## Section 2

Michael Brodskiy

Professor: A. Martsinkovsky

September 19, 2022

## Contents

1 Partial Derivatives

3

## List of Figures

## 1 Partial Derivatives

- The slope of f(x,y) depends on the direction in the xy-plane
  - The slope in the x-direction is called the partial derivative of f with respect to x
  - The slope in the y-direction is called the partial derivative of f with respect to y
  - Notation:  $\frac{\partial f}{\partial x}$ ,  $\frac{\partial f}{\partial y}$  or  $f_x$ ,  $f_y$
  - For Second Derivatives:  $\frac{\partial^2 f}{\partial x^2}$ ,  $\frac{\partial^2 f}{\partial y^2}$ ,  $\frac{\partial^2 f}{\partial y \partial x}$ ,  $\frac{\partial^2 f}{\partial x \partial y}$  or  $f_{xx}$ ,  $f_{xy}$ ,  $f_{yx}$ ,  $f_{yy}$

If  $f, f_x, f_y$ , and  $f_{xy}$  are defined in a small disc around  $(x_o, y_o)$  and  $f_{yx}$  is continuous, then:

$$f_{xy} = f_{yx}$$
 in that disc

- The gradient of f
  - Given  $f(x_1, x_2, ..., x_n)$ , the gradient of f,  $\nabla f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n} \right\rangle$
  - It can be computed at a point:  $\nabla f(p) = \left\langle \frac{\partial f}{\partial x_1}(p), \frac{\partial f}{\partial x_2}(p), \dots, \frac{\partial f}{\partial x_n}(p) \right\rangle$
  - $\nabla f \approx f'(x_o) \Delta x$
  - $\nabla f \approx \nabla f \cdot \Delta \overline{x}$