Hands-on Activity 6.1 Introduction to Data Analysis and Tools

CPE311 Computational Thinking with Python

Name: Silang, Elijah Yohance

Section: CPE22S3

Performed on: 04/05/2025 Submitted on: 04/05/2025

Submitted to: Engr. Roman M. Richard

6.1 Intended Learning Outcome

- 1. Use pandas and numpy data analysis tools.
- 2. Demonstrate how to analyze data using numpy and pandas

6.2 Resources:

- · Personal Computer
- Jupyter Notebook
- Internet Connection

6.3 Supplementary Activities:

Exercise 1

Run the given code below for exercises 1 and 2, perform the given tasks without using any Python modules.

```
import numpy as np
import random
random.seed(0)
salaries = [round(random.random()*1000000, -3) for _ in range(100)]
```

Using the data generated above, calculate the following statistics without importing anything from the statistics module in the standard library (https://docs.python.org/3/library/statistics.html) and then confirm your results match up to those that are obtained when using the statistics module (where possible):

- Mean
- Median
- Mode (hint: check out the Counter in the collections module of the standard library at https://docs.python.org/3/library/collections.html#collections.Counter)
- · Sample variance
- Sample standard deviation

Mean

```
mean_result = np.mean(salaries)
print(mean_result)

# This outputs the mean of multiple values.
# Basically its sum of all values divided by the number of values.

>> 585690.0
```

Median

```
print(median_result)
# This outputs the median of multiple values.
589000.0
Mode
counter(salaries)
# I don't know. yet.
    AttributeError
                                             Traceback (most recent call last)
    <ipython-input-126-7ce7585ed784> in <cell line: 0>()
    ---> 1 np.counter(salaries).mostcommon(3)
    /usr/local/lib/python3.11/dist-packages/numpy/__init__.py in __getattr__(attr)
                        return char.chararray
        409
     --> 410
                    raise AttributeError("module {!r} has no attribute "
        411
                                          "{!r}".format(__name__, attr))
        412
    AttributeError: module 'numpy' has no attribute 'counter'
```

Sample Variance

sv_result = np.var(salaries)

```
print(sv_result)
# This outputs the variance of the data.

→ 69957413900.0

Sample Standard Deviation

std_result = np.std(salaries)
print(std_result)
# This outputs the standard deviation of multiple values.

→ 264494.6386980273
# Write a comment per statistical function
```

Exercise 2

Using the same data, calculate the following statistics using the functions in the statistics module where appropriate:

- Range
- · Coefficient of variation Interquartile range
- Quartile coefficient of dispersion
- # Write a comment per statistical function

Exercise 3: Pandas for Data Analysis

Load the diabetes.csv file. Convert the diabetes.csv into dataframe Perform the following tasks in the diabetes dataframe:

- 1. Identify the column names
- 2. Identify the data types of the data
- 3. Display the total number of records
- 4. Display the first 20 records
- 5. Display the last 20 records
- 6. Change the Outcome column to Diagnosis
- 7. Create a new column Classification that display "Diabetes" if the value of outcome is 1, otherwise "No Diabetes"
- 8. Create a new dataframe "withDiabetes" that gathers data with diabetes

- 9. Create a new dataframe "noDiabetes" thats gathers data with no diabetes
- 10. Create a new dataframe "Pedia" that gathers data with age 0 to 19
- 11. Create a new dataframe "Adult" that gathers data with age greater than 19
- 12. Use numpy to get the average age and glucose value.
- 13. Use numpy to get the median age and glucose value.
- 14. Use numpy to get the middle values of glucose and age.
- 15. Use numpy to get the standard deviation of the skinthickness.

```
import pandas as pd
import numpy as np

diabetes = pd.read_csv('/content/diabetes.csv')
diabetes = diabetes.fillna(0)
diabetes.head()
```

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunctio	n Age	Outcome	
	0	6	148	72	35	0	33.6	0.62	7 50	1	11.
	1	1	85	66	29	0	26.6	0.35	1 31	0	
	2	8	183	64	0	0	23.3	0.67	2 32	1	
	3	1	89	66	23	94	28.1	0.16	7 21	0	
	4	0	137	40	35	168	43.1	2.28	8 33	1	
	4 ₫										

Next steps: (View recommended plots) (New interactive sheet

1. Identify the column names

diabetes.columns

2. Identify the data types of the data

diabetes.dtypes

3. Display the total number of records

diabetes.shape

→ (768, 9)

4. Display the first 20 records

diabetes.head(20)

$\overrightarrow{\Rightarrow}$	ı	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeF	unction	Age	Outcome	
-	0	6	148	72	35	0	33.6		0.627	50	1	11.
	1	1	85	66	29	0	26.6		0.351	31	0	
	2	8	183	64	0	0	23.3		0.672	32	1	
	3	1	89	66	23	94	28.1		0.167	21	0	
	4	0	137	40	35	168	43.1		2.288	33	1	
	5	5	116	74	0	0	25.6		0.201	30	0	
	6	3	78	50	32	88	31.0		0.248	26	1	
	7	10	115	0	0	0	35.3		0.134	29	0	
	8	2	197	70	45	543	30.5		0.158	53	1	
	9	8	125	96	0	0	0.0		0.232	54	1	
	10	4	110	92	0	0	37.6		0.191	30	0	
	11	10	168	74	0	0	38.0		0.537	34	1	
	12	10	139	80	0	0	27.1		1.441	57	0	
	13	1	189	60	23	846	30.1		0.398	59	1	
	14	5	166	72	19	175	25.8		0.587	51	1	
	15	7	100	0	0	0	30.0		0.484	32	1	
	16	0	118	84	47	230	45.8		0.551	31	1	
	17	7	107	74	0	0	29.6		0.254	31	1	
	18	1	103	30	38	83	43.3		0.183	33	0	
	19	1	115	70	30	96	34.6		0.529	32	1	

5. Display the last 20 records

diabetes.tail(20)

6. Change the Outcome column to Diagnosis

7. Create a new column Classification that display "Diabetes" if the value of outcome is 1, otherwise "No Diabetes"

```
diabetes = diabetes.assign(
    Classification = lambda x: ['Diabetes' if outcome == 1 else 'No Diabetes' for outcome in x.Outcome])
diabetes.head()
```

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFund	ction	Age	Outcome	Classification	
	0	6	148	72	35	0	33.6		0.627	50	1	Diabetes	ıl.
	1	1	85	66	29	0	26.6		0.351	31	0	No Diabetes	
	2	8	183	64	0	0	23.3		0.672	32	1	Diabetes	
	3	1	89	66	23	94	28.1		0.167	21	0	No Diabetes	
	4	0	137	40	35	168	43.1		2.288	33	1	Diabetes	
	((

 withDiabetes = diabetes[diabetes['Outcome'] == True]
withDiabetes.head()

₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunct	ion	Age	Outcome	
	0	6	148	72	35	0	33.6	0.	627	50	1	11.
	2	8	183	64	0	0	23.3	0.	672	32	1	
	4	0	137	40	35	168	43.1	2.	288	33	1	
	6	3	78	50	32	88	31.0	0.	248	26	1	
	8	2	197	70	45	543	30.5	0.	158	53	1	

9. Create a new dataframe "noDiabetes" thats gathers data with no diabetes

noDiabetes = diabetes[diabetes['Outcome'] == False]
noDiabetes.head()

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	n Age	Outcome	
	1	1	85	66	29	0	26.6	0.38	51 31	0	11.
	3	1	89	66	23	94	28.1	0.16	57 2	0	
	5	5	116	74	0	0	25.6	0.20)1 3(0	
	7	10	115	0	0	0	35.3	0.13	34 29	0	
	10	4	110	92	0	0	37.6	0.19	1 30	0	
	4 .										

10. Create a new dataframe "Pedia" that gathers data with age 0 to 19

Pedia = diabetes[diabetes['Age'] <= 19]
Pedia.head()</pre>

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome

11. Create a new dataframe "Adult" that gathers data with age greater than 19

Adult = diabetes[diabetes['Age'] >= 20]
Adult.head()

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFun	ction	Age	Outcome	
	0	6	148	72	35	0	33.6		0.627	50	1	ıl.
	1	1	85	66	29	0	26.6		0.351	31	0	
	2	8	183	64	0	0	23.3		0.672	32	1	
	3	1	89	66	23	94	28.1		0.167	21	0	
	4	0	137	40	35	168	43.1		2.288	33	1	

12. Use numpy to get the average age and glucose value.

ave_age = np.mean(diabetes['Age'])
ave_glucose = np.mean(diabetes['Glucose'])
print(f'Average age: {ave_age}\nAverage glucose: {ave_glucose}')

Average age: 33.240885416666664
Average glucose: 120.89453125

```
#If you prefer rounded off by 2 decimal values.
print(f'Average age: {ave_age:.2f}\nAverage glucose: {ave_glucose:.2f}')
Average age: 33.24
     Average glucose: 120.89
  13. Use numpy to get the median age and glucose value.
med_age = np.median(diabetes['Age'])
med_glucose = np.median(diabetes['Glucose'])
print(f'Median age: {med_age}\nMedian glucose: {med_glucose}')
→ Median age: 29.0
     Median glucose: 117.0
 14. Use numpy to get the middle values of glucose and age.
#sort first
sorted_age = np.sort(diabetes['Age'])
sorted_glucose = np.sort(diabetes['Glucose'])
middle_age = np.median(sorted_age)
middle_glucose = np.median(sorted_glucose)
print(f'Middle value for age: {middle_age}\nMiddle value for glucose: {middle_glucose}')
→ Middle value for age: 29.0
     Middle value for glucose: 117.0
 15. Use numpy to get the standard deviation of the skinthickness.
std_skinthickness = np.std(diabetes['SkinThickness'])
print(f'Stadard deviation of skin thickness: {std_skinthickness}')
```