#### Wstęp do uczenia maszynowego

#### Klasyfikacja

Ewa Szczurek + BW (modyfikacje)

bartek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski

8 kwietnia 2024





#### Klasyfikacja, metody podstawowe

Zmienna objaśniana jest **jakościowa** (a nie ilościowa, jak w przypadku regresji liniowej).

Przykładowe metody klasyfikacji:

- K najbliższych sąsiadów (KNN)
- Regresja logistyczna
- Liniowa analiza dyskryminacyjna
- Kwadratowa analiza dyskryminacyjna

Inne metody będą omówione później.

### Przykład problemu klasyfikacji: 'Brak spłaty' ('Default')

#### Opis:

- System kart kredytowych.
- Predyktory:
  - 'Dochód' ('Income')
  - 'Zadłużenie' ('Balance'; miesięczne zadłużenie na karcie)
  - 'Student' (czy osoba jest studentem; wartości: 'TAK lub 'NIE')
- Zmienna objaśniana Y='Default' (czy osoba zaniechała spłacania karty kredytowej; wartości: 'TAK' lub 'NIE')

#### llustracja danych 'Default' dla 10000 klientów



- niebieski: osoby spłacające
- pomarańczowy: osoby, które zaniechały spłacania
- wygląda na to, że zaniechanie spłaty jest częstsze u osób z większym zadłużeniem

## Dane 'Default': związek zaniechania spłat z zadłużeniem i dochodami



• Rzeczywiste dane z obserwacji rzadko ukazują tak czyste zależności

### Regresja logistyczna

#### Model logistyczny: przypadek z jedną zmienną predyktorową

Chcemy wyestymować prawdopodobieństwo tego, że zmienna objaśniana Y daje odpowiedź 1, pod warunkiem zmiennej X

$$p_1(X) := Pr(Y = 1 \mid X).$$

ullet Przybliżanie prostą regresji liniowej dla binarnego kodowania Y

$$p_1(X) = \beta_0 + \beta_1 X.$$

- Jeśli  $\hat{Y}=\hat{eta}_0+\hat{eta}_1 X>0.5$ , przewidujemy klasę 1, w przeciwnym wypadku 0
- ullet Dla niektórych wartości X uzyskamy wartości poza przedziałem [0,1]

#### Model logistyczny: przypadek z jedną zmienną predyktorową

Chcemy wyestymować prawdopodobieństwo tego, że zmienna objaśniana Y daje odpowiedź 1, pod warunkiem zmiennej X

$$p_1(X) := Pr(Y = 1 \mid X).$$

• Przybliżanie funkcją logistyczną w [0, 1]

$$ho_1(X)=rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}.$$

## Przybliżenie prawdopodobieństwa zdarzenia zaniechania spłacania karty w zależności od predyktora 'zadłużenie'





 Prosta regresji liniowej dla binarnego kodowania Y

Funkcja logistyczna

#### Regresja logistyczna

Regresja logistyczna przybliża  $p_1(X)$  funkcją logistyczną

$$p_1(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}}$$

Wówczas iloraz szans (odds ratio) w  $[0, \infty)$ :

$$\frac{p_1(X)}{p_0(X)} = \frac{p_1(X)}{1 - p_1(X)} = e^{\beta_0 + \beta_1 X}$$

Liniowa zależność pojawia się po zastosowaniu logarytmu:

$$\log\left(\frac{p_1(X)}{1-p_1(X)}\right) = \beta_0 + \beta_1 X.$$

(ang. log odds, logit - logistic unit)

#### Regresja logistyczna: interpretacja wartości parametrów

#### Dla regresji liniowej

- $oldsymbol{ heta}_0$  to wartość bazowa Y: średnia Y przy wszystkich predyktorach równych 0
- ullet  $eta_1$  to liczba jednostek o ile zmienia się Y gdy zwiększymy X o jedną jednostkę

#### Dla regresji logistycznej

- $oldsymbol{ heta}_0$  to wartość bazowa logarytmu ilorazu szans: średnia logit przy wszystkich predyktorach równych 0
- ullet  $eta_1$  to zmiana logarytmu ilorazu szans gdy zwiększymy X o jedną jednostkę
- ullet Zmiana  $p_1(X)$  przy zmianie X o jedną jednostkę zależy od wartości X
- Ale, wiadomo, że
  - Gdy  $\beta_1 > 0$ , wzrost X zwiększy  $p_1(X)$
  - Gdy  $\beta_1 < 0$ , wzrost X zmniejszy  $p_1(X)$

## Estymacja parametrów w modelu logistycznej regresji metodą maksymalizacji wiarygodności

Szukamy wartości parametrów  $\hat{\beta}_0$ ,  $\hat{\beta}_1$  tak aby prawdopodobieństwo p(X) dawało wartość bliską jedności dla wszystkich obserwacji, gdzie zaniechano spłaty karty; oraz bliską zera dla tych, gdzie tak się nie stało.

Osiąga się to przez maksymalizację funkcji wiarogodności:

$$L(\beta, D) = \prod_{i: \ y_i=1} p_1(x_i) \prod_{j: \ y_j=0} (1 - p_1(x_j)).$$

gdzie D to dane (pary  $(x_i, y_i)$  dla  $i = 1 \dots n$ ).

## Wyestymowane parametry regresji logistycznej dla danych 'Default' z predyktorem 'balance'

|               | Estymacja | Std. błąd | z-statystyka | <i>p</i> -wartość |
|---------------|-----------|-----------|--------------|-------------------|
| $\hat{eta}_0$ | -10.6513  | 0.3612    | -29.5        | < 0.0001          |
| balance       | 0.0055    | 0.0002    | 24.9         | < 0.0001          |

- z-statystyka pełni podobną rolę jak t-statystyka w modelu regresji liniowej
- ullet Na przykład, z-statystyka przy założeniu  $H_0:eta_1=0$  to  $\hateta_1/SE[\hateta_1]$
- Ta hipoteza sugeruje, że prawdopodobieństwo 'Default' nie zależy od 'balance'.

## Jakie jest prawdopodobieństwo zaniechania spłat w zależności od zadłużenia na karcie?

Przy zadłużenieu X=1000 mamy

$$\hat{\rho}_1(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.00576$$

Natomiast dla zadłużenia 2000 mamy

$$\hat{\rho}_1(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

# Estymacja parametrów dla danych 'Default' oraz jakościowego predyktora 'student'

| Parametr         | Estymacja | Std. błąd | z-stat. | <i>p</i> -wartość |
|------------------|-----------|-----------|---------|-------------------|
| $\hat{eta}_0$    | -3.5041   | 0.0707    | -49.55  | < 0.0001          |
| student (='TAK') | 0.4049    | 0.1150    | 3.52    | 0.0004            |

Prawdopodobieństwo zaniechania spłat karty osoby, która jest studentem wyliczamy na podstawie parametrów:

$$\hat{Pr}(\text{default} = \textit{Yes}|\text{student} = \textit{Yes}) = \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431$$

Natomiast dla osoby nie będącej studentem:

$$\hat{Pr}(\text{default} = Yes | \text{student} = No) = \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292$$

#### Regresja logistyczna dla modelu z wieloma predyktorami

Mamy p predyktorów:  $X_1, \ldots, X_p$ . Funkcja logistyczna w tym przypadku to:

$$p_1(X) = \frac{e^{\beta_0+\beta_1X_1+\cdots+\beta_\rho X_\rho}}{1+e^{\beta_0+\beta_1X_1+\cdots+\beta_\rho X_\rho}}.$$

Natomiast logarytm ilorazu szans jest równy

$$\log\left(\frac{p_1(X)}{1-p_1(X)}\right)=\beta_0+\beta_1X_1+\cdots+\beta_pX_p.$$

#### Regresja logistyczna dla danych 'default'

| Parametr         | Estymacja | Std. błąd | z-stat. | <i>p</i> -wartość |
|------------------|-----------|-----------|---------|-------------------|
| $\hat{\beta}_0$  | -10.8690  | 0.4923    | -22.08  | < 0.0001          |
| balance          | 0.0057    | 0.0002    | 24.74   | < 0.0001          |
| income           | 0.0030    | 0.0082    | 0.37    | 0.7115            |
| student (='TAK') | -0.6468   | 0.2362    | -2.74   | 0.0062            |

Czy mamy do czynienia z paradoksem?

W modelu opartym tylko na tej zmiennej

- parametr związany ze zmienną 'student', jest dodatni
- zatem prawdopodobieństwo zaprzestania spłat przez studenta jest wyższe, niż dla nie-studenta.

W modelu opartym na trzech predyktorach

- parametr związany ze zmienną 'student' jest ujemny
- zatem, przy ustalonych wartościach zmiennych 'balance' oraz 'income', prawdopodobieństwo zaprzestania spłat przez studenta jest mniejsze niż dla nie-studenta.

#### Wyjaśnienie paradoksu





- czerwona linia: 'Student', niebieska linia: 'nie-student'
- przerywane: p-stwo zaniechania, uśrednione po 'balance' oraz 'income'
- dla banku, student jest mniej ryzykowny niż nie-student z tym samym 'balance'

- 'student' oraz
   'balance' są zależne
   (studenci zwykle mają
   większe zadłużenie).
- Zjawisko zwane zakłócaniem (ang. confounding).

### Przewidywanie prawdopodobieństwa zaniechania spłat zadłużenia na karcie

Używając wyestymowanych parametrów obliczmy prawdopodobieństwo zaniechania spłat karty dla studenta, mającego dochód 40000 oraz zadłużenie na karcie 1500.

$$\hat{\rho}_1(X) = \frac{e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058.$$

Dla osoby nie będącej studentem, ale mającej ten sam dochód i zadłużenie mamy:

$$\hat{\rho}_1(X) = \frac{e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 0}}{1 + e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 0}} = 0.105.$$

Liniowa analiza dyskryminacyjna (LDA)

#### LDA: podstawowy pomysł

- Poprzednio modelowaliśmy bezpośrednio prawdopodobieństwo  $Pr(Y = k \mid X = x)$ .
- Teraz będziemy modelować rozkład wartości predyktorów X, dla każdej zadanej wartości Y z osobna. Korzystając z twierdzenia Bayesa będziemy mogli odzyskać interesujące nas prawdopodobieństwo  $Pr(Y=k\mid X=x)$ .
- Korzyści w porównaniu z regresją logistyczną:
  - Estymacje są bardziej stabilne przy modelu LDA, gdy klasy są dobrze rozdzielone,
  - lub gdy n jest małe, ale rozkład dla każdego predyktora X jest w przybliżeniu normalny.

#### Zastosowanie twierdzenia Bayesa do klasyfikacji

- Przypuśćmy, że mamy do czynienia z problemem klasyfikacji dla  $K \geq 2$  klas.
- Dla  $1 \le k \le K$ , niech  $\pi_k$  przedstawia prawdopodobieństwo tego, że losowo wybrana obserwacja pochodzi z klasy o numerze k (czyli  $\pi_k = Pr(Y = k)$ ). Jest to tzw. prawdopodobieństwo a priori (Ang. prior).
- Niech  $f_k(X)$  będzie funkcją gęstości dla zmiennej losowej X, przy założeniu że Y należy do k-tej klasy.
- Wówczas twierdzenie Bayesa mówi:

$$Pr(Y = k \mid X = x) = \frac{\pi_k t_k(x)}{\sum_{i=1}^K \pi_i f_i(x)}.$$

• Przyjmujemy oznaczenie  $p_k(x) = Pr(Y = k \mid X = x)$ . Jest to tzw. prawdopodobieństwo *a posteriori* (Ang. *posterior*)

#### LDA dla p=1

- Prior  $\pi_k$  estymujemy z danych obserwowanych jako proporcję liczby przypadków Y=k do liczby wszystkich przypadków.
- Dla estymacji funkcji  $f_k$  przyjmujemy założenie, że dane pochodzą z rozkładu normalnego o średniej  $\mu_k$  oraz wariancji  $\sigma_k^2$ . Wówczas

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(\frac{-(x-\mu_k)^2}{2\sigma_k^2}\right).$$

• Przyjmujemy dalsze założenie:  $\sigma_1^2=\dots\sigma_K^2=\sigma^2$ . Wówczas, na mocy twierdzenia Bayesa, dostajemy

$$p_{k}(x) = \frac{\pi_{k} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(x-\mu_{k})^{2}}{2\sigma^{2}}\right)}{\sum_{i=1}^{K} \pi_{i} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(x-\mu_{i})^{2}}{2\sigma^{2}}\right)} = \frac{\pi_{k} \exp\left(\frac{-(x-\mu_{k})^{2}}{2\sigma^{2}}\right)}{\sum_{i=1}^{K} \pi_{i} \exp\left(\frac{-(x-\mu_{i})^{2}}{2\sigma^{2}}\right)}$$
$$= \frac{\pi_{k} \exp\left(\frac{2\mu_{k}x-\mu_{k}^{2}}{2\sigma^{2}}\right)}{\sum_{i=1}^{K} \pi_{i} \exp\left(\frac{2\mu_{i}x-\mu_{i}^{2}}{2\sigma^{2}}\right)}$$

#### LDA dla p=1

- Bayesowski klasyfikator przypisuje obserwację X = x do tej klasy k, dla której  $p_k(x)$  przyjmuje wartość największą.
- Ponieważ mianownik jest tu stały, to k o największej wartości  $p_k(x)$  jest wyznaczone przez licznik.
- Stosując logarytm przypisujemy obserwację do klasy k, dla której osiągana jest największa wartość funkcji dyskryminującej:

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k).$$

• Jest to funkcja liniowa od x, stąd L w LDA.

#### LDA dla K = 2 oraz p = 1

Jeśli  $\pi_1 = \pi_2$  to klasyfikator bayesowski przypisuje obserwację do klasy 1 jeśli  $2x(\mu_1 - \mu_2) > \mu_1^2 - \mu_2^2$ , oraz do klasy 2 w przeciwnym przypadku.

Zatem bayesowska granica decyzyjna w tym przypadku to punkt

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}.$$

#### LDA dla K = 2 oraz p = 1, ilustracja





- dwie funcje gęstości o rozkładzie normalnym.
- linia przerywana bayesowska linia decyzyjna.

- Histogram losowych obserwacji (po 20 z każdej z tych klas)
- Ciągła czarna linia linia decyzyjna otrzymana w modelu LDA z danych treningowych.

## Estymowanie parametrów dla LDA o K klasach i jednej zmiennej objaśniającej

- Mamy  $n_k$  obserwacji w klasie k-tej.  $n=n_1+\ldots+n_K$ .
- Wówczas estymujemy parametry następująco:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

•

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^{K} \sum_{i: y_i = k} (x_i - \hat{\mu}_k)^2$$

0

$$\hat{\pi}_k = n_k/n$$

• Parametry te wstawiamy do wzoru na funkcję dyskryminacyjną.

### LDA przy więcej niż jednym predyktorze (1)

Mamy p>1 predyktorów  $X_1,\ldots,X_p$ . Podstawowe założenie to, że  $X=[X_1,\ldots,X_p]^T$  jest wylosowane z wielowymiarowego rozkładu normalnego:  $X\sim N(\mu,\Sigma)$ , gdzie  $\mu=\mathbb{E}(X)\in\mathbb{R}^p$  jest wektorem wartości oczekiwanych, a

$$\Sigma = Cov(X) = \mathbb{E}((X - \mu)(X - \mu)^T)$$

jest  $p \times p$  macierzą kowariancji.

Funkcja gęstości wielowymiarowego rozkładu normalnego:

$$f(x) = \frac{1}{(2\pi)^{p/2}\sqrt{\det\Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

#### Przykład rozkładów normalnych dwuwymiarowych



 Rozkład normalny przy predyktorach X<sub>1</sub>, X<sub>2</sub> nieskorelowanych.



 Rozkład normalny przy predyktorach X<sub>1</sub>, X<sub>2</sub> skorelowanych (współczynnik korelacji 0.7).

### LDA przy więcej niż jednym predyktorze (2)

Przyjmujemy, że dane z k-tej klasy są losowane z rozkładu normalnego (p-wymiarowego) o wartości oczekiwanej  $\mu_k \in \mathbb{R}^p$  oraz wspólnej macierzy kowariancji  $\Sigma$ .

#### Funkcja dyskryminująca:

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

Jest to **funkcja liniowa** od x (stąd LDA). Dla danych  $x \in \mathbb{R}^p$  wybieramy tę klasę k, dla której wartość  $\delta_k(x)$  jest największa.

#### Przykład z trzema klasami

Obserwacje losowane z trzech rozkładów normalnych dwuwymiarowych, o różnych średnich i wspólnej macierzy kowariancji



- elipsy obszary zawierające
   95% prawdopodobieństwa
- przerywane linie bayesowskie granice decyzyjne dla tego modelu.



- linie ciągłe- granice decyzyjne LDA na podstawie 20 obserwacji wygenerowanych z każdej klasy
- Testowy błąd bayesowski to 0.0746, a dla LDA to 0.0770.

#### Model LDA dla 'Default'

- trenowany na 10000 danych
- w oparciu o dwa predyktory 'balance' i 'student'
- otrzymany błąd treningowy wynosi 2.75%, ale nie koniecznie oznacza to, że model jest dobry!
- macierz błędu (ang. confusion matrix) wyjaśnia, dlaczego

|                   |       | True default status |     |        |
|-------------------|-------|---------------------|-----|--------|
|                   |       | No                  | Yes | Total  |
| Predicted         | No    | 9,644               | 252 | 9,896  |
| $default\ status$ | Yes   | 23                  | 81  | 104    |
|                   | Total | 9,667               | 333 | 10,000 |

- tylko 3.33% wszystkich osoób zaniechało spłacania karty
- trywialny klasyfikator, który każdego klasyfikuje jako 'non-default' popełnia błąd tylko trochę gorszy niż ten wytrenowany.

#### Miary jakości klasyfikacji

• Czułość (sensitivity, true-positive rate):

$$TPR = \frac{TP}{TP + FN} = \frac{TP}{P}$$

Tutaj: TPR=81/333=24.3%

Swoistość (specificity):

$$SP = \frac{TN}{TN + FP} = \frac{TN}{N}$$

Tutaj SP=9644/9667= 99.8%.

 Co zrobić żeby poprawić czułość? Obniżyć próg dla klasy 'default'. Obecnie klasyfikujemy do 'default' jeśli

$$Pr(\text{default} = Yes \mid X = x) > 0.5$$

### Macierz błędu dla progu dla 'default' równym 20%

|                   |       | True  | default | t status |
|-------------------|-------|-------|---------|----------|
|                   |       | No    | Yes     | Total    |
| Predicted         | No    | 9,432 | 138     | 9,570    |
| $default\ status$ | Yes   | 235   | 195     | 430      |
|                   | Total | 9,667 | 333     | 10,000   |

- Teraz TPR=195/333=58.6 (dużo lepiej) oraz
- SP=9432/9667=97.6% (tylko trochę gorzej)

#### Zależność poziomu błędów od progu



- Niebieska przerywana linia osoby, które zaniechały spłat ale zostały źle sklasyfikowane (1-TPR)
- Pomarańczowa kropkowana linia proporcja błędów wśród osób spłacających kartę (FPR=1-SP)
- Czarna ciągła linia łączny błąd metody (1- accuracy)

### Miary związane z macierzą błędów

|       |               | Predicted class |                 |       |
|-------|---------------|-----------------|-----------------|-------|
|       |               | – or Null       | + or Non-null   | Total |
| True  | – or Null     | True Neg. (TN)  | False Pos. (FP) | N     |
| class | + or Non-null | False Neg. (FN) | True Pos. (TP)  | Р     |
|       | Total         | $N^*$           | P*              |       |

| Name             | Definition | Synonyms                                    |
|------------------|------------|---------------------------------------------|
| False Pos. rate  | FP/N       | Type I error, 1—Specificity                 |
| True Pos. rate   | TP/P       | 1—Type II error, power, sensitivity, recall |
| Pos. Pred. value | $TP/P^*$   | Precision, 1—false discovery proportion     |
| Neg. Pred. value | $TN/N^*$   |                                             |

# Krzywa ROC (Receiver Operating Characteristics)



Wykres przy zmieniającym się progu dla zaklasyfikowania jako 'default'.

Ogólna miara klasyfikatora: **AUC** (pole powierzchni pod krzywą ROC, area under the curve)

#### Kwadratowa analiza dyskryminacyjna, QDA

Przyjmujemy, że dane pochodzą z (wielowymiarowego) rozkładu normalnego, ale dane z k-tej klasy są generowane ze specyficzną średnią i **specyficzną macierzą kowariancji**  $X \sim N(\mu_k, \Sigma_k)$ .

Wówczas funkcja dyskryminująca dla klasy k wygląda następująco:

$$\delta_k(x) = -\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) - \frac{1}{2} \log(\det(\Sigma_k)) + \log \pi_k.$$

Jest to funkcja **kwadratowa** od x.

Niebezpieczeństwo przeuczenia (overfitting) przy QDA: dla każdej klasy musimy wyestymować p(p+1)/2 parametrów macierzy kowariancji więc przy K klasach łączna liczba parametrów dla estymowania macierzy kowariancji wynosi Kp(p+1)/2. Łącznie Kp(p+1)/2+Kp parametrów. Dla LDA liczba parametrów to p(p+1)/2+Kp.

#### LDA a QDA



**Granice decyzjne:** bayesowska (purpurowa przerywana); LDA (czarna kropkowana); QDA (zielona ciągła). Dwie klasy i dwa predyktory.

**Lewy panel:**  $\Sigma_1 = \Sigma_2$ . Korelacja pomiędzy  $X_1$  i  $X_2$  w obu klasach jest 0.7

**Prawy panel:**  $\Sigma_1 \neq \Sigma_2$ . Korelacja pomiędzy  $X_1$  a  $X_2$  w pierwszej klasie (pomarańczowej) jest 0.7, a w drugiej klasie (niebieskiej) -0.7.

# Żadna z metd klasyfikacji nie jest lepsza od pozostałych we wszystkich sytuacjach

- Logistyczna regresja
- Liniowa analiza dyskryminacyjna (LDA)
- Kwadratowa analiza dyskryminacyjna (QDA)
- KNN
- Logistyczna regresja oraz LDA są podobnymi metodami obie estymują liniową granicę decyzyjną, ale estymacja jest wykonana różnymi metodami (dla logistycznej regresji to maksymalna wiarygodność, a dla LDA estymacja parametrów rozkładów normalnych).
- KNN jest metodą całkowicie nieparametryczną. Wymaga wybrania K. Dalej porównujemy KNN dla K=1 (KNN-1) i K wybranego automatycznie (KNN-CV)
- O QDA można myśleć jak o czymś pomiędzy LDA i KNN.

# Błędy dla trzech liniowych scenariuszy danych (p=2)

- (S1) Po 20 danych treningowych losowanych z rozkładu normalnego. Obserwacje z każdej klasy są nieskorelowane, o różnych średnich dla obu klas.
- (S2) Jak wyżej, ale predyktory  $X_1$  i  $X_2$  są skorelowane (-0.5).
- (S3)  $X_1$  i  $X_2$  są losowane z t-rozkładu.



# Błędy dla trzech nieliniowych scenariuszy danych (p=2)

- (S4) Dane generowane z rozkładu normalnego. Predyktory  $X_1$  i  $X_2$  mają korelację 0.5 w pierwszej klasie i -0.5 w drugiej.
- (S5) Dane generowane z rozkładu normalnego o nieskorelowanych predyktorach, ale odpowiedzi były losowane z użyciem logistycznej funkcji od  $X_1^2$ ,  $X_2^2$  oraz  $X_1X_2$ .
- (S6) Jak wyżej, ale odpowiedzi losowane z innnej mocno nieliniowej funkcji.



#### Podsumowanie

Poznaliśmy nowe metody klasyfikacji

- regresja logistyczna
- LDA
- QDA

## Materiał dodatkowy

# Szacowanie istotności parametrów w regresji logistycznej

#### Test Walda dla jednego parametru

- $H_0: \theta = \theta_0$ .
- Dany estymator MLE  $\hat{\theta}$  z danych D.
- Test korzysta z faktu, że

$$z = \frac{\hat{ heta} - heta_0}{SE(\hat{ heta})} \sim N(0, 1)$$

gdzie  $SE(\hat{\theta})$  to pierwiastek wariancji estymatora  $\hat{\theta}$ .

## Wyprowadzenie dla wektora ${m k}$ parametrów

ullet W ogólności, dla wektora parametrów heta wymiaru k zachodzi

$$\sqrt{n}(\hat{\theta}-\theta) \sim N(0,I(\theta)^{-1}),$$

gdzie  $I(\theta)$  (macierz  $k \times k$ ) to informacja Fishera postaci

$$I(\theta) = \left[ \mathbb{E}\left[ -\frac{\delta^2}{\delta \theta_i \delta \theta_j} \log(f(D; \theta)) \right] \right]$$

a  $\log(f(D; \theta)) = \ell(\theta, D)$  to log wiarogodność.

• Zatem  $\hat{\theta} \sim N(\theta, \frac{1}{n}I(\theta)^{-1})$  i wariancja estymatora  $V = \text{Var}(\hat{\theta}) = \frac{1}{n}I(\theta)^{-1}$ .

#### Szacowanie wariancji estymatora dla wektora ${m k}$ parametrów

Ponieważ

$$\left[-\frac{\delta^2}{\delta\theta_i\delta\theta_j}\ell(\theta,D)\right] = \left[-\frac{\delta^2}{\delta\theta_i\delta\theta_j}\sum_{i=1}^n \log(f(D_i;\theta))\right]$$

to  $I(\theta)$  można przybliżyć przez

$$J(\hat{\theta}) = \left[\frac{1}{n}\sum_{i=1}^{n} -\frac{\delta^{2}}{\delta\theta_{i}\delta\theta_{j}}\log(f(D_{i};\theta))\right]_{\theta=\hat{\theta}}.$$

Stąd, mamy estymator wariancji estymatora

$$\hat{V} = \frac{1}{n} J(\hat{\theta})^{-1} = \left[ -\frac{\delta^2}{\delta \theta_i \delta \theta_j} \ell(\theta, D) \right]_{\theta = \hat{\theta}}^{-1}.$$

Zauważmy, że nasz estymator jest odwrotnością macierzy Hessego

$$H = \left[ -\frac{\delta^2}{\delta \theta_i \delta \theta_j} \ell(\theta, D) \right]$$

w punkcie  $\hat{ heta}$ .

#### Test Walda dla *k* parametrów

- $H_0: \theta = \theta_0$ .
- Przybliżamy błąd standardowy dla  $\hat{\theta}_j$  przez j-ty element na diagonali  $\hat{V}$ ,  $\hat{SE}(\hat{\theta}_j) = \hat{V}_{ij}$ .
- Wówczas

$$z = rac{\hat{ heta} - heta_0}{\hat{SE}(\hat{ heta})} \sim N(0, 1)$$

i możemy korzystać z wyznaczania zbioru krytycznego lub p-wartości z rozkładu standardowego normalnego.