S22 - Architecture des réseaux Routage

Cédric Wemmert

IUT Robert Schuman - Département Informatique

wemmert@unistra.fr

2022

Le paquet IP

00000

Scénarios

Octet	Octet 0				1						2					3																
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0		Version Taille en-tête Type de service				Taille totale																										
4	4 Identifiant Flag Fragment offset																															
8		Durée de vie Pro			tocole		Checksum																									
12	Adresse source																															
16	Adresse destination																															
20	Option(s)																															
		Données																														

- Version: 4 ou 6
- Taille en-tête : exprimée en nombre de mots de 32 bits
- Identifiant, flag et fragment offset : cf. fragmentation des paquets IP
- Durée de vie (TTL) : décrémentée à chaque passage dans un routeur; si TTL == 0,
 le paquet est rejeté (permet d'éviter les bouclages infinis)
- Protocole : identifiant du protocole dans les données
- Checksum : cf. M31...

Le paquet IP est encapsulé dans une trame Ethernet :

Par la suite nous utiliserons une version simplifiée des trames Ethernet :

Trame simplifiée

Couche Liaison	@MAC dest	MAC XX
Godelie Eldison	@MAC src	MAC YY
Couche Réseau	@IP src	XXX.XXX.XXX
codelle Resead	@IP dest	XXX.XXX.XXX
Couche Transport à Application		DATA

ICMP

Internet Control and error Message Protocol

Scénarios

- protocole important et nécessaire d'IP
- responsable de deux fonctions principales :
 - tester l'accessibilité d'un équipement
 - rendre compte d'un problème réseau

Messages ICMP

- messages d'interrogation ou d'information : différents messages (demande d'echo, demande d'heure, etc.)
- messages d'erreur : transmis à la source de l'envoi générant l'erreur (destinataire inaccessible, temps dépassé, en-tête erronée, etc.)

ICMP

Exemple: la commande ping

Utilisation de messages ECHO REQUEST et ECHO REPLY

```
$ ping -c 2 130.79.80.40
PING sterne.iutrs.unistra.fr (130.79.80.40): 56 data bytes
64 bytes from 130.79.80.40: icmp_seq=0 ttl=54 time=44.400 ms
64 bytes from 130.79.80.40: icmp_seq=1 ttl=54 time=44.746 ms
```

```
--- 130.79.80.40 ping statistics ---
```

2 packets transmitted, 2 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 44.400/44.573/44.746/0.173 ms

Routeurs .0000000000000

Scénarios

Scénarios

Paquet IP

2 scénarios

- M1 envoie un message à M2
- M1 envoie un message à M3

Algorithme de routage

Algorithme de routage Routeurs 000000000000

Configuration de l'interface

Scénarios

Paquet IP

Configuration de l'interface de M1

Adresse IP

192.168. 0.

Masque de sous-réseau

255.255.255.

0

Routeurs

M1 détecte le sous-réseau

- M1 applique le masque de sous-réseau :
 - M1:192.168.0.1 ET 255.255.255.0 = 192.168.0.0 • M2:192.168.0.2 ET 255.255.255.0 = 192.168.0.0
- → M1 détecte que les deux machines sont dans le même sous-réseau

Scénario 1: M1 envoie un message à M2

M1 et M2 dans le même sous-réseau : envoi d'une trame directement à M2

Trame simplifiée							
	Couche Liaison	@MAC dest	?				
	codelle Liuison	@MAC src	?				
	Couche Réseau	@IP src	?				
		@IP dest	?				
	Couches Transport à Application	DATA					

Scénario 1 : M1 envoie un message à M2

M1 et M2 dans le même sous-réseau : envoi d'une trame directement à M2

Routeurs

Trame simp	lifiée			
	Couche Liaison	@MAC dest	?	
	codelle Eldison	@MAC src	MAC M1	
	Couche Réseau	@IP src	?	
	codelle Resedu	@IP dest	?	
	Couches Transport à Application	DATA		

M1 et M2 dans le même sous-réseau : envoi d'une trame directement à M2

Trame si	mplifiée		
	Couche Liaison	@MAC dest	?
	codelle Lidison	@MAC src	MAC M1
	Couche Réseau	@IP src	192.168.0.1
	Souding Nessau	@IP dest	?
	Couches Transport à Application		DATA

M1 et M2 dans le même sous-réseau : envoi d'une trame directement à M2

Trame simplifiée

Paquet IP

Couche Liaison	@MAC dest	?
	@MAC src	MAC M1
Couche Réseau	@IP src	192.168.0.1
oodene nesedd	@IP dest	192.168.0.2
Couches Transport à Application		DATA

Scénario 1 : M1 envoie un message à M2

M1 et M2 dans le même sous-réseau : envoi d'une trame directement à M2

Trame simplifiée

Couche Liaison	@MAC dest	
	@MAC src	MAC M1
Couche Réseau	@IP src	192.168.0.1
esache Reseau	@IP dest	192.168.0.2
Couches Transport à Application		DATA

Comment connaître l'adresse MAC du destinataire?

Correspondance IP/MAC

Problème

Paquet IP

- Adresse IP au niveau IP et adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

ARP: Address Resolution Protocol

- Traduction d'adresse niveau réseau en adresse MAC
- Interface couches OSI 2 (liaison) et 3 (réseau)
- Fonctionnement:
 - Émission d'un broadcast « Requête ARP » sur le réseau local (who-has)
 - Émission d'un unicast « Réponse ARP » contenant l'adresse MAC (is-at)
- Accéléré par un mécanisme de cache (commande arp)
- Représente une vulnérabilité (usurpation)
- Remplacé par ICMPv6 (ICMP enrichi et étendu avec notamment le Neighbor Detector) en IPv6

Paquet IP

M1 et M2 sont dans le même sous-réseau :

• ARP pour obtenir l'adresse MAC de M2

Trame simplifiée

Couche Liaison	@MAC dest	?
SSGGIIG EIGISSII	@MAC src	MAC M1
Couche Réseau	@IP src	192.168.0.1
ooddii Nessedd	@IP dest	192.168.0.2
Couches Transport à Application		DATA

M1 et M2 sont dans le même sous-réseau :

- ARP pour obtenir l'adresse MAC de M2
- envoi d'une trame directement à M2

Trame simplifiée

Couche Liaison	@MAC dest	MAC M2
South Liabon	@MAC src	MAC M1
Couche Réseau	@IP src	192.168.0.1
esache Reseau	@IP dest	192.168.0.2
Couches Transport à Application		DATA

Scénario 1

M1

192.168.0.1/24

M2 dans le même sous-réseau que M1

R1

192.168.1.1/24

192.168.0.254/24

M2

 Scénarios
 Routeurs
 Algorithme de routage

 000000 € 000000
 00000000
 0000000

Scénario 1

Scénario 1

Scénario 1

M1 détecte le sous-réseau

- Application du masque de sous-réseau
 - M1:192.168.0.1 ET 255.255.255.0 = 192.168.0.0
 - M3:192.168.1.1 ET 255.255.255.0 = 192.168.1.0
- → Les deux machines ne sont PAS dans le même sous-réseau

Configuration de l'interface de M1

Adresse IP

Masque de sous-réseau

Passerelle

192.168. 0.

1

255.255.255. 0

192.168. 0.254

Configuration de l'interface de M1

Adresse IP

Masque de sous-réseau

Passerelle

192.168. 0.

255.255.255. 0

1

192.168. 0.254

Configuration de l'interface

Passerelle

Paquet IP

Prochaine destination intermédiaire si la destination finale n'est pas dans le même sous-réseau

Trame simplifiée								
	Couche Liaison	@MAC dest	?					
	couche Eluison	@MAC src	?					
	Couche Réseau	@IP src	?					
		@IP dest	?					
	Couches Transport à Application	DATA						

Trame simplifiée								
	Couche Liaison	@MAC dest	?					
	codelle Lidisoli	@MAC src	MAC M1					
	Couche Réseau	@IP src	?					
		@IP dest	?					
	Couches Transport à Application	DATA	4					

Paquet IP

Trame s	implifiée		
	Couche Liaison	@MAC dest	?
	Couche Elaison	@MAC src	MAC M1
	Couche Réseau	@IP src	192.168.0.1
		@IP dest	?
	Couches Transport à Application		DATA

Trame simplifiée					
	Couche Liaison	@MAC dest	?		
		@MAC src	MAC M1		
	Couche Réseau	@IP src	192.168.0.1		
		@IP dest	192.168.1.1		
	Couches Transport à Application	DATA			

Paquet IP

Couche Liaison @MAC dest MAC R1 @MAC src MAC M1 Couche Réseau @IP src 192.168.0.1 @IP dest 192.168.1.1	Trame simplifiée					
@MAC src MAC M1 Couche Réseau @IP src 192.168.0.1 @IP dest 192.168.1.1		Couche Liaison	@MAC dest	MAC R1		
Couche Réseau @IP dest 192.168.1.1			@MAC src	MAC M1		
@IP dest 192.168.1.1		Couche Réseau	@IP src	192.168.0.1		
			@IP dest	192.168.1.1		
Couches Transport à Application DATA		Couches Transport à Application	DATA			

Scénario 2 : M1 envoie un message à M3 via R1

M1

192.168.0.1/24

Penvoi vers la passerelle

R1

192.168.1.1/24

192.168.1.254/24

192.168.0.254/24

M2

Scénario 2 : M1 envoie un message à M3 via R1

Scénario 2: M1 envoie un message à M3 via R1

Scénario 2 : M1 envoie un message à M3 via R1

Scénario 2

Paquet IP

R1 transmet le paquet IP vers M3

Trame simplifiée Couche Liaison @MAC dest MAC M3 @MAC src MAC R1 @IP src 192.168.0.1 Couche Réseau @IP dest 192.168.1.1 Couches Transport à Application DATA

- La fonction des routeurs est de router les paquets :
 - c.-à-d. les acheminer au travers du réseau
- Ce sont des machines dédiées au traitement réseau
- Ils possèdent plusieurs interfaces :
 - une interface par sous-réseau connecté

0000000

Zoom sur les routeurs

- La fonction des routeurs est de router les paquets :
 - o c.-à-d. les acheminer au travers du réseau
- Ce sont des machines dédiées au traitement réseau
- Ils possèdent plusieurs interfaces :
 - une interface par sous-réseau connecté
- Ils fonctionnent grâce à une table de routage

Table de routage (R1) Passerelle Interface Adr Dest Masque 192.1.1. 255, 255, 255, 128 192.1.1. 1 192.1.1. 192.1.1.128 255, 255, 255, 224 192.1.1.178 192.1.1.177 2 3 192.1.1.160 255.255.255.240 192.1.1.182 192.1.1.181 4 0.0.0. 0 0. 0. 0. 0 192.1.1.182 192.1.1.181

Scénarios

Routeurs

Table de routage (R1)				
N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1. 1	192.1.1. 1
2	192.1.1.128	255.255.255.224	192.1.1.178	192.1.1.177
3	192.1.1.160	255.255.255.240	192.1.1.182	192.1.1.181
4	0.0.0. 0	0. 0. 0. 0	192.1.1.182	192.1.1.181

Routeurs Algorithme de routa

Routeurs

Scénarios

Table de routage (R2)				
N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.177	192.1.1.178
2	192.1.1.128	255.255.255.224	192.1.1.129	192.1.1.129
3	192.1.1.160	255.255.255.240	192.1.1.186	192.1.1.187
4	0.0.0. 0	0. 0. 0. 0	192.1.1.186	192.1.1.187

| Routeurs | Algorithme de r

Routeurs

Scénarios

Table de routage (R3)				
N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0. 0	0. 0. 0. 0	80.0.0. 1	80.0.0. 2

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.132

Paquet IP

Algorithme des routeurs

Scénarios

R3 reçoit un paquet à destination de 192.1.1.132

Table de routage (R3) Ν Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 1 192.1.1.128 255,255,255,224 2 192.1.1.187 192 1 1 186 192 1 1 161 3 192 1 1 160 255 255 255 240 192 1 1 161 0.0.0.0 80.0.0.1 192.1.1.254 4 0.0.0.0

Si (Adresse IP ET Masque = Adr Dest) Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.132

- ① 192.1.1.132 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.132 ET 255.255.255.224 (192.1.1.128) = 192.1.1.128

 \Rightarrow Le paquet est envoyé vers **192.1.1.187** via **192.1.1.186**

Paquet IP

Algorithme des routeurs

Scénarios

R3 reçoit un paquet à destination de 192.1.1.132

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 1 192.1.1.128 255,255,255,224 2 192.1.1.187 192 1 1 186 3 192 1 1 160 255 255 255 240 192 1 1 161 192 1 1 161 0.0.0.0 192.1.1.254 4 0.0.0.0 80.0.0.1

Si (Adresse IP ET Masque = Adr Dest) Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.132

- \bigcirc 192.1.1.132 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.132 ET 255.255.255.224 (192.1.1.128) = 192.1.1.128

 \Rightarrow Le paquet est envoyé vers **192.1.1.187** via **192.1.1.186**

Algorithme de routage

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.132

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 1 192.1.1.128 255.255.255.224 2 192.1.1.187 192.1.1.186 192 1 1 160 255 255 255 240 192 1 1 161 3 192 1 1 161 0.0.0.0 192.1.1.254 4 0.0.0.0 80.0.0.1

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.132

 \bigcirc 192.1.1.132 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0

00000000

192.1.1.132 ET 255.255.255.224 (192.1.1.128) = 192.1.1.128

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.132

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 1 192.1.1.128 255.255.255.224 2 192.1.1.187 192.1.1.186 192 1 1 160 255 255 255 240 3 192 1 1 161 192 1 1 161 0.0.0.0 192.1.1.254 4 0.0.0.0 80.0.0.1

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.132

- \bigcirc 192.1.1.132 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- **192.1.1.132** ET 255.255.255.224 (192.1.1.128) = 192.1.1.128

00000000

⇒ Le paquet est envoyé vers **192.1.1.187** via **192.1.1.186**

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.163

Paquet IP

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.163

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.163

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255,255,255,128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.163

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.163 ET 255.255.255.224 (192.1.1.160) \neq 192.1.1.12
- 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160

⇒ @Passerelle = @Interface donc on peut envoyer directement à la destination ⇒ La trame est envoyée vers **192.1.1.163** *via* **192.1.1.161** (cf. ARP)

192.1.1.254

3

Paquet IP

Algorithme des routeurs

0.0.0.0

R3 reçoit un paquet à destination de 192.1.1.163

0.0.0.0

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255,255,255,128 192.1.1.181 192.1.1.182 1 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255,255,255,240 192.1.1.161 192.1.1.161

Si (Adresse IP ET Masque = Adr Dest) Alors Envoyer le paquet vers Passerelle via Interface

80.0.0.1

À la réception par R3 d'un paquet à destination de 192.1.1.163

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.163 ET 255.255.255.224 (192.1.1.160) ≠ 192.1.1.128
- ① 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160

⇒ @Passerelle = @Interface donc on peut envoyer directement à la destination ⇒ La trame est envoyée vers 192.1.1.163 via 192.1.1.161 (cf. ARP)

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.163

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- \bigcirc 192.1.1.163 ET 255.255.255.224 (192.1.1.160) \neq 192.1.1.128
- **192.1.1.163** ET 255.255.255.160 (192.1.1.160) = 192.1.1.160

Algorithme de routage

Paquet IP

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.163

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- \bigcirc 192.1.1.163 ET 255.255.255.224 (192.1.1.160) \neq 192.1.1.128
- **192.1.1.163** ET 255.255.255.160 (192.1.1.160) = 192.1.1.160
- ⇒ @Passerelle = @Interface donc on peut envoyer directement à la destination

Algorithme des routeurs

R3 reçoit un paquet à destination de 192.1.1.163

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.163 ET 255.255.255.224 (192.1.1.160) ≠ 192.1.1.128
- 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160
- ⇒ @Passerelle = @Interface donc on peut envoyer directement à la destination
- ⇒ La trame est envoyée vers **192.1.1.163** *via* **192.1.1.161** (cf. ARP)

Algorithme des routeurs

R3 reçoit un paquet à destination de 132.2.5.1

Paquet IP

Algorithme des routeurs

R3 reçoit un paquet à destination de 132.2.5.1

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

Paquet IP

Algorithme des routeurs

R3 reçoit un paquet à destination de 132.2.5.1

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

- \bigcirc 132.2.5.1 ET 255.255.255.128 (132.2.5.0) \neq 192.1.1.0

0000000

Paquet IP

Algorithme des routeurs

R3 reçoit un paquet à destination de 132.2.5.1

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 132.2.5.1

- \bigcirc 132.2.5.1 ET 255.255.255.128 (132.2.5.0) \neq 192.1.1.0
- ② 132.2.5.1 ET 255.255.255.224 (132.2.5.0) ≠ 192.1.1.128
- \bigcirc 132.2.5.1 ET 255.255.255.160 (132.2.5.0) \neq 192.1.1.160
- \bigcirc 132.2.5.1 ET 0. 0. 0. 0 (0.0.0.0) = 0.0.0. 0

R3 reçoit un paquet à destination de 132.2.5.1

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 132.2.5.1

- \bigcirc 132.2.5.1 ET 255.255.255.128 (132.2.5.0) \neq 192.1.1.0
- \bigcirc 132.2.5.1 ET 255.255.255.224 (132.2.5.0) \neq 192.1.1.128
- \bigcirc 132.2.5.1 ET 255.255.255.160 (132.2.5.0) \neq 192.1.1.160
- \bigcirc 132.2.5.1 ET 0. 0. 0. 0 (0.0.0.0) = 0.0.0. 0

Algorithme des routeurs

R3 reçoit un paquet à destination de 132.2.5.1

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 132.2.5.1

- \bigcirc 132.2.5.1 ET 255.255.255.128 (132.2.5.0) \neq 192.1.1.0
- \bigcirc 132.2.5.1 ET 255.255.255.224 (132.2.5.0) \neq 192.1.1.128
- \bigcirc 132.2.5.1 ET 255.255.255.160 (132.2.5.0) \neq 192.1.1.160
- \bigcirc 132.2.5.1 ET 0. 0. 0. 0 (0.0.0.0) = 0.0.0. 0

Algorithme des routeurs

R3 reçoit un paquet à destination de 132.2.5.1

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1. 0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	0.0.0.0	80.0.0.1	192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 132.2.5.1

- \bigcirc 132.2.5.1 ET 255.255.255.128 (132.2.5.0) \neq 192.1.1.0
- \bigcirc 132.2.5.1 ET 255.255.255.224 (132.2.5.0) \neq 192.1.1.128
- \bigcirc 132.2.5.1 ET 255.255.255.160 (132.2.5.0) \neq 192.1.1.160
- \bigcirc 132.2.5.1 ET 0. 0. 0. 0 (0.0.0.0) = 0.0.0. 0

- chaque routeur (re)construit en permanence sa table de routage
- un paquet est routé au saut par saut (<u>hop by hop</u>): interrogation des tables de routage successives
 - <u>aucun routeur</u> ne connait la route exacte empruntée par un paquet.
 Risque de boucle?

Si changement dans la table de routage :

- 2 paquets successifs (même flux <@IP $_{SRC}$, @IP $_{DST}$, port $_{SRC}$, port $_{DST}$ >)
- ⇒ Éventuellement routes différentes

Problème

Paquet IP

Comment construire les tables de routage?

Algorithme de routage

Objectifs

Permettre la construction des tables de routage tel que les actions suivantes soient « garanties » :

- assurer l'acheminement des paquets (livraison à destination \rightarrow pas de boucle)
- minimiser les délais de transmission
- maximiser les débits
- prévenir les congestions
- assurer l'équité entre utilisateurs (ou <u>QoS</u>)
- optimiser l'utilisation des ressources du réseau
- gérer les défaillances du réseau (pannes liens/routeurs...)
- s'adapter aux modifications du réseau (topologique + charge?)
- stabilité (éviter les oscillations)

Protocoles de routage

Système autonome, routage intérieur et extérieur

- Au sein d'un système autonome (AS), les routes sont générées par des protocoles de routage intérieurs (RIP, IGRP, EIGRP, OSPF ou IS-IS)
- Les protocoles de routage qui permettent de connecter les AS entre eux sont des protocoles de routage extérieurs (EGP ou BGP)
- Protocoles à vecteur de distance :
 - basés sur l'échange des tables de routage entre routeurs
 - addition des distances pour trouver les routes (Bellman-Ford)
 - sensibles aux boucles de routage
 - convergence lente
- Protocoles à état de liens :
 - algorithme plus efficace (Dijkstra ou Shortest Path First)
 - les routeurs collectent l'ensemble des coûts des liens et construisent de leur point de vue l'arbre de tous les chemins
 - les meilleures routes sont intégrées à la table de routage
 - convergence rapide

- ightarrow chaque routeur possède une vue globale du réseau
 - OSPF: Open Shortest Path First
 - v2 RFC 2328 en 1998 (IPv4)
 - v3 RFC 5340 en 2008 (IPv6)
 - IS-IS: Intermediate System to Intermediate System
 - v1 RFC 1142 en 1990 (indépendant du protocole réseau)

Routeurs

- Tous les routeurs possèdent à un instant donné la même table des liens (LSBD)
- Représentation globale du réseau sous la forme d'un graphe connu de tous :
 - arête du graphe : lien = connexion entre routeur et réseau ou entre 2 routeurs
 - sommet du graphe : routeurs et réseaux

Principe

Paquet IP

- Chaque routeur détermine l'état des liens (LS) adjacents
- ullet Si changement état d'un lien local o <u>diffusion de proche en proche</u> du nouvel LS à l'ensemble du réseau (*flooding*)

Note : tous les routeurs ont la même LSDB au délai de diffusion des LS près

À chaque réception de <u>LS Advertisement</u> (LSA), un routeur R calcule le plus court chemin de lui vers le reste du monde :

- Arbre des plus court chemins (SPT) calculé avec Dijkstra (poids positifs)
- ex-aequo départagé par lecture lexicographique des id. (ou ECMP)
- racine du SPT = routeur R
- \Rightarrow Prochain saut vers @IP $_{DST}$ = premier fils conduisant à @IP $_{DST}$ dans le SPT (sous-arbre contenant @IP $_{DST}$)

OSPF - RFC 2328

Paquet IP

Open Shortest Path First

Caractéristiques

- Protocole à état des liens
- Intra-domaine : routage interne à un réseau (ou AS, ou domaine) :
 - entreprise, réseaux locaux étendu (p.ex. OSIRIS), FAI...
- Découverte automatique des voisins
- Élection d'un routeur désigné par sous-réseau (LAN)
- Diffusion fiable des LSA
- Possibilité de découper le réseau en aires (OSPF area) :
 - hiérarchisation pour les grands réseaux

OSPF - RFC 2328

Déroulement complet d'OSPF

Chaque routeur:

- découvre son voisinage et conserve une liste de tous ses voisins (NT);
- utilise un protocole <u>fiable</u> pour échanger les informations topologiques avec ses voisins (LSA)
- stocke les informations topologiques apprises dans sa base de données (LSBD)
- exécute l'algorithme SPF (Dijkstra) pour calculer les meilleurs routes
- place ensuite la meilleure route vers chaque sous-réseau dans sa table de routage (RT)

Chaque routeur possède:

- une table de ses voisins, Neighbor table (NT)
- une base de données de la topologie du réseau, Topology database (LSBD)
- une table de routage, Routing table (RT)

L'essentiel

Paquet IP

- Principe d'encapsulation : paquet IP est encapsulé dans une trame Ethernet
- ARP: correspondance @MAC/@IP
- Routeurs: machines dédiées aux traitements réseau
- Routeurs utilisent une table de routage pour savoir comment acheminer les paquets
- Table de routage construites manuellement ou en utilisant un algorithme de routage
- Routage à état des liens permet de construire automatiquement les tables de routage