Logistisk regression

Klassificering

Agenda

- Typer av "Learning"
- Klassificering
- Logistisk regression Vad & Hur
- Typer
- Exempel på användning

- Mätvärden
 - True or False
 - Accuracy
 - Confusion Matrix
 - Precision & Recall
 - Cumulative Accuracy Profile & Analysis

Typer av "Learning"

- Supervised (Övervakat)
 - Data har "svar" s.k. labelled data.
 - Klar input och output
 - **Regression** kontinuerliga värden
 - Klassifikation kategorier
- Unsupervised (Oövervakat)
 - Inga klara "svar"
 - Modellen ska hitta mönster/likheter
 - Clustering grupper (stora m\u00e4ngder

data)

- Reinforcement (Förstärkning)
 - Belöning och straff (om den gör det "rätta" eller ej)
 - Ingen specifik data eller instruktioner
 - Miljö som en "agent" interagerar med
 - Bil
 - Spel

Klassifikation

- Begränsat antal alternativ
- **Binär** Linjär
 - Endast två val
 - Logistisk regression
 - SVM

Multi class

- > 2 möjliga värden
- ex. siffror

Multi label

- En samling binära värden
- Artikel psykologi och plats
- Naïve Bayes

Multi output

- Multi class + multi label
- TV + drama / Film + drama

Logistisk regression

Linjär regression – påminnelse

Oberoende variabel (en eller flera) påverkar en annan (beroende) variabel.

Summerad påverkan av olika variabler.

Linjärt samband

Anpassa en linje

Minimera felmarginalen (error)

Kontinuerliga värden

Logistisk regression - Vad

- En klassificeringsalgoritm.
- "Omvandlar svar från den linjära regressionsmodellen till klasser." [Ref.]
- Diskreta värden specifikt
- Räknar ut sannolikheten för varje värde

Anpassning - Sigmoid funktionen

Sannolikhet - tolkning

Logistisk regression - tröskel

Tröskelvärde avgör om vi modellerar ja eller nej

Logistisk regression - Typer

- Binär endast två val
 - o ex. ja eller nej
- Multinomial flera nominella kategorier
 - o ex. katt eller hund eller dolfin
- Ordinal ordningskategorier
 - o bra, bättre, usch

Logistisk regression - Användning

- Väderlek
 - Regn eller ej
 - o Regn, blötsnö, snö.
- Sjukdom

True or False

Predicted value vs actual value

	Prediction	Actual
True positive	True	True
False positive	True	False
False negative	False	True
True negative	False	False

Mätvärden

- **Precision** score
 - Hur exakt modellen är
 - Hur många "svar" av de som förutspåddes är relevanta ("true").
 - Anger hur bra modellen är på att undvika "false positives".
 - Correct positive guesses
 Total positive guesses
- Recall andel av de relevanta "svaren som modellen förutspådde
 - Correct positive cases
 All positive labels

Mätvärden - precision & recall

Dokumentations klassificering

Mätvärden - F1 score

Maximera både precisionen och "recall".

Mäter klassificeringsprestandan.

Tar inte i åtanke True negatives eller multiklass scenarion.

$$F_1 = \frac{2 \cdot precision \cdot recall}{precision + recall} = \frac{2 \cdot TP}{2 \cdot TP + FP + FN}$$

Mätvärden - exempel

Accuracy (Noggrannhet)

(35+50) / 100 = 0.85 => 85 %

Mätvärden – Accuracy Paradoxen

Bias i data

Klassificerar alla i den större gruppen

Scenario 1:

Accuracy Rate = Correct / Total AR = 9,800/10,000 = 98%

Scenario 2:

Accuracy Rate = Correct / Total AR = 9,850/10,000 = 98.5%

Mätvärden - Cumulative Accuracy Profile

Utskick till 100K random personer.

Datainsamling av värden på de som köpte - profil.

Skicka ut endast till de som matchar profilen.

Ny linje av de som köpte - logistisk regression.

Sannolikhet att de köper produkten.

Mätvärden - Cumulative Accuracy Profile

Jämför med en annan modell.

Jämför med den *perfekta* modellen.

Mätvärden - CAP Analysis

Accuracy Ratio (AR) - Förhållandet mellan vår modell och den "perfekta" modellen.

Jobbigt att räkna ut!

Påminner om R2?

$$SS_{res} = SUM (y_i - y_i^2)^2$$

 $SS_{tot} = SUM (y_i - y_{avg})^2$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Mätvärden - CAP Analysis

Hur bra om vi bara använder oss av 50%?

Decision boundry

Mätvärden - Sammanfattning

- Precision (noggrannhet) tρ/(tρ+fρ)
- Recall () tρ/(tρ+fn)
- **F-score** Viktat medelvärde av precision och recall
- CAP Cumulative Accuracy Profile
- ROC kurva Receiver operating characteristic

CAP = Cumulative Accuracy Profile

ROC = Receiver Operating Characteristic

Länkar

- <u>Ultimate guide to regression</u>
- Classification algorithms in ML
- Multi class applications in real life
- Supervised learning
- <u>Linjär regression edureka</u>
- <u>Elements of ai Linjär regression</u>
- Measurements recall and precision
- Wikipedia: precision and recall
- Logistic regression IRL
- ROC
- CAP
- <u>CAP sida 30</u>
- Precision, Recall & F1 vid

Övning:

Logistisk regression på <u>Breast cancer</u> data.