

Optimization des Hyperparamètres appliquée au Fine Tuning de LLM

Basé sur l'article : Bayesian and Partition-Based Optimization for Hyperparameter Optimization of LLM Fine-Tuning

Nathan Dayouse

Semester A24 Soutenance ST30

Sommaire

- 1. Introduction
- 2. Design et Implémentation
- 3. Résultats et Analysis

4. Conclusion

Large Language Models

Point clés

- ► Etat de l'art pour le traitement de language naturel.
- ▶ Réseaux de Neurones avec une architecture basé sur le transformer^a
- ➤ Taille : entre 1 et 405 Milliards de neurones

Auto-attention

Figure: Illustration du mécanisme d'auto-attention

L'auto-attention est la clé du LLM, en permettant de comprendre le contexte

^aVaswani et al, Attention is all you need,2017

Fine Tuning

► second phase de l'entrainement (prendre que la partie de droite)

PEFT

Utilisation de la méthode LoRA, qui permet de réduire les couts d'entrainement. (cf annexe 2)

Optimisation des Hyperparamètres (OHP)

Hyperparamètres

Paramètres qui ne sont pas entrainés par le modèle (learning rate, dropout ...)

Objectifs

- Meilleur performance qu'en manuel
- Retirer le besoin d'expertise

Figure: Fonctionnement général de l'optimisation des hyperparamètres

Design et Implémentation

Formulation du problème

Equation

$$\eta^* \in \arg\max_{\eta \in \mathcal{A}} f(\eta), \quad f : \mathbb{R}^d \to \mathbb{R}$$
(1)

Avec η une solution de dimension d et f la fonction représentant l'entrainement et l'évaluation d'un modèle.

Charactéristiques de la fonction f

- ► Boite-noire : non dérivable
- ► Couteux : une évaluation se compte en dizaine de minutes
- ▶ Bruité : évaluer 2 fois la même solution peut donner un résultat différent
- ► Variables mixes : les variables sont de plusieurs type (entier, continu...)

Travaux connexes

Figure: Classification des travaux similaires

Sommaire

- 2. Design et Implémentation

19/02/2025

Search Space

19/02/2025

Search Strategy: BO

10

Search Strategy: SOO

19/02/2025

Search Strategy: BaMSOO

12

Performance Estimation Strategy

Implémentation

Sommaire

- 1. Introduction
- 2. Design et Implémentation
- 3. Résultats et Analysis
- 4. Conclusion

Expérimentation

LHS: Résultats

Résultats des 3 algorithms

Analyse

Prospectives

Sommaire

- 1. Introduction
- 2. Design et Implémentation
- 3. Résultats et Analysis

4. Conclusion

Conclusion

Une conclusion

Merci.

Annexes 1: Architecture d'un LLM

MHA, Transformers

19/02/2025

Annexes 2: Low Rank Adaptation (LoRA)