Especificações da Resposta Transitória e Sistemas de Ordem Superior

Prof. Nilo Rodrigues

Sistemas de Controle e Automação

- Sistemas com energia armazenada não respondem instantaneamente e vão fornecer respostas transitórias sempre que estiverem sujeitos a sinais de entrada ou distúrbios.
- As características de desempenho de um sistema de controle são especificadas em termos da resposta transitória ao degrau unitário, já que se trata de um entrada suficientemente brusca e gerada com facilidade.
- Freqüentemente, antes de atingir o regime permanente, a resposta transitória de um sistema apresenta oscilações amortecidas. Na especificação das características das respostas transitórias, é comum se especificar:

Tempo de atraso t_d Tempo de pico t_p

Tempo de acomodação t_s

Tempo de subida t_r Máximo sobre-sinal M_p

Erro estacionário $\,E_{\rm sc}$

- Tempo de Atraso: Tempo requerido para que a resposta alcance metade de seu valor final pela primeira vez.
- Tempo de Subida: Tempo requerido para que a resposta passe de 0% a 100% (ou de 10% a 90% para sistemas não-oscilatórios) do seu valor final.

- Tempo de Pico: Tempo para que a resposta atinja o primeiro pico de sobre-sinal.
- Tempo de Acomodação: Tempo necessário para que a resposta alcance valores em uma faixa em torno do valor final (2% ou 5%), aí permanecendo indefinidamente.

 M_{p}

Máximo Sobre-Sinal: Valor máximo de pico da curva de resposta, medido a partir do seu valor final.

$$M_p = \frac{c(t_p) - c(\infty)}{c(\infty)} \cdot 100\%$$

 E_{ss}

Erro Estacionário: Desvio percentual que a resposta do sistema em regime permanente possui em relação à entrada.

$$E_{ss} = \frac{r(t) - c(\infty)}{r(t)} \cdot 100\%$$

Observações:

- O tempo de acomodação de um sinal está relacionado à maior constante de tempo do sistema de controle (pólo dominante);
- Todas as especificações relacionadas não se aplicam necessariamente a todos os sistemas. Por exemplo, para um sistema superamortecido, os termos "tempo de pico" e "máximo sobre-sinal" não se aplicam.
- No caso de sistemas que resultam em erros estacionários para entradas em degrau, esse erro deve ser conservado em um nível de porcentagem específico através do uso de controladores.

Sistemas de Primeira Ordem

- Constante de tempo: tempo requerido para que a resposta alcance 63% do seu valor final.
- Tempo de atraso e tempo de subida: determina-se a partir da equação de resposta do sistema.
- Erro estacionário:

$$E_{ss} = \frac{r(t) - c(\infty)}{r(t)} \cdot 100\% = 0\%$$

$$c(t)=1-e^{-t/T}$$

Sistemas de Primeira Ordem

Tempo de acomodação:

Pode ser medido em termos da constante de tempo *T*.

$$t_s = 3T$$
 (Critério de 5%)

$$t_s = 4T$$
 (Critério de 2%)

$$c(t)=1-e^{-t/T}$$

- Exceto para certas aplicações em que as oscilações não podem ser toleradas, é desejável que a resposta transitória seja suficientemente rápida e amortecida.
- Para uma resposta transitória aceitável em um sistema de segunda ordem, o coeficiente de amortecimento deve se situar entre 0,4 e 0,8.

Tempo de Subida

 O tempo de subida da resposta pode ser obtido fazendo $c(t_r) = 1$

$$c(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right) \quad \text{para } t \ge 0$$

• Como $e^{-\zeta\omega_n t} \neq 0$, o tempo de subida é obtido por:

$$\cos \omega_d t_r + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_d t_r = 0 \qquad \qquad t_r = \frac{1}{\omega_d} \arctan\left(\frac{\omega_d}{-\zeta \omega_n}\right)$$

$$t_r = \frac{\pi - \beta}{\omega_d}$$

Tempo de Pico

• O tempo de pico pode ser obtido diferenciando-se c(t) em relação ao tempo e igualando essa derivada a zero.

$$\frac{dc(t)}{dt} = \zeta \omega_n e^{-\zeta \omega_n t} \left(\cos \omega_d t + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin \omega_d t \right) + e^{-\zeta \omega_n t} \left(\omega_d sen \omega_d t - \frac{\zeta \omega_d}{\sqrt{1-\zeta^2}} \cos \omega_d t \right)$$

• Os termos em cosseno cancelam-se mutuamente, logo, em $t=t_{_{\cal D}}$:

$$\left. \frac{dc}{dt} \right|_{t=t_p} = \sin \omega_d t_p \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t_p} = 0 \qquad \Longrightarrow \qquad \sin \omega_d t_p = 0 \qquad \Longrightarrow \qquad t_p = \frac{\pi}{\omega_d}$$

 O tempo de pico corresponde a meio ciclo da frequência de oscilação amortecida.

Tempo de Acomodação

 A resposta transitória de um sistema subamortecido de segunda ordem permanece sempre dentro de um par de envoltórias.

$$c(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right)$$

$$c(t) = 1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1 - \zeta^2}} \sin\left(\omega_d t + \arctan\frac{\sqrt{1 - \zeta^2}}{\zeta}\right)$$

Envoltórias

$$1 \pm \left(\frac{e^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}}\right)$$

Tempo de Acomodação

 A constante de tempo das envoltórias é dada por:

$$T = \frac{1}{\zeta \omega_n}$$

 A velocidade de decaimento da resposta depende do valor da constante de tempo.

Tempo de Acomodação

 O tempo de acomodação correspondente à faixa de tolerância de 2% ou 5% pode ser medido em termos da constante de tempo.

$$t_s = 3T = \frac{3}{\zeta \omega_n}$$
 (Critério de 5%)

$$t_s = 4T = \frac{4}{\zeta \omega_n}$$
 (Critério de 2%)

Máximo Sobre-Sinal

O máximo sobre-sinal ocorre no tempo de pico.

$$c(t_p) = 1 - e^{-\zeta \omega_n(\pi/\omega_d)} \left(\cos \pi + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \pi \right)$$

$$c(t_p) = 1 + e^{-(\zeta/\sqrt{1 - \zeta^2})\pi}$$

Considerando que a resposta tenha valor final unitário:

$$M_p = e^{-\left(\zeta/\sqrt{1-\zeta^2}\right)\pi} \cdot 100\%$$

Conclusão!

 Para uma resposta rápida, a freqüência natural nãoamortecida deve ser grande. Para limitar o sobre-sinal e fazer com que o tempo de acomodação seja pequeno, o coeficiente de amortecimento não deve ser muito pequeno.

Exemplo:

$$\zeta = 0.6$$

$$\omega_n = 5 rad / s$$

$$t_r = \frac{\pi - \beta}{\omega_d}$$

$$t_r = 0.55s$$

$$t_p = \frac{\pi}{\omega_d}$$

$$t_p = 0.785s$$

$$M_p = e^{-\left(\zeta/\sqrt{1-\zeta^2}\right)\pi} \cdot 100\%$$

$$M_p = 9.5\%$$

$$t_{s_{(2\%)}} = 4T = \frac{4}{\zeta \omega_n}$$

$$t_{s_{(2\%)}} = 1,33s$$

- Pelo princípio da superposição, a resposta dos sistemas de ordem superior é a soma das respostas de sistemas de primeira e segunda ordem.
- Consideremos o seguinte sistema:

A função de transferência de malha fechada é dada por:

$$\frac{C(s)}{R(s)} = \frac{p(s)d(s)}{q(s)d(s) + p(s)n(s)}$$

 Deseja-se obter a resposta temporal do sistema de ordem superior a uma entrada do tipo degrau unitário.

$$C(s) = \frac{p(s)d(s)}{q(s)d(s) + p(s)n(s)} \cdot \frac{1}{s}$$

 Para obter a resposta no tempo, o primeiro passo é fatorar os polinômios numerador e denominador.

$$C(s) = \frac{p(s)d(s)}{q(s)d(s) + p(s)n(s)} \cdot \frac{1}{s}$$

$$C(s) = \frac{K(s + z_1)(s + z_2)...(s + z_m)}{s(s + p_1)(s + p_2)...(s + p_n)}$$

O segundo passo é expandir em frações parciais.

$$C(s) = \frac{K(s+z_1)(s+z_2)...(s+z_m)}{s(s+p_1)(s+p_2)...(s+p_n)}$$

$$C(s) = \frac{a}{s} + \sum_{i=1}^{n} \frac{r_i}{s+p_i}$$

O terceiro e último passo e aplicar a Transformada Inversa de Laplace:

$$C(s) = \frac{a}{s} + \sum_{i=1}^{n} \frac{r_i}{s + p_i}$$
 $c(t) = a + \sum_{i=1}^{n} r_i e^{-p_i t}$

- Vamos analisar cada termo da resposta temporal ao degrau unitário:
 - Quanto t tende ao infinito, a resposta estaciona no valor a.

$$c(t) = a + \sum_{i=1}^{n} r_i e^{-p_i t}$$

- $c(t) = a + \sum_{i=1}^{n} r_i e^{-p_i t}$ Assim, a valor a representa a **resposta estacioná**ria do sistema de ordem superior.
 - ightharpoonup A resposta estacionária $c(\infty)$ também pode ser obtida a partida da função de transferência em malha fechada. Vejamos como...

- Como encontrar a resposta estacionária a partir da função de transferência de malha fechada ?
 - > O resíduo *a* pode ser obtido fazendo:

$$a = s \cdot \left[\frac{p(s)d(s)}{q(s)d(s) + p(s)n(s)} \cdot \frac{1}{s} \right]_{s=0}$$

$$a = \frac{p(0)d(0)}{q(0)d(0) + p(0)n(0)}$$

Logo, a resposta estacionária a uma entrada do tipo degrau unitário pode ser dada por:

$$a = \frac{C(0)}{R(0)}$$

Sabendo a resposta transitória ao degrau unitário, é possível obter o erro estacionário como:

$$E_{ss} = \left(1 - \frac{C(0)}{R(0)}\right) \cdot 100\%$$

 Exemplo: Encontre a resposta em regime permanente e o erro estacionário a uma entrada do tipo degrau unitário do sistema cuja função de transferência em malha fechada é dada abaixo.

$$\frac{C(s)}{R(s)} = \frac{s^3 + 4s^2 + 5s + 10}{s^5 + 2s^4 + s^3 + 20s^2 + 10s + 20}$$

- > Resposta estacionária: $c(t \rightarrow \infty) = 0.5$
- > Erro estacionário: $E_{ss} = 50\%$

- Vamos analisar agora o segundo termo da resposta temporal do sistema de ordem superior ao degrau unitário:
 - Se o pólo p_i for **real**, a resposta temporal será uma **exponencial decrescente** (resposta típica de sistemas de primeira ordem).

$$c(t) = a + \sum_{i=1}^{n} r_i e^{-p_i t}$$

- Se existirem pares de pólos complexos conjugados, a resposta temporal é formada por uma curva senoidal amortecida (resposta típica de sistemas de segunda ordem).
- Assim, a resposta transitória de um sistema de ordem superior é a soma de uma série de curvas exponenciais decrescentes e curvas senoidais amortecidas, estacionando no valor a.

 Os valores dos resíduos determinarão ainda a importância relativa de cada curva componente da resposta temporal:

- Se existir um zero de malha fechada próximo a um pólo de malha fechada, então o resíduo deste pólo será pequeno.
 - Consequência: Um par de pólos e zeros próximos podem se cancelar mutuamente.
- Se um pólo estiver localizado muito longe da origem, a constante de tempo da curva exponencial será pequena e o resíduo deste pólo poderá ser pequeno.
 - Consequência: Os transitórios correspondentes aos pólos remotos são pequenos e de curta duração, logo contribuem pouco para a resposta transitória do sistema de ordem superior.

 Os valores dos resíduos determinarão ainda a importância relativa de cada curva componente da resposta temporal:

- Consequência: Os transitórios correspondentes aos pólos próximos da origem são significativos e determinam a resposta transitória do sistema de ordem superior.
- Logo, a posição dos pólos de malha fechada em relação à origem e a magnitude dos resíduos determinam o comportamento da resposta.
- Os pólos que têm efeitos dominantes no comportamento da resposta são chamados de pólos dominantes de malha fechada.

Na próxima aula...

Estabilidade de Sistemas

Prof. Nilo Rodrigues

