Learning Domain-Invariant Relationship with Instrumental Variable for Domain Generalization

Junkun Yuan¹, Xu Ma¹, Kun Kuang¹, Ruoxuan Xiong², Mingming Gong³, and Lanfen Lin¹

- ¹ Zhejiang University
- ² Emory University
- ³ The University of Melbourne

Deep Models Lack Robustness and Generalization

Fast Gradient Sign Method (FGSM) [1]

Deep Learning Algorithms Mostly Rely on I.I.D. Assumption

Test Datasets/Domains

Domain Generalization (DG): Learning Invariant Knowledge from Multiple Source Domains to Unknown Target Domains

Problem Setup of Domain Generalization (DG)

- Q source datasets $\mathcal{D}^1, \mathcal{D}^2, \dots, \mathcal{D}^Q$
- An unseen target dataset \mathcal{D}^{Q+1}
- N^q points are sampled for each dataset \mathcal{D}^q , i.e., $\mathcal{D}^q = \{\mathbf{x}_n^q, y_n^q\}_{n=1}^{N^q}, q=1,\dots,Q$
- Each dataset \mathcal{D}^q is sampled from distribution P^q , $q=1,\ldots,Q+1$, $P^q\neq P^p$ if $p\neq q$
- DG: Leverage the source datasets $\mathcal{D}^1, \mathcal{D}^2, ..., \mathcal{D}^Q$ to train a model and make it perform well on \mathcal{D}^{Q+1} .

Representative Works for DG

Domain invariant representation learning. [2]

[2] Li H, Pan S J, Wang S, et al. Domain generalization with adversarial feature learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5400-5409.

Representative Works for DG

Domain augmentation. [3]

[3] Carlucci F M, D'Innocente A, Bucci S, et al. Domain generalization by solving jigsaw puzzles[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2229-2238.

Problems of Existing DG Works

- Inefficient model training process.
- Learning domain-invariant marginal distribution P(X), rather than invariant relationship between X and Y.
- Not explainable.

→ Causality !

Data Generating Process (DGP) Assumption

 $X^m \& Y^m$: Data (images) & label (categories).

 F^{ivt} : Invariant factor (object shape).

 F^m : Domain-specific factor (background, light condition).

 e_x^m , e_y^m : error term.

Robust Perception of Human & Invariant Relationship

Assumption

f: Invariant relationship between data and label

Assumption 1. Data distributions of different domains satisfy the data generating process and causal graph, where only the factor F^{ivt} and relationship f are invariant.

Preliminary of Instrumental Variable (IV)

A valid IV should satisfy^[4, 5]:

- Relevance. Z and X should be relevant, i.e., $P(X|Z) \neq P(X)$.
- **Exclusion.** Z is correlated to Y only through X, U, i.e., $Z \perp Y | (X, U)$.
- Unconfounded instrument. Z is independent of U, i.e., $Z \perp U$.
- [4] Pearl J. Causality[M]. Cambridge university press, 2009.
- [5] Hartford J, Lewis G, Leyton-Brown K, et al. Deep IV: A flexible approach for counterfactual prediction[C]//International Conference on Machine Learning. PMLR, 2017: 1414-1423.

Instrumental Variable for Domain Generalization Problem

Proposition 1. For any two domains m and n, if $m \neq n$, then the following conditions hold: (1) $P(X^m|X^n) \neq P(X^m)$; (2) $X^n \perp Y^m|(X^n, F^m)$; (3) $X^n \perp F^m$; (4) $X^n \perp e_y^m$.

Theorem 1. For any two domains m and n, if $m \neq n$, then X^n is a valid instrumental variable of domain m.

Two-stage Method to Learn Domain-Invariant Relationship

Fivt

By following [3, 4, 5], we assume DGP as:

$$Y^m = f(X^m) + F^m + e_y^m,$$

where $\mathbb{E}[e_{\mathcal{V}}^m] = \mathbb{E}[F^m] = 0$.

We have:

$$\mathbb{E}[Y^m|X^n] = \mathbb{E}[f(X^m)|X^n] + \mathbb{E}[F^m|X^n] + \mathbb{E}[e_y^m|X^n]$$
$$= \int f(X^m)dP(X^m|X^n)$$

[6] R. Singh, M. Sahani, and A. Gretton. Kernel instrumental variable regression. In Advances in Neural Information Processing Systems (NeurIPS), pages 4593–4605, 2019.

[7] A. Bennett, N. Kallus, and T. Schnabel. Deep generalized method of moments for instrumental variable analysis. In Advances in Neural Information Processing Systems (NeurIPS), pages 3564–3574, 2019.

Domain Invariant Relationship with Instrumental Variable

Stage 1: $\mathcal{L}_{IV_1}^q = \mathbb{I}(y^q = y^1)d_k^2(g_q(x^q), g(x^1)), d_k^2$: distance metric like MMD

Stage 2: $\mathcal{L}_{IV_2} = \frac{1}{Q-1} \sum_{q=2}^{Q} \alpha_q \mathbb{E}_{(x^q, y^q), (x^1, y^1)} [\mathbb{I}(y^q = y^1) \ell(c \circ g(x^q), y^1)], \ell$: classification loss

Results on Real-World Datasets

RESULTS (%) FOR DOMAIN GENERALIZATION ON PACS DATASET.

RE	SULTS $(\%)$) FOR DOMAIN	GENERALIZATION	ON OFFICE-	HOME DATASET.
----	--------------	--------------	----------------	------------	---------------

Product

70.86

71.47

Alarm Clock

Real-World

73.15

72.79

Average

60.51

61.20

Clipart

45.86

47.51

Art

52.15

53.04

Sketch

Methods	Art	Cartoon	Photo	Sketch	Average	Methods
DeepAll [8]	78.96	72.93	96.28	70.59	79.94	DeepAll [8
JiGen [8]	79.42	75.25	96.03	71.35	80.51	JiGen [8]
MASF [10]	80.29	77.17	94.99	71.69	81.04	DSON [44
DGER [61]	80.70	76.40	96.65	71.77	81.38	RSC [16]
Epi-FCR [21]	82.1	77.0	93.9	73.0	81.5	
MMLD [36]	81.28	77.16	96.09	72.29	81.83	DRIVE w/
EISNet [49]	81.89	76.44	95.93	74.33	82.15	DRIVE w/
L2A-OT [63]	83.3	78.2	96.2	73.6	82.8	DRIVE
DDAIG [62]	84.2	78.1	95.3	74.7	83.1	
DRIVE w/o IV	79.40 ± 0.10	76.93 ± 0.09	95.75 ± 0.10	74.44 ± 0.07	81.63 ± 0.03	
DRIVE w/o pre	81.95 ± 0.25	77.55 ± 0.31	96.64 ± 0.34	75.65 ± 0.10	82.95 ± 0.14	
DRIVE				78.68 ± 0.96		Art Painting

DSON [44] RSC [16]	59.37 58.42	44.70 47.90	71.84 71.63	74.68 74.54	62.90 63.12
	V 55.53 ± 0.21 re 59.30 ± 0.06 60.40 ± 0.26	47.65 ± 0.30	72.03 ± 0.57		63.63 ± 0.11
Art Painting			Art		
Cartoon			Clipart		
Photo			Product		

Results on Real-World Datasets

Conclusions

- Build generalizable models is important for Al applications.
- Domain generalization is one solution.
- Causality techniques has been demonstrated to be useful in exploring invariant causal relations.
- How to develop causality-inspired algorithms for enabling domain generalization and other machine learning problems.

References

- [1] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.
- [2] Li H, Pan S J, Wang S, et al. Domain generalization with adversarial feature learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5400-5409.
- [3] Carlucci F M, D'Innocente A, Bucci S, et al. Domain generalization by solving jigsaw puzzles[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2229-2238.
- [4] Pearl J. Causality[M]. Cambridge university press, 2009.
- [5] Hartford J, Lewis G, Leyton-Brown K, et al. Deep IV: A flexible approach for counterfactual prediction[C]//International Conference on Machine Learning. PMLR, 2017: 1414-1423.
- [6] R. Singh, M. Sahani, and A. Gretton. Kernel instrumental variable regression. In Advances in Neural Information Processing Systems (NeurIPS), pages 4593–4605, 2019.
- [5] A. Bennett, N. Kallus, and T. Schnabel. Deep generalized method of moments for instrumental variable analysis. In Advances in Neural Information Processing Systems (NeurIPS), pages 3564–3574, 2019.
- [7] Yuan J, Ma X, Kuang K, et al. Learning Domain-Invariant Relationship with Instrumental Variable for Domain Generalization[J]. arXiv preprint arXiv:2110.01438, 2021.

Thank You!