TO:USPTO

Appl. No. 09/972,368 Amdt. Dated 10/12/2005 Reply to Office Action of 09/12/2005

IN THE CLAIMS

Please cancel claims 1-2 and 4-7 without prejudice as follows below.

Please amend claims 15-16 as follows below.

The following listing of claims replaces all prior versions, and listings, of claims in the application:

Marked up Claims Listing:

1-7. (Cancelled)

1

16

1	8.	(Previously Presented) An apparatus comprising:		
2		a buffer to receive a data stream, wherein data is written to the buffer		
3		according to a first clock, the buffer configured as a first-in first-out stack;		
4		a character monitor coupled to the buffer to monitor the occurrence of an		
5		inter-packet gap in the data stream containing removable filler characters and		
6		identify the removable filler characters in the buffer; and		
7		a channel controller configured to read data from the buffer according to a		
8		second clock and transmit it over an output channel, the channel controller to skip		
9		the transmission of one or more removable filler characters if the first clock is		
10		faster than the second clock to match the first and second clock rates, the channel		
11		controller including a read pointer controller, the read pointer controller to access a		
12		first, a second, a third, and a fourth data sets stored in the buffer, the first, second,		
13		third, and fourth data sets forming contiguous parts of the data stream in that order		
14		with the first data set being first in the data stream and the fourth data set being last		
15		in the data stream, wherein in a first mode of operation the channel controller		

transmits the first and second data sets over the output channel.

2

Appl. No. 09/972,368 Amdt. Dated 10/12/2005 Reply to Office Action of 09/12/2005

1	9.	(Original) The apparatus of claim 8 wherein a buffer overflow condition exists		
2		if the first clock writes data to the buffer faster than the second clock reads data		
3		from the buffer.		
1	10.	(Original) The apparatus of claim 8 wherein if an overflow condition is		
2		detected the channel controller seeks a data set marked as removable within an		
3		inter-packet gap.		
1	11.	(Original) The apparatus of claim 8 wherein if an overflow condition is		
2		detected and the first data set is marked as removable, then the channel controller		
2 . 3		skips transmission of the first data set and transmits the second data set and the		
4		third data set in the next second clock cycle.		
	٠	time data set in the next second clock by tio.		
1	12.	(Original) The apparatus of claim 8 wherein if an overflow condition is		
2		detected and the second data set is marked as removable, then the channel		
3		controller skips transmission of the second data set and transmits the first data set		
4		and the third data set in the next second clock cycle.		
1	13.	(Original) The apparatus of claim 8 wherein if an overflow condition is		
2		detected and a first data set was previously skipped and the second data set is		
3		marked as removable, then on the next clock cycle the channel controller skips		
4		transmission of the second data set and transmits the third data set and the fourth		
5		data set.		
ı	14.	(Original) The apparatus of claim 8 wherein if an overflow condition is		

7145573347

detected and a first data set was previously skipped and a third data set is marked as

WEA/phs

3		removable, then on the next clock cycle the channel controller skips transmission of		
. 4		the third data set and transmits the second data set and the fourth data set.		
1	15.	(Currently Amended) The apparatus of claim [[1]] 8 wherein the apparatus is an		
2		integrated circuit.		
1	16.	(Currently Amended) The apparatus of claim [[1]] 8 wherein the first and second		
2		clocks have a maximum rate difference of one cycle per one thousand cycles.		
1	17.	(Previously Presented) A method for matching the transmission rates of a		
2		first clock to the transmission rates of a second clock comprising:		
· 3		receiving sets of one or more characters over an input channel synchronized		
4		by the first clock;		
5		buffering the sets of characters received;		
6		transmitting the buffered sets of characters over an output channel		
7		synchronized by the second clock;		
8		skipping transmission of a set of characters marked as removable within an		
9		inter-packet gap if an overflow condition is detected;		
10		reading a first, a second, a third, and a fourth data sets, wherein the first,		
Ìl		second, third, and fourth data sets are contiguous data segments in that order;		
12		transmitting the first and second data sets on a first cycle of the second		
13		clock; and		
14		transmitting the third and fourth data sets on a second cycle of the second		
15		clock.		

18. The method of claim 17 wherein the sets of one or more characters 1 (Original) 2 are received and buffered per first clock cycle. The method of claim 17 wherein two sets of one or more characters l 19. (Original) 2 are transmitted per second clock cycle. The method of claim 17 wherein a set of one or more characters is l 20. (Original) marked as removable if it contains one or more filler characters and follows a set of 2 3 one or more filler characters in the input channel. 1 21. (Cancelled) The method of claim 17 wherein an overflow 22. (Previously Presented) 1 condition is detected if the first clock is faster than the second clock. 2 1 23. (Previously Presented) The method of claim 17 wherein if an overflow condition is detected and the first data set is marked as removable, then skipping 2 the transmission of the first data set and transmitting the second data set and the 3 4 third data set in the next second clock cycle. 24. The method of claim 17 wherein if an overflow 1 (Previously Presented) 2 condition is detected and the second data set is marked as removable, then skipping 3 the transmission of the second data set, and transmitting the first data set and the . 4 third data set in the next second clock cycle.

7145573347

ı	25.	(Previously Presented) The method of claim 17 wherein it an overflow			
2		condition is detected and a first data set was previously skipped and the second data			
3		set is marked as removable, then on the next second clock cycle skipping the			
4		transmission of the second data set, and transmitting the third data set and the			
5		fourth data set.			
1	26.	(Previously Presented) The method of claim 17 wherein if an overflow			
2		condition is detected and a first data set was previously skipped and the third data			
3		set is marked as removable, then on the next second clock cycle skipping the			
4		transmission of the third data set, and transmitting the second data set and the			
5		fourth data set.			
1	27.	(Previously Presented) A rate matching system comprising:			
2		means for receiving an input data stream of one or more character sets over			
3		an input channel synchronized by a first clock;			
4		means for buffering the one or more sets of characters;			
5		means for transmitting the buffered data over an output channel as an output			
6		data stream synchronized by a second clock;			
7		means for removing one or more sets of filler characters from the output			
8		data stream if an overflow condition is detected;			
9		means for accessing a first, a second, a third, and a fourth character sets,			
10		wherein the first, second, third, and fourth character sets are contiguous data			
11		segments of the input data stream in that order; and			
12		means for transmitting the first and second character sets on a first cycle of			
13		the second clock.			

1	28.	(Original)	The rate matching system of claim 27 further comprising:	
2		means for detecting an inter-packet gap within the input data stream.		
1	29.	(Original)	The rate matching system of claim 27 further comprising:	
2		means for identifying a set of filler characters within an inter-packet gap as		
3		deletable characters.		
1	30.	(Original)	The rate matching system of claim 27 wherein the means for	
2		removing one	or more sets of filler characters from the output data stream includes	
3		means for ski	pping transmission of a set of characters marked as deletable within	
4		an inter-pack	et gap if the first clock is faster than the second clock.	
1	31.	(Original)	The rate matching system of claim 30 wherein a set of one or more	
2		characters is marked as deletable if it contains one or more filler characters and		
3		follows a set	of one or more filler characters in the input channel.	
1	32.	(Original)	The rate matching system of claim 27 wherein two sets of one or	
2		more characte	ers are transmitted per second clock cycle.	
1	33.	(Original)	The rate matching system of claim 27 further comprising:	
2		means for detecting rate differences between the first clock and the second		
3	·	clock.		
1	34.	(Cancelled)		

7145573347

1	35.	(Previously Presented)	The rate matching system of claim 27 further		
2		comprising:			
3		means for transmitting the third and fourth character sets on a second cycle			
4		of the second clock			
l	36.	(Previously Presented)	The rate matching system of claim 27 wherein an		
2		overflow condition occur.	overflow condition occurs when the first clock is faster than the second clock.		
1	37.	(Original) The rate m	natching system of claim 36 further comprising:		
2	•	means for skippin	g the transmission of the first character set and		
3		transmitting the second cl	haracter set and the third character set on the first cycle of		
4		the second clock if an overflow condition is detected and the first character set is			
5		marked as deletable.	·		
ı	38.	(Original) The rate m	atching system of claim 36 further comprising:		
2		means for skippin	g the transmission of the second character set and		
3		transmitting the first character set and the third character set on the first cycle of the			
4		second clock if an overflow condition is detected and the second character set is			
5		marked as deletable.			
1	39.	(Original) The rate m	atching system of claim 36 further comprising:		
2		means for skipping the transmission of the second character set, and			
3		transmitting the third character set and the fourth character set on the first cycle of			
4		the second clock if an overflow condition is detected and a previous first data set			
5		was skipped and the secon	nd data set is marked as deletable.		

1	40.	(Original) The rate matching system of claim 36 further comprising:		
2		means for skipping the transmission of the third character set, and		
3		transmitting the second character set and the fourth character set on the first cycle		
4		of the second clock if an overflow condition is detected and a previous first		
5		character set was skipped and the third character set is marked as deletable.		
1	41.	(Previously Presented) A machine-readable medium having one or more		
2		instructions for matching transmission rates across a single channel which when		
3		executed by a processor causes the processor to:		
4		receive data over an input channel synchronized by a first clock;		
5		buffer the data;		
6		transmit the buffered data over an output channel synchronized by a second		
7		clock;		
8		skip transmission of a data marked as deletable within an inter-packet gap if		
9		an overflow condition is detected;		
10		read a first, a second, a third, and a fourth data sets, wherein the first,		
11		second, third, and fourth data sets are contiguous data segments in that order; and		
12		transmit the first and second data sets on a first cycle of the second clock.		
1	42.	(Original) The machine-readable medium of claim 41 wherein two sets of data		
2		of one or more characters are received and buffered per first clock cycle.		
1	43.	(Original) The machine-readable medium of claim 41 wherein a data set of one		
2		or more characters is marked as deletable if it contains one or more idle characters		
3		and follows a data set of one or more idle characters in the input channel.		

1	44,	(Original) The machine-readable medium of claim 41 wherein the one or more		
2	,	idle characters are removable characters.		
1	45,	(Cancelled)		
1	46.	(Previously Presented) The machine-readable medium of claim 41 further		
2		comprising one or more instructions which when executed by a processor causes		
3 ·		the processor to:		
4		skip transmission of the first data set and transmit the second data set and		
5		the third data set in the first cycle of the second clock if an overflow condition is		
6		detected and the first data set is marked as deletable.		
1	47.	(Previously Presented) The machine-readable medium of claim 41 further		
2		comprising one or more instructions which when executed by a processor causes		
3		the processor to:		
4		skip transmission of the second data set and transmit the first data set and		
5		the third data set in the first cycle of the second clock if an overflow condition is		
6		detected and the second data set is marked as deletable.		
1	48.	(Previously Presented) The machine-readable medium of claim 41 further		
2		comprising one or more instructions which when executed by a processor causes		
3		the processor to:		
4		skip transmission of the second data set and transmit the third data set and		
5		the fourth data set on the first cycle of second clock if an overflow condition is		
6		detected and a previous first data set was skipped and the second data set is marked		
7		as deletable.		

TO: USPTO

1	49.	(Previously Presented)	The machine-readable medium of claim 41 further	
2		comprising one or more instructions which when executed by a processor causes		
3 the processor to:				
4		skip transmission	of the third data set and transmit the second data set and	
5		the fourth data set on the first cycle of the second clock cycle if an overflow		
6 .		condition is detected and a previous first data set was skipped and the third data set		
7		is marked as deletable.		