undef undef undef 0.0000	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0040	0.0000	undef 0.0000	
Skin	0.0330	0.0000	undef 0.0000	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0055	0.0000 undef	
Penis	0.0000	0.0533	0.0000 undef	
Prostate	0.0022	0.0021	1.0236 0.9769	
Uterus-endometrium	0.0000 0.0000	0.1055	0.0000 undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0064	0.0000	undef undef	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0017			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTI LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0063 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern for SEQ. ID N NORMAL % frequency	TUMOR Ratios 7 % frequency N/T T/I
Bladder 0.0000 Breast 0.0000 Small intestine 0.0000 Ovary 0.0000 Endocrine tissue 0.0000 Gastrointestinal 0.0000 Brain 0.0000 Hematopoietic 0.0000 Skin 0.0000 Hepatic 0.0000 Heart 0.0000 Testicles 0.0000 Lung 0.0000 Stomach-esophagus 0.0000 Muscle-skeleton 0.0000 Kidney 0.0000 Pancreas 0.0000 Penis 0.0000 Prostate 0.0000 Uterus-endometrium 0.0000 Uterus-myometrium 0.0000 Uterus-general 0.0000 Breast hyperplasia 0.0000 Prostate hyperplasia 0.0000 Seminal vesicle 0.0000 Sensory organs 0.0000 White blood cells 0.0000	0.0000 undef undef

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID	NO.: 100 TUMOR	Ratios
	% frequenc	y % freque	
	o irequenc	y o rreque	ney N/I I/N
Bladder	-		
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef
	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0051	0.0025	2.0377 0.4907
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.0022	0.0010	2.1599 0.4630
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0032	0.0000	undef 0.0000
Testicles	0.0000	0.0000	undef undef
Lung	0.0052	0.0020	2.5402 0.3937
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0027	0.0000	undef 0.0000
Pancreas	0.0000	0.0000	undef undef
Penis	0.0030	0.0000	undef 0.0000
Prostate	0.0000	0.0000	undef undef
	0.0000	0.1055	0.0000 undef
Uterus-endometrium	0.0000	0.0068	0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0032		
Breast hyperplasia	0.0000		
Prostate hyperplasia			
Seminal vesicle	0.0000		
Sensory organs	0.0009		
White blood cells	0.0000		
Cervix			

Gastrointestinal 0.0000 Ovary_n 0.00 Brain 0.0000 Ovary_t 0.00 Hematopoietic 0.0000 Endocrine tissue 0.00	STANDARDIZED/SUBTRA FETUS LIBRARIES % frequency % frequency	ACTED
Hepatic0.0000Gastrointestinal0.00Heart-blood vessels0.0036Hematopoietic0.00Lung0.0000Skin-muscle0.00Suprarenal gland0.0000Testicles0.00Kidney0.0000Lung0.00Placenta0.0061Nerves0.00Prostate0.0000Prostate0.00Sensory organs0.0000Sensory Organs0.00	0.0000 Ovary_n 0.0000 Ovary_t 0.0000 Endocrine tissue 0.0000 Fetal 0.0000 Gastrointestinal 0.0036 Hematopoietic 0.0000 Skin-muscle 0.0000 Testicles 0.0000 Lung 0.0061 Nerves 0.0000 Prostate 0.0000 Sensory Organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	NO.: 101 TUMOR cy % frequ	Ratios ency N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern			
	NORMAL	TUMOR	Ratios
	<pre>% frequency</pre>	% frequency	N/T T/N
Bladder	-		
Breast	0.0039	0.0000	undef 0.0000
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0000	undef undef
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.0000 0.0000	0.0000	undef undef
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0037	0.0000	undef undef
Hepatic	0.0000	0.0000 0.0000	undef 0.0000
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef
Lung	0.0000	0.0000	undef undef undef undef
Stomach-esophagus	0.0000	0.0000	under under undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000	undef undef
Penis	0.0000	0.0000	undef undef
Prostate	0.0000	0.0000	undef undef
Uterus-endometrium	0.0000	0.1055	0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0000 0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	D.: 103 TUMOR % frequenc	Ratios y N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0064 0.0000 0.0000 0.0000 0.0000 0.0015 0.0013 0.0000 0.0032 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0165 0.0078 0.0025 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef undef undef 0.0000 0.0000 undef 0.0000 undef 0.7200 1.3890 undef 0.0000 undef 0.0000 undef 0.0000 undef undef 0.0000	

	FETUS % frequency	STANDARDIZED/SUBTRACTI LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0032 0.0000 0.0040 0.0000 0.0000

Electronic Northern fo			n. h.t
	NORMAL	TUMOR	Ratios
	<pre>% frequency</pre>	% frequen	cy N/T T/N
Bladder	0.0000	0.0000	undef undef
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0025	0.0000 undef
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.0000	0.0000	undef undef
Hematopoietic	0.0000	0.0000	undef undef
Skin -	0.0000	0.0000	undef undef
Hepatic	0.0000	0.0000	undef undef
Heart	0.0011	0.0000	undef 0.0000
Testicles	0.0000	0.0000	undef undef
Lung	0.0010	0.0020	0.5080 1.9684
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000	undef undef
Penis	0.0000	0.0000	undef undef
Prostate	0.0000	0.0000 0.1055	undef undef 0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.0000	under under under
Uterus-general	0.0000	3.3000	auger auger
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO NORMAL	D.: 105 TUMOR	Ratios
	% frequency		
	* irequency	o rreques.	2,72
Bladder			
Breast	0.0000	0.0000	undef undef
Small intestine	0.0090	0.0038	2.3818 0.4198
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0030	0.0052	0.5756 1.7372
Gastrointestinal	0.0034	0.0025	1.3585 0.7361
Brain	0.0096	0.0000	undef 0.0000
Hematopoietic	0.0037	0.0021	1.7999 0.5556
Skin	0.0027	0.0000	undef 0.0000
Hepatic	0.0110	0.0847	0.1300 7.6946
Heart	0.0095 0.0042	0.0065	1.4706 0.6800
Testicles	0.0042	0.0000	undef 0.0000
Lung	0.0000	0.0117 0.0020	0.0000 undef
Stomach-esophagus	0.0000	0.0020	0.5080 1.9684 0.0000 undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0027	0.0000	undef 0.0000
Pancreas	0.0017	0.0166	0.0997 10.0285
Penis	0.0030	0.0000	undef 0.0000
Prostate	0.0000	0.0021	0.0000 undef
Uterus-endometrium	0.000	0.1055	0.0000 undef
Uterus-myometrium	0.000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0118		
White blood cells	0.0026		
Cervix	0.0106		

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0111 0.0063 0.0000 0.0000 0.0000 0.0036 0.0108 0.0000 0.0000 0.0000 0.0061 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0041 0.0000 0.0057 0.0065 0.0000 0.0050 0.0050 0.0000 0.0050

Electronic Northern fo	or SEQ. ID NO	O.: 106 TUMOR	Ratios	
	% frequency	% frequen	cy N/T	T/N
		•		•
Bladder	0.0000	0.0000	undef undef	
Breast	0.0000	0.0000	uncef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0007	0.0000	undef 0.0000	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000 0.0000	0.0000	undef undef	
Penis	0.0000	0.0000 0.0000	undef undef undef undef	
Prostate	0.0000	0.1055	0.0000 undef	
Uterus-endometrium	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.000	under dider	
Breast hyperplasia	0.0000			
	0.0000			
Prostate hyperplasia Seminal vesicle	0.0000			
	0.0000			
Sensory organs White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern			Ratios	
	NORMAL	TUMOR		m ();
	% frequency	% frequen	cy N/T	$I \setminus I$
Bladder				
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0030	0.0000	undef 0.0000	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0000	undef undef	
Uterus-endometrium	0.0068	0.1055	0.0640 15.6213	L
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle				
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix	0.0000			
CELATY				

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID N	0.: 108		
	NORMAL	TUMOR	Ratios	
	% frequency	% frequer	ncy N/T	T/N
	· 1 · · · · · · · · · · · · · · · · · · ·	-	• •	,
Bladder				
Breast	0.0000	0.0051	0.0000 undef	
Small intestine	0.0051	0.0038	1.3611 0.7347	
	0.0031	0.0165	0.1854 5.3946	
Ovary Endocrine tissue	0.0000	0.0026	$0.0000~\mathtt{undef}$	
	0.0034	0.0050	0.6792 1.4722	
Gastrointestinal	0.0019	0.0000	undef 0.0000	
Brain	0.0037	0.0062	0.6000 1.6668	
Hematopoietic	0.0040	0.0000	undef 0.0000	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0048	0.0000	undef 0.0000	
Heart	0.0064	0.0000	undef 0.0000	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0031	0.0041	0.7621 1.3122	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0017	0.0000	undef 0.0000	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0030	0.0267	0.1123 8.9035	
Prostate	0.0000	0.0000	undef undef	
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211	
	0.0152	0.0068	2.2445 0.4455	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000			
Breast hyperplasia	0.0030			
Prostate hyperplasia				
Seminal vesicle	0.0118			
Sensory organs	0.0009			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBT LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0039 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000 0.0000 0.0249 0.0126	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0000 0.0000 0.0035 0.0000 0.0057 0.0032 0.0077 0.0164 0.0030 0.0000 0.0310

Electronic Northern	for SEQ. ID No	0.: 109		
	NORMAL	TUMOR	Ratios	
	% frequency	% freque	ncy N/T	T/N
	0	•	<u>-</u>	•
Bladder				
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000 0.0000	0.0000 0.0000	undef undef undef undef	
Prostate	0.0000	0.1583	0.0000 undef	
Uterus-endometrium	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	under under	
Uterus-general	0.0000	0.0000	diact diact	
Breast hyperplasia	0 0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO.	: 110 CUMOR	Ratios
		frequency	N/T T/N
Bladder	0.000		
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0000	undef undef
Gastrointestinal	0.0000	0.0000 0.0000	undef undef
Brain	0.0000	0.0000	undef undef undef undef
Hematopoietic	0.0000	0.0000	under under under
Skin	0.0000	0.0000	under under under
Hepatic	0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef
Lung	0.000	0.0000	undef undef
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000	undef undef
Penis	0.0000	0.0000	undef undef
Prostate	0.0000	0.0000	undef undef
Uterus-endometrium	0.0000	0.1583	0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0000 0.0000		
Prostate hyperplasi	a 0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix	0.000		

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO NORMAL % frequency	TUMOR	Ratios N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0051 0.0000 0.0000 0.0017 0.0000 0.0022 0.0027 0.0000 0.0000 0.0000 0.0010 0.0000 0.0010 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0010	0.0000 un 0.0000 un 0.0052 0 0.0000 un 0.0000	ndef undef ndef 0.0000 ndef undef .0000 undef ndef 0.0000 ndef undef .0799 0.9260 ndef 0.0000 ndef undef undef undef ndef undef ndef undef ndef undef .2540 3.9367 ndef undef .5711 1.7510 ndef undef ndef 0.0000 ndef undef

	FETUS % frequency	STANDARDIZED/SUBTE LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0051 0.0000 0.0070 0.0000 0.0000 0.0231 0.0164 0.0050 0.0000 0.0000

Electronic Northern	NORMAL	TUMOR	Ratios cv N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas	NORMAL % frequency 0.0000 0.0000 0.0000 0.0000 0.0017 0.0019 0.0022 0.0027 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TUMOR % frequen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef 0.0000 undef	T/N
	0.0000 0.0000 0.0000 0.0000 0.0076 0.0051 0.0032			

	FETUS % frequency	LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.00012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID	NO.: 113		
	NORMAL	TUMOR	Ratios	
	% frequenc	y % freque	ncy N/T	T/N
	-		- ,	•
Bladder				
Breast	0.0000	0.0077	0.0000 undef	
Small intestine	0.0038	0.0038	1.0208 0.9796	
Ovary	0.0031	0.0165	0.1854 5.3946	
Endocrine tissue	0.0000	0.0026	0.0000 undef	
Gastrointestinal	0.0051	0.0050	1.0189 0.9815	
Brain	0.0019	0.0000	undef 0.0000	
Hematopoietic	0.0037 0.0067	0.0062	0.6000 1.6668	
Skin	0.0000	0.0000 0.0000	undef 0.0000	
Hepatic	0.0048	0.0000	undef undef	
Heart	0.0044	0.0000	undef 0.0000 undef 0.0000	
Testicles	0.0000	0.0000	under 0.0000 undef undef	
Lung	0.0031	0.0041	0.7621 1.3122	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0017	0.0000	undef 0.0000	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0060	0.0267	0.2246 4.4517	
Prostate	0.0000	0.0021	0.0000 undef	
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211	
Uterus-myometrium	0.0152	0.0068	2.2445 0.4455	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0030			
Seminal vesicle				
Sensory organs	0.0118 0.0017			
White blood cells	0.0000			
Cervix	0.000			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0039 0.0000 0.0036 0.0036 0.0036 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0000 0.0000 0.0052 0.0000 0.0057 0.0032 0.0077 0.0164 0.0030 0.0000 0.0310 0.0042

Electronic Northern f	or SEQ. ID NO	O.: 114 TUMOR	Ratios
		% frequen	
	o rroquono,	0 220440	.01,
Bladder			
Breast	0.0156	0.0000	undef 0.0000
Small intestine	0.0013	0.0019	0.6805 1.4694
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0060	0.0078	0.7675 1.3029
Gastrointestinal	0.0000	0.0025	0.0000 undef
Brain	0.0038	0.0093	0.4142 2.4145
Hematopoietic	0.0022 0.0027	0.0021	1.0799 0.9260
Skin	0.0027	0.0000	undef 0.0000
	0.0000	0.0000 0.0000	undef 0.0000
Hepatic Heart	0.0000	0.0412	undef undef
Testicles	0.0000	0.0000	0.2313 4.3235 undef undef
	0.0031	0.0164	0.1905 5.2490
Lung	0.0193	0.0000	undef 0.0000
Stomach-esophagus Muscle-skeleton	0.0069	0.0180	0.3807 2.6265
	0.0027	0.0000	undef 0.0000
Kidney Pancreas	0.0000	0.0000	undef undef
Penis	0.0030	0.0000	undef 0.0000
Prostate	0.0022	0.0064	0.3412 2.9308
	0.0068	0.2111	0.0320 31.2422
Uterus-endometrium	0.0000	0.0204	0.0000 undef
Uterus-myometrium	0.0102	0.0000	undef 0.0000
Uterus-general	0.0032		
Breast hyperplasia	0.0089		
Prostate hyperplasia Seminal vesicle	0.0000		
	0.0000		
Sensory organs White blood cells	0.0017 0.0106		
Cervix	0.0100		
CCTATY			

	STANDARDIZED/SU FETUS LIBRARIES % frequency % frequency		RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0000 0.0039 0.0000 0.0260 0.0107 0.0000 0.0254 0.0062 0.0061 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.1595 0.0000 0.00087 0.0244 0.0057 0.0356 0.0000 0.0164 0.0010 0.0000 0.0000

Electronic Northern	NORMAL	O.: 115 TUMOR % frequenc	Ratios cy N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0000	0.0000	undef	

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID No	0.: 116	
	NORMAL	TUMOR	Ratios
	% frequency	% frequenc	y N/T T/N
	-	_	
Bladder			
Breast	0.0039	0.0077	0.5085 1.9666
Small intestine	0.0128	0.0000	undef 0.0000
Ovary	0.0061	0.0165	0.3707 2.6973
Endocrine tissue	0.0060	0.0000	undef 0.0000
Gastrointestinal	0.0068	0.0050	1.3585 0.7361
Brain	0.0038	0.0046	0.8283 1.2072
Hematopoietic	0.0037	0.0051	0.7200 1.3890
Skin	0.0027	0.0000	undef 0.0000
Hepatic	0.0147	0.0000	undef 0.0000
Heart	0.0000	0.0000	undef undef
Testicles	0.0042	0.0137	0.3084 3.2426
Lung	0.0058	0.0000	undef 0.0000
Stomach-esophagus	0.0042	0.0041	1.0161 0.9842
Muscle-skeleton	0.0000 0.0086	0.0000	undef undef
Kidney	0.0086	0.0000 0.0068	undef 0.0000
Pancreas	0.0033	0.0000	0.7930 1.2610
Penis	0.0090	0.0000	undef 0.0000 undef 0.0000
Prostate	0.0022	0.0043	0.5118 1.9538
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211
Uterus-myometrium	0.0076	0.0000	undef 0.0000
Uterus-general	0.0051	0.0000	undef 0.0000
Breast hyperplasia	0.0128		
Prostate hyperplasia	0.0089		
Seminal vesicle	0.0000		
Sensory organs	0.0118		
White blood cells	0.0061		
Cervix	0.0106		

	FETUS % frequency	STANDARDIZED/SUBTI LIBRARIES % frequency	RACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0056 0.0000 0.0039 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000 0.0001 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0051 0.0245 0.0076 0.0000 0.0228 0.0227 0.0000 0.0000 0.0060 0.0068 0.0155 0.0083

Electronic Northern	for SEQ. ID NO NORMAL	O.: 117 TUMOR	Ratios	
	% frequency	% frequen	cy N/T	T/N
		_		-
Bladder	2 2222			
Breast	0.0039	0.0026	1.5254 0.6555	
Small intestine	0.0038	0.0094	0.4083 2.4491	
Ovary	0.0061 0.0030	0.0000	undef 0.0000	
Endocrine tissue	0.0000	0.0052	0.5756 1.7372	
Gastrointestinal	0.0000	0.0050 0.0046	0.0000 undef	
Brain	0.0013	0.0000	0.4142 2.4145	
Hematopoietic	0.0040	0.0000	undef 0.0000	
Skin	0.0037	0.0000	undef 0.0000 undef 0.0000	
Hepatic	0.0048	0.0000	undef 0.0000	
Heart	0.0021	0.0137	0.1542 6.4853	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0041	0.0000 undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0027	0.0000	undef 0.0000	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0030	0.0000	undef 0.0000	
Prostate	0.0044	0.0128	0.3412 2.9308	
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000	0.0000	undef undef	
Breast hyperplasia	0.0096 0.0030			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0087			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0101 0.0000 0.0041 0.0000 0.0456 0.0000 0.0154 0.0000 0.0010 0.0010 0.0068 0.0000

Electronic Northern	for SEQ. ID N	0.: 118		
	NORMAL	TUMOR	Ratios	
	% frequency	% frequenc	y N/T	T/N
		-	• ,	•
Bladder	_			
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000	0.0000	undef undef	
Endocrine tissue	0.0000	0.0026	0.0000 undef	
Gastrointestinal	0.0000	0.0000	undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	undef undef	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000 0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000 0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0000	undef undef undef undef	
Uterus-endometrium	0.0000	0.1055	undef undef 0.0000 undef	
	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000		ander ander	
Breast hyperplasia	0.0000			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	D.: 119	
	NORMAL	TUMOR	Ratios
	% frequency	% frequency	y N/T T/N
Bladder			
Breast	0.0039	0.0000	undef 0.0000
Small intestine	0.0013	0.0038	0.3403 2.9389
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0052	0.0000 undef
Gastrointestinal	0.0034	0.0050	0.6792 1.4722
Brain	0.0019	0.0000	undef 0.0000
Hematopoietic	0.0007	0.0041	0.1800 5.5559
Skin	0.0040	0.0000	undef 0.0000
Hepatic	0.0037	0.0000	undef 0.0000
Heart	0.0000	0.0000	undef undef
Testicles	. 0.0011	0.0000	undef 0.0000
	. 0.0000	0.0000	undef undef
Lung	· 0.0010 : 0.0000	0.0000 0.0153	undef 0.0000
Stomach-esophagus	. 0.0000	0.0000	0.0000 undef undef undef
Muscle-skeleton	: 0.0000	0.0000	under under under
Kidney	; 0.0000	0.0000	undef undef
Pancreas	; 0.0000	0.0000	undef undef
Penis	0.0022	0.0021	1.0236 0.9769
Prostate	1 0.0068	0.1055	0.0640 15.6211
Uterus-endometrium	1 0.0000	0.0000	undef undef
Uterus-myometrium	. 0.0102	0.0000	undef 0.0000
Uterus-general	. 0.0000		
Breast hyperplasia	. 0.0030		
Prostate hyperplasia	. 0.0000		
Seminal vesicle	0.0000		
Sensory organs	. 0.0026		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0000 0.0000 0.0023 0.0000 0.0000 0.0000 0.0000 0.0110 0.0000 0.0155 0.0000
		ULEIUS II	

Electronic Northern	NORMAL	TUMOR	Ratios
	% frequency	% frequenc	y N/T T/N
Bladder			
Breast	0.0195	0.0077	2.5424 0.3933
Small intestine	0.0090	0.0075	1.1909 0.8397
	0.0031	0.0000	undef 0.0000
Ovary	0.0060	0.0078	0.7675 1.3029
Endocrine tissue	0.0068 0.0038	0.0125	0.5434 1.8403
Gastrointestinal	0.0059	0.0093 0.0031	0.4142 2.4145 1.9199 0.5209
Brain	0.0039	0.0758	0.0353 28.3379
Hematopoietic	0.0027	0.0000	undef 0.0000
Skin	0.0000	0.0065	0.0000 undef
Hepatic	0.0042	0.0000	undef 0.0000
Heart	0.0000	0.0000	undef undef
Testicles	0.0042	0.0041	1.0161 0.9842
Lung	0.0000	0.0000	undef undef
Stomach-esophagus	0.0034	0.0060	0.5711 1.7510
Muscle-skeleton	0.0109	0.0137	0.7930 1.2610
Kidney	0.0033	0.0000	undef 0.0000
Pancreas	0.0150	0.0000	undef 0.0000
Penis	0.0087	0.0000	undef 0.0000
Prostate	0.0000	0.1055	0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0051	0.0000	undef 0.0000
Uterus-general	0.0000		
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0118		
Sensory organs	0.0043		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0028 0.0000 0.0000 0.0000 0.0000 0.0071 0.0145 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	C.0000 0.0000 0.0051 0.0000 0.0012 0.0000 0.0228 0.0000 0.0154 0.0000 0.0060 0.0000 0.0000

Electronic Northern fo	r SEQ. ID N NORMAL	O.: 121 TUMOR	Ratios	
	- · - ·	% frequen		T/N
	* ITequency	o llequen	Cy N/I	1/14
Bladder	0 0000	2 2222		
Breast	0.0000	0.0000	undef undef	
Small intestine	0.0000	0.0000	undef undef	
Ovary	0.0000 0.0000	0.0000 0.0000	undef undef undef undef	
Endocrine tissue	0.0000	0.0000	undef undef undef undef	
	0.0000	0.0000	under under under	
Gastrointestinal	0.0000	0.0000	under under undef undef	
Brain	0.0000	0.0000	undef undef	
Hematopoietic	0.0000	0.0000	under under under	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0000	0.0000	undef undef	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0000	0.0000	undef undef	
Stomach-esophagus	0.0000	0.0000	undef undef	
Muscle-skeleton	0.0000	0.0000	undef undef	
Kidney	0.0000	0.0000	undef undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.1055	0.0000 undef	
Uterus-endometrium	0.0000	0.0000	undef undef	
Uterus-myometrium	0.0000	0.0000	undef undef	
Uterus-general	0.0000			
Breast hyperplasia	0.0030			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0000			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000

Electronic Northern			D 61
	NORMAL	TUMOR	Ratios
	% frequen	cy % frequ	lency N/T T/N
Bladder			
Breast	0.0234	0.0230	1.0170 0.9833
Small intestine	0.0269	0.0207	1.2992 0.7697
Ovary	0.0061	0.0662	0.0927 10.7893
Endocrine tissue	0.0150	0.0572	0.2616 3.8219
Gastrointestinal	0.0085	0.0100	0.8491 1.1778
Brain	0.0134	0.0463	0.2899 3.4492
Hematopoietic	0.0015 0.0094	0.0092	0.1600 6.2504
Skin	0.0551	0.0000	undef 0.0000
Hepatic	0.0143	0.0000	undef 0.0000
Heart	0.0085	0.0000	0.3676 2.7200
Testicles	0.0058	0.0117	undef 0.0000 0.4920 2.0326
Lung	0.0073	0.0286	0.2540 3.9367
Stomach-esophagus	0.0966	0.0077	12.6053 0.0793
Muscle-skeleton	0.0000	0.0060	0.0000 undef
Kidney	0.0054	0.0068	0.7930 1.2610
Pancreas	0.0050	0.0055	0.8974 1.1143
Penis	0.0329	0.1600	0.2059 4.8565
Prostate	0.0087	0.0043	2.0473 0.4885
Uterus-endometrium	0.0000	0.1055	0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
	0.0128		
Breast hyperplasia	0.0149		
Prostate hyperplasia			
Seminal vesicle	0.0000		
Sensory organs	0.0017		
White blood cells	0.0532		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0417 0.0056 0.0000 0.0000 0.0000 0.0000 0.0071 0.0036 0.0000 0.0062 0.0121 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0101 0.0000 0.0146 0.0366 0.0000 0.0032 0.0000 0.0573 0.0040 0.0205 0.0077

Electronic Northern	for SEQ. ID NO.: 123 NORMAL TUMOR	Ratios
	% frequency % freq	quency N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000	undef 0.4142 2.4145 0.2400 4.1669 undef 0.0000 undef 0.0000 0.0000 undef

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	TUMOR	Ratios	'/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-general Breast hyperplasia	NORMAL % frequency 0.0000 0.0000 0.0000 0.0001 0.0051 0.0095 0.0095 0.0000 0.0017 0.00027 0.0000 0.0017 0.0000 0.0065 0.0068 0.0000 0.0051 0.0000 0.0051 0.0000	TUMOR		?/N
Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRACT LIBRARIES % frequency	PED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0063 0.0000 0.0000 0.0000 0.0036 0.0036 0.0000 0.0062 0.0062 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0245 0.0082 0.0122 0.0000 0.0032 0.0000 0.0246 0.0100 0.0000 0.0077 0.0042

Electronic Northern	for SEQ. ID NO.: 1 NORMAL TUMO % frequency % fr	OR Ratios
Bladder		.0077 2.5424 0.3933
Breast		.0075 0.8507 1.1756
Small intestine		.0000 undef 0.0000 .0130 0.0000 undef
Ovary		.0226 0.6792 1.4722
Endocrine tissue		.0093 0.8283 1.2072
Gastrointestinal		.0092 0.8800 1.1364
Brain		.0379 0.1764 5.6676
Hematopoietic		.0000 undef 0.0000
Skin	0.0048 0	.0194 0.2451 4.0800
Hepatic	0.0106 0	.0000 undef 0.0000
Heart	0.0000 0	.0000 undef undef
Testicles		.0102 0.8129 1.2302
Lung		.0153 0.0000 undef
Stomach-esophagus		.0180 0.5711 1.7510
Muscle-skeleton		.0068 1.1896 0.8406
Kidney		.0000 undef 0.0000
Pancreas		.0000 undef 0.0000
Penis		.0064 2.3885 0.4187 .1055 0.1280 7.8106
Prostate		.0136
Uterus-endometrium		.0000 undef 0.0000
Uterus-myometrium	0.0064	
Uterus-general	0.0059	
Breast hyperplasia	0 0000	
Prostate hyperplasia	0.0118	
Seminal vesicle	0.0069	
Sensory organs	0.0106	
White blood cells Cervix		

	FETUS % frequency	LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0056 0.0000 0.0157 . 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000 0.0121 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0203 0.0245 0.0099 0.0122 0.0171 0.0097 0.0000 0.0246 0.0060 0.0342 0.0387 0.0250

Electronic Northern			
	NORMAL	TUMOR	Ratios
	<pre>% frequency</pre>	<pre>% frequency</pre>	N/T T/N
Bladder	0.0039	0.0000	undef 0.0000
Breast	0.0013	0.0019	0.6805 1.4694
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0025	0.0000 undef
Gastrointestinal	0.0000	0.0000	undef undef
Brain	0.000	0.0010	0.0000 undef
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0000	0.0000	undef undef
Hepatic	0.000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0000	0.0000	undef undef
Lung	0.0000	0.0000	undef undef
Stomach-esophagus	0.0000	0.0000	undef undef
Muscle-skeleton	0.0000	0.0000	undef undef
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0000	0.0000 0.0000	undef undef undef undef
Penis	0.0000	0.0000	0.0000 undef
Prostate	0.0000	0.1055	0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.0000	under under under
Uterus-general	0.0000	3.0000	and and a
Breast hyperplasia	0.0000		
Prostate hyperplasia			
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix			
COLTIA			

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	.: 127	
	NORMAL	TUMOR	Ratios
	<pre>% frequency</pre>	% frequency	N/T T/N
Bladder		0.0405	2 (102 1 5560
Breast	0.0312 0.0192	0.0486 0.0282	0.6423 1.5569 0.6805 1.4694
Small intestine	0.0192	0.0282	undef 0.0000
Ovary	0.0399	0.0000	0.5756 1.7372
Endocrine tissue	0.0210	0.0326	0.8882 1.1258
Gastrointestinal	0.0460	0.0231	1.9880 0.5030
Brain	0.0532	0.0575	0.9257 1.0803
Hematopoietic	0.0348	0.0379	0.9175 1.0899
Skin	0.0367	0.0000	undef 0.0000
Hepatic	0.0048	0.0647	0.0735 13.5999
Heart	0.0699	0.0412	1.6961 0.5896
Testicles	0.0288	0.4210	0.0683 14.6349
Lung	0.0343	0.0368	0.9314 1.0737
Stomach-esophagus	0.0773	0.0230	3.3614 0.2975
Muscle-skeleton	0.0497	0.0660	0.7528 1.3283
Kidney	0.0353	0.1575	0.2241 4.4619
Pancreas	0.0165	0.0939	0.1760 5.6828
Penis	0.0299	0.0267	1.1232 0.8903
Prostate	0.0196	0.0298	0.6580 1.5197
Uterus-endometrium	0.0270	0.1583	0.1707 5.8579
Uterus-myometrium	0.0229 0.0051	0.0679 0.0954	0.3367 2.9702 0.0534 18.7357
Uterus-general	0.0031	0.0954	0.0334 TO.7337
Breast hyperplasia	0.0192		
Prostate hyperplasia	0.0890		
Seminal vesicle	0.0353		
Sensory organs	0.0399		
White blood cells	0.0319		
Cervix			

	FETUS % frequency		STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0417 0.0333 0.0313 0.0197 0.0000 0.0000 0.0783 0.0217 0.0507 0.0309 0.0727 0.0997 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0152 0.0000 0.0082 0.0244 0.0057 0.0032 0.0077 0.0082 0.0141 0.0000 0.0310 0.0125	

Electronic Northern	NORMAL	TUMOR	Ratios	
	% frequency	% frequenc	y N/T	T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium	NORMAL			T/N
Uterus-myometrium Uterus-general	0.0000	0.0000	undef undef undef 0.0000	
Breast hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0030 0.0089 0.0235 0.0026			

	FFTUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0056 0.0063 0.0079 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0061 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0204 0.0000 0.0152 0.0000 0.0082 0.0122 0.0057 0.0032 0.0154 0.0164 0.0060 0.0205 0.0077

Electronic Northern	for SEQ. ID NO	D.: 129	
	NORMAL	TUMOR	Ratios
	% frequency	% frequency	N/T T/N
	* *		•
Bladder			
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0019	0.0000 undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0000	0.0000	undef undef
Gastrointestinal	0.0017	0.0000	undef 0.0000
Brain	0.0000	0.0000	undef undef
	0.0007	0.0000	undef 0.0000
Hematopoietic	0.0000	0.0000	undef undef
Skin	0.0037	0.0000	undef 0.0000
Hepatic	0.0000	0.0000	undef undef
Heart	0.0021	0.0000	undef 0.0000
Testicles	0.0000	0.0000	undef undef undef 0.0000
Lung	0.0010	0.0000 0.0000	under 0.0000 undef undef
Stomach-esophagus	0.0000 0.0000	0.0000	under under undef undef
Muscle-skeleton	0.0000	0.0137	0.1983 5.0439
Kidney	0.0027	0.0000	undef 0.0000
Pancreas	0.0000	0.0000	under 0.0000 undef undef
Penis	0.0000	0.0000	under under under undef 0.0000
Prostate	0.0002	0.1055	0.0000 undef
Uterus-endometrium	0.0000	0.0000	undef undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	211222
Breast hyperplasia	0.0000		
Prostate hyperplasia			
Seminal vesicle	0.0000		
Sensory organs	0.0009		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.0254 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0077 0.0000 0.0010 0.0068 0.0000

Electronic Northern				
	NORMAL	TUMOR	Ratios	
	<pre>% frequency</pre>	% frequence	cy N/T	T/N
Bladder				
Breast	0.0039	0.0051	0.7627 1.3111	
Small intestine	0.0013	0.0019	0.6805 1.4694	
Ovary	0.0031	0.0000	undef 0.0000	
Endocrine tissue	0.0000	0.0000	undef undef	
Gastrointestinal	0.0000 0.0000	0.0000 0.0046	undef undef 0.0000 undef	
Brain	0.0000	0.0010	0.0000 under	
Hematopoietic	0.0027	0.0000	undef 0.0000	
Skin	0.0000	0.0000	undef undef	
Hepatic	0.0000	0.0000	undef undef	
Heart	0.0021	0.0000	undef 0.0000	
Testicles	0.0000	0.0000	undef undef	
Lung	0.0010	0.0041	0.2540 3.9367	
Stomach-esophagus	0.000	0.0000	undef undef	
Muscle-skeleton	0.0017	0.0000	undef 0.0000	
Kidney	0.000	0.0068	0.0000 undef	
Pancreas	0.0000	0.0000	undef undef	
Penis	0.0000	0.0000	undef undef	
Prostate	0.0000	0.0021	0.0000 undef	
Uterus-endometrium	0.0000 0.0000	0.1055 0.0000	0.0000 undef	
Uterus-myometrium	0.0000	0.0000	undef undef undef undef	
Uterus-general	0.0000	0.0000	under under	
Breast hyperplasia	0.0059			
Prostate hyperplasia	0.0000			
Seminal vesicle	0.0000			
Sensory organs	0.0009			
White blood cells	0.0000			
Cervix				

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0082 0.0000 0.0068 0.0068

Electronic Northern	for SEQ. ID N NORMAL % frequency	TUMOR	Ratios ncy N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0078 0.0115 0.0000 0.0060 0.0153 0.0019 0.0074 0.0080 0.0037 0.0095 0.0201 0.0058 0.0114 0.0193 0.0051 0.0136 0.0066 0.0030 0.0065 0.0068 0.0076 0.0051 0.0096 0.0099 0.0089 0.0089 0.0089 0.0089 0.0000	0.0128 0.0169 0.0165 0.0260 0.0176 0.0046 0.0092 0.0758 0.0000 0.0065 0.0000 0.0234 0.0164 0.0077 0.0120 0.0137 0.0110 0.0000 0.0128 0.1055 0.0000 0.0000	0.6102 1.6389 0.6805 1.4694 0.0000 undef 0.2303 4.3431 0.8733 1.1451 0.4142 2.4145 0.8000 1.2501 0.1059 9.4460 undef 0.0000 1.4706 0.6800 undef 0.0000 0.2460 4.0652 0.6985 1.4315 2.5211 0.3967 0.4283 2.3347 0.9913 1.0088 0.5983 1.6714 undef 0.0000 0.5118 1.9538 0.0640 15.6211 undef 0.0000 undef 0.0000
~~-·			

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0000 0.0079 0.0000 0.0260 0.0107 0.0108 0.0000 0.0062 0.0424 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0204 0.0000 0.0051 0.0000 0.0099 0.0244 0.0057 0.0259 0.0077 0.0082 0.0090 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	0.: 132	
	NORMAL	TUMOR	Ratios
	% frequency	% frequency	Y N/T T/N
Bladder			
Breast	0.0000	0.0000	undef undef
Small intestine	0.0000	0.0000	undef undef
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.000	0.0000	undef undef
Gastrointestinal	0.0000	0.0025	0.0000 undef
Brain	0.0000	0.0000	undef undef
Hematopoietic	0.0000	0.0000	undef undef
Skin -	0.0013	0.0000	undef 0.0000
Hepatic	0.0000	0.0000	undef undef
Heart	0.0000	0.0000	undef undef
Testicles	0.0011	0.0000	undef 0.0000
Lung	0.0058 0.0000	0.0000	undef 0.0000
Stomach-esophagus	0.0000	0.0000	undef undef undef undef
Muscle-skeleton	0.0000	0.0000	under under under
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0017	0.0000	under dider
Penis	0.0000	0.0000	undef undef
Prostate	0.0022	0.0000	undef 0.0000
Uterus-endometrium	0.0000	0.1055	0.0000 undef
Uterus-myometrium	0.0000	0.0000	undef undef
Uterus-general	0.0000	0.0000	undef undef
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0000		
White blood cells	0.0000		
Cervix	0.0000		

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus n	0.0000 0.0000 0.0051 0.0000 0.00057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern f			_
		UMOR	Ratios
	% frequency %	frequency	N/T T/N
Bladder			
Breast	0.0039	0.0051	0.7627 1.3111
Small intestine	0.0141	0.0150	0.9357 1.0687
Ovary	0.0194	0.0000	undef 0.0000
Endocrine tissue	0.0120 0.0102	0.0104	1.1513 0.8686
Gastrointestinal	0.0102	0.0176	0.5822 1.7176
Brain	0.0052	0.0139 0.0072	0.4142 2.4145
Hematopoietic	0.0174	0.0072	0.7200 1.3890
Skin	0.0174	0.0000	undef 0.0000 undef 0.0000
Hepatic	0.0000	0.0000	under 0.0000 undef undef
Heart	0.0064	0.0000	under under under undef 0.0000
Testicles	0.0058	0.0234	0.2460 4.0652
Lung	0.0104	0.0204	0.5080 1.9684
Stomach-esophagus	0.0193	0.0153	1.2605 0.7933
Muscle-skeleton	0.0086	0.0240	0.3569 2.8016
Kidney	0.0244	0.0000	undef 0.0000
Pancreas	0.0066	0.0110	0.5983 1.6714
Penis	0.0120	0.0267	0.4493 2.2259
Prostate	0.0153	0.0149	1.0236 0.9769
Uterus-endometrium	0.0270	0.2111	0.1280 7.8106
Uterus-myometrium	0.0305	0.0136	2.2445 0.4455
Uterus-general	0.0153	0.0000	undef 0.0000
Breast hyperplasia	0.0192		
Prostate hyperplasia	0.0327		
Seminal vesicle	0.0178		
Sensory organs	0.0235 0.0000		
White blood cells	0.0000		
Cervix	0.0327		

	FETUS % frequency	STANDARDIZED/SUBTR LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0305 0.0313 0.0039 0.0000 0.0520 0.0107 0.0253 0.0000 0.0309 0.0061 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0068 0.0000 0.0253 0.0245 0.0093 0.0122 0.0000 0.0000 0.0000 0.0246 0.0020 0.0068 0.0000 0.0042

Electronic Northern	for SEQ. ID NO NORMAL	D.: 134 TUMOR	Ratios
	% frequency	% frequence	cy N/T T/N
		_	
Bladder		_	
Breast	0.0273	0.0383	0.7119 1.4047
Small intestine	0.0141	0.0244	0.5758 1.7366
Ovary	0.0245	0.0331	0.7415 1.3487
Endocrine tissue	0.0120	0.0312	0.3838 2.6058
Gastrointestinal	0.0290	0.0201	1.4434 0.6928
Brain	0.0287	0.0278	1.0354 0.9658
Hematopoietic	0.0133	0.0298	0.4469 2.2378
Skin	0.0281 0.0073	0.0379	0.7411 1.3494
Hepatic	0.0073	0.0847	0.0866 11.5419
Heart	0.0191	C.0259 O.1512	1.4706 0.6800 0.1262 7.9265
Testicles	0.0173	0.1312	0.1262 7.9265
Lung	0.0447	0.0470	0.9498 1.0528
Stomach-esophagus	0.0773	0.0153	5.0421 0.1983
Muscle-skeleton	0.0668	0.0420	1.5909 0.6286
Kidney	0.0190	0.0342	0.5551 1.8014
Pancreas	0.0066	0.0331	0.1994 5.0142
Penis	0.0150	0.1600	0.0936 10.6842
Prostate	0.0196	0.0149	1.3161 0.7598
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211
Uterus-myometrium	0.0229	0.0204	1.1223 0.8911
Uterus-general	0.0102	0.0000	undef 0.0000
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0030 0.0089		
Seminal vesicle	0.0000		
Sensory organs	0.1240		
White blood cells	0.0213		
Cervix	4.7 4.1		

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	ACTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0111 0.0000. 0.0118 0.0000 0.0260 0.0107 0.0036 0.0000 0.0000 0.0000 0.0364 0.0000 0.0126	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0408 0.0000 0.0253 0.0245 0.0169 0.0244 0.0000 0.0454 0.0000 0.0164 0.0000 0.0000 0.0000

Electronic Northern	NORMAL	TUMOR	Ratios
	% frequency	% frequen	cy N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells	% frequency 0.0390 0.0102 0.0429 0.0030 0.0358 0.0115 0.0148 0.0227 0.0367 0.0285 0.0445 0.0173 0.0291 0.0580 0.0685 0.0244 0.0116 0.0180 0.0131 0.0135 0.0076 0.0051 0.0128 0.0149 0.0000 0.0000	% frequen 0.0383 0.0301 0.0000 0.0156 0.0351 0.0278 0.0226 0.2273 0.1695 0.0582 0.0587 0.0234 0.0470 0.0153 0.0840 0.0685 0.0607 0.0000 0.0064 0.6332 0.0408 0.0000	1.0170 0.9833 0.3403 2.9389 undef 0.0000 0.1919 5.2117 1.0189 0.9815 0.4142 2.4145 0.6545 1.5279 0.1000 10.0016 0.2166 4.6168 0.4902 2.0400 0.6476 1.5441 0.7380 1.3551 0.6185 1.6169 3.7816 0.2644 0.8159 1.2257 0.3569 2.8022 0.1904 5.2530 undef 0.0000 2.0473 0.4885 0.0213 46.8633 0.1870 5.3463 undef 0.0000
Cervix	0.0639		

	FETUS % frequency	STANDARDIZED/SUBTRACTED LIBRARIES % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0167 0.0000 0.0236 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0182 0.0997 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs	0.0068 0.0000 0.0051 0.0000 0.0035 0.0122 0.0000 0.0032 0.0077 0.0000 0.0030 0.0030
		Uterus n	

Electronic Northern	for SEQ. ID NO NORMAL % frequency	TUMOR	Ratios acy N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasia Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0102 0.0092 0.0090 0.0000 0.0019 0.0059 0.0040 0.0073 0.0048 0.0000 0.0114 0.0097 0.0103 0.0081 0.0050 0.0060 0.0060 0.0068 0.0000 0.0068 0.0000 0.0000 0.0000 0.0000 0.0000	0.0026 0.0038 0.0165 0.0078 0.0150 0.0093 0.0031 0.0379 0.0000 0.0065 0.0000 0.0117 0.0041 0.0153 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 undef 2.7221 0.3674 0.5561 1.7982 1.1513 0.8686 0.0000 undef 0.2071 4.8289 1.9199 0.5209 0.1059 9.4460 undef 0.0000 0.7353 1.3600 undef undef 0.0000 undef 2.7942 0.3579 0.6303 1.5866 0.8567 1.1673 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000 undef undef

	FETUS % frequency	STANDARDIZED/SUBTRAC LIBRARIES % frequency	TED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0139 0.0056 0.0000 0.0079 0.0000 0.0000 0.0142 0.0108 0.0254 0.00254 0.0000 0.0061 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0068 0.0000 0.0000 0.0000 0.0076 0.0000 0.0171 0.0000 0.0164 0.0060 0.0068 0.0000 0.0125

Electronic Northern for SEQ. ID NO.: 137 NORMAL TUMOR Ratios % frequency % frequency N/T T/N Bladder 0.0000 0.0000 undef undef Breast 0.0013 0.0000 undef 0.0000 Small intestine 0.0000 0.0000 undef undef undef undef Ovary 0.0000 0.0000 Endocrine tissue 0.0000 0.0000 undef undef 0.0000 0.0000 Gastrointestinal undef undef 0.0000 undef undef 0.0000 Brain undef undef undef 0.0000 0.0000 Hematopoietic 0.0000 0.0000 Skin 0.0000 undef undef 0.0000 Hepatic 0.0000 0.0000 undef undef Heart 0.0000 0.0000 undef undef Testicles 0.0000 0.0000 undef undef Lung undef undef undef undef 0.0000 0.0000 0.0000 Stomach-esophagus 0.0017 0.0000 Muscle-skeleton 0.0000 0.0000 undef undef Kidney 0.0000 0.0000 undef undef Pancreas 0.0000 0.0000 undef undef Penis 0.0000 0.0000 undef undef Prostate 0.0000 undef 0.0000 0.1055 Uterus-endometrium 0.0000 0.0000 undef undef Uterus-myometrium 0.0000 0.0000 undef undef 0.0000 Uterus-general 0.0000 Breast hyperplasia 0.0000 Prostate hyperplasia 0.0000 Seminal vesicle 0.0000 Sensory organs 0.0000 White blood cells Cervix

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Electronic Northern	for SEQ. ID NO	D.: 138 TUMOR	Ratios
	% frequency		N/T T/N
			. ,
Bladder	0.0156	0.0051	3.0509 0.3278
Breast	0.0000	0.0031	0.0000 undef
Small intestine	0.0000	0.0331	0.0000 undef
Ovary	0.0000	0.0052	0.0000 undef
Endocrine tissue	0.0051	0.0050	1.0189 0.9815
Gastrointestinal	0.0077	0.0139	0.5522 1.8109
Brain	0.0059	0.0062	0.9599 1.0417
Hematopoietic	0.0040	0.0000	undef 0.0000
Skin	0.0000	0.0000	undef undef
Hepatic	0.0048	0.0065	0.7353 1.3600
Heart	0.0085	0.0275	0.3084 3.2426
Testicles	0.0000	0.0234	0.0000 undef
Lung	0.0062	0.0143	0.4355 2.2964
Stomach-esophagus	0.0097 0.0137	0.0000 0.0000	undef 0.0000
Muscle-skeleton	0.0000	0.0000	undef 0.0000 undef undef
Kidney	0.0033	0.0276	0.1197 8.3571
Pancreas	0.0120	0.0000	undef 0.0000
Penis	0.0000	0.0064	0.0000 undef
Prostate	0.0000	0.1055	0.0000 undef
Uterus-endometrium	0.0152	0.0068	2.2445 0.4455
Uterus-myometrium	0.0051	0.0000	undef 0.0000
Uterus-general	0.0064		
Breast hyperplasia	0.0030		
Prostate hyperplasia Seminal vesicle	0.0000		
	0.0000		
Sensory organs White blood cells	0.0087 0.0000		
Cervix	0.0000		

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0028 0.0000 0.0118 0.0000 0.0000 0.0107 0.0108 0.0000 0.0000 0.0242 0.0249 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0272 0.0000 0.0253 0.0000 0.0151 0.0000 0.0057 0.0356 0.0000 0.0000 0.0090 0.0068 0.0077 0.0042

Electronic Northern	NORMAL	O.: 139 TUMOR % frequency	Ratios N/T T/N
Bladder Breast Small intestine Ovary Endocrine tissue Gastrointestinal Brain Hematopoietic Skin Hepatic Heart Testicles Lung Stomach-esophagus Muscle-skeleton Kidney Pancreas Penis Prostate Uterus-endometrium Uterus-myometrium Uterus-general Breast hyperplasia Prostate hyperplasia Prostate hyperplasis Seminal vesicle Sensory organs White blood cells Cervix	0.0000 0.0013 0.0061 0.0120 0.0017 0.0077 0.0000 0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0054 0.0017 0.0054 0.0017 0.0060 0.0044 0.0000 0.0076 0.0000 0.0032 0.0030 0.0032 0.0030 0.0235 0.0000 0.0000	0.0000 0.0056 0.0165 0.0052 0.0025 0.0046 0.0021 0.0000 0.0000 0.0000 0.0000 0.0041 0.0000 0.0041 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000	undef undef 0.2268 4.4083 0.3707 2.6973 2.3025 0.4343 0.6792 1.4722 1.6567 0.6036 0.0000 undef undef 0.0000 undef undef 0.0000 undef undef undef 0.0000 undef undef undef 0.2856 3.5020 undef 0.0000 undef undef
	FETUS % frequency	STANDARDIZ LIBRARIES % frequenc	ED/SUBTRACTED
Development	0.0000	Breast	0.0000

	FETUS % frequency	LIBRARIES ' % frequency	
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0056 0.0063 0.0000 0.0000 0.0000 0.0036 0.0036 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0000 0.0000 0.0051 0.0245 0.0041 0.0244 0.0000 0.0032 0.0000 0.0164 0.0010 0.0137 0.0000

Electronic Northern			
	NORMAL	TUMOR	Ratios
	% frequency	% frequen	cy N/T T/N
Bladder			
Breast	0.0039	0.0000	undef 0.0000
Small intestine	0.0051	0.0094	0.5444 1.8368
Ovary	0.0000	0.0000	undef undef
Endocrine tissue	0.0090	0.0000	undef 0.0000
Gastrointestinal	0.0085	0.0100	0.8491 1.1778
Brain	0.0077	0.0000	undef 0.0000
Hematopoietic	0.0015	0.0041	0.3600 2.7779
Skin	0.0040	0.0000	undef 0.0000 undef 0.0000
Hepatic	0.0110 0.0000	0.0000	under 0.0000 undef undef
Heart	0.0000	0.0000	0.0771 12.9706
Testicles	0.0011	0.0117	0.4920 2.0326
Lung	0.0042	0.0020	2.0321 0.4921
Stomach-esophagus	0.0000	0.0153	0.0000 undef
Muscle-skeleton	0.0034	0.0060	0.5711 1.7510
Kidney	0.0000	0.0000	undef undef
Pancreas	0.0017	0.0110	0.1496 6.6857
Penis	0.0000	0.0000	undef undef
Prostate	0.0044	0.0043	1.0236 0.9769
Uterus-endometrium	0.0000	0.1055	0.0000 undef
	0.0000	0.0068	0.0000 undef
Uterus-myometrium	0.0153	0.0000	undef 0.0000
Uterus-general	0.0000		
Breast hyperplasia	, 0.0030		
Prostate hyperplasia	* * * *		
Seminal vesicle	0.0118		
Sensory organs	0.0026		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0056 0.0063 0.0000 0.0000 0.0000 0.0000 0.0036 0.0000 0.0062 0.0061 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0204 0.0000 0.0051 0.0000 0.0116 0.0122 0.0000 0.0130 0.0000 0.0164 0.0060 0.0000 0.0000

Electronic Northern f	or SEQ. ID NO NORMAL	O.: 141 TUMOR	Ratios
	% frequency	% frequence	cy N/T T/N
Bladder	-		
Breast	0.0000	0.0051	0.0000 undef
Small intestine	0.0064	0.0150	0.4253 2.3511
Ovary	0.0000	0.0496	0.0000 undef
Endocrine tissue	0.0060	0.0026	2.3025 0.4343
Gastrointestinal	0.0068	0.0050	1.3585 0.7361
Brain	0.0096 0.0052	0.0046	2.0708 0.4829
Hematopoietic	0.0032	0.0051 0.0000	1.0079 0.9921
Skin	0.0037	0.0000	undef 0.0000
Hepatic	0.0000	0.0000	undef 0.0000 undef undef
Heart	0.0053	0.0000	undef 0.0000
Testicles	0.0000	0.0000	undef undef
Lung	0.0083	0.0061	1.3548 0.7381
Stomach-esophagus	0.0000	0.0153	0.0000 undef
Muscle-skeleton	0.0103	0.0000	undef 0.0000
Kidney	0.0027	0.0068	0.3965 2.5219
Pancreas	0.0033	0.0055	0.5983 1.6714
Penis	0.0120	0.0267	0.4493 2.2259
Prostate	0.0000	0.0021	0.0000 undef
Uterus-endometrium	0.0068	0.1055	0.0640 15.6211
Uterus-myometrium	0.0076	0.0000	undef 0.0000
Uterus-general	0.0153	0.0000	undef 0.0000
Breast hyperplasia	0.0000		
Prostate hyperplasia	0.0000		
Seminal vesicle	0.0000		
Sensory organs	0.0087		
White blood cells	0.0000		
Cervix			

	FETUS % frequency	STANDARDIZED/SUBTRA LIBRARIES % frequency	CTED
Development Gastrointestinal Brain Hematopoietic Skin Hepatic Heart-blood vessels Lung Suprarenal gland Kidney Placenta Prostate Sensory organs	0.0000 0.0139 0.0000 0.0039 0.0000 0.0000 0.0071 0.0000 0.0000 0.0000 0.0000 0.0000	Breast Ovary_n Ovary_t Endocrine tissue Fetal Gastrointestinal Hematopoietic Skin-muscle Testicles Lung Nerves Prostate Sensory Organs Uterus_n	0.0136 0.0000 0.0101 0.0000 0.0082 0.0000 0.0032 0.0154 0.0082 0.0040 0.0068 0.0000

2.2. Fisher Test

In order to decide whether a partial sequence S of a gene occurs significantly more often or less often in a library for normal tissue than in a library for degenerated tissue, Fisher's exact test, a standard statistical process, is carried out (Hays, W. L., (1991) Statistics, Harcourt Brace College Publishers, Fort Worth).

The null hypothesis reads: The two libraries cannot be distinguished with respect to the frequency of sequences homologous to S. If the null hypothesis can be rejected with high enough certainty, the gene belonging to S is accepted as an advantageous candidate for a cancer gene, and in the next step an attempt is made to achieve lengthening of its sequence.

Example 3

Automatic Lengthening of the Partial Sequence

Automatic lengthening of partial sequence S is completed in three steps:

- Determination of all sequences homologous to S from the total set of available sequences using BLAST
- 2. Assembling these sequences by means of the standard program GAP4 (Bonfield, J. K.; Smith, K. F. and Staden, R. (1995), Nucleic Acids Research 23 4992-4999) (conting formation).
- Computation of a consensus sequence C from the assembled sequences.

Consensus sequence C will generally be longer than initial sequence S. Its electronic Northern Blot will accordingly

deviate from that for S. A repeated Fisher test decides whether the alternative hypothesis of deviation from a uniform expression in the two libraries can be maintained. If this is the case, an attempt is made to lengthen C in the same way as S. This iteration is continued with consensus sequences C_i (i: iteration index) obtained in each case until the alternative hypothesis is rejected (if H_0 Exit; truncation criterion I) or until automatic lengthening is no longer possible (while $C_i > C_{i-1}$; truncation criterion II).

In the case of truncation criterion II, with the consensus sequence present after the last iteration, a complete or roughly complete sequence of a gene which can be related to cancer with high statistical certainty is acquired.

Analogously to the above-described examples, it was possible to find from uterus tumor tissue the nucleic acid sequences described in Table I.

Furthermore, for the individual nucleic acid sequences, it was possible to determine the peptide sequences (ORF's) that are listed in Table II, in which no peptide can be assigned to a few nucleic acid sequences and more than one peptide can be assigned to some nucleic acid sequences. As already mentioned above, both the determined nucleic acid sequences and the peptide sequences assigned to the nucleic acid sequences are the subject of this invention.

Example 4

Mapping of Nucleic Acid Sequences on the Human Genome

Human genes were mapped using the Stanford G3 Hybrid Panel (Stewart et al., 1997), which is marketed by Research Genetics, Huntsville, Alabama. This panel consists of 83 different genomic DNAs of human-hamster hybrid cell lines and allows resolution of 500 kilobases. The hybrid cell lines were obtained by fusion of irradiated diploid human cells with cells of the Chinese hamster. The retention pattern of the human chromosome fragments is determined by means of gene-specific primers in a polymerase chain reaction and is analyzed using software available from the Stanford RH server (http://www.stanford.edu/RH/rhserver_form2. html). This program determines the STS marker that is nearest to the desired gene. The corresponding cytogenetic band was determined using the "Mapview" program of the Genome Database (GDB), (http://gdbwww.dkfz-heidelberg.de).

In addition to mapping of genes on the human chromosome set by various experimental methods, it is possible to determine the location of genes on this by biocomputer methods. To do this, the known program e-PCR was used (Schuler GD (1998) Electronic PCR: Bridging the Gap between Genome Mapping and Genome Sequencing. Trends Biotechnol 16: 456-459, Schuler GD (1997). Sequence Mapping by Electronic PCR. Genome Res. 7: 541-550). The database used here no longer corresponds to the one cited in the literature, but is a further development which includes data from the public database RHdb (http://www.ebi.ac.uk/RHdb/-index.html). Analogously to the mapping by the hybrid panels,

the results were evaluated with the above-mentioned software and the software of the Whitehead Institute

(http://carbon.wi.mit.edu:8000/cgi-bin/contig/rhmapper.pl).

References to the modules:

Pfam: Protein families database of alignments and HMMs (pfam@sanger.ac.uk)

PROSITE: The PROSITE database, its status in 1999. Nucleic Acids Res. 27: 215-219 (http://www.expasy.ch/sprot/prosite.html)

TABLE I

Col. 1 - Sequence ID No.:

Col. 2 - Expression in the endometrial tumor:

Col. 3 - Function

Col. 4 - Modules

Col. 5 - Length of the applied sequence in bases

Col. 6 - Cytogenetic localization

Col. 7 - Next marker

[Key to Table I:]

[Col. 2:]
[Seq. ID Nos. 1-62] erhöht = elevated

[Col. 3:] [Seq

[Seq. ID Nos.: 1, 7-15, 78-126, 136] unbekannt = unknown

[Seq. ID Nos.: 3, 4, 38, 67-72] Homolog zu... = homologous to...

[Seq. ID Nos.: 531-555] Verlängerung von Seq. ID No. ... = Lengthening of Seq. ID No. ...

Tire!	Hall Hall Hall	:
	Í	=
i de	Til.	
4	-	
1411	=	
1,611		
.,	1	-
***************************************	j	-
3		
	-	
Shear	71.	
2	-	
110:11		
Harl	=	

nächster Marker	D2S174-D2S390		D1S477-D1S504	D10S537-D10S218		D20S100-D20S173	D12S1589-D12S85	AFMa126yd5					D2S2704			WI-9353	D6S1617-D6S1674	WI-1247	D1S418-D1S252			D3S1570	D1S242-D1S416	AFM164ya9	
Cytogenetische Lokalisation	2p24-2p21		1q32.1	10q21.3-q22.2		20q13.32-q13.33	12q12	17p11.2-p12					2q37.3			7q33-7q36.1	6p23-p25 1	2q34	1013 3-1011			3q24-q25.2	1q23.3-q24.3	18q12.1-q12.3	
Länge der angemeldeten Sequenz in Basen	1046	373	1571	1789	2361	1638	1034	947	497	269	1717	1419	671	524	345	1060	1721	2367	1321	384	367	2621	2019	1866	1189
Module		2x "CSD"			"BTB"							"zf-C3HC4"						"lsodh"	2× "CSD"	200			2x "G-beta"		
Funktion	unbekannt	Mouse mammary fumor virus proviral envelope gene Polymerase protein	Homolog zu Human protein kinase C-binding protein	Homolog zu Human mRNA for KIAA0079	Caenorhabditis elegans cosmid T23B12	Caenorhabditis elegans cosmid C01A2	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	rGSTK1-1=glutahione S-transferase subunit 13	Rattus norvegicus neuritin	Rattus norvegicus cytosolic NADP-dependent isocitrate	denyarogenase	Data and the control of the control	Rat GTP-hinding protein pulycephide of	R norvegicus mRNA for TRAP-complex gamma subunit	P.sativum mRNA for Cop1 protein	P.falciparum pfmdr1 gene	ORF 5' of ECLF2ECRF3=G protein-coupled receptor homolog
Expression im Endometrium- Tumor:	erhäht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	1454-	ei noin	ernoni	erhöht	erhöht	erhöht	erhöht
Sequenz ID No.:	-	2	က	4	2	9	7	8	6	10	=	12	13	14	15	16	17	18		2 0	24	22	23	24	25

		-
	Ē	
10:13	7	;
'n	ż,	-
illustration of the second		
1		
diam'r.	The state of	-
::		
1633:55	-	=
Hanne	ī	******
House	il mili	
-	4	
figit		
ii.	=	-

																_																		
nächster Marker			D10S1465													D22S420-D22S446			D17S791-D17S797		D3S3413	D9S179-D9S164	D1S305-D1S506					D10S212		The second secon				D3S3409
Cytogenetische Lokalisation			10q25.1-q25.2													22.q11.21-q11.23	3p21.1		17q21.31-q21.33		3q24	9q34.11-q34.13	1q21.2					10q26.13						3q24-q23
Länge der angemeldeten Sequenz in Basen	1418	814	3039	1448		1394			734	692	517	322		1559	1072	454	700	914	1669	355	2628	2535	805	1279	1923	902	749	857	268	297	590	1714	1340	765
Module	"3HCDH"			"Adap_comp	_qns	"CPSase_L_	chain",	"biotin_req	"PeptidaseM17"	2x "DEAD"	"Uteroglobin"					"RhoGAP"							"MYB 3"											
Funktion	O.cuniculus lambda-crystallin mRNA	Mus musculus flotillin	Mouse glycerol-3-phosphate acyltransferase	Mouse clathrin-associated protein (AP47)			methylcrotonyl-CoA carboxylase		Leucine aminopeptidase, bovine	Klebsiella pneumoniae possible RNA helicase (deaD)	Human mammaglobin Homolog	-	X	Human DNA sequence from clone 230G1	Human DNA sequence from clone 217C2	Human Cosmid Clone 26a1	Homolog zu Human chromosome 3p21.1 gene sequence	Homo sapiens DNA from chromosome 19-cosmid f21246	H.sapiens mRNA for Ptg-1 protein	H.sapiens CpG island DNA genomic Mse1 fragment	H.sapiens (TL5) mRNA from LNCaP cell line	Genomic sequence from Human 9q34	Drosophila melanogaster misato gene	Chicken mRNA for vitellogenin I	Caenorhabditis elegans DNA from clone F31D4	Caenorhabditis elegans cosmid ZK863	Caenorhabditis elegans cosmid ZK863	Caenorhabditis elegans cosmid ZK596	Caenorhabditis elegans cosmid T26A5	Caenorhabditis elegans cosmid T21G5	Caenorhabditis elegans cosmid F56D5	Caenorhabditis elegans cosmid F25D7	Caenorhabditis elegans cosmid F08C6	C.botulinum bont (partial) and ntnh genes
Expression im Endometrium- Tumor:	erhäht	erhöht	erhöht	erhöht		erhöht			erhöht	erhöht	erhöht	erhöht		erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhäht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhäht	erhöht	erhöht	erhöht
Sequenz ID No.:	26	27	28	79		 06			31	32	33	34		35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	<u>फ</u>	55

	-	
.,,,,	Ĩ	
1,114	ij	
=	٠,	
Time.	ã,	4
1111111	į.	
111111	7	
133	i	
1177	=	
61111	Ī	-
H	Till the	
=	1	
17:17	=	
i i	=	

ne nächster Marker				D5S396-D5S2119			D7S667-D7S2427			2 D17S797-D17S788			D1S2669-D1S498		 WI-3099		D1S2166					D4S1619-D4S1600		D13S261-D13S293					
Cytogenetische Lokalisation				5q23.3-q31.1	6q21		7p12.3-p13			17q21.31-q22	•		1912		1p22.3-p31.1		1p21.3-p22.1		The second secon			4p11-q12		13933.3-934	-				
Länge der angemeldeten Sequenz in Basen	1647	1166	487	1630	1272		1914		809	2674		326	888	202	1225	1093	309	380	1953	657	439	1252	695	2514	274	449	346	1329	908
Module	"complex1_4 9Kd"				2x "PX";	"BEM_DOM AIN"	2x "DEAD";	"helicase_C"					2x "PDZ"								-		"WW DO- MAIN 2"			"7tm_1"			
Funklion	Bovine mRNA fragment for 49 kDa subunit of mitochondrial NADH:ubiquinone oxidoreductase (EC 1.6.5.3)	Bos taurus (clone pTKD7) dopamine and cyclic AMPregulaled neuronal phosphoprotein (DARPP-32)	A.thaliana mRNA for RNA helicase	A. thaliana glycine-rich protein (clone atGRP-4)	Saccharomyces cerevisiae Grd19p (GRD19)		Saccharomyces cerevisiae chromosome XII cosmid 9328		S;pombe chromosome I cosmid c13D6	Rattus norvegicus RNA helicase with arginine-serine-rich	domain '	Rattus norvegicus matrilysin (MMP-7) mRNA	Rattus norvegicus Diphor-1	Human herpesvirus-7 (HHV7) JI, G protein- coupled	Homolog zu Human synapsin I (SYN1)	Homolog zu Human PAX3 gene	Homolog zu Human multiple exostosis 2 (EXT2)	Homolog zu Homo sapiens integrin variant beta4E	Homolog zu Homo sapiens hCPE-R mRNA for CPE-	receptor	Homolog zu H;sapiens mRNA for deoxyguanosine kinase	Caenorhabditis elegans cosmid Y48E1B	Caenorhabdilis elegans cosmid T21D12	Caenorhabditis elegans cosmid R107	Caenorhabditis elegans cosmid M04C9	Bovine opsin	unbekannt	unbekannt	tanedadau
Expression im Endometrium- Tumor:	erhöht	erhöht	erhöht	· erhöht	erhäht		erhäht		erhöht	_																			
Sequenz ID No.:	56	57	58	59	9		61		62	63		64	65	99	29	89	69	02	7.1		72	73	74	75	76	7.7	78	79	80

nächster Marker			D9S264-D9S257	104000	D17S1680	מחחום		WI-6450	WI-0130	1 22-184							7 10000	U3S1854	00000	D102499				D40446 D40404	U13443-U13431								D6S278-D6S302	D9S1841-D9S196	D18S1124-D18S468	D7S686-D7S530	D8S1821-D8S255
Cytogenetische Lokalisation			9q21.32-q22.1		17023 1-023 2	1.51h		11012-013	1042 11-043	20.6							5p15 22	JU10.03	16n13 9 n19 9	10p13.4-p14.3				1003 1 002 0	1450.1-450.2								6q21	9q22.1-q22.2	18q12.1-q12.3	7q32.3	8p12-p11.23
Länge der angemeldeten Sequenz in	Basen	420	2143	450	408	311	487	1902	1048	804	581	2042	430	592	674	324	709	562	1948	483	437	359	501	1102	306	2042	320	506	1276	373	492		1678	998	1434	914	685
Module																															TPR RE-	FEAL					
Funktion		unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt		undekannt	unbekannt	unbekannt	unbekannt	unbekannt
Expression IIII Endometrium- Tumor:											300																										
ID No.:	5	50	70	83	84	85	86	87	88	80	06 3	91	26	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	413	113	114	

4558	=	-
	Ē	
First.	7	:
that are		
Parent.	ä.	-
1311111		
1		-
Hamil	ii.	-
iii		
udfu	=	i.
Hutu	iline.	-
Here	day.	
:	-	
direkt	=	-
	_	

nächster Marker				D18S471-D18S464			D6S292-D6S1699		D2S315-D2S2237							WI-9179		D20S957							D14S277		D7S652			Andreas de la companya de la company	D1S418-D1S252	D1S242-D1S416			
Cytogenetische Lokalisation				18p11.21			6q22.33-q23.1		2q32.3-q34	4q28.1-q31.1			9q33.3-q34.11			14q32.2-14q32.33		20q13.13-q13.2	22q13.1						14q24.1-14q24.3		7q21.3-q22.1		1q22-q23.1	Xq23	1p13.3-1q11	1923.3-924.3			
Länge der angemeldeten Sequenz in Basen	2646	2667	544	1340	2376	225	1967	612	1183	891	482	610	2072	980	792	1092		1523	2241		631	-	980		2238	398	1084	1259	1938	1874	1708	2128	2640	1245	822
Module																2x "EMP24_	GP25L"		"linker	histone"	"Cys-	protease"	"Cys-	protease"			ras				2x "CSD"	2x "G-beta"		2x "DEAD"	
Funktion	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	unbekannt	Human triosephosphate isomerase mRNA	Human ras inhibitor mRNA	Human R kappa B	Human putative interferon-related protein (SM15)	Human protein trafficking protein (S31ii125)	i i	Human protein kinase C-binding protein RACK7	Human gene for histone H1(0)		Human cathepsin B proteinase		Homo sapiens cathepsin B mRNA		unbekannt	H.sapiens XG mRNA	H.sapiens mRNA for RAB7 protein	H.sapiens mRNA for pyrroline 5-carboxylate synthetase	H.sapiens mRNA for beta-1,4-galactosyltransferase	H.sapiens IL-13Ra	Verlängerung von Seq. ID No. 19	Verlängerung von Seq. ID No. 23	Verlängerung von Seq. ID No. 25	Verlängerung von Seq. ID No. 32	Verlängerung von Seq. ID No. 34
Expression im Endometrium- Tumor:																												And the second s							
Sequenz ID No.:	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131		132	133		134		135	0	82	13/	138	139	140	141	531	532	533	534	535

	-		Т	Т.	_	7	1	T				_	_			-				-			_
nächster Marker		D9S179-D9S164	D1S305-D1S506			D3S3409	D5S396-D5S2119	AFMa191wd1			D1S2669-D1S498	D1S2166	D9S264-D9S257	D17S1680	WI-6150	WI-9317		DARGADO	D103433		D6S278-D6S302	D7S686-D7S530	
Cytogenetische Lokalisation	0~2444 -0440	9934.11-934.13	1921.2			3q24-q23	5923.3-931.1	6021			1912	1p21.3-p22.1	9921.32-922.1	17a23.1-a23.2	11p12-p13	1042.11-043		16013 2-n12 3	2.414	10.04	odz.i	/q32.3	
Länge der angemeldeten Sequenz in	0703	2703	2664	3888	3304	863	1962	1772		4000	6001	2834	2319	2456	2218	2196	701	2214	1434	7434	4457	140/	741
Module			"MYB_3"					2x "PX";	"BEM_DOM	100 AC	24 FU2		:										
Funktion	Verlängerung von Sen ID No. 43		Verlangerung von Seq. ID No. 44	Verlangerung von Seq. ID No. 52	Verlängerung von Seq. ID No. 54	Verlängerung von Seq. ID No. 55	Verlängerung von Seq. ID No. 59	Verlängerung von Seq. ID No. 60		Verländering von Seg. ID No. 85	יסיים איני פייסיים איני פייסיים איני פייסיים איניים	verlangerung von Seq. ID No. 69	Verlangerung von Seq. ID No. 82	Verlängerung von Seq. ID No. 84	Verlängerung von Seq. ID No. 87	Verlängerung von Seq. ID No. 88	Verlängerung von Seq. ID No. 93	Verlängerung von Seq. ID No. 98	Verlängerung von Seq. ID No. 108	Verlängerung von Sen. ID No. 111	Verlängering von Seg. ID No. 114	Vortes de la constante de la c	Venangerung von Seq. ID IVO. 126
Expression im Endometrium- Tumor.																							
Sequenz ID No.:	536	537	200	020	539	240	241	242		543	544	772	2 5	240	750	248	549	550	551	552	554	555	

TABLE II

DNA Sequences Seq. ID. No. Peptide Sequences (ORF's) Seq. ID. No.

Peptid-Sequenzen (ORF's) Seq.
ID. No.
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174 175

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
12	176
	177
13	178
	179
	180
14	181
	182
	183
15	184
	185
	186
	187
16	188
	189
	190
17	191
	192
	193
18	194
	195
	196
19	197
	198
	199
20	200
	201
	202
21	203
	204
22	205
	206
	207
23	208
	209
	210
24	211

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
24	212
	213
25	214
	215
	216
26	217
	218
	219
27	220
	221
	222
28	223
	224
	225
29	226
	227
	228
30	229
	230
	231
31	232
	233
	234
32	235
	236
	237
33	238
	239
	240
34	241
	242
	243
35	244
	245
	246

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	247
36	248
	249
37	250
	251
	252
38	253
	254
	255
39	256
	257
	258
40	259
	260
	261
41	262
	263
1	264
42	265
	266
	267
43	268
	269
	270
44	271
	272
	273
45	274
	275
	276
46	277
	278
	279
47	280
	281
	282

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	283
48	284
	285
49	286
	287
	288
50	289
	290
	291
	292
51	293
	294
	295
52	296
	297
	298
53	299
	300
	301
54	302
	303
	304
55	305
	306
	307
56	308
	309
	310
57	311
	312
	313
58	314
	315
	316
59	317
	318

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	319
60	320
	321
	322
61	323
	324
	325
62	326
	327
	328
63	329
	330
	331
64	332
	333
	334
	335
65	336
	337
	338
66	339
	340
	341
67	342
	343
	344
68	345
	346
	347
69	348
	349
	350
70	351
	352
	353
71	354

DNA-S∋quenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	355
	356
72	357
	358
	359
	360
73	361
	362
	363
74	364
	365
	366
75	367
	368
	369
76	370
	371
	372
77	373
	374
	375
78	376
	377
	378
79	379
	380
	380
	381
80	382
	383
	384
81	385
	386
	387
82	388
	389

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	390
83	391
	392
	393
84	394
·	395
85	396
	397
	398
86	399
	400
	401
	402
87	403
	404
	405
	406
88	407
	408
	409
89	410
	411
	412
90	413
,	414
	415
91	416
	417
	418
92	419
	420
	421
	422
93	423
	424
	425

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	426
94	427
	428
95	429
	430
	431
	432
96	433
	434
	435
97	436
	437
	438
98	439
	440
	441
99	442
	443
	444
100	445
	446
	447
101	448
	449
	450
102	451
	452
	453
103	454
	455
	456
104	457
	458
	459
	460
105	461

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq
Seq. ID. No.	ID. No.
	462
	463
106	464
	465
107	466
	467
	468
	469
108	470
	471
	472
109	473
	474
	475
110	476
	477
	478
111	479
	480
	481
112	482
	483
	484
	485
113	486
	487
	488
114	489
	490
	491
115	492
	493
	494
	495
116	496
	497

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	498
117	499
	500
	501
118	502
	503
	504
119	505
	506
	507
120	508
	509
	510
121	511
	512
	513
122	514
	515
	516
123	517
	518
	519
124	520
	521
	522
125	523
	524
	525
126	526
	527
	528
531	561
	562
	563
532	564
	565

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
	566
533	567
	568
	569
534	570
	571
	572
535	573
	574
	575
536	577
	578
537	579
	580
	581
538	582
	583
	584
539	585
	586
	587
540	588
	589
	590
541	591
	592
	593
542	594
	595
	596
543	597
	598
	599
544	600
	601
	602

DNA-Sequenzen	Peptid-Sequenzen (ORF's) Seq.
Seq. ID. No.	ID. No.
545	603
	604
	605
546	606
	607
	608
547	609
	610
	611
548	612
	613
	614
549	615
	616
	617
550	618
	619
	620
551	621
	622
	623
552	624
	625
554	630
	631
	632
555	633
	634
	635

The inventive nucleic acid sequences Seq. ID No. 1 to Seq. ID No. 141 of the determined candidate genes and the determined amino acid sequences Seq. ID Nos. 142-528 are described in the following sequence protocol.

Sequence Protocol

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: metaGen Gesellschaft für Genomforschung mbH
 - (B) STREET: Ihnestrasse 63
 - (C) CITY: Berlin
 - (E) COUNTRY: Germany
 - (F) POSTAL CODE (ZIP): D-14195
 - (G) TELEPHONE: (030)-8413 1673
 - (H) FAX: (030)-8413 1674
 - (ii) TITLE OF INVENTION: Human Nucleic Acid Sequences from Uterus Tumor Tissue
 - (iii) Number of sequences: 622
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: Patentin release #1.0, version #1.25 (EPO)

- (2) INFORMATION ON SEQ ID NO. 1:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1046 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

```
teggaaegag ggateaetaa teaacaaaee agettteggg gtetgaegeg ateettgeet
caggoetete gaggtecaga cageegeeca geeegetetg egaegeagea gtgaatagtg 120
tggtacetec ttgteteggt teaggteeag aceteeeegt etteeggetg eeetgaaegt 180
caggegacet caggaceetg tgattggege etgegeegge ggacegtgae egaggaaace 240
cctggaggga cttgggcatt ccttgggctc cgtgcctgtt cttcgtgctc ctttcggggc 300
aaggatetea cattateagt etttgacega cacagaatge etggeatttg ataaatgttt 360
gttgaacttg aagagacata tggacaatga atctgcaaag atactgqqqa qagataccaa 420
tatcatcaag ccagaccaac agaagttoot togatttgot cccacgggag ttccgtctgg 480
tggaagtcca tgacccaccc ctgcaccaac cctcagccaa caagccgaag ccccccacta 540
tgctggacat cccctcagag ccatgtagtc tcaccatcca tacgattcag ttgattcagc 600
acaaccgacg tettegeaac ettattgeca cageteagge ecagaateag cageagacag 660
aaggtgtaaa aactgaagag agtgaacctc ttccctcgtg ccctgqqtca cctcctctcc 720
ctgatgacct cctgccttta gattgtaaga atcccaatgc accattccag atccggcaca 780
gtgacccaga gagtgacttt tatcgtggga aaggggaacc tgtgactgaa ctcagctggc 840
actectyteg geageteete taccaaggea gtggcacaaa teetggeeaa eggegggett 900
ttgactgtgc taatgagagt gtcctggaag accctaactt gatgttggca catgagtatt 960
ggccttaaag tttaccaaag tttgctgcgt ttttgctgtt gagcgggaag cccgggtggg1020
agagacttcc ttttgccgaa tgtgat
                                                                 1046
```

- (2) INFORMATION ON SEQ ID NO. 2:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 373 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

cgaaggcaga gttcaacagg gatcttttgt aaatgttcaa caagggccac aggagccatt 60 tattgaattt atccatcagt taacccaggc aattaagagc acaatggaa categaccat120 tccacgggta tctcgtataa ccctcaagga caagccatag tggaacgttg cccattccac180 gcttaaaaat atgcttaaa aaaaggggga atatgaataa ggaccctaca acactactag240 cacaagtgt attcaccct aatttcttaa atttagataa ttaaatttcc aatcagccct300 agaaaaagcac ttttgcttaa aacctccca ggtagcaagg ctttcagtgt tttgggaagg360 tgttaatagt atc

- (2) INFORMATION ON SEQ ID NO. 3:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1571 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ctgctctggc aaccaataga agctaggaga gggcggggac aactgggtct tttgcggctg cagegggett gtaggtgtee ggetttgetg geecageaag eetgataage atgaagetet 120 tatetttggt ggetgttgtt gggtgtttge tggtgccccc agetgaagee aacaagagtt 180 ctgaaqatat ccqgtqcaaa tqcatctqtc caccttataq aaacatcaqt qqqcacattt 240 acaaccagaa tgtatcccag aaggactgca actgcctgca cgtggtggag cccatgccag 300 tgcctggcca tgacgtggag gcctactgcc tgctgtgcga gtgcaggtac gaggagcgca 360 gaccaccace atcaaggtca teattgteat etacetgtee gtggtgggtg eeetgttget 420 ctacatggcc ttoctgatgc tggtggaccc tctgatccga aagccggatg catacactga 480 gcaactgcac aatgaggagg agaatgagga tgctcgctct atggcagcag ctgctgcatc 540cctcggggga ccccgagcaa acacagtcct ggagcgtgtg gaaggtgccc agcagcggtg 600 gaagetgeag gtgeaggage ageggaagae agtettegat eggeaeaaga tgeteageta 660 gatgggctgg tgtggttggg tcaaggcccc aacaccatgg ctgccagctt ccaggctgga 720 caaagcaggg ggctacttct cccttccctc ggttccagtc ttccctttaa aagcctgtgg 780 cattittect cettetecet aactitagaa atgitgtact tggetattit gattagggaa 840 gagggatgtg gtctctgatc tccgttgtct tcttgggtct ttggggttga agggaggggg 900 aaggcaggcc agaagggaat ggagacattc gaggcggcct caggagtgga tgcgatctgt 960 ctctcctggc tecactcttg ccgccttcca gctctgagtc ttgggaatgt tgttaccctt1020 ggaagataaa gctgggtctt caggaactca gtgtctggga ggaaagcatg gcccagcatt1080 cagcatgtgt teetttetge agtggttett tateaceace teecteecag ecceagegee1140 tcagcccag ccccagctcc agccctgagg acagctctga tgggagagct gggccccttg1200 ageceactgg gtetteaggg tgeactggaa getggtgtte getgteeeet gtgeacttet1260 egeactgggg catggagtge ccatgcatae tetgetgeeg gteeceteae etgeacttgal320 ggggtetggg cagtecetee tetececagt gtecacagte actgagecag acggteggtt1380 ggaacatgag actogaggot gagogtggat otgaacacca cagoccotgt acttgggttg1440 cetettqtee etqaactteq ttqtaceaqt qeatqqaqaq aaaattttqt cetettqtet1500 tagagttgtg tgtaaatcaa ggaagccatc attaaattgt tttatttctc tccaaaaaaa1560 aaaaaaaaa a

(2) INFORMATION ON SEQ ID NO. 4:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1789 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

agaccatgct ggaaaaaatt ccaaaggaag agcaagaaga gacgtctgca attcgagtgg gttttatcac atataacaaa gttctccatt tctttaatgt gaagagtaat ctggcccagc 120 ctcagatgat gggggtgact gatgttggag aagtctttgt teetttgttg gatggtttee 180 ttgtcaacta tcaagaatcc caatctgtga ttcataattt gttggaccag attccagaca 240 tgtttgcaga ctctaatgaa aatgagactg tctttgctcc tgtcatccag gctggcatgg 300 aagcactaaa ggcagcagac tgtcctggga agctgttcat cttccattct tccttgccaa 360 ctgctgaagc accagggaag ctcaaaaaca gagatgacaa aaaactggtt aatacagaca 420 aagagaagat acttttccag ccccaaacaa atgtctatga ctcattggcc aaggactgcg 480 tggctcaccg gctgctctgt gacactcttc ctctttccta gtcagtatgt ggacgtggcc 540 tegetgggge tggtteetea geteactgga ggaaccettt acaaatacaa caattteeag 600 atgcacttgg atagacaaca atttttgaac gacctcagaa atgatattga aaagaaaata 660 ggetttgatg etattatgag ggttegtace ageacaggtt teagageeae tgatttettt 720 ggtggaatct tgatgaacaa caccaccgat gtagaaatgg ctgccatcga ttgtgacaag 780 geagtgaceg tggagttcaa geacgatgac aaactcagtg aagacagtgg agcettaate 840 cagtgtgctg tgctttacac gacaatcagt ggtcaaagaa gacttcggat tcacaatctt 900 ggettaaact geagetetea getagetgat etttataaga getgtgagae agatgetett 963 atcaacttct ttgccaagtc agcttttaaa gcagttctcc accagccttt gaaggtcatc1020 egggaaatte tagttaatea gaetgeecat atgttggeat gttaceggaa gaattgtgea1080 agtocttotg cagcaagoca gottattota coagattoca tgaaagtatt gocagtgtac1140 atgaattgct tgttgaaaaa ctgtgtacta ctcagcagac cagagatctc aactgatgaa1200 cgagcatacc agagacagct ggtcatgacc atgggtgtgg ctgactctca gcttttcttc1260 tacccacaac ttctgcccat acacacgtta gatgtcaaga gtacaatgtt acctgctgcc1320 gttcgttgct ctgagtcccg tctttcagaa gaaggaatat tcttactggc taatggtcta1380 cacatgitee tgtggttggg agtaagcage ccaccagaae tgatecaagg aatatttaat1440 gtgccatctt ttgcacatat caacacagat atgacattgc tgcctgaagt gggaaaccca1500 tacteteaac aacteagaat gataatgggt attateeaac aaaagaggee atatteaatg1560 aagctcacaa ttgtaaagca gcgagaacaa ccagaaatgg ttttccgaca gttcctggta1620 gaagacaaag gactttacgg aggctcttct tatgtggatt tcctttgttg tgttcacaag1680 gagatotgto agotgottaa ttaattggaa actoocoggg caatggaggt tgcgttgcca1740 gggggggaaa agcccctttt tggggcccaa atttgccagg gggaaaaag

(2) INFORMATION ON SEQ ID NO. 5:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 2361 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:

(vii) OTHER ORIGIN:
 (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

```
gggccagccg gctcgcccgg gggccatggc agcagcggct actgcagccg agggggtccc
cagtoggggg cotocogggg aagtoatooa totgaatgtg ggaggcaaga gattoagtac 120
ctctcgccag actctcacct ggatcccaga ctccttcttc tccagtcttc tgagcggacg 180
catctcgacg ctgaaagatg agaccggagc aatcttcatc gacagggacc ctacagtctt 240
cgcccccatc ctcaacttcc tgcgcaccaa agagttggat cccaggggtg tccacggttc 300
cagoctooto catgaagooo agttotatgg geteactect etggttegte geetgeaget 360
togagaggag tiggatogat offictigtgg aaacgtoofo ticaatggtt acctgoogco 420
accagtgttc ccagtgaagc ggcggaaccg gcacagccta gtggggcctc agcagctagg 480
aggacggcca geceetgtee gacggagcaa cacgatgeee eecaacettg geaatgeagg 540
gctgctgggc cgaatgctgg atgagaaaac ccctccctca ccctcaggac aacctgagga 600
geoggggatg gtgegeetgg tgtgtggaea ceataattgg ategetgtgg eetataeeea 660
gtttctagtc tgctacaggt tgaaggaage ctctggcggg cagctggtgt tttccagccc 720
cogoctggac tggcccatgc gaacgactgg cgcttcacag cccgggtgca tggtggggct 780
ttgggtgaac atgacaagat ggtggcagca gccaccggca gcgagatcct gctatgggct 840
ctgcaggcgg aaggcggtgg ctccgagata ggggtctttc atctgggggt gcctgtggag 900
gccttgttct tcgtcgggaa ccagctcatt gctacaagcc acacagggcg catcggggtg 960
tggaatgccg tcaccaagca ctggcaggtc caggaggtgc agcccatcac cagttatgac1020
gcggcaggct ccttcctcct cctgggctgc aacaacggct ccatttacta cgtggatgtg1080
cagaagttcc ccttgcgcat gaaagacaac gacctccttg tcagcgagct ctatcgggac1140
ccageggagg atggggteac egeceteagt gtetacetea ecceeaagae eagtgaeagt1200
gggaactgga tegagatege etatggeace ageteagggg gegtgegggt categtgeag1260
cacceggaga ctgtgggete ggggeeteag etetteeaga eetteaetgt geacegeage1320
cctgtcacca agatcatget gtcggagaag cacctcatct cagtctgtgc cgacaacaac1380
cacqtqcqqa catqqtctqt qactcqcttc cqcqqcatqa tttccaccca gcccqqctcc1440
accecacteg ettectitaa gateetgget etggagtegg cagatgggea tggeggetge1500
agtgctggca atgacattgg cccctacggt gagcgggacg accagcaagt gttcatccag1560
aaggtggtgc ccaqtgccag ccagctcttc gtgcgtctct catctactgg gcagcgggtg1620
tgctccgtgc gctccgtgga cggctcaccc acgacagcct tcacagtgct ggagtgcgag1680
ggeteeegge ggeteggete teggeeeegg egetaeetge teaetggeea ggeeaaegge1740
agettggeca tgtgggaeet aaceaeegee atggaeggee teggeeagge ecetgeaggt1800
ggcctgacgg agcaagagct gatggaacag ctggaacact gtgagctggc cccgccggct1860
cetteagete ceteatgggg etgteteece agececteae eeegeatete ceteaecage1920
ctccactcag cctccagcaa cacctccttg tctggccacc gtgggagccc aagccccccg1980
caggetgagg eccggegeeg tggtggggge agetttgtgg aaegetgeea ggaactggtg2040
eggagtgggc cagaceteeg aeggeeaeee acaesageee egtggeeete cageggtete2100
ggcactcccc teacacctcc caagatgaag etcaatgaaa etteettttg aacaacgcag2160
ctgccatgat gccttgggat gccctggtcc tgggggactc aggtgcctcc ctgattcctg2220
tgggaacccc gggttcaggg ccagggcctc cttggaataa atggttattg ttactaggtc2280
eccacettee etetttetg gaageeaaag teaceeteee caataaagte eteactgeea2340
aaaaaaaaa aaaaaaaacc g
```

- (2) INFORMATION ON SEQ ID NO. 6:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1638 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

ggctgcggat ttcgccggaa atcccggaag tgacagcttt gggggtttgc tgctggctct gactcccgtc ctgcgatggg ttgcgacggg ggaacaatcc ccaagaggca tgaactggtg 120 aaggggccga agaaggttga gaaggtcgac aaagatgctg aattagtggc ccaatggaac 180 tattgtactc taagtcagga aatattaaga cgaccaatag ttgcctgtga acttggcaga 240 ctttataaca aagatgccgt cattgaattt ctcttggaca aatctgcaga aaaggctctt 300 gggaaggcag catctcacat taaaagcatt aagaatgtga cagagctgaa gctttctgat 360 aatcctgcct gggaagggga taaaggaaac actaaaggtg acaagcacga tgacctccag 420 cgggcgcgtt teatetgccc cgttgtgggc ctggagatga acggccgaca caggttctgc 480 ttccttcggt gctgcggctg tgtgttttct gagcgagcct tgaaagagat aaaagcggaa 540 gtttgccaca cgtgtggggc tgccttccag gaggatgatg tcatcgtgct caatggcacc 600 aaggaggatg tggacgtgct gaagacaagg atggaggaga gaaggctgag agcgaattgg 660 aaaagaaaac aaagaaaccc aaggcagcag agtctgtttc aaaaccagat gtcagtgaag 720 aagccccagg gccatcaaaa gttaagacag ggaagcctga agaagccagc cttgattcta 780 gagagaagaa aaccaacttg gctcccaaaa gcacagcaat gaatgagagc tcttctggaa 840 aagctgggaa gcctccgtgt ggagccacaa agaggtccat cgctgacagt gaagaatcgg 900 aggectacaa gteeetettt accaeteaca geteegeeaa gegeteeaag gaggagtetg 960 cocactgggt cacceacacg tectactget tetgaageee geactgeeae egeteetgee1020 ccaqaaqqtt qtttaqtttc cacqtaqqca qqtcqctttq tqcctctqag tqcqctqctq1080 tgtgttctct ctatagttct gtgtcataaa gctgtcctgg ccagccttca agctggtgt1140 qccactcttq atqtqaqqcq tqtcqqttcc aqqqqqqaca tqqqaqqqqc tqcacagtgq1200 cccgaggtca tgcttgcttc cacctgcagg tgcatttggt cctttccatg gccaggaagc1260 cotgtgggct gcacttttta tgcttgcagt aacaagagac tccagagtcc tcaccggtgc1320 agagttggca catattaatt aactaaaatt ctaatgatct tgctaccagc aataaatcaa1380 gtaggccaag tgaaactggg ctttaaaaag gatggatttc aaatacactg tgcccactag1440 aagottogaa gggootogto oototgotao agoootggga ggagocagga toottgttgg1500 totagotaaa tactgttagg ggagtgtgcc ccatctcatc atttcgaaga tagcagagtc1560 atagttgggc acccggtgat tgggttcaaa aataaagctg gtctgcctct tcaaaaaaaa1620 aaaaaaaaa aaaaaaaa

(2) INFORMATION ON SEQ ID NO. 7:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1034 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

```
egectgegeg etgagtgegt geegeteege egacegaaga ggetggacat gacaceagtg
geatateaeg gecatggggt eteageatte egetgetget egeeeteet eetgeaggeg 120
aaagcaagaa gatgacaggg acggtttgct ggctgaacga gagcaggaag aagccattgc 180
teagtteeca tatgtggaat teacegggag agatageate acetgtetea egtgeeaggg 240
gacaggetae attecaacag agcaagtaaa tgagttggtg getttgatee cacacagtga 300
tragagatty respectively gaartaagra atatyteete etyterater tyritet 360
cctggcatct ggtttggtgg ttttcttcct gtttccgcat tcagtccttg tggatgatga 420
eggeateaaa gtggtgaaag teacatttaa taageaagae teeettgtaa tteteaceat 480
catggccacc ctgaaaatca ggaactccaa cttctacacg gtggcagtga ccagcctgtc 540
cagccagatt cagtacatga acacagtggt gaattttacc gggaaggccg agatgggagg 600
acceptation tatgegrant tettergear getacetgag atcetegtge acaacatagt 660
gatcttcatg cgaacttcag tgaagatttc atacattggc ctcatgaccc agagctcctt 720
ggagacacat cactatgtgg attgtggagg aaattccaca gctatttaac aactgctatt 780
ggttcttcca cacagegeet gtagaagaga gcacageata tgttcccaag gcctgagttc 840
tgggacctac ccccacgtgg gtgttaaggc agagggaagg aattggttca ctttaacttc 900
ccaggcaaac attoctcctg gccacttagg gagggaaaca ccttccctat gggttaccat 960
ttgttgtttg ttcaggaacc aggcggattc agttgcctag gcgtgttgcc ccagcaatta1020
gtttgggcat tgca
                                                                 1034
```

(2) INFORMATION ON SEQ ID NO. 8:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 947 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

cgaggccctg gcatgtgcaa agagtactga gtgggattcc cagcaggata ccatcaagta 60 ctacaccatg cacctgacca cattgtgcaa cacgtgattg gacaacccaa cccagagaaa120 caaggatcag ctgatccggg cagccgtgaa gtttctggac accgacacca tctgctacag180 ggtggaggag cccgagacat tagtggaact tcaaaggaat gagtgggatc caatcatcga240 atgggctgag aaaagatacg gcgtggagat cagctcctcc accagcataa tgggacccag300 catecetgee aaaacteggg aggtgetegt cagecacetg geatettaca acacatggge360 tttacaaggg attgagtttg tagctgccca gctcaagtcc atggtgctaa ccttgggcct420 gattgacctg cgcctgacag tggagcaggc cgtgctgctg tcacgcctgg aggaggagta480 ccagatccag aagtggggca acattgagtg ggcccatgac tatgagctgc aggagctgcg540 ggeoegeace geogeoggea costetteat coatetetge teegagagea coacagteaa600 gcacaagete etgaaggagt gaggeetggg cagagcacae teageaggat agaggeagtg660 cagocacago tococoggoo ttoagggoto occagootgt ggggetggot toottggott720 ttggggactc ggcctcagcg tcaccctgag attccccccg agacacagtg cgctagtacg780 gctgtccgga ggtcagcctg atttcaaccc aggtgcccct ggcctggcca gcagtgaatg840 taggagatga attgtgcaag tgactttctc tcgactctga ttttattaaa tatttctcca900 947

- (2) INFORMATION ON SEQ ID NO. 9:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 497 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:

- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

```
ctcqtqqcqa qaqactqaqa taaaaqaqca actcactqaa cacctttqta cqatcataca 60 qcaaaatqaq ctccqaaaqq ccaaqaaqtt qqaqqattq atqcaacaac taqatqtaqa120 aqccqatqaa qaqactttqq aqcttqaqqt qqaqqtcqaq aqattqctac acqaacaaqa180 aqtaqaatca qqaattqcta aaqaqaacaq taqqttcqtt aaqaqqqcca tttcaqcctq cqqaqqqq240 tqtqacatta qaatttqcta aaqaqaacaq aaaqtqtcaa qaacaaqctq tttccccaaa300 qqtaqatqac caqtqtqqaa attccaqtaq catcccttt cttaqtccaa actqcccaaa360 tcaaqaaqqt aatqacattt caqctqctt qqccacatqa aqttctqqta ttcttttqaq420 ctaatatqqt attqaqtaa qtatacttt tqcaqtaqat catqccctqa cctccaataa480 aaacctcttt aaaacaa
```

- (2) INFORMATION ON SEQ ID NO. 10:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 269 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

```
cggggagagg tgggctgggc tgcaggtcct ggcgttgtgc tggatcatcg cgcccgtact 60 ctgaagtttt ctccgtggcg ctccttgaga ggggttcctc ctgcatcttg agaatatttt120 gcatttcggc tcccttct tctcgctgcc atcggatgcc ccaaataggt cctgtcccct180 cggtgaatca gacttcggaa accgcctcgc ttcagggtca gagtccaagt acagatgagc240 ttgagaggga ttctgaaatg caacggccc 269
```

- (2) INFORMATION ON SEQ ID NO. 11:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1717 base pairs

- (B) TYPE: Nucleic acid(C) STRAND: individual(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

```
attotaggac caacactcct gtggagacgt ggaaaggttc caaaggcaaa cagtcctata
cetacateat tgaggagaac actaceacga getteacetg ggeetteeag aggaceactt 120
ttcatgaggc aagcaggaag tacaccaatg acgttgccaa gatctactcc atcaatgtca 180
ccaatgttat gaatggcgtg gcctcctact gccgtccctg tgccctagaa gcctctgatg 240
tgggctcctc ctgcacctct tgtcctgctg gttactatat tgaccgagat tcaggaacct 300
gccactcctg cccccctaac acaattctga aagcccacca gccttatggt gtccaggcct 360
gtgtgccctg tggtccaggg accaagaaca acaagatcca ctctctgtgc tacaatgatt 420
gcaccttete acgeaacaet ccaaccagga ettteaacta caacttetee getttggcaa 480
acaccytcac tettgetgga gggccaaget teaettecaa agggttgaaa taettecate 540
actttaccct cagtctctgt ggaaaccagg gtaggaaaat gtctgtgtgc accgacaatg 600
teactgacet coggatteet gagggtgagt cagggttete caaatetate acageetacg 660
tetgecagge agreateate ecceeagagg tgacaggeta caaggeeggg gttteeteae 720
agcctgtcag ccttgctgat cgacttattg gggtgacaac agatatgact ctggatggaa 780
teacetecee agetgaactt tteeacetgg agteettggg aataceggae gtgatettet 840
tttataggtc caatgatgtg acccagtcct gcagttctgg gagatcaacc accatccgcg 900
teaggtgeag tecacagaaa actgteeetg gaagtttget getgeeagga acgtgeteag 960
atgggacctg tgatggctgc aacttccact tcctgtggga gagcgcggct gcttgcccgc1020
tetgeteagt ggetgaetae catgetateg teageagetg tgtggetggg atccagaaga1080
ctacttacgt gtggcgagaa cccaagctat gctctggtgg catttctctg cctgagcaga1140
gagtcaccat ctgcaaaacc atagatttct ggctgaaagt gggcatctct gcaggcacct1200
gtactgccat cotgctcacc gtcttgacct gctacttttg gaaaaagaat caaaaactag1260
agtacaagta ctccaagctg gtgatgaatg ctactctcaa ggactgtgac ctgccagcag1320
ctgacagctg cgccatcatg gaaggcgagg atgtagagga cgacctcatc tttaccagca1380
agaagtcact ctttgggaag atcaaatcat ttacctccaa gaggactcct gatggatttg1440
actcagtgcc gctgaagaca tcctcaggag gcccagacat ggacctgtga gaggcactgc1500
ctgcctcacc tgcctcctca ccttgcatag cacctttgca agcctgcggc gatttgggtg1560
ccagcatect gcaacaceca etgetggaaa tetetteatt gtggeettat cagatgtttg1620
aatttcagat cttttttat agagtaccca aaccctcctt tctgcttgcc tcaaacctgc1680
caaatatacc cacacttgt ttgtaaatta aaaaaaa
                                                                 1717
```

- (2) INFORMATION ON SEQ ID NO. 12:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1419 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

```
ggcagaggta ttacctgaaa acttaaaaga aggcctgaag gaatcttcct ggagttcatt 60
accatgtact aaaaacagac cttttgattt tcattcagtg atggaagagt ctcagtctct 120
caatgaacct agcccaaagc agagtgaaga aataccagag gtcacttcag agcctgtcaa 180
aggaagetta aacegtgete agteageaca gtetataaat teaacagaaa tgeetgeeag 240
agaggactgt ttgaaaaaag agtgccctca gaacctgttc tgtcagttca agaaaaaggt 300
gttctgctga aaagaaagtt gtctctttta gaacaggatg tgattgtaaa tgaagatgga 360
agaaataagc tgaaaaaaca aggagaaact cccaatgaag tctgtatgtt ttccttagct 420
tatggtgata ttccagaaga attaatcgat gtctcagatt tcgagtgttc tctctgcatg 480
aggttgtttt ttgagccagt aacaacccct tgcggacatt cgttctgtaa gaattgtctt 540
gagcgttgtt tagatcatgc accatattgt cototttgca aagaaagctt aaaagagtat 600
ctagcagata ggaggtactg tgtcacacag ctgttggaag gaattaatag tgaagtatct 660
geetgatgaa etgtetgaga gaaaaaaaat atatgatgaa gaaactgetg aacteteaca 720
cttgaccaag aatgttccaa tatttgtttg cactatggcc taccccactg tgccttgccc 780
tetecatgta tittgagecaa gatacagatt gatgattega agaagtatae agaetggaae 840
caaacagttt ggcatgtgtg tcagtgatac acaaaatagt tttgcagatt atggttgtat 900
gttacaaatt agaaacgtgc atttcttacc ggacggaagg tctgtggttg atacagttgg 960
aggaaagcgg tttagggttt taaaaagagg aatgaaagat ggatattgca ctgccgacat1020
tgaatatctg gaagatgtta aggttgagaa tgaagatgag attaagaatc tcagagagct1080
tcatgatttg gtttactctc aagcctgcag ctggtttcag aatttaagag acagatttcg1140
aagccaaatt cttcagcatt tcggatcaat gcccgagagg agggaaaacc ttcaggcagc1200
ccctaatgga cctgcatggt gttggtggct tcttgcagtt ctccctgtag acccacgata1260
ccagctgtcg gttttgtcaa tgaagtcttt gaaagaacgg ttgaccaaga tacagcatat1320
actgacctat tittctagag accaattcta agtaactaac tctttgggat cttccctttg1380
aaagttgacc cctaartctt gggctgccat ttggttggg
                                                                 1419
```

- (2) INFORMATION ON SEQ ID NO. 13:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 671 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

- (2) INFORMATION ON SEQ ID NO. 14:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 524 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

- (2) INFORMATION ON SEQ ID NO. 15:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 345 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAŅ
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

```
aaactttett tetacaaaaa ateaaaaget tagetgatag ateatgaaaa tagattatga 60 acagtgaaat teetgagaag getgaaagtg eggggaacea aageagggga gattageett120 agteeggagg agggagaage agatggaagt eageageetg eettgttitt aegtgtaata180 titaaattig eaaattgtat taeaggaggg eetactitet gittitatea agagtittite240 tittgtteaa agacactggt tatgggaata tittgaaagg gtaagaaacg etggtataaa300 aaggtgttge agattaatti tgaaggteet taeggaacea gicee 345
```

- (2) INFORMATION ON SEQ ID NO. 16:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1060 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

ggcggtccca ggcaggccca gaagctgggc agcctctgcc gggttccggg aaaaggagct cetgetgeca etgetettee ggageetgea geatgggge eetgeegege acegtggage 120 tettetatga egtgetgtee ecctaeteet ggetgggett egagateetg tgeeggtate 180 agaatatctg gaacatcaac ctgcagttge ggcccagcct cataacaggg atcatgaaag 240 acagtggaaa caagcctcca ggtctgcttc cccgcaaagg actatacatg gcaaatgact 300 taaageteet gagacaeeat eteeagatte ecateeaett eeceaaggat ttettgtetg 360 tgatgcttga aaaaggaagt ttgtctgcca tgcgtttcct caccgccgtg aacttggagc 420 atccagagat gctggagaaa gcgtcccggg agctgtggat gcgcgtctgg tcaaggaatg 480 aagacatcac cgagccgcag agcatcctgg cggctgcaga gaaggctggt atgtctgcag 540 aacaageeca gggaettetg gaaaagateg caaegeeaaa ggtgaagaae cageteaagg 600 agaccactga ggcagcctgc agatacggag cctttgggct gcccatcacc gtggcccatg 660 tggatggcca aacccacatg ttatttggct ctgaccggat ggagctgctg gcgcacctgc 720 tgggagagaa gtggatgggc cctatacctc cagccgtgaa tgccagactt taagattgcc 780 cggaggaagc aaactotteg tataaaaaaa gcaggccatc tgcttaaccc ttggctccac 840 cataaggeac tgggactegg atttetetat etgatagagg tattttetgt ggeeetggga 900 gctgtctgtc tttcccctac ccccaaggat gccaggaaga cgtccaccat tagccatgtg 960 gcaaccttta cttctatgcc tcacaagtgc ctttcagaga gccccaattc tgctttccca1020 1060

- (2) INFORMATION ON SEQ ID NO. 17:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1721 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

```
gtgcataaag tototgtogo tocoggaact tgttggcaat gcctattttt tggctttoco 120
ccgcgttctc taaactaact atttaaaggt ctgcggtcgc aaatggtttg actaaacgta 180
ggatgggact taagttgaac ggcagatata tttcactgat cctcgcggtg caaatagcgt 240
atctggtgca ggccgtgaga gcagcgggca agtgcgatgc ggtcttcaag ggcttttcgg 300
actifttiget caagetigge gacacatigge caactaceeg caggeetigga egacaagaeg 360
aacatcaaga cegtgtgcac atactgggag gatttccaca getgcaeggt caeagecett 420
acggattgcc aggaagggc gaaagatatg tgggataaac tgagaaaaga atccaaaaac 480
ctcaacatcc aaggcagctt attcgaactc tgcggcagcg gcaacggggc ggcggggtcc 540
teettetgag egtggggeea geteeceeeg egegeeeace cacacteact ceatgeteec 660
ggaaatcgag aggaagatcc attagttctt tggggacgtt gtgattctct gtgatgctga 720
aaacactcat ataggattgt gggaaatcct gattctcttt tttatttcgt ttgatttctt 780
gtgttttatt tgccaaatgt taccaatcag tgagcaagca agcacagcca aaatcggacc 840
tcagctttag tccgtcttca cacacaaata agaaaacggc aaacccaccc cattttttaa 900
ttttattatt attaattttt tttgttggca aaagaatctc aggaacggcc ctgggccacc 960
tactatatta atcatgctag taacatgaaa aatgatgggc tcctcctaat aggaaggcgal020
ggagaggaga aggccagggg aatgaattca agagagatgt ccacggacga aacatacggt1080
gaataattca cgctcacgtc gttcttccac agtatcttgt tttgatcatt tccactgcac1140
atttctcctc aagaaaagcg aaaggacaga ctgttggctt tgtgtttgga ggataggagg1200
gagagaggga aggggctgag gaaatctctg gggtaagagt aaaggcttcc agaagacatg1260
etgetatggt cactgagggg ttagetttat etgetgttgt tgatgeatee gtecaagtte1320
actgccttta ttttccctcc tccctcttgt tttagctgtt acacacacag taatacctgal380
atatccaacg gtatagatca caaggggggg atgttaaatg ttaatctaaa atatagctaa1440
aaaaagattt tgacataaaa gagccttgat tttaaaaaaa aaagagagag agatgtaatt1500
taaaaaagttt attataaatt aaattcagca aaaaaagatt tgctacaaag tatagagaag1560
tataaaataa aagttattgt ttgaaaaaaa agtgtcgttt gtttcctacc ccaacctgct1620
ttettgaece agtteteagg gaacetgaag ggacaeagga tgeeggtgat aageteaeet1680
cttcaggaag ccgcttcaag cagacctgcc accttcaagc a
```

(2) INFORMATION ON SEQ ID NO. 18:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 2367 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 18:

accetytygt eccygyttte tycagaytet actteagaay eggaggeact gygagteegy 60 tttgggatty ecayyetyty yttgtgayte tyagettyty ageggetyty gegeeccaae 120

```
tettegecaq catateatee eggeaggega taaactacat teagttgagt etgeaagaet 180
gggaggaact ggggtgataa gaaatctatt cactgtcaag gtttattgaa gtcaaaatgt 240
ccaaaaaaat cagtggcggt tctgtggtag agatgcaagg agatgaaatg acacgaatca 300
tttgggaatt gattaaagag aaactcattt ttccctacgt ggaattggat ctacataget 360
atgatttagg catagagaat cgtgatgcca ccaacgacca agtcaccaag gatgctgcag 420
aagctataaa gaagcataat gttggcgtca aatgtgccac tatcactcct gatgagaaga 480
gggttgagga gttcaagttg aaacaaatgt ggaaatcacc aaatggcacc atacgaaata 540
ttctgggtgg cacggtcttc agagaagcca ttatctgcaa aaatatcccc cggcttgtga 600
gtggatgggt aaaacctatc atcataggtc gtcatgctta tggggatcaa tacagaqcaa 660
ctgattttgt tgttcctggg cctggaaaag tagagataac ctacacacca agtgacggaa 720
cccaaaaggt gacatacctg gtacataact ttgaagaagg tggtggttt gccatgggga 780
tqtataatca aqataaqtca attgaagatt ttqcacacag ttccttccaa atqqctctgt 840
ctaagggttg gcctttgtat ctgagcacca aaaacactat tctgaagaaa tatgatgggc 900
gttttaaaga catctttcag gagatatatg acaagcagta caagtcccag tttgaagctc 960
aaaagatetg gtatgageat aggeteateg acgaeatggt ggeecaaget atgaaateag1020
agggaggett catctgggcc tgtaaaaact atgatggtga cgtgcagtcg gactctgtgg1080
cccaagggta tggctctctc ggcatgatga ccagcgtgct ggtttgtcca gatggcaaga1140
cagtagaagc agaggctgcc cacgggactg taacccgtca ctaccgcatg taccagaaag1200
gacaggagac gtccaccaat cccattgctt ccatttttgc ctggaccaga gggttagccc1260
acagagcaaa gcttgataac aataaagagc ttgccttctt tgcaaatgct ttggaagaag1320
tototattga gacaattgag gotggottca tgaccaagga ottggotgot tgcattaaag1380
gtttacccaa tgtgcaacgt tctgactact tgaatacatt tgagttcatg gataaacttg1440
gagaaaactt gaagatcaaa ctagctcagg ccaaacttta agttcatacc tgagctaaga1500
aggataattg tettttggta actaggteta caggtttaca tetttetgtg ttacactcaa1560
ggataaaggc aaaatcaatt ttgtaatttg tttagaagcc agagtttatc ttttctataa1620
gtttacagcc tttttcttat atatacagtt attgccacct ttgtgaacat ggcaagggac1680
tttttttacaa tttttatttt attttctagt accagcctag gaattcggtt agtactcatt1740
tgtattcact gtcacttttt ctcatgttct aattataaat gaccaaaatc aagattgctc1800
aaaagggtaa atgatagcca cagtattgct ccctaaaata tgcataaagt agaaattcac1860
tgccttcccc tcctgtccat gaccttgggc acagggaagt tctggtgtca tagatatccc1920
gttttgtgag gtagagctgt gcattaaact tgcacatgac tggaacgaag tatgagtgca1980
actcaaatgt gttgaagata ctgcagtçat ttttgtaaag accttgctga atgtttccaa2040
tagactaaat actgtttagg ccgcaggaga gtttggaatc cggaataaat actacctgga2100
ggtttgtcct ctccattttt ctctttctcc tcctggcctg gcctgaatat tatactactc2160
taaatagcat atttcatcca agtgcaataa tgtaagctga atcttttttg gacttctgct2220
ggcctgtttt atttctttta tataaatgtg atttctcaga aattgatatt aaacactatc2280
ttatcttctc ctgaactgtt gattttaatt aaaattaagt gctaattacc attaaaaaaa2340
aaaaaaaa aaaaaaaa aaaaaaa
```

(2) INFORMATION ON SEQ ID NO. 19:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1321 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

```
cctggaaaca agatccaaac ccaagtgacc ccgccggaaa gtgacccagt caggtttaaa
aattocaaca aaccgacgtg aacaaataga ccgaccaacc aaatatacaa tccgtcaaaa 120
tacattcact tocactacga aaccccaaca aagggtgtga atgcccgccc aggagagacg 180
gttttggttt catcaagtgt gtggatcgtg atgttcgtat gttcttccac ttcagtgaaa 240
ttctggatgg qaaccagctc catattgcag atgaagtaga gtttactgtg gttcctgata 300
tgctctctgc tcaaagaaat catgctatta ggattaaaaa acttcccaag ggcacggttt 360
catttcattc ccattcagat caccgttttc tgggcacggt agaaaaagaa gccacttttt 420
ccaatcctaa aaccactagc ccaaataaag gcaaagagaa ggaggctgag gatggcatta 480
ttgcttatga tgactgtggg gtgaaactga ctattgcttt tcaagccaag gatgtggaag 540
gatctacttc tcctcaaata ggagataagg ttgaatttag tattagtgac aaacagaggc 600
ctggacagca ggttgcaact tgtgtgcgac ttttaggtcg taattctaac tccaagaggc 660
tcttgggtta tgtggcaact ctgaaggata attttggatt tattgaaaca gccaatcatg 720
ataaggaaat ctttttccat tacagtgagt tototggtga tgttgatagc ctggaactgg 780
gggacatggt cgagtatagc ttgtccaaag gcaaaggcaa caaagtcagt gcagaaaaag 840
tgaacaaaac acactcagtg aatggcatta ctgaggaagc tgatcccacc atttactctg 900
gcaaagtaat togcocctg aggagtgttg atccaacaca gactgagtac caaggaatga 960
ttgagattgt ggaggaggc gatatgaaag gtgaggtcta tccatttggc atcgttggga1020
tggccaacaa aggggattgc ctgcagaaag gggagagcgt caagttccaa ttgtgtgtcc1080
tgggccaaaa tgcacaaact atggcttaca acatcacacc cctgcgcagg gccacagtgg1140
aatgtgtgaa agatcagttt ggcttcatta actatgaagt aggagatagc aagaagctct1200
ttttccatgt gaaagaagtt caggatggca ttgagctaca ggcaggagat gaggtggagt1260
teteaqtqat teetaaqaqt teaggeggae tggcagggte aggegeetgt agatgttttg1320
                                                                 1321
```

- (2) INFORMATION ON SEQ ID NO. 20:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 384 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

```
ggtcgaatcc aaatcactca ttgtgaaagc tgagctcaca gccgaataag ccaccatgag 60 gctgtcagtg tgtctcctga tggtctcgct ggccctttgc tgctaccagg cccatgctct120 tgtctgcca gctgttgctt ctgagatcac agtcttctta ttcttaagtg acgctgcggt180 aaacctccaa gttgccaaac ttaatccacc tccagaagct cttgcagcca agttggaagt240 gaagcactgc accgatcaga tatctttaa gaaacggctt ctcatttgaa aaagtcctgg300 gtgggaatag tgaaaaaatg tgggtgtgt acatgtaaaa atgctcaacc tgggtttcca360 aagtcttttc aacggcaacc tgat
```

- (2) INFORMATION ON SEQ ID NO. 21:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 367 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:

- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

gggcactggt ggtccggttc ctcaccaaac gattcatcgg tgactatgaa agaaatgcag 60 gtaatctcta tactagacaa gttcagatag aaggtgaaac cctggctctt caggttcaag120 acactccagg tattcaggtc catgagaca gcctgagctg cagtgaacag ctgaataggt180 gcattcgctg ggcagatgct gtggtgatcg ttttctccat cactgactac aagagctatg240 aactcatcag ccagctccac cagcacgtgc agcagctaca ccttgggcac ccggctgcct300 gtgggtggtc gtgggccaac aaaagtgacc tgttgcacat caaacaggtt gaccctcagc360 ttggact

- (2) INFORMATION ON SEQ ID NO. 22:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 2621 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

gggcctttgc	ccgccttggc	ggccggctct	acgttccctg	ttctcgcctg	cageteegee 60
atggctccta	aaggcagctc	caaacagcag	tctgaggagg	acctgctcct	gcaggatttc 120
agccgcaatc	tctcggccaa	gtcctccgcg	ctcttcttcg	gaaacgcgtt	catcgtgtct 180
gccatcccca	tctggttata	ctggcgaata	tggcatatgg	atcttattca	gtatgatgtt 240
ttgtatagtg	tgatgaccct	agtaagcaca	tatttggtag	cctttgcata	caagaatgtg 300
aaatttgttc	tcaagcacaa	agtagcacag	aagagggagg	atgctgtttc	caaagaagtg 360
actcqaaaac	tttctgaagc	tgataataga	aagatgtctc	ggaaggagaa	agatgaaaga 420
atcttgtgga	agaagaatga	agttgctgat	tatgaagcta	caacattttc	catcttctat 480
aacaacactc	tattcctggt	cgtggtcatt	gttgcttcct	tcttcatatt	gaagaacttc 540
aaccccacaq	tgaactacat	attgtccata	agtgcttcat	caggactcat	cgccctcctg 600
totactogot	ccaaatagac	catgtcagct	tcaccccctg	gctttgtgtc	tatgggtggc 660
ctgtggtata	togaaaagta	gcagggtggt	cagggtggga	gacacaagat	gtttttatag /20
totagageet	ttaaaaaacc	cagcagaatg	taattcagta	tttgtttatt	ggctgttttt /80
tgacagattg	ttgaaattaa	atgaattgaa	agggaaactc	agagtactag	gacgtttatt 840
aaaaggaaaa	aaatgtcttg	caatgtgctg	taatcacaag	aggagaaaat	aacttgtttc 900
cttgatctgt	cagaggtcac	agtaacctgg	gccgagctgt	tattatttat	tatataatag 960
tagtaggaag	ttaataactg	gttctctgtg	ttccaagcac	aatattacaa	cttcttttga1020
accotaaata	tcagaatgaa	tactattaca	aggggattga	acagaagctt	aatgtttacalvou
agtgtttgaa	tttgtgatct	gaaataacac	aaaattaaaa	acatgatttc	tctaattttc1140
caactagagg	aagagaaact	tgtggaaaag	ttctttttt	ttagttttt	tttcttaaag1200
aagggcagcc	aaggtagtaa	cctaaaaata	gtgcccaggc	atatgagagt	tgtcctacga1260
ggttaaagaa	cacactgttc	cactgtatgg	ctttggccct	gagtggccag	ggaggtcaac1320
ttgaccctgc	catgttggtt	tgacttacta	agacacagga	atcattgttt	tccttgaccal380
gggtctcaca	ccctggagga	atgttaagta	agagaaagaa	cctctttcct	gaatattgac1440
atgtaaaaga	ccaaaqtaat	ttttctgaac	ttctgcaatt	ctgagaactc	tccaaggaat1500
ttacagtgat	tttagtgctt	gtcagcattt	ttccatgagg	actttcatac	atttgactct1560
ttagttcaca	ggttcccatt	gattgtgagc	aagatattta	tctctttagc	ccttggggat1620
ccaqctqaqa	gcaatctctt	gcatttttt	acccgtgtat	gtacagatat	catttcttgt1680
gtatgccatg	acttgaaaaa	gtttgggaag	ctctttagca	atatcagcta	aaaggatatg1740
aaatcacagg	tgatagcagt	tgtcattcag	taatttccta	caagcagcac	cccaaaggaa1800
atatagtcct	aatctttact	atccacttct	aaatttaatg	tgaatttcat	acatgttatt1000
agttgttttc	tttataattt	tataaaaatt	attcatcggg	agtttaactt	ccacttccat1920
gctatcggat	atattaaact	ccatgcaaga	acttggaaga	aaaacaggca	ggaatgcatt1980
tocataatoa	cccagatcat	cattttctgc	aactgagaat	tatatttcat	cattgettet2040
agaagtetge	aattctttac	ttttctttqq	tqcattatta	tctaggtgcc	atcactggalziou
aatgtggagt	gactagagaa	gtcacatatc	actgtaaggt	acagttaggg	taacactttazioo
gaggtttatt	atttttaaaa	aacttttctt	gaactcctgg	ccaacatggt	gaaaccccgt2220
ctctactaaa	aataccaaaa	ttagccaggc	: gtgatggtgg	gtgcctgtaa	teteagetaczzou
ttaagaagact	gaagcaggag	· aactgcctga	. acccaggagg	cagaggttgc	agtgagtcgaz540
gategtgeta	ctactgcctg	gqtqqcaaqq	gtgagactcc	: atctcaaaaa	agaaacaaaa2400
aaacccaaaa	. agttttcttt	. actqttqqtt	. aaaaaaaaaa	. gccagaccat	agetegaceg2400
gtggcatgga	atttgtgtat	caaataaatg	r catttgctta	. tttgacaaac	aaaaagtgtC2520
cactattggt	: gaccgaggtg	, gggccgtttt	: tttgaaattg	gggggaaat	EEGGGGGGGGAJOO
gtgggagggc	: ctttgtgggg	, ggggaaaaat	tgcccccttg	g	2621

- (2) INFORMATION ON SEQ ID NO. 23:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 2019 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

```
ctgtatccta atttcttggt gaatgaactc attcttaaac agaagcaaag atttgaggaa 60
aagaggttca aattggacca ctcagtgagt agcaccaatg gccacaggtg gcagatattt 120
caagattggt tgggaactga ccaagataac cttgatttgg ccaatgtcaa tcttatgttg 180
gagttactag tgcagaagaa gaaacaactg gaagcagaat cacatgcage ccaactacag 240
attettatgg aatteeteaa ggttgeaaga agaaataaga gagageaact ggaacagate 300
cagaaggagc taagtgtttt ggaagaggat attaagagag tggaagaaat gagtggctta 360
tactetectg teagtgagga tageacagtg ceteaatttg aageteette teeatcacae 420
agtagtatta ttgattccac agaatacagc caacctccag gtttcagtgg cagttctcag 480
acaaagaaac agccttggta taatagcacg ttagcatcaa gacgaaaacg acttactgct 540
cattttgaag acttggagca gtgttacttt tctacaagga tgtctcgtat ctcagatgac 600
agtcgaactg caagccagtt ggatgaattt caggaatgct tgtccaagtt tactcgatat 660
aattcagtac gacctttagc cacattgtca tatgctagtg atctctataa tggttccagt 720
atagtotota gtattgaatt tgacogggat tgtgactatt ttgcgattgc tggagttaca 780
aagaagatta aagtetatga atatgacact ģtcatccagg atgcagtgga tattcattac 840
cctgagaatg aaatgacctg caattcgaaa atcagctgta tcagttggag tagttaccat 900
aagaacctgt tagctagcag tgattatgaa ggcactgtta ttttatggga tggattcaca 960
ggacagaggt caaaggtcta tcaggagcat gagaagaggt qttqqaqtqt tqactttaat1020
ttgatggatc ctaaactett ggetteaggt tetgatgatg caaaagtgaa getgtggtet1080
accaatctag acaactcagt ggcaagcatt gaggcaaagg ctaatgtgtg ctgtgttaaa1140
ttcagecect ettecagata ceatttgget tteggetgtg cagateactg tgtceactae1200
tatgatette gtaacaetaa acageeaate atggtattea aaggaeaeeg taaageagte1260
tettatgeaa agtttgtgag tggtgaggaa attgtetetg ceteaacaga cagteageta1320
aaactgtgga atgtagggaa accatactgc ctacgttcct tcaagggtca tatcaatgaa1380
aaaaaactttg taggcctggc ttccaatgga gattatatag cttgtggaag tgaaaataac1440
totototaco tgtactataa aggactttot aagactttgc taacttttaa gtttgatacai500
gtcaaaagtg ttctcgacaa agaccgaaaa gaagatgata caaatgaatt tgttagtgct1560
gtgtgctgga gggcactacc agatggggag tccaatgtgc tgattgctgc taacagtcag1620
ggtacaatta aggtgctaga attggtatga agggttaact caagtcaaat tgtacttgat1680
cctgctgaaa tacatctgca gctgacaatg agagaagaaa cagaaaatgt catgtgatgt1740
ctctccccaa agtcatcatg ggttttggat ttgttttgaa tattttttc ttttttctt1800
ttccctcctt tatgaccttt gggacattgg gaatacccag ccaactctcc accatcaatg1860
taactccatg gacattgctg ctcttggtgg tgttatctaa tttttgtgat agggaaacaa1920
attettetga ataaaaataa ataacaaaac aataaaagtt tattgageea caaaaaaaaa1980
aaaaaaaaa aaaaaagaaa agaagggagg agggaaagg
```

- (2) INFORMATION ON SEQ ID NO. 24:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1866 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

gtggttgctg tgacaggcac tatttgaagt gctttatcat ggattaactc ttaatcctca gctaccgtat aaagtaggac ataaccccat ttcacatgca ctacactgag acttgcctcc 120 totococcca cattgaagat gttottttt cataactata tactattoca ttgcatgaat 180 attetgtaat ttatttaate ceetatggat tgataattag gtteattata gatagaagtg 240 taattaacat teetgtacat gtattttget aettgtgtgg gtatttetgt aggatgaata 300 actagaaatt tattggatca ggtttcacat ttgcagtttt gaaaactact accaaaaaga 360 tttcaccaat ttacaactcc atcattagta agaatgcctg tttgcctata gtctgccaac 420 cctgaatcct taaaaatttt tgccaatctg gtaggcaaaa tttctttctt ttctttgaat 480 attaatgagg aggaacatct tttcatgttt cttggccatt tgcatttcct attatgaatt 540 gettttgeec atttteettt tettaattat gaaagtetaa tgaetaeett eteattgtat 600 aaaaaacaca gttctttgaa tagagagacc cttttctcca atgctaccaa tcacattcca 660 cttaccacag tttaacatac atcctctagt cacctttccg tacgaatata catacacata 720 aaaacacttt ttacataaat aggatctcat attctgtagc tttttaaaat tttggtctca 780 aaaaaaagata acaggtottt aaatttottt aatggttgaa tatgattaaa tactatgaaa 840 atgccattat ttattccctt aattttttc ctctcgctat tacattgcca aagtaaacat 900 cctattcaga tgtctttgtg catgtgtgtg aatatttctt tagtctggag tccagtaagg 960 tggatttttg gatcaaaggg tttgttctct gtccaccttc agtcttccca aaggccttca1020 taactgtatt ttcaccaagt gtatggagaa tgttcatttc cccatataac catacctaca1080 cttgatagtt tttatctgtt gggcgaaaaa gaaccttttc ttattttgca tttccctgat1140 tataaaaaaa aatggtgaga ttggggttat tttcatgttt attggccatt tatagtttac1200 tgtggattgt ttgtatccct tacctgcttt ctattgggtt atgtgtggat atattgtttt1260 tatttgttca gcatctcctt ccccatcttc tggtaacaca acctttattt atttgtgggg1320 aacctattcc ctgtggctta ggtgagcatg tgaccaggcc tggcctcctg agtcccacag1380 cttcctagcc acagtgataa aagaatgggt atataactta agccaggcta aggaaagccc1440 ttaacagaac ttctgctgga actactggaa agaaggcttt atggagatcc caggaaccaal500 ggaccatgta agcctgaatt tgtgccatgt ggagagagtc tgtctgagga gaaactcgga1560 tgctagcaga aatggaaaga gaactaagtt ctgatgtcat ttttctggag gccctagatc1620 cagetytyce taaageetye ectaceteey gaetttaaag ttttytyage caataaagte1680 ttttcttatt gatttgtaga aaacctttgt aattttaaat tctagacttt atgcactata1800 aaaaaa

(2) INFORMATION ON SEQ ID NO. 25:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1189 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

```
ctagcaagca ggtaaacgag ctttgtacaa acacacacag accaacacat ccggggatgg
ctgtgtgttg ctagagcaga ggctgattaa acactcagtg tgttggctct ctgtgccact 120
cctggaaaat aatgaattgg gtaaggaaca gttaataaga aaatgtgcct tgctaactgt 180
gcacattaca acaaagagct ggcagctcct gaaggaaaag ggcttgtgcc gctgccgttc 240
aaacttgtca gtcaactcat gccagcagcc tcagcgtctg cctccccagc acaccctcat 300
tacatgtgtc tgtctggcct gatctgtgca tctgctcgga gacgctcctg acaagtcggg 360
aattteteta ttteteeact ggtgeaaaga geggatttet eeetgettet ettetgteac 420
eccegetest etecceagg aggeteettg atttatggta getttggast tgetteeceg 480
tctgactgtc cttgacttct agaatggaag aagctgagct ggtgaaggga agactccagg 540
ccatcacaga taaaagaaaa atacaggaag aaatctcaca gaagcgtctg aaaatagagg 600
aagacaaact aaagcaccag catttgaaga aaaaggcctt gagggagaaa tggcttctag 660
atggaatcag cagcggaaaa gaacaggaag agatgaagaa gcaaaatcaa caagaccagc 720
accagatcca ggttctagaa caaagtatcc tcaggcttga gaaagagatc caagatcttg 780
aaaaaagctga actgcaaatc tcaacgaagg aagaggccat tttaaagaaa ctaaagtcaa 840
ttgagcggac aacagaagac attataagat ctgtgaaagt ggaaagagaa gaaagagcag 900
aagagtcaat tgaggacatc tatgctaata tccctgacct tccaaagtcc tacatacctt 960
ctaggttaag gaaggagata aatgaggaaa aagaagatga tgaacaaaat aggaaagctt1020
tatatgccat ggaaattaaa gttgaaaaag acttgaggac tggagaaagt acagttctgt1080
cttcaatacc tctgccatca gatgacttta aaaggtccag gagtaaaagt ttatgatgat1140
gggcaaaagt ccagtgtatt cagtaaagtg ctaatcacaa gttggaggt
                                                                 1189
```

(2) INFORMATION ON SEQ ID NO. 26:

- (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 1418 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

```
gagetegeag etecgeegge geetggteee agegeeegeg gegeegegte eeeggeeeaa 60
ccatggcgtc ctccgcggcc ggctgcgtgg tgatcgttgg cagtggagtc attgggcgaa 120
gtgggccatg ctgtttgcca gtggaggctt ccaggtgaaa ctctatgaca ttgagcaaca 180
gcagataagg aacgccctgg aaaacatcag aaaggagatg aagttgctgg agcaggcagg 240
ttctctgaaa ggctccctga gtgtggaaga gcagctgtca ctcatcagtg gttgtcccaa 300
tatccaagaa gcagtagagg gtgccatgca cattcaggaa tgtgttccag aagatctaga 360
actgaagaag aagatttttg ctcagttaga ttccatcatt gatgatcgag tgatcttaag 420
cagitocaet tettgtetea tgeetteeaa gitgttiget ggettggtee atgigaagea 480
atgcatcgtg geteatectg tgaatcegee atactacate eegetggttg agetggteee 540
ccaccoggag acggececta egacagtgga cagaacceae gecetgatga agaagattgg 600
acagtgeece atgegagtee agaaggaggt ggeeggette gttetgaace geetgeaata 660
tgcaatcatc agcgaggcct ggcggctagt ggaggaagga atcgtgtctc ctagtgacct 720
ggaccttgtc atgtcagaag ggttgggcat gcggtatgca ttcattggac ccctggaaac 780
catgcatctc aatgcagaag gtatgttaag ctactgcgac agatacagcg aaggcataaa 840
acatgtccta cagacttttg gacccattcc agagttttcc agggccactg ctgagaaggt 900
taaccaggac atgtgcatga aggtccctga tgacccggag cacttagctg ccaggaggca 960
gtggagggac gagtgcctca tgagactcgc caagttgaag agtcaagtgc agccccagtg1020
aatttettgt aatgeagett ceacteetet eattggagge eetatttggg aacaetgeaa1080
gcccttaatc agccctctgt gacataggta gcagcccacg gagatcctaa gctggctgtc1140
 ttgtgtgcag cctgagtggg gtggtgcagg ccggtagtct gcccgtcact ttggatcata1200
 gccctgggcc tggcggcaca gcagcacttg cgttctcggg gctgtcgatt tcctgccacc1260
 tgggcagata acctggagat tttcaccttt tctttttcag cttgattgca tttgagtatg1320
 atttgacage cagtgattgt agttttcatg ttaatatgtg ggcaaaatat ttttgtaatt1380
                                                                  1418
 atttttgtaa tocotttotg agtaatotgg gggtoott
```

- (2) INFORMATION ON SEQ ID NO. 27:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual
 - ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
- (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library
- (xi) SEOUENCE DESCRIPTION: SEQ ID NO: 27:

gcagcaacgg ggtgcggcag ggtggggaac gcgggagggg gccagctccc aggaaagctg 60 gtctgcgagc ggcccctgcc cggctcccag gtccctgccc gaccccgccc ttcccggaacl20 cccagccggg ctgccgccg cgtcccggaa gctccagcct gaaccatgtt tttcacttgt180 ggcccaaatg aggccatggt ggtctccggg ttctgccgaa gcccccagt catggtggct240 ggagggggtg tctttgtcct gccctgcatc caacagatcc agaggatctc tctcaacaca300 ctgaccctca atgtcaagag tgaaaaggtt tacactcgcc atggggtccc catctcagtc360 actggcatt cccaggtgaa gcttcagag ccttttcccc agacattaag acatcttctg gccacagtct tctcaacact tccccaatcac420 cctctccc agacattaag acatcttctg gccacagtct tctcaaccct tgcctgcaga480 gaagttcctc tgctagtctc atctttcca ggcaccccaa ggcacttgcc tcctcctc540 tcctctccct gaaatggaag aagcatttct gagagggctc tccctctctc catgagaccc ccaccacacc tttcctaccc ctactctgc tacaggtaaa660 aatccagggg cagaacaagg agatgttggc ggccgcctgt cagatgttgc tggggaagac720 ggaggctgag acttgtgga gggttgggct taga 814

- (2) INFORMATION ON SEQ ID NO. 28:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 3039 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRAND: individual
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGIN:
 - (A) ORGANISM: HUMAN
 - (C) ORGAN:
 - (vii) OTHER ORIGIN:
 - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

~~~~~~~					
yaactgagat	attgtaatca	aatagttaac	atcaggaagt	taatttggct	ggcaaaattc 60
tagggaaact	tggccagaaa	actggtgttg	aaggettttg	ctcatataaa	caagtgccat 120
tgagtttcaa	atgaccagca	aatatattta	gaacccttcc	tgttttatgt	ctgtacctcg 180
tccacccctc	aggtaatacc	tgcctctcac	aggtacagct	gtttcttgga	aatcctccaa 240
ccaaatagca	gttttcctaa	cttgattagc	ttgagctgac	agactgttag	aatacagttc 300
tctggccaca	gctgatgagg	gctttctgta	ctgcacacag	attgtgtact	gcaccccagt 360
ccaggtgact	ggtacccact	cgagttgtgc	cgtgcaaaac	ctgtccagta	tatgcatgtg 420
gtggccctac	tgactggtaa	tggttagagg	catttatgga	ttttaagctt	tgaggaaaaa 480
ccatgacttt	taacaaattt	ttatgggtta	tatgcctaaa	cccttatgcc	acatagtggt 540
aaataattat	gaaaaatggt	ctgttcataa	ttggtaggtg	ccttttqtqa	gcagggagca 600
taattattgg	tttattatgg	taattatggt	gattttttaa	atatcatota	atgttaaaac 660
gttttctaac	agtttactgt	tocttatctc	caagatatta	tggaattaag	aatttttcca 720
gatgagtgtt	acatagattc	tttgaattta	gtataaaagt	actgagaatt	aagtttgtac 780
ttccataacc	ttggatttta	aacactgata	gtatctcatg	actaatotot	gttttgggag 840
					aactcatage 900
					ttttttcttt 960
acaggaaccg	atgracacca	cyaayttatt	gedageegea	gragerecga	tgttgaatga1020
					ttcttggcta1080
					aacatttcac1140
tagtctcttt	ttttcatcct	ttaaattgta	aattaaggat	tactcaagct	caccattatt1200
caagattggg	actcgcttcc	cagtcgacac	tetgecetge	ctgtcattgc	tgcaaagagc1260
					ttcccttttg1320
gttggtttgt	tttctagaag	tacgttcaga	tgctttgggg	aatgcaatgt	atgatttgct1380
agctctctca	ccacttaact	cactgtgagg	ataaatatgc	atgctttttg	taattaactg1440
					tcatccagac1500
					gactgaaaac1560
					cgttttgcta1620
					aaacaaacta1680
					tgaaatgcat1740
					taaacaacat1800
					agaggaggga1860
					aatgtgtaga1920
					cacaaagtca1980
					aattgtggaa2040
					tatgagtgct2100
					agtttgcacc2160
					gaaaaactgt2220
					tgggatactt2280
					tagatagttc2340
					atgcattttg2400
taacgtccag	tataacatta	aatagatgtg	tatttcctcc	cctacacaaa	ataagcacag2460
	1- 1 1				
					taaggtttta2580
artcadatct	araaraaart	attotagatt	tanaracaa	tttttataa	cagatagttg2640
tagtgtttag	agaagaaagu	accycacyce	anaatetata	agattacta	tagacagetg2040
acctantet	rasaartatt	ttaganaget	gaggitteta	agacttacta	tgggctgtaa2700
2022222	caaaaCtatt	annagadacct	gagacttgcc	gidiggdatt	ttagtttaat2760
acaaactaat	yattycattt	yaaayagatt	dttgacctta	ittetaaacg	tctagagctc2820
					atgttaagac2880
					gcaaaacata2940
citygaaatg	ctgattgatt	cttatgcttg	ctagtgtatt	gcaagaaaca	cagaaaatgt3000
agttttgttt	taataaacca	aaaattgaac	ataaaaacc		3039

- (2) INFORMATION ON SEQ ID NO. 29:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1448 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

```
taccaatetg aagggggaag eggegeegee ategeeteee ggegeteeet eccegaetee
taagteette ggeegeeace atgteegeet eggetgtett cattetggae gttaagggea 120
agccattgat cagccgcaac tacaagggcg atgtggccat gagcaagatt gagcacttca 180
tgcctttgct ggtacacggg gaggaggaag gcgccctggc cccgctgctg agccacggcc 240
aggtccactt cctatggatc aaacacagca acctctactt ggtggccacc acatcgaaga 300
atgccaatgc ctccctggtg tactccttcc tgtataagac aatagaggta ttctgcgaat 360
acttcaagga getggaggag gagagcatee gggacaactt tgtcategte taegagttge 420
tqqacqaqct catqqacttt qqcttcccqc aqaccaccqa caqcaaqatc ctqcaqqaqt 480
acatcactca gcagagcaac aagctggaga cgggcaagtc acgggtgcca cccactgtca 540
ccaacgctgt gtcctggcgc tccgagggta tcaagtataa gaagaacgag gtcttcattg 600
atgtcataga gtctgtcaac ctgctggtca atgccaacgg cagcgtcctt ctgaqcgaaa 660
tegteggtae cateaagete aaggtgttte tgteaggaat geeagagetg eggetgggee 720
teaatgaceg egtgetette gageteactg geegeageaa gaacaaatea gtagagetgg 780
aggatgtaaa attocaccag tgcgtgcggc tctctcgctt tgacaacgac cgcaccatct 840
cetteatece geetgatggt gaetttgage teatgteata eegeeteage acceaggtea 900
agccactgat ctggattgag tctgtcattg agaagttctc ccacagccgc gtggagatca 960
tggtcaaggc caaggggcag tttaagaaac agtcagtggc caacggtgtg gagatatctg1020
tgcctgtacc cagcgatgcc gactccccca gattcaagac cagtgtgggc agcgccaagt1080
atgtgccgga gagaaacgtc gtgatttgga gtattaagtc tttcccgggg ggcaaggagt1140
acttgatgcg agcccacttt ggcctcccca gtgtggaaaa ggaagaggtg gagggccggc1200
cocccatcgg ggtcaagtit gagatcccct acttcaccgt ctctqgqatc cagqtccqat1260
acatqaaqat cattqaqaaa agtggttacc agggccctgc cctqqqqttt cqctacattc1320
acccagagtg ggcgattacc aactttcgtt accagctagg aaggggagaa gagatggggg1380
ggttttaaca cggggtttgc tttacagccc cggatgcaga tttttagaag ggagggcagg1440
                                                                 1448
tgcgggtt
```

### (2) INFORMATION ON SEQ ID NO. 30:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1394 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

```
atgaatacaa ggctgcaagt ggaacatcct gttactgaga tgatcacagg aactgacttg 60
gtggagtggc agcttagaat tgcagcagga gagaagattc ctttgagcca qqaaqaaata 120
actetgeagg gecatgeett egaagetaga atatatgeag aagateetag caataactte 180
atgeotytyg caggeocatt agtgeacete tetaeteete gageagaeee tteeaceagg 240
attgaaactg gagtacggca aggagacgaa gtttccgtgc attatgaccc catgattgcg 300
aagtgggtcg tgtgggcagc agatcgccag gcggcattga caaaactgag gtacagcctt 360
egteagtaca atattgttgg actgoccacc aacattgact tettactcaa cetgtetgge 420
cacccagagt ttgaagctgg gaacgtgcac actgatttca tccctcaaca ccacaaacag 480
ttgttgctca gtcggaaggc tgcagccaaa gagtctttat gccaggcagc cctgggtctc 540
atcetcaagg agaaagecat gacegacact tteactette aggeacatga teaattetet 600
ccattttcgt ctagcagtgg aagaagactg aatatctcgt ataccagaaa catgactctt 660
aaagatggta aaaacaatgt agccatagct gtaacgtata accatgatgg gtcttatagc 720
atgcagattg aagataaaac tttccaagtc cttggtaatc tttacagcga gggagactgc 780
acttacctga aatgttctgt taatggagtt gctagtaaag cgaagtgatt atcctggaaa 840
acactattta cctattttcc aaggaaggaa gtattgagat tgacattcca gtccccaaat 900
acttatette tgtgagetea caagaaacte agggeggeee ettageteet atgaetggaa 960
ccattgaaaa ggtgtttgtc aaagctggag acaaagtgaa agcgggagat tccctcatgg1020
ttatgatege catgaagatg gagcatacca taaagtetee aaaggatgge acagtaaaga1080
aagtgttcta cagagaaggt gctcaggcca acagacacac tcctttagtc gagtttgagg1140
aggaagaatc agacaaaagg gaatcggaat aaactccagc aaggaaatgg ccagttaagt1200
agtgtcttct ctctccacca aaaagaggaa gtgcctccag cttttctggg ggtctcataa1260
agagcagttt tactaaatga ttgtatgctt atgctgaaca cctttcatat tggagaatca1320
tgcatttggg tcactaatta tctcaaaata tttcatacta ataaagttga attatttttt1380
attqqaaqcc aaaa
```

- (2) INFORMATION ON SEQ ID NO. 31:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 734 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

gccgacaaga tgttcttgct gcctcttccg gctgcgggc gagtagtcgt ccgacgtctg 60 gccgtgagac gtttcgggag ccggagtctc tccaccgcag acatgacgaa gggccttgtt120 ttaggaatct attccaaaga aaaagaagat gatgtgccac agttcacaag tgcaggagag180 aattttgata aattgttagc tggaaagctg agagagactt tgaacatatc tggaccacct240 ctgaaggcag ggaagactcg aaccttttat ggtctgcatc aggacttccc cagcgtggtg300 ctagttggcc tcggcaaaaa ggcagctga atcgacgaac aggaaaactg gcatgaaggc360 aaagaaaaca tcagagctgc tgttgcagc gggtgcaggc agattcaaga cctggaggctc420 tcgtctgtgg aggtggatcc ctgttggagac gctcaggctg ctgcggaggg agcggtgctc420 tatggaagtg gggatcagga ggcctggcag aaaagaagaa tggctgtgtc ggcaaagctc540 tatggaagtg gggatcagga aacaggagtcc tgtttgctcc tgggcaagaa600 cttgggcacg ccaatttgat gggagacgcc agccaatttga gattgacgcc aaccagattt660 tgccgaaatt atttcaaaa tttggtagtta gttaaaaccg aggtcctttt720 cagaccccaa tttt

- (2) INFORMATION ON SEQ ID NO. 32:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 692 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

```
tgcagcgcgt gcgtgctcgc ctactgagca gcgccatgga ggactctgaa gcactgggct 60 tcgaacacat gggcctcgat ccccggctcc ttcaggctgt caccgatctg ggctggtcgc120 gacctacgct gatccaggag aaggccatcc cactggccct agaagggaag gacctcctgg180 ctcgggcccg cacggctcc gggaagacgg ccgcttatgc tattccgatg ctgcagctgt240 tgctccatag gaaggcgaca ggtccggtgg tagaacaggc agtgagaggc cttgttcttg300 ttcctaccaa ggagctgca cggcaagcac agtccatgat tcagcagctg gctacctact360 gtgctcggga tgtccgagtg gccaatgtct cagctgctga agactcagtc tctcagagag420 ctgtgctgat ggagaagcca gatgtggtag tagggacccc atctcgcata ttaagccact480 tgcagcaaga cagcctgaaa cttcgtgact ccctggagct tttggtggtg gacgaagctg540 accttcttt ttccctttgg ctttgaagaa gagctcaaga agtcttcctc tggtcacttt600 gcccccggat tttaacaagg cttttccat gtcagctact tttaacgagg acgtacaagc660 actcaaggag ctgatattac ataagccggt at
```

- (2) INFORMATION ON SEQ ID NO. 33:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 571 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

```
ctgccacgca cgactgaaca cagacagcag ccgcctcgcc atgaagctgc tgatggtcct 60 catgctggcg gccctcctcc tgcactgcta tgcagattct ggctgcaaac tcctggagga120 catggttgaa aagaccatca attccgacat atctatacct gaatacaaag agcttcttca180 agagttcata gacagtgatg ccgctgcaga ggctatgggg aaattcaagc agtgtttcct240 caaccagtca catagaactc tgaaaaactt tggactgatg atgcatacag tgtacgacag300 catttggtgt aatatgaaga gtaattaact ttacccaagg cgtttggctc agagggctac360 agactatggc cagaactcat ctgttgattg ctagaaacca cttttcttc ttgtgttgtc420 tttttatgtg gaaactgcta gacaactgtt gaaacccaa attcattcc attcaataa480 actaactgca aatcacaaaa aaaaaaaaa gtcgacg
```

- (2) INFORMATION ON SEQ ID NO. 34:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 322 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

tcaagctgtg ggtgagaagc tctctagcag ggactctgac cttatggagg atcgctgtt 60 ccccatttt tccttttcac ccaaaaaagt cctgcttctg tcacccttca aacagcctgt120 gagcctaaat ttttgtggcc atgggacaga caaggacccc gtcttcagct gaactaagga180 aaagtcctgc gacatctttg gccatcaaac tccaacccag tcacccaacc agagcctctg240 aggaatggcc ccttcttgcg gggaaccctt tacaatgggc ctcttgactg atgtttcccc300 aaaacagtgc ccctgtcatc ag

- (2) INFORMATION ON SEQ ID NO. 35:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1559 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:

- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

```
gcacgagttg agagtgagtg tgtgtgtgtg cgtgtgcacg tgcacacatg tgcacggttg 60
tatgtatggg aaataaactt ataaatgggg acgtattgga gaaggaaata catagaccta 120
caactttgag caaatagcag tgatgtttta ggaactgaaa tgtcacactt aaagtcttca 180
goccagotac ttocotattt ttggogggga gaagagggoo tgattagaac tgttotggtt 240
gtgtttggcg ggaggggaat aatttttgtt cagtccttct tagtgaccaa actttaattt 300
ttaagaataa tatattgact tactgaactg aagcattctg agttgaaagg agctccagag 360
gagtggagtt ctgtgttgct cacatgttaa aagcttgctc accttcagag cagagggaat 420
acctatette agatateege ecattiteat etetteatta tagteaaaca gigigaetig 480
agagtgttgc tctggtgtct gtattctggc ttatgaagat tatttgaaaa agaactctta 540
ctacattgaa atgcagactt ttaaaaaattt aaatattgga ttaggcagtc aaaaaaccaa 600
acaagcataa aaggtcaata agttgtaatc ttaaaagtaa aggtggaaaa ctcattataa 660
atggaagaaa agttttgatt teettttttg tttgatggge agtatgeeat attataceea 720
aagttotttt aaaaaatatt tooatoaaco atttttattt aaaataaaca tttgagggaa 780
gttaccaagg cagctttttt cctcaaaagt aacctgttcc tctttggaat agcacatttt 840
aggggcatgg ttaatacctg agatttttac tcagtaaatc ctgatggtta ctgtgtgtaa 900
aatatettta agtaggattg aaggeetetg tgggggaata aaatattaee aaagtetata 960
aaaataaatt ttacatgttc tcttttatga cagagagcag cactggttct gttattttta1020
aaatgaataa ttgatttott gataggtgtt taatatttot tooctcactg ctgattotta1080
gatagaaacc attetttata tttgatagac tgettteaga aaaccettat caacaagtgt1140
acaatactta totaaaacta tacatttaga atggagcagt ttaatactag atctcagaag1200
ttttgaaaaa tagcaaagaa gactggattt ggaaagcatg gtctacaatt ggttgttaaa1260
ttctgaagct atgaagaata aatgtttcaa ctttggatta tgaaacccca tttatgattt1320
tttaaataca cttgaaataa aaatgattaa actaaatttt ggtccagtga cattactttg1380
cactgcataa tocattatac gttgtacgac tttttttttt ggtttgaatt aataactgag1440
agttttgtgt gaagctacgg catatctaac cggagaattt cggatgcctt atacggtgat1500
tatattatat gggggcattt gtagtgcagc ggaagacgga atttatgcct ttgggaaac 1559
```

- (2) INFORMATION ON SEQ ID NO. 36:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1072 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:

### (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

```
cacacgtgct gacggcggg acattcacat ccataagaag aaatctcagc aagtgttcgc 60
gtoccccagt aaacacccca tggacagcaa gggggaggag tocaagatca gctaccccaa 120
catcttcttc atgattgaca gcttcgagga ggtgttcagc gacatgaccg tagggaagga 180
gagatggtct gtgtggagct ggtggctagt gacaaaacca acacgttcca gggggtcatc 240
tttcagggct ccatccgcta cgaggcgctc aagaaggtgt atgacaaccg ggtgagcgtg 300
geegeeegea tggeacagaa gatgtegttt ggettetaca agtacageaa catggagttt 360
gtgcgcatga agggccccca gggcaagggc cacgccgaga tggcggtcag ccgagtgtct 420
acaggtgaca cagececetg tgggactgaa gaggacteca geceagette geceatgeae 480
gagegggtga ceteetteag cagaceeece acceeagaac ggaacaaceg geetgeette 540
ttctccccat ccctcaagag gaaggtgccc cggaaccgga tcgctgagat gaagaagtcg 600
cactoggoca acgacagoga ggagttotto ogggaggaog acggtggago ogatotgcao 660
aatgcaacca acctgeggte teggteeetg tegggeacag gaeggteeet ggtegggtee 720
tggctgaagc tgaacagagc agatggaaac ttccttctct atgcacactt aacctacgtc 780
acgttgccgc tgcatcggat tttaacagac atcctggaag ttcggcagaa gcccatcctg 840
atgacctage egegtgegga geetgegeag agecceggee gggeecagee eteggagtge 900
tgccaagtgc ctacctgtcc accgccaccg gggtctgcga tggcacgcca gtgttggagc 960
cgcagccagg cgaggccact cgactgccgg ggccggggcc gactgcacga acaccagccc1020
aaactgaagt gcctctgacg ggccctgctg gcgctgcttc cgccctgtgc cc
```

### (2) INFORMATION ON SEQ ID NO. 37:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 454 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual
  - ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

```
gtgctgcatg gagtgagtgg cggcatccac cgtgaggagg agaggagctc tgataccctc 60
aggacccgcc aggagggca tcacggaggc ttctggacga cttggagctg tgtcctgggg120
agaaaaccgc tcctgtgtgg gccctgagtg ctgaggagga agctgccatg cacttttccc180
tggcattttt cctgcatggt tcgtctgttt ttttgcaaat aacatgttgt catgaatttt240
tatgcatgag gcatatttca tcatgtctgt atgctgaagt ccccttcatc ctttcaattg300
gttggtggac aggagagag ggtccaaggt gccctacatc gtgcgccagt gccgtgggag360
gagategage geogaggeae ggaggaggtg ggeatetace geatgtetgg ggtggeegea420
gacatccagg cactgaaggc agccttcaac gtca
```

- (2) INFORMATION ON SEQ ID NO. 38:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 700 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

cttgtcggag ccctaaccag gggtatetet gagcctggtg ggatccccgg agcgtcacat 60 cactttccga tcacttcaaa gtggttaaaa actaatattt atatgacaga agaaaaagat120 gtcattccgt aaagtaaaca tcatcatctt ggtcctggct gttgctctct tcttactggt180 tttgcaccat aacttcctca gcttgagcag tttgttaagg aatgaggtta cagattcagg240 aattgtaggg cctcaaccta tagactttgt cccaaatgct ctccgacatg cagtagatgg300 gagacaagag gagattcctg tggtcatcgc tgcatctgaa gacaggcttg ggggggccat360 tgcagctata aacagcattc agcacaacac tcgctcaaat gtgatttct acattgttac420 tctcaacaat acagcagcc atctccggtc ctggctcaac agtgattccc tgaaaagcat480 cagatacaaa attgtcaatt ttgaccctaa acttttggaa ggaaaagtaa aggaggatcc540 tgaccagggg gaatccatga aacctttaac ctttgcaagg ttctacttgc caattctggg600 ttcccagcgg caaaggaagg cccgtttaca tggggttgat gatgttatt gtggcaggtg660 ggatttttg ccctttacat tacagcagtg aggccggggc

- (2) INFORMATION ON SEQ ID NO. 39:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 914 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

coggectgog gtgggcagca gotcaggtto tocaaatcat tgcgtagtto cgaataccot 60 eggecacace tggeettete catgetegga ataaetteet geagegacea acaggetaaa120 gagggggaag ggatccagca ccggctcctc ctccggcaac cacggtggga gcggcggagg180 aaatggacat aaacccgggt gtgaaaagcc agggaatgaa gcccgcggga gcgggaaatc240 tgggattcag ggcttcagag gacagggagt ttccagcaac atgagggaaa taagcaaaga300 gggcaatcgc ctccttggag gctctggaga caattatcgg gggcaagggt cgagctgggg360 cagtggagga ggtgacgctg ttggtggagt caatactgtg aactctgaga cgtctcctgg420 gatgtttaac tttgacactt tctggaagaa ttttaaatcc aagctgggtt tcatcaactg480 ggatgccata aacaagaacc aggtcccgcc ccccagcacc cgagccctcc tctacttcag540 ccgactctgg gaggatttca aacagaacac tcctttcctc aactggaaag caattattga600 gggtgeggae gegteateae tgeagaaaeg tgeaggeaga geegagteag aactaeaatt660 acaaccagca tgcgtatccc actgcctatg gtgggaagta ctcagtcaag acccctgcaa720 aggggggag teteacette tteetegget teeegggtge aacetgggee tgettgeagt780 tgggtgaagt tttggtaagg caatttcttg caaccaacca ccqaaggccc cggaaaaagc840 actgggttcg tcaagggaag ctccttcccc ctttggggcc cccagccttg tggcaggccc900 ctgggcccgg gttg

- (2) INFORMATION ON SEQ ID NO. 40:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1669 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

gagetgeage agageaggta acagetettg eacetgttte tettgeacet gaegtgeage 60 tgctcctacc cacctctcct ggctgagcct tgcctgatac agcagcccgg aggcaccact 120 tgcttcccga gtctcaccct cccaggcagc tcctacactc aactgcttct ctaggaaagg 180 totcacotoc ageotggage agtogggatt acagaaagco coatcottgg ottagggage 240 gccatgacga ctgaaattgg ttggtggaag ctgactttcc tccggaaaaa gaaatccact 300 cccaaagtgc tgtatgagat ccctgacacc tatgcccaaa cagagggaga tgcagaaccc 360 ccgaggcctg acgctggagg ccccaacagc gactttaaca cccgcctgga gaagattgtg 420 gacaagagca caaagggcaa gcacgtcaag gtctccaact caggacgctt caaggagaag 480 aagaaagtga gagccacget ggcagagaac cetaacetet ttgatgatea cgaggaagga 540 eggteateaa agtgaaggge tgaggagggt getageacet ettggeteee tgeeateage 600 cagatetgag acaggaeett gecaegetgg cetetttgge catagetgaa getgtgggge 660 cagttgatac ctgctggcag gaaatggctg ttttttaggt ttgtatttat gtgccgccac 720 ttttgtaagg cetgggagat cecagggtee tecaceetee ceetgaceae atacaaagge 780 acticagetic aagagtgaaa agticticacci aggaggaaca goodtoottig aagcaatggc 840 agggccagca gggaggtggg catggcaggg aatggagaga gtgagccaga cagacttcac 900 ctccttactg gacacagggt caagggcgag tttcaattgc tgctcccttt actttctcta 960 cctgtgacta ctccctggac caatcctgag gagggcacat tttccagaag ccacgtgata1020 ggggctggtt tctgtggagc cagaggcaga gacactgaac ttgagctcac ctcctaacac1080 cggcagtaaa cttcctggaa ctttgccctc aggtgcggag gggacagagg accctggcacl140 tctgttaggg tgctgtagaa gactagattg atggtagttt ggcctgttag ttcctgtttt1200 ggccatgact tttgcagatg gcaagtcaca caccctcaaa gggaagctac acgggccaaa1260 tcgggggagt gggtggggaa ttttctcctc tccctttcct actataatag tatttaagac1320 atatcagete cagagatgag teetggagee ttgaattttg tttaacaaaa taattgtagg1380 tttctctctg taataacaac gctggaaagg cagagaacct cttttatgct catgtcttgc1440 atttattgag atgactgttt ctcatgcctt tatgttcctt catgtaagta aagtggacct1500 ttgtgctcaa aaaaaaaatt tcaagcttca ggaaggggtt cccaaggtgt gacaatgtag1560 gaacctgggt cactaatttt taccatcaaa cctagcctta gtatggggat ggggcaagca1620 gaaggagcta gttacacctc agtggtcagt tctctccagt caacagaga 1669

### (2) INFORMATION ON SEQ ID NO. 41:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 355 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

coggoctoce otogototga ggotoggggt occoagotoc gogtaaactg cacgatttog 60 coctotgete agotococto tgococotot ttocaagaga gacttocaga toccacattt120 tottgactga ttttgaagot gtotgtttgo attotgattg ggaacactgg gatcattttc180 atcatgooga cagtggtggt aatggatgta tocctttoca tgacocgaco tgtgtctatt240 gaggggtoog aggaatacca gogtaagaco tagcagocoa tggtttaacg atgcttgttt300 tgagoacatg gocacaaatt acaagottga atttacagoa ottgtggttt tttca 355

- (2) INFORMATION ON SEQ ID NO. 42:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2628 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

agatacacct	actiticacce	toottotooa	acaaaaaaaa	cgcggacttc	cacaaaacaa 60
					gcgggctgca 120
cattocoott	attacattac	attteettee	tettteacte	cacactcaca	gcggcggcca 180
aagcggcggc	gacggcggcg	cgagaacgac	ccqqcqqcca	attatattaa	tectgegeae 240
ctaccctact	contractca	atcaacaacc	aacacccaac	ttgtgctcag	acctcgcgct 300
tacaacaccc	aggcccagcg	gccgtagcta	acatctaacc	tgagaacctc	ggcgctccgg 360
				aggaggcagg	
agtccgaggg	ataaccaaaa	caggraghag	caccacaaa	atggtcgcca	agcaaaggat 480
ccatataacc	aaccacaacc	acadcaadaa	catcacccag	cgcggcaacg	togccaagac 540
ctcaacaaat	acceccasa	adagoddgad	tataagaccc	tggttattgg	ctctcttcat 600
tttattata	tataattata	caattttcca	cattattcaa	agtatcagga	tgggcatgtg 660
anatanatan	cattagata	tttccattct	cctataaatt	ttaacttgaa	ctcattcctg 720
aagtyactya	ccccaagacg	aaacaattca	ctaaacatc	ctacctcaga	atgactttcc 780
acguilgala	ccctggttga	teesagettt	gtaaageact	cattocaagu	tttctagtcc 840
ataccacagt	gccttgcaaa	aaacaccaca	tgaataaagc	aataaaattt	gattgttaag 900
atacagtagt	ggaccctact	tattcagtca	attaagagta	agttttttta	tgtggttatt 960
aaaacagtat	gaacaattag	tctaactctg	catagacagg	gtctagattt	tgttaaccca1020
aatgtataac	tgcagttagc	ttaaattaca	atttgaagtc	ttgtggtttt	tatatagctal080
ggcactttat	tactcttttg	aactgaaagc	acactccctt	ataggttcat	gtaactgtcc1140
tgtaataagg	tgcttataaa	tggaacaact	acacagccta	gttttgccac	aacctttagc1200
atctaaaaag	ttttaaaagc	ttctaaatgt	ctaatataaa	gggagatgct	tatagccaca1260
acatctattt	taccaatatt	gtttccatta	cactaccttg	gattttgcat	gagtgagtat1320
agtaacccaa	gatgccataa	aaaaaaactt	gatcgttttc	tgacttaatc	agttactgtg1380
gtttcactaa	aagctaccgt	ggtggagtga	agtcagtcag	ggaaggtttg	tttatgttac1440
atttatttca	ccagaactat	tttaatatat	caaaggggtt	tactatgcca	aacaaaattc1500
tagggaaaaa	tactgctaaa	aatggatgcc	tcatcagaac	atgctgttga	gtccaatgtg1560
ccataagaca	ttttagcatg	ttaaatagca	cttttaatag	caaaaaaagg	cacatcaact1620
gcgaagttat	ccttagtttg	caaatgcttt	ttctagatta	atgatttttc	aatcattagg1680
gtactagaca	catcagccta	aagtggcatc	tggaattgaa	tggatttact	gataatgatc1740
agtctttagt	cttcccttrg	ttatatgact	ttataggtta	tgattgatca	aatttacgtt1800
ttactaatgg	taagggtgag	ggtcataggg	caggttttgg	gttttctagt	actgttgaaa1860
actgcaagta	ttqqctattt	gtatacttag	ccataacttg	gtgaaaaaaa	acctgagcag1920
tgtctatgta	ttaatgcgtt	ggaaagaaag	ctgcttgtgt	ttgctttgtt	aattgcctca1980
ggatatttct	tttaaaataa	gctgttttaa	gaggaacaga	agggaaatct	gctacctagt2040
ctatacacag	cgtgaacctc	acagggggct	tctgataccc	tcaaacatgg	agaacagtaa2100
gggagcagag	tggttaagga	ctitcaggaa	cttaactatt	ctggaataag	gaatgaatca2160
actgaccttg	ggccagcagg	tttttaacta	aattgttact	tgcctttctc	acccagttaa2220
tcagtctctg	tacttgtttc	cctttttgaa	acaagtgtct	tggttaacta	attctgtttt2280
atggttgtgc	taaattcata	gcaggtgcct	tattctttgc	ttttagtcaa	accattccat2340
atcagaattt	toottagattt	actatagata	tttggcttta	agttgttgtt	tgtgtttttt2400
aatgtacaat	gttctgataa	atttgactgt	taaattgcta	tagctagcaa	tcattttaca2460
tatgtaaaat	tgcattccct	ttgtatttca	tgtgtaattc	accaattaag	tgcagtttat2520
attcaggttg	gattatgcat	gtttaggtaa	acgaaagctg	tgtcttactt	gatttattct2580
ttaaaaataa	agttccctga	atatttgaaa	aaaaaaaaa	aaaaaaa	2628

- (2) INFORMATION ON SEQ ID NO. 43:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2535 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

agttcggcac	agggggagga	acctggccct	gggaggaggc	tgttgcgtgc	tootacagaa 60
tecegitetg	aagggaagag	catgtttgcg	ggcgtcccca	ccatgcgtga	gageteecee 120
				tgatgttcat	
cactttgacg	ccagcttctt	ttctattgtc	cagaacatcg	tgggcacagc	tctgatgatt 240
ttagtggcca	ttggttttaa	aaccaagctg	gctgctttga	ctcttgttgt	gtggctcttt 300
gccatcaacg	tatatttcaa	cgcattatgg	accattccag	tctacaagcc	catgcatgac 360
ttcctgaaat	acgacttctt	ccagaccatg	tcggtgattg	ggggcttgct	cctggtggtg 420
gccctgggcc	ctgggggtgt	ctccatggat	gagaagaaga	aggagtggta	acagtcacag 480
atccctacct	gcctggctaa	gacccgtggc	cgtcaaggac	tggttcgggg	tggattcaac 540
aaaactgcca	gcttttatgt	atcctcttcc	cttcccctcc	cttggtaaag	gcacagatgt 600
tttgagaact	ttatttgcag	agacacctga	gaatcgatgg	ctcagtctgc	tctggagcca 660
cagtctggcg	tctgaccctt	cagtgcaggc	cageetggea	gctggaagcc	tocccacge /20
cgaggctttg	gagtgaacag	cccgcttggc	tgtggcatct	cagtcctatt	tttgagtttt 780
tttatagaaa	tacaggaggg	ggccttcaag	ctgtactgtg	agcagacgca	ttggtattat 840
cattcaaaqc	agtctccctc	ttatttgtaa	gtttacattt	ttagcggaaa	ctactaaatt 900
attttgggtg	gttcagccaa	acctcaaaac	agttaatctc	cctggtttaa	aatcacacca 960
gtggctttga	tattattet	gccccgcatt	gtattttata	ggaatagtga	aaacatttag1020
ggacacccaa	agaatgatgc	agtattaaag	gggtggtaga	agctgctgtt	tatgataaaa1080
gtcatcggtc	agaaaatcag	cttggattgg	tgccaagtgt	tttattgggt	aacaccctgg1140
gagttttagt	agcttgaggc	aaggtggagg	ggcaagaagt	ccttggggaa	gctgctggtc1200
taggtactac	tggcctccaa	gctggcagtg	ggaagggcta	gtgagaccac	acaggggtag1260
ccccaqcaqc	agcaccctgc	: aagccagcct	ggccagctgc	tcagaccagc	ttgcagagcc1320
gcagccgctg	tgggcagggg	gtgtggcagg	agctcccagc	actggagacc	cacggactcalsen
acccagttac	ctcacatggg	geettttetg	agcaaggtct	cgaaagcgca	ggccgccctg1440
gctgagcagc	: accgcccttt	cccagctgca	. ctcgccctgt	ggacagcccc	gacacaccac1500
tttcctgagg	r ctgtcgctca	. ctcagattgt	. ccgtttgcta	tgccgaatgc	agccaaaatt1560
cctttttaca	. atttgtgatg	r ccttaccgat	: ttgatcttaa	tcctgtattt	aaagttttct1620
aacactgcct	: tatactgtgt	ttctctttt	. gggggagctt	aactgcttgt	tgctccctgt1680
cgtctgcacc	: atagtaaatg	r ccacaagggt	. agtcgaacac	ctctctggcc	cctagaccta1740
tctggggaca	. ggctggctca	geetgtetee	: agggctgctg	cggcccagcc	ccgagcctgc1800
ctccctcttg	gcctctcatc	: cattggctct	. gcagggcagg	ggtgaggcag	gtttctgctc1860
ataagtgctt	: ttggaagtca	. cctacctttt	: taacacagco	gaactagtcc	caacgcgttt1920
gcaaatatto	ccctggtage	ctacttcctt	acccccgaat	attggtaaga	tcgagcaatg1980
gcttcaggac	: atgggttctc	: ttctcctgtg	, atcattcaag	tgctcactgc	atgaagactg2040
gcttgtctca	gtgtttcaac	: ctcaccaggg	, ctgtctcttg	gtccacacct	cgctccctgt2100
tagtgccgta	tgacagecee	: catcaaatga	a ccttggccaa	. gtcacggttt	ctctgtggtc2160
aaggttggtt	. ggctgattgg	g tggaaagtag	, ggtggaccaa	aggaggccac	gtgagcagtc2220
agcaccagtt	ctgcaccago	agegeetee	g tootagtggg	rgttcctgtt	tctcctggcc2280
ctgggtggg	c tagggcctga	i ttcgggaaga	tgcctttgca	. gggaggggag	gataagtggg2340
atctaccaat	tgattctggc	aaaacaattt	ctaagatttt	. ccegocitat	gtgggaaaca2400
gatctaaato	c tcattttate	g ctgtatttt	i latettagtt	. giyiiiyada	acgttttgat2460
		t aaataatggo	. gtttgttgta	. aaaaaaaada	aaaaaaaaa2520 2535
aaaaaaaaa	a aaaaa				2,333

- (2) INFORMATION ON SEQ ID NO. 44:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 805 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

ggcacgagcg gcacgagcca totocatoco eggagcatot gtatgattca gaagtacaac 60 cacgatggg aagcaggtcg getggaggct totagcaag gggaaagtgt cotaaaggaa120 cecaagtaco aggaagagct ggaggacagg ctgcattot acgtggagga atgtgactac180 totagaggct tocagatoct gtgtgacctg cacgatggct totatggggt aggcagag240 gcggcagagc tgctacaaga tgaatattca gggcggggaa taataacctg gggcctgcta300 cetggtcct accatcgtgg ggaggcccag agaaacatot atcgtctatt aaacacaagct360 totggtctg tgcacctgac tgctcacagc totottgtct gcccottgtc cttgggtggg420 agcctgggcc tgcgaccga gcacctgtc agcttccctt acctgcatta tgatgccact480 ctgcccttcc actgcagt catcctggct acaagcctgg acacggtgc catcctggt tocatcggtt tocatcggt tocatcggt acacggtga acatgctga cttctgtggg600 aaaaaggtgg tgacagcag agcaatcate cotttccct tggctcaagg ccagtccctt660 cctgattccc tgatgcagt tggaggagcc acccatgga cccacctgg tagagcgttctgg gaacacgttg acccacaga ttaat tgatgccact480 acccacaca agccacaca tggaggggta tagacaggg720 gagccttctg gaacacgttg ttaat

- (2) INFORMATION ON SEQ ID NO. 45:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1279 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

```
eggaagtage egeaggeatg geggeggeta tgeegetgtt getetgeteg teetgttget 60
cctqqqqccc qqcqqctggt gccttgcaga acccccacgc gacagcctgc gggaggaact 120
tgtcatcacc ccgctgcctt ccggggacgt agccgccaca ttccagttcc gcacgcgctg 180
ggattcggag cttcagcggg aaggagtgtc ccattacagg ctctttccca aagccctggg 240
gcagctgatc tccaagtatt ctctacggga gctgcacctg tcattcacac aaggcttttg 300
qaqqacccqa tactqqqqqc caccetteet geaggeecea teaggtgeag agetgtgggt 360
ctggttccaa gacactgtca ctgatgtgga taaatcttgg aaggagctca gtaatgtcct 420
ctcaqqqatc ttctqcqcct ctctcaactt catcqactcc accaacacag tcactcccac 480
tgcctccttc aaacccctgg gtctggccaa tgacactgac cactactttc tgcgctatgc 540
tgtgctgccg cgggaggtgg tctgcaccga aaacctcacc ccctggaaga agctcttgcc 600
ctgtagttcc aaggcaggcc tctctgtgct gctgaaggca gatcgcttgt tccacaccag 660
ctaccactcc caggingting atatecyccc titttigeaga aatigeaeget gtactageat 720
ctcctgggag ctgaggcaga ccctgtcagt tgtatttgat gccttcatca cggggcaggg 780
aaagaaagac tggtccctct tccggatgtt ctcccgaacc ctcacggagc cctgccccct 840
ggetteagag ageegagtet atgtggaeat caccacctae aaccaggaea aegagaeatt 900
agaggtgcac ccacccccga ccactacata tcaggacgtc atcctaggca ctcggaagac 960
ctatgccatc tatgacttgc ttgacaccgc catgatcaac aactctcgaa acctcaacat1020
ccageteaag tggaagagae ecceagagaa tgaggeeeee ecagtgeeet teetgeatge1080
ccagcggtac gtgagtggct atgggctgca gaagggggag ctgagcacac tgctgtacaa1140
cacccaccca taccgggcct tcccggtgct gctgctggac accgtaccct ggtatctgcg1200
gctgttacat ccactaccag cctgcccagg accggctgca accccacctc ctggagatgc1260
tgattcagct gccggccaa
```

- (2) INFORMATION ON SEQ ID NO. 46:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1923 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:

- (A) ORGANISM: HUMAN
- (C) ORGAN:

#### (vii) OTHER ORIGIN:

(A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

```
gegeaagaca caggaggeec aggeeggeag teaggacatg geggegattt geagatteca
atctctctgt ttctgcggcg attgaacacc caacattggc gaccgggatc gcggaaagtg 120
atggctgtcg tcccggcgtc tctctcagga caggacgtgg gatcatttgc atatcttaca 180
attaaagaca gaataccaca gatcttaact aaggttattg atacattgca tcgacataaa 240
agtgaatttt ttgagaaaca cggagaggaa ggcgtggaag ctgaaaagaa agctatctct 300
ctcctttcta aattacggaa tgaattgcaa acagataaac catttatccc cttggttgag 360
aaatttgttg atactgatat atggaatcag tacctagaat atcaacagag tcttttaaat 420
gaaagtgatg gaaaatcaag atggttctac tcaccgtggt tgttggtaga atgttacatg 480
tatcgaagaa ttcatgaagc aattatccag agtccaccaa tcgattactt tgatgtattt 540
aaagaatcaa aagagcaaaa tttctatggg tcacaggaat ccatcattgc tttatgtact 600
cacctgcaac aattgataag aactattgaa gacctagatg aaaatcagct gaaagatgag 660
ttttttaaac ttctgcagat ttcactgtgg ggaaataagt gtgatctgtc tctctcaggt 720
ggagaaagta gttctcagaa taccaatgta ctaaattcat tggaagacct aaaacctttc 780
attttattga atgatatgga acatctttgg tcattgctta gcaattgcaa gaaaacaaga 840
gaaaaagctt ctgctactag agtgtatatt gttctcgata attctggatt tgagcttgtt 900
acagatttaa tattageega ettettättä teetetgaae tägetaetga gatteatttt 960
tatggaaaaa caattccatg gtttgtttct gatactacta tacatgattt taattggtta1020
attgaacagg taaaacacag taatcataag tggatgtcca agtgtggggc tgactgggaa1080
gagtatatta aaatgggtaa atgggtttac cacaatcata tattttggac tctgcctcat1140
gagtactgtg caatgeetea ggttgeacet gaettatatg etgaactaca gaaggeacat1200
ttaattttat tcaagggtga tttgaattac aggaagttga caggtgacag aaaatgggag1260
ttttctgttc catttcatca ggctctgaat ggcttccatc ctgcaccact ctgtaccatal320
agaacattaa aagctgaaat tcaggttggt ctgcagcctg ggcaagggga acagctcctg1380
gcctctgagc ccagctggtg gaccactgga aaatatggaa tatttcagta cgatggtccc1440
ctttgacttg atttaggagc tctcagttgc atagaaagat ctggtgagca ccttttcatc1500
cccagaaaag gagcacgtga attgagtcgc ctggcggctc tgtacgcgct cagggaagct1560
tagcttcttg gtgcccatct acgtgcactg gatgattttt cttttgaaca ttttgcccca1620
ctacactgtt tttggggata gctgggttaa gcaagttaaa gatatttaca tttatattgg1680
agattttaag caactttttt ttcagggtaa atatataatt tcaaagtgct tttaaatgga1740
ccttaatttt gaagtgggta gggccaaaaa ataaagggag ggctcctttg aggtaggtac1800
ccttggcctt tcctaaaaag cccctcaatg ggatttagat ccgggggggt ggggttattt1860
teettggttt ggecatgaaa ateettggaa eeggettatg eeettttgaa aaggggggtt1920
ttt
```

- (2) INFORMATION ON SEQ ID NO. 47:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 706 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

cattttacga caggoggat tgtttgtgg ctgtcagctt tctccgtggt ctgagtttgt 60 ggctgcattt ttatctctgg tggctctgct acggcggcgc agaaatgagg cagaaagcggal20 aaggagatct cagcctgct gagctgatga tgctgactat aggagatgtt attaaacaac180 tgattgaagc ccacgagcag gggaaagaca tcgatctaaa taaggtgaaa accaagacag240 ctgccaaata tggccttct gcccagccc gcctggtgga tatcattgct gccgtccctc300 ctcagtatcg caaggtcttg atgcccaagt taaaggcgaa acccatcaga actgctagtg360 ggattgctgt cgtggtgga cctggtggac ctgatctga tgtaactgc cctggtggac ctgatctga ttttgagtat tccaccagt480 cttacactgg ctatgagcaa cctccatgag agctattccg tgccagatat ggaccctttt540 ccttacagga gagtttgtt tgtggatgg gtgggaactt tttggggccg ttccagagga660 ttacaggtt attttattt cggaagttta cgtggtggt tttccg

- (2) INFORMATION ON SEQ ID NO. 48:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 749 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO

- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

gacctatect catetytea aggaggagty gecaactety gageceage tytteetee 60 tygtetygty gtgaateet cataytetyy tyaytyayt gecaactet ggageceagg120 atgttgette eeggtetygt ggtgaateet eeataytety gagateteay eetteetyag180 etgatgaty tyaataataa ggtgaaaee aagacagety eeaaatatyy eetteetyee300 eageceegee tygtggatat eattgetye egteeeteet eagtategea aggtettgat360 gecaaagtta aaggegaaae eeacagaae tyetaagtyg attgetyee tygetygat420 gtgeaaaeee eacagatye eacacateay ttttacagga aatatatyty tataetyee480 tyggtyggae etgattetya tettgagtat teeaeeeay ettaeaetyg getatygae600 getatyggat gaacagtta aaacaagtty ggttegtay tyggggttaa gtgggagttt660 gtttgtggat teeggaagt teeggaagt eegtteeay ggattaeay ggttatttta720 ttteggaagt ttaegtgaty ggttteey tataetyee tyggaggttta660 ggttteegaagt ttaegtgaty gggttteey tyggaggttta660 gtttggaagt ttaegtgaty gggttteey tyggaggttaa gtgggagttt660 ggttteegaagt ttaegtgaty gggttteey ttaeggagt ttaetttta720 ttteegaagt ttaegtgaty gggttteey

- (2) INFORMATION ON SEQ ID NO. 49:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 857 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

accttaccaa ggggagaaaa aaaccetcca ctttggctca ctgtgggttt ggcactaaga 60 ggcacgatat ctgaaggagg tcattccagt tttaaaagta cggacagtge tgttggaact120 gaccacaaaa atgtattgtt aaaaaaaaat tgaaaaccag cagtgatttg ggtccccctg180 aaaccetctgt gaatcggagg tgggccagg agggtgcagg acgcagcaga aatagtccca240 gaaaggagag acgggtcatg cagcgggctt gtgctttttt gtgtgtgttt gtgtgtttta300 caccatacat ctccaaatga agtatttatt aacaaattgta gtgtaaagcct gtgataaaat360 agcacaaagg ttctttaaag aagttcactt ttaaggcatc agaaaaagtta atgtggcaaa420 cattttaatt aaaaacatcag aagtaaattt tattttaaac tttaaggcctc tgaatttttc480 cagtaaacac agttcagcta tgtggcaaag tcaatgggtg gcatctaaaa tgacttttta540 aaaaataaaa taaaaataagg accacagccc aaacggtgtc accettttg6600 ggccgctcca catgcacaga atctactagg atttgtcacg gccgggtggc acccgatttg660 ttttgactat aaacaatgga tttgacttt ccctcaaaat tgaaaagaaa ggggtggggg780 gaggtttaa ccattggcct tttttttt gagggccc cattgggatt gtaaggccct840 ggggttccgg cctttcc

- (2) INFORMATION ON SEQ ID NO. 50:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 268 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

```
ccgcgcccgg ccccaggca attttaataa taaatcttaa tagatgggt aagagctgcc 60 ttcatcccat acagagaata caatggtgct agactaagta gagattttat ttcagcttaa120 agattctgtt tgatgtctga aattacatgt ttaggcggca tggggaacag gactgttctt180 tagcatcagt ttcacaatta ctttaatcta ctaggtttca ttcaccttat aattctgaaa240 tttcatcagc agtgggaac agaaaagg 268
```

- (2) INFORMATION ON SEQ ID NO. 51:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 297 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

ctgatgtgca ctctaggtta gtaaccattt ttgtgaaaaa tttagagaaa ttctttgagc 60 agcttccact gaaacactaa aacccaatag ggccaaaggc ccataacctg aggaaacctt120 atttattgct taatccaaca taggctatga aagttttgag tttcctcttg tgtattagaa180 tttcattcct attgttgta gagagtatag tacggggaat cagtaaatta aatgaagtaa240 actaaagatt acacctttgc tgctggcact aagcgaaaag caaaaccagt ggctgtc 297

- (2) INFORMATION ON SEQ ID NO. 52:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 590 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

acggtcaaaa tgataactca tgtatttat tccaacaaca ttttggttat aaaggaatac 60 aaacaggcac aaaacatggt tcagaagatt tattaagtaa acttgctaaa atatggacag120 atacacttag cagtcaaaca gttgaatatt cattgctacc tcattaaagt tttttgtatct180 gtattaccag gtccaaacat aaaaaccacc tctgttcaaa aaataaatgt tcagagagct240 gtatgttctt tgttctggta tgtacatttt aaaaaacac ctctttccag tcttgctaac300 caagaatatt agtcatataa aagaacttag aattttttc cccaagtaca agctatcttt360 tgctccaaaa cagttctgaa ggttttattt atattttatc ttatcccgag ggaccaacag420 caggcatacc tttgccaggc cttcttgcag aaagacacag agccgtaaag gcaaaaataa480 aattgcaata aagtatatgg tattggggc agggagaacc agaaacctc aaggggacca540 attttagca cgttctttt ttagggtta ccctgtggag taagaactag

## (2) INFORMATION ON SEQ ID NO. 53:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1714 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

ggaaggggaa gtttegeete agaaggetge etegetggte egaatteggt ggegeeaegt 60 cegecegtet eegecttetg categegget teggeggett ecacetagae acetaacagt 120 cgcggagccg gccgcgtcgt gagggggtcg gcacggggag tcgggcggtc ttgtgcatct 180 tggctacctg tgggtcgaag atgtcggaca tcggagactg gttcaggagc atcccggcga 240 teacgegeta ttggttegee gecaeegteg eegtgeeett ggteggeaaa eteggeetea 300 teagecegge etacetette etetggeeeg aageetteet ttategettt cagatttgga 360 ggccaatcac tgccaccttt tatttccctg tgggtccagg aactggattt ctttatttgg 420 tcaatttata tttcttatat cagtattcta cgcgacttga aacaggagct tttgatggga 480 ggccagcaga ctatttattc atgctcctct ttaactggat ttgcatcgtg attactggct 540 tagcaatgga tatgcagttg ctgatgattc ctctgatcat gtcagtactt tatgtctggg 600 atttaccctg ggttatcctt ggattcaact atatcatcgg aggctcggta atcaatgagc 720 ttattggaaa totggttgga catotttatt ttttcctaat gttcagatac ccaatggact 780 tgggaggaag aaattttcta tccacacctc agtttttgta ccgctggctg cccagtagga 840 gaggaggagt atcaggattt ggtgtgcccc ctgctagcat gaggcgagct gctgatcaga 900 atggcggagg cgggagacac aactggggcc agggctttcg acttggagac cagtgaaggg 960 geggeetegg geageegete eteteaagee acattteete eeagtgetgg gtgegettaa1020 caactgcgtt ctggctaaca ctgttggacc tgacccacac tgaatgtagt ctttcagtac1080 gagacaaagt ttcttaaatc ccgaagaaaa atataagtgt tccacaagtt tcacgattct1140 cattcaagtc cttactgctg tgaagaacaa ataccaactg tgcaaattgc aaaactgact1200 acattitting gtgtcttctc ttctcccctt tccgtctgaa taatgggttt tagcgggtcc1260 tagtotgotg goattgagot ggggotgggt caccaaaccc ttcccaaaag gaccettatc1320 tetttettge acacatgeet eteteceact ttteceaace eccacatttg caactagaag1380 aggttgccca taaaattgct ctgcccttga caggttctgt tatttattga cttttgccaa1440 ggcttggtca caacaatcat attcacgtaa ttttccccct ttggtggcag aactgtagca1500 atagggggag aagacaagca gcggatgaag cgttttctca gcttttggaa ttgcttcgac1560 ctgacatccg ttgtaaccgt ttgccacttc ttcagatatt tttataaaaa agtaccactg1620 agtcagtgag ggccacagat tggtattaat gagatacgag ggttgttgct gggtgtttgt1680 tccgagtaag tgagaaggtg agtggattga ctac

## (2) INFORMATION ON SEQ ID NO. 54:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1340 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:

#### (vii) OTHER ORIGIN:

(A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

```
ctegageege tegageegaa teggetegag etgaaaaagg getaeetgae eetgteagae
agtggggaca aggtggccgt ggaatgggac aaagaccatg gggtcctgga gtcccacctg 120
geggagaagg ggagaggeat ggagetatee gacetgattg ttttcaatgg gaaactetae 180
teegtggatg aeeggaeggg ggtegtetae cagategaag geageaaage egtgeeetgg 240
gtgattctgt ccgacggcga cggcaccgtg gagaaaggct tcaaggccga atggctggca 300
gtgaaggacg agcgtctgta cgtgggcggc ctgggcaagg agtggacgac cactacgggt 360
gatgtggtga acgagaaccc ggagtgggtg aaggtggtgg gctacaaggg cagcgtggac 420
cacgagaact gggtgtccaa ctacaacgcc ctgcgggctg ctgccggcat ccagccgcca 480
ggtaacetea tecatgagte tgeetgetgg agtgacaege tgeagegetg gttetteetg 540
ccgcgccgcg ccagccagga gcgctacagc gaggaaggac gacgagcgca agggcgccaa 600
ectgetgetg agegeeteec etgaettegg egacateget gtgagecaeg teggggeggt 660
ggtccccact cacggcttct cgtccttcaa gttcatcccc aacaccgacg accagatcat 720
tgtggccctc aaatccgagg aggacagcgg cagagtcgcc tcctacatca tggccttcac 780
gctggacggg cgcttcctgt tgccggagac caagatcgga agcgtgaaat acgaaggcat 840
cgagttcatt taactcaaaa cggaaacact gagcaaggcc atcaggactc agcttttata 900
aaaacaagag gagtgcactt ttgttttgtt ttgttctttt tggaactgtg cctgggttgg 960
aggtctggac agggagccca gtcccgggcc ccatagtggt gcgggcactg gacccccggg1020
ccccacggag gccgcggtct gaactgcttt ccatgctgcc atctggtggt gatttcggtc1080
acttcaggca ttgactcaag gcctgcctaa ctggctgggt cgtttcttcc atccgacctc1140
gtttcttttc tttcctatgt tcttttgttc agtgaatatc cctagagctc ctaccatatg1200
tcaggcccta tgcctcaccc tgagaacgca gtaagcatga aggtggacct ggtttgctgg1260
gaacccgagg gctaaccccc tttttcttcc caaatttggt gccttggaag aatcaggtcc1320
```

agccctgaag atccttgggg

#### (2) INFORMATION ON SEQ ID NO. 55:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 765 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

caggattgaa acaagatggc gggttcgtgg tgagaagccg tcaaggagta gaaattggta 60 tgcttagaag cagattctaa aagcagtttc tcttcagaac atctttttc ataccacttg120 ataagcatct tgaaacacca tggctgtagc tgcagtaaaa tgggtgatgt caaagagaac180 taccttgaaa catttattc cagtccaaaa tggagcttta tattgtgttt gtcataaatc240 tacgtattct cctctaccag atgactataa ttgcaacgta gagcttgctc tgacttctga300 tggcaggaca atagtatgct accaccettc tgtggacatt ccatatgaac acacaaaacc360 tatccctcgg ccagatcctg tgcataataa tgaagaaaca catgatcaag tgctgaaaac420 cagattggaa gaaaaagttg aacaccttga ggaaggacct atgatcaca gatgtcgtaa540 gaatctgaat cctccaaaag acagatgatg cggaggttcc tgggggaatc aaagagaaat600 gtgcctcatt tgccatttga gaaaatgcag tctggtgtat tcatatata agaatgtgtac tctcattga agtatctg720 gatttgacat tctcatttag ggggacctat tcctttttc gtttt 765

- (2) INFORMATION ON SEQ ID NO. 56:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1647 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

gcagccggag taagatggcg gcgctgaggg ctttgtgcgg cttccggggc gtcgcggccc aggtgctgcg gcctggggct ggagtccgat tgccgattca gcccagcaga ggtgttcggc 120 agtggcagcc agatgtggaa tgggcacagc agtttggggg agctgttatg tacccaagca 180 aagaaacagc ccactggaag cctccacctt ggaatgatgt ggaccctcca aaggacacaa 240 ttgtgaagaa cattaccctg aactttgggc cccaacaccc agcagegcat ggtgtectgc 300 gactagtgat ggaattgagt ggggagatgg tgcggaagtg tgatcctcac atcgggctcc 360 tgcaccgagg cactgagaag ctcattgaat acaagaccta tcttcaggcc cttccatact 420 ttgaccggct agactatgtg tccatgatgt gtaacgaaca ggcctattct ctagctgtgg 480 agaagttgct aaacatccgg cctcctcctc gggcacagtg gatccgagtg ctgtttggag 540 aaatcacacg tttgttgaac cacatcatgg ctgtgaccac acatgeeetg gacettgggg 600 ccatgacccc titctictgg cigitigaag aaagggagaa gatgitigag tictacgagc 660 gagtgtctgg agcccgaatg catgctgctt atatccggcc aggaggagtg caccaggacc 720 taccccttgg gcttatggat gacatttatc agttttctaa gaacttctct cttcggcttg 780 atgagttgga ggagttgctg accaacaata ggatctggcg aaatcggaca attgacattg 840 gggttgtaac agcagaagaa gcacttaact atggttttag tggagtgatg cttcggggct 900 caggcateca gtgggacetg eggaagaece agecetatga tgtttaegae eaggttgagt 960 ttgatgttcc tgttggttct cgaggggact gctatgatag gtacctgtgc cgggtggagg1020 agatgegeca gteectgaga attategeae agtgtetaaa caagatgeet eetggggaga1080 tcaaggttga tgatgccaaa gtgtctccac ctaagcgagc agagatgaag acttccatgg1140 agtcactgat tcatcacttt aagttgtata ctgagggcta ccaagttcct ccaggagcca1200 catatactgc cattgaggct cccaagggag agtttggggt gtacctggtg tctgatggca1260 gcagccgccc ttatcgatgc aagatcaagg ctcctggttt tgcccatctg gctggtttgg1320 acaagatgtc taagggacac atgttggcag atgtcgttgc catcataggt acccaagata1380 ttgtatttgg agaagtagat cggtgagcag gggagcagcg tttgatcccc cctgcctatc1440 agettettet gtggageetg tteeteactg gaaattggee tetgtgtgtg tgtgtgtgtg1500 tgtgtgtgtg tgtgtgtatg ttcatgtaca cttggctgtc aggetttctg tgcatgtact1560 aaaaaaggag aaattataat aaattagccg tcttgcgccc ctaggcctaa aaaaaaaaa1620 aaaaaaaaa aaaaaaaaa aaaaaaa

## (2) INFORMATION ON SEQ ID NO. 57:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1166 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

```
egecgeetge gegggggga geccageaca gacegeegee gggaceeega gtegegeace
ccagececae egeceaeeee gegegeeatg gaceceaagg acegeaagaa gatecagtte 120
teggtgeeeg egeeceetag eeagetegae eeeegeeagg tggagatgat eeggegeagg 180
agaccaacgo otgocatgot gttooggoto toagagoact cotoaccaga ggaggaagoo 240
tecececace agagageete aggagaggg caccatetea agtegaagag acceaacece 300
tgtgcctaca caccaccttc gctgaaagct gtgcagcgca ttgctgagtc tcacctgcag 360
totatoagoa atttgaatga gaaccaggoo toagaggagg aggatgagot gggggagott 420
cgggagctgg gttatccaag agaggaagat gaggaggaag aggaggatgc agccaggctg 480
aagtootgaa ggtoatoagg cagtotgotg ggcaaaagac aacotgtggo cagggtotgg 540
aagggccctg ggagcgccca ccccctctgg atgagtccga gagagatgga ggctctgagg 600
accaagtgga agacc --- ctaagtgagc ctggggagga acctcagcgc ccttccccct 660
                   secageetge ateteceagg aggaagtgga ggggacateg 720
ctgagcctgg caca was
etgitececa gaaaccelle etatecteae eetgittitgi getetteeee tegeetgeta 780
gggctgcggc ttctgacttc tagaagacta aggctggtct gtgtttgctt gtttgcccac 840
ctttqqctqa tacccaqaqa acctqgqcac ttqctqcctq atqcccaccc ctqccaqtca 900
ttcctccatt cacccaqcqq qaqqtqqqat qtqaqacaqc ccacattqqa aaatccaqaa 960
aaccgggaac agggatttgc ccttcacaat tctactcccc agatcctctc ccctggacac1020
aggagaccca cagggcagga ccctaagatc tggggaaagg aggtcctgag aaccttgagg1080
taccettaga teettteeta eccaetttee tatggaggat teeaagteaa eatttgtetg1140
aacggcttgt aacagggttc aggttg
```

## (2) INFORMATION ON SEQ ID NO. 58:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 487 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

#### (2) INFORMATION ON SEQ ID NO. 59:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1630 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

```
aaactgtgta atgccccatg taatccataa aattttaact tttcccccta acgtttttgc 60
tgaaaaatgt tgggaaaccc tcaacacgcc ttcctgaaaa caattaaaat acttgaaacc 120
tgtgaacctt tcaaaaaacc ctcaggttgg gaaaagaccc ccaaaccttc ttttaaggat 180
catttgtctc gcccatcaca ggatcttgga aatgtttccc tagggtgtgt aaaaattaac 240
ccagggggga atgaagcaca tttttctggc aaccaaactt gagttcctca gagaacagat 300
gcagagagac ctgctcctgc ttgcccggct acaggggcca ctgtggagtc acactgaggc 360
tgtgaccggc cataagccca ggagagcccg tggcagctgt gccgaggcgc caggacctct 420
aagcggaagc ttcccaagct aggaatggag caacactgca atgaaatgtg tccaccaagc 480
tcattgttcc tcccgggtgc ttataaagct cagatgtata gtgacgtatg gacaaataca 540
aaaaaaaaa aaaaaaaaa aaaaaaaaa gcctttcttt ctcacaggca taagacacaa 600
attatatatt gttatgaagc actttttacc aacggtcagt ttttacattt tatagctgcg 660
tgcgaaaggc ttccagatgg gagacccatc tctcttgtgc tccagacttc atcacaggct 720
getttttate aaaaagggga aaacteatge ettteetttt taaaaaatge ttttttgtat 780
ttgtccatac gtcactatac atctgagctt tataagcgcc cgggaggaac aatgagcttg 840
gtggacacat ttcattgcag tgttgctcca ttcctagctt gggaagcttc cgcttagagg 900
tectggegee teggeacage tgecaeggge teteetggge ttatggeegg teaeageete 960
agtgtgactc cacagtggcc cctgtagccg ggcaagcagg agcaggtctc tctgcatctg1020
ttctctgagg aactcaagtt tggttgccag aaaaatgtgc ttcattcccc cctggttaat1080
ttttacacac cctaggaaac atttccaaga tcctgtgatg gcgagacaaa tgatccttaa1140
agaaggtgtg gggtctttcc caacctgagg atttctgaaa ggttcacagg ttcaatattt1200
aatgetteag aageatgtga ggtteecaae actgteagea aaaacettag gagaaaaett1260
aaaaatatat gaatacatgc gcaatacaca gctacagaca cacattctgt tgacaaggga1320
aaaccttcaa agcatgtttc tttccctcac cacaacagaa catgcagtac taaagcaata1380
tatttgtgat tccccatgta attcttcaat gttaaacagt gcagtcctct ttcgaaagct1440
aagatgacca tgcgcccttt cctctgtaca tataccctta agaacgcccc ctccacacac1500
tgcccccag tatatgccgc attgtactgc tgtgttatat gctatgtaca tgtcagaaac1560
cattagcatt gcatgcaggt ttcatattct ttctaagatg gaaagtaata aaatatatt1620
gaaatgtacc
```

#### (2) INFORMATION ON SEQ ID NO. 60:

(i) SEQUENCE CHARACTERISTIC:

(A) LENGTH: 1272 base pairs

(B) TYPE: Nucleic acid

(C) STRAND: individual

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vi) ORIGIN:

(A) ORGANISM: HUMAN

(C) ORGAN:

(vii) OTHER ORIGIN:

(A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

```
tgcgcgcgag cccgtgtccc cacggcgggc agcagcggcg gcggcggcgg ctgaacgcgg 60
aggggggga gggagcccgc ggcggcggca gcagctacag cgaaatggcg gagaccgtgg 120
ctgacacceg geggetgate accaageege agaacetgaa tgacgeetae ggaceeccea 180
gcaactteet egagategat gtgageaace egcaaaeggt gggggtegge eggggeeget 240
tcaccactta cgaaatcagg gtcaagacaa atcttcctat tttcaagctg aaagaatcta 300
ctgttagaag aagatacagt gactttgaat ggctgcgaag tgaattagaa agagagagca 360
aggtcgtagt tcccccgctc cctgggaaag cgtttttgcg tcagttcctt ttagaggaga 420
tgatggaata tttgatgaca attttattga ggaaagaaaa caagggctgg agcagtttat 480
aaacaaggto gotggtoato ototggoaca gaacgaacgt tgtottoaca tgtttttaca 540
agatgaaata atagataaaa gctatactcc atctaaaata agacatgcct gaaatttggc 600
aagaaggggc aaaaacgtga ctattaatga ttgataagca ccagtgaaga agttctaact 660
tttagcatgc tgcacagaaa ctggtataac atgccttcag tatactaaca ctcatatgct 720
cagttttgtt ttgttttggc agttgacaag aagttaattt gctttagtaa aaatccctca 780
ttccagcett tetatataaa tagetettte ttgetgtttt aatgtggtge acaetatage 840
ctcacaaacc tgttattcca gtgtaatctg cagtgtcgta actaaagtta ctggcttggt 900
cttatttgca cagtttttgc gtcttgtttg cttcttgcat ctgattaact agaatatttc 960
totttocccc ttttaatttg tgatgtcact tgaccccatt tatgtgtagg agcactacac1020
cattggtttc caatactgca cacataagat acatacttgt gtgcagaaag tatcttcctc1080
caggettgta ataccettca catggaagat taatgaggga aatetttata ttetgtataa1140
aaacaaaagc aaatttatat actaaaatca tttgtctaaa aatttaagtt gttttcaaat1200
1272
ggcggccgct ct
```

- (2) INFORMATION ON SEQ ID NO. 61:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1914 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

```
tgcagcgcgt gcgtgctgcg ctactgagca gcgccatgga ggactctgaa gcactgggct
togaacacat gggcctcgat ccccggctcc ttcaggctgt caccgatctg ggctggtcgc 120
gacctacgct gatccaggag aaggccatcc cactggccct agaagggaag gacctcctgg 180
ctcgggcccg cacgggctcc gggaagacgg ccgcttatgc tattccgatg ctgcagctgt 240
tgctccatag gaaggcgaca ggtccggtgg tagaacaggc agtgagaggc cttgttcttg 300
ttoctaccaa ggagetggea eggeaageae agtecatgat teageagetg getacetaet 360
gtgctcggga tgtccgagtg gccaatgtct cagctgctga agactcagtc tctcagagag 420
etgtgetgat ggagaageea gatgtggtag tagggaeece átetegeata ttaageeact 480
tgcagcaaga cagcctgaaa cttcgtgact ccctggagct tttggtggtg gacgaagctg 540
accttctttt ttcctttggc tttgaagaag agctcaagag tctcctctgg gaaggcagag 600
tcacttgccc cggatttacc aggettttct catgtcagct acttttaacg aggacgtaca 660
agcactcaag gagctgatat tacataaccc ggttaccctt aagttacagg agtcccagct 720
gcctgggcca gaccagttac agcagtttca ggtggtctgt gagactgagg aagacaaatt 780
cotcotgctg tatgccctgc tcaagctgtc attgattcgg ggcaagtctc tgctctttgt 840
caacactcta gaacggagtt accggctacg cctgttcttg gaacagttca gcatcccac 900
etgtgtgete aatggagage ttecaetgeg etceaggtge caeatcatet caeagtteaa 960
ccaaggette tacgactgtg teatageaac tgatgetgaa gteetggggg ccccagteaa1020
gggcaagegt eggggeegag ggcceaaagg ggacaaggee tetgateegg aageaggtgt1080
ggcccggggc atagacttcc accatgtgtc tgctgtgctc aactttgatc ttcccccaac1140
ccctgaggcc tacatccatc gagctggcag gacagcacgc gctaacaacc caggcatagt1200
cttaaccttt gtgcttccca cggagcagtt ccacttaggc aagattgagg agcttctcag1260
tggagagaac aggggcccca ttctgctccc ctaccagttc cggatggagg agatcgaggg1320
cttccgctat cgctgcaggg atgccatgcg ctcagtgact aagcaggcca ttcgggaggc1380
aagattgaag gagatcaagg aagagettet geattetgag aagettaaga cataetttga1440
agacaaccet agggacetee agetgetgeg geatgaceta cetttgcace cegeagtggt1500
gaagccccac ctgggccatg ttcctgacta cctggttcct cctgctctcc gtggcctggt1560
acgeceteae aagaagegga agaagetgte tteetettgt aggaaggeea agagageaaa1620
gtcccagaac ccactgcgca gcttcaagca caaaggaaag aaattcagac ccacagccaa1680
geceteetga ggttgttggg cetetetgga getgageaca ttgtggagea caggettaca1740
cccttcgtgg acaggcgagg ctctggtgct tactgcacag cctgaacaga cagttctggg1800
geoggoagig etgggeeett tageteettg geactteeaa getggeate: tgeceettga1860
```

- (2) INFORMATION ON SEQ ID NO. 62:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 608 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

aattggaacca ggaattotta attaagccg aagttocaa gtotoottag oggaaaccgg 60 aaattgcca aggaaagcaa agagggagat gaccagtgat acotocagtg ccagaggtca120 otttgtggag ocaaatgcgt gacatgggca gtogagacto ggcatottot gtococcgca180 ttaatgacto tcaggaagga ggatgtaatt caaggcaagt ttotaattoo gaagctgcct240 gttoatgtta acaggactto tttttattog tcaagatgta ctggttocot ggcacottaa300 gggaaatcot gataaaggca aacctgttga gccatttggt occataggat occaggaccc360 aagtootgtg tttoatcgtt actaocatgt gttocgtgag ggagaactgg aaggtgcctg420 caggactgtg agtgatgtoa gaattotgca aagctactac gataaaggaa actggtgtgt480 gattottoaa aaggcctgat tatttacctg aaccatcat atataaagaa gaaatgctca540 cttaaaaaaa aaagaggga taaattaatt acccgtttaa ttaaaagaa aacttgtggg600 gaagtacc

- (2) INFORMATION ON SEQ ID NO. 63:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2674 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN

#### (C) ORGAN:

- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

```
tgaagagaag ttaaggtgaa gagccgaaga gcctgatgcg tgatgagcgt ctaagaaagg
agaagcaaga gcagagaaga gagagagaa gaacgggaga gagaaaggga agaaagagaa 120
aggaaaagac gaagggaaga ggaagaaaga gaaaaagaaa gggctcgtga cagagaaaga 180
agaaagagaa gtcgttcacg aagtagacac tcaagccgaa catcagacag aagatgcagc 240
aggtotoggg accacaaaag gtoacgaagt agagaaagaa ggoggagcag aagtagagat 300
cgacgaagaa gcagaagcca tgatcgatca gaaagaaaac acagatctcg aagtcgggat 360
cgaaqaaqat caaaaaqccg ggatcgaaag tcatataagc acaggagcaa aagtcgggac 420
agagaacaag atagaaaatc caaggagaaa gaaaagaggg gatctgatga taaaaaaagt 480
agtgtgaagt ccggtagtcg agaaaagcag agtgaagaca caaacactga atcgaaggaa 540
agtgatacta agaatgaggt caatgggacc agtgaagaca ttaaatctga aggtgacact 600
cagtecaatt aaaactgate tgataagaee teagateaga eagaggtaas tgtattgttt 660
ctcactttga ttagggcttt ttgttactgt ttgacagtgc agcgtaagta tgcacagatg 720
aagatggaac taagccgagt aagaagacat acaaaagcct cttctgaagg aaaagacagt 780
gtagtcctgc aaaacatttt gaggtacatt gttttgtctc agctattttg tagcagactc 840
gtgccccat tagtgtgcct ctrtggaaat tatcgcccac atttgtaata tagtcgccat 900
tgaaaagtta attatoottt ttttagggat tttgatgtoa tttottttt tttttaata 960
aaaaggttga actgtttttt tttttctttt tggtattaag tccatcttgt gttggtacat1020
tggcagagac atatgcttta aaaacttaaa tatttcggag gcacatgttg gactactttg1080
ttttaattaa actgctagta tttctttgtc aaggatgttt ctagtttttt gctttattgc1140
cttgcattct aatgcagttt gttctgtaac tcgagagcca gtagcattgg attgatggaa1200
gtgtagggtt tatgaattat tgcagctgac taccatacct cacacagcgt tggtgttgtg1260
agoggoccat gaaaagocaa attaaaaato aaggattoag toaaactaag caggtactoa1320
tgccaggtac tectttetet acceacatee atgtttgaat getattgeet gtgatettta1380
cgcttaactg ttgtgtatct tttttgttct ttacaagaag tgcagagggg ttttttgtgt1440
attgcgtgaa aacttataaa acaaatgtta acagaatgga attttttttc aactgtatgt1500
agggctgcag tggtggccag aattagatat ctttaaagaa ttttaaatac aataaacact1560
tcatattatt cgccttgtta cactcaatgc aattctcaag tctataagag gtatgtgctt1620
aatatttcct actgtgtagg agaatttgca gtcagccata ggtatgtagg aatagtcact1680
cactggctga tacatttaaa gcagcagtgt gaatagcaag gacagacacc ttcaatttgt1740
gaaatcaaag aactgatgca ctatatagaa cgaatttggg tttttaaaga aatattaaaa1800
gttaggtact gtaagtgttc ttaaaacctg taaacttcat tctgtgggct agtggtgtgg1860
gacaaaatat teetaatgaa aggaagtaee aattagttga tttgttggtg geatteeeet1920
tttgggaaag caatgtaagg ttatgtctgt gtatgtcatt cacacttagg caagcataca1980
caggcacatg gctttaagaa ccacactgat gccttgataa ttaaaaagaa tacaagcatt2040
ccatgtacac atgttaatta gcagttagtg actgggccaa cactttetca taaaaattgg2100
cettttacat gttgtetaat tateattttt ceceaaattt tgegttgtag gaetaetgtt2160
cgaagatttt tggaagaata ctgagaacgg cataaagtga agatcgacat ttaaaaaaatg2220
aggtgaaaga aagctatagt ggcatagaaa aagtataaag ctcagttagt ttttttatta2280
ttattattat taaaagttaa ttcaggactg atgtgaccta ccagatttca gaacatgtgt2340
taatagtata tatgccactg aaaacttagg tootgtatca tacttttttc tttaagactt2400
tttaagaaat attacttaaa catgtggctt gctcagtgtt taattgcaag ttttcaatct2460
tggactttga aaacaggatt aaacgttagt attcgtgtga atcagactaa gtgggatttc2520
attittacaa ciciqcicta citagectit ggattiagaa giaaaaataa agiatcictg2580
actiticity acaaagtiqa tiqtoroigi cattgaaaag tittagtatt aatottitic2640
taataaagtt attgactctg aaaaaaaaa aaaa
```

- (2) INFORMATION ON SEQ ID NO. 64:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 326 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

gacaaatgag ggtttggcat gcagctcgtc atcttaagag ttactatctt cttgccctgg 60 tgtttcgccg ttccagtgcc ccctgctgca gaccataaag gatgggactt tgttgagggc120 tatttccatc aatttttcct gaccgagaag gagtcgccac tccttaccca ggagacacaa180 acacagctcc tgcaacaatt ccatcggaat gggacagacc tacttgacat gcagatgcat240 gcttctgcta cagcagccc actgtggggt gcctgatggg tccgacaact gcatctcgcc300 aggaagatgc aagtggatta agcaca 326

- (2) INFORMATION ON SEQ ID NO. 65:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 888 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

ctcgtgcggt gatgttgagc agaagataca attcaaaaga gaaacagcca gtttgaaact 60 gttaccccac cagccccgaa ttgtggagat gaagaaagga agcaatggct atggtttcta120 tctgagggca ggctcagaac agaaaggtca aatcatcaag gacatagatt ctggaagtcc180 agcagaggag gctggcttga agaacaatga tctggtagtt gctgtcaacg gcgagtctgt240 ggaaaccctg gatcatgaca gtgtggtaga aatgattaga aaggatggag atcatgact caaagtcaaa catgttggtg gtagacaaag agacggacaa catgtacaga ctggctcatt tttctccatt360 tctctactat caaagtcaag aactgcccaa tggctctgtc aaggaggctc cagctcctac420 tcccacttct ctggaagtct caagtccacc agatactaca gaggaagtag atcataaagcc480 taaactctgc aggctggcta aaggtgaaaa tggctatggc tttcacttaa atgcgattcg540 ggctctgcca ggctcattca tcaaaagagt aacagaaggc ggtcctgct acttggctg600 gctagaagat gaggatgtca tcattgaagt gaatgggtg aatgtgctag atgaacccta660 tgagaaggtg gtggatagaa tccaagagcag tgggaagaat gtcacacttc tagtctgtgg720 aaagaaggcc tatgattatt tccaagccta agaagaatag tggtggagtc aaaccatgac840 tcgcacatgg caaaagaacg ggcggctatt gcagacggct aatttatg

- (2) INFORMATION ON SEQ ID NO. 66:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 202 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

atcacagggg tacaaccaga acacatacag tacttgaaaa attatttcca cctttggaca 60 cgacagttag cgcatattta tcactactat attcatggcc caaaaggaaa tgaaatacga120 acatcaaaag aagttgaacc tttcaacaat attgatattg aaatttctat gtttgaaaaa180 gggaaggtac ctaagattgt ca

- (2) INFORMATION ON SEQ ID NO. 67:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1225 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

```
ggccggtgga ggcggcggct gcggcacgga aggggaagcg ctgaggcggt ggggcccaca 60
gccatggcgg agctgttgca ggaggagctc tcggtcctgg ccgcgatttt ctgcaggccc 120
cacgagtggg aggtgctgag ccgctcagag acagatggga ccgtgttcag aattcacaca 180
aaagetgaag gatttatgga tgeggatata eetetggaat tggtgtteea tttgeeagte 240
aattateett catgtetace tggtateteg attaactetg aacagttgae cagggeecag 300
tgtgtgactg tgaaagagaa gttacttgag caagcagaga gccttttgtc ggagcctatg 360
gttcatgage tggttctctg gattcagcag aatctcagge atatcctcag ccaaccagaa 420
actggcagtg gcagtgaaaa gtgtactttt tcaacaagca cgaccatgga tgatggattg 480
tggataactc ttttgcattt agatcacatg agagcaaaga ctaaatatgt caaaattgtg 540
gagaagtggg cttcagattt aaggctgaca ggaagactga tgttcatggg taaaataata 600
cttgatttta ctacagggag acagaaacaa cctcaaggtg tacttgattc ttcagaaaac 660
ctccaaagta gatgtggact caagtggaaa gaaatgcaaa gagaaaatga ttagtgtact 720
gtttgaaaca aaagtacaga cagaacacaa aaggtttctg gcatttgaag tcaaagagta 780
ttcagcgttg gatgaattac aaaaggaatt tgaaactgca ggacttaaga agcttttctc 840
cgaatttgta cttgctctgg taaaatgaaa tggaagacag gaatctttta gtaaaatagc 900
agtgtttttt gttgtttttg cattggattt ggggagtggt taattgaaat agtcaatttt 960
aaagtttctc tgaagcaaaa tgataggcat cattctaact tcaggaacaa aagccagttc1020
tgttttatga aatattaaac atgaagaaaa cttgtatatt ctaatgtttg ccaggaaagg1080
ctaggttcag tagatgagac attatttaaa agataaattt aaaaagatgg taaatgaaca1140
cttgttttta tagacaatat ttgtttgaaa ctatgtaatt ttctggctaa ttttcttgta1200
                                                                  1225
attaaatgat tttttaaaaa aagaa
```

- (2) INFORMATION ON SEQ ID NO. 68:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1093 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

```
gagggeggge ctgttteegg ggaggegegt ggggettgag geegagaaeg geeettgetg 60
ccaccaacat ggagactttg taccgtgtcc cgttcttagt gctcgaatgt cccaacctga 120
aqctgaaqaa gccqccctqq ttgcacatgc cqtcqgccat gactgtgtat gctctggtgg 180
tggtgtctta cttcctcatc accggaggaa taatttatga tgttattgtt gaacctccaa 240
gtgtcggttc tatgactgat gaacatgggc atcagaggcc agtagctttc ttggcctaca 300
gagtaaatgg acaatatatt atggaaggac ttgcatccag cttcctattt acaatgggag 360
gtttaggttt cataatcctg gaccgatcga atgcaccaaa tatcccaaaa ctcaatagat 420
tecttettet gtteattgga ttegtetgtg tectattgag tttttteatg getagagtat 480
tcatgagaat gaaactgccg ggctatctga tgggttagag tgcctttgag aagaaatcag 540
tggatactgg atttgctcct gtcaatgaag ttttaaaggc tgtaccaatc ctctaatatg 600
aaatgtggaa aagaatgaag agcagcagta aaagaaatat ctagtgaaaa aacaggaagc 660
qtattqaagc ttggactaga atttcttctt ggtattaaag agacaagttt atcacagaat 720
tttttttcct gctggcctat tgctatacca atgatgttga gtggcatttt ctttttagtt 780
tttcattaaa atatattcca tatctacaac tataatatca aataaagtga ttatttttta 840
caaccctctt aacatttttt ggagatgaca tttctgattt tcagaaatta acataaaatc 900
cagaagcaag atteegtaag etgagaacte tggacagttg atcagettta cetatggtge 960
tttgccttta actagagtgt gtgatggtag attatttcag atatgtatgt aaaactgttt1020
cctgaacaat aagatgtatg aacggagcag aaataaatac tttttctaat taaaaaaaaa1080
aaaaaaaaa aaa
                                                                 1093
```

- (2) INFORMATION ON SEQ ID NO. 69:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 309 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN

- (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

cacaaagtga ttgtggtatg gaacaatatt ggagagaagg caccagatga gttatggaat 60 tctctagggc cccaccctat ccctgtgatc ttcaaacaac agacagcaaa caggatgaga120 aatcgactcc aggtctttcc tgaactggaa accaatgcag tgttgatggt agatgatgac180 acactcatca gcacccaga ccttgttttt gctttctcag tttggcagca atttcctgat240 caaattgtag ggatttgttt cctagaaagc acgtctttta ctttcattca aggtatctac300 agttattgg

- (2) INFORMATION ON SEQ ID NO. 70:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 380 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

ctcatctgat cccttttatg gccaaatcat ccttcagagt agggaacact cagacattct 60
gtgcatgttg ttcccccaaa gcatggtcat cacaaagtcc tgagttctgg tgtgtgctcc120
cgcctcctgg gtatacagag agaaggcagg aatcaggagt tccagaagca tatacatgtg180
gctacccag caacaagcgg catcctgtgc tcagataagc tgcatggttg ggaagtgttt240
ttcctcgcac gttgaggctt agtggagatg ggcaccactg ccatttgctc agaagaaggc300
tggtctggtc ctaactgcat cccacactgc ccagatcatt ctagataggt tatttctga360
atgtttatag atttcttata

- (2) INFORMATION ON SEQ ID NO. 71:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1253 base pairs

- (B) TYPE: Nucleic acid (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

```
geggeeegae tecagttagg ageettgatg eeggagggga eagtgggteg eegagagege 60
eeggagggaa eegeetggee tteggggace accaattttg tetggaacea eeeteeegge 120
gtatectact ecctgtgeeg egaggecate getteaetgg aggggtegat ttgtgtgtag 180
tttggtgaca agatttgcat tcacctggcc caaacccttt ttgtctcttt gggtgaccgg 240
aaaactccac ctcaagtttt cttttgtggg gctgcccccc aagtgtcgtt tgttttactg 300
tagggtetee eegeeeggeg eeceeagtgt tttetgaggg eggaaatgge caatteggge 360
etgeagttge tgggettete catggeettg etgggetggg tgggtetggt ggeetgeace 420
gccatcccgc agtggcagat gagctcctat gcgggtgaca acatcatcac ggcccaggcc 480
atgtacaagg ggctgtggat ggactgcgtc acgcagagca cggggatgat gagctgcaaa 540
atgtacgact cggtgctcgc cctgtccgcg gccttgcagg ccactcgagc cctaatggtg 600
gtctccctgg tgctgggctt cctggccatg tttgtggcca cgatgggcat gaagtgcacg 660
cgctgtgggg gagacgacaa agtgaagaag gcccgtatag ccatgggtgg aggcataatt 720
ttcatcgtgg caggtcttgc cgccttggta gcttgctcct ggtatggcca tcagattgtc 780
acagactttt ataaccettt gateectace aacattaagt atgagtttgg ecetgecate 840
tttattggct gggcagggtc tgccctagtc atcctgggag gtgcactgct ctcctgttcc 900
tgtcctggga atgagagcaa ggctgggtac cgtgcacccc gctcttaccc taagtccaac 960
tettecaagg agtatgtgtg acctgggate teettgeece ageetgacag getatgggag1020
tgtctagatg cctgaaaggg cctggggctg agctcagcct gtgggcaggg tgccggacaa1080
aggeotectg gtoactotgt cootgoacto tatgtatagt cotottgggt tgggggtggg1140
ggggtgccgt tggtgggaga gacaaaaaga gggagagtgt gctttttgta cagtaataaa1200
aaataagtat tgggaaacaa aaaaaaaaa aaaaaaaaa aaaaaaaaa aaa
```

- (2) INFORMATION ON SEQ ID NO. 72:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 439 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

ctaaggggag gacaggcaga aaccaggaat gccaacttaa acctgtttgg tgctctgact 60 gtttgttagt atcactcta agaatgaaga gaaacctcaa cctttctgtt tccggccaac120 tttattgaat ttgtttttt aaatgcagtt tacatgcagt ttctttgaaa agtcatgttg180 aatttagatc tgttctctga gtaagacttg gcgagtatgt gaaaccttgac tcaagttaaca240 ttcttttt tctgtcccc aaacgttcac gcttcttata ggctccactt tgaggctctg300 atgaacattc cagtgctggt gttggatgtc aatgatgatt ttgctgagga agtaaccaaa360 caagaagacc tcatgagaga ggtgggaagg actttaactc ctgttttct ggtggtttcc420 ctttggttgt accttttaa

- (2) INFORMATION ON SEQ ID NO. 73:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1252 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

tggacctgcc cgacgccctg ctgcccgact tgcccgcgct ggtgggcccc aagcagctga 60 tegtgetggg aaacaaagtg gaccteetge eecaggatge teetggetae eggeagagge 120 tgcgggagcg actgtgggag gactgtgccc gcqccqqqct cctqctgqcc cctgqcacca 180 agggccacag cgccccgtca aggacgagcc acaggacggg gagaatccga atccgccgaa 240 ctgqtcccgc acagtggtca gggacgtgcg gctgatcagc gccaagaccg gctatggagt 300 ggaagagttg atctctgccc ttcagcgctc ctggcgctac cgtggggacg tctacttagt 360 gggcgccacc aacgccggca aatccactct ctttaacacg ctcctggagt ccgattactg 420 cactgocaag ggotocgagg coatcgacag agocaccate teccettgge caggtactae 480 attaaacctt ctgaagtttc ctatttgcaa cccaactcct tacagaatgt ttaaaaggca 540 tcaaagactt aaaaaagatt caactcaagc tgaagaagat cttagtgagc aagaacaaaa 600 tcagcttaat gtcctcaaaa agcatggtta tgtcgtagga agagttggaa ggacattctt 660 gtattcagaa gaacagaagg ataacattcc ctttgagttt gatgctgatt cacttgcctt 720 tgacatggaa aatgaccctg ttatgggtac acacaaatcc accaaacaag tagaattgac 780 tgcacaagat gtgaaagatg cccactggtt ttatgacacc cctggaatta caaaagaaaa 840 ttgtatttta aatcttctaa cagaaaaaga agtaaatatt gttttgccaa cacagtccat 900 tgttccaaga acttttgtgc ttaaaccagg aatggttctg tttttgggtg ctataggccg 960 catagatttc ctgcagggaa atcagtcagc ttggtttaca gtcgtggctt ccaacatcct1020 ccctgtgcat atcacctcct tggacagggc agacgctctg tatcagaagc atgcaggtca1080 tacgttactc cagattccaa tgggtggaaa agaacgaatg ggcaggattt cctcctcttg1140 ttgctgaaga cattaatggt taaaagaaag gactgggggc aacctggaag cagtgggccg1200 acatcaaagt ttcctctgca ggtaatttta tgccaagcac tttttaaaaa gt

- (2) INFORMATION ON SEQ ID NO. 74:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 695 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

tgttcattge ctcctgagcg tagtccagtt acttcagge tcggggagtg aaggcctcgt 60 tgagagaagg tctcattcgg tgttttggga agagagtcgt gtgggcccag gtatcgtagc120 ggcgacacga gagagacggg cggtgtgaca gccttccact acctgcacga gtgtattggt180 ctgtctgcta tcagctatge cgctgccogt tgcgctgcag acccgcttgg ccaagaggg240 catcctcaaa catctggage ctgaaccaga ggaagagatc attgccgagg actatgacga300 tgatcctgtg gactacgagg ccaccaggtt ggagggccta ccaccaagct ggtacaaggt360 gttcgaccct tcctgcgggc tcccttacta ctggaatgca gacacagacc ttgtatcctg420 gctctccca catgaccca actccgtggt taccaaatcg gccaagaagc tcagaagcag480 caagtcggac gccaagaaa agttggaccg gagccatgac aagtcggaca ggggccatga540 caagtcggac cgcaggcatg gagagcgtg ctatgacaag tccaggaacg gggtcca600 cgacaagtct gaccaagcag accgggaaga gggcc catgacaag gggcc 695

#### (2) INFORMATION ON SEQ ID NO. 75:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 2514 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual
  - ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

cggcgacggc	gcgggggcag	ctgggaatcc	ggaatgctgc	ccgatggccc	tgggtcctcg 60
ctgtggggca	atccgggctt	gcagacgagt	tttagaaaga	gcgttttcgc	tacgtaaagc 120
acattcgata	aaggatatgg	aaaatacttt	gcagctggtg	agaaatatca	tacctcctct 180
gtcttccaca	aagcacaaag	ggcaagatgg	aagaataggc	gtagttggag	gctgtcagga 240
gtacactgga	gccccatatt	ttgcagcaat	ctcagctctc	aaagtgtgac	agccccaatg 300
ctgttcatga	ggtggagaag	tggctgcccc	ggctgcatgc	tcttgtcgta	ggacctggct 360
tgggtagaga	tgatgcgctt	ctcagaaatg	tccagggcat	tttggaagtg	tcaaaggcca 420
gggacatccc	tgttgtcatc	gacgcggtga	gttgacttct	ctcctcctgg	ctcggactcc 480
cadaaqqcct	gtgcagtgag	cacggctcct	tgttctgtgc	aggatggcct	gtggtaggtc 540
gctcagcagc	cggccctcat	ccatggctac	cggaaggctg	tgctcactcc	caaccacgtg 600
gagttcagca	gactgtatga	cgctgtgctc	agaggcccta	tggacagcga	tgacagccat 660
ggatctgtgc	taagactcag	ccaagccctg	ggcaacgtga	cggtggtcca	gaaaggagag /20
cgcgacatcc	tctccaacgg	ccagcaggtg	cttgtgtgca	gccaggaagg	cagcagccgc /80
aggtgtggag	ggcaagggga	cctcctgtcg	ggctccctgg	gcgtcctggt	acactgggcg 840
ctccttacta	gaccacagaa	aacaaatggg	tccagccctc	tectggtgge	cgcgtttggc 900
acctactata	tcaccaggca	gtgcaaccac	caagccttcc	agaagcacgg	togetecace 960
accacctccq	acatgatcgc	cgaggtgggg	gccgccttca	gcaagctctt	tgaaacctga1020
acccacacaa	accagaagta	aacaggcacc	ttggacgggg	gagagcgtgt	gtgtgatgggluau
aaaatccqqa	cccacqcgtq	tgctgaaggc	gtacggtgct	tgccagattt	tcaacttgag1140
cataaattgg	ttgccattga	gaatttaaga	atctggaata	ttgcagcttt	tggttaaact1200
taatqcatqq	ttggagatgt	tatggcgaca	ctaaacaaag	tattcctgaa	ctttccttag1200
ctccttggta	gtaactggga	agacagaaat	gaagaaaatc	acatgagaat	gaagaattetiszu
ttagcagctc	aacagagttt	ctcggcctgc	tcccagatcg	gcgaagtttc	tacttgttacisou
tctctctacc	gacaccette	gttcctcctc	tgcttccctt	ccctagtctt	teeteeggeal440
aggagetaga	caggggtccc	cgggtgtctc	cctgagtccc	gactgcactg	actgggtccalouu
tcagagggct	acttcattct	ccaqctcatc	ttcttttaaa	gtggtgacta	derradiadrisen
atctggctgc	taatatttaa	cttattgaca	tactccaggg	taatcaatga	tgactttgtt1020
togaaaccct	tttggaggca	ccatgggaac	agaaggaaac	atgagtgacg	ctgacccttgioou
agtatataga	tggggagctc	tgagacgcct	cctgtcccac	gctctccggt	gtccgtgtct1/40
acacagggt	ccccatgata	cccaccggcc	ccagcagggc	agaccggacc	ggggacgggcrouu
acggtgaagg	gctgcagcct	ggggtctgac	gtggccccta	gtgctgtctc	aggagaaggcioou
tctggaggac	ttgaggcatg	ctgggcctgg	tgcagtgatg	gcgctaagga	gacccgggga1920
aagacagtat	cgtggtcacg	tatgcttagg	aagcagcaca	geegtgteet	tagggatgtt1980
cgcgtccagt	aaagacactg	gtaactgcgg	tttcagccaa	cactcttcat	ggcagtgtcg2040
acctcgggtt	agcttctgtt	gtctttgtgg	atggttttcc	tggagcggcc	tgacgttgacziou
gtgttctctg	gtcccatgtc	ttagcggggc	atggtacggt	ttcgtgcctg	acgcgtgcat2160
tagggtgttc	tcttatactt	tcagtagcat	ctttccacag	caagggccaa	accetectgg2220
ttcccttcag	agtctttttg	gcctgatgat	gactcttgag	tgataccctg	tgatgcagac2280
atgccccaga	tggattctac	tttctttaaa	actagggact	ttcaagatta	aaaaaaagat2340
tgtcactact	aatttgacgo	: ctaacttcag	aagcttcact	gtctacatgt	gaacttttcc2400
agaaaaactg	tgccatggac	: atttttcctc	: tggggaatta	acatctaaat	totggtaact2460
attaaaagac	: agatctggtt	. aatttaaaaa	aaaaaaaaa	aaaaaaataa	. aaaa 2514

- (2) INFORMATION ON SEQ ID NO. 76:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 274 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:

cagagatotg otgtgattat toottttoac aaaccacaat gactotggaa aacctggotg 60 taaacaccag cactgocacc agotaaggat otgtgatoag gagtgocato toacggtaac120 aggcagaaga caaaagtgaa accgggotga tgcgaatoac tgggaaactg gotttggcac180 otocagagaa tgaactgttt catagootag otgaccatoc atgaaaatgg otgcctggag240 aggcagtgat cagoccatto octgoaaggt gaag 274

- (2) INFORMATION ON SEQ ID NO. 77:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 449 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

eggetttage ggeagetett egggattgtt tecattgea cectaacegt getggeetat 60 gaacggtaca teegegtgt ceatgeeaga gtgateaatt teteetgge etggagggee120 attacetaca teetggeeta etcactggeg tgggeaggag caceteteet gggatggaac180 aggtacatee tggacgtaca eggactagge tgcactgtgg actggaaate caaggatgee240 aacgatteet eetttgtget teettatte ettggetgee tggtggtgee eetgggtgte300 atageecatt getatggea tattetatat teeattega atgettegtt ggtgtggaag360 atetteagae aatteaagtg ateaagatte taaaatatga aaagaaactg gecaaaatgt420 gettttaatg atatteacet teetggteg

- (2) INFORMATION ON SEQ ID NO. 78:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 346 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

atataacatc tgaattgga gatagctcat tgtggcctgg gtgctggact tttcatatta 60 agtcctgtct tagccaaggg agaagaatgt aaggataaga ccaccaatat cacaggggct120 gtctgagcct ttacctgtga ttttgtacca ctctgtggcc ttctggagca atggacaacc180 aagtcagcta tgcagttcat aaaagtggac ctggttatat gtcatccaac agcatatggt240 ccctgcaagc ctgttttgga agccaatatt ctataaccta caggaatcca cttgaatctg300 atgtctttgg aagcaatata ttttcccagg gttccaatgg actacg

- (2) INFORMATION ON SEQ ID NO. 79:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1329 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

cccccatca gttcgaattt ctgcagtgag agcatctggg gttattgtga ccaactgaaa gtotcagaga gtacccacgt gctccagccc ttcctcccca gcatccttga tggcttaatt 120 cacctagcag cocagttcag ctcagaggtc ctcaacctgg tgatggagac cctgtgcatc 180 gtttgtacag tagaccccga attcacagca agcatggaaa gcaaaatctg ccccttcacc 240 atogocatti tootaaagta cagtaatgat cocgtogtog cotcactggc toaggacatc 300 ttcaaggage tgtcccagat tgaageetgt cagggeecaa tgcaaatgag getgatteec 360 actetqqtca qcataatqca qqccccaqca gacaagattc ctqcaqqqct ttqtqcqaca 420 ccattgatat cctgacaaca gtagtacgaa atacaaagcc tcccctttcc cagcttctca 480 totgccaage tttccctgct gtggcacagt gtaccettca cacagatgae aatgccatca 540 gtgcagaatg geggagagtg cttgegggee tatgtgteag tgaceetgga acaagtagee 600 cagtggcatg atgagcaggg ccacaatgga ctgtggtatg tgatgcaagt ggtgagccag 660 ctcctggacc cccgcacctc agagttcact gcggcctttg tgggccgcct tgtttccacc 720 ctcatctcca aggcagggcg ggaactcggg gagaatctag accagattct tcgtgccatc 780 ctcagtaaga tgcagcaggc agagacgctc agtgtcatgc agtccctgat catggtgttc 840 gctcatctgg tgcacactca gctagaacct ctcttggagt tcctgtgtag cctcccagga 900 cctactggca aacctgctct agagtttgtg atggctgagt ggacaagccg acagcacctg 960 ttctatggac agtatgaagg caaagtcagc tctgtggcac tctgtaagct gctccagcat1020 ggcatcaatg cagatgacaa acggctacag gatatccgtg tgaagggaga ggagatctac1080 agcatggatg agggcatccg cacccgctct aagtcagcca aaaacccaga acgctggacal140 aacatteett tgetggteaa gateetaaag etgateatea aegagetete eaacgteatg1200 ggaggctaat gccgctccgc caggccactc ctgcagagtg ggagtcaaag gtgcacgaag1260 geocettaet teccaggaag actititagee tiggeagate aagtitacaaa tigteaaatt1320 atccaggaa

- (2) INFORMATION ON SEQ ID NO. 80:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 805 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:

- (A) ORGANISM: HUMAN
- (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

```
geocceatea gttegaatt etgeagtgag ageatetggg gttattgtga ecaaetgaaa 60 gteteagaga gtaceaegt geteageee tteeteeea geateettga tggettaatt120-cacetageag eccagtreag eteagaggte eteaaeetgg tgatggagae eetgtgeate180 gtttgtacag tagaeeega atteaeagaa ageatggaaa geaaaatetg eeeetteaee240 ategeeatt teetaaagta eagtaatgat eeegtegteg eeteaetgge teaggaeate300 aetetggtea geataatgea ggeeeeagea gacaagatte etgeaggget ttgtgegaea420 eeeattgata teetgaeaae ageatggaea aatacaaage eteeeette eeaggaea420 eeeattgata teetgaeaae agtagtaega aatacaaage eteeeette eeaggeea420 ategeagaatg geggagatg ettgegggee tatgtgteag tgaeeetgga eaaagtagee600 eagtggeatg atgageaggg eeacaaatgga etgtggtatg tgatgeaagt ggtgageeag660 eteetggaee eeegeaeete agagtteaet geggeetttg tgggeegeet ttgttteeae720 eeteatetee aagagtegag gggaaetegg ggagaateta gaeeagatte etteetgea780 teetteagtt aagatggeag gaggt
```

- (2) INFORMATION ON SEQ ID NO. 81:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 420 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

```
accaggtcaa gctcaccca aactattacc ttcgatgcat gtgttgtcat accctgtgga 60 gatctccaaa gtcaaaagca actgtcagac tcagagaagt atctgtgcc ctttaagata120 aaaggctccc cctatcaaga cccttgttcc ttaacgaatg caggaaaaca ggtctgccat180 agctggaatg aggtggtg gacaactgaa tatcaaggct ggacctcgtc aaccggtggt240 tgtatgtcct taaaaccata cattcacttc actaaagaaa gtaccccca taattgccag300 tataaccaat gtaatccagt gcaaatttct attctcattc caacttctac tgaccctaaa360 cctactttaa gttgcggtat atggcatgg agccgaaata gcaggggcac atcttattgg420
```

- (2) INFORMATION ON SEQ ID NO. 82:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2143 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

cggccgccct	ttttttttt	ttttttaagt	tgaacagaac	attttatttc	tcagcaattc 60
tatgcgtaca	aattaaacat	gagatgaata	gagactttat	tgagaaagca	agagaaaatt 120
cctatcaacc	ccaaggagga	ctcaaagtga	ggctggaaga	ggacttagaa	gagtatgaaa 180
				aaagtttaac	cttagtgact 240
aaggacatca	catatgaaga	atgtttaagt	tggaggtggc	aacgtgaatt	gcaaacaggg 300
cctgcttcag	tgactgtgtg	cctgtagtcc	cagctactcg	ggagtctgtg	tgaggccagg 360
ggtgccagcg	caccagctag	atgctctgta	acttctaggc	cccattttcc	cctctgaaaa 420
taagagggtt	ggatcaaacg	atctctgggg	ccttagcatc	tcaaatcctg	tggatcctcc 480
tacttacccc	ttagagagcc	ttactgggaa	gtcagtcatt	aatgatgtgg	ccagttattt 540
gcaagtggta	agagcctatt	taccataaat	aatactaaga	accaactcaa	gtcaaacctt 600
aatgccattg	ttattgtgaa	ttaggattaa	gtagtaattt	tcaaaattca	cattaacttg 660
attttaaaat	cagttttgtg	agtcatttac	cacaagctaa	atgtgtacac	tatgataaaa 720
acaaccattg	tattcctgtt	tttctaaaca	gtcctaattt	ctaacactgt	atatatcctt 780
cgacatcaat	gaactttgtt	ttcttttact	ccagtaataa	agtaggcaca	gatctgtcca 840
caacaaactt	gccctctcat	gccttgcctc	tcaccatgct	ctgctccagg	tcagccccct 900
tttggcctgt	ttgttttgtc	aaaaacctaa	tctgcttctt	gcttttcttg	gtaatatata 960
tttagggaag	atgttgcttt	gcccacacac	gaagcaaagt	aaataaagac	cacaaatgtt1020
caaattctaa	gccacttaat	agcgttttgt	acattaaaaa	tgacaagggt	tattatacaa1080
gtagcctttt	aaaaaattct	cacacagaac	agctttgtat	ttagacttaa	agctgttgct1140
actttgctag	tgacgtttgt	gttaacagtc	agtgctctag	gccattgatt	gattgattgt1200
cagaatcaga	agtgactaca	caagagcatt	agccagactt	ttcagtgaga	acaggtaaca1260
ggctggcacc	agcacttggt	acagcacgtg	gacaggacga	cggaacccag	agttctctgt1320
ctctccttca	cagcagatgg	actcttctat	aggtggctgt	taatttacac	aaagttatat1380
tccagaatca	ggaagccccg	tgtcgccaac	acttgaagga	gaactatgtt	ccagttttgg1440
tgttgaactt	ctcacgaaat	acctactacc	aaaaattgtg	acaccttatt	agacacttcc1500
aaagtacccc	ccaaaagctg	tttaaaagac	cattccattt	tttcctacac	aaagtgcata1560
ctaaaatttc	acaataatca	tcttcagatg	tacattttat	ttagtacatt	tcacagtttt1620
cagtattcag	tccctcatga	acattttata	gtcatctctt	cggccctgtt	gtgaaatatg1680
tgattccagt	tcaattcaga	gtgtatgatt	ccgcttttca	cgctgatcaa	gtaaatttat1740
ggtgtctctt	ttctgatctt	caacattaaa	aacatctatg	tttctgtcat	tccctgccag1800
ggctgcttgc	ttgtctgtct	cagattctgc	ttcattttca	tccatgttgt	agtcatcttc1860
tcctctcagt	ttctgctggt	ttctcccttc	cccggcagct	tectgeteet	cctcctgtcc1920
gtcggggatg	acaagctggt	ctcgctcagg	gccctccatc	tctggatttt	cctggctcac1980
tgacagggca	gcctgcacct	gtggggtctg	gcccagttct	ccggctcccc	cgaagcctct2040
tccacctaca	ggtctgtctt	caacacctgc	tcccggcctg	gctcctgcgg	cagcctgtcc2100
ctctgaggct	ccgatcaaca	ctgatctcat	ggttcccttc	cca	2143

- (2) INFORMATION ON SEQ ID NO. 83:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 450 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

ttttttaaa gccagctttt cttcagattt ttttggtggg caggtcgtga aagacaggtg 60 aggaagtaga tcttgggctc agcatgcctc taaaagtata atttctttt tttaatgtgg120 aaagaaatgc ataactctgt ttctgttcct gtccccctct ctgcctctgt ggtgcctgag180 atactgggga tcccacagct ggggccactc agaggctacc aggaacgctt ccagtttgca240 tctggctgtt agtgccagga ccagaaaccc acagacctct tcacagacct cctgaccgtg300 atgtccctga agcctggaag gtgtccacac aatgaagcag aattgagtga tggggtgttt360 tgtggaaccc agtgaaactg tgttaacaca gtgggaactgt gttaattttg agtggaagtt420 caagttccgt ggagttcatt gggcccgttt

- (2) INFORMATION ON SEQ ID NO. 84:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 408 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:

- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

tgcaactgtg caccagctt gccagatttt tccccattac accccagtg tggcatatcc 60 ttggtccca gaggcacacc ccttgatctg tggacctcca ggcctggaca agaggctgct120 accagaacc ccaggccct gttactcaaa ttcacagcca gtgtggttgt gcctgactcc180 tcgccagccc ctggaaccac atccacctgg ggaggggcct tctgaatgga gttctgacac240 cgcagagggc aggccatgcc cttatccgca ctgccaggtg ctgtcggccc agcctggctc300 agaggaggaa ctcgaggagc tgtgtgaaca ggctgtgtga gatgttcagg gctagttcca360 accaagagtg tgctccagat gtgttggggc cctaacttgg cacagagt 408

- (2) INFORMATION ON SEQ ID NO. 85:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 311 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

tacagttttt atcagtgatc acattttagt gtaatacatg aaactgaggc ttgatagaaa 60 acaggagaga aggcatgagt gcatggggta catagggaga tgagggcaag catcaccaag120 gagcggcagt gagatagacg ctctcatgga ctgctgcttt acaacctccc tggagagcaa180 tttaaaaata tgaatcaaga tccttttgat ccactaatca tccagaaatc tacacagaaa240 tatgcacaaa aatatgtggg catccattga ctttccaacc tcttcttt ccagggggaa300 tattccttaa a

- (2) INFORMATION ON SEQ ID NO. 86:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 487 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

gtctttgaa atctgttcc actacagcta tggtcaagtc tatcagccg tgctaccagg 60 agtcactgcc agggctgccg ttctcctgaa ccccagtggc cagaatcata agccctgaccl20 ccatccctag aaagatgagg tcccagcaat ggccagagca tttctcacca gttctgtgag180 atagcacata cagcctgagc tgttctcaag aggagagtgg tactggcagt ttatggctga300 aatccattct gattggttgg agtctatgct ataccagttg ttaaacattt tgagtatcac360 tcttgcatac tgttactatt atattcctc tatatataga cagaaaggcc atttttagga420 tattaaaggc tctgaaaatt tctgcagtag acccaactga aggttctatt aaggcagggt480 tcctaaa

- (2) INFORMATION ON SEQ ID NO. 87:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1902 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

gaggaaaaag aacaatgaac agcaacgatc ttgactgtgc aactcagaca ttcctgcaga 60 aaagacatat gttgctttac aagaaggcca aagaactatg gggccttccc agcatttgac 120 tgttcattgc atagaatgaa ttaaatatcc agttacttga atgggtataa cgcatgaatg 180

```
tgtgatttta ttaggggcat ctgccaattc tctcactgtg gttccttctc tgactttgcc 240
tgttcatcat ctaaggagge tagateette getgaettea ecatteetea aacetgtaag 300
tttctcactt cttccaaatt ggctttggct ctttcttcaa cctttccatt caagagcaat 360
ctttgctaag gagtaagtga atgtgaagag taccaactac aacaattcta cagataatta 420
gtggattgtg ttgtttgttg agagtgaagg tttcttggca tctggtgcct gattaaggct 480
tgagtattaa gttctcagca tatctctcta ttgtcttgac ttgagtttgc tgcattttct 540
atgtgctgtt cgtgacttgg agaacttaaa gtaatcgagc tatgccaact tggggtggta 600
acagagtact teccaceaca gtgttgaaag ggagageaaa gtettatgga taaaecetee 660
tttcttttgg ggacacatgg ctctcacttg agaagctcac ctgtgctgaa tgtccacatg 720
gtcactaaac atgttateet taaacceece gtatgeetga gttgaaaggg etetetetta 780
ttaggttttc atgggaacat gaggcagcaa atctattgct aagactttac caggctcaaa 840
tcatctgagg ctgatagata tttgacttgg taagacttaa gtaaggctct ggctcccagg 900
ggcataagca acagtttctt gaatgtgcca tctgagaagg gagacccagg ttgtgagttt 960
teetttgaae acattggtet ttteteaaag tteetgeett getagaetgt tagetetttg1020
aggacaggga ctatgtctta tcaatcacta ttattttcct gttacctagc atgggacaag1080
tacacaacac atatttgtgt agtcttctaa aagactcctc tgattgggag accatatctal140
taattgggat gtgaatcatt tottcagtgg aataagagca caacggcaca accttcaagg1200
acatattatc tactatgaac attttactgt gagactcttt attttgcctt ctacttgcgc1260
tgaaatgaaa ccaaaacagg ccgttgggtt ccacaagtca atatatgttg gatgaggatt1320
ctgttgcctt attgggaact gtgagactta tctggtatga gaagccagta ataaaccttt1380
gacctgtttt aaccaatgaa gattatgaat atgttaatat gatgtaaatt gctatttaag1440
tgtaaagcag ttctaagttt tagtatttgg gggattggtt tttattattt ttttcctttt1500
tgaaaaatac tgagggatct tttgataaag ttagtaatgc atgttagatt ttagttttgc1560
aagcatgttg tttttcaaat atatcaagta tagaaaaagg taaaacagtt aagaaggaag1620
gcaattatat tattettetg tagttaagea aacaettgtt gagtgeetge tatgtgeaeg1680
gcatgggccc atatgtgtga ggagcttgtc taattatgta ggaagcaata gatctcggta1740
gttacgtatt gggcagatac ttactgtatg aatgaaagaa catcacagta atcacaatat1800
cagagetgag ttatececag tgtagetteg ttggggatte cagtttetgg gaacgagagt1860
tagggccatt ttatttaaaa gaaactcccg gttgagaccg gt
```

- (2) INFORMATION ON SEQ ID NO. 88:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1048 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

ctcaccgtcg totacaccgt gttctacgcg ctgctcttcg tgttcatcta cgtgcagctc 60 tggctggtgc tgcgttaccg ccacaagcgg ctcagctacc agagcgtctt cctcttctc 120

tgeetettet gggeeteeeg geggaeegte etetteteet tetaetteaa agaettegtg 180 geggecaatt egeteageee ettegtette tggetgetet actgetteee tgtgtgeetg 240 cagtttttca coctcacgot gatgaacttg tacttcacgo aggtgatttt caaagccaag 300 tcaaaatatt ctccagaatt actcaaatac cggttgcccc tctacctggc ctccctcttc 360 atcageettg tttteetgtt ggtgaattta acctgtgetg tgetggtaaa gaegggaaat 420 tgggagagga aggttatcgt ctctgtgcga gtggccatta atgacacgct cttcgtgctg 480 tgtgccgtct ctctctccat ctgtctctac aaaatctcta agatgtcctt agccaacatt 540 tacttggagt ccaagggctc ctccgtgtgt caagtgactg ccatcggtgt caccgtgata 600 ctgctttaca cctctcgggc ctgctacaac ctgttcatcc tgtcattttc tcagaacaag 660 agegtecatt cetttgatta tgactggtac aatgtatcag accaggcaga tttgaagaat 720 cagctgggag atgctggata cgtattattt ggagtggtgt tatttgtttg ggaactctta 780 cctaccacct tagtcgttta tttcttccga gttagaaatc ctacaaagga ccttaccaac 840 cetggaatgg teeceageea tggatteagt ecceagatet tatttetttg acaacceteg 900 aagatatgac agtgatgatg accttgcctg gaacattgcc cctcagggac ttcagggaag 960 gttttgctcc agattactat gagttgggga caacaaacta acagcttcct ggcagaagca1020 gggacttttg aaagcctcaa agtttgga

## (2) INFORMATION ON SEQ ID NO. 89:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 804 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

```
gccccatca gttcgaatt ctgcagtgag agcatctggg gttattgtga ccaactgaaa 60 gtctcagaga gtacccacgt gctccagccc ttcctccca gcatccttga tggcttaatt120 cacctagcag cccagttcag ctcaagaggtc ctcaacctgg tgatggagac cctgtgcatc180 gtttgtacag tagaccccga attcacagca agcatggaaa gcaaaaatctg ccccttcacc240 atcgccatt tcctaaagta cagtaatgat cccgtcgtcg cctcactggc tcaggacatc300 ttcaaggagc tgtcccagat tgaagcctgt cagggcccaa tgcaaatgag gctgattccc360 actctggtca gcataatgca ggccccagca gacaagattc ctgcagggct ttgttgcgaca420 gccattgata tcctgacaac agtagtacga aatacaaage ctcccctttc ccagcttctc480 atctgccaag gctgaaggg cttgcgggcc tatgtgcaag tgaccctgga acaagatga caatgccacc540 atgcagaatg gcggagaggg cttgcgggcc tatgtgtcag tgaccctgga acaagtagcc600 cagtggcatg atgagcaggg ccacaaatgga ctgtggtatg tgatgcaagt ggtgagccag660 ctcctggacc cccgcactc agagttcact gcggccttt tgggcgcctt tgttccacc720 ctcatctca agactgcag
```

- (2) INFORMATION ON SEQ ID NO. 90:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 581 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

```
tetttgatea gatttagtgt ettaggtaat taaateagaa agtetattta getattetag 60 aagtgtatgt gtaggtattg ggtggttggg gttetttgag egaacttgte agaaacteca120 ttettaacat eagaateagg geaggattga aaaeattgtg getggatett gaaattgeta180 taacatetat tgeagaaaat gataggteag atggatada ataataatta tataateagat240 ettagtaaca gatgtattt etttaagaat tattacagta gtaaaagaat atttttaaat300 gteeageatt gatgtattt etttaagaat tattacagta tataageatt etttgggaat360 aeagtataaa aacataaatt ttttegtatt tettaatttt tttattttt tggteaagga420 tgaateetee eeegaactte ggagatggeg gatgeggta aaaageeaaa aggatggatg540 gggateegga aataegtgg gaatggaag egaateeaat a 581
```

#### (2) INFORMATION ON SEQ ID NO. 91:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 2042 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

```
tggagatatt agtcagtttc tttagtgata tttgtttcct tgatgtgcct ttttgttttt 60
ctttggggtt tttggaatcc ggatgctgtt gaagggcaat agcagactcc tccagctaag 120
agacaggaca tgttcttgag ccactgtagc tgttgaagct ggacaccaga cgctccctat 180
aacccccccg ccaggccata gcgtgtatgc atgtgcactt ccacccacag aggaggtgt 240
gaageettga gaaceteaag aaagggetgg attetgeeat acetttgggt etaeettggg 300
actgctggtt gccaacgtgt caaccagcct gtgttccctg ccacccacgc acttgctgag 360
gtgtggctga ggcagaatca tgtgaatggg tgcatccaag gagttcaggg ccctgcttgg 420
agaagaaata ctttagcatc atgaaaggga aagaacgtgc accccttttt tgtttcttta 480
gtgaatgcaa gatttaataa aagtgaataa tgagcttccc ctttgggagt ggagcccagt 540
gcagctcact gacagggttg acatcagtat gatgtgttgg actgaaactg tatgtctgta 600
ggtaggtgtg tgccttttag ggcagaccac ggtggccacc ccatttctcc aaggtggttt 660
acctagettg tgtatattag acattgecae ecteacetet ggecaaaaat tettgattta 720
aaaagaaaag totattttgt taacgacagg ctctgttgta tgtgttacta tcccaagcct 780
ggattatttt atttatttaa aagtatttta atttccatat tggctttatt ctaatcccat 840
ccatccctgt ggagctgcag agcatcttca tgtgagtaga cggatggaca taaatagatt 900
catgeteatt taggaagetg ggagtttegt gaagetgagg gtgagtteet gtgattettg 960
ttcgcttcaa caaaaagtgg gagaccaagt ttttatagca aaagaccaaa ttagctgtag1020
agtettgaat geagaaaaa attaceetag etttettage aettagggtt ttgtgaggat1080
tcagtgttta gcacagtgct tggcacatag taagccctag taaatgttaa atattgttat1140
tagtgtttcg taaaacttga gaaatagagc tgagctcatt cccttcctgt tgattcaaaa1200
ataataccta catgaaaaca tgattccaag ttgattgaat gttgtaggaa ttactggttt1260
agagtagece agttetegge etaceetget ggttgggate ttactgtatt ettgaatgea1320
ctggtttgaa aatatgccag acttcagccc ccaaggaaac aaggctgcaa gaatttatga1380
actecagetg gaaaaggtaa aggtgaeett tggetageea catactggae ettaceccac1440
tgacgtcttt cagaacattc caagggtttt cctcaaggaa catttttgag ctagaaatta1500
-aaatgggttc tctggcagac tgcacccctt gagtcaaagt taacagtatt cctttgaatg1560
caataataga ggcttttctg cgttaaggga gaaggaatga ccaattgaac ttacacattc1620
cccaggcagg tecetttgcc ggcccctaca ggctggggtg gcccctcctg tectcaggga1680
teagactece agactggtta gttetgeatg tttecateaa attaaaggtt atteeetgge1740
cgcctcctgg agaaaaccaa ccccacctg ccagctgggg gcaatggggc agggattttg1800
gcctctcaga acagctccta gaggctgctc atgactgaat gttttcccaa atcacctaaa1860
tatcggtttg ctttttgttt tgggggagag gatttagcct cttacttccc tgatggattc1920
aaagttttat ctatctcctt atctcctgcc ctgtcttggc acaactctgg atagattgca1980
ggtgtggaat ttgctggagt ttggtggctc cccaaattcc ttgatctgtc cgcaaagaga2040
```

- (2) INFORMATION ON SEQ ID NO. 92:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 430 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

gttaaaaacc tagtattcat tttttttt cctgtaccaa aacaatcatc ttcctttatt 60 tttcctggag cgggaagagg agagtggaga agaagggaag aatgcaaagt gtcactttgal20 acttctcgtt caccacaca gtgggagtcc actcatgtca gcagcctccg tgcacaggccl80 ccaaggtgaaa gaaagaatga ggtctagttg gaccagctaa cactgcctgc cttgtgtttta240 cgaaaggcag ctgcctctgt ggtgtgattt caggggagcc agacagggcc ggggccacga300 acctgcatcc tgcatcctaa gcacctattt gccatgcggt gaggcttaac ttgggaaact360 tcaatttgct tggggtgcag attagcttc caaactattg tgatgctcat gcttgacttc420 ccaaggactt

- (2) INFORMATION ON SEQ ID NO. 93:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 592 başe pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:

- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

aattaaaata aatagaaaca tacggagatt cttttatgtt ggatttatta taccctccac 60 cattttggtc cctgaaaagg gaaaagatac acggtcgagt agtacaggta tgtgtttccc120 actacacatt atggctataa tggagttgaa ttgcaaacag taaaattttg ttttggattg180 gtttcccctg atcccccag acaggagett cctctcccac cctacctgcc tgcccttaag240 ttgtgtccta ttaaactgga cacaaatctc accggctttt agtctaataa ttgaatcata300 gctacacacg gtgacaccag aatagctact tgtttttta tgttaccagt gagtaacttg360 tttatccttg tatgtagaaa ctaatttcac catgatcaca gatctgtga acaatctctag420 tttgaatttc cacacaattt taaaatgtct actaggaaaa cttacacctt tttgttccaa480 gggtgctctt catctattaa aaccgtgggg gcatacttcc agtgttgctt ctgagggcca540 aattttgtgg gtcgtgggg acaattttgt attaacatac gttattttgt aa 592

- (2) INFORMATION ON SEQ ID NO. 94:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 674 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

```
aaggccgcg aagtgcact gcgtgtcac gttaccgtag cgactggct tctggactgt 60 atatcctage tgccttgtca acatcttega gcatcggcag ctccggagge cggggtaact120 ggaacatttg acatcattc ctttggcaat tccagcctt tgtggaaagg ccagtagaa240 gcattgattt attcacctct acaggaatca gactcagcct cttttggttt tcagtgaagt300 atgacttttc aatttggaac ccagccaagg aggtttccag tggaaggagg agattctca360 attgagctgg aacctgggct gagctccagt gctgcctgta atgggaagga gatgtcacca420 actgtttatg caacaacgag aaagccacct gcacaaagca gcaaggaaat gcatcctaaa540 tctggtgatct aggtaacaaa aaaaaaaaa aaaa
```

- (2) INFORMATION ON SEQ ID NO. 95:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 324 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

gttcttttca ttccatcact ttaggtgatg ggtaagatt ttgaaagcct tatattttt 60 gattttgttg tctagtttaa tcctaccttt aatagttgtg tttggtaaaa ttcccacttg120 aatgtgacac tgataataat tatgctgatt tttagcatct cttataggaa tcaaagttta180 ttaaagttac atagaggatt gaaaaatgta tatcactcaa tttttatcta aggagggata240 gggtataaag ggaggtacct aaatagctca aataatggat ataatccttt tttccataac300 catttgggat gctttaaggc aatt

- (2) INFORMATION ON SEQ ID NO. 96:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 709 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

ggatgeggea ctataacatc ceegteagag tgtgtgagga gaccagteta tgagagaege 60 atgeteetga cageetggeg acgtggegaa gatgeacagg tggeteetgg gettgggetg120 caggtttggg ggtetetaag aacaatetet gagaagaace ettgggeece tgggagecaa180 gttggacagg atgeetgaa gactagett tgataagaga aattaaceaa gtettteece240 teatetatga tgeaatatat tteagtgggg geetteagag cacacetgtt ggaeggtgea300 aaccatatet tetecagaag geaaataett ttgatacaga ggaaacteag ttttggagag360 gaatatgtte tttatatete aaateaaaac teeteetaat ggtaaacteg ettetaattt420 ttttaagtae agtattttt ttteecettt agtagaacg ggtttetata gatetteeta480 tacagtetge tttaacteag gaeettgaga ttatgagaet gaegtgetge ceaetgge600 atagteata caccetgg taatettaee teeteetttt tatgaagga agagcaatgg660 tttggaetta catetaaatt aaggetatt taageagatt getttgeaa 709

## (2) INFORMATION ON SEQ ID NO. 97:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 562 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

```
gtocagatgg aatgactoc atcetect catetecet ttgacgage tcaaactgct 60 cageteate aagagecatt gecaacttee gtatgtggt etgggteea gggagecttg120 gaacetggea ecetggggtg gtttaattee ggcacgagag catteetget teteaaggga180 cacagtggee tgeatggee agcatggace etgggetgat eatgtgeatt ectgettete240 tggggacaca gtgggeceae atgggeeage atggaceetg ggctagagea agcacatete300 eatetettee aceteaggea gtgtggetee agatgteagg agggaetgae etcaaggae260 teeaggtee tetgtgeeag gaatgagagg ecaaggeega teetaceaee tegeettgae420 ectgaagtea gageaggeea gecaageagg aagcacaetg tttaatttt tgcatggaaa480 gtaaatgtgt actttgatag ggttaaaata tggtetttt taagttgete aaceccataa540 tttgageeat tgeettgett aa
```

## (2) INFORMATION ON SEQ ID NO. 98:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1948 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

```
gatcaccaag acacacaag tagaccttgg gctcccagag aagaaaaaga agaagaaagt
ggtcaaagaa ccagagactc gatactcagt tttaaacaat gatgattact itgctgatgt 120
ttctccttta agagctacat ccccctctaa gagtgtggcc catgggcagg cacctgagat 180
gcctctagtg aagaaaaaga agaagaaaaa gaagggtgtc agcacccttt gcgaggagca 240
tgtagaacct gagaccacgc tgcctgctag acggacagag aagtcaccca gcctcaggaa 300
geaggtgttt ggccacttgg agttcctcag tggggaaaag aaaaataaga agtcacctct 360
agccatgtcc catgcctctg gggtgaaaac ctccccagac cctagacagg gtgaggagga 420
aaccagagtt ggcaagaagc tcaaaaaaca caagaaggaa aaaaaggggg cccaggaccc 480
cacagootto toggtocagg accottggtt otgtgaggco agggaggcoa gggatgttgg 540
ggacacttgc tcagtgggga agaaggatga ggaacaggca gccttggggc agaaacggaa 600
geggaagage cecagagaac acaatgggaa ggtgaagaag aaaaaaaaa tecaceagga 660
gggagatgcc ctcccaggcc actccaagcc ctccaggtcc atggagagca gccctaggaa 720
aggaagtaaa aagaagccag tcaaagttga ggctccggaa tacatcccca taagtgatga 780
ccctaaggcc tccgcaaaga aaaagatgaa gtccaaaaag aaggtagagc agccagtcat 840
cgaggagcca gctctgaaaa ggaagaaaaa gaaggagaga gagagtgggg tagcaggaga 900
cccttggaag gaggaaacag acacggactt agaggtggtg ttggaaaaaa aaggcaacat 960
ggatgaggeg cacatagace aggtgaggeg aaaggeettg caagaagaga tegategega1020
gtcaggcaaa acggaagctt ctgaaaccag gaagtggacg ggaacccagt ttggccagtg1080
ggatactgct ggttttgaga acgaggacca aaaactgaaa tttctcagac ttatgggtgg1140
cttcaaaaac ctgtcccctt cgttcagccg ccccgccagc acgattgcaa ggcccaacat1200
ggccctcggc aagaaggcgg ctgacagcct gcagcagaat ctgcagcggg actacgaccg1260
ggccatgagc tggaagtaca gccggggagc cggcctcggc ttctccaccg cccccaacaa1320
gatettttae attgacagga acgetteeaa gteagteaag etggaagatt aaactetaga1380
gttttgtccc cccaaaactg ccacaattgc tttgattatt ccatttatgc tggagattac1440
aaattttttt tgtgaaaaaa tcagatcttg gtgaggacct cgagcagtaa gatataaata1500
actoccataa gottagogtt coagtaatgg aacactaggo ataaatggtt tattoagttg1560
tgcaaatgaa agccatctga cagttggctc acattgaaca cctgtggaga ttaaggacga1620
ggacaactat attgatgggc ttggatgaac tggggcaggg cagctcatat ttcggggagcc1680
aggagaacga gtgagtgcta aaacctcctg ttttctgtgt taaacattcc gtccctgttt1740
gagacatcag tatgtacagt taacttttgt tgagtgttta gcaggtacta gggacatact1800
agtgttttcc ttaatgtatt taatcttcat aattatgaaa tgggtgctat tattagcccc1860
atcttataga tgaggcaact gaggttcagg gataaagtaa taaaattgcc tggggtcacc1920
cagccactaa aaaaaaaaa aaaaaaaa
```

- (2) INFORMATION ON SEQ ID NO. 99:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 483 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

aatttatggg gtctatctt gaccacgtga taccacttac ctgattctat gtactgatta 60 atgtatctaa cagttttata gtgaaagtac tttttaaaaa agtatttgaa tggtcatttc120 tattttccc cctttgctgt acaagttaat ttttactcat cttttgctgt acaaattaac180 tttcatcaat ctataaagta ggctagtttt aagtcaattt atttgtcatg agcccaggaa240 caattaaatt ctataaagta atgtattaaa atagtacact ttaaaaatta ttttccttat300 ttttttctct ttaaatttta agaccatcat aataaattat cattacaaag tcaaacatac360 tatatactac tatcagtcaa tggggaaaaa ataagtccat atgttttatg ggtaaaatgc420 tgtaatagat tgggattgtc caatttgcct tgaaaaaaat cacagcagtt tttaggtttc480 cct

- (2) INFORMATION ON SEQ ID NO. 100:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 437 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:

- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

cccgcttgag gcgtaggggg tggcgctctc cgttcggcgg cgctccatg gcgcacatta 60 ccattaacca gtacctgcag caggtgtacg aagccatcga cagcaggat ggagcatctt120 gtgcagagtt ggtgtcttt aaacatcctc atgttgcaaa cccacgactt caaatggcct180 ctccagagga gaagtgtcaa caagtcttgg aaccccctta tgatgaaatg tttgcagctc240 atttaaggtg cacttatgca gtggggaatc atgacttcat agaggcatac aagtgccaga300 ccgtgatagt ccaatcattc ttgcgagcat tccaggccca caaagaagaa aactgggctc360 tgctgtcatg tatgcagtag cgcttgacct ttcgagtgtt tgccaataat gcagttcaac420 cagttggtta aggaagg

- (2) INFORMATION ON SEQ ID NO. 101:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 359 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

cagatctagg ggcttcagct gtgtgcagac cccatgccac ttcagggaag tgacacaggc 60 ctgtgtcatc tcgctttggc agcaggtggg tggccttcct caggggagga ggtggcctga120 gatgtgtttc aggtctttga cccatcactc cctacacac cgacgtgaac accactcctg180 gagcattctc agaatggaga tttgaattcc atgtggcagc ttctcacaca caaacctgcc240 atcattcccc acacaccac tcacgacatt caacagccat gagccaaaag aagttccttg300 tttcagattt gaaggtttta tgaatccact tcttccggat gtagctcttt aatgatttt 359

- (2) INFORMATION ON SEQ ID NO. 102:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 501 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

teggegteae atcetgagte gegeetetge egaggeggag eggacatgea ggeteecege 60 ggcaccetag tettegeet ggtgategeg etegtteeeg teggeeggga acettetage120 caaggatete agagtgett acagacatat gagetgggaa gtgaaaacgt gaaagteeet180 attettgagg aagatacace etetgttatg gaaattgaaa tggaagaget tgaatagaag tectagatet gaatgttac etacettgaa ggaaggaag300 gaatcaaate acaacceaag tgacagtgaa tectaaacet gaatgeget catgttttee360 aagagaagea geeeetgagg gagtetgetg aggetgeeaa eagaggatga agaggataca420 aattaatta attecaaate aacatagaca teagagaacett ttgetgtte teceaacgec480 caetetteet aatgatggea t

- (2) INFORMATION ON SEQ ID NO. 103:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1102 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

cgggatctcc cgaaggaatt tacggggatt cctcggacca ttatcctcag gcaagaaaca 60 aaaccaaact tggactctcg tgcagaaaat gtagcccatt accacatgta gccttggaga 120 cccaggcaag gacaagtaca cgtgtactca cagagggaga gaaagatgtg tacaaaggat 180 atgtataaat attotattta gtoatootga tatgaggago cagtgttgca tgatgaaaag 240 atggtatgat totacatatg tacccattgt ottgetgttt ttgtactttc ttttcaggtc 300 atttacaatt gggagatttc agaaacattc ctttcaccat catttagaaa tggtttgcct 360 taatggagac aatagcagat cctgtagtat ttccagtaga catggccttt taatctaagg 420 gcttaagact gattagtctt agcatttact gtagttggag gatggagatg ctatgatgga 480 agcataccca gggtggcctt tagcacagta tcagtaccat ttatttgtct gccgctttta 540 aaaaataccc attggctatg ccacttgaaa acaatttgag aagttttttt gaagtttttc 600 toactaaaat atggggcaat tgttagcott acatgttgtg tagacttact ttaagtttgc 660 accettgaaa tgtgteatat caatttetgg atteataata geaagattag caaaggataa 720 atgoogaagt cacttoatto tggacacagt tggatcaata ctgattaagt agaaaatcca 780 agctttgctt gagaactttt gtaacgtgga gagtaaaaag tatcggtttt attctttgct 840 gatgtccttt ctgcttgaaa taacagtcac catacagcta aaggagagga gtttctttcc 900 ttctaagtag gcagaaatgg tatcattatg ttgccgctct ccaatctccc agagctcgct 960 gttgccccaa gactaggcct gggaactgtt ggggggccaa ggggattgct cccgtcccgc1080 aggeeteecg agtaggeegg ga

- (2) INFORMATION ON SEQ ID NO. 104:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 306 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

gaccaacett ccetgccatt tatacggcat aaaaccetca atetcaecag tatggetaec 60 aaaattatag gttcacetga aacaaagtgg attgatgcaa cttctggaat ttacaactca120 gaaaaatett caaatetate tgtaacaact gatteeteg aaageettea gagteetaat180 attgaateca aagaaateaa tggaatteat gatgaaagea atgettttga atcaaaagea240 tettgaatec atttttttg aaaaacetta aaaagggega teacaatttt tttgaacaag300 ggteat

- (2) INFORMATION ON SEQ ID NO. 105:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2042 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

```
tggagatatt agtcagtttc tttagtgata tttgtttcct tgatgtgcct ttttgttttt
ctttggggtt tttggaatcc ggatgctgtt gaagggcaat agcagactcc tccagctaag 120
agacaggaca tgttcttgag ccactgtagc tgttgaagct ggacaccaga cgctccctat 180
aacccccccg ccaggccata gcgtgtatgc atgtgcactt ccacccacag aggagggtgt 240
gaageettga gaaceteaag aaagggetgg attetgeeat acetttgggt etacettggg 300
actgctggtt gccaacgtgt caaccagect gtgtteeetg ccaeccaege acttgetgag 360
gtgtggctga ggcagaatca tgtgaatggg tgcatccaag gagttcaggg ccctgcttgg 420
agaagaaata ctttagcatc atgaaaggga aagaacgtgc accccttttt tgtttcttta 480
gtgaatgcaa gatttaataa aagtgaataa tgagetteee etttgggagt ggageeeagt 540
gcagctcact gacagggttg acatcagtat gatgtgttgg actgaaactg tatgtctgta 600
ggtaggtgtg tgccttttag ggcagaccac ggtggccacc ccatttctcc aaggtggttt 660
acctagettg tgtatattag acattgccac ceteacetet ggccaaaaat tettgattta 720
aaaagaaaag totattttgt taacgacagg ototgttgta tgtgttacta toocaagcot 780
ggattatttt atttattaa aagtatttta atttccatat tggctttatt ctaatcccat 840
ccatccctgt ggagctgcag agcatcttca tgtgagtaga cggatggaca taaatagatt 900
catgctcatt taggaagctg ggagtttcgt gaagctgagg gtgagttcct gtgattcttg 960
ttcgcttcaa caaaaagtgg gagaccaagt ttttatagca aaagaccaaa ttagctgtag1020
agtottgaat goagaaaaa attacootag otttottaga aattagggtt ttgtgaggat1080
tcagtgttta gcacagtgct tggcacatag taagccc .
                                              · . taa atattgttat1140
tagtgtttcg taaaacttga gaaatagagc tgagctcall
                                              .. . ctgt tgattcaaaa1200
ataataccta catgaaaaca tgattccaag ttgattgaat gttytaggaa ttactggttt1260
agagtagccc agttctcggc ctaccctgct ggttgggatc ttactgtatt cttgaatgcal320
ctggtttgaa aatatgccag acttcagccc ccaaggaaac aaggctgcaa gaatttatga1380
actccagctg gaaaaggtaa aggtgacctt tggctagcca catactggac cttaccccac1440
tgacgtcttt cagaacattc caagggtttt cctcaaggaa catttttgag ctagaaatta1500
aaatgggttc totggcagac tgcacccctt gagtcaaagt taacagtatt cctttgaatg1560
caataataga ggcttttctg cgttaaggga gaaggaatga ccaattgaac ttacacattc1620
cccaggcagg tecetttgcc ggcccctaca ggctggggtg gcccctcctg tcctcaggga1680
teagaeteee agaetggtta gttetgeatg tttecateaa attaaaggtt atteeetgge1740
cgcctcctgg agaaaaccaa ccccaccctg ccagctgggg gcaatggggc agggattttg1800
gcctctcaga acagctccta gaggctgctc atgactgaat gttttcccaa atcacctaaa1860
tateggtttg etttttgttt tgggggagag gatttageet ettaetteee tgatggatte1920
aaagttttat ctatctcctt atctcctgcc ctgtcttggc acaactctgg atagattgca1980
ggtgtggaat ttgctggagt ttggtggctc cccaaattcc ttgatctgtc cgcaaagaga2040
```

- (2) INFORMATION ON SEQ ID NO. 106:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 320 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

aatctttta ccatgaaatt tcttccagaa ttttccccct ttgacacaaa ttccatgcat 60 gtttcaacct tcgagactca gccaaatgtc atttctgtaa aatcttccct gagtcttcca120 agcatgttat tgccttctcc tagagtttac ctgccatttt gtgcacattt gagttacagt180 agcatgttat tttacaattg tgactctcct gggagtctgg gagccatata aagtggtcaa240 tagtgtttgc tgccttgaga gttgaatgac atttctctc tgttttggta ttactgtaga300 tttcgatcat tctttggtta

- (2) INFORMATION ON SEQ ID NO. 107:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 506 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

gtcgaacagc aaagccaaga cttgttaaaa aggtttgaag aggaaggacc ataacaattg 60 aaagggggaa attataagat acagtaaatt cctcttcaaa gatttagect gttgacttcc120 ttattctttg ttctcaaact cgacttcctt gttgtccatg cctccttgtc cctagttact180 gtgaacaacc ttcccaccag ttctaatcaa taactcacca ctgctccctt ggttacccac240 tctgcaccca ttcttccaca tgaaactgca cttcccacca ctgtaactca catccccctt300 cccttcctta tttggaaaag tattcacaaa tagccaatcg ggtcaactta gaatgagcgg360 tccaacccca gcccctgggg gagtgacaca gaggtaggga ctgtgttagg gataaaaacc420 tttccttc tttgttcagt gtgctgctgt gatcatgatt gatgcaggca gcagcctttt480 tgcaqaagta aattgccttg ctgagg

- (2) INFORMATION ON SEQ ID NO. 108:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1276 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

```
gegeggeegg egeetgeggg gegagagggt eggggegaag gggaagetae gteeeggagg 60
tgeggtgtgg ggcaceggge ggggeegegg gaaceggege eecaeggage tgetgetgte 120
agaccaacco egggeeccea teateactge geogegettt eaggegeega gaactacegt 180
teceggeatg ccatgaaatt ggceteggeg ctgaggeggg gteeggeeet ccaecegete 240
ecgecgegeg egaategegg tegegageca tggaggagga ggeategtee eeggggetgg 300
getgeageaa geegeacetg gagaagetga eeetgggeat caegegeate etagaatett 360
ccccaggtgt gactgaggtg accatcatag aaaagcctcc tgctgaacgt catatgattt 420
cttcctggga acaaaagaat aactgtgtga tgcctgaaga tgtgaagaac ttttacctga 480
tgaccaatgg cttccacatg acatggagtg tgaagctgga tgagcacatc attccactgg 540
gaagcatggc aattaacagc atctcaaaac tgactcagct cacccagtct tccatgtatt 600
sacttectaa tgeacceact etggeagace tggaggaega tacacatgaa geeagtgatg 660
atcagccaga gaagcctcac tttgactctc gcagtgtgat atttgagctg gattcatgca 720
atggcagtgg gaaagtttgc cttgtctaca aaagtgggaa accagcatta gcagaagaca 780
ctgagatctg gttcctggac agagcgttat actggcattt tctcacagac acctttactg 840
cctattaccg cctgctcatc acccacctgg gcctgcccca gtggcaatat gccttcacca 900
gctatggcat tagcccacag gccaagcaat ggttcagcat gtataaacct atcacctaca 960
acacaaacct gctcacagaa gagaccgact cctttgtgaa taagctagat cccagcaaag1020
tgtttaagag caagaacaag atcgtaatcc caaaaaagaa agggcctgtg cagcctgcag1080
gtggccagaa agggccctca ggaccctccg gtccctccac ttcctccact tctaaatcct1140
cctctggctc tggggaaacc ccacccggga agttgaggca cccttccttc caatttgcct1200
aaccagtttc caggagtggg gtgggttttt ccgtggcaca ggttggggcc ttagggggggg1260
ttggacgttc catttt
```

## (2) INFORMATION ON SEQ ID NO. 109:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 373 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

```
aaatacattt atgtttcttg aaatgtgtta agtggccttt gtcaaggtgt ttataataga 60 agagtatata aaaatgaatt tctctagaga tgcagcatac tctaaagatc catcattaga120 taattaaaaa tatgtaagtc atgctaacat ttccatatat aaatggagaa cattaactct180 cctactgttt agttataaaa taccaaattt tgtaattatc ctatctggaa ttacactata240 ctgcaaaaat gccagttact tcacttttaa atttgacaat gtatgtgatg aattataaaa300 tttaatagcc tacatcttt cctcctgta tccaaatttc tccggacctt aatgcttaaa360 ccttttggtt acc 373
```

- (2) INFORMATION ON SEQ ID NO. 110:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 492 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

gtettttgaa atetgtttee actacageta tggteaagte tateageegg tgetaeeagg 60 agteaetgee agggetgeeg tteteetgaa eeceagtgge eagaateata ageeetgaee120 eeateeetag aaagatgagg teeeageaat ggeeagagea ttteteaeea gttetgtgag180 atageaeata aaaatagagt tetttgggea aaaettttgg gaageaatge ateetaeatg240 ggetgatatt eageetgage tgtteteaag aggagagtgg taetggeagt ttatggetga300 aateeattet gattggttgg agtetatget ataeeagttg taaaaeattt tgagtateae360 tettgeatae tgttaetatt atattteete tatatataga eagaaaggee attttaggaa420 tatttaaagg getettgaaa attttetgge attagaeeea aetgaaggtt etattaagge480 agggtteeta aa

- (2) INFORMATION ON SEQ ID NO. 111:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1678 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:

į

# (vii) OTHER ORIGIN: (A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

```
gcctcagcag actccttggg cggtagcagg gagatggtgc aacggcccca gcctgcacag 60
quaccgagca ggcctggatc tgccaaccat agacacggga tatgattccc agccccagga 120
tgtcctgggc atcaggcagc tggaaaggcc cctgcccctc acctccgtgt gttaccccca 180
ggacctcccc agacctctca ggtccaggga gttccctcag tttgaacctc agaggtatcc 240
agcatqtqca cagatqctqc ctcccaatct ttccccacat gctccatqqa actatcatta 300
ccattgtcct ggaagtcccg atcaccaggt gccatatggc catgactacc ctcgagcagc 360
ctaccagcaa gtgatccagc cggctctgcc tgggcagccc ctgcctggag ccagtgtgag 420
aggeetgeac cetgtgeaga aggttateet gaattateee ageecetggg accaagaaga 480
gaggecegea cagagagact geteetttee ggggetteea aggeaecagg accagecaca 540
tcaccagcca cctaatagag ctggtgctcc tggggagtcc ttggagtgcc ctgcagagct 600
gagaccacag gttccccagc ctccgtcccc agctgctgtg cctagacccc ctagcaaccc 660
tecagecaga ggaactetaa aaacaageaa tttgecagaa gaattgegga aagtetttat 720
cacttattcg atggacacag ctatggaggt ggtgaaattc gtgaactttt tgttggtaaa 780
tggcttccaa actgcaattg acatatttga ggatagaatc cgaggcattg atatcattaa 840
atggatggag cgctacctta gggataagac cgtgatgata atcgtagcaa tcagccccaa 900
atacaaacag gacgtggaag gcgctgagtc gcagctggac gaggatgagc atggcttaca 960
tactaagtac attcatcgaa tgatgcagat tgagttcata aaacaaggaa gcatgaattt1020
cagattcatc octgtgctct tcccaaatgc taagaaggag catgtgccca cctggcttca1080
gaacactcat gtctacagct ggcccaagaa taaaaaaaac atcctgctgc ggctgctgag1140
agaggaagag tatgtggctc ctccacgggg gcctctgccc acccttcagg tggttccctt1200
gtgacaccgt tcatccccag atcactgagg ccaggccatg tttggggcct tgttctgaca1260
gcattetqqc tqaqqctqqt cqqtaqcact cctqqctqqt ttttttctqt tcctccccqa1320
gaagecetet ggeeecagg aaacetgttg tgeagagete tteeceggag acetecacae1380
accordgett tgaagtggag tetgtgaetg etetgeatte tetgetttta aaaaaaccat1440
tgcaggtgcc agtgtcccat atgttcctcc tgacagtttg atgtgtccat tctgggcctc1500
tcagtgctta gcaagtagat aatgtaaggg atgtggcagc aaatggaaat gactacaaac1560
actetectat caateactic aggetactit tatgagitag ecagatgett gtgtateete1620
agaccaaact gattcatgta caaataataa aatgtttact cttttgtaaa aaaaaaaa 1678
```

- (2) INFORMATION ON SEQ ID NO. 112:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 866 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

gtcgccatga ctgccaagga ctgctccatc atgattgcac tgtctccctg tctgcaggat 60 gccagctctg atcaaaggcc tgtggtccct tcatcgaggt ccaggtttge cttttccgtg120 tctgtgctgg accttgacct caagccctac gagagcattc cccatcagta taaactggac180 ggcaagatcg tcaactatta ttcaaagact gtacgtgcca aagacaacgc cgtgatgtcg240 actcggttca aggaaagcga agattgcaca ttagttctcc acaaggtcta actctttcc300 tgcagtgtct ttgaaacttg aacataatgt gaaggctgaa tgatagagat atttctcgtt360 gtgttgggtg acctttggtt gtgaatgttt ttgcttttaa ccccttttga ggtgggattg420 cctcttggag acatggaatt gaagaccat agaaacaact tcctggacaa ggaatgtagg480 aagtgagtgc tgtgtcccag gaagctgctc acactcttaa aatggaagtg tccgttaagc540 cctgggaaga ccttattcta agacccaagg tttggatcg cacaccag ggctcatgtc tgattctcta600 atgcgaaaag ccttattcta agacccaagg tttggatcg ttccgcagcag cccaggtaac720 tactgggaac ttccccagc tgagttacat gggcactttt tcagtgcaag cccagatgc840 cgattctgag ccagtgtaga cccagg

- (2) INFORMATION ON SEQ ID NO. 113:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1434 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:

```
qcqcqqccqq cqcctqcqqq gcqaqaqqqt cqqqqcqaaq qqqaaqctac qtcccqqaqq 60
tgcggtgtgg ggcaccgggc ggggccgcgg gaaccggcgc cccacggagc tgctgctgtc 120
agaccaacco egggeeccea teateactge geogegettt eaggegeega gaactaeegt 180
teceggeatg ceatgaaatt ggeeteggeg etgaggeggg gteeggeeet eeaceegete 240
ccqccqcqc cqaatcqcqq tcqcqaqcca tqqaqqaqqa ggcatcqtcc ccqqqqctqq 300
getgeageaa geegeacetg gagaagetga eeetgggeat caegegeate etagaatett 360
ccccaggtgt gactgaggtg accatcatag aaaagcctcc tgctgaacgt catatgattt 420
cttcctggga acaaaagaat aactgtgtga tgcctgaaga tgtgaagaac ttttacctga 480
tgaccaatgg cttccacatg acatggagtg tgaagctgga tgagcacatc attccactgg 540
gaagcatggc aattaacagc atctcaaaac tgactcagct cacccagtct tccatgtatt 600
cacttoctaa tgcacccact ctggcagacc tngaggacga tacacatgaa gccagtgatg 660
atcagccaga gaagcctcac tttgactctc gcagtgtgat atttgagctg gattcatgca 720
atggcagtgg gaaagtttgc cttgtctaca aaagtgggaa accagcatta gcagaagaca 780
ctgagatctg gttcctggac agagcgttat actggcattt tctcacagac acctttactg 840
cotattaccg cotgotoatc accoacctgg gcotgococa gtggcaatat gcottcacca 900
gctatggcat tagcccacag gccaagcaat ggttcagcat gtataaacct atcacctaca 960
acacaaacct gctcacagaa gagaccgact cctttgtgaa taagctagat cccagcaaag1020
tgtttaagag caagaacaag atcgtaatcc caaaaaagaa agggcctgtg cagcctgcag1080
gtggccagaa agggccctca ggaccctccg gtccctccac ttcctccact tctaaatcct1140
cototggoto tggaaaccco accoggaagt gagcacccot cootocaact cootaccago1200
tocagagtgg tggtttccat gcacagatgg ccctaggggt gacctccagt tttgcgtgtg1260
gaccgtagge etettetag ttgaatgace aaaattgtaa ggettttagt eecaccgaca1320
ttagccagge tegtagtgag geetecagag eaggttgtge tgteecetge etetggaage1380
aatggggaat gtggaatcaa gacaatgccc aaaaaatttt taatgcagct ggtc
```

- (2) INFORMATION ON SEQ ID NO. 114:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 914 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

ttggcagcgg ggagagggaa agaggaggaa atggggtttg aggaccatgg cttacctttc 60 etgeetttga eccateacae eccattteet ectettteee teteceeget gecaaaaaa120 aaaaaaaagg aaacgtttat catgaatcaa cagggtttca gtccttatca aagagagatg180 tggaaagagc taaagaaacc accettgtt cecaacteca etttacecat attttatgca240 acacaaacac tgtccttttg ggtccctttc ttacagatgg acctcttgag aagaattatc300 gtattccacg tttttagccc tcaggttacc aagataaata tatgtatata taacctttat360 tattgctata tctttgtgga taatacattc aggtggtgct gggtgattta ttataatctg420 aaaagccagg tataatgtaa cttcacccca gcctttgtac taagctcttg atagtggata540 tactetttta agtttagece caatataggg taatggaaat tteetgeeet etgggtteee600 catttttact attaagaaga ccagtgataa tttaataatg ccaccaactc tggcttagtt660 aagtgagagt gtgaactgtg tggcaagaga gcctcacacc tcactaggtg cagagagccc720 aggeettatg ttaaaateat geacttgaaa ageaaacett aatetgeaaa gacageagea780 aaaatcaagc ctgaggctgg gtggaaacag gtagcctaca caccccaaat tgggggtggt900 cccgggggaa tgtt

- (2) INFORMATION ON SEQ ID NO. 115:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 685 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual EST's by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

gaaaatccag gggtgaagaa tagatctgtg gtggcagggg tgggaaaggc ggggaggatt 60 tgcctactga ggggcagcac aagagaattt tgcggggcga tggatctgtc tgtatcttgal20 ccatagtgat gatacatgac tgtgcatttg tcagaactca caggactgaa tgaaaagagal80 agtgaatttt actgcatgtg aattgttaaa ataaatgcta gacagtattt taaaaatcaa240 gcccagatcc tgcaagacat tatggctccc caccagaagg ggagagacgg ggaaagagaa300 gtgtcccaa agttaaccaa cgttccctgg gacccacctc cctcccact gccacttccc360 accagcctca cgcacggcc aggcccttcc ctttgcagct cacagcccag cagatgttag420 gtcagaatgc gtcccctac ttgactaaag gtttacagcc agcagggtgg gaaatgaacc480 agaatattaac acccccctc ccatgccctg cccaccttct gggccagtac cagtgaaggc540 aggaaggcca ttctcccacc cccaggctgt tcccaaagcc ctggaagaac ccaaggaag600 gcaggagca agttgggagt tgaccttgat gaccagggc cagttggccc agttccct660 gtttagttgg ggggagggaa ccctt

#### (2) INFORMATION ON SEQ ID NO. 116:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 2646 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

```
ttaatttaat agotttoatg tgattaaaaa tagotaacta gactoaagga ttoacaatat 60
ttaggtgtat tttcaatacc tccagaaagg aaacctcagt taatcagagg aaatagtttc 120
agtetteatt tgageatgte tttecatete aaaaaaatae tettagtagg ttggagtgaa 180
gatagcaagg ttttgaagca tatttgtcct aatccacagt gacacttttt atcttccagg 240
agcactecta ggaggtteeg tgeetaatea atgttgaetg etttgeagat etcaagggaa 300
taaaatgaca aaagcaggga aagttacaga ttcaaacagc attttaactc atgttgatct 360
ggataattaa tottottaa agatgtgtag tottottggaa aacagtgata toacatgatt 420
aaaattacat ttttatcaac ataattgtct ggaaaagata agcccctcaa ttttctacca 480
gttgactttt attcattaga tacagaaggt gcagtattac acatcaccag ctgcctttgt 540
qaatqqctca ctacacaqcc attggggtac aactgtgtgc atgggcagaa acagcaagtg 600
ccctcattqt qqtcattqqq tqqqqaqtqc cttttqtcaa qqaqtctqca qqaattqqct 660
tatttctqta tqccaaaqtq atcaacac caaaqtctct qccataaaqa atgtqqcttc 720
cttgcatcct ccatcctgtt actctgggcc cagtaatttg atgtaactgt ctgattqtac 780
tagagacagg agtataccca gcttattcat aatcaagtaa agagactcag attagatttg 840
attttttagc ctcctctaga gccaatcagg cagttaagag taataaagga aaagggtttg 900
gtcacaaacc ctaccattat ctggagatta cttcctgctg cactcctgtc ttgccatgca 960
cgtcttgccc cctcactttt gctcagccta gcagtctact tcactttatt gccttgtaag1020
tgtcaggcct cctgggcgct ctggaaaaga cagggagcca ggccctctca cccctactgg1080
taacaqqtca ttqctqqqtq cacaaqaqqq agqtqatttq catcatqqtc atqctqcatq1140
qqcttcactq qqatqctqtt aaacaccaqa qqaqccaacc tatcagaatc ccaqcaqcaa1200
aggaaaactc agattttaga ggctttttac aataaagtag cgtaactcta ggtcatgatt1260
gatttcaaat gcctgccatg aatgatttgt aagtaattat gtaggatcca tcaaagcagt1320
attgtagget tttgaattgt eccagtggat eegggaceee attteaetgt etetettgat1380
cgtgttaatg atgcaatcag agttcaagac aggccccatg aagtctgact gcactgggat1440
qqaqaaatga atttcttccc actgaaggaa actctttctc attcgcagcc aagacgggag1500
tqccactqtt cctctcttca ctcctgagat actgcttctg gaagcgggtg tcacttcctc1560
totagtacot offiction of cagacity to the contract of the contra
ttactcqcca tqtatqtcaq catagaaaag gaaatgtttt taccttatct cctgtatgta1680
 tgatagaact taaaagaaat gtgcatttgt tttcatagcc ccagcagaga aaatcctctt1740
 catagattaa atgtgctgct gtggacagga gggaaaaaaa aaccctctac atattgaaag1800
 gcaccaaatg taatatctga cactgttaag atgcccaaaa gagcaaagtt gtagtggaga1860
 tgcagggtca tttccccatg ccatccacag tgtttgttag tgagtccacg gctgacttgc1920
 agtgataaag aaaagcatgg agctgtgtct gcagacaatg gtggctgcat ctgtaagtgg1980
 cttcagaggc agcagccctg gggaaattga tgggtgtggc agtggacctg tgaagaggga2040
 gaatctagee tteageetgt ecagtgttaa ecactagaga aactgagett tatateettt2100
 tttaatgcct gtgaatttta gcatattgaa acattagagc aaatactcag gggatttttc2160
 attaaacatc cctcagataa tttagctata tatcattaga aagggaaagc tatcattttt2220
 attttaaaac taaacaaggc catcttataa actgtcacca aagtcttccc ttttttattg2280
 catgtgtgcc ttgaatttca taaaacatta attcacaatg ggggtcagaa tgtactcttg2340
 ttgaaacact tcttgtacca ttttatgttc atattatgtt tgagagggta aaaatgtatg2400
 agcagottaa otgaagtaga actattoatg atgottttoa cacattgtgg cataagatgt2460
 aaagtttgta attaatgtta atttctgtgc attttaatat tcttttataa ttattaatgt2520
 taatttctgt gcattttaat attcttttat aattatgagc attttaataa attcattttt2580
 aggaag
```

- (2) INFORMATION ON SEQ ID NO. 117:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2667 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

```
ttatcttgga agtctgtgta tcaaaatgaa gaattcagat ggtaggaggt tctatagtcc 60 ttttaaagct gactcttgag tgtcagttga atatcaatta aattggattt ggaaataacc 120 tgaggaaagt attatgaatt cgatctgcac agatgcctct tagctgatag gtggcaggcc 180 tgtgggtttg ggttctccct ctttctctg gaacatatga caattccaga ttaaagaaaa 240 atgttttta ataaataccc ttggtctttc ttctagtcac cttttgaggta gatattgtga 300 tttctcttga cattgtact gaagtgattt gatattaagt tatacagat atgtttgaat 420 ataggcatat ttataggtt tttccgctcc ccccaaaccc acccttttta aaaaatctat 480 acaaagccct tgtttgagtc tcatcatgca catcaaatca tggagttagg tcttctctga 540 gctcaggga acacaagtgc acagagagag atgtcttgag ggtcactacc aaagaattac 600 cctcattgtc cctcactcag gccatgtgta catggagtgc tgctgaggtg gacccattac 720 tggtgaactt tgttgaaatt agaactgtat cttttacata atcttggcat attacattc 840 ataaataaaaa catacattta gttgcatgct acatcactat tgattttata attacatttc 780 ataaataaaaa catacattta gttgcatgct acatcactat tgattttata attaatttct 840
```

taagottoaa ocatgittta taoottatti ogitaoatoa tatattigia atgigtaata 900 tgaaatettt tgetttaatg tettttttta aaatgtagaa tgttetaaae ttgaaaggea 960 attgaatgta gtatgatgaa aatgtgaatg ttttgctgct ttcatgacca aagatacagg1020 gctagtggac atttagaata ataattaaag ctagagtctt gtatgtcttt tctttgaagg1080 agttctaacc ttgtaaattg agaatgactt cagagaattt tgattaagaa aacattaaaa1140 tettaacegg cacaaacaet ecaatttttt teaetgtgaa geegcaagea atttttttte1200 tttttctttc aaaagcctgc cttctgaatt tatttcttgt ttactcattt cagagagggt1260 aqtaaaqaaq atctatttct gqtagtcata tcgcttgaaa ggtattggta aatgtgtttt1320 cagtogtgac catgtggaaa gtgaacagtg ttggcaaaca ttaccgagaa aatcatgctt1380 ttcaagatgc ccttgctttg ggatatcctt cctagggaga aaaaaaaaa gtagtttaac1440 aattgtgaat tocatttott atttoagttt otgotgoagt aatgggttoo caccoactat1500 aattcccagc atttatgttc tgttgtattc tccccttagc ccagtaacat ttttatctaa1560 taccccattc cccaagtttt gagacagatt gaccccctac tcattatgtg gctctagttg1620 aattttaaaa tgtggaatat tgggcttgca ggcagtagga gctgcaaatc tggtagagtg1680 ggagtgtgga gttaatggtg agtatgttaa taaagggaaa ctgtctctga cagaatctca1740 gtaatgttta ccaaaacatg tctttctaca gctggtagga taaatgatgc taccctgtag1800 ctcagctaca ggctgcagtg caaacttttc ttccatccag agaaagcaga attccctcct1860 agtaacctca ttacaaatac tgttactaga agggcatgtg ctgtctgtca ccttcagtaa1920 tatttgtgcc atctcttgat gactgatgac ctggatcgag tatttctatg aagggtcttc1980 ttaggcccct tacatacgca agaggggtgc tctagtgcca tagctgtagt tcacaggaag2040 gacaccagga gaagttatac ctagggctac tgagcagctc atcatccctg tttctgcaca2100 gtttcctgaa actggccatc agggcctctg aggcactcaa atcagtttac ttttagcatg2160 ccccatcag ggtgggtctc actgttagtg aggatacggg tctggtttga tgtttttcta2220 ggcaaaatgc ttaagtgttc tggttatgcc attcattcat acgatgtgtg aaatttgctt2280 aaaagggaat tttcatgatt tgatttagat tagtatttaa atatctgctt tagatagcaa2340 ttaattttat tgtaaaaata aggaaaaata tgtgaatatg tgaatttttt aagcctgaga2400 gatgatagaa tgttcccata tttttcttgt aaagaaaata atattttaac ttacacatcc2460 tgtagaaaat accacctttt ccccttgtat tacagtacaa tgtttacatt actatactgt2520 caagctgaaa gtataaaaaa tgtacatata cattttgagt tatgtatcct ttttttaaaa2580 aaaqqtqcqq qqctqtqqca ctqqqctqqa catqactaaa qttqacaqaq qctatqctaq2640 2667 atttataatc actagttctg ggacttg

- (2) INFORMATION ON SEQ ID NO. 118:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 544 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:

- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

catctgtgca tggatgagtg gccgactttg gagcccagge tgttacttcc tggtctggtg 60 gtgaatcctc catagtctga gagtaagatc cttgatactg gctcagcatg gaacatctgg120 cacacagtat gcactgagga aatacttgtt ggaataatca gtgaatcata gatgaaaact180 taaccttgga attaattatg agactgctca gaggaagaga atgggagaca aaggacctgg240 tgattagacc cccaagacac tgggctgtct gcttgtgtct cgggtggaac aggcccagcg300 agagtcttta gggccagaac tcaaggaatt tattgagcca tggcaaacag gcagtaaaca360 gcccattctg gctgctgtat tgagaagaga atgtggtgga cagatataga agcatggaaa420 cctgataggg ctattgcaat cactcagaaa agaggcgatg gcagcttgga cctgttgaag480 cagtagagtg ctttccaggg aggagaaagg acctgaaggt taatttgatc accatgggcc540 atga

- (2) INFORMATION ON SEQ ID NO. 119:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1340 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

gtttgatact ttcctgcact taggtttgtc ctattcttca tttattcaga ctaggataga aaattttgga atcagaaaat agatccagtg tttagctaca tacaatctag tacaagtgaa 120 tttttattct taaacatagg tgtgttggct ctttttttaa aagatgcgct ctacctgaaa 180 aggaaattgg attttagaac tggatgtggt gcagtgaagt attttaggcc caggtctgtg 240 tacacatttt atagaagaaa tgaagtactc tgaagtattt tggttgcctt ttcatttcaa 300 ctgtgtttttg aatttgtcag atcacacata tattgtgtta ttgggcgctg tggtatcttt 360 tataaaacct cttgcttgtg tgcaaaagtt cctaaaagga aacacaagta atgcctatcc 420 attactagca tgctatgctg catgctttac tgccattgct gtatgcttta ctgtctttgt 480 aaaaaatcccc ctctcccctt ttctggtaac tggaaaagca tgctaaaaat agtcttatat 540 tttcacccca taagtgcaga atcagtaatt ccttggctta aagctcttat ataatcaata 600 ttattggtgg taaataccaa gtttggtatc tcatagctat ctttttttaa agaaattaag 660 ttcttgaaaa tttagccaaa tcccgtttta tgggaatgct ctttagaatt cattttgttc 720 agcccctttg ttctatggtt gagaaatctg aggccttacg aaggttaaga gaactttccc 780 cgtgtctcac aggtaggtag aggcagagct ggaactagat atctggtctg ttgactctag 840 ctcagtgtct tctggtaact gttgaaaatt gtcttagttt gagagatggc tgaaataatg 900 aacataaaat gctatttata ataacaagta tatgtgaaat ttcttattgt aagactacta 960 coggettact gitgaatagt tiggitatag tgittagget agaaatgeet cocacatigg1020 taataaacat tacaaaatac aatgtatttt taggtaggca ttttataaaa tgcattatgc1080 catggttgct tttgagatag attgtagtct gggtagcatc tttaaaatgt atgtgggctt1140 aactgttgtt catatcagga gatgctctga ttgtataggt gagactctgt ttctgttatt1200 tttaattgct gtatgaaatg tgatcagatt attttactac caacagttat agtttgaaag1260

tccaactgta ttaattgact gataatatga taatatagag attaaattgt ttgtcttcat1320 tccttaaaaa aaaaaaaaaa 1340

#### (2) INFORMATION ON SEQ ID NO. 120:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 2376 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

```
ggatatgaat aaattgttaa tataaagtcc tacagaaatt aatttatgaa atttctctaa
 atcacacaaa acttaaatac agatgactac taccctgaga ctgaaaaata tgttctaatt 120
 tatagtgcta tttttgggca gttttggtgt cagaatacct atcaacacat tcttttttta 180
 ttaggaaaaa aaggatgtct acataacaat ttgtaaagtg ataaaatcca ttagttttta 240
 agtettetga tageattgge tattataaga aacaagtatt tgetetegtt tttaaeggga 300
 taataatgct atgtctacat aaaatgattt ctaccacctt aaatagctca ctgtagaaat 360
 tcatgtataa atggaaccat atagtacata catatcatac tcttaggtct ggcaaatatt 420
 tgaggttcat ccatatttta tattcactca tcagtagttg taaacacatt cttaaagtag 480
 cattttcaga tatgaataag cagggatgaa ataagtatta gggtaaggga aatggttgag 540
 gctttcctaa gtgaagtgta aaaaccacag ctttctttt aatgggatgt ctaatatgca 600
tttatctgtt caagcatttt aagatttcca tgaaaatgtc ctgaaaaatc aagattcttc 660
 attgagggrg aggatotoco aatgggagao tgototgaaa agagcatgtg otttttgaat 720
 tagataacct actataatca tggatgttct tgaatactta gcaaacatac cagcatccca 780
 aagtcaccaa gataaaccct cctactccaa catcacatga tcttctaatt ctacctgtaa 840
 aaataagcat aacaattaat tagaatataa ttacgttata tacattactc cacctagaaa 900
 aaaaaatagt toattatgta gagaaatgot ttttttagta catagagaaa taaaaaatac 960
 agatactcac tagtgaacaa aaaatgtcca aagccagcca caacagatcc taatgaacca1020
 tacaatattg aatgeeggge geagggagta ttttcaacat ctaaaaatce taggagetta1080
agggactaga atgaaaaaaa agaacctaga ttgagtaaga aagtatttca ttttggggtgl140
ctttggcaaa aatgacaata caccatttct tttcttgtag ttgagggttt aaactagagt1200
atgtgccacg tgacaaccta aatcagcttg cgttgtcttt gtccaccttt ggtatgcagt1260
ctgaatcttt aaatccgaaa accttacaaa ttggaccgga aaacccttaa gcagtagggt1320
aacttggage tgtatcttaa tttgctaatc aactgacttg gaaataggat aattcatttt1380
atgagetett taaatgagtt tatttgggaa tatgeetate attggaattg aaageageat1440
agcttgcttc agtaactcca ataatttggg aagcagaaat ggaaaaagta atttgagtca1500
tgtttgctta tgtagtgccg tttaaaattc ccctagtaat tacctttcat attttattaa1560
ctaggttaac atcaactgtg gttgtaagag taaatgtttc accttaagat aaacatgggc1620
aatatattaa actctagtct gttttcttgc ctgtgaagtg aggctgcact tgattatatt1680
tgattctttg ttcgtaatac atgggaacga cagctaagtg tggtgaaaaa cgcggggatc1740
 caaagagctg gatttttatc tcagatctgc cgctaacttt tgtatcctat aggctacttt1800
 aagtgctaaa attcttttc tacagtcttc attggattta tgtatttctt attcctaata1920
 tgtttaactg ggatgtctgt cactctaggg cggcaagaca gacatttaaa agtaacagtc1980
 acactgctga actggcattt ctgttaacac aaaagtttag aaaactcacg gtaactgtta2040
 cttgatttaa gtgtatataa aattttcagt aaggctgctt ttaaaaggaa ccactgtcca2100
 tttaaaggtt tcatagttat cttcaatggg ttagtattgt ttggggcagg acattaaact2160
 agaagggatt ctataggatg aggtgatacc tagaaggtaa tatattgtaa ggcaaaagag2220
 attagaagaa atggggggaa aggatagtaa aaggcaagtc agattaaagg gttgaaacat2280
 gaagatatee eeattgtatt eeggeeeeat gtttgeeett tttggeteea geategtgtt2340
 tggaagaggc caatgtgccc tgggtcccta ataaag
                                                                 2376
```

- (2) INFORMATION ON SEQ ID NO. 121:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 225 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

cagttgtgaa gttttgtaaa atggtcaccc aacttaaaac taggaaatta cgaagaagag 60 aaaattgccc ggtatctgtt aaggtctgcc tgtagatctg ctgtagggct tgtcaccatt120 ggaagcaagg tcctacttca gtggcagatc ttgtggcctt tgagtggctg aagaccacca180 ccctgcacag ggctggggcc atgcacaggc atccttccct acctt

- (2) INFORMATION ON SEQ ID NO. 122:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1967 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:

				cccgtcccgc	
gaccegetee	gctccgctcc	gctcggcccc	gegeegeeeg	tcaacatgat	ccgctgcggc 120
ctggcctgcg	agcgctgccg	ctggatcctg	cccctgctcc	tactcagcgc	catcgccttc 180
gacatcatcg	cgctggccgg	ccgcggctgg	ttgcagtcta	gcgaccacgg	ccagacgtcc 240
				ggtcctacga	ggagggctgt 300
				ccatgctctt	
atcatcctgg	tgatctgttt	catcctctcc	ttcttcgccc	totgrgyacc	ccagatgctt 420
gtcttcctga	gagtgattgg	aggtctcctt	gccttggctg	ctgtgitcca	gatcatctcc 480
ctggtaattt	accccgtgaa	gtacacccag	accttcaccc	ttcatgccaa	ccgtgctgtc 540
acttacatct	ataactgggc	ctacggcttt	gggtgggcag	ccacgattat	cctgatcggc 600
				accttctggg	
cccaggtact	tctacacatc	tgcctaactt	gggaatgaat	gtgggagaaa	atcgctgctg 720
ctgagatgga	ctccagaaga	agaaactgtt	tctccaggcg	actttgaacc	cattttttgg 780
cagtgttcat	attattaaac	tagtcaaaaa	tgctaaaata	atttgggaga	aaatattttt 840
taagtagtgt	tatagtttca	tgtttatctt	ttattatgtt	ttgtgaagtt	gtgtcttttc 900
actaattacc	tatactatgc	caatatttcc	ttatatctat	ccataacatt	tatactacat 960
ttgtaagaga	atatgcacgt	gaaacttaac	actttataag	gtaaaaatga	ggtttccaag1020
atītaataat	ctgatcaagt	tcttgttatt	tccaaataga	atggactcgg	tctgttaagg1080
gctaaggaga	agaggaagat	aaggttaaaa	gttgttaatg	accaaacatt	ctaaaagaaa1140
tgcaaaaaaa	aagtttattt	tcaagccttc	gaactattta	aggaaagcaa	aatcatttcc1200
taaatgcata	tcatttgtga	gaatttctca	ttaatatcct	gaatcattca	ttttagctaa1260
ggcttcatgt	tgactcgata	tgtcatctag	gaaagtacta	tttcatggtc	caaacctgtt1320
gccatagttg	gtaaggcttt	cctttaagtg	tgaaatattt	agatgaaatt	ttctctttta1380
aagttcttta	tagggttagg	gtgtgggaaa	atgctatatt	aataaatctg	tagtgttttg1440
tgtttatatg	ttcagaacca	gagtagactg	gattgaaaga	tggactgggt	ctaatttatc1500
atgactgata	gatctggtta	agttgtgtag	taaagcatta	ggagggtcat	tcttgtcaca1560
aaagtgccac	taaaacagcc	tcaggagaat	aaatgacttg	cttttctaaa	tctcaggttt1620
atctgggctc	tatcatatag	acaggcttct	gatagtttgc	aactgtaagc	agaaacctac1680
atatagttaa	aatcctggtc	tttcttggta	aacagatttt	aaatgtctga	tataaaacat1740
gccacaggag	aattcgggga	tttgagtttc	tctgaatagc	atatatatga	tgcatcggat1800
					attttaaata1860
					atgaagtttt1920
cccaataaac	caggtattct	aaacttgaaa	aaaaaaaag	tcgacgc	1967

- (2) INFORMATION ON SEQ ID NO. 123:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 612 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

cctagetgte cccetgagat gaagaaagag ctccctgttg acagetgcet gccccgctca 60 ctcgagette accetcagaa gatggatece aagagacage acattcaget cctgageage120 ctgactgagt gcctgacggt ggacccccte agtgccageg tctggaggca gctgtaccct180 aagcacetgt cacagtccag ccttctgctg gagcacttge tcagetcctg ggagcagatt240 cccaagaagg tacagaagte tttgcaagaa accattcagt ccctcaaget taccaaccag300 gagctgctga ggaagggtag cagtaacaac caggatgtcg tcacctgtga catggcctgc360 aagggcctgt tcgcagaggt tcagggtcct cggctgccct ggacgcgct cctcctgttg420 ctgctggtct tcgctgtagg cttcctgtge catgacctcc ggtcacacag ctccttccag480 gcctccctta ctggccggtt gcttcgatca tctggcttet tacctgctag ccaacaagcg540 tgttccaagt ttactcctac agtctgcaag gttacaggtt ggttggggga gaaatgccgt600 tttggggttc ca

- (2) INFORMATION ON SEQ ID NO. 124:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1183 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN

- (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

```
tttcggcaca gcatgaatgg ctgcgagaag gacagetcgt ccacagattc tqctaacqaa
aaaccaqccc ttatccctcg tgagaaaaag atctcgatac ttgaggaacc ttcaaaggca 120
cttcgtgggg tcacaggccc aaatattgag aaatcagtga aggatttgca acqctqcacc 180
gtttctctaa ctagatatcg cgtcatgatt aaggaagaag tgqatagttc cgtqaaqaag 240
atcasagety cettigetys attacacase typeatcatty acasages tteattasty 300
gcagaaatgg ataaagttaa agaagaagcc atggaaatcc tgactgctcg tcagaagaaa 360
gcagaagaac taaagagact cactgacctt gccagtcaga tggcagagat gcagctggcc 420
gaactcaggg cagaaattaa gcactttgtc agcgagcgta aatatgacga ggagctcggg 480
aaagctgccc ggttttcctg tgacatcgaa cagctgaagg cccaaatcat gctctgcgga 540
gaaattacac atccaaagaa caactattcc tcaagaactc cctgcagctc cctgctqcct 600
ctgctgaatg cgcacgcagc aacctctggg aaacagagta acttttcccg aaaatcatcc 660
acticacaata agocctictga aggicaaagog gcaaacccca aaatggtgag cagticticcc 720
agcaccgccg acccctctca ccagaccatg ccggccaaca agcagaatgg atcttctaac 780
caaagacgga gatttaatcc acagtatcat aacaacaggc taaatgggcc tgccaagtcg 840
cagggcagtg ggaatgaagc cgagccactg ggaaagggca acagccgcca cgaacacaga 900
agacageege acaaeggett eeggeecaaa aacaaaggeg gtgeeaaaaa teaagagget 960
teetteggga tgaagaeeee egaggeeeeg geceattetg aaaageeeeg gegaaggeag1020
geacgetgea ggacaceteg ggagggeeag gggeetttee ggggttagtt tteggttagg1080
ggttttcaca gttgcatttt tttgccccca cggaggatta ggaagttttt ccacagatqq1140
caggiatett tettgagtte eceggitett gaegitetig tig
```

- (2) INFORMATION ON SEQ ID NO. 125:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 891 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

eggaggcage ggaaagcega gecaggege tgegegetgg gaagagtagg tteagagtge 60 atteeggaac eeggggegg gegeactgeg eaggeggeeg gaeteegete agttteeggt120 geggegaaca eeaaagteeg ggaacttaag eatttteeggt ttetagggtt gttaegaage180 tgeaggaggeg agatggaggt ggaegeaceg ggtgttgatg gtegagatgg teteegggag240 eggegagget ttagegaggg aggggaggeag aaettegatg tgaggeetea gtetggggea300 aatgggette eeaaacaete etaetggttg gaectetgge tttteateet tttegatgtg360 gtggtgttet tetttgtgta ttttttgeea tgaettgtte getgatatet aaattaagaa420 gttggttett gagtgaatte tgaaaatgge taeaaactte ttgaataaag aagacaggae480 teteaataga agaattteae ateteeaagg gaecetteet tteattttae aetttgttae540 taatttgeag aactetatta attgggtagg attteaecea tteetageta agttettaaa600 attaaaceet ttggtteetg tttaaaaaeet tteaaacate tgatggettt aeaggggetg660 aatataaaag catttgtaet taaaggtett gtgtatteat taagaaatat agtaatgtet720 tttaatgttt taagagttga teaggggttt aetatggatt geaagtaata ggggggaaagg840

gttttgagag gagggggcc caaggtgttc ctggggtttg ccgagggagg c

#### (2) INFORMATION ON SEQ ID NO. 126:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 482 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing

891

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:

tototaaata gtacotttto agtottgood cagaagttoo otoaatttoa gcagcacoga 60 goggtttata attoattoag tittocaggo caggcagood gotatoottig gatggoottil20 coacgoaata gcatcatgoa ottgaaccac acagcaaaco coacotcaaa tagtaattto180 titggactiga atotocogod acagcacaac acaggtotig gagggatood tigtagoaggg240 gaagaagagg tigaaggtito gaccatgooa ottgicaacot ottocoatto attacaacaa300 ggacagoago otacaagtot ocacactact gigggootiga aacagaactig agaggagagg360 attagactot gigggtgotig catgggcaac tiggattitig catgaticot titatgattit420 gottitaaatig tatacacca gaagagcaa tataaacgti ootoatgoot aaaaaaaaaa480 aa

- (2) INFORMATION ON SEQ ID NO. 127:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 610 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

ctcgagccgt gggcagtggc cgcgaatgcg cggagacact gaccttcagc gcctcggctc 60 cagcgccatg gcgcctcca ggaagttctt cgttgggga aactggaaga tgaacgggcg120 gaagcagagt ctgggggagc tcatcggcac tctgaacgcg gccaaggtgc cggccgacac180 cgaggtggtt tgtgctcccc ctactgccta tatcgacttc gcccggcaga agctagatcc240 caagattgct gtggctgcgc agaactgcta caaagtgact aatggggctt ttactgggga300 gatcagccct ggcatgatca aagactgcgg agccacgtgg gtggtcctgg ggcactcaga360 gagaaggcat gtctttgggg agtcagatga gctgattggg cagaaagtgg cccatgctct420 ggcagaggga ctcggagtaa tcgcctgcat tggggagaag cttagatgaa agggaagctg480 gcatcactga gaaggttgtt ttcgagcaga cagagggtca tcgcagataa cgtgaaggac540 cttcaaacag 610

- (2) INFORMATION ON SEQ ID NO. 128:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2072 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO

- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:

```
gggtcatgta ggtacaacag caaccaagaa gatcgatgtc tacctgccct ctgcactcga 60
gccaggacag actgctgcca atgaccgtgg tgacaatggc cagcgccagg gtgcaggacc 120
tgatcgggct catctgctgg cagtatacaa gcgaaggacg ggagccgaag ctcaatgaca 180
atgtcagtgc ctactgcctg catattgctg aggatgatgg ggaggtggac accgatttcc 240
ccccgctgga ttccaatgag cccattcata agtttggctt cagtactttg gcccctggtt 300
gaaaagtact catctcctgg tctgacatcc aaagagtcac tctttgttcg aataaatgct 360
gctcatggat tctcccttat tcaggtggac aacacaaagg ttaccatgaa ggaaatctta 420
ctgaaggcag tgaagcgaag aaaaggatcc cagaaagttt caggccctca gtaccgcctg 480
gagaagcaga gegageecaa tgtegeegtt gaeetggaea geaetttgga gageeagage 540
gcatgggagt tctgcctggt ccgcgagaac agttcaaggg cagacggggt ttttgaggag 600
gattegeaaa ttgacatage cacagtacag gatatgetta geageeacea ttacaagtea 660
ttcaaaagtca gcatgatcca cagactgcga ttcacaaccg acgtacagct aggtatctct 720
ggagacaaag tagagataga ccctgttacg aatcagaaag ccagcactaa gttttggatt 780
aagcagaaac ccatctcaat cgattccgac ctgctctgtg cctgtgacct tgctgaagag 840
aaaagcccca gtcacgcaat atttaaactc acgtatctaa gcaatcacga ctataaacac 900
ctctactttg aatcggacgc tgctaccgtc aatgaaattg tgctcaaggt taactacatc 960
ctggaatcgc gagctagcac tgcccgggct gactactttg ctcaaaaaca aagaaaactg1020
aacagacgta cgagcttcag cttccagaag gagaagaaat ccgggcagca gtgacactgg1080
cctccagcct caatctgttc cgtagctcag agcctgcctg ccagggccaa gtgccctaga1140
gcccacccgg tgtcctgaag tcctcggggg gaggccagcc cctggctcac tggcacaggg1200
caggtgggct ctcggggaag gtgtcggggg ccccctagga gggagcgctg gggacattgc1260
catgggacgg aagtctgctt ggcagtggct ttgataagcg atgcttgggg gtcagaccac1320
cccctagagg agccacgtgc cgcccagcca ccttcaatgc ctgccaccct gcccgaggat1380
gtacagagcc gtgcccacac atttccttgc aacttgatca aatttcttaa agcaaacaac1440
aaaaatgtac atttctgttt ttccttttaa taaacaggtg tactctttat catggttggt1500
atgatggacc attetttggg geggaggatt gattatgtta etetetttaa aatetgttee1560
catattgaac aggcagattg gaaaagctat ggttcgattt ctcagaagaa atgtttaggt1620
cttagtcaat agttttaact atgccattty tttaaatgag tgcatttgct tcgagggtag1680
tgtcttacta aaagttagga acagagacct agtggtgtt ccaaggccgt gtcactttcc1740
cetteageae acceeagett etgaceteag ageceaggag etgegtggae agtgtggggt1800
gccaggagga ggggcggtgg ctggtcctca ggcacgctgc actcccagcc agacatggtc1860
tttccgtttc ttaagtagca agtgtaggtt tcagctggca gttccacctg catgttctct1920
gettegetge cutggaaggg gecaeattee ceatteetet teteettaea gegeetgeet1980
cctttttaag caggcggaaa gctgctgttt ctcacgtttc agggagaggg gtgaccagga2040
gactgtgtcg tgcgtcggtc ctgggtggac ag
```

- (2) INFORMATION ON SEQ ID NO. 129:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 980 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

tttatggagt tagagcaggg gaacttaaaa acaaaagtgt atttaataac ttcatgagac 60 tgtgataacc agtttatatt tgaaatatat acagcacttt gggagactga gggttgaccc120 tgatagtcct ttgcacagtg atcttcagat cttaaaagaa aaagaaggca tagaatatat180 tttgcttaac ttctctttta aggataactt tccatttgat cctccatttg ttcgagtggt240 gttacctgtt ctctcaggag ggtatgtatt gggtggagga gcattatgta tggaacttct300 cacaaaacag ggctggagca gtgcctactc aatagaatcg gtcatcatgc aaataaatgc360 caccttagtc aaaggcaaag ccagagtgca gtttggagca aataagaatc aatataatct420 agcaagagcc caacaatcct ataattccat tgtacagata catgagaaaa atggctggta480 cacccctcca aaggaagatg gctaaatatg ttgactgttg tatgtttgga ctaatgttgc540 tttaaagaaa atctttccaa catgcagaca aaagctttga gtgcccctat tacagcagta600 ccgaagatgt tagttaatag atattttagt ggataatctg tcatctgaca tccagtataa660 gttacagect tegeattttg eteattttag atatettgga etgageagtg gggeetttae720 tgtatttttc ctgataaata cacatactgg ccactcctta tctctttttc ttgaaaagtg780 aactttttaa aggcagccaa gtcaacatca gggctactga agttggaggg ctttaggggt840 aactttccta tattgagccc atggggttac aagggtttgg caatatattg ttccctttta900 cagccaatac aggttttaat cggatgtttc aatattgggt ttaggggatt ttaagggccc960 tottaagtca taatagccct

- (2) INFORMATION ON SEQ ID NO. 130:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 792 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:

ctgtttggca gggcgggcg cctcgcgaag atggtggcg gcgcggcgtg tggctcccgt 60 cgtctggcca agtctcagcg cacgcaaccg gccggcgtct cgttggcctg gagcccacacl20 ccaccgggtc cctgacccg cgccccccg gcccggttcc cggcatgcct cgcgcccgtal80 agggaaacac gctccggaag ggtggtcagc gccgtggagg aggtgcccgg agcagtgccc240 aagctgactc gggttccagt gacgatgagg cagccagtga ggcccgcagc accgccagtg300 aatgccccag ccttctcagc accactgcag aggacagcct tggggggat gtcgtggatg360 agcaagggc agcaggaaga ccttgaagga aagctgaagg agtatgtga ctgtctcaca420 gacaagagtg ccaagaccg gcaggtgcct cttgagagcc tgcgcctggc cctagcgtcc480 cgcctactcc ccgacttctt gctggagcgc cgcctcacgc tagccgatgc cctggaaaag540 tgcctcaaga aagggaagag cgaggaacaa gccctggctg ttcacagct cctggaaaag540 tgcgtgcagc tgggccctgg caggaacaa gccctggctg ctgctgtcc gcagcctctg660 ctggtccca tgaaaccct tgaaaccct cctgcaactt accctcagc agagtggtg gttcccccta780 tcttcagcct cc

- (2) INFORMATION ON SEQ ID NO. 131:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1092 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO

- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

```
gtgggtcccc ccggttccgg cgcggttgag gccttcggtg gtgaacgagt ctccagcacc 60
 atgtotggtt tgtotggcoc accageoogg egeggeoott ttoegttage gttgetgott 120
 ttgttcctgc tcggccccag attggtcctt gccatctcct tccatctgcc cattaactct 180
 egeaagtgee teegtgagga gatteacaag gaeetgetag tgaetggege gtaegagate 240
 teegaceagt etggggege tggeggeetg egeageacet caaqateaca gattetgetg 300
 gccatattct ctactccaaa gaggatgcaa ccaaggggaa atttgccttt accactgaag 360
 attatgacat gtttgaagtg tgttttgaga gcaagggaac agggcggata cctgaccaac 420
_ tcgtgatcct agacatgaag catggagtgg aggcgaaaaa ttacgaagag attgcaaaag 480
 ttgagaagct caaaccatta gaggtagagc tgcgacgcct agaagacctt tcagaatcta 540
 ttgttaatga ttttgcctac atgaagaaga gagaagagga gatgcgtgat accaacgagt 600
 caacaaacac togggtoota tacttoagca tottttoaat gttotgtoto attggactag 660
 ctacctggca ggtcttctac ctgcgacgct tcttcaaggc caagaaattg attgagtaat 720
 gaatgaggca tattctcctc ccaccttgta cctcagccag cagaacatcg ctgggacgtg 780
 cctggcctaa ggcatcctac caacagcacc atcaaggcac gttggagctt tcttgccaga 840
 actgatetet tttggtgtgg gaggacatgg ggtaccacet acacccaaca agteaatgag 900
 ggacttettt ttaatttggt aggattttga etggttttge aacaataggt etattattag 960
 agtcacctat gacaaaaaat agggggttac ctagataatg ccaaagtcag catttgtccc1020
 gggggccaaa ta
                                                               1092
```

- (2) INFORMATION ON SEQ ID NO. 132:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1523 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

ctcatgtcta aagaaattcc tttttgtgtg aaaaagacta agagcatctt caacagtgcc atgcaagaga tggaggttta cgtggagaac atccgcagaa gtttggggtt tttaattact 120 ctccatttag gacaccctac acacccaaca gccagtatca aatgctgctc gatcccacca 180 accccagege eggeactgee aagatagaca ageaggagaa ggteaagete aactttgaca 240 tgacggcatc ccccaagatc ctgatgagca agcctgtgct gagtgggggc acaggccgcc 300 ggattteett gteggatatg eegegeteee eeatgageae aaactettet gtgeaeaegg 360 gctccgacgt ggagcaggat gctgagaaga aggccacgtc gagccacttc agtgcgagcg 420 aggagtecat ggaettecag ggataagage acagetteae cagecateca ecaagaeggg 480 acaagcaggg agtttatccg gcagcccaaa gcccttctct cctcaactgt cagctcctat 540 cacgacgaaa acggacaaaa cctccaccac cggcagcatc ctgaatctta acstggatcg 600 aagcaaagct gagatggatt tgaaggagct gagcgagtcg gtccagcaac agtcsacccc 660 tgttcctctc atctctccca agcgccagat tcgtagcagg ttccagctga atcttgacaa 720 gaccatagag agttgcaaag cacaattagg cataaatgaa atctcggaag atgtctatac 780 ggccgtagag cacagcgatt cggaggattc tgagaagtca gatagtagcg atagtgagta 840 tatcagtgat gatgagcaga agtctaagaa cgagccagaa gacacagagg acaaagaagg 900 ttgtcagatg gacaaagagc catctgctgt taaaaaaaag cccaagccta caaacccagt 960 ggagattaaa gaggagctga aaagcacgtc accagccagc gagaaggcag accctggagc1020 agtcaaggac aaggccagcc ctgagcctga gaaggacttt tccgaaaagg caaaaccttc1080 acctcacccc ataaaggata aactgaaggg aaaagatgag acggattccc caacagtccall40 tttgggcctg gactctgatt cagagagcga acttgtcata gatttaggag aagaccattc1200 tgggcgggag ggtcgaaaaa ataagaagga acccaaagaa ccatctccca aacaggatgt1260 -tgtaggtaaa actccaccat ccacgacggt gggcagccat tctcccccgg aaacaccggt1320 getcaccege tetteegece aaactteege ggetggegee acagecacca ccageacgte1380 ctccacggtc accgtcacgg ccccggcccc cgccgccaca ggaagcccag tgaaaaagca1440 gaggccgctt ttaccgaagg aggactgccc cggccgtgca gcgggtccgt gtggaactca1500 tcaagtaaag tttcaaacgt cct

#### (2) INFORMATION ON SEQ ID NO. 133:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 2241 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual
  - ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

	caccaccaa	gcgccagaag	ccgagctggg	aaaagggagg	cagaggaggc	ggaggcagag	60
	acadaggaa	adcccddtac	cgagaccaag	cgacagaccg	gcggggctgg	gcctcgcaaa	120
	accaactcaa	cgagetetee	cgacacccga	gccqqqqaqq	aaaagcagcg	actcctcgct	180
	cacatacaca	ggagccgcac	tccagactgg	cccggtagtc	aggggctcag	gagcagatcc	240
	cdaddcaddc	tttgctcagc	ctccgacgag	ggctggccct	ttggaaggcg	ccttcaacag	300
	ccadaccada	caggccacca	tgaccgagaa	ttccacqtcc	gcccctgcgg	ccaagcccaa	360
	acaaaccaaa	gcctccaaga	agtccacaga	ccaccccaag	tattcagaca	tgatcgtggc	420
	taccatccaa	gccgagaaga	accacactaa	ctcctcacac	cagtccattc	agaagtatat	480
	caagagccac	tacaaggtgg	gtgagaacgc	tgactcgcag	atcaagttgt	ccatcaagcg	540
	cctggtcacc	accontatco	tcaagcagac	caaaggggtg	ggggcctcgg	ggtccttccg	600
	gctagccaag	agcgacgaac	ccaagaagtc	agtggccttc	aagaagacca	agaaggaaat	660
	caagaaggta	gccacgccaa	agaaggcatc	caageccaag	aaggctgcct	ccaaagcccc	720
	aaccaagaaa	cccaaaqcca	ccccqqtcaa	gaaggccaag	aagaagctgg	ctgccacgcc	780
	caagaaagcc	aaaaaaccca	agactgtcaa	agecaagecg	gtcaaggcat	ccaageccaa	840
	aaaggccaaa	ccaqtqaaac	ccaaagcaaa	gtccagtgcc	aagagggccg	gcaagaagaa	900
	gtgacaatga	agtettetet	tgcggacact	ccctcctgtc	tcctattttc	tgtaaataat	960
	tttctccttt	titctctctt	gatgctcacc	accacctttt	gcccccttct	gttctgactt.	1020
	tataagagac	aggatttgga	ttcttcagaa	attacagaat	aattcatttt	tccttaacca	1080
	attatacaaa	gacagcaaca	accaatctaa	tgatgagaat	gtacttatat	tttgttttgc	1140
	tattaaccta	cttacqqqqt	tagggatttg	cgggggggct	tgtgtgtttt	gttggcttgt	1200
	ttgccatgaa	ggtagatgtg	ggtggggaga	agacacaagg	cagtttgttc	tggctagatg	1260
	agagggaacc	caggaattgt	gaggttagca	ggaatatctt	tagggtgagt	gagttttcct	1320
	tgagttgggc	acccattata	agagtttcag	aacctttggc	cagcaggaga	gaggtggtag	1380
	ggagcagcca	gccggcaaag	gaaggaggtg	gaaaaaaacc	gccaccgggc	tgacttccac	1440
	ctcccagtgg	tgagcagtgg	gggcccaaac	ccagtttcct	tctcattttt	gttagtttgc	T200
	cctttcgacc	tccctatttt	cttagggaag	gggagtgggg	tccaagtgac	agctggatgg	1200
-	gagaagccat	agtttctccc	agtcagctag	gatgtagcca	ttgggggatc	tttgtggctt	1020
	cagcaaattc	tcttgttaaa	ccqqaqtqaa	aacttcaggg	gaagggtggg	gagtcagcca	TOOU
	agtgcctcag	tataccctat	tgaaacttag	gtttttccac	gcaatcgatg	gattgtgtcc	TIAO
	taggaagact	tttcttttcc	tctggatttt	tgttcctcct	gtacaagagg	Egeceege	T900
	taatttaata	agactacaac	cacttaaaac	ctcccgatct	ctttttgagt	CCEECALLAL	1000
	aagtagttgt	agctgcggga	qqqqqaqqqq	gagtgggcgg	gcagtggata	gtaagactta	1540
	ctgcagtcga	tttgggattt	gctaagtagt	tttacagagc	tagatetgtg	tgcatgtgtg	1900
	tatttatata	tatatacata	tctagggcta	gtacttagtt	tcacacccgg	gagctgggag	2040
	aaaaaacctg	tacagttgtc	tttctcttat	ttttaataaa	atagaaaaat	cgcgcacttg	2100
	cacatccccc	ccccaccccc	ttttttaaaċ	aagtgttact	tgtgccggga	. aaattttgct	2100
	gtctttgtaa	ttttaaaact	ttaaaataaa	ttggaaaagg	gagaaactga	aaaaaaaaa	12220
		aaaaaaaaa					2241

- (2) INFORMATION ON SEQ ID NO. 134:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 631 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

tgacaatggc ttotttaaaa tactcagagg acaggatcac ggtggaatcg aatcagaagt 60 ggtggctgga attccacgca ccgatcagta ctgggaaaag atctaatctg ccgtgggcct120 gtcgtgccag tcctggggc gagatggggg tagaaatgca tgtgatgcgt taagttcacg180 taagatacaa ggttcagaca gggtcggaag gactggattg gccaaacatc agacctgtct240 tccaaggaga ccaagtcctg gctacatccc agcctgtggt tacagtgcag acaggccatg300 tgagccaccg ctgccagcac agagcgtcct tccccctccg tgatccatcc atctccaggg360 agcaagacag agacgcagga atggaaagc gagttcctaa caggatgaaa gttcccccat420 cagttcccc agtacctcca agcaagtagc tttccacatt tgtcacagaa atcagaggag480 agatggttt gggagcctt tggagaacgc cagtctcca ggccccttgc atctatcgag540 tttgcaatgt caaacctctc tgatcttgtg tcagatgat cttaatagga gtttatttt1000 cgggcagctg cgaatcaggg gggtaaccag g

- (2) INFORMATION ON SEQ ID NO. 135:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 980 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO

- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

```
ggggccggga gggtacttag ggccggggct ggcccaggct acggcggctg cagggctccg 60 gcaaccgctc cggcaacgcc aaccgctccg ctgcggcgag gctgggctgc aggctccgg120 ctgcagcgct gggtggatct aggatccggc ttccaacatg tggcagctct gggcctccct180 ctgctgcctg ctggtgtgg ccaatgcccg gagcaggccc tctttccatc ccctgtcgga240 tgagctggtc aactatgtca acaaacggaa taccacgtgg caggccgggc acaacttcta300 caacgtggac atgagctact tgaagaggct atgtggtacc ttcctgggtg ggcccaagcc360
```

accccagaga gttatgttta ccgaggacct gaagetgcc geaagetteg atgeaeggga420 acaatggcca eagtgtecca ccateaaga gateagagac cagggetect gtggetectg480 ctgggcette ggggetgtgg aageeatete tgaeeggate tgeateeaea ccaatgegea540 cgtcagegtg gaggtgtegg eggaggacet geteaectge tgtggeagea tgtgtgggga600 cggetgtaat ggtggetate etgetgaage ttggaactte tggaeaagaa aaggeetggt660 ttetggtgge etetatgaat eccatgtagg gtgeagaceg taeteeatee eteeetgtga720 geaecaegte aaeggeteee ggeeeceatg eaegggggag ggagataeee eeaagtgtag780 caagatetgt gageetggt acaageegae etaetaaaeag gaeaageaet aeggataea840 ttetaeageg teteeaatag egagaaggae ateatggeeg agatetaea aaaeggeeee900 gtggaggag gttetetgtg tatteggaet tetgeetaga gteaggggt acaaaagtee960 egggaatttg gggggeegee

- (2) INFORMATION ON SEO ID NO. 136:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2238 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

```
cacatgiteg gggacegagit ggggicaate tietggiget geeteteeag gietetteea
ggccggtcat agacgtactc cctctgaggc cgaccgatgg ttagaagagg tgtctaagag 120
cgtccgggct cagcageccc aggcctcage tgctcctctg cagccagttc tccagcctcc 180
tecacecact gecatetece agecageate acetttecaa gggaatgeat tecteacete 240
tragcetgtg cragtgggtg tggtcccage cetgcaacca qcetttgtcc etqcccagte 300
ctatcctgtg gccaatggaa tgccctatcc agcccctaat gtgcctgtgg tgggcatcac 360
teceteccag atggtggeca acgtatttgg cactgeagge cacceteagg etgeecatee 420
ccatcagtca cccagcctgg tcaggcagca gacattccct cactacgagg caagcagtgc 480
taccaccagt coeffetta ageotectge teageacete aaeggftetg cagefffeaa 540
tggtgtagat gatggcaggt tggcctcagc agacaggcat acagaggttc ctacaggcac 600
ctgcccagtg garccttttg aagcccagtg ggctgcatta gaaaataagt ccaagcagcg 660
tactaatccc tcccctacca accctttctc cagtgactta cagaagacgt ttgaaattga 720
actitaagca atcattatgg ctatgtatct tgtccatacc agacagggag cagggggtag 780
eggteaaagg ageaaaaeag actttgtete etgattagta etetttteae taateecaaa 840
ggtcccaagg aacaagtcca ggcccagagt actgtgaggg gtgattttga aagacatggg 900
aaaaaqcatt cctaqaqaaa aqctqccttq caattaqqct aaaqaaqtca aqqaaatgtt 960
gctttctgta ctccctctc ccttaccccc ttacaaatct ctggcaacag agaggcaaag1020
tatotqaaca aqaatotata ttocaaqoac atttactqaa atqtaaaaca caacaqqaaq1080
caaaqcaatc teeetttqtt tttcaqqcca ttcacctqcc teetqtcaqt aqtqqcctqt1140
attagagate aagaagagtg gtttgtgete aggetgggga acagagagge acgetatget1200
gccagaattc ccaggagggc atatcagcaa ctgcccagca gagctatatt ttgggggaga1260
agttgagctt ccattttgag taacagaata aatattatat atatcaaaag ccaaaatctt1320
tatttttatg catttagaat attttaaata gttctcagat attaagaagt tgtatgagtt1380
gtaagtaatc ttgccaaagg taaaggggct agttgtaaga aattgtacat aagattgatt1440
tatcattgat gcctactgaa ataaaaagag gaaaggctgg aagctgcaga caggatccct1500
agettgtttt etgteagtea tteattgtaa gtageacatt geaacaacaa teatgettat1560
gaccaataca gtcactaggt tgtagttttt tttaaataaa ggaaaagcag tattgtcctg1620
gttttaaacc tatgatggaa ttctaatgtc attattttaa tggaatcaat cgaaatatgc1680
totatagaga atatatottt tatatattgc tgcagtttcc ttatgttaat cctttaacac1740
taaqqtaaca tqacataatc ataccataga agggaacaca ggttaccata ttgqtttqta1800
atatgggtct tggtgggttt tgttttatcc tttaaatttt gttcccatga gttttgtggg1860
gatggggatt ctggttttat tagetttgtg tgtgtcctct tcccccaaac ccccttttqq1920
tgagaacatc cccttgacag ttgcagcctc ttgacctcgg ataacaataa gagagctcat1980
ctcattttta cttttgaacg ttggccttac aatcaaatgt aagttatata tatttgtact2040
gatgaaaatt tataatctgc tttaacaaaa ataaatgttc atggtagaaa aatttgccca2100
tgaagggctg ttctttcccc tttcctttat tagtaaatga atttattttt cgttcttttg2160
qtcttactct ccattctact gctgctgtaa atccctagtt tagtgactag aaaaataccc2220
                                                                  2238
ttaagattca tattttca
```

- (2) INFORMATION ON SEQ ID NO. 137:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 398 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

tgcagattgg ttggggagc ccggggagc tggctccgac acacgactga gtgtgcctac 60 actggtccca caggttttca gctgtggagt ttgggatctg agcttggagc ccatttgttt120 ctggcagttc cgctcatatt ttccacttga agacatcgcc tccgttcctt ccaagctggg180 agaccagaag tcaacaacag gagggtggag aggccgggtc tcacaatccg cttggctggg240 gagtccactg aggttcttgc atcctgaagc aaaccatgga gagctggtgg ggacttccct300 gttttgcgtt cctgtgttt ctaatgcacg cccgaggtca aagagacttt gattttggca360 gatgcccttg atgacctga aaccaccaa gaagccaa

- (2) INFORMATION ON SEQ ID NO. 138:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1084 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:

- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

```
ggcggtggcg gaagtgggag cgggcctgga gtcttggcca taaagcctga ggcggcggca
 cggcggagtt ggcggcttgg agagctcggg agagttccct ggaaccagaa cttggacctt 120
 ctegettetg teeteegttt agteteetee teggegggag cetegegaeg geeeggeeeg 180
 gagececcag egeaggeeeg egtttgaagg atgaeeteta ggaagaaagt gttgetgaag 240
 gttatcatcc tgggagattc tggagtcggg aagacatcac tcatgaacca gtatgtgaat 300
 aagaaattca gcaatcagta caaagccaca ataggagctg actttctgac caaggaggtg 360
 atggtggatg acaggctagt cacaatgcag atatgggaca cagcaggaca ggaacggttc 420
- cagteteteg gtgtggeett etacagaggt geagaetget gegttetggt atttgatgtg 480
 actgccccca acacattcaa aaccctagat agctggagag atgagtttct catccaggcc 540
 agtccccgag atcctgaaaa cttcccattt gttgtgttgg gaaacaagat tgacctcgaa 600
 aacagacaag tggccacaaa gcgggcacag gcctggtgct acagcaaaaa caacattccc 660
 tactttgaga ccagtgccaa ggaggccatc aacgtggagc aggcgttcca gacgattgca 720
 cggaatgcac ttaagcagga aacggaggtg gagctgtaca acgaatttcc tgaacctatc 780
 aaactggaca agaatgaccg ggccaaggcc tcggcagaaa gctgcagttg ctgaqqqqqc 840
 agtgagagtt gagcacagag tccttcacaa accaagaaca cacgtaggcc ttcaacacaa 900
 ttcccctctc ctcttccaaa caaaacatac attgatctct cacatccagc tgccaaaaga 960
 aaaccccatc aaacacagtt acaccccaca tattctctca cacacacaca cacacggcac1020
 acacacaca acaggiting acgitatica gattgcggcc titigccgtgt tgggttcgtg1080
 gggg
```

- (2) INFORMATION ON SEQ ID NO. 139:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1259 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

taaaatacag aagaagagtc cacacactgt ttcacgagaa ggagtgtatc atgatttgta 60 gtaatcgaag aacatgttta tgggaacagg gtgactcagc tctcctgggg aggatggatg 120 aggagttagc aggaagaga ggtaccaagt gaggggaaag cagcagggtg ggtctggggc 180 atggacagga agcagaggct gggaaaagct acatctttta ttcatgcttt ttcacaggag 240 ctgaagtggg aatcagtaca tcgagaatcc acggccgggg accagtagga cttgagggac 300 tgcttactac taagtggctg ctgcgaggga aggaccacgt ggtctcagat ttctcagagc 360 atggaagttt aaaatatett catgagaace teeetattee teagagaaac accaactgaa 420 aagagccagg aaaacccggg aattitccaa aaggtcttca cgttaaactt gtcttatctc 480 aggagagage ecgetettgt eteceagtte etggtagggt etgeetgttg gaaagtgtae 540 ctggatgett etgggeteeg tttggeaata geaatettgg etgatgtgea eagtetgget 600 cocageteae cettititt taaaagtaag aaaatagttg ctacegatag ggaet igen v00 aagtccaatt atcttctagg attgaaaggt gcattttccc cataaaaaag gcgagg.aa cccatggctg ctttgtgtca cctcagtgac ttacagtccc ccttggcatt tagttggtac 780 tagagecagt cateettaac aaatetttte acattttatt tettteacat gtagteatet 840 tcaaaaagga aagatttgga attttagaaa aggggcaact cttcttttta gcattctcat 900 cagaaagtca caaaaatcga tggaatcatt tccactggga agattgacct tttgtattta 960 tttgtggggt aaattaataa gcattccaga tgcttgcagc ttcctgcatc caggagatgc1020 tgtgttcccc gtgatgcagc tggaacccaa gctgcagcag gagatgcaag tttcaggatg1080 ttccccactg agctggagga atatctacag cagtgatgct tgaaattttt gtatgaattal140 ttttgtcgtc ctaccetttt cctccaaaac aaaaattaga ggattatttt aatactttgg1200 attettecce ettttttgag aaataaagtt ttttatgaaa agccaaaaaa aaaaaaaa 1259

# (2) INFORMATION ON SEQ ID NO. 140:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1938 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

ccaagatggc ggcacgatgc ctgcccggct gttggggtgg cggtgacgac aggcagcaaa agaccagetg gtoccagatt egetgetgga gtgetggatg gageetttet etgecetetg 120 tgacatttcc aattttagat aatgeeteae atetetgtee eeeegggace eeetggagee 180 cccatgatee etaagaagae agettgaace tagateteae eeccaggatg ttgeggagge 240 tgctggagcg gccttgcacg ctggccctgc ttgtgggctc ccagctggct gtcatgatgt 300 acctgtcact ggggggcttc cgaagtctca gtgccctatt tggccgagat cagggaccga 360 cattigacta tictcaccci egigatgici acagiaacci cagicaccig ecigggece 420 cagggggtcc tccagctcct caaggtctgc cctactgtcc agaacgatct cctctcttag 480 tgggtcctgt gtcggtgtcc tttagcccag tgccatcact ggcagagatt gtggagcgga 540 atccccgggt agaaccaggg ggccggtacc gccctgcagg ttgtgagccc cgctcccgaa 600 cagocateat tgtgeeteat egtgeeeggg ageaceacet gegeetgetg etetaeeace 660 tgcaccectt ettgcagege cageagettg ettatggeat etatgteate caccaggetg 720 qaaatqqaac atttaacaqq qcaaaactqt tqaacqttqq qqtqcqaqaq qccctqcqtq 780 atgaagagtg ggactgcctg ttcttgcacg atgtggacct cttgccagaa aatgaccaca 840 atctgtatgt gtgtgacccc cggggacccc gccatgttgc cgttgctatg aacaagtttg 900 gatacageet ecceptacece cagtactteg gaggagtete ageaettact ectgaceagt 960 acctgaagat gaatggcttc cccaatgaat actggggctg gggtggtgag gatgacgaca1020 ttgctaccag ggtgcgcctg gctgggatga agatctctcg gccccccaca tctgtaggac1080 actataagat ggtgaagcac cgaggagata agggcaatga ggaaaatccc cacagatttg1140 acctcctggt ccgtacccag aattcctgga cgcaagatgg gatgaactca ctgacatacc1200 agttqctqqc tcqaqagctq qqqcctcttt ataccaacat cacaqcaqac attqqqactq1260 accetegggg teeteggget cettetggge caegttacee acctggttee teecaageet1320 teegteaaga gatgetgeaa egeeggeeee eageeaggee tgggeeteta tetaetgeea1380 accacacage ceteegaggt teacactgae tecteettee tgtetacett aatcatgaaa1440 ccgaattcat ggggttgtat tctccccacc ctcagctcct cactgttctc agagggatgt1500 gagggaactg aactctggtg ccgtgctagg gggtaggggc ctctccctca ctgctggact1560 ggagetggge teetgtagae etgaggggte eeteteteta gggteteetg tagggettat1620 gactgtgaat cottgatgtc atgattttat gtgacgattc ctaggagtcc ctgccctag1680 agtaggagca gggctggacc ccaagcccct ccctcttcca tggagagaag agtgatctgg1740 cttctcctcg gacctctgtg aatatttatt ctatttatgg ttcccggggaa gttgtttggt1800 _ gaaggaagcc cctccctggg cattttctgc ctatgctgga atagctccct cttctggtcc1860 tggctcaggg ggctgggatt ttgatatatt ttctaataaa ggactttgtc tcgcaaaaaa1920 aaaaaaaaa aaaaaaaa

# (2) INFORMATION ON SEQ ID NO. 141:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1874 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN

#### (C) ORGAN:

#### (vii) OTHER ORIGIN:

(A) LIBRARY: cDNA library

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:

```
caaaaaaacc tettaatatt etggagteat cattecette gacageattt teetetgett
tgaaagcccc agaaatcagt gttggccatg atgacaacta cagaaaaacc agaggcagct 120
tctttgccaa gacctttcaa agccatttta ggctgttagg ggcagtggag gtagaatgac 180
tccttgggta ttagagtttc aaccatgaag tctctaacaa tgtattttct tcacctctqc 240
tactcaagta gcatttactg tgtctttggt ttgtgctagg ccccgggtg tgaagcacag 300
acceptteea ggggtttaca gtctatttga gacteeteag ttettgeeae tttttttttt 360
aatctccacc agtcattttt cagacctttt aactcctcaa ttccaacact gatttcccct 420
tttgcattct coctocttcc cttccttgta gccttttgac tttcattgga aattaggatg 480
taaatctgct caggagacct ggaggagcag aggataatta gcatctcagg ttaagtgtga 540
gtaatctgag aaacaatgac taattcttgc atattttgta acttccatgt gagggttttc 600
agcattgata tttgtgcatt ttctaaacag agatgaggtg gtatcttcac gtagaacatt 660
ggtattcgct tgagaaaaaa agaatagttg aacctatttc tctttcttta caagatgggt 720
ccaggattcc tetttetet gccataaatg attaattaaa tagettttgt gtettacatt 780
ggtagccagc cagccaaggc tctgtttatg cttttggggg gcatatattg ggttccattc 840
tcacctatcc acacaacata tccgtatata tcccctctac tcttacttcc cccaaattta 900
aagaagtatg ggaaatgaga ggcatttccc ccaccccatt tctctcctca cacacagact 960
catattactg gtaggaactt gagaacttta tttccaagtt gttcaaacat ttaccaatca1020
tattaataca atgatgctat ttgcaattcc tgctcctagg ggaggggaga taagaaaccc1080
teacteteta caggittiggg tacaagigge aaccigette catggeegig tagaageatg1140
gtgccctggc ttctctgagg aagctggggt tcatgacaat ggcagatgta aagttattct1200
tgaagtcaga ttgaggctgg gagacagccg tagtagatgt tctactttgt tctgctgttc1260
totagaaaga atatttggtt ttootgtata ggaatgagat taattoottt coaggtattt1320
tataattctg ggaagcaaaa cccatgcctc cccctagcca tttttactgt tatcctattt1380
agatggccat gaagaggatg ctgtgaaatt cccaacaaac attgatgctg acagtcatgc1440
agtotgggag tggggaagtg atottttgtt cocatectot tottttagca gtaaaatagc1500
tgagggaaaa gggagggaaa aggaagttat gggaatacct gtggtggttg tgatccctag1560
gtcttgggag ctcttggagg tgtctgtatc agtggatttc ccatcccctg tgggaaatta1620
gtaggeteat ttactgtttt aggtetagee tatgtggatt tttteetaac atacetaage1680
aaacccagtg tcaggatggt aattcttatt ctttcgttca gttaagtttt tcccttcatc1740
tgggcactga agggatatgt gaaacaatgt taacattttt ggtagtcttc aaccagggat1800
tgtttctgtt taacttctta taggaaagct tgagtaaaat aaatattgtc tttttgtatg1860
tcaaaaaaaa aaat
                                                                  1874
```

- (2) INFORMATION ON SEQ ID NO. 142:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 198 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

RDIWTMNLQR YWGEIPISSS QTNRSSFDLL PREFRLVEVH DPPLHQPSAN KPKPPTMLDI 60 PSEPCSLTIH TIQLIQHNRR LRNLIATAQA QNQQQTEGVK TEESEPLPSC PGSPPLPDDL120 LPLDCKNPNA PFQIRHSDPE SDFYRGKGEP VTELSWHSCR QLLYQGSGTN PGQRRAFDCA180 NESVLEDPNL MLAHEYWP

- (2) INFORMATION ON SEQ ID NO. 143:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 92 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

IVWMVRLHGS EGMSSIVGGF GLLAEGWCRG GSWTSTRRNS RGSKSKELLL VWLDDIGISP60 QYLCRFIVHM SLQVQQTFIK CQAFCVGQRL IM 92

- (2) INFORMATION ON SEQ ID NO. 144:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

DPCPERSTKN RHGAQGMPKS LQGFPRSRSA GAGANHRVLR SPDVQGSRKT GRSGPEPRQG60 GTTLFTAASQ SGLGGCLDLE RPEARIASDP ESWFVD 96

- (2) INFORMATION ON SEQ ID NO. 145:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 52 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

EGRVQQGSFV NVQQGPQEPF IEFIHQLTQA IKSTHGTSTI PRVSRITLKD KP 52

- (2) INFORMATION ON SEQ ID NO. 146:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 47 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

- (2) INFORMATION ON SEQ ID NO. 147:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 66 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

LSKFKKLRVN NTCASSVVGS LFIFPLFLKH IFKRGMGNVP LWLVLEGYTR YPWNGRCSMC60 ALNCLG

- (2) INFORMATION ON SEQ ID NO. 148:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 187 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

REGEGRPEGN GDIRGGLRSG CDLSLLAPLL PPSSSESWEC CYPWKIKLGL QELSVWEESM 60 AQHSACVPFC SGSLSPPPSQ PQRLSPSPSS SPEDSSDGRA GPPEPTGSSG CTGSWCSLSP120 VHFSHWGMEC PCILCCRSPH LHLRGLGSPS SPQCPQSLSQ TVGWNMRLEA ERGSEHHSPC180 TWVASCP

- (2) INFORMATION ON SEQ ID NO. 149:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 147 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

REDWNRGKGE VAPCFVQPGS WQPWCWGLDP TTPAHLAEHL VPIEDCLPLL LHLQLPPLLG 60 TFHTLQDCVC SGSPEGCSSC CHRASILILL LIVQLLSVCI RLSDQRVHQH QEGHVEQQGT120 HHGQVDDNDD LDGGGLRSSY LHSHSRQ 147

- (2) INFORMATION ON SEQ ID NO. 150:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 142 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

FFFFFWREIK QFNDGFLDLH TTLRQEDKIF SPCTGTTKFR DKRQPKYRGC GVQIHAQPRV 60 SCSNRPSGSV TVDTGERRDC PDPSSAGEGT GSRVCMGTPC PSARSAQGTA NTSFQCTLKT120 QWAQGAQLSH QSCPQGWSWG WG 142

- (2) INFORMATION ON SEQ ID NO. 151:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 464 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

RQQTVLGSCS SSILPCQLLK HQGSSKTEMT KNWLIQTKRR YFSSPKQMSM THWPRTAWLT 60 GCSVTLFLFP SQYVDVASLG LVPQLTGGTL YKYNNFQMHL DRQQFLNDLR NDIEKKIGFD120 AIMRVRTSTG FRATDFFGGI LMNNTTDVEM AAIDCDKAVT VEFKHDDKLS EDSGALIQCA180 VLYTTISGQR RLRIHNLGLN CSSQLADLYK SCETDALINF FAKSAFKAVL HQPLKVIRE1240 LVNQTAHMLA CYRKNCASPS AASQLILPDS MKVLPVYMNC LLKNCVLLSR PEISTDERAY300 QRQLVMTMGV ADSQLFFYPQ LLPIHTLDVK STMLPAAVRC SESRLSEEGI FLLANGLHMF360 LWLGVSSPPE LIQGIFNVPS FAHINTDMTL LPEVGNPYSQ QLRMIMGIIQ QKRPYSMKLT420 IVKQREQPEM VFRQFLVEDK GLYGGSSYVD FLCCVHKEIC QLLN 464

- (2) INFORMATION ON SEQ ID NO. 152:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 172 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:

TMLEKIPKEE QEETSAIRVG FITYNKVLHF FNVKSNLAQP QMMGVTDVGE VFVPLLDGFL 60 VNYQESQSVI HNLLDQIPDM FADSNENETV FAPVIQAGME ALKAADCPGK LFIFHSSLPT120 AEAPGKLKNR DDKKLVNTDK EKILFQPQTN VYDSLAKDCV AHRLLCDTLP LS 172

- (2) INFORMATION ON SEQ ID NO. 153:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 141 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:

GSTVFTEFVI VLELHGHCLV TIDGSHFYIG GVVHQDSTKE ISGSETCAGT NPHNSIKAYF 60
- LFNIISEVVQ KLLSIQVHLE IVVFVKGSSS ELRNQPQRGH VHILTRKEEE CHRAAGEPRS120
PWPMSHRHLF GAGKVSSLCL Y

- (2) INFORMATION ON SEQ ID NO. 154:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 504 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

LDRCGLYPVS SLLQVEGSLW RAAGVFQPPP GLAHANDWRF TARVHGGALG EHDKMVAAAT 60 GSEILLWALQ AEGGGSEIGV FHLGVPVEAL FFVGNQLIAT SHTGRIGVWN AVTKHWQVQE120 VQPITSYDAA GSFLLLGCNN GSIYYVDVQK FPLRMKDNDL LVSELYRDPA EDGVTALSVY180 LTPKTSDSGN WIEIAYGTSS GGVRVIVQHP ETVGSGPQLF QTFTVHRSPV TKIMLSEKHL240 ISVCADNNHV RTWSVTRFRG MISTQPGSTP LASFKILALE SADGHGGCSA GNDIGPYGER300 DDQQVFIQKV VPSASQLFVR LSSTGQRVCS VRSVDGSPTT AFTVLECEGS RRLGSRPRRY360

LLTGQANGSL AMWDLTTAMD GLGQAPAGGL TEQELMEQLE HCELAPPAPS APSWGCLPSP420 SPRISLTSLH SASSNTSLSG HRGSPSPPQA EARRRGGGSF VERCQELVRS GPDLRRPPTP480 APWPSSGLGT PLTPPKMKLN ETSF 504

- (2) INFORMATION ON SEQ ID NO. 155:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 289 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:

GQPARPGAMA AAATAAEGVP SRGPPGEVIH LNVGGKRFST SRQTLTWIPD SFFSSLLSGR 60
ISTLKDETGA IFIDRDPTVF APILNFLRTK ELDPRGVHGS SLLHEAQFYG LTPLVRRLQL120
REELDRSSCG NVLFNGYLPP PVFPVKRRNR HSLVGPQQLG GRPAPVRRSN TMPPNLGNAG180
LLGRMLDEKT PPSPSGQPEE PGMVRLVCGH HNWIAVAYTQ FLVCYRLKEA SGGQLVFSSP240
RLDWPMRTTG ASQPGCMVGL WVNMTRWWQQ PPAARSCYGL CRRKAVAPR 289

- (2) INFORMATION ON SEQ ID NO. 156:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 161 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

VPQDQGIPRH HGSCVVQKEV SLSFILGGVR GVPRPLEGHG AGVGGRRRSG PLRTSSWQRS 60 TKLPPPRRRA SACGGLGLPR WPDKEVLLEA EWRLVREMRG EGLGRQPHEG AEGAGGASSQ120 CSSCSISSCS VRPPAGAWPR PSMAVVRSHM AKLPLAWPVS R 161

- (2) INFORMATION ON SEQ ID NO. 157:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 262 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

QLWGFAAGSD SRPAMGCDGG TIPKRHELVK GPKKVEKVDK DAELVAQWNY CTLSQEILRR 60
PIVACELGRL YNKDAVIEFL LDKSAEKALG KAASHIKSIK NVTELKLSDN PAWEGDKGNT120
KGDKHDDLQR ARFICPVVGL EMNGRHRFCF LRCCGCVFSE RALKEIKAEV CHTCGAAFQE180
DDVIVLNGTK EDVDVLKTRM EERRLRANWK RKQRNPRQQS LFQNQMSVKK PQGHQKLRQG240
SLKKPALILE RRKPTWLPKA QQ 2662

- (2) INFORMATION ON SEQ ID NO. 158:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 138 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

CHRAQWHQGG CGRAEDKDGG EKAESELEKK TKKPKAAESV SKPDVSEEAP GPSKVKTGKP 60 EEASLDSREK KTNLAPKSTA MNESSSGKAG KPPCGATKRS IADSEESEAY KSLFTTHSSA120 KRSKEESAHW VTHTSYCF

- (2) INFORMATION ON SEQ ID NO. 159:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 168 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

HLVLKQTLLP WVSLFSFPIR SQPSLLHPCL QHVHILLGAI EHDDIILLEG SPTRVANFRF 60 YLFQGSLRKH TAAAPKEAEP VSAVHLQAHN GADETRPLEV IVLVTFSVSF IPFPGRIIRK120 LQLCHILNAF NVRCCLPKSL FCRFVQEKFN DGIFVIKSAK FTGNYWSS 168

(2) INFORMATION ON SEQ ID NO. 160:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 238 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

HQWHITAMGS QHSAAARPSS CRRKQEDDRD GLLAEREQEE AIAQFPYVEF TGRDSITCLT 60 CQGTGYIPTE QVNELVALIP HSDQRLRPQR TKQYVLLSIL LCLLASGLVV FFLFPHSVLV120 DDDGIKVVKV TFNKQDSLVI LTIMATLKIR NSNFYTVAVT SLSSQIQYMN TVVNFTGKAE180 MGGPFSYVYF FCTVPEILVH NIVIFMRTSV KISYIGLMTQ SSLETHHYVD CGGNSTAI 238

- (2) INFORMATION ON SEQ ID NO. 161:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 91 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

SSHEDHYVVH QDLRYRAEEV HIGKRSSHLG LPGKIHHCVH VLNLAGQAGH CHRVEVGVPD60 FQGGHDGENY KGVLLIKCDF HHFDAVIIHK D 91

- (2) INFORMATION ON SEQ ID NO. 162:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 133 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:

MRKQEENHQT RCQETKQDGQ EDILLSSLRA QSLITVWDQS HQLIYLLCWN VACPLARETG 60 DAISPGEFHI WELSNGFFLL SFSQQTVPVI FLLSPAGGGA SSSGMLRPHG RDMPLVSCPA120 SSVGGAARTQ RAG

- (2) INFORMATION ON SEQ ID NO. 163:
  - (i) SEQUENCE CHARACTERISTIC:
    - $\tilde{(A)}$  LENGTH: 91 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

AAGAAGPHRR RHPLHPSLLR EHHSQAQAPE GVRPGQSTLS RIEAVQPQLP RPSGLPSLWG60 WLPWLLGTRP QRHPEIPPET QCASTAVRRS A 91

- (2) INFORMATION ON SEQ ID NO. 164:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 174 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

LDNPTQRNKD QLIRAAVKFL DTDTICYRVE EPETLVELQR NEWDPIIEWA EKRYGVEISS 60 STSIMGPSIP AKTREVLVSH LASYNTWALQ GIEFVAAQLK SMVLTLGLID LRLTVEQAVL120 LSRLEEEYQI QKWGNIEWAH DYELQELRAR TAAGTLFIHL CSESTTVKHK LLKE 174

- (2) INFORMATION ON SEQ ID NO. 165:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 66 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

CLGLLHPVAD GVGVQKLHGC PDQLILVSLG WVVQSRVAQC GQVHGVVLDG ILLGIPLSTL60 CTCQGL 66

- (2) INFORMATION ON SEQ ID NO. 166:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 132 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

SWRETEIKEQ LTEHLCTIIQ QNELRKAKKL EELMQQLDVE ADEETLELEV EVERLLHEQE 60 VESRRPVVRL ERPFQPAEES VTLEFAKENR KCQEQAVSPK VDDQCGNSSS IPFLSPNCPN120 QEGNDISAAL AT

- (2) INFORMATION ON SEQ ID NO. 167:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 67 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

QILMSHSPPQ AEMASLNEPL VSLILLLVRV AISRPPPQAP KSLHRLLHLV VASTPPTSWP60 FGAHFAV 67

- (2) INFORMATION ON SEQ ID NO. 168:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 74 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

NGLSKRTTGL LDSTSCSCSN LSTSTSSSKV SSSASTSSCC INSSNFLAFR SSFCCMIVQR60 CSVSCSFISV SRHE 74

- (2) INFORMATION ON SEQ ID NO. 169:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

GRGGLGCRSW RCAGSSRPYS EVFSVALLER GSSCILRIFC ISAPFSSRCH RMPQIGPVPS60 VNQTSETASL QGQSPSTDEL ERDSEMQRP 89

- (2) INFORMATION ON SEQ ID NO. 170:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 74 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

GPLHFRIPLK LICTWTLTLK RGGFRSLIHR GDRTYLGHPM AARREGSRNA KYSQDAGGTP60 LKERHGENFR VRAR

- (2) INFORMATION ON SEQ ID NO. 171:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

AVAFQNPSQA HLYLDSDPEA RRFPKSDSPR GQDLFGASDG SEKRREPKCK IFSRCRRNPS60 QGAPRRKLQS TGAMIQHNAR TCSPAHLSP 89

- (2) INFORMATION ON SEQ ID NO. 172:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 100 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

PSPAVLGDQP PSASGAVHRK LSLEVCCCQE RAQMGPVMAA TSTSCGRARL LARSAQWLTT 60 MLSSAAVWLG SRRLLTCGEN PSYALVAFLC LSRESPSAKP

- (2) INFORMATION ON SEQ ID NO. 173:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 495 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

SRTNTPVETW KGSKGKQSYT YIIEENTTTS FTWAFQRTTF HEASRKYTND VAKIYSINVT 60
NVMNGVASYC RPCALEASDV GSSCTSCPAG YYIDRDSGTC HSCPPNTILK AHQPYGVQAC120
VPCGPGTKNN KIHSLCYNDC TFSRNTPTRT FNYNFSALAN TVTLAGGPSF TSKGLKYFHH180
FTLSLCGNQG RKMSVCTDNV TDLRIPEGES GFSKSITAYV CQAVIIPPEV TGYKAGVSSQ240
PVSLADRLIG VTTDMTLDGI TSPAELFHLE SLGIPDVIFF YRSNDVTQSC SSGRSTTIRV300
RCSPQKTVPG SLLLPGTCSD GTCDGCNFHF LWESAAACPL CSVADYHAIV SSCVAGIQKT360
TYVWREPKLC SGGISLPEQR VTICKTIDFW LKVGISAGTC TAILLTVLTC YFWKKNQKLE420
YKYSKLVMNA TLKDCDLPAA DSCAIMEGED VEDDLIFTSK KSLFGKIKSF TSKRTPDGFD480
SVPLKTSSGG PDMDL

- (2) INFORMATION ON SEQ ID NO. 174:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 118 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

GHNEEISSSG CCRMLAPKSP QACKGAMQGE EAGEAGSASH RSMSGPPEDV FSGTESNPSG 60 VLLEVNDLIF PKSDFLLVKM RSSSTSSPSM MAQLSAAGRS QSLRVAFITS LEYLYSSF 118

- (2) INFORMATION ON SEQ ID NO. 175:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 172 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

RNTRGHFRAC QRKLKPCSVS TVYKFNRNAC QRGLFEKRVP SEPVLSVQEK GVLLKRKLSL 60 LEQDVIVNED GRNKLKKQGE TPNEVCMFSL AYGDIPEELI DVSDFECSLC MRLFFEPVTT120 PCGHSFCKNC LERCLDHAPY CPLCKESLKE YLADRRYCVT QLLEGINSEV SA 172

- (2) INFORMATION ON SEQ ID NO. 176:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 248 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:

QIGGTVSHSC WKELIVKYLP DELSERKKIY DEETAELSHL TKNVPIFVCT MAYPTVPCPL 60
HVFEPRYRLM IRRSIQTGTK QFGMCVSDTQ NSFADYGCML QIRNVHFLPD GRSVVDTVGG120
KRFRVLKRGM KDGYCTADIE YLEDVKVENE DEIKNLRELH DLVYSQACSW FQNLRDRFRS180
QILQHFGSMP ERRENLQAAP NGPAWCWWLL AVLPVDPRYQ LSVLSMKSLK ERLTKIQHIL240
TYFSRDQF 248

- (2) INFORMATION ON SEQ ID NO. 177:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 133 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

HSTSYLLDTL LSFLCKEDNM VHDLNNAQDN SYRTNVRKGL LLAQKTTSCR ENTRNLRHRL 60 ILLEYHHKLR KTYRLHWEFL LVFSAYFFHL HLQSHPVLKE TTFFSAEHLF LELTEQVLRA120 LFFQTVLSGR HFC

- (2) INFORMATION ON SEQ ID NO. 178:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 152 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:

SAVKRGWDLN MAAVVAATAL KGRGARNARV LRGILAGATA NKASHNRTRA LQSHSSPEGK 60 EEPEPLSPEL EYIPRKRGKN PMKAVGLAWA IGFPCGILLF ILTKREVDKD RVKQMKARQN120 MRLSNTGEYE SQRFRASSQS APSPDVGSGV QT 152

- (2) INFORMATION ON SEQ ID NO. 179:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 114 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:

EGRSAPQVCT PDPTSGDGAL WEEALNLWLS YSPVLDNRMF CRAFICFTRS LSTSRLVRMK 60 RRIPQGKPMA QASPTAFMGF LPLFLGMYSS SGDRGSGSSL PSGELWLCRA RVLL 114

- (2) INFORMATION ON SEQ ID NO. 180:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 126 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:

GLATAWASCA LWWTSEARTG IWAKPEDLTV NSLGGSQRSS GLHPRPNIRG RGTLGGSPEP 60 LALILARVGQ PHVLPSLHLL HTVLVHFPLG EDEEEDTTRE ADGPGQSHSF HGVLAPLSGN120 VFQLRG

- (2) INFORMATION ON SEQ ID NO. 181:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 123 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

LVKCPKGEFS FHSNKDRFAH SLKQNVAMNI QPLHTYKDVR MIPPTKHTHS HTRTHTHMHT60 RACTHGHMHT HTHT 74

- (2) INFORMATION ON SEQ ID NO. 182:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 84 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:

ILISFKQRQI CAFTQAECGH EYSAPAYIQR CTHDSPHQAH TQSHTHTHTH AHTRVHTRTH60 AHTHAHVNTC THAHTCTHAH TDTL

- (2) INFORMATION ON SEQ ID NO. 183:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 70 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

VCPCVHVCTC VHVCMCLRVR VCVHVSVCAR ACVHVCVCAC VTVCVLGGGN HAYIFVCMQG60 LNIHGHILLE 70

- (2) INFORMATION ON SEQ ID NO. 184:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 71 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

TVKFLRRLKV RGTKAGEISL SPEEGEADGS QQPALFLRVI FKFANCITGG PTFCFYQEFF60 FCSKTLVMGI F

- (2) INFORMATION ON SEQ ID NO. 185:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 55 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

YLNLQIVLQE GLLSVFIKSF SFVQRHWLWE YFERVRNAGI KRCCRLILKV LTEPV 55

- (2) INFORMATION ON SEQ ID NO. 186:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 37 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

(vi) ORIGIN (A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:
KQGRLLTSIC FSLLRTKANL PCFGSPHFQP SQEFHCS 37
(2) INFORMATION ON SEQ ID NO. 187:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 37 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>
(ii) MOLECULE TYPE: ORF
(iii) HYPOTHETICAL: yes
(vi) ORIGIN (A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:
SPLLWFPALS AFSGISLFII YFHDLSAKLL IFCRKKV 37
(2) INFORMATION ON SEQ ID NO. 188:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 100 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>
(ii) MOLECULE TYPE: ORF
(iii) HYPOTHETICAL: yes
(vi) ORIGIN (A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:
MPDFKIARRK QTLRIKKAGH LLNPWLHHKA LGLGFLYLIE VFSVALGAVC LSPTPKDARK 60
TSTISHVATF TSMPHKCLSE SPNSAFPQNK PNAIRQKKKK 100
(2) INFORMATION ON SEQ ID NO. 189:
<ul><li>(i) SEQUENCE CHARACTERISTIC:</li><li>(A) LENGTH: 256 amino acids</li><li>(B) TYPE: Protein</li><li>(C) STRAND: individual</li></ul>

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

RSQAGPEAGQ PLPGSGKRSS CCHCSSGACS MGPLPRTVEL FYDVLSPYSW LGFEILCRYQ 60 NIWNINLQLR PSLITGIMKD SGNKPPGLLP RKGLYMANDL KLLRHHLQIP IHFPKDFLSV120 MLEKGSLSAM RFLTAVNLEH PEMLEKASRE LWMRVWSRNE DITEPQSILA AAEKAGMSAE180 QAQGLLEKIA TPKVKNQLKE TTEAACRYGA FGLPITVAHV DGQTHMLFGS DRMELLAHLL240 GEKWMGPIPP AVNARL

- (2) INFORMATION ON SEQ ID NO. 190:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 196 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

SLAFTAGGIG PIHFSPSRCA SSSIRSEPNN MWVWPSTWAT VMGSPKAPYL QAASVVSLSW 60 FFTFGVAIFS RSPWACSADI PAFSAAARML CGSVMSSFLD QTRIHSSRDA FSSISGCSKF120 TAVRKRMADK LPFSSITDKK SLGKWMGIWR WCLRSFKSFA MYSPLRGSRP GGLFPLSFM1180 PVMRLGRNCR LMFQIF

- (2) INFORMATION ON SEQ ID NO. 191:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 116 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

EQRASAMRSS RAFRTVCSSW ATHGQLPAGL DDKTNIKTVC TYWEDFHSCT VTALTDCQEG 60 AKDMWDKLRK ESKNLNIQGS LFELCGSGNG AAGSLLPAFP VLLVSLSAAL ATWLSF 116

- (2) INFORMATION ON SEQ ID NO. 192:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 182 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

KRESGFPTIL YECFQHHRES QRPQRTNGSS SRFPGAWSEC GWARGGSWPH AQKESQVAKA 60 AERDTRSTGN AGSRDPAAPL PLPQSSNKLP WMLRFLDSFL SLSHISFAPS WQSVRAVTVQ120 LWKSSQYVHT VLMFVLSSRP AGSWPCVAQL EQTVRKALED RIALARCSHG LHQIRYLHRE180 DQ

- (2) INFORMATION ON SEQ ID NO. 193:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 105 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

HLANKTQEIK RNKKENQDFP QSYMSVFSIT ENHNVPKELM DLPLDFREHG VSVGGRAGGA 60 GPTLRRKARS LKLPRETPGA PGTPGAGTPP PRCRCRRVRI SCLGC 105

- (2) INFORMATION ON SEQ ID NO. 194:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 426 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

EIYSLSRFIE VKMSKKISGG SVVEMQGDEM TRIIWELIKE KLIFPYVELD LHSYDLGIEN 60
RDATNDQVTK DAAEAIKKHN VGVKCATITP DEKRVEEFKL KQMWKSPNGT IRNILGGTVF120
REAIICKNIP RLVSGWVKPI IIGRHAYGDQ YRATDFVVPG PGKVEITYTP SDGTQKVTYL180
VHNFEEGGGV AMGMYNQDKS IEDFAHSSFQ MALSKGWPLY LSTKNTILKK YDGRFKDIFQ240
EIYDKQYKSQ FEAQKIWYEH RLIDDMVAQA MKSEGGFIWA CKNYDGDVQS DSVAQGYGSL300
GMMTSVLVCP DGKTVEAEAA HGTVTRHYRM YQKGQETSTN PIASIFAWTR GLAHRAKLDN360
NKELAFFANA LEEVSIETIE AGFMTKDLAA CIKGLPNVQR SDYLNTFEFM DKLGENLKIK420
LAQAKL

- (2) INFORMATION ON SEQ ID NO. 195:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 97 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:

RLLPKHLQRR QALYCYQALL CGLTLWSRQK WKQWDWWTSP VLSGTCGSDG LQSRGQPLLL60 LSCHLDKPAR WSSCRESHTL GPQSPTARHH HSFYRPR 97

- (2) INFORMATION ON SEQ ID NO. 196:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 93 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:

LILIIHPHGN TTTFFKVMYQ VCHLLGSVTW CVGYLYFSRP RNNKISCSVL IPISMTTYDD60 RFYPSTHKPG DIFADNGFSE DRATQNISYG AIW

- (2) INFORMATION ON SEQ ID NO. 197:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 410 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
- (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 197:

  TDQPNIQSVK IHSLPLRNPN KGCECPPRRD GFGFIKCVDR DVRMFFHFSE ILDGNQLHIA 60

  DEVEFTVVPD MLSAQRNHAI RIKKLPKGTV SFHSHSDHRF LGTVEKEATF SNPKTTSPNK120

  GKEKEAEDGI IAYDDCGVKL TIAFQAKDVE GSTSPQIGDK VEFSISDKQR PGQQVATCVR180

  LLGRNSNSKR LLGYVATLKD NFGFIETANH DKEIFFHYSE FSGDVDSLEL GDMVEYSLSK240

  GKGNKVSAEK VNKTHSVNGI TEEADPTIYS GKVIRPLRSV DPTQTEYQGM IEIVEEGDMK300

  GEVYPFGIVG MANKGDCLQK GESVKFQLCV LGQNAQTMAY NITPLRRATV ECVKDQFGFI360

  NYEVGDSKKL FFHVKEVQDG IELQAGDEVE FSVIPKSSGG LAGSGACRCF 410
- (2) INFORMATION ON SEQ ID NO. 198:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 126 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:

LNAILNFFHM EKELLAISYF IVNEAKLIFH TFHCGPAQGC DVVSHSLCIL AQDTQLELDA 60 LPFLQAIPFV GHPNDAKWID LTFHIALLHN LNHSLVLSLC WINTPQGANY FARVNGGISF120 LSNAIH

- (2) INFORMATION ON SEQ ID NO. 199:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 85 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

KSHTSCNLLS RPLFVTNTKF NLISYLRRSR SFHILGLKSN SQFHPTVIIS NNAILSLLLF60 AFIWASGFRI GKSGFFFYRA QKTVI 85

- (2) INFORMATION ON SEQ ID NO. 200:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 79 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:

ATMRLSVCLL MVSLALCCYQ AHALVCPAVA SEITVFLFLS DAAVNLQVAK LNPPPEALAA60 KLEVKHCTDQ ISFKKRLLI 79

- (2) INFORMATION ON SEQ ID NO. 201:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 50 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:

SVQCFTSNLA ARASGGGLSL ATWRFTAASL KNKKTVISEA TAGQTRAWAW

50

- (2) INFORMATION ON SEQ ID NO. 202:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 72 amino acids

    - (B) TYPE: Protein(C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:

QVAVEKTLET QVEHFYMSHT HIFSLFPPRT FSNEKPFLKR YLIGAVLHFQ LGCKSFWRW160 KFGNLEVYRS VT

- (2) INFORMATION ON SEQ ID NO. 203:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 53 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - MOLECULE TYPE: ORF (ii)
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:

- (2) INFORMATION ON SEQ ID NO. 204:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 121 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:

ALVVRFLTKR FIGDYERNAG NLYTRQVQIE GETLALQVQD TPGIQVHENS LSCSEQLNRC 60 IRWADAVVIV FSITDYKSYE LISQLHQHVQ QLHLGHPAAC GWSWANKSDL LHIKQVDPQL120 G

- (2) INFORMATION ON SEQ ID NO. 205:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 205 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:

GPLPALAAGS TFPVLACSSA MAPKGSSKQQ SEEDLLLQDF SRNLSAKSSA LFFGNAFIVS 60 AIPIWLYWRI WHMDLIQSAV LYSVMTLVST YLVAFAYKNV KFVLKHKVAQ KREDAVSKEV120 TRKLSEADNR KMSRKEKDER ILWKKNEVAD YEATTFSIFY NNTLFLVVVI VASFFILKNF180 NPTVNYILSI SASSGLIALL STGSK

- (2) INFORMATION ON SEQ ID NO. 206:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 106 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:

VLHQDSSPSC LLAPNRPCQL HPLALCLWVA CGIWKSSRVV RVGDTRCFYS LEPLKNPAEC 60 NSVFVYWLFF DRLLKLNELK GKLRVLGRLL KGKKCLAMCC NHKRRK 106

- (2) INFORMATION ON SEQ ID NO. 207:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 105 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

STYGQYVVHC GVEVLQYEEG SNNDHDQEQS VVIEDGKCCS FIISNFILLP QDSFIFLLPR 60 HLSIISFRKF SSHFFGNSIL PLLCYFVLEN KFHILVCKGY QICAY 105

- (2) INFORMATION ON SEQ ID NO. 208:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 549 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(Xi) SEQUENCE DESCRIPTION: SEO ID NO: 208:

LYPNFLVNEL ILKQKQRFEE KRFKLDHSVS STNGHRWQIF QDWLGTDQDN LDLANVNLML 60

ELLVQKKKQL EAESHAAQLQ ILMEFLKVAR RNKREQLEQI QKELSVLEED IKRVEEMSGL120

YSPVSEDSTV PQFEAPSPSH SSIIDSTEYS QPPGFSGSSQ TKKQPWYNST LASRRKRLTA180

HFEDLEQCYF STRMSRISDD SRTASQLDEF QECLSKFTRY NSVRPLATLS YASDLYNGSS240

IVSSIEFDRD CDYFAIAGVT KKIKVYEYDT VIQDAVDIHY PENEMTCNSK ISCISWSSYH300

KNLLASSDYE GTVILWDGFT GQRSKVYQEH EKRCWSVDFN LMDPKLLASG SDDAKVKLWS360

TNLDNSVASI EAKANVCCVK FSPSSRYHLA FGCADHCVHY YDLRNTKQPI MVFKGHRKAV420

SYAKFVSGEE IVSASTDSQL KLWNVGKPYC LRSFKGHINE KNFVGLASNG DYIACGSENN480

SLYLYYKGLS KTLLTFKFDT VKSVLDKDRK EDDTNEFVSA VCWRALPDGE SNVLIAANSQ540

- GTIKVLELV (2) INFORMATION ON SEQ ID NO. 209:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 90 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:

GTVLSSLTGE YKPLISSTLL ISSSKTLSSF WICSSCSLLF LLATLRNSIR ICSWAACDSA60 SSCFFFCTSN SNIRLTLAKS RLSWSVPNQS

- (2) INFORMATION ON SEQ ID NO. 210:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 95 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:

- (2) INFORMATION ON SEQ ID NO. 211:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 80 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:

  KKMVRLGLFS CLLAIYSLLW IVCIPYLLSI GLCVDILFLF VQHLLPHLLV TQPLFICGEP60

  IPCGLGEHVT RPGLLSPTAS

  80
- (2) INFORMATION ON SEQ ID NO. 212:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 67 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:

LKKGKWAKAI HNRKCKWPRN MKRCSSSLIF KEKKEILPTR LAKIFKDSGL ADYRQTGILT60 NDGVVNW 67

- (2) INFORMATION ON SEQ ID NO. 213:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 78 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:

SPEVGQALGT AGSRASRKMT SELSSLSISA SIRVSPQTDS LHMAQIQAYM VLGSWDLHKA60 FFPVVPAEVL LRAFLSLA 78

- (2) INFORMATION ON SEQ ID NO. 214:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 105 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:

QAGKRALYKH TQTNTSGDGC VLLEQRLIKH SVCWLSVPLL ENNELGKEQL IRKCALLTVH 60 ITTKSWQLLK EKGLCRCRSN LSVNSCQQPQ RLPPQHTLIT CVCLA 105

- (2) INFORMATION ON SEQ ID NO. 215:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 216 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes.
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

LSLTSRMEEA ELVKGRLQAI TDKRKIQEEI SQKRLKIEED KLKHQHLKKK ALREKWLLDG 60 ISSGKEQEEM KKQNQQDQHQ IQVLEQSILR LEKEIQDLEK AELQISTKEE AILKKLKSIE120 RTTEDIIRSV KVEREERAEE SIEDIYANIP DLPKSYIPSR LRKEINEEKE DDEQNRKALY180 AMEIKVEKDL RTGESTVLSS IPLPSDDFKR SRSKSL

- (2) INFORMATION ON SEQ ID NO. 216:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 112 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:

FCFFISSCSF PLLIPSRSHF SLKAFFFKCW CFSLSSSIFR RFCEISSCIF LLSVMAWSLP 60 FTSSASSILE VKDSQTGKQV QSYHKSRSLL GERSGGDRRE AGRNPLFAPV EK 112

- (2) INFORMATION ON SEQ ID NO. 217:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 339 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:

SSQLRRRLVP APAAPRPRP HGVLRGRLRG DRWQWSHWAK WAMLFASGGF QVKLYDIEQQ 60 QIRNALENIR KEMKLLEQAG SLKGSLSVEE QLSLISGCPN IQEAVEGAMH IQECVPEDLE120 LKKKIFAQLD SIIDDRVILS SSTSCLMPSK LFAGLVHVKQ CIVAHPVNPP YYIPLVELVP180 HPETAPTTVD RTHALMKKIG QCPMRVQKEV AGFVLNRLQY AIISEAWRLV EEGIVSPSDL240 DLVMSEGLGM RYAFIGPLET MHLNAEGMLS YCDRYSEGIK HVLQTFGPIP EFSRATAEKV300 NQDMCMKVPD DPEHLAARRQ WRDECLMRLA KLKSQVQPQ

- (2) INFORMATION ON SEQ ID NO. 218:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:

KDPQITQKGI TKIITKIFCP HINMKTTITG CQIILKCNQA EKEKVKISRL SAQVAGNRQP 60 RERKCCCAAR PRAMIQSDGQ TTGLHHPTQA AHKTASLGSP WAATYVTEG 109

- (2) INFORMATION ON SEQ ID NO. 219:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 98 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

LNIPSALRCM VSRGPMNAYR MPNPSDMTRS RSLGDTIPSS TSRQASLMIA YCRRFRTKPA60 TSFWTRMGHC PIFFIRAWVL STVVGAVSGW GTSSTSGM 98

- (2) INFORMATION ON SEQ ID NO. 220:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 129 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

TMFFTCGPNE AMVVSGFCRS PPVMVAGGRV FVLPCIQQIQ RISLNTLTLN VKSEKVYTRH 60 GVPISVTGIA QVKLSEPFPH SPLPHHPLSQ TLRHLLATVF STLACREVPL LVSSFPGTPR120 HLPPPPFFP

- (2) INFORMATION ON SEQ ID NO. 221:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 118 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

DGDPMASVNL FTLDIEGQCV ERDPLDLLDA GQDKDTPSSH HDWGASAEPG DHHGLIWATS 60 EKHGSGWSFR DAGGSPAGVS GRAGSRRDLG AGQGPLADQL SWELAPSRVP HPAAPRCC 118

- (2) INFORMATION ON SEQ ID NO. 222:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 119 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:

WPSGGPLTSP GQCGQSQPPS SPATSDRRPP TSPCSAPGFL PVARVGVGKV WWGSHEVRGK 60 AEREGRALSE MLLPFQGKKG GGGKCLGVPG KDETSRGTSL QARVEKTVAR RCLNVWERG 119

- (2) INFORMATION ON SEQ ID NO. 223:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 93 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

GRRTLFLATF GGYPGSLGCS LSGEANISLV SFFHPLNCKL RITQAHHYSR LGLASQSTLC60 PACHCCKELL LCQPKQRKYG FSCIIFPFGW FVF 93

- (2) INFORMATION ON SEQ ID NO. 224:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 94 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:

NLIYPNSSMY SDTFSEKARI IGAVLSIKGK SSDHLHYNFL CLFSAGEEIH IYSTPHWTLQ60 NACIFCPSAI CSLPFCLLKE LSNIVFPKMF STGH 94

- (2) INFORMATION ON SEQ ID NO. 225:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 92 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes.
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

GHHMHILDRF CTAQLEWVPV TWTGVQYTIC VQYRKPSSAV ARELYSNSLS AQANQVRKTA60 IWLEDFQETA VPVRGRYYLR GGRGTDIKQE GF 92

- (2) INFORMATION ON SEQ ID NO. 226:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 458 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

RGKRRHRLP ALPPRLLSPS AATMSASAVF ILDVKGKPLI SRNYKGDVAM SKIEHFMPLL 60
VHGEEEGALA PLLSHGQVHF LWIKHSNLYL VATTSKNANA SLVYSFLYKT IEVFCEYFKE120
LEEESIRDNF VIVYELLDEL MDFGFPQTTD SKILQEYITQ QSNKLETGKS RVPPTVTNAV180
SWRSEGIKYK KNEVFIDVIE SVNLLVNANG SVLLSEIVGT IKLKVFLSGM PELRLGLNDR240
VLFELTGRSK NKSVELEDVK FHQCVRLSRF DNDRTISFIP PDGDFELMSY RLSTQVKPL1300
WIESVIEKFS HSRVEIMVKA KGQFKKQSVA NGVEISVPVP SDADSPRFKT SVGSAKYVPE360
RNVVIWSIKS FPGGKEYLMR AHFGLPSVEK EEVEGRPPIG VKFEIPYFTV SGIQVRYMK1420
IEKSGYQGPA LGFRYIHPEW AITNFRYQLG RGEEMGGF

- (2) INFORMATION ON SEQ ID NO. 227:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 120 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

LVTKVGNRPL WVNVAKPQGR ALVTTFLNDL HVSDLDPRDG EVGDLKLDPD GGPALHLFLF 60 HTGEAKVGSH QVLLAPRERL NTPNHDVSLR HILGAAHTGL ESGGVGIAGY RHRYLHTVGH120

- (2) INFORMATION ON SEQ ID NO. 228:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 246 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

GISNLTPMGG RPSTSSFSTL GRPKWARIKY SLPPGKDLIL QITTFLSGTY LALPTLVLNL 60
GESASLGTGT DISTPLATDC FLNCPLALTM ISTRLWENFS MTDSIQISGL TWVLRRYDMS120
SKSPSGGMKE MVRSLSKRES RTHWWNFTSS SSTDLFLLRP VSSKSTRSLR PSRSSGIPDR180
NTLSLMVPTI SLRRTLPLAL TSRLTDSMTS MKTSFFLYLI PSERQDTALV TVGGTRDLPV240
SSLLLC 246

- (2) INFORMATION ON SEQ ID NO. 229:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 275 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

MNTRLQVEHP VTEMITGTDL VEWQLRIAAG EKIPLSQEEI TLQGHAFEAR IYAEDPSNNF 60
MPVAGPLVHL STPRADPSTR IETGVRQGDE VSVHYDPMIA KWVVWAADRQ AALTKLRYSL120
RQYNIVGLPT NIDFLLNLSG HPEFEAGNVH TDFIPQHHKQ LLLSRKAAAK ESLCQAALGL180
ILKEKAMTDT FTLQAHDQFS PFSSSGRRL NISYTRNMTL KDGKNNVAIA VTYNHDGSYS240
MQIEDKTFQV LGNLYSEGDC TYLKCSVNGV ASKAK

- (2) INFORMATION ON SEQ ID NO. 230:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 117 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:

SEVIILENTI YLFSKEGSIE IDIPVPKYLS SVSSQETQGG PLAPMTGTIE KVFVKAGDKV 60 KAGDSLMVMI AMKMEHTIKS PKDGTVKKVF YREGAQANRH TPLVEFEEEE SDKRESE 117

- (2) INFORMATION ON SEQ ID NO. 231:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 103 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:

SLRFTSNSIN RTFQVSAVSL AVKITKDLES FIFNLHAIRP IMVIRYSYGY IVFTIFKSHV 60 SGIRDIQSSS TARRKWRELI MCLKSESVGH GFLLEDETQG CLA 103

- (2) INFORMATION ON SEQ ID NO. 232:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 234 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:

ADKMFLLPLP AAGRVVVRRL AVRRFGSRSL STADMTKGLV LGIYSKEKED STADFTSAGE 60 NFDKLLAGKL RETLNISGPP LKAGKTRTFY GLHQDFPSVV LVGLGKKAAG LDLLLINWHEG120 KENIRAAVAA GCRQIQDLEL SSVEVDPCGD AQAAAEGAVL GLYEYDDLKQ KKKMAVSAKL180 YGSGDQEAWQ KGVLFASGQE LGHANLMGDA SQLRLTPTRF CRNYLRRFSK LVVS 234

- (2) INFORMATION ON SEQ ID NO. 233:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 108 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:

LPILKIFSNN FGKIWLASIS IGWRLPSNWR AQVLAQKQTG LLSARPPDPH FHRALPTQPS 60 SFFALGHRIH RDQAPLPPQQ PERLHRDPPP QTRAPGLESA CTPLQQQL 108

- (2) INFORMATION ON SEQ ID NO. 234:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 68 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:

CFLCLHASFP VRRFQLPFCR GQLAPRWGSP DADHKRFESS LPSEVVQICS KSLSAFQLTI60 YQNSLLHL 68

- (2) INFORMATION ON SEQ ID NO. 235:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 187 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:

QRVRAALLSS AMEDSEALGF EHMGLDPRLL QAVTDLGWSR PTLIQEKAIP LALEGKDLLA 60 RARTGSGKTA AYAIPMLQLL LHRKATGPVV EQAVRGLVLV PTKELARQAQ SMIQQLATYC120 ARDVRVANVS AAEDSVSQRA VLMEKPDVVV GTPSRILSHL QQDSLKLRDS LELLVVDEAD180 LLFSLWL

- (2) INFORMATION ON SEQ ID NO. 236:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 76 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:

DIGHSDIPST VGSQLLNHGL CLPCQLLGRN KNKASHCLFY HRTCRLPMEQ QLQHRNSISG60 RLPGARAGPS QEVLPF 76

- (2) INFORMATION ON SEQ ID NO. 237:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 112 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:

TGLCNISSLS ACTSSLKVAD MRKALLKSGG KVTRGRLLEL FFKAKGKKEG QLRPPPKAPG 60 SHEVSGCLAA SGLICEMGSL LPHLASPSAQ LSERLSLQQL RHWPLGHPEH SR 112

- (2) INFORMATION ON SEQ ID NO. 238:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 108 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:

CHARLNIDSS RLAMKLLMVL MLAALLLHCY ADSGCKLLED MVEKTINSDI SIPEYKELLQ 60 EFIDSDAAAE AMGKFKQCFL NQSHRILKNF GLMMHIVYDS IWCNMKSN 108

- (2) INFORMATION ON SEQ ID NO. 239:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 82 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:

LVEETLLEFP HSLCSGITVY ELLKKLFVFR YRYVGIDGLF NHVLQEFAAR ICIAVQEEGR60 QHEDHQQLHG EAAAVCVQSC VA 82

- (2) INFORMATION ON SEQ ID NO. 240:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 48 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240:

LLFILHQMLS YTVCIISPKF FRVLCDWLRK HCLNFPIASA AASLSMNS

(2) INFORMATION ON SEQ ID NO. 241:

48

<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 56 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:	
QAVGEKLSSR DSDLMEDRCF PHFSFSPKKV LLLSPFKQPV SLNFCGHGTD KDPVFS 56	
(2) INFORMATION ON SEQ ID NO. 242:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 52 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:	
IFVAMGQTRT PSSAELRKSP ATSLAIKLQP SHPTRASEEW PLLAGNPLQW AS 52	2
(2) INFORMATION ON SEQ ID NO. 243:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 67 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:	

WPKMSQDFSL VQLKTGSLSV PWPQKFRLTG CLKGDRSRTF LGEKEKWGKQ RSSIRSESLL60 ESFSPTA 67

- (2) INFORMATION ON SEQ ID NO. 244:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 64 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

GSSWAEDFKC DISVPKTSLL FAQSCRSMYF LLQYVPIYKF ISHTYNRAHV CTCTRTHTHS60 LSTR

- (2) INFORMATION ON SEQ ID NO. 245:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 74 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

SGPLLPAKNR EVAGLKTLSV TFQFLKHHCY LLKVVGLCIS FSNTSPFISL FPIHTTVHMC60 ARAHAHTHTH SQLV

- (2) INFORMATION ON SEQ ID NO. 246:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 69 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246:

ARIQTPEQHS QVTLFDYNEE MKMGGYLKIG IPSALKVSKL LTCEQHRTPL LWSSFQLRML60 QFSKSIYYS

- (2) INFORMATION ON SEQ ID NO. 247:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 236 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO: 247:

QLRGGVQRHD RREGEMVCVE LVASDKTNTF QGVIFQGSIR YEALKKVYDN RVSVAARMAQ 60 KMSFGFYKYS NMEFVRMKGP QGKGHAEMAV SRVSTGDTAP CGTEEDSSPA SPMHERVTSF120 SRPPTPERNN RPAFFSPSIK RKVPRNRIAE MKKSHSANDS EEFFREDDGG ADLHNATNLR180 SRSLSGTGRS LVGSWLKLAR ADGNFLLYAH LTYVTLPLHR ILTDILEVRQ KPILMT 236

- (2) INFORMATION ON SEQ ID NO. 248:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 161 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

DEEVALGQRQ RGVLPGGRRW SRSAQCNQPA VSVPVGHRTV PGRVLAEAEQ SRWKLPSLCT 60 LNLRHVAAAS DFNRHPGSSA EAHPDDLAAC GACAEPRPGP ALGVLPSAYL STATGVCDGT120 PVLEPQPGEA TRLPGPGPTA RTPAQTEVPL TGPAGAASAL C 161

- (2) INFORMATION ON SEQ ID NO. 249:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 218 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

VCIEKEVSIC SVQLQFGPDQ GPSCARQGPR PQVGCIVQIG STVVLPEELL AVVGRVRLLH 60 LSDPVPGHLP LEGWGEEGRP VVPFWGGGSA EGGHPLVHGR SWAGVLFSPT GGCVTCRHSA120 DRHLGVALAL GALHAHKLHV AVLVEAKRHL LCHAGGHAHP VVIHLLERLV ADGALKDDPL180 ERVGFVTSHQ LHTDHLSFPT VMSLNTSSKL SIMKKMLG

- (2) INFORMATION ON SEQ ID NO. 250:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 133 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:

YPQDPPGGAS RRLLDDLELC PGEKTAPVWA LSAEEEAAMH FSLAFFLHGS SVFLQITCCH 60 EFLCMRHISS CLYAEVPFIL SIGWWTGERG PRCPTSCASA VGGDRAPRHG GGGHLPHVWG120 GRRHPGTEGS LQR

- (2) INFORMATION ON SEQ ID NO. 251:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 71 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:

RLPSVPGCLR PPQTCGRCPP PPCLGARSPP TALAHDVGHL GPLSPVHQPI ERMKGTSAYR60 HDEICLMHKN S

- (2) INFORMATION ON SEQ ID NO. 252:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 95 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:

RGLQHTDMMK YASCIKIHDN MLFAKKQTNH AGKMPGKSAW QLPPQHSGPT QERFSPQDTA60 PSRPEASVMP LLAGPEGIRA PLLLTVDAAT HSMQH 95

- (2) INFORMATION ON SEQ ID NO. 253:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 194 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

QKKKMSFRKV NIIILVLAVA LFLLVLHHNF LSLSSLLRNE VTDSGIVGPQ PIDFVPNALR 60 HAVDGRQEEI PVVIAASEDR LGGAIAAINS IQHNTRSNVI FYIVTLNNTA DHLRSWLNSD120 SLKSIRYKIV NFDPKLLEGK VKEDPDQGES MKPLTFARFY LPILGSQRQR KARLHGVDDV180 ICGRWDFLPF TLQQ

- (2) INFORMATION ON SEQ ID NO. 254:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:

RFHGFPLVRI LLYFSFQKFR VKIDNFVSDA FQGITVEPGP EMVCCIVESN NVENHIGASV 60 VLNAVYSCNG PPKPVFRCSD DHRNLLLSPI YCMSESIWDK VYRLRPYNS 109

- (2) INFORMATION ON SEQ ID NO. 255:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 57 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:

NLAKVKGFMD SPWSGSSFTF PSKSLGSKLT ILYLMLFRES LLSQDRRWSA VLLRVTM 57

- (2) INFORMATION ON SEQ ID NO. 256:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 230 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:

LPAATNRLKR GKGSSTGSSS GNHGGSGGGN GHKPGCEKPG NEARGSGKSG IQGFRGQGVS 60 SNMREISKEG NRLLGGSGDN YRGQGSSWGS GGGDAVGGVN TVNSETSPGM FNFDTFWKNF120 KSKLGFINWD AINKNQVPPP STRALLYFSR LWEDFKQNTP FLNWKAIIEG ADASSLQKRA180 GRAESELQLQ PACVSHCLWW EVLSQDPCKG GESHLLPRLP GCNLGLLAVG

- (2) INFORMATION ON SEQ ID NO. 257:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 141 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:

TRTRSRPPAP EPSSTSADSG RISNRTLLSS TGKQLLRVRT RHHCRNVQAE PSQNYNYNQH 60
-AYPTAYGGKY SVKTPAKGGS LTFFLGFPGA TWACLQLGEV LVRQFLATNH RRPRKKHWVR120
QGKLLPPLGP PALWQAPGPG L

- (2) INFORMATION ON SEQ ID NO. 258:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 165 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:

RVRTLNNCFP VEERSVLFEI LPESAEVEEG SGAGGRDLVL VYGIPVDETQ LGFKILPESV 60 KVKHPRRRLR VHSIDSTNSV TSSTAPARPL PPIIVSRASK EAIALFAYFP HVAGNSLSSE120 ALNPRFPAPA GFIPWLFTPG FMSISSAAPT VVAGGGAGAG SLPPL 165

- (2) INFORMATION ON SEQ ID NO. 259:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 126 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:

ERSHLQPGAV GITESPILGL GSAMTTEIGW WKLTFLRKKK STPKVLYEIP DTYAQTEGDA 60 EPPRPDAGGP NSDFNTRLEK IVDKSTKGKH VKVSNSGRFK EKKKVRATLA ENPNLFDDHE120 EGRSSK 126

- (2) INFORMATION ON SEQ ID NO. 260:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 121 amino acids

    - (B) TYPE: Protein (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:

YVLNTIIVGK GEEKIPHPLP RFGPCSFPLR VCDLPSAKVM AKTGTNRPNY HQSSLLQHPN 60 RVPGSSVPSA PEGKVPGSLL PVLGGELKFS VSASGSTETS PYHVASGKCA LLRIGPGSSH120 R

- (2) INFORMATION ON SEQ ID NO. 261:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 86 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:

TRVPLYVVRG RVEDPGISQA LQKWRHINTN LKNSHFLPAG INWPHSFSYG QRGQRGKVLS60 QIWLMAGSQE VLAPSSALHF DDRPSS 86

- (2) INFORMATION ON SEQ ID NO. 262:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 73 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:

GSGSPAPRKL HDFALCSAPL CPLFPRETSR SHIFLTDFEA VCLHSDWEHW DHFHHADSGG60 NGCIPFHDPT CVY 73

- (2) INFORMATION ON SEQ ID NO. 263:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 106 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:

FVAMCSKQAS LNHGLLGLTL VFLGPLNRHR SGHGKGYIHY HHCRHDENDP SVPNQNANRQ 60 LQNQSRKCGI WKSLLERGGR GELSRGRNRA VYAELGTPSL RARGGR 106

- (2) INFORMATION ON SEQ ID NO. 264:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 66 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:

VLRWYSSDPS IDTGRVMERD TSITTTVGMM KMIPVFPIRM QTDSFKISQE NVGSGSLSWK60 EGAEGS

- (2) INFORMATION ON SEQ ID NO. 265:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 108 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:

GCACFRPPSP AGGARTSAGR SPSSADVGSR TQSRSRRRAA HSRCCVAFPS SFTPRSRRRP 60 KRRRRRREND PAASSLPPAH LPCSVSQSAA GARLVLRPRA CGAQAQRP 108

- (2) INFORMATION ON SEQ ID NO. 266:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:

GAPAFALLLQ REGRGLPRGG VRLVLTLAAE PKVDRGGGLH IPVVALRFLP LSLRAHGGGQ 60 SGGDGGARTT RRPVLFLLRT CPARSVSRRP APGLCSDLAL AAPRPSGRS 109

- (2) INFORMATION ON SEQ ID NO. 267:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 157 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:

IEAAGCTFPL LRCVSFLFHS ALTAAAKAAA TAARERPGGQ FSSSCAPALL GQSVGGRRPA 60 CAQTSRLRRP GPAAVASVWP ENLGAPAARA PRAEPRSGSR GGRRVSESEG WPGQVVAPRR120 WSPSKGSVWP TRSTARTSPS AATSPRPREM PPKRRL

- (2) INFORMATION ON SEQ ID NO. 268:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 156 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:

SSAQGEEPGP GRRLLRAPTE SRSEGKSMFA GVPTMRESSP KQYMQLGGRV LLVLMFMTLL 60 HFDASFFSIV QNIVGTALMI LVAIGFKTKL AALTLVVWLF AINVYFNAFW TIPVYKPMHD120 FLKYDFFQTM SVIGGLLLVV ALGPGGVSMD EKKKEW

- (2) INFORMATION ON SEQ ID NO. 269:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 112 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:

LGACSWWWPW ALGVSPWMRR RRSGNSHRSL PAWLRPVAVK DWFGVDSTKL PAFMYPLPFP 60 SLGKGTDVLR TLFAETPENR WLSLLWSHSL ASDPSVQASL AAGSLPHAEA LE 112

- (2) INFORMATION ON SEQ ID NO. 270:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 130 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270:

SQRVCKYSPG SLLPYPRILV RSSNGFRTWV LFSCDHSSAH CMKTGLSQCF NLTRAVSWST 60 PRSLLVPYDS PHQMTLAKSR FLCGQGWLAD WWKVGWTKGG HVSSQHQFCT SSASVLVGVP120 VSPGPGWARA

- (2) INFORMATION ON SEQ ID NO. 271:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 267 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:

GTSGTSHLHP RSICMIQKYN HDGEAGRLEA FSQGESVLKE PKYQEELEDR LHFYVEECDY 60 LQGFQILCDL HDGFSGVGAK AAELLQDEYS GRGIITWGLL PGPYHRGEAQ RNIYRLLNTA120 FGLVHLTAHS SLVCPLSLGG SLGLRPEPPV SFPYLHYDAT LPFHCSAILA TALDTVTVPY180 RLCSSPVSMV HLADMLSFCG KKVVTAGAII PFPLAPGQSL PDSLMQFGGA TPWTPLCACG240 EPSGTRCFAQ SVVLRGYRQS MPHKPQT 267

- (2) INFORMATION ON SEQ ID NO. 272:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 118 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:

QVARVAGPGS HPRTRGRQES CEQSGARDQK LCLIDDRCFS GPPHDGRDQV AGPRLLFPAL 60 NIHLVAALPP SRLPQRSHRA GHTGSGSPAS SHIPPRRNAA CPPALPGTWV PLGHFPLG 118

- (2) INFORMATION ON SEQ ID NO. 273:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 133 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:

LGKATCSRRL PTCTQWGPWG GSSKLHQGIR KGLAWSQGER DDCSCCHHLF PTEAQHVSQM 60 NHGNWRGTQA IRNSDCVQGC SQDGTAVEGQ SGIIMQVREA DRWLGSQAQA PTQGQGADKR120 AVSSQVHETK SCV

- (2) INFORMATION ON SEQ ID NO. 274:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 124 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:

PQAWRRLCRC CSARPVAPGA RRLVPCRTPT RQPAGGTCHH PAAFRGRSRH IPVPHALGFG 60 ASAGRSVPLQ ALSQSPGAAD LQVFSTGAAP VIHTRLLEDP ILGATLPAGP IRCRAVGLVP120 RHCH 124

- (2) INFORMATION ON SEQ ID NO. 275:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 426 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275:

GSSRRHGGGY AAVALLVLLL LGPGGWCLAE PPRDSLREEL VITPLPSGDV AATFQFRTRW 60 DSELQREGVS HYRLFPKALG QLISKYSLRE LHLSFTQGFW RTRYWGPPFL QAPSGAELWV120 WFQDTVTDVD KSWKELSNVL SGIFCASLNF IDSTNTVTPT ASFKPLGLAN DTDHYFLRYA180

VLPREVVCTE NLTPWKKLLP CSSKAGLSVL LKADRLFHTS YHSQAVHIRP VCRNARCTSI240 SWELRQTLSV VFDAFITGQG KKDWSLFRMF SRTLTEPCPL ASESRVYVDI TTYNQDNETL300 EVHPPPTTTY QDVILGTRKT YAIYDLLDTA MINNSRNLNI QLKWKRPPEN EAPPVPFLHA360 QRYVSGYGLQ KGELSTLLYN THPYRAFPVL LLDTVPWYLR LLHPLPACPG PAATPPPGDA420 DSAAGQ

- (2) INFORMATION ON SEQ ID NO. 276:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 128 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276:

SPSILYGSCT CHSHKAFGGP DTGGHPSCRP HQVQSCGSGS KTLSLMWINL GRSSVMSSQG 60 SSAPLSTSST PPTQSLPLPP SNPWVWPMTL TTTFCAMLCC RGRWSAPKTS PPGRSSCPVV120 PRQASLCC 128

- (2) INFORMATION ON SEQ ID NO. 277:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 481 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:

AQDTGGPGRQ SGHGGDLQIP ISLFLRRLNT QHWRPGSRKV MAVVPASLSG QDVGSFAYLT 60
IKDRIPQILT KVIDTLHRHK SEFFEKHGEE GVEAEKKAIS LLSKLRNELQ TDKPFIPLVE120
KFVDTDIWNQ YLEYQQSLLN ESDGKSRWFY SPWLLVECYM YRRIHEAIIQ SPPIDYFDVF180
KESKEQNFYG SQESIIALCT HLQQLIRTIE DLDENQLKDE FFKLLQISLW GNKCDLSLSG240
GESSSQNTNV LNSLEDLKPF ILLNDMEHLW SLLSNCKKTR EKASATRVYI VLDNSGFELV300
TDLILADFLL SSELATEVHF YGKTIPWFVS DTTIHDFNWL IEQVKHSNHK WMSKCGADWE360
EYIKMGKWVY HNHIFWTLPH EYCAMPQVAP DLYAELQKAH LILFKGDLNY RKLTGDRKWE420
FSVPFHQALN GFHPAPLCTI RTLKAEIQVG LQPGQGEQLL ASEPSWWTTG KYGIFQYDGP480

- (2) INFORMATION ON SEQ ID NO. 278:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 128 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278:

FHISVSTNFS TKGINGLSVC NSFRNLERRE IAFFSASTPS SPCFSKNSLL CRCNVSITLV 60 KICGILSLIV RYANDPTSCP ERDAGTTAIT FRDPGRQCWV FNRRRNREIG ICKSPPCPDC120 RPGPPVSC 128

- (2) INFORMATION ON SEQ ID NO. 279:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 83 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:

ELLNQVKGDH RTEIFHIFQW STSWAQRPGA VPLAQAADQP EFQLLMFLWY RVVQDGSHSE60 PDEMEQKTPI FCHLSTSCNS NHP

- (2) INFORMATION ON SEQ ID NO. 280:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 168 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:

FYDRRDCFVA VSFLRGLSLW LHFYLWWLCY GGAEMRQKRK GDLSPAELMM LTIGDVIKQL 60

IEAHEQGKDI DLNKVKTKTA AKYGLSAQPR LVDIIAAVPP QYRKVLMPKL KAKPIRTASG120

IAVVAVMCKP HRCPHISFTG NICVYCPGGP DSDFEYSTQS YTGYEQPP 168

- (2) INFORMATION ON SEQ ID NO. 281:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 70 amino acids(B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:

GGTAAMISTR RGWAERPYLA AVLVFTLFRS MSFPCSWASI SCLITSPIVS IISSAGLRSP60 FRFCLISAPP

- (2) INFORMATION ON SEQ ID NO. 282:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 71 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:

IDVFPLLVGF NQLFNNISYS QHHQLSRAEI SFPLLPHFCA AVAEPPEIKM QPQTQTTEKA60 DSHKTIPPVV K

- (2) INFORMATION ON SEQ ID NO. 283:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 114 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:

KPRQLPNMAF LPSPAWWISL LAVPPQYRKV LMPKLKAKPI RTASGIAVVA VMCKPHRCPH 60 ISFTGNICVY CPGWDLILIL SIPPSLTLGY EPTSMRSYSV PDMDPFPYRT RTPD 114

- (2) INFORMATION ON SEQ ID NO. 284:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 127 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:

WVSPLTWASR PCDTEEGRQA MISTRRGWAE RPYLAAVLVF TLFRSMSFPC SWASISCLIT 60 SPIVSIISSA GLRSPDYGGF TTRPGSNILG SRVGHYTHQT MEDSPPDQEA TAWAPELATP120 PCTDEDR

- (2) INFORMATION ON SEQ ID NO. 285:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 92 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:

PHTTNPTCFK LFLIRCPCPV RKRVHIWHGI APHGGWLIAQ CKTGWNTQNQ NQVPPRAVYT60 YISCKTDVWT SVGFAHHSHD SNPTSSSDGF RL 92

- (2) INFORMATION ON SEQ ID NO. 286:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 76 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:

DLSRPGGTRF VLTIQQTFFS KVFVQDNFKN NIKINNGFDF SLKIEKKGVG GGVNHWPFFF60 WRGPIGIVRP WGSGLS 76

- (2) INFORMATION ON SEQ ID NO. 287:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 97 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:

RTFVLFYHRL TLQLLINTSF GDVWCKTHKH TQKSTSPLHD PSLLSGTISA ASCTLLGPPP60 IHRGFRGTQI TAGFQFFFNN TFLWSVPTAL SVLLKLE 97

- (2) INFORMATION ON SEQ ID NO. 288:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 77 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

(vi)	ORIGIN (A) ORGANISM: HUMAN	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 288	:
	VK HTNTHKKAQA RCMTRLSFLG LFLLRPAPSW AHLRFTEVS DF QQHCPYF	GG GPKSLLVFNF60 77
(2) INFOR	MATION ON SEQ ID NO. 289:	
(i) s	SEQUENCE CHARACTERISTIC:  (A) LENGTH: 28 amino acids  (B) TYPE: Protein  (C) STRAND: individual  (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: ORF	
(iii)	) HYPOTHETICAL: yes	
(vi)	ORIGIN (A) ORGANISM: HUMAN	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 289	:
ILIDGVRAAF	IPYREYNGAR LSRDFISA	28
(2) INFOR	MATION ON SEQ ID NO. 290:	
(i) :	SEQUENCE CHARACTERISTIC:  (A) LENGTH: 28 amino acids  (B) TYPE: Protein  (C) STRAND: individual  (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: ORF	
(iii	) HYPOTHETICAL: yes	
(vi)	ORIGIN (A) ORGANISM: HUMAN	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 290	ı <b>:</b>
HQFHNYFNLI	L GFIHLIILKÉ HQQWGTEK	28
(2) INFOR	MATION ON SEQ ID NO. 291:	
(i)	SEQUENCE CHARACTERISTIC: (A) LENGTH: 29 amino acids (B) TYPE: Protein (C) STRAND: individual	

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:	
APGPQAILII NLNRWGKSCL HPIQRIQWC	29
2) INFORMATION ON SEQ ID NO. 292:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 30 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:	
AEIKSLLSLA PLYSLYGMKA ALTPSIKIYY	30
(2) INFORMATION ON SEQ ID NO. 293:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 33 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:	

AMKVLSFLLC IRISFLFVVE SIVRGISKLN EVN

(2) INFORMATION ON SEQ ID NO. 294:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 38 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:	
AINKVSSGYG PLALLGFSVS VEAAQRISLN FSQKWLLT	38
(2) INFORMATION ON SEQ ID NO. 295:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 40 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:	
FTSFNLLIPR TILSTTNRNE ILIHKRKLKT FIAYVGLSNK	40
(2) INFORMATION ON SEQ ID NO. 296:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 71 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:

VNLLKYGQIH LAVKQLNIHC YLIKVFVSVL PGPNIKTTSV QKINVQRAVC SLFWYVHFKK60 TPLSSLANQE Y 71

- (2) INFORMATION ON SEQ ID NO. 297:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 67 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:

RFYLYFILSR GTNSRHTFAR PSCRKTQSRK GKNKIAIKYM VLGAGRTRNP QGDQFLARSF60 FRVYPVE

- (2) INFORMATION ON SEQ ID NO. 298:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 56 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes.
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298:

KNLEFFSPST SYLLLQNSSE GFIYILSYPE GPTAGIPLPG LLAERHRAVK AKIKLQ 56

- (2) INFORMATION ON SEQ ID NO. 299:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 140 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:

TPNSRGAGRV VRGSARGVGR SCASWLPVGR RCRTSETGSG ASRRSRAIGS PPPSPCPWSA 60 NSASSARPTS SSGPKPSFIA FRFGGQSLPP FISLWVQELD FFIWSIYISY ISILRDLKQE120 LLMGGQQTIY SCSSLTGFAS

- (2) INFORMATION ON SEQ ID NO. 300:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 279 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:

QSRSRPRREG VGTGSRAVLC ILATCGSKMS DIGDWFRSIP AITRYWFAAT VAVPLVGKLG 60 LISPAYLFLW PEAFLYRFQI WRPITATFYF PVGPGTGFLY LVNLYFLYQY STRLETGAFD120 GRPADYLFML LFNWICIVIT GLAMDMQLLM IPLIMSVLYV WAQLNRDMIV SFWFGTRFKA180 CYLPWVILGF NYIIGGSVIN ELIGNLVGHL YFFLMFRYPM DLGGRNFLST PQFLYRWLPS240 RRGGVSGFGV PPASMRRAAD QNGGGGRHNW GQGFRLGDQ 279

- (2) INFORMATION ON SEQ ID NO. 301:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 106 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:

IDQIKKSSSW THREIKGGSD WPPNLKAIKE GFGPEEEVGR ADEAEFADQG HGDGGGEPIA 60 RDRRDAPEPV SDVRHLRPTG SQDAQDRPTP RADPLTTRPA PRLLGV 106

- (2) INFORMATION ON SEQ ID NO. 302:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 207 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:

LEPLEPNRLE LKKGYLTLSD SGDKVAVEWD KDHGVLESHL AEKGRGMELS DLIVFNGKLY 60 SVDDRTGVVY QIEGSKAVPW VILSDGDGTV EKGFKAEWLA VKDERLYVGG LGKEWTTTTG120 DVVNENPEWV KVVGYKGSVD HENWVSNYNA LRAAAGIQPP GNLIHESACW SDTLQRWFFL180 PRRASQERYS EEGRRAQGRQ PAAERLP

- (2) INFORMATION ON SEQ ID NO. 303:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 153 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:

RWWATRAAWT TRTGCPTTTP CGLLPASSRQ VTSSMSLPAG VTRCSAGSSC RAAPARSATA 60 RKDDERKGAN LLLSASPDFG DIAVSHVGAV VPTHGFSSFK FIPNTDDQII VALKSEEDSG120 RVASYIMAFT LDGRFLLPET KIGSVKYEGI EFI 153

- (2) INFORMATION ON SEQ ID NO. 304:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 174 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:

VGTTAPTWLT AMSPKSGEAL SSRLAPLRSS SFLAVALLAG AARQEEPALQ RVTPAGRLMD 60 EVTWRLDAGS SPQGVVVGHP VLVVHAALVA HHLHPLRVLV HHITRSGRPL LAQAAHVQTL120 VLHCQPFGLE AFLHGAVAVG QNHPGHGFAA FDLVDDPRPV IHGVEFPIEN NQVG 174

- (2) INFORMATION ON SEQ ID NO. 305:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 61 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:

KLVCLEADSK SSFSSEHLFS YHLISILKHH GCSCSKMGDV KENYLETFIS SPKWSFILCL60 S

- (2) INFORMATION ON SEQ ID NO. 306:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 144 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:

NTMAVAAVKW VMSKRTILKH LFPVQNGALY CVCHKSTYSP LPDDYNCNVE LALTSDGRTI 60 VCYHPSVDIP YEHTKPIPRP DPVHNNEETH DQVLKTRLEE KVEHLEEGPM IEQLSKMFFT120 TKHRWYPHGR YHRCRKNLNP PKDR

- (2) INFORMATION ON SEQ ID NO. 307:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 128 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:

IHQTAFSQMA NEAHFSLIPP GTSASSVFWR IQILTTSVIP SMRIPTVLSS KEHFAKLFYH 60 RSFLKVFNFF FQSGFQHLIM CFFIIMHRIW PRDRFCVFIW NVHRRVVAYY CPAIRSQSKL120 YVAIIVIW 128

- (2) INFORMATION ON SEQ ID NO. 308:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 467 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:

SRSKMAALRA LCGFRGVAAQ VLRPGAGVRL PIQPSRGVRQ WQPDVEWAQQ FGGAVMYPSK 60
ETAHWKPPPW NDVDPPKDTI VKNITLNFGP QHPAAHGVLR LVMELSGEMV RKCDPHIGLL120
HRGTEKLIEY KTYLQALPYF DRLDYVSMMC NEQAYSLAVE KLLNIRPPPR AQWIRVLFGE180
ITRLLNHIMA VTTHALDLGA MTPFFWLFEE REKMFEFYER VSGARMHAAY IRPGGVHQDL240
PLGLMDDIYQ FSKNFSLRLD ELEELLTNNR IWRNRTIDIG VVTAEEALNY GFSGVMLRGS300
GIQWDLRKTQ PYDVYDQVEF DVPVGSRGDC YDRYLCRVEE MRQSLRIIAQ CLNKMPPGEI360
KVDDAKVSPP KRAEMKTSME SLIHHFKLYT EGYQVPPGAT YTAIEAPKGE FGVYLVSDGS420
SRPYRCKIKA PGFAHLAGLD KMSKGHMLAD VVAIIGTQDI VFGEVDR 467

- (2) INFORMATION ON SEQ ID NO. 309:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 131 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:

QPSVHEHTHT HTHTHTTQR PISSEEQAPQ KKLIGRGDQT LLPCSPIYFS KYNILGTYDG 60 NDICQHVSLR HLVQTSQMGK TRSLDLASIR AAAAIRHQVH PKLSLGSLNG SICGSWRNLV120 ALSIQLKVMN Q

- (2) INFORMATION ON SEQ ID NO. 310:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 100 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:

SQDTMRCWVL GPKVQGNVLH NCVLWRVHII PRWRLPVGCF FAWVHNSSPK LLCPFHIWLP 60 LPNTSAGLNR QSDSSPRPQH LGRDAPEAAQ SPQRRHLTPA 100

- (2) INFORMATION ON SEQ ID NO. 311:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 162 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:

RRLRGGEPST DRRRDPESRT PAPPPTPRAM DPKDRKKIQF SVPAPPSQLD PRQVEMIRRR 60 RPTPAMLFRL SEHSSPEEEA SPHQRASGEG HHLKSKRPNP CAYTPPSLKA VQRIAESHLQ120 SISNLNENQA SEEEDELGEL RELGYPREED EEEEEDAARL KS 162

- (2) INFORMATION ON SEQ ID NO. 312:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 154 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:

VSLGRNLSAL PPLSLAHRHP ACISQEEVEG TSLFPRNPLY PHPVLCSSPR LLGLRLLTSR 60 RLRLVCVCLF AHLWLIPREP GHLLPDAHPC QSFLHSPSGR WDVRQPTLEN PENREQGFAL120 HNSTPQILSP GHRRPTGQDP KIWGKEVLRT LRYP

- (2) INFORMATION ON SEQ ID NO. 313:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 101 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:

## (2) INFORMATION ON SEQ ID NO. 314:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 162 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:

SDRWTCSPPL GARSMSRFPA VAGRAPRRQE EGERSRDLQE ERLSAVCIAD REEKGCTSQE 60 GGTTPTFPIQ KQRKKIIQAV RDNSFLIVTG NTGSGKTTQL PKYLYEAGFS QHGMIGVTQP120 RKVAAISVAQ RVAEEMKCTL GSKVGYQVRF DDCSSKETAI KY

## (2) INFORMATION ON SEQ ID NO. 315:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 79 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315:

QIGGRARLHS GPGLCPGFPQ SRAGRQGGRR RVSGQETSRK SGSRLFASPI EKRKDARPRR60 EELLQLFLFR NKEKRLFKL

- (2) INFORMATION ON SEQ ID NO. 316:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 69 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316:

IGKVGVVPPS WDVHPFSSLS AMQTAESRSS WRSLDRSPSS CRLGALPATA GNRDIDLAPS60 GGEHVHRSE

- (2) INFORMATION ON SEQ ID NO. 317:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 173 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:

AQESPWQLCR GARTSKRKLP KLGMEQHCNE MCPPSSLFLP GAYKAQMYSD VWTNTKKKKK 60 KKKKKAFLSH RHKTQIIYCY EALFTNGQFL HFIAACERLP DGRPISLVLQ TSSQAAFYQK120 GENSCLSFLK NAFLYLSIRH YTSELYKRPG GTMSLVDTFH CSVAPFLAWE ASA 173

- (2) INFORMATION ON SEQ ID NO. 318:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:

- (2) INFORMATION ON SEQ ID NO. 319:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 105 amino acids

    - (B) TYPE: Protein(C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:

TCEPFRNPQV GKDPTPSLRI ICLAITGSWK CFLGCVKINQ GGMKHIFLAT KLEFLREQMQ 60 105 RDLLLLARLQ GPLWSHTEAV TGHKPRRARG SCAEAPGPLS GSFPS

- (2) INFORMATION ON SEQ ID NO. 320:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 82 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - ORIGIN (vi)
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:

IRKREQGRSS PAPWESVFAS VPFRGDDGIF DDNFIEERKQ GLEQFINKVA GHPLAQNERC60 82 LHMFLQDEII DKSYTPSKIR HA

- (2) INFORMATION ON SEQ ID NO. 321:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 159 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 321:

RASPCPHGGQ QRRRRLNAE GAEGARGGGS SYSEMAETVA DTRRLITKPQ NLNDAYGPPS 60 NFLEIDVSNP QTVGVGRGRF TTYEIRVKTN LPIFKLKEST VRRRYSDFEW LRSELERESK120 VVVPPLPGKA FLRQFLLEEM MEYLMTILLR KENKGWSSL

- (2) INFORMATION ON SEQ ID NO. 322:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 114 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 322:

FTSQPFKVTV SSSNSRFFQL ENRKICLDPD FVSGEAAPAD PHRLRVAHID LEEVAGGSVG 60 VIQVLRLGDQ PPGVSHGLRH FAVAAAAAAG SLRPLRVQPP PPPLLPAVGT RARA 114

- (2) INFORMATION ON SEQ ID NO. 323:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 374 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 323:

RRAQESPLGR QSHLPRIYQA FLMSATFNED VQALKELILH NPVTLKLQES QLPGPDQLQQ 60 FQVVCETEED KFLLLYALLK LSLIRGKSLL FVNTLERSYR LRLFLEQFSI PTCVLNGELP120 LRSRCHIISQ FNQGFYDCVI ATDAEVLGAP VKGKRRGRGP KGDKASDPEA GVARGIDFHH180 VSAVLNFDLP PTPEAYIHRA GRTARANNPG IVLTFVLPTE QFHLGKIEEL LSGENRGPIL240 LPYQFRMEEI EGFRYRCRDA MRSVTKQAIR EARLKEIKEE LLHSEKLKTY FEDNPRDLQL300 LRHDLPLHPA VVKPHLGHVP DYLVPPALRG LVRPHKKRKK LSSSCRKAKR AKSQNPLRSF360 KHKGKKFRPT AKPS

- (2) INFORMATION ON SEQ ID NO. 324:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 224 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324:

QRVRAALLSS AMEDSEALGF EHMGLDPRLL QAVTDLGWSR PTLIQEKAIP LALEGKDLLA 60 RARTGSGKTA AYAIPMLQLL LHRKATGPVV EQAVRGLVLV PTKELARQAQ SMIQQLATYC120 ARDVRVANVS AAEDSVSQRA VLMEKPDVVV GTPSRILSHL QQDSLKLRDS LELLVVDEAD180 LLFSFGFEEE LKSLLWEGRV TCPGFTRLFS CQLLLTRTYK HSRS 224

- (2) INFORMATION ON SEQ ID NO. 325:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 115 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 325:

FFFFFFFF AAKIFILLSR GKMPAWKCQG AKGPSTAGPR TVCSGCAVST RASPVHEGCK 60 PVLHNVLSSR EAQQPQEGLA VGLNFFPLCL KLRSGFWDFA LLAFLQEEDS FFRFL 115

- (2) INFORMATION ON SEQ ID NO. 326:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 66 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 326:

YLQCQRSLCG AKCVTWAVET RHLLSPALMT LRKEDVIQGK FLIPKLPVHV NRTSFYSSRC60 TGSLAP

- (2) INFORMATION ON SEQ ID NO. 327:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 90 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 327:

FRSCLFMLTG LLFIRQDVLV PWHLKGNPDK GKPVEPFGPI GSQDPSPVFH RYYHVFREGE60 LEGACRTVSD VRILQSYYDQ GNWCVILQKA 90

- (2) INFORMATION ON SEQ ID NO. 328:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 83 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 328:

SGLLKNHTPV SLIVVALQNS DITHSPAGTF QFSLTEHMVV TMKHRTWVLG SYGTKWLNRF60 AFIRISLKVP GNQYILTNKK KSC 83

- (2) INFORMATION ON SEQ ID NO. 329:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 185 amino acids

    - (B) TYPE: Protein (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - MOLECULE TYPE: ORF (ii)
  - (iii) HYPOTHETICAL: yes
  - ORIGIN (vi)
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329:

ERRSKSREER EKEREREEE RERKRRREEE EREKERARDR ERRKRSRSRS RHSSRTSDRR 60 CSRSRDHKRS RSRERRRSRS RDRRRSRSHD RSERKHRSRS RDRRRSKSRD RKSYKHRSKS120 RDREQDRKSK EKEKRGSDDK KSSVKSGSRE KQSEDTNTES KESDTKNEVN GTSEDIKSEG180 DTQSN

- (2) INFORMATION ON SEQ ID NO. 330:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 178 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330:

YHFPSIQCLC LHSAFLDYRT SHYFFYHQIP SFLSPWIFYL VLCPDFCSCA YMTFDPGFLI 60 FFDPDFEICV FFLIDHGFCF FVDLYFCSAF FLYFVTFCGP ETCCIFCLMF GLSVYFVNDF120 SFFFLCHEPF LFLFLPFV FSFLFLPFLS PVLSLSLLCS CFSFLRRSSR IRLFGSSP 178

- (2) INFORMATION ON SEQ ID NO. 331:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 182 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331:

VSPSDLMSSL VPLTSFLVSL SFDSVFVSSL CFSRLPDFTL LFLSSDPLFS FSLDFLSCSL 60

SRLLLLCLYD FRSRLFDLLR SRLRDLCFLS DRSWLLLLRR SLLLLRLLSL LRDLLWSRDL120 LHLLSDVRLE CLLRERLLFL LSLSRALSFS LSSSSLRLFL SLSSLSLSRS FSLSSLLLLL180 LS

- (2) INFORMATION ON SEQ ID NO. 332:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 88 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332:

GFGMQLVILR VTIFLPWCFA VPVPPAADHK GWDFVEGYFH QFFLTEKESP LLTQETQTQL60 LQQFHRNGTD LLDMQMHASA TAAPLWGA

- (2) INFORMATION ON SEQ ID NO. 333:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 61 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333:

PRRSRHSLPR RHKHSSCNNS IGMGQTYLTC RCMLLLQQPH CGVPDGSDNC ISPGRCKWIK60 H

- (2) INFORMATION ON SEQ ID NO. 334:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 62 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 334:

STCIFLARCS CRTHQAPHSG AAVAEACICM SSRSVPFRWN CCRSCVCVSW VRSGDSFSVR60 KN

- (2) INFORMATION ON SEQ ID NO. 335:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 61 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 335:

VCPIPMELLQ ELCLCLLGKE WRLLLGQEKL MEIALNKVPS FMVCSRGHWN GETPGQEDSN60 61

- (2) INFORMATION ON SEQ ID NO. 336:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 63 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336:

AEDTIQKRNS QFETVTPPAP NCGDEERKQW LWFLSEGRLR TERSNHQGHR FWKSSRGGWL60 EEQ

- (2) INFORMATION ON SEQ ID NO. 337:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 65 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337:

KGWRSDFTVG GRQRDGQHVQ TGSFFSISLL SKSRTAQWLC QGGSSSYSHF SGSLKSTRYY60 RGSRS

- (2) INFORMATION ON SEQ ID NO. 338:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 249 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338:

SCGDVEQKIQ FKRETASLKI LPHQPRIVEM KKGSNGYGFY LRAGSEQKGQ IIKDIDSGSP 60
AEEAGLKNND LVVAVNGESV ETLDHDSVVE MIRKGGDQTS LLVVDKETDN MYRLAHFSPF120
LYYQSQELPN GSVKEAPAPT PTSLEVSSPP DTTEEVDHKP KLCRLAKGEN GYGFHLNAIR180
GLPGSFIKEV QKGGPADLAG LEDEDVIIEV NGVNVLDEPY EKVVDRIQSS GKNVTLLVCG240
KKAYDYFQA

- (2) INFORMATION ON SEQ ID NO. 339:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: '67 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:

ITGVQPEHIQ YLKNYFHLWT RQLAHIYHYY IHGPKGNEIR TSKEVEPFNN IDIEISMFEK60 GKVPKIV

- (2) INFORMATION ON SEQ ID NO. 340:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 44 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO: 340:

RIFITTIFMA QKEMKYEHQK KLNLSTILIL KFLCLKKGRY LRLS

44

- (2) INFORMATION ON SEQ ID NO. 341:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 46 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

- (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341:

KVQLLLMFVF HFLLGHEYSS DKYALTVVSK GGNNFSSTVC VLVVPL

46

- (2) INFORMATION ON SEQ ID NO. 342:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 237 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342:

GRWRRRLRHG RGSAEAVGPT AMAELLQEEL SVLAAIFCRP HEWEVLSRSE TDGTVFRIHT 60 KAEGFMDADI PLELVFHLPV NYPSCLPGIS INSEQLTRAQ CVTVKEKLLE QAESLLSEPM120 VHELVLWIQQ NLRHILSQPE TGSGSEKCTF STSTTMDDGL WITLLHLDHM RAKTKYVKIV180 EKWASDLRLT GRLMFMGKII LDFTTGRQKQ PQGVLDSSEN LQSRCGLKWK EMQREND 237

- (2) INFORMATION ON SEQ ID NO. 343:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 343:

YLILLQGDRN NLKVYLILQK TSKVDVDSSG KKCKEKMISV LFETKVQTEH KRFLAFEVKE60 YSALDELQKE FETAGLKKLF SEFVLALVK

- (2) INFORMATION ON SEQ ID NO. 344:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 95 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 344:

PLPKSNAKTT KNTAILLKDS CLPFHFTRAS TNSEKSFLSP AVSNSFCNSS NAEYSLTSNA60 RNLLCSVCTF VSNSTLIIFS LHFFPLESTS TLEVF 95

- (2) INFORMATION ON SEQ ID NO. 345:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 72 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345:

RAGLFPGRRV GLEAENGPCC HQHGDFVPCP VLSARMSQPE AEEAALVAHA VGHDCVCSGG60 GVLLPHHRRN NL 72

- (2) INFORMATION ON SEQ ID NO. 346:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 171 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 346:

GRACFRGGAW GLRPRTALAA TNMETLYRVP FLVLECPNLK LKKPPWLHMP SAMTVYALVV 60 VSYFLITGGI IYDVIVEPPS VGSMTDEHGH QRPVAFLAYR VNGQYIMEGL ASSFLFTMGG120 LGFIILDRSN APNIPKLNRF LLLFIGFVCV LLSFFMARVF MRMKLPGYLM G 171

- (2) INFORMATION ON SEQ ID NO. 347:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 82 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 347:

EAGCKSFHNI LSIYSVGQES YWPLMPMFIS HRTDTWRFNN NIINYSSGDE EVRHHHQSIH60 SHGRRHVQPG RLLQLQVGTF EH 82

- (2) INFORMATION ON SEQ ID NO. 348:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 103 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 348:

HKVIVVWNNI GEKAPDELWN SLGPHPIPVI FKQQTANRMR NRLQVFPELE TNAVLMVDDD 60 TLISTPDLVF AFSVWQQFPD QIVGICFLES TSFTFIQGIY SYW 103

(2) INFORMATION ON SEQ ID NO. 349:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 50 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 349:

ESKNKVWGAD ECVIIYHQHC IGFQFRKDLE SISHPVCCLL FEDHRDRVGP

50

- (2) INFORMATION ON SEQ ID NO. 350:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 79 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350:

SGNCCQTEKA KTRSGVLMSV SSSTINTALV SSSGKTWSRF LILFAVCCLK ITGIGWGPRE60 FHNSSGAFSP ILFHTTITL 79

- (2) INFORMATION ON SEQ ID NO. 351:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 70 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 351:

GTLRHSVHVV PPKHGHHKVL SSGVCSRLLG IQREGRNQEF QKHIHVATPA TSGILCSDKL60 HGWEVFFLAR 70

- (2) INFORMATION ON SEQ ID NO. 352:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 71 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 352:

HLIPFMAKSS FRVGNTQTFC ACCSPKAWSS QSPEFWCVLP PPGYTERRQE SGVPEAYTCG60 YPSNKRHPVL R

- (2) INFORMATION ON SEQ ID NO. 353:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 60 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353:

SGQCGMQLGP DQPSSEQMAV VPISTKPQRA RKNTSQPCSL SEHRMPLVAG VATCICFWNS60

- (2) INFORMATION ON SEQ ID NO. 354:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 225 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354:

GLPARRPQCF LRAEMANSGL QLLGFSMALL GWVGLVACTA IPQWQMSSYA GDNIITAQAM 60 YKGLWMDCVT QSTGMMSCKM YDSVLALSAA LQATRALMVV SLVLGFLAMF VATMGMKCTR120 CGGDDKVKKA RIAMGGGIIF IVAGLAALVA CSWYGHQIVT DFYNPLIPTN IKYEFGPAIF180 IGWAGSALVI LGGALLSCSC PGNESKAGYR APRSYPKSNS SKEYV

- (2) INFORMATION ON SEQ ID NO. 355:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 111 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355:

QHHHGPGHVQ GAVDGLRHAE HGDDELQNVR LGARPVRGLA GHSSPNGGLP GAGLPGHVCG 60 HDGHEVHALW GRRQSEEGPY SHGWRHNFHR GRSCRLGSLL LVWPSDCHRL L 111

- (2) INFORMATION ON SEQ ID NO. 356:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 154 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356:

CCHPHRSSSA TAGWRCRPPD PPSPAGPWRS PATAGPNWPF PPSENTGGAG RGDPTVKQTT 60 LGGQPHKRKL EVEFSGHPKR QKGFGPGECK SCHQTTHKST PPVKRWPRGT GSRIRREGGS120 RQNWWSPKAR RFPPGALGDP LSPPASRLLT GVGP

- (2) INFORMATION ON SEQ ID NO. 357:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 72 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 357:

NLTQVTFLFF CPPNVHASYR LHFEALMNIP VLVLDVNDDF AEEVTKQEDL MREVGRTLTP60 VFLVVSLWLY LL 72

- (2) INFORMATION ON SEQ ID NO. 358:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 69 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 359:

SPSHLSHEVF LFGYFLSKII IDIQHQHWNV HQSLKVEPIR SVNVWGTEKK KCNLSQVSHT60 ROVLLREOI 69

- (2) INFORMATION ON SEQ ID NO. 360:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 53 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 360:

KRYNQRETTR KTGVKVLPTS LMRSSCLVTS SAKSSLTSNT STGMFIRASK WSL

53

- (2) INFORMATION ON SEQ ID NO. 361:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 111 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 361:

SCWETKWTSC PRMLLATGRG CGSDCGRTVP APGSCWPLAP RATAPRQGRA TGRGESESAE 60 LVPHSGQGRA ADQRQDRLWS GRVDLCPSAL LALPWGRLLS GRHQRRQIHS L 111

- (2) INFORMATION ON SEQ ID NO. 362:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 362:

TRNGSVFGCY RPHRFPAGKS VSLVYSRGFQ HPPCAYHLLG QGRRSVSEAC RSYVTPDSNG 60 WKRTNGQDFL LLLLKTLMVK RKDWGQPGSS GPTSKFPLQV ILCQALFKK 109

- (2) INFORMATION ON SEQ ID NO. 363:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 381 amino acids

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 363:

GPARRPAARL ARAGGPQAAD RAGKQSGPPA PGCSWLPAEA AGATVGGLCP RRAPAGPWHQ 60
GPQRPVKDEP QDGENPNPPN WSRTVVRDVR LISAKTGYGV EELISALQRS WRYRGDVYLV120
GATNAGKSTL FNTLLESDYC TAKGSEAIDR ATISPWPGTT LNLLKFPICN PTPYRMFKRH180
QRLKKDSTQA EEDLSEQEQN QLNVLKKHGY VVGRVGRTFL YSEEQKDNIP FEFDADSLAF240
DMENDPVMGT HKSTKQVELT AQDVKDAHWF YDTPGITKEN CILNLLTEKE VNIVLPTQS1300
VPRTFVLKPG MVLFLGAIGR IDFLQGNQSA WFTVVASNIL PVHITSLDRA DALYQKHAGH360
TLLQIPMGGK ERMGRISSSC C

- (2) INFORMATION ON SEQ ID NO. 364:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 182 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 364:

QPSTTCTSVL VCLLSAMPLP VALQTRLAKR GILKHLEPEP EEEIIAEDYD DDPVDYEATR 60 LEGLPPSWYK VFDPSCGLPY YWNADTDLVS WLSPHDPNSV VTKSAKKLRS SNADAEEKLD120 RSHDKSDRGH DKSDRSHEKL DRGHDKSDRG HDKSDRDRER GYDKSRNGIR DRGYDQADRE180

EG

182

- (2) INFORMATION ON SEQ ID NO. 365:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 149 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 365:

RRHERDGRCD SLPLPARVYW SVCYQLCRCP LRCRPAWPRE ASSNIWSLNQ RKRSLPRTMT 60 MILWTTRPPG WRAYHQAGTR CSTLPAGSLT TGMQTQTLYP GSPHMTPTPW LPNRPRSSEA120 VMQMLKKSWT GAMTSRTGAM TSRTAAMRN 149

- (2) INFORMATION ON SEQ ID NO. 366:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 80 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 366:

PRSRSLSDLS WPRSDLSWPL SSFSWLRSDL SWPLSDLSWL RSNFSSASAL LLLSFLADLV60 TTELGSCGES QDTRSVSAFQ 80

- (2) INFORMATION ON SEQ ID NO. 367:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 160 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 367:

VAQQPALIHG YRKAVLTPNH VEFSRLYDAV LRGPMDSDDS HGSVLRLSQA LGNVTVVQKG 60 ERDILSNGQQ VLVCSQEGSS RRCGGQGDLL SGSLGVLVHW ALLAGPQKTN GSSPLLVAAF120 GACSLTRQCN HQAFQKHGRS TTTSDMIAEV GAAFSKLFET

- (2) INFORMATION ON SEQ ID NO. 368:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 164 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368:

ILNGNQFMLK LKIWQAPYAF STRVGPDFPI THTLSPVQGA CLLLVCAGSG FKELAEGGPH 60 LGDHVGGGGG ATVLLEGLVV ALPGERAGAK RGHQERAGPI CFLWSSKERP VYQDAQGARQ120 EVPLPSTPAA AAFLAAHKHL LAVGEDVALS FLDHRHVAQG LAES 164

- (2) INFORMATION ON SEQ ID NO. 369:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 187 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 369:

KSGKHRTPSA HAWVRIFPSH TRSPPSKVPV YFWSARAQVS KSLLKAAPTS AIMSEVVVER 60 PCFWKAWWLH CLVREQAPNA ATRRGLDPFV FCGPARSAQC TRTPREPDRR SPCPPHLRL120 PSWLHTSTCW PLERMSRSPF WTTVTLPRAW LSLSTDPWLS SLSIGPLSTA SYSLLNSTWL180 GVSTAFR

- (2) INFORMATION ON SEQ ID NO. 370:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 40 amino acids
    - (B) TYPE: Protein

(C) STRAND: individual

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370:	
LFLFTNHNDS GKPGCKHQHC HQLRICDQEC HLTVTGRRQK	40
(2) INFORMATION ON SEQ ID NO. 371:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 34 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371:	
QAEDKSETGL MRITGKLALA PPENELFHSL ADHP	34
(2) INFORMATION ON SEQ ID NO. 372:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 38 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372:	
NSSFSGGAKA SFPVIRISPV SLLSSACYRE MALLITDP	3

- (2) INFORMATION ON SEQ ID NO. 373:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 123 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373:

RQLFGIVSIA TLTVLAYERY IRVVHARVIN FSWAWRAITY IWLYSLAWAG APLLGWNRYI 60 LDVHGLGCTV DWKSKDANDS SFVLFLFLGC LVVPLGVIAH CYGHILYFHS NASLVWKIFR120 QFK

- (2) INFORMATION ON SEQ ID NO. 374:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 121 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374:

TVHSRGPCQS DQFFLGLEGH YLHLALLTGV GRSTSPGMEQ VHPGRTRTRL HCGLEIQGCQ 60 RFLLCAFLIS WLPGGAPGCH SPLLWPYSIF PFECFVGVED LQTIQVIKIL KYEKKLAKMC120 F

- (2) INFORMATION ON SEQ ID NO. 375:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 58 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN

(A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 375:

HPGAPPGSQE IRKAQRRNRW HPWISSPQCS LVRVRPGCTC SIPGEVLLPT PVSRARCR 58

- (2) INFORMATION ON SEQ ID NO. 376:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 49 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 376:

AFTCDFVPLC GLLEQWTTKS AMQFIKVDLV ICHPTAYGPC KPVLEANIL

49

- (2) INFORMATION ON SEQ ID NO. 377:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 68 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377:

FCTTLWPSGA MDNQVSYAVH KSGPGYMSSN SIWSLQACFG SQYSITYRNP LESDVFGSNI60 FSQGSNGL 68

- (2) INFORMATION ON SEQ ID NO. 378:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 64 amino acids

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378:

HITRSTFMNC IADLVVHCSR RPQSGTKSQV KAQTAPVILV VLSLHSSPLA KTGLNMKSPA60 PRPQ 64

- (2) INFORMATION ON SEQ ID NO. 379:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 144 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 379:

APISSNFCSE SIWGYCDQLK VSESTHVLQP FLPSILDGLI HLAAQFSSEV LNLVMETLCI 60 VCTVDPEFTA SMESKICPFT IAIFLKYSND PVVASLAQDI FKELSQIEAC QGPMQMRLIP120 TLVSIMQAPA DKIPAGLCAT PLIS

- (2) INFORMATION ON SEQ ID NO. 380:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 254 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

- (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 380:

YEIQSLPFPS FSSAKLSLLW HSVPFTQMTM PSVQNGGECL RAYVSVTLEQ VAQWHDEQGH 60
NGLWYVMQVV SQLLDPRTSE FTAAFVGRLV STLISKAGRE LGENLDQILR AILSKMQQAE120
TLSVMQSLIM VFAHLVHTQL EPLLEFLCSL PGPTGKPALE FVMAEWTSRQ HLFYGQYEGK180
VSSVALCKLL QHGINADDKR LQDIRVKGEE IYSMDEGIRT RSKSAKNPER WTNIPLLVKI240
LKLIINELSN VMGG

- (2) INFORMATION ON SEQ ID NO. 381:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 95 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 381:

SLSGPNANEA DSHSGQHNAG PSRQDSCRAL CDTIDILTTV VRNTKPPLSQ LLICQAFPAV60 AQCTLHTDDN AISAEWRRVL AGLCVSDPGT SSPVA 95

- (2) INFORMATION ON SEQ ID NO. 382:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 263 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 382:

APISSNFCSE SIWGYCDQLK VSESTHVLQP FLPSILDGLI HLAAQFSSEV LNLVMETLCI 60 VCTVDPEFTA SMESKICPFT IAIFLKYSND PVVASLAQDI FKELSQIEAC QGPMQMRLIP120 TLVSIMQAPA DKIPAGLCAT PIDILTTVVR NTKPPLSQLL ICQAFPAVAQ CTLHTDDNAT180 MQNGGECLRA YVSVTLEQVA QWHDEQGHNG LWYVMQVVSQ LLDPRTSEFT AAFVGRLCFH240 PHLQGRAGTR GESRPDFFVP SFS

- (2) INFORMATION ON SEQ ID NO. 383:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 68 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 383:

TLRCGGPGAG SPLASHTTVH CGPAHHATGL LVPGSLTHRP ASTLRHSAWW HCHLCEGYTV60 PQQGKLGR 68

- (2) INFORMATION ON SEQ ID NO. 384:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 97 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 384:

HIGPQALSAI LHGGIVICVK GTLCHSRESL ADEKLGKGRL CISYYCCQDI NGCRTKPCRN60 LVCWGLHYAD QSGNQPHLHW ALTGFNLGQL LEDVLSQ 97

- (2) INFORMATION ON SEQ ID NO. 385:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 140 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 385:	
TRSSSPQTIT FDACVVIPCG DLQSQKQLSD SEKYLCPFKI KGSPYQDPCS SWNEVVWTTE YQGWTSSTGG CMSLKPYIHF TKESTPHNCQ YNQCNPVQIS PTLSCGIWHG SRNSRGTSYW	LTNAGKQVCH 60 ILIPTSTDPK120 140
(2) INFORMATION ON SEQ ID NO. 386:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 49 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(Vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 386:	
DVPLLFRLPC HIPQLKVGLG SVEVGMRIEI CTGLHWLYWQ LWGVLSLVK	49
(2) INFORMATION ON SEQ ID NO. 387:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 51 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 387:	
SECMVLRTYN HRLTRSSLDI QLSTPPHSSY GRPVFLHSLR NKGLDRGSLL S	51
(2) INFORMATION ON SEQ ID NO. 388:	

(i) SEQUENCE CHARACTERISTIC:(A) LENGTH: 97 amino acids

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 388:

SSSPLSFCWF LPSPAASCSS SCPSGMTSWS RSGPSISGFS WLTDRAACTC GVWPSSPAPP60 KPLPPTGLSS TPAPGLAPAA ACPSEAPINT DLMVPFP 97

- (2) INFORMATION ON SEQ ID NO. 389:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 148 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 389:

GKGTMRSVLI GASEGQAAAG ARPGAGVEDR PVGGRGFGGA GELGQTPQVQ AALSVSQENP 60 EMEGPERDQL VIPDGQEEEQ EAAGEGRNQQ KLRGEDDYNM DENEAESETD KQAALAGNDR120 NIDVFNVEDQ KRDTINLLDQ REKRNHTL

- (2) INFORMATION ON SEQ ID NO. 390:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 84 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

- (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 390:

GPRDRLIQPS YFQRGKWGLE VTEHLAGALA PLASHRLPSS WDYRHTVTEA GPVCNSRCHL60 QLKHSSYVMS LVTKVKLSHP EKAT 84

- (2) INFORMATION ON SEQ ID NO. 391:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 59 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391:
    CGKKCITLFL FLSPSLPLWC LRYWGSHSWG HSEATRNASS LHLAVSARTR NPQTSSQTS 59
- (2) INFORMATION ON SEQ ID NO. 392:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 107 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes.
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392:

TPRNLNFHSK LTQFHCVNTV SLGSTKHPIT QFCFIVWTPS RLQGHHGQEV CEEVCGFLVL 60 ALTARCKLEA FLVASEWPQL WDPQYLRHHR GREGDRNRNR VMHFFPH 107

- (2) INFORMATION ON SEQ ID NO. 393:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 61 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393:

VAPAVGSPVS QAPQRQRGGQ EQKQSYAFLS TLKKRNYTFR GMLSPRSTSS PVFHDLPTKK60 I

- (2) INFORMATION ON SEQ ID NO. 394:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 74 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 394:

CNCAPSLPDF SPLHPQCGIS LVPRGTPLDL WTSRPGQEAA TRNPRPLLLK FTASVVVPDS60 SPAPGTTSTW GGAF

- (2) INFORMATION ON SEQ ID NO. 395:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 112 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 395:

(2) INFORMATION ON SEQ ID NO. 396:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 45 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396:	
DRRSHGLLLY NLPGEQFKNM NQDPFDPLII QKSTQKYAQK YVGIH	45
(2) INFORMATION ON SEQ ID NO. 397:	
<ul><li>(i) SEQUENCE CHARACTERISTIC:</li><li>(A) LENGTH: 43 amino acids</li><li>(B) TYPE: Protein</li><li>(C) STRAND: individual</li><li>(D) TOPOLOGY: linear</li></ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 397:	
ERLSHCRSLV MLALISLCTP CTHAFSPVFY QASVSCITLK CDH	43
(2) INFORMATION ON SEQ ID NO. 398:	
(i) SEQUENCE CHARACTERISTIC:  (A) LENGTH: 64 amino acids  (B) TYPE: Protein	

- (C) STRAND: individual
  (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 398:

WIKRILIHIF KLLSREVVKQ QSMRASISLP LLGDACPHLP MYPMHSCLLS CFLSSLSFMY60 YTKM

- (2) INFORMATION ON SEQ ID NO. 399:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 77 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 399:

HIKIEFFGQN FWEAMHPTWA DIQPELFSRG EWYWQFMAEI HSDWLESMLY QLLNILSITL60 AYCYYYISSI YRQKGHF 77

- (2) INFORMATION ON SEQ ID NO. 340:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 48 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:

SSLGKTFGKQ CILHGLIFSL SCSQEESGTG SLWLKSILIG WSLCYTSC

48

- (2) INFORMATION ON SEQ ID NO. 401:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 48 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
    - (ii) MOLECULE TYPE: ORF
    - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 401:

FRNPALIEPS VGSTAEIFRA FNILKMAFLS IYRGNIIVTV CKSDTQNV

48

- (2) INFORMATION ON SEQ ID NO. 402:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 70 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 402:

EQLRLNISPC RMHCFPKVLP KELYFYVLSH RTGEKCSGHC WDLIFLGMGS GLMILATGVQ60 ENGSPGSDSW 70

- (2) INFORMATION ON SEQ ID NO. 403:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 63 amino acids

    - (B) TYPE: Protein (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 403:

MCDFIRGICQ FSHCGSFSDF ACSSSKEARS FADFTIPQTC KFLTSSKLAL ALSSTFPFKS60 NLC

- (2) INFORMATION ON SEQ ID NO. 404:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 71 amino acids

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404:

MGITHECVIL LGASANSLTV VPSLTLPVHH LRRLDPSLTS PFLKPVSFSL LPNWLWLFLQ60 PFHSRAIFAK E

- (2) INFORMATION ON SEQ ID NO. 405:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 63 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405:

LGDHIYNWDV NHFFSGIRAQ RHNLQGHIIY YEHFTVRLFI LPSTCAEMKP KQAVGFHKS160 YVG

- (2) INFORMATION ON SEQ ID NO. 406:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 88 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406:

LVEPNGLFWF HFSASRRQNK ESHSKMFIVD NMSLKVVPLC SYSTEEMIHI PIIDMVSQSE60 ESFRRLHKYV LCTCPMLGNR KIIVIDKT

- (2) INFORMATION ON SEQ ID NO. 407:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 269 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 407:

LTVVYTVFYA LLFVFIYVQL WLVLRYRHKR LSYQSVFLFL CLFWASRRTV LFSFYFKDFV 60
AANSLSPFVF WLLYCFPVCL QFFTLTLMNL YFTQVIFKAK SKYSPELLKY RLPLYLASLF120
ISLVFLLVNL TCAVLVKTGN WERKVIVSVR VAINDTLFVL CAVSLSICLY KISKMSLAN1180
YLESKGSSVC QVTAIGVTVI LLYTSRACYN LFILSFSQNK SVHSFDYDWY NVSDQADLKN240
QLGDAGYVLF GVVLFVWELL PTTLVVYFFR VRNPTKDLTN PGMVPSHGFS PQILFL 296

- (2) INFORMATION ON SEQ ID NO. 408:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 152 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408:

HRRLHRVLRA ALRVHLRAAL AGAALPPQAA QLPERLPLSL PLLGLPADRP LLLLLQRLRG 60 GQFAQPLRLL AALLLPCVPA VFHPHADELV LHAGDFQSQV KIFSRITQIP VAPLPGLPLH120 QPCFPVGEFN LCCAGKDGKL GEEGYRLCAS GH 152

- (2) INFORMATION ON SEQ ID NO. 409:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 100 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 409:

LGFENHLREV QVHQREGEKL QAHREAVEQP EDEGAERIGR HEVFEVEGEE DGPPGGPEEA 60 EKEEDALVAE PLVAVTQHQP ELHVDEHEEQ RVEHGVDDGE 100

- (2) INFORMATION ON SEQ ID NO. 410:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 268 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 410:

APISSNFCSE SIWGYCDQLK VSESTHVLQP FLPSILDGLI HLAAQFSSEV LNLVMETLCI 60 VCTVDPEFTA SMESKICPFT IAIFLKYSND PVVASLAQDI FKELSQIEAC QGPMQMRLIP120 TLVSIMQAPA DKIPAGLCAT AIDILTTVVR NTKPPLSQLL ICQAFPAVAQ CTLHTDDNAT180 MQNGGECLRA YVSVTLEQVA QWHDEQGHNG LWYVMQVVSQ LLDPRTSEFT AAFVGAFVST240 LISKAGRELG ENLDQISSCH PSVKMAGG

- (2) INFORMATION ON SEQ ID NO. 411:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 97 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 411:

HIGPQALSAI LHGGIVICVK GTLCHSRESL ADEKLGKGRL CISYYCCQDI NGCRTKPCRN60

LVCWGLHYAD QSGNQPHLHW ALTGFNLGQL LEDVLSQ

97

- (2) INFORMATION ON SEQ ID NO. 412:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 77 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 412:

PPAILTEGWH EEIWSRFSPS SRPALEMRVE TKAPTKAAVN SEVRGSRSWL TTCITYHSPL60 WPCSSCHWAT CSRVTDT 77

- (2) INFORMATION ON SEQ ID NO. 413:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 62 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 413:

IGFASIPPRI SGSPSILLAF YPHPPSPKLG PVLLCARETP KFRRKSIFYR GGFILDQKNK60 KN

- (2) INFORMATION ON SEQ ID NO. 414:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 65 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 414:

DLIYNYYCYP SDLSFSAIDV IAISRSSHNV FNPALILMLR MEFLTSSLKE PQPPNTYTYT60 SRIAK

- (2) INFORMATION ON SEQ ID NO. 415:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 94 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 415:

LDSLPFHHVF PDPHPSFWLF TRIRHLRSWG QCYYVPGKPR NLGENQYFTG EDSSLTKKIK60 KIKNTKKFMF LYCIPKECLY TVIILKENTS MLDI 94

- (2) INFORMATION ON SEQ ID NO. 416:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 83 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEOUENCE DESCRIPTION: SEQ ID NO: 416:

GRRNDQLNLH IPQAGPFAGP YRLGWPLLSS GIRLPDWLVL HVSIKLKVIP WPPPGENQPH60

PASWGQWGRD FGLSEQLLEA AHD

83

- (2) INFORMATION ON SEQ ID NO. 417:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 93 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 417:

RRKASIIAFK GILLTLTQGV QSAREPILIS SSKMFLEENP WNVLKDVSGV RSSMWLAKGH60 LYLFQLEFIN SCSLVSLGAE VWHIFKPVHS RIQ 93

- (2) INFORMATION ON SEQ ID NO. 418:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418:

TLNPHKTLSA KKARVIFFCI QDSTANLVFC YKNLVSHFLL KRTRITGTHP QLHETPSFLN60 EHESIYVHPS THMKMLCSST GMDGIRIKPI WKLKYF

- (2) INFORMATION ON SEQ ID NO. 419:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 68 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 419:

YSFFFFLYQN NHLPLFFLER EEESGEEGKN AKCHFELLVH HTRGSPLMSA ASVHRPQVKE60 RMRSSWTS 68

- (2) INFORMATION ON SEQ ID NO. 420:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 60 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420:

KPSIHFFFSC TKTIIFLYFS WSGKRRVEKK GRMQSVTLNF SFTTHVGVHS CQQPPCTGPR60

- (2) INFORMATION ON SEQ ID NO. 421:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 52 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

- (A) ORGANISM: HUMAN (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 421: DAGCREVAPA LSGSPEITPQ RQLPFVNTRQ AVLAGPTRPH SFFHLGPVHG GC 52 (2) INFORMATION ON SEQ ID NO. 422: (i) SEQUENCE CHARACTERISTIC: (A) LENGTH: 52 amino acids (B) TYPE: Protein (C) STRAND: individual (D) TOPOLOGY: linear (ii) MOLECULE TYPE: ORF (iii) HYPOTHETICAL: yes (vi) ORIGIN (A) ORGANISM: HUMAN (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 422: 52 VLGKSSMSIT IVWKANLHPK QIEVSQVKPH RMANRCLGCR MQVRGPGPVW LP (2) INFORMATION ON SEQ ID NO. 423: (i) SEQUENCE CHARACTERISTIC: (A) LENGTH: 59 amino acids (B) TYPE: Protein (C) STRAND: individual (D) TOPOLOGY: linear (ii) MOLECULE TYPE: ORF (iii) HYPOTHETICAL: yes (vi) ORIGIN (A) ORGANISM: HUMAN (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 423: YRYVFPTTHY GYNGVELQTV KFCFGLVSPD PPRQELPLPP YLPALKLCPI KLDTNLTGF 59 (2) INFORMATION ON SEQ ID NO. 424: (i) SEQUENCE CHARACTERISTIC:
  - (D) TOPOLOGY: linear

(A) LENGTH: 79 amino acids

(B) TYPE: Protein(C) STRAND: individual

(ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 424:

VTCLSLYVET NFTMITDLCN ISSLNFHTIL KCLLGKLTPF CSKGALHLLK PWGHTSSVAS60 EGQILWVVGD NFVLTYVIL 79

- (2) INFORMATION ON SEQ ID NO. 425:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 102 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 425:

HKKTSSYSGV TVCSYDSIIR LKAGEICVQF NRTQLKGRQV GWERKLLSGG IRGNQSKTKF 60 YCLQFNSIIA IMCSGKHIPV LLDRVSFPFS GTKMVEGIIN PT 102

- (2) INFORMATION ON SEQ ID NO. 426:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 81 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426:

SMPFQFGTQP RRFPVEGGDS SIELEPGLSS SAACNGKEMS PTRQLRRCPG SHCLTITDVP60 VTVYATTRKP PAQSSKEMHP K 81

- (2) INFORMATION ON SEQ ID NO. 427:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 62 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427:

GRASALACHR YRSDWASGLY ILAALSTSSS IGSSGGRGNW QQVGNYVKES PDVIISGCHR60 NI

- (2) INFORMATION ON SEQ ID NO. 428:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 100 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 428:

REHQLLSGND FQGTSGVAWL VTSPSHYRQH WSSAQVPAQL KNLLLPLETS LAGFQIEKAY 60 FTENQKRLSL IPVEVNKSML STGLSTEGWN CQRNDDQMFR 100

- (2) INFORMATION ON SEQ ID NO. 429:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 40 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 429:	
NSHLNVTLII IMLIFSISYR NQSLLKLHRG LKNVYHSIFI	40
(2) INFORMATION ON SEQ ID NO. 430:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 31 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 430:	
GGIGYKGRYL NSSNNGYNPF FHNHLGCFKA I	31
(2) INFORMATION ON SEQ ID NO. 431:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 53 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 431:	
TLIPIRDAKN QHNYYQCHIQ VGILPNTTIK GRIKLDNKIK KYKAFKNLTH HLK	53
(2) INFORMATION ON SEQ ID NO. 432:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 31 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 432:

IALKHPKWLW KKGLYPLFEL FRYLPLYPIP P

31

- (2) INFORMATION ON SEQ ID NO. 433:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 85 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 433:

CNIFQWGPSE HTCWTVQTIS SPEGKYFCIR GNSVLERNMF FISQIKTLSN GKLASNFFKY60 SIFFSPLVVT GFYRSSYTVC FNSGP

- (2) INFORMATION ON SEQ ID NO. 434:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 81 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 434:

LLIREINQVF PLIYDAIYFS GGLQSTPVGR CKPYLLQKAN TFVSEETQFW RGICSLYLKS60

KLSLMVNWLL IFLSTVFFFP L

- (2) INFORMATION ON SEQ ID NO. 435:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 95 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 435:

YKSICLLEKI WFAPSNRCAL KAPTEIYCII DEGKDLVNFS YQKLVFRTSC PTWLPGAQGF60 FSEIVLRDPQ TCSPSPGATC ASSPRRQAVR SMRLS 95

- (2) INFORMATION ON SEQ ID NO. 436:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 81 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 436:

SCAFLLLWGH SGPTWASMDP GLEQAHLHLF HLRQCGSRCQ EGLTSGPSRF LCARNERPGP60 ILPPRLDPEV RAGQPSRKHT V 81

- (2) INFORMATION ON SEQ ID NO. 437:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 94 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 437:

SRWNDSHPLL ISPLTSLKLL SSSKSHCQLP YVVLGPREPW NLAPWGGLIP AREHSCFSRD60 TVACMGOHGP WADHVHSCFS GDTVGPHGPA WTLG 94

- (2) INFORMATION ON SEQ ID NO. 438:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 91 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438:

HLEPHCLRWK RWRCACSSPG SMLAHVGPLC PQRSRNAHDQ PRVHAGPCRP LCPLRSRNAL60 VPELNHPRVP GSKAPWDPEP HTEVGNGSLM S 91

- (2) INFORMATION ON SEQ ID NO. 439:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 456 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439:

ITKTHKVDLG LPEKKKKKKV VKEPETRYSV LNNDDYFADV SPLRATSPSK SVAHGQAPEM 60

PLVKKKKKK KGVSTLCEH VEPETTLPAR RTEKSPSLRK QVFGHLEFLS GEKKNKKSPL120
AMSHASGVKT SPDPRQGEEE TRVGKKLKKH KKEKKGAQDP TAFSVQDPWF CEAREARDVG180
DTCSVGKKDE EQAALGQKRK RKSPREHNGK VKKKKKHQE GDALPGHSKP SRSMESSPRK240
GSKKKPVKVE APEYIPISDD PKASAKKKMK SKKKVEQPVI EEPALKRKKK KERESGVAGD300
PWKEETDTDL EVVLEKKGNM DEAHIDQVRR KALQEEIDRE SGKTEASETR KWTGTQFGQW360
DTAGFENEDQ KLKFLRLMGG FKNLSPSFSR PASTIARPNM ALGKKAADSL QQNLQRDYDR420
AMSWKYSRGA GLGFSTAPNK IFYIDRNASK SVKLED

- (2) INFORMATION ON SEQ ID NO. 440:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 125 amino acids

    - (B) TYPE: Protein(C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440:

VRVCFLLPRV SCYPTLSLLL FLPFQSWLLD DWLLYLLFGL HLFLCGGLRV ITYGDVFRSL 60 NFDWLLFTSF PRAALHGPGG LGVAWEGISL LVDFFFLLHL PIVFSGALPL PFLPQGCLFL120 125 ILLPH

- (2) INFORMATION ON SEQ ID NO. 441:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 381 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

SRCRFCCRLS AAFLPRAMLG LAIVLAGRLN EGDRFLKPPI SLRNFSFWSS FSKPAVSHWP 60 NWVPVHFLVS EASVLPDSRS ISSCKAFRLT WSMCASSMLP FFSNTTSKSV SVSSFQGSPA120 TPLSLSFFFF LFRAGSSMTG CSTFFLDFIF FFAEALGSSL MGMYSGASTL TGFFLLPFLG180 LLSMDLEGLE WPGRASPSWW IFFFFFTFPL CSLGLFRFRF CPKAACSSSF FPTEQVSPTS240 LASLASQNQG SWTEKAVGSW APFFSFLCFL SFLPTLVSSS PCLGSGEVFT PEAWDMARGD300 FLFFFSPLRN SKWPNTCFLR LGDFSVRLAG SVVSGSTCSS QRVLTPFFFF FFFFTRGISG360

ACPWATLLEG DVALKGETSA K

381

- (2) INFORMATION ON SEQ ID NO. 442:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 43 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442:	
DHHNKLSLQS QTYYILLSVN GEKISPYVLW VKCCNRLGLS NLP	43
(2) INFORMATION ON SEQ ID NO. 443:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 45 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443:	
MVISIFPPLL YKLIFTHLLL YKLTFINTNK RLVLSQFICH EPRNN	45
(2) INFORMATION ON SEQ ID NO. 444:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 40 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 444:	
GKPKNCCDFF QGKLDNPNLL QHFTHKTYGL IFSPLTDSSI	40
(2) INFORMATION ON SEQ ID NO. 445:	
<ul><li>(i) SEQUENCE CHARACTERISTIC:</li><li>(A) LENGTH: 78 amino acids</li></ul>	

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 445:

GVGGGALRSA ALPWRTLPLT STCSRCTKPS TAEMEHLVQS WCLLNILMLQ THDFKWPLQR60 RSVNKSWNPL MMKCLQLI 78

- (2) INFORMATION ON SEQ ID NO. 446:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 125 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 446:

RLRRRGWRSP FGGAPMAHIT INQYLQQVYE AIDSRDGASC AELVSFKHPH VANPRLQMAS 60 PEEKCQQVLE PPYDEMFAAH LRCTYAVGNH DFIEAYKCQT VIVQSFLRAF QAHKEENWAL120 LSCMQ 125

- (2) INFORMATION ON SEQ ID NO. 447:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 80 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 447:

MSCKHFIIRG FQDLLTLLLW RGHLKSWVCN MRMFKRHQLC TRCSISAVDG FVHLLQVLVN60 GNVRHGSAAE RRAPPPTPQA 80

- (2) INFORMATION ON SEQ ID NO. 448:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 67 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 448:

RSRGFSCVQT PCHFREVTQA CVISLWQQVG GLPQGRRWPE MCFRSLTHHS LHTRREHHSW60 SILRMEI

- (2) INFORMATION ON SEQ ID NO. 449:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 60 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 449:

PITPYTHDVN TTPGAFSEWR FEFHVAASHT QTCHHSPHTH SRHSTAMSQK KFLVSDLKVL60

- (2) INFORMATION ON SEQ ID NO. 450:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 67 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 450:

RATSGRSGFI KPSNLKQGTS FGSWLLNVVS GCVGNDGRFV CEKLPHGIQI SILRMLQEWC60 SRRVCRE

- (2) INFORMATION ON SEQ ID NO. 451:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 111 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 451:

SASHPESRLC RGGADMQAPR GTLVFALVIA LVPVGREPSS QGSQSALQTY ELGSENVKVP 60 IFEEDTPSVM EIEMEELDKW MNSMNRNADF ECLPTLKEEK ESNHNPSDSE S 111

- (2) INFORMATION ON SEQ ID NO. 452:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 51 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 452:

EEWALEETAK GSCVYVDLKL IKFVSSSSSV GSLSRLPQGL LLLENMSAIQ V

51

- (2) INFORMATION ON SEQ ID NO. 453:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 59 amino acids

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 453:

FDSFSSFKVG KHSKSAFLFM LFIHLSSSSI SISITEGVSS SKIGTFTFSL PSSYVCKAL 59

- (2) INFORMATION ON SEQ ID NO. 454:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 107 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 454:

PITTCSLGDP GKDKYTCTHR GRERCVQRIC INILFSHPDM RSQCCMMKRW YDSTYVPIVL 60 LFLYFLFRSF TIGRFQKHSF HHHLEMVCLN GDNSRSCSIS SRHGLLI 107

- (2) INFORMATION ON SEQ ID NO. 455:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 73 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 455:

RRGVSFLLSR QKWYHYVAAL QSPRARSLEN HLLSRFFFFL RVGVSLCCPK TRPGNCWGAK60 GIAPVPQASR VGR

- (2) INFORMATION ON SEQ ID NO. 456:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 67 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 456:

SWGNIVRLLP SKKKKNAKEG DSLESELWEI GERQHNDTIS AYLEGKKLLS FSCMVTVISS60 RKDISKE 67

- (2) INFORMATION ON SEQ ID NO. 457:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 81 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 457:

DQPSLPFIRH KTLNLTSMAT KIIGSPETKW IDATSGIYNS EKSSNLSVTT DFSESLQSSN60 IESKEINGIH DESNAFESKA S

- (2) INFORMATION ON SEQ ID NO. 458:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 41 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 458:	
QLISPKAFRV LILNPKKSME FMMKAMLLNQ KHLESIFFEK P	41
(2) INFORMATION ON SEQ ID NO. 459:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 36 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 459:	
IPEVASIHFV SGEPIILVAI LVRLRVLCRI NGREGW	36
(2) INFORMATION ON SEQ ID NO. 460:	
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 36 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: ORF	
(iii) HYPOTHETICAL: yes	
(vi) ORIGIN (A) ORGANISM: HUMAN	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 460:	
NSEGFRRNQL LQIDLKIFLS CKFQKLHQST LFQVNL	36
(2) INFORMATION ON SEQ ID NO. 461:	
<ul><li>(i) SEQUENCE CHARACTERISTIC:</li><li>(A) LENGTH: 83 amino acids</li><li>(B) TYPE: Protein</li><li>(C) STRAND: individual</li><li>(D) TOPOLOGY: linear</li></ul>	

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 461:

GRRNDQLNLH IPQAGPFAGP YRLGWPLLSS GIRLPDWLVL HVSIKLKVIP WPPPGENQPH60 PASWGQWGRD FGLSEQLLEA AHD 83

- (2) INFORMATION ON SEQ ID NO. 462:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 93 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 462:

RRKASIIAFK GILLTLTQGV QSAREPILIS SSKMFLEENP WNVLKDVSGV RSSMWLAKGH60 LYLFQLEFIN SCSLVSLGAE VWHIFKPVHS RIQ 93

- (2) INFORMATION ON SEQ ID NO. 463:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 463:

TLNPHKTLSA KKARVIFFCI QDSTANLVFC YKNLVSHFLL KRTRITGTHP QLHETPSFLN60 EHESIYVHPS THMKMLCSST GMDGIRIKPI WKLKYF 96

- (2) INFORMATION ON SEQ ID NO. 464:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 76 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 464:

NLFTMKFLPE FSPFDTNSMH VSTFETOPNV ISVKSSLSLP SSNLPSPRVY LPFCAHLSYS60

SMLFYNCDSP GSLGAI

76

- (2) INFORMATION ON SEQ ID NO. 465:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 59 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 465:

NQRMIEIYSN TKTERKCHST LKAANTIDHF IWLPDSQESH NCKITCYCNS NVHKMAGKL 59

- (2) INFORMATION ON SEQ ID NO. 466:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 40 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

(A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 466:
HATVTQMCTK WQVNSRRRQI TAWKTQGRFY RNDIWLSLEG 40
(2) INFORMATION ON SEQ ID NO. 467:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 41 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>
(ii) MOLECULE TYPE: ORF
(iii) HYPOTHETICAL: yes
(vi) ORIGIN (A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 467:
IPLQRFSLLT SLFFVLKLDF LVVHASLSLV TVNNLPTSSN Q 4:
(2) INFORMATION ON SEQ ID NO. 468:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 65 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>
(ii) MOLECULE TYPE: ORF
(iii) HYPOTHETICAL: yes
(vi) ORIGIN . (A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 468:
LSKAIYFCKK AAACINHDHS STLNKERKRF LSLTQSLPLC HSPRGWGWTA HSKLTRLAIC60 EYFSK
(2) INFORMATION ON SEQ ID NO. 469:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 56 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 469:

PDWLFVNTFP NKEGKGDVSY SGGKCSFSGK NGCRVGNQGS RCELLIRTGG KVVHSN 56

- (2) INFORMATION ON SEQ ID NO. 470:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470:

ARPAPAGREG RGEGEATSRR CGVGHRAGPR EPAPHGAAAV RPTPGPHHHC AALSGAENYR 60 SRHAMKLASA LRRGPALHPL PPRANRGREP WRRRHRPRGW AAASRTWRS 109

- (2) INFORMATION ON SEQ ID NO. 471:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 399 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 471:

AAGACGARGS GRRGSYVPEV RCGAPGGAAG TGAPRSCCCQ TNPGPPSSLR RAFRRELPF 60
PACHEIGLGA EAGSGPPPAP AARESRSRAM EEEASSPGLG CSKPHLEKLT LGITRILESS120
PGVTEVTIIE KPPAERHMIS SWEQKNNCVM PEDVKNFYLM TNGFHMTWSV KLDEHIIPLG180
SMAINSISKL TQLTQSSMYS LPNAPTLADL EDDTHEASDD QPEKPHFDSR SVIFELDSCN240
GSGKVCLVYK SGKPALAEDT EIWFLDRALY WHFLTDTFTA YYRLLITHLG LPQWQYAFTS300
YGISPQAKQW FSMYKPITYN TNLLTEETDS FVNKLDPSKV FKSKNKIVIP KKKGPVQPAG360
GQKGPSGPSG PSTSSTSKSS SGSGETPPGK LRHPSFQFA 399

- (2) INFORMATION ON SEQ ID NO. 472:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 472:

RSAGGFSMMV TSVTPGEDSR MRVMPRVSFS RCGLLQPSPG DDASSSMARD RDSRAAGAGG60 GPDPASAPRP ISWHAGNGSS RRLKARRSDD GGPGLV 96

- (2) INFORMATION ON SEQ ID NO. 473:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 56 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 473:

KYVSHANISI YKWRTLTLLL FSYKIPNFVI ILSGITLYCK NASYFTFKFD NVCDEL

- (2) INFORMATION ON SEQ ID NO. 474:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 37 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

(A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 474:
WIFRVCCISR EIHFYILFYY KHLDKGHLTH FKKHKCI 37
(2) INFORMATION ON SEQ ID NO. 475:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 33 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>
(ii) MOLECULE TYPE: ORF
(iii) HYPOTHETICAL: yes
(vi) ORIGIN (A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 475:
PKGLSIKVRR NLDTRRKRCR LLNFIIHHIH CQI 33
(2) INFORMATION ON SEQ ID NO. 476:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 80 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>
(ii) MOLECULE TYPE: ORF
(iii) HYPOTHETICAL: yes
(vi) ORIGIN (A) ORGANISM: HUMAN
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 476:
HIKIEFFGQN FWEAMHPTWA DIQPELFSRG EWYWQFMAEI HSDWLESMLY QLLNILSITL60 AYCYYYISSI YRQKGHFRNI
(2) INFORMATION ON SEQ ID NO. 477:
<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 48 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 477:

SSLGKTFGKQ CILHGLIFSL SCSQEESGTG SLWLKSILIG WSLCYTSC

48

- (2) INFORMATION ON SEQ ID NO. 478:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 70 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 478:

EQLRLNISPC RMHCFPKVLP KELYFYVLSH RTGEKCSGHC WDLIFLGMGS GLMILATGVQ60 ENGSPGSDSW

- (2) INFORMATION ON SEQ ID NO. 479:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 400 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 479:

PQQTPWAVAG RWCNGPSLHR NRAGLDLPTI DTGYDSQPQD VLGIRQLERP LPLTSVCYPQ 60
DLPRPLRSRE FPQFEPQRYP ACAQMLPPNL SPHAPWNYHY HCPGSPDHQV PYGHDYPRAA120
YQQVIQPALP GQPLPGASVR GLHPVQKVIL NYPSPWDQEE RPAQRDCSFP GLPRHQDQPH180
HQPPNRAGAP GESLECPAEL RPQVPQPPSP AAVPRPPSNP PARGTLKTSN LPEELRKVFI240
TYSMDTAMEV VKFVNFLLVN GFQTAIDIFE DRIRGIDIIK WMERYLRDKT VMIIVAISPK300
YKQDVEGAES QLDEDEHGLH TKYIHRMMQI EFIKQGSMNF RFIPVLFPNA KKEHVPTWLQ360

- (2) INFORMATION ON SEQ ID NO. 480:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 225 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 480:

SSSGWRVARG SRHSSWGRRL GNLWSQLCRA LQGLPRSTSS IRWLVMWLVL VPWKPRKGAV 60
SLCGPLFLVP GAGIIQDNLL HRVQASHTGS RQGLPRQSRL DHLLVGCSRV VMAIWHLVIG120
TSRTMVMIVP WSMWGKIGRQ HLCTCWIPLR FKLRELPGPE RSGEVLGVTH GGEGQGPFQL180
PDAQDILGLG IISRVYGWQI QACSVPVQAG AVAPSPCYRP RSLLR 225

- (2) INFORMATION ON SEQ ID NO. 481:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 125 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 481:

KQRMQSSHRL HFKARVCGGL RGRALHNRFP GGQRASRGGT EKNQPGVLPT SLSQNAVRTR 60 PQTWPGLSDL GMNGVTREPP EGWAEAPVEE PHTLPLSAAA AGCFFYSWAS CRHECSEARW120 AHAPS

- (2) INFORMATION ON SEQ ID NO. 482:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 482:

VAMTAKDCSI MIALSPCLQD ASSDQRPVVP SSRSRFAFSV SVLDLDLKPY ESIPHQYKLD60 GKIVNYYSKT VRAKDNAVMS TRFKESEDCT LVLHKV 96

- (2) INFORMATION ON SEQ ID NO. 483:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 66 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 483:

LHCLPVCRMP ALIKGLWSLH RGPGLPFPCL CWTLTSSPTR AFPISINWTA RSSTIIQRLY60 VPKTTP 66

- (2) INFORMATION ON SEQ ID No. 484:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 484:

- (2) INFORMATION ON SEQ ID NO. 485:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 66 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 485:

CSSIPCLQEA IPPQKGLKAK TFTTKGHPTQ QKISLSFSLH IMFKFQRHCR ERVRPCGELM60 CNLRFP 66

- (2) INFORMATION ON SEQ ID NO. 486:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 486:

ARPAPAGREG RGEGEATSRR CGVGHRAGPR EPAPHGAAAV RPTPGPHHHC AALSGAENYR 60 SRHAMKLASA LRRGPALHPL PPRANRGREP WRRRHRPRGW AAASRTWRS 109

- (2) INFORMATION ON SEQ ID NO. 487:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 389 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 487:

AAGACGARGS GRRGSYVPEV RCGAPGGAAG TGAPRSCCCQ TNPGPPSSLR RAFRRRELPF 60

- PACHEIGLGA EAGSGPPPAP AARESRSRAM EEEASSPGLG CSKPHLEKLT LGITRILESS120
PGVTEVTIIE KPPAERHMIS SWEQKNNCVM PEDVKNFYLM TNGFHMTWSV KLDEHIIPLG180
SMAINSISKL TQLTQSSMYS LPNAPTLADL EDDTHEASDD QPEKPHFDSR SVIFELDSCN240
GSGKVCLVYK SGKPALAEDT EIWFLDRALY WHFLTDTFTA YYRLLITHLG LPQWQYAFTS300
YGISPQAKQW FSMYKPITYN TNLLTEETDS FVNKLDPSKV FKSKNKIVIP KKKGPVQPAG360
GQKGPSGPSG PSTSSTSKSS SGSGNPTRK

- (2) INFORMATION ON SEQ ID NO. 488:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 488:

RSAGGFSMMV TSVTPGEDSR MRVMPRVSFS RCGLLQPSPG DDASSSMARD RDSRAAGAGG60 GPDPASAPRP ISWHAGNGSS RRLKARRSDD GGPGLV 96

- (2) INFORMATION ON SEQ ID NO. 489:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 152 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 489:

LAAGRGKEEE MGFEDHGLPF LPLTHHTPFP PLSLSPLPKK KKKETFIMNQ QGFSPYQREM 60 WKELKKPPFV PNSTLPIFYA TQTLSFWVPF LQMDLLRRII VFHVFSPQVT KINICIYNLY120 YCYIFVDNTF RWCWVIYYNL NLGISFGLPQ SC 152

- (2) INFORMATION ON SEQ ID NO. 490:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 91 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 490:

GPWLTFPAFD PSHPISSSFP LPAAKKKKKG NVYHESTGFQ SLSKRDVERA KETTLCSQLH60 FTHILCNTNT VLLGPFLTDG PLEKNYRIPR F 91

- (2) INFORMATION ON SEQ ID NO. 491:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 64 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 491:

KWGTQRAGNF HYPILGLNLK EYIHYQELST KAGVKLHYTW LFTIPGSPPQ HDCGRPKDIP60 RFRL 64

- (2) INFORMATION ON SEQ ID NO. 492:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 79 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 492:

RFTASRVGNE PDINTPSSMP CPPSGPVPVK AGSHFSHPQA VPKALEEPKE RQEPSWELTL60 MTRGQLAQFP LFSWGEGTL 79

- (2) INFORMATION ON SEQ ID NO. 493:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 100 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 493:

KSSPDPARHY GSPPEGERRG KRSVPKVNPR SLGPTSLPTA TSHQPHARAR PFPLQLTAQQ 60 MLGQNASPHL TKGLQPAGWE MNQLLTPPPP CPAHLLGQYQ 100

- (2) INFORMATION ON SEQ ID NO. 494:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 82 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 494:

KGSLPPTKQG KLGQLAPGHQ GQLPTWLLPF LGFFQGFGNS LGVGEVASCL HWYWPRRWAG60 HGGGGVNIWF ISHPAGCKPL VK

- (2) INFORMATION ON SEQ ID NO. 495:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 79 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 495:

RVPSPQLNKG NWANWPLVIK VNSQLGSCLS LGSSRALGTA WGWEKWLPAF TGTGPEGGQG60 MEEGVLISGS FPTLLAVNL 79

- (2) INFORMATION ON SEQ ID NO. 496:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 88 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 496:

IQKVQYYTSP AAFVNGSLHS HWGTTVCMGR NSKCPHCGHW VGSAFCQGVC RNWLISVCQS60 DQHTKVSAIK NVASLHPPSC YSGPSNLM 88

- (2) INFORMATION ON SEQ ID NO. 497:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 98 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 497:

SHTSEKRRGT REEVTPASRS SISGVKRGTV ALPSWLRMRK SFLQWEEIHF SIPVQSDFMG60 PVLNSDCIIN TIKRDSEMGS RIHWDNSKAY NTALMDPT 98

- (2) INFORMATION ON SEQ ID NO. 498:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 83 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 498:

AGYTPVSSTI RQLHQITGPR VTGWRMQGSH ILYGRDFGVL ITLAYRNKPI PADSLTKGTP60 HPMTTMRALA VSAHAHSCTP MAV 83

- (2) INFORMATION ON SEQ ID NO. 499:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 85 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 499:

GKICEYVNFL SLRDDRMFPY FSCKENNILT YTSCRKYHLF PLYYSTMFTL LYCQAESIKN60 VHIHFELCIL FLKKGAGLWH WAGHD

- (2) INFORMATION ON SEQ ID NO. 500:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 98 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 500:

SYRLKGIGKC VFSRDHVESE QCWQTLPRKS CFSRCPCFGI SFLGRKKKSS LTIVNSISYF60 SFCCSNGFPP TIIPSIYVLL YSPLSPVTFL SNTPFPKF 98

- (2) INFORMATION ON SEQ ID NO. 501:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 87 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501:

VSSCTSNHGV RSSLSSGEHK CTERDVLRVT TKELPSLSLT QAMCTCDAAE CAGVGGGHVA60 PPEHFLTGKL GDPLLVNFVE IRTVSFT 87

- (2) INFORMATION ON SEQ ID NO. 502:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 53 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

53

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502:

TPKTLGCLLV SRVEQAQRES LGPELKEFIE PWQTGSKQPI LAAVLRRECG GQI

- (2) INFORMATION ON SEQ ID NO. 503:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 91 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 503:

PSGPFSSLES TLLLQQVQAA IASFLSDCNS PIRFPCFYIC PPHSLLNTAA RMGCLLPVCH60 GSINSLSSGP KDSRWACSTR DTSRQPSVLG V 91

- (2) INFORMATION ON SEQ ID NO. 504:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 59 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 504:

VFIYDSLIIP TSISSVHTVC QMFHAEPVSR ILLSDYGGFT TRPGSNSLGS KVGHSSMHR 59

- (2) INFORMATION ON SEQ ID NO. 505:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 72 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 505:

DRKFWNQKID PVFSYIQSST SEFLFLNIGV LALFLKDALY LKRKLDFRTG CGAVKYFRPR60 SVYTFYRRNE VL

- (2) INFORMATION ON SEQ ID NO. 506:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 102 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 506:

SILGPGLCTH FIEEMKYSEV FWLPFHFNCV LNLSDHTYIV LLGAVVSFIK PLACVQKFLK 60 GNTSNAYPLL ACYAACFTAI AVCFTVFVKI PLSPFLVTGK AC 102

- (2) INFORMATION ON SEQ ID NO. 507:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 68 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 507:

NNEHKMLFII TSICEISYCK TTTGLLLNSL VIVFRLEMPP TLVINITKYN VFLGRHFIKC60 IMPWLLLR 68

- (2) INFORMATION ON SEQ ID NO. 508:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 65 amino acids

    - (B) TYPE: Protein(C) STRAND: individual
    - (D) TOPOLOGY: linear
  - MOLECULE TYPE: ORF (ii)
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 508:

LKFLQVLKFF FYSLHWIYVF LIPNMFNWDV CHSRAARQTF KSNSHTAELA FLLTQKFRKL60 TVTVT

- (2) INFORMATION ON SEQ ID NO. 509:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 78 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - MOLECULE TYPE: ORF (ii)
  - (iii) HYPOTHETICAL: yes
  - ORIGIN (vi)
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509:

GPRAHWPLPN TMLEPKRANM GPEYNGDIFM FQPFNLTCLL LSFPPISSNL FCUTTYYL. God ITSSYRIPSS LMSCPKQY

- (2) INFORMATION ON SEQ ID NO. 510:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 63 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

	(111) HYPOTHETICAL: yes	
	(vi) ORIGIN (A) ORGANISM: HUMAN	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 510:	
SL FF	LKLLGFLDV ENTPCARHSI LYGSLGSVVA GFGHFLFTSE YLYFLFLYVL KKAFLYIMN' FF	Y 60 63
(:	2) INFORMATION ON SEQ ID NO. 511:	
	<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 53 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(ii) MOLECULE TYPE: ORF	
	(iii) HYPOTHETICAL: yes	
	(vi) ORIGIN (A) ORGANISM: HUMAN	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511:	
SE	FVKWSPNLK LGNYEEEKIA RYLLRSACRS AVGLVTIGSK VLLQWQILWP LSG	53
(	2) INFORMATION ON SEQ ID NO. 512:	
	<ul> <li>(i) SEQUENCE CHARACTERISTIC:</li> <li>(A) LENGTH: 43 amino acids</li> <li>(B) TYPE: Protein</li> <li>(C) STRAND: individual</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(ii) MOLECULE TYPE: ORF	
	(iii) HYPOTHETICAL: yes	
	(vi) ORIGIN (A) ORGANISM: HUMAN	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 512:	
I	CCRACHHWK QGPTSVADLV AFEWLKTTTL HRAGAMHRHP SLP	43
(	(2) INFORMATION ON SEQ ID NO. 513:	
	<ul><li>(i) SEQUENCE CHARACTERISTIC:</li><li>(A) LENGTH: 37 amino acids</li></ul>	

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 513:

QALQQIYRQT LTDTGQFSLL RNFLVLSWVT ILQNFTT

37

#### (2) INFORMATION ON SEQ ID NO. 514:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 228 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 514:

TGGARARRPL SAVARPARSS DPLRSAPLGP APPVNMIRCG LACERCRWIL PLLLSAIAF 60
DIIALAGRGW LQSSDHGQTS SLWWKCSQEG GGSGSYEEGC QSLMEYAWGR AAAAMLFCGF120
IILVICFILS FFALCGPQML VFLRVIGGLL ALAAVFQIIS LVIYPVKYTQ TFTLHANRAV180
TYIYNWAYGF GWAATIILIG CAFFFCCLPN YEDDLLGNAK PRYFYTSA 228

- (2) INFORMATION ON SEQ ID NO. 515:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 94 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 515:

DPLPPPSWEH FHHSEDVWPW SLDCNQPRPA SAMMSKAMAL SRSRGRIQRQ RSQARPQRIM60 LTGGAGPSGA ERSGSEERAG RATAESGLRA RAPP 94

- (2) INFORMATION ON SEQ ID NO. 516:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 208 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 516:

TLPKNGFKVA WRNSFFFWSP SQQQRFSPTF IPKLGRCVEV PGLGIAQKVI FVVGEAAEEE 60 GTADQDNRGC PPKAVGPVID VSDSTVGMKG EGLGVLHGVN YQGDDLEHSS QGKETSNHSQ120 EDKHLGSTEG EEGEDETDHQ DDEATEEHGS RCSTPRVLHE ALTALLVGPA AAALLGAFPP180 QRGRLAVVAR LQPAAAGQRD DVEGDGAE 208

- (2) INFORMATION ON SEQ ID NO. 517:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 204 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 517:

PSCPPEMKKE LPVDSCLPRS LELHPQKMDP KRQHIQLLSS LTECLTVDPL SASVWRQLYP 60 KHLSQSSLLL EHLLSSWEQI PKKVQKSLQE TIQSLKLTNQ ELLRKGSSNN QDVVTCDMAC120 KGLLQQVQGP RLPWTRLLLL LLVFAVGFLC HDLRSHSSFQ ASLTGRLLRS SGFLPASQQA180 CSKFTPTVCK VTGWLGEKCR FGVP

- (2) INFORMATION ON SEQ ID NO. 518:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 90 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 518:

PEVMAQEAYS EDQQQQEEPR PGQPRTLNLL QQALAGHVTG DDILVVTATL PQQLLVGKLE60 GLNGFLQRLL YLLGNLLPGA EQVLQQKAGL 90

- (2) INFORMATION ON SEQ ID NO. 519:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 76 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 519:

GTPKRHFSPN QPVTLQTVGV NLEHACWLAG KKPDDRSNRP VREAWKELCD RRSWHRKPTA60 KTSSNRRSRV QGSRGP 76

- (2) INFORMATION ON SEQ ID NO. 520:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 355 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 520:

FRHSMNGCEK DSSSTDSANE KPALIPREKK ISILEEPSKA LRGVTGPNIE KSVKDLQRCT 60
VSLTRYRVMI KEEVDSSVKK IKAAFAELHN CIIDKEVSLM AEMDKVKEEA MEILTARQKK120
AEELKRLTDL ASQMAEMQLA ELRAEIKHFV SERKYDEELG KAARFSCDIE QLKAQIMLCG180
EITHPKNNYS SRTPCSSLLP LLNAHAATSG KQSNFSRKSS THNKPSEGKA ANPKMVSSLP240
STADPSHQTM PANKQNGSSN QRRRFNPQYH NNRLNGPAKS QGSGNEAEPL GKGNSRHEHR300
RQPHNGFRPK NKGGAKNQEA SLGMKTPEAP AHSEKPRRQ ARCRTPREGQ GPFRG 355

- (2) INFORMATION ON SEQ ID NO. 521:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 120 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 521:

NQNVKNRGTQ KKCLPSVEKL PNPPWGQKNA TVKTPNRKLT PERPLALPRC PAACLPSPGL 60 FRMGRGLGGL HPQGSLLIFG TAFVFGPEAV VRLSSVFVAA VALSQWLGFI PTALRLGRPI120

- (2) INFORMATION ON SEQ ID NO. 522:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 116 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 522:

RAVRISMASS LTLSISAINE TSLSMMQLCN SAKAALIFFT ELSTSSLIMT RYLVRETVQR 60 CKSFTDFSIF GPVTPRSAFE GSSSIEIFFS RGIRAGFSLA ESVDELSFSQ PFMLCR 116

- (2) INFORMATION ON SEQ ID NO. 523:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 130 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523:

RRQRKAEPGA CALGRVGSEC IPEPGARRTA QAAGLRSVSG AANTKVRELK HFRFLGLLRS 60 CRSEMEVDAP GVDGRDGLRE RRGFSEGGRQ NFDVRPQSGA NGLPKHSYWL DLWLFILFDV120 VVFLFVYFLP

- (2) INFORMATION ON SEQ ID NO. 524:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 78 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
    - (vi) ORIGIN
      - (A) ORGANISM: HUMAN
    - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 524:

ISANKSWQKI HKEKHHHIEK DEKPEVQPVG VFGKPICPRL RPHIEVLPPS LAKASPLPET60 ISTINTRCVH LHLAPAAS 78

- (2) INFORMATION ON SEQ ID NO. 525:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 95 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 525:

GLTSKFCLPP SLKPRRSRRP SRPSTPGAST SISLLQLRNN PRNRKCLSSR TLVFAAPETE60 RSPAACAVRR APGSGMHSEP TLPSAQAPGS AFRCL 95

- (2) INFORMATION ON SEQ ID NO. 526:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 112 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 526:

SLNSTFSVLP QKFPQFQQHR AVYNSFSFPG QAARYPWMAF PRNSIMHLNH TANPTSNSNF 60 LDLNLPPQHN TGLGGIPVAG EEEVKVSTMP LSTSSHSLQQ GQQPTSLHTT VA 112

- (2) INFORMATION ON SEQ ID NO. 527:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 72 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 527:

RFRPCHCQPL PIHYNKDSSL QVSTLLWPDN RTERRGLDSG VLAWATGFLH DSFMILLLMY60 TPRRANINVP HA

- (2) INFORMATION ON SEQ ID NO. 528:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 102 amino acids

- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 528:

RNHAKIQLPM QAPQSLILSS QFCCQATVVW RLVGCCPCCN EWEEVDSGMV ETFTSSSPAT 60 GIPPRPVLCC GGRFKSKKLL FEVGFAVWFK CMMLLRGKAI QG 102

- (2) INFORMATION ON SEQ ID NO. 531:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1708 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 531:

CCTGGAAACA	AGATCCAAAC	CCAAGTGACC	CCGCCGGAAA	GTGACCCAGT	CAGGTTTAAA	60
AATTCCAACA		AACAAATAGA		AAATATACAA	TCCGTCAAAA	120
TACATTCACT	maan amnaan	1100001101				
			AAGGGTGTGA		AGGAGAGACG	180
GTTTTGGTTT	CATCAAGTGT	GTGGATCGTG	ATGTTCGTAT	GTTCTTCCAC	TTCAGTGAAA	240
TTCTGGATGG	GAACCAGCTC	CATATTGCAG	ATGAAGTAGA	GTTTACTGTG	GTTCCTGATA	300
TGCTCTCTGC	TCAAAGAAAT	CATGCTATTA	GGATTAAAAA	ACTTCCCAAG	GGCACGGTTT	360
CATTTCATTC	CCATTCAGAT	CACCGTTTTC	TGGGCACGGT	AGAAAAAGAA	GCCACTTTTT	420
CCAATCCTAA	AACCACTAGC	CCAAATAAAG	GCAAAGAGAA	GGAGGCTGAG	GATGGCATTA	480
TTGCTTATGA	TGACTGTGGG	GTGAAACTGA	CTATTGCTTT	TCAAGCCAAG	GATGTGGAAG	540
GATCTACTTC	TCCTCAAATA	GGAGATAAGG	TTGAATTTAG	TATTAGTGAC	AAACAGAGGC	600
CTGGACAGCA	GGTTGCAACT	TGTGTGCGAC	TTTTAGGTCG	TAATTCTAAC	TCCAAGAGGC	660
TCTTGGGTTA	TGTGGCAACT	CTGAAGGATA	ATTTTGGATT	TATTGAAACA	GCCAATCATG	720
ATAAGGAAAT	CTTTTTCCAT	TACAGTGAGT	TCTCTGGTGA	TGTTGATAGC	CTGGAACTGG	780
GGGACATGGT	CGAGTATAGC	TTGTCCAAAG	GCAAAGGCAA	CAAAGTCAGT	GCAGAAAAAG	840
TGAACAAAAC	ACACTCAGTG	AATGGCATTA	CTGAGGAAGC	TGATCCCACC	ATTTACTCTG	900
GCAAAGTAAT	TCGCCCCCTG	AGGAGTGTTG	ATCCAACACA	GACTGAGTAC	CAAGGAATGA	960
TTGAGATTGT	GGAGGAGGC	GATATGAAAG	GTGAGGTCTA	TCCATTTGGC	ATCGTTGGGA1	1020
TGGCCAACAA	AGGGGATTGC	CTGCAGAAAG	GGGAGAGCGT	CAAGTTCCAA	TTGTGTGTCCI	.080
TGGGCCAAAA	TGCACAAACT	ATGGCTTACA	ACATCACACC	CCTGCGCAGG	GCCACAGTGG1	140
AATGTGTGAA	AGATCAGTTT	GGCTTCATTA	ACTATGAAGT	AGGAGATAGC	AAGAAGCTCT I	.200
TTTTCCATGT	GAAAGAAGTT	CAGGATGGCA	TTGAGCTACA	GGCAGGAGAT	GAGGTGGAGT1	.260
TCTCAGTGAT	TCTTAATCAG	CGCACTGGCA	AGTGCAGCGC	CTGTAATGTT	TGGCGAGTCT1	.320
GTGAGGGCCC	CAAGGCTGTT	GCAGCTCCTC	GACCTGATCG	GTTGGTCAAT	CGCTTGAAGA1	.380
ATATCACTCT	GGATGATGCC	AGTGCTCCTC	GCCTAATGGT	TCTTCGTCAG	CCAAGGGGAC1	440
CAGATAACTC	AATGGGGTTT	GGTGCAGAAA	GAAAGATCCG	TCAAGCTGGT	GTCATTGACT1	500
AACCACATCC	ACAAAGCACA	CCATTAATCC	ACTATGATCA	AGTTGGGGGG	AATCTGGTGA1	560
AGGGTTCTGA	ATATCTCCCT	CTTCATCCCT	CCCGAAATCT	GGAATACTTA	TTCTATTGAG1	620
CTATTACACC	AGTTTTAACA	CCTTCCTCGT	GTTATGTTTA	AAAAAATAAA		
AAAACCATTT	TAAATAATGA	AAAGTTGG				708
					_	

- (2) INFORMATION ON SEQ ID NO. 532:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2128 base pairs
    - (B) TYPE: Nucleic acid (C) STRAND: individual

    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 532:

CTGTATCCTA	ATTTCTTGGT	GAATGAACTC	ATTCTTAAAC	AGAAGCAAAG	ATTTGAGGAA	60
AAGAGGTTCA	AATTGGACCA	CTCAGTGAGT	AGCACCAATG	GCCACAGGTG	GCAGATATTT	120
CAAGATTGGT	TGGGAACTGA	CCAAGATAAC	CTTGATTTGG	CCAATGTCAA	TCTTATGTTG	180
GAGTTACTAG	TGCAGAAGAA	GAAACAACTG	GAAGCAGAAT	CACATGCAGC	CCAACTACAG	240
ATTCTTATGG	AATTCCTCAA	GGTTGCAAGA	AGAAATAAGA	GAGAGCAACT	GGAACAGATC	300
CAGAAGGAGC	TAAGTGTTTT	GGAAGAGGAT	ATTAAGAGAG	TGGAAGAAAT	GAGTGGCTTA	360
TACTCTCCTG	TCAGTGAGGA	TAGCACAGTG	CCTCAATTTG	AAGCTCCTTC	TCCATCACAC	420
AGTAGTATTA	TTGATTCCAC	AGAATACAGC	CAACCTCCAG	GTTTCAGTGG	CAGTTCTCAG	480
ACAAAGAAAC	AGCCTTGGTA	TAATAGCACG	TTAGCATCAA	GACGAAAACG	ACTTACTGCT	540
CATTTTGAAG	ACTTGGAGCA	GTGTTACTTT	TCTACAAGGA	TGTCTCGTAT	CTCAGATGAC	600
AGTCGAACTG	CAAGCCAGTT	GGATGAATTT	CAGGAATGCT	TGTCCAAGTT	TACTCGATAT	660
AATTCAGTAC	GACCTTTAGC	CACATTGTCA	TATGCTAGTG	ATCTCTATAA	TGGTTCCAGT	720
ATAGTCTCTA	GTATTGAATT	TGACCGGGAT	TGTGACTATT	TTGCGATTGC	TGGAGTTACA	780
AAGAAGATTA	AAGTCTATGA	ATATGACACT	GTCATCCAGG	ATGCAGTGGA	TATTCATTAC	840
CCTGAGAATG	AAATGACCTG	CAATTCGAAA	ATCAGCTGTA	TCAGTTGGAG	TAGTTACCAT	900
AAGAACCTGT	TAGCTAGCAG	TGATTATGAA	GGCACTGTTA	TTTTATGGGA	TGGATTCACA	960
GGACAGAGGT	CAAAGGTCTA	TCAGGAGCAT	GAGAAGAGGT	GTTGGAGTGT	TGACTTTAAT	1020
TTGATGGATC	CTAAACTCTT	GGCTTCAGGT	TCTGATGATG	CAAAAGTGAA	GCTGTGGTCT	1080
ACCAATCTAG	ACAACTCAGT	GGCAAGCATT	GAGGCAAAGG	CTAATGTGTG	CTGTGTTAAA:	1140
TTCAGCCCCT	CTTCCAGATA	CCATTTGGCT	TTCGGCTGTG	CAGATCACTG	TGTCCACTAC	1200
TATGATCTTC	GTAACACTAA	ACAGCCAATC	ATGGTATTCA	AAGGACACCG	TAAAGCAGTC	1260
TCTTATGCAA	AGTTTGTGAG	TGGTGAGGAA	ATTGTCTCTG	CCTCAACAGA	CAGTCAGCTA	1320
AAACTGTGGA	ATGTAGGGAA	ACCATACTGC	CTACGTTCCT	TCAAGGGTCA	TATCAATGAA:	1380
AAAAACTTTG	TAGGCCTGGC	TTCCAATGGA	GATTATATAG	CTTGTGGAAG	TGAAAATAAC	1440
TCTCTCTACC	TGTACTATAA	AGGACTTTCT	AAGACTTTGC	TAACTTTTAA	GTTTGATACA:	1500
GȚCAAAAGTG	TTCTCGACAA	AGACCGAAAA	GAAGATGATA	CAAATGAATT	TGTTAGTGCT	1560
GTGTGCTGGA	GGGCACTACC	AGATGGGGAG	TCCAATGTGC	TGATTGCTGC	TAACAGTCAG	1620
GGTACAATTA	AGGTGCTAGA	ATTGGTATGA	AGGGTTAACT	CAAGTCAAAT	TGTACTTGAT	1680
CCTGCTGAAA	TACATCTGCA	GCTGACAATG	AGAGAAGAAA	CAGAAAATGT	CATGTGATGT	
	AGTCATCATG	GGTTTTGGAT	TTGTTTTGAA	TATTTTTTC	TTTTTTTCTT	1800
TTCCCTCCTT	TATGACCTTT	GGGACATTGG	GAATACCCAG	CCAACTCTCC	ACCATCAATG	1860
TAACTCCATG	GACATTGCTG	CTCTTGGTGG	TGTTATCTAA	TTTTTGTGAT	AGGGAAACAA	1920
ATTCTTTTGA	ATAAAAATAA	ATAACAAAAC	·AATAAAAGTT	TATTGAGCCA	CAAAAAAAAA	
AAAAAAAAA	AAAAAAAAA	ACAAAAGAGA	AAACAAAGGT	TACGAAGTAG	CATATGTGAA:	
	ACAGTGAATA		TTCGTATTTC	CCAACCTCTT	TGGGAATTAC	
ACATATCAAT	ATAAACAAAA	TATAAAGT				2128

#### (2) INFORMATION ON SEQ ID NO. 533:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 2640 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 533:

CTAGCAAGCA	GGTAAACGAG	CTTTGTACAA	ACACACACAG	ACCAACACAT	CCGGGGATGG 60
CTGTGTGTTG	CTAGAGCAGA	GGCTGATTAA	ACACTCAGTG	TGTTGGCTCT	CTGTGCCACT 120
CCTGGAAAAT	AATGAATTGG	GTAAGGAACA	GTTAATAAGA	AAATGTGCCT	TGCTAACTGT 180
GCACATTACA	ACAAAGAGCT	GGCAGCTCCT	GAAGGAAAAG	GGCTTGTGCC	GCTGCCGTTC 240
AAACTTGTCA	GTCAACTCAT	GCCAGCAGCC	TCAGCGTCTG	CCTCCCCAGC	ACACCCTCAT 300
TACATGTGTC	TGTCTGGCCT	GATCTGTGCA	TCTGCTCGGA	GACGCTCCTG	ACAAGTCGGG 360
AATTTCTCTA	TTTCTCCACT	GGTGCAAAGA	GCGGATTTCT	CCCTGCTTCT	CTTCTGTCAC 420
CCCCGCTCCT	CTCCCCCAGG	AGGCTCCTTG	ATTTATGGTA	GCTTTGGACT	TGCTTCCCCG 480
				GGTGAAGGGA	
CCATCACAGA	TAAAAGAAAA	ATACAGGAAG	AAATCTCACA	GAAGCGTCTG	AAAATAGAGG 600
				GAGGGAGAAA	
				GCAAAATCAA	
ACCAGATCCA	GGTTCTAGAA	CAAAGTATCC	TCAGGCTTGA	GAAAGAGATC	CAAGATCTTG 780
AAAAAGCTGA	ACTGCAAATC	TCAACGAAGG	AAGAGGCCAT	TTTAAAGAAA	CTAAAGTCAA 840
TTGAGCGGAC	AACAGAAGAC	ATTATAAGAT	CTGTGAAAGT	GGAAAGAGAA	GAAAGAGCAG 900
AAGAGTCAAT	TGAGGACATC		TCCCTGACCT		TACATACCTT 960
					AGGAAAGCTT1020
TATATGCCAT	GGAAATTAAA	GTTGAAAAAG	ACTTGAAGAC	TGGAGAAAGT	ACAGTTCTGT1080
CTTCCAATAC	CTCTGGCCAT	CAGATGACTT	TAAAAGGTAC	AGGAGTAAAA	GTTTAAGATG1140
ATGGGCAAAA	GTCCAGTGTA	TTCAGTAAAG	TGCTAATCAC	AAGTTGGAGG	TCAATGGCAC1200
					AGAGAAACTC1260
					GGCCTACAAC1320
CCCACAGAGA	GAAACGGTGA				AGATTAAAAC1380
TAATGGACTG	GGTATTGGTG	TAAATGAATC	CATACACAAT	ATGGGCAATG	GTCTTTCAGA1440
	AACAACTTCA				ATCCCCGATC1500
					TGACTCCTTG1560
					GGCTGAGCCC1620
					GTCAGGAGGA1680
					ATGATACAGA1740
					AAGATAAGAA1800
					ATGATGAGGA1860
GGAGGAGGAT	GAAGGAGAAG	CAGAGAAACC			CCCATAGTCA1920
	CCAGCCAAAC				CTAGTCCTCA1980
					AGCAAGAAGA2040
AAGCTTAGGC	AGCCCTGTCC	ACCATTCCCC			GAGATGGGAC2100
TGAGGATCCA	. TCCTTAACAG	CTTTAAGGAT			AAAAGGTGAT2160
CTAAGAGTTG	TACCACCTAT	ATAAACATCC			GCATTTGCAA2220
	TGGATATTTT				CATTACAGTG2280
			GTCATTATTT		CCCAAAAAGC2340
	AAATGTGTAA				GGGAAAACCA2400
	. TTCTATTGAT				ATTTAAGAAT2460
	AAAATATTCT				TTGATGATAC2520
					AACTCTGACA2580
AATAAATATG	TCATCCTGAA	. TTAATAATGC	CTTAATAAAA	GTACATCCTC	CTGCTAAAAA2640

- (2) INFORMATION ON SEQ ID NO. 534:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1245 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 534:

TGCAGCGCGT GCGTGCTGCG CTACTGAGCA GCGCCATGGA GGACTCTGAA GCACTGGGCT TCGAACACAT GGGCCTCGAT CCCCGGCTCC TTCAGGCTGT CACCGATCTG GGCTGGTCGC 120 GACCTACGCT GATCCAGGAG AAGGCCATCC CACTGGCCCT AGAAGGGAAG GACCTCCTGG 180 CTCGGGCCCG CACGGGCTCC GGGAAGACGG CCGCTTATGC TATTCCGATG CTGCAGCTGT 240 TGCTCCATAG GAAGGCGACA GGTCCGGTGG TAGAACAGGC AGTGAGAGGC CTTGTTCTTG 300 TTCCTACCAA GGAGCTGGCA CGGCAAGCAC AGTCCATGAT TCAGCAGCTG GCTACCTACT 360 GTGCTCGGGA TGTCCGAGTG GCCAATGTCT CAGCTGCTGA AGACTCAGTC TCTCAGAGAG 420 CTGTGCTGAT GGAGAAGCCA GATGTGGTAG TAGGGACCCC ATCTCGCATA TTAAGCCACT 480 TGCAGCAAGA CAGCCTGAAA CTTCGTGACT CCCTGGAGCT TTTGGTGGTG GACGAAGCTG 540 ACCTTCTTT TTCCTTTGGC TTTGAAGAAG AGCTCAAGAG TCTCCTCTAG TCACTTGCCC 600 CGGATTTACC AGGCTTTTCT CATGTCAGCT ACTTTTAACG AGGACGTACA AGCACTCAAG 660 GAGCTGATAT TACATAACCC GGTTACCCTT AAGTTACAGG AGTCCCAGCT GCCTGGGCCA 720 GACCAGTTAC AGCAGTTTCA GGTGGTCTGT GAGACTGAGG AAGACAAATT CCTCCTGCTG 780 TATGCCCTGC TCAAGCTGTC ATTGATTCGG GGCAAGTCTC TGCTCTTTGT CAACACTCTA 840 GAACGGAGTT ACCGGCTACG CCTGTTCTTG GAACAGTTCA GCATCCCCAC CTGTGTGCTC 900 AATGGAGAGC TTCCACTGCG CTCCAGGTGC CACATCATCT CACAGTTCAA CCAAGGCTTC 960 TACGACTGTG TCATAGCAAC TGATGCTGAA GTCCTGGGGG CCCCACGTCA ACGGGCAATG1020 CGACCCCGGC GACGAGCCAA AACGGGGACA ATGGCCTCTC GATTCCTGGA ACGCACGGTC1080 GTGGCCCTGG GGCACTAGAC CTTCCACCAT CGTGTCTGCA TGTGCTCAAC TTTTGATCTT1140 CCCCCCAAC CCCTGAGGCC TAACATCCAT CGAGCTTGGC AGGACAGCAA CGCGCTAACA1200 ACCCAGGGCA TAGGTCTTAA CCTTTGGTGC TTTCCCACGG AGGCG

- (2) INFORMATION ON SEQ ID NO. 535:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 822 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 535:

AAGATCGGTC TTTGTCCTTA TCCTTATCCT TATTCTAATG GCAGTTAGAT GCNNTTCTTT 60
AGAGGGGGCA ATGAGACAGC CAGGTGGGAA GGGGTCCCCA GAGAAACTCC AGCCTGCACA120
CTGGGAGGAG TGTGCACTGG GGTGAAGCCA CCGGAAGTTT GCGCCATCTC CAGTGGGGAA180

GAGCCCAGCC CCTCCTCTC CTGGGTGGA AACTGCGATT CAAACTGCCA GGTGGGAAGT240
CCATGGGCAG GAAACAGGCT CTCGNTTTGC TAAGAGTCTC TGTTTCCCCC TTTTTTCCTT300
TATGCCTAAT TAATAAATTC CATTTTCTC ACCCTTCAAA CAGCCTGTGA GCCTAAATTT360
ACAATGGGAA GAAAGGCAGG GAGTAGACAT CCAATTTCCT GGCGTGGATT GTGGAGGGGT480
ACCATGGTTC TGACCAGATG TGTATCAGGA GCTGTGTTGC AGGAAGTCTC AGGAATGAAG540
ACCATGGTTC TCTTTCCATC ACATGATGAC TGAAAAGACG AAGGCATCTA ATGAGTTAGA600
GTCACACCAT CTCATGCCTG TATACTATCA AACAACTTTT GGGAAGCTAG CCTTGGTTGG660
TGAAAACATCA TTTCTTAACT GAATGCCTGG ATGCAAACAA ACCCACAATT TTGATCATGA720
CATGCAACTC CATGGTTAAT TCCTTGGATA GCAAATAGCT CG 822

- (2) INFORMATION ON SEQ ID NO. 536:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2703 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536:

```
AGTTCGGCAC AGGGGGAGGA ACCTGGCCCT GGGAGGAGGC TGTTGCGTGC TCCTAGAGAA 60
TCCCGTTCTG AAGGGAAGAG CATGTTTGCG GGCGTCCCCA CCATGCGTGA GAGCTCCCCC 120
AAACAGTACA TGCAGCTCGG AGGCAGGGTC TTGCTGGTTC TGATGTTCAT GACCCTCCTT 180
CACTTTGACG CCAGCTTCTT TTCTATTGTC CAGAACATCG TGGNGCACAN GCTCTGATGA 240
TTTTNAGTGG CCATTGGTTT TAAAACCAAG CTGGCTGCTT TGACTCTTGT TGTGTGGCTC 300
TTTGCCATCA ACGTATATTT CAACGCCTTC TGGACCATTC CAGTCTACAA NGCCCATGCA 360
TGACTTCCNT GAAATACGAC NTTCTTCCAG ACCATGTCGG TGATTGGGGG CTTGCTCCTG 420
GNTGGNTGGC CCTGGGCCCT NGGGGGTGTC TCCATGGATG AGAAGAAGAA GGAGTGGTAA 480
CAGTCACAGA TCCCTACCTG CCTGGCNTNA AGACCCNGTN GGCCGTCAAG GNACTGGNTT 540
CNGGGGTGGA TTCAACNAAA ANCTGNCCAG CTTTTNATGT ATCCTCTTCC CTTCCCCTCC 600
CTTGGTAAAG GCACAGATGT TTTGAGAANC TTTATTTGCA GAGACACCTG AGAATNCGAT 660
GGNCTCAGTC TGCTCTGGAG CCACAGTCTG GCGTCTGACC CTTCAGTNGC AGGCCNAGCC 720
TGGCANGCTG GNAAGCCNTC CCCCNACGCC GAGGCTTTNG GNAGTGAANC AGNCCCGCTT 780
NGGNCTGTGG CATCNTCAGT CCNTATTTTT GAGTTTTTTT GTGGGGGGTAN NCAGGAGGGG 840
GCCTTCAAGC TGTACTGTGA NGCAGACGCA NTTGGTATTA TCATTCAAAG CAGTCTCCCT 900
CTTNATTTGT AAGTTTNACA TTTTTNNAGC GGAAACTACT AAATTATTTT GGGNTGGTTC 960
AGCCAAACCT CAAAACAGTT AATCTCCCNT GGNTTTNAAA ATCACACCAG TGGNCTTTNG1020
ATGTTGTTTC TGCCCGCAT TNGTATTTTA TAGGNNAATA GTGAAAACAT TTAGGGNACA1080
CCCAANAGAA TGATNGCAGT ATTAAAGGGG TGGTAGAAGC TGCTGTTTAT GATAAAAGTC1140
ATCGGTCAGA AAATCAGCTT GGATTNGGTG CCAAGTGNNN TTTTATTGGG TAACACCCTG1200
GGAGTTTTAG TAGCTTGAGG CAAGGTGGAG GGGCAAGAAG TCCTTGGGGA AGCTGCTGGT1260
CTGGGTNGCT NGCTGGCCTC CAAGCTGGCA GTGGGAAGGG CTAGTGNAGA CCACACANGG1320
GGTAGCCCCN AGCAGCAGCA CCCTGCAANG CCAGCCNTGG CCNAGCTNNG CTCNAGACCA1380
GCNTTNGCAG ANGCCGCAGN CCGCTGTNNG GGCANGGGGG TGTNGGCAGG AGCTCCCNAG1440
CACTNGGNAG ACCCACGGAC NTCAACCCAG TTNACCTCAC ATGGGGCCNT TTTCNTGAGC1500
AAGGTCTNCG AAAGCGCAGG CCGCCCTGGN CTGAGCAGCA CCGCCCTTTC CCAGCTGCAC1560
TCGCCCTGTG GACAGCCCCG ACACACCANC TTTCCTNGAG GCTGTCGCTC ACTCAGATTG1620
TCCGTTTGCT ATGCCGAATG CAGCCAAAAN TTCCTTTTTA CAATTTGTGA TGCCTTACCG1680
ATTTGATCTT AATCCTGTAT TTAAAGTTTT CTAACACTGN NCCTTAAACT GTGTTTCTCT1740
TTTTGGGGGA GCTTAACTGC TTGTTGCTCC CTGTCGTCTN GCACCATAGT AAATGCCACA1800
AGGGTAGTCG AACACCTCTC TGGCCCCTAG ACCTATCTGG GGACAGGCTG GCTCAGNCTG1860
TCTNCCANGG GCTGCTGCGG CCCAGCCCCG AGCCTGCCTC CCTCTTGGNC CTCTCATCCA1920
TTGGNCTCTG CAGGGCANGG GGTGAGGCAG GTTTCTNGCN TCATAAGTGC TTTTNGGAAG1980
TCACCTACCT TTTTAACACA GCCGAACTAN GTCCCAACGC GNTTTGCAAA TATTCCCCTN2040
GGTAGCCTAC TTNCCTTANC CCCCGAANTA TTGGTAAGAT CGAGCAATGG NNCTTCAGGA2100
NCATNGGGTT CTCTTCTCT GTGATCATTN CAAGTGCTCA CTGCNATNGA ANGACTNGGC2160
TTGNTCNTCA GTGTTTCNAA CCTNCACCAG GGCNTGTCTC TTGGTCCACN ACCTCGCTCC2220
CTGTTAGTGC CGTATGACAG CCCCCNATCN AAATGACCTT GGCCNAAGTN CACNGGTTTC2280
TCTGTGGTNC AAGGTTGGTT GGCTGATTGG TGGAAANGTN AGGGTGNGAC CNAAANGGAG2340
GNCCACGTGA NGCAGNTCNA GCACCANNGT TNCTGCANCC AGCAGCNGCC TCCGTNCCTA2400
GTGGGTGTTN CCTNGTTTCN TNCCTGGCCC NTGGGTNGGG CTNAGGGNCC TGATTCGGGN2460
AANGATGCCT TTGNCANGGG AGGGGAGGAN TAAGTGGGAT CTACCNAANT TNGATTCTGG2520
CAAAACAANT TTCTAAGANT TTTTTTGCTT TATGTGGGNA AACAGATCTA AATCTCATTT2580
TATGCTGTAT TTTATATCNT TNAGTTGTGT TTGAAAACNG TTTNTGATTT TTGGAAACAC2640
AAA
                                                                2703
```

- (2) INFORMATION ON SEQ ID NO. 537:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2664 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537:

CTCCCAGGGA	GTGCTGAGTA	GTGATGGTGT	CTGGAGGGTC	AAATCCATTC	CCAATGGCAA	60
AGGTTCCTCA	CCACTCCCCA	CCGCTACAAC	TCCAAAACCA	CTTATCCCTA	CAGAGGCCAG	120
CATCAGGGTC	TGGGGCACGA	GCGGCACGAG	CCATCTCCAT	CCCCGGAGCA	TCTGTATGAT	180
TCAGAAGTAC	AACCACGATG	GGGAAGCAGG	TCGGCTGGAG	GCTTTTAGCC	AAGGGGAAAG	240
TGTCCTAAAG	GAACCCAAGT	ACCAGGAAGA	GCTGGAGGAC	AGGCTGCATT	TCTACGTGGA	300
GGAATGTGAC	TACTTGCAGG	GCTTCCAGAT	CCTGTGTGAC	CTGCACGATG	GCTTCTCTGG	360
GGTAGGCGCG	AAGGCGGCAG	AGCTGCTACA	AGATGAATAT	TCAGGGCGGG	GAATAATAAC	420
CTGGGGCCTG	CTACCTGGTC	CCTACCATCG	TGGGGAGGCC	CAGAGAAACA	TCTATCGTCT	480
ATTAAACACA	GCTTTTGGTC	TCGTGCACCT	GACTGCTCAC	AGCTCTCTTG	TCTGCCCCTT	540
GTCCTTGGGT	GGGAGCCTGG	GCCTGCGACC	CGAGCCACCT	GTCAGCTTCC	CTTACCTGCA	600
TTATGATGCC	ACTCTGCCCT	TCCACTGCAG	TGCCATCCTG	GCTACAGCCC	TGGACACAGT	660
CACTGTTCCT	TATCGCCTGT	GTTCCTCTCC	AGTTTCCATG	GTTCATCTGG	CTGACATGCT	720
GAGCTTCTGT	GGGAAAAAGG	TGGTGACAGC	AGGAGCAATC	ATCCCTTTCC	CCTTGGCTCC	780
AGGCCAGTCC	CTTCCTGATT	CCCTGATGCA	GTTTGGAGGA	GCCACCCCAT	GGACCCCACT	840
GTCTGCATGT	GGGGAGCCTT	CTGGAACACG	TTGCTTTGCC	CAGTCAGTGG	TGCTGAGGGG	900
GTATAGACAG	AGCATGCCAC	ACAAGCCACA	GAACCAAAGG	GACACCTCCA	CCCTCTGCCC	960
TTCATGCATG	TACCACTGGG	GAAGAAATCT	TGGCTCAGTA	TTTACAACAG	CAGCAGCCTG1	020
GAGTCATGAG	TTCTTCCCAT	CTGCTGCTGA	CTCCCTGCAG	GGTGGCTCCT	CCTTACCCCC1	080
ACCTCTTCTC	AAGCTGCAGT	CCACCGGGTA	TGGTTCTGGA	TGGTTCCCCC	AAGGGAGCAGÍ	140
GTCCTCTGTT	TCCCTCTCCC	TTCCACAGCA	GTGGAGAGCA	TCCCAGTGTT	TGGGGCACTG1	200
TGTTCCTCTT	CGTCCCTGCA	CCAGACCCTG	GAAGCCTTGG	CCAGAGACCT	CACCAAACTC1	260
GACTTGCGGC	GCTGGGCCAG	CTTCATGGAT	GCTGGAGTGG	AGCACGATGA	CGTAGCAGAG1	320
CTGCTGCAGG	AGCTACAAAG	CCTGGCCCAG	TGCTACCAGG	GTGGTGACAG	CCTCGTGGAC1	380
TAAAGTTCCC	AGTGTGGGAG	AAAGGAGCTA	GTTTGCAATA	AAAACAGCTG	GATGCAGGAG1	440
CCCAGTGTCT	TCATGCAGAG	GAGCTCAATG	TCGCGGGACT	AGCTACACCA	ACATATGCAC1	500
TTTTTACATT	TAGAAACACT	GTGATTAGAC	CACAGAACAA	TAAATATGTG	CCATCAGACC1	560
AAAAAAAAGT	AGAGAAAGGA	GCTGAACTCC	ACTCTCGATG	CTATTTACAG	AGGACATCTG1	620
TAAAGTCTTC	ATAAAAGACC	TTGAATGATG	CCTAGGATGG	CAGAGCCCCT	GGGTCCTACT1	680
CCATCCTCCA	GCCTTTGTCC	TTGTCCTGGC	CTCCTGCTCT	CCAGATCTGT	AAACTGGGCT1	740
CAAGGACTGT	ACAAGCAGAG	TACAACTACC	CCCTCCCCGG	TGCCAGGGCG	CCTGTTGGGT1	800
TTGGTCCTGT	GTAGATGATT	CCCAGAGTCT	CATTCATCCA	GCTCCTCTTC	AGACAGAAGG1	.860
TCCCCATGGT	CAGACAGCTG	GTCTGCATTG	CTGGTACTGG	TTGCATCATC	CTCATCCTCA1	920
GAGCTGGCTT	CACAGGCAGT	GTGGAAGAGC	TGCATGAGTT	CTCGAAAACG	GTGGGAAACC1	.980
TCAGCAGGGG	TCTTATTTCC	CAGCTGCTGG	GAGATGATGT	TGAAGGTCTG	TGGCTGTGCC2	040
CCTTGCTCCT	GGCACATGGT	GAGGATCACA	CGGTCAGCTT	CCCTTGTCCA	CAGGACAACC2	100
TTTTCCCCAG	TGGAGCTGAC	CTTGCTGTTG	TTGGCACACA	CCGTAGCTTC	TGCGGCCTTT2	160
GGCTGCTGCT	CCCCCTCTGG	ACCCTTGGCC	TGTGTTCCAC	TGTCTTTAGC	CAAACCCCCT2	220
CTAGGGGCTT	TGGGAGAAGT	CTCTGAGGTG	TCAATTCCTG	ATGGAGATTC	ATGGACAGGG2	280
CACGTCCTGT	CTCTTGTCTT	CACCCTAGCT	CTGCTTGAGG	GCAGCCATCT	CTCTTGAGTG2	340
TCTGGTTTCC	CGGACACATG	TCTTCTCCCT	GCATCTCTGG	TCTTTGAGGA	AACAGGACTC2	400
AGGAAGGAAG	CAGGGGGTTC	CACGGTACCA	GGCAATTTCT	CAGTTTCTGA	TGCATCCCAG2	2460
	AAGCCTCTGA		GCCTTTTGGC	CCTCCCTCTC	TTTCTGAAGT2	2520
CTGGGGGATG			TCAGGCCCAA		CTTAACAGTG2	
TACAGTACAG	CTCCAGTTGT	GGGGGGAAAT	TGAGGAGTCT	CTGGTGAATG	AGGTGGTGGG2	640
CCATCCAGGA	GGAGCCGTTC	TGTA			2	2664

- (2) INFORMATION ON SEQ ID NO. 538:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 3888 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538:

GAATTCCCGC CCGGACTC	SAC GGAGCCCACT	GCGGTGCGGG	CGTTGGCGCG	GGCACGGAGG 60
ACCCGGGCAG GCAGCGCA	AAG CGACCCCGAG	CGGAGCCCCG	GAGCCATGGC	CCTGAGCGAG 120
CTGGCGCTGG TCCGCTG	GCT GCAGGAGAGC	CGCCGCTCGC	GGAAGCTCAT	CCTGTTCATC 180
GTGTTCCTGG CGCTGCT(	GCT GGACAACATG	CTGCTCACTG	TCGTGGTCCC	CATCATCCCA 240
AGTTATCTGT ACAGCAT	TAA GCATGAGAAG	AATGCTACAG	AAATCCAGAC	GGCCAGGCCA 300
CTCCACACTG CCTCCAT	CTC AGACAGCTTC	CAGAGCATCT	TCTCCTATTA	TGATAACTCG 360
ACTATEGTCA CCGGGAA	rgc taccagagac	CTGACACTTC	ATCAGACCGC	CACACAGCAC 420
ATGGTGACCA ACGCGTC	CGC TGTTCCTTCC	GACTGTCCCA	GTGAAGACAA	AGACCTCCTG 480
NATCANANCE TECANET	rgg TCTGTTGTTT	GCCTCGAAAG	CCACCGTCCA	GCTCATCACC 540
AACCCTTTCA TAGGACT	ACT GACCAACAGA	ATTGGCTATC	CAATTCCCAT	ATTTGCGGGA 600
TTCTGCATCA TGTTTGT	CTC AACAATTATG	TTTGCCTTCT	CCAGCAGCTA	TGCCTTCCTG 660
CTGATTGCCA GGTCGCT	GCA GGGCATCGGC	TCGTCCTGCT	CCTCTGTGGC	TGGGATGGGC 720
ATGCTTGCCA GTGTCTA	CAC AGATGATGAA	GAGAGAGGCA	ACGTCATGGG	AATCGCCTTG 780
GGAGGCCTGG CCATGGG	GGT CTTAGTGGGC	CCCCCCTTCG	GGAGTGTGCT	CTATGAGTTT 840
GTGGGGAAGA CGGCTCC	GTT CCTGGTGCTG	GCCGCCCTGG	TACTCTTGGA	TGGAGCTATT 900
CAGCTCTTTG TGCTCCA	CCC CTCCCGGGTG	CAGCCAGAGA	GTCAGAAGGG	GACACCCCTA 960
ACCACGCTGC TGAAGGA	CCC GTACATCCTC	ATTGCTGCAG	GCTCCATCTC	CTTTGCAAAC1020
ACCACGCIGC IGAAGGA ATGGGCATCG CCATGCT	CCA GCCAGCCCTG	CCCATCTGGA	TGATGGAGAC	CATGTGTTCC1080
CGAAAGTGGC AGCTGGG	CCT TCCCTTCTTC	CCACCTAGTA	TCTCTTATCT	CATTGGAACC1140
CGAAAGTGGC AGCTGGG AATATTTTTG GGATACT	TCC ACACAAAATG	CCAGCTAGTA	TTTGTGCTCT	TCTGGGAATG1200
ATATTTTTG GGATACT	CAM MUMATCHARIG	CCATTTCCAA	ADACATTTA	TGGACTCATA1260
GCTCCGAACT TTGGAGT	MCC MMMMCCNNNT	CCATTICCAL	ATTCGTCAAT	GATGCCTATC1320
ATGGGCTACC TCGTAGA	TGG TITTGCAAAT	TCCCTCTATC	GGAGTGTGTA	CGCCATTGCG1380
GATGTGGCAT TTTGTAT	CCC CERTICOLOUS	CCTCCTTCTC	CTGGTGGTGC	TATTGCAAAG1440
GATGTGGCAT TTTGTAT GCAATTGGAT TTCCATG	GGG GTATGCTATA	A TO COLLEGE	TTCATATTCT	TTTTGCCCCT1500
GCAATTGGAT TTCCATG	GCT CATGACAATI	ATIGGGATAA	AAATCCCTAT	TCTCATGGAT1560
CTCTGCTTTT TTCTTCG	AAG TCCACCTGCC	AAAGAAGAAA	AMAIGGCIAI	ATATCCGATA1620
CACAACTGCC CTATTAA	AAC AAAAATGTAC	ACTOAGAATA	TCANANTCA	TCAAAGTGTT1680
GGTGAAGATG AAGAATC	TGA AAGTGACTGA	GAIGAGAICC	1 CAAAAATCA	TRETCATACC1740
TAATTGTATA AAACAGT	GTT TCCAGTGACA	CAACTCATCC	MCCMMTCCAT	CCTTATEGTC1800
ATCCATCCT GGTGAAA	GAG TAAAACCAAA	GGTTATTATT	CCCTTCCAT	AAATAGTGTT1860
GATTGCCAAC AGCCTTA	TAA AGAAAAAGAA	. GCIIIICIAG	ראז ביי די מיי מיי מיי מיי מיי מיי מיי מיי מי	TCATGAAATA1920
GAAACTTTAT TTTATGT	ATT TCATTTATT	AAAIAICAIA	TATALATATI T	TAACTTACAT1980
GGTATTGTGT AAATCTA	ATAA ATACTIGAA1	TANACCAAA	TWINWILLI	ACCACACATT2040
TAACAAACAT TTGGGCA	AAA ATCATATIGG	TAAIGAGIGI	1144441144	ACAATCAACT2100
ATCTCTGAGA CTCTTC	CAAC AAAGAGAAAC	TAGAATGAAG	TCIGAAAAAC	TATCAATATA2160
AAGACAGCAT GTTATA	TAGT GACACTGAAT	GITATITAAC	A A CA A COMOCO	CTCACTTATC2220
TTTATGCGTT AAACAG	CTAG TTCTCTCAAC	TGTAGAGGAC	MAGAACIIGI	CCTACAGAGA2280
TTTTGAATCC ATAAAT	CTTA GCTGGCATTA	GTTTTCTATG	TAATCACCIA	CCIAGAGAGA2200
GTTGTAAATT ATATGT	TAAC ATGTTATCT	GTTGGCAGCA	AACACTAAAG	AMCAACTAAAG2340
AAAAACAGTA AATGTT	CCGA AAGCAGAGA	A AAGCAACCAA	ACATATIGIT	AIGAACIAAA2400
AGCTTTCCCT TTAAGA	IGCA TACTTGTCT	r ACTGGATGAA	GAAAATTGAG	mmcaacmmmm2520
CCTTATACTG TCAAGG	ITGT TTAAACATGA	TAAGGTTAAT	CGCCATCTAC	CTATCHAGITITZ520
AGAAAAGGAA ACAAGA	AGCT AAAAACAGC	r GCTCTGACTT	TAATATCTGA	CTATATCTT12360
GATCTGTTTG CAGGTC	ATCC AAGTGTTTT	TAGGAATATA	TTTATTTTAG	a mmmma a a mc 2700
ACTACTATTT TTTAGA	CTCC TGAAAGTTG'	r TCACATCAA1	GIGAAGACAA	ATTTTAAATG2760
AAAATGAAGA ATGAAA	TTAT GTCTTGAAT	C ATATATTAAG	AAGTAAAAAT	AATAGTGATC2780
AGGCAGAAAA GAAAAA	TGGA ACATCTAAA	A ATGTATGTGC	TAACTATAT	ATCCAGTG1G2820
CAGTGTTGTG TATTTT	TCTA AGCATGACA	A CATTGATGTO	CCTTTTCAG'	GTAACAGCAA288U
ATACTOTTAG TGAACA	TTGT CAATTTATG	T CATTTTGTT	A AGAGATATG	A CTGGAGTGTG2940
CACTGTGGAA TGTCTC	TAAT ACTACTTGA	G AATCCTGCAG	TTCTATAAT	C ATAAACAAAA3000
ATTACTTAGT TTCGTT	AAGC TAAGATTGT	G TTTGTGTTA	A CTTCGACAT	C AAGGAGCAAA3060
CAACTTTAGA ACAGAC	TCCT CAATCTTGT	G ACTTTCTTAT	r TCTCTAGGA	A AGTAACACTT3120
CCTTTCATCA ACCTTT	TOTA TAGGACTTO	G ATTATTTCA	A GTCTGGTTT	C TAAGTGCAGT318U
CTCTTTCAAC CAAACG	AACT TCCAACTCA	C TTATTTGGC	A TTGGGCAAC'	r TGGCCAAGTC3240
TECTACTTE GAAGAT	GGCT CTGGAGGAA	A CTCTCATATO	g GCTAAAAAG	G CAGGCTAGTT3300
TOTAL TOTAL	GTAG AGCCTTAAA	A AAGAACGTG	C TACAAATTG	G TTCTCTTTGA3360
CCCMMMCMCC TMCMCC	CTGC CCCCAATAC	C ATATACTTT	A TTGCAATTT	T ATTTTTGCCT3420
שייא ככככייני ביינייניי	ттст GCAAGAAGG	C CTGGCAAAG	G TATGCCTGC	T GTTGGTCCCT3480
CGGGATAAGA TAAAA	TATAA ATAAAACCI	T CAGAACTGT	T TTGGAGCAA	A AGATAGCTTG3540

TACTTGGGGA AAAAAATTCT AAGTTCTTTT ATATGACTAA TATTCTTGGT TAGCAAGACT3600
GGAAAGAGGT GTTTTTTAA AATGTACATA CCAGAACAAA GAACATACAG CTCTCTGAAC3660
ATTTATTTT TGAACAGAGG TGGTTTTTAT GTTTGGACCT GGTAATACAG ATACAAAAAC3720
TTTAATGAGG TAGCAATGAA TATTCAACTG TTTGACTGCT AAGTGTATCT GTCCATATTT3780
TAGCAAGTTT ACTTAATAAA TCTTCTGAAC CATGTTTTGT GCCTGTTTGT ATTCCTTTAT3840
AAACCAAATG TTGTTGGAAT AAAATACATA AGGTATCATT TTGACCGT 3888

- (2) INFORMATION ON SEQ ID NO. 539:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 3304 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 539:

7 7 7 CCCMCMM	CCOMOMOMO	mamaa			
AAACCCICII	GGCTGTCTGC	TGTCCAGGGA	GTCGCCACTC	CCTTCATTAT	AGCCTTGCTC 60
	GGCAGGCCTG	GGGATGGCCT	CGGGAGAGGG	ACCACAGAGC	ACCAGCCTGC 120
ATGGAACTTC		CAGCTTCCCA			GAGATGGAGT 180
AATTTTGCTG			CCGAATGAAA		TCTGTCACGC 240
TGATGCCCGT		GAGCACCCGG	AATGGAATGA	GTCTATGCAC	TCCCTCCGGA 300
TCAGTGTGGG	GGGCCTTCCT	GTGCTGGCGT	CCATGACCAA	GGCCGCGGAC	CCCCGCTTCC 360
GCCCCCGCTG	GAAGGTGATC	CTGACGTTCT	TTGTGGGTGC	TGCCATCCTC	TGGCTGCTCT 420
GCTCCCACCG	CCCGGCCCCC		CCACCCACAA		TGGAGGCTCG 480
	CGCCAACTGG		CCTACCCCCT		CAAAGGACAC 540
	TCGGTATCGA				
AAGACGAAAA	CACCTGGCGC	ACCCACCTCA	1 DOMENDED 1	GGACACAGAG	CCAACCGCCC 600
					TCAGACAGTG 660
	GGCCGTGGAA	TGGGACAAAG	ACCATGGGGT	CCTGGAGTCC	
	AGGCATGGAG			CAATGGGAAA	CTCTACTCCG 780
TGGATGACCG	GACGGGGGTC	GTCTACCAGA	TCGAAGGCAG	CAAAGCCGTG	CCCTGGGTGA 840
TTCTGTCCGA					CTGGCAGTGA 900
AGGACGAGCG	TCTGTACGTG	GGCGGCCTGG	GCAAGGAGTG	GACGACCACT	ACGGGTGATG 960
TGGTGAACGA	GAACCCGGAG	TGGGTGAAGG	TGGTGGGCTA	CAAGGGCAGC	GTGGACCACG1020
AGAACTGGGT	GTCCAACTAC	AACGCCCTGC	GGGCTGCTGC	CGGCATCCAG	CCGCCAGCTA1080
ACCTCATCCA	TGAGTCTGCC	TGCTGGAGTG	ACACGCTGCA	GCGCTGGTTC	TTCCTGCCGC1140
	CCAGGAGCGC				GCCAACCTGC1200
	CTCCCCTGAC				GCGGTGGTCC1260
	CTTCTCGTCC				ATCATTGTGG1320
	CGAGGAGGAC	ACCCCCACAC	MCCCCMACAC	CGACGACCAG	•
					TTCACGCTGG1380
	CCTGTTGCCG				GGCATCGAGT1440
TCATTTAACT				GACTCAGCTT	
	CACTTTTGTT				GTTGGAGGTC1560
TGGACAGGGA	GCCCAGTCCC	GGGCCCCATA	GTGGTGCGGG	CACTGGACCC	CCGGGCCCCA1620
0003.00000					
CGGAGGCCGC	GGTCTGAACT				CGGTCACTTC1680
AGGCATTGAC	TCAAGGCCTG				ACCTCGTTTC1740
TTTTCTTTCC	TATGTTCTTT	TGTTCAGTGA	ATATCCCTAG	AGCTCCTACC	ATATGTCAGG1800
	CACCCTGAGA		CATGAGGTGG	ACCTGTTTGC	TGGGAACCCC1860
AGGTCACCCC	CTTTTCTTCC		GCCTTGGAAG	AATCAGGTCC	AGCCCTGAAG1920
ATCCTTGGGG	AAGAAAATGT	TTATGTTGCA	GGGTATTGCA	TGGTCACGAG	TGAGGGGCAG1980
GCCCCTGGGG	GACACATCTG	CCCACAGCTG	CACAGGCCAG	GGGCACAGGC	ACATCTGTTG2040
GTTCTCAGGC	CTCAGATAAA	ACCATCTCCG	CATCATATGG	CCAGTGACCG	CTTTCTCCCT2100
TCAAGAAAAT	TCTGTGGCTG		TGAAGTTTTA		TGCTTTAATT2160
AAAGCAGTTT	CCTTTCTTAT		CACCAAATCT		AGCACAGTCC2220
					GGCGGCTGGT2280
GAAGCAAGTC					GAAAATGTTG2340
					AATGACTTGA2400
	CCCTGCCTAG			CTCTTCCCTG	GGGTTTCTTT2460
CCATGGCCTT	TATTTCTCCT	CTTCCAGTGG	GAGTTTTGCA	GGCTCTTCTC	TGTGGAAACT2520
TCACGAGCGT	TGGCTGGGCC	TCGGCTTCGC	TGGAGTGTAC	TCCAGGGTGA	AGGCAGAGTG2580
GGATTTGAGA	CCCAGGTTAG	GCACGACCCA	GGCTGAGAAG	GGACGTTTCC	ATCATTCACA2640
GTGCCCTCCC	CACAGCAACT	ACCTCACCCC	GACCCCCACC	CTCACTCCTA	CCCCACCCG2700
CGATCGTCAG	GGGTGCCACG	GTGGGCCGGA	GGGTGCCGGC	TCTGGCTGTC	CCTGTGCCGG2760
TCCCTCACAA	ACCTCTCCCC	CTTTGAAACT	CAAGCACAGC	TGCGAGGAGG	GCAGCGAGGA2820
GGGACCCCTC	TCTCATGGTT	GTCTCTTTCC	CCCGCTATGT	CATAGGTAGT	GGAGGAAGCG2880
AAGGAAGTGA	ACGCTGAATG	TGACGCATTT	CTGAAGAGCT	CAGCTGTCAC	CGGGCATAGC2940
CTGGAAGCCC	CAAGTCTGTT	CTGACTTTGC	CTGGCTGTCT	CCTTGACCCG	CCTCCTAGAT3000
CATTGTCCTT	GATGTCCAGG	CTGGGTCATT	TAAAATAGAG	ATGCAATCAG	GAAGGTTGGG3060
GGACTTGGGA	CTGTGGCTGA	ATTGAGACCT	TCCTCATCTA	TTCATCTCAC	CACCTGAGTC3120
ACAGCCCACC	TECCCEENAC	CACCCCCCC	CCAMACCCAC	TICAIGICAG	TTACTTTAAA3180
CCACY CCAMM	TOCCOGOVYG	TOTAL COLUMN CO.	CHCCHCHCAC	CAMBRACTAN	GTGTTCCTTC3240
CCTOACCITI	TITOTICCCC	TOTOTATION	AAACCCTCAG	CATAATGATT	GIGTTCCTTC3240
	CCATCIGITT	IGIANACAAT	AAAGCGTCTG	AGGGAGTGTA	AAAAACAGAT3300
GGAT					3304

## (2) INFORMATION ON SEQ ID NO. 540:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 863 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 540:

CAGGATTGAA ACAAGATGGC GGGTTCGTGG TGAGAAGCCG TCAAGGAGTA GAAATTGGTA 60
TGCTTAGAAG CAGATTCTAA AAGCAGTTTC TCTTCAGAAC ATCTTTTTC ATACCACTTG120
ATAAGCATCT TGAAACACCA TGGCTGTAGC TGCAGTAAAA TGGGTGATGT CAAAGAGAAC180
TATCTTGAAA CATTTATTTC CAGTCCAAAA TGGAGCTTTA TATTGTGTTT GTCATAAATC240
TACGTATTCT CCTCTACCAG ATGACTATAA TTGCAACGTA GAGCTTGCTC TGACTTCTGA300
TGGCAGGACA ATAGTATGCT ACCACCCTTC TGTGGACATT CCATATGAAC ACACAAAACC360
TATCCCTCGG CCAGATCCTG TGCATAATAA TGAAGAAACA CATGATCAAG TGCTGAAAAC420
CAGATTGGAA GAAAAAGTTG AACACCTTGA GGAAGGACCT ATGATAGAAC AACTTAGCAA480
AATGTTCTTT ACTACTAAGC ACCGTTGGTA TCCTCATGGA CGGTATCACA GATGTCGTAA540
GAATCTGAAT CCTCCAAAAG ACAGATGATG CGGAGGTTCC TGGGGGAATC AAAGAGAAAT600
GTGCCTCATT TGCCATTTGA GAAAATGCAG TCTTGGTGTAT TCAGTAATAT ATAGTAAAGT660
AATAATGATA AAATATCTTT TCATATATTA GAATGTGTAC TTTTATATAA AGTAATTCTG720
GATTTGACAT TCTCATTTAG AGAGACCTAT TCCTTTTTC GTTTTCTATT TTAGTGTTTC780
ATTATGTGC GGTCTCCAAT TTAGGACTTT TCCATAGTGC CAAAGCCATA CATATTCAGT840
AGAACATCAA TAAAAAAAA AAA

#### (2) INFORMATION ON SEQ ID NO. 541:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1962 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 541:

```
ACCGACGGCC GCCCTTTTC GTCTTTTTT TTTTTACATT TCAAATATAT TTTATTACTT
TCCATCTTAG AAAGAATATG AAACCTGCAT GCAATGCTAA TGGTTTCTGA CATGTACATA 120
GCATATAACA CAGCAGTACA ATGCGGCATA TACTGGGGGG CAGTGTGTGG AGGGGGCGTT 180
CTTAAGGGTA TATGTACAGA GGAAAGGGCG CATGGTCATC TTAGCTTTCG AAAGAGGACT 240
GCACTGTTTA ACATTGAAGA ATTACATGGG GAATCACAAA TATATTGCTT TAGTACTGCA 300
TGTTCTGTTG TGGTGAGGGA AAGAAACATG CTTTGAAGGT TTTCCCTTGT CAACAGAATG 360
TGTGTCTGTA GCTGTGTATT GCGCATGTAT TCATATATTT TTAAGTTTTC TCCTAAGGTT 420
TTTGCTGACA GTGTTGGGAA CCTCACATGC TTCTGAAGCA TTAAATATTG AACCTGTGAA 480
CCTTTCAGAA ATCCTCAGGT TGGGAAAGAC CCCACACCTT CTTTAAGGAT CATTTGTCTC 540
GCCATCACAG GATCTTGGAA ATGTTTCCTA GGGTGTGTAA AAATTAACCA GGGGGGAATG 600
AAGCACATTT TTCTGGCAAC CAAACTTGAG TTCCTCAGAG AACAGATGCA GAGAGACCTG 660
CTCCTGCTTG CCCGGCTACA GGGGCCACTG TGGAGTCACA CTGAGGCTGT GACCGGCCAT 720
AAGCCCAGGA GAGCCCGTGG CAGCTGTGCC GAGGCGCCAG GACCTCTAAG CGGAAGCTTC
CCAAGCTAGG AATGGAGCAA CACTGCAATG AAATGTGTCC ACCAAGCTCA TTGTTCCTCC 840
AAAAAAAAA AAAAAAAGCC TTTCTTTCTC ACAGGCATAA GACACAAATT ATATATTGTT 960
ATGAAGCACT TTTTACCAAC GGTCAGTTTT TACATTTTAT AGCTGCGTGC GAAAGGCTTC1020
CAGATGGGAG ACCCATCTCT CTTGTGCTCC AGACTTCATC ACAGGCTGCT TTTTATCAAA1080
AAGGGGAAAA CTCATGCCTT TCCTTTTTAA AAAATGCTTT TTTGTATTTG TCCATACGTC1140
ACTATACATC TGAGCTTTAT AAGCGCCCGG GAGGAACAAT GAGCTTGGTG GACACATTTC1200
ATTGCAGTGT TGCTCCATTC CTAGCTTGGG AAGCTTCCGC TTAGAGGTCC TGGCGCCTCG1260
GCACAGCTGC CACGGGCTCT CCTGGGCTTA TGGCCGGTCA CAGCCTCAGT GTGACTCCAC1320
AGTGGCCCCT GTAGCCGGGC AAGCAGGAGC AGGTCTCTCT GCATCTGTTC TCTGAGGAAC1380
TCAAGTTTGG TTGCCAGAAA AATGTGCTTC ATTCCCCCCT GGTTAATTTT TACACACCCT1440
AGGAAACATT TCCAAGATCC TGTGATGGCG AGACAAATGA TCCTTAAAGA AGGTGTGGGGG1500
TCTTTCCCAA CCTGAGGATT TCTGAAAGGT TCACAGGTTC AATATTTAAT GCTTCAGAAG1560
CATGTGAGGT TCCCAACACT GTCAGCAAAA ACCTTAGGAG AAAACTTAAA AATATATGAA1620
TACATGCGCA ATACACAGCT ACAGACACAC ATTCTGTTGA CAAGGGAAAA CCTTCAAAGC1680
ATGTTTCTTT CCCTCACCAC AACAGAACAT GCAGTACTAA AGCAATATAT TTGTGATTCC1740
CCATGTAATT CTTCAATGTT AAACAGTGCA GTCCTCTTTC GAAAGCTAAG ATGACCATGC1800
GCCCTTTCCT CTGTACATAT ACCCTTAAGA ACGCCCCCTC CACACACTGC CCCCCAGTAG1860
TACGCAGGCA TTGGTACCGG CTGGTGTTAA AATGGCTATG GGACATGGTC AGGAAACCAT1920
TTAGGCATTG GCATTGAGGG TTCCATAATC CGTTTCTAAG GA
```

- (2) INFORMATION ON SEQ ID NO. 542:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1772 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 542:

```
TGGGCGCTGT AGTCCGGCCG GAACCTGTTT GCGACCCCGA GTCCCATGAC ACCGCTTCTC
CTCACACCC AGTCCGCAGT GCCCTCCCC AGCCTCGCC GGGCCTCCCG GGAGCCGGGC 120
GTGGCGTTCC AGCTAGTGAG CCGTTTCTCC CCTGGGCTCG GAGGCGGAAG CTTGAGGGGC 180
GCGGGGAGGA GCTTCGCGTG CGGGGTGAAC GCCCGCTCTA CGTGCTCGTT CTCTTCGCGA 240
CCGCTGCGC CGAGCCCCGT GTCCCCACGG CGGGCAGCAG CGCCGGCGGC GGCGGCTGAA 300
CGCGGAGGG GCGGAGGGAG CCCGCGGCGG CGGCAGCAC TACAGCGAAA TGGCGGAGAC 360
CGTGGCTGAC ACCCGGCGC TGATCACCAA GCCGCAGAAC CTGAATGACG CCTACGGACC 420
CCCCAGCAAC TTCCTCGAGA TCGATGTGAG CAACCCGCAA ACGGTGGGGG TCGGCCGGGG 480
CCGCTTCACC ACTTACGAAA TCAGGGTCAA GACAAATCTT CCTATTTTCA AGCTGAAAGA 540
ATCTACTGTT AGAAGAAGAT ACAGTGACTT TGAATGGCTG CGAAGTGAAT TAGAAAGAGA 600
GAGCAAGGTC GTAGTTCCCC CGCTCCCTGG GAAAGCGTTT TTGCGTCAGT TCCTTTTAGA 660
GGAGATGATG GAATATTTGA TGACAATTTT ATTGAGGAAA GAAAACAAGG GCTGGAGCAG 720
TTTATAAACA AGGTCGCTGG TCATCCTCTG GCACAGAACG AACGTTGTCT TCACATGTTT 780
TTACAAGATG AAATAATAGA TAAAAGCTAT ACTCCATCTA AAATAAGACA TGCCTGAAAT 840
TTGGCAAGAA GGGGCAAAAA CGTGACTATT AATGATTGAT AAGCACCAGT GAAGAAGTTC 900
TAACTTTTAG CATGCTGCAC AGAAACTGGT ATAACATGCC TTCAGTATAC TAACACTCAT 960
ATGCTCAGTT TTGTTTTGTT TTGGCAGTTG ACAAGAAGTT AATTTGCTTT AGTAAAAATC1020
CCTCATTCCA GCCTTTCTAT ATAAATAGCT CTTTCTTGCT GTTTTAATGT GGTGCACACT1080
ATAGCCTCAC AAACCTGTTA TTCCAGTGTA ATCTGCAGTG TCGTAACTAA AGTTACTGGC1140
TTGGTCTTAT TTGCACAGTT TTTGCGTCTT GTTTGCTTCT TGCATCTGAT TAACTAGAAT1200
ATTTCTCTTT CCCCCTTTTA ATTTGTGATG TCACTTGACC CCATTTATGT GTAGGAGCAC1260
TACACCATTG GTTTCCAATA CTGCACACAT AAGATACATA CTTGTGTGCA GAAAGTATCT1320
TCCTCCAGGC TTGTAATACC CTTCACATGG AAGATTAATG AGGGAAATCT TTATATTCTG1380
TATAAAAACA AAAGCAAATT TATATACTAA AATCATTTGT CTAAAAATTT AAGTTGTTTT1440
CAAATAAAAA TTAAAATGCA TTTCTGATAT GCACTGATTG TGTTGCCTCC AGCTTTTTT1500
GCTCTCTATG AGTGACTACT TAAGTCACTT GTTGAGAGGG ATTATTTACT AATTATATAC1560
TTCTCATTCC TGTAACTCCA TTCCCTTTAA ACAGTGGTGA TATCAAATAT ACTTCCATCC1620
ATTGAATGGG GTATTTTTAA CAACAACAAA AGTGATATAC TAAAAAATGT ATTGCTTAAG1680
GCTTATTGAA TCATTTTGAA GCACTTTGTG TATTTGAAAA CTGCTTTATA ATCTCATTTA1740
TTAAAAGGAC TTTCAAAGAT AAAACCAAAA AA
                                                                 1772
```

## (2) INFORMATION ON SEQ ID NO. 543:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1009 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 543:

```
CTCGTGCGGT GATGTTGAGC AGAAGATACA ATTCAAAAGA GAAACAGCCA GTTTGAAACT
GTTACCCCAC CAGCCCCGAA TTGTGGAGAT GAAGAAAGGA AGCAATGGCT ATGGTTTCTA 120
TCTGAGGGCA GGCTCAGAAC AGAAAGGTCA AATCATCAAG GACATAGATT CTGGAAGTCC 180
AGCAGAGGAG GCTGGCTTGA AGAACAATGA TCTGGTAGTT GCTGTCAACG GCGAGTCTGT 240
GGAAACCCTG GATCATGACA GTGTGGTAGA AATGATTAGA AAGGGTGGAG ATCAGACTTC 300
ACTGTTGGTG GTAGACAAAG AGACGGACAA CATGTACAGA CTGGCTCATT TTTCTCCATT 360
TCTCTACTAT CAAAGTCAAG AACTGCCCAA TGGCTCTGTC AAGGAGGCTC CAGCTCCTAC 420
TCCCACTTCT CTGGAAGTCT CAAGTCCACC AGATACTACA GAGGAAGTAG ATCATAAGCC 480
TAAACTCTGC AGGCTGGCTA AAGGTGAAAA TGGCTATGGC TTTCACTTAA ATGCGATTCG 540
GGGTCTGCCA GGCTCATTCA TCAAAGAGGT ACAGAAGGGC GGTCCTGCTG ACTTGGCTGG 600
GCTAGAGGAT GAGGATGTCA TCATTGAAGT GAATGGGGTG AATGTGCTAG ATGAACCCTA 660
TGAGAAGGTG GTGGATAGAA TCCAGAGCAG TGGGAAGAAT GTCACACTTC TAGTCTGTGG 720
AAAGAAGGCC TATGATTATT TCCAAGCTAA GAAAATCCCT ATTGTTCCCT CCCTGGCTGA 780
TGCCAGTTGA CAGCCCTGCA GGTTCTAAAG AAGGAATAGT GGTGGAGTCA AACCATGACT 840
CGCACATGGC AAAAGAACGG GCGGCTATTG CAGACGGCTA ATTTATGCTT AACTTAGGAA 900
GAGATAAGGT TCCTTGAGCA CCAAAGATGA TTCATAACTC TGTATAGGTG ACAGCTGCTT 960
ATAAAAGCAT CTTAGCAGAT AAGCCTATTA AAATTGTGCT TTTGTAACA
                                                                 1009
```

- (2) INFORMATION ON SEQ ID NO. 544:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2834 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 544:

CACTTTGCGG	GCGGCACTTT	TTCCAGGTTG	TTAATCCAGC	TAATGGAGAA	GGATAGATGC	60
ACGCTACTTG	GTTTAGAAAA	AAAAACAAAA	ATGAGCAAAC	GAGACGCCCC	TTCCGTTTTA	120
TGATAACTAA	GCTGCAGGGA	AATAAATCGG	CTGGCCCTAC	TGCAATCTAC	TGCACTCGAG	180
AAACATCACA				AAGTGAGCCT		240
ATTACTGAAG				CAACACAATG		300
				GCTTCGATTA		360
				CTTACTTCCC		420
		CGTAGGGAAA	TAAAATCCCA	GGGCAAGTCC	ACCATGGACT	480
CCTTTACTCT	CATAATGCAG	ACGTACAACA	GAACAGATCT	CTTATTGAAA	CTTTTAAATC	540
				ATGGAACAAT		
				TATCCCTGTG		660
				TCCTGAACTG		720
				AGACCTTGTT		780
				TCCTAGAAAG		840
				AGCACCAGGG		900
				CAATAGCAAA		960
				TGATACTCAA		1020
				GACTTCAGGG		
				TGGCTATTCT		
				TAAGCTTGTT		
				GTTTGGTTTT		
				AACCTGAAAA		
				ATCATGAATT		
				GGATATAAAA		
				CTTATGAAGA		
				CCTGAGACTG		
				CTGTTTCTAG		
				TGTTTTAATT		
				ATGTAAGAAG		
				TTCCTTGTGG		
				GTAACCATCC		
				AGCTGAAGAA		
				AACAATATAC		
	CTTATATGCA				TAGTGCATTT	
				TATTTTACAT		
				AGAACTGGCA		
				ATCTTCTGGA		
				AAAAGATCCA		
				TAAGAACCCA		
				TGCCTACTCT		
AATTAGCGTC	TGTGTTTCAC	CCATTGTCTG	TGTTTAGTCC	TTGTTCACCA	CTAAGGCAAG	2460
GAATTCTTAA	CTAGGCCTCT	GTTTACCAAC	TTCTCTTTCT	CCTCCTTTCC	CTCTTATTCC	2520
TCCTTCTCCT	CTTCCTTCTT	ATATAATGCT	AGTATATTCT	CAAAATTGCA	AAGCTGTGAG2	2580
				CTTTGTGCAT		
				TTAATGCAGT		
				ATAATGTCAG		
		TTTTTGCCTC	TTATGATTCC	TCTAGCAGAT		
AACTTTTGCC	ATCC				:	2834

## (2) INFORMATION ON SEQ ID NO. 545:

(i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 2319 base pairs
- (B) TYPE: Nucleic acid
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 545:

```
AACGTCATTG GTAACAGCAA GTCCCAGACA CCAGCCCCCA GTTCCGAAGT GGTTTTGGAT
TCAAAGAGAC AAGTTGAGAG AGAGGAAACC AACCATGAGA TCCAGGAGGG GAAAGAAGAG 120
CCTCAGAGGG ACAGGCTGCC GCAGGAGCCA GGCCGGGAGC AGGTNGTGGA AGACAGACCT 180
GTAGGTGGAA GAGGCTTCGG GGGAGCCGGA GAACTGGGCC AGACCCCACA GGTGCAGGCT 240
GCCCTGTCAG TGAGNCCAGG AAAATCCAGA GATGGAGGGC CCTGAGCGAG ACCAGCTTGT 300
CATCCCCGAC GGACAGGAG AGGAGCAGGA AGCTGCCGGG GAAGGGAGAA ACCAGCAGAA 360
ACTGAGAGGA GAAGATGACT ACAACATGGA TGAAAATGAA GCAGAATCTG AGACAGACAA 420
GCAAGCAGCC CTGGCAGGGA ATGACAGAAA CATAGATGTT TTTAATGTTG AAGATCAGAA 480
AAGAGACACC ATAAATTTAC TTGATCAGCG TGAAAAGCGG AATCATACAC TCTGAATTGA 540
ACTGGAATCA CATATTTCAC AACAGGGCCG AAGAGATGAC TATAAAATGT TCATGAGGGA 600
CTGAATACTG AAAACTGTGA AATGTACTAA ATAAAATGTA CATCTGAANG ATGATTATTG 660
TGNAAATTTT AGTATGCACT TTGTGTAGGA AAAAATGGNA ATNGGTCTTT TAAACAGCTT 720
TTGGGGGGNT ACTTTNGGAA GTGTCTNAAT AANGGTGTCA CNAATTTTTG GNTAGTANGG 780
TATTTCGTGA GNAAGNNTTC AACACCAAAA CTNGGAACAT AGTTCTCCTT CAAGTGTTGG 840
CGACANCGGG NNGCTTCCTG ATTCTGGAAT ATAACTTTGT GTAAATTAAC AGCCACCTAT 900
AGAAGAGTCC ATCTGCTGTG AAGGAGAGAE AGAGAACTCT GGGTTCCGTC GTCCTGTCCA 960
CGTGCTGTAC CAAGTGCTGG TGCCAGCCTG TTACCTGTTC TCACTGAAAA GTCTGGCTAA1020
TGCTCTTGTG TAGTCACTTC TGATTCTGAC AATCAATCAA TCAATGGNCC TAGANGCACT1080
GACTGTTAAC ACAAACGTCA CTAGNCAAAG TAGNCAACNA GCTTTAAGTC TAAATACAAA1140
GCTGTTCTGT GTGAGAATTT TTTAAAAGGC TACTTGTATA ATAACCCTTG TCATTTTTAA1200
TGTACAAAAC GCTATTAAGT GGCTTAGAAT TTGAACATTT GTGGNTCTTT ATTTACTTTG1260
CTINCGIGIG IGGGCAAAGC AACATCIICC CIAAATATAI AITACCAAGA AAANGCAAGA1320
AGCAGATTAG GNTTTTTGAC NNAAAACANA ACAGGCCNNA AAAGGGGGCN TGNACCTGGA1380
GCAGAGCATG GTGNAGAGGC AAGGCATGNA GAGGGCAAGT TTGTTGTGGA CAGATCTGTG1440
CCTACTTTAT TACTGGAGTA AAANGAAAAC AAAGTTNCAT TGATGTCGNA AGGATATATA1500
CAGTGTTNAG AAATTNNAGG NACTNGTTTN AGAAAAACAG GAATACNNAA TGGNTTGNTT1560
TTTATCATAN GTGNTACACA TTTAGCTTGT GGNTAAATNG ACTCACAAAA CTGANTTTTA1620
AAATCAAGTT AATGTGAATT TTGAAAATTA CTACTTAATC CTAATTCACA ATAACAATGG1680
CATTAAGGTT TGACTTGAGT TGGTTCTTAG TATTATTTAT GGTAAATAGG CTCTTACCAC1740
TTGCNAAATA ACTGGNCCAC ATCATTAATG ACTGACTTCC CNAGTAANGG CTCTCTAAGG1800
GGTAAGTNAG GAGGATCCAC AGGATTTGAG ATGCTAAGGC CCCAGAGATC GTTTGATNCC1860
AACCCTCTTA TTTTCNAGAG GGGAAAATGG GGCCTNAGNA AGTTACANGA GCATCNTNAG1920
CNTGGTGCGC TGGNCACCCC NTGGCCNTCN ACACNAGACT CCCNGAGTAG CTGGGANCTA1980
CAGGCACACA GTCACTGAAG CAGGCCCNTG TTTGCAATTC ACGTTGCCNA CCTNCCAACN2040
TTAAACATTN CTTCATATGT GATGTCCTTA GTCACNTAAG GTTAAANCTT TNCCCACCCA2100
GAAAAGGCAA CTTAGATAAA ATCTTAGAGT ACTTTCATAC TCTTCTAANG TCCTCTTCCA2160
GCCTCACTTT GAGTCCTCCT TNGGGGTTGA TNNNAGGAAT TTTCTCTTGC TTTCTCAATA2220
AAGTCTCTAT TCATCTCATG TTTAATTTGT ACGCATAGAA TTGCTGAGAA ATAAAATGTT2280
CTGTTCAACT TANNNNAAA AAAAAAAAA AAAAAAAA
                                                                  2319
```

- (2) INFORMATION ON SEQ ID NO. 546:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2456 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 546:

```
TGCAACTGTG CACCCAGCTT GCCAGATTTT TCCCCATTAC ACCCCCAGTG TGGCATATCC
TTGGTCCCCA GAGGCACACC CCTTGATCTG TGGACCTCCA GGCCTGGACA AGAGGCTGCT 120
ACCAGAAACC CCAGGCCCCT GTTACTCAAA TTCACAGCCA GTGTGGTTGT GCCTGACTCC 180
TCGCCAGCCC CTGGAACCAC ATCCACCTGG GGAGGGGCCT TCTGAATGGA GTTCTGACAC 240
CGCAGAGGGC AGGCCATGCC CTTATCCGCA CTGCCAGGTG CTGTCGGCCC AGCCTGGCTC 300
AGAGGAGGAA CTCGAGGAGC TGTGTGAACA GGCTGTGTGA GATGTTCAGG CCTAGCTCCA 360
ACCAAGAGTG TGCTCCAGAT GTGTTGGGGC CCTAACTTGG CACAGAGTCC TGCTCCTGGG 420
AAAGGAAAGG ACCACAGCAA ACACCATTCT TTTTGCCGTA CTTCCTAGAA GCACTGGAAG 480
AGGACTGGTG ATGGTGGGAG GGTGAGAGGG TGCCGTTTTC CTGCTCCAGC TCCAGACCTT 540
GTCTGCAGAA AACATCTGCA GTGCAGCAAA TCCATGTCCA GCCAGGCAAC CAGCTGCTGC 600
CTGTGGCGTG TGTGGGCTGG ATCCCTTGAA GGCTGAGTTT TTGAGGGCAG AAAGCTAGCT 660
ATGGGTAGCC AGGTGTTACA AAGGTGCTGC TCCTTCTCCA ACCCCTACTT GGTTTCCCTC 720
ACCCCAAGCC TCATGTTCAT ACCAGCCAGT GGGTTCAGCA GAACGCATGA CACCTTATCA 780
CCTCCCTCCT TGGGTGAGCT CTGAACACCA GCTTTGGCCC CTCCACAGTA AGGCTGCTAC 840
ATTCAGGGGC AACCCTGGGC TCTATCATTT TCCTTTTTTG CCAAAAGGAC CAGTAGCATA 900
GGTGAGCCCT GAGCACTAAA AGGAGGGGTC CCTGAAGCTT TCCCACTATA GTGTGGAGTT 960
CTGTCCCTGA GGTGGGTACA GCAGCCTTGG TTCCTCTGGG GGTTGAGAAT AAGAATAGTG1020
GGGAGGGAAA AACTCCTCCT TGAAGATTTC CTGTCTCAGA GTCCCAGAGA GGTAGAAAGG1080
AGGAATTTCT GCTGGACTTC ATCTGGGCAG AGGAAGGATG GAATGAAGGT AGAAAAGGCA1140
GAATTACAGC TGAGCGGGGA CAACAAAGAG TTCTTCTCTG GGAAAAGTTT TGTCTTAGAG1200
CAAGGATGGA AAATGGGGAC AACAAAGGAA AAGCAAAGTG TGACCCTTGG GTTTGGACAG1260
CCCAGAGGCC CAGCTCCCCA GTATAAGCCA TACAGGCCAG GGACCCACAG GAGAGTGGAT1320
TAGAGCACAA GTCTGGCCTC ACTGAGTGGA CAAGAGCTGA TGGGCCTCAT CAGGGTGACA1380
TTCACCCCAG GGCAGCCTGA CCACTCTTGG CCCCTCAGGC ATTATCCCAT TTGGAATGTG1440
AATGTGGTGG CAAAGTGGGC AGAGGACCCC ACCTGGGAAC CTTTTTCCCT CAGTTAGTGG1500
GGAGACTAGC ACCTAGGTAC CCACATGGGT ATTTATATCT GAACCAGACA GACGCTTGAA1560
TCAGGCACTA TGTTAAGAAA TATATTTATT TGCTAATATA TTTATCCACA AATGTGGTCT1620
GGTCTTGTGG TTTTGTTCTG TCGTGACTGT CACTCAGGGT AACAACGTCA TCTCTTTCTA1680
CATCAAGAGA AGTAAATTAT TTATGTTATC AGAGGCTAGG CTCCGATTCA TGAAAGGATA1740
GGGTAGAGTA GAGGGCTTGG CAATAAGAAC TGGTTTGTAA GCCCCTAAAA GTGTGGCTTA1800
GTGAGATCAG GGAAGGAGAA AGCATGACTG GATTCTTACT GTGCTTCAGT CATTATTATT1860
ATACTGTTCA CTTCACACAT TATCATACTT CAGTGACTCA GACCTTGGGC AAATACTCTG1920
TGCCTCGCTT TTTCAGTCCA TAAAATGGGC CTACTTAATA GTTGTTGCAG GACTTACATG1980
AGATAATAGA GTGTAGAAAA TATGTTCCAA AGTGGAAAGT TTTATTCAGT GATAGAAAAC2040
ATCCAAACCT GTCACAGAGC CCATCTGAAC ACAGCATGGG ACCGCCAACA AGAAGAAAGC2100
CCGCCCGGAA GCAGCTCAAT CAGGAGGCTG GGCTGGAATG ACAGCGCAGC GGGGCCTGAA2160
ACTATTTATA TCCCAAAGCT CCTCTCAGAT AAACACAAAT GACTGCGTTC TGCCTGCACT2220
CGGGCTATTG CGAGGACAGA GAGCTGGTGC TCCATTGGCG TGAAGTCTCC AGGGCCAGAA2280
GGGGCCTTTG TCGCTTCCTC ACAAGGCACA AGTTCCCCTT CTGCTTCCCC GAGAAAGGTT2340
TGGTAGGGGT GGTGGTTTAG TGCCTATAGA ACAAGGCATT TCGCTTCCTA GACGGTGAAA2400
TGAAAGGGAA AAAAAGGACA CCTAATCTCC TACAAATGGT CTTTAGTAAA GGAACC
                                                                 2456
```

- (2) INFORMATION ON SEQ ID NO. 547:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2218 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual

ESTs by assembling and editing

- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 547:

```
GAGGAAAAAG AACAATGAAC AGCAACGATC TTGACTGTGC AACTCAGACA TTCCTGCAGA 60
AAAGACATAT GTTGCTTTAC AAGAAGGCCA AAGAACTATG GGGCCTTCCC AGCATTTGAC 120
TGTTCATTGC ATAGAATGAA TTAAATATCC AGTTACTTGA ATGGGTATAA CGCATGAATG 180
TGTGATTTTA TTAGGGGCAT CTGCCAATTC TCTCACTGTG GTTCCTTCTC TGACTTTGCC 240
TGTTCATCAT CTAAGGAGGC TAGATCCTTC GCTGACTTCA CCATTCCTCA AACCTGTAAG 300
TTTCTCACTT CTTCCAAATT GGCTTTGGCT CTTTCTTCAA CCTTTCCATT CAAGAGCAAT 360
CTTTGCTAAG GAGTAAGTGA ATGTGAAGAG TACCAACTAC AACAATTCTA CAGATAATTA 420
GTGGATTGTG TTGTTTGTTG AGAGTGAAGG TTTCTTGGCA TCTGGTGCCT GATTAAGGCT 480
TGAGTATTAA GTTCTCAGCA TATCTCTCTA TTGTCTTGAC TTGAGTTTGC TGCATTTTCT 540
ATGTGCTGTT CGTGACTTGG AGAACTTAAA GTAATCGAGC TATGCCAACT TGGGGTGGTA 600
ACAGAGTACT TCCCACCACA GTGTTGAAAG GGAGAGCAAA GTCTTATGGA TAAACCCTCC 660
TTTCTTTGG GGACACATGG CTCTCACTTG AGAAGCTCAC CTGTGCTGAA TGTCCACATG 720
GTCACTAAAC ATGTTATCCT TAAACCCCCC GTATGCCTGA GTTGAAAGGG CTCTCTCTTA 780
TTAGGTTTTC ATGGGAACAT GAGGCAGCAA ATCTATTGCT AAGACTTTAC CAGGCTCAAA 840
TCATCTGAGG CTGATAGATA TTTGACTTGG TAAGACTTAA GTAAGGCTCT GGCTCCCAGG 900
GGCATAAGCA ACAGTTTCTT GAATGTGCCA TCTGAGAAGG GAGACCCAGG TTATGAGTTT 960
TCCTTTGAAC ACATTGGTCT TTTCTCAAAG TTCCTGCCTT GCTAGACTGT TAGCTCTTTG1020
AGGACAGGGA CTATGTCTTA TCAATCACTA TTATTTTCCT GTTACCTAGC ATGGGACAAG1080
TACACACAC ATATTTGTGT AGTCTTCTAA AAGACTCCTC TGATTGGGAG ACCATATCTA1140
TAATTGGGAT GTGAATCATT TCTTCAGTGG AATAAGAGCA CAACGGCACA ACCTTCAAGG1200
ACATATTATC TACTATGAAC ATTTTACTGT GAGACTCTTT ATTTTGCCTT CTACTTGCGC1260
TGAAATGAAA CCAAAACAGG CCGTTGGGTT CCACAAGTCA ATATATGTTG GATGAGGATT1320
CTGTTGCCTT ATTGGGAACT GTGAGACTTA TCTGGTATGA GAAGCCAGTA ATAAACCTTT1380
GACCTGTTTT AACCAATGAA GATTATGAAT ATGTTAATAT GATGTAAATT GCTATTTAAG1440
TGTAAAGCAG TTCTAAGTTT TAGTATTTGG GGGATTGGTT TTTATTATTT TTTTCCTTTT1500
TGAAAAATAC TGAGGGATCT TTTGATAAAG TTAGTAATGC ATGTTAGATT TTAGTTTTGC1560
AAGCATGTTG TTTTTCAAAT ATATCAAGTA TAGAAAAAGG TAAAACAGTT AAGAAGGAAG1620
GCAATTATAT TATTCTTCTG TAGTTAAGCA AACACTTGTT GAGTGCCTGC TATGTGCACG1680
GCATGGGCCC ATATGTGTGA GGAGCTTGTC TAATTATGTA GGAAGCAATA GATCTCGGTA1740
GTTACGTATT GGGCAGATAC TTACTGTATG AATGAAAGAA CATCACAGTA ATCACAATAT1800
CAGAGCTGAG TTATCCCCAG TGTAGCTTCG TTGGGGATTC CAGTTTCTGG GAACGAGAGT1860
TAGGGCCATT TTATTTAAAA GAAACTCCCG GTTGAGACCG GTTCTTATGA ACCTCTGAAA1920
CGTACAAGCC TTCACAAGTT TAACTAAATT GGGATTAATC TTTCTGTAGT TATCTGCATA1980
ATTCTTGTTT TTCTTTCCAT CTGGCTCCTG GGTTGACAAT TTGTGGAAAC AACTCTATTG2040
CTACTATTTA AAAAAAATCA GAAATCTTTC CCTTTAAGCT ATGTTAAATT CAAACTATTC2100
CTGCTATTCC TGTTTTGTCA AAGAATTATA TTTTTCAAAA TATGTTTATT TGTTTGATGG2160
```

## (2) INFORMATION ON SEQ ID NO. 548:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 2196 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 548:

CGGCGCGATG CGCGGAGACC CCCGCGGGGG CGGCGGGGC CGTGAGCCCC GATGAGGCCC 60 GAGCGTCCCC GGCCGCGCG CAGCGCCCCC GGCCCGATGG AGACCCCGCC GTGGGACCCA 120

```
GCCCGCAACG ACTCGCTGCC GCCCACGCTG ACCCCGGCCG TGCCCCCCTA CGTGAAGCTT 180
GGCCTCACCG TCGTCTACAC CGTGTTCTAC GCGCTGCTCT TCGTGTTCAT CTACGTGCAG 240
CTCTGGCTGG TGCTGCGTTA CCGCCACAAG CGGCTCAGCT ACCAGAGCGT CTTCCTCTTT 300
CTCTGCCTCT TCTGGGCCTC CCTGCGGACC GTCCTCTTCT CCTTCTACTT CAAAGACTTC 360
GTGGCGGCCA ATTCGCTCAG CCCCTTCGTC TTCTGGCTGC TCTACTGCTT CCCTGTGTGC 420
CTGCAGTTTT TCACCCTCAC GCTGATGAAC TTGTACTTCA CGCAGGTGAT TTTCAAAGCC 480
AAGTCAAAAT ATTCTCCAGA ATTACTCAAA TACCGGTTGC CCCTCTACCT GGCCTCCCTC 540
TTCATCAGCC TTGTTTTCCT GTTGGTGAAT TTAACCTGTG CTGTGCTGGT AAAGACGGGA 600
AATTGGGAGA GGAAGGTTAT CGTCTCTGTG CGAGTGGCCA TTAATGACAC GCTCTTCGTG 660
CTGTGTGCCG TCTCTCTC CATCTGTCTC TACAAAATCT CTAAGATGTC CTTAGCCAAC 720
ATTTACTTGG AGTCCAAGGG CTCCTCCGTG TGTCAAGTGA CTGCCATCGG TGTCACCGTG 780
ATACTGCTTT ACACCTCTCG GGCCTGCTAC AACCTGTTCA TCCTGTCATT TTCTCAGAAC 840
AAGAGCGTCC ATTCCTTTGA TTATGACTGG TACAATGTAT CAGACCAGGC AGATTTGAAG 900
AATCAGCTGG GAGATGCTGG ATACGTATTA TTTGGAGTGG TGTTATTTGT TTGGGAACTC 960
TTACCTACCA CCTTAGTCGT TTATTTCTTC CGAGTTAGAA ATCCTACAAA GGACCTTACC1020
AACCCTGGAA TGGTCCCCAG CCATGGATTC AGTCCCAGAT CTTATTTCTT TGACAACCCT1080
CGAAGATATG ACAGTGATGA TGACCTTGCC TGGAACATTG CCCCTCAGGG ACTTCAGGGA1140
GGTTTTGCTC CAGATTACTA TGATTGGGGA CAACAAACTA ACAGCTTCCT GGCACAAGCA1200
GGAACTTTGC AAAGACTCAA CTTTGGATCC TGACAAACCA AGCCTTGGGT AGCATCAGTT1260
AACAGTTTTA TGGACGATTC CTCAGATGAA AAGCTTCAGA AAAGCATAGT GACAGCTGAA1320
TTTTTAGGGC ACTTTCCTT AAGAAATAGA ACTTGATTTT TATTTGTTAC AGGTTTCCAA1380
TGGCCCCATA GGAATAAGCA ATAATGTAGA CTGATAAACC CTTATTTTAG TACTAAAGAG1440
GGAGCCTTGC TATTTCAGTG GGTATAATTT AAACTTTTTA AAGAAAATCT GTACTTTTAT1500
AAAGATGTAT TTTGTATAAC TTAAATAATA ATGCTAAAGT ATACTAGGGT TTTTTTTTCT1560
TGAGAATGTT ACTGCAATCA TGTTGTAGTT TGCACAGACT TTTATGCATA ATTCACTTTA1620
AAAATATAGA ATATATGGTC TAATAGTTTT TTAAAGCTTT TGGACTAAAG TATTCCACAA1680
ATCTTACCTC TTTAGGTCAC TGATGGTCAC TCCGATTCTG AGTGCCACAT TGGTAGACTC1740
CTAAAATACA GTTGACAACT TAGCCAATTG CAACTCCAGT GTTGATAATT AAAATGAAAT1800
GGTAAAGCAG CAGACTGTAA GGTCTTTAGA GATTTTTTTT TTAAGGTTCA GGCCGTAGGT1860
TCCTCAAGGA ATCTCTTAAG TTTTGCCCAA AGACTGGTAC TTCCTTTCAG TAGGGCGCTA1920
ATGTATACAC ATTAATGATA AGTTGATAAC ATTAAAAATG TAGCTGACTT ATCCTATTAA1980
ACCTCCTCTG CTATGTTCAC AGAACCCCCA TAACTTTTTT TCAGCCTAAT GAAATCTAAT2040
ATGCATTACC TCAGGGCCAC ATCAAGAATA CACCCCTTTC CGAACTCACT GAATGTTCAT2100
TACATTCAAG GAGAAAATAA GAGGGTCCAT AAAGGGCATT AATAACAAAT ACCCCAAGCC2160
GTTGAGCTAA GACTATGTGG AATCCTAATA GTTTTT
```

- (2) INFORMATION ON SEQ ID NO. 549:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 701 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 549:

AATTAAAATA AATAGAAACA TACGGAGATT CTTTTATGTT GGATTTATTA TACCCTCCAC 60 CATTTTGGTC CCTGAAAAGG GAAAAGATAC ACGGTCGAGT AGTACAGGTA TGTGTTTCCC120 ACTACACATT ATGGCTATAA TGGAGTTGAA TTGCAAACAG TAAAATTTTG TTTTGGATTG180 GTTTCCCCTG ATCCCCCAG ACAGGAGCTT CCTCTCCCAC CCTACCTGCC TGCCCTTAAG240 GCTACACACA GTGACACCAG AATAGCTACT TGTTTTTTTA TGTTACCAGT GAGTAACTTG360 TTTATCCTTG TATGTAGAAA CTAATTTCAC CATGATCACA GATCTGTGTA ACATCTCTAG420 TTTGAATTTC CACACATTT TAAAATGTCT ACTAGAAAAC TTACACCTTT TTGTTCCAAG480 GTGCTCTTCA TCTATAAAAC CGTGGGCATA CTTCAGTGTT CTTCTGAGGC CAAATTTTGT540 GGGTCGTGGG GGACAATTTT GTATTAACAT ACGTTATTTT GTAATTCATT CTCCAAATTT600

GAAGCTTTAT TAAAGGTATT CTATTTCCAC TGGCTTCCCT TAACTTGAAT AAAATTTACT660

- (2) INFORMATION ON SEQ ID NO. 550:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2214 base pairs
    - (B) TYPE: Nucleic acid

CCCAGTGCCG TGGCTCATGC CTGCTGCAAT CCCAGCCCTT T

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO

## (vi) ORIGIN:

(A) ORGANISM: HUMAN

(C) ORGAN:

## (vii) OTHER ORIGIN:

(A) LIBRARY: cDNA library

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 550:

```
GCTAAAGAGG AGGATGCTAT ACTTTTCTAA ATGGCAAGAG ATGGGGAGAG AAGGGGATTA 60
AGAGTTGACC CGCAACCTCC CGGTGGATTC TTTGTTCTTA CCAGATCTCT TGGCCACTCC 120
CCTATTCTGA AGTCGTCTTG GCTCTCTTGA CTGCTCCCCT ATTCTGAAGT CGTCTTGGCT 180
CTCTTGACTA CTCCCCTATT CTGAAGTCGT CTTGGCTCTC CTGACTACAC TATTTCAAGG 240
AATGATCACC AAGACACACA AAGTAGACCT TGGGCTCCCA GAGAAGAAAA AGAAGAAGAA 300
AGTGGTCAAA GAACCAGAGA CTCGATACTC AGTTTTAAAC AATGATGATT ACTTTGCTGA 360
TGTTTCTCCT TTAAGAGCTA CATCCCCCTC NTAAGAGTGT GGCCCATGGG CAGGCACCTG 420
AGATGCCTCT AGTGAAGAAA AAGAAGAAGA AAAAGAAGGG TGTCAGCACC CTTTGCGAGG 480
AGCATGTAGA ACCTGAGACC ACGCTGCCTG CTAGACGGAC AGAGAAGTCA CCCAGCCTCA 540
GGAAGCAGGT GTTTGGCCAC TTGGAGTTCC TCAGTGGGGA AAAGAAAAN TAAGAAGTCA 600
CCTCTAGCCA TGTCCCATGC CTCTGGGGTG AAAACCTCCC CAGNACCCNT AGACAGGGTG 660
AGGAGGAAAC CAGAGTTGGC AAGAAGCTCA AAAAANCACA AGAAGGAAAA AAAGGGGGNC 720
CCAGGACCCC ACNAGCCTTC TCGGTCCAGG ACCCTTGGTT CTGTGAGGCC AGGGAGGCCA 780
GGGATGTTGG GGACACTTGC TNCAGTGGGG AAGAAGGATG AGGAACAGGC AGCCTTGGGG 840
NCAGAAACGG AAGNCGGAAG AGCCCCAGAG AACACAATGG GAAGGTGAAG AAGAAAAAA 900
AAATCCACCA GGAGGGAGAT GCCCTCCCAG GCCACTCCAA GCCCTCCAGG TCCATGGAGA 960
GCAGCCCTAG GAAAGGAAGT AAAAAGAAGC CAGTCAAAGT TGAGGCTCCG GAATACATCC1020
CCATAAGTGA TGACCCTAAG TCCTCCGCAA AGAAAAAGAT GAAGTCCAAA AAGAAGGTAG1080
AGCAGCCAGT CATCGAGGAG CCAGCTCTGA AAAGGAAGAC GAGGAAGAAG AGGAAAGAGA1140
GTGGGGTAGC AGGAGACCCT TGGAGGGAGG AAACAGACAC GGACTTAGAG GTGGTGTTGG1200
AAAAAAAGG CAACATGGAT GAGGCGCACA TAGACCAGGT GAGGCGAAAG GCCTTGCAAG1260
AAGAGATCGA TCGCGAGTCA GGCAAAACGG AAGCTTCTGA AACCAGGAAG TGGACGGGAA1320
CCCAGTTTGG CCAGTGGGAT ACTGCTGGTT TTGAGAACGA GGACCAAAAA CTGAAATTTC1380
TCAGACTTAT GGGTGGCTTC AAAAACCTGT CCCCTTCGTT CAGCCGCCCC GCCAGCACGA1440
TTGCAAGGCC CAACATGGCC CTCGGCAAGA AGGCGGCTGA CAGCCTGCAG CAGAATCTGC1500
AGCGGGACTA CGACCGGGCC ATGAGCTTGG AAGTACAGCC GGGGAGCCGG CTTGCGGTGT1560
TCTCCACCGC CCCCAACAAG ATCTTTTACA TTGACAGGAA CGCTTCCAAG TCAGTCAAGC1620
TGGAAGATTA AACTCTAGAG TTTTGTCCCC CCAAAACTGC CACAATTGCT TTGATTATTC1680
CATTTATGCT GGAGATTACA AATTTTTTTT GGTGAACAAA TCAGATCTTG GTGAGGACCT1740
CGAGCAGTAA GATATAAATA ACTCCCNATA AGCTTAGNCG TTCCCAGTAA TGGAACACTA1800
GGCATAAANT GGTTTATTNC AGTTGTGCAA ATGAAAGCCA TCTGACAGTT GGCTNCACAT1860
TGAACACCTG TGGAGATTAA GGACGAGGAC AACTATATTG ATGGGCTTGG ATGAACTGGG1920
GCAGGGCAGC TCATATTTCG GGAGCCAGGA GAACGAGTGA GTGCTAAAAC CTCCTGTTTT1980
CTGTGTTAAA CATTCCGTCC CTGTTTGAGA CATCAGTATG TACAGTTAAC TTTTGTTGAG2040
TGTTTAGCAG GTACTAGGGA CATACTAGTG TTTTCCTTAA TGTATTTAAT CTTCATAATT2100
ATGAAATGGG TGCTATTATT AGCCCCATCT TATAGATGAG GCAACTGAGG TTCAGGGATA2160
AAGTAATAAA ATTGCCTGGG GTCACCCAGC CACTAAAAAA AAAAAAAAA AAAA
```

- (2) INFORMATION ON SEQ ID NO. 551:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 1434 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 551:

```
GCGCGGCCGG CGCCTGCGGG GCGAGAGGGT CGGGGCGAAG GGGAAGCTAC GTCCCGGAGG
TGCGGTGTGG GGCACCGGGC GGGGCCGCGG GAACCGGCGC CCCACGGAGC TGCTGCTGTC 120
AGACCAACCC CGGGCCCCCA TCATCACTGC GCCGCGCTTT CAGGCGCCGA GAACTACCGT 180
TCCCGGCATG CCATGAAATT GGCCTCGGCG CTGAGGCGGG GTCCGGCCCT CCACCCGCTC 240
CCGCCGCGCG CGAATCGCGG TCGCGAGCCA TGGAGGAGGA GGCATCGTCC CCGGGGCTGG 300
GCTGCAGCAA GCCGCACCTG GAGAAGCTGA CCCTGGGCAT CACGCGCATC CTAGAATCTT 360
CCCCAGGTGT GACTGAGGTG ACCATCATAG AAAAGCCTCC TGCTGAACGT CATATGATTT 420
CTTCCTGGGA ACAAAAGAAT AACTGTGTGA TGCCTGAAGA TGTGAAGAAC TTTTACCTGA 480
TGACCAATGG CTTCCACATG ACATGGAGTG TGAAGCTGGA TGAGCACATC ATTCCACTGG 540
GAAGCATGGC AATTAACAGC ATCTCAAAAC TGACTCAGCT CACCCAGTCT TCCATGTATT 600
CACTTCCTAA TGCACCCACT CTGGCAGACC TGGAGGACGA TACACATGAA GCCAGTGATG 660
ATCAGCCAGA GAAGCCTCAC TTTGACTCTC GCAGTGTGAT ATTTGAGCTG GATTCATGCA 720
ATGGCAGTGG GAAAGTTTGC CTTGTCTACA AAAGTGGGAA ACCAGCATTA GCAGAAGACA 780
CTGAGATCTG GTTCCTGGAC AGAGCGTTAT ACTGGCATTT TCTCACAGAC ACCTTTACTG 840
CCTATTACCG CCTGCTCATC ACCCACCTGG GCCTGCCCCA GTGGCAATAT GCCTTCACCA 900
GCTATGGCAT TAGCCCACAG GCCAAGCAAT GGTTCAGCAT GTATAAACCT ATCACCTACA 960
ACACAAACCT GCTCACAGAA GAGACCGACT CCTTTGTGAA TAAGCTAGAT CCCAGCAAAG1020
TGTTTAAGAG CAAGAACAAG ATCGTAATCC CAAAAAAGAA AGGGCCTGTG CAGCCTGCAG1080
GTGGCCAGAA AGGGCCCTCA GGACCCTCCG GTCCCTCCAC TTCCTCCACT TCTAAATCCT1140
CCTCTGGCTC TGGAAACCCC ACCCGGAAGT GAGCACCCCT CCCTCCAACT CCCTACCAGC1200
TCCAGAGTGG TGGTTTCCAT GCACAGATGG CCCTAGGGGT GACCTCCAGT TTTGCGTGTG1260
GACCGTAGGC CTCTTTCTAG TTGAATGACC AAAATTGTAA GGCTTTTAGT CCCACCGACA1320
TTAGCCAGGC TCGTAGTGAG GCCTCCAGAG CAGGTTGTGC TGTCCCCTGC CTCTGGAAGC1380
AATGGGGAAT GTGGAATCAA GACAATGCCC AAAAAATTTT TAATGCAGCT GGTC
```

- (2) INFORMATION ON SEO ID NO. 552:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 2434 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 552: CCCGGAGAAG GTGGAGGGAG ACGAGAAGCC GCCGAGAGCC GACTACCCTC CGGGCCCAGT CTGTCTGTCC GTGGTGGATC TAAGCCTCAT CTGTATCCTC TTGTGATGGC GTGAAGGAAA 120 GCCATGGCAG ATTTCCAGCC TGGTGATGCT GTACAGAACA CAGGTGGCCT GCTTCCATGC 180 CTCCTCAGCT TCAAGAACT AGAATGAACC GAAGCATTCC TGTGGAGGTT GATGAATCAG 240 AACCATACCC AAGTCAGTTG CTGAAACCAA TCCCAGAATA TTCCCCGGAA GAGGAATCAG 300 AACCACCTGC TCCAAATATA AGGAACATGG CACCCAACAG CTTGTCTGCA CCCACAATGC 360 TTCACAATTC CTCCGGAGAC TTTTCTCAAG CTCACTCAAC CCTGAAACTT GCAAATCACC 420 AGCGGCCTGT ATCCCGGCAG GTCACCTGCC TGCGCACTCA AGTTCTGGAG GACAGTGAAG 480 ACAGTTTCTG CAGGAGACAC CCAGGCCTGG GCAAAGCTTT CCCTTCTGGG TGCTCTGCAG 540 TCAGCGAGCC TGCGTCTGAG TCTGTGGTTG GAGCCCTCCC TGCAGAGCAT CAGTTTTCAT 600 TTATGGAAAA ACGTAATCAA TGGCTGGTAT CTCAGCTTTC AGCGGCTTCT CCTGACACTG 660 GCCATGACTC AGACAAATCA GACCAAAGTT TACCTAATGC CTCAGCAGAC TCCTTGGGCG 720 GTAGCCAGGA GATGGTGCAA CGGCCCCAGC CTNCACAGGA ACCGAGCAGG CCTGGATCTG 780 CCAACCATAG ACACGGGATA TGATTCCCAG CCCCAGGATG TCCTGGGCAT CAGGCAGCTG 840 GAAAGGCCCC TGNCCCTCAC CTCCGTGTGT TACCCCCAGG ACCTCCCCAG ACCTCTCAGG 900 TCCAGGGAGT TCCCTCAGTT TGAACCTCAG AGGTATCCAG CATGTGCACA GATGCTGCCT 960 CCCAATCTTT CCCCACATGC TCCATGGAAC TATCATTACC ATTGTCCTGG AAGTCCCGAT1020 CACCAGGTGC NCATATGGCC ATGACTACCC TCGAGCAGCC TACCAGCAAG TGATCCAGCC1080 GGCTCTGCCT GGGNCAGCCC CTNNGCCTGG AGCCAGTGTG AGAGGCCTGC ACCCTGTGCA1140 GAANNGGTTA TCCTGAATTA TCCCAGCCCC TGGGACCAAG AAGAGAGGCC CGCACAGAGA1200 GACTGCTCCT TTCCGGGGCT TCCAAGGCAC CAGGACCAGC CACATCACCA GCCACCTAAT1260 AGAGCTGGTG CTCCTGGGGA GTCCTTGGAG TGCCCTGCAG AGCTGAGACC ACAGGTTCCC1320 CAGCCTCCGT CCCCAGCTGC TGTGCCTAGA CCCCCTAGCA ACCCTCCAGC CAGAGGAACT1380 CTAAAAACAA GCAATTTGCC AGAAGAATTG CGGAAAGTCT TTATCACTTA TTCGATGGAC1440 ACAGCTATGG AGGTGGTGAA ATTCGTGAAC TTTTTGTTGG TAAATGGCTT CCAAACTGCA1500 ATTGANCANT ATTTGAGGAT AGAATCCGAG GCATTGATAT CATTNAAATG GATGGAGCGC1560 TACCTTANGG GATAAGACCG TGATGATAAT CGTAGCAATC AGCCCCNAAA NTACAAANNC1620 AGGACGINGG NAAGGNCGCI GANGICNGCA GCIGGACGAG GAIGAGCAIG GCIIACAIAC1680 TAAGTACATT CATCGAATGA TGCAGATTGA GTTCATAAAA CAAGGAAGCA TGAATTTCAG1740 ATTCATCCCT GTGCTCTTCC CAAATGCTAA GAAGGAGCAT GTGCCCACCT GGCTTCAGAA1800 CACNTCATGT CTACAGCTGG CCCAAGAATN AAAAAAAACA TCCTGCTGCG GCTGCTNGAG1860 AGAGGAAGAG TATGTGGCTC CTCCACGGGG GCCTCTGCCC ACCNCTTCAG GTGGTTCCCT1920 TGTGANCACC GTTCATCCCC AGATCACTGA GGCCNAGGCC ATGTTTGGGN GCCTTGTTCT1980 GNACAGCATT CTGGCTGAGG CTNGGTCGGT AGCANNCTCC TGGCTGGTTT TTNTTCTGTT2040 CCNTCCCGA NGAAGCCCTC TGGNNCCCCC ANGGAAACCT GTTGTGCAGA GCTCTTCCCC2100 GGAGACCTCC NACACANCCC TGGNCTTTGA AGTGGAGTCT GTGNACTGNC TCTGCATTNC2160 TCTGCTTTTN AAAAAAACCA TTGCAGGTGN CCAGTGTCCC ATATGTTNCC TCCTNGACAG2220 NTTTGATGTN GTNCCATTCT NGGGCCTCTC AGTGCTTAGC AAGTAGATAA TGTAAGGGAT2280 GTNGGCAGCA AATGGAAATG ACTACAAACA CTCTCCTATC AATCACTTCA GGCTACTTTT2340 ATGAGTTAGC CAGATGCTTG TGTATCCTCA NGACCAAACT GATTCATGTA CAAATAATAA2400 AATGTTTACT CTTTTGTAAA AAAAAAAAA AAAA 2434

## (2) INFORMATION ON SEQ ID NO. 554:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 1457 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (vi) ORIGIN:
  - (A) ORGANISM: HUMAN
  - (C) ORGAN:
- (vii) OTHER ORIGIN:
  - (A) LIBRARY: cDNA library
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 554:

```
ACTAACCCAG AGTTGTGGCA TTATTAATTA TCACTGGTCT TCTTAATCGT AAAACGGGGG 60
ACCCCAGAGG CAAGGAAATT TCCATTACCC TATATTGGGC TTAAACTTAA AGGAGTATAT 120
CCACTATCAA GAGCTTAGTA CAAAGGCTGG GGTGAAGTTA CATTATACCT GGGCGTTTTA 180
CCATACCAGG GACCCCACCT CAACAATGAC TGTGGAAGAC CAAAGGAGAT ACCTAGGTTC 240
AGATTATAAT AAATCACCCA GCACCACCTG AATGTATTAT CCACAAAGAT ATAGCAATAA 300
TAAAGGTTAT ATATACATAT ATTTATCTTG GTAACCTGAG GGCTAAAAAC GTGGAATACG 360
ATAATTCTTC TCAAGAGGTC CATCTGTAAG AAAGGGACCC AAAAGGACAG TGTTTGTGTT 420
GCATAAAATA TGGGTAAAGT GGAGTTGGGA ACAAAGGGTG GTTTCTTTAG CTCTTTCCAC 480
ATCTCTCTTT GATAAGGACT GAAACCCTGT TGATTCATGA TAAACGTTTC CTTTTTTTTT 540
TTTTTTGGCA GCGGGGAGAG GGAAAGAGGA GGAAATGGGG TTTGAGGACC ATGGCTTACC 600
TTTCCTGCCT TTGACCCATC ACACCCCATT TCCTCCTCTT TCCCTCTCCC CGCTGCCAAA 660
AAAAAAAAA AGGAAACGTT TATCATGAAT CAACAGGGTT TCAGTCCTTA TCAAAGAGAG 720
ATGTGGAAAG AGCTAAAGAA ACCACCCTTT GTTCCCAACT CCACTTTACC CATATTTTAT 780
GCAACACAAA CACTGTCCTT TTGGGTCCCT TTCTTACAGA TGGACCTCTT GAGAAGAATT 840
ATCGTATTCC ACGTTTTTAG CCCTCAGGTT ACCAAGATAA ATATATGTAT ATATAACCTT 900
TATTATTGCT ATATCTTTGT GGATAATACA TTCAGGTGGT GCTGGGTGAT TTATTATAAT 960
CTGAACCTAG GTATATCCTT TGGTCTTCCA CAGTCATGTT GAGGTGGGCT CCCTGGTATG1020
GTAAAAAGCC AGGTATAATG TAACTTCACC CCAGCCTTTG TACTAAGCTC TTGATAGTGG1080
ATATACTCTT TTAAGTTTAG CCCCAATATA GGGTAATGGA AATTTCCTGC CCTCTGGGTT1140
CCCCATTTTT ACTATTAAGA AGACCAGTGA TAATTTAATA ATGCCACCAA CTCTGGCTTA1200
GTTAAGTGAG AGTGTGAACT GTGTGGCAAG AGAGCCTCAC ACCTCACTAG GTGCAGAGAG1260
CCCAGGCCTT ATGTTAAAAT CATGCACTTG AAAAGCAAAC CTTAATCTGC AAAGACAGCA1320
TTTAAAATCA AGCCTGAGGC TGGGTGGAAA CAGGTAGCCT ACACACCCCA AATTGGGGGT1440
                                                               1457
GGTCCCGGGG GAATGTT
```

- (2) INFORMATION ON SEQ ID NO. 555:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 741 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Partial cDNAs produced from individual ESTs by assembling and editing
  - (iii) HYPOTHETICAL: NO
  - (iii) ANTI-SENSE: NO
  - (vi) ORIGIN:
    - (A) ORGANISM: HUMAN
    - (C) ORGAN:
  - (vii) OTHER ORIGIN:
    - (A) LIBRARY: cDNA library
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 555:

CCTCCTAAAA GACTGGGAAA GCAGCTTTGG GCTTTGGGTC CTCCTAAAAA AACCAAGGCG 60
GATGACTTGG GGTTTGGATC CCCTTCGGAT GTCACTCGAA AAAGCCTTAG CAGACCTGAT120
TGAGAAGGAA CTGTCCCGTT CAAAGACCAA CCTTCCCTTT CGCCCCACAT CTCTTCAGAA180
CTCCTCTCTCA CACACTACAA CCGCCAAAGG TCCCAGGCTC TGGATTCCTG CATCCTGCTG240
CAGCTACAAA TGCCAATTCT CTAAATAGTA CCTTTTCAGT CTTGCCCCAG AGGTTCCCTC300
AATTTCAGCA GCACCGAGCG GTTTATAATT CATTCAGTTT TCCAGGCCAG GCAGCCCGCT360
ATCCTTGGAT GGCCTTTCCA NCGCAATAGC ATCATGCNAC TTGAACCACA CAGCAAACCC420
CACCTCAAAT AGTAATTTCT TGGACTTGAA TCTCCCGCCA CAGCACAACA CAGGTCTGGG480
AGGGATCCCT GTAGCAGGGG AAGAAGAGGT GAAGGTTTCG ACCATGCCAC TGTCAACCTC540
TTCCCATTCA TTACAACAAG GACAGCAGCC TACAAGTCTC CACACTACTG TGGCCTGACA600
ACAGAACTGA GAGGAGAGGA TTAGACTCTG GGGTGCTTGC ATGGGCAAC GGATTTTTGC660
ATGATTCCTT TATGATTTTG CTTTTAATGT ATACACCCAG AAGAGCCAAT ATAAACGTTC720
CTCATGCCTA AAAAAAAAAAA A

- (2) INFORMATION ON SEQ ID NO. 561:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 470 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

- (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 561:

TDQPNIQSVK IHSLPLRNPN KGCECPPRRD GFGFIKCVDR DVRMFFHFSE ILDGNQLHIA 60
DEVEFTVVPD MLSAQRNHAI RIKKLPKGTV SFHSHSDHRF LGTVEKEATF SNPKTTSPNK120
GKEKEAEDGI IAYDDCGVKL TIAFQAKDVE GSTSPQIGDK VEFSISDKQR PGQQVATCVR180
LLGRNSNSKR LLGYVATLKD NFGFIETANH DKEIFFHYSE FSGDVDSLEL GDMVEYSLSK240
GKGNKVSAEK VNKTHSVNGI TEEADPTIYS GKVIRPLRSV DPTQTEYQGM IEIVEEGDMK300
GEVYPFGIVG MANKGDCLQK GESVKFQLCV LGQNAQTMAY NITPLRRATV ECVKDQFGF1360
NYEVGDSKKL FFHVKEVQDG IELQAGDEVE FSVILNQRTG KCSACNVWRV CEGPKAVAAP420
RPDRLVNRLK NITLDDASAP RLMVLRQPRG PDNSMGFGAE RKIRQAGVID 470

- (2) INFORMATION ON SEQ ID NO. 562:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 126 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 562:

LNAILNFFHM EKELLAISYF IVNEAKLIFH TFHCGPAQGC DVVSHSLCIL AQDTQLELDA 60 LPFLQAIPFV GHPNDAKWID LTFHIALLHN LNHSLVLSLC WINTPQGANY FARVNGGISF120 LSNAIH

- (2) INFORMATION ON SEQ ID NO. 563:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 85 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 563:

- (2) INFORMATION ON SEQ ID NO. 564:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 549 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 564:

LYPNFLVNEL ILKQKQRFEE KRFKLDHSVS STNGHRWQIF QDWLGTDQDN LDLANVNLML 60
ELLVQKKKQL EAESHAAQLQ ILMEFLKVAR RNKREQLEQI QKELSVLEED IKRVEEMSGL120
YSPVSEDSTV PQFEAPSPSH SSIIDSTEYS QPPGFSGSSQ TKKQPWYNST LASRRKRLTA180
HFEDLEQCYF STRMSRISDD SRTASQLDEF QECLSKFTRY NSVRPLATLS YASDLYNGSS240
IVSSIEFDRD CDYFAIAGVT KKIKVYEYDT VIQDAVDIHY PENEMTCNSK ISCISWSSYH300
KNLLASSDYE GTVILWDGFT GQRSKVYQEH EKRCWSVDFN LMDPKLLASG SDDAKVKLWS360
TNLDNSVASI EAKANVCCVK FSPSSRYHLA FGCADHCVHY YDLRNTKQPI MVFKGHRKAV420
SYAKFVSGEE IVSASTDSQL KLWNVGKPYC LRSFKGHINE KNFVGLASNG DYIACGSENN480
SLYLYYKGLS KTLLTFKFDT VKSVLDKDRK EDDTNEFVSA VCWRALPDGE SNVLIAANSQ540
GTIKVLELV

- (2) INFORMATION ON SEQ ID NO. 565:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 132 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 565:

TLYFVYIDMC NSQRGWEIRT LQIIHCYIIV HICYFVTFVF SFVFFFFFFF FFCGSINFYC 60 FVIYFYSKEF VSLSQKLDNT TKSSNVHGVT LMVESWLGIP NVPKVIKEGK EKKKKIFKTN120 PKPMMTLGRD IT

- (2) INFORMATION ON SEQ ID NO. 566:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 90 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 566:

GTVLSSLTGE YKPLISSTLL ISSSKTLSSF WICSSCSLLF LLATLRNSIR ICSWAACDSA60 SSCFFFCTSN SNIRLTLAKS RLSWSVPNQS 90

- (2) INFORMATION ON SEQ ID NO. 567:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 331 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 567:

SANHKLEVNG TDGLAPVEVE ELLRQASERN SKSPTEYHEP VYANPFYRPT TPQRETVTPG 60
PNFQERIKIK TNGLGIGVNE SIHNMGNGLS EERGNNFNHI SPIPPVPHPR SVIQQAEEKL120
HTPQKRLMTP WEESNVMQDK DAPSPKPRLS PRETIFGKSE HQNSSPTCQE DEEDVRYNIV180
HSLPPDINDT EPVTMIFMGY QQAEDSEEDK KFLTGYDGII HAELVVIDDE EEEDEGEAEK240
PSYHPIAPHS QVYQPAKPTP LPRKRSEASP HENTNHKSPH KNSISLKEQE ESLGSPVHHS300
PFDAQTTGDG TEDPSLTALR MRMAKLGKKV I 331

- (2) INFORMATION ON SEQ ID NO. 568:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 216 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 568:

LSLTSRMEEA ELVKGRLQAI TDKRKIQEEI SQKRLKIEED KLKHQHLKKK ALREKWLLDG 60 ISSGKEQEEM KKQNQQDQHQ IQVLEQSILR LEKEIQDLEK AELQISTKEE AILKKLKSIE120 RTTEDIIRSV KVEREERAEE SIEDIYANIP DLPKSYIPSR LRKEINEEKE DDEQNRKALY180 AMEIKVEKDL KTGESTVLSS NTSGHQMTLK GTGVKV

- (2) INFORMATION ON SEQ ID NO. 569:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 132 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 569:

LEKLHICFPQ LFGNFSQIMT TTYSHGLIWY TVMIIFWTSE KINKISRREI CKCFLVSSSK 60 DVYIGGTTLR SPFFPALPFS SLKLLRMDPQ SHLQLSEHQM GNGGQGCLSF LLALSEIWNF120 CGGIYDLCFH ED

- (2) INFORMATION ON SEQ ID NO. 570:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 199 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 570:

NFVTPWSFWW WTKLTFFFPL ALKKSSRVSS SHLPRIYQAF LMSATFNEDV QALKELILHN 60 PVTLKLQESQ LPGPDQLQQF QVVCETEEDK FLLLYALLKL SLIRGKSLLF VNTLERSYRL120 RLFLEQFSIP TCVLNGELPL RSRCHIISQF NQGFYDCVIA TDAEVLGAPR QRAMRPRRRA180 KTGTMASRFL ERTVVALGH

- (2) INFORMATION ON SEQ ID NO. 571:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 195 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 571:

QRVRAALLSS AMEDSEALGF EHMGLDPRLL QAVTDLGWSR PTLIQEKAIP LALEGKDLLA 60 RARTGSGKTA AYAIPMLQLL LHRKATGPVV EQAVRGLVLV PTKELARQAQ SMIQQLATYC120 ARDVRVANVS AAEDSVSQRA VLMEKPDVVV GTPSRILSHL QQDSLKLRDS LELLVVDEAD180 LLFSFGFEEE LKSLL

- (2) INFORMATION ON SEQ ID NO. 572:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 76 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 572:

DIGHSDIPST VGSQLLNHGL CLPCQLLGRN KNKASHCLFY HRTCRLPMEQ QLQHRNSISG60 RLPGARAGPS QEVLPF 76

- (2) INFORMATION ON SEQ ID NO. 573:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 91 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 573:

DSQVGRGPQR NSSLHTGRSV HWGEATGSLR HLQWGRAQPL LFLGGKLRFK LPGGKSMGRK60 QALXLLRVSV SPFFPLCLIN KFHFSHPSNS L

- (2) INFORMATION ON SEQ ID NO. 574:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 574:

EKWNLLIRHK GKKGETETLS KXRACFLPMD FPPGSLNRSF PPRKRRGWAL PHWRWRKLPV60 ASPQCTLLPV CRLEFLWGPL PTWLSHCPL 89

- (2) INFORMATION ON SEQ ID NO. 575:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 80 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 575:

LIRCLRLFSH HVMERKLSTS FLRLPATQLL IHIWSEPWYP STIHARKLDV YSLPFFPLFG60 DFLLSSAEDG VLVCPMATKI 80

- (2) INFORMATION ON SEQ ID NO. 577:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 161 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 577:

LLPLLLLIH GDTPXGPGPX XQEQAPNHRH GLEEXRISXK SCMGXVDWNG PEGVEIYVDG 60 KEPHNKSQSS QLGFKTNGHX KSSEXVXHDV LDNRKEAGVK VKEGHEHQNQ QDPASELHVL120 FGGALTHGGD ARKHALPFRT GFSRSTQQPP PRARFLPLCR T 161

- (2) INFORMATION ON SEQ ID NO. 578:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 160 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 578:

QTDNLSERQP XGKXVCRGCP QGECSWERAV LLXPGRPALS XTLLXKXAPC EVNWVXVRGS 60 XXCXGAPAXT PXPXQRXAAS AXAGLEXSXA XAGXAGCCCX GLPXVWSXLA LPTASLEASX120 XPRPAASPRT SCPSTLPQAT KTPRVLPNKX XLGTXSKLIF 160

- (2) INFORMATION ON SEQ ID NO. 579:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 437 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 579:

SQGVLSSDGV WRVKSIPNGK GSSPLPTATT PKPLIPTEAS IRVWGTSGTS HLHPRSICMI 60
QKYNHDGEAG RLEAFSQGES VLKEPKYQEE LEDRLHFYVE ECDYLQGFQI LCDLHDGFSG120
VGAKAAELLQ DEYSGRGIIT WGLLPGPYHR GEAQRNIYRL LNTAFGLVHL TAHSSLVCPL180
SLGGSLGLRP EPPVSFPYLH YDATLPFHCS AILATALDTV TVPYRLCSSP VSMVHLADML240
SFCGKKVVTA GAIIPFPLAP GQSLPDSLMQ FGGATPWTPL SACGEPSGTR CFAQSVVLRG300
YRQSMPHKPQ NQRDTSTLCP SCMYHWGRNL GSVFTTAAAW SHEFFPSAAD SLQGGSSLPP360
PLLKLQSTGY GSGWFPQGSR SSVSLSLPQQ WRASQCLGHC VPLRPCTRPW KPWPETSPNS420
TCGAGPASWM LEWSTMT 437

- (2) INFORMATION ON SEQ ID NO. 580:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 277 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes.
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 580:

TERLLLDGPP PHSPETPQFP PTTGAVLYTV KRNQVGPEVR SCPKASPRLQ KEREGQKAVS 60
ESEALMLVWD ASETEKLPGT VEPPASFLSP VSSKTRDAGR RHVSGKPDTQ ERWLPSSRAR120
VKTRDRTCPV HESPSGIDTS ETSPKAPRGG LAKDSGTQAK GPEGEQQPKA AEATVCANNS180
KVSSTGEKVV LWTREADRVI LTMCQEQGAQ PQTFNIISQQ LGNKTPAEVS HRFRELMQLF240
HTACEASSED EDDATSTSNA DQLSDHGDLL SEEELDE 277

(2) INFORMATION ON SEQ ID NO. 581:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 172 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 581:

FPESHSSSS SDRRSPWSDS WSALLVLVAS SSSSELASQA VWKSCMSSRK RWETSAGVLF 60 PSCWEMMLKV CGCAPCSWHM VRITRSASLV HRTTFSPVEL TLLLLAHTVA SAAFGCCSPS120 GPLACVPLSL AKPPLGALGE VSEVSIPDGD SWTGHVLSLV FTLALLEGSH LS 172

- (2) INFORMATION ON SEQ ID NO. 582:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 549 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 582:

EFPPGLTEPT AVRALARARR TRAGSASDPE RSPGAMALSE LALVRWLQES RRSRKLILFI 60
VFLALLLDNM LLTVVVPIIP SYLYSIKHEK NATEIQTARP VHTASISDSF QSIFSYYDNS120
TMVTGNATRD LTLHQTATQH MVTNASAVPS DCPSEDKDLL NENVQVGLLF ASKATVQLIT180
NPFIGLLTNR IGYPIPIFAG FCIMFVSTIM FAFSSSYAFL LIARSLQGIG SSCSSVAGMG240
MLASVYTDDE ERGNVMGIAL GGLAMGVLVG PPFGSVLYEF VGKTAPFLVL AALVLLDGAI300
QLFVLQPSRV QPESQKGTPL TTLLKDPYIL IAAGSISFAN MGIAMLEPAL PIWMMETMCS360
RKWQLGVAFL PASISYLIGT NIFGILAHKM GRWLCALLGM IIVGVSILCI PFPKNIYGLI420
APNFGVGFAN GMVDSSMMPI MGYLVDLRHV SVYGSVYAIA DVAFCMGYAI GPSAGGAIAK480
AIGFPWLMTI IGIIDILFAP LCFFLRSPPA KEEKMAILMD HNCPIKTKMY TQNNIQSYPI540
GEDEESESD

- (2) INFORMATION ON SEQ ID NO. 583:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 121 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 583:

YLLSHWNQYF WDTCTQNGEV ALCSSGNDNC WSQHFMYSIS KKHLWTHSSE LWSWFCKWNG 60 GFVNDAYHGL PRRPAARVRL WECVRHCGCG ILYGVCYRSF CWWCYCKGNW ISMAHDNYWD120 N

- (2) INFORMATION ON SEQ ID NO. 584:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 106 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 584:

DGGSVHWPGR LDFCSILLML NAVQITWDDG DHDSEQHVVQ QQRQEHDEQD ELPRAAALLQ 60
PADQRQLAQG HGSGAPLGVA CAACPGPPCP RQRPHRSGLR QSGREF 106

- (2) INFORMATION ON SEQ ID NO. 585:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 409 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 585:

KSRLSVTLMP VQLSEHPEWN ESMHSLRISV GGLPVLASMT KAADPRFRPR WKVILTFFVG 60
AAILWLLCSH RPAPGRPPTH NAHNWRLGQA PANWYNDTYP LSPPQRTPAG IRYRIAVIAD120
LDTEPTAQDE NTWRSDLKKG YLTLSDSGDK VAVEWDKDHG VLESHLAEKG RGMELSDLIV180
FNGKLYSVDD RTGVVYQIEG SKAVPWVILS DGDGTVEKGF KAEWLAVKDE RLYVGGLGKE240
WTTTTGDVVN ENPEWVKVVG YKGSVDHENW VSNYNALRAA AGIQPPANLI HESACWSDTL300
QRWFFLPRRA SQERYSEKDD ERKGANLLLS ASPDFGDIAV SHVGAVVPTH GFSSFKFIPN360
TDDQIIVALK SEEDSGRVAS YIMAFTLDGR FLLPETKIGS VKYEGIEFI 409

- (2) INFORMATION ON SEQ ID NO. 586:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 249 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 586:

KLSPDGLAQC FRFELNELDA FVFHASDLGL RQQEAPVQRE GHDVGGDSAA VLLGFEGHND 60 LVVGVGDELE GREAVSGDHR PDVAHSDVAE VRGGAQQQVG ALALVVLLAV ALLAGAARQE120 EPALQRVTPA GRLMDEVSWR LDAGSSPQGV VVGHPVLVVH AALVAHHLHP LRVLVHHITR180 SGRPLLAQAA HVQTLVLHCQ PFGLEAFLHG AVAVGQNHPG HGFAAFDLVD DPRPVIHGVE240 FPIENNQVG

- (2) INFORMATION ON SEQ ID NO. 587:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 157 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587:

LEFFIPCLGS VNEACLFPGV SFHGLYFSSS SGSFAGSSLW KLHERWLGLG FAGVYSRVKA 60 EWDLRPRLGT TQAEKGRFHH SQCPPHSNYL TPTPTLTPTP PRDRQGCHGG PEGAGSGCPC120 AGPSQTSPPL KLKHSCEEGS EEGPLSHGCL FPPLCHR 157

- (2) INFORMATION ON SEQ ID NO. 588:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 144 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 588:

NTMAVAAVKW VMSKRTILKH LFPVQNGALY CVCHKSTYSP LPDDYNCNVE LALTSDGRTI 60 VCYHPSVDIP YEHTKPIPRP DPVHNNEETH DQVLKTRLEE KVEHLEEGPM IEQLSKMFFT120 TKHRWYPHGR YHRCRKNLNP PKDR

- (2) INFORMATION ON SEQ ID NO. 589:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 128 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 589:

IHQTAFSQMA NEAHFSLIPP GTSASSVFWR IQILTTSVIP SMRIPTVLSS KEHFAKLFYH 60 RSFLKVFNFF FQSGFQHLIM CFFIIMHRIW PRDRFCVFIW NVHRRVVAYY CPAIRSQSKL120 YVAIIVIW 128

- (2) INFORMATION ON SEQ ID NO. 590:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 61 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 590:

KLVCLEADSK SSFSSEHLFS YHLISILKHH GCSCSKMGDV KENYLETFIS SPKWSFILCL60

- (2) INFORMATION ON SEQ ID NO. 591:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 173 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 591:

AQESPWQLCR GARTSKRKLP KLGMEQHCNE MCPPSSLFLP GAYKAQMYSD VWTNTKKKKK 60 KKKKKAFLSH RHKTQIIYCY EALFTNGQFL HFIAACERLP DGRPISLVLQ TSSQAAFYQK120 GENSCLSFLK NAFLYLSIRH YTSELYKRPG GTMSLVDTFH CSVAPFLAWE ASA 173

- (2) INFORMATION ON SEQ ID NO. 592:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 105 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 592:

TCEPFRNPQV GKDPTPSLRI ICLAITGSWK CFLGCVKINQ GGMKHIFLAT KLEFLREQMQ 60 RDLLLLARLQ GPLWSHTEAV TGHKPRRARG SCAEAPGPLS GSFPS 105

- (2) INFORMATION ON SEQ ID NO. 593:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 105 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 593:

TCEPFRNPQV GKDPTPSLRI ICLAITGSWK CFLGCVKINQ GGMKHIFLAT KLEFLREQMQ 60 RDLLLLARLQ GPLWSHTEAV TGHKPRRARG SCAEAPGPLS GSFPS 105

- (2) INFORMATION ON SEQ ID NO. 594:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 172 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594:

TPALRARSLR DRCARAPCPH GGQQRRRRRL NAEGAEGARG GGSSYSEMAE TVADTRRLIT 60 KPQNLNDAYG PPSNFLEIDV SNPQTVGVGR GRFTTYEIRV KTNLPIFKLK ESTVRRRYSD120 FEWLRSELER ESKVVVPPLP GKAFLRQFLL EEMMEYLMTI LLRKENKGWS SL 172

(2) INFORMATION ON SEQ ID NO. 595:

- (i) SEOUENCE CHARACTERISTIC:
  - (A) LENGTH: 127 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595:

SAAGCQPRSP PFRCSCCRRR GLPPPPPRSA AAAGAAARRG DTGLARSGRE ENEHVERAFT 60 PHAKLLPAPL KLPPPSPGEK RLTSWNATPG SREARPRLGR GTADWGVRRS GVMGLGVANR120 FRPDYSA

- (2) INFORMATION ON SEQ ID NO. 596:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 123 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596:

FTSQPFKVTV SSSNSRFFQL ENRKICLDPD FVSGEAAPAD PHRLRVAHID LEEVAGGSVG 60 VIQVLRLGDQ PPGVSHGLRH FAVAAAAAAG SLRPLRVQPP PPALLPAVGT RGSRAAVAKR120 TST

- (2) INFORMATION ON SEQ ID NO. 597:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 262 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes

- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597:

SCGDVEQKIQ FKRETASLKL LPHQPRIVEM KKGSNGYGFY LRAGSEQKGQ IIKDIDSGSP 60 AEEAGLKNND LVVAVNGESV ETLDHDSVVE MIRKGGDQTS LLVVDKETDN MYRLAHFSPF120

LYYQSQELPN GSVKEAPAPT PTSLEVSSPP DTTEEVDHKP KLCRLAKGEN GYGFHLNAIR180 GLPGSFIKEV QKGGPADLAG LEDEDVIIEV NGVNVLDEPY EKVVDRIQSS GKNVTLLVCG240 KKAYDYFQAK KIPIVPSLAD AS

- (2) INFORMATION ON SEQ ID NO. 598:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 65 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 598:

KGWRSDFTVG GRQRDGQHVQ TGSFFSISLL SKSRTAQWLC QGGSSSYSHF SGSLKSTRYY60 RGSRS

- (2) INFORMATION ON SEQ ID NO. 599:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 63 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 599:

- (2) INFORMATION ON SEQ ID NO. 600:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 336 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 600:

KLNFNTMRCC HICKLPGRVM GIRVLRLSLV VILVLLLVAG ALTALLPSVK EDKMLMLRRE 60 IKSQGKSTMD SFTLIMQTYN RTDLLLKLLN HYQAVPNLHK VIVVWNNIGE KAPDELWNSL120 GPHPIPVIFK QQTANRMRNR LQVFPELETN AVLMVDDDTL ISTPDLVFAF SVWQQFPDQI180 VGFVPRKHVS TSSGIYSYGS FEMQAPGSGN GDQYSMVLIG ASFFNSKYLE LFQRQPAAVH240 ALIDDTQNCD DIAMNFIIAK HIGKTSGIFV KPVNMDNLEK ETNSGYSGMW HRAEHALQRS300 YCINKLVNIY DSMPLRYSNI MISQFGFPYA NYKRKI

- (2) INFORMATION ON SEQ ID NO. 601:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 101 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes.
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 601:

HALKILQHYD FPVWFSICQL QKKNIKVKQT KTNLKTAWHL SSFSMLCIFL SNIMNFIYSR 60 SLYNRKKSAV LLGYKIHITF ESQEVGLIQL GLLMKSFHPG I 101

- (2) INFORMATION ON SEQ ID NO. 602:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 90 amino acids
    - (B) TYPE: Protein

- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 602:

FKSFNKRSVL LYVCIMRVKE SMVDLPWDFI SLRNMSILSS LTLGSKAVKA PATSNNTRMT60 TKDNRSTRIP ITLPGSLQMW QHLIVLKFNF 90

- (2) INFORMATION ON SEQ ID NO. 603:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 163 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 603:

IYGVSFLIFN IKNIYVSVIP CQGCLLVCLR FCFIFIHVVV IFSSQFLLVS PFPGSFLLLL 60 LSVGDDKLVS LRALHLWIFL XSLTGQPAPV GSGPVLRLPR SLFHLQVCLP XPAPGLAPAA120 ACPSEALLSP PGSHGWFPLS QLVSLNPKPL RNWGLVSGTC CYO 163

- (2) INFORMATION ON SEQ ID NO. 604:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 150 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 604:

PLSFLMYKTL LSGLEFEHLW XFIYFAXVCG QSNIFPKYIL PRKXKKQIRX FDXKXNRPXK 60 GAXTWSRAWX RGKAXRGQVC CGQICAYFIT GVKXKQSXID VXRIYTVXRN XRXXFXKNRN120 TXWXXFYHXX YTFSLWXNXL TKLXFKIKLM

- (2) INFORMATION ON SEQ ID NO. 605:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 108 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 605:

LDFKXQFCES IXPQAKCVXX MIKXXPXXIP VFLKXVPXIS XHCIYPXDIN XTLFSFYSSN 60 KVGTDLSTTN LPSXCLASXP CSAPGXXPLX XPVXFXVKXP NLLLAFSW 108

- (2) INFORMATION ON SEQ ID NO. 606:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 203 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 606:

GPSALVHSVR PDLCSNPLSC GSLACMAYTG ELGLWAVQTQ GSHFAFPLLS PFSILALRQN 60 FSQRRTLCCP RSAVILPFLP SFHPSSAQMK SSRNSSFLPL WDSETGNLQG GVFPSPLFLF120 STPRGTKAAV PTSGTELHTI VGKLQGPLLL VLRAHLCYWS FWQKRKMIEP RVAPECSSLT180 VEGPKLVFRA HPRREVIRCH AFC

- (2) INFORMATION ON SEQ ID NO. 607:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 154 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607:

EVRQKEWCLL WSFFFFGAGL CAKLGPQHIW STLLVGARPE HLTQPVHTAP RVPPLSQAGP 60 TAPGSADKGM ACPLRCQNSI QKAPPQVDVV PGAGEESGTT TLAVNLSNRG LGFLVAASCP120 GLEVHRSRGV PLGTKDMPHW GCNGEKSGKL GAQL 154

- (2) INFORMATION ON SEQ ID NO. 608:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 123 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608:

CGVLSLRWVQ QPWFLWGLRI RIVGREKLLL EDFLSQSPRE VERRNFCWTS SGQRKDGMKV 60 EKAELQLSGD NKEFFSGKSF VLEQGWKMGT TKEKQSVTLG FGQPRGPAPQ YKPYRPGTHR120 RVD

- (2) INFORMATION ON SEQ ID NO. 609:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 88 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN

- (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609:

LVEPNGLFWF HFSASRRQNK ESHSKMFIVD NMSLKVVPLC SYSTEEMIHI PIIDMVSQSE60 ESFRRLHKYV LCTCPMLGNR KIIVIDKT 88

- (2) INFORMATION ON SEQ ID NO. 610:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 80 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 610:

SCFHKLSTQE PDGKKNKNYA DNYRKINPNL VKLVKACTFQ RFIRTGLNRE FLLNKMALTL60 VPRNWNPQRS YTGDNSALIL 80

- (2) INFORMATION ON SEQ ID NO. 611:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 71 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611:

MGITHECVIL LGASANSLTV VPSLTLPVHH LRRLDPSLTS PFLKPVSFSL LPNWLWLFLQ60 PFHSRAIFAK E  71 

- (2) INFORMATION ON SEQ ID NO. 612:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 395 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612:

APMRPERPRP RGSAPGPMET PPWDPARNDS LPPTLTPAVP PYVKLGLTVV YTVFYALLFV 60
FIYVQLWLVL RYRHKRLSYQ SVFLFLCLFW ASLRTVLFSF YFKDFVAANS LSPFVFWLLY120
CFPVCLQFFT LTLMNLYFTQ VIFKAKSKYS PELLKYRLPL YLASLFISLV FLLVNLTCAV180
LVKTGNWERK VIVSVRVAIN DTLFVLCAVS LSICLYKISK MSLANIYLES KGSSVCQVTA240
IGVTVILLYT SRACYNLFIL SFSQNKSVHS FDYDWYNVSD QADLKNQLGD AGYVLFGVVL300
FVWELLPTTL VVYFFRVRNP TKDLTNPGMV PSHGFSPRSY FFDNPRRYDS DDDLAWNIAP360
QGLQGGFAPD YYDWGQQTNS FLAQAGTLQR LNFGS

- (2) INFORMATION ON SEQ ID NO. 613:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 213 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613:

ARCAETPAGA AAAVSPDEAR ASPAARQRPR PDGDPAVGPS PQRLAAAHAD PGRAPLREAW 60 PHRRLHRVLR AALRVHLRAA LAGAALPPQA AQLPERLPLS LPLLGLPADR PLLLLLQRLR120 GGQFAQPLRL LAALLLPCVP AVFHPHADEL VLHAGDFQSQ VKIFSRITQI PVAPLPGLPL180 HQPCFPVGEF NLCCAGKDGK LGEEGYRLCA SGH

- (2) INFORMATION ON SEQ ID NO. 614:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 161 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614:

LGFENHLREV QVHQREGEKL QAHREAVEQP EDEGAERIGR HEVFEVEGEE DGPQGGPEEA 60 EKEEDALVAE PLVAVTQHQP ELHVDEHEEQ RVEHGVDDGE AKLHVGGHGR GQRGRQRVVA120 GWVPRRGLHR AGGAAARPGT LGPHRGSRPP PPPRGSPRIA P

- (2) INFORMATION ON SEQ ID NO. 615:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 102 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615:

HKKTSSYSGV TVCSYDSIIR LKAGEICVQF NRTQLKGRQV GWERKLLSGG IRGNQSKTKF 60 YCLQFNSIIA IMCSGKHIPV LLDRVSFPFS GTKMVEGIIN PT 102

- (2) INFORMATION ON SEQ ID NO. 616:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 86 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616:

- (2) INFORMATION ON SEQ ID NO. 617:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 76 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617:

RMLIQNCPPR PTKFGLRRTL KYAHGFIDEE HLGTKRCKFS SRHFKIVWKF KLEMLHRSVI60 MVKLVSTYKD KQVTHW 76

- (2) INFORMATION ON SEQ ID NO. 618:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 378 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 618:

SRCRFCCRLS AAFLPRAMLG LAIVLAGRLN EGDRFLKPPI SLRNFSFWSS FSKPAVSHWP 60
NWVPVHFLVS EASVLPDSRS ISSCKAFRLT WSMCASSMLP FFSNTTSKSV SVSSLQGSPA120
TPLSFLFFLV FLFRAGSSMT GCSTFFLDFI FFFAEDLGSS LMGMYSGAST LTGFFLLPFL180
GLLSMDLEGL EWPGRASPSW WIFFFFFTFP LCSLGLFRLP FLXPRLPVPH PSSPLXQVSP240
TSLASLASQN QGSWTEKAXG VLGPPFFPSC XFLSFLPTLV SSSPCLXVLG RFSPQRHGTW300
LEVTSXFFFS PLRNSKWPNT CFLRLGDFSV RLAGSVVSGS TCSSQRVLTP FFFFFFFTR360
GISGACPWAT LLXGGCSS

- (2) INFORMATION ON SEQ ID NO. 619:
  - (i) SEQUENCE CHARACTERISTIC:

- (A) LENGTH: 269 amino acids
- (B) TYPE: Protein
- (C) STRAND: individual
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 619:

GTGSLGXRNG XRKSPREHNG KVKKKKKIHQ EGDALPGHSK PSRSMESSPR KGSKKKPVKV 60 EAPEYIPISD DPKSSAKKKM KSKKKVEQPV IEEPALKRKT RKKRKESGVA GDPWREETDT120 DLEVVLEKKG NMDEAHIDQV RRKALQEEID RESGKTEASE TRKWTGTQFG QWDTAGFENE180 DQKLKFLRLM GGFKNLSPSF SRPASTIARP NMALGKKAAD SLQQNLQRDY DRAMSLEVQP240 GSRLAVFSTA PNKIFYIDRN ASKSVKLED

- (2) INFORMATION ON SEQ ID NO. 620:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 218 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 620:

VRVCFLPPRV SCYPTLFPLL PRLPFQSWLL DDWLLYLLFG LHLFLCGGLR VITYGDVFRS 60 LNFDWLLFTS FPRAALHGPG GLGVAWEGIS LLVDFFFLLH LPIVFSGALP XSVSXPKAAC120 SSSFFPTXAS VPNIPGLPGL TEPRVLDREG XWGPGXPFFS FLXFFELLAN SGFLLTLSXG180 XGEVFTPEAW DMARGDFLXF LFPTEELQVA KHLLPEAG 218

- (2) INFORMATION ON SEQ ID NO. 621:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 389 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 621:

AAGACGARGS GRRGSYVPEV RCGAPGGAAG TGAPRSCCCQ TNPGPPSSLR RAFRRRELPF 60 PACHEIGLGA EAGSGPPPAP AARESRSRAM EEEASSPGLG CSKPHLEKLT LGITRILESS120

PGVTEVTIIE KPPAERHMIS SWEQKNNCVM PEDVKNFYLM TNGFHMTWSV KLDEHIIPLG180 SMAINSISKL TQLTQSSMYS LPNAPTLADL EDDTHEASDD QPEKPHFDSR SVIFELDSCN240 GSGKVCLVYK SGKPALAEDT EIWFLDRALY WHFLTDTFTA YYRLLITHLG LPQWQYAFTS300 YGISPQAKQW FSMYKPITYN TNLLTEETDS FVNKLDPSKV FKSKNKIVIP KKKGPVQPAG360 GQKGPSGPSG PSTSSTSKSS SGSGNPTRK

- (2) INFORMATION ON SEQ ID NO. 622:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 109 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 622:

ARPAPAGREG RGEGEATSRR CGVGHRAGPR EPAPHGAAAV RPTPGPHHHC AALSGAENYR 60 SRHAMKLASA LRRGPALHPL PPRANRGREP WRRRHRPRGW AAASRTWRS 109

- (2) INFORMATION ON SEQ ID NO. 623:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 96 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623:

RSAGGFSMMV TSVTPGEDSR MRVMPRVSFS RCGLLQPSPG DDASSSMARD RDSRAAGAGG60 GPDPASAPRP ISWHAGNGSS RRLKARRSDD GGPGLV 96

- (2) INFORMATION ON SEQ ID NO. 624:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 218 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624:

CCTEHRWPAS MPPQLQETRM NRSIPVEVDE SEPYPSQLLK PIPEYSPEEE SEPPAPNIRN 60
MAPNSLSAPT MLHNSSGDFS QAHSTLKLAN HQRPVSRQVT CLRTQVLEDS EDSFCRRHPG120
LGKAFPSGCS AVSEPASESV VGALPAEHQF SFMEKRNQWL VSQLSAASPD TGHDSDKSDQ180
SLPNASADSL GGSQEMVQRP QPXQEPSRPG SANHRHGI 218

- (2) INFORMATION ON SEQ ID NO. 625:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 212 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN

### (xi) SEQUENCE DESCRIPTION: SEO ID NO: 625:

NLQITSGLYP GRSPACALKF WRTVKTVSAG DTQAWAKLSL LGALQSASLR LSLWLEPSLQ 60 SISFHLWKNV INGWYLSFQR LLLTLAMTQT NQTKVYLMPQ QTPWAVARRW CNGPSLHRNR120 AGLDLPTIDT GYDSQPQDVL GIRQLERPLX LTSVCYPQDL PRPLRSREFP QFEPQRYPAC180 AQMLPPNLSP HAPWNYHYHC PGSPDHQVXI WP

### (2) INFORMATION ON SEQ ID NO. 630:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 184 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 630:

FMINVSFFFF LAAGRGKEEE MGCDGSKAGK VSHGPQTPFP PLSLSPLPKK KKKETFIMNQ 60 QGFSPYQREM WKELKKPPFV PNSTLPIFYA TQTLSFWVPF LQMDLLRRII VFHVFSPQVT120 KINICIYNLY YCYIFVDNTF RWCWVIYYNL NLGISFGLPQ SLLRWGPWYG KTPRYNVTSP180 QPLY

### (2) INFORMATION ON SEQ ID NO. 631:

- (i) SEQUENCE CHARACTERISTIC:
  - (A) LENGTH: 138 amino acids
  - (B) TYPE: Protein
  - (C) STRAND: individual
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: ORF
- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 631:

GPWLTFPAFD PSHPISSSFP LPAAKKKKKE TFIMNQQGFS PYQREMWKEL KKPPFVPNST 60 LPIFYATQTL SFWVPFLQMD LLRRIIVFHV FSPQVTKINI CIYNLYYCYI FVDNTFRWCW120 VIYYNLNLGI SFGLPQSC 138

- (2) INFORMATION ON SEQ ID NO. 632:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 91 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 632:

WVKGRKGKPW SSNPISSSFP LPAAKKKKKG NVYHESTGFQ SLSKRDVERA KETTLCSQLH60 FTHILCNTNT VLLGPFLTDG PLEKNYRIPR F 91

- (2) INFORMATION ON SEQ ID NO. 633:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 111 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 633:

RNHAKIQLPM QAPQSLILSS QFCCQATVVW RLVGCCPCCN EWEEVDSGMV ETFTSSSPAT 60 GIPPRPVLCC GGRFKSKKLL FEVGFAVWFK XHDAIAXERP SKDSGLPGLE N 111

- (2) INFORMATION ON SEQ ID NO. 634:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF

- (iii) HYPOTHETICAL: yes
- (vi) ORIGIN
  - (A) ORGANISM: HUMAN
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 634:
- LRRNCPVQRP TFPFAPHLFR TPLHTLQPPK VPGSGFLHPA AATNANSLNS TFSVLPQRFP60 QFQQHRAVYN SFSFPGQAAR YPWMAFPXQ 89
- (2) INFORMATION ON SEQ ID NO. 635:
  - (i) SEQUENCE CHARACTERISTIC:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: Protein
    - (C) STRAND: individual
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: ORF
  - (iii) HYPOTHETICAL: yes
  - (vi) ORIGIN
    - (A) ORGANISM: HUMAN
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 635:

FIQFSRPGSP LSLDGLSXAI ASCXLNHTAN PTSNSNFLDL NLPPQHNTGL GGIPVAGEEE60 VKVSTMPLST SSHSLQQGQQ PTSLHTTVA 89

# 09/673395 529 Rec'd PCT/PTC 17 OCT 2000

WO 99/54461

### Claims

- A nucleic acid sequence that codes a gene product or a portion thereof, comprising
  - a) a nucleic acid sequence, selected from the group Seq. ID Nos. 1-126 and Seq. ID Nos. 531-552, 554, and 555,
  - b) an allelic variation of the nucleic acid sequences named under a)

or

- c) a nucleic acid sequence that is complementary to the nucleic acid sequences named under a) or b).
- A nucleic acid sequence according to one of the sequences Seq. ID Nos. 1-126 and Seq. ID Nos. 531-552, 554, and 555 or a complementary or allelic variant thereof.
- 3. Nucleic acid sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555, characterized in that they are expressed elevated in uterus tumor tissue.
- 4. BAC, PAC and cosmid clones containing functional genes and their chromosomal localization according to sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555 for use as vehicles for gene transfer.
- 5. A nucleic acid sequence according to claims 1 to 4, wherein it has 90% homology to a human nucleic acid sequence.
- 6. A nucleic acid sequence according to claims 1 to 4, wherein it has 95% homology to a human nucleic acid sequence.

- 7. A nucleic acid sequence comprising a portion of the nucleic acid sequences named in claims 1 to 6, in such a sufficient amount that they hybridize with the sequences according to claims 1 to 6.
- 8. A nucleic acid sequence according to claims 1 to 7, wherein the size of the fragment has a length of at least 50 to 4500 bp.
- 9. A nucleic acid sequence according to claims 1 to 7, wherein the size of the fragment has a length of at least 50 to 4000 bp.
- 10. A nucleic acid sequence according to one of claims 1 to 9, which codes at least one partial sequence of a bioactive polypeptide.
- 11. An expression cassette, comprising a nucleic acid fragment or a sequence according to one of claims 1 to 9, together with at least one control or regulatory sequence.
- 12. An expression cassette, comprising a nucleic acid fragment or a sequence according to claim 11, in which the control or regulatory sequence is a suitable promoter.
- 13. An expression cassette according to one of claims 11 and 12, wherein the DNA sequences located on the cassette code a fusion protein, which comprises a known protein and a bioactive polypeptide fragment.
- 14. Use of nucleic acid sequences according to claims 1 to 10 for producing full-length genes.
- 15. A DNA fragment, comprising a gene, that can be obtained from the use according to claim 14.

- 16. Host cell, containing as the heterologous part of its expressible genetic information a nucleic acid fragment according to one of claims 1 to 10.
- 17. Host cell according to claim 16, wherein it is a prokaryotic or eukaryotic cell system.
- 18. Host cell according to one of claims 16 or 17, wherein the prokaryotic cell system is  $\underline{E.\ coli}$ , and the eukaryotic cell system is an animal, human or yeast cell system.
- 19. A process for producing a polypeptide or a fragment, wherein the host cells according to claims 16 to 18 are cultivated.
- 20. An antibody that is directed against a polypeptide or a fragment that is coded by the nucleic acids of sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555, which can be obtained according to claim 19.
- 21. An antibody according to claim 20, wherein it is monoclonal.
- 22. An antibody according to claim 20, wherein it is a phage display antibody.
- 23. Polypeptide partial sequences according to sequences Seq. ID Nos. Seq. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635.
- 24. Polypeptide partial sequences according to claim 23, with at least 80% homology to these sequences.
- 25. A polypeptide that is known from a phage display and that can bind to the polypeptide partial sequences according to claim 23.

- 26. Polypeptide partial sequences according to claim 23, with at least 90% homology to these sequences.
- 27. Use of polypeptide partial sequences according to sequences Seq. ID Nos. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635 as tools for finding active ingredients against uterus tumors.
- 28. Use of nucleic acid sequences according to sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555 for expression of polypeptides that can be used as tools for finding active ingredients against the endometrial tumor.
- 29. Use of nucleic acid sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555 in sense or antisense form.
- 30. Use of polypeptide partial sequences Seq. ID Nos. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635 as pharmaceutical agents in gene therapy for treatment of the endometrial tumor.
- 31. Use of polypeptide partial sequences Seq. ID Nos. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635 for the production of a pharmaceutical agent for treatment of the endometrial tumor.
- 32. Pharmaceutical agent, containing at least one polypeptide partial sequence Seq. ID Nos. 142-528 and Seq. ID Nos. Seq. 561-575, 577-625, and 630-635.
- 33. A nucleic acid sequence according to claims 1 to 10, wherein it is a genomic sequence.

- 34. A nucleic acid sequence according to claims 1 to 10, wherein it is an mRNA sequence.
- 35. Genomic genes, their promoters, enhancers, silencers, exon structure, intron structure and their splice variants, that can be obtained from cDNAs of sequences Seq. ID No. 1 to Seq. ID No. 141 and Seq. ID Nos. 531-552, 554, and 555.
- 36. Use of the genomic genes according to claim 35, together with suitable regulatory elements.
- 37. Use according to claim 36, wherein the regulatory element is a suitable promoter and/or enhancer.
- 38. A nucleic acid sequence according to claims 1 to 7, wherein the size of the fragment has a length of at least 300 to 3500 bp.



FIG. I



FIG. 2a



FIG. 2b-I



FIG. 2b-2



FIG. 2b-3



FIG. 2b-4

In silico subtraction of gene expression in various tissues

~30,000 consensus sequences normal tissue

~30,000 consensus sequences tumor tissue



Genes expressed in both tissues

FIG. 3



FIG. 4a



FIG. 4b



FIG. 5

Attorney Docket Number:	SCH 1780	

### DECLARATION FOR PATENT APPLICATION

7032436410

As a pelow named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

### HUMAN NUCLEIC ACID SEQUENCES OF ENDOMETRIUM TUMOR TISSUE

the specification of which			
□ is attached hereto			
was filed on	15 April 1999	as United States Application Number or PCT Intern	ational
Application Number	PCT/DE99/011	174 and (if applicable) was amended on	
I hereby authorize our affor	nevs to insert the se	edal number assigned to this application	

I hereby authorize our attorneys to insert the senai number assigned to this application.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

1 acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR §1.56

I hereby claim foreign priority benefits under 35 U.S.C. §119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified pelow, by checking the box, any foreign application for patent or inventor's centificate, or PCT International application having a filing dute before that of the application on which priority is claimed.

APPLICATION NO.	COUNTRY	DAY/MONTH/YEAR FILED	PRIORITY CLAIMED
198 17 948.0	Germany	17 April 1998	×

by claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below.

	PROVISIONAL APPLICATION	(S) UNDER 35 U.S.C. §119(e)
200	APPLICATION NUMBER	FILING DATE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
M i		

rifereby claim the benefit under 35 U.S.C. §120 of any United States application, or §365(c) of any PCT. International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. §112.

Lacknowledge the duty to disclose information which is material to patentability as defined in 37 CFR §1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

PRIOR U.S./PCT INTER	NATIONAL APPLICATION	S) DESIGNATED FOR BENEFIT UNDER 37 U.S.C. §120
APPLICATION NO.	FILING DATE	STATUS — PATENTED, PENDING, ABANDONED

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith: I. William Millen (19,544); John L. White (17,746); Anthony J. Zelano (27,969); Alan E.J. Branigan (20,565); John R. Moses (24,983); Harry B. Shubin (32,004); Brion P. Heaney (32,542); Richard J. Traverso (30,595); John A. Sopp (33,103); Richard M. Lebovitz (37,067); John H. Thomas (33,460); Nancy J. Axelrod (44,014); James E. Ruland (40,921) and Jennifer J. Branigan (37,432)

2 DECS

7032436410

T-469 P.02/05 F-707

Attorney Docket Number:	SCH 1780

### DECLARATION FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

### **HUMAN NUCLEIC ACID SEQUENCES OF ENDOMETRIUM TUMOR TISSUE**

the specification of which		
□ is attached hereto		
was filed on Application Number	United States Application Number or PCT and (if applicable) was amended on	International

I hereby authorize our attorneys to insert the serial number assigned to this application.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR §1.56

I hereby claim foreign priority benefits under 35 U.S.C. §119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which provides is claimed.

Tables -	PRIOR FOREIGN/PO	CT APPLICATION(S) AND	ANY PRIORITY CLAIMS UNDER 3	5 USC §119
<u> </u>	APPLICATION NO.	COUNTRY	DAY/MONTH/YEAR FILED	PRIORITY CLAIMED
	198 17 948.0	Germany	17 April 1998	×
I.i.				

Thereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below.

PROVISIONAL APPLICATION(S) UNDER 35 U.S.C. §119(e)		
APPLICATION NUMBER FILING DATE		

I hereby claim the benefit under 35 U.S.C. §120 of any United States application, or §365(c) of any PCT. International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. §112.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

PRIOR U.S./PCT INTER	NATIONAL APPLICATION(	S) DESIGNATED FOR BENEFIT UNDER 37 U.S.C. §120
APPLICATION NO.	FILING DATE	STATUS — PATENTED, PENDING, ABANDONED

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith: I. William Millen (19,544); John L. White (17,746); Anthony J. Zelano (27,969); Alan E.J. Branigan (20,565); John R. Moses (24,983); Harry B. Shubin (32,004); Brion P. Heaney (32,542); Richard J. Traverso (30,595); John A. Sopp (33,103); Richard M. Lebovitz (37,067); John H. Thomas (33,460); Nancy J. Axelrod (44,014); James E. Ruland (40,921) and Jennifer J. Branigan (37,432)

Oct-12-00 02:07pm

From-MILLEN, WHITE, ZELANO & BRANIGAN

7032436410

T-469 P.04/05 F-707

Declaration for Patent Application (Continued)

Full Name of additional joint inventor (given name family name) André ROSENTHAL	
Signature	Date
Residence Berlin, Germany	Crizenship Germany
Post Office Address Konnenniatz 10 D-10115 Benin Germany	

The level plane course may rough plane and the major course course ground plane the second course ground plane the second course ground plane the second course the second cou

Declaration for Patent Application (Continued)

Correspondence Address:

MILLEN WHITE ZELANO & BRANIGAN, P.C.

Suite 1400

2200 Clarendon Boulevard

Artington, VA 22201

TEL (703) 243-6333

FAX (703) 243-6410

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon

Full Name of sole or first inventor (given name family name)	
Thomas SPECHT	
Signature Thomas Specht	Date 17.10.00
Residence	Citizenship
Berlin, Germany DEX	Germany
Post Office Address Grapenstrassse 14, D-12209 Be	erlin, Germany
Full Name of additional joint inventor (given name, family name)	
Bernd HINZMANN	
Tend Line	Date 17. 20. 20. 20
lence	Citzenship
lence  in. Germany Dex  Office Address: Parkstrasse 19 D-13127 Berlin	Germany
Office Address Parkstrasse 19, D-13127 Berlin	, Germany
lame of additional joint inventor (given name, family name)	
Amin SCHMITT	
1 sture	Date
lence	Crizenship
n, Germany	Gemany
Office Address Laupacher Strasse 6/II, D-1419	7 Berlin, Germany
ame of additional joint inventor (given name, family name)	
stian PILARSKY	
5 lure Chilles.	Date 17,10.00
Residence	Citizenship
Schönfeld-Weissig, Germany 106x	Germany
Post Office Address Heinrich-Lange-Strasse 13c, D-	-01474 Schönfeld-Weissig, Germany
Full Name of additional joint inventor (given name, family name)	
Edgar DAHL	
Signature 9dy / De	Date 17, 10, 2000
Residence	Citizenship
Potsdam, Germany IJEX	Germany
Post Office Address Eleonore-Procheska-Strasse 6,	D-14480 Potsdam, Germany

Additional joint inventors are named on separately numbered sheets attached hereto

Declaration for Patent Application (Continued)

Correspondence Address:
MILLEN WHITE ZELANO & BRANIGAN, P.C.
Suite 1400
2200 Clarendon Boulevard
Arlington, VA 22201
TEL (703) 243-6333
FAX (703) 243-6410

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon

States Code, and that such willful false statements may Jeopardize the validity of the application of any patent issued thereof					
Full Name of sole or first inventor (given name, family name)					
Thomas SPECHT					
Signature	Date				
Residence	Citizenship				
Berlin, Germany	Germany				
Post Office Address Grapenstrassse 14, D-12209 Berlin, Germany					
Full Name of additional joint inventor (given name, family name)					
Bernd HINZMANN					
Signature *	Date				
deleter.					
Residence	Citzenship				
Berlin, Germany	Germany				
Post Office Address Parkstrasse 19, D-13127 Berlin, Gern	nany				
Name of additional joint inventor (given name, family name)					
Armin SCHMITT					
Signature Ch. Shrutt	Date October 18, 2000				
Residence	Crizenship				
Berlin Germany DEX	Germany				
Post Office Address Laubacher Strasse 6/II, D-14197 Berlin, Germany					
Name of additional joint inventor (given name, family name)					
Christian PILARSKY					
Signature	Date				
Residence	Citizenship				
Schönfeld-Weissig, Germany	Germany				
Post Office Address Heinrich-Lange-Strasse 13c, D-01474 Schönfeld-Weissig, Germany					
Full Name of additional joint inventor (given name, family name)					
Edgar DAHL					
Signature	Date				
Residence	Crizenship				
Potsdam, Germany	Germany				
Post Office Address Eleonore-Procheska-Strasse 6, D-144	80 Potsdam, Germany				

Additional joint inventors are named on separately numbered sheets attached hereto

Oct-12-00 02:07pm

From-MILLEN, WHITE, ZELANO & BRANIGAN

7032436410

T-469 P.04/05 F-707 Comp

Declaration for Patent Application (Continued)

	Full Name of additional joint inventor (given name family name)	
6,00	André ROSENTHAL Signature Adri R. Kull	Date 17, 10. 2000
	Residence Berlin, Germany (1) (2)	Crizenship Germany
	Post Office Address Koopenplatz 10 D-10115 Berlin Germany	

# The cost of the second part of t

## United States Patent & Trademark Office

Office of Initial Patent Examination - Scanning Division



Application deficiencie	s found duri	ing scanning:		
Page(s)	of	realitation,	dains	were not present
for scanning.	1	(Document title)		
□ Page(s)	of			_were not present
for scanning.		(Document title)		

Scanned copy is best available. Application pages numbered started on page 375,