de Rham 上同调与 Jordan 曲线定理

魏子涵

2022年8月7日

0 微分形式回顾

我们回顾一下需要用到的有关微分形式的知识.

一个 1**-形式**是一个形式和 $p \, dx + q \, dy$, 其中 p, q 是光滑函数. 一个光滑函数 f 的**微** 分是一个 1-形式 $(\partial f/\partial x) \, dx + (\partial f/\partial y) \, dy$. 1-形式中的**闭形式**是指满足 $\partial p/\partial x = \partial q/\partial y$ 的 $p \, dx + q \, dy$; **恰当形式**是指作为一个光滑函数微分的 1-形式. 闭形式与恰当形式均构成实向量空间.

一个简单的结论是

准则 1.10 恰当形式都是闭形式. [2, p. 10]

以及一个部分的逆命题

命题 1.12 设 U 是两个有限或无限长的开区间的乘积,那么在 U 上闭形式都是恰当形式.

此外,我们需要一个关于卷绕数的命题

命题 3.16 设 γ 是闭路径, supp γ 是 γ 的图像, 那么 γ 的卷绕数 (作为点的函数) 在 $\mathbb{R}^2 \setminus \mathbb{R}^2$ 的每个连通分支上是常值函数. 特别地, 在无界的连通分支上卷绕数为 0.

1 de Rham 上同调群

本书在这一章只考虑平面上一个开集 U 的第零阶和第一阶上同调群,分别定义为

$$H^{0}(U) = \{ f \in C^{\infty}(U) | f 局部为常值 \}$$

$$H^{1}(U) = \frac{\{U \perp 的闭1-形式\}}{\{U \perp 的恰当1-形式\}}$$

这两者实质上是实向量空间,但在传统上会把上同调叫做群.

容易看出 $\dim H^0(U)$ 就是 U 的连通分支个数. 而对于 H^1 , 这一节有一个简单的计算 (命题 5.1), 我们直接证明问题 5.2 的推广形式:

问题 5.2 设 $X = \{P_1, \dots, P_n\}$ 是 $\mathbb{R}^2 \perp n$ 个点构成的集合, 那么 $H^1(\mathbb{R}^2 \backslash X) \cong \mathbb{R}^n$.

分析. 本书是通过直接给出生成元来证明这个命题的. 对 $P = (x_0, y_0) \in \mathbb{R}^2$ 与某个含 P 的开集 U, 设 1–形式

$$\omega_P := \frac{1}{2\pi} \frac{-(y - y_0) \, \mathrm{d}x + (x - x_0) \, \mathrm{d}y}{(x - x_0)^2 + (y - y_0)^2}$$

那么 ω_P 都是闭形式, 记 $[\omega_P]$ 为 ω_P 在 $H^1(U\setminus \{P\})$ 中的等价类. 我们希望证明 n 个形式的 等价类 $[\omega_{P_1}], \cdots, [\omega_{P_n}]$ 是 $H^1(\mathbb{R}^2\setminus X)$ 的一组基. 这需要用到引理 1.17 到问题 1.19 的一个 结论: 设 $r < \min_{i,j}\{|P_iP_j|\}, C_i$ 为以 P_i 为圆心半径为 r 的圆, 如果 1-形式 ω 满足对每个 $i=1,2,\cdots,n$ 都有

$$\int_{C_i} \omega = 0 \tag{1}$$

那么 ω 在 $\mathbb{R}^2 \setminus X$ 上是恰当的. 证明这个结论通过归纳法, 通过在一个点处画两根直线, 将平面分为 4 个半平面, 然后在这四个半平面上均存在光滑函数使其微分为 ω , 积分为 0 保证可以通过调整常数使得这些函数在半平面的重合处相等, 从而 ω 使恰当的.

问题 1.19 设 U 是两个有限或无限长的开区间的乘积, X 是 U 中有限个点的集合, 那么满足 (1) 式假设的 1-形式 ω 是恰当的.

证明. 我们对 X 中的点的个数 n 使用归纳法. n=0 时是命题 1.12. 假设命题对所有不超过 n 个点的情况成立. 对 n+1 个点构成的集合 X, 取 X 中的一点 P, 在 P 处平行于 U 的边建立坐标系. 设 U 与第 I, II 象限及 Y 轴正半轴的交为 U_1 , 类似地逆时针旋转定义 U_2 , U_3 , U_4 . 那么每个 U_i 均为去掉不超过 n 个点的两个开区间的乘积, 从而按归纳假设, 存在 U_i 上的光滑函数 f_i 满足 $\mathrm{d}f_i=\omega$. 由于在重叠处有 $\mathrm{d}f_i=\mathrm{d}f_j$, 所以 f_i 与 f_j 在 $U_i\cap U_j$ 上只相差一个常数 (因重叠处是连通的). 那么可以通过调整常数使得 $f_1=f_2, f_2=f_3, f_3=f_4$. 取 $Q\in U_1\cap U_4$, 考虑

$$\int_{C_P} \omega = f_4(Q) - f_1(Q) = 0$$

从而有 $f_1 = f_4$, 因此在 $U_1 \cup \cdots \cup U_4 = U \setminus X$ 上存在 f 使得 $\mathrm{d} f = \omega$.

问题 5.2 的证明. 我们首先证明 $[\omega_{P_1}], \cdots, [\omega_{P_n}]$ 是线性无关的. 设

$$\sum_{i=1}^{n} a_i [\omega_{P_i}] = 0$$

即 $\sum_{i=1}^{n} a_i \omega_{P_i}$ 是恰当的,那么有

$$0 = \int_{C_i} \sum_{i=1}^n a_i \omega_{P_i} = a_i$$

从而 $[\omega_{P_1}],\cdots,[\omega_{P_n}]$ 线性无关. 我们现在证明 $[\omega_{P_1}],\cdots,[\omega_{P_n}]$ 生成 $H^1(\mathbb{R}^2\backslash X)$. 设 ω_0 是闭的 1-形式, 记

$$\int_{C_i} \omega_0 = c_i$$

设 $\omega := \omega_0 - \sum_{i=1}^n c_i \omega_{P_i}$,由于对每个 C_i 都有

$$\int_{C_i} \omega = 0$$

所以 ω 在 $\mathbb{R}^2 \setminus X$ 上是恰当的. 因此就有 $[\omega_0] = \sum_{i=0}^n c_i [\omega_{P_i}]$, 从而

$$H^1(\mathbb{R}^2 \backslash X) = \langle [\omega_{P_1}], \cdots, [\omega_{P_n}] \rangle \cong \mathbb{R}^n$$

本章还会用到一个结论

命题 5.3 设 A 是 \mathbb{R}^2 上的连通闭集, $P,Q \in A$, 那么在 $H^1(\mathbb{R}^2 \backslash A)$ 中有 $[\omega_P] = [\omega_O]$.

证明. 我们只需要证明 $\omega_P - \omega_Q$ 在 $\mathbb{R}^2 \setminus A$ 中任意闭路径上的积分为 0. 而对闭路径 γ 有

$$\int_{\gamma} (\omega_P - \omega_Q) = W(\gamma, P) - W(\gamma, Q)$$

按命题 3.16, γ 关于 P 和 Q 的卷绕数是相等的, 所以以上积分为 0, 从而命题得证.

2 上边缘映射

我们换用一个更明晰一些的方法来讲这一节的内容.

对两个开集 U 与 V, 考虑嵌入映射构成的交换图

设线性映射

 $i^*: H^0(U) \to H^0(U \cap V), \ f \mapsto f|_{U \cap V}$ $j^*: H^0(V) \to H^0(U \cap V), \ g \mapsto g|_{U \cap V}$ $k^*: H^1(U \cap V) \to H^1(U), \ [\omega] \mapsto [\omega|_U]$ $l^*: H^1(U \cap V) \to H^1(V), \ [\tau] \mapsto [\tau|_V]$

那么定义**上边缘映射**为一个线性映射 $\delta: H^0(U \cap V) \to H^1(U \cup V)$,满足序列

$$H^{0}(U) \oplus H^{0}(V) \xrightarrow{i^{*}-j^{*}} H^{0}(U \cap V) \xrightarrow{\delta} H^{1}(U \cup V) \xrightarrow{k^{*} \oplus l^{*}} H^{1}(U) \oplus H^{1}(V)$$
 (2)

是正合的. 按照这个定义, δ 满足

- 1. 对 $f \in \ker \delta$, 存在 U 和 V 上的局部常值函数 f_1, f_2 使得 $f = f_1 f_2$ (严格写应该是 $f_1|_{U \cap V} f_2|_{U \cap V}$, 但书上的命题 5.7 没有这么写);
- 2. 如果 $\omega \in \text{im } \delta$, 那么 ω 在 U 和 V 上的限制都是恰当的 (命题 5.9 前半部分);
- 3. 如果 $H^1(U) = H^1(V) = 0$, 那么 δ 是满射 (命题 5.9 后半部分). 我们证明上边缘映射的存在性. 这需要用到单位分解定理. (证明见 [2, 附录 B2] 或 [4, pp. 63–64])

证明. 取 $U \cup V$ 的从属于 $\{U, V\}$ 的一组单位分解 φ_1, φ_2 , 即满足 $\operatorname{supp} \varphi_1 \subset U$, $\operatorname{supp} \varphi_2 \subset V$ 且 $\varphi_1 + \varphi_2 = 1$. 对 $f \in H^0(U \cap V)$, 取

$$f_1(p) = \begin{cases} \varphi_2(p)f(p), & p \in U \cap V \\ 0, & p \in U \setminus V \end{cases}$$
$$f_2(p) = \begin{cases} -\varphi_1(p)f(p), & p \in U \cap V \\ 0, & p \in V \setminus U \end{cases}$$

那么 f_1, f_2 都是光滑的,且 $f_2|_{U\cap V}-f_1|_{U\cap V}=f$. 由于 f 是局部常值的,那么有 $0=\mathrm{d}f=\mathrm{d}f_2|_{U\cap V}-\mathrm{d}f_1|_{U\cap V}$,从而存在闭形式 $\omega_f\in U\cup V$ 使得在 $U\cap V\perp\omega_f=\mathrm{d}f_1=\mathrm{d}f_2$. 定义

 $\delta(f) = [\omega_f]$. 我们说明 δ 是良定义的. 如果另外有 $f_3|_{U\cap V} - f_4|_{U\cap V} = f$ 与由 f_3, f_4 定义的 ω_f' ,那么在 $U\cap V$ 上有

$$f_1 - f_2 = f_3 - f_4 \implies f_1 - f_3 = f_2 - f_4$$

从而可以在 $U \cup V$ 上定义 f' 满足 $f'|_{U \cap V} = f_1 - f_3 = f_2 - f_4$, 且有 $\mathrm{d}f' = \omega_f - \omega_f'$. 那 么 $\omega_f - \omega_f'$ 是恰当的,有 $[\omega_f] = [\omega_f']$,因此 δ 是良定义的.以下我们验证序列(2)是正合的.首先证明 $\mathrm{im}(i^* - j^*) = \ker \delta$. 如果 $f = g|_{U \cap V} - h|_{U \cap V}$,其中 g,h 分别是 V,U 上的局部常值函数,那么一定有 $\mathrm{d}g = 0$, $\mathrm{d}h = 0$,从而 $\delta f = 0$. 反过来,如果 $\delta f = 0$,接以上过程取 $f_2 - f_1 = f$,并设 $\omega_f|_U = \mathrm{d}f_1$, $\omega_f|_V = \mathrm{d}f_2$. 由于 $\delta f = [\omega_f] = 0$,可知 ω_f 是恰当的,设 $\omega_f = \mathrm{d}g$,那么有

$$df_1 - dg|_U = 0, df_2 - dg|_V = 0$$

所以 $g - f_1$ 与 $g - f_2$ 是局部常值函数, 满足 $(i^* - j^*)(g - f_1, g - f_2) = f$. 其次证明 im $\delta = \ker k^* \oplus l^*$. 如果 $f = f_2 - f_1$, 那么

$$k^*(\delta(f)) = d(df_1) = 0, l^*(\delta(f)) = d(df_2) = 0$$

从而 im $\delta \subset \ker(k^* \oplus l^*)$. 反过来, 对任意 [ω] $\in \ker(k^* \oplus l^*)$, $k^* \oplus l^*([\omega]) = 0$ 意味着 $\omega|_U$ 与 $\omega|_V$ 都是恰当的, 从而存在 U,V 上的光滑函数 f_1,f_2 使得 $\omega|_U = \mathrm{d}f_1, \omega|_V = \mathrm{d}f_2$. 定义 $U \cap V$ 上的光滑函数 $f = f_2 - f_1$, 那么 $\mathrm{d}f = \mathrm{d}f_2 - \mathrm{d}f_1 = 0$, 从而 f 是局部常值的, 即 $f \in H^0(U \cap V)$, 那么按定义就有 $\delta(f) = [\omega]$, 所以 im $\delta = \ker k^* \oplus l^*$.

上边缘映射本质上是 Mayer-Vietoris 序列的一部分, 在第 10 章与第 23, 24 章会讲到 这个.

3 Jordan 曲线定理

这一节要证明

定理 5.10 (Jordan 曲线定理) 如果 $X \subset \mathbb{R}^2$ 与一个圆周同胚, 那么 $\mathbb{R}^2 \backslash X$ 有两个连通分支, 一个有界, 另一个无界. X 上任意一点的任意邻域均同时包含这两个两个连通分支中的点.

而这依赖于一个命题

定理 5.11 如果 $Y \subset \mathbb{R}^2$ 同胚于一个闭区间, 那么 $\mathbb{R}^2 \setminus Y$ 是连通的.

这两个命题都需要代数拓扑的方法来证明.

我们先证明定理 5.11.

证明. 设 I = [0,1] 是单位闭区间, $f: I \to Y$ 是同胚. 反设 $\mathbb{R}^2 \setminus Y$ 是不连通的, 即

$$\dim H^0(\mathbb{R}^2 \backslash Y) \geq 2$$

取定两个在不同连通分支中的点 A,B. 设 Y 中与 $\left[0,\frac{1}{2}\right]$ 同胚的部分为 Y^+ ,与 $\left[\frac{1}{2},1\right]$ 同胚的部分为 Y^- , $Y^+ \cap Y^- = Q$. 考虑 Mayer-Vietoris 序列

$$H^{0}(\mathbb{R}^{2}\backslash Y^{+}) \oplus H^{0}(\mathbb{R}^{2}\backslash Y^{-}) \longrightarrow H^{0}(\mathbb{R}^{2}\backslash Y) \longrightarrow H^{1}(\mathbb{R}^{2}\backslash \{Q\})$$
$$\longrightarrow H^{1}(\mathbb{R}^{2}\backslash Y^{+}) \oplus H^{1}(\mathbb{R}^{2}\backslash Y^{-})$$

对 $k^* \oplus l^*$ 而言, 由于 $H^1(\mathbb{R}^2\setminus \{Q\}) = \langle [\omega_Q] \rangle$, 而 $\omega_{Q|\mathbb{R}^2\setminus Y^+}$ 与 $\omega_{Q}|_{\mathbb{R}^2\setminus Y^-}$ 均为非零的闭形式, 所以 $k^* \oplus l^*$ 是单射. 因此有 im $\delta = \ker(k^* \oplus l^*) = 0$, 那么正合列

$$H^0(\mathbb{R}^2\backslash Y^+) \oplus H^0(\mathbb{R}^2\backslash Y^-) \xrightarrow{i^*-j^*} H^0(\mathbb{R}^2\backslash Y) \xrightarrow{\delta} 0$$

说明 i^*-j^* 是满射. 对某个在 A,B 处取值不同的 $f \in H^0(\mathbb{R}^2 \setminus Y)$, 存在 $g \in H^0(\mathbb{R}^2 \setminus Y^+)$, $h \in H^0(\mathbb{R}^2 \setminus Y^-)$ 使得 $g|_{\mathbb{R}^2 \setminus Y} - h|_{\mathbb{R}^2 \setminus Y} = f$. 如果 g,h 均在 A,B 处取值相等, 可以推出 f 在 A,B 处取值相等, 矛盾. 所以 A,B 在 $H^0(\mathbb{R}^2 \setminus Y^+)$ 或 $H^0(\mathbb{R}^2 \setminus Y^+)$ 的两个不同连通分支中, 设满足的那个为 $\mathbb{R}^2 \setminus Y$. 依次构造下去, 我们可以得到一个集合列

$$Y = Y_0 \supset Y_1 \supset \cdots \supset Y_n \supset \cdots$$

设 $\bigcap_{n=1}^{\infty} Y_n = \{P\}$. 对 $\mathbb{R}^2 \setminus Y$ 任意两个不同连通分支中的点 A, B, 由于 $\mathbb{R}^2 \setminus \{P\}$ 是连通的, 存在一条闭路径 γ 连接 A, B. 那么存在 P 的一个邻域 N 与 γ 不交, 但又存在充分大的 n 使得 $Y_n \subset N$, 从而 $\text{supp } \gamma \subset \mathbb{R}^2 \setminus Y_n$, 矛盾.

Jordan 曲线定理的证明. 设 P,Q 是 X 上任意两点, 连接 P,Q 的两段闭弧记为 A,B. 考虑 对 $U = \mathbb{R}^2 \setminus A, V = \mathbb{R}^2 \setminus B$ 的 Mayer-Vietoris 序列

$$H^{0}(\mathbb{R}^{2}\backslash A) \oplus H^{0}(\mathbb{R}^{2}\backslash B) \xrightarrow{l^{*}-j^{*}} H^{0}(\mathbb{R}^{2}\backslash X) \xrightarrow{\delta} H^{1}(\mathbb{R}^{2}\backslash \{P,Q\})$$
$$\xrightarrow{k^{*}\oplus l^{*}} H^{1}(\mathbb{R}^{2}\backslash A) \oplus H^{1}(\mathbb{R}^{2}\backslash B)$$

由定理 5.11, $\mathbb{R}^2 \setminus A$ 与 $\mathbb{R}^2 \setminus B$ 是连通的, 所以 $H^0(\mathbb{R}^2 \setminus A)$ 与 $H^0(\mathbb{R}^2 \setminus B)$ 由常值函数构成. 对 $\mathbb{R}^2 \setminus A$ 与 $\mathbb{R}^2 \setminus B$ 上的常值函数 g, h, 那么有 $(i^* - j^*)(g, h) = g|_{\mathbb{R}^2 \setminus X} - h|_{\mathbb{R}^2 \setminus X}$ 为常值函数, 从 而 dim im $(i^* - j^*) = 1$. 由正合可知 dim ker δ = dim im $(i^* - j^*) = 1$. 而对于 $k^* \oplus l^*$, 由于 $H^1(\mathbb{R}^2 \setminus \{P,Q\}) = \langle [\omega_P], [\omega_Q] \rangle$, 而由命题 5.3 知在 $\mathbb{R}^2 \setminus A$ 上有 $[\omega_P] = [\omega_Q]$, 在 $\mathbb{R}^2 \setminus B$ 上同理,

所以有 $k^* \oplus l^*([\omega|_P]) = k^* \oplus l^*([\omega|_Q])$. 因此 dim im $k^* \oplus l^* = 1$, 而 dim $H^1(\mathbb{R}^2 \setminus \{P,Q\}) = 2$,

$$\dim\operatorname{im}\delta=\dim\ker k^*\oplus l^*$$

$$=\dim H^1(\mathbb{R}^2\backslash\{P,Q\})-\dim\operatorname{im} k^*\oplus l^*$$

$$=1$$

所以 $\dim H^0(\mathbb{R}^2 \backslash X) = \dim \ker \delta + \dim \operatorname{im} \delta = 2$, 即 $\mathbb{R}^2 \backslash X$ 有两个连通分支, 显然一个有界而另一个无界.

我们证明最后一个断言. 对任意一点 $T \in X$ 及 T 的邻域 N, 在 N 中取两点 P, Q, 设两点将 X 分的两段闭弧为 A, B, 其中 A 在 N 内. 设 P_0 , P_1 是 $\mathbb{R}^2 \setminus X$ 的两个不同连通分支中的点,由于 $\mathbb{R}^2 \setminus B$ 是连通的,所以存在闭路径 γ 连接这两点. γ 一定与 A 相交 (否则 X 将会连通),且交点的集合是闭集,那么设

$$t_m = \min_{t \in [0,1]} \{t | \gamma(t) \in A\}, t_M = \max_{t \in [0,1]} \{t | \gamma(t) \in A\}$$

那么存在某个充分小的 ε , 使得 $\gamma(t_m - \varepsilon)$ 与 P_0 在同一连通分支而 $\gamma(t_M + \varepsilon)$ 与 P_1 在同一连通分支,且 $\gamma(t_M - \varepsilon)$, $\gamma(t_M + \varepsilon)$ 均在 N 中. 从而命题得证.

4 应用和变体

我们选择 5.4 节的一些题目来讨论. 本节需要用到一个 (现在还证不出来的) 结论:

命题. 设 K 是平面上的非空紧集.

- (a) 如果 K 是连通的, 那么 dim $H^1(\mathbb{R}^2 \backslash K) = 1$, 且 $H^1(\mathbb{R}^2 \backslash K) = \langle [\omega_P] \rangle$, 对任意 $P \in K$;
- (b) 如果 K 不连通且 P, Q 在不同的连通分支中, 那么 $[\omega_P]$ 与 $[\omega_Q]$ 在 $H^1(\mathbb{R}^2 \backslash K)$ 中线性 无关;
- (c) 如果 K 恰好有两个连通分支, 那么任取两个连通分支中的 P, Q, 有 $H^1(\mathbb{R}^2 \backslash K) = \langle [\omega_P], [\omega_O] \rangle$.

习题 5.13 到习题 5.16 是证明 Jordan 曲线定理中处理 H^0 的技巧的一些应用. 我们讨论一下习题 5.13 与习题 5.14, 后面两道题与习题 5.14 类似.

习题 5.13 如果 A,B 是 \mathbb{R}^2 上的连通紧集, 且 $A \cap B$ 非空而不连通, 证明 $\mathbb{R}^2 \setminus (A \cup B)$ 不连通.

证明. 我们需要承认一个事实 ([3, 定理 17.31]): 平面上任意开集 U 的 $H^2(U)$ 与 \mathbb{R} 同构. \mathbb{R}

¹这个命题是错误的, 所以本题的后半部分是伪证, 我们只想展示一下处理 Mayer-Vietoris 序列的思路.

对原题用反证法, 假设 $\mathbb{R}^2 \setminus (A \cup B)$ 是连通的. 考虑 Mayer-Vietoris 序列

$$H^{1}(\mathbb{R}^{2}\backslash(A\cap B)) \xrightarrow{k^{*}\oplus l^{*}} H^{1}(\mathbb{R}^{2}\backslash A) \oplus H^{1}(\mathbb{R}^{2}\backslash B) \to H^{1}(\mathbb{R}^{2}\backslash(A\cup B))$$

$$\to H^{2}(\mathbb{R}^{2}\backslash(A\cap B)) \to H^{2}(\mathbb{R}^{2}\backslash A) \oplus H^{2}(\mathbb{R}^{2}\backslash B)$$

$$\to H^{2}(\mathbb{R}^{2}\backslash(A\cup B)) \to 0$$
(3)

设 [ω] ∈ ker k^* ⊕ l^* , 那么在 $\mathbb{R}^2 \setminus A$ 与 $\mathbb{R}^2 \setminus B$ 上分别存在 f_1, f_2 使得

$$\omega|_A = \mathrm{d} f_1, \omega|_B = \mathrm{d} f_2$$

由于我们假设 $\mathbb{R}^2 \setminus (A \cup B)$ 是连通的, f_1 , f_2 在重叠处是常值函数, 所以可以延拓为 $\mathbb{R}^2 \setminus (A \cup B)$ 上的函数 f 使得 $\mathrm{d}f = \omega$, 那么就有 $[\omega] = 0$. 从而有 $\ker k^* \oplus l^* = 0$, 那么 $k^* \oplus l^*$ 是单射. 而由本题前的命题,

$$\dim H^1(\mathbb{R}^2 \setminus (A \cap B)) \ge 2 = \dim H^1(\mathbb{R}^2 \setminus A) \oplus H^1(\mathbb{R}^2 \setminus B)$$

所以 $k^* \oplus l^*$ 是同构, 于是正合列 (3) 可以缩短为

$$0 \to H^1(\mathbb{R}^2 \backslash (A \cup B)) \to H^2(\mathbb{R}^2 \backslash (A \cap B))$$
$$\to H^2(\mathbb{R}^2 \backslash A) \oplus H^2(\mathbb{R}^2 \backslash B) \to H^2(\mathbb{R}^2 \backslash (A \cup B)) \to 0$$

仍然由本题之前的命题,上述正合列可以写为

$$0 \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}^2 \to \mathbb{R} \to 0$$

比较维数容易知道这是不可能的.

习题 5.14 如果 Y 是平面上同胚于一个矩形或者闭圆盘的子集,证明它的补是连通的.

证明. 由于闭圆盘和矩形是同胚的, 所以我们只需要对单位正方形证明这个命题. 设 I = [0,1] 是单位闭区间, $\varphi: I^2 \to Y$ 是同胚. 反设 $\mathbb{R}^2 \setminus Y$ 是不连通的, 即

$$\dim H^0(\mathbb{R}^2 \backslash Y) \ge 2$$

取定两个在不同连通分支中的点 A,B. 设 Y 中与 $\left[0,\frac{1}{2}\right]\times I$ 同胚的部分为 Y^+ ,与 $\left[\frac{1}{2},1\right]\times I$ 同胚的部分为 Y^- , $Y^+\cap Y^-=\varphi\left(\left\{\frac{1}{2}\right\}\times I\right):=X$. 考虑 Mayer-Vietoris 序列

$$H^{0}(\mathbb{R}^{2}\backslash Y^{+}) \oplus H^{0}(\mathbb{R}^{2}\backslash Y^{-}) \longrightarrow H^{0}(\mathbb{R}^{2}\backslash Y) \longrightarrow H^{1}(\mathbb{R}^{2}\backslash X)$$
$$\longrightarrow H^{1}(\mathbb{R}^{2}\backslash Y^{+}) \oplus H^{1}(\mathbb{R}^{2}\backslash Y^{-})$$

我们证明了 $H^1(\mathbb{R}^2 \setminus X)$ 是连通的, 从而 $H^1(\mathbb{R}^2 \setminus X) = \langle [\omega_Q] \rangle$, 其中 Q 为 X 上任意一点. 而 $\omega_{Q|\mathbb{R}^2 \setminus Y^+}$ 与 $\omega_{Q|\mathbb{R}^2 \setminus Y^-}$ 均为非零的闭形式, 所以 $k^* \oplus l^*$ 是单射. 因此有 im $\delta = \ker(k^* \oplus l^*) = 0$, 那么有正合列

$$H^0(\mathbb{R}^2\backslash Y^+) \oplus H^0(\mathbb{R}^2\backslash Y^-) \xrightarrow{i^*-j^*} H^0(\mathbb{R}^2\backslash Y) \xrightarrow{\delta} 0$$

说明 i^*-j^* 是满射. 对某个在 A,B 处取值不同的 $f \in H^0(\mathbb{R}^2 \setminus Y)$, 存在 $g \in H^0(\mathbb{R}^2 \setminus Y^+)$, $h \in H^0(\mathbb{R}^2 \setminus Y^-)$ 使得 $g|_{\mathbb{R}^2 \setminus Y} - h|_{\mathbb{R}^2 \setminus Y} = f$. 如果 g,h 均在 A,B 处取值相等, 可以推出 f 在 A,B 处取值相等, 矛盾. 所以 A,B 在 $H^0(\mathbb{R}^2 \setminus Y^+)$ 或 $H^0(\mathbb{R}^2 \setminus Y^+)$ 的两个不同连通分支中, 设满足的那个为 $\mathbb{R}^2 \setminus Y$. 依次构造下去, 我们可以得到一个集合列

$$Y = Y_0 \supset Y_1 \supset \cdots \supset Y_n \supset \cdots$$

设 $\bigcap_{n=1}^{\infty} Y_n = X_1 \cong I$. 对 $\mathbb{R}^2 \setminus Y$ 任意两个不同连通分支中的点 A, B, 由于 $\mathbb{R}^2 \setminus X_1$ 是连通的,存在一条闭路径 γ 连接 A, B. 那么存在 X_1 的一个邻域 N 与 γ 不交 (T4 公理),但又存在充分大的 n 使得 $Y_n \subset N$,从而 $\operatorname{supp} \gamma \subset \mathbb{R}^2 \setminus Y_n$,矛盾.

以下是 Jordan 曲线定理的一个重要推论: 2 维情况的区域不变定理.

命题 5.17 设 D 是闭圆盘, 记 D° 为其内部, C 为其边界圆. 设 $f: D \to \mathbb{R}^2$ 是连续的单射, 那么 $\mathbb{R}^2 \setminus f(C)$ 有两个连通分支, 分别为

$$f(D^{\circ}) = \mathbb{R}^2 \backslash f(D)$$

特别地, $f(D^{\circ})$ 是平面上的一个开集.

证明. 对紧集而言, 连续的单射是它与它的像之间的同胚. 因此对 f(C) 用 Jordan 曲线定理, 可知 $\mathbb{R}^2 \setminus f(C)$ 有两个连通分支. 注意到 $\mathbb{R}^2 = f(D^\circ) \coprod f(C) \coprod f(\mathbb{R}^2) \setminus f(D)$, 并且由同胚保持连通性可知 $f(D^\circ)$ 是连通的, 而习题 5.14 保证 $f(\mathbb{R}^2) \setminus f(D)$ 是连通的, 所以 $f(D^\circ)$ 与 $\mathbb{R}^2 \setminus f(D)$ 恰好是 $\mathbb{R}^2 \setminus f(C)$ 的两个不同连通分支. 并且由同胚容易知道 $f(D^\circ)$ 是开集.

推论 5.18 (区域不变定理) 如果 U 是平面上的开集, $F: U \to \mathbb{R}^2$ 是连续的双射, 那么 F(U) 是 \mathbb{R}^2 的开子集, 且 F 是 U 到 F(U) 的一个同胚.

证明. 设 $V \subset U$ 是开集. 对任意一点 $p \in V$, 取以 p 为圆心的开圆盘 $C(p) \subset V$, 那么由命题 5.17, 可知 $F(C(p)) \subset F(V)$ 也是开集, 从而 F(V) 是一个开集. 那么因此有 F^{-1} 连续, 从而是同胚. 特别地, F(U) 是平面上的一个开集.

利用 Jordan 曲线定理可以给出第 4 章中的一个结论的另一证明.

推论 5.19 2 维球面不同胚于平面的任何子集.

证明. 设 $f: S^2 \to \mathbb{R}^2$ 是连续的单射 (从而是 $S^2 与 f(S^2)$ 之间的同胚), A, B 分别是上半球 面与下半球面, $A \cap B = C$. 注意到而 $f(A^\circ) \subset f(A)$, 所以 $f(A^\circ)$ 被映为 $\mathbb{R}^2 \setminus f(C)$ 的有界连 通分支. 同理 $f(B^\circ)$ 也被映为 $\mathbb{R}^2 \setminus f(C)$ 的有界连通分支, 这与 f 是单射矛盾.

命题 5.20 设 $F: C \to \mathbb{R}^2$ 是连续的双射, 那么对 $\mathbb{R}^2 \setminus F(C)$ 的有界连通分支中的任一点 P 有 $W(F, P) = \pm 1$. (书上的证明似乎有问题.)

问题 5.21 到问题 5.23 是有关平面图的问题, 可以参阅 [1] 相关章节.

习题 5.24 证明定理 5.11, Jordan 曲线定理以及 Euler 公式在 2 维球面上也成立. (不考虑有界性的描述.)

证明. 实际上只需要证明一个命题: 设 X 是局部紧的 Hausdorff 空间, \tilde{X} 是 X 的单点紧化空间, 如果 X 连通且非紧, 那么 \tilde{X} 是连通的.

假设 \widetilde{X} 不连通,那么存在非空的开集U,V使得 $U\coprod V=\widetilde{X}$. ∞ 必然在这两个开集之一之中,不妨设 $\infty \in U$. 那么一定有 $V=\widetilde{X}\setminus U$ 在X中是紧集. 但是V在 \widetilde{X} 中开意味着V在X中开,而 Hausdorff 空间中的紧集不可能是开集,矛盾.

最后我们讨论两个关于 Möbius 带的问题. 记 I = [0,1], 定义等价关系 \sim : $(0,y) \sim$ (1,1-y), 并定义 Möbius 带为商空间 $\mathcal{M} := I^2/\sim$.

问题 5.26 证明不存在 Möbius 带到平面的连续双射.

证明. 考虑 $\mathcal{M}\setminus C:=(I^2\setminus (I\times\{1/2\}))/\sim$, 那么去掉的部分 C 相当于将 I 的端点粘合在一起得到单位圆周 S^1 . 容易证明 $\mathcal{M}\setminus C$ 是道路连通的. 如果 $\varphi:(M)\to\mathbb{R}^2$ 是连续双射, 那么 f(C) 与 S^1 同胚, 由 Jordan 曲线定理, $\mathbb{R}^2\setminus f(C)$ 有两个连通分支, 并且由于 $f(C)\subset f(\mathcal{M})$, 有界的连通分支在 $f(\mathcal{M})$ 中, 从而 $f(\mathcal{M})$ 不连通. 但是 $\mathcal{M}\setminus C$ 连通, 且连续映射保持连通性, 矛盾. 所以不存在 Möbius 带到平面的连续双射.

还有一种微分几何的做法是考虑 Möbius 带作为微分流形的定向.

问题 5.28 一个**带边的拓扑曲面**是指一个第二可数的 Hausdorff 空间, 满足对任意一点 P, 都存在 P 的一个邻域同胚于平面或上半平面 $\mathbb{H}^2 = \{(x,y) \in \mathbb{R}^2 | x \geq 0\}$ 中的一个开集. 如果这个同胚是到 \mathbb{H}^2 的且将 P 映为 x 轴上的点, 则称 P 为**边界点**, 否则称为**内点**². 证明同胚的带边曲面有着同胚的边界 (即边界点的集合), 从而 Möbius 带与圆柱面不同胚.

证明. 证明很简单, 验证定义即可. 设 M,N 是带边流形, $f: M \to N$ 是同胚映射, 不妨假设 M,N 有非空的边界. 对 $p \in \partial M$, 存在一个坐标卡 $\varphi: U \to \mathbb{H}^2$ 使得 U 包含 p, 且 $\varphi(U)$ 是 \mathbb{H}^2 的开子集, $\varphi(p)$ 在 x 轴上. 那么对 f(p) 的邻域 $V = f(U), \varphi \circ f^{-1}$ 是一个坐标卡, 并且将 f(p) 映到 x 轴上, 从而 $f(p) \in \partial N$. 因此 f(U) 及同理的 f^{-1}) 将边界映为边界. 对于 ∂M 上的一个开集 A, 存在 M 的开集 B 使得 $A = B \cap \partial M$, 那么一定有

$$f(A) = f(B \cap \partial M) = f(B) \cap f(\partial M) = f(B) \cap \partial N$$

所以 f(A) 是 ∂N 中的开集, 从而 f^{-1} 连续. 同理 f 连续, 所以 $f:\partial M\to\partial N$ 是同胚映射. 至于 Möbius 带, 它的边界为 S^1 , 而圆锥 $S^1\times I$ 的边界为 $S^1\coprod S^1$, 两者不同胚 (因为连通分支数不同), 所以 Möbius 带与圆柱面不同胚.

参考文献

- [1] J. A. Bondy and U. S. R. Murty. *Graph theory*. Vol. 244. Graduate Texts in Mathematics. Springer, New York, 2008, pp. xii+651. ISBN: 978-1-84628-969-9. DOI: 10.1007/978-1-84628-970-5. URL: https://doi.org/10.1007/978-1-84628-970-5.
- [2] William Fulton. *Algebraic topology*. Vol. 153. Graduate Texts in Mathematics. A first course. Springer-Verlag, New York, 1995, pp. xviii+430. ISBN: 0-387-94326-9; 0-387-94327-7. DOI: 10.1007/978-1-4612-4180-5.
- [3] John M. Lee. *Introduction to smooth manifolds*. Second. Vol. 218. Graduate Texts in Mathematics. Springer, New York, 2013, pp. xvi+708. ISBN: 978-1-4419-9981-8.
- [4] Michael Spivak. *Calculus on manifolds. A modern approach to classical theorems of advanced calculus.* W. A. Benjamin, Inc., New York-Amsterdam, 1965, pp. xii+144.

²这里对带边拓扑流形的定义是更加现代的定义,与书上略微不同