Seperable Differential Equations

Samuel Lindskog

August 21, 2023

1 Form of Differential Equations

Differential equations will be of the form:

$$\frac{dy}{dx} = y' = G(y)$$

Where y is a function of x

2 Seperable Differential Equations

Most differential equations are not readily solvable. A common solvable form is the seperable differential equation:

$$\frac{dy}{dx} = y' = G(y)F(x)$$

Method of finding solutions for this:

$$\int \frac{dy}{G(y)} = \int F(x) dx$$
 i.e. $\int G(y)^{-1} dy = \int F(x) dx$

An example of a seperable differential equation:

$$y' = \frac{x+1}{y^2 + y + 2}$$

This can be solved via:

$$y' = \frac{dy}{dx} = (x+1)(y^2 + y + 2)^{-1}$$
$$= dy(y^2 + y + 2) = dx(x+1)$$
$$= dy(poopypants)$$

Interesting Thoughts

$$y = f(x)$$
 and $y' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $dx : h \mapsto h$ and $dy : h \mapsto h$

dx and dy represent the instantaneous rate of change of x or y with respect to themselves. This is why they are identity functions mapping $h \mapsto h$. They form the bridge between the infinitesimal(instantaneous rate of change) and what is algebraically maniputable.

With
$$y = f(x)$$
, dy can be defined by $dy : x \mapsto f'(x)dx$

1

$$\frac{dy(h;x)}{dx(h)} = \frac{f'(x)dx(h)}{dx(h)} = f'(x)$$