Corrigé-type: BEPC

TESTS APMB 2021

N°	ÉLÉMENTS DE RÉ	E RÉPONSE					C.A : Identifie	C.M : Écris ou lise	Pose ou Uti-	C.O: Trouve	
1.a)	Donnons le caractère étudié et sa nature :										
2pts	Le caractère étudié dans cette série statistique est : les mets consommés par des élèves d'un collège ou les habitudes alimentaires des élèves d'un collège. Sa nature est qualitative.										- une réponse appropriée - caractère qualitatif
b)	<u>Déterminons l'effectif total N</u> :										
3pts		Le tableau statistique étant un tableau de proportionnalité, on a : $\frac{16}{20} = \frac{N}{100}$. Donc $N = \frac{16 \times 100}{20}$ soit $N = 80$.						- les colonnes	$ s - \frac{16}{20} = \frac{N}{100}$	$ - N = \frac{16 \times 100}{20} \\ - N = 80 \qquad $	
	$\frac{1}{20} - \frac{1}{100}$. Donc $N = \frac{1}{100}$							Haricot et Total			
c)	Paganiana nuis gamplétana la tableau statistique :						l				
14pts	Nombre d'élèves 17 24 16 15 8 80					<u>×N</u> . Total	- le tableau	$-f_{i} = \frac{n_{i} \times 100}{N} \text{ et } n$ $-f_{i} = \frac{17 \times 100}{80}$ $-n_{i} = \frac{15 \times 100}{80}$ $-f_{i} = \frac{10 \times 80}{100}$ $-n_{i} = 80 - (17 + 6)$ $-f_{i} = \frac{24 \times 100}{80}$ $ $	16+15+8)	- les six valeurs exactes manquantes - exactitude du tableau complèté.	
	(en %)	21,25	30	20	18,75	10	100				

2)	Diagramme semi-circulaire:			
	Désignons par α_1 , α_2 , α_3 , α_4 , et α_5 les mesures des angles corres-	- les effectifs n_i	$-\alpha_i = \frac{180^{\circ} \times n_i}{N}$	- 38°, 45°, 36°, 34° et 18°
	pondant respectivement aux nombres d'élèves ayant consommé du	$\operatorname{et} N$	1 V	pour les mesures d'angles
	riz, du haricot, du Couscous et du Attiékè. On a : $\alpha_i = \frac{180^{\circ} \times n_i}{N}$. Donc :		$-\alpha_1 = \frac{180^{\circ} \times 17}{80}$	
	$\alpha_1 = \frac{180^{\circ} \times 17}{80} = 38,25^{\circ} \text{ soit } \alpha_1 = 38^{\circ}; \alpha_2 = \frac{180^{\circ} \times 24}{80} = 54^{\circ}$	I	$-\alpha_2 = \frac{180^{\circ} \times 24}{80}$	
11pts	$\alpha_3 = \frac{180^{\circ} \times 16}{80} = 36^{\circ}; \alpha_4 = \frac{180^{\circ} \times 15}{80} = 33,75^{\circ} \text{ soit } \alpha_1 = 34^{\circ}$		$-\alpha_3 = \frac{180^{\circ} \times 16}{80}$	- exactitude du diagramme
1	$\alpha_5 = \frac{180^{\circ} \times 8}{80} = 18^{\circ}$ Alors on obtient :		$-\alpha_4 = \frac{180^{\circ} \times 15}{80}$	contruis
			$-\alpha_5 = \frac{180^{\circ} \times 8}{80}$	11
	Pâte Haricot		III	
	P. Couscous			
	12 36 36 34° Atticke			
	38 78			
	Diagramme semi-circulaire			
3)	Le met le plus consommé :			
	La modalité Pâte est le mode de cette série statistique car ayant l'ef-	- le tableau sta-	- La modalité Pâte est le	- Le met le plus consommé
3pts	fectif le plus élevé. Ainsi, le met le plus consommé chez Awa est la	tistique	mode de cette série statis-	
	Pâte.	I	tique (ou une phrase équiva-	I
4	Tananan da 244 da Banatan anna da mata		lente)	
4.	Longueur du côté de l'ancien espace de vente:	r , 1 1	12 . 12 . 02	1 2 /2
3pts	Soit <i>L</i> cette longueur. Par hypothèse, on a $L^2 + L^2 = 6^2$. Donc $2L^2 = 36$ alors $L^2 = 18$. Ainsi, $L = \sqrt{18}$ soit $L = 3\sqrt{2}m$	- L et la diago- nale $6m$	$-L^{2}+L^{2}=6^{2}$	$-L = 3\sqrt{2}m$
F	aiois $L = 10.7$ missi, $L = \sqrt{10}$ soft $L = 3\sqrt{2}$ m	Hate Om		
5.a)	Écrivons plus simplement x:			
5pts	On a $x = 5 + \sqrt{288 - 3}\sqrt{128} + \sqrt{162}$	- x	-une méthode appropriée	$-x = 5 - 3\sqrt{2}$
	$= 5 + \sqrt{2 \times 144} - 3\sqrt{2 \times 64} + \sqrt{2 \times 81}$		11	-a = 5 et b = -3
	$= 5 + 12\sqrt{2} - 24\sqrt{2} + 9\sqrt{2}$ Donc $x = (5 - 3\sqrt{2})m$. Ainsi, $a = 5$ et $b = -3$			11
	Done $x = (3-3\sqrt{2})m$. Allisi, $u = 3$ et $v = -3$			

b)	Signe de $5 - 3\sqrt{2}$:			
3pts	On a 5 > 0; $3\sqrt{2}$ > 0 et 5^2 = 25; $(3\sqrt{2})^2$ = 18. Or 25 > 18, donc 5^2 > $(3\sqrt{2})^2$. Ainsi, $5 > 3\sqrt{2}$ soit $5 - 3\sqrt{2} > 0$. Alors $5 - 3\sqrt{2}$ est de signe (+).	$-5-3\sqrt{2}$	- une méthode appropriée	$-5-3\sqrt{2}$ est de signe (+)
c)	Longueur du côté du nouvel espace de vente :			
4pts	Désignons par L' cette longueur. On a par hypothèse, $L' = L + x$. Donc $L' = 3\sqrt{2} + 5 - 3\sqrt{2}$ Soit $L' = 5m$	- L et x	$-L' = 3\sqrt{2} + 5 - 3\sqrt{2}$	-L' = L + x $-L' = 5m$
d)	Encadrement de $5-3\sqrt{2}$:			
4pts	On a: 1,41 < $\sqrt{2}$ < 1,42. Alors -3 × 1,41 > -3 $\sqrt{2}$ > -3 × 1,42 Soit -4,26 < -3 $\sqrt{2}$ < -4,23. Donc -4,26 + 5 < -3 $\sqrt{2}$ + 5 < -4,23 + 5 Ainsi 0,74 < 5 - 3 $\sqrt{2}$ < 0,77. Par conséquent 0,7 < 5 - 3 $\sqrt{2}$ < 0,8	$\begin{vmatrix} -1,41 < \sqrt{2} < \\ 1,42 \end{vmatrix}$	- un raisonnement cohérent	$-0.7 < 5 - 3\sqrt{2} < 0.8$
6.a) 8pts	Calculons les distances: $PQ = \sqrt{(4+1)^2 + (3-3)^2} = \sqrt{5^2 + 0} = 5m$ $QR = \sqrt{(4-4)^2 + (-2-3)^2} = \sqrt{0+5^2} = 5m$ $RS = \sqrt{(-1-4)^2 + (-2+2)^2} = \sqrt{5^2 + 0} = 5m$ $SP = \sqrt{(-1+1)^2 + (3+2)^2} = \sqrt{0+5^2} = 5m$	- les points P, Q, R et S	- la formule $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ pour chacune des distances	- $5m$ comme valeur de chaque distance.
b) 7pts	•Justifions que \overrightarrow{PQ} et \overrightarrow{PS} sont orthogonaux : On a $\overrightarrow{PQ}(5;0)$; $\overrightarrow{PS}(0;-5)$ et $x_{\overrightarrow{PQ}} \times x_{\overrightarrow{PS}} + y_{\overrightarrow{PQ}} \times y_{\overrightarrow{PS}} = 5(0) + 0(-5) = 0$ Donc \overrightarrow{PQ} et \overrightarrow{PS} sont orthogonaux •Justifions que \overrightarrow{PQ} et \overrightarrow{RS} sont colinéaires : On a $\overrightarrow{RS}(-5;0)$ et $x_{\overrightarrow{PO}} \times y_{\overrightarrow{PS}} - y_{\overrightarrow{PO}} \times x_{\overrightarrow{RS}} = 5(0) - 0(-5) = 0$	- les vecteurs \overrightarrow{PQ} , \overrightarrow{PS} et \overrightarrow{RS}	- les relations $xx' + yy = 0$ et $xy' - yx' = 0$	- exactitude de chaque Justi- fication
	Donc \overrightarrow{PQ} et \overrightarrow{RS} sont colinéaires			
c) 4pts	<u>Déduction</u> : D'après ce qui précède, le quadrilatère $PQRS$ est tel que $PQ = QR = RS = SP = 5m$; $(PQ) \perp (PS)$ et $(PQ) \parallel (RS)$. Alors $PQRS$ est un carré	- les résultats des questions a) et b)	- un raisonnement cohérent	- <i>PQRS</i> est un carré de côté 5 <i>m</i> et conclus
	de côté $5m$. Ainsi, les points du plan fournis par Nelson peuvent convaincre Awa.	I		П

7.	Calculons la capacité V_1 :			
4pts	Par hypothèse, on a $V_1 = \frac{1}{3}\pi \left(\frac{d}{2}\right)^2 H$. Soit $V_1 = \frac{\pi d^2 H}{12} = \frac{\pi \times 0, 8^2 \times 1, 5}{12}$	- <i>d</i> et <i>H</i>	$-V_1 = \frac{1}{3}\pi \left(\frac{d}{2}\right)^2 H$ $-V_1 = \frac{\pi \times 0, 8^2 \times 1, 5}{12}$	$-V_1 = 0,08\pi m^3$
	$V_1 = 0.08\pi m^3$		$-V_1 = \frac{12}{12}$	I
			l l	
8.	<u>Démonstration</u> :			
	Le triangle étant équilatéral, alors la hauteur h et son côté correspon-	- <i>h</i> et <i>c</i>	$-h^2 + \left(\frac{c}{2}\right)^2 = c^2$	$-c^2 = \frac{4h^2}{3}$ puis conclus
3pts	dant c sont tels que $h^2 + (\frac{c}{2})^2 = c^2$. Donc $c^2 - \frac{c^2}{4} = h^2$ soit $\frac{3c^2}{4} = h^2$		I	3
	alors $c^2 = \frac{4h^2}{3}$ d'où $c = \frac{2}{3}h\sqrt{3}$			I
9.a)	Calculons l'aire A de la base initiale :			
3pts	On a $A = \frac{h \times c}{2}$. Et avec $c = \frac{2}{3}h\sqrt{3}$, on obtient $A = \frac{h^2\sqrt{3}}{3}$	- <i>h</i> et <i>c</i>	$-A = \frac{h^2\sqrt{3}}{3}$	$-A = 0,208 m^2$
	Donc $A = 0.208 m^2$			
b)	Calculons l'aire A' de la base réduite :			
	On a $\frac{A'}{A} = k^2$ donc $A' = k^2 \times A$	- <i>A</i> et <i>k</i>	$A'_{-1.2}$	$A' = k^2 \times A$
5pts	On a $\frac{1}{A} = k^-$ donc $A = k^- \times A$		$-\frac{A'}{A} = k^2$ $-A' = (0,75)^2 \times 0,208$	$-A' = k^2 \times A -A' = 0,117 m^2$
	$A' = (0,75)^2 \times 0,208 = 0,117m^2$		$-A' = (0,75)^2 \times 0,208$	
				П
10.	Calculons la capacité V :			
	On a $v = \frac{1}{3}H(A + \sqrt{AA'} + A')$	- A, A' et H	$-v = \frac{1}{3}H(A + \sqrt{AA'} + A')$	$-V = 0,2405m^3$
4pts	$V = \frac{1}{3} \times 1,5 (0,208 + \sqrt{0,208 \times 0,117} + 0,117)$. Soit Donc $V = 0,2405 m^3$,		,
	3 1,0(0,200 1 0,200 1 0,111 1 0,111). Cont Boile 1 0,2100//		$ - V = \frac{1}{3} \times 1,5(0,204 + \sqrt{0,204 \times 0,11475} + 0,11475) $	I
			\(\qqq \qu	
Total	PONDÉRATIONS:		11	
	Attribution des N points de critères de perfectionnent (Ligibilité Pro	00.64	00.014	40.00
100pts	preté et Originalité) :	- 20 CA	- 30 CM	- 40 CO
	Si $40 \le T < 60$ alors accorder $N = 2 + 2 + 1$	- 1 CA = 1 point	- 1 CM = 1 point	- 1 CO = 1 point
	Si $T \ge 60$ alors accorder $N = 4 + 3 + 3$			
	N.B.: Accorder les points aux candidats ayant trouvé des valeurs			
	très proches de A, A' et V.			