p. 91

1: Let C denote the unit circle in the plane. Suppose $f: C \to C$ is a map which is not homotopic to the identity. Prove that f(x) = -x for some point x of C.

Solution: We prove the contrapositive.

Suppose $f(x) \neq -x$ for any point x of C. We must show that $f: C \to C$ is homotopic to the identity.

Since $f(x) \neq -x$ for all x, we can define the following map $F: C \times I \to C$ by

$$F(s,t) = \frac{s + t (f(s) - s)}{\|s + t (f(s) - s)\|}.$$

It is clear that $F(s,0) = s = \mathbb{1}(s)$ and F(s,1) = f(s), so it remains to show that F(s,t) is continuous and well-defined - i.e. that $||s+t(f(s)-s)|| \neq 0$ for all $(s,t) \in C \times I$.

Now, if s+t (f(s)-s)=s+t f(s)-t s=0 then $\frac{f(s)}{s}=\frac{t-1}{t}$, and since $f(s),s\in C$, ||f(s)||=1=||s||, so $||\frac{t-1}{t}||=||\frac{f(s)}{s}||=\frac{||f(s)||}{||s||}=1$. Thus since $t\in \mathbb{R}$, we have $\frac{t-1}{t}\in \{-1,1\}$. Now $\frac{t-1}{t}=1\iff -1=0$, contradiction. Hence $\frac{t-1}{t}=-1$ which implies 2t-1=0 so $t=\frac{1}{2}$. Hence $0=s+\frac{1}{2}$ $(f(s)-s)=\frac{f(s)+s}{2}$ which implies f(s)+s=0, so f(s)=-s which we assumed not to be the case, contradiction. Hence ||s+t $(f(s)-s)||\neq 0$ for all $(s,t)\in C\times I$.

Now, supposing $C \subset \mathbb{R}^2$, it suffices to note for continuity that we must simply check that the coordinate functions $\pi_i F \to \mathbb{R}$, i=1,2 are continuous. But writing $s=(s_1,s_2)$ and $f(s)=(f_1(s),f_2(s))$, we find that the coordinate functions for s+t (f(s)-s) is s_i+t $(f_i(s)-s_i)$ which is continuous as continuous functions are stable under sum, difference, product and composition. Since s+t $(f(s)-s)\neq 0$, we find that the quotient is continuous too, so F is continuous.

p. 95

13: Let G be a path-connected topological group. Given two loops α, β based at e in G, define a map $F: [0,1] \times [0,1] \to G$ by $F(s,t) = \alpha(s).\beta(t)$ where the dot denotes multiplication in G. Draw a diagram to show the effect of this map on the square, and prove that the fundamental group of G is abelian.

Solution: It suffices to show that $\pi(G,e)$ is abelian since G is path-connected.

Let $\langle \alpha \rangle, \langle \beta \rangle \in \pi(G, e)$. We want to show that $\langle \alpha \rangle * \langle \beta \rangle = \langle \beta \rangle * \langle \alpha \rangle$ where * denotes the group operation of the fundamental group.

We must show that there is a homotopy $\alpha\beta \simeq \beta\alpha$, where $\alpha\beta$ and $\beta\alpha$ are the usual composition of the paths.

We have

$$\alpha\beta = (\alpha e).(e\beta) \simeq (e\alpha).(\beta e) = \beta\alpha$$

since $e\alpha \simeq \alpha e$ and $e\beta \simeq \beta e$. Thus the fundamental group of G is abelian.

