Az R statisztikai és grafikai környezet

Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu

Mi az R?

- Nyílt forrású statisztikai és grafikai környezet
 - Programozási nyelv és interaktív környezet egyben
- Az S programozási nyelv implementációjának tekinthető
 - A megvalósításon a Scheme programozási nyelv hatása érezhető
- Nyílt forrású szoftverként bárki számára ingyenesen hozzáférhető
 - Ez nem gátja az üzleti célú felhasználásnak

Jellemzők (1)

- Eszköztára megszámlálhatatlan klasszikus és modern statisztikai és matematikai eljárást tartalmaz
 - Az alaprendszer részeként vagy csomagokban
- Kimagasló grafikus lehetőségekkel rendelkezik
- Kitűnően dokumentált
- Többféle platformon működik
 - Futtatható (bináris) formában tölthető le a szoftver
 Windows, Mac OS X és Linux operációs rendszerekre
 - Egyéb platformok esetében a forrásokból kell a rendszert lefordítani

Jellemzők (2)

- Interpretált nyelv
 - A felhasználók által látható függvények nagy része Rben készült
 - Számításigényes feladatok megoldásához C, C++ és FORTRAN eljárásokat is meg lehet hívni
- Mint programozási nyelv a funkcionális és objektum-orientált programozási paradigmákat ötvözi
- Elegáns és tömör szintaxis jellemzi

Jellemzők (3)

- Tudás és sebesség tekintetében is méltó versenytársa a hasonló célú kereskedelmi programoknak
- Egyszerűen elsajátítható a használata, hamar megszerethető (szubjektív vélemény)

Fejlesztés

- Az eredeti fejlesztők Ross Ihaka és Robert Gentleman (Department of Statistics, University of Auckland, Új-Zéland)
- A fejlesztést 1997 óta az R Development Core Team tartja kézben
 - A csoport tagja John Chambers, az S programozási nyelv atyja
- Az R Foundation az R Development Core Team tagjai által alapított non-profit szervezet
 - Célja az R projekt támogatása
 - Az R-rel kapcsolatos copyright jogok tulajdonosa (szoftver és dokumentáció)

Elnevezés

- Az R az eredeti szerzők nevének kezdőbetűje
- Játék az S programozási nyelv nevével
- GNU S-nek is nevezik, mivel az R hivatalosan is a GNU projekt része

Nyílt forrású szoftver

- GNU GPL licenc alatt terjesztik http://www.gnu.org/copyleft/gpl.html
 - A legismertebb és legelterjedtebb nyílt forrású szoftver licenc
- A legtöbb csomag szintén ilyen licenc alatt hozzáférhető, de lehet eltérés
 - Esetenként előfordulhat, hogy az üzleti célú felhasználás korlátozott (üzleti felhasználás esetén érdemes megnézni a csomag licencét)
 - A nem üzleti célú felhasználás azonban nincs korlátozva (természetesen a GPL-nek megfelelően kell₈ eljárni)

GNU GPL

- A program szabadon másolható, terjeszthető (akár pénzért is) és módosítható
- Az eredeti programot és módosított változatait is forráskód formájában, a licenc alatt kötelező terjeszteni
- Ez biztosítja, hogy valamennyi az eredeti programból származtatott mű is szabad maradjon
- Nem zárja ki az üzleti célú felhasználást
 - Csak a másolás, terjesztés és módosítás tartozik a licenc hatálya alá

CRAN

- The Comprehensive R Archive Network http://cran.r-project.org/
- Ugyanazt a tartalmat kínáló, földrajzilag a világ különböző részein található FTP és webszerverek hálózata, valamennyi szerveren elérhető:
 - A legutóbbi stabil és az összes korábbi R verzió több platformra, bináris (telepíthető) formában
 - Az összes korábbi és jelenleg fejlesztés alatt álló verzió forráskódban
 - A teljes dokumentáció
 - Az összes csomag

Telepítés

- A jelenleg aktuális verzió az R 2.14.1 (megjelenés: 2011. december 22.)
- A CRAN szerverekről lehet letölteni bináris, futtatható formában a telepítőcsomagokat Windows, Linux és Mac OS X platformra
 - Más platformra forrásból telepíthető
- Windows környezetben a telepítés után rendelkezésre áll egy RGui nevű grafikus felhasználói felületet, amelyet a Linux verzió nem tartalmaz

Dokumentáció

- A telepítés után elérhető egy nagyon részletes és átfogó online dokumentáció, amely több kézikönyvből áll, valamint a telepített csomagok dokumentációjából
 - A dokumentáció többféle módon kereshető, böngészőprogramban is megjeleníthető
- Az R saját, a LaTex-hez hasonló dokumentációs formátumot használ
 - A dokumentációs oldalak átalakíthatók LaTeX (így PDF) és HTML formátumba, közönséges szöveges állományokká

Felhasználói közösség

- Népes a felhasználók tábora
 - Számtalan statisztikus, biológus, közgazdász, orvos és pszichológus használja
- Az R-help levelezési listán kérhető segítség (feliratkozás szükséges) http://stat.ethz.ch/mailman/listinfo/r-help
 - Merjünk kérdezni, szívesen segítenek, általában nem kell sokat várni a válaszra
 - Nagy forgalom, naponta akár 100 levél

Kapcsolódó folyóiratok

- Journal of Statistical Software http://www.jstatsoft.org/
 - Volume 18 Special Volume: Spectroscopy and Chemometrics in R
 - Volume 20 Special Volume: Psychometrics in R
 - Volume 22 Special Volume: Ecology and Ecological Modelling in R
 - Volume 27 Special Volume: Econometrics in R
 - •
- The R Journal http://journal.r-project.org/

Használat

- A legtöbb felhasználó interaktív módon használja, de természetesen lehetőség van programok készítésére és futtatására
 - Hibák felderítéséhez van nyomkövetési lehetőség

S

- Statisztikai programozási nyelv, amelynek kifejlesztése elsősorban John Chambers nevéhez fűződik
- Története az 1970-es évek közepéig nyúlik vissza
- Több verzió létezett az idők folyamán, a legutóbbi az S Version 4 (S4), amelynek leírása az alábbi könyvben ("Green Book"):
 - John M. Chambers (1998), *Programming with Data:* Guide to the S Language. New York: Springer.
- Két mai, modern implementációja létezik a nyelvnek, az R és az S-PLUS

S-PLUS

- Az S programozási nyelv kereskedelmi implementációja
 - Az Insightful Corporation terméke http://www.insightful.com/
 - A jelenleg aktuális verzió a 2007-ben megjelent S-PLUS[®] 8
- Comprehensive S-PLUS Archive Network http://csan.insightful.com/
 - A legtöbb csomag nyílt forrású és elérhető a CRAN szervereken is (eleve úgy készülnek, hogy működjenek mindkét környezetben)

Különbségek az R és S között (1)

- Mivel az R az S implementációjának tekinthető, az eltérés az R és az összes többi S implementáció (így a különböző S-PLUS verziók) között értendő
- Bizonyos eltérések oka az, hogy a fejlesztők az S viselkedését esetenként nem tartották letisztultnak (logikusnak, konzekvensnek, pontosan tisztázottnak, ...)
 - A cél egy letisztultabb, ugyanakkor az S-sel a lehető legnagyobb mértékben kompatibilis implementáció létrehozása volt

Különbségek az R és S között (2)

- Olyan grafikus lehetőségekkel is rendelkezik az R, amelyekkel a többi implementáció nem:
 - Nem csupán a beépített vonaltípusok állnak rendelkezésre, hanem tetszőleges vonaltípus megadható
 - Az S-PLUS 8-ban csak 8 beépített vonaltípus használható
 - Fejlettebb színkezelés (például gamma-korrekció)
 - Az R a TeX-hez hasonlóan képes matematikai formulákat megjeleníteni
 - •
- Viszont az S-PLUS is rendelkezik néhány olyan grafikus lehetőséggel, amelyekkel az R nem

Különbségek az R és S között (3)

- A legfontosabb eltérés az, hogy az összes többi implementációhoz képest az R hatáskörkezelése statikus
 - A statikus hatáskörkezelés következményeként az R valamennyi objektumot a memóriában tárol
 - Emiatt gyorsabb
 - Azonban R összeomlása esetén valamennyi adat elvész, amennyiben nem végeztünk explicit módon mentést

Az R-re épülő kereskedelmi szoftverek

- Revolution Analytics
 http://www.revolutionanalytics.com/
 - Revolution R Community, Revolution R Enterprise: bináris formában elérhető, optimalizált R disztribúciók
 - ParallelR: az RPro többprocesszoros környezetre szabott, párhuzamos feldolgozást támogató változata
- R-PLUS (XLSolutions Corporation) http://www.experience-rplus.com/

Összehasonlítás hasonló szoftverekkel (1)

- Speed comparison of various number crunching packages (version 2) (08/03/2003) http://www.sciviews.org/benchmark/
 - Sajnos régi
 - Az alábbi programok összehasonlítása: R 1.9.0, S-PLUS 6.1, Matlab 6.0, O-Matrix 5.6, Octave 2.1.42, Scilab 2.7, Ox 3.30
 - Sokféle teszt (FFT, sajátérték számítás, mátrix invertálás, rendezés, ...)
 - Nagyon kedvező eredmények az R-re nézve

Összehasonlítás hasonló szoftverekkel (2)

- Matlab vs. R performance benchmarking http://mlg.eng.cam.ac.uk/dave/rmbenchmark.php
 - Matlab 2008b és R 2.8.0 összehasonlítás (mátrixműveletek, FFT, sajátérték számítás, ...)
- Egy sokrétű összehasonlítás (rendelkezésre állás, támogatott platformok, eszköztár) http://en.wikipedia.org/wiki/Comparison_of_statistical_
 - Sajnos nincs forrásmegjelölés, máshol pedig nem lelhető fel

Csomagok (1)

- A rendszer telepítése során a számítógépre kerülnek az alap- és ajánlott csomagok
 - Számos további csomag érhető el a CRAN szerverekről és egyéb helyekről, amelyek további képességekkel bővítik a rendszer
- Csomagok telepítéséhez használjuk az interpreterben az install.packages() függvényt
 - Windows platformon csomagok telepítése elvégezhető az RGui Packages menüjének Install package(s) menüpontjával is

Csomagok (2)

- Windows és Mac OS X platformra a csomagok bináris formában kerülnek letöltésre
 - A források természetesen megtalálhatók a CRAN szervereken
- Linux platformra forrásban történik a csomagok letöltése, a C, C++ és FORTRAN források lefordítása lokálisan
 - Ehhez tipikusan rendelkezésre állnak a gcc (C, C++) és g77 (FORTRAN) fordítóprogramok
- Csomagfüggőségek kezelése

Alap- és ajánlott csomagok

- Az alábbi 12 alapcsomag alkotja az R-t:
 - base, datasets, grDevices, graphics, grid, methods, splines, stats, stats4, tcltk, tools, utils
- Valamennyi bináris disztribúció tartalmazza továbbá az alábbi 15 ajánlott csomagokat:
 - boot, class, cluster, codetools, foreign,
 KernSmooth, lattice, MASS, Matrix, mgcv, nlme,
 nnet, rpart, spatial, survival

További csomagok (1)

- További csomagokat a CRAN szervereken találunk
 - Ezeken jelenleg 3600-nál több csomag áll rendelkezésre!
 - Egyéb projektek keretében készült csomagok nincsenek feltüntetve, így az összes R csomag száma nagyobb ennél!

További csomagok (2)

- Bioconductor (bioinformatikai R csomagok) http://www.bioconductor.org/
 - 500-nál több további professzionális R csomag
- R-Forge http://r-forge.r-project.org/
- The Omega Project for Statistical Computing http://www.omegahat.org/

Csomagok tematikus csoportosítása

- Az átláthatóság érdekében a CRAN szervereken a csomagokat tematikusan csoportosítva is lehet böngészni (nézetek)
 - Jelenleg 28 nézet (Finance, Graphics, MachineLearning, MedicalImaging, NaturalLanguageProcessing, Optimization, ...)
- Érdemes telepíteni a nézetek kezelését támogató ctv (CRAN Task Views) csomagot

Egy hasznos csomag csomagok telepítéséhez

- Nézetek kezelését támogatja a ctv csomag
 - A rendelkezésre álló nézeteket az available.views() függvénnyel lehet listázni
 - Az install.views() függvénnyel lehet telepíteni az adott csoportba tartozó csomagokat
 - Például az install.views("MachineLearning") paranccsal lehet telepíteni a gépi tanuláshoz kötődő csomagot

10 lehetőségek

- Objektumok tárolása állományokban
- Szöveges állományok
- Csatlakozás adatbázis-kezelő rendszerekhez
- Hálózati kommunikáció
- Excel állományok feldolgozása
- Egyéb IO lehetőségek

Objektumok tárolása állományokban

- Az objektumokat állományokba lehet menteni
 - A save() függvény az argumentumként adott objektumokat menti
 - A save.image() függvény valamennyi a memóriában tárolt objektumot menti
- Az így elmentett állományokat a load() függvénnyel lehet a memóriába betölteni
- A tárolás az R saját bináris formátumában történik

Szöveges állományok

- Táblázatos adatokat lehet beolvasni szöveges állományokból a read.table(), read.csv() és read.delim() függvényekkel
- A write.table() és write.csv()
 függvényekkel lehet táblázatos adatokat szöveges állományokba írni
- Ez a legbiztonságosabb módja a más szoftverekkel állományokon keresztül történő kommunikációnak
 - Ilyen állományokat minden szoftver tud írni és olvasni

Csatlakozás adatbázis-kezelő rendszerekhez (1)

- Több csomag áll rendelkezésre, amelyek különböző absztrakciós szintűek
 - Mindegyik lehetővé teszi SQL lekérdezések végrehajtását és a teljes eredménytábla beolvasását, vagy az eredménytábla részekben beolvasását
 - Némelyik lehetővé teszi adatok beolvasását és kiírását SQL közvetlen használata nélkül

Csatlakozás adatbázis-kezelő rendszerekhez (2)

- RODBC csomag:
 - Csatlakozás ODBC interfészen keresztül (szinte minden adatbázis-kezelő rendszer támogatja)
 - MS SQL Server, MS Access, MySQL, Oracle PostgreSQL, ...
 - A Windows még Excel és szöveges állományokhoz is biztosít ODBC meghajtót
 - Ez lehetővé teszi Excel táblák feldolgozását (nem szükséges, hogy az Excel telepítve legyen)
 - Windows rendszerekben az ODBC támogatás általában alapértelmezésben telepítve van
 - Linux környezetben ODBC meghajtó kezelő program telepítése szükséges
 - Két nyílt forrású megoldás: unixODBC http://www.unixodbc.org/, iODBC 35 http://www.iodbc.org/

Csatlakozás adatbázis-kezelő rendszerekhez (3)

- DBI csomag:
 - Speciálisan az R és az adatbázis-kezelő rendszerek közötti kommunikáció megvalósításához készült interfész csomag
 - Front-end csomag, valamennyi adatbázis-kezelő rendszerhez megfelelő back-end csomag szükséges
 - Jelenleg rendelkezésre álló back-end csomagok: RmySQL,
 ROracle, RPostgreSQL, RSQLite

Hálózati kommunikáció

- Az állományokat beolvasó függvényeknek, mint például a read.csv(), read.table() és a scan() állománynevek helyett URL-eket is meg lehet adni
- A download.file() függvény állományok letöltésére szolgál
- Az url.show() pedig URL-ekkel adott állományok tartalmának megjelenítésére

Excel állományok feldolgozása (1)

- A legbiztonságosabb megoldás szöveges állományokba exportálni az Excel állományokat
- Windows rendszerekben egy lehetőség az RODBC csomag használata
 - Akár több munkalap is lehet az állományban

Excel állományok feldolgozása (2)

- Kizárólag Windows környezetben használható az xlsReadWrite csomag http://www.swissr.org/software/xlsreadwrite
 - Ez írni és olvasni is képes Excel állományokat
- A gdata csomag read.xls() függvénye Excel állományok beolvasására szolgál
 - A függvény az Excel állományt CSV állománnyá alakítja egy Perl programmal
 - Perl telepítése szükséges

Excel állományok feldolgozása (3)

- A WriteXLS csomag WriteXLS() függvénye adatok kiírását teszi lehetővé Excel 2003 állományokba
 - Perl szükséges a használathoz

Excel állományok feldolgozása (4)

- XLConnect csomag http://www.mirai-solutions.com/, xlsx csomag
 - Platformfüggetlen megoldások Excel állományok olvasásához és írásához
 - Használatukhoz Java szükséges
 - Az Apache POI könyvtáron alapulnak http://poi.apache.org/

Egyéb IO lehetőségek

- A base csomag gzcon(), gzfile(), bzfile() és unz() függvényei: adattömörítés (gzip, bzip2, ZIP)
- rimage csomag (digitális képfeldolgozás): JPEG állományok beolvasása
- ReadImages csomag: JPEG és PNG képek beolvasása
- sound csomag: WAV állományok írása és olvasása
- XML csomag: XML dokumentumok írása és beolvasása
- Csomagok speciális bináris formátumok kezeléséhez: hdf5, RNetCDF és ncdf csomagok

Hivatkozások

- The R Project for Statistical Computing http://www.r-project.org/
- Kurt Hornik (2010), The R FAQ. ISBN 3-900051-08-9 http://cran.r-project.org/doc/FAQ/R-FAQ.html
- Brian Ripley et. al (2010), R Data Import/Export. ISBN 3-900051-10-0 http://cran.r-project.org/doc/manuals/R-data.html
- Különböző csomagok dokumentációja http://cran.r-project.org/web/packages/