Power and Sensing Management

Power Source and Distribution

The robot is powered by a **12V**, **4400 mAh Li-ion battery**, chosen for its balance between high energy density and portability. The distribution system is optimized for efficiency and safe operation:

• 12V Line (Direct Supply):

 \circ L298N Motor Driver \rightarrow 12V DC Motor with Encoder.

• 5V Line (Regulated by XL4015 Buck Converter):

- o Raspberry Pi $5 \rightarrow$ Acts as the central controller.
- o Raspberry Pi Camera (5MP Module).
- o LG USB Camera (1080P).
- Servo Motor.
- Push Button interface.

The **On/Off Switch** ensures safe startup and shutdown, while the **buck converter** provides stable 5V to sensitive components, preventing overload or voltage dips.

Sensing Strategy and Components

LG PC Camera (1080P, USB Camera)

• Open Challenge:

- o Detects blue/orange lines to decide rotation direction.
- o Identifies inner/outer black walls to keep the robot centered.
- o Handles wide/narrow corridor detection through zone-based balancing.
- o Manages turns using forward detection (zones A & E).
- o Counts laps (5, 9, 12 detections) and triggers final stop after 3 laps.

Raspberry Pi Camera (5MP)

• Obstacle Challenge:

- o Works like a dash cam during parallel parking.
- o Provides accurate visual feedback for parking alignment.

o Lightweight, directly powered via Pi GPIO.

Novelty and Optimization

- Only two cameras handle all challenges, instead of using multiple ultrasonic or IR sensors.
- This reduces **power consumption**, **wiring complexity**, **and weight**, allowing faster response and smoother navigation.
- Optimized camera training and image processing ensure smooth execution under arena randomness.

Power Consumption Management

- Motors: Draw the largest current (peaks at sharp turns).
- Raspberry Pi + Cameras: Draw stable 5V regulated load (~1.5–2A).
- Servo Motor: Low intermittent load, activated during parking.
- **Total System Runtime:** The 4400 mAh battery ensures multiple full trial runs before recharge.

Professional Documentation (Wiring & BOM)

The wiring follows professional standards, with clear separation of 12V and 5V lines:

- $12V \rightarrow L298N \rightarrow Motors$.
- $12V \rightarrow Buck\ Converter \rightarrow 5V \rightarrow Raspberry\ Pi \rightarrow Cameras,\ Servo,\ Button.$
- Switch + PCB for safe operation and connections.

A detailed **Bill of Materials (BOM)** lists each component with ratings, ensuring compliance with WRO evaluation standards.

Bill Of Materials (BOM) — summary table

Item (ref)	Qty	Nominal Voltage	Typical Current (A)	Typical Power (W)	Purpose / Notes
12V 4400 mAh battery	1	12 V	_	52.8 Wh (capacity)	Main energy source (12V, 4.4 Ah → 52.8 Wh)
ON / OFF switch	1	12 V	_	_	Main battery switch
XL4015 step-down (12→5V)	1	12 V in → 5 V out	up to 3 A (set)	up to 15 W out	Supplies Raspberry Pi and 5V peripherals (set current limit safely)
Raspberry Pi 5 (controller)	1	5 V	1.5 (typical)	7.5	Main compute & vision processing — fed from 5V converter
LG USB Camera (1080p)	1	5 V	0.20	1.0	Primary vision for open round and Obstacle challenge
Raspberry Pi Camera (5MP)	1	5 V	0.20	1.0	Parking / close-range vision
Servo motor (steering/parking)	1	5 V	0.50 (avg)	2.5	Actuator for parking/steering adjustments
L298N motor driver	1	12 V (motors), 5 V logic	0.1 (logic) + motor pass- through	1.2 (logic) + motor power	Motor driver — motors draw directly from 12V
12V DC motor with encoder	1	12 V	2.0 each (avg running)	24 each → 48 total	Drive motors — largest power consumers (stall >> average)
Push button	1	5 V	0.01	0.05	Start/stop or mode switch

Sl. No.	Component Name	Image	Approximate Cost (₹)
1.	Raspberry Pi 5		6,000
2.	L298D Motor Driver		90
3.	DC Motor with Encoder		700
4.	High Torque Servo Motor		350

5.	Lithium-Ion Battery	Wetty Fox 11 Inm 4 4 00 11 11 Amount 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	950
6.	Buck-to-Buck Converter	330	160
7.	Red On/Off Switch		50 - 100
8.	Push Buttons		10 - 30 per button
9.	Raspberry pi Camera		350

Block Diagram

