Exemplos de Sala de Aula Semana 1

1. Mostre que um tabuleiro 8 x 8 com um quadrado removido pode ser ladrilhado com triminós, peças que cobrem três quadrados de uma vez.

Note que os triminós conseguem ladrilhar qualquer tabuleiro 2 x 2 com uma peça removida. Podemos dividir o tabuleiro 8 x 8 em 4 tabuleiros 4 x 4.

Em seguida, podemos remover temporariamente os 3 quadrados dos quadrantes sem nenhum quadrado removido no formato de um triminó

Agora, temos 4 tabuleiros do tamanho 4 x 4 com um quadrado removido para ser coberto por triminós.

Considere o seguinte exemplo:

	1	2	3	4	5	6	7	8
1								
2						X		
3								
4								
5								
6								
7								
8								

Dividindo o tabuleiro 8x8 em quatro partes e posicionado o primeiro triminó:

	1	2	3	4	5	6	7	8
1								
2						X		
3								
4				1				
5				1	1			
6								
7								
8								

Particionado o tabuleiro 4 x4 em 4 tabuleiros 2 x 2 e posicionado o segundo triminó:

	1	2	3	4	5	6	7	8
1								
2		2	2			X		
3		2						
4				1				
5				1	1			
6								
7								
8								

Cada tabuleiro 2 x 2 com um quadrado removido pode ser ladrilhado apenas de uma única maneira

	1	2	3	4	5	6	7	8
1	3	3	4	4				
2	3	2	2	4		X		
3	5	2	6	6				
4	5	5	6	1				
5				1	1			
6								
7								
8								

O mesmo processo pode ser repetido para os outros tabuleiros 4 x 4.

2. Uma empresa produz blocos retangulares através da junção de cubos. Em seguida, uma máquina coloca 1 adesivo em cada face exposta de cada cubo. Um bloco retangular formado pela junção de 2 cubos recebe 10 adesivos.

A tabela seguinte apresenta uma relação entre o número de cubos do bloco retangular e a quantidade de adesivos utilizadas:

número de cubos	1	2
número de adesivos	6	10

Descreva uma relação recorrente entre o número de cubos e o número de adesivos.

Quando removemos um cubo de um bloco retangular formado por n cubos, precisaremos 4 adesivos a menos. Seja T(n) o número de adesivos utilizados para um bloco retangular formado por n cubos. Podemos escrever a seguinte relação de recorrência:

$$T(n) = \begin{cases} 6 & n = 1\\ T(n-1) + 4 & n > 1 \end{cases}$$

3. Uma viga é construída usando hastes. O comprimento de uma viga é determinado pelo número de hastes usado para construir o inferior da viga. Na Figura abaixo, temos o exemplo de uma viga de comprimento 4.

A tabela seguinte apresenta uma relação entre o comprimento da viga e o número total de hastes usadas para a sua construção:

Comprimento da viga	1	2	3	4
número de hastas	3	7	11	15

Descreva uma relação recorrente entre o comprimento da viga e o número total de hastes usadas para a sua construção.

Quando reduzimos o comprimento da viga em 1 unidade, precisamos usar 4 hastes a menos. Seja T(n) o número de hastas utilizadas para uma viga de comprimento n. Podemos descrever a relação de recorrência da seguinte maneira:

$$T(n) = \begin{cases} 3 & n = 1\\ T(n-1) + 4 & n > 1 \end{cases}$$

4. Suponha que duas pessoas participam de um jogo, e que cada uma na sua vez toma um, duas ou três de uma pilha que contém 7 pedras. A pessoa que remove a última pedra ganha o jogo. Mostre que o primeiro jogador vence, não importando o que o segundo jogador faça. Em seguida, estenda a sua estratégia vencedora para n qualquer.

Primeiramente construíremos uma tabela para auxiliar as posições de vitórias (W) e as posições de derrota para o primeiro jogador.

1	2	3	4	5	6	7

As posições 1, 2, 3 são posições de vitória para o primeiro jogador.

1	2	3	4	5	6	7
W	W	W				

Se o primeiro jogador recebe uma pilha com 4 pedras. Qualquer movimento que ele fizer ele vai deixar uma posição vencedora para o segundo jogador. Logo, uma pilha com 4 pedras é uma posição de derrota para primeiro jogador.

1	2	3	4	5	6	7
W	W	W	L			

Se o primeiro jogador recebe uma pilha com 5, 6 e 7 pedras. Ele consegue remove algumas pedras para deixar uma pilha de 4 pedras para o segundo jogador (uma posição perdedora para o segundo jogador). Logo, 5, 6 e 7 são posições vencedoras para o primeiro jogador.

1	2	3	4	5	6	7
W	W	W	L	W	W	W

Realize o processo semelhante para o problema descrito na questão.