1. [2.1(3)(4)] 写出下列线性规划问题的对偶问题:

(1)
$$\min z = 3x_1 + 2x_2 - 4x_3 + x_4$$
 (2) $\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ s.t.
$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 \ge 10 \\ 2x_1 + 2x_3 - x_4 \le 8 \\ x_2 + x_3 + x_4 = 6 \\ x_1 \le 0, x_2, x_3 \ge 0, x_4 \pm 0 \end{cases}$$
 s.t.
$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_i \ (i = 1, 2, ..., m) \\ \sum_{i=1}^{m} x_{ij} = b_j \ (j = 1, 2, ..., n) \end{cases}$$

解: (1) 其对偶问题为:

max
$$w = 10y_1 + 8y_2 + 6y_3$$

$$y_1 + 2y_2 \ge 3$$

$$y_1 + y_3 \le 2$$
 s.t.
$$\begin{cases} y_1 + y_3 \le 2 \\ -3y_1 + 2y_2 + y_3 \le -4 \\ y_1 - y_2 + y_3 = 1 \end{cases}$$

$$y_1 \ge 0, y_2 \le 0, y_3$$
无约束

(2) 其对偶问题为:

max
$$w = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$

s.t. $u_i + v_j \le c_{ij} \ (i = 1, L, m; j = 1, L, n)$

2. **[2.2]** 设 $\mathbf{A} \in \mathfrak{R}^{m \times n}$, $\mathbf{b} \in \mathfrak{R}^m$, $\mathbf{c} \in \mathfrak{R}^n$, 已知线性规划的原问题为

$$\max \quad z = \mathbf{c}^T \mathbf{x}$$
s.t.
$$\begin{cases} \mathbf{A} \mathbf{x} \ge \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases}$$

- (1) 写出上述线性规划对应的对偶问题;
- (2) 如果 \mathbf{y}^* 为对偶问题的最优解,并且假设原问题约束条件右端项 \mathbf{b} 用 $\bar{\mathbf{b}}$ 替换之后其最优解为 $\bar{\mathbf{x}}$,试证明 $\mathbf{c}^T\bar{\mathbf{x}} \leq \bar{\mathbf{b}}^T\mathbf{y}^*$ 。

解: (1) 对偶问题为:

$$\min z = \mathbf{b}^T \mathbf{y}$$
s.t.
$$\begin{cases} \mathbf{A}^T \mathbf{y} \ge \mathbf{c} \\ \mathbf{v} \le \mathbf{0} \end{cases}$$

(2) 原问题 \mathbf{b} 被 $\bar{\mathbf{b}}$ 替换后对应的对偶问题变为:

min
$$z = \overline{\mathbf{b}}^T \mathbf{y}$$

s.t.
$$\begin{cases} \mathbf{A}^T \mathbf{y} \ge \mathbf{c} \\ \mathbf{y} \le \mathbf{0} \end{cases}$$

显然,可行域没有变化,故 \mathbf{y}^* 仍是新问题的对偶问题的可行解。又 \mathbf{x} 是新问题的可行解,由弱对偶性有: $\mathbf{c}^T\mathbf{x} \leq \mathbf{\bar{b}}^T\mathbf{v}^*$ 。或者,

$$\overline{\mathbf{b}}^T \mathbf{y}^* \ge \left(\mathbf{A} \overline{\mathbf{x}} \right)^T \mathbf{y}^* = \overline{\mathbf{x}}^T \mathbf{A}^T \mathbf{y}^* \ge \overline{\mathbf{x}}^T \mathbf{c} = \mathbf{c}^T \overline{\mathbf{x}} \ .$$

3. 给出线性规划问题:

max
$$z = x_1 + 2x_2 + x_3$$

s.t.
$$\begin{cases} x_1 + x_2 - x_3 \le 2 \\ x_1 - x_2 + x_3 = 1 \\ 2x_1 + x_2 + x_3 \ge 2 \\ x_1 \ge 0, x_2 \le 0, x_3$$
无约束

(1) 写出其对偶问题: (2) 利用对偶问题性质证明原问题目标函数值 $z \le 1$ 。

解: (1) 对偶问题为:

min
$$w = 2y_1 + y_2 + 2y_3$$

s.t.
$$\begin{cases} y_1 + y_2 + 2y_3 \ge 1 \\ y_1 - y_2 + y_3 \le 2 \\ -y_1 + y_2 + y_3 = 1 \\ y_1 \ge 0, y_2 \pm 0, y_3 \le 0 \end{cases}$$

- (2) 因为 $Y = (0,1,0)^T$ 是对偶问题的一个可行解,其对应的目标函数值为 1,所以由弱对偶性,原问题的目标函数值 $z \le 1$ 。
- 4. 考虑如下线性规划问题:

min
$$z = 60x_1 + 40x_2 + 80x_3$$

s.t.
$$\begin{cases} 3x_1 + 2x_2 + x_3 \ge 2\\ 4x_1 + x_2 + 3x_3 \ge 4\\ 2x_1 + 2x_2 + 2x_3 \ge 3\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

(1) 用对偶单纯形法**求解原问题**;

(2) 用单纯形法**求解其对偶问题**,并对比(1)与(2)中每步计算得到的结果。

解: (1) 其对偶问题为

$$\max w = 2y_1 + 4y_2 + 3y_3$$
s.t.
$$\begin{cases} 3y_1 + 4y_2 + 2y_3 \le 60 \\ 2y_1 + y_2 + 2y_3 \le 40 \\ y_1 + 3y_2 + 2y_3 \le 80 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

(2) 用对偶单纯形法求解原问题:

	c_{j}		-60	-40	-80	0	0	0
C_{B}	\mathcal{X}_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	-2	-3	-2	-1	1	0	0
0	x_5	-4	[-4]	-1	-3	0	1	0
0	x_6	-3	-2	-2	-2	0	0	1
	$c_j - z$	j	-60	-40	-80	0	0	0
0	x_4	1	0	-5/4	5/4	1	-3/4	0
-60	x_1	1	1	1/4	3/4	0	-1/4	0
0	x_6	-1	0	[-3/2]	-1/2	0	-1/2	1
	$c_j - z$	j	0	-25	-35	0	-15	0
0	\mathcal{X}_4	11/6	0	0	5/3	1	-1/3	-5/6
-60	x_1	5/6	1	0	2/3	0	-1/3	1/6
-40	x_2	2/3	0	1	1/3	0	1/3	-2/3
	$c_j - z$	j	0	0	-80/3	0	-20/3	-50/3

(3) 用单纯形法求解其对偶问题:

	c_{j}		2	4	3	0	0	0
c_{B}	y_{B}	b	y_1	y_2	<i>y</i> ₃	y_4	y_5	y_6
0	\mathcal{Y}_4	60	3	[4]	2	1	0	0
0	y_5	40	2	1	2	0	1	0
0	y_6	80	1	3	2	0	0	1
	$c_j - z_j$	j	2	4	3	0	0	0
4	y_2	15	3/4	1	1/2	1/4	0	0
0	y_5	25	5/4	0	[3/2]	-1/4	1	0
0	y_6	35	-5/4	0	1/2	-3/4	0	1

	$c_j - z_j$	j	-1	0	1	-1	0	0
4	y_2	20/3	1/3	1	0	1/3	-1/3	0
3	y_3	50/3	5/6	0	1	-1/6	2/3	0
0	$0 y_6 80/3 -5/3$		-5/3	0	0	-2/3	-1/3	1
	$c_j - z_j$	j	-11/6	0	0	-5/6	-2/3	0

- (4)每次迭代的结果中,原问题的检验数行的相反数是对偶问题的可行解;原问题的变量对应于对偶问题的松弛变量。
- 5. **[2.6]** 已知线性规划问题 A 和 B 如下:

max
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$
 影子价格
$$\begin{cases} \sum_{j=1}^{n} a_{1j} x_{j} = b_{1} & y_{1} \\ \sum_{j=1}^{n} a_{2j} x_{j} = b_{2} & y_{2} \\ \sum_{j=1}^{n} a_{3j} x_{j} = b_{3} & y_{3} \\ x_{j} \ge 0 & (j = 1, L, n) \end{cases}$$
 问题B

max
$$z = \sum_{j=1}^{n} c_j x_j$$
 影子价格

$$\begin{cases} \sum_{j=1}^{n} 3a_{1j} x_j = 3b_1 & \hat{y}_1 \\ \sum_{j=1}^{n} \frac{1}{3} a_{2j} x_j = \frac{1}{3} b_2 & \hat{y}_2 \\ \sum_{j=1}^{n} \left(a_{3j} + 3a_{1j} \right) x_j = b_3 + 3b_1 & \hat{y}_3 \\ x_j \ge 0 & (j = 1, L, n) \end{cases}$$

- (1) 试写出 y_i 和 \hat{y}_i (i = 1, 2, 3)的关系式。
- (2) 如果用 $x'_3 = \frac{1}{3}x_3$ 替换问题 A 中的 x_3 , 请问影子价格 y_i 是否有变化?

解: (1) 问题 B 相当于对问题 A 左乘了矩阵
$$P = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1/3 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
, 因此由 $y^T = c_B^T B^{-1}$,

得:
$$\hat{y}^T = c_B^T (PB)^{-1} = c_B^T B^{-1} P^{-1} = y^T P^{-1}$$
, 即 $\hat{y}^T = y^T \begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 3 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ 。

展开:

$$\hat{y}_1 = \frac{1}{3}y_1 - y_3$$
, $\hat{y}_2 = 3y_2$, $\hat{y}_3 = y_3$.

或者:

$$y_1 = 3\hat{y}_1 + 3\hat{y}_3$$
, $y_2 = \frac{1}{3}\hat{y}_2$, $y_3 = \hat{y}_3$.

- (2) 没有变化。
- 6. [2.7] 先用单纯形法求解线性规划:

$$\max \quad z = 2x_1 + 3x_2 + x_3$$
s.t.
$$\begin{cases} \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 \le 1\\ \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 \le 3\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

再分析下列条件单独变化的情况下最优解的变化:

- (1) 目标函数中变量 x3 的系数变为 6;
- (2) 约束条件右端项由 $\binom{1}{3}$ 变为 $\binom{2}{3}$;
- (3) 增添一个新的约束 $x_1 + 2x_2 + x_3 \le 4$ 。

解: 最终单纯形表为:

			2	3	1	0	0
$\mathbf{c}_{\mathtt{B}}$	X _B	b	\mathcal{X}_1	x_2	x_3	x_4	x_5
2	\mathcal{X}_{1}	1	1	0	-1	4	-1
3	x_2	2	0	1	2	-1	1
			0	0	-3	-5	-1

最优解为
$$x^* = (1,2,0)^T$$
。

(1) $\sigma_3' = c_3 - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{P}_3 = 6 - (5,1) \binom{1/3}{7/3} = 2 > 0$, 需继续按单纯形计算。

			2	3	6	0	0
$\mathbf{c}_{\mathtt{B}}$	X _B	b	x_1	x_2	x_3	X_4	X_5
2	\mathcal{X}_1	1	1	0	-1	4	-1
3	x_2	2	0	1	[2]	-1	1
			0	0	2	-5	-1
2	x_1	2	1	1/2	0	7/2	-1/2
6	x_3	1	0	1/2	1	-1/2	1/2
			0	-1	0	-4	-2

最优解变为 $x^* = (2,0,1)^T$ 。

(2) 由
$$\mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix} \ge 0$$
,最优基不变。

(3) 将原最优解 $x^* = (1,2,0)^T$ 代入新增约束,得: $x_1 + 2x_2 + x_3 = 1 + 4 + 0 = 5 > 4$,所以新增约束起作用,需重新计算。

	/,/	_ /	7 114 31 491	. , , ,				
			2	3	1	0	0	0
$\mathbf{c}_{_{\mathbf{B}}}$	X _B	b	X_1	x_2	x_3	x_4	x_5	x_6
2	x_1	1	1	0	-1	4	-1	0
3	x_2	2	0	1	2	-1	1	0
0	x_6	4	1	2	1	0	0	1
			0	0	-3	-5	-1	0
2	\mathcal{X}_1	1	1	0	-1	4	-1	0
3	x_2	2	0	1	2	-1	1	0
0	x_6	-1	0	0	-2	-2	[-1]	1
			0	0	-3	-5	-1	0
2	x_1	2	1	0	1	6	0	-1
3	x_2	1	0	1	0	-3	0	1
0	x_5	1	0	0	2	2	1	-1
			0	0	-1	-3	0	-1

7. 给出线性规划问题

$$\max z = 3x_1 + 2x_2 + c_3x_3 + c_4x_4$$

$$s.t.\begin{cases} 6x_1 + 3x_2 + 5x_3 + 4x_4 \le 450 \\ 3x_1 + 4x_2 + 5x_3 + 2x_4 \le 300 + \lambda \\ x_j \ge 0, j = 1, \dots, 4 \end{cases}$$

请回答下列问题:

- (1) 考虑 $\lambda = 0$ 的情形,以 (x_1, x_2) 为基变量列出相应的单纯形表。
- (2) 若 (x_1,x_2) 为最优基,请问 (c_3,c_4) 在什么范围内变化时,最优解保持不变?
- (3) 若 (x_1,x_2) 为最优基,请问 λ 在什么范围内变化时,影子价格保持不变?
- (4) 如果引入一个新的决策变量 x_5 ,其对应的目标函数系数为 c_5 ,工艺向量为 $P_5 = (2,3)^T$,请问 c_5 在什么范围内变化时,最优解才会发生变化?
- (1) 引入松弛变量,将原问题转化为标准形式:

$$\max z = 3x_1 + 2x_2 + c_3x_3 + c_4x_4$$

$$s.t.\begin{cases} 6x_1 + 3x_2 + 5x_3 + 4x_4 + x_5 = 450\\ 3x_1 + 4x_2 + 5x_3 + 2x_4 + x_6 = 300 + \lambda\\ x_j \ge 0, j = 1, \dots, 4 \end{cases}$$

取变量(x1,x2)为初始基变量,对应的初始单纯形表如下表所示。

	$c_j \rightarrow$	>	3	1	c_3	c_4	0	0	
C_B	基	b	x_1	x_2	x_3	x_4	x_5	x_6	θ_i
3	x_1	$60-1/5 \lambda$	1	0	1/3	2/3	4/15	-1/5	
2	x_2	$30+2/5 \lambda$	0	1	1	0	-1/5	2/5	
			0	0	<i>c</i> ₃ -3	<i>c</i> ₄ -2	-2/5	-1/5	

- (3) $-75 \le \lambda \le 300$ 时,影子价格不变。
- (4) 引入松弛变量,将原问题转化为标准形式:

$$\max z = 3x_1 + 2x_2 + c_3x_3 + c_4x_4 + c_5x_5$$

$$s. t. \begin{cases} 6x_1 + 3x_2 + 5x_3 + 4x_4 + 2x_5 + x_6 = 450 \\ 3x_1 + 4x_2 + 5x_3 + 2x_4 + 3x_5 + x_7 = 300 + \lambda \\ x_j \ge 0, j = 1, \dots, 4 \end{cases}$$

取变量(x1,x2)为初始基变量,对应的初始单纯形表如下表所示。

	c _j -	→	3	2	c_3	c_4	c_5	0	0	
C_B	基	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ_i
3	x_1	$30+2/5 \lambda$	1	0	1/3	2/3	-1/15	4/15	-1/5	
2	x_2	$60-1/5 \lambda$	0	1	1	0	4/5	-1/5	2/5	
			0	0	c ₃ -3	c ₄ -2	c ₅ -7/5	-2/5	-1/5	

显然, $c_5 > \frac{7}{5}$ 时, 最优解变化。

8. 己知某纺织厂生产三种针织产品,其下月的生产计划必须满足以下约束:

$$x_1 + x_2 + 2x_3 \le 12$$
$$2x_1 + 4x_2 + x_3 \le f$$
$$x_1, x_2, x_3 \ge 0$$

 x_1, x_2, x_3 是三种产品的产量,第一个约束是给定的设备工时约束,第二个约束是原料棉花的约束,取决于当月的棉花供应量 f 。假设三种产品的单位净利润分别为 2,3 和 3 。请给出原料棉花的影子价格与其供应量 f 的关系 $\lambda_2(f)$,以及纺织厂总净利润与 f 的关系 $\lambda_2(f)$,并绘制 $\lambda_2(f)$ 的图。

解: (法1) 该问题的对偶问题为:

min
$$w = 12\lambda_1 + f\lambda_2$$

s.t.
$$\begin{cases} \lambda_1 + 2\lambda_2 \ge 2\\ \lambda_1 + 4\lambda_2 \ge 3\\ 2\lambda_1 + \lambda_2 \ge 3\\ \lambda_1, \lambda_2 \ge 0 \end{cases}$$

f不同取值对应 λ_2 的关系如下:

图中阴影部分是可行域,红色线表示 $0 \le f \le 6$ 的情况,交点是(0,3),因此能得到 $\lambda_2 = 3$;棕色线表示6 < f < 48的情况,交点是 $\left(\frac{9}{7},\frac{3}{7}\right)$,因此能得到 $\lambda_2 = \frac{3}{7}$;蓝色线表示 $f \ge 48$ 的情况,交点是(3,0),因此能得到 $\lambda_2 = 0$ 。

1)
$$\ddot{A} - \frac{12}{f} \ge -\frac{1}{4}$$
, $\Box f \ge 48 \Box$, $\lambda_1(f) = 3$, $\lambda_2(f) = 0$;

2)
$$\ddot{\pi}-2 < -\frac{12}{f} < -\frac{1}{4}$$
, $\mathbb{P}6 < f < 48\text{ m}$, $\lambda_1(f) = \frac{9}{7}$, $\lambda_2(f) = \frac{3}{7}$;

3) 若
$$-\frac{12}{f} \le -2$$
, 即 $0 \le f \le 6$ 时, $\lambda_1(f) = 0$, $\lambda_2(f) = 3$ 。

$$z(f) = w(f) = \begin{cases} 36, & f \ge 48\\ \frac{3f + 108}{7} & 6 < f < 48\\ 3f & 0 \le f \le 6 \end{cases}$$

(法 2, 也可使用单纯形法解对偶问题)原问题标准型:

$$\max z = 2x_1 + 3x_2 + 3x_3$$

$$s. t. \begin{cases} x_1 + x_2 + 2x_3 + x_4 = 12 \\ 2x_1 + 4x_2 + x_3 + x_5 = f \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

用单纯形表求解:

	c_j		2	3	3	0	0
c_B	X_B	b	X_1	X_2	X_3	X_4	X_5
0	X_4	12	1	1	2	1	0
0	X_5	f	1	4	1	0	1
			2	3	3	0	0

$(1)0 \le f < 48$ 时

	c_j		2	3	3	0	0
c_B	X_B	b	X_1	X_2	X_3	X_4	X_5
0	X_4	$12 - \frac{f}{4}$	1/2	0	7/4	1	-1/4
3	<i>X</i> ₂	$\frac{f}{4}$	1/2	1	1/4	0	1/4
			1/2	0	9/4	0	-3/4

$a)0 \le f \le 6$ 时

	c_{j}		2	3	3	0	0
c_B	X_B	b	X_1	X_2	X_3	X_4	X_5
0	X_4	12-2 <i>f</i>	-3	-7	0	1	-2
3	X_3	f	2	4	1	0	1
			-4	-9	0	0	-3

此时最优解为 (0, 0, f) $z_{max} = 3f$ $y_2 = 0*(-2) + 3*1 = 3$

b)6 < *f* < 48时

	c_j		2	3	3	0	0
c_B	X_B	b	X_1	X_2	X_3	X_4	X_5
3	<i>X</i> ₃	$\frac{48-f}{7}$	2/7	0	1	4/7	-1/7
3	<i>X</i> ₂	$\frac{2f-12}{4}$	3/7	1	0	-1/7	2/7
			-1/7	0	0	-9/7	-3/7

此时
$$z_{max} = (3f + 108)/7, y_2 = 3 * (-1/7) + 3 * 2/7 = 3/7$$

$(2)f \ge 48$ 时

c_j			2	3	3	0	0
c_B	X_B	b	X_1	X_2	X_3	X_4	X_5
3	X_2	12	1	1	2	1	0
0	X_5	f - 48	-2	0	-7	-4	1
			-1	0	-3	-3	0

此时
$$z_{max} = 36$$
, $y_2 = 3*0+0*1=0$

综上:

$$\lambda_2(f) = \begin{cases} 3, & 0 \le f \le 6\\ \frac{3}{7}, & 6 < f < 48\\ 0, & f > 48 \end{cases}$$

总净利润:

$$z(f) = w(f) = \begin{cases} 36, & f \ge 48\\ \frac{3f + 108}{7} & 6 < f < 48\\ 3f & 0 \le f \le 6 \end{cases}$$

纺织厂总净利润与 f 的关系如下:

