#	Cycles in this	course							
Thermodynamics Cycle	Purpose	Working Fluids	Key Processes	Application	Advantages	Disadvantages	Important Formulas	P-V Carnot cycle Reversed Carnot cycle	7.S
Carnot cycle	the highest thermal efficience among all heat engines	fluids	Reversible Isothermal Expansion Reversible Adiabatic Expansion Reversible Isothermal Compression Reversible Adiabatic Compression	Carnot heat engine Carnot refrigeration cycle	1.The highest efficience of cycle 2.Help design realistic mechine	not practical	$\eta_{\text{th,Carnot}} = 1 - \frac{T_L}{T_H}$	1 (2) mm	T ₀ 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Otto Cycle	Ideal Cycle for Spark- Ignition Engines	combustion of the air–fuel mixture	Neglect the intake and exhaust processes Neglect the intake and exhaust	Spark-Ignition Engines	1.simple design and easy to use 2.working steadily	detonation cylinder	$r = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{V_{\text{BDC}}}{V_{\text{TDC}}}$ $\frac{T_1}{T_2} = \left(\frac{v_2}{v_1}\right)^{k-1}$ $\eta_{\text{th},000} = 1 - \frac{T_1}{T_2} = 1 - \frac{1}{r^{k-1}}$	Po de la	T q _m d d d d d d d d d d d d d d d d d d d
Diesel Cycle	Ideal Cycle for Compression-Ignition Engines	air + fuel spray	Spurk plug Spurk listector Air-fuel mixture Fuel spray Gasoline engine Diesel engine	Compression-Ignition Engines	1.Diesel engines operate at much higher compression ratios and thus are usually more efficient than the spark ignition (gasoline) engin. 2.The diesel engines also burn the fuel more completely.	the same compression ratio $\eta_{\rm th,Oito}>\eta_{\rm th,Diesel}$	Cutoff ratio (定任技順化): $r_c = \frac{V_c}{V_c}$ $\eta_{\rm B,Dirsel} = 1 - \frac{1}{r^2 - 1} \left[\frac{r_c^4 - 1}{k(r_c - 1)} \right]$	P And	P = constant Qual Qual Qual S
Dual Cycle	A more realistic model for modern, high- speed compression ignition engines		entire combustion process can better be modeled as a combination of constant-volume and constant-pressure processes	modern high-speed compression ignition engines	more realistic			P N 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Stirling Cycle	ideal models for external combustion engines		The two isentropic processes in the Carnot cycle are replaced with two constant volume processes with regeneration	external combustion engine	(The advantages of external combustion engines:) 1. The combustion is more complete with more time and space, thus more energy extraction from the fuel and less air pollution. 2. Operate on closed loops, thus the working fluid that has the most desirable characteristics can be utilized. 3. A variety of fuels (even solar energy) can be used.		$\eta_{\rm th, Sudag} = \eta_{\rm th, Decessor} = \eta_{\rm th, Certot} = 1 - \frac{T_{\rm E}}{T_{\rm H}}$	Qin Qin Qin Qin Qin Qin Qin Qin	
Ericsson Cycle	ideal models for external combustion engines		The two isentropic processes in the Carnot cycle are replaced with two constant pressure processes with regeneration	external combustion engine	(The advantages of external combustion engines:) 1. The combustion is more complete with more time and space, thus more energy extraction from the fuel and less air pollution. 2. Operate on closed loops, thus the working fluid that has the most desirable characteristics can be utilized. 3. A variety of fuels (even solar energy) can be used.		$\eta_{\rm h. Noting} = \eta_{\rm h. Fricons} = \eta_{\rm h. Cerns} = 1 - \frac{T_{\rm c}}{T_{\rm d}}$	Quit 3	
Brayton Cycle	Ideal Cycle for Gas- Turbine Engines	fuel + air	1-2 Isentropic compression (in a compressor) 2-3 Constant-pressure heat addition 3-4 Isentropic expansion (in a turbine) 4-1 Constant-pressure heat rejection	Gas-Turbine Engines	Today, it is used for gas turbines only where both the compression and expansion processes take place in rotating machinery		$\begin{aligned} & \textbf{Pressure ratio:} \ r_p = \frac{P_2}{P_1} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	P Q _{in} 3 3 Y _o Chp Q _{od}	Pecond. 1 Pecond. 1 Pecond.
The Brayton Cycle with Regeneration	to increase thermal efficiency	fuel + air	the air leaving the compressor can be first heated by the hot exhaust gas in a heat exchanger before getting into the combustion chamber		1.less fuel is used for the same work output 2.the thermal efficiency increases		$\begin{split} &\eta_{\text{th,regen}} = 1 - \frac{q_{\text{out}}}{q_{\text{in}}} = 1 - \frac{h_{\text{b}} - h_{\text{i}}}{h_{\text{b}} - h_{\text{s}}} \\ &\epsilon = \frac{q_{\text{regen,max}}}{q_{\text{regen,max}}} = \frac{h_{\text{b}} - h_{\text{2}}}{h_{\text{4}} - h_{\text{2}}} \\ &\text{When } \epsilon = 1, \ \ \eta_{\text{th,regen}} = 1 - (\frac{T_{\text{s}}}{I_{\text{s}}})(r_{\text{p}})^{(k-1) 4} \end{split}$		q _n q _n 3 q _n 4 q _n
Jet-Propulsion Cycle	Gas-turbine engines are widely used to power aircraft	gas	The ideal jet-propulsion cycle differs from the ideal Brayton cycle in that the gas is expanded in the turbine to produce the power that is just sufficient to drive the compressor and the auxiliary equipment	Aircraft gas turbines	the net work output of an ideal jet-propulsion cycle is zero. The gas that exits the turbine at a relatively high pressure is subsequently accelerated in a nozzle to provide the thrust of the aircraft		$\begin{split} F &= (\dot{m}V)_{\rm cut} - (\dot{m}V)_{\rm bids} = \dot{m}(V_{\rm cut} - V_{\rm bids}) \\ \dot{W}_P &= FV_{\rm shread} = \dot{m}(V_{\rm cut} - V_{\rm bide}) Y_{\rm shread} \\ \eta_P &= \frac{\text{Propulsive power}}{\text{Energy input rate}} = \frac{\dot{W}_P}{\dot{Q}_{\rm in}} \end{split}$		Q _{in} p scored. 4 5 3 2 p a const. Q _{nut}
Rankine Cycle	ldeal Cycle for Vapor Power Cycles	Steam (alternately vaporized and condensed)	1-2 Isentropic compression in a pump 2-3 Constant pressure heat addition in a boiler 3-4 Isentropic expansion in a turbine 4-1 Constant pressure heat rejection in a condenser	Vapor Power Engines	Carnot vapor cycle is not suitable for vapor power cycle, but the Rankine Cycle can.		$\begin{aligned} w_{\text{pump,in}} &= h_2 - h_1 \\ \text{or} & w_{\text{pump,in}} = v(P_2 - P_1) \\ q_{\text{in}} &= h_3 - h_2 \\ w_{\text{nuth,out}} &= h_3 - h_4 \\ q_{\text{out}} &= h_4 - h_1 \\ \\ \eta_{\text{th}} &= \frac{w_{\text{net}}}{q_{\text{in}}} = 1 - \frac{q_{\text{out}}}{q_{\text{in}}} \end{aligned}$		To the state of th
ldeal Vapor- Compression Refrigeration Cycle	ldeal Vapor- Compression Refrigeration Cycle	vapor (not using gas because the vapor has phase change which is better for refrigeration)	1-2 Isentropic compression in a compressor 2-3 Constant-pressure heat rejection in a condenser 3-4 Throttling in an expansion device 4-1 Constant-pressure heat absorption in an evaporator	Heat pumps and refrigerators	The reversed Carnot cycle cannot be approximated in actual devices and is not a realistic model for refrigeration cycles, but the Ideal Vapor-Compression Refrigeration Cycle can.		Second-Law Analysis of Vapor-Compression Refrigeration Cycle $\frac{\partial v_{\rm Roye}}{\partial R_{\rm BOH}} \frac{\partial v_{\rm main}}{\partial W_{\rm in}} = \frac{1}{N_{\rm main}} = \frac{1}{N_{\rm decorated}} \\ -\frac{\partial v_{\rm in}}{\partial V_{\rm in}} -\frac{\partial v_{\rm in}}{\partial V_{\rm in}} -\frac{1}{N_{\rm in}} = \frac{1}{N_{\rm in}} -\frac{N_{\rm in}}{N_{\rm in}} \\ -\frac{\partial v_{\rm in}}{\partial V_{\rm in}} -\frac{V_{\rm in}}{N_{\rm in}} -\frac{V_{\rm in}}{N_{\rm in}} -\frac{V_{\rm in}}{N_{\rm in}} \\ -\frac{\partial v_{\rm in}}{\partial V_{\rm in}} -\frac{V_{\rm in}}{N_{\rm in}} \\ -\frac{\partial v_{\rm in}}{\partial V_{\rm in}} -\frac{V_{\rm in}}{N_{\rm in}} -V_$		Saturated liquid 2/ W _{in} W _{in} Saturated vapor 5