ρ resonance in $\pi\pi$ channel with LapH smearing

Dehua Guo

University of Kentucky

December 19, 2014

What is interesting?

- Lüscher pointed out that the discrete spectrum E_n in finite volume \rightarrow phase shift δ of continuum scattering amplitude in the elastic region[1].
- ② Focus on vector meson $\rho(770)$ in the $I^G(J^{PC})=1^+(1^{--})$ for two pions with back to back $\pi\to\leftarrow\pi$ channel.
- **③** Compute energy spectrum for ho and $\pi\pi$ operators
- **©** Extract phase shift and compute ho resonance parameters $g_{
 ho\pi\pi}$ and decay width $\Gamma_
 ho$

previous study of $g_{\rho\pi\pi}$

C.B.Lang et al use Laph smearing and boost frame method in 16³32 solensemble.

4 D > 4 D > 4 E > 4 E > 9 Q P

Lüscher's formula for phase shift

Table : Resolution of 2J+1 spherical harmonics into the irreducible representations of \mathcal{O}_h and \mathcal{D}_{4h}

J	O_h	D_{4h}
0	A_1^+	A_1^+
1	F_1^-	${\sf A_2^-} \oplus {\sf E^-}$
2	$E^+ \oplus F_2^+$	$A_1^+\oplus B_1^-\oplus B_2^+\oplus E^+$
3	$A_2^- \oplus F_1^- \stackrel{-}{\oplus} F_2^-$	$A_2^- \oplus B_1^- \oplus B_2^- \oplus 2E^-$
4	$A_1^+ \oplus E^+ \oplus F_1^+ \oplus F_2^+$	$2A_1^+ \oplus A_2^+ \oplus B_1^+ \oplus B_2^+ \oplus 2E^+$

Assume that contribution from angular momenta $l \leq 3$ is negligible. Phase shift $\delta_{l=1}$ is decomposed into A_2^- and E^- representations in D_{4h} group.

From energy spectrum to phase shift

Phase shift for l=1

$$A_2^- : \cot \delta_1(k) = \mathcal{W}_{00} + \frac{2}{\sqrt{5}} \mathcal{W}_{20}$$
 (1)

$$E^- : \cot \delta_1(k) = \mathcal{W}_{00} - \frac{1}{\sqrt{5}} \mathcal{W}_{20}$$
 (2)

$$W_{lm}(1, q^2, \eta) = \frac{Z_{lm}(1, q^2, \eta)}{\pi^{\frac{3}{2}} \eta q^{l+1}}; \quad q = \frac{kL}{2\pi};$$
 (3)

Zeta function

$$Z_{lm}(s; q^2) = \sum_{\mathbf{n} \in L^3} \mathcal{Y}_{lm}(\mathbf{n})(\mathbf{n}^2 - q^2)^{-s}$$
 (4)

Total energy

$$W = 2\sqrt{m_{\pi}^2 + k^2}; \quad k = \sqrt{\left(\frac{w}{2}\right)^2 - m_{\pi}^2}$$
 (5)

Computing energy spectrum on the lattice

Variational analysis correlation matrix in the operators basis

$$C(t)_{ij} = \langle \mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0) \rangle; i, j = 1, 2, ..., \text{number of operators}$$
 (6)

The eigenvalue of the correlation matrix are

$$\lambda^{(n)}(t,t_0) \propto e^{-E_n t} (1 + \mathcal{O}(e^{-\Delta E_n t})), n = 1,2,...,$$
 number of operators (7)

where $\Delta E_n = E_{\text{Number of operators} + 1} - E_n$

Previous work[2]

One local operator ρ and one scattering operator $\pi\pi$ with stochastic evaluation for all-to all propagator $C_{\pi\pi\leftarrow\pi\pi}$ and $C_{\rho\leftarrow\pi\pi}$.

$$\rho = \sum_{x} \frac{1}{\sqrt{2}} \{ \bar{u}(x) \gamma_3 u(x) - \bar{d}(x) \gamma_3 d(x) \}$$
 (8)

$$\pi\pi = \frac{1}{\sqrt{2}} \{ \pi^{+}(\mathbf{p})\pi^{-}(-\mathbf{p}) - \pi^{-}(\mathbf{p})\pi^{+}(-\mathbf{p}) \}$$
 (9)

Three ensembles $\eta 24 \times 24 \times 24 \times 48$ (2424²48, 3024²48, 4824²48) with $m_{\pi} = 304$ MeV, a = 0.1255 fm.

Table : First two energy levels in A_2^- sector

$\overline{\eta}$	1.0	1.25	2.0
aE_0	0.516(10)	0.511(4)	0.442(4)
aE_1	0.660(6)	0.606(10)	0.549(12)
am_{π}	0.1925(7)	0.1944(6)	0.1946(8)

Recent work: Larger operator basis with LapH smearing[3]

The 3-dimensional gauge-covariant Laplacian matrix

$$\tilde{\Delta}^{ab}(x,y;U) = \sum_{k=1}^{3} \left\{ \tilde{U}_{k}^{ab}(x)\delta(y,x+\hat{k}) + \tilde{U}_{k}^{ba}(y)^{*}\delta(y,x-\hat{k}) - 2\delta(x,y)\delta^{ab} \right\}$$
(10)

Definition of quark smearing operator to certain energy cutoff Λ (only smear spatial and color components)

$$S_{\Lambda}(t) = \sum_{\lambda(t)}^{\Lambda} |\lambda(t)\rangle \langle \lambda(t)|; \quad \tilde{u}(t) = S(t)u(t) = \sum_{\lambda_t} |\lambda_t\rangle \langle \lambda_t| u(t). \quad (11)$$

Light quark propagator $M^{-1}(t_f,t_i)$ has $(N_s^3N_tN_cN_d)^2$ entries was projected to momentum space $\tilde{M}(t_f,t_i)$ with $(N_\lambda N_tN_d)^2$ entries.

LapH smearing

Test on 16³32 ensemble (150 configs)

Figure : effective mass vs energy cutoff $N_{\rm vec}$

Figure : pion effective mass with and without LapH smearing

Recent work: Larger operator basis with LapH smearing

Four local operator ρ and two scattering operators $\pi\pi$.

$$\rho^{J}(t_f) = \bar{u}(t_f)\Gamma_{t_f}A_{t_f}(\mathbf{p})d(t_f); \quad \rho^{J\dagger}(t_i) = \bar{d}(t_i)\Gamma_{t_i}^{\dagger}A_{t_i}^{\dagger}(\mathbf{p})u(t_i)$$
 (12)

J	Γ_{t_f}	A_{t_f}	$\Gamma_{t_i}^{\dagger}$	$A_{t_i}^{\dagger}$
1	γ_i	$e^{i\mathbf{p}}$	$-\gamma_i$	$e^{-i\mathbf{p}}$
2	$\gamma_4\gamma_i$	$e^{i\mathbf{p}}$	$\gamma_4\gamma_i$	$e^{-i\mathbf{p}}$
3	γ_i	$ abla_j e^{i\mathbf{p}} abla_j$	γ_i	$\nabla_i^{\dagger} e^{-i\mathbf{p}} \nabla_i^{\dagger}$
4	$\frac{1}{2}$	$\{e^{i\mathbf{p}}, \nabla_i\}$	$-\frac{1}{2}$	$\{e^{-i\mathbf{p}}, \nabla_i\}$

$$\pi\pi(\mathbf{p}) = \frac{1}{\sqrt{2}} \{ \pi^{+}(\mathbf{p})\pi^{-}(-\mathbf{p}) - \pi^{-}(\mathbf{p})\pi^{+}(-\mathbf{p}) \}; \quad \mathbf{p} = (1, 0, 0) \text{and} (1, 1, 0)$$
(13)

4□ > 4□ > 4□ > 4 = > = 90

Compute correlation function

 5×5 correlation matrix

$$C = \begin{pmatrix} C_{\rho^{J} \leftarrow \rho^{J'}} & C_{\rho^{J} \leftarrow \pi\pi(100)} \\ C_{\pi\pi(100) \leftarrow \rho^{J'}} & C_{\pi\pi(100) \leftarrow \pi\pi(100)} \end{pmatrix}$$
(17)

extract 5 energy states ($\mathbf{P} = 0$)

Result compared to chiral perturbation theory

Figure : Simulation on $24^348~m_\pi=304\,\text{MeVensemble}$ with chiral perturbation theory. Dashed line indicate the free energy of two pion with certain back to back momentum

 6×6 correlation matrix

$$C = \begin{pmatrix} C_{\rho^{J} \leftarrow \rho^{J'}} & C_{\rho^{J} \leftarrow \pi\pi(100)} & C_{\rho^{J} \leftarrow \pi\pi(110)} \\ C_{\pi\pi(100) \leftarrow \rho^{J'}} & C_{\pi\pi(100) \leftarrow \pi\pi(100)} & C_{\pi\pi(100) \leftarrow \pi\pi(110)} \\ C_{\pi\pi(110) \leftarrow \rho^{J}} & C_{\pi\pi(110) \leftarrow \pi\pi(100)} & C_{\pi\pi(110) \leftarrow \pi\pi(110)} \end{pmatrix}$$
(18)

extract 6 energy states($\mathbf{P} = 0$)

₹ **୬**٩℃

Table : First two energy levels on $\{24^3, 30^3, 48^3\}48$ ensemble(300 configs) in A_2^- sector

η	1.0	1.25	2.0	1.0(<i>LapH</i>)
aE_0	0.516(10)	0.511(4)	0.442(4)	0.4947(9)
aE ₁	0.660(6)	0.606(10)	0.549(12)	0.6648(11)

Figure : phase shift for $\{24^3, 30^3, 48^3\}48$ (old result)

Coming soon

- continue the same analysis (${\bf P}=0$) on $\{30^3,48^3\}48$ ensembles (300 configs) and compute the resonance parameter $g_{\rho\pi\pi}$ and decay width Γ_{ρ}
- ② start ${\bf P}=(1,0,0)$ and (1,1,0) on 24³48 ensemble(300 configs) and compute the resonance parameter $g_{\rho\pi\pi}$ and decay width Γ_{ρ}

n_0	t ₀	fitrange	\tilde{E}_n	$E_n(MeV)$	$\chi^2/p.o.f$	conflv%
1	3	7 - 18	0.4947(9)	777.8(1.4)	0.86	56.3
2	3	7 - 14	0.6648(11)	1405(2)	0.87	51.0
3	3	???	???	???	???	???
4	3	6 - 11	0.995(16)	1560(30)	0.67	61.1
5	3	4 - 9	1.069(5)	1680(8)	1.61	16.7
6	3	4 - 7	1.57(6)	2470(90)	0.81	44.2

- M. Luscher, Nucl. Phys. B **354** (1991) 531-578.
- C. Pelissier and A. Alexandru, *Phys.Rev. D* **87** (2013) 014503, [arXiv:1211.0092].
- C. Morningstar, John Bulava, Justin Foley, Keisuku J.Juge, David Lenkner, Mike Peardon, Chik Him Wong, *Phys.Rev. D* **83**, 114505 (2011), [arXiv:1104.3870].