CA_lab_integration_GL

October 26, 2020

#Romberg's Integration #### Computational Astrophysics * Shivam Kumaran * SC17B122 * 26 Oct 2020

Open Program

0.0.1 Function Transformation

Transforming Function to convert \ integration limit (-1,1)

```
[1]: import numpy as np
```

0.0.2 Calculation of integral,

For given value of * Number of points N * Given Function - f * Integration Limits (a,b)

```
[56]: def calc_gauss(f ,a, b , N):
    #obtains weights and roots from Numpy function
    x,w = np.polynomial.legendre.leggauss(N)
    # transforms function to match limits (-1,1)
    val = [trans_f(f,a,b)(x_n) for x_n in x]
    return(np.dot(val ,w))
```

0.0.3 Analysis

Given Function and the integation limit, here we find the number of poiints of evaluation of integral Corresponding to the provided precision

returns N , Integral Value, corresponding error

```
[57]: def analysis(f,a,b,e):
    err = 1
    prev = calc_gauss(f,a,b,1)
    i = 2
    while(err>e):
        nxt = calc_gauss(f,a,b,i)
        err = abs(prev-nxt)
        prev = nxt
        i+=1
    return(i-1 , nxt , format(err , '1.2e'))
```

1 Problem Function 01

```
[29]: def f_a(x):
    val = np.exp(-1*x**2)
    return val

a,b = 0,2
e = 1e-8
N , val , err = analysis(f_a,a,b,e)
print("N: {}\nIntegration Value:{:.8f}\nError{}".format(N,val,err))
```

N: 8
Integration Value:0.88208139
Error 7.13E-09

1.1 Problem function 02

N : 8

Integration Value : 2.13600612

Error : 1.24e-10

1.1.1 Function 02: K dependecy

```
[58]: k=0.2
a,b = 0,2
e = 1e-8
k_list = np.linspace(0 , 0.9 , 10)
print('K \t \t N \t Value \t \t Error')
print('_____')
for k in k_list:
    N , integ_val , err = analysis(f_b(k),a,b,e)
    print('{:.6f} \t {} \t {}.8f} \t {}'.format(k, N ,integ_val, err))
```

K	N	Value	Error
0.00000	2	2.00000000	0.00e+00
0.100000	8	2.06338710	1.11e-09
0.200000	8	2.13600612	1.24e-10
0.300000	10	2.22059055	2.13e-09
0.400000	10	2.32122529	9.21e-09
0.500000	12	2.44438264	4.13e-09
0.600000	13	2.60116462	3.57e-09
0.700000	15	2.81292508	4.76e-10
0.800000	17	3.12896328	2.98e-09
0.900000	24	3.71144323	2.88e-09

1.1.2 Conclusion

We see that the nuber of points depends on the value of k, which increases as k approaches 1

[]: