Tutorial 02:

Addition/Subtraction using 2's Complement &

Floating-point Numbers

Computer Science Department

CS2208b: Fundamentals of Computer Organization and Architecture

Winter 2018

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: elsakka@csd.uwo.ca

Phone: 519-661-2111 x86996

Binary Arithmetic

☐ These tables cover the fundamental arithmetic operations.

Addition	Subtraction	Multiplication						
0 + 0 = 0 (carry 0)	0 - 0 = 0 (borrow 0)	$0 \times 0 = 0$						
0 + 1 = 1 (carry 0)	0 - 1 = 1 (borrow 1)	$0 \times 1 = 0$						
1 + 0 = 1 (carry 0)	1 - 0 = 1 (borrow 0)	$1 \times 0 = 0$						
1 + 1 = 0 (carry 1)	1 - 1 = 0 (borrow 0)	$1 \times 1 = 1$						

Addition (three bits)

Subtraction (three bits)

1 - 1 - 1 = 1 (borrow 1)

Sign and Magnitude Addition/Subtraction

- The operations are carried out similar to normal math calculations
- The resultant sign is arranged separately
 - \square The sign of A B depends on the values of A and B
 - \square If B > A, the answer will be calculated as -(B A), O.W., it is (A B)
- The location of the radix points need to be aligned before performing the operation.
- If the provided number of bits are not enough to hold the result, it means an overflow occurred.

- A subtraction operation is converted to an addition operation (after performing the 2's complement to the operand appearing after the negative sign)
- When adding two positive numbers and finding the result is negative, this means an overflow occurred.
- When adding two negative numbers and finding the result is positive, this means an overflow occurred.
- Overflow will never occur when adding a positive number to a negative number, or vice versa.
- How about
 - □ subtracting a negative number from a positive number?
 - □ subtracting a positive number from a negative number?

- **■** *Example 1*:
 - Perform $20_{10} 10_{10}$ using 2's complement 6-bit system
- \bullet 20₁₀ \rightarrow 10100₂
- 10_{10} → 1010_2
- $20_{10} 10_{10} \rightarrow 10100_2 1010_2$
 - \rightarrow 010100₂ 001010₂
 - \rightarrow 010100₂ + (-001010₂)
 - $\rightarrow 010100_2 + 110110_2$
 - **→** 001010₂
 - **→** +10₁₀

■ *Example 2*:

Perform $10_{10} - 20_{10}$ using 2's complement 6-bit system

- \bullet 10₁₀ \rightarrow 1010₂
- \bullet 20₁₀ \rightarrow 10100₂

■
$$10_{10} - 20_{10}$$
 → $1010_2 - 10100_2$

- \rightarrow 001010₂ 010100₂
- \rightarrow 001010₂ + (-010100₂)
- \rightarrow 001010₂ + 101100₂
- **→** 110110₂
- **→**-001010₂

- **■** *Example 3*:
 - Perform $20_{10} + 10_{10}$ using 2's complement 6-bit system
- \bullet 20₁₀ \rightarrow 10100₂
- \bullet 10₁₀ \rightarrow 1010₂

■
$$20_{10} + 10_{10} \Rightarrow 10100_2 + 1010_2$$

⇒ $010100_2 + 001010_2$
⇒ 0111110_2
⇒ $+30_{10}$

- **■** *Example 4*:
 - Perform $-20_{10} 10_{10}$ using 2's complement 6-bit system
- \bullet 20₁₀ \rightarrow 10100₂
- \bullet 10₁₀ \rightarrow 1010₂
- $-20_{10} 10_{10} \rightarrow -10100_2 1010_2$
 - \rightarrow -010100₂ 001010₂
 - \rightarrow (-010100₂)+ (-001010₂)
 - \rightarrow 101100₂ + 110110₂
 - \rightarrow 100010₂
 - **→** -011110₂
 - \rightarrow -30₁₀

1111

101100,

Overflow might occur, but did not in this case

■ *Example 5*:

Perform $20_{10} + 20_{10}$ using 2's complement 6-bit system

 \bullet 20₁₀ \rightarrow 10100₂

■
$$20_{10} + 20_{10}$$
 → $10100_2 + 10100_2$
→ $010100_2 + 010100_2$
No carry out 010100_2
+ 010100_2
occur, and indeed it did in this case

■ *Example 6*:

Perform $-20_{10} - 20_{10}$ using 2's complement 6-bit system

- \bullet 20₁₀ \rightarrow 10100₂
- $-20_{10} 20_{10} \rightarrow -10100_2 10100_2$
 - \rightarrow -010100₂ 010100₂
 - \rightarrow (-010100₂)+ (-010100₂) Carry out
 - \rightarrow 101100₂ + 101100₂

 10100_2 Carry out to be ignored

Overflow might occur, and indeed it did in this case

 $\begin{array}{c|c}
1 & 11 \\
 & 101100_{2} \\
 & +101100_{2} \\
\hline
 & 1011000_{2}
\end{array}$

■ *Example 7*:

Perform $20_{10} - 20_{10}$ using 2's complement 6-bit system

- $\blacksquare 20_{10} \rightarrow 10100_2$
- $\blacksquare 20_{10} 20_{10} \rightarrow 10100_2 10100_2$
 - \rightarrow 010100₂ 010100₂
 - $\rightarrow 010100_2 + (-010100_2)$
 - $\rightarrow 010100_2 + 101100_2$
 - **→** 0000000₂
 - $\rightarrow 0_{10}$

■ *Example 8*:

Perform $31_{10} + 1_{10}$ using 2's complement 6-bit system

- \blacksquare 31₁₀ \rightarrow 11111₂

- **■** *Example 9*:
 - Perform -31_{10} 1_{10} using 2's complement 6-bit system
- \blacksquare 31₁₀ \rightarrow 111111₂

Carry out to be ignored

$$-31_{10} - 1_{10} \rightarrow -111111_2 - 1_2$$

$$\rightarrow$$
 (-0111111₂) + (-000001₂)

$$\rightarrow$$
 (100001₂) + (111111₂)

Overflow might occur, but did not in this case

■ *Example 10*:

Encode –3.25₁₀ using 2's complement 6-bit system

- \blacksquare 3.25₁₀ \Rightarrow 11.01₂
- $-3.25_{10} \rightarrow -0011.01_2$
 - **→** 1100.11₂

Carry out to be ignored

You can also look at it as if it is -3_{10} -0.25_{10}

$$-3_{10} - 0.25_{10} \rightarrow -11_2 - 0.01_2$$

$$\rightarrow$$
 $(-000011_2) + (-0000.01_2)$

$$\rightarrow$$
 (111101₂) + (1111.11₂)

Overflow might occur, but did not in this case

CS 2208: Introduced puter Organization and Architecture

Binary points
MUST be
aligned

Example of Decimal to IEEE-754 Floating-point Conversion

■ *Example 11*:

Convert 16777216.75₁₀ into a 32-bit single-precision IEEE-754 FP value.

- Convert 16777216.75₁₀ into a fixed-point binary
 - $16777216_{10} = 1\,0000\,0000\,0000\,0000\,0000\,0000_2$ and
 - $0.75_{10} = 0.11_2.$
 - Therefore, $16777216.75_{10} = 100000000000000000000000011_2$.
- Normalize 1 0000 0000 0000 0000 0000 0000.11₂ to
 1.0000 0000 0000 0000 0000 0000 11₂ x 2²⁴.
- The sign bit, S, is 0 because the number is positive
- The *biased exponent* is the *true exponent* plus 127; that is, $24 + 127 = 151_{10} = 1001 \ 0111_2$
- o The significand is 000 0000 0000 0000 0000 011
 - the leading 1 is stripped and
 - the significand to be rounded to 23 bits (rounded to nearest FP number).

What is the effect of using rounding toward +∞, rounding toward -∞, or rounding using truncation?

Example of Decimal to IEEE-754 Floating-point Conversion

■ Example 12:

Convert 16777219₁₀ into a 32-bit single-precision IEEE-754 FP value.

- Convert 16777219₁₀ into a fixed-point binary
 - $16777219_{10} = 1\,0000\,0000\,0000\,0000\,0000\,0011_2$ and
- o Normalize 1 0000 0000 0000 0000 0000 0011₂ to $1.0000\ 0000\ 0000\ 0000\ 0000\ 0011_2 \times 2^{24}$.
- The sign bit, S, is 0 because the number is positive
- The *biased exponent* is the *true exponent* plus 127; that is, $24 + 127 = 151_{10} = 1001 \ 0111_2$
- The significand is 000 0000 0000 0000 0000 0001
 - the leading 1 is stripped and
 - the significand to be rounded to 23 bits (rounded to nearest FP number).

What is the effect of using rounding toward +∞, rounding toward -∞, or rounding using truncation?

Mid-way → round to even significand

Example of Decimal to IEEE-754 Floating-point Conversion

- □ Example 13: Convert 3.6₁₀ into a 32-bit single-precision IEEE-754 FP value.
 - Convert 3.6₁₀ into a fixed-point binary

$$\mathbf{3}_{10} = 11_2$$
 and

$$\bullet$$
 0.6₁₀ = 0.1001 1001 ... ₂.

- Therefore, $3.6_{10} = 11.1001 \ 1001 \ \dots \ _2$
- o Normalize 11.1001 1001 ... $_2$ to 1.11001 1001 ... $_2 \times 2^1$.

 $0.6 \times 2 = 1.2$ $0.2 \times 2 = 0.4$ $0.4 \times 2 = 0.8$ $0.8 \times 2 = 1.6$ $0.6 \times 2 = 1.2$...

- The sign bit, S, is 0 because the number is positive
- The *biased exponent* is the *true exponent* plus 127; that is, $1 + 127 = 128_{10} = 1000 \ 0000_2$
- The significand is 110 0110 0110 0110 0110 0110 0110 ...
 - the leading 1 is stripped and
 - the significand to be rounded to 23 bits (rounded to nearest FP number).
- o The final number is 0100 0000 0110 0110 0110 0110 0110, or 40666666_{16} . → 3.5999999046325684_{10}

Tutorial 02: Addition/Subtraction using 2's Complement &Floating-point Numbers

Example of Decimal to IEEE-754 Floating-point Conversion

□ Example 14: Convert 5.877472₁₀×10⁻³⁹ into a 32-bit single-precision IEEE-754 FP value. $\frac{\text{Log}_2(10) = 1/\log_{10}(2)}{\text{Log}_2(10)} = \frac{1}{\log_{10}(2)}$

$$10^{-39} = 2^{z} \implies \log_{2}(10^{-39}) = z \implies -39 \times \log_{2}(10) = z \implies z = -129.5551957$$

$$10^{-39} = 2^{-129.5551957} = 2^{-129} \times 2^{-0.5551957} = = 2^{-129} \times 0.680564734_{10}$$

$$5.877472_{10} \times 10^{-39} = 5.877472_{10} \times 0.680564734_{10} \times 2^{-129}$$

$$= 4_{10} \times 2^{-129} = 1_{10} \times 2^{-127}$$

- Convert 1₁₀ into a fixed-point binary
 - $1_{10} = 1.0_2$ (already normalized)
- o True exponent is less than -126 → underflow case
 - The exponent needs to be -126: -127₁₀ = -126 -1
 - Hence, the significant needs to be adjusted to compensate the -1
 - After moving the radix point backward by 1 position \rightarrow 0.1₂ i.e., $2^{-127} = 0.1 \times 2^{-126}$
 - After Taking 23 bits → 0. 100 0000 0000 0000 0000 0000₂
- The sign bit, S, is 0 because the number is positive

Tutorial 02: Addition/Subtraction using 2's Complement & Floating-point Numbers

Example of Decimal to IEEE-754 Floating-point Conversion

Example 15: Convert $9.0_{10} \times 10^{-44}$ into a 32-bit single-precision IEEE-754 FP value.

$$10^{-44} = 2^z$$
 $\rightarrow \log_2(10^{-44}) = z$ $\rightarrow -44 \times \log_2(10) = z$ $\rightarrow z = -146.164836175$
 $10^{-44} = 2^{-146.164836175} = 2^{-146} \times 2^{-0.164836175} = = 2^{-146} \times 0.892029808_{10}$
 $9.0_{10} \times 10^{-44} = 9.0_{10} \times 0.892029808_{10} \times 2^{-146} = 8.028268272_{10} \times 2^{-146}$

- o Convert 8.028268272₁₀ into a fixed-point binary
 - \bullet 8₁₀ = 1000₂ and
 - $0.028268272_{10} = 0.00000111001111001001..._2$.
 - Therefore, 8.028268272₁₀ = $1000.00000111001111001001..._2$.
- o Normalization: $9.0_{10} \times 10^{-44} = 8.028268272_{10} \times 2^{-146} = 1000.00000111001111001001..._2 \times 2^{-146} = 1.00000000111001111001001..._2 \times 2^{-143}$
- o True exponent is less than -126 → underflow case
 - The exponent needs to be -126: -143₁₀ = -126 -17
 - Hence, the significant needs to be adjusted to compensate the -17

 - After Taking only 23 bits → 0. 000 0000 0000 0000 0100 0000 0011...₂
- The sign bit, S, is 0 because the number is positive
- The final number is 0000 0000 0000 0000 0000 0100 0000 or 00000040₁₆

Example of IEEE-754 Floating-point to Decimal Conversion

- □ Example 16: Convert FE600000₁₆ from 32-bit single-precision IEEE-754 FP value into a decimal value.
 - Convert the hexadecimal number (FE600000₁₆) into binary form

- Unpack the number into sign bit, biased exponent, and fractional significand.
 - S = 1
 - E = 1111 1100
 - F = 110 0000 0000 0000 0000 0000
- As the sign bit is 1, the number is negative.
- o We subtract 127 from the *biased exponent* 1111 1100₂ to get the *true exponent* \rightarrow 1111 1100₂ 0111 1111₂ = 0111 1101₂ = 125₁₀.
- The fractional significand is
 .110 0000 0000 0000 0000 0000₂.
- Reinserting the leading one gives 1.110 0000 0000 0000 0000 00002.
- o The number is $-1.11_2 \times 2^{125} = -1.75 \times 2^{125}$

$$2^{125} = 10^z$$
 \rightarrow $\log_{10}(2^{125}) = z$ \rightarrow $z = 37.62874946$
 $2^{125} = 10^{37.62874946} = 10^{37} \times 10^{0.62874946} = 10^{37} \times 4.253529587$
 $-1.75 \times 2^{125} = -1.75 \times 4.253529587 \times 10^{37} = -7.443676776 \times 10^{37}$

Tutorial 02: Addition/Subtraction using 2's Complement &Floating-point Numbers

Example of IEEE-754 Floating-point to Decimal Conversion

- Example 17: Convert 00200000₁₆ from 32-bit single-precision IEEE-754 FP value into a decimal value.
 - Convert the hexadecimal number (00200000₁₆) into binary form

- Unpack the number into sign bit, biased exponent, and fractional significand.
 - S = 0
 - \blacksquare **E** = 0000 0000
 - F =010 0000 0000 0000 0000 0000

We are subtracting 126, not 127, from the biased exponent, because the biased exponent = 0.

As the sign bit is 0, the number is positive.
 We subtract 126 from the biased exponent 0, to get

o We subtract 126 from the *biased exponent* 0_2 to get the *true exponent* 0_2 0 0111 1110 0_2 = -126 0_1 0.

As the true exponent is -126, then the F is not normalized

- \circ The fractional significand is .010 0000 0000 0000 0000 0000₂.
- o The number is $.01_2 \times 2^{-126} = 2^{-2} \times 2^{-126} = 2^{-128}$

$$2^{-128} = 10^z$$
 \rightarrow $\log_{10}(2^{-128}) = z$ \rightarrow $z = -38.53183944
 $2^{-128} = 10^{-38.53183944} = 10^{-38} \times 10^{-0.53183944} = 10^{-38} \times 0.293873587$
 $2^{-128} = 0.293873587 \times 10^{-38} = 2.9387358 \times 10^{-39}$$

Tutorial 02: Addition/Subtraction using 2's Complement &Floating-point Numbers

Example of IEEE-754 FP to Decimal to IEEE-754 FP Conversion

☐ Example 18:

Convert 4B800002₁₆ from the 32-bit single-precision IEEE-754 FP representation into decimal representation. <u>Then</u> add 1.0₁₀ to the result. And <u>finally</u> convert it back to the 32-bit single-precision IEEE-754 FP representation.

o Convert the hexadecimal number (4B800002₁₆) into binary form

1	3	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	ĺ	Ŏ
0	1	0	0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

- Unpack the number into sign bit, biased exponent, and fractional significand.
 - S = 0
 - E = 1001 0111
 - F =000 0000 0000 0000 0000 0010
- As the sign bit is 0, the number is positive.
- o We subtract 127 from the *biased exponent* 1001 0111₂ to get the *true exponent* \rightarrow 1001 0111₂ 0111 1111₂ = 0001 1000₂ = 24₁₀.
- The fractional significand is
 .000 0000 0000 0000 0000 0010₂.
- Reinserting the leading one gives 1.000 0000 0000 0000 0000 0010₂.
- o The number is $+(1 + 2^{-22}) \times 2^{24} = 2^{24} + 2^2 = 1024_{10} \times 1024_{10} \times 16_{10} + 4_{10} = 16777220_{10}$

Example of IEEE-754 FP to Decimal to IEEE-754 FP Conversion

- ☐ Example 18 (continution):
 - Adding 1.0_{10} to the result \rightarrow 16777220₁₀ + 1.0_{10} = 16777221₁₀

Converting the result back to the 32-bit single-precision IEEE-754 FP format

- Convert 16777221₁₀ into a fixed-point binary
 - $16777221_{10} = 1\,0000\,0000\,0000\,0000\,0000\,0101_2$ and
- Normalize 1 0000 0000 0000 0000 0000 0101₂ to
 1.0000 0000 0000 0000 0000 0101₂ x 2²⁴.
- The sign bit, S, is 0 because the number is positive
- o The *biased exponent* is the *true exponent* plus 127; that is, $24 + 127 = 151_{10} = 1001 \ 0111_2$
- o The significand is 000 0000 0000 0000 0000 0010 1 ●●
 - the leading 1 is stripped and
 - the significand to be rounded to 23 bits (rounded to nearest FP number).

 $16777220_{10} + 1.0_{10} = 16777220_{10}!!!$ (This is due to the rounding error)

Mid-way →

round to even significand

Example of IEEE-754 FP to Decimal to IEEE-754 FP Conversion

□ Example 18 (continution):

Note that:

- \circ 16777220₁₀ = 1.0000 0000 0000 0000 0000 0101₂ × 2²⁴
- $0 1.0_{10} = 1_2 \times 2^0$
- The absolute difference between the exponents of the two FP normalized numbers = 24
- The significand is expressed in 23 bits
- As the absolute difference between the exponents of the two FP normalized numbers is ≥ the number of significand bits + 1 → the result is the larger number of the two, which is 16777220₁₀
- Run the following program to verify Example 18:

```
#include <stdio.h>
int main()
{
  float f = 16777220, ff;
  ff = f + 1;
  printf("%f %f \n", f, ff);
}
```

Change the "float" to "int" and the "%f" to "%d" and repeat executing the program again.

Final Word!!

- **□** How can I verify my results?
- □ There are many online converters between IEEE FP format to float.
 - For example, https://www.h-schmidt.net/FloatConverter/IEEE754.html