Вариант 1. Микропроцессоры.

Цель работы: изучение принципов построения и организации экспертных систем, базирующихся на логике и правилах.

Таблица сравнительных характеристик микропроцессоров.

<u> </u>			I		1	r	1		
Процессор	Тактовая частота		Кэш данных	кэш команд		системной шины	SPECint	SPECfp **	Ватт ***
Intel Pentium 4	1.3-3.2 ГГц	2	8 КБ	12 КБ	256-512 КБ на чипе	400-800 МГц	1620	1494	82 Вт
Intel Itanium	733, 800 МГц	4	16 КБ	16 КБ	96 КБ	266 МГц	365	701	116-130 Вт
AMD Athlon XP	1.333-2.2 ГГц	3	64 КБ	164 K L	512 КБ на чипе	400 МГц	1080	982	60-68 Вт
AMD Athlon MP	0.852.133 ГГц		64 КБ	104 Kb	256 КБ на чипе	266 МГц	781	656	46.1-54.7 Вт
Sun UltraSPARC III	600-1200 МГц	2	64 КБ		до 16 МБ внешней	150 МГц	722	1118	70 Вт @ 750 МГц
IBM PowerPC 750FX	0.9-1 ГГц	1	32 КБ	IJZ KD	512 КБ на чипе	200 МГц			5.7 Вт @ 900 МГц
SandCraft SR71000	500-800 МГц	2	32 КБ	13 / K Fs	512 КБ на чипе	133 МГц			4 Вт @ 600 МГц
Alpha 21264	0.5-1 ГГц	2	64 КБ	64 КБ	до 8 МБ	200 МГц	679	960	90 Вт @ 750 МГц
IBM Power 4	1.1-1.3 ГГц	4	32 КБ	64 КБ	от 0.5 до 16 МБ	400 МГц	814	1169	
HP PA-8700	650, 750 МГц	1/1	0.75 МБ	1.5 МБ	нет		569	581	12.5 Вт
SPARC64 GP	400-675 МГц	2	128 КБ	1128 KK	8 МБ внешней		478	509	
AMD Opteron	1.4-2 ГГц	2	64 КБ	64 КБ	1 МБ		1335	1339	84.7 Вт
Intel Xeon	1.4-2 ГГц		8 КБ	20 КБ	1 МБ	400-533 МГц	1243	1152	110 Вт
Intel Itanium 2	1.3-1.5 ГГц		32 КБ - для дан команд	-	256 КБ	400 МГц	1322	2119	
Alpha 21364	1.15-1.77 ГГц	4	64 КБ	64 КБ	1.75 МБ		877	1482	155 Вт
Crusoe	667-1000 МГц		64 КБ	64 КБ	512 КБ				7.5 Вт
Intel Pentium M	900-1700 МГц		64 КБ	64 КБ	1 МБ	400 МГц			22 Вт

^{*} FLOP = операций с плавающей точкой за такт.

** Лучшие результаты тестов SPECint2000 и SPECfp2000 для однопроцессорных конфигураций. Результаты были взяты с сервера www.spec.org

Для того, чтобы решить задачу подбора необходимого микропроцессора воспользуемся методом дерева решений. С помощью языка программирования Python и среды разработки Jupyter Notebook я построил дерево решений для подбора необходимой модели микропроцессора за минимальное число вопросов:

```
In [1]: import pandas as pd
          import numpy
In [2]: MP_data = pd.read_excel('JP4.xlsx')
         MP_data
Out[2]:
                   Низкая
                              Высокая
                                                                           Носитель
                                                                                                                                         Максимальное
                                                Наличие
                                                                                                     Частота
                                                                                                              Результаты
                                                                                                                          Результаты
                                                            Кэш-
                                                                    Кэш-
                                                                               кэш- Количество
                                                                                                                                           потребление
                                        FLOP
                                                 общего
                                                                                                                 SPECint
                                                                                                                               тестов
SPECfp
                                                         данных
                                                                                      кэш памяти
                                                                                                                                                 (Ватт)
                                                                                                                                 1494
           0
                     1.300
                                  3.200
                                                               8
                                                                       12
                                                                                             512
                                                                                                         600
                                                                                                                     1620
                                                                                                                                                   82.0
                    0.733
                                  0.800
                                                      0
                                                              16
                                                                       16
                                                                                              96
                                                                                                         266
                                                                                                                      365
                                                                                                                                  701
                                                                                                                                                   123.0
           2
                    1.333
                                 2 200
                                                      0
                                                              64
                                                                       64
                                                                                             512
                                                                                                         400
                                                                                                                     1080
                                                                                                                                  982
                                                                                                                                                   64.0
           3
                    0.850
                                 2 133
                                                      0
                                                              64
                                                                       64
                                                                                             256
                                                                                                         266
                                                                                                                      781
                                                                                                                                  656
                                                                                                                                                    50.0
                    0.600
                                                              64
                                                                       32
                                                                                            16384
                                                                                                         150
                                                                                                                                 1118
                                                                                                                                                   70 0
                                 1 200
                                                                                                                      722
                                                              32
                                                                                             512
                                                                                                                                 1097
                                                                                                                                                    5.7
                    0.900
                                  1.000
                                                                                                         200
                                                                                                                      914
                                                                                                                                                    4.0
                    0.500
                                 0.800
                                                                                             512
                                                                                                         133
                                                                                                                      914
                                                                                                                                 1097
                                  1.000
                                                                                                         200
                                                                                                                      679
                                                                                                                                                   63.0
                                                                                                         400
           9
                                                                                                                                                    12.5
                     0.650
                                                                                                         323
                                                                                                                      569
           10
                    0.400
                                 0.670
                                                      0
                                                             128
                                                                                            8192
                                                                                                         323
                                                                                                                      478
                                                                                                                                  509
                                                                                                                                                   63.0
                                                                                                                                                              11
           11
                     1 400
                                 2.000
                                                      0
                                                                                            1024
                                                                                                         323
                                                                                                                     1335
                                                                                                                                 1339
                                                                                                                                                   84 7
                                                                                                                                                              12
           12
                     1,400
                                 2.000
                                                      0
                                                              8
                                                                       20
                                                                                            1024
                                                                                                         465
                                                                                                                     1243
                                                                                                                                 1152
                                                                                                                                                   110 0
                                                                                                                                                              13
                                                                                                         400
           13
                     1 300
                                  1 500
                                                              16
                                                                       16
                                                                                             256
                                                                                                                     1322
                                                                                                                                 2119
                                                                                                                                                   63.0
                                                                                                                                                              14
                                 1.770
                                                              64
                                                                                                         323
                                                                                                                                                   155.0
                                                                                                                                                              15
           14
                     1.150
                                                      0
                                                                      64
                                                                                            1792
                                                                                                                      877
                                                                                                                                 1482
           15
                     0.667
                                  1.000
                                                      0
                                                                                                         323
                                                                                                                                 1097
                                                                                                                                                              16
                                                                                             512
                                                                                                                      914
                                                                                                                                                    7.5
                                 1.700
                                                                                                         400
                                                                                                                                                   22.0
                    0.900
                                                      0
                                                                                                                                                              17
In [3]: from sklearn.tree import DecisionTreeClassifier
          from sklearn import tree
          from sklearn.tree import export_graphviz
In [4]: X_train = MP_data.iloc[:, :-1]
y_train = MP_data.iloc[:, -1].values
In [8]: decision_tree = tree.DecisionTreeClassifier(criterion='entropy', min_samples_split=3)
          decision_tree.fit(X_train, y_train)
Out[8]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='entropy',
                                      max_depth=None, max_features=None, max_leaf_nodes=None,
                                      min_impurity_decrease=0.0, min_impurity_split=None,
                                      min_samples_leaf=1, min_samples_split=3
                                      min_weight_fraction_leaf=0.0, presort='deprecated',
random_state=None, splitter='best')
 In [9]: export_graphviz(decision_tree, out_file="tree.dot", max_depth = 4,
                                        impurity = True, feature_names = X_train.columns,
rounded = True, filled= True )
```

^{***} Максимальное потребление электроэнергии.

Фрагменты:

За 4 вопроса мы можем точно подобрать 15 из 17 микропроцессоров. А за 5 вопросов подберём микропроцессор из всех моделей. По построенному дереву решений осталось написать программу, в основе которой будет лежать классический алгоритм ветвления.

Листинг программы: print('Вводите у или п при ответе на вопросы.') print('Верхний порог тактовой частоты больше $1.25\Gamma\Gamma \mu$?') a = input() if a == "y": print('Максимальное потребление электроэнергии больше чем 63.5 Ватт? (Прогресс подбора: 47%)') a = input() if a == "y": print('Количество кэш памяти L2 свыше 768 КБ? (Прогресс подбора: 71%)') a = input() if a == "y":

print('Количество кэш памяти L2 свыше 1408 KБ? (Прогресс подбора: 83%)')

```
a = input()
          if a == "y":
                     print('Вам подходит Alpha 21364.')
     else:
                       print('Максимальное потребление электроэнергии
больше чем 97.35 Ватт? (Прогресс подбора: 88%)')
                     a = input()
                if a == "y":
                          print('Вам подходит Intel Xeon.')
          else:
     print('Вам подходит AMD Opteron.') else:
   print('Частота съёмной шины больше 500 МГц? (Прогресс подбора: 88%)')
                a = input()
          if a == "y":
                     print('Вам подходит Intel Pentium 4.')
     else:
    print('Вам подходит AMD Athlon XP.') else:
          print('Кэш данных больше 48 КБ? (Прогресс подбора: 76%)')
          a = input()
     if a == "y":
   print('Частота системной шины больше 333 МГц? (Прогресс подбора:
88%)')
                a = input()
          if a == "y":
                     print('Вам подходит Intel Pentium M')
     else:
                     print('Вам подходит AMD Athlon MP.')
          else:
                  print('Кэш данных больше 24 КБ? (Прогресс подбора:
88%)')
                a = input()
          if a == "y":
                     print('Вам подходит IBM Power 4')
     else:
```

```
print('Вам подходит Intel Itanium 2.') else:
     print('Максимальное потребление электроэнергии больше чем 37.75
Ватт? (Прогресс подбора: 53%)')
                                                    if a == "v":
                                    a = input()
     print('Результат тестов SPECfp лучше 830.5? (Прогресс подбора:
76%)')
          a = input()
     if a == "v":
  print('Результат тестов SPECint лучше 700.5? (Прогресс подбора:
88%)')
               a = input()
          if a == "y":
                     print('Вам подходит
                                           Sun UltraSPARC
                                                             III.')
          else:
   print('Вам подходит Alpha 21264.') else: print('FLOP (опер. с
плав. точкой за такт) больше 3?
(Прогресс подбора: 88%)')
                   = input()
               a
          if a == "v":
                     print('Вам подходит Intel Itanium.')
          else:
   print('Вам подходит SPARC64 GP.') else:
          print('Кэш данных больше 48 КБ? (Прогресс подбора: 76%)')
          a = input() if
          a == "y":
  print('Кэш память L2 может отсутствовать? (Прогресс подбора: 88%)')
               a = input()
          if a == "y":
                     print('Вам подходит HP PA-8700.')
     else:
   print('Вам подходит Crusoe.') else: print('FLOP (опер. с плав.
точкой за такт) равно 2?
(Прогресс подбора: 88%)')
               a = input()
          if a == "y":
```

```
print('Вам подходит SandCraft SR71000.')
else:
    print('Вам подходит IBM PowerPC 750FX.')
```

Пример работы разработанной экспертной системы:

```
Командная строка
C:\Users\Ян>cd Programs
C:\Users\Ян\Programs>python lab4.py
Вводите у или п при ответе на вопросы.
Верхний порог тактовой частоты больше 1.25ГГц?
Максимальное потребление электроэнергии больше чем 63.5 Ватт? (Прогресс подбора: 47%)
Кэш данных больше 48 КБ? (Прогресс подбора: 76%)
Частота системной шины больше 333 МГц? (Прогресс подбора: 88%)
Вам подходит Intel Pentium M
C:\Users\Ян\Programs>python lab4.py
Вводите у или п при ответе на вопросы.
Верхний порог тактовой частоты больше 1.25ГГц?
Максимальное потребление электроэнергии больше чем 37.75 Ватт? (Прогресс подбора: 53%)
Результат тестов SPECfp лучше 830.5? (Прогресс подбора: 76%)
Результат тестов SPECint лучше 700.5? (Прогресс подбора: 88%)
Вам подходит Alpha 21264.
C:\Users\Ян\Programs>
```