Inteligência Artificial

2024/2

Profa. Dra. Juliana Félix jufelix16@gmail.com

Graduação em Ciência da Computação

- Universidade Federal de Goiás (UFG)
- 🖐 🔻 o University of Manitoba (UofM), Canadá, pelo Ciência sem Fronteiras
- Mestrado e Doutorado em Ciência da Computação (UFG)
 - Dissertação de mestrado: Códigos identificadores em algumas classes de grafos
 - Tese de doutorado: Investigation of machine learning techniques to aid in the diagnosis of neurodegenerative diseases

Doenças Neurodegenerativas

PUC GOIÁS

- Doenças neurodegenerativas (DND) podem ser fatais e não tem cura.
- Para a maioria das DNDs (Parkinson, Esclerose Múltipla, ELA),
 não existe um único exame que forneça um diagnóstico definitivo.

- O diagnóstico é realizado através de uma análise detalhada de sinais e sintomas ao longo dos anos.
- Vários exames são realizados, a maioria com o intuito de descartar outras doenças com sintomas similares.

- Um método alternativo e não-invasivo que possa oferecer um diagnóstico rápido, fácil e de baixo custo ainda se mostra necessário.
- Uma das alternativas que tem ganhado atenção nos últimos anos é através da análise da marcha.

- Passada (stride), período entre o contato inicial de um pé com o solo e o posterior contato do mesmo pé.
- > Apoio (stance), período em que o pé fica em contato com o chão.
- Balanço (swing), período em que o pé permanece no ar.

Objetivo: Desenvolver técnicas novas e não invasivas para auxiliar no diagnóstico de doenças neurodegenerativas (DNDs), especialmente doença de Parkinson (DP), doença de Huntington (DH) e esclerose lateral amiotrófica (ELA), utilizando informações da marcha e ferramentas de aprendizado de máquina.

Resultados

Utilização de sinais obtidos de apenas 1 único minuto de caminhada, minimizando o esforço dos pacientes para a realização do exame.

Desempenho superior comparado a estudos relacionados, utilizando uma rede com poucas camadas ocultas e poucos neurônios.

Acurácia geral de 96,88% para classificação de DNDs, sendo 100% para DH, 100% para CO, 92.3% para ELA (12/13 acertos) e 93.8% para DP (15/16).

Acurácia geral de 98,79% para identificação da severidade da Doença de Parkinson.

Prêmios

- 2024: 2º Lugar no Prêmio Artur Ziviani de Teses e Dissertações (Doutorado).
 - O Prêmio Artur Ziviani de Teses e Dissertações tem como objetivo premiar as melhores teses de doutorado e dissertações de mestrado, defendidas e aprovadas no Brasil, com relevante impacto para a sociedade e para as empresas, além de contribuição significativa e destacada para a área científica aplicada à saúde.
- 2024: Menção Honrosa no Prêmio INF-UFG de Teses e Dissertações
- 2022: Trabalho premiado no Congresso de Ensino, Pesquisa e Extensão da UFG

- Pós-doutorado em andamento (UFG)
- Professora em cursos de graduação e especialização desde 2019
 - Ciência da Computação, Sistemas de Informação, Engenharia de Software, Engenharia da Computação, Engenharia Elétrica, Engenharia de Alimentos, Engenharia Química, Engenharia Civil, Engenharia Mecânica, Agronomia, Física, Matemática, Estatística.
 - Especialização em Data Science e Estatística Aplicada (UFG)
 - Especialização em Machine Learning e Big Data, Universidade Estadual de Londrina (UEL) - PR

- Área de atuação e Pesquisa
 - Machine learning
 - Processamento de sinais e imagens
 - Diagnóstico de doenças utilizando IA
 - Visualização da informação
 - Otimização

Currículo Lattes: http://lattes.cnpq.br/3610115951590691

Disciplina

Ementa

Inteligência Artificial

Fundamentos de Inteligência Artificial. Aprendizado de Máquina. Algoritmos de Aprendizagem de máquina. Algoritmos de aprendizado profundo. Tópicos avançados.

Disciplina: Inteligência Artificial					
Código	Créditos	CH	Módulo	Pré-Req.	Co-Req.
CMP2115	04	60	2°		7

Objetivo

O **objetivo geral** desta disciplina é apresentar os **fundamentos de inteligência artificial** que vão auxiliar a compreender os principais algoritmos de machine learning e suas aplicações.

Objetivos Específicos

PUC GOIÁS

- Apresentar uma visão geral do que é Inteligência Artificial
- Apresentar o que é Machine Learning e seus principais paradigmas
- Apresentar os principais algoritmos de Machine Learning
- Apresentar o que é Aprendizado Profundo e seus principais algoritmos
- Apresentar e discutir alguns tópicos avançados de machine learning

Método de Avaliação

PUC GOIÁS

A nota final (NF) será composta por:

- Média Final = (N1 * 0,4) + (N2 * 0,6)
- N1 = A1*0.7 + T1*0.3
- N2 = A2*0,6 + T2*0,3 + AI*0,1

Sendo que

- A1 avaliação da N1
- A2 avaliação da N2
- T1 média aritmética dos trabalhos da N1
- T2 média aritmética dos trabalhos da N2
- Al avaliação Interdisciplinar

Método de Avaliação

- Avaliação Interdisciplinar compõe N2, vale 1,0 ponto.
 - o Dia: **07/11/24**
- Para ser aprovado, você precisa obter 75% de frequência nas aulas e nota final igual ou superior a 6,0 pontos.

Datas importantes

- (03/10) Primeira Avaliação (N1)
- (14/10) X Congresso de Ciência, Tecnologia e Inovação da PUC Goiás
- (17/10) X Congresso de Ciência, Tecnologia e Inovação da PUC Goiás
- (24/10) Feriado Aniversário de Goiânia
- (07/11) Realização da Avaliação Interdisciplinar
- (05/12) Segunda Avaliação (N2)
- (16/12) Avaliação substitutiva