REMARKS

Applicants have retained new counsel. Consequently, please <u>disregard</u> the Preliminary Amendment filed in connection with the above-captioned patent application on January 23, 2002.

The title has been amended as shown in Appendix A to more accurately reflect the subject matter now claimed. The specification has been amended as shown in Appendix A to correct an error in the naming of the claimed compound, which is discussed in detail below. The sequence listing has been replaced with the listing attached hereto as Appendix B. The attached sequence listing, which is identical to that submitted with the Preliminary Amendment filed January 23, 2002, has been resubmitted to avoid any confusion. In accordance with the requirements of 37 C.F.R. § 1.821(f), it is certified that the contents of the attached paper sequence listing and that of the computer readable copy submitted with this application are the same.

New claims 14-16 are pending in this application. Claims 14 and 15 are supported by the specification as filed. (See Experiment 15, page 73, lines 16-26). As discussed below, claim 16 is also supported by the application as filed.

It is well established that a claim may recite an inherent property of an invention described in an application, even if that application does not explicitly disclose the inherent property. See Kennecott Corp. v. Kyocera International, Inc., 835 F.2d 1419, 1423 (Fed. Cir. 1987) ("The disclosure in a subsequent patent application of an inherent property of a product does not deprive that product of the benefit of an earlier filing date. Nor does the inclusion of a description of that property in later-filed claims change this reasonable result"). For example, the Court of Customs and Patent Appeals held on several occasions that the addition to an application of the chemical structure of a compound for which chemical properties had already been disclosed is not new matter. See, e.g., In re Edwards, 568 F.2d 1349 (CCPA 1978) (holding that a description of how to make a compound provided support for later filed claims that recited the compound itself); In re Nathan, 328 F.2d 1005, 1008 (CCPA 1964) (reversing a rejection of claims that recited the chemical orientation of a compound that was not explicitly described in the patent application, but which was an intrinsic property of the compound for which melting point, optical rotation, ultraviolet spectral analysis and chemical analysis data were provided).

This application describes the synthesis of compounds that modulate serotonin receptors, and which may be useful in the treatment and prevention of a variety of diseases. (Page 3, lines 25-27). Spectroscopic and chromatographic properties of one of those

compounds are described in Experiment 15, which provides the basis for new claims 14 and 15. (Page 73, lines 16-26). In particular, claim 14 recites a serotonin receptor modulator having the ¹H NMR spectrum described in Experiment 15, and claim 15 recites a serotonin receptor modulator having the mass spectrum described in Experiment 15. New claim 16 recites a serotonin receptor modulator having the chemical structure of the compound described in Experiment 15. As discussed below, the correct chemical structure of that compound was recently discovered.

The compound described in Experiment 15 was made from a commercially available starting material obtained from Maybridge Chemical Company ("Maybridge"). (Page 55, lines 6-19). After the parent of this application (*i.e.*, application no. 09/292,072) was filed, Applicants discovered that the structure assigned the starting material by Maybridge was incorrect. In particular, it was discovered that the methyl group was attached to the other nitrogen atom of the pyrazole ring, as shown below:

$$Br$$
 NH_2
 NH

Unfortunately, the incorrect structure was used to assign a structure to the compound of Experiment 15, which Applicants now realize was incorrect:

$$Br$$
 N
 CH_3
 $Incorrect$
 CI
 H
 H
 N
 N
 CH_3
 CH_3
 $COrrect$

This realization is based, in part, on Applicants' preparation and testing of a compound that actually does have the structure shown above on the left. As expected, that compound does not possess the same spectroscopic, chemical or biological properties as the compound of the invention, *i.e.*, the compound described in Experiment 15.

It is a fundamental axiom of chemistry that the chemical structure of a compound is an intrinsic property of that compound. Indeed, a compound is defined by its chemical structure. Furthermore, the chemical structure of a compound dictates its physical, chemical and biological properties. For example, the chemical structure of a compound determines its ¹H NMR and mass spectra, its chromatographic behavior, and *in vitro* binding affinities. *See, e.g.*, J. McMurry, <u>Organic Chemistry</u>, 411-413 (2nd ed., 1988).

Physical, chemical and biological properties of the compound described in Experiment 15 were measured by Applicants using standard techniques and equipment available to those of ordinary skill in the art, and were described in the application as filed. (*See, e.g.*, page 66, lines 5-21). Those properties include the ¹H NMR and mass spectra of the compound (page 73, lines 22-25), its chromatographic behavior under well defined conditions (page 73, lines 20-21, 26; page 66, lines 13-16), and its biological activity as measured using various well defined *in vitro* assays (page 39, second entry in table; page 21, line 15 - page 24, line 7). Like its chemical structure, those properties are inherent properties of the compound described in Experiment 15.

The specification has been amended to correctly name the compound disclosed in Example 15, and new claim 16 recites the correct structure of the compound. Because the structure of the compound is an inherent property of it, and the name of the compound simply reflects that structure using standard nomenclature, Applicants respectfully submit that no new matter has been added by this preliminary amendment. *See, e.g., Kennecott Corp.*, 835 F.2d 1419; *In re Edwards*, 568 F.2d 1349; *In re Nathan*, 328 F.2d 1005.

[remainder of page intentionally left blank]

No fee is believed due for this submission. If one or more fees are due for this submission or to prevent the abandonment of the application, please charge such fee(s) to Pennie & Edmonds LLP Deposit Account No. 16-1150.

Respectfully submitted,

Date September 24, 2002

45,479

Max Bachrach

(Reg. No.)

PENNIE & EDMONDS LLP 1667 K Street, N.W., Suite 1000

Washington, DC 20006

(202) 496-4400

For:

Laura A. Coruzzi

(Reg. No. 30,742)

PENNIE & EDMONDS LLP 1155 Avenue of the Americas New York, NY 10036-2711

(212) 790-9090

Attachments

APPENDIX A

Appendix A

Marked-up Version of Amendments to Application No. 10/055,555

In the Title:

Please amend the title as follows:

[NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN] <u>2-</u> <u>METHYLPYRAZOLE BASED</u> SEROTONIN [RECEPTORS AND SMALL MOLECULE] MODULATORS [THEREOF]

In the Specification:

Please amend the paragraph immediately following the title as follows:

[The benefit of U.S. Serial Number] This application is a continuation of application no. 09/292,072, filed April 14, 1999, which is a continuation-in-part of application no. 09/060,188, filed April 14, 1998 [(owned by Arena Pharmaceuticals, Inc.) and U.S. Provisional Number 60/090,783, filed June 26, 1998 (owned by Arena Pharmaceuticals), U.S. Provisional Number 60/112,909, filed December 18, 1998], and which claims priority to provisional application no. 60/123,000, filed March 5, 1999, provisional application no. 60/112,909, filed December 18, 1998, and provisional application no. [U.S. Provisional Number] 60/090,783, filed June 26, 1998.

Please amend the second chemical name provided in the table on page 39 (*i.e.*, the name provided in the third row of the table below its header) as follows: N-[3-(4-bromo-[1]2-methylpyrazol-3-yl)phenyl][(4-chlorophenyl)amino]-carboxamine

Please amend the chemical name provided on page 73, line 18, as follows: N-[3-(4-bromo-[1]2-methylpyrazol-3-yl)phenyl][(4-chlorophenyl)amino]-carboxamine

SEQUENCE LISTING

```
<110> Behan, Dominic
     Foster, Richard J.
     Glen, Robert C.
     Lawless, Michael S.
     Liu, Qian
     Smith, Julian R.
     Liaw, Chen W.
     Russo, Joseph F.
      Thomsen, William J.
      Chalmers, Derick
<120> Non-Endogenous, Constitutively Activated Human Serotonin Receptors and Small Molecule Mo
dulators Thereof
<130> Aren-0315
<150> 09/292,072
<151> 1999-04-14
      60/090,783
<150>
<151>
      1998-06-26
<150>
      60/112,909
      1998-12-18
<151>
                                                                              TECH CENTER 1600/2900
<150>
      60/123,000
<151>
      1999-03-05
<150>
      09/060,188
      1998-04-14
<151>
<150>
      08/839,449
      1997-04-14
<160>
<170> PatentIn version 3.1
<210>
<211>
      27
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 1
gacctcgagg ttgcttaaga ctgaagc
                                                                     27
<210>
<211>
      27
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 2
atttctagac atatgtagct tgtaccg
```

<210> 3 <211> 50 <212> DNA 27

RECEIVED

SEP 2 6 2002

Page 1

<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
	-	
<400>		:
ctaggg	gcac catgcaggct atcaacaatg aaagaaaagc taagaaagtc	50
<210>	4	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400>	4	
	cttt cttagctttt ctttcattgt tgatagcctg catggtgccc	50
, ,		
<210>	E	
<210>	5 26	
<212>		
<213>		
4220		
<220>	Novel Sequence	
(220)	notes bequence	
<400>	5	
gacctc	gagt ccttctacac ctcatc	26
<210>	6	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400>	6	
	agat tccagatagg tgaaaacttg	30
J		
40105		
<210> <211>	7 31	
<212>	DNA	
<213>		
40005		
<220> <223>	Novel Sequence	
(223)	nover bequence	
<400>	7	
caaaga	aagt actgggcatc gtcttcttcc t	31
<210>	8	ád.
<211>	31	*.
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400×		
<400>	8	21

<210>	9	
<211> <212>		
<213>		
	* ******	
<220>		
<223>	Novel Sequence	
<400>	9	
	ccag cactttcgaa gcttttcttt cattgttg	38
-50050		30
<210>		
<211> <212>	36	
<213>		
(213)	ALCILIOTAL Dequence	
<220>		
<223>	Novel Sequence	
<400>	10	
aaaagc	ttcg aaagtgctgg gcatcgtctt cttcct	36
<210>	11	
<211>	30	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400>	11	
tgctct	agat tccagatagg tgaaaacttg	30
	•	
<210>	12	
<211>	19	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
1000	notes bequence	
<400>	12	
cgtgtc	toto ottaottoa -	-··· - · ~ 19
	•	
<210>	13	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
4000	•	
<220>	Name 1 Common ma	
<223>	Novel Sequence	_ _
<400>	13	· •
	cagt actttgatag ttagaaagta ggtgat	36
Z2105	14	
<210> <211>	14 38	
<211>	DNA	
<213>	Artificial Sequence	

<220>			
	Novel Sequence		
<400>	14		
ttctaa	ctat caaagtactg cgccgacaag ctttgatg	38	
	·		
<210>	15		
<211>			
<212>	DNA		
<213>	Artificial Sequence		
<220×	·		
<220> <223>	Novel Sequence		
(223)	nover bequence		
<400>	15		
ttcago	agtc aacccactag tctatactct gttcaacaaa att	43	
<210>	16		
<211>			
<212>			
	Artificial Sequence		
	•		
<220>			
<223>	Novel Sequence		
<400>	16		
	agac atatgtagct tgtaccgt	28	
40000	agao acacgeagoe egoacoge	20	
<210>	17		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
	Novel Sequence		
	<u>-</u>		
<400>	17		
atcacc	tact ttctaacta	19	
<210>	18		
<211>			
<212>			
<213>	Artificial Sequence	_	
Z2205	e e e e e e e e e e e e e e e e e e e	-,- ⁻	
<220> <223>	Novel Sequence		
(223)	nover bequence		
<400>	18		
ccataa	tcgt caggggaatg aaaaatgaca caa	33	
<210>	19		
<211>	33		
<212>	DNA	_	<u> </u>
<213>	Artificial Sequence	¥	=
	••		Þ.
<220>	Ward Garage		
<223>	Novel Sequence		
<400>	19		
	catt cccctgacga ttatggtgat tac	33	

<210>	20				
<211>	33				
<212>	Artificial Sequence				
\Z13/	Arcilicial Sequence				
<220>			2		
<223>	Novel Sequence				
<400>					
tgatga	agaa agggcaccac atgatcagaa aca			33	
<210>	21	20			
<211>					
<212>					
<213>	Artificial Sequence				
<220>					
<223>	Novel Sequence				
<100>	21				
<400>	21 gtgg tgccctttct tcatcacaaa cat			22	
gaccac	gryg ryccorror rearracada car			33	
<210>	22				
<211>	24				
<212>					
<213>	Artificial Sequence				
4000					
<220>	Name 1 Games				
<2237	Novel Sequence				
<400>	22				
	tatt atctgccacg gagg			24	
3	and moderate gage			2.1	
<210>	23				
<211>					
<212>					
<213>	Artificial Sequence				
<220>					
<223>	Novel Sequence				
12237	Nover bequence				
<400>	23				
ttggca	taga aaccggaccc aagg			24	
				,= -	
<210>	24 -				
<211>	1416				
<212> <213>	DNA Artificial Sequence				
\213/	Arctificial Sequence				
<220>					
<223>	Novel Sequence				
<400>	24				
atggat	attc tttgtgaaga aaatacttct ttgagctca	a ctacgaactc	cctaatgcaa	60	•
+++	gatg acaacagget etacagtaat gaetttaac	+ ~~~~~~	*	120	Ē
ccadat	yary acaacayyor cracayraar gacrittaac	c ccyyayaagc	caacacttct	120	
gatqca	ttta actggacagt cgactctgaa aatcgaacc	a acctttccto	tgaagggtgc	180	
	J. J		٠ - ١ - ١ - ١		
ctctca	ccgt cgtgtctctc cttacttcat ctccaggaa	a aaaactggtc	tgctttactg	240	
				200	
acadec	gtag tgattattot aactattgot ggaaacata	u ecoecarcat	adcadtatcc	300	

ctagagaaaa agctg	cagaa tgccaccaac	tatttcctga	tgtcacttgc	catagctgat	360
atgctgctgg gtttc	cttgt catgcccgtg	tccatgttaa	ccatcctgta	tgggtaccgg	420
tggcctctgc cgagc	aagct ttgtgcagtc	tggatttacc	tggacgtgct	cttctccacg	480
gcctccatca tgcac	ctctg cgccatctcg	ctggaccgct	acgtcgccat	ccagaatccc	540
atccaccaca gccgc	ttcaa ctccagaact	aaggcatttc	tgaaaatcat	tgctgtttgg	600
accatatcag taggt	atatc catgccaata	ccagtctttg	ggctacagga	cgattcgaag	660
gtctttaagg agggg	agttg cttactcgcc	gatgataact	ttgtcctgat	cggctctttt	720
gtgtcatttt tcatt	ccctt aaccatcatg	gtgatcacct	actttctaac	tatcaagtca	780
ctccagaaag aagct	acttt gtgtgtaagt	gatcttggca	cacgggccaa	attagcttct	840
ttcagcttcc tccct	cagag ttctttgtct	tcagaaaagc	tcttccagcg	gtcgatccat	900
agggagccag ggtcc	tacac aggcaggagg	actatgcagt	ccatcagcaa	tgagcaaaag	960
gcatgcaagg tgctg	ggcat cgtcttcttc	ctgtttgtgg	tgatgtggtg	ccctttcttc	1020
atcacaaaca tcatg	gccgt catctgcaaa	gagtcctgca	atgaggatgt	cattggggcc	1080
ctgctcaatg tgttt	gtttg gatcggttat	ctctcttcag	cagtcaaccc	actagtctac	1140
acactgttca acaag	accta taggtcagcc	ttttcacggt	atattcagtg	tcagtacaag	1200
gaaaacaaaa aacca	ttgca gttaatttta	gtgaacacaa	taccggcttt	ggcctacaag	1260
tctagccaac ttcaa	atggg acaaaaaag	aattcaaagc	aagatgccaa	gacaacagat	1320
aatgactgct caatg	gttgc tctaggaaag	cagtattctg	aagaggcttc	taaagacaat	1380
agcgacggag tgaat	gaaaa ggtgagctgt	gtgtga			1416

<210> 25 <211> 470 <212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 25

Met Asp Ile Leu Cys Glu Glu Asn Thr Ser Leu Ser Ser Thr Thr Asn 1 5^{-1} 10 15

Ser Leu Met Gln Leu Asn Asp Asp Asn Arg Leu Tyr Ser Asn Asp Phe

Asn Ser Gly Glu Ala Asn Thr Ser Asp Ala Phe Asn Trp Thr Val Asp 35 40 45

Ser Glu Asn Arg Thr Asn Leu Ser Cys Glu Gly Cys Leu Ser Pro Ser

Cys Ser Leu Leu His Leu Gln Glu Lys Asn Trp Ser Ala Leu Leu Thr 70

Ala	Val	Val	Ile	Ile 85	Leu	Thr	Ile	Ala	Gly 90	Asn	Ile	Leu	Val	Ile 95	Met	
Ala	Val	Ser	Leu 100	Glu	Lys	Lys	Leu	Gln 105	Asn	Ala	Thr	Asn	Туг 110	Phe	Leu	
Met	Ser	Leu 115	Ala	Ile	Ala	Asp	Met 120	Leu	Leu	Gly	Phe	Leu 125	Val	Met	Pro	
Val	Ser 130	Met	Leu	Thr	Ile	Leu 135	Tyr	Gly	Tyr	Arg	Trp 140	Pro	Leu	Pro	Ser	
Lys 145	Leu	Суз	Ala	Val	Trp 150	Ile	Tyr	Leu	Asp	Val 155	Leu	Phe	Ser	Thr	Ala 160	
Ser	Ile	Met	His	Leu 165	Cys	Ala	Ile	Ser	Leu 170	Asp	Arg	Tyr	Val	Ala 175	Ile	
Gln	Asn	Pro	Ile 180	His	His	Ser	Arg	Phe 185	Asn	Ser	Arg	Thr	Lys 190	Ala	Phe	
Leu	Lys	Ile 195	Ile	Ala	Val	Trp	Thr 200	Ile	Ser	Val	Gly	Ile 205	Ser	Met	Pro	
Ile	Pro 210	Val	Phe	Gly	Leu	Gln 215	Asp	Asp	Ser	Lys	Val 220	Phe	Lys	Glu	Gly	
Ser 225	Суз	Leu	Leu	Ala	Asp 230	Asp	Asn	Phe	Val	Leu 235	Ile	Gly	Ser	Phe	Val 240	
Ser	Phe	Phe	Ile	Pro 245	Leu	Thr	Ile	Met	Val 250	Ile	Thr	Tyr	Phe	Leu 255	Thr	
Ile	Lys	Ser	Leu 260	Gln	Lys	Glu	Ala	Thr 265	Leu	Суз	Val	Ser	Asp 270	Leu	Gly	
Thr	Arg	Ala 275	Lys	Leû	Ala	Ser	Phe 280	Ser	Phe	Leu	Pro	Gln 285	Ser	Ser	Leu	
Ser	Ser 290	Glu	Lys	Leu	Phe	Gln 295	Arg	Ser	Ile	His	Arg 300	Glu	Pro	Gly	Ser	
Tyr 305	Thr	Gly	Arg	Arg	Thr 310	Met	Gln	Ser	Ile	Ser 315	Asn	Glu	Gln	Lys	Ala 320	

Pro Phe Phe Ile Thr Asn Ile Met Ala Val Ile Cys Lys Glu Ser Cys

Page 7

340 345 350

Asn Glu Asp Val Ile Gly Ala Leu Leu Asn Val Phe Val Trp Ile Gly 355 360 365

Tyr Leu Ser Ser Ala Val Asn Pro Leu Val Tyr Thr Leu Phe Asn Lys 370 380

Thr Tyr Arg Ser Ala Phe Ser Arg Tyr Ile Gln Cyş Gln Tyr Lys Glu 385 390 395 395 400

Asn Lys Lys Pro Leu Gln Leu Ile Leu Val Asn Thr Ile Pro Ala Leu 405 410 415

Ala Tyr Lys Ser Ser Gln Leu Gln Met Gly Gln Lys Lys Asn Ser Lys 420 425 430

Gln Asp Ala Lys Thr Thr Asp Asn Asp Cys Ser Met Val Ala Leu Gly 435 440 445

Lys Gln Tyr Ser Glu Glu Ala Ser Lys Asp Asn Ser Asp Gly Val Asn 450 460

Glu Lys Val Ser Cys Val 465 470

<210> 26 <211> 1377

<212> DNA <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 26

atggtgaacc tgaggaatgc ggtgcattca ttccttgtgc acctaattgg cctattggtt 60 tggcaatgtg atatttctgt gagcccagta gcagctatag taactgacat tttcaatacc 120 tccgatggtg gacgcttcaa attcccagac ggggtacaaa actggccagc actttcaatc 180 gtcatcataa taatcatgac aataggtggc aacatccttg tgatcatggc agtaagcatg 240 gaaaagaaac tgcacaatgc caccaattac ttcttaatgt ccctagccat tgctgatatg 300 ctagtgggac tacttgtcat gcccctgtct ctcctggcaa tcctttatga ttatgtctgg 360 ccactaccta gatatttgtg ccccgtctgg atttctttag atgttttatt ttcaacagcg 420 480 tocatcatgc acctetgege tatategetg gateggtatg tagcaataeg taateetatt gagcatagcc gtttcaattc gcggactaag gccatcatga agattgctat tgtttgggca 540 600 atttctatag gtgtatcagt tcctatccct gtgattggac tgagggacga agaaaaggtg ttcgtgaaca acacgacgtg cgtgctcaac gacccaaatt tcgttcttat tgggtccttc 660 gtagctttct tcataccgct gacgattatg gtgattacgt attgcctgac catctacgtt 720

Page 8

ctgcgccgac	aagctttgat	gttactgcac	ggccacaccg	aggaaccgcc	tggactaagt	780
ctggatttcc	tgaagtgctg	caagaggaat	acggccgagg	aagagaactc	tgcaaaccct	840
aaccaagacc	agaacgcacg	ccgaagaaag	aagaaggaga	gacgtcctag	gggcaccatg	900
caggctatca	acaatgaaag	aaaagcttcg	aaagtccttg	ggattgtttt	ctttgtgttt	960
ctgatcatgt	ggtgcccatt	tttcattacc	aatattctgt	ctgttctttg	tgagaagtcc	1020
tgtaaccaaa	agctcatgga	aaagcttctg	aatgtgtttg	tttggattgg	ctatgtttgt	1080
tcaggaatca	atcctctggt	gtatctctgt	ttcaacaaaa	tttaccgaag	ggcattctcc	1140
aactatttgc	gttgcaatta	taaggtagag	aaaaagcctc	ctgtcaggca	gattccaaga	1200
gttgccgcca	ctgctttgtc	tgggagggag	cttaatgtta	acatttatcg	gcataccaat	1260
gaaccggtga	tcgagaaagc	cagtgacaat	gagcccggta	tagagatgca	agttgagaat	1320
ttagagttac	cagtaaatcc	ctccagtgtg	gttagcgaaa	ggattagcag	tgtgtga	1377

<210> 27 <211> 458

<212> PRT

<213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 27

Met Val Asn Leu Arg Asn Ala Val His Ser Phe Leu Val His Leu Ile 10

Gly Leu Leu Val Trp Gln Cys Asp Ile Ser Val Ser Pro Val Ala Ala

Ile Val Thr Asp Ile Phe Asn Thr Ser Asp Gly Gly Arg Phe Lys Phe 40

Pro Asp Gly Val Gln Asn Trp Pro Ala Leu Ser Ile Val Ile Ile .55

Ile Met Thr Ile Glŷ Gly Asn Ile Leu Val Ile Met Ala Val Ser Met

Glu Lys Lys Leu His Asn Ala Thr Asn Tyr Phe Leu Met Ser Leu Ala 90

Ile Ala Asp Met Leu Val Gly Leu Leu Val Met Pro Leu Ser Leu Leu 100 110 -

Ala Ile Leu Tyr Asp Tyr Val Trp Pro Leu Pro Arg Tyr Leu Cys Pro

Val Trp Ile Ser Leu Asp Val Leu Phe Ser Thr Ala Ser Ile Met His Page 9

130	135
-----	-----

Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala Ile Arg Asn Pro Ile Glu His Ser Arg Phe Asn Ser Arg Thr Lys Ala Ile Met Lys Ile Ala Ile Val Trp Ala Ile Ser Ile Gly Val Ser Val Pro, Ile Pro Val Ile Gly Leu Arg Asp Glu Glu Lys Val Phe Val Asn Asn Thr Thr Cys Val Leu Asn Asp Pro Asn Phe Val Leu Ile Gly Ser Phe Val Ala Phe Phe Ile Pro Leu Thr Ile Met Val Ile Thr Tyr Cys Leu Thr Ile Tyr Val Leu Arg Arg Gln Ala Leu Met Leu Leu His Gly His Thr Glu Glu Pro Pro Gly Leu Ser Leu Asp Phe Leu Lys Cys Cys Lys Arg Asn Thr Ala Glu Glu Asn Ser Ala Asn Pro Asn Gln Asp Gln Asn Ala Arg Arg Arg Lys Lys Glu Arg Arg Pro Arg Gly Thr Met Gln Ala Ile Asn Asn Glu Arg Lys Ala Ser Lys Val Leu Gly Ile Val Phe Phe Val Phe Leu Ile Met Trp Cys Pro Phe Phe Ile Thr Asn Ile Leu Ser Val Leu Cys Glu Lys Ser Cys Asn Gln Lys Leu Met Glu Lys Leu Leu Asn Val Phe Val Trp Ile Gly Tyr Val Cys Ser Gly Ile Asn Pro Leu Val Tyr

355 360 365

Thr Leu Phe Asn Lys Ile Tyr Arg Arg Ala Phe Ser Asn Tyr Leu Arg 370 375 380

Cys Asn Tyr Lys Val Glu Lys Lys Pro Pro Val Arg Gln Ile Pro Arg 385 390 395 400

Val Ala Ala Thr Ala Leu Ser Gly Arg Glu Leu Asn Val Asn Ile Tyr 410

Arg His Thr Asn Glu Pro Val Ile Glu Lys Ala Ser Asp Asn Glu Pro 425

Gly Ile Glu Met Gln Val Glu Asn Leu Glu Leu Pro Val Asn Pro Ser 440

Ser Val Val Ser Glu Arg Ile Ser Ser Val 450 455

<210> 28

<211> 1377 <212> DNA

<213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 28

atggtgaacc	tgaggaatgc	ggtgcattca	ttccttgtgc	acctaattgg	cctattggtt	60
tggcaatgtg	atatttctgt	gagcccagta	gcagctatag	taactgacat	tttcaatacc	120
tccgatggtg	gacgcttcaa	attcccagac	ggggtacaaa	actggccagc	actttcaatc	180
gtcatcataa	taatcatgac	aataggtggc	aacatccttg	tgatcatggc	agtaagcatg	240
gaaaagaaac	tgcacaatgc	caccaattac	ttcttaatgt	ccctagccat	tgctgatatg	300
ctagtgggac	tacttgtcat	gccctgtct	ctcctggcaa	tcctttatga	ttatgtctgg	360
ccactaccta	gatatttgtg	cccgtctgg	atttctttag	atgttttatt	ttcaacagcg	420
tccatcatgc	acctctgcgc	tatatcgctg	gatcggtatg	tagcaatacg	taatcctatt	480
gagcatagcc	gtttcaattc	gcggactaag	gccatcatga	agattgctat	tgtttgggca	540
atttctatag	gtgtatcagt	tcctatccct	gtgattggac	tgagggacga	agaaaaggtg	600
ttcgtgaaca	acacgacgtg	cgtgctcaac	gacccaaatt	tcgttcttat	tgggtccttc	660
gtagctttct	tcataccgct	gacgattatg	gtgattacgt	attgcctgac	catctacgtt	- <i>72</i> 0
ctgcgccgac	aagctttgat	gttactgcac	ggccacaccg	aggaaccgcc	tggactaagt .	780
ctggatttcc	tgaagtgctg	caagaggaat	acggccgagg	aagagaactc	tgcaaaccct	840
aaccaagacc	agaacgcacg	ccgaagaaag	aagaaggaga	gacgtcctag	gggcaccatg	900
caggctatca	acaatgaaag	aaaagctaag	aaagtccttg	ggattgtttt	ctttgtgttt	960
ctgatcatgt	ggtgcccatt	tttcattacc	aatattctgt	ctgttctttg	tgagaagtcc	1020
tgtaaccaaa	agctcatgga	aaagcttctg	aatgtgtttg	tttggattgg	ctatgtttgt	1080
tcaggaatca	atcctctggt	gtatactctg	ttcaacaaaa	tttaccgaag	ggcattctcc	1140

aactatttgc gttgcaatta taaggtagag aaaaagcctc ctgtcaggca gattccaaga

gttgccgcca ctgctttgtc tgggagggag cttaatgtta acatttatcg gcataccaat

1200

gaaccggtga tcgag	gaaagc cagtgacaat	AREN0315.ST25.txt gagcccggta tagagatgca agttgagaat	1320									
ttagagttac cagta	aaatcc ctccagtgtg	gttagcgaaa ggattagcag tgtgtga	1377									
<210> 29 : <211> 458 <212> PRT <213> Artificial Sequence												
<220> <223> Novel Sec												
<400> 29												
Met Val Asn Leu 1	Arg Asn Ala Val 1	His Ser Phe Leu Val His Leu Ile 10 15										
Gly Leu Leu Val 20		Ile Ser Val Ser Pro Val Ala Ala . 25 30										
Ile Val Thr Asp 35	Ile Phe Asn Thr	Ser Asp Gly Gly Arg Phe Lys Phe 45										
Pro Asp Gly Val	Gln Asn Trp Pro 2 55	Ala Leu Ser Ile Val Ile Ile Ile 60										
Ile Met Thr Ile 65	Gly Gly Asn Ile : 70	Leu Val Ile Met Ala Val Ser Met 75 80										
Glu Lys Lys Leu	His Asn Ala Thr 2	Asn Tyr Phe Leu Met Ser Leu Ala 90 95										
Ile Ala Asp Met 100	-	Leu Val Met Pro Leu Ser Leu Leu 105 110										
Ala Ile Leu Tyr 115	Asp Tyr Val Trp 120	Pro Leu Pro Arg Tyr Leu Cys Pro 125										
Val Trp Ile Ser 130 -	Leu Asp Val Leu 135	Phe Ser Thr Ala Ser Ile Met His 140										
		Tyr Val Ala Ile Arg Asn Pro Ile 155 160										

Gly Leu Arg Asp Glu Glu Lys Val Phe Val Asn Asn Thr Thr Cys Val 195 200 205

Glu His Ser Arg Phe Asn Ser Arg Thr Lys Ala Ile Met Lys Ile Ala 165 \$170\$

Ile Val Trp Ala Ile Ser Ile Gly Val Ser Val Pro Ile Pro Val Ile 180 $$185\$

Leu Asn Asp Pro Asn Phe Val Leu Ile Gly Ser Phe Val Ala Phe Phe 210 The Pro Leu Thr Ile Met 230 Leu Arg Arg Gln Ala Leu Met Leu Leu His Gly Sir Sir Phe Val Ala Phe Phe 220 Leu Arg Arg Gln Ala Leu Met Leu Leu His Gly His Thr Glu Glu Pro 255

Pro Gly Leu Ser Leu Asp Phe Leu Lys Cys Cys Lys Arg Asn Thr Ala 260 265 270

Glu Glu Glu Asn Ser Ala Asn Pro Asn Gln Asp Gln Asn Ala Arg Arg 275 280 285

Arg Lys Lys Glu Arg Arg Pro Arg Gly Thr Met Gln Ala Ile Asn 290 295 300

Asn Glu Arg Lys Ala Lys Lys Val Leu Gly Ile Val Phe Phe Val Phe 305 310 315 320

Leu Ile Met Trp Cys Pro Phe Phe Ile Thr Asn Ile Leu Ser Val Leu 325 330 335

Cys Glu Lys Ser Cys Asn Gln Lys Leu Met Glu Lys Leu Leu Asn Val 340 345 350

Phe Val Trp Ile Gly Tyr Val Cys Ser Gly Ile Asn Pro Leu Val Tyr 355 360 365

Thr Leu Phe Asn Lys Ile Tyr Arg Arg Ala Phe Ser Asn Tyr Leu Arg 370 380

Cys Asn Tyr Lys Val Glu Lys Lys Pro Pro Val Arg Gln Ile Pro Arg 385 390 395 400

Val Ala Ala Thr Ala Leu Ser Gly Arg Glu Leu Asn Val Asn Ile Tyr 405 410 415

Gly Ile Glu Met Gln Val Glu Asn Leu Glu Leu Pro Val Asn Pro Ser 435 440 445

Ser Val Val Ser Glu Arg Ile Ser Ser Val 450 455

<210> 30 <211> 1437 <212> DNA

Page 13

<213> Artificial Sequence	AREN0315.ST25.txt
<220> <223> Novel Sequence	
<400> 30	:
atggatattc tttgtgaaga aaatac	ttct ttgagctcaa ctacgaactc cctaatgcaa 60
ttaaatgatg acaacaggct ctacag	taat gactttaact ccggagaagc taacacttct 120
gatgcattta actggacagt cgactc	tgaa aatcgaacca acctttcctg tgaagggtgc 180
ctctcaccgt cgtgtctctc cttact	tcat ctccaggaaa aãaactggtc tgctttactg 240
acagccgtag tgattattct aactat	tgct ggaaacatac tcgtcatcat ggcagtgtcc 300
ctagagaaaa agctgcagaa tgccac	caac tatttcctga tgtcacttgc catagctgat 360
atgctgctgg gtttccttgt catgcc	cgtg tccatgttaa ccatcctgta tgggtaccgg 420
tggcctctgc cgagcaagct ttgtgc	agtc tggatttacc tggacgtgct cttctccacg 480
gcctccatca tgcacctctg cgccat	ctcg ctggaccgct acgtcgccat ccagaatccc 540
atccaccaca gccgcttcaa ctccag	aact aaggcatttc tgaaaatcat tgctgtttgg 600
accatatcag taggtatatc catgcc	aata ccagtctttg ggctacagga cgattcgaag 660
gtctttaagg aggggagttg cttact	cgcc gatgataact ttgtcctgat cggctctttt 720
gtgtcatttt tcattccctt aaccate	catg gtgatcacct actttctaac tatcaaggtt 780
ctgcgccgac aagctttgat gttact	gcac ggccacaccg aggaaccgcc tggactaagt 840
ctggatttcc tgaagtgctg caagag	gaat acggccgagg aagagaactc tgcaaaccct 900
aaccaagacc agaacgcacg ccgaag	aaag aagaaggaga gacgtcctag gggcaccatg 960
caggetatea acaatgaaag aaaage	ttcg aaggtactgg gcatcgtctt cttcctgttt 1020
gtggtgatgt ggtgcccttt cttcate	caca aacatcatgg ccgtcatctg caaagagtcc 1080
tgcaatgagg atgtcattgg ggccct	gctc aatgtgtttg tttggatcgg ttatctctct 1140
tcagcagtca acccactagt ctatac	totg ttcaacaaaa tttaccgaag ggcattctcc 1200
aactatttgc gttgcaatta taaggta	agag aaaaagcctc ctgtcaggca gattccaaga 12 <u>60</u>
gttgccgcca ctgctttgtc tgggag	ggag cttaatgtta acatttatcg gcataccaat 1320
gaaccggtga tcgagaaagc cagtga	caat gagcccggta tagagatgca agttgagaat 1380
ttagagttac cagtaaatcc ctccag	tgtg gttagcgaaa ggattagcag tgtgtga 1437
<210> 31 <211> 478	
<212> PRT	
<213> Artificial Sequence	
<220>	

<220> <223> Novel Sequence

<400> 31

Met Asp Ile Leu Cys Glu Glu Asn Thr Ser Leu Ser Ser Thr Thr Asn 1 $$ 5 $$ 10 $$ 15

- Ser Leu Met Gln Leu Asn Asp Asp Asn Arg Leu Tyr Ser Asn Asp Phe $20 \hspace{1cm} 25 \hspace{1cm} 30$
- As Ser Gly Glu Ala As Thr Ser As Ala Phe As Trp Thr Val Asp 35 40 45
- Ser Glu Asn Arg Thr Asn Leu Ser Cys Glu Gly Cys Leu Ser Pro Ser 50 60,
- Cys Leu Ser Leu Leu His Leu Gln Glu Lys Asn Trp Ser Ala Leu Leu 65 70 75 80
- Thr Ala Val Val Ile Ile Leu Thr Ile Ala Gly Asn Ile Leu Val Ile.
 85 90 95
- Met Ala Val Ser Leu Glu Lys Lys Leu Gln Asn Ala Thr Asn Tyr Phe 100 105 110
- Leu Met Ser Leu Ala Ile Ala Asp Met Leu Leu Gly Phe Leu Val Met 115 120 125
- Pro Val Ser Met Leu Thr Ile Leu Tyr Gly Tyr Arg Trp Pro Leu Pro 130 135 140
- Ser Lys Leu Cys Ala Val Trp Ile Tyr Leu Asp Val Leu Phe Ser Thr 145 150 155 160
- Ala Ser Ile Met His Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala 165 170 175
- Ile Gln Asn Pro Ile His His Ser Arg Phe Asn Ser Arg Thr Lys Ala 180 185 190
- Phe Leu Lys Ile Ile Ala Val Trp Thr Ile Ser Val Gly Ile Ser Met 195 200 205
- Pro Ile Pro Val Phe Gly Leu Gln Asp Asp Ser Lys Val Phe Lys Glu 210 215 220
- Gly Ser Cys Leu Leu Ala Asp Asp Asn Phe Val Leu Ile Gly Ser Phe 225 235 240
- Val Ser Phe Phe Ile Pro Leu Thr Ile Met Val Ile Thr Tyr Phe Leu 245 250 255
- Thr Ile Lys Val Leu Arg Arg Gln Ala Leu Met Leu Leu His Gly His 260 265 270
- Thr Glu Glu Pro Pro Gly Leu Ser Leu Asp Phe Leu Lys Cys Lys
 Page 15

275 280 285

Arg Asn Thr Ala Glu Glu Glu Asn Ser Ala Asn Pro Asn Gln Asp Gln 295 Asn Ala Arg Arg Arg Lys Lys Glu Arg Arg Pro Arg Gly Thr Met Gln Ala Ile Asn Asn Glu Arg Lys Ala Ser Lys Val Leu Gly Ile Val 330 Phe Phe Leu Phe Val Val Met Trp Cys Pro Phe Phe Ile Thr Asn Ile 345 Met Ala Val Ile Cys Lys Glu Ser Cys Asn Glu Asp Val Ile Gly Ala Leu Leu Asn Val Phe Val Trp Ile Gly Tyr Leu Ser Ser Ala Val Asn Pro Leu Val Tyr Thr Leu Phe Asn Lys Ile Tyr Arg Arg Ala Phe Ser 395 Asn Tyr Leu Arg Cys Asn Tyr Lys Val Glu Lys Lys Pro Pro Val Arg 410 Gln Ile Pro Arg Val Ala Ala Thr Ala Leu Ser Gly Arg Glu Leu Asn 425 Val Asn Ile Tyr Arg His Thr Asn Glu Pro Val Ile Glu Lys Ala Ser . 440 Asp Asn Glu Pro Gly Ile Glu Met Gln Val Glu Asn Leu Glu Leu Pro 455 Val Asn Pro Ser Ser Val Val Ser Glu Arg Ile Ser Ser Val - 470 ÷----<210> 32 <211> 1437 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 32 60 atggatattc tttgtgaaga aaatacttct ttgagctcaa ctacgaactc cctaatgcaa ttaaatgatg acaacaggct ctacagtaat gactttaact ccggagaagc taacacttct gatgcattta actggacagt cgactctgaa aatcgaacca acctttcctg tgaagggtgc 180

ctctcaccgt cgtgtctctc cttacttcat ctccaggaaa aaaactggtc tgctttactg

Page 16

240

acagccgtag	tgattattct	aactattgct	ggaaacatac	tcgtcatcat	ggcagtgtcc	300
ctagagaaaa	agctgcagaa	tgccaccaac	tatttcctga	tgtcacttgc	catagctgat	360
atgctgctgg	gtttccttgt	catgcccgtg	tccatgttaa	ccatcctgta	tgggtacegg.	420
tggcctctgc	cgagcaagct	ttgtgcagtc	tggatttacc	tggacgtgct	cttctccacg	480
gcctccatca	tgcacctctg	cgccatctcg	ctggaccgct	acgtcgccat	ccagaatccc	540
atccaccaca	gccgcttcaa	ctccagaact	aaggcatttc	tgaaaatcat	tgctgtttgg	600
accatatcag	taggtatatc	catgccaata	ccagtctttg	ggctacagga	cgattcgaag	660
gtctttaagg	aggggagttg	cttactcgcc	gatgataact	ttgtcctgat	cggctctttt	720
gtgtcatttt	tcattcccct	gacgattatg	gtgattacgt	attgcctgac	catctacgtt	780
ctgcgccgac	aagctttgat	gttactgcac	ggccacaccg	aggaaccgcc	tggactaagt	840
ctggatttcc	tgaagtgctg	caagaggaat	acggccgagg	aagagaactc	tgcaaaccct	900
aaccaagacc	agaacgcacg	ccgaagaaag	aagaaggaga	gacgtcctag	gggcaccatg	960
caggctatca	acaatgaaag	aaaagctaag	aaagtccttg	ggattgtttt	ctttgtgttt	1020
ctgatcatgt	ggtgcccttt	cttcatcaca	aacatcatgg	ccgtcatctg	caaagagtcc	1080
tgcaatgagg	atgtcattgg	ggccctgctc	aatgtgtttg	tttggatcgg	ttatctctct	1140
tcagcagtca	acccactagt	ctatactctg	ttcaacaaaa	tttaccgaag	ggcattctcc	1200
aactatttgc	gttgcaatta	taaggtagag	aaaaagcctc	ctgtcaggca	gattccaaga	1260
gttgccgcca	ctgctttgtc	tgggagggag	cttaatgtta	acatttatcg	gcataccaat	1320
gaaccggtga	tcgagaaagc	cagtgacaat	gagcccggta	tagagatgca	agttgagaat	1380
ttagagttac	cagtaaatcc	ctccagtgtg	gttagcgaaa	ggattagcag	tgtgtga	1437

<210> 33 <211> 478 <212> PRT <213> Artificial Sequence

<223> Novel Sequence

<400> 33

Met Asp Ile Leu Cys Glu Glu Asn Thr Ser Leu Ser Ser Thr Thr Asn 1 $$ 5 $$ 10 $$ 15

Ser Leu Met Gln Leu Asn Asp Asp Asn Arg Leu Tyr Ser Asn Asp Phe

Asn Ser Gly Glu Ala Asn Thr Ser Asp Ala Phe Asn Trp Thr Val Asp 35 40 45

Ser Glu Asn Arg Thr Asn Leu Ser Cys Glu Gly Cys Leu Ser Pro Ser

										AREN0315.ST25.txt						
Cys 65	Leu	Ser	Leu	Leu	His 70	Leu	Gln	Glu	Lys	Asn 75	Trp	Ser	Ala	Leu	Let 80	
Thr	Ala	Val	Val	Ile 85	Ile	Leu	Thr	Ile	Ala 90	Gly	Asn	Ile	Leu	Val 95	Ile	
Met	Ala	Val	Ser 100	Leu	Glu	Lys	Lys	Leu 105	Gln	Asn	Ala	Thr	Asn 110	Tyr	Phe	
Leu	Met	Ser 115	Leu	Ala	Ile	Ala	Asp 120	Met	Leu	Leu	Gly	Phe 125	Leu	Val	Met	
Pro	Val 130	Ser	Met	Leu	Thr	Ile 135	Leu	Tyr	Gly	Туг	Arg 140	Trp	Pro	Leu	Pro	
Ser 145	Lys	Leu	Суѕ	Ala	Val 150	Trp	Ile	Tyr	Leu	Asp 155	Val	Leu	Phe	Ser	Th:	
Ala	Ser	Ile	Met	His 165	Leu	Cys	Ala	Ile	Ser 170	Leu	Asp	Arg	Tyr	Val 175	Ala	
Ile	Gln	Asn	Pro 180	Ile	His	His	Ser	Arg 185	Phe	Asn	Ser	Arg	Thr 190	Lys	Ala	
Phe	Leu	Lys 195	Ile	Ile	Ala	Val	Trp 200	Thr	Ile	Ser	Val	Gly 205	Ile	Ser	Met	
Pro	Ile 210	Pro	Val	Phe	Gly	Leu 215	Gln	Asp	Asp	Ser	Lys 220	Val	Phe	Lys	Glu	
Gly 225	Ser	Cys	Leu	Leu	Ala 230	Asp	Asp	Asn	Phe	Val 235	Leu	Ile	Gly	Ser	Phe 240	
Val	Ser	Phe	Phe	245		Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Cys 255	Leu	
Thr	Ile		Val 260	Leu	Arg	Arg	Gln	Ala 265	Leu	Met	Leu	Leu	His 270	Gly	His	
Thr	Glu	Glu 275	Pro	Pro	Gly	Leu	Ser 280	Leu	Asp	Phe	Leu	Lys 285	Суз	Cys	Lys	
Arg	Asn 290	Thr	Ala	Glu	Glu	Glu 295	Asn	Ser	Ala	Asn	Pro 300	Asn	Gln	Asp	Gln	

Asn Ala Arg Arg Arg Lys Lys Lys Glu Arg Arg Pro Arg Gly Thr Met 305 310 315

Phe Phe Val Phe Leu Ile Met Trp Cys Pro Phe Phe Ile Thr Asn Ile 340 345 350

Leu Leu Asn Val Phe Val Trp Ile Gly Tyr Leu Ser Ser Ala Val Asn 370 375 380

Pro Leu Val Tyr Thr Leu Phe Asn Lys Ile Tyr Arg Arg Ala Phe Ser 385 390 395 400

Asn Tyr Leu Arg Cys Asn Tyr Lys Val Glu Lys Lys Pro Pro Val Arg 405 410 415

Gln Ile Pro Arg Val Ala Ala Thr Ala Leu Ser Gly Arg Glu Leu Asn 420 425 430

Asp Asn Glu Pro Gly Ile Glu Met Gln Val Glu Asn Leu Glu Leu Pro 450 460

Val Asn Pro Ser Ser Val Val Ser Glu Arg Ile Ser Ser Val 465 470 475