project

dara

April 10, 2020

Contents

1	Cellular Automata Base	2
2	Elementary Cellular Automata Base 2.1 Basic Rule Properties	2 3 3
3	Finite Elementary Cellular Automata Base 3.1 Basis type of all finite elementary 1D CA	3 3 4
4	Bounded Elementary Cellular Automata 4.1 Basic definitions of Finite Elementary Cellular Automata	4 4
5	Bounded Elementary Cellular Automata Properties	4
6	Toroidal Elementary Cellular Automata 6.1 Basic CA Rule Examples	5 6
7	Toroidal Elementary Cellular Automata Properties	6
8	Infinite Elementary Cellular Automata 8.1 Example CAs	7 7
9	Infinite Elementary Cellular Automata Properties 9.1 Concrete examples	8 9
10	2D Cellular Automata Base 10.1 Game of life	9 10
11	Finite 2D Cellular Automata Base 11.1 Simple properties for CA	10 10
12	Bounded 2D Cellular Automata	11

13 Bounded 2D Cellular Automata Properties	12
14 Toroidal 2D Cellular Automata	12
15 Toroidal 2D Cellular Automata Properties	13
16 Infinite 2D Cellular Automata	14
17 Infinite 2D Cellular Automata Properties 17.1 Properties	14 14 15
1 Cellular Automata Base	
theory CA-Base imports Main begin	
$\mathbf{datatype} \ \mathit{cell} = \mathit{Zero} \mid \mathit{One}$	
fun $flip :: cell \Rightarrow cell$ where $flip One = Zero \mid flip Zero = One$	
fun apply-t-times :: $('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow nat \Rightarrow 'a$ where apply-t-times $f \ a \ 0 = a \mid$ apply-t-times $f \ a \ (Suc \ n) = apply$ -t-times $f \ (f \ a) \ n$	
end	
2 Elementary Cellular Automata Base	
theory Elementary-CA-Base imports CA-Base begin	
datatype $neighbourhood = Nb$ $cell$ $cell$ $cell$ $type-synonym$ $rule = neighbourhood \Rightarrow cell$	
fun $apply-nb$:: $(cell \Rightarrow cell) \Rightarrow neighbourhood \Rightarrow neighbourhood$ where $apply-nb$ f $(Nb$ a b $c) = Nb$ $(f$ $a)$ $(f$ $b)$ $(f$ $c)$	
fun $flip-nb :: neighbourhood \Rightarrow neighbourhood where flip-nb \ nb = apply-nb \ flip \ nb$	
fun sum - nb :: $neighbourhood \Rightarrow nat$ where sum - nb $(Nb \ a \ b \ c) = count$ - $list$ $[a, \ b, \ c]$ One	

2.1 Basic Rule Properties

```
fun mirror :: rule \Rightarrow rule where
mirror r (Nb a b c)= r (Nb c b a)

definition amphichiral :: rule \Rightarrow bool where
amphichiral r \equiv r = (mirror \ r)

fun complement :: rule \Rightarrow rule where
complement r nb = flip (r (flip-nb nb))

definition totalistic :: rule \Rightarrow bool where
totalistic r \equiv (\forall nb1 \ nb2. \ sum-nb \ nb1 = sum-nb \ nb2 \longrightarrow (r \ nb1) = (r \ nb2))
```

2.2 Concrete rule examples

```
definition null-rule :: rule where null-rule - = Zero

fun r110 :: rule where r110 (Nb One One One) = Zero | r110 (Nb One One Zero) = One | r110 (Nb One Zero One) = One | r110 (Nb One Zero Zero) = Zero | r110 (Nb Zero One One) = One | r110 (Nb Zero One Zero) = One | r110 (Nb Zero Zero One) = One | r110 (Nb Zero Zero One) = One | r110 (Nb Zero Zero Zero) = Zero
```

3 Finite Elementary Cellular Automata Base

```
theory Finite-Elementary-CA-Base imports Elementary-CA-Base begin
```

end

3.1 Basis type of all finite elementary 1D CA

```
type-synonym state = cell\ list
\mathbf{datatype}\ CA = CA\ (State: state)\ (Rule: rule)
\mathbf{fun}\ inner-nbhds:: state \Rightarrow neighbourhood\ list\ \mathbf{where}
inner-nbhds\ (x\#y\#z\#[]) = (Nb\ x\ y\ z)\ \#\ []\ |
inner-nbhds\ (x\#y\#z\#zs) = (Nb\ x\ y\ z)\ \#\ (inner-nbhds\ (y\#z\#zs))\ |
inner-nbhds - = []
```

3.2 Simple properties for CA

```
definition width :: CA \Rightarrow nat where width ca = length (State ca)

definition wellformed :: CA \Rightarrow bool where wellformed ca \equiv (width \ ca \geq 3)

definition uniform :: state \Rightarrow bool where uniform s \equiv length (remdups s) = 1 end
```

4 Bounded Elementary Cellular Automata

 $\begin{array}{l} \textbf{theory} \ Bounded\text{-}Elementary\text{-}CA\\ \textbf{imports} \ Finite\text{-}Elementary\text{-}CA\text{-}Base\\ \textbf{begin} \end{array}$

4.1 Basic definitions of Finite Elementary Cellular Automata

```
fun nbhds :: state ⇒ neighbourhood list where nbhds [] = [] |
nbhds (x\#[]) = [(Nb Zero x Zero)] |
nbhds (x\#y\#[]) = [(Nb Zero x y), (Nb x y Zero)] |
nbhds (x\#xs) = ((Nb Zero x (hd xs)) \# (inner-nbhds (x\#xs))) @ [Nb (last (butlast xs)) (last xs) Zero]

fun update-CA :: CA ⇒ CA where
update-CA (CA s r) = CA (map r (nbhds s)) r

fun run-t-steps :: CA ⇒ nat ⇒ CA where
run-t-steps ca n = apply-t-times update-CA ca n
end
```

5 Bounded Elementary Cellular Automata Properties

```
imports Bounded-Elementary-CA begin  \begin{aligned} & \textbf{definition} \ stable :: CA \Rightarrow bool \ \textbf{where} \\ & stable \ ca \equiv State \ (update\text{-}CA \ ca) = State \ ca \end{aligned}   & \textbf{definition} \ yields :: CA \Rightarrow state \Rightarrow bool \ (\textbf{infixr} \ \langle yields \rangle \ 65) \ \textbf{where} \\ & A \ yields \ s \equiv (\exists \ n. \ State \ (run\text{-}t\text{-}steps \ A \ n) = s \land n > 0)
```

 ${\bf theory}\ {\it Bounded-Elementary-CA-Properties}$

```
definition loops :: CA \Rightarrow bool where
loops\ ca \equiv ca\ yields\ State\ ca
fun garden-of-eden :: CA \Rightarrow bool where
garden-of-eden (CA s r) = (\neg(\exists s0. (CA s0 r) yields s))
fun reversible :: CA \Rightarrow bool where
reversible (CA - r) = (\forall s. (\exists !s0. State (update-CA (CA s0 r)) = s))
theorem ca yields State (run-t-steps ca 1)
proof-
 show ?thesis using yields-def by blast
qed
theorem t1: n>0 \implies ca \text{ yields } State \text{ (run-t-steps } ca \text{ n)}
 apply(simp add: yields-def)
 apply(rule\ exI)
 apply(rule\ conjI)
 apply(auto)
 done
definition orphan :: state \Rightarrow rule \Rightarrow bool where
orphan \ s0 \ r = (\forall \ sl \ sr. \ garden-of-eden \ (CA \ (
sl@s0@sr) r))
definition class1 :: rule \Rightarrow bool where
class1 r \equiv (\exists ! f. (\forall s. (CA \ s \ r) \ yields \ f \land uniform \ f \land stable (CA \ f \ r)))
definition class2 :: rule \Rightarrow bool where
class2 \ r \equiv (\forall \ s. \ (\exists \ f. \ (CA \ s \ r) \ yields \ f \land loops \ (CA \ f \ r)))
lemma class1 ca \implies class2 ca
  using class1-def class2-def loops-def by auto
end
```

6 Toroidal Elementary Cellular Automata

theory Toroidal-Elementary-CA imports Finite-Elementary-CA-Base begin

```
fun nbhds :: state \Rightarrow neighbourhood list where
nbhds [] = [] |
nbhds \ (x\#xs) = ((Nb \ (last \ xs) \ x \ (hd \ xs)) \ \# \ (inner-nbhds \ (x\#xs))) \ @ \ [Nb \ (last \ xs)]
(butlast xs)) (last xs) x
fun update-CA :: CA \Rightarrow CA where
update-CA (CA \ s \ r) = CA (map \ r (nbhds \ s)) \ r
fun run-t-steps :: CA \Rightarrow nat \Rightarrow CA where
run-t-steps ca \ n = apply-t-times update-CA \ ca \ n
6.1
       Basic CA Rule Examples
definition rule110 :: CA where
rule110 \equiv CA [Zero, One, Zero] r110
end
7
      Toroidal Elementary Cellular Automata Prop-
      erties
theory Toroidal-Elementary-CA-Properties
 imports Toroidal-Elementary-CA
begin
definition stable :: CA \Rightarrow bool where
stable\ ca \equiv State\ (update-CA\ ca) = State\ ca
definition yields :: CA \Rightarrow state \Rightarrow bool (infixr \langle yields \rangle 65) where
A yields s \equiv (\exists n. State (run-t-steps A n) = s \land n > 0)
definition loops :: CA \Rightarrow bool where
loops\ ca \equiv ca\ yields\ State\ ca
fun reversible :: CA \Rightarrow bool where
reversible (CA - r) = (\forall s. (\exists !s0. State (update-CA (CA s0 r)) = s))
theorem ca yields State (run-t-steps ca 1)
proof-
 show ?thesis using yields-def by blast
theorem t1: n>0 \implies ca \text{ yields } State \text{ (run-t-steps } ca \text{ n)}
 apply(simp add: yields-def)
 apply(rule\ exI)
 apply(rule\ conjI)
```

apply(auto)

done

```
fun garden-of-eden :: CA \Rightarrow bool where
\mathit{garden-of-eden}\ (\mathit{CA}\ \mathit{s}\ \mathit{r}) = (\neg (\exists\ \mathit{s0}.\ \mathit{State}\ (\mathit{update-CA}\ (\mathit{CA}\ \mathit{s0}\ \mathit{r})) = \mathit{s}))
definition orphan :: state \Rightarrow rule \Rightarrow bool where
orphan \ s0 \ r = (\forall \ sl \ sr. \ garden-of-eden \ (CA \ (sl@s0@sr) \ r))
lemma garden-of-eden ca \Longrightarrow \neg reversible ca
 apply (metis\ garden-of-eden.elims(2)\ reversible.simps)
done
definition class1 :: rule \Rightarrow bool where
class1 r \equiv (\exists ! f. (\forall s. (CA \ s \ r) \ yields \ f \land uniform \ f \land stable (CA \ f \ r)))
definition class2 :: rule \Rightarrow bool where
class2\ r \equiv (\forall\ s.\ (\exists\ f.\ (CA\ s\ r)\ yields\ f \land loops\ (CA\ f\ r)))
lemma class1 ca \implies class2 ca
  using class1-def class2-def loops-def by auto
end
8
      Infinite Elementary Cellular Automata
theory Infinite-Elementary-CA
 imports Elementary-CA-Base
begin
type-synonym state = int \Rightarrow cell
datatype CA = CA (State : state) (Rule : rule)
fun update-state :: CA \Rightarrow state where
update-state (CA s r) n = r (Nb (s(n-1))(s n)(s(n+1)))
fun update-CA :: CA \Rightarrow CA where
update-CA (CA s r) = CA (update-state (CA s r)) r
fun run-t-steps :: CA \Rightarrow nat \Rightarrow CA where
run-t-steps ca \ n = apply-t-times update-CA \ ca \ n
8.1
        Example CAs
definition state1 :: state where
```

 $state1 \ s \equiv (if \ s = 0 \ then \ One \ else \ Zero)$

```
definition rule110 :: CA where rule110 \equiv CA state1 r110 value State (run-t-steps rule110 5) (-3) end
```

9 Infinite Elementary Cellular Automata Properties

```
{\bf theory}\ {\it Infinite-Elementary-CA-Properties}
 imports Infinite-Elementary-CA
begin
definition stable :: CA \Rightarrow bool where
stable\ ca \equiv State\ (update-CA\ ca) = State\ ca
definition uniform :: state \Rightarrow bool where
uniform s \equiv \neg (surj s)
definition yields :: CA \Rightarrow state \Rightarrow bool (infixr \langle yields \rangle 65) where
A yields s \equiv (\exists n. State (run-t-steps A n) = s \land n > 0)
definition loops :: CA \Rightarrow bool where
loops\ ca \equiv ca\ yields\ State\ ca
fun reversible :: CA \Rightarrow bool where
reversible (CA - r) = (\forall s. (\exists !s0. State (update-CA (CA s0 r)) = s))
fun garden-of-eden :: CA \Rightarrow bool where
garden-of-eden (CA \ s \ r) = (\neg(\exists \ s0. \ State \ (update-CA \ (CA \ s0 \ r)) = s))
lemma garden-of-eden ca \Longrightarrow \neg reversible ca
 by (metis garden-of-eden.elims(2) reversible.simps)
definition class1 :: rule \Rightarrow bool where
class1 r \equiv (\exists ! f. (\forall s. (CA \ s \ r) \ yields \ f \land uniform \ f \land stable (CA \ f \ r)))
definition class2 :: rule \Rightarrow bool  where
class2 \ r \equiv (\forall \ s. \ (\exists \ f. \ (CA \ s \ r) \ yields \ f \land loops \ (CA \ f \ r)))
lemma class1 ca \implies class2 ca
  using class1-def class2-def loops-def by auto
```

9.1 Concrete examples

```
definition zero-state :: state where
zero-state - ≡ Zero

lemma uniform zero-state
apply(simp add: zero-state-def uniform-def)
apply(auto)
done
end
```

```
10
                     2D Cellular Automata Base
theory TwoDim-CA-Base
    imports CA-Base
begin
datatype \ neighbourhood = Nb \ (NorthWest:cell) \ (North:cell) \ (NorthEast:cell)
                                                                                                              (Centre:cell)(East:cell)
                                                                  (West:cell)
                                                                  (SouthWest:cell) (South:cell) (SouthEast:cell)
type-synonym rule = neighbourhood \Rightarrow cell
fun apply-nb :: (cell \Rightarrow cell) \Rightarrow neighbourhood \Rightarrow neighbourhood where
apply-nb \ f \ (Nb \ nw \ n \ ne \ w \ c \ e \ sw \ s \ se) = Nb \ (f \ nw) \ (f \ n) \ (f \ ne) \ (f \ w) \ (f \ c) \ (f \ e) \ (f \ ne) \ (
sw) (f s) (f se)
fun nb-to-list :: neighbourhood \Rightarrow cell \ list where
nb-to-list (Nb \ nw \ n \ ne \ w \ c \ e \ sw \ s \ se) = [nw, \ n, \ ne, \ w, \ c, \ e, \ sw, \ s, \ se]
fun list-to-nb :: cell list \Rightarrow neighbourhood where
list-to-nb [nw, n, ne, w, c, e, sw, s, se] = Nb nw n ne w c e sw s se
fun flip-nb :: neighbourhood <math>\Rightarrow neighbourhood where
flip-nb \ nb = apply-nb \ flip \ nb
fun sum-nb :: neighbourhood \Rightarrow nat where
sum-nb nb = count-list (nb-to-list nb) One
fun complement :: rule \Rightarrow rule where
complement \ r \ nb = flip \ (r \ (flip-nb \ nb))
definition totalistic :: rule \Rightarrow bool where
totalistic r \equiv (\forall nb1 nb2. sum-nb nb1 = sum-nb nb2 \longrightarrow (r nb1) = (r nb2))
```

Game of life 10.1

```
definition life :: rule  where
life ca = (case (Centre \ ca) \ of
           One \Rightarrow (if (sum-nb \ ca) = 3 \lor (sum-nb \ ca) = 4
                    then One else Zero) |
           Zero \Rightarrow (if (sum-nb \ ca) = 3
                    then One else Zero))
end
```

Finite 2D Cellular Automata Base 11

```
theory Finite-TwoDim-CA-Base
 imports TwoDim-CA-Base
begin
type-synonym state = cell list list
datatype CA = CA (State : state) (Rule : rule)
11.1
         Simple properties for CA
definition width :: state \Rightarrow nat where
width \ s \equiv length \ s
definition height :: state \Rightarrow nat where
height s = length (hd s)
definition int-width :: state \Rightarrow int where
int-width s \equiv int \ (width \ s)
definition int-height :: state \Rightarrow int where
int-height s \equiv int \ (height \ s)
definition widthCA :: CA \Rightarrow nat where
width CA \ ca = width \ (State \ ca)
definition heightCA :: CA \Rightarrow nat where
heightCA \ ca = height \ (State \ ca)
definition wellformed :: state \Rightarrow bool where
wellformed s \equiv (width \ s \geq 3) \land (height \ s \geq 3) \land (\forall \ i. \ length \ (s \ ! \ (i \ mod \ (width \ s \geq 3))))
s))) = height s)
```

definition $uniform :: state \Rightarrow bool$ where $uniform \ s \equiv length \ (remdups \ s) = 1$

```
definition oneCentre :: state where
oneCentre \equiv [[Zero, Zero, Zero], [Zero, One, Zero], [Zero, Zero, Zero]]
definition toroidalBlinker :: state where
toroidalBlinker \equiv
 [replicate 5 Zero,
 [Zero, Zero, One, Zero, Zero],
 [Zero, Zero, One, Zero, Zero],
 [Zero, Zero, One, Zero, Zero],
 replicate 5 Zero]
definition boundedBlinker :: state where
boundedBlinker \equiv [
                   [Zero, One, Zero],
                   [Zero, One, Zero],
                   [Zero, One, Zero]
end
         Bounded 2D Cellular Automata
12
theory Bounded-TwoDim-CA
 imports Finite-TwoDim-CA-Base
begin
fun out-of-bounds :: state \Rightarrow int \Rightarrow int \Rightarrow bool where
out-of-bounds s x y = (if x \ge int\text{-width } s \lor x < 0 \lor y \ge int\text{-height } s \lor y < 0 \text{ then}
True else False)
fun qet\text{-}cell :: state \Rightarrow int \Rightarrow int \Rightarrow cell where
get\text{-}cell\ s\ x\ y = (if\ out\text{-}of\text{-}bounds\ s\ x\ y\ then\ Zero\ else\ s!(nat\ x)!(nat\ y))
fun get-nbhd :: state \Rightarrow int \Rightarrow neighbourhood where
get-nbhd s x y = list-to-nb [get-cell s (x+i) (y+j). j \leftarrow rev [-1..1], i \leftarrow [-1..1]]
fun nbhds :: state \Rightarrow neighbourhood list list where
nbhds\ s = (let\ h = (int\text{-}height\ s)-1\ in\ (let\ w = (int\text{-}width\ s)-1\ in
[[get\text{-}nbhd\ s\ x\ y.\ y \leftarrow [\theta..h]].\ x \leftarrow [\theta..w]]))
fun update-CA :: CA \Rightarrow CA where
update-CA (CA \ s \ r) = CA \ (map \ (\lambda \ xs. \ map \ r \ xs) \ (nbhds \ s)) \ r
fun run-t-steps :: CA \Rightarrow nat \Rightarrow CA where
run-t-steps ca n = apply-t-times update-CA ca n
\mathbf{end}
```

13 Bounded 2D Cellular Automata Properties

```
theory Bounded-TwoDim-CA-Properties
 imports Bounded-TwoDim-CA
begin
definition stable :: CA \Rightarrow bool where
stable\ ca \equiv State\ (update-CA\ ca) = State\ ca
definition uniform :: state \Rightarrow bool where
uniform \ s \equiv length \ (remdups \ (concat \ s)) = 1
definition yields :: CA \Rightarrow state \Rightarrow bool (infixr \langle yields \rangle 65) where
A yields s \equiv (\exists n. State (run-t-steps A n) = s \land n > 0)
definition loops :: CA \Rightarrow bool where
loops\ ca \equiv ca\ yields\ State\ ca
fun reversible :: CA \Rightarrow bool where
\textit{reversible} \ (\textit{CA - r}) = (\forall \, \textit{s.} \ (\exists \, ! \textit{s0. State} \ (\textit{update-CA} \ (\textit{CA s0 r})) = \textit{s}))
fun garden-of-eden :: CA \Rightarrow bool where
garden-of-eden (CA s r) = (\neg(\exists s0. State (update-CA (CA s0 r)) = s))
lemma garden-of-eden ca \implies \neg reversible ca
 by (metis garden-of-eden.elims(2) reversible.simps)
definition class1 :: rule \Rightarrow bool where
class1 r \equiv (\exists ! f. (\forall s. (CA s r) yields f \land uniform f \land stable (CA f r)))
definition class2 :: rule \Rightarrow bool where
class2 \ r \equiv (\forall \ s. \ (\exists \ f. \ (CA \ s \ r) \ yields \ f \land loops \ (CA \ f \ r)))
lemma class1 ca \implies class2 ca
 using class1-def class2-def loops-def by auto
end
         Toroidal 2D Cellular Automata
14
theory Toroidal-TwoDim-CA
 imports Finite-TwoDim-CA-Base
begin
fun qet\text{-}cell :: state \Rightarrow int \Rightarrow int \Rightarrow cell where
get\text{-}cell\ s\ x\ y = s!(nat\ x)!(nat\ y)
```

fun get-nbhd :: $state \Rightarrow int \Rightarrow int \Rightarrow neighbourhood$ **where** get-nbhd s x y = (let w = int-width s in (let h = int-height s in

```
list-to-nb [get-cell s ((x+i) mod w) ((y+j) mod h). j \leftarrow rev [-1..1], i \leftarrow [-1..1]))
fun nbhds :: state \Rightarrow neighbourhood list list where
nbhds\ s = (let\ h = (int\text{-}height\ s)-1\ in\ (let\ w = (int\text{-}width\ s)-1\ in
[[get-nbhd \ s \ x \ y. \ y \leftarrow [0..h]]. \ x \leftarrow [0..w]])
fun update-CA :: CA \Rightarrow CA where
update-CA (CA \ s \ r) = CA \ (map \ (\lambda \ xs. \ map \ r \ xs) \ (nbhds \ s)) \ r
fun run-t-steps :: CA \Rightarrow nat \Rightarrow CA where
run-t-steps ca n = apply-t-times update-CA ca n
end
15
         Toroidal 2D Cellular Automata Properties
{\bf theory} \  \, \textit{Toroidal-TwoDim-CA-Properties}
 imports Toroidal-TwoDim-CA
begin
definition stable :: CA \Rightarrow bool where
stable\ ca \equiv State\ (update-CA\ ca) = State\ ca
definition uniform :: state \Rightarrow bool where
uniform \ s \equiv length \ (remdups \ (concat \ s)) = 1
definition yields :: CA \Rightarrow state \Rightarrow bool (infixr \langle yields \rangle 65) where
A yields s \equiv (\exists n. State (run-t-steps A n) = s \land n > 0)
definition loops :: CA \Rightarrow bool where
loops \ ca \equiv ca \ yields \ State \ ca
fun reversible :: CA \Rightarrow bool where
reversible (CA - r) = (\forall s. (\exists !s0. State (update-CA (CA s0 r)) = s))
fun garden-of-eden :: CA \Rightarrow bool where
garden-of-eden (CA s r) = (\neg(\exists s0. State (update-CA (CA s0 r)) = s))
lemma garden-of-eden ca \implies \neg reversible ca
 by (metis garden-of-eden.elims(2) reversible.simps)
definition class1 :: rule \Rightarrow bool where
class1 r \equiv (\exists ! f. (\forall s. (CA \ s \ r) \ yields \ f \land uniform \ f \land stable (CA \ f \ r)))
definition class2 :: rule \Rightarrow bool where
class2 r \equiv (\forall s. (\exists f. (CA \ s \ r) \ yields \ f \land loops (CA \ f \ r)))
lemma class1 ca \implies class2 ca
```

```
using class1-def class2-def loops-def by auto end
```

16 Infinite 2D Cellular Automata

17 Infinite 2D Cellular Automata Properties

 $\begin{array}{l} \textbf{theory} \ \textit{Infinite-TwoDim-CA-Properties} \\ \textbf{imports} \ \textit{Infinite-TwoDim-CA} \\ \textbf{begin} \end{array}$

fun $reversible :: CA \Rightarrow bool$ **where**

17.1 Properties

```
definition stable :: CA \Rightarrow bool where stable \ ca \equiv State \ (update\text{-}CA \ ca) = State \ ca definition uniform :: state \Rightarrow bool where uniform \ s \equiv \neg \ (surj \ s) definition yields :: CA \Rightarrow state \Rightarrow bool \ (infixr \ (yields) \ 65) where A \ yields \ s \equiv (\exists \ n. \ State \ (run\text{-}t\text{-}steps \ A \ n) = s \land n > 0) definition loops :: CA \Rightarrow bool where loops \ ca \equiv ca \ yields \ State \ ca
```

```
reversible (CA - r) = (\forall s. (\exists !s0. State (update-CA (CA s0 r)) = s))
fun garden-of-eden :: CA \Rightarrow bool where
garden-of-eden (CA s r) = (\neg(\exists s0. State (update-CA (CA <math>s0 r)) = s))
lemma garden-of-eden ca \Longrightarrow \neg reversible ca
  by (metis garden-of-eden.elims(2) reversible.simps)
definition class1 :: rule \Rightarrow bool where
class1 r \equiv (\exists ! f. (\forall s. (CA \ s \ r) \ yields \ f \land uniform \ f \land stable (CA \ f \ r)))
definition class2 :: rule \Rightarrow bool  where
class2 r \equiv (\forall s. (\exists f. (CA \ s \ r) \ yields \ f \land loops (CA \ f \ r)))
lemma class1 ca \implies class2 ca
  using class1-def class2-def loops-def by auto
17.2 Concrete examples
{\bf definition}\ {\it one Centre} :: {\it state}\ {\bf where}
one Centre x y = (if x=0 \land y=0 \text{ then One else Zero})
\textbf{definition} \ \textit{blinker} :: \textit{state} \ \textbf{where}
blinker x y = (if x=0 \land (y=-1 \lor y=0 \lor y=1)
                 then One else Zero)
\textbf{definition} \ \textit{lifeBlinker} :: \textit{CA} \ \textbf{where}
lifeBlinker \equiv \mathit{CA}\ blinker\ life
value State\ (run\text{-}t\text{-}steps\ lifeBlinker\ \theta)\ (\theta)\ (\theta)
```

 \mathbf{end}