

Ambienti di calcolo e simulazione per la ricerca sperimentale

DOTTORATO DI RICERCA IN TECNOLOGIE E METODI PER LA FORMAZIONE UNIVERSITARIA

PROF. FULVIO CORNO

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES

Un assaggio di... Ingegneria

- Ingegneria =
 - Saper progettare
 - Risolvere problemi
 - Trovare soluzioni
 - Soddisfare le specifiche
 - Nel rispetto dei vincoli
 - Con gli strumenti disponibili

- Ingegneria informatica =
 - Problemi di ogni genere (calcolo, gestione dati, interazione, ...)
 - Lo strumento è il calcolatore

Statistiche studenti

```
import pandas as pd
import seaborn as sns
studenti = pd.read_csv('14BHDOA_2024.csv')
sns.countplot(data=studenti, x='CDS STUDENTE')
```


...e cioè cosa impariamo a fare?

• Quali sono i nomi più frequenti in quest'aula?

Una possibile soluzione... in Python

```
import csv
from matplotlib import pyplot
# Leggi l'elenco degli studenti e salvalo in un'array
def leggi(nome file):
   file = open(nome file, 'r')
    reader = csv.reader(file)
    prima = True
    studenti = []
    for line in reader:
        if prima: # skip first line (headers)
            prima = False
        else:
            studenti.append(line)
    file.close()
    return studenti
# estrai i nomi di battesimo da un elenco di studenti
def estrai nomi(elenco):
    lista nomi = []
    for riga in elenco:
       lista nomi.append(riga[2])
    return lista nomi
# Calcola le frequenze dei vari nomi presenti in un array
def frequenze(tokens):
    freq = {}
    for token in tokens:
        if token in freq:
            freq[token] = freq[token] + 1
        else:
            freq[token] = 1
    return freq
```

```
# calcola il massimo valore presente nelle frequenze
def max frequenza(freq):
    return max(freq.values())
def nomi piu frequenti(freq, max):
    return [nome for (nome, frequenza) in freq.items() if frequenza == max]
FILENAME = '01TXYOV 2020.csv'
def main():
    stud = leggi(FILENAME)
    nomi = estrai nomi(stud)
    print(f"Nella classe ci sono {len(stud)} studenti")
    freq = frequenze(nomi)
    max freq = max frequenza(freq)
    print(f"Il nome più frequente compare {max freq} volte")
    nomi max = nomi piu frequenti(freq, max freq)
    print(f"Si tratta di : {nomi max}")
    # estrai solo i nomi che compaiono almeno 3 volte
    freq2 = \{k: v \text{ for } (k, v) \text{ in freq.items() if } v >= 3\}
    print(
        f"I nomi che compaiono più volte sono {', '.join(sorted(list(freq2.keys())))}."
    pyplot.barh(list(freq2.keys()), freq2.values())
    pyplot.show()
main()
```

https://replit.com/@fulcorno/NomiFrequentiStudenti#main.py

A cosa serve imparare a programmare?

Uno sguardo a Python

VISIONE GENERALE DELL'ECOSISTEMA PYTHON

Il linguaggio Python

- Linguaggio gratuito ed open-source
- Disponibile per tutti i sistemi operativi
 - Windows, Mac OS X, Linux
 - Sistemi embedded, Raspberry PI, Android
- Progettato negli anni '90 da Guido Van Rossum
 - Sintassi semplice, pulita, regolare
 - Approccio «batterie incluse»
 - Ampia libreria di funzioni standard
 - Basso gradino d'accesso
 - Linguaggio interpretato
- Sterminata documentazione on-line

https://www.python.org/

Batterie incluse

- Tipi di dato fondamentali
 - boolean, int, float, complex, string, regexp
- Strutture dati fondamentali
 - liste/array/matrici, tuple, insiemi, dizionari/mappe/hash, file, ...
- Orientato agli oggetti
 - Utilizzo semplice e diretto di oggetti predefiniti
 - Possibilità di creare classi ed oggetti personalizzati (avanzato)
- 200+ Moduli nella libreria standard

200 Moduli della libreria standard

abc	chunk	decimal	getpass	keyword	optparse	queue	sndhdr	telnetlib	unittest
aifc	cmath	difflib	gettext	linecache	os	quopri	socket	tempfile	urllib
					ossaudiodev				
argparse	cmd	dis	glob	locale	(Linux, FreeBSD)	random	socketserver	termios (Unix)	uu
array	codecs	distutils	graphlib	logging	parser	re	spwd (Unix)	test	uuid
ast	codeop	doctest	grp (Unix)	Izma	pathlib	readline (Unix)	sqlite3	textwrap	venv
asynchat	collections	email	gzip	mailbox	pdb	reprlib	ssl	threading	warnings
asyncio	colorsys	encodings	hashlib	mailcap	pickle	resource (Unix)	stat	time	wave
asyncore	compileall	ensurepip	heapq	marshal	pickletools	rlcompleter	statistics	timeit	weakref
atexit	configparser	enum	hmac	math	pipes (Unix)	runpy	string	tkinter	webbrowser
audioop	contextlib	errno	html	mimetypes	pkgutil	sched	stringprep	token	winreg (Win)
base64	contextvars	faulthandler	http	mmap	platform	secrets	struct	tokenize	winsound (Win)
bdb	сору	fcntl (Unix)	imaplib	modulefinder	plistlib	select	subprocess	trace	wsgiref
binascii	copyreg	filecmp	imghdr	msilib (Windows)	poplib	selectors	sunau	traceback	xdrlib
binhex	crypt (Unix)	fileinput	imp	msvcrt (Windows)	pprint	shelve	symbol	tracemalloc	xml
bisect	csv	fnmatch	importlib	multiprocessing	profile	shlex	symtable	tty (Unix)	xmlrpc
builtins	ctypes	fractions	inspect	netrc	pstats	shutil	sys	turtle	zipapp
bz2	curses (Unix)	ftplib	io	nis (Unix)	pty (Linux)	signal	sysconfig	turtledemo	zipfile
calendar	dataclasses	functools	ipaddress	nntplib	pwd (Unix)	site	syslog (Unix)	types	zipimport
cgi	datetime	gc	itertools	numbers	pyclbr	smtpd	tabnanny	typing	zlib
cgitb	dbm	getopt	json	operator	pydoc	smtplib	tarfile	unicodedata	zoneinfo

Gli ambienti di lavoro

- Ambienti di sviluppo tradizionali (IDE)
 - IDLE, PyCharm, Visual Studio Code, Eclipse PyDev, ...
- Ambienti di sviluppo on-line
 - Repl.it, PythonAnywhere, Python Tutor
- Ambienti per il calcolo interattivo
 - Spyder, IPython
- Notebook Computazionali
 - Jupyter, JupyterLab, Google Colab
- Ambienti per l'apprendimento
 - Mu, Thonny, Wing

L'IDE di Visual Studio Code

L'IDE di PyCharm

IDE On-line : https://replit.com/

Ambienti scientifici interattivi

SPYDER

JUPYTERLAB (ANCHE ON-LINE), GOOGLE COLAB

Ambienti scientifici interattivi

SPYDER

JUPYTERLAB (ANCHE ON-LINE), GOOGLE COLAB

Nuove possibilità...

 Pubblicare on-line esercizi «interattivi» sotto forma di notebook

 Redigere le prime versioni di un articolo, inframmezzando il testo alle formule, con il [ri-]calcolo automatico di risultati e grafici

Librerie per ambiti applicativi

- Scientific computation
 - NumPy, SciPy, SymPy
- Data Analysis, Algoritmi, Grafi
 - o Pandas, networkx, GeoPandas
- Image Processing
 - Pillow, scikit-image, OpenCV
- Visualization
 - o Pyviz, matplotlib, plotly, seaborn, altair
- Machine Learning
 - Scikit-learn, tensorflow, pytorch, keras
- Fintech
 - o f.fn, zipline, pyalgotrade
- Biology and Genome
 - Biopython
- Fluid Dynamics
 - Fluidity
- Finite Elements
 - Sfepy
- Control systems

Singoli moduli

Toolkit completo per data science

Calcolo scientifico

NumPy

Array, vettori, algebra lineare

SciPy

 Package specializzati su diversi ambiti scientifici

SymPy

Calcolo simbolico

Pandas

Analisi e manipolazione dati

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

interpolate Interpolation and smoothing splines

io Input and Output linalg Linear algebra

ndimageN-dimensional image processingodrOrthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparsespatialSpatial data structures and algorithms

special Special functions

stats Statistical distributions and functions

Calcolo scientifico

- NumPy
 - Array, vettori, algebra lineare

- SciPy
 - Package specializzati su diversi ambiti scientifici

- SymPy
 - Calcolo simbolico

- Pandas
 - Analisi e manipolazione dati

Visualizzazione

matplotlib, plotly, seaborn, ...

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 22

Esempio: dati ufficiali Covid-19 in real-time

```
import pandas as pd
import seaborn as sns
sns.set style("whitegrid")
# Leggi dati aggiornati
covid = pd.read json(
path or buf='https://raw.githubusercontent.com/pcm-dpc/COVID-
19/master/dati-json/dpc-covid19-ita-andamento-nazionale.json',
convert dates=['data'])
covid.set index('data', inplace=True)
sns.relplot(data=covid, kind='line')
dati utili = covid[['totale ospedalizzati', 'totale positivi' ]]
sns.relplot(data=dati utili, kind='line')
sns.relplot(data=dati utili, kind='scatter',
x='totale_ospedalizzati', y='totale_positivi', hue='data',
legend=False)
```

Try me on Google Colab

Homework

- Choose one (quantitative) research question related to your PhD work
 - Concerning experimental data
 - Concerning user interviews
 - Concerning theoretical models
 - O
- Write down the research question
- Analyze the question and try to re-write it in the most possible explicit and non-ambiguous way
- https://polito.padlet.org/fulcorno/ambienti-di-calcolo-e-simulazioneper-la-ricerca-sperimental-x2znowd1ibxngu0n

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 24