List of Symbols

Version: December 3, 2022

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	$\operatorname{Scalars}$
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Common symbols

$\nabla f, \mathbf{g}$	Gradient vector
$\nabla_x f, \mathbf{g}_x$	Gradient vector with respect x
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic approximation of the gradient vector
$J(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\mathcal{O}(\cdot), O(\cdot)$	big-O notation
Q(x)	Q-function
$\mathbf{\mu}_{x}, \mathbf{m}_{x}$	Mean vector
$\hat{\boldsymbol{\mu}}_{x},\hat{\mathbf{m}}_{x}$	Sample mean vector
$r_{x}(\tau), R_{x}(\tau)$	Autocorrelation function of the signal
	x(t) or $x[n]$
$\hat{r}_{\scriptscriptstyle X}(au),\hat{R}_{\scriptscriptstyle X}(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
$\mathbf{R}_{\mathbf{x}}$	(Auto)correlation matrix of \mathbf{x}
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$
$\hat{r}_{x,d}(au), \hat{R}_{x,d}(au)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$

R_{xy}	Cross-correlation matrix of ${\bf x}$ and ${\bf y}$
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
	$\mathbf{R}_{\mathbf{x}\mathbf{y}}$
$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector
$ ho_{x,y}$	Pearson correlation coefficient be-
	tween x and y
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi-
() (()	cient between x and y
$c_{x}(\tau), C_{x}(\tau)$	Autocovariance function of the signal
^ () Â ()	x(t) or $x[n]$
$\hat{c}_{x}(au),\hat{C}_{x}(au)$	Estimated autocovariance function of
CV	the signal $x(t)$ or $x[n]$
C_x, K_x, Σ_x	(Auto)covariance matrix of x
$\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
^ () Â ()	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{c}_{xy}(au),\hat{C}_{xy}(au)$	Estimated cross-covariance function
CV	of the signal $x(t)$ or $x[n]$
$\mathbf{C}_{\mathbf{xy}}, \mathbf{K}_{\mathbf{xy}}, \mathbf{\Sigma}_{\mathbf{xy}}$	Cross-covariance matrix of x
$\hat{\mathbf{C}}_{\mathbf{xy}}, \hat{\mathbf{K}}_{\mathbf{xy}}, \hat{\mathbf{\Sigma}}_{\mathbf{xy}}$	Sample cross-covariance matrix Delta function
$\delta(t)$	Kronecker function
$\delta[n] \\ h(t), h[n]$	Impulse response (continuous and
n(t), n[n]	discrete time)
\mathbf{C}	Cofactor matrix
\mathbf{W}, \mathbf{D}	Diagonal matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights
,	vector
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
\mathbf{W}	Matrix of the weights
P	Projection matrix; Permutation ma-
	trix
Λ	Eigenvalue matrix
L	Lower matrix
U	Upper matrix; Left singular vectors
$rac{\mathrm{U}_r}{\Sigma}$	Left singular nondegenerated vectors
Σ_r	Singular value matrix Singular value matrix with nonzero
∠ r	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
_	doinverse
Σ_r^+	Singular value matrix of the pseu-
,	doinverse with nonzero singular val-
	ues in the main diagonal
	-

\mathbf{V}	Right singular vectors
\mathbf{V}_r	Right singular nondegenerated vec-
	tors
J	Jordan matrix; Jacobian matrix
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
$1_{M \times N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)
j	$\sqrt{-1}$

${\bf 3}\quad {\bf Linear~Algebra~operations}$

\mathbf{A}^{-1}	Inverse matrix
${f A}^+,{f A}^\dagger$	Moore-Penrose pseudoinverse
$\mathbf{A}^{ op}$	Transpose
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{'}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$ \mathbf{A} , \det{(\mathbf{A})}$	Determinant
$\operatorname{diag}\left(\mathbf{a}\right),\operatorname{diag}\left(\mathbf{A}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor ${\bf a}$ or the elements in the diagonal
	of \mathbf{A}
$\text{vec}\left(\mathbf{A}\right)$	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor
$\operatorname{vec}_{\operatorname{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector

$\mathrm{vec}_{\mathrm{l}}\left(\mathbf{A} ight)$	Extracts the elements strictly below the main diagonal of a square matrix
	in a column-wise manner and returns
7100 (A)	them into a column vector
$\mathrm{vec_{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\mathrm{vec_{b}}\left(\mathbf{A} ight)$	Block vectorization operator: stacks
	square block matrices of the input
$\operatorname{unvec}\left(\mathbf{A}\right)$	into a long block column matrix Reshapes a column vector into a ma-
unvec (A)	trix
$cof(\mathbf{A})$	Cofactor matrix of A
$\operatorname{eig}\left(\mathbf{A} ight)$	Set of the eigenvalues of $\bf A$
$[\mathbf{A},\mathbf{B},\mathbf{C},\dots]$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor ${\mathcal X}$ from the
	outer product of column vectors of A ,
	B , C , (TODO: change the square brackets to the double one by using
	the commented commands)
$[\lambda; A, B, C, \dots]$	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	position of the tensor ${\mathcal X}$ from the
	outer product of column vectors of
	A, B, C, (TODO: change the
	square brackets to the double one by
$N(\mathbf{A})$, $nullspace(\mathbf{A})$, $kernel(\mathbf{A})$	using the commented commands) Nullspace (or kernel)
$C(\mathbf{A})$, range (\mathbf{A}) , range (\mathbf{A})	Columnspace (or range), i.e., the
· (), · · · · · · · · · · · · · · · · · · ·	space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is
	the ith column vector of the matrix
	A
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Vector space spanned by the argu-
	ment vectors
$\operatorname{span}\left(\mathbf{A}\right)$	Vector space spanned by the col-
	umn vectors of A , which gives the columnspace of A
$\operatorname{rank}\left(\mathbf{A} ight)$	Rank, that is, $\dim(\operatorname{span}(\mathbf{A})) =$
	$\dim (C(\mathbf{A}))$
$\operatorname{nullity}\left(\mathbf{A}\right)$	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$
$\mathrm{tr}\left(\mathbf{A} ight)$	trace
$\mathbf{a} \perp \mathbf{b}$	a is orthogonal to b
a ≠ b	a is not orthogonal to b
$\langle \mathbf{a}, \mathbf{b} \rangle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., \mathbf{ab}^{T}

	TZ 1 1 4
8	Kronecker product
⊙	Hadamard (elementwise) product
♦	Khatri-Rao product
\otimes	Kronecker Product
× _n	<i>n</i> -mode product
$\mathbf{X}_{(n)}$	<i>n</i> -mode matricization of the tensor ${\cal X}$
$\mathcal{X} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
-	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space \mathbb{R}^n
$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n
a < b	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	\mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the conic subset K
	in the space \mathbb{S}^n
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space \mathbb{S}^n
$A \leq B$	Generalized inequality meaning that
	B - A belongs to the positive semidef-
	inite conic subset, \mathbb{S}^n_+ , in the space \mathbb{S}^n
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathbb{S}_{++}^n , in the space
	\mathbb{S}^n

3.1 Indexing

$x_{i_1,i_2,,i_N}$	Element in the position
	(i_1, i_2, \ldots, i_N) of the tensor $\boldsymbol{\mathcal{X}}$
$\mathcal{X}^{(n)}$	nth tensor in a nontemporal sequence
$[\mathcal{X}]_{i_1,i_2,,i_N}$	Element $x_{i_1,i_2,,i_N}$
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,\ldots,i_{n-1},\ldots i_{n+1},\ldots,i_N}$	Mode- n fiber of the tensor \mathcal{X}

$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the thrid-order tensor ${\cal X}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-order tensor ${\cal X}$
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the thrid-order tensor \mathcal{X}
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order tensor ${\cal X}$
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order tensor ${\cal X}$
$\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order tensor ${\cal X}$

4 Sets

A + B	Set addition (Minkowski sum)
A - B	Minkowski difference
$A \setminus B, A - B$	Set difference or set subtraction,
$A \setminus B, A \setminus B$	i.e., the set containing the elements
	of A that are not in B
$A \cup B$	Set of union
$A \cap B$	Set of union Set of intersection
$A \times B$	Cartesian product
$A \wedge B$ A^{\perp}	-
A	Orthogonal complement of A , e.g., $N(\mathbf{A}) = C(\mathbf{A}^{\top})^{\perp}$
$A \oplus B$	Direct sum, e.g., $C(\mathbf{A}^{\top}) \oplus C(\mathbf{A}^{\top})^{\perp} =$
	\mathbb{R}^n
$A^c, ar{A}$	Complement set
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
$\mathbb Z$	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
\mathbb{N}	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$???
$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space

\mathbb{K}_{++}	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_{+} \setminus \{0\}$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices
	in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive
	semidefinite matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
	definite matrices in $\mathbb{R}^{n\times n}$, i.e., \mathbb{S}^n_{++}
	$\mathbb{S}^n_+\setminus\{0\}$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a, b), (a, b]	Half-opened intervals of a real set
	from a to b

5 Signals and functions operations and indexing

$f: A \to B$ $f^{(n)}$ f^{-1} $f \circ g$ $\inf_{\mathbf{y} \in A} g(\mathbf{x}, \mathbf{y})$	A function f whose domain is A and codomain is B nth derivative of the function f Inverse function of f Composition of the functions f and g Infimum
$\sup g(\mathbf{x}, \mathbf{y})$	Supremum
y∈A *	Convolution
$(\mathbb{R}, \widehat{\mathbb{N}})$	Circular convolution
x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \ldots
$x(n), x(k), x(m), x(i), \dots$	Discrete-time $n, k, m, i,$ (it should be used only if there are no continuous-time signals in the con- text to avoid ambiguity)
$\hat{x}(t) \text{ or } \hat{x}[n]$	Estimate of $x(t)$ or $x[n]$; the Hilbert transform of $x(t)$ or $x[n]$
$\tilde{x}[n]$	Periodic discrete-time signal
$x\left[\left((n-m)\right)_{N}\right], x\left((n-m)\right)_{N}$	Circular shift in m samples within a N -samples window
$x_I(t)$ or $x_I[n]$	Real or in-phase part of $x(t)$ or $x[n]$
$x_Q(t)$ or $x_Q[n]$	Imaginary or quadrature part of $x(t)$ or $x[n]$

$\mathcal{L}\left\{ \cdot \right\}$ Laplace transform
$\mathcal{Z}\left\{ \cdot \right\}$ z-transform
X(s) Laplace transform of $x(t)$
X(f) Fourier transform (FT) (in linear fre-
quency, Hz) of $x(t)$
$X(j\omega)$ Fourier transform (FT) (in angular
$X(e^{j\omega})$ frequency, rad/sec) of $x(t)$ Discrete-time Fourier transform
(DTFT) of $x[n]$
X[k], X(k) Discrete Fourier transform (DFT) or
fast Fourier transform (FFT) of $x[n]$.
or even the Fourier series (FS) of the
periodic signal $x(t)$
$\tilde{X}[k], \tilde{X}(k)$ Discrete Fourier series (DFS) of $\tilde{x}[n]$
X(z) z-transform of $x[n]$
$S_x(f)$ Power spectral density of $x(t)$ in lin-
ear frequency
$S_x(j\omega)$ Power spectral density of $x(t)$ in an-
gular frequency

6 Probability and stochastic processes

Statistical expectation
Statistical expectation with respect
to u
Variance of the random variable x
Complementary error function
Probability of the event or set A
Probability density function
Conditional probability density func-
tion
Random variable a with distribution
P
Gaussian distribution of a random
variable with mean μ and variance σ^2
Complex Gaussian distribution of a
random variable with mean μ and
variance σ^2
Gaussian distribution of a vector ran-
dom variable with mean μ and co-
variance matrix Σ

 $\mathcal{CN}(\pmb{\mu}, \pmb{\Sigma})$ Complex Gaussian distribution of a vector random variable with mean $\pmb{\mu}$ and covariance matrix $\pmb{\Sigma}$ Uniform distribution from a to b

7 General notations

 $a \wedge b$ Logical AND of a and b $a \lor b$ Logical OR of a and bLogical negation of a $\neg a$ \exists There exists ∄ There does not exist ∃! There exist an unique For all Such that Therefore Logical equivalence \iff ≜ Equal by definition Not equal # ∞ Infinity Absolute value of a|a|log Base-10 logarithm or decimal logarithm lnNatual logarithm $\text{Re}\left\{x\right\}$ Real part of x $\operatorname{Im}\left\{ x\right\}$ Imaginary part of xCeiling operation $\lceil \cdot \rceil$ $\lfloor \cdot \rfloor$ Floor operation phase (complex argument) $x \mod y$ Remainder, i.e., $x - y \lfloor x/y \rfloor$ $\operatorname{frac}(x)$ Fractional part, i.e., $x \mod 1$

8 Abbreviations

wrt. With respect to
st. Subject to
iff. If and only if
EVD Eigenvalue decomposition, or eigendecomposition
SVD Singular value decomposition
CP CANDECOMP/PARAFAC