

FCC TEST REPORT

For

General Procurement, Inc Hyundai Koral_10XL Model No.: Koral_10XL

Prepared For : General Procurement, Inc

Address : 800 E Dyer Road, Santa Ana, California, United States 92705

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW181122004-03

Date of Receipt : Nov. 22, 2018

Date of Test : Nov. 22, 2018~Jan. 02, 2019

Date of Report : Jan. 03, 2019

Contents

1. General Information	, p		Notek.	Anbo	4
1.1. Client Information	botek	Anbo	W. Hotek	wapote.	Anu 5
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used Duri 1.4. Description of Test Modes 1.5. List of channels	wotek.	Aupote.	Am	K "bołek	
1.3. Auxiliary Equipment Used Duri	ng Test		tek Anbo	br.	k mboter 4
1.4. Description of Test Modes	Anbu		notek pub	Office Amb	6
1.5. List of channels	Anb	Dro Ar		nbotek Anb	
1.6. Description Of Test Setup	, Na	botek	Anbe	Motek	
1.7. Test Equipment List		ote _k	Anbote	Viun Viek	9
1.8. Description of Test Facility	pore	YII.	Cabolek	Anbo	10
2. Summary of Test Results	Repoter	Anbe	tel	K Anbore	11
1.6. Description Of Test Setup 1.7. Test Equipment List 1.8. Description of Test Facility 2. Summary of Test Results 3. Conducted Emission Test	otel	Anbo	P.U.	ofology Yas	12
3.1. Test Standard and Limit	bu.	Lek	poter Aup.		12
3.2. Test Setup	Anb	V99	otek	uporg Will	12
3.3. Test Procedure	ek A	upor	br.,	mboten A	
3.4. Test Data	otek.	- Auporer	Anbo	,otek	
3.1. Test Standard and Limit	Edge	, potek	Anbor	VI.,	
4.1. Test Standard and Limit	Aupor	b.,	ek kupo _{fe} ,	Anb	17
4.2. Test Setup	Anbote.	Ann	······································	tek Aupor	
4.3. Test Procedure		tek An	oor by	dag Yate	18
4.4. Test Data	\$4 be,	Hotek	enbote, A	715.	otok
5. Maximum Peak Output Power Test	P.		hotek	Anbor A	30
5.1. Test Standard and Limit	otek	Anbo	h. wetek	anbote.	30
5.2. Test Setup	notek.	Vupore.	Amu	, botek	30
5.3. Test Procedure	YuFek	nabote	Anbo	W. wotek	30
5.4. Test Data	Aupo	5 /4	otek sobo	re. Aur	30
6. 6DB Occupy Bandwidth Test	Anbo	P.D.		botek Anbe	32
6.1. Test Standard and Limit	<i>K</i>	por	b70.	oten	
6.2. Test Setup	Vy	Notek	Anbors	VIII.	34
6.3. Test Procedure		Pr.	anboten	Ambo	34
6.4. Test Data	nboter	Anu	k Sofek	Aupora	32
7. Power Spectral Density Test	******	Anbor	b72.	ek saboten	40
7.1. Test Standard and Limit		9K 200	ote. And	أەرىيىسىسىخىيى	40
7.2. Test Setup	VUIN		mootek An	oo, br.	40
7.3. Test Procedure	e Ani	, , , , , , , , , , , , , , , , , , ,		Appores Ar	40
7.4. Test Data	No.k	Vupo _{te} .	Anv.	hotek	4(
8. 100kHz Bandwidth of Frequency Band	Edge Req	uirement	Anbo	A. Morek	46
8.1. Test Standard and Limit	upo	h. wete	k Aubote.	Ann	46
8.2. Test Setup	Anbore	An	Yodan Yan	Anbo	46
8.3. Test Procedure	bote	Anb.		otek pubot	46
8.4. Test Data	la.	otek p	upore Au		46
6.2. Test Setup	Yn.	yek	botek	Yupo M.	55
9.1. Test Standard and Requirement.	ter	YUD.	notek.	Anbore	55

9.2. Antenna Connected Construction		u Anaotek A	
APPENDIX I TEST SETUP PHOTOGRAPHAPPENDIX II PHOTOGRAPH	Arria Ole Arri		56
			58
noter Anbo K. Stek Spore A			
hotek Anbo kek abote A			
	Anbotek		
Anbote And Sotek Anbotek Anbo	ak abotek An		
otek Anbotek Anbotek Anbot			k nbote
Anbotek			
Anbotek			

TEST REPORT

Applicant : General Procurement, Inc

Manufacturer : Shen Zhen Cheng Fong Digital-Tech Limited

Product Name : Hyundai Koral 10XL

Model No. : Koral 10XL

Trade Mark : Hyundai

Rating(s) Input: DC 5V, 2A(Via adapter Input: AC 100~240V, 50/60Hz, Max: 0.35A;

with DC 3.7V, 5000mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test				100v. 22, 2016~.	Jan. 02, 2019	K Whole
Prepared by	Compl	iance Latoniano		olivay	larg	
Prepared by	A A A A A A A A A A A A A A A A A A A	oduct Safety	" "pote"	FUD	-Olok	VUPO, VI
	x112 6	· / \$11		(Engineer / O	liay Yang)	
	ofer, Same	~ «//		All work	boten	
	* Al	oproved*				
	upor			C	Meng,	
		Vupore Vi		Snavy	11/00	
				0	O inb	
Reviewer	Anbotek					
		hotel	Anb	(a 48k 1a	Anbote A	-/c 200
				(Supervisor / Si	nowy Meng)	
				Amb M	l sotek	
		101		Sally Z	zhoung	
				2000	ok Anborek	
Approved & Au	41 : 42 G:	mbote. An		"Ofek Nupo,	O VIII	
Approved & Au	tnorized Signe	er.	poter A	/b. I.	tek abo	Vice Ville
				(Manager / Sa	ally Zhano)	
				(intallager / Be	any Zhang)	

1. General Information

1.1. Client Information

0	Applicant	:	General Procurement, Inc
0	Address	:	800 E Dyer Road , Santa Ana, California, United States 92705
P	Manufacturer	:	Shen Zhen Cheng Fong Digital-Tech Limited
3	Address	• •	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China
3	Factory	:	Shen Zhen Cheng Fong Digital-Tech Limited
P	Address	:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China

1.2. Description of Device (EUT)

Y	Product Name	:	Hyundai Koral_10XL	abotek Anbotek Anbotek Anbotek Anbo
30	Model No.	:	Koral_10XL	Anbotek Anbotek Anbotek Anbotek Ar
X	Trade Mark	:	Hyundai	Anbotes Anbotek Anbotek Anbotek
Test Power Supply	:	AC 240V, 60Hz for adapte	er/ AC 120V, 60Hz for adapter/ DC 3.7V Battery inside	
4	Test Sample No.	:	S1(Normal Sample), S2(E	Engineering Sample)
0			Operation Frequency:	802.11b/ g/ n(HT20) 2412-2462MHz
1			Number of Channel:	11 Channels for 802.11b/ g/ n(HT20)
	Product Description	scription	Modulation Type:	802.11b CCK; 802.11g/n OFDM
6			Antenna Type:	PIFA Antenna
3			Antenna Gain(Peak):	2.5 dBi
Ø	- 10		No. Dr.	16,

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for Wifi 2.4G module.

1.3. Auxiliary Equipment Used During Test

Adapter	:	Manufacturer: Shenzhen Jihongda Power Co., Ltd.	Arr.
		M/N: JHD-AP013U-050200BB-B	0/0
		Input: 100-240V~ 50/60Hz, 0.35A	
		Output: DC 5V, 2000mA	

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	k Wpor	CCK	DBPSK	1.0

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Lest Channel Modulation Le		Modulation Type	Data Rate (Mbps)	
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	otek 1.0 Anbo	
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0	
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5	

POWER LINE CONDUCTED EMISSION TEST:

The EUT was tested with the following mode

EUT configure mode	Test Mode
And tek spotek	Keeping TX mode

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 11	CCK	DBPSK	1.0
802.11g	1 to 11	1, 11	OFDM	BPSK	6.0
802.11n HT20	nootek 1 to 11 mbo	1, 11 botek	OFDM	BPSK	6.5

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	1.0
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5

1.5. List of channels

Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.
	(MHz)		(MHz)		(MHz)		(MHz)
bote 101	2412	04	2427	07	2442	poter 10 Ar	2457
02	2417	05	2432	80 00	2447	nbo41	2462
03	2422	06	2437	09	2452		

1.6. Description Of Test Setup

CE

RE

1.7. Test Equipment List

-VO.	D.I.	184	P	210	V 10 2
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 19, 2018	1 Year
Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 19, 2018	1 Year
Horn Antenna	A-INFO	LB-180400-KF	J211060628	Nov. 20, 2018	1 Year
Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
EMI Test Software EZ-EMC	SHURPLE	N/A Mood	N/A	N/A	N/A
RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year
	L.I.S.N. Artificial Mains Network EMI Test Receiver RF Switching Unit Spectrum Analysis MAX Spectrum Analysis Preamplifier Double Ridged Horn Antenna Bilog Broadband Antenna Loop Antenna Horn Antenna Pre-amplifier EMI Test Software EZ-EMC RF Test Control System Power Sensor MXA Spectrum Analysis MXG RF Vector Signal Generator Signal Generator DC Power Supply Constant Temperature	L.I.S.N. Artificial Mains Network EMI Test Receiver RF Switching Unit Spectrum Analysis MAX Spectrum Analysis Preamplifier Double Ridged Horn Antenna Bilog Broadband Antenna Loop Antenna Loop Antenna Horn Antenna CEALEMC RF Test Control System Power Sensor Power Sensor MXA Spectrum Analysis Agilent Asilent SKET Electronic Instruments corporation Schwarzbeck Schwarzbeck Schwarzbeck Horn Antenna A-INFO Pre-amplifier SONOMA EMI Test Software EZ-EMC RF Test Control System Agilent Analysis MXG RF Vector Signal Generator Signal Generator Signal Generator Agilent Constant Temperature ZHONGIJAN	L.I.S.N. Artificial Mains Network EMI Test Receiver Rohde & Schwarz RF Switching Unit Spectrum Analysis Agilent Analysis Preamplifier Double Ridged Horn Antenna Bilog Broadband Antenna Corporation Corporation Schwarzbeck FMZB1519B Horn Antenna A-INFO LB-180400-KF Pre-amplifier SONOMA SHURPLE N/A EMI Test Software EZ-EMC RF Test Control System Power Sensor DAER RPR3006W MXA Spectrum Analysis Agilent N9020A MXA Spectrum Analysis MXG RF Vector Signal Generator Signal Generator Signal Generator Agilent DC Power Supply IVYTECH IV3605 TLKHWS80B	L.I.S.N.	L.I.S.N. Artificial Mains Network Rohde & Schwarz ENV216 100055 Nov. 05, 2018

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Conducted Peak Output Power	PASS
15.247(a)(2)	6dB Occupied Bandwidth	PASS
15.247(e)	Power Spectral Density	PASS
15.247(d)	Band Edge	PASS

3. Conducted Emission Test

3.1. Test Standard and Limit

	Γ	Maximum RF	Line Voltage (dBuV)
	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56	46
	5MHz~30MHz	60	50 bote

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 23.4°C Hum.: 56%

	No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
	1	0.6660	30.14	20.03	50.17	56.00	-5.83	QP	
	2	0.6700	25.09	20.03	45.12	46.00	-0.88	AVG	
	3	0.7500	17.09	20.05	37.14	46.00	-8.86	AVG	
	4	0.8740	26.62	20.09	46.71	56.00	-9.29	QP	
	5	1.3380	20.02	20.13	40.15	46.00	-5.85	AVG	
	6	1.3900	29.07	20.13	49.20	56.00	-6.80	QP	
	7	1.4180	19.43	20.13	39.56	46.00	-6.44	AVG	
١	8	2.0059	26.05	20.14	46.19	56.00	-9.81	QP	
, [9	2.0059	19.65	20.14	39.79	46.00	-6.21	AVG	
	10	2.5980	25.96	20.15	46.11	56.00	-9.89	QP	
	11	2.7260	16.83	20.15	36.98	46.00	-9.02	AVG	
	12	3.8060	24.20	20.18	44.38	56.00	-11.62	QP	

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.: 23.4°C Hum.: 56%

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	0.4020	2.78	19.94	22.72	47.81	-25.09	AVG	
2	0.6700	28.67	20.03	48.70	56.00	-7.30	QP	
3	0.6700	9.16	20.03	29.19	46.00	-16.81	AVG	
4	0.8700	24.36	20.09	44.45	56.00	-11.55	QP	
5	1.3380	24.39	20.13	44.52	56.00	-11.48	QP	
6	1.3900	24.50	20.13	44.63	56.00	-11.37	QP	
7	1.3900	3.65	20.13	23.78	46.00	-22.22	AVG	
8	1.4500	26.61	20.13	46.74	56.00	-9.26	QP	
9	2.5860	2.17	20.15	22.32	46.00	-23.68	AVG	
10	2.6020	24.33	20.15	44.48	56.00	-11.52	QP	
11	4.2619	0.84	20.19	21.03	46.00	-24.97	AVG	
12	11.5820	3.42	20.31	23.73	50.00	-26.27	AVG	

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 23.4°C Hum.: 56%

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	0.4820	10.64	19.97	30.61	46.30	-15.69	AVG	
2	0.6540	26.02	20.03	46.05	56.00	-9.95	QP	
3	0.6580	17.42	20.03	37.45	46.00	-8.55	AVG	
4	1.3220	20.12	20.13	40.25	56.00	-15.75	QP	
5	1.3260	10.30	20.13	30.43	46.00	-15.57	AVG	
6	1.6660	18.42	20.13	38.55	56.00	-17.45	QP	
7	1.7380	6.69	20.13	26.82	46.00	-19.18	AVG	
8	2.6099	19.94	20.15	40.09	56.00	-15.91	QP	
9	2.7100	7.88	20.15	28.03	46.00	-17.97	AVG	
10	4.3220	7.39	20.19	27.58	46.00	-18.42	AVG	
11	4.3580	18.93	20.19	39.12	56.00	-16.88	QP	
12	26.7220	20.59	20.28	40.87	60.00	-19.13	QP	

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 23.4°C Hum.: 56%

	No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
	1	0.2700	5.07	19.89	24.96	51.12	-26.16	AVG	
	2	0.5899	20.83	20.01	40.84	56.00	-15.16	QP	
	3	0.6620	24.59	20.03	44.62	56.00	-11.38	QP	
	4	0.6660	4.44	20.03	24.47	46.00	-21.53	AVG	
ſ	5	1.1140	1.11	20.12	21.23	46.00	-24.77	AVG	
	6	1.2820	18.76	20.13	38.89	56.00	-17.11	QP	
	7	2.5820	18.12	20.15	38.27	56.00	-17.73	QP	
	8	2.7540	0.38	20.15	20.53	46.00	-25.47	AVG	
	9	4.4380	-0.25	20.19	19.94	46.00	-26.06	AVG	
	10	4.6100	16.45	20.20	36.65	56.00	-19.35	QP	
	11	27.3700	10.59	20.28	30.87	50.00	-19.13	AVG	
	12	28.0860	24.29	20.27	44.56	60.00	-15.44	QP	

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.	209 and 15.205	Anshotek	Anbotek A	rupo, stek
ē	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	obotek - Anbo	- Alle	300
2	0.490MHz-1.705MHz	24000/F(kHz)	vupotek V	Pore VIII	30
	1.705MHz-30MHz	30	Anbatek	Anbor A	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.4
	88MHz~216MHz	150	43.5	Quasi-peak	3 botek
	216MHz~960MHz	200	46.0	Quasi-peak	ek 3 potek
N.	960MHz~1000MHz	500	54.0	Quasi-peak	atek 3 anbo
55	Above 1000MHz	500	54.0	Average	3
	Above ToutiviHZ	botek - Anbot	74.0	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for

maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Mode:

Test Results (30~1000MHz)

Job No.: SZAWW181122004-01

Temp.(°C)/Hum.(%R

24.5℃/53%RH

Standard: FCC PART 15C

Power Source:

H):

AC 240V, 60Hz for

Code: AB-RF-05-a

adapter

er Anbo ak hotek

Keeping TX+ Charging

Mode

Polarization: Horizontal

Standard:

Test Mode:

Test Results (30~1000MHz)

Job No.: SZAWW181122004-01 Temp.(°C)/Hum.(%R 24.5°C/53%RH

H):

Power Source: AC 240V, 60Hz for

adapter

Keeping TX+ Charging

Mode

-17.94

-18.34

-15.38

30.65

26.60

29.73

90.8554

149.4857

217.5443

4 5 48.59

44.94

45.11

FCC PART 15C

Polarization: Vertical

43.50

43.50

46.00

-12.85

-16.90

-16.27

QP

QP

QP

300

300

300

196

254

360

Test Results (30~1000MHz)

Job No.: SZAWW181122004-01

Temp.(°C)/Hum.(%R

24.5℃/53%RH

Standard: FCC PART 15C

Power Source:

H):

AC 120V, 60Hz for

Code: AB-RF-05-a

adapter

Test Mode: Keeping TX+ Charging

Mode

Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW181122004-01

Temp.(°C)/Hum.(%R

24.5℃/53%RH

Standard: FCC PART 15C

Power Source:

H):

AC 120V, 60Hz for

Code: AB-RF-05-a

adapter

Test Mode: Keeping TX+ Charging

Mode

Polarization: Vertical

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	e		Test	channel: Low	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	40.08	34.13	6.61	34.09	46.73	74.00	-27.27	boteV
7236.00	34.08	37.14	7.74	34.51	44.45	74.00	-29.55	Pup Age
9648.00	32.62	39.35	9.26	34.80	46.43	74.00	-27.57	V
12060.00	tek * Anb	otek p	Whole b	motek	Anbotek	74.00	Anbotek	V
14472.00	notek*	nbotek	Anbote	An abotek	Anbotek	74.00	anbol A	V
16884.00	*	Anbotek	Anboro	, upo	ek Anbot	74.00	otek an	potek
4824.00	38.78	34.13	6.61	34.09	45.43	74.00	-28.57	AnbHek
7236.00	33.85	37.14	7.74	34.51	44.22	74.00	-29.78	AHO,
9648.00	32.20	39.35	9.26	34.80	46.01	74.00	-27.99	Har
12060.00	Nek *	nbotek	Aupoter.	Ann	Anbotek	74.00	N Not	³ [№] H
14472.00	*	Anbotek	Anbote	And hot	ek Anbote	74.00	rek vi	o ^{tek} H
16884.00	Amb * tek	Anbotek	Anbore	rok An	otek Ant	74.00	notek A.	nboH ^k
20.5	200		A	verage Valu	ie		WO.	pre
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	29.18	34.13	6.61	34.09	35.83	54.00	-18.17	otekV
7236.00	22.95	37.14	7.74	34.51	33.32	54.00	-20.68	V
9648.00	22.97	39.35	9.26	34.80	36.78	54.00	-17.22	V
12060.00	*	ek k	potek Ar	Posen	hotek b	54.00	Anbote	V
14472.00	* 4,000	ate ^K	hotek	Anboton	Anbo	54.00	Anbore	V
16884.00	potek * Ar	por	Anbotek	Anboten	k Anti-	54.00	Anbor	V
4824.00	28.33	34.13	6.61	34.09	34.98	54.00	-19.02	Н
7236.00	22.43	37.14	7.74	34.51	32.80	54.00	-21.20	H
9648.00	21.95	39.35	9.26	34.80	35.76	54.00	-18.24	H
12060.00	* Anbot	rek bu	botek	Anbotek	Anborotek	54.00	Anboten	H
14472.00	potek * An	Dole	abotek	Anbotek	Anbo.	54.00	Anbore	Н
16884.00	Auporek	Vupor-	A. abotek	Anbote	K William	54.00	tek Vup.	Н
Q.V.	NeV.	700,	Dr.	At	161.		10×	Poly

Test Results (Above 1000MHz)

Test Mode:	802.11b Mode	e		Test	channel: Mide	dle		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	39.17	34.35	6.67	34.09	46.10	74.00	-27.90	boteV
7311.00	34.18	37.21	7.77	34.53	44.63	74.00	-29.37	AnbVell
9748.00	33.65	39.45	9.33	34.80	47.63	74.00	-26.37	Voc
12185.00	*	otek A	upotes P	,no abotek	Anbotek	74.00	Amabotek	V
14622.00	*	nbotek	Anboten	Ambotek	Anbotek	74.00	k abot	e ^W V
17059.00	Was a series	Anbotek	Anbote	An	ak Anboth	74.00	rek by	ooteV
4874.00	39.68	34.35	6.67	34.09	46.61	74.00	-27.39	Anb Helk
7311.00	32.83	37.21	7.77 And	34.53	43.28	74.00	-30.72	Ho
9748.00	33.55	39.45	9.33	34.80	47.53	74.00	-26.47	H
12185.00	*	botek	Anbolek	Anbo	Anbotek	74.00	And	е⊮ Н
14622.00	*	nbotek	Anbotek	Anbo	K Anbore	74.00	rak Pun	ote ^V H
17059.00	Anbor *	Anbotek	Anbotes	r Vupo	otek ont	74.00	tek bu	H'W
		87	A	verage Valu	e	M	010	C(1).
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	30.04	34.35	6.67	34.09	36.97	54.00	-17.03	, v
7311.00	22.50	37.21	7.77	34.53	32.95	54.00	-21.05	V
9748.00	22.91	39.45	9.33	34.80	36.89	54.00	-17.11	V
12185.00	*Upoten	ok Anv	ootek Ar	botek	inbore A	54.00	Anbotok	V
14622.00	* *	rek bu	nbotek	Anbotek	Anbo	54.00	Anboten	V
17059.00	o ^{tet} * A	pore stek	Anbotek	Anbotek	Anbo	54.00	Anbote	V
4874.00	29.80	34.35	6.67	34.09	36.73	54.00	-17.27	Н
7311.00	21.92	37.21	7.77	34.53	32.37	54.00	-21.63	H
9748.00	23.27	39.45	9.33	34.80	37.25	54.00	-16.75	Anbox H
12185.00	* * *	er. Vul	notek	Anbotek	Anbore	54.00	Anbotek	H
14622.00	otek * An	pote.	kno botek	Anbotek	Aupore	54.00	Anbotel	Н
17059.00	abotek	Poss,	RUL	Anbotel	Anbore	1711	ek Aup	100

Test Results (Above 1000MHz)

rest Mode:	802.11b Mod	e		Test	channel: High	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	44.57	34.57	6.74	34.09	51.79	74.00	-22.21	boteV
7386.00	34.77	37.29	7.80	34.55	45.31	74.00	-28.69	Anb Ve
9848.00	36.89	39.55	9.41	34.81	51.04	74.00	-22.96	V
12310.00	*	otek p	abotek P	"upor	A botek	74.00	Anno	V
14772.00	*	wotek.	Anbotek	Aupor	abotek.	74.00	Anba	e* V
17234.00	*	ing polek	Anbotek	Anboto	ok hop	74.00	Anb	V
4924.00	43.93	34.57	6.74	34.09	51.15	74.00	-22.85	H
7386.00	33.70	37.29	7.80	34.55	44.24	74.00	-29.76	Anbot H
9848.00	33.07	39.55	9.41	34.81	47.22	74.00	-26.78	H
12310.00	cel * Anb	Yer V.	lon b	nbotek	Anbore	74.00	Anbotek	H
14772.00	notek *	obotek	Aupo	A abotek	Aupore	74.00	Anboth	Н
17234.00	*	Anbotek	Anbo	, pot	ek Aupore	74.00	tek vu	o ^{tek} H
245			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	35.51	34.57	6.74	34.09	42.73	54.00	-11.27	V
7386.00	24.69	37.29	7.80	34.55	35.23	54.00	-18.77	ate ^K V
9848.00	25.40	39.55	9.41	34.81	39.55	54.00	-14.45	V
12310.00	Anlx re.	And	ek anbo	ick Wul	or bu	54.00	nbotek	V
14772.00	Anbote	And	otek or	botek	Tupor b	54.00	Anbotek	V
17234.00	ek * Aupo	ie. Vu	vek.	anbotek	Anbore	54.00	Anbotek	V
4924.00	34.31	34.57	6.74	34.09	41.53	54.00	-12.47	Н
7386.00	23.09	37.29	7.80	34.55	33.63	54.00	-20.37	o ^{tek} H
9848.00	22.34	39.55	9.41	34.81	36.49	54.00	-17.51	Hodn
12310.00	*	Anbot	ex Aupo,	All All	abotek A	54.00	Otek.	AU H
14772.00	*	ek Anl	potek An	potek	abotek	54.00	Anbo	Н
17234.00	*	otek	anbotek	Auporg	Andotek	54.00	Anbo	Н

Remark:

- 1. During the test, pre-scan the 802.11b, g, n(HT20N) mode, and found the 802.11b mode is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Radiated Band Edge:

Test Mode:	802.11b Mode	e		Test	channel: Low	est		
			į	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	53.23	29.15	3.41	34.01	51.78	74.00	-22.22	botek H
2400.00	62.78	29.16	3.43	34.01	61.36	74.00	-12.64	AnbHek
2390.00	55.02	29.15	3.41	34.01	53.57	74.00	-20.43	Voote
2400.00	65.00	29.16	3.43	34.01	63.58	74.00	-10.42	$V_{P^{U}}$
			A	verage Valu	e		233	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	39.54	29.15	3.41	34.01	38.09	54.00	-15.91	Hote
2400.00	48.00	29.16	3.43	34.01	46.58	54.00	-7.42	H
2390.00	41.48	29.15	3.41	34.01	40.03	54.00	-13.97	V
2400.00	49.25	29.16	3.43	34.01	47.83	54.00	-6.17	otelV

Test Mode:	802.11b Mode	2		Test	channel: High	nest			
		<u> </u>							
Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	54.57	29.28	3.53	34.03	53.35	74.00	-20.65	nboH ^k	
2500.00	49.89	29.30	3.56	34.03	48.72	74.00	-25.28	An Hote	
2483.50	57.15	29.28	3.53	34.03	55.93	74.00	-18.07	Vnb	
2500.00	52.70	29.30	3.56	34.03	51.53	74.00	-22.47	6 V	
			A	verage Valı	ie				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	40.14	29.28	3.53	34.03	38.92	54.00	-15.08	H	
2500.00	35.94	29.30	3.56	34.03	34.77	54.00	-19.23	Н	
2483.50	42.23	29.28	3.53	34.03	41.01	54.00	-12.99	vek V	
2500.00	37.88	29.30	3.56	34.03	36.71	54.00	-17.29	V	

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Radiated Band Edge:

Test Mode:	802.11g Mode	e		Test	Test channel: Lowest					
]	Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	51.52	27.53	5.47	33.92	50.60	74.00	-23.40	botek H		
2400.00	60.50	27.55	5.49	29.93	63.61	74.00	-10.39	AnbHek		
2390.00	53.20	27.53	5.47	33.92	52.28	74.00	-21.72	Voote		
2400.00	62.26	27.55	5.49	29.93	65.37	74.00	-8.63	VAND		
			A	verage Valu	ie					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2390.00	38.32	27.53	5.47	33.92	37.40	54.00	-16.60	Hote		
2400.00	46.60	27.55	5.49	29.93	49.71	54.00	-4.29	H		
2390.00	40.13	27.53	5.47	33.92	39.21	54.00	-14.79	V		
2400.00	47.72	27.55	5.49	29.93	50.83	54.00	-3.17	V		

				D 1 17 1				
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	52.13	29.28	3.53	34.03	50.91	74.00	-23.09	$^{nbo}\mathbf{H}^{k}$
2500.00	47.99	29.30	3.56	34.03	46.82	74.00	-27.18	Antore
2483.50	54.36	29.28	3.53	34.03	53.14	74.00	-20.86	V
2500.00	50.48	29.30	3.56	34.03	49.31	74.00	-24.69	V
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.67	29.28	3.53	34.03	37.45	54.00	-16.55	And H
2500.00	34.79	29.30	3.56	34.03	33.62	54.00	-20.38	H
2483.50	40.60	29.28	3.53	34.03	39.38	54.00	-14.62	V
2500.00	36.67	29.30	3.56	34.03	35.50	54.00	-18.50	V

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Radiated Band Edge:

Test Mode:	802.11n20 M	ode		Test	Test channel: Lowest				
				Peak Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2390.00	50.50	27.53	5.47	33.92	49.58	74.00	-24.42	botek H	
2400.00	59.12	27.55	5.49	29.93	62.23	74.00	-11.77	AnbHek	
2390.00	52.10	27.53	5.47	33.92	51.18	74.00	-22.82	Voots	
2400.00	60.61	27.55	5.49	29.93	63.72	74.00	-10.28	VAN	
			A	verage Valu	e				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2390.00	37.59	27.53	5.47	33.92	36.67	54.00	-17.33	Hote	
2400.00	45.76	27.55	5.49	29.93	48.87	54.00	-5.13	H	
2390.00	39.32	27.53	5.47	33.92	38.40	54.00	-15.60	V	
2400.00	46.80	27.55	5.49	29.93	49.91	54.00	-4.09	ote V	

	302.11n20 Mod				Test channel: Highest				
				Peak Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	50.66	29.28	3.53	34.03	49.44	74.00	-24.56	nbo'H'	
2500.00	46.85	29.30	3.56	34.03	45.68	74.00	-28.32	Hot	
2483.50	52.68	29.28	3.53	34.03	51.46	74.00	-22.54	V	
2500.00	49.15	29.30	3.56	34.03	47.98	74.00	-26.02	6 V	
			A	verage Valu	e				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	37.78	29.28	3.53	34.03	36.56	54.00	-17.44	H	
2500.00	34.10	29.30	3.56	34.03	32.93	54.00	-21.07	H	
2483.50	39.62	29.28	3.53	34.03	38.40	54.00	-15.60	V	
2500.00	35.94	29.30	3.56	34.03	34.77	54.00	-19.23	V	

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	47 (b)(3)	Andwork	Anbotek	Anbor	Vi.
Test Limit	30dBm	A. anbotek	Anbore.	And	Anbotek	Anbor	k b

5.2. Test Setup

5.3. Test Procedure

- 1. The Transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the power value.
- 3. Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.4. Test Data

Test Item :	Max. peak output power	Test Mode :	CH Low ~ CH High
Test Voltage :	DC 3.7V Battery inside	Temperature :	24℃
Test Result :	PASS	Humidity :	55%RH

Tëst Channël	Frequency (MHz)	Maximum Peak Conducted Output Power (PK) (dBm)	Limit dBm	Results
stek Anbo	ek abotek	TX 802.11b Mode	Anbo	potek
CH01	2412	13.97	30	PASS
CH06	2437	13.68	botek 30 Anbote	PASS
CH11	2462	16.86	30	PASS
Anbotek	Anbo. tek Ar.	TX 802.11g Mode	Anbotek Ant	or VIII
CH01	2412	13.18 And 14.18	30	PASS
CH06	2437	14.04	30	PASS
СН11	2462	17.01	30 botek	PASS
And	Anbotek Anbor	TX 802.11n(20) Mode	bo tek hote	K Anbore
CH01	2412	12.93	30	PASS
CH06	2437	13.95	30	PASS
CH11	2462	17.07	30	PASS

Note: For power test the duty cycle is 100% in continuous transmitting mode. Please see the plot of next page

Duty Cycle

802.11b mode

802.11g mode

802.11n(HT20) mode

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

10	Test Standard	FCC Part15	C Section 15.2	47 (a)(2)	hotek	Anbotek	Anbo	br.
	Test Limit	>500kHz	Anbotek	Anbore	All	Anbotek	Anbo	P

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW= 100kHz, VBW\ge23*RBW =300kHz

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item	:	6dB Bandwidth	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature :	24°C
Test Result	:	PASS	Humidity :	55%RH

Mode	Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
	Low	2412	8.556	Anbotek Anb	PASS
802.11b	Middle	2437	9.104	>500	PASS
	High	2462	9.572	Al. Hotek	PASS
k hotek	Low	2412	12.62	K Notek	PASS
802.11g	Middle	2437	15.68	>500	PASS
	High High	2462	15.45	oten Anbo	PASS
Anboten An	Low	2412	12.62	Anbotek Anbo	PASS
802.11n20	Middle	2437	16.29	>500	PASS
	High	2462	16.13	abotek.	PASS

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	247 (e)	Anshotek	Anbotek	Anbo	p.
Test Limit	8dBm/3KHz	Anbotek	Anbore	An	Anboten	Anbo	F Pr

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low \sim CH High Test Voltage : DC 3.7V Battery inside Temperature : 24 $^{\circ}$ C Test Result : PASS Humidity : 55%RH

Mode	Channel	Frequency (MHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Results
lek Aupote	Low	2412	-13.607	8.00	PASS
802.11b	Middle	2437	-13.335	8.00	PASS
Anbotek A	High	2462	-11.114	8.00	PASS
Anbotek	Low	2412	-18.471	8.00	PASS
802.11g	Middle	2437	-17.216	8.00	PASS
tek Anbotek	High	2462	-15.582	8.00	PASS
botek Anbo	Low	2412	-18.574	8.00	PASS
802.11n20	Middle	2437	-18.252	8.00	PASS
Anbotek	High	2462	-15.069	8.00	PASS

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item :	Band edge	Test Mode :	CH Low ~ CH High
Test Voltage :	DC 3.7V Battery inside	Temperature :	24℃
Test Result :	PASS	Humidity :	55%RH

802.11b mode: Lowest

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Highest

Conducted Emission Method

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished
	by the responsible party shall be used with the device. The use of a permanently
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the
	manufacturer may design the unit so that a broken antenna can be replaced by the user, but
Requirement	the use of a standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain greater
	than 6dBi provided the maximum conducted output power of the intentional radiator is
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

The antenna is a PIFA Antenna which permanently attached, and the best case gain of the antenna is 2.5 dBi It complies with the standard requirement.

Code: AB-RF-05-a

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- PHOTOGRAPH

Reference to the test report SZAWW181122004-01 -- End of Report ---