Swift-Hohenberg Numerics

Edward McDugald

September 14, 2022

1 Literature

The following resource has a good discussion of the dynamics in 1d case: 1D Swift Hohenberg

This has an interesting, fancy sounding numerical method Reproducing Kernel Hilbert Space Method

1D Method Study of Solution of Swift Hohenberg

Pattern Selection of solutions of SH

SH

One More

Good Exposition for 1d

Another promising one

More- lol

2 Getting Started

The Swift-Hohenberg equation reads:

$$w_t = -(1 + \nabla^2)^2 w + Rw - w^3$$

We can expand this out, to read:

$$w_t = -(1 + \nabla^2)^2 w + Rw - w^3$$

$$= -(1 + 2\nabla^2 + \nabla^4)w + Rw - w^3$$

$$= -w - 2\nabla^2 w - \nabla^4 w + Rw - w^3$$

$$= (R - 1)w - 2\nabla^2 w - \nabla^4 w - w^3$$

$$= -2\nabla^2 w - \nabla^4 w + (R - 1)w - w^3.$$

Here is some matlab code I found for a 2d (?) solution

```
function Phi=SwiHoEuler(Phi, nSteps)
epsi=0.25;
dt=0.1;
[nR nC] = size(Phi);
if mod(nR, 2) == 0
    kR = [0:nR/2-1 -nR/2:-1]*2*pi/nR;
else
    kR = [0:nR/2 -floor(nR/2):-1]*2*pi/nR;
end
Ky=repmat(kR.', 1, nC);
if mod(nC, 2) == 0
    kC = [0:nC/2-1 -nC/2:-1]*2*pi/nC;
else
    kC = [0:nC/2 -floor(nC/2):-1]*2*pi/nC;
end
Kx=repmat(kC, nR, 1); % frequencies
K2=Kx.^2+Ky.^2; % used for Laplacian in Fourier space
D0=1.0./(1.0-dt*(epsi-1.0+2.0*K2-K2.*K2)); % linear factors combined
PhiF=fft2(Phi);
for n=0:nSteps
    NPhiF=fft2(Phi.^3); % nonlinear term, evaluated in real space
    if mod(n, 100) == 0
        fprintf('n = \%i\n', n);
    end
    PhiF=(PhiF - dt*NPhiF).*D0; % update
    Phi=ifft2(PhiF); % inverse transform
end
return
```

I am going to compare results of this code with chebfun simulations. Note that these simulations won't exatly match the specs listed in the following Global description of patterns far from onset- a case study. In particular, I am not going to use the same initial condition, ie, the cosine of the solution of the eikonal equation

$$|\nabla v|^2 - 1 = 0.$$

I am also not concerned about multiplying by a constant to enforce k = 1. I will digest that material soon. For now, I am just trying to compare results of a numerical solver of my own implementation in python, with the results obtained by using the open source solver, "chebfun".

2.1 Chebfun Simulation

I am going to run a simulation with R = .5, on a square of width 20π , using 256^2 grid points. I will take as an initial condition the surface cos(x) + sin(y). We use 200 time steps, with dt = .1. With R = .5, SH reads

$$w_t = -2\nabla^2 w - \nabla^4 w + -.5w - w^3.$$

We consider the linear term to be $-2\nabla^2 w - \nabla^4 w$, and the nonlinear term to be $-.5w - w^3$. Using chebfun, the code generate the simulation is

```
dom = [0 20*pi 0 20*pi];
tspan = [0 200];
S = spinop2(dom,tspan);
S.lin = @(w) -2*lap(w)-biharm(w);
S.nonlin = @(w) -.5*w-w.^3;
S.init = .1*chebfun2(@(x,y) cos(x)+sin(y),dom,'trig');
w = spin2(S,256,1e-1,'plot','off');
plot(w), view(0,90), axis equal, axis off
saveas(gcf,'/Users/edwardmcdugald/Research/convection_patterns_matlab/figs/cf1.png');
```


Figure 1: Chebfun Simulation: $[0, 20\pi]^2$, $t \in [0, 20]$, $w_0 = \cos(x) + \sin(y)$, R = .5

2.2 Modifying Matlab Code to match Chebfun

In the MATLAB code as found online, the linear and nonlinear terms are grouped as follows. Linear term $(R-1)w - 2\nabla^2 w - \nabla^4 w$, and nonlinear term $-w^3$. Consider the equations

$$w_t = ((R-1) - 2\nabla^2 - \nabla^4) w$$

$$w_u = -w^3$$

We can solve these separately? Solving the first one, we have something like

$$\frac{w(t + \Delta t) - w(t)}{\Delta t} = ((R - 1) - 2\nabla^2 - \nabla^4) w(t)$$

$$\implies w(t + \Delta t) = \Delta t ((R - 1) - 2\nabla^2 - \nabla^4) w(t) + w(t)$$

2.3 Ok, the above isnt working cleanly, will try something new

Potentially useful info: Large Time-Stepping Method for SH Ok, so I'm going to split the equation into linear and nonlinear parts

$$w_t = (-2\nabla^2 - \nabla^4) w$$

$$w_t = (R - 1)w - w^3.$$

Solving the first can be done with a fourier transform. Consider the approximation

$$\frac{w(t + \Delta t) - w(t)}{\Delta t} = \left(-2\nabla^2 - \nabla^4\right)$$

$$\implies w(t + \Delta t) = \Delta t \left(-2\nabla^2 - \nabla^4\right) w(t) + w(t)$$

At each time step t, we have the value w(t). We wish to add to it the quantity

$$\Delta t \left(-2\nabla^2 - \nabla^4\right) w(t)$$

To do so, we need to compute $(-2\nabla^2 - \nabla^4) w(t)$. We have that

$$(-2\nabla^2 - \nabla^4) w(t) = ifft((-2k_2 - k_2^2)fft(w)),$$

where k_2 is a laplacian operator in Fourier space. Thus, we obtain

$$w(t + \Delta t) = \Delta tifft((-2k_2 - k_2^2)fft(w)) + w(t)$$

2.4 Naive Approach

Ok, I have the PDE

$$w_t = -(1 + \nabla^2)^2 w + Rw - w^3.$$

Discretizing this, I obtain

$$w^{k+1} = \Delta t \left[-(2\nabla^2 + \nabla^4)w^k + (R-1)w^k - (w^k)^3 \right] + w^k.$$

Since we provide an initial condition, this should be a feasible approach to evolve the system (since RHS is in terms of (k+1) exclusively). The terms $(R-1)w^k - (w^k)^3$ and w^k are straightforward to compute. To compute $(2\nabla^2 + \nabla^4)w$, we create a matrix that acts as the laplacian operator in Fourier space, call it K_{Δ} . Then we have

$$(2\nabla^2 + \nabla^4)w = ifft((2K_\Delta + K_\Delta^2)fft(w))$$