

Dr Alexander A S Gunawan

aagung@binus.edu http://sigmetris.com 08175001010

What is machine learning?

- The art and science of:
 - Giving computers the ability to learn to make decisions from data
 - ... without being explicitly programmed!
- Examples:
 - Learning to predict whether an email is spam or not
 - Clustering wikipedia entries into different categories
- Supervised learning: Uses labeled data
- Unsupervised learning: Uses unlabeled data

A Typical Machine Learning Process

Supervised Learning Tasks

• **Tasks:** Given data (patterns inside without analytic solution), perform classification or regression

Spatial Data (Text, Image) {x, y}

Sequence or Time Series Data {**x**, t, y} **Machine Learning Model**

Unknown Function Approximator

f(x, W)

"Set of Hypotheses Functions"

Supervised Learning Tasks

• Tasks: Given data (patterns inside without analytic solution), perform classification or regression

Classification Problem

Goal: predict category of new observation

k-Nearest Neighbors

- Basic idea: Predict the label of a data point by
 - Looking at the 'k' closest labeled data points
 - Taking a majority vote

Measuring model performance

- In classification, accuracy is a commonly used metric
- Accuracy = Fraction of correct predictions
- Which data should be used to compute accuracy?
- How well will the model perform on new data?

Measuring model performance

- Could compute accuracy on data used to fit classifier
 - NOT indicative of ability to generalize
- Split data into training and test set
 - Fit/train the classifier on the training set
 - Make predictions on test set
 - Compare predictions with the known labels

Model complexity

- Larger k = smoother decision boundary = less complex model
- Smaller k = more complex model = can lead to overfitting

Model complexity and over/underfitting

Overfitting

- Accuracy will depend on dataset split (train/test)
- High variance will heavily depend on split
- Overfitting = model fits training set a lot better than test set
- Too specific

Underfitting

- Restricting your model too much
- High bias
- Too general

Regression

- Relationship: Height Weight?
- Linear?
- Predict: Weight → Height

Fitting a regression model

Regression mechanics

- y = ax + b
 - y = target
 - x = single feature
 - a, b = parameters of model
- How do we choose a and b?
- Define an error function for any given line
 - Choose the line that minimizes the error function

Cross-validation motivation

- Model performance is dependent on way the data is split
- Not representative of the model's ability to generalize
- Solution: Cross-validation!

Cross-validation basics

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5

Training data

Test data

Cross-validation and model performance

- 5 folds = 5-fold CV
- 10 folds = 10-fold CV
- k folds = k-fold CV
- More folds = More computationally expensive

Diagnosing classification predictions

Confusion matrix

Actual: Spam Email

Actual: Real Email

Predicted: Spam Email	Predicted: Real Email	
True Positive	False Negative	
False Positive	True Negative	

• Accuracy:
$$\dfrac{tp+tn}{tp+tn+fp+fn}$$

Metrics from the confusion matrix

• Precision :
$$\dfrac{tp}{tp+fp}$$

• Recall:
$$\frac{tp}{tp+fn}$$

• F1 score:
$$2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

- High precision: Not many real emails predicted as spam
- High recall: Predicted most spam emails correctly

The ROC curve

Area under the ROC curve (AUC)

Larger area under the ROC curve = better model

Choosing the correct hyperparameter

- Try a bunch of different hyperparameter values
- Fit all of them separately
- See how well each performs
- Choose the best performing one
- It is essential to use cross-validation

Grid search cross-validation

0.5	0.701	0.703	0.697	0.696
0.4	0.699	0.702	0.698	0.702
0.3	0.721	0.726	0.713	0.703
0.2	0.706	0.705	0.704	0.701
0.1	0.698	0.692	0.688	0.675
	0.1	0.2	0.3	0.4

C

Alpha