The Complexity of Admissibility in ω -Regular Games

R. Brenguier J.-F. Raskin M. Sassolas

Highlights of Logic, Games and Automata 21st of September 2013

Controller synthesis

Controller synthesis

Controller synthesis

Models of rationality

- Nash equilibria → no player has interest in deviating.
- Regret minimization

 players prefer moves that would induce less regret had they known the other players strategy.
- Elimination of dominated strategies \(\simp \) players eliminate "bad" strategies
- \hookrightarrow In all cases it is assumed everybody knows and uses the model of rationality.

- What is a "bad" strategy? σ is strictly dominated by σ' if
 - for all profiles of the other players, if σ wins, so does σ' .
 - for some profile of the other players, σ loses while σ' wins.

- What is a "bad" strategy? σ is strictly dominated by σ' if
 - for all profiles of the other players, if σ wins, so does σ' .
 - for some profile of the other players, σ loses while σ' wins.

- What is a "bad" strategy? σ is strictly dominated by σ' if
 - for all profiles of the other players, if σ wins, so does σ' .
 - for some profile of the other players, σ loses while σ' wins.

• Each player eliminates its dominated strategies.

- ullet What is a "bad" strategy? σ is strictly dominated by σ' if
 - for all profiles of the other players, if σ wins, so does σ' .
 - for some profile of the other players, σ loses while σ' wins.

• Each player eliminates its dominated strategies.

- What is a "bad" strategy? σ is strictly dominated by σ' if
 - for all profiles of the other players, if σ wins, so does σ' .
 - for some profile of the other players, σ loses while σ' wins.

Each player eliminates its dominated strategies.

Our setting

- Turn based games on graphs.
- Objective of player $i: \operatorname{Win}_i \subseteq V^{\omega}$.

Our setting

- Turn based games on graphs.
- Objective of player i: $W_{IN_i} \subseteq V^{\omega}$.
- Muller objectives: $\rho \in W_{IN_i}$ iff $Inf(\rho) \in \mathcal{F}$.
- → Generalizes Büchi and parity conditions.
 - Weak Muller objectives: $\rho \in Win_i$ iff $Occ(\rho) \in \mathcal{F}$.
- Generalizes safety and reachability conditions.

- Dominance: $\sigma'_i \succ_{S^n} \sigma_i$ if σ'_i strictly dominates σ_i w.r.t S^n .
- Iterative admissibility: $S_i^0 = S_i$ and $S_i^{n+1} := S_i^n \setminus \{\sigma_i \mid \exists \sigma_i' \in S_i^n, \sigma_i' \succ_{S^n} \sigma_i \}$.
- Set of iteratively admissible strategies: $\mathcal{S}^* = \bigcap_{n \in \mathbb{N}} \mathcal{S}^n$

- Dominance: $\sigma'_i \succ_{S^n} \sigma_i$ if σ'_i strictly dominates σ_i w.r.t S^n .
- Iterative admissibility: $S_i^0 = S_i$ and $S_i^{n+1} := S_i^n \setminus \{\sigma_i \mid \exists \sigma_i' \in S_i^n, \sigma_i' \succ_{S^n} \sigma_i \}$.
- Set of iteratively admissible strategies: $S^* = \bigcap_{n \in \mathbb{N}} S^n$
- \hookrightarrow Goal: compute \mathcal{S}^* or at least decide properties thereof.

- Dominance: $\sigma'_i \succ_{S^n} \sigma_i$ if σ'_i strictly dominates σ_i w.r.t S^n .
- ullet Iterative admissibility: $\mathcal{S}_i^0 = \mathcal{S}_i$ and

$$\mathcal{S}_i^{n+1} := \mathcal{S}_i^n \setminus \left\{ \sigma_i \ \middle| \ \exists \sigma_i' \in \mathcal{S}_i^n, \sigma_i' \succ_{\mathcal{S}^n} \sigma_i \right\}.$$

- Set of iteratively admissible strategies: $S^* = \bigcap_{n \in \mathbb{N}} S^n$
- \hookrightarrow Goal: compute \mathcal{S}^* or at least decide properties thereof.

Remark

 \mathcal{S}^* is well defined and is reached after a finite number of iterations. "Admissibility in Infinite Games" [Berwanger, STACS'07]

- Dominance: $\sigma'_i \succ_{S^n} \sigma_i$ if σ'_i strictly dominates σ_i w.r.t S^n .
- Iterative admissibility: $\mathcal{S}_i^0 = \mathcal{S}_i$ and

$$\mathcal{S}_i^{n+1} := \mathcal{S}_i^n \setminus \left\{ \sigma_i \ \middle| \ \exists \sigma_i' \in \mathcal{S}_i^n, \sigma_i' \succ_{\mathcal{S}^n} \sigma_i \right\}.$$

- Set of iteratively admissible strategies: $\mathcal{S}^* = \bigcap_{n \in \mathbb{N}} \mathcal{S}^n$
- \hookrightarrow Goal: compute \mathcal{S}^* or at least decide properties thereof.

Remark

 \mathcal{S}^* is well defined and is reached after a finite number of iterations. "Admissibility in Infinite Games" [Berwanger, STACS'07]

Decision problems on \mathcal{S}^*

The winning coalition problem: Given $W, L \subseteq P$, does there exists $\sigma_P \in \mathcal{S}^*$ such that all players of W win the game, and all players of L lose. The model-checking under admissibility problem: Given φ an LTL formula, is it the case that for any profile $\sigma_P \in \mathcal{S}^*$, $Out(\sigma_P) \models \varphi$?

Introduced in [Berwanger, STACS'07]

- If there is a winning strategy
- admissible strategies are the winning ones.
 - It is impossible to win
- → all strategies are admissible.

Introduced in [Berwanger, STACS'07]

- If there is a winning strategy
- admissible strategies are the winning ones.
 - It is impossible to win
- → all strategies are admissible.
 - Otherwise: it is possible to win, but only with the help of others
- What are the admissible strategies in this case?

Introduced in [Berwanger, STACS'07]

- If there is a winning strategy: value 1.
- admissible strategies are the winning ones.
 - It is impossible to win: value -1.
- → all strategies are admissible.
 - Otherwise: it is possible to win, but only with the help of others: value 0.
- What are the admissible strategies in this case?

Introduced in [Berwanger, STACS'07]

- If there is a winning strategy: value 1.
- admissible strategies are the winning ones.
 - It is impossible to win: value -1.
- → all strategies are admissible.
 - Otherwise: it is possible to win, but only with the help of others: value 0.
- → What are the admissible strategies in this case?

Remark

- A player should never decrease its own value.
- The value depends on S^n .
- \hookrightarrow How to compute those values?

Safety objectives: a local notion of dominance

- Objective: avoid Bad states
- Existence of a winning strategy depends only on:
 - the current state
 - Bad states visited

```
\rightsquigarrow size: |V| \times 2^{|P|}.
```

- In unfolded safety games the rule to never decrease one's own value is sufficient for admissibility.
- The structure of the unfolding avoid explosion in complexity.

Theorem

The winning coalition problem is PSPACE-complete for safety.

 \hookrightarrow In general: the local condition is not sufficient

 \hookrightarrow In general: the local condition is not sufficient

- In case the value is 0, need to allow other players to help.
- "Help!"-state for i: a state where $j \neq i$ has several choices with value ≥ 0 for i, while not changing the value for j.
- → Admissible strategies should be winning if the other players played fairly in those states.

 \hookrightarrow In general: the local condition is not sufficient

- In case the value is 0, need to allow other players to help.
- "Help!"-state for i: a state where $j \neq i$ has several choices with value ≥ 0 for i, while not changing the value for j.
- Admissible strategies should be winning if the other players played fairly in those states.
- \rightsquigarrow Give rises to automaton \mathcal{A}_n recognizing $Out(\mathcal{S}^n)$ with circuit winning condition.

 \hookrightarrow In general: the local condition is not sufficient

- In case the value is 0, need to allow other players to help.
- "Help!"-state for i: a state where $j \neq i$ has several choices with value ≥ 0 for i, while not changing the value for j.
- Admissible strategies should be winning if the other players played fairly in those states.
- \rightsquigarrow Give rises to automaton \mathcal{A}_n recognizing $Out(\mathcal{S}^n)$ with circuit winning condition.
 - In turn, A_n is used to compute the values at the next step.

9 / 11

Complexity for Objectives defined by Circuits

Theorem (Winning coalition problem)

- The winning coalition problem PSPACE-complete for circuits.
- \bullet The winning coalition problem with Büchi objectives is in NP \cap coNP
- The winning coalition problem for weak circuit is PSPACE-complete.

Theorem (Model-checking under admissibility problem)

The model-checking under admissibility problem is PSPACE-complete for games where the winning condition of each player is given by a circuit condition.

Summary

- Automata representing all outcomes of admissible strategies.
- Algorithms with tight complexity bounds to compute the set of all outcomes of iteratively admissible strategies.
- Application to model-checking of LTL assuming all players follow rationality.

Summary

- Automata representing all outcomes of admissible strategies.
- Algorithms with tight complexity bounds to compute the set of all outcomes of iteratively admissible strategies.
- Application to model-checking of LTL assuming all players follow rationality.

Future work

- Extension to quantitative games.
- Implementation.

Summary

- Automata representing all outcomes of admissible strategies.
- Algorithms with tight complexity bounds to compute the set of all outcomes of iteratively admissible strategies.
- Application to model-checking of LTL assuming all players follow rationality.

Future work

- Extension to quantitative games.
- Implementation.

Thank you

