# (80445) מכנים אלגבריים - 10 מכנים פתרון מטלה

2024 ביולי



. איים לא טריוויאלים אידאלים לא מכיל ת $R=M_n(\mathbb{F})$  שהחוג נוכיח שדה, נוכיח יהי $\mathbb{F}$ 

נוכל להסיק כי I=R, ולכן נניח כי M לא הפיכה. מלינארית נסיק כי קיימת מטריצה ממטריצות הבסיס אל M לא הפיכה אל M(שפגשנו בתרגול) שינוי שינוי שינוי שימוש במטריצות הסטנדרטי ב-I, ועל־ידי שימוש מטריצה שקיימת מטריצה שקיימת מטריצה אם בM=0I=Rכי שוב וקיבלנו וקיבלנו דהינו דהינו היחידה, מטריצת מטריצת את לבנות לכל לבנות נוכל 

 $.R^{\text{-}}$ ליים טריוויאליים אידאלים יש כן כי מצאנו מצאנו

 $J \triangleleft R$ יהי חוג R ו־

#### 'סעיף א

 $J \triangleleft R$  אם ורק אם אידאל איד היא היא היא כי לכל תת־החבורה,  $I \subseteq J$  כך ש־ $J \le R$  היא אידאל חבורה לכל נוכיח נוכיח

הכיוון ההפוך זהה לחלוטין, נשתמש בהטלה הקאנונית ובמשפט ההתאמה.

# 'סעיף ב

יהי תת־חוג ש־ $S \subseteq R$ , נוכיח ש־I+S הוא תת־חוג של  $S \cap I \triangleleft S$ , ש־ $S \cap I \cup S$  ושההומורפיזם של החבורות המתקבל ממשפט האיזומורפיזם השני לחבורות

$$S/(S \cap I) \simeq (S+I)/I$$

הוא איזומורפיזם של חוגים.

הוכחה. נראה ש־S+I תת־חוג.

זוהי כמובן תת־חבורה חיבורית כפי שראינו בעבר, ולכן עלינו רק לבדוק את הסגירות לכפל וקיום יחידה.

 $0.0+1=1\in S+I$  נבחר ולכן נקבל  $0\in S, 1\in I$  נבחר

 $a\in I,b\in S$  באשר מאר, מעשה, את המקרה לבדוק ולכן גם I ולכן נותר לבדוק מגורה לכפל. למעשה, אמרה וכפל וכך גם I

. אנו ולכן לכפל לכפל סגורה אידאל כי ולכן ולכן ולכן ולכן  $b \in S \in R$  אנו יודעים כי אידאל אידאל ולכן ולכן ולכן ולכן ולכן אנו יודעים כי

 $.S\cap I \lhd S$ ־עראה נראה

חיתוך של תת־חבורות חיבוריות קומוטטיביות הוא חבורה חיבורית כפי שראינו בעבר,  $I \in S \cap I$  כפי שגם ראינו כבר, ולכן נשאר לבדוק סגירות של תת־חבורות חיבוריות קומוטטיביות הוא חבורה חיבורית כפי שראינו בעבר, S-ניסל באיבר מS-ניסל באיבר מ

 $A \cap I \triangleleft S$  ומצאנו כי  $A \in S \cap I$  ונסיק כי  $A \in S \cap I$  ולכן אידאל ו־ $A \in S \cap I$  אידאל וי־ $A \in S \cap I$  ולכן מצאנו כי  $A \in S \cap I$  ומצאנו כי

. על־פי משפט הוא משמר ונבדוק אם הוא שני לחבורות, על־פי משפט האוא על־פי  $\varphi: S/(S\cap I) o (S+I)/I$  נגדיר הומומורפיזם גנדיר איי

 $arphi(ab+S\cap I)=ab+I$  נקבל  $arphi(b+S\cap I)=b+I$  יהיי  $arphi(a+S\cap I)=a+I$  אז  $arphi(a+S\cap I)=a+I$  ונקבל  $arphi(a+S\cap I)=a+I$  ונקבל  $arphi(a+S\cap I)=a+I$  וגם  $arphi(a+S\cap I)=ab+I$  ווגם  $arphi(a+S\cap I)=ab+I$  ווגם  $arphi(a+S\cap I)=ab+I$ 

. הופכיות של הישירה מבדיקה ואיזומורפיזם של חוגים, של הופכיות של הומומורפיזם של הופכיות.

יהי R חוג קומוטטיבי.

## 'סעיף א

. נוכיח ש־R הוא שדה אם ורק אם יש לו רק את שני האידאלים הטריוויאליים בלבד, וכי הם שונים.

ובהתאם  $xx^{-1}=1\in I$  קיים, ובהתאם  $x^{-1}\in R$  אז  $x\in I$  ויהי ויהי אפס), יהי אפס), יהי אפסט, איבר שדה ולכן לכל איבר יש הופכי (מלבד אפס), יהי והי $x^{-1}\in R$  אז  $x\in R$  קיים, ובהתאם שני אידאלים בלבד. ומצאנו כי קיימים שני אידאלים בלבד.

נניח מצד שני כי R חוג קומוטטיבי עם שני האידאלים בלבד. אילו נניח כי קיים  $x\in R$  שאין לו הופכי נקבל כי R ו $x\in R$  בסתירה עניח מצד שני כי  $x\in R$  חוג האידאלים עם שני האידאלים להסיק כי לכל איבר יש הופכי, וכי  $x\in R$  וגם  $x\in R$  עם טריוויאליים, ולכן נוכל להסיק כי לכל איבר יש הופכי, וכי  $x\in R$  וגם  $x\in R$  עם טריוויאליים, ולכן נוכל להסיק כי לכל איבר יש הופכי, וכי  $x\in R$  וגם בי  $x\in R$  עם שדה.

# 'סעיף ב

נגדיר, I+J=Rכך ש־  $I,J \triangleleft R$  יהיו

$$\pi: R \to R/I \times R/J$$

הוא על.  $\pi(x)=(x+I,x+J)$  הוא על.

 $\pi(x)=(y+I,z+J)$  בהתאם x=y+z כך שך  $y\in I,z\in J$  נסיק כי קיימים I+J=R מהנתון הי יהי אוכחה. יהי  $x\in R$  בוכל אם כן לבחור בעלים שההעתקה היא על. וכי  $y+z\in R$  כי כי לבחור בעלים שההעתקה היא על.

## 'סעיף ג

נוכיח שלכל  $a_1,\ldots,a_n\in R$  קיים איזומורפיזם

$$R[x_1,\ldots,x_n]/(x_1-a_1,\ldots,x_n-a_n)\simeq R$$

ופירוק דומה  $x^2-a=x(x-a)+a(x-a)+(a^2-a)$  ו־ $x-a=(x-a_1)+(a_1-a)+(a_1-a)$  ופירוק דומה בתכונה של פולינומים ש־ $x^2-a=x(x-a)+a(x-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^2-a)+(a^$ 

נוכל כמובן להעביר תהליך זהה עבור איברים מעורבים מהצורה  $kx_ix_j$  על־ידי קיבוע על־ידי מעורבים מהוצג זה עבור איברים מעורבים האיזומורפיה.

השקילות החום על־ידי על־ידי את שדה הרציונליים את ונגדיר את שלמות, תחום שלמות Rיהי

$$Q(R) := \{(a, b) \mid a \in R, 0 \neq b \in R\} / \sim$$

נגדיר גם  $(a,b)\sim(c,d)\iff ad=bc$  כאשר

$$(a,b) + (c,d) = (ad + bc, bd),$$
  $(a,b) \cdot (c,d) = (ac,bd)$ 

 $\iota(r) = (r,1)$  על־ידי  $\iota: R \to Q(R)$ את נגדיר ולבסוף ולבסוף

## 'סעיף א

 $R imes (R \setminus \{0\})$  נוכיח כי  $\sim$  יחס שקילות על

הוכחה. הוכח במסגרת הקורס מבוא לתורת הקבוצות, שאלה חמש בקובץ הבא: מטלה 3

## 'סעיף ב

Q(R) נוכיח היטב  $+,\cdot$  מוגדרות כי נוכיח נוכיח נוכיח בי

3 מטלה בקובץ המש בקובץ המכוא לתורת הקבוצות, שאלה חמש בקובץ הבא: מטלה

## 'סעיף ג

בוכיח כי  $(Q(R),+,\cdot,(0,1),(1,1))$  הוא שדה.

. אנו יודעים כי R תחום שלמות ולכן נוכל להסיק שגם Q(R), ולכן עלינו רק לבדוק סגירות להופכי.

 $\square$  שדה. Q(R) שדה ונסיק שנסין ולכן מצאנו הופכי ולכעשה, אנו כבר אנו כבר לכל מתקיים  $b \neq 0$  מתקיים של  $(a,b) \in Q(R)$  שלה.

# 'סעיף ד

. ערכי. דיחד חדיחד חוגים הומומורפיזם היא  $\iota:R o Q(R)$  נוכיח

*הוכחה.* נראה

$$\forall a, b \in R : \iota(a+b) = (a+b,1) = (a,1) + (b,1) = \iota(a) + \iota(b)$$

באופן דומה נקבל

$$\forall a, b \in R : \iota(a \cdot b) = (a \cdot b, 1) = (a, 1) \cdot (b, 1) = \iota(a) \cdot \iota(b)$$

 $\iota(a)=(a,1)
eq (b,1)=\iota(b)$  ונשאר לבדוק הפעם, נניח ש־לa
eq bש ערכיות. נניח לבדוק ונשאר