Chapter 3

The Relational Data Model and Relational Database Constraints

Addison-Wesley is an imprint of

Chapter 3 Outline

The Relational Data Model and Relational Database Constraints
Relational Model Constraints
and Relational Database Schemas

Update Operations, Transactions, and Dealing with Constraint Violations

The Relational Data Model and Relational Database Constraints

Relational model

First commercial implementations available in early 1980s

Has been implemented in a large number of commercial system

Hierarchical and network models

Preceded the relational model

Relational Model Concepts⁴

Represents data as a collection of relations

Table of values

Row

- Represents a collection of related data values
- Fact that typically corresponds to a real-world entity or relationship
- Tuple

Table name and column names

Interpret the meaning of the values in each row attribute

Relational Model Concepts₅ (cont'd.)

Figure 3.1
The attributes and tuples of a relation STUDENT.

Domains, Attributes, Tuples, and Relations

Domain D

Set of atomic values

Atomic

Each value indivisible

Specifying a domain

Data type specified for each domain

Domains, Attributes, Tuples, and Relations (cont'd.)

Relation schema R

Denoted by $R(A_1, A_2, ..., A_n)$

Made up of a relation name R and a list of attributes, $A_1, A_2, ..., A_n$

Attribute A_i

Name of a role played by some domain D (dom(A_i)) in the relation schema R

Degree (or arity) of a relation

Number of attributes n of its relation schema

• STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

Domains, Attributes, Tuples, and Relations (cont'd.)

Relation (or relation state)

Set of *n*-tuples $r = \{t_1, t_2, ..., t_m\}$

Each *n*-tuple *t*

- Ordered list of *n* values $t = \langle v_1, v_2, ..., v_n \rangle$
- Each value v_i , $1 \le i \le n$, is an element of dom (A_i) or is a special NULL value

Domains, Attributes, Tuples, and Relations (cont'd.)

Relation (or relation state) r(R)

Mathematical relation of degree n on the domains $dom(A_1)$, $dom(A_2)$, ..., $dom(A_n)$

Subset of the **Cartesian product** of the domains that define R:

• $r(R) \subseteq (\text{dom}(A_1) \times \text{dom}(A_2) \times ... \times \text{dom}(A_n))$

Domains, Attributes, Tuples, and Relations (cont'd.)

Cardinality

Total number of values in domain

Current relation state

Relation state at a given time

Reflects only the valid tuples that represent a particular state of the real world

Attribute names

Indicate different **roles**, or interpretations, for the domain

Characteristics of Relations 11

Ordering of tuples in a relation

Relation defined as a set of tuples

Elements have no order among them

Ordering of values within a tuple and an alternative definition of a relation

Order of attributes and values is not that important

As long as correspondence between attributes and values maintained

Characteristics of Relations ₁₂ (cont'd.)

Alternative definition of a relation

Tuple considered as a set of (<attribute>, <value>) pairs

Each pair gives the value of the mapping from an attribute A_i to a value v_i from dom(A_i)

Use the first definition of relation

Attributes and the values within tuples are ordered

Simpler notation

Characteristics of Relations

Figure 3.2

The relation STUDENT from Figure 3.1 with a different order of tuples.

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Figure 3.3

Two identical tuples when the order of attributes and values is not part of relation definition.

t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road), (Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

t = < (Address, 3452 Elgin Road), (Name, Dick Davidson), (Ssn, 422-11-2320), (Age, 25), (Office_phone, (817)749-1253), (Gpa, 3.53), (Home_phone, NULL)>

Characteristics of Relations ₁₄ (cont'd.)

Values and NULLs in tuples

Each value in a tuple is atomic

Flat relational model

- Composite and multivalued attributes not allowed
- First normal form assumption

Multivalued attributes

Must be represented by separate relations

Composite attributes

 Represented only by simple component attributes in basic relational model

Characteristics of Relations₁₅ (cont'd.)

NULL values

Represent the values of attributes that may be unknown or may not apply to a tuple

Meanings for NULL values

- Value unknown
- Value exists but is not available
- Attribute does not apply to this tuple (also known as value undefined)

Characteristics of Relations (cont'd.)

Interpretation (meaning) of a relation

Assertion

 Each tuple in the relation is a fact or a particular instance of the assertion

Predicate

 Values in each tuple interpreted as values that satisfy predicate

Relational Model Notation 17

Relation schema R of degree nDenoted by $R(A_1, A_2, ..., A_n)$

Uppercase letters Q, R, S
Denote relation names

Lowercase letters *q*, *r*, *s*Denote relation states

Letters *t*, *u*, *v*Denote tuples

Name of a relation schema: STUDENT Indicates the current set of tuples in that relation

Notation: STUDENT(Name, Ssn, ...)

Refers only to relation schema

Attribute A can be qualified with the relation name R to which it belongs
Using the dot notation R.A

Relational Model Notation 19

n-tuple t in a relation r(R)

Denoted by $t = \langle v_1, v_2, ..., v_n \rangle$

 v_i is the value corresponding to attribute A_i

Component values of tuples:

 $t[A_i]$ and $t.A_i$ refer to the value v_i in t for attribute A_i

 $t[A_u, A_w, ..., A_z]$ and $t.(A_u, A_w, ..., A_z)$ refer to the subtuple of values $\langle v_u, v_w, ..., v_z \rangle$ from t corresponding to the attributes specified in the list

As an example, consider the tuple

t = <'Barbara Benson', '533-69-1238', '(817)839-8461', '7384 Fontana Lane', NULL, 19, 3.25> from the STUDENT relation;

we have t[Name] = <'Barbara Benson'>, and

t[Ssn_Gpa_Age] = < '533-69-1238',3.25, 19>

Relational Model Constraints

Constraints

Restrictions on the actual values in a database state

Derived from the rules in the miniworld that the database represents

Inherent model-based constraints or implicit constraints

Inherent in the data model

Relational Model Constraints (cont'd.)

Schema-based constraints or explicit constraints

Can be directly expressed in schemas of the data model

Application-based or semantic constraints or business rules

Cannot be directly expressed in schemas Expressed and enforced by application program

Domain Constraints

Typically include:

Numeric data types for integers and real numbers

Characters

Booleans

Fixed-length strings

Variable-length strings

Date, time, timestamp

Money

Other special data types

Key Constraints and Constraints on NULL Values

No two tuples can have the same combination of values for all their attributes.

Superkey

No two distinct tuples in any state *r* of *R* can have the same value for SK

Key

Superkey of R

Removing any attribute A from K leaves a set of attributes K that is not a superkey of R any more

Key Constraints and Constraints on NULL Values (cont'd.)

Key satisfies two properties:

Two distinct tuples in any state of relation cannot have identical values for (all) attributes in key

Minimal superkey

 Cannot remove any attributes and still have uniqueness constraint in above condition hold

Key Constraints and Constraints on NULL Values (cont'd.)

Candidate key

Relation schema may have more than one key

Primary key of the relation

Designated among candidate keys

Underline attribute

Other candidate keys are designated as unique keys

Key Constraints and Constraints on NULL Values (cont'd.)

CAR

Figure 3.4
The CAR relation, with two candidate keys:
License_number and
Engine_serial_number.

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Relational Databases and Relational Database Schemas

Relational database schema S

Set of relation schemas $S = \{R_1, R_2, ..., R_m\}$

Set of integrity constraints IC

Relational database state

Set of relation states $DB = \{r_1, r_2, ..., r_m\}$

Each r_i is a state of R_i and such that the r_i relation states satisfy integrity constraints specified in IC

Relational Databases and Relational Database Schemas (cont'd.)

Invalid state

Does not obey all the integrity constraints

Valid state

Satisfies all the constraints in the defined set of integrity constraints IC

Integrity, Referential Integrity, and Foreign Keys

Entity integrity constraint

No primary key value can be NULL

Referential integrity constraint

Specified between two relations

Maintains consistency among tuples in two relations

Integrity, Referential Integrity, and Foreign Keys (cont'd.)

Foreign key rules:

The attributes in FK have the same domain(s) as the primary key attributes PK

Value of FK in a tuple t_1 of the current state $r_1(R_1)$ either occurs as a value of PK for some tuple t_2 in the current state $r_2(R_2)$ or is NULL

Integrity, Referential Integrity, and Foreign Keys (cont'd.)

Diagrammatically display referential integrity constraints

Directed arc from each foreign key to the relation it references

All integrity constraints should be specified on relational database schema

Other Types of Constraints 32

Semantic integrity constraints

May have to be specified and enforced on a relational database

Use triggers and assertions

More common to check for these types of constraints within the application programs

Other Types of Constraints (cont'd.)

Functional dependency constraint

Establishes a functional relationship among two sets of attributes X and Y

Value of X determines a unique value of Y

State constraints

Define the constraints that a valid state of the database must satisfy

Transition constraints

Define to deal with state changes in the database

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Update Operations, Transactions, and Dealing with Constraint Violations

Operations of the relational model can be categorized into retrievals and updates

Basic operations that change the states of relations in the database:

Insert

Delete

Update (or Modify)

The Insert Operation

Provides a list of attribute values for a new tuple t that is to be inserted into a relation R

Can violate any of the four types of constraints

If an insertion violates one or more constraints

Default option is to reject the insertion

The Delete Operation

Can violate only referential integrity If tuple being deleted is referenced by foreign keys from other tuples

Restrict

Reject the deletion

Cascade

 Propagate the deletion by deleting tuples that reference the tuple that is being deleted

Set null or set default

 Modify the referencing attribute values that cause the violation

The Update Operation

Necessary to specify a condition on attributes of relation

Select the tuple (or tuples) to be modified

If attribute not part of a primary key nor of a foreign key

Usually causes no problems

Updating a primary/foreign key
Similar issues as with Insert/Delete

The Transaction Concept

Transaction

Executing program

Includes some database operations

Must leave the database in a valid or consistent state

Online transaction processing (OLTP) systems

Execute transactions at rates that reach several hundred per second

Figure 3.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT_LOCATIONS

Dnumber	Dlocation		
1	Houston		
4	Stafford		
5	Bellaire		
5	Sugarland		
5	Houston		

Figure 3.6
One possible database state for the COMPANY relational database schema.

WORKS_ON

Essn	Dno	Hauss
ESSII	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Summary

Characteristics differentiate relations from ordinary tables or files

Classify database constraints into:

Inherent model-based constraints, explicit schema-based constraints, and application-based constraints

Modification operations on the relational model:

Insert, Delete, and Update

