WE CLAIM:

- 1. The compound 4-amino-l-hydroxybutylidene-1,1-bisphosphonic acid monosodium salt having water content of 1.3 % to 11.7%.
- 2. A hydrate form of a compound of claim 1 which is any of the hydrate forms selected from the group that consists of 1/4 hydrate, 1/3 hydrate, hemihydrate, 2/3 hydrate, 3/4 hydrate, monohydrate, 5/4 hydrate, 4/3 hydrate, 3/2 hydrate, and dehydrate.
- 3. The compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt having water content of 5.1 % to 7.0%.
- 4. The compound according to claim 3 having water content of about 6.2%.
- 5. Alendronate monosodium monohydrate.
- 6. The compound according to claim 3, which is characterized by peaks in the powder xray diffraction at values of two theta of 12.7 \pm 0.2, 16.2 \pm 0.2, 17.3 \pm 0.2, 17.6 \pm 0.2, 24.8 \pm 0.2, and 25.5 \pm 0.2.
- 7. A method of preparing the compound of any of claims 3 through 6 comprising the steps of:
 - a) reacting one equivalent of 4-amino-l-hydroxybutylidene-1,1-bisphosphonic acid with one equivalent of sodium base in a lower alkanol comprising 5 to 200 equivalents of water; and
 - b) isolating said compound of any of claims 3 through 6.
- 8. A method according to claim 7 wherein the compound 4-amino-l-hydroxybutylidene- 1,

 1 -bisphosphonic acid is in a monohydrate form.
- 9. A method according to claim 7 wherein the lower alkanol is selected from the group consisting of methanol, ethanol and isopropanol.
- 10. A method according to claim 7 wherein the sodium base is selected from the group consisting of sodium hydroxide, sodium methoxide and sodium ethoxide.
- 11. A method according to claim 7 wherein the compound 4-amino-1-hydroxybutylidene-

- 1, 1-bisphosphonic acid is in an anhydrous form.
- 12. A method of preparing the compound of any of claims 3 through 6 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic monosodium salt in a lower alkanol with 20-40 equivalents of water; and
 - b) isolating said compound(of any of claims 3 through 6.
- 13. A method according to claim 12 wherein the lower alkanol of step a) is ethanol.
- 14. A method of preparing the compound of any of claims 3 through 6 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic disodium salt in a lower alkanol with 20-40 equivalents of water, and one equivalent of alendronic acid; and
 - b) isolating said compound of any of claims 3 through 6.
- 15. A method according to claim 14 wherein the lower alkanol of step a) is ethanol.
- 16. A method of preparing the compound of any of claims 3 through 6 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1,1-bisphosphonic trisodium salt in a lower alkanol with 20-40 equivalents of water and two equivalents of alendronic acid; and
 - b) isolating said compound of any of claims 3 through 6.
- 17. A method according to claim 16 wherein the lower alkanol of step a) is ethanol.
- 18. A method of preparing the compound of any of claims 3 through 6 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic tetrasodium salt in a lower alkanol with 20-40 equivalents of water and three equivalents of alendronic acid; and

- b) isolating said compound of any of claims 3 through 6.
- 19. A method according to claim 18 wherein the lower alkanol of step a) is ethanol.
- 20. A method according to claim 12 in which the 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic sodium salt is a monosodium salt trihydrate.
- 21. A compound according to claim 3, which is characterized by peaks in the powder x-ray diffraction at values of two theta of 9.3 \pm 0.2, 12.4 \pm 0.2, 13.5 \pm 0.2, 26.3 \pm 0.2 and 30.0 \pm 0.2.
- 22. A method of preparing the compound of claim 21 comprising the steps of:
 - a) treating 4-amino-l-hydroxybutylidene-1,1-bisphosphonic monosodium trihydrate with an effective amount of a drying agent; and
 - b) isolating said compound of claim 21.
- 23. A method according to claim 22 wherein the reaction of step a) is performed in ethanol.
- 24. Alendronate monosodium hemihydrate.
- 25. The compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt having water content of 2.8% to 3.9%.
- 26. The compound according to claim 25 having water content of about 3.2%.
- 27. The compound according to claim 25, which is characterized by peaks in the powder x-ray diffraction at values of two theta of 7.0 \pm 0.2, 9.3 \pm 0.2, and 14.0 \pm 0.2.
- 28. A method of preparing the compound of claim 24 or 25 comprising the steps of:
 - a) treating 4-amino-l-hydroxybutylidene-1,1-bisphosphonic acid in a lower alkanol with one equivalent of sodium base and 9 to 15 equivalents of water; and
 - b) isolating said compound of claim 24 or 25.
- 29. A method according to claim 28 wherein the compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid is in a monohydrate form.
- 30. A method according to claim 28 wherein the lower alkanol is selected from the group consisting of methanol, ethanol and isopropanol.

- 31. A method according to claim 28 wherein the sodium base is selected from the group consisting of sodium hydroxide, sodium methoxide and sodium ethoxide.
- 32. A method according to claim 28 wherein the compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid is in an anhydrous form.
- 33. The compound 4-amino-l-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt having water content of 2.5% to 3.5%.
- 34. The compound according to claim 33, which is characterized by peaks in the powder x-ray diffraction at values of two theta of 9.2 \pm 0.2, 14.2 \pm 0.2, 15.0 \pm 0.2, 17.1 \pm 0.2, 20.7 \pm 0.2, 22.0 \pm 0.2, 22.4 \pm 0.2.
- 35. A method of preparing the compound of claim 2 or 33 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid in a lower alkanol with one equivalent of sodium base and 17 to 22 equivalents of water;
 and
 - b) isolating said compound of claim 2 or 33.
- 36. A method according to claim 35 in which the compound 4-amino-1 hydroxybutylidene-1, 1-bisphosphonic acid is in a monohydrate form.
- 37. A method according to claim 35 wherein the lower alkanol is selected from the group consisting of methanol, ethanol and isopropanol.
- 38. A method according to claim 35 wherein the sodium base is selected from the group consisting of sodium hydroxide, sodium methoxide and sodium ethoxide.
- 39. The compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt having water content of 6.4% to 9.0%.
- 40. The compound according to claim 39, which is characterized by peaks in the powder x-ray diffraction at values of two theta of 12.2 ± 0.2 , 13.3 ± 0.2 , 14.8 ± 0.2 , 15.8 ± 0.2 , 16.3 ± 0.2 , and 17.2 ± 0.2 .
- 41. A method of preparing the compound of claim 2 or 39 comprising the steps of:

- a) treating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid in a lower alkanol with one equivalent of sodium base and 0 to 4 equivalents of water; and
- b) isolating said compound of claim 2 or 39.
- 42. A method according to claim 41 in which the compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid is in a monohydrate form.
- 43. A method according to claim 41 wherein the lower alkanol is selected from the group consisting of methanol, ethanol and isopropanol.
- 44. A method according to claim 41 wherein the sodium base is selected from the group consisting of sodium hydroxide, sodium methoxide and sodium ethoxide.
- 45. The compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt having water content of 3.2% to 5.8%.
- 46. The compound according to claim 45, which is characterized by peaks in the powder x-ray diffraction at values of two theta of 13.1 ± 0.2 , 15.2 ± 0.2 , 16.3 ± 0.2 , 22.3 ± 0.2 , 22.5 ± 0.2 , 23.4 ± 0.2 , and 23.7 ± 0.2 .
- 47. A method of preparing the compound of 2 or 45 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid anhydrous in a lower alkanol with one equivalent of sodium base and 0 to 4 equivalents of water; and
 - b) isolating said compound of claim 2 or 45.
- 48. A method according to claim 47 in which the compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid is in an anhydrous form.
- 49. A method according to claim 48 wherein the lower alkanol is selected from the group consisting of methanol, ethanol and isopropanol.
- 50. A method according to claim 48 wherein the sodium base is selected from the group consisting of sodium hydroxide, sodium methoxide and sodium ethoxide.
- 51. The compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt

- having water content of 1.3 % to 3.1 %.
- 52. The compound according to claim 51, which is characterized by peaks in the powder x-ray diffraction at values of two theta of 13.0 ± 0.2 , 13.4 ± 0.2 , 14.2 ± 0.2 , 19.1 ± 0.2 , and 19.4 ± 0.2 .
- 53. A method of preparing the compound of claim 2 or 51 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid in a lower alkanol with one equivalent of sodium base and 3 to 20 equivalents of water; and
 - b) isolating said compound of claim 2 or 51.
- 54. A method according to claim 53 in which the compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid is in a monohydrate form.
- 55. A method according to claim 53 wherein the lower alkanol is selected from the group consisting of methanol, ethanol and isopropanol.
- 56. A method according to claim 53 wherein the sodium base is selected from the group consisting of sodium hydroxide, sodium methoxide and sodium ethoxide.
- 57. A method according to claim 53 wherein the compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid is in an anhydrous form.
- 58. Alendronate monosodium dihydrate.
- 59. The compound 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt having water content of about 11.7%.
- 60. The compound according to claim 59, which is characterized by peaks in the powder x-ray diffraction at values of two theta of 9.3 \pm 0.2, 12.4 \pm 0.2, 13.5 \pm 0.2, 26.3 \pm 0.2 and 30.0 \pm 0.2.
- 61. A method for preparing a compound according to claim 58 or 59 comprising the steps of:
 - a) treating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid monosodium salt trihydrate with an effective amount of drying agent; and

- b) isolating 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid the monosodium salt dihydrate.
- 62. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of any of claims 1, 3, 25, 33, 39, 45 and 51.
- 63. A method for treating and/or preventing bone loss in a subject, comprising the step of administering to said subject in need thereof an effective amount of the pharmaceutical composition as defined in claim 62.
- 64. A method of preparing the compound of claim 1 comprising the steps of:
 - a) reacting one equivalent of 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected from the group consisting of acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, polyalcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone and dioxane, and
 - b) isolating said compound of claim 1.
- 65. A method of preparing the compound of claim 3 comprising the steps of:
 - a) reacting one equivalent of 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected from the group consisting of acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, polyalcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone and dioxane, and
 - b) isolating said compound of claim 3.
- 66. A method of preparing the compound of claim 25 comprising the steps of:
 - a) reacting one equivalent of 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected from the group consisting of acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, pc1-alcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone

and dioxane, and

- b) isolating said compound of claim 25.
- 67. A method of preparing the compound of claim 33 comprising the steps of:
 - a) reacting one equivalent of 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected from the group consisting of acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, polyalcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone and dioxane, and
 - b) isolating said compound of claim 33.
- 68. A method of preparing the compound of claim 39 comprising the steps of:
 - a) reacting one equivalent of 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected from the group consisting of acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, polyalcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone and dioxane, and
 - b) isolating said compound of claim 39.
- 69. A method of preparing the compound of claim 45 comprising the steps of:
 - a) reacting one equivalent of 4-amino- 1-hydroxybutylidene-1, 1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected from the group consisting of acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, polyalcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone and dioxane, and
 - b) isolating said compound of claim 45.
- 70. A method of preparing the compound of claim 51 comprising the steps of:
 - a) reacting one equivalent of 4-amino-1-hydroxybutylidene-1, 1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected

from the group consisting of acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, polyalcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone and dioxane, and

- b) isolating said compound of claim 51.
- 71. A method of preparing the compound of claim 59 comprising the steps of:
 - a) reacting one equivalent of 4-amino-l-hydroxybutylidene-1, 1-bisphosphonic acid with one equivalent of sodium base in an aqueous organic solvent selected from the group consisting of. acetone, DMSO, DMF, acetonitrile, alcohols, polyalcohols, polyalcohol ethers, pyridine, sulfolane, N-methyl pyrrolidinone and dioxane, and
 - b) isolating said compound of claim 59.