习题课 10

2019年12月16日

练习 10.1 试证:

- 1. 如果 $A = [a_{ij}]$ 是 n 阶对称正定矩阵,那么 $\det(A) \leq \det(A_{n-1})a_{nn}$,其中 $\det(A_{n-1})$ 是 A 的 n-1 阶顺序主子式(也是 a_{nn} 关于 A 的余子式)。
- 2. 如果 $A = [a_{ij}]$ 是 n 阶对称正定矩阵,那么 $det(A) \leq a_{11} \cdots a_{nn}$ 。
- 3. 如果 $T = \begin{bmatrix} \boldsymbol{t}_1 & \cdots & \boldsymbol{t}_n \end{bmatrix}$ 是 n 阶实可逆矩阵,那么 $|\det(T)| \leq \|\boldsymbol{t}_1\| \cdots \|\boldsymbol{t}_n\|$ 。
- 4. 上面结论称为 Hadamard 不等式。你还能找到另外的方法证明它吗?
- 证. 1. 考虑 A 的 LDL^T 分解:

$$A = \begin{bmatrix} A_{11} & A_{21}^T \\ A_{21} & a_{nn} \end{bmatrix} = \begin{bmatrix} L_{11} \\ L_{21} & 1 \end{bmatrix} \begin{bmatrix} D_{11} \\ & d_{nn} \end{bmatrix} \begin{bmatrix} L_{11} \\ L_{21} & 1 \end{bmatrix}^T = \begin{bmatrix} L_{11}D_{11}L_{11}^T & L_{11}D_{11}L_{21} \\ L_{21}D_{11}L_{11}^T & L_{21}D_{11}L_{21}^T + d_{nn} \end{bmatrix}.$$

因此, $A_{n-1} = A_{11} = L_{11}D_{11}L_{11}^T$, $a_{nn} = d_{nn} + L_{21}D_{11}L_{21}^T$ 。由 A 正定知, A_{11} 正定, D_{11} 正定, $L_{21}D_{11}L_{21}^T \geq 0$ 。从而 $a_{nn} \geq d_{nn}$ 。我们知道 $\det(A_{n-1}) = \det(A_{11}) = \det(D_{11})$,于是 $\det(A) = \det(L)\det(D)\det(L^T) = \det(D) = \det(D) = \det(D_{11})d_{nn} \leq \det(A_{n-1})a_{nn}$ 。

- 2. 对阶数 n 归纳,立得。
- 3. 由 T 可逆, $T^T T$ 对称正定,因此 $\det(T)^2 = \det(T^T T) = (T^T T)_{11} \cdots (T^T T)_{nn} = \|\boldsymbol{t}_1\|^2 \cdots \|\boldsymbol{t}_n\|^2$ 。
- 4. 对 T 做 QR 分解 T=QR,其中 $R=\begin{bmatrix} \boldsymbol{r}_1 & \cdots & \boldsymbol{r}_n \end{bmatrix}$ 。则 $|\det(T)|=\det(R)=r_{11}\cdots r_{nn}$ 。注意 $\boldsymbol{t}_i=Q\boldsymbol{r}_i$,因此 $\|\boldsymbol{t}_i\|=\|\boldsymbol{r}_i\|=\sqrt{r_{1i}^2+\cdots+r_{ii}^2}\geq r_{ii}$ 。由此即得结论。

练习 10.2 假设
$$A$$
 是一个正定矩阵,且 $B = \begin{bmatrix} 2A & 2A \\ 2A & 5A \end{bmatrix}$ 。

- 1. 证明 B 也是正定的。
- 2. 假设 $A = L_A D_A U_A$ 是 A 的 LDU 分解。求 B 的 LDU 分解 $B = L_B D_B U_B$ 。
- 3. 假设已知 A 的所有特征值和对应的所有特征向量,求 B 的所有特征值和对应的所有特征向量。
- 证. 考虑 $u^T B u$ 。假设 $u = \begin{bmatrix} x \\ y \end{bmatrix}$,这里 x 和 y 都有相同的坐标数。那么 $u^T B u = 2x^T A x + 4x^T A y + 5y^T A y$ 。我们配方得到 $2(x+y)^T A (x+y) + y^T A y$ 。根据 A 的正定性,这个式子必须是正的,除非 x+y=y=0。换言之,我们有 $u^T B u \geq 0$,而等号成立当且仅当 u=0。因此 B 正定。

假设
$$A=L_AD_AU_A$$
。那么 $L_B=\begin{bmatrix}L_A&0\\L_A&L_A\end{bmatrix}$, $D_B=\begin{bmatrix}2D_A&0\\0&2D_A\end{bmatrix}$, $U_B=\begin{bmatrix}U_A&U_A\\0&U_A\end{bmatrix}$ 。

最后,如果 $Av=\lambda v$,那么 $\begin{bmatrix}2v\\-v\end{bmatrix}$ 是 B 对于特征值 λ 的特征向量,而 $\begin{bmatrix}v\\2v\end{bmatrix}$ 则是 B 对于特征值 6λ 的特征向量。换言之,如果我们有分解 $A=QDQ^{-1}$,那么对应的我们有分解 $B=Q_BD_BQ_B^{-1}$,这里

$$Q_B = \frac{1}{\sqrt{5}} \begin{bmatrix} 2Q & Q \\ -Q & 2Q \end{bmatrix}, \quad D_B = \begin{bmatrix} D & 0 \\ 0 & 6D \end{bmatrix}.$$

练习 10.3 假设 $S \in \mathbb{M}_n$ 是一个正定矩阵,特征值 (按重数记) 是 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. 我们记 $Q_S(\mathbf{x}) := \mathbf{x}^T S \mathbf{x}$.

- (i) 求矩阵 $\lambda_1 \mathbf{I}_n S$ 的特征值。
- (ii) 证明: $\lambda_1 \mathbf{I}_n S$ 是半正定的。
- (iii) 证明: $\max_{\mathbf{x} \in \mathbb{R}^n \setminus \{0\}} \frac{Q_S(\mathbf{x})}{\|\mathbf{x}\|^2} = \lambda_1$, 这里 $\|\mathbf{x}\|^2 = \sum_{i=1}^n x_i^2$. 何时等号成立?
- (iv) 假设 $\lambda_1 > \lambda_2$, 证明: $\max_{\mathbf{x} \in \mathbb{R}^n \setminus \{0\}, \mathbf{x} \perp \mathbf{q}_1} \frac{Q_S(\mathbf{x})}{\|\mathbf{x}\|^2} = \lambda_2$, 这里 \mathbf{q}_1 是属于 λ_1 的特征向量。

证. (i) 显然, $\lambda_1 \mathbf{I}_n - S$ 仍是实对称矩阵,并且如果 $\lambda \in \mathbb{R}$ 和向量 \mathbf{x} 满足 $S\mathbf{x} = \lambda \mathbf{x}$,则 $(\lambda_1 \mathbf{I}_n - S)\mathbf{x} = (\lambda_1 - \lambda)\mathbf{x}$. 因此 $\lambda_1 \mathbf{I}_n - S$ 的特征值是 $\lambda_1 - \lambda_i$, $i = 1, \dots, n$.

- (ii) 根据 (i), $\lambda_1 \mathbf{I}_n S$ 的所有特征值都是非负的, 因此该矩阵是半正定的。
- (iii) 根据 (ii), 对所有的 $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$, 都有

$$\mathbf{x}^T (\lambda_1 \mathbf{I}_n - S) \mathbf{x} \ge 0,$$
 也就是 $Q_S(\mathbf{x}) \le \lambda_1 ||\mathbf{x}||^2.$

因此,对所有的非零向量,我们有 $Q_S(\mathbf{x})/||\mathbf{x}||^2 \le \lambda_1$, 两边在 $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ 上取极大值,得到

$$\sup_{\mathbf{x}\in\mathbb{R}R^n\setminus\{\mathbf{0}\}}Q_S(\mathbf{x})/\|\mathbf{x}\|^2\leq \lambda_1.$$

另一方面,对于 $\mathbf{x} = \mathbf{q}_1$,其中 \mathbf{q}_1 是属于 λ_1 的特征向量,有 $Q_S(\mathbf{x})/||\mathbf{x}||^2 = \lambda_1$.

(iv) 根据 Spectral Theorem, 存在正交矩阵 C, 它的列向量 $\mathbf{q}_1, \dots, \mathbf{q}_n$ 是 S 的分别属于 $\lambda_1, \dots, \lambda_n$ 的特征向量,并且 $C^TSC = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$,记该对角阵为 Λ . 对任意的 $\mathbf{x} \in \mathbb{R}^n$,我们有

$$Q_S(\mathbf{x}) = \mathbf{x}^T (C \Lambda C^T) \mathbf{x} = \mathbf{y}^T \Lambda \mathbf{y},$$

其中 $\mathbf{y} = C^T \mathbf{x}$. 如果 $\mathbf{x} \perp \mathbf{q}_1$, 则 \mathbf{y} 的第一个分量 $y_1 = \mathbf{q}_1^T \mathbf{x} = 0$. 因此

$$Q_S(\mathbf{x}) = \mathbf{y}^T \Lambda \mathbf{y} = \lambda_2 y_2^2 + \lambda_3 y_3^2 + \dots + \lambda_n y_n^2 \le \lambda_2 (y_2^2 + \dots + y_n^2) = \lambda_2 ||\mathbf{y}||^2 = \lambda_2 ||\mathbf{x}||^2.$$

第二个不等式是由于 $\lambda_2 \geq \lambda_j$, $j \leq 2$, 而最后一个等式是由于 C^T 为正交矩阵。重复 (iii) 的证明的最后一部分,(iv) 得证。

练习 10.4 设 A 为实方阵, 证明 $A^{T}A$ 与 AA^{T} 相似.

证.
$$A=U\Sigma V^T$$
. $A^TA=V\Sigma^2 V^T$, $AA^T=U\Sigma^2 U^T$. 于是 $V^TA^TAV=\Sigma^2=U^TAA^TU$, 因此 $A^TA=(UV^T)^{-1}(AA^T)(UV^T)$.

练习 **10.5** 设
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, 求 A 的奇异值分解

证. $\triangle = A^T A$ 的特征值为 $\lambda_1 = 3, \lambda_2 = 1, \lambda_3 = 0$ 。

解方程
$$(\lambda_1 I - \Delta)x = 0$$
 得单位向量 $v_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2\\1 \end{pmatrix}$.

解方程 $(\lambda_2 I - \Delta)x = 0$ 得单位向量 $v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}$.

解方程 $(\lambda_3 I - \Delta)x = 0$ 得单位向量 $v_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$.

令 $u_1 = \frac{Av_1}{\sqrt{3}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, u_2 = Av_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$ 则

$$A = U\Sigma V = P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}^{T}.$$

练习 10.6 求下列矩阵的奇异值分解 $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.

证. 我们首先计算

$$AA^{T} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad A^{T}A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

易看出, AA^T 的特征值为 $\lambda_1=\lambda_2=2$ (从而 A^TA 的特征值为 2 和 0, 代数重数均为 2), 因此 A 的奇异值为 $\sigma_1=\sigma_2=\sqrt{2}$ 。

接着求 AA^T 的一组标准正交的特征向量 $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. (这里实际上可以取 \mathbb{R}^2 的任意一组标准正交基,而该种取法最为简单)。我们令

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

接下来我们求解 V。利用公式可求得

$$v_1 = \frac{1}{\sigma_1} A^T u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

及

$$v_2 = \frac{1}{\sigma_2} A^T u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

此外,我们还需要 v_3 和 v_4 (无法再使用同样的公式)。然而,我们知道 v_1, v_2, v_3, v_4 应该为 \mathbb{R}^4 的一组标准正交基, 从而可以取

$$v_3 = rac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \quad v_4 = rac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}$$

于是我们得到

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}.$$

易验证, $A = U\Sigma V^T$,其中 $\Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \end{bmatrix}$.

注意: 我们也可以通过先将 A^TA 对角化来得到 V, 但在计算特征向量时需要格外仔细。

练习 10.7 设 2×3 矩阵 A 有如下奇异值分解 $U\Sigma V^T$, 其中 U, V 为正交矩阵:

$$A = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \end{pmatrix}.$$

- (a) 求 A 的零空间 N(A) 的一组标准正交基。
- (b) 写出方程 $Ax = u_1$ 的通解。
- (c) 求方程 $Ax = u_1$ 的长度最短的解, 并证明。
- 证. (a) v_2, v_3 是 N(A) 的一组标准正交基。
 - (b) $Ax = u_1$ 的通解是 $\frac{1}{4}v_1 + c_2v_2 + c_3v_3$ (c_2, c_3 是任意数)。
 - (c) $Ax = u_1$ 的长度最短的解是 $\frac{1}{4}v_1$, 因 $v_2 \perp v_1$, $v_3 \perp v_1$.

练习
$${\bf 10.8}$$
 设 $A\in M_{m\times n}(\mathbb{R})$. 如果 A 的 SVD 为 $A=U$ $\begin{bmatrix}\sigma_1&&&&\\&\ddots&&&\\&&\sigma_r&&\\&&&{\bf 0}\end{bmatrix}$ V^T ,定义其广义逆 $\begin{bmatrix}\sigma_1^{-1}&&&&\\&&&&\end{bmatrix}$

1.
$$(A^+)^+ = A$$

- 2. A^+A 是到 $C(A^T)$ 的投影矩阵
- 3. AA+ 是到 C(A) 的投影矩阵
- 4. $r(A) = r(A^+) = r(A^+A) = r(AA^+)$

证. 设
$$A=U\Sigma V^T$$
 为奇异值分解, 其中 $\Sigma=\left[egin{array}{cccc}\sigma_1\\&\ddots\\&&\sigma_r\end{array}\right]\in M_{m\times n}(\mathbb{R}), \sigma_1\geq\cdots\geq\sigma_r>0$ 且 U,V

为正交矩阵

1. 由 $A^+ = V\Sigma^+U^T$, 其中

$$\Sigma^{+} = \begin{bmatrix} \sigma_{1}^{-1} & & & \\ & \ddots & & \\ & & \sigma_{r}^{-1} \end{bmatrix} \in M_{n \times m}(\mathbb{R})$$

故 $(A^+)^+ = U\Sigma V^T = A$.

- 2. $A^+A = (V\Sigma^+U^T)(U\Sigma V^T) = V\begin{bmatrix} I_r \\ 0 \end{bmatrix} V^T = \sum_{i=1}^r v_i v_i^T$ 其中 $v_i, i = 1, 2, \cdots, r$ 为 V 的前 r 列, 是 $C(A^T)$ 的一组单位正交基,故 A^+A 为到 $C(A^T)$ 的投影矩阵.
- 3. $AA^+ = (U\Sigma V^T)(V\Sigma^+U^T) = U\begin{bmatrix} I_r \\ 0 \end{bmatrix}U^T = \sum_{i=1}^r u_i u_i^T$ 其中 $u_i, i = 1, 2, \cdots, r$ 为 U 的前 r 列, 是 C(A) 的一组单位正交基,故 AA^+ 为到 C(A) 的投影矩阵.
- 4. 由 $A^+ = V \Sigma^+ U^T$, 故 $r(A^+) = r(\Sigma^+) = r = r(A)$. 由前两问可得 $r(A) = r(A^+A) = r(AA^+)$.

练习 10.9 证明置换矩阵 $P=\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}$ 是绕正向为 $(1,1,1)^T$ 的旋转轴 ℓ 做顺时针旋转 $2\pi/3$ 的变换。

证. P 的特征多项式为 $f(\lambda)=\lambda^3+1$,所以其有特征根 $1,\omega,\omega^2$,这里 $\omega=e^{2\pi i/3}$ 。直接计算知 $Pu=u,Pz=\omega z$,这里

$$u = (1, 1, 1)/\sqrt{3}, \quad z = (1, \omega^2, \omega).$$

设 $z=\hat{v}+i\hat{w}$, 其中 \hat{v},\hat{w} 分别为 z 的实部和虚部。记 $\theta=2\pi/3$. 由 $Pz=\omega z$, 分开实部与虚部得

$$Pv_1 = \cos\theta \hat{v} - \sin\theta \hat{w}; \quad Pv_2 = \sin\theta \hat{v} + \cos\theta \hat{w}.$$

 $v = \hat{v}/\|\hat{v}\|, w = \hat{w}/\|\hat{w}\|, \ \mathbb{N}$

$$v = \frac{1}{\sqrt{6}} \begin{bmatrix} 2\\ -1\\ -1 \end{bmatrix}; \quad w = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}$$

易见, $\{u,v,w\}$ 构成 \mathbb{R}^3 的标准正交基,且成右手系。而 $\{v,w\}$ 构成以 u 为法向的二维子空间 V 的标准 正交基。注意到

$$P[v, w] = [v, w] \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = [v, w] R_{-\theta}.$$

结合 Pu = u,以及 $u \perp V$,我们得到要证的结论。

练习 10.10 设 A 是一个 3 阶实矩阵,其作用在任一向量 $v=\begin{bmatrix}a\\b\\c\end{bmatrix}$ 的结果 Av 是将 v 绕着轴 x=y=z

旋转 180 度。求矩阵 A.

证. v 到 x = y = z 的投影是 $\frac{(a,b,c)\cdot(1,1,1)}{(1,1,1)\cdot(1,1,1)}(1,1,1) = \frac{a+b+c}{3}(1,1,1)$, 记为 v_1 , 则

$$Av = v_1 - (v - v_1) = 2v_1 - v = \frac{2a + 2b + 2c}{3}(1, 1, 1) - (a, b, c),$$

所以
$$A = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$
.

练习 10.11 设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是一个映射, 满足: 对任意的 $\alpha, \beta \in \mathbb{R}^n$ 有 $\langle f(\alpha), f(\beta) \rangle = \langle \alpha, \beta \rangle$. ¹ 证明: f 是一个线性映射.

证. 我们只需要证: 对任意的 $\alpha, \beta \in \mathbb{R}^n, a \in \mathbb{R}$, 我们有

$$f(a\alpha) = af(\alpha); \quad f(\alpha + \beta) = f(\alpha) + f(\beta).$$

首先

$$\langle f(a\alpha) - af(\alpha), f(a\alpha) - af(\alpha) \rangle = \langle f(a\alpha), f(a\alpha) \rangle - 2\langle f(a\alpha), af(\alpha) \rangle + \langle af(\alpha), af(\alpha) \rangle$$
$$= \langle a\alpha, a\alpha \rangle - 2a\langle a\alpha, \alpha \rangle + a^2\langle \alpha, \alpha \rangle$$
$$= 0$$

其次

$$\begin{split} &\langle f(\alpha+\beta)-f(\alpha)-f(\beta),f(\alpha+\beta)-f(\alpha)-f(\beta)\rangle\\ &=\langle f(\alpha+\beta),f(\alpha+\beta)\rangle-2\langle f(\alpha+\beta),f(\alpha)\rangle-2\langle f(\alpha+\beta),f(\beta)\rangle+\langle f(\alpha),(f\alpha)\rangle+\langle f(\beta),f(\beta)\rangle+2\langle f(\alpha),f(\beta)\rangle\\ &=\langle \alpha+\beta,\alpha+\beta\rangle-2\langle \alpha+\beta,\alpha\rangle-2\langle \alpha+\beta,\beta\rangle+\langle \alpha,\alpha\rangle+\langle \beta,\beta\rangle+2\langle \alpha,\beta\rangle\\ &=0 \end{split}$$

练习 10.12 设 V 为 n 维线性空间,设 $\{v_1, \dots, v_n\}$ 为 V 的一组基底。任给 $v \in V$,设

$$v = x_1 v_1 + \dots + x_n v_n = [v_1, \dots, v_n] x$$

称 $x = [x_1, \dots, x_n]^T$ 是 v 在该基底下的坐标。定义坐标映射 $T: V \to \mathbb{R}^n$ 为

$$T(v) = x$$
.

 $^{^{1}\}langle\alpha,\beta\rangle$ 表示 α,β 的内积。

- (1) 证明 T 是一个线性映射,且为双射。
- (2) 证明其逆 $T^{-1}: \mathbb{R}^n \to V$ 也是线性映射。

我们称 $T \in V 与 \mathbb{R}^n$ 之间的一个线性同构。

证. (1) 设 v, w 的坐标分别为 x, y,则 $\lambda v, \mu w$ 的坐标为 $\lambda x, \mu y$ 。从而

$$\lambda v + \mu w = [v_1, \dots, v_n](\lambda x) + [v_1, \dots, v_n](\mu y) = [v_1, \dots, v_n](\lambda x + \mu y)$$

此即 $T(\lambda v + \mu w) = \lambda T(v) + \mu T(w)$, 所以 T 为线性映射。

定义 $S: \mathbb{R}^n \to V$ 如下:

$$S(x) = x_1 v_1 + \cdots + x_n v_n.$$

则直接验证得, $T \circ S = Id_{\mathbb{R}^n}$, $S \circ T = Id_V$,从而 T 是双射。

(2) 由上面证明知 $T^{-1} = S$,由 (1) 类似的推理知,其为线性映射。

练习 10.13 在复数域 \mathbb{C} 上的线性空间 $M_n(\mathbb{C})$ 内定义一个线性变换 σ 如下:

$$\sigma \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn-1} & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{12} & a_{13} & \cdots & a_{1n} & a_{11} \\ a_{22} & a_{23} & \cdots & a_{2n} & a_{21} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} & a_{n1} \end{bmatrix},$$

- (1) 求 σ 的特征多项式.
- (2) 证明 σ 可对角化,即存在 $M_n(\mathbb{C})$ 某组基, σ 在这组基下的矩阵是对角阵.

证. (1) 取 $M_n(\mathbb{C})$ 的基为 $E_{11}, E_{12}, \cdots, E_{1n}, \cdots, E_{n1}, E_{n2}, \cdots, E_{nn}, \sigma$ 在这组基下的矩阵为

$$A = \operatorname{diag}(A_1, A_2, \cdots, A_n),$$

其中

$$A_1 = A_2 = \dots = A_n = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

于是 σ 的特征多项式为 $f_A(x) = (x^n - 1)^n$.

- (2) 由(1)知道 σ 的矩阵 A 为准对角阵,所以只要每个对角块相似于对角阵就有 A 相似于对角阵. 矩阵 A 的对角块都相同,且 A_1 的特征多项式为 $f_{A_1}(x) = x^n 1$,显然 $f_{A_1}(x)$ 没有重根,所以 A_1 有 n 个不同的特征值,故 A_1 可以相似对角化.
- 练习 10.14 设 dim V=n, dim W=m。 $T:V\to W$ 是线性映射,且 r(T)=r。证明可以选取 V 与 W 的基底,使得在此选取下 T 的矩阵表示为

$$A = \begin{pmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \dots .$$

证. 由维数公式知 dim $\ker(T) = n - r$ 。取 $\ker(T)$ 的一组基 $\{v_{r+1}, \dots, v_n\}$,并将其扩充为 V 的一组基 $\{v_1, \dots, v_n\}$ 。设 $w_i = T(v_i)$, $i = 1, \dots, r$,我们来证明 $\{w_1, \dots, w_r\}$ 线性无关。设 $t_1, \dots, t_r \in \mathbb{R}$ 使得

$$t_1w_1 + \dots + t_rw_r = \vec{0}.$$

由线性性, 其等价于

$$T(t_1v_1 + \dots + t_rv_r) = 0.$$

所以 $t_1v_1 + \cdots + t_rv_r \in \ker(T)$ 。 从而存在 t_{r+1}, \cdots, t_n 使得

$$t_1v_1 + \dots + t_rv_r = t_{r+1}v_{r+1} + \dots + t_nv_n.$$

但 $\{v_1, \dots, v_n\}$ 是一组基,所以 $t_1 = \dots = t_n = 0$.

现将 $\{w_1, \cdots, w_r\}$ 扩充成 W 的一组基 $\{w_1, \cdots, w_m\}$ 。则直接计算知,在此基底选取之下,T 的矩阵表示恰为 A。

练习 10.15 在 \mathbb{R}^3 中,设线性变换 T 关于基 $v_1=(-1,1,1)$, $v_2=(1,0,-1)$, $v_3=(0,1,1)$ 的矩阵是

$$A = \left| \begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{array} \right|.$$

- (1) 求 T 关于基 i = (1,0,0), j = (0,1,0), k = (0,0,1) 的矩阵;
- (2) 设向量 $v = v_1 + 6v_2 v_3$, w = i j + k, 求 T(v) 和 T(w) 关于基 v_1, v_2, v_3 的坐标。

证. 令 $V = [v_1 \ v_2 \ v_3]$,则 TV = VA。

(1) T 关于基 i, j, k 的矩阵为

$$TVV^{-1} = VAV^{-1} = VA \begin{bmatrix} -1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -2 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}.$$

(2) 记
$$v = Vc = V[1 \ 6 \ -1]^T$$
, $T(v) = TVc = VAc$, $T(w) = VAV^{-1}w$, 所以他们关于基 v_1, v_2, v_3 的 坐标分别是 $Ac = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 7 \\ 10 \end{bmatrix}$, $AV^{-1}w = \begin{bmatrix} -1 \\ -5 \\ 1 \end{bmatrix}$.