

Introduzione

- Il rilevamento di anomalie nelle serie temporali è cruciale in molti settori.
- Anomaly Transformer è un modello innovativo basato sull'attenzione per affrontare questa sfida in modo non supervisionato.
- L'idea chiave è che le anomalie hanno difficoltà a stabilire relazioni a lungo termine, concentrandosi principalmente sui punti adiacenti (bias di concentrazione adiacente).

Il meccanismo dell'attenzione

- L'attenzione permette di pesare dinamicamente l'importanza di diverse parti dell'input.
- Cattura relazioni a lungo termine e modella dipendenze complesse.
- La Scaled Dot-Product Attention è una delle implementazioni più comuni.
- La self-attention multi-head consente di considerare diverse rappresentazioni dell'input.

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{split} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_{\text{h}}) W^O \\ \text{where head}_{\text{i}} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

II Transformer

- Un nuovo modello di rete neurale basato interamente su meccanismi di attenzione, eliminando la necessità di ricorrenza e convoluzioni.
- Consente una maggiore parallelizzazione, accelerando l'addestramento e migliorando le prestazioni in attività di trasduzione di sequenze come la traduzione automatica.

Transformer - architettura del modello

Architettura dell'Anomaly Transformer

- Struttura simile ai modelli Transformer, ma senza decoder.
- Introduce l'Anomaly Attention per calcolare la discrepanza di associazione.
- Modella l'associazione a priori (prior-association) e l'associazione di serie (series-association).
- La discrepanza tra queste due associazioni è la base per il rilevamento delle anomalie.

$$\begin{split} & \text{Initialization: } \mathcal{Q}, \mathcal{K}, \mathcal{V}, \sigma = \mathcal{X}^{l-1} W_{\mathcal{Q}}^{l}, \mathcal{X}^{l-1} W_{\mathcal{K}}^{l}, \mathcal{X}^{l-1} W_{\mathcal{V}}^{l}, \mathcal{X}^{l-1} W_{\sigma}^{l} \\ & \text{Prior-Association: } \mathcal{P}^{l} = \text{Rescale} \Bigg(\left[\frac{1}{\sqrt{2\pi}\sigma_{i}} \exp\left(-\frac{|j-i|^{2}}{2\sigma_{i}^{2}} \right) \right]_{i,j \in \{1,\cdots,N\}} \Bigg) \\ & \text{Series-Association: } \mathcal{S}^{l} = \text{Softmax} \left(\frac{\mathcal{Q}\mathcal{K}^{\text{T}}}{\sqrt{d_{\text{model}}}} \right) \\ & \text{Reconstruction: } \widehat{\mathcal{Z}}^{l} = \mathcal{S}^{l} \mathcal{V}, \end{split}$$

$$\operatorname{AssDis}(\mathcal{P}, \mathcal{S}; \mathcal{X}) = \left[\frac{1}{L} \sum_{l=1}^{L} \left(\operatorname{KL}(\mathcal{P}_{i,:}^{l} \| \mathcal{S}_{i,:}^{l}) + \operatorname{KL}(\mathcal{S}_{i,:}^{l} \| \mathcal{P}_{i,:}^{l}) \right) \right]_{i=1,\cdots,N}$$

Architettura dell'Anomaly Transformer

Apprendimento Minimax dell'Associazione

- Migliora la capacità di distinguere tra punti normali e anomali.
- Fase di minimizzazione: la prior-association approssima la series-association.
- Fase di massimizzazione: la series-association aumenta la discrepanza di associazione.
- La funzione di perdita bilancia l'errore di ricostruzione e la discrepanza di associazione.

$$\begin{split} \mathcal{L}_{Total}(\widehat{\mathcal{X}}, \mathcal{P}, \mathcal{S}, \lambda; \mathcal{X}) &= \\ \|\mathcal{X} - \widehat{\mathcal{X}}\|_F^2 - \lambda \times \|\mathrm{AssDis}(\mathcal{P}, \mathcal{S}; \mathcal{X})\|_1 \end{split}$$

Minimize Phase:
$$\mathcal{L}_{Total}(\widehat{\mathcal{X}}, \mathcal{P}, \mathcal{S}_{detach}, -\lambda; \mathcal{X})$$

Maximize Phase:
$$\mathcal{L}_{Total}(\widehat{\mathcal{X}}, \mathcal{P}_{detach}, \mathcal{S}, \lambda; \mathcal{X})$$
,

AnomalyScore(
$$\mathcal{X}$$
) =

$$\operatorname{Softmax}\Big(-\operatorname{AssDis}(\mathcal{P},\mathcal{S};\mathcal{X})\Big)\odot\left[\|\mathcal{X}_{i,:}-\widehat{\mathcal{X}}_{i,:}\|_{2}^{2}\right]_{i=1,\cdots,N}$$

Analisi di sensitività degli iperparametri

- Studio del comportamento del modello con dimensionalità ridotta.
- Grid search per testare diverse combinazioni di iperparametri.
- Non si rilevano miglioramenti significativi in termini di F-Score.
- Il modello si dimostra robusto a varie configurazioni, grazie alla strategia minimax.

Learning rate: 10^-4 Lambda: 0.5, 3 Anomaly ratio: 1 Epochs: 2

Batch Size: 128

Dimensione dmodel: 64 Numero di livelli 1: 3

Numero di attention heads h: 8

Tipo di Kernel: Gaussiano, No (prior-association come parametro

appreso) e sigmoide.

Funzione di perdita: Norma L1, Norma L2 (MSE), Cross Entropy e

Divergenza KL

	Accuracy	Precision	Recall	F-Score
$d_{model} = 512$ $epoch = 3$	0.9845047	0.9181818	0.9363893	0.9271962
$d_{model} = 64$ $epoch = 2$	0.9865807	0.9205660	0.9550605	0.9374961

Algoritmi di ottimizzazione

- ADAM è l'algoritmo scelto dagli autori, efficiente per problemi di grandi dimensioni.
- Confronto con altri algoritmi: SGD, RMSprop, Adadelta, AdamW.
- ADAM si conferma il più performante in termini di tempo di addestramento.

	Accuracy	F-Score	Train Time (S)
Adam	0.9863501	0.9364257	199.2156
AdamW	0.9862144	0.9357856	199.3804
SGD	0.9896608	0.9525943	199.6484
Adadelta	0.9875848	0.9425360	200.2806
RMSprop	0.9857802	0.9336793	200.7332

Uso di RNN in combinazione con Anomaly Transformer

- Introduzione di reti LSTM per cercare relazioni a lungo/breve termine.
- Nessun miglioramento sostanziale rispetto al modello originale.
- La strategia **minimax** si rivela efficace anche con modifiche infrastrutturali.

RNN Layers	Accuracy	F-Score	Train Time (S)
0	0.9874491	0.9418714	199.9097
1	0.9892809	0.9508217	202.9323
2	0.9875441	0.9425028	208.6800
4	0.9880054	0.9445211	216.3183
8	0.9849254	0.9292131	234.4055
16	0.9871642	0.9405256	271.9105

Anomaly Attention vs Self Attention

- Confronto tra Anomaly Attention e Self Attention classica.
- Il modello con Anomaly Attention offre prestazioni superiori del 43%!
- L'Anomaly Score stabilizza l'errore di ricostruzione, facilitando l'identificazione delle anomalie.

$$AnomalyScore(X) = \left[\left| \left| X_{i,:} - \widehat{X}_{i,:} \right| \right|^{2} \right]_{i=1,\dots,N}$$

Modello	Accuracy	F-Score	Train Time
$Self-attention d_{model} = 128 epoch = 3$	0.8515604	0.5525562	38.5978
$Self-attention d_{model} = 512 epoch = 5$	0.7999457	0.4547337	352.9563
Anomaly Attention $d_{model} = 128$ $epoch = 3$	0.9883039	0.9460643	312.0443
$Anomaly \\ Attention \\ d_{model} = 512 \\ epoch = 5$	0.9840706	0.9249648	645.7070

Anomaly Attention vs Self Attention

Anomaly Transformer

Modello che fa uso di self-attention classica

Conclusioni

- L'Anomaly Transformer è un avanzamento significativo nel rilevamento di anomalie.
- Cattura relazioni complesse e distingue efficacemente le anomalie.
- La strategia minimax e l'Anomaly
 Attention sono i punti di forza del modello.
- Apre nuove prospettive per l'applicazione del deep learning in contesti reali.

