Semantics of Functional Programming

The Scott Model of **PCF**

Chuang, Tyng-Ruey trc.iis.sinica.edu.tw

Formosan Summer School on Logic, Language, and Computation 2014

1 Scott domain model

Denotational semantics of PCF

Instead of specifying *how* a program runs, we specify *what* a program is, the *denotation* of a program. To assign a denotation to a program,

- each type σ is interpreted as some domain D_{σ} ;
- a context $\Gamma = x_1 : \sigma_1, \dots, x_n : \sigma_n$ is interpreted as a product $\prod_{i=1}^n D_{\sigma_i}$ of domains;
- in particular, each term of type τ under the empty context is an element of D_{τ} .

In the end, we show that $(\lambda x. M) N$ and $\lambda x. M x$ have the same denotation as M[N/x] and M respectively, and also the Compactness Theorem for the Scott domain model of **PCF**.

Interpretation of types and contexts

Define the denotation of a type inductively:

Definition 1. Every type σ in **PCF** associates with a domain D_{σ} as follows:

1.
$$D_{\text{nat}} := \mathbb{N}_{\perp}$$
, and

2.
$$D_{\tau \to \sigma} := [D_{\tau} \to D_{\sigma}].$$

Define the denotation of a context inductively on its length:

Definition 2. For each context $\Gamma = x_1 : \sigma_1, \ldots, x_n : \sigma_n$, the associated domain is defined as

$$D_{\Gamma} := D_{\sigma_1} \times D_{\sigma_2} \times \cdots \times D_{\sigma_n}$$

and the associated domain of the empty context is $1 = \{*\}.$

Interpretation of judgements

To proceed with the denotational semantics, we further define the denotation for each judgement inductively on its derivation of the following form

• Every judgement $\Gamma \vdash \mathsf{M} : \tau$ is interpreted as a *continuous* function

$$\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket : D_{\Gamma} \to D_{\tau}.$$

• In particular,

$$\llbracket \vdash \mathsf{M} : \tau \rrbracket : 1 \to D_{\tau}$$

is identified with an element $[\![\ \vdash \mathsf{M} : \tau]\!](*) = d$ of $D_\tau.$

Convention

In the following context, $[\![\Gamma \vdash \mathsf{M} : \tau]\!](\vec{d})$ is written as

$$\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket \ \vec{d}.$$

for any sequence $\vec{d} \in D_{\Gamma}$ if there is no danger of ambiguity.

(var) Suppose that $\Gamma \vdash M : \tau$ is of the form

$$x_1:\sigma_1,\ldots,x_n:\sigma_n\vdash x_i:\sigma_i$$

derived by the rule (var). It is interpreted as the projection from D_{Γ} to its *i*-th component D_{σ_i}

$$[x_1:\sigma_1,\ldots,x_n:\sigma_n\vdash x_i:\sigma_i](\vec{d}):=(d_i)$$

for
$$i = 1, ..., n$$
 where $\vec{d} = (d_1, ..., d_n) \in D_{\sigma_1} \times ... \times D_{\sigma_n}$

Note that the denotation of this judgement is equal

$$\llbracket x_1 : \sigma_1, \dots, x_n : \sigma_n \vdash x_i : \sigma_i \rrbracket = \pi_i$$

where $\pi_i \colon D_{\Gamma} \to D_{\sigma_i}$ is the *i*-th projection and thus it is a continuous function.

(abs) Let $f := \llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \tau \rrbracket$ be the continuous function from $D_{\Gamma} \times D_{\sigma}$ to D_{τ} .

$$\llbracket \Gamma \vdash \lambda x.\,\mathsf{M} : \sigma \to \tau \rrbracket := \Lambda f$$

where $\Lambda f: D_{\Gamma} \to [D_{\sigma} \to D_{\tau}]$ is the *curried* f. In other words

$$\left(\llbracket\Gamma\vdash\lambda x.\,\mathsf{M}:\sigma\to\tau\rrbracket\;\vec{d}\right)\;d=\llbracket\Gamma,x:\sigma\vdash\mathsf{M}:\tau\rrbracket\;(\vec{d},d).$$

(app) Define

$$\begin{split} & \llbracket \Gamma \vdash \mathsf{M} \; \mathsf{N} : \tau \rrbracket \; \vec{d} \\ := & ev \left(\llbracket \Gamma \vdash \mathsf{M} : \sigma \to \tau \rrbracket \; \vec{d}, \llbracket \Gamma \vdash \mathsf{N} : \sigma \rrbracket \; \vec{d} \right) \end{split}$$

where $ev: [D_1 \to D_2] \times D_1 \to D_2$ is the evaluation map which maps a continuous function $f: D_1 \to D_2$ with an element $d \in D_1$ to f(d).

The cases for zero and suc M are rather obvious:

(z) zero is a constant, so it does not matter what the context is:

$$\llbracket\Gamma\vdash\mathtt{zero}:\mathtt{nat}\rrbracket\;\vec{d}:=0$$

i.e. a constant function.

(s) The denotation of $\operatorname{\mathtt{suc}}$ is the successor function

$$\llbracket\Gamma\vdash \mathtt{suc}\;\mathsf{M}:\mathtt{nat}\rrbracket\;\vec{d}:=(S\circ\llbracket\Gamma\vdash\mathsf{M}:\mathtt{nat}\rrbracket)\;\vec{d}$$
 where $S\colon\mathbb{N}_\perp\to\mathbb{N}_\perp$ is defined by

$$S(n) := \begin{cases} \bot & \text{if } n = \bot \\ n+1 & \text{if } n \in \mathbb{N}. \end{cases}$$

(Y) The denotation of Y is the fixpoint operation

$$\llbracket \Gamma \vdash \mathsf{Y} x.\,\mathsf{M} : \sigma \rrbracket \; \vec{d} := \mu \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \sigma \rrbracket \; \vec{d} \right)$$

where μ is defined previously as $\mu(f) := \bigsqcup_{i \in \mathbb{N}} f^i(\perp)$.

(ifz) The denotation of ifz

where

1.
$$n := \llbracket \Gamma \vdash \mathsf{M} : \mathsf{nat} \rrbracket \ \vec{d},$$

2.
$$d := \llbracket \Gamma \vdash \mathsf{M}_0 : \tau \rrbracket \vec{d}$$
,

3.
$$f := \llbracket \Gamma, x : \mathtt{nat} \vdash \mathsf{M}_1 : \tau \rrbracket \ \vec{d},$$

and ifz_{τ} is defined by

$$\mathit{ifz}_\tau(n,x,f) := \begin{cases} \bot & \text{if } n = \bot, \\ x & \text{if } n = 0, \\ f(m) & \text{if } n = m+1. \end{cases}$$

Theorem 3. For every judgement $\Gamma \vdash M : \tau$, the associated function

$$\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket : D_{\Gamma} \to D_{\tau}$$

is Scott continuous.

Proof sketch. It is not hard to see that each case of $\llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket$ is a Scott continuous function. \Box

Examples

In-class exercise

2 Substitution and Compactness

Substitution Lemma

Lemma 4. Let $\Gamma = x_1 : \sigma_1, \dots, x_n : \sigma_n$ be a context, and $\Gamma \vdash M : \tau$ a judgement. Then the following equation

$$\llbracket \Delta \vdash \mathsf{M}[\vec{N}/\vec{x}] : \tau \rrbracket \ \vec{d} = \llbracket \Gamma \vdash \mathsf{M} : \tau \rrbracket \ \left(\llbracket \Delta \vdash \mathsf{N}_1 \rrbracket \ \vec{d}, \dots, \llbracket \Delta \vdash \mathsf{N}_n \rrbracket \ \vec{d} \right)$$

holds for any context Δ and judgements $\Delta \vdash N_i : \sigma_i$ for i = 1, ..., n.

Proof. We prove it by induction on derivations of $\Gamma \vdash M : \tau$.

Proof of Substitution Lemma

(var) Suppose that $\Gamma \vdash M : \tau$ is of the form

$$x_1:\sigma_1,\ldots,x_n:\sigma_n\vdash x_i:\sigma_i$$

for i = 1, ..., n. Then, for each family of judgements $\Delta \vdash \mathsf{N}_i : \sigma_i$, it follows that

$$\begin{split} & \llbracket \Delta \vdash x_i [\vec{n}/\vec{x}] : \sigma_i \rrbracket \\ &= \llbracket \Delta \vdash \mathsf{N}_i : \sigma_i \rrbracket \\ &= \pi_i \left(\llbracket \Delta \vdash \mathsf{N}_1 : \sigma_1 \rrbracket, \dots, \llbracket \Delta \vdash \mathsf{N}_n : \sigma_n \rrbracket \right) \end{split}$$

where
$$[x_1 : \sigma_1, \dots, x_n : \sigma_n \vdash x_i : \sigma_i] = \pi_i$$
.

Corollary 5 (Application). For every judgement $\Gamma, x : \sigma \vdash M : \tau$ and $\Gamma \vdash N : \sigma$, we have

$$\llbracket \Gamma \vdash (\lambda x. \mathsf{M}) \mathsf{N} : \tau \rrbracket = \llbracket \Gamma \vdash \mathsf{M} [\mathsf{N}/x] : \tau \rrbracket.$$

Observe that $\vec{d} = (\llbracket \Gamma \vdash x_1 : \sigma_1 \rrbracket \quad \vec{d}, \dots, \llbracket \Gamma \vdash x_n : \sigma_n \rrbracket \quad \vec{d})$ for any context $\Gamma = x_1 : \sigma_1, \dots, x_n : \sigma_n$. Then, this corollary is a series of simple facts:

$$\begin{split} & \llbracket \Gamma \vdash (\lambda x. \, \mathsf{M}) \, \, \mathsf{N} : \tau \rrbracket \, \, \vec{d} \\ &= ev \left(\llbracket \Gamma \vdash (\lambda x. \, \mathsf{M}) : \sigma \to \tau \rrbracket \, \, \vec{d}, \llbracket \Gamma \vdash \mathsf{N} : \sigma \rrbracket \, \, \vec{d} \right) \\ &= ev \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \tau \rrbracket \, \, \vec{d}, \llbracket \Gamma \vdash \mathsf{N} : \sigma \rrbracket \, \, \vec{d} \right) \\ &= \llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \tau \rrbracket \, \, (\vec{d}, \llbracket \Gamma \vdash \mathsf{N} : \sigma \, \, \vec{d} \rrbracket) \\ &= \llbracket \Gamma \vdash \mathsf{M} \llbracket \vec{x}, \mathsf{N} / \vec{x}, x \rrbracket : \tau \rrbracket \, \, \vec{d} \\ &= \llbracket \Gamma \vdash \mathsf{M} \llbracket \mathsf{N} / x \rrbracket : \tau \rrbracket \, \, \vec{d} \end{split}$$

Lemma 6 (Weakening). Let $\Gamma \vdash M : \tau$ be a judge- For i = n + 1 it suffices to show that ment. Then the following

$$[\![\Gamma \vdash \mathsf{M} : \tau]\!] = [\![\Gamma, x : \sigma \vdash \mathsf{M} : \tau]\!]$$

holds for any variable $x : \sigma$ not in Γ .

It follows from Substitution Lemma. (Why?)

Corollary 7 (Extensionality). Let $\Gamma \vdash M : \sigma \to \tau$ be a judgement. Then,

$$\llbracket \Gamma \vdash \lambda x. \ \mathsf{M} \ x : \sigma \to \tau \rrbracket = \llbracket \Gamma \vdash \mathsf{M} : \sigma \to \tau \rrbracket$$

if x is not a variable in Γ .

For every sequence $\vec{d} \in D_{\Gamma}$ and $d \in D_{\sigma}$, we have In-class exercise

 $\llbracket \vdash \mathsf{Y}^{n+1}x.\,\mathsf{M}:\sigma \rrbracket = \llbracket x:\sigma \vdash \mathsf{M}:\sigma \rrbracket \, (\llbracket \vdash \mathsf{Y}^n x.\,\mathsf{M}:\sigma \rrbracket) \,,$

definition, $Y^{n+1}x$. M is equal to

so the statement follows by the induction hy-

 $M[Y^n x. M/x]$, and by Substitution Lemma we

 $\llbracket \vdash \mathsf{M}[\mathsf{Y}^n x. \, \mathsf{M}/x] \rrbracket = \llbracket x : \sigma \vdash \mathsf{M} : \tau \rrbracket \left(\llbracket \vdash \mathsf{Y}^n x. \, \mathsf{M} \rrbracket \right).$

pothesis.

By

Examples

$$\begin{split} & \left(\llbracket \Gamma \vdash \lambda x. \, \mathsf{M} \; x : \sigma \to \tau \rrbracket \; \overrightarrow{d} \right) \; d \\ = & \llbracket \Gamma, x : \sigma \vdash \mathsf{M} \; x : \tau \rrbracket (\overrightarrow{d}, d) \\ = & ev \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \sigma \to \tau \rrbracket (\overrightarrow{d}, d), \llbracket \Gamma, x : \sigma \vdash x : \sigma \rrbracket (\overrightarrow{d}, d) \right) \\ = & ev \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \sigma \to \tau \rrbracket (\overrightarrow{d}, d), d \right) \\ = & \left(\llbracket \Gamma, x : \sigma \vdash \mathsf{M} : \sigma \to \tau \rrbracket (\overrightarrow{d}, d) \right) d \\ = & \left(\llbracket \Gamma \vdash \mathsf{M} : \sigma \to \tau \rrbracket \; \overrightarrow{d} \right) \; d. \end{split}$$

Compactness

Define $Y^i x$. M inductively for each $i \in \mathbb{N}$ by

1.
$$Y^0x$$
. $M := Yx$. x and

2.
$$\mathbf{Y}^{n+1}x.\,\mathbf{M} := \mathbf{M}[\mathbf{Y}^nx.\,\mathbf{M}/x].$$

Theorem 8. For every judgement $\Gamma, x : \sigma \vdash M : \sigma$, we have

$$[\![\Gamma \vdash \mathbf{Y} x.\, \mathsf{M} : \sigma]\!] = \bigsqcup_{i \in \mathbb{N}} [\![\Gamma \vdash \mathbf{Y}^i x.\, \mathsf{M} : \sigma]\!].$$

To show this theorem, it suffices to show the following

$$\llbracket \vdash \mathsf{Y}^i x. \mathsf{M} : \sigma \rrbracket = \llbracket x : \sigma \vdash \mathsf{M} : \sigma \rrbracket^i (\bot)$$

for $i \in \mathbb{N}$. (Why?)

For n = 0 we show that $\llbracket \vdash \mathsf{Y}^0 x. \mathsf{M} : \sigma \rrbracket = \bot_{D_{\sigma}} \in D_{\sigma}$.

By definition, Y^0x . M: σ is equal to Yx. x, so

$$\begin{split} \llbracket \vdash \mathbf{Y}x.\,x:\sigma \rrbracket &= \mu(id) = \bigsqcup_{i \in \mathbb{N}} id^i(\bot) \\ &= \big| \ \big| \bot = \bot \end{split}$$