Problema del Robot

Jazmin Flores e Irasema Pedroza

2025-09-10

Table of contents

Co	ontexto	3
1	Introduction	5
2	Summary	6
Re	eferences	7

Contexto

Tenemos un robot en cual tiene dos estados: bateria alta y bateria baja, estos estados sera denotados como high y low respectivamente. Las acciones posibles para el estado low son: buscar, esperar y recargar. En cambio los del estado high son buscar y esperar. El resumen de las probabilidades del robot estan dadas en la siguiente tabla:

Table 1: Demonstration of pipe table syntax

S	a	s'	p(s' s, a)	r(s, a, s')
high	search	high		r_search
high	search	low	1 —	$r_{search} -3$
low	search	high	1 —	r_search
low	search	low		r_search
high	wait	high	1	r _wait
high	wait	low	0	_
low	wait	high	0	_
low	wait	low	1	r _wait
low	recharge	high	1	r _wait
low	recharge	low	0	_

$$\begin{split} v_*(h) &= \max \left\{ \begin{aligned} p(h \mid h, s) \left[r(h, s, h) + \gamma v_*(h) \right] + p(l \mid h, s) \left[r(h, s, l) + \gamma v_*(l) \right], \\ p(h \mid h, w) \left[r(h, w, h) + \gamma v_*(h) \right] + p(l \mid h, w) \left[r(h, w, l) + \gamma v_*(l) \right] \end{aligned} \right\} \\ &= \max \left\{ \begin{aligned} &\alpha \left[r_s + \gamma v_*(h) \right] + (1 - \alpha) \left[r_s + \gamma v_*(l) \right], \\ &1 \left[r_w + \gamma v_*(h) \right] + 0 \left[r_w + \gamma v_*(l) \right] \end{aligned} \right\} \\ &= \max \left\{ \begin{aligned} &r_s + \gamma \left[\alpha v_*(h) + (1 - \alpha) v_*(l) \right], \\ &r_w + \gamma v_*(h) \end{aligned} \right\} \\ &= \max \left\{ \begin{aligned} &3 + 0.5 \left[0.5 v_*(h) + (0.5) v_*(l) \right], \\ &2 + 0.5 v_*(h) \end{aligned} \right\} \end{split}$$

$$= \max \left\{ \frac{3 + 0.5 \left[0.5 v_*(h) + (0.5) v_*(l) \right],}{4} \right\}$$

de igual forma tenemos $v_*(l)$ esta dado por:

$$v_*(l) = \max\{0.5[0.5v_*(h) + 0.5v_*(l)], 2 + 0.5v_*(l), 0.5v_*(h)\}$$

supongamos que el maximo de $v_*(h)$ es $2 + 0.5v_*(h)$ despejamos y el resultado es $v_*(h) = 4$, apartir de este valor podemos obtener $v_*(l)$ el cual es:

$$v_*(l) = \max\{1 + 0.5v_*(l)],$$

$$2 + 0.5v_*(l),$$

$$2\}$$

Observemos que los unicos canditados son: $2+0.5v_*(l)$ y 2 pero en el caso que si $v_*(l)<0$ tendriamos que $v_*(l)=2$ pero como 2 no es un numero negativo tenemos que si $v_*(h)=4$ entonces $v_*(l)=2+0.5v_*(l)$

Ahora supondremos que $v_*(h) = 3 + 0.5 \left[0.5 v_*(h) + (0.5) v_*(l)\right]$

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

[1] 2

2 Summary

In summary, this book has no content whatsoever.

1 + 1

[1] 2

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2):~97-111.~https://doi.org/10.1093/comjnl/27.2.97.