Section 2.6 - Chain Rule

Derivative of a Composite Function

Example

Find the derivative of $y = (3x^2 + 1)^2$

Solution

$$u = 3x^{2} + 1 \implies (u)' = 6x$$

$$\frac{dy}{du} \cdot \frac{du}{dx} = 2u \cdot 6x$$

$$= 2(3x^{2} + 1) \cdot 6x$$

$$= 36x^{3} + 12x$$

Calculating from the expand formula:
$$y = (3x^2 + 1)^2 = 9x^4 + 6x^2 + 1$$

 $y' = 36x^3 + 12x$

Composite $f \circ g$

Intuitive "Proof" of the Chain Rule

Let Δu be the change in u when x changes by Δx , so that

$$\Delta u = g(x + \Delta x) - g(x)$$

Let Δy be the change in y when u changes by Δu , so that

$$\Delta y = f(u + \Delta u) - f(u)$$

If
$$\Delta u \neq 0 \Rightarrow \frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta u} \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$

$$= \lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$

$$= \frac{dy}{du} \cdot \frac{du}{dx}$$

Example

An object moves along the *x*-axis so that its position at any time $t \ge 0$ is given by $x(t) = \cos(t^2 + 1)$. Find the velocity of the object as a function of t.

Solution

Let:
$$u = t^2 + 1 \implies u' = 2t$$

 $x = \cos(u) \implies x' = -\sin(u)$

By the Chain Rule:

$$\frac{dx}{dt} = \frac{dx}{du} \cdot \frac{du}{dt}$$
$$= -\sin(u) \cdot 2t$$
$$= -2t\sin(t^2 + 1)$$

The General Power Rule

$$\frac{dy}{dx} = \frac{d}{dx} \left[u(x)^n \right]$$

$$= n \ u^{n-1} \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[u^n \right] = \underline{n \ u^{n-1}u'}$$

Example

Find the derivative of $\frac{d}{dx}(5x^3 - x^4)^7$

Solution

$$\frac{d}{dx} \left(5x^3 - x^4 \right)^7 = 7 \left(5x^3 - x^4 \right)^6 \left(15x^2 - 4x^3 \right)$$

Example

Find the derivative of $\frac{d}{dx} \left(\frac{1}{3x-2} \right)$

Solution

$$\frac{d}{dx} \left(\frac{1}{3x - 2} \right) = \frac{d}{dx} (3x - 2)^{-1}$$
$$= -3(3x - 2)^{-2}$$
$$= -\frac{3}{(3x - 2)^2}$$

Example

Find the derivative of $\frac{d}{dx} \left(\sin^5 x \right)$

Solution

$$\frac{d}{dx}\left(\sin^5 x\right) = 5\sin^4 x \left(\sin x\right)'$$
$$= 5\sin^4 x \cos x$$

Example

Find the derivative of $g(t) = \tan(5 - \sin 2t)$

Solution

$$g'(t) = \sec^{2}(5 - \sin 2t) \cdot (5 - \sin 2t)' \qquad u = 5 - \sin 2t \quad (\tan u)' = \sec^{2} u \cdot (u')$$

$$= \sec^{2}(5 - \sin 2t) \cdot (0 - (\cos 2t)(2t)')$$

$$= \sec^{2}(5 - \sin 2t) \cdot (-2\cos 2t)$$

$$= -2(\cos 2t)\sec^{2}(5 - \sin 2t)$$

Example

Show that the slope of every line tangent to the curve $y = \frac{1}{(1-2x)^3}$ is positive.

Solution

$$y = (1 - 2x)^{-3}$$

$$y' = -3(1 - 2x)^{-4}(-2)$$

$$= \frac{6}{(1 - 2x)^4}$$

At any point except $\left(x \neq \frac{1}{2}\right)$, the slope is $\frac{6}{\left(1-2x\right)^4}$ which is positive.

Formula
$$\left(U^m V^n W^p \right)' = U^{m-1} V^{n-1} W^{p-1} \left(mU'VW + nUV'W + pUVW' \right)$$

Proof

$$\begin{split} \left(U^{m}V^{n}W^{p}\right)' &= \left(U^{m}\right)'V^{n}W^{p} + U^{m}\left(V^{n}\right)'W^{p} + U^{m}V^{n}\left(W^{p}\right)' \\ &= mU^{m-1}U'V^{n}W^{p} + nU^{m}V^{n-1}V'W^{p} + pU^{m}V^{n}W^{p-1}W' \quad \textit{factor} \quad U^{m-1}V^{n-1}W^{p-1} \\ &= U^{m-1}V^{n-1}W^{p-1}\left(mU'VW + nUV'W + pUVW'\right) \end{split}$$

$$\left(U^{m}V^{n}\right)' &= U^{m-1}V^{n-1}\left(mU'V + nUV'\right)$$

Exercises Section 2.6 – Chain Rule

Find the derivative of

1.
$$y = (3x^4 + 1)^4 (x^3 + 4)$$

$$2. p(t) = \frac{(2t+3)^3}{4t^2-1}$$

3.
$$y = (x^3 + 1)^2$$

4.
$$y = (x^2 + 3x)^4$$

5.
$$y = \frac{4}{2x+1}$$

6.
$$y = \frac{2}{(x-1)^3}$$

7.
$$y = x^2 \sqrt{x^2 + 1}$$

8.
$$y = \left(\frac{x+1}{x-5}\right)^2$$

9.
$$s(t) = \sqrt{2t^2 + 5t + 2}$$

10.
$$f(x) = \frac{1}{\left(x^2 - 3x\right)^2}$$

11.
$$y = t^2 \sqrt{t-2}$$

12.
$$y = \left(\frac{6-5x}{x^2-1}\right)^2$$

13.
$$y = 4x(3x+5)^5$$

14.
$$y = (3x^2 - 5x)^{1/2}$$

15.
$$D_x (x^2 + 5x)^8$$

16.
$$y = \frac{(3x+2)^7}{x-1}$$

17.
$$y = \left(\frac{x^2}{8} + x - \frac{1}{x}\right)^4$$

18.
$$y = \sqrt{3x^2 - 4x + 6}$$

$$19. \quad y = \cot\left(\pi - \frac{1}{x}\right)$$

20.
$$y = 5\cos^{-4} x$$

21.
$$y = \sin\left(\frac{3\pi t}{2}\right) + \cos\left(\frac{3\pi t}{2}\right)$$

22.
$$r = 6(\sec \theta - \tan \theta)^{3/2}$$

$$23. \quad g(x) = \frac{\tan 3x}{(x+7)^4}$$

24.
$$f(\theta) = \left(\frac{\sin \theta}{1 + \cos \theta}\right)^2$$

25.
$$y = \sin^2(\pi t - 2)$$

26.
$$y = (t \tan t)^{10}$$

$$27. \quad y = \cos\left(5\sin\left(\frac{t}{3}\right)\right)$$

$$28. \quad y = 4\sin\left(\sqrt{1+\sqrt{t}}\right)$$

$$29. \quad y = \tan^2 \left(\sin^3 x \right)$$

30.
$$f(x) = \left(\left(x^2 + 3\right)^5 + x\right)^2$$

31.
$$y = \left(\frac{3x-1}{x^2+3}\right)^2$$

$$32. \quad y = \cos\sqrt{\sin(\tan\pi x)}$$

33.
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$

34.
$$y = \cos(1-2x)^2$$

35.
$$f(x) = (4x-3)^2$$

36.
$$f(x) = \frac{x}{\sqrt[3]{x^2 + 4}}$$

37.
$$f(x) = \left(\frac{x^2}{x^3 + 2}\right)^2$$

38.
$$y = \sin \sqrt[3]{x} + \sqrt[3]{\sin x}$$

39.
$$f(\theta) = 4\tan(\theta^2 + 3\theta + 2)$$

40.
$$f(\theta) = \tan(\sin \theta)$$

41.
$$y = 5x + \sin^3 x + \sin x^3$$

42.
$$y = \csc^5 3x$$

43.
$$y = 2x\sqrt{x^2 - 2x + 2}$$

$$44. \quad \frac{d}{du} \left(\frac{4u^2 + u}{8u + 1} \right)^3$$

45.
$$y = \frac{1}{2}x^2\sqrt{16-x^2}$$

46.
$$y = \left(\frac{x-3}{2x+5}\right)^4$$

47.
$$y = \left(\frac{5x-3}{2x+5}\right)^5$$

48.
$$y = \left(\frac{6x - 8}{2x - 3}\right)^6$$

49.
$$y = \left(\frac{3x^2 - 4}{2x^2 - 1}\right)^3$$

50.
$$y = \left(\frac{3x^2 + 4}{2x^2 + 1}\right)^{-3}$$

51.
$$y = \left(\frac{2x^2 - 3}{x^2 + 1}\right)^{1/3}$$

$$52. \quad y = \sqrt{\frac{2x^3 - 3}{2x^3 + 1}}$$

54.
$$y = \left(\frac{x^2 - 4x + 1}{5x^2 - 2x - 1}\right)^3$$

55.
$$y = \left(\frac{3x^2 - 4x + 2}{2x^2 + x - 1}\right)^{2/3}$$

56.
$$f(x) = \left(\frac{3t^2 - 1}{3t^2 + 1}\right)^{-3}$$

57.
$$f(x) = \left(\frac{x}{3x^2 + 2x + 1}\right)^{1/3}$$

58.
$$f(x) = (x^2 + 2x - 3)^5 (2x + 3)^6$$

59.
$$f(x) = (2x^2 - 4x + 3)^4 (3x - 5)^5$$

60.
$$f(x) = (x^2 + 2x - 3)^4 (x^2 + 3x + 5)^6$$

61.
$$f(x) = (2x^3 - 5x)^3 (x^2 + 2x + 1)^4 (2x - 3)^5$$

62.
$$f(x) = (x^4 + 3x)^4 (x^3 + 2x)^5 (2x - 3)^6$$

63.
$$f(x) = \frac{\left(x^2 - 6x\right)^5}{\left(3x^2 + 5x - 2\right)^4}$$

64.
$$f(x) = \frac{\left(2x^2 + 3x1\right)^4}{\left(x^2 + 5x - 6\right)^5}$$

65.
$$f(x) = \frac{\left(x^3 - 3x\right)^3 \left(x^2 + 4x\right)^4}{\left(x^2 + 4x + 1\right)^2}$$

66.
$$f(x) = \frac{x^2 + 3}{(2x - 1)^3 (3x + 1)^4}$$

67.
$$f(x) = \frac{\left(x^2 - 3x\right)^3 \left(x^2 + 3x - 3\right)^4}{\left(x^2 - 3x + 2\right)^2}$$

53.
$$y = \left(\frac{2x^4 - 3}{2x^4 + 1}\right)^5$$

68. Find the **second** derivative
$$y = \frac{x^2 + 3}{(x-1)^3 + (x+1)^3}$$

- **69.** Find the **second** derivative of $y = \left(1 + \frac{1}{x}\right)^3$
- **70.** Find the **second** derivative of $y = 9 \tan\left(\frac{x}{3}\right)$
- 71. Find the tangent line to the graph of $y = \sqrt[3]{(x+4)^2}$ when x = 4

Evaluate the limit

72.
$$\lim_{h \to 0} \frac{\sin^2(\frac{\pi}{4} + h) - \frac{1}{2}}{h}$$

73.
$$\lim_{x \to 5} \frac{\tan\left(\pi\sqrt{3x-11}\right)}{x-5}$$