23 Wednesday, April 6, 2011

Double Planes

Affine case: $A = \mathbb{C}[x, y]$, Spec $A = \mathbb{A}^2 = X$

 $f(x,y) \in A$, square-free (no square factors, non-constant). Let $B = A[w]/(w^2 = f)$, $Y = \operatorname{Spec} B$.

B is a domain, free A-module with basis (1, w).

Automorphism $\sigma: B \to B, w \mapsto -w$. $A = B^{\langle \sigma \rangle}$

Lemma. B is normal.

Proof. Let $\beta = a + bw$ in fract(B). It is integral over A, and not in A ($b \neq 0$), irreducible polynomial has coefficients in A. $t^2 - (\beta + \beta')t + \beta\beta'$, $\beta' = \sigma\beta$. Then $\beta + \beta' = 2a \in A$, $\beta\beta' = a^2 - b^2f$ with $b^2f \in A$. Since f is square-free, $b \in A$, and so $\beta \in B$.

General theory says PSpec $B/\langle \sigma \rangle = PSpec A$.

Prime ideals of A: (0); (g) prime ideal, g irreducible; \mathfrak{M}_p maximal $\leftrightarrow p \in X$.

What prime ideals of B lie over P?

(0) lies over (0).

Maximal ideals of $B \longleftrightarrow \text{points of } Y = \operatorname{Spec} B$

inclusion $A \hookrightarrow B$ gives map $Y \to X$ $(q \leadsto p) \implies \mathfrak{M}_q$ lies over \mathfrak{M}_p . (usually 2 points of $Y \leadsto 1$ point of X)

Say P = (g), g irreducible in A.

What is a description of Q, the prime ideals lying over P $(A \cap Q = P)$? Cases:

- P remains prime: PB = Q is a prime ideal
- $f \in P$ (g divides f) Then P ramifies: there exists a unique prime Q of B over P, and $Q^2 = PB$.
- P does not remain prime, and $f \notin P$. Then there exist two primes Q, Q' = sigmaQ over P and $PB = Q \cap Q'$.

(EXPLANATION OF FIRST BULLET NOT INCLUDED)

Second bullet: Say $f \in P$. What is B/PB? It's $A[w]/(w^2 - f, g)$. Let $\bar{A} = A/(g)$. Then we can write B/PB as $\bar{A}[w]/(w^2)$. Then $P \longleftrightarrow (0) \in \bar{A}$, and $PB \longleftrightarrow (0) \in B/PB$. Then w generates the prime ideal of \bar{B} , and the quotient is \bar{A} . This gives, using the correspondence theorem, a prime ideal Q of B, Q = (w, g).

$$Q^2 = (w^2, wg, g^2) = (f, wg, g^2)$$
. Then $\gcd(f, g^2) = g = uf + vg^2$, so $g \in Q^2$.

Third bullet: $f \notin P$, PB not prime. Choose Q lying over P. Let $Q' = \sigma Q$. Since Q lies over P, so does Q' because σ fixes A. Since PB is not prime, $Q \neq B$.

Lemma.
$$Q \cap Q' = PB$$

 $(Q \neq PB, : Q \neq Q')$

Proof. Take $\beta \in Q \cap Q'$, $\beta = a + bw$. Then $\beta' = \sigma\beta = a - bw$, so $\beta' \in Q \cap Q'$. Note that σ fixes $Q \cap Q'$: $\sigma(Q \cap Q') = \sigma(Q \cap Q')$

$$\beta + \beta' = 2a \in Q \cap Q' \cap A = P$$
$$\beta \beta' = a^2 - b^2 f \in Q \cap Q' \cap A = P$$
$$\therefore b^2 f \in P$$

 $f \notin P, : b \in P, ainP, \beta \in PB$. Thus, $PB = Q \cap Q'$.

Example. $w^2 = f = x^2 + y^2 - 1, g = y$

Then $g \nmid f$. So we have P = (g) remains prime.

Take $B/PB \approx \mathbb{C}[x, w]/(w^2 - x^2 + 1)$. This is a domain, so the 0-ideal is prime. Therefore, P remains prime. Take q = y - 1. (This divides $y^2 - 1$.)

Then $B/P_2B \approx \mathbb{C}[x,w]/(w^2-x^2)$, so P_2B does not remain prime.

If we draw a picture, we see that y=0 goes through the middle of the circle, but y=1 is tangent.

Show: If $\Delta = \{f = 0\}$ (branch locus) and $C = \{g = 0\}$ (curve) intersect \uparrow (intersect transversely; the tangent lines are distinct) at some point p.

Theorem. C remains prime.

Proof. Choose coordinates so that p = (0,0). Then $f = \sum a_{ij}x^iy^j$, $g = \sum b_{ij}x^iy^j$. Δ and C meet at p, so $a_{00} = b_{00} = 0$.

Then $f = a_{10}x + a_{01}y + \cdots$. The tangent line is $a_{10}x + a_{01}y = 0$. We also have $g = b_{10}x + b_{01}y + \cdots$, with tangent line $b_{10}x + b_{01}y = 0$.

Let's make a linear change of coordinates: f = x + u, g = y + u, u, v have all terms of degree ≥ 2 .

Now let's make an analytic change of coordinates. Set x' = x + u, y' = y + v. Then $\left(\frac{\partial(x',y')}{\partial(x,y)}\right)_{00} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is invertible. The inverse function theorem says that this operator is invertible locally (analytically).

 $\mathbb{C}^2_{x,y} \to \mathbb{C}^2_{x',y'}$: replace x,y with x',y'. Then $w^2=x'$ and g=y'. This doesn't split locally. \square

(A power series $c_k x^k + c_{k+1} x^{k+1} + \cdots$, $c_k \neq 0$ is a square of a series $\iff k$ is even.

Projective Double Plane

Start with an affine double plane $w'^2 = F(x', y')$. Say F has degree d = 2k.

Make the substitution $\frac{x}{z} = x'$, $\frac{y}{z} = y'$, $\frac{w}{z^k} = w'$. Then $\left(\frac{w}{z^k}\right)^z = F\left(\frac{x}{z}, \frac{y}{z}\right) \to w^2 = f(x, y, z)$ (homogeneous of degree d), a double cover of \mathbb{P}^2_{xyz} .

To embed, we need weighted projective space, where x, y, z have weight 1 and w has weight k. In this space, $(w, x, y, z) = (\lambda^k w, \lambda x, \lambda y, \lambda z)$. (Note: "weighted projective spaces are a bit pathological.") A better way to do this is to treat this as a sheaf of algebras over \mathbb{P}^2_{xyz} .