

Investigation of MHD Mode Structure in Shaped HBT-EP Plasmas

Patrick Byrne

April 13th, 2015

Outline

- Introduction
 - Motivation for Shaped Plasma Research on HBT-EP
 - HBT-EP Baseline and New Capabilities
 - Analysis Procedures
- New Challenges with Shaped Plasmas
 - Plasma/Sensor coupling
 - Positional Instability
- Proposed Research Plan
 - Observe Structure and Dynamics of RWM in Shaped Plasmas
 - Natural Structure/Growth Rates
 - RMP Response
- Initial Results
- Summary

Outline

- Introduction
 - Motivation for Shaped Plasma Research on HBT-EP
 - HBT-EP Baseline and New Capabilities
 - Analysis Procedures
- New Challenges with Shaped Plasmas
 - Plasma/Sensor coupling
 - Positional Instability
- Proposed Research Plan
 - Observe Structure and Dynamics of RWM in Shaped Plasmas
 - Natural Structure/Growth Rates
 - RMP Response
- Initial Results
- Summary

Introduction - Motivation

- A tokamak fusion plasma will need to be shaped
 - Fusion plasma heat load too high for material limiter
 - Exhaust redirected to diverter protects instruments, VV wall
 - Shaping allows access to higher β regimes, easier access to H-Mode
- All present and planned advanced tokamaks are non-circular

Introduction - Motivation

- A tokamak fusion plasma will need to be shaped
- HBT-EP's Mission (in part):
 - To quantify external kink dynamics and multimode response to applied magnetic perturbations... in ways that are ITER and reactor relevant^[1]
- Kink instabilities potentially limit performance in fusion reactors
- HBT-EP is well instrumented to measure external kink modes
 - High resolution magnetic sensors
 - Passive stabilization and active control through flexible configuration
- Shaping HBT-EP's plasmas increases relevancy of kink studies to fusion reactors

Introduction – HBT-EP Capabilities

- High resolution magnetic sensors
 - 216 total sensors, in 3 arrays, measure radial and poloidal field
- Highly modular passively stabilizing shells
 - 2 independently positionable sets of 10 stainless steel/SS+ferritic walls
- Active control coils
 - 2 coils per shell (of 6) can be independently driven for RMP or feedback

Introduction – HBT-EP Capabilities

- Zero net turns
 - Center bundle of 4 turns (co-I_p)
 flanked by 2 bundles of 2 (contra-I_p)
 - All bundles connected in series
 - low self/mutual inductance
 - Low power supply requirements
- Max current: 7.5 kA / turn
 - Center bundle current: 2*I_p
- Arbitrary current/polarity
 - Allows variety of shapes

- $\tau_{start} < 1ms$
- $\tau_{peak} > 7ms -> I_{peak} > .9 * max(I_{max})$

Introduction – Data Acquisition

HBTEP

 Sensors record partially integrated signal

- Integrated signal in software
- Smooth equilibrium fit to data
- Fluctuations separated from signal by subtracting equilibrium
- Fluctuations arranged and contour plotted
 - Dominant mode & frequency often visible by inspection

Biorthogonal Decomposition (BD)

- BD resolves coherent modes from fluctuations
 - Mathematically equivalent to singular value decomposition
 - Coherent traveling modes isolated from fluctuations as degenerate pairs
 - Modes further broken into temporal and spatial components
 - Requires no a priori assumption of mode basis
 - Insensitive to errors in sensor positioning or orientation

$$A = USV^{\dagger} = \begin{pmatrix} | & | & | & | \\ a_{1}a_{2} \dots a_{n} \\ | & | & | \end{pmatrix} = > \begin{pmatrix} | & | & | & | \\ u_{1}u_{2} \dots u_{n} \\ | & | & | \end{pmatrix} \begin{pmatrix} s_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & s_{n} \end{pmatrix} \begin{pmatrix} - & v_{1} & - \\ - & v_{2} & - \\ \vdots & - & v_{n} & - \end{pmatrix}$$

$$v_{i} \cdot v_{j} = u_{i} \cdot u_{j} = \delta_{i,j}$$

$$\cos(n\varphi + \omega t) = \cos(n\varphi)\cos(\omega t) + \sin(n\varphi)\sin(\omega t)$$

$$f(\theta, \varphi) \cos(n\varphi + \omega t) = f(\theta, \varphi) \cos(n\varphi) \cos(\omega t) + f(\theta, \varphi) \sin(n\varphi) \sin(\omega t)$$

Introduction – Analysis Procedures Biorthogonal Decomposition

10

BD resolves coherent modes from fluctuations

Requires no a priori assumption of mode basis

 Allows discrimination of modes with power ~1% of total fluctuations

Introduction – Analysis Procedures

- <u>Equilibrium Reconstruction</u>: TokaMac
- Inputs:
 - Direct measurements
 - Empircally determined constraints

Shot number 85385, time 2.65ms

- Mode Energetics and Shape: DCON
- Inputs:
 - TokaMac Equilibrium

Introduction – Analysis Procedures

- <u>Mode Measurements</u>: BD (previously discussed)
- Experiment/Simulation Connection: VALEN
 - Inputs:
 - DCON modes, mode rotation speed
 - HBT-EP conducting structures, sensor location/orientation

Introduction – Analysis

Outline

- Introduction
 - Motivation for Shaped Plasma Research on HBT-EP
 - HBT-EP Baseline and New Capabilities
 - Analysis Procedures
- New Challenges with Shaped Plasmas
 - Plasma/Sensor coupling
 - Positional Instability
- Proposed Research Plan
 - Observe Structure and Dynamics of RWM in Shaped Plasmas
 - Natural Structure/Growth Rates
 - RMP Response
- Initial Results

Summary

New Challenges – Plasma Sensor Coupling

- Sensor arrays, control coils designed for centered, circular plasma
- Coupling to shaped plasma/mode will vary poloidally
- VALEN can be used to predict coupling at each sensor/coil
 - More accurate measurement of plasma modes
 - Resonant field vs control coil current maximized
 - Novel method, can be applied to 0.2 circular plasmas as well

New Challenges – Plasma Sensor Coupling

- VALEN can be used to predict coupling at each sensor/coil
 - More accurate measurement of plasma modes
 - Requires accurate equilibrium reconstruction
 - Want repeatable plasma to limit number of reconstructions

New Challenges

- Vacuum fields designed for centered, circular plasma
 - Shaping destabilizes plasma positionally
 - Theory^[2] predicts passive stabilization of plasma position
 - Growth time reduced to scale longer than plasma lifetime
 - Shaped plasmas observed to persist for multiple ideal growth times

²A. Fukuyama, Japanese Journal of App. Phys. Vol 14, No. 6 (1978), 871-877

New Challenges

- Shaped plasma displaced upwards
 - Complicates Eq. Reconstruction/calculation of decay index
 - Poloidal arrays to be used as up/down Rogowski
 - Algorithm under development, will require good vacuum field subtraction
 - VALEN modeling of eddies

²A. Fukuyama, Japanese Journal of App. Phys. Vol 14, No. 6 (1978), 871-877

Outline

- Introduction
 - Motivation for Shaped Plasma Research on HBT-EP
 - HBT-EP Baseline and New Capabilities
 - Analysis Procedures
- New Challenges with Shaped Plasmas
 - Plasma/Sensor coupling
 - Positional Instability
- Proposed Research Plan
 - Observe Structure and Dynamics of RWM in Shaped Plasmas
 - Natural Structure/Growth Rates
 - RMP Response
- Initial Results

Summary

Proposed Research

- Explore structure and dynamics of RWMs in shaped geometry
- How are the natural modes affected by shaping?
 - Stability, amplitude, shape, rotation frequency, disruptivity
- How is the natural multimode spectrum affected by shaping?
 - Relative strengths of dominant/subdominant BD modes
 - Generally n = 1 vs n = 2
- How effective is passive stabilization on a shaped plasma?
- How does a shaped plasma respond to RMPs?
 - Changes to RFA/disruptivity?
 - Changes to resonant helicity?
 - Coupling to sidebands?

Proposed Research – Shot Development

- Ensuring diversion requires deliberate equilibrium development
 - I_p, MR, VF, OH, and SH affect equilibrium and shaping degree
 - MR strongly affected by all other values
 - Location of plasma in chamber has implications for mode measurements
- Want to develop diverted, centered, MR-steady plasma
 - Diverted: represents a break from previous limited operation
 - Centered: strongest possible coupling to all sensors/control coils
 - MR-steady: allows use of BD across long time windows

Outboard: ease of diversion Well centered: good coupling

MR-steady: $v_{plasma} \leq .5 \text{cm/ms}$

Proposed Research – Natural Modes

- Grow database of shots w/ static, diverted, well coupled equilibrium
- Observe modes
 - As measured by sensors & segregated by BD/Fourier analysis
 - As predicted by TokaMac/DCON
- Compare modes
 - Computationally: Through DCON
 - Experimentally: Through sensors & BD/Fourier
 - Naïve Direct comparison
 - VALEN Eliminates effects of boundary shape and position
 - Look at shape, amplitude, q_{edge}, growth rates
 - Dominant mode
 - Subdominant mode(s)
 - Correlation between modes

Proposed Research - RMPs

RMP response: covariance between control coil current and measured field:

$$\frac{\int B(t)I(t) dt/\int dt}{\sqrt{\int I(t)I(t)dt/\int dt}}$$

- Observe spectrum of response
 - Will the same modes couple to the same RMP in shaped/circular plasmas?
 - Will the resonse peaks be in the same location / the same width?
- Observe magnitude of response
 - Is response greater or less?
 - Are multiple modes unstable?
 - Is the saturated level higher or lower?
 - Is the plasma more disruptive?

Proposed Research – Workflow/Timeline

Look for effects on:

Natural Modes: Mode Shape, Saturated Amplitude, Growth rates Driven Modes: Mode Response, Disruptivity, Resonant Helicity/bandwidth

Outline

- Introduction
 - Motivation for Shaped Plasma Research on HBT-EP
 - HBT-EP Baseline and New Capabilities
 - Analysis Procedures
- New Challenges with Shaped Plasmas
 - Plasma/Sensor coupling
 - Positional Instability
- Proposed Research Plan
 - Observe structure and dynamics of RWM in shaped Plasmas
 - Natural structure/growth rates
 - RMP Response
- Initial Results

Summary

Initial Results

- Shaping Coil has been constructed and installed on HBT-EP
 - Allows investigation of a wide array of shaped configurations
 - Diverted operation has been demonstrated for first time in HBT-EP (Shot 85385)
- Shot development in process
 - Well centered, MR-steady, high I_{sh} shots under development (Shot 89341)

Initial Results

- VALEN has successfully been used to connect sensor measurements to B_n at plasma surface
- Discrepancy between DCON and BD reduced significantly
- More work required, better equilibrium modeling and larger database

Initial Results – RMP Response

- 3 similar shaped shots w/ m/n = 3/1 RMP applied
- Data and n=1 fit to data in blue, n/m 3/1 response in red
- Poloidal variation of amplitude seen, as predicted by VALEN
 - Strongest coupling to RMP seen at upper midplane
 - Predicted to be strongest at lower midplane
- Significant phase shift seen
 - Suggests poloidal spectrum not just than pure m=3

Outline

- Introduction
 - Motivation for Shaped Plasma Research on HBT-EP
 - HBT-EP Baseline and New Capabilities
 - Analysis Procedures
- New Challenges with Shaped Plasmas
 - Plasma/Sensor coupling
 - Positional Instability
- Proposed Research Plan
 - Observe Structure and Dynamics of RWM in Shaped Plasmas
 - Natural Structure/Growth Rates
 - RMP Response
- Initial Results
- Summary

Summary

- This thesis will investigate:
 - A novel method for projecting the output of MHD codes to predictions of direct measurements using VALEN
 - The structure of resistive wall modes as the plasma boundary is shaped in various ways, including full diversion
 - The growth rate and disruptivity of these modes as compared to circular plasmas
 - The effect of passive stabilization on shaped plasma RWMs
 - The response of shaped plasma RWMs to RMPs

Introduction – Analysis procedures

- Plasma equilibria solved for using TokaMac
- Equilibria ideal stability modeled in DCON (edge = $\Psi_{99.5}$)
- Sensor pickup forward modeled using VALEN
- Actual measurements decomposed to coherent modes via biorthogonal decomposition

