Improving Kidney Exchange Programs

João Pedro PEDROSO

Faculty of Sciences, University of Porto

02-Oct-2024

DSPT - Porto Meetup

Outline

- 1 Introduction: Kidney Exchange Programmes (KEPs)
- 2 KEP: cycle formulation
- 3 KEP: possible objectives
- 4 Conclusion

Kidney Failure Treatments

- Kidney failure
 - \bullet One kidney \longrightarrow OK
 - ullet Both kidneys \longrightarrow Dialysis or Transplantation
- Dialysis vs Transplantation
 - Transplantation yields longer survivability
 - Transplantation yields a better quality of life
 - Dialysis is more expensive than transplantation; values for Portugal:
 - $\bullet \ \ \text{Hemodialysis} \longrightarrow 30 \text{K euro per year per person}$
 - Transplantation: 30K euro once + 10K euro year

Sources of kidneys for transplantation

- Deceased donors
 - very large waiting lists (5 years or more waiting)
- Living donors:
 - relatives, spouse, friends, altruistic donors
 - many ethical and legal issues (varies with country)
 - e.g. no commercial transaction of kidneys is generally accepted

Sources of incompatibility

Blood type compatibilities

Donor	Recipient			
Donor	0	Α	В	АВ
0	1	1	1	1
Α	X	1	X	1
В	X	X	1	1
AB	X	X	X	1

- Tissue type incompatibility
 - HLA (Human Leukocyte Antigens)

- Exchange between incompatible pairs in a directed graph
 - thin arrows \rightarrow preliminary assessment compatibility
 - thick arrows → matching

Kidney exchange programs

- KEPs were first proposed by (Rapaport, 1986)
- First transplants within a KEP were done in South Korea, 1991
- Many countries have now KEPs (USA, Switzerland, Turkey, Romania, Netherlands, UK, Canada, Australia, New Zealand, Spain)
- A KEP started in Portugal in 2011; presently, transplants are routinely performed

Kidney exchanges: example

- instance with five pairs
- what is the maximum number of transplants?
- what if the allowed number of simultaneous transplants is limited?

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles (e.g., 1-2-3-1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)

Kidney exchanges: maximum cycle size

- In many situations the length of each cycle is limited
- If maximum cycle size is K = 3, several solutions are possible.

Kidney exchanges: why limiting size

- Two main reasons:
 - usually, all transplants in a cycle should be done at same time
 - someone could withdraw from the program
 - last-minute incompatibility test (crossmatch, just before transplantation)
 - if positive, no transplantation can be done for any pair in this cycle
 - (rearrangements may change the previous limitation)
- However, optimum number of transplants increases with maximum size allowed
- Most programs have k=2 or k=3

Kidney Exchange Model

Problem

- Given:
 - a pool of *n* incompatible donor-patient pairs
 - the compatibility between all donors and all patients
- find the maximum number of kidney exchanges with cycles of size at most k

Complexity

- EASY, if k=2 or no limit is imposed on the size of the cycles
- HARD, if k = 3, 4, 5, ...

Mathematical programming formulations

- There are several possibilities for modeling the problem in mathematical programming
- One of the most successful is the cycle formulation:
 - ullet enumerate all cycles in the graph with length at most K
 - for each cycle c, let variable x_c be 1 if c is chosen, 0 otherwise
 - every feasible solution corresponds to a set of vertex-disjoint cycles

Cycles for K = 3:

- **1**,2,3
- **2** [1,2,4]
- **③** [1,4]
- **4** [2,3]
- **⑤** [2,5]
- **6** [2,5,3]
- \bigcirc [1,2,5,3]

Cycle formulation

subject to
$$\sum_{c:i\in c} x_c \leq 1 \quad \forall i \in V$$
 (2) $x_c \in \{0,1\} \quad \forall c$

- case of 0-1 weights: $w_c = |c|$, (length of cycle c)
- objective: maximize the weight of the exchange
- constraints: every vertex is at most in one cycle
 - (i.e., donate/receive at most one kidney)
- difficulty: exponential number of variables
 - in our experience: not an issue in practice

Objective

- Ethically, a sensitive subject
- Most common: maximize total number of transplant
 - easy to explain/justify
 - difficult to dispute
- Our claim: this is not adequate
 - KEPs are typically run periodically
 - most of the pairs will eventually be matched, after waiting a few periods
 - hence, we should look for alternatives
 - → somehow access the quality of the transplants

Objective: our proposal

- For each pair i
 - for each possible matching i for that pair
 - i's patient may receive kidney of i's donor
 - determine expected survival time for patient s_{ii}
- Then, maximize $\sum s_{ii}$, for all arcs in the solution
- This can be done by assigning the weight w_c for each cycle:

$$w_c = \sum_{ji \in c} s_{ji}$$

- Problem:
 - n^2 weights to determine \rightarrow not practical, if done manually
 - solution?

Predicting survival time

- There is a considerable amount of historical data
- Idea: use historical data to train a machine learning model
- This has been done in the past, but to our knowledge not to parameterize a KEP optimization model
- See, eg., Living Kidney Donor Risk Index (LKDPI) http://www.transplantmodels.com/lkdpi/

LKDPI Score:

This model calculates a risk score for a recipient of a potential live donor kidney.

Live Donor Characteristics:

Donor age:	43	0
Donor sex:	male	0
Recipient sex:	female	0
Donor eGFR:	95	0
Donor SBP:	130	0
Donor BMI:	24	0
Donor is African-American:	No	0
Donor history of cigarette use:	No	0
Donor and recipient biologically related:	Yes	0
Donor and recipient are ABO incompatible:	No	0
Donor Weight:	70 kg/155 lb	0
Recipient Weight:	80 kg/178 lb	0
Donor and recipient HLA-B mismatches:	1	0

Proposed flow:

- Use past data to train regression model
 - features: → patients' data
 - output: → observed survival times
- Gather information concerning patients in current pool
- Parameterize KEP optimization model using pool information + predicted survival times

Results: number of transplants vs. minimum survival time

Results: total survival time vs. minimum survival time

Proposed flow: summary

- lacktriangle Use past data to train regression model ightarrow survival times
- @ Gather information concerning patients
 - → predict survival time for each possible donor-patient assignment
- Find all cycles of desired length
 - → filter cycles with unacceptably low-survival patients
- Prepare KEP optimization model using this information
- Execute optimization model, retrieve and analyse solution
- In the long run: follow transplanted patients, use survival times to improve regression model

Conclusions

- Are current kidney exchange programs wrong?
 - is the objective correct?
- There seems to be room for improvement
 - machine learning + optimization
 - total survival time seems to be a better objective
- Ethics:
 - patient's minimum acceptable survivable time should be discussed

Thanks to my former KEP project colleagues and DDDM students!

