Robust PI Controller Design using Graphical Approach for Blood Pressure Regulation

Gaurav Kumar Gupta (2101EE31) Supervisor: Dr. Ahmad Ali

Department of Electrical Engineering Indian Institute of Technology Patna, Bihar, India

October 4, 2024

Introduction

- During surgeries, to maintain the mean arterial blood pressure, a vasodilating drug is given to lower the blood pressure to control excessive bleeding.
- Its required amount and effects greatly vary on the type of patient, so we need to monitor the effects, too, continuously.
- Such precise drug-delivery systems require a controller to work on the patient response model.
- We will use a Graphical Approach based on Maximum Sensitivity with a PI controller.
- Compare the results of the PI controller to the FOPID controller of the reference paper.

Basic Control System

Figure: 1 : Control system Diagram.

Where:

P(s): Transfer function of the plant considered

C(s): Controller of the Plant

Problem Formulation

- For suboptimal control, maximum gain of S(sensitivity function) for frequency $\omega \in [0,\infty) \leq \gamma$ (max sensitivity).
- When $\gamma \geq 1$, ensures phase margin $\phi_m = 2\sin^{-1}\left(\frac{1}{2\gamma}\right)$ degrees, and gain margin $G_m = 20\log\left(\frac{\gamma}{\gamma-1}\right)$ dB.
- So we design a controller minimizing S, i.e.

$$\left\| \frac{1}{1 + P(s)C(s)} \right\|_{\infty} < \gamma \tag{1}$$

• The following equation of a human body plant for a drug response is considered for testing the method:

$$P(s) = \frac{Ke^{T_{id}s}(1 + \alpha e^{T_{cd}s})}{\tau s + 1}$$
 (2)

Designing a Controller using using Graphical Approach based on Maximum Sensitivity

• Substituting $s = j\omega$, in P(s) so that, $e^{Tj\omega} = \cos(T\omega) - j\sin(T\omega)$ gives:

$$P_r(\omega) = \frac{K}{t^2 \omega^2 + 1} \left(\cos(T_i \omega) + a \cos(T_i \omega + T_c \omega) - t \omega \sin(T_i \omega) - at \omega \sin(T_i \omega + T_c \omega) \right)$$
(3)

$$\omega P_i(\omega) = \frac{-K}{t^2 \omega^2 + 1} \left(\sin(T_i \omega) + a \sin(T_i \omega + T_c \omega) + t \omega \cos(T_i \omega) + a t \omega \cos(T_i \omega + T_c \omega) \right)$$
(4)

• A PI controller $C(s) = K_p - \frac{K_i}{s}$ has been used.

- (ロ) (団) (注) (注) (注) (注) かく(C)

• Considering $P(j\omega) = P_r(\omega) + j\omega P_i(\omega)$ and $C(j\omega) = K_p - \frac{K_i}{j\omega}$, eqn(1) is written as:

$$\left| (1 + P_r(\omega)K_p + P_i(\omega)K_i) + j\left(\omega P_i(\omega)K_p - P_r(\omega)\frac{K_i}{\omega}\right) \right| \ge \gamma, \quad (5)$$

• On simplifying and rearranging equation (5) in the parametric form of an ellipse gives:

$$K_i = C_i(\omega) + h(\omega)\cos(\theta)$$

$$K_p = C_p(\omega) + k(\omega)\sin(\theta)$$

$$\theta \in [0, 2\pi)$$

Where:

$$C_{i}(\omega) = -\frac{\omega^{2} P_{i}(\omega)}{|P(j\omega)|^{2}}, \quad C_{p}(\omega) = -\frac{P_{r}(\omega)}{|P(j\omega)|^{2}},$$
$$h(\omega) = \gamma |P(j\omega)| \quad k(\omega) = \frac{\gamma |P(j\omega)|}{\omega},$$

6/19

Figure: 2 : Stabilizing PI controller region for plant.

• From the figure 2, we can see that the region outside the ellipses is stable, and values of K_p and K_i can be selected from it.

7/19

Testing on a Sample Equation 1

Values for a sensitive patient are: $K=-9~{\rm mmHg/(ml/hr)},~\alpha=0,~T_{\rm id}~({\rm sec})=20,~T_{\rm cd}~({\rm sec})=30,~\tau~({\rm sec})=30,~\omega=[10^{-6},0.68]$

Figure: 3: Sensitive patient plot for $\gamma = 2$, Selected $K_i = -0.0025$, $K_p = -0.1$.

Gaurav Kumar Gupta BTP-I MIDSEM REVIEW October 4, 2024 8 / 19

Testing on a Sample Equation 2

Values for a nominal patient are: K = -0.7143 mmHg/(ml/hr), $\alpha = 0.4$, T_{id} (sec) = 30, T_{cd} (sec) = 45, τ (sec) = 40, $\omega = [10^{-6}, 0.68]$

Figure: 4: Nominal patient plot for $\gamma = 2$, Selected $K_i = -0.012, K_p = -0.62$.

<ロト <部ト < 注 ト < 注 ト

Choosing the best region for the plant

- We will use different techniques to optimize the selection of the region to choose the point.
- ullet The Nyquist plot is analysed for encirclements of the critical point -1+j0 to determine the closed-loop stability of the PI controller.

Sensitive ITAE FOPID Parameters

$$\mathsf{Kp} = \mathsf{-0.048}$$
 , $\mathsf{Ki} = \mathsf{-0.0047}$, $\lambda = 0.92$, $\mathit{Kd} = -0.9754$, $\mu = 0.6695$

Nominal IAE FOPID parameters

$$\mathsf{Kp} = \mathsf{-0.1534}$$
 , $\mathsf{Ki} = \mathsf{-0.0054}$, $\lambda = 0.8584$, $\mathit{Kd} = -9.266$, $\mu = 0.4605$

Simulation and Comparison

Figure 6 and 7 compares the FOPID and proposed PI controllers' performances.

Nyquist plot (Sensitive Patient)

Figure: 4: Nyquist Plot for checking the Stability at the selected Kp and Ki

11/19

ray Kumar Gupta BTP-I MIDSEM REVIEW October 4, 2024

Nyquist plot (Nominal Patient)

Figure: 5: Nyquist Plot for checking the Stability at the selected Kp and Ki.

Proposed Controller Performance comparison (Sensitive)

Figure: 6: Comparison between FOPID and proposed PI controller performance (Sensitive).

Proposed Controller Performance comparison (Nominal)

Figure: 7: Comparison between FOPID and proposed PI controller performance (Nominal).

10% Uncertanity in Plant Parameter (Sensitive)

Figure: 8: Step Response with $\pm 10\%$ uncertainty in Sensitive Patient.

Gauray Kumar Gupta BTP-I MIDSEM REVIEW October 4, 2024 15 / 19

10% Uncertanity in Plant Parameter (Nominal)

Figure: 9: Step Response with $\pm 10\%$ uncertainty in Normal Patient.

Gaurav Kumar Gupta BTP-I MIDSEM REVIEW October 4, 2024 16/19

Conclusion

- PI controller designed using $H\infty$ criterion for a system with delay.
- Controller parameters selected through **trial-and-error** method from stability region.
- Stability, closed-loop gain, and phase margins analyzed using **Nyquist plot**.
- Achieved less steady-state error and shorter settling time.
- Linear controller ensures easy real-time implementation.
- Fewer parameters reduce the computational burden.
- **Future work** involves using optimization techniques for better control settings.

References

- [1] P. Krishna and G. K. R. P. V, "Fractional-order PID controller for blood pressure regulation using genetic algorithm," Biomedical Signal Processing and Control, vol. 88, p. 105564, Feb. 2024. [Online]. Available: https://doi.org/10.1016/j.bspc.2023.105564
- [2] S. Saxena and Y. Hote, "A simulation study on optimal IMC-based PI/PID controller for mean arterial blood pressure," Biomedical Engineering Letters, vol. 2, Dec. 2013. [Online]. Available: https://doi.org/10.1007/s13534-012-0077-4
- [3] S. R. Kumar, P. Verma, M. Ram, S. Somanshu, and M. N. Anwar, " H_{∞} criterion based PI controller for DC-DC boost converter," Dec. 2022. [Online]. Available: https://doi.org/10.1109/ONCON56984.2022.10126845

Thank You!

Special thanks to
Mr. Sumit Ranjan Kumar
Miss. Akanksha Dwivedi
for their guidance