ENGR 392: Impact of Technology on Society

Lecture 1

Introduction

Lecture 2

Nye Ch1: Can we define technology?

Definition of technology

• Nye defines technology as a **narrative** with 3 parts:

Technology	Intention	necessity/reason to accomplish goal	
(Narrative)	Artifact	object used to accomplish goal	
	Result possible outcomes (not always intended) that occur when goa		
		attempted	

Ex. Keys locked in car, can retrieve by calling locksmith, opening door with coat hanger or breaking window with rock from ground.

Technology	Intention	getting in car	Normative
(normative)	Artifact	locksmith, coat hanger, rock	Value neutral
	Result	opening door, breaking glass.	Normative

• Normative: has value, can be good or bad

Does improved technology mean progress?

Relationship between technology & humanity

- **Notions of progress**: Technological advancement =/= progress
- Historical evolution of how question is answered.
- Does technology mean progress? Positive/negative?

Ex. Technology progressing & cancer progressing: not always good thing.

Historical	Enlightenment	• Mid-late 18 th century (American/French revolution)
circumstances		• Seeks to escape oppression (monarchy/ church/
		socioeconomic)

& conceptual		Claim to knowledge through science instead of divine	
components		(king & church power)	
_		• Technology is instrumental : means to end (achieve social	
		justice)	
	Technocratic	• Early-mid 20 th century	
		• Technology is progress, "the rest will take care of itself"	
		[social/political/cultural/moral]	
		• Technology becomes inherent : an end in of itself	
		Automation/industrialization/dehumanization of unskilled	
		workers	
	Counter-	• 1960s-70s to today	
	enlightenment	• Realization: not all technology is progress Ex.	
		Wars/disasters/Vietnam/3-mile island/Hiroshima	
		Crisis of legitimacy: decline in confidence of	
		administrations/institutions/leadership	
		• Counter-cultural movements: women/ animal/ nature/	
		climate [rights]	

- Does improved technology mean progress? [Marx answer = yes, but Progress towards what?]
- What society we want to live in? [democracy?]
- Technological progress =/= social progress

Nye ch2: does technology control us?

Are technologies deterministic?

Technological	technology determines structure of society Technology>society		
determinism	Hard (T>S) (one-way influence) technology has will/logic that		
	technological	forces its creation & shapes society	
	determinism		
	Soft	(T<>S) (two-way influence possible) Technological	
	technological	momentum : technology can be shaped in infancy, but	
	determinism	when matures/spreads/is acceptable/gains momentum =	
	harder to change		
		Ex. No choice in using ICE today: practicality vs necessity	
Constructivism	All the way	(S>T): technology is reflection of social values; society	
	down Social	has 100% control & determines technology creation	
	Constructivism	Ex. Turtle holding the world, what's holding turtle?	
		Another turtle.	
	Со-	(S<>T): technology is reflection of social values, but	
	constructivism	society does not control it	

Ex. Japanese refuse to adopt guns in favor of swords (because lacks symbolic value to warriors), but adopted later [soft tech det example]

Ex. Amish refuse to adopt technologies that they do not want (phone, car, etc) [social constructivism/ good hard tech det counter example]

- Nye argues against technological determinism by previous 2 ex.
- "Awareness of tools/machine does not automatically force society to adopt or keep them"
- Reification: making something real, considering objects having abilities
- Ex. technology amplifies pre-existing social context

Ex. Introduction of vacuums increase housewife work instead of reduce

Lecture 3

Nye Ch7: work: more, or less? Better, or worse?

Machines replacing people

- Process in industrialization: mechanization/centralization/automation of manufacturing: caused loss of blue collar and creation of white collar [jobs]
- Farms/agriculture > cities
- Labor unskilled workers > automation

Taylorism	• Human activity now a science, dehumanization > humans are cogs in machine
	Individual tasks organized into rational sequences in order to increase
	efficiency
	Took agency from workers, provoked strikes
Fordism	Assembly line, mass production of identical machines in short time
Lean	• Application of Taylorism, but teams have tasks & more say in decision making
production	• More quality control, better communication, decreased production time, just in
	time deliveries

- Luddite: person against/unfamiliar with technology
- Efficiency creates proletariat (working class) & displaces current working classes > but creates new/other classes/jobs

- Marx: contradiction in industrialization: more automation > more efficiency > less workers > less buyers > market will crash > workers will rise against bourgeoisie & form communism [never happened]
- Industrial revolution > computer/AI revolution > Nye says no need to worry > market will shift to create new classes

Do artifacts have politics?

3 ways technology can have political values

Technology	• All the way down	New York	Overpasses designed low on purpose
as form of	social constructivism	overpass	not to allow bus to pass to restrict
social	is wrong	_	access to places to bus users (blacks)
order	Artifact values gone		(intended racial prejudice)
	• Social order remains	McCormick	Expensive inefficient molding
		factory	machines installed to replace workers
			& stop them from forming unions,
			(workers reinstated after union broke)
		Handicapped	MTL metro not designed to allow
		technology	wheelchair access at every station
			(unintended prejudice)
Highly		Solar &	Allow for decentralization &
compatible		alternative	individual empowerment (like
technology		technologies	democracy)
Necessarily	• Legitimate non-	Nuclear	Requires militarised, centralized,
political	technological critique	energy	authoritarian, hierarchal government to
technology	 Reject technology 		operate
	because of politics it	Ship at sea	Requires a captain & crew that obey
	forces		orders > authoritarian governance

Universal basic income: solution to next revolution (biggest job displacement, up to 40% because of AIs)

Lecture 4

The Intersection of Culture, Gender, and Technology

Relationship between gender & technology

4 ways gender & technology are associated

Tashnalagy	Concept of	• tools are male hunter innovations, technology = male
Technology	Concept of	
association	technology	• technology = male vs nature= female
with	has gender	
gender	connotations	
Technology	Reification	• cooking/sewing seen as feminine tasks > men won't learn
reinforcing	of gender	• sex specific toys for kids (barbies for girls, GI joes for boys)
gender	roles	• women refused access to car > supposed to stay at home
systems		• men excluded from high-tech electronic manufacturing
		(requires small hands)
		• women in military aviation > require strength for position
		(although no longer relevant)
Technology	Technology	• mechanization reduce need for physical strength > women in
subverting	used to	military/ police
gender	eliminate	• water used for domestic chores, getting water is women task >
systems	gender	indoor plumbing eliminates this need and its connotations
	restrictions	• TV can reinforce/subvert gender roles by showing woman at
		home/ outside
Technology	Biological	• women modify childbirth experience with anaesthesia
altering	alteration of	• women overcome infertility to allow for post-menopausal birth
nature of	gender	• hermaphrodites have one of their genitalia removed at birth to
gender &		give a gender
sex		• Binary categories of male/female are social construction, male
		& female is a spectrum
		* See essentialism vs constructivism

Essentialism	Gender determined by sex	
	• Male = masculine & female = feminine	
Constructivism	• Gender independent of sex	
	• Gender = socially constructed	

History of Feminism Fight for equality

1st wave	• Equality due to	• Early 20 th century
(suffrage)	similarity to men	• Right to vote
		• Equality through fairness > behave like men, so should
		be treated like men
2 nd wave	• Essentialism	• 1960s, reaction to 1 st wave
(difference	• Equality despite	women liberation movement
feminism)	differences from	• men/women biologically defined & different > ex.
	men	women care more > but still want equality (just cause)

3 rd wave	• Social	• 1980 to today, reaction to 2 nd wave
(anti-	constructivism	• inequalities socially constructed > ingrained in
essentialism)	• anti-essentialism	institutions > ex. Gender expectations
		• anyone can become anything they want to be (man says
		he's woman)

The trouble with 'women in computing'

Relationship between gender & technology

- What's wrong with STEM & the pipeline metaphor
- **Pipeline metaphor**: losing people (women & minorities) along line (school > work)
- current solutions > increase social/academic support for students > mentoring/role models
- Metaphor not useful & counterproductive: creates misunderstanding > overemphasizes supply side problem (women & minorities) & instead of looking at other things to change STEM (technological side of equation)

Lecture 5

Technologies as Forms of Life

Why people are not concerned with moral/political values of technology

2 reasons:

Technocracy	• increased technology = progress
Makers create & Users	• Engineers make things > don't care about consequences >
define (false belief)	society choses to do good/bad with them ex. Knife
	• technology is normative > can be good/bad

• Technologies are NOT politically neutral > they shape interactions we have with world

Ex. Guy driving on street, slows down to have conversation with pedestrian, but cannot because they can't hear each other & causing traffic so he has to drive away

Ex. Assumed everyone drives in LA, man repeatedly arrested because walking during the night

• we are unaware of how technology shapes our life & our choices are limited

Technological	technological determinism if we are asleep		
somnambulism	we can wake	Technology	• Cause > effect (technology = cause)
	up from this	assessment	• Reactionary ex. Study Impact of car crash
	accidental		(does not prevent the crash)
	state and	Real-time	• ethical/legal/social concern in R&D
	make	technological	-
	decisions	assessment	

Beyond Engineering – How Society Shapes Technology

Non-technical forces affect outcomes of technology

Classic Economy/market theory	• Consumers make rational decisions based on self-interest
	Most efficient technology wins
What actually happens	Accident causes less efficient technology to take over

• ICE vs Steam engine:

ICE	• small, lightweight, powerful	• GM & Ford = mass production, low prices,
	 not designed to operate at car 	large distribution network
	speed, needs transmission,	
	starting engine is complicated	
Steam	• smooth, quiet, powerful, fewer	• Stanley company = small manufacturer,
engine	moving parts, easier to drive	custom & expensive, local market
	• boiler requires attention, needs	Horses, hoof & mouth disease, eliminated
	water refills if no condenser	horse troughs (water source)
		war restricted manufacturing output

- QWERTY keyboard: actually slower > key placement to prevent jams > employers bought typewriters with most popular layout & typists would learn only that layout
- Betamax vs VHS: Betamax was restricted & more things would come out on VHS so it won
- technology is path dependent & unpredictable = technology assessment difficult
- technological assessment should NOT be left to "free market"

Nye Ch3: is technology predictable?

Technology is unpredictable

- the best design does not always win
- best way to invent future is to predict it
- predictions are like flipping a coin, random
- consumers discover next big thing > ex. college students experimenting viagra
- consumers decide when they want > ex. picture phone from at&t in 1968 not adopted

Prediction	New	• Americans would work 25 hrs a week > work more
	concept/	• Too late to save India from starvation > agricultural productivity
	Idea	• Every family would own airplane > only rich
forecasting	innovation	• district vs individual home heating > district heating more
		efficient but American values emphasize individual
		• FM vs AM radio > FM better short distance, am won because of
		promotions
		• Betamax vs VHS > VHS won because more things on it
projection	Spread/	• utility/car companies didn't see energy crisis > energy
	expansion	conservation & smaller cars
	of product	

- innovations > easier to understand, spread faster & more easily
- technologies that were resisted, but accepted later, not used for intended purpose: radio, pc, telegraph, phonograph

Radio	• military communication > consumer communication
Pc	• Used for work > used for games
phonograph	• Used for work > used for fun

• technologies are NOT deterministic > technologies are unpredictable shaped by social context

The Lightbulb Conspiracy

Planned obsolescence

- Things are designed to fail in order to make people buy more
- Lightbulb cartel reduced lightbulb life cycle
- Printer has function that breaks printing after 1000 pages printed > software "hack" reverts this
- Apple sued because they made iPod battery fail after ~2 years

Lecture 6

Why Engineers needs Public Policy Training & Practice

Engineers need to be involved in public policy

Crisis of legitimacy	Counter enlightenment	
	• 1960s-1970s	
	Science & technology no longer trusted by public	
	• War, Chernobyl, 3mile island, Hiroshima, pesticides	
Public understanding of	• fear of unknown > experts educate public about science &	
science & technology	technology > did not work, people understand but don't like	
	lack of understanding of public from experts	
Public engagement with	ith • experts educate public but also take feedback (dialog)	
science & technology	• engineers work with public	

- ex. Ethanol is dirtier overall than fossil fuels because of agriculture
- Choice of regulation/policy made at conception phase by engineers > engineering has public implications > engineers need to be aware of public policy context
- better understanding of public policy > better engineering solutions
- engineering curriculum needs to include public policy

Code is Law

Government not regulating does not mean no regulations > coders determine regulations

- early days TCP/IP determined real world identities/security/anonymity
- driving license = info to be allowed to drive > TCP/IP = info to be on internet?
- anonymity = basic right?
- lack of anonymity today = result of coders choices ex. Targeted ads (Facebook study which could control people's mental state by showing different type of stories)
- Is TCP/IP a threat to > constitution/rights/democracy?

Democracy

Democracy theory, actually a paradox

Democracy type	Definition
Representative	• vote for people who vote for laws
(Republic)	• majority rules (problem), people have no real democratic control
	• procedural, still have to follow laws even if disagree with because
	enacted properly
Aggregative (1	• majority wins (good) & rules (bad)
person = 1 vote)	result actually based on procedure not morality
Constitutionalism	• codified into law that cannot be overwritten ex. Freedom of expression
(Liberalism)	• problem: not actually democratic, lacks political legitimacy, ex.
	Supreme court has final say
Deliberative	• attempt to reconcile process & substance by justifying laws with actual
	reasons

Lecture 7 Midterm (quiz 1)

Lecture 8

Do We Need a Technology Policy?

We already have but not applying

technology	• technocracy: policy purely rational by experts (economist/scientist)
vs	• technocracy: technocrats rule at expense of legitimate democracy
democracy	democracy: lose rationality at expense of democracy

- technology & public policy inherently interdependent in industrial society
- •4 constructive pre-existing & necessary types of policies

Climate	• government needs to attract with subsidies/tax breaks to incubate tech
setting	educate to make sure qualified work force ready to take over
	• provide conditions for sector to exist & thrive by benefitting everyone in
	society ex. Bombardier/Microsoft cant do things alone w/o subsidies
Surveying	• government gather live global data to the benefit of all ex. Stats Canada
	gets info that companies could not gather on their own
	• to remain competitive
Coordinating	• ex. National road/transport system needs to exist for industries to exist
	• coordination & communication for system to exist to benefit all
Gap filling	• research by government organizations because projects not profitable but
	could lead to major inventions/ benefit a small amount of people

• ex. Orphan drugs, research at great cost for small number of affected people
• ex. DARPA inventing the internet

• general idea: all done to benefit everyone in society, because individuals or companies cannot bear the cost to do it alone, government has to take the cost

Technology Assessment: Product or Process

Different types of tech assessments

Ad-hoc	• believes progress will happen with time (not true)
	• reactionary, deals with problems after they rise
	• no formal way to review policy
Classical	• studies potential impacts of tech to provide "neutral & factual input in
	decision making"
	• paradox because techs have political values & cannot be objective or neutral
OTA (office	• scientists employed run their own tests & provide independent analysis
of TA)	• included non-expert perceptions of studied techs
	• useful to gov. to know which policies to apply based on data/public opinion
PTA (Public	• citizen committee/jury to hold "trials" for tech
TA)	• final decisions in hands of representative body of citizens
CTA	• public incorporated in R&D stages of tech to resolve potential future issues
(Constructive	• used rarely, mostly for controversial issues with present application
TA)	ex. Synthetic biology

• logical progression/trajectory towards more democratic participation in science & tech policy providing legitimate non-technocratic critiques

Perspectivism: 1 person's POV is limited, many different opinions/perspectives by many people leads to "stronger claim to truth" because more people => more objective & rational = better

• Perspectivism is justification to PTA, conclusion: both democracy & technocracy needed

Great Hybrid Car Cover-up

Policy bottleneck

• ex. EPA roadblock: cutting funding of potential tech because of 1 person

By the Grace of Invention

NA standard of living cannot be given to everyone, too many people on Earth

• developing countries can leapfrog harmful techs ex. Skip coal and go to solar

Lecture 9

Leapfrog Energy Technologies

Developing nations need to skip old techs & adopt new ones to avoid destruction

• we must help developing nations not yet caught in harmful techs: because it's our moral duty & out of self interest

Leapfrog tech	definition
Biomass	• used for cooking in developing countries, requires fuel efficient stoves
	• in form of fuelwood alone its inefficient & causes deforestation
	• combined with agricultural residue, charcoal or dung it becomes efficient
Electric	beneficial for densely populated areas
vehicles	• avoids pollution & emissions in area of use
Wind	• provides clean energy, competitive prices, reduced maintenance, increased
	efficiency
Solar power	• same as wind

- reason not move to new techs: infrastructure that needs to be changed is too expensive; not true for 3rd world because they have no infrastructure, ex. Skip landlines go to cell phones
- leapfrog important because: can prevent pollution & climate change, developing countries growing fast & catching up to industrialized world cannot make same mistakes (graphs)

Tapping ICT to Reduce Poverty in Rural India

Information made available to everyone, thus increasing transparency

- moral imperative: basic moral duty (food, shelter, medicare)
- tech transfer: taking tech specific to time/place to another social context where it wont necessarily work as intended (it becomes a different tech) ex. One laptop per child, Africans unable to understand computer UI

3 ways ICT can help

Increasing	• ex. Doctors assess people from afar, info in real time, reduce paperwork,
opportunity	increase time dedicated to people
	• ex. Milk stations, real-time quality assessment & payment, stops bribes &
	corruption
Enhancing	• ex. Internet kiosks made available for government info & services, people
empowerment	no longer have to travel great distance for government registration & now
	have access to market prices
Improving	• smart cards that track people's financial history, allows for
security	microfinancing

Designs on Development: Engineering, Globalization, and Social Justice

One world, one peace, against own interest to invade other nation, since depend on it for trade

Case study: Nicaragua, student exchange with US, set up local business to see how much they can make, doesn't work because Nicaragua not free market, people have no disposable income

3 barriers

Over attention to	• product over process, no social context	
technology	excessive attention to tech or infrastructure	
	• attempt for technical fix	
	• no involvement from people from there	
Inattention to	• assumption on how tech should be introduced	
power imbalances	• must take into consideration local economy & way of thinking	
	• must unlearn how things work at home to learn how things work here	
Uncritical use of	• failure to respect local culture, think they are lagging behind, missing	
problematic models	something	
of development	• belief that OUR system is better than theirs, try to convert them to	
assistance	free market capitalism (liberalism)	

Paternalism	• limit nation's liberty & authority for its own good	
Liberalism	• liberty & freedom of expression	
	• colonialism (India) for the good of people being colonized (paternalism)	
	enforcing to create different socioeconomic India	
	• failed policy, forcing people to be free	
Neoliberalism	• WTO, IMF, World Bank	
	• create global economic policies that force people to follow their ideology,	
	no direct intervention but setting up context that gives nations no choice	

• "economic partnership", forcing nations to enter free market, increasing
their debt & reducing their spending, forcing them to privatize their utilities,
education, etc.
• forcing people to be free through economic policy
• one size fits all, everyone becoming the USA

Differentiated technology responsibility

Polluter pays	fair because you correct what you cause	
principle (PPP)	• doesn't take into account past pollution, problem of past generations,	
	won't solve global warming	
Beneficiary pays	• pay for your ancestors	
principle (BPP)	• not fair because not responsible	
Egalitarian	everyone responsible equally	
principle (EP)	• cap & trade system: global pollution limit, assigned credit per nation per	
	capita, can sell leftover credits, incentive to pollute less	

Lecture 10

It's a flat world after all

Information communication technologies have made the world a smaller place

• 2 ways to define globalization: descriptive (flatteners) & normative (neoliberalism)

10 world flatteners: (only 4 needed for final)

Berlin wall falls in 1989	Capitalism "wins" vs communism, world is united again
Netscape goes public in Web browsing, searching the internet becomes possible, triggers	
1995	dotcom bubble (overinvestment in undersea fiber optic cables)
outsourcing	Work is digitized & sent to be done cheaper for you elsewhere
offshoring	Moving entire factory to foreign country where labor is cheaper

Engineering Globalization

2 theories of engineering education

Instrumental	• engr education about preparing students to get engr job, preserving status quo
view	• education adjusted to what market needs
	• bad practice means education will be bad
	• not a good way to educate, old school & hardcore

Normative	• engr education prepares students to get jobs in current socioeconomic context
view	• engr education teaches critical thinking, how to reshape current practice
	CEAB (Engineers Canada) defines engr curriculum
	• current accepted view

World war 3.0

Technology is on a global scale because of internet

• how will engineers reshape world w/ their participation?

Front	Order	Disorder
Sovereignty	• Internet must be controlled &	• Internet designed to bypass laws
(freedom from	regulated by national government	& regulations for communication &
interference)		must remain as so
Piracy	• SOPA/PIPA: bills to prevent piracy	No second hand liability
	• Criminalize hosters & make them	• ex. Story of Vinnie & his van,
	responsible for unauthorized content	selling stolen merchandise, you
	uploaded on their site	don't get arrested but need to forfeit
	 Could shut down sites like 	the stolen merchandise
	Facebook & google because user	
	uploads a picture	
Privacy	People should be tracked because	• Right to privacy should extend to
	internet is a public place	the internet
Security	• either you have it or you don't	• should not shut down dark web

Lecture 11 Nye: Ch6

The Role of Technology in Sustainable Development

Need more than technological fixes

• Clean vs cleaning technology: reducing pollution vs not producing pollution (ex. solar)

Industrial Ecology: From Theory to Practice

Increasing efficiency, producing more, while using less & polluting less

Lecture 12

Framing Ethical Acceptability: A Problem with Nuclear Waste in Canada

Issues with Canada nuclear waste management organization (NWMO)

• Is nuclear viable alternative to fuel fossils? Many people think yes, hippies now agree with suits on this issue.

Code of conduct

Code of conduct is	Questions don't impose responsibility	
in form of questions	No legal requirements	
	• needs imperatives to have any value as code of conduct	
Proxy/second hand	• potential victims of nuclear waste not born yet	
consent	• uncertainty, cannot inform people or guarantee safety from accidents	
	• proxy consent, wrong to give consent for future generations that	
	might have different standards than us today	
Problem statement	• implies Canada will be producing nuclear waste in future	
framed in way that	• could be framed as "where is Canada going to get energy", making	
limits solutions	nuclear only an option and not required	

- NWMO implies nuclear is least bad option
- we cannot control consumption patterns & population growth
- therefore we must control & regulate energy production

The Ethics of Synthetic Biology: Guiding Principles for Emerging Technologies Currently unregulated, heavily subsidized, promising tech

- GMO is modification, SB is creation
- how to deal with uncertainty?
- does public ignorance lead to lack of trust in science?

Science and Its Public: The Need for a Third Way

Legitimate non-tech critique of science

Deficit model	• public don't trust because don't understand/lack knowledge, therefore	
(PUST)	must educate public	
	• public actually understands, but doesn't trust regulators or their studies	
	because they are too close to the industry	
	• ex. Mad cow disease in UK that destroyed beef industry because	
	people didn't have trust/faith in authorities	
Improved	• public have misunderstanding & false beliefs about tech	
Dialogue (PEST)	• public excluded from application of tech & decision-making policy,	
	therefore don't trust tech	
	• ex. GMOs & Monsanto applying seed tech and forcing people to use it	
Empowerment of	• people just need to be involved in in tech policy for them to accept it	
public		

Lecture 13 Final exam (quiz 2)