Dec, 2015

February 9, 2016

Meeting

- Review TADA (Transmission And De novo Association) model.
- Test the likelihood values of TADA on grids of parameters on D0.
- Estimate parameters using box-constrained optimization and MCMC on D1 and D2:

```
DO. De Rubeis, Silvia, et al. "Synaptic, transcriptional and chromatin genes disrupted in autism."
Nature 515.7526 (2014): 209-215.
D1. He. Xin. et al. "Integrated model of de novo and inherited genetic variants vields greater
```

power to identify risk genes." PLoS Genet 9.8 (2013): e1003671.

D2. Only the FMRP gene set from the data set D0. From Darnell: 842 genes.

TADA

Let π be the fraction of risk genes in all genes.

Main parameters	Variants (LoF and mis3)	
$ig(extit{Mutation} extit{rate} (\mu)$	De novo mutation	
$\left\{ egin{array}{ll} ext{Relative} & ext{risk} & (\gamma) \end{array} ight.$	$=>$ $\left\{$ Transmitted variations	
Population frequency (q)	Variants in case-control studies	

For each i^{th} gene, TADA uses a Bayesian approach to test the hypothesis $H_0: \gamma_i = 1$ against the alternative $H_1: \gamma_i \neq 1$ => A fraction π of risk genes (per total genes) follows the H_1 model.

The model incorporates information across genes, assumming that:

- Relative risk γ : $\gamma \sim \text{Gamma}(\bar{\gamma} * \beta, \beta)$.
- Population frequency of variants q:
 - Risk genes: $q_1 \sim Gamma(\rho_1, \nu_1)$
 - Normal genes: $q_0 \sim Gamma(\rho_0, \nu_0)$

$$=>$$
 Need to estimate $\bar{\gamma}, \beta, \rho_1, \nu_1, \rho_0, \nu_0, \pi$.

With each type of data/variants (x), at each gene:

$$P(x|paramterers) = \pi P(x|H_1) + (1-\pi)P(x|H_0)$$

Two types of mutations are tested: Loss-of-function (LoF) and probably damaging (Mis3).

Test two models:

External product

$$P(x|\textit{paramterers}) = \prod_{i=1}^{m} \left[\pi P(x_{i_{\textit{LoF}}}|H_1) + (1-\pi) P(x_{i_{\textit{LoF}}}|H_0) \right] \left[\pi P(x_{i_{\textit{mis3}}}|H_1) + (1-\pi) P(x_{i_{\textit{mis3}}}|H_0) \right]$$

Internal product

$$P(x|\textit{paramterers}) = \prod_{i=1}^{m} \left[\pi P(x_{i_{LOF}}|H_1) P(x_{i_{mis3}}|H_1) + (1-\pi) P(x_{i_{LOF}}|H_0) P(x_{i_{mis3}}|H_0) \right]$$

Bayes factor

$$BF = \frac{P(x|H_1)}{P(x|H_0)} = \frac{P(x_{LoF}|H_1)P(x_{mis3}|H_1)}{P(x_{LoF}|H_0)P(x_{mis3}|H_0)}$$

Model for case-control data

```
Relative riks:  \gamma|H_1 \sim \textit{Gamma}(\bar{\gamma}*\beta,\beta)  Frequency of variants:  q|H_1 \sim \textit{Gamma}(\rho,\nu)   q|H_0 \sim \textit{Gamma}(\rho_0,\nu_0)  The model:  P(x|H_0) = \int p(x|q,\gamma=1)p(q|H_0)dq   P(x|H_1) = \int p(x|q,\gamma)p(q|H_1)p(\gamma|H_1)dqd\gamma
```

Model for case-control data (cont)

For simplicity, let $q|H_1=q|H_0=q\ \sim \textit{Gamma}(
ho,
u)$,

we will calculate the conditional distribution of variants in cases on total variants of cases and controls.

 X_{case} $Pois(\lambda_1)$; $X_{control}$ $Pois(\lambda_0)$

With $\lambda_1 = 2\textit{N}_{\textit{case}} * \textit{q} * \gamma$; $\lambda_0 = 2\textit{N}_{\textit{control}} * \textit{q}$

 $X = X_{case} + X_{control}$

 $X \sim \textit{Pois}(\lambda_1 + \lambda_0)$

Question:

- 1) should let $q = \epsilon * q_0$.
- 2) Relationship between q and μ .

Model for case-control data (cont2)

At the
$$i^{th}$$
 gene,
$$P(X_{case} = k | X = n) = \frac{P(X_{case} = k, X = n)}{P(X = n)} = \frac{P(X_{case} = k, X_{contro} = n - k)}{P(X = n)}$$

$$= \frac{\frac{e^{-\lambda_1} \lambda_1^k}{k!} \frac{e^{-\lambda_0} \lambda_0^{n-k}}{(n-k)!}}{\frac{e^{-(\lambda_1 + \lambda_0)(\lambda_1 + \lambda_0)^n}}{n!}}$$

$$= \frac{n!}{(n-k)!k!} \frac{\lambda_1^k \lambda_0^{n-k}}{(\lambda_1 + \lambda_0)^n} = C_n^k p^k (1-p)^{n-k}$$
With
$$p = \frac{\lambda_1}{\lambda_1 + \lambda_0} = \frac{2N_{case} q \gamma}{2N_{case} q \gamma + 2N_{control} q} = \frac{N_{case} \gamma}{N_{case} \gamma + N_{control}}$$

- First way (**Poisson distribution**) $X_{dn}|H_1 \sim Pois(2N_{dn}\mu\gamma)$
 - $X_{dn}|H_1 \sim Pois(2N_{dn}\mu\gamma)$ $X_{dn}|H_0 \sim Pois(2N_{dn}\mu)$
- Second way (Binomial distribution)

$$X_{dn}|H_1 \sim Binomial(2N_{dn}, \mu\gamma)$$

 $X_{dn}|H_0 \sim Binomial(2N_{dn}, \mu)$

With

Relative risk:

$$\gamma \sim \textit{Gamma}(ar{\gamma} * eta_{\textit{dn}}, eta_{\textit{dn}})$$

Can we simultaneously estimate all parameters based data + prior information from publications? => it will be easier to incorporate other information.

Some simple steps last month:

- => Re-write likelihood functions with two types of model.
- => Check there are overlapping intervals π between different variants.
- => Test whether we can constrain parameterers to estimate simultaneously.

Some issues we have had:

- Internal OR external models.
- Constrain relative risks (γ) .
 - Some relative risk parameters imply substantial proportions of protective genes.

- Improve the calculation of mutation rates for each genes/annotations.
- Use adjusted counts as data.
- Improve algorithm (eliminate numerical integration).

Grid on each data type

- Denovo LoF.
- Denovo Mis3.
- Case-control LoF.

LoF de novo

LoF de novo: top log LLK

LoF de novo: check correlations between hyperparameters

Mis3 de novo

Mis3 de novo: top LLK less than 0.6% protective variants.

LoF case-control

Estimate parameters

Use intervals of hyperparameters to set uniform priors for hyperparameters.

Constrained optimization

- A set of random initial values was used => they can converge to approximately optimal values.
- 2 Some different algorithms (built in R) are used.

Test (external) for de novo data: LoF + mis3 for D1!

Test (internal/external) for de novo data: LoF + mis3 for D1!

Grid top LLK (internal) for de novo data: LoF + mis3 for D1!

Test (external) for de novo data: LoF + mis3 for D2 (the FMRP gene set)!

Test (internal/external) for de novo data: LoF + mis3 for D2 (the FMRP gene set)!

MCMC for D1: external product.

pi: 17576 gene median = 0.061 25 20 15 9 2 0 0.02 0.06 0.10 0.14 N = 6000Bandwidth = 0.002571

MCMC for D1: external product.

LoF.gamma.mean.denovo 17576 gene median =19.71 0.14 0.10 0.08 90.0 0.04 0.02 0.00 15 20 25 30 N = 6000 Bandwidth = 0.596

MCMC for D1: external product.

10 12

Bandwidth = 0.2048

17576 gene

median = 4.74

MCMC for D2 (the FMRP gene set,)

MCMC for D2 (the FMRP gene set,)

30

MCMC for D2 (the FMRP gene set,)

Mis3.gamma.mean.denovo

Mis3.gamma.mean.denovo

