Roots given by 1st method are

$$x_1 = rac{-b + \sqrt{b^2 - 4ac}}{2a}, \ x_2 = rac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Roots given by 2nd method are

$$x_1 = rac{2c}{-b - \sqrt{b^2 - 4ac}} x_2 = rac{2c}{-b + \sqrt{b^2 - 4ac}}$$

When |b| is large compared to geometric mean of a and c (i.e. $|b| >>> \sqrt{ac}$), $b^2 - ac$ is very close to b^2 . So, $\sqrt{b^2 - ac}$ is very close to |b|.

If $b\geq 0$, then |b|=b. Then,for large $|b|,-b+\sqrt{b^2-4ac}\approx -b+\mid b\mid=-b+b=0$. So, $-b+\sqrt{b^2-4ac}$ is very small and numerical errors occur due to limited double precision representation of b and $\sqrt{b^2-4ac}$. So, in this case, we adopt roots which term $-b+\sqrt{b^2-4ac}$.

If b<0, then |b|=-b. Then,for large $|b|,-b-\sqrt{b^2-4ac}\approx -b-\mid b\mid=-b+b=0$. So, $-b-\sqrt{b^2-4ac}$ is very small and numerical errors occur due to limited double precision representation of b and $\sqrt{b^2-4ac}$. So, in this case, we adopt roots which term $-b-\sqrt{b^2-4ac}$.

So, this leads us to our composite method.

Roots given by composite method are

$$x_1 = rac{2c}{-b - \sqrt{b^2 - 4ac}}, \ x_2 = rac{-b - \sqrt{b^2 - 4ac}}{2a} \ if \ b \geq 0$$

$$x_1 = rac{-b + \sqrt{b^2 - 4ac}}{2a}, \ x_2 = rac{2c}{-b + \sqrt{b^2 - 4ac}} \ if \ b < 0$$