

PHYSICAL CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Behaviour of Gases

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

GRAHAM'S LAW OF DIFFUSION

- 1. Which pair of the gaseous species diffuse through a small jet with the same rate of diffusion at same P and T:
 - (1) NO, CO
- (2) NO, CO₂
- (3) NH₃,PH₃
- (4) NO, C₂H₆

IG0001

- **2.** The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is :
 - (1)64
- (2) 32
- (3) 4.0
- (4) 8.0

IG0002

- **3.** The increasing order of effusion among the gases, H_2 , O_2 , NH_3 and CO_2 is
 - (1) H₂, CO₂, NH₃, O₂
- (2) H₂, NH₃, O₂, CO₂
- (3) H₂, O₂, NH₃, CO₂
- (4) CO₂, O₂, NH₃, H₂

IG0003

- **4.** Gas A having molecular weight 4 diffuses thrice as fast as the gas B at a given T. The molecular weight of gas B is:
 - (1) 36
- (2) 12
- (3) 18
- (4)24

IG0004

- **5**. Four rubber tubes are respectively filled with H_2 , O_2 , N_2 and CO_2 . The tube which will be deflated first is :
 - (1) H₂ filled tube
- (2) O₂ filled tube
- (3) N₂ filled tube
- (4) CO₂ filled tube

IG0005

- 6. A balloon filled with methane CH₄ is pricked with a sharp point and quickly plunged into a tank of hydrogen at the same pressure. After sometime the balloon will have:
 - (1) Enlarged
 - (2) Collapsed
 - (3) Remain unchanged in size
 - (4) Ethylene (C_2H_4) inside it

IG0006

- **7**. Rate of diffusion of hydrogen is :
 - (1) Half of He
- (2) 1.4 times of He
- (3) Double than He
- (4) four times of He

IG0007

Build Up Your Understanding

- **8**. A football bladder contains equimolar proportions of H_2 and O_2 . The composition by mass of the mixture effusing out of punctured football is in the ratio $(H_2:O_2)$
 - (1) 1 : 4
- (2) $2\sqrt{2} : 1$
- (3) $1: 2\sqrt{2}$
- (4) 4 : 1

IG0008

- **9.** If the vapour densities of methane & oxygen are in the ratio 1:2, the ratio of rate of diffusion of $O_2 \& CH_4$ is respectively
 - (1) 1 : 2
- (2) 1 : 1.414
- (3) 2 : 1
- (4) 1.414:1

IG0009

- 10. A gas X diffuses three times faster than another gas Y. The ratio of their densities i.e., D_x : D_y is
 - (1) 1/3
- (2) 1/9
- (3) 1/6
- (4)1/12

IG0010

- **11**. The relative rate of diffusion of a gas (Mol wt. = 98) as compared to hydrogen will be:
 - (1) 1/7
- (2) 1/5
- (3) 1/4
- (4) 1

IG0011

- **12**. The relative rate of diffusion of a gas (molecular weight = 128) as compared to oxygen is
 - (1) 2 times
- (2) 1/4 times
- (3) 1/8 times
- (4) 1/2 times

IG0012

- 13. Since the atomic weights of carbon, nitrogen and oxygen are 12, 14 and 16 respectively, among the following pairs of gases, the pair that will diffuse at the same rate is:
 - (1) Carbon dioxide and nitrous oxide
 - (2) Carbon dioxide and nitrogen dioxide
 - (3) Carbon dioxide and carbon monoxide
 - (4) Carbon dioxide and nitric oxide

IG0013

- **14.** A bottle of dry ammonia and a bottle of dry hydrogen chloride connected through a long tube are opened simultaneously at both ends, the white ammonium chloride ring first formed will be:
 - (1) at the centre of the tube
 - (2) near the hydrogen chloride bottle
 - (3) near the ammonia bottle
 - (4) throughout the length of the tube

Pre-Medical

- 15. 50 ml of a gas A diffuses through a membrane in the same time as for the diffusion of 40 ml of a gas B under identical pressure and temperature conditions. If the Molecular weight of A=64, that of B would be:
 - $(1)\ 100$
- (2) 250
- (3) 200
- (4) 80

IG0015

- **16**. If rate of diffusion of A is 5 times that of B. What will be the ratio of density of A and B:
 - (1) 1/25
- (2) 1/5
- (3) 25
- (4) 5

IG0016

- 17. 50 ml of hydrogen diffuses through a small hole from vessel in 20 minutes time. Time taken for 40 ml of oxygen to diffuse out under similar conditions will be:
 - (1) 12 min.
- (2) 64 min
- (3) 8 min
- (4) 32 min

IG0017

- **18**. The densities of two gases are in the ratio of 1:16. The ratio of their rates of diffusion is:
 - (1) 16 : 1
- (2) 4 : 1
- (3) 1 : 4
- (4) 1 : 16

IG0018

- **19.** The rate of diffusion of a gas having molecular weight just double of nitrogen gas is 56 ml per sec the rate of diffusion of nitrogen gas will be:
 - (1) 79.19 ml/sec
- (2) 112 ml/sec
- (3) 56 ml/sec
- (4) 90 ml/sec

IG0019

- **20.** Under identical conditions of temperature and pressure, the ratio of the rates of effision of O_2 and CO_2 gases is given by :
 - (1) $\frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of } CO_2} = 0.87$
 - (2) $\frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of } CO_2} = 1.17$
 - (3) $\frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of } CO_2} = 8.7$
 - (4) $\frac{\text{rate of effusion of oxygen}}{\text{rate of effusion of CO}_2} = 0.117$

IG0021

DEVIATION FROM IDEAL GAS BEHAVIOUR

- **21**. When does a real gas show behaviour same as ideal gas:
 - (1) At low temperature and low pressure
 - (2) At high temperature and high pressure
 - (3) At low temperature and high pressure
 - (4) At high temperature and low pressure

IG0022

- **22.** In van der Waal's equation, the constant 'b' is a measure of :
 - (1) intermolecular repulsions
 - (2) intermolecular attraction
 - (3) volume occupied by the molecules
 - (4) intermolecular collisions per unit volume

RG0023

- **23**. Pressure of real gas is less than the pressure of ideal gas because :
 - (1) No. of collisions increases
 - (2) Definite shape of molecule
 - (3) K.E. of molecule increases
 - (4) Inter molecular forces

IG0025

- **24.** Which gas can be easily liquefied? given 'a' for $NH_3 = 4.17$, $CO_2 = 3.59$, $SO_2 = 6.71$, $CI_2 = 6.49$
 - (1) NH₃
- (2) Cl₂
- (3) SO₂
- (4) CO₂

RG0026

- **25.** At relatively high pressure, van der waals' equation reduces to :
 - (1) PV = RT
- (2) $PV = RT + \frac{a}{V}$
- (3) PV = RT + Pb
- (4) $PV = RT \frac{a}{V^2}$

RG0027

- **26.** A real gas most closely approaches the behaviour of an ideal gas at :
 - (1) 15 atm and 200 \mbox{K}
- (2) 1 atm and 273 K
- (3) 0.5 atm and 500 K
- (4) 15 atm and 500 K

RG0028

- **27**. The compressibility factor of an ideal gas is :
 - (1) 0
- (2) 1
- (3) 2
- $(4) \ 4$

IG0029

- **28**. The compressibility of a gas is less than unity at STP therefore :
 - (1) $V_m > 22.4 L$
- (2) $V_m < 22.4 L$
- (3) $V_m = 22.4 L$
- (4) $V_m = 44.8 L$

RG0030

- **29**. The values of van der Waal's constant 'a' for the gases O₂, N₂, NH₃ and CH₄ are 1.360, 1.390, 4.170 and 2.253 L² atm mol⁻² respectively. The gas which can most easily be liquefied is:
 - (1) O_{2}
- (2) N_2
- (3) NH₃
- (4) CH₄

RG0031

- **30.** Which of the following is not correct for real gases?
 - (1) No force of attraction between the molecules of a gas.
 - (2) Volume of the moelecules of a gas is negligible in comparison to the space occupied by the gas.
 - (3) Do not follow PV = nRT.
 - (4) Both (1) & (2)

RG0054

- **31.** The Boyle temperature or Boyle point is :
 - (1) The temperature at which ideal gas obeys real gas laws
 - (2) The temperature at which a real gas obeys ideal gas laws over an appreciable range of pressure
 - (3) It does not depend on nature of gas
 - (4) The temperature at which gases have no deviation

Pre-Medical

EXERCISE-II (Previous Year Questions)

AIPMT Pre.-2011

- Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molecular mass of A is 49u. Molecular mass of B will be:-
 - (1) 50.00 u
- (2) 12.25 u
- (3) 6.50 u
- (4) 25.00 u

IG0032

AIPMT Pre. - 2012

- 2. 50 mL each of gas A and of gas B takes 150 and 200 seconds respectively for effusing through a pin hole under the similar condition. If molecular mass of gas B is 36, the molecular mass of gas A will be:
 - (1) 20.25
- (2)64
- (3)96
- (4) 128

IG0033

AIPMT Main - 2012

- **3.** A certain gas takes three times as long to effuse out as helium. Its molecular mass will be:
 - (1) 64 u
- (2) 9 u
- (3) 27 u
- (4) 36 u

IG0034

NEET-UG 2013

- **4.** Maximum deviation from ideal gas is expected from:
 - (1) $NH_{3}(g)$
- (2) $H_2(g)$
- (3) $N_{2}(g)$
- (4) $CH_4(q)$

IG0035

NEET(UG) 2018

- 5. Given van der Waal's constant for NH_3 , H_2 , O_2 and CO_2 are 4.17, 0.244, 1.36 and 3.59, L^2 atm mol⁻² respectively which one of the following gases is most easily liquefied?
 - (1) NH₃
- $(2) H_{2}$
- (3) O_2
- (4) CO₂

RG0039

- **6.** The correction factor 'a' to the ideal gas equation corresponds to
 - (1) density of the gas molecules
 - (2) volume of the gas molecules
 - (3) electric field present between the gas molecules
 - (4) forces of attraction between the gas molecules

IG0040

AIPMT/NEET

Chemistry: Behaviour of Gases

NEET(UG) 2019

- 7. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The **correct** option about the gas and its compressibility factor (Z) is:
 - (1) Z > 1 and attractive forces are dominant
 - (2) Z > 1 and repulsive forces are dominant
 - (3) Z < 1 and attractive forces are dominant
 - (4) Z < 1 and repulsive forces are dominant

RG0056

NEET(UG) (Odisha) 2019

- **8.** The volume occupied by 1.8 g of water vapour at 374 °C and 1 bar pressure will be :-
 - [Use $R = 0.083 \text{ bar L } K^{-1} \text{mol}^{-1}$]
 - (1) 96.66 L
- (2) 55.87 L
- (3) 3.10 L
- (4) 5.37 L

IG0057

- **9.** In water saturated air, the mole fraction of water vapour is 0.02. If the total pressure of the saturated air is 1.2 atm, the partial pressure of dry air is:
 - (1) 1.18 atm
- (2) 1.76 atm
- (3) 1.176 atm
- (4) 0.98 atm

IG0058

NEET (UG) 2020

- 10. A mixture of N_2 and Ar gases in a cylinder contains 7g of N_2 and 8g of Ar. If the total pressure of the mixture of gases in the cylinder is 27 bar, the partial pressure of N_2 is:
 - [Use atomic masses (in g mol $^{\! -1}\!)$: N=14, Ar=40]
 - (1) 18 bar
- (2) 9 bar
- (3) 12 bar
- (4) 15 bar

IG0067

NEET (UG) 2020 (Covid-19)

- **11.** The minimum pressure required to compress 600 dm³ of a gas at 1 bar to 150 dm³ at 40°C is
 - (1) 4.0 bar
- (2) 0.2 bar
- (3) 1.0 bar
- (4) 2.5 bar

NEET (UG) 2021

12. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures:

IG0069

- 13. Choose the correct option for the total pressure (in atm.) in a mixture of 4g O_2 and 2g H_2 confined in a total volume of one litre at 0°C is: [Given R=0.082 L atm mol⁻¹K⁻¹, T=273K]
 - (1) 2.518
- (2) 2.602
- (3) 25.18
- (4) 26.02

IG0070

NEET (UG) 2022

14. A 10.0 L flask contains 64 g of oxygen at 27° C. (Assume O_2 gas is behaving ideally). The pressure inside the flask in bar is

(Given $R = 0.0831 L bar K^{-1} mol^{-1}$)

- (1)498.6
- (2)49.8
- (3) 4.9
- (4) 2.5

IG0071

NEET (UG) 2022 (OVERSEAS)

- **15.** At 300 K, 250 mL of gas A at 1 bar pressure is mixed with 500 mL of gas B at 2 bar pressure in a 1.0 L flask. Gas A does not react with gas B. The final pressure of the mixture is:
 - (1) 2.15 bar
- (2) 2.50 bar
- (3) 1.25 bar
- (4) 1.00 bar

IG0072

- **16.** Which of the following is not correct about postulates of kinetic molecular theory of gases?
 - (1) Volume of the gas is due to the large number of molecules of the gas.
 - (2) Average kinetic energy of molecules is directly proportional to the absolute temperature of the gas.
 - (3) The molecules move randomly with different speeds in different directions.
 - (4) Pressure of the gas is due to the collision of molecules against the walls of the container.

IG0073

Re-NEET (UG) 2022

- 17. Four gas cylinders containing He, N_2 , CO_2 and NH_3 gases separately are gradually cooled from a temperature of 500 K. Which gas will liquify first? (Given T_c in K He : 5.3, N_2 : 126, CO_2 : 304.1 and NH_3 : 405.5)
 - (1) He
- (2) N_2
- (3) CO₂
- (4) NH₃

RG0074

Chemistry: Behaviour of Gases

Pre-Medical

18. A vessel contains 3.2 g of dioxygen gas at STP (273.15 K and 1 atm pressure). The gas is now transferred to another vessel at constant temperature, where pressure becomes one third of the original pressure. The volume of new vessel in L is:

(Given - molar volume at STP is 22.4 L)

(1) 6.72

(2) 2.24

(3) 22.4

(4) 67.2

EXERCISE-III (Analytical Questions)

- When r, P and M represent rate of diffusion, 1. pressure and molecular mass, respectively, then the ratio of the rates of diffusion (r_A/r_B) of two gases A and B, is given as :-
 - (1) $(P_A/P_B)^{1/2} (M_A/M_B)$
- (2) $(P_A/P_B) (M_B/M_A)^{1/2}$
- (3) $(P_A/P_B)^{1/2} (M_B/M_A)$
- (4) $(P_A/P_B) (M_A/M_B)^{1/2}$

IG0043

- 2. The compressibility factor for a real gas at high pressure is :-
 - (1) $1 \frac{pb}{RT}$
- $(2) 1 + \frac{RT}{pb}$

(3) 1

(4) $1 + \frac{pb}{RT}$

RG0044

- 3. If Z is a compressibility factor, van der Waal's equation at low pressure can be written as :
 - (1) $Z = 1 \frac{Pb}{RT}$
- $(2) Z = 1 + \frac{Pb}{RT}$
- (3) $Z = 1 + \frac{RT}{Pb}$ (4) $Z = 1 \frac{a}{VRT}$

RG0045

- Under which of the following conditions, a gas 4. deviates most from the ideal behaviour?
 - (a) Very low pressure
- (b) High pressure

(3) a, c

- (c) Low temperature
- (d) High temperature
- (1) a, d
- (2) b, c
- (4) b, d

RG0059

Master Your Understanding

Which curve in the **5**. graph always show compressibility factor greater than 1?

- (1) A gas
- (2) B gas
- (3) C & D gases
- (4) D gas

RG0060

6. Gases H_2 N_2 NH_3 CO_2 Critical 33.2 K 126 K 405.5 K 304.1 K temperature

> From the above data what would be the decreasing order of liquefaction of these gases?

- (1) NH₃, CO₂, N₂, H₂
- (2) CO₂, NH₃, H₂, N₂
- (3) NH₃, N₂, H₂, CO₂
- (4) H₂, N₂, CO₂, NH₃

RG0061

- 7. Vander Waals constant 'a' is -
 - (1) Measure of magnitude of inter molecular forces within the gas.
 - (2) Independent of temperature and pressure.
 - (3) Having unit = L^2 atm mol⁻²
 - (4) All are correct

RG0062

EXERCISE-III (Analytical Questions)

ANSWER KEY

Que.	1	2	3	4	5	6	7
Ans.	2	4	4	2	2	1	4