Chapitre 16

Arithmétique des polynômes

16	Arithmétique des polynômes	1
	16.1 Division euclidienne	2
	16.7 Proposition 16.7	2
	16.15 Principalité de $\mathbb{K}[X]$	9
	16.17 Existence de $pgcd$	4
	16.18 Principalité de $\mathbb{K}[X]$	4
	16.24Lemme de préparation au calcul pratique du PGCD unitaire	4
	16.26Exemple	Ę
	16.27 Propriétés du PGCD	Ę
	16.29Existence de PPCM	Ę
	16.30 Caractérisation des PPCM par les idéaux	6
	16.42 Cas d'unicité d'une relation de Bézout	(
	16.43Corollaire	7
	16.44 Caractérisation des PGCD et PPCM	7
	16.53 Caractérisation des racines par la divisibilité	8
	16.56Formule de Taylor pour les polynômes	Ć
	16.57 Caractérisation de la multiplicité par les dérivées	ç

Division euclidienne 16.1

Théorème 16.1

Soit $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X]$ non nul, il existe un unique couple de polynômes (Q, R) tel que A = BQ + Ravec $\deg R < \deg B$. Le polynôme Q est appelé **quotient** et R le **rest**e.

Existence:

On raisonne par récurrence sur le degré de A.

- Pour $n = \deg A = 0$. Soit $A \in \mathbb{K}[X]$.
 - Si $\deg B > 0$, alors (0, A) convient.
 - Si deg B=0, le couple $(B^{-1}\times A,0)$ convient (comme B est constant et non nul), alors $B\in\mathbb{K}^*$ donc inversible).
- On suppose le résultat vrai pour tout $A \in \mathbb{K}_n[X]$.

Soit
$$A \in \mathbb{K}_{n+1}[X]$$
 avec deg $A = n+1$.
On écrit $A = \underbrace{a}_{\neq 0} X^{n+1} + A_1$ avec $A_1 \in \mathbb{K}_n[X]$.

- Si $\deg A < \deg B$, le couple (0, A) convient.
- Si $\deg A \ge \deg B$ et on note b le coefficient dominant de B :

$$A - ab^{-1}B \times X^{n+1-\deg B} \in \mathbb{K}_n[X]$$

D'après l'hypothèse de récurrence, on choisit $(Q,R) \in \mathbb{K}[X]^2$ tel que $\deg R < \deg B$ et $A-ab^{-1}B \times B$ $X^{n+1-\deg B} = QB + R.$

Donc:

$$A = \left[Q + ab^{-1}X^{n+1-\deg A}\right] \times B + R$$

<u>Unicité</u>:

On suppose que $A = BQ + R = BQ_1 + R_1$.

$$B(Q-Q_1) = R_1 - R$$

$$\operatorname{donc} \underbrace{\deg (B(Q-Q_1))}_{\deg B + \deg Q - Q_1} = \operatorname{deg} (R_1 - R)$$

$$\leq \max(\operatorname{deg} R_1, \operatorname{deg} R)$$

$$< \operatorname{deg} B$$

$$\operatorname{donc} \operatorname{deg} (Q - Q_1) < 0$$

$$\operatorname{donc} Q - Q_1 = 0$$

$$\operatorname{puis} R_1 - R = 0$$

16.7Proposition 16.7

On a:

- 1. Soit A et P deux polynômes non nuls. Si A|P et si P|A, alors il existe $\alpha \in \mathbb{K}^*$ tel que $P = \alpha A$. (La relation de divisibilité n'est pas antisymétrique)
- 2. Si A|B et si B|C, alors A|C. La relation de divisibilité est transitive.
- 3. Pour tout $A \in \mathbb{K}[X]$ non nul, A|A. La relation de divisibilité est réflexive.
- 1. $P \neq 0$, $A \neq 0$. Si A|P et P|A, alors (16.6.2):

$$\deg A \le \deg P$$
 et $\deg P \le \deg A$

Donc:

$$\deg P = \deg A$$

Or A|P, alors:

$$P = A \times Q$$

Puis:

 $\deg P = \deg(AQ) = \deg A + \deg Q \ (\mathbb{K} \text{ est intègre})$

Donc:

 $\deg Q = 0$

Donc:

$$Q = \alpha \in \mathbb{K}^*$$

- 2. RAS
- 3. RAS

16.15 Principalité de $\mathbb{K}[X]$

Théorème 16.15

Soit I un idéal de $\mathbb{K}[X]$ non réduit à $\{0\}$. Il existe un unique polynôme unitaire D tel que

$$I = D\mathbb{K}[X]$$

Existence:

Soit $I \neq \{0\}$ un idéal.

On note $A = \{ \deg P, P \in I \setminus \{0\} \} \subset \mathbb{N}$.

 $A \neq \emptyset$ $(I \neq \{0\})$, d'après la propriété fondamentale de \mathbb{N} , A possède un plus petit élément noté $n \geq 0$.

Comme $n \in A$, on choisit $D \in I$ tel que deg D = n.

Comme I est un idéal de $\mathbb{K}[X]$ et que $\mathbb{K} = \mathbb{K}_0[X] \subset \mathbb{K}[X]$, on a :

$$\forall \alpha \in \mathbb{K}, \alpha D \in I$$

On peut donc supposer D unitaire. Comme I est un idéal de $\mathbb{K}[X]$, on a :

$$D \times \mathbb{K}[X] \subset I$$

Soit $P \in I$. On effectue la division euclidienne de P par $D \neq 0$:

$$P = BD + R$$

avec $\deg R \subset \deg D$.

Or:

$$R = \underbrace{P}_{\in I} - \underbrace{BD}_{\in I}$$

$$\in I$$

Par définition de $\deg D=n,\ R=0.$

Unicité:

$$I = D\mathbb{K}[X] = J\mathbb{K}[X]$$

avec D et J unitaires.

Or ils sont associés, donc égaux.

16.17 Existence de pgcd

Propostion 16.17

Si A et B sont deux polynômes non nuls, de tels PGCD existent.

Soit A, B dans $\mathbb{K}[X]$, $(A, B) \neq (0, 0)$.

On note $C = \{ \deg P, P | A \text{ et } P | B \text{ et } P \neq 0 \} \subset \mathbb{N}.$

 $\mathcal{C} \neq \emptyset$ car $0 \in \mathcal{C}$ et \mathcal{C} est majoré par $\deg B$ (max($\deg A, \deg B$)).

L'existence est assurée par la propriété fondamentale de \mathbb{N} .

16.18 Principalité de $\mathbb{K}[X]$

Propostion 16.18

Soit A et B deux polynômes non tous deux nuls. Soit $D \in \mathbb{K}[X]$. Alors Δ est un PGCD de A et B si et seulement si

$$A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X].$$

D'après (16.15), on choisit $F \in \mathbb{K}[X]$ tel que :

$$A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Soit $D \in \mathbb{K}[X]$.

 \Rightarrow

On suppose que D est un PGCD.

Donc D|A et D|B.

Donc D|F (combinaison $F \in A\mathbb{K}[X] + B\mathbb{K}[X]$).

Or F|A et F|B $(A \in F\mathbb{K}[X], B \in F\mathbb{K}[X])$.

Par maximalité de $\deg D$, on a F et D associés.

 \Leftarrow

$$D\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Donc D|A et D|B.

Pour tout diviseur commun P de A et B, P|A et P|B.

Donc $P|D \ (D \in A\mathbb{K}[X] + B\mathbb{K}[X]).$

Donc $\deg D$ est maximal pour la divisibilité.

16.24 Lemme de préparation au calcul pratique du PGCD unitaire

Lemme 16.24

Soit A et B deux polynômes tels que $B \neq 0$. Pour tout $Q \in \mathbb{K}[X]$, on a $A \wedge B = (A - BQ) \wedge B$. En particulier, si Q et R sont le quotient et le reste de la division euclidienne de A par B Alors $A \wedge B = B \wedge R$.

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= (A - BQ)\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= ((A - BQ) \wedge B)\mathbb{K}[X]$$

Donc $A \wedge B$ et $(A - BQ) \wedge B$ sont associés, unitaires par définition, donc égaux.

16.26 Exemple

Exemple alternatif 16.26

Trouver les PGCD de $A = X^5 + 2X$ et de $B = X^4 + 2X^3 + 4$ et une relation de Bézout.

$$X^{5} + 2X = (X^{4} + 2X^{3} + 4)(X - 2) + 4X^{3} - 2X + 8$$

$$X^{4} + 2X^{3} + 4 = (4X^{3} - 2X + 8)(\frac{1}{4}X + \frac{1}{2}) + \frac{1}{2}X^{2} - X$$

$$4X^{3} - 2X + 8 = (\frac{1}{2}X^{2} - X)(8X + 16) + 14X + 8$$

$$\frac{1}{2}X^{2} - X = (14X + 8)(\frac{1}{28}X - \frac{9}{14 \times 7}) + \frac{9 \times 4}{7^{2}}$$

$$A \wedge B = 1$$

$$\begin{aligned} \frac{9 \times 4}{7^2} &= \frac{1}{2}X^2 - X - (14X + 8)(\frac{1}{28}X - \frac{9}{2 \times 7^2}) \\ &= \frac{1}{2}X^2 - X - (4X^3 - 2X + 8 - (\frac{1}{2}X^2 - X)(8X + 16))(\frac{1}{28}X - \frac{9}{2 \times 7^2}) \end{aligned}$$

16.27 Propriétés du PGCD

Propostion 16.27

L'opération \wedge est commutative et associative. Par ailleurs, si C est unitaire, alors $(A \wedge B)C = (AC) \wedge (BC)$.

Soit $(A, B, C) \in \mathbb{K}[X]^3$ non tous nuls.

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= B\mathbb{K}[X] + A\mathbb{K}[X]$$
$$= (B \wedge A)\mathbb{K}[X]$$

Donc $A \wedge B$ et $B \wedge A$ sont associés et unitaires donc égaux.

$$\begin{split} ((A \wedge B) \wedge C) \mathbb{K}[X] &= (A \wedge B) \mathbb{K}[X] + C \mathbb{K}[X] \\ &= A \mathbb{K}[X] + B \mathbb{K}[X] + C \mathbb{K}[X] \\ &= (A \wedge (B \wedge C)) \mathbb{K}[X] \end{split}$$

Donc $A \wedge (B \wedge C)$ et $(A \wedge B) \wedge C$ sont associés et unitaires donc égaux. On suppose C unitaire. On a :

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$

donc $(A \wedge B)C\mathbb{K}[X] = AC\mathbb{K}[X] + BC\mathbb{K}[X]$
 $= ((AC) \wedge (BC))\mathbb{K}[X]$

Ainsi $C(A \wedge B)$ et $(AC) \wedge (BC)$ sont associés et unitaires donc égaux.

16.29 Existence de PPCM

Propostion 16.29

Soit \mathbb{K} un corps. Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$. Alors A et B admettent des PPCM.

On note $\mathcal{D} = \{ \deg P, A | P, B | P, P \neq 0 \} \subset \mathbb{N}$.

$$\deg AB \in \mathcal{D} \neq \emptyset$$

On conclut avec la propriété fondamentale de \mathbb{N} .

16.30 Caractérisation des PPCM par les idéaux

Propostion 16.30

Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$ et soit $P \in \mathbb{K}[X]$. Alors P est un PPCM de A et B si et seulement si

$$A\mathbb{K}[X] \cap B\mathbb{K}[X] = P\mathbb{K}[X].$$

 $A\mathbb{K}[X] \cap B\mathbb{K}[X]$ est un idéal de $\mathbb{K}[X]$, donc de la forme $M\mathbb{K}[X]$ (16.15).

Montrons que P est un PPCM de A et B si et seulement si P et M sont associés.

 \Rightarrow

On a donc : $\frac{1}{2}$

$$P \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$$
$$\in M\mathbb{K}[X]$$

Donc M|P.

Or M est un multiple commun à A et B, donc par définition de P, on a :

$$\deg P \le \deg M$$

Donc P et M sont associés.

On suppose P et M associés, donc :

$$P\mathbb{K}[X] = M\mathbb{K}[X]$$
$$= A\mathbb{K}[X] \cap B\mathbb{K}[X]$$

En particulier, P est un multiple commun à A et B et pour tout $Q \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$, donc P|Q. Donc :

$$degP \le \deg Q$$

16.42 Cas d'unicité d'une relation de Bézout

Propostion 16.42

Soit A et B non constants et premiers entre eux. Il existe un unique couple $(U, V) \in \mathbb{K}[X]^2$ tel que

$$AU + BV = 1$$
 et $\deg U < \deg B$ et $\deg V < \deg A$.

Existence:

 $\overline{\text{Soit }(C,D)} \in \mathbb{K}[X]^2 \text{ tel que } (16.37 - \text{B\'ezout}) :$

$$AC + BD = 1$$

On effectue la dviision euclidienne de C par B:

$$C = BE + U \text{ avec } \deg U < \deg B$$
 donc $AU + B(\underbrace{D + AE}_{V}) = 1$ donc $\deg(AU + BV) = 0$

Si $\deg V \ge \deg A$, alors :

$$\deg B + \deg V \ge \deg B + \deg A$$

$$> \deg U + \deg B$$

$$= \deg AU$$

Donc deg(AU + BV) = deg BV > 0.

Absurde.

L'exsitence est prouvée.

Unicité:

Avec es hypothèses correspondantes :

$$AU_1 + BV_1 = 1 = AU_2 + BV_2$$

donc $A(U_1 - U_2) = B(V_2 - V_1)$
donc $A|B(V_2 - V_1)$

Or $A \wedge B = 1$, donc $A|(V_2 - V_1)$.

Or $\deg(V_2 - V_1) < \deg A$.

Donc $V_2 - V_1 = 0$.

Puis $A(U_1 - U_2) = 0$, donc $U_1 - U_2 = 0$ car $\mathbb{K}[X]$ est intègre avec $A \neq 0$.

16.43 Corollaire

Corollaire 16.43

Soit A, B et C trois polynômes avec A et B premiers entre eux. Alors $A \wedge (BC) = A \wedge C$.

- $A \wedge C | A \text{ donc } A \wedge C | A \wedge (BC)$. Donc $A \wedge C | BC$.
- $A \wedge (BC)|A$. Or $A \wedge B = 1$ donc on peut écrire AU + BV = 1. Donc ACU + BCV = C. Or $A \wedge (BC)|ACU + BCV$ soit $A \wedge (BC)|C$. Donc $A \wedge (BC)|A \wedge C$.

Ainsi, $A \wedge C$ et $A \wedge (BC)$ sont associés et unitaires donc égaux.

16.44 Caractérisation des PGCD et PPCM

Propostion 16.44

Soit A et B deux polynômes non nuls, M et D deux polynômes. Alors

$$M = A \vee B \Leftrightarrow (M \text{ unitaire et } \exists (U,V) \in \mathbb{K}[X]^2, M = AU = BV \text{ et } U \wedge V = 1).$$

$$D = A \wedge B \Leftrightarrow (D \text{ unitaire et } \exists (U,V) \in \mathbb{K}[X]^2, A = DU \text{ et } B = DV \text{ et } U \wedge V = 1).$$

—
$$\Longrightarrow$$
 $M=A\vee B$. On écrit $M=AU+BV$ avec $(U,V)\in\mathbb{K}[X]^2$. On note $R=U\wedge V$. On écrit $U=RU_1$ et $V=RV_1$. Ainsi:

$$M = RAU_1 = RBV_1$$
donc $R(AU_1 - BV_1) = 0$ donc $AU_1 = BV_1$ ($\mathbb{K}[X]$ est intègre)

Donc $M_1 = AU_1 = BV_1$ est un multiple commun et par minimalité des degrés :

$$RM_1 = M|M_1 \text{ donc } R = 1$$

 \Leftarrow

Par hypothèse, M est un multiple commun, donc :

$$M \in A\mathbb{K}[X] \cap B\mathbb{K}[X] = (A \vee B)\mathbb{K}[X]$$

Donc $A \vee B|M$.

Donc $M = D \times A \vee B$.

Or $A \vee B = AU_1 = BV_1$.

Donc $M = DAU_1 = DBV_1 = AU = BV$.

Donc:

$$A(DU_1 - U) = 0$$

$$B(DV_1 - V) = 0$$

Or $\mathbb{K}[X]$ est intègre donc $DU_1 = U$ et $DV_1 = V$.

Donc $D|U \wedge V = 1$.

- \Rightarrow

 $D = A \wedge B$. On écrit A = DU et B = DV.

Or pour $R = U \wedge V$, on écrit $U = RU_1$ et $V = RV_1$.

Donc $A = DRU_1$ et $B = DRV_1$.

Donc DR|A et DR|B.

Donc DR|D.

Nécessairement, R = 1.

 \Leftarrow

Par hypothèse, D|A et D|B, donc $D|A \wedge B$.

Comme $U \wedge V = 1$, d'après le théorème de Bézout :

$$UU_1 + VV_1 = 1$$

donc
$$DUU_1 + DVV_1 = D$$

soit
$$AU_1 + BV_1 = D$$

donc
$$A \wedge B|D$$

Ainsi, $A \wedge B$ et D sont associés. Or ils sont unitaires, donc égaux.

16.53 Caractérisation des racines par la divisibilité

Théorème 16.53

Soit \mathbb{K} un corps, $P \in \mathbb{K}[X]$ et $r \in \mathbb{K}$. Alors r est racine de P si et seulement si X - r divise P. Donc s'il existe $Q \in \mathbb{K}[X]$ tel que P = (X - r)Q.

Si P = (X - r)Q, alors :

$$\tilde{P}(r) = (X - r)\tilde{Q}(r)$$
$$= 0 \times \tilde{Q}(r)$$

= 0

 \Rightarrow

On suppose r racine de P.

On effectue la division euclidienne de P par X-r:

$$P = (X - r)Q + R, R \in \mathbb{K}_0[X]$$

Donc $0 = \tilde{P}(r) = \tilde{R}(r)$.

Donc R = 0.

Donc X - r|P.

16.56 Formule de Taylor pour les polynômes

Théorème 16.56

Soit \mathbb{K} un corps de caractéristique nulle, P un polynôme de $\mathbb{K}[X]$ de degré d et $a \in \mathbb{K}$, alors

$$P = \sum_{k=0}^{d} \frac{P^{(k)}(a)}{k!} (X - a)^{k}.$$

On note $E_k = X^k$, pour $k \in \mathbb{N}$. On a, pour $i \in \mathbb{N}$:

$$E_k^{(i)} = \begin{cases} \frac{k!}{(k-i)!} X^{k-i} & \text{si } i \leq k \\ 0 & \text{si } i > k \end{cases}$$

Ainsi:

$$E_{k}(X + a) = (X + a)^{k}$$

$$= \sum_{i=0}^{k} {k \choose i} a^{k-i} X^{i}$$

$$= \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} a^{k-i} X^{i}$$

$$= \sum_{i=0}^{k} \frac{E_{k}^{(i)}(a)}{i!} X^{i}$$

Soit
$$P = \sum_{k=0}^{d} a_k X^k = \sum_{k=0}^{d} a_k E_k$$
.
Ainsi :

$$P(x+a) = \sum_{k=0}^{d} a_k E_k(X+a)$$

$$= \sum_{k=0}^{d} a_k \sum_{i=0}^{k} \frac{E_k^{(i)}(a)}{i!} X^i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} \left(\sum_{k=i}^{d} a_k E_k^{(i)}(a) \right) X_i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} \left(\sum_{k=0}^{d} a_k E_k^{(i)}(a) \right) X_i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} P^{(i)}(a) X^i$$

16.57 Caractérisation de la multiplicité par les dérivées

Théorème 16.57

Soit \mathbb{K} un corps de caractéristique nulle, $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Le réel a est racine d'ordre multiplicité k de P si et seulement si

$$P(a) = P'(a) = \dots = P^{(k-1)}(a) = 0 \text{ et } P^{(k)}(a) \neq 0.$$

 \Leftarrow

D'après la formule de Taylor :

$$P = \sum_{i=0}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i}$$

$$= \sum_{i=k}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i}$$

$$= (X - a)^{k} \underbrace{\sum_{i=k}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i-k}}_{=Q}$$

$$Q(a) = \frac{P^{(k)}(a)}{k!} \neq 0$$

$$P = \underbrace{(X - a)^k Q}_{B} \text{ avec } Q(a) \neq 0.$$

Pour tout $i \in [0, k-1]$:

$$P^{(i)} = (BQ)^{(i)}$$

$$= \sum_{l=0}^{i} {i \choose l} B^{(l)} Q^{(i-l)}$$

$$P^{(i)}(a) = 0$$

$$P^{(k)} = {k \choose k} B^{(k)}(a) \times Q^{(k-k)}(a)$$

$$= k! \times Q(a) \neq 0$$

Théorème 16.59

Soit \mathbb{K} un corps. Soit $P \in \mathbb{K}[X]$ et r_1, \ldots, r_k des racines deux à deux distinctes de P, de multiplicités respectives a_1, \ldots, a_k . Alors $(X-r_1)^{a_1} \ldots (X-r_k)^{a_k}$ divise P et r_1, \ldots, r_k ne sont pas racines du quotient.

RAF:

$$(X - r_i)^{\alpha_1} \wedge (X - r_k)^{\alpha_k} = 1 \text{ si } i \neq k$$

16.63 Polynômes formels et fonctions polynomiales

Théorème 16.63

Soit \mathbb{K} un corps infini. Alors l'application de $\mathbb{K}[X]$ dans $\mathbb{K}[x]$ qui à un polynôme formel associe sa fonction polynomiale est un isomorphisme d'anneaux.

$$\begin{aligned} & \text{RAF}: \varphi(P) = \varphi(Q) \text{ donc } \varphi(P-Q) = 0 \\ & \tilde{P} - \tilde{Q} \text{ s'annule sur } \mathbb{K} \text{ infini et on applique (16.62)}. \end{aligned}$$