Sampling Distribution and Bootstrap

Stat 120

April 11 2022

Statistical Inference

Statistical inference is the process of drawing conclusions about the entire population based on information in a sample.

Statistical Inference

Motivating Example 1

Regression line of Bood alcohol content (BAC) Vs. number of beers

Can you drink 5 beers and stay under the 0.08 limit?

Motivating Example 2

Striking rates by race

Do the observed differences in strike rates between black and white eligible jurors indicate a potential bias, or are the differences just due to chance?

Statistic and Parameter

- A **parameter** is a number that describes some aspect of a population.
- A **statistic** is a number that is computed from data in a sample.

	Parameter	Statistic
Mean	μ	$ar{x}$
Proportion	p	\hat{p}
Std. Dev.	σ	s
Correlation	ho	r
Slope	β	b

Parameter Vs. Statistic

State whether the quantity described is a **parameter** or a **statistic**, and give the correct notation.

- a. Average household income for all houses in the US, using data from the US census
- b. The proportion of all residents in a county who voted in the last presidential election.
- c. The difference in proportion who have ever smoked cigarettes, between a sample of 500 people who are 60 years old and a sample of 200 people who are 25 years old.

A Gallup Poll

A random sample of 1527 US adults was contacted in June, 2015

• p = proportion of US adults who would vote for a qualified Muslim presidential candidate

VOTE FOR A MUSLIM FOR PRESIDENT

NO, WOULDN'T

YES, WOULD

38%

60%

SOURCE: GALLUP POLL; JUNE 2-7, 2015

The sample proportion can be used as a "point estimate" of p i.e.,

$$\hat{p} = 0.60$$

Poll result

Link to the Gallup poll 7

Point Estimate (PE)

- Point estimate is a single value constructed from the sample data
- Sample statistic can serve as a point estimate for an unknown parameter

Sampling Distribution

A **sampling distribution** is the distribution of sample statistics computed for different samples of the same size from the same population.

- Sample statistics varies from sample to sample
- Sampling distribution gives us an idea of the variation

Distribution of 1000 sample proportions with p=0.65

Center and Shape

Center: If samples are randomly selected, the sampling distribution will be centered around the population parameter.

Shape: For most of the statistics we consider, if the sample size is large enough the sampling distribution will be symmetric and bell-shaped.

Standard Error

Uncertainty in point estimates measured by the **standard error (SE)**

- The standard error of a statistic is the standard deviation of the sampling distribution
- The **standard error** measures how much the statistic varies from sample to sample

Recall: Gettysburg Address

The standard error for the average word size in a random sample of 10 words is closest to

a. 0.5

b. 0.7

c. 1.0

d. 1.5

Recall: Gettysburg Address

What are each dots?

Sample Size Matters!

Which sampling distribution corresponds to a larger sample size?

- \
- B

Sample Size Matters!

- As the sample size increases, the variability (SE) of the sample statistics tends to decrease.
- Smaller SE means the sample statistics tend to be closer to the true population parameter value!

Other Factors

What else affects the standard error of a statistic?

The variability of the population!

- Quantitative variable: the larger the population standard deviation, the larger the standard error of a statistic (like a mean)
- Categorical variable: the closer the population proportion is to 0.5, the larger the standard error of the sample proportion

Sample Size vs. Simulation size

Do not confuse sample size and simulation size!!

Sample size (n) = how many individuals are in the sample used to compute our stat?

• The SE of your stat gets smaller as n get bigger.

Simulation size (N) = how many random samples did we take from the population to simulate the sampling distribution of our stat?

• Once you've simulated a couple 100 samples, the shape/center/spread of the sampling distribution should remain about the same as you increase the simulation size.

Further Examples

What does each dot represent?

- a. Enrollment at one statistics grad program
- b. One sample mean
- c. 1000 different enrollments

Population Mean

The sampling distribution is shown for enrollment in statistics grad schools. The population parameter is closest to:

a. 45

b. 60

c. 50

d. 55

Standard Error

The sampling distribution is shown for enrollment in statistics grad schools. The **standard error** is closest to:

a. 5

b. 10

c. 20

d. 15

Random Vs. Non-random

Samples of **size** 5 are taken from a large population with **population mean** 8, and the sampling distributions for the sample means are shown. Dataset A (top) and Dataset B (bottom) were collected using different sampling methods. Which dataset (A or B) used **random sampling**?

Random Vs. non-random data distribution

Bootstrap

• Bootstrap: Sample with replacement from the original sample, using the same sample size.

Original sample (left) to bootstrap sample (right)

Bootstrap

Original sample (left) to population (right)

Creating a bootstrap sample is the same as using the data simulate a "population" that contains an infinite number of copies of the data.

Bootstrap Sampling in R

- resample a set of observations with replacement
- same data points can appear multiple times

	Data	Statistic
Original sample	x_1, x_2, \dots, x_n	$ar{x}_n$
Resample	x_1^*,x_2^*,\ldots,x_n^*	$ar{x}_n^*$

```
# R-code
boot <- sample(x, size, replace = TRUE)</pre>
```

Bootstrap Steps

- 1. Generate a bootstrap sample.
- 2. Compute the statistic of interest for your bootstrap sample.
- 3. Repeat steps (1) –(2) many times. Plot the distribution of all your bootstrap statistics

This is the bootstrap distribution!

Bootstrap Distribution

```
Suppose X=\{20,24,19,23,22,16\}
X_1^*=\{16,19,16,23,22,24\}
X_2^*=\{22,19,22,19,23,19\}
X_3^*=\{20,22,24,16,24,16\}
\vdots
\vdots
X_N^*=\{19,24,19,19,19,22\}
```

N = total number of simulations/samples

05:00

Go to our class moodle, go to the in class activity file, skim through and try to answer the questions