Quantum interference of latent time-correlations

Hlér Kristjánsson¹, Wenxu Mao^{2,3} and Giulio Chiribella^{2,1}

- 1. Department of Computer Science, University of Oxford, Oxford, United Kingdom
 - 2. Department of Computer Science, The University of Hong Kong, Hong Kong
 - 3. Cornell Tech, Cornell University, New York, NY, United States of America

arXiv:2001.xxxxx

Introduction

- A series of recent papers have demonstrated communication advantages from placing communication channels in a quantum superposition of alternative configurations.
 - Coherent control over the causal ordering of transmission lines¹²³
 - Coherent control over the trajectory through independent transmission lines⁴⁵⁶.
- Here, demonstrate novel effects of coherent control over the time of application of a single time-correlated transmission line.

¹D. Ebler et al., Phys. Rev. Lett. 120, 120502 (2018).

²S. Salek et al., arXiv:1809.06655 (2018).

³G. Chiribella et al., arXiv:1810.10457 (2018).

⁴N. Gisin et al., Phys. Rev. A 72, 012338 (2005).

⁵A. A. Abbott *et al.*, *arXiv:1810.09826* (2018).

⁶G. Chiribella, H. Kristjánsson, *Proc. R. Soc. A* **475**, 20180903 (2019).

Outline

- Introduction
- Notation
 - Quantum states and channels
 - Time-correlated channels
- 3 Communication through time-correlated channels
- Framework
 - Vacuum extension
 - Superposition from vacuum extensions
- 5 Communication advantages
 - Perfect communication through white noise
 - Communication through a network of white noise
- 6 Non-Markovianity vs indefinite causality
- Summary and outlook

Notation: quantum states and channels

- Information carriers are described by **quantum states** $\rho \in St(C)$ of a quantum system C, corresponding to Hilbert space \mathcal{H}_C .
- One use of a transmission line is described by a **quantum channel** $C \in Chan(C)$, i.e. a completely positive trace-preserving map from St(C) to St(C).
- Quantum channels act on quantum states as $C(\rho) = \sum_{i=1}^{r} C_i \rho C_i^{\dagger}$, where $\{C_i\}_{i=1}^{r}$ is a non-unique set of **Kraus operators**.

Notation: time-correlated channels

- Multiple uses of a time-correlated transmission line are described by a **time-correlated quantum channel**⁷ (quantum comb⁸ or non-Markovian quantum channel⁹) $\mathcal{C}_{cor} \in \text{Chan}(C^{(1)} \otimes C^{(2)}, C^{(1)} \otimes C^{(2)})$, with no signalling from output $C^{(2)}$ to input $C^{(1)}$.
- Here consider the simple case where each use of C_{cor} in isolation is described by the same quantum channel C.

• Can be realised through two copies of a Stinespring dilation $\mathcal{W}_{\mathcal{C}}$ of \mathcal{C} with an environment $|\eta\rangle_F$.

⁷C. Macchiavello, G. M. Palma, *Phys. Rev. A* **65**, 050301 (2002).

⁸G. Chiribella *et al.*, *EPL (Europhys. Lett.)* **83**, 30004 (2008).

⁹F. A. Pollock et al., Phys. Rev. A 97, 012127 (1 2018).

Communication through time-correlated channels

- Consider a time-correlated transmission line, where each use in isolation is described by a uniform randomisation over the identity and three Paulis $\{\varsigma_i(\cdot)=\sigma_i(\cdot)\sigma_i\}_{i=0}^3$, i.e. a completely depolarising channel $\mathcal{D}=\sum_{i=0}^3\frac{1}{4}\varsigma_i$.
- Communication at a non-zero rate is possible with an appropriate encoding over two particles¹⁰.

• Here, we achieve **perfect classical communication** by encoding only one bit on a **single particle in a superposition of times** $|\psi\rangle_{M}\otimes|+\rangle_{T}$.

¹⁰C. Macchiavello, G. M. Palma, Phys. Rev. A 65, 050301 (2002).

Vacuum extension (1/2)

- Model communication devices as channels acting on the vacuum state |vac> in the sector Vac when no message is input ¹¹.
- Overall, devices act on the extended system $\widetilde{C} := C \oplus Vac$.

Definition

Channel $\widetilde{\mathcal{C}} \in \mathsf{Chan}(\widetilde{\mathcal{C}})$ is a **vacuum extension** of channel $\mathcal{C} \in \mathsf{Chan}(\mathcal{C})$ if the action of $\widetilde{\mathcal{C}}$ on any state in sector \mathcal{C} (Vac) is given by \mathcal{C} ($\mathcal{I}_{\mathsf{Vac}}$), where $\mathcal{I}_{\mathsf{Vac}}$ is the identity on Vac.

¹¹X.-Q. Zhou et al., Nat. Comm. 2, 413 EP (2011).

Vacuum extension (2/2)

- The Kraus operators are $\widetilde{C}_i = C_i \oplus \gamma_i \; |\text{vac}\rangle\langle\text{vac}| \; , \; \text{where} \; \{\gamma_i\}_{i=1}^r$ are **vacuum amplitudes** satisfying $\sum_i \; |\gamma_i|^2 = 1 \; ^{12}$.
- Mathematically, the vacuum extension is non-unique, however, the choice of vacuum extension is uniquely determined by the physics of the device.
- A time-correlated channel C_{cor} has a vacuum extension \widetilde{C}_{cor} .

Superposition from vacuum extensions (1/2)

- The composite system $\widetilde{C}^{(1)} \otimes \widetilde{C}^{(2)}$ contains a **one-particle sector** $(C^{(1)} \otimes \mathsf{Vac}) \oplus (\mathsf{Vac} \otimes C^{(2)}).$
- This is isomorphic to $M \otimes T$, where $M \simeq C^{(1)} \simeq C^{(2)}$ is the **message** system and T is the **timer** qubit of alternative times $|0\rangle_T$ and $|1\rangle_T$.

Superposition from vacuum extensions (2/2)

Definition

The superposition of times of \mathcal{C}_{cor} specified by the vacuum extension $\widetilde{\mathcal{C}}_{\text{cor}}$ is the channel

$$\mathcal{S}(\widetilde{\mathcal{C}}_{\mathsf{cor}})(\rho) := \mathcal{V}^{\dagger} \circ \widetilde{\mathcal{C}}_{\mathsf{cor}} \circ \mathcal{V}\left(\rho \otimes |+\rangle\!\langle +|\right),$$

where the isomorphism $\mathcal{V}=V(\cdot)V^{\dagger}$ between the particle picture $M\otimes T$ and the mode picture $\left(C^{(1)}\otimes \mathsf{Vac}\right)\oplus \left(\mathsf{Vac}\otimes C^{(2)}\right)$ is defined by

$$egin{aligned} V(|\psi
angle_M\otimes|0
angle_{\mathcal{T}}) &:= |\psi
angle_{\widetilde{\mathcal{C}}^{(1)}}\otimes|\mathsf{vac}
angle_{\widetilde{\mathcal{C}}^{(2)}} \ V(|\psi
angle_M\otimes|1
angle_{\mathcal{T}}) &:= |\mathsf{vac}
angle_{\widetilde{\mathcal{C}}^{(1)}}\otimes|\psi
angle_{\widetilde{\mathcal{C}}^{(2)}} \,. \end{aligned}$$

Perfect communication through white noise (1/3)

- Consider a time-correlated transmission line, where each use in isolation is described by a uniform randomisation over the identity and three Paulis $\{\varsigma_i(\cdot)=\sigma_i(\cdot)\sigma_i\}_{i=0}^3$, i.e. a completely depolarising channel $\mathcal{D}=\sum_{i=0}^3\frac{1}{4}\varsigma_i$.
- The second choice of unitary $\sigma_{i'}$ is correlated with the first choice of unitary σ_i via a permutation $\mathcal{P}: i \mapsto i'$, leading to the time-correlated channel $\mathcal{D}_{\mathcal{P}}$.
- The vacuum extension of each Pauli is given by $\widetilde{\sigma}_i = \sigma_i \oplus e^{i\phi_i} |\text{vac}\rangle\langle\text{vac}|$, with $\widetilde{\mathcal{D}} = \sum_{i=0}^3 \frac{1}{4}\widetilde{\varsigma}_i$.

Perfect communication through white noise (2/3)

• The superposition of times of $\mathcal{D}_{\mathcal{P}}$ specified by the vacuum extension $\widetilde{\mathcal{D}}_{\mathcal{P}}$, where $\widetilde{\sigma}_i = \sigma_i \oplus e^{i\phi_i} |\text{vac}\rangle\langle\text{vac}|$, is

$$\mathcal{S}\Big(\widetilde{\mathcal{D}}_{\mathcal{P}}\Big)(\rho) = \frac{\frac{1}{d} + \mathcal{G}(\mathcal{P}, \{\phi_i\}, \rho)}{2} \otimes |+\rangle \langle +| + \frac{\frac{1}{d} - \mathcal{G}(\mathcal{P}, \{\phi_i\}, \rho)}{2} \otimes |-\rangle \langle -| ,$$

assuming the latent interference term

 $\mathcal{G}(\mathcal{P}, \{\phi_i\}, \rho) := \frac{1}{4} \sum_{i=0}^3 e^{i(\phi_{i'} - \phi_i)} \sigma_i \rho \sigma_{i'}$ is hermitian.

- Depends both on the vacuum amplitudes $\{e^{\phi_i}\}$ and the permutation of noisy processes \mathcal{P} .
- The time-correlations are **latent** accessible only via the interference of the time modes.

Perfect communication through white noise (3/3)

• For the permutation $\mathcal{P}(0,1,2,3)=(1,0,3,2)$, encode one bit of information in the orthogonal states $|\pm\rangle\langle\pm|$:

$$\mathcal{G}\left[(1,0,3,2),\{\phi_i\},|\pm\rangle\langle\pm|\right] = \frac{1}{2}\left\{|\pm\rangle\langle\pm|\cos\left(\phi_x-\phi_0\right)\pm|\mp\rangle\langle\mp|\sin\left(\phi_z-\phi_y\right)\right\}.$$

- For $\phi_z \phi_y = \pi/2$, $\phi_x \phi_0 = 0$, this gives $\mathcal{G}\left[(1,0,3,2), \{\phi_i\}, |\pm\rangle\langle\pm|\right] = \pm I/2$. Hence, $\mathcal{S}\left(\widetilde{\mathcal{D}}_{(1,0,3,2)}\right)(|\pm\rangle\langle\pm|) = I/2_M \otimes |\pm\rangle\langle\pm|_T$, which is a noiseless bit channel with **unit classical capacity**.
- Cannot be achieved with the superposition of trajectories through independent quantum channels.

Figure 1: A plot of the parameters ϕ_x and ϕ_z of $\mathcal{S}\left(\widetilde{\mathcal{D}}_{(1,0,3,2)}\right)$ (on the two axes) against the Holevo information $\chi\left[\mathcal{S}\left(\widetilde{\mathcal{D}}_{(1,0,3,2)}\right)\right]$ (colour) for the superposition of times of $\mathcal{D}_{(1,0,3,2)}$ specified by the vacuum extensions $\widetilde{\sigma}_i = \sigma_i \oplus e^{i\phi_i} |\text{vac}\rangle\langle\text{vac}|$.

Simulation of the quantum SWITCH

- With two time-correlated transmission lines, can simulate the action of the quantum SWITCH¹³ for the identity permutation $\mathcal{P}\left(0,1,2,3\right)=\left(0,1,2,3\right)$ (and any choice of vacuum extensions), achieving a Holevo information of $\mathbf{0.049}^{14}$.
- Corresponds to the photonic experiments of the quantum SWITCH¹⁵(?).

• In fact, we can do even better: the permutation $\mathcal{P}(0,1,2,3)=(1,0,3,2)$ can achieve a Holevo information of **0.311** (e.g. for $\phi_i=0 \ \forall i$).

¹³G. Chiribella et al., Phys. Rev. A 88, 022318 (2013).

¹⁴D. Ebler et al., Phys. Rev. Lett. **120**, 120502 (2018).

¹⁵G. Rubino et al., Science Advances 3, e1602589 (2017).

Non-Markovianity vs indefinite causality (1/2)

- The resources¹⁶¹⁷ for the superposition of times vs the quantum SWITCH are different:
 - Superposition of times: Two uses of two time-correlated (non-Markovian) transmission lines with vacuum extensions, with coherent control of the times of application.
 - Quantum SWITCH: One use of each of two independent transmission lines (the specification of vacuum extensions not required), with coherent control over their causal order.
 - The former can simulate the latter, so defines a stronger set of resources.

¹⁶P. A. Guérin et al., Phys. Rev. A **99**, 062317 (2019).

¹⁷H. Kristjánsson et al., arXiv:1910.08197 (2019).

Non-Markovianity vs indefinite causality (2/2)

- The communication advantages in the superposition of times arise from the interplay between
 - lacktriangledown the **permutations** $\mathcal P$ of time-correlated noisy processes
 - ② the **phase differences** $\{\phi_i\}$ between the action of each noisy process on the one-particle and vacuum sectors
 - **1** the coherent control over the time of application.
- The communication advantages of the quantum SWITCH arise solely from the coherent control over the causal order.

Summary and outlook

- Presented a novel quantum phenomenon: the interference of latent time-correlations.
- Constructed from a superposition of time modes through the vacuum extension of time-correlated channels.
- Enables perfect communication through time-correlated white noise, using only a **single particle in a superposition of time modes**.
- This framework can be used to simulate the quantum SWITCH.