

NPS-53-88-010

NAVAL POSTGRADUATE SCHOOL

Monterey, California

HOW GOOD ARE GLOBAL NEWTON METHODS?

Part 2

Allen Goldstein

September 1988

Approved for public release; distribution unlimited Prepared for:

Naval Surface Weapons Center
Dahlgren, VA 22448-5000

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral R. C. Austin Superintendent

Harrison Shull Provost

This report was prepared in conjunction with research conducted for the Naval Surface Weapons Center and funded by the Naval Postgraduate School. Reproduction of all or part of this report is authorized.

Prepared by:

manada meda meda hada se de area, a cala como de medo a

ALLEN A. GOLDSTEIN

Adjunct Professor of Mathematics

Reviewed by:

HAROLD M. FREDRICKSEN

Chairman

Department of Mathematics

Released by:

KNEALE T. MARSHALL

Dean of Information and

Policy Sciences

UNCLASSIFIED 28 SECURITY CLASSIFICATION AUTHORITY 29 DECLASSIFICATION AUTHORITY 20 DECLASSIFICATION AUTHORITY 20 DECLASSIFICATION AUTHORITY 21 PERFORMING ORGANIZATION REPORT NUMBER(S) NPS-53-88-010 22 NAME OF PERFORMING ORGANIZATION Naval Postgraduate School 23 NAME OF PERFORMING ORGANIZATION Naval Postgraduate School 24 NAME OF FUNDING SPONSORING ORGANIZATION Naval Surface Weapons Center 25 Address (City, State, and ZIP Code) Monterey, CA 93943 26 AUDRESS (City, State, and ZIP Code) Monterey, CA 93943 27 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORMN Direct Funding Re AUDRESS (City, State, and ZIP Code) Monterey, CA 93943 20 SOURCE OF FUNDING NUMBERS PROCRAM ELEMENT NO NO. ACCESSION NO. 10 SOURCE OF FUNDING NUMBERS PROCRAM ELEMENT NO NO. ACCESSION NO. 11 TITLE (Include Security Classification) How Good Are Global Newton Methods. Part 2 - UNCLASSIFIED 12 PERSONAL AUTHOR(S) Allen A. Goldstein 13 TYPE OF REPORT Technical Report 13 TIME COVERED FROM 10/87 TO 8/88 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT Technical Report 15 SUPPLEMENTARY NOTATION		REPORT DOCUM	MENTATION	PAGE		
Approved for public release; distribution unlimited 4 PRICHAMINA ONLAMIZATION REPORT NUMBER(IS) NPS-53-88-010 52 NAME OF PRICHAMING ONLAMIZATION NAVAL POSTGRADURE School 53 NPS-53-88-010 54 NAME OF PRICHAMING ONLAMIZATION NAVAL POSTGRADURE SCHOOL 55 NAME OF PRICHAMING ONLAMIZATION NAVAL POSTGRADURE SCHOOL 56 ADDRESS (City, State, and IP Code) Monterey, CA 93943 58 NAME OF SUNDING, SPONSORING ONLAMIZATION NAVAL POSTGRADURE SCHOOL 59 NAME OF SUNDING, SPONSORING ONLAMIZATION NAVAL POSTGRADURE SCHOOL 50 OFFICE SYMBOL 60 O	IS REPORT SECURITY CLASSIFICATION UNCLASSIFIED		ID RESTRICTIVE	MARKINUS		
unitated a percomminu Onuannia illon report number(s) in PS-53-88-010 bus Name Of Periodiminu Onuannia illon naval Postgraduate School bus Name Of Periodiminu Onuannia illon naval Postgraduate School bus Name Of Periodiminu Onuannia illon naval Postgraduate School bus Name Of Periodiminu Onuannia illon naval Postgraduate School bus Name Of Sunding Sponsoring bus Office Symbol noncarrian in Structure and IP Code) Monterey, CA 93943 bus Office Symbol noncarrian in Structure instrument identification number ONN Direct Funding a Audress (cir., State. and IP Code) Noncarrian in Structure instrument in Instrument in Number ONN Direct Funding a Code of Funding Sponsoring noncarrian in Structure in Instrument instrume	24 SECURITY CLASSIFICATION AUTHORITY		-			
NPS-53-88-010 NAVAL POSTGRADUATE School SC ADDRESS (City, State, and LIP Code) Monterey, CA 93943 NPS-53-88-010 NAVAL SURface Weapons Center So ADDRESS (City, State, and LIP Code) Dahlgren, VA 22448-5000 NAVAL POSTGRADUATON NAVAL POSTGRADUATE School NAVAL POSTGRADUATON NAVAL POSTGRADUATE School NAVAL P	20 DECLASSIFICATION / DOWNGRADING SCHEDU	LE		or public re	lease; dis	stribution
NAME OF MAINTONING ORGANIZATION Naval Postgraduate School (11 sppicable) S3 A ADDRESS (City, State, and IP Code)	4 PERFORMING ONGANIZATION REPORT NUMBE	H(S)	5 MUNITURING	OHGANIZATION HE	PORT NUMBÉ	K(S)
Naval Postgraduate School (If applicable) (A address (Gr., State, and Iff Code) Monterey, CA 93943 Sa hame of funding sponsoring Organization Naval Postgraduate School Sa hame of funding sponsoring Organization Naval Postgraduate School Sa hame of funding sponsoring Organization Naval Postgraduate School Sa hame of funding sponsoring Organization Naval Postgraduate School Sa hame of funding sponsoring Organization Organization Organization Sa hame of funding sponsoring Organization Org	NPS-53-88-010		NPS-53-88-	-010	٠.	
Naval Postgraduate School 6. ADDRESS (Cry. State. and 20° Code) Monterey, CA 93943 8. ADDRESS (Cry. State. and 20° Code) Monterey, CA 93943 8. ADDRESS (Cry. State. and 20° Code) Naval Postgraduate School 8. ADDRESS (Cry. State. and 20° Code) Naval Postgraduate School 8. ADDRESS (Cry. State. and 20° Code) Naval Postgraduate School 8. ADDRESS (Cry. State. and 20° Code) Monterey, CA 93943 8. ADDRESS (Cry. State. and 20° Code) Monterey, CA 93943 10 SOURCE OF FUNDAND MUMBER PROGRAM PROSCRAM	BA NAME OF PERFORMING ORGANIZATION		14 NAME OF MU	AADRO DAIRCIINC	WZATION	
Dahlgren, VA 22448-5000 Ba NAME OF FUNDING SPONSORING ORGANIZATION NUMBER ORGANIZATION NAME OF STRUMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION NAME POSTGRADUATE School 19 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION ORGANIZATION ORGANIZATION NUMBER ORGANIZATION ORGANIZATION ORGANIZATION NUMBER ORGANIZATION ORGANIZA	Naval Postgraduate School		Naval Surfa	ice Weapons (Center	
Ban Mark Of Funding, SPONSORING (If Applicable) Naval Postgraduate School 8a AUDRESS (City, State, and 2IP Code) Monterey, CA 93943 10 SOURCE OF FUNDING, NUMBERS PROGRAM POJECT Funding 10 SOURCE OF FUNDING NUMBERS PROGRAM POJECT TASK MON. MORE UNIT ACCESSION NO 11 ITHE (Include Security Classification) How Good Are Global Newton Methods. Part 2 - UNCLASSIFIED 12 PERSONAL AUTHOR(S) Allen A. Goldstein 13a TYPE OF REPORT Technical Report 13b TIME COVERED FROM 10/87 To 8/88 14 Date Of REPORT (Treat, Month, Day) 15 PAGE COUNT 16 SUPPLEMENTARY NOTATION 17 (OSATI CODE) 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Linear Programming, Computational Complexity, [] [] [] [] [] [] [] [] [] [] [] [] []			/b AODRESS (Cit	y, State, and ZIP C	ode)	
ORANIZATION Naval Postgraduate School 8. AUDRESS (City. State, and Lift Code) Monterey, CA 93943 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO NO. 11. ITLE (Include Security Classification) How Good Are Global Newton Methods. Part 2 - UNCLASSIFIED 12. PERSONAL AUTHOR(S) Allen A. Goldstein 13. TYPE OF REPORT Technical Report 13. Supplementary Notation 14. Supplementary Notation 15. Supplementary Notation 16. Supplementary Notation 17. COSATI CODES 18. Subject TERMS (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necessary and identify by block number) 19. ABSIRACI (Continue on reverse if necess	Monterey, CA 93943		Dahlgren, V	7A 22448-500	00	
Monterey, CA 93943 10 SQUACE OF FUNDING NUMBERS PROGRAM PAD.ECT TASK NO. ACCESSION NO.	ORGANIZATION	(If applicable)	į.			NUMBER
Monterey, CA 93943 PROCRAM PROJECT TASK WORK UNIT ACCESSION NO	 	L	 -			
How Good Are Global Newton Methods. Part 2 - UNCLASSIFIED 12 PERSONAL AUTHOR(S) Allen A. Goldstein 13a TYPE OF REPORT Technical Report 13b TIME COVERED FROM 10/87 TO 8/88 1 September 1988 1 September 1988	·		PROGRAM	PAULECT	TASK	
How Good Are Global Newton Methods. Part 2 - UNCLASSIFIED 12 PERSONAL AUTHOR(S) Allen A. Goldstein 13a TYPE OF REPORT Technical Report 13b TIME COVERED FROM 10/87 TO 8/88 1 September 1988 1 September 1988	L D		<u> </u>			
Allen A. Goldstein 13a IYPE OF REPORT 13b Time COVERED 14 DATE OF REPORT (treat Month, Day) 15 PAGE COUNT 15 Technical Report 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number) 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number) 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number) 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identify by block number) 19 ABSTRACT (Continue on reverse it necessary and identif	1.	ods. Part 2 - U	NCLASSIFIED			•
Technical Report FROM 10/87 TO 8/88 1 September 1988 39 10 SUPPLEMENTARY NOTATION 18 SUBJECT TERMS (Continue on reverse if necessary and identify by Block number) 17 COSATI (CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Linear Programming; Computational Complexity	12 PERSONAL AUTHOR(S) Allen A. Gol	dstein				
17 (OSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Linear Programming, Computational Complexity, [] Linear Programming, Computational Complexity, [] Linear Programming, Computational Complexity, [] Linear Programming, Computational Complexity is estimated. As an application a method in this setting is exhibited and its computational complexity is estimated. As an application a method is proposed to solve problems of linear inequalities (linear programming, phase 1). Using an example of the Klee-Minty type due to Blair, it was found that the simplex method (used in super-lindo) required over 2,000 iterations, while the method above required an average of 8 iterations (Newton steps) over 15 random starting values. Linear programming of the Classification [] UNICLASSIFIED OF IS 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT DTIC USERS 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED UNCLASSIFIED OF ICE SYMBOL					Day) 15 PAG	
Linear Programming; Computational Complexity, [] [] [] [] [] [] [] [] [] [16 SUPPLEMENTARY NOTATION					
Newton's method applied to certain problems with a discontinuous derivative operator is shown to be effective. A global Newton method in this setting is exhibited and its computational complexity is estimated. As an application a method is proposed to solve problems of linear inequalities (linear programming, phase 1). Using an example of the Klee-Minty type due to Blair, it was found that the simplex method (used in super-lindo) required over 2,000 iterations, while the method above required an average of 8 iterations (Newton steps) over 15 random starting values. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT EDIDICLASSIFIED INDIVIDUAL 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED UNCLASSIFICATION 22 TELEPHONE INCLUDER AREA CODE 222 DIELEPHONE INCLUDER AREA CODE 222		18 SUBJECT TERMS	Continue on reverse	e if necessary and	identify by bi	lock number)
Newton's method applied to certain problems with a discontinuous derivative operator is shown to be effective. A global Newton method in this setting is exhibited and its computational complexity is estimated. As an application a method is proposed to solve problems of linear inequalities (linear programming, phase 1). Using an example of the Klee-Minty type due to Blair, it was found that the simplex method (used in super-lindo) required over 2,000 iterations, while the method above required an average of 8 iterations (Newton steps) over 15 random starting values. 20 Distribution/Availability Of Abstract Diricusers 21 Abstract security Classification UNCLASSIFICATION UNCLASSIFICATION 22 TELEPHONE (Includer Area Code) 22c. Office Symbol.	FIELD GROUP SUB-GROUP	Linear Program	ming, Computa	tional Compl	lexity , (المصرالا
Newton's method applied to certain problems with a discontinuous derivative operator is shown to be effective. A global Newton method in this setting is exhibited and its computational complexity is estimated. As an application a method is proposed to solve problems of linear inequalities (linear programming, phase 1). Using an example of the Klee-Minty type due to Blair, it was found that the simplex method (used in super-lindo) required over 2,000 iterations, while the method above required an average of 8 iterations (Newton steps) over 15 random starting values. 20 Distribution/Availability Of Abstract Diricusers 21 Abstract security Classification UNCLASSIFICATION UNCLASSIFICATION 22 TELEPHONE (Includer Area Code) 22c. Office Symbol.		i				
to be effective. A global Newton method in this setting is exhibited and its computational complexity is estimated. As an application a method is proposed to solve problems of linear inequalities (linear programming, phase 1). Using an example of the Klee-Minty type due to Blair, it was found that the simplex method (used in super-lindo) required over 2,000 iterations, while the method above required an average of 8 iterations (Newton steps) over 15 random starting values. 20 Distribution/Availability OF ABSTRACT DIRCLASSIFIED 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22 TABLE OF MESPONSIBLE INDIVIDUAL	1 ABSTRACT (Continue on reverse if necessary	and identify by block i	number)			
220 TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL	to be effective. A global Newton method in this setting is exhibited and its computational complexity is estimated. As an application a method is proposed to solve problems of linear inequalities (linear programming, phase l). Using an example of the Klee-Minty type due to Blair, it was found that the simplex method (used in super-lindo) required over 2,000 iterations, while the method above required an average of 8 iterations (Newton steps) over					
220 TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL						
220 TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL						
Allen A. Goldstein 22b TELEPHONE (Include Area Code) (408) 646-2335 22c Office SYMBOL (408) 646-2335	DUNCLASSIFIEDAINLIMITED - SAME AS	RPT DTIC USERS	21 UNCLASSIF	CURITY CLASSIFIC	ATION	
	Allen A. Goldstein	,	226 TELEPHONE (408) 646-2	include Area Code 335	22c. OFFICE 53Go	SYMBOL

How good are global Newton methods. Part 2

A. A. Goldstein*

In the first part of this ms. we made some observations about global Newton methods on a simple class of mappings from a real separable Hilbert space H into H. The map F was assumed to be everywhere differentiable with a derivative D that was onto and satisfied $\mu \|h\| \le \|D(x)h\| \le \lambda \|h\|$, for all $h \in H$ and some $\mu > 0$. Relying on theorems of Nemerovsky and Yudin(1977), we showed that no formulation of a global Newton method could achieve better than linear convergence at a certain specified rate for every member of the class. Assuming that D was uniformly Lipschitz continuous with constant L it was easy to utilize the Kantorovich inequalities (1948). Points satisfying the Kantorovich inequalities are guaranteed to be a satisfactory initial point for Newton's method. By satisfactory, we mean that the sequence converges to a root at a quadratic rate, as will be seen below. Following a similar terminology of Smale(1986), such points will be called approximate roots.

We used the Kantorovich inequalities to formulate a coarse version of Smale's global Newton method to obtain the complexity of the algorithm in this setting. The Kantorovich condition is: if x_0 satisfies $||D^{-1}(x_0)|| ||D^{-1}(x_0)F(x_0)||\bar{L}| = \beta \eta \bar{L} < .5$ then x_0 is an approximate root. Here \bar{L} is the Lipschitz constant for D on the ball $B = \{x \in H: ||x - x_0|| \le 2||D^{-1}(x_0)F(x_0)||\}$. We found that starting at x_0 we could achieve a point satisfying the Kantorovich inequalities in less than:

$$11.46 \, [\|F(x_0)\|L/\mu^2] \, ln \, (1.443 \, ln \, 8Q) \, steps$$

where: L is the global Lipschitz constant, and $Q = \lambda/\mu$ the condition number. It is noteworthy that this algorithm is insensitive to the condition number. When the word 'steps' appears in this paper, as above, we mean the preceding formula to be rounded up to the nearest integer.

Some numerical experiments however were disappointing. The poor performance stemmed from our reliance on the Kantorovich inequality. This inequality is overconservative when

^{*} supported by grant NPS LMC-M4E1

the dimension of H exceeds 1. In a test example even though we estimated \bar{L} along only one ray (in the direction of the Newton step) and thus determined a \bar{L} that was a lower bound, we found approximate roots where the Kantorovich constant $\beta \eta \bar{L}$ was several thousand instead of < 1/2. (See definition 1.5 below). For this reason we undertook to revise the Kantorovich inequalities, hoping to obtain better sufficient conditions. We shall do this by avoiding the Schwarz inequality at a key spot. In general we were guided by Kantorovich's original proof. A parameter K replaces \bar{L} on the ball B. Estimates are given for the decrease in the norm of the vector valued function. This leads to the definition of a an ϵ approximate root. We believe this concept will be useful in the further development of global Newton algorithms. The estimates we give for the convergence rates can probably improved by a one dimensional analysis, as was done by Gragg and Tapia(1974) for the Kantorovich Theorem..

One consequence of the revised proof is that the derivative operator need not be continuous, although Lipschitz continuity is convenient in a neighborhood of each root. As an example we consider the problem of solving linear inequalities. (Phase 1 linear programming) By the use of Lagrange multipliers the method presented here can be extended to linear programming and other types of programs. We shall however only consider linear inequalities in this ms. The idea of using Newton's method for linear programming may be found in Smale(1986). Our technique will be to use a penalty function approach. In this setting we have a twice differential convex function to minimize, with jump discontinuities in the second derivative. For the code we refurbished an old global Newton method of our own. This was easy because it was already up and running. We tried the method on an example due to C. Blair(in Kortanek and Shi 1987) that is a version of the famous Klee-Minty example. This problem was suggested to us by Ken Kortanek, and we are thankful for his kind help. While Ken was visiting, he ran his scaling (modified Karmarker) algorithm on my computer for a benchmark in the 10 variable case. The robust 'Superlindo' by Linus Schrage was also used as a benchmark for these problems. For 8, 10, and 12 variables Superlindo took 35, 311, and 2236 iterations respectively. Our algorithm hardly changed in the number of steps versus dimension. Ken Kortanek remarked he noticed the same phenomena with their algorithm. In the appendix appears a list of 15 consecutive runs for the case n=12 with the components of the initial point being fed by a random number generator with values between -1000 and 1000. The number of steps until termination ran between 6 Newton steps plus 2 gradient steps, and 12 Newton steps plus 3 gradient steps.

The average was 8 Newton steps and 19/15 gradient steps. Full double precision accuracy was achieved. The Kortanek-Shi algorithm in the 10 variable case was almost as fast as ours for this case, but it achieved only 3 significant figure accuracy.

These spectacular results were unexpected. Unlike the Smale global Newton method, which we as yet have not implemented, the method we used is sensitive to the condition number of the system. See 3.0 below.

There remains to test the algorithm on a general mix of problems to see if it is worth adding to the armamentarium of linear programming. Thus the question of whether we have a viable method is not settled at this time.

In what follows, the Kantorovich inequality will be sharpened. Let f be Frechet differentiable mapping between real Banach spaces E and F. Let f'(x) denote the derivative at x and $f'_{-1}(x)$ its inverse. The Kantorovich inequality states that if x_0 is given such that f' is Lipschitz continuous with constant K on the ball $\{x \in E : ||x-x_0|| \le 2 ||f'_{-1}(x_0)f(x_0)|| = 2 \eta_0\}$, if $||f'_{-1}(x_0)|| = \beta_0$ and if $\eta_0\beta_0K < 1/2$, then x_0 is an approximate root. This means that the sequence generated by Newton's method will converge quadratically to a root at least as fast as the rate estimated by the theorem below.

THEOREM 1.0 Let f be a map between real Banach spaces E and F. Assume f is Frechet differentiable on an open subset E' of E. Let $x_0 \in E'$ be given such that $(f'(x_0))^{-1} = f'_{-1}(x_0)$ exists. Set

$$\eta_0 = \|f'_{-1}(x_0)f(x_0)\|$$
 $S = \{x \in E : \|x - x_0\| \le 1.68 \, \eta_0 \}.$ Assume that $S \subset E'$

$$Set$$

$$\beta_0 = \|f'_{-1}(x_0)\|, \quad and \ let$$

$$S' = \{x \in S : \|f'_{-1}(x)\| \le 2.3 \, \beta_0 \}.$$

Finally set:

$$K = \left\{ \sup \frac{\|f'_{-1}(x)(f'(x) - f'(\xi))\|}{\|f'_{-1}(x)\| \|f'_{-1}(x)f(x)\|} : x \in S' , \ \xi = x + tf'_{-1}(x)f(x) \ and \ t \in (0,1) \right\}.$$

If $\eta_0 \beta_0 K = h_0 \le 1/3$, then x_0 is an approximate root.

PROOF By hypothesis x_1 is well defined. Let $H_1(x_0, x_1) = H_1 = f'_{-1}(x_0)f'(x_1) = I - f'_{-1}(x_0)(f'(x_0) - f'(x_1))$. H_1 maps E into itself. Our hypotheses imply that $||f'_{-1}(x_0)(f'(x_0) - f'(x_1))|| \le h_0 \le 1/3$, whence H_1 has an inverse. We have the estimate $||(H_1)^{-1}|| = (1 - h_0)^{-1} \le 3/2$. Also $||H_1|| \le 4/3$. Observe that $f'(x_0)H_1 = f'(x_1)$ and $(H_1)^{-1}f'_{-1}(x_0) = f'_{-1}(x_1)$. Thus $f'_{-1}(x_1)$ exists and x_2 is well defined.

Let $\beta_1 = \|f'_{-1}(x_1)\|$ and $\eta_1 = \|x_1 - x_2\|$. Thus $\beta_1 = \|f'_{-1}(x_1)\| \le 1.5 \|f'_{-1}(x_0)\|$. Let F_1 be defined by the formula $F_1(x) = x - f'_{-1}(x_0)f(x)$. Since $F_1(x_0) = x_1$ and $F_1(x_1) = x_1 - f'_{-1}(x_0)f(x_1)$,

$$f'_{-1}(x_0)f(x_1) = F_1(x_0) - F_1(x_1).$$

By the generalized mean value theorem of Graves (1927),

$$||F_1(x_1) - F_1(x_0)|| \le \sup\{ ||F_1'(\xi)|| : t \in (0,1) \text{ and } \xi = tx_0 + (1-t)x_1 \} ||x_1 - x_0||.$$

But $||F_1'(\xi)|| = ||I - f_{-1}'(x_0)f'(\xi)|| = ||f_{-1}'(x_0)(f'(x_0) - f'(\xi))|| \le K\eta_0\beta_0$. Thus:

$$||f'_{-1}(x_1)f(x_1)|| = h_0 \, \eta_0,$$

$$\eta_1 = \|f'_{-1}(x_1) f(x_1)\| = \|H_1^{-1} f'_{-1}(x_0) f(x_1)\| \le h_0 \eta_0 (1 - h_0)^{-1}$$

and

$$h_1 = \beta_1 \eta_1 K \le (1 - h_0)^{-2} h_0^2 \le 9h_0^2/4 \le 1/4$$

At this juncture our estimate will differ from that of Kantorovich by a factor of 1/2 that will appear in the recursion for h_n . Kantorovich gains a factor of 1/2 because of the Lipschitz condition (or 2nd differentiability condition) on H. Clearly x_1 and x_2 belong to S, and also to S'. Now define in turn H_2 , β_2 , η_2 , F_2 , and h_2 , mutatis mutandis, to obtain β_2 , η_2 , and h_2 in terms of β_1 , η_1 , and h_1 .

For k=1,2,3,...,n, assume that $\beta_k \eta_k K \leq 1/3$ and $x_k \in S'$. Assume moreover that the recursion formulae:

$$\beta_n = \beta_{n-1}(1 - h_{n-1})^{-1}$$
 $\eta_n = h_{n-1}\eta_{n-1}(1 - h_{n-1})^{-1}$ $h_n = h_{n-1}^2(1 - h_{n-1})^{-1}$

hold for k=1,2,3,...,n. Since these recursion formulae hold also for k=n+1, we have the following sequence for $\{h_k\}$

$$\frac{1}{3}$$
, $\frac{1}{4}$, $\frac{1}{64}$, $\frac{1}{3968}$, ..., $\frac{1}{(\frac{1}{h_n}-1)^2}$

Since:

$$\beta_{n+1} \le \beta_0 \left(\frac{1}{(1-h_0)} \frac{1}{(1-h_1)}, ..., \frac{1}{(1-h_n)} \right)$$

$$\eta_{n+1} \le \eta_0 \left(\frac{h_0}{1 - h_0} \frac{h_1}{1 - h_1} \frac{h_2}{1 - h_2}, \dots, \frac{h_n}{1 - h_n} \right)$$

and

$$||f'(x_{n+1})|| \le ||f'(x_0)|| (1+h_0) (1+h_1), ..., (1+h_n)$$

We get from above the formulae:

$$\begin{split} \beta_{n+1} & \leq \beta_0 \left(\frac{3 \cdot 4 \cdot 9 \cdot 64 \cdot 3969 \cdot 1575024 \cdot , ..., \cdot 1}{2 \cdot 3 \cdot 8 \cdot 63 \cdot 3968 \cdot 1575023 \cdot , ..., \cdot (1-h_n)} \right) \leq 2.3 \, \beta_0, \ for \ n = 1, 2, 3, ... \\ \eta_{n+1} & \leq \eta_0 \left(\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{8} \cdot \frac{1}{63} \cdot \frac{1}{3967} \cdot , ..., \frac{h_n}{(1-h_n)} \right) \\ & \|f'(x_n)\| \leq \|f'(x_0)\| \left(\frac{4 \cdot 5 \cdot 10 \cdot 65 \cdot 3970 \cdot , ..., \cdot (1+(h_n)^{-1})}{3 \cdot 4 \cdot 9 \cdot 64 \cdot 3969 \cdot , ..., \cdot (h_n)^{-1}} \right) \\ & \|f'(x_{n+1}\| \leq 1.9 \, \|f'(x_0)\| \ for \ n = 1, 2, 3, \end{split}$$

To complete the induction we show that $x_{n+1} \in S'$. The triangle inequality gives:

$$||x_{n+1}-x_0|| \leq \eta_0 + \eta_1 + \dots, \eta_n$$

$$\leq \eta_0 \left(1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{48} + \frac{1}{3024} + \dots, \prod_{k=1}^n \frac{h_k}{1 - h_k}\right) \leq 1.68 \, \eta_0 \text{ for } n = 1, 2, 3...$$

Thus $x_n \in S$. Since $\beta_{n+1} \leq 2.3\beta_0$ by the above inequality, the induction is completed.

Similarly we have:

$$||x_{n+p+1} - x_n|| \le \eta_n + \eta_{n+1} + \eta_{n+p} < 1.68\eta_n.$$

Since $\{\eta_n\}$ converges to 0, the sequence $\{x_n\}$ is Cauchy with limit, say x^* . Since $f(x_n) = f'(x_n)(x_{n+1} - x_n)$, $\{f(x_n)\}$ converges to 0, and $f(x^*) = 0$.

We now estimate the rate of convergence. We have, at worst, that $h_n \leq \frac{4}{9} \left(\frac{9}{4} h_0\right)^{2^n} \leq \frac{4}{9} \left(\frac{3}{4}\right)^{2^n}$. The recursion formula for η_n implies that

$$\eta_n \le h_{n-1}h_{n-2}...h_0\eta_0(1-h_{n-1})^{-1}(1-h_{n-2})^{-1}...(1-h_0)^{-1}.$$

Also $\eta_n \leq \left(\frac{4}{9}\right)^n \left(\frac{9}{4}h_0\right)^{2^{n-1}} \left(\frac{9}{4}h_0\right)^{2n-2} \dots \left(\frac{9}{4}h_0\right)\eta_0$. Since $\sum_{k=1}^n 2^{n-k} = 2^n - 1$,

$$\frac{\eta_n}{\eta_0} \le \left(\frac{4}{9}\right)^n \left(\frac{9}{4}h_0\right)^{2^n-1}.$$

Since $||f(x_n)|| = ||f'(x_n)|| \eta_n$, while $||f'(x_n)|| \le 1.9 ||f'(x_0)||$, we have the estimates

$$(I) \qquad \frac{\|f(x_n)\|}{\|f(x_0)\|} \leq 1.9 \frac{\eta_n}{\eta_0} \qquad and \qquad (II) \qquad \frac{\|x_n - x^*\|}{\|x_1 - x_0\|} \leq 1.68 \frac{\eta_n}{\eta_0}.$$

REMARK 1.1 Assume the hypotheses of the theorem with suitable changes in S and S'. Take $h_0 < 1/2$. Then x_0 is an approximate root.

REMARK 1.2 The theorem does not require the continuity of f'. Let f(x) = 4x, if $\infty < x \le 1$ and f(x) = 6x - 2, if x > 1. Then every point is an approximate root for f. For example let $x_0 = 100$. Then $h_0 = 1/3$, $x_1 = 1/3$, $h_1 = 0$, and $x_2 = 0$.

REMARK 1.3 Let S, S' and K be defined as above. Assume that f' is Lipschitz continuous with constant L on S. Let $h_k = \sup\{\|f'_{-1}(x_k)(f'(x_0) - f'(\xi)\| : x \in S' \text{ and } \xi = x_k + tf'_{-1}(x_k)f(x_k), t \in (0,1)\}$. Assume the Kantorovich inequality holds. Then $h_k \leq \beta_k \eta_k L \leq 1/3$. Whence $h_k/\beta_k \eta_k = K \leq L$. We have replaced L by K. Another hypothesis to ensure the boundedness of K (which we've assumed outright) is to require that f' be bounded on S' and, for any root x^* of f there is a neighborhood $N(x^*)$ e such that f' is Lipschitz continuous on $N(x^*) \cap S'$.

REMARK 1.4 The Kantorovich type theorems are important for the insight they furnish, but in general are not helpful in concrete instances. For example, the above theorem and the original Kantorovich theorem are dependent upon the knowledge of the constant K or L, but the determination of upper bounds for these quantities is not trivial. Moreover the conditions given by these inequalities is sufficient but not in general necessary for a point to be an approximate root. Thus the determination of approximate roots is usually not practical with these theorems. Using the rough estimates furnished by local application of the modified Kantorovich inequality we propose proceeding by trial.

DEFINITION 1.5 Given $\epsilon > 0$, let n be the smallest integer such that

$$1.9\left(\frac{4}{9}\right)^n\left(\frac{3}{4}\right)^{2^n-1} < \epsilon.$$

A point x_0 is an ϵ -approximate root for the mapping f if the Newton sequence $\{x_i\}$ starting at x_0 is well defined for i=1,2,...,n, and

$$\frac{\|f(x_n)\|}{\|f(x_0)\|} < \epsilon,$$

For example if $\epsilon = 10^{-18}$ then n = 7. This test follows from the estimates I and II of the above theorem.

LEMMA 2.0 Let A be a positive definite matrix. Let μ be its least eigenvalue and λ its greatest. Let $Q = \lambda/\mu$. Then:

$$\frac{[Ax,x]}{\|Ax\| \|x\|} \geq \frac{2}{Q^{\frac{1}{2}}} \frac{Q}{(Q+1)}.$$

The bound is the best possible.

PROOF. Assume A has been diagonalized, and let

$$[Ax, x]/\mu = x_1^2 + c_2x_2^2 +, ..., c_nx_n^2$$

We seek to minimize $f(x) = (x_1^2 + c_2x^2 + ..., c_4x^4)/(x_1^2 + c_2^2x_2^2 = ..., c_4^2x_4^2)^{\frac{1}{2}}$, subject to ||x|| = 1. The reason for restricting to polynomials of degree 4 in x_i^2 will become apparent in what follows.

Set $x_1^2 = 1 - x_2^2 - x_3^2 - x_4^2$. Using this equation to eliminate x_1^2 we get:

$$f(x) = \frac{1 + (c_2 - 1)x_2^2 + (c_3 - 1)x_3^2 + (c_4 - 1)x_4^2}{(1 + (c_2^2 - 1)x_2^2 + (c_3^2 - 1)x_3^2 + (c_4^2 - 1)x_4^2)^{\frac{1}{2}}}$$

Let P denote the numerator of the above fraction and $Q^{\frac{1}{2}}$ the denominator. Let $x = (x_2^2, x_3^2, x_4^2)$ and

$$A = (c_2 - 1, c_3 - 1, c_4 - 1)$$

and

$$B = (c_2^2 - 1, c_2^2 - 1, c_4^2 - 1)$$

The components of the equation $\nabla f(x) = 0$ may be written as:

$$x_2(c_2-1)[2B-(c_2+1)A, x] = x_2(c_c-1)(c_2-1)$$
 (a)

$$x_3(c_3-1)[2B-(c_3+1)A, x] = x_3(c_3-1)(c_3-1)$$
 (b)

$$x_4(c_4-1)[2B-(c_4+1)A, x] = x_4(c_4-1)^2$$
 (c)

If we assume distinct eigenvalues and that x_2 , x_3 and x_4 are non-zero we may cancel appropriately and obtain from (a), (b), and (c), a system of 3 linear equations of rank 2,

since the rows of the system are linear combinations of A and B. Thus one unknown say x_2 or x_3 (but not x_4) may be set to 0. Similarly if we had n variables only one variable among x_2 and x_{n-1} would be non-zero. If we set $x_2 = 0$, then the following system obtains:

$$(c_3^2 - 1)x_3^2 + (c_4 - 1)(c_4 - c_3)x_4^2 = c_3 - 1$$
$$(c_3^2 - 1)x_3^2 + (c_4^2 - 1)x_4^2 = c_4 - 1$$

One finds that

$$x_4^2 = \frac{(c_3^2 - 1)(c_4 - c_3)}{-(c_3 - 1)(c_3 + 1)(c_4 - 1)(c_4 - c_3)} < 0.$$

Since x_4^2 is negative, it is inadmissible. Thus x_3^2 must also vanish. Suppose now that $x_3 = 0$ but $x_2 \neq 0$. We again get $x_4^2 < 0$. Thus for these cases we must set x_2 and x_3 to 0.

If $c_2 > 1$ and $c_4 > c_2$ then the rank of $\{A, B\} = 2$ This case is treated just as the case above of distinct roots. If all the eigenvalues are equal, the ratio in the statement of the lemma is 1, verifying the claim for that case. For all other cases the rank of $\{A, B\} = 1$, and we may set x_2 and x_3 to 0.

There remains to carry out the minimization. The equation

$$(c_4^2 - 1)x_4^2 = c_4 - 1$$
 implies $x_4^2 = \frac{1}{Q+1}$ and
$$f(x) = \frac{2\frac{Q}{Q+1}}{Q^{\frac{1}{2}}}$$

Algorithm 3.0

Let f be a twice differentiable function defined on real euclidean space E_n . Assume that f is convex and that it has bounded level sets. Given an arbitrary point x_0 let S denote the level set $\{x \in R_n : f(x) \leq f(x_0)\}$. Assume that the hessian of f at x, which we call H(x), has an inverse at x_0 , denoted by $H^{-1}(x_0)$. At the kth step of the algorithm assume that $H^{-1}(x_k)$ exists. Let

$$g(x,\gamma) = \frac{f(x) - f(x - \gamma H^{-1}(x)\nabla f(x))}{\gamma [H^{-1}(x)\nabla f(x), \nabla f(x)]}$$

Choose $\delta \in (0, 1/2]$ and choose $\gamma_k > 0$ so that $\delta \leq g(x_k, \gamma_k) \leq 1 - \delta$, taking $\gamma_k = 1$, if possible. Set $x_{k+1} = x_k - \gamma_k H^{-1}(x_k) \nabla f(x_k)$. Let $S' = \{x_k \in S : k = 1, 2, 3, \dots \}$. Assume that the spectrum of H(x) is bounded above on S' by ΛQ , and below by Λ . Let

$$h = \sup \Big\{ \|H^{-1}(x)(H(x) - H(\xi))\| : x \in S' \text{ and } \xi = x + tH^{-1}(x)\nabla f(x), \ t \in [0, 1] \Big\}.$$

(a) Assume that K =

$$\sup \left\{ \frac{\|H^{-1}(x)(H(x) - H(\xi))\|}{\|H^{-1}(x)\| \|H^{-1}(x)\nabla f(x)\|} : x \in S' \text{ and } \xi = x + tH^{-1}(x)\nabla f(x), \ t \in [0,1] \right\} < \infty.$$

Let N be the least integer exceeding:

$$rac{f(x_0)-minf}{\Delta}$$
 where $\Delta=rac{\delta^2\Lambda^3}{(1+2hQ^{1/2})K^2Q^{1/2}}$

Then an approximate root of $\nabla f(x)$ will be achieved in at most N steps.

(b) Let

$$\Delta_1 = \frac{\delta^2 (1 - \delta)^2 \Lambda^3}{(1 + 2h \, Q^{\frac{1}{2}} \, K^2 \, Q^{\frac{3}{2}}}$$

. Let M be the least integer exceeding:

$$\frac{f(x_0) - minf}{\min\{\Delta, \Delta_1\}}$$

. Then in at most M steps an approximate root will be achieved, and all subsequent steps will be Newton steps.

PROOF (a) Assume in what follows that $x \in S$. The change in f do to the step $\gamma s(x) = \gamma H^{-1}(x) \nabla f(x)$ may be estimated by Taylor's formula as:

$$(*) \ \Delta(x) = f(x) - f(x - \gamma s(x)) = \gamma \left[1 - \frac{\gamma}{2} - \frac{\gamma}{2} \frac{[s(x), (H(\xi) - H(x)) s(x)]}{[\nabla f(x), s(x)]} \right] [\nabla f(x), s(x)]$$

OT

$$(**) \qquad \triangle(x) \ = \ \gamma g(x,\gamma)[\nabla f(x),s(x)]$$

Here ξ lies between x and x - $\gamma s(x)$. By the above formula we see that the right hand limit of $g(x,\gamma)$ at $\gamma=0$ is 1. Since S is bounded, for some $\hat{\gamma}$, $g(x,\hat{\gamma})=0$. This shows that

 γ may be chosen as claimed. We see also that $\{f(x_k)\}$ is a decreasing sequence so that $x_k \in S$ for k=1,2,3,...

We aim now to find a lower bound for $\Delta(x)$. In the equation (*) above, the third term in the large brackets is

$$\geq -\frac{\gamma}{2} \frac{\|\nabla f(x)\| \|H^{-1}(x)(H(x) - H(\xi)\| \|s(x)\|}{[\nabla f(x), H^{-1}(x)\nabla f(x)]}.$$

Using lemma 2.0 we get the inequalities

$$1 - \frac{\gamma}{2} + \frac{\gamma}{2} \alpha \, h(x) \, Q^{\frac{1}{2}} \, \, \geq \, \, g(x,\gamma) \, \, \geq \, \, 1 - \frac{\gamma}{2} - \frac{\gamma}{2} \alpha \, h(x) \, Q^{\frac{1}{2}}.$$

Where $h(x) = \sup \{ ||H^{-1}(x)(H(x) - H(\xi))| : \xi = x + ts(x) \text{ with } t \in [0, 1] \}$. and:

$$\alpha = \frac{Q+1}{2Q}.$$

so that $.5 < \alpha \le 1$. Since $g(x, \gamma) \le 1 - \delta$ we thus obtain the lower bound

$$\gamma \geq \frac{2\delta}{1 + \alpha h(x)Q^{\frac{1}{2}}}$$

If $\{\|\nabla f(x_k)\|\}$ does not converge to 0, an infinite subsequence of it is bounded away from 0. Since $[\nabla f(x), s(x)] \ge \|\nabla f(x)\|^2 / Q\Lambda$, and $\gamma_k g(x_k, \gamma_k)$ is also bounded away from 0 $f(x_k)$ tends to $-\infty$. This contradiction establishes that the sequence $\{\nabla f(x_k)\}$ converges to 0. Moreover every cluster point of the set S' minimizes f, and $\{f(x_k)\}$ converges to min f.

If x does not satisfy our condition for an approximate root then $||H^{-1}(x)|| ||s(x)|| K \ge 1/2$. By the lemma $[\nabla f(x), s(x)] \ge (Q^{1/2}\alpha)^{-1}||s(x)|| ||\nabla f(x)||$. Consequently, $||s(x)|| \ge 1/2K ||H^{-1}(x)||$, and $||\nabla f(x)|| ||s(x)|| \ge 1/4K^2\Lambda^3$. Thus a lower estimate of (**) is

$$\Delta(x) \geq \frac{\delta^2}{(1+2hQ^{\frac{1}{2}}4\Lambda^3K^2Q^{\frac{1}{2}})} = \Delta$$

We may similarly find a number of steps that will guarantee that an approximate root has been reached and that the above algorithm will always produce subsequent Newton steps. We do this by observing that $.5K\|s(x)\|\Lambda\alpha Q^{1/2} \le .5 - \delta$ implies that $.5Kh(x)\alpha Q^{1/2} \le$

.5 - δ . And this implies that $\delta \leq g(x,1) \leq 1 - \delta$. Thus we shall count the steps for which $||s(x_k)||$ exceeds $(1-2\delta)/\alpha K\Lambda Q^{1/2}$. As above we find that

$$\Delta(x) \geq \frac{\delta^2(.5-\delta)^2\Lambda^3}{(1+2h\,Q^{\frac{1}{2}}\,K^2\,Q^{\frac{3}{2}})} = \Delta_1$$

We now "count" the steps. Since $\Delta(x_k)$ is bounded away from zero, say by Δ , we have $f(x_0) - f(x_k) \ge k \left(\frac{1}{k} \sum_{i=0}^k \Delta(x_i)\right) \ge k \Delta$. Set

$$N=\frac{f(x_0)-minf}{\Delta}$$

Set

$$M=\frac{f(x_0)-minf}{min\{\Delta,\Delta_1\}}.$$

If k = N, and x_k is not an approximate root, we have a contradiction.

REMARK 3.1 The results above are disappointing in that the cost of the algorithm is sensitive to the condition number Q, in spite of the fact that Newton directions are taken. (Recall that Smale's global Newton method was not sensitive to the condition number). Indeed the gradient method is less sensitive to Q than this method. We may classify this algorithm as "greedy" because it is trying to decrease f at each iteration. On the plus side, the algorithm is easily implemented.

The most robust result over the class of strongly convex functions is due to Nesterov. A simple, easily coded algorithm using combinations of gradient steps will drive $f(x_n)/f(x_0)$ to less than ϵ in less than

$$\frac{4\sqrt{Q}}{\ln 2} \ln \left(\frac{1}{\epsilon}\right) steps$$

. By the theory of Nemerovsky and Yuden, for some positive number c no algorithm can do better than the following number of steps for every strongly convex function of condition number Q:

$$c \frac{min(n,\sqrt{Q})}{ln \, min(n,\sqrt{Q})} \, ln \frac{1}{\epsilon}.$$

For the case when $n > \sqrt{Q}$ we can assert that Nesterov's method is to within a slowly changing multiplicative factor essentially optimal over the class of strongly convex functions. This method and its generalizations are being studied by Osman Guler at U. of Chicago, School of Business.

Consider the Smale global Newton method applied to minimizing strongly convex functions of condition number Q. This method which is sensitive to a Lipschitz constant for the Hessian would not be a candidate for optimality on the set of strongly convex functions. The reason is that there exist strongly convex functions with condition number Q that have Hessians with arbitrarily large Lipschitz constants. However for the multitude of natural problems with bounded Lipschitz 2nd derivatives, or bounded values of the constant K, we should expect better results for large condition numbers from the Smale global Newton method, than with an algorithm of the Nesterov type.

We now digress to the problem of linear inequalities. Let A be an m by n matrix of rank n, and b an m by 1 matrix. Denote the ith row of A by A^{i} . Set

$$R(x) = Ax - b.$$

We seek a solution of the system of inequalities:

$$R_i(x) \leq 0 \qquad 1 = 1, 2, ..., m.$$

Or, if this system has no solution, to establish its inconsistency. Let $G(x) = max\{R_i(x) : 1 \le i \le m\}$. We assume that G is bounded below, and consequently, that G has bounded level sets. To ensure that this is the case, a phony half-space may be added to our system of inequalities. Let $A_0 = -\sum_{j=1}^m A_i$. Let $R_0(x) = [A_0, x] - b$. Let $G*(x) = max\{R_i(x) : 0 \le i \le m\}$]. Let $z(b) = \text{argmin } G^*$. If the original system is consistent then for b sufficiently large $G(z(b)) \le 0$.

We shall employ the penalty function:

$$\sum_{i=1}^{m} [max(0, R_i(x))]^p \quad with \ p \geq 2$$

We note that for $p \ge 2$, F is convex. If p=2, F' is continuous, and F'' has jump discontinuities. If p > 3 then F''' is continuous. Our numerical experiments using F to solve inequalities gave most satisfactory results with p=2, even though more smoothness is obtained with larger values of p. Thus in what follows we shall take p=2. We assume that F has bounded level sets.

Let $I^+(x)$ denote the set of all indices from $\{1, 2, 3, ..., m\}$ for which $R_i(x) > 0$ when $i \in I^+(x)$. If $dim\{A_i : i \in I^+(x)\} < n$, then F''(x) does not have an inverse. We seek the following construction.

CONSTRUCTION B 4.0

Assume that at x_k the dimension of the set of gradients of the actice residuals is less than n. That is, dim $\{A_i: 1 \le i \le q\} \le n$ Take $h \ne 0$ such that $[A_i, h] = 0, 1 \le i \le q$. Let $\epsilon_k = .5(F(x_{k-1} - F(x_k))$. Find the smallest t such that $\sum \{R_i^2(x+th): q+1 \le i \le m \text{ and } R_i > 0\} = \epsilon_k^2/2(m-q)$ Set $x_{k1} = x_k + th$. Repeat this process if necessary. After at most m-q steps we obtain x_{k+1} .

ALGORITHM 5.0 Take x_0 arbitrarily in E_n . If $dim\{A_i: i \in I^+(x_0)\} < n$ use (4.0) to find x_1 with $dim\{A_i \in I^+(x_1)\} = n$. At the kth iteration we are given x_k and a non-singular $H(x_k)$. Choose γ_k such that $.75 \ge g(x_k, \gamma_k) \ge .25$, taking $\gamma_k = 1$, if possible. Set $\bar{x}_{k+1} = x_k - \gamma_k H^{-1}(x_k) \nabla f(x)$. If H has an inverse at \bar{x}_{k+1} then set $x_{k+1} = \bar{x}_{k+1}$ Otherwise update \bar{x}_{k+1} with the construction (4.0) or (4.1) to obtain x_{k+1} .

CLAIM 5.1 Assume the hypotheses of (4.0). The algorithm is well defined and will terminate in a finite number of steps, with a positive value of F if the system is inconsistent and with F = 0 if the system is consistent. For the latter case the argument of F is a solution of the inequalities.

PROOF Let $X = \{x \in E_n : [A^i, x] \leq b_i, 1 \leq i \leq m\}$. Assume that X is not empty. Let w denote the number of vertices of the solution set X, and let v_s , s=1,2,...,w denote the vertices. Each v_s lies in the intersection of at least n hyperplanes supporting X. Any point in X is on the right side $(R_i(x) \leq 0)$ of these hyperplanes. Stated otherwise: $[A^i, v_s] = b_i$, $i \in I_s$, $card I_s \geq n$. Let $C(v_s) = \{x \in E_n : [A^i, x] > b_i, i \in I_s\} = \{x \in E_n : [A^i, x - v_s] > 0, i \in I_s\}$, and let $\bar{C}(v_s)$ denote its closure. Let B_s be a ball of radius r_s centered at v_s . If some hyperplane $[A^i, x] - b_i$ such that $i \in I \sim I_s$ meets $C(v_s)$ then there exists a minimal value of r_s such that $B_s \cap \bar{C}(v_s)$ meets the closest hyperplane $[A^i, x] - b_i$ such that $i \in I \sim I_s$. Points in $B_s \cap C(s) \sim \{v_s\}$ are on the wrong side of the same hyperplanes, n or more in number. In all the above sets s is understood to range over 1,2,...,w.

It follows from the proof of (3.0) that the above algorithm generates a sequence $\{x_k\} \in S$ (the level set of F at x_0) such that $F(x_k)$ converges downward to min F. We claim that the only cluster points of $\{x_k\}$ are the vertices v_s , s=1,2,...,w. The sets $I^+(x_k)$ are collections of n or more out of m indices that are repeated infinitely often. Thus at least one of the collections must be frequently repeated. Let $\{x_{k_i}\}$ denote a subsequence converging to a limit v. Take a thinner subsequence if necessary such that only one index set is represented. Since F(v)=0, it follows that $v\in X$. Since $\{x_{k_i}\}$ is on the wrong side of at least n hyperplanes at points arbitrarily close to X, the index set I must be one of the sets I_s , s=1,2,...,w. Let \bar{k} denote the least value of k such that $x_{\bar{k}}\in B_s\cap C(s)$ for some s=1,2,...,w. At most one more step at $x_{\bar{k}}$ terminates the process, because a Newton step minimizes the restriction of F to $B_s\cap C(v_s)$ -a quadratic function,- in one step.

Assume now that X is empty. A necessary condition that a system of inequalities be inconsistent is that 0 belongs to the convex hull of the rows of the matrix A. Let x^* minimize F. We claim that x^* is unique, $card\ I^+(x^*) \ge n+1$, and 0 belongs to the convex hull of the rows of A. If $card\ I^+(x^*) \le n$ choose h so that $[A^i, h] = -1, i \in I^+(x^*)$. Then for some h sufficiently small $F(x^*)$ can be decreased. Since x^* is a strict local minimum it is unique because of the convexity of F.

Let B be a ball centered at x^* with the property that $I^+(x) = I^+(x^*)$ for all $x \in B$. This existence of such a ball follows from the continuity of $R_i(x)$ for each i, $1 \le i \le m$, and because $R_i(x^*) \ne 0$ for all $i \in I^+(x^*)$. Because x^* is unique the sequence $\{x_k\}$ converges to it. Thus for some least $k = \bar{k}$ $x_{\bar{k}} \in B$. Thus the solution occurs here or at the next step.

Notice that the parameter K of (3.0) is actually finite. Consider the denominator of K for $k=0,1,2,...,\bar{k}$. Since $||s(x)|| \geq ||\nabla f(x)||/Q\mathcal{L}$ the denominator is always positive. (If $\nabla f(x) = 0$ we have a solution) One more step at $x_{\bar{k}}$ terminates the process. The Newton step minimizes the quadratic function (restriction of F to $B_s \cap C(v_s)$ in one step. Note that the numerator of K for this last step is 0, while the denominator is positive.

NUMERICAL COMPUTATIONS 6.0

The Blair example may be found in Kortanek and Shi. The coefficients for the case n=8 are written out (Example 2a, p55) and a program is given to generate the coefficients for any n. For n=12, the case for which we offer extensive calculations, the Blair problem is a linear programming problem (LP) of the form: minimize L(x) subject to

$$R_i(x) \le 0 \qquad 1 \le i \le 24$$

of which 12 inequalities constrain x to lie in the first orthant. The coefficients of the system are integers between 1 and 305,175,780. Thus the system is very poorly conditioned. The problem has a unique solution $\hat{x}_i = 0$, i=1,2,...,11, $\hat{x}_{12} = 1$, with $L(\hat{x}) = 305175780$. The system we solve contains following inequalities:

$$r_i(x) \leq 0, \qquad i = 1, 2, ..., 25 \qquad where$$

$$r_{14}(x) = L(x) - 305175780,$$

$$r_i(x) = R_i(x),$$
 $i = 1, 13$ and $r_{i+1}(x) = R_i(x)$ $i = 14, ... 24$

Superlindo required 2438 iterations to solve the above LP problem with full accuracy. Because one cannot enter linear inequalities directly into Superlindo we entered the following problem: min L(x) subject to

$$r_i(x) \le 0 \qquad 1 \le i \le 25.$$

Thus when phase I was finished the problem would terminate. This took 2236 iterations. Let

$$r(x) = Ax - b.$$

The components of A and b are listed at the end of this section.

A simple scheme of row scaling was used to convert to a better scaled problem. Let bm be the maximal component of the right hand side. bm=305175780. The scaled system is:

$$(bm/|b_i|) r_i(x) \le 0$$
 $i = 1, 2, 3, ..., 14$ $bm r_i(x) \le 0$ $i = 15, ..., 25$

Thus 4.0 should be used. Some computations were made before 4.0 was coded using an ad hoc procedure of an overrelaxed gradient step to move off a degenerate point x. The step-length chosen was 100/||H(x)||. This has worked for this problem in at most 3 steps for every example (over 100) tried. However the penalty function usually increases during these perturbations. Subsequently, the method of 4.0 was coded. The results were similar to those given below, with the moves in the null spaces (which we think of as gear shifts) replacing the gradient steps.

There follows 15 successive runs with random initial vectors with components lying between -1000 and 1000. The 12 numbers after x_0 are the components of the starting vector.

The last column contains a list of integers in order 1,2,3 interspersed with the symbol *. Each integer numbers a normal step of the algorithm while * indicates a gradient step. In what follows disregard this last column. We explain first the lines containing tt, info,

rmax, number, number, number. Here tt means the number of active residuals; its value is the first number. Info is a test for degeneracy; its value is the second number. If info = 0 the point is nondegenerate, info = 1, degenerate. Rmax is the value of the maximum residual. It is the 3rd number.

Now, the line that contains step-length, gamma, number, number. Here step-length = $||H^{-1}(x)\nabla f(x)||$. Its value is the first number. The meaning of gamma is that of algorithm 3.0, the fraction of a Newton step. The value of gamma is the second number. At the bottom of the page we have x,r number, number. This the row-wise print out of the solution vector followed by the residuals at solution.

Bibliography 7.0

L.V. Kantorovich Functional Analysis and Applied Mathematics, Uspeki Mat. Nauk, 3, pp89-185; English trans., Rep 1509, National Bureau of Standards, Washington, D.C. 1952.

L.V. Kantorovich and G. P. Akilov (1959) Functional Analysis in Normed Spaces, Fizmatgiz, Moscow; English transl. Pergamon Press, Oxford, 1964

Steve Smale Algorithms for solving Equations, Invited Address, International Congress of Mathematicians, 1986; Proceedings of the International Congress of Mathematicians, Vol1, pp172,195. AMS,1986.

Yu E. Nestorovich A Method of Solving a Convex Programming Problem with Convergence Rate $O(1/k^2)$. Doklady Nauk, Vol 269(1983) no.3; Soviet Math Dok., vol 27,1983

W.B. Gragg and R. A. Tapia Optimal Error Bounds for the Newton-Kantorovich Theorem. SIAM J. Numerical Anal.Vol. 11, no.1, 1974

K.O. Kortanek and M. Shi Convergence results and numerical experiments on a linear programming hybrid algorithm. European Journal of Operational Research 32(1987), 47-61.

L.M. Graves Taylor's theorem in general analysis, TAMS,29,(1927)163-177.

A.A. Goldstein On Newton's Method. Num. Mat.7,391-393(1965)

FIFTEEN RUNS WITH RANDOM STARTING POINTS

a(1,1) = -5.	a(7,3)=0.	a(13,5)=0.
a(2,1)=-1.	a(8,3)=0.	a(14.5)=3905.
a(3,1)=0.	a(9,3)=0.	a(15.5)=0.
a(4,1)=0.	a(10,3)=0.	a(16,5)=0.
a(5,1)=0.	a(11,3)=0.	
a(6,1)=0.		a(17.5)=0.
	a(12,3)=0.	a(18,5)=0.
a(7,1)=0.	a(13,3)=0.	a(19.5) = -1.
a(8,1)=0.	a(14.3)=155.	a(20.5)=0.
a(9,1)=0.	a(15,3) = 0.	a(21.5)=0.
a(10,1)=0.	a(16,3)=0.	a(22.5)=0.
a(11,1)=0.0	a(17,3) = -1.	a(23.5)=0.
a(12.1)=0.	a(18,3)=0.	a(24,5)=0.
a(13,1)=0.0	a(19.3)=0.	a(25.5)=0.
a(14.1)=5.	a(20,3)=0.	a(1,6) = -160.
a(15.1) = -1.	a(21,3)=0.	a(2.6) = -80.
a(16,1)=0.	a(22,3)=0.	a(3,6) = -40.
a(17,1)=ŭ.	a(23,3)=0.	a(4,6) = -20.
a(18,1)=0.	a(24,3)=Q.	a(5,6)=-10.
a(19.1)=0.	a(25,3)=0.	
		a(6,6)≠-5.
a(20,1)=0.	a(1,4) = -40.	a(7,6) = -1.
a(21,1)=0.	a(2,4) = -20.	a(8,6) = 0.
a(22,1)=0.	a(3,4) = -10.	a(9,6) = 0.
a(23,1)=0.	a(4,4) = -5.	a(10.6)=0.
a(24,1)=0.	a(5,4) = -1.	a(11,6)=0.
a(25,1)=0.	a(6,4)=0	a(12,6)=0.
a(1,2) = -10.	a(7,4)=0.	a(13.6)=0.
a(2,2) = -5.	a(3,4)=0.	a(14.6)=19530.
a(3,2)=-1.	a(9,4)=0.	a(15,6)=0.
a(4,2)=0.	a(10,4)=0.	a(16,6)=0.
a(5,2)=0	a(11,4)=0.	a(17,6)=0.
a(6,2)=0.	a(12.4)=0.	a(18,6)=0.
a(7,2)=0.	a(13,4)=0.	a(19,6)=0.
a(8,2)=0.	a(14.4) = 780.	a(20.6) = -1.
a(9,2)=0.	a(15,4)=0.	a(21.6)=0.
a(10,2)=0.	a(16,4)=0.	a(22,6)=0.
a(11,2)=0.	a(17,4)=0.	a(23,6)=0.
a(12,2)=0.	a(18,4)=-1.	a(24.6)=0.
a(13,2)=0.	a(19,4)=0.	a(25,6)=0.
a(14,2)=30.	a(20,4)=0.	a(1,7) = -320.
a(15,2)=0.	a(21.4)=0.	a(2.7) = -160.
a(16,2)=-1.	a(22,4)=0.	a(3,7) = -80.
a(17,2)=0.	a(23,4)=0.	a(4.7) = -40.
a(18,2)=0.	a(24,4)=0.	a(5,7) = -20.
a(19,2)=0.	a(25,4)=0.	a(6,7) = -10.
a(20,2)=0.	a(25,47-0. $a(1,5)=-80.$	a(7,7)=10.
a(21,2)=0.		
	a(2,5) = -40.	a(8,7)=-1.
a(22,2)=0.	a(3,5) = -20.	a(9.7) = 0.
a(23,2)=0.	a(4,5)=-10.	a(10.7)=0.
a(24,2)=0.	a(5,5)=-5.	a(11,7)=0.
a(25,2)=0.	a(6,5) = -1.	a(12,7)=0.
a(1.3) = -20.	a(7.5)=0.	a(13,7)=0.
a(2,3) = -10.	a(8.5)=0.	a(14,7)=97655.
a(3,3) = -5.	a(9.5)=0.	a(15.7)=0.
a(4,3)=-1.	a(10.5)=0.	a(16.7)=0.
a(5,3)=0.	a(11.5)=0.	a(17,7)=0.
a(6,3)=0.	a(12.5)=0.	a(18,7)=0.

a(19.7)≈0.	a(25,9)=0.	ak6,12)≈-320.
a(20.7)=0.	a(1,10)= -2560.	akī,12/=-160.
a(21,7) = -1,	a(2,10) = -1280.	a(8,12,≈-80.
a(22,7)=0.	a(3,10) = -640.	a(9,12)=-40.
a(23,7)≈0.	a(4,10) = -320.	a(10,12) = -20.
a(24.7) = 0.	a(5.10)=-160.	a(11,12,=+10.
a(25.7)=0.	a(6.10)=-30.	a(12,12)=-5.
a(1,8) = -640.	a(7,10) = -40.	
a(2,8)=-320.	a(8,10)=-20.	a(13,12)=-1.
a(3,8)=-160.	a(9,10) = -10.	a(14,12) = 305175780.
a(4.8) = -80.		a(15,12)=0.
	a(10,10)=-5.	a(16,12)=0.
a(5,8)=-40.	a(11,10)=-1.	a(17.12)=0.
a(6,8)=-10.	a(12,10)=0.	a(18.12)=0.
a(7.8) = -10.	a(13,10)=0.	a(19,12)=0.
a(3.8) = -5.	a(14,10)=12207030.	a(20,12)=0.
a(9,8) = -1.	a(15,10)=0.	a(21,12)=0.
a(10,3)=0.	ā(16,10)=0.	a(22,12)=0.
a(11.8)=0.	a(17.10)=0.	a(23.12)=0.
a(12,8)=0.	a(13,10)=0.	a(24,12)=0.
a(13.8)=0.	a(19,10)=0.	a(15,12)=0.
a(14,8)=488280.	a(20,10)=0.	b(1)=-4096.
a(15.8)=0.	a(21,10)=0.	b(2)=-2048.
a(16,8)=0.	a(22,10)=0.	b(3)=-1024.
a(17.8)=0.	a(23,10)=0.	
a(18.8)=0.	a(24,10)=0.	b(4)=-512.
a(19,8)=0.	a(25,10)=1	b(5) = -256.
a(20,8)=0.		b(6)=-128.
	a(1,11) = -5120.	b(7)=-64.
a(21,8)=0.	a(2,11) = -2560.	b(8)=-32.
a(22.8) = -1.	a(3,11) = -1280.	b(3)=-16.
a(23.8)=0.	a(4,11) = -640.	b(10)=-8.
a(24,8)=0.	a(5,11) = -320.	b(11)=-4.
a(25,8)=0.	a(6.11) = -160.	b(12)=-2.
a(1,9) = -1280.	a(7,11) = -80.	b(13)=-1.
a(2,9) = -640.	a(8.11) = -40.	b (14)=30 5 175780.
a(3,9) = -320.	a(9,11) = -20.	b(15)=0.
a(4,9)=-160.	a(10.11) = -10.	b(16)≃ő.
a(5,3)=-80.	a(11,11) = -5,	b(17)=0.
a(6,9)=-40.	a(12,11) = -1.	b(18)=0.
a(7,9) = -20.	a(13,11)=0.	b(19)=0.
a(8,3) = -10.	a(14.11) = 61035155.	b(20)=0.
a(9.9)=-5	a(15,11)=0.	b(21)=0.
a(10,3) = -1.	a(16,11)=0.	b(22)=0.
a(11.3)=0.	a(17,11)=0.	b(23)=0.
a(12.9) = -1.	a(18,11)=0.	b(24)=0.
a(13,3)=0.	a(19.11)=0.	b(25)=0.
a(14.9)=2441405.	a(20.11)=0.	6(25)-0.
a(15,9)=0.	a(21.11)=0.	
a(16.9)=0.	a(22,11)=0.	
a(17.9)=0.	a(23,11)=0.	
a(18,9)=0.	a(24,11)=0.	
a(19,9)=0.	· -	
a(20.9)=0.	a(25,11)=-1.	
a(20.9)=0. $a(21.9)=0.$	a(1,12)=-10240.	
a(21,3)=0. $a(22,3)=0.$	a(2,12)=-5120.	
	a(3,12) = -2560.	
a(13,9)=-1.0	a(4,12) = -1280.	
a(24,9/=0.	a(5.12)=-640.	

RUN #1 11 Newton steps and 4 gradient	steps.
---------------------------------------	--------

x0 -157.299626 507.77063707 -877.74680723 894.63522102	1353 6177	-743.3221033 581.201493434 -361.133546071 563.412949712	4374 1757	-971.97926689178 -593.593439850401 425.520516159178 268.597848237653	5
tt.info.rmax. tt.info.rmax.	7.00000000 14.00000000		1 1	296624527029.611 9653257644971.96	*
steplength.gamma tt.infomax.	47765.52 14.0000000	39230591 00000	1.000000 0	00000000 2357700197.06739	1
steplength, gamma tt.info.rmax.	19.25756 12.0000000	41130305 00000	1.000000		2
steplength, gamma tt.info.rmax.	5454.132 14.0000000	237362 5 3 00000	0.3051757 0	81250000D-60 2428221099.03133	3
steplength, gamma tt, info, rmax,	17.37050 12.0000000	77615239 00000	1.000000	00000000 1185139268.78383	4
steplength, gamma tt, info, rmax,	5472.947 13.0000000	05380250 00000	0.7629394 0	53125000D-00 1185130226.88878	5
tt.info.rmax. tt.info.rmax.	1.000000000		1 1	620675091.14548 163062290989.794	*
steplength.gamma tt.info.rmax.	198.7325 13.00000600	01363480 00000	1.000000	00000000 153611593.072991	6
steplength.gamma tt.info.rmax.	196.7525 14.0000000	14409908 00000	0.1525878 0	90625000D-00 153610594.293101	7
steplength.gamma tt.info.rmax.	66.39072 13.0000000		0.1074218 0	75000000D-001 152948384.537403	à
steplength.gamma tt.info.rmax.	83.32486 16.0000000		0.1318359 0	37500000D-001 152548504.421150	3
steplength.gamma tt.info.rmax,	0.5849733 12.00000000		1.000000	00000000 133329412.581193	10
steplength, gamma tt.info.rmax.	0.5044811 12.00000000		1.000000	0000000 0.250339508056641D	11 -005
steplength, gamma tt.info.rmax.	0.9365949 12.0000000	08882387D-014 00000	1.000000	00000000 0.00000000000000	
x . r 0.1656 0.17564481092 0.17379591818 0.13607850615 1.00000000000 -457763664.00 -457763664.00 -457763664.00 -0.50546256215 -0.12601299224 -0.10532429202 -0.81852021228	1504D-029 0625D-028 0000 0000 0000 0000 0000 8010D-023 - 0322D-021 - 1762D-020 -	-031 0.60859 0.412919380076 0.345126646034 0.268212707775 -457763664.000 -457763664.000 0.457763664.000 0.00000000000000 0.185728104234 0.259549148196 0.210648584043	4193D-029 5144P-028 5000 5000 5000 5000 5000 6000 4804D-022 - 5485D-021 -	-031 0.850490663441403D 0.690253292068365D 0.544314024602498D -457763664.000000 -457763664.000000 -457763664.000000 0.00000000000000000 0.536025414753613D 0.53038304196673GD	-029 -028 -022 -021

RUN #2 7 Newton steps and 3 gradient steps

x0 -930.292890 244.62829927 -508.67705698 416.32374008	2343 719. 0336 -162.	53.844227490599 .519989562319 .246891100147 .495647012945		-322.317913607396543.254998043481618.731966442102253.088220718418	ò
tt, info, rmax,	8.0000000000000		1	283902854639.046	*
tt.inîo.rmax.	1.00000000000000)	1	1371116280676.87	*
tt.info.rmax.	16.0000000000000)	1	359774939814244.	*
steplength.gamma			. 0000000	-	1
tt, info, rmax.	12.0000000000000)	0	161170658.157925	
steplength.gamma	10514.7126566	3587 0.2	27465820	3125000D-003	-
tt, info. rmax.	14.0000000000000)	0	161126391.314559	
steplength, gamma	60.4510944982	2947 0.3	31250000	0000000D-001	3
tt, info, rmax.	14.0000000000000			156091441.193965	_
steplength, gamma	52.5504577006	6773 0.1	12500000	0000000	4
tt.info.rmax.	15.000000000000			148358483.404517	
steplength, gamma	126.089758342	26 85 0.6	64453125	000000D-001	5
tt, info, rmax.	14.0000000000000		0	147307230.642514	
steplength, gamma	0.649075995843	3773 1.	. 0000000	0000000	6
tt, into, rmax,	12.0000000000000)	o	129555772.393379	
steplength, gamma	0.490203091522	2860 1.	. 0000000	000000	7
tt.info.rmax,	12.0000000000000)	0 0	.244 <mark>379</mark> 043579102D-	-005
steplength.gamma	0.913113886853	3910D-014 1.	. 0000000	0000000	
tt, info.rmax.	12.0000000000000)	0 0	.00000000000000	
•	59950434605D-031	0.1001483571			
0.20029671421		837892165604D-		.819675784331207D-	
0.16763294235		7731075047746D-		.680392530753123D-	
0.13410635388		4268403249039D-		.528536806498078D- 457763664.00000	-028
1.000000000 -457763664.00		763664.000000 763664.000000		457763664.000000	
-457763664.00 -457763664.00		763664.000000		457763664.000000	
-457763664.00		763664.000000		457763664.000000	
-457763664.00		0000000000000		.0000000000000000	
-0.10109251243		628525956006D-		.611257051912012D-	-022
-0.12507253677		0145193551685D-		.511575132677130D-	
-0.10306734290		7639318557188D-		.409260106141704D	
-0.30648315033		1296603067613D-			

RUN #3 7 Newton steps and 1 gradient step

x0 384.636186 890.55686407 823.69990450 -94.612594163	4000 2448	521.5329914 22.8991136970 823.568592993 -466.486448786	037 691	-700.05808364017 -639.569422439330 996.340113297574 -450.878854236014	71
tt,ınfo,rmax,	17.0000000	00000	O	529467259301.064	*
steplength.gamma tt,info.rmax.	2212.273 14.0000000	66081213 00000	1.00000	000000000 194786857.815711	1
steplength.gamma tt.info.rmax.	11.55974 15.00000000	35264857 00000	0.937500 0	000000000D-001 179212381.151034	2
steplength, gamma tt, info, rmax,	17.41007 15.00000000	28479677 00000	0.312500 0	0000000000D-001 173957718.602083	3
steplength.gamma tt,info.rmax.	13.19102 16.0000000	59009825 00000	0.109375 0	000000000 156186399.016667	4
steplength.gamma tt.info.rmax.	4.837887 17.0000000	92413538 00000	0.375000 0	000000000 126699425.005225	5
steplength.gamma tt,info,rmax.	0.6548048 12.0000000		1.00000	00000000 134111089.546827	Đ
stepiength.gamma tt.info.rmax.	0.5074379 12.00000000		1.00000	000000000 0.250339508058641E	7 0-005
steplength, gamma tt, info. rmax,	0.9367969 12.0000000	82418018D-014 00000	1.00000	000000000 0.0000000000000000	
x, r 0.13090 0.14020769995 0.17379591818 0.13805065841 1.000000000000 -457763664.00 -457763664.00 -457763664.00 -0.39966807240 -0.11378785120 -0.10532429202 -0.81852021228	1504D-029 3677D-028 0000 0000 0000 0000 0000 4008D-023 - 2082D-021 - 1762D-020 -	-031 0.48533 0.372860037233 0.345126646034 0.268212707775 -457763664.000 -457763664.000 -457763664.000 0.0000000000000 0.148112285655 0.259549148196 0.210648584043 0.166111454845	193D-029 144D-028 000 000 000 000 000 603D-022 485D-021 524D-020		0-029 0-028 0-028

RUN #4 7 Newton steps

x0 -732.3422337 541.271154817 262.873709250 -966.821403447	054 324.27985703 308 604.30744129	33038 54551	244.383834286300 112.113379925855 -321.373886549000 -823.141231756370	·
tt.info.rmax.	17.000000000000	ů	1096227398623.85	1
steplength, gamma tt, info, rmax,	2002.80968276938 13.000000000000	1.000000	000000000 153540383.712848	2
steplength, gamma tt, info, rmax,	130.062162441505 14.0000000000000	0.6347656 0	525000000D-002 153117350.272783	3
steplength, gamma tt, info, rmax,	29.8103139169651 15.000000000000	0.2539062 0	250000000D-001 151769052.907618	4
steplength, gamma tt, info, rmax,	7.61286793105905 16.0000000000000	0.9375000 0	00000000000001 149354307.884918	5
steplength, gamma tt, inro, rmax,	0.480797575295140 12.000000000000	1.00000	000000000 133329412.581193	6
steplength, gamma tt, info, rmax,	0.504481166507457 12.000000000000	1.000000	00000000 0.244379043579102D-	7 -005
steplength, gamma tt, info, rmax,	0.918104743739594D-014 1.00000000000000	1.000000	000000000 0.596046447753906D-	-007
x . r 0.77037 0.208000433993 0.202145606962 0.183015730011 1.00000000000 -457763664.000 -457763664.000 -457763664.000 -457763664.000 -0.235093566120 -0.293873532650 -0.279361690229 -0.242667168818	821D-031	19426D-029 52780D-027 00000 00000 00000 00000 53906D-007 52503D-023 50643D-021	0-032 0.440652771275800D- 0.410207670714926D- 0.338263556158770D- -457763664.000000 -457763664.000000 -457763664.000000 -457763664.000000 -0.596046447753906D- -0.634766938524012D- -0.616899424698892D- -0.558519674263973D-	-028 -026 -026 -007 -023 -021

RUN #5 7 Newton steps

x0 -114.147717	658216	558.470022	662264	-490.0392433191	73
624.46166241	9657	-654.96009772	0481	-156.588812026271	
98.787784209	1593	675.86088001	1940	297.942678453505	
-427.42064545	4674	-607.60296198	1098	-603.144542822476	
tt,info,rmax,	19.000000	0000000	0	762408473253.473	
steplength, gamma		0530559346	1.00000	00000000	1
tt,info,rmax,	13.000000	0000000	0	194664482.932851	
steplength, gamma	78.727	7480487342	0.122070	0312500000D-003	<u> </u>
tt, info, rmax,	15.000000	0000000	0	194642039.668371	
steplength, gamma		1245257422	0.125000	000000000	3
tt,info,rmax.	16.000000	0000000	0	171746426.699385	
steplength, gamma	8.2288	7713006761	0.156250	000000000D-001	4
tt, info, rmax,	16.000000	0000000	0	169258335.804595	
steplength.gamma	4.4053	4461134211	0.312500	000000000	5
tt, info, rmax,	18.000000	0000000	Ô	125867764.378646	
steplength.gamma		7280856529	1.00000	000000000	6
tt.info.rmax.	12.000000	000000	0	134638584.993735	
steplength, gamma		0809427019	1.00000	00000000	7
tt,info,rmax,	12.000000	000000	0	0.250339508056641	D-005
steplength, gamma	0.93674	58005 5 1893D-014	1.00000	00000000	
tt.info.rmax,	12.000000	0000000	0	0.000000000000000	
x . r 0.1088	15041857879	9D-031 0.3967	41568543771	D-031	
0.11786691259	6499D-030	0.31123027901	2977D-030	0.764209001932655	D-030
0.17379591818	1504D-029	0.35005702669	1824D-029	0.700114053383648	D-029
0.13805065841	4	0.26821270777	5144D-028	0.544314024602498	D-028
1.0000000000		-457763664.00	0000	-457763664.000000	
-457763664.00		-457763664.00	0000	-457763664.000000	
-457763664.00		-457763664.00	0000	-457763664.000000	
-457763664.00		-457763664.00		-457763664.00000	
-457763664.00		0.0000000000		0.00000000000000	
-0.33207714839		-0.12107591605		-0.359701265163607	
-0.94979941912		-0.23321807519		-0.530383041966730	
-0.10682892476		-0.21365784952	9860D-020	-0.421297166067048	D-020
-0.81852021228	3408D-02 0	-0.16611145484	5750D-019		

RUN #6 7 Newton steps and 2 gradient steps

x0 472.361079 899.66070626 64.032603604 955.47728001	1435 814.735410 1202 -59.8063268	238548 680018	-740.9359694238 -652.488692051425 72.9986403563025 712.585229961250	71
tt.info.rmax.	5.0000000000000	1	268083811943.665	*
tt.info.rmax.	16.000000000000	1	23715049130988.6	
steplength.gamma tt.info.rmax.	50637.9972940535 12.0000000000000	1.00000	000000000 161169141.153651	1
steplength, gamma	10514.7126636119	0.274658	203125000D-003	2
tt, info, rmax,	14.0000000000000	0	161124874.726943	
steplength, gamma	60.4510874755542	0.312500	000000000D-001	3
tt, info, rmax,	14.0000000000000	0	156089971.999712	
steplength, gamma	52.5504645937000	0.125000	000000000	4
tt, info, rmax,	15.0000000000000	0	148358479.968610	
steplength, gamma	126.089752134237	0.644531	250000000D-001	5
tt, info, rmax,	14.0000000000000	0	147307227.428061	
steplength, gamma tt, info, rmax,	0.649075033909147 12.0000000000000	1.00000	000000000 129555772.393379	6
steplength,gamma	0.490203091522860	1.00000	000000000	7
tt.info.rmax,	12.000000000000	O	0.244379043579102	D-005
steplength.gamma tt.info.rmax.	0.911924546507179D-0 12.000000000000	1.00000	000000000	
x , r 0.3312 0.20029671421 0.16763294235 0.13410635388 1.0000000000 -457763664.00 -457763664.00 -457763664.00 -457763664.00 -0.10109251243 -0.12413220131 -0.10156271016	6273D-030	000000 000000 000000 000000 633606D-022 551685D-021	D-031 0.819675784331207 0.670531769437860 0.520648197445868 -457763664.00000 -457763664.00000 -457763664.00000 0.000000000000000 -0.611257051912012 -0.511575132677130 -0.409260106141704	D-029 D-028

RUN #7 8 Newton steps

x0 -980.6143855626 872.092335185819 -787.423383854606 -801.412660064979	5 903.3723054328 8 -889.8824064662	307 205 -	-849.96611842370 903.822716644623 656.189370753424 733.888854017488	8
tt,info,rmax, 20	. 000000000000	0	930810709180.125	
steplength, gamma	2781.62252337554	1.0000000	0000000	1
tt, info, rmax, 12.	. 000000000000	0	153611829.496706	
steplength, gamma	3648.13836926195	0.39100646	9726563D-004	2
tt, info, rmax, 15	. 000000000000	0	153605823.174790	
steplength, gamma	64.0782140937533	0.83007812	25000000D-002	3
tt, info, rmax, 16	. 000000000000	0	153096180.228943	
steplength, gamma	27.6115425905722	0.19531250	0000000D-001	4
tt, info, rmax, 15	. 000000000000	0	152568067.708317	
steplength, gamma	73.2258353230729	0.30517576	31250000D-004	5
tt, info, rmax, 15	. 000000000000	0	152567395.728954	
steplength, gamma (0.340599172069112	1.0000000	0000000	6
tt.info,rmax, 12.	. 000000000000	0	132047268.790020	
steplength, gamma	0.499630146021219	1.000000	0000000	7
tt, info, rmax, 12.	. 000000000000	0 0). 250339508056641D	-005
steplength, gamma	0.934835255493608D-014	1.000000	0000000	8
tt, info, rmax, 12.	. 000000000000	0 0	0.00000000000000	
		8856865090D-		
0.206459690038313			0.844327687619364D	
0.168865537523873 0.13607850615062).680392530753123D).536425415550288D	
1.0000000000000			457763664.000000	-026
-457763664.00000			457763664.000000	
-457763664.00000			457763664.000000	
-457763664.00000			457763664.000000	
-457763664.00000			. 00000000000000	
-0.658276825136013			0.630064961201612D	
-0.12601299224032).515336714535050D	
-0.104571975650178).415278637114376D	-020
-0.818520212283408	BD-020 -0.1637040424566	882D-019		

9 Newton steps

x0 489.859138 174.17962882 425.97362569 955.04007487	4158 7280	20.905233106 -653.2117002185 -171.1418467806 -896.536088135	227 673	-633.6000548405 675.884989041090 -754.508656207635 206.621797933154	
tt, info, rmax,	18.0000000	000000	0	273601096408.878	
steplength, gamma tt, info, rmax,	2023.42 12.0000000	010222668 000000	1.00000	000000000 159079979.545477	1
steplength, gamma tt, info, rmax,	15612.1 14.0000000	105994219 000000	0.190734 0	863281250D-005 159079676.124495	2
steplength, gamma tt, info, rmax,	23.5758 16.0000000	796432499 000000	0.781250 0	000000000000-002 158553666.463820	3
steplength, gamma tt, info, rmax,	18.9507 15.0000000	539629753 000000	0.125000	0000000000 154534990.248806	4
steplength, gamma tt, info, rmax,	34.1524 16.0000000	046774300 000000	0.244140	0625000000D-003 154529135.198641	5
steplength, gamma tt, info, rmax,	92.0011 14.000000	728271753 000000	0.280761 0	.718750000D-001 153934008.178371	6
steplength, gamma tt, info, rmax,	0.213780 12.0000000	894549538 000000	1.00000	000000000 129555772.393379	7
steplength, gamma tt, info, rmax,	0.490203 12.0000000	091522860 000000	1.00000	000000000 0.238418579101563	8 D-005
steplength, gamma tt, info, rmax,	0.895106 1.00000000	789666395D-014 000000	1.00000	000000000 0.596046447753906	9 D-007
x , r 0.7763 0.20607450404 0.20461079729 0.18301573001 1.0000000000 -457763664.00 -457763664.00 -457763664.00 -0.23693557601 -0.29387358265 -0.27986169022 -0.24266716881	1700D-029 1275D-027 0002 0000 0000 0000 0000 1567D-024 0006D-022 9253D-020	D-033 0.43333 0.9629649721936 0.917050802319 0.795171792462 -457763664.000 -457763664.0006 -457763664.0006 -457763664.0006 0.596046447753 -0.132243112192 -0.1363573423496 -0.1251854442318	426D-029 780D-027 000 000 000 000 906D-007 503D-023 603D-021 580D-019	8D-032 0.446815747097839 0.410207670714926 0.343312265952184 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -0.596046447753906 -0.628889466871012 -0.624422588414732 -0.558519674263973	D-028 D-026 D-007. D-023 D-021

RUN #9 10 Newton steps and 2 gradient step

x0 -834.972506153810 -875.078848947569	-983.7691751 924.303418741		447.07590108968 38.9442774086471	12
-795.176371801571	-0.500703910808		487.150834676203	
-346.782467450234	322.616508754		721.511346799489	
	0000000000	1	300222521428.460	*
	00000000000	1	17359103350870.1	*
steplength, gamma 54	027.8046190082	1.000000	0000000	1
	0000000000	0	1786211071.36421	
steplength, gamma 15	776.5628664350	0.3166198	73046875D-003	2
tt.info.rmax. 14.00	0000000000	0	1785645521.44156	
steplength.gamma 27	.7719244099574	0.2500000	0000000	3
tt,info,rmax. 14.00	0000000000	0	1339238345.83148	
	49827918067834	1.000000	0000000	4
tt, info, rmax, 12.00	0000000000	Ō	590430919.804070	
	36.52420367105	0.7629394	53125000D-005	5
tt, info, rmax. 13.00	0000000000	0	590426415.173640	
	.6924304507833	0.7812500	00000000D-002	6
tt.info.rmax, 14.00	0000000000	0	585835987.155582	
. 5 5	13685607249363	0.6250000	0000000D-001	7
tt.info.rmax. 15.00	0000000000	0	549466999.076904	
	.5352574148447	0.3281250		8
tt.info.rmax. 16.00	0000000000	0	370527291.858912	
				_
	55797420666023		0000000	9
tt, info, rmax, 12.00	0000000000	0	133329412.581193	
- 4	0000500.50			
	04481166507457		00000000	10
tt, info, rmax, 12.00	0000000000	0	0.250339508056641D	-005
stepiength, gamma 0.9	36377296560471D-014	1 000000	00000000	
	00000000000	_		
		0 8282760043D	0.000000000000000	
x , r 0.1656299752 0.175644810928116D-			0.844327687619364D	- 030
0.173795918181504D-		-	0.690253292068385D	
0.138050658413677D+			0.544314024602498D	
1.000000000000	-457763664.000		-457763664.000000	020
-457763664.000000	-457763664.000		-457763664.000000	
-457763664.000000	-457763664.000		-457763664.000000	
-457763664.000000	-457763664.000		-457763664.000000	
-457763664.000000	0.00000000000		0.000000000000000	
-0.505462562158010D-			0.536025414753610D	-022
-0.128834178633763D-			0.530383041966730L	
-0.104571975650178D-			0.421297168087048D	
-0.818520212283408D-			0.42129/10000/0400	020
	0.100111-040	. 555 515		

RUN #10 7 Newton steps

x0 168.5620886 -215.631795284 -312.386754666 -783.756813578	4871 0958	879.9365120 386.54120575 -847.80483047 -462.177283109	1119 4609	282.7567640089 -272.694289835621 -918.030969523965 318.376253985250	
tt,info,rmax,	18.0000000	000000	0	280160813516.508	}
steplength, gamma		079830120		00000000	1
tt, info, rmax,	12.000000	000000	0	851810879.278383	•
steplength, gamma		685306682		312500000D-003	2
tt,info,rmax,	14.0000000	000000	0	851706898.458158	}
steplength, gamma		599706272		00000000D-001	3
tt, info, rmax,	13.0000000	000000	0	785166074.844281	
steplength, gamma		096172363		937500000D-001	4
tt, info, rmax,	14.0000000	000000	0	768681659.969552	
steplength, gamma		680138793		00000000	5
tt.info,rmax,	12.0000000	000000	0	129555772.393379	ı
steplength, gamma		091522860		00000000	6
tt, info, rmax,	12.000000	000000	0	0.244379043579102	D-005
steplength, gamma		239355039D-014	1.00000	00000000	7
tt.info.rmax,	12.0000000	000000	0	0.0000000000000000)
	32160601443		76131526265		
0.200296714216		0.40983789216		0.819675784331207	
0.167632942359		0.33280069439		0.680392530753123	
0.134106353887		0.264268403249		0.528536806498078	
1.0000000000		-457763664.00		-457763664.000000	
-457763664.000		-457763664.00		-457763664.000000	
-457763664.000 -457763664.000		-457763664.000 -457763664.000		-457763664.000000	
-457763664.000		0.000000000000		-457763664.000000	
-0.993292709357		-0.30092654863		0.000000000000000000000000000000000000	
-0.125072596775		-0.25014519355		-0.511575132677130	
-0.101562710163		-0.20763931855		-0.409260106141704	
-0.806483150338		-0.16129663006		0.400200100141704	2 020

RUN #11 10 Newton steps and 2 gradient step

x0 -507.462338260756 460.053875018011 -554.345688116258 -905.916211360387	-745.33152629 -77.64302451831 -506.4273496052 -924.2508099407	148 299	822.62698928840 -406.981993993563 53.2199324551891 901.741966752070	6
tt, info, rmax, 9.000000		1	282058958142.296	*
tt, info. rmax. 14.00000	0000000	1	9678403149694.32	*
steplength, gamma 45364.	5042318625	1.00000	00000000	1
tt.info.rmax. 12.000000		0	429107069.641468	•
. 5 / 5	5499860498		338378906D-004	2
tt,info.rmax, 14.000000	0000000	0	429074945.212750	
steplength.gamma 29.267	1518584511	0.625000	000000000D-001	3
tt,info,rmax, 14.00000	0000000	o	402258848.273416	
steplength, gamma 10.387 tt.info.rmax. 18.000000	5006835552		000000000 295236784.148774	4
cc, inito, imax, 18.00000	000000	o	295236784.148774	
steplength, gamma 2.4136	4909828324	1.00000	00000000	5
tt.info.rmax, 13.000000	0000000	O	287724616.031283	_
	9816604460		525000000D-003	6
tt, info, rmax, 16.00000	0000000	0	287655027.217895	
steplength, gamma 9.4888	1403921367	0.1562500	00000000D-001	7
tt, inro. rmax, 18.000000		0.133230	283221899.663543	•
		_		
	4315204349	0.156250	00000000D-001	8
tt,info.rmax, 19.000000	000000	0	278861295.027645	
steplength.gamma 0.91198	7664675868	1 00000	00000000	9
tt, info, rmax, 12.00000		0	135022355.068402	9
		-		
	2132671297		00000000	10
tt, info. rmax. 12.000000	0000000	0	0.250339508056641D	-005
steplength.gamma 0.93562	8649287364D-014	1 00000	00000000	
tt.info.rmax, 12.00000		0	0.0000000000000000	
x , r 0.93889084788877		77402677661		
0.100148357108136D-030	0.2634672163921		0.659438412958189D	-030
0.156539 5858797 95D-029	0.3500570266916	324D-029	0.700114053383648D	-029
0.138050658413677D-028	0.2682127077751		0.536425415550288D	-028
1.000000000000	-457763664.0000		~457763664.000000	
-457763664.000000	-457763664.0000		-457763664.000000 -457763664.000000	
-457763664.000000 -457763664.000000	-457763664.0000 -457763664.0000		-457763664.000000 -457763664.000000	
-457763664.000000 -457763664.000000	-457763664.0000 0.00000000000000		0.00000000000000000	
-0.286526743083756D-023	-0.1028557539275		-0.305628525956006D	-022
-0.804038122130416D-022	-0.2012446293987		-0.477720895955849D	
-0.106818914764930D-020	-0.2136578495298		-0.421297168037048D	
-0.818520212283408D-020	-0.1637040424566	82D-019		

x0 -415.4650893 -777.129532256 -976.113784376 -78.1654829784	6195 8833	93.39678635 503.520149216 686.576335880 169.694047289	688 251	-655.69227582766 -632.224189726941 263.850657800655 -953.766508610371	60
tt, info, rmax,	19.00000000	00000	0	669201674021.751	
steplength, gamma tt, info, rmax,	2075.585 12.00000000	48391905 00000	1.00000	000000000 495718564.127140	1
steplength.gamma tt.info.rmax,	4.193546 13.00000000	26531279 00000	0.500000 0	000000000 356977880.225168	2
steplength, gamma tt, info, rmax,	581.4798 14.0000000	89666029 00000	0.610351 0	562500000D-004 356957986.239844	3
steplength, gamma tt, info, rmax,	17.08012 17.0000000	Ó5817469 00000	0.781250 0	000000000D-001 331543988.701578	4
steplength, gamma tt, info, rmax,	6.525606 15.00000000		0.500000 0	000000000 181610652.924412	5
steplength, gamma tt, info, rmax,	2.399125 15.00000000		0.125000	000000000 162997667.387076	6
steplength, gamma tt, info, rmax.	18.39642 19.0000000		0.218750 0	000000000 134566511.091070	7
steplength, gamma tt, info, rmax,	0.6628692 12.00000000		1.00000	000000000 135022355.068401	8
steplength, gamma tt, info, rmax,	0.5108721 12.00000000		1.00000	00000000 0.250339508056641	9 0-005
steplength, gamma tt, info, rmax, x , r 0.93889 0.100918729089	12.0000000 90847888777D		0 5530100928	000000000 0.0000000000000000 D-031 0.6594384129581891	10
0.156539585879 0.138050658413 1.00000000000000000000000000000000000	9795D-029 3677D-028 0000 0000 0000 0000 0000 3756D-023 - 7616D-022 -	0.350057026691 0.272157012301 -457763664.000 -457763664.000 -457763664.000 -457763664.000 0.000000000000000 0.104618995423 0.201244629398 0.213657849529 0.166111454845	824D-029 249D-028 000 000 000 000 000 402D-022 724D-021 860D-020	0.700114053383648E 0.544314024602498E -457763664.000000 -457763664.000000 -457763664.000000 0.000000000000000000000000000	0-029 0-028 0-028

RUN #13 6 Newton steps 2 gradient steps

x0 536.477440 -565.22285571 -80.390671386 157.38378648	1304 180.182538500 1346 -628.929442900	3556 9511	449.092889887492 768.913749734951 273.249274237714 528.871667806834		
tt,info.rmax. tt.info.rmax.	4.0000000000000 15.000000000000	1 1	191934030789.158 * 16845691099344.1 *		
steplength.gamma tt,info.rmax.	37117.6105912337 14.0000000000000	1.000000	939465467.781931	L	
steplength, gamma tt.info, rmax.	11.6912012042131 14.0000000000000	0.500000 0	00000000 2 532153589.895607	2	
steplength, gamma tt, info, rmax,	21.0876406660046 15.0000000000000	0.5000000 0	000000000 3 283305905.447369	3	
steplength.gamma tt.info.rmax.	75.6961499181736 16.0000000000000	0.2265625 0	00000000 4 219586876.653159	¥	
steplength, gamma tt, info.rmax.	1.44623443931224 12.0000000000000	1.000000	000000000 5 133329412.531193	5	
steplength, gamma tt, info, rmax,	0.504481166507457 12.000000000000	1.000000	00000000 6 0.250339508056641D-0	_	
steplength, gamma	0.934252011646448D-014	1.000000	00000000		
tt, info. rmax.	12.00000000000	0	0.00000000000000		
x r 0.161778115328528D-031 0.597038282760043D-031 0.174104066972606D-030 0.422163843809682D-030 0.844327687619364D-030 0.173795918181504D-029 0.342661455705377D-029 0.690253292068385D-029 0.136078506150625D-028 0.268212707775144D-028 0.528536806493073D-028 1.0000000000000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.00000 -457763664.000000 -457763664.00000 0.00000000000000 -0.531323437431210D-022 -0.128834178633763D-021 -0.257668357267525D-021 -0.530383041966730D-021 -0.104571975650178D-020 -0.210648584043524D-020 -0.415278637114376D-020 -0.818520212283408D-020 -0.161296630067613D-019					

RUN #14 6 Newton steps 3 gradient steps

x0 ~313.188277		-74.7127697	490351	363.8591803606	79
225.30834200	1151	-449.30306764	1651	-722.721760127721	
749.18728129	3977	334.30673167	4827	566.136306586745	
21.637477132	5915	834.13642088	33962	-471.498311508622	
tt.info.rmax.	8.0000000		1	220557173979.063	*
tt,info,rmax,	1.0000000		1	2819394490440.15	*
tt.info.rmax.	17.000000	0000000	1	743317395805483.	*
steplength.gamma		.145414435		000000000	1
tt, info, rmax.	13.000000	0000000	0	153587264.635352	
	20 770	4.05300505	2 722/7/		_
steplength, gamma		4435622585		187500000D-002	2
tt, info, rmax,	15.000000	0000000	0	153108097.868560	
steplength, gamma	13 925	9737920949	0 117183	7500000000D-001	3
tt, info, rmax.	14.000000		0.11,10	152485904.282359	
cc, 1111 011 max ;	14.00000	000000	J	132403904.202339	
steplength, gamma	16.395	1704458082	0.625000	000000000D-001	4
tt.info.rmax.	15.000000		0	150818862.186507	
			•		
steplength, gamma	0.71711	2686602673	1.00000	000000000	5
tt.into.rmax,	12.00000	0000000	0	132047268.790020	
steplength.gamma		0146021219	1.00000	000000000	ô
tt.info.rmax,	12.000000	0000000	0	0.244379043579102	D-005
steplength.gamma		6311736677D-014		000000000	
tt, info.rmax.	1.0000000	0000000	i	0.596046447753906	D-007
2 7702	7407775400	45 222 2 222	3200505004	(B. 200	
x,r 0.7703 0.20800043399	7197775489	0.4309 0.96296497219	926825056644 93648D-034	4D-032 0.440652771275800	D 030
0.20214560696		0.96296497218		0.440652771275800	
0.18301573001		0.79517179246		0.338263556158770	
1.0000000000		-457763664.00		-457763664.00000	
-457763664.00		-457763664.00		-457763664.000000	
-457763664.00		-457763664.00		-457763664.000000	
-457763664.00		-457763664.00		-457763664.00000	
-457763664.00		0.59604644775		-0.596046447753906	
-0.23509886612		-0.13150842823		-0.634766938524012	
-0.29387358265		-0.13447655142		-0.616899424698892	
-0.27986169022		-0.12518544423		-0.558519674263973	
-0.24266716881		-0.10322984324		2.200100, 42001, 0	· ·
			· ·		

RUN #15 8 Newton steps

	770404	205 040450	34.4000	54 50470000400	
x0 296.9811257		805.619158		51.604708001868	30
-40.5170014433		-670.07729013		-975.512313377759	
78.1184786292		-737.68760838		~6.90543145820155	
95.5765248137	7808	-613.38620714	7848	-628.146325780695	
tt, info, rmax.	19.0000000	000000	0	744985996579.413	
steplength, gamma		202256309		00000000	1
tt.info, rmax.	14.0000000	000000	٥	151289322.544588	
	00 0053	895261084	0.050005	05000000000000	
steplength, gamma				25000000D-001	2
tt, info. rmax.	15.0000000	000000	0	150658392.083229	
steplength, gamma	2.08038	227471001	0.250000	000000000	3
tt.info.rmax.	16.0000000		0.25000	144578667.929296	_
cc, into, imax,	16.000000	00000	U	1445/6667.929296	
steplength, gamma	35.9811	215440998	0.488281	250000000D-003	4
tt, info, rmax,	18.0000000		0	144551342.269987	
	-0.000000		J	144001042.20000.	
steplength, gamma	6.59190	252887505	0.781250	000000000D-002	5
tt, info, rmax.	19.000000		0	144407436.410621	
5 5 , 5 5 G , 1 ,			•		
steplength, gamma	0.455879	229119055	1.00000	000000000	6
tt, info, rmax,	12.0000000	000000	0	135022355.068402	
,					1
steplength, gamma	0.510872	132671297	1.00000	000000000	7
tt.info.rmax,	12.0000000	000000	0	0.250339508056641	D-Od
steplength, gamma	0.938331	.531860259D-014	1.00000	00000000	8
tt, info, rmax.	12.0000000	000000	0	0.000000000000000	
,	90847888777		15530100928		
0.10091872908		0.26808944825		0.671764364602268	
0.156539585879		0.35005702669		0.700114053383648	
0.14002281067		0.27215701230		0.544314024602498	D-02
1.000000000		-457763664.00		-457763664.000000	
-457763664.00		~457763664.00		-457763664.000000	
-457763664.00		-457763664.00	0000	-457763664.000000	1
-457763664.00		-457763664.00	0000	-457763664.000000	
-457763664.00	0000	0.0000000000	0000	0.00000000000000	
-0.28652674308	3756D-023	-0.10461899542	3402D-022	-0.307979514617206	
-0.81814405409	7616D-022	-0.20500621125	6644D-021	-0.477720895955849	D-02
-0.10682892476	4930D-020	-0.21365784952	9860D-020	-0.427315699059720	D-02
-0.83055727422	8752D-020	-0.16611145484	5750D-019		

INITIAL DISTRIBUTION LIST

DIRECTOR (2)
DEFENSE TECH. INFORMATION
CENTER, CAMERON STATION
ALEXANDRIA, VA 22314

DIRECTOR OF RESEARCH ADM.
CODE 012
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

OFFICE OF NAVAL RESEARCH CODE 422AT ARLINGTON, VA 22217

PROF. ALLEN GOLDSTEIN (10) CODE 53GO DEPARTMENT OF MATHEMATICS NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943 LIBRARY (2)
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

DEPT. OF MATHEMATICS CODE 53 NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

CENTER FOR NAVAL ANALYSES 4401 FORD AVENUE ALEXANDRIA, VA 22302-0268