ДЗ по алгебре на 15.04.2022

Кожевников Илья 2112-1

15 апреля 2022 г.

$N_{\overline{2}}1$

1)

Докажем, что наша формула является бинарной операцией

Из определения бинарной операции следует, что наша формула $m \circ n = 2mn - 2m - 2n + 3$ будет являться бинарной операцией, если она будет брать значения из $\mathbb{R}\setminus\{1\}$ и возвращать значение также из $\mathbb{R}\setminus\{1\}$. Тогда нам надо доказать два пункта:

1)

Возвращаемое значение $\in \mathbb{R}$

Док-во: очевидно, что умножение, сложение и разность действительных чисел дают действительные числа. Значит, 1) выполняется.

2)

Возвращаемое значение $\neq 1$

Док-во: $2mn-2m-2n+3=1\Leftrightarrow 2(n-1)(m-1)=0\Leftrightarrow \begin{bmatrix} n=1\\ m=1 \end{bmatrix}$. Но т.к. $n\neq 1$ и $m\neq 1$, то и наша формула тогда также $\neq 1$. Значит, 2) тоже выполняется.

Тогда получается, что оба пункта доказаны, а наша формула является бинарной операцией на $\mathbb{R}\setminus\{1\}$

Ч.Т.Д.

2)

Теперь докажем, что $(\mathbb{R}\setminus\{1\},\circ)$ - группа

По определению группы, нам надо доказать три утверждения:

- 1) $(a \circ b) \circ c = a \circ (b \circ c)$
- 2) Существует нейтральный элемент е такой, что $a \circ e = e \circ a = a$
- 3) Для а существует обратный элемент b такой, что $a \circ b = b \circ a = e$

Доказательство:

1) Распишем данные выражения:

$$\begin{array}{l} (a\circ b)\circ c=(2ab-2a-2b+3)\circ c=\\ =2(2ab-2a-2b+3)c-2(2ab-2a-2b+3)-2c+3=4abc-4ab-4ac-4bc+4a+4b+4c-3\\ a\circ (b\circ c)=a\circ (2bc-2b-2c+3)=\\ =2a(2bc-2b-2c+3)-2a-2(2bc-2b-2c+3)+3=4abc-4ab-4ac-4bc+4a+4b+4c-3\\ \text{ Отсюда, } (a\circ b)\circ c=a\circ (b\circ c). \end{array}$$

Ч.Т.Д.

$$2)$$
 $a \circ e = 2ae - 2a - 2e + 3 = a$ $e \circ a = 2ea - 2e - 2a + 3 = a$ Значит, $a \circ e = e \circ a$. Найдем е. $2ae - 2a - 2e + 3 = a$ $(2e - 3)(a - 1) = 0$ Но т.к. $a \neq 1$, то $e = \frac{3}{2}$ Значит, нейтральный элемент о

Значит, нейтральный элемент е существует, и он равен $\frac{3}{2}$. Ч.Т.Д.

$$a \circ b = 2ab - 2a - 2b + 3 = e$$

$$b \circ a = 2ba - 2b - 2a + 3 = e$$

Значит, $a \circ b = b \circ a = e$. Найдем b

$$2ab - 2a - 2b + 3 = \frac{3}{2} \Leftrightarrow \begin{cases} b = \frac{2a - \frac{3}{2}}{2a - 2} \\ a \neq 1 \end{cases}$$

Но т.к. $a \neq 1$, то $b = \frac{2a - \frac{3}{2}}{2a - 2}$. При этом $b \neq 1$, т.к. $\frac{3}{2} \neq 2$

Значит, обратный элемент b существует, и он равен $\frac{2a-\frac{3}{2}}{2a-2}$.

Ч.Т.Д.

Значит, все три условия выполнены. Получается, $(\mathbb{R}\setminus\{1\}, \circ)$ - группа. Ч.Т.Д.

№2

Для начала найдем нейтральный элемент е.

$$(a+bi)e = e(a+bi) = a+bi$$

Данным числом будет 1, т.к.
$$(a+bi)\cdot 1 = 1\cdot (a+bi) = a+bi$$

Тогда нам необходимо решить уравнение $z^{20} = 1$

$$z^{20} = 1$$

$$|z| = \sqrt[20]{1} = 1$$

$$\begin{array}{l} |z| = \sqrt[20]{1} = 1 \\ z = 1(\cos(\frac{\varphi + 2\pi k}{20}) + i\sin(\frac{\varphi + 2\pi k}{20})), \ k \in \{0, 1, ..., 19\} \\ 1 = \cos(0) + i\sin(0) = 1 + 0 = 1 \end{array}$$

$$1 = \cos(0) + i\sin(0) = 1 + 0 = 1$$

Значит,
$$z=cos(\frac{\pi k}{10})+isin(\frac{\pi k}{10}),\ k\in\{0,1,...,19\}$$

Теперь нам надо убрать все такие k, что $z_k^n = e$ для $n \in \mathbb{N}, n < 20$.

Заметим, что если у нас есть $z^q = 1, z^{20} = 1$, то q - делитель 20.

Значит, искомые степени $n \in \{1, 2, 4, 5, 10\}$

Теперь найдем подходящие k.

$$\mathbf{n} = \mathbf{1}:$$

$$\begin{cases}
\cos(\frac{\pi k}{10}) = 1 \Rightarrow k = 20a, a \in \mathbb{Z} \\
\sin(\frac{\pi k}{10}) = 0 \Rightarrow k = 10b, b \in \mathbb{Z} \\
k = 20t, t \in \mathbb{Z} \Rightarrow k \in \{0\} \\
\mathbf{n} = \mathbf{2}:$$

$$\begin{cases}
\cos(\frac{\pi k}{5}) = 1 \Rightarrow k = 10a, a \in \mathbb{Z} \\
\sin(\frac{\pi k}{5}) = 0 \Rightarrow k = 5b, b \in \mathbb{Z} \\
k = 10t, t \in \mathbb{Z} \Rightarrow k \in \{0, 10\}
\end{cases}$$

$$\begin{aligned} \mathbf{n} &= \mathbf{4}; \\ & \left\{ \cos(\frac{2\pi k}{5}) = 1 \Rightarrow k = 5a, a \in \mathbb{Z} \right. \\ & \left. \sin(\frac{2\pi k}{5}) = 0 \Rightarrow k = \frac{5}{2}b, b \in \mathbb{Z} \right. \\ & \left. k = 5t, t \in \mathbb{Z} \Rightarrow k \in \{0, 5, 10, 15\} \right. \end{aligned}$$

$$\mathbf{n} = \mathbf{5}:$$

$$\begin{cases}
\cos(\frac{\pi k}{2}) = 1 \Rightarrow k = 4a, a \in \mathbb{Z} \\
\sin(\frac{\pi k}{2}) = 0 \Rightarrow k = 2b, b \in \mathbb{Z} \\
k = 4t, t \in \mathbb{Z} \Rightarrow k \in \{0, 4, 8, 12, 16\}
\end{cases}$$

$$\begin{cases} \mathbf{n} = \mathbf{10:} \\ \cos(\pi k) = 1 \Rightarrow k = 2a, a \in \mathbb{Z} \\ \sin(\pi k) = 0 \Rightarrow k = b, b \in \mathbb{Z} \\ k = 2t, t \in \mathbb{Z} \Rightarrow k \in \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18\} \end{cases}$$

Значит, искомыми к будут являться числа 1, 3, 7, 9, 11, 13, 17, 19.

Otbet: $z = cos(\frac{\pi k}{10}) + isin(\frac{\pi k}{10}), \ k \in \{1, 3, 7, 9, 11, 13, 17, 19\}$

№3

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

Для начала найдем все элементы множества $\langle \sigma \rangle$:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$
 $\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$
 $\sigma^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = id$
Тогда $\langle \sigma \rangle = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, id \right\}$

Так как у нас в группе 12 элементов, а в $\langle \sigma \rangle$ 3 элемента, то у нас будет 4 левых и 4 правых смежных классов. Найдем их.

Для начала найдем левые смежные классы:

Для удобства будем писать так, что $\sigma\{\pi_1, \pi_2, \pi_3\} = \{\sigma\pi_1, \sigma\pi_2, \sigma\pi_3\}$

1)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, id \right\} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, id \right\} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} \right\}$$

3) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, id \right\} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} \right\}$

4) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, id \right\} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \right\}$

Тогда, если мы оставим по одному экземпляру каждого из классов, то получится, что левыми смежными классами будут следующие множества:

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \right\}$$

Ответ:

Левые:
$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \right\}$$

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \right\}$$

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \right\}$$

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \right\}$$

Правые:

$$\begin{cases}
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \\
\begin{cases} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \\
\begin{cases} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \\
\begin{cases} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \\
\end{cases}$$

№4

Пусть у нас есть циклическая группа G с образующим элементом g. Также у нас есть подгруппа $H\subseteq G$.

Тогда докажем наше утверждение следующим образом:

Сначала рассмотрим случай, когда подгруппа трививальна (состоит из одного элемента - нейтрального). Такая группа, во-первых, будет подгруппой, что легко проверяется по определению. Но тогда, очевидно, все элементы этой подгруппы будут порождаться элементом е. Значит, в таком случае подгруппа циклическая. Ч.Т.Д.

Теперь рассмотрим случай, когда подгруппа нетрививальна.

Возьмем такое положительное n, что g^n - минимальное из H.

1) Докажем, что $\langle q^n \rangle \subset H$

Пусть какое-то $\mathbf{a} = \langle g^n \rangle$. Тогда для какого-то $k \in \mathbb{Z}$ верно $a = g^{kn}$. Но тогда если $g^n \in H$, то и $g^{nk} \in H$. Значит, $a \in H$.

Получается, $\langle q^n \rangle \subseteq H$

2) Докажем, что $H \subseteq \langle q^n \rangle$

Возьмем $h \in H$. Но тогда $h \in G \Rightarrow h = g^x$

Но х можно представить в виде x = qn + r, где $0 \le r < n$.

Тогда $h = g^x = g^{qn+r} = g^{qn} \cdot g^r \Rightarrow g^r = hg^{n-q}$. Но т.к. h и $g^n \in H$, то и $g^r \in H$.

Но из того, что $0 \le r < n$, а n - наименьшее положительное для $g^n \in H$, следует, что r = 0. Тогда $q^{qn+r} = q^{qn} \in \langle q^n \rangle$

Получается, $H \subseteq \langle g^n \rangle$.

Итого, мы доказали два факта: $\langle g^n \rangle \subseteq H$ и $H \subseteq \langle g^n \rangle$. Но из этого следует, что $H = \langle g^n \rangle$ Значит, подгруппа циклической группы циклическая. Ч.Т.Д.