Linear Analysis

George Lee Girton College

October 9, 2015

1 Introduction

2 Normed vector spaces

2.1 Vector spaces

Vector things

2.2 Normed vector spaces: the definition

definition 2.1. A normed vector space \mathbb{V} is an \mathbb{R} or \mathbb{C} -vector space along with a norm $\| \sim \| : \mathbb{V} \to \mathbb{R}$ such that

- 1. $\forall v \in \mathbb{V} : 0 \leq ||v||$
- 2. $\forall \lambda \in \mathbb{R}, v \in \mathbb{V} : ||\lambda v|| = |\lambda| ||v||$
- 3. $\forall v, w \in \mathbb{V} : ||v + w|| \le ||v|| + ||w||$

3 The relation with the topology

Clear that $\|-\|$ defines a metric via taking the norm of the difference between vectors, and hence a notion of topology. Thus can use Met+Top etc a load in this course. Might use $\tau_{\mathbb{V}}$ to denote the collection of open sets.

Lemma 3.1. Let (V, |-|) be a normed vector space. Then the operations of addition and scalar multiplication are continuous.

Proof. For +: let
$$U \in \tau_{\mathbb{V}}$$
, want $+^{-1}U \in \mathbb{V}^2$. Let $(v_1, v_2) \in +^{-1}U$, ie, $v_1 + v_2 \in U$. For some $0 \le \epsilon$ we have $v_1 + v_2 + \mathcal{B}(\epsilon) = v_1 + \mathcal{B}(\frac{\epsilon}{2}) + v_2 + \mathcal{B}(\frac{\epsilon}{2}) \subseteq U$. This is exactly the image of $(v_1 + \mathcal{B}(\frac{\epsilon}{2}), v_1 + \mathcal{B}(\frac{\epsilon}{2})) \in \tau_{\mathbb{V}^2}$ under +.

Corollary 3.1.1. Let V be a normed vector space. transplations and dilations are homeomorphisms.

3.1 More abstraction: topological vector spaces

definition 3.2. A topological vector space is a vector space \mathbb{V} together with a topology such that addition and scalar multiplication are continuous, and each singleton set is closed.