

Univerza v Ljubljani

Fakulteta za računalništvo in informatiko

Zaščita in kriptiranje

(IKS 16. poglavje)

UVOD (1/3)

- Varnost kaj je, kdo je ogrožen, kaj ga ogroža?
- Varovanje: preprečevanje možnih nevarnosti
- Ranljivost: šibka točka sistema
- Organizacijski del je danes pomembnejši od tehnološkega!
- Dve področji varnosti:
 - Zanesljivost: zagotavljanje razmer za delovanje storitev in normalno delo uporabnikov
 - Zaščita: onemogočanje nelegalne uporabe sistema
- Oboje lokalno ali razpršeno, zanima nas bolj razpršeno.
- Nadzor!
- Vloge: nadzornik/upravljalec, vzdrževalec, napadalec, uporabnik

Zagotavljanje zanesljivosti (2/3)

- Ustrezen nadzor: zbiranje podatkov o delovanju, stanju, uporabi sistema. Dnevniki.
- Upravljanje: ukrepanje na podlagi zbranih podatkov.
- Alarmi.Diagnostika. Načrtovanje. Administracija.
- Orodja: imeniki, seznami in kazala. SNMP. Poslovna pravila.
- Načrtovanje zmogljivosti in razvoja sistema, primerno testiranje in uvajanje.
- Razpršena zaščita. Integriteta povezav, virov, vsebine, uporabnikov, sporočil.

Zaščita in kriptiranje (3/3)

- Kriptiranje: skrivanje vsebine
- Zgodovinski kriptografski postopki
- Simetrični algortimi (DES, AES)
- Asimetrični algoritmi (RSA, ECC)
- Kriptoanaliza (razbijanje)

Kriptografske metode

- Po načinu
 - Substitucijske: posamezne črke ali dele besedila nadomestimo z drugimi.
 - Transpozicijske: spreminjamo vrstni red znakov, besed, stavkov...
- Po lastnostih ključa
 - Simetrične: E=D, ključ mora biti tajen.
 - Asimetrične: E≠D, E je lahko javen, D mora biti tajen.

Klasične metode: Cezar

- Cezarjev kriptogram: substitucija.
- JULUA = ?

														m											
1	n	<	Z	ž	а	q	С	Ŏ	d	a	f	80	h	i	Ĺ.	k	\perp	m	n	0	d	r	S	Š	t

- 25 možnih ključev
- Razbijemo ga v največ 25 poskusih!

Razbijanje substitucijskega kriptograma

- Razbijanje na osnovi poznanega besedila (npr. "please login") – že v 1. poskusu!
 - Zato kriptiramo le vsebino, ne cele komunikacije
- Statistika jezika (črke, besede, dvo- ali tročrkovni sklopi) potrebno je daljše besedilo.
- Poznavanje vsebine (semantika) olajša razbijanje iščemo pričakovane korene besed ipd.
- Knjiga primer razbijanja!

Vigenèr-jev kriptogram – večabecedno kriptiranje

- Preprost ključ
- Statistika jezika in semantika postaneta nemočni
- Viegenerjeva matrika: vse Cezarjeve abecede.

а	b	С	č	d	е	f	g	h		j	k		m	n	0	р	r	S	š	t	u	V	Z	ž
b	С	Č	d	е	f	യ	h		j	k		m	n	0	р	r	S	Š	t	u	٧	Z	ž	а
С	č	d	е	f	g	h	i	j	k	1	m	n	0	р	r	S	š	t	u	٧	Z	ž	а	b
č	d	е	f	g	h		j	k		m	n	0	р	r	S	š	t	u	\	Z	ž	а	b	С
d	е	f	g	h	i	j	k		m	n	0	р	r	S	Š	t	u	٧	Z	ž	а	b	С	č

(in tako dalje še 20 vrstic...)

- Ključ = niz D črk, vsaki pripada ena vrstica (enaka 1. črka).
- Z abecedo n-te črke gesla kriptiramo n-to, n+D-to, n+2D-to ... črko sporočila.

Vigenèr-jev kriptogram (primer)

- Geslo: računalniške komunikacije
- Sporočilo: Junija vsi izpiti na žalost odpadejo, razen pri ekonomiki, septembra pa bo spet vse po starem.

r	а	č	u	n	а	T	n	i	š	k	е	k	0	m	u	n	i	k	а	С	i	j	е
j	u	n		j	а	٧	S	-	<u>.</u>	Z	р		t	i	n	а	ž	а		0	S	t	0
d	р	а	d	е	j	0	r	a	Z	е	n	р	r	i	е	k	0	n	0	m	i	k	i
S	е	р	t	е	m	b	r	а	р	а	b	0	S	р	е	t	٧	S	е	р	0	S	t
а	r	е	m																				

Prvi stolpec črk kriptiramo z 18. abecedo, itd.

Porterjev kriptogram

- Kriptiramo po 2 znaka hkrati.
- Simboli so v tabeli vrstica za en, stolpec za drugi znak.

	а	b	С	č	d	е	f	g	h	i	j	k		m
а	(-)	%			F	ॐ	\odot	\$			③			
b	6		(i)	•	4	壽	3	8						
С		\rightarrow	**	ans.	†© ì	*								
č		Ç										it	d	
d														

■ npr. KAČA = 🎡 🖫

Kodiranje

- Cel znak ali besedo nadomestimo z drugo.
- Ni splošnega pravila za zamenjave.
- Ključ predstavlja cela kodna tabela.

"Bugger! I was just about to crack his code, when he burnt his blanket."

Transpozicijski kriptogram

- Znake ali dele besedila premestimo!
- Ključ ima vse črke različne (npr. KOPRIVA).
- Oštevilčimo ključ po abecedi.
- Zapišemo stolpce glede na številke.

k	0	р	r	i	V	а
3	4	5	6	2	7	1
っ	u	n	.—	j	а	n
Ž	a		0	S	t	V
S	i	i	Z	р	i	t
i	0	d	р	а	d	е
j	0	b		а	b	

Klasične metode - povzetek

- Klasične metode zgolj za razumevanje.
- Znakovno usmerjene kriptiramo črko po črko (včasih tudi po besedah).
- Z računalniki jih ni težko razbijati.
- Sodobne računalniške metode so bitno usmerjene.

Simetrične kriptografske metode

- DES
- AES
- IDEA
- RC4
- Misty

Osnovni elementi simetričnih metod

- Transpozicija (P-škatla, ključ)
 - Permutacija
 - Redukcija
 - Ekspanzija
- Substitucija (S-škatla, tabele)
 - Dekoder n/2ⁿ (poljuben n-bitni vhod → same 0 in 1 enica po tabeli)
 - Permutacija
 - Koder 2ⁿ/n (obratno kot dekoder po tabeli)

DES

- Simetričen.
- Hiter (strojna implementacija).
- Kaskada zaporednih permutacij, substitucij in še nekaterih operacij.
- Deluje nad 64-bitnimi binarnimi bloki.
- Ključ je 56-biten.
- Težave z distribucijo ključa!
- Sum bližnjice...
- Več podrobno: na vajah!

Distribucija ključa

- Lokalno izračunavanje k
 - Tajna funkcija za generiranje, npr. $P(x) = ax^3 + bx^2 + cx + k$
 - Za spremembo ključa pošljemo 3 točke polinoma: $(x_1, P(x_1)), (x_2, P(x_2)), (x_3, P(x_3))$
 - Prejemnik lahko izračuna k.
- Metoda "puzzles" za časovno občutljive podatke
 - ključ na videz skrajšamo (dogovorjeno zaporedje
 - Pošljemo veliko ključev, prejemnik enega izbere in razbije, sporoči njegovo zaporedno številko.
 - Pošlje kriptirano besedilo, ki je varno še za čas razbijanja.

Metoda enkratnega ključa

- Ključ je daljši kot besedilo.
- Ekskluzivni ALI (xor): (A xor B) xor B = A
- Enkripcija: P xor E = E(P)
- Dekripcija: D(E(P)) = E(P) xor E= (P xor E) xor E = P
- Težava: potrebno je generirati poljubno dolg ključ (na obeh straneh! - sinhronizacija)

Veriženje

DES = velik substitucijski kriptogram!

M	0	J	С	Α	е	u	r	1	0	0	0		0
J	Α	Z	Е	Z	Φ	u	r	3	0	0	0	•	0
Р	Е	Т	Е	R	е	u	r		3	2	0		0

 Možno je zamenjati posamezne kriptirane bloke z drugimi, tudi če ne poznamo ključa.

Enkripcijski stroj (veriženje)

Metoda enkratnega ključa ima težave s ključi.

- Kompromis: Naslednji blok sporočila najprej XOR-kriptiramo s prejšnjim DES-kriptiranim blokom, šele nato ga damo v DES škatlo.
- $C_N = E(P_N XOR C_{N-1})$

Načini uporabe bločnih kriptosistemov

- CBC (Cypher Block Chaining) veriženje:
 - Pred kriptiranjem se vsak blok XOR-a s prejšnjim kriptiranim blokom.
- PCBC (Propagating CBC) upošteva več prejšnjih P in C blokov
- CFB (cipher Feedback) zelo podobno. Omogoča tudi kode za popravljanje napak (napačen bit na istoležnem mestu).
- CTR (counter) za vzporedno kriptiranje več blokov hkrati.
- Inicializacijski vektor: težave!

Trojni DES

- 3 x kriptiranje
- 3 x počasnejši
- 2⁵⁶ x varnejši za napad z grobo silo
- Enkripcija: E(K1) D(K2) E(K1)
- Dekripcija: D(K1) E(K2) D(K1)
- 112 bitov je dovolj varno.
- EDE namesto EEE: za kompatibilnost med DES in 3-DES (3-DES rač. nastavi K2 = K1)

- Advanced Encryption Standard
- Rijndael: kriptografski algoritem (Daemen, Rijmen)
- Hiter, varen
- Blok dolg 256 (16 8-bitnih znakov)
- Ključ dolg različno (128, 196, 256)
- Dekripcija: v obratni smeri ali z drugimi tabelami.

AES: osnovne operacije

- Byte sub: Substitucija (S-škatla)
- Shift row: mešanje vrstic (P-škatla)
- Mix column: mešanje stolpcev substitucija, ki temelji na aritmetiki končnih polj.
- Add round key substitucija:
 XOR trenutnega bloka z delom ekspandiranega ključa.

AES: simetričen

Shema z drugega zornega kota:

Možno sestavljati različne dolžine ključev kot lego kocke:

Fr

Drugi simetrični algoritmi

- IDEA, 1990 (International Data Encription Algorithm)
 - Podoben DES-u, brez večjih slabosti
 - Uporaba v PGP (+ triple DES +CAST)
- RC2 (Rivest Cipher 2)
 - Eden od algoritmov S/MIME
 - Spremenljiva dolžina ključa
- CAST (imena avtorjev) –(v PGP)
 - RFC2144: določene S-škatle in 128-bitni ključ
 - RFC2612: CAST-256 s spremenljivo dolžino ključa
- Skipjack, Misty
- ...

Asimetrična kriptografija

- E in D različna!
- E je lahko javen, D mora biti tajen.
 - D(E(P)) = P
 - Iz P in E(P) je nemogoče ugotoviti D.
 - Iz E je nemogoče ugotoviti D.

FFI RSA

Izberemo p,q: veliki praštevili (1024 bitov)

$$n = pq$$
$$z = (p-1)(q-1)$$

- Izberemo d: nima skupnih deliteljev z z.
- Izberemo e: $ed \mod z = 1$
- $P \rightarrow C=P^e \mod n$ kriptiranje
- $C \rightarrow P = C^d \mod n$ dekriptiranje
- Ni težav z distribucijo. Počasnost.

Elektronski podpis

- To je medsebojno identificiranje uporabnikov.
- Potreben pogoj: D(E(P) = E(D(P))
- Oddajnik sporočilu doda informacijo, ki je značilna samo zanj.
- Za podpis se navadno uporabi le kratek niz P (nekaj 100 bitov): lahko digitalni izvleček.
 - Ime in priimek
 - EMŠO, davčna, vpisna številka, ...
 - Podjetje
 - Datum in ura podpisa

Fr

Elektronski podpis z RSA

- Pogoj: E(D(P))=D(E(P))
- Podpis: informacija, lastna samo podpisniku: D; D(P) je podpisano besedilo.
- Peter: E_P, D_P
- Vesna: E_V, D_V

- P="Peter Klepec" → podpisano:D_P(P)
- Enkripcija: E_V(D_P(P)) → sledi prenos.
- Dekripcija: D_V (E_V(D_P(P)) = D_P(P)
- Preverjanje podpisa: E_P(D_P(P)) = P

Tajenje podpisa

- Če podpisnik zamenja ključ, lahko taji svoje prejšnje podpise!
- NOTAR ali OVERITELJ: uporabnik deponira svoje podatke skupaj s časom njihove veljavnosti
- Notar vzdržuje tudi historiat.
- Notarju zaupamo!
- Ko prejmemo podpisano sporočilo, preverimo podpis pri notarju.

Integriteta sporočila

- Ali je bilo sporočilo med prenosom spremenjeno?
- Digitalni izvleček sporočila Z(P)
- Z(P) podpišemo in pošljemo skupaj s sporočilom.

Zgoščevalne funkcije (digitalni izvleček)

- Prstni odtis (hash) sporočila m: f = h(m)
- m je sporočilo variabilne dolžine
- f je kratek (omejena dolžina!).
- Kolizija: različna sporočila imajo lahko enak digitalni izvleček

Način delovanja

- Preproste bitne operacije brez ključa
- Podobno simetrični kriptografiji
- Delitev sporočila v bloke, procesiranje v ciklih
- MD4 (podlaga za SHA-1) in MD5 128 bitov
- SHA-1 (trenutno najpomembnejši) 160 bitov (SHA-256, SHA-512)
- Zgoščevalna funkcija s ključem: MAC (Message Authenticy Check)
- Napad: rojstnodnevni birthday attack (iskanje kolizije).

Dobra zg. funkcija

- Pri vseh možnih vhodnih vrednostih je frekvenca vseh rezultatov enaka.
- Majhna sprememba sporočila povzroči veliko spremembo podpisa.
- Zelo težko najti drugačno vhodno vrednost za isti podpis (kolizijo)!
- Take funkcije imenujemo cryptographic hash value, digital fingerprint, footprint, message digest (MD), cryptographic checksum.

Fri

Generatorji

- Naključni generatorji, vgrajeni v OS, prevajalnik, ... : statistično dobro porazdeljeni
- Generator naključnih števil
 - Čas med dostopi do diska
 - Vnosi s tipkovnice
 - Premiki miške
 - Strojni: spremembe napetosti
- Generator praštevil
 - Temelji na zgornjem
 - Preverja delitelje

Varna komunikacija

- Zaupnost kdo sme prebrati? (enkripcija)
- Avtentikacija dokaži, da si res ti,
- (Identifikacija povej, kdo si brez dokaza)
- Integriteta sporočila je bilo med prenosom spremenjeno?
- Preprečevanje zanikanja (nonrepudiation) res si poslal / res si prejel.
- Razpoložljivost in nadzor dostopa preprečevanje nelegitimne rabe virov (avtorizacija – ugotavljanje, ali nekaj smeš storiti)
- Pomembno je tudi beleženje vseh dogodkov (dostopov, ...)

Problemi

- Poznamo kriptografske metode
 - simetrične,
 - asimetrične.
- Kako ugotoviti, s kom ZARES komuniciram? AVTENTIKACIJA
- Kako se prepričati, da sporočilo med prenosom ni bilo spremenjeno? INTEGRITETA
- Kako distribuirati javne ključe?

Avtentikacija

- Če vem, kdo si, ti dovolim več:
 - Se pogovarjam s tabo
 - Dostop do podatkov (avtorizacija)
 - Ti zaupam (verjamem)
- Osebna izkaznica, geslo, kreditna kartica
- To omogoča tudi PKI

 (infrastruktura javnega ključa) .

Avtentikacija

- Prepričamo se, da je naš sogovornik res tisti, za kogar se izdaja. Tri principi:
 - Izziv-odgovor (vnaprej se dogovorimo za skupno skrivnost)
 - Zaupamo tretji strani
 - Avtentikacija z javnim ključem

- Challenge-Response ali Shared Secret
 - Dvosmerna avtentikacija. K_{AB} je vnaprej znan.
- Primer:

Ana

Borut

Malo skrajšan primer:

Je varen?

Ana Borut

Malo skrajšan primer

Napad z zrcaljenjem(reflection attack) – če B omogoča več sej hkrati.

Napad z zrcaljenjem na prvi protokol:

Varen protokol izziv-odgovor

- TEŽKO!
- Pravila:
 - Iniciator naj prvi dokaže svojo identiteto.
 - Za dokaz naj uporabljata različne ključe (K_{AB} in K_{BA})
 - Izziva (R) naj bosta različna (npr. sodo-liho št.)
 - Informacija iz ene seje nekoristna v drugi seji.

Varen protokol za avtentikacijo

Uporablja zgoščevalne funkcije (digitalni izvleček)!

Ana Borut

Diffie-Hellman izmenjava ključev

- Kako si pred avtentikacijo izmenjata K_{AB}?
- Najprej izbereta n in g javno.
- Eden izbere x, drugi y tajno.

Diffie-Hellman izmenjava ključev

Napad z vrivanjem (man in the middle attack).

Center za distribucijo ključev

- Težava: upravljanje in organizacija ključev.
- Center pozna vse tajne ključe. Zaupanje!
- Možen napad: replay attack napad s posneto sejo.
 - Nepooblaščena ponovitev legalne seje (npr. plačilo računa).
 - Rešitev: časovno označevanje in/ali izziv R v vsakem sporočilu

ñ

Center za distribucijo ključev

- Needham-Schroeder:
- Če napadalec dobi star K_S, še vedno lahko napade na 3. koraku (replay)!

Avtentikacija v PKI

Varno, če zaupamo centru.

Kerberos

- Avtentikacija s pomočjo simetričnih ključev + strežnik za hranjenje in distribucijo ključev in nadzor dostopa.
- Avtentikacijski strežnik (AS) = center za distribucijo ključev.
- Odjemalec A želi dostop do strežnika B. A in AS si dogovorita za kriptiranje seje.
- AS preveri , če A sme uporabljati B. Če da, izda A-ju vstopnico (A, B, sejni ključ K_S, veljavnost) in jo kriptira s K_B.
- A pošlje Bju vstopnico in svoj izziv, kriptiran s K_S.
- B dekriptira vstopnico in nato še odgovor na izziv, spet kriptiranega s K_{S.}

Radius (RFC 2865, 2866,...)

- AAA strežnik (avtentikacija, avtorizacija, zaračunavanje)
- Uporabnike lahko preverja v zunanjem imeniku (AD, LDAP, Kerberos...)
- Strežnik zavrne dostop, zahteva izziv, ali pa sprejme zahtevo.
- Uporaba v Wi- Fi omrežjih, pri SIP- ponudnikih itd...
- Nadomestil ga bo protokol Diameter (d = 2r)
 - TCP namesto UDP
 - Uporablja varnen kanal (IPSec ali STCP).
 -

Kako vem, da ni bilo sporočilo med prenosom spremenjeno?

Elektronski podpis

- Elektronski podpis mora omogočati troje:
 - Možno preveriti podpis (prejemnik)
 - Ni ga možno ponarediti (prejemnik ali tretja oseba)
 - Ni možno zanikati podpisa (pošiljatelj)
- Podpisan dokument P: D_A(P)

Podpis podatkov

Če želimo ohraniti tudi zaupnost sporočila, ga je treba po podpisu še kriptirati z Aninim javnim ključem E_A.
Sam podpis ne zagotavlja zaupnosti, saj je E_B

javni ključ, ki ga lahko dobi kdorkoli!

Ana: preveri podpis
- dekriptira z
Borutovim javnim
ključem: E_B(D_B(P))

Integriteta sporočila

- Podpisovanje celotnega sporočila je zamudno.
- Včasih zaupnost ni potrebna.
- Lahko podpišemo le izvleček.
- Sporočilo
- Izvleček
- Podpis
- (Kriptiranje) po želji

Zagotavljanje identičnosti sporočila (izvleček)

PKI

- Začetki: 1976 (Diffie, Hellman)
- Kriptografija
 - Asimetrična (javni in zasebni tajni ključ)
 - Simetrična (samo en ključ mora biti skriven) hitrejša (faktor 1000)
- Asimetrični ključi:
 - Ključ E zaklene podatek
 - Ključ D (samo ta ključ!) podatek odklene
 - Lahko tudi zaklene D in odklene E.

Naloge CA:

- Preverjanje identitete: ali si ta, za kogar se izdajaš (uporabnik, program, računalnik, usmerjevalnik...).
- Ustvarjanje digitalnega potrdila in povezave z identiteto posameznika (Id potrdila, javni ključ in podatki o lastniku)
- Podatki v digitalnem potrdilu:
 - Verzija specifikacije X.509
 - ID
 - Algoritem za podpis
 - Začetek in konec veljavnosti ključa
 - Podatki o lastniku.

Digitalni certifikat (ali elektronsko potrdilo)

- Zaupanja vredna avtoriteta (certifikatna agencija CA) pri nas so kvalificirani NLB, Pošta, SiGen, Halcom.
- CA mora imeti dobro definirana pravila (politiko) izdajanja certifikatov (kdo, kako, pod kakšnimi pogoji ga lahko dobi).
 - Primer: http://postarca.posta.si/files/postarca/politika_fizicne_kartica_v1.pdf
- CA podpiše osebne podatke "vizitko": to je digitalno potrdilo ali certifikat, je časovno omejen.
- Tega nato uporabljamo za avtentikacijo.

X.509

- X.509 v3: ITU-T / IETF PKI standard
 - Format certifikata
 - Postopek preverjanja veljavnosti certifikata
 - CRL
- Zahteva hierarhijo CA

- ITU-T: International Telecommunication Union oddelek za standardizacijo
- IETF- Internet Engineering Task Force (odprti standardi ,...)

Upravljanje z javnimi ključi

- Distribucija javnega ključa prek spleta (brez CA): možen je napad s prestrezanjem - man in the middle
- CA garantira, da ključ pripada določeni entiteti.
- Certifikat (digitalno potrdilo):
 - Podatki o lastniku
 - Javni ključ
 - Ostali podatki
 - Izvleček in podpis s strani CA

Certifikat - primer

Preverjanje certifikata

- Izdajatelj CA
- Preverimo lahko
 - Integriteto certifikata
 - Identiteto lastnika
 - Izdajateljev javni ključ in podpis
- Veriga zaupanja!

Veriga zaupanja

Izdajatelj: RootCA

Subjekt: RootCA

Izdajatelj: RootCA

Subjekt: OrgCA

Izdajatelj: OrgCA

Subjekt: Peter Veter

Korenska avtoriteta

Organizacijska CA

Uporabnik

Veriga zaupanja

- Na vrhu je avtoriteta, ki ji eksplicitno zaupam.
- Samo-podpisan certifikat; varovanje!
- Eksplicitno lahko zaupamo tudi komurkoli nižje v verigi.

Veriga zaupanja

- Komu zaupata oba? Nikomur?
 - Par novih certifikatov, vsakomu iz druge hierarhije
 - Navzkrižno certificiranje (CA)

Križno certificiranje

Izdajatelj: Root1CA

Subjekt: Root1CA

Izdajatelj: Root1CA

Subjekt: Org1CA

Izdajatelj: Org1CA

Subjekt: Peter Veter

Izdajatelj: Root2CA

Subjekt: Root2CA

Izdajatelj: Root2CA

Subjekt: Org2CA

Izdajatelj: Org2CA

Subjekt: Anja Molek

Križno certificiranje

Izdajatelj: Root1CA

Subjekt: Root1CA

Izdajatelj: Root1CA

Subjekt: Org1CA

Izdajatelj: Org1CA

Subjekt: Peter Veter

Izdajatelj: Root2CA

Subjekt: Root1CA

Izdajatelj: Root1CA

Subjekt: Root2CA

Izdajatelj: Root2CA

Subjekt: Root2CA

Izdajatelj: Root2CA

Subjekt: Org2CA

Izdajatelj: Org2CA

Subjekt: Anja Molek

CRL - ČRNA LISTA

- Certificate Revocation List
- Sporne certifikate je potrebno preklicati! Npr. če
 - Ukraden
 - Menjava službe
 - Tajni ključ ogrožen
- CRL: podpis CA in čas (veljavnost)
- ARL Authority Revocation List (koren)
- Validacija digitalnega potrdila: preveriti je treba tudi CRL (če ni bilo preklicano)!

PKCS –standardi (RSA lab.)

- PKCS #7 Cryptographic Message Syntax (kako podpisati in kriptirati)
- PKCS #8 Format shranjevanja ključa
- PKCS #10 Format zahteve za certifikat
- PKCS #11 Dostop do kripto naprave
- PKCS #12 Zasebni ključi, certifikati, CRL

RFC standardi

- RFC 3369 Cryptographic Message Syntax
- RFC 3280 X.509 PKI, certifikat in CRL profil.
- RFC 2315 = PKCS #7 kako podpisati in kriptirati

Pregled celotne vsebine varnosti

- Kriptografija
- Mehanizmi in protokoli (avtentikacija, integriteta...) <a>✓
- PKI ✓
- Omrežje zgradba in požarne pregrade

Varna komunikacija

- Zaupnost kdo sme prebrati? (enkripcija)
- Avtentikacija dokaži, da si res ti,
- (Identifikacija povej, kdo si brez dokaza)
- Integriteta sporočila je bilo med prenosom spremenjeno?
- Preprečevanje zanikanja (nonrepudiation) res si poslal / res si prejel.
- Razpoložljivost in nadzor dostopa preprečevanje nelegitimne rabe virov (avtorizacija – ugotavljanje, ali nekaj smeš storiti)
- Pomembno je tudi beleženje vseh dogodkov (dostopov, ...)

Protokola SSL (Secure Sockets Layer) in TLS (Transport Layer Security)

- Aplikaciji nudi varen kanal, overjanje strežnika in izmenjavo sejnih ključev.
- Leži nad transportno plastjo.
- Aplikacija se ga zaveda (zna uporabljati).
- Tipična uporaba:
 - na aplikacijski plasti za HTTP (https), FTP, SMTP, NNTP, SIP
 - Za tuneliranje celotnega omrežnega sklada VPN nad transportno plastjo

- Odjemalec: ClientHello (max. verzija TLS, naključno št., seznam podprtih kriptografskih p., izvlečkov in kompresij)
- TLS strežnik: ServerHello (izbrana verzija TLS, naključno št., izbrane metode iz seznama)
- TLS strežnik: svoje digitalno potrdilo [lahko tudi zahteva potrdilo od odjemalca]
- Odjemalec lahko preveri potrdilo.
- Na podlagi naključnih št. izračunata ključe.
- Komunikacija: simetrično kriptirana sporočila, dodan MAC (odtis sporočila)

Tipični algoritmi SSL/TLS

- Izmenjava ključev: RSA, Diffie-Hellman, PSK...
- Simetrično kriptiranje: RC4, 3-DES, AES, Camellia (starejši SSL: tudi DES, RC2, IDEA).
- Digitalni izvleček: MD5, SHA-1

IP Sec

- Nudi varen kanal na omrežni plasti
- Telo IP paketa se kriptira, glava pa ne (to bi onemogočilo usmerjanje).
- Dva protokola
 - Authentication Header protokol (AH) nudi avtentikacijo izvora in integriteto podatkov, ne pa zaupnosti.
 - Encapsulation Security Protocol (ESP) nudi avtentikacijo izvora, integriteto, in zaupnost.
 - V obeh se najprej ustvari varen logični kanal

Nadzor dostopa: požarne pregrade

- Požarna pregrada: HW+SW, potreben za izolacijo med notranjim (zasebnim) in zunanjim (javnim) omrežjem.
 - Paketno filtriranje: na omrežni plasti gleda glavo paketa (IP številko, številko vrat – izvora in cilja)
 - Aplikacijsko filtriranje: gleda aplikacijska sporočila,
 (Deep packet inspection) ne samo glavo.
- IDS (intrusion detection system)
- IPS = aktivni IDS (intrusion prevention system)
 - Vzorci ali podpisi napadov

DMZ

- Demilitarized zone
- Del omrežja, ki vsebuje infrastrukturo storitev, ki jih podjetje nudi javnemu (nevarnemu) internetu.
- Napadalec lahko dostopa le do DMZ, ne do celotnega omrežja
- Tipične storitve: spletni strežnik, poštni strežnik, posredniki (proxy) in obratni posredniki (reverse proxy) – aplikacijski požarni zid (posreduje pri dostopu v interno omrežje, npr. interni poštni strežnik)

Postavitev DMZ: ena ali dve požarni pregradi

Varnostni standardi

- ISO/IEC 27000 serija (prej 17799 ter BS 7799) :
 - ISMS Information Security Management System
 - najboljše prakse z nadgradnjo
 - osnova certificiranja
- Slovenske različice (SIST)
 - Sistemi za upravljanje varovanja informacij Specifikacija z napotki za uporabo
 - Informacijska tehnologija Kodeks upravljanja varovanja informacij

ISO/IEC 27002:2013 Sistem upravljanja varovanja informacij Information technology — Security techniques — Code of practice for information security controls

- 14 bistvenih poglavij področij, za vsako so določeni cilji, vsak cilj nadziramo s pomočjo kontrolnih točk (nadzorstev).
 - skupno 35 ciljev,
 - 114 nadzorstev

Primeri poglavij, ciljev, kontrol

- Fizična zaščita in zaščita okolja
 - Varovana območja
 - kontrole fizičnega dostopa (npr. beležimo čas prihoda in odhoda, identifikacija z magnetno kartico)
 - Varovanje opreme
 - Namestitev in zaščita pred krajo, ognjem, prahom...
 - Oskrba z energijo (UPS, generator)
- Upravljanje z operacijami
 - Zaščita pred zlonamerno programsko opremo
 - Namestitev in posodabljanje protivirusnih programov...
 - Beleženje in nadzor
 - Aktivnost uporabnikov, adminov, napake, incidenti...
 - Upravljanje s tehničnimi ranljivostmi
 - Nameščanje popravkov in novih različic; kaj lahko nameščajo uporabniki sami
- Varnost komunikacij
- Šifriranje