Understanding Black-box Predictions via Influence Functions

Петров Олег, 193

План

- Мотивация
- Функция влияния: интуитивно
- Взвешивание обучающей точки
- Возмущение обучающих данных
- Почему влияние лучше евклидового расстояния?
- Эффективное вычисление влияния
- Валидация и расширения
- Примеры использования функций влияния

Мотивация

- "Почему система сделала это предсказание?"
 - Улучшить модель
 - Открыть новую науку
 - Предоставить конечным пользователям объяснения действий, которые влияют на них
- Функции влияния полезны для:
 - Понимания поведения модели
 - Отладки моделей
 - Обнаружения ошибок набора данных
 - Создания визуально неразличимых атак на обучающий набор (примеров состязательного обучения, которые могут перевернуть прогнозы тестирования нейронной сети)

Функция влияния: интуитивно

- Model-free мера, в том смысле, что она просто основывается на повторном вычислении эстиматора с измененной выборкой
- Мера зависимости эстиматора от значения любой из точек в выборке
- Функции влияния являются асимптотическими приближениями leave-one-out ретрейнинга в предположениях (*)
- Оценивает влияние отдельно взятого наблюдения на оценку или прогнозы

Предварительные обозначения

- ullet Тренировочная точка: $z_i = (x_i, y_i), x_i \in \mathbb{X}, y_i \in \mathbb{Y}$
- ullet Функция потерь: $L(z_i, heta), heta \in \Theta$ веса, параметры
- Эмпирический риск: $\frac{1}{n}\sum_{i}^{n}L(z_{i},\theta)$
- ullet Оптимум весов: $\hat{ heta} := rgmin_{ heta} rac{1}{n} \sum_{i}^{n} L(z_i, heta)$

 (\star) Предполагается, что эмпирический риск дважды дифференцируем и строго выпуклый в точке θ

- Как изменились бы прогнозы модели, если бы у нас не было этой точки обучения?
- Удалим тренировочную точку из обучающей выборки, тогда оптимум:

$$\hat{ heta}_{-z} - \hat{ heta},$$
 где $\hat{ heta}_{-z} := rgmin_{ heta} rac{1}{n} \sum_{z_i
eq z}^n L(z_i, heta)$

- Leave-One-Out долго
- Как аппроксимировать?

• Взвесим тренировочную точку

$$\hat{ heta}_{\epsilon,z} := rgminrac{1}{n}\sum_{i=1}^n L(z_i, heta) + \epsilon L(z, heta)$$

Влияние взвешенной точки на веса (параметры) определяется как:

$$\mathcal{I}_{\text{up,params}}(z) \stackrel{\text{def}}{=} \frac{d\theta_{\epsilon,z}}{d\epsilon} \Big|_{\epsilon=0} = -H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z,\hat{\theta}), \quad (1)$$

$$H_{\hat{\theta}} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} L(z_{i}, \hat{\theta})$$

Примечание: в статье нигде не сказано, что $\epsilon > 0$

• Удаление точки z эквивалентно ее домножению на $\epsilon = -\frac{1}{n}$:

$$\hat{ heta}_{\epsilon,z} := rgminrac{1}{n}\sum_{i=1}^n L(z_i, heta) - rac{1}{n}L(z, heta)$$

 Тогда можем линейно аппроксимировать изменение параметра из-за удаления z без ретрейнинга:

$$\hat{ heta}_{-z} - \hat{ heta} \sim -rac{1}{n} \mathcal{I}_{up,params}(z) \quad \Longrightarrow \quad \hat{ heta}_{-z} \sim \hat{ heta} - rac{1}{n} \mathcal{I}_{up,params}(z)$$

• Влияние взвешивания z на функцию потерь в тестовой точке:

$$\mathcal{I}_{\text{up,loss}}(z, z_{\text{test}}) \stackrel{\text{def}}{=} \frac{dL(z_{\text{test}}, \hat{\theta}_{\epsilon, z})}{d\epsilon} \Big|_{\epsilon=0}$$

$$= \nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^{\top} \frac{d\hat{\theta}_{\epsilon, z}}{d\epsilon} \Big|_{\epsilon=0}$$

$$= -\nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z, \hat{\theta}).$$
(2)

Возмущение обучающих данных

- ullet Рассматривается эффект возмущения $z o z_\delta = (x+\delta,y)$
- ullet Пусть $\hat{ heta}_{z_{\delta},-z}$ оптимальные параметры, z заменен на z_{δ}
- ullet Параметры, возникающие от передвижения ϵ с z на z_δ

$$\hat{ heta}_{\epsilon,z_{\delta},-z} := rgminrac{1}{n}\sum_{i=1}^{n}L(z_{i}, heta) + \epsilon L(z_{\delta}, heta) - \epsilon L(z, heta)$$

Аналогично (1):

$$\frac{d\hat{\theta}_{\epsilon,z_{\delta},-z}}{d\epsilon}\Big|_{\epsilon=0} = \mathcal{I}_{\text{up,params}}(z_{\delta}) - \mathcal{I}_{\text{up,params}}(z)$$

$$= -H_{\hat{\theta}}^{-1} \left(\nabla_{\theta} L(z_{\delta},\hat{\theta}) - \nabla_{\theta} L(z,\hat{\theta})\right). \quad (3)$$

Возмущение обучающих данных

• Линейная аппроксимация (влияние эффекта возмущения):

$$\hat{ heta}_{\epsilon,z_{\delta},-z} - \hat{ heta} \sim -\frac{1}{n} (\mathcal{I}_{ ext{up,params}}(z_{\delta}) - \mathcal{I}_{ ext{up,params}}(z))$$

• Предполагая непрерывность x, можем приближать дальше:

$$\|\delta\| \to 0, \nabla_{\theta} L(z_{\delta}, \hat{\theta}) - \nabla_{\theta} L(z, \hat{\theta}) \approx [\nabla_{x} \nabla_{\theta} L(z, \hat{\theta})] \delta$$

Тогда:

$$\frac{d\hat{\theta}_{\epsilon,z_{\delta},-z}}{d\epsilon}\Big|_{\epsilon=0} \approx -H_{\hat{\theta}}^{-1}[\nabla_{x}\nabla_{\theta}L(z,\hat{\theta})]\delta. \tag{4}$$

• Как итог:

$$\hat{\theta}_{z_{\delta},-z} - \hat{\theta} \approx -\frac{1}{n} H_{\hat{\theta}}^{-1} [\nabla_x \nabla_{\theta} L(z,\hat{\theta})] \delta$$

Возмущение обучающих данных

• Дифференцируя по дельта:

$$\mathcal{I}_{\text{pert,loss}}(z, z_{\text{test}})^{\top} \stackrel{\text{def}}{=} \nabla_{\delta} L(z_{\text{test}}, \hat{\theta}_{z_{\delta}, -z})^{\top} \Big|_{\delta = 0}$$

$$= -\nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{x} \nabla_{\theta} L(z, \hat{\theta}).$$
(5)

- $[\mathcal{I}_{pert,loss}(z,z_{test})]\delta$ оценивает эффект, который возмущение $z\mapsto z_{\delta}$ создает на функции потерь относительно тестовой точки
- Можем построить локальные возмущения z, которые максимально увеличивают потери на тестовой точке
- Помогает определить признаки z, наиболее ответственные за прогноз на тестовом объекте z_{test}

Почему влияние лучше евклидового расстояния?

- ullet Мера близости точек: $\langle x, x_{test}
 angle$
- Сравним с $\mathcal{I}_{up,loss}(z,z_{test})$ в модели логистической регрессии:

Пусть $p(y|x) = \sigma(y\theta^T x)$, тогда:

$$L(z, heta) = \log(1 + \exp(-y heta^T x))$$
 $\nabla_{ heta} L(z, heta) = -\sigma(-y heta^T x)yx$ Π Подставив в (2), $\mathcal{I}_{up,loss}(z, z_{test}) = H_{ heta} = rac{1}{n} \sum_{i}^{n} \sigma(heta^T x_i) \sigma(- heta^T x_i) x_i x_i^T$ $= -y_{test} y \cdot \sigma(-y_{test} heta^T x_{test}) \cdot \sigma(-y heta^T x) \cdot x_{test}^T H_{\hat{ heta}}^{-1} x$

Что это дает?

Почему влияние лучше евклидового расстояния?

Почему лучше?

- $\sigma(-y\theta^Tx)$ дает точкам с высокой потерей при обучении большее влияние, показывая, что выбросы могут доминировать в параметрах модели
- Взвешенная ковариационная матрица $H_{\hat{\theta}}^{-1}$ измеряет "сопротивление" других точек обучения удалению z

Вывод: функции влияния отражают эффект обучения модели гораздо точнее

Эффективное вычисление влияния

Два изменения для вычисления $\mathcal{I}_{up,loss}(z,z_{test})$:

- ullet $H_{\hat{ heta}} \stackrel{\mathrm{def}}{=} \frac{1}{n} \sum_{i=1}^n \nabla_{ heta}^2 L(z_i, \hat{ heta}) O(np^2 + p^3)$ на вычисление и инверсию
- Часто хотим считать $\forall \ i \ \mathcal{I}_{up,loss}(z_i,z_{test})$

Peшeниe: Hessian-vector products (HVP)

- Эффективное приближение $s_{test} := H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z_{test}, \hat{\theta})$ Последующее вычисление $\mathcal{I}_{up,loss}(z, z_{test}) = -s_{test} \cdot \nabla_{\theta} L(z, \hat{\theta})$

Решается вторая проблема:

- Пре-вычисление s_{test} для каждой тестовой точки
- Для каждой обучающей $-s_{test}\cdot
 abla_{ heta}L(z_i,\hat{ heta})$

Сопряженные градиенты (CG)

!HVP: считаем, что $[
abla_{ heta}^2 L(z_i,\hat{ heta})]v \sim O(p) \ orall \ v$. Как быть с $H_{\hat{ heta}}$?

Заменяем операцию инверсии матрицы задачей оптимизации:

ullet Предполагая $H_{\hat{ heta}}>0$, решаем с помощью СG:

$$H_{\hat{ heta}}^{-1}v\equiv \operatorname*{argmin}_{t}\{rac{1}{2}t^{T}H_{\hat{ heta}}t-v^{T}t\}$$

- ullet Требуется уметь вычислять $H_{\hat{ heta}} \, t \sim O(np)$ без формирования матрицы
- Точное решение р итераций; на практике меньше
- С большими выборками медленно: п проходов за итерацию

Стохастическая оценка

Хотим выбирать лишь одну точку за итерацию

- ullet $H_j^{-1} := \sum\limits_{i=0}^{\jmath} (I-H)^i$ первые ј слагаемых в разложении Тейлора для H^{-1}
- ullet Рекурсивно: $H_j^{-1} = I + (I-H)H_{j-1}^{-1} \overset{\longrightarrow}{\underset{j o \infty}{\longrightarrow}} H^{-1}$
- ullet На каждой итерации можно заменить H через несмещенную оценку $ilde{H}_j$ $\mathbb{E}[ilde{H}_j^{-1}] = H_j^{-1} o H^{-1}$

Что выбрать в качестве оценки?

Стохастическая оценка

- ullet Равномерное сэмплирование z_{s_1},\ldots,z_{s_t}
- $abla_{ heta}^2 L(z_{s_i}, \hat{ heta})$ в качестве оценки H(в одной точке)
- Определение $ilde{H}_0^{-1}v=v$
- ullet Рекурсивное вычисление ${ ilde H}_j^{-1}v=v+(Iabla_{ heta}^2L(z_{s_j},\hat{ heta})){ ilde H}_{j-1}^{-1}v$
- ullet $ilde{H}_t^{-1}v$ несмещенная оценка $H^{-1}v$
- ullet Выбираем достаточно высокое t для стабилизации $ilde{H}_t$
- Повторяем процедуру г раз для уменьшения дисперсии

Значительно быстрее, чем CG (эмпирически)

Итог

- ullet $\mathcal{I}_{up,loss}(z_i,z_{test})$ считаем за O(np+rtp)
- Выгодно: rt = O(n)
- Считаем $\mathcal{I}_{pert,loss}(z_i,z_{test})^T = -\frac{1}{n} \nabla_{\theta} L(z_{test},\hat{\theta})^T H_{\hat{\theta}}^{-1} \nabla_x \nabla_{\theta} L(z_i,\hat{\theta})$ через HVP:
 - ullet Вычисляем $s_{test} =
 abla_{ heta} L(z_{test}, \hat{ heta})^T H_{\hat{ heta}}^{-1}$
 - $ullet \ \mathcal{I}_{pert,loss}(z_i,z_{test})^T = \ s_{test}^T
 abla_x
 abla_ heta L(z_i,\hat{ heta})$

Вычисления легко имплементировать в auto-grad системах (TF, Theano)

Функции влияния vs LOO-ретрейнинг

Насколько функции влияния точны?

Сравниваются
$$-\frac{1}{n}\mathcal{I}_{up,loss}(z,z_{test})$$
 и $L(z_{test},\hat{ heta})-L(z_{test},\hat{ heta}_{-z})$ (LOO)

- Случайно взяли неверно классифицированную z_{test} .
- 500 точек с самым большим значением $|\mathcal{I}_{up,loss}(z,z_{test})|$.
- Для каждой отрисовали
 $-\frac{1}{n}\mathcal{I}_{up,loss}(z,z_{test})$ против фактических
 изменений при удалении точки.

Non-convexity and non-convergence

Что, если $H_{\tilde{q}}$ имеет отрицательные собственные значения?

- При запуске SGD с ранней остановкой $\left.
 ight.
 ight.$ $ilde{ heta}
 eq \hat{ heta}$
- Невыпуклые задачи

$$ilde{ heta}
eq \hat{ heta}$$

Дадут ли функции влияния значимые результаты?

Формируем выпуклую квадратичную аппроксимацию потерь вокруг $\tilde{ heta}$:

$$ilde{L}(z, heta) = L(z, ilde{ heta}) +
abla L(z, ilde{ heta})^T(heta- ilde{ heta}) + rac{1}{2}(heta- ilde{ heta})^T(H_{ ilde{ heta}}+\lambda I)(heta- ilde{ heta})$$

 λ – damping term. Считаем $\mathcal{I}_{un,loss}$ через \tilde{L}

Non-convexity and non-convergence

Плохой случай на примере

- non-convergent, non-convex setting
- CNN на 500К параметров, без сходимости
- ullet $H_{ ilde{ heta}}$ не положительно определена
- $\lambda = 0.01$

Прогнозируемые и фактические изменения потерь были сильно коррелированы (R=0.82)

Недифференцируемые функции потерь

Рассмотрим бинарную классификацию изображений на SVM (классы 1, 7)

- Hinge(s) = max(0, 1 s)
- Производные $\equiv 0$
- ullet $\mathcal{I}_{up.loss}(z,z_{test})$ переоценивает влияние z

Недифференцируемые функции потерь

Аппроксимация: SmoothHinge $(s,t)=t\log(1+\exp(rac{1-s}{t})), \ t o 0$

Понимая поведение модели

- Сравнивается fine-tuned Inception v3 и ядровый (RBF) SVM
- Dog vs Fish dataset из ImageNet
- SmoothHinge $(\cdot, 0.001)$ для вычисления влияние в SVM
- Выбрано тестовое изображение
- Наиболее полезное обучающее
 изображение для Inception для
 определение тестового изображение
 собаки.

Понимая поведение модели

- ullet $\mathcal{I}_{up,loss}$ в SVM изменялись обратно пропорционально $\sqrt{\|x-x_{test}\|}$
- Inception влияния были намного меньше коррелированы с $\sqrt{\|x-x_{test}\|}$
- Два обучающих изображения на рисунке для каждой модели имеют наиболее положительный $-\mathcal{I}_{up,loss}$
- Inception отличительные черты
- SVM сопоставление с шаблоном

Понимая поведение модели

- В SVM рыбы, близкие к тестовому изображению, – в основном полезные; собаки – в основном вредные
- В Inception наоборот как полезны, так и вредны

Влияния отличаются для разных моделей: модели могут делать одинаковые прогнозы, достигая их совершенно разными способами

Модели могут быть уязвимы для возмущений обучающих входных данных

- ullet $\mathcal{I}_{pert,loss}(z,z_{test})$ показывает, как изменить z, чтобы максимально увеличить loss для z_{test} .
- ullet $ilde{z}_i$ состязательная версия z_i
- Метод:
 - \circ Init: $\tilde{z}_i := z_i$
 - $egin{array}{l} & ilde{z}_i := \prod (ilde{z}_i + lpha sign(\mathcal{I}_{pert,loss}(ilde{z}_i, z_{test}))). \end{array}$

(Iterated, training-set analogue of the methods used by, e.g., Goodfellow et al. (2015); MoosaviDezfooli et al. (2016) for test-set attacks)

- 100 итераций, $\alpha = 0.02$
- Первоначально правильно 591/600
- Для каждого из 591 тестовых искали визуально неразличимое возмущение (8-битное представление) для одного из 1800 обучающих

Нарушения:

- 1 изображения 57% порчи теста
- 2 изображений 77% порчи теста
- 10 изображений 590/591

Попытались атаковать несколько тестовых изображений одновременно, увеличив их средние test losses, и обнаружили, что возмущения одного обучающего изображения также могут одновременно перевернуть несколько тестовых прогнозов.

Возмущение изображения сверху перевернуло прогнозы на изображениях снизу.

Замечания:

- Хотя изменение значений пикселей невелико, изменение в конечном Inception-слое значительно больше
- Атака пытается нарушить обучающий пример в направлени низкой дисперсии, в результате чего модель перестраивается в этом направлении и неправильно классифицирует тестовые изображения
- Неоднозначные или неправильно помеченные обучающие изображения являются эффективными точками для атаки, поскольку модель имеет низкую уверенность и высокие потери на них, что делает их очень влиятельными

Собака или рыба?

Отладка несоответствия предметной области

Несоответствие предметной области (Domain Mismatch) — явление, при котором распределение обучающей выборки не соответствует распределению тестовой

Функции влияния могут идентифицировать обучающие примеры, наиболее ответственные за ошибки

- Hospital Readmissions Dataset (binary)
- Логистическая регрессия
- Сбалансированный набор данных

- 3 из 24 детей до 10 лет были повторно госпитализированы
- Удалили 20 негоспитализированных
- Задача: определить 4-х оставшихся как ответственных за ошибку

Отладка несоответствия предметной области

Выявление

- Вес признака "is a child" не был большим
- ullet Случайный неверно классифицированный z_{test}
- ullet Для каждой обучающей z_i вычислили $-\mathcal{I}_{up,loss}(z_i,z_{test})$
- 4 ребенка были наиболее влиятельными (в 30-40 раз)
 - 3-е п/г-х высокое негативное влияние
 - 1 не п/г-ый высокое положительное влияние
- ullet Вычисление $\mathcal{I}_{pert,loss}(z,z_{test})$: признак "is a child" сильно влияет на $\mathcal{I}_{up,loss}(z,z_{test})$

Исправление разметки

Часто невозможно просмотреть разметку вручную

Функции влияния могут позволить проверять только те примеры, которые действительно имеют значение

- Отметить точки обучения, которые оказывают наибольшее влияние
- $\mathcal{I}_{up,loss}(z_i,z_i)$ приблизительно соответствует ошибке, возникшей при z_i , если мы удалим z_i из обучающего набора
- Email spam classification
- Перевернули 10% случайных меток

Исправление разметки

Моделирование ручной проверки: выявление приоритетных точек с помощью функций влияния, наибольшим train loss и случайного выбора.

- Функции влияния позволили восстановить набор данных, не проверяя слишком много точек, превзойдя другие методы
- 40 повторений эксперимента, в каждом из которых изменено разное подмножество меток

Выводы

Функции влияния – это круто, модно, молодежно

Почитать

- https://christophm.github.io/interpretable-ml-book/influential.html#influence-functions
- https://openaccess.thecvf.com/content_CVPR_2020/papers/Lee_Learning_A ugmentation_Network_via_Influence_Functions_CVPR_2020_paper.pdf