

Abstract

Rodenticide

A rodenticide which is non-toxic to humans, domestic animals and livestock comprises a water-retentive material as the active ingredient and a rodent attractant. Preferably the water-retentive material is cellulosic material. In certain embodiments the water-retentive material comprises alpha-cellulose. In one preferred embodiment the cellulosic material comprises purified cellulose derived from the core of the cob of the DK 446 maize hybrid or from the core of the cob of an agonist of the DK 446 hybrid. It is considered that the unique selective toxicity of such rodenticides arises from the interference with water transport through the gut wall, particularly in the caecum (where cellulose is digested in rats). The caecum is vestigial in humans, who are not therefore affected by such materials. A laboratory method of screening candidate water-retentive materials for rodenticidal activity in the field is disclosed, involving examination of the gut (for compaction and bloating) and the caecum (for impaction).