Unit 5: IOT Case Studies

Domain Specific IOT

- Home Automation
 - Smart Lighting
 - Smart Appliances
 - Home Intrusion
- Cities
 - Smart Parking
- Environment
 - Weather Monitoring
 - Air Pollution Monitoring
- Agriculture
 - Smart Irrigation

SMART LIGHTING

- The System uses two modes Auto and Manual
- In Auto Mode, it measures the Light and switches the light On or Off accordingly if the room is dark.
- In Manual Mode, the light can be forced to be switched On or Off by the user irrespective of the data received by the light sensor.
- It can also be switched On or Off remotely.

Smart Lighting

SMART APPLIANCES

 The System when connected to central system and able to be programmed or controlled remotely based on input from sensors detecting factors such Temperature, Light Levels or Activity.

Example:

- Refrigerator- Orders Essential food such as egg and milk automatically. Also can detect rotten food.
- Water Purifier- Can check various water quality parameters and alert the user by sending notification to a phone.

HOME INTRUSION

- The aim here is to detect home Intrusion using sensors such as PIR and Door Sensors.
- PIR or Passive Infrared Sensor can detect movement of Human Body and Door Sensors can detect if the door was opened or closed.
- Events may be logged and stored in a Database
- If an Unauthorized event is detected, the concerned Authority is notified remotely.

Cities

Smart Parking

- The purpose of Smart Parking is to detect Vacant and Allotted Parking spots without human intervention.
- The information is then sent to an Backend Application via Internet.
- These application can be accessed by drivers through Smartphones, Tablets or in car Navigation Systems.
- Information is collected via a Local Controller and sent via Internet to a Remote Server

Smart Parking

Figure 9.18: Process specification for the smart parking IoT system

Figure 9.23: Deployment of sensors for smart parking system

Environment

Weather Monitoring

- It collects data on environmental conditions such as temperature, humidity, pressure and light in an area using multiple nodes.
- The end nodes are equipped with various sensors.
- The end nodes send the data to the cloud and the data is stored in a database.
- Analysis is done on the data collected and predictions are made.

Environment

Air Pollution Monitoring

- It collects data on Air Quality (Particles and Contents in Air) such as Carbon Dioxide, Oxygen, Nitrogen etc.
- The end nodes are equipped with various sensors.
- The end nodes send the data to the cloud and the data is stored in a database.
- Analysis is done on the data collected and visualizations are made.

Agriculture

Smart Irrigation

- Smart Irrigation System use IoT devices along with Soil Moisture Sensors to determine the amount of moisture in the soil and release water through irrigation pipes.
- The data on soil moisture is sent to the cloud and the data is stored in a database.
- Analysis is done on the data collected to plan watering schedules.