SOME USEFUL APPLICATIONS

LARGE-SCALE MATRIX COMPUTATIONS

from Hutchinson we know (Lemma 12.2)

+ (A) = E(MTAM) . A: SPD

 $m \in \mathbb{R}^n$ f(m) = 0 f(m) = 0 f(m) = 1 f(m) = 0 f(m) =

1 Z mit Am; =: SN N i=1 2 are i.i.d.

It can be shown (by Gauss - quadrature) Golub.

Li Zmi Ami & Ui

where Li and U; are computable from Gauss quacivature

Now from Hutchison.

 $\mathbb{E}[\mathcal{F}_i] = \mathbb{E}\left(|| \overrightarrow{m}_i|^T \wedge m_i \right) = \mathcal{T}(A)$

from Hoeffding inequality

From Hoeffding inequality $\frac{1}{2} \left[\left| S_{N} - + r \left(A \right) \right| \right] + \left| \frac{1}{2} \left(2 e^{-2N^{2}} \right) \right|^{2}$ -t <5n - +(h) < + with probability: $-2N^2 \frac{t^2}{\Sigma(U_i - L_i)^2}$ - If we pick an error t and a successful probability β , we can find N by $\frac{1}{2} - 2e^{-2N^2 + 2/2} \left(\frac{v_i - v_i}{2} \right)^2 = \beta$ $N = \begin{cases} \frac{1}{2} \left(\frac{v_i - v_i}{2} \right)^2 & \text{in } \left(\frac{2}{2} \right) \\ \frac{1}{2} + \frac{2}{2} & \text{in } \left(\frac{2}{2} \right) \end{cases}$ DIMENSION REDUCTION a random matrix $A \in \mathbb{R}^{N}$ whose

entries are i.i.d. RVs with zero mean and unity variance. Define a random "projection" ? 7 := 3 5c := 1 A 5c we can show that $Z_i = A(i, :) \propto$ £ [] = 0 $|| (1 + i)| = || (1 + i)|^2$ E[1712] = 12112 femark. this is true on average, but what we are interested in is the behavior of 2 for a particular realization of A. By chernoff $\mathbb{P}\left[\frac{\|2\|^2 - \|x^2\|}{2\|x\|^2} \right]$ P[n||2||2] n(1+8)||x||2] // chernoff

EM397Fall2018 Page 3

e-nl(1+8) || sc||² || Elehnzi²] M_{i} 100 what he need in to hound the MGF E C Ln z, i Aij our Ganssians N(0,1) from Ex 15.3 re have $f(x) = \frac{1}{2 \ln x^{1/2}}$ $f(x) = \frac{1}{2 \ln x^{1/2}}$ PL 1712-112112 / 8112112] < min ce f(1) J(1) := -21 (1+2) ||x|| - ln (1-21 ||x||²) It can be shown (dementary) that the minimiter $\Lambda^* = \underbrace{\varepsilon}_{2(1+\varepsilon)||x||^2} 0 \leqslant \lambda \leqslant \underbrace{\frac{1}{2||x||^2}}_{2||x||^2}$ and thus $\frac{n}{2} \left(\ln \left(\frac{1}{1 + \epsilon} \right) - \epsilon \right)$

EM397Fall2018 Page 4

$$\frac{|P||^{2}|^{2} - ||||^{2}|^{2}}{|E||^{2}|^{2} - ||||^{2}|^{2}} \le e^{\frac{12}{2}} \left(\frac{||n||^{2} + \epsilon}{2} - \epsilon \right)$$

$$= \frac{1}{2} \left(\frac{|n||^{2}}{2} + \frac{\epsilon^{3}}{3} \right)$$

$$= \frac{1}{2} \left(\frac{|n||^{2} + \epsilon}{2} - \epsilon \right)$$

$$= \frac{1}{2} \left(\frac{|n||^{2} + \epsilon}{2} + \frac{\epsilon^{3}}{3} \right)$$

$$= \frac{1}{2} \left(\frac{|n||^{2} + \epsilon}{2} + \frac{\epsilon^{3}}{3} \right)$$

Condusion: $PL\|2\|^2 - \|x\|^2 > \epsilon \|x\|^2 \le e^{rx} \left(-\frac{\epsilon}{2} + \frac{\epsilon^3}{3}\right)$

 $-\frac{\varepsilon}{|||} \frac{|||^{2}}{||^{2}} \leq \frac{||^{2}}{||^{2}} - \frac{||^{2}}{||^{2}} \leq \frac{\varepsilon}{||^{2}} + \frac{\varepsilon}{||^{2}}$ with probability $\frac{1}{2} = \frac{1}{2} \left(-\frac{\varepsilon^{2}}{2} + \frac{\varepsilon^{3}}{3}\right)$ $\pm -2 e^{\frac{1}{2}} \left(-\frac{\varepsilon^{2}}{2} + \frac{\varepsilon^{3}}{3}\right)$

- Suppose that we have m vectors $\vec{x}_i \in \mathbb{R}^N$ $N) \perp .$ then $\vec{y}_i := \vec{y}_{\vec{x}_i}$ and we have show $f(||\vec{y}_i||^2) = |\vec{x}_i||^2$ $\vec{y}_i - \vec{y}_i = \vec{y}(|\vec{x}_i| - \vec{x}_i)$

and re have shown that I preserves the distance with high probability. Pl Some pair has &-distortion $P \left(\begin{array}{c} m(\underline{m-i}) \\ \hline 2 \\ \hline 1 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 5 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 5 \\ \hline 5 \\ \hline 6 \\ \hline 6 \\ \hline 7 \\ \hline 6 \\ \hline 7 \\$ El Pair i has 2-distortion $\frac{m(m-1)e}{2}\left(-\frac{\varepsilon^2}{2}+\frac{\varepsilon^3}{3}\right)$ Thus I we want Plat least one pair has &-distortion] < 1 mp then this can be attained if m(m-1) en $(-\frac{\epsilon^2}{3} + \frac{\epsilon^3}{3}) < \frac{1}{mp}$ $\frac{1}{2p\ln(m)+2\ln(m(m-1))}$

EM397Fall2018 Page 6

 $\frac{2 \operatorname{pln}(m) + 2 \operatorname{ln}(m(m-1))}{\frac{\varepsilon^2}{3}}$

Lem 15.1 (Johnson - Lindenstrais lemma)

Consider in vectors $\vec{x} \in \mathbb{R}^N$, (=1, ..., m, $(N)^{1}$). Define a random matrix P=1 A

where $A \in \mathbb{R}^N$, A_j are i.i.d. with tero

mean and unity variance. F any f > 0 if

we choose in as in (a), then with probability

at leas $1 - m^{-p}$ we have $(1-2)||\vec{x}_j - \vec{x}_i||^2 \le ||\vec{y}||^2 \le (1+2)||\vec{x}_i - \vec{x}_j||^2$ (Restricted Isometry Property RIP).

SUM- GAUSSIAN RUS:

Aij are i.i.d. X - Sub-gaussian RVwith E[Aij] = 6; V[Aij] = 1

Observations.

1) Zi := A(i,:) X is a sub-gaussian Rv

with proxy x2 1/2/12 2) n7i² - 1/2011 is a 7ero mean RVs. P[12112)/ (1+2) 11×112] min $e^{-n\lambda(L+z)||n||^2} \prod_{i=1}^{n} \left\{ e^{\ln z_i} \right\}$ How to bound this? Lem 15.2. Let m be a zero-mean RV with the tail bound

The tail bound for som \$ >0. Then the MGF of m satisfies $\mathbb{E}\left[e^{sm}\right] \leq e^{2s^2\beta^2}, \quad \forall \quad |s| \leq \frac{1}{2\beta}$ Proof: the proof is similar to the equivalence of Sub-gaussian properties. In particular (#) Inplies

Elmil = 2 (
$$p/2$$
) $p \Gamma(p) \in p^2 p!$ (w)

which, together with Elmil = 0, gives

Elesmil = $1 + 2$ $sp Elm P$)

 $p = 2$ $p!$
 $p = 2$ $p = 2$ $p!$
 $p = 2$ $p = 2$ $p = 2$
 $p = 2$ $p = 2$
 $p = 2$ $p = 2$
 $p = 2$ $p = 2$
 $p = 2$ $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 $p = 2$
 p

$$\frac{P[||z_{i}||]}{n} = \frac{1}{||x||^{2}} + \frac{1}{||x||^{2}}$$

$$\frac{2}{||x||^{2}} + \frac{1}{||x||^{2}}$$

$$\frac{2}{||x||^{2}} + \frac{1}{||x||^{2}}$$

$$\frac{2}{||x||^{2}} + \frac{1}{||x||^{2}}$$

$$\frac{2}{||x||^{2}}$$

$$\frac{2}{||x||$$

e-neallx/12 / [] # [e (nz, - //>)] $\frac{1}{1} = \frac{1}{2} \times \frac{1}$ P - 128x4 By the union bound we have $(1-8) \|x\|^2 \le \|2\|^2 \le (1+8) \|x\|^2$ with probability $1 - 2e^{-n}$ $\frac{\epsilon^2}{128} \times 4$ which is sub-gaussian version of JL lemma. Observations: 1) If m is a sub-gaussian then m2 is a sub-exponential P[|m|)+] < 20 P 2) Thm 15.1. (Bernstein's ireguality). Let mi, i=1,..., N be zero mean

sub-exponential RVs., i.e., mi satisfies P (m;1), +] < 2 e - 2t/p; have $\mathbb{P}\left\{\begin{array}{c} \sum_{i=1}^{N} m_{i} >_{j} t \right\}$ $\frac{1}{11} E le^{\lambda m_i} J$ $\frac{1}{11} E le^{\lambda m_i} J$ $\frac{1}{11} E le^{\lambda m_i} J$ $\frac{1}{1} \lim_{n \to \infty} \frac{15.2}{100}$ $\lim_{n \to \infty} \frac{2n^2}{100} \int_{100}^{\infty} \beta_n^2 dn dn$ $\Lambda \leq \frac{1}{2 \max \beta_i}$ minimizer $1 = min = \frac{1}{4 \ge p_i^2}$ $2 = max \beta_i$ min $\left\{ \begin{array}{c} -\frac{t^2}{82\beta_i^2}, ce^{-\frac{t^2}{2\max\beta_i^2}} \end{array} \right\}$

m'n)	8 2 B, 2) C e	2 max p;	
	/	ι '	,	'	