Міністерство освіти і науки України Національний технічний університет України «КПІ» імені Ігоря Сікорського Кафедра обчислювальної техніки ФІОТ

ЗВІТ з лабораторної роботи №3

з навчальної дисципліни «Data Science Technology»

Тема:

MAKET ІНТЕЛЕКТУАЛЬНОЇ ERP СИСТЕМИ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ

Виконав:

Студент 3 курсу кафедри ОТ ФІОТ, Навчальної групи ІМ-13 Тавлуй Д. О.

Перевірив:

Професор кафедри ОТ ФІОТ Писарчук О.О.

І. Мета:

Виявити дослідити та узагальнити принципи формалізації задач, синтезу математичних моделей для автоматизації процесів підтримки прийняття рішень в інтелектуальних ERP системах: програмування обмежень – CP-SAT; багатокритеріальні задачі – Multicriteria decision analysis.

II. Завдання:

Для визначення можливості автоматизації бізнес процесів, що реалізовані в компанії замовника Вам пропонується розробити макет програмної реалізації мовою Python обчислювального алгоритму ERP системи підтримки прийняття рішень за умов:

II рівень складності 8 балів

Я обрав варіант 10

Розробити програмний скрипт, що реалізує багатокритеріальне оцінювання ефективності *позашляховиків різних виробників*. Формування показників та критеріїв ефективності, синтез багатокритеріальної оптимізаційної моделі здійснити самостійно.

III. Результати виконання лабораторної роботи.

Перш за все, я створив таблицю у якій вказав автомобілі які будуть порівнюватись, а також критерії оцінювання. Всього позашляховиків буде 11. Обрав основні характеристики, які зазначені у самій таблиці. Серед них є як максимізовані (максимальна швидкість, об'єм двигуна, потужність, об'єм багажника, об'єм бака, кліренс), так і мінімізовані (ціна в доларах, розхід палива, розгін 0-100, маса).

Ознака	MB G63	Lexus LX600	Volvo XC90	Toyota I C. J300	Chevrolet Tahoe	Jeep Grand Cherokee	Audi SO8	Kia Sportage	Ford Explorer	Subaru Forester	Bentley Bentayga	Критерій
Ціна в \$	269545	139167		79724	81384	67386		37598	38359			
Розхід палива	13,1	12,1		12,1	12,6		8.3	7.6	12,4		14,3	
Макс шв	220	210	230	210	180	225	250	197	183	207	306	мах
Розгін 0-100	4,5	6,9	6,5	6,8	8	7,3	4,8	9,4	8,3	9,5	3,9	мін
Об'єм двигуна	4	3,4	2	3,4	5,3	5,7	4	2,5	3,5	2,5	6	мах
Потужність	585	415	310	415	343	347	422	190	249	185	635	мах
Багажник	667	2052	721	1131	722	782	605	540	595	505	484	мах
Maca	2560	2525	2140	2485	2715	2266	2430	1567	2265	1676	2508	мін
Бак	100	110	71	110	98	94	85	54	70	63	85	мах
Кліренс	266	200	238	230	216	218	254	181	211	220	245	мах

Як можна побачити, зеленим позначено найкращі показники, світло-зеленим непогані, а червоним найгірші.

Для мене найголовнішим при виборі позашляховика ϵ його потужність та розхід палива.

3 цього випливає, що найбільш оптимальним є варіант Audi SQ8, а за нею Toyota Lad Cruiser J300. A ось Kia Sportage та Subaru Forester виявились найгіршими з запропонованих.

Результати архітектурного проектування та їх опис

Я обрав монолітну архітектуру, адже програма не дуже обширна. Увесь код знаходиться у файлі main.py.

Опис структури проекту програми

Усі функції прописані у main.py файлі, у якому ж і виконується функція з вирахуванням оптимального варіанту.

Результати роботи програми відповідно до завдання

Таблиця виведена у консоль:

	Ознака	MB G63	 Bentley Bentayga	Критерій
0	Ціна в \$	269545.0	282133.0	мін
1	Розхід палива	13.1	14.3	мін
2	Макс шв	220.0	306.0	мах
3	Розгін 0-100	4.5	3.9	мін
4	06'єм двигуна	4.0	6.0	мах
5	Потужність	585.0	635.0	мах
6	Багажник	667.0	484.0	мах
7	Maca	2560.0	2508.0	мін
8	Бак	100.0	85.0	мах
9	Кліренс	266.0	245.0	мах

(так як уся таблиця не влазить у консоль PyCharm, вона показана скороченою)

Обраний позашляховик програмою:

Оптимальний позашляховик: Audi SQ8

Рейтинг позашляховиків за інтегрованою оцінкою

Рейтинг позашляховиків:

- 1. Audi SQ8: 1.084938798664334
- 2. Toyota LC J300: 1.0902649303657161
- 3. Jeep Grand Cherokee: 1.0930355226216175
- 4. Lexus LX600: 1.0946701593909947
- 5. Volvo XC90: 1.0978202063478077
- 6. Chevrolet Tahoe: 1.0994728740432036
- 7. MB G63: 1.1050378388714754
- 8. Bentley Bentayga: 1.107631600884117
- 9. Ford Explorer: 1.1089296643729782
- 10. Subaru Forester: 1.115812457522824
- 11. Kia Sportage: 1.1170903187059231

Як можна побачити, мої власні очікування повністю підтвердилися: Audi SQ8 виявилась найкращим варіантом, а Kia Sportage – найгіршим.

Програмний код, що забезпечує отримання результату

main.py

```
import pandas as pd
import numpy as np
def file parsing(data name, sample data):
   values = sample data[data name].astype(str).str.replace(',',
'.').astype(float)
   return values.to numpy()
   sample data = pd.read excel(file name)
   print(sample data)
    line sample data, column sample data = sample data.shape
   line column matrix = np.zeros((line sample data, column sample data -
        column matrix = file parsing(sample data.columns[i], sample data)
    return line column matrix
def matrix adapter(line column matrix, line):
    return line column matrix[line, :]
   line column matrix = matrix generation(file)
   column matrix = np.shape(line column matrix)
   Integro = np.zeros((column matrix[1]))
   price = matrix adapter(line column matrix, 0)
   fuel consumption = matrix adapter(line column matrix, 1)
   max speed = matrix adapter(line column matrix, 2)
   racing = matrix adapter(line column matrix, 3)
   engine capacity = matrix adapter(line column matrix, 4)
   power = matrix adapter(line column matrix, 5)
   trunk = matrix adapter(line column matrix, 6)
   mass = matrix adapter(line column matrix, 7)
    fuel tank = matrix adapter(line column matrix, 8)
   clearance = matrix adapter(line column matrix, 9)
    fuel consumption normalized = np.zeros((column matrix[1]))
   max speed normalized = np.zeros((column matrix[1]))
   engine_capacity_normalized = np.zeros((column matrix[1]))
```

```
weight 5 + weight 6 + weight 7 + weight 8 + weight 9 + weight 10
    weight_2_normalized = weight_2 / weights_normalization_sum
weight_3_normalized = weight_3 / weights_normalization_sum
     weight 5 normalized = weight 5 / weights normalization sum
     weight_6_normalized = weight_6 / weights_normalization_sum
    sum_price = sum_fuel_consumption = sum_max_speed = sum_racing =
sum engine capacity = sum power = sum trunk = sum mass = sum fuel tank =
          sum price += price[i]
          sum fuel consumption += fuel consumption[i]
          sum max speed += (1 / max speed[i])
          sum engine capacity += (1 / engine capacity[i])
          sum_power += (1 / power[i])
sum_trunk += (1 / trunk[i])
          sum mass += mass[i]
          sum_fuel_tank += (1 / fuel_tank[i])
sum_clearance += (1 / clearance[i])
          fuel consumption normalized[i] = fuel consumption[i] /
sum fuel consumption
          racing_normalized[i] = racing[i] / sum_racing
engine_capacity_normalized[i] = (1 / engine_capacity[i]) /
sum_engine_capacity
         power_normalized[i] = (1 / power[i]) / sum_power
trunk_normalized[i] = (1 / trunk[i]) / sum_trunk
         mass_normalized[i] = mass[i] / sum_mass
fuel_tank_normalized[i] = (1 / fuel_tank[i]) / sum_fuel_tank
clearance_normalized[i] = (1 / clearance[i]) / sum_clearance
          Integro[i] = ((weight_1_normalized * (1 - price_normalized[i]) **
                            (weight_2_normalized * (1 -
fuel consumption normalized[i]) ** (-1)) +
                            (weight 3 normalized * (1 - max speed normalized[i])
                            (weight 6 normalized * (1 - power normalized[i]) **
                            (weight 8 normalized * (1 - mass normalized[i]) ** (
```

Висновки

Під час виконання лабораторної роботи я розробив програму для виявлення найоптимальнішого позашляховика в інтелектуальних ERP системах підтримки прийняття рішень. Програма успішно виконує обчислення та нормалізацію критеріїв, а також обчислює інтегральні показники для варіантів автомобілів. Виведені результати у вигляді інтегральних показників дозволяють визначити найкращий варіант для вибору позашляховика з урахуванням вказаних критеріїв. Також я самостійно визначив критерії які найбільш важливі з використанням вищого вагового коефіцієнту.