Lecture 14: Software Project Management

EGCI341: WEEK10

Outline

- Measures of Project Success
- Management Activities
- Project Plan Structure
- Activity Organization
- Project Scheduling
- PERT Chart
- Gantt Chart
- Activity Network
- Risk Management

Software Project Management

- Concerned with activities involved in ensuring that:
 - Software is delivered on time and on schedule

- Project management is needed because software development is always subject to:
 - Budget and schedule constraints that are set by the organisation developing the software

Software Management Distinctions

- Product is intangible (abstract)
- Product is uniquely flexible
- Software engineering is not recognized as an engineering discipline
- Software development process is not standardised
- Many software projects are 'one-off' projects (made only once)

Measures of Project Success

- The resulting information system is acceptable to the customer
- System was delivered "on time"
- System was delivered "within budget"
- System development process had a minimal impact on ongoing business operations

Project Staffs

- May not be possible to appoint the ideal people to work on a project
 - Project budget may not allow for the use of highly-paid staff
 - Staff with the appropriate experience may not be available

 Managers have to work within these constraints especially when there are shortages of trained staffs

Management Activities

- Proposal writing
- Project planning and scheduling
- Project costing
- Project monitoring and reviews
- Personnel selection and evaluation
- Report writing and presentations

Project Plan

- Resources available to the project
- Work breakdown
- Schedule for the work

Activity Organization

- Activities in a project should be organised to produce tangible outputs for management to judge progress
- Milestones are the end-point of a process activity
- Deliverables are project results delivered to customers

Activities & Milestones

EGCI341 10

Project Scheduling

- Split project into tasks and estimate time and resources required to complete each task
- Organize tasks concurrently to make optimal use of workforce
- Minimize task dependencies to avoid delays caused by one task waiting for another to complete
- Dependent on project managers intuition and experience

Project Scheduling Process

Scheduling Problems

- Estimating the difficulty of problems and hence the cost of developing a solution is hard
- Productivity is not proportional to the number of people working on a task
- Adding people to a late project makes it later because of communication overheads
- Unexpected always happens
 - Always allow contingency in planning

Bar Charts and Activity Networks

- Graphical notations used to illustrate the project schedule
- Show project breakdown into tasks
 - Tasks should not be too small
 - They should take about a week or two
- Activity charts show task dependencies and the critical path
- Bar charts show schedule against calendar time

PERT Chart

Start

Fig. 1: PERT Chart

- * Numbered rectangles are nodes and represent events or milestones.
- * Directional arrows represent dependent tasks that must be completed sequentially.
- * Diverging arrow directions (e.g. 1-2 & 1-3) indicate possibly concurrent tasks
- * Dotted lines indicate dependent tasks that do not require resources.

Gantt Chart

Task Durations and Dependencies

Activity	Duration (days)	Dependencies	
T1	8		
T2	15		
T3	15	T1 (M1)	
T4	10		
T5	10	T2, T4 (M2)	
Т6	5	T1, T2 (M3)	
T7	20	T1 (M1)	
T8	25	T4 (M5)	
T9	15	T3, T6 (M4)	
T10	15	T5, T7 (M7)	
T11	7	T9 (M6)	
T12	10	T11 (M8)	

EGCI341 18

Activity Network

Activity Timeline

Estimate Task Durations

- Estimate the minimum amount of time it would take to perform the task
 the optimistic duration (OD)
- Estimate the maximum amount of time it would take to perform the taskthe pessimistic duration (PD)
- 3. Estimate the expected duration (ED) that will be needed to perform the task
- 4. Calculate a weighted average of the most likely duration (D) as follows:

$$D = (1 \times OD) + (4 \times ED) + (1 \times PD)$$

$$6 - ED - PD$$
3.33 days = $(1 \times 2 \text{ days}) + (4 \times 3 \text{ days}) + (1 \times 6 \text{ days})$

$$6 - ED - PD$$

Schedule Adjustments

- Using intertask dependencies, determine every possible path through the project
- Sum the durations of all tasks in each path
- Path with the longest total duration is the critical path
 - Critical Path for a project is that sequence of dependent tasks that have the largest sum of most likely durations
 - Critical path determines the earliest completion date of the project
 - Slack Time available for any noncritical task is the amount of delay that can be tolerated between the starting time and completion time of a task without causing a delay in the completion date of the entire project

Critical Path Analysis

Example I

K – integration testing

L – Install Software

M – Write Manual

N – Train Users

Example II

Task	Days	Dependencies/ Predecessor
Α	5	
В	3	
С	8	A, B
D	4	В
Е	4	А
F	6	
G	4	C, D, E, F

EGCI341 25

Example III

- Draw Pert diagram for the scheduling table below
- Show the critical path and calculate duration of critical path
- Draw Gantt chart

Task	Description	Duration (Working Days)	Predecessor/s
Α	Requirement Analysis	5	
В	Systems Design	15	А
С	Programming	25	В
D	telecoms	15	В
Е	Hardware Installation	30	В
F	Integration	10	C, D
G	System Testing	10	E, F
Н	Training/Support	5	G
1	Handover and Go-Live	5	Н

Reference

This set of slides and examples are modified from Ian Sommerville, Software Engineering 8th Edition, Addison-Wesley; 2007

Any Questions?

:O)

Thank you

EGCI341 28