Ćwiczenia z ANALIZY NUMERYCZNEJ

Lista nr 11

 $18~{\rm grudnia}~2024\,{\rm r}.$

Zajęcia 7 stycznia 2025 r. Zaliczenie listy **od 4 pkt.**

L11.1. 1 punkt Udowodnij, że nie istnieje taki dyskretny iloczyn skalarny postaci

$$\langle f, g \rangle_N := \sum_{k=0}^N f(x_k) g(x_k) \qquad (x_0 < x_1 < \dots < x_N),$$

względem którego wielomiany $1, x, x^2, x^3, \dots, x^N$ byłyby ortogonalne.

- **L11.2.** I punkt Niech P_k $(0 \le k \le N)$ oznacza k-ty wielomian ortogonalny względem iloczynu skalarnego $\langle \cdot, \cdot \rangle_N$. Ustalmy liczbę naturalną $1 < n \le N$. Znajdź taką największą liczbę naturalną m, że dla dowolnego wielomianu $w \in \Pi_m$ jest $\langle w^2 + v, P_n \rangle_N = 0$, gdzie v(x) := 2025(x 2024).
- **L11.3.** 1 punkt Niech P_0, P_1, \ldots, P_N będzie ciagiem wielomianów ortogonalnych względem iloczynu skalarnego $\langle \cdot, \cdot \rangle_N$. Załóżmy, że współczynnik wiodący wielomianu P_k ($0 \le k \le N$) jest równy 1. Udowodnij podaną na wykładzie zależność rekurencyjną spełnianą przez te wielomiany.
- **L11.4.** I punkt Niech $\{P_k\}$ będzie ciągiem wielomianów ortogonalnych względem iloczynu skalarnego $\langle f,g\rangle_N:=\sum_{k=0}^N f(x_k)g(x_k)$, gdzie x_0,x_1,\ldots,x_N są parami różnymi punktami. Załóżmy, że współczynnik wiodący wielomianu P_k $(0 \le k \le N)$ jest równy 1. Ustalmy $x \in \mathbb{R}$ oraz liczbę naturalną n < N. Ile i jakich operacji arytmetycznych **wystarczy** wykonać, aby obliczyć wartości $P_0(x), P_1(x), \ldots, P_n(x)$? Uwzględnij **wszystkie** szczegóły obliczeń.
- **L11.5.** 1 punkt Niech $\{Q_k\}$ będzie ciągiem wielomianów określonych w następujący sposób:

$$\begin{cases} Q_0(x) = 1, & Q_1(x) = x - c_1, \\ Q_k(x) = (x - c_k)Q_{k-1}(x) - d_kQ_{k-2}(x) & (k = 2, 3, ...), \end{cases}$$

gdzie wielkości c_k, d_k są znane dla wszystkich $k \in \mathbb{N}$. Udowodnij, że następujący algorytm Clenshawa:

$$\begin{split} B_{m+2} &:= B_{m+1} := 0, \\ B_k &:= a_k + (x - c_{k+1}) B_{k+1} - d_{k+2} B_{k+2} \qquad (k = m, m-1, \dots, 0), \\ \text{wynik} &:= B_0, \end{split}$$

oblicza wartość sumy $\sum_{k=0}^m a_k Q_k(x)$. Jak wykorzystać powyższy algorytm do obliczenia wartości $Q_m(x)$?

L11.6. 1 punkt Znajdź wielomiany P_0 , P_1 , P_2 ortogonalne na zbiorze $D_4 := \{-11, -3, 0, 3, 11\}$.

L11.7. 1 punkt O funkcji h wiadomo, że h(-11) = 8, h(-3) = -1, h(0) = -2 h(3) = -1, h(11) = 8 Wykorzystując ortogonalność wielomianów skonstruowanych w poprzednim zadaniu, wyznacz taki wielomian $w_2^* \in \Pi_2$, aby wyrażenie

$$\sum_{x_j \in D_4} [w_2^*(x_j) - h(x_j)]^2$$

przyjmowało najmniejszą możliwą wartość (D_4 ma znaczenia takie, jak w poprzednim zadaniu).

L11.8. Włącz komputer! 2 punkty W pliku punkty.csv¹ znajduje się zbiór 104 par liczb ze zbioru $\mathcal{X} := \{(t_i, y_i) : 0 \le i \le 103\}$. Wartości te są odczytami z aparatury mierzącej pewną wielkość fizyczną f zachowującą się – jak mówi teoria – zgodnie ze wzorem

$$f(t) = 6.02(t + 3.2)(t - 0.02)(t + 1.7).$$

Z tym jednak, że aparatura dokonuje pomiarów z błędem wyrażonym rozkładem normalnym o średniej 0 i odchyleniu standardowym ± 0.2 , czyli

$$y_i = f(t_i) + N(0, 0.2^2)$$
 $(0 \le i \le 103).$

- (a) Narysuj wykres funkcji f i zbiór \mathcal{X} .
- (b) Wyznacz i narysuj wielomian interpolacyjny dla danych z pliku punkty.csv. Co obserwujemy?
- (c) Korzystając z własnej implementacji (koniecznie uwzględnij zadanie L11.4; działaj wyłącznie numerycznie, a nie symbolicznie) skonstruuj i narysuj wielomiany optymalne w_n^* w sensie aproksymacji średniokwadratowej dla danych ze zbioru \mathcal{X} o stopniach $2 \leq n \leq 15$. Skomentuj wyniki.
- **L11.9.** Włącz komputer! do 6 punktów Wykorzystaj aproksymację średniokwadratową do opracowania modelu opisującego przebieg pandemii koronawirusa w Polsce. Możesz rozważyć i modelować różne dane i wskaźniki. Na przykład liczbę aktywnych przypadków od wykrycia pierwszego zakażenia (4 marca 2020 r.) czy liczbę zgonów. Zadanie to ma charakter badawczy wiele zależ tu od Ciebie i Twojej pomysłowości.

Testy numeryczne przeprowadź przy pomocy **programów własnego autorstwa**. Jeśli **liczysz na więcej niż 2 punkty** przygotuj przy pomocy systemu LATEX odpowiednią **notatkę** opisującą m.in. i) teorię związaną z problemem; ii) zaproponowany przez Ciebie model iii) oraz przebieg eksperymentów. Notatkę **dostarcz** swojemu ćwiczeniowcowi (z kopią do wykładowcy).

Wskazówki. 1. Wiele dobrze opracowanych danych na temat pandemii koronawirusa w Polsce znajdziesz pod tym adresem (autor zbioru danych: Michał Rogalski). 2. Jeśli zdecydujesz sie modelować liczbę aktywnych przypadków, to warto rozpocząć od próby dopasowania danych do modelu typu $\exp(f(x))$, gdzie f jest odpowiednio dobraną funkcją, np. wielomianem niewysokiego stopnia (porównaj z zadaniem L10.5). 3. Osoby zainteresowane matematyką koronawrusa powinny odwiedzić m.in. stronę PTM.

(-) Paweł Woźny

¹Patrz SKOS.