1. ПРЕДМЕТ И ТИПОВЫЕ ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Основные определения [3]

Понятие системы в рамках курса заключается в следующем:

- имеется некоторый объект управления (или наблюдения);
- присутствует система сбора и обработки данных наблюдений над объектом;
- организованы каналы связи и воздействия на объект;
- существует управляющий (задающий) орган.

Рисунок 1.1 – Типовая схема автоматизированной системы

Как видно набора компонентов, такая структура присуща, как правило, всем системам управления, в той или иной модификации. Основное отличие систем, рассматриваемых в рамках курса в том, что они являются автоматизированными, а не автоматическими, т.е. в контур управления включен оператор.

Поэтому в общих чертах можно говорить об **организационно техническом управлении**, сочетающем в себе классические методы и способы обработки данных с необходимостью **принятия решений**, а сами системы получили название **автоматизированных систем управления**.

В данных системах оптимизации подвергаются:

- отдельные элементы систем;
- алгоритмы управления и обработки;
- структуры связей (соединения) между элементами.

"Исследование операций представляет собой искусство давать плохие ответы на практические вопросы, на которые даются еще худшие ответы другими методами".

Т.Л. Саати.

1.2. Основная задача исследования операций

Операция – последовательность действий, направленных на достижение какой либо цели.

Критерий эффективности — показатель совпадения (соответствия) цели операции и состояния системы.

Стратегия – способ расстановки сил и средств при проведении операции.

Математическая модель операции – это формальные соотношения, устанавливающие связь *критерия* и *стратегии*.

Решение — множество параметров стратегии, полученных на основании математической модели.

Рисунок 1.2 – Основные определения

Основная задача исследования операций: нахождение для выбранной **математической модели** решения, при котором критерий эффективности достигает экстремума (**min** или **max**).

Основные черты операционного подхода заключаются в следующем.

Чтобы подход можно было квалифицировать, как операционный он должен включать:

1. Ориентацию на принятие решения. (Расчеты должны иметь непосредственное и определенное отношение к выбору способа действия) (стратегии).

- 2. Оценку на основе критериев эффективности. (Сравнение на количественных оценках, позволяющих однозначно определить полезность ожидаемого подхода).
- 3. Доверие к математической модели. (Однозначность трактовки математической модели; опираясь на одни и те же данные, специалисты должны получать одинаковые результаты).
- 4*. Необходимость использования ЭВМ. (Это не благое пожелание, а обуславливается сложностью используемых математических моделей либо громоздкостью процедур, обеспечивающих те или иные системы наблюдения, управления или контроля).

1.3. Математические модели в исследовании операций [58]

1. Детерминированные модели операций. Их основные черты:

- полная определенность в настоящем, прошлом и будущем;
- повторяемость результатов при одинаковых исходных данных.
- 2. Вероятностные модели (статистические, стохастические):
- введены случайные факторы воздействия;
- возможны случайные реакции системы на детерминированные воздействия (Как в фантастическом рассказе, где некий правитель использовал следующий механизм наложения резолюций "Утвердить", "Отвергнуть", "Вернуть на доработку", данные резолюции налагались случайным порядком).

3. Игровые модели:

- наличие конфликтной ситуации;
- моделирование условий конфликта;
- получение на основании модели оптимального способа поведения в конфликтной ситуации.
- 4. *Неполные модели*. Строятся на основании ограниченного набора экспериментальных данных и экспертных оценок. Пополняются и корректируются по мере накопления данных
- 5. **Эвристические модели**. В их основании лежат опыт или наблюдения, как правило, не поддающиеся математическому описанию. Как говорил К. Прутков [49, "Плоды и раздумья", № 58 из опубликованного]: "Щёлкни лошадь в нос, она махнет хвостом".
- 6. *Имитационные модели*. Это, обычно, программные, технические или технико-программные модули, ориентированные на проведение экспериментальных исследований.

1.4. Типовые задачи исследования операций [58]

1.4.1 Задачи поиска (поисковые задачи)

Постановка задачи.

В распоряжение пользователя предоставляется комплекс технических и программных средств при ограничениях на время или стоимость эксплуатационного оборудования.

Цель оптимизации.

Распределение ограниченных ресурсов таким образом, чтобы максимизировать вероятность нахождения объекта.

Таким образом, оптимизации подвергаются

- структуры хранения,
- алгоритма поиска,
- технические средства поиска как аргумент функции эффективности. Классификация поисковых задач приводится на рисунке 1.3.

Рисунок 1.3 – Схема классификации задач поиска

1.4.2 Задачи распределения или распределительные задачи

Постановка задачи.

- У пользователя в наличии ограниченный объём или число ресурсов, которые отведены на осуществление комплекса операций для достижения поставленной цели.
- Предоставляется возможность выполнять операции можно выполнять различными (по эффективности) способами.
- Однако, не все операции можно выполнить с максимальной эффективностью, вследствие ограниченности ресурсов. Из-за чего и возникает данный тип оптимизационных задач.

Цель оптимизации.

Необходимо выбрать такое распределение ресурсов по операциям, при котором будет достигнута наибольшая суммарная эффективность.

Классификационная схема задач распределения приводится на рисунке 1.4. Частные задачи: выбор оптимального типажа, задача о раскрое, задача о рюкзаке.

Рисунок 1.4 – Классификация задач распределения

1.4.3 Задача управления запасами (ресурсами)

Постановка задачи.

- Имеются некоторые запасы, содержание которых является функцией их величины.
- Расход запасов производится тем или иным образом (согласно заданной дисциплине)
- Отсутствие запаса штрафуется (или не допускается).

Цель оптимизации.

Определить размер запаса, оптимальный в смысле минимизации общих затрат.

Характеристики задач управления запасами показаны на рисунке 1.5.

Рисунок 1.5 – Классификация задач управления запасами

1.4.4. Задачи теории систем массового обслуживания

Постановка задачи.

Пусть на входе некоторого устройства имеется очередь из заявок, запросов или требований на использование (применение) этого устройства в определённом режиме.

Априори или гипотетически известны статистические характеристики указанных запросов: например, их среднее число в единицу времени, средняя продолжительность использования ими устройства.

Цель оптимизации.

Необходимо обеспечить обслуживание всех запросов или заданной производительности работы оборудования.

Для пояснения классификации используется схема, приведённая на рисунке 1.6.

Рисунок 1.6 – Задачи теории массового обслуживания

- 1. Подключение приборов:
- в порядке номеров;
- по мере освобождения;
- случайным порядком.
- 2. Дисциплина приёма заявок:
- по мере поступления (FIFO);
- случайным порядком;
- по установленным приоритетам;
- в порядке, обратном поступлению (LIFO);

- приём по определенным каналам.
- 3. Характеристики потока заявок:
- стационарный или не стационарный;
- с последействием и без оного;
- ординарный и не ординарный.
 - 4. Характеристики очереди:
- с отказами и без отказов;
- с ограниченным временем ожидания и не ограниченным временем ожидания;
- с ограниченной длиной и не ограниченной длиной.
 - 5. Критерии обслуживания заявок:
- вероятность пропуска (задержки) заявки;
- математическое ожидание числа задержанных заявок;
- математическое ожидание числа занятых каналов;
- математическое ожидание длины очереди.
- 6. Вид выходного потока заявок:
- установившийся процесс;
- не установившийся процесс.
- 7. Распределение времени обслуживания:
- случайное (экспоненциальный закон, закон Эрланга, прочие законы);
- неслучайное (квантованное).
- 8. Характеристик системы:
- однородная (неоднородная);
- однофазная;
- многофазная;
- одноканальная;
- многоканальная.

1.4.5 Теория игр

Теория игр — математическая теория конфликтных ситуаций, в которых сталкиваются интересы двух или более сторон преследующих различные цели (описываемых разными целевыми функциями).

Цель оптимизации.

Отыскание разумной стратегии поведения игроков в конфликтной ситуации.

Игры классифицируются, как это показано на рисунке 1.7, следующим образом.

Рисунок 1.7 – Схема классификации задач теории игр

1.4.6 Задача замены оборудования

Постановка задачи.

Имеется техническое устройство (или комплекс устройств), функциональные блоки которого подвержены отказам вследствие износа или перестают отвечать различным требованиям по причине материального старения и т.п.

Цель оптимизации.

Отыскание оптимальных сроков замены тех или иных технических устройств (их узлов, блоков) и определение потребностей в комплектующих для поддержания их в рабочем состоянии.

Пояснения дадим с использованием рисунка 1.8, по номерам блоков.

Рисунок 1.8 – Классификация задач о замене оборудования

- 1. Особенности экономических функций (экономические показатели):
- учет амортизации;
- учет роста эксплуатационных расходов;

- учет технического прогресса;
- учет эффективности капвложений;
- учет потерь от ремонта.
- 2. Потребности в оборудовании:
- переменные (спорадические);
- постоянные.
- 4. Выход из строя:
- через заданный срок.
- случайные сроки;
- смешанный процесс;
- не выходит из строя.
- 5. Выбор нового оборудования:
- старого типа;
- нового оборудования заданного типа;
- нового выбираемого типа;
- специально разрабатываемого типа.
- 6. Эксплуатация оборудования:
- производство осмотров разной сложности;
- производство регламентных работ;
- замена оборудования: а) плановым порядком, б) по выходу из строя, в) смешанным порядком.
- 7. Использование замененного оборудования:
- не реализуется (списывается);
- продается:
- используется в менее ответственных местах: а) одноэтапный перевод; б) многоэтапный перевод.

1.4.7 Задачи упорядочения (Задачи теории расписаний)

Постановка задачи.

Имеется некоторый объем работ, подчиненный решению какой либо комплексной задачи. Причем отдельные работы могут быть связаны сроками выполнения, другие могут выполняться независимо.

Пель оптимизации.

Требуется выбрать оптимальный порядок действий и темпы выполнения отдельных работ для минимизации непроизводительных затрат.

Общая характеристика задач:

- все задачи связаны с необходимостью выбора оптимального порядка действий;
- оптимальность понимается в смысле минимума какого-либо критерия при заданных ограничениях;
- аналитические методы созданы лишь для простейших случаев;
- выбор оптимального маршрута не имеет общего решения (задача коммивояжера);
- применяются сетевые методы планирования и методы оптимизации на графах.

Сетевые методы планирования оперируют понятиями: работа; сеть; критический путь; события. На их основании строится графическое изображение последовательности работ – сетевой график.

Сетевой график

- подвергается оптимизации после нахождения критического пути;
- используется не только при планировании, но и в ходе выполнения последовательности работ для контроля.

При этом обязательно существуют:

- минимальное время, уменьшить которое нельзя, как бы велики не были затраты на выполнение работы;
- минимальная стоимость выполнения работы, уменьшить которую путем увеличения времени не возможно.