Matrix Factorization and Collaborative Filtering

Hyewon Lim 4 Jan 2017

Outline

- Recommender System
- Matrix Factorization
- Reference

Recommender System

Recommender System Strategies

1. Content Filtering

Create a profile for each user or product to characterize its nature

Genres: Crime, Comedy, Action, Adventure

Directors: Matthew Vaughn

Cast: Taron Egerton, Colin Firth, Samuel L. Jackson, ...

Distributor: Fox

Box Office Popularity: ...

Gender Region

. . .

Answers provided on a suitable questionnaire

Recommender System Strategies

2. Collaborative filtering

- Rely only on past user behavior
- Everyday examples
 - Bestseller lists
 - Top 40 music lists
 - Unmarked but well-used paths thru the woods
 - The "recent returns" shelf at the library
- Common insight: personal tastes are correlated

Types of Collaborative Filtering

a. Neighborhood Methods

- Find neighbors based on similarity of movie preferences
- Recommend movies that those neighbors watched

#3 #2 Joe #1

b. Latent Factor Methods

- Characterize both items and users
- Recommend a movie based on its proximity to the user in the latent space

Outline

- Recommender System
- Matrix Factorization
- Reference

Netflix Prize

Assume latent factors in user preference

Assume latent factors in user preference

Singular Value Decomposition

```
[ 4. 2. 3. 5. 1.]
[ 0. 3. 0. 4. 2.]
[ 5. 4. 3. 3. 0.] =
[ 0. 0. 5. 5. 2.]
[ 5. 0. 0. 5. 0.]
```


We can drop less important information

Singular Value Decomposition

[-0.54	0.03	-0.021	0.099	-0.835]		[13.707	0.	0.	0.	0.]		[-0.503	-0.29	-0.381	-0.705	-0.143]
[-0.29	-0.225	0.393	-0.84	0.07]		[0.	5.607	0.	0.	0.]		[0.738	0.156	-0.489	-0.254	-0.357]
[-0.506 [-0.417	0.372	0.574	0.374	0.371]	X	[0.	0.	3.791	0.	0.]	([-0.169	0.905	0.15	-0.35	0.087]
[-0.417	-0.79	-0.217	0.277	0.279]	/\	[0.	0.	0.	3.645	0.]	•	[0.265	-0.227	0.769	-0.455	-0.282]
[-0.441	0.432	-0.685	-0.26	0.287]		[0.	0.	0.	0.	0.1	55]		[-0.321	0.147	0.029	0.33	-0.875]

[-0.54	0.03	-0.021	0.099	-0.835]		[13.707	0.	0.	0.	0.]		[-0.503	-0.29	-0.381	-0.705	-0.143]
				0.07]				5.607		0.	0.]		[0.738	0.156	-0.489	-0.254	-0.357]
[-0.506	0.372	0.574	0.374	0.371]	X	[0.	0.	3.791	0.	0.]	X	[-0.169	0.905	0.15	-0.35	0.087]
[-0.417	-0.79	-0.217	0.277	0.279]	/\	[0.	0.	0.	0.	0.]	/\	[0.265	-0.227	0.769	-0.455	-0.282]
[-0.441	0.432	-0.685	-0.26	0.287]		[0.	0.	0.	0.	0.]		[-0.321	0.147	0.029	0.33	-0.875]

Matrices

- User vector
 - $(P_{u*})^T \in \mathbb{R}^f$
- Item vectors:
 - $(Q_{*i}) \in \mathbb{R}^f$
- Rating prediction
 - $R_{ui} = P_{u*}Q_{*i} = [PQ]_{ui}$

Vectors

- User vector
 - $p_u \in \mathbb{R}^r$
- Item vectors:
 - $q_i \in \mathbb{R}^r$
- Rating prediction
 - $\hat{r}_{ui} = q_i^T p_u$

- Set of non-zero entries
 - $\kappa = \{(u, i): r_{ui} \neq 0\}$
- Objective

Minimize the error between R and \hat{R}

$$\min_{q*,p*} \sum_{(u,i)\in\kappa} (r_{ui} - q_i^T p_u)^2$$

$$\min_{q^*, p^*} \sum_{(u, i) \in \kappa} (r_{ui} - q_i^T p_u)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2)$$
Regularization factor

Regularization factor

- avoid overfitting
- make simple model

- How to deal with empty cells in matrix
 - With 0
 - With the average of the whole users
 - With the average of each user

	I_1	I_2	I_3	I_4
U_1		3	4	2
U_2	5			
U_3	3		2	

Consider user bias and item bias

$$b_{ui} = \mu + b_i + b_u$$

 μ : average of the whole users

 b_i , b_u : the observed deviations of u and i

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

$$\min_{q*,p*,b*} \sum_{(u,i)\in\kappa} (r_{ui} - \mu - b_i - b_u - p_u^T q_i)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2 + b_u^2 + b_i^2)$$

- Approaches to minimizing $\min_{q*,p*} \sum_{(u,i) \in \kappa} (r_{ui} q_i^T p_u)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2)$
 - 1. Stochastic gradient descent

- Associated prediction error e_{ui}
 - $q_i \leftarrow q_i + \gamma (e_{ui} \cdot p_u \lambda \cdot q_i)$
 - $p_u \leftarrow p_u + \gamma (e_{ui} \cdot q_i \lambda \cdot p_u)$

- Approaches to minimizing $\min_{q*,p*} \sum_{(u,i)\in\kappa} (r_{ui} q_i^T p_u)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2)$
 - 2. Alternating least squares
 - Rotate between fixing the q_i 's and fixing the p_u 's
 - When all p_u 's are fixed, the system recomputes the q_i 's by solving a least-squares problems, and vice versa
 - Stochastic gradient descent is easier and faster than ALS in general,
 ALS is favorable in at least two cases
 - When the system can use parallelization
 - For systems centered on implicit data

Accuracy of Matrix Factorization Models

Figure 4. Matrix factorization models' accuracy. The plots show the root-mean-square error of each of four individual factor models (lower is better). Accuracy improves when the factor model's dimensionality (denoted by numbers on the charts) increases. In addition, the more refined factor models, whose descriptions involve more distinct sets of parameters, are more accurate. For comparison, the Netflix system achieves RMSE = 0.9514 on the same dataset, while the grand prize's required accuracy is RMSE = 0.8563.

Comparison of Optimization

HOSVD [4]

SVD on each matrix

$$A_{1} = U^{(1)} \cdot S_{1} \cdot V_{1}^{T}$$

$$A_{2} = U^{(2)} \cdot S_{2} \cdot V_{2}^{T}$$

$$A_{3} = U^{(3)} \cdot S_{3} \cdot V_{3}^{T}$$

Construction of core tensor

$$S = A \times_1 U_{c_1}^{(1)^T} \times_2 U_{c_2}^{(2)^T} \times_3 U_{c_3}^{(3)^T}$$

• Construction of tensor \hat{A}

$$\hat{\mathcal{A}} = \mathcal{S} \times_1 U_{c_1}^{(1)} \times_2 U_{c_2}^{(2)} \times_3 U_{c_3}^{(3)}$$

Example

MF in Python

```
1 #!/usr/bin/python
 3 import numpy as np
 5 np.set printoptions(precision = 3) # set decimal display
 7 # Matrix
 8 A = np.zeros((5, 5))
10 A[0, 4] = 1
11 A[0, 1] = A[1, 4] = A[3, 4] = 2
12 A[0, 2] = A[1, 1] = A[2, 2] = A[2, 3] = 3
13 A[0, 0] = A[1, 3] = A[2, 1] = 4
14 A[0, 3] = A[2, 0] = A[3, 2] = A[3, 3] = A[4, 0] = A[4, 3] = 5
15
16 # SVD
17 U, s, V = np.linalg.svd(A, full matrices = True)
18
                                                                                        2e+00
                                                                                                                      1e+00]
                                                                                                  3e+00
                                                                                                            5e+00
19 # Reconstruction
                                                                           -4e-16 3e+00 3e-15
5e+00 4e+00 3e+00
                                                                                                                      2e+001
                                                                                                            4e+00
20 S = np.diag(s)
                                                                                                            3e+00
                                                                                                                      7e-16]
21
                                                                                        4e-15 5e+00
                                                                                                                      2e+00]
22 P = np.dot(U, np.dot(S, V))
                                                                                                            5e+00
23
                                                                                        1e-15 -2e-16
                                                                                                                     -5e-16]
                                                                                                            5e+00
```


Example

MF in Python with r

```
1 #!/usr/bin/python
3 import rpy2.robjects as robjects
5 r = robjects.r
 7 r('''
                                                                                 [,1] [,2] [,3] [,4] [,5]
       rsvd <- function() {
            # MATRIX
                                                                           [2,] 0 3 0 4 2
[3,] 5 4 3 3 0
[4,] 0 0 5 5 2
           A \leftarrow matrix(c(4, 2, 3, 5, 1, 0, 3, 0, 4, 2, 5, 4, 3))
   , 3, 0, 0, 0, 5, 5, 2, 5, 0, 0, 5, 0), nrow = 5, ncol = 5,
   byrow = TRUE)
11
12
            # SVD
13
            result <- svd(A)
14
15
            # RECONSTRUCTION
                                                                                                     [,2]
16
            U <- result$u
                                                                            [1,] 4.000000e+00 2.000000e+00 3.000000e+00
                                                                                                                         5 1.000000e+00
17
            s <- result$d
                                                                            [2,] -1.955901e-16 3.000000e+00 5.999975e-16
                                                                                                                        4 2.000000e+00
18
            V <- result$v
                                                                            [3,] 5.000000e+00 4.000000e+00 3.000000e+00
                                                                                                                        3 -1.110223e-16
19
                                                                            [4,] -6.366435e-16 3.387048e-15 5.000000e+00
                                                                                                                        5 2.000000e+00
                                                                            [5,] 5.000000e+00 1.949829e-15 -6.570265e-16
                                                                                                                        5 1.408595e-15
            ApproxA <- U %*% diag(s) %*% t(V)
21
22
       111)
23
24 \text{ svd} = r['rsvd']
26 result = svd()
27
28 print result
29
```


Reference

- 1. Slides in "Matrix Factorization and Collaborative Filtering"
 - By Matt Gormley (Carnegie Mellon Univ.)
- 2. Slides in "Recommender Systems"
 - By Jee-Hyong Lee (Sungkyunkwan Univ.)
- 3. Y. Koren *et al.*, "Matrix Factorization Techniques for Recommender Systems," Journal Computer, 42(8), 2009
- 4. P. Symeonidis *et.al*, "Tag Recommendations based on Tensor Dimensionality Reduction," Recsys'08

