Exercise Sheet 4

Due: 22.11.2023, 10:00

Download the files **f41.csv**, **f42train.csv**, **f42test.csv**, **f43.csv** from ISIS. The last column of each file contains output values, all other columns are input features. Download the file E04_template.ipynb from ISIS.

Exercise 4.1

The goal of this exercise is to investigate the generalization error in dependence of the number of training examples.

Consider the following function

$$f: [-1,1]^2 \to \mathbb{R}, \ \mathbf{x} = (x_1, x_2) \mapsto x_1 \sin(\pi x_2)$$

We define the following single experiment E(m) for number of training examples m:

- Generate a training set with *m* examples (*1)
- Use multiple linear regression to fit a linear model to the training data
- Compute the training error of the fitted model
- Estimate the generalization error of the fitted model using the test data f41.csv

(*1) Generate training data by drawing independent samples $x_1, x_2, ..., x_m$ from the uniform distribution on $[-1,1]^2$ and computing the corresponding output values $y_i = f(x_i)$.

For each m = 2, 3, 4, ..., 80 conduct the single experiment E(m) 100 times and plot the average training and test errors in dependence of m. Discuss the results.

Exercise 4.2

In this exercise, we investigate effects of using a training set for cross-validation instead of using it for training only. Conduct the following experiment:

- 1. For each k = 1,2,3,...,10 perform polynomial regression of order k on the f42train-data. Compute the test-MSE for each of the 10 models on the f42test-data. The test data is densely sampled without noise.
- 2. For each k = 1,2,3,...,10 conduct 10-fold cross validation on the f42train-data using polynomial regression of order k.

Plot both the test-MSE and the cross validation error in dependence of the order k in a single plot. State and discuss your observations.

Exercise 4.3

The goal of this exercise it to estimate the generalization error of the following learning method on the f43-data: The learning method uses cross validation to select a suitable regularization parameter and applies polynomial regression of order k=10 with L_2 -regularization. Estimate the generalization error using nested cross validation with 5 folds for both, inner and outer cross validation. Present and discuss your results.