

Natural Language Processing: Word Embeddings

HSE Faculty of Computer Science
Machine Learning and Data-Intensive Systems

Murat Khazhgeriev

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

- Organizational matters
 - Homework & grade policy
 - Resources
- Preprocessing pipeline
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

- Organizational matters
 - Homework & grade policy
 - Resources
- Preprocessing pipeline
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

Grade policy

70% (homework) + 30% (exam)

Homeworks

Mandatory:

- (30%) Week 2. Training embeddings using the fasttext library, implementation of a real search engine for embedding-response upon request in a vector database.
- (20%) Week 4. Fine-tuning BERT on your own data.
- (20%) Week 5: Fine tuning LLM using PEFT.

Optional:

- (15%) Week 6. Fine-tuning your own model using the TRL library.
- (15%) Week 7. Implementation of Round-to-Nearest (RTN), Generalized Post-Training Quantization (GPTQ)

- Organizational matters
 - Homework & grade policy
 - Resources
- Preprocessing pipeline
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

Course materials

- Syllabus (Notion)
- Github
- HSE Wiki

Useful sources

- NLP Course For You
- YSDA NLP Course
- <u>CS224n</u>

- Organizational matters
- Preprocessing pipeline
 - Tokenization
 - Lowering, Punctuation, Stop Words, Filtration
 - Normalization
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

- Organizational matters
- Preprocessing pipeline
 - Tokenization
 - Lowering, Punctuation, Stop Words, Filtration
 - Normalization
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

Word-Level Tokenization

"ChatGPT is a powerful AI tool." ——— ["ChatGPT", "is", "a", "powerful", "AI", "tool", "."]

Character-Level Tokenization-Level Tokenization

Byte-Pair Encoding (BPE) Tokenization

"ChatGPT is a powerful AI tool." ——— ["Chat", "GP", "T", "is", "a", "power", "ful", "AI", "tool", "."]

- Organizational matters
- Preprocessing pipeline
 - Tokenization
 - Lowering, Punctuation, Stop Words, Filtration
 - Normalization
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

"The quick brown fox jumps over the lazy dog!"

Lowering: "the quick brown fox jumps over the lazy dog!"

Punctuation removal: "the quick brown fox jumps over the lazy dog"

Stop Words Removal: "quick brown fox jumps lazy dog"

- Organizational matters
- Preprocessing pipeline
 - Tokenization
 - Lowering, Punctuation, Stop Words, Filtration
 - Normalization
- But what is a Word Embedding?
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
 - Intuition behind
 - One-Hot Vectors
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
 - Intuition behind
 - One-Hot Vectors
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

Tokenize an input text for further processing

Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Text (your input)

Match each token to a vector

A word's meaning is defined by its context

Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Can you understand what tezgüino means?

A word's meaning is defined by its context

(1) A bottle of $___$ is	on	the	table
-----------------------------	----	-----	-------

- (2) Everyone likes _____.
- (3) _____ makes you drunk.
- (4) We make ____ out of corn.

(1)	(2)	(3)	(4)		-	contexts
-----	-----	-----	-----	--	---	----------

tezgüino	1	1	1	1
loud	0	0	0	0
motor oil	1	0	0	1
tortillas	0	1	0	1
wine	1	1	1	0

rows show contextual properties: 1 if a word can appear in the context, 0 if not

Reserve a token for special cases e.g. unknown words

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
 - Intuition behind
 - One-Hot Vectors
- Statistics-based approaches
- Deep Learning approaches
- Useful facts

The easiest way to go is One-Hot Encoding

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
 - Co-occurrence count
 - Bag-of-Words (BOW)
 - PPMI
 - TF-IDF
 - Latent Semantic Analysis
- Word2vec
- Useful facts

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
 - Co-occurrence count
 - Bag-of-Words (BOW)
 - PPMI
 - TF-IDF
 - Latent Semantic Analysis
- Word2vec
- Useful facts

Define context via a window in a text

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
 - Co-occurrence count
 - Bag-of-Words (BOW)
 - PPMI
 - TF-IDF
 - Latent Semantic Analysis
- Word2vec
- Useful facts

We can also treat the whole document as a context

D1: a cat sat on a mat

D2: a mat for a dog

	D1	D2
а	2	1
cat	1	0
sat	1	0
on	1	0
mat	1	1
for	0	1
dog	0	1

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
 - Co-occurrence count
 - Bag-of-Words (BOW)
 - PPMI
 - TF-IDF
 - Latent Semantic Analysis
- Word2vec
- Useful facts

Positive Pointwise Mutual Information

Context:

 surrounding words in a L-sized window

Matrix element:

• PPMI(w, c) = max(0, PMI(w, c)), where $PMI(w, c) = \log \frac{P(w, c)}{P(w)P(c)} = \log \frac{N(w, c)|(w, c)|}{N(w)N(c)}$

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
 - Co-occurrence count
 - Bag-of-Words (BOW)
 - PPMI
 - TF-IDF
 - Latent Semantic Analysis
- Word2vec
- Useful facts

We can also account for a term being widespread

Context:

document d (from a collection D)

Matrix element:

tf-idf(w, d, D) = tf(w, d) · idf(w, D)

term frequency inverse document frequency

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
 - Co-occurrence count
 - Bag-of-Words (BOW)
 - PPMI
 - TF-IDF
 - Latent Semantic Analysis
- Word2vec
- Useful facts

Matrix factorization is a way to get dense embeddings

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
 - Idea behind
 - Objective function
 - Training Procedure
 - Negative sampling
 - Skip-Gram vs. CBOW
 - GloVe
- Useful facts

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
 - Idea behind
 - Objective function
 - Training procedure
 - Negative sampling
 - Skip-Gram vs. CBOW
 - GloVe
- Useful facts

Slide one word at a time

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
 - Idea behind
 - Objective function
 - Training procedure
 - Negative Sampling
 - Skip-Gram vs. CBOW
 - GloVe
- Useful facts

Maximize the probability of encountering a target word given context

For each position $t=1,\ldots,T$ in a text corpus, Word2Vec predicts context words within a m-sized window given the central word w_t :

$$ext{Likelihood} = L(heta) = \prod_{t=1}^T \prod_{-m \leq j \leq m, j
eq 0} P(w_{t+j}| extbf{w}_t, heta),$$

where θ are all variables to be optimized. The objective function (aka loss function or cost function) $J(\theta)$ is the average negative log-likelihood:

Loglikelihood for computational efficiency

Loglikelihood for computational efficiency

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Dot product: measures similarity of o and c Larger dot product = larger probability

Normalize over entire vocabulary to get probability distribution

Note that we have distinct embeddings for context and target cases

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
 - Idea behind
 - Objective function
 - Training procedure
 - Negative Sampling
 - Skip-Gram vs. CBOW
 - GloVe
- Useful facts

A schematic overview on the training procedure

- 1. Take dot product of v_{cat} with all u
- **2**. exp
- 3. sum all

4. get loss (for this one step)

5. evaluate the gradient, make an update

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
 - Idea behind
 - Objective function
 - Training procedure
 - Negative Sampling
 - Skip-Gram vs. CBOW
 - GloVe
- Useful facts

Negative sampling to speed up the computations

Dot product of v_{cat} :

- with u_{cute} increase,
- with $\underline{all other} u$ decrease

Dot product of v_{cat} :

- with u_{cute} increase,
- with <u>a subset of other</u> u decrease

Parameters to be updated:

- v_{cat}
- u_w for all w in the vocabulary

|V| + 1 vectors

Parameters to be updated:

- v_{cat}
- u_{cute} and u_w for w

 kin K negative examples

K + 2 vectors

A loss function given negative sampling

$$J_{t,j}(heta) = -\log \sigma(u_{cute}^T v_{cat}) - \sum_{w \in \{w_{i_1}, \ldots, w_{i_K}\}} \log \sigma(-u_w^T v_{cat})$$

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
 - Idea behind
 - Objective function
 - Training procedure
 - Negative Sampling
 - Skip-Gram vs. CBOW
 - GloVe
- Useful facts

There are two ways to train the model

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
 - Idea behind
 - Objective function
 - Training procedure
 - Negative Sampling
 - Skip-Gram vs. CBOW
 - GloVe
- Useful facts

Word2vec GloVe

We can merge the two world views

GloVe Count-based Prediction-based global corpus global corpus "reading" Information statistics statistics text corpora comes from: obtained via learned by learned by Vectors are: dimensionality reduction gradient descent gradient descent

- Organizational matters
- Preprocessing pipeline
- But what is a Word Embedding?
- Count-based (pre-neural) approaches
- Word2vec
- Useful facts

- Normalize vectors due to cosine similarities nuances before moving embeddings to memory
- The context for antonyms is very similar, hence embeddings for them are close

LU,V>=1UIIMCOSP

- Embeddings learned with word2vec lie in a linear well-explainable space
- Similar languages preserve the form of the space accurate to linear transformations

semantic: $v(king) - v(man) + v(woman) \approx v(queen)$

Syntactic: $v(kings) - v(king) + v(queen) \approx v(queens)$

