Discussion on Generalising IPCO, quasi isometric embedding

Dibyayan Chakraborty* Louis Esperet[†]

1 Directions

Lemma 1. Let G be a series parallel graph, v be any vertex, and P be any isometric path. Then there is an isometric subgraph H of G with bounded pathwidth that contains P and r.

Question 1. Is it possible to use Lemma 1 to show that K_4 -asymptotic minor free graphs admit a quasi-isometry with additive distortion on K_4 minor free graphs?

For integers $a \geq 1, b \geq 0$, (a,b)-quasi-isometric embedding of a graph H in a graph G is a map $f \colon V(H) \to V(G)$ such that for $u, v \in V(H)$, $\frac{1}{a} \mathsf{d}_H(u,v) + b \leq \mathsf{d}_G(f(a),f(b)) \leq a.\mathsf{d}_H(u,v) + b$. A graph class $\mathcal G$ contains a graph H, as a quasi-isometric minor if for all $a \geq 1, b \geq 0$ there is a graph $G \in \mathcal G$ such that there is a (a,b)-quasi-isometric embedding of H in G.

Question 2. For an integer $k \geq 3$, characterise graphs that does not contain a cycle of order k as a quasi-isometric minor.

^{*}School of Computer Science, University of Leeds, United Kingdom $^{\dagger} \text{GSCOP}$