TheAnalyticsTeam

Sprocket Central Pty Ltd

Data analytics approach

Michael Ojo

Agenda

- 1. Introduction
- 2. Data Exploration
- 3. Model Development
- 4. Interpretation

Introduction

Identify and Recommend Top 1000 Customer to Target from Datasets

Outline of Problem

- Sprocket Central is a long-standing KPMG client whom specializes in high-quality bikes and accessible cycling accessories to riders.
- Their marketing team is looking to boost business sales by analyzing provided datasets to determine customer trends and behavior.
- Using the 3 datasets provided the aim is to analyze and study the behavior of the old customers and recommend to the client which customers from the new 1000 customers should be focused on.

Contents of Data Analysis/Model Development

- Data Quality Assessment
- RFM analysis and customer valuation
- ANOVA Analysis to determine the significant influence factors on Profit
- Regression Analysis on Profit vs Tenure
- Regression Analysis on Tenure vs age
- Visualizations

This will be done with the three phases of Data Exploration, Model Development and Interpretation.

Data Quality Assessment and 'Clean Up'

Summary Table

Key	issues for Data Quality Assessment		Accuracy	Completeness	Consistency	Currency	Relevancy	Validity
✓	Accuracy : Correct Values	Customer Demographic	DOB: Inaccurate	Job title: blanks	Gender: Inconsistent	Deceased Customer	Default column:	
✓	Completeness: Data Fields with values	-	Age: missing	Customer id: Incomplete, duplicates		s: filter out	delete	
✓	Consistency: Values free from Contradiction	Customer Address		Customer id: incomplete	States: inconsistenc			
✓	Currency: Values up to date			·	У			
✓	Relevancy: Data Items with Value Meta-data	Transactions	Profit: missing				Cancelled status order:	List price: format
✓	Validity: Data Containing Allowable Values						filter out	Product sold date: format
\checkmark	Uniqueness: Records that are Duplicated							.31

A complete analysis has been sent via mail

'New' and 'Old' Customer Age Distributions

- Most customers are aged between 40-49 in 'New'. In 'Old', majority are also aged between 40-49.
- The lowest age groups are under 20 and 80+ for both 'New' and 'Old' customer lists.
- The 'New' customer list suggests that age groups 20-29 and 40-69 are most populated.
- There is a steep drop of customers in the 30-39 age group in 'New Customer list' and an increase in the 20-29 age group.

New customer Age Distribution

Old customer Age Distribution

Bike related purchases over the last 3 years by gender

- Over the last three years about 50% of bike related purchases were made by females to 48% of purchase made by males. Approximately 2% were made by unknown gender
- Numerically, females purchase almost 10,000 more than males
- Females make up majority of bike related sales

Job Industry Distribution

- 20% of 'New' customers are in Manufacturing and Financial Services
- The smallest number of customers are in Agriculture and Telecommunication at 3%
- Similar pattern in 'Old' customer list, at 20% and 19% in Manufacturing and Financial respectively

Wealth Segmentation by Age category

- In all age categories, the largest number of customers are classified as 'Mass Customer'.
- The next category is the 'High Net Worth' Customers.
- The 'Affluent Customer' outperforms the 'High Net Worth' Customer in the 40-49 age group.

Number of cars owned and not owned by state

- NSW has the largest amount of people that do not own a car. NSW seems to have a higher number of people from which data was collected
- Victoria is also split quite evenly. But both numbers are significantly lower than those of NSW
- QLS has a relatively high number of customers that own a car

RFM model Analysis and Customer Classification

- RFM analysis is used to determine which customers a business should target to increase its revenue and value.
- It uses sales data to segment a pool of customers based on their purchasing behavior.
- The resulting customer segments are neatly ordered from most valuable to least valuable. This makes it straightforward to identify best customers.
- The RFM(Recency, Frequency and Monetary) model shows customers that have displayed high levels of engagement with the business in the three categories mentioned.

ANOVA Analysis on Profit and wealth Segment

III WEALTH

One-way ANOVA: Sum of Profit versus Wealth Segment

$\begin{tabular}{llll} \textbf{Method} \\ \textbf{Null hypothesis} & \textbf{All means are equal} \\ \textbf{Alternative hypothesis} & \textbf{Not all means are equal} \\ \textbf{Significance level} & \alpha = 0.05 \\ \textbf{Rows unused} & 1 \\ \hline \textit{Equal variances were not assumed for the analysis.} \\ \end{tabular}$

Factor Information

Factor	Levels Values
Wealth Segment	4 0, Affluent Customer, High Net Worth, Mass Customer

Welch's Test

Source	DF N	lum	DF Den	F-Va	alue	P-Value
Wealth Seg	ment	3	252.222		0.34	0.798
Model	Summary	,				
R-sq	R-sq(adj)	R-	sq(pred)			
0.07%	0.00%		0.00%			

One-way ANOVA: Sum of Profit versus Wealth Segment

We can see from the analysis that Wealth segment **do not** really have a significant effect on profit as the means from each segment are statistically equal with a **p-value of 0.798** and a very low **R2 of 0.07%.** Also the residual analysis ofcourse did not meet the Normality assumption and has a lot of irregularities.

ANOVA Analysis of Profit and Own car

Factor	Levels Values
Owns Car	3 0, No, Yes

Welch's Test

Source	DF Num	DF Den	F-Value	P-Value
Owns Car	2	157.354	0.49	0.611

Model Summary

R-sq	R-sq(adj)	R-sq(pred)
0.06%	0.00%	0.00%

We can also see that owning a car or not do not significantly affect the profit made. And looking at the individual value plot we see that it's almost horizontal showing that the means from the two groups are the same.

Regression Analysis on Profit and Tenure

Regression Analysis: Sum of Profit versus Tenure

The regression equation is Sum of Profit = 3584 + 18.39 Tenure

Model Summary

S	R-sq	R-sq(adj)
1769.40	0.38%	0.31%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	17898855	17898855	5.72	0.017
Error	1496	4683618299	3130761		
Total	1497	4701517154			

We can see that the analysis gave a significant p-value of 0.017, which means that tenure may have a significant effect on profit. But from the very low R2, we see that the model did not explain most of the variation. The fitted line plot is also shown with the model equation.

Regression Analysis on Tenure and Age

The regression equation is Tenure = 2.461 + 0.1920 Age

Model Summary

S	R-sq	R-sq(adj)
5.11482	18.35%	18.33%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	22979	22979.3	878.37	0.000
Error	3908	102239	26.2		
Total	3909	125218			

We see from the analysis that age has a significant effect on tenure and is positively correlated with tenure. Which means the older age category will have a higher tenure. The R2 is low but still explain some variations. The fitted plot and model equation is also shown

From these visualizations, we can see that we have more of Mass customers and they also contribute more to the profit owing to their number.

We also see that customers of the age category from 30-50 tend to buy more bikes and also contribute more to the profit.

And we can see that the sum of total profit from the store is 5.65M.

Count of customer id by Owns Car and State

State (Blank) NSW QLD VIC

We can see from here that most of the customers live in NSW hence that should be the location of focus.

We also see the top industries that contribute more to the profit which are Manufacturing, Health, Financial services and more from an unknown classification.

Also the brands that are most purchased include Solex and Giants.

Demographics of New Customers

We see that unlike the old customers we have lesser age 30 category from the new customers but we still have more from 40 and 50. We also see a high number of age category 20.

We also see that the number of customers that own a car is almost equal those that do not.

And also we have more customers coming from our focus location NSW.

Selection from New Customers And Recomendation

Ī	first_name	last_name	property_valuation	state
	Abbie	Oldman	8	NSW
	Adria	Van den Velde	7	NSW
1	Ajay	Worham	6	NSW
	Aldric	Birney	6	NSW
1	Aleece	Feige	10	NSW
П	Alexina	Mabley	9	NSW
	Andriana	Gasnoll	10	NSW
	Aridatha	Sephton	1	NSW
1	Arty	Strudwick	10	NSW
	Aurie	Rhead	2	NSW
1	Bengt	Bilson	10	NSW
	Bervvy	Openshaw	3	NSW
	Brendis	Pineaux	4	NSW
	Brigitte	Whellams	8	NSW
	Brod	Attrey	8	NSW
п	Calida	Schaben	9	NSW
Τ	Carr	Hopkynson	6	NSW
	Cecil	Gant	8	NSW
	Chanda	Mensler	10	NSW
	Cherye	Stanfield	9	NSW
	Chryste	Oddboy	9	NSW
	Cicily	Hast	3	NSW
	Cirillo	Frossell	12	NSW
	Clevey	Aisthorpe	9	NSW
	Collete	Dary	9	NSW
	Conroy	Rappaport	9	NSW
	Corinna	Suggey	8	NSW
	Darlleen	Shalcras	10	NSW
	David	Napoleon	11	NSW
	Denny	Spleving	8	NSW
	Denys	Minshall	8	NSW
	Donn	MacGregor	10	NSW
-				

Studying the trend from the old customers data, we know the age category that buy more bikes, the industry which the top buyers come from and also the location that had more valued customers. Hence the new customers data was filtered to these preferences.

I recommend that you focus more on these set of customers selected from the new 1000 customers as they would be drivers of profits and business growth.

A dashboard will be sent to you summarizing all the findings with the full list of selected customers.

Appendix