Assignment lambda

1. Define the functions "less than" and "greater than" of two numerical arguments.

$$T = \lambda xy.x$$

$$F = \lambda xy.y$$

$$NOT = \lambda x.x F T$$

$$PRE = \lambda nfx.n (\lambda gh.h (g f)) (\lambda u.x) (\lambda u.u)$$

$$ZERO = \lambda x.xFT$$

$$GT = \lambda xy.NOT (ZERO (SUB x y))$$

2. Define the positive and negative integers using pairs of natural numbers

CHECK =
$$\lambda n$$
. IF (ZERO (PRE n)) T F

3. Define addition and subtraction of integers

ADD =
$$\lambda abfx.af$$
 (bfx)
SUB = $\lambda ab.b$ PRE a

 $LT = \lambda xy.GT y x$

4. Define the division of positive integers recursively

IF =
$$\lambda fab.fab$$

 $0 = \lambda sz.z$
 $1 = \lambda sz.s$ (z)
DIVIDE = $\lambda ab.$ IF (ZERO b) 0 IF (SUB a b) 1 (DIVIDE (SUB a b) b)

5. Define the function $n! = n * (n - 1) \dots 1$ recursively

MUL =
$$\lambda xyz.x$$
 (yz)
FACT = $\lambda n.$ IF (ZERO n) 1 MUL (n (FACT (PRE n)))

6. Define the rational numbers as pairs of integers

CONS =
$$\lambda pqf.(fp) q$$

CAR = $\lambda p.p$ T

10/9/2016

CDR =
$$\lambda p.p$$
 F
MAKE = $\lambda nd.$ (CONS n) d

7. Define functions for the addition, subtraction, multiplication and division of rationals.

NUMERATOR = λx .CAR xDENOMINATOR = λx .CDR xRADD = λxy .MAKE (ADD (

MUL ((NUMERATOR x) (DENOMINATOR y))

MUL ((NUMERATOR y) (DENOMINATOR x)))

MUL ((DENOMINATOR x) (DENOMINATOR y)))

RSUB = λxy .MAKE (SUB (

MUL ((NUMERATOR x) (DENOMINATOR y))

MUL ((NUMERATOR y) (DENOMINATOR x)))

MUL ((NUMERATOR x) (DENOMINATOR x)))

RADD = λxy .MAKE (MUL ((NUMERATOR x) (NUMERATOR y))

MUL ((DENOMINATOR
$$x$$
) (DENOMINATOR y)))

RDIV =
$$\lambda xy$$
.MAKE (MUL ((NUMERATOR x) (DENOMINATOR y))
MUL ((NUMERATOR y) (DENOMINATOR x)))

8. Define a data structure to represent a list of numbers.

[] :=
$$\lambda$$
cn. n
[1, 2, 3] := λ cn. c 1 (c 2 (c 3 n))

9. Define a function which extracts the first element from a list

$$HEAD = \lambda l.l (\lambda ab.a)$$

10. Define a recursive function which counts the number of elements in a list

LENGTH = λl . IF (null l) 0 ADD (1 (LENGTH l))