3 Nombres rationels

3.1 Ensembles

Définition 7.

- On note \mathbb{D} l'ensemble des **nombres décimaux**, c'est-à-dire l'ensemble des nombres dont l'écriture décimale est finie (nombre fini de chiffres après la virgule).
- On note $\mathbb Q$ l'ensemble des **nombres rationels**, c'est-à-dire l'ensemble des nombres pouvant s'écrire sous la forme d'une fraction d'entiers

$$\frac{a}{b}$$

avec $a \in \mathbb{Z}$, $b \in \mathbb{N}$ et $n \neq 0$.

Exemple. Les nombres suivants sont des nombres décimaux : $1, 23; 2; -3, 4 \dots$

Les nombres suivants sont des nombres rationels : $1,23;\frac{4}{2};\frac{1}{3}$...

Proposition 6. Tout nombre $x \in \mathbb{D}$ est de la forme

$$x = \frac{a}{10^k}$$

tel que $a \in Z$ *et* $k \in \mathbb{N}$.

Remarque.

- Cette proposition nous permet d'affirmer que tout nombre décimal est un nombre rationel. Cela s'écrit $\mathbb{D}\subseteq\mathbb{Q}$.
- Tout entier relatif est un nombre décimal. On en déduit que tout entier relatif est un nombre rationel. En effet, si $x \in \mathbb{Z}$, alors $x = \frac{x}{1} = \frac{x}{10^0}$.

Exemple. Compléter le schéma suivant en mettant chaque nombre dans l'ensemble le plus petit le contenant : 2; -4,3; $\frac{1}{7}$; $\frac{-10}{2}$; 21,333...; 0; $\frac{10}{25}$.

3.2 Formes irréductibles

Proposition 7. *Soit* $x \in \mathbb{Q}$. *Alors* x *est de la forme*

$$x = \frac{c}{H}$$

avec a et b deux entiers dont le seul diviseur positif en commun est 1. On dit que cette fraction est **irréductible**.

Exemple.

- a) La fraction $\frac{67}{15}$ est-elle irréductible?
- b) La fraction $\frac{789}{456}$ est-elle irréductible?

Proposition 8. Soit x un nombre rationel dont la forme irréductible est donnée par $\frac{a}{b}$. Si la décomposition en facteurs premier de b ne fait qu'apparaître des 2 et des 5, alors x est un nombre décimal.

Exemple.

- a) $\frac{3}{50}$ est-il décimal?
- b) $\frac{8}{12}$ est-il décimal?
- c) $\frac{45}{12}$ est-il décimal?

Proposition 9. $\frac{1}{3}$ n'est pas décimal.

Démonstration. La démonstration suivante n'utilise pas la proposition 8.