

TUTORIAL 8 SEQUENTIAL LOGIC: FLIP FLOP

PDS0101: INTRODUCTION TO DIGITAL SYSTEMS TRI 2, 2022-2023

Flip - Flop S-R FF JK FF NGT DFF NGT S-RFF PGT S-R FF PGT JKFF NGT JKFF

truthtable

22 = 4

SR Latch

ΕN	S	K	Output	State
1	0	0	follow	rest
1	0	1	Q = O	reset
1		٥	Q = 1	set
1	-	(follow	invalid

PGT SR FF

CIK	S	R	Output	State
1	Q	0	follow	rest
小	0	1	Q = 0	reset
1		0	Q = 1	set
1			follow	invalid

0

a follows SR

NG	JK	‡F
		• •

follow	J	JK
		01
		ID

CIK	S	R	output state			
↓	0	0	follow	rest		
1	0	ſ	Q = 0	resed		
1		٥	Q = 1	set		
↓	1	1	follow	invalid		

NGT SR FF

Clk	J	K	output	state
1	C	0	follow	rest
1	0	-	Q = 0	reset
1		0	Q = 1	set
↓	1		toggie	set/reset

PGT D FF Q follow D

Clk	D	/	Output	state
1	O		(A = 0)	reset
1	1		Q =1	set

1. Identify the two flip-flops shown below and draw their respective timing diagrams for their Q outputs based on the inputs shown. The FF are initially RESET. Q = 0

The FF are initially **RESET**. **Negative Going Edge-triggered(NGT)**

The FF are initially **RESET**. **Positive Going Edge-triggered(PGT)**

2. The Q output of a **positive going ET** S-R flip-flop is shown in the timing diagram below. Determine the **correct inputs to S and R** that are required to produce this output.

CLK	S	R	Q (OUTPUT)
Q			
1		O	1
٦	0		0
3	0	0	0
4		0	1
5	0	0 0 1	1
6	0		0
7		0	1
8	0	1	0
9	000	0 1	O

2. The Q output of a **positive going ET** S-R flip-flop is shown in the timing diagram below. Determine the **correct inputs to S and R** that are required to produce the this output.

3. Draw the Q output of a **D flip-flop** with the inputs shown in the timing diagram below. You may assume that the FF is positive going triggered and **Q** is initially LOW Q = D

4. For a **positive** going ET J-K flip-flop with inputs as shown below, determine the Q output relative to the CLK if Q starts out **LOW**

5. For a **positive** going ET J-K flip-flop with inputs as shown below, determine the Q output relative to the CLK if Q starts out **LOW**

6. For the circuit shown below, determine the output of Q (which starts out LOW) based on the inputs shown the in the timing diagram

6. For the circuit shown below, determine the output of Q (which starts out LOW) based on the inputs shown the in the timing diagram

CLK	J ₁	J ₂	J ₃	J	K 1	K ₂	K 3	K	Q
1	1	0	1	0	0	0	1	0	0
2	0	0	1	0	0	1	0	0	0
3	0	1	1	0			_	I	0
4				1				1	1
5	1				1	1	1	1	9
6	O	1	0	0	O	0	1	0	0

END DISCUSSIONS ANY QUESTIONS ??

