# Inferência Estatística – Testes de Hipóteses

- Introdução: hipóteses e erros de conclusão
- > Testes de hipóteses para uma e duas médias
- > Testes de hipóteses para uma e duas variâncias
- > Testes de hipóteses para uma e duas proporções

# Passos para construção de um teste de hipóteses

- 1. Definir as hipóteses estatísticas.
- 2. Fixar a taxa de erro aceitável ( $\alpha$  nível de significância).
- 3. Escolher a estatística para testar a hipótese e verificar as pressuposições para o seu uso.
- Usar as observações da amostra para calcular o valor da estatística do teste.
- 5. Decidir sobre a hipótese testada e concluir.

# Situações comuns em testes de hipóteses a respeito de $\mu$

- 1. Comparação de uma média ( $\mu$ ) com um valor padrão ( $\mu_0$ )
  - $> \sigma^2$  conhecida ou n > 30
  - $> \sigma^2$  desconhecida e n  $\le 30$
- 2. Comparação entre duas médias ( $\mu_1$  e  $\mu_2$ )
  - Duas amostras independentes
    - $ightharpoonup \sigma_1^2$  e  $\sigma_2^2$  conhecidas
    - $\succ \sigma_1^2$  e  $\sigma_2^2$  desconhecidas, mas iguais
    - $> \sigma_1^2 e \sigma_2^2$  desconhecidas, mas diferentes
  - ➤ Duas amostras dependentes (pareadas)

1. Comparação de uma média ( $\mu$ ) com um valor padrão ( $\mu_0$ )

Pressuposição: A variável em estudo tem distribuição normal e variância  $\sigma^2$  conhecida (ou n > 30)

Hipótese sob verificação:  $H_0: \mu = \mu_0$ 

Estatística do teste: 
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

Valor que deve ser calculado na amostra 1. Comparação de uma média ( $\mu$ ) com um valor padrão ( $\mu_0$ )

Pressuposição: A variável em estudo tem distribuição normal e variância  $\sigma^2$  desconhecida (e n  $\leq$  30)

Hipótese sob verificação:  $H_0: \mu = \mu_0$ 

Estatística do teste: 
$$T = \frac{X - \mu_0}{S/-}$$
 ~

onde:

$$v = n - 1$$

Valor que deve ser calculado na amostra

#### Critério de decisão – Teste bilateral



 $H_A$  bilateral supõe que a diferença  $\overline{X}$  -  $\mu_0$  é negativa ou positiva.

Mas quão grande será essa diferença para ser considerada significativa?

Este limite é dado pelos valores críticos.

- $\Rightarrow$  Se o valor t (calculado na amostra) estiver entre - $t_{\alpha/2}$  e  $t_{\alpha/2}$ , não temos motivos para rejeitar  $H_0$
- $\Rightarrow$  Se o valor t (calculado na amostra) for menor que  $-t_{\alpha/2}$  ou maior que  $t_{\alpha/2}$ , rejeitamos  $H_0$

Prof<sup>a</sup> Lisiane Selau

6

#### Critério de decisão - Teste unilateral



 $H_A$  unilateral **direita** supõe que a diferença  $\overline{X} - \mu_0$  é um valor **positivo**.

Mas quão grande será essa diferença para ser considerada significativa?

Este limite é dado pelo valor crítico.

- $\Rightarrow$  Se o valor t (calculado na amostra) for menor que  $t_{\alpha}$ , não temos motivos para rejeitar  $H_0$
- $\Rightarrow$  Se o valor t (calculado) for maior que  $t_{\alpha}$ , rejeitamos  $H_{\mathbf{0}}$

#### Critério de decisão - Teste unilateral



 $H_A$  unilateral **esquerda** supõe que a diferença  $\overline{X} - \mu_0$  é um valor **negativo**.

Mas quão grande será essa diferença para ser considerada significativa?

Este limite é dado pelo valor crítico.

- $\Rightarrow$  Se o valor t (calculado na amostra) for maior que  $-t_{\alpha}$ , não temos motivos para rejeitar  $H_0$
- ⇒ Se o valor t (calculado) for menor que -t<sub>α</sub>, rejeitamos H<sub>0</sub>

**Exemplo:** Um processo deveria produzir bancadas com 0,85 m de altura. O engenheiro desconfia que as bancadas que estão sendo produzidas são diferentes que o especificado. Uma amostra de 8 valores foi coletada e indicou média de 0,87 e desvio padrão de 0,010. Sabendo-se que os dados seguem a distribuição normal, teste a hipótese do engenheiro usando um nível de significância  $\alpha$ =0,05.

## Solução:

1)  $H_0$ :  $\mu = 0.85$  2)  $\alpha = 0.05$ 

 $H_A$ :  $\mu \neq 0.85$ 

4)  $t_c = \frac{0.87 - 0.85}{0.010/\sqrt{8}} = 5.66$ 

3) Pressuposição: A variável em estudo tem distribuição normal



Conclusão: Ao nível de 5% de significância, conclui-se que as bancadas que estão sendo produzidas devem ter altura **diferente** do especificado, **maiores** que 0,85m.

Exemplo: A associação dos proprietários de indústrias metalúrgicas está preocupada com o tempo perdido em acidentes de trabalho, cuja média, nos últimos tempos, tem sido da ordem de 60 horas/homem por ano com desvio padrão de 20 horas/homem, segundo a distribuição normal. Tentou-se um programa de prevenção de acidentes e, após o mesmo, tomouse uma amostra de 9 indústrias e mediu-se o número de horas/homem perdidas por acidente, que foi de 50 horas. Você diria, ao nível de 5%, que há evidência de melhora?

## Solução:

As hipóteses a serem testadas são:

H<sub>0</sub>:  $\mu$  = 60 hora/homens H<sub>A</sub>:  $\mu$  < 60 hora/homens

**2)**  $\alpha = 0.05$ 



5) Isto quer dizer que a diferença apresentada na amostra não é suficientemente grande para provar que a campanha de prevenção deu resultado. Então a conclusão é:

"Não é possível, ao nível de 5% de significância, afirmar que a campanha deu resultado."

**Exemplo:** O tempo médio, por operário, para executar uma tarefa, tem sido 100 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 16 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 91 minutos com desvio padrão de 12 minutos. Este resultado evidencia uma melhora no tempo gasto para realizar a tarefa? Apresente as conclusões ao nível de 5% de significância.

## Solução:

1) 
$$\begin{cases} H_0: \mu = 100 \\ H_A: \mu < 100 \end{cases}$$



5) Rejeita-se H<sub>0</sub> ao nível de 5% de significância e pode-se concluir que a modificação deve ter diminuído o tempo de execução da tarefa.

**Exercício:** Medidos os diâmetros de 31 eixos de um lote aleatório, produzido pela empresa "Sofazredondo S.A." obteve-se a distribuição abaixo:

| Diâmetros (em mm) | 56,5 | 56,6 | 56,7 | 56,8 | 56,9 | 57,0 | 57,1 | 57,2 | 57,3 |
|-------------------|------|------|------|------|------|------|------|------|------|
| Número de eixos   | 1    | 2    | 2    | 4    | 10   | 5    | 4    | 2    | 1    |

Ao nível de significância de 5%, há evidência de que o diâmetro médio dos eixos esteja fora da especificação de 57 mm?

$$Z_c = -2,557$$

## Outro critério de decisão

**Valor p:** Probabilidade de que seja obtido um valor de T mais extremo que o valor observado, dado que H<sub>0</sub> é verdadeira



# Como tomar a decisão a respeito de H<sub>0</sub>?

Se o valor p for maior ou igual a α: não rejeitamos a hipótese nula, pois t<sub>c</sub> está em uma região de alta probabilidade

Não rejeitamos a hipótese de nulidade



# Como tomar a decisão a respeito de H<sub>0</sub>?

Se o valor p for menor que α: rejeitamos a hipótese nula, pois t<sub>c</sub> está em uma região de baixa probabilidade

Se 
$$p < \alpha$$



Rejeitamos a hipótese de nulidade



#### Exemplo: programa de prevenção de acidentes

 $H_0$ :  $\mu = 60$  hora/homens

 $H_A$ :  $\mu$  < 60 hora/homens

$$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{50 - 60}{20 / \sqrt{9}} = -1,50$$



"Não é possível, ao nível de 5% de significância, afirmar que a campanha deu resultado."

**Tabela I.** Área sob a curva normal padrão de 0 a z,  $P(0 \le Z \le z)$ .



| Z   | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0,0 | 0,0000 | 0,0040 | 0,0080 | 0,0120 | 0,0160 | 0,0199 | 0,0239 | 0,0279 | 0,0319 | 0,0359 |
| 0,1 | 0,0398 | 0,0438 | 0,0478 | 0,0517 | 0,0557 | 0,0596 | 0,0636 | 0,0675 | 0,0714 | 0,0754 |
| 0,2 | 0,0793 | 0,0832 | 0,0871 | 0,0910 | 0,0948 | 0,0987 | 0,1026 | 0,1064 | 0,1103 | 0,1141 |
| 0,3 | 0,1179 | 0,1217 | 0,1255 | 0,1293 | 0,1331 | 0,1368 | 0,1406 | 0,1443 | 0,1480 | 0,1517 |
| 0,4 | 0,1554 | 0,1591 | 0,1628 | 0,1664 | 0,1700 | 0,1736 | 0,1772 | 0,1808 | 0,1844 | 0,1879 |
| 0,5 | 0,1915 | 0,1950 | 0,1985 | 0,2019 | 0,2054 | 0,2088 | 0,2133 | 0,2157 | 0,2190 | 0,2224 |
| 0,6 | 0,2258 | 0,2291 | 0,2324 | 0,2357 | 0,2389 | 0,2422 | 0,2454 | 0,2486 | 0,2518 | 0,2549 |
| 0,7 | 0,2580 | 0,2612 | 0,2642 | 0,2673 | 0,2704 | 0,2734 | 0,2764 | 0,2794 | 0,2823 | 0,2852 |
| 0,8 | 0,2881 | 0,2910 | 0,2939 | 0,2967 | 0,2996 | 0,3023 | 0,3051 | 0,3078 | 0,3106 | 0,3133 |
| 0,9 | 0,3159 | 0,3186 | 0,3212 | 0,3238 | 0,3264 | 0,3289 | 0,3315 | 0,3340 | 0,3365 | 0,3389 |
| 1,0 | 0,3413 | 0,3438 | 0,3461 | 0,3485 | 0,3508 | 0,3531 | 0,3554 | 0,3577 | 0,3599 | 0,3621 |
| 1,1 | 0,3643 | 0,3665 | 0,3686 | 0,3708 | 0,3729 | 0,3749 | 0,3770 | 0,3790 | 0,3810 | 0,3830 |
| 1,2 | 0,3849 | 0,3869 | 0,3888 | 0,3907 | 0,3925 | 0,3944 | 0,3962 | 0,3980 | 0,3997 | 0,4015 |
| 1,3 | 0,4032 | 0,4049 | 0,4066 | 0,4082 | 0,4099 | 0,4115 | 0,4131 | 0,4147 | 0,4162 | 0,4177 |
| 1.4 | 0,4192 | 0,4207 | 0,4222 | 0,4236 | 0,4251 | 0,4265 | 0,4279 | 0,4292 | 0,4306 | 0,4319 |
| 1,5 | 0,4332 | 0,4345 | 0,4357 | 0,4370 | 0,4382 | 0,4394 | 0,4406 | 0,4418 | 0,4429 | 0,4441 |
| 1,6 | 0,4452 | 0,4463 | 0,4474 | 0,4484 | 0,4495 | 0,4505 | 0,4515 | 0,4525 | 0,4535 | 0,4545 |
| 1,7 | 0,4554 | 0,4564 | 0,4573 | 0,4582 | 0,4591 | 0,4599 | 0,4608 | 0,4616 | 0,4625 | 0,4633 |

## **Utilizando o Excel para obter o valor p:**

$$z_c = -1.5$$
  $\alpha = 0.05$  (unilateral)



Conclusão: Como a significância do resultado (6,68%) é maior que a significância do teste (5%), não é possível rejeitar a hipótese nula.

Exercício: O tempo médio, por operário, para executar uma tarefa, tem sido 100 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 16 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 91 minutos com desvio padrão de 12 minutos. Este resultado evidencia uma melhora no tempo gasto para realizar a tarefa? Apresente as conclusões ao nível de 5% de significância.



Rejeita-se H<sub>0</sub> ao nível de 5% de significância e pode-se concluir que a modificação deve ter diminuído o tempo de execução da tarefa.

| –                        | Limites unilaterais: P(  t  > t <sub>α</sub> ) |       |       |       |        |       |       |        |
|--------------------------|------------------------------------------------|-------|-------|-------|--------|-------|-------|--------|
| Graus de Liberdade (v) _ | Nível de Significância (α)                     |       |       |       |        |       |       |        |
| 0                        | 0,25                                           | 0,10  | 0,05  | 0,025 | 0,0125 | 0,01  | 0,005 | 0,0025 |
|                          | 0,674                                          | 1,282 | 1,645 | 1,960 | 2,241  | 2,326 | 2,576 | 2,807  |
| 120                      | 0,677                                          | 1,289 | 1,658 | 1,980 | 2,270  | 2,358 | 2,617 | 2,860  |
| 60                       | 0,679                                          | 1,296 | 1,671 | 2,000 | 2,299  | 2,390 | 2,660 | 2,915  |
| 40                       | 0,681                                          | 1,303 | 1,684 | 2,021 | 2,329  | 2,423 | 2,705 | 2,971  |
| 30                       | 0,683                                          | 1,310 | 1,697 | 2,042 | 2,360  | 2,457 | 2,750 | 3,030  |
| 29                       | 0,683                                          | 1,311 | 1,699 | 2,045 | 2,364  | 2,462 | 2,756 | 3,038  |
| 28                       | 0,683                                          | 1,313 | 1,701 | 2,048 | 2,369  | 2,467 | 2,763 | 3,047  |
| 27                       | 0,684                                          | 1,314 | 1,703 | 2,052 | 2,373  | 2,473 | 2,771 | 3,057  |
| 26                       | 0,684                                          | 1,315 | 1,706 | 2,056 | 2,379  | 2,479 | 2,779 | 3,067  |
| 25                       | 0,684                                          | 1,316 | 1,708 | 2,060 | 2,385  | 2,485 | 2,787 | 3,078  |
| 24                       | 0,685                                          | 1,318 | 1,711 | 2,064 | 2,391  | 2,492 | 2,797 | 3,091  |
| 23                       | 0,685                                          | 1,319 | 1,714 | 2,069 | 2,398  | 2,500 | 2,807 | 3,104  |
| 22                       | 0,686                                          | 1,321 | 1,717 | 2,074 | 2,406  | 2,508 | 2,819 | 3,119  |
| 21                       | 0,686                                          | 1,323 | 1,721 | 2,080 | 2,414  | 2,518 | 2,831 | 3,135  |
| 20                       | 0,687                                          | 1,325 | 1,725 | 2,086 | 2,423  | 2,528 | 2,845 | 3,153  |
| 19                       | 0,688                                          | 1,328 | 1,729 | 2,093 | 2,433  | 2,539 | 2,861 | 3,174  |
| 18                       | 0,688                                          | 1,330 | 1,734 | 2,101 | 2,445  | 2,552 | 2,878 | 3,197  |
| 17                       | 0,689                                          | 1,333 | 1,740 | 2,110 | 2,458  | 2,567 | 2,898 | 3,223  |
| 16                       | 0,690                                          | 1,337 | 1,746 | 2,120 | 2,473  | 2,583 | 2,921 | 3,252  |
| 15                       | 0,6                                            | 1,011 | 1,753 | 2,132 | 2,490  | 2,602 | 2,947 | 3,286  |
| 14                       | 0,692                                          | 1,345 | 1,761 | 2,145 | 2,510  | 2,624 | 2,977 | 3,326  |
| 13                       | 0,694                                          | 1,350 | 1,771 | 2,160 | 2,533  | 2,650 | 3,012 | 3,373  |

Limites unilaterais:  $P(|t| > t_{\alpha})$ 

Prof<sup>a</sup> Lisiane Selau

## **Utilizando o Excel para obter o valor p:**





Conclusão: Como a significância do resultado (0,45%) é menor que a significância do teste (5%), é possível rejeitar a hipótese nula.

# 2. Comparação entre duas médias ( $\mu_1$ e $\mu_2$ )

#### Pressuposições:

A variável em estudo tem distribuição normal

As variâncias  $\sigma_1^2$  e  $\sigma_2^2$  são **conhecidas** 

As amostras retiradas das populações são independentes

Hipótese sob verificação: 
$$H_0: \mu_1 = \mu_2$$

Estatística do teste: 
$$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{\rho_1} + \frac{\sigma_2^2}{\rho_2}}} \sim N(0,1)$$

$$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Valor que deve ser calculado na amostra **Exemplo:** Um fabricante produz dois tipos de pneus. Para o pneu do tipo A o desvio padrão da durabilidade é de 2500 km e para o pneu do tipo B é de 3000 km, seguindo a distribuição normal. Uma empresa de táxis testou 50 pneus do tipo A e 40 do tipo B, obtendo 24000 km de média para o tipo A e 26000 para o tipo B. Adotando  $\alpha = 4\%$  testar a hipótese de que a duração média dos dois tipos é a mesma.



- **2)**  $\alpha = 4\%$
- 5) Portanto, rejeita-se a hipótese de igualdade entre as durações médias dos dois tipos de pneus. Com base nestas amostras, pode-se afirmar, ao nível de 4% de significância, que os dois tipos de pneus diferem quanto a durabilidade média, sendo o tipo B melhor que o tipo A.

## **Utilizando o Excel para obter o valor p:**

$$z_c = -3.38$$
  $\alpha = 0.04$  (bilateral)



Conclusão: Como a significância do resultado (0,07%) é menor que a significância do teste (4%), é possível rejeitar a hipótese nula.

# 2. Comparação entre duas médias ( $\mu_1$ e $\mu_2$ )

#### Pressuposições:

A variável em estudo tem distribuição normal

As variâncias  $\sigma_1^2$  e  $\sigma_2^2$  são **desconhecidas** mas supostas **iguais** As amostras retiradas das populações são independentes

Hipótese sob verificação:  $H_0: \mu_1 = \mu_2$ 

Estatística do teste:

$$T = \frac{\overline{X_1 - X_2}}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{\sqrt{1}}$$

onde:

$$v = (n_1 - 1) + (n_2 - 1)$$

Valor que deve ser calculado na amostra

$$S^{2} = \frac{S_{1}^{2}(n_{1}-1) + S_{2}^{2}(n_{2}-1)}{(n_{1}-1) + (n_{2}-1)}$$

#### **Exemplo:**

Dez cobaias adultas criadas em laboratório, foram separadas, aleatoriamente, em dois grupos: um foi tratado com ração normalmente usada no laboratório (padrão) e o outro grupo foi submetido a uma nova ração (experimental). As cobaias foram pesadas no início e no final do período de duração do experimento. Os ganhos de peso (em gramas) observados foram os seguintes:

| Ração experimental | 220 | 200 | 210 | 220 | 210 |
|--------------------|-----|-----|-----|-----|-----|
| Ração padrão       | 200 | 180 | 190 | 190 | 180 |

Utilize um teste de hipótese, ao nível  $\alpha = 0.01$ , para verificar se as duas rações diferem entre si quanto ao ganho de peso.

$$H_0: \mu_1 = \mu_2$$
  
 $H_A: \mu_1 \neq \mu_2$   $\alpha = 0.01$ 

Experimental Padrão  

$$\overline{X}_1 = 212$$
  $\overline{X}_2 = 188$   
 $s_1^2 = 70$   $s_2^2 = 70$   
 $n_1 = 5$   $n_2 = 5$ 

**Pressuposições**: variável ganho de peso com distribuição normal, amostras independentes e supõe-se que  $\sigma_1^2 = \sigma_2^2$ .

$$S^{2} = \frac{70 \times (5-1) + 70 \times (5-1)}{(5-1) + (5-1)} = 70$$

$$t_{c} = \frac{212 - 188}{\sqrt{\left(\frac{1}{5} + \frac{1}{5}\right)70}} = 4,54$$



$$S^{2} = \frac{S_{1}^{2}(n_{1}-1) + S_{2}^{2}(n_{2}-1)}{(n_{1}-1) + (n_{2}-1)}$$

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}S^2}$$

$$\alpha$$
=0,01 e v=(n<sub>1</sub>-1)+(n<sub>2</sub>-1)=8

 $\Rightarrow H_0$  é rejeitada

Conclusão: ao nível de 1%, conclui-se que a ração experimental deve dar maior ganho de peso que a ração padrão.

#### **Utilizando o Excel para obter o valor p:**



Conclusão: Como a significância do resultado (0,19%) é menor que a significância do teste (1%), é possível rejeitar a hipótese nula.

Exercício: Um engenheiro desconfia que a qualidade de um material pode depender da matéria-prima utilizada. Há dois fornecedores de matéria-prima sendo usados. Testes com 10 observações de cada fornecedor indicaram:

$$\overline{X}_1 = 39$$
  $\overline{X}_2 = 43$   $S_1 = 7$   $S_2 = 9$ 

Use um nível de significância  $\alpha = 0.05$  e teste a hipótese do engenheiro.

Obs.: Considere que as duas variâncias populacionais iguais.

$$t_c = 1,11 < t_{0,025;18} = 2,101$$

# 2. Comparação entre duas médias ( $\mu_1$ e $\mu_2$ )

#### Pressuposições:

A variável em estudo tem distribuição normal As variâncias  $\sigma_1^2$  e  $\sigma_2^2$  são **desconhecidas** e **desiguais** As amostras retiradas das populações são independentes

Hipótese sob verificação: 
$$H_0: \mu_1 = \mu_2$$
 Estatística do teste: 
$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_v$$
 onde:

Valor que deve ser calculado na amostra

$$\nu = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

**Exemplo:** As resistências de dois tipos de concreto, que segue o modelo normal, foram medidas, mostrando os resultados da tabela. Fixado um nível de significância de 10%, existe evidências de que o concreto do tipo X seja mais resistente do que o concreto do tipo Y?

| Tipo X | 54 | 55 | 58 | 50 | 61 |
|--------|----|----|----|----|----|
| Tipo Y | 51 | 54 | 55 | 52 | 53 |

Os dados obtidos da tabela são:

$$\overline{X} = 55,6 \text{ e } \overline{Y} = 53,0$$
  
 $S_X^2 = 17,3 \text{ e } S_Y^2 = 2,5$ 

$$\begin{split} & H_0 \colon \ \mu_X = \mu_Y \\ & H_A \colon \ \mu_X \neq \mu_Y \end{split} \qquad \nu = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}} = \frac{(17, 3/5 + 2, 5/5)^2}{\frac{(17, 3/5)^2}{4} + \frac{(2, 5/5)^2}{4}} = \frac{15,6816}{3,0554} = 5,13 \\ & \alpha = 0,10 \\ & T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = \frac{55,6 - 53,0}{\sqrt{\frac{17,3}{5} + \frac{2,5}{5}}} = 1,31 \\ & 0.05 \subseteq 100 \end{split}$$

Com estas amostras, ao nível de 10% de significância, não é possível afirmar que o concreto do tipo X seja mais resistente do que o concreto do tipo Y.

## **Utilizando o Excel para obter o valor p:**



Conclusão: Como a significância do resultado (24,71%) é maior que a significância do teste (10%), não é possível rejeitar a hipótese nula.

Prof<sup>a</sup> Lisiane Selau



No teste unilateral o valor t crítico é menor porque a área a sua direita deve corresponder a todo α. Assim, esta área é o dobro da área à direita do valor t crítico do teste bilateral.

Como consequência, um valor t não rejeitado no teste bilateral pode ser rejeitado no teste unilateral.

Portanto, o teste unilateral é mais poderoso que o teste bilateral.

# Considerações

- ⇒ Os intervalos de confiança e os testes de hipóteses bilaterais são procedimentos estatísticos relacionados.
- Se forem utilizados para analisar os mesmos dados, ao mesmo nível de significância, devem conduzir aos mesmos resultados.
- O intervalo de confiança para uma média está relacionado com o teste de hipóteses que compara uma média com um valor padrão.
  - **H**<sub>0</sub> não rejeitada ⇔ valor padrão está coberto pelo intervalo
- O intervalo de confiança para a diferença entre duas médias está relacionado com o teste de hipóteses que compara duas médias.
  - H₀ não rejeitada ⇔ zero está coberto pelo intervalo

## Intervalo de confiança para uma média (µ)

IC (
$$\mu$$
; 1- $\alpha$ ):  $\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$ 

Estatística T para comparação de média ( $\mu$ ) com valor padrão ( $\mu_0$ )

$$T = \frac{\overline{X} - \mu_0}{S}$$
 Valor crítico:  $t_{\alpha/2}$ 

- ⇒ Se no teste de hipóteses, ao nível de 1% de significância, rejeitamos H<sub>0</sub>, significa que a diferença entre a média e o valor padrão não é zero, ou seja, média e valor padrão são diferentes.
- $\Rightarrow$  Construindo o intervalo de confiança para  $\mu$ , ao nível de 99%, devemos esperar que o valor padrão ( $\mu_0$ ) esteja fora do intervalo. Caso contrário, os resultados seriam contraditórios.

Intervalo de confiança para a diferença entre duas médias  $(\mu_1 - \mu_2)$ 

IC 
$$(\mu_1 - \mu_2; 1 - \alpha)$$
:  $\overline{X}_1 - \overline{X}_2 \pm t_{\alpha/2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} S^2$ 

Estatística T para a comparação entre duas médias ( $\mu_1$  e  $\mu_2$ )

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}S^2}$$
 Valor crítico:  $t_{\alpha/2}$ 

- ⇒ Se no teste de hipóteses, ao nível de 5% de significância, não rejeitamos H<sub>0</sub>, significa que a diferença entre as duas médias é zero, ou seja, as médias devem ser iguais.
- $\Rightarrow$  Construindo o intervalo de confiança, ao nível de 95%, para a diferença entre as médias ( $\mu_1 \mu_2$ ), devemos esperar que o valor zero seja coberto pelo intervalo.

**Exemplo:** Um novo funcionário foi contratado para gerir os estoques da empresa. Ele recebeu a informação de que a quantidade semanal vendida de determinado produto é de 9,6kg. Para testar a veracidade da informação, tomou uma amostra aleatória de 30 semanas e verificou que a venda média do produto foi de 9,3kg, com desvio padrão de 3,2kg. Considerando que a variável em estudo segue a distribuição normal:

- a) Verifique, utilizando **teste de hipóteses** ao nível de 5% de significância, se a informação recebida pelo funcionário é verdadeira.
- b) Verifique se a informação é verdadeira, utilizando **intervalo de confiança** ao nível de 95%.
- c) Houve **coerência entre os resultados** do teste de hipóteses e do intervalo de confiança?

# a) Teste de Hipótese

Variável em estudo: X = venda do produto (kg)

Pressuposição: A variável em estudo tem distribuição normal

2. Taxa de erro aceitável:  $\alpha = 0.05$ 

### a) Teste de Hipótese

4. Estatística do teste

$$T = \frac{\bar{x} - \mu_0}{s / n} = \frac{9,3 - 9,6}{3,2 / \sqrt{30}} = -0,5135$$

5. Decisão e conclusão



Não rejeitamos H<sub>0</sub>. Concluímos, ao nível de 5% de significância, que a quantidade média de venda semanal do produto não difere significativamente do valor informado (9,6kg). Portanto, a informação recebida pelo funcionário pode ser verdadeira.

### b) Intervalo de confiança

Variável em estudo: X = venda do produto (kg)

Pressuposição: A variável em estudo tem distribuição normal.

$$IC(\mu;1-\alpha): \overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

#### **Estimativas:**

$$\overline{x} = 9.3$$

$$v = 30 - 1 = 29$$

$$\frac{s}{\sqrt{n}} = \frac{3.2}{\sqrt{30}} = 0.5842$$

$$t_{0,025 (29)} = 2,045$$

#### b) Intervalo de confiança

IC(
$$\mu$$
; 1- $\alpha$ ):  $\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$ 
IC ( $\mu$ ; 0,95): 9,3  $\pm$  2,045  $\times$  0,5842
Limite inferior = 9,3 - 1,195 = 8,11
Limite superior = 9,3 + 1,195 = 10,50
P(8,11 <  $\mu$  < 10,50) = 0,95

Concluímos que o intervalo de confiança, ao nível de 95%, para a verdadeira quantidade média semanal vendida do produto é de 8,11 a 10,50 kg.

c) Sim, o resultado do teste de hipóteses esta coerente com o do intervalo de confiança, pois o valor padrão 9,6, que segundo o teste de hipótese não difere de  $\mu$ , está dentro do intervalo de confiança, ou seja, é um valor possível para  $\mu$ .

# Comparação de Pares de Observações

(Comparação de duas médias para amostras pareadas)

Em algumas situações os dados de duas populações são coletados e comparados em pares. Isso é feito para impedir que fatores não controláveis inflacionem as estimativas das variâncias.

Exemplo: desempenho dos alunos com método 1 e 2

X

hidratação da pele com creme 1 e 2

A hipótese testada é se existe diferenças significativas entre os pares de observações, tendo como suposição que os dados seguem a distribuição normal.

$$H_0: \mu_d = 0 \quad (\mu_1 = \mu_2)$$

$$H_A: \mu_d \neq 0 \quad (\mu_1 \neq \mu_2)$$

$$\mu_d > 0 \quad (\mu_1 > \mu_2)$$

$$\mu_d < 0 \quad (\mu_1 < \mu_2)$$

O teste baseia-se na estatística:

$$T = \frac{\overline{d}}{s_d / \sqrt{n}} \sim t_{n-1}$$

**Exemplo:** Cinco operadores de máquinas foram treinados em duas máquinas de diferentes fabricantes, para verificar qual delas apresentava maior facilidade de aprendizagem. Mediu-se o tempo que cada um dos operadores gastou na realização de uma mesma tarefa com cada um dos dois tipos de máquinas. Os resultados estão na tabela. Ao nível de 5%, é possível afirmar que a tarefa realizada na máquina X demora mais do que na máquina Y?

# Solução:

$$H_0: \mu_X = \mu_Y \; (\mu_d = 0)$$

$$H_A$$
:  $\mu_X \neq \mu_Y \ (\mu_d \neq 0)$ 

| Operador | Maq. X | Maq. Y | $d_i$ |
|----------|--------|--------|-------|
| 1        | 80     | 75     | 5     |
| 2        | 72     | 70     | 2     |
| 3        | 65     | 60     | 5     |
| 4        | 78     | 72     | 6     |
| 5        | 85     | 78     | 7     |

$$\alpha = 5\%$$

$$T = \frac{\overline{d}}{s_d/\sqrt{n}}$$

$$\overline{d} = \frac{\sum d_i}{n}$$
  $S_d = \sqrt{\frac{\sum (d_i - \overline{d})^2}{n-1}}$ 

$$\Rightarrow \overline{d} = 5$$
 e  $s_d = 1,8708$ 

| Operador | Maq. X | Maq. Y | $\overline{\mathbf{d}}_{i}$ |
|----------|--------|--------|-----------------------------|
| 1        | 80     | 75     | 5                           |
| 2        | 72     | 70     | 2                           |
| 3        | 65     | 60     | 5                           |
| 4        | 78     | 72     | 6                           |
| 5        | 85     | 78     | 7                           |



Com 5% de significância, rejeita-se H<sub>0</sub>, e conclui-se que realizar a tarefa com a máquina X deve demorar mais do que com a máquina Y.

#### **Utilizando o Excel para obter o valor p:**

$$t_c = 5.98$$
  $\alpha = 0.05$  (bilateral)  $v = 4$ 



Conclusão: Como a significância do resultado (0,39%) é menor que a significância do teste (5%), é possível rejeitar a hipótese nula.

Exercício: Uma empresa quer verificar se o conhecimento de seus funcionários a respeito de um determinado assunto melhorou após 30 horas de treinamento. Para isso foi realizado com os quinze alunos do treinamento um teste antes e após o treinamento. Os dados a seguir representam as notas obtidas. Conclua a respeito da eficiência do treinamento, utilizando 5% de significância.

| Func.  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Antes  | 6,5 | 6,7 | 7,0 | 7,0 | 6,5 | 7,3 | 7,8 | 6,9 | 6,7 | 7,2 | 7,5 | 7,5 | 7,2 | 7,0 | 6,8 |
| Depois | 7,5 | 7,7 | 7,9 | 8,0 | 7,4 | 8,3 | 8,8 | 8,9 | 7,7 | 8,2 | 8,5 | 8,5 | 8,2 | 8,0 | 8,8 |
| Difer. | 1,0 | 1,0 | 0,9 | 1,0 | 0,9 | 1,0 | 1,0 | 2,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 2,0 |

$$d = 1,12$$

$$S_d = 0.36$$

**Exercício:** Duas espécies de um certo tipo de cereal estão sendo testadas quanto ao seu crescimento. O experimento foi feito escolhendo 10 blocos de terreno e plantando em cada bloco mudas de ambas as espécies. Os resultados a seguir são as alturas medidas ao final do primeiro mês. Utilizar  $\alpha = 0.05$ 

| Terreno   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------|----|----|----|----|----|----|----|----|----|----|
| Espécie 1 | 22 | 27 | 18 | 33 | 25 | 21 | 15 | 33 | 21 | 24 |
| Espécie 2 | 21 | 31 | 24 | 32 | 29 | 23 | 19 | 37 | 22 | 27 |

Os dados deste experimento foram coletados aos pares para impedir que as diferenças de fertilidade entre os blocos de terreno (que podem ser grandes) mascarem os resultados.

$$t_c = 3,54 > t_{0.025:9} = 2,262$$