№ 1 (1.4 [Каргальцев)] Для любого числа $u \in \mathbb{C}$ определим множество $\mathbb{Z}[u] = \bigcup_{n=0}^{\infty} \{a_0 + a_1 u + \dots + a_n u^n | a_0, a_1, \dots, a_n \in \mathbb{Z}\}.$

ightharpoonup а) Докажите, что $\mathbb{Z}[u]$ является областью целостности.

То, что $\mathbb{Z}[u]$ кольцо проверяется непосредственно. Поскольку $\mathbb{Z}[u] \subset \mathbb{C}$ и \mathbb{C} — область целостности (*потому что* \mathbb{C} — *поле*), то и $\mathbb{Z}[u]$ область целостности.

б) При каких $u \in \mathbb{C}$ данное $\mathbb{Z}[u]$ "конечномерно над \mathbb{Z} ", то есть найдётся такое N, что $\mathbb{Z}[u] = \bigcup_{n=0}^{\infty} \{a_0 + a_1 u + \dots + a_n u^N | a_0, a_1, \dots, a_N \in \mathbb{Z}\}$?

Покажем, что $\mathbb{Z}[u]$ "конечномерно над \mathbb{Z} ", $\Leftrightarrow \exists f \in \mathbb{Z}[x] : f(u) = 0, f \neq 0$ и старший коэффициент f(x) равен 1 (*).

 \Rightarrow

Поскольку $u^{N+1} \in \mathbb{Z}[u] \Rightarrow \exists a_0, \dots, a_N \in \mathbb{Z} : u^{N+1} = \sum_{0}^N a_k u^k \Rightarrow u$ — корень $f(x) = x^{N+1} - \sum_{0}^N a_k x^k$

Пусть u — корень многочлена $f(x)=u^N+\sum\limits_0^N a_k x^k$, удовл. условию (*). Тогда u^N выражается через меньшие степени. $(u^N=-\sum\limits_0^{N-1}a_k u^k)$

Индукцией по $k\geqslant N$ легко показать, что u^k выражается через $1,u,\ldots u^{N-1}.$

$$(u^{k+1} = u \cdot u^k)^{n} \stackrel{\text{предположение индукции}}{=} u \cdot (\sum_{0}^{N-1} b_k u^k) = (\sum_{1}^{N-1} b_{k-1} u^k) + b_{N-1} u^N \stackrel{\text{база индукции}}{=} (\sum_{1}^{N-1} b_{k-1} u^k) + b_{N-1} \sum_{0}^{N-1} -a_k u^k$$

a) N(zw) = N(z)N(w).

Для каждого $z \in D$:

- б) Верно ли, что N(z) натуральное число?
- в) Верно ли, что $N(z) = 1 \Leftrightarrow z$ обратим?
- г) Какие неразложимые элементы имеют одинаковую норму?
- ▶ а) Просто проверим: $N(zw) = N(a_z + b_z i)(a_w + b_w i) = N(a_z a_w b_z b_w + (a_z b_w + a_w b_z) i) = (a_z a_w b_z b_w)^2 + (a_z b_w + b_z a_w)^2 =$ раскрыли скобки $= (a_z^2 + b_z^2)(a_w^2 + b_w^2) = N(z)N(w)$
 - б) Заметим, что $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$

Значит, $|a + bi| = a^2 + b^2 \in |N|$. Аналогично:

$$\mathbb{Z}[2i] = \{a + 2bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + 2bi| = a^2 + 4b^2 \in \mathbb{N}$$

$$\mathbb{Z}[\sqrt{2}i] = \{a + \sqrt{2}bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + \sqrt{2}bi| = a^2 + 2b^2 \in \mathbb{N}$$

$$\mathbb{Z}[\sqrt{3}i] = \{a + \sqrt{3}bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + \sqrt{3}bi| = a^2 + 3b^2 \in \mathbb{N}$$

 $_{\rm B}) \Rightarrow$

$$N(z) = a^2 + b^2 = 1$$

 $\tfrac{1}{z}=\tfrac{1}{a+bi}=\tfrac{a-bi}{a^2+b^2}=\tfrac{a-bi}{1}=a-bi=\overline{z},\ \text{a } z \text{ и } \overline{z} \text{ одновременно лежат в } D, \text{ значит } \exists z^{-1}=\overline{z}.$

 \Leftarrow

$$zz^{-1} = 1 \Rightarrow \begin{cases} N(zz^{-1}) = N(z)N(z^{-1}) = 1 \\ N(z) = a^2 + b^2 \geqslant 1 \end{cases} \Rightarrow N(z) = 1$$

- г) TODO
- **№** 3 Пример нефакториального кольца вида Z[u].

▶ Пример: $\mathbb{Z}[2i]$ не является факториальным кольцом, потому что $4 = 2 \cdot 2 = (2i)(-2i)$, но при этом $2 \nsim 2i$ противоречие с единственностью разложения в факториальном кольце.

Еще пример: $\mathbb{Z}[\sqrt{3}i]$ (аналогичное рассуждение $4 = 2 \cdot 2 = (1 + \sqrt{3}i)(1 - \sqrt{3}i)$).

- № 4 (2.7 [Каргальцев)] Простой элемент области целостности является неразложимым.
 - ▶ Пусть p простой и $p = xy \Rightarrow x|p \land y|p$. Из определения простоты $p|x \lor p|y$. Но тогда или $x|p \land p|x$, или $y|p \land p|y$. Тогда $p \sim y \lor p \sim x \Rightarrow y \in K^* \lor x \in K^*$, то есть p — неразложимый.
- № 5 (2.8) В факториальном кольце любой неразложимый элемент является простым.
 - ▶ Пусть x = ab неразложимый. $x = ab \Rightarrow x \mid ab$.

x неразложимый, значит б.о.о. $a \in K^*$. Тогда в силу единственности разложения $x = ab = ap_1 \dots p_k \Rightarrow x \sim b \Rightarrow$

- № 6 (часть 2.9 [Каргальцев)] K евклидово кольцо. Верно ли, что если для $a,b \neq 0$ выполнено равенство N(ab) = N(a), то b обратим?
 - \blacktriangleright Поделим a с остатком на ab:

$$a = abq + r : r = 0 \lor N(r) < N(ab)$$

r = a(1 - bq)

Если r = 0, то bq = 1 и b обратим. Иначе $N(ab) > N(r) = N(a(1 - bq)) \geqslant N(a) = N(ab)$. Противоречие.

- № 7 (2.10) Геометрический способ доказательства того, что $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$ евклидово кольцо.
 - ▶ ВСТАВИТЬ КАРТИНКУ Пусть $a, b \in \mathbb{Z}[i]$. Поделим a на b с остатком:

a = pb + q.

Надо доказать, что если $q \neq 0$, то N(q) < N(b). Рассмотрим точку $\frac{a}{b}$, пусть ближайший к ней узел в решетке p, тогда $\frac{a}{b} = p + \frac{q}{b}$. Но $\frac{q}{b}$ по модулю меньше половины диагонали единичного квадрата $\left|\frac{q}{b}\right| \leqslant \left|\frac{\sqrt{2}}{2}\right| \leqslant 1$, т.е. $|q|^2 < |b|^2 \Rightarrow N(q) < N(b)$, если $\frac{q}{b}$ не совпадает с центром квадрата.

(TODO иначе)

 $\mathbb{Z}[\omega]$ аналогично.

- № 10 (2.7 [Каргальцев)] Если $z \in D$, z|x, и N(z) = N(x), то $z \sim x$.
- ▶ Пусть x=yz. Тогда $N(yz)=N(z)\Rightarrow y$ обратим (по №6) и, значит, $x\sim z$.
- № ?? [Каргальцев]
 - lacktriangle а) Если z неразложимый элемент D, то существует такое простое целое число p, что N(z)=p или $N(z)=p^2$ $N(z)=z\overline{z}$. Разложим N(z) в произведение простых как натуральное число:

$$z\overline{z} = N(z) = p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n}.$$

Так как z неразложим, а D — евклидово, то z — прост, значит $\exists k: z|p_k$.

 $p_k=zu\Rightarrow p_k=\overline{p_k}=\overline{zu}\Rightarrow \overline{z}|p_k\Rightarrow N(z)|p_k^2\Rightarrow N(z)=1,$ или $p_k^2.$ Но так как если N(z)=1, то z — обратим (а, следовательно, неразложим), то $(z)=p_k\vee N(z)=p_k^2.$

б) Если z — неразложимый элемент D и $N(z)=p^2$, то $z\sim p$.

Пусть $\overline{z} = ab \Rightarrow z = \overline{a}\overline{b} \Rightarrow \overline{z}$ — неразложим.

 $z\overline{z}=N(z)=p\cdot p$. В силу единственности разложения на неразложимые, $z\sim p$.

- в) Если N(z)=p, то z неразложимый элемент D.
- в $Da|b \Rightarrow N(a)|N(b)$.

Пусть $a|z \Rightarrow N(a)|N(z)$. В силу простоты N(z) либо N(a)=1 и, следовательно, a — обратимый, либо N(a)=N(z)и тогда $a \sim z$. То есть z неразложим.

г) Пусть p — простое целое число. Тогда есть два варианта: либо p неразложимо в D, либо $p=z\overline{z}$, где z неразложимо в D. Таким образом описываются все неразложимые элементы D.

Пусть p разложимо в D. Тогда найдется такой неразложимый z:z|p. Поскольку z не ассоциирован с p, $N(z) \neq N(p) \Rightarrow N(z) = p$. Тогда z – неразложимый и $z\overline{z} = N(z) = p$.

Любой неразложимый элемент D- либо простое целое число, либо его норма- простое целое число.

№ 11 (3.3 [Каргальцев)] (Простые гауссовы числа) Пусть p — простое целое число.

▶ а) Если p = 4k + 3, то p — неразложим в $\mathbb{Z}[i]$.

Если p разложим, тогда $p = z\overline{z} = Re^2z + Im^2z$. Но число, дающее остаток 3 при делении на 4 не быть представлено в виде суммы двух квадратов (квадраты дают остаток 1 при делении на 4).

б) Если p = 4k + 1, то p — разложим в $\mathbb{Z}[i]$.

Если p=4k+1, то -1— вычет по модулю p, т. е $\exists x \in \mathbb{Z} : p|x^2+1 \Rightarrow p|(x+i)(x-i)$. Если p— неразложим, тогда p— прост и или p|(x+i), или p|(x-i). В любом случае, т.к x— целое в силу задачи 18 из задач на 3-4 p|1, что плохо. Значит, p разложим.

в) Если p=4k+1, то $p=z\overline{z}$, где z — неразложим в $\mathbb{Z}[i]$.

Следует из предыдущего пункта и пункта г) предыдущей задачи.

г) Неразложимые элементы $\mathbb{Z}[i]$, не описанные в предыдущих пунктах — $\pm 1 \pm i$.

Неразложимые элементы, не описанные в предыдущих задачах могут иметь норму или 2, или 4. Норму 4 имеет только 2 и ассоциированные с ней, но 2 = (1+i)(1-i).

С другой стороны, $N(\pm 1 \pm i) = 2$, то есть силу пункта в) предыдущей задачи $\pm 1 \pm i$ неразложимы.

№ 25 [Каргальцев] Докажите, что в кольце главных идеалов любая возрастающая цепочка идеалов

$$(a_1) \subset (a_2) \subset \ldots \subset (a_n) \subset \ldots$$

стабилизируется, то есть найдется такое k, то $(a_k) = (a_{k+1}) = \dots$

▶ Поскольку $(a_i) \subset (a_{i+1}) \Rightarrow a_{i+1}|a_i$.

Возьмем $I = \bigcup_{k=1}^{\infty} (a_k)$. покажем, что I – идеал. Пусть $a \in I, b \in I \Rightarrow \exists k_1, k_2 : a \in (a_{k_1}), b \in (a_{k_2})$. Тогда положим $k = max(k_1, k_2)$. $a, b \in (a_k) \Rightarrow (a + b) \in (a_k)((a_k)$ — идеал) $\Rightarrow (a + b) \in I$. Анологично $\forall x \in Kxa \in (a_k) \Rightarrow xa \in I$.

Поскольку $K-\mathrm{K}\Gamma\mathrm{H}$, то существует x:I=(x). $x\in I\Rightarrow\exists k:x\in(a_k).$ Но $a_k\in(x).$ Тогда $x|a_k\wedge a_k|x\Rightarrow x\sim a_k.$ Но в силу вложенности это верно и для всех j>k, то есть $\forall j\geqslant ka_j\sim a_k\Rightarrow(a_j)=(a_k).$ То есть цепочка действительно стабилизируется.