Matrius Disperses. Resolució de sistemes lineals amb matrius disperses

1.1 Introducció

Els sistemes lineals d'equacions es presenten en nombrosos problemes d'enginyeria o ciència. En nombrosos problemes aplicats es la matriu que descriu els sistema està formada majoritàriament per zeros. En aquest treball es tracta d'estudiar quan es considera que una matriu és dispersa i en el cas que ho sigui com es guarda per estalviar memoria i temps de càlcul.

- 1. Què és una matriu dispersa. Definició o definicions.
- 2. Formes de emmagatzemar una matriu dispersa. Implantar en Matlab les diferents formes de de fer-ho.
- 3. Operacions amb matrius disperses. Suma, Producte matriu-vector, Producte matriumatriu.
- 4. Resolució de sistemes. Reordenació de les matrius.
- 5. Poseu exemples d'aplicació de la factorització LU aplicada a una sistema dispers.
- 6. Doneu una estimació del estalvi en termes de temps de comput i espai

2TREBALL 1.	MATRIUS DISPERSES.	RESOLUCIÓ DE SISTEM	ES LINEALS AMB MATRIUS DI	SPI

Mètode del gradient

2.1 Introducció

El mètode del gradient és un algorisme para resoldre numèricament sistemes d'equacions lineals de matriu simètrica i definida positiva. És un mètode iteratiu, així que es pot aplicar als sistemes dispersos que són massa grans per a ser tractats per mètodes directes com la descomposició de Txolesky. El mètode del gradient es pot utilitzar també per resoldre els problemes d'optimització sense restriccions.

- 1. Mètode de descens, obtenció de la direcció de descens i del l'amplitud de pas.
 - Relaxació d'una variable.
 - Màxima penden.
 - Exemple d'aplicació.
- 2. Mètode del gradient conjugat.
 - Directions conjugades
 - Mètode dels gradients conjugats amb precondicionament.
 - Exemples d'aplicació.
- 3. Comparació amb del mètodes amb els altres mètodes de resolució de sistemes.

Mínims quadrats lineals

3.1 Introducció

Les mesures sempre estan subjectes a errors, petits o grans, deguts als desajustos dels aparells la pròpia imperfecció o l'envelliment. Per mitigar l'efecte dels errors, identificar-los i filtrar-los es pren un número de mesures més gran del necessari i per tan tenim informació redundant. Això ens condueix a sistemes d'equacions amb més equacions que incògnites i en general incompatibles, per contra la falta ens conduiria a sistemes indeterminat. Amb el mètode dels minims quadrats es tracta de obtenir la solució que millor aproxima a la ideal si no es donessin aquestes errors.

- Sistemes incompatibles. Equacions normals
- Sistemes incompatibles
- Resolució numèrica.
 - Mètode de Gram-Schmidt.
 - Mètode de Gram-Schmidt modificat.
 - Factorització QR.
 - Descomposició numèrica en valors singulars.
- Exemples d'aplicació dels diferents mètodes i comparació entre ells.

Valors i vestors propis, valors singulars

4.1 Introducció

Els valors i vectors propis són rellevants en l'estudi la oscillació i la resonancia. El seu coneixement és rellevant en camps com els sistemes elèctrics, la vibració d'estructures, la mecànica quàntica, els lasers o la resonancia magnètica entre molts d'altres.

- Conceptes teòrics relacionats amb els valors i vectors propis
- Localització de valors propis
- Obtención numérica de valores y vectores propios
 - Mètode de Jacobi
 - Mètode de la potència.
 - Iteració QR.
 - Exemples d'aplicació dels mètodes i comparació.
- Càlcul de valors singulars.