Using Poisson Regression for Binary Outcomes

Andy Grogan-Kaylor

11 Oct 2021 08:27:18

Introduction

Logistic regression is the most frequently used model for binary outcomes. Logistic regression provides odds ratios, which while somewhat intuitive, may be misunderstood. Notably, odds ratios overstate the strength of the relationship that is implied by risk ratios (Viera, 2008).

Thus, a number of authors, including Zou (2004), have suggested that Poisson regression, which directly provides risk ratios, can be employed for binary outcomes. Zou (2004) indicates that the standard errors of the Poisson model will need to be adjusted.

This handout draws closely on the outline and presentation of ideas provided by Lindquist (n.d.) at IDRE, although the data source and variables are used are very different.

Get Data

We are using data from the U.S. Census Pulse Surveys

- . clear all
- . use "../data/Andy_June_5.10.21_1pc.dta"

Manage Data

- . recode Anxious6 (0/1 = 0)(2/3 = 1)(. = .), generate(Anxiety6) (383 differences between Anxious6 and Anxiety6)
- . tabulate Anxiety6

Cum.	Percent	Freq.	RECODE of Anxious6 (ANXIOUS)
66.55	66.55	376	0
100.00	33.45	189	1
	100.00	565	Total

Logistic Regression

logit Command

. logit Anxiety6 Sex6 i.Race6 Age6 Income6, or // logistic regression with odds ratios

```
Iteration 0:    log likelihood = -339.85845
Iteration 1:    log likelihood = -327.09157
Iteration 2:    log likelihood = -326.88691
Iteration 3:    log likelihood = -326.88668
Iteration 4:    log likelihood = -326.88668
```

Logistic regression Number of obs = 529LR chi2(6) = 25.94Prob > chi2 = 0.0002

Pseudo R2

.7981736

.8753591

= 0.0382

.955979 4.57697

Log likelihood = -326.88668

Anxiety6	Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
Sex6	.6825173	.1366386	-1.91	0.056	.4610041	1.010468
Race6						
Black alone	1.009843	.362237	0.03	0.978	.4999449	2.039789
Asian alone	.3294345	.1654222	-2.21	0.027	.1231252	.8814373
Other	.4120474	.2162551	-1.69	0.091	.1473027	1.152614
Age6	.9891521	.0080552	-1.34	0.180	.9734895	1.005067

-2.94

1.64

0.003

0.100

Note: _cons estimates baseline odds.

.87352

2.001622

. est store logit // store estimates

glm Command

Income6

cons

```
. glm Anxiety6 Sex6 i.Race6 Age6 Income6, family(binomial) link(logit)
```

.0402027

.8446585

Iteration 0: log likelihood = -327.29333
Iteration 1: log likelihood = -326.88686
Iteration 2: log likelihood = -326.88668
Iteration 3: log likelihood = -326.88668

Generalized linear models Number of obs 529 Optimization : ML Residual df 522 Scale parameter = 1 Deviance = 653.7733688 (1/df) Deviance = 1.252439 (1/df) Pearson = = 529.2756818 1.013938 Pearson Variance function: V(u) = u*(1-u/1)[Binomial] Link function $: g(u) = \ln(u/(1-u))$ [Logit] AIC 1.262332

Log likelihood = -326.8866844 BIC = -2619.683

Anxiety6	Coefficient	OIM std. err.	z	P> z	[95% conf	. interval]
Sex6	3819675	.200198	-1.91	0.056	7743484	.0104135
Race6 Black alone Asian alone Other	.0097944 -1.110378 8866169	.3587065 .50214 .5248305	0.03 -2.21 -1.69	0.978 0.027 0.091	6932573 -2.094554 -1.915266	.7128462 1262014 .142032
Age6 Income6 _cons	0109071 1352242 .6939581	.0081436 .0460238 .4219869	-1.34 -2.94 1.64	0.180 0.003 0.100	0268682 2254291 1331211	.005054 0450193 1.521037

[.] est store ${\tt glm_logit}$ // store estimates

Compare logit and glm Approaches

. est table logit glm_logit, b(%9.3f) star // nice table of estimates

Variable	logit	glm_logit
Sex6	-0.382	-0.382
Race6 Black alone Asian alone Other	0.010 -1.110* -0.887	0.010 -1.110* -0.887
Age6 Income6 _cons	-0.011 -0.135** 0.694	-0.011 -0.135** 0.694

Legend: * p<0.05; ** p<0.01; *** p<0.001

Poisson Regression

poisson Command

```
. poisson Anxiety6 Sex6 i.Race6 Age6 Income6, irr vce(robust)
```

Iteration 0: log pseudolikelihood = -366.52369
Iteration 1: log pseudolikelihood = -366.52156
Iteration 2: log pseudolikelihood = -366.52156

Poisson regression

Number of obs = 529

Wald chi2(6) = 24.16

Prob > chi2 = 0.0005Log pseudolikelihood = -366.52156 Pseudo R2 = 0.0229

Anxiety6	IRR	Robust std. err.	z	P> z	[95% conf.	interval]
Sex6	.7797372	.104779	-1.85	0.064	.599192	1.014683
Race6 Black alone Asian alone Other	1.00453	.2111003	0.02	0.983	.6654021	1.516497
	.4401884	.1834773	-1.97	0.049	.1944665	.996397
	.5482769	.2225452	-1.48	0.139	.2474559	1.214792
Age6	.9933699	.0048809	-1.35	0.176	.9838495	1.002982
Income6	.9192285	.0254323	-3.04	0.002	.8707096	.9704511
_cons	.7778068	.1849814	-1.06	0.291	.4880174	1.239676

Note: _cons estimates baseline incidence rate.

glm Command

```
. glm Anxiety6 Sex6 i.Race6 Age6 Income6, link(log) family(poisson) eform vce(robust)
Iteration 0:
              log pseudolikelihood = -371.42226
              log pseudolikelihood = -366.52249
Iteration 1:
             log pseudolikelihood = -366.52156
Iteration 2:
              log pseudolikelihood = -366.52156
Iteration 3:
Generalized linear models
                                                 Number of obs
                                                                          529
Optimization
                                                 Residual df
                                                                          522
                                                 Scale parameter =
Deviance
                = 371.0431126
                                                 (1/df) Deviance =
                                                                     .7108106
                                                 (1/df) Pearson =
                = 347.5824434
                                                                     .6658667
Pearson
Variance function: V(u) = u
                                                 [Poisson]
              : g(u) = ln(u)
Link function
                                                 [Log]
```

[.] est store poisson // store estimates

Log pseudolikelihood = -366.5215563			AIC BIC	= 1.41218 = -2902.413
Anxiety6	Robust IRR std err	7	P> z	[95% conf interval]

Anxiety6	IRR	Robust std. err.	z	P> z	[95% conf.	interval]
Sex6	.7797372	.104779	-1.85	0.064	.599192	1.014683
Race6						
Black alone	1.00453	.2111003	0.02	0.983	.6654021	1.516497
Asian alone	.4401884	.1834773	-1.97	0.049	.1944665	.996397
Other	.5482769	.2225452	-1.48	0.139	.2474559	1.214792
Age6	.9933699	.0048809	-1.35	0.176	.9838495	1.002982
Income6	.9192285	.0254323	-3.04	0.002	.8707096	.9704511
_cons	.7778068	.1849814	-1.06	0.291	.4880174	1.239676

Note: _cons estimates baseline incidence rate.

. est store glm_poisson // store estimates

Compare poisson and glm Approaches

. est table poisson glm_poisson, b(%9.3f) star // nice table of estimates

Variable	poisson	glm_poisson
Sex6	-0.249	-0.249
Race6 Black alone Asian alone Other	0.005 -0.821* -0.601	0.005 -0.821* -0.601
Age6 Income6 _cons	-0.007 -0.084** -0.251	-0.007 -0.084** -0.251

Legend: * p<0.05; ** p<0.01; *** p<0.001

Compare Logistic Regression and Poisson Regression

. est table logit glm_logit poisson glm_poisson, b(%9.3f) star // nice table of estimates

Variable	logit	glm_logit	poisson	glm_poisson
Sex6	-0.382	-0.382	-0.249	-0.249
Race6 Black alone Asian alone Other	0.010 -1.110* -0.887	0.010 -1.110* -0.887	0.005 -0.821* -0.601	0.005 -0.821* -0.601
Age6 Income6 _cons	-0.011 -0.135** 0.694	-0.011 -0.135** 0.694	-0.007 -0.084** -0.251	-0.007 -0.084** -0.251

Legend: * p<0.05; ** p<0.01; *** p<0.001

Get An Estimate of Risk Change From Logit Models

Re-Run the Logistic Regression Model

. logit Anxiety6 Sex6 i.Race6 Age6 Income6, or // re-run our logit model

log likelihood = -339.85845Iteration 0: Iteration 1: log likelihood = -327.09157Iteration 2: log likelihood = -326.88691 $log \ likelihood = -326.88668$ Iteration 3: log likelihood = -326.88668Iteration 4:

Logistic regression

Number of obs = = 25.94 LR chi2(6) = 0.0002 Prob > chi2 Pseudo R2 = 0.0382

529

Log likelihood = -326.88668

Odds ratio [95% conf. interval] Anxiety6 Std. err. 7. P>|z| Sex6 .6825173 .1366386 -1.91 0.056 .4610041 1.010468 Race6 Black alone 1.009843 .362237 0.03 0.978 .4999449 2.039789 Asian alone .3294345 .1654222 -2.21 0.027 .1231252 .8814373 Other .4120474 .2162551 -1.69 0.091 .1473027 1.152614 .0080552 1.005067 Age6 .9891521 -1.340.180 .9734895 .955979 .87352 .0402027 -2.940.003 .7981736 Income6 cons 2.001622 .8446585 1.64 0.100 .8753591 4.57697

Note: _cons estimates baseline odds.

Estimate Margins

We use the eydx option to get a proportional change in y for a unit change in x.

. margins, eydx(Income6) // proportional change in y for a change in x Average marginal effects Number of obs = 529

Model VCE: OIM

Expression: Pr(Anxiety6), predict()

ey/dx wrt: Income6

	l	Delta-method std. err.	z	P> z	[95% conf.	interval]
Income6	0889566	.0303987	-2.93	0.003	1485369	0293763

References

Lindquist, K. (n.d.). How Can I Estimate Relative Risk Using Glm For Common Outcomes In Cohort Studies? | Stata FAQ. Retrieved November 10, 2021, from https://stats.idre.ucla.edu/stata/faq/ how-can-i-estimate-relative-risk-using-glm-for-common-outcomes-in-cohort-studies/

Viera, A. J. (2008). Odds ratios and risk ratios: What's the difference and why does it matter? Southern Medical Journal. https://doi.org/10.1097/SMJ.0b013e31817a7ee4

Zou, G. (2004). A Modified Poisson Regression Approach to Prospective Studies with Binary Data. American Journal of Epidemiology, 159(7), 702–706. https://doi.org/10.1093/aje/kwh090