AMA 505: Optimization Methods

Subject Lecturer: Ting Kei Pong

Lecture 9
Constrained Optimization
Penalty/Barrier methods

0/18

Problem settings

Minimize
$$f(x)$$

 $x \in \mathbb{R}^n$
subject to $g_i(x) \le 0, i = 1, ..., m.$ (1)

Here:

- f and g_i are all C^1 functions.
- For notational simplicity, we denote

$$I = \{1, \ldots, m\}.$$

- Present algorithmic ideas for solving the above.
- Assume that $\{x: g_i(x) \leq 0 \ \forall i \in I\} \neq \emptyset$.
- Two main classes:
 - * Penalty method (exterior type);
 - * Barrier method (interior type).
- Can be generalized to include equality constraints.

Penalty method (esterior)

- Add a penalty if we get outside of the feasible set.
- If the penalty is sufficiently large, a minimizer is forced to be inside the feasible set.
- Initial idea: Define

$$P(x) := egin{cases} 0 & ext{if } g_i(x) \leq 0 & \forall i \in I, \\ \infty & ext{otherwise}. \end{cases}$$

Then we can consider the unconstrained problem:

$$\underset{x \in \mathbb{R}^n}{\mathsf{Minimize}} \ f(x) + P(x).$$

Except that... the objective is highly discontinuous!

2/18

Penalty method cont.

Definition: (Penalty functions)

A function $P: \mathbb{R}^n \to \mathbb{R}$ is a penalty function for the constraint set $\{x: g_i(x) \leq 0 \ \forall i \in I\}$ if

- $P(x) \ge 0$ for all $x \in \mathbb{R}^n$; and
- P(x) = 0 if and only if $g_i(x) \le 0$ for all $i \in I$.

Examples:

- $P(x) = \sum_{i=1}^{m} \max\{g_i(x), 0\}.$
- $P(x) = \frac{1}{2} \sum_{i=1}^{m} \max\{g_i(x), 0\}^2$. Courant-Beltrami penalty function: C^1 function

Idea: Solve Minimize f(x) + cP(x) for some very large c > 0? But...

- How large should c be?
- Can minimizers be found? (Existence? Just stationary points?)

Example 1

Example: Let a < b be two real numbers. Consider the problem

Minimize
$$f(x)$$
 subject to $g_1(x) = x - b \le 0$, $g_2(x) = a - x \le 0$, where $f \in C^1(\mathbb{R})$. The Courant-Beltrami penalty function becomes
$$P(x) = \frac{1}{2} [\max\{g_1(x), 0\}^2 + \max\{g_2(x), 0\}^2] = \frac{1}{2} \begin{cases} (x - a)^2 & \text{if } x < a, \\ 0 & \text{if } a \le x \le b, \\ (x - b)^2 & \text{if } x > b. \end{cases}$$

We can consider unconstrained optimization problems of the form

$$egin{aligned} & ext{Minimize} & q_c(x) := f(x) + rac{c}{2} egin{cases} (x-a)^2 & ext{if } x < a, \ 0 & ext{if } a \leq x \leq b, \ (x-b)^2 & ext{if } x > b. \end{cases} \end{aligned}$$

4/18

cP(x)

• Ideally, when $c \to \infty$, the solution point of the unconstrained penalty problem will converge to a solution of the original constrained problem.

Example 2

Example: Consider the problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^2}{\text{Minimize}} & (x_1 - 6)^2 + (x_2 - 7)^2 \\ \text{subject to} & x_1 + x_2 - 7 \leq 0. \end{array}$$

For c > 0, define

$$q_c(x) := (x_1 - 6)^2 + (x_2 - 7)^2 + \frac{c}{2}(\max\{x_1 + x_2 - 7, 0\})^2$$
. if we have

Then q_c is convex check? and

$$\nabla q_c(x) = \begin{bmatrix} 2x_1 - 12 + c \max\{x_1 + x_2 - 7, 0\} \\ 2x_2 - 14 + c \max\{x_1 + x_2 - 7, 0\} \end{bmatrix}.$$

Then necessarily, q_c is minimized at a point with $x_1 + x_2 > 7$ why??:

$$x_1^*(c) = \frac{6+3c}{1+c}$$
 $x_2^*(c) = \frac{7+4c}{1+c}$.

The limit as $c \to \infty$ is $x^* = (3,4)$. Check that this is the global minimizer of the constrained problem!

 $79.(x) + \lambda \cdot (!) = 0$ = $x_1 = 3$, $x_2 = 4$

s numerator denominator

Penalty method: basic version

Penalty method for (1): basic version Let $x^0 \in \mathbb{R}^n$, c > 0 and $\eta > 1$. Set $c_1 = c$. For $k = 1, \ldots$,

• Find a minimizer x^k of

d a minimizer
$$x^k$$
 of $q_{c_k}(x):=f(x)+rac{c_k}{2}\sum_{i=1}^m(\max\{g_i(x),0\})^2, \qquad \left(egin{array}{c} x^0 \\ y_{c_0} \\ y_i \end{array}
ight)$

using x^{k-1} as the initial point for the iterative method.

Update $c_{k+1} = \eta c_k$.

Remark:

- ullet As c increases, q_c becomes more ill-conditioned. The choice of x^{k-1} as a starting point for the iterative method helps alleviate the ill-conditioning.
- The above algorithm is only conceptual because finding global minimizers can be challenging if q_{c_k} is not convex. Global minimizers also may not exist! In general, only stationary points of q_{c_k} can be expected.

Penalty method: basic version cont.

Theorem 9.1: (Convergence of penalty method: basic version) Consider (1) and suppose that $\inf f > -\infty$. Let $\{x^k\}$ be generated by the penalty method on Slide 7. Then any accumulation point x^* of $\{x^k\}$ is a globally optimal solution of (1).

Proof sketch: Assume that $\{x^{k_i}\}$ is a convergent subsequence with $\lim_{i\to\infty} x^{k_i} = x^*$.

Feasibility: Fix any feasible x. Then for each k_i , we have

$$\inf f + c_{k_i} P(x^{k_i}) \le q_{c_{k_i}}(x^{k_i}) \le q_{c_{k_i}}(x) = f(x),$$

where P is the Courant-Beltrami penalty function. Then

$$P(x^{k_i}) \leq \frac{f(x) - \inf f}{c_{k_i}}.$$

Hence, $P(x^*) = \lim_{i \to \infty} P(x^{k_i}) = 0$, showing that x^* is feasible.

8/18

Penalty method: basic version cont.

Proof of Theorem 9.1 sketch cont.: Assume that $\{x^{k_i}\}$ is a convergent subsequence with $\lim_{i\to\infty} x^{k_i} = x^*$.

Optimality: Fix any feasible x. Then for each k_i , we have

$$f(x^{k_i}) \leq f(x^{k_i}) + c_{k_i} P(x^{k_i}) = q_{c_{k_i}}(x^{k_i}) \leq q_{c_{k_i}}(x) = f(x),$$

where *P* is the Courant-Beltrami penalty function. Then $f(x^*) \leq f(x)$.

Since this is true for any feasible x and x^* is feasible, we conclude that x^* solves (1).

Role of CQ (constraint qualification)

Remarks:

A more practical penalty method reads as follows:

Penalty method for (1): practical version Let $x^0 \in \mathbb{R}^n$, c > 0 and $\eta > 1$. Set $c_1 = c$. For $k = 1, \ldots$,

- * Find an x^k satisfying $\nabla q_{c_k}(x^k) \approx 0$, using x^{k-1} as the initial point for the iterative method.
- * Update $c_{k+1} = \eta c_k$.
- Note that only an approximate stationary point is required in each step.
- However, since x^k is not minimizing q_{c_k} , even though $c_k \to \infty$, we cannot guarantee that accumulation pts of $\{x^k\}$ are feasible.
- If an accumulation point x* is feasible and if the MFCQ holds at x*, one can still show that x* is a stationary point of (1).

10/18

Barrier method

(interior)

Recall that

Minimize
$$f(x)$$

 $x \in \mathbb{R}^n$
subject to $g_i(x) \le 0, i \in I.$ (2)

Here:

- f and g_i are all C^1 functions.
- For barrier methods, we assume in addition that

$$S^0 := \{x : g_i(x) < 0 \ \forall i \in I\} \neq \emptyset.$$

- For simplicity, we focus on the case that all f and g_i are convex.
- In contrast to Penalty methods that are exterior methods, Barrier methods are interior methods: every iterate stays within the feasible region.

Barrier method cont.

One standard way is to make use of the log-barrier function:

$$B(x) := -\sum_{i=1}^{m} \ln[-g_i(x)].$$
 -gi(x) > 0

Then one minimizes $f_{\mu}(x) := f(x) + \mu B(x)$ for some $\mu > 0$.

12/18

clater point girmo) <0 Barrier method: basic version

Barrier nethod for (2): basic version Let $x^0 \in S^0$, $\mu > 0$ and $\eta > 1$. Set $\mu_1 = \mu$. For $k = 1, \ldots$,

Find a minimizer x^k of

$$f_{\mu_k}(x) := f(x) - \mu_k \sum_{i=1}^m \ln[-g_i(x)],$$

using x^{k-1} as the initial point for the iterative method.

• Update $\mu_{k+1} = \mu_k/\eta$.

Remarks:

• Notice that μ_k is being decreased instead of being increased. Thus, at each x, we have

$$\lim_{k\to\infty}\mu_k B(x) = \begin{cases} 0 & \text{if } g_i(x) < 0 \ \forall i \in I, \\ \infty & \text{otherwise.} \end{cases}$$

Barrier method: basic version cont.

Remarks cont.:

- In principle, one can still apply descent methods though the function B(x) is not defined on the whole \mathbb{R}^n . This is because descent methods make sure f_{μ} value decreases; in particular, f_{μ} will remain finite, keeping x^k feasible.
- Unlike penalty function q_c , the function $-\ln(\cdot)$ is an analytic function on \mathbb{R}_{++} . Indeed, when f and $g \in C^2(\mathbb{R}^n)$, one typically uses Newton's method (or its variants) to minimize f_{μ} .
- The above algorithm is only conceptual. In practice, μ has to be decreased judiciously to avoid getting too close to the boundary. Moreover, minimizers of f_{μ} may not exist.

14/18

Example

Example: Consider the problem:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^2}{\text{Minimize}} & \frac{1}{2}(x_1 + x_2 - 6)^2 \\ \text{subject to} & x \geq 0. \end{array}$$

For $\mu > 0$, define

$$f_{\mu}(x) := \frac{1}{2}(x_1 + x_2 - 6)^2 - \mu \ln(x_1) - \mu \ln(x_2).$$

Then

$$\nabla f_{\mu}(x) = \begin{bmatrix} x_1 + x_2 - 6 - \frac{\mu}{x_1} \\ x_1 + x_2 - 6 - \frac{\mu}{x_2} \end{bmatrix}.$$

Setting the gradient to zero, we get $x_1 = x_2$ and hence

$$2x_1^2 - 6x_1 - \mu = 0.$$

Since
$$x_1 > 0$$
, we have $x_1^*(\mu) = \frac{1}{2}(3 + \sqrt{9 + 2\mu}) = x_2^*(\mu)$. Thus, $\lim_{\mu \downarrow 0} x^*(\mu) = (3,3)$.

This is clearly the minimizer. And look at how we approach it.

Consider the linear programming problem

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

- Recall that when $b \in \mathbb{R}^m_+$ and A has full row rank, one can apply simplex method to the above problem.
- However, the worst case complexity of simplex method is exponential.
- Surprisingly, a polynomial-time algorithm for LP can be derived based on barrier method, with careful update of μ , assuming in addition that the generalized Slater's condition holds for the above LP.

16/18

A glimpse into IPM cont.

Consider the linear programming problem (MINIMIZATION)

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, and suppose that the generalized Slater's condition holds.

For each $\mu > 0$, consider the function

$$\ell_{\mu}(x) = c^T x - \mu \sum_{i=1}^n \ln(x_i).$$
 $\exists y, s-\tau. \ A^{\tau}y < c$

Assuming additionally that the dual problem satisfies the Slater's condition, one can show that there is always a minimizer for the

barrier problem Minimize $\ell_{\mu}(x)$ $\begin{array}{ll}
x \in \mathbb{R}^n \\
\text{subject to} & Ax = b.
\end{array}$

er= 201, e1)·ei

complementary clackness? Ax = b, sx no A glimpse into IPM cont.

KKT conditions: With $x_i > 0$ and $s_i > 0$ for i = 1, ..., n,

$$A^{T}y + s = c,$$

 $Ax = b,$
 $x_{i}s_{i} = \mu, \forall i = 1,...,n.$

Idea: Use Newton's method to solve the above system. Apply some backtracking techniques to obtain $(x_{\mu}, y_{\mu}, s_{\mu})$. Use this as an initial point to re-solve the system for a (judiciously chosen) smaller μ .

Remark:

- Backtracking scheme is used to make sure $x_{\mu}>0$ and $s_{\mu}>0$: wide / narrow neighborhood.
- μ has to be judiciously chosen to guarantee sufficient decrease of some measure.
- This class of method was generalized to a large class of conic optimization problems and standard solvers are available.

18/18