

Towards a device-infrastructure continuum in IoT and OT networks

HKUST Internet Research Workshop 2024, 2024-03-15 Carsten Bormann

Carsten Bormann Universität Bremen TZI IRTF T2T RG

cabo@tzi.org

IETF

- "Make the Internet work better"
- High-quality standards that run the Internet
- "Engineering"
- Open

• IRTF

- Research arm
- No "standards"
- Foster relevant research

Internet of Things (IoT): Thingness

Thing:

A **physical** item that is also made available in the **IoT**.

- notable for their interaction with the physical world beyond
 - interaction with humans, and
 - its own physical internals.
- a temperature sensor or a light might be a Thing,
- but a router might exhibit less Thingness, even if it employs both temperature sensors and indicator lights, as the effects of its functioning are mostly on the digital side.
- → **Thingness**: the Thing is interesting because of its interactions with the physical world.

Constraints of IoT nodes

- Need to work with little power (energy)
 - RFC 7228 "constrained node"
 - Microcontroller, not full computer
- Need to be inexpensive in TCO

- Need to be in strange places → physical distribution
 - ► → mostly remote management
- Need to work with little attention
- Have limited user interfaces
- Need to run for decades
- Need to run continuously
- → Are hard to bug-fix and upgrade

Pets vs. Cattle

Pet

- Treat as a unique item
 - Individual attention during network design and operation
- Individual configuration

Cattle

- Treat as a herd
 - Individual attention during installation only
- Individual identity, common configuration

1Zi Security

♦ Disclosure:

- ... of personal information → privacy violations
- ... of industrial information → espionage, reconnaissance
- **⇔ ∲** Falsification:
- → Cannot rely on data (possibly regulatory consequences)
- **♦ ♦** Malicious take-over:
- Node no longer reliable
- Vehicle for DDoS attacks on others/other things
- → Modern architectures (e.g., zero-trust):
- Protection of Data is end-node responsibility
- Protection of Meta-Data is hard
- Protection of nodes needs software updates, attestation

TZ

Job of the IoT **network**

- Help in initialization/setup (e.g., assign IP address)
- Connectivity to desirable partners
 - Service parameters: Latency, bandwidth
 - Protect IoT node from irrelevant events
 (e.g., routing changes, hardware failover)
- Protect node from undesirable access (battery depletion)
- **Protect** others from malfunction/attack

- Focus for today's talk:
 - Cattle
 - no personal data (PII) → industrial, building control, ...

What information can we build on?

- Instance information
 - Operational data (e.g., IP address)
 - Purpose in Life
 - e.g., installed where/for what
 - Instance-level communication partners,
 communication parameters (e.g., MQTT broker, topic)
 - Individual software state; attestation, ...
 - Class (see below)
- Class information
 - Physical interfaces/capabilities
 - IoT Affordances (interaction patterns)
 - Class-level communication partners (e.g., update server)

What does the network see from this?

- First hop:
 - MAC address (now often randomized)
 - Potentially: Association info (802.1X etc.) → ~ node identity
- Following hops:
 - Source address, destination address, protocol (TCP/UDP)
 - More information by peeking into the packet (ports, etc.)
 - Potentially: path-level negotiation (RSVP/integrated services)
 - Based on 5-tuple (SA, DA, protocol, SP, DP)
 - Intentional traffic classification by sender
 - DSCP (was: type of service ToS): differentiated services only 6 bits, bleached on domain boundaries
 - VLAN ID
 - Semantic Addressing

Do you know what's on your network?

Surprisingly, this is often not well-defined, even in OT environments

The explosion of variety

- Over time, the number of classes of IoT Things increases
 - New kinds of devices
 - New suppliers, new product lines
 - New software versions
 - New usages
- Even factories are now multi-stakeholder environments
 - Compare airplanes, where the engines are islands of control
 - Who is responsible for a node?
- Desirable communication changes with new classes, instances
 - Which devices and IT nodes are the peers?
 - What are the performance needs?

Device Classes are Cattle

- We no longer can manually react to each new Thing species
- Information about device classes needs to be machine-readable
- Devices need to offer self-descriptions, provided by
 - Manufacturers (ODMs, OEMs, ... through supply chain)
 - Integrators
 - Application operators
- Important for Thing software security:
 - SBOM (Software "Bill of Materials"; supply chain), SWID/CoSWID, CoRIM (Reference Integrity Measurements)
 - Manifests for Secure Software Update (IETF SUIT)

Keeping control

- Devices can be
 - Misconfigured, reacting badly to environmental changes
 - Attacked and compromised
 - Possibly after detection of vulnerability (zero-day)
- Is the device still healthy, i.e., behaving as desired?
 - Things have small number of purposes, are simple
 - Generally can define behavior tightly
 - If behavior leaves that envelope → problem?!
- IoT device manufacturer may know some of this
 - Class information
- "Purpose in life" information also needed
 - Class, instance information

RFC 8520: Manufacturer's Usage Description

- Trustworthy class information about intended behavior
- Actionable, can be translated into network control
- Manufacturer provides MUD file (simple JSON format)
- Makes it available under trustworthy URL (https://)
- Device declares its MUD URL (LLDP, DHCP, ...)
- MUD controller picks up MUD information
 - Authorization is a device like this even acceptable?
 - Derives network control information
 - Relays it to policy decision points, enforcers

MUD limitations

- MUD = Manufacturer's Usage Description
 - Class-level only
- MUD Information cannot be adapted to purpose in life
 - Actually desired peers are defined by application, not available at time of manufacture
- "Intended behavior" limited to ACL
 - No dynamic information DNS indirection only
 - No quantitative information, no AI/ML
- Manufacturers have a hard time generating MUD files
 - Limited expressibility, too easy to open all barn doors
 - Incentive still low

MUD for legacy devices

- Manufacturer may no longer be around
 - Or not interested/qualified to provide MUD info
- Approach: Observe instances (classical, AI/ML)
- Generate non-manufacturer MUD files from observed behavior
- Can check behavior for covert call-home or other infractions
- Users of device class can collaborate via open-sourcing:
 - → Curated repositories of reverse-engineered MUD files

TZi Beyond MUD

- Benefit from other types of self-description
 - W3C Web of Things "Thing description/model" TD/TM
 - IETF "Semantic Definition Format" SDF
 - OpenAPI API definitions
- Integrate with "Purpose in Life" information
 - Generated from network planning and design, applications
 - E.g., based on "Internet Ontology"
 - Needs to enable merging/inference with self-description and operational information
- Obtain attestations about device health
 - More self-description information from Attestation Verifiers

SDF: Semantic Definition Format

- Describe nodes beyond their network behavior
- Based on json.schema.org-like data model
- Interactions: Property, Action, Event
- Designed as a hub for ecosystem models
- Converters from/to OMA, OCF, ... models exists
- Ecosystem specific mappings into protocols complement SDF
- draft-ietf-asdf-sdf-18 agreed by WG, IESG step next
- Compare W3C Thing Description

"KNOW MORE

What is on the network; what is the desirable traffic, not all traffic is the same

Where we want to be:

Well-Informed Networking (WIN)

Ask not what your network can do for you ask what you can do for your network!

Inspired by John F. Kennedy's famous inaugural address, 1961-01-20