Chapitre 26: Espaces euclidiens

Dans tout le chapitre, le corps des scalaires est $\mathbb R$

1 Généralités

1.1 Produit scalaire

Définition 1.1. Soit *E* un espace vectoriel (réel).

Un produit scalaire sur *E* est une application

$$\langle \cdot \mid \cdot \rangle : \begin{cases} E^2 \to \mathbb{R} \\ (u, v) \to \langle u \mid v \rangle \end{cases}$$

- * linéaire
- * symétrique (càd $\forall u, v \in E, \langle u \mid v \rangle = \langle v \mid u \rangle$)
- * et définie positive (càd $\forall u \in E, \langle u \mid u \rangle \ge 0$ et $\forall u \in E, \langle u \mid u \rangle = 0 \implies u = 0_E$)

Un <u>espace préhilbertien</u> (réel) est la donnée d'une ev E et d'un produit scalaire sur E Un espace euclidien est un espace préhilbertien de dimension finie.

1.2 Norme euclidienne

Définition 1.2. Soit *E* un espace préhilbertien.

- * La norme (euclidienne) de $u \in E$ est $||u|| = \sqrt{\langle u \mid v \rangle}$
- * Le distance de u à $v \in E$ est d(u, v) = ||v u||

Théorème 1.3 (Inégalité de Cauchy-Schwarz). Soit E un espace préhilbertien et $u,v\in E$ On a

$$\langle u \mid v \rangle \le |\langle u \mid v \rangle| \le ||u|| \cdot ||v||$$

"Le produit scalaire est inférieur au produit des normes"

Théorème 1.4. La norme $\|\cdot\|$ est une norme, càd qu'on a :

Positivité : $\forall u \in E, ||u|| > 0$

Séparation : $\forall u \in E, ||u|| = 0 \implies u = 0_E$

Homogénéité : $\forall u \in E, \forall \lambda \in \mathbb{R}, ||\lambda u|| = |\lambda| \cdot ||u||$

Inégalité triangulaire : $\forall u, v \in E, ||u + v|| \le ||u|| + ||v||$

Remarques:

* On a une identité de polarisation :

$$\langle u \mid v \rangle = \frac{\|u + v\|^2 - \|u\|^2 - \|v\|^2}{2}$$

la norme permet de retrouver le produit scalaire.

* On a une autre identité remarquable, dite <u>identité du parallélogramme</u> : pour tous $u,v\in E$

$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$$

2 Orthogonalité

2.1 Définition

Dans toute cette section, *E* est un espace préhilbertien.

Définition 2.1.

- * Deux vecteurs $u, v \in E$ sont dits orthogonaux (et on note $u \perp v$) si $\langle u \mid v \rangle = 0$
- * Un vecteur $u \in E$ est orthogonal à une partie X de E (et on note $u \perp X$) si $\forall v \in X$, $u \perp v$
- * Deux parties X et Y de E sont orthogonales (et on note $X \perp Y$) si $\forall u \in X, \forall v \in Y, u \perp v$

Théorème 2.2 (Pythagore). Soit $u, v \in E$

Alors $u \perp v$ ssi $||u + v||^2 = ||u||^2 + ||v||^2$

Définition 2.3. Soit *X* une partie de *E*

On définit l'orthogonal de X

$$X^{\perp} = \{ u \in E \mid u \perp X \} = \{ u \in E \mid \forall v \in X, \langle u \mid v \rangle = 0 \}$$

Proposition 2.4. Soit *X* une partie de *E*

On a:

- * X^{\perp} est une sev de E
- * $X^{\perp} = \text{Vect}(X)^{\perp}$

Théorème 2.5 (de représentation de Riesz). Soit *E* un espace euclidien et $\varphi \in E^*$

Alors il existe
$$u \in E$$
 tel que $\varphi : \begin{cases} E \to \mathbb{R} \\ v \mapsto \langle u \mid v \rangle \end{cases}$

2.2 Familles et bases orthonormées

Définition 2.6. Soit *E* un espace préhilbertien.

- * Une famille $(x_i)_{i \in I}$ de vecteurs de E est dite orthogonale si $\forall i \neq j \in I, \langle x_i \mid x_j \rangle = 0$
- * La famille $(x_i)_{i \in I}$ est dite <u>orthonormée</u> (ou <u>orthonormale</u>) si les vecteurs sont en outre de norme 1, càd $\forall i, j \in I, \langle x_i \mid x_i \rangle = \delta_{ij}$

Proposition 2.7. Toute famille orthogonale de vecteurs non nuls (en particulier, toute famille orthonormée) est libre.

Définition 2.8. Une base orthogonale (resp. orthonormée) (BON) d'un espace préhilbertien *E* est une base de E qui est également une famille orthogonale (resp. orthonormée).

Théorème 2.9. Tout espace euclidien *E* possède une base orthonormée.

Remarque: On utilise l'algorithme d'orthonormalisation:

Pour $k \in [1, n]$ on remplace v_k par

$$\frac{v_k - \sum\limits_{j=1}^{k-1} \left\langle v_k \mid e_j \right\rangle e_j}{\|v_k - \sum\limits_{j=1}^{k-1} \left\langle v_k \mid e_j \right\rangle e_j\|}$$

2

Corollaire 2.10 (Théorème de la base orthonormée incomplète).

Soit E un espace euclidien et (e_1, \dots, e_r) une famille orthonormée.

Alors il existe $(e_{r+1}, ..., e_n)$ telle que $(e_1, ..., e_n)$ soit une base orthonormée de E

Proposition 2.11. Soit E un espace euclidien et $(e_1, ..., e_n)$ une BON de E

Alors, pour tous $x, y \in E$ on a :

$$* x = \sum_{i=1}^{n} \langle x \mid e_i \rangle e_i$$

$$* \langle x \mid y \rangle = \sum_{i=1}^{n} \langle x \mid e_i \rangle e_i$$

*
$$\langle x \mid y \rangle = \sum_{i=1}^{n} \langle x \mid e_i \rangle \langle y \mid e_i \rangle$$

* $||x||^2 = \sum_{i=1}^{n} \langle x \mid e_i \rangle^2$

$$||x||^2 = \sum_{i=1}^n \langle x | e_i \rangle^2$$

Autrement dit, dans une BON, tous les calculs se font comme dans \mathbb{R}^n muni du produit scalaire canonique. Plus conceptuellement, tout espace euclidien de dimension n est isomorphe (en tant qu'espace euclidien) à \mathbb{R}^n

3 Projection orthogonale

Dans toute la section, *E* est un espace préhilbertien et *F* un sev de dimension finie de *E*

3.1 Définition

Proposition 3.1. Avec ces notations (*F* de dimension finie!) on a :

- $* E = F \oplus F^{\perp}$
- $* (F^{\perp})^{\perp} = F$

Définition 3.2. On note p_F et on appelle projection orthogonale sur F le projecteur sur F parallèlement à F^{\perp}

Proposition 3.3. Si F possède une base orthonormée $(e_1, ..., e_r)$, on a

$$\forall x \in E, p_f(x) = \sum_{i=1}^r \langle x \mid e_i \rangle e_i$$

Proposition 3.4. Soit $x \in E$

- * Le projeté $p_F(x)$ est l'unique vecteur de F tel que $\forall y \in F$, $\langle p_F(x) \mid y \rangle = \langle x \mid y \rangle$
- * Si F possède une base (pas nécessairement ON) $(v_1, ... v_r)$, cette condition équivaut à $\forall j \in [\![1,n]\!], \langle p_F(x) \mid e_j \rangle = \langle x \mid e_j \rangle$

Proposition 3.5 (Inégalité de Bessel). On a $\forall x \in E$, $||p_F(x)|| \le ||x||$

3.2 Distance à un sev de dimension finie

Proposition 3.6. Soit E un espace préhilbertien et F un sev de dimension finie de E. Soit $x \in E$ On a $\forall y \in F$, $||x - y|| \ge ||x - p_F(x)||$ avec égalité ssi $y = p_F(x)$

Définition 3.7. Avec les mêmes notations, $||x - p_F(x)||$ est la distance de x à F, notée d(x, F)

3.3 Cas d'un hyperplan

Dans cette section, E est un espace euclidien et F est in hyperplan de E. On fixe un vecteur normal n de F (càd $F = \text{Vect}(n)^{\perp}$)

Proposition 3.8. On a:

$$p_F(x) = x - \frac{\langle x \mid n \rangle}{\|n\|^2} n$$
 et $d(x, F) = \frac{|\langle x \mid n \rangle|}{\|n\|}$

4