Fisnik Zeqiri 4306430 Felix Karg 4342014

Antworten zum Übungsblatt Nr. 4

Aufgabe 1

[Bild 1]

Funktion: Der NOR-Gatter ist nur dann 1, wenn beide Inputs 0 sind. Ist dies der Fall, sperren t3 und t4. Da t1 und t1 leiten, fließt die logische 1 zum Output und das Ergebnis ist 1. In allen anderen Fällen ist mindestens ein Input i1, weshalb die Logische 0 mit dem Output verbunden ist.

Der im Bild rot markierte Bereich verbindet die Logische 1 mit dem Output. Die Leitung besteht nur dann, wenn beide Transistoren leiten. Dies ist nur der Fall, wenn beide Inputs 0 sind.

Aufgabe 2

a) Zuerst erstellen wir eine Wahrheitstabelle:

x1	x2	х3	$x1 \oplus x2 \oplus x3$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

KDNF:
$$f1 = x_1'x_2'x_3 + x_1'x_2x_3' + x_1x_2'x_3'$$

b) [Bild 2]

c) Schaltkreisbeschreibung: $C:=(\overrightarrow{X_2},(V,E),typ,IN,\overrightarrow{Y_1}),$

wobei

$$\begin{split} V &= \{0,1\} \cup \{x_1,x_2\} \cup \{v_0,v_1,v_2,v_3\} \\ E &= \{(x_1,v_0),(x_1,v_2),(x_2,v_0),(x_2,v_2),(v_0,v_1),(v_1,v_3),(v_2,v_3)\} \\ \overrightarrow{X_2'} &= (x_1,x_2) \\ \overrightarrow{Y_1} &= (v_3) \\ typ &= \{(v_i \mapsto \land) | i \in \{0,3\}\} \cup \{(v_2 \mapsto \lor)\} \cup \{(v_1 \mapsto \lnot)\} \\ IN &= \{(v_0 \mapsto ((x_1,v_0),(x_2,v_0))),(v_1 \mapsto (v_0,v_1)),(v_2 \mapsto ((x_1,v_2),(x_2,v_2))),(v_3 \mapsto ((v_1,v_3),(v_2,v_3)))\}. \end{split}$$

Fisnik Zeqiri	4306430	16. November 2016
Felix Karg	4342014	10. November 2010

Aufgabe 3

a) [Bild 3]

b) Funktionen der Gatter:

Gatter	Funktion
v_0	$x_1 \wedge x_2$
v_1	$x_1 \oplus x_3$
v_2	$v_1 \wedge x_3$
v_3	$v_1 \oplus x_3$
v_4	$v_0 \vee v_2$

Aufgabe 4

a)
$$f_1 = x_1' x_2' x_3' x_4 + x_1 x_2' x_3' x_4 + x_1 x_2' x_3 x_4 + x_1 x_2' x_3 x_4' + x_1 x_2 x_3' x_4 + x_1 x_2 x_3 x_4$$

 $f_2 = x_1' x_2' x_3 x_4 + x_1' x_2 x_3' x_4' + x_1' x_2 x_3' x_4 + x_1' x_2 x_3 x_4 + x_1 x_2 x_3' x_4 + x_1 x_2 x_3 x_4$

c) $g_1 = x_1 x_4 + x_1' x_2' x_3' x_4 + x_1 x_2' x_3 x_4'$ $g_2 = x_2 x_4 + x_1' x_2 x_3' x_4' + x_1' x_2' x_3 x_4$