### Artificial Intelligence

### Bayes' Nets



Instructors: David Suter and Qince Li

Course Delivered @ Harbin Institute of Technology

### **Probabilistic Models**

Models describe how (a portion of) the world works

- Models are always simplifications
  - May not account for every variable
  - May not account for all interactions between variables
  - "All models are wrong; but some are useful."
    - George E. P. Box



- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information



# Independence



### Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write:  $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
  - Empirical joint distributions: at best "close" to independent
  - What could we assume for {Weather, Traffic, Cavity, Toothache}?



### Example: Independence?

 $P_1(T, W)$ 

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

P(T)

| Т    | Р   |  |
|------|-----|--|
| hot  | 0.5 |  |
| cold | 0.5 |  |

 $P_2(T,W)$ 

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.3 |
| hot  | rain | 0.2 |
| cold | sun  | 0.3 |
| cold | rain | 0.2 |

| C4:00 |     |
|-------|-----|
| W     | Р   |
| sun   | 0.6 |
| rain  | 0.4 |

P(W)

### Example: Independence

N fair, independent coin flips:

| $P(\lambda$ | (1) |
|-------------|-----|
| Н           | 0.5 |
| Т           | 0.5 |

| $I(\Lambda_2)$ |     |  |
|----------------|-----|--|
| Н              | 0.5 |  |
| Т              | 0.5 |  |



| $P(X_n)$ |     |  |  |  |
|----------|-----|--|--|--|
| Н        | 0.5 |  |  |  |
| Т        | 0.5 |  |  |  |







- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
  - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
  - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
  - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
  - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
  - P(Toothache, Catch | Cavity) = P(Toothache | Cavity)P(Catch | Cavity)
  - One can be derived from the other easily



- Unconditional (absolute) independence very rare
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $X \perp \!\!\! \perp Y | Z$ 

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- What about this domain:
  - Traffic
  - Umbrella
  - Raining



- What about this domain:
  - Fire
  - Smoke
  - Alarm





# Conditional Independence and the Chain Rule

- Chain rule:  $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

With assumption of conditional independence:



$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Bayes'nets / graphical models help us express conditional independence assumptions

# Bayes'Nets: Big Picture



# Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
  - Unless there are only a few variables, the joint is WAY too big to represent explicitly
  - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
  - More properly called graphical models
  - We describe how variables locally interact
  - Local interactions chain together to give global, indirect interactions
  - For about 10 min, we'll be vague about how these interactions are specified





### Example Bayes' Net: Insurance



### Example Bayes' Net: Car



### **Graphical Model Notation**

- Nodes: variables (with domains)
  - Can be assigned (observed) or unassigned (unobserved)





- Arcs: interactions
  - Indicate "direct influence" between variables
  - Formally: encode conditional independence (more later)





### **Example: Coin Flips**

N independent coin flips





.





No interactions between variables: absolute independence

### Example: Traffic

#### Variables:

R: It rains

■ T: There is traffic









Model 2: rain causes traffic



Why is an agent using model 2 better?

### Example: Traffic II

Let's build a causal graphical model!

- Variables
  - T: Traffic
  - R: It rains
  - L: Low pressure
  - D: Roof drips
  - B: Ballgame
  - C: Cavity



### Example: Alarm Network

#### Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!



# Bayes' Net Semantics



### Bayes' Net Semantics



- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
  - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process



 $P(X|A_1\ldots A_n)$ 

A Bayes net = Topology (graph) + Local Conditional **Probabilities** 

### Probabilities in BNs



- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:





P(+cavity, +catch, -toothache)

### Probabilities in BNs



Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions):  $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences:  $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$ 
  - → Consequence:  $P(x_1, x_2, ... x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Not every BN can represent every joint distribution
  - The topology enforces certain conditional independencies

### Example: Coin Flips





$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

# Example: Alarm Network



| Α  | J        | P(J A) |  |
|----|----------|--------|--|
| +a | +j       | 0.9    |  |
| +a | <u>.</u> | 0.1    |  |
| -a | +j       | 0.05   |  |
| -a | -j       | 0.95   |  |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |

| E  | P(E)  |  |
|----|-------|--|
| +e | 0.002 |  |
| -е | 0.998 |  |



| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -е | +a | 0.94     |
| +b | -е | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -е | -a | 0.999    |

### Example: Traffic

### Causal direction







| P | II  | 1 | $\boldsymbol{L}$ | 2) |
|---|-----|---|------------------|----|
| Γ | ( τ | 2 | 1                | ?) |

| +r | +t | 3/16 |
|----|----|------|
| +r | -t | 1/16 |
| -r | +t | 6/16 |
| -r | -t | 6/16 |

### Example: Reverse Traffic

### Reverse causality?

联合概率一样两模型等价(上一面)





| - 1 - 1 |    |      |
|---------|----|------|
| +r      | +t | 3/16 |
| +r      | -t | 1/16 |
| -r      | +t | 6/16 |
| -r      | -t | 6/16 |

### Causality?

- When Bayes' nets reflect the true causal patterns:
  - Often simpler (nodes have fewer parents)
  - Often easier to think about
  - Often easier to elicit from experts
- BNs need not actually be causal
  - Sometimes no causal net exists over the domain (especially if variables are missing)
  - End up with arrows that reflect correlation, not causation



- Topology may happen to encode causal structure
- Topology really encodes conditional independence



 $P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$ 

### Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
  - Today:
    - First assembled BNs using an intuitive notion of conditional independence as causality
    - Then saw that key property is conditional independence
  - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

