FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8 (b)

FIG. 9

TOX	oxide thickness	m
XLD	gate-overlap length	m
XWD	gate-overlap width	m .
XPOLYD	difference between gate-poly and design lengths	m
TPOLY	height of the gate poly-Si	m
RS	source-contact resistance	VA-1m
RD .	drain-contact resistance	VA-1m
●NSUBC	substrate-impurity concentration	cm-3
●NSUBP	maximum pocket concentration	ст-з
●VFBC	flat-band voltage	V
LP	pocket penetration length	m
XQY	distance from drain junction to maximum electric field point	m

FIG. 10

Mobility		-
VDS0	drain voltage for extracting the low-field mobility	V
●MUECB0	Coulomb scattering	cm2V-1s-1
●MUECB1	Coulomb scattering	cm ₂ V ₋₁ S ₋₁
MUEPH0	phonon scattering	Cm2(Vs)-1(V Cm-1)MUEPH1
●MUEPH1	phonon scattering	_ ` ´ ` ` `
MUETMP	temperature dependence of phonon scattering	
MUESR0	surface-roughness scattering	cm2(V s)-1(V cm-1)MUESR1
●MUESR1	surface-roughness scattering	
NDEP	coeffcient of effective-electric field	
NINV	coeffcient of effective-electric field	l _
NINVD	modification of NINV	V-1
BB	high-field-mobility degradation	
●VMAX	maximum saturation velocity	cm s-1
VOVER	velocity overshoot effect	CMVOVERP
VOVERP	Lgate dependence of velocity overshoot	· ·
RPOCK1	resistance coefficient caused by the potential barrier	V2A-RPOCP1µm1-RPOCP2
RPOCK2	resistance coefficient caused by the potential barrier	lv ·
RPOCP1	resistance coefficient caused by the potential barrier	_
RPOCP2	resistance coefficient caused by the potential barrier	