Econ720. Prof. Lutz Hendricks. September 8, 2021

1 Money and Storage

Consider a two-period OLG model with flat money and a storage technology.

Demographics: In each period $N_t = (1+n)^t$ persons are born. Each lives for 2 periods.

Endowments: The initial old hold capital K_0 and money M_0 . Each young person is endowed with a e units of the good.

Preferences: $u(c_t^y) + \beta u(c_{t+1}^o)$.

Technology: Storing k_t units of the good in t yields $f(k_t)$ units in t+1. f obeys Inada conditions. The resource constraint is $N_t k_{t+1} = N_t e + N_{t-1} f(k_t) - C_t$ where $C_t = N_t c_t^y + N_{t-1} c_t^o$.

Government: The government pays a lump-sum transfer of $x_t p_t$ units of money to each old person: $M_{t+1} = M_t + N_{t-1} x_t p_t$. The aggregate money supply grows at the constant rate μ : $M_{t+1} = (1 + \mu) M_t$.

Markets: In each period, agents buy/sell goods and money in spot markets.

The timing in period t is a follows:

- The old enter period t holding aggregate capital $K_t = N_{t-1}k_t$ and nominal money balances of $M_t = m_t N_{t-1}$.
- Each old person produces $f(k_t)$.
- The young buy money (m_{t+1}/p_t) from the old, consume c_t^y and save k_{t+1} .
- The old consume their income.

Questions:

- 1. State the household's budget constraints when young and old.
- 2. Derive the household's optimality conditions. Define a solution to the household problem.
- 3. Define a competitive equilibrium.
- 4. Does an equilibrium with positive inflation exist? Intuition?
- 5. Define a steady state as a system of 6 equations in 6 unknowns.
- 6. Find the money growth rate (μ) that maximizes steady state consumption per young person, $(N_t c_t^y + N_{t-1} c_t^o)/N_t$.

2 Money in the Utility Function in an OLG Model

Demographics: In each period a cohort of constant size N is born. Each person lives for 2 periods. Endowments: The initial old hold capital K_0 and money M. No new money is ever issued. The young are endowed with one unit of work time.

Preferences: $u(c_t^y) + \beta u(c_{t+1}^o) + v(m_t^d/p_t)$. Assume v' > 0. Agents derive utility from real money balances as defined below.

Technology: Output is produced with a constant returns to scale production function $F(K_t, L_t)$. The resource constraint is standard. Capital depreciates at rate δ .

Markets: There are spot markets for goods (price p_t), money, labor (wage w_t), and capital rental (price q_t).

Timing:

- The old enter period t holding money M and capital K_t .
- Production takes place.
- The old sell money to the young. m_t^d is the nominal per capita money holding of a young person.
- Consumption takes place.

Questions:

- 1. Derive a set of 4 equations that characterize optimal household behavior. Show that the household's first-order conditions imply rate of return dominance, i.e., the real return on money is less than the real return on capital (assuming both capital and money are held in equilibrium).
- 2. Solve the firm's problem.
- 3. Define a competitive equilibrium.
- 4. Assume that the utility functions u and v are logarithmic. Solve in closed form for the household's money demand function, $m_t^d/p_t = \varphi(w_t, r_{t+1}, \pi_{t+1})$, and for its saving function, $s_{t+1} = \phi(w_t, r_{t+1}, \pi_{t+1})$. $\pi_{t+1} \equiv p_{t+1}/p_t$.