Análisis Factorial

Omar Sanchez Hernandez

4/6/2022

Introducción

El análisis factorial sirve para explicar un conjunto de variables observadas a través de un grupo de variables no observadas. Ayuda a la reducción de dimension. Se utiliza en la reducción de los datos para identificar un pequeño número de factores que explique la varianza observada en un número mayor de variables manifestadas.

1.- Lectura de la matriz de datos

Para el desarrollo de este ejemplo se va a trabajar con la matriz de datos *state.x77* que se encuentra pre cargada dentro del paquete *datasets* de R. La base de datos contiene datos sobre algunos indicadores como la cantidad de población o ingreso pormedio por estado en Estados Unidos.

```
library(datasets)
x<-as.data.frame(state.x77)

#2.- Quitar los espacios de los nombres

colnames(x) [4]="Life.Exp"
colnames(x) [6]= "HS.Grad"

#3.- Separa n (estados) y p (variables)

n<-dim(x) [1]
p<-dim(x) [2]</pre>
```

Caracteristicas de los datos

```
dim(x)
## [1] 50 8
str(x)
```

```
## 'data.frame':
                    50 obs. of 8 variables:
##
   $ Population: num 3615 365 2212 2110 21198 ...
   $ Income
                : num
                       3624 6315 4530 3378 5114 ...
                       2.1 1.5 1.8 1.9 1.1 0.7 1.1 0.9 1.3 2 ...
##
   $ Illiteracy: num
##
   $ Life.Exp : num
                       69 69.3 70.5 70.7 71.7 ...
   $ Murder
                       15.1 11.3 7.8 10.1 10.3 6.8 3.1 6.2 10.7 13.9 ...
##
                : num
   $ HS.Grad
                : num 41.3 66.7 58.1 39.9 62.6 63.9 56 54.6 52.6 40.6 ...
                       20 152 15 65 20 166 139 103 11 60 ...
##
   $ Frost
                : num
    $ Area
                : num 50708 566432 113417 51945 156361 ...
colnames(x)
## [1] "Population" "Income"
                                 "Illiteracy" "Life.Exp"
                                                            "Murder"
## [6] "HS.Grad"
                    "Frost"
                                 "Area"
anyNA(x)
```

[1] FALSE

La matriz de datos tiene 50 filas, 8 variables numericas y no posee datos faltantes.

#4.- Generacion de un scater plot para la visualización de variables originales.

```
pairs(x, col="#CD1076", pch=19, main="Matriz original")
```

Matriz original

Transformación de alguna varibles

1.- Aplicamos logaritmo para las columnas 1,3 y 8

```
x[,1] < -log(x[,1])
colnames(x)[1] < -"Log-Population"
x[,3] < -log(x[,3])
colnames(x)[3] < -"Log-Illiteracy"
x[,8] < -log(x[,8])
colnames(x)[8] < -"Log-Area"</pre>
```

Gráfico scater para la visualizacion de la matriz original con 3 variables que se incluyeron

```
pairs(x,col="#CD1076", pch=19, main="Matriz original")
```

Matriz original

Nota

Como las variables tiene diferentes unidades de medida, se va a implementar la matriz de correlaciones para estimar la matriz de carga.

Reduccion de la dimensionalidad

Análsis Factorial de componentes principales (PCFA)

1.- Calcular la matriz de medias y de correlaciones

Matriz de medias

```
mu<-colMeans(x)
                           Income Log-Illiteracy
## Log-Population
                                                        Life.Exp
                                                                         Murder
##
     7.863443e+00
                    4.435800e+03
                                    3.128251e-02
                                                    7.087860e+01
                                                                   7.378000e+00
##
          HS.Grad
                            Frost
                                        Log-Area
                                    1.066237e+01
##
     5.310800e+01
                    1.044600e+02
```

Matriz de correlaciones

```
R<-cor(x)
R
```

```
##
               Log-Population
                                  Income Log-Illiteracy
                                                                   Murder
                                                       Life.Exp
## Log-Population
                   1.00000000 0.034963788
                                            0.28371749 -0.1092630 0.3596542
## Income
                   0.03496379 1.000000000
                                           ## Log-Illiteracy
                   0.28371749 -0.351477726
                                           1.00000000 -0.5699943 0.6947320
                                          -0.56999432 1.0000000 -0.7808458
## Life.Exp
                  -0.10926301 0.340255339
## Murder
                  0.35965424 -0.230077610
                                           0.69473198 -0.7808458 1.0000000
## HS.Grad
                  -0.32211720 0.619932323
                                          -0.66880911 0.5822162 -0.4879710
## Frost
                  -0.45809012 0.226282179
                                           ## Log-Area
                   0.08541473 -0.007462068
                                           -0.05830524 -0.1086351 0.2963133
                  HS.Grad
                              Frost
                                       Log-Area
## Log-Population -0.3221172 -0.45809012 0.085414734
                ## Log-Illiteracy -0.6688091 -0.67656232 -0.058305240
## Life.Exp
                0.5822162 0.26206801 -0.108635052
               -0.4879710 -0.53888344 0.296313252
## Murder
## HS.Grad
                1.0000000 0.36677970 0.196743429
## Frost
                0.3667797 1.00000000 -0.021211992
## Log-Area
                0.1967434 -0.02121199 1.000000000
```

2.- Reducción de la dimensionalidad mediante

Análisis factorial de componentes principales (PCFA).

1.- Calcular los valores y vectores propios.

```
eR<-eigen(R)
```

2.- Valores propios

```
eigen.val<-eR$values
eigen.val

## [1] 3.6796976 1.3201021 1.1357357 0.7517550 0.6168266 0.2578511 0.1366186

## [8] 0.1014132
```

3.- Vectores propios

```
eigen.vec<-eR$vectors
eigen.vec
##
               [,1]
                           [,2]
                                       [,3]
                                                  [,4]
                                                              [,5]
                                                                         [,6]
## [1,] -0.23393451 -0.41410075 0.50100922 0.2983839 0.58048485
                                                                   0.0969034
## [2,] 0.27298977 -0.47608715 0.24689968 -0.6449631 0.09036625 -0.3002708
## [3,] -0.45555443 0.04116196 0.12258370 -0.1824471 -0.32684654 -0.6084112
## [4,]
        0.39805075 -0.04655529 0.38842376 0.4191134 -0.26287696 -0.3565095
## [5,] -0.44229774 -0.27640285 -0.21639177 -0.2610739 0.02383706 0.1803894
        0.41916283 -0.36311753 -0.06807465 -0.1363534 -0.34015424
## [6,]
        0.36358674  0.21893783  -0.37542494  -0.1299519  0.59896253  -0.3507630
## [8,] -0.03545293 -0.58464797 -0.57421867 0.4270918 -0.06252285 -0.3012063
##
              [,7]
                          [,8]
## [1,] -0.1777562 -0.23622413
## [2,]
        0.3285840 0.12483849
## [3,] -0.3268997 -0.39825363
## [4,] -0.3013983 0.47519991
## [5,] -0.4562245 0.60970476
## [6,] -0.4808140 -0.40675672
## [7,] -0.4202943 -0.06001175
## [8,] 0.2162424 -0.05831177
```

4.- Calcular la proporcion de variabilidad

```
prop.var<-eigen.val/sum(eigen.val)
prop.var

## [1] 0.45996220 0.16501277 0.14196697 0.09396938 0.07710332 0.03223139 0.01707733
## [8] 0.01267665</pre>
```

5.- Calcular la proporcion de variabilidad acumulada

```
prop.var.acum<-cumsum(eigen.val)/sum(eigen.val)
prop.var.acum

## [1] 0.4599622 0.6249750 0.7669419 0.8609113 0.9380146 0.9702460 0.9873233
## [8] 1.0000000</pre>
```

Estimacion de la matriz de carga

Nota

se estima la matriz de carga usando los autovalores y autovectores.

Se aplica la rotación varimax

Primera estimación de Lamda mayuscula se calcula multiplicando la matriz de los 3 primeros autovectores por la matriz diagonal formada por la raiz cuadrada de los primeros 3 autovalores.

```
L.est.1<-eigen.vec[,1:3] %*% diag(sqrt(eigen.val[1:3]))
L.est.1</pre>
```

```
## [,1] [,2] [,3]
## [1,] -0.44874575 -0.47578394 0.53393005
## [2,] 0.52366367 -0.54700365 0.26312322
## [3,] -0.87386900 0.04729332 0.13063856
## [4,] 0.76356236 -0.05349003 0.41394671
## [5,] -0.84843932 -0.31757498 -0.23061066
## [6,] 0.80406070 -0.41720642 -0.07254777
## [7,] 0.69745163 0.25155014 -0.40009375
## [8,] -0.06800771 -0.67173536 -0.61195003
```

Rotación varimax

```
L.est.1.var<-varimax(L.est.1)
L.est.1.var
```

```
## $loadings
##
## Loadings:
##
               [,2]
                       [,3]
        [,1]
## [1,]
                       0.840
## [2,]
        0.785 - 0.106
                       0.121
## [3,] -0.665
                       0.583
## [4,]
        0.763 0.384 -0.168
## [5,] -0.573 -0.528 0.517
  [6,]
        0.825 -0.202 -0.323
## [7,]
        0.281
                      -0.794
  [8,]
##
               -0.906
##
                   [,1] [,2]
##
                  2.744 1.300 2.091
## SS loadings
## Proportion Var 0.343 0.163 0.261
## Cumulative Var 0.343 0.506 0.767
##
## $rotmat
##
              [,1]
                        [,2]
                                    [,3]
## [1,] 0.7824398 0.1724744 -0.5983649
## [2,] -0.5274231 0.6944049 -0.4895169
## [3,] 0.3310784 0.6986089 0.6342970
```

Estimación de la matriz de los errores

1.- Estimación de la matriz de perturbaciones

```
Psi.est.1<-diag(diag(R-as.matrix(L.est.1.var$loadings))/*% t(as.matrix(L.est.1.var$loadings))))
Psi.est.1
##
           [,2]
                [,3]
                     [,4]
                          [,5]
                               [,6]
                                    [,7]
      [,1]
## [3,] 0.0000000 0.0000000 0.2170499 0.0000000 0.0000000 0.000000 0.0000000
## [4,] 0.0000000 0.0000000 0.0000000 0.2427595 0.0000000 0.000000 0.0000000
##
      [,8]
## [1,] 0.000000
## [2,] 0.0000000
## [3,] 0.0000000
## [4,] 0.0000000
## [5,] 0.0000000
## [6,] 0.0000000
## [7,] 0.0000000
## [8,] 0.1696637
```

2.- Se utiliza el método Análisis de factor principal (PFA) para estimación de autovalores y autovectores

```
RP<-R-Psi.est.1
##
                 Log-Population
                                      Income Log-Illiteracy
                                                             Life.Exp
                                                                            Murder
## Log-Population 0.71282441 0.034963788 0.28371749 -0.1092630 0.3596542
## Income
                    ## Log-Illiteracy 0.28371749 -0.351477726 0.78295012 -0.5699943 0.6947320  
## Life.Exp -0.10926301 0.340255339 -0.56999432 0.7572405 -0.7808458  
## Murder 0.35965424 -0.230077610 0.69473198 -0.7808458 0.8738844
                  -0.32211720 0.619932323
## HS.Grad
                                                -0.66880911 0.5822162 -0.4879710
## Frost
                   -0.45809012 0.226282179
                                                ## Log-Area
                     0.08541473 -0.007462068
                                                -0.05830524 -0.1086351 0.2963133
                    HS.Grad
                                  Frost
                                            Log-Area
## Log-Population -0.3221172 -0.45809012 0.085414734
## Income 0.6199323 0.22628218 -0.007462068
## Log-Illiteracy -0.6688091 -0.67656232 -0.058305240
## Life.Exp 0.5822162 0.26206801 -0.108635052
## Murder -0.4879710 -0.53888344 0.296313252
## HS.Grad
                 0.8258380 0.36677970 0.196743429
## Frost
                  0.3667797 0.70979126 -0.021211992
## Log-Area 0.1967434 -0.02121199 0.830336270
```

Calculo de la matriz de autovalores y autovectores

```
eRP<-eigen(RP)
```

Autovalores

```
eigen.val.RP<-eRP$values
eigen.val.RP

## [1] 3.46137648 1.10522195 0.88152416 0.48705680 0.35360597 0.02813553
## [7] -0.06758176 -0.11380367
```

Autovectores

```
eigen.vec.RP<-eRP$vectors
eigen.val.RP

## [1] 3.46137648 1.10522195 0.88152416 0.48705680 0.35360597 0.02813553
## [7] -0.06758176 -0.11380367
```

Proporcion de variabilidad

```
prop.var.RP<-eigen.val.RP/ sum(eigen.val.RP)
prop.var.RP

## [1] 0.564152306 0.180134556 0.143675179 0.079382934 0.057632455
## [6] 0.004585668 -0.011014811 -0.018548286</pre>
```

Proporcion de variabilidad acumulada

```
prop.var.RP.acum<-cumsum(eigen.val.RP)/ sum(eigen.val.RP)
prop.var.RP.acum

## [1] 0.5641523 0.7442869 0.8879620 0.9673450 1.0249774 1.0295631 1.0185483
## [8] 1.0000000</pre>
```

Estimación de la matriz de cargas

con rotación varimax

```
L.est.2<-eigen.vec.RP[,1:3] %*% diag(sqrt(eigen.val.RP[1:3]))
L.est.2

## [,1] [,2] [,3]
## [1,] -0.42621819 -0.27609775  0.56228420
## [2,]  0.48528446 -0.36092954  0.32467098
## [3,] -0.84791581  0.08163995  0.10816670
## [4,]  0.73812189  0.02688907  0.36866093
## [5,] -0.84699944 -0.34227865 -0.12211117
## [6,]  0.78817342 -0.40399024  0.04935203
## [7,]  0.66112453  0.12457105 -0.40191996
## [8,] -0.06868291 -0.77165602 -0.36531090
```

Rotacion varimax

```
L.est.2.var<-varimax(L.est.2)
```

Estimación de la matriz de covarianzas de los errores.

```
Psi.est.2<-diag(diag(R-as.matrix(L.est.2.var$loadings))/*% t(as.matrix(L.est.2.var$loadings))))
Psi.est.2
##
     [,1]
         [,2]
             [,3]
                 [,4]
                      [,5]
                          [,6]
                              [,7]
## [4,] 0.0000000 0.0000000 0.0000000 0.3185422 0.0000000 0.0000000 0.0000000
##
     [,8]
## [1,] 0.000000
## [2,] 0.0000000
## [3,] 0.0000000
## [4,] 0.0000000
## [5,] 0.0000000
## [6,] 0.0000000
## [7,] 0.0000000
## [8,] 0.2663776
```

Obtencion de los scores de ambos métodos

PCFA

Iowa

Kansas

Maine

Kentucky

Louisiana

```
FS.est.1<-scale(x)%*% as.matrix(L.est.1.var$loadings)
FS.est.1
##
                                      [,2]
                         [,1]
                                                 [,3]
## Alabama
                 -5.84072356 -1.3993671511 4.0008109
                 2.12443806 -3.6163397014 -1.3435941
## Alaska
## Arizona
                 -0.77245459 -1.1030150088 1.7864181
                 -4.26961555 -0.1287634469 1.8680205
## Arkansas
## California
                 1.57843978 -1.6386262821 3.0959757
## Colorado
                  3.35619481 -0.5747409714 -1.9955520
## Connecticut
                 2.96609993 2.5265114588 -1.0120520
                  0.15111765 2.2707877284 -1.3473631
## Delaware
## Florida
                 -0.91278118 -0.8518787165 3.2141818
## Georgia
                 -5.10406769 -1.5374188978 3.5972606
## Hawaii
                  1.68679592 2.0782245763 0.6972161
## Idaho
                  1.93931571 0.0374520725 -2.6403015
## Illinois
                  0.36572803 -0.9730363911 1.3246992
## Indiana
                 0.69870165 0.1740586327 -0.1660034
```

3.77325852 0.8634090197 -2.4308546

3.22079390 0.2206198504 -1.7333568

-3.97957229 -0.1711842990 1.8581455 -6.15095874 -1.1449716511 4.2193388

```
## Maryland
                  0.54556931 0.6481615589 0.7313943
                  1.95531363 1.9508870989 -0.0699601
## Massachusetts
## Michigan
                  0.06109118 -0.8995742724 1.1610156
## Minnesota
                  3.83625590 0.7199310360 -2.2609012
## Mississippi
                 -6.73875213 -1.1336057288
                                          3.0124928
## Missouri
                 -0.63621057 -0.5673516660 0.5606479
## Montana
                  1.70022911 -0.7530855537 -2.9827203
## Nebraska
                  3.31393569 0.5702899251 -2.6630094
## Nevada
                  1.83953234 -2.1624547546 -2.8632403
## New Hampshire
                  1.76672303 1.8835104424 -3.2522623
## New Jersey
                  1.23076573 1.5154423999
                                          0.6483326
## New Mexico
                 -2.42369795 -1.2184859435
                                          0.1095350
## New York
                 -0.55160991 -0.8431042602
                                          2.9025469
## North Carolina -4.53932589 -0.7126552652
                                          2.8168209
## North Dakota
                  3.26810535 1.0664889529 -3.5180166
## Ohio
                  0.67643704 -0.0394642439
                                          0.5816740
## Oklahoma
                 -0.43628926 0.0293430043
                                          0.2108486
## Oregon
                  2.64633236 -0.0126633017 -0.6563722
## Pennsylvania
                 -0.06313819
                            0.0425262164 0.8538298
## Rhode Island
                  0.25059508
                            4.05333333045 -1.3779994
## South Carolina -6.20030464 -0.7067780563 3.0142562
## South Dakota
                  ## Tennessee
                 -3.75602365 -0.3764569265
                                          2.4225536
## Texas
                 -2.74825842 -2.0176142597
                                          4.0126966
## Utah
                  3.40911641 0.2638533973 -3.0642167
## Vermont
                  1.26368503 1.7670538099 -3.5748058
## Virginia
                 -1.45435214 -0.4332714574 1.8388594
## Washington
                  2.95298764 0.0002978623 -0.1436737
## West Virginia -3.41599674 0.5649932020 0.5132111
## Wisconsin
                  ## Wyoming
                  1.92267355 -0.8906222579 -3.6087703
```

PFA

```
FS.est.2<-scale(x)%*% as.matrix (L.est.2.var$loadings)
FS.est.2
```

```
##
                         [,1]
                                       [,2]
                                                  [,3]
## Alabama
                  -5.69766092 -1.133005866
                                            3.9030908
## Alaska
                   1.77921500 -3.310049553 -1.2425530
## Arizona
                  -0.80948635 -1.007423566
                                            1.6833688
## Arkansas
                  -4.04451164 -0.036340306
                                            1.8899610
## California
                   1.28900772 -1.589528660 2.7938220
## Colorado
                   3.21256763 -0.645092519 -1.9103448
## Connecticut
                   2.85639977
                              2.291700954 -1.1152442
## Delaware
                   0.22491218 2.168332191 -1.3109174
## Florida
                  -1.04778981 -0.760012075 2.9630979
## Georgia
                  -5.04193484 -1.243399542 3.4848855
## Hawaii
                   1.64548810 1.848120424 0.5487863
## Idaho
                   1.99602286 -0.067186945 -2.4442739
## Illinois
                   0.17329771 -0.870927790 1.1838509
```

```
## Indiana
                 ## Towa
                 ## Kansas
                3.13617617 0.071725764 -1.6894853
## Kentucky
                -3.82119443 -0.051170443 1.8492550
## Louisiana
                -5.97309240 -0.880509145 4.1021292
## Maine
                 ## Maryland
                0.40855637 0.650876372 0.5867974
## Massachusetts
                1.91021424 1.761365924 -0.1964750
## Michigan
                -0.07208772 -0.823049544 1.0671998
## Minnesota
                 3.74953682  0.518054623  -2.2104937
## Mississippi
                -6.45121865 -0.852611917 3.0320154
## Missouri
                -0.64446964 -0.519762510 0.5472506
## Montana
                 1.72574501 -0.752576236 -2.7507980
## Nebraska
                3.28773039 0.392513546 -2.5439122
## Nevada
                1.69672312 -1.994626548 -2.6292009
## New Hampshire
                1.87991014 1.704867403 -3.0632652
## New Jersey
                1.10782292 1.425042094 0.4638907
## New Mexico
                -2.26112419 -1.086582245
                                       0.2653217
## New York
                -0.72255151 -0.744949928 2.6624378
## North Carolina -4.42441540 -0.513264749 2.7372284
## North Dakota 3.22068093 0.897031063 -3.3556310
## Ohio
                0.59453054 -0.051780182 0.4905274
## Oklahoma
                -0.36512462 0.000708499 0.2244101
## Oregon
                2.56050584 -0.129810062 -0.6934180
## Pennsylvania -0.10451900 0.054229408 0.7553645
## Rhode Island
                 0.40356926 3.785456289 -1.3760426
## South Carolina -5.98815271 -0.435831413 2.9745853
## South Dakota 2.60764548 0.683975660 -3.7117087
## Tennessee
               -3.63769564 -0.249263663 2.3593673
## Texas
                -2.80670233 -1.827474308 3.8156526
                3.44131011 0.069209103 -2.8669774
## Utah
## Vermont
                1.44160727 1.580578146 -3.3086066
## Virginia
                -1.50774364 -0.328200587 1.7151967
## Washington
                 2.81601549 -0.109025242 -0.2503494
## West Virginia -3.18525955 0.632647668 0.5745805
## Wisconsin
                 2.55487697  0.699000994 -1.5141208
## Wyoming
                 1.92835024 -0.866073018 -3.3204601
```

Graficamos ambos scores

Factor I y II

scores con factor I y II con PCFA

Factor I y III

scores con factor I y III con PCFA

Factor II y III

scores con factor II y III con PCFA

