To find the best suitable model for the given Problem Statement and to predict profitability Dataset of the statement

R&D Spend	Administration	Marketing Spend	State	Profit
165349.2	136897.8	471784.1	New York	192261.8
162597.7	151377.59	443898.53	California	191792.1
153441.51	101145.55	407934.54	Florida	191050.4
144372.41	118671.85	383199.62	New York	182902
142107.34	91391.77	366168.42	Florida	166187.9
131876.9	99814.71	362861.36	New York	156991.1
134615.46	147198.87	127716.82	California	156122.5
130298.13	145530.06	323876.68	Florida	155752.6
120542.52	148718.95	311613.29	New York	152211.8
123334.88	108679.17	304981.62	California	149760
101913.08	110594.11	229160.95	Florida	146122
100671.96	91790.61	249744.55	California	144259.4
93863.75	127320.38	249839.44	Florida	141585.5
91992.39	135495.07	252664.93	California	134307.4
119943.24	156547.42	256512.92	Florida	132602.7
114523.61	122616.84	261776.23	New York	129917
78013.11	121597.55	264346.06	California	126992.9
94657.16	145077.58	282574.31	New York	125370.4
91749.16	114175.79	294919.57	Florida	124266.9
86419.7	153514.11	0	New York	122776.9
76253.86	113867.3	298664.47	California	118474
78389.47	153773.43	299737.29	New York	111313
73994.56	122782.75	303319.26	Florida	110352.3
67532.53	105751.03	304768.73	Florida	108734
77044.01	99281.34	140574.81	New York	108552
64664.71	139553.16	137962.62	California	107404.3
75328.87	144135.98	134050.07	Florida	105733.5
72107.6	127864.55	353183.81	New York	105008.3
66051.52	182645.56	118148.2	Florida	103282.4
65605.48	153032.06	107138.38	New York	101004.6
61994.48	115641.28	91131.24	Florida	99937.59
61136.38	152701.92	88218.23	New York	97483.56
63408.86	129219.61	46085.25	California	97427.84
55493.95	103057.49	214634.81	Florida	96778.92
46426.07	157693.92	210797.67	California	96712.8
46014.02	85047.44	205517.64	New York	96479.51
28663.76	127056.21	201126.82	Florida	90708.19
44069.95	51283.14	197029.42	California	89949.14
20229.59	65947.93	185265.1	New York	81229.06
38558.51	82982.09	174999.3	California	81005.76
28754.33	118546.05	172795.67	California	78239.91

27892.92	84710.77	164470.71	Florida	77798.83
23640.93	96189.63	148001.11	California	71498.49
15505.73	127382.3	35534.17	New York	69758.98
22177.74	154806.14	28334.72	California	65200.33
1000.23	124153.04	1903.93	New York	64926.08
1315.46	115816.21	297114.46	Florida	49490.75
0	135426.92	0	California	42559.73
542.05	51743.15	0	New York	35673.41
0	116983.8	45173.06	California	14681.4

Model	r_score	
Multiple linear regression	<mark>0.9358680970046243</mark>	

Support vector machine

s.no	Hyper parameter	Linear	Rbf	Poly	Sigmoid
1	C=0.1	0.9375216516	-0.0574693878	-0.0568245173	-0.0574875810
		281204	21565965	69874705	2694351
2	C = 1 (default value)	0.8950779235	-0.0573173092	-0.0508901178	-0.0574991971
		664468	7224388	24376135	677592
3	C = 10	-2.4372150243	-0.0558009229	0.0253123888	-0.0576153860
		234123	34202024	7543097	6317651
4	C = 100	-357.07951114	-0.0302355597	0.4656626338	-0.0587800237
		177723	9437731	1175776	4292657
5	C= 500		0.0500181814	0.6207738050	-0.0640166570
			33489683	58096	0120085
6	C = 1000	Increasing in	0.1606002922	0.6403239377	-0.0707012730
		negative value	2433436	679872	98142
7	C = 2000		0.2883954414	0.6717477146	-0.0845332537
			009646	409396	0568487
L	<u>l</u>	1	<u> </u>	<u> </u>	<u> </u>

The support vector machine's highest r_score value is 0.9375216516281204 using a linear hyperparameter C=0.1.

Decision Tree

s.no	Criterion	Splitter	max_features	r_score
1			auto	0.611573845
2		best	sqrt	0.538276136
3	Covered Fuser		log2	0.436129483
4	Squared_Error	<mark>random</mark>	auto	0.683968153
5			sqrt	0.508036926
6			log2	0.378445582
7			auto	0.521732947
8		best	sqrt	-0.16855781
9	Friedman Mse		log2	0.7119046
10	Friedman_ivise		auto	0.520327763
11		random	sqrt	0.051820863
12			log2	0.257659282
13			auto	0.606406558
14		best	sqrt	0.157994284
15	- Absolute_Error		log2	0.529032249
16	Absolute_Effor		auto	0.481981111
17		random	sqrt	0.173347969
18			log2	0.103136995
19		best	auto	0.562251011
20			sqrt	0.538079847
21	Deigner		log2	0.232578341
22	Poisson		auto	0.546943685
23		random	sqrt	0.521352737
24			log2	0.60677934

- The Decision Tree's highest r_score value is 0.683968153 using hyperparameter Criterion = Squared_Error, Splitter= random, max_features=auto
- The r_score value for the same hyperparameter was fluctuating constantly. Once more running the programme with the same hyperparameter

Random Forest

s.no	Criterion	N_Estimators	Max_Features	r_score
1			sqrt	0.519141672
2		10	log2	0.519141672
3	Caucaged Funer		auto	0.925277279
4	Squared_Error	50	sqrt	0.683002237
5			log2	0.683002237
6			<mark>auto</mark>	0.944633639
7			sqrt	0.75915045
8		100	log2	0.75915045
9			auto	0.946004355
10		10	sqrt	0.721083996
11		10	log2	0.721083996
12	Absolute_Error		auto	0.928182284
13	Absolute_LiTol		sqrt	0.722235187
14		50	log2	0.722235187
15			auto	0.940193525
16		100	sqrt	0.785748335
17		100	log2	0.785748335
18			auto	0.945909746
19			sqrt	0.527283
20	Friedman_Mse	10	log2	0.527283
21			auto	0.920668118
22	riieuiiiaii_ivise		sqrt	0.688918213
23		50	log2	0.688918213
24			auto	0.938895763
25		400	sqrt	0.760859221
26		100	log2	0.760859221
27			auto	0.941270197
28		42	sqrt	0.752059569
29		10	log2	0.752059569
30	Poisson		auto	0.930486613
31	Poisson		sqrt	0.720862467
32		<mark>50</mark>	log2	0.720862467
33			auto	0.946354971
34		400	sqrt	0.771764207
35		100	log2	0.771764207
36			auto	0.941388942

[•] The Random forest's highest r_score value is 0.946354971 using hyperparameter Criterion = Poisson, n_estimators=50, max_features=auto

Conclusion

S.No	Model	r_score
1	multiple linear regression	0.9358680970046243
2	support vector machine	0.9375216516281204
3	decision tree	0.683968153
4	random forest	0.946354971

As a result, random forest is the finalised and has the greatest r_score value.