Normalization requirements

For a given relation:

R(A, B, C, D, E, F)

there are functional dependencies

 $E \rightarrow B, C$

 $D \rightarrow E, F$

- 1. Find the closures {E}+, {D,E}+.
- 2. Identify the super keys.
- 3. Decompose the relation in multiple relations if needed to achieve BCNF.

Solution

Step 1: Compute Closures

Functional Dependencies:

- 1. E→B,C
- 2. D→E,F

Compute {E}+

Start with $E+=\{E\}$.

1. From $E \rightarrow B$, C add B, C to $E + E + = \{E, B, C\}$

No further functional dependencies can be applied.

Result: {E}+={E,B,C}

Compute {D,E}+

Start with {D,E}+={D,E}

1. From $D \rightarrow E$, F add D and E

 $\{D,E\}+=\{D,E,F\}$

2. From $E \rightarrow B$, C add B, C (since $E \in \{D, E\} +$).

 $\{D,E\}+=\{D,E,F,B,C\}$

No further functional dependencies can be applied.

Result: {D,E}+={D,E,F,B,C}

Step 2: Identify Superkeys

A **superkey** is any set of attributes whose closure contains **all attributes** of the relation R(A,B,C,D,E,F).

Check Possible Superkeys

1. **{D,E}**:

{D,E}+={A,B,C,D,E,F} (contains all attributes)

{D,E} is a superkey.

2. **{D}**:

 $D+=\{D,E,F,B,C\}$. (missing A)

{D} is not a superkey.

3. **{E}:**

 $E+=\{E,B,C\}$ (missing A,D,F)

{E} is not a superkey.

- 4. **{D,E,A}:** Since **{**D,E**}+** already contains all attributes, adding A is redundant. **{D,E,A}** is a superkey.
- 5. If we start from {D} and add A to it (look at case 2 above):

 $\{D,A\}+=\{A,B,C,D,E,F\}$ (contains all attributes)

Hence, {D,A} is a superkey.

Step 3: Decompose to Achieve BCNF

BCNF Condition

A relation is in **BCNF** if, for every functional dependency $X \rightarrow Y$:

- 1. X is a superkey, or
- 2. Y⊆X.

Check Given Functional Dependencies

1. **E→B,C:**

- o E is **not a superkey** (as E+≠R).
- Decompose the relation based on this FD.

2. **D→E,F:**

- o D is **not a superkey** (as D+≠R).
- o Decompose the relation based on this FD.

Decomposition Steps

- 1. Decompose R(A,B,C,D,E,F) using $E \rightarrow B,C$:
 - \circ R₁(E,B,C) (contains E and its attributes).
 - \circ R₂(A,D,E,F) (remaining attributes).
- 2. Check $R_2(A,D,E,F)$ using $D \rightarrow E,F$:
 - Decompose R₂(A,D,E,F) into:
 - $R_3(D,E,F)$ (contains D and its attributes).
 - $R_4(A,D)$ (remaining attributes).

Final Decomposed Relations

- 1. $R_1(E,B,C)$
- 2. $R_3(D,E,F)$
- 3. $R_4(A,D)$

Each of these relations satisfies BCNF because:

• All functional dependencies within each relation have superkeys as determinants.