

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 33 Poincaré-Bendixson Theorem Wednesday 20 November 2013

Announcements

- Assignment 5 due this Friday, 22 Nov 2013, at 1:30pm.
 - Also look at Assignment 5 from 2011: includes problem on Poincaré Bendixson theorem and other relevant problems.
- Test 2 next Wednesday, 27 Nov 2013, at 11:30am.
 - Emphasis is on material covered since Test 1, including what we cover this week.
 - Location: T29 / 101
- Dora's office hours on Wed 27 Nov 2013 are MOVED TO TUESDAY 26 NOV 2013, 3:30-4:30pm.

The Poincaré-Bendixson Theorem

Before stating the theorem, recall the definitions of ω - and α -limit sets of solutions of a differential equation X' = F(X).

Definition (Omega and Alpha Limit Points)

Y is an ω -limit point of the solution that passes through X if there is a sequence of times $\{t_n:n=0,1,2,\ldots\}$ with $t_n\to\infty$ as $n\to\infty$ and $\phi_{t_n}(X)\to Y$ as $n\to\infty$.

(For an α -limit point, $t_n \to -\infty$.)

Definition (Omega and Alpha Limit Sets)

 $\omega(X_0)$ is the set of all ω -limit points of X_0 .

 $\alpha(X_0)$ is the set of all α -limit points of X_0 .

The Poincaré-Bendixson Theorem

Theorem

For a planar flow, if $\omega(X_0)$ is bounded and contains no equilibria then $\omega(X_0)$ is a periodic orbit. (Similarly for $\alpha(X_0)$.)

- This theorem can be used to prove that a given planar ODE has a periodic solution, by finding a set S that
 - is forward-invariant, i.e., $X_0 \in \mathcal{S} \implies \phi_t(X_0) \in \mathcal{S}, \ \forall t > 0$,
 - is bounded, i.e., $S \subset B$ for some ball B of finite radius,
 - contains no equilibria.
- Then $X_0 \in \mathcal{S} \implies \omega(X_0) \subset \mathcal{S}$, and hence $\omega(X_0)$ is bounded.
- The Poincaré-Bendixson Theorem then implies that $\omega(X_0)$ is a periodic orbit.

The Poincaré-Bendixson Theorem

NOTE:

- The theorem is true only in the plane.
- In \mathbb{R}^n with $n \ge 3$ it is possible to have much more complicated bounded limit sets.

Example: Application of Poincaré-Bendixson Theorem

$$x' = y$$
, $y' = -x + y(1 - x^2 - 2y^2)$

- Equilibria: \exists ! equilibrium at (x, y) = (0, 0).
- If ∃ periodic orbit then it encloses the equilibrium (Index Theorem).
- Show ∃ forward-invariant annulus around the equilibrium.
- Consider $L(x,y) = \frac{1}{2}(x^2 + y^2)$; paraboloid, circular level sets.
- $\dot{L} = \nabla L \cdot (x', y') = y^2 (1 x^2 2y^2).$ So?...
- $\dot{L} \geq 0$ on circle of radius $\frac{1}{2}$ and $\dot{L} \leq 0$ on circle of radius 1.
- $\cdot : \mathcal{A} = \{(x,y) : \frac{1}{4} \le x^2 + y^2 \le 1\}$ is forward-invariant.
- $\therefore \forall X \in \mathcal{A}, \ \omega(X) \subset \mathcal{A} \implies \omega(X)$ is bounded.
- \blacksquare : no equilibria in $\mathcal{A} \implies \omega(X)$ is a periodic orbit.

Example: Application of Poincaré-Bendixson Theorem

$$x' = y$$
, $y' = -x + y(1 - x^2 - 2y^2)$

■ Argument on previous slide shows \exists periodic orbit in \mathcal{A} , but does NOT show \exists ! periodic orbit in \mathcal{A} (although true for this particular system).

Example: Application of Poincaré-Bendixson Theorem

$$x' = y$$
, $y' = -x + y(1 - x^2 - 2y^2)$

Example:

$$x' = y$$
, $y' = -x + y(1 - x^2 - 2y^2)$

with nullclines

Example: x' = y, $y' = -x + y(1 - x^2 - 2y^2)$

with direction field on circles for application of Poincaré-Bendixson

XPPAUT can compute phase portraits numerically

- Easy to learn to use. Free. Open source.
- Fast to produce phase portraits (also nullclines and stable and unstable manifolds).
- BUT, you need to understand the theory to know how to interpret the phase portraits (and to use the software effectively).
- XPPAUT can also calculate bifurcation diagrams numerically, which is usually the only possible way to compute bifurcation diagrams.
- Graduate course offered in Winter 2012 included learning to use this software for bifurcation analysis: Math 746 "Bifurcation and Stability Theory".
 Can be taken by undergrads with permission from instructor. But not offerred this year.

Darn... what else would be fun next term?

- Math 4MB3 "Mathematical Biology".
- Prerequisite is Math 3F03.
- Will involve learning to use XPPAUT (though not to the fancy level used in Math 746).
- Will emphasize application of qualitative theory of ODEs to epidemiology (infectious disease transmission modelling).
- Fun! Fun! Fun!

Online Course Evaluations

Your course evaluations are critical to future course development and instructor assessment processes.

Course Evaluations for 2013 Fall Term 1

Open: Wednesday November 20, 2013 at 10:00 a.m.* Close: Wednesday December 4, 2013 at 4:00 p.m.

- * Faculties of ENG. HUM. SOCSCI. SCI. and DSB
- Log in with your MAC ID to evaluate your courses.
- Each evaluation will take approximately 5 to 15 minutes to complete.
- Your responses are completely anonymous.
- Evaluation results are not made available to instructors until after final marks have been submitted to the Office of the Registrar.

https://evals.mcmaster.ca

