TOPIC 1: Introduction to Next-Gen Sequencing

Bill 525D - Bioinformatics for Evolutionary Biology

Instructors

Dr. Gregory Owens

gregory.owens@alumni.ubc.ca

Dr. Kathryn Hodgins

kathryn.hodgins@monash.edu

WEBSITE: https://github.com/owensgl/biol525D

Course Objective

- Introduction: Scope of course, goals and overview of technology [GREG]
- 2. Programming for biologists [GREG]
- Fastq files and quality checking/trimming [KAY]
- 4. Alignment: algorithms and tools [GREG]
- 5. Assembly: transcriptome and genome assembly [KAY]
- 6. RNAseq + differential expression analysis [KAY]
- 7. SNP and variant calling [GREG]
- 8. Population genomics and plotting in R (Part 1) [GREG]
- 9. Population genomics and plotting in R (Part 2) [GREG]
- 10.Phylogenetic inference [GREG]

Goals

Raw sequence data ???? Results and Figures

Goals

Cost per Raw Megabase of DNA Sequence

First Generation Sequencing

- Maxam-Gilbert: Chemical modification and cleavage followed by gel electrophoresis
- Sanger: Selective incorporation of chain-terminating dideoxynucleotides followed by gel electrophoresis
 - Became full automated using flourescently labeled dideoxy bases
 - Dominant sequencer up until 2007
 - Only one fragment sequenced per reaction
 - Still used for sequencing individual PCR products

Sanger

Second generation sequencing

- Sequences many molecules in parallel
- Don't need to know anything about the sequence to start.
- Main technologies:
 - Illumina
 - Ion torrent
 - 454 (Pyrosequencing)
 - PacBio

Second generation sequencing

	Technology	Read Length	Accuracy	Reads/run	Uses
	Illumina	50-300bp	99.9%	2-3 billion	Resequencing General depth
	454	700bp	99.9%	1 million	Not currently used
	Ion Torrent	400bp	98%	80 million	Cheaper equipment Fast
	PacBio	10kb-40kb	87%	up to 1Gbase	Genome assembly Structural variants

Illumina sequencing

Ion Torrent Sequencing

dNTP Well + H+ dNTP+ ΔpH ΔQ **DNA** template Bead Metal-oxide-sensing layer Sensor plate Floating metal gate Bulk Source — To column Drain Silicon substrate receiver

Challenges of short read technology

- Rely on amplification, which can introduce errors (10⁻⁶-10⁻⁷).
- Assembling and aligning reads challenging in repetitive regions
- Difficulty with both large and small structural variants.

Pacific Biosciences Sequencing

 \bigcirc

Used for making high quality genome assemblies

Challenges of long read technology

- Too expensive to be used for population level sequencing.
- High error rate.

Flavours of sequencing

- Whole Genome Sequencing
- Pool Seq
- RNAseq
- Amplicon Sequencing
- Sequence Capture
- Reduced-Representation Sequencing (RADseq/GBS)
- RADcapture

Whole Genome Sequencing

- Randomly sheer DNA and sequence all fragments
- May use double-stranded nuclease treatment to reduce repetitive elements

Pros:

- -All sites possible
- -Simple library prep

Cons:

- -Expensive per sample
- -Bioinformatic challenges at high sample number

Number of SNPs: 10+ million

Pool Seq

- Whole genome sequencing with pooled DNA of multiple individuals
- Produces a measure of allele frequency but not individual genotypes

Pros:

-All sites possible

-Simple library prep

-Cheaper than individual WGS

Cons:

-Limited analysis

options

-No haplotype

information

Number of SNPs: 10+ million

RNAseq

- Convert RNA to cDNA, randomly sheer and sequence.
- Only sequences expressed RNA

Pros:

-Many sites and only Cons:

in genes.
-Expression differences
-Also get expression complicate SNP calling

information -Expensive for pop gen

-Relatively easy to level sampling

assemble
Number of SNPs: ~1 million

Amplicon Sequencing

 Use PCR to amplify target DNA. Sequence many barcoded samples in one lane.

 \bigcirc

 Used to characterize microbiome by sequencing 16s rRNA

Pros:

-Get incredible depth at single locus.

-Simple bioinformatics.

Cons:

-Limited to one or few loci.

-Mutations in primer site don't sequence

Number of SNPs: <100

Sequence Capture

- Design probe sequences from genome resources, synthesis attached to beads
- Make WGS library, hybridize with probe set.
 Matching sequence will be captured, all others washed away.
- Collect capture sequence, amplify and sequence

Sequence Capture

Pros:

- -Relatively cheap per sample.
- -Good depth at targeted sites

Cons:

- -Requires designing probes.
- -Long library prep.

Number of SNPs: 100k - 1 million

Genotyping-by-Sequencing types

- Digest DNA with restriction enzyme. Attach barcode and sequencing tags. Sequence many samples in one library.
- Many different flavours:
 - GBS, RAD, ddRAD

Genotyping-By-Sequencing

Genotyping-By-Sequencing

Pros:

- -Quick library prep for hundreds of samples.
- -Cheap per sample cost (<\$10/sample)

Cons:

- -Relatively sparse SNPs compared to other methods
- -Can have problems overlapping different library preps

Number of SNPs: 5k - 50k

RADcapture

- Digest DNA with restriction enzyme. Attach
 barcode and sequencing tags. Sequence capture
 before sequencing. Sequence many samples in
 one library.
- Different flavours
 - Rapture, RADcap

RADcapture

Pros:

- -Quick library prep for hundreds of samples.
- -Cheap per sample cost (<\$10/sample)
 -More overlap of reads = more SNPs

Cons:

- -Relatively sparse SNPs compared to other methods
- -Requires extra step to make capture probes
- -Less well established

Recommendations

- RAD/RADcapture
 - Short projects
 - Population structure
 - Phylogenetic
 - Genetic maps / QTL maps
 - Species ID
 - Genome scans

Recommendations

Whole genome sequencing

 \bigcirc

- Fine scale genome analysis
- Association mapping
- Small genome organisms

Recommendations

- Sequence capture
 - Large genomes
 - Bigger or longer projects
 - Fine scale genome analysis

- Mid sized personal server (~12 cores, 30 GB ram)
 - Works for small/medium scale analyses
 - Too slow for genome assembly
 - Hard to expand capacity
 - Upfront cost (\$5-10k)
 - Complete control

- Lab supercomputer (~30 cores, 100 GB ram)
 - Works for small to high scale analyses
 - Managing load between users can be troublesome
 - High upfront cost (\$50-100K)
 - Need server management

- Westgrid
 - Potentially hundreds of cores
 - Less control and 3 day limit on jobs
 - Free

- Zoology computing cluster
 - ~100 cores over several servers
 - Don't need to submit jobs, but limited installing privileges.
 - Storage space limitations
 - Often clogged by users
 - ~\$100 per year

- Cloud services (Google, Amazon)
 - Infinitely expandable
 - Can get expensive fast
 - Moving large amounts of data troublesome/ expensive