Seminars 10 and 11 - 2024

- 1. A program returns a value according to a random variable X with $E(X) = m \in \mathbb{R}$ and $V(X) = \sigma^2$, $\sigma > 0$. Prove that X takes values in the interval $(m 3\sigma, m + 3\sigma)$ with more than 88% probability.
- 2. The number of items produced in a factory during a day is a random variable with mean 50. If we consider a day, which event is more likely: E_1 : "the production is more than 100 items in this day" or E_2 : "the production is at most 100 items in this day"?
- **3.** Let $(X_n)_{n \geq 1}$ be a sequence of independent random variables with Unif[a,b] distribution, where a < b. Define for each $n \in \mathbb{N}^*$

$$Y_n = \max\{X_1, \dots, X_n\} \text{ and } Z_n = \min\{X_1, \dots, X_n\}.$$

Prove that $Y_n \xrightarrow{P} b$ and $Z_n \xrightarrow{P} a$.

- ► The density function for Unif[a,b] is $f(t) = \begin{cases} \frac{1}{b-a}, & \text{if } t \in [a,b] \\ 0, & \text{if } t \notin [a,b]. \end{cases}$
- **4.** Let $(X_n)_{n\geq 1}$ be a sequence of Bernoulli random variables. Prove that $X_n \stackrel{P}{\longrightarrow} 0$ if and only if $X_n \stackrel{L^2}{\longrightarrow} 0$.
- **5.** Let $\lambda > 0$. A calling center has the following property, for every $n \in \mathbb{N}$, $n \geq 100$, during an hour interval (0,1]: the calls arrive independently with at most one call in each time subinterval $\left(\frac{i}{n},\frac{i+1}{n}\right]$, one call has probability $\frac{\lambda}{n}$ to occur, $i = \overline{0, n-1}$. Let's denote by X_n the corresponding total number of calls. Prove that $X_n \stackrel{d}{\longrightarrow} X$, where $X \sim Poiss(\lambda)$.
- **6.** Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables with Unif[0,1] distribution. Define for each $n\in\mathbb{N}^*$

$$Y_n = \max\{X_1, \dots, X_n\}$$
 and $Z_n = \min\{X_1, \dots, X_n\}$.

Prove that $Y_n \xrightarrow{L^2} 1$ and $Z_n \xrightarrow{L^2} 0$.

7. Consider a sequence of distinct coins such that the probability of getting a head with the *n*th coin is $\frac{1}{n}$, $n \in \mathbb{N}^*$. Let X_n be 1, if the toss of the *n*th coin shows a head, and 0, otherwise. Do we have $X_n \xrightarrow{a.s.} 0$?