Rattle - początki pracy

Ćw. 1

Instalacja Rattle

Ustawiamy serwer lustrzany CRAN przez polecenie menu Pakiety/Ustaw serwer lustrzany CRAN

Zazwyczaj do instalacji typowego pakietu w systemie Windows wystarczy wybranie z menu polecenia **Pakiety/Zainstaluj pakiet** lub za pomocą funkcji install.packages():

```
install.packages("rattle")
```

W trakcie instalacji lub po niej mogą zostać zainstalowane pakiety będące zależnościami Rattle (np. Gtk+).

Ćw. 2

Start Rattle

Aby wystartować Rattle używamy polecenia:

```
library(rattle)
rattle()
```

Różne zakładki Rattle mogą wymagać do pracy dodatkowych pakietów, więc warto podczas pracy korzystać z połączenia z Internetem.

Aby wyjść z Rattle po prostu wciskamy przycisk Zakończ (Quit).

Ćw. 3

Wczytanie przykładowego zbioru danych weather

- 1. Klikamy na przycisk Wykonaj (Execute). Rattle zauważy brak danych i zaproponuje nam wykorzystanie wbudowanych danych.
- 2. Wybieramy Tak (Yes). Zbiór danych weather (pogoda), to prosty zbiór danych, któy pozwoli nam przetestować zasady ED.
- 3. Dane są wczytane do programu.
- 4. W zakładce Data widzimy listę zmiennych i ich typy.

Ćw. 4

Proste podsumowania tekstowe

```
summary(weather[7:9])
```

```
SunshineWindGustDirWindGustSpeedMin.: 0.000NW: 73Min.:13.001st Qu.: 5.950NNW: 441st Qu.: 31.00Median: 8.600E: 37Median:39.00Mean: 7.909WNW: 35Mean:39.843rd Qu.: 10.500ENE: 303rd Qu.: 46.00Max.: 13.600(Other): 144Max.: 98.00NA's: 3NA's: 3
```

Wykonaj to ćwiczenie również w Rattle.

Ćw. 5

Podsumowywanie za pomocą Hmisc

Jeśli pakiet niedostępny, instalujemy go. Podsumowanie zmiennej Sunshine

```
library(Hmisc)
describe(weather[7])
weather[7]
```

```
1 Variables 366 Observations

Sunshine

n missing unique Mean .05 .10 .25 .50 .75 .90 363 3 114 7.909 0.60 2.04 5.95 8.60 10.50 11.80 .95 12.60

lowest: 0.0 0.1 0.2 0.3 0.4, highest: 13.1 13.2 13.3 13.5 13.6
```

Podsumowanie zmiennej WindGustDir

```
describe(weather[8])
weather[8]
```

```
N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW
Frequency 21 8 16 30 37 23 12 12 22 5 3 2 20 35 73 44
% 6 2 4 8 10 6 3 3 6 1 1 1 6 10 20 12
```

Wykonaj to ćwiczenie również w Rattle.

Ćw. 6

Podsumowania numeryczne za pomocą fBasics

Jeśli pakiet nie jest zainstalowany, należy go zainstalować. Podsumowanie dla zmiennej Sunshine:

```
library(fBasics)
basicStats(weather$Sunshine)
```

	Xweather.Sunshine
nobs	366.000000
NAs	3.000000
Minimum	0.00000
Maximum	13.600000
1. Quartile	5.950000
3. Quartile	10.500000
Mean	7.909366
Median	8.600000
Sum	2871.100000
SE Mean	0.182732
LCL Mean	7.550016
UCL Mean	8.268716
Variance	12.120962
Stdev	3.481517
Skewness	-0.723454
Kurtosis	-0.270625

Skośność dla kilku zmiennych

skewness (weather [, c(7, 9, 12, 13)], na.rm=TRUE)

Kurtoza dla powyższych zmiennych:

Wykonaj to ćwiczenie również w Rattle.

Ćw. 7

Wykres słupkowy.

W Rattle, wykonaj wykres słupkowy (Bar plot) dla zmiennej WindGustDir z zestawu weather.

Ćw. 8

Wykres kropkowy.

W Rattle, wykonaj wykres kropkowy (Dot plot) dla zmiennej WindGustDir z zestawu weather.

Ćw. 9

Wykres mozaikowy.

W Rattle, wykonaj wykres mozaikowy (Mosaic) dla zmiennej WindGustDir z zestawu weather.

Ćw. 10

Wykres pudełkowy - praca domowa

Pierwszym krokiem jest wygenerowanie danych do wykresu. Następujący przykład tworzy jeden zestaw danych z dwoma kolumnami, jedna jest obserwacją z Humidity3pm i druga, określona przez zmienną o nazwie grp - grupa, do której obserwacja ta należy. Istnieją trzy grupy, dwa odpowiadające dwu wartościom zmiennej docelowej i trzecia obejmująca wszystkie obserwacje.

Stosujemy with(), co pozwala na odwoływanie do zmiennych w oryginalnym zbiorze danych bez konieczności podawania nazwy zestawu danych za każdym razem. Łączymy trzy obiekty data.frame (), stosując rbind (), aby wygenerować końcowy zestaw danych:

Teraz wyświetlamy wykres za pomocą funkcji boxplot() grupując dane dat wg zmiennej grp:

Będziemy również oznaczać średnią na wykresie. Do tego wykorzystamy summaryBy() z pakietu doBy. Resztę załatwia użycie points() i pch=8:

Następnie dodajemy dodatkowe opisy tekstowe identyfikujące medianę, zasięg międzykwartylowy:

Opisujemy również punkty oddalone za pomocą text() (zmniejszając trochę font):

```
text(x=bp$group+0.1, y=bp$out, labels=bp$out, cex=0.6)
```

Ostatecznie dodajemy tytuł i podtytuł do naszego wykresu (umieszczamy na nim datę i godzinę oraz nazwę użytkownika systemu):

```
format(Sys.time(), "%Y-%b-%d %H:%M:%S"),
Sys.info()["user"]))
```

Przyślij wykres pudełkowy dla Evaporation.

Ćw. 11

Wykres pudełkowo-percentylowy z pakietu hmisc - praca domowa

Odmianą wykresu pudełkowego jest wykres pudełkowo-percentylowy. Wykres dostarcza więcej informacji o rozkładzie wartości, niż wykres pudełkowy. Jest on generowany przy użyciu bpplot() z pakietu Hmisc.

Szerokośś każdej ramki zależy od liczby obserwacji dla danego zakresu. Na wykresie widzimy również medianę i 25ty i 75ty percentyl.

Przyślij wykres pudełkowo-percentylowy dla Sunshine.