Линейна алгебра, Информатика, Група 6 Онлайн упражнение №1

Александър Гудев 30 октомври $2020\,\mathrm{r}.$

Съдържание

1	1 Линейни пространства	1
2	2 Примери	2
3	3 Подпространства	2
4	4 Линейна обвивка	3
5	5 Линейна независимост на вектори	4
1	1 Линейни пространства	
V	V е линейно пространство над <i>полето</i> \mathbb{F} , ако са изпълнени:	
1. Групови свойства: (V е комутативна (=абелева) група)		
	(a) Затвореност относно събиране: $\forall v, w \in V : \mathbf{v} + \mathbf{w} \in \mathbf{V}$	
	(б) Асоциативност на събирането: $\forall u, v, w \in V : (u + v) + w = u + (v + w)$	
	(в) Съществуване на неутрален елемент: $\exists \ 0 \in V : \forall u \in V : 0 + u = u + 0 = u$	u
	Заб.: използваме нулата единствено като буква – в общия случай тя не об нула, позната от училище. С 0 отбелязваме също и нулевия вектор $(0, \dots)$ от контекста се разбира кой символ "0" какво бележи.	
	(г) Обратимост на всеки елемент: $\forall u \in V: \exists \ (-u) \in V: u + (-u) = 0$	
	(д) Комутативност на събирането: $\forall u,v \in V: u+v=v+u$ (група с това абелева)	свойство се нарича
	• Пример за некомутативна операция - композиция на непрекъснати - те не образуват група!):	функции (внимание
	$sin(2x) \neq 2sin(x)$	
	2. Свойства, свързващи групата и скаларното умножение	
(a) Затвореност относно умножение със скалар: $\forall v \in V, \lambda \in F: \lambda \mathbf{v} \in V$		
	(б) Асоциативност: $\forall \lambda, \mu \in F, v \in V : \lambda(\mu \ v) = (\lambda \mu)v$	
	(в) Неутралност на умножението с единица: $\forall v \in V: 1_F \ v = v$	
	(г) Дистрибутивни закони (разкриване на скоби). Нека $\lambda, \mu \in F, u, v \in V$, то	огава:
	i. $(\lambda + \mu)v = \lambda v + \mu v$	
	ii. $\lambda(u+v) = \lambda u + \lambda v$	

2 Примери

Проверете, че дефиницията за ЛП е изпълнена за примерите по-долу:

• вектори в равнината, пространството, в 4D, ... – наредени п-орки:

$$\{(a_1,\ldots,a_n)\in\mathbb{F}^n\}$$

• полиноми (с числови (засега) коефициенти):

$$\{a_0 + a_1x + \ldots + a_nx^n \mid a_i \in \mathbb{F}, n \in \mathbb{N}\}\$$

— Също, полиноми от степен $\leqslant n$ за някое фиксирано n: $\mathbb{F}^{\leq n}[x]$. А полиномите от степен *movino* n?

$$\circ \ \mathbb{F}^{\leq 3}[x] = \{ax^3 + bx^2 + cx + d | a, b, c, d \in \mathbb{F}\}$$

$$(x^3 + 2x) + (-x^3 - 7) = 2x - 7$$

ullet всички реални функции в даден интервал: $\{f:[a,b] o \mathbb{R}\}$

$$-\underbrace{(f+g)}_{\text{събиране на }}\underbrace{(x)}=\underbrace{f(x)+g(x)}_{\text{събиране на }}\underbrace{(x)}=\underbrace{\lambda\cdot f(x)}_{\text{умножение на }$$

- всички непрекъснати функции в даден интервал
- всички безкрайни числови редици: $\{(a_1, a_2, a_3, \dots, a_n, \dots) \mid a_i \in \mathbb{R} \forall i\}$

3 Подпространства

- \bullet Нека V е линейно пространство. Ще казваме, че W е подпространство на V, ако:
 - 1. $W \subseteq V$
 - 2. W е затворено относно събиране на вектори
 - $3. \ W$ е затворено относно умножение със скалар.
- Казахме, че $\mathbb{F}^{\leq 2}[x]$ и $\mathbb{F}^{\leq 5}[x]$ са пространства. Вярно ли е, че $\mathbb{F}^{\leq 2}[x] \leq \mathbb{F}^{\leq 3}[x]$?
 - Зависи как дефинираме строго $\mathbb{F}^{\leq n}[x]$. Ако разглеждаме полиномите като наредени n-орки, вж. примера по-долу с \mathbb{R}^2 и \mathbb{R}^3 . Ако ги дефинираме като функции над множеството \mathbb{F} , тогава да.

Декартово произведение (напомняне)

Ако A и B са множества, то под $A \times B$ разбираме множеството от всички наредени двойки: $\{\,(a,b)\,|\,a\in A,b\in B\}$

- ullet Казахме също, че \mathbb{R}^3 тримерното пространство, и \mathbb{R}^2 равнината са линейни пространства.
 - Вярно ли е, че $\mathbb{R}^2 < \mathbb{R}^3$?
 - $\circ R^2 = \{(a, b) \mid a, b \in R\}$
 - $\circ R^3 = \{(a, b, c) \mid a, b, c \in R\}$
 - $\circ \ A \subseteq B \Leftrightarrow \forall a \in A : a \in B$
 - \circ Внимание! $R^2 \not\subseteq R^3$, следователно и $\mathbb{R}^2 \not \leq \mathbb{R}^3$

- Наредените двойки не са наредени тройки.
- Вярно ли е, че $W = \{(x,0,z) \mid x,y \in \mathbb{R}\}$ е подпространство на \mathbb{R}^3 ?
 - $\circ \ W \subset \mathbb{R}^3$
 - $(x,0,z) + (a,0,b) = (x+a,0+0,z+b) \in \mathbf{W}, \ \forall x,z,a,b \in \mathbb{R}$
 - $\circ \lambda(x,0,z) = (\lambda x,0,\lambda z) \in \mathbf{W}, \ \forall x,z,\lambda \in \mathbb{R}$
- $V = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ е непрекъсната}\}$
 - $-\ W = \{f: \mathbb{R} \to \mathbb{R} \, | \, f(53) = 0 \text{ и } f \text{ е непрекъсната} \}$ подпространство ли е на V?
 - $\circ W \subseteq V$ изпълнено!
 - $\circ f, g \in W, f + g \in W \Leftrightarrow (f + g)(53) = 0 \Leftrightarrow f(53) + g(53) = 0 \Leftrightarrow 0 + 0 = 0$
 - $\circ \ \lambda \in \mathbb{R}, f \in W, \lambda f \in W \Leftrightarrow (\lambda f)(53) = 0 \Leftrightarrow \lambda f(53) = 0 \Leftrightarrow \lambda 0 = 0 \Leftrightarrow 0 = 0$
 - Ами $W' = \{ f : \mathbb{R} \to \mathbb{R} \mid f(53) = 2 \text{ и f е непрекъсната} \} ?$
 - $\circ W' \subseteq V$ изпълнено!
 - $\circ f,g \in W',f+g \in W' \Leftrightarrow (f+g)(53)=2 \Leftrightarrow f(53)+g(53)=2 \Leftrightarrow 2+2=2$ не е изпълнено!

4 Линейна обвивка

Знаем какво са подпространства - а как можем да си ги създаваме сами?

- Разглеждаме $V_2 = \mathbb{R}^2$ и $V_3 = \mathbb{R}^3$ (над полето \mathbb{R}):
 - Ако $W \le V_2$ е подпространство и $(1,2) \in W$, какво най-малко още съдържа W? Затвореност!
 - $\circ \{\lambda(1,2) \mid \lambda \in \mathbb{R}\} \subseteq W$
 - Ако $W \leq V_3$ е подпространство и $(0,1,0),(2,0,-1) \in W$, какво най-малко още съдържа W?
 - \circ $(0,1,0)+(2,0,-1)=(2,1,-1)\in W$
 - \circ Wсъс сигурност съдържа равнината, определена от точките (0,0,0),(0,1,0),(2,0,-1)
- Сега нека $V = \mathbb{F}[x]$ е пространството от полиномите с коефициенти от \mathbb{F} (да речем, \mathbb{R} или \mathbb{Q}).
 - Ако We подпространство, съдържащо $3x^2$ и $-7x^7$, какво най-малко още съдържа W?
 - о $\lambda 3x^2, \mu(-7x^7) \in W$, за всички λ и $\mu \in \mathbb{F}$
 - $\circ \lambda x^2 + \mu x^7 \in W$, за всички λ и $\mu \in \mathbb{F}$
- Ако Vе пространство над полето \mathbb{F} и $\{a_i\}_{i=1}^n \subseteq V$ са вектори от него, как да дефинираме "наймалкото" подпространство, което ги съдържа?
 - $l(\{a_i\}) := \{\sum_{i=1}^n \lambda_i a_i \mid \lambda_i \in \mathbb{F} \ \forall i \in \{1, \dots, n\}\}\$
- Какво е $l(a_1, a_2, a_3)$, ако $a_1 = (0, 1, 0)$; $a_2 = (0, -\sqrt{10}, 0), a_3 = (7, 0, 0)$?

$$l(a_1, a_2, a_3) = \{\lambda_1(0, 1, 0) + \lambda_2(0, -\sqrt{10}, 0) + \lambda_3(7, 0, 0) \mid \lambda_i \in \mathbb{R}\}$$

= \{(0, a, 0) + (0, b(-\sqrt{10}), 0) + (7c, 0, 0) \left| a, b, c \in \mathbb{R}\}
= \{(a, b, 0) \left| a, b \in \mathbb{R}\}

- Равнината Oxy в тримерното пространство!
- Вярно ли е, че $l(a_1, a_2, a_3) = l(a_1, a_3)$? С най-малко колко вектора можем да "опишем" това подпространство?

5 Линейна независимост на вектори

• Казваме, че векторите $\{a_i\}_{i=1}^n$ са **линейнонезависими** (ЛНЗ), ако за всеки избор на коефициенти $\{\lambda_i\}_{i=1}^n$ е изпълнено:

$$\sum_{i=1}^{n} \lambda_i a_i = 0 \to \forall i : \lambda_i = 0$$

Тоест, ако единственият начин да получим 0, събирайки тези вектори, умножени с число, е да умножим всичките с 0.

Или, ако не можем да изразим никой от векторите като линейна комбинация на останалите.

- ако можехме, щеше поне един от коефициентите в линейната комбинация да е ненулев, за да го прехвърлим от другата страна на равенството.
- 1. Докажете, че следните вектори от \mathbb{F}^4 са ЛНЗ:
 - a = (-1, 2, 3, -2); b = (2, 1, -4, -3); c = (1, 3, -2, -3)

Взимаме дефиницията за линейна независимост: $\sum_{i=1}^n \lambda_i a_i = 0 \to \forall i: \lambda_i = 0$, и я прилагаме директно върху условието:

$$\lambda_{1}a + \lambda_{2}b + \lambda_{3}c = 0 \iff$$

$$\lambda_{1}(-1, 2, 3, -2) + \lambda_{2}(2, 1, -4, -3) + \lambda_{3}(1, 3, -2, -3) = 0 \iff$$

$$-1\lambda_{1}, 2\lambda_{1}, 3\lambda_{1}, -2\lambda_{1}) + (2\lambda_{2}, 1\lambda_{2}, -4\lambda_{2}, -3\lambda_{2}) + (1\lambda_{3}, 3\lambda_{3}, -2\lambda_{3}, -3\lambda_{3} = 0 \iff$$

$$-1\lambda_{1} + 2\lambda_{2} + 1\lambda_{3}, 2\lambda_{2} + 1\lambda_{1} + 3\lambda_{3}, -2\lambda_{3}, -4\lambda_{2} + 3\lambda_{1}, -2\lambda_{1} - 3\lambda_{2} - 3\lambda_{3} = 0 \iff$$

$$-1\lambda_{1} + 2\lambda_{2} + 1\lambda_{3} = 0; 2\lambda_{2} + 1\lambda_{1} + 3\lambda_{3} = 0; -2\lambda_{3}, -4\lambda_{2} + 3\lambda_{1} = 0; -2\lambda_{1} - 3\lambda_{2} - 3\lambda_{3} = 0$$

Получената (хомогенна) система решаваме, както си знаем:

$$\begin{pmatrix} -1 & 2 & 1 \\ 2 & 1 & 3 \\ -2 & -4 & 3 \\ -2 & -3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 5 & 5 \\ 0 & -6 & 1 \\ 0 & 7 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

И резултатът е $1\lambda_1 = 0, \lambda_3 = 0, \lambda_2 = 0 \iff \lambda_i = 0 \ \forall i \in \{1, 2, 3\}, \text{ тоест } a, b, c \text{ са ЛНЗ}.$

Следващите два примера проверете сами!

- a = (1, -1, 2, 3); b = (2, -2, 1, 1)
- a = (1, 2, -1, 3); b = (-1, -2, 1, 1)
- 2. Проверете, че a,b,c са ЛНЗ вектори от \mathbb{F}^3 :
 - a = (1, 1, 1), b = (1, 1, 2), c = (1, 2, 3)?
 - Вярно ли е, че $\mathbb{F}^3 = l(a, b, c)$?
 - Три вектора в пространството $\mathbb{F} \times \mathbb{F} \times \mathbb{F}!$

Такива вектори, които са едновременно ЛНЗ и тяхната обвивка е цялото разглеждано пространство, наричаме базиc на пространството.

- Училищен базис в 3D: (1,0,0); (0,1,0); (0,0,1)
- Какво означава $\mathbb{F}^3 = l(a,b,c)$? Че всеки вектор $v \in \mathbb{F}$ може да се представи като комбинация на a,b,c!
- 3. Докажете, че a, b, c образуват базис на \mathbb{F}^3 , и намерете координатите на вектора v = (2, 2, 2) в този базис:
 - a = (1, 1, 1), b = (1, 1, 2), c = (1, 2, 3)
 - a = (2, 2, -1); b = (2, -1, 2); c = (-1, 2, 2)
 - a = (1, 2, 3); b = (2, 5, 7); c = (3, 7, 11)