

Classify a Saturday as right or not to play tennis according to weather conditions Outlook Sunny overcast rainy humidity yes windy high normal false true no yes yes no

Constructing decision trees

Strategy: top down

Recursive divide-and-conquer fashion

- ☐ First: select attribute for root node Create branch for each possible attribute value
- ☐ Then: split instances into subsets
 One for each branch extending from the node
- ☐ Finally: repeat recursively for each branch, using only instances that reach the branch
- Stop if all instances have the same class

6

Criterion for attribute selection

- Which is the best attribute?
 - ☐ Want to get the smallest tree
 - ☐ Heuristic: choose the attribute that produces the "purest" nodes
- * Popular impurity criterion: information gain
 - ☐ Information gain increases with the average purity of the subsets
- Strategy: choose attribute that gives greatest information gain

C4.5: SELECTING THE BEST TEST

C4.5 (Quinlan, 1993) employs the **entropy**

$$\inf(E) = \sum_{j=1}^{k} p_j \cdot \log_2 p_j = \sum_{j=1}^{k} \frac{\operatorname{freq}(C_j, E)}{|E|} \cdot \log_2 \left(\frac{\operatorname{freq}(C_j, E)}{|E|} \right)$$

info_attribute
$$(E, X) = \sum_{i=1}^{n} \frac{|E_i|}{|E|} \cdot \inf(E_i)$$

$$\mathrm{gain}(E,X) = \mathrm{info}(E) - \mathrm{info_attribute}(E,X)$$

$$\mathrm{ratio}(E,X) = \frac{\mathrm{gain}(E,X)}{\mathrm{intrinsic_info}(E,X)}$$

intrinsic_info
$$(E, X) = -\sum_{i=1}^{n} \frac{|E_i|}{|E|} \cdot \log_2 \left(\frac{|E_i|}{|E|} \right)$$

Computing information

- ❖ ID3 first, then C4.5
- Measure information in bits
 - ☐ Given a probability distribution, the info required to predict an event is the distribution's entropy
 - ☐ Entropy gives the information required in bits (can involve fractions of bits!)

10

C4.5: SELECTING THE BEST TEST

$$\inf_{0}(1,0) = \inf_{0}(0,1) = 0$$

 $\inf_{0}(1/n,...,1/n) = \log_{2}(n)$

..

AN EXAMPLE ...

	Pronóstico	Temperatura	Humedad	Viento	Apto?
1)	Soleado	Alta	Alta	Flojo	No
2)	Soleado	Alta	Alta	Fuerte	No
3)	Nublado	Alta	Alta	Flojo	Si
4)	Lluvia	Moderada	Alta	Flojo	Si
5)	Lluvia	Baja	Normal	Flojo	Si
6)	Lluvia	Baja	Normal	Fuerte	No
7)	Nublado	Baja	Normal	Fuerte	Si
8)	Soleado	Moderada	Alta	Flojo	No
9)	Soleado	Baja	Normal	Flojo	Si
10)	Lluvia	Moderada	Normal	Flojo	Si
11)	Soleado	Moderada	Normal	Fuerte	Si
12)	Nublado	Moderada	Alta	Fuerte	Si
13)	Nublado	Alta	Normal	Flojo	Si
14)	Lluvia	Moderada	Alta	Fuerte	No

AN EXAMPLE ...

Therefore, the average info due to *Pronóstico* is:

$$\inf_{\text{info_atrib}}(E, Pron \acute{o}stico) = \frac{|E_{Pron.=Soleado}|}{|E|} \cdot \inf_{\text{info}}(E_{Pron.=Soleado}) + \frac{|E_{Pron.=Nublado}|}{|E|} \cdot \inf_{\text{info}}(E_{Pron.=Nublado}) + \frac{|E_{Pron.=Lluvia}|}{|E|} \cdot \inf_{\text{info}}(E_{Pron.=Lluvia}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.694$$

The info gain and the ratio are:

$$\begin{split} & \operatorname{ganancia}(E, \operatorname{Pron\'ostico}) \!=\! \operatorname{info}(E) - \operatorname{info_atrib}(E, \operatorname{Pron\'ostico}) = 0,\!940 - 0,\!694 = 0,\!246 \\ & \operatorname{info_part}(E, \operatorname{Pron\'ostico}) \!=\! - \left[\frac{5}{14} \log_2 \left(\frac{5}{14} \right) \!+\! \frac{4}{14} \log_2 \left(\frac{4}{14} \right) \!+\! \frac{5}{14} \log_2 \left(\frac{5}{14} \right) \right] = 1,\!577 \\ & \operatorname{ratio}(E, \operatorname{Pron\'ostico}) \!=\! \frac{\operatorname{ganancia}(E, \operatorname{Pron\'ostico})}{\operatorname{info_part}(E, \operatorname{Pron\'ostico})} = \frac{0,\!246}{1,\!577} = 0,\!156 \end{split}$$

C4.5 is a bit more

- 1. Numeric values
- 2. Pruning of trees
- 3. Missing values handling

\bigcirc ID3 \rightarrow C4.5: Numeric attributes

Standard method: binary splits

•E.g. temp < 45

- Unlike nominal attributes, every attribute has many possible split points. Solution is straightforward extension:
 - Evaluate info gain (or other measure) for every possible split point of attribute
 - Choose "best" split point
 - Info gain for best split point is info gain for attribute
- Computationally more demanding

25

Example

Split on temperature attribute:

- temperature < 71.5: yes/4, no/2 temperature \geq 71.5: yes/5, no/3
- Info([4,2],[5,3]) $= 6/14 \inf([4,2]) + 8/14 \inf([5,3])$ = 0.939 bits
- Place split points halfway between values (J48 does not proceed like this)
- Can evaluate all split points in one pass!

Scalar product

•Definition.-

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{y}_{i} = (\mathbf{x}_{1} \quad \mathbf{x}_{2} \quad \dots \quad \mathbf{x}_{n}) \begin{pmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \dots \\ \mathbf{y}_{n} \end{pmatrix} = \mathbf{x}^{T} \mathbf{y}$$

- Properties.-
 - (1) < x, y > = < y, x >
- (2) <x, (y+z)> = <x, y> + <x, z>
- (3) < a x, y > = < x, a y > = a < x, y >

Support Vector Machines

- Classifying with scalar products
- Maximizing margin

S= {
$$(\mathbf{x}_i, y_i)$$
: $\mathbf{x}_i \in \mathbf{H}$, $y_i \in \{+1, -1\}$; $i = 1, ..., m$ }

3

Scalar product (2)

Gives rise to a norm

$$\|oldsymbol{x}\|^2 = \langle oldsymbol{x}, oldsymbol{x}
angle$$

and then a metric (distance)

$$(d_H(\boldsymbol{x}, \boldsymbol{x}'))^2 = \|\boldsymbol{x} - \boldsymbol{x}'\|^2 = \langle \boldsymbol{x} - \boldsymbol{x}', \boldsymbol{x} - \boldsymbol{x}' \rangle$$

= $\langle \boldsymbol{x}, \boldsymbol{x} \rangle - 2\langle \boldsymbol{x}, \boldsymbol{x}' \rangle + \langle \boldsymbol{x}', \boldsymbol{x}' \rangle$

Scalar product (3)

Geometric meaning

$$oldsymbol{x}, oldsymbol{x}' \in \mathbb{R}^n \qquad \langle oldsymbol{x}, oldsymbol{x}'
angle = \|oldsymbol{x}\| \cdot \|oldsymbol{x}'\| \cdot \cos(oldsymbol{x}, oldsymbol{x}')$$

if two vectors have norm 1, their scalar product ranges from:

- +1 (same) to
- -1 (opposite).
- 0 (perpendicular)

33

Hyperplanes and scalar product

In a n-dimensional space, an hyperplane is a subspace of dimension n-1.

They are determined by one vector (**director vector**) perpendicular to the hyperplane

Equation:

$$< x, w > = 0$$

Splits the space in 2 regions

Pos=
$$\{x: \langle x, w \rangle \geq 0\}$$

$$Neg=\{x: <0\}$$

Scalar product (4)

Geometric meaning

If we do not consider their lengths, the scalar product of 2 vectors measures their **similarity**

$$\langle \boldsymbol{x}, \boldsymbol{x}' \rangle = \|\boldsymbol{x}\| \cdot \|\boldsymbol{x}'\| \cdot \cos(\boldsymbol{x}, \boldsymbol{x}')$$

34

Hyperplanes and scalar product

In a n-dimensional space, an **hyperplane** is a subspace of dimension n-1.

They are determined by one vector (**director vector**) perpendicular to the hyperplane

Equation:

$$< x, w > = 0$$

Splits the space in 2 regions

Pos=
$$\{x: \langle x, w \rangle \geq 0\}$$

$$Neg={x: < x, w > < 0}$$

Affine hyperplane

Def.- hyperplanes translated to a point x_0 in the space

Equation:

$$< x-x_0, w> = < x, w> + b = 0$$

Splits the space in 2 regions

Pos= $\{x: < x-x_0, w > \ge 0\}$ Neg= $\{x: < x-x_0, w > < 0\}$

37

Distance to hyperplanes

if
$$||x|| = 1$$
, then $\langle x, y \rangle = ||y|| \cos(x, y)$

The scalar product is

- the length of the projection of **y** in the direction of **x**
- the distance of y to the hyperplane determined by(perpendicular to) x

38

Distance to affine hyperplanes

The **distance** from $x \in H$ to an hyperplane $\langle w, x \rangle + b = 0$

$$d(x, Hyperplane) = \frac{\langle w, x \rangle + b}{\|w\|}$$

The **split** in two regions can be obtained by

$$y = sign(\langle w, x \rangle + b) = sign(d(x, Hyperplane))$$

Distance to affine hyperplanes

The **distance** from $\mathbf{x} \in H$ to an hyperplane $\langle \mathbf{w}, \mathbf{x} \rangle + \mathbf{b} = \mathbf{0}$

$$d(x, Hyperplane) = \frac{\langle w, x \rangle + b}{\|w\|}$$

The **split** in two regions can be obtained by

$$y = sign(\langle w, x \rangle + b) = sign(d(x, Hyperplane))$$

40

The optimization of SVM

Soft margin

SVM in non separable datasets

SVM: convex optimization

To find the optimal soft-margin hyperplane = Solving a quadratic convex optimization problem subject to some constraints

$$\min_{\mathbf{w}, \xi, b} \quad \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i=1}^{m} \xi_{i},$$
s.t.
$$y_{i} (\langle \mathbf{w}, \phi(\mathbf{x}_{i}) \rangle + b) \ge 1 - \xi_{i},$$

$$\xi_{i} \ge 0, \qquad i = 1, \dots, m$$

SVM: convex optimization

Solving a quadratic convex optimization:

- There are very fast optimizers
- Convex means:
 - there exist one global optimum and
 - no local optima (this is not the case in ANN)