

Introduction to Classification

Ali Ridho Barakbah

Knowledge Engineering Research Group
Soft Computing Laboratory
Department of Information and Computer Engineering
Electronic Engineering Polytechnic Institute of Surabaya

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Tan, Steinbach, Kumar, Introduction to Data Mining

Illustrating Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc

Fase klasifikasi?

- Proses klasifikasi biasanya dibagi menjadi dua fase: learning dan test.
 - Fase learning → sebagian data yang telah diketahui kelas datanya diumpankan untuk membentuk model perkiraan.
 - Fase test → model yang sudah terbentuk diuji dengan sebagian data lainnya untuk mengetahui akurasi dari model tsb.
- Bila akurasinya mencukupi model ini dapat dipakai untuk prediksi kelas data yang belum diketahui.
- Klasifikasi dicirikan dengan data training mempunyai label, berdasarkan label ini proses klasifikasi memperoleh pola attribut dari suatu data.

Ide Mesin Pembelajaran

Fakta harian dalam 6 hari dan keputusan untuk berolah-raga sebagai berikut:

#	Cuaca	Temperatur	Kecepatan Angin	Berolah-raga
1	Cerah	Normal	Pelan	Ya
2	Cerah	Normal	Pelan	Ya
3	Hujan	Tinggi	Pelan	Tidak
4	Cerah	Normal	Kencang	Ya
5	Hujan	Tinggi	Kencang	Tidak
6	Cerah	Normal	Pelan	Ya

- (1) Ketika cuaca cerah, apakah akan berolah-raga?
- (2) Ketika cuaca cerah dan temperatur normal, apakah akan berolah-raga?

Penyajian keputusan berdasarkan fakta inilah yang mengilhami konsep dari mesin pembelajaran

- Attribut adalah kolom data, ada atribut dan target
- Instance adalah isi dari attribut sebagai contoh attribut cuaca mempunyai instance "cerah" dan "hujan", sering ditulis dengan cuaca={cerah,hujan}
- Record/tuple adalah baris data

Ide Mesin Pembelajaran

Pada dasarnya semua algoritma yang dikembangkan dalam mesin pembelajaran adalah algoritma yang menghasilkan hipotesa dari suatu keputusan berdasarkan data pembelajaran yang diberikan.

Fact

Data	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Problem description

<?, Cold, High, ?, ?, ?>

<Sunny, Warm, ?, ?, ?, ?>

Our human brain can answer these questions.

But how the machine can answer?

Contoh Keputusan Dari Hipotesa

Bila cuaca cerah, apakah akan berolahraga?

H(Sunny, ?,?,?,?) = Ya

H(?,Cold, High,?,?,?) = Tidak

JAWAB: YA

Learning Process

Data

hypothesis

<Sunny, Warm, ?, ?, ?, ?>=Yes

<Sunny, Warm, Normal, Strong, Cool, Same>

Klasifikasi dengan Find-S

- Find-S adalah suatu metode paling sederhana yang dapat digunakan untuk mendapatkan suatu hipotesa berdasarkan data.
- Find-S mencari kesamaan nilai attribut untuk memperoleh suatu hipotesa
- Kelemahan dari Find-S adalah data yang digunakan harus bersifat konsisten dan tidak bias ??? (Terlalu sulit untuk dapat memperoleh data semacam ini pada persoalan nyata)

Find-S

< ф, ф, ф, ф, ф >

<Sunny, Warm, Normal,
Strong, Warm, Same> <Sunny, Warm, Normal, Strong, Warm, Same>

<Sunny, Warm, High, Strong, Warm, Same> <Sunny, Warm, ? , Strong, Warm, Same>

Kelebihan dan Kelemahan Find-S

- Advantage
 - Very simple
- Disadvantage
 - Ignores the negative data

$$s_0 \mid \langle \phi, \phi, \phi, \phi, \phi, \phi \rangle$$

?

$$G_0$$
 , ?, ?, ?, ?, ?

<Sunny, Warm, Normal, Strong, Warm, Same> =Yes

S₁ < Sunny, Warm, Normal, Strong, Warm, Same >

S₂ < Sunny, Warm, ?, Strong, Warm, Same >

<Sunny, Warm, High, Strong, Warm, Same> =Yes

<Rainy, Cold, High, Strong, Warm, Change> =No ?

G₃ < Sunny, ?, ?, ?, ?, ? > <?,Warm,?,?,?,> <?,?,?,?,Same>

G₂ <?, ?, ?, ?, ?, ?>

Advantage

 Consider the negative data to strengthen the hypothesis

Disadvantage

- If the data is not consistent, S and G can not match
- Difficult to implement in the programming

Klasifikasi dengan Nearest Neighbor (NN)

- Merupakan suatu method untuk mengklasifikasikan suatu data baru berdasarkan similaritas dengan labeled data
- Similaritas biasanya memakai metrik jarak
- Satuan jarak umumnya menggunakan euclidian

Nama lain dari NN

- lazy algorithm
- memory-based
- instance-based
- exemplar-based
- case-based
- experience-based

Jenis NN

- 1-NN
 - Pengklasifikasikan dilakukan terhadap 1 labeled data terdekat
- k-NN
 - Pengklasifikasikan dilakukan terhadap k labeled data terdekat
 - -k > 1

Algoritma 1-NN

- Hitung jarak antara data baru ke setiap labeled data
- Tentukan 1 labeled data yang mempunyai jarak yang paling minimal
- Klasifikasikan data baru ke dalam labeled data tersebut

Contoh kasus 2:

Pengenalan untuk menentukan seseorang itu mempunyai hipertensi atau tidak

Umur	Kegemukan	Hipertensi
muda	gemuk	Tidak
muda	sangat gemuk	Tidak
paruh baya	gemuk	Tidak
paruh baya	terlalu gemuk	Ya
tua	terlalu gemuk	Ya
tua	sangat gemuk	?

Penyelesaian dengan 1-NN

Algoritma k-NN

- Tentukan k
- Hitung jarak antara data baru ke setiap labeled data
- Tentukan k labeled data yang mempunyai jarak yang paling minimal
- Klasifikasikan data baru ke dalam labeled data yang mayoritas

Penyelesaian dengan k-NN

(misalnya k=3)

Ali Ridho Barakbah

Knowledge Engineering (knoWing) Research Group

Ali Ridho Barakbah

Keuntungan

- Analytically tractable
- Implementasi sangat sederhana
- Tingkat error > bayesian, < 2xbayesian
- Memungkinkan parallel implementation

Kelemahan

- Butuh memori besar
- Komputasi besar

Tugas

- Case: Classification with Ruspini Dataset
- Represents a simple, well-known example that is commonly used as a benchmark problem in evaluating classification and clustering methods and is widely available, incorporated as a built-in data object in both R and S-plus statistics packages.
- Number of attributes: 2
- Number of data: 75
- Number of classes: 4
 - Class 1 \rightarrow 20 data
 - Class 2 \rightarrow 17 data
 - Class 3 \rightarrow 23 data
 - Class 4 \rightarrow 15 data

Ruspini Dataset

Task

- Ambillah 80% data pertama pada masing-masing class sebagai training data.
- Pakailah 20% data sisanya pada masing-masing class sebagai data untuk uji coba
- Lakukan klasifikasi masing-masing data uji coba dan bandingkan hasilnya pada hasil sesungguhnya.
- Catatlah berapa jumlah kesalahan yang terjadi pada semua data uji coba (dalam persen).
- Buat laporan

 Lakukan percobaan dengan melibatkan beberapa metode klasifikasi:

- **1-NN**
- **—** 3-NN
- **-** 5-NN

References

- Tom Michael, Machine Learning, McGraw-Hill publisher, 1997.
- Ali Ridho Barakbah, *Machine Learning*, Lecture Handout, Electronic Engineering Polytechnic Institute of Surabaya.

