Probabilités, modélisation et statistique Chapitre 3 - Vecteurs aléatoires et indépendance

Raphaël Benerradi

Contenu pédagogique : Gwladys Toulemonde, Chloé Serre-Combe et Raphaël Benerradi

Polytech Montpellier - DevOps3 - Semestre 6

Année 2025-2026

Vecteur aléatoire

Définition : vecteur aléatoire

Soit (Ω, \mathcal{A}) un espace probabilisable et $n \in \mathbb{N}^*$. Un **vecteur aléatoire** est une application mesurable $X : \Omega \to \mathbb{R}^n$.

Remarque : Un vecteur aléatoire peut être vu comme un n-uplet de variables aléatoires réelles :

$$X(\omega) = egin{pmatrix} X_1(\omega) \ X_2(\omega) \ dots \ X_n(\omega) \end{pmatrix} \quad ext{avec} \quad X_i:\Omega o\mathbb{R} ext{ v.a.}$$

Remarque: Dans la suite on considérera souvent les vecteurs aléatoires à valeurs dans \mathbb{R}^2 mais la plupart des définitions et propriétés s'étendent sans difficulté à des dimensions supérieures.

4 ロ ト 4 固 ト 4 重 ト 4 直 ・ 9 9 (や

Loi jointe

Définitions 00000

Définition : loi jointe

Soit $X = (X_1, X_2)$ un vecteur aléatoire à valeurs dans \mathbb{R}^2 . La **loi jointe** de X est la mesure de probabilité définie par :

$$\forall A \in \mathcal{B}(\mathbb{R}^2), \quad \mathbb{P}_X(A) = \mathbb{P}(X \in A) = \mathbb{P}(\{\omega \in \Omega \mid (X_1(\omega), X_2(\omega)) \in A\})$$

Remarque:

Pour une loi discrète et i, j ∈ N,

$$\mathbb{P}_{(X_1,X_2)}(i,j) = \mathbb{P}(\{X_1 = i\} \cap \{X_2 = j\})$$

• Pour une loi admettant une densité $f_{(X_1,X_2)}$, et $a,b,c,d\in\mathbb{R}$,

$$\mathbb{P}(X_1 \in [a,b], X_2 \in [c,d]) = \int_a^b \int_c^d f_{(X_1,X_2)}(x_1,x_2) dx_2 dx_1$$

00000

Fonction de répartition

Définition : fonction de répartition d'un couple de v.a.

La fonction de répartition de X est définie par :

$$F_X(x_1,x_2) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2)$$

Remarque:

Pour une loi discrète et x₁, x₂ ∈ ℝ,

$$F_{(X_1,X_2)}(x_1,x_2) = \sum_{k < x_1} \sum_{l < x_2} \mathbb{P}_{(X_1,X_2)}(k,l)$$

• Pour une loi admettant une densité et $x_1, x_2 \in \mathbb{R}$,

$$F_{(X_1,X_2)}(x_1,x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f_{(X_1,X_2)}(s,t) dt ds$$

Lois marginales

00000

Définition : loi marginale

Soit $X = (X_1, X_2)$ un vecteur aléatoire à valeurs dans \mathbb{R}^2 . Les **lois** marginales de X sont les lois \mathbb{P}_{X_1} et \mathbb{P}_{X_2} des variables aléatoires X_1 et X_2

$$\mathbb{P}_{X_1}(B) = \mathbb{P}(X_1 \in B) = \mathbb{P}(\{X_1 \in B\} \cap \{X_2 \in \mathbb{R}\}) = \mathbb{P}_{(X_1, X_2)}(B \times \mathbb{R})$$

$$\mathbb{P}_{X_2}(C) = \mathbb{P}(X_2 \in C) = \mathbb{P}(\{X_2 \in C\} \cap \{X_1 \in \mathbb{R}\}) = \mathbb{P}_{(X_1, X_2)}(\mathbb{R} \times C)$$

Remarque: Soient $i, j \in \mathbb{N}, x_1, x_2 \in \mathbb{R}$ et $a, b, c, d \in \mathbb{R}$

Pour une loi discrète.

$$\mathbb{P}_{X_1}(i) = \sum_{k_2 \in \mathbb{N}} \mathbb{P}_{(X_1, X_2)}(i, k_2) \qquad \text{et} \qquad \mathbb{P}_{X_2}(j) = \sum_{k_1 \in \mathbb{N}} \mathbb{P}_{(X_1, X_2)}(k_1, j)$$

Pour une loi admettant une densité, on peut définir les densités marginales

$$f_{X_1}(x_1) = \int_{-\infty}^{+\infty} f_{(X_1,X_2)}(x_1,t) dt$$
 et $f_{X_2}(x_2) = \int_{-\infty}^{+\infty} f_{(X_1,X_2)}(s,x_2) ds$

Rappel:
$$\mathbb{P}_{X_1}([a,b]) = \int_{a}^{b} f_{X_1}(x_1) dx_1$$
 et $\mathbb{P}_{X_2}([c,d]) = \int_{c}^{d} f_{X_2}(x_2) dx_2$

Indépendance

Définition : indépendance

Deux variables aléatoires X_1 et X_2 sont dites **indépendantes** si pour toute paire d'événements mesurables A et B, on a :

$$\mathbb{P}(X_1 \in B \cap X_2 \in C) = \mathbb{P}(X_1 \in B) \, \mathbb{P}(X_2 \in C)$$

Remarque:

Pour une loi discrète, pour tous i, j ∈ N :

$$\mathbb{P}(X_1 = i, X_2 = j) = \mathbb{P}(X_1 = i) \mathbb{P}(X_2 = j)$$

• Pour une loi admettant une densité, pour tous $x_1, x_2 \in \mathbb{R}$:

$$f_{(X_1,X_2)}(x_1,x_2) = f_{X_1}(x_1) f_{X_2}(x_2)$$

Corollaire: pour tous $a, b, c, d \in \mathbb{R}$:

$$\mathbb{P}(X_1 \in [a, b] \cap X_2 \in [c, d]) = \mathbb{P}(X_1 \in [a, b]) \mathbb{P}(X_2 \in [c, d])$$

Espérance sur la loi jointe : Soit $g: \mathbb{R}^2 \to \mathbb{R}$ une fonction mesurable. Supposons que g(X) est une variable aléatoire intégrable (c'est-à-dire, $\mathbb{E}[|g(X)|] < +\infty$). On peut tout à fait définir son espérance :

- Si X est discrète : $\mathbb{E}[g(X)] = \sum_{i,j} g(i,j) \mathbb{P}(X_1 = i, X_2 = j)$
- Si X admet une densité : $\mathbb{E}[g(X)] = \int_{\mathbb{D}^2} g(s,t) f_{(X_1,X_2)}(s,t) ds dt$

Définition : moment croisé

On appelle **moment croisé** d'ordre (p,q) de X_1 et X_2 l'espérance de $X_1^p X_2^q$ (si elle existe):

- Si X est discrète : $\mathbb{E}[X_1^p X_2^q] = \sum_{i,j} i^p j^q \mathbb{P}(X_1 = i, X_2 = j)$
- Si X admet une densité : $\mathbb{E}[X_1^p X_2^q] = \int_{\mathbb{D}^2} s^p t^q f_{(X_1, X_2)}(s, t) ds dt$

Covariance

Définition : covariance

Soient X et Y deux variables aléatoires définies sur le même espace probabilisé et admettant des moments d'ordre 2. La **covariance** de X et Y, notée Cov(X, Y), est définie par :

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Remarques: Cov(X, X) = V(X).

Propriétés : Soient X, Y et Z trois variables aléatoires.

- $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- \bullet Cov(X, Y) =Cov(Y, X)
- $\forall a, b \in \mathbb{R}$, $Cov(aX + bY, Z) = a \cdot Cov(X, Z) + b \cdot Cov(Y, Z)$
- On en déduit que $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\mathsf{Cov}(X,Y)$

Corrélation linéaire

Définition : corrélation linéaire

Soient X_1 et X_2 deux variables aléatoires définies sur le même espace probabilisé et admettant des moments d'ordre 2. Le coefficient de **corrélation linéaire** de X_1 et X_2 , noté $\rho(X_1, X_2)$, est défini par :

$$\rho(X_1, X_2) = \frac{\mathsf{Cov}(X_1, X_2)}{\sqrt{\mathbb{V}(X_1)}\sqrt{\mathbb{V}(X_2)}}$$

avec la convention $\rho(X_1, X_2) = 0$ si $\mathbb{V}(X_1) = 0$ ou $\mathbb{V}(X_2) = 0$.

Proposition

Soit X et Y deux variables aléatoires. X et Y sont indépendantes si et seulement si pour tout couple de fonctions mesurables g et h, on a :

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$$

Corollaire: Si X et Y sont indépendantes, alors Cov(X, Y) = 0.

Remarque: La réciproque du corollaire est fausse en général.

Par exemple, soient $X \sim \mathcal{B}(1/2)$ et $Y \sim \mathcal{B}(1/2)$ telles que $X \perp \!\!\! \perp Y$. On considère les variables aléatoires X + Y et X - Y.

$$Cov(X + Y, X - Y) = \mathbb{E}[(X + Y)(X - Y)] - \mathbb{E}[X + Y]\mathbb{E}[X - Y]$$

$$= \mathbb{E}[X^2 - Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])(\mathbb{E}[X] - \mathbb{E}[Y])$$

$$= \mathbb{E}[X^2] - \mathbb{E}[Y^2] - (\mathbb{E}[X]^2 - \mathbb{E}[Y]^2)$$

$$= \mathbb{V}(X) - \mathbb{V}(Y) = 0$$

Or
$$\mathbb{P}(X + Y = 0) = 1/4$$
, $\mathbb{P}(X - Y = 0) = 1/2$ et $\mathbb{P}(X + Y = 0, X - Y = 0) = 1/4$.

Ainsi X + Y et X - Y ne sont pas indépendantes.

Espérance et matrice de variance-covariance

Définition : espérance

Soit X un vecteur aléatoire à valeurs dans \mathbb{R}^n . On définit l'**espérance** de X comme le vecteur :

$$\mathbb{E}[X] = \begin{pmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}$$

Définition : matrice de variance-covariance

On appelle matrice de variance-covariance de X la matrice définie par :

$$\Sigma = \begin{pmatrix} \mathbb{V}(X_1) & \mathsf{Cov}(X_1, X_2) & \cdots & \mathsf{Cov}(X_1, X_n) \\ \mathsf{Cov}(X_2, X_1) & \mathbb{V}(X_2) & \cdots & \mathsf{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(X_n, X_1) & \mathsf{Cov}(X_n, X_2) & \cdots & \mathbb{V}(X_n) \end{pmatrix}$$

Stabilité de certaines variables aléatoires

On avait vu:

• Si $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ et $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ avec $X \perp \!\!\! \perp Y$, alors $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

On a aussi:

- Si $X_i \sim \mathcal{B}(p)$, alors $\sum_{i=1}^n X_i \sim \mathcal{B}(n,p)$.
- Si $X_i \sim \mathcal{B}(k_i, p)$, alors $\sum_{i=1}^n X_i \sim \mathcal{B}(\sum_{i=1}^n k_i, p)$.
- Si $X_i \sim \mathcal{P}(\lambda_i)$, alors $\sum_{i=1}^n X_i \sim \mathcal{P}(\sum_{i=1}^n \lambda_i)$.

Vecteurs gaussiens

Définition : vecteur gaussien

Un vecteur aléatoire $X=(X_1,\ldots,X_n)$ est dit **gaussien** si pour tout $(\lambda_1,\ldots,\lambda_n)\in\mathbb{R}^n$, la variable aléatoire $\sum_{i=1}^n\lambda_iX_i$ suit une loi normale.

Soient $\mu \in \mathbb{R}^n$ l'espérance de X et $\Sigma \in \mathbb{R}^{n \times n}$ sa matrice de variance-covariance, on notera alors $X \sim \mathcal{N}(\mu, \Sigma)$.

Remarque 1: Si X est un vecteur gaussien, alors chaque X_i est une variable aléatoire gaussienne.

La réciproque est en général **fausse**. Par exemple, soient $X \sim \mathcal{N}(0,1)$ et ϵ telle que $\mathbb{P}(\epsilon=1) = \mathbb{P}(\epsilon=-1) = 1/2$ indépendantes. Considérer le vecteur aléatoire $(X,X+\epsilon X)$.

Remarque 2 : Comme pour une variable aléatoire gaussienne, la loi d'un vecteur aléatoire gaussien est entièrement caractérisée par son espérance et sa matrice de variance-covariance.

←ロト→園ト→夏ト→夏 りへ○

Densité d'un vecteurs gaussiens

Densité d'un vecteur gaussien

Soit X un vecteur gaussien de dimension n, d'espérance $\mu \in \mathbb{R}^n$ et de matrice de variance-covariance $\Sigma \in \mathbb{R}^{n \times n}$. Si Σ est inversible, alors Xadmet une densité de probabilité donnée par :

$$f_X(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Théorème indépendance dans un vecteur gaussien

Remarque : Lorsque Σ est diagonale avec des éléments diagonaux non nuls, la densité s'écrit :

$$f_X(x) = \frac{1}{\sqrt{2\pi \prod_{i=1}^n \sigma_i^2}} \exp\left(-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - \mu_i)^2}{\sigma_i^2}\right)$$

Théorème : indépendance dans un vecteur gaussien

Soit $X = (X_1, \dots, X_n)$ un vecteur gaussien de matrice de variance-covariance Σ . Les variables aléatoires X_1, \ldots, X_n sont indépendantes si et seulement si Σ est diagonale.

Remarque: Ce théorème admet une version "par blocs".

Loi du χ^2

Définition : loi du χ^2

Soient X_1, \ldots, X_k des variables aléatoires indépendantes et identiquement distribuées suivant une loi normale centrée réduite $\mathcal{N}(0,1)$. La variable aléatoire :

$$Y = \sum_{i=1}^{k} X_i^2$$

suit une loi du χ^2 (ou loi de Pearson) à k degrés de liberté, que l'on note $Y \sim \chi^2(k)$.

Loi du χ^2

Propriété: $\mathbb{E}(X) = k$ et $\mathbb{V}(X) = 2k$.

Remarque: La loi du χ^2 intervient dans le test du χ^2 . Ce test permet par exemple de répondre aux questions suivantes :

- Soit \tilde{P} une loi de probabilité. Les résultats observés pour X lors d'une expérience aléatoire suivent-ils la loi \tilde{P} ?
- Les variables aléatoires X_1, \ldots, X_n sont-elles indépendantes ?

Loi de Student

Définition : loi de Student

Soient $X \sim \mathcal{N}(0,1)$ et $Y \sim \chi_k^2$ deux variables aléatoires indépendantes. La variable aléatoire :

$$T = \frac{X}{\sqrt{Y/k}}$$

suit une loi de Student à k degrés de liberté, que l'on note $\mathcal{T} \sim \mathcal{T}(k)$.

Loi de Student

Propriété:
$$\mathbb{E}(X) = 0$$
 et $\mathbb{V}(X) = \frac{k}{k-2}$ pour $k > 2$.

Remarque : La loi de Student intervient dans le test de Student. Ce test permet par exemple de répondre aux questions suivantes :

- Soient X_1, \ldots, X_n et Y_1, \ldots, Y_m deux échantillons issus de lois normales indépendantes $\mathcal{N}(\mu_X, \sigma^2)$ et $\mathcal{N}(\mu_Y, \sigma^2)$. Est-ce que les moyennes μ_X et μ_Y sont significativement différentes ?
- Soit Y_1, \ldots, Y_n un échantillon et x_1, \ldots, x_n des variables observées. Est-ce que Y dépend linéairement de x?

Loi de Fisher

Définition : loi de Fisher

Soient $Y_1 \sim \chi^2(k_1)$ et $Y_2 \sim \chi^2(k_2)$ deux variables aléatoires indépendantes. La variable aléatoire :

$$F = \frac{Y_1/k_1}{Y_2/k_2}$$

suit une loi de Fisher à (k_1, k_2) degrés de liberté, que l'on note $F \sim \mathcal{F}(k_1, k_2)$.

Loi de Fisher

Propriété :
$$\mathbb{E}(X) = \frac{k_2}{k_2 - 2}$$
 pour $k_2 > 2$ et $\mathbb{V}(X) = \frac{2k_2^2(k_1 + k_2 - 2)}{k_1(k_2 - 2)^2(k_2 - 4)}$ pour $k_2 > 4$.

Remarque: La loi de Fisher intervient dans le test de Fisher. Ce test permet par exemple de répondre à la question suivante :

• Soient X_1, \ldots, X_n et Y_1, \ldots, Y_m deux échantillons issus de lois normales indépendantes $\mathcal{N}(\mu_X, \sigma_X^2)$ et $\mathcal{N}(\mu_Y, \sigma_Y^2)$. Est-ce que les variances $\sigma_{\mathbf{x}}^2$ et $\sigma_{\mathbf{x}}^2$ sont significativement différentes ?