- Before we begin:
- 1) Log in to your PCs using the below details:
 - Login: XXXXXXXXXX
 Password: XXXXXXXXX
- 2) Sign up for an account then log in at:
- https://rstudio.cloud/

How to Outsmart Nobel Physicists (& Be On Par With Pigeons)

Amy Li & Dr. Elma Akand

BUT HANG ON...

What even *is* data science? And why are we here?

BUT HANG ON...

What even *is* data science? And why are we here?

> The Monty Hall Problem

> What simulation is & how to implement it in R

> Verifying your solution using maths

> Challenge: Extending the problem

> What we've learned today, &
 what's it all good for?

Stay with your door, or switch to the other door?

Stay with your door, or switch to the other door?

VOTING TIME

Answer: Switch??

May I suggest that you obtain and refer to a standard textbook on probability before you try to answer a question of this type again? Charles Reid, Ph.D.

University of Florida

May I suggest that you obtain and refer to a standard textbook on probability before you try to answer a question of this type again? Charles Reid, Ph.D.
University of Florida

Simulating more repetitions using R

https://rstudio.cloud/project/4209621

In-built
script editor

(ctrl+enter
to execute a
given line)

What code R has executed

What R has in short-term memory

The Program!

The Program!

Now verify using maths...

Solution: Probability Tree Diagram

Solution: Probability Tree Diagram

Probability of prize if SWITCH is

2

Case #2

Case #3

Challenge: What if there are 5 doors?

Try STEP 4: EXTENSION in R

Challenge: Can you generalise a solution to *n* doors?

What happens with probability of prize when staying vs. switching as $n \to \infty$?

& the lab just isn't enough

> **Data** helps verify our intuitions

> Simulations help us when our data

> This is a taster of how scientists solve a range of

critical, real-life challenges.

And that's it... for now.

And that's it... for now.

But adventures lie ahead!

And that's it... for now.

But adventures lie ahead!

B Sc

B Adv Sc (Hons)

B Adv Maths (Hons)

Q & A

Proof Using Bayes Theorem

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Let C be which door the prize is behind (C = 1, 2, 3), and H be which door Monty opens (H = 3).

$$P(H = 3 \mid C = 1) = 0.5$$

$$P(H = 3 \mid C = 1) = 0.5$$

$$P(H = 3 \mid C = 3) = 0$$

$$P(H = 3 \mid C = 2) = 1$$

$$P(C = 2 | H = 3)$$

$$P(C = 2 \mid H = 3)$$

$$P(C=2 \mid H=3)$$

$$|C=2|P(C$$

$$= \frac{P(H=3 \mid C=2) P(C=2)}{\sum_{c=1}^{3} P(H=3 \mid C=c) P(C=c)}$$

P(C = 1 | H = 3) = ? P(C = 2 | H = 3) = ?

$$0 \times \frac{1}{3}$$

$$= \frac{1 \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3} + 1 \times \frac{1}{3} + 0 \times \frac{1}{3}}$$