Feuille 1 Calcul matriciel

Les feuilles d'exercices sont découpées en trois types d'exercice :

- Les *indispensables* : à savoir faire en autonomie.
- Les exercices d'application : pour mieux maîtriser et comprendre le cours.
- Pour aller plus loin : exercices présentant des développements mathématiques ou des études de modélisations de phénomènes issues d'autres disciplines.

Indispensables

Exercice 1 (Produits de matrices). On considère :

$$X = \begin{pmatrix} 1 \\ -1 \end{pmatrix} , Z = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} , A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} , D = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$

Quels sont les produits matriciels possibles? Les calculer.

Exercice 2 (Identités remarquables). Soient $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

- 1. Calculer AB et BA.
- 2. Calculer $(A+B)^2$.
- 3. Calculer $A^2 + 2AB + B^2$ et $A^2 + AB + BA + B^2$ et conclure.
- 4. Calculer, s'ils existent, les inverses de A et de B.

Exercice 3 (La transposée). Soit M une matrice dans $M_{n,m}(\mathbb{R})$, $M=(m_{ij})$. La matrice transposée de M, M^t , est par définition la matrice où la coordonnée ij est la coordonnée m_{ji} de M. Dans $M_{3,4}(\mathbb{R})$

soient
$$A = \begin{pmatrix} -5 & -4 & -3 & -2 \\ -1 & 0 & 1 & 2 \\ 3 & 4 & 5 & 6 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ 1 & 0 & -1 & 2 \end{pmatrix}$. Écrire la matrice A^t puis calculer BA^t .

Applications

Exercice 4 (Matrices de rotation). Soit θ un nombre réel. On considère la matrice

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

- 1. On considère un vecteur non nul $v = \begin{pmatrix} a \\ b \end{pmatrix}$ de \mathbb{R}^2 . Montrer qu'il existe r > 0 et $\phi \in \mathbb{R}$ tel que $v = \begin{pmatrix} r\cos(\phi) \\ r\sin(\phi) \end{pmatrix}$.
- 2. Calculer $R_{\theta} \cdot v$ en fonction de r, ϕ et θ .
- 3. Montrer que l'application $\mathbb{R}^2 \to \mathbb{R}^2$, donnée par $v \to R_{\theta}v$, est la rotation de centre 0 et d'angle θ .
- 4. On considère un autre nombre réel θ' . Calculer $R_{\theta}R_{\theta'}$. Quelle est l'application de $\mathbb{R}^2 \to \mathbb{R}^2$ correspondante?

LU1MA002 Mathématiques pour les Études Scientifiques II

Exercice 5 (Traitement d'images). On considère le triangle dont les coordonnées des sommets sont :

Soient

$$A = \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \ D = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix},$$

Quelles sont les figures géométriques obtenues en appliquant respectivement les matrices A, B, C et D aux sommets du triangle? Quelles sont les images de l'intérieur du triangle?

Exercice 6 (La suite de Fibonacci). On considère la suite $(f_n)_{n\in\mathbb{N}}$ définie par $f_0=0,\ f_1=1$ et pour tout $n\geq 0,\ f_{n+2}=f_{n+1}+f_n.$ On note $M=\begin{pmatrix} 0&1\\1&1 \end{pmatrix}.$ Soit k un entier naturel.

- 1. Calculer par récurrence, en fonction des éléments de la suite $(f_n)_{n\in\mathbb{N}}$, la valeur de $M^k\begin{pmatrix}0\\1\end{pmatrix}$
- 2. Exprimer les coefficients de M^k en fonction de f_{k-1} , f_k et f_{k+1} .

Pour aller plus loin

Exercice 7 (Puissance *n*-ième). On considère une matrice diagonale $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ (a et b réels) et la matrice $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- 1. Montrer par récurrence sur $n \ge 1$, que $D^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$ et $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.
- 2. Calculer la matrice $X = D + T I_2$.
- 3. Montrer que $X^n = \begin{pmatrix} a^n & c_n \\ 0 & b^n \end{pmatrix}$, avec $c_n = \sum_{i=0}^{n-1} a^i b^{n-i-1}$.

Exercice 8. On considère la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Pour tout $n \ge 1$, calculer A^n .