Numerical Summary Measures

• Sample Mean:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Sample Median: The middle number when the observations are arranged in order from smallest to largest.
- Sample Variance:

$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

• Chebyshev's Rule: Let k > 1. For any set of observations, the proportion of observations within k standard deviations of the mean is at least $1 - \frac{1}{k^2}$.

Probability

• Complement Rule: P(A') = 1 - P(A)

• Addition Rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• Addition Rule for Two Disjoint Events: $P(A \cup B) = P(A) + P(B)$

• Conditional Probability: If P(B) > 0 then

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Multiplication Rule: $P(A \cap B) = P(A|B)P(B)$

• Multiplication Rule for Independent Events: $P(A \cap B) = P(A)P(B)$

Random Variables and Discrete Probability Distributions

• Mean, or expected value, of a discrete random variable X:

$$\mu = E(X) = \sum_{\text{all } x} x p(x)$$

• Variance of a discrete random variable X:

$$\sigma^2 = \operatorname{Var}(X) = \sum_{\text{all } x} x^2 p(x) - \mu^2$$

• If X is a binomial random variable based on n trials, each with success probability equal to p, then

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0, 1, 2, 3, \dots, n$$

where $\mu = np$, $\sigma^2 = np(1-p)$, and $\sigma = \sqrt{np(1-p)}$.

Sampling Distributions

• Properties of the sample mean \bar{X} :

$$E(\bar{X}) = \mu_{\bar{X}} = \mu$$
 and $V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$

Confidence Intervals Based on a Single Sample

• Confidence Interval for μ when n is large or the population is normal, and σ is known:

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

• Confidence Interval for μ when the population is normal and σ is unknown:

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

• Confidence interval for a population proportion p when n is large enough so that $n\hat{p} \geq 5$ and $n(1-\hat{p}) \geq 5$:

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

• The minimum sample size required for a $100(1-\alpha)\%$ confidence interval of width w for μ when the population is normal and σ is known:

$$n = \left(\frac{\sigma z_{\alpha/2}}{b}\right)^2$$

where $b = \frac{1}{2}w$.

• The minimum sample size required for a $100(1-\alpha)\%$ confidence interval of width w for a population proportion p is

$$n = \hat{p}(1 - \hat{p}) \left[\frac{z_{\alpha/2}}{b} \right]^2$$

where \hat{p} is either a reasonable estimate of \hat{p} based on past experience, or \hat{p} is set to 0.5 to obtain a conservative estimate of n, and $b = \frac{1}{2}w$.

Hypothesis Tests Based on a Single Sample

- Hypothesis test for μ when n is large or the population is normal, and σ is known:
 - Null Hypothesis: $H_0: \mu = \mu_0$
 - Test Statistic:

$$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

- Alternative hypotheses, rejection regions, and p-values:

Alternative	Rejection	
Hypothesis	Region	p-value
$H_{\rm a}: \mu > \mu_0$	$Z \ge z_{\alpha}$	$P(Z \ge z)$
$H_{\rm a} : \mu < \mu_0$	$Z \le -z_{\alpha}$	$P(Z \le z)$
$H_{\rm a}: \mu \neq \mu_0$	$ Z \ge z_{\alpha/2}$	$2P(Z \ge z)$ if $z \ge 0$
	,	$2P(Z \le z)$ if $z < 0$

• Hypothesis test for μ when the population is normal and σ is unknown:

- Null Hypothesis: $H_0: \mu = \mu_0$

- Test Statistic:

$$T = \frac{\bar{x} - \mu_0}{S/\sqrt{n}}$$

- Alternative hypotheses, rejection regions, and p-values:

Alternative	Rejection
Hypothesis	Region
$H_{\rm a}: \mu > \mu_0$	$T \ge t_{\alpha}$
$H_{\rm a} : \mu < \mu_0$	$T \leq -t_{\alpha}$
$H_{\rm a}: \mu \neq \mu_0$	$ T \ge t_{\alpha/2}$

• Hypothesis test for a population proportion p:

- Null Hypothesis: $H_0: p = p_0$

- Test Statistic:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- Alternative hypotheses, rejection regions, and p-values:

Alternative	Rejection	
Hypothesis	Region	p-value
$H_{\mathbf{a}}: p > p_0$	$Z \ge z_{\alpha}$	$P(Z \ge z)$
$H_{\mathbf{a}}: p < p_0$	$Z \le -z_{\alpha}$	$P(Z \le z)$
$H_{\mathbf{a}}: p \neq p_0$	$ Z \ge z_{\alpha/2}$	$2P(Z \ge z)$ if $z \ge 0$
		$2P(Z \le z) \text{ if } z < 0$

Hypothesis Tests and Confidence Intervals Based on Two Samples

• Confidence interval for $\mu_1 - \mu_2$ based on two independent samples where σ_1 and σ_2 are known, and the populations are normal or n_1 and n_2 are both large:

$$(\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

• Confidence interval for $\mu_1 - \mu_2$ based on two independent samples where σ_1 and σ_2 are uknown but equal, and the populations are normal:

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

where

$$s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}$$

and the degrees of freedom are $df = n_1 + n_2 - 2$.

 \bullet Confidence interval for $\mu_1 - \mu_2$ based on paired observations from a normal population:

$$\bar{d} \pm t_{\alpha/2} \frac{s_D}{\sqrt{n}}$$

where the degrees of freedom are df = n - 1.

• Confidence interval for $p_1 - p_2$:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

- Hypothesis test for $\mu_1 \mu_2$ based on two independent samples where σ_1 and σ_2 are known, and the populations are normal or n_1 and n_2 are both large:
 - Null Hypothesis: $H_0: \mu_1 \mu_2 = \Delta_0$
 - Test Statistic:

$$Z = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Alternative hypotheses, rejection regions, and p-values:

Alternative	Rejection	
Hypothesis	Region	p-value
$H_{\mathbf{a}}: \mu_1 - \mu_2 > \Delta_0$	$Z \ge z_{\alpha}$	$P(Z \ge z)$
$H_{\mathbf{a}}: \mu_1 - \mu_2 < \Delta_0$	$Z \leq -z_{\alpha}$	$P(Z \le z)$
$H_a: \mu_1 - \mu_2 \neq \Delta_0$	$ Z \ge z_{\alpha/2}$	$2P(Z \ge z)$ if $z \ge 0$
		$2P(Z \le z) \text{ if } z < 0$

- Hypothesis test for $\mu_1 \mu_2$ based on two independent samples where σ_1 and σ_2 are uknown but equal, and the populations are normal:
 - Null Hypothesis: $H_0: \mu_1 \mu_2 = \Delta_0$
 - Test Statistic:

$$T = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

and the degrees of freedom are $df = n_1 + n_2 - 2$.

- Alternative hypotheses and rejection regions:

Alternative	Rejection
Hypothesis	Region
$H_{a}: \mu_{1} - \mu_{2} > \Delta_{0}$	$T \ge t_{\alpha}$
$H_{\rm a}: \mu_1 - \mu_2 < \Delta_0$	$T \leq -t_{\alpha}$
$H_{\rm a}: \mu_1 - \mu_2 \neq \Delta_0$	$ T \ge t_{\alpha/2}$

- Hypothesis test for $\mu_1 \mu_2$ based on paired observations from a normal population:
 - Null Hypothesis: $H_0: \mu_D = \Delta_0$
 - Test Statistic:

$$T = \frac{\bar{D} - \Delta_0}{S_D / \sqrt{n}}$$

- Alternative hypotheses and rejection regions:

Alternative	Rejection
Hypothesis	Region
$H_{\rm a}:\mu_D>\Delta_0$	$T \ge t_{\alpha}$
$H_{\mathrm{a}}:\mu_D<\Delta_0$	$T \le -t_{\alpha}$
$H_{\rm a}:\mu_D\neq\Delta_0$	$ T \ge t_{\alpha/2}$

• Hypothesis test for $p_1 - p_2$:

– Null Hypothesis: $H_0: p_1 - p_2 = 0$

- Test Statistic:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_c(1 - \hat{p}_c)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where

$$\hat{p}_c = \frac{X_1 + X_2}{n_1 + n_2}$$

- Alternative hypotheses, rejection regions, and p-values:

Alternative	Rejection	
Hypothesis	Region	p-value
$H_{\rm a}: p_1 - p_2 > 0$	$Z \ge z_{\alpha}$	$P(Z \ge z)$
$H_{\rm a}: p_1 - p_2 < 0$	$Z \le -z_{\alpha}$	$P(Z \le z)$
$H_{\rm a}: p_1 - p_2 \neq 0$	$ Z \ge z_{\alpha/2}$	$2P(Z \ge z)$ if $z \ge 0$
	,	$2P(Z \le z)$ if $z < 0$

• Hypothesis test for $p_1 - p_2$:

- Null Hypothesis: $H_0: p_1 - p_2 = \Delta_0$ (where $\Delta_0 \neq 0$)

- Test Statistic:

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - \Delta_0}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}$$

- Alternative hypotheses, rejection regions, and $\emph{p}\textsc{-}\text{values}:$

Alternative	Rejection	
Hypothesis	Region	p-value
$H_{\mathbf{a}}: p_1 - p_2 > \Delta_0$	$Z \ge z_{\alpha}$	$P(Z \ge z)$
$H_{\mathbf{a}}: p_1 - p_2 < \Delta_0$	$Z \le -z_{\alpha}$	$P(Z \le z)$
$H_{\mathbf{a}}: p_1 - p_2 \neq \Delta_0$	$ Z \ge z_{\alpha/2}$	$2P(Z \ge z)$ if $z \ge 0$
		$2P(Z \le z) \text{ if } z < 0$

The Analysis of Variance

ANOVA Table Summary										
Source of	Sum of	Sum of Degrees of Mean								
Variation	Squares	Freedom	Square	F	Value					
Factor	SSA	k-1	$MSA = \frac{SSA}{k-1}$	$\frac{\text{MSA}}{\text{MSE}}$	p					
Error	SSE	n-k	$MSE = \frac{SSE}{n-k}$							
Total	SST	n-1								

Correlation and Linear Regression

• The least squares estimates of β_0 and β_1 are given by

$$\hat{\beta}_1 = \frac{n \sum x_i y_i - (\sum x_i) (\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}$$

and

$$\hat{\beta}_0 = \frac{\sum y_i - \hat{\beta}_1 \sum x_i}{n} = \bar{y} - \hat{\beta}_1 \bar{x}$$

- The estimated regression line is given by $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$.
- ANOVA Table Summary:

Source of	Sum of	Degrees of	Mean		
Variation	Squares	Freedom	Square	F	p-value
Regression	SSR	1	$MSR = \frac{SSR}{1}$	$\frac{\text{MSR}}{\text{MSE}}$	\overline{p}
Error	SSE	n-2	$MSE = \frac{SSE}{n-2}$		
Total	SST	n-1			

• Coefficient of Determination:

$$r^2 = \frac{\text{SSR}}{\text{SST}}$$

• Correlation Coefficient:

$$r = \frac{\sum x_i y_i - \frac{1}{n} (\sum x_i) (\sum y_i)}{\sqrt{\left[\sum x_i^2 - \frac{1}{n} (\sum x_i)^2\right] \left[\sum y_i^2 - \frac{1}{n} (\sum y_i)^2\right]}}$$

• Alternate formulas for correlation and regression:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$S_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n} \qquad S_{xx} = \sum x^2 - \frac{(\sum x)^2}{n} \qquad S_{yy} = \sum y^2 - \frac{(\sum y)^2}{n}$$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$$

Table I: Binomial Distribution Cumulative Probabilities

Let X be a binomial random variable with parameters n and p. This table contains the cumulative probabilities

$$P(X \le x) = \sum_{k=0}^{x} P(X = k) = P(X = 0) + P(X = 1) + P(X = 2) + \dots + P(X = x)$$

n =								p							
x	0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	0.95	0.99
0	0.951	0.774	0.59	0.328	0.237	0.168	0.078	0.031	0.010	0.002	0.001	0.000			
1	0.999	0.977	0.918	0.737	0.633	0.528	0.337	0.187	0.087	0.031	0.016	0.007	0.001	0.000	
2	1.000	0.999	0.991	0.942	0.896	0.837	0.683	0.500	0.317	0.163	0.104	0.058	0.009	0.001	0.000
3		1.000	1.000	0.993	0.984	0.969	0.913	0.812	0.663	0.472	0.367	0.263	0.082	0.023	0.001
4				1.000	0.999	0.998	0.990	0.969	0.922	0.832	0.763	0.672	0.409	0.226	0.049
n =	: 10							p							
x	0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	0.95	0.99
0	0.904	0.599	0.349	0.107	0.056	0.028	0.006	0.001	0.000						
1	0.996	0.914	0.736	0.376	0.244	0.149	0.046	0.011	0.002	0.000					
2	1.000	0.988	0.930	0.678	0.526	0.383	0.167	0.055	0.012	0.002	0.000	0.000			
3		0.999	0.987	0.879	0.776	0.650	0.382	0.172	0.055	0.011	0.004	0.001			
4		1.000	0.998	0.967	0.922	0.850	0.633	0.377	0.166	0.047	0.020	0.006	0.000		
5			1.000	0.994	0.980	0.953	0.834	0.623	0.367	0.150	0.078	0.033	0.002	0.000	
6				0.999	0.996	0.989	0.945	0.828	0.618	0.350	0.224	0.121	0.013	0.001	
7				1.000	1.000	0.998	0.988	0.945	0.833	0.617	0.474	0.322	0.070	0.012	0.000
8						1.000	0.998	0.989	0.954	0.851	0.756	0.624	0.264	0.086	0.004
9							1.000	0.999	0.994	0.972	0.944	0.893	0.651	0.401	0.096
	I.														
n =	: 15							p							
x	0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	0.95	0.99
0	0.860	0.463	0.206	0.035	0.013	0.005	0.000								
1	0.990	0.829	0.549	0.167	0.080	0.035	0.005	0.000							
2	1.000	0.964	0.816	0.398	0.236	0.127	0.027	0.004	0.000						
3		0.995	0.944	0.648	0.461	0.297	0.091	0.018	0.002	0.000					
4		0.999	0.987	0.836	0.686	0.515	0.217	0.059	0.009	0.001	0.000				
5		1.000	0.998	0.939	0.852	0.722	0.403	0.151	0.034	0.004	0.001	0.000			
6			1.000	0.982	0.943	0.869	0.610	0.304	0.095	0.015	0.004	0.001			
7				0.996	0.983	0.950	0.787	0.500	0.213	0.050	0.017	0.004			
8				0.999	0.996	0.985	0.905	0.696	0.390	0.131	0.057	0.018	0.000		
9				1.000	0.999	0.996	0.966	0.849	0.597	0.278	0.148	0.061	0.002	0.000	
10					1.000	0.999	0.991	0.941	0.783	0.485	0.314	0.164	0.013	0.001	
11					0	1.000	0.998	0.982	0.909	0.703	0.539	0.352	0.056	0.005	
12							1.000	0.996	0.973	0.873	0.764	0.602	0.184	0.036	0.000
13								1.000	0.995	0.965	0.920	0.833	0.451	0.171	0.010
								2.000							
14									1.000	0.995	0.987	0.965	0.794	0.537	0.140

Table I: Binomial Distribution Cumulative Probabilities (Continued)

n =	: 20							p							
\boldsymbol{x}	0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	0.95	0.99
0	0.818	0.358	0.122	0.012	0.003	0.001	0.000								
1	0.983	0.736	0.392	0.069	0.024	0.008	0.001								
2	0.999	0.925	0.677	0.206	0.091	0.035	0.004	0.000							
3	1.000	0.984	0.867	0.411	0.225	0.107	0.016	0.001							
4		0.997	0.957	0.630	0.415	0.238	0.051	0.006	0.000						
5		1.000	0.989	0.804	0.617	0.416	0.126	0.021	0.002						
6			0.998	0.913	0.786	0.608	0.250	0.058	0.006	0.000					
7			1.000	0.968	0.898	0.772	0.416	0.132	0.021	0.001	0.000				
8				0.990	0.959	0.887	0.596	0.252	0.057	0.005	0.001	0.000			
9				0.997	0.986	0.952	0.755	0.412	0.128	0.017	0.004	0.001			
10				0.999	0.996	0.983	0.872	0.588	0.245	0.048	0.014	0.003			
11				1.000	0.999	0.995	0.943	0.748	0.404	0.113	0.041	0.01			
12					1.000	0.999	0.979	0.868	0.584	0.228	0.102	0.032	0.000		
13						1.000	0.994	0.942	0.75	0.392	0.214	0.087	0.002		
14							0.998	0.979	0.874	0.584	0.383	0.196	0.011	0.000	
15							1.000	0.994	0.949	0.762	0.585	0.37	0.043	0.003	
16								0.999	0.984	0.893	0.775	0.589	0.133	0.016	0.000
17								1.000	0.996	0.965	0.909	0.794	0.323	0.075	0.001
18									0.999	0.992	0.976	0.931	0.608	0.264	0.017
19									1.000	0.999	0.997	0.988	0.878	0.642	0.182
	05														
n =		0.05	0.10	0.90	0.05	0.20	0.40	p	0.60	0.70	0.75	0.00	0.00	0.05	0.00
$\frac{x}{x}$	0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	0.95	0.99
0	0.778	0.277	$0.072 \\ 0.271$	0.004	0.001	0.000									
$\frac{1}{2}$	0.974 0.998	$0.642 \\ 0.873$	0.271 0.537	0.027 0.098	$0.007 \\ 0.032$	0.002 0.009	0.000								
3	1.000	0.966	0.557 0.764	0.098 0.234	0.032 0.096	0.009 0.033	0.000								
	1.000	0.993	0.704 0.902	0.234 0.421	0.090 0.214	0.035	0.002 0.009	0.000							
4		0.993 0.999	0.902 0.967	0.421 0.617	0.214 0.378	0.09 0.193	0.009 0.029	0.000							
$\frac{5}{6}$		1.000	0.907 0.991	0.017 0.780	0.561	0.193 0.341	0.029 0.074	0.002 0.007	0.000						
7		1.000	0.991 0.998	0.780	0.301 0.727	0.541 0.512	0.074 0.154	0.007 0.022	0.000						
8			1.000	0.953	0.727 0.851	0.677	0.134 0.274	0.022 0.054	0.001 0.004						
9			1.000	0.983	0.929	0.811	0.214 0.425	0.034 0.115	0.004 0.013	0.000					
10				0.994	0.929 0.970	0.902	0.425 0.586	0.113 0.212	0.013	0.000	0.000				
11				0.994 0.998	0.989	0.952	0.732	0.212 0.345	0.034 0.078	0.002	0.000				
12				1.000	0.997	0.983	0.732 0.846	0.540	0.078 0.154	0.000	0.001	0.000			
13				1.000	0.991	0.994	0.922	0.655	0.154 0.268	0.017	0.003	0.000			
$\frac{13}{14}$					1.000	0.994 0.998	0.922 0.966	0.033 0.788	0.208 0.414	0.044 0.098	0.011	0.002 0.006			
15					1.000	1.000	0.987	0.1885	0.414 0.575	0.038 0.189	0.030 0.071	0.000			
16						1.000	0.996	0.946	0.726	0.103	0.149	0.017	0.000		
17							0.999	0.940 0.978	0.120	0.323 0.488	0.149 0.273	0.047 0.109	0.000		
18							1.000	0.978	0.840 0.926	0.488 0.659	0.273 0.439	0.109 0.220	0.002 0.009	0.000	
19							1.000	0.993 0.998	0.920 0.971	0.807	0.439 0.622	0.220 0.383	0.009 0.033	0.000	
20								1.000	0.971 0.991	0.807	0.022 0.786	0.579	0.033 0.098	0.001 0.007	
$\frac{20}{21}$								1.000	0.991 0.998	0.910 0.967	0.780 0.904	0.579 0.766	0.098 0.236	0.007 0.034	0.000
$\frac{21}{22}$															0.000
$\frac{22}{23}$									1.000	$0.991 \\ 0.998$	0.968	$0.902 \\ 0.973$	0.463	0.127	0.002
$\frac{23}{24}$											0.993		0.729	0.358	0.026
24										1.000	0.999	0.996	0.928	0.723	0.222

Table III Standard Normal Distribution Cumulative Probabilities

Let Z be a standard normal random variable: $\mu=0$ and $\sigma=1$. This table contains cumulative probabilities: $P(Z\leq z)$.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table III Standard Normal Distribution Cumulative Probabilities (Continued)

Let Z be a standard normal random variable: $\mu=0$ and $\sigma=1$. This table contains cumulative probabilities: $P(Z\leq z)$.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
0.0	0.000=	0.000=	0.000=	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Special Critical Values: $P(Z \ge z_{\alpha}) = \alpha$

α	0.10	0.05	0.025	0.01	0.005	0.001	0.0005	0.0001	
z_{lpha}	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905	3.7190	
α	0.00009	0.00008	0.00007	0.00006	0.00005	0.00004	0.00003	0.00002	0.00001

Table V Critical Values for the t Distribution

This table contains critical values associated with the t distribution, t_{α} , defined by the degrees of freedom and α .

the deg	rees of fr	eedom an	$d \alpha$.						
df	0.20	0.10	0.05	0.025	0.01	0.005	0.001	0.0005	0.0001
1	1.3764	3.0777	6.3138	12.7062	31.8205	63.6567	318.3088	636.6192	3183.0988
2	1.0607	1.8856	2.9200	4.3027	6.9646	9.9248	22.3271	31.5991	70.7001
3	0.9785	1.6377	2.3534	3.1824	4.5407	5.8409	10.2145	12.9240	22.2037
4	0.9410	1.5332	2.1318	2.7764	3.7469	4.6041	7.1732	8.6103	13.0337
5	0.9195	1.4759	2.0150	2.5706	3.3649	4.0321	5.8934	6.8688	9.6776
6	0.9057	1.4398	1.9432	2.4469	3.1427	3.7074	5.2076	5.9588	8.0248
7	0.8960	1.4149	1.8946	2.3646	2.9980	3.4995	4.7853	5.4079	7.0634
8	0.8889	1.3968	1.8595	2.3060	2.8965	3.3554	4.5008	5.0413	6.4420
9	0.8834	1.3830	1.8331	2.2622	2.8214	3.2498	4.2968	4.7809	6.0101
10	0.8791	1.3722	1.8125	2.2281	2.7638	3.1693	4.1437	4.5869	5.6938
11	0.8755	1.3634	1.7959	2.2010	2.7181	3.1058	4.0247	4.4370	5.4528
12	0.8726	1.3562	1.7823	2.1788	2.6810	3.0545	3.9296	4.3178	5.2633
13	0.8702	1.3502	1.7709	2.1604	2.6503	3.0123	3.8520	4.2208	5.1106
14	0.8681	1.3450	1.7613	2.1448	2.6245	2.9768	3.7874	4.1405	4.9850
15	0.8662	1.3406	1.7531	2.1314	2.6025	2.9467	3.7328	4.0728	4.8800
	0.000						317323		
16	0.8647	1.3368	1.7459	2.1199	2.5835	2.9208	3.6862	4.0150	4.7909
17	0.8633	1.3334	1.7396	2.1098	2.5669	2.8982	3.6458	3.9651	4.7144
18	0.8620	1.3304	1.7341	2.1009	2.5524	2.8784	3.6105	3.9216	4.6480
19	0.8610	1.3277	1.7291	2.0930	2.5395	2.8609	3.5794	3.8834	4.5899
20	0.8600	1.3253	1.7247	2.0860	2.5280	2.8453	3.5518	3.8495	4.5385
20	0.0000	1.0200	1.1211	2.0000	2.0200	2.0400	0.0010	0.0400	4.0000
21	0.8591	1.3232	1.7207	2.0796	2.5176	2.8314	3.5272	3.8193	4.4929
22	0.8583	1.3212	1.7171	2.0739	2.5083	2.8188	3.5050	3.7921	4.4520
23	0.8575	1.3195	1.7139	2.0687	2.4999	2.8073	3.4850	3.7676	4.4152
$\frac{1}{24}$	0.8569	1.3178	1.7109	2.0639	2.4922	2.7969	3.4668	3.7454	4.3819
25	0.8562	1.3163	1.7081	2.0595	2.4851	2.7874	3.4502	3.7251	4.3517
	0.0002	1.0100	11,001			2	3.130 <u>-</u>	3., 231	1.501.
26	0.8557	1.3150	1.7056	2.0555	2.4786	2.7787	3.4350	3.7066	4.3240
27	0.8551	1.3137	1.7033	2.0518	2.4727	2.7707	3.4210	3.6896	4.2987
28	0.8546	1.3125	1.7011	2.0484	2.4671	2.7633	3.4082	3.6739	4.2754
29	0.8542	1.3114	1.6991	2.0452	2.4620	2.7564	3.3962	3.6594	4.2539
30	0.8538	1.3104	1.6973	2.0423	2.4573	2.7501	3.3852	3.6460	4.2340
90	0.0000	1.0101	1.0010	2.0120	2.1010	2.1000	0.0002	0.0100	1.2010
40	0.8507	1.3031	1.6839	2.0211	2.4233	2.7045	3.3069	3.5510	4.0942
50	0.8489	1.2987	1.6759	2.0086	2.4033	2.6778	3.2614	3.4960	4.0140
60	0.8477	1.2958	1.6706	2.0003	2.4033 2.3901	2.6603	3.2317	3.4602	3.9621
70	0.8468	1.2938 1.2938	1.6669	1.9944	2.3808	2.6479	3.2108	3.4350	3.9021 3.9257
80	0.8461	1.2933 1.2922	1.6641	1.9901	2.3739	2.6387	3.1953	3.4163	3.8988
00	0.0401	1.4344	1.0041	1.9901	∠.5139	4.0301	9.1399	9.4109	0.0300
90	0.8456	1.2910	1.6620	1.9867	2.3685	2.6316	3.1833	3.4019	3.8780
100	0.8450 0.8452	1.2910 1.2901	1.6620 1.6602	1.9840	2.3683 2.3642	2.6259	3.1737	3.4019 3.3905	3.8616
	1	1.2901 1.2858				2.6259 2.6006			
200	0.8434		1.6525	1.9719	2.3451		3.1315	3.3398	3.7891
200	0.8434	1.2858	1.6525	1.9719	2.3451	2.6006	3.1315	3.3398	3.7891
∞	0.8416	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905	3.7190

Table VII Critical Values for the ${\cal F}$ Distribution

100	19.49	8.55	5.66	4.41	3.71	3.27	2.97	2.76	2.59	2.46	2.35	2.26	2.19	2.12	2.07	2.02	1.98	1.94	1.91	1.88	1.85	1.82	1.80	1.78	1.70	1.59	1.52	1.48	1.39
09	∞		5.69	4.43	3.74	3.30	3.01	2.79	2.62	2.49	2.38	2.30	2.22	2.16	2.11	2.06	2.02	1.98	1.95	1.92	1.89	1.86	1.84	1.82	1.74	1.64	1.58	1.53	1.45
050	19.48	8.58	5.70	4.44	3.75	3.32	3.02	2.80	2.64	2.51	2.40	2.31	2.24	2.18	2.12	2.08	2.04	2.00	1.97	1.94	1.91	1.88	1.86	1.84	1.76	1.66	1.60	1.56	1.48
and ν_2 .	19.47	8.59	5.72	4.46	3.77	3.34	3.04	2.83	5.66	2.53	2.43	2.34	2.27	2.20	2.15	2.10	2.06	2.03	1.99	1.96	1.94	1.91	1.89	1.87	1.79	1.69	1.63	1.59	1.52
$dom \nu_1 = 30$	19.46	8.62	5.75	4.50	3.81	3.38	3.08	2.86	2.70	2.57	2.47	2.38	2.31	2.25	2.19	2.15	2.11	2.07	2.04	2.01	1.98	1.96	1.94	1.92	1.84	1.74	1.69	1.65	1.57
s of free	19.45	8.66	5.80	4.56	3.87	3.44	3.15	2.94	2.77	2.65	2.54	2.46	2.39	2.33	2.28	2.23	2.19	2.16	2.12	2.10	2.07	2.05	2.03	2.01	1.93	1.84	1.78	1.75	1.68
degrees	19.43	8.70	5.86	4.62	3.94	3.51	3.22	3.01	2.85	2.72	2.62	2.53	2.46	2.40	2.35	2.31	2.27	2.23	2.20	2.18	2.15	2.13	2.11	2.09	2.01	1.92	1.87	1.84	1.77
α and α	19.40	8.79	5.96	4.74	4.06	3.64	3.35	3.14	2.98	2.85	2.75	2.67	2.60	2.54	2.49	2.45	2.41	2.38	2.35	2.32	2.30	2.27	2.25	2.24	2.16	2.08	2.03	1.99	1.93
defined $\frac{\nu_1}{9}$	19.38	8.81	00.9	4.77	4.10	3.68	3.39	3.18	3.02	2.90	2.80	2.71	2.65	2.59	2.54	2.49	2.46	2.42	2.39	2.37	2.34	2.32	2.30	2.28	2.21	2.12	2.07	2.04	1.97
on, F_{α} , o	19.37	8.85	6.04	4.82	4.15	3.73	3.44	3.23	3.07	2.95	2.85	2.77	2.70	2.64	2.59	2.55	2.51	2.48	2.45	2.42	2.40	2.37	2.36	2.34	2.27	2.18	2.13	2.10	2.03
istributi 7	19.35	8.89	60.9	4.88	4.21	3.79	3.50	3.29	3.14	3.01	2.91	2.83	2.76	2.71	5.66	2.61	2.58	2.54	2.51	2.49	2.46	2.44	2.42	2.40	2.33	2.25	2.20	2.17	2.10
the F di	19.33	8.94	6.16	4.95	4.28	3.87	3.58	3.37	3.22	3.09	3.00	2.92	2.85	2.79	2.74	2.70	2.66	2.63	2.60	2.57	2.55	2.53	2.51	2.49	2.42	2.34	2.29	2.25	2.19
ed with	19.30	9.01	6.26	5.05	4.39	3.97	3.69	3.48	3.33	3.20	3.11	3.03	2.96	2.90	2.85	2.81	2.77	2.74	2.71	2.68	2.66	2.64	2.62	2.60	2.53	2.45	2.40	2.37	2.31
associate 4	19.25	9.12	6.39	5.19	4.53	4.12	3.84	3.63	3.48	3.36	3.26	3.18	3.11	3.06	3.01	2.96	2.93	2.90	2.87	2.84	2.82	2.80	2.78	2.76	2.69	2.61	2.56	2.53	2.46
values a	19.16	9.28	6.59	5.41	4.76	4.35	4.07	3.86	3.71	3.59	3.49	3.41	3.34	3.29	3.24	3.20	3.16	3.13	3.10	3.07	3.05	3.03	3.01	2.99	2.92	2.84	2.79	2.76	2.70
s critical	19.00	9.55	6.94	5.79	5.14	4.74	4.46	4.26	4.10	3.98	3.89	3.81	3.74	3.68	3.63	3.59	3.55	3.52	3.49	3.47	3.44	3.42	3.40	3.39	3.32	3.23	3.18	3.15	3.09
contain .05	18.51	10.13	7.71	6.61	5.99	5.59	5.32	5.12	4.96	4.84	4.75	4.67	4.60	4.54	4.49	4.45	4.41	4.38	4.35	4.32	4.30	4.28	4.26	4.24	4.17	4.08	4.03	4.00	3.94
his table contains critical values associated with the F distribution, F_{α} , defined by α and degrees of freedom ν_1 and ν_2 . $\alpha = 0.05$	2 27	က	4	ಬ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	30	40	20	09	100

Table VII Critical Values for the ${\cal F}$ Distribution

	100	99.49	26.24	3.58	0.13	00.00	0.99	5.75	4.96	4.41	4.01	3.71	3.47	3 97	7 -	3.11	2.98	2.86	92 0	0.70	2.68	2.60	2.54	2.48	2.42	2.37	2.33	2.29	2.13	1.94	1.82	1.75	1.60
	09	∞			06.0			5.82		4.48			3.54	23.7				2.93					2.61				2.40			2.02			1.69
	50	99.48	26.35 2					5.86			4.12		3.57					2.97					2.64		2.53		2.44			2.06			1.74
$\frac{1}{1000}$		99.47 99		13.75 13				5.91		4.57						3.27							2.69		2.58		2.49			2.11			1.80
$m \nu_1$ ar	30	99.47 99	26.50 26					5.99		4.65			3.70			3.35			00 8			2.84 2			2.67		2.58						1.89
freedo	ಣ																																
ees of	20	99.45	26.69	14.02	O T	1 6	f.4	6.16	5.3	4.81	4.41	4.1	3.86	8	5 6	3.51	ლ ლ	3.2	9 1	7.°°	3.08	3.0	2.94	2.8	8	2.7	2.74	2.7	2.5	2.37	2.2	2.2	2.07
nd degr	15	99.43	26.87	14.20	0.75	1 0	00.7	6.31	5.52	4.96	4.56	4.25	4.01	2 83	9 0	3.00	3.52	3.41	9 91	0.01	3.23	3.15	3.09	3.03	2.98	2.93	2.89	2.85	2.70	2.52	2.42	2.35	2.22
by α ar	10	99.40	27.23	14.55	10.05	10.00	1.8.	6.62	5.81	5.26	4.85	4.54	4.30	7 10) i	3.94	3.80	3.69	2 50	0.00	3.51	3.43	3.37	3.31	3.26	3.21	3.17	3.13	2.98	2.80	2.70	2.63	2.50
defined	ν_1	99.39	27.35	14.66	10 16	1.10	86.7	6.72	5.91	5.35	4.94	4.63	4.39	4 10	H. F.	4.03	3.89	3.78	8	0.00	3.60	3.52	3.46	3.40	3.35	3.30	3.26	3.22	3.07	2.89	2.78	2.72	2.59
on, F_{α} ,	. ∞	99.37	27.49	14.80	10.90	01.01	8.10	6.84	6.03	5.47	5.06	4.74	4.50	4.30	; ;	4.14	4.00	3.89	9 70	 !	3.71	3.63	3.56	3.51	3.45	3.41	3.36	3.32	3.17	2.99	2.89	2.82	2.69
stributi	7	99.36	27.67	14.98	10.46	0.00	8.20	6.90	6.18	5.61	5.20	4.89	4.64	7	# C	4.28	4.14	4.03	202	0.00	3.84	3.77	3.70	3.64	3.59	3.54	3.50	3.46	3.30	3.12	3.02	2.95	2.82
the F di	9	99.33	27.91		10.67	71	8.47	7.19	6.37	5.80	5.39	5.07	4.82	69	1 5	4.40	4.32	4.20	7 10	4.10	4.01	3.94	3.87	3.81	3.76	3.71	3.67	3.63	3.47	3.29	3.19	3.12	2.99
d with	ಬ	99.3			10.07	10.0	8.75	7.46	6.63	90.9	5.64	5.32	5.06	86		4.09	4.56	4.44	7 8 7	f. 0.t	4.25	4.17	4.10	4.04	3.99	3.94	3.90	3.85	3.70	3.51	3.41	3.34	3.21
ssociate	4	99.25	28.71		11 30	11.00 11.00	9.15	7.85	7.01	6.42	5.99	5.67	5.41	5 91	1 2	5.04	4.89	4.77	7 67	- i	4.58	4.50	4.43	4.37	4.31	4.26	4.22	4.18	4.02	3.83	3.72	3.65	3.51
values 8	က	99.17	29.46	16.69	19.06	100	9.78	8.45	7.59	6.99	6.55	6.22	5.95	77	+ C	5.50	5.42	5.29	и о	0.TO	5.09	5.01	4.94	4.87	4.82	4.76	4.72	4.68	4.51	4.31	4.20	4.13	3.98
This table contains critical values associated with the F distribution, F_{α} , defined by α and degrees of freedom ν_1 and ν_2 .	2	99.00	30.82	18.00	13 97		10.92	9.55	8.65	8.02	7.56	7.21	6.93	6 70	- 1	0.51	6.36	6.23	11	0.11	6.01	5.93	5.85	5.78	5.72	5.66	5.61	5.57	5.39	5.18	5.06	4.98	4.82
ontains	01 1	98.50	34.12	21.20	16.96			12.25	11.26	10.56	10.04	9.65	9.33	0.07	- 0	8.80	8.68	8.53	0	0.40	8.29	8.18	8.10	8.02	7.95	7.88	7.82	7.77	7.56	7.31	7.17	7.08	6.90
table c	$\alpha = 0.01$ $\nu_2 \mid$		ري دي			0 0		7		9	_		12	73	7	14	15	16	1	7 7		19	50	21	22	23	24	25	30	40	20	09	100
- This		1																															