CSE 101 – Nov 11, 2019 (Week 7) (Veterans Day Webcasts)

Notes provided by Ben Sihota bsihota@ucsc.edu

CMPS 101 Summer 2019 Lecture 14

Digraph Analog of Handshake lemma

$$\sum_{x \in V} id(x) = \sum_{x \in V} od(x) = |E|$$

where id is in degrees and od is out degrees

Similar definitions of directed

- walk
- trail
- path
- trivial (walk, trail, path)
- cycle
- subgraph

Two kinds of connectedness

Weak connectivity: Underlying multi-graph is connected

Strong connectivity:

Definition We say y is **reachable** from $x \iff G$ contains a directed $x \, \dot{} y$ path (walk, trail)

Definition A digraph G is called **strongly connected** iff for all $x, y \in V(G)$, y is reachable from x (and x from y)

More generally, $S \subseteq V(G)$ is called **strongly connected** iff $\forall x, y \ inS : y$ is reachable from x (and x from y)

Example box graph

Definition A subset $S \subseteq V(G)$ is called a **strongly connected component** (SCC) iff

- 1. S is strongly connected and
- 2. S is maximal with respect to (1)

CMPS 101 Summer 2019 Lecture 15

Definition

Given $x, y \in V(G)$

$$S(x,y) = \begin{cases} \text{min length of an } x \, \check{} y \text{ path if } y \text{ is reachable from } x \\ \infty \text{ otherwise} \end{cases}$$

SSSP

Given a source vertex $S \in V(G)$

- 1. For each $x \in V(G)$, determine S(s, x)
- 2. For each $x \in V(G)$ with $S(s,x) < \infty$ determine a shortest $s \, \check{} \, x$ path in G

Breadth First Search (BFS)

Solves SSSP.

Require: $V(G) = \{x_1, x_2, ..., x_n\}$

Each vertex x has attributes

• color(x)

- White: Undiscovered

- Gray: Discovered, but unfinished

- Black: Finished

- d(x): Distance estimate from source s. When complete d(x) = d(s, x)
- p(x): Predecessor of x along a shortest $s \, \check{} x$ path encoded shortest $s \, \check{} x$ paths

Called BFS because it discovers all vertices at distance k before it discovers any vertices at distance k+1

Example

Source s = 3

Starting table

adj	color	d	p
1: 2 3	w	∞	n
2: 1456	w	∞	\mathbf{n}
3: 14	g	0	\mathbf{n}
4: 2 3 5	w	∞	\mathbf{n}
5: 2 4 6	w	∞	\mathbf{n}
6: 2 5	W	∞	\mathbf{n}

Definition

Predecessor-Subgraph

$$V_p = \{x \in V(G) | P[x] \neq \text{ nil } \cup \{s\}\}$$

$$E_p = \{(P[x], x) | P[x] \neq \text{ nil } \}$$

$\mathbf{PrintPath}(G, s, x)$

Precondition: $\mathrm{BFS}(G,s)$ was run

- 1. if x == s
 - 2. print(s)
- 2. else if P[x] == nil
 - 4. print("x not reachable from s")
- 3. else
 - 6. PrintPath(G, s, P[x])
 - 7. print(x)