机器学习

实验指导书

2019.9

山东大学

目录

实验	1	- 2
实验	2 最大似然估计	- 3
实验	3 非参数估计	- 4
实验	4 神经网络学习	- 5
实验	5 集成学习	- 6

实验1

上机练习 2.5 节第 4 题

实验 2 最大似然估计

1、实验目的

- (1) 掌握用最大似然估计进行参数估计的原理;
- (2) 当训练样本服从多元正态分布时,计算不同高斯情况下的均值和方差。

2、实验数据

样		类1		类 2				
本	x ₁		X 3	X 1	X ₂	X 3		
1	0.011	1.03	-0.21	1.36	2.17	0.14		
2	1.27	1.28	0.08	1.41	1.45	-0.38		
3	0.13	0.13 3.12		1.22	0.99	0.69		
4	-0.21 1.23		-0.11	2.46	2.19	1.31		
5	-2.18	1.39	-0.19	0.68	0.79	0.87		
6	0.34 1.96		-0.16	2.51	3.22	1.35		
7	7 -1.38 0.94		0.45	0.60	2.44	0.92		
8	-1.02	0.82	0.17	0.64	0.13	0.97		
9	-1.44	2.31	0.14	0.85	0.58	0.99		
10	0 0.26 1.94		0.08	0.66	0.51	0.88		

3、实验内容及说明

使用上面给出的三维数据:

- 1. 编写程序,对类 1 和类 2 中的 3 个特征 x_i 分别求解最大似然估计的均值 $\hat{\mu}$ 和方差 $\hat{\sigma}^2$ 。
- 2. 编写程序,处理二维数据的情形 $p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ 。对类 1 和类 2 中任意两个特征的组合分别求解最大似然估计的均值 $\hat{\boldsymbol{\mu}}$ 和方差 $\hat{\boldsymbol{\Sigma}}$ (每个类有 3 种可能)。
- 3. 编写程序,处理三维数据的情形 $p(\mathbf{x})\sim N(\boldsymbol{\mu},\boldsymbol{\Sigma})$ 。对类 1 和类 2 中三个特征求解最大似然估计的均值 $\hat{\boldsymbol{\mu}}$ 和方差 $\hat{\boldsymbol{\Sigma}}$ 。
- 4. 假设三维高斯模型是可分离的,即 $\Sigma = diag(\sigma_1^2, \sigma_2^2, \sigma_3^2)$,编写程序估计类 1 和类 2 中的均值和协方 差矩阵中的参数。
- 5. 比较前 4 种方法计算出来的每一个特征的均值 μ_i 的异同,并加以解释。
- 6. 比较前 4 种方法计算出来的每一个特征的方差 σ_i 的异同,并加以解释。

实验 3 非参数估计

1、实验目的

- (1) 掌握用非参数的方法估计概率密度;
- (2) 了解 parzen 窗方法的原理;
- (3) 了解 k 近邻方法的原理

2、实验数据

样	类1			类 2		类 3			类 4			
本	X ₁	X ₂	X ₃	X ₁	X ₂	X 3	X ₁	X ₂	X ₃	X ₁	X ₂	X 3
1	0.28	1.31	-6.2	0.42	-0.087	0.58	-0.4	0.58	0.089	0.83	1.6	-0.014
2	0.07	0.58	-0.78	-0.2	-3.3	-3.4	-0.31	0.27	-0.04	1.1	1.6	0.48
3	1.54	2.01	-1.63	1.3	-0.32	1.7	0.38	0.055	-0.035	-0.44	-0.41	0.32
4	-0.44	1.18	-4.32	0.39	0.71	0.23	-0.15	0.53	0.011	0.047	-0.45	1.4
5	-0.81	0.21	5.73	-1.6	-5.3	-0.15	-0.35	0.47	0.034	0.28	0.35	3.1
6	1.52	3.16	2.77	-0.029	0.89	-4.7	0.17	0.69	0.1	-0.39	-0.48	0.11
7	2.20	2.42	-0.19	-0.23	1.9	2.2	-0.011	0.55	-0.18	0.34	-0.079	0.14
8	0.91	1.94	6.21	0.27	-0.3	-0.87	-0.27	0.61	0.12	-0.3	-0.22	2.2
9	0.65	1.93	4.38	-1.9	0.76	-2.1	-0.065	0.49	0.0012	1.1	1.2	-0.46
10	-0.26	0.82	-0.96	0.87	-1.0	-2.6	-0.12	0.054	-0.063	0.18	-0.11	-0.49

3、实验内容及说明

问题一:

使用上面表格中的数据进行 Parzen 窗估计和设计分类器。窗函数为一个球形的高斯函数如下所示:

$$\varphi\left(\frac{(x-x_i)}{h}\right) \propto exp\left[-(x-x_i)^t(x-x_i)/\left(2h^2\right)\right]$$

编写程序,使用 Parzen 窗估计方法对任意一个的测试样本点 x 进行分类。对分类器的训练则使用表格中的三维数据。令 h=1,分类样本点为 $(0.5,1.0,0.0)^t$, $(0.41,0.82,0.88)^t$, $(0.3,0.44,-0.1)^t$ 。问题二:

对上面表格中的数据使用 k 近邻方法进行概率密度估计:

- 1. 编写程序,对于一维的情况,当有 n 个数据样本点时,进行 k-近邻概率密度估计。对表格中的类 1 的特征 x_1 ,用程序画出当 k=1,3,5 时的概率密度估计结果。
- 2. 编写程序,对于二维的情况,当有 n 个数据样本点时,进行 k-近邻概率密度估计。对表格中的类 2 的特征 $(x_1,x_2)^t$,用程序画出当 k=1,3,5 时的概率密度估计结果。
- 3. 编写程序,对表格中的 4 个类别的三维特征,使用 k-近邻概率密度估计方法。并且对下列点处的概率密度进行估计: $(0.14,0.72,4.1)^t$, $(-0.81,0.61,-0.38)^t$, $(0.31,1.51,-0.50)^t$ 。

实验 4 神经网络学习

- 1. 实验目的
 - (1) 掌握 BP 神经网络的基本原理和基本的设计步骤
 - (2) 了解 BP 算法中各参数的作用和意义
- 2. 实验数据

1ms. mat 手写数字数据集,数据集中包含 5000 个训练样本,其中每个训练训练样本都是 20×20 像素的灰度图像的数字。每个像素由一个浮点数表示,表示该位置的灰度强度。

特别规定:数字0被标记为10,而数字1-9按照自然顺序被标记为1-9;

- 3. 实验内容及说明
 - (1) 用神经网络对给定的数据集进行分类;
 - (2) 不能使用 TensorFlow 等框架,也不能使用库函数,所有算法都要自己实现;
 - (3) 神经网络结构图如下图所示:

整个神经网络包括 3 层——输入层,隐藏层,输出层。输入层有 400 个神经元,隐藏层有 25 个神经元,输出层有 10 个神经元(对应 10 个数字类型)。

(4) 附加:可以试着修改神经元数,层数,学习率等参数探究参数对实验结果的影响。

实验5集成学习

1. 实验目的

用集成方法对数据集进行分类

2. 实验数据

实验 4 中的 1ms. mat 手写数字数据集

- 3. 实验内容及说明
 - (1) 利用若干算法,针对同一样本数据训练模型,使用投票机制,少数服从多数,用多数算法给出的结果当作最终的决策依据;
 - (2) 所选算法包括:

SVM (核函数为多项式核函数);

KNN (k=7);

神经网络。

注:实验4中的神经网络模型可以使用,也可以使用框架。