

DAYANANDA SAGAR UNIVERSITY

USN No:				
---------	--	--	--	--

I Semester B.C.A. Examinations - December 2016

Course Title: Mathematics - I

Duration: 03 Hours

Time: 10:00 AM to 01:00 PM

Course Code: 16CA101

Date: 20-12-2016

Max Marks: 60

Note:

1. Answer 5 full questions choosing one from each section

2. Draw neat sketches wherever necessary

3. Missing Data may be suitably assumed

SECTION - 1

By reducing to the echelon form, find the rank of the matrix 1.a.

(04 Marks)

$$A = \begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

1.b. Find the Eigen values of the matrix
$$A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$

(04 Marks)

Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ and find its 1.c.

inverse.

(04 Marks)

OR

2.a. Using matrix inversion method, solve the system of equations:

$$3x + y - 2z = 3,$$

$$2x - 3y - z = -3,$$

$$x + 2y + z = 4$$

2.b. Reduce to the normal form and hence find the rank of the matrix

$$A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

SECTION - 2

3.a. Prove the De Morgan's laws

(03 Marks)

- (i) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- (ii) $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- 3.b. In a group of 50 students, 15 students study Mathematics, 8 students study Physics, 6 study Chemistry and 3 study all these three subjects. Prove that 27 or more students study none of the subjects.
- (05 Marks)

3.c. For non-empty sets *A*, *B* and *C* prove that:

(04 Marks)

- (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (ii) $A \times (B C) = (A \times B) (A \times C)$

OR

4.a. Define the following:

(03 Marks)

- (i) Relation on a set A
- (ii) Equivalence relation on a set A
- 4.b. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. On this set, define the relation R by $(x, y) \in R$ if and only if x y is a multiple of 5. Is R an equivalence relation?
- (05 Marks)
- 4.c. Let a function $f: R \to R$ be defined by $f(x) = \begin{cases} 3x 5 & \text{for } x > 0 \\ -3x + 1 & \text{for } x \le 0 \end{cases}$.
 - Determine f(0), f(-1), $f^{-1}(-1)$, $f^{-1}(\{-5,5\})$.

(04 Marks)

SECTION - 3

- 5.a. State the Leibnitz's rule for the nth derivative of a product of two functions. Using the same, find the nth derivative of $y = x^2 \log 4x$.
- (03 Marks)

5.b. If $z = x^2 \tan^{-1}(\frac{y}{x}) - y^2 \tan^{-1}(\frac{x}{y})$, show that $\frac{\partial^2 z}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$

- (05 Marks)
- 5.c. State Euler's theorem for a homogeneous function of two variables *x* and *y*. Using the same prove that prove that if
- (04 Marks)

 $u = \tan^{-1}(\frac{x^3 + y^3}{x - y})$ then $xu_x + yu_y = \sin 2u$.

OR

6.a. If $x = a \cos^3 t$, $y = a \sin^3 t$ find the value of $\frac{dy}{dx}$.

- (03 Marks)
- 6.b. Examine for maxima and minima the function $x^5 5x^4 + 5x^3 1$.
- (05 Marks)
- 6.c. Expand $\log(1+\cos x)$ up to the term containing x^4 using Maclaurin's series.
- (04 Marks)
 - Page 2 of 3

SECTION - 4

7.a. Solve
$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$
. (02 Marks)

7.b. Solve
$$(y^2 + 2xy)dx + (2x^2 + 3xy)dy = 0$$
 (05 Marks)

7.c. Solve
$$\frac{dy}{dx} + xy = xy^3$$
 (05 Marks)

OR

8.a. Solve
$$\{y(1+\frac{1}{x}) + \cos y\}dx + \{x + \log x - x\sin y\}dy = 0$$
 (04 Marks)

8.b. Solve
$$(1+y^2)dx = (\tan^{-1} y - x)dy$$
 (05 Marks)

8.c. Solve
$$\frac{dy}{dx} = (x+y)^2$$
 (03 Marks)

SECTION - 5

9.a. For any elements
$$a$$
, b in a group G , prove that: (03 Marks)
(i) $(a^{-1})^{-1} = a$ (ii) $(ab)^{-1} = b^{-1}a^{-1}$

- 9.b. Let G be the set of real numbers not equal to -1 and * be defined by a*b=a+b+ab. Prove that (G,*) is an abelian group. (04 Marks)
- 9.c. Define subgroup of a group *G*. Prove that the intersection of two subgroups of a group is a subgroup of the group. (05 Marks)

OR

- 10.a. Let R be a commutative ring with unity. Prove that R is an integral domain if and only if for all $a,b,c \in R$ where $a \ne 0$, $ab = ac \Rightarrow b = c$. (04 Marks)
- 10.b. Define the following: (03 Marks)
 (i) A ring R (ii) A commutative ring R
- 10.c. Let H be a sub group and let K be a normal sub group of a group G. Prove that, HK is a sub group of G, where $HK = \{hk/h \in H, k \in K\}$. (05 Marks)

USN No: ENG 18 CAOOO9

I Semester B.C.A. Examinations - December 2018 / January 2019

Course Title: Mathematics - I

Course Code: 16CA101

Duration: 03 Hours

Date: 24-12-2018

Time: 10:00 AM to 01:00 PM

Max Marks: 60

Note:

1. Answer 5 full questions choosing one from each Section

2. Each Section carries 12 Marks

3. Draw neat sketches wherever necessary

4. Missing Data may be suitably assumed

SECTION - 1

1.a. If
$$\begin{bmatrix} 4 & 5 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 2 & x-3 \\ y-4 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 2 & 3 \end{bmatrix}$$
 then find x and y. (03 Marks)

1.b. Compute
$$A^{-1}$$
 for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. (04 Marks)

1.c. Check the consistency of the given solution and hence find the solution 3x + y - 2z = 3, 2x - 3y - z = -3 and x + 2y + z = 4. (05 Marks)

OR

2.a. Find the eigen value and eigen vector of
$$\begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$
. (04 Marks)

2.b. Find the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$
. (04 Marks)

Prove that "If any two rows or any two columns of a determinant are identical then the value of the determinant is zero". (04 Marks)

SECTION - 2

3.a. If
$$f(x) = x + 5$$
 and $g(x) = -3$, find the $f(g(0))$, $f(f(-5))$, $g(g(2))$. (04 Marks)

3.b. Let
$$A = \{1,2,3,4\}$$
; $R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)\}$ be a relation on A. Verify that R is an equivalence relation. (04 Marks)

3.c. Let
$$A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$$
 Verify that
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
 (04 Marks)
Page 1 of 3

4.a. A relation R on a collection of set of integers defined by $R = \{(x, y) : x - y \text{ is a multiple of 3}\}$. Show that R is an equivalence relation

4.b. If
$$f(x) = \begin{cases} x^2 + 2 & \text{when } x > 1 \\ 2x + 1 & \text{when } x = 1 \text{ find whether } f \text{ is continuous at } z = 1. \end{cases}$$
 (64 Marks)
$$3 \quad \text{when } x < 1$$

Let A, B and C be the sets such that A \cup B = A \cup C and A \cap B = A \cap C. Show 4.c. (04 Marks) that B = C.

SECTION - 3

5.a. Find the nth derivative of log (az + b).

7.b.

(06 Marks)

5.b. If
$$y = e^{m \cos^{-1} x}$$
 prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$, (66 Marks)

OR

6.a. Show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$$
 where, $\log u = \frac{x^3 + y^3}{3x + 4y}$. (03 Marks)

Find the derivative of $y = \frac{\cos x}{1 - \sin x}$. 6.b. (03 Marks)

6.c. Expand $f(x, y) = \sin x \sin y$ using Taylor series at (0, 0). (06 Marks)

SECTION - 4

Solve the equation $x \frac{dy}{dx} = x^2 + 3y$; x > 0. 7.a. (06 Marks)

Find the solution of the equation: $\frac{dy}{dx} + 2y \tan x = \sin x$, where y = 0, $x = \pi/3$. (06 Marks)

OR

8.a. Find the solution of the equation:
$$(x^2 - yx^2) \frac{dy}{dx} + (y^2 + xy^2) = 0$$
. (06 Marks)

8.b. Find the integrating factor of the differential equation:
$$(1-y^2)\frac{dx}{dy} + yx = ay$$
. (04 Marks)

8.c. Find the order and degree of the equation:
$$\frac{d^3y}{dx^3} + x^2 \left(\frac{d^2y}{dx^2}\right)^3 = 0.$$
 (02 Marks)

SECTION - 5

Write out the multiplication table for Z_9^* . 9.a.

- (04 Marks)
- Let G_1 and G_2 be groups, and let G be the direct product $G_1 \times G_2$. Let 9.b. $H = \{(x_1, x_2) \text{ in } G_1 \times G_2 | x_2 = e\} \text{ and } K = \{(x_1, x_2) \text{ in } G_1 \times G_2 | x_1 = e\}.$ Prove that H and K are normal subgroups of G.

(04 Marks)

Let H be a sub group and let k be a normal sub group of a group G. Prove 9.c. that HK is a sub group of G. $HK = \{hk/h \in H, k \in K\}.$

(04 Marks)

OR

On the set G = Q of nonzero rational numbers, define a new multiplication by a * b = ab/2, for all a, b in G. Show that G is a group under the multiplication.

(06 Marks)

10.b. Let G be a group, and suppose that a and b are any elements of G. Show that if $(ab)^2 = a^2 b^2$, then ba = ab.

(06 Marks)

9x70 1 (9x7p) . 9

1/7 log = 1/2 a.a

closed