Computer Networks

The Network Layer

Adrian Sergiu DARABANT

Lecture 7

The Network Layer

The Internet Protocol -IP

The Internet (IP) Protocol

- IPv4 addressing
- Moving a datagram from source to destination
- Datagram format
- IP fragmentation
- ICMP: Internet Control Message Protocol
- DHCP: Dynamic Host Configuration Protocol
- NAT: Network Address Translation
- Routing

The Internet Network Layer

Transport layer: TCP, UDP IP protocol Routing protocols ·addressing conventions path selection datagram format ·RIP, OSPF, BGP Network packet handling conventions layer forwarding ICMP protocol table ·error reporting ·router <u>'signaling"</u> Link layer physical layer

IP Addressing

- IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host may have multiple interfaces
 - IP addresses
 associated with each
 interface

IP Addressing

IP address:

- network part (high order bits)
- host part (low order bits)

What's a network?

(from IP address perspective)

- device interfaces with same network part of IP address
- can physically reach each other without intervening router

network consisting of 3 IP networks (for IP addresses starting with 223, first 24 bits are network address)

IP Addressing

How to find the networks?

- Detach each interface from router, host
- create "islands of isolated networks

Interconnected system consisting of six networks

IP Addresses – Class Full

given the notion of "network", let's re-examine IP addresses:

"class-full" addressing:

class

A	Onetwork	host		1.0.0.0 to 127.255.255.255
В	10 network	host		128.0.0.0 to 191.255.255.255
C	110 netwo	rk h	nost	192.0.0.0 to 223.255.255
D	1110 mult	icast address		224.0.0.0 to 239.255.255.255
		22 hita		

IP Addressing: CIDR

- Classful addressing:
 - inefficient use of address space, address space exhaustion
 - e.g., class B net allocates enough addresses for 65K hosts, even if we only have 2K hosts in that network
- CIDR: Classless InterDomain Routing
 - network portion of address of arbitrary length
 - address format: a.b.c.d/x, where x is # bits in network portion of address

200.23.16.0/23

IP Subnet

- Basic concept:
 - A subset of a class A, B or C network.
- IP addresses that do not use subnets consists of
 - A <u>network portion</u>, and
 - A host portion.
- Represents a static two-level hierarchical addressing model.

IP Subnet (cont)

- IP subnets introduces a third level of hierarchy.
 - A <u>network</u> portion
 - A <u>subnet</u> portion
- usually handled together as *network* but with substructure

- A <u>host</u> portion
- Allow more efficient (and structured) utilization of the addresses.
- Uses network masks.

CIDR – Introduction

- The size of the global routing tables have grown very fast in recent years.
 - Caused routers to become saturated.
- CIDR is a new concept to manage IP networks.
 - Classless Inter Domain Routing.
 - No concept of class A, B, C networks.
 - Reduces sizes of routing tables.

CIDR - Basic Idea

 An IP address is represented by a <u>prefix</u>, which is the IP address of the network.

- It is followed by a slash, followed by a number M.
 - M: number of leftmost contiguous bits to be used for the network mask.
 - Example: 144.16.192.57 / 18

CIDR - Rules

 The number of addresses in each block must be a power of 2.

- The beginning address in each block must be divisible by the number of addresses in the block.
 - A block that contains 16 addresses cannot have beginning address as 193.226.40.36.
 - But the address 193.226.40.64 is possible!

IP/Netmask - examples

```
209.220.186.8/255.255.255.255.252=> 209.220.186.8
209.220.186.9
209.220.186.10
209.220.186.8/255.255.255.248=> 209.220.186.8
209.220.186.9
209.220.186.10
209.220.186.11
209.220.186.12
209.220.186.13
209.220.186.14
209.220.186.15
```

Invalid combination

Network masks

- Network mask 255.0.0.0 is applied to a class A network 10.0.0.0;
 - Mask = series of contiguous 1's followed by a series of contiguous 0's

Natural Masks

- Provide a mechanism to split the IP address
 10.0.0.20 into:
 - A network portion <u>10</u>;
 - A host portion 0.0.**20**;

IP Address: 10.0.0.20 00001010 00000000 00000000 00010100

Network Host

Natural masks

- Class A, B and C addresses
 - Have fixed division of network and host portions
 - Can be expressed as masks
- Natural Masks
 - Class A: 255.0.0.0
 - Class B: 255.255.0.0
 - Class C: 255.255.255.0

Subnets out of masks

- Masks are very flexible.
 - Using masks, networks can be divided into smaller subnets.

How?

- By extending the network portion of the address into the host portion.
- Advantage gained:
 - We can create a large number of subnets from one network.
 - Can have less number of hosts per network.

Network Address

Subnetting

- Basic concept
 - The same network can be configured with different masks.
 - Can have subnets of different sizes.
 - Allows better utilization of available addresses.

Example

- Suppose we are assigned a Class C network 193.226.40.0
 - To be divided into three subnets.
 - Corresponding to three departments.
 - With 110, 45 and 50 hosts respectively

Example (cont) - Options

X	X(binary)	# of Subnets	# of Hosts
128	1000 0000	2	128
192	1100 0000	4	64
224	1110 0000	8	32
240	1111 0000	16	16
248	1111 1000	32	8
252	1111 1100	64	4
254	1111 1110	128	2

Network too small

Rules:

- First IP address = Network Address
- Last IP address = Broadcast Address

How does one get IP Addresses?

Q: How does a *network* get the network part of IP addr?

A: it gets allocated from the portion of its provider ISP's address space

ISP's block	11001000	00010111	00010000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2	11001000	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
 Organization 7	11001000	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Reserved Addresses

CIDR address block	Description	Reference
0.0.0.0/8	Current network (only valid as source address)	RFC 1700 &
10.0.0.0/8	Private network	RFC 1918 &
14.0.0.0/8	Public data networks (per 2008-02-10, available for use ^[1])	RFC 1700 &
127.0.0.0/8	Loopback	RFC 3330 &
128.0.0.0/16	Reserved (IANA)	RFC 3330 &
169.254.0.0/16	Link-Local	RFC 3927 🗗
172.16.0.0/12	Private network	RFC 1918 🗗
191.255.0.0/16	Reserved (IANA)	RFC 3330 🗗
192.0.0.0/24	Reserved (IANA)	RFC 3330 &
192.0.2.0/24	Documentation and example code	RFC 3330 &
192.88.99.0/24	IPv6 to IPv4 relay	RFC 3068 &
192.168.0.0/16	Private network	RFC 1918 &
198.18.0.0/15	Network benchmark tests	RFC 2544 🗗
223.255.255.0/24	Reserved (IANA)	RFC 3330 🗗
224.0.0.0/4	Multicasts (former Class D network)	RFC 3171 &
240.0.0.0/4	Reserved (former Class E network)	RFC 1700 &
255.255.255.255	Broadcast	

Private Addreses

Name	IP address range	number of IPs	<u>classful</u> description	largest <u>CIDR</u> block	defined in
24-bit block	10.0.0.0 - 10.255.255.255	16,777,216	single class A	10.0.0.0/8	
20-bit block	172.16.0.0 – 172.31.255.255	1,048,576	16 contiguous class Bs	172.16.0.0/12	RFC 1597 (obsolete),
16-bit block	192.168.0.0 – 192.168.255.255	65,536	256 contiguous class Cs	192.168.0.0/16	RFC 1918

Not routed in Internet Why?

Routing tables (static)

Destination	Gateway	Genmask	Flags	Metric	Ref	Us e	Iface
172.16.25.1	172.30.0.4	255.255.255.255	UGH	0	0	0	Eth1
193.226.40.128	0.0.0.0	255.255.255.224	U	0	0		Eth0
193.0.225.0	0.0.0.0	255.255.255.0	U	0	0		Eth0
193.231.20.0	0.0.0.0	255.255.255.0	U	0	0		Eth0
172.30.0.0	0.0.0.0	255.255.0.0	U	0	0		Eth1
169.254.0.0	0.0.0.0	255.255.0.0	U	0	0		Eth1
0.0.0.0	193.0.225.9	0.0.0.0	UG	0	0		Eth0

The **route** command – (Windows/Linux/other OS)

Datagram: from source to destination forwarding table in A

IP datagram:

misc	source	dest	1
fields	IP addr	IP addr	data

- datagram remains unchanged, as it travels source to destination
- Addresses are fields of interest here

	or trainanty		
Dest Net	Mask	Nxt Router	Metric
223.1.1.0	255.255.255.0		1
223.1.2.0	255.255.255.0	223.1.1.4	2
223.1.3.0	255.255.255.0	223.1.1.4	2
64.8.32.1	255.255.255.255	223.1.1.10	2

Datagram: from source to destination

	misc	222111	222112	4-4-
1	fields	223.1.1.1	223.1.1.3	data

Starting at A, send IP datagram addressed to B:

 look up net. address of B in forwarding table

- find B is on same net. as A
- link layer will send datagram directly to B inside link-layer frame
 - B and A are directly connected

forwarding table in A

Dest Net	Mask	Nxt Router	Metric
223.1.1.0	255.255.255.0		1
223.1.2.0	255.255.255.0	223.1.1.4	2
223.1.3.0	255.255.255.0	223.1.1.4	2
64.8.32.1	255.255.255.255	223.1.1.10	2

Datagram: from source to destination

1				
	misc fields	223.1.1.1	223.1.2.3	data

Starting at A, dest. E:

look up network address of E in forwarding table

- E on *different* network
 - A, E not directly attached
- routing table: next hop router to E is 223.1.1.4
- link layer sends datagram to router 223.1.1.4 inside linklayer frame
- datagram arrives at 223.1.1.4
- continued.....

forwarding table in A

Dest Net	Mask	Nxt Router	Metric
223.1.1.0	255.255.255.0		1
223.1.2.0	255.255.255.0	223.1.1.4	2
223.1.3.0	255.255.255.0	223.1.1.4	2
64.8.32.1	255.255.255.255	223.1.1.10	2

Datagram: from source to destination

forwarding table in router

(
misc	222444	222422	4-4-	
fields	223.1.1.1	223.1.2.3	аата	

Arriving at 223.1.4,	destined
for 223.1.2.2	

- look up network address of E in router's forwarding table
- E on *same* network as router's interface 223.1.2.9
 - router, E directly attached
- link layer sends datagram to
 223.1.2.2 inside link-layer frame
 via interface 223.1.2.9
- datagram arrives at 223.1.2.2!!! (hooray!)

Dest Net	Mask	Nxt R	Metric	Interface
223.1.1.0	255.255.255.0	-	1	223.1.1.4
223.1.2.0	255.255.255.0	-	1	223.1.2.9
223.1.3.0	255.255.255.0	-	1	223.1.3.27

IP Datagram

IP protocol version number header length (bytes) "type" of data

max number remaining hops (decremented at each router)

upper layer protocol to deliver payload to

how much overhead?

- 20 bytes of IP
- = 20 bytes +
 upper layer
 (TCP/UDP) + app
 layer overhead

Fragmentation/Reassembly

- network links have MTU
 (max.transfer size) largest
 possible link-level frame.
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

Fragmentation/Reassembly

Example

- 4000 byte datagram
- MTU = 1500 bytes

length	ID	fragflag	offset	
=4000	=x	=0	=0	

One large datagram becomes several smaller datagrams

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

- Motivation: local network uses just one IP address as far as outside word is concerned:
 - no need to be allocated range of addresses from ISP: - just one IP address is used for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

UDP

Checksum – for the entire datagram (header + data) Length >=8 – entire datagram

TCP Datagrams

Sequence No – ACK No

ICMP

- Used by hosts, routers, gateways to communication network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- Network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

ICMP

Type Code Checksum

ICMP data (depending on the type of message)

<u>Type</u>	<u>Code</u>	description	<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)	4	0	source quench (congestion
3	0	dest. network unreachable			control - not used)
3	1	dest host unreachable	8	0	echo request (ping)
3	2	dest protocol unreachable	9	0	route advertisement
3	3	dest port unreachable	10	0	router discovery
3	6	dest network unknown	11	0	TTL expired
3	7	dest host unknown	12	0	bad IP header