MATH 308 D200, Fall 2019

3. Geometric background of linear programming (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

Convex Sets

Definition (hyperplane, closed half-space)

Let $\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n$ be a non-zero vector. The set of points $\mathbf{x} \in \mathbb{R}^n$ satisfying an equation of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b$$

is called a **hyperplane** of \mathbb{R}^n . The set of points $x \in \mathbb{R}^n$ satisfying an inequality

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n \leqslant b$$

or

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n \geqslant b$$

is called a **closed half-space** of \mathbb{R}^n .

Alternative notations:

- $\cdot \quad \sum_{i=1}^n a_i x_i = b, \ \sum_{i=1}^n a_i x_i \leqslant b, \ \sum_{i=1}^n a_i x_i \geqslant b$
- $a \cdot x = b$, $a \cdot x \leq b$, $a \cdot x \geq b$ (dot product of the vectors a, x)
- $a^{\mathsf{T}}x = b$, $a^{\mathsf{T}}x \leq b$, $a^{\mathsf{T}}x \geq b$ (matrix product)

Here, vectors are viewed as $n \times 1$ matrices: $\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

Definition (line segment)

Let
$$\mathbf{x} = (x_1, x_2, \dots, x_n), \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
. Then the set

$$\overline{xy} = \{tx + (1-t)y : 0 \leqslant t \leqslant 1\}$$

is said to be the **line segment** between x and y inclusive.

Definition (convex set)

Let S be a subset of \mathbb{R}^n . S is said to be **convex** if

$$\overline{\mathit{x}\,\mathit{y}} \subseteq \mathit{S}$$
 for any $\mathit{x},\mathit{y} \in \mathit{S}$.

Handy facts about inequalities and linear algebra

The following facts hold for real numbers a, b, t and for $n \times 1$ matrices a, x and y.

- (1) We have $a \le b$ if and only if $-a \ge -b$
- (2) If $a \le b$ and $t \ge 0$, then $ta \le tb$
- (3) If $a \le b$ and $c \le d$, then $a + c \le b + d$
- (4) The statement $0 \le x \le b$ means $0 \le x$ and $x \le b$.
- $(5) \ t(\mathbf{a}^{\mathsf{T}}\mathbf{x}) = (t\mathbf{a}^{\mathsf{T}})\mathbf{x} = \mathbf{a}^{\mathsf{T}}(t\mathbf{x})$
- (6) $a^{T}x + a^{T}y = a^{T}(x + y)$

The intersection of arbitrary collection of convex sets in \mathbb{R}^n is convex.

Proof.

Theorem

Every closed half-space of \mathbb{R}^n is a convex set.

Proof.

The intersection of arbitrary collection of convex sets in \mathbb{R}^n is convex.

Proof.

Let $\{S_i: i \in I\}$ $(I \neq \emptyset)$ be a collection of convex sets and let $T = \bigcap_i S_i$ be their intersection. Let $x, y \in T$. Each of the sets S_i is convex, so $\overline{xy} \subseteq S_i$. This holds for every set S_i , so $\overline{xy} \subseteq T$. Therefore T is also convex.

Theorem

Every closed half-space of \mathbb{R}^n is a convex set.

Proof.

The intersection of arbitrary collection of convex sets in \mathbb{R}^n is convex.

Proof.

Let $\{S_i: i \in I\}$ $(I \neq \varnothing)$ be a collection of convex sets and let $T = \bigcap_i S_i$ be their intersection. Let $x, y \in T$. Each of the sets S_i is convex, so $\overline{xy} \subseteq S_i$. This holds for every set S_i , so $\overline{xy} \subseteq T$. Therefore T is also convex.

Theorem

Every closed half-space of \mathbb{R}^n is a convex set.

Proof.

Let H be a half-space, so $H = \{z : a^{\mathsf{T}}z \leq b\}$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Let $x, y \in H$, and consider any number t where $0 \leq t \leq 1$.

The intersection of arbitrary collection of convex sets in \mathbb{R}^n is convex.

Proof.

Let $\{S_i : i \in I\}$ $(I \neq \emptyset)$ be a collection of convex sets and let $T = \bigcap_i S_i$ be their intersection. Let $x, y \in T$. Each of the sets S_i is convex, so $\overline{xy} \subseteq S_i$. This holds for every set S_i , so $\overline{xy} \subseteq T$. Therefore T is also convex.

Theorem

Every closed half-space of \mathbb{R}^n is a convex set.

Proof.

Let H be a half-space, so $H = \{z : a^{\mathsf{T}}z \leq b\}$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Let $x, y \in H$, and consider any number t where 0 < t < 1.

Therefore $tx + (1-t)y \in H$. We have shown that $\overline{xy} \subseteq H$, so H is convex.

The intersection of arbitrary collection of convex sets in \mathbb{R}^n is convex.

Proof.

Let $\{S_i: i \in I\}$ $(I \neq \varnothing)$ be a collection of convex sets and let $T = \bigcap_i S_i$ be their intersection. Let $x, y \in T$. Each of the sets S_i is convex, so $\overline{xy} \subseteq S_i$. This holds for every set S_i , so $\overline{xy} \subseteq T$. Therefore T is also convex.

Theorem

Every closed half-space of \mathbb{R}^n is a convex set.

Proof.

Let H be a half-space, so $H = \{z : a^{\mathsf{T}}z \leq b\}$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Let $x, y \in H$, and consider any number t where $0 \leq t \leq 1$.

The intersection of arbitrary collection of convex sets in \mathbb{R}^n is convex.

Proof.

Let $\{S_i: i \in I\}$ $(I \neq \varnothing)$ be a collection of convex sets and let $T = \bigcap_i S_i$ be their intersection. Let $x, y \in T$. Each of the sets S_i is convex, so $\overline{xy} \subseteq S_i$. This holds for every set S_i , so $\overline{xy} \subseteq T$. Therefore T is also convex.

Theorem

Every closed half-space of \mathbb{R}^n is a convex set.

Proof.

Let H be a half-space, so $H = \{z : a^T z \le b\}$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Let $x, y \in H$, and consider any number t where 0 < t < 1.

Then $\mathbf{a}^{\mathsf{T}}\mathbf{x} \leq b$ and $\mathbf{a}^{\mathsf{T}}\mathbf{y} \leq b$. Since t and 1-t are non-negative, these imply $t(\mathbf{a}^{\mathsf{T}}\mathbf{x}) \leq tb$ and $(1-t)(\mathbf{a}^{\mathsf{T}}\mathbf{y}) \leq (1-t)b$. Adding and simplifying,

$$t(\mathbf{a}^{\mathsf{T}}\mathbf{x}) + (1-t)(\mathbf{a}^{\mathsf{T}}\mathbf{y}) \leq tb + (1-t)b$$
$$\mathbf{a}^{\mathsf{T}}(t\mathbf{x} + (1-t)\mathbf{y}) \leq b.$$

The intersection of arbitrary collection of convex sets in \mathbb{R}^n is convex.

Proof.

Let $\{S_i: i \in I\}$ $(I \neq \varnothing)$ be a collection of convex sets and let $T = \bigcap_i S_i$ be their intersection. Let $x, y \in T$. Each of the sets S_i is convex, so $\overline{xy} \subseteq S_i$. This holds for every set S_i , so $\overline{xy} \subseteq T$. Therefore T is also convex.

Theorem

Every closed half-space of \mathbb{R}^n is a convex set.

Proof.

Let H be a half-space, so $H = \{z : a^{\mathsf{T}}z \leq b\}$ for some $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Let $x, y \in H$, and consider any number t where $0 \leq t \leq 1$.

Then $a^{\mathsf{T}}x \leq b$ and $a^{\mathsf{T}}y \leq b$. Since t and 1-t are non-negative, these imply $t(a^{\mathsf{T}}x) \leq tb$ and $(1-t)(a^{\mathsf{T}}y) \leq (1-t)b$. Adding and simplifying,

$$t(\mathbf{a}^{\mathsf{T}}\mathbf{x}) + (1-t)(\mathbf{a}^{\mathsf{T}}\mathbf{y}) \leq tb + (1-t)b$$

 $\mathbf{a}^{\mathsf{T}}(t\mathbf{x} + (1-t)\mathbf{y}) \leq b.$

Therefore $tx + (1-t)y \in H$. We have shown that $\overline{xy} \subseteq H$, so H is convex.

Definition (Canonical Maximization LP Problem)

The problem

Maximize
$$f(x_1, x_2, ..., x_n) = c_1 x_1 + c_2 x_2 + ... c_n x_n - d$$

subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m$$

$$x_1, x_2, \dots, x_n \geq 0$$

is said to be a canonical maximization linear programming problem.

Definition (Canonical Minimization LP Problem)

The problem

Minimize
$$f(x_1, x_2, ..., x_n) = c_1x_1 + c_2x_2 + ... + c_nx_n - d$$

subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \geqslant b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \geqslant b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \geqslant b_m$
 $x_1, x_2, \dots, x_n \geqslant 0$

is said to be a canonical minimization linear programming problem.

Definition (Canonical Maximization LP Problem (Vector Notation))

Writing
$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
, $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $a_i^{\mathsf{T}} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix}$, $i = 1 \dots m$.

Maximize
$$f(x) = c^{T}x - d$$

subject to $a_{1}^{T}x \leq b_{1}$
 $a_{2}^{T}x \leq b_{2}$
 \vdots
 $a_{m}^{T}x \leq b_{m}$
 $x_{1}, x_{2}, \dots, x_{n} \geq 0, j = 1, 2, \dots, n$

faculty of science

Definition (Canonical Maximization LP Problem (Matrix Notation))

Writing
$$\mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$ and $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^\mathsf{T} \\ \mathbf{a}_2^\mathsf{T} \\ \vdots \\ \mathbf{a}_m^\mathsf{T} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$.

Maximize
$$f(x) = c^{T}x - d$$

subject to $Ax \le b$
 $x \ge 0$

Here
$$Ax \leqslant b$$
 means
$$\begin{cases} a_1 \ x \leqslant b_1 \\ a_2 \ x \leqslant b_2 \end{cases}$$

Matrix Notation for Linear Programming Problems

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{d} \in \mathbb{R}$.

Definition (canonical maximization LP problem)

Maximize
$$f(x) = c^T x - d$$
(objective function)s.t. $Ax \leq b$ (m main constraints) $x \geq 0$ (n non-negativaty constraints)

Definition (canonical minimization LP problem)

Miminize
$$f(x) = c^{T}x - d$$
 (objective function)
s.t. $Ax \ge b$ (m main constraints)
 $x \ge 0$ (n non-negativaty constraints)

Definition (objective function)

The linear functions f in definitions above are called **objective functions**.

Definition (constraint set, feasible points)

The set of all points $x \in \mathbb{R}^n$ satisfying the m+n constraints of a canonical LP problem is said to be **constraint set** or **set of feasible points** of the problem.

Definition

Any feasible solution of a canonical maximization (respectively minimization) LP problem which maximizes (minimizes) the objective function is said to be an **optimal solution**.

Example of using inequality rules to prove infeasibility

Example

Show that the following LP is infeasible.

Maximize
$$f(x) = 2x + 3y$$

subject to $x + y \ge 2$
 $-x + y \le 0$
 $3x - y \le 1$

Example of using inequality rules to prove infeasibility

Example

Show that the following LP is infeasible.

Maximize
$$f(x) = 2x + 3y$$

subject to $x + y \ge 2$
 $-x + y \le 0$
 $3x - y \le 1$

Solution: Suppose that a point (x,y) satisfies all three inequalities. We aim for a contradiction using the facts on slide 4. We multiply the first equation by -1 and multiply the second equation by 2 to get

$$-x - y \le -2$$
$$-2x + 2y \le 0$$

Adding these inequalities we get $-3x + y \le -2$. Adding the last inequality now gives $0 \le -1$. This absurdity contradicts our assumption that (x, y) exists. Therefore the constraint set is empty and the LP is infeasible.

Polyhedral Convex Sets

Definition (polyhedral convex set)

Intersection of finitely many closed half-spaces is called a polyhedral convex set.

Proposition

The constraint set of a canonical LP problem is a polyhedral convex set.

Example

Draw the constraint set corresponding to constraints

$$2x + 5y \geqslant 10$$

$$x - 2y \leqslant 8$$

$$x, y \geqslant 0$$

Polyhedral Convex Sets

Definition (polyhedral convex set)

Intersection of finitely many closed half-spaces is called a polyhedral convex set.

Proposition

The constraint set of a canonical LP problem is a polyhedral convex set.

Example

Draw the constraint set corresponding to constraints

$$2x + 5y \geqslant 10$$

$$x - 2y \leqslant 8$$

$$x, y \geqslant 0$$

Note: This region is unbounded.

Definition (extreme point)

Let $S \subseteq \mathbb{R}^n$ be a convex set. Point $e \in S$ is said to be an **extreme point** of S if there do not exist points $x, y \in S$ and 0 < t < 1 such that e = tx + (1 - t)y.

Theorem

A point $x \in \mathbb{R}^n$ is an extreme point of a constraint set

$$\mathbf{a}_i^{\mathsf{T}} \mathbf{x} \leqslant b_i, \ (\text{for } i = 1, 2, \dots, m),$$

$$x \geqslant 0 \tag{2}$$

if and only if each of the following hold.

- a. x is feasible. That is, x satisfies (1) and (2).
- b. x satisfies n independent constraints with equality. That is, there exist index sets $B_M\subseteq\{1,2,\ldots,m\}$, $B_N\subseteq\{1,2,\ldots,n\}$ such that $|B_M|+|B_N|=n$ and

(i)
$$\mathbf{a}_i^{\mathsf{T}} \mathbf{x} = b_i, \text{ (for } i \in B_M)$$
$$x_i = 0, \text{ (for } j \in B_N)$$

(ii) the set of vectors $\{a_i : i \in B_M\} \cup \{e_j : j \in B_N\}$ is linearly independent, where $e_i = [0\ 0\ \dots\ 0\ 1\ 0\ \dots\ 0\ 1]^{\mathsf{T}}$ has a 1 in the ith entry.

Example:

$$x_1 + 2x_2 + 4x_3 \ge 8$$
 (1)
 $x_1 + x_2 \ge 0$ (2)
 $x_1 \ge 0$ (3)
 $x_2 \ge 0$ (4)
 $x_3 \ge 0$ (5)

	X3≥	0 (5)
Point	Tight	constraints N
(8,0,0) (0,4,0) (0,0,2) (0,0,5)	(1), (1), (1), (2) (2),	(4), (5) (3), (5) (3), (4) (3), (4)
(0,0,0)		(3), (4), (5)

Note: (0,0,5) is **not** an extreme point, even though there are 3 tight constraints, because $\mathbf{a}_2 = [1,1,0]^\mathsf{T}$, $\mathbf{e}_1 = [1,0,0]^\mathsf{T}$, $\mathbf{e}_2 = [0,1,0]^\mathsf{T}$ are not linearly independent!

(0,0,0) is not an extreme point because it is not feasible!