Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:41 2021 Program finished at Tue Jun 1 14:15:24 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 372630861

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	0	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	0	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	0	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	0	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	0	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	0	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	0	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	0	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	0	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	0	0

11 WhitePo		0	0	0	0	0	0	0	0	0	*	*	0		
12 LaJolla		0	0	0	0	0	0	0	0	0	0	*	*		
Order of param															
1	Θ_1								-	yed>					
2	Θ_2									yed>					
3	Θ_3									yed>					
4	Θ_4								-	yed>					
5	Θ_5								-	yed>					
6	Θ_6								-	yed>					
7	Θ_7								-	yed>					
8	$\Theta_{8}^{'}$								-	yed>					
9	Θ_9								-	yed>					
10	Θ_{10}									yed>					
11 12	Θ_{11}^{10}									yed> yed>					
24	Θ_{12}^{11} M_{11}								-	iyed> iyed>					
36	V 4	->2							-	yed>					
48	N /	->3							-	yed>					
60	N / 3.	->4 -							-	yed>					
72	N / 4-	->5							-	yed>					
84	V 4	->6							-	yed>					
96	N 4 O-	->7 ->8							-	yed>					
108	N.A. /-	->8 ->9							-	yed>					
120	N A O-	->9 ->10							-	yed>					
132	N A	->10 0->11								yed>					
144	NΛ	0->1 1->12						<0	lispla	yed>	>				
	1	1 /12	_												
Mutation rate an	nong loc	ci:											Muta	ation rate i	s constant
Analysis strateg	y:													Bayesia	n inference
Proposal distribu	utions fo	r pai	ramet	ter		_	_								
Parameter				N 4	4		Propo								
Theta				ivie			samp	-							
M					31	ice s	samp	iing							
Prior distribution	for nar	amot	er												
Parameter	Prior		linimı	um			Me	an*		M	axim	um	Delta		Bins
	vindow		0000			Ω	.0100				0000		1.000000		500
Ī	vindow		0001		100		.0000		1000				100000.000000		500
		٠.,			J J						.				

Markov chain settings:	Long chain
Number of chains	1
Recorded steps [a]	1000
Increment (record every x step [b]	100
Number of concurrent chains (replicates) [c]	3
Visited (sampled) parameter values [a*b*c]	300000
Number of discard trees per chain (burn-in)	1000
Multiple Markov chains:	
Static heating scheme	4 chains with temperatures
100000.00	3.00 1.50 1.00
	Swapping interval is 1
Print options:	
Data file:	//mcalifornianus_210528.mig
Output file:	outfile.txt
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03574
1	Θ_2	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03956
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01433
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02236
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02053
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02397
1	Θ_{7}	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02639
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01376
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02087
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01399
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01059
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00653
1	M _{1->2}	0.0	0.0	11000.0	26000.0	38000.0	27000.0	28209.9
1	M _{2->3}	4000.0	12000.0	29000.0	44000.0	62000.0	41000.0	61296.5
1	$M_{3->4}$	0.0	6000.0	21000.0	28000.0	0.00008	35000.0	33610.7
1	M _{4->5}	0.0	0.0	5000.0	22000.0	26000.0	65000.0	67865.1
1	M _{5->6}	0.0	0.0	11000.0	22000.0	32000.0	23000.0	37306.2
1	M _{6->7}	0.0	4000.0	15000.0	22000.0	38000.0	19000.0	15505.3
1	M _{7->8}	6000.0	16000.0	37000.0	60000.0	110000.0	55000.0	102149.1
1	M _{8->9}	0.0	0.0	9000.0	18000.0	52000.0	19000.0	17278.7
1	M _{9->10}	0.0	14000.0	27000.0	36000.0	62000.0	31000.0	30072.5
1	M _{10->11}	0.0	0.0	17000.0	44000.0	136000.0	45000.0	52363.0
1	M _{11->12}	62000.0	82000.0	127000.0	340000.0	784000.0	467000.0	485772.0

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:45:41]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2215.311874	(1a)
	-2138.686692	(1b)
Harmonic mean	-1879.505355	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	238/6502	0.03660
Θ_2	1427/6458	0.22097
Θ_3^{Z}	3311/6559	0.50480
Θ_4°	2221/6543	0.33945
Θ_5	3291/6420	0.51262
Θ_6°	2181/6498	0.33564
Θ_7°	1531/6340	0.24148
$\Theta_8^{'}$	3805/6521	0.58350
Θ_{0}	2212/6656	0.33233
Θ_{10}	3528/6545	0.53904
Θ_{11}	4108/6573	0.62498
Θ_{12}	4527/6558	0.69030
$M_{1->2}^{12}$	6587/6587	1.00000
$M_{2->3}$	6615/6615	1.00000
M $_{3->4}$	6582/6582	1.00000
$M_{4->5}$	6671/6671	1.00000
M _{5->6}	6367/6367	1.00000
M _{6->7}	6484/6484	1.00000
M _{7->8}	6410/6410	1.00000
M _{8->9}	6448/6448	1.00000
M _{9->10}	6486/6486	1.00000
M _{10->11}	6462/6462	1.00000
M $\frac{10}{11->12}$	6592/6592	1.00000
Genealogies	35672/150123	0.23762

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.97711	34.82
Θ_{2}^{1}	0.85214	257.16
Θ_3^2	0.52601	974.21
Θ_4°	0.69733	572.02
$\Theta_5^{'}$	0.53449	1104.27
Θ_6°	0.73455	510.87
Θ_7°	0.79612	352.81
$\Theta_8^{'}$	0.45017	1183.57
Θ_{0}	0.68082	596.66
Θ_{10}	0.55667	885.31
Θ_{11}^{10}	0.43791	1179.60
Θ_{12}^{11}	0.29800	1692.89
M ¹² _{1->2}	0.77945	375.31
$M_{2->3}$	0.76354	408.79
$M_{3->4}^{2->3}$	0.75937	421.27
$M_{4->5}^{3-24}$	0.77005	396.64
A 5->6	0.72855	493.52
A _{6→7}	0.84240	258.02
$M_{7->8}^{0->7}$	0.77805	390.04
M _{8->9}	0.77618	387.11
$M_{9->10}^{8->9}$	0.64431	661.08
M 10->11	0.63315	677.82
$M_{11->12}^{10->11}$	0.54100	907.57
_n[Prob(D G)]	0.97647	35.79

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to
100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly
because the data contains little or no information for that route. Increasing the range will not help in such
situations, reducing number of parameters may help in such situations.
No warning was recorded during the run