بسم الله الرحمن الرحيم

توصيف درس

الگوریتمهای طیفی گراف

بهار ۹۷–۱۳۹۶

توصيف درس

• رابطه طیف ماتریس مجاورت با خواص گراف

$$\mathbf{A_H} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

طیف ماتریس مجاورت

• طیف یک مدار

$$\mathbf{A}_{\mathbf{H}} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

مثال: ترسيم گراف

مثال: ترسیم گراف (ادامه)

الگوریتمهای طیفی گراف

- توليد الگوريتم
- برای مسالههای گراف
- با استفاده از ماتریس مجاورت
- به خصوص طیف ماتریس مجاورت

چرا الگوریتمهای طیفی مهماند؟

١_ سرعت

چرا الگوریتمهای طیفی مهماند؟ (۲)

Theorem 1.1 (Informal). Let $N, n \in N$, and let \mathcal{A}, \mathcal{B} be sets of real numbers. Let \mathcal{I} be a family of instances over \mathcal{A}^N , and let \mathcal{P} be a decision problem over \mathcal{I} with $X = \mathcal{B}^n$ the set of possible solutions to \mathcal{P} over \mathcal{I} . Let $\{g_j(x,I)\}$ be a system of $n^{O(d)}$ polynomials of degree at most d in the variables x and constant degree in the variables x that encodes x, so that

- for $I \sim_{\nu} \mathcal{I}$, with high probability the system is unsatisfiable and admits a degree-d SoS refutation, and
- for $I \sim_{\mu} \mathcal{I}$, with high probability the system is satisfiable by some solution $x \in X$, and x remains feasible even if all but an $n^{-0.01}$ -fraction of the coordinates of I are re-randomized according to v.

Then there exists a matrix whose entries are degree-O(d) polynomials $Q: \mathcal{I} \to \mathbb{R}^{\binom{n}{\leqslant d} \times \binom{n}{\leqslant d}}$ such that

$$\mathbb{E}_{I \sim \nu} \left[\lambda_{max}^+(Q(I)) \right] \leq 1, \quad \text{while} \quad \mathbb{E}_{I \sim \mu} \left[\lambda_{max}^+(Q(I)) \right] \geq n^{10d},$$

where λ_{max}^+ denotes the maximum non-negative eigenvalue.

Hopkins, Samuel B., et al. "The power of sum-of-squares for detecting hidden structures." *arXiv preprint arXiv:1710.05017*(2017).

مباحث درس

- مقدار ویژه و رابطهاش باگراف تنکسازی گراف: گراف مسطح
 - همبندی و گراف: برش بیشینه تنکترین برش
 - گشت تصادفی:
 - توزیع تعادل در گشت،
 - جريان الكتريكي،
 - حل دستگاه لاپلاسین،
 - شار بیشینه

پیش نیاز

- لازم: الگوريتم، گراف، جبر خطي
 - مفید: برنامه ریزی خطی

منابع

NEV STORY OLD SAPING.

SPECTRAL GRAPH THEORY

FALL 2016

David P. Williamson

ثبتنامىها

مقطع تحصيلي

دانشكده

كامپيوتر 3 رياضي 10 همان 1 دکتری 1

کارشناسی 4

ارشد 7

نمرهدهی

نمره	موضوع
7	پایانترم
5	میانترم
5	كوئيز
2	ارائه
1	جزوهنويسي
20	جمع

كمك مدرسها

• آقای مرتضی علیمی

توصيهها

- عضو CW شويد.
 - تقلب نكنيد.
- غر و چانه نزنید کم بزنید.
- با درس جلو بیایید و در نهایت خودتان نمره مورد نیازتان را بگیرید.
 - هوای خودتان را داشته باشید.

با تشکر