Invatare automata in arta vizuala

Clasificarea Imaginilor. Optimizare.

Descrierea problemei


```
[[[ 78 75 66]
[ 77 74 65]
[ 72 69 62]
  [255 255 255]
  [255 255 255]
  [255 255 255]]
 [[ 69 69 59]
[ 69 69 59]
[ 65 65 57]
  [255 255 255]
  [255 255 255]
  [255 255 255]]
 [[ 68 68 58]
[ 69 69 59]
[ 65 65 57]
  [255 255 255]
  [255 255 255]
  [255 255 255]]
[[114 106 93]
[117 109 96]
  [119 111 98]
  [134 139 133]
  [134 139 133]
  [134 139 133]]
 [[119 111 98]
  [121 113 100]
  [122 114 101]
  [135 140 134]
  [135 140 134]
  [135 140 134]]
 [[131 123 110]
  [125 117 104]
  [118 110 97]
  [135 140 134]
  [134 139 133]
  [134 139 133]]]
```

Probabilitati peste clase discrete: catel, pisica, soarece ...

catel	0.2
tigru	0.3
pisica	0.4
soarece	0.1

Raspuns: pisica

Dificultati

- Nu avem o solutie programatica (if magic then cat else dog)
- Imaginile sunt matrici de numere (pixeli [0, 255])
- Orice schimbare de orientare schimba complet valorile acesteia

Abordarea parametrica

W sau θ = parametrii [parameters, weights]

↓ f(x; w)

Vector 32x32x3 (3072) elemente

airplane	0.08
automobile	0.07
bird	0.04
cat	0.3
deer	0.06
dog	0.1
frog	0.09
horse	0.2
ship	0.04
truck	0.02

Algoritmi de invatare din date

antrenare evaluare

antrenare validare evaluare

Dataset - perechi [imagine, eticheta]

50,000 imagini - antrenare [32x32x3] 10,000 imagini - evaluare

Abordare

- Algoritmul de clasificare = functie:
 - f(imagine) = [p0, p1, p2 ...pn]
- Aproximam functia cu niste parametrii
 - f(imagine; w) = [p0, p1, ...pn]
- Invatam parametrii w din imaginile de antrenare
- Evaluam pe imaginile de evaluare

Perceptronul

$$f(x; w, b) = W * X + b$$

clasa	scor
pisica/not_pusica	123

Se da o imagine x, vrem sa aflam $\hat{y}=P(y=1|x), x\in\mathbf{R}^n$ $0<\hat{y}\leq 1$ $Scor=W^Tx+b$ $\hat{y}=\sigma(W^Tx+b)$ Functia sigmoid $\sigma(z)=\frac{1}{1+e^{-z}}$

Perceptronul

Perceptron multi-iesire

Probabilitatile prezise

$$z_j = \theta_{0,j} + \sum_{i=1}^{n} x_i \theta_{i,j}$$

Clasificare liniara

$$f(x; w, b) = W * X + b$$

X

152

203

14

75

*

b

0.01

0.03

0.09

0.02

Multinomial Logistic regression

- Scorurile = log-probabilitati normalizate
- Generalizare de la scoruri cu doua clase functia sigmoid (cat-not_cat)

Softmax
$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_i e^{s_j}}$$

s_i = componenta i a scorurilor (scorul clasei j)

```
import numpy as np
scores = [3.0, 1.0, 0.2]

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    return np.exp(x) / np.sum(np.exp(x), axis=0)

print(softmax(scores))

[ 0.8360188    0.11314284    0.05083836]
```

Retea cu un singur nivel

Functii de activare

$$f'(x) = f(x)(1 - f(x))$$
 $f'(x) = 1 - f(x)^2$ $f'(x) = \begin{cases} 1, & x > 0 \\ 0, & \text{otherwise} \end{cases}$

Importanta functiilor de activare

- Functiile de activare liniare separa planul in doua hiperplane pentru clasificare
- Cateodata feature-urile nu sunt liniar separabile
- Avem nevoie de o remapare intr-un alt spatiu in care acestea pot fi separate de un hiperplan

Masurarea costului

- Avem nevoie de o masura pentru cat de bun este un clasificator
- Acem un dataset de exemple {x_i, y_i}^N,vrem sa calculam ŷ_i ≅ yi
- $\hat{y} = \sigma(w^*x + b)$
- Functia de cost masoara costul pe care trebuie sa-l platim pentru predictii incorecte

Costul empiric (costul total, functia obiectiv, functia de cost, riscul empiric)

Masoara costul total peste tot datasetul

Functia cost pentru clasificare

Reteaua modeleaza distributia claselor conditionata de imaginea data ca input

$$\hat{y}_k(x) = p(C_k|x)$$
 $\hat{y}_i = softmax(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$

- Pornim de la presupunerea ca datasetul este amestecat si datele sunt i.i.d.
- Probabilitatea de observare a datasetului este data de:

$$p(Y|X) = \prod_{n=0}^{N} p(y^{(n)}|x^{(n)}) = \prod_{n=0}^{N} \prod_{k=0}^{K} (\hat{y}_k(x^{(n)}))^{y_k^{(n)}}$$

 Maximizarea probabilitatii de a observa datasetul (likelihood) este echivalenta cu o functie de cost pe minimizarea probabilitatii logaritmate de observare a datasetului (negative log-likelihood)

$$L(\theta) = -\sum_{n=0}^{N} \sum_{k=0}^{N} y_k^{(n)} log(\hat{y}_k^{(n)})$$

Optimizare

• Vrem sa gasim parametrii care ne dau cel mai mic cost

$$\theta* = argmin_{\theta} \frac{1}{n} \sum_{i=1}^n L(f(x(i);\theta),y^{(i)})$$

• Alegem parametrii initiali random $\theta_0^{(0)} \theta_1^{(0)}$

 $L(\theta_{0,\theta_{1}})$

- Alegem parametrii initiali random $\theta_0^{(0)} \theta_1^{(0)}$
- Calculam gradientul (derivata) $\dfrac{\partial L(heta)}{\partial heta}$

 $L(\theta_0,\theta_1)$

- Alegem parametrii initiali random $\theta_0^{(0)} \theta_1^{(0)}$
- $\partial L(\theta)$ Calculam gradientul (derivata) Facem un pas mic in directia opusa

 $L(\theta_0,\theta_1)$

 $L(\theta_0 \theta_1)$

- Alegem parametrii initiali random $\theta_0^{(0)} \theta_1^{(0)} \sim N(0, \sigma^2)$
- Calculam gradientul (derivata)
- Facem un pas mic in directia opusa

gradientului: $\theta^{(t)} \leftarrow \theta^{(t-1)} - \alpha \frac{\partial L(\theta^{(t-1)})}{\partial \theta^{(t-1)}}$

• Repetam pana la convergenta

while not_converged:

weights_grad = evaluate_gradient(loss, data, weights) //backpropagation
weights -= step size * weights grad //updatarea parametrilor

Calcularea gradientului - Backpropagation

- Gradientul ne spune cum afecteaza o schimbare mica in parametrii heta costul final L
- In 1D, derivata unei functii L: $\frac{\partial L(\theta)}{\partial \theta} = \lim_{h \to 0} \frac{L(\theta+h) L(\theta)}{h}$
- In mai multe dimensiuni gradientul este un vector de derivate partiale pentru fiecare dimensiune
- Functia obiectiv este parametrizata de θ => putem folosi reguli pentru a calcula **gradientul analitic**

Calcularea gradientului - Backpropagation

• The chain rule

$$\frac{\partial L(\theta)}{\partial \theta_2} = \frac{\partial L(\theta)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial f} * \frac{\partial f}{\partial z_2} * \frac{\partial z_2}{\partial \theta_2}$$

$$\frac{\partial L(\theta)}{\partial \theta_1} = \frac{\partial L(\theta)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial f} * \frac{\partial f}{\partial z_2} * \frac{\partial z_2}{\partial g} * \frac{\partial g}{\partial z_1} * \frac{\partial z_1}{\partial \theta_1}$$

Gradientul cross-entropiei

likelihood

$$\hat{y}_k(x) = p(C_k|x)$$

$$\hat{y}_k(x) = p(C_k|x)$$

 $L(heta) = -\sum \sum y_k^{(n)} log(\hat{y}_k^{(n)})$ = negative log

$$\hat{y}_k(x) = p(C_k|x)$$
 $p(Y|X) = \prod_{k=0}^{N} p(y^{(n)}|x^{(n)}) = \prod_{k=0}^{N} \prod_{k=0}^{K} (\hat{y}_k(x^{(n)}))^{y_k^{(n)}}$

$$egin{aligned} rac{\partial rac{f(x)}{g(x)}}{\partial x} &= rac{\partial f(x)}{\partial x} * g(x) - f(x) * rac{\partial g(x)}{\partial x} \ g(x)^2 \end{aligned} \quad \delta_{ki} = egin{cases} 1, & k == i \ 0, & ext{otherwise} \end{cases}$$

Reminder!

$$\left|rac{L}{\hat{y}_k}
ight|_* \left|rac{\partial \hat{y}_k}{\partial x_i}
ight|_*$$

$$egin{aligned} rac{\partial \hat{y}_k}{\partial x_i} = \hat{y}_k * (\delta_{ki} - \hat{y}_i) \end{aligned}$$

$$\left|rac{\partial L(x_i)}{\partial x_i}
ight|=\hat{y}_i-y_i$$

Updatarea parametrilor

Stochastic vs batch gradient descent

$$\theta \leftarrow \theta - \alpha \frac{\partial L(\theta)}{\partial \theta}$$

- Stochastic Gradient Descent
 - Modificam parametrii dupa fiecare exemplu
 - Exemple On-line, dataseturi redundante foarte mari
- Batch Gradient Descent
 - Modificam parametrii dupa ce calculam eroarea (L) peste toate exemplele din dataset
 - Poate fi paralelizat, eroarea (L) este estimata foarte bine
- Mini-batch Gradient Descent (cateodata denumit si SGD stochastic gradient descent)
 - Modificam parametrii dupa ce calculam eroarea (L) peste un mini-batch de exemple din dataset (32, 64, 128, 256, 512, 1024)

Setarea ratei de invatare

Rata de invatare mica

- Converge foarte lent
- Poate ramane blocata intr-un minim local

Rata de invatare mare

- Face un pas prea mare sare peste goal
- Devine instabila, diverge

Rata de invatare adaptabila

o In episodul urmator...

Overfitting

Generalizare

 Proprietatea unui estimator functional de a generaliza dincolo de exemplele pe care a fost antrenat

antrenare		evaluare
antrenare	validare	evaluare

50,000 imagini - antrenare [32x32x3] 10,000 imagini - evaluare

underfitting
Ideal fit
overfitting

Initializarea parametrilor

- Initializare cu zero ?
 - Fiecare neuron calculeaza acelasi output, acelasi gradient si executa acelasi update
- Initializare cu numere mici random
 - Fiecare neuron este unic si calculeaza update-uri distincte
 - Initializare dintr-o gaussiana centrata in 0 cu varianta = sqrt(0.01)
 - W = 0.01 * np.random.randn(n) e proporțional pe valoarea parametrilor) va fi mic
- Calibrarea variantei

```
w = np.random.randn(n) / sqrt(n)
```

- o Distributia activarilor unui neuron initializat random creste cu numarul de intrari
- Putem normaliza varianta fiecarui neuron pentru ca output-ul sa aiba varianta 1

Overfitting

Regularizare

- Aplicarea de constrangeri asupra problemei de optimizare pentru a descuraja modele complexe
- Imbunatateste capacitatea de a generaliza a modelului pe date pe care nu le-a mai vazut
- Tehnici: L1 norm, L2 norm, Dropout, Early stopping, label smoothing (in episodul urmator…)

L2 norm

Sumar concepte fundamentale

Perceptronul

- ★ Unitatea de baza
- ★ Clasificare
- ★ Functii de activare nonliniare

Retele cu un singur strat

- ★ Suprapunerea perceptronilor pentru a construi retele
- ★ Functii de cost
- ★ Optimizare cu backpropagation

Antrenare

- Mini-batch Stochastic gradient descent
- ★ Rate de invatare
- ★ Regularizare

