

UNIVERSIDAD DE GUADALAJARA
CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Seminario De Problemas De Programación De Sistemas Reconfigurables.

Máquina De Estados Síncrono Con Flip-Flops J-K Y Entradas Asíncronas.

Alumno: Meneses López Arisai Ricardo. Docente: María Patricia Ventura Núñez.

11 de octubre de 2019

Índice

1.	Objetivo Del Proyecto	1
2.	Marco Teórico	2
3.	Desarrollo	3
	3.1. Planteamiento Del Problema	3
	3.2. Métodos De Diseño	3
	3.3. Obtención De Ecuaciones	5
	3.4. Simulación	6
	3.5. Protoboard	7
4.	Conclusiones	8
5 .	Bibliografía	8
$\mathbf{A}_{\mathbf{J}}$	péndices	9
$\mathbf{A}.$	Apéndice	9
	•	9
	A.2. Mapas De Karnaugh	10

Materiales

Componentes.

- \cdot Protoboard.
- \cdot Cable Para Proto.
- \cdot Pinzas De Corte/Agarre.
- \cdot Diodos LED
- · Fuente De Voltaje $(5\mathbf{V})$.
- · Resistencias 1k Ω y 220 Ω .

Circuitos Integrados.

- · LM555.
- · CD4027.

Software.

- \cdot Boole-Deusto.
- \cdot Proteus Design Suite.

1. Objetivo Del Proyecto

· Diseñar una maquina de estados que tenga como secuencia: (1,2,5,6,7,4,3) con entradas asíncronas que obliguen el comienzo (inicio de la secuencia) en $\mathbf{1}$.

2. Marco Teórico

Figura 1: CD4027 - Configuración.

3. Desarrollo

3.1. Planteamiento Del Problema

Se comienza diseñando una tabla o diagrama de estados en el cual señalamos la secuencia que seguirá el sistema, después se pasa a diseñar el J_n - K_n de cada flip-flop, siendo ${\bf n}$: A, B o C. El sistema se compone de 3 bits, ya que el valor máximo que toma es ${\bf 7}$ (en binario) y habrán 6 salidas $(J_A-K_A,J_B-K_B$ y J_C-K_C): dos por cada flip-flop. En seguida de lo anterior, se consiguen las ecuaciones para cada salida de los flip-flops.

3.2. Métodos De Diseño

Q^T			Q^{T+1}		
Q_A	Q_B	Q_C	Q_A	Q_B	Q_C
0	0	0	X	X	X
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	1	0	0

Tabla 1: Tabla De Estados Del Sistema.

Valor Actual	Valor Próximo		
Q^t	Q^{t+1}	J	K
0	0	0	X
1	0	X	1
0	1	1	X
1	1	X	0

Tabla 2: Tabla De Estados Del J-K.

Q^T	Q^{T+1}			
$Q_A Q_B Q_C$	$Q_A Q_B Q_C$	J_A K_A	J_B K_B	J_C K_C
0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x - x	x x	x - x
0 0 1	0 1 0	0 x	1 x	x = 1
0 1 0	1 0 1	1 x	$\begin{vmatrix} x & 1 \end{vmatrix}$	1 x
0 1 1	0 0 1	0 x	x 1	x = 0
1 0 0	0 1 1	x = 1	1 x	1 x
1 0 1	1 1 0	x = 0	1 x	x = 1
1 1 0	1 1 1	x = 0	x = 0	1 x
1 1 1	1 0 0	x = 0	x 1	x = 1

Tabla 3: Tabla De Estados De Los Flip-Flops En Base A Q^T y $Q^{T+1}.$

En base a la tabla 2: Estados Del J-K se logró el diseño de la tabla 3.

3.3. Obtención De Ecuaciones

 \cdot Para obtener las ecuaciones se di
ó uso al programa Boole Deusto. Se uso la tabla 3: **Estados de los fli-flops**.

$$J_A = \overline{Q_C} \tag{1}$$

$$K_A = \overline{Q_B} * \overline{Q_C} \tag{2}$$

$$J_B = 1 (3)$$

$$K_B = \overline{Q_A} + Q_C \tag{4}$$

$$J_C = 1 (5)$$

$$K_C = \overline{Q_B} + Q_A \tag{6}$$

3.4. Simulación

Figura 2: Simulación Flip-Flops - Tipo J-K, D y T.

Cuando se quiere iniciar la secuencia en un determinado estado se debe de tomar en cuenta que los **Set** ponen en High a Q_T y el **Reset** hace que este mismo esté en LOW, así mismo se puede ver al flip-flop **C** como el bit 1 (0001), al **B** como el bit 2 (0010) y al **A** como el bit 3 (0100). Ejemplo: para iniciar en el estado 2 de la secuencia se tiene que poner un switch en en el **Set** del flip-flop B y a su vez en los **Reset** de **A** y **C**, los Set de **A** y **B** van a LOW, así como el Reset de **B** también va a Low. Entonces cuando se activa el switch, se indica que el flip-flop **A** y **C** estarán en **Reset** y Q_B estará en 1 ya que se activa el set del flip-flop **B**.

En este caso en particular el estado 0 no se contempla en la secuencia por lo que una vez que llegue a 3 se debe ir a 1 y por lo tanto se inicia en el estado 1.

3.5. Protoboard

Figura 3: Protoboard - Estado 1 De La Secuencia, Iniciado En $1\,$

Figura 4: Protoboard - Estado 1 De La Secuencia, Mantenido Con Swicth

4. Conclusiones

· El sistema no presentó ningún incomveniente en su prueba inicial. Si se requiere comenzar en otro estado distinto de 1 se debe tomar en cuenta sólo estados previstos en la secuencia, ya que podría no tener algún orden en otro estado ajeno a la secuencia del sistema.

5. Bibliografía

[1] - G. Rubén, B. Márcos, S. José Antonio, [21-07-2008], Electrónica Digital 1 - Contadores, Unican, España, available on: https://personales.unican.es/manzanom/Planantiguo/EDigitalI/CONTG5.pdf

A. Apéndice

A.1. Diagrama Eléctrico De Las Salidas

Figura 5: Salida $J_{\cal A}$

Figura 6: Salida ${\cal K}_A$

Figura 7: Salida $J_{\cal B}$

Figura 8: Salida ${\cal K}_B$

Figura 9: Salida $J_{\cal C}$

Figura 10: Salida ${\cal K}_C$

A.2. Mapas De Karnaugh

Figura 11: Salida ${\cal J}_A$

Figura 12: Salida ${\cal K}_A$

Figura 13: Salida $J_{\cal B}$

Figura 14: Salida K_B

Figura 15: Salida $J_{\cal C}$

Figura 16: Salida K_C