SUB!

36. (New) The method of claim 9, wherein said operation of matrix or vector algebra includes obtaining an outer product matrix of two vectors V_i for i = 1, 2, ..., m, and W_j for j = 1, 2, ..., n,

wherein said step of subjecting comprises obtaining a set of dimeric, single-stranded oligomers to represent an outer product of vectors V and W, each of said dimeric oligomers comprising (i) a first single-stranded oligomer sequence selected from the group consisting of E_i or \underline{E}_i for each i-th component of V for i = 1, 2, ... m, which oligomer is joined at its 3' end to the 5' end of (ii) a second single-stranded oligomer sequence selected from the group consisting of E_j or \underline{E}_j for each j-th component of W for all j = 1, 2, ... n,

wherein the step of detecting includes determining the concentration of said dimeric oligomers comprising oligomer sequences corresponding to the i-th component of V and the j-th component of W.

37. (New) A method for obtaining a data set V_i^b from an oligomer-based, content-addressable memory following input of a data set U_i^b that represents a portion of V_i^b ,

wherein data elements in the form of m-component vectors $V = \Sigma_i V_i \mathbf{e}_i$ are represented in the memory by a set of the oligomers E_i and \underline{E}_i that are a subset of all single-stranded oligomers and are in 1:1 correspondence with the basis vectors \mathbf{e}_i for i = 1, 2, ...m in an abstract m-dimensional vector space;

wherein oligomers E_i and \underline{E}_i have complementary nucleotide sequences, with E_i oligomers representing the i-th component of V for which the amplitude V_i is positive, and \underline{E}_i representing the i-th component of V for which V_i is negative; and

wherein the concentration of each of oligomers E_i and \underline{E}_i is proportional to the absolute value of the amplitude V_i of the i-th component of V;

the method comprising:

(a) preparing a content-addressable memory representing memory matrix T_{ij} in which are stored data sets corresponding to vectors V_i^a for a = 1 to a = n, where i = 1, 2, ..., m, wherein T_{ij} is the sum of all of the outer products $V_i^a V_j^a$ for $i \neq j$, the preparing of the memory representing the matrix T_{ij} ;

comprising obtaining for each vector \mathbf{V}^a a set of dimeric single-stranded oligomers, each of which comprises a first single-stranded oligomer sequence selected from the group consisting of E_i or \underline{E}_i for each i-th component of \mathbf{V}^a for i=1 to i=m, and further comprises a second single-stranded oligomer sequence selected from the group consisting of E_j or \underline{E}_j for each j-th component of \mathbf{V}^a for j=1 to j=m, except for i=j; and then pooling said sets of dimeric oligomers obtained for each vector \mathbf{V}^a for a=1 to a=n to form the set of oligomers of the content-addressable memory representing the matrix T_{ij} ;

(b) combining said pool of dimeric oligomers with a set of oligomers representing partial data set U_i^b under conditions wherein oligomer sequences E_i^b and \underline{E}_i^b of data set U_i^b hybridize specifically to complementary sequences E_j and \underline{E}_j present in said memory pool oligomers; and

obtaining an isolated set of monomeric oligomer strands X_i comprising the first single strand oligomer sequences E_i and \underline{E}_i of said memory pool of dimeric single stranded oligomers that hybridized specifically to said U_i^b oligomers, wherein said X_i oligomers do not further comprise said E_j and \underline{E}_j oligomers of the second single-stranded sequences of said memory pool pligomers that are complementary to said U_i^b oligomers;

- combining said set of X_i oligomers with a set of single-stranded saturating oligomers comprising a set of E_i and \underline{E}_i oligomers representing the complete set of basis vectors e_i for i=1 to m, wherein the E_i and \underline{E}_i oligomers are substoichiometric relative to said set of X_i oligomers, in that the number of oligomers in the set of X_i oligomers is greater than the number of saturating oligomers, so that complementary sequences hybridize to each other, denaturing the resulting duplex molecules, and isolating the subset of X_i oligomer that hybridized specifically to said E_i and E_i sequences, to obtain a set of saturated X_i strands, $S(X_i)$;
- (d) repeating steps (b) and (c) iteratively, using the set of saturated X_i strands, $S(X_i)$ obtained in each previous implementation of step (c) as the set of oligomers representing partial data set U_i^b employed in the subsequent implementation of step (b), until successive iterations yield the same set of oligomer strands X_i produced by step (b) that represents data set V_i^b .

Enter the following amended claims:

- 18. The method of claim 37, wherein the oligomers independently comprise subunits selected from the group consisting of deoxyribonucleotides, ribonucleotides, and analogs of deoxyribonucleotides or ribonucleotides; and any single oligomer comprises one or a combination of two or more of said different types of subunits.
- 19. The method of claim 37 wherein each of said oligomers forming said content addressable memory matrix T_{ij} comprises, in order from the 5' end to the 3' end, (a) an oligomer strand comprising a nucleotide sequence representing an i-th component of V selected from the group consisting of E_i and E_i for i = 1 to i = m, (b) an oligomer strand comprising a nucleotide sequence representing a j-th component of V selected from the group consisting of E_j and E_j for j = 1 to j = m, wherein j ≠i, and (c) a nucleotide sequence F that is not complementary to any sequence E_i or E_i for i = 1 to i = m.
- 22. The method of claim 37 wherein said single-stranded oligomers comprising a complete, substoichiometric set of E_i of step (c) and \underline{E}_i are anchored to a solid support.
- 27. The method of claim 9 wherein said operation of matrix or vector algebra is determining the inner product of two vectors V and W, and said method comprises:
- (i) obtaining for each vector V and W, sets of single-stranded oligomers E_i and \underline{E}_i representing the components of the vector, wherein the concentrations of the oligomers E_i and \underline{E}_i are proportional to the absolute values of the amplitudes of the components they represent; and

also obtaining a set of single-stranded oligomers E_i and \underline{E}_i representing the components of vector \underline{W} that are complementary to said oligomers representing vector W, wherein the relative concentrations of the oligomers representing \underline{W} are proportional to the concentrations of their complementary oligomers in W;

(ii) combining samples of the oligomers representing vector V with samples of the oligomers representing vectors W and \underline{W} in separate respective first and second reaction mixtures and measuring R_+ and R_- rates of hybridization associated with the respective