# This Page Is Inserted by IFW Operations and is not a part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

#### の日本国特許庁(JP)

4D 特許出額公告

許 公 報(B2)

昭63 - 26655

Dint Ci. A 61 L 29/U0 世別記号

庁内整理 号 W-6779-4C **99**公告 昭和63年(1988)5月31日

発明の数 1 (全 5 頁)

49発明の名称。

カテーテルパルーン

前置客査に係属中

**動特 駅 昭59-135372** 

開 昭60-34452 ❸公

類 昭59(1984)7月2日 会出

母昭60(1985) 2月22日

優先撞主張 691983年7月5日舒米国(US)99510812

砂発 明 者 スタンレイ・バート アメリカ合衆国デラウエア州19803ウイルミントン・キル

パーンロード 643 ン・レビィ

イー・アイ・デュボ の出願人

アメリカ合衆国デラウエア州ウイルミントン・マーケツト

ストリート1007 ン・デ・ニモアス・エー

ンド・カンパニー

**弁理士 小田島** 平古 外1名 の代 理 人

近際 兼 领 筝 査 官

特開 昭50-132787 (JP, A) (領文 考 全級)

特開 昭51-150893(JP, A)

1

#### の特許請求の範囲

1 高分子量の二軸配向された可撓性重合体から 成るパルーンであつて、且つそのパルーンの壁の 引張強度が少くとも31700psi(206.9MPa) である ことを特徴とする血管拡張用カテーテルパルー 5

 少くとも200psi(1.4MPa)の破裂圧力を有す る特許請求の範囲第1項に記載のカテーテルパル ーン。

- レフタレートホモポリエステルである特許請求の **範囲第1項に記載のカテーテルパルーン。**
- 4 壁厚が0.028~0.045歳である特許請求の範囲 第1項に記載のカテーテルパルーン。
- り、半径方向の膨張が200psi(1.4MPa) において 5%より小さい特許請求の範囲第1項に記載のカ テーテルパルーン。
- 8 破裂圧力が少なくとも400psi(2.8MPa) であ り、半径方向の脚限が400psi(2.8MPa) において 20 10%より小さい特許請求の範囲第1甲科型のカテ ーテルバルーン。
- 7 被裂圧力が少なくとも500psi(3.9.0 pm) であ り、半径方向の**脚張が500psi(3.4M**P+) に ちいて

2

10%より小さい特許請求の範囲第1項記載のカテ ーテルパルーン。

#### 発明の詳細な説明

#### 産業上の利用分野

本発明は特に医療的な拡張方法に有用なカテー テルパルーンに関する。

#### 従来の技術

ザ・ニュー・イングランド・ジヤーナル・オ ヴ・メデイシン (The New England Journal 6月12日、61~68頁のグリュンチッヒ (Gruentig) 等の「冠状動脈狭窄の非手術的拡張 法一径皮的内腔冠状脈管形成」と題する論文に は、動脈狭窄の治療に拡張用のカテーテルを使用 5 破裂圧力が少なくとも200psi(1.4MPa) であ 15 する改良法が記載されている。 グリユンチッヒら によれば、大腿部の動脈の硬化障害の治療のため の内腔冠状脈管形成法は先ずドツター(Dotter) 及びジャドキンス (Judkins) により1964年に導 入された。

> 本発明は血管用力テーテルバルーンに関する。 本発明において云う血管とは冠状血管のみならず 冠状血管以外の全ての血管例えば末梢血管をも包 含する意味で用いられる。

パルーン・カテーテルは動脈狭窄の治療だけに

風退されるばかりでなく、血管の中への挿入、並 びに種々の体験の中への挿入を含む多くの医療的 用途に有用であることが見出だされてきた。

パルーン・カテーテルを使用する医療的方法は なお関范段階にあるが、特に米国においてはパル 5 作に使用できるカテーテルパルーンを提供するこ ーン・カテーテルの使用法及びその製造法に関し かなりの技術が既に得られている。このような従 来法についての代表的なものは米国特許第 4093484号、第4154244号、及び第4254774号であ る。パルーンは一般的に熱可塑性の種々の公知材 10 ち、特に医療的な拡散操作に有用な改善された血 料からつくることができる。上記特許に記載され た公知材料の中にはエチレンープチレンースチレ ン・プロック共重合体を低声子量のポリスチレン と混合し随時ポリプロピレンを加えたもの、及び エチレン及びブチレンの代りにブタジェニ さたは 15 ているのではない)。 イソプレンを使用した同様な組成物:ポ"(塩化 ピニル):ポリウレタン:ポリエステル 共重合 体:熱可塑性ゴム:シリコーンーポリカードネー ト共重合体:及びエチレン一酢酸ピニル共重合体 がある。

#### 発明が解決しようとする問題点

本発明の目的は従来公知のカテーテルパルーン よりも優れた物理的性質、例えば観性、可撓性、 及び引張強さを示すカテーテルパルーンを提供す ることである。本発明の他の目的は優れた物理的 25 性質のために従来使用されたカテーテルバルーン よりも壁厚の砂いカテーテルパルーンを提供する ことである。本発明のさらに他の目的は可撓性を もち壁厚が弾いために体内で容易に潰すことがで き、且つ容易に移動させ得るカテーテルバルーン 30 を提供することである。本発明のさらに他の目的 は所望の医放操作を行うために必要な圧力まで膨 扱させた時の仲びまたは半径方向のクリーブが非 常に少ないカテーテルパルーンを提供することで ある。以後本明和書においてはこの伸びまたは半 35 **径方向のクリープを総称的に半径方向の**壁張と称 する。本発明のさらに他の目的は加圧下で破裂し た場合、軸方向に破裂が起つて軸方向の裂目が生 じ、外傷を与えずに除去できるカテーテルバルー ンを提供することである。周方向に破裂が起るカ 40 で与えられる (S. Timoshenko Strength of テーテルパルーンでは破片の除去が非常に困難か または非外科的には除去できないことは公知であ る。本発明のさらに他の目的は物理的性質が優れ ているために大きな成功率で医療操作に用いるこ

とができるカテーテルパルーンを掛供することで ある。本発明のさらに他の目的は物理的性質が促 れているために従来市阪のカテーテルパルーンを 用いては現在達成できない条件下において医療操 とである。これらの目的及び他の目的は下記の説 明から明らかになるであろう。

#### 間関点を解決するための手段

本発明は、特殊な組み合せの物理的性質を持 管拡張用カテーテルバルーンに関する。"血管拡 張"という用語は、本明細書では、血管内の通路 を血流が流れるように拡張することを意味する (換割すれば血管の太さを拡張することを意味し

本発明によれば、上記の如きカテーテルパルー ンは重合体の二次転移点から一次転移点に亙る温 度範囲、好ましくは84~99℃、さらに好ましくは 86~96℃において、一定の長さし1、及び好まし 20 くは外径ODの約半分である内径IDを有する好ま しくはポリエチレンテレフタレートPETの均質 重合体のような重合体の管を、或る長さし2、好 ましくはL1の3~6倍の長さに延伸し、しかる 後内径ID1、外径OD1の延伸した管を膨張部材 により好ましくはIDの6~8倍の内径ID2、及 び好ましくはODの約3~4倍の外径OD2にな るまで膨張させ、次ぎにこの延伸させて膨張させ た管をその二次転移点にまで冷却することによつ て製造することができる。かくして形成されたバ ルーンは壁の引張強度が少くとも31700psi (206.9MPa) である。好適なPET均質重合体は 管にしてパルーンをつくつた後の固有粘度が0.8 ~1.1である。膜の引張強度は、下記公知の膜方

 $\sigma_2 = pr/h$ 

ここで、みは膜の引張強度であり、

pは加えられた圧力であり、

rは半径であり、

hは壁の厚さである、

Materials"、Part II、2nd edition、165頁、D、 van Nostrand Company Inc., New York, N. Y.(1941)).

上記式に基づいて本発明のバルーンC,Dおよ

びEの下配のデータから、パルーンC。Dおよび Eの引張地度はそれぞれ31700psl、33600pslおよ び35000palと計算される。

同様に上配式に基づいて、市販の比較パルーン AおよびBの下配のデータから比較パルーンAお よびBの引張妓仪はそれぞれ9900psiおよび 9900psiと計算される(これらの値は10の位を四 捨五入したものである)。 このような好適な管は 固有粘度が1.0~1.3、密度が1.35~1.45のPET均 質重合体から通常の押出法によりつくることがで きる。本発明でつくられるパルーンは特殊な組み 合わせのフイルムの性質、例えば観性、可撓性、 及び引張強さを有している。例えば本発明のパル ーンは周囲温度(20°C)における破裂圧力が少な くとも200psi(1.4MPa) であることができる。好 ましくは少なくとも400psi(2.8MPa)、さらに好 ましくは少なくとも500psi(3.4MPa) である。さ らに本発明のパルーンは公称の脚張させた息畄を 越えた半径方向の脚張率が、例えば圧力200psi (2.8MPa) の時に10%より少ない。第2図にはポ リ(塩化ピニル)から成る普通の市販品の2個の パルーン(A及びB)、並びにPET均質重合体か ら成る本発明の3個のパルーン(C, D及びE) ている。パルーンA及びCは公称の外径が3.7xxx、 パルーンB及びDは公称の外径が5.0m、Eでは 6.0 mである。A乃至Eの壁厚は夫々約0.028、 0.38、0.028、0.038、及び0.045 ☎である。本発明 膜方程式と、同様に二軸配向させた平らなフィル ム試料で測定した究極の伸びとから計算された。

ポリ(塩化ピニル)のパルーンについても同様な 計算を行つたが、犯極の仲ぴのデータは文献値を パルーンよりもそれぞれ3.2、3.4及び3.5倍高いこ とが見出だされた。本明和書に報告された破裂圧 力及び半径方向の膨張率のデータに関しては、半 **径方向の脚張率の測定は皺がなくなるまでパルー** 公称の脚限させた直径までに脚限させた後に開始 する。本発明のPET均質重合体についてはこの 第一の趣張点に達するのに75~100psi(0.5~ 0.7MPa)のガス旺を要する。一般に強度が高い。

パルーン血合体の質から高伸張比、即ち延伸及び 脚級の比の上級近くで操作してつくることができ る。このようにしてつくられたパルーンは仲ぴが 小さい。このことは或る与えられた脚張圧力にお 5 ける脚張の値が低伸張条件でつくられたパルーン に比べ低いことに反映されている。

固有粘度はANSI/ASTM D2857-70の方法 により、密度はASTM DI505の方法により測定 した。破裂圧力は簡単な実験室的な方法により、 10 瓜合体のパルーンの一端を密封し、他端から加圧 ガスを徐々に導入して測定する。約20℃(周囲温 **度)においてパルーンが破裂する膨張圧を本明細** 書では破裂圧力と言う。

パルーンをつくる方法は加工材料としての特定 15 の重合体を使用して通常の方法で実施することが、 できる。例えば適当な寸法と高分子量をもつた重 合体の管を先ず適当な温度で長さし1からし2ま で延伸する。次に延伸した管を第1図に示したよ うな拘束装置の中で脚張させる。この装置は本発 (1.4MPa) の時に 5 % より少なく、圧力 400psi | 20 明の一部を構成する。ここで示されているよう に、膨張工程の間管の一端に加圧した流体を満た すことができる。成形型はつくられるパルーンの 所望の大きさに合致した寸法のキャピテイをもつ ている。延伸した管を膨張させるために加圧する の破裂圧力対半径方向の脚張率のグラフが示され 25 のに任意の流体、例えば窒素のようなガスを用い ることができる。第1図に示されているように、 管が型の外に延び出している時には、管の寸法を 型の外側の区域に保持し、一方管の内壁に圧力を かけるために拘束部材を使用することが好まし のパルーンの半径方向の脚張率のデータは公知の 30 い。この拘束部材は管の脚張条件下において変形 しない任意の材料からつくることができる。延伸 した管を型に入れた後、加熱して管の温度を上げ る。延伸と膨張の工程で同じような温度を用いる ことができる。適当な温度は管をつくつた重合体 用いた。本発明のパルーンの破裂圧力は従来法の 35 の一次転移点から二次転移点に亙る温度である。 ここで示したPET均質重合体に対しては、好適 な温度は84~99℃であり、86~96℃がさらに好ま しい。本明細書ではPET均質重合体だけを重合 体として示したが、上記一般的な方法で押出して ンに圧力をかけた点から、即ち潰れた点からその 40 管にした後延伸及び膨張させ得る任意の高分子量 **重合体、例えばPET共重合体または非ポリエス** テル瓜合体でさえも、得られたパルーンが所望の フィルム特性、例えば観性、可撓性、及び引張強 さを示す限りにおいて使用可能である。このパル

ーンモ制機と接触させるような医療的操作に使用 する場合には、垂合体構造材料は組織と適合性 (compatible) をもつものでなければならない。

本苑明においては重合体の分子量の目安である PET樹脂の均質ポリエステル血合体またはポリ エステル共血合体である場合には、分子量を必要 な水準に上げる特殊な公知方法を使用することが できる。最も一般的な市販のPET均質重合体は ~1.3よりも非常に低い。

当業界の専門家には本明細曲で例示したPET 均質重合体とパルーンをつくるための他の重合体 との間の基本的な物理的性質の差を削っために、 粘度(分子量)及び密度を成程度調節する必要が あることが判るであろう。

また当業界の専門家には、管を膨脹させる工程 の前に管を延伸する工程が行われるが、管を延伸 を行つてもよいことが理解できるであろう。さら に管の延伸は任意の適当な延伸装置を用いて行う ことができるが、この工程においては第1図に示 した装置において脚張を行う時に既に延伸した管 が適切な位置に入つているようにすると便利であ 25 森で、第2図で示したように破裂強さが480~ る。本発明において使用される方法により延伸さ れた成形重合体構造物の回復特性のために、膨張 工程の際に延伸した管に軸方向に張力をかけるこ とが必要である。上記の説明と一致して当業界の 専門家に容易に理解できるように、延伸及び膨張 30 工程は同一もしくは相異なる温度で行うことがで きる。所望の温度は任意の適当な熱発生器により 得ることができる。PET均質重合体を用いてこ こで行われた実際の実験においては高温の水を使 用した。管の延伸は型に鍾りをつけて行つた。

本発明のパルーンを用いた順提用パルーン・カ テーテルは通常の方法によりつくることができ、 このようなカテーテルは許容された医療的方法に 従つて使用することができる。

#### 火施例

次に本発明の代表的な実施例を例示する。この 実施例において第1図を参照するのは円筒の寸法 A、B、C、及びDを示すためである。何故なら

ば下配の説明から明らかなように本実施例の具体 化例はこの図には単に部分的にしか反映されてい ないからである。第1図に示したように管(1.5 mOD×0.75mID) を円筋の形をしたキャピテイ 固有粘度が高いことが重要である。重合体が 5 をもつ型の中に挿入する。該円筒の一端にはテー パーがつけられ、管の外径より僅かに大きい程度 の小さな直径の円筒になつている。キャピテイの 直径Dは約5mであり、その長さA+B+Cは約 15mmである。型の下端において管を挿んで閉じ、 一般に固有枯度が約0.5~0.8であり、必要な値1.0 10 型に踊りをつけて所望の軸方向の延伸(約3倍) を行う。型及び錘りの全重量は約150gである。 このアセンブリー(型、管、及び錘り)の重量は 管によつて支えられ、管は上端を管のはめ合いの 中に挿入して固定する。このアセンブリーを87℃ 延伸及び脚根比、延伸と脚根の温度、並びに固有 15 の媒質の中に入れ、約1分間加熱する。この時間 の間加熱された液の中にある管で支持されたアセ ンプリーの重量のために軸方向の配向が起る。約 200psi(1.4MPa) のガス圧を管にかけ、型のキャ ピティの中で管を半径方向に配向(約3.33倍)さ した直後に膨張を行つても、また後になつてこれ 20 せる。この加圧工程は約2分間続く。この間若干 の軸方向の延伸が加わる。アセンブリーを冷たい 液の中に浸漬して冷却し、圧力を緩め、仕上げら れたパルーンを型から取り出す。

> 本実施例の方法を用いて壁厚が約0.028~0.045 525psi(3.3~3.6MPa) のパルーンをつくつた。 このようなパルーンの破壊の状態(破裂による) は主軸が実質的に軸方向に沿つた楕円形の穴があ く状態であつた。

大量生産に適した別の製造法では、内部に高温 及び低温の流体の通路を有する静止した成形型を 使用する。錘りを取り付ける代りにステップ・モ ーターを用いて一定の割合まで管を軸方向に配向 させた。半径方向に膨張させる工程においては更 35 に軸方向に延伸することが必要があつた。

#### 図面の簡単な説明

第1図は延伸された重合体の管から本発明のパ ルーンをつくるのに使用することができる装置の 成形型、バルーン、管及び付属部品の後半分だけ 40 を示す立断面図であり、第2図は本発明の3個の パルーン(C, D, 及びE)の半径方向の脚張率 (%) 及び破裂圧力(psi)を従来法の2個のパル ーン(A及びB、と比較したグラフである。

