Б-сплайн повърхнини: Конструиране

Дадено:

- 1. матрица от m+1 реда и n+1 стълба с контр. т. $\mathbf{P}_{i,i}$, $0 \le i \le m$, $0 \le j \le n$;
- 2.възл. в-р от h+1 възела по u-напр., $U=\{u_0,\,u_1,\,...,\,u_h\};$
- 3.възл. в-р от k+1 възела по v-напр., $V = \{v_0, v_1, ..., v_k\}$;
- 4. степента *p* по *u*-напр.; и
- 5. cтепента q по v-напр.

Б-сплайн повърхнината **S**:

$$\mathbf{P}(u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} N_{i,p}(u) N_{j,q}(v) \mathbf{P}_{i,j}$$

 $N_{i,p}(u)$, $N_{j,q}(v)$ — осн. Б-спл. ф-ии съотв. от ст. p, q.

Осн. тъждества (по u-напр. и v-напр.): h = m + p + 1 и k = n + q + 1

 $\Pi:=\{\mathbf{P}_{i,j}\}$ – контр. мрежа, $u, v \in [0, 1]$.

 \Rightarrow Б-спл. пов. **S**: [0,1]x[0,1] \rightarrow правоъг. къс (парче) от пов.

Напр. Б-спл. пов., деф. чрез 6 x 6 Π

 $U = \{0[4]; 0,25; 0,5; 0,75; 1[3]\}$ и p=2,

 $V = \{0[4]; 0,33; 0,66; 1[4]\}$ и q=3.

Основни функции

Коеф. на $\mathbf{P}_{i,j}$ е $N_{i,p}(u).N_{j,q}(v)$ — 2-мерна Б-спл. ф-ия (пов. къс)

 $N_{i,p}(u).N_{j,q}(v) > 0$ локално.

Осн. ф-ии на **P**_{2,0}, **P**_{2,1}, **P**_{2,2}, **P**_{2,3}, **P**_{2,4}, **P**_{2,5}:

Стегнати, затворени и отворени Б-сплайн повърхнини

Б-сплайн пов. **S** — стегн., затв. или отв. по \forall напр.

Ако **S** е стегн. и по 2-те напр., то **S** z $P_{0,0}$, $P_{m,0}$, $P_{0,n}$, $P_{m,n}$ и е доп. към 8-те рамена на Π в тях.

Ако **S** е затв. по 1 напр., то ∀ пар. лин. по това напр. е затв. и **S** става тръба.

Ако **S** е отв. и по 2-те напр., то **S** не минава през $P_{0,0}$, $P_{m,0}$, $P_{0,n}$, $P_{m,n}$.

Ако **S** е затв. и по 2-те напр.

Напр. 3 Б-спл. пов. от еднакъв тип по 2-те напр. в/у Π ; възл. в-ри са различни.

Б-сплайн повърхнини: Важни свойства

Б-спл. пов. **S**, p – ст. по u-напр., и q – ст. по v-напр., Π – контр. мрежа (m+1)х(n+1):

$$\mathbf{P}(u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} N_{i,p}(u) N_{j,q}(v) \mathbf{P}_{i,j}$$

- Неотрицателност: $N_{i,p}(u)N_{j,q}(v) \ge 0$, $\forall p, q, i, j; u, v \in [0;1]$.
- Разделяне на цялото: $\sum_{i=0}^m \sum_{j=0}^n N_{i,p}(u) N_{j,q}(v) = 1$, $\forall u, v \in [0;1]$.
- Силно свойство на изпъкналата обвивка: Ако $(u,v) \in [u_i,u_{i+1})$ х $[v_j,v_{j+1})$, то P(u,v)

$$\in$$
 изп. обв. на $\{P_{h,k}\}$, i - $p <= h <= i$ и j - $q <= k <= j$.

За *u*-напр., ако $u \in [u_i, u_{i+1})$, то $\exists \le p+1$ ненул. осн. ф-ии:

 $N_{i,p}(u), N_{i-1,p}(u), ..., N_{i-p,p}(u) \Rightarrow$ контр. т. от ред i-p до ред i имат ненул. N(u).

Аналог., за $v \in [v_j, v_{j+1}), \exists \leq q+1$ ненул. осн. ф-ии: $N_{j,q}(v), N_{j-1,q}(v), ..., N_{j-q,q}(v)$

- \Rightarrow контр. т. от стълб j-q до стълб j имат ненул. N(v).
- ∴ само контр. т. от ред i-p до ред i и от стълб j-q до стълб q имат ненул. N.

От "неотрицателността" и "разделянето на цялото"

- \Rightarrow т. $\mathbf{P}(u,v) \in$ изп. обв. на тези контр. т.
- \Rightarrow **S** в/у [u_i, u_{i+1}) х [v_j, v_{j+1}) \subset същата изп. обв.

• Локална модификационна схема:

$$N_{i,p}(u)N_{j,q}(v) \neq 0, \forall (u,v) \in (u_i,u_{i+p+1}) \times (v_j,v_{j+q+1}).$$

По *u*-напр. $N_{i,p}(u) > 0$ в/у $[u_i, u_{i+p+1})$, по *v*-напр. $N_{j,q}(v) > 0$ в/у $[v_j, v_{j+q+1})$. \Longrightarrow за **S**.

Напр. ако $\mathbf{P}_{3,2} \to \mathbf{P}_{3,2}^*$, то само съседната област на тази контр. т. от **S** си променя формата.

- S е C^{p-s}- (съотв. C^{q-t}-) непрек. по u- (съотв. v-) напр.,
 ако u (съотв. v) е възел с кр. s (съотв. t).
- Афинна инвариантност
- ∄ "променливо намаляване" за В-спл. пов.

• Ако $m=p,\,n=q$ и $U=\{0,\,0,\,...,\,0,\,1,\,1,\,....,\,1\}$, то Б-спл. пов. става Безие пов.

Б-сплайн повърхнини: Алгоритъм на дьо Боор

Ако S:

$$\mathbf{P}(u,v) = \sum_{i=0}^{m} N_{i,p}(u) \left(\sum_{j=0}^{n} N_{j,q}(v) \mathbf{P}_{i,j} \right)$$

$$\mathbf{Q}_{i}(v) = \sum_{j=0}^{n} N_{j,q}(v) \mathbf{P}_{i,j}$$

то за $\forall i$ кр. $\mathbf{Q}_i(v)$ е Б-спл. крива, деф. чрез контр. т. от ред i на Π .

∴ $\mathbf{Q}_{i}(v^{*})$ е т., съотв. на v^{*} в/у Б-спл. кр., деф. чрез контр. т. от ред i.

Ако $v^* \in [v_d, v_{d+1})$, то q+1 контр. т. от ред i уч. при изч. на $\mathbf{Q}_i(v^*)$, q е ст. на $N_{j,q}(v)$.

Тези контр. т. са $\mathbf{P}_{i,d}$, $\mathbf{P}_{i,d-1}$, ..., $\mathbf{P}_{i,d-q}$, ако $v^* \neq v_d$.

Ако $v^* = v_d[t]$, то изп. т. са $P_{i,d-t}$, $P_{i,d-t-1}$, ..., $P_{i,d-q}$.

 \Rightarrow изп. контр. т. от стълб d-q до стълб d-t;

прил. алг. дБ за ∀ ред

и пол. m+1 нови т. $\mathbf{Q}_0(v^*)$, $\mathbf{Q}_1(v^*)$, ..., $\mathbf{Q}_m(v^*)$:

Зам. $\mathbf{Q}_i(v^*)$ и \Rightarrow

$$\mathbf{P}(u^*, v^*) = \sum_{i=0}^{m} N_{i,p}(u^*) \mathbf{Q}_i(v^*)$$

∴ $P(u^*,v^*)$ е т. \in Б-спл. кр. C, деф. чрез $Q_0(v^*)$, $Q_1(v^*)$, ..., $Q_m(v^*)$.

За да нам. $P(u^*,v^*)$, е необх. да нам. т. в/у C, съотв. на u^* чрез алг. дБ.

Нека u^* ∈[u_c,u_{c+1}).

От лок. мод. схема \Rightarrow само p+1 контр. т. се изп. при изч. на Б-спл. кр. от ст. p.

Ако
$$u^* \neq u_c$$
, изп. т. са $\mathbf{Q}_c(v^*)$, $\mathbf{Q}_{c-1}(v^*)$, ..., $\mathbf{Q}_{c-p}(v^*)$.
Ако $u^* = u_c[s]$, изп. т. са $\mathbf{Q}_{c-s}(v^*)$, $\mathbf{Q}_{c-s-1}(v^*)$, ..., $\mathbf{Q}_{c-p}(v^*)$.

∴ за $\mathbf{Q}_i(v^*)$ са необх. само p+1 реда.

Извод. За да намерим т. $\mathbf{P}(u^*,v^*)$, $u^* \in [u_c,u_{c+1})$, $v^* \in [v_d,v_{d+1})$ в/у Б-спл. пов., прил. алг. дБ за $\mathbf{P}_{i,d-q}$, $\mathbf{P}_{i,d-q+1}$, ..., $\mathbf{P}_{i,d-t}$ от \forall ред i на Π , $i \in [c-p, c-s]$, и пол. по 1 нова т. $\mathbf{Q}_i(v^*)$.

После прил. алг. дБ за $\mathbf{Q}_{c-p}(v^*)$, $\mathbf{Q}_{c-p+1}(v^*)$, ..., $\mathbf{Q}_{c-s}(v^*)$ и рез. е $P(u^*,v^*)$

Напр. Б-спл. пов. **S**, деф. чрез 5×5 контр. т. и $U = V = \{0[4]; 0,5; 1[4]\}$, т.е. ст. е 3х3. u^* , v^* не са възли, а $u^* < 0.5$, $v^* \in [0.5; 1)$ \Rightarrow $P_{i,1}$, $P_{i,2}$, $P_{i,3}$, $P_{i,4}$ се изп. в изч. по алг. дБ. $u^* \in [0; 0,5) \Rightarrow$ по u-напр. редове 0, 1, 2, 3 се изп. – зелените полигони за $\mathbf{Q}_{i}(v^{*})$, а жълтия полигон за т. $P(u^*, v^*)$ (малката бяла сфера) в/у пов. **S**.

