Introduction

The **score bootstrap** perturbs the score contributions of an M-estimator using IID, mean zero, unit variance weights. The distribution of the perturbed score statistics is then used for inference on the observed test statistic.

Motivation

Consider an M-estimator $\hat{\theta}$ obtained by solving the estimating equation:

$$oldsymbol{\Psi}_n(oldsymbol{ heta}) = \sum_{i=1}^n oldsymbol{\psi}_i(oldsymbol{ heta}) \stackrel{ ext{Set}}{=} oldsymbol{0}$$

By first order Taylor expansion:

$$(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = -\dot{\boldsymbol{\Psi}}_n(\boldsymbol{\theta}_0)^{-1} \boldsymbol{\Psi}_n(\boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1})$$

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = -\left[\frac{1}{n} \sum_{i=1}^n \frac{\partial \boldsymbol{\psi}_i}{\partial \boldsymbol{\theta}'}(\boldsymbol{\theta}_0)\right]^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n \boldsymbol{\psi}_i(\boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1/2})$$

Define A_0 as the expected Jacobian of ψ_i w.r.t. θ :

$$\mathbf{A}_0 \equiv -E \left[\frac{\partial \boldsymbol{\psi}_i}{\partial \boldsymbol{\theta}'} (\boldsymbol{\theta}_0) \right]$$

By LLN:

$$-\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \boldsymbol{\psi}_{i}}{\partial \boldsymbol{\theta}'}(\boldsymbol{\theta}_{0}) = \boldsymbol{A}_{0} + o_{p}(1)$$

Thus the quantity $\sqrt{n}(\hat{\theta} - \theta_0)$ is expressible as:

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \boldsymbol{A}_0^{-1} \boldsymbol{\psi}_i(\boldsymbol{\theta}_0) + o_p(1)$$

The limiting distribution is:

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{\mathcal{L}}{\longrightarrow} N(\boldsymbol{0}, \boldsymbol{A}_0^{-1} \boldsymbol{B}_0 \boldsymbol{A}_0^{-T})$$

Here B_0 is the expected outer product of the score equation:

$$\boldsymbol{B}_0 = E\big[\boldsymbol{\psi}_i \boldsymbol{\psi}_i'(\boldsymbol{\theta}_0)\big]$$

Let (ω_i) denote IID mean zero, unit variance weights. Form the perturbed score:

$$ilde{m{\Psi}}_n(m{ heta}) \equiv \sum_{i=1}^n \omega_i m{\psi}_i(m{ heta})$$

Denote by $\tilde{\boldsymbol{\theta}}$ a solution to the equation:

$$\Psi_n(\boldsymbol{\theta}) - \tilde{\Psi}_n(\hat{\boldsymbol{\theta}}) \stackrel{\mathrm{Set}}{=} \mathbf{0}$$

By first order Taylor expansion:

$$\mathbf{\Psi}_n(\tilde{\boldsymbol{\theta}}) = \mathbf{\Psi}_n(\boldsymbol{\theta}_0) + \dot{\mathbf{\Psi}}_n(\boldsymbol{\theta}_0)(\tilde{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1})$$

Subtract $\tilde{\Psi}_n(\hat{\boldsymbol{\theta}})$ from each side, then:

$$\mathbf{0} = \mathbf{\Psi}_n(\boldsymbol{\theta}_0) - \tilde{\mathbf{\Psi}}_n(\hat{\boldsymbol{\theta}}) + \dot{\mathbf{\Psi}}_n(\boldsymbol{\theta}_0)(\tilde{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1})$$

Introduce and remove $\hat{\boldsymbol{\theta}}$ from the equation:

$$\mathbf{0} = \mathbf{\Psi}_n(\boldsymbol{\theta}_0) - \tilde{\mathbf{\Psi}}_n(\hat{\boldsymbol{\theta}}) + \dot{\mathbf{\Psi}}_n(\boldsymbol{\theta}_0)(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) + \dot{\mathbf{\Psi}}_n(\boldsymbol{\theta}_0)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1})$$

The quantity $\dot{\Psi}_n(\theta_0)(\hat{\theta}-\theta_0)$ is expressible as:

$$\dot{\boldsymbol{\Psi}}_n(\boldsymbol{\theta}_0)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = -\boldsymbol{\Psi}_n(\boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1})$$

Therefore:

$$\dot{\mathbf{\Psi}}_n(\boldsymbol{\theta}_0)(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) = \tilde{\mathbf{\Psi}}_n(\hat{\boldsymbol{\theta}}) + \mathcal{O}_p(n^{-1})$$

Scaling by \sqrt{n} :

$$\sqrt{n}(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \omega_i \boldsymbol{A}_0^{-1} \boldsymbol{\psi}_i(\hat{\boldsymbol{\theta}})$$

Taking the limit conditional on $\hat{\theta}$:

$$\sqrt{n}(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) \xrightarrow{\mathcal{L}} N(\mathbf{0}, \ \boldsymbol{A}_0^{-1} \boldsymbol{B}(\hat{\boldsymbol{\theta}}) \boldsymbol{A}_0^{-T})$$

This argument motivates approximation of the distribution of $\sqrt{n}(\hat{\theta} - \theta_0)$ as:

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{d}{\approx} \sqrt{n}(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) \stackrel{d}{pprox} \frac{1}{\sqrt{n}} \sum_{i=1}^n \omega_i \boldsymbol{A}_0^{-1} \boldsymbol{\psi}_i(\hat{\boldsymbol{\theta}})$$

Remark 2.1. Although $\tilde{\theta}$ was introduced as a solution to the equation $\Psi_n(\theta) - \tilde{\Psi}_n(\hat{\theta}) \stackrel{\text{Set}}{=} 0$, actually obtaining $\tilde{\theta}$ is unnecessary.

Perturbation Distribution

3.1 Mammen Distribution

The Mammen two-point distribution takes the form:

$$\omega_i = \begin{cases} \frac{1 - \sqrt{5}}{2} & \text{, w.p. } \frac{1 + \sqrt{5}}{2\sqrt{5}} \\ \frac{1 + \sqrt{5}}{2} & \text{, w.p. } 1 - \frac{1 + \sqrt{5}}{2\sqrt{5}} \end{cases}$$

The Mammen distribution has expectation $E[\omega_i] = 0$, variance $E[\omega_i^2] = 1$, and third (central) moment $E[\omega_i^3] = 1$. Thus, Mammen perturbations are able to match this first three moments of a distribution, providing an asymptotic refinement over the normal approximation.

3.2 Rademacher Distribution

The Rademacher distribution is defined as:

$$\omega_i = \begin{cases} -1 & \text{, w.p. } \frac{1}{2} \\ 1 & \text{, w.p. } \frac{1}{2} \end{cases}$$

The Rademacher distribution has $E[\omega_i] = E[\omega_i^3] = 0$ and $E[\omega_i^2] = E[\omega_i^4] = 1$. Thus, Rademacher perturbations are able to match the first four moments of a **symmetric** distribution, providing an asymptotic refinement over the normal approximation.

Procedure

4.1 General Case

1. Obtain $\hat{\boldsymbol{\theta}}$ satisfying $\Psi_n(\boldsymbol{\theta}) = \mathbf{0}$.

i. Calculate the individual score contributions evaluated at $\hat{\theta}$:

$$\hat{m{\psi}}_i = m{\psi}_i(\hat{m{ heta}})$$

ii. Estimate the Jacobian at $\hat{\boldsymbol{\theta}}$:

$$\hat{A}_n = -\frac{1}{n} \sum_{i=1}^n \frac{\partial \psi_i}{\partial \boldsymbol{\theta}'} (\hat{\boldsymbol{\theta}})$$

iii. Calculate the normalized score:

$$\hat{U}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \hat{A}_n^{-1} \hat{\psi}_i$$

iv. Estimate the outer product:

$$\hat{\boldsymbol{B}}_n = \frac{1}{n} \sum_{i=1}^n \hat{\boldsymbol{\psi}}_i \hat{\boldsymbol{\psi}}_i'$$

v. Construct the observed test statistic:

$$T_{\text{obs}} = \hat{\boldsymbol{U}}_n' (\hat{\boldsymbol{A}}_n^{-1} \hat{\boldsymbol{B}}_n \hat{\boldsymbol{A}}_n^{-T})^{-1} \hat{\boldsymbol{U}}_n$$

2. For $b = 1, \dots, B$:

i. Draw the perturbation weights $(\omega_i^{(b)})$.

ii. Generate the perturbed score:

$$U_n^{(b)} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \omega_i^{(b)} \hat{A}_n^{-1} \hat{\psi}_i$$

iii. Estimate the perturbed outer product:

$$B_n^{(b)} = \frac{1}{n} \sum_{i=1}^n (\omega_i^{(b)})^2 \hat{\psi}_i \hat{\psi}_i'$$

iv. Calculate the perturbed test statistic:

$$T^{(b)} = (U_n^{(b)})' (\hat{A}_n^{-1} B_n^{(b)} \hat{A}_n^{-T})^{-1} U_n^{(b)}$$

3. Use the empirical distribution of $\{T^{(b)}\}$ to approximate that of T.

• To estimate of p-value for T_{obs} :

$$\hat{p} = \frac{1}{B} \sum_{b=1}^{B} I[T^{(b)} \ge T_{\text{obs}}]$$

• To construct a confidence interval, use the empirical $\alpha/2$ and $1-\alpha/2$ percentiles of $\{T^{(b)}\}$.

4.2 Maximum Likelihood

- 1. Obtain the MLE $\hat{\boldsymbol{\theta}}$ satisfying $\boldsymbol{S}_n(\boldsymbol{\theta}) = \boldsymbol{0}$.
 - i. Calculate the individual score contributions evaluated at $\hat{\boldsymbol{\theta}},$ and the overall score:

$$\hat{m{s}}_i = rac{\partial \ell_i}{\partial m{ heta}}(\hat{m{ heta}})$$

ii. Aggregate the individual score contributions:

$$\hat{m{S}}_n = \sum_{i=1}^n \hat{m{s}}_i$$

iii. Estimate the observed information at $\hat{\theta}_n$:

$$\hat{\boldsymbol{J}}_n = -\sum_{i=1}^n \frac{\partial^2 \ell}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} (\hat{\boldsymbol{\theta}})$$

iv. Calculate the test statistic:

$$T_{\mathrm{obs}} = \hat{\boldsymbol{S}}_n' \hat{\boldsymbol{J}}_n^{-1} \hat{\boldsymbol{S}}_n$$

- 2. For $b = 1, \dots, B$:
 - i. Draw the perturbation weights $(\omega_i^{(b)})$.
 - ii. Generate the perturbed score:

$$oldsymbol{S}_n^{(b)} = rac{1}{\sqrt{n}} \sum_{i=1}^n \omega_i^{(b)} \hat{oldsymbol{s}}_i$$

iii. Calculate the perturbed test statistic:

$$T^{(b)} = (\hat{S}_n^{(b)})' \hat{J}_n^{-1} \hat{S}_n^{(b)}$$

3. Use the empirical distribution of $\{T^{(b)}\}\$ to approximate that of T.