DS011 - Introdução à Arquitetura de Computadores

Parte 2 da Aula 05 – Lógica Digital Simplificação de funções

Sumário

Mintermos e Maxtermos

Mapas de Karnaugh

Exercícios

Simplificação:

- -Redução do número de portas do circuito lógico que implementa a função.
- —Através de manipulação algébrica da função lógica, sem alteração do valor lógico da mesma.

Simplificação:

- -Redução do número de portas do circuito lógico que implementa a função.
- —Através de manipulação algébrica da função lógica, sem alteração do valor lógico da mesma.

•Mintermos e Maxtermos:

- -Utilizados para reescrever-se uma função lógica em uma forma **padronizada** (forma canônica).
- -E dessa forma, obter uma simplificação da mesma.

•Exemplo 1:

$$-f(A,B,C) = ABC + ABC' + AB'C + AB'C' + A'BC$$
$$= A + BC$$

- Função na forma de uma Soma Padrão de Produtos (Mintermos).
- Após manipulação algébrica, cada termo possui todas as variáveis (A, B e
 C) complementadas ou não.

•Exemplo 1:

$$-f(A,B,C) = ABC + ABC' + AB'C + AB'C' + A'BC$$
$$= A + BC$$

- Função na forma de uma Soma Padrão de Produtos (Mintermos).
- Após manipulação algébrica, cada termo possui todas as variáveis (A, B e
 C) complementadas ou não.

•Exemplo 2:

$$-f(A,B,C) = (A + B + C)(A + B' + C)(A + B + C')(A + B' + C')(A' + B' + C)$$
$$= A(B' + C)$$

- Função na forma de um **Produto Padrão de Somas (Maxtermos)**.
- Após manipulação algébrica, cada fator contém a soma de todas as variáveis complementadas ou não.

- Todas as variáveis aparecem em cada produto (mintermos) e em cada soma (maxtermos).
- Combinações dos valores lógicos das variáveis: ordem crescente (000, 001, 010, ...).
- As linhas da tabela-verdade começam com a Linha 0.

- Todas as variáveis aparecem em cada produto (mintermos) e em cada soma (maxtermos).
- Combinações dos valores lógicos das variáveis: ordem crescente (000, 001, 010, ...).
- As linhas da tabela-verdade começam com a Linha 0.
- Para mintermos:
 - Escreva o produto das variáveis, complementando-as, sempre que seu valor lógico seja0.
 - Exemplo: Linha 2 → 010 → A'BC'. (Considere apenas as linhas onde o valor lógico da função seja 1)

- Todas as variáveis aparecem em cada produto (mintermos) e em cada soma (maxtermos).
- Combinações dos valores lógicos das variáveis: ordem crescente (000, 001, 010, ...).
- As linhas da tabela-verdade começam com a Linha 0.
- Para mintermos:
 - Escreva o produto das variáveis, complementando-as, sempre que seu valor lógico seja0.
 - Exemplo: Linha 2 → 010 → A'BC'. (Considere apenas as linhas onde o valor lógico da função seja 1)
- Para maxtermos:
 - —Escreva a soma das variáveis, complementando-as, sempre que seu valor lógico seja 1.
 - —Exemplo: Linha 5 → 101 → A' + B + C'. (Considere apenas as linhas onde o valor lógico da função seja 0)

Linha	Α	В	С	f(A,B,C)	Mintermos	Maxtermos
0	0	0	0	1		
1	0	0	1	0		
2	0	1	0	1		
3	0	1	1	1		
4	1	0	0	0		
5	1	0	1	0		
6	1	1	0	1		
7	1	1	1	1		

Linha	Α	В	С	f(A,B,C)	Mintermos	Maxtermos
0	0	0	0	1	m0 = A'B'C'	
1	0	0	1	0	m1 = A'B'C	
2	0	1	0	1	m2 = A'BC'	
3	0	1	1	1	m3 = A'BC	
4	1	0	0	0	m4 = AB'C'	
5	1	0	1	0	m5 = AB'C	
6	1	1	0	1	m6 = ABC'	
7	1	1	1	1	m7 = ABC	

Linha	Α	В	С	f(A,B,C)	Mintermos	Maxtermos
0	0	0	0	1	m0 = A'B'C'	M0 = A + B + C
1	0	0	1	0	m1 = A'B'C	M1 = A + B + C'
2	0	1	0	1	m2 = A'BC'	M2 = A + B' + C
3	0	1	1	1	m3 = A'BC	M3 = A + B' + C'
4	1	0	0	0	m4 = AB'C'	M4 = A' + B + C
5	1	0	1	0	m5 = AB'C	M5 = A' + B + C'
6	1	1	0	1	m6 = ABC'	M6 = A' + B' + C
7	1	1	1	1	m7 = ABC	M7 = A' + B' + C'

• Escrever a função **f(A,B,C)** na forma de Mintermos:

- Escrever a função **f(A,B,C)** na forma de Mintermos:
 - Soma ponderada dos Mintermos
 - f(A,B,C) = 1.(A'B'C') + 0.(A'B'C) + 1.(A'BC') + 1.(A'BC) + 0.(AB'C') + 0.(AB'C') + 1.(ABC') + 1.(ABC')

- Escrever a função **f(A,B,C)** na forma de Mintermos:
 - Soma ponderada dos Mintermos

$$- f(A,B,C) = 1.(A'B'C') + 0.(A'B'C) + 1.(A'BC') + 1.(A'BC) + 0.(AB'C') + 0.(AB'C) + 1.(ABC') + 1.(ABC')$$

• Após desconsiderar-se os termos com peso 0:

```
-f(A,B,C) = A'B'C' + A'BC' + A'BC + ABC' + ABC
= linha0 + linha2 + linha3 + linha6 + linha7
= m0 + m2 + m3 + m6 + m7
```

- Escrever a função **f(A,B,C)** na forma de Mintermos:
 - Soma ponderada dos Mintermos

$$- f(A,B,C) = 1.(A'B'C') + 0.(A'B'C) + 1.(A'BC') + 1.(A'BC) + 0.(AB'C') + 0.(AB'C) + 1.(ABC') + 1.(ABC)$$

• Após desconsiderar-se os termos com peso 0:

• Que é a <u>soma dos produtos</u> (mintermos; m minúsculo) das linhas 0, 2, 3,
6 e 7.

 $- F(A,B,C) = \Sigma ABC (0,2,3,6,7).$ (*) Forma abreviada.

• Escrever a função **f(A,B,C)** na forma de Maxtermos:

- Escrever a função **f(A,B,C)** na forma de Maxtermos:
 - Substitui-se soma por produto, produto por soma e complementado por não complementado.

```
-f(A,B,C) = (1 + (A + B + C)).(0 + (A + B + C')).
(1 + (A + B' + C)).(1 + (A + B' + C')).
(0 + (A' + B + C)).(0 + (A' + B + C')).
(1 + (A' + B' + C)).(1 + (A' + B' + C')).
```

- Escrever a função **f(A,B,C)** na forma de Maxtermos:
 - Substitui-se soma por produto, produto por soma e complementado por não complementado.

```
-f(A,B,C) = (1 + (A + B + C)).(0 + (A + B + C')).
(1 + (A + B' + C)).(1 + (A + B' + C')).
(0 + (A' + B + C)).(0 + (A' + B + C')).
(1 + (A' + B' + C)).(1 + (A' + B' + C')).
```

• Após desconsiderar-se os fatores com termos 1:

```
- f(A,B,C) = (A + B + C')(A' + B + C)(A' + B + C')
= linha1 . linha4 . linha5
= M1 . M4 . M5
```

- Escrever a função **f(A,B,C)** na forma de Maxtermos:
 - Substitui-se soma por produto, produto por soma e complementado por não complementado.

```
-f(A,B,C) = (1 + (A + B + C)).(0 + (A + B + C')).
(1 + (A + B' + C)).(1 + (A + B' + C')).
(0 + (A' + B + C)).(0 + (A' + B + C')).
(1 + (A' + B' + C)).(1 + (A' + B' + C')).
```

• Após desconsiderar-se os fatores com termos 1:

```
- f(A,B,C) = (A + B + C')(A' + B + C)(A' + B + C')
= linha1 . linha4 . linha5
= M1 . M4 . M5
```

• Que é o produto das somas (maxtermos; M maiúsculo) das linhas 1, 4, e 5.

$$-F(A,B,C) = \Pi(A+B+C) (1,4,5). (*)$$
 Forma abreviada.

• Um circuito comparador de dois vetores de dois bits.

- Um circuito comparador de dois vetores de dois bits.
 - Entradas:
 - N1 e N2, cada um com dois bits.

$$N1 = AB e N2 = CD$$

- Um circuito comparador de dois vetores de dois bits.
 - Entradas:
 - N1 e N2, cada um com dois bits.

$$N1 = AB e N2 = CD$$

- Saídas:
 - 3 saídas, de 1 bit cada uma (F1, F2 e F3)

- Um circuito comparador de dois vetores de dois bits.
 - Entradas:
 - N1 e N2, cada um com dois bits.

$$N1 = AB e N2 = CD$$

- Saídas:
 - 3 saídas, de 1 bit cada uma (F1, F2 e F3)

Diagrama de Bloco

• Calcular os mintermos e os maxtermos a partir da tabela verdade.

L	Α	В	С	D	F1	F2	F3
0	0	0	0	0	1	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	0	1	0
3	0	0	1	1	0	1	0
4	0	1	0	0	0	0	1
5	0	1	0	1	1	0	0
6	0	1	1	0	0	1	0
7	0	1	1	1	0	1	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	0	1
10	1	0	1	0	1	0	0
11	1	0	1	1	0	1	0
12	1	1	0	0	0	0	1
13	1	1	0	1	0	0	1
14	1	1	1	0	0	0	1
15	1	1	1	1	1	0	0

L	Α	В	С	D	F1	F2	F3	Mintermos	Maxitermos
0	0	0	0	0	1	0	0	A'B'C'D'	A+B+C+D
1	0	0	0	1	0	1	0	A'B'C'D	A+B+C+D'
2	0	0	1	0	0	1	0	A'B'CD'	A+B+C'+D
3	0	0	1	1	0	1	0	A'B'CD	A+B+C'+D'
4	0	1	0	0	0	0	1	A'BC'D'	A+B'+C+D
5	0	1	0	1	1	0	0	A'BC'D	A+B'+C+D'
6	0	1	1	0	0	1	0	A'BCD'	A+B'+C'+D
7	0	1	1	1	0	1	0	A'BCD	A+B'+C'+D'
8	1	0	0	0	0	0	1	AB'C'D'	A'+B+C+D
9	1	0	0	1	0	0	1	AB'C'D	A'+B+C+D'
10	1	0	1	0	1	0	0	AB'CD'	A'+B+C'+D
11	1	0	1	1	0	1	0	AB'CD	A'+B+C'+D'
12	1	1	0	0	0	0	1	ABC'D'	A'+B'+C+D
13	1	1	0	1	0	0	1	ABC'D	A'+B'+C+D'
14	1	1	1	0	0	0	1	ABCD'	A'+B'+C'+D
15	1	1	1	1	1	0	0	ABCD	A'+B'+C'+D'

Mintermos

L	Α	В	С	D	F1	F2	F3	Mintermos	Maxitermos
0	0	0	0	0	1	0	0	A'B'C'D'	A+B+C+D
1	0	0	0	1	0	1	0	A'B'C'D	A+B+C+D'
2	0	0	1	0	0	1	0	A'B'CD'	A+B+C'+D
3	0	0	1	1	0	1	0	A'B'CD	A+B+C'+D'
4	0	1	0	0	0	0	1	A'BC'D'	A+B'+C+D
5	0	1	0	1	1	0	0	A'BC'D	A+B'+C+D'
6	0	1	1	0	0	1	0	A'BCD'	A+B'+C'+D
7	0	1	1	1	0	1	0	A'BCD	A+B'+C'+D'
8	1	0	0	0	0	0	1	AB'C'D'	A'+B+C+D
9	1	0	0	1	0	0	1	AB'C'D	A'+B+C+D'
10	1	0	1	0	1	0	0	AB'CD'	A'+B+C'+D
11	1	0	1	1	0	1	0	AB'CD	A'+B+C'+D'
12	1	1	0	0	0	0	1	ABC'D'	A'+B'+C+D
13	1	1	0	1	0	0	1	ABC'D	A'+B'+C+D'
14	1	1	1	0	0	0	1	ABCD'	A'+B'+C'+D
15	1	1	1	1	1	0	0	ABCD	A'+B'+C'+D'

Maxtermos

F1(A,B,C,D) =

(1+(A+B+C+D))(0+(A+B+C+D'))

```
(0+(A +B +C'+D))
  (0+(A +B +C'+D'))
 (0+(A +B'+C +D))
(1+(A+B'+C+D'))
  (0+(A +B'+C'+D))
 (0+(A +B'+C'+D'))
  (0+(A'+B+C+D))
  (0+(A'+B+C+D'))
 (1+(A'+B+C'+D))
  (0+(A'+B+C'+D'))
  (0+(A'+B'+C+D))
 (0+(A'+B'+C+D'))
  (0+(A'+B'+C'+D))
  (1+(A'+B'+C'+D'))
  F1(A,B,C,D) =
  M1.M2.M3.M4.M6.M7.
    M8.M9.M11.M12.M13.M14
  F1(A,B,C,D) =
  \Pi ABCD(1,2,3,4,6,7,8,9,11)
  ,12,13,14)
```

- Permite representar de forma conveniente uma função booleana.
 - Número **pequeno** de variáveis. Até 4 ou 6.

- Permite representar de forma conveniente uma função booleana.
 - Número **pequeno** de variáveis. Até 4 ou 6.
- Ferramenta de auxilio à simplificação (minimização) de funções boolenas.

- Permite representar de forma conveniente uma função booleana.
 - Número **pequeno** de variáveis. Até 4 ou 6.
- Ferramenta de auxilio à simplificação (minimização) de funções boolenas.
- O mapa consiste em uma matriz de posições:
 - Posição → As possíveis combinações de valores de n variáveis binárias.
 - As posições deve ser listas na ordem: **00, 01, 11, 10**.

- Permite representar de forma conveniente uma função booleana.
 - Número **pequeno** de variáveis. Até 4 ou 6.
- Ferramenta de auxilio à simplificação (minimização) de funções boolenas.
- O mapa consiste em uma matriz de posições:
 - Posição → As possíveis combinações de valores de n variáveis binárias.
 - As posições deve ser listas na ordem: 00, 01, 11, 10.

- EXEMPLO:
- Mapa de Karnaugh para representar uma função booleana de 3 variáveis:
 - F(A,B,C) = A'BC' + A'BC + ABC'

- Permite representar de forma conveniente uma função booleana.
 - Número **pequeno** de variáveis. Até 4 ou 6.
- Ferramenta de auxilio à simplificação (minimização) de funções boolenas.
- O mapa consiste em uma matriz de posições:
 - Posição → As possíveis combinações de valores de n variáveis binárias.
 - As posições deve ser listas na ordem: 00, 01, 11, 10.

- EXEMPLO:
- Mapa de Karnaugh para representar uma função booleana de 3 variáveis:
 - F(A,B,C) = A'BC' + A'BC + ABC'

Função booleana de 1 variável

Função booleana de 2 variáveis

$$F = A'$$

Função booleana de 3 variáveis

(a)
$$F = A\overline{B} + \overline{A}B$$

Função booleana de 4 variáveis

(b)
$$F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$$

(c)
$$F = \overline{A} \overline{B}CD + A\overline{B} \overline{C}D + AB\overline{C}\overline{D}$$

Mapa de Karnaugh para 1 variável

F = A'

Mapa de Karnaugh para 3 variáveis

(b)
$$F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$$

Mapa de Karnaugh para 2 variáveis

Mapa de Karnaugh para 4 variáveis

(c)
$$F = \overline{A} \overline{B}CD + A\overline{B}\overline{C}D + AB\overline{C}\overline{D}$$

Mapa de Karnaugh para 1 variável

Mapa de Karnaugh para 3 variáveis

Mapa de Karnaugh para 2 variáveis

Mapa de Karnaugh para 4 variáveis

- Como o mapa de Karnaugh pode representar uma função booleana?
 - Cada posição corresponde a um produto da expressão na forma de soma de produtos (mintermos).
 - 1 corresponde ao valor da variável
 - 0 corresponde ao valor da variável negada (NOT).

- Converter uma expressão booleana para um mapa:
 - −1) Escrever a expressão em uma forma canônica:
 - •Mintermos (soma de produtos) ou Maxtermos (produto de somas).
 - Escolheremos Mintermos.

Tabela Verdade											
L	Α	В	С	F	Mintermos						
0	0	0	0	0	A'B'C'						
1	0	0	1	0	A'B'C						
2	0	1	0	1	A'BC'						
3	0	1	1	1	A'BC						
4	1	0	0	0	AB'C'						
5	1	0	1	0	AB'C						
6	1	1	0	1	ABC'						
7	1	1	1	0	ABC						

- Converter uma expressão booleana para um mapa:
 - −1) Escrever a expressão em uma forma canônica:
 - Mintermos (soma de produtos) ou Maxtermos (produto de somas).
 - Escolheremos Mintermos.

Tabela Verdade											
L	A	В	С	F	Mintermos						
0	0	0	0	0	A'B'C'						
1	0	0	1	0	A'B'C						
2	0	1	0	1	A'BC'						
3	0	1	1	1	A'BC						
4	1	0	0	0	AB'C'						
5	1	0	1	0	AB'C						
6	1	1	0	1	ABC'						
7	1	1	1	0	ABC						

$$F(A,B,C) = A'BC' + A'BC + ABC'$$

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potência de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.
 - -Toróide.
 - —Se duas posições adjacentes possuem valor 1:
 - Podemos combinar os dois termos, eliminando a variável que difere.

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potencia de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.

- –Se duas posições adjacentes possuem valor 1:
 - Podemos combinar os dois termos, eliminando a variável que difere.

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potencia de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potencia de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.

- –Se duas posições adjacentes possuem valor 1:
 - Podemos combinar os dois termos, eliminando a variável que difere.

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potencia de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potencia de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.

$$\Rightarrow A'BC' + A'BC = A'B$$

$$\Rightarrow A'BC' + ABC' = BC'$$

- A partir do Mapa de Karnaugh é possível escrever uma expressão equivalente mais simples.
 - Quaisquer posições adjacentes diferem em apenas uma variável.
 - Podemos agrupar 2, 4, 8, ou até 16 posições adjacentes (potencia de 2).
 - O conceito de adjacência inclui um giro em torno das extremidades do mapa.

$$F = A'BC' + A'BC + ABC' = A'B + BC'$$

•2 posições adjacentes em um Mapa de Karnaugh

$$F = A'B'C'D + AB'C'D$$

$$F = A'BC'D' + A'BCD'$$

•4 posições adjacentes em um Mapa de Karnaugh

$$F = A'B'C'D' + A'B'C'D +$$
$$A'B'CD + A'B'CD'$$

•8 posições adjacentes em um Mapa de Karnaugh

- As regras para a simplificação:
 - Selecione o maior bloco possível (1, 2, 4 ou 8 posições) composto exclusivamente por posições com valor 1.
 - Contorne esses blocos.

- As regras para a simplificação:
 - Selecione o maior bloco possível (1, 2, 4 ou 8 posições) composto exclusivamente por posições com valor 1.
 - Contorne esses blocos.
 - Continue selecionando blocos de posições marcadas, que sejam tão grandes quanto possível.
 - Contorne os blocos.

- As regras para a simplificação:
 - Selecione o maior bloco possível (1, 2, 4 ou 8 posições) composto exclusivamente por posições com valor 1.
 - Contorne esses blocos.
 - Continue selecionando blocos de posições marcadas, que sejam tão grandes quanto possível.
 - Contorne os blocos.
 - Até que todos as posições marcadas estejam incluídas em pelo menos 1 contorno.

- As regras para a simplificação:
 - Selecione o maior bloco possível (1, 2, 4 ou 8 posições) composto exclusivamente por posições com valor 1.
 - Contorne esses blocos.
 - Continue selecionando blocos de posições marcadas, que sejam tão grandes quanto possível.
 - Contorne os blocos.
 - Até que todos as posições marcadas estejam incluídas em pelo menos 1 contorno.
 - O número de blocos contornados deve ser o menor possível.

- As regras para a simplificação:
 - Selecione o maior bloco possível (1, 2, 4 ou 8 posições) composto exclusivamente por posições com valor 1.
 - Contorne esses blocos.
 - Continue selecionando blocos de posições marcadas, que sejam tão grandes quanto possível.
 - Contorne os blocos.
 - Até que todos as posições marcadas estejam incluídas em pelo menos 1 contorno.
 - O número de blocos contornados deve ser o menor possível.
 - Uma posição pode pertencer a mais de 1 contorno diferente.

- As regras para a simplificação:
 - Selecione o maior bloco possível (1, 2, 4 ou 8 posições) composto exclusivamente por posições com valor 1.
 - Contorne esses blocos.
 - Continue selecionando blocos de posições marcadas, que sejam tão grandes quanto possível.
 - Contorne os blocos.
 - Até que todos as posições marcadas estejam incluídas em pelo menos 1 contorno.
 - O número de blocos contornados deve ser o menor possível.
 - Uma posição pode pertencer a mais de 1 contorno diferente.

Exemplos:

- Em alguns casos certas combinações de valores de variáveis nunca ocorrem.
 - Portanto nunca ocorre uma saída correspondente.
 - São denominados casos "negligenciáveis"
 - We Don't care. (Não nos nos importa)
 - Utilizamos a letra "d" na posição correspondente.
 - Para a simplificação, cada "d" pode ser tratado como 1 ou como 0.
 - Escolhemos o valor que resulta na expressão mais simples.

EXEMPLO: Incrementador BCD

- Gerar uma função booleana para um circuito que soma 1 a um número BCD (4 bits). A operação é modulo 10 (9+1=0).
- Note que das possíveis entradas, 6 produzem resultado "negligenciáveis"
 - Não correspondem a dígito BCD válido. São marcados com "d".

Incrementador BCD

			En	trad	а
L	A	В	C	D	Decimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	
11	1	0	1	1	Casos
12	1	1	0	0	Neglig
13	1	1	0	1	enciáv
14	1	1	1	0	eis
15	1	1	1	1	

Incrementador BCD

			En	trad		В	CD(A	В,С	C,D)	
L	A	В	c	D	Decimal	w	X	Υ	z	Decimal
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	1	1
2	0	0	1	0	2	0	0	1	0	2
3	0	0	1	1	3	0	0	1	1	3
4	0	1	0	0	4	0	1	0	0	4
5	0	1	0	1	5	0	1	0	1	5
6	0	1	1	0	6	0	1	1	0	6
7	0	1	1	1	7	0	1	1	1	7
8	1	0	0	0	8	1	0	0	0	8
9	1	0	0	1	9	1	0	0	1	9
10	1	0	1	0		d	d	d	d	Casos
11	1	0	1	1	Casos	d	d	d	d	Neglig
12	1	1	0	0	Neglig	d	d	d	d	enciáv eis
13	1	1	0	1	enciáv	d	d	d	d	CIS
14	1	1	1	0	eis	d	d	d	d	
15	1	1	1	1		d	d	d	d	

Incrementador BCD

	Entrada							BCD(A,B,C,D)				F(A,B,C,D) = BCD(A,B,C,D) + 1				
L		A	В	C	D	Decimal	w	X	Y	Z	Decimal	w	X	Υ	z	Decimal
0		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
1		0	0	0	1	1	0	0	0	1	1	0	0	1	0	2
2		0	0	1	0	2	0	0	1	0	2	0	0	1	1	3
3		0	0	1	1	3	0	0	1	1	3	0	1	0	0	4
4		0	1	0	0	4	0	1	0	0	4	0	1	0	1	5
5		0	1	0	1	5	0	1	0	1	5	0	1	1	0	6
6		0	1	1	0	6	0	1	1	0	6	0	1	1	1	7
7		0	1	1	1	7	0	1	1	1	7	1	0	0	0	8
8		1	0	0	0	8	1	0	0	0	8	1	0	0	1	9
9		1	0	0	1	9	1	0	0	1	9	0	0	0	0	0
10	0	1	0	1	0		d	d	d	d	Casos	d	d	d	d	Casos
13	1	1	0	1	1	Casos	d	d	d	d	Neglig	d	d	d	d	Negligen
13	2	1	1	0	0	Neglig	d	d	d	d	enciáv eis	d	d	d	d	ciáveis
13	3	1	1	0	1	enciáv	d	d	d	d	Cis	d	d	d	d	
14	4	1	1	1	0	eis	d	d	d	d		d	d	d	d	
1	5	1	1	1	1		d	d	d	d		d	d	d	d	

Incrementador BCD (Mapas de Karnaugh)

Exercícios

• Escreva a função booleana representada nos mapas de karnaugh na forma de mintermos e também minimizada.

Exercícios

L	Α	В	С	D	F1	F2	F3	Mintermos
0	0	0	0	0	1	0	0	A'B'C'D'
1	0	0	0	1	0	1	0	A'B'C'D
2	0	0	1	0	0	1	0	A'B'CD'
3	0	0	1	1	0	1	0	A'B'CD
4	0	1	0	0	0	0	1	A'BC'D'
5	0	1	0	1	1	0	0	A'BC'D
6	0	1	1	0	0	1	0	A'BCD'
7	0	1	1	1	0	1	0	A'BCD
8	1	0	0	0	0	0	1	AB'C'D'
9	1	0	0	1	0	0	1	AB'C'D
10	1	0	1	0	1	0	0	AB'CD'
11	1	0	1	1	0	1	0	AB'CD
12	1	1	0	0	0	0	1	ABC'D'
13	1	1	0	1	0	0	1	ABC'D
14	1	1	1	0	0	0	1	ABCD'
15	1	1	1	1	1	0	0	ABCD

- Coloque as funções F1, F2 e F3 na forma padrão de mintermos (soma de produtos).
- Represente as funções F1, F2 e F3 utilizando Mapas de karnaugh.
- Simplifique a funções boolenas.
- Represente graficamente o circuito resultante.