Teoria de Grupos

Douglas de Araujo Smigly

26 de maio de 2018

Problemas e exercícios resolvidos

1 Questões

1.1 Grupos

- (1) Prove que o par (G, \star) é um grupo em cada um dos casos seguintes:
 - (a) $G = \mathbb{Z}_8 \ e \star : G \times G \to G$, dada por:

$$\star(\overline{a},\overline{b}) = \overline{a} + \overline{b} = \overline{a+b}$$

- (b) $G = S^1 = \{z \in \mathbb{C} : |z| = 1\}$ e star o produto usual de números complexos.
- (2) Seja G um grupo. Mostre que se $(ab)^2 = a^2b^2$, para quaisquer $a, b \in G$, então G é abeliano.
- (3) Vamos tentar generalizar a questão 1.
 - (a) Seja G um grupo no qual $(ab)^i = a^i b^i$, para três inteiros consecutivos i e para quaisquer a, binG. Mostre que G é abeliano.
 - (b) Vale o mesmo resultado se $(ab)^i = a^i b^i$, para apenas dois inteiros consecutivos i? Prove ou dê contraexemplo.
- (4) Seja G um conjunto não vazio com uma operação binária associativa.
 - (a) Mostre que as seguintes condições são equivalentes:
 - (i) G é um grupo;
 - (ii) Para todos $a, b \in G$, as equações bx = a e yb = a têm pelo menos uma solução em G.
 - (iii) Existe $e \in G$ tal que ae = a, para todo $a \in G$ e para todo $a \in G$, existe $b \in G$ tal que ab = e (isto é, "unidade à direita"e inverso à direita).

- (b) Considere $G = S_3$, com a operação binária de composição correspondente e $H = \mathbb{Z}_3$, com a multiplicação usual.
 - (i) Resolva as equações bx = a e yb = a, para todos $a, b \in G$.
 - (ii) Resolva as equações bx = a e yb = a, para todos $a, b \in H$.
 - (iii) Conclua que (S_3, \circ) é grupo, mas (\mathbb{Z}_3, \cdot) não o é.
- (5) Considere um grupo G. Dizemos que um elemento $a \in G$ é idempotente se, $a^2 = e$.
- (a) Seja G um grupo tal que $a^2 = e$, para todo $a \in G$. Mostre que G é abeliano.
- (b) O mesmo resultado é válido se G é um grupo tal que $a^3=e$, para todo $a\in G$? Prove ou dê contraexemplo.
- (6) Seja G um grupo tal que $(ab)^2 = (ba)^2$, para todos $a, b \in G$ e suponha que x = e é o único elemento de G tal que $x^2 = e$. Mostre que G é abeliano.
- (7) Sejam m, n inteiros positivos tais que $\operatorname{mdc}(m, n) = 1$ (ou seja, m e n são primos entre si). Seja G um grupo em que todas as potências m-ésimas comutem entre si e todas as potências n-ésimas comutem entre si. Mostre que G é abeliano.

1.2 Subgrupos

- (1) Em cada caso, verifique se o conjunto H é subgrupo do grupo G dado em cada um dos itens a seguir:
- (a) $G = \mathbb{Q}(\sqrt{2}, i)$ com a multiplicação usual, e $H = \mathbb{Q}(\sqrt{2})$.
- (2) Seja G um grupo e seja S um subconjunto de G. Mostre que S é um subgrupo de G se e somente se $S \neq \emptyset$ e, para todos $a, b \in G$, se $a, b \in S$, então $ab^{-1} \in S$.
- (3) Seja $G = S_4$. Mostre que

$$V = \{id, (12)(34), (13)(24), (14)(23)\}\$$

 $\acute{\text{e}}$ subgrupo de G.

- (4) Seja G um grupo e seja $\{H_i : i \in I\}$ uma família de subgrupos de G.
- (a) Mostre que $\bigcap_{i \in I} H_i$ é um subgrupo de G.
- (b) É verdade que $\bigcup_{i \in I} H_i$ sempre é um subgrupo de G? Prove ou dê contraexemplo.
- (5) Seja G um grupo e sejam H e K subgrupos de G. Mostre que $H \cup K$ é um subgrupo de G se e somente se $H \subseteq K$ ou $K \subseteq H$.
- (6) Seja G um grupo e H um subconjunto bnão vazio finito de G tal que HH = H. Prove que H é um subgrupo de G. E se H não for finito?
- (7) Seja G um grupo. Dados H um subgrupo de G e $a \in G$, mostre que $aHa^{-1} = \{aha^{-1} : h \in H\}$ é um subgrupo de G. Se H é finito, qual a ordem de aHa^{-1} ?
- (8) Seja a um elemento de um grupo G. O normalizador de a em G é dado por

$$N(a) = \{x \in G : xa = ax\}$$

- (a) Determine o normalizador de σ em $S_3 = \{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$.
- (b) Determine o normalizador de j em $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$.
- (c) Prove que N(a) é um subgrupo de G para todo $a \in G$.
- (9) Seja G um grupo e seja H um subgrupo de G. Considere

$$C_G(H) = \{x \in G : xh = hx, \forall hinH\}$$

 $C_G(H)$ é chamado centralizador de H em G.

- (a) Seja $S_3 = \{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$, e considere $H = \{1, \sigma, \sigma^2\}$.
 - Encontre N(a), para todo $a \in H$.
 - Calcule $\mathcal{C}_{S_3}(H)$.
 - Verifique que $C_{S_3}(H) = \bigcap_{h \in H} N(h)$.

- (b) Prove que $C_G(H) = \bigcap_{h \in H} N(h)$, para todo grupo $G \in H$ subgrupo de G.
- (c) Mostre que $C_G(H)$ é subgrupo de G.
- (10) O centro de um grupo G é definido como sendo o conjunto

$$\mathcal{Z}(G) = \{ z \in G : zx = xz, \forall x \in G \}$$

- (a) Calcule $\mathcal{Z}(S_3)$.
- (b) Calcule $\mathcal{Z}(Q_8)$.
- (c) Verifique que $\mathcal{Z}(G) = \mathcal{C}_G(G)$.
- (d) Prove que $\mathcal{Z}(G)$ é subgrupo de G.
- (11) Seja G um grupo. Define-se a ordem de $a \in G$ como sendo o menor inteiro positivo n tal que $a^n = e$, se esse número existir (casos contrário, dizemos que a ordem de a é infinita). Denotamos a ordem de a por o(a). Mostre que se $a \in G$ tem ordem finita, esse número coincide com a ordem do subgrupo de G gerado por a.
- (12) Seja G um grupo de ordem par. Mostre que G contém um elemento de ordem 2.
- (13) Mostre que se G é um grupo de ordem par, então existe um número ímpar de elementos de ordem 2.
- (14) Seja a um elemento de um grupo tal que $a^n = e$. Mostre que $o(a) \mid n$.
- (15) Seja G um grupo e sejam $a, b \in G$. Mostre que ab e ba têm a mesma ordem.
- (16) Seja G um grupo e seja $a \in G$ um elemento de ordem n. Se n = km, mostre que a^k tem ordem m.
- (17) Seja G um grupo e seja $a \in G$ um elemento de ordem n. Seja m um inteiro positivo tal que mdc(m, n) = 1. Mostre que $o(a^m) = n$. O que ocorre se mdc(m, n) > 1?
- (18) Seja $n \in \mathbb{N}^*$. Definitions:

$$\varphi(n) = \big| \{ m \in \mathbb{N}^* : \mathrm{mdc}(m, n) = 1 \} \big|$$

 φ é a chamada função φ de Euler ou função totiente de Euler.

- (a) Encontre $\varphi(24), \varphi(35)$ e $\varphi(97)$.
- (b) Verifique que $\varphi(p) = p 1$, onde p é um número primo.
- (c) Mostre que o número de geradores de um grupo cíclico de ordem $n \in \varphi(n)$.

Na verdade, temos que

$$\varphi(n) = n \prod_{\substack{p \text{ primo} \\ p|n}} \left(1 - \frac{1}{p}\right)$$

- (19) Vamos mostrar nesse exercício que $GL_4(\mathbb{Z})$ admite um elemento de ordem 12.
 - (a) O m-ésimo polinômio ciclotômico $\varphi_n(x)$ é definido como

$$\varphi_n(x) = \prod_{\xi \in mu_m(\mathbb{C})} (x - \xi),$$

onde $\mu_m(\mathbb{C}) = \langle e^{\frac{2\pi i}{m}} \rangle = \{1, e^{\frac{2\pi i}{m}}, \dots, e^{\frac{2\pi i (m-1)}{m}} \}$ é o conjunto das raízes m-ésimas da unidade (isto é, as raízes, em \mathbb{C} , da equação $x^m - 1 = 0$). Mostre que $\varphi_{12}(x) = x^4 - x^2 + 1$.

(b) Dado um polinômio mônico $p(x) = x^k + a_{k-1}p^{k-1} + \ldots + a_1x + a_0$, dizemos que a **matriz companheira** C de p(x) é a matriz

$$C = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{k-1} \end{pmatrix}$$

- (i) Escreva a matriz companheira de $\varphi_{12}(x)$.
- (ii) Seja A a matriz companheira de $\varphi_m(x)$. Mostre que $A^m = I$. Pode-se mostrar que não existe natural positivo k < m, tal que $A^k = I$, ou seja, a ordem de A é m.
- (c) Considere a matriz

$$B = \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{array}\right)$$

- (i) Verifique que B é inversível, e sua inversa possui todas as entradas inteiras.
- (ii) Dada C a matriz companheira de $\varphi_{12}(x)$, mostre que é possível obter a partir de C a matriz B por meio de operações elementares nas linhas e colunas.

5

(iii) Qual é a ordem de $A = BCB^{-1}$?

(d) Conclua que

$$A = \left(\begin{array}{cccc} 2 & -16 & 3 & -1\\ 1 & -2 & 0 & 0\\ 4 & 5 & -3 & 1\\ 0 & 35 & -8 & 3 \end{array}\right)$$

é um elemento de ordem 12 de $GL_4(\mathbb{Z})$. Na verdade, 12 é a maior ordem finita possível para um elemento de $GL_4(\mathbb{Z})$. As possíveis ordens para elementos desse grupo que possuem ordem finita são 2, 3, 4, 5, 6, 8, 10 e 12.

- (20) Mostre que todo subgrupo de um grupo cíclico é cíclico.
- (21) Sejam G um grupo e sejam $a, b \in G$.
 - (a) Mostre que $o(a) = o(b^{-1}ab)$.
 - (b) Se G possui apenas um elemento a de ordem n, mostre que $a \in \mathcal{Z}(G)$ e que n = 1 ou n = 2.
- (22) Seja $G = \mathcal{M}_2(\mathbb{Z})$, munido da multiplicação usual de matrizes. Considere

$$A = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- (a) Verifique que o(A) = o(B) = 2.
- (b) Verifique que $o(AB) = \infty$.
- (c) Conclua que se G não é abeliano, existem elementos $a, b \in G$, tais que $o(a), o(b) < \infty$, mas $o(ab) = \infty$.
- (d) Encontre outros exemplos de grupos não abelianos e elementos que satisfazem essa condição.
- (23) Seja G um grupo não trivial.
 - (a) Encontre todos os subgrupos de $G = (\mathbb{Z}_7, +)$.
 - (b) Prove que se G só possui como subgrupos os subgrupos triviais, então G é um grupo cíclico finito cuja ordem é um número primo.
- (24) Seja $G=S^1=\{z\in\mathbb{C}:|z|=1\}$. Para cada $n\geq 1$, consideremos o conjunto

$$\mu_n(\mathbb{C}) = \langle e^{\frac{2\pi i}{n}} \rangle = \{1, e^{\frac{2\pi i}{n}}, \dots, e^{\frac{2\pi i(n-1)}{n}} \}$$

formado pelas raízes n-ésimas da unidade (isto é, as raízes, em \mathbb{C} , da equação $x^n - 1 = 0$).

- (a) Encontre $\mu_3(\mathbb{C})$ e $\mu_5(\mathbb{C})$.
- (b) Mostre que $\mu_n(\mathbb{C})$ é subgrupo de S^1 .
- (c) Conclua que existem grupos infinitos que possuem subgrupos cíclicos finitos de todas as ordens.

1.3 Classes laterais e Teorema de Lagrange

- (1) Em cada caso seguinte, para G grupo e H subgrupo de G, determine [G:H].
 - (a) $G = \mathbb{Z}$ o grupo aditivo dos números inteiros e $H = \langle m \rangle$ o subgrupo dos múltiplos do inteiro $m \geq 2$.
- (b) $G = \mathbb{Z}_{12}$ o grupo aditivo dos inteiros módulo 12 e $H = \langle 4 \rangle = \{\overline{0}, \overline{4}, \overline{8}\}.$
- (c) $G = D_n = \langle \sigma, \tau | \sigma^n = \tau^2 = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, e $H = \langle \sigma^d, \sigma^r \tau \rangle$, onde $d \mid n \in 0 \le r < d$.
- (1) Seja G um grupo e sejam H e K subgrupos de G cujas ordens são relativamente primas. Mostre que $H \cap K = \{e\}$.
- (2) Seja G um grupo e sejam $a, b \in G$ tais que ab = ba. Se a tem ordem m, b tem ordem n e mdc(m, n) = 1, mostre que a ordem de ab é mn.
- (3) Seja G um grupo abeliano que contém um elemento de ordem n e um de ordem m. Mostre que G contém um elemento de ordem mmc(m, n).
- (4) Seja G umm grupo e sejam H e K dois subgrupos de índice finito em G. Mostre que $H \cap K$ é um subgrupo de índice finito em G.
- (5) Seja G um grupo e sejam $H \leq G$, e $K \leq H$. Mostre que K tem índice fiito em G se e somente se H tem índice finito em G e K tem índice finito em H. Neste caso, mostre que

$$[G:K] = [G:H][H:K].$$

(6) Neste exercício vamos construir um grupo não abeliano, contendo 8 elementos, cujos subgrupos são todos normais. Considere o seguinte subconjunto de $\mathcal{M}_2(\mathbb{C})$:

$$Q_8 = \{Id, -Id, I, -I, J, -J, K, -K\},$$

em que

$$Id = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad K = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

- (a) Verifique as seguintes identidades abaixo:
 - $I^2 = J^2 = K^2 = -Id$
 - IJ = K = -JI:
 - IK = -J = KI:
 - JK = I = -KJ.
- (b) Mostre que Q_8 com o produto usual de matrizes é um grupo não abeliano de ordem 8.

- (c) Encontre I^{-1}, J^{-1} e K^{-1} .
- (d) Calcule as ordens de todos os elementos de Q_8 .
- (e) Liste todos os subgrupos de Q_8 .
- (f) Mostre que todos os subgrupos de \mathbb{Q}_8 são normais.
- (g) Determine o centro $\mathcal{Z}(Q_8)$ de Q_8 .

1.4 Subgrupos normais e quocientes

- (1) Seja H um subgrupo de índice 2 em um grupo G. Mostre que H é normal em G.
- **(6)**
- 1.5 Homomorfismos de grupos

1.6 Grupos de Permutações

(1) Podemos descrever o grupo S_n com dois geradores, σ e τ , onde temos

$$S_n = \langle \sigma, \tau | \sigma^n = \tau^2 = 1, \tau \sigma = \sigma^{n-1} \tau \rangle$$

- (a) Descreva os elementos de S_3 .
- (b) Encontre $0 \le m, n \le 4$ tais que $\sigma^{2020} \tau^{2019} \sigma^{2018} \tau^{2017} \sigma^{2016} = \sigma^n \tau^m \in S_5$.
- (c) Escreva os elementos de S_4 e suas respectivas ordens baseado na representação dada acima.
- (2) Seja H um subgrupo de S_n . Mostre que $H \subseteq A_n$ ou $[H: H \cap A_n] = 2$.
- (3) Podemos representar um *n*-ciclo por $\sigma = (i_1, i_2, \dots, i_n)$.
 - (a) Qual \acute{e} a ordem de um n-ciclo?
 - (b) Qual é a ordem de um produto de r ciclos disjuntos de ordens n_1, n_2, \ldots, n_r ?
 - (c) Para quais inteiros positivos m um m-ciclo é uma permutação par?
- (4) Seja p um número primo. Mostre que todo elemento de ordem p em S_p é um p-ciclo. Mostre que S_p não possui elemento de ordem kp, para $k \geq 2$.
- (5) Sejam t e n inteiros positivos e p um primo. Mostre que o grupo S_n possui elementos de ordem p^t se, e somente se, $n \ge p^t$.
- (6) Mostre que as possíveis ordens dos elementos do grupo S_7 são 1, 2, 3, 4, 5, 6, 7, 10 e

A título de curiosidade, vale a pena citar o seguinte Teorema de Landau sobre o crescimento assintótico das ordens em elementos de S_n :

Teorema 1 (Landau). Se $\mathcal{G}(n)$ é a maior ordem possível para um elemento de S_n , então

$$\lim_{n \to \infty} \frac{\ln \mathcal{G}(n)}{\sqrt{n \ln n}} = 1$$

- (7) Vamos ver como se comportam os geradores de S_n .
 - (a) Mostre que S_n é gerado por $\begin{pmatrix} 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 3 \end{pmatrix}$, ..., $\begin{pmatrix} 1 & n-1 \\ 1 & n \end{pmatrix}$.
 - (b) Mostre que S_n é gerado por $\begin{pmatrix} 1 & 2 \end{pmatrix}$ e $\begin{pmatrix} 1 & 2 & \cdots & n \end{pmatrix}$
 - (c) Mostre que A_n é gerado pelos 3-ciclos de S_n , se $n \geq 3$.
- (8) Seja G um subgrupo de S_5 gerado pelo ciclo 1 2 3 4 5 e pelo elemento $\begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$. Prove que $G \cong D_5$, onde D_5 é o grupo diedral de ordem 10.
- (9) Seja $\varphi: D_4 \to C_{24}$ um homomorfismo. Mostre que para todo $\alpha \in D_4$, temos que $\varphi(\alpha^2) = e$.
- (10) Seja $\sigma \in S_n$ o r-ciclo i_1 i_2 ... i_r e seja $\alpha \in S_n$.

(a) Mostre que

$$\alpha\sigma\alpha^{-1} = \left(\begin{array}{ccc} \alpha(i_1) & \alpha(i_2) & \dots & \alpha(i_r) \end{array}\right).$$

- (b) Se σ, τ são dois r-ciclos, mostre que existe $\alpha \in S_n$ tal que $\alpha \sigma \alpha^{-1} = \tau$.
- (c) Prove que duas permutações são conjugadas se e somente se elas têm a mesma estrutura cíclica.
- (11) Mostre que A_4 não contém subgrupos de ordem 6 (e portanto, não vale a recíproca do Teorema de Lagrange).
- (12) Uma matriz de permutação é uma matriz obtida a partir da matriz identidade $n \times n$ permutando-se suas colunas. Denote por P_n o conjunto de todas as matrizes de permutação $n \times n$.
 - (a) Mostre que P_n forma um grupo com a multiplicação usual de matrizes.
 - (b) Mostre que a função

$$\begin{array}{cccc} \theta & : & S_n & \longrightarrow & P_n \\ & \sigma & \longmapsto & \theta(\sigma) \end{array}$$

em que $\theta(\sigma)$ denota a mattriz cuja *i*-ésima coluna coincide com a $\sigma(i)$ -ésima coluna da matriz identidade, é um isomorfismo.

- (c) Prove que $sgn(\sigma) = det(\theta(\sigma))$.
- (d) Ficou confuso sobre o que esta questão quer dizer? Considere as matrizes

$$\sigma = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad \tau = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Verifique $\sigma^3 = \tau^2 = I_3$, onde I_3 denota a matriz identidade 3×3 , e verifique que σ e τ satisfazem as condições da presentação de S_3 apresentada na questão 1. Ou seja, temos uma representação matricial para o grupo de permutações S_3 .

(13) Mostre que D_n é isomorfo ao subgrupo de S_n gerado pelas permutações

- (14) Determine todos os subgrupos normais de S_4 .
- (15) Ecnontre um grupo G que contenha subgrupos H e K tais que K seja normal em H, H seja normal em G, mas K não seja normal em G.
- (16) Seja n=3 ou $n\geq 5$. Mostre que $\{e\}$, A_n e S_n são os únicos subgrupos normais de S_n . (em particular, A_n é o único subgrupo de S_n de índice 2.)
- (17) Prove que o número de subgrupos de D_n é $\sigma(n) + \tau(n)$, onde $\tau(n)$ representa a quantidade de divisores positivos de n e $\sigma(n)$ representa a soma dos divisores de n.

1.7 Produto Direto

(18) Sejam G_1, G_2, G_3 grupos. Mostre que $G_1 \times G_2 \cong G_2 \times G_1$ e que $G_1 \times (G_2 \times G_3) \cong (G_1 \times G_2) \times G_3$.

(19) Sejam G_1, \ldots, G_n grupos e seja $a = (a_1, \ldots, a_n)$ um elemento do produto direto $G_1 \times \ldots \times G_n$. Suponha que, para cada $i = 1, \ldots, n$, o elemento a_i tenha ordem finita r_i no grupo G_i . Mostre que a ordem de a em G é igual a $\operatorname{mmc}(r_1, \ldots, r_n)$.

(20) Considere

$$S_k = \prod_{i=2}^k S_i$$

Encontre a ordem do elemento $a = \left(\sigma \tau^2 \sigma^0, \sigma^2 \tau^3 \sigma^{-1}, \sigma^2 \tau^4 \sigma^{-2}, \dots, \sigma^{\left\lfloor \frac{k+1}{2} \right\rfloor} \tau^k \sigma^{-\left\lfloor \frac{k-1}{2} \right\rfloor} \right) \in \mathcal{S}_k$.

(21)

- (a) Seja G um grupo e sejam H e K subgrupos normais de G tais que HK = G e $H \cap K = \{e_G\}$. Mostre que $G \cong H \times K$.
- (b) Sejam G_1 e G_2 dois grupos e seja $G = G_1 \times G_2$ o produto direto deles. Considere os seguintes subconjuntos de G:

$$H = \{(a_1, e_2) : a_1 \in G_1\}$$
 e $K = \{(e_1, a_2) : a_2 \in G_2\}$

onde e_i denota o elemento identidade do grupo G_i . Mostre que H e K são subgrupos normais de G tais que HK = G e $H \cap K = \{e_G\}$.

(22) Sejam G_1, G_2 grupos, seja N_1 um subgrupo normal de G_1 e seja N_2 um subgrupo normal de G_2 . Mostre que $N_1 \times N_2$ é um subgrupo normal de $G_1 \times G_2$ e que

$$\frac{G_1 \times G_2}{N_1 \times N_2} \cong \frac{G_1}{N_1} \times \frac{G_2}{N_2}$$

(23) Seja G um grupo e sejam H_1, \ldots, H_n subgrupos normais de G tais que $G = H_1 \ldots H_n$ e $H_i \cap H_1 \ldots H_{i-1} = \{e\}$, para todo $i = 2, \ldots, n$. Mostre que G é isomorfo ao produto direto de H_1, \ldots, H_n . Dizemos, neste caso, que G é produto direto interno de H_1, \ldots, H_n .

(24) Seja G um grupo e sejam H_1, \ldots, H_n subgrupos de G. Mostre que G é produto direto interno de H_1, \ldots, H_n se, e somente se

- (a) $h_i h_j = h_j h_i$, $\forall h_i \in H_i$ e $h_j \in H_j$, com $i \neq j$, e
- (b) Todo elemento de $q \in G$ se escreve de maneira única na forma

$$q = h_1 \cdots h_n$$

 $com h_i \in H_i, i = 1, \dots, n.$

- (25) Para todo $n \geq 1$, denotaremos por C_n o grupo cíclico de ordem n. Mostre que $C_n \times C_m$ é cíclico se e somente se $\mathrm{mdc}(m,n) = 1$ e que, neste caso, $C_n \times C_m \cong C_{mn}$.
- (26) Verifique que $C_4 \times C_6 \cong C_{12}$. De fato, $C_m \times C_n \cong C_{\text{mmc}(m,n)}$.
- (27) Dizemos que um grupo G é o produto semidireto (interno) de N por H se G contém subgrupos N e H tais que
 - (i) $N \triangleleft G$;
- (ii) NH = G;
- (iii) $N \cap H = \{e\}.$

Resolva cada um dos itens abaixo:

- (a) Mostre que se G é o produto semidireto interno de N por H, então os elementos de G podem ser expressos de maneira única na forma nh, com $n \in N$ e $h \in H$.
- (b) Seja G um produto semidireto de N por H. Mostre que

$$\begin{array}{cccc} \theta & : & H & \longrightarrow & \operatorname{Aut}(N) \\ & h & \longmapsto & \theta_h \end{array},$$

com $\theta_h(n) = hnh^{-1}$, $\forall n \in \mathbb{N}$, é um homomorfismo.

(c) Sejam N e H dois grupos e seja $\theta \colon H \to \operatorname{Aut}(N)$ um homomorfismo. Defina a seguinte operação binária no conjunto $N \times K = \{(n,k) : n \in N, h \in H\}$:

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \theta_{h_1}(n_2), h_1 h_2)$$

Mostre que $N \times H$ com essa operação binária forma um grupo, chamado produto semidireto (externo) de N por H e denotado por $N \rtimes_{\theta} H$.

(d) Mostre que

$$N^* = \{(n, e) \in N \rtimes_{\theta} H : n \in N\}$$

é um subgrupo normal de $N \rtimes_{\theta} H$ e que $N \rtimes_{\theta} H$ é o produto semidireto interno de N^* por

$$H^* = \{(e,h) \in N \rtimes_{\theta} H : h \in H\}$$

- (e) Mostre que se G é o produto semidireto interno de N por H, então $G \cong N \rtimes_{\theta} H$, onde θ é o homomorfismo do item (b).
- (f) Mostre que o grupo diedral D_n é um produto semidireto de um grupo cíclico de ordem n por um grupo cíclico de ordem 2.
- (28) Prove que $S_3 \cong \mathbb{Z}_3 \rtimes_{\theta} \mathbb{Z}_2$, onde

$$\begin{array}{ccc} \theta & : & \mathbb{Z}_2 & \longrightarrow & \operatorname{Aut}(\mathbb{Z}_3) \\ & x & \longmapsto & \theta_x \end{array},$$

onde $\theta_{\overline{0}} = 1_{\mathbb{Z}_3}$ e $\theta_{\overline{1}} = (x \mapsto -x)$.

1.8 Grupos Abelianos Finitos

- (29) Descreva todos os grupos abelianos de ordem $2^3 \cdot 3^4 \cdot 5$.
- (30) Mostre que um grupo abeliano finito não é cíclico se e somente se ele contiver um subgrupo isomorfo a $\mathbb{Z}_p \times \mathbb{Z}_p$ para algum primo p positivo.
- (31) Verifique que $\mathbb{Z}_6 \times \mathbb{Z}_2$ é um grupo abeliano finito que não é cíclico.
- (32) Mostre que D_{91} , com ordem 182, não contém subgrupos cíclicos de ordem 14.
- (33) Mostre que se a ordem de um grupo abeliano não for divisível por um quadrado então o grupo é cíclico.
- (34) Sejam G_1, G_2, G_3 grupos abelianos finitos. Mostre que, se

$$G_1 \times G_2 \cong G_1 \times G_3$$
,

então $G_2 \cong G_3$.

- (35) Seja G um grupo e $\mathcal{Z}(G)$ o centro de G.
 - (a) Mostre que se $G/\mathcal{Z}(G)$ for cíclico, então G será abeliano.
 - (b) Mostre que se G tem ordem p^2 , onde p é um número primo, então G é abeliano.
 - (c) Suponha que G não seja abeliano e que $|G| = p^3$, onde p é um número primo. Mostre que $\mathcal{Z}(G) = G'$ e que $G/\mathcal{Z}(G) \cong C_p \times C_p$, onde C_p denota o grupo cíclico de ordem p.

1.9 Ações de Grupo

- (36) Seja G um grupo de ordem p^k , onde p é um número primo e k > 0. Mostre que se H é um subgrupo de ordem p^{k-1} , então H é normal em G.
- (37) Seja G um p-grupo finito, onde p é um número primo positivo. Seja H um subgrupo normal de G tal que $H \neq \{e\}$. Mostre que $H \cap \mathcal{Z}(G) \neq \{e\}$.
- (38) Seja G um grupo agindo num conjunto X. Dizemos que a ação de G em X é livre se Stab $(x) = \{e_G\}$, para todo $x \in X$. Mostre que se a ação de G em X é livre, então $|\mathcal{O}(x)| = |G|$, para todo $x \in X$.
- (39) Seja G um grupo que age em um conjunto S. Para cada $g \in G$, considere o seguinte subconjunto de S:

$$S^g = \{ x \in S \colon q \cdot x = x \}$$

Mostre que o número de órbitas distintas da ação de G em S é dado por

$$\frac{1}{|G|} \sum_{g \in G} |S^g|.$$

2 Soluções

2.1 Grupos de Permutações

(1) Podemos descrever o grupo S_n com dois geradores, σ e τ , onde temos

$$S_n = \langle \sigma, \tau | \sigma^n = \tau^2 = 1, \tau \sigma = \sigma^{n-1} \tau \rangle$$

- (a) Descreva os elementos de S_3 .
- (b) Encontre $0 \le m, n \le 4$ tais que $\sigma^{2020} \tau^{2019} \sigma^{2018} \tau^{2017} \sigma^{2016} = \sigma^n \tau^m \in S_5$.
- (c) Escreva os elementos de S_4 e suas respectivas ordens baseado na representação dada acima.

Solução:

(a) Baseado na representação dada no enunciado, temos que

$$S_3 = \{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$$

(b) Em S_5 , temos que $\sigma^5 = 1$, e $\tau \sigma = \sigma^4 \tau$. Desse modo,

$$\sigma^{2020}\tau^{2019}\sigma^{2018}\tau^{2017}\sigma^{2016} =$$

$$\sigma^{2020}\tau(\tau^{2018}\sigma^{2018})\tau(\tau^{2016}\sigma^{2016}) =$$

Encontre $0 \le m, n \le 4$ tais que $\sigma^{2020} \tau^{2019} \sigma^{2018} \tau^{2017} \sigma^{2016} = \sigma^n \tau^m \in S_5$.

- (c) Escreva os elementos de S_4 e suas respectivas ordens baseado na representação dada acima.
- (2) Seja H um subgrupo de S_n . Mostre que $H \subseteq A_n$ ou $[H: H \cap A_n] = 2$.
- (3) Podemos representar um *n*-ciclo por $\sigma = (i_1, i_2, \dots, i_n)$.
 - (a) Qual é a ordem de um n-ciclo?
 - (b) Qual é a ordem de um produto de r ciclos disjuntos de ordens n_1, n_2, \ldots, n_r ?
- (c) Para quais inteiros positivos m um m-ciclo é uma permutação par?
- (4) Seja p um número primo.Mostre que todo elemento de ordem p em S_p é um p-ciclo. Mostre que S_p não possui elemento de ordem kp, para $k \geq 2$.
- (5) Sejam t e n inteiros positivos e p um primo. Mostre que o grupo S_n possui elementos de ordem p^t se, e somente se, $n \ge p^t$.
- (6) Mostre que as possíveis ordens dos elementos do grupo S_7 são 1, 2, 3, 4, 5, 6, 7, 10 e 12.
- (7) Vamos ver como se comportam os geradores de S_n .

- (a) Mostre que S_n é gerado por $\begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix}, \dots, \begin{pmatrix} 1 & n-1 & 1 & n \end{pmatrix}$.
- (b) Mostre que S_n é gerado por $\begin{pmatrix} 1 & 2 \end{pmatrix}$ e $\begin{pmatrix} 1 & 2 & \cdots & n \end{pmatrix}$
- (c) Mostre que A_n é gerado pelos 3-ciclos de S_n , se $n \geq 3$.
- (8) Seja G um subgrupo de S_5 gerado pelo ciclo 1 2 3 4 5 e pelo elemento $\begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$. Prove que $G \cong D_5$, onde D_5 é o grupo diedral de ordem 10.
- (9) Seja $\varphi: D_4 \to C_{24}$ um homomorfismo. Mostre que para todo $\alpha \in D_4$, temos que $\varphi(\alpha^2) = e$.
- (10) Seja $\sigma \in S_n$ o r-ciclo i_1 i_2 ... i_r e seja $\alpha \in S_n$.
 - (a) Mostre que

$$\alpha\sigma\alpha^{-1} = \left(\begin{array}{ccc} \alpha(i_1) & \alpha(i_2) & \dots & \alpha(i_r) \end{array}\right).$$

- (b) Se σ, τ são dois r-ciclos, mostre que existe $\alpha \in S_n$ tal que $\alpha \sigma \alpha^{-1} = \tau$.
- (c) Prove que duas permutações são conjugadas se e somente se elas têm a mesma estrutura cíclica.
- (11) Mostre que A_4 não contém subgrupos de ordem 6 (e portanto, não vale a recíproca do Teorema de Lagrange).
- (12) Uma matriz de permutação é uma matriz obtida a partir da matriz identidade $n \times n$ permutando-se suas colunas. Denote por P_n o conjunto de todas as matrizes de permutação $n \times n$.
 - (a) Mostre que P_n forma um grupo com a multiplicação usual de matrizes.
 - (b) Mostre que a função

$$\begin{array}{cccc} \theta & : & S_n & \longrightarrow & P_n \\ & \sigma & \longmapsto & \theta(\sigma) \end{array},$$

em que $\theta(\sigma)$ denota a mattriz cuja *i*-ésima coluna coincide com a $\sigma(i)$ -ésima coluna da matriz identidade, é um isomorfismo.

- (c) Prove que $sgn(\sigma) = det(\theta(\sigma))$.
- (d) Ficou confuso sobre o que esta questão quer dizer? Considere as matrizes

$$\sigma = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad \tau = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Verifique $\sigma^3 = \tau^2 = I_3$, onde I_3 denota a matriz identidade 3×3 , e verifique que σ e τ satisfazem as condições da presentação de S_3 apresentada na questão 1. Ou seja, temos uma representação matricial para o grupo de permutações S_3 .

(13) Mostre que D_n é isomorfo ao subgrupo de S_n gerado pelas permutações

- (14) Determine todos os subgrupos normais de S_4 .
- (15) Ecnontre um grupo G que contenha subgrupos H e K tais que K seja normal em H, H seja normal em G, mas K não seja normal em G.
- (16) Seja n = 3 ou $n \ge 5$. Mostre que $\{e\}$, A_n e S_n são os únicos subgrupos normais de S_n . (em particular, A_n é o único subgrupo de S_n de índice 2.)
- (17) Prove que o número de subgrupos de D_n é $\sigma(n) + \tau(n)$, onde $\tau(n)$ representa a quantidade de divisores positivos de n e $\sigma(n)$ representa a soma dos divisores de n.

2.2 Produto Direto

- (18) Sejam G_1, G_2, G_3 grupos. Mostre que $G_1 \times G_2 \cong G_2 \times G_1$ e que $G_1 \times (G_2 \times G_3) \cong (G_1 \times G_2) \times G_3$.
- (19) Sejam G_1, \ldots, G_n grupos e seja $a = (a_1, \ldots, a_n)$ um elemento do produto direto $G_1 \times \ldots \times G_n$. Suponha que, para cada $i = 1, \ldots, n$, o elemento a_i tenha ordem finita r_i no grupo G_i . Mostre que a ordem de a em G é igual a $\operatorname{mmc}(r_1, \ldots, r_n)$.
- (20) Considere

$$S_k = \prod_{i=2}^k S_i$$

Encontre a ordem do elemento $a = \left(\sigma \tau^2 \sigma^0, \sigma^2 \tau^3 \sigma^{-1}, \sigma^2 \tau^4 \sigma^{-2}, \dots, \sigma^{\left\lfloor \frac{k+1}{2} \right\rfloor} \tau^k \sigma^{-\left\lfloor \frac{k-1}{2} \right\rfloor} \right) \in \mathcal{S}_k$.

(21)

- (a) Seja G um grupo e sejam H e K subgrupos normais de G tais que HK = G e $H \cap K = \{e_G\}$. Mostre que $G \cong H \times K$.
- (b) Sejam G_1 e G_2 dois grupos e seja $G = G_1 \times G_2$ o produto direto deles. Considere os seguintes subconjuntos de G:

$$H = \{(a_1, e_2) : a_1 \in G_1\}$$
 e $K = \{(e_1, a_2) : a_2 \in G_2\}$

onde e_i denota o elemento identidade do grupo G_i . Mostre que H e K são subgrupos normais de G tais que HK = G e $H \cap K = \{e_G\}$.

(22) Sejam G_1,G_2 grupos, seja N_1 um subgrupo normal de G_1 e seja N_2 um subgrupo normal de G_2 . Mostre que $N_1\times N_2$ é um subgrupo normal de $G_1\times G_2$ e que

$$\frac{G_1 \times G_2}{N_1 \times N_2} \cong \frac{G_1}{N_1} \times \frac{G_2}{N_2}$$

- (23) Seja G um grupo e sejam H_1, \ldots, H_n subgrupos normais de G tais que $G = H_1 \ldots H_n$ e $H_i \cap H_1 \ldots H_{i-1} = \{e\}$, para todo $i = 2, \ldots, n$. Mostre que G é isomorfo ao produto direto de H_1, \ldots, H_n . Dizemos, neste caso, que G é produto direto interno de H_1, \ldots, H_n .
- (24) Seja G um grupo e sejam H_1, \ldots, H_n subgrupos de G. Mostre que G é produto direto interno de H_1, \ldots, H_n se, e somente se
 - (a) $h_i h_j = h_j h_i$, $\forall h_i \in H_i$ e $h_j \in H_j$, com $i \neq j$, e
 - (b) Todo elemento de $g \in G$ se escreve de maneira única na forma

$$g = h_1 \cdots h_n$$
,

com $h_i \in H_i$, $i = 1, \ldots, n$.

- (25) Para todo $n \geq 1$, denotaremos por C_n o grupo cíclico de ordem n. Mostre que $C_n \times C_m$ é cíclico se e somente se $\mathrm{mdc}(m,n) = 1$ e que, neste caso, $C_n \times C_m \cong C_{mn}$.
- (26) Verifique que $C_4 \times C_6 \cong C_{12}$. De fato, $C_m \times C_n \cong C_{\mathrm{mmc}(m,n)}$.
- (27) Dizemos que um grupo G é o produto semidireto (interno) de N por H se G contém subgrupos N e H tais que
 - (i) $N \triangleleft G$;
- (ii) NH = G;
- (iii) $N \cap H = \{e\}.$

Resolva cada um dos itens abaixo:

- (a) Mostre que se G é o produto semidireto interno de N por H, então os elementos de G podem ser expressos de maneira única na forma nh, com $n \in N$ e $h \in H$.
- (b) Seja G um produto semidireto de N por H. Mostre que

$$\begin{array}{cccc} \theta & : & H & \longrightarrow & \operatorname{Aut}(N) \\ & h & \longmapsto & \theta_h \end{array},$$

com $\theta_h(n) = hnh^{-1}$, $\forall n \in \mathbb{N}$, é um homomorfismo.

(c) Sejam N e H dois grupos e seja $\theta \colon H \to \operatorname{Aut}(N)$ um homomorfismo. Defina a seguinte operação binária no conjunto $N \times K = \{(n,k) : n \in N, h \in H\}$:

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \theta_{h_1}(n_2), h_1 h_2)$$

Mostre que $N \times H$ com essa operação binária forma um grupo, chamado produto semidireto (externo) de N por H e denotado por $N \rtimes_{\theta} H$.

(d) Mostre que

$$N^* = \{(n, e) \in N \rtimes_{\theta} H : n \in N\}$$

é um subgrupo normal de $N \rtimes_{\theta} H$ e que $N \rtimes_{\theta} H$ é o produto semidireto interno de N^* por

$$H^* = \{(e, h) \in N \rtimes_{\theta} H : h \in H\}$$

- (e) Mostre que se G é o produto semidireto interno de N por H, então $G \cong N \rtimes_{\theta} H$, onde θ é o homomorfismo do item (b).
- (f) Mostre que o grupo diedral D_n é um produto semidireto de um grupo cíclico de ordem n por um grupo cíclico de ordem 2.
- (28) Prove que $S_3 \cong \mathbb{Z}_3 \rtimes_{\theta} \mathbb{Z}_2$, onde

$$\begin{array}{cccc} \theta & : & \mathbb{Z}_2 & \longrightarrow & \operatorname{Aut}(\mathbb{Z}_3) \\ & x & \longmapsto & \theta_x \end{array},$$

onde $\theta_{\overline{0}} = 1_{\mathbb{Z}_3}$ e $\theta_{\overline{1}} = (x \mapsto -x)$.

2.3 Grupos Abelianos Finitos

- (29) Descreva todos os grupos abelianos de ordem $2^3 \cdot 3^4 \cdot 5$.
- (30) Mostre que um grupo abeliano finito não é cíclico se e somente se ele contiver um subgrupo isomorfo a $\mathbb{Z}_p \times \mathbb{Z}_p$ para algum primo p positivo.
- (31) Verifique que $\mathbb{Z}_6 \times \mathbb{Z}_2$ é um grupo abeliano finito que não é cíclico.
- (32) Mostre que D_{91} , com ordem 182, não contém subgrupos cíclicos de ordem 14.
- (33) Mostre que se a ordem de um grupo abeliano não for divisível por um quadrado então o grupo é cíclico.
- (34) Sejam G_1, G_2, G_3 grupos abelianos finitos. Mostre que, se

$$G_1 \times G_2 \cong G_1 \times G_3$$
,

então $G_2 \cong G_3$.

- (35) Seja G um grupo e $\mathcal{Z}(G)$ o centro de G.
 - (a) Mostre que se $G/\mathcal{Z}(G)$ for cíclico, então G será abeliano.
 - (b) Mostre que se G tem ordem p^2 , onde p é um número primo, então G é abeliano.
- (c) Suponha que G não seja abeliano e que $|G| = p^3$, onde p é um número primo. Mostre que $\mathcal{Z}(G) = G'$ e que $G/\mathcal{Z}(G) \cong C_p \times C_p$, onde C_p denota o grupo cíclico de ordem p.

2.4 Ações de Grupo

(36) Seja G um grupo de ordem p^k , onde p é um número primo e k > 0. Mostre que se H é um subgrupo de ordem p^{k-1} , então H é normal em G.

(37) Seja G um p-grupo finito, onde p é um número primo positivo. Seja H um subgrupo normal de G tal que $H \neq \{e\}$. Mostre que $H \cap \mathcal{Z}(G) \neq \{e\}$.

(38) Seja G um grupo agindo num conjunto X. Dizemos que a ação de G em X é livre se $Stab(x) = \{e_G\}$, para todo $x \in X$. Mostre que se a ação de G em X é livre, então $|\mathcal{O}(x)| = |G|$, para todo $x \in X$.

(39) Seja G um grupo que age em um conjunto S. Para cada $g \in G$, considere o seguinte subconjunto de S:

$$S^g = \{ x \in S \colon g \cdot x = x \}$$

Mostre que o número de órbitas distintas da ação de G em S é dado por

$$\frac{1}{|G|} \sum_{g \in G} |S^g|.$$