PC

Suites de fonctions

 $\mathcal I$ intervalle de $\mathbb R$

I. Modes de convergences

 $n \in \mathbb{N}$ $f_n : \mathcal{I} \longrightarrow \mathbb{K}$

I.1. Convergence simple (cvs)

<u>définition</u>: La suite de fonctions $(f_n)_n$ cvs sur \mathcal{I} si $\forall x \in \mathcal{I}$, la suite $(f_n(x))_n$ admet une limite finie f(x), ce qui définit une fonction $f: \mathcal{I} \longrightarrow \mathbb{K}$

f est dite limite simple sur \mathcal{I} de la suite de fonctions $(f_n)_n$

Donc $\forall x \in \mathcal{I} \quad \forall \varepsilon \in \mathbb{R}_+^* \quad \exists \ n_0 \in \mathbb{N} \quad \forall \ n \in \mathbb{N} \quad n \geq n_0 \Longrightarrow |f_n(x) - f(x)| \leq \varepsilon$

I.2. Convergence uniforme (cvu)

<u>définition</u>: La suite de fonctions $(f_n)_n$ evu sur \mathcal{I} vers f si $\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0$

f est dite limite uniforme sur \mathcal{I} de la suite de fonctions $(f_n)_n$

Donc $\forall \varepsilon \in \mathbb{R}_+^* \quad \exists \ n_0 \in \mathbb{N} \quad \forall \ n \in \mathbb{N} \quad n \geq n_0 \Longrightarrow \forall \ x \in \mathcal{I} \quad |f_n(x) - f(x)| \leq \varepsilon$

Propriété : cvu ⇒ cvs

I.3. Convergence uniforme sur tout segment

<u>définition</u>: La suite de fonctions $(f_n)_n$ cvu sur tout segement de \mathcal{I} vers f si \forall $(a,b) \in \mathcal{I}^2$ $(f_n)_n$ cvu vers f sur [a,b]

Propriété : cvu \Longrightarrow cvu sur tout segment de $\mathcal{I}\Longrightarrow$ cvs

Toutes les réciproques sont fausses

II. Conservation des propriétés par cvu

II.1. Continuité

<u>théorème</u>: $n \in \mathbb{N}$ $f_n : \mathcal{I} \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ f_n continue sur \mathcal{I} et $(f_n)_n$ evu vers f sur \mathcal{I} (ou evu sur tout segment de \mathcal{I}), alors f est continue sur \mathcal{I}

faux avec cvs

II.2. Dérivabilité

<u>théorème</u>: $n \in \mathbb{N}$ $f_n : \mathcal{I} \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ f_n de classe c^1 sur \mathcal{I} et $(f_n)_n$ evs vers f sur \mathcal{I} et $(f'_n)_n$ evu vers g (ou evu sur tout segment de \mathcal{I}), alors f est de classe c^1 sur \mathcal{I} et f' = g

Extension: $n \in \mathbb{N}$ $f_n : \mathcal{I} \longrightarrow \mathbb{K}$ avec $\forall n \in \mathbb{N}$ f_n de classe c^k sur \mathcal{I} et $(f_n)_n$ evs vers f sur \mathcal{I} , $(f'_n)_n$, ..., $(f_n^{(k-1)})_n$ evs sur \mathcal{I} et $(f_n^{(k)})_n$ evu sur \mathcal{I} vers g (ou evu sur tout segment de \mathcal{I}), alors f est de classe c^k sur \mathcal{I} et $f^{(k)} = g$

f est de classe c^{∞} si f est de classe c^k pour tout $k \in \mathbb{N}$

PC Lycee Pasteur 2023 2024

II.3. Intégration

 $\underline{\textbf{th\'eor\`eme:}}\ n\in\mathbb{N}\quad f_n:\, [a,b]\longrightarrow\mathbb{K}\quad \text{avec}\ \forall\ n\in\mathbb{N}\ f_n\ \text{continue}\ \text{sur}\ [a,b]\ \text{et}\ (f_n)_n\ \text{evu}\ \text{vers}\ f\ \text{sur}\ [a,b]$

alors
$$\lim_{n \to +\infty} \int_a^b f_n(t)dt = \int_a^b \lim_{n \to +\infty} f_n(t)dt = \int_a^b f(t)dt$$

faux avec cvs

théorème de convergence dominée (admis) : (version 1) $n \in \mathbb{N}$ $f_n: [a,b] \longrightarrow \mathbb{K}$ avec

 $\forall \ n \in \mathbb{N} \ f_n$ continue sur [a,b] et $(f_n)_n$ cvs vers f sur [a,b] et

 $\exists \ \varphi: [a,b] \longrightarrow \mathbb{R}_+ \text{ continue (donc intégrable) sur } [a,b] \text{ telle que } \forall \ n \in \mathbb{N} \quad \forall \ x \in [a,b] \quad |f_n(x)| \leq \varphi(x)$ (hypothèse de domination)

alors
$$\lim_{n \to +\infty} \int_a^b f_n(t)dt = \int_a^b \lim_{n \to +\infty} f_n(t)dt = \int_a^b f(t)dt$$