Remote Sensing for Forest Recovery

Team:

Benjamin Frizzell

Mavis Wong

Hui Tang

Zanan Pech

Mentor: Alexi Rodríguez-Arelis

Partner: Piotr Tompalski

Agenda

- Ol Problem Context & Data Source Product Overview, Data Summary & Key
- 02 Challenges
- **03** Data Science Techniques
- **04** Limitations and Potential Improvements

Background & Problem Context

- Large scale afforestation efforts underway
- Newly planted trees are difficult to detect
- Need for scalable monitoring methods
- Data collected in Ontario by Forest Canada

- Goals
 - Discover whether remote sensing data are useful for predictions
 - Identify the effective modelling approach
 - The level of accuracy that can be achieved

Data Product

Data Overview

- Static Site Features
 - Area (Hectares)
 - Species Compositions
 - Species Types
 - Number of planted trees
 - Time of planting, survival assessment
- Target: survival rate (0 100%) measured across 7
 years
- Spectral Indices: NDVI, NDWI, NBR etc.
 - Measures of greenness, soil exposure, water content, etc.
 - Measured approximately monthly

Age	Species Types	Assessment Date		Target
1	Conifer	2022-10-15	•••	80
2	Deciduous	2023-10-15	•••	60

Image Date	NDVI	NDWI	NBR	EVI	
2018-10-1	1.0	0.8	0.6	0.9	
2028-11-1	0.3	0.2	0.4	0.4	

Challenges - Skewness

Challenges - High Correlation

- Normalized indices (NDVI, NDWI) should not exceed [-1,1],
 outliers should be removed
- Some survival rates in first survey exceed 100%, should be removed

Challenges - Missing Values

Missing target survival rate/record time

Challenges – Thresholds (Binary Conversion)

50%

60%

70%

Age	Assessment Date	Survival Rate		Target
1	2022-10-15	60	•••	HIGH
2	2023-10-15	40	•••	LOW

80%

Data Science Techniques

Phase 1: Classical Modelling Pipeline

Permutation Importance

- Randomly shuffle a feature and see how much performance decreases
- fewer features affect performance as threshold decreases
- Density and age show high importance generally for tree models
- Importance depends on both model and threshold

SHAP Importance

- Train model on all feature subsets, compute weighted average change to log-odds from adding that feature
- Higher contribution from more remote sensing features as threshold increases
- Type features have strong contribution at low thresholds, Density and Age have lower contribution (contrary to permutation)
- No strong contribution measured by Random Forest

RFE Rankings

- Type shows little use, especially at low thresholds
- Density consistently helpful across most thresholds
- Less features may be be needed for identifying low survival rates (EVI, NBR, NDWI, SAVI)
- Importance varies greatly with threshold and model, continue with all features to be safe

Confusion Matrices

- Increasing threshold leads to more balanced data, more true positive predictions, relatively fewer false positives
- But false negatives also increase rapidly, suggesting issues beyond class imbalance

Phase 1: Conclusion

- Random Forest and Gradient Boosting cannot significantly outperform baseline
- Class imbalance and data processing likely limiting model performance: losing vital information by averaging over time
- Models that are more suitable for time series may be necessary!

50% Threshold

Model	F ₁ score	Precision	Recall
Gradient Boosting	0.058	0.105	0.040
Random Forest	0.124	0.078	0.304
Logistic Regression	0.122	0.069	0.547

80% Threshold

F ₁ score	Precision	Recall
0.411	0.485	0.403
0.521	0.427	0.668
0.515	0.435	0.630

Phase 2: RNN Modelling Pipeline

Recurrent Neural Network (RNN):

- Train RNN Regression Model → Map output to binary class for evaluation
- No defined classification threshold → Avoid training multiple RNN models

Data Engineering

- Log Transformed time_delta
 - Time difference between image date and survey date
 - Capture irregularity in time intervals of the satellite records

- Negative cosine transform
 DOY
 - $-\cos(2\pi \times DOY/365)$
 - Capture seasonality in satellite signals

Data Preprocessing

Validation Split

- Split the test data to get validation set
- Use during training to validate model performance

Data Normalization

- RNN sensitive to data scaling
- Avoid vanishing/exploding gradient

Sequence Generation

Survival Records

ID	PixelID	SrvvR_Date	Age	target
1	11	21/05/21	1	80
2	12	10/11/13	2	70
5	55	01/01/22	6	80

Imaging Records

	ID	PixelID	ImgDate	DOY	NDVI		TCW	
	3	13	01/03/14	60	0.6		-0.3	
_	4	14	07/04/21	97	8.6		0.5	
_								

Sequential Data fed to RNN

FOR each row in Survival Rates table:

- Search image table for records with matching (ID, pixelID)
- Select all records up till survey date
 (ImgDate ≤ SrvvR_Date)

ID	PixelID	ImgDate	time_delta	DOY	NDVI	 TCW
5	55	01/01/18	1461	1	0.7	0.6
5	55	01/02/18	1430	32	0.2	0.8
5	55	01/07/19	915	182	-0.3	-0.7

RNN Modelling GRU (Gated Recurrent Unit)

- Simplified LSTM
- Good at capturing short- and mid-term dependencies.
- Faster training

LSTM (Long Short-Term Memory)

- More complex architecture
- Good for capturing long term dependencies
- More robust for complex or longer sequences.

RNN Architecture

• <u>Bi-directional RNN</u>: capture long-term time dependencies more effectively

Feed-Forward Layer

- 1. **Concatenate :** RNN output (+ site features)
- 2. **Linear layer + ReLU activation**: Nonlinearity
- 3. **Dropout Layer :** Avoid Overfitting
- 4. **Sigmoid activation**: map output to desired range

Loss Function

- MSELoss : penalises large error
- Data skewed towards high survival rates
- Improve predictions for low survival rate records

RNN Model Evaluation

		50%			80%		
Model	Features	F ₁ Score	Precision	Recall	F ₁ Score	Precision	Recall
LSTM	Site + Satellite	0	0	0	0.368	0.367	0.369
	Satellite	0	0	0	0.393	0.338	0.472
ODLI	Satellite	0	0	0	0.434	0.34	0.599
GRU	Site + Satellite	0	0	0	0.44	0.359	0.569

Fails to make any correct positive prediction

- Much better performance
- Fails to outperform classical models

Confusion Matrices

- GRU performs better than
 LSTM
- Higher True positive
- Lower False Negative
- But this also comes with high False Positive ...

Residual Plots

- Imbalance data, where most true value is >70%
- Relationship resembles a convex function centered at 80%
- Model is not making useful predictions, predicting a survival rate ~80% most of the time

Recap: Current Limitations

• Imbalance:

Lack of data on sites with low survival rates leads to biased predictions

Classical Modelling:

Fails to capture sequential changes in vegetation indices across time

RNN Modelling:

- Can handle temporal structure
- Fails to capture spatial correlations between pixels within sites

Misleading Target Labels:

- Survival rates are recorded per site, but predictions made per pixel
- 'Healthy' and 'unhealthy' pixels in same site will have same target

Recommendations - Data

- Use higher resolution satellite data
 - Capture finer details, direct imaging should work with similar models!
 - Sentinel-2 offers 10m x 10m resolution data
 - Planet: 3m x 3m resolution, 15 day imaging cycle
 - o Drone imaging: cm level resolution
- Obtain more fine-grained survival records
 - Per-pixel rather than per site for more consistent targets
- Incorporate spatial data, make site-level predictions
 - e.g. GPS coordinates, geodata etc.
 - Learn spatial and temporal patterns, relationships between pixels.
- Obtain consistent annual survival records
 - Improve model performance with more consistent temporal data

Potential Next Steps: CNN-LSTM

- Convolutional Neural Network (CNN): Used for image processing; extract features and spatial relationships from vegetation indices within site polygon at each time step
- Pass each CNN output to LSTM or GRU for sequence processing, then to fully connected neural network (FCNN) for prediction

Thank You

