1

Assignment1

EE24BTECH11007 - Arnav Makarand Yadnopavit

1)	$\lim_{n\to\infty} \frac{(1^2-1)(n-1)+(2^2-2)(n-2)+\cdots+((n-1)^2-(n-1))\cdot 1}{(1^3+2^3+\cdots+n^3)-(1^2+2^2+\cdots+n^2)}$						
	a) $\frac{2}{3}$	b) $\frac{3}{4}$	c) $\frac{1}{3}$	d) $\frac{1}{2}$			
2)	Let <i>ABC</i> be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle <i>ABC</i> and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is the sum of areas of all the triangles formed in this process, then:						
	a) $P = 36 \sqrt{3}Q^2$	b) $P^2 = 6\sqrt{3}Q$	c) $P^2 = 72 \sqrt{3}Q$	d) $P^2 = 36\sqrt{3}Q$			
3)	Suppose the solution of the differential equation $\frac{dy}{dx} = \frac{(2+\alpha)x - \beta y + 2}{\beta x - 2\alpha y - (\beta y - 4\alpha)}$ represents a circle passing through the origin. Then the radius of this circle is:						
	a) $\frac{1}{2}$	b) 2	c) $\frac{\sqrt{17}}{2}$	d) $\sqrt{17}$			
4)	If A is a square matrix	of order 3 such that det	(A) = 3 and				
$det\left(adj\left(-4adj\left(-3adj\left(3adj\left((2A)^{-1}\right)\right)\right)\right)\right)=2^{m}3^{n}$							
, then $m + 2n$ is equal to:							
	a) 4	b) 6	c) 2	d) 3			
	 5) If z₁ and z₂ are two distinct complex numbers such that \$\left \frac{z_1-2z_2}{\frac{1}{2}-z_1\overline{z_2}}\right = 2\$, then a) both z₁ and z₂ lie on the same circle. b) either z₁ lies on a circle of radius 1 or z₂ lies on a circle of radius \frac{1}{2}\$. c) z₁ lies on a circle of radius \frac{1}{2}\$ and z₂ lies on a circle of radius 1. d) either z₁ lies on a circle of radius \frac{1}{2}\$ or z₂ lies on a circle of radius 1. 6) If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at 315th position in this arrangement is: 						
	a) NRAGPU	b) NRAPUG	c) NRAPGU	d) NRAGUP			
7)	7) Let $\vec{a} = 6\hat{i} - \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $ \vec{c} \ge 6$, $\vec{a} \cdot \vec{c} = 6 \vec{c} $, $ \vec{c} - \vec{a} = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 60° , then $ (\vec{a} \times \vec{b}) \times \vec{c} $ is equal to:						
	a) $\frac{9}{2} (6 + \sqrt{6})$	b) $\frac{9}{2}(6-\sqrt{6})$	c) $\frac{3}{2}\sqrt{3}$	d) $\frac{3}{2}\sqrt{6}$			
8)	8) Suppose for a differentiable function h , $h(0) = 0$, $h(1) = 1$, and $h'(0) = h'(1) = 2$. If						
$g(x) = h(e^x) e^{h(x)}$							
	, then $g'(0)$ is equal to:						

	a) -1	b) 1	c) 2	d) 0		
11)	Let $f(x) = \frac{1}{7-\sin 5x}$ be a function defined on \mathbb{R} . Then the range of the function $f(x)$ is equal to:					
	a) $\left[\frac{1}{7}, \frac{1}{6}\right]$	b) $\left[\frac{1}{8}, \frac{1}{6}\right]$	c) $\left[\frac{1}{7}, \frac{1}{5}\right]$	d) $\left[\frac{1}{8}, \frac{1}{5}\right]$		
12)) If $P(6,1)$ is the orthocenter of the triangle whose vertices are $A(-2,5)$, $B(8,3)$, and $C(h,k)$, then the point C lies on the circle:					
	a) $x^2 + y^2 - 61 = 0$	b) $x^2 + y^2 - 74 = 0$	c) $x^2 + y^2 - 52 = 0$	d) $x^2 + y^2 - 65 = 0$		
13)	Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = ((\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}) \times \hat{i}$. Then the square of the projection of \vec{a} on \vec{b} is:					
	a) 2	b) $\frac{1}{3}$	c) $\frac{1}{5}$	d) $\frac{2}{3}$		
14)	Let $\mathbf{P}(\alpha, \beta, \gamma)$ be the image of the point $\mathbf{Q}(3, -3, 1)$ in the line $\frac{x-0}{1} = \frac{y-3}{1} = \frac{z-1}{-1}$ and \mathbf{R} be the point $(2, 5, -1)$. If the area of the triangle PQR is λ and $\lambda^2 = 14K$, then K is equal to:					
	a) 81	b) 36	c) 18	d) 72		
15)	Let $A = \{1, 2, 3, 4, 5\}$. Let R be a relation on A defined by xRy if and only if $4x \le 5y$. Let m be the number of elements in R and n be the minimum number of elements from $A \times A$ that are required to be added to R to make it a symmetric relation. Then $m + n$ is equal to:					
	a) 23	b) 25	c) 26	d) 24		

c) 8

10) If the area of the region $\{(x,y): \frac{a}{x^2} \le y \le \frac{1}{x}, 1 \le x \le 2, 0 < a < 1\}$ is $(\log_e 2) - \frac{1}{7}$, then the value of 7a - 3 is equal to:

d) 4

c) $e^{2\pi} < (2\pi)^e$ d) $e^{\pi} > \pi^e$

a) 3

a) $(2e)^{\pi} > \pi^{(2e)}$

b) 5

b) $e^{\pi} < \pi^e$

9) If the function $f(x) = \left(\frac{1}{x}\right)^{2x}$; x > 0 attains the maximum value at $x = \frac{1}{e}$, then: