Fourier Series & Dirichlet's Conditions - Cheat Sheet (Theory Only)

1. Dirichlet's Conditions for Fourier Series

A function can be represented by a Fourier series if it satisfies the following conditions:

Periodicity → The function must be **periodic** over a certain interval.

Single-valued & Finite → The function should have a finite value everywhere.

Finite Discontinuities → The function can have a finite number of discontinuities in one period.

Finite Number of Maxima & Minima → The function must have a limited number of peaks and troughs in a given interval.

2. General Fourier Series

- A Fourier series represents a periodic function as an infinite sum of sine and cosine terms.
- It provides a way to analyze and express complex waveforms using simpler trigonometric components.
- It is used in signal processing, electrical engineering, and physics.

3. Odd & Even Functions in Fourier Series

Odd Functions

Symmetry about the origin \rightarrow f(-x)=-f(x)f(-x) = -f(x). Contains **only sine terms** in its Fourier series expansion.

Example: Sine wave, x3, x5, etc.

Even Functions

Symmetry about the y-axis \rightarrow f(-x)=f(x)f(-x) = f(x).

Contains only cosine terms in its Fourier series expansion.

Example: Cosine wave, x2, x4, etc.

4. Half-Range Fourier Series

Half-Range Sine Series

Used when a function is **defined only over half of its normal range**.

Expands the function using sine terms only, making it odd.

Useful in problems with antisymmetric behavior.

Half-Range Cosine Series

Expands the function using **cosine terms only**, making it **even**.

Useful when the given function is naturally symmetric about the y-axis.

5. Change of Interval in Fourier Series

A function originally defined over one interval **can be transformed** to another interval while maintaining its Fourier representation.

This is useful for scaling and normalizing problems across different domains.

Applied in engineering problems, physics wave equations, and heat conduction analysis.

6. Parseval's Identity

Parseval's theorem states that the **total energy (or power) of a function** in the **time domain** is equal to the sum of the **squares of its Fourier coefficients** in the **frequency domain**.

It is widely used in **signal processing**, **electrical circuits**, **and communication systems** to analyze energy distribution.

This Fourier Series Cheat Sheet covers Dirichlet's conditions, general Fourier series, odd/even functions, half-range expansions, change of interval, and Parseval's identity without formulas. Let me know if you need more explanations!