

梯度下降树

- 有没有更加聪明的方法
- AdaBoost
- 梯度下降树

从现实世界说起

- 融合算法本质上是将数据给模型重新学习
- 就像我们小时候写作业那样
- 但是只会写作业的小朋友好像总不是学习最好的那个

AdaBoost

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

- AdaBoost算法(ESL)
- i 为数据标号, w为权重
- M为总轮次,m为某轮
- err_m为某轮的错误率
- α_m为权重更新参数
 - *err_m*要大于0.5
 - 模型做错的越少,参数越大
- 只对错误的样本进行更新
- 最后按照正确率加权输出

从随机的个体, 到有迹可循的过程

AdaBoost例子: ESL 10.2 扩展

- X: 十个高斯分布的随机变量
- $X_1, X_2, ..., X_{10}$

$$Y = \begin{cases} 1 & \text{if } \sum_{j=1}^{10} X_j^2 > \chi_{10}^2(0.5), \\ -1 & \text{otherwise.} \end{cases}$$

- 4000条数据, len(y[y==1]) = 1986
- 四种算法:
 - 单层决策树
 - 无限制决策树
 - 单层决策树迭代1000次构成AdaBoost
 - 无限制决策树1000棵构成Random Forest

AdaBoost优缺点

- 优点:
- 对于弱分类器要求很低
 - 不需要知道其能力上限, 下限>0.5就好
- 不容易过拟合
- 是一种算法思想而非特指某种算法
- 可以并列多种弱分类器
- 缺点:
- 噪音样本的轮次累积
- 序列训练&弱分类器"不弱"

【报告】Boosting 25年(2014周 志华)(up主推荐)

3.2 更一般形态的Boosting

- 在每一步的模型记为 $H_t(x)$,我们定义 $H_0(x)=0$
- 我们总共训练T轮,对于t = 1,2,...,T
- 我们训练一个模型 h_t ,但是对于**残差建模** $\{(x_i,y_i-H_{t-1}(x_i))\}_{i=1,\dots,N}$
- 更新模型 $H_t = H_{t-1} + \eta h_t$ η 我们称之为**学习率**, (通常)小于1 (0.1)
- H_T(x)即为模型的最终输出
- 不难理解,若记 L_{t-1} 为模型 H_{t-1} 的损失函数,则 h_t 与 $-\frac{\partial L_{t-1}}{\partial H_{t-1}}$ 平行
- 一般将 $\frac{\partial L_{t-1}}{\partial H_{t-1}}$ 称为梯度,本方法即称为Gradient Boosting(梯度下降、梯度提升)

梯度下降法 Gradient descent

- 问题回到线性回归y = wx + b,
- $L(w,b) = \sum_{i=1}^{N} (y_i (wx_i + b))^2 = f(w,b)$
- 在线性回归中,我们要求X满足一定性质,从而使得L确定唯一的最小值
- 如果L不存在数学上的显示解, 如何呢?
- 找一条下山的路:
 - 方向?
 - 步幅?
 - 结束?
- 古圣先哲:
 - 沿着梯度的方向
 - 迈小步子
 - 学习率: 一步迈梯度的一小点

树的规模

- 梯度下降树是许多许多棵小树加和的结果
- 叶子节点数量(max_leaf_nodes, J)意味着什么?
- 对于J=2, 所有的树都是一分为二的, 只针对某1个变量做判断
- 对于J=3, 至多可以将2个变量组合判断
- 对于J=4, 至多可以将3个变量进行组合判断
- •则,对于J=n,至多可以将n-1个变量进行组合判断

$$\eta(X) = \sum_{j} \eta_{j}(X_{j}) + \sum_{jk} \eta_{jk}(X_{j}, X_{k}) + \sum_{jkl} \eta_{jkl}(X_{j}, X_{k}, X_{l}) + \cdots$$

- 一般来说, $4 \le J \le 8$,罕见J > 6后仍有提升
- 古圣先哲!

树的规模

梯度下降树的正则化

- 树的高度:
 - 叶子节点数量max_leaf_nodes = J
 - Max_depth = J-1
- 树的数量 (n_estimators)要不要限制?
- 为什么要限制?因为强。为什么强?因为梯度!
 - 较低的学习率匹配较多的树

$$H_t = H_{t-1} + \eta h_t$$

- *max_features=None*
- Subsample=1.0 Friedman, J.H. (2002). Stochastic gradient boosting...
- 预测Bias与预测Variance间的权衡
- Early stopping 早点停下
 - 当持续若干轮次n iter no change=None
 - 在留作validation_fraction=0.1验证的数据上
 - 提升小于tol=1e-4 则停止
 - 数据量大于10000,则自动使用early stopping策略

如何估计2020年疫情中线下微型商户的受损情况

Guo, Feng, et al. "The informal economy at times of COVID-19 pandemic." *China Economic Review* 71 (2022): 101722.

总结对比

- 树、森林、随机树
- 多种方法对比

树、森林、梯度树

- 决策树
- 最美的形式
- 高度的灵活性与表示力
- 容易过拟合、容易过敏

- 随机森林
- 鲁棒性很强的算法
- 良好的能力、难过拟合
- 能力有时不够尤其回归
- 简单融合+强个体能力
- Bagging 算法
- 将一个个小的强算法
- 通过简单方式进行融合
- 当发现一个灵活算法容易过拟合时
- 降低Variance

- 梯度下降树
- 极其敏锐的算法
- 担当底牌的能力
- 过拟合、难训练
- 复杂融合+弱个体能力
- Boosting 算法
- 将一个个小的弱算法
- 通过复杂方式进行融合
- 当发现一个问题难求解时
- 降低Bias

4.2 不同方法对比

	Ridge	Lasso	SVM	RF	GBDT
解析解	存在	不存在 可近似	存在	随机	随机
算法透明度	高	高	高	较低	较低
算法开销	低	低	较低	较高	高
变量数敏感	是	否	否	是,可降维	是,可降维
变量选择	否	是,线性	是	是	是, 但不用
数据缺失值、分类	否	否	否	是	是
算法灵活性	差	差	适中	高	高
变量个数	一般	很高	很高	高	高
特色	简单有效	有效易懂	有效时的首选 大量稀疏变量 理解数据 核的选择很重要	特征选择 高度灵活的关系 好训但上限低	高度灵活 结构化数据的 State-of-art 但难训