Clase 10 - Análisis de sobrevivencia Análisis de Datos con R para Biociencias.

Dra. María Angélica Rueda | https://genomics.pucv.cl/

Pontificia Universidad Católica de Valparaíso

28 January 2023

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son los análisis de sobrevivencia?
- Método de Kaplan-Meier.
- Test estadístico y estudio de caso.
- ► Interpretación pruebas con R

2.- Práctica con R y Rstudio cloud.

- Realizar análisis de sobrevivencia.
- Realizar gráficas avanzadas con ggplot2.

ANÁLSIS DE SUPERVIVIENCIA

Conjunto de herramientas estadísticas No paramétricas utilizadas para analizar la probabilidad de que un evento (muerte/falla) ocurra en un determinado Tiempo.

CONCEPTOS RELEVANTES

Variables respuesta: Tiempo de supervivencia y Estado (0 - 1).

CONCEPTOS RELEVANTES: DATOS CENSURADOS

- Los organismos pueden entrar en diferentes tiempos al estudio.
- ► El evento puede ocurrir después de finalizar el estudio (Censurar datos).

Ind.	Tiempo	Estado
1	40	1
2		
3		
4	40	0
5		
6		
7		
8		

X = evento

= Censura

EJEMPLO SET DE DATOS

Ind.	Tiempo	Estado
1	40	1
2	10	1
3	10	1
4	40	0
5	60	0
6	40	0
7	30	1
8	10	1

X = evento

• = Censura

MÉTODO DE KAPLAN - MEIER

El método de Kaplan-Meier es un método no paramétrico que estima las probabilidades de supervivencia S(t) en los instantes en los que ha ocurrido el evento.

$$S(t) = \prod_{t < t1} \frac{n_i - d_i}{n_i}$$

 d_i , el número de muertes en el momento t_i n_i , el número de sujetos en riesgo justo antes de t_i .

CALCULAR PROBABILIDAD KM

Tiempo	Prob. sobrevivir	Estimador K-M
0	5/5 = 1	1
10	4/6 = 0,66	0,66
20	5/6 = 0,83	0,54
30	4/5 = 0,80	0,43
40		
50		
60		

$$\hat{S}(t) = \prod_{t_i < t} rac{n_i - d_i}{n_i}.$$

CALCULAR PROBABILIDAD KM

Tiempo	Prob. sobrevivir	Estimador K-M
0	5/5 = 1	1,00
10	4/6 = 0,66	0,66
20	5/6 = 0,83	0,54
30	4/5 = 0,80	0,43
40	3/4 = 0,75	0,32
50	3/3 = 1	0,32
60	3/3 = 1	0,32

GRÁFICA DE SOBREVIVENCIA.

PRUEBA ESTADÍSTICA PARA COMPARAR TRATAMIENTOS

Test estadístico no paramétrico Log rank test.

$$G=2\sum_{i}~O_{i}Inrac{O_{i}}{E_{i}}$$

Hipótesis

H₀: No existen diferencias entre los grupos en la probabilidad de que ocurra un evento (muerte) en ningún tiempo.

 H_1 : Existen diferencias entre los grupos en la probabilidad de que ocurra un evento (muerte) en algún tiempo.

	Grupo 1	Grupo 2
Evento	Prob. KM A	Prob. KM C
Sensura	Prob. KM B	Prob. KM D

Fuente: The log rank test

PRÁCTICA ANÁLISIS DE DATOS

Guía de trabajo práctico disponible en Posit.cloud.

RESUMEN DE LA CLASE

- Revisión de análisis de supervivencia y tiempos de vida media o falla
- Cálculo de probabilidad mediante método de Kaplan- Meier
- Cálculo de probabilidad mediante método de Riesgos proporcionales o regresión COX
- Ejecutamos e interpretamos resultados test de supervivencia con R