Lecture 32

niceguy

March 27, 2024

1 Parallel Plate Waveguide

Consider a waveguide composed of parallel plates x = 0 and x = a. The wave propagates in the z direction.

1.1 TE mode

$$\tilde{H}_{y} = H_{0} \cos\left(\frac{n\pi x}{a}\right) e^{-j\beta_{n}z}$$

$$\tilde{E}_{x} = \frac{\beta_{n}}{\omega \varepsilon} H_{0} \cos\left(\frac{n\pi x}{a}\right) e^{-j\beta_{n}z}$$

$$\tilde{E}_{z} = \frac{j}{\omega \varepsilon} \frac{n\pi}{a} H_{0} \sin\left(\frac{n\pi x}{a}\right) e^{-j\beta_{n}z}$$

 β_n is the propagation constant equal to $k\sqrt{1-\left(\frac{f_{c,n}}{f}\right)^2}$. The cutoff frequency is

$$f_{c,n} = \frac{n}{2\sqrt{\varepsilon\mu}a}$$

Splitting the cosine term in \tilde{H}_y ,

$$\tilde{H}_y = \frac{H_0}{2} \left(e^{j\frac{n\pi}{a}x} e^{-j\beta_n z} + e^{-j\frac{n\pi}{a}x} e^{-j\beta_n z} \right)$$

This can be split into an incident and reflected wave $\vec{k} = \pm \frac{n\pi}{a}\hat{x} + \beta_n\hat{z}$.

1.2 $ec{k}_i$ as a a function of frequency

 $f < f_{c,n} \Rightarrow \beta_n = -ja_n$ and we call this *evanescent*. Else, $\beta_n = k\sqrt{1 - \left(\frac{f_{c,n}}{f}\right)^2}$. Replacing f with ω and substituting $k = \omega\sqrt{\varepsilon\mu}$, we get

$$\beta_n = \sqrt{\varepsilon \mu} \sqrt{\omega^2 - \omega_{c,n}^2}$$

1.3 TE mode

$$\tilde{E}_y = E_0 \sin\left(\frac{n\pi x}{a}\right) e^{-j\beta_n z}$$

$$\tilde{H}_x = -\frac{\beta_n}{\omega \mu} E_0 \sin\left(\frac{n\pi x}{a}\right) e^{-j\beta_n z}$$

$$\tilde{H}_z = \frac{j}{\omega \mu} \frac{n\pi}{a} E_0 \cos\left(\frac{n\pi x}{a}\right) e^{-j\beta_n z}$$

Below $f_{c,1}$, there is no TE mode. Then $\beta_0 = \omega \sqrt{\varepsilon \mu}$, $v = \frac{\omega}{\beta} = \frac{1}{\sqrt{\varepsilon \mu}}$. At any higher modes, β is frequency dependent, and so is v, and one can show that

$$v_{p,n} = \frac{1}{\sqrt{\varepsilon\mu}} \times \frac{1}{\sqrt{1 - \left(\frac{f_{c,n}}{f}\right)^2}} > \frac{1}{\sqrt{\varepsilon\mu}}$$