Examen Final Regular

Apellido y Nombre:	
Mail:	LU:

- 1. Sea \mathcal{E} la elipse con focos $F_1(4,2)$ y $F_2(-2,2)$ y que pasa por P(1,6).
 - a) Dar la ecuación de la elipse y determinar en qué puntos corta al eje x.
 - b) Dar la ecuación de la parábola \mathcal{P} que corta al eje x en los mismos puntos que \mathcal{E} y su vértice coincide con el centro de la elipse.
 - c) Sea Q el punto derecho donde se cortan \mathcal{E} y \mathcal{P} . Dar la expresión segmentaria de la tangente de \mathcal{P} en dicho punto.
 - d) Graficar \mathcal{E} , \mathcal{P} , los focos, la directriz de \mathcal{P} y la tangente.
- 2. Sean π_1 y π_2 dos planos que se cortan a lo largo de la recta r: t(1,2,1) + (0,1,0). π_1 pasa por P(1,3,2) y π_2 es perpendicular a π_1 .
 - a) Dar la ecuación segmentaria de π_1 y π_2 .
 - b) Determinar las trazas de π_2 . Graficar las trazas, y los vectores normales \mathbf{n}_1 y \mathbf{n}_2 .
- 3. a) Dar la ecuación de la cuádrica S, que pasa por los puntos $P_1(1,2,1)$ y $P_2(0,1,-1)$, y su traza con el plano coordenado xz es la parábola $C: x^2 2x + z + 1 = 0$.
 - b) Determinar el tipo de cuádrica e indicar si tiene simetría respecto de algún plano coordenado. Si posee centro, determinarlo. Justificar.
 - c) Graficar la superficie S y sus trazas con los planos coordenados, indicando qué tipo de cónicas son.
- 4. Sea la superficie de revolución $S: x^2 + e^{(y-2)} + z^2 1 = 0$.
 - a) Determinar el eje de rotación y una curva generatriz \mathcal{C} .
 - b) Determinar el volumen del sólido limitado por S, que se encuentre contenido en la región $y \ge 0$.
 - c) Graficar la superficie, el sólido y la curva $\mathcal{C}.$

Justificar todas las respuestas.

Hojas entregadas: Firma: