Department of Mathematics, IIT Madras MA1102 Series & Matrices

Assignment-4 (Row Reduced Echelon Form)

1. Convert the following matrices into RREF and determine their ranks.

(a)
$$\begin{bmatrix} 5 & 2 & -3 & 1 & 7 \\ 1 & -3 & 2 & -2 & 11 \\ 3 & 8 & -7 & 5 & 8 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 5 & 2 & -3 & 1 & 30 \\ 1 & -3 & 2 & -2 & 11 \\ 3 & 8 & -7 & 5 & 8 \end{bmatrix}$$

- 2. Determine linear independence of $\{(1, 2, 2, 1), (1, 3, 2, 1), (4, 1, 2, 2), (5, 2, 4, 3)\}$ in $\mathbb{C}^{1\times 4}$.
- 4. Solve the following system by Gauss-Jordan elimination:

$$x_1$$
 + x_2 + x_3 + x_4 -3 x_5 = 6
 $2x_1$ +3 x_2 + x_3 +4 x_4 -9 x_5 = 17
 x_1 + x_2 + x_3 +2 x_4 -5 x_5 = 8
 $2x_1$ +2 x_2 +2 x_3 +3 x_4 -8 x_5 = 14

- 5. Check if the system is consistent. If so, determine the solution set.
 - (a) $x_1 x_2 + 2x_3 3x_4 = 7$, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 5x_2 + x_3 = -2$, $3x_1 - 2x_2 - 2x_3 + 10x_4 = -12$.
 - (b) $x_1 x_2 + 2x_3 3x_4 = 7$, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 5x_2 + x_3 = -2$, $3x_1 - 2x_2 - 2x_3 + 10x_4 = -14$.
- 6. Using Gauss-Jordan elimination determine the values of $k \in \mathbb{R}$ so that the system of linear equations

$$x + y - z = 1$$
, $2x + 3y + kz = 3$, $x + ky + 3z = 2$

has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

- 7. Let A be an $n \times n$ matrix with integer entries and $\det(A^2) = 1$. Show that all entries of A^{-1} are also integers.
- 8. Let $A \in \mathbb{F}^{m \times n}$ have columns A_1, \ldots, A_n . Let $b \in \mathbb{F}^m$. Show the following:
 - (a) The equation Ax = 0 has a non-zero solution iff A_1, \ldots, A_n are linearly dependent.
 - (b) The equation Ax = b has at least one solution iff $b \in \text{span}\{A_1, \dots, A_n\}$.
 - (c) Let u be a solution of Ax = b. Then, u is the only solution of Ax = b iff A_1, \ldots, A_n are linearly independent.
 - (d) The equation Ax = b has a unique solution iff rankA = rank[A|b] = number ofunknowns.
- 9. Let $A \in \mathbb{F}^{m \times n}$ have rank r. Give reasons for the following:
 - (a) $rank(A) \leq min\{m, n\}$.
 - (b) If n > m, then there exist $x, y \in \mathbb{F}^{n \times 1}$ such that $x \neq y$ and Ax = Ay.
 - (c) If n < m, then there exists $y \in \mathbb{F}^{m \times 1}$ such that for no $x \in \mathbb{F}^{n \times 1}$, Ax = y.
 - (d) If n = m, then the following statements are equivalent:
 - i. Au = Av implies u = v for all $u, v \in \mathbb{F}^{n \times 1}$.
 - ii. Corresponding to each $y \in \mathbb{F}^{n \times 1}$, there exists $x \in \mathbb{F}^{m \times 1}$ such that y = Ax.