Table 1: Performance of the EMP and contenders for concerned models on the MNIST, CIFAR-10, and CIFAR-100. For MLP and LeNet, we conducted 5 repeated experiments using different initialization seeds, and reported the mean and standard deviation of the results. The standard deviation is marked as a subscript (e.g., 1_{0.1} indicates a mean of 1 with a standard deviation of 0.1). For the CIFAR-100 dataset, we only report the results of the first 10 logits.

Datasets	_	FP-MLP-2		T-MLP-2	_	_	FP-LeNet-5	-	T-LeNet-5		_	FP-VGG-13	_	T-VGG-13	- 2	FP-Ros	P-ResNet-18		T-ResNet-18
	o EMP	MP	PL-DNN	EMP	MP PL-DNN	EMP	MP	PL-DNN	EMP	MP PL-DNN	EMP	MP	PL-DNN	EMP M	MP PL-DNN	EMP	MP PL-DNN	N EMP	MP PL-DNN
	$\begin{bmatrix} 0 & 1.0001_{0.0002} \pm 0.01101_{0.0008} & 1.0818_{0.0003} \pm 0.2029_{0.0001} & 0.9083_{0.00012} \pm 0.1957_{0.0250} \end{bmatrix} 0.3955_{0.0004} \pm 0.0103_{0.000}$, 1.0818p.m.ss ± 0.2029apapa	0.908300012 ± 0.19570 m50) 0.99540.0004 ± 0.01035.0010	1	$1.0007_{0.0008} \pm 0.0101_{0.0002}$	$1.1809_{0.0101} \pm 0.0217_{0.0039}$	1.27720.0497 ± 0.01530.0011	$1.0023_{0.0112} \pm 0.0109_{0.0017}$	1	0.8923 ± 0.0089	0.5461 ± 0.0736	0.5420 ± 0.0741 0.8875 ± 0.017	- 8875 ± 0.0174	1	0.4773 ± 0.1225	1	0.3568 ± 0.1009	- 600
	$1 - 1.0000_{0.0001} \pm 0.0100_{0.0008}$	$3 1.0818_{0.0235} \pm 0.2032_{0.0400}$	$0.9083_{0.0043} \pm 0.1957_{0.0250}$	$1.0818_{0.023} \pm 0.2032_{0.040} - 0.9083_{0.0043} \pm 0.1957_{0.0250} - 0.9953_{0.003} \pm 0.0104_{0.0010}$	1	$0.9993_{0.0002} \pm 0.0103_{0.0000}$	$1.1793_{0.0304} \pm 0.0238_{0.0058}$		$1.0023_{\pm0.011} \pm 0.0121_{0.0012}$	1	0.8934 ± 0.0089	0.5476 ± 0.0688	0.5435 ± 0.0694 0.8873 ± 0.0177	- 7710.0 ± 873 ± 0.0177 -	1	0.4768 ± 0.1229	1	0.3563 ± 0.1007	- 200
	2 0.9999 _{0.0001} ± 0.0100 _{0.0008}	$s = 1.0818_{0.0235} \pm 0.2031_{0.0401}$	$0.9086_{0.0044} \pm 0.1958_{0.0250}$	0.99530,0003 ± 0.01046,0009	1	$0.9990_{0.0005} \pm 0.0118_{0.0007}$	_	1.27480.0501 ± 0.01700.0015	$1.0021_{0.0110} \pm 0.0117_{0.0011}$	1	0.8937 ± 0.0091	0.5483 ± 0.0712	0.5442 ± 0.0718 0.8869 ± 0.0169	- 6910.0 ± 6988.1	1	0.4769 ± 0.1224	1	0.3563 ± 0.1006	- 900
	$3 - 0.9998_{0.0002} \pm 0.0100_{0.0007}$		$0.9085_{0.0043} \pm 0.1958_{0.0250}$	$0.9955_{0.0002} \pm 0.0105_{0.000}$	1	$1.0008_{0.0004} \pm 0.0104_{0.0001}$	$1.1808_{0.0101} \pm 0.0215_{0.0085}$		-	1	0.8935 ± 0.0093	3 0.5489 ± 0.0722	0.5448 ± 0.0727 0	0.8873 ± 0.0174 -	1	0.4758 ± 0.1224	1	0.3565 ± 0.1012	211
and a second	4 $1.0000_{0.000} \pm 0.0099_{0.0008}$		0.90840 nota ± 0.19570 m50	0.9956nnms ± 0.0103nmin		$1.0011_0 \text{ mos} \pm 0.0096_0 \text{ nms}$	$1.1807_0 \text{ mag} \pm 0.02390 \text{ nong}$	1.27750 asgr ± 0.01360 agr 1	1.002300109 ± 0.01070.0016	1	0.8935 ± 0.0089	9 0.5490 ± 0.0727	0.5449±0.0732 0.8875±0.0172	- 8875 ± 0.0172 -	1	0.4768 ± 0.1224	1	0.3575 ± 0.1013	- 13
MNIST	$5 1.000Q_{0.0001} \pm 0.010Q_{0.0008}$				1	$1.0010_{0.0005} \pm 0.0106_{0.0001}$				1	0.8935 ± 0.0089	9 0.5492 ± 0.0704	0.5451 ± 0.0710 0.8868 ± 0.0173	- 8888 ± 0.0173 -	1	0.4774 ± 0.1224	1	0.3565 ± 0.1007	- 200
	6 1.0000b mm ± 0.0099 nnm7		0.90840 not3 ± 0.19590 m50	o 0.9952anms ± 0.0104amm		$1.0011_0 \text{ mor} \pm 0.0096_0 \text{ nm}_3$	1.1818, mm ± 0.0246,0000		1.002300112 ± 0.01050.0013	1	0.8940 ± 0.0091	0.5495 ± 0.0702	0.5454 ± 0.0707 0.8874 ± 0.0176	- 8874 ± 0.0176 -	1	0.4767 ± 0.1227	1	0.3575 ± 0.1009	- 600
	$7 - 1.0001_{0.0001} \pm 0.0100_{0.0007}$		1.08185.0236 ± 0.20320.040 0.90840.0643 ± 0.19570.0250	0.9952noms ± 0.0104nom	1	$0.9996_{0.0022} \pm 0.0099_{0.0032}$				1	0.8934 ± 0.0090		0.5483 ± 0.0713 0.5442 ± 0.0718 0.8867 ± 0.0177	- 7710.0 ± 0.880	1	0.4756 ± 0.1225	1	0.3567 ± 0.1011	- 110
	$8 - 0.9999_{0.0002} \pm 0.0101_{0.0007}$		1.0819 _{3.0224} ± 0.2030 _{0.0402} 0.9083 _{0.0044} ± 0.1956 _{0.0250}	0.99510,0004 ± 0.01060,0009	1	$1.0014_{0.0097} \pm 0.0038_{0.0003}$				1	0.8934 ± 0.0087		0.5504 ± 0.0734 0.5462 ± 0.0739 0.8874 ± 0.0173	- 8874 ± 0.0173 -	1	0.4757 ± 0.1228	1	0.3567 ± 0.1005	- 200
	$9 - 1.0000_{0.0001} \pm 0.0100_{0.0007}$	$\tau = 1.0819_{0.0236} \pm 0.2031_{0.0400}$	$0.9084_{0.0043} \pm 0.1959_{0.0249}$	$0.9954_{0.0004} \pm 0.0104_{0.0010}$	1	$0.9999_{0.0004} \pm 0.0100_{0.0001}$	$1.1801_{0.0298} \pm 0.0225_{0.0063}$		$1.0019_{0.0111} \pm 0.0106_{0.0013}$	1	0.8937 ± 0.0089	90.0505 ± 0.0706	0.5463 ± 0.0712 0.8876 ± 0.0172	1.8876 ± 0.0172 -	1	0.4769 ± 0.1223	1	0.3576 ± 0.1008	- 80
	0 1:0000s mes ± 0.0077 none	$1.00000_{\rm b}$ and $\pm 0.0077_{\rm b,min} = 1.1916_{\rm b,min} \pm 0.2538_{\rm b,min} = 0.2905_{\rm b,min} \pm 0.389_{\rm b,min} = 0.390_{\rm b,min} = 0.0108_{\rm b,min}$	0.7905aass ± 0.3391aass	, 0.9947 0.000 ± 0.0108 m 11		$1.0098_{0.0017} \pm 0.0099_{0.0001}$	1.5029s oses ± 0.0177 o o o o	1.6167a nsp ± 0.033b ans	1.0141nors3 ± 0.0113norr		0.8363 ± 0.0153	0.3579 ± 0.1387	0.3567±0.1389 0.8441±0.0382	- 8441 ± 0.0382 -	1	0.4259 ± 0.1425	1	0.3275 ± 0.1117	- 40
	1 0.9999s, men ± 0.0078s, pp. 1	$0.9999_{\rm b,mm} \pm 0.0078_{\rm b,nm}$ 1.1912, $0.007_{\rm b,mm} \pm 0.253_{\rm b,mm} \pm 0.7903_{\rm b,mm} \pm 0.3839_{\rm b,mm}$ 0.9947, $0.004_{\rm b,mm} \pm 0.0106_{\rm b,mm}$	$0.7903_{0.0363} \pm 0.3389_{0.0212}$, 0.9947 angue ± 0.0106a mg	1	$1.0092_0 mi7 \pm 0.0105_0 mi1$	1.5020p.osa ± 0.0207p.pp.1	1.6156a aspa ± 0.0299a ages	1.01360.013 ± 0.01150.0018	1	0.8358 ± 0.0152	0.3577 ± 0.1380	0.3565 ± 0.1381 0.8434 ± 0.0376	1.8434 ± 0.0376 -	1	0.4250 ± 0.1425	1	0.3281 ± 0.1111	- 11
	$2 - 1.0001_{0.0001} \pm 0.0077_{0.0011}$	1.00010.mm ± 0.00770.mm 1.19120.mm ± 0.25370.mm 0.79050.mm ± 0.33900.mm 0.39480.mm ± 0.01030.mm	$0.7905_{0.0264} \pm 0.3390_{0.0213}$	$0.9948_{0.0006} \pm 0.0109_{0.0012}$	1	$1.0090_{0.0018} \pm 0.0127_{0.002}$			$1.0141_{0.0135} \pm 0.0110_{0.0017}$	1	0.8361 ± 0.0146	0.3596 ± 0.1446	0.3584 ± 0.1447 0.8442 ± 0.0385	1.84f2 ± 0.0385 -	1	0.4251 ± 0.1425	1	0.3271 ± 0.1112	113
	$3 - 0.9999_{0.0002} \pm 0.0077_{0.0011}$	$_{1}$ 1.1916, $m_{TT} \pm 0.2537$ and $_{3}$	$0.7906_{0.0361} \pm 0.3391_{0.0212}$	2 0.994500ms ± 0.01080 ms	1	$1.0100_0 \text{ so 17} \pm 0.0110_0 \text{ so 22}$	1.503 lo page ± 0.0189 page	1.6169a ass ± 0.0338a ags	$1.0141_{0.0133} \pm 0.0115_{0.0021}$	1	0.8361 ± 0.0158	0.3569 ± 0.1392	0.3557 ± 0.1393 0.8442 ± 0.0383	1.8442 ± 0.0385 -	1	0.4248 ± 0.1425	1	0.3271 ± 0.1118	- 811
01 01 00	4	$0.9998_{0.0102} \pm 0.0078_{0.0012}$ $1.1914_{0.0273} \pm 0.2538_{0.0164}$	$0.7905_{0.0263} \pm 0.3392_{0.0211}$	$0.9947_{0.0007} \pm 0.0106_{0.0012}$	1	$1.0106_{0.0017} \pm 0.0098_{0.0004}$	$1.5041_{0.048} \pm 0.0179_{0.0011}$	1.61790.0557 ± 0.03070.0023	$1.0137_{0.0136} \pm 0.0116_{0.0015}$	1	0.8363 ± 0.0158	0.3562 ± 0.1389	0.3550 ± 0.1390 0.8441 ± 0.0383	-841 ± 0.0383 -	1	0.4248 ± 0.1425	1	0.3274 ± 0.1117	- 11
CIEARGIO	10	$_{0}$ 1.1913 _{0.0276} \pm 0.2539 _{0.0169}	$0.7905_{0.0362} \pm 0.3390_{0.0213}$	$0.9948_{0.0007} \pm 0.0107_{0.0011}$	1	$1.0099_{0.0017} \pm 0.0109_{0.0001}$	$1.5030_{0.0445} \pm 0.0200_{0.0011}$		$1.0139_{0.0133} \pm 0.0118_{0.0022}$	1	0.8359 ± 0.0148	8 0.3560 ± 0.1377	0.3548±0.1378 0.8441±0.0381	1.8441 ± 0.0381 -	1	0.4252 ± 0.1425	1	0.3274 ± 0.1114	- 11
	$6 1.000Q_{0.0003} \pm 0.0078_{0.0008}$		$0.7905_{0.0363} \pm 0.3392_{0.0210}$	0.99460.008 ± 0.01070.0015	1	$1.0103_{0.0017} \pm 0.0094_{0.0002}$	$1.5036_{0.0445} \pm 0.0185_{0.0011}$	$1.6174_{0.0536} \pm 0.0282_{0.0022}$	$1.0139_{0.0134} \pm 0.0109_{0.0018}$	1	0.8360 ± 0.0149	9 0.3571 ± 0.1418	0.3559±0.1419 0.8444±0.0373	1.8444 ± 0.0375 -	1	0.4254 ± 0.1425	1	0.3282 ± 0.1114	- 11
	$7 - 1.0003_{0.0002} \pm 0.0077_{0.0011}$	$-0003_{0.002} \pm 0.0077_{0.001}$ $1.1916_{0.025} \pm 0.2539_{0.0165}$	$0.7907_{0.0350} \pm 0.3392_{0.0211}$	1 0.99460.0008 ± 0.01080.0015	1	$1.0090_{0.0017} \pm 0.0099_{0.0003}$	1.50170.0446 ± 0.01840.0010	1.61530.0520 ± 0.03070.0022	$1.0139_{0.0134} \pm 0.0120_{0.0014}$	1	0.8348 ± 0.0152	2 0.3575 ± 0.1390	0.3563 ± 0.1391 0	0.8435 ± 0.0382 -	1	0.4258 ± 0.1425	1	0.3268 ± 0.1111	- 11
	$8 - 0.9999_{0.0003} \pm 0.0079_{0.0012}$	$0.9999_{0.0001} \pm 0.0079_{0.0012} - 1.1913_{0.0077} \pm 0.2536_{0.0165} - 0.7906_{0.0303} \pm 0.3392_{0.0212} - 0.9946_{0.0007} \pm 0.0107_{0.0011}$	$0.7906_{0.0263} \pm 0.3392_{0.0212}$	3 0.99460.007 ± 0.01070.0011	1	$1.0103_{0.0017} \pm 0.0093_{0.0001}$				1	0.8356 ± 0.0147	$7 0.3578 \pm 0.1401$	0.3566 ± 0.1403 0.8433 ± 0.0383	1.8433 ± 0.0383 -	1	0.4258 ± 0.1425	1	0.3267 ± 0.1112	
	$9 - 0.9993_{0.0001} \pm 0.0078_{0.0011}$	$_1$ 1.1914 _{0.0275} ± 0.2537 _{0.0166}	$0.7904_{0.0263} \pm 0.3391_{0.0211}$	$1.1914_{0.0273} \pm 0.2537_{0.0166} 0.7904_{0.0293} \pm 0.3391_{0.0211} 0.9948_{0.0077} \pm 0.0105_{0.0012}$	-	$1.0095_{0.0017} \pm 0.0100_{0.001}$	$1.5025_{0.0448} \pm 0.0179_{0.0010}$	1.6162 _{0.0529} ± 0.0314 _{0.0023}	$1.0141_{0.0135} \pm 0.0109_{0.0020}$	1	0.8362 ± 0.0151	$1 - 0.3565 \pm 0.1366$	0.3553 ± 0.1367 0.8443 ± 0.0384	1.8443 ± 0.0384 -	1	0.4249 ± 0.1425	1	0.3273 ± 0.1112	- 211
	$0.0003_{0.008} \pm 0.0074_{0.008} - 1.2432_{0.008} \pm 0.2675_{0.015} + 0.6636_{0.0217} \pm 0.4174_{0.0146} = 0.9942_{0.0012} \pm 0.0104_{0.0014}$	$_4$ 1.24320.m39 \pm 0.26750.0154	$0.6636_{0.0217} \pm 0.4170_{0.0146}$	$_{1}$ 0.99420.0012 ± 0.01040.0014	1	$1.0133_{0.0005} \pm 0.0128_{0.0002}$	$0.6602_{0.0171} \pm 0.0959_{0.0014}$	$0.5738_{0.0204} \pm 0.1323_{0.0010}$	$0.5738_{0.0204} \pm 0.1328_{0.0040} \mid 1.0135_{0.0131} \pm 0.0112_{0.0016}$	1	0.8258 ± 0.0246	5 0.3926 ± 0.1445	0.3926 ± 0.1445 0.3914 ± 0.1447 0.8553 ± 0.0327	- 18553 ± 0.0327 -	1	0.4247 ± 0.1393	1	0.3272 ± 0.1114	- MI
	$1 - 1.0004_{0.0007} \pm 0.0070_{0.0006}$	$1 1.0004_{0.0097} \pm 0.0070_{0.009} 1.2430_{0.034} \pm 0.2673_{0.0133} 0.6620_{0.0214} \pm 0.4170_{0.0146} 0.9946_{0.0016} \pm 0.0105_{0.0012}$	$0.6630_{0.0214} \pm 0.4170_{0.0146}$	1 0.99460.0016 ± 0.01050.0012	1	$1.0134_{0.0005} \pm 0.0134_{0.0001}$	$0.6603_{0.0171} \pm 0.0961_{0.0033}$	0.57400,0205 ± 0.13240,0039	$1.0132_{0.0128} \pm 0.0117_{0.0020}$	1	0.8256 ± 0.0246		0.3922 ± 0.1439 0.3909 ± 0.1440 0.8544 ± 0.0321	1.8544 ± 0.0321 -		0.4249 ± 0.1397	1	0.3273 ± 0.1119	- 611
	$2 - 1.0001_{0.0005} \pm 0.0072_{0.0008}$	s 1.2424 _{0.0334} ± 0.2661 _{0.0145}	$0.6634_{0.0215} \pm 0.4170_{0.0145}$	5 0.99460.0015 ± 0.01050.0011	1	$1.0135_{0.0006} \pm 0.0131_{0.0002}$	-	0.57380.0205 ± 0.13140.0010	$1.0133_{0.0128} \pm 0.0114_{0.0018}$	1	0.8256 ± 0.0253	3 0.3943 ± 0.1508	0.3931 ± 0.1510 0.8554 ± 0.0328	1.8554 ± 0.0328 -	1	0.4252 ± 0.1385	1	0.3278 ± 0.1114	- 11
	3 0.9897 _{0.0007} ± 0.0066 _{0.0011}	$1.2428_{0.0139} \pm 0.2673_{0.0150}$	$0.6631_{0.0210} \pm 0.4174_{0.0146}$	0.9948anous ± 0.0108anous	1	$1.0122_0 \mod \pm 0.0106_0 \mod 1$	$0.6598_{0.0170} \pm 0.0974_{0.0013}$	0.57360,0204 ± 0.13360,0019	$1.0136_{0.0129} \pm 0.0114_{0.0017}$	1	0.8251 ± 0.0247	$7 - 0.3914 \pm 0.1451$	0.3902 ± 0.1453 0.8552 ± 0.032	1.8552 ± 0.0321 -	1	0.4252 ± 0.1386	1	0.3277 ± 0.1120	- 07
OTENT TOO			$0.6635_{0.0212} \pm 0.4170_{0.0150}$	0.994600015 ± 0.01080.0015	1	$1.0134_{0.0007} \pm 0.0121_{0.0002}$	0.06603 _{0.0171} ± 0.0960 _{0.0034}	$0.5740_{0.0205} \pm 0.1324_{0.0040}$	$1.0132_{0.0129} \pm 0.0112_{0.0012}$	1	0.8251 ± 0.0247	7 0.3906 ± 0.1448	0.3894 ± 0.1450 0.8556 ± 0.0328	1.8556 ± 0.0328 -	1	0.4241 ± 0.1398	1	0.3266 ± 0.1114	- 11
OIL-WILL	10	s 1.2433 _{0.0341} ± 0.2673 _{0.0150}	$0.6632_{0.0207} \pm 0.4169_{0.0144}$	$0.6632_{0.0307} \pm 0.4169_{0.0144}$ $0.9942_{0.0011} \pm 0.0107_{0.0012}$	1	$1.0126_{0.0005} \pm 0.0120_{0.0002}$	_	0.57360.0201 ± 0.13230.0010	$1.0132_{0.0128} \pm 0.0118_{0.0015}$	1	0.8249 ± 0.0252	2 0.3905 ± 0.1434	0.3892 ± 0.1436 0.8548 ± 0.0326	1.8548 ± 0.0326 -	1	0.4253 ± 0.1398	1	0.3274 ± 0.1115	- 91
	$6 - 1.0000_{0.0003} \pm 0.0069_{0.0011}$		$0.6630_{0.0211} \pm 0.4168_{0.0149}$	1.2436, cb3 ± 0.2676 add 0.6630 add ± 0.4168 add 0.9943 add ± 0.0105 add	1	$1.0125_{0.0007} \pm 0.0135_{0.0002}$	_			1	0.8258 ± 0.0251	0.3915 ± 0.1478	0.3902 ± 0.1479 0.8546 ± 0.0322	1.8546 ± 0.0322 -	1	0.4247 ± 0.1392	1	0.3277 ± 0.1112	113
	$7 - 1.0002_{0.0005} \pm 0.0073_{0.0008}$		$0.6633_{0.0217} \pm 0.4171_{0.0148}$	$1.2429_{0.0337} \pm 0.2868_{0.0150} - 0.8633_{0.0217} \pm 0.4171_{0.0148} - 0.9943_{0.0013} \pm 0.0107_{0.0014}$	1	$1.0126_{0.0005} \pm 0.0121_{0.0002}$	$0.66000_{0.0171} \pm 0.0970_{0.0334}$	0.57370,0204 ± 0.13330,0040	$1.0134_{0.0128} \pm 0.0118_{0.0019}$	1	0.8250 ± 0.0248	0.3920 ± 0.1449	0.3908 ± 0.1451 0.8552 ± 0.0326	1.8552 ± 0.0326	1	0.4242 ± 0.1393	1	0.3265 ± 0.1111	- 1
	8 1.0000 _{0.0005} ± 0.0006 _{0.0006}	$1.00000_{\rm b,mos} \pm 0.00066_{\rm b,max} = 1.2434_{\rm b,max} \pm 0.2675_{\rm b,max} = 0.6632_{\rm b,max} \pm 0.4169_{\rm b,max} = 0.9943_{\rm b,max} \pm 0.0107_{\rm b,max}$	$0.6632_{0.0214} \pm 0.4169_{0.0148}$, 0.9943annt7 ± 0.0107a.m12	1	$1.0133_{0.0095} \pm 0.0116_{0.0001}$	$0.6603_{0.0171} \pm 0.0964_{0.0033}$		0.57390 agm ± 0.13280 amp 1.01380 args ± 0.01100 amp	1	0.8251 ± 0.0247	0.3924 ± 0.1460	0.3912 ± 0.1462 0.8553 ± 0.0327	1.8553 ± 0.0327 -	1	0.4248 ± 0.1398	1	0.3272 ± 0.1118	- 118
	1 10000 1 0 0001	1 0 401	00000 1 0 0000	0.00.00		10101	60000 1 00000	0.000 1.0.19.09	1.0199 1.0.0110		0.000 0 1 0.000 0	0.0000 1 0.000	00000 1 23300 0 0010 0 10000	00000 1 1 2200					

Table 2: Average accuracy and uncertainty of concerned models on the MNIST, CIFAR-10, and CIFAR-100. For MLP and LeNet, we conducted 5 repeated experiments using different initialization seeds, and reported the mean and standard deviation of the results. The standard deviation is marked as a subscript (e.g., $1_{0.1}$ indicates a mean of 1 with a standard deviation of 0.1).

Datasets	Models	Accuracy	Uncertainty	Reduction
	FP-MLP-2 T-MLP-2 T-MLP-2-MOMA	$\begin{array}{c} 0.9761_{0.0002} \\ 0.9752_{0.0005} \\ 0.9751_{0.0006} \end{array}$	$\begin{aligned} &1.4697_{0.0082}\times10^3\\ &1.2572_{0.0236}\times10^5\\ &4.0129_{0.0039}\times10^4 \end{aligned}$	$68.08_{0.1389}\%$
	FP-LeNet-5 T-LeNet-5 T-LeNet-5-MOMA	$\begin{array}{c} 0.9911_{0.0001} \\ 0.9903_{0.0003} \\ 0.9885_{0.0006} \end{array}$	$\begin{array}{c} 1.7728_{0.0232} \times 10^3 \\ 2.8113_{0.0490} \times 10^5 \\ 4.0906_{0.1433} \times 10^3 \end{array}$	$98.55_{0.1201}\%$
MNIST	FP-VGG-13 T-VGG-13 T-VGG-13-MOMA	0.9985 0.9954 0.9957	4.6029×10^{-1} 1.4500×10^{1} 1.1463×10^{1}	20.95%
	FP-ResNet-18 T-ResNet-18 T-ResNet-18-MOMA	0.9963 0.9938 0.9951	6.9757×10^{-3} 4.2808×10^{-1} 2.4067×10^{-1}	43.78%
	FP-MLP-2 T-MLP-2 T-MLP-2-MOMA	$\begin{array}{c} 0.4806_{0.0010} \\ 0.4066_{0.0058} \\ 0.4355_{0.0059} \end{array}$	$\begin{array}{c} 5.8953_{0.1782} \times 10^{3} \\ 5.6167_{0.3858} \times 10^{6} \\ 7.7525_{0.3044} \times 10^{5} \end{array}$	$86.20_{1.0919}\%$
	FP-LeNet-5 T-LeNet-5 T-LeNet-5-MOMA	$\begin{array}{c} 0.6651_{0.0003} \\ 0.6140_{0.0062} \\ 0.6138_{0.0066} \end{array}$	$2.0605_{0.2572} \times 10^{-1} 4.3177_{2.0793} \times 10^{2} 6.3389_{5.8414} \times 10^{0}$	$98.53_{1.5265}\%$
CIFAR-10	FP-VGG-13 T-VGG-13 T-VGG-13-MOMA	0.9263 0.9212 0.9096	3.1242×10^{-1} 9.9900×10^{1} 6.7903×10^{1}	52.05%
	FP-ResNet-18 T-ResNet-18 T-ResNet-18-MOMA	0.9395 0.9174 0.9233	4.4530×10^{-2} 2.9628×10^{-1} 2.4215×10^{-1}	18.27%
	FP-MLP-2 T-MLP-2 T-MLP-2-MOMA	$\begin{array}{c} 0.0794_{0.0015} \\ 0.0624_{0.0066} \\ 0.0725_{0.0022} \end{array}$	$\begin{array}{c} 1.0644_{0.0472} \times 10^5 \\ 9.9100_{0.1074} \times 10^6 \\ 2.9831_{0.0641} \times 10^6 \end{array}$	69.90 _{0.7244} %
CIFAR-100	FP-LeNet-5 T-LeNet-5 T-LeNet-5-MOMA	$\begin{array}{c} 0.2950_{0.0024} \\ 0.2470_{0.0085} \\ 0.2468_{0.0088} \end{array}$	$3.4251_{0.0548} \times 10^{3}$ $1.0975_{1.7877} \times 10^{5}$ $7.5830_{0.4088} \times 10^{4}$	30.93 _{0.5204} %
	FP-VGG-13 T-VGG-13 T-VGG-13-MOMA	0.7026 0.6806 0.6705	3.6694×10^{-7} 2.1427×10^{1} 1.8700×10^{1}	12.73%
	FP-ResNet-18 T-ResNet-18 T-ResNet-18-MOMA	0.7354 0.6672 0.6880	$\begin{array}{c} 1.6989 \times 10^{-2} \\ 1.5869 \times 10^{-1} \\ 1.3263 \times 10^{-1} \end{array}$	16.43%