Quantized Machine Learning

Objective:

This lab aims to provide students with hands-on experience in applying quantization methods (Dynamic Quantization) to logistic regression in PyTorch.

Part 1: Setup and Data Preparation

- 1. Environment Setup:
 - Import necessary libraries such as sklearn, numpy and quantization tools from PyTorch.
- 2. Data Loading:
 - Use the torchvision datasets to load the MNIST dataset. Apply transformations to normalize the data.
 - o https://scikit-learn.org/1.5/modules/generated/sklearn.datasets.load_digits.html
 - Make
 - i. X = digits.data
 - ii. y = digits.target
 - Split the dataset into training and test split.

Part 2: Model Building

- 1. Use LogisticRegression to fit the model.
- Part 3: Report model accuracy, Model size, Inference time of Logistic regression model.
- Part 4: Create a function name quantize_model, scale the weights of original model to 8-bit.
- Part 5: Create another function to inference using the quantized model.

Keep scale_factor = 2 ** 7 (number of bits is 8)

Part 6: Report Quantized model accuracy, Quantized model size, Quantized inference time.

- 1. Model Size Comparison:
 - Compare and print the results.

References:

https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

https://pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html