Tutorial 7

COMP 5361: Discrete Structures and Formal Languages

Mohammad Reza Davari

Concordia University

Mohammad Reza Davari 1 / 33

Outline

- Relations and Their Properties
- Closures of Relations
- Sequivalence Relations
- Partial Orderings

Contents of the section

- Relations and Their Properties
- Closures of Relations
- Equivalence Relations
- Partial Orderings

Definition

• **Binary Relation**: Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

4 / 33

Definition

- **Binary Relation**: Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.
- Relation on a Set: A relation on a set A is a relation from A to A.

Mohammad Reza Davari 4 / 33

Example

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation,

Example

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation,

- **2** $R = \{(a, b) | a \le b\}$

Example

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation,

- $R = \{(a, b) | a \le b\}$
- $R = \{(a, b)|a > b\}$

5 / 33

Example

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation,

- $R = \{(a, b) | a \le b\}$
- $R = \{(a, b)|a > b\}$

Example

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation,

- **2** $R = \{(a, b) | a \le b\}$
- $R = \{(a, b)|a > b\}$

Definition

• **Reflexive**: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

6 / 33

Definition

- **Reflexive**: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.
- **Symmetric**: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

Mohammad Reza Davari 6 / 33

Definition

- **Reflexive**: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.
- **Symmetric**: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.
- Antisymmetric: A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric.
- **Transitive**: A relation R on a set A is called transitive if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$.

Mohammad Reza Davari 6 / 33

Example

• Which of the relations on slide 5 are reflexive?

- Which of the relations on slide 5 are reflexive?
- Which of the relations on slide 5 are symmetric?

- Which of the relations on slide 5 are reflexive?
- Which of the relations on slide 5 are symmetric?
- Which of the relations on slide 5 are antisymmetric?

- Which of the relations on slide 5 are reflexive?
- Which of the relations on slide 5 are symmetric?
- Which of the relations on slide 5 are antisymmetric?
- Which of the relations on slide 5 are transitive?

Example

 \bullet How many relations are there on a set of n elements?

- How many relations are there on a set of *n* elements?
- ② How many reflexive relations are there on a set of n elements?

- \bullet How many relations are there on a set of n elements?
- \bigcirc How many reflexive relations are there on a set of n elements?
- Mow many symmetric relations are there on a set of n elements?

Example

- How many relations are there on a set of n elements?
- ② How many reflexive relations are there on a set of *n* elements?
- 4 How many symmetric relations are there on a set of n elements?
- \bullet How many antisymmetric relations are there on a set of n elements?

Mohammad Reza Davari 8 / 33

Combining Relations

Definition

- Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.
- Let R be a relation on the set A. The powers R^n , $n=1,2,3,\ldots$, are defined recursively by:

$$R^{1} = R \tag{1}$$

$$R^{n+1} = R^{n} \circ R \tag{2}$$

$$R^{n+1} = R^n \circ R \tag{2}$$

Mohammad Reza Davari 9 / 33

Combining Relations

Theorem

The relation R on a set A is transitive if and only if $R^n \subseteq R$ for $n = 1, 2, 3, \ldots$

Example

① Let R = (1,1), (2,1), (3,2), (4,3). Find the powers R^n , $n = 2, 3, 4, \ldots$

Combining Relations

Theorem

The relation R on a set A is transitive if and only if $R^n \subseteq R$ for $n = 1, 2, 3, \dots$

Example

- **1** Let R = (1,1), (2,1), (3,2), (4,3). Find the powers R^n , $n = 2, 3, 4, \dots$
- 2 Let R be a relation that is reflexive and transitive. Prove that $R^n = R$ for all positive integers n.

Mohammad Reza Davari

Contents of the section

- Relations and Their Properties
- Closures of Relations
- 3 Equivalence Relations
- Partial Orderings

Definition

Let R be a relation on set A, then:

• **Reflexive Closure**: The reflexive closure of R is the smallest relation that contains R and is reflexive.

Definition

Let R be a relation on set A, then:

- **Reflexive Closure**: The reflexive closure of *R* is the smallest relation that contains *R* and is reflexive.
- **Symmetric Closure**: The symmetric closure of *R* is the smallest relation that contains *R* and is symmetric.

Mohammad Reza Davari 12 / 33

Definition

Let R be a relation on set A, then:

- **Reflexive Closure**: The reflexive closure of *R* is the smallest relation that contains *R* and is reflexive.
- **Symmetric Closure**: The symmetric closure of *R* is the smallest relation that contains *R* and is symmetric.
- **Transitive Closure**: The transitive closure of *R* is the smallest relation that contains *R* and is transitive.

Mohammad Reza Davari 12 / 33

Example

1 What is the reflexive closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers?

13 / 33

Example

- ① What is the reflexive closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers?
- ② What is the symmetric closure of the relation $R = \{(a, b) | a > b\}$ on the set of positive integers?

Mohammad Reza Davari 13 / 33

Example

- What is the reflexive closure of the relation $R = \{(a, b) | a < b\}$ on the set of integers?
- ② What is the symmetric closure of the relation $R = \{(a, b) | a > b\}$ on the set of positive integers?
- Find the transitive closures of the relation R on a, b, c, d, e, where R is given by:

$$\{(a,c),(b,d),(c,a),(d,b),(e,d)\}$$

Mohammad Reza Davari 13 / 33

Definition

• Let R be a relation on a set A. The connectivity relation R^* is defined as:

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

Definition

• Let R be a relation on a set A. The connectivity relation R^* is defined as:

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

• The transitive closure of a relation R equals the connectivity relation R^* .

Example

Example 1

Let R be the relation on the set $\{1, 2, 3, 4, 5\}$ containing the ordered pairs (1,3), (2,4), (3,1), (3,5), (4,3), (5,1), (5,2), and (5,4). Find:

- $\mathbf{0}$ R^2
- $\mathbf{Q} R^3$
- \circ R^4
- \bullet R^5
- \circ R^6
- R*

Example

Example 2

Find the transitive closures of these relations on $\{1, 2, 3, 4\}$.

- **1** {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)}
- $\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$
- $\{(1,1),(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,2)\}$

Mohammad Reza Davari 16 / 33

Contents of the section

- Relations and Their Properties
- Closures of Relations
- Equivalence Relations
- Partial Orderings

Definition

- **Equivalence Relation**: A relation on a set *A* is called an equivalence relation if it is reflexive, symmetric, and transitive.
- **Equivalent**: Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

Mohammad Reza Davari 18 / 33

Example

① Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?

Example

- **1** Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?
- 2 Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Is R an equivalence relation?

Example

- **1** Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?
- 2 Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Is R an equivalence relation?
- ② Let m be an integer with m > 1. Show that the relation (Congruence Modulo m):

$$R = \{(a, b) | a \equiv b(modm)\}$$

is an equivalence relation on the set of integers.

Mohammad Reza Davari

Example

- Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?
- ② Let R be the relation on the set of real numbers such that aRb if and only if a-b is an integer. Is R an equivalence relation?
- ② Let m be an integer with m > 1. Show that the relation (Congruence Modulo m):

$$R = \{(a, b) | a \equiv b(modm)\}$$

is an equivalence relation on the set of integers.

Show that the "divides" relation is the set of positive integers in not an equivalence relation.

Mohammad Reza Davari 19 / 33

Definition

- Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by [a]_R. When only one relation is under consideration, we can delete the subscript R and write [a] for this equivalence class.
- In the above definition *a* is the representative of this equivalence class.

Properties

If $a \sim b$ then the followings are equivalent:

- aRb
- ② [a] = [b]

Example

• Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. What is the equivalence class of an integer?

Mohammad Reza Davari 21 / 33

Example

- Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. What is the equivalence class of an integer?
- 2 What are the equivalence classes of 0 and 1 for congruence modulo 7?

Mohammad Reza Davari

Example

- Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. What is the equivalence class of an integer?
- ② What are the equivalence classes of 0 and 1 for congruence modulo 7?
- What are the equivalence classes of 5 and 2 for congruence modulo 5?

Mohammad Reza Davari 21 / 33

Definition

• **Partition**: A partition of a set *S* is a collection of disjoint nonempty subsets of *S* that have *S* as their union.

Mohammad Reza Davari 22 / 33

Definition

- **Partition**: A partition of a set *S* is a collection of disjoint nonempty subsets of *S* that have *S* as their union.
- Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i|i\in I\}$ of the set S, there is an equivalence relation R that has the sets A_i , $i\in I$, as its equivalence classes.

Mohammad Reza Davari 22 / 33

Example 1

Suppose that $S = \{1, 2, 3, 4, 5, 6\}$. Give a partition of set S with 3 classes.

Example 2

List the ordered pairs in the equivalence relation R produced by the partition $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 5\}$, and $A_3 = \{6\}$ of $S = \{1, 2, 3, 4, 5, 6\}.$

Example 3

What are the sets in the partition of the integers arising from congruence modulo 7?

Mohammad Reza Davari 25 / 33

Example 4

What is the congruence class $[4]_m$ when m is:

- **1** 2?
- **2** 3?
- **3** 6?
- **4** 8?

Contents of the section

- Relations and Their Properties
- Closures of Relations
- 3 Equivalence Relations
- Partial Orderings

Definition

- A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.
- The elements a and b of a poset (S, \preceq) are called comparable if either $a \prec b$ or $b \prec a$. When a and b are elements of S such that neither $a \prec b$ nor $b \prec a$, a and b are called incomparable.

Mohammad Reza Davari 28 / 33

Example

Show that the greater than or equal relation is a partial ordering on the set of integers.

Example

- Show that the greater than or equal relation is a partial ordering on the set of integers.
- 2 Show that the inclusion relation is a partial ordering on the power set of a set S.

Mohammad Reza Davari 29 / 33

Example

- Show that the greater than or equal relation is a partial ordering on the set of integers.
- Show that the inclusion relation is a partial ordering on the power set of a set S.
- In the poset $(Z^+, |)$, are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Mohammad Reza Davari 29 / 33

Definition

- **Totally Ordered**: If (S, \preceq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \prec is called a total order or a linear order. A totally ordered set is also called a chain.
- Well-ordered Set: (S, \preceq) is a well-ordered set if it is a poset such that \leq is a total ordering and every nonempty subset of S has a least element.
- Lexicographic Ordering: The lexicographic ordering \leq on $A_1 \times A_2$ is defined by, $(a_1, a_2) \prec (b_1, b_2)$ when, either if $a_1 \prec_1 b_1$ or if both $a_1 = b_1 \text{ and } a_2 \prec_2 b_2.$

30 / 33

Example

- **①** Determine whether the following posets are totally ordered or not:
 - **1** (Z, \leq)

Example¹

- **①** Determine whether the following posets are totally ordered or not:
 - o (Z, \leq)
 - $(Z^+, |)$

Example

- **①** Determine whether the following posets are totally ordered or not:
 - \bullet (Z, \leq)
 - $(Z^+, |)$
- ② Determine whether $(3,5) \prec (4,8)$, whether $(3,8) \prec (4,5)$, and whether $(4,9) \prec (4,11)$ in the poset $(\mathbb{Z} \times \mathbb{Z}, \preceq)$, where \preceq is the lexicographic ordering constructed from the usual \leq relation on \mathbb{Z} .

Mohammad Reza Davari 31 / 33

Definition

• Covering Relation: Let (S, \preceq) be a poset. We say that an element $y \in S$ covers an element $x \in S$ if $x \prec y$ and there is no element $z \in S$ such that $x \prec z \prec y$. The set of pairs (x, y) such that y covers x is called the covering relation of (S, \prec) .

Mohammad Reza Davari 32 / 33

Example

• Draw the Hasse diagram representing the partial ordering $\{(a,b)|a \text{ divides } b\}$ on $\{1,2,3,4,6,8,12\}$.

Mohammad Reza Davari 33 / 33