

# Modélisation Mathématique de la sélection naturelle

Achille BAUCHER, Younes BELKADA, Laurent DANG-VU, Ibtissam LACHHAB, Igor ROUZINE (Encadrant du LCQB)

Janvier 2019



#### Introduction

Notre objectif est d'étudier les dynamiques d'évolution de populations en compétition dans un environement limité. Nous complexifierons notre modèle au fur et à mesure. Pour commencer, considérons deux populations :  $n_0$ , saine, et  $n_1$ , mutée :



## Cas simple sans mutations

- S: avantage compétitif de reproduction de la population  $n_1$  par rapport à la population  $n_0$ :  $k_1 = (1+S)k_0$
- N : **population totale**, constante, donc  $n_0$  et  $n_1$  en compétition.
- Coefficients de morts **identiques** :  $d_0 = d_1$
- Premières équations représentant l'évolution des populations :

$$\frac{dn_0}{dt} = k_0 n_0 - d_0 n_0$$

$$\frac{dn_1}{dt} = k_1 n_1 - d_1 n_1$$

avec t le temps en générations.

• On obtient l'équation différentielle **non linéaire** suivante où  $f = \frac{n_1}{N}$  :

$$\frac{df}{dt} = Sf(1-f)$$

• Conditions initiales :  $n_1$  très faible par rapport à  $n_0: f(0) = \frac{1}{100}$ 



FIGURE 1: Evolution temporelle de la fréquence de  $n_1$  pour plusieurs valeurs de S, sans mutations :  $\mu = 0$ 

**Interprétation :** La population avantagée tend à remplacer totalement l'autre, avec une vitesse proportionnelle à l'avantage dont elle dispose.

#### Cas de mutations régulières

- On introduit un coefficient de mutation  $\mu$ , probabilité qu'a le gène de muter par unité de temps.
- Initialement, pas d'individus de  $n_1: f(0) = 0$



La mutation vient complexifier l'équation différentielle :

$$\frac{df}{dt} = Sf(1-f) + (1-2f)\mu$$
Selection Mutation



FIGURE 2: Evolution temporelle de la fréquence pour plusieurs valeurs de  $\mu$  et un facteur de sélection S négligeable : S=0



FIGURE 3: Evolution temporelle de la fréquence de  $n_1$  pour un facteur de sélection prépondérant :  $S>>\mu$ 

#### Interprétation :

- Fréquence linéaire au début :  $n_1$  reçoit des mutations de la population majoritaire  $n_0$ .
- Exponentielle ensuite : Elle se comporte comme précédemment dès que les individus de  $n_1$  sont assez nombreux pour se reproduire.
- Dominante finalement : Il reste cependant toujours une faible quantité d'individus de  $n_0$ , qui reçoivent les mutés de  $n_1$ .

## Cas de deux gènes mutants

Il y a à présent deux gènes différents, et donc 4 types d'individus :





- $\frac{dn_{00}}{dt}$ ,  $\frac{dn_{01}}{dt}$  et  $\frac{dn_{10}}{dt}$  s'écrivent sous une forme analogue. Les  $S_{ii}$  correspondent à l'avantage de reproduction
- Les  $S_{ij}$  correspondent à l'avantage de reproduction dont dispose une population  $n_{ij}$ .

#### **Epistasies**

- Chaque gène muté apporte un avantage S, mais les deux combinées forment un avantage qui dépend du coefficient d'épistasie E: S<sub>11</sub> S<sub>00</sub> = 2S(1 + E)
- Les différents cas d'épistasie possibles :



# Epistasie positive : $E > -\frac{1}{2}$

- $n_{11}$  dispose d'un avantage compétitif  $S_{11}$  supérieur aux autres, elle est donc dominante.
- Cela regroupe les cas de synergie positive (E > 0), d'addition (E = 0) et de légère régression (E < 0).



# Epistasie négative : $E < -\frac{1}{2}$

- $n_{11}$  et  $n_{00}$  sont plus compétitifs et dominent.
- Cela regroupe les cas de négativité simple (E>-1) et de signe réciproque (E<-1).







# Etats stationnaires selon l'épistasie

**Avantage** 

2S(1+E)



On distingue trois régimes d'états stables :

- Au centre :  $E = \frac{1}{2}$  : pas de domination écrasante d'une population en raison de faibles différences de compétitivité.
- A droite :  $E > \frac{1}{2}$  :  $f_{11}$  domine. Plus E augmente, plus sa domination est importante.
- A gauche :  $E < \frac{1}{2}$  :  $f_{01}$  et  $f_{10}$  dominent. Plus E diminue, plus leur domination est importante.

Remarque: La fréquence d'une population dominée ne dépend que de sa différence de compétitivité avec la ou les populations dominantes.