MBA em IA e Big Data

Curso 01 - Linguagens e Ferramentas para Inteligência Artificial e Big Data (Python e SQL)

Introdução ao NoSQL

Jose Fernando Rodrigues Junior ICMC-USP São Carlos

Objetivo: apresentar conceitos sobre sistemas não relacionais

Big Data: resumo em 6Vs

Big Data

Open Data

Volume

Data at Rest

Terabytes to exabytes of existing data to process

Velocity

Data in Motion

Streaming data, milliseconds to seconds to respond

Variety

Data in Many Forms

Structured, unstructured, text, multimedia

Veracity

Data in Doubt

Uncertainty due to data inconsistency & incompleteness, ambiguities, latency, deception, model approximations

Visibility

Data in the Open

Open data is generally open to anyone. Which raises issues of privacy.
Security and provenance

Value

Data of Many Values

Large range of data values from free (data philanthropy to high value monetization)

Motivação

- Problemas com bases relacionais
 - Esquema rígido
 - □ Não é facilmente escalável
 - Depende de frequentes junções

NoSQL

MBA IA BIG DAYA

- Not Only SQL
- Classe de sistemas não-relacionais de armazenamento
- Usualmente, não requerem um esquema de dados, e/ou não priorizam operações de junção
- Flexibilizam uma ou mais das propriedades ACID
- São mais versáteis em termos de escala horizontal

NoSQL

- São mais aderentes às estruturas de dados usuais nas linguagens de programação modernas
- Se alicerçam nos recursos computacionais abundantes da atualidade:
 - Por exemplo: um banco de dados com 2 GB em 1999 era grande, hoje cabe em memória → tendência que deve se intensificar ao longo das próximas décadas
 - Com redes de dados extremamente rápidas, podem enviar e receber grandes quantidades de dados em tempo razoável e escalar horizontalmente com facilidade

NoSQL

ACID x BASE

- Basically Available: disponibilidade em detrimento à consistência maximização de leituras e escritas, sem a garantia de que estejam consistentes; alta disponibilidade por meio de replicação e distribuição em diversos nós;
- Soft State: o estado dos dados é "relaxado"; por ex., a leitura de um dado não garante que ele se refere ao valor mais atualizado; ele pode mudar mesmo sem a ocorrência de leituras/escritas, pois os dados ainda podem estar em processamento integridade é responsabilidade do programador;
- Eventual Consistency: o sistema será eventualmente (em algum momento) consistente após a entrada/saída de dados; os dados serão replicados para nós diferentes e, eventualmente, atingirão um estado consistente; mas a consistência não é garantida no nível da transação.
- ⇒ **BASE** prevê outras propriedades pois, muitas vezes, as propriedades ACID não são necessárias, mas sempre são custosas;
- ⇒ **BASE** permite escalonamento horizontal facilitado, tolerância a falhas, e alta disponibilidade ao custo de menor consistência.

ACID x BASE

BASE oferece menos garantias do que ACID, mas é mais escalável e se molda mais rapidamente a alterações no modelo de dados.

⇒ Say Hello to NoSQL

Tipos de NoSQL

Tipo	Critérios para escolha	Sistemas
Key:Value Store	Esquema simples; poucos updates; consultas simples	Aerospike; Apache Cassandra; Berkeley DB; Redis; Riak
Document Store	Esquema flexível; consultas mais complexas; dados JSON/XML; indexação complexa (dados geoespaciais, texto)	MongoDB; Couchbase; CouchDB; Firebase; Google Firestone
Column-Oriented	Grande volume; escrita otimizada; recuperação de dados orientada a colunas	Cassandra; HBase; MS Azure Table Storage; Google Bigtable;
Graph	Operações de data traversal; consultas orientados aos relacionamentos	Neo4j; JanusGraph; TigerGraph; Giraph
Multi-modelo		Amazon DynamoDB; MS Azure Cosmos; Oracle NoSQL; Couchbase; ArangoDB; Virtuoso;

[⇒] Como escolher um Sistema NoSQL

Tipos de NoSQL

⇒ Como escolher um Sistema NoSQL

NoSQL; Couchbase; ArangoDB; Virtuoso;

MongoDB

- mongoDB = "Humongous DB"
 - Open-source
 - Document-based
 - "High performance, high availability"
 - Escalabilidade facilitada

Relational Model

Document Model

Collection ("Things")

MongoDB

- mongoDB = "Humongous DB"
 - Open-source
 - Document-based
 - "High performance, high availability"
 - Escalabilidade facilitada

⇒ Atualmente, a solução NoSQL mais usada no mercado https://db-engines.com/en/ranking

Mongodb: The Definitive Guide: Powerful and Scalable Data Storag,
By Kristina Chodorow and Mike Dirolf

Published: 9/24/2019

Pages: 514

Language: English

Publisher: O'Reilly Media, CA

