095946- ADVANCED ALGORITHMS AND PARALLEL PROGRAMMING

Fabrizio Ferrandi

a.a. 2021-2022

Order Statistics

- Randomized divide and conquer
- Analysis of expected time
- Worst-case linear-time order statistics
- Analysis

Material adapted from Erik D. Demaine and Charles E. Leiserson slides

Order Statistics

Input: A set of n (distinct) numbers and an integer i, with $1 \le i \le n$

Output: The element with rank i $x \in A$ that is larger than exactly i-1 other elements of A

- i = 1: minimum;
- i = n: maximum;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: lower or upper median.

Naive algorithm: Sort and index *i*th element.

Worst-case running time = $\Theta(n \lg n) + \Theta(1)$ = $\Theta(n \lg n)$,

using merge sort or heapsort (not quicksort).

How many comparison are needed to determine the minimum (or maximum) of a set of *n* elements?

```
\begin{aligned} & \text{Minimum (A)} \\ & & \min \leftarrow A[1] \\ & \text{for i} \leftarrow 2 \text{ to length[A] do} \\ & & \text{if min } > A[i] \text{ then} \\ & & \min \leftarrow A[i] \\ & & \text{return min} \end{aligned}
```

An upper bound of *n*-1 comparison can be obtained A dual algorithm for the maximum exist with the same complexity

Lower bound is still n-1 comparisons

Observing that every element excet the winner must lose at least one comparison, we conclude that n-1 comparisons are necessary to dermine the minimum

The Algorithm is optimal w.r.t. the number of comparisons performed

Simultaneous minimum and maximum

How many comparisons are necessary to determine both minimum and maximum

```
MinMax (A)

if length[A] odd then

max \leftarrow min \leftarrow A[1], i \leftarrow 2

else

if A[1] < A[2] then

min \leftarrow A[1], max \leftarrow A[2], i \leftarrow 3

else

min \leftarrow A[2], max \leftarrow A[1], i \leftarrow 3
```

```
while i \leq length[A] do
     if A[i] < A[i+1] then
     if min > A[i] then min \leftarrow A[i]
     if \max < A[i+1] then \max \leftarrow A[i+1]
     else
     if min > A[i+1] then min \leftarrow A[i+1]
     if max < A[i] then max \leftarrow A[i]
     i \leftarrow i+2
  return min, max
3(n-1)/2 = 3\lfloor n/2 \rfloor comparisons if n is odd
1+3(n-2)/2 = 3(n/2)-2 comparisons if n even
In general we need less than 3\lfloor n/2 \rfloor comparisons
```

Selection in linear time

Select the ith smallest of n elements (the element with rank i). Two versions:

- Randomized divide-and-conquer algorithm (linear in average)
- Deterministic version (derandomization linear in the worst case)

```
- 10 -
```

Randomized divide-andconquer algorithm

```
RAND-SELECT(A, p, q, i) > ith smallest of A[p..q]
   if p = q then return A[p]
   r \leftarrow \text{RAND-PARTITION}(A, p, q)
   k \leftarrow r - p + 1
                    \triangleright k = \operatorname{rank}(A[r])
   if i = k then return A[r]
  if i < k
      then return RAND-SELECT(A, p, r-1, i)
      else return RAND-SELECT(A, r + 1, q, i - k)
```


Example

Select the i = 7th smallest:

Partition:

i = 7

Select the 7 - 4 = 3rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:

$$T(n) = T(9n/10) + \Theta(n)$$

= $\Theta(n)$

 $n^{\log_{10/9} 1} = n^0 = 1$ CASE 3

Unlucky:

$$T(n) = T(n-1) + \Theta(n)$$
$$= \Theta(n^2)$$

arithmetic series

Worse than sorting!

Analysis of expected time

The analysis follows that of randomized quicksort, but it's a little different.

Let T(n) = the random variable for the running time of RAND-SELECT on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator random* variable

$$X_k = \begin{cases} 1 & \text{if Partition generates a } k: n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$

Analysis (continued)

To obtain an upper bound, assume that the *i*th element always falls in the larger side of the partition:

$$T(n) = \begin{cases} T(\max\{0, n-1\}) + \Theta(n) & \text{if } 0: n-1 \text{ split,} \\ T(\max\{1, n-2\}) + \Theta(n) & \text{if } 1: n-2 \text{ split,} \\ \vdots & & \\ T(\max\{n-1, 0\}) + \Theta(n) & \text{if } n-1: 0 \text{ split,} \end{cases}$$

$$= \sum_{k=0}^{n-1} X_k(T(\max\{k, n-k-1\}) + \Theta(n))$$

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k(T(\max\{k, n-k-1\}) + \Theta(n))\right]$$

Take expectations of both sides.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k(T(\max\{k, n-k-1\}) + \Theta(n))\right]$$
$$= \sum_{k=0}^{n-1} E[X_k(T(\max\{k, n-k-1\}) + \Theta(n))]$$

Linearity of expectation.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k(T(\max\{k, n-k-1\}) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E[X_k(T(\max\{k, n-k-1\}) + \Theta(n))]$$

$$= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)]$$

Independence of X_k from other random choices.

$$\begin{split} E[T(n)] &= E\left[\sum_{k=0}^{n-1} X_k(T(\max\{k, n-k-1\}) + \Theta(n))\right] \\ &= \sum_{k=0}^{n-1} E[X_k(T(\max\{k, n-k-1\}) + \Theta(n))] \\ &= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \end{split}$$

Linearity of expectation; $E[X_k] = 1/n$.

$$\begin{split} E[T(n)] &= E\left[\sum_{k=0}^{n-1} X_k(T(\max\{k, n-k-1\}) + \Theta(n))\right] \\ &= \sum_{k=0}^{n-1} E[X_k(T(\max\{k, n-k-1\}) + \Theta(n))] \\ &= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \\ &\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \Theta(n) \end{split}$$
 Upper terms appear twice.

Hairy recurrence

(But not quite as hairy as the quicksort one.)

$$E[T(n)] = \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \Theta(n)$$

Prove: $E[T(n)] \le cn$ for constant c > 0.

• The constant c can be chosen large enough so that $E[T(n)] \le cn$ for the base cases.

Use fact: $\sum_{k=\lfloor n/2\rfloor}^{n-1} k \le \frac{3}{8}n^2$ (exercise).

$$E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$$

Substitute inductive hypothesis.

$$E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$$
$$\le \frac{2c}{n} \left(\frac{3}{8}n^2\right) + \Theta(n)$$

Use fact.

$$E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$$

$$\le \frac{2c}{n} \left(\frac{3}{8}n^2\right) + \Theta(n)$$

$$= cn - \left(\frac{cn}{4} - \Theta(n)\right)$$

Express as *desired* – *residual*.

$$E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n)$$

$$\le \frac{2c}{n} \left(\frac{3}{8}n^2\right) + \Theta(n)$$

$$= cn - \left(\frac{cn}{4} - \Theta(n)\right)$$

$$\le cn$$

if c is chosen large enough so that cn/4 dominates the $\Theta(n)$.

Summary of randomized orderstatistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is *very* bad: $\Theta(n^2)$.
- Q. Is there an algorithm that runs in linear time in the worst case?
- A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively.

Worst-case linear-time order statistics

Select(i, n)

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively Select the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
- 3. Partition around the pivot x. Let k = rank(x).
- 4. if i = k then return x elseif i < kthen recursively SELECT the ith smallest element in the lower part else recursively SELECT the (i-k)th smallest element in the upper part

Same as RAND-SELECT

1. Divide the *n* elements into groups of 5.

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

lesser greater

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively Select the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.

lesser

Analysis

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

lesser

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor /2 \rfloor = \lfloor n/10 \rfloor$ group medians.

• Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.

lesser

greater

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor n/5 \rfloor /2 \rfloor = \lfloor n/10 \rfloor$ group medians.

- Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.
- Similarly, at least $3 \lfloor n/10 \rfloor$ elements are $\geq x$.

lesser

greater

Minor simplification

- For $n \ge 50$, we have $3 \lfloor n/10 \rfloor \ge n/4$.
- Therefore, for $n \ge 50$ the recursive call to SELECT in Step 4 is executed recursively on $\le 3n/4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time T(3n/4) in the worst case.
- For n < 50, we know that the worst-case time is $T(n) = \Theta(1)$.

Developing the recurrence

```
Select(i, n)
 1. Divide the n elements into groups of 5. Find the
   median of each 5-element group by rote.
  2. Recursively Select the median x of the \lfloor n/5 \rfloor group medians to be the pivot.
3. Partition around the pivot x. Let k = \text{rank}(x).
  4. if i = k then return x
     elseif i < k
         then recursively Select the ith smallest
             element in the lower part
         else recursively Select the (i-k)th
               smallest element in the upper part
```

Solving the recurrence

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{3}{4}n\right) + \Theta(n)$$

Substitution:

$$T(n) \le cn$$

$$T(n) \le \frac{1}{5}cn + \frac{3}{4}cn + \Theta(n)$$

$$= \frac{19}{20}cn + \Theta(n)$$

$$= cn - \left(\frac{1}{20}cn - \Theta(n)\right)$$

$$\le cn$$

if c is chosen large enough to handle both the $\Theta(n)$ and the initial conditions.

Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of *n* is large.
- The randomized algorithm is far more practical.

Exercise: Why not divide into groups of 3?