Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Lösningar till kvalificeringstävlingen den 15 oktober 1970

- 1. Varje positivt heltal n kan skrivas i någon av formerna 3z, 3z + 1, 3z + 2, där z är ett heltal > 0. Sätt i de tre fallen:
 - **a)** $n = 3z = 3z + 5 \cdot 0$
 - **b)** $n = 3z + 1 = 3(z 3) + 5 \cdot 2$
 - c) $n = 3z + 2 = 3(z 1) + 5 \cdot 1$.

Talet n blir därvid skrivet i formen $3x + 5y \mod x$ och y heltal, $y \ge 0$. För n > 7 blir i de tre fallen:

- a) $n = 9, 12, \dots$ så att $z \ge 3, x > 0$,
- **b)** n = 10, 13..., så att $z \ge 3, x \ge 0$,
- c) $n = 8, 11, \dots$ så att $z \ge 2, x \ge 1$.

Vi får alltså alltid $x \geq 0$.

2. Ett tal x som i 2-systemet (= binära systemet) kräver n siffror satisfierar

$$2^{n-1} \le x < 2^n$$

(jämför med att i 10-systemet exempelvis ett tresiffrigt tal x satisfierar $10^2 \le x < 10^3$). Vi söker därför ett n sådant att

$$2^{n-1} \le 10^{100} < 2^n.$$

Ta 10-logaritmer:

$$(n-1) \lg 2 \le 100 < n \lg 2$$

 $n-1 \le \frac{100}{\lg 2} < n.$

Eftersom $332 < 100/\lg 2 < 333$ får man n = 333.

(Om man exempelvis från tabell vet att $0,3009 < \lg 2 < 0,3011$, har man att konstatera att

$$332 < \frac{100}{0,3011}, \qquad \frac{100}{0,3009} < 333 \;)$$

3. Använd beteckningarna i figuren. Addera summorna för de båda diagonalerna, den mittersta raden och den mittersta kolumnen:

$$4s = (a_1 + b_2 + c_3) + (c_1 + b_2 + a_3) + (b_1 + b_2 + b_3) + (a_2 + b_2 + c_2)$$

$$= (a_1 + a_2 + a_3) + (b_1 + b_2 + b_3) + (c_1 + c_2 + c_3) + 3b_2$$

$$= 3s + 3b_2$$

Alltså är $s = 3b_2$.

4. **Metod 1.** P(0) = a, P'(x) = (x-1)(x-a). I varje intervall där P' har konstant tecken är P strängt monoton och kan ha högst ett (enkelt) nollställe.

För $a \le 0$ är $P(0) \le 0$ och P avtagande i [0,1] (eftersom P'(x) < 0 där) varför nollställe saknas i detta intervall. I $[1,\infty[$ är P strängt växande och har högst ett nollställe.

För a > 0, P(0) > 0 och P växande i intervallet från 0 till det minsta av a och 1. Mellan a och 1

är P strängt monoton liksom för värden större än både a och 1, varför P har högst ett nollställe i vardera av dessa områden och därför högst två positiva nollställen.

Anmärkning. Ett eventuellt multipelt nollställe är även nollställe till P' och måste vara 1 eller a. Räknar man multipla nollställen med multiplicitet har man att undersöka:

- 1) P(1) = 0, P'(1) = 0 ger a = 1/9 < 1. P(0) = a > 0. P är växande i [0, a], avtagande i [a, 1] och växande i $[1, \infty[$ varför inget tredje nollställe föreligger.
- 2) P(a) = 0, P'(a) = 0 ger $a = (3 + \sqrt{33})/2 > 1$. P(0) = a > 0. P är växande i [0, 1], avtagande i [1, a] och växande i $[a, \infty[$, varför inte heller nu något tredje nollställe föreligger.

Metod 2. Ett tredjegradspolynom kan inte ha mera än tre reella nollställen.

För $a \ge 0$ är $P(0) \ge 0$ och eftersom P(x) är negativt för stora negativa x-värden, har P ett nollställe som är < 0. P kan därför inte ha tre positiva nollställen.

För a < 0 har P' endast ett positivt nollställe. Mellan två nollställen till P måste emellertid ligga ett nollställe till P' varför P inte kan ha tre positiva nollställen.

- 5. Sätt $|AE|=a, |AP_0|=x_0$. Då är $|P_2B|=|P_0E|=a-x_0$. Sätt $|BP_3|=x_1$. Ur triangeln P_2BP_3 erhålls dels $x_1 < a$, dels $a < (a-x_0)+x_1$. Alltså är $x_0 < x_1 < a$. Punkterna P_4 och P_5 ligger därför på BC och P_6 på CD. Sätt $|CP_6|=x_2$. Med hjälp av triangeln P_5CP_6 får vi $x_1 < x_2 < a$. Resonemanget kan fortsättas. Kallar vi $|DP_9|=x_3$, $|AP_{12}|=x_4$ får vi $x_0 < x_1 < x_2 < x_3 < x_4 < a$. Speciellt är $x_0 < x_4 < a$ dvs $|AP_0| < |AP_{12}| < |AE|$. Upprepar vi resonemanget inser vi att nästa punkt på sträckan AE är P_{24} med $|AP_{12}| < |AP_{24}|$. För de successiva punkterna som faller på sträckan AE blir alltså avståndet till A allt större. Någon punkt P_i , i > 0 kan aldrig sammanfalla med P_0 .
- 6. Håll en av vinklarna fast exempelvis C och variera de båda övriga. Eftersom $A+B=180^{\circ}-C$, är då också A+B fast. Summan $\cos A+\cos B$ blir större ju mindre skillnaden är mellan A och B. Detta kan fås ur formeln

$$\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$$

eftersom $\cos \frac{A+B}{2} > 0$ och $\cos \frac{A-B}{2}$ blir större ju mindre |A-B| är.

Maximum av $\cos A + \cos B + \cos C$ bör därför uppnås då alla vinklarna A, B, C är lika, dvs är $= 60^{\circ}$. För att få ett strängt bevis för detta kan man resonera så: I varje triangel där inte alla vinklarna är 60° finns (minst) en vinkel $< 60^{\circ}$ och (minst) en vinkel $> 60^{\circ}$. Håll den tredje vinkeln fast och ändra triangeln genom att närma de båda första vinklarna varandra tills en av dem är 60° . Håll denna fast och närma de två övriga varandra tills båda är 60° . Under denna procedur ökar $\cos A + \cos B + \cos C$ varför för en godtycklig triangel måste gälla

$$\cos A + \cos B + \cos C \le 3\cos 60^\circ = \frac{3}{2}.$$

På motsvarande sätt erhåller man genom att variera de två vinklarna A och B från varandra (och hålla C fast) att

$$\cos A + \cos B > \cos 0 + \cos(A + B) = 1 + \cos(A + B).$$

 $Då\cos(A+B) = -\cos C$ följer olikheten

$$\cos A + \cos B + \cos C > 1$$
.

Lösningarna hämtade, med författarens tillstånd, ur: