Lista 2 de Complexidade de Algoritmos - 2022/3 (COS700/MAB703)

Professores: Celina Miraglia e Franklin Marquezino Monitores: Mariana Martins e Matheus Adauto Data de entrega: 17/11/2022

Observação. A resolução de cada questão deve ser iniciada em uma nova folha de papel. Além disso, antes do início de cada questão, deve-se incluir o número da questão e o nome completo do aluno.

Para resolver as questões abaixo considere as seguintes definições:

- Um subgrafo C de um grafo G é um **clique** em G, se para todo par de vértices $x, y \in V(C)$, temos $xy \in E(G)$;
- Um conjunto $I \subseteq V(G)$ é **independente** se para todo par de vértices $x, y \in I$, temos $xy \notin E(G)$;
- Um conjunto $S \subseteq V(G)$ é uma cobertura por vértices de G, se para toda aresta $xy \in E(G)$, temos $x \in S$ ou $y \in S$.

Considere então os seguintes problemas:

Clique Máxima

I **Problema**: MAXCLIQUE **Dados**: um grafo G

Objetivo: encontrar um maior clique $C \subseteq V(G)$ em G.

I' **Problema**: k-CLIQUE

Dados: um grafo G e um inteiro k

Objetivo: decidir se há clique $C \subseteq V(G)$ em G tal que $|V(C)| \ge k$.

Independente Máximo

II Problema: MAXSTABLESET

Dados: um grafo G

Objetivo: encontrar um maior conjunto independente em G.

II' **Problema**: k-STABLESET

Dados: um grafo G e um inteiro k

Objetivo: decidir se há conjunto independente de vértice $I \subseteq V(G)$ tal que $|I| \ge k$.

Cobertura Mínima por Vértices

III **Problema**: MINVERTEXCOVER

Dados: um grafo G

Objetivo: encontrar uma menor cobertura por vértices $S \subseteq V(G)$ em G.

III' **Problema**: k-VERTEXCOVER **Dados**: um grafo G e um inteiro k

Objetivo: decidir se há cobertura por vértices $S \subseteq V(G)$ tal que $|S| \le k$.

- 1. Escolha i em $\{I, II, III\}$, considere o par de problemas i, i' e mostre que:
 - Podemos resolver i' com uma única execução de um algoritmo que resolva i.
 - Podemos resolver i com um número polinomial (no tamanho de uma instância) de execuções de um algoritmo que resolva i'.
- **2.** Suponha que exista um algoritmo eficiente $A_{I'}$ para resolver o problema I'. Construa algoritmos eficientes para resolver os problemas II' e III'.
- 3. Mostre que o problema $I' \in \mathcal{NP}$ -completo.