PMATH467 — Algebraic Geometry

Classnotes for Winter 2019

bv

Johnson Ng

BMath (Hons), Pure Mathematics major, Actuarial Science Minor University of Waterloo

Table of Contents

List of Definitions	3
List of Theorems	4
Preface	5
I Point-Set Topology	
1 Lecture 1 Jan 07th 1.1 Euclidean Space	9 9
2 Lecture 2 Jan 09th2.1 Euclidean Space (Continued)	13
Index	19

List of Definitions

1	Definition (Metric)	ç
2	Definition (Open and Closed Sets)	C
3	Definition (Continuous Map)	C
4	Definition (Homeomorphism)	1
5	Definition (Topology)	1
6	Definition (Closure of a Set)	4
U	Definition (Closure of a Set)	J
7	Definition (Interior of a Set)	4
8	Definition (Boundary of a Set)	4
9	Definition (Dense)	5
10	Definition (Limit Point)	5
11	Definition (Basis of a Topology)	6

List of Theorems

Preface

The basic goal of the course is to be able to find **algebraic invariants**, which we shall use to classify topological spaces up to homeomorphism.

Other questions that we shall also look into include a uniqueness problem about manifolds; in particular, how many manifolds exist for a given invariant up to homeomorphism? We shall see that for a **2-manifold**, the only such manifold is the **2-dimensional sphere** S^2 . For a 4-manifold, it is the 4-dimensional sphere S^4 . In fact, for any other n-manifold for n > 4, the unique manifold is the respective n-sphere. The problem is trickier with the 3-manifold, and it is known as the Poincaré Conjecture, solved in 2003 by Russian Mathematician Grigori Perelman. Indeed, the said manifold is homeomorphic to the 3-sphere.

For this course, you are expected to be familiar with notions from real analysis, such as topology, and concepts from group theory.

The following topics shall be covered:

- 1. Point-Set Topology
- 2. Introduction to Topological Manifolds
- 3. Simplicial complexes & Introduction to Homology
- 4. Fundamental Groups & Covering Spaces
- 5. Classification of Surfaces

Basic Logistics for the Course

I shall leave this here for my own notes, in case something happens to my hard copy.

6 ■ LIST OF THEOREMS - ■ LIST OF THEOREMS

• OH: (Tue) 1630 - 1800, (Fri) 1245 - 1320

• OR: MC 6457

• EM: aaleyasin

Part I Point-Set Topology

1 Lecture 1 Jan 07th

1.1 Euclidean Space

For any $(x_1,...,x_m) \in \mathbb{R}^m$, we can measure its distance from the origin 0 using either

- $||x||_{\infty} = \max\{|x_i|\}$ (the supremum-norm);
- $||x||_2 = \sqrt{\sum (x_j)^2}$ (the 2-norm); or
- $||x||_p = \left(\sum |x_j|^p\right)^{\frac{1}{p}}$ (the *p*-norm),

where we may define a "distance" by

$$d_p(x,y) = \|x - y\|_p.$$

Definition 1 (Metric)

Let X be an arbitrary space. A function $d: X \times X \to \mathbb{R}$ is called a **metric** if it satisfies

- 1. (symmetry) d(x,y) = d(y,x) for any $x,y \in X$;
- 2. (positive definiteness) $d(x,y) \ge 0$ for any $x,y \in X$, and $d(x,y) = 0 \iff x = y$; and
- 3. (triangle inequality) $\forall x, y, z \in X$

$$d(x,y) \le d(x,z) + d(y,z).$$

Definition 2 (Open and Closed Sets)

Given a space X with a metric d, and r > 0, the set

$$B(x,r) := \{ w \in X \mid d(x,w) < r \}$$

is called the **open ball** of radius r centered at x. An **open set** A is such that $\forall a \in A, \exists r > 0$ such that

$$B(a,r) \subseteq A$$
.

We say that a set is **closed** if its complement is open.

Definition 3 (Continuous Map)

A function

$$f:(X,d_1)\to (Y,d_2)$$

is said to be continuous if the preimage of an open set in Y is open in X.

See notes on Real Analysis for why we defined a continuous map in such a way.

₩ Warning

This definition does not imply that a continuous map f maps open sets to open sets.

Exercise 1.1.1

Contruct a function on [0,1] which assumes all values between its maximum and minimum, but is not continuous.

Solution

Consider the piecewise function

$$f(x) = \begin{cases} x & 0 \le x < \frac{1}{2} \\ x - \frac{1}{2} & x \ge \frac{1}{2}. \end{cases}$$

It is clear that the maximum and minimum are $\frac{1}{2}$ and 0 respectively, and f assumes all values between 0 and $\frac{1}{2}$. However, a piecewise function is not continuous.

■ Definition 4 (Homeomorphism)

A function f is a homeomorphism if it is a bijection and both f and f^{-1} are continuous.

Example 1.1.1

The function

$$g:[0,2\pi)\to\mathbb{R}^2$$
 given by $\theta\mapsto(\cos\theta,\sin\theta)$

is not homeomorphic, since if we consider an alternating series that converges to 0 on the unit circle on \mathbb{R}^2 , we have that the preimage of the series does not converge and f^{-1} is in fact discontinuous.

Now, we want to talk about topologies without referring to a metric.

■ Definition 5 (Topology)

Let X be a space. We say that the set $\mathcal{T} \subseteq \mathcal{P}(X)$ is a **topology** if

- 1. $X,\emptyset \in \mathcal{T}$;
- 2. if $\{x_{\alpha}\}_{\alpha\in A}\subseteq \mathcal{T}$ for an arbitrary index set A, then

$$\bigcup_{\alpha\in A}x_{\alpha}\in\mathcal{T};\ and$$

3. If $\{x_{\beta}\}_{\beta \in B} \subset \mathcal{T}$ for some finite index set B, then

$$\bigcap_{\beta\in\mathcal{B}}x_{\beta}\in\mathcal{T}.$$

2 Lecture 2 Jan 09th

2.1 Euclidean Space (Continued)

In the last lecture, from metric topology, we generalized the notion to a more abstract one that is based solely on open sets.

Example 2.1.1

Let *X* be a set. The following two are uninteresting examples of topologies:

- 1. The trivial topology $\mathcal{T} = \{\emptyset, X\}$.
- 2. The discrete topology $\mathcal{T} = \mathcal{P}(X)$.

WE SHALL NOW continue with looking at more concepts that we shall need down the road.

Definition 6 (Closure of a Set)

Let A be a set. Its **closure**, denoted as \overline{A} , is defined as

$$\overline{A} = \bigcap_{C \supset A}^{C: closed} C.$$

It is the smallest closed set that contains A.

66 Note

In metric topology, one typically defines the closure of a set by taking the union of A and its limit points.

Definition 7 (Interior of a Set)

Let A be a set. Its **interior**, denoted either as Int (A), A° or $\overset{\circ}{A}$, is defined as

$$\overset{\circ}{A}=\overset{G:\ open}{\displaystyle\bigcup_{G\subseteq A}}G.$$

Definition 8 (Boundary of a Set)

Let A be a set. Its **boundary**, denoted as ∂A , is defined as

$$\partial A = \overline{A} \setminus \overset{\circ}{A}.$$

Exercise 2.1.1

Let A be a set. Prove that ∂A is closed.

Proof

Notice that

$$(\partial A)^{\mathcal{C}} = (\overline{A} \setminus \overset{\circ}{A})^{\mathcal{C}} = X \setminus \overline{A} \cup \overset{\circ}{A} = X \cap \overline{A}^{\mathcal{C}} \cup \overset{\circ}{A}$$

which is open.

Exercise 2.1.2

Let A be a set. Show that

$$\partial(\partial A) = \partial A$$
.

Proof

First, notice that $\overset{\circ}{\partial A} = \emptyset$. Since ∂A is closed, $\overline{A} = \partial A$. Then

$$\partial(\partial A) = \overline{\partial A} \setminus \overset{\circ}{\partial A} = \partial A \setminus \varnothing = \partial A$$

Example 2.1.2

We know that $\mathbb{Q} \subseteq \mathbb{R}$, and $\overline{\mathbb{Q}} = \mathbb{R}$. We say that \mathbb{Q} is dense in \mathbb{R} .

Definition 9 (Dense)

We say that a subset A of a set X is dense if

$$\overline{A} = X$$
.

Example 2.1.3

From the last example, we have that $\overset{\circ}{\mathbf{Q}} = \varnothing$.

Definition 10 (Limit Point)

We say that $p \in X \supseteq A$ is a limit point of A if any neighbourhood of p has a nontrivial intersection with A.

Example 2.1.4 (A Topologist's Circle)

Consider the function

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

on the interval $\left[-\frac{1}{2\pi}, \frac{1}{2\pi}\right]$. Extend the function on both ends such that we obtain Figure 2.1 (See also: Desmos).

The limit points of the graph includes all the points on the straight line from (0, -1) to (0, 1), including the endpoints. This is the case because for any of the points on this line, for any neighbourhood around the point, the neighbourhood intersects the graph f infinitely many times.

Going back to continuity, given a function f, how do we know if f^{-1} maps an open set to an open set?

Figure 2.1: A Topologist's Circle

We can actually reduce the problem to only looking at open balls. But why are we allowed to do that?

Definition 11 (Basis of a Topology)

Given a topology \mathcal{T} , we say that $\mathcal{B} = \{B_{\alpha}\}_{{\alpha} \in I}$ is a **basis** if $\forall T \in \mathcal{T}$, there exists $J \subset I$ such that

$$T=\bigcup_{\alpha\in I}B_{\alpha}.$$

Note that while the definition is similar to that of a cover, we are now "covering" over sets and not points.

Example 2.1.5

Let \mathcal{T} be the Euclidean topology on \mathbb{R} . Then we can take

$$\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{R}, a \leq b\}.$$

Note that \mathcal{B} is **uncountable**. We can, in fact, have ¹

$$\mathcal{B}_1 = \{(a,b) \mid a,b \in \mathbb{Q}, a \leq b\},\,$$

which is countable, as a basis for \mathbb{R} . Furthermore, we can consider the set

$$\mathcal{B}_2 = \left\{ (a,b) \mid a \leq b, a = \frac{m}{2^p}, b = \frac{n}{2^q}, m, n, p, q \in \mathbb{Z} \right\},$$

 1 Recall from PMATH 351 that we can write \mathbb{R} as a disjoint union of open intervals with rational endpoints.

which is also a countable basis for R. Notice that

$$\mathcal{B}_2 \subseteq \mathcal{B}_1 \subseteq \mathcal{B}$$
.

Example 2.1.6

In \mathbb{R}^2 , we can do a similar construction of \mathcal{B} , \mathcal{B}_1 , and \mathcal{B}_2 as in the last example and use them as a basis for \mathbb{R}^2 . In particular, we would have

$$\mathcal{B} = \{(a_1, b_1) \times (a_2, b_2) \mid a_1, a_2, b_1, b_2 \in \mathbb{R}\}.$$

This is called a **dyadic partitioning** of \mathbb{R}^2 .

Example 2.1.7

Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be two topological spaces. Then the Cartesian product $X_1 \times X_2$ has topology induced from \mathcal{T}_1 and \mathcal{T}_2 by taking the set

$$\mathcal{B} = \{ eta_1 imes eta_2 \mid eta_1 \in \mathcal{T}_1, \, eta_2 \in \mathcal{T}_2 \}$$

as the basis.

Exercise 2.1.3

Prove that

- 1. β_1 and β_2 can be taken to be elements of bases $\mathcal{B}_1 \subset \mathcal{T}_1$ and $\mathcal{B}_2 \subset \mathcal{T}_2$, respectively.
- 2. the product topology on \mathbb{R}^2 is the same as the Euclidean topology.

Index

Basis, 16 Boundary, 14

Closed sets, 10 Closure, 13

Continuous Map, 10

Dense, 15

discrete topology, 13 dyadic partitioning, 17

Homeomorphism, 11

Interior, 14

Limit Point, 15

Metric, 9

Open sets, 10

Topology, 11

trivial topology, 13