DEVKIT-MPC5744P QUICK START GUIDE (QSG)

Ultra-Reliable MCUs for Industrial and Automotive Applications

www.nxp.com/DEVKIT-MPC5744P

Contents

- Quick Start Package Overview
- Step-by-Step Installation Instructions
- Hardware: DEVKIT-MPC5744P Board
 - Features
 - Overview
 - Pinout and Jumper Settings
 - Power Supply
- Software:
 - <u>Software Development Tools</u>
 - Pre-compiled Code Examples
- Documentation
- MPC574xP Family : Phantom Feature Differences
- OpenSDA
- Recommendations

Quick Start Package Overview

Board:

DEVKIT-MPC5744P	Low cost EVB with MPC5744P Auto quality MCU on board

Documents:

Name	Description
Quick Start Guide(QSG)	Detailed description on availability of Hardware, Software and Documents to quick start with MPC5744P project (this document)
Software Installation Guide(SWIG)	Detailed walk through on how to install and use S32 Design Studio for Power Architecture
Application Notes	Detailed documents covering topics from 'how to design hardware' to 'how to write software'
Fact Sheets, Reference Manuals and Data Sheets	Detailed manuals for MPC5744P family of MCU and DEVKIT-MPC5744P board

Downloads:

Name	Description
Integrated Development Environment (IDE)	Eclipse based S32DS IDE with free GCC compiler and Debugger support
DEVKIT-MPC5744P Quick Start Package	Software examples and supporting documents for getting started with the DEVKIT-MPC5744P
DEVKIT-MPC5744P Schematics	PDF schematic files for the DEVKIT-MPC5744P board
DEVKIT-MPC5744P PCB Design Package	Gerber files and Bill of Material

Step-by-Step Installation Instructions

In this quick start guide, you will learn how to set up the **DEVKIT-MPC5744P** board and run the default program.

Install Software and Tools

Install S32 Design Studio IDE for Power Architecture.

S32 Design Studio for Power
See Software Installation Guide (SWIG) for detailed procedure

Connect the USB Cable

3

4

Connect one end of the USB cable to the PC and the other end to the micro-B connector on the DEVKIT-MPC5744P board. Allow the PC to automatically configure the USB drivers.

Observe the Default Program reaction

The pre-loaded example project utilizes the **DEVKIT-MPC5744P** user potentiometer and the user LEDs. Once the board is plugged in the ADC will scan the potentiometer result and shine LEDs based on result. Turn the potentiometer to turn on a different LED pattern. (Clock is configured to PLL running at 160 MHz)

Learn More About the DEVKIT-MPC5744P

Read release notes and documentation on the nxp.com/DEVKIT-MPC5744P nxp.com/MPC5744P

DEVKIT-MPC5744P Board: Features

- MPC5744P has 2 x 200 MHz Power Architecture® e200Z4 Dual issue cores operating in delayed lockstep
- MPC5744P qualified to AEC-Q100 Grade 1 and ambient temperature of -40 to +125 °C
- Arduino™ UNO R3 footprint-compatible with expansion "shield" support
 - Supports DEVKIT-MOTORGD motor control shield
- Integrated Open-standard Serial and Debug Adapter (OpenSDA) with support for several industry-standard debug interfaces as well as JTAG connector
- Easy access to the MCU I/O header pins for prototyping
- On-chip connectivity for FlexRay, CAN, LIN, UART/SCI and SPI
- Potentiometer for precise voltage and analog measurement
- One user RGB LED (1 red, 1 green, 1 blue in single package)
- 2 user push-button switches
- Flexible power supply options
 - micro-B USB
 - 12V External power supply
- Similar hardware across ARM®, S12 and Power Architecture® architecture based MCUs

- Box includes:
 - DEVKIT-MPC5744P Board
- Downloads includes:
 - Quick Start Package
 - S32 Design Studio IDE
 - Application notes
- NOTE: DEVKIT-MPC5744P RevB does not support shield reset. Any Arduino™ shield that relies on reset signal from DEVKIT-MPC5744P RevB will not work. Shield reset is supported starting with RevC.

DEVKIT-MPC5744P Board: Overview

The DEVKIT-MPC5744P is an ultra-low-cost development platform for MPC5744P Microcontrollers.

Features include easy access to all MCU I/Os, a standard-based form factor compatible with the Arduino™ pin layout, providing a broad range of expansion board options, and a USB serial port interface for connection to the IDE. The board has option to be powered via USB or an external power supply.

DEVKIT-MPC5744P Board : Pinout

1 of 3

J2-19
12 17
J2-17
J2-15
J2-13
J2-11
J2-09
J2-07
J2-05
J2-03
J2 J2 J2

J2

	ı	
	J	
•	•	

FUNCTION	PORT	PIN
	LT_PA13	J1-15
	LT_PA12	J1-13
ETIMER_0_ETC3	LT_PD14	J1-11
ETIMER_0_ETC2	LT_PF0	J1-09
FLEXPWM_0_B0	LT_PA10	J1-07
FLEXPWM_0_A0	LT_PA11	J1-05
FLEXPWM_0_X0	LT_PD9	J1-03
	LT_PD12	J1-01

Arduino Compatibility

The internal rows of the I/O headers on the DEVKIT-MPC5744P are arranged to fulfill Arduino™ shields compatibility .

DEVKIT-MPC5744P Board : Pinout

2 of 3

FUNCTION FUNCTION PORT PIN PORT PD12 J3-02 J3-01 EXT_HV_PWR 12V_IN EXT_LV_PWR 3.3V or 5V Selectable J3-04 J3-03 PD9 PJ8 J3-06 J3-05 RESET MPC5744P Reset PE13 J3-08 J3-07 3V3 SR 3.3V PE14 J3-10 J3-09 5V0_SR 5V PE15 J3-12 J3-11 GND PF14 J3-14 GND J3-13

J3-15

EXT_HV_PWR 12V_IN

J3

J۷

PF15

J3-16

FUNCTION	PORT	PIN		PIN	PIN PORT
	PE0	J4-02	 To 100	J4-01	J4-01 PB8
	PE6	J4-04		J4-03	J4-03 PB12
	PG2	J4-06	N 10	J4-05	J4-05 PB9
	PG3	J4-08		J4-07	J4-07 PB10
	PG4	J4-10	N 10	J4-09	J4-09 PB11
	PG5	J4-12	- I	J4-11	J4-11 PB7
	PG6	J4-14		J4-13	J4-13 PB13
	PD11	J4-16		J4-15	J4-15 PJ9

Arduino Compatibility

The internal rows of the I/O headers on the DEVKIT-MPC5744P are arranged to fulfill Arduino™ shields compatibility .

DEVKIT-MPC5744P Board : Pinout

3 of 3

	1		J6		1
FUNCTION	PORT	PIN	PIN	PORT	F
	PB2	J6-19	J6-20	PF11	
	PB3	J6-17	J6-18	PF10	
	PD9	J6-15	J6-16	PF15	
	PD12	J6-13	J6-14	PF14	
	PB2	J6-11	J6-12	GND	
	PB3	J6-09	J6-10	3V3_SR	
ptional Pullup	PF9	J6-07	J6-08	PA15	
ptional Pullup	PF8	J6-05	J6-06	PA14	
	PF6	J6-03	J6-04	PF7	
	PF4	J6-01	J6-02	PF5	

			J5			1
FUNCTION	PORT	PIN		PIN	PORT	FUNC
	PD5	J5-2		J5-1	PA0	
	PD6	J5-4		J5-3	PA1	
	PD7	J5-6		J5-5	PA2	
	PD8	J5-8		J5-7	PG8	
3.3V	3V3_SR	J5-10		J5-9	PF3	
	GND	J5-12		J5-11	PG11	
	PC1	J5-14		J5-13	PG9	
	PE4	J5-16		J5-15	PE2	
	PC2	J5-18	2.0	J5-17	PE5	
	PB14	J5-20		J5-19	PG10	

Arduino Compatibility
The internal rows of the I/O headers on the DEVKIT-MPC5744P are arranged to fulfill Arduino™ shields compatibility.

DEVKIT-MPC5744P Board : Jumper Settings

There is only one jumper: J13 It is to select Power source:

1-2: External 12 V Supply

2-3: **Default** USB powered 5V

Supply, through OpenSDA interface

DEVKIT-MPC5744P Board: Communication Interfaces

FlexRay_A					
DESCRIPTION	PORT				
FR_A_TX	PD0				
FR_A_TX_EN	PC15				
FR_A_RX	PD1				

FlexRay

DEVKIT-MPC5744P Board : User Peripherals

DESCRIPTION	PIN	PORT
Potentiometer (ADC1_AN6)	RV1/POT	PE12
User Switch 1	SW1	PF12
User Switch 2	SW2	PF13
User LEDs		PC11
		PC12
	D7	PC13
Reset Button	SW3	

DEVKIT-MPC5744P Board : Programing Interface

JTAG

DESCRIPTION PIN

Support for USB Multilink
Interface

P2

OpenSDA micro USB

OpenSDA Inter	PIN		
OpenSDA MCU Boot Entry	SW4		
OpenSDA micro USB:			
On-board JTAG connection via			
open source	.112		
OSBDM circuit using the	JIZ		
MK20DX128VFM5			
Microcontroller			
OpenSDA JTAG:			
JTAG to update firmware in	J11		
OpenSDA MCU			

Package Level Pinout Diagram – MPC5744P (144 LQFP)

DEVKIT-MPC5744P Board: Power Supply

DEVKIT-MPC5744P supports power through OpenSDA (USB) and external 12V power supply. NXP does not directly sell 12V power supplies. You can obtain a power supply through a third-party.

Power supply specifications:
Fully regulated Switching Power Supply
Input Voltage 100-240V AC 50/60Hz
Output 12V 1A/2A DC
Plug size: 5.5mm x 2.1 mm, Center Positive

OpenSDA micro USB

12V must be used for CAN and LIN/UART communication.

Software Development Tools

- S32 Design Studio IDE for Power Architecture
- IDE & Compilers
 - Free S32 Design Studio IDE with GCC compiler
 - GHS MULTI Integrated Development Environment
 - Cosmic IDE
 - iSystems winIDEA IDE
 - SourceryTM CodeBench Development Tools
- Debuggers
 - Free OpenSDA debugger on board and supported by S32DS IDE
 - P&E USB Multilink
 - iSystems iC6000
 - Lauterbach TRACE32 JTAG Debugger

Pre-Compiled Code Examples

 Pre-compiled example projects are available in S32DS as well as on nxp.com/DEVKIT-MPC5744P for quick start

 Example projects also includes the projects from Application Note, AN4830: Qorivva Recipes for MPC574xG, migrated to MPC5744P platform

NOTE: Run these examples with S32DS for Power Architecture v1.2 or later

List of code examples:

- 1. Hello World
- Hello World + PLL
- Hello World + PLL + Interrupts
- 4. ADC
- 5. DMA
- 6. eTimer Frequency Measurement
- 7. eTimer Count
- 8. Flash ECC
- FlexCAN
- 11. LIN Master
- LIN Slave
- 13. UART
- 14. SPI
- 15. SPI+DMA
- 16. TSENS
- 17. XBIC+DMA
- 18. SGEN + FlexPWM
- 19. Low Power STOP
- 20. Register Protection
- 21. FCCU

Documentation and Reference Material

Documentation Links

- MPC574xP Datasheet
- MPC574xP Product Brief
- MPC574xP Factsheet

Application Notes

- MPC5744P Startup Self Test Control Unit (STCU) Overview
- MPC574xP Hardware Design Guide
- Migrating from MPC5743L to MPC5744P
- MPC5744P Standard 144 LQFP EVB User Guide
- MPC5744P Standard 257 BGA EVB User Guide
- MPC5744P Clock Calculator Guide

Reference Manuals

- MPC574xP Family Reference Manual
- MPC574xP Family Safety Manual

MPC574xP Family – Phantom Feature Differences

MCU	FEATURES							
	Flash*	RAM	EE PROM	Packages				
MPC5744P	2.5MB	384K	Emulate	144 LQFP/ 257 MAPBGA				
MPC5743P	2.0MB	256K	Emulate	144 LQFP/ 257 MAPBGA				
MPC5742P	1.5MB	192K	Emulate	144 LQFP/ 257 MAPBGA				
MPC5741P	1.0MB	128K	Emulate	144 LQFP/ 257 MAPBGA				

Available in NXP DEVKIT platform

^{*}Differences in memory are all in the Large Flash Block

MPC574xP Family – Package Feature Set Comparison

MPC574xP Package	FEATURES														
	FREQ	FlexCAN	ENET	DSPI	FlexPWM	eTimer	PIT	ADC	LinFlexD	eDMA	СТИ	Zipwire	FlexRay	GPI	GPIO
144 LQFP	4.76 MHz to 200 MHz	3	No	3	2 1)	3 ²⁾	1	4 x 12 bit x 16 ch ³⁾	2	32 ch	2 4)	No	1	26	79
257 MAPMGA	4.76 MHz to 200 MHz	3	Yes	4	2	3	1	4 x 12 bit x16 ch ³⁾	2	32 ch	2	Yes	1	29	112

- 1) FlexPWM1 has available only A[0-2] and B[0-2] external signals.
- 2) eTimer2 has available only ETC2-5 external signals.
- 3) There are 38 ADC channels which include internal channels (temperature sensors, bandgap voltage) and shared channels.
- 4) CTU1 has not external trigger output.

OpenSDA

1 of 2

- OpenSDA is an open-standard serial and debug adapter
- It bridges serial and debug communications between a USB host and an embedded target processor
- DEVKIT-MPC5744P comes with the OpenSDA Application preinstalled
- Follow these instructions to run the OpenSDA Bootloader and update or change the installed OpenSDA Application

Enter OpenSDA Bootloader Mode

- 1. Unplug the OpenSDA USB cable if attached
- 2. Press and hold the Bootloader Entry button (SW4)
- Plug in a USB cable between a USB host and the OpenSDA USB connector (labeled "SDA")
- 4. Release the Reset button

A removable drive should now be visible in the host file system with a volume label of BOOTLOADER. You are now in OpenSDA Bootloader mode.

IMPORTANT NOTE: Follow the "Load an OpenSDA Application" instructions to update the application on your MK20DX128VFM5 to the latest version. It is likely that the version provided in this package is newer than what was preprogrammed on your MK20DX128VFM5.

Load an OpenSDA Application

- While in OpenSDA Bootloader mode, double-click SDA_INFO.HTML in the BOOTLOADER drive. A web browser will open the OpenSDA homepage containing the name and version of the installed Application. This information can also be read as text directly from SDA_INFO.HTML
- 2. Locate the *OpenSDA Applications* folder
- 3. Copy & paste or drag & drop the Application to the **BOOTLOADER** drive
- 4. Unplug the USB cable and plug it in again. The new OpenSDA Application should now be running and check the latest version by repeating Step-1

Use the same procedure to load other OpenSDA Applications.

OpenSDA

2 of 2

Using the Virtual Serial Port

- 1. Determine the symbolic name assigned to the DEVKIT-MPC5744P virtual serial port. On Windows platform open Device Manager and look for the COM port named "OpenSDA-CDC Serial Port".
- 2. Open the serial terminal emulation program of your choice. Examples for Windows platform include Tera Term, PuTTY, or HyperTerminal.
- 3. Program one of the "code examples" using S32 Design Studio IDE.
- 4. Configure the terminal emulation program. Most embedded examples use 8 data bits, no parity bits, and one stop bit (8-N-1). Match the baud rate to the selected serial test application and open the port.
- 5. Press and release the Reset button (SW3) at anytime to restart the example application. Resetting the embedded application will not affect the connection of the virtual serial port to the terminal program.

NOTE: Refer to the OpenSDA User's Guide for a description of a known Windows issue when disconnecting a virtual serial port while the COM port is in use.

Recommendations

- For faster debugging, debug from RAM, because this cuts down the lengthy Flash erase operation cycles. Follow the Software Integration Guide (SWIG) for details.
- By default "New Project" in S32 Design Studio IDE makes application to run at 16 MHz Internal RC (IRC) oscillator. For faster performance, configure PLL to desired frequency and switch clock source to PLL before executing application code.
- Keep S32 Design Studio IDE and OpenSDA firmware Up-to-date for best results
- Post Technical Questions on NXP community for MPC5xxx.
- Useful Links:
 - MPC5744P Webpage
 - nxp.com/devkit-mpc5744p
 - nxp.com/s32ds
 - nxp.com/community

SECURE CONNECTIONS FOR A SMARTER WORLD