B. E. (EC / TC) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – V							
	HDL LABORATORY						
Laboratory Code	18ECL58	CIE Marks	40				
Number of Lecture Hours/Week	02Hr Tutorial (Instructions)+ 02 Hours Laboratory	SEE Marks	60				
RBT Level	L1, L2, L3	Exam Hours	03				

- Write Verilog program for the following combinational design along with test bench to verify the design:
 - a. 2 to 4 decoder realization using NAND gates only (structural model)

4/1

module Decoder2_4(D0,D1,D2,D3,A0,A1);

output D0,D1,D2,D3;

input A0,A1;

```
wire w1,w2,w3,w4,w5,w6;

nand x1(w1,A0);

nand x2(w2,A1);

nand x3(w3,w1,w2);

nand x4(w4,A0,w2);

nand x5(w5,w1,A1);

nand x6(w6,A0,A1);

nand x7(D0,w3,w3);

nand x8(D1,w4,w4);

nand x9(D2,w5,w5);

nand x10(D3,w6,w6);

endmodule
```


b. 8 to 3 encoder with priority and without priority (behavioural model)

module encoder8_3(Dout, Din);

output [2:0] Dout;

input [7 : 0] Din;

reg [2 : 0] Dout;

always@(Din)

begin

```
case (Din)
8'b0000001:Dout = 3'b000;
8'b0000010:Dout = 3'b001;
8'b00000100:Dout = 3'b010;
8'b00001000:Dout = 3'b011;
8'b00010000:Dout = 3'b100;
8'b00100000:Dout = 3'b101;
8'b01000000:Dout = 3'b110;
8'b10000000:Dout = 3'b111;
default: Dout=3'bzzz;
endcase
end
endmodule
                Value
 Name
                          00000000
                                                           00000100
                                                                      00001000
                                     00000001
                                                00000010
                                                                                  00010000
                                                                                            01000000
    d Din[7:0]
                00010000
   b Dout[2:0]
                            ZZZ
                                                  001
                                                             010
                                                                        011
                                                                                    100
                                                                                              110
                    endoder pri8 3
                                                    Dout
module encoder_pri8_3 (Dout,Din);
output [ 2 : 0 ] Dout;
input [ 7 : 0 ] Din;
reg [ 2:0] Dout;
always@(Din)
begin
```

casex(Din)

8'b00000001 :Dout = 3'b000;

```
8'b0000001X :Dout = 3'b001;
8'b000001XX :Dout = 3'b010;
8'b00001XXX :Dout = 3'b011;
8'b0001XXXX :Dout = 3'b100;
8'b001XXXXX :Dout = 3'b101;
8'b01XXXXXX :Dout = 3'b110;
8'b1XXXXXXX :Dout = 3'b111;
endcase
end
endmodule
OR
module encoder_pri8_3 (Dout,Din);
input [7:0] Din;
output [2:0] Dout;
reg [2:0] Dout;
always @(Din)
begin
if (Din[7]==1) Dout
else if(Din[6]==1) Dout=3'd6;
else if(Din[5]==1) Dout=3'd5;
else if(Din[4]==1) Dout=3'd4;
else if(Din[3]==1) Dout=3'd3;
else if(Din[2]==1) Dout=3'd2;
else if(Din[1]==1) Dout=3'd1;
else Dout=3'd0;
end
endmodule
```

c. 8 to 1 multiplexer using case statement and if statements

or

 d. 4-bit binary to gray converter using 1-bit gray to binary converter 1bit adder and subtractor


```
assign b0= g0 ^ g1;
endmodule

module Fulladder_1 (sum,cout, a, b, c);
output sum, cout;
input a, b,c;
assign sum= a ^ b ^ c;
assign cout= (a & b) | (b & c) | (c & a);
endmodule

module Subtractor_1 (diff,bout, a, b, c);
output diff, bout;
input a, b,c;
assign diff= a ^ b ^ c;
assign bout= ((~a) & b) | ((((~a) | b)) & c),
endmodule
```

 Model in Verilog for a full adder and add functionality to perform logical operations of XOR, XNOR, AND and OR gates. Write test bench with appropriate input patterns to verify the modeled behaviour.


```
module fulladder (sum,cout,yxor,yxnor,yand,yor, a, b, c);

output sum, cout, yxor,yxnor,yand,yor;

input a, b,c;

assign sum= a ^ b ^ c;

assign cout= (a & b) | (b & c) | (c & a);

assign yxor=a^b^c;

assign yxnor=~(a^b^c);

assign yand=a&b&c;

assign yor=a|b|c;

endmodule
```


- Verilog 32-bit ALU shown in figure below and verify the functionality of ALU by selecting appropriate test patterns. The functionality of the ALU is presented in Table 1.
 - a. Write test bench to verify the functionality of the ALU considering all possible input patterns
 - b. The enable signal will set the output to required functions if enabled, if disabled all the outputs are set to tri-state
 - c. The acknowledge signal is set high after every operation is complete

Table 1 ALU Functions

Opcode (2:0)	ALU Operation	Remarks				
000	A+B	Addition of two numbers	Both A and B are in two's			
001	A-B	Subtraction of two numbers	complement format			
010	A+1	Increment Accumulator by 1	A is in two's complement			
011	A - 1	Decrement accumulator by 1	format			
100	A	True				
101	A Complement	Complement	Inputs can be in any			
110	A OR B	Logical OR	format			
111	A AND B	Logical AND				
		and the state of t				

Result[32] is acknowledge signal for completion of operation

```
module alu_3(Result, A, B, Opcode, Enable);
```

output [32:0] Result;

input signed[31:0] A, B;

input [2:0] Opcode;

input Enable;

reg [32:0] Result;

always@(Opcode,A,B,Enable)

begin

if(Enable==0)

begin

Result=31'bx;

end

else

begin

case(Opcode)

3'b000: begin Result=A+B; end

3'b001: begin Result=A-B; end

3'b010: begin Result=A+1; end

3'b011: begin Result=A-1; end

3'b100: begin Result=!A; end

3'b101: begin Result=~A; end

3'b110: begin Result=A|B; end

3'b111: begin Result=A&B; end

endcase

Result[32]=1'b1

and

end

endmodule

								6.391813 u
Name	Value	1 us	2 us	3 us	4 us	5 us	6 us	1
▶ 🛂 A[31:0]	00000000		0000	00ff		0000	0000	
▶ 🛂 B[31:0]	0000000f			0000	000f			
Dpcode[2:0]	111	000	001	010	1	00		111
🖫 Enable	1							
Result[32:0]	100000000	10000010e	1000000f0	100000100	100000000	100000001	100	000000

4. Write Verilog code for SR, D and JK and verify the flip flop.

ECE Dept KLE Dr MSS CET Belagavi

```
module dff(q,qb,d,clk);
        output q,qb;
        input d,clk;
        reg q=0,qb=1;
        always@(posedge clk)
        begin
        q= d;
        qb=~q;
        end
        endmodule
                 Value
Name
  ¼ d
  la clk
  Ū₀q
  🆫 qb
                         srff
                                          - qb
        clk ·
       module srff(q,qb,sr,clk);
        output q,qb;
        input clk;
        input[1:0]sr;
        reg q=0,qb=1;
        always@(posedge clk)
        begin
```

ECE Dept KLE Dr MSS CET Belagavi

2'b10:q=1; 2'b11:q=~q; endcase qb=~q; end endmodule

5. Write Verilog code for 4-bit BCD synchronous counter.


```
module BCD_Counter(count, clk,reset);
```

output [3:0] count;

input clk, reset;

reg[3:0]count=4'b0000;

always@(posedge clk)

begin

if((reset==1) | (count==4'b1001))

count = 4'b0000;

else

count = count+1;

end

endmodule

6. Write Verilog code for counter with given input clock and check whether it works as clock divider performing division of clock by 2, 4, 8 and 16. Verify the functionality of the code.

module freq_div(clk_2,clk_4,clk_8,clk_16, clk,reset);

output clk_2,clk_4,clk_8,clk_16

input clk,reset;

reg clk_2,clk_4,clk_8,clk_16;

reg[3:0]count=4'b0000,

always@(posedge clk)

begin

if(reset==1)

begin count = 4'b0000; end

else

begin count = count+1; end

clk_2=count[0];

clk_4=count[1];

clk_8=count[2];

clk_16=count[3];

end

endmodule

Prepared by Suresh Filhur Bo