Exercises to Chapter 10

Exercise 10.1 (the extended binary Golay code). The code G_{24} is defined as \widehat{G}_{23} , that is, by *extending* the binary Golay code defined earlier.

is, by extending the binary Golay code defined earlier. $\underline{x} \in \mathbb{F}_{2}^{n} \mapsto \widehat{x} \in \mathbb{F}_{2}^{n+1} = x_{1} + \cdots + x_{n}$

(a) Determine the parameters $[n, k, d]_q$ of G_{24} . State how many bit errors per codevector is the code guaranteed to *detect*. Same for *correct*. Find the rate of G_{24} .

is the code guaranteed to detect. Same for correct. Find the rate of G_{24} . N=24 $\#G_{24}=\#G_{25}=2^{12}\Longrightarrow k=12=lg_2$ $\#G_{24}$. $w(G_{23})=7\Longrightarrow w(G_{24})=8=J(G_{24})=8$ detects ≤ 7 bit errors, where $d_5 \leq (8-1)/2$]=3 errors,

- (b) A codevector of G_{24} is transmitted, and thirteen bit errors occur. Will an error be detected? Even weight a $\frac{13 \text{ errors}}{3 \text{ errors}}$
- (c) Prove that G_{24} is a self-dual code. The proof may involve calculations, but they should not be computer-aided it should be possible to do them by hand in a reasonable amount of time.

 $G_{24} = \{ ----, 101011110011 0... 01, ... 0$

Exercises to Chapter 11

Exercise 11.1 (identification of the Reed-Muller codes with m=3). Let m=3. Write down the value vectors (in \mathbb{F}_2^8) of all the monomials in the Boolean algebra. Hence find generator matrices of the codes R(r,3), $0 \le r \le 3$. Try to recognise the codes obtained. $m=2^m=2^3=8$

Partial answer. We use a slightly unconventional ordering of binary words in V^3 . The value vectors of all the monomials in the Boolean algebra with m=3:

		001	010	011	100	101	110	111	000	
	1	1	1	1	1	1	1	1	1	
-9	v_1	0	0	0	113	$2)^1$	1		0	Gfor
->	v_2	0	1	1	am	0	1	1	0	O(13)
-	v_3	1	0	1	0	1	0	1 J	0	JR(1,3)
	v_1v_2	0	0	0	0	0	1	1	0	
	v_1v_3	0	0	0	0	1	0	1	0	Ham 132/
	$v_{2}v_{3}$	0	0	1	0	0	0	1	0	self-dual
	$v_1v_2v_3$	0	0	0	0	0	0	1_	0	The target
							//	= = 8		
	9 1 9	$\begin{array}{c} \longrightarrow v_2 \\ v_3 \\ \hline v_1 v_2 \\ v_1 v_3 \\ v_2 v_3 \\ \hline \end{array}$	$ \begin{array}{c cccc} & 1 & 1 \\ & v_1 & 0 \\ & v_2 & 0 \\ & v_3 & 1 \\ \hline & v_1 v_2 & 0 \\ & v_1 v_3 & 0 \\ & v_2 v_3 & 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Exercise 11.2 ("the Mariner 9 code"). Check that R(1,5) is a $[32,6,16]_2$ code and detects up to 15 errors in a 32-bit codeword.