4 July 2011 -- Computer Architectures -- part 2/2

Name, Matricola

Question 1

Considering the MIPS64 architecture presented in the following:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 8 stages
- FP arithmetic unit: pipelined 2 stages
- FP divider unit: not pipelined unit that requires 8 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot is not enable
- forwarding is enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.
- o and using the following code fragment, show the timing of the presented loop-based program and compute how many cycles does this program take to execute?

	.data
V1:	.double "100 values"
V2:	.double "100 values"
V3:	.double "100 values"
V4:	.double "100 values"
V5·	double "100 zeroes"

.text

main:	daddui r1,r0,0
	daddui r2,r0,100
loop:	1.d f1,v1(r1)
	1.d f2,v2(r1)
	1.d f3,v3(r1)
	1.d f4,v4(r1)
	div.d f6,f3,f4
	div.d f7,f1,f2
	mul.d f5,f6,f7
	s.d f5,v5(r1)
	daddui r1,r1,8
	daddi r2,r2,-1
	bnez r2,loop
	halt

comments	Clock cycles
1	
r1← pointer	5
r2 <= 100	1
$f1 \leftarrow v1[i]$	1
$f2 \le v2[i]$	1
$f3 \ll v3[i]$	1
f4 <= v4[i]	1
$f6 \le v3[i]/v4[i]$	9
$f7 \le v1[i]/v2[i]$	8
f5 <= f6*f7	8
	1
r1 <= r1 + 8	1
$r2 \le r2 - 1$	1
	2 + 1
	3506

total

4 July 2011 -- Computer Architectures -- part 2/2

Name, Matricola

Question 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 8 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 2 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).

o Complete the table reported below showing the processor behavior for the 2 initial iterations.

	-		٠	
l			,	
		7		

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)	1	2m	3	4	5
1	l.d f2,v2(r1)	1	3m	4	5	6
1	l.d f3,v3(r1)	2	4m	5	6	7
1	l.d f4,v4(r1)	2	5m	6	7	8
1	div.d f6,f3,f4	3	14d		22	23
1	div.d f7,f1,f2	3	6d		14	23
1	mul.d f5,f6,f7	4	23x		31	32
1	s.d f5,v5(r1)	4	6m			32
1	daddui r1,r1,8	5	6i		7	33
1	daddi r2,r2,-1	5	7i		8	33
1	bnez r2,loop	6	9j			34
2	l.d f1,v1(r1)	7	8m	9	10	34
2	I.d f2,v2(r1)	7	9m	10	11	35
2	I.d f3,v3(r1)	8	10m	11	12	35
2	I.d f4,v4(r1)	8	11m	12	13	36
2	div.d f6,f3,f4	9	22d		30	36
2	div.d f7,f1,f2	9	30d		38	39
2	mul.d f5,f6,f7	10	39x		47	48
2	s.d f5,v5(r1)	10	12m			48
2	daddui r1,r1,8	11	12i		13	49
2	daddi r2,r2,-1	11	13i		14	49
2	bnez r2,loop	12	15j			50