Machine Learning for Better Combinatorial Algorithm

Sajeeb Roy Chowdhury^{1,2}, Anton Betten¹

¹Department of Mathematics, Colorado State University, Fort Collins 80521

²Department of Computer Science, Colorado State University, Fort Collins 80521

Overview

- Problem Description
 - Definition
 - > Illustration and Objective
- Motivation
- > Existing Solution
- Our Solution
 - Brief Overview
 - Problem Translation
 - > State-Action Graph
 - > GPU Generated Schreier Tree
 - Graph Embedding on Schreier Trees
 - Objective Functions
 - ➤ Q Function and Embedding Parameterization
 - Complete Training Algorithm
- > Training
- > Testing
- > Running Example
 - > PGL(2, 11)
 - > PGL(2, 23)
- > Conclusion

Problem Description: Definition

- > Schreier trees are used to represent the orbits of group actions, and allow us to efficiently navigate large group using only the generators.
- > These trees are generally "tall and skinny" by default, we aim to make these "shallow and wide".
- > Shallow trees reduce the time to find the specific group element that maps one element of a coset to another.
- This reduction in time is attributed to path length: the longer the path length, the larger the chain of matrix multiplications that must be performed to find the mapping group element and vice-versa.
- > Generating shallow Schreier trees requires replacing the generating set with better generators targeting the downstream task.
- > Illustration:
 - \triangleright Let G be a group with a generating set $S = \langle A, B, C \rangle$
 - \triangleright Let X be the set on which the G acts. The elements of X are: $X = \{x_1, x_2, x_3, x_4, x_5\}$
 - \triangleright The following represents the orbits of G on X

Problem Description: Illustration and Objective

Average Word Length: 1.2 A, C A,

Non-optimal Schreier tree due to the long node chain

Average Word Length: 1.8

Better Schreier Tree

> Our objective is to transform the tree on the left to the tree on the right by reducing the height and increasing the width

Motivation

- ➤ Reducing the depth of the Schreier tree reduces the time taken to find the group element that maps a particular element of the coset to another.
- > This is achieved by shortening the length of the matrix multiplication chain.
- \triangleright Example with PG(2,2) group with 4 generators, each of size 3x3:

Original Tree

Optimized Tree using our Algorithm

Motivation

- For instance, it takes 336 computations to find the generator that maps node 4 to the root in the original tree, while it takes no computations to do the same in the optimized tree.
- This is because one has to multiply 4 matrices to get the group element in the original tree while no computation needs to be performed to do the same in the optimized tree.
- ➤ In the optimized tree, there are more nodes that needs no computation to be mapped to the root, whereas in the original tree, only a single node can be mapped to the root node without any computation.
- ➤ This observation attributes to the runtime performance gain when using the optimized tree over the original.

Existing Solutions

As of now, there's only one algorithm for generating shallow Schreier trees. This is the Seress Shallow Schreier tree generator algorithm illustrated below:

```
Algorithm 1: Seress Shallow Schreier Tree Algorithm
    Input: Generating Set S, Coset Elements X, Depth Limited Schreier
                Tree Generator Function F_{sd}, Function to generate the
                complete Schreier Tree F_s, Transporter Function F_T,
                Function to get the set of nodes in a tree P
    Output: New Generating Set, S'
 1 S' \leftarrow \{\};
 2 T \leftarrow F_s(S,X);
 з P_T \leftarrow P(T);
 4 len \leftarrow |P_T|;
 5 T' \leftarrow F_{sd,depth=|S'|}(S',X);
 6 l \leftarrow |P_{T'}|;
 7 while l \neq len do
       P_{T'} \leftarrow P(T') \ e \leftarrow P_T \setminus P_{T'};
      s \leftarrow F_T(P_{T'0}, e_0);
      S' \leftarrow S' \cup s:
       T' \leftarrow F_{sd,depth=|S'|}(S',X);
11
        l \leftarrow |T'|;
12
13 end
14 return S'
```

- ➤ The algorithm builds a new, hopefully shallow, Schreier tree by picking generators from the old tree
- ➤ It builds an empty tree, and adds the transporter of the first missing node to the generating set.
- ➤ It then builds a tree with this new generating set.
- This process of generating partial trees continues till we get a tree that has all the nodes as the original tree.

Our Solution: Brief Overview

- We rephrase the problem of finding Shallow Schreier Trees as a Reinforcement Learning Problem, where train an agent to heuristically search the group using the existing generators to find better generators that lead to shallower trees.
- We propose combining Graph
 Embedding with Deep
 Reinforcement Learning
- ➤ To accelerate the training process, we are using GPUs to compute our Schreier tree after every operation.
- Our terminal state is when all the generators are replaced with new generators

Problem Translation: State Action Graph

- ➤ Each state is a Schreier tree, and the action is a selected node
- For the problem set of PG(2,2) there are 4 generators. This implies that the depth of the state action graph can be at most 4+1=5.
- This is also the maximum number of steps the agent is allowed to take on the original tree. The game is terminated once all the generators are replaced.
- At every transition, at most |S| |adj(0)| actions can be taken. S is the set of nodes in the tree, and adj(0) returns the set of nodes that are adjacent to the root node
- When a node is selected as the action for transition, it is marked with a special vector denoting this.
- ➤ Each transition from the previous state to the next state is done through selecting a node and connecting it with the root and adding the corresponding generator to the generating set.

Problem Translation: GPU Generated Schreier Tree

- ➤ Since generating Schreier Trees are expensive, we are re-implementing the generation algorithm targeting GPU-acceleration
- ➤ We use a two step solution to accomplish this

$$S = \langle s_1, s_2, s_3, ..., s_n \rangle$$

 $X = \{x_1, x_2, x_3, ..., x_m\}$

➤ Step 1:

- Apply every generator to each element of the coset
- ➤ This returns a 3D tensor containing the mappings

Problem Translation: GPU Generated Schreier Tree

> Step 2:

- Map individual vertical slices to GPU threads using dynamic parallelism
- > Each slice represents a point in the tree
- ➤ Each thread gathers the descendants of each point and puts it in an adjacency list
- ➤ This gives us the Schreier Tree

Problem Translation: Graph Embedding on Schreier Trees

- > We use graph embedding to design a feature vector for each node for state space representation
- ightharpoonup Initially each node in the tree is marked with a vector representing the embedding at t=0: $\mu_{\nu}^0=0$
- \triangleright At time t+1, the embedding evolves as dictated by the following function:

$$\mu_{v}^{t+1} = F(x_{v}, \{\mu_{u}^{t}\}_{u \in \mathcal{N}(v)}, \{w(u, v)\}_{u \in \mathcal{N}(v)}; \theta)$$

- At time T, the node embedding function takes the following form: $\mu_v^T = F(x_v, \{\mu_u^{T-1}\}_{u \in \mathcal{N}(v)}, \{w(u, v)\}_{u \in \mathcal{N}(v)}; \theta)$
- \blacktriangleright w is a function that returns the edge weight between two nodes. For our purposes, w(x,y)=1
- Initially, the embedding iteration is run until the following condition is met: $\forall v \in V$; $\left| |\mu_v^t \mu_v^{t+1}| \right|_2 < \epsilon$
- Once the above condition is met, the agent can start taking actions to minimize the tree

Problem Translation: Graph Embedding on Schreier Trees

 \triangleright In order to mark the selected nodes by the agent used to perform the state transition, we use a special vector x_v

 \blacktriangleright Initially, the root node and all nodes that are the direct descendants are marked with $x_v=1$

After an action, once a node is no longer the direct descendant it is marked with $x_{12} = 0$

 \blacktriangleright After an action, if a node becomes the direct descendant of the root node, it is marked with $x_v=1$

Problem Translation: Objective Functions

➤ We are using the following objective functions to reward or punish the agent

$$AWL(S) = \frac{\sum_{d=0}^{D} d \times K(d, S)}{N - 1}$$

S is the current state, AWL is the average word length, N is the number of nodes in the tree, and K is a function that returns the number of nodes at a current depth for a given state

> The reward function at state S, given an action v is:

$$r(S, v) = AWL(S') - AWL(S)$$

This reward function is defined as the change in the cost function when transitioning to a new state S' through action v.

> The policy function for deciding on the next action

$$\pi(v|S) = argmax_{v' \in \overline{S}} \hat{Q}(S, v')$$

$$\overline{S} = \{i | i \in S; x_i \neq 1\}$$

Problem Translation: Q function and Embedding Parameterization

> Parameterization of our embedding:

$$\mu_{v}^{t+1} = relu(\theta_{1}x_{v} + \theta_{2} \sum_{u \in \mathcal{N}(v)} \mu_{u}^{t} + \theta_{3} \sum_{u \in \mathcal{N}(v)} relu(\theta_{4}w(u, v)))$$

 \succ The Q function in Deep Reinforcement Learning (DRL) framework is often a neural-network function approximator that approximates the Q table

$$\hat{Q}(S, v; \theta) = \theta_5^T relu(\left[\theta_6 \sum_{\mu \in v} \mu_u^T, \theta_7 \mu_v^T\right])$$

Problem Translation: Complete Training Algorithm

Algorithm 2: Q-Learning Algorithm **Input**: Generating set Z, Function T for generating the tree, Initial Parameters Θ , Set of cosets X, n for n-step Learning Output: Updated Parameters, Θ $1 G \leftarrow \{T(Z,x)|x \in X\};$ $\epsilon \leftarrow 10^{-5}$; 3 for episode e = 1 to L do Pick a Graph, $g \in G$; $t \leftarrow 0$; $\forall v \in g, \ \mu_v^0 = 0;$ $\forall v \in g; \mu_v^{t+1} = F(x_v, \{\mu_u^t\}_{u \in \mathcal{N}(v)}, \{w(u, v)\}_{u \in \mathcal{N}(v)}; \Theta)$ while $\mu_v^t - \mu_v^{t+1} \ge \epsilon \ \forall v \in g \ do$ $t \leftarrow t + 1$; $\forall v \in g; \mu_v^{t+1} = F(x_v, \{\mu_u^t\}_{u \in \mathcal{N}(v)}, \{w(u, v)\}_{u \in \mathcal{N}(v)}; \Theta)$ 10 11 end $E \leftarrow \{\};$ 12for t = 1 to |Z| do 13 $v_{t} = \begin{cases} random(v) \in \overline{S_{t}} & \epsilon_{Decay} \\ argmax_{v \in \overline{S_{t}}} \hat{Q}(S_{t}, v) & Otherwise \end{cases}$ 14 if $t \ge n$ then 15 $R_{t-n,t} = \sum_{i=0}^{n-1} r(S_{t+i}, v_{t+i});$ 16 $y = R_{t-n,t} + \gamma \max_{v'} \hat{Q}(S_t, v', \theta);$ 17 Add (S_{t-n}, v_{t-n}, y) to E; 18 Draw a random sample from E; 19 Update Θ by SGD with loss $L = (y - \hat{Q}(S_{t-n}, v_{t-n}))^2$; 20 \mathbf{end} 21 \mathbf{end} 2223 end

24 return Θ;

- ➤ We are using n-step reinforcement learning to efficiently train our model.
- N-step Q learning looks at the current step and predicts the future reinforcement n steps ahead
- ➤ This is because we might encounter a state where the quality of the tree is worse than the previous state
- Since we do not have a terminal state, we set the constraint that $n \le |S|$, where S is the number of generators in the generating set. We force the agent to terminate when all the generators in the generating set are replaced with new generators in succession

Training

- \triangleright We trained our RL agent on PG(2,2) and PG(5,2) problem spaces. This gave us 46 GB of graph training data.
- > Each row shows one unit of 10,000 iterations performed by the agent on the environment

Testing

> The following represents an example from PG(5,2) testing set

Testing

AWL: 3.25397 OWL: 1.79934 RE: 0.808423

AWL: 3.09524 OWL: 1.79934 RE: 0.720207

AWL: 3.01587 OWL: 1.79934 RE: 0.676099

AWL: 2.93651 OWL: 1.79934 RE: 0.631991

AWL: 2.88889 OWL: 1.79934 RE: 0.605526

Running Example: PGL(2, 11)

Not-Optimal Tree Size of Generating Set: 3 Average Word Length: 4.75

Seress Algorithm
Average Word Length: 3.667
Size of Generating Set: 4

DL Heuristic Average Word Length: 2.83 Size of Generating Set: 3

Running Example: PGL(2, 11) – Depth Probability Distribution

Running Example: PGL(2, 11) – Depth Probability Distribution

Running Example: PGL(2, 23)

Non-Optimal Tree Size of Generating Set: 3 Average Word Length: 5.54167 Seress Algorithm
Average Word Length: 3.375
Size of Generating Set: 6

Machine Learned Algorithm Average Word Length: 3.33 Size of Generating Set: 3

Running Example: PGL(2, 23) - Depth Probability Distribution

Running Example: PGL(2, 23) - Depth Probability Distribution

Conclusion

- In this talk, we have provided a framework for generating better heuristics for shallow Schreier trees
- > Currently, there's only one algorithm for generating shallow trees
- > The shallow Schreier trees generated by our model often outperforms those generated by the Seress algorithm
- From the real world running examples, we have discovered that generating shallow Schreier trees is equivalent to shifting the node probability distribution to the left.
- > Shifting the node probability distribution to the left ensures that there are more nodes at lower depths of the tree.
- ➤ If the probability of discovering a node at a lower depth of the tree increases, this also decreases the path length between that node and the root node
- > This decrease in path length leads to a reduction in the number of computations that need to be performed to find the transporter group element
- > This increases the performance of the program using the Schreier tree data structure