This document will give you comprehensive about the files uploaded in github as a part of submission. It also covers proposed solution.

Step 1:

- IDE Used: Visual studio and Jupyter notebook inside VS Code
- Create new venv and activate it using python or conda
- Using pip, you can install requirements.txt file (using command: pip install –r requirements.txt)

Step 2: Data Sample files and Data Generation Approach

- Inside your workspace create two folders:
 - o csv files
 - o json_files
- Paste all csv_files and json_files inside their respective folders.
- Note: Change the path as per your need in order to open/analyze files
- Ison data files:
 - o sample_diverse_dataset.json
 - Contains diverse herd information (yak name, age, health and behavior)
 - o sample_json.json
 - Contains herd information (yak name, sex, age)
 - o sample_order_data.json
 - Contains order information for 100 random customers
 - It shows customer name, order, date
 - o sample_stock_data.json
 - Contains 100 stock samples (milk, skins)
 - o customer_order_fullfillment_results.json
 - Contains order fulfillment status for 100 customers from sample_order_data.json with corresponding orders in sample_stock_data.json
 - Sample_diverse_dataset_updated.json
 - More features added for behavior analysis
 - o sample_diverse_dataset_recommendation.json
 - Comprehensive data for recommendation analysis

• CSVs data files:

- sample_diverse_dataset.csv for querying using NLP agent
- sample_ison.csv for querying using NLP agent
- o sample_order_data.csv for querying using NLP agent
- o sample_stock_data.csv for quering using NLP agent

• Data Creation Approach:

- o <u>REFERENCE FILE: data_generator.ipynb</u>
- Based on the sample data provided in the tasks, 100 samples are created randomly for each json.

- These json files are further utilized for every other tasks core_functionality, AI models, Behavior analysis
- CSV files are just for NLP Query Agents

Other Python Files

- core_functionality_solution.ipynb
 - o this file solves core functionality needed for the tasks which includes:
 - Data Preprocessing
 - Stock and Herd Management Functions
 - Order Fulfillment Logic
 - o Note: code logics can be referred via comments

anomaly_detection.ipynb

- ML model for anomaly detection
 - Model Used Unsupervised Learning ML Model: IsolationForest
 - Reason to choose this model:
 - Effectiveness in Handling Outliers
 - Robustness to Noise and Irregularities
 - Efficient Computation
 - Parameter-Free Approach
 - Handling High-Dimensional Data
 - No Assumptions about Data Distribution
 - Effective in Unsupervised Learning Scenarios
- o **Note:** Testing has been done using inference data
- o **Note:** Model has been evaluated on accuracy, false positive rates
- behavior_analysis.ipynb
 - ML model for behavior analysis
 - o Note:
 - The provided behavior analysis model attempts to predict yak behavior based on 'Age' and 'Health' attributes. While it's a step toward understanding yak behavior, fulfilling the statement to predict and comprehend their behavior over time requires a more comprehensive approach and more features. These features were not present as a part of the sample data
 - Additional relevant features, such as environment, diet, social interactions, or seasonal changes, might provide more comprehensive insights.
 - Model used: Binary Classification model where yak behavior is analyzed with age and health attributes
 - Note: Testing has been done on selecting random data samples from test data and check the model predictions (ground_truth_behavior vs model_predicted_behavior)
- behavior_analysis_updated.ipynb

- New experiments with randomly generated new features to make behavior analysis more robust
- recommendation_analysis.ipynb
 - o recommendation analysis of yak health based on observed attributes
- final_app_agent_nlp.py
 - o In the terminal, type streamlit run final_app_agent_nlp.py
 - o **Note:** Make sure to use your own OPENAI API KEY from OPENAI
 - o a webpage has been created to query different data related csv files
 - o Functionality:
 - You can downloaded multiple CSVs at once
 - You can choose on what csv you need to perform query. Accordingly agent will provide you the answers
 - Agents' modules are used instead of chains modules of LangChain. Agents are not rule based models unlike chains where users have to define a set of prompts in order to get answers from their query. Surprisingly, agents handles this straightaway
 - **Note:** You can query any questions from any csv files
 - Note: You cannot update any value. I doubt if this functionality exists or not
 - Note:
 - My OpenAI free credits are finished, so I am not getting responses back from LLM. Let me fulfill it, I will update it if a demo needs to be shown
 - However, check simple and cool website design to upload and view csvs

Condensed steps for deploying the Yak Shop with AI/ML features on GCP:

Deployment Steps

1. Data Processing:

Google Cloud Storage:

• Upload the JSON file containing herd information to Google Cloud Storage.

Compute Engine:

- Create a Compute Engine instance to run the data processing program.
- Install necessary dependencies and libraries for Python or any preferred programming language.
- Write a script that reads the JSON file path and the elapsed time parameter.

- Use GCP SDKs or libraries to interact with Google Cloud Storage to access the JSON file
- Process the data to simulate changes in the herd after the specified time.

2. Stock and Herd Management:

Google Cloud Functions or App Engine:

- Develop APIs or web services for stock and herd management.
- Utilize Google Cloud Functions or App Engine to host these APIs.
- Connect these services to the processed data obtained from Data Processing step.
- Implement endpoints to calculate and display milk and skin stock after T days.
- Create endpoints to view the herd after T days, including yak details.

3. Order Fulfillment:

Google Cloud Firestore or Cloud SQL:

- Set up a database to manage orders, customer details, and stock availability.
- Create tables/collections to store order details and available stock.
- Develop APIs or services using Cloud Functions or App Engine to handle order requests.
- Implement logic to check stock availability based on incoming orders.
- Return appropriate HTTP status codes and order details based on stock availability.

4. AI/ML Anomaly and Behavior Analysis:

Google Cloud AI Platform:

- Train anomaly detection and behavior analysis models using Google Cloud AI Platform's machine learning services.
- Prepare and preprocess data for training these models.
- Deploy trained models as endpoints on the AI Platform.
- Integrate these endpoints with your Yak Shop application to monitor yak health and behavior.
- Retrieve predictions or analysis results for anomalies and behavioral insights.

- **Note_1:** Throughout these steps, ensure proper authentication, access control, and permissions are set up using GCP IAM (Identity and Access Management) to secure access to resources and services.
- **Note_2:** configure networking and API endpoints appropriately to enable communication between different components of the Yak Shop application on GCP.
- **Note_3:** Always monitor and test the deployed functionalities to ensure they perform as expected and consider using GCP's monitoring and logging services to track application behavior and performance.