1.00 Lecture 28 – Random Graphs and Components

John R Williams Abel Sanchez

Network Models

- Networks can be classified by a model of their structure
- Mechanistic: Formalize a set of mathematical rules that produce a certain type of network
 - Often represent notions of cause and effect
 - e.g. growing a network with preferential attachment
- Generative: Generate network structure without the strong causality as in mechanistic models
 - e.g. random graphs: nodal links are created randomly using prescribed degree distribution

Network Models: Small World

- Small-world, or Watts and Strogatz, model
- Captures the effect that shortest path between most pairs of nodes in a network is small
 - Typically just a few steps even in networks of billions
- Concept popularized in the expression "six degrees of separation"
- Evidenced in the Millgram experiment
 - Further reading: Easley & Kleinberg, Section 2.3

Network Models: Small World

Reducing network diameter, (a) a regular graph in which each node is connected to four neighbors, (b) Watts and Strogatz's small-world model and (c) Newman an Watt's improved small-world model

Network Models: Scale-Free

 A scale-free network is network whose degree distribution follows a power law

$$p_{k} = Ck^{-\alpha}$$

- The internet and the World Wide Web are examples of power laws
 - i.e. only a handful of pages with many links, but millions of pages with only a handful of links
- The structure of these networks are similar at all scales
 - There are parallels with fractals here!

Network Models: Scale-Free

Map of the internet circa 1998, colored by IP address (W.R. Cheswick)

Network Models: Random Graph

- Known as the Erdös-Rényi, Poisson, or Binomial random graph
- Typically denoted G(n,p) for its two parameters
 - -n = number of nodes in the network
 - -p = probability that a link exists between two nodes
- Mathematically very simple almost everything about its structure can be calculated analytically
- Not often representative when compared to real-world networks

Network Models: Random Graph

• Realization of a G(100,0.01) random graph

http://en.wikipedia.org/wiki/File:Erdos_generated_network-p0.01.jpg

Some Concepts: Degree

 The degree, k, a node is the number of links terminating or originating at it

$$k_{i} = \sum_{j=1}^{n} A_{ij}$$

- In weighted networks, this is termed strength
- The mean degree, $\langle k \rangle$, of a node in a network

$$\langle k \rangle = \frac{1}{n} \sum_{i=1}^{n} k_i = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$$

 The sum of all degrees in a network must be equal to twice the number of links, m. Why?

$$2m = \sum_{i=1}^{n} k_i = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$$

Concepts: Degree Distribution

- A defining characteristic of network structure
- Define p_k to be fraction of nodes in a network that have degree, k
- In this example: $p_0 = 1/10$, $p_1 = 2/10$, $p_2 = 4/10$, $p_3 = 2/10$, $p_4 = 1/10$
- Can you see why?
- Can also be thought of as the probability that a chosen node has degree, k

Concepts: Degree Distribution

 Extending the probability concept of degree distribution, it can be plotted as a histogram

Concepts: Degree Sequence

- Similar information to degree distribution
- The set of degrees, $\{k_1, k_1, ..., k_n\}$, for all nodes
- In this example: {2, 1, 4, 2, 0, 1, 3, 3, 2, 2}
- Can you see why?

Degree Distribution and Sequence

- Neither gives a complete network description
- Many realizations for a distribution or sequence
- An ensemble represents all possible realizations
- In this example: $p_1 = 2/5$, $p_2 = 3/5$

Two realizations of the ensemble for the degree distribution [p1 = 2/5, p3 = 3/5]

Back to Random Graphs

- In a simple, three-node network, suppose that link forms between two nodes with probability, p_l
- Probability of three links

$$P(3) = p_i^3$$

Probability of two links

$$P(2) = 3p_i^2(1-p_i)$$

Probability of one link

$$P(1) = 3p_1(1-p_1)^2$$

Probability of zeros links

$$P(0) = (1 - p_I)^3$$

What is the probability of m links on n nodes?
 What is the probability of a node with degree, k?

- There are six possible links in an undirected four-node network
- What is the probability that two links are present, but four are not?
 - e.g. Link 1 and 2 are present $P(L1, L2) = p_l^2 (1 p_l)^4$
- What is the probability of ANY two links existing in this four-node network?

Any two links can be formed in 15 ways, below

- The first link can be chosen in ₄C₂ ways
- The second link can be chosen in (₄C₂ 1) ways
- Divide by two to remove duplicates: 6 x 5 / 2 = 15

Generalize to N-Node Graphs

- The number of possible links in an n-node graph is $t = {}_{n}C_{2}$
- Suppose we want m links in our n-node random network
 - The first link can be chosen in t ways
 - The second link can be chosen in (t-1) ways
 - The m^{th} link can be chosen in (t-m+1) ways
 - Divide by m! to remove duplicate choices

$$\frac{(t)(t-1)\dots(t-m+1)}{m!} = {}_{t}C_{m} = {t \choose m}$$

What Are Duplicate Choices?

- For example, in our four-node network, the SAME three links could be chosen in six ways
- The number of duplicates for m links is m!

Generalize to N-Node Graphs

• Putting this together, the total probability of drawing a graph with m links from $G(n,p_l)$, in which all p_l are independent and equal is:

$$\Pr(m) = {t \choose m} p_l^m (1 - p_l)^{t-m}$$

• NOTE: The number of possible links in an nnode graph is $t = {}_{n}C_{2}$

- It is also possible to infer the probability that a node has a certain degree, k
- For a node in this network, there are three ways it can have a degree of two

$$P_2(2) = 3p_i^2(1-p_i)$$

• Choice of nodes to link with is limited to n-1

Generalize to N-Node Graphs

- What is the probability that a node, i, in an nnode random network has k links?
- The number of possible links to i is n-1
- For any set of k links to i
 - The first link can be chosen in (n-1) ways
 - The second link can be chosen in (n-2) ways
 - The k^{th} link can be chosen in (n-k) ways
 - Divide by k! to remove duplicate choices

$$\frac{(n-1)(n-2)...(n-k)}{k!} = {n-1 \choose k} = {n-1 \choose k}$$

Generalize to N-Node Graphs

• Putting this together, the probability of a node having degree k in a random graph, $G(n,p_l)$, in which all p_l are independent and equal is:

$$\Pr(k) = \binom{n-1}{k} p_l^k (1-p_l)^{n-1-k}$$

 As n becomes very large, and p is small, this is approximately equal to a Poisson distribution

$$\Pr(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!} = e^{-p(n-1)} \frac{(p(n-1))^k}{k!}$$

• NOTE: In a random network, $\langle k \rangle = p(n-1)$

Components

- If path between all pairs of nodes does not exist, a network is said to be disconnected
- Components are sub-groups of connected nodes
- If the entire network is connected, there is only one component

Three components in a disconnected network, colored by their component number

Finding Components

- The Breadth-First Search algorithm can be modified to classify nodes into components
- Run BFS from every node in the network
- BFS will reach all nodes that start node is connected to
- Label each node in a single BFS run as being in the same component
- Once defined we can run statistics on components e.g. number, size, size distribution

Finding Components: Pseudocode

```
for i = 1:n
    component(i) = -1; % flag each node as unassigned
end
comp = 0; % initialize the component number counter
for i = 1:n
    if component(i) < 0 % check that this node not already
                        % assigned to a component
        comp = comp + 1; % increment the component counter
        % Run BFS from node i and mark every encountered
        % node as a member of the component, comp
    end
end
```

• BFS from node 1

- BFS from node 1
 - Define component 1

- BFS from node 1
 - Define component 1
- BFS from node 2, 3, 4
 - Already defined

- BFS from node 1
 - Define component 1
- BFS from node 2, 3, 4
 - Already defined
- BFS from node 5

- BFS from node 1
 - Define component 1
- BFS from node 2, 3, 4
 - Already defined
- BFS from node 5
 - Define component 2

- BFS from node 1
 - Define component 1
- BFS from node 2, 3, 4
 - Already defined
- BFS from node 5
 - Define component 2
- BFS from node 6

- BFS from node 1
 - Define component 1
- BFS from node 2, 3, 4
 - Already defined
- BFS from node 5
 - Define component 2
- BFS from node 6
 - Define component 3

- BFS from node 1
 - Define component 1
- BFS from node 2, 3, 4
 - Already defined
- BFS from node 5
 - Define component 2
- BFS from node 6
 - Define component 3
- BFS from node 7, 8, 9, 10

- BFS from node 1
 - Define component 1
- BFS from node 2, 3, 4
 - Already defined
- BFS from node 5
 - Define component 2
- BFS from node 6
 - Define component 3
- BFS from node 7, 8, 9, 10
 - Already defined

