

第二节 格的基本概念(2)

二. 格的对偶

❖ 设 $\langle A, \leq \rangle$ 是格, $\langle A, \geq \rangle$ 的逆关系记作 \rangle , \rangle 也是偏序关系。 $\langle A, \geq \rangle$ 也是格, $\langle A, \geq \rangle$ 的Hasse图是将 $\langle A, \leq \rangle$ 的Hasse图 類倒180%

格的对偶

如果将命题P中的 \leq 换成 \geq , \wedge 换成 \vee , \vee 换成 \wedge , 得到命题 P' , 称P'为P的对偶命题。

对偶原理: 如果P对任何格为真,则P'对任何格也为真。

例如: $P: a \land b \leq a$ $\{a,b\}$ 的最大下界 $\leq a$ $\{a,b\}$ 的最大下界 $\geq a$

三. 格的同态与同构

 $\mathcal{C}(A_1, \leq_1 > \Lambda < A_2, \leq_2 > \mathcal{E}$ 两个格,由它们诱导的代数系统分别 $\mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_1 > \Lambda < A_2, \vee_2, \wedge_2 > \mathcal{C}(A_1, \vee_1, \wedge_2, \wedge_2 > \mathcal{C}(A_1,$

$$f(a \vee_1 b) = f(a) \vee_2 f(b)$$
$$f(a \wedge_1 b) = f(a) \wedge_2 f(b)$$

则称f 是 $<A_1$, \lor_1 , $\land_1>$ 到 $<A_2$, \lor_2 , $\land_2>$ 的同态映射。 也称 $< f(A_1)$, $\le_2>$ 是 $<A_1$, $\le_1>$ 的同态像。

如果f是双射,就称f是 $<A_1,\lor_1,\land_1>$ 到 $<A_2,\lor_2,\land_2>$ 的格同构, 也称格 $<A_1,\leqslant_1>$ 和 $<A_2,\leqslant_2>$ 同构。 例 <A, ≤>, A={1,2,3,6}, ≤是A上整除关系。

$$\langle P(E), \subseteq \rangle, E = \{a,b\}$$

它们诱导的代数系统分别是<A, \lor , \land >和<P(E), \cup , \cap >

❖ 具有四个元素的格分别同构于下面两种形式之一

❖ 具有五个元素的格分别同构于下面五种形式之一

