TEMA D'ESAME

Domanda A

Data la funzione $f(x, y, z, w, t) = \Sigma(0,2,7,13,15), \Phi(1,3,4,9,11,14)$, svolgere i seguenti punti:

- 1. Utilizzando il metodo di Quine-McCluskey sintetizzare la seguente funzione:
- 2. Realizzare quindi la stessa funzione utilizzando:
 - a. Unicamente multiplexer a due ingressi
 - b. Unicamente porte NAND
- 3. Calcolrare quindi l'area delle tre reti in termini di transistor sapendo che le aree dei compnenti di base sono le seguenti:

Componente	Area (numero di transistor)
ANDn, ORn	2n+2
NANDn, NORn	2n
NOT	2
MUX2	6

4. Utilizzando componenti qualsiasi tra quelli indicati, realizzare la funzione richiesta in modo da minimizzare il numero di transistor. A tale scopo si proceda in modo intuitivo

Domanda B

Siano $X = [x_3 \ x_2 \ x_1 \ x_0]$ ed $Y = [y_3 \ y_2 \ y \ y_0]$ due valori numerici rappresentati su 4 bit in complemento a 2. Utilizzando solamente full-adder, half-adder e porte logiche elementari, si realizzi l'architettura minima per il calcolo di Z = 18X - 9/4Y. Si tenga presente che la divisione si intende intera senza reso e la codifica di Z deve essere espressa su un numero di bit sufficienti a rappresentare sempre correttamente il risultato.

Domanda C

Si progetti una macchina a stati che esegue in modo sequenziale la somma di due vettori di bit. La macchina riceve in ingresso i bit x_i ed y_i dei due vettori, a partire dai bit meno significativi e produce in uscita la somma s_i ed il riporto c_{i+1} .

Si disegni il diagramma degli stati e si sintetizzi la macchina utilizzando flip-flop di tipo JK.

Domanda D

Si consideri la seguente rete sequenziale composta da un latch di tipo D (DL) e un flip-flop di tipo D (DFF).

Sapendo che:

- 1. Il clock ha una frequenza di 10MHz e presenta un fronte di salita al tempo 0
- 2. Il segnale di ingresso ha inizialmente valore 0 e presenta transizioni ai tempi (in ns):

$$T = \{ 120, 230, 280, 290, 460, 670, 770, 790 \}$$

si disegni l'andamento del segnale di uscita y.