Problems with graphical method:

- · Not algorithmic
- · Not scalable for dimensions greater than 3

# Simplex Method

An algorithmic approach to solve a linear program.

Let's come back to our original ex.

max 
$$7x_1 + 6x_2$$
  
st.  $\begin{cases} 3x_1 + 4x_2 \le 16 \\ 3x_1 + 2x_2 \le 12 \\ x_1, x_2 > 6 \end{cases}$ 

$$3x_1 + 4x_2 \le 16 \implies 3x_1 + 4x_2 + S_1 = 16$$

$$3x_1 + 2x_2 \le 12 \implies 3x_1 + 2x_2 + S_2 = 12$$
Objective  $f^n$ :  $4x_1 + 6x_2 + 0 \cdot S_1 + 0 \cdot S_2$ 

# Step 2: Set banic and non basic variables:

How we bring 
$$x_1 = u$$
 in and  $s_2$  will go out

3 New bank variables - x1,5, ; New non bank variables - x2,52.

Now we've 
$$S_1 = 16 - 2x_1 - 4x_2$$
 initially widths.  
 $S_2 = 12 - 3x_1 - 2x_2$  back ver. in term 4 non-banks

Now, we've 
$$\begin{cases} x_1 = 4 - \frac{5a}{3} - \frac{2x_2}{3} \\ S_2 = 8 + \frac{2S_2}{3} - \frac{8x_2}{3} \end{cases}$$

Objective  $f^{a}$  many becomes:  $f=28+\frac{a_{1}z_{1}}{3}-\frac{7+5z_{2}}{3}$  No. with Keep cooldating benic of non-benic variables the objective  $f^{a}$  have two coefficient.

### Simplex Tableu Method

|         |                   | (21) | N <sub>2</sub> | s <sub>1</sub> | Se | 6  | fraction 6/x; |
|---------|-------------------|------|----------------|----------------|----|----|---------------|
| <u></u> | Sı                | 2    | 4              | V              | 0  | 16 | 16/2 = 8      |
|         | (S <sub>2</sub> ) | 3    | 2              | 0              | 1  | 12 | 12/3=4        |
|         | P                 | 7    | 6              | 0              | ٥  |    |               |

- \* We push in
  - nox bank variable with quater coefficient
- \* We remove basic variable with smaller fraction.

|  | 6                 | × (×2) |     | Sı | Sa                           | Ь | fraction b/c; |
|--|-------------------|--------|-----|----|------------------------------|---|---------------|
|  | (S <sub>1</sub> ) | 6      | 8/3 | ı  | -2/3                         | 8 | 8/8/3) = 3    |
|  | $\infty_{i}$      | ι      | 213 | 0  | 1/3                          | 4 | 6             |
|  | P                 | 0      | 412 | ٥  | <del>-</del> 4/ <sub>2</sub> |   |               |

|              | × | N <sub>2</sub> | Sı   | Se   | 6 | fraction b/z; |
|--------------|---|----------------|------|------|---|---------------|
| ×2           | 0 | 1              | 3/8  | -1/4 | 3 |               |
| $\infty_{i}$ | ι | 0              | -1/4 | 1/2  | G |               |
| P            | 0 | б              | -1/2 | -2   |   |               |

we stop here as coefficients become non-positive

# Convex Optimization:

$$\begin{cases} \forall x, y \in \mathbb{R}^n & f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \\ \forall \lambda \in [0,1] & \end{cases}$$

$$\epsilon \times f(x) = \chi^2$$
,  $f(x_1, x_2) = \alpha_1 \alpha_2 (\alpha_1, \alpha_2 \in \mathbb{R})$ 

# Similarly we can say that a set $C \subseteq \mathbb{R}^n$ is convex if



# Simularly we can say that a set C S IK is convex of



Ex: Circular, acutamqular acgion

In covex optimisation 
$$\int_{\mathbb{R}^n} \operatorname{convex} f^r$$
 objective  $f^n = f(x)$ 

On: Are the following convex?

- C = C<sub>1</sub>U C<sub>2</sub> : (C<sub>11</sub>C<sub>2</sub> whe convex)
   ξ x ∈ R<sup>2</sup>: x > 0, x (x<sub>2</sub> > 1)
- $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ ,  $f(x) = x_1 x_2$
- $f: \mathbb{R}^2 \to \mathbb{R}$  ,  $f(x) = x_1^2 + Z_2^2 + X_1 X_2$

$$E_{x}$$
: (i)  $f(x) = e^{ax}$ ,  $a \in \mathbb{R}$  (ii)  $f(x) = -log(x)$ ,  $x > 0$ 

(iii) 
$$f(x) = x^T x = ||x||_2^2 = \sum_{i=1}^n x_i^2$$
 (L<sub>2</sub> norm)

(N) 
$$f(x) = ||x||_1 = \sum_{i=1}^{n} |x_i|_1 (L_i \text{ norm})$$

Defr. A point x is said to be "globally optimal" if x is feasible Defr. A point x is said to get f(y) < f(x) and \$\noting \text{only other feasible y' such that f(y) < f(x) (Ass. minimization problem)

Def": A point a is said to be "locally optimal" if a is feasible and 3 Rro such test . I fearible y with 11 y-21/2 & R, f(x) <f(y)

Theorem: For a convex optimization problem, all locally optimal points are globally optimal.

Proof: Use contradiction.

