Part I Алгебра

Chapter 1

Линейная алгебра. Векторные пространства

1.1 Лекция 1

X - множество $*: X \times X \to X$ $(x,y) \mapsto x * y$

Аксиомы:

- 1. $\forall x, y, z \in X : x * (y * z) = (x * y) * z$ (ассоциативность)
- 2. $\exists e \in X \ \forall a \in X : e*a = a*e = a \ ($ нейтральный элемент)
- 3. $\forall a \in X \; \exists a' \in X : a*a' = a'*a = e \; \text{ (обратный элемент)}$
- 4. $\forall a,b \in X: a*b=b*a$ (коммутативность)

Определение 1. Множество X с операцией * , удовлетворяющее аксиоме 1, называется полугруппой

Определение 2. Множество X с операцией * , удовлетворяющее аксиомам 1-2, называется **моноидом**

Определение 3. Множество X с операцией * , удовлетворяющее аксиомам 1-3, называется **группой**

Определение 4. Множество X с операцией * , удовлетворяющее аксиомам 1-4, называется коммутативной или абелевой группой

Примеры.

- 1. $(\mathbb{Z},+)$ группа
- 2. $(\mathbb{N},+)$ полугруппа
- 3. $(\mathbb{N}_0, +)$ моноид

4. $(\mathbb{R}\setminus\{0\},\cdot)$ – группа

5. Пусть A - множество

X:= множество биективных отображений A o A

 id_A – нейтральный элемент

Если f(x) = y, то $\tilde{f}(y) = x$ – обратная функция $(f \circ \tilde{f} = \tilde{f} \circ f = id_A)$.

$$f(x) = x + 1, g(x) - 2x, id_A(x) = x$$

$$f \circ g(x) = f(g(x)) = f(2x) = 2x + 1$$

$$g \circ f(x) = g(f(x)) = g(x+1) = 2x + 2 \neq 2x + 1$$

Следовательно, (X, \circ) – не коммутативная группа

Обозначение.

- · мультипликативность, $1, x^{-1}$
- + аддитивность, 0, -x
- \circ относительно композиции, id, x^{-1}
- * абстрактная операция, e, x^{-1}

Пусть (R, +) – абелева группа

Определим отображение

$$\cdot: R \times R \to R$$

$$(a,b) \mapsto a \cdot b$$

Для $(R, +, \cdot)$ могут быть верны следующие аксиомы:

- 5. a(b+c) = ab + ac(b+c)a = ba + ca (дистрибутивность)
- 6. a(bc) = (ab)c (ассоциативность)
- 7. $\exists 1_R \, \forall a \in R : 1_R \cdot a = a \cdot 1_R = a \; ($ нейтральный элемент)
- 8. ab = ba (коммутативность)
- 9. $0_R \neq 1_R$
- 10. $\forall a \neq 0_R \; \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1_R \; (\text{обратный элемент})$

Определение 5. $(R, +, \cdot)$, удовлетворяющее аксиоме 5, называется не ассоциативным кольцом без единицы.

Определение 6. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-6, называется ассоциативным кольцом без единицы.

Определение 7. $(R, +, \cdot)$, удовлетворяющее аксиоме 5-7, называется **ассоциативным** кольцом с единицей.

Определение 8. $(R,+,\cdot)$, удовлетворяющее аксиомам 5-8, называется **коммутативным кольцом**.

Примеры.

- 1. \mathbb{Z} –коммутативное кольцо
- $2. \mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 3. Рассмотрим $\mathbb{Z}_n = 0, \dots, n-1$ с операциями $+_n, \cdot_n$: $a +_n b = (a+b)\% n$ $a \cdot_n b = (a \cdot b)\% n$ Обратимые элементы:

$$ax = 1 + ny$$

$$ax - ny = 1$$

Если (a,n)=1, есть решение, иначе – нет. \mathbb{Z}_p – поле $\Leftrightarrow p\in\mathbb{P}$

Определение 9. V – векторное пространство над полем F , если (V,+) – абелева группа, задано отображение $V \times F \to V$ $(x,\alpha) \mapsto x \cdot \alpha$, удовлетворяющее аксиомам $\forall x,y \in V, \forall a,b \in F$:

5.
$$x \cdot (\alpha \cdot \beta) = (x \cdot \alpha) \cdot \beta$$

6.
$$(x + y) \cdot \alpha = x \cdot \alpha + y \cdot \alpha$$

 $x \cdot (\alpha + \beta) = x \cdot \alpha + x \cdot \beta$

7.
$$x \cdot 1_F = x$$

$$A \in M_n(F), \alpha \in F$$
$$(A, \alpha)_{ij} = a_{ij} \cdot \alpha$$
$$(AB)\alpha = A(B\alpha)$$

Примеры.

1. Множество векторов в \mathbb{R}^3

2.
$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \mid a_{i} \in F \right\}$$
$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}$$

- 3. X множество, $F^X = \{f \mid f : X \to F\}$ $f,g:X \to F$ (f+g)(x) = f(x) + g(x) $(f\alpha)(x) = f(x)\alpha$
- 4. F[t] многочлены от одной переменной t

5. V - абелева группа, в которой $\forall a \in V: \underbrace{a+a+\ldots+a}_{p \in \mathbb{P}} = 0$ Тогда V - векторное пространство над $\mathbb{Z}_p \ k \cdot a = \underbrace{a + \ldots + a}_{L}$

1.2 Лекция 3

Определение 10. Алгебра A над полем F – кольцо, являющееся векторным пространством над F("+" - операция в кольце и в векторном пространстве), такое что $(ab)\alpha = a(b\alpha)$ $A, \alpha \in F$

Пример. $(\mathbb{R}^3, +, \times)$ - не ассоциативная алгебра на \mathbb{R}

Определение 11. Матрица размера $I \times J$ (I, J - множества индексов) над множеством X - это функция

$$A: I \times J \to X, \qquad (i,j) \to a_{ij}.$$

Пусть определено умножение $X \times Y \to Z, \qquad (x,y) \to xy$ (Z - коммутативный моноид относительно "+")

Определение 12. Строка - матрица размера $\{1\} \times J$ Столбец - матрица размера $J \times \{1\}$

A - строка длины J над X

B - строка длины J над Y

Тогда произведение $AB = \sum_{j \in J} a_{1j}b_{j1} \in Z$ $x \to x_e$ - координаты вектора x $x \cdot y = x_e^T \cdot y_e$ скалярное произведение

$$x \cdot y = x_e^T \cdot y_e$$

Определение 13. Транспонирование матрицы.

D - матрица $I \times J$ над X

$$D^T$$
 - матрица $J \times I$ над $X : (D^T)_{ij} = (D)_{ji}$

3амечание. Пусть в X есть элемент $0:0\cdot y=0\quad \forall y\in Y$. Все кроме конечного числа $a_i = 0$. Тогда AB имеет смысл, даже когда $|J| = \infty$. "почти все" = кроме конечного количества

Обозначение.

$$a_{i*}$$
 - i -я строка матрицы A

$$a_{*j}$$
 - j -й столбец матрицы A

1.2.1Произведение матриц

A - матрица $I \times J$ над X.

$$B$$
 - матрица $J \times K$ над Y .

$$AB$$
 - матрица $I \times K$ над $Z = X \cdot Y,$
$$(AB)_{ik} = a_{i*} \cdot b_{*k} = \sum_{j \in J} a_{ij} \cdot b_{jk}.$$

$$(x_1, \dots x_n) \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = va, \qquad v \in V, a \in F.$$

1.3 Лекция 4

Определение 14. (G,*), (H,#)– группа $\varphi: G \to H$ - гомоморфизм, если:

$$\varphi(g_1 * g_2) = \varphi(g_1) \# \varphi(g_2)$$

Определение 15. R, S -кольца $\varphi: R \to S$ - гомоморфизм, если:

$$\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

$$\varphi(r_1 \cdot r_2) = \varphi(r_1) \cdot \varphi(r_2)$$

Для колец с $1:\varphi(1)=1$

Определение 16. U, V - векторные пространства над F $\varphi: U \to V$ - линейное отображение, если:

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$$

$$\varphi(u\alpha) = \varphi(u)\alpha$$

Замечание. Изоморфизм – биективный гомоморфизм.

Определение 17. V - векторное пространство над полем F v - строка элементов "длины" I над V a - столбец "высоты" I, почти все элементы которого равны 0. Тогда va - линейная комбинация набора v с коэффициентами .

3амечание. $U \subset V$

U является векторным пространством относительно тех же операций, которые заданы в V . Тогда U - подпространство V

Лемма. $U \subseteq V$

 $\forall u_1, u_2 \in U, \alpha \in F:$

 $u_1+u_2\in U, u_1\alpha\in U$ Тогда U - подпространство. Если U - подпространство в V, то пишут $U\subseteq V$.

Определение 18. $v = \{v_i | i \in I\}$, где $v_i \in V \ \forall i \in I$ < v > - наименьшее подпространство, содержащее все v_i

Лемма. $< v >= \{ va | a - cmon \delta e u, высоты I над F, где почти всюду элементы равны нулю \} = U$

Доказательство. $v_i \in \langle v \rangle \Rightarrow v_i a_i \in \langle v \rangle$

 $\Rightarrow v_{i_1}a_{i_1}a + \dots + v_{i_k}a_{i_k} \in \langle v \rangle$

 $\Rightarrow < v >$ содержит все варианты комбинаций. $va + vb = v(a + b) \in U$

 $(va)\alpha = v(a\alpha) \in U$

 \Rightarrow множество линейных комбинаций – подпространство U - подпространство, содержащее $v_i \forall i \in I$

< v >а – наименьшее подпространство, содержащее v_i

 $\Rightarrow < v > \subseteq U$ тогда < v > = U

Определение 19. Если < v >= V, то v – система образующих пространство V Базис – система образующих.

Обозначение. F^I – множество функций из I в F = множество столбцов высоты I IV – множество строк длины I

Набор элементов из V , заиндексирванных множеством I – это функция $f:I\to V$ $i\mapsto f_c$

Определение 20. $v \in V$

v – **линейно независим**, если $\forall a \in F^I, a \neq 0 \Rightarrow va \neq 0$

Теорема 1.3.1. $v \subseteq V$ (можно считать, что v - строка длины v Следующие утверждения эквивалентны:

- 1. v линейно независимая система образующих
- 2. v максимальная линейно-независимая система
- 3. v минимальная система образующих
- 4. $\forall x \in V \exists ! a \in F^v : x = va = \sum_{t \in v} t \cdot a_t$ (почти все элементы равны 0)

Доказательство. $(1) \Rightarrow (4)$ – доказали ранее $(1) \Rightarrow (2)$

$$x \in V \setminus v$$

$$x = va(a \in F^v)$$

 $va = x \cdot 1 = 0$ – линейная зависимость набора $v \cup x$

Т.о. любой набор, строго содержащий v, линейно зависим $\Rightarrow v$ – максимальный.

$$(1) \Rightarrow (2)$$

$$x \in V \setminus$$

 $v \subseteq V \cup x$ -линейно зависим

$$va + xa_x = 0$$

$$a \neq 0$$

Если
$$a_x = 0 \Rightarrow va = 0 \Rightarrow a = 0$$
 ?!

Значит $a_x \neq 0$

 $va = c \cdot (-a_x)$

 $x = v \cdot \frac{a}{-a_x} \Rightarrow v$ -система образующих.

Пемма. (Цорн) Пусть \mathbb{A} – набор подмножеств (не всех) множества X.

Eсли объединение любой цепи из \mathbb{A} , принадлежащей \mathbb{A} , то в \mathbb{A} существует максимальный элемент.

 $M\in\mathbb{C}$ - максимальная, если $M\subseteq M'\subseteq\mathbb{A}\Rightarrow M=M'$

Теорема 1.3.2. (о существовании базиса) V – векторное пространства

X – линейное независимое подмножество V

Y – cucmema образующих V

X < Y

Тогда существует базис Z пространства $V:X\leq Z\leq Y$

Доказательство. А-множество всех линейно независимых подмножеств, лежащих между

X и Y. $X \in \mathbb{A}$

 $\mathbb{C} \leq \mathbb{A}$

 $X \le \cup C \in \mathbb{C} \le Y$

Пусть $\cup C \in \mathbb{C}$ – линейно зависимый. То есть $\exists u_1, ..., u_2 \in /...$

. . .

Пусть v - базис V.

$$\forall x \in V \; \exists ! x_v \in F^v : x = v \cdot x_v$$

 $v=(v_1,\ldots,v_n),\;x_v=\;$ матрица столцов альфа;

$$x = v_1 \alpha_1 + \ldots = v \cdot x_v$$

1.4 Лекция 5

1.5 Лекция 6

1.6 Лекция 7

Утверждение.

$$U \leq W \quad \exists V \leq W : W = U \oplus V$$

Доказательство. Выберем базис u в U. Дополним до базиса $u \cup v$ пространства W и положим V = < v >.

$$< u >= U < v >= V < u \cup v >= < u > + < v >= U \oplus V = W$$

 $x\in U\cap V\Rightarrow x=ua=vb\Leftrightarrow ua-vb=0\Rightarrow a=0, b=0(u\cup v$ — линейно независимый

Следствие.

$$u$$
 — базис U,v — базис $V,U,V \leq W$ $u \cup v$ — базис $W \Leftrightarrow U \oplus V$

25.09.2019

1.7 Лекция 8

$$v-(v_1,v_2,\dots v_n)\in n^V$$
 $M_n(F)-$ алгебра матриц размера $n\times n$ над F $GL_n(F)=M_n(F)^*-$ полная линейная группа степени n над F

Лемма.

$$v \in n^V, A \in GL_n(F)$$

v- линейно независимый $\Leftrightarrow vA-$ линейно независимый

$$< v > = < vA >$$

Доказательство. $(vA)A^{-1} = v(AA^{-1}) = vE = v$, поэтому можно доказывать только в одну строну.

v - линейно независимый.

$$vAb=0\Rightarrow A^{-1}Ab=0\Rightarrow b=0$$
, т.е vA - линейно независимый.
$$(vA)b=v(Ab)\in < v>, < vA> \le < v>$$

Утверждение. u, v - два разных базиса пространства V.

Тогда $\exists !$ матрица $A \in GL_n(F) : u = vA$

 Πpu этом $a_{*k} = (u_k)_v$ $\forall k = 1, \dots n$. Такая матрица обозначается $C_{v \to u}$ и называется матрицей перехода от v κ u.

$$C_{v \to u} C_{u \to v} = C_{v \to u} C_{u \to v} = E$$

Доказательство. Положим $a_{*k}=(a_k)_v\Rightarrow u_k=va_{*k}\Rightarrow u=vA.$ $vA=vB\Leftrightarrow A=B$ то есть A - единственно. Далее:

$$u = vC_{v \to u}$$

$$v = uC_{u \to v}$$

$$uE - uC_{v \to u}C_{v \to u}$$

$$E = C_{u \to v}C_{v \to u}$$

 ${f C}$ ледс ${f T}$ вие. v - базис V

 $f:GL_n(F) o$ множество базисов пространства V f(A)=vA - биекция.

Доказательство.

$$|F|=q \qquad \dim V=u$$
 $(q^n-1)(q^n-q)\dots(q^n-q^{n-1})$ — количество базисов

 \mathbb{F} - поле из q элементов.

Утверждение. Если матрица двусторонне обратима, то она квадратная.

Следствие. u, v - базисы V

$$x = C_{u \to v} x_v$$

Доказательство.

$$x = ux_u = vx_v$$

$$v = uC_{u \to v}$$

$$ux_u = uC_{u \to v}x_v \Rightarrow x_u = C_{u \to v}x_v$$

Следствие. (Матричные линейные отображения)

$$L: U \to V$$
, u — базис U, v — базис V

Тогда \exists ! матрица $L_{v,u}(L_u^v: \forall x \in UL(x)_v = L_u^v x_u$ При этом $(L_u^v)_{*k} = L(u_k)_v$

Замечание.

$$u = (u_1, \dots u_n) \in n^U$$

$$L : U \to V$$

$$L(a) := (L(u_1), \dots, L(u_n))$$

$$L(ua) = L(u)a \qquad a \in F^n$$

$$\varphi_v: V \to F^n$$

$$\varphi_v(g) = y_v \qquad \forall q \in V$$

 $arphi_v$ - линейно $\Rightarrow (L(u)a)_v = L(u)_v a$

$$L(u)_v := (L(u_1)_v, \dots L(u_n))v)$$

Доказательство.

$$x = ux_u$$

$$L(x) = L(u)x_u$$

$$L(x)_v = L(u)_v x_u$$

Положим $L_u^v := L(u)_v$.

$$\forall x \in U: L(x)_v = L_u^v x_u$$
 При $x = u_k: L(u_k)_v = L_u^v (u_k)_u = (L_u^v)_k$ Замечание. Если $Ax = Bx \quad \forall x \in F^n$, то $A = B$ 26.09.2019

1.8 Лекция 9

Примеры.

1. $V=\mathbb{R}[t]_3$ - многочлены степени не более 3

$$D(p) = p' V \to V$$

$$v = (1, t, t^2, t^3).$$

$$D(1) = 0, D(t) = 1, D(t^2) = 2t.$$

$$D_v = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$v^{(1)} = (1, \frac{t}{1!}, \frac{t^2}{2!}, \frac{t^3}{3!}).$$

$$2. \ V = \mathbb{R}[t]$$

$$v = (1, t, \frac{t^2}{2}, \dots, \frac{t^n}{n!}, \dots).$$

$$D(v_0) = 0, D(v_k) = v_{k-1}.$$

$$\begin{pmatrix} 0 & 1 & \cdots & \\ 0 & 1 & \cdots & \\ & 0 & 1 & \\ \vdots & \vdots & \ddots & \end{pmatrix}$$

3.
$$V = \mathbb{R}^3$$
 $|L(a)| = |a|$ e_1 \vec{a} \vec{a} e_2 \vec{a} $\vec{L}(a) = \varphi$ $e = (e_1, e_2)$ - базис

$$L(e_1)_e = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

$$L(e_2)_e = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$

$$L_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

$$a_e = \left(\begin{array}{c} \cos \psi \\ \sin \varphi \end{array}\right)$$

$$L(a)_e = \begin{pmatrix} \cos(\psi + \varphi) \\ \sin(\psi + \varphi) \end{pmatrix}.$$

$$L(a)_e = L_e \cdot a_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} = \begin{pmatrix} \cos \varphi \cos \psi - \sin \varphi \sin \psi \\ \cos \varphi \sin \psi + \sin \varphi \cos \psi \end{pmatrix}.$$

Утверждение. $L:U\to V$

$$u, u' - \textit{basuc } U$$
 $v, v' - \textit{basuc } V$
 $Torda \ L_{u'}^{v'} = C_{v' o v} \quad L_u^v C_{u o u'}$

Доказательство.

$$L(x)_{v} = L_{u}^{v} x_{u}.$$

$$C_{v' \to v} L(x)_{v} = L(x)_{v_{1}} = L_{u'}^{v'} x_{u'} = L_{u'}^{v'} C_{u' \to u} x_{u}.$$

 $\forall x_u \in F^{dimU}$

$$L(x)_v = C_{v \to v'} L_{u'}^{v'} C_{u' \to u} x_k.$$

$$L_u^v = C_{v \to v'} L_{u'}^{v'} C_{u' \to u}.$$

Замечание.

Если
$$U = V$$
 $u = v, u' = v'.$ $L_{u'} = C_{u' \to u} L_u C_{u \to u'}.$

Утверждение. Линейное отображение однозначно определяется образом базисных векторов. $u = (u_1, \dots u_n) -$ базис U

Для любого векторного пространства V:

$$\forall v_1, \dots v_n = V$$

 $\exists !$ линейное отображение (*) $L:U \to V:L(u_k)=v_k \quad \forall k$

Доказательство.

$$L(ua) := va$$
$$\forall L^* : L(ua) = L(u)a = va$$

При этом L - инъективно тогда и только тогда, когда v - линейно независимый L - сюрьективно тогда и только тогда, когда v - система образующих L - изоморфизм тогда и тоько тогда, когда v - базис.

Утверждение. V, v, v' — базис V

$$L: V \to V -$$
линейно $L(v_k) = v_k' \qquad \forall k$

$$(L_v)_k = L(v_k)_v = (v_k')_v$$

$$L_v = C_{v \to v'}$$
.

по другому

$$(Id_{v'}^v)_k = Id(v_k')_v = (v_k')_v.$$

Тогда $L_v = C_{v \to v'} = Id_{v'}^v$

Определение 21. $f: X \to Y$

$$Im f = \{ f(x) \mid x \in X \}$$

L:U o V - линейное отображение

$$ImL = \{L(x) \mid x \in U\}$$

$$KerL = L^{-1}(0) = \{x \in U \mid L(x) = 0\}$$

Лемма.

$$ImL \leq V$$

$$KerL \leq U$$

 $\Pi y cm b L(x) = y$

$$\forall y \in V: L^{-1} = x + KerL$$

$$L^{-1}(y) = \{z \in U \mid L(z) = y\}$$

$$x + KerL = \{x + z \mid z \in KerL\}$$

1.9 Лекция 9

Теорема 1.9.1. $L: U \to V$

$$\dim U = \dim KerL + \dim ImL.$$

Доказательство. $u=(u_1,\ldots u_k)$ — базис KerL $v=(v_1,\ldots U_m)$ Дополним базис ядра до базиса $U\colon u\cup v$ - базис U $L(v)=(L(v_1),L(v_2),\ldots L(v_m))$ - базис образа. $\vartriangleleft x\in ImL$ $\exists y\in U:L(y)=x.$ y=ua+vb, $a\in F^k,b\in F^m$

$$x = L(y) = \underbrace{L(u)}_{(L(u_1), \dots L(u_k)) = (0, \dots 0)} + L(v).$$

Следовательно, L(v) - система образующих.

$$L(v)c = 0, \qquad c \in F^m.$$

$$L(vc) = 0 \Rightarrow vc \in KerL \Rightarrow vc = ud$$
 для некоторого $d \in F^k$.

Тогда vc-ud=0, но v и u - два базисных вектора. Следовательно, c=d=0 и L(v) - линейно незвисимый.

Теорема 1.9.2. (формула Грассмана о размерности суммы и пересечения) $U, V \leq W$

$$\dim U \cap V + \dim U + V = \dim U + \dim V.$$

Доказательство. \triangleleft внешнюю сумму $U \oplus V$, L(u,v) = u+v Тогда ImL = U+V. $(u,v) \in KerL \Leftrightarrow u+v=0 \Leftrightarrow u=-v \subset U \cap V$ $KerL = (u,-u) \mid u \in U \cap V \cong U \cap V$ $\dim(U \oplus V) = \dim KerL + \dim ImL = \dim U \cap V + \dim U + V$

08.10.2019

1.10 Лекция 10

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} \cdot x_1 + \dots + \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \cdot x_n = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Простейший базис:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

 $x = vx_v, \quad x = ex_e = Ex_e$

$$eC_{e\to v} = v$$
 — из столбцов v .

 $C_{e \to v} = v$ — матрица из столбцов $(v_1, \dots v_n)$.

 $L: F^m \to F^n, \qquad A \in M_{n \times m}(F) \ L(x) = Ax$

$$L(x)_e = L_0^e x_e, L(x)_e = L(x) = Ax = L_e^e x_e.$$

 $Hom(F^n, F^m) \cong M_{m \times n}(F)$ - изоморфизм векторных пространств. В дальнейшем A отождествляется c L, пишем A^v_u вместо L^v_u (A в базисе u - v).

Определение 22. Линейный оператор из V в V называется эндоморфизмом V . Множество эндоморфизмов V = End(V) - ассоциативная алгебра над f

 $+,*\alpha$ - поточечные операции, * - композиция.

 $L,M,N\in End(V)$: $L\circ (M+N)=L\circ M+L\circ N$ - следует из линейности L

$$v$$
 - базис V , $u = \dim V$
 $\theta_v : End(V) \to M_n(F)$
 $\theta_v = L_v$

Утверждение. θ_v - биективно.

Упраженение. Построить обратное θ_v

Лемма. $(M \circ L)_v = M_v \circ L_v$

 \mathbf{y} тверждение. θ_v - изоморфизм

F - алгебра $EndV \cong M_n(F)$

Теорема 1.10.1. $U \le V$

 $\forall L: V \to V, \quad U \leq KerL, \exists !\tilde{L}: V \backslash U \to W$

$$\tau: \begin{array}{ccc} V \backslash U & \longrightarrow & W \\ \tau: & \uparrow \pi_U & & \\ V & \stackrel{L}{\longrightarrow} & W \end{array}.$$

 $\tau \circ \pi_U = L$

L - эпиморфизм $\Rightarrow au$ - эпиморфизм

 $KerL=U\Rightarrow au$ - мономорфизм

Доказательство. Диаграмма коммутативна, следовательно, \tilde{L} строится однозначно. Пусть $\tilde{L}(x+U):=L(x).y\in U\in KerL: \ L(x+y)=L(x)+L(y)=L(x)\ \tilde{L}$ задано корректно (легко проверить, что оно линейно, единственность следует из коммутативности диаграммы. $\tilde{L}(x+U)=L(x)$ - необходимо и достаточно коммутативности диаграммы.

$$\tilde{L}(x+U) = 0_W \Leftrightarrow L(x) = 0 \Leftrightarrow x \in KerL = U \Leftrightarrow x+U = 0+U = O_{V \setminus U}$$

Для инъективности : $Ker ilde{L} = 0_{V \setminus U}$

Теорема 1.10.2 (О гомоморфизме). $L: V \to W$

$VKerL \cong ImL.$

Доказательство. Возьмем U = KerL и заменим W на ImL $n = \dim \langle a_{*1}, \dots a_{*n} \rangle \leq \dim F^m = m$. Из линейной независимости строк следует, что $m \leq n$ Таким образом m = n.

n линейно независимых столбцов (строк) в n-мерном пространстве - базис и матрица A - матрица перехода $C_{e\to a}$, где $a=(a_{*1},\ldots a_{*n})$ - набор столбцов A . Следовательно, $A\in GL_n(F)$ – множество обратных матриц.

Определение 23. Ранг:

 $rk(v_1,v_2,\ldots,v_n)=\dim\langle v_1,\ldots v_n\rangle,$ $rkL=\dim ImL$ $u_1,\ldots u_n$ - базис $U,L:U\to V$ $rkL=rk((L(u))=\dim\langle L(u_1),\ldots L(u_n)\rangle$ $A\in M_{m\times n}(f)$ Столбцовый ранг $A:rkA-rk(a_{*1},\ldots a_{*m})$ Строчный ранг : $rkA=rk(a_{1*},\ldots a_{n*})$ или наибольшее количество независимых столбцов (строк).

Лемма. $A \in M_{m \times n}$

- 1. столбцы A линейно независимы \Leftrightarrow столбцовый rkA=n
- 2. столбиы A система образующих в $F^m \Leftrightarrow$ столбиовый rkA = m
- 3. строки A линейно независимы \Leftrightarrow строчной rkA=m
- 4. строки A система образующих в ${}^mF \Leftrightarrow$ строчной rkA=n
- 5. столбиы являются базисом $F^n \Leftrightarrow m=n=c$ трочной rkA
- 6. если столбцы и строки A линейно независимы $\Leftrightarrow n = m$, строки и столбцы базисы, A обратима.

Доказательство. (6)
из
$$(1) \Rightarrow c.rkA = n$$

 $n = \dim \langle a_{*1}, \dots a_{*n} \rangle$