Over-Parameterized Learning and Stochastic Gradient Descent

Jeffrey Mei, Cody Melcher, Kamaljeet Singh

Bias-Variance Trade-Off

Figure: Bias-Variance Trade-Off ¹

- increasing model complexity can lead to overfitting
- basis for many methods: lasso, cross-validation, ensemble methods, AIC, BIC, ...
- fails to explain success of neural networks ...

Double-Descent

Figure: Double-Descent

- bias-variance trade-off is only half the picture!
- monotonic improvement with increasing model complexity
- ▶ interpolation threshold: model complexity with no training error
- most theory lies on the left of the interpolation threshold
- over-parameterized: right of interpolation threshold

Local Minima ≈ Global Minima

(a) Under-parameterized models

(b) Over-parameterized models

Under-Parameterized

- SGD often gets stuck in local minima
- motivates momentum

Over-Parameterized

minima are likely to be global

Exponential Convergence

Under-Parameterized

- non-exponential convergence rate
- variable step size

Over-Parameterized

- exponential convergence rate
- constant step size

Saturation

Figure:

x-axis: number of iterations with batch size m y-axis: number of iterations with batch size 1

Under-Parameterized

Inder-Parameterized

▶ 1 iteration of batch size $m \approx m$ iterations of batch size 1

Over-Parameterized

▶ moderate mini-batch SGD \approx full gradient descent

SGD Over-Parameterized

Under-Parameterized

- non-exponential convergence
- local minima are not global
- linear batch size

Over-Parameterized

- exponential convergence
- local minima are global
- batch size saturation

Artificial Neural Networks Crash Course

- key technology behind many AI advances
- enormous fitting capacity: can memorize noise
- network model, where edges represent parameters
- how does SGD relate to neural networks?

- 1. forward propagation: calculate error (to adjust weights)
- 2. back propagation: adjust weights (using SGD)
- 3. repeat until convergence

- 1. forward propagation: calculate error (to adjust weights)
- 2. back propagation: adjust weights (using SGD)
- 3. repeat until convergence

- 1. forward propagation: calculate error (to adjust weights)
- 2. back propagation: adjust weights (using SGD)
- 3. repeat until convergence

- 1. forward propagation: calculate error (to adjust weights)
- 2. back propagation: adjust weights (using SGD)
- 3. repeat until convergence

- 1. forward propagation: calculate error (to adjust weights)
- 2. back propagation: adjust weights (using SGD)
- 3. repeat until convergence

Key Terms

- batch: number of training examples in SGD
- ▶ iterations: number of parameter updates
- epochs: number of passes through training data

Numerical Analysis

Numerical Experiment:

- 1. reproduce double-descent curve
- 2. compare under/over-parameterized models
 - can we observe batch size saturation?

Double Descent Curve

our double descent curve is not as dramatic

Batch Saturation

Loss vs. Iteration for Different Batch Sizes Overparameterized Batch Size 2.25 2.00 1.75 3200 1.50 1.25 1.00 0.75 0.50 200 400 800 1000 1200 600 Iteration

Figure: Underparameterized

Figure: Overparameterized

overparameterized is clustered near full batch

Estimating m^*

- ▶ Paper gives critical batch size as $m^* = \frac{\beta}{\lambda_1 \lambda_k} + 1$. Seems nice to know ie can pick it to maximize efficiency.
- \triangleright β is smoothing parameter, λ_1, λ_k largest and smallest strictly positive eigenvalues.
- Estimate β ala Lipschitz: Product of spectral norms of weight matrices and norms of activation functions.
- **E**stimate λ_1, λ_k via eigenvalues of final weight matrix.

Parameter	Underparameterized	Overparameterized
β	8.5223	8.9454
λ_1	1.7334	1.6857
λ_k	0.7199	0.8965
m^*	9.4094	12.3491

Conclusion

SGD behaves very differently in the over-parameterized regime

ightharpoonup batch size saturation: moderate batch sizes pprox full gradient descent

Future Directions:

- ► Test convergence rates against methods FISTA etc.
- numerical experiments to show local is global
- compare SGD to SAGA, FISTA, etc. in overparameterized regimes

References

Belkin, M. (2021).

Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation.

Acta Numerica, 30:203-248.

Belkin, M., Ma, S., and Mandal, S. (2018).

To understand deep learning we need to understand kernel learning.

arXiv:1802.01396 [cs, stat].