

Project Chrono

Overview, structure, capabilities

BRONG (V)

Project Chrono

- Growing ecosystem of software tools
- Multi-physics simulation engine
- Open source, released under permissive BSD-3 license
- Provides support for simulation of
 - Many-body dynamics
 - Nonlinear Finite Element Analysis
 - Fluid-Solid Interaction Problems

What is Chrono

- Middleware: can be embedded in third-party applications
- Modular: based on optional linking of specialized modules
- Expandable: via C++ inheritance
- Efficient: fast and robust data structures and algorithms
- Cross-platform: builds on Windows, Linux, OS X (MSVC, GCC, ICC, clang)

BHOTO I

Modular and hierarchical structure

Chrono modules

Module		Description
Chrono::Engine		Core Functionality
CASCADE		Interoperability with CAD tools
COSIMULATION		Support for co-simulation
FEA		Finite Element Analysis
FSI		Fluid-Solid Interaction
IRRLICHT		Runtime Visualization with Irrlicht
MATLAB		Interoperability with MATLAB
MKL		Interface to Intel MKL
OGRE	WIP	Runtime Visualization with Ogre
OPENGL		Runtime Visualization with OpenGL
PARALLEL		Parallel (multi-core) simulation module
POSTPROCESS		Tools for post-processing (POV-Ray output, Gnuplot)
PYTHON		Python Interoperability
VEHICLE		Template-based Ground Vehicle Modeling and Simulation

Modeling features

- Rigid bodies, markers, forces, torques
- Springs and dampers, with user-defined non-linear features
- Wide set of joints, e.g. spherical, revolute, prismatic, universal, etc.
- Impose trajectories to parts and markers
- Constraint motion on splines, surfaces, etc.
- Constraints can have limits (e.g. elbow joint)

Modeling features

- Custom constraint for motors, reducers etc.
- Custom constraint for linear motors.
- 1-DOF elements for powertrains, drivelines, etc.
- Brakes and clutches, with stick-slip effect

Modeling features

- Fast collision detection algorithms
- Collision families and groups
- Coloumb friction model, with stick-slip
- Rolling and spinning friction
- Restitution coefficients for rebouncing
- Collision detection between compound shapes
- Bodies activation/deactivation and sleeping
- Conveyor belts

Chrono::FEA module

- Co-rotational formulation
 - Bar element, Euler beam, Hexa8, Hexa20, Tetra4, Tetra10
- ANCF
 - Cable element, Shell element (isotropic, orthotropic, composite)
- Other
 - EAS brick element (isotropic and hyperelastic Mooney-Rivlin)
- Support for concentrated and distributed loads
 - Linear, surface, volumetric
 - Built-in classes for pressure, gravitational forces
- Support for constraints
 - Between two nodes, node and point on body, gradient and body direction
- Support for contact (penalty-based formulation)
 - · Mesh-mesh and mesh-rigid
 - Surfaces represented as node clouds or triangular mesh

Chrono::Vehicle module

- Chrono vertical app (module) modeling, simulation, and visualization of wheeled ground vehicles and (soon) tracked vehicles
- Middleware: can be embedded in third parties software
- Modular: vehicle are modeled from instances of subsystems (suspension, steering, driveline, etc.)
- Flexible: use parameterized templates
- Expandable, via C++ inheritance
 - New subsystems
 - New templates for existing subsystems
 - New vehicle types

Chrono::Parallel module

- Chrono vertical app (module)
 - library for OpenMP-based parallel simulation of Chrono models
- Middleware: can be embedded in third parties software
- Chrono-Parallel relies on Chrono for all its modeling capabilities
- Supports a subset of Chrono modeling elements:
 - Rigid bodies with frictional contact (DEM-C or DEM-P)
 - Kinematic joints (revolute, spherical, translational, etc.)
 - Force elements (spring-dampers, actuators, etc.)
 - 1-D shafts and associated elements and constraints (shaft-body connection, gears, motors, etc.)
- No support for FEA
- Implements only the *Implicit Euler Linearized* time-stepper
- Chrono-Parallel uses different data structures and algorithms

Chrono::FSI module

- Current State
 - Fluid interaction with multibody dynamics.
 - MBD includes contact and constraint
 - Supports flexible beam
 - Heterogeneous computing
 - GPU-based parallelism for fluid and OMP/AVX/SSE parallelism for MBD
 - Constraint-based fluid simulation
- Under development
 - Implicit incompressible CFD approach for fluid dynamics
 - Support for fluid interaction with flexible plate and shell
 - Distributed memory parallelism using Charm++

Code availability and documentation

Chrono source code

- Project Chrono GitHub repository https://github.com/projectchrono/chrono
- Clone/fork develop branch
- Planned major release: January 2017

BHONO (V)

Chrono dependencies and requirements

- C++ 11
 - Visual Studio 2013 or newer
 - GCC version 4.9 or newer
- Various Chrono modules have additional external dependencies
 - Chrono::Parallel: OpenMP, Blaze (v 2.4), Boost, Thrust
 - Chrono::OpenGL: GLEW, GLFW, GLM
 - Chrono::Python: SWIG, Python 3
- Build system based on CMake

DHONO W

Chrono documentation and support

- Project website: http://projectchrono.org/
- Documentation (doxygen): http://api.chrono.projectchrono.org/
 - Installation guides
 - API documentation
 - Manuals, white papers, tutorials, etc.
- Support:
 - User mailing list (Google group): http://projectchrono.org/forum/
 - Bug tracking, issue tracking, and feature requests through GitHub

