

1 HEART FAILURE MITRAL ANNULOPLASTY RING
2 WITH REMOVABLE CENTRAL POSTERIOR PORTION

3

4 BACKGROUND OF THE INVENTION

5

6 1. Field of the Invention

7 This invention relates broadly to implantable
8 prostheses. More particularly, this invention relates to
9 annuloplasty rings specifically adapted for the mitral
10 valve of the heart.

11

12 2. State of the Art

13 Mitral regurgitation is a "leaking" of the mitral
14 valve which connects the left atrium and the left ventricle
15 of the heart. When the left ventricle contracts to eject
16 blood to the rest of the body, the mitral valve closes to
17 prevent blood from passing in the wrong direction; i.e.,
18 into the left atrium. When the mitral valve fails to close
19 properly and mitral regurgitation (MR) develops. If the MR
20 is severe, mitral valve repair or replacement is needed to
21 preserve the function of the left ventricle and to prevent
22 congestive heart failure from developing. Mitral valve

1 repair is often done to eliminate MR and prevent the
2 necessity of mitral valve replacement.

3

4 During mitral valve repair, a portion of the redundant
5 valve tissue is resected and the valve leaflets are
6 reshaped to eliminate MR. In degenerative disease of the
7 mitral valve leaflets, the annulus about the leaflets
8 typically increases by approximately one hundred to two
9 hundred percent. In such case, an annuloplasty ring is
10 provided at the annulus and the annulus is sewn to the ring
11 to create a purse string effect around the base of the
12 valve which helps the leaflets meet when the valve closes.
13 This also restores the anatomical size and shape of the
14 valve and supports the repaired mitral valve to prevent
15 recurrent dilatation. Due to the excess leaflet tissue
16 caused by degenerative disease, any size mismatching of the
17 annuloplasty ring and the mitral annulus is of little
18 consequence.

19

20 However, in heart failure, the leaflets are not
21 enlarged. Thus, choosing the appropriate size for an
22 annuloplasty ring is critical to avoid the occurrence of MR
23 from continuing dilatation of the heart.

1

2 Each of the anterior and posterior leaflets of the
3 annulus is divided by nomenclature into thirds. The
4 anterior leaflet has a leftmost portion A₁, a central
5 portion A₂, and a rightmost portion A₃. Similarly, the
6 posterior anterior leaflet has a leftmost portion P₁, a
7 central portion P₂, and a rightmost portion P₃. early
8 leakage of the mitral valve in heart failure starts at two
9 specific locations, namely P₁ and P₃. However, P₂ is the
10 portion directly in the path of blood from the left atrium
11 to the ventricle.

12

13 It has been noted by the present inventor that prior
14 art mitral annuloplasty rings effect an undesirable
15 gradient across the mitral valve which may cause a backflow
16 of blood into the lungs. Prior art mitral annuloplasty
17 rings remodel the annulus by providing a 3:4 ratio between
18 the anteroposterior and transverse diameters of a normal
19 mitral valve for what is generally considered optimal
20 hemodynamic performance. In addition, the outer cross-
21 sectional diameter of a state of the art ring is relatively
22 uniform about its circumference.

23

1 Annuloplasty rings are typically made of flexible
2 polymers and generally are available in ring-shaped
3 (annular) or C-shaped configurations. The C-shaped designs
4 include a posterior portion (including substantially
5 transverse lateral portions and a central portion
6 therebetween), but no anterior portion, which operates to
7 effect a reduced gradient (but does not eliminate the
8 gradient). In addition, some annuloplasty rings, e.g., the
9 Sulzer Carbomedics AnnuloFlex™ ring and the St. Jude
10 Medical Tailor™ ring, have a ring-shaped configuration that
11 is adapted to be converted into a C-shaped configuration by
12 removal of the anterior portion of the ring. Annuloplasty
13 rings generally also include commissure guides (or trigone
14 markings) by which to reference a ring relative to the left
15 and right valve leaflet commissures (or left and right
16 fibrous trigones) and the posterior midline of the valve
17 annulus to facilitate implantation.

18

19 Annuloplasty rings are also available in a variety of
20 sizes permitting selection of a ring which most
21 appropriately corresponds to the intended size of the post-
22 operative annulus. However, this requires that a medical
23 care facility stock each of the variety of sizes, thereby

1 complicating inventory control. Each size of ring includes
2 thereon, or has associated therewith a guide which
3 includes, markings indicating spaced-apart locations for a
4 set of suture ties so that the ring can be coupled to the
5 mitral valve annulus.

6

SUMMARY OF THE INVENTION

8

9 It is therefore an object of the invention to provide
10 an annuloplasty ring that can produce multiple degrees of
11 valve area reduction by having spaced-apart markings
12 producing different degrees of reduction of the annulus,
13 thereby obviating the need to stock as many sizes of rings
14 as in the prior art.

15

16 It is another object of the invention to provide an
17 annuloplasty ring which provides desirable hemodynamic
18 performance.

19

20 It is a further object of the invention to provide an
21 annuloplasty ring which reduces a gradient across the valve
22 to physiological levels.

23

1 It is also an object of the invention to provide an
2 annuloplasty ring which can be used in a ring-shaped
3 configuration, a C-shaped configuration, and other
4 configurations most suitable to treat mitral regurgitation.

5

6 In accord with these objects, which will be discussed
7 in detail below, an annular mitral annuloplasty ring
8 includes an anterior portion and a posterior portion having
9 central and substantially transverse lateral portions.
10 Alternatively, the ring may be C-shaped and formed without
11 the entirety of, or a portion of, the anterior portion.

12

13 Regardless of whether the ring is completely annular
14 or C-shaped, according to a first preferred aspect of the
15 invention, the ring includes a posterior portion defining a
16 central portion and two lateral portions. The ring is
17 adapted in construction for stabilization and non-reduction
18 of the central posterior portion, while significant
19 reduction of lateral portions is facilitated. It has been
20 determined by the inventor that, in many cases, reduction
21 of the central posterior portion of the ring results in an
22 increased gradient. Therefore, the ring of the invention
23 does not reduce, but only stabilizes the central portion of

1 posterior leaflet, and consequently decreases the gradient
2 across the valve relative to prior art rings which cinch a
3 central posterior portion of the valve annulus.

4

5 According to a second preferred aspect of the
6 invention, the construction of the ring at the lateral
7 posterior portion is different than the construction at the
8 central posterior portion (i.e., the portion adapted to
9 optionally be removed). The lateral posterior portions are
10 substantially stiffer than the central posterior portion.
11 A softer central posterior portion minimizes a gradient
12 where the central posterior portion remains integral with
13 the ring, while the lateral posterior portions contribute
14 strength and competence of the valve during closure of the
15 leaflets. One preferred manner of effecting stiffer
16 lateral posterior portions is to construct the sides as
17 relatively flatter than a more tubular central portion.

18

19 From the foregoing, it is appreciated that the mitral
20 annuloplasty ring of the invention is hemodynamically
21 optimized to reduce a gradient thereacross, and improve
22 competence of the valve leaflets by selectively reducing
23 the lateral posterior portions.

1

2 According to a third preferred aspect of the
3 invention, the ring includes indicia of multiple sets of
4 suture markings, each set identifying a plurality of suture
5 locations about the perimeter of the ring which are adapted
6 to cinch the annulus by a predetermined amount about the
7 ring. Thus, a single ring may be used to cinch the annulus
8 in accord with relatively different degrees of desired
9 valve area reduction. This is in contrast to the prior
10 art, where multiple rings of different dimensions are
11 required for the same effect. Thus, each ring of the
12 invention corresponds to multiple rings of different sizes
13 and reduction capabilities of the prior art.

14

15 Additional objects and advantages of the invention
16 will become apparent to those skilled in the art upon
17 reference to the detailed description taken in conjunction
18 with the provided figures.

19

1 BRIEF DESCRIPTION OF THE DRAWINGS
23 Fig. 1 is a plan view of an mitral annuloplasty ring
4 according to the invention;
5

6 Fig. 2 is a cross-section across line 2-2 in Fig. 1;

7

8 Fig. 3 is a cross-section across line 3-3 in Fig. 1;

9

10 Fig. 4 is a cross-section across line 4-4 in Fig. 1;

11

12 Fig. 5 illustrates the mitral annuloplasty ring of the
13 invention shown implanted, where both the anterior and
14 posterior portions of the ring are used;

15

16 Fig. 6 illustrates the mitral annuloplasty ring of the
17 invention shown implanted, where the anterior portion of
18 the ring is removed;

19

20 Fig. 7 illustrates the mitral annuloplasty ring of the
21 invention shown implanted, where both the anterior portion
22 and central posterior portions of the ring are removed,

1 leaving only the lateral posterior portions of the ring
2 implanted at the valve;

3

4 Fig. 8 is a second embodiment of a mitral valve
5 annuloplasty ring according to the invention; and

6

7 Fig. 9 is an embodiment of a instrument which includes
8 suture guides in accord with the invention.

9

10 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

11

12 Turning now to Fig. 1, a mitral annuloplasty ring 10
13 is shown. The ring 10 includes a shallowly curved anterior
14 portion A, and a steeper curved posterior portion P. The
15 ring is preferably provided with trigone guides 12, 14 (or
16 alternatively commissure guides) and optionally a posterior
17 midline guide 16 which together facilitate alignment of the
18 ring relative to anatomical landmarks of the mitral valve.

19 Referring to Figs. 2 through 4, the ring 10 is preferably
20 constructed of an inner structural constituent 18, e.g.,
21 resilient polytetrafluoroethylene (PTFE), which is
22 surrounded by a fabric outer layer 20 through which suture
23 needles and suture can be passed to secure the ring at the

1 valve annulus. Other materials known in the art can also
2 be used in the alternative or in combination with the above
3 described materials.

4

5 According to a first preferred aspect of the
6 invention, the posterior portion P includes a central
7 portion P_2 and substantially transverse lateral portions P_1
8 and P_3 on either side of the central portion. The ring 10
9 is preferably adapted in construction for optional removal
10 of the central posterior section P_2 , preferably after
11 implantation of the ring at the valve (See Fig. 7). That
12 is, the ring 10 at the junction of P_1 and P_2 and junction of
13 P_2 and P_3 preferably includes indicia 22, 24 indicating
14 where a blade may be used to cut the ring and/or is
15 provided with a weakened section (e.g., reduced diameter),
16 or even a discontinuity, of the structural constituent 18
17 at the indicated locations 22, 24 to facilitate cutting and
18 removal of the central posterior portion P_2 . If removal of
19 the central portion P_2 is performed, it is preferably
20 performed after suturing the lateral posterior portions P_1
21 and P_3 at the valve annulus. It has been determined by the
22 inventor that, in many cases, the central posterior portion
23 P_2 of the ring 10 is not required to abate MR or support the

1 annulus and may, in fact, contribute to an excessive
2 gradient across the ring 10. By eliminating the central
3 posterior portion P₂, the gradient is reduced relative to
4 prior art to thereby provide superior results.

5

6 It has also been determined by the inventor that, in
7 many cases, reduction of the P₂ of the valve annulus
8 contributes to an excessive gradient across the ring 10.
9 The P₂ portion of the ring 10 includes suture markings 21
10 (represented by circles) which are spaced so as to effect
11 no annular reduction if the P₂ portion of the ring is kept
12 intact and coupled to the valve. By not reducing the
13 central posterior portion P₂, the gradient is reduced
14 relative to prior art to thereby provide superior results.
15 In addition, similarly spaced-apart markings 23 (also
16 represented by circles) between indicia 12 and 14 (Fig. 1)
17 of the anterior leaflet are provided so as to not effect
18 reduction of the anterior annulus.

19

20 Referring to Figs. 2 through 4, and according to a
21 second preferred aspect of the invention, the construction
22 of the ring at the lateral posterior portions P₁ and P₃ is
23 different than the construction at the central posterior

1 portion P₂. The lateral posterior portions P₁, P₃ are
2 slightly stiffer than the central posterior portion P₂. One
3 preferred manner of effecting stiffer lateral portions P₁
4 and P₃ is to construct the sides relatively flatter, and the
5 central posterior portion P₂ more cylindrical. That is, the
6 lateral posterior portions P₁ and P₃ preferably have a
7 smaller dimension in the direction of blood flow and a
8 relative greater dimension transverse to the direction of
9 blood flow. The more flexible central posterior portion P₂
10 minimizes a gradient where the central posterior portion
11 remains integral with the ring after implantation. In
12 addition, the lateral posterior portions P₁, P₃ contribute
13 strength, but do not significantly affect the gradient.
14 The similarly structured more flexible anterior portion
15 allows preservation of normal annular movement during the
16 cardiac cycle.

17

18 From the foregoing, it is appreciated that the mitral
19 annuloplasty ring of the invention is hemodynamically
20 optimized to reduce a gradient thereacross.

21

22 Referring back to Fig. 1, according to a third
23 preferred aspect of the invention, the ring 10 includes

1 multiple circumferential sets 26, 28 of indicia (where only
2 a subset of each set of indicia is identified by the
3 reference numerals) for suture placement. Fig. 1
4 distinguishes the sets of indicia based upon a discrete
5 shape (e.g., circles 26 and cruciforms 28) for ease of
6 distinction in the black and white drawing. However,
7 distinctions based upon discretely colored markings (e.g.,
8 colored sutures extending circumferentially about the ring)
9 or other visual indicators may be preferred. Each marking
10 within a set 26, 28 is preferably spaced apart from another
11 marking of the same set by a predetermined distance (e.g.,
12 2.5 mm or 3.0 mm or similar increments). Each set 26, 28
13 of indicia thusly corresponds to a predetermined amount of
14 cinching about the ring 10. The physician selects one of
15 the plurality of sets of markings according to the degree
16 by which the physician assesses that the valve annulus
17 should be cinched. Thus, a single ring may be used to
18 cinch the annulus in accord with relatively different
19 degrees of desired valve area reduction. In contrast, the
20 prior art would require different rings each optimized for
21 a different size of reduction.

22

1 Alternatively, the indicia corresponding to multiple
2 sets of suture locations sizes may be provided to
3 instrumentation, such as a ring holder to thereby guide the
4 surgeon to the same effect. For example, instrument 50
5 includes a handle 52 having a manual gripping element 54 at
6 one end and a ring holder 56 removably coupled at its other
7 end. Such ring holders are well known in the art. In
8 accord with the invention, the ring holder 56 is coupled to
9 a ring 10, e.g., with sutures (not shown), and includes
10 multiple sets of suture guides 58 (circles), 60
11 (cruciforms) along portions of the holder 10 which
12 correspond to the P₁ and P₃ portions of the ring 10. The
13 portions of the holder 10 which correspond to the P₃ and
14 anterior portions of the ring 10 are each preferably
15 provided with a single set of suture guides 62 (along P₃)
16 and 64 (along the anterior portion).

17

18 An annuloplasty ring 10 according to the invention may
19 be implanted in any of three configurations at the mitral
20 valve. Referring to Fig. 5, in accord with the a first
21 method of implantation, the valve annulus 40 is sutured to
22 both the anterior and posterior portions A and P of the
23 ring 10. Thus, the ring 10 is circumferentially continuous

1 (with the anterior portion A intact) in its implanted
2 state. Referring to Fig. 6, in a second method of
3 implantation, the valve annulus 40 is sutured to the
4 posterior portions P₁, P₂ and P₃ of the ring 10, and the
5 anterior portion of the ring is removed from the implant,
6 e.g., by cutting. While the central posterior portion P₂
7 remains intact, the structural design of this portion
8 operates to limit the gradient across the anterior portion
9 of the valve. Referring to Fig. 7, in a third method of
10 implantation, the valve annulus is sutured to the lateral
11 posterior portions P₁ and P₃ of the ring, but not the
12 central posterior portion P₂ or the anterior portion A. The
13 central posterior portion P₂ and anterior portion A are then
14 removed from the ring after the valve annulus is secured to
15 the lateral posterior portions P₁ and P₃. As the ring is
16 structurally stiffer along the lateral posterior portions,
17 the annulus is nevertheless stably supported. Moreover,
18 removal of the central posterior portion P₂ greatly reduces
19 the gradient across the valve and provides a superior
20 result relative to prior art annuloplasty rings. Thus, the
21 invention includes a method whereby the lateral posterior
22 portions of an annulus are supported by an implant, but the
23 anterior and central posterior portion of the annulus are

1 unsupported by an implant so as to reduce a gradient across
2 the mitral valve.

3

4 Turning now to Fig. 8, another embodiment of an
5 annuloplasty ring according the invention is shown. The
6 ring 110 is C-shaped and formed without a significant
7 portion of the anterior portion A or even the entirety
8 thereof. Preferably, all other features of ring 10, e.g.,
9 a construction permitting removal of central portion P₂ and
10 a plurality of sutures sets, are incorporated into ring
11 110. The ring may be implanted in accord with the methods
12 described with respect to Figs. 6 and 7.

13

14 There have been described and illustrated herein
15 embodiments of an annuloplasty mitral valve ring and a
16 method of annuloplasty. While particular embodiments of
17 the invention have been described, it is not intended that
18 the invention be limited thereto, as it is intended that
19 the invention be as broad in scope as the art will allow
20 and that the specification be read likewise.. It will
21 therefore be appreciated by those skilled in the art that
22 yet other modifications could be made to the provided

1 invention without deviating from its spirit and scope as
2 claimed.
3