Demanda por Ferfilizantes

Trabalho de Conclusão em Time Series

Dieggo Henrique

Contents

1	Introdução	2					
	1.1 Base de dados	2					
2	Modelo de Holt-Winter Aditivo e Multiplicativo	5					
	2.1 Decomposição das Series Temporais	5					
	2.2 Modelo de Holt-Winters						
	2.3 Qual o modelo melhor se adequa a amostra?	7					
	2.4 Treinando o modelo						
3	Projeção com o modelos $SARIMA(p,d,q)(P,D,Q)[s]$	8					
4	Conclusão	10					
5	Projeção da demanda futura por fertilizante com o Modelo Auto Arima						

1 Introdução

O agronegócio desempenha um importante papel na geração de riqueza no Brasil. Nas últimas décadas, o setor conviveu com inovações em produção e a Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, tem um papel relevante neste processo.

O agronegócio efetua anualmente elevados investimentos que retroalimenta toda uma gama de cadeias econômicas, além de contribuir com uma maior eficiência e eficácia na produção de alimentos. Neste quesito, o consumo de fertilizantes ocupa uma parcela significativa dos investimentos realizados.

A Empresa Agro TS contratou os nossos seviços para realizarmos a previsão de demanda por fertilizande para diversas culturas (milho, soja, algodão, amendoin, feijão, trigo, etc.). Essa decisão foi tomada pela diretoria para que a empresa possa, com essa informação, realizar a projeção do seu orçamento de 2022 da melhor forma possivel e com as tecnicas mais avançadas de previsão que o mercado possui.

1.1 Base de dados

Dados extraídos da Associação Nacional de Defensivos Agrícolas - ANDA referentes ao volume de fertilizantes entregues ao mercado. Série em mil toneladas. Período de jan-1998 até out-2021¹

1.2 Leitura da base de dados

O início da série é em Janeiro de 1998, tendo o seu fim em outubro de 2021. Para que realizemos a previsão da Demanda de Fertilizantes para o orçamento de 2022 da Empresa Agro TS.

No gráfico abaixo podemos observar o comportamento da série de dados.

Fonte: ANDA período de jan-1998 até out-2021.

Pela a análise do gráfico acima, observamos que a série temporal possui uma tendencia² crescente, com picos sazonais³ ao longo do ano. As ocilações, que podemos perceber no gráfico podem estar relacionado ao período de plantio e colheita (sazonalidade do setor).

1.3 Análise Exploratória da Série Temporal.

Nesta etapa, o intuito é aprender ainda mais com os dados, para que assim possamos gerar valor para a empresa que demandou os serviços. Antes de cortarmos a série iremos verificar indicadores de tendências da

 $^{^{1}} http://anda.org.br/wp-content/uploads/2022/01/Principais_Indicadores_2021.pdf$

²Esta componente será observada quando a série temporal seguir uma determinada direção, crescente ou decrescente, e não necessariamente linear.

³Padrão que se repete com uma certa periodicidade dentro de um ano (exemplo: semanal, mensal etc.). Descreve um comportamento cíclico de curto prazo que pode ser observado várias vezes dentro da série especificada.

série por meio dos gráficos.

Ano	Percentual
1998	2.32
1999	2.17
2000	2.60
2001	2.70
2002	3.03
2003	3.61
2004	3.61
2005	3.20
2006	3.32
2007	3.90
2008	3.55
2009	3.56
2010	3.88
2011	4.54
2012	4.63
2013	4.86
2014	5.10
2015	4.78
2016	5.40
2017	5.36
2018	5.62
2019	5.74
2020	6.43
2021	6.07

Comparando 1998 a 2021, observa-se uma grande demanda na série, consultando o calendário agrícola, observa-se que entre e Abril a Novembro do ano seja o período de plantio da maioria das lavouras, e de dezembro a abril o período de colheta da maioria das lavouras.

Observa-se no boxplot que há uma tendência de sazonalidade a partir de maio normalizando em dezembro por ano com seus valores médios.

Demanda por Fertilizantes (Jan-1998 a Out-2021)

Distribuição da demanda por Fertilizante

Fonte: ANDA período de jan-1998 até out-2021.

2 Modelo de Holt-Winter Aditivo e Multiplicativo

2.1 Decomposição das Series Temporais

De acordo com a decomposição clássica de séries temporais, uma ST pode ser decomposta em quatro componentes não observáveis: tendência, ciclo, sazonalidade e erro.

Geralmente as componentes de tendência e ciclo permanecem agregadas devido ao número de observações da ST não ser suficiente para uma boa estimativa da componente de ciclo separadamente.

Aqui iremos decompor as séries em aditiva e multiplicativa.

Tanto na decomposição ativiva quanto na multiplicativa a tendencia da série é Crescente. Pelo comportamento das series, ela possui uma caracteristica mais multiplicativa.

2.2 Modelo de Holt-Winters

Este modelo é uma extensão feita por Winters em 1960 ao modelo de Holt com o intuito de capturar o efeito sazonal.

O modelo segue a mesma proposta de equação vista na Suavização Exponencial de Holt com a inclusão de uma equação adicional para a sazonalidade. O modelo HW é adequado para séries de comportamento mais geral, uma vez que na prática a maioria das séries encontradas apresentam a componente de sazonalidade.

2.2.1 Modelo Aditivo

Para a previsão do modelo aditivo consideramos uma rojeção de 48 meses com 60% de confiança. Os resultados mostraram que a projeção conseguiu capturar as sazonalidades do modelo.

Demanda por Fertilizante - Holt-Winters Aditivo (2021-2025)

2.2.2 Modelo Multiplicativo

Para a previsão do modelo multiplicativo também consideramos uma rojeção de 48 meses com 60% de confiança. Os resultados mostraram que a projeção conseguiu capturar as sazonalidades do modelo semelhante ao exemplo aditivo.

Demanda por Fertilizante - Holt-Winters Multiplicativo (2021-2025)

2.3 Qual o modelo melhor se adequa a amostra?

Demanda por Fertilizante 2021 a 2025 (Holt-Winters)

Ao compararmos os erros do Modelo Aditivo e Multiplicativo, considerando o $MAPE^4$ e o $RMSE^5$, consideramos o melhor modelo o Multiplicativo, pois evidencia os menores erros.

2.4 Treinando o modelo

Nesta etapa consideramos separar a base de dados em treino (end = c(2017,12)) e teste (start = c(2018,1)) utilizando o modelo multiplicativo.

O resultado foi bem satisfatórios.

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-2.83	267.27	206.2	-0.79	9.33	0.63	0.02
	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	2.87	289.7	218.87	-1.15	9.87	0.67	0.18

Previsão de Demanda de Fertilizante Holt-Winters

⁴Erro Médio Absoluto Percentual

 $^{^5\}mathrm{Raiz}$ do Erro Médio Quadrado

3 Projeção com o modelos SARIMA(p,d,q)(P,D,Q)[s]

Plotar os correlogramas ACF e PACF e verificar a estacionariedade da série temporal. O pacote TStudio tem a função ts_cor() que é bem interessante. Vale a pena dar um visitada no sítio deste pacote indiano.


```
## Feb 2019
                  2360.208 2360.208 2360.208
## Mar 2019
                  2138.379 2138.379 2138.379
## Apr 2019
                  2063.806 2063.806 2063.806
## May 2019
                  2603.811 2603.811 2603.811
## Jun 2019
                  3025.787 3025.787 3025.787
## Jul 2019
                  3413.340 3413.340 3413.340
## Aug 2019
                  3829.260 3829.260 3829.260
## Sep 2019
                  3931.763 3931.763 3931.763
## Oct 2019
                  3818.985 3818.985 3818.985
## Nov 2019
                  3066.828 3066.828 3066.828
## Dec 2019
                  2393.940 2393.940 2393.940
## Jan 2020
                  2500.610 2500.610 2500.610
## Feb 2020
                  2360.208 2360.208 2360.208
## Mar 2020
                  2138.379 2138.379 2138.379
## Apr 2020
                  2063.806 2063.806 2063.806
## May 2020
                  2603.811 2603.811 2603.811
## Jun 2020
                  3025.787 3025.787 3025.787
## Jul 2020
                  3413.340 3413.340 3413.340
## Aug 2020
                  3829.260 3829.260 3829.260
## Sep 2020
                  3931.763 3931.763 3931.763
## Oct 2020
                  3818.985 3818.985 3818.985
## Nov 2020
                  3066.828 3066.828 3066.828
## Dec 2020
                  2393.940 2393.940 2393.940
## Jan 2021
                  2500.610 2500.610 2500.610
## Feb 2021
                  2360.208 2360.208 2360.208
## Mar 2021
                  2138.379 2138.379 2138.379
## Apr 2021
                  2063.806 2063.806 2063.806
## May 2021
                  2603.811 2603.811 2603.811
## Jun 2021
                  3025.787 3025.787 3025.787
## Jul 2021
                  3413.340 3413.340 3413.340
## Aug 2021
                  3829.260 3829.260 3829.260
## Sep 2021
                  3931.763 3931.763 3931.763
## Oct 2021
                  3818.985 3818.985 3818.985
## Nov 2021
                  3066.828 3066.828 3066.828
## Dec 2021
                  2393.940 2393.940 2393.940
## Jan 2022
                  2500.610 2500.610 2500.610
## Feb 2022
                  2360.208 2360.208 2360.208
## Mar 2022
                  2138.379 2138.379 2138.379
## Apr 2022
                  2063.806 2063.806 2063.806
## May 2022
                  2603.811 2603.811 2603.811
## Jun 2022
                  3025.787 3025.787 3025.787
## Jul 2022
                  3413.340 3413.340 3413.340
## Aug 2022
                  3829.260 3829.260 3829.260
## Sep 2022
                  3931.763 3931.763 3931.763
## Oct 2022
                  3818.985 3818.985 3818.985
## Nov 2022
                  3066.828 3066.828 3066.828
## Dec 2022
                  2393.940 2393.940 2393.940
```

Previsão de Demanda de Fertilizante (Auto-Arima)

4 Conclusão

Por final iremos calcular o AICc dos modelos Multiplicativo e Auto Arima para que possamos estimar a demanda futura por Fertilizante, ao qual será muito útil para elaboração dos orcamentos das empresas e do governo.

Previsão da Demanda por Fertilizante

5 Projeção da demanda futura por fertilizante com o Modelo Auto Arima

```
## Series: DemandaCorte
## ARIMA(1,0,0)(0,1,1)[12] with drift
##
##
   Coefficients:
##
                            drift
            ar1
                     sma1
##
         0.6428
                  -0.7060
                           9.9109
         0.0596
                   0.0645
                           1.7415
##
   s.e.
##
## sigma^2 = 73754: log likelihood = -1168.74
```

Previsão de Demanda de Fertilizante (Auto-Arima) (Out-2021 a Out-2025)

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Nov 2021	3867.070	3519.026	4215.115	3334.782	4399.359
Dec 2021	3204.314	2790.558	3618.070	2571.529	3837.099
Jan 2022	3337.848	2899.808	3775.888	2667.923	4007.772
Feb 2022	2933.233	2485.541	3380.924	2248.548	3617.918
Mar 2022	2438.355	1986.735	2889.975	1747.662	3129.048
Apr 2022	2226.688	1773.455	2679.921	1533.528	2919.849
May 2022	3189.202	2735.303	3643.100	2495.024	3883.379
Jun 2022	3890.167	3435.995	4344.340	3195.570	4584.765
Jul 2022	4517.795	4063.509	4972.082	3823.024	5212.566
Aug 2022	4867.397	4413.064	5321.730	4172.554	5562.239
Sep 2022	4791.199	4336.847	5245.552	4096.327	5486.071
Oct 2022	4537.687	4083.326	4992.047	3842.802	5232.571
Nov 2022	3801.348	3335.224	4267.471	3088.474	4514.222
Dec 2022	3204.541	2733.643	3675.439	2484.365	3924.717