命题证明及形式化拆解

hdmkingdom

2025年8月11日

题目 (Problem Statement)

English

Let
$$x_0 = 5$$
 and $x_{n+1} = x_n + \frac{1}{x_n}$ $(n = 0, 1, 2, ...)$.
Prove that $45 < x_{1000} < 45.1$

中文

设
$$x_0 = 5$$
,且 $x_{n+1} = x_n + \frac{1}{x_n}$ $(n = 0, 1, 2, ...)$ 。证明: $45 < x_{1000} < 45.1$ 。

证明 (Proof Sketch)

1. 两侧平方:

$$x_{n+1}^2 = x_n^2 + \frac{1}{x_n^2} + 2 \tag{1}$$

$$x_{n+1}^2 - x_n^2 = \frac{1}{x_n^2} + 2 \tag{2}$$

2. 因为 $x_n > 0, x_{n+1} > x_n$, 因此:

$$x_{n+1}^2 = x_0^2 + \sum_{k=0}^n (x_{k+1}^2 - x_k^2)$$
(3)

$$=x_0^2 + \sum_{k=0}^n (\frac{1}{x_k^2} + 2) \tag{4}$$

$$=25+2(n+1)+\sum_{k=0}^{n}\frac{1}{x_{k}^{2}}$$
(5)

3. 此处可得到一系列不等式

$$\therefore x_n > 0, x_{n+1} > x_n$$

$$\therefore \sum_{k=0}^{n} \frac{1}{x_k^2} > 0$$

> 25 + 2n

$$\therefore x_{n+1}^2 > 25 + 2(n+1) \tag{6}$$

$$\therefore x_n^2 > 25 + 2n \tag{7}$$

$$\therefore \sum_{k=0}^{n} \frac{1}{x_k^2} < \sum_{k=0}^{n} \frac{1}{25 + 2k} \le \frac{1 + \ln n}{2}$$
 (8)

$$\therefore \sum_{k=0}^{n} \frac{1}{x_k^2} < \frac{1 + \ln n}{2} \tag{9}$$

因此可以得到下列不等式:

$$x_n^2 = 25 + 2n + \sum_{k=0}^{n-1} \frac{1}{x_k^2}$$
 (10)

$$x_n^2 = 25 + 2n + \sum_{k=0}^{n-1} \frac{1}{x_k^2}$$
 (13)

$$<25+2n+\frac{1+\ln(n-1)}{2}\tag{14}$$

(15)

4. 确定范围取 n = 1000

$$x_{1000}^2 = 25 + 2000 + \sum_{k=0}^{999} \frac{1}{x_k^2}$$
 (16)

$$=2025 + \sum_{k=0}^{999} \frac{1}{x_k^2} \tag{17}$$

$$> 2025 \tag{18}$$

$$=45^2$$
 (19)

则小值确定,又

$$x_{1000}^2 = 2025 + \sum_{k=0}^{999} \frac{1}{x_k^2}$$
 (20)

$$<2025 + \frac{1 + \ln(999)}{2} \tag{21}$$

$$< 2029$$
 (22)

$$<45.1^2$$
 (23)

形式化证明步骤 (Formal Lemma Decomposition)

1. 第一部分: x_n 的基本性质

Lemma 1. 非负性, 证明 $x_n > 0$

Lemma 2. 单调性, 证明 $x_{n+1} > x_n$

Lemma 3. 单调性的传递性, 证明 $x_n x_m$

Lemma 4. 严格单调性的传递性, 证明 $x_n < x_m$

2. 第二部分: 对 x n 做初步整理以及抽象

Lemma 5. 平方公式, 由原方程处理两侧平方部分, 得到平方公式 (2)

Lemma 6. 累加公式, 对 x_{n+1}^2 做处理, 得到 (5)

Lemma 7. 求和倒数平方对数不等式, 得到 (9)

3. 第三部分, x_{1000}^2 下界证明

Lemma 8. $x1000^2$ 下界不等式, 通过 n=999 的取值, 确定 x_{1000}^2 的范围, 得到 (17)

Lemma 9. $x1000^2 > 2025$, 通过 (17) 的处理, 得到小值 18

4. 第四部分, x_{1000}^2 上界证明

Lemma 10. ln1000 < 7 约束

Lemma 11. $x1000^2$ 下界不等式通过对 (21) 做处理, 得到上界 (22)

5. 第五部分, 组合引理

theorem 1. 定理的综合,结合上述平方上下届证明,得到 x_{1000}^2 的范围结束