研究背景

PHC

- 常見於中國、亞洲、非洲;美國、• 歐洲少見
- 很多可能的病因學因素:但分布不夠廣泛,抑或沒有與PHC相同的地域分布,且只能解釋小部分病例
- 黃麴毒素和HBV(Hepatitis B virus)廣泛分布,為可能主要病原

早期研究

- · 病例對照研究:PHC與HBV 弱相關
- 偵測HBsAg的科技敏感度提高:顯示其出現在PHC病患血清的頻率顯著高於控制組
- 流行病學研究: HBsAg帶原 者的地理頻率和PHC盛行率 強相關

1974年研究環境

· 當時的研究者對HBV和 PHC的可能關連有低接受 度與低意識

研究目的

- 前瞻性地確定HBsAg帶原者中PHC的發生率和相對風險
- 確定HBsAg帶原者狀態是否為PHC發展的先決條件
- 假設: HBV是PHC的病因學主要因素

研究設計-Prospective cohort study

個案來源與樣本數

共22707位台灣男性政府公務員(全年齡)

21227人

GECC

常規免費身體檢查、 其他診所(牙科、耳 鼻喉科、眼科) 1480人

CVDS

10年前(40-59歲時) 自GECC招募,用於 心血管疾病危險因 素的前瞻性研究(比 GECC組老)

PHC疾病診斷

共41位PHC死亡病例 由組織學、AFP上升、肝掃描、血管造影、臨床 表現診斷

- 19位(46.3%)組織學確診
- 19位血清AFP上升&肝臟掃描或血管造影確診
- 1位肝臟掃描確診,但未測量AFP
- 2位血清AFP上升&臨床表現確診
- -> 組織學確診病例和未確診病例的臨床表現、肝掃描和血管造影模式無差異

追蹤-主動監測

- 每月取得健保局的最近死亡與新取消健保的退休雇員的清單,並使用電腦比對驗證研究族群
- 使用信件或電話聯絡新的取消健保的退休雇員, 以了解健康狀況 -> 0.3%失聯
- 共追蹤75000人年,3.3年/人

測量-ALT, AFP, HBV markers

- 全體檢測ALT, AFP, HBsAg
- 3661人檢測anti-HBs: 1020名CVDS組HBsAg 陰性者+以年齡、省籍與GECC組HBsAg陽性 者配對的陰性者
- 615人檢測anti-HBc: anti-HBs陰性者

研究結果

* 100000人發生率

Table1: 死因別死亡數 | 以HBsAg狀態分層

UD a A ca		死因		風險族	PHC死亡發	
HBsAg	PHC	肝硬化	其他	群	生率*	
陽性	40	17	48	3454	1158	
陰性	1	2	199	19253	5	
總共	41	19	247	22707	181	

Table 1

- 共307例死亡:41例死於PHC;19例死於肝硬化(共19.5%)
- PHC: HBsAg陽性者中,死於PHC比例極高(RR=223)
- 肝硬化: HBsAg陽性者中,死於肝硬化比例也高(RR=47.4)
- PHC+肝硬化: 105例HBsAg陽性死亡案例中造成57例 (54.3%); 202例HBsAg陰性死亡案例中造成3例(1.48%)。 RR=36.55
- HBV marker: 3個死於PHC+肝硬化的HBsAg陰性者,一個為anti-HBs-陽性,其餘為只有anti-HBc陽性,所以就算有其他HBV marker陽性的HBsAg陰性者,死於PHC或肝硬化的機率還是遠低於HBsAg陽性者 (p<0.00001)

HBV markers陽性者比例

HBV markers	陽性
HBsAg	3454(15.2%)
Anti-HBs	15570(68.6%)
Anti-HBc	2248(9.9%)
陰性	1272(5.6%)

死因RRPHC223肝硬化47.4PHC+肝硬化35.55

Table 2: 死因比死亡數 | 以肝硬化史&HBsAg狀態分層

肝硬 LIBSAG		死因			風險	PHC	
化史	HBsAg	PHC	肝硬化	其他	族群	發生率*	
有	陽性	5	7	0	40	12500	
角	陰性	0	0	0	30	0	
血	陽性	35	10	48	3414	1025	
無	陰性	1	2	199	19223	5	
4	總共	41	19	247	22707	181	

Table 2

• 有肝硬化史的病患會增加罹患PHC風險

此外,有肝炎史的1257人,390名(31%)HBsAg陽性,其中8人死於PHC(2.1%),867名陰性者0人死於PHC

Table 4: PHC發生率 | 以年齡分層

				•		
年齡	總案例	HBsAg	陽性	PHC發生率/100000人		
**	數	病例數	%	PHC死亡數	總共	HBsAg陽性
20-29	647	130	21.1	0	0	0
30-39	1814	398	21.9	1	55	251
40-49	8338	1415	17.0	4+1	60	283
50-59	9949	1303	13.1	28	281	2249
60-69	1920	206	10.7	7	364	3398
>70	39	2	5.1	0	0	0
總共	22707	3454	15.2	40+1	181	1158

Table 3

- PHC總發生率:181/100000
- HBsAg陽性者的PHC發生率: 1158/100000
- PHC與HBsAg發生率均隨年齡上升而增加

結

論

- HBsAg帶原是罹患PHC風險因子。RR=223, 95%CI=(28, 1479)
- 有肝硬化史增加罹患PHC風險 (與HBsAg陽性正向交互)
- 年齡的上升增加罹患PHC風險 (與HBsAg陽性正向交互)

偏差來源與影響

選樣偏差

- Loss to Follow-up -> 錯估 風險
- 樣本為公務員的健康工人效應 -> 低估風險

測量偏差

不同的暴露資料測量與蒐集方式 -> 低估風險

干擾作用

可能存在其他未知的干擾因子 -> 錯估風險

重要推論

 雖然此研究沒有證明HBV是PHC病因,其可能 只是其他病原學媒介的輔因子,或僅是個風險 因子。但極高的RR,顯示HBV與PHC的致病過 程有極大關連,不僅是個風險因子。

調查建議

- **進行肝硬化在PHC的病因學研究**,以了解肝硬化在其中的發病機制中起什麼作用
- 進行前瞻性世代研究時取樣外推至其他族群,例如不同地域、種族、性別,以了解其他族群
 HBV帶原者與台灣華裔男性罹患PHC的風險是
 否相同
- **進行HBV發展為PHC的世代研究**,以進一步確認哪些因素決定哪些HBV感染者會發展為PHC

研究對公衛的意義

- 建立有史以來病毒與人類腫瘤之間的強力的關聯
- 找出PHC明確的預防方向

預防醫學與疾病控制建議

- · 擴大甲種胎兒蛋白及腹部超音波追蹤檢查,定期篩檢B型肝炎
 - 未帶原者接受B型肝炎**疫苗注射**
 - 針對帶原者進行**早期治療**
- 進行衛教,加強民眾對肝炎及肝癌防治認知, 使其能夠配合定期追蹤或接受治療

年齡、性別、突變歷程 與 患病比例

資料處理

- · 删除研究前 (INTERVIEW1)就發病 (DTIME)的個案
- 若發病時間位於兩次病 毒測量之間,則以第一 次測量(INTERVIEW1) 決定(可能為00或11)
- Mutation process
 - 11:mutation
 - 00:wildtype
 - 10: mutation to wildtype
 - 01: wildtype to mutation

Survival curves strafied by mutation process

p = 6e - 04

4000

5000

存活曲線

3000

Follow-up time (days)

2000

年齡愈大,風險愈大

00 or 11 01 or 10

1000

- 突變歷程: [Wildtype to mutation(01)或mutation >wildtype(10)] 相較於 [wildtype to wildtype(00)或mutation to mutation(11)] 風險較大
- 性別無顯著影響

以年齡分層	
以性別分層	
以突變分層	

31-50y	患病	未患病	51-70y	患病	未患病
Female (0)	10	264	Female (0)	20	67
Male (1)	18	248	Male (1)	13	75
Adj-RR	Adj-RR 1.854 (p=0.1027)		Adj-RR	0.6426 (p=0.166)	
Mantel-Haenszel RR 1.0466		95%CI	0.6134 1.7857		
M-H test of Homogeneity of RR		p-value	0.08		

31-50y	患病	未患病	51-70y	患病	未患病
11 or 00	27	389	11 or 00	31	106
01 or 10	1	123	01 or 10	2	36
Adj-RR	0.1242 (p	=0.01231)	Adj-RR	0.2326 (p=0.01577)	
Mantel-Ha	enszel RR	0.1542	95%CI	0.0468	0.5079
M-H test of Homogeneity of RR		p-value	0.02		
Famala (0)	生庁	土虫庁	Mala (4)	生庁	土虫庁

Female (0)	患病	未患病	Male (1)	患病	未患病
31-50y	10	264	31-50y	18	248
51-70y	20	67	51-70y	13	75
Adj-RR	Adj-RR 6.2989 (p=1.307e-08)		Adj-RR	2.1831 (p=0.02146)	
Mantel-Haenszel RR 4.1861		95%CI	2.4538 7.1416		
M-H test of Homogeneity of RR		p-value	0.08		

Female (0)	患病	未患病	Male (1)	患病	未患病
11 or 00	28	245	11 or 00	30	250
01 or 10	2	86	01 or 10	1	73
Adj-RR	Adj-RR 0.2216 (p=0.01847)		Adj-RR	0.1261 (p=0.01139)	
Mantel-Haenszel RR 0.1605		95%CI	0.0495 0.5205		
M-H test of Homogeneity of RR			p-value	0.69	

11 or 00	患病	未患病	01 or 10	患病	未患病
Female (0)	28	245	Female (0)	2	86
Male (1)	30	250	Male (1)	1	73
Adj-RR	1.0446		Adj-RR	0.5946 (p=0.6658)	
Mantel-Haenszel RR 1.0194		95%CI	0.6002 1.7314		
M-H test of Homogeneity of RR			p-value	0.0	69

11 or 00	患病	未患病	01 or 10	患病	未患病
31-50y	27	389	31-50y	1	123
51-70y	31	106	51-70y	2	36
Adj-RR	3.4863 (p=9.2e-08)		Adj-RR	6.5263 (p=0.07551)	
Mantel-Haenszel RR 4.3213		95%CI	2.5083 7.4449		
M-H test of Homogeneity of RR			p-value	0.	02

分層分析

- 年齡與突變歷程有正向交互作用
- 無干擾作用

變項	描述	Crude-RR	95% C.I.
年齡(歳)	51+	3.636735	2.264 5.841
性別	Male	1.053766	0.652 1.703
突變歷程	10或01	0.1765645	0.056 0.556

存活曲線分層分析

年龄x突變歷程

Survival curves strafied by

- 年齡與突變歷程有交互作用
- 隨著年齡上升,突變歷程始終保持為wildtype或mutation疾病風險增加。 可由存活曲線愈低觀察到。
- 但突變歷程為wildtype轉換為mutation或反之者,也隨年齡增加而減少相對保護

Survival curves strafied by

mutation process for age 31-50 mutation process for age 51-70 ω Θ ∞ Ö Survival probability Survival probability 9.0 9.0 4. Ö 0.2 0.2 p = 0.01p = 0.0200 or 11 01 or 10 00 or 11 01 or 10 0.0 0 1000 2000 3000 4000 5000 3000 4000 5000 Follow-up time (days) Follow-up time (days)

Cox PH model

log(HR(x)) = log(h(t|x)h0(t)) = 年齡 + 突變歷程(4) + 年齡*突變歷程(4)

變項	RR	P-value
年齡(歲)	1.0740	<.0001
突變歷程00	Ref.	-
突變歷程01	2.6694	0.7947
突變歷程10	0.0006	0.3656
突變歷程11	0.0006	0.0271
年齡*突變歷程01	0.9484	0.5112
年齡*突變歷程10	1.0949	0.5096
年齡*突變歷程11	1.1286	0.0326

log(HR(x)) = log(h(t|x)h0(t)) = 年齡 + 突變歷程(4 levels)

變項	RR	P-value
年齡(歲)	1.0877	<.0001
突變歷程00	Ref.	-
突變歷程01	0.2076	0.0293
突變歷程10	0.0931	0.0188
突變歷程11	0.5262	0.0773

總結

• 性別:對LOSO疾病發生無顯著影響

• 年齡:上升為LOSO疾病的風險因子

MaMa病毒突變歷程:若為wildtype to mutation、mutation to wildtype、或mutation to mutation,為LOSO疾病保護因子

- 交互作用
 - 年齡與MaMa病毒具有正向交互作用,隨年齡增加,上述病毒突變歷程的保 護效力降低
 - 以存活分析發現,MaMa病毒突變歷程若為保持wildtype或mutation,隨年 齡增加而風險增加
- 年齡與MaMa病毒突變歷程共同影響疾病發生,且年齡影響較大

影響疾病發生的因子主要為年齡,其次為病毒突變 故高危險族群為「年齡大且病毒突變歷程保持wildtype」者