

Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра математических методов прогнозирования

Коваленко Павел Антонович

Использование случайных блужданий по графу для повышения качества рекомендаций

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

Научный руководитель:

д.ф-м.н., профессор

Дьяконов Александр Геннадьевич

Содержание

1	Вве	едение	2
2	Обз	вор предметной области	2
	2.1	Математическая постановка задачи рекомендаций	3
	2.2	Метрики качества рекомендаций	3
3	Pac	сматриваемые алгоритмы	4
	3.1	Singular Value Decomposition	4
	3.2	Bayesian Personalized Ranking	5
	3.3	$SVD++ \ \ldots \$	5
	3.4	Random walks	6
	3.5	High-Order Proximity for Implicit Recommendation	6
4	Пре	едложенный метод	7
5	Опі	исание датасетов	10
	5.1	MovieLens	10
	5.2	Million Playlist Dataset	11
	5.3	Amazon Review	12
	5.4	Сравнение датасетов	12
6	Экс	перименты	12

1 Введение

Рекомендательные системы — это семейство алгоритмов, предназначенных для выделения из широкого множества объектов подмножества, релевантного поданному на вход запросу.

Вода: что такое рекомендательные системы, примеры задач.

Частым случаем использования рекомендательных систем является построения персонализированных рекомендаций для пользователя некоторого сервиса. Например, рекомендации фильмов, музыки, товаров в интернет-магазине и т.д. В этом случае запросом является пользователь, а множеством объектов для рекомендации — все доступные книги, музыка и товары соответственно. Далее в работе будет рассматриваться задача рекомендаций объектов (или документов) пользователю, однако все идеи легко переносятся на более общий случай.

2 Обзор предметной области

Рекомендательные системы разделяются в зависимости от используемых ими данных и предположений на контентные (content-based filtering) и коллаборативные (collaborative filtering). [ссылка]

Контентные модели используют признаковое описание пользователя и объекта для предсказания релевантности объекта к пользователю. Таким образом, задача рекомендаций сводится к задаче регрессии меры релевантности или классификации на релевантные и не релевантные объекты.

Коллаборативные модели действуют в предположении, что похожим пользователям нравятся похожие объекты. Они часто используются в случаях, когда у пользователей и объектов нет признакового описания, только история взаимодействия. В частности, к коллаборативным моделям относятся SVD и случайные блуждания, которые будут рассмотрены далее.

Данная классификация не покрывает все возможные случаи. Существуют модели, которые используют похожесть между пользователями совместно с признаками пользователей и объектов, например, факторизационные машины [ссылка или опи-

сание]. Также часто коллаборативные модели используются как признаки для обучения контентных моделей [ссылки на победителей рексисов].

2.1 Математическая постановка задачи рекомендаций

Имеется множество пользователей (запросов) $U = \{u\}$ и множество объектов (документов) $I = \{i\}, \ |U| = N, \ |I| = M.$ Для некоторых пар (u,i) известна оценка r_{ui} , которую пользователь u поставил объекту i. Требуется заполнить пропуски, то есть для всех пар (u,i) предсказать оценку (релевантность) \hat{r}_{ui} . Другая возможная постановка — для каждого пользователя u найти K максимально релевантных объектов $i_1, ..., i_K$, то есть объектов с наибольшей предсказанной оценкой.

Часто рассматривают задачи с неявным откликом — все $r_{ui} = 1$. Например, если человек слушает музыку, то мы знаем, какие треки он слушал, и считаем, что они ему нравятся, но ничего не знаем про все остальные треки. В таком случае обычно считают, что все пары (u,i), которых нет в выборке (то есть все треки, которые пользователь не слушал), являются отрицательными примерами, для них считаем $r_{ui} = 0$. Далее в работе будет рассматриваться только задача рекомендаций с неявным откликом.

Для удобства часто вводят матрицу $R = \{r_{ui}\} \in \mathbb{R}^{N \times M}$, считая, что не все ее ячейки могут быть заполнены, или заполняя пропуски нулями.

2.2 Метрики качества рекомендаций

Для оффлайн-оценки качества алгоритма обычно разбивают множество всех оценок на две части — обучающую и тестовую выборку. Разбиение может быть случайным или по времени, когда поставлена оценка, если оно известно.

Большая часть метрик качества для задачи рекомендаций вводится как метрика для одного запроса, а далее усредняется по пользователям.

Обозначим множество всех оценок пользователя из обучающей выборки как I_{train} , из тестовой выборки — как I_{test} , $I_{train} \cap I_{test} = \emptyset$. Результатом работы алгоритма ранжирования можно считать последовательность всех доступных для ранжирования объектов $I \setminus I_{train}$, упорядоченную по предсказанной алгоритмом релевантности r_{ui} .

Обозначим эту последовательность за I_{pred} . Также обозначим за $I_{pred}[:k]$ множество из k первых (наиболее релевантных) объектов из I_{pred} .

Precision at \mathbf{k} — точность по первым k объектам. $P@k = \frac{|I_{pred}[:k] \cap I_{test}|}{k}$. Recall at \mathbf{k} — полнота по первым k объектам. $R@k = \frac{|I_{pred}[:k] \cap I_{test}|}{|I_{test}|}$.

Average precision at \mathbf{k} — средняя точность по первым 1,2,...,k объектам. $AP@k = \frac{1}{k}P@k.$

 ${f Discounted \ Cumulative \ Gain \ at \ k}$ — похожа на precision, но объекты, идущие раньше в ранжировании, имеют больший вес. Для случая неявного отклика формула имеет следующий вид: $DCG@k = \sum_{i=1}^k \frac{\mathbb{I}[I_{pred}[k] \in I_{test}]}{\log_2(k+1)}$. В отличие от предыдущих метрик, для DCG максимальным возможным значением является не 1. Поэтому чаще используют следующую метрику.

Normalized Discounted Cumulatine Gain at k — DCG, нормированный на максимальное возможное значение метрики, поэтому изменяется на отрезке [0,1]. $nDCG@k = \frac{DCG@k}{DCG^*@k}, \quad DCG^*@k = \sum_{i=1}^{\min(|I_{test}|,k)} \frac{1}{\log_2(k+1)}.$

Рассматриваемые алгоритмы 3

Singular Value Decomposition 3.1

Данная модель предполагает, что есть некоторое d-мерное вещественное пространство, и всем пользователям u и объектам i соответствуют вектора в этом пространстве p_u и q_i , называемые латентными векторами. Близость (релевантность) между пользователем и объектом определяется как скалярное произведение между их векторами: $\hat{r}_{ui} = \langle p_u, q_i \rangle$. Задача состоит в поиске латентных векторов пользователей и объектов, для которых среднеквадратичное отклонение на объектах обучающей выборки является минимальным:

$$L(p,q) = \sum_{u,i} (r_{ui} - \hat{r}_{ui})^2 = \sum_{u,i} (r_{ui} - \langle p_u, q_i \rangle)^2 \to \min_{p,q}$$

Данная модель часто называется Singular Value Decomposition (SVD), поскольку в случае полностью заполненной матрицы R оптимальными значениями для pи q являются соответствующие столбцы из сингулярного разложения матрицы R: $R = P\Sigma Q^T$ [ссылка]. Также для поиска латентных векторов можно использовать алгоритм Alternating Least Squares, основанный на попеременной оптимизации пользовательских и объектных векторов. Поэтому описанная выше модель также встречается под названием ALS. [ссылка на статью Миши]

3.2 Bayesian Personalized Ranking

Данный метод является развитием ALS. Авторы статьи [???] предположили, что для задачи ранжирования больше подходит не поточечная функция ошибки, а попарная, которая штрафует не за отклонение истинной оценки от предсказанной, а за инверсии между истинным ранжированием и предсказанным. В статье предлагается следующая функция ошибки:

$$L(u, i_p, i_n) = \log(\sigma(\langle p_u, q_{i_p} \rangle - \langle p_u, q_{i_n} \rangle))$$

где u — пользователь, i_p, i_n — два объекта, таких что $r_{u,i_p} > r_{u,i_n}, p_u$ — латентный вектор пользователя, q_{i_p}, q_{i_n} — латентные вектора объектов. Итоговый функционал можно записать в следующем виде:

$$L(p,q) = \sum_{u,i,i'} \mathbb{I}[r_{u,i} > r_{u,i'}] \log(\sigma(\langle p_u, q_i \rangle - \langle p_u, q_{i'} \rangle)) \to \min_{p,q}$$

3.3 SVD++

Идея метода очень близка к классическому SVD, однако в этом методе более явно учитывается история оценок пользователя. Для всех объектов помимо веторов q_i также вводятся вектора y_i . Значение релевантности объекта пользователю вычисляется как

$$\hat{r}_{ui} = \left\langle p_u + \frac{1}{\sqrt{|I(u)|}} \sum_{j \in I(u)} y_j, q_i \right\rangle$$

Как и SVD, данный алгоритм минимизирует среднеквадратичное отклонение по обучающей выборке:

$$L(p,q,y) = \sum_{u,i} (r_{ui} - \hat{r}_{ui})^2 = \sum_{u,i} \left(r_{ui} - \left\langle p_u + \frac{1}{\sqrt{|I(u)|}} \sum_{j \in I(u)} y_j, q_i \right\rangle \right)^2 \to \min_{p,q,y}$$

3.4 Random walks

Пусть задан ориентированный граф. Неформально определить случайное блуждание можно следующим образом. Есть некий агент, который перемещается по графу, стартуя в некоторой вершине v_0 . Далее в каждый момент времени t он перемещается из вершины v_t в случайную вершину v_{t+1} , соседнюю с вершиной v_t . Вероятности переходов между вершинами являются частью алгоритма, обычно вероятности равные или зависят от степени вершины. Таким образом получаем бесконечную последовательность вершин $\{v_k\}$, в которой соседние вершины связаны ребром.

Чтобы использовать случайные блуждания для задачи рекомендаций, построим двудольный граф. Вершинами первой доли будут пользователи, второй — объекты. Между пользователем и объектом есть ребро, если пользователь положительно оценил объект (например, прослушал трек).

Чтобы построить рекомендации для пользователя u, запустим из соответствующей пользователю вершины K случайных блужданий, каждое из которых остановим после нечетного числа шагов L. В этом случае в силу двудольности графа все блуждания завершатся в вершинах, соответствующих некоторым объектам. После этого можно ввести меру близости между пользователем u и объектом i как число случайных блужданий, завершившихся в вершине i, и выбрать объекты, в которых заканчивается наибольшее число путей.

В случае L=1 получатся абсолютно точные и бесполезные рекомендации — случайное блуждание всегда будет останавливаться в объектах, уже оцененных пользователем.

В данной работе метод случайного блуждания будет использован не как самостоятельный алгоритм ранжирования, а только как часть более сложной модели.

3.5 High-Order Proximity for Implicit Recommendation

Одной из проблем при обучении латентных векторов является низкая плотность матрицы R, из-за чего алгоритму требуется много шагов оптимизации для нахождения оптимальных латентных векторов [хорошо бы ссылку на пруф]. В статье [ссыл-

ка!] предложен гибридный подход, совмещающий преимущества случайных блужданий и Bayesian Personalized Ranking.

Используется логистический функционал, описанный в 3.2. Латентные вектора обучаются стохастическим градиентным спуском на батчах, сформированных следующим образом. Для каждого примера из батча случайно выбирается пользователь, для него семплируется случайный объект в качестве отрицательного примера, а в качестве положительного примера используется конечная вершина случайного блуждания с началом в вершине пользователя. Таким образом, обучающая выборка помимо объектов, которые пользователь явно оценил, пополняется похожими на них объектами. За счет этого понижается разреженность матрицы R.

В настоящей работе предлагается развитие и более полное исследование идей, предложенных в данной статье.

4 Предложенный метод

В работе предлагается метод аугментации датасета для задачи рекомендаций с неявным откликом.

Исходная обучающая выборка представляется в виде двудольного неориентированного графа, как это описано в разделе 3.4. Далее по этому графу создается с нуля новая обучающая выборка. Новая выборка состоит только из положительных примеров, в каждом из которых пользователь и объект являются начальной и конечной вершинами случайного блуждания.

У случайных блужданий есть множество параметров, в данной работе рассмотрены следующие:

- \bullet Число случайных блужданий. Далее обозначается за N.
- Стартовая доля случайные блуждания можно начинать с пользователя или с объекта. Далее обозначается за StartFromUser.
- Зависимость вероятности перехода в вершину от числа исходящих из нее ребер. В работе был рассмотрен только вариант степенной зависимости:

 $p(v) \sim \deg(v)^K$. Вероятность вершины быть выбранной в качестве начала случайного блуждания также зависит от количества исходящих из нее ребер.

- Критерий остановки. В работе рассмотрены два таких критерия:
 - По длине пути. Все случайные блуждания должны быть фиксированной длины L. Чтобы начальная и конечная вершина лежали в разных долях, число ребер L должно быть нечетным.
 - С заданной вероятностью остановки после каждого шага. После каждого перехода в долю, не совпадающую с начальной, путь прерывается с заданной заранее вероятностью P.

В алгоритме 1 записан в виде псевдокода предлагаемый алгоритм построения датасета. Критерии остановки представлены в алгоритмах 2 и 3.

Алгоритм 1 Построение аугментированного датасета

```
1: Dataset \leftarrow \emptyset
 2: for i \in \overline{1, N} do
        if StartFromUser then
 3:
            v_0 \sim Cat(v : \deg(v)^K, v \in U)
 4:
        else
 5:
            v_0 \sim Cat(v : \deg(v)^K, v \in I)
 6:
 7:
        end if
        k \leftarrow 0
 8:
        while stopping criterion not satisfied do
 9:
             v_{k+1} \sim Cat(v : \deg(v)^K, v \in Neighbours(v_k))
10:
             k \leftarrow k + 1
11:
12:
        end while
        if StartFromUser then
13:
             Dataset \leftarrow Dataset \cup \{(v_0, v_k)\}
14:
        else
15:
             Dataset \leftarrow Dataset \cup \{(v_k, v_0)\}
16:
        end if
17:
```

Алгоритм 2 Критерий остановки по длине пути

```
1: function StoppingCriterionSatisfied
```

- 2: return (k = L)
- 3: end function

18: end for

Алгоритм 3 Критерий остановки с вероятностью остановки

- 1: function StoppingCriterionSatisfied
- 2: **if** k % 2 = 0 **then**
- 3: return False ⊳ Путь не должен закончиться в стартовой доле
- 4: else
- 5: $\mathbf{return} \ x \sim Cat(True : P, False : 1 P)$
- 6: end if
- 7: end function

5 Описание датасетов

Для проверки работоспособности предложенного метода был проведен ряд экспериментов, которые будут подробно описаны в разделе [6]. Данный раздел посвящен описанию рассмотренных датасетов.

5.1 MovieLens

Данный датасет является выгрузкой оценок с сайта movielens.org, где пользователи могут ставить оценки фильмам, которые они просмотрели, и получать на основе этих оценок рекомендации для просмотра [ссылка]. Датасет предоставляется в четырех вариантах: MovieLens 100K, MovieLens 1M, MovieLens 10M и MovieLens 20M, которые содержат 10^5 , 10^6 , 10^7 и 2×10^7 оценок соответственно. Оценки — целые или полуцелые числа от 0.5 до 5.0. Распределение оценок для датасета MovieLens 20M, а также распределение числа оценок для пользователей и фильмов, представлены на

- (b) Гистограмма числа положительных оценок пользователя
- (c) Гистограмма числа положительных оценок фильма

Рис. 1: Характеристики датасета MovieLens 20M

рис. 1. Во всех четырех датасетах есть только пользователи, оценившие не менее 20 фильмов.

Для экспериментов все четыре датасета были приведены к бинарному виду. Из них были удалены все примеры, где пользователь поставил фильму оценку меньше 4. Все оставшиеся примеры считаются положительными отзывами независимо от конкретной оценки.

5.2 Million Playlist Dataset

Данный датасет был собран сервисом онлайн-стриминга музыки spotify.com для соревнования RecSys Challenge 2018 [ссылка на рексис, ссылка на датасет]. Объектами в данном датасете являются аудио-треки, а запросами — плейлисты, составленные пользователями сервиса. В датасете представлен 1 миллион плейлистов, каждый из которых содержит не менее 5 и не более 250 треков. Распределение популярности плейлистов и треков представлено на рис. 2.

Этот датасет является примером датасета с неявным откликом — для каждого плейлиста известно только, какие треки ему точно релевантны (то есть содержатся в нем), а про все остальные треки не известно ничего. Поэтому все треки, не включенные в плейлист, считаются не релевантными этому плейлисту.

Для экспериментов из датасета были удалены все треки, которые встречаются только в одном плейлисте.

- (а) Гистограмма размера плейлистов
- (b) Гистограмма числа плейлистов на трек

Рис. 2: Характеристики датасета Million Playlist

5.3 Amazon Review

Как и в случае MovieLens, из датасета были удалены все оценки меньше 4, а для оставшихся конкретное значение оценок не учитывалось.

5.4 Сравнение датасетов

Датасет	Число	Число	Число оценок	Плотность
дагасст	запросов	документов	число оценок	матрицы R
MovieLens 100K	942	1 447	5.5×10^4	0.041
MovieLens 1M	6 038	3 533	5.75×10^5	0.027
MovieLens 10M	6.98×10^4	1.03×10^4	5×10^6	0.007
MovieLens 20M	1.38×10^{5}	2.07×10^{4}	1×10^7	0.0035
Amazon Review				
Million Playlist	6.63×10^{7}	1×10^6	1.19×10^{6}	5.49×10^{-5}

Таблица 1: Сравнение рассмотренных датасетов

6 Эксперименты

Для подтверждения работоспособности метода были проведены эксперименты на датасетах, описанных в разделе 5 — MovieLens 100K, MovieLens 1M, MovieLens 10M, MovieLens 20M и Million Playlist Dataset. В качестве алгоритмов были испытаны ALS, BPR и SVD++, описанные в разделе 3. Для всех трех алгоритмов использовалась размерность скрытого пространства 64 и значения остальных параметров по умолчанию — они в меньшей степени влияют на конечный результат.

Все датасеты были разбиты на обучающую и тестовую выборку в соотношении 9:1. Для датасетов MovieLens и Amazon Review в тестовую выборку попали 10% наиболее поздних оценок. В датасете Million Playlist время добавления трека в плейлист не приводится, поэтому в тестовую выборку попали случайные 10% пар (плейлист,

трек) из датасета. Случайные блуждания строились только по обучающей выборке, тестовая выборка оставалась неизменной.

В таблице 2 приведены результаты работы предложенного метода для precision at 10, в таблице 3- для NDCG.

У случайных блужданий есть ряд параметров, для которых в ходе экспериментов подбирались оптимальные значения для каждой задачи. Были проверены следующие параметры:

- Начинать случайные блуждания с пользователя (с плейлиста в случае MPD) или объекта. Во всех случаях качество оказалось выше, если начинать с пользователя.
- Влияние степени вершины на вероятность перехода в нее. Вероятность перехода выбиралась пропорциональной $deg(v)^K$. Для K были проверены значения -1, -0.5, 0, 0.5, 1.
- Количество семплированных случайных блужданий N. Были проверены значения $10^5, 10^6, 10^7, 10^8$.
- Случайные блуждания фиксированной длины либо с вероятностью остановки. Для блужданий фиксированной длины были проверены значения длины L=1,3,5,7. Для вероятностных блужданий были проверены вероятности остановки P=1.0,0.9,0.8,0.7.

Оптимальные параметры для каждой задачи указаны в последнем столбце таблиц. Более детальное исследование зависимости качества алгоритмов от параметров метода будет проведено в разделе ???.

Эксперименты показывают, что для большинства рассмотренных задач и алгоритмов удается получить больший или меньший прирост качества за счет использования предложенного метода расширения датасета. Для Bayesian Personalized Ranking прирост оказывается более значимым, предположительно, это связано с тем, что попарная функция ошибки лучше подходит для модифицированной обучающей выборки.

Датасет	Алгоритм	P@10	P@10	Оптимальные
Датасет		исх.	модиф.	параметры RW
	ALS	0.0805	0.0871	$K: -0.5, P: 0.8, N: 10^6$
MovieLens 100K	BPR	0.1098	0.1195	$K: -0.5, L:5, N:10^7$
	SVD++	0.0837	0.0813	$K:0,P:0.9,N:10^6$
	ALS	0.1255	0.1365	$K:0,L:3,N:10^6$
MovieLens 1M	BPR	0.1345	0.1942	$K:0,L:3,N:10^7$
	SVD++	0.1391	0.1380	$K:0,L:3,N:10^6$
	ALS	0.1215	0.1245	$K:0,P:0.8,N:10^7$
MovieLens 10M	BPR	0.1496	0.1788	$K:0,P:0.9,N:10^8$
	SVD++	0.1308	0.1311	$K:0,P:0.9,N:10^9$
	ALS	0.1174	0.1308	$K:0,P:0.9,N:10^8$
MovieLens 20M	BPR	0.1514	0.1875	$K: 0.5, P: 0.9, N: 10^8$
	SVD++	0.1287	0.1332	$K:0,L:3,N:10^8$
	ALS	0.0115	0.0121	$K:0,P:0.9,N:10^8$
Amazon Review	BPR	0.0125	0.0145	$K:0,P:0.9,N:10^8$
	SVD++	0.0102	0.0093	$K:0,P:0.9,N:10^8$
	ALS	0.1556	0.1783	$K:0,L:3,N:10^8$
Million Playlist	BPR	0.1842	0.2196	$K:0,L:3,N:10^8$
	SVD++	0.1911	0.2123	$K:0,L:3,N:10^8$

Таблица 2: Precision at 10 с применением предложенного метода и без него

Датасет	A	NDCG	NDCG	Оптимальные
Датасет	Алгоритм	исх.	модиф.	параметры RW
	ALS	0.0755	0.0798	$K: -0.5, P: 0.9, N: 10^7$
MovieLens 100K	BPR	0.1173	0.1208	$K: -0.5, L: 3, N: 10^6$
	SVD++	0.0811	0.0801	$K:0,P:0.9,N:10^6$
	ALS	0.1190	0.1374	$K:0,P:0.9,N:10^7$
MovieLens 1M	BPR	0.1348	0.1913	$K:0,L:3,N:10^7$
	SVD++	0.1311	0.1410	$K:0,L:3,N:10^6$
	ALS	0.1165	0.1180	$K:0,P:0.9,N:10^7$
MovieLens 10M	BPR	0.1488	0.1721	$K:0,P:0.9,N:10^8$
	SVD++	0.1223	0.1289	$K:0,P:0.9,N:10^8$
	ALS	0.1112	0.1191	$K:0,P:0.9,N:10^8$
MovieLens 20M	BPR	0.1461	0.1704	$K:0,P:0.9,N:10^8$
	SVD++	0.1232	0.1279	$K:0,L:3,N:10^8$
	ALS	0.0101	0.0112	$K:0,P:0.9,N:10^8$
Amazon Review	BPR	0.0119	0.0132	$K:0,P:0.9,N:10^8$
	SVD++	0.0095	0.0092	$K:0,P:0.9,N:10^8$
	ALS	0.1432	0.1701	$K: 0, P: 0.9, N: 10^8$
Million Playlist	BPR	0.1821	0.2121	$K:0,L:3,N:10^8$
	SVD++	0.1887	0.2056	$K:0,L:3,N:10^8$

Таблица 3: Normalized DCG с применением предложенного метода и без него