GENERAL PHYSICS 1 VECTOR ADDITION and COMPONENTS OF VECTOR

Name: Rei Benedict L. Millano Grade and Section: 12-Laplace

Directions: Date: 9/9/22

Read and understand each situation. Show a comprehensive step-by-step solution and your final answer.

1. A grab driver drives a delivery vehicle along a route shown in Figure 1. Determine the magnitude and direction of the resultant displacement by drawing a scale dia

Figure 1

Vector	Magnitude = M	Direction = A	x-component M(cos(A))	y-Component M(sin(A))
A	2.5	90 degrees	0	2.5
В	4	0 degrees	4	0
С	3.1	45 degrees	2.19	2.19
Summation of x and y components			6.19	4.69

The resultant vector has a magnitude of 7.7 kilometers with a direction of 37 degrees north of east.

Scale Diagram is in the next page

 M_{new} = New Magnitude

X = sum of x components

Y = sum of y components

$$M_{\text{new}} = \sqrt{X^2 + Y^2}$$

$$M_{new} = \sqrt{6.19^2 + 4.69^2}$$

$$\sqrt{38.32 + 21}$$

$$\sqrt{59.32}$$

 $M_{\text{new}} = 7.7 \ km$

 A_{new} = New Direction

X = sum of x components

Y = sum of y components

$$A_{\text{new}} = \frac{180}{\pi} \tan^{-1} \left(\frac{Y}{X}\right)$$

$$A_{\text{new}} = \frac{180}{\pi} \tan^{-1} \left(\frac{4.69}{6.19} \right)$$

$$\frac{180}{\pi}$$
tan⁻¹(0.7577)

$$\frac{180}{\pi}$$
 (0.6484)

2. Compute the x- and y-components of vectors A, B and C in Figure 2.

Figure 2

Vector	Magnitude = M	Direction = A	x-component M(cos(A))	y-Component M(sin(A))
A	12	53 degrees	7.22	9.58
В	15	320 degrees	11.49	-9.64
С	6	240 degrees	-3	-5.2
Summation of x and y components			15.71	-5.26

M_{new} = New Magnitude

X = sum of x components

Y = sum of y components

$$M_{\text{new}} = \sqrt{X^2 + Y^2}$$

$$M_{new} = \sqrt{15.71^2 + -5.26^2}$$

$$\sqrt{246.8 + 27.67}$$

$$\sqrt{274.47}$$

 $M_{\text{new}} = 15.73 \ m$

A_{new} = New Direction

X = sum of x components

Y = sum of y components

$$A_{\text{new}} = \frac{180}{\pi} \tan^{-1} \left(\frac{Y}{X} \right)$$

$$A_{\text{new}} = \frac{180}{\pi} \tan^{-1} \left(\frac{-5.26}{15.71} \right)$$

$$\frac{180}{\pi} \tan^{-1}(0.3348)$$

$$\frac{180}{\pi}(-0.323)$$

$$A_{new} = -19 \text{ or } 341 \text{ degrees}$$

The resultant vector has a magnitude of 15.73 meters with a direction of 341 degrees along the x axis or -19 degrees south of east.

- 3. Given the following displacements of a moving car, illustrate and calculate for the resultant displacement.
 - $d_1 = 72.4 \text{ m}, 58.0^{\circ} \text{ north of east}$
 - $d_2 = 57.3 \text{ m}, 36.0^{\circ} \text{ south of west}$
 - $d_3 = 17.8 \text{ m, south}$

Vector	Magnitude = M	Direction = A	x-component M(cos(A))	y-Component M(sin(A))
D1	72.4	32 degrees	61.4	38.37
D2	57.3	213 degrees	-48.06	-31.21
D3	17.8	270 degrees	0	-17.8
Summation of x and y components			13.34	-10.64

$$X = sum of x components$$

$$M_{\text{new}} = \sqrt{X^2 + Y^2}$$

$$M_{\text{new}} = \sqrt{13.34^2 + -10.64^2}$$

$$\sqrt{117.96 + 113.21}$$

$$\sqrt{231.17}$$

$$M_{\text{new}} = 15.2 \ m$$

$$X = sum of x components$$

Y = sum of y components

$$A_{\text{new}} = \frac{180}{\pi} \tan^{-1} \left(\frac{Y}{X}\right)$$

$$A_{\text{new}} = \frac{180}{\pi} \tan^{-1} \left(\frac{-10.64}{13.34} \right)$$

$$\frac{180}{\pi}$$
tan⁻¹(-0.7976)

$$\frac{180}{\pi}(-0.6733)$$

$$A_{\text{new}} = -39 \text{ or } 321 \text{ degrees}$$

The resultant vector has a magnitude of 15.2 meters with a direction of 321 degrees along the x axis or -39 degrees south of east.