Convex Problems

Daniel P. Palomar

Hong Kong University of Science and Technology (HKUST)

ELEC5470 - Convex Optimization

Fall 2017-18, HKUST, Hong Kong

Outline of Lecture

- Optimization problems
- Convex optimization (def., optimality conditions, reformulations)
- Quasi-convex optimization
- Classes of convex problems: LP, QP, SOCP, SDP.
- Multicriterion optimization (Pareto optimality)

(Acknowledgement to Stephen Boyd for material for this lecture.)

Optimization Problem in Standard Form

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $h_i\left(x\right) = 0$ $i=1,\ldots,p$

 $x \in \mathbf{R}^n$ is the optimization variable

 $f_0: \mathbf{R}^n \longrightarrow \mathbf{R}$ is the objective function

 $f_i: \mathbf{R}^n \longrightarrow \mathbf{R}, \ i=1,\ldots,m$ are inequality constraint functions

 $h_i: \mathbf{R}^n \longrightarrow \mathbf{R}, i = 1, \dots, p$ are equality constraint functions.

• Feasibility:

- a point $x \in \text{dom } f_0$ is feasible if it satisfies all the constraints and infeasible otherwise
- a problem is feasible if it has at least one feasible point and infeasible otherwise.

• Optimal value:

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p \}$$

 $p^{\star} = \infty$ if problem infeasible (no x satisfies the constraints) $p^{\star} = -\infty$ if problem unbounded below.

• Optimal solution: x^* such that $f(x^*) = p^*$ (and x^* feasible).

Global and Local Optimality

- A feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points.
- A feasible x is **locally optimal** if is optimal within a ball, i.e., there is an R>0 such that x is optimal for

```
minimize f_0\left(z\right) subject to f_i\left(z\right) \leq 0, \ i=1,\dots,m, \ h_i\left(z\right)=0, \ i=1,\dots,p \|z-x\|_2 \leq R
```

Examples:

- $f_0(x) = 1/x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = x^3 3x$: $p^* = -\infty$, local optimum at x = 1.

Implicit Constraints

• The standard form optimization problem has an explicit constraint:

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} f_{i}$$

- ullet $\mathcal D$ is the domain of the problem
- The constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- A problem is unconstrained if it has no explicit constraints
- Example:

$$\underset{x}{\mathsf{minimize}} \quad \log \left(b - a^T x \right)$$

is an unconstrained problem with implicit constraint $b > a^T x$.

Feasibility Problem

• Sometimes, we don't really want to minimize any objective, just to find a feasible point:

find
$$x$$
 subject to $f_i(x) \leq 0$ $i=1,\ldots,m$ $h_i(x)=0$ $i=1,\ldots,p$

 This feasibility problem can be considered as a special case of a general problem:

minimize
$$0$$
 subject to $f_i(x) \leq 0$ $i=1,\ldots,m$ $h_i(x)=0$ $i=1,\ldots,p$

where $p^* = 0$ if constraints are feasible and $p^* = \infty$ otherwise.

Convex Optimization Problem

Convex optimization problem in standard form:

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $Ax=b$

where f_0, f_1, \ldots, f_m are convex and equality constraints are affine.

- Local and global optima: any locally optimal point of a convex problem is globally optimal.
- Most problems are not convex when formulated.
- Reformulating a problem in convex form is an art, there is no systematic way.

Example

• The following problem is nonconvex (why not?):

minimize
$$x_1^2 + x_2^2$$

subject to $x_1/\left(1+x_2^2\right) \le 0$
 $\left(x_1+x_2\right)^2 = 0$

- The objective is convex.
- The equality constraint function is not affine; however, we can rewrite it as $x_1 = -x_2$ which is then a linear equality constraint.
- The inequality constraint function is not convex; however, we can rewrite it as $x_1 \le 0$ which again is linear.
- We can rewrite it as

minimize
$$x_1^2 + x_2^2$$
 subject to $x_1 \le 0$ $x_1 = -x_2$

Global and Local Optimality

Any locally optimal point of a convex problem is globally optimal.

Proof: Suppose x is locally optimal (around a ball of radius R) and y is optimal with $f_0(y) < f_0(x)$. We will show this cannot be.

Just take the segment from x to y: $z = \theta y + (1 - \theta) x$. Obviously the objective function is strictly decreasing along the segment since $f_0(y) < f_0(x)$:

$$\theta f_0(y) + (1 - \theta) f_0(x) < f_0(x) \qquad \theta \in (0, 1].$$

Using now the convexity of the function, we can write

$$f_0(\theta y + (1 - \theta) x) < f_0(x)$$
 $\theta \in (0, 1]$.

Finally, just choose θ sufficiently small such that the point z is in the ball of local optimality of x, arriving at a contradiction.

Optimality Criterion for Differentiable f_0

Minimum Principle: A feasible point x is optimal if and only if

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y

 \bullet unconstrained problem: x is optimal iff

$$x \in \text{dom } f_0, \qquad \nabla f_0(x) = 0$$

• equality constrained problem: $\min_{x} f_0(x)$ s.t. Ax = b

x is optimal iff

$$x \in \text{dom } f_0, \qquad Ax = b, \ \nabla f_0(x) + A^T \nu = 0$$

• minimization over nonnegative orthant: $\min_{x} f_0(x)$ s.t. $x \ge 0$

x is optimal iff

$$x \in \operatorname{dom} f_0,$$
 $x \ge 0,$
$$\begin{cases} \nabla_i f_0(x) \ge 0 & x_i = 0 \\ \nabla_i f_0(x) = 0 & x_i > 0 \end{cases}$$

Equivalent Reformulations

• Eliminating/introducing equality constraints:

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $Ax=b$

is equivalent to

minimize
$$f_0\left(Fz+x_0\right)$$

subject to $f_i\left(Fz+x_0\right) \leq 0$ $i=1,\ldots,m$

where F and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some z.

• Introducing slack variables for linear inequalities:

is equivalent to

$$\begin{array}{ll} \underset{x,s}{\text{minimize}} & f_0\left(x\right) \\ \text{subject to} & a_i^Tx+s_i=b_i \qquad i=1,\ldots,m \\ & s_i \geq 0 \end{array}$$

• Epigraph form: a standard form convex problem is equivalent to

minimize
$$t$$
 subject to $f_0\left(x\right)-t\leq 0$ $f_i\left(x\right)\leq 0$ $i=1,\ldots,m$ $Ax=b$

Minimizing over some variables:

minimize
$$f_0(x,y)$$
 subject to $f_i(x) \leq 0$ $i = 1, \ldots, m$

is equivalent to

minimize
$$\tilde{f}_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$

where
$$\tilde{f}_0(x) = \inf_y f_0(x, y)$$
.

Quasiconvex Optimization

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $Ax=b$

where $f_0: \mathbf{R}^n \longrightarrow \mathbf{R}$ is quasiconvex and f_1, \dots, f_m are convex.

 Observe that it can have locally optimal points that are not (globally) optimal:

• Convex representation of sublevel sets of a quasiconvex function f_0 : there exists a family of convex functions $\phi_t(x)$ for fixed t such that

$$f_0(x) \le t \iff \phi_t(x) \le 0.$$

• Example:

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on dom f_0 . We can choose:

$$\phi_t(x) = p(x) - tq(x)$$

- for $t \geq 0$, $\phi_t(x)$ is convex in x
- $-p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$.

Solving a quasiconvex problem via convex feasibility problems: the idea is to solve the epigraph form of the problem with a sandwich technique in t:

ullet for fixed t the epigraph form of the original problem reduces to a feasibility convex problem

$$\phi_t(x) \leq 0, \quad f_i(x) \leq 0 \ \forall i, \quad Ax \leq b$$

- if t is too small, the feasibility problem will be infeasible
- if t is too large, the feasibility problem will be feasible
- start with upper and lower bounds on t (termed u and l, resp.) and use a sandwitch technique (bisection method): at each iteration use t=(l+u)/2 and update the bounds according to the feasibility/infeasibility of the problem.

Classes of Convex Problems

Linear Programming (LP)

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^Tx+d\\ \text{subject to} & Gx \leq h\\ & Ax=b \end{array}$$

- Convex problem: affine objective and constraint functions.
- Feasible set is a polyhedron:

ℓ_1 - and ℓ_∞ - Norm Problems as LPs

• ℓ_{∞} -norm minimization:

minimize
$$||x||_{\infty}$$
 subject to $Gx \leq h$ $Ax = b$

is equivalent to the LP

$$\begin{array}{ll} \underset{t,x}{\text{minimize}} & t \\ \text{subject to} & -t\mathbf{1} \leq x \leq t\mathbf{1} \\ & Gx \leq h \\ & Ax = b. \end{array}$$

• ℓ_1 -norm minimization:

minimize
$$||x||_1$$
 subject to $Gx \le h$ $Ax = b$

is equivalent to the LP

$$\begin{array}{ll} \underset{t,x}{\text{minimize}} & \sum_i t_i \\ \text{subject to} & -t \leq x \leq t \\ & Gx \leq h \\ & Ax = b. \end{array}$$

Example: Chebyshev Center of a Polyhedron

- The Chebyshev center of a polyhedron $\mathcal{P} = \{x \mid a_i^T x \leq b_i, \ i = 1, \dots, m\}$ is the center of the largest inscribed ball $\mathcal{B} = \{x_c + u \mid ||u|| \leq r\}$.
- Let's solve the problem:

$$\label{eq:rate} \begin{split} & \underset{r,x_c}{\text{maximize}} & & r\\ & \text{subject to} & & x \in \mathcal{P} \quad \text{for all} \quad x = x_c + u \mid \|u\| \leq r \end{split}$$

ullet Observe that $a_i^Tx \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup_{u} \left\{ a_i^T (x_c + u) \mid ||u|| \le r \right\} \le b_i.$$

 Using Schwartz inequality, the supremum condition can be rewritten as

$$a_i^T x_c + r \|a_i\|_2 \le b_i.$$

• Hence, the Chebyshev center can be obtained by solving:

which is an LP.

Linear-Fractional Programming

with dom $f_0 = \{x \mid e^T x + f > 0\}.$

- It is a quasiconvex optimization problem (solved by bisection).
- Interestingly, the following LP is equivalent:

minimize
$$c^Ty + dz$$
 subject to
$$Gy \leq hz$$

$$Ay = bz$$

$$e^Ty + fz = 1$$

$$z \geq 0$$

Quadratic Programming (QP)

minimize
$$(1/2) \, x^T P x + q^T x + r$$
 subject to
$$Gx \leq h$$

$$Ax = b$$

- Convex problem (assuming $P \in \mathbf{S}^n \succeq 0$): convex quadratic objective and affine constraint functions.
- Minimization of a convex quadratic function over a polyhedron:

Quadratically Constrained QP (QCQP)

minimize
$$(1/2) x^T P_0 x + q_0^T x + r_0$$
 subject to
$$(1/2) x^T P_i x + q_i^T x + r_i \leq 0 \qquad i=1,\ldots,m$$

$$Ax = b$$

• Convex problem (assuming $P_i \in \mathbf{S}^n \succeq 0$): convex quadratic objective and constraint functions.

Second-Order Cone Programming (SOCP)

minimize
$$f^Tx$$
 subject to
$$||A_ix+b_i|| \leq c_i^Tx+d_i \qquad i=1,\ldots,m$$

$$Fx=g$$

- Convex problem: linear objective and second-order cone constraints
- \bullet For A_i row vector, it reduces to an LP.
- For $c_i = 0$, it reduces to a QCQP.
- More general than QCQP and LP.

Robust LP as an SOCP

- Sometimes, we don't know exactly the parameters of an optimization problem.
- Consider the robust LP:

where
$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u|| \le 1 \}.$$

It can be rewritten as the SOCP:

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \left\|P_i^Tx\right\|_2 \leq b_i$ $i=1,\ldots,m.$

Generalized Inequality Constraints

• Convex problem with generalized ineq. constraints:

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \preceq_{K_i} 0$ $i=1,\ldots,m$ $Ax=b$

where f_0 is convex and f_i are K_i -convex w.r.t. proper cone K_i .

- It has the same properties as a standard convex problem.
- Conic form problem: special case with affine objective and constraints:

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

Semidefinite Programming (SDP)

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n \preceq G$ $Ax=b$

- Inequality constraint is called linear matrix inequality (LMI).
- Convex problem: linear objective and linear matrix inequality (LMI) constraints.
- Observe that multiple LMI constraints can always be written as a single one.

• LP and equivalent SDP:

• SOCP and equivalent SDP:

minimize
$$f^Tx$$
 subject to $\|A_ix + b_i\| \leq c_i^Tx + d_i, \quad i = 1, \dots, m$

minimize
$$f^Tx$$
 subject to
$$\begin{bmatrix} \left(c_i^Tx+d_i\right)I & A_ix+b_i\\ \left(A_ix+b_i\right)^T & c_i^Tx+d_i \end{bmatrix}\succeq 0, \quad i=1,\ldots,m$$

• Eigenvalue minimization:

$$\underset{x}{\mathsf{minimize}} \quad \lambda_{\mathrm{max}}\left(A\left(x\right)\right)$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
, is equivalent to SDP

• It follows from

$$\lambda_{\max}(A(x)) \le t \iff A(x) \le tI$$

Vector Optimization

• General vector optimization problem:

minimize (w.r.t.
$$K$$
) $f_0\left(x\right)$ subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $h_i\left(x\right) = 0$ $i=1,\ldots,p$

where the vector objective $f_0: \mathbf{R}^n \longrightarrow \mathbf{R}^q$ is minimized w.r.t. proper cone $K \subseteq \mathbf{R}^q$.

• Convex vector optimization problem:

minimize (w.r.t.
$$K$$
) $f_0\left(x\right)$ subject to
$$f_i\left(x\right) \leq 0 \qquad i=1,\ldots,m$$
 $Ax=b$

where f_0 is K-convex and f_1, \ldots, f_m are convex.

Pareto Optimality

Set of achievable objective values:

$$\mathcal{O} = \{f_0(x) \mid x \text{ is feasible}\}.$$

- A feasible x is **Pareto optimal** is $f_0(x)$ is a minimal value of \mathcal{O} .
- A minimal value x of \mathcal{O} satisfies:

$$y \in \mathcal{O}, \ y \leq_K x \implies y = x$$

(in words: x cannot be in the cone of points worse than y)

 x^{po} is Pareto optimal

Multicriterion Optimization

• If we now choose the proper cone $K = \mathbf{R}_+^q$ (nonnegative orthant), then the vector optimization becomes a multicriterion optimization with q different objectives:

$$f_0(x) = (F_1(x), \dots, F_q(x)).$$

ullet A feasible point x^{po} is Pareto optimal if

$$y$$
 feasible, $f_0(y) \leq f_0(x^{po}) \implies f_0(x^{po}) = f_0(y)$.

• If there are multiple Pareto optimal values, there is a trade-off among the objectives.

Scalarization for Multicriterion Problems

• To find Pareto optimal points, minimize the positive weighted sum:

$$\lambda^{T} f_{0}(x) = \lambda_{1} F_{1}(x) + \dots + \lambda_{q} F_{q}(x).$$

• Example: regularized least-squares:

minimize
$$||Ax - b||_2^2 + \gamma ||x||_2^2$$
.

Summary

- Thus far, we have seen the basic definitions of convex sets and convex functions with examples and operations that preserve convexity.
- We have then considered convex problems in a variety of forms including quasiconvex problems, vector optimization, Pareto optimality, etc.
- We have also overviewed different classes of convex problems such as LP, QP, QCQP, SOCP, and SDP.
- We can say we have acquired the vocabulary of convex optimization.

References

Chapter 4 of

• Stephen Boyd and Lieven Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, 2004.

http://www.stanford.edu/~boyd/cvxbook/