University of Central Florida

Department of Computer Science

CDA 5106: Fall 2020

Machine Problem 3: Dynamic Instruction Scheduling

by

Ali Abbas

Honor Pledge: "I have neither given nor received unauthorized aid on this test or assignment."			
Student's electronic signature:Ali Abbas (sign by typing your name)			

Part 1

Part 2

Optimized Scheduling Queue size per peak Fetch Rate			
	Benchmark = gcc	Benchmark = perl	
N = 1	8	8	
N = 2	8	16	
N = 4	32	32	
N = 8	64	128	

Part 3

- A) In general, with lower values of N (1 and 2), increasing S has no effect in achieving higher IPC. Beyond that, increasing N, will make increasing S more beneficial by achieving higher IPC, but only up to a point beyond which increasing S has no significant effect, as we saw in previous table.
- B) We achieved higher IPC with gcc trace, because it contains less true dependency between instructions and therefore less RAW hazards.