## **Tutores Inteligentes**

Sistemas Baseados em Conhecimento
DEI-ISEP

### **Organização**

- Sistemas de Ensino Baseados em Computador
- II. Tutores Inteligentes *versus* outras Abordagens de Ensino
- III. Representação do Conhecimento nos Tutores Inteligentes
- IV. Tutores Inteligentes e Sistemas Periciais
- V. Aspectos Práticos Relativos à Utilização de Tutores Inteligentes
- VI. Alguns Exemplos de Aplicação de ITS
- VII. Sistema de Treino de Operadores de C.C. de Redes Eléctricas

# Sistemas de Ensino Baseados em Computador

#### Classificação

- Sistemas de ensino baseados em computador (CAI Computer-Aided Instruction)
  - Dificuldade na análise e compreensão das intenções e das dificuldades do aluno
  - Incapacidade de raciocinar sobre o domínio de ensino, o qual era ainda um domínio muito restrito
  - O conhecimento pedagógico o que ensinar e em que situação não é representado numa forma que permita raciocinar sobre ele
  - O conhecimento do domínio está combinado com o conhecimento pedagógico, dificultando a sua manutenção
- Sistemas inteligentes de ensino baseados em computador (ICAI Intelligent Computer-Aided Instruction)

# Sistemas de Ensino Baseados em Computador

#### Estrutura de um ITS



# Sistemas de Ensino Baseados em Computador



- Iniciativa: Aluno

- Objectivos: Aptidões cognitivas para a resolução de problemas

ITS: Aplicações Baseadas em Conhecimento

Conhecimento do Domínio Conhecimento Pedagógico

Conhecimento do Aluno



# Tutores Inteligentes *versus* outras Abordagens de Ensino

#### **Tutores: Um Paradigma de Ensino**

- ⊯ Ensino orientado por tutores (1 para 1) proporciona:
  - ★ Aprendizagem activa
  - Instrução individualizada aprendizagem mais eficaz e eficiente do que a instrução em grupo
- Limitação: disponibilidade de tutores humanos → utilização de ITS
- A utilização de técnicas de IA permite obter ITS cuja eficácia é sensivelmente metade daquela que é obtida por tutores humanos
- ITS: fornecem um ensino mais eficaz e eficiente do que aquele que é obtido através de técnicas de instrução em grupo (SHERLOCK II e LISP Tutor)



# Tutores Inteligentes *versus* outras Abordagens de Ensino

#### **Tutores: Um Paradigma de Ensino**

- Wantagens do treino/ensino baseado em ITS:
  - Adaptação do treino ao utilizador através da utilização de modelos do utilizador
  - Possibilidade de recriar situações anteriores
  - Possibilidade de oferecer uma interface inteligente e adaptativa com o utilizador
  - Sistemas cooperativos utilização de agentes para simular diferentes parcerias envolvidas no processo de ensino (troublemaker, learning companion, learning by teaching)



#### Conhecimento do Domínio

- No que respeita ao conhecimento do domínio, o conteúdo assim como as técnicas de representação dependem do:
  - Tipo de conhecimento a ensinar
  - Objectivos do ensino e características das tarefas que são objecto de treino:
    - Ensino de tarefas exigentes do ponto de vista cognitivo
    - Ensino de tarefas em que se privilegiam as aptidões físicas



#### Conhecimento do Domínio

- ж Técnicas de representação:
  - Regras de produção
  - Redes (redes semânticas, grafos conceptuais, redes de frames)
  - Guiões (scripts)



#### Conhecimento Pedagógico

- - Selecção (o que ensinar)
  - Sequenciamento (quando ensinar)
  - Apresentação do material de instrução (como ensinar)



#### Conhecimento Pedagógico

- Instrução: decisões de ensino realizadas localmente e que dizem respeito à forma como os conceitos seleccionados são apresentados ao aluno
- Currículo: envolve as decisões globais relacionadas com a forma como o material didáctico é organizado
- Planeamento da instrução: mecanismo responsável pela tomada das decisões pedagógicas
  - Planeamento hierárquico: níveis global e local
  - Planeamento dinâmico: é particularmente indicado tendo em conta a natureza dinâmica e imprevisível do conhecimento do aluno



#### Conhecimento do Aluno

- Modelo do aluno representação das crenças do sistema acerca do aluno
  - Função: fornecer informação relevante para a condução do processo de instrução individualizada
- Modelação do aluno processo de criação de um modelo do aluno
  - Baseia-se nas evidências fornecidas pelas acções do aluno durante a sua interacção com o sistema
  - O processo é complexo uma vez que as evidências são escassas e o ambiente de ensino pode apresentar uma grande quantidade de incerteza



#### Conhecimento do Aluno

- Representação do modelo do aluno

  - Modelo diferencial
  - Modelo de perturbação
- Utilização do modelo do aluno
  - Progressão
  - Oferta de ajuda não solicitada
  - Geração de problemas
  - Adaptação das explicações/dicas
- Manutenção do modelo do aluno: natureza evolutiva do processo de aprendizagem TMS (*Truth Maintenance Systems*)

# IV

### **Tutores Inteligentes e Sistemas Periciais**

- Abordagem tradicional na área dos ITS: utilização de um Sistema Pericial como módulo perito de um ITS
  - Um sistema pericial desenvolvido sem o propósito de ensinar muito provavelmente não incluirá o conhecimento a ensinar num formato apropriado para o ensino
    - A base de regras descreve as várias cadeias de inferência com um nível de granularidade que pode não ser adequado ao aluno
    - ☑ O conhecimento usado por um Sistema Pericial não distingue diferentes tipos de conhecimento do domínio, uma vez que diferentes tipos de conhecimento estão implícitos nas regras e no motor de inferência
  - As técnicas de representação do conhecimento usadas nos Sistemas Periciais nem sempre são adequadas para representar o conhecimento necessário para o treino de certos tipos de tarefas (exemplo: precisão *versus* rapidez)

V

## Aspectos Práticos Relativos à Utilização de Tutores Inteligentes

#### Realidade:

- Disparidade entre o número de ITS utilizados a nível da indústria e dos serviços em relação aqueles que são objecto de I&D
- Aplicados em domínios restritos
- Existência de dificuldades inerentes à transferência de tecnologia:
  - Resistência à mudança
  - Falta de conhecimento acerca da aplicabilidade de novas tecnologias como a IA

#### Solução:

- Identificação das entidades afectadas pela introdução dos ITS
  - Equipa de desenvolvimento, utilizadores, equipa de manutenção, instrutores, responsáveis pelo financiamento, etc.
- Identificação das necessidades e expectativas de cada uma destas entidades

# VI

## Alguns Exemplos de Aplicação de ITS

#### **\*** Domínio escolar

- LISP Tutor
- Geometry Tutor
- Algebra Tutor
- ANDES física, Academia Naval dos EUA
- STATIC-Tutor − mecânica
- CIRCSIM sistema cardiovascular

#### Domínio industrial

- STEAMER − propulsão de navios
- SHERLOCK II diagnóstico de avarias em circuitos electrónicos, FA EUA
- SAFARI plataforma de desenvolvimento de ITS para a indústria



#### Arquitectura do Sistema de Treino

Perito do Domínio (SPARSE)





## Modelo do Domínio: Tarefa de Diagnóstico de Incidentes



#### **Capacidades envolvidas:**

- Identificação dos eventos relevantes (mensagens SCADA)
- Relacionar eventos relevantes, incluindo condições temporais entre eventos
- Aptidão para lidar com datação incorrecta das mensagens
- Utilização de um mecanismo de raciocínio estruturado



## Modelo do Domínio: Limitações do Modelo do Domínio do SPARSE

- **X** Não permite distinguir os diferentes graus de automatização da tarefa
- # Ausência de diferentes níveis de granularidade natureza evolutiva do processo de aprendizagem
- **Existência de regras artificiais**
- O conhecimento de natureza procedimental encontra-se embutido no conjunto de meta-regras e no mecanismo de inferência
- Ausência de uma estrutura que permita orientar a interacção entre tutor e aluno



#### **Modelo do Domínio: Funções**

- Orientar as decisões pedagógicas do tutor decidir acerca das ajudas a apresentar
- Definir a estrutura do modelo do aluno definir o conteúdo e organização do modelo do aluno
- Crientar a interacção entre o tutor e o aluno orientar a decomposição da tarefa em sub-tarefas mais simples
- Interpretar o comportamento do aluno interpretar as acções do aluno de acordo com a teoria de seguimento do modelo (model tracing)



#### Modelo do Domínio: Estrutura

- Conjunto de guiões (scripts): representação de sequências estereotipadas dos conceitos envolvidos no modelo mental dos operadores
- **Estrutura dos guiões:** grafos AND/OR faseados
- **Utilização** de *frames*: complementa a natureza essencialmente procedimental dos guiões
- **Componentes** dos guiões:

  - Instantes simbólicos: T1 (disparo de disjuntor), ..., T7 (abertura definitiva de disjuntor)





#### Modelo do Domínio: Decomposição

#### **#** Objectivos:

- Servir como estrutura de apoio ao tutor para a tomada de decisões
- Conduzir a interacção entre tutor e aluno

#### # Fases:

- 1) Disparo
- 2) Religação
- 3) Disparo após religação
- 4) Conclusão quanto ao tipo de disparo
- 5) Conclusão quanto ao número de extremos de linha envolvidos



#### Modelo do Domínio: Níveis de Representação

- Conhecimento do domínio modelado através de duas dimensões:
- Bois níveis de representação constituem os limites de representação do raciocínio do aluno:
  - Elaboração máxima − inclui todas as relações entre eventos e conclusões intermédias obtidas a partir dessas relações
  - ☐ Elaboração mínima nível objectivo





## Modelação dos Operadores dos Centros de Controlo e Condução: Aspectos a Modelar

- # A estrutura adoptada para o modelo do operador foi definida tendo em conta as necessidades do tutor:
  - Selecção do problema a propor ao operador (nível de dificuldade e tipos de incidentes)
  - Prevenir repetições não desejadas (ajudas)
  - ☐ Facilitar a remediação de erros (registo dos erros cometidos pelo operador)
  - Parametrizar o comportamento do tutor (apoio às decisões do tutor)



## Modelação dos Operadores dos Centros de Controlo e Condução: Estrutura do Modelo

- Wariável do modelo: indicador acerca de uma característica da capacidade do operador (Ex.: ce1/T1, ce1/T5)
- **Representação das variáveis do modelo** 
  - ightharpoonup Vector de crença (F) − ex. F=(0.2; 0.6; 0.2; 0.0; 0.0)
  - Distribuição sobre o conjunto de possíveis níveis de competência
- **Mecanismo de actualização das variáveis do modelo**

$$\begin{cases} f_i \leftarrow f_i - f_i v_i c + f_{i+1} v_{i+1} c, \text{ em que } v_i = 0, i = 1, \dots 4, \\ f_5 \leftarrow f_5 - f_5 v_5 c \end{cases}$$

**#** Histórico



Ensino Adaptativo de Diagnóstico de Incidentes: Modelo de Interacção (1)

| Tabela de Predição |                                          |                                         |       |        |                  |                   |
|--------------------|------------------------------------------|-----------------------------------------|-------|--------|------------------|-------------------|
|                    |                                          |                                         |       | Instal | ação: SEI Paine  | 1: 622            |
|                    |                                          | 199                                     | 60 60 |        | Instante         |                   |
| Pre                | emissa1                                  | DISPARO 01                              |       | T1     | 06-SEP-2001 08:2 | 4:45.200          |
| Pre                | emissa2                                  | DISJUNTOR 00                            |       | T2     | 06-SEP-2001 08:2 | 4:45.240          |
| Pre                | emissa3                                  | DISJUNTOR 10                            |       | T3     | 06-SEP-2001 08:2 | 4:45.41Œ          |
| Pre                | emissa4                                  |                                         |       |        |                  |                   |
| Pre                | emissa5                                  | T1 -T3 <=30į́                           |       |        |                  |                   |
| Cor                | nclusão                                  | Disparo trifásico tipo não identificado |       | T1     | 06-SEP-2001 08:2 | 4:45.200 <u>[</u> |
| (li                | (limpa conclusão)                        |                                         |       |        |                  |                   |
| Dis                | Disparo trifásico tipo não identificado  |                                         |       |        |                  |                   |
| Dis                | Disparo monofásico tipo não identificado |                                         |       |        |                  |                   |
| Rel                | Religação rápida trifásica               |                                         |       |        |                  |                   |
| Rel                | Religação rápida monofásica              |                                         |       |        |                  |                   |
| Dis                | Disparo do tipo                          |                                         |       |        |                  |                   |
| Dis                | sparo num                                | só extremo do tipo                      |       |        |                  |                   |
| Dis                | Disparo em ambos os extremos do tipo     |                                         |       |        |                  |                   |
| Dis                | sparo nos                                | dois extremos do tipo e do tipo         |       |        |                  |                   |



## Ensino Adaptativo de Diagnóstico de Incidentes: Modelo de Interacção (2)

#### **X** Vantagens:

- Obtenção da análise realizada pelo operador na resolução do problema
- Minimiza a necessidade de inferir o raciocínio do operador
- Constitui uma expansão da memória do operador através de meio visual
- Alternativa às interfaces de linguagem natural

#### **Example 2 Example 3 Example 2 Example 3 Example 2 Example 3 Example 4 Example 5 Examp**

- Limitação: pode fornecer ao operador uma ajuda adicional, uma vez que a informação apresentada pode recordar aspectos do conhecimento que estejam esquecidos, os quais não se encontrariam presentes numa situação real
- Solução: adaptação da informação apresentada e do respectivo nível de detalhe de acordo com o nível de conhecimento do operador



## Ensino Adaptativo de Diagnóstico de Incidentes: Planeamento e Instrução (1)

- **Componente de macro adaptação** 
  - Detalhe dos menus das tabelas de predição
  - Regras usadas para alterar o modo de resolução do problema
  - Selecção de um cenário de treino (2 fases)
    - - Parâmetros do problema (número de incidentes, número de tipos de incidentes e existência de inversão cronológica nas mensagens)
      - Organizados através de 6 níveis de dificuldade
      - Variação do nível de dificuldade (2 factores):
        - Nível de conhecimento global
        - Factor de aquisição global



## Ensino Adaptativo de Diagnóstico de Incidentes: Planeamento e Instrução (2)

#### **Classificação dos tipos de incidentes**





## Ensino Adaptativo de Diagnóstico de Incidentes: Planeamento e Instrução (3)

- **Componente de micro adaptação** 

  - Mudança do modo livre para o modo restrito de resolução

Problema

- Selecção das dicas e respectivo nível de detalhe
- **B** Diagnóstico cognitivo do operador
- **Modos de resolução de problemas** 
  - Modo livre (maior grau de automatização da tarefa)
  - Modo restrito (maior grau de restrição procedimental)

Modelo do Domínio (nível de elaboração máximo) Base de Conhecimento do Domínio Modelo Específico da Situação Activação **SPARSE** de Conceitos regras disparadas Perito do Domínio premissas conclusões dados do problema 30

**DEI-ISEP** 



## Ensino Adaptativo de Diagnóstico de Incidentes: Geração de Apoio ao Operador (1)

- Dicas: táctica que encoraja o pensamento activo e estruturado de acordo com as linhas de orientação do tutor
- - □ "O que está errado?" dicas geradas em função do erro
  - "O que fazer a seguir?" (exclusivo do modo restrito) dicas associadas aos conceitos do domínio
    - □ Dicas de natureza procedimental
- **Repetição de dicas:** histórico de dicas e respectivos níveis de detalhe
  - Ambito do histórico: tabela de predição



## Ensino Adaptativo de Diagnóstico de Incidentes: Geração de Apoio ao Operador (2)

- **Inferência** da intenção do operador na definição de relações temporais
  - Em caso de erro, o tutor apresenta dicas com o objectivo de conduzir o operador a ultrapassar o erro − selecção de uma relação temporal
  - △ A selecção arbitrária de uma relação temporal pode tornar as respectivas dicas confusas
  - △ Abordagem baseada no teorema de Bayes a estimativa das probabilidades condicionadas baseia-se:
    - No princípio de que existe maior probabilidade do operador usar o conceito sobre o qual detém maior domínio
    - ☑ Na semelhança entre a entrada do operador e cada uma das hipóteses