Lab Exercises Week 08

Alison Lawyer

2024-11-20

```
# keep this chunk in all your RMarkdown scripts
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(tidy.opts = list(width.cutoff = 60), tidy = TRUE)
# List required packages
library(tidyverse)
## -- Attaching core tidyverse packages -----
                                                     ----- tidyverse 2.0.0 --
## v dplyr
               1.1.4
                         v readr
                                     2.1.5
## v forcats
               1.0.0
                         v stringr
                                     1.5.1
## v ggplot2
               3.5.1
                         v tibble
                                     3.2.1
                                     1.3.1
## v lubridate 1.9.3
                         v tidyr
## v purrr
               1.0.2
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(openxlsx)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
library(ggplot2)
```

LAB EXERCISES

The dataset "vigilance.xlsx" contains data on vigilant behavior of several European song bird species (expressed as a rater per hour). The study aimed to address the question of whether birds show higher vigilance behavior in urban areas with more noise, which could make it more difficult to use auditory cues for avoiding predators. For each species, data were collected at several sites (cities), each having an "urban noise" and "control" condition. Some environmental factors are also part of this dataset but we will ignore those for now.

Exercise 1

Import the data and clean your column names (remove special characters and shorten for easier use in your code). Filter the dataset to European Robin (RB).

##		cito	urbanisation.intensity	dan	tomporaturo	wind spood	treatment
	1	3	1.9398800	51	9.45		urban noise
##	2	3	1.9398800	51	9.50	2.27	control
##	3	4	4.2293000	56	8.00		urban noise
##	4	4	4.2293000	56	10.60	0.00	control
##	5	6	2.5961000	52	14.70		urban noise
##	6	6	2.5961000	52	15.57	0.80	control
##	7	11	2.7075900	72	6.90		urban noise
##	8	11	2.7075900	72	7.03	3.50	control
##	9	13	0.0619194	76	7.07		urban noise
##	10	13	0.0619194	76	6.45	2.50	control
##	11	14	4.4214000	81	13.03	1.10	urban noise
##	12	14	4.4214000	81	13.10	1.90	control
##	13	15	4.4056700	81	11.48	10.88	urban noise
##	14	15	4.4056700	81	12.80	10.65	control
##	15	20	0.5740110	92	7.35	1.60	urban noise
##	16	20	0.5740110	92	8.30	1.60	control
##	17	22	-0.6133470	50	7.80	2.20	urban noise
##	18	22	-0.6133470	50	7.80	1.90	control
##	19	23	-1.4429500	51	10.45	1.70	urban noise
##	20	23	-1.4429500	51	11.10	1.10	control
##	21	25	0.1584160	56	11.53	0.80	urban noise
##	22	25	0.1584160	56	11.28	6.11	control
##	23	27	0.8755660	60	8.40		urban noise
##	24	27	0.8755660	60	8.77	0.00	control
##	25	29	1.3138900	77	6.98		urban noise
##	26	29	1.3138900	77	7.93	5.88	control
##	27	31	2.3775300	82	8.08		urban noise
##	28	31	2.3775300	82	8.30	4.80	control
##	29	32	-0.1811550	81	10.30		urban noise
##	30	32	-0.1811550	81	11.25	11.53	control
##	31 32	39	-0.0499581	93	4.00		urban noise
##	33	39 41	-0.0499581	93 86	6.40	1.90	control
##	34	41	-1.4745500 -1.4745500	86	9.63 9.87	3.80	urban noise control
##	35	44	0.4263110	93	9.60		urban noise
##		44	0.4263110	93	7.85	2.95	control
##	30	44	0.4203110	33	1.00	2.95	COHULOI

##	37		2.1759600	59 6.1	.3 0.20	urban noise
##	38	51 -2	2.1759600	59 7.1	.5 0.00	control
##	39	52 -2	2.1285700	6.6	6.40	urban noise
##	40	52 -2	2.1285700	6.9		control
##	41	54 -2	2.9754700	70 3.9		urban noise
##			2.9754700	70 3.1		control
	43		2.9922400	77 7.2		urban noise
	44		2.9922400	77 6.5	55 1.25	control
##		hours.from.sunrise	-	•		
##		4.27	RB	30.11		
##		3.35	RB	0.00		
##		1.70	RB	23.79		
##		2.70	RB	28.90		
##		5.63	RB	4.37		
## ##		6.47	RB	28.70 21.08		
##		3.57 4.40	RB RB	25.76		
##		6.98	RB	0.00		
##		6.07	RB	6.21		
##		9.02	RB	0.00		
##		8.18	RB	0.00		
##		6.18	RB	0.00		
	14	7.02	RB	0.00		
##		6.63	RB	37.61		
##		7.47	RB	20.23		
##		4.90	RB	0.00		
##	18	5.73	RB	11.44		
##	19	6.02	RB	13.11		
##	20	6.85	RB	0.00		
##	21	6.33	RB	26.90		
##		5.45	RB	33.93		
##	23	5.52	RB	19.89		
##		6.35	RB	21.43		
##		5.35	RB	2.11		
##		6.18	RB	0.00		
##		3.13	RB	23.59		
##		3.97		26.26		
##		5.18	RB	27.52		
## ##		6.10	RB	20.96		
	32	3.42 4.25	RB RB	20.59 40.90		
	33	3.13	RB	7.93		
	34	3.13	RB	6.77		
##		10.42	RB	23.39		
##		8.75	RB	3.90		
	37	1.98	RB	20.81		
	38	2.82	RB	24.00		
##		4.78	RB	20.19		
##		5.62	RB	17.14		
##		3.25	RB	39.68		
##	42	2.42	RB	16.15		
##	43	3.60	RB	16.45		
##	44	2.82	RB	6.00		

Your first task is to conduct exploratory analyses on this species, assessing - measures of central tendency, - variability and - distribution of vigilance rates for control and noise conditions.

At the end, you should have - a summary table with all relevant measures, - a figure comparing the means in both conditions, and - figures to assess the distribution and potential skew.

For your table, make it so that your statistics are in rows and the values for control and noise condition are in columns. This produces a table that is easier to read. Format this table so that it is printed nicely in your markdown (tip: the function kable() from the kableExtra package helps).

Inspect this table and discuss your findings without any formal hypothesis testing.

```
# Produce summary table
summary_table <- european_robin %>%
    group by(treatment) %>%
    summarize(mean_vigilance = mean(vigilance.rate), sd_vigilance = sd(vigilance.rate),
        median_vigilance = median(vigilance.rate), iqr = IQR(vigilance.rate),
        var = var(vigilance.rate))
# Make nice table for printing
summarized <- summary_table %>%
    pivot longer(cols = "mean vigilance":"var", names to = "stat",
        values_to = "values") %>%
    pivot_wider(names_from = treatment, values_from = values)
transposed <- t(summary_table[, 2:6])</pre>
transposed <- as.data.frame(transposed)</pre>
colnames(transposed) <- c("control", "urban noise")</pre>
summary <- kable(summarized, caption = "Summary statistics by treatment")</pre>
# Print table
summary
```

Table 1: Summary statistics by treatment

stat	control	urban noise
mean_vigilance	15.39455	17.23273
$sd_vigilance$	12.58721	12.24042
median_vigilance	16.64500	20.39000
iqr	20.89500	18.48000
var	158.43798	149.82795

```
# Figure comparing the means
ggplot(summary_table, aes(x = treatment, y = mean_vigilance,
    fill = treatment)) + geom_col()
```



```
# Histograms
ggplot(european_robin, aes(x = vigilance.rate, fill = treatment)) +
    geom_histogram(binwidth = 1, position = "dodge")
```



```
ggplot(european_robin, aes(x = vigilance.rate, fill = treatment)) +
   geom_density(alpha = 0.5)
```


Q-Q plots qqnorm(european_robin\$vigilance.rate) qqline(european_robin\$vigilance.rate)

Normal Q-Q Plot


```
ggplot(european_robin, aes(sample = vigilance.rate)) + stat_qq() +
    geom_abline(aes(intercept = mean(x = vigilance.rate), slope = sd(x = vigilance.rate)))
```


Answer:

Exercise 2

Conduct an appropriate t-test to test the null hypothesis that vigilance rates do not differ between noise and control conditions for the European Robin. Explain your choice of test. Should any assumptions be violated, discuss why but continue to conduct the test anyways for the sake of the exercise. Interpret the output and write a summary statement.

```
# Conduct the t-test
t_test <- t.test(european_robin$vigilance.rate ~ european_robin$treatment)

# Print the result
t_test

##
## Welch Two Sample t-test
##
## data: european_robin$vigilance.rate by european_robin$treatment
## t = -0.49106, df = 41.967, p-value = 0.6259
## alternative hypothesis: true difference in means between group control and group urban noise is not
## 95 percent confidence interval:
## -9.392586 5.716222
## sample estimates:</pre>
```

```
## mean in group control mean in group urban noise
## 15.39455 17.23273
```

Answer:

Exercise 3

Now compare the difference in vigilance rates between coal tits (CT) and blue tits (BT) across all sites. Do this separately for the control and noise condition. In other words, compare CT and BT in all control sites, and CT and BT in all treatment (noise) sites. To do this, you will need to think carefully about how to arrange your data. You will conduct exploratory analyses for this problem, similar to what you did above, as a homework exercise.

What is the most appropriate t-tests to use for testing your hypothesis? Explain your choice. Interpret your output and write a summary statement of results.

```
# run a pair sample t-test
# Reshaping the data for the t-tests
control <- vigilance %>%
   filter(treatment == "control", species == "CT" | species ==
        "BT") %>%
    select(site, species, treatment, vigilance.rate) %>%
   pivot wider(values from = "vigilance.rate", names from = c("species",
        "treatment"))
urban <- vigilance %>%
   filter(treatment == "urban noise", species == "CT" | species ==
        "BT") %>%
   select(site, species, treatment, vigilance.rate) %>%
   pivot_wider(values_from = "vigilance.rate", names_from = c("species",
        "treatment"))
# Run the tests control noise
t.test(x = control$CT_control, y = control$BT_control, paired = TRUE)
##
##
   Paired t-test
##
## data: control$CT_control and control$BT_control
## t = -1.3465, df = 24, p-value = 0.1907
\#\# alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -7.610438 1.600838
## sample estimates:
## mean difference
           -3.0048
##
t.test(x = urban$`CT_urban noise`, y = urban$`BT_urban noise`,
   paired = TRUE)
```

```
##
## Paired t-test
##
## data: urban$'CT_urban noise' and urban$'BT_urban noise'
## t = -3.6289, df = 24, p-value = 0.001338
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -11.047011 -3.036989
## sample estimates:
## mean difference
## -7.042
```

Answer: