

FIT2100 Tutorial #7 Virtual Memory Week 11 Semester 2 2019

October 9, 2019

Revision Status:

\$Id: FIT2100-Tutorial-06.tex, Version 2.0 2018/10/02 13:45 Jojo \$

Updated Oct 2019 by Daniel Kos

Acknowledgement

The majority of the content presented in this tutorial was adapted by Dr Jojo Wong from: William Stallings (2017). *Operating Systems: Internals and Design Principles*, Pearson.

© 2016-2019, Faculty of IT, Monash University

CONTENTS 2

Contents

1	Background			
2	Pre-	tutorial Reading	3	
3	Mer	mory Management	3	
	3.1	Review Questions	3	
	3.2	Problem-Solving Tasks	4	
		3.2.1 Task 1	4	
		3.2.2 Task 2	4	
		3 2 3 Tack 3	/	

1 Background 3

1 Background

This tutorial provides students with the opportunity to explore further on the various concepts of memory as discussed in the lectures.

You should complete the suggested reading in Section 2 before attending the tutorial. You should also prepare the solutions for the two sets of practice tasks given in Section 3 and Section ?? respectively.

2 Pre-tutorial Reading

You should complete the following two sets of reading:

- Lecture Notes: Week 10
- Stallings' textbook (5th-9th Edition): Chapters 7, 8.

3 Memory Management

3.1 Review Questions

Question 1

What is the difference between *internal* and *external* fragementation?

Question 2

What is the difference between a page and a frame?

Question 3

What is the difference between a page and a segment?

Question 4

How does the use of *virtual memory* with paging improve system utilisation?

3.2 Problem-Solving Tasks

3.2.1 Task 1

Given free partitions in memory of 100K, 500K, 200K, 300K, and 600K (in order), how would each of the **first-fit**, **best-fit**, and **worst-fit** algorithms place processes of 212K, 417K, 112K, and 426K (in order)? Which algorithm makes the most efficient use of the memory? (Note: For the worst-fit algorithm, a process is allocated with the largest free block of memory.)

3.2.2 Task 2

A page replacement algorithm should minimise the number of *page faults*. Some common page replacement algorithms are: **FIFO**, **LRU**, and **Optimal** algorithms. How many page faults occur for each algorithm for the following sequence of page references with four page frames (assuming all four page frames are initially free)?

3.2.3 Task 3

Consider a simple segmentation system that has the following segment table:

Segment #	Starting Address	Length (bytes)
0	660	248
1	1752	422
2	222	198
3	996	604

For each of the following logical addresses (segment number, offset), determine the physical adddress or indicate if a segment fault occurs:

- (a) 0, 198
- (b) 1, 515
- (c) 3, 445