Introduction to Deep Neural Networks

AIM3052-41

Prof. Hogun Park

Course Overview

Machine learning and Deep learning

- ▶ Machine learning (ML)
 - A type of artificial intelligence (AI) that allows software applications to become more accurate at predicting outcomes
 - Machine learning algorithms use historical data as input to predict new output values.
- Deep learning
 - A part of ML methods
 - Multi-layered Perceptrons and their variants such CNNs, LSTMs, and GANs
 - Deep learning leads the major advances in recent technology
 - Self-driving cars, Machine translation, ...

Goals

- ▶ Deep Learning is one of the most highly sought after skills in AI. In this course, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout and other recent techniques.
- Upon completing the course, students should be able to:
 - Learn about different supervised and unsupervised neural learning methods in the field of deep learning.
 - Implement some of those algorithms.
 - Learn the theory behind some algorithms.

Why Deep learning Now?

DL Today

- Speech recognition
 - Meta
 - ✓ Speech recognition for nearly 100 languages
 - ✓ Speech-to-text translation for nearly 100 input and output languages
 - ✓ Speech-to-speech translation, supporting nearly 100 input languages and 36 (including English) output languages
 - ✓ Text-to-text translation for nearly 100 languages
 - ✓ Text-to-speech translation, supporting nearly 100 input languages and 35 (including English) output languages

DL Today

- Computer Vision
 - Tesla

DL Today

- Robot
 - Figure
 - ✓ Figure, a robotics startup based in Sunnyvale, California, has successfully secured \$675 million in funding at a valuation of \$2.6 billion. The early-stage funding round was backed by prominent tech companies including Nvidia, Microsoft, and Amazon.

Text generation

Summarization is (Almost) Dead

Xiao Pu*, Mingqi Gao*, Xiaojun Wan

Wangxuan Institute of Computer Technology, Peking University puxiao@stu.pku.edu.cn
{gaomingqi, wanxiaojun}@pku.edu.cn

Abstract

How well can large language models (LLMs) generate summaries? We develop new datasets and conduct human evaluation experiments to evaluate the zero-shot generation capability of LLMs across five distinct summarization

Our quantitative and qualitative comparisons between LLM-generated summaries, human-written summaries, and summaries generated by fine-tuned models revealed that LLM summaries are significantly preferred by the human evaluators, which also demonstrate higher factuality.

Other tasks

	Claude 3 Opus	Claude 3 Sonnet	Claude 3 Haiku	GPT-4	GPT-3.5	Gemini 1.0 Ultra	Gemini 1.0 Pro
Undergraduate level knowledge MMLU	86.8% 5 shot	79.0% 5-shot	75.2% 5-shot	86.4% 5-shot	70.0% 5-shot	83.7% 5-shot	71.8% 5-shot
Graduate level reasoning GPQA, Diamond	50.4% 0-shot CoT	40.4% 0-shot CoT	33.3% 0-shot CoT	35.7% 0-shot CoT	28.1% 0-shot CoT	_	_
Grade school math GSM8K	95.0% 0-shot CoT	92.3% 0-shot CoT	88.9% 0-shot CoT	92.0% 5-shot CoT	57.1% 5-shot	94.4% Maj1@32	86.5% Maj1@32
Math problem-solving MATH	60.1% 0-shot CoT	43.1% 0-shot CoT	38.9% 0-shot CoT	52.9% 4-shot	34.1% 4-shot	53.2% 4-shot	32.6% 4-shot
Multilingual math MGSM	90.7% 0-shot	83.5% 0-shot	75.1% 0-shot	74.5% 8-shot	_	79.0% 8-shot	63.5% 8-shot
Code HumanEval	84.9% 0-shot	73.0% 0-shot	75.9% 0-shot	67.0% 0-shot	48.1% 0-shot	74.4% 0-shot	67.7% 0-shot
Reasoning over text DROP, F1 score	83.1 3-shot	78.9 3-shot	78.4 3-shot	80.9 3-shot	64.1 3-shot	82.4 Variable shots	74.1 Variable shots
Mixed evaluations BIG-Bench-Hard	86.8% 3-shot CoT	82.9% 3-shot CoT	73.7% 3-shot CoT	83.1% 3-shot CoT	66.6% 3-shot CoT	83.6% 3-shot CoT	75.0% 3-shot CoT
Knowledge Q&A ARC-Challenge	96.4% 25-shot	93.2% 25-shot	89.2% 25-shot	96.3% 25-shot	85.2% 25-shot	_	_
Common Knowledge HellaSwag	95.4% 10-shot	89.0% 10-shot	85.9% 10-shot	95.3% 10-shot	85.5% 10-shot	87.8% 10-shot	84.7% 10-shot

Video generation

SORA

Biology

▶ Title: Highly accurate protein structure prediction with AlphaFold

User-interaction

- User profiling
- Marketing

After taking this class

- You can start
 - understanding their working draft or paper
 - reading and contributing the big projects

(Tentative) Topics

- Deep feedforward networks
- Regularization for deep learning
- Optimization for training deep models
- Convolutional networks
- Sequence modeling: recurrent and recursive networks
- Autoencoders
- ▶ Foundational Representation learning models

Logistics

- ▶ Time and location:
- ▶ Flipped learning: Recorded Lecture and OFFLINE Class (Every Tuesday 13:30-14:45)
- ▶ Instructor: Hogun Park
 - hogunpark@skku.edu, office hours: Wednesday14:00-15:00 by appointment
- ▶ Teaching assistant: TBD, office hours: TBD
- Webpage: iCampus (Video)
- Prerequisites: 1 Programming class AND

(1 Probability / Statistics OR 1 Linear Algebra)

Textbook (Not mandatory to buy)

- ▶ Goodfellow, Bengio, and Courville, (2016), Deep Learning
 - https://www.deeplearningbook.org/
- Lecture slides are from the textbook(https://www.deeplearningbook.org/lecture_slides.html)
 - ▶ UCB CS282A, and Stanford CS230

Workload

- ▶ Homeworks/programming projects
 - Paper summary, Written/math exercises, Programming assignments in python/R
- ► Late policy: 15% off per day late, maximum of 5 days

 Four extension days can be applied anytime to homeworks/projects (no explanation needed)
 - The use of extension days must be stated explicitly at the time of submission.
 - Cannot be rearranged after they are applied to a submission
 - Cannot be used after the final day of classes
- Exams: Mid-term exam only

Grading

Honor Code (1/2)

- ▶ We strongly encourage students to form study groups.
- > Students may discuss and work on homework problems in groups.
- ▶ However, each student must write down the solution independently, and without referring to written notes from the joint session.
- Each student must understand the solution well enough in order to reconstruct it by him/herself. It is an honor code violation to copy, refer to, or look at written or code solutions from a previous year, including but not limited to: official solutions from a previous year, solutions posted online, and solutions you or someone else may have written up in a previous year.
- Furthermore, it is an honor code violation to post your assignment/exam solutions online, such as on a public git repo.
- ▶ We run plagiarism-detection software on your code against past solutions or online materials.
- If the plagiarism is detected, the final grade will be immediately F.
 - (성균관대학교학칙 시행세칙(학사과정) 제25조, 시행세칙(대학원과정) 제31조)

Honor Code (2/2)

- Example
 - If you copy codes and sentences, which are available online or in solutions, you will have zero points and get F grade immediately.
 - ✓ Exception: obvious api calls such as numpy or pytorch libraries

Communication (1/2)

- ▶ We use the bulletin board (QnA board) and email communications.
 - Please specify the objective of your questions.
 - ✓ Good title: [HW#1] How to choose hyper-parameters in CNNs
 - ✓ Bad title: Questions about the lecture
- However, we strongly recommend asking questions during our Webex live lectures.

Communication (2/2)

- Use only English for communication and all assignments
 - If you use Korean, you can expect to get zero points

Thank you!