README Ce fichier n'est qu'un brouillon de réécriture de l'article de Grandjean et Schwentick *Machine-independent* characterizations and complete problems for deterministic linear time pour voir si ces notions peuvent s'étendre au temps $\mathcal{O}(n^k)$.

Notations Par abus de notation découlant de la théorie des ensembles, j'écrirai n pour [0, n-1] voire pour [1, n] quand il n'y aura pas d'ambiguïté (en général, ce sera pour [1, n]).

Preliminaries (p.198)

RAM data structures (p.198)

Définition 1 (RAM data structures). Soit t un type, c'est-à-dire une signature fonctionnelle ne contenant que des symboles de constantes ou de fonctions unaires.

Une RAM-structure s de type t est un uplet constitué de :

- $n \in \mathbb{N}$ est la taille de la structure;
- $C \in \mathbb{N}$ pour chaque symbole $C \in t$;
- $f: n \to \mathbb{N}$ pour chaque symbole $f \in t$.

On notera s.n, s.C, s.f les composantes n, C, f de s (cette notation est à rapprocher de l'accès à un attribut ou à une fonction membre en programmation objet).

On dira que s est c-bornée pour $c \in \mathbb{N}$ lorsque s.C, s.f(i) < cs.n pour tous $C, f \in t$ et $i \in n$.

Définition 2 (Fonction de RAM). Soient t_1, t_2 des types.

Une (t_1, t_2) -fonction de RAM Γ est une fonction telle qu'il existe $c_1, c_2 \in \mathbb{N}$, tels que Γ envoie les structures c_1 -bornées de type t_1 sur des structures c_2 -bornées de type t_2 .

On dit que Γ est polynomiale lorsque $\Gamma(s).n = \mathcal{O}((s.n)^k)$.

Machine RAM (p.200)

La machine RAM reste la même (heureusement). On va utiliser la $\{+\}$ -RAM ou des versions un brin plus puissantes comme la $\{+,-,\times,\div k\}$ -RAM pour un $k\in\mathbb{N}$ fixé.

Définition 3 (Temps polynomial). On définit DTIME_{RAM} $(\mathcal{O}(n^k))$ comme étant l'ensemble des fonctions calculables sur $\{+\}$ -RAM en temps $\mathcal{O}(n^k)$, telles que le nombre de registres utilisés, la longueur des nombres manipulés (y compris les adresses de registres) soient bornés par $\mathcal{O}(n^k)$.