Juliana Silva Bernardes

Formal definition

A Markov chain is a sequence of <u>random variables</u> $X_1, X_2, X_3, ...$ with the Markov property.

$$P(X_n \mid X_0, X_1, ..., X_{n-1}) = P(X_n \mid X_{n-1})$$
 there is no memory in a Markov process.

- The possible values of X_i form a <u>countable set</u> S called the **state space** of the chain.
- $P(X_n | X_{n-1})$ values are obtained from P, the **Transition Matrix**

$$P = \begin{pmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,j} & \dots \\ p_{2,1} & p_{2,2} & \dots & p_{2,j} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ p_{i,1} & p_{i,2} & \dots & p_{i,j} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}.$$

$$The probability of transitioning from i to j in two steps is then given by the (i,j)th element of the square of P$$

$$\sum_{i} P_{ij} =$$

$$(P^2)_{ij}$$

- Example: Velib
- Take a bike in a station \mathbf{i} and give back in a station \mathbf{j} ,

Jussieu (J)

stations: Hotel de ville (H)

→ Tour Eiffel (T)

$$S = \{J, H, T\}$$

- Example: Velib
- Take a bike in a station **i** and give back in a station **j**,
 - Jussieu (J)Hotel de ville (H)Tour Eiffel (T)

Give back

J H T

J 0.95 0.03 0.02

Take H 0.02 0.90 0.08

T 0.05 0.05 0.90

- Example: Velib
- Take a bike in a station **i** and give back in a station **j**,
 - Jussieu (J)Hotel de ville (H)Tour Eiffel (T)

Give back

J H T

J 0.95 0.03 0.02 =1

Take H 0.02 0.90 0.08 =1

T 0.05 0.05 0.90 =1

Transition Matrix P

- Example: Velib
- Take a bike in a station i and give back in a station j, stations $S = \{J, H, T\}$

$$\begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = P\pi_0 = 0.5 \begin{bmatrix} 0.95 \\ 0.03 \\ 0.02 \end{bmatrix} + 0.3 \begin{bmatrix} 0.02 \\ 0.90 \\ 0.08 \end{bmatrix} + 0.2 \begin{bmatrix} 0.05 \\ 0.05 \\ 0.90 \end{bmatrix} = \begin{bmatrix} 0.491 \\ 0.295 \\ 0.214 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- Jussieu (J)
- Hotel de ville (H)
- → Tour Eiffel (T)

Give back

J H 1

J 0.95 0.03 0.02

Take

H 0.02 0.90 0.08

T 0.05 0.05 0.90

Stationary probability vector

Stationary Probabilistic Vector

• Stationary probability vector π^*

is defined as a vector that does not change under application of the transition matrix;

$$P\pi^* = \pi^*$$

It is defined as the eigenvector of the probability matrix, associated with eigenvalue 1:

How to compute π^* in a way that $P\pi^*=\pi^*$?

How to compute π^* in a way that $P\pi^*=\pi^*$?

- Let u and v be two vectors
- They are <u>scalar multiples</u> of each other, also <u>parallel</u> or <u>collinear</u>, if there is a scalar λ , such that

 $v = \lambda u$ v is the eigenvector of u

λ is the eigenvalue of u

Example:
$$\mathbf{u} = \begin{cases} 1 \\ 3 \\ 4 \end{cases}$$
 and $\mathbf{v} = \begin{cases} -20 \\ -60 \\ -80 \end{cases}$. $\mathbf{u} = \lambda \mathbf{v}$. In this case $\lambda = -1/20$.

- Now consider the linear transformation of n-dimensional vectors defined by an $n \times n$ matrix A, that is, Av = w
- If it occurs that w and v are scalar multiples then

Av=
$$\lambda$$
w
$$A=P \quad v=w=\pi^* \qquad \lambda=1$$

$$P\pi^*=\pi^*$$

 π^* is the <u>eigenvector</u> of the probability matrix P, associated with <u>eigenvalue</u> 1

Determining the transition matrix P^n after n iterations to find π^n and π^*

$$\pi_k = P^k \pi_0$$

$$n = 2 \qquad \begin{array}{c} \pi_2 = \\ P^2 \pi_0 \\ J & H & T \\ \end{array}$$

$$P^2 = \begin{array}{c} J & 0.9041 & 0.0410 & 0.0935 \\ H & 0.0565 & 0.8146 & 0.0915 \\ T & 0.0394 & 0.1444 & 0.8150 \end{array}$$

$$n = 3 P^{3} \pi_{0}$$

$$J H T$$

$$P^{3} = \begin{cases} J 0.861995 \ 0.062462 \ 0.131405 \\ H \ 0.079943 \ 0.741590 \ 0.125905 \\ T \ 0.058062 \ 0.195948 \ 0.742690 \end{cases}$$

π₂ J 0.48305 H 0.29093 T 0.22602

Determining the transition matrix P^n after n iterations to find π^n and π^*

22 - 12	0	1	2	3	48	49	50
J	0.5	0.491	0.48305 0.476	0171	0.4173411	0.41728	0.4172245
Н	0.3	0.295	0.29093 0.287	6295	0.2775646	0.2775831	0.2776
T	0.2	0.214	0.22602 0.236	3534	0.3050944	0.3051369	0.3051755
12 5	10		91.	18	2/4	E 9	10.

$$\pi_{k} = P^{k} \pi_{0}$$

$$\pi_{49} = P^{49} \pi_{0}$$

$$\pi_{49} = P^{49} \pi_{0}$$

 $P^{49} = { \begin{array}{c} J \ 0.4227516 \ 0.4101549 \ 0.4142888 \\ H \ 0.2757332 \ 0.2800620 \ 0.2784892 \\ T \ 0.3015152 \ 0.3097831 \ 0.3072220 \\ \end{array} }$

P⁵⁰= J 0.4222044 0.4107375 0.4145053 H 0.2759182 0.2798496 0.2784300 T 0.3018773 0.3094128 0.3070647

Predicting trajectories

$$\pi_0 = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix}$$

Give back

I H T

P= J 0.95 0.03 0.02

Take H 0.02 0.90 0.08

T 0.05 0.05 0.90

$$\pi_1 = P\pi_0$$
 $\pi_1 = \begin{bmatrix} 0.491 \\ 0.295 \\ 0.214 \end{bmatrix}$

$$\pi_2 = P\pi_1$$
 $\pi_2 = \begin{bmatrix} 0.483 \\ 0.290 \\ 0.226 \end{bmatrix}$

	0	1	2	3	***	48	49	50
J	0.5	0.491	0.48305	0.4760171		0.4173411	0.41728	0.4172245
H	0.3	0.295	0.29093	0.2876295		0.2775646	0.2775831	0.2776
T	0.2	0.214	0.22602	0.2363534		0.3050944	0.3051369	0.3051755
1	1	- 7		18			9.0	10

Plotting trajectories

Predicting trajectories

Now let's change π_0

 $\pi_0 = \begin{bmatrix} 0.1 \\ 0.6 \\ 0.3 \end{bmatrix}$

Give back

Take H 0.02 0.90 0.08

T 0.05 0.05 0.90

$$\pi_k = P\pi_{k-1}$$

$$\pi_1 = P\pi_0$$
 $\pi_1 = \begin{bmatrix} 0.122 \\ 0.558 \\ 0.32 \end{bmatrix}$

$$\pi_2 = P\pi_1$$
 $\pi_2 = \begin{bmatrix}
0.143 \\
0.521 \\
0.335
\end{bmatrix}$

0	1	2	3	4	***	48	49	50
0.1	0.122	0.14306	0.1630982	0.1820668	***	0.4122596	0.4126547	0.4130145
0.6	0.558	0.52186	0.4907198	0.4638499	***	0.2792971	0.2791573	0.2790306
0.3	0.32	0.33508	0.346182	0.3540833		0.3084433	0.308188	0.3079548

Plotting trajectories

	0	1	2	3	48	49	50
J	0.5	0.491	0.48305 0.476	0171	0.4173411	0.41728	0.4172245
Н	0.3	0.295	0.29093 0.287	6295	0.2775646	0.2775831	0.2776
T	0.2	0.214	0.22602 0.236	3534	0.3050944	0.3051369	0.3051755
12.	1 12	- 9	9	10		6 7	1 (6)

0	1	2	3	4	***	48	49	50
0.1	0.122	0.14306	0.1630982	0.1820668	•••	0.4122596	0.4126547	0.4130145
0.6	0.558	0.52186	0.4907198	0.4638499	•••	0.2792971	0.2791573	0.2790306
0.3	0.32	0.33508	0.346182	0.3540833		0.3084433	0.308188	0.3079548
1	20		55	9		13 0	100	- 12

Give back

$$P_2 = H 0.02 0.90 0.08$$

Take

$$P_3 = T 0.05 0.05 0.90$$

$$\pi_0 = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} \begin{bmatrix} J \\ H \\ T \end{bmatrix}$$

$$X_{0}, X_{1}, X_{2}, X_{3}, \dots, X_{n}$$

$$\downarrow$$

$$\pi_{0}$$

We take a random number y_0 in [0,1]

if
$$y_0 < 0.2$$
 then $X_0 = T$
elsif $y_0 > = 0.2$ and $y_0 < 0.5$ then $X_0 = H$
else $X_0 = J$

$$y_0 = 0.7$$
 $X_0 = J$

Take $P_1 = \begin{bmatrix} J & H & T \\ D.95 & 0.03 & 0.02 \end{bmatrix}$ $P_2 = \begin{bmatrix} H & 0.02 & 0.90 & 0.08 \\ P_3 = \end{bmatrix}$ $P_3 = \begin{bmatrix} T & 0.05 & 0.05 & 0.90 \end{bmatrix}$

$$\pi_0 = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} \begin{matrix} J \\ H \\ T \end{matrix}$$

We take a random number y_1 in [0,1]

if
$$y_1 < 0.02$$
 then $X_1 = T$
elsif $y_1 > = 0.02$ and $y_1 < 0.05$ then $X_1 = H$
else $X_1 = J$

$$y_1 = 0.4$$
 $X_1 = J$

Give back

Take $P_2 = H 0.02 0.90 0.08$

$$P_3 = T 0.05 0.05 0.90$$

$$\pi_0 = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix}$$
H
T

We take a random number y_2 in [0,1]

if
$$y_2 < 0.02$$
 then $X_2 = T$
elsif $y_2 > = 0.02$ and $y_2 < 0.05$ then $X_2 = H$
else $X_2 = J$

$$y_2 = 0.046$$
 $X_2 = H$

Give back

Take

$$P_2 = H 0.02 0.90 0.08$$

$$P_3 = T 0.05 0.05 0.90$$

$$\pi_0 = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} \begin{bmatrix} J \\ H \\ T \end{bmatrix}$$

We take a random number y_3 in [0,1]

if
$$y_3$$
< 0.02 then X_3 = J
elsif y_3 >=0.02 and y_3 < 0.1 then X_3 = H
else X_3 = J

$$y_3 = 0.6$$
 $X_3 = H$

$$J J H H ... T$$

$$X_{0'} X_{1'} X_{2'} X_{3'} ..., X_{t}$$

Trajectoire moyenne	
H = 6/10 = 0.6	
J = 0/10 = 0.0	
T = 4/10 = 0.4	

-		1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	J	0	0	0	0	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3
	Н	0.6	0.6	0.6	0.6	0.4	0.5	0.5	0.5	0.4	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3
	Т	0.4	0.4	0.4	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.3	0.3	0.4	0.4

• Simulating trajectories n populations

$$N = 10 \text{ and } n = 17$$

• Simulating trajectories n populations

$$N = 1000 \text{ and } n = 17$$

Simulating trajectories n populations

$$N = 10000 \text{ and } n = 17$$

Computing probability of a trajectory

Let's suppose we have simulated the trajectory

trajectory,: HHHJJT

 $Prob(trajectory_1) = P(H) P(H|H) P(H|H) P(J|H) P(J|J) P(T|J)$

 $log(Prob(trajectory_1)) = Log[P(H)] + log[P(H|H)] + log[P(H|H)] + log[P(J|H)] + log[P(J|J)] + log[P(T|J)]$

Log[P(H)] = log(0.6) = -0.5108256

Computing probability of a trajectory

Let's suppose we have simulated the trajectory

trajectory,: HHHJJT

 $Prob(trajectory_1) = P(H) P(H|H) P(H|H) P(J|H) P(J|J) P(T|J)$

 $log(Prob(trajectory_1)) = Log[P(H)] + log[P(H|H)] + log[P(J|J)] + log[P(J|J)] + log[P(T|J)]$

Log[P(H)] = log(0.6) = -0.5108256

Log[P(H|H)] = log(0.90) = -0.1053605

Log[P(H|H)] = log(0.90) = -0.1053605

Log[P(J|H)] = log(0.02) = -3.912

Log[P(J|J)] = log(0.95) = -0.05129329

Log[P(T|J)] = log(0.02) = -3.912

 $Log(Prob(trajectory_1)) = -8.5968859603254852$

Markov chain Applications

CpG islands

- CpG sites are regions of DNA where a cytosine is followed by a guanine in the linear sequence of bases along its $5' \rightarrow 3'$ direction.
- CpG islands (or CG islands) are regions with a high frequency of CpG sites.
- CpG island is a region with at least 200 bp, and a GC percentage that is greater than 50%
- Many genes in mammalian genomes have CpG islands associated with the start of the gene, so it is used in gene border predictions.

Markov Chains for CpG islands

Derive two Markov chain models:

'+' model: from the CpG islands

'-' model: from the remainder of sequence

Transition probabilities for each model:

$$a_{st}^{-} = \frac{c_{st}^{-}}{\sum_{t'} c_{st'}^{-}} \quad c_{st}^{-} \quad \text{is the number of times letter } t \quad \text{followed letter } s \quad \text{outside} \text{ the CpG islands}$$

Markov Chains for CpG islands

		CpG is	lands			non CpG islands						
+	A	C	G	T	-	-	A	C	G	Т		
A	0.180	0.274	0.426	0.120	P	7	0.300	0.205	0.285	0.210		
С	0.171	0.368	0.274	0.188	C	,	0.322	0.298	0.078	0.302		
G	0.161	0.339	0.375	0.125	G	3	0.248	0.246	0.298	0.208		
T	0.079	0.355	0.384	0.182	Г	7	0.177	0.239	0.292	0.292		

Given a short sequence x, does it come from CpG island (Yes-No question)

• To use these models for discrimination, calculate the log-odds ratio:

Markov Chains for CpG islands

Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells

Gupta et, al.

Cancer cells phenotypic

 Cancer cells within individual tumors often exist in distinct phenotypic states that differ in functional attributes.

The classical Picture

CSC model I

Cancer stem cells (CSC)

- one of phenotypical states
- give rise to non-CSCs during tumor growth
- non-CSCs cannot produce
 CSCs
- CSC differentiation gives rise to cell-state equilibrium
- only CSC seed tumors

hierarchical cell-lineage structure like in normal tissue development

Cancer cells phenotypic

- The goal is to study the dynamics of phenotypic proportions in human breast cancer cell lines: <u>SUM159</u> and <u>SUM149</u>
- It is showed that subpopulations of cells purified for a given phenotypic state return towards equilibrium proportions over time.
- This equilibrium can be explained by a Markov model in which cells transition stochastically between states.

The experiment

 Determination of the proportions of the individual cell-states in the SUM159 and SUM149

Fluorescence-activated cell sorting (**FACS**) to isolate three mammary epithelial cell states: stem-like, basal, and luminal

- ▶ 99% purification by FACS (fluorescence-activated cell sorting)
- ▶ 6 days of cell growth (ca. 6 cell cycles)

Results SUM159

 $A^{1/6}$

0

Results SUM149

Predicting trajectories

 Predicting trajectories to predict how a population of cells evolves over time given the initial proportion of cell states

Conclusion

A modified picture

Important therapeutic implications!