Orthogonality

Orthogonality

Normal Equation Revisited

Alternate perspective on the "normal equation":

$$A^{\mathrm{T}}(\mathbf{b} - A\mathbf{x}) = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{z}^{\mathrm{T}}(\underbrace{\mathbf{b} - A\mathbf{x}}_{\mathrm{residual} = \mathbf{r}}) = 0 \quad \text{for all } \mathbf{z} \in \mathcal{R}(A) \,,$$

i.e., ${\bf x}$ solves the normal equation if and only if the residual is orthogonal to the range of A.

Orthogonal Vectors

$$\vec{u} \cdot \vec{v} = ||\vec{v}||_2 ||\vec{v}||_2 \cos \theta.$$

(or 11 77)

Recall that the angle θ between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ satisfies

$$\cos(\theta) = \frac{\mathbf{u}^{\mathrm{T}}\mathbf{v}}{\|\mathbf{u}\|_{2} \|\mathbf{v}\|_{2}}.$$

$$\mathbf{T} = \frac{\mathbf{v}^{\mathrm{T}}\mathbf{v}}{\|\mathbf{v}\|_{2} \|\mathbf{v}\|_{2}}.$$

$$\cos(\theta) = \frac{\mathbf{v}^{\mathrm{T}}\mathbf{v}}{\|\mathbf{v}\|_{2} \|\mathbf{v}\|_{2}}.$$

$$\cos(\theta) = \frac{\mathbf{v}^{\mathrm{T}}\mathbf{v}}{\|\mathbf{v}\|_{2} \|\mathbf{v}\|_{2}}.$$

Definition 1

- Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are **orthogonal** if $\mathbf{u}^T \mathbf{v} = 0$.
- Vectors $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k \in \mathbb{R}^n$ are **orthogonal** if $\mathbf{q}_i^{\mathrm{T}} \mathbf{q}_j = 0$ for all $i \neq j$.
- Vectors $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k \in \mathbb{R}^n$ are orthonormal if $\mathbf{q}_i^{\mathrm{T}} \mathbf{q}_j = \delta_{i,j}$.

Notation. (Kronecker delta function)

$$\int_{0}^{\infty} \left\| \vec{q}_{j} \right\|_{2} = 1$$

$$\delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Example

 $\circ \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -5 \end{bmatrix} \right\} : \text{ orthogonal but not orthonormal}$

$$\vec{v} = \sqrt{2} \cdot \sqrt{2} + \sqrt{2} \cdot (-\sqrt{2})$$

$$= \sqrt{2} - \sqrt{2} = 0 \quad \text{orthogonal}$$

·
$$\|\vec{u}\|_{2}^{2} = (\sqrt{2})^{2} + (\sqrt{2})^{2} = \sqrt{2} + \sqrt{2} = 1$$

Matrices with Orthogonal Columns

Let $Q = \left[\begin{array}{c|c} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_k \end{array} \right] \in \mathbb{R}^{n \times k}$. Note that

$$Q^{\mathrm{T}}Q = \begin{bmatrix} \mathbf{q}_1^{\mathrm{T}} \\ \mathbf{q}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{q}_k^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_1^{\mathrm{T}} \mathbf{q}_2 & \cdots & \mathbf{q}_1^{\mathrm{T}} \mathbf{q}_k \\ \mathbf{q}_2 & \cdots & \mathbf{q}_2^{\mathrm{T}} \mathbf{q}_k \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_k^{\mathrm{T}} \mathbf{q}_1 & \mathbf{q}_k^{\mathrm{T}} \mathbf{q}_2 & \cdots & \mathbf{q}_k^{\mathrm{T}} \mathbf{q}_k \end{bmatrix}.$$

Therefore.

- herefore, $\mathbf{q}_1,\ldots,\mathbf{q}_k \text{ are orthogonal.} \iff Q^{\mathrm{T}}Q \text{ is a } k\times k \text{ diagonal matrix.}$ $\mathbf{q}_1,\ldots,\mathbf{q}_k \text{ are orthonormal.} \iff Q^{\mathrm{T}}Q \text{ is the } k\times k \text{ identity matrix.}$ $\mathbf{q}_1,\ldots,\mathbf{q}_k \text{ are orthonormal.} \iff Q^{\mathrm{T}}Q \text{ is the } k\times k \text{ identity matrix.}$

Example

$$\vec{q}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \vec{q}_2 = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}, \quad \vec{q}_3 = \begin{bmatrix} 0 \\ 0 \\ -5 \end{bmatrix}.$$

$$Q^TQ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 diagonal.

$$Q = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}, \quad Q^T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}, \quad Q^T Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}$$

Matrices with Orthonormal Columns

Theorem 2

Let $Q = [\mathbf{q}_1 \mid \mathbf{q}_2 \mid \cdots \mid \mathbf{q}_k] \in \mathbb{R}^{n \times k}$ and suppose that $\mathbf{q}_1, \ldots, \mathbf{q}_k$ are orthonormal. Then

$$\mathbf{0}$$
 $Q^{\mathrm{T}}Q = I \in \mathbb{R}^{k \times k}$; \longrightarrow explained above

$$\mathbf{Q} \|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \text{ for all } \mathbf{x} \in \mathbb{R}^k; \quad \text{(norm is preserved)}$$

$$||Q||_2 = 1.$$

Orthogonal Matrices

Definition 3

We say that $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if $Q^TQ = I \in \mathbb{R}^{n \times n}$.

 A square matrix with orthogonal columns is not, in general, an orthogonal matrix!

Properties of Orthogonal Matrices

$$Q^TQ = I$$

Theorem 4

Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal. Then

- $Q^{-1} = Q^{T}$:
- Q Q is also an orthogonal matrix:
- **3** $\kappa_2(Q) = 1;$
- $\textbf{4} \text{ For any } A \in \mathbb{R}^{n \times n}, \, \|AQ\|_2 = \|A\|_2;$

6 if $P \in \mathbb{R}^{n \times n}$ is another orthogonal matrix, then PQ is also orthogonal.

Why Do We Like Orthogonal Vectors?

ullet If ${f u}$ and ${f v}$ are orthogonal, then

$$\|\mathbf{u} \pm \mathbf{v}\|_{2}^{2} = \|\vec{\chi}\|_{2}^{2} + \|\vec{\chi}\|_{2}^{2}$$
 (Pythagorean)

- Without orthogonality, it is possible that $\|\mathbf{u} \mathbf{v}\|_2$ is much smaller than $\|\mathbf{u}\|_2$ and $\|\mathbf{v}\|_2$.
- The addition and subtraction of orthogonal vectors are guaranteed to be well-conditioned.

Appendix: Projection and Reflection

$$|\vec{v}| = |\vec{v}| + 2\vec{p}$$

Projection and Reflection Operators

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ be nonzero vectors.

• Projection of \mathbf{u} onto $\langle \mathbf{v} \rangle = \text{span}(\mathbf{v})$:

$$\frac{\mathbf{v}^{\mathrm{T}}\mathbf{u}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\mathbf{v} = \underbrace{\left(\frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\right)}_{-\cdot P}\mathbf{u} =: P\mathbf{u}.$$

• Projection of \mathbf{u} onto $\langle \mathbf{v} \rangle^{\perp}$, the orthogonal complement of $\langle \mathbf{v} \rangle$:

$$\mathbf{u} - \frac{\mathbf{v}^{\mathrm{T}}\mathbf{u}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\mathbf{v} = \left(I - \frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\right)\mathbf{u} =: (I - P)\mathbf{u}.$$

• Reflection of \mathbf{u} across $\langle \mathbf{v} \rangle^{\perp}$:

$$\mathbf{u} - 2 \frac{\mathbf{v}^{\mathrm{T}} \mathbf{u}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \mathbf{v} = \left(I - 2 \frac{\mathbf{v} \mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \right) \mathbf{u} =: (I - 2P) \mathbf{u}.$$

Projection and Reflection Operators (cont')

Summary: for given $\mathbf{v} \in \mathbb{R}^m$, a nonzero vector, let

$$P = \frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}} \in \mathbb{R}^{m \times m}.$$

Then the following matrices carry out geometric transformations

- Projection onto $\langle \mathbf{v} \rangle$: P
- Projection onto $\langle \mathbf{v} \rangle$: I P
- Reflection across $\langle \mathbf{v} \rangle^{\perp}$: I 2P

Note. If v were a unit vector, the definition of P simplifies to $P = vv^{T}$.