

Pertemuan ke-3: BARISAN TAKHINGGA

Departemen Matematika FMIPA IPB

Bogor, 2017

Barisan Takhingga

Definisi (Barisan takhingga)

Suatu barisan takhingga a_1 , a_2 , a_3 , ... adalah susunan bilangan terurut sesuai dengan urutan bilangan asli sebagai indeksnya, atau, suatu fungsi yang daerah asalnya adalah himpunan bilangan asli.

- Barisan a_1 , a_2 , a_3 , ... dapat disajikan sebagai $\{a_n\}_{n=1}^{\infty}$ atau $\{a_n\}$.
- Kadangkala kita memperhatikan barisan yang indeksnya terdiri atas semua bilangan asli atau bilangan asli yang lebih besar.

Contohnya: $\{b_n\}_{n=8}^{\infty} = \{b_8, b_9, b_{10}, \ldots\}.$

Suatu barisan dapat dispesifikasi dengan beberapa cara berikut:

- Dengan memberikan suku awal yang cukup untuk membentuk suatu pola. Misalnya barisan: 2, 5, 8, 11, 14, ...
- 2 Dengan rumus eksplisit untuk suatu suku ke-n. Misalnya: $a_n = 3n 1$, n > 1.
- Dengan rumus rekursif. Misalnya: $a_1 = 2$, dan untuk semua $n \ge 2$, $a_n = a_{n-1} + 3$.

Kekonvergenan

Untuk memahami konsep kekonvergenan barisan takhingga, kita perhatikan empat barisan berikut.

- **I** $a_n = 1 1/n$, untuk $n \ge 1$, atau 0, 1/2, 2/3, 3/4, 4/5,
- $b_n = 1 (-1)^n 1/n$, untuk $n \ge 1$, atau 2, 1/2, 4/3, 3/4, 6/5,
- 3 $c_n = (-1)^n (n-1)/n$, untuk $n \ge 1$, atau 0, 1/2, -2/3, 3/4, -4/5, 5/6, -6/7,
- $d_n = 0.999$, untuk $n \ge 1$, atau 0.999, 0.999, 0.999, 0.999,

Untuk nilai n yang semakin besar, baik nilai a_n maupun nilai b_n menuju ke 1. Namun tidak demikian dengan nilai c_n dan d_n . Dalam hal ini kita sebut barisan $\{a_n\}$ dan $\{b_n\}$ konvergen ke 1.

Definisi (Kekonvergenan)

Suatu barisan $\{a_n\}$ disebut konvergen ke L, atau berlimit L, dan ditulis

$$a_n \to L$$
, jika $n \to \infty$,

atau

$$\lim_{n\to\infty}a_n=L,$$

jika untuk setiap bilangan positif ϵ , ada bilangan positif N, sehingga jika $n \geq N$ maka $|a_n - L| < \epsilon$.

- Suatu barisan yang tidak konvergen ke suatu bilangan L yang terhingga disebut divergen.
- Untuk memperjelas gagasan kekonvergenan, bandingkan grafik fungsi $a\left(x\right)=1-1/x$ untuk $x\geq 1$ dengan grafik barisan $a_n=1-1/n$ untuk $n\geq 1$.

Teorema

Misalkan $\{a_n\}$ dan $\{b_n\}$ adalah barisan-barisan yang konvergen dan k adalah suatu konstanta.

- $\lim_{n\to\infty} (ka_n) = k \left(\lim_{n\to\infty} a_n \right).$
- $\lim_{n\to\infty} (a_n \pm b_n) = \left(\lim_{n\to\infty} a_n\right) \pm \left(\lim_{n\to\infty} b_n\right).$
- $\lim_{n\to\infty} (a_n b_n) = \left(\lim_{n\to\infty} a_n\right) \left(\lim_{n\to\infty} b_n\right).$
- $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, \text{ asalkan } \lim_{n\to\infty} b_n \neq 0.$

Contoh

1 Buktikan bahwa barisan $\{a_n\}$ dengan

$$a_n = (2n+3)/n$$

untuk $n \ge 1$ adalah barisan yang konvergen ke 2.

2 Periksa kekonvergenan barisan

$$\left\{\frac{4n^2+5}{2n^2+7n}\right\}.$$

3 Periksa kekonvergenan barisan $\{n^2/e^n\}$. Jika konvergen, tentukan limitnya.

Teorema (Teorema Apit)

Jika $\{a_n\}$ dan $\{c_n\}$ adalah barisan-barisan yang konvergen menuju L, serta $a_n \leq b_n \leq c_n$ untuk semua n > K dengan K adalah konstanta bilangan asli, maka barisan $\{b_n\}$ konvergen menuju L.

Contoh

Periksa kekonvergenan barisan

$$\left\{ \left(n + \sin^2 n \right) / \left(2n + 3 \right) \right\}.$$

Teorema

Jika
$$\lim_{n\to\infty}|a_n|=0$$
 maka $\lim_{n\to\infty}a_n=0$.

Contoh

Periksa kekonvergenan barisan

$$\left\{ \left(-1\right)^{n}\left(\ln n^{2}\right)/n\right\} .$$

Definisi (Barisan monoton)

- **1** Suatu barisan $\{a_n\}$ disebut barisan naik jika untuk semua $n \ge 1$ berlaku $a_n < a_{n+1}$.
- 2 Suatu barisan $\{a_n\}$ disebut barisan turun jika untuk semua $n \ge 1$ berlaku $a_n > a_{n+1}$.
- 3 Suatu barisan $\{a_n\}$ disebut barisan takturun jika untuk semua $n \ge 1$ berlaku $a_n \le a_{n+1}$.
- 4 Suatu barisan $\{a_n\}$ disebut barisan taknaik jika untuk semua $n \geq 1$ berlaku $a_n \geq a_{n+1}$.

 Barisan yang memenuhi salah satu sifat di atas disebut barisan monoton.

Teorema

- I Jika U adalah suatu batas atas barisan takturun $\{a_n\}$, maka barisan ini konvergen menuju suatu limit A yang kurang dari atau sama dengan U.
- 2 Jika L adalah suatu batas atas barisan taknaik $\{b_n\}$, maka barisan ini konvergen menuju suatu limit B yang lebih dari atau sama dengan L.

Bahan Responsi

Soal

Dari tiap barisan, tuliskan lima suku pertama. Tentukan apakah barisan tersebut konvergen atau divergen. Jika konvergen, tentukan $\lim_{n\to\infty} a_n$.

$$a_n = \frac{2n^2 + 1}{n^2 + n - 3}$$

$$a_n = (-1)^n \frac{n}{n+4}$$

$$a_n = \frac{n\sin\left(n\pi/2\right)}{2n+1}$$

$$a_n = \frac{n + \cos(n^2 + 2)}{2n + 1}$$

$$a_n = (-1)^n \frac{\sin(n\pi/2)}{n}$$

6
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
.

Soal

Tentukan rumus eksplisit untuk a_n . Tentukan apakah barisan tersebut konvergen atau divergen. Jika konvergen, tentukan $\lim_{n\to\infty} a_n$.

$$1 -1, \frac{2}{3}, -\frac{3}{5}, \frac{4}{7}, -\frac{5}{9}, \dots$$

$$2 - \frac{1}{3}, \frac{4}{9}, -\frac{9}{27}, \frac{16}{81}, -\frac{25}{243}, \dots$$

3 1,
$$\frac{2}{2^2-1^2}$$
, $\frac{3}{3^2-2^2}$, $\frac{4}{4^2-3^2}$, $\frac{5}{5^2-4^2}$, ...

4 2, 1,
$$\frac{2^3}{3^2}$$
, $\frac{2^4}{4^2}$, $\frac{2^5}{5^2}$, ...

Soal

Tuliskan empat suku pertama dari barisan $\{a_n\}$. Kemudian, gunakan teorema mengenai kekonvergenan barisan monoton terbatas untuk membuktikan bahwa barisan tersebut konvergen.

$$\mathbf{1} \ a_n = \frac{n}{n+1} \left(4 - \frac{2}{n^2} \right).$$

$$a_n = \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{9}\right) \cdots \left(1 - \frac{1}{n^2}\right), \ n \ge 2.$$

$$a_{n+1} = 1 + \frac{1}{2}a_n, a_1 = 1.$$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), \ a_1 = 2.$$

Soal

Gunakan definisi limit untuk membuktikan bahwa

$$\lim_{n\to\infty}\frac{2n}{n+4}=2.$$

Soal

Jika barisan $\{a_n\}$ dan $\{b_n\}$ keduanya divergen, apakah $\{a_n+b_n\}$ divergen?

Tentang Slide

■ Penyusun: Dosen Departemen Matematika FMIPA IPB

■ Versi: 2017

■ Media Presentasi: LATEX - BEAMER (PDFLATEX)