Technische Universität Berlin Fakultät II, Institut für Mathematik

Sekretariat MA 6–2, Antje Schulz

Prof. Dr. Michael Joswig

Sven Jäger, Dr. Frank Lutz, Benjamin Schröter

2. Programmieraufgabe Computerorientierte Mathematik I

Abgabe PA02: 17.11.2016 über den comajudge bis 17 Uhr

Bei einer β -adischen Darstellung wird β die Basis genannt. In dieser Aufgabe soll eine gegebene Zahl, die bezüglich einer Basis β_1 dargestellt ist in einer anderen Basis β_2 dargestellt werden. Dabei ist $2 \le \beta_1, \beta_2 \le 62$ und für $i \in \{1, 2\}$ besteht die Ziffernfolge Γ_{β_i} aus den ersten β_i Zeichen der Folge von Ziffern 0-9, den großen Buchstaben A-Z und kleinen Buchstaben a-z.

Die gewohnte Hexadezimaldarstellung hätte beispielweise die Ziffernfolge

$$\Gamma_{16} = (0.1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)$$

und für $\beta = 37$ erhält man

$$\Gamma_{37} = (0.1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a)$$
.

Die Hexadezimalzahl '7E0' wäre bezüglich der Basis 10 mit Ziffernfolge Γ_{10} ausgedrückt '2016', denn '0' steht an Stelle 0 der ersten Ziffernfolge, dass vierzehntezeichen 'E' an der Stelle 1 und '7' an Stelle 2; so ergibt sich $0\cdot 16^0 + 14\cdot 16^1 + 7\cdot 16^2 = 2016 = 2\cdot 10^3 + 0\cdot 10^2 + 1\cdot 10^1 + 6\cdot 10^0$. Schreibe dazu eine Funktion konvertiere(zahl,basis,neue_basis).

Eingabe Die Zeichenkette zahl wird zusammen mit zwei ganzzahligen Variablen übergeben. Dabei soll zahl als Zahl in der Darstellung bezüglich basis interpretiert werden.

Ausgabe Ausgegeben werden soll eine Zeichenkette, die die gegebene Zahl zahl bezüglich der Basis neue_basis darstellt.

Beispielaufrufe In diesem Beispiel konvertiert die Funktion die Binärzahl '10010' in 42-adische Darstellung, die Hexadezimalzahl '4F5B16' in 62-adische Darstellung und 'BUKh' von ihrer 53-adischen Darstellung in ihre 51-adische Darstellung.

```
1 >>> konvertiere('10010',2,42)
2 'I'
3 >>> konvertiere('4F5B16',16,62)
4 'Love'
5 >>> konvertiere('BUKh',53,51)
6 'CoMa'
```

Erinnerung: Du kannst diese Aufgabe bis zum 24.11.16 um 18 Uhr bei einem Tutor vorstellen.