

SIPMOS® Power Transistor

BUZ 111S

Features

• N channel

- Enhancement mode
- Avalanche rated
- dv/dt rated
- 175°C operating temperature

Product Summary

Drain source voltage	V _{DS}	55	V
Drain-Source on-state resistance	R _{DS(on)}	0.008	Ω
Continuous drain current	I _D	80	Α

Туре	Package	Ordering Code	Packaging
BUZ111S	P-TO220-3-1	Q67040-S4003-A2	Tube
BUZ111S E3045A	P-TO263-3-2	Q67040-S4003-A6	Tape and Reel
BUZ111S E3045	P-TO263-3-2	Q67040-S4003-A5	Tube

Pin 1	Pin 2	Pin 3
G	D	S

Maximum Ratings, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Continuous drain current	I _D		Α
$T_{\rm C} = 25 {}^{\circ}{\rm C}, ^{1)}$		80	
$T_{\rm C} = 100 {}^{\circ}{\rm C}$		80	
Pulsed drain current	<i>I</i> Dpulse	320	
$T_{\rm C}$ = 25 °C			
Avalanche energy, single pulse	E _{AS}	700	mJ
$I_{\rm D} = 80 \text{ A}, \ V_{\rm DD} = 25 \text{ V}, \ R_{\rm GS} = 25 \ \Omega$			
Avalanche energy, periodic limited by T_{jmax}	E _{AR}	30	
Reverse diode dv/dt	d <i>v</i> /d <i>t</i>	6	kV/μs
$I_{S} = 80 \text{ A}, \ V_{DS} = 40 \text{ V}, \ di/dt = 200 \text{ A/}\mu\text{s},$			
<i>T</i> _{jmax} = 175 °C			
Gate source voltage	V_{GS}	±20	V
Power dissipation	P _{tot}	300	W
$T_{\rm C}$ = 25 °C			
Operating and storage temperature	$T_{\rm j}$, $T_{\rm stg}$	-55 +175	°C
IEC climatic category; DIN IEC 68-1		55/175/56	

Thermal Characteristics

Parameter	Symbol	Values		Unit	
		min.	typ.	max.	
Characteristics	·			•	
Thermal resistance, junction - case	R _{thJC}	-	-	0.5	K/W
Thermal resistance, junction - ambient, leded	R_{thJA}	-	-	62	
SMD version, device on PCB:	R _{thJA}				
@ min. footprint		-	-	62	
@ 6 cm ² cooling area ²⁾		-	-	40	

Electrical Characteristics, at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Values		Unit	
		min.	typ.	max.	
Static Characteristics	•				
Drain- source breakdown voltage	$V_{(BR)DSS}$	55	-	-	V
$V_{GS} = 0 \text{ V}, I_D = 0.25 \text{ mA}$					
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}	2.1	3	4	
$I_{\rm D} = 240 \; \mu {\rm A}$, ,				
Zero gate voltage drain current	IDSS				μΑ
$V_{DS} = 50 \text{ V}, \ V_{GS} = 0 \text{ V}, \ T_j = 25 \ ^{\circ}\text{C}$		-	0.1	1	
$V_{DS} = 50 \text{ V}, \ V_{GS} = 0 \text{ V}, \ T_j = 150 \ ^{\circ}\text{C}$		-	-	100	
Gate-source leakage current	I _{GSS}	-	10	100	nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$					
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{\rm GS} = 10 \text{ V}, I_{\rm D} = 80 \text{ A}$,	-	0.0065	0.008	

Data Sheet 2 05.99

¹current limited by bond wire

Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air.

Electrical Characteristics, at T_i = 25 °C, unless otherwise specified

Parameter Parameter	Symbol		Values		Unit
		min.	typ.	max.	
Dynamic Characteristics	,				•
Transconductance	g_{fs}	30	73	-	S
$V_{\text{DS}} \ge 2^* I_{\text{D}}^* R_{\text{DS(on)max}}$, $I_{\text{D}} = 80 \text{ A}$					
Input capacitance	C_{iss}	-	3600	4500	pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MH}$	Z				
Output capacitance	$C_{ m oss}$	-	1100	1375	
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MH}$					
Reverse transfer capacitance	C_{rss}	-	550	690	
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MH}$	Z				
Turn-on delay time	$t_{d(on)}$	-	25	37	ns
$V_{DD} = 30 \text{ V}, \ V_{GS} = 10 \text{ V}, \ I_D = 80$	Α,				
$R_{\rm G}$ = 2.4 Ω					
Rise time	t_{r}	-	30	45	
$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 80 \text{ C}$	Α,				
$R_{\rm G}$ = 2.4 Ω					
Turn-off delay time	$t_{\sf d(off)}$	-	65	95	
$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 80 \text{ V}$	Α,				
$R_{\rm G}$ = 2.4 Ω					
Fall time	t_{f}	-	40	60	
$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 80 \text{ C}$	Α,				
$R_{\rm G}$ = 2.4 Ω					

Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol	Values		Unit	
		min.	typ.	max.	
Dynamic Characteristics					•
Gate to source charge	Q_{gs}	-	18	27	nC
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 80 \text{ A}$					
Gate to drain charge	Q_{gd}	-	61	91.5	
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 80 \text{ A}$					
Gate charge total	Q_g	-	125	185	
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 80 \text{ A}, V_{\rm GS} = 0 \text{ to } 10 \text{ V}$					
Gate plateau voltage	V _(plateau)	-	5.45	-	V
$V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 80 \text{ A}$,				

Reverse Diode

Neverse Blode					
Inverse diode continuous forward current	Is	-	-	80	А
$T_{\rm C}$ = 25 °C					
Inverse diode direct current,pulsed	/ _{SM}	-	-	320	
$T_{\rm C}$ = 25 °C					
Inverse diode forward voltage	V _{SD}	-	1.25	1.8	V
$V_{GS} = 0 \text{ V}, I_{F} = 160 \text{ A}$					
Reverse recovery time	t _{rr}	-	105	160	ns
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$					
Reverse recovery charge	Q _{rr}	-	0.29	0.45	μC
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$					

Power Dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

Safe operating area

$I_{D} = f(V_{DS})$

parameter : D = 0 , $T_C = 25$ °C

Drain current

$$I_{D} = f(T_{C})$$

parameter: $V_{GS} \ge 10 \text{ V}$

Transient thermal impedance

$$Z_{\text{thJC}} = f(t_{\text{p}})$$

parameter : $D = t_D/T$

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

Typ. transfer characteristics I_{D} = $f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on) \text{ max}}$

Typ. drain-source-on-resistance

 $R_{\mathrm{DS(on)}} = f(I_{\mathrm{D}})$

parameter: V_{GS}

Typ. forward transconductance

 $g_{fs} = f(I_D); T_i = 25^{\circ}C$

parameter: gfs

Drain-source on-resistance

 $R_{\mathsf{DS}(\mathsf{on})} = f(T_{\mathsf{j}})$

parameter : I_D = 80 A, V_{GS} = 10 V

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$

Gate threshold voltage

 $V_{GS(th)} = f(T_j)$

parameter : $V_{GS} = V_{DS}$, $I_{D} = 240 \mu A$

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

Avalanche Energy $E_{AS} = f(T_j)$

parameter: $I_D = 80 \text{ A}, V_{DD} = 25 \text{ V}$

$$R_{\text{GS}} = 25 \ \Omega$$

Typ. gate charge

$$V_{\text{GS}} = f(Q_{\text{Gate}})$$

Drain-source breakdown voltage

$$V_{(BR)DSS} = f(T_i)$$

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.