A ALE Finite Element Method for Vorticity-Streamfunction Formulation with Species Transport Equation

Student Researcher: Leandro Marques Advisors: Gustavo Anjos and Jose Pontes

State University of Rio de Janeiro June, 26th 2020

Outline

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Introduction

Motivation:

► Ischaemic heart disease and stroke have remained the leading death causes globally in the last 15 years [1]

Aims:

- ► To develop a Finite Element code for stream-vorticity formulation with species transport equation using the Arbitrary Lagrangian-Eulerian (ALE) approach
- ► To create new drug-eluting stent design patent

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Arbitrary Lagrangian-Eulerian (ALE)

The Arbitrary Lagrangian-Eulerian combines the classical motion descriptions, while it provides [2]:

Lagrangian description

Advantages:

 Simulations in fluid-structure and moving boundary problems

Eulerian description

Disadvantages:

► The computational mesh requires an extensive topological treatment

[2] Donea, J., Huerta, A., Ponthot, J.-P. and Rodríguez-Ferran, A. (2004). Arbitrary Lagrangian–Eulerian Methods. In Encyclopedia of Computational Mechanics doi:10.1002/0470091355.ecm009

Governing Equations

Assumptions [3]:

- 1. Continuum hypothesis
- 2. Homogeneous and Isotropic
- 3. Incompressible
- 4. Newtonian
- 5. Constant Mass Difusivity
- 6. Single-phase Flow
- 7. Two-dimensional flow

$$\frac{\partial \omega}{\partial t} + (\mathbf{v} - \mathbf{\hat{v}}) \cdot \nabla \omega = \frac{1}{Re} \nabla^2 \omega$$

$$\nabla^2 \psi = -\omega$$

$$\frac{\partial c}{\partial t} + (\mathbf{v} - \hat{\mathbf{v}}) \cdot \nabla c = \frac{1}{ReSc} \nabla^2 c$$

The material velocity field ${\bf v}=(v_x,v_y)$ is calculated by: $v_x=\partial\psi/\partial y$ and $v_y=-\partial\psi/\partial x$

If the mesh velocity field $\hat{\mathbf{v}} = \mathbf{v} (Lagrangian)$ or $\hat{\mathbf{v}} = 0 (Eulerian)$

Semi-Lagrangian Method

The convective term was replaced by material derivative of ω and c in the direction of characteristic trajectory

$$\frac{D\omega}{Dt} = \frac{1}{Re} \nabla^2 \omega$$

$$\nabla^2 \psi = -\omega$$

$$\frac{Dc}{Dt} = \frac{1}{ReSc} \nabla^2 c$$

The departure node is calculated by $x_d^n = x_i^{n+1} - (\mathbf{v} - \mathbf{\hat{v}}) \Delta t$. Then, a searching procedure is required to find x_d^n using barycentric coordinates

Semi-Lagrangian Method

The implicit semi-Lagrangian time discretization provides [4]:

Advantages:

- Symmetric linear systems
- ► Unconditionnal stability

Disadvantages:

- ► Numerical Diffusion
- Searching procedure may lead to excessive computational cost if it is not well designed

$$\frac{\omega_i^{n+1} - \omega_d^n}{\Delta t} = \frac{1}{Re} \nabla^2 \omega^{n+1}$$

$$\nabla^2 \psi = -\omega$$

$$\frac{c_i^{n+1} - c_d^n}{\Delta t} = \frac{1}{ReSc} \nabla^2 c^{n+1}$$

Galerkin FE Method

$$\left[\frac{\mathsf{M}}{\Delta t} + \frac{\mathsf{K}}{Re}\right] \omega_i^{n+1} = \frac{\mathsf{M}}{\Delta t} \omega_d^n$$

$$\mathbf{K}\psi = \mathbf{M}\omega$$

$$\left[\frac{\mathsf{M}}{\Delta t} + \frac{\mathsf{K}}{\mathit{ReSc}}\right] c_i^{n+1} = \frac{\mathsf{M}}{\Delta t} c_d^n$$

The material velocity field is calculated by: ${\bf M}v_{\rm x}={\bf G_y}\psi$ and ${\bf M}v_y=-{\bf G_x}\psi$

Laplacian Smoothing

To avoid the fast degradation of the computational elements due to ALE description, it was used the Laplacian Smoothing Method [5]

with Laplacian Smoothing

The new node position \hat{x}_i can be approximated by:

$$\mathbf{\hat{x}_i} = \sum_{i \in N_1} e_{ij}^{-1} (\mathbf{x}_j - \mathbf{x}_i)$$

where, e_{ij}^{-1} is the distance between the node and each neighbor in 1-ring N_1

no Laplacian Smoothing

^[5] Desbrun, M. Meyer, P. Schröder, A. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, in: Proceedingsof Siggraph, 1999, pp. 317–324

Solution Algorithm

Repeat the procedure for the next time step until the steady state

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Validation - Poiseuille Flow

Boundaries Conditions:

Inflow condition: $u = u_{analytical}$, v = 0

Top plate: u= 0, v= 0, $\dot{\psi}=$ 1

Bottom plate: u= 0, v= 0, $\psi=$ 0

Nodes: 1757 Elements: 3263

Relative Error: 0.67%

Validation - Lid Driven Cavity Flow

 U_{top}

Boundaries Conditions:

Bottom and side plates: u=0, v=0 e $\psi=0$

Top plate: $\mathit{u}=1$, $\mathit{v}=0$ e $\psi=0$

Nodes: 3798 Elements: 7382

Re: 100

Coming Soon

- ► Backward-Facing Step Validation
- ► Pulsation Flow Validation
- ▶ Drug-Eluting Stent Cases

Work Plan

		2018				2019													2020						
ACTIVITIES	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	
SUBJECTS																								П	
LITERATURE REVIEW	Т																							П	
CODE IMPLEMENTATION	T																							П	
CODE VALIDATION																								П	
RESULTS SIMULATION	T																								
PRESENTATION																									

SUBJECTS:

- CONTINUUM MECHANICS I
- ADVANCED CALCULUS
- FLUID MECHANICS
- COMPUTATIONAL FLUID MECHANICS I
- COMPUTATIONAL FLUID MECHANICS II
- FINITE ELEMENT METHOD
- COMPUTATIONAL METHODS
- MULTIPHASE FLOWS

LITERATURE REVIEW:

- ARBITRARY LAGRANGIAN-EULERIAN (ALE)
- SEMI-LAGRANGIAN METHOD
- LAPLACIAN SMOOTHING

Thank you!

marquesleandro67@gmail.com gustavo.rabello@mecanica.coppe.ufrj.br jose.pontes@uerj.br

The authors thank the FAPERJ (Research Support Foundation of the State of Rio de Janeiro) for its financial support

