

Photo Al Recovery Bittensor Subnet

Introduction

We want to create a universal tool for photo restoration. Today, thousands of people — from professional photographers to everyday users — want to bring new life to old photographs or enhance the quality of their modern ones.

Imagine a simple scenario: in a group photo, someone likes how they look and wants to crop that fragment — originally 438×424 pixels — and upscale it to 4096×3963 pixels (here we will include demonstration images).

At the moment, this is only possible through a manual, time-consuming process. A professional would iteratively upscale the image by a factor of 2 using neural networks, manually clean up artifacts, and repeat the process again and again. Even for an experienced specialist, this workflow takes at least an hour to achieve a high-quality result.

Our goal is to remove human labor from the equation, making it possible to perform upscaling directly by a factor of x6 or more with high-quality neural network models. In addition to upscaling, we aim to support other advanced image restoration tasks such as denoising, inpainting, artifact removal, and watermark removal, creating a truly versatile photo enhancement platform.

1) Vision

To address these challenges and build a truly versatile restoration platform, we are developing a Bittensor subnet that leverages the network's decentralization, scalability, and incentive mechanisms. This foundation enables us to create a dynamic, self-improving ecosystem where restoration algorithms continuously evolve through competition and collaboration.

2) Problem Statement

- Current limitations: Existing solutions (e.g., Gigapixel AI, Waifu2x, Topaz) perform reasonably well in simple scenarios but often fail to deliver high-quality results when dealing with heavy compression, very small crops, or multiple layers of degradation.
- Manual workflow bottleneck: Human-driven restoration using neural networks combined with manual editing in Photoshop remains the most reliable method today but also the most expensive, as it requires hours of skilled professional work.

3) Proposed Approach

A decentralized competition-plus-service model:

- 1. Competition Track (on-chain incentives): Validators generate complex, synthetic restoration tasks; Miners submit their solutions; Validators evaluate quality using PSNR, SSIM, and LPIPS metrics and assign a weight to each Miner based on their performance in the network.
- 2. Commercial Track (user-facing): Users upload images via web or mobile; the subnet routes jobs to higher-weighted Miners, ensuring the best available quality; users then receive their enhanced results automatically.

4) Subnet Roles & Flow

- Users: Submit images and specify the type of restoration (e.g., upscale x6, denoise, inpaint). Receive processed results.
- Miners (Model Providers): Run their own computer vision and deep learning models to perform the requested restoration tasks.
- Validators (Quality Scorers):
- Evaluate the outputs from Miners using metrics such as PSNR, SSIM, and LPIPS.
- Assign weights to Miners based on their performance.
- Forward raw evaluation data and logs to the subnet maintainers for deeper analysis, enabling detection of cheating patterns or inconsistencies.

5) Competition: Synthetic Task Protocol

- 1. Original Creation (Создание оригинала): Several images from the dataset are combined and augmented to create a single reference image (the "original").
- 2. Compression: The original is purely downscaled by a factor of x6, without adding noise, format conversion, or any other artifacts just clean resolution reduction.
- 3. Task Delivery: Only the compressed image is sent to the Miners as the input for restoration. The original high-quality image remains hidden as the ground truth.
- 4. Evaluation: Validators evaluate the restored result strictly using PSNR, SSIM, and LPIPS metrics. No additional metrics or evaluation methods are currently applied.

6) Commercial Service Architecture

- Interfaces: Web and mobile applications where users can easily upload images and select the desired type of restoration (e.g., upscale x6, denoise, inpaint).
- Routing: Tasks are automatically routed to miners with the highest assigned weights, ensuring that users receive results from the most capable models available.
- Output Delivery: The enhanced images are returned to users through the same interface, with optional previews and side-by-side comparisons for convenience.

7) Technologies

- Network: Bittensor decentralized computation and incentive framework.
- Models: Architecture-agnostic Miners are free to use SR transformers, GANs, diffusion models, or hybrid pipelines.
- Metrics: Quality scoring is performed using PSNR, SSIM, and LPIPS.

8) Advantages

- Continuous quality improvement: Competition ensures rapid model iteration and higher performance over time.
- Lower barrier for users: Automated restoration becomes accessible to anyone, from professionals to casual users.
- Scalability: Decentralized design scales with the number of participating Miners and Validators.
- Versatility: Supports upscaling, denoising, inpainting, artifact cleanup, and watermark removal in a single platform.

9) Market & Competitors

- Existing solutions: Gigapixel AI, Waifu2x, Topaz Labs.
- Differentiator: A decentralized model marketplace that objectively assigns weights to Miners based on performance fostering innovation and driving down costs while improving quality.

10) Monetization

- In-network incentives: Miners are rewarded in the subnet's alpha tokens, reflecting their contribution and performance.
- Paid Service: The commercial service will be priced at approximately \$1 per 1,000 image enhancement runs, keeping it accessible for both individuals and professionals.
- Value Growth: Service revenue will be reinvested into the subnet's alpha token economy, driving token value growth and creating shared benefits for all participants in the ecosystem.

11) Roadmap

- Q3 2025:
- Subnet code stabilization; improvements to task generation and scoring.
- Monitoring and analysis for detection of inconsistencies or unfair practices.
- Q4 2025:
- Expansion to additional tasks (denoising, inpainting, artifact removal, watermark removal).
- Launch of the MVP commercial web service.
- Q1 2026:
- Public testing of the commercial platform; onboarding of early users.
- Q2 2026+:
- Full commercial launch; release of APIs for partners and enterprise integrations.

12) KPIs

- Benchmarking: Regular comparison of miners' results against leading commercial solutions to ensure competitive or superior quality.
- Cost Assessment: Continuous evaluation of pricing fairness relative to delivered quality and user interest.
- Capacity and Load Management: Monitoring the workload of miners and adjusting mandatory performance thresholds if a miner's rewards are high, higher performance and reliability will be required.