Jeux Octaux sur les Graphes : 0.03

Antoine Dailly Avec Éric Duchêne, Aline Parreau

LIRIS, Université Lyon 1 Journées Graphes et Algorithmes 2015

Jeu de CRAM : Tour à tour, chaque joueur pose un domino sur la grille. Le dernier à poser un domino remporte la partie.

 \Rightarrow Le deuxième joueur l'emporte.

Jeu de CRAM : Tour à tour, chaque joueur pose un domino sur la grille. Le dernier à poser un domino remporte la partie.

 \Rightarrow Le premier joueur l'emporte.

On suppose que les deux joueurs jouent parfaitement.

- ► Si le premier joueur a une stratégie gagnante quoi que fasse le deuxième joueur, alors le jeu est une N-position.
- ▶ Si le deuxième joueur a une stratégie gagnante quoi que fasse le premier joueur, alors le jeu est une *P*-position.

- ► Si le premier joueur a une stratégie gagnante quoi que fasse le deuxième joueur, alors le jeu est une N-position.
- ► Si le deuxième joueur a une stratégie gagnante quoi que fasse le premier joueur, alors le jeu est une P-position.

- ► Si le premier joueur a une stratégie gagnante quoi que fasse le deuxième joueur, alors le jeu est une N-position.
- ► Si le deuxième joueur a une stratégie gagnante quoi que fasse le premier joueur, alors le jeu est une P-position.

Variantes de CRAM se jouant sur des lignes.

Définition

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- $\mathbf{v}_i = 0 \Rightarrow \text{pas de polymino de taille } i$
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- $\mathbf{v}_i = 0 \Rightarrow \text{pas de polymino de taille } i$
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*

0.01

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- $\mathbf{v}_i = 0 \Rightarrow \text{pas de polymino de taille } i$
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- $\mathbf{v}_i = 0 \Rightarrow \text{pas de polymino de taille } i$
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$

0.02

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- ▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$

0.02

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- ▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$
- ▶ $b_3 = 1 \Rightarrow$ polymino de taille i au milieu d'une ligne de taille $\geq i + 2$

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- ▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$
- ▶ $b_3 = 1 \Rightarrow$ polymino de taille i au milieu d'une ligne de taille $\geq i + 2$

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- ▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$
- ▶ $b_3 = 1 \Rightarrow$ polymino de taille i au milieu d'une ligne de taille $\geq i + 2$

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- ▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$
- ▶ $b_3 = 1 \Rightarrow$ polymino de taille i au milieu d'une ligne de taille $\geq i + 2$

0.06

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- ▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$
- ▶ $b_3 = 1 \Rightarrow$ polymino de taille i au milieu d'une ligne de taille $\geq i + 2$

Variantes de CRAM se jouant sur des lignes.

Définition

Jeu octal défini par son code octal $0.u_1u_2...u_n...$

$$(u_i = b_1 + 2b_2 + 4b_3)$$
:

- ▶ $u_i = 0 \Rightarrow$ pas de polymino de taille i
- ▶ $b_1 = 1 \Rightarrow$ polymino de taille *i* sur ligne de taille *i*
- ▶ $b_2 = 1 \Rightarrow$ polymino de taille i sur le bord d'une ligne de taille $\geq i+1$
- ▶ $b_3 = 1 \Rightarrow$ polymino de taille i au milieu d'une ligne de taille $\geq i + 2$

- ▶ Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- ▶ Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- ▶ Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

- Unomino si la ligne est de taille 1
- ▶ Domino sur le bord d'une ligne
- ► Triomino n'importe où

Définition

La Nim-séquence d'un jeu octal est la chaine des résultats du jeu $(\mathcal{N} \text{ ou } \mathcal{P})$ sur des lignes de taille 0, 1, 2...

Définition

La *Nim-séquence* d'un jeu octal est la chaine des résultats du jeu $(\mathcal{N} \text{ ou } \mathcal{P})$ sur des lignes de taille 0, 1, 2...

Nim-séquence de 0.03 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}

Définition

La *Nim-séquence* d'un jeu octal est la chaine des résultats du jeu $(\mathcal{N} \text{ ou } \mathcal{P})$ sur des lignes de taille 0, 1, 2...

Nim-séquence de 0.03 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}

Nim-séquence de 0.33 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}

Définition

La *Nim-séquence* d'un jeu octal est la chaine des résultats du jeu $(\mathcal{N} \text{ ou } \mathcal{P})$ sur des lignes de taille 0, 1, 2...

Nim-séquence de 0.03 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}

Nim-séquence de 0.33 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}

Nim-séquence de 0.07 (CRAM):

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}

Définition

La Nim-séquence d'un jeu octal est la chaine des résultats du jeu $(\mathcal{N} \text{ ou } \mathcal{P})$ sur des lignes de taille 0, 1, 2...

Nim-séquence de 0.03 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}

Nim-séquence de 0.33 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}

Nim-séquence de 0.07 (CRAM):

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}

⇒ Pré-période 68, période 34!

Définition

La *Nim-séquence* d'un jeu octal est la chaine des résultats du jeu $(\mathcal{N} \text{ ou } \mathcal{P})$ sur des lignes de taille 0, 1, 2...

Nim-séquence de 0.03 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}

Nim-séquence de 0.33 :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}

Nim-séquence de 0.07 (CRAM) :

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}

⇒ Pré-période 68, période 34!

0.106 a une période de 328226140474 et une pré-période de 465384263797!

Problématiques du domaine

Conjecture (Guy, dans Winning Ways, 2001)

Tout jeu octal (à code fini) a une Nim-séquence ultimement périodique.

Problématiques du domaine

Conjecture (Guy, dans Winning Ways, 2001)

Tout jeu octal (à code fini) a une Nim-séquence ultimement périodique.

- ▶ 0.006 -> jusqu'à des lignes de taille 2^{120} [Grossman, 2015]
- ▶ 0.007 -> jusqu'à des lignes de taille 2²⁵ [Flammenkamp, 2012]
- ... mais toujours pas de périodicité!

Problématiques du domaine

Conjecture (Guy, dans Winning Ways, 2001)

Tout jeu octal (à code fini) a une Nim-séquence ultimement périodique.

- ▶ 0.006 -> jusqu'à des lignes de taille 2^{120} [Grossman, 2015]
- 0.007 -> jusqu'à des lignes de taille 2²⁵ [Flammenkamp, 2012
]
- ... mais toujours pas de périodicité!

Autres problèmes

- Jeux octaux partisans
- Jeux hexadécimaux
- Jeux octaux sur des structures plus complexes

Idée : une ligne est équivalente à une chaine!

On va retirer des sommets (et leurs arêtes incidentes) d'un graphe.

Idée : une ligne est équivalente à une chaine!

On va retirer des sommets (et leurs arêtes incidentes) d'un graphe.

▶ Jeu octal défini par son code octal, comme sur les lignes.

Jeux octaux dans les graphes

Idée : une ligne est équivalente à une chaine!

On va retirer des sommets (et leurs arêtes incidentes) d'un graphe.

- ▶ Jeu octal défini par son code octal, comme sur les lignes.
- Les sommets retirés doivent induire un sous-graphe connexe!

Jeux octaux dans les graphes

Idée : une ligne est équivalente à une chaine!

On va retirer des sommets (et leurs arêtes incidentes) d'un graphe.

- ▶ Jeu octal défini par son code octal, comme sur les lignes.
- Les sommets retirés doivent induire un sous-graphe connexe!

Très peu de résultats (0.07, appelé ARC-KAYLES).

► Tout coup disponible et non joué reste disponible...

- ► Tout coup disponible et non joué reste disponible...
- ightharpoonup ... sauf pour le P_3

- ► Tout coup disponible et non joué reste disponible...
- ▶ ... sauf pour le P₃
- ▶ Pas de stratégie à adopter!

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2.

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2. De plus, chaque bloc de colonnes de taille 1 consécutives est de taille paire.

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2. De plus, chaque bloc de colonnes de taille 1 consécutives est de taille paire.

Proposition

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2. De plus, chaque bloc de colonnes de taille 1 consécutives est de taille paire.

Proposition

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2. De plus, chaque bloc de colonnes de taille 1 consécutives est de taille paire.

Proposition

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2. De plus, chaque bloc de colonnes de taille 1 consécutives est de taille paire.

Proposition

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2. De plus, chaque bloc de colonnes de taille 1 consécutives est de taille paire.

Proposition

D'une (1,2)-grille paire non vide, on ne peut jouer que vers une (1,2)-grille paire plus petite.

Théorème

Soit G une grille $2 \times n$. G est une \mathcal{P} -position ssi n est pair.

Définition

Une (1,2)-grille paire est un sous-graphe induit par une grille $2 \times n$, connexe, dont les colonnes sont de taille 1 ou 2. De plus, chaque bloc de colonnes de taille 1 consécutives est de taille paire.

Proposition

D'une (1,2)-grille paire non vide, on ne peut jouer que vers une (1,2)-grille paire plus petite.

Théorème

Soit G une grille $2 \times n$. G est une \mathcal{P} -position ssi n est pair.

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{N}	\mathcal{P}								

Définition

Une (1,3)-grille est un sous-graphe induit par une grille $3 \times n$, connexe, dont les colonnes sont de taille 1 ou 3.

Définition

Une (1,3)-grille est un sous-graphe induit par une grille $3\times n$, connexe, dont les colonnes sont de taille 1 ou 3. De plus, si une colonne est de taille 1, son sommet n'est pas sur la ligne du milieu.

Définition

Une (1,3)-grille est un sous-graphe induit par une grille $3\times n$, connexe, dont les colonnes sont de taille 1 ou 3. De plus, si une colonne est de taille 1, son sommet n'est pas sur la ligne du milieu.

Exemple

Observation

Une chaine est une (1,3)-grille.

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

- Un coup vertical est possible.
- Aucun coup vertical n'est possible.

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

- Un coup vertical est possible.
- ▶ Aucun coup vertical n'est possible. Donc, toute colonne de taille 3 est encadrée par deux colonnes de taille 1 de cette façon :

Lemme

On peut toujours jouer d'une (1,3)-grille non-vide à une (1,3)-grille.

Preuve

Deux possibilités :

- Un coup vertical est possible.
- ▶ Aucun coup vertical n'est possible. Donc, toute colonne de taille 3 est encadrée par deux colonnes de taille 1 de cette façon :

Donc la grille est une chaine.

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

Deux possibilités :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

Deux possibilités :

Le premier joueur a joué vers une (1,3)-grille.

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets au milieu dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille \geq 4. Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets au milieu dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets au milieu dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets au milieu dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille \geq 4. Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets en haut dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - ▶ Prendre deux sommets en haut dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - ▶ Prendre deux sommets en haut dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- ▶ Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets en haut dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille \geq 4. Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets en haut dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille \geq 4. Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets en haut dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille \geq 4. Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets en haut dans une de ces configurations :

Lemme

Soit une (1,3)-grille de taille ≥ 4 . Pour tout coup, il existe une réponse qui résulte en une (1,3)-grille.

Preuve

- Le premier joueur a joué vers une (1,3)-grille.
- ▶ Dans l'autre cas, il a joué horizontalement. Il y a trois cas :
 - Prendre deux sommets en haut dans une de ces configurations :

Théorème

Il existe une stratégie gagnante qui vide une (1,3)-grille pour le jeu 0.03.

Théorème

Il existe une stratégie gagnante qui vide une (1,3)-grille pour le jeu 0.03.

Corollaire

Une (1,3)-grille G est une \mathcal{P} -position pour le jeu 0.03 si et seulement si $\lfloor \frac{|V(G)|}{2} \rfloor$ est pair.

Théorème

Il existe une stratégie gagnante qui vide une (1,3)-grille pour le jeu 0.03.

Corollaire

Une (1,3)-grille G est une \mathcal{P} -position pour le jeu 0.03 si et seulement si $\lfloor \frac{|V(G)|}{2} \rfloor$ est pair.

Corollaire

Soit G une grille $3 \times n$. G est une \mathcal{N} -position pour le jeu 0.03 si et seulement si $n \equiv 1 \mod 4$ ou $n \equiv 2 \mod 4$.

Théorème

Il existe une stratégie gagnante qui vide une (1,3)-grille pour le jeu 0.03.

Corollaire

Une (1,3)-grille G est une \mathcal{P} -position pour le jeu 0.03 si et seulement si $\lfloor \frac{|V(G)|}{2} \rfloor$ est pair.

Corollaire

Soit G une grille $3 \times n$. G est une \mathcal{N} -position pour le jeu 0.03 si et seulement si $n \equiv 1 \mod 4$ ou $n \equiv 2 \mod 4$.

n	0	1	2	3	4	5	6	7	8	9	10
Résultat	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{P}	\mathcal{N}	\mathcal{N}

Vers la grille $m \times n$?

Conjecture

Il existe une stratégie gagnante garantissant de vider une grille quelconque dans le jeu 0.03.

Vers la grille $m \times n$?

Conjecture

Il existe une stratégie gagnante garantissant de vider une grille quelconque dans le jeu 0.03.

Piste

Chercher à éviter les structures contenant le sous-graphe suivant :

Vers la grille $m \times n$?

Conjecture

Il existe une stratégie gagnante garantissant de vider une grille quelconque dans le jeu 0.03.

Piste

Chercher à éviter les structures contenant le sous-graphe suivant :

Travail en cours...

Conclusion

Des questions?