Fonctions exponentielle

I. Fonction exponentielle népérienne

🗷 Activité 🛈:

1. Montrer que la fonction f définie par f(x) = lnx admet une fonction réciproque définie sur l'intervalle / à déterminer.

La fonction réciproque de $x \mapsto lnx$ est appelée fonction exponentielle népérienne et se note par exp.

- **2.** Montrer que $(\forall x \in \mathbb{R})$, $\exp(x) > 0$.
- **3.** a. Calculer $ln(e^2) \cdot ln(e) \cdot ln(1)$ et $ln\left(\frac{1}{e^2}\right)$.
 - b. En déduire $exp(2) \cdot exp(1)$, exp(0) et exp(-2).
- **4.** a. Tracer (\mathcal{C}_{ln}) et (\mathcal{C}_{exp}) sur le repère $(0, \vec{l}, \vec{j})$.
 - **a.** En déduire $\lim_{x \to \infty} \exp(x)$ et $\lim_{x \to \infty} \exp(x)$.

1. Définition et propriétés

PP Définition :

On appelle **fonction exponentielle népérienne**, notée exp, la fonction réciproque de la fonction logarithme népérien ln et on a :

 $(\forall x \in \mathbb{R})(\forall y \in]0; +\infty[); exp(x) = y \Leftrightarrow x = ln(y).$

O Notation e^x :

Soit r un rationnel. On a : ln(exp(r)) = r et on sait que $ln(e^r) = rln(e) = r$.

Donc $(\forall r \in \mathbb{Q})$: $ln(exp(r)) = ln(e^r)$.

On prolonge cette relation de l'ensemble $\mathbb Q$ sur l'ensemble $\mathbb R$, on aura :

$$(\forall x \in \mathbb{R}): exp(x) = e^x$$

Propriétés :

- la fonction exp est continue et strictement croissante sur \mathbb{R} .
- $(\forall x \in \mathbb{R}): e^x > 0.$
- $(\forall x \in]0; +\infty[)(\forall y \in \mathbb{R}): e^y = x \Leftrightarrow ln(x) = y$
- $(\forall x \in \mathbb{R}) : \ln(e^x) = x \text{ et } (\forall x \in]0; +\infty[); e^{\ln(x)} = x.$ $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}): e^a > e^b \Rightarrow a > b.$ $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}): e^a = e^b \Rightarrow a = b.$

Application 0:

On considère la fonction f définie par : $f(x) = \frac{3e^x}{2e^x+4}$.

- **1.** Déterminer D_f puis montrer que f est continue sur D_f .
- **2.** Calculer f(0) et f(ln(2)).

Application 2:

Résoudre dans \mathbb{R} :

a.
$$e^{1-x} = e^{x-x^2}$$

b.
$$e^{x^2-x}=1$$

$$e. \quad (e^x)^2 - 3e^x + 2 = 0$$

d.
$$(e^x)^2 - 3e^x + 2 < 0$$

a.
$$e^{1-x} = e^{x-x^2}$$
 b. $e^{x^2-x} = 1$ **c.** $(e^x)^2 - 3e^x + 2 = 0$ **d.** $(e^x)^2 - 3e^x + 2 < 0$ **e.** $(e^x + 2)(e^{-x+1} - 4) \ge 0$ **f.** $\frac{e^{x+1}}{e^{-x}-e} \le 0$

$$\frac{e^x+1}{e^{-x}-e} \le 0$$

Propriétés :

Soient a et b deux réels et $r \in \mathbb{Q}$, on a :

$$\bullet \quad e^{x+y} = e^x e^y$$

$$e^{x-y} = \frac{e^x}{e^y}$$

•
$$e^{-x} = \frac{1}{e^x}$$

•
$$(e^x)^r = e^{rx}$$

Application 3:

1. Simplifier les expressions suivantes :

•
$$A = \frac{e^{2x} \times e^{3x}}{(e^x)^4}$$
 • $B = (e^{2-x})^2 \times e^{3x-4}$ • $C = e^{2x}((e^x + e^{-x})^2 + (e^x - e^{-x})^2)$

2. Montrer que :
$$(\forall x \in \mathbb{R})$$
: $\frac{e^x - 1}{e^x + 1} = \frac{1 - e^{-x}}{1 + e^{-x}}$

Exercice @:

1. Résoudre dans \mathbb{R} :

a.
$$e^x + 6e^{-x} - 5 = 0$$

b.
$$(e^x)^{15} \times e^{x^2+5} = \frac{e^{5x}}{e^4}$$
 c. $\frac{e^{2x+1}}{e^{x-3}} > e^{-x+2}$

c.
$$\frac{e^{2x+1}}{e^{x-3}} > e^{-x+2}$$

2. Résoudre dans
$$\mathbb{R}^2$$
 le système $\begin{cases} 5e^{2x+1} + 3e^{-y} = 3 \\ 7e^{2x+1} - 4e^{-y} = 2 \end{cases}$

2. Limites usuelles:

Propriétés :

•
$$\lim_{x \to +\infty} e^x = +\infty$$

•
$$\lim_{x\to-\infty}e^x=0$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

•
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

•
$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$
 $(n \in IN^*)$

•
$$\lim_{x \to -\infty} x e^x = 0$$

$$\lim_{x \to -\infty} x^n e^x = 0 \quad (n \in IN^*)$$

Exemple:

Calculons
$$\lim_{x \to +\infty} e^x - x = +\infty$$

On a
$$\lim_{x \to +\infty} e^x - x = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 \right) = +\infty$$
 car $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

Application @

Calculer les limites suivantes :

$$\mathbf{0} \lim_{x \to +\infty} e^x - \sqrt{x}$$

2
$$\lim_{x \to +\infty} (2x-1)e^{-x}$$
 3 $\lim_{x \to +\infty} \sqrt{x}e^{-x}$ 4 $\lim_{x \to +\infty} e^{\frac{x+4}{x}}$

$$\Im \lim_{x \to +\infty} \sqrt{x} e^{-x}$$

$$4 \lim_{x \to +\infty} e^{\frac{x+}{x}}$$

$$\Im \lim_{x \to +\infty} \frac{e^{x^2}}{x^3 + x + 1}$$

$$\mathbf{6} \lim_{x \to 0} \frac{e^{2x} - 1}{x}$$

$$\mathbf{O} \lim_{x \to 0} \frac{e^{2x} - 1}{e^{3x} - 1}$$

$$\lim_{x \to +\infty} \frac{e^x - 1}{e^x + 1}$$

$$\mathbf{9} \lim_{x \to -\infty} 2xe^{3x}$$

$$\Im \lim_{x \to +\infty} \frac{e^x - 1}{e^x + 1} \qquad \Im \lim_{x \to -\infty} 2xe^{3x} \qquad \operatorname{Im} \lim_{x \to +\infty} \frac{e^{x^3 + 3x}}{x^3 - 1}$$

3. Dérivée de la fonction exponentielle népérienne

On pose $(\forall x \in]0, +\infty[)$ f(x) = ln(x), donc $(\forall x \in \mathbb{R})$ $f^{-1}(x) = e^x$.

Et on sait que $(\forall x \in \mathbb{R})$: $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$, d'où $(\forall x \in \mathbb{R}) : (e^x)' = \frac{1}{\frac{1}{2}} = e^x$.

Propriété :

La fonction $x \mapsto e^x$ est dérivable sur \mathbb{R} et on a : $(\forall x \in \mathbb{R}) : (e^x)' = e^x$.

Application 5:

On considère la fonction f définie sur \mathbb{R} par $f(x) = x - \frac{e^x - 1}{e^x + 1}$, et soit (C_f) sa représentation graphique sur le repère $(0, \vec{l}, \vec{l})$.

1. Montrer que $(\forall x \in \mathbb{R})$: $f(x) = x + 1 - \frac{2e^x}{e^x + 1}$ et déduire $\lim_{x \to -\infty} f(x)$.

2. Montrer que $(\forall x \in \mathbb{R})$: $f(x) = x - 1 - \frac{2}{e^x + 1}$ et déduire $\lim_{x \to +\infty} f(x)$.

3. Étudier les branches infinies de (C_f) au voisinage de $+\infty$ et $-\infty$.

4. Montrer de f est impaire.

5. Montrer que f est dérivable sur \mathbb{R} et déterminer sa dérivée.

6. Donner le tableau des variations de f.

7. Tracer (C_f) .

Propriété :

Si u est une fonction dérivable sur I, alors la fonction $x \mapsto e^{u(x)}$ est dérivable sur I et on a : $(\forall x \in I): (e^{u(x)})' = u'(x)e^{u(x)}.$

Application 6:

Déterminer *f'* dans les cas suivants :

O
$$f(x) = e^{x^2 + 3x}$$
 O $f(x) = e^{x - 2\ln(x + 1)}$ **O** $f(x) = (e^{2x} - e^{-x})^2$ **O** $f(x) = e^{\sqrt[3]{x}}$

Corollaire:

Soit u une fonction dérivable sur I.

Les primitives de la fonction $x \mapsto u'(x)e^{u(x)}$ sur I sont les fonctions $x \mapsto e^{u(x)} + c$ tel que $c \in \mathbb{R}$.

II. Fonction exponentielle de base $a (a \neq 1; a > 0)$

PP Définition :

Soit a un réel strictement positif et différent de 1.

La fonction réciproque de $x \mapsto log_a(x)$ est appelée fonction exponentielle de base a qui est définie sur \mathbb{R} et notée par $exp_a(x)$ ou a^x .

Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}^*_+$, on a : $a^x = y \Leftrightarrow x = log_a(y)$ $\iff x = \frac{\ln(y)}{\ln(a)}$ $\Leftrightarrow x ln(a) = ln(y)$ $\Leftrightarrow e^{xln(a)} = y.$

D'où: $a^x = e^{xln(a)}$.

O Exemples:

 $2^x = e^{x \ln(2)}$

• $4^{\sqrt{2}} = e^{\sqrt{2}ln(4)} = e^{2\sqrt{2}ln(2)}$

• $\sqrt{3}^x = e^{x \ln(\sqrt{3})} = e^{\frac{x}{2} \ln(3)}$

O Remarque:

 $(\forall x \in \mathbb{R}): 1^x = 1.$

🖊 🖊 Propriétés :

Soient x et y deux réels et $r \in \mathbb{Q}$, on a :

$$\bullet \quad a^{x+y} = a^x a^y$$

$$\bullet \quad a^{-x} = \frac{1}{a^x}$$

•
$$a^{-x} = \frac{1}{a^x}$$
 • $a^{x-y} = \frac{a^x}{a^y}$ • $a^{rx} = (a^x)^r$

$$\bullet \ a^{rx} = (a^x)^r$$

Application ®:

Montrer que : $\frac{9^{\frac{2}{\ln(3)}} \times 8^{\frac{3}{\ln(4)}}}{25^{\frac{4}{\ln(5)}}} = \sqrt{e}$.

Exercice 2

1. Résoudre dans \mathbb{R} :

a.
$$\left(\frac{1}{2}\right)^{x} \leq \frac{1}{4}$$

b.
$$3^x > 9^x$$

b.
$$3^x > 9^x$$
 c. $10^{2x} + 2 \times 10^x - 3 > 0$

- **2.** Calculer la dérivée des fonctions f et g telles que $f(x) = 2^{x^2 + 2x + 2}$ et $g(x) = x^x$.
- **3.** Calculer les limites suivantes :

a.
$$\lim_{x \to +\infty} \left(\frac{1}{3}\right)^x$$

b.
$$\lim_{x\to+\infty}\frac{4^x-2^x}{3^x}$$

c.
$$\lim_{x\to 0} \frac{4^x-2^x}{x}$$

b.
$$\lim_{x \to +\infty} \frac{4^x - 2^x}{3^x}$$
 c. $\lim_{x \to 0} \frac{4^x - 2^x}{x}$ **d.** $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$

Exercice 3:

- I. On considère la fonction g définie sur \mathbb{R} par : $g(x) = e^{2x} 2x$.
- 1. Déterminer g'(x) pour tout x de \mathbb{R} puis donner le tableau des variations de g.
- **2.** En déduire que pour tout x de \mathbb{R} , g(x) > 0.
- II. Soit la fonction f qui définie sur \mathbb{R} par: $f(x) = ln(e^{2x} 2x)$ et soit (C_f) sa représentation graphique sur le repère $(0, \vec{i}, \vec{j})$.
- **1. a.** Montrer que $\lim_{x \to -\infty} f(x) = +\infty$.
 - **b.** Vérifier que : $\frac{f(x)}{x} = \left(\frac{e^{2x}}{x} 2\right) \frac{\ln(e^{2x} 2x)}{e^{2x} 2x}$.
 - **C.** Montrer que $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$ puis interpréter géométriquement le résultat obtenu.
- **2. a.** Vérifier que $(\forall x \ge 0)$: $1 \frac{2x}{e^{2x}} > 0$ et que $2x + ln\left(1 \frac{2x}{e^{2x}}\right) = f(x)$.
 - **b.** En déduire que $\lim_{x \to +\infty} f(x) = +\infty$.

- **c.** Montrer que la droite d'équation (D): y = 2x est une asymptote oblique de (C_f) au voisinage de $+\infty$.
- **d.** Montrer que $(\forall x \ge 0)$: $f(x) 2x \le 0$ puis déduire la position relative de (C_f) et (D) sur $[0, +\infty[$.
- **3. a.** Montrer que $(\forall x \in \mathbb{R})$: $f'(x) = \frac{2(e^{2x}-1)}{g(x)}$.
 - **b.**Donner le tableau des variations de f.
- **4.** Tracer (C_f) et (D) sur le repère $(0, \vec{i}, \vec{j})$.