Project: NYPD Arrests in 2019

Gerald Steven

Data source: https://data.cityofnewyork.us/Public-Safety/NYPD-Arrest-Data-Year-to-Date-/uip8-fykc)
3/27/20

Part 1: Data cleaning

- 1. Check for missing values
- 2. Check for duplicate records
- 3. Drop unnecessary columns
- 4. Replace values
- 5. Convert data type

Part 2: Data visualization and analysis

- 1. What is the most common reason for arrest in New York?
- 2. Which borough has the highest number of arrests?
- 3. When are most arrests made?
- 4. Is there racial bias in NYPD arrests?

Pre-step: Load the data

Load CSV file into a dataframe.

```
In [1]: import pandas as pd import os
```

Out[2]:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_DESC	KY_CD	OFNS_DESC	L
0	206892169	12/31/2019	907.0	IMPAIRED DRIVING,DRUG	347.0	INTOXICATED & IMPAIRED DRIVING	Vī
1	206888084	12/31/2019	739.0	FRAUD,UNCLASSIFIED- FELONY	112.0	THEFT- FRAUD	Ρ
2	206890433	12/31/2019	122.0	HOMICIDE, NEGLIGENT, VEHICLE,	102.0	HOMICIDE- NEGLIGENT- VEHICLE	Р
3	206890441	12/31/2019	268.0	CRIMINAL MIS 2 & 3	121.0	CRIMINAL MISCHIEF & RELATED OF	Р
4	206890973	12/31/2019	101.0	ASSAULT 3	344.0	ASSAULT 3 & RELATED OFFENSES	Р

Count the total number of records to get an estimate of how large the dataframe is.

```
In [3]: nypd.shape
Out[3]: (214617, 18)
```

Part 1: Data cleaning

Check for missing values

```
In [4]: nypd.isnull().values.any()
Out[4]: True
```

The code above returns True, which confirms that there are missing values in the dataframe. We can check the sum of these missing values by running the cell below:

```
In [5]: nypd.isnull().values.sum()
Out[5]: 1887
```

Although 1887 values seem like a lot, this number is still relatively small considering that there are over 200,000 records in the dataframe. We can still delete these records so that we are only analyzing on valid records with no missing values.

```
In [6]: nypd.dropna(axis = 0, how = "any", inplace = True)
len(nypd)
Out[6]: 213089
```

After deleting records with NaN values, our dataframe now contains 213,089 records. I used 'how = "any" to delete an entire record if any NaN values are present.

```
In [7]: #TEST
    nypd.isnull().values.any()
Out[7]: False
```

Check for duplicate records

We can check for duplicate records by using pd.DataFrame.duplicated. Because each 'ARREST_KEY' is supposed to be unique, we can just check that specific column for any duplicated values in the dataframe. The code below returns False, which indicates that all 213,089 records are unique.

```
In [8]: nypd['ARREST_KEY'].duplicated().any()
Out[8]: False
```

Drop unnecessary columns

Our current dataframe contains 18 columns. A description of what each column represents is available on the website listed on the top of this notebook. Although each column has a specific purpose, we can drop the columns that are not relevant for our analysis.

For our purposes, I will be deleting 7 columns: 'KY_CD', 'OFNS_DESC', 'JURISDICTION_CODE', 'X_COORD_CD', 'Y_COORD_CD', 'Latitude', and 'Longitude'. 'KY_CD' and 'OFNS_DESC' are similar to 'PD_CD' and 'PD_DESC'; 'PD_CD' and 'KY_CD' are a three digit code, and 'PD_DESC' and 'OFNS_DESC' are descriptions that correspond to their three digit code. The only difference is that 'KY_CD' and 'OFNS_DESC' are more general than 'PD_CD' and 'PD_DESC', so it might be more helpful to keep the values that are more specific.

Out[9]:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_DESC	LAW_CODE	LAW_CAT_C
0	206892169	12/31/2019	907.0	IMPAIRED DRIVING,DRUG	VTL11920U4	I
1	206888084	12/31/2019	739.0	FRAUD, UNCLASSIFIED- FELONY	PL 1908301	
2	206890433	12/31/2019	122.0	HOMICIDE, NEGLIGENT, VEHICLE,	PL 1251201	
3	206890441	12/31/2019	268.0	CRIMINAL MIS 2 & 3	PL 1450502	
4	206890973	12/31/2019	101.0	ASSAULT 3	PL 1200001	1

Now our dataframe only has 11 columns.

Replace values

Replace values in certain columns for readability.

Out[10]:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_DESC	LAW_CODE	LAW_CAT_C
0	206892169	12/31/2019	907.0	IMPAIRED DRIVING,DRUG	VTL11920U4	1
1	206888084	12/31/2019	739.0	FRAUD,UNCLASSIFIED- FELONY	PL 1908301	
2	206890433	12/31/2019	122.0	HOMICIDE, NEGLIGENT, VEHICLE,	PL 1251201	
3	206890441	12/31/2019	268.0	CRIMINAL MIS 2 & 3	PL 1450502	
4	206890973	12/31/2019	101.0	ASSAULT 3	PL 1200001	I

Replace values in the LAW_CAT_CD column

Out[11]:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_DESC	LAW_CODE	LAW_CAT_
0	206892169	12/31/2019	907.0	IMPAIRED DRIVING,DRUG	VTL11920U4	MISDEMEAN
1	206888084	12/31/2019	739.0	FRAUD, UNCLASSIFIED- FELONY	PL 1908301	FELO
2	206890433	12/31/2019	122.0	HOMICIDE, NEGLIGENT, VEHICLE,	PL 1251201	FELO
3	206890441	12/31/2019	268.0	CRIMINAL MIS 2 & 3	PL 1450502	FELO
4	206890973	12/31/2019	101.0	ASSAULT 3	PL 1200001	MISDEMEAN

Convert data type

I noticed that all values in the PD_CD column are stored as floats. However, all unique values of this column have a decimal point of 0. We can confirm this by printing all the unique values of this column.

```
In [12]: nypd['PD_CD'].unique()
```

```
Out[12]: array([907., 739., 122., 268., 101., 175., 503., 759., 112., 244.,
         339.,
                114., 259., 922., 397., 105., 113., 269., 779., 782., 750.,
         793.,
                905., 203., 748., 847., 511., 969., 109., 439., 707., 223.,
         104.,
                139., 792., 705., 117., 744., 862., 639., 205., 729., 799.,
         494.,
                507., 510., 681., 419., 179., 441., 462., 718., 106., 478.,
         764.,
                698., 157., 505., 254., 490., 643., 258., 198., 849., 848.,
         787.,
                168., 904., 633., 125., 466., 461., 514., 209., 708., 263.,
         181.,
                199., 961., 493., 115., 918., 916., 509., 641., 781., 760.,
         515.,
                567., 508., 273., 569., 502., 802., 475., 544., 661., 568.,
         585.,
                766., 479., 640., 563., 565., 521., 809., 725., 293., 940.,
         957.,
                570., 177., 665., 409., 201., 164., 625., 129., 301., 812.,
         596.,
                874., 649., 817., 477., 566., 878., 512., 808., 185., 501.,
         500.,
                746., 195., 180., 176., 553., 909., 291., 586., 174., 696.,
         289.,
                775., 879., 697., 204., 733., 594., 153., 877., 645., 637.,
         688.,
                662., 548., 652., 155., 557., 170., 638., 277., 183., 531.,
         520.,
                939., 687., 968., 271., 523., 727., 197., 724., 513., 297.,
         299.,
                256., 576., 784., 267., 844., 464., 906., 772., 617., 166.,
         762.,
                706., 827., 265., 770., 872., 380., 537., 719., 107., 695.,
         584.,
                627., 694., 261., 644., 593., 965., 794., 876., 604., 731.,
         283.,
                889., 610., 667., 574., 899., 672., 532., 703., 701., 803.,
         818.,
                529., 742., 963., 186., 193., 685., 530., 972., 187., 519.,
         973.,
                674., 647., 659., 588., 248., 191., 947., 789., 591., 587.,
         788.,
                783., 943., 780., 405., 932., 846., 815., 533., 711., 785.,
         749.,
                476., 933., 438., 664., 841., 595., 379., 997.])
```

Because all values in this column have a decimal point of 0, it would not hurt to convert the data type of this column from float to int.

```
In [13]: nypd = nypd.astype({'PD_CD':'int64'})
nypd.head()
```

Out[13]:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_DESC	LAW_CODE	LAW_CAT_
0	206892169	12/31/2019	907	IMPAIRED DRIVING,DRUG	VTL11920U4	MISDEMEAN
1	206888084	12/31/2019	739	FRAUD, UNCLASSIFIED- FELONY	PL 1908301	FELO
2	206890433	12/31/2019	122	HOMICIDE, NEGLIGENT, VEHICLE,	PL 1251201	FELO
3	206890441	12/31/2019	268	CRIMINAL MIS 2 & 3	PL 1450502	FELO
4	206890973	12/31/2019	101	ASSAULT 3	PL 1200001	MISDEMEAN

Part 2: Data visualization and analysis

Now that our dataframe is cleaned, we can explore trends in the dataset using code and visualization.

```
In [14]: import matplotlib.pyplot as plt import seaborn as sns
```

What is the most common reason for arrest in New York?

```
In [15]: nypd['PD_DESC'].value_counts()
Out[15]: ASSAULT 3
                                             24513
         LARCENY, PETIT FROM OPEN AREAS,
                                             21568
         TRAFFIC, UNCLASSIFIED MISDEMEAN
                                             13624
         ASSAULT 2,1,UNCLASSIFIED
                                             11498
         ROBBERY, OPEN AREA UNCLASSIFIED
                                              9235
         TERRORISM PROVIDE SUPPORT
                                                 1
         NUISANCE, CRIMINAL
                                                 1
         FIREWORKS PREV CONV 5 YEARS
                                                 1
         HIND PROSEC. TERR 2
                                                 1
         ROBBERY, GAS STATION
         Name: PD DESC, Length: 252, dtype: int64
```

We can graph the top 5 reasons for arrest.

Create a dataframe that stores the total number of arrests for the top 5 reasons.

```
In [18]: nypd_top_5 = nypd['PD_DESC'].value_counts().head(5).to_frame()
    nypd_top_5.columns = ['Count']
    nypd_top_5
```

Out[18]:

	Count
ASSAULT 3	24513
LARCENY,PETIT FROM OPEN AREAS,	21568
TRAFFIC,UNCLASSIFIED MISDEMEAN	13624
ASSAULT 2,1,UNCLASSIFIED	11498
ROBBERY,OPEN AREA UNCLASSIFIED	9235

Plot using a bar chart.

Which borough has the highest number of arrests?

```
In [25]: boroughs = ['BROOKLYN', 'MANHATTAN', 'BRONX', 'QUEENS', 'STATEN ISLAN
D']
boroughs_count = [58077, 53172, 48516, 44329, 8995]

In [26]: plt.figure(figsize = (10, 7))
plt.bar(x = boroughs, height = boroughs_count)
plt.title('Arrests in Each New York City Borough')
plt.ylabel('Number of arrests')
plt.xlabel('Borough')
plt.rcParams.update({'font.size': 12})
#plt.show()
```


When are most arrests made?

We can compute the monthly statistics of arrests in New York in 2019. With this information, we can plot the distribution of monthly count of arrests. First, we would need to create a month column.

```
In [27]: nypd['MONTH'] = nypd['ARREST_DATE'].str[0:2]
nypd.head()
```

Out[27]:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_DESC	LAW_CODE	LAW_CAT_
0	206892169	12/31/2019	907	IMPAIRED DRIVING,DRUG	VTL11920U4	MISDEMEAN
1	206888084	12/31/2019	739	FRAUD, UNCLASSIFIED- FELONY	PL 1908301	FELO
2	206890433	12/31/2019	122	HOMICIDE, NEGLIGENT, VEHICLE,	PL 1251201	FELO
3	206890441	12/31/2019	268	CRIMINAL MIS 2 & 3	PL 1450502	FELO
4	206890973	12/31/2019	101	ASSAULT 3	PL 1200001	MISDEMEAN

Then, create a dataframe that stores the total number of arrests for every month.

```
In [28]: monthly_count = nypd.groupby(['MONTH']).agg({'PD_CD':'count'})
monthly_count.columns = ['Count']
monthly_count
```

Out[28]:

Count

MONTH				
01	19945			
02	17579			
03	19566			
04	19059			
05	19459			
06	17330			
07	19437			
08	17975			
09	16536			
10	17304			
11	15404			
12	13495			

Plot the dataframe above using a line plot.

```
In [29]: ax2 = monthly_count.plot(kind = 'line', figsize = (8,5))
    ax2.set_xlabel("Month")
    ax2.set_ylabel("Number of Arrests")
    ax2.set_title("Count of Arrests by Month")
    plt.xlim(0,None)
    plt.ylim(0, 25000)
```

Out[29]: (0, 25000)

Surprisingly, there is a decrease in arrests during the months of November and December. My hypothesis is that there is a decrease in arrests during these two months because November and December are traditionally considered to be the holiday season. To confirm if this hypothesis is valid, we can take a closer look at the month of December.

```
In [30]: december = nypd[nypd['MONTH'] == '12']
december.head()
```

Out[30]:

	ARREST_KEY	ARREST_DATE	PD_CD	PD_DESC	LAW_CODE	LAW_CAT_
0	206892169	12/31/2019	907	IMPAIRED DRIVING,DRUG	VTL11920U4	MISDEMEAN
1	206888084	12/31/2019	739	FRAUD, UNCLASSIFIED- FELONY	PL 1908301	FELO
2	206890433	12/31/2019	122	HOMICIDE, NEGLIGENT, VEHICLE,	PL 1251201	FELO
3	206890441	12/31/2019	268	CRIMINAL MIS 2 & 3	PL 1450502	FELO
4	206890973	12/31/2019	101	ASSAULT 3	PL 1200001	MISDEMEAN

Similarly, we can create a dataframe and then plot.

```
In [31]: december_count = december.groupby(['ARREST_DATE']).agg({'PD_CD':'co
    unt'})
    december_count.columns = ['Count']
    december_count
```

Out[31]:

Count

ARREST_DATE	
12/01/2019	334
12/02/2019	347
12/03/2019	606
12/04/2019	697
12/05/2019	689
12/06/2019	575
12/07/2019	403
12/08/2019	384
12/09/2019	370
12/10/2019	616
12/11/2019	597
12/12/2019	588
12/13/2019	487
12/14/2019	411
12/15/2019	390
12/16/2019	451
12/17/2019	481
12/18/2019	519
12/19/2019	472
12/20/2019	423
12/21/2019	399
12/22/2019	333
12/23/2019	411
12/24/2019	234
12/25/2019	178
12/26/2019	437
12/27/2019	443
12/28/2019	343
12/29/2019	292
12/30/2019	326
12/31/2019	259

```
In [35]: plt.figure(figsize = (15, 7))
    ax3 = sns.lineplot(x = december_count.index.str[3:5], y = 'Count',
    data = december_count)
    ax3.set_xlabel("Date")
    ax3.set_ylabel("Number of arrests")
    ax3.set_title("Count of Arrests by Day in December 2019")
    plt.ylim(0, 750)
```

Out[35]: (0, 750)

Confirming my earlier hypothesis of lower arrest numbers during the holiday season, the average number of arrests on any given day in December 2019 is 435. But on December 25th 2019 (Christmas Day), there were only 178 arrests, which is also the lowest number of arrests for the month of December.

Knowing that Christmas Day had the lowest number of arrests in December, I wanted to know if this minimum is also the minimum for the entire year. To check for that, we can groupby the dataframe by each day again and find the min.

As it turns out, the minimum number of arrest for the entire year of 2019 is also 178. To be sure that this min is also the same as Christmas Day, we can find the index, which confirms that this min is indeed December 25th.

```
In [34]: index_label = nypd_annual_min.query('Count == 178').index.tolist()
    print(index_label)
    ['12/25/2019']
```

We can also create a distribution plot of total number of arrests by day.

Count

Out[36]:

RREST	DATE	

ARRESI_DATE				
01/01/2019	547			
01/02/2019	727			
01/03/2019	802			
01/04/2019	776			
01/05/2019	522			

Interestingly, the distribution plot does not show a normal distribution of a bell curve. Instead, there are two peaks in this distribution. This feature might be worth looking into for further exploration; to find out if this is just a feature of the data or if there is actually a coding error.

```
In [37]: ax2 = sns.distplot(daily_count, color = "green", label = "Arrests")
    plt.legend()
    ax2.set_xlabel("Arrest Count")
    ax2.set_ylabel("Density")
    ax2.set_title("Distribution of Arrests in New York")
```

Out[37]: Text(0.5, 1.0, 'Distribution of Arrests in New York')

We can compare the distribution above with the mean of the data (the average number of arrests on any given day in 2019).

```
In [38]: daily_count.describe()
Out[38]:
```

	Count
count	365.000000
mean	583.805479
std	132.562272
min	178.000000
25%	479.000000
50%	579.000000
75%	697.000000
max	877.000000

Is there racial bias in NYPD arrests?

Last year, I took an Intro to Political Psychology class, where we learned about a racial bias and police shootings. We read about a psychology experiment on racial bias and police shootings (Correll et al 2007), where the subjects (police officers) were asked to participate in the shooter's dilemma game.

In the shooter's dilemma, participants are exposed to a series of armed and unarmed individuals who appear in the context of a variety of background images. Participants are instructed that any armed target are an imminent threat and should be shot as quickly as possible, while unarmed individuals pose no threat and should be flagged by pressing a different key. Individuals presented are a mix of white and black men.

The aim of the study was to find if there was an overall bias toward shooting or not shooting, and does it vary by race? The experiment's result indicated that participants, when shooting, shot black individuals more quickly than white individuals, and when participants decided not to shoot, they responded more quickly for white individuals than for black individuals.

I want to explore the idea if we can infer racial bias with NYPD's arrests in 2019.

AMERICAN INDIAN/ALASKAN NATIVE

```
nypd race = nypd['PERP RACE'].value counts().to frame()
In [39]:
          nypd race.columns = ['Count']
          nypd race
Out[39]:
                                          Count
                                  BLACK 101979
                           WHITE HISPANIC
                                          53265
                                   WHITE
                                          25284
                          BLACK HISPANIC
                                          18550
                   ASIAN / PACIFIC ISLANDER
                                          12013
                               UNKNOWN
                                           1401
```

Out of the 213,089 arrests in 2019, almost half of them were arrests on black individuals (~47.8% of all arrests were on black individuals to be exact). We can visualize this information using a bar chart.

597

Because this dataset is not a psychology experiment, we cannot exactly conclude that there is racial bias in NYPD arrests. We would need more information in order to determine this causality! We can, however, confirm that the trend of NYPD arrests follows the findings from the racial bias and police shootings experiment in 2007; that there is racial bias towards black individuals. In the psychology experiment, police offers when shooting, would shoot faster on black individuals than white individuals. In this dataset, almost half of all arrests made by NYPD were arrests on black individuals.

Tn [] •	
T11 1 •	