

Computer Engineering WS 2012

Timer/Counter

HTM - SHF - SWR

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Übersicht

- Einleitung
- Output-Compare Funktion
- Input-Capture Funktion.
- Mehrfachzugriff auf Counter-Register.
- Timer/Counter im LPC2468

CE WS12

Aufgaben

- Erzeugen von Zeitfunktionen
 - Programmteile, die zu genau vorgegebenen Zeitpunkten ausgeführt werden sollen.
 - Externe Signale zur Steuerung von Peripheriegeräten.
- Messung von Zeitfunktionen
 - Dauer von externen Signalen.
 - Frequenz von externen Signalen.
- > Zählen von Ereignissen.

CE WS12

Prinzipieller Aufbau

CF WS12

Anwendungen:

Zeitgeber

- Periodisch oder Single Shot
- Interner Takt
- Beispielanwendungen
 - Systemtakt für Betriebssysteme
 - Schrittmotorsteuerung

Zeitmessung

- Interner Takt
- Start und/oder Stop durch externes Ereignis
- Beispielanwendungen
 - Bestimmung der Baudrate

Frequenzmessung

- Externer Takt
- Start und Stop des Zählers per Software

Zähler

- Externe Ereignisse werden als Takt verwendet
- Beispielanwendungen
 - Auswertung von Drehimpulsgebern

CE WS12

Überwachung von und Reaktion auf Timer-Ereignisse

- Polling
 - Kontinuierliche Abfrage
 - des Zählerstandes oder
 - des Statusregisters:

```
/* warte, bis Timer-Ereignis auftritt */
while(( TIMERO_IR & MRO) == 0 ) {
}
```

- Interrupt
- Automatische Änderung von Signalen an Anschlusspins
 - Mögliche Aktionen an Ausgängen bei Timer-Ereignissen:
 - Setzen
 - Löschen
 - Toggeln

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Zeitliche Auflösung

- bestimmt durch verwendete
 - Taktfrequenz

$$\Delta T = \frac{N_{Vorteiler}}{f_{Takt}}$$

Intervall

- bestimmt durch verwendete
 - Taktfrequenz
 - Anzahl Bits des Zählers

$$T_{max} = 2^N \cdot \frac{N_{Vorteiler}}{f_{Takt}}$$

CE WS12

Übung: Dimensionierung eines Timers

Mit Hilfe eines 16-Bit Timers soll eine Impulsdauer zwischen 0.5 und 2.0 Sekunden gemessen werden. Die Systemfrequenz beträgt 8 MHz. Als Vorteiler stehen die Werte 1, 8, 64, 256 und 1024 zur Verfügung.

- Wie muss der Vorteiler eingestellt werden?
- Wie genau kann die Zeit erfasst werden?Verwenden Sie bitte handhabbare Einheiten.

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Übersicht

- Output-Compare Funktion
- Input-Capture Funktion.
- Mehrfachzugriff auf Counter-Register.
- Timer/Counter im LPC2468

CE WS12

Erzeugung eines periodischen Ausgangssignals

- Ablauf:
 - Beim Überlauf des Zählers wird Overflow-Interrupt ausgelöst.
 - In der ISR wird der Zähler auf den Ausgangswert zurückgesetzt.
- Probleme:
 - Latenz- und Bearbeitungszeit des Interrupts bewirken:
 - Falsche Frequenz
 - Jitter.
 - Timer kann nur ein Signal zur Zeit erzeugen.

Hamburg University of Applied Sciences

CE WS12

Timer mit Output-Compare-Funktion

Ermöglicht die Erzeugung von mehreren unabhängigen Signalen

Timer

CE WS12

Output-Compare-Funktion: Periodisches Ausgangssignal

- Hardwaregesteuerter Ausgang:
 - taktgenau
- Softwaregesteuerter Ausgang:
 - richtige Frequenz
 - aber Jitter

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Übersicht

- Einleitung
- Output-Compare Funktion

- Input-Capture Funktion.
- Mehrfachzugriff auf Counter-Register.
- Timer/Counter im LPC2468

Timer

CE WS12

Zeitmessung

- Idee:
 - Externes Signal löst Interrupt aus.
 - In der ISR werden die Zeitpunkte mit Hilfe des intern getakteten Timers bestimmt.
- Aber Latenz- und Bearbeitungszeiten des Interrupts bewirken:
 - Ungenaue Messung
 - Jitter in Messergebnisse

CE WS12

Timer mit Input-Capture-Funktion

Ermöglicht das taktgenaue Messen von externen Ereignissen.

Timer

Timer

CE WS12

Input-Capture-Funktion: Zeitmessung

- Latenz- und Bearbeitungszeit des Interrupts haben keinen Einfluss auf die Messung:
 - taktgenaue Bestimmung möglich.
- Aber Ergebnis muss bis zum Eintreffen des nächsten Ereignisses gelesen werden.

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Übersicht

- Einleitung
- Output-Compare Funktion
- Input-Capture Funktion.

- Mehrfachzugriff auf Counter-Register.
- Timer/Counter im LPC2468

Timer

CE WS12

Zugriff auf 16-Bit Zähler mittels 8-Bit Bus

- Lesen des 16-Bit Registers erfordert zwei Zugriffe.
- Normalerweise Ungenauigkeit von 1
 - Bei gleichzeitiger Änderung des High-Registers:
 - Abweichung von 255

Timer

CE WS12

Zugriff auf 16-Bit Zähler mittels 8-Bit Bus: Sicherer Lesezugriff per Software

- Problematisch:
 - mindestens 4 Leseoperationen auf Register
 - Zeitliche Ungenauigkeit des Zugriffs
 - Achtung:
 - Unterbrechung möglich zwischen
 Lesezugriffe auf low und high durch IRQ!
- Probleme bei Schreibzugriffe?

LPC2468: Lese- und Schreibzugriffe unproblematisch, da 32-Bit Zugriffe und 32-Bit Register (atomarer Zugriff möglich)

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

CE WS12

Übersicht

- Einleitung
- Output-Compare Funktion
- Input-Capture Funktion.
- Mehrfachzugriff auf Counter-Register.

Timer/Counter im LPC2468

Hamburg University of Applied Sciences

CE WS12

- ▶ LPC2468 hat 4 Timer-Bausteine: Timer0 bis Timer3.
- Zusätzlich 2 "Pulse Width Modulators" (PWM).
- Hohe zeitliche Auflösung:

Timer-Bausteine im LPC2468

- Alle Register sind haben 32-Bit.
- Maximale Taktfrequenz: Systemtakt (typisch 48 MHz).
- 4 Capture-Register zum Erfassen externer Signale.
- 4 Match-Register mit jeweils 3 Betriebsarten:
 - Kontinuierlicher Betrieb.
 - Stop beim Erreichen des Match-Wertes (Single Shot).
 - Zurücksetzen des Zählers beim Erreichen des Match-Wertes.
- 4 Ausgänge / 4 Eingänge pro Timer möglich.

CE WS12

Timer-Bausteine im LPC2468: Blockdiagramm

CE WS12

Timer-Bausteine im LPC2468: Datenregister

▶ Timer Counter Register

Aktueller Zählerstand

Prescale Register

TIMERn PR

TIMERn TC

Maximaler Zählerstand des Vorteilerzählers.

Prescale Counter Register

TIMERn PC

Aktueller Zählerstand des Vorteilerzählers.

Match Register

TIMERn_MR[0/1/2/3]

Wert des Match Registers

Capture Register

TIMERn_CR[0/1/2/3]

Wert des Capture Registers.

Hamburg University of Applied Sciences

CF WS12

Timer-Bausteine im LPC2468: Steuerregister

Interrupt Register

TIMERn_IR

- Zeigt an, ob ein Match- oder Capture-Event aufgetreten ist.
 Muss per Software zurückgesetzt werden.
- Timer Control Register

TIMERn_TCR

- Reset und Freigabe des Zählers.
- Count Control Register

TIMERn_CTCR

- Einstellung Betriebsmode: Zeitgeber oder Zähler. Auswahl des Zähleingangs.
- Match Control Register

TIMERn_MCR

- Festlegung, was bei einem Match-Event passieren soll: Interrupt, Reset des Zählerstandes, Stop des Zählers.
- Capture Control Register

TIMERn_CCR

- Festlegung, welche Flanke erfasst werden soll. Freigabe des Interrupts.
- External Match Register

TIMERn_EMR

Festlegung, was bei einem Match-Event mit dem externen Match-Ausgang (MATn.m) passieren soll: High, Low, Toggle

CE WS12

Timer-Bausteine im LPC2468: Anwendungsbeispiel 1

Kontinuierlicher Zähler

```
PCONP |= (1<<22); // enable timer

PCLKSEL1 |= (1<<12); // set clock to cclk (48 MHz)

TIMER2_TCR = 0x02; // reset timer

TIMER2_MR0 = 6; // set match register 0

TIMER2_PR = 2; // set prescaler

TIMER2_IR = 0xff; // reset all interrrupts

TIMER2_MCR = 3<<0; // interrupt on MR0, reset on MR0,

// do not stop timer on match

TIMER2_TCR = 0x01; // start timer
```


CE WS12

Timer-Bausteine im LPC2468: Anwendungsbeispiel 2

Single Shot

```
PCONP |= (1<<22); // enable timer

PCLKSEL1 |= (1<<12); // set clock to cclk (48 MHz)

TIMER2_TCR = 0x02; // reset timer

TIMER2_MR0 = 6; // set match register 0

TIMER2_PR = 2; // set prescaler

TIMER2_IR = 0xff; // reset all interrrupts

TIMER2_MCR = 5<<0; // interrupt on MR0, no reset on MR0,

// stop timer on match

TIMER2_TCR = 0x01; // start timer
```


CE WS12

Timer-Bausteine im LPC2468: Anwendungsbeispiel 3

- LED2 auf dem TI-Board blinkt mit 1 Sekunde
 - Verwendung des externen Match Signals MAT0.0