

环路补偿很容易

课程的目的

- **确定功率级特性**
- ♥ 说明 Type II 补偿 电流模式
- ✓ 阐述 Type III 补偿 电压模式
- → 补偿电流模式降压
- **找出交越频率和相位裕量**
- 使用 Excel 补偿器设计工具

降压/

正激式

•降压/隔离

升压

• 升压

降压-升压/ 反激式

• 反转极性 / 隔离

降压/

正激式

升压

降压**-**升压 / 反激式

降压/

正激式

升压

降压-升压/ 反激式

$$V_{OUT} = V_{IN} \cdot \frac{1}{1-D}$$

降压/

正激式

升压

降压**-**升压 / 反激式

极点/零点回顾

单个极点

单个零点

反相零点 (Inverted Zero)

右半平面零点

共轭复极点

单个极点

单个零点

反相零点

右半平面零点

共轭复极点

控制环路基础知识

环路补偿介绍

理想的控制环路

实用的反馈理论

环路补偿介绍

理想的控制环路

实用的反馈理论

交越频率

- 控制环路的带宽决定了环路对于某种 瞬态状况的响应速度
- 通常都会优先选择较高的交越频率, 但存在着实际的限制。经验法则是将 其设定为开关频率的 1/5 至 1/10
- 0°(增益裕量) 时的衰减以及开关频率 下的衰减也是很重要的

相位裕量

- 需要充足的相位裕量以避免发生振荡
- 最佳的相位裕量是 52°
- 低相位裕量将导致欠阻尼的系统响应
- 较高的相位裕量则导致过阻尼的系统 响应

电流模式降压 电流模式升压 电流模式降压-升压

🧾 电压模式降压功率级

$$A_{VC} = \frac{V_{IN}}{V_{RAMP}}$$

$$A_{VC} = \frac{V_{IN}}{V_{RAMP}} \qquad \qquad \omega_O = \frac{1}{\sqrt{L \cdot C_{OUT}}}$$

$$Q_{O} = \frac{R_{OUT}}{\sqrt{L/C_{OUT}}} \qquad \omega_{Z} = \frac{1}{R_{ESR} \cdot C_{OUT}}$$

$$\omega_Z = \frac{1}{R_{ESR} \cdot C_{OUT}}$$

$$\frac{\hat{v}_{OUT}}{\hat{v}_{C}} = A_{VC} \cdot \frac{1 + \frac{s}{\omega_{Z}}}{1 + \frac{s}{Q_{O} \cdot \omega_{O}} + \frac{s^{2}}{\omega_{O}^{2}}}$$

电流模式降压功率级

$$A_{VC} \approx \frac{R_{OUT}}{R_i}$$

$$\omega_{P} \approx \frac{1}{C_{OUT} \cdot R_{OUT}}$$

$$\omega_Z = \frac{1}{R_{ESR} \cdot C_{OUT}} \qquad \qquad \omega_L = \frac{K_m \cdot R_i}{L}$$

$$K_m \approx \frac{V_N}{V_{SLOPE}}$$

$$\omega_L \, = \frac{K_m \cdot R_i}{I}$$

$$\frac{\hat{v}_{OUT}}{\hat{v}_{C}} \approx A_{VC} \cdot \frac{1 + \frac{s}{\omega_{Z}}}{\left(1 + \frac{s}{\omega_{P}}\right) \cdot \left(1 + \frac{s}{\omega_{L}}\right)}$$

电流模式升压功率级

$$A_{VC} \approx \frac{R_{OUT} \cdot D'}{2 \cdot R_{i}}$$

$$A_{VC} \approx \frac{R_{OUT} \cdot D'}{2 \cdot R_{i}}$$
 $\omega_{R} = \frac{R_{OUT} \cdot D'^{2}}{L}$

$$\omega_{P} \approx \frac{2}{C_{OUT} \cdot R_{OUT}}$$

$$K_{m} \approx \frac{V_{OUT}}{V_{SLOPE}}$$

$$\omega_Z = \frac{1}{R_{ESR} \cdot C_{OUT}} \qquad \qquad \omega_L = \frac{K_m \cdot R_i}{L}$$

$$\omega_L \; = \frac{K_m \cdot R_i}{I}$$

$$\frac{\hat{v}_{OUT}}{\hat{v}_{C}} \approx A_{VC} \cdot \frac{\left(1 - \frac{s}{\omega_{R}}\right) \cdot \left(1 + \frac{s}{\omega_{Z}}\right)}{\left(1 + \frac{s}{\omega_{P}}\right) \cdot \left(1 + \frac{s}{\omega_{L}}\right)}$$

电流模式降压-升压功率级

$$A_{VC} \approx \frac{R_{OUT} \cdot D'}{(1+D) \cdot R_i}$$
 $\omega_R = \frac{R_{OUT} \cdot D'^2}{L \cdot D}$

$$\omega_{R} = \frac{R_{OUT} \cdot D'^{2}}{L \cdot D}$$

$$\omega_{P} \approx \frac{1 + D}{C_{OUT} \cdot R_{OUT}} \hspace{1cm} K_{m} \approx \frac{V_{IN} + V_{OUT}}{V_{SLOPE}}$$

$$K_{m} \approx \frac{V_{IN} + V_{OUT}}{V_{SLOPE}}$$

$$\omega_{Z} = \frac{1}{R_{ESR} \cdot C_{OUT}} \qquad \qquad \omega_{L} = \frac{K_{m} \cdot R_{i}}{L}$$

$$\omega_L = \frac{K_m \cdot R_i}{I}$$

$$\frac{\hat{v}_{OUT}}{\hat{v}_{C}} \approx A_{VC} \cdot \frac{\left(1 - \frac{s}{\omega_{R}}\right) \cdot \left(1 + \frac{s}{\omega_{Z}}\right)}{\left(1 + \frac{s}{\omega_{P}}\right) \cdot \left(1 + \frac{s}{\omega_{L}}\right)}$$

〕误差放大器回顾

Type I 误差放大器

Type II 误差放大器

Type II 跨导放大器

Type III 误差放大器

鄄 Type Ⅰ误差放大器

$$\omega_{EA} = \frac{1}{R_{FBT} \cdot C_{COMP}}$$

$$\frac{\hat{v}_C}{\hat{v}_{OUT}} \approx -\frac{\omega_{EA}}{s}$$

🗾 Type II 误差放大器

$$A_{VM} \approx \frac{R_{COMP}}{R_{FBT}}$$

$$\omega_{ZEA} = \frac{1}{R_{COMP} \cdot C_{COMP}}$$

$$\omega_{HF} \approx \frac{1}{R_{COMP} \cdot C_{HF}}$$

假设: C_{COMP} >> C_{HF}

$$\frac{\hat{v}_{C}}{\hat{v}_{OUT}} \approx -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}}$$

I Type II 跨导放大器

$$A_{VM} = K_{FB} \cdot g_m \cdot R_{COMP}$$

$$\omega_{\text{ZEA}} = \frac{1}{R_{\text{COMP}} \cdot C_{\text{COMP}}} \qquad K_{\text{FB}} = \frac{R_{\text{FBB}}}{R_{\text{FBB}} + R_{\text{FBT}}}$$

$$K_{FB} = \frac{R_{FBB}}{R_{FBB} + R_{FBT}}$$

$$\omega_{\text{HF}} \approx \frac{1}{R_{\text{COMP}} \cdot C_{\text{HF}}} \qquad \qquad A_{\text{OL}} = g_m \cdot R_{\text{EA}}$$

$$A_{OL} = g_m \cdot R_{EA}$$

假设:
$$C_{COMP} >> C_{HF}$$
 & $R_{EA} >> R_{COMP}$

$$\frac{\hat{v}_{C}}{\hat{v}_{OUT}} \approx -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}}$$

🕺 Type III 误差放大器

$$A_{VM} \approx \frac{R_{COMP}}{R_{FBT}}$$

$$\omega_{\text{ZEA}} = \frac{1}{R_{\text{COMP}} \cdot C_{\text{COMP}}} \qquad \qquad \omega_{\text{FZ}} \approx \frac{1}{R_{\text{FBT}} \cdot C_{\text{FF}}}$$

$$\omega_{FP} \, = \frac{1}{R_{FF} \cdot C_{FF}} \qquad \qquad \omega_{HF} \, \approx \frac{1}{R_{COMP} \, \cdot C_{HF}} \label{eq:omega_FP}$$

假设:
$$C_{COMP} >> C_{HF}$$
 & $R_{FBT} >> R_{FF}$

$$\frac{\hat{v}_{C}}{\hat{v}_{OUT}} = -A_{VM} \cdot \frac{\left(1 + \frac{\omega_{ZEA}}{s}\right) \cdot \left(1 + \frac{s}{\omega_{FZ}}\right)}{\left(1 + \frac{s}{\omega_{FP}}\right) \cdot \left(1 + \frac{s}{\omega_{HF}}\right)}$$

开关稳压器补偿

电流模式降压 - Type II 补偿

电流模式升压 - Type II 补偿

电流模式降压-升压 - Type Ⅱ 补偿

电压模式降压 - Type II 补偿

电压模式降压 - Type III 补偿

■ 电流模式降压模型

电流模式降压 – Type Ⅱ 补偿

或:

- 选择一个大的 R_{FBT} 阻值,介于 $2 k\Omega$ 和 $200 k\Omega$ 之间
- 找出调制器跨导(单位: A/V)
- 选择一个目标带宽,通常为 F_{sw}/10
- 设定中频段增益 A_{VM} 以实现目标带宽: $\omega_{C} = 2 \cdot \pi \cdot F_{C}$
- 设定 ω_{ZEA} = 1/10 目标交越频率: ω_{ZEA} = ω_{C} /10
- 设定 ω_{HF} = ESR 零点频率: ω_{HF} = ω_Z

$$G_{m}(mod) = \frac{1}{R_{i}}$$

$$R_{COMP} = A_{VM} \cdot R_{FBT}$$

$$C_{COMP} = \frac{1}{\omega_{ZEA} \cdot R_{COMP}}$$

$$A_{VM} = \frac{\omega_{C} \cdot C_{O}}{G_{m} \text{ (mod)}}$$

$$R_{COMP} = \frac{A_{VM}}{g_m \cdot K_{FB}}$$

$$C_{HF} = \frac{1}{\omega_{HF} \cdot R_{COMP}}$$

电流模式降压控制环路

功率级

$$\frac{\hat{v}_{OUT}}{\hat{v}_{C}} \approx A_{VC} \cdot \frac{1 + \frac{s}{\omega_{Z}}}{\left(1 + \frac{s}{\omega_{P}}\right) \cdot \left(1 + \frac{s}{\omega_{L}}\right)}$$

误差放大器

$$\frac{\hat{v}_{C}}{\hat{v}_{OUT}} \approx -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}}$$

控制环路

$$\frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}} = \frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{C}}} \cdot \frac{\hat{\mathbf{v}}_{\mathsf{C}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}}$$

电流模式升压模型

电流模式升压 – Type Ⅱ 补偿

- 选择一个大的 R_{FBT} 阻值,介于 $2 k\Omega$ 和 $200 k\Omega$ 之间
- 找出调制器跨导(单位: A/V)
- 找出最小输入电压和最大负载电流条件下的 RHPZ 频率
- 将目标带宽设定为 RHPZ 频率的 $\frac{1}{4}$: $\omega_{c} = \omega_{R}/4$
- 设定中频段增益 A_{VM} 以实现目标带宽: $\omega_{C} = 2 \cdot \pi \cdot F_{C}$
- 设定 ω_{ZEA} = 1/10 的目标交越频率: ω_{ZEA} = $\omega_{C}/10$
- 设定 ω_{HF} = RHP 或 ESR 零点频率当中较低的那个: ω_{HF} = ω_R 或 ω_Z

电流模式升压控制环路

功率级

$$\frac{\hat{v}_{OUT}}{\hat{v}_{C}} \approx A_{VC} \cdot \frac{\left(1 - \frac{s}{\omega_{R}}\right) \cdot \left(1 + \frac{s}{\omega_{Z}}\right)}{\left(1 + \frac{s}{\omega_{P}}\right) \cdot \left(1 + \frac{s}{\omega_{L}}\right)}$$

误差放大器

$$\frac{\hat{v}_{C}}{\hat{v}_{OUT}} \approx -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}}$$

控制环路

$$\frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}} = \frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{C}}} \cdot \frac{\hat{\mathbf{v}}_{\mathsf{C}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}}$$

■ 电流模式降压-升压模型

电流模式降压-升压 – Type Ⅱ 补偿

- 选择一个大的 R_{FBT} 阻值,介于 $2 k\Omega$ 和 $200 k\Omega$ 之间
- 找出调制器跨导(单位: A/V)
- 找出最小输入电压和最大负载电流条件下的 RHPZ 频率
- 将目标带宽设定为 RHPZ 频率的 $\frac{1}{2}$: $\omega_{c} = \omega_{R}/4$
- 设定中频段增益 A_{VM} 以实现目标带宽: $\omega_{C} = 2 \cdot \pi \cdot F_{C}$
- 设定 ω_{ZEA} = 1/10 的目标交越频率: ω_{ZEA} = $\omega_{C}/10$
- 设定 ω_{HF} = RHP 或 ESR 零点频率当中较低的那个: ω_{HF} = ω_{R} 或 ω_{Z}

电流模式降压-升压控制环路

功率级

$$\frac{\hat{v}_{OUT}}{\hat{v}_{C}} \approx A_{VC} \cdot \frac{\left(1 - \frac{s}{\omega_{R}}\right) \cdot \left(1 + \frac{s}{\omega_{Z}}\right)}{\left(1 + \frac{s}{\omega_{P}}\right) \cdot \left(1 + \frac{s}{\omega_{L}}\right)}$$

误差放大器

$$\frac{\hat{v}_{C}}{\hat{v}_{OUT}} \approx -A_{VM} \cdot \frac{1 + \frac{\omega_{ZEA}}{s}}{1 + \frac{s}{\omega_{HF}}}$$

控制环路

$$\frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}} = \frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{C}}} \cdot \frac{\hat{\mathbf{v}}_{\mathsf{C}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}}$$

🧾 电压模式降压稳压器

剪 电压模式降压 – Type Ⅱ 补偿

- 与高 ESR 输出电容器配合使用
- 选择一个大的 R_{FBT} 阻值,介于 $2 k\Omega$ 和 $200 k\Omega$ 之间
- 设定中频段增益 A_{VM} 以获得期望的带宽
- 设定 ω_{ZEA} = 输出滤波器共轭复极点 ω_{O}
- 设定 ω_{HF} = ½ 开关频率: ω_{HF} = 2·π·F_{SW}/2

$$R_{COMP} = A_{VM} \cdot R_{FBT} \qquad C_{COMP} = \frac{1}{\omega_{ZEA} \cdot R_{COMP}} \qquad C_{HF} = \frac{1}{\omega_{HF} \cdot R_{COMP}}$$

■ 电压模式降压 – Type III 补偿

- 与低 ESR输出电容器配合使用
- 选择一个大的 R_{FBT} 阻值,介于 $2 k\Omega$ 和 $200 k\Omega$ 之间
- 设定中频段增益 A_{VM} 以实现目标带宽: $\omega_{C} = 2 \cdot \pi \cdot F_{C}$
- 设定 ω_{ZEA} 和 ω_{EZ} = 输出滤波器共轭复极点 ω_{O}
- 设定 ω_{EP} = 输出滤波器零点 ω_Z
- 设定 ω_{HF} = ½ 开关频率: ω_{HF} = 2·π·F_{SW}/2

$$A_{VM} = \frac{\omega_C}{A_{VC} \cdot \omega_O}$$

$$C_{FF} = \frac{1}{\omega_{F7} \cdot R_{FBT}}$$

$$R_{COMP} = A_{VM} \cdot R_{FBT}$$

$$R_{FF} = \frac{1}{\omega_{FP} \cdot C_{FF}}$$

$$A_{VM} = \frac{\omega_{C}}{A_{VC} \cdot \omega_{O}} \qquad R_{COMP} = A_{VM} \cdot R_{FBT} \qquad C_{COMP} = \frac{1}{\omega_{ZEA} \cdot R_{COMP}}$$

$$C_{FF} = \frac{1}{\omega_{FZ} \cdot R_{FBT}} \hspace{1cm} R_{FF} = \frac{1}{\omega_{FP} \cdot C_{FF}} \hspace{1cm} C_{HF} = \frac{1}{\omega_{HF} \cdot R_{COMP}}$$

电压模式降压控制环路

功率级

$$\frac{\hat{\hat{v}}_{OUT}}{\hat{\hat{v}}_{C}} \approx A_{VC} \cdot \frac{1 + \frac{s}{\omega_{Z}}}{1 + \frac{s}{Q_{O} \cdot \omega_{O}} + \frac{s^{2}}{\omega_{O}^{2}}}$$

误差放大器

$$\frac{\hat{v}_{C}}{\hat{v}_{OUT}} \approx -A_{VM} \cdot \frac{\left(1 + \frac{\omega_{ZEA}}{s}\right) \cdot \left(1 + \frac{s}{\omega_{FZ}}\right)}{\left(1 + \frac{s}{\omega_{FP}}\right) \cdot \left(1 + \frac{s}{\omega_{HF}}\right)}$$

控制环路

$$\frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}} = \frac{\hat{\mathbf{v}}_{\mathsf{OUT}}}{\hat{\mathbf{v}}_{\mathsf{C}}} \cdot \frac{\hat{\mathbf{v}}_{\mathsf{C}}}{\hat{\mathbf{v}}_{\mathsf{OUT}}}$$

误差放大器考虑因素

需要关注的是:

- 误差放大器必须驱动的阻抗
- 误差放大器的带宽
- 误差放大器的开环增益
- · LC 滤波器的 Q 值

🕎 环路测量方法

测量选项

1: 瞬态响应测试

- 简单易行
- 无需专用设备

2: 伯德图

- 需要网络分析仪以获得完整的曲线图
- •可利用普通的测试设备获得关键性的数据点

🧾 负载阶跃分析

瞬态测试

负载阶跃实例

伯德图与瞬态

瞬态测试 - 负载阶跃

用于瞬态测试的简单电路 V_{OUT} 脉冲发生器 R_{Load} **GND**

针对一个从 0V 至大约比 Vout 高 5V 的脉冲幅度 及 100Hz 左右的频率来 设置发生器。负载将跟随 发生器的上升/下降时间。

增设用于设定最小负载的 DC 负载箱。 V_{OUT}/R_{LOAD} 设定了 ΔI 。

负载阶跃实例

伯德图与瞬态响应对比案例——稳定的稳压器

伯德图与瞬态响应对比案例二 - 稳定的稳压器

伯德图与瞬态响应对比案例三 - 边际稳定性

伯德图与瞬态响应对比案例四 -不稳定的稳压器

网络分析仪测量

正弦波注入

穿越频率和相位裕量

网络分析仪测量

穿越频率和相位裕量

采用负载阶跃补偿降压稳压器

运用信号注入得到穿越频率和相位裕量

带负载阶跃的电流模式降压

单位增益和相位测量

Excel 补偿器设计工具

峰值电流模式降压 - Type II 跨导放大器

峰值电流模式控制 – Type II 电压放大器

电压模式降压 – Type III 电压放大器

电流模式简化频率补偿

电流模式降压 – Type Ⅱ 跨导放大器

Compensator Design - Peak Current-Mode Buck - Transconductance Amplifier

Enter parameters in shaded cells			
Version 2.0	Vin (V)	10	
Revision date: 9 May 2010	Vout (V)	5	
Load Curre	ent lout (A)	1	
Switching Frequency Fsw (kHz)		250	
Current Sense Resistor Rs (mΩ)		10.0	
Current Sense Gain A (V/V)		10	
Slope Comp Multiplier SLM (V/V)		1	
Output Inductor L (μΗ)		5.0	
Output Capacitor Cout (µF)		500	
Output Capacitor ESR (mΩ)		1.0	
Error Amplifier gm (µA/V)		1,000	
Frror Amplifie	1.000		

PCM1 Frequency Compensation Parameters Error Amplifier - Single Pole Transconductance Amplifier

Reference Voltage Vref (V)	1.25
Bottom Feedback Divider Rfbb (Ω)	1,250
Top Feedback Divider Rfbt (Ω)	3,750
Modulator Scale Factor SFM (V/V)	1.00
Modulator Gain Gm(mod) (A/V)	10.00
Modulator Crossover Fc(mod) (kHz)	3.18
Error Amp Zero (kHz)	4.02
Target Loop Bandwidth Fc (kHz)	25.00
Error Amplifier Aol (V/V)	1,000
Error Amplifier UGB (MHz)	10.0
Error Amplifier Cbw (pF)	16

ole Transconductance Ampliner				
	Modulator		Error Amp	
D =	0.5000	Kfb =	0.2500	
Rout =	5.00	Avm =	8.250	
Ri =	0.1000	khf =	1.010	
Vsl =	0.4000	wzea =	25,253	
Km =	25.00	whf =	2,550,505	
Kd =	3.000	wbw =	62,831,853	
Av =	16.667		Slope Comp	
wp =	1,200	Se =	100000	
wz =	2,000,000	Sn =	100000	
wc =	157,080	wn =	785,398	
		Q =	0.6366	

电流模式降压 – Type Ⅱ 电压放大器

Compensator Design - Peak Current-Mode Buck - Voltage Amplifier

Enter parameters in shaded cells Version 2.0 Vin (V) 12 5 Revision date: 9 May 2010 Vout (V) Load Current lout (A) 1 250 Switching Frequency Fsw (kHz) 10.0 Current Sense Resistor Rs (mΩ) 10 Current Sense Gain A (V/V) Slope Comp Multiplier SLM (V/V) 1 5.0 Output Inductor L (µH) 500 Output Capacitor Cout (µF) 1.0 Output Capacitor ESR (mΩ) 10.000 Error Amp Aol (V/V) Error Amp UGB (MHz) 10.0

PCM1 Frequency Compensation Parameters Error Amplifier - Single Pole Operational Amplifier

_	
Reference Voltage Vref (V)	1.25
Bottom Feedback Divider Rfbb (Ω)	1,250
Top Feedback Divider Rfbt (Ω)	3,750
Modulator Scale Factor SFM (V/V)	1.00
Modulator Gain Gm(mod) (A/V)	10.00
Modulator Crossover Fc(mod) (kHz)	3.18
Error Amp Zero (kHz)	4.42
Target Loop Bandwidth Fc (kHz)	25.00
·	

	Modulator		Error Amp
D =	0.4167	Kfb =	0.2500
Rout =	5.00	Rth =	937.5
Ri =	0.1000	Avm =	8.000
Vsl =	0.4000	khf =	1.008
Km =	25.00	wzea =	27,778
Kd =	3.000	whf =	3,361,111
Av =	16.667	wbw =	62,831,853
wp =	1,200		Slope Comp
wz =	2,000,000	Se =	100000
wc =	157,080	Sn =	140000
		wn =	785,398
		Q =	0.6366

电压模式降压 - Type Ⅲ 电压放大器

Compensator Design - Voltage-Mode Buck - Voltage Amplifier **Frequency Compensation Parameters** Enter parameters in shaded cells **Error Amplifier - Single Pole Operational Amplifier** Version 2.1 Vin (V) 12 Input Voltage Feed-Forward Kff (V/V) 0.100 Revision date: 10 May 2010 Modulator Error Amp Vout (V) 1.8 Equivalent Ramp Voltage Vramp (V) 1.200 0.1500 Kfb = 0.3333 D =Load Current lout (A) 10 Reference Voltage Vref (V) 0.600 1000.0 Rout = 0.18 Rth = 500 Switching Frequency Fsw (kHz) Bottom Feedback Divider Rfbb (Ω) 1.500 Km = 10.00 Avm = 1.069 Top Feedback Divider Rfbt (Ω) 3.000 Gc = 1.054 khf = 1.014 Output Inductor L (µH) 1.0 44.721 wfz = 44.721 = qwOutput Capacitor Cout (µF) 500 Error Amp Aol (V/V) 3,300 471.239 44.721 wzea = Output Capacitor ESR (mΩ) 1.0 Error Amp UGB (MHz) 15.0 2.000.000 wfp =2.000.000 wsw = 3,141,593 whf = 3,141,593 1.00 Modulator Scale Factor SFM (V/V) Target Loop Bandwidth Fc (kHz) 75.00 wbw = 94,247,780

电流模式简化频率补偿

Word 文档

Current-Mode Simplified Frequency Compensation
Peak Current-Mode Buck – Voltage Amplifier

Ri = Gi*Rs

Figure 1. Current-mode buck switching model.

freq / Hertz

Figure 2. Control-to-output gain and phase.

嵌入式 Excel

- · 降压 (采用理想运算放大器)
- · 降压 (采用理想跨导放大器)
- · 升压 (采用理想运算放大器)
- · 升压 (采用理想跨导放大器)
- ・降压-升压(采用理想运算放大器)
- ・降压-升压(采用理想跨导放大器)

结论

概要/行动倡议

1

· 采用 Excel 补偿器设计工具

7

• 运用瞬态负载验证性能

K

• 采用信号注入进行单位增益和相位测量