#### The 9th IEEE International Conference on Data Science and Advanced Analytics

# minOffense: Inter-Agreement Hate Terms for Stable Rules, Concepts, Transitivities, and Lattices

#### Dr. Animesh Chaturvedi

Indian Institute of Information Technology Dharwad,
Dharwad, Karnataka, India
animesh.chaturvedi88@gmail.com



INFORMATION TECHNOLOGY



#### Dr. Rajesh Sharma

University of Tartu, Tartu, Estonia rajesh.sharma@ut.ee



# Motivation and Research Questions

#### Motivation and Problem

- For a given set of Hate Terms lists (HTs-lists) and Hate Speech data (HS-data), it is challenging to understand which hate term contributes the most for hate speech.
- Two approaches to the relationship between co-occurring Hate Terms (HTs).

#### 1. Quantitative Analysis

- To create an *Inter-agreement HTs-list*, which explains the contribution of an individual hate term toward hate speech.
- To produce a **Severe Hate Terms list** (**Severe HTs-list**)

#### 2. Qualitatively Analysis

- Stable Hate Rule (SHR) mining detects ordered frequently co-occurring HTs with minimum Stability (minStab). This form Stable Hate Rules and Concepts.
- These rules and concepts are used to visualise the graphs of *Transitivities* and *Lattices* formed by HTs.

#### Research Questions

- **RQ1**: How to perform *Inter-agreement analysis*, which provide information about common HTs between a HS-data and multiple HTs-lists?
- **RQ2**: How to use an Inter-agreement HTs-list to generate a *Severe HTs-list* for efficient Hate Speech classification?
- **RQ3:** How much better classification is achieved using the Severe HTs-list compared to any of the given HTs-lists?
- **RQ4a:** How to generate *Stable Hate Rules* (SHRs) that represent frequently co-occurring HTs among multiple HS-data?
- **RQ4b:** How to make hate concepts and visualise the relationship between co-occurring HTs from SHRs?

# Quantitative analysis: Inter-Agreement and Severe Hate Terms lists

#### 1. Quantitative Analysis

- To create an *Inter-agreement HTs-list*, which explains the contribution of an individual hate term toward hate speech.
- To produce a Severe Hate Terms list (Severe HTs-list)
- 2. Qualitatively Analysis
- Stable Hate Rule (SHR) mining detects ordered frequently co-occurring HTs with minimum Stability (minStab). This form Stable Hate Rules and Concepts.
- These rules and concepts are used to visualise the graphs of *Transitivities* and *Lattices* formed by HTs.

#### Overview

- Inspired by the concepts of Shapley value
  - the contribution by individual players in a game
  - the contribution of an individual HT towards hate speech
- Three classes of Hate Speech
  - **Hate:** class indicates the lines definitely contain HTs.
  - **Relative-hate:** class indicates the lines contain mild HTs.
  - **No-hate:** class indicates the lines do not contain HTs.
- Proposed metrics: Hatefulness, Relativeness, and Offensiveness
- To make *Inter-agreement HTs-list*
- To measure the severity of HTs and generate **Severe Hate Terms list**

# Single Hate Terms List Analysis

#### 4 Artifacts

- 1. Creation of hate terms frequencies
- 2. AllHateTermsFrequencies and TopTermsFrequency
- 3. AllHTsPercentLine
- 4. OuterJoinHTsFrequencies and OuterJoinHTsPercentLines

Discussed with experiments

#### Intra-Agreement-HTs for each HTs-list (5<sup>th</sup> Artifact)

• Intra-Agreement between a HTs-list and a HS-data

Hatefulness =  $\{1 \text{ or } 0 \mid HT \in \text{Hate class or not, respectively}\}$ 

Relativeness (Hate) =

FreqHT in Hate Class

FreqHT in Relative-hate class and FreqHT in No-hate class

Relativeness (Hate + Relative-hate) =

FreqHT in Hate Class + FreqHT in Relative-hate class

FreqHT in No-hate class

Useful for
Inter-Agreement
analysis of Multiple
HTs-list

# Multiple Hate Terms Lists analysis

# Inter-agreement Hate Terms Analysis (Answer to RQ1)

- Agreement between
  - the HS-data and
  - the multiple HTs-lists = {HTs-list1, HTs-list2,... HTs-listN}
- Inter-Agreement HTs Analysis as a matrix IA of size  $N \times M$ ,
  - N represents the number of HTs-lists and M number of classes in a HS-data.
  - IA<sub>ij</sub> represents the information about HTs of a given HTs-lists, which are present in a class of HS-data.
- Generate a *Inter-agreement HTs-list* containing HTs with two kinds of information
  - It contains Offensiveness metric value of each HT in the HS-data.
  - It mentions the HTs-lists which contains those HTs.

## Inter-Agreement HTs (6th Artifact)

- Percentage contribution (i.e., overall input towards cost) of a hate term occurrences to a hate class.
- Varying value of the Offensiveness of a HT for a given HS-data divided into classes (Hate, Relative-hate, and No-hate).
- HT will be most Hateful when its Offensiveness equals to 1
- HT will be least hateful when its Offensiveness value is equal to 0

Offensiveness = 
$$\frac{2 \times \text{Hatefulness} \times \text{Relativeness}}{(\text{Hatefulness} + \text{Relativeness})}$$



### Severe Hate Terms-list (Answers to RQ2)

- Generate the Severe HTs-list from the Inter-Agreement HTs-list having HTs with *Offensiveness* metric values greater than a user-defined interestingness threshold *minimum Offense* (minOffense).
- Offensiveness provides help to separate out the highly severe HTs and the less severe HTs.
- High values of Offensiveness generate the Severe HTs-lists.

• Severe HTs-list helps in better hate speech classification as compared to the given

set of HTs-lists.



# Inter-agreement Confusion-matrix (7<sup>th</sup> Artifact)

- Information about confusion-matrix with
  - True Positive (TP),
  - True Negative (TN),
  - False Positive (FP), and
  - False Negative (FN)
- For the calculation of accuracy, precision, recall, and f-measure of HS classification.
- To avoiding **imbalance**: Percentage of HS-lines in a class to evaluate metrics

| CaseStudy class  | <b>TP</b> = percentage of HS-lines | <b>TN</b> = percentage of HS-lines | <b>FP</b> = percentage of HS-lines | <b>FN</b> = percentage of HS-lines |  |
|------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|
| Hate             | with HTs occurring in Hate class   | without HTs occurring in           | with HTs in NonOffensive class     | without HTs in Hate class          |  |
|                  |                                    | NonOffensive class                 |                                    |                                    |  |
| Relative-hate    | with HTs occurring in Offensive    | without HTs occurring in           | with HTs in NonOffensive class     | without HTs in Offensive           |  |
|                  | class NonOffensive class           |                                    |                                    | class                              |  |
| Hate + Relative- | with HTs occurring in              | without HTs occurring in           | with HTs in NonOffensive class     | without HTs in                     |  |
| hate             | Hate+Offensive class               | NonOffensive class                 |                                    | Hate+Offensive class               |  |

## Summary\_N(HateTerms) (8th Artifact)

• This provides information of percent HS-lines with N HTs in a HS-data class e.g.,  $x\$  have 1 HT,  $y\$  have 2 HTs,  $z\$  have 3 HTs and so on.

Discussed with experiments

#### Rare instances of the co-occurring HTs

- Imbalance occurrences of hate speech as compared to normal speech leads to rare instances of HTs and HS-lines in a HS-data.
- Identify and list those rare HTs by identifying rare concepts and their effect on the classes.
- It is interesting to analyse those groups of rare HTs (as hate concepts) and their effect on the classes.

#### Qualitative analysis: Stable Hate Rules, Concepts, Transitivities, and Lattices

- 1. Quantitative Analysis
- To create an *Inter-agreement HTs-list*, which explains the contribution of an individual hate term toward hate speech.
- To produce a Severe Hate Terms list (*Severe HTs-list*)
- 2. Qualitatively Analysis
- Stable Hate Rule (SHR) mining detects ordered frequently co-occurring HTs with minimum Stability (minStab). This form Stable Hate Rules and Concepts.
- These rules and concepts are used to visualise the graphs of *Transitivities* and *Lattices* formed by HTs.

#### Interestingness thresholds

- It uses multiple thresholds to retrieve interesting and significant rules
- It separates interesting rules from the less or non interesting rules
- A and B together (where  $A \rightarrow B$ ) can have three interestingness thresholds:
  - 1) minimum Support (minSup) is a threshold for minimum number of occurrences of HTs **A** and **B** occurring together,
  - 2) minimum Confidence (minConf) is a threshold for minimum number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number of occurrences of  $A \cup B$  divided by number
  - 3) minimum Stability (minStab) [5][7] is a threshold for minimum number of states in which rule exceeds minSup & minConf

[5] A. Chaturvedi, A. Tiwari, and N. Spyratos. "minStab: Stable Network Evolution Rule Mining for System Changeability Analysis." *IEEE Trans. on Emerging Topics in Computational Intelligence* (2019).

[7] A. Chaturvedi, A. Tiwari, and N. Spyratos. "System Network Analytics: Evolution and Stable Rules of a State Series." *IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)*. IEEE, 2022.

#### Hate Speech Rule Mining Example

- To discover co-occurrences of desired terms
  - consider only HTs and contextual terms in a hate speech
- Suppose 'Anglo' is a contextual term, which is a white English speaking person.
- Suppose there are 19 tweets (each as a hate speech) with 'sp\*c', which is an ethnic slur for people from Spanish-speaking.
- Out of them 3 tweets are as follows
  - Tweet 1: "Black cops k\*ll white citizens. sp\*c cops k\*ll Anglo citizens. Z\*geuner cops r\*pists."
  - Tweet 2: "No half-breed sp\*c Anglo, k\*lled so."
  - Tweet 3: "A\*glo-S\*xn Protestant, alive US. None, foreign f\*lth."

#### Hate Speech Rule Mining Example

- The FreqHTs denotes the frequency of a Hate Term (HT) (means number of occurrences of individual HT) in a hate speech.
- The FreqHT of 'Anglo' and 'sp\*c' are as follows: N(Anglo) = 3 and N(sp\*c) = 18.
- The FreqCoHTs denote the frequency of co-occurring HTs in a hate speech.
- The FreqCoHTs for (Anglo and sp\*c) are as follows: N(Anglo, sp\*c) = 2; N(Anglo as antecedent) = 1; and N(sp\*c as antecedent) = 15.

```
[Anglo] \rightarrow [sp*c] #SUP:2 #CONF: 0.66 means N(Anglo \cup sp*c) / N(Anglo) = 2/3 [sp*c] \rightarrow [Anglo] #SUP: 2 #CONF: 0.11 means N(Anglo \cup sp*c) / N(sp*c) = 2/18
```

Treat as unordered database result in the following unordered hate rules

Ordered sequence database result in [sp\*c]  $\rightarrow$  [Anglo] #SUP: 2 #CONF: 0.13 means the following ordered hate rule N(Anglo  $\cup$  sp\*c) / N(sp\*c as antecedent) = 2/15

#### Stable Hate Rule (SHR)

- The **stability** is the number of HS-data in which a *hate rule* occurs with sufficient minSup and minConf.
- Hate rule occurring more than a minStab number are said to be Stable Hate Rule.
- SHR mining is performed over multiple Hate Speech data (HS-data) with only hate terms and Named-entities.
- This generated Stable Hate Rules (SHRs), which can be read as "if someone uses a HT 'A', then most probably the person may also use HT 'B' with a given probability".
- The SHRs could be like [A] → [B], where the [A] is antecedent and the [B] is its
  consequent.

## Stable Hate Rule (SHR) (Answers to RQ4a)

• Pre-processing:

• Inter-agreement HTs-list is used to make an Representational Hate Speech Database (RepHS-database)



frequently co-occurring HTs

## Stable Hate Rule (SHR) (Answers to RQ4a)

- Stable Hate Rule (SHR) mining
  - SHR mining over the database to discover co-occurring HTs.



# Stable Hate Rule (SHR) (Answers to RQ4a)

• Post-processing visualization as Transitive graph and Lattice graph



#### Dataset

Hate Speech data (HS-data)

Hate Terms-lists (HTs-lists)

#### Hate Speech data (HS-data)

Three hate speech datasets and six hate terms lists.

- a) Davidson et al. [8] (Twitter tweets)
- b) de Gibert et al. [10] (White Supremacy forum)
- c) Gao et al. [11] (Fox-news-comments)

| Hate Speech           | Cla             | isses            |  |
|-----------------------|-----------------|------------------|--|
| data                  | Used in HS-data | Used in our work |  |
|                       | Hate            | Hate             |  |
| Davidson et al. [8]   | Offensive       | Relative-Hate    |  |
|                       | Non-Offensive   | No-Hate          |  |
|                       | Hate            | Hate             |  |
| de Gibert et al. [10] | Relational Hate | Relative-Hate    |  |
|                       | No-Hate         | No-Hate          |  |
|                       | Hate            | Hate             |  |
| Gao et al. [11]       | _               | Relative-Hate    |  |
|                       | No-Hate         | No-Hate          |  |

[8] T. Davidson, et al. "Automated hate speech detection and the problem of offensive language." Int. AAAI Conf. on Web and Social Media. Vol. 11. No. 1. 2017.

[10] O. de Gibert, et al. "Hate speech dataset from a white supremacy forum." arXiv preprint arXiv:1809.04444 (2018).

[11] L. Gao, and R. Huang. "Detecting online hate speech using context aware models." arXiv preprint arXiv:1710.07395 (2017).

#### Hate Terms-lists (HTs-lists)

- a) Chandrasekharan et al. [12] contains Reddit hate lexicon<sup>1</sup>
- b) Gorrell et al. [13] contains abuse lexicon in tweets related to UK politicians<sup>2</sup>
- c) Hatebase<sup>3</sup> contains a various kinds of hate vocabulary from many countries

- [12] E. Chandrasekharan, et al. "You can't stay here: The efficacy of reddit's 2015 ban examined through hate speech." ACM on Human-Computer Interaction 1. CSCW (2017): 1-22.
- [13] G. Gorrell, et al. "Twits, twats and twaddle: trends in online abuse towards UK politicians." *Int. AAAI Conf. on Web and Social Media*. Vol. 12. No. 1. 2018.
- 1 https://www.dropbox.com/sh/5ud4fwxvb6q7k20/AAAH SN8i5cfmJRKJteEW2b2a
- 2 <a href="https://cloud.gate.ac.uk/shopfront/displayItem/gate-hate">https://cloud.gate.ac.uk/shopfront/displayItem/gate-hate</a>
- 3 <a href="https://hatebase.org/academia">https://hatebase.org/academia</a>

#### Hate Terms-lists (HTs-lists)

- d) Bassignana et al. [14] list named Hurtlex<sup>4</sup> contains lexicons of hate terms for 50 languages, which are divided into 17 categories.
- e) Wiegand et al. [15] filtered abusive words from negative polar expressions<sup>5</sup>.
- f) Union: We made a union list from all the distinct HTs

[14] E. Bassignana, V. Basile, and V. Patti. ``Hurtlex: A multilingual lexicon of words to hurt." 5<sup>th</sup> Italian Conf. on Computational Linguistics, CLiC-it 2018. Vol. 2253. CEUR-WS, 2018.

[15] M. Wiegand, et al. "Inducing a lexicon of abusive words—a feature-based approach." *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, Volume 1 (Long Papers). 2018.

- 4 <a href="https://github.com/valeriobasile/hurtlex">https://github.com/valeriobasile/hurtlex</a>
- 5 <a href="https://github.com/uds-lsv/lexicon-of-abusive-words">https://github.com/uds-lsv/lexicon-of-abusive-words</a>

## Hate Speech Analytics and Experiments

#### A. Generation of Severe Hate Terms List

B. Stable Hate Rules, Concepts, Transitivities, and Lattices

#### 1. Creation of hate terms frequencies

N(0), N(1), N(2) ... N(X) TERMS EXAMPLE.

| Filename | Hate    | Tweets                                       |
|----------|---------|----------------------------------------------|
|          | Term    |                                              |
| N(0)_HTs | _       | #[IDENTITY] can get a job at the [IDEN-      |
|          |         | TITY]. Or as The [IDENTITY]. I hear they     |
|          |         | like diversity and tolerance. As long as you |
|          |         | ain't a cracker #[TAG]                       |
| N(1)_HTs | f*ggot  | @[IDENTITY] answer my [IDENTITY]             |
|          |         | f*ggot #[TAG]                                |
| N(2)_HTs | f*ggot; | @[IDENTITY] f*ck those f*ggots               |
|          | f*ck    |                                              |
| so on    |         |                                              |

#### 3. AllHTsPercentLine

| Hate Term | N(HateTermInLines) | N(Lines) | %(HateTermLines) |
|-----------|--------------------|----------|------------------|
| f*ggot    | 249                | 1430     | 17.413           |
| b*tch     | 240                | 1430     | 16.783           |
| f*ck      | 199                | 1430     | 13.916           |
| so on     | •••                | •••      |                  |

#### OUTERJOINHTSFREQUENCIES EXAMPLE.

| Hate<br>Term | Davidson et al.<br>0Hate | Davidson et al<br>1Offensive | Davidson et al.<br>2NonOffensive |
|--------------|--------------------------|------------------------------|----------------------------------|
| f*ggot       | 253                      | 291                          | 1                                |
| b*tch        | 269                      | 11192                        | 11                               |
| f*ck         | 221                      | 2039                         | _                                |
| so on        | •••                      |                              |                                  |

# 2. AllHateTermsFrequencies and TopTermsFrequency



#### OUTERJOINHTSPERCENTLINES EXAMPLE.

| Hate   | Davidson et al. | Davidson et al | Davidson et al. |
|--------|-----------------|----------------|-----------------|
| Terms  | 0Hate           | 1Offensive     | 2NonOffensive   |
| f*ggot | 17.413          | 1.501          | 0.024           |
| b*tch  | 16.783          | 54.627         | 0.264           |
| f*ck   | 13.916          | 9.734          | _               |
| so on  |                 |                |                 |

#### 4. OuterJoinHTsFrequencies and OuterJoinHTsPercentLines

#### Intra-Agreement-HTs for each HTs-list (5<sup>th</sup> Artifact)

INTRA-AGREEMENT HTS EXAMPLE FOR HS-DATA (DAVIDSON ET AL.) AND HTS-LIST (UNION).

| Hate<br>Terms<br>(HTs)   | Hate<br>Class<br>HS-<br>lines | #Offensive<br>+ Non-<br>Offensive<br>HS-lines | #Hate<br>Class<br>HS-<br>lines | Hatefulness<br>(Hate<br>Class) | Relativeness<br>(Hate<br>Class) | #Hate +<br>Offensive<br>HS-lines | Non-<br>Offensive<br>HS-lines | #Hate +<br>Offensive<br>HS-lines | Hatefulness<br>(Hate +<br>Offensive) | Relativeness<br>(Hate +<br>Offensive) |
|--------------------------|-------------------------------|-----------------------------------------------|--------------------------------|--------------------------------|---------------------------------|----------------------------------|-------------------------------|----------------------------------|--------------------------------------|---------------------------------------|
| f*ggot                   | 249                           | 1                                             | 1431                           | 1                              | 0.996                           | 537                              | 1                             | 20622                            | 1                                    | 0.998                                 |
| b*tch                    | 240                           | 11                                            | 1431                           | 1                              | 0.956                           | 10723                            | 11                            | 20622                            | 1                                    | 0.999                                 |
| f*ck                     | 199                           | 0                                             | 1431                           | 1                              | 1                               | 2067                             | 0                             | 20622                            | 1                                    | 1                                     |
| tr*sh                    | 106                           | 680                                           | 1431                           | 1                              | 0.135                           | 442                              | 680                           | 20622                            | 1                                    | 0.394                                 |
| eurotr*sh                | 0                             | 1                                             | 1431                           | 0                              | 0                               | 1                                | 1                             | 20622                            | 1                                    | 0.5                                   |
| tr**ler<br>park<br>tr*sh | 2                             | 1                                             | 1431                           | 1                              | 0.667                           | 2                                | 1                             | 20622                            | 1                                    | 0.667                                 |
| tr**ler<br>tr*sh         | 3                             | 2                                             | 1431                           | 1                              | 0.6                             | 6                                | 2                             | 20622                            | 1                                    | 0.75                                  |
| white<br>tr*sh           | 56                            | 3                                             | 1431                           | 1                              | 0.949                           | 91                               | 3                             | 20622                            | 1                                    | 0.968                                 |
| so on                    | •••                           |                                               |                                |                                | •••                             |                                  |                               |                                  |                                      | •••                                   |

#### Inter-Agreement-HTs for multiple HTs-lists (6<sup>th</sup> Artifact)

INTER-AGREEMENT HTS BETWEEN THE DAVIDSON ET AL. AND THE SIX GIVEN HTS-LISTS.

| HTs           | Hatefulness | Relativeness | Offensiveness | Hatefulness      | Relativeness     | Offensiveness    | HateListNames           |  |
|---------------|-------------|--------------|---------------|------------------|------------------|------------------|-------------------------|--|
|               | (Hate)      | (Hate)       | (Hate)        | (Hate+Offensive) | (Hate+Offensive) | (Hate+Offensive) |                         |  |
| f*ggot        | 1           | 0.996        | 0.998         | 1                | 0.998            | 0.999            | Chandrasekharan et al   |  |
|               |             |              |               |                  |                  |                  | Reddit hate lexicon;    |  |
|               |             |              |               |                  |                  |                  | Gorrell et al abuse-    |  |
|               |             |              |               |                  |                  |                  | terms; HateBaseList;    |  |
|               |             |              |               |                  |                  |                  | hurtlex_EN; Union;      |  |
|               |             |              |               |                  |                  |                  | Wiegand et al           |  |
| b*tch         | 1           | 0.956        | 0.978         | 1                | 0.999            | 0.999            | Gorrell et al abuse-    |  |
|               |             |              |               |                  |                  |                  | terms; HateBaseList;    |  |
|               |             |              |               |                  |                  |                  | hurtlex_EN; Union;      |  |
| f*ck          | 1           | 1            | 1             | 1                | 1                | 1                | hurtlex_EN; Union; Wie- |  |
|               |             |              |               |                  |                  |                  | gand et al              |  |
| tr*sh         | 1           | 0.135        | 0.238         | 1                | 0.394            | 0.565            | HateBaseList;           |  |
|               |             |              |               |                  |                  |                  | hurtlex_EN; Union       |  |
| eurotr*sh     | 0           | 0            | NaN           | 1                | 0.5              | 0.667            | HateBaseList; Union     |  |
| tr**ler park  | 1           | 0.667        | 0.8           | 1                | 0.667            | 0.8              | HateBaseList; Union     |  |
| tr*sh         |             |              |               |                  |                  |                  |                         |  |
| tr**ler tr*sh | 1           | 0.6          | 0.75          | 1                | 0.75             | 0.857            | HateBaseList; Union     |  |
| white tr*sh   | 1           | 0.949        | 0.974         | 1                | 0.968            | 0.984            | HateBaseList; Union     |  |
| so on         |             |              |               |                  |                  |                  |                         |  |

#### Answers to RQ3:

#### Inter-agreement Confusion-matrix (7<sup>th</sup> Artifact)

FOR THE THREE HS-DATA, THE TABLE PROVIDES A COMPARISON OF THE SEVERE HTS-LIST WITH THE GIVEN HTS-LISTS.

| HTs-list Name (minOf-<br>fense, number of HTs) | HS-data Name and Class                              | Accuracy | Recall | Precision | F-Measure | Compute<br>Time |
|------------------------------------------------|-----------------------------------------------------|----------|--------|-----------|-----------|-----------------|
| Gorrell et al abuse-terms                      | Davidson_et_al_ 0Hate Vs. No-Hate                   | 0.857    | 0.784  | 0.917     | 0.845     |                 |
| (-, 403)                                       | Davidson_et_al_ 0Hate+1Offensive Vs. No-Hate        | 0.845    | 0.761  | 0.915     | 0.831     | 12 sec          |
|                                                | Davidson_et_al_1 Offensive Vs. No-Hate              | 0.844    | 0.759  | 0.915     | 0.83      |                 |
| Offensiveness(Hate)                            | Davidson_et_al_ 0Hate Vs. No-Hate                   | 0.921    | 0.946  | 0.901     | 0.923     |                 |
| (0.7, 298)                                     | Davidson_et_al_ 0Hate+ 1Offensive Vs. No-Hate       | 0.929    | 0.962  | 0.903     | 0.931     | 17 sec          |
|                                                | Davidson_et_al_1 Offensive Vs. No-Hate              | 0.93     | 0.963  | 0.903     | 0.932     |                 |
|                                                | de_Gibert_et_al_ 0Hate Vs. No-Hate                  | 0.633    | 0.959  | 0.58      | 0.723     |                 |
| Union (-, 13538)                               | de_Gibert_et_al_0Hate +1RelationalHate Vs. No-Hate  | 0.629    | 0.951  | 0.578     | 0.719     | 1 min 31 sec    |
|                                                | de_Gibert_et_al_ 1RelationalHate Vs. No-Hate        | 0.6      | 0.893  | 0.563     | 0.69      |                 |
| Offensiveness(Hate)                            | de_Gibert_et_al_ 0Hate Vs. No-Hate                  | 0.821    | 0.832  | 0.814     | 0.823     |                 |
| (0.46, 578)                                    | de_Gibert_et_al_ 0Hate+ 1RelationalHate Vs. No-Hate | 0.8      | 0.789  | 0.806     | 0.797     | 14 sec          |
|                                                | de_Gibert_et_al_ 1RelationalHate Vs. No-Hate        | 0.646    | 0.482  | 0.718     | 0.577     |                 |
| Union (-, 13538)                               | Gao_et_al_ 0Hate Vs. No-Hate                        | 0.46     | 0.772  | 0.475     | 0.588     | 15 sec          |
| Offensiveness(Hate) (0.75, 622)                | Gao_et_al_ 0Hate Vs. No-Hate                        | 0.541    | 0.718  | 0.53      | 0.61      | 5 sec           |

Our approach shown an improvement from 0.845 to 0.923 (best) as compared to the baseline.

Severe HTs-list provides better results for confusion-matrix (precision, recall, f-measure, and accuracy).

#### Answers to RQ3:

- Two facts for a HS-data.
  - Fact 1: for best recall, the FN should be zero. This happens when all HTs (in a HTs-list) are found in the Hate class of HS-data.
    - Example, a large HTs-list tends to a low FN.
  - Fact 2: for best precision, the FP is zero. This happens when no HTs (in a HTs-list) are found in the No-Hate class of HS-data.
    - Example, a small HTs-list tends to a low FP.
- The best conditions to select HTs leads to best precision and recall, thus we can generate a Severe HTs-list.

#### RANKING OF HTS-LIST NAME IN DECREASING ORDER OF INTER-AGREEMENT WITH THE HS-DATA.

| HS-data   | HTs-lists Names (number of HTs)                           |
|-----------|-----------------------------------------------------------|
| Name      |                                                           |
| Davidson  | Offensiveness(Hate) (0.7, 298), Gorrell et al abuse-terms |
| et al     | (403), HateBaseList (1015), Wiegand et al lexicon-of-     |
|           | abusive-words (7156), Hurtlex EN (5925), Union (13538),   |
|           | and Chandrasekharan et al Reddit hate lexicon (199).      |
| de Gibert | Offensiveness(Hate)(0.46, 578), Union (13538), Hurtlex    |
| et al     | EN (5925), Wiegand et al lexicon-of-abusive-words         |
|           | (7156), Chandrasekharan et al Reddit hate lexicon (199),  |
|           | HateBaseList (1015), Gorrell et al abuse-terms (403).     |
| Gao et al | Offensiveness(Hate)(0.75, 622), Union(13538), Wiegand     |
|           | et al lexicon-of-abusive-words (7156), Hurtlex EN (5925), |
|           | Chandrasekharan et al Reddit hate lexicon (199), Gorrell  |
|           | et al abuse-terms (403), HateBaseList(1015).              |

#### Summary N(HateTerms) (8<sup>th</sup> Artifact)

FOR THE THREE HS-DATA AND SIX HTS-LIST, THE TABLE PROVIDE SUMMARISED OVERVIEW.

| <b>Dataset Name and Class</b> | HateList Name                             | HateTerms(N) | N(Entries) | TotalLines | %(Entries) |
|-------------------------------|-------------------------------------------|--------------|------------|------------|------------|
| Davidson et al 0Hate          | Chandrasekharan et al Reddit hate lexicon | 0            | 581        | 1430       | 40.629     |
| Davidson et al 0Hate          | Chandrasekharan et al Reddit hate lexicon | 1            | 671        | 1430       | 46.923     |
| so on                         |                                           | •••          |            | •••        |            |
| Davidson et al 10ffensive     | Chandrasekharan et al Reddit hate lexicon | 0            | 16101      | 19190      | 83.903     |
| Davidson et al 10ffensive     | Chandrasekharan et al Reddit hate lexicon | 1            | 2654       | 19190      | 13.83      |
| so on                         |                                           |              |            |            |            |

#### Hate Speech Analytics and Experiments

A. Generation of Severe Hate Terms List

B. Stable Hate Rules, Concepts, Transitivities, and Lattices

# SHR mining to generate: Stable Hate Rules, Concepts, Transitivities, and Lattices

TWO HATE CONCEPTS (FIRST ROW) AND THEIR SHRS WITH SIMILAR HTS.

| a*s b*tch boss 5             | Europe race white 5             |
|------------------------------|---------------------------------|
| $a*s \rightarrow b*tch$      | white $\rightarrow$ Europe      |
| $boss \rightarrow b*tch a*s$ | race $\rightarrow$ white Europe |
| $a*s boss \rightarrow b*tch$ | white race $\rightarrow$ Europe |
| $boss \rightarrow b*tch$     | race $\rightarrow$ white        |
| boss $\rightarrow$ a*s       | $race \rightarrow Europe$       |



# Conclusions

#### Conclusions

- To collect Inter-agreement information about the HTs-list (Hate Terms list) and the HS-data (Hate Speech data),
  - answered the four research questions.
- Generated reports that include: top frequent HTs, intra/inter-agreement of HTs in HTs-list with the HS-data, summarized hate-term occurrences, and Offensiveness of HTs.
- For quantitative analysis,
  - proposed threshold minOffense for HTs,
  - our Severe HTs-list has out-performed all the given HTs-lists.
- For qualitative analysis,
  - our SHRs provided visual analytic as Transitive and Lattice graphs of the HTs co-occurring in HS-data for context of Women and Regions.

# Acknowledgment

#### Acknowledgment

- Thanks to
  - *Prof. Nishanth Sastry* (University of Surrey)



• Dr. Bertie Vidgen (The Alan Turing Institute)

# The Alan Turing Institute

• **Dr. Jatinder Singh** (Cambridge University)



- Also thanks for fellowship to Dr. Animesh Chaturvedi as Post Doctoral
  - The Alan Turing Institute (U.K.)

• King's College London (U.K.)

The Alan Turing Institute



#### Related Publications

#### Citation:

Animesh Chaturvedi, and Rajesh Sharma

"minOffense: Inter-Agreement Hate Terms for Stable Rules, Concepts, Transitivities, and Lattices"

IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2022.



#### Stable Rule Mining

- A. Chaturvedi and A. Tiwari. "System Evolution Analytics: Evolution and Change Pattern Mining of Inter-Connected Entities". *IEEE International Conference on Systems, Man, and Cybernetics (SMC)* 2018.
- A. Chaturvedi, A. Tiwari, and N. Spyratos "minStab: Stable Network Evolution Rule Mining for System Changeability Analysis". *IEEE Trans. on Emerging Topics in Computational Intelligence*, 2019.
- A. Chaturvedi, A. Tiwari, and N. Spyratos. "System Network Analytics: Evolution and Stable Rules of a State Series." *IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)*. IEEE, 2022.

ขอบคุณ

Grazie תודה רבה

٠i

Thai

Hebrew

ಧನ್ಯವಾದಗಳು

Kannada

Ευχαριστώ

Sanskrit

धन्यवादः

Greek

Thank You English

Gracias

Spanish

Спасибо

Russian

Obrigado

Portuguese

شكرأ

https://sites.google.com/site/animeshchaturvedi07

Merci

French

多謝

Arabic

Traditional

Chinese

धन्यवाद

Hindi

Danke

German

多谢

Simplified

Chinese

நன்றி

Tamil

Tamil

ありがとうございました 감사합니다

Japanese

Korean