COURSE 4

2.3. Hermite interpolation

Example 1 In the following table there are some data regarding a moving car. We may estimate the position (and the speed) of the car when the time is t = 10 using Hermite interpolation.

Let $x_k \in [a,b], \ k=0,1,...,m$ be such that $x_i \neq x_j$, for $i \neq j$ and let $r_k \in \mathbb{N}, \ k=0,1,...,m$. Consider $f:[a,b] \to \mathbb{R}$ such that there exist $f^{(j)}(x_k), \ k=0,1,...,m; \ j=0,1,...,r_k$ and $n=m+r_0+...+r_m$.

The Hermite interpolation problem (HIP) consists in determining the polynomial P of the smallest degree for which

$$P^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j = 0, ..., r_k.$$

Definition 2 A solution of (HIP) is called **Hermite interpolation polynomial**, denoted by H_nf .

Hermite interpolation polynomial, H_nf , satisfies the interpolation conditions:

$$(H_n f)^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j = 0, ..., r_k.$$

Hermite interpolation polynomial is given by

$$(H_n f)(x) = \sum_{k=0}^m \sum_{j=0}^{r_k} h_{kj}(x) f^{(j)}(x_k) \in \mathbb{P}_n,$$
 (1)

where $h_{kj}(x)$ denote the Hermite fundamental interpolation polynomials. They fulfill the relations:

$$h_{kj}^{(p)}(x_{\nu}) = 0, \quad \nu \neq k, \quad p = 0, 1, ..., r_{\nu}$$

$$h_{kj}^{(p)}(x_k) = \delta_{jp}, \quad p = 0, 1, ..., r_k, \quad \text{for } j = 0, 1, ..., r_k \text{ and } \nu, k = 0, 1, ..., m,$$
with $\delta_{jp} = \begin{cases} 1, & j = p \\ 0, & j \neq p. \end{cases}$

We denote by

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1}$$
 and $u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}}$.

We have

$$h_{kj}(x) = \frac{(x - x_k)^j}{j!} u_k(x) \sum_{\nu=0}^{r_k - j} \frac{(x - x_k)^{\nu}}{\nu!} \left[\frac{1}{u_k(x)} \right]_{x = x_k}^{(\nu)}.$$
 (2)

Example 3 Find the Hermite interpolation polynomial for a function f for which we know f(0) = 1, f'(0) = 2 and f(1) = -3 (equivalent with $x_0 = 0$ multiple node of order 2 or double node, $x_1 = 1$ simple node).

Sol. We have $x_0 = 0, x_1 = 1, m = 1, r_0 = 1, r_1 = 0, n = m + r_0 + r_1 = 2$

$$(H_2f)(x) = \sum_{k=0}^{1} \sum_{j=0}^{r_k} h_{kj}(x) f^{(j)}(x_k)$$

= $h_{00}(x) f(0) + h_{01}(x) f'(0) + h_{10}(x) f(1)$.

We have h_{00}, h_{01}, h_{10} . These fulfills relations:

$$h_{kj}^{(p)}(x_{\nu}) = 0, \ \nu \neq k, \ p = 0, 1, ..., r_{\nu}$$

 $h_{kj}^{(p)}(x_k) = \delta_{jp}, \ p = 0, 1, ..., r_k, \quad \text{for } j = 0, 1, ..., r_k \text{ and } \nu, k = 0, 1, ..., m.$

We have $h_{00}(x)=a_1x^2+b_1x+c_1\in\mathbb{P}_2$, with $a_1,b_1,c_1\in\mathbb{R}$, and the system

$$\begin{cases} h_{00}(x_0) = 1 \\ h'_{00}(x_0) = 0 \\ h_{00}(x_1) = 0 \end{cases} \Leftrightarrow \begin{cases} h_{00}(0) = 1 \\ h'_{00}(0) = 0 \\ h_{00}(1) = 0 \end{cases}$$

that becomes

$$\begin{cases} c_1 = 1 \\ b_1 = 0 \\ a_1 + b_1 + c_1 = 0. \end{cases}$$

Solution is: $a_1 = -1, b_1 = 0, c_1 = 1$ so $h_{00}(x) = -x^2 + 1$.

We have $h_{01}(x) = a_2x^2 + b_2x + c_2 \in \mathbb{P}_2$, with $a_2, b_2, c_2 \in \mathbb{R}$. The system is

$$\begin{cases} h_{01}(x_0) = 0 \\ h'_{01}(x_0) = 1 \\ h_{01}(x_1) = 0 \end{cases} \Leftrightarrow \begin{cases} h_{01}(0) = 0 \\ h'_{01}(0) = 1 \\ h_{01}(1) = 0 \end{cases}$$

and we get $h_{01}(x) = -x^2 + x$.

We have $h_{10}(x) = a_3x^2 + b_3x + c_3 \in \mathbb{P}_2$, with $a_3, b_3, c_3 \in \mathbb{R}$. The system is

$$\begin{cases} h_{10}(x_0) = 0 \\ h'_{10}(x_0) = 0 \\ h_{10}(x_1) = 1 \end{cases} \Leftrightarrow \begin{cases} h_{10}(0) = 0 \\ h'_{10}(0) = 0 \\ h_{10}(1) = 1 \end{cases}$$

and we get $h_{10}(x) = x^2$.

The Hermite polynomial is

$$(H_2f)(x) = -x^2 + 1 - 2x^2 + 2x - 3x^2 = -6x^2 + 2x + 1.$$

The Hermite interpolation formula is

$$f = H_n f + R_n f,$$

where $R_n f$ denotes the remainder term (the error).

Theorem 4 If $f \in C^n[\alpha, \beta]$ and $f^{(n)}$ is derivable on (α, β) , with $\alpha = \min\{x, x_0, ..., x_m\}$ and $\beta = \max\{x, x_0, ..., x_m\}$, then there exists $\xi \in (\alpha, \beta)$ such that

$$(R_n f)(x) = \frac{u(x)}{(n+1)!} f^{(n+1)}(\xi).$$
 (3)

Proof. Consider

$$F(z) = \begin{vmatrix} u(z) & (R_n f)(z) \\ u(x) & (R_n f)(x) \end{vmatrix}.$$

 $F \in C^n[\alpha, \beta]$ and there exists $F^{(n+1)}$ on (α, β) .

We have

$$F(x) = 0$$
, $F^{(j)}(x_k) = 0$, $k = 0, ..., m$; $j = 0, ..., r_k$;

because

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1} \Rightarrow u^{(j)}(x_k) = 0, \ j = 0, ..., r_k$$

and

$$(R_m f)^{(j)}(x_k) = f^{(j)}(x_k) - (H_n f)^{(j)}(x_k) = f^{(j)}(x_k) - f^{(j)}(x_k) = 0.$$

So, F and its derivatives have n+2 distinct zeros in (α,β) . Applying successively Rolle's theorem it follows that F' has at least n+1 zeros in $(\alpha,\beta) \Rightarrow ... \Rightarrow F^{(n+1)}$ has at least one zero $\xi \in (\alpha,\beta)$, $F^{(n+1)}(\xi) = 0$.

We have

$$F^{(n+1)}(z) = \begin{vmatrix} u^{(n+1)}(z) & (R_n f)^{(n+1)}(z) \\ u(x) & (R_n f)(x) \end{vmatrix},$$

with
$$u(z) = \prod_{k=0}^{m} (z - z_k)^{r_k + 1} \in \mathbb{P}_{n+1} \Rightarrow u^{(n+1)}(z) = (n+1)!$$
, and $(R_n f)^{(n+1)}(z) = f^{(n+1)}(z) - (H_n f)^{(n+1)}(z) = f^{(n+1)}(z)$ (as, $H_n f \in \mathbb{P}_n$)

 \mathbb{P}_n). We get

$$F^{(n+1)}(\xi) = \begin{vmatrix} (n+1)! & f^{(n+1)}(\xi) \\ u(x) & (R_n f)(x) \end{vmatrix} = 0,$$

whence it follows (3).

Corollary 5 If $f \in C^{n+1}[a,b]$ then

$$|(R_n f)(x)| \le \frac{|u(x)|}{(n+1)!} ||f^{(n+1)}||_{\infty}, \quad x \in [a,b]$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm $(\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|)$.

Remark 6 In case of m=0, i.e., $n=r_0$, (HIP) becomes Taylor interpolation problem. Taylor interpolation polynomial is

$$(T_n f)(x) = \sum_{j=0}^n \frac{(x - x_0)^j}{j!} f^{(j)}(x_0).$$

Example 7 Find the Hermite interpolation formula for the function $f(x) = xe^x$ for which we know f(-1) = -0.3679, f(0) = 0, f'(0) = 1,

f(1)=2.7183, (equivalent with $x_0=-1$ simple, $x_1=0$ multiple of order 2 and $x_2=1$ simple). Which is the limit of the error for approximating $f(\frac{1}{2})$?