Tabla de Transformadas de Laplace I

	f(t)	F(s)
1	Impulso unitario S(t)	1'
2	Escalón unitario l(t)	1 s
3	t	$\frac{1}{s^2}$
- 4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\ldots)$	<u> </u>
5	$t^n \qquad (n=1,2,3,\ldots)$	$\frac{n!}{s^{n+1}}$
6	e^{-at}	s + a
7	te-"	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad (n=1,2,3,\ldots)$	$\frac{1}{(s+a)}$
9	$t^n e^{-at}$ $(n = 1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$
10	sen <i>wt</i>	$\frac{\omega}{s^2 + \omega^2}$
11	cos ωt	$\frac{s}{s^2 + \omega^2}$
12	senh <i>wt</i>	$\frac{\omega}{s^2 - \omega^2}$
13	cosh,ωt	$\frac{s}{s^2 - \omega^2}$
14	$\frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a}\left(be^{-bt}-ae^{-at}\right)$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab}\left[1+\frac{1}{a-b}\left(be^{-at}-ae^{-bt}\right)\right]$	$\frac{1}{s(s+a)(s+b)}$

Tabla de Transformadas de Laplace II

		,
18	$\frac{1}{a^2} \left(1 - e^{-at} - ate^{-at} \right)$	$\frac{1}{s(s+a)^2}$
1 9	$\frac{1}{a^2}$ (at - 1 + e^{-at})	$\frac{1}{s^2(s+a)}$
20	e^{-at} sen ωt	$\frac{\omega}{(s+a)^2+\omega^2}$
21	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\operatorname{sen}\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\operatorname{sen}\left(\omega_n\sqrt{1-\zeta^2}t-\phi\right)$ $\phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$	$\frac{s}{s^2+2\zeta\omega_n s+\omega_n^2}$
24	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \operatorname{sen} \left(\omega_n \sqrt{1 - \zeta^2} t + \phi \right)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$
25	$1 - \cos \omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
26	ω t - sen ωt	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
2	7 sen ωt – ωt cos ωt	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
28	$\frac{1}{2\omega} t \operatorname{sen} \omega t$	$\frac{s}{(s^2+\omega^2)^2}$
29	tCOS ωt	$\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$
30	$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) \qquad (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$
31	$\frac{1}{2\omega} \text{(sen } \omega t + \omega t \cos \omega t)$	$\frac{s^2}{(s^2+\omega^2)^2}$

Tabla de Propiedades de la Transformada de Laplace

1	$\mathscr{L}[Af(t)] = AF(s)$
2	$\mathscr{L}[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$
3	$\mathcal{L}_{\pm}\left[\frac{d}{dt} f(t)\right] = sF(s) - f(0\pm)$
4	$\mathcal{L}_{\pm}\left[\frac{d^2}{dt^2} f(t)\right] = s^2 F(s) - s f(0\pm) - \dot{f}(0\pm)$
5	$\mathcal{L}_{\pm} \left[\frac{d^n}{dt^n} \ f(t) \right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f(0\pm)$ en donde $f(t) = \frac{d^{k-1}}{dt^{k-1}} f(t)$
6	$\mathcal{L}_{\pm}\left[\int f(t) dt\right] = \frac{F(s)}{s} + \frac{1}{s}\left[\int f(t) dt\right]_{t=0\pm}$
7	$\mathscr{L}_{\pm}\left[\int\cdots\int f(t)(dt)^{n}\right] = \frac{F(s)}{s^{n}} + \sum_{k=1}^{n} \frac{1}{s^{n-k+1}}\left[\int\cdots\int f(t)(dt)^{k}\right]_{t=0\pm}$
8	$\mathscr{L}\left[\int_0^t f(t) \ dt\right] = \frac{F(s)}{s}$
9	$\int_0^\infty f(t) \ dt = \lim_{s \to 0} F(s) \qquad \text{si} \int_0^\infty f(t) \ dt \ \text{existe}$
10	$\mathscr{L}[e^{-at} f(t)] = F(s+a)$
11	$\mathscr{L}[f(t-\alpha)1(t-\alpha)] = e^{-\alpha s}F(s) \qquad \alpha \ge 0$
12	$\mathscr{L}[tf(t)] = -\frac{dF(s)}{ds}$
13	$\mathscr{L}[t^2f(t)] = \frac{d^2}{ds^2}F(s)$
14	$\mathscr{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s) n = 1, 2, 3, \dots$
15	$\mathscr{L}\left[\frac{1}{t} f(t)\right] = \int_{s}^{\infty} F(s) ds \qquad \text{si } \lim_{s \to 0} \frac{1}{t} f(t) \text{ existe}$
16	$\mathscr{L}\left[f\left(\frac{t}{a}\right)\right] = aF(as)$
17	$\mathscr{L}\left[\int_0^t f_1(t-\tau)f_2(\tau)\ d\tau\right] = F_1(s)F_2(s)$
18	$\mathscr{L}[f(t)g(t)] = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(p)G(s-p) dp$