HRNet

Deep High-Resolution Representation Learning for Human Pose Estimation

Byunghyun Kim, Chanhyeok Lee, Eungi Hong, Jongsik Ahn, Hyeonjin Kim, Jaewan Park, Chungchun Hyun, Seonok Kim()

Introduction

Pose Estimation

- A computer vision task that represents the orientation of a person in a graphical format.
- Widely applied to predict a person's body parts or joint position.

Direct Regression

regresses the key body points directly from the feature maps. ³

HeatMap Regression

estimates the probability of the existence of a key point in each pixel of the image.

Pose Estimation

Top-down

is detecting all individuals in a given image using a human detector module.

Bottom-up

is detecting all key-points (body parts) in an instance agnostic manner and then associating key-points to build a human instance

HRNet 4

Previous Methods

- Most existing methods pass the input through a network, typically consisting of high-to-low resolution sub-networks that are connected in series, and then raise the resolution.

Stacked hourglass

recovers the high resolution through a symmetric low-to-high process.

Simple Baseline

uses transposed convolutions for low-to-high processing.

Approach

HRNet

- HRNet starts from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages and connect the mutli-resolution subnetworks in parallel.

Previous Methods

typically consist of high-to-low resolution sub-networks that are connected in series, and then raise the resolution.

Proposed Method

consists of parallel high-to-low resolution subnetworks with repeated information exchange across multi-resolution subnetworks (multi-scale fusion)

Parallel Multi-resolution Subnetworks

- Parallel Subnetworks start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one, forming new stages, and connect the multi-resolution subnetworks in parallel.
- N_{sr} : the subnetwork, s:sth stage, r: the resolution index

Sequential Subnetworks

Existing networks for pose estimation are built by connecting high-to-low resolution subnetworks in series.

$$\mathcal{N}_{11} \rightarrow \mathcal{N}_{22} \rightarrow \mathcal{N}_{33} \rightarrow \mathcal{N}_{44}$$
.

Parallel Subnetworks

The resolutions for the parallel sub-networks of a later stage consists of the resolutions from the previous stage, and an extra lower one.

$$\mathcal{N}_{11} \rightarrow \mathcal{N}_{21} \rightarrow \mathcal{N}_{31} \rightarrow \mathcal{N}_{41}
\searrow \mathcal{N}_{22} \rightarrow \mathcal{N}_{32} \rightarrow \mathcal{N}_{42}
\searrow \mathcal{N}_{33} \rightarrow \mathcal{N}_{43}
\searrow \mathcal{N}_{44}.$$

Repeated Multi-scale Fusion

- HRNet contains four stages with four parallel subnetworks, whose resolution is gradually decreased to a half and accordingly the width (the number of channels) is increased to the double.
- The resolution is $\frac{1}{2^{r-1}}$ of the resolution of the first subnetwork.

The Stages of HRNet

- There are four stages. The 1st stage consists of high-resolution convolutions.
- The 2nd (3rd, 4th) stage repeats tworesolution (three-resolution, four-resolution) blocks.

Repeated Multi-scale Fusion

- Exchange units: each subnetwork repeatedly receives the information from other parallel subnetworks.

- Up-sampling or down-sampling X_i from resolution i to resolution k: $\alpha(X_i, k)$
- If : i = k, $\alpha(X_i, k) = X_i$.
- Each output is an aggregation of the input maps: $Y_k = \sum_{i=1}^s \alpha(X_{i,k})$
- The exchange unit across stages has an extra output map: $\Upsilon_{s+1} = \alpha(\Upsilon_s, s+1)$

- Inputs : $\{X_1, X_2, ..., X_s\}$
- Outputs : $\{Y_1, Y_2, ..., Y_s\}$
- *s*th stage : *s*

Repeated Multi-scale Fusion

- Exchange units: each subnetwork repeatedly receives the information from other parallel subnetworks.
- Each block is composed of 3 parallel convolution units with an exchange unit across the parallel units, which is given as follows:

Heatmap Estimation

Gaussian heatmap

- The groundtruth heatmaps are generated by applying 2D Gaussian.
- The mean squared error is applied for regressing the heatmaps.

Network Instantiation

The type of nets

The widths(C) of the high-resolution subnetworks in last three stages

HRNet-W32 — 64, 128, 256

HRNet-W48 — 96, 192, 384

- The network is instantiated by following the design rule of ResNet.
- The resolution is gradually decreased to a half, and accordingly, the width (the number of channels) is increased to double.

Question 😌

Experiments

Dataset

Figure 4. Qualitative results of some example images in the MPII (top) and COCO (bottom) datasets: containing viewpoint and appearance change, occlusion, multiple persons, and common imaging artifacts.

COCO Keypoint Dataset

- 17 keypoints
- 200K images and 250K person instances
- Train, validation, test set
- Metric: OKS, AP

MPII Human Pose Dataset

- 16 keypoints
- 25K images with 40K subjects
- Train, test set
- Metric: PCKh

Evaluation Metric: Object Keypoint Similarity (OKS)

OKS =
$$\frac{\sum_{i} \exp\left(-d_{i}^{2}/2s^{2}k_{i}^{2}\right)\delta\left(v_{i}>0\right)}{\sum_{i} \delta\left(v_{i}>0\right)}$$

- d_i Euclidean distances between each ground truth and detected keypoint
- v_i Visibility flags of the ground truth

v = 0: not labeled

v = 1: labeled but not visible

v = 2: labeled and visible

 $s*k_i$ Scale*keypoint constant, the standard deviation of this gaussian

Perfect predictions will have OKS = 1 Predictions with wrong keypoints will have OKS~0

Constants for joints

Keypoint	k_{i}	
hips	0.107	484
ankles	0.089	
knees	0.087	~7 1
shoulders	0.079	\bullet 1 1 \bullet
elbows	0.072	
wrists	0.062	0770
ears	0.035	
nose	0.026	II
eyes	0.025	

$$AP^{50}$$
 AP at OKS = 0.50

AP^{M,L} The mean of AP scores at 10 positions*, for medium objects and large objects

AR Average recall at 10 positions*

*10 positions : OKS = 0.50, 0.55, . . . , 0.90, 0.95

Evaluation Metric: Head-normalized Probability of Correct Keypoint (PCKh)

PCK

- A detected joint is considered 'correct' if the distance between the predicted and the true joint is within a certain threshold.

PCKh

- PCKh uses head size instead of bounding box size.
- PCKh@0.5 is when the threshold = 50% of the head bone link

COCO Keypoint Detection

- HRNet is significantly better than bottom-up approaches.
- It outperforms all the other top-down approaches and is more efficient in terms of model size and computation complexity.

Table 2. Comparisons on the COCO test-dev set. #Params and FLOPs are calculated for the pose estimation network, and those for human detection and keypoint grouping are not included.

Method	Backbone	Input size	#Params	GFLOPs	AP	AP^{50}	AP^{75}	AP^M	AP^L	AR		
Bottom-up: keypoint detection and grouping												
OpenPose [6]	_	_	_	_	61.8	84.9	67.5	57.1	68.2	66.5		
Associative Embedding [39]	_	_	_	_	65.5	86.8	72.3	60.6	72.6	70.2		
PersonLab [46]	_	-	_	-	68.7	89.0	75.4	64.1	75.5	75.4		
MultiPoseNet [33]	_	_	_	_	69.6	86.3	76.6	65.0	76.3	73.5		
Top-down: human detection and single-person keypoint detection												
Mask-RCNN [21]	ResNet-50-FPN			_	63.1	87.3	68.7	57.8	71.4	_		
G-RMI [47]	ResNet-101	353×257	42.6M	57.0	64.9	85.5	71.3	62.3	70.0	69.7		
Integral Pose Regression [60]	ResNet-101	256×256	45.0M	11.0	67.8	88.2	74.8	63.9	74.0	_		
G-RMI + extra data [47]	ResNet-101	353×257	42.6M	57.0	68.5	87.1	75.5	65.8	73.3	73.3		
CPN [11]	ResNet-Inception	384×288	_	_	72.1	91.4	80.0	68.7	77.2	78.5		
RMPE [17]	PyraNet [77]	320×256	28.1M	26.7	72.3	89.2	79.1	68.0	78.6	-		
CFN [25]		_	_	_	72.6	86.1	69.7	78.3	64.1	_		
CPN (ensemble) [11]	ResNet-Inception	384×288	_	_	73.0	91.7	80.9	69.5	78.1	79.0		
SimpleBaseline [72]	ResNet-152	384×288	68.6M	35.6	73.7	91.9	81.1	70.3	80.0	79.0		
HRNet-W32	HRNet-W32	384×288	28.5M	16.0	74.9	92.5	82.8	71.3	80.9	80.1		
HRNet-W48	HRNet-W48	384×288	63.6M	32.9	75.5	92.5	83.3	71.9	81.5	80.5		
HRNet-W48 + extra data	HRNet-W48	384×288	63.6M	32.9	77.0	92.7	84.5	73.4	83.1	82.0		

MPII Human Pose Estimation

- The result is the best one among the previously-published results on the leaderboard of Nov. 16th, 2018.
- HRNet-W32 achieves a 92.3 PKCh@0.5 score and outperforms the stacked hourglass approach and its extensions.

Table 3. Performance comparisons on the MPII test set (PCKh@0.5).

Method	Hea	Sho	Elb	Wri	Hip	Kne	Ank	Total
Insafutdinov et al. [27]	96.8	95.2	89.3	84.4	88.4	83.4	78.0	88.5
Wei et al. [69]	97.8	95.0	88.7	84.0	88.4	82.8	79.4	88.5
Bulat et al. [4]	97.9	95.1	89.9	85.3	89.4	85.7	81.7	89.7
Newell et al. [40]	98.2	96.3	91.2	87.1	90.1	87.4	83.6	90.9
Sun et al. [58]	98.1	96.2	91.2	87.2	89.8	87.4	84.1	91.0
Tang et al. [63]	97.4	96.4	92.1	87.7	90.2	87.7	84.3	91.2
Ning et al. [44]	98.1	96.3	92.2	87.8	90.6	87.6	82.7	91.2
Luvizon et al. [37]	98.1	96.6	92.0	87.5	90.6	88.0	82.7	91.2
Chu et al. [14]	98.5	96.3	91.9	88.1	90.6	88.0	85.0	91.5
Chou et al. [12]	98.2	96.8	92.2	88.0	91.3	89.1	84.9	91.8
Chen et al. [10]	98.1	96.5	92.5	88.5	90.2	89.6	86.0	91.9
Yang et al. [77]	98.5	96.7	92.5	88.7	91.1	88.6	86.0	92.0
Ke et al. [31]	98.5	96.8	92.7	88.4	90.6	89.3	86.3	92.1
Tang et al. [62]	98.4	96.9	92.6	88.7	91.8	89.4	86.2	92.3
SimpleBaseline [72]	98.5	96.6	91.9	87.6	91.1	88.1	84.1	91.5
HRNet-W32	98.6	96.9	92.8	89.0	91.5	89.0	85.7	92.3

Ablation Study

- Figure 5 implies that the resolution does impact the keypoint prediction quality.
- Figure 6 implies that the improvement for the smaller input size is more significant than the larger input size.

Figure 5. Ablation study of high and low representations. $1\times, 2\times, 4\times$ correspond to the representations of the high, medium, low resolutions, respectively.

Figure 6. Illustrating how the performances of our HRNet and SimpleBaseline [72] are affected by the input size.

Conclusion

Conclusion

Benchmarks

- The proposed method maintains the high resolution through the whole process without the need of recovering the high resolution.
- It fuses multi-resolution representations repeatedly, rendering reliable high-resolution representations.
- HRNet gets good performance in other computer vision tasks, including human pose estimation, semantic segmentation, and object detection.

Question 😌

Sources

<u>Paper</u>

- Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019)
- High-Resolution Representations for Labeling Pixels and Regions (arXiv:1904.04514)
- Towards Accurate Multi-person Pose Estimation in the Wild (CVPR 2017)
- Articulated Human Pose Estimation with Flexible Mixtures of Parts (CVPR 2011)
- UniPose+: A unified framework for 2D and 3D human pose estimation in images and videos (TPAMI 2021)

YouTube

- [Paper Review] Deep High-Resolution Representation Learning for Human Pose Estimation (https://www.youtube.com/watch?v=w39bjQxm1eg)

Blog

- Pose Estimation. Metrics. (https://stasiuk.medium.com/pose-estimation-metrics-844c07ba0a78)

Presenter

Seonok Kim (sokim0991@korea.ac.kr)