

理论力学川

主讲: 梁旭东

理学院 力学专业

哈尔滨工业大学(深圳)

电话: 15001335976

邮箱: liangxudong@hit.edu.cn

个人主页: https://faculty.hitsz.edu.cn/liangxudong

课程名称:理论力学 | 1 (2024年春)

授课对象:自动化专业本科生5,6班

授课教师:梁旭东(G栋621)

(邮箱: liangxudong@hit.edu.cn)

助教: 蒋浚琦、唐春生(理学院)

教材:哈尔滨工业大学理论力学第9版

参考书:理论力学,周培源编著,科学出版社

理论力学,李俊峰、张雄编著,清华大学出版社

学时: 64学时(静力学20, 运动学14, 动力学28,

综合算例2)

课外答疑:解答课程学习中的疑问

线上: QQ群;

课程交流群: 910554594(发布通知,作业,课程内容交流、答疑)

班级交流QQ群

群名称: 理论力学||-自动化5,6班

群号: 910554594

上课地点: H407/H403

上课时间: 3,5-8,10-16周, 周三第5,6节 (H407, 五一假期)

3,6-8,10-16周,周五第5,6节 (H407,清明、五一假期)

7-8, 10-16周, 周二第3,4节(H403, 4月16日开始)

时间	教师课表				
	星期一	星期二	星期三	星期四	星期五
第					
1- 2					
节					
第	L/ T	【本】理论力学			
3- 4	上午	[7-8,10-16周] [22级自动化5班,22级自动化6班,]			
节	10:30 – 12:15	[H403]			
第		第3-4节	【本】理论力学		【本】理论力学II
5 -			[3,5-8,10-16周]	下午	[3,6-8,10-16周]
6			[22级自动化5班,22级自动化6班,]	2:00 - 3:45	[22级自动化5班,22级自动化6班,]
节			[H407] 第5-6节	2.00 - 3.43	[H407] 第5-6节
第					
7-					
8 节					
第					
9-					
10 #					

课程成绩:

平时成绩占约20%权重(作业+考勤+课堂)

作业:每周约6道题目,每周第一次课课后提交,大约11次

(题目主要来源于教材习题, 部分参考答案书有错误!!)

考勤: 出勤率

课堂:课堂表现

(课堂中会有关键难点讨论与往年考题自测,希望大家积极参与)

额外的学习资源: Bilibili

【理论力学-哈尔滨工业大学(精品课)】

https://www.bilibili.com/video/BV1WT411J7ah/?share_source=copy_web&vd_source=4340fc1f5ffdd1da9b42868674483118

手机扫码观看/分享

课程成绩:

平时成绩约占20%权重(作业+考勤+课堂)

作业:每周6道题目,每周第一次课课后提交,大约11次

考勤: 出勤率

课堂:课堂表现

期中考试占约30%权重 期末考试占50%权重

形式:一校三区统一出题,闭卷考试

绪论

人类的历史有多久,力学的历史就有多久 ,力是人类对自然的省悟。

——《中国大百科全书力学卷》

中国力学大会2019

自然科学

技术科学

工程技术

牛顿三定律

力学

复杂工程结构

 20世纪以前,推动近代科学技术与社会进步的蒸 汽机、内燃机、铁路、桥梁、船舶、兵器等,都 是在力学知识的累积、应用和完善的基础上逐渐 形成和发展起来的。

 20世纪以来产生的诸多高新技术,如高层建筑、 大跨度悬索桥、海洋平台、航空、航天、航海等 许多重要工程更是在工程力学指导下得以实现, 并不断发展完善的。

近年来,随着人工智能技术与虚拟现实技术的发展,力学更是人类实现机械与现实世界的智能交互,以及准确模拟现实世界的必要工具。

飞驰人生-"需在离合器临界点把我左脚的力度,才能有更好的抓地力"

汽车完美起步-四轮纯滚动

电动化+智能化是实现汽车控制的全新技术路径

新能源汽车为什么识别更准、响应更快

F= m a

F-代表轮胎与地面之间的相对作用
a-代表加速度是车辆的动力学表现

电机旋变识别精度比传统轮速高 300多倍 电机旋变传感器 采编辑度: 0.02度 信息采集错度高,速度快 轮速传感器 采集错度。7.5度 信息采集错度低,速度慢 想必大家对于F=ma这个公式非常的熟悉

比亚迪仰望发布会

https://www.bilibili.com/video/BV1uY41117Ys/?share_source=copy_web&vd_source=4340fc1f5ffdd1da9b

42868674483118

经典力学的分类

力学

理论力学: 研究质点与刚体系统, 离散系统

连续介质力学:研究变形体系统,连续系统

理论力学: 研究物体机械运动一般规律的科学。

理论力学的研究对象和内容

理论力学是研究物体机械运动一般规律的科学。

机械运动:物体在空间的位置随时间的改变。包括:静止、移动、转动、振动、变形、流动、波动、扩散等。而热运动、化学运动、电磁运动、生命现象中都含有位置的变化,但不能把它们简单地归结为机械运动

热运动中每个分子(如空气)都在做机械运动吗?为什么热运动不能 简单归结为机械运动?

理论力学

静力学,研究力系的简化与平衡运动学,研究运动的几何性质动力学,研究力与运动的关系

第一章 静力学公理和物体的受力分析

本章主要内容:

- 1. 力、刚体和平衡概念;
- 2. 五个静力学公理与两个推理;
- 3. 约束概念,各种常见约束的性质;
- 4. 对物体系统能地取分离体, 画受力图。

几个基本概念

刚体:在力的作用下,其内部任意两点间的距离始终保持不变的物体. (刚体与质点的区别:有形状,有大小)

三体问题

侧方停车

变形体: 在力的作用下不能忽略变形的物体。

平衡: 物体中各质点均处于平衡状态,即物体中各质点相对于惯性参考系静止或者做匀速直线运动。

平衡是物体运动的一种特殊形式。

力:物体间相互的机械作用,作用效果使物体的机械运动状态发生改变。 质点一力改变质点的速度(大小、方向)

刚体一力既会改变刚体上某点的速度,也会改变刚体绕该点转动的速度

力的三要素:大小、方向、作用点 \longrightarrow 力是矢量 出版教材上用黑斜体F表示,手写体一般写成 \bar{F}

力系:一群力.

平面汇交(共点)力系 平面平行力系 平面力偶系 平面任意力系

空间汇交(共点)力系 空间平行力系 空间力偶系 空间任意力系

零力系:没有外力作用的力系

等效力系: 作用于同一个物体产生了相同效果的两个力系

平衡力系:等效于零力系的力系

研究物体的受力分析、力系的等效替换(或简化)、建立各种力系的平衡条件的科学

1 物体的受力分析:

分析物体(包括物体系)受哪些力,每个力的作用位置和方向,并 画出物体的受力图;

- 2 力系的等效替换(或简化): 用一个简单力系等效代替一个复杂力系;
- 3 各种力系的平衡条件: 建立各种力系的平衡条件,并应用这些条件解决静力学实际问题。

公理1 力的平行四边形法则

用于分析简化作用于刚体的力系,是人们长 期生活和生产实践的经验总结,又经过实践 反复检验,被确认是符合客观实际的规律

作用在物体上同一点的两个力,可以合成为一个合力。 合力的作用点也在该点, 合力的大小和方向, 由这两个 力为边构成的平行四边形的对角线确定。

合力(合力的大小与方向) $\vec{F}_R = \vec{F}_1 + \vec{F}_2$ (矢量和)

亦可用力三角形求得合力矢(首尾相连)

矢量加法与顺序无关
$$\vec{F}_{R} = \vec{F}_{2} + \vec{F}_{1} = \vec{F}_{1} + \vec{F}_{2}$$

公理2 二力平衡条件

作用在刚体上的两个力,使<mark>刚体保持平衡</mark>的必要和充分 条件是:这两个力的大小相等,方向相反,且作用在同 一直线上。

使刚体平衡的充分必要条件

$$\vec{F}_1 = -\vec{F}_2$$

公理2不是公理1的退化形式!

公理1:作用在同一个点

公理2: 作用在同一条直线

最简单力系的平衡力系

公理3 加减平衡力系原理

在已知力系上加上或减去任意的平衡力系,并不改变原力系对刚体的作用。

推理1 力的可传性

作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。

想象: 推桌子与 拉桌子

作用在刚体上的力的三要素为大小、方向和作用线.

推理2 三力平衡汇交定理

作用于刚体上三个相互平衡的力,若其中两个力的作用线 汇交于一点,则此三力必在同一平面内,且第三个力的作 用线通过汇交点。

前提:三力平衡+两力相交 缺少任一前提均不成立,例如?

公理4 作用和反作用定律

作用力和反作用力总是同时存在,同时消失,等值、反向、共线,作用在相互作用的两个物体上.

在画物体受力图时要注意此公理的应用: 作用力与反作用力

(注意与公理2:二力平衡的区别)

公理5 刚化原理

变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变.

柔性体 (受拉力平衡)

反之不一定成立.

刚化为刚体(仍平衡)

柔性体 (受压不能平衡)

总结

公理1 力的平行四边形法则

公理2 二力平衡条件

公理3 加减平衡力系原理

公理4 作用和反作用定律

公理5 刚化原理

推理1 力的可传递性 推理2 三力平衡汇交定理

刚体上A点受到力F的作用,问能否在B点上加一个力使刚体平衡?

(a) 不能。

因为B不在F的作用线上,无法满足二力平衡的两个力作用线在同一直线上的条件

(b) 不能。

因为绳子无法满足刚化条件,二力平衡只在刚体上成立

约束: 对非自由体的位移起限制作用的周围物体.

约束力: 约束对非自由体的作用力,又称为约束反力,或反力.

工程中常见的约束

1. 具有光滑接触面(线、点)的约束(光滑接触约束)

光滑接触面约束

光滑支承接触对非自由体的约束力,<u>作用在接触处</u>; <u>方向沿接触处的公法线并指向受力物体</u>,故称为法 向约束力,用 \vec{F}_N 表示.

2. 由柔软的绳索、胶带或链条等构成的约束

柔索只能受拉力,又称张力. 用 \vec{F}_{T} 表示.

§ 1-2 约束和约束力

柔索对物体的约束力为拉力,沿着柔索背向被约束物体.

胶带对轮的约束力沿轮缘的切线方向,为拉力.

3. 光滑铰链约束(径向轴承、圆柱铰链、固定铰链支座等)

(1) 径向轴承(向心轴承)

约束特点: 轴在轴承孔内,轴为非自由体、 轴承孔为约束.

约束力: 当不计摩擦时,轴与孔在接触处为光滑接触约束——法向约束力.约束力作用在接触处,沿径向指向轴心.

当外界载荷不同时,接触点会变,则约束力的大小与方向均有改变.

可用二个通过轴心的正交分力 \vec{F}_x , \vec{F}_y 表示.

(2) 光滑圆柱铰链

约束特点:由两个各穿孔的构件及圆柱销钉组成,

如剪刀.

光滑圆柱铰链约束

约束力:

光滑圆柱铰链: 亦为孔与轴的配合问题, 与轴承一样, 可用两个正交分力表示.

其中有作用反作用关系

$$\vec{F}_{Cx}=-\vec{F}_{Cx}', \vec{F}_{Cy}=-\vec{F}_{Cy}'$$

一般不必分析销钉受力,当要分析时,必须把销钉单独取出.

(3) 固定铰链支座

约束特点:由上面构件与地面或机架固定而成.

约束力:与圆柱铰链相同

以上三种约束(径向轴承、光滑圆柱铰链、固定铰链支座) 其约束特性相同,均为轴与孔的配合问题,都可称作光滑 圆柱铰链.

4. 其它类型约束

(1) 滚动支座

约束特点:

在上述固定铰支座与光滑固定平面之间装有光滑辊轴而成.

约束力: 构件受到垂直于光滑面的约束力.

(2) 球铰链

约束特点:通过球与球壳将构件连接,构件可以绕球心任意转动,但构件与球心不能有任何移动.

约束力: 当忽略摩擦时, 球与球座亦是光滑约束问题. 约束力通过接触点,并指向球心, 是一个不能预先确定的空间力. 可用三个正交分力表示.

(3) 止推轴承

约束特点: 止推轴承比径向轴承多一个轴向的位移限制.

约束力: 比径向轴承多一个轴向的约束力,亦有三个正交分力 \vec{F}_{Ax} , \vec{F}_{Ay} , \vec{F}_{Az} .

!!必须学会区分各种支座的示意图画法

总结

- (1) 光滑面约束——法向约束力 $\vec{F}_{\scriptscriptstyle
 m N}$
- (2) 柔索约束——张力 $\vec{F}_{\scriptscriptstyle {
 m T}}$
- (3) 光滑铰链—— \vec{F}_{Ay} , \vec{F}_{Ax}
- (4) 滚动支座—— \vec{F}_{N} 上光滑面
- (5) 球铰链——空间三正交分力
- (6) 止推轴承——空间三正交分力

受力分析

简单地说就是分析物体的受力情况,确定物体受到哪些力,各个力的作用点在哪儿?作用方向是什么?

为什么?

只有先定性地给出物体的受力情况,才能定量地求解各力的大小,然后才能解决其他问题。没有受力分析,求解静力学问题将会无从下手。

取研究对象

(取分离体)

为了把结果清晰地显示出来,把要研究的那个物体从周围的物体中分离出来,单独画它的简图,这个步骤叫做取研究对象,或者叫取分离体,画出来的这个简图称为分离体图。

受力图

把物体所受到的所有力(所有的主动力和约束反力)以一种简明的图形画出来,称为物体的受力图。

在受力图上应画出所有力,主动力和约束力(被动力)

主动力:外界对物体的作用(体力:面力:集中力)

约束力:未知的被动力 (由约束提供)

画受力图步骤:

- 1. 取所要研究物体为研究对象(解除约束,获得分离体),画 出其简图
- 2. 画出所有主动力
- 3. 按约束性质画出所有约束(被动)力

例1-1

轮子重为 \vec{P} ,拉力为 \vec{F} ,A、B两处光滑接触,画出碾子的受力图.

解: 画出简图 -分离轮子

画出主动力 -不由约束提供的力 画出约束力 -根据约束位移

指出下面受力图的不正确地方

指出下面受力图的不正确地方 (A)

- 1. 绳索只能承受拉力
- 2. F_A方向由三力平衡汇交确定

(B)

- 1. B处约束力垂直于ABC
- 2. C处约束力垂直于ABC
- 3. A处约束力应该用F_A表示,并且竖直向上

例1-3(多个刚体组成)

水平均质梁AB 重为 \vec{P}_1 ,电动机重为 \vec{P}_2 ,不计杆CD 的自重,画出杆CD和梁AB 的受力图。

解: 解除A与C处的光滑铰链约束, 画主动力+约束力

例1-3 水平均质梁AB 重为 \vec{P}_1 ,电动机 重为 \vec{P}_2 ,不计杆CD 的自重, 画出杆CD和梁AB的受力图。

解: 取 CD 杆,其受力图如右,只受到两端C与D的力作用,处于平衡

公理2-二力平衡: 物体受的力沿 两力作用点的连线,等值、反向

CD杆必须满足二力平衡,因此F_c与F_D必须等值、反向,沿CD连线方向

二力杆: 只在两个力作用下平衡的结构。

一般不受主动力、只在两端受到约束的杆件都是二力杆

取AB梁,其受力图如图(c)

CD杆的受力图能否画为图(d)所示?

可以,二力杆是刚体

若这样画,梁AB的受力图又如何改动?

作用力与反作用力必须成对出现

例1-4

不计三铰拱桥的自重与摩擦, 画出左、右拱 AB, CB 的受力图 与系统整体受力图.

解: 右拱CB为二力构件,其受力 图如图(b)所示

二力杆: 只在两个力作用下平衡的结构。

(与形状无关,只看受力)

二力杆: 所受力沿作用点连线

取左拱AC,其受力图如图 (c) 所示

系统整体受力图如图 (f)所示 考虑到左拱AC三个力作用下 平衡,按三力平衡汇交定理画 出左拱AC的受力图,如图(e)

讨论: 若左、右两拱都考虑自重,如何画出各受力图?

如图 (g) (h)

(g) 是否可以用 三力平衡汇交?

不能。需要<mark>已知</mark> 二力汇交点,才 能使用。

整体受力

例1-5(处理柔索)

不计自重的梯子放在光滑水平 地面上,画出梯子、梯子左右 两部分与整个系统受力图.

解:

绳子受力图如图(b)所示

刚化定理

(b)

梯子左边部分受力图如图 (c) 所示

多少对作用力与反作用力?

F_D与F'_D, F_E与F'_E F_{Ax}与F'_{Ax}, F_{Ay}与F'_{Ay}

梯子右边部分受力图如图 (d) 所示

梯子右边部分受力图进一步简化?

整体受力图如图 (e) 所示

提问: 左右两部分梯子在 A 处, 绳子对左右两部分梯子均有力作用, 为什么在整体受力图没有画出?

系统内各物体间的相互作用的力称为内力

内力总是成对出现,对系统的作用效应相互抵消,<mark>不画在</mark> 受力图(公理4)

受力图里只画出外力(外部对系统的作用:主动力+约束力)

期中考题

1、画出下列各图中A,B两处约束力的方向(包括方位和指向)。

例1-6(滑轮-柔索-杆件结构)

不计滑轮、杆件与绳索 的重力,并且所有接触 均光滑,画出图示结构 各个物体的受力图。

解:

AD杆为二力杆,受力图为

§ 1-3 物体的受力分析和受力图

整体受力图为

在建立力学模型时,要抓住关键、本质的方面,忽略 次要的方面。

例如:

忽略变形 — 刚体

三维问题

→ 平面问题

几何形状

➡ 圆形

重力 \bar{P} 和力 \bar{F} 的简化 \longrightarrow 作用在圆心

A,B处约束力的简化

点接触

光滑接触

力学模型

理论力学中力学模型常遇到的几个方面

- →材料假设为均匀;
- ₩将物体视为刚体;
- ♣几何形状简化为圆柱、圆盘、板、杆及由它们组成的简单形状;
- +受力简化为集中力、分布力;
- →接触简化为光滑铰链、光滑接触、柔索等。

作业 教材习题: 1-1(d), (e), (g) 1-2(d), (e), (g), (j)

