1 13.1: Vectors and the Geometry of Space

Definition.

- Vectors
 - Have a direction and magnitude,
 - vector \overrightarrow{PQ} has a tail at P and a head at Q,
 - Can be denoted as \mathbf{u} or \vec{u} ,
 - Equal vectors have the same direction and magnitude (not necessarily the same position)

- Scalars are quantities with magnitude but no direction (e.g. mass, temperature, price, time, etc.)
- **Zero vector**, denoted **0** or $\vec{0}$, has length 0 and no direction

Scalar-vector multiplication:

- Denoted $c\mathbf{v}$ or $c\vec{v}$,
- length of vector multiplied by |c|,
- $c\mathbf{v}$ has the same direction as \mathbf{v} if c > 0, and has the opposite direction as \mathbf{v} if c < 0, (what if c = 0?)
- u and v are parallel if u = cv. (what vectors are parallel to 0?)

Vector Addition and Subtraction:

Given two vectors u and v, their sum, u + v, can be represented by the parallelogram (triangle) rule: place the tail of v at the head of u

The difference, denoted $\boldsymbol{u}-\boldsymbol{v},$ is the sum of $\boldsymbol{u}+(-\boldsymbol{v})$:

Vector Components:

A vector v whose tail is at the origin (0,0) and head is at (v_1,v_2) is a **position vector** (in **standard position**) and is denoted $\langle v_1, v_2 \rangle$. The real numbers v_1 and v_2 are the x- and y-components of v.

Vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are equal if and only if $u_1 = v_1$ and $u_2 = v_2$.

Magnitude:

Given points $P(x_1, y_1)$ and $Q(x_2, y_2)$, the **magnitude**, or **length**, of vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$, denoted $\left| \overrightarrow{PQ} \right|$, is the distance between points P and Q.

$$\left| \overrightarrow{PQ} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The magnitude of position vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is $|\mathbf{v}|$. (How do $|\overrightarrow{PQ}|$ and $|\overrightarrow{QP}|$ relate to each other?)

Note: The norm, denoted $\|u\|$ or $\|u\|_2$, is equivalent to the magnitude of a vector.

Equation of a Circle:

Definition.

A circle centered at (a, b) with radius r is the set of points satisfying the equation

$$(x-a)^2 + (y-b)^2 = r^2.$$

A disk centered at (a, b) with radius r is the set of points satisfying the inequality

$$(x-a)^2 + (y-b)^2 \le r^2$$
.

Vector Operations in Terms of Components

Definition. (Vector Operations in \mathbb{R}^2)

Suppose c is a scalar, $\mathbf{u} = \langle u_1, u_2 \rangle$, and $\mathbf{v} = \langle v_1, v_2 \rangle$.

$$\boldsymbol{u} + \boldsymbol{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$

Vector addition

$$\boldsymbol{u} - \boldsymbol{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$$

Vector subtraction

$$c\mathbf{u} = \langle cu_1, cu_2 \rangle$$

Scalar multiplication

Definition.

A unit vector is any vector with length 1.

In \mathbb{R}^2 , the coordinate unit vectors are $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.

Properties of Vector Operations:

Suppose u, v, and w are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

1. $u + v = v + u$	Commutative property	of addition
1. $u + v - v + u$	Commutative property	or addition

2.
$$(u + v) + w = u + (v + w)$$
 Associative property of addition

3.
$$v + 0 = v$$
 Additive identity

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$
 Additive inverse

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 Distributive property 1

6.
$$(a+c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$$
 Distributive property 2

7.
$$0v = 0$$
 Multiplication by zero scalar

8.
$$c\mathbf{0} = \mathbf{0}$$
 Multiplication by zero vector

9.
$$1\mathbf{v} = \mathbf{v}$$
 Multiplicative identity

10.
$$a(c\mathbf{v}) = (ac)\mathbf{v}$$
 Associative property of scalar multiplication

Applications of Vectors: