1 Monoidal Pop Functor

Definition 1 (Monoidal Pop Functor). The functor $Pop : \mathbf{Sphere} \to [\mathbf{Field}, \mathbf{Field}]$ is defined as:

- On objects: $Pop(\Omega) = [\mathcal{F}_{\Omega}, \mathcal{F}_{\Omega}].$
- On morphisms: $Pop(\sigma) = \mathcal{C}_{\sigma} : \mathcal{F}_{\Omega_1} \to \mathcal{F}_{\Omega_2}$.
- Tensor product: For $supp(\sigma_1) \cap supp(\sigma_2) = \emptyset$,

$$Pop(\sigma_1 \otimes \sigma_2) = Pop(\sigma_1) \otimes_{\mathbf{Field}} Pop(\sigma_2),$$

where $(\mathcal{C}_{\sigma_1} \otimes_{\mathbf{Field}} \mathcal{C}_{\sigma_2})(\mathcal{F}_{\Omega_1 \sqcup \Omega_2}) = (\mathcal{C}_{\sigma_1}(\mathcal{F}_{\Omega_1}), \mathcal{C}_{\sigma_2}(\mathcal{F}_{\Omega_2})).$

• Unit: $Pop(I) = id_{\mathcal{F}_{\emptyset}}$.

With coherence maps:

- Associator: $\alpha_{Pop} : Pop((\sigma_1 \otimes \sigma_2) \otimes \sigma_3) \xrightarrow{\sim} Pop(\sigma_1 \otimes (\sigma_2 \otimes \sigma_3)).$
- Left unitor: $\lambda_{Pop} : Pop(I \otimes \sigma) \xrightarrow{\sim} Pop(\sigma)$.
- Right unitor: $\rho_{Pop} : Pop(\sigma \otimes I) \xrightarrow{\sim} Pop(\sigma)$.

Theorem 1. Pop is a monoidal functor, satisfying:

$$Pop(\sigma_1 \otimes \sigma_2) \cong Pop(\sigma_1) \otimes_{\mathbf{Field}} Pop(\sigma_2), \quad Pop(I) \cong id_{\mathcal{F}_a}.$$

2 2-Category Sphere₂

Definition 2 (2-Category **Sphere₂**). The 2-category **Sphere₂** consists of:

- 0-cells: Regions $\Omega \subseteq \mathbb{R}^n$.
- 1-cells: Spheres $\sigma: \Omega_1 \to \Omega_2$, where $\sigma = (supp(\sigma), \mathcal{C}_{\sigma})$.
- 2-cells: Natural transformations $\tau : \sigma_1 \Rightarrow \sigma_2$, a family of morphisms $\tau_{\mathcal{F}} : \mathcal{C}_{\sigma_1}(\mathcal{F}) \to \mathcal{C}_{\sigma_2}(\mathcal{F})$, natural in $\mathcal{F} \in \mathbf{Field}(\Omega_1)$, satisfying:

$$\mathcal{F} \xrightarrow{\mathcal{C}_{\sigma_1}} \mathcal{C}_{\sigma_1}(\mathcal{F})$$

$$\downarrow^{\mathcal{C}_{\sigma_2}} \qquad \downarrow^{\tau_{\mathcal{F}}}$$

$$\mathcal{C}_{\sigma_2}(\mathcal{F}) \xrightarrow{id} \mathcal{C}_{\sigma_2}(\mathcal{F})$$

Composition:

- Horizontal: $(v \circ \tau)_{\mathcal{F}} = v_{\mathcal{C}_{\sigma_2}(\mathcal{F})} \circ \tau_{\mathcal{F}}$.
- Vertical: $(\tau' \cdot \tau)_{\mathcal{F}} = \tau'_{\mathcal{F}} \circ \tau_{\mathcal{F}}$.

Identities: 1-cell $id_{\Omega} = (\emptyset, id_{\mathcal{F}_{\Omega}}), \ 2\text{-cell } id_{\sigma} \text{ with components } id_{\mathcal{C}_{\sigma}(\mathcal{F})}.$

Theorem 2. Sphere₂ satisfies the 2-category axioms, including associativity, identity laws, and the interchange law.

3 Topos Structure

Definition 3 (Presheaf Category). The presheaf category **Sphere** $^{op} = [\mathbf{Sphere}^{op}, \mathbf{Set}]$ consists of functors $P : \mathbf{Sphere}^{op} \to \mathbf{Set}$, where:

- $P(\Omega)$: Field observations over Ω .
- $P(\sigma: \Omega_1 \to \Omega_2)$: Observation pullback $P(\Omega_2) \to P(\Omega_1)$.

Theorem 3. Sphere op is a topos with:

- Subobject classifier: $\Omega_{\mathbf{Sphere}} = \{open \ regions\}.$
- Exponentials: $P^Q(\Omega) = Hom_{\mathbf{Presheaf}}(Q|_{\mathbf{Sphere}/\Omega}, P|_{\mathbf{Sphere}/\Omega}).$
- Finite limits and colimits: Computed pointwise in Set.

Theorem 4 (Internal Logic). **Sphere** op supports intuitionistic higher-order logic, with:

- Propositions: Subspheres of the truth sphere.
- Proofs: Sphere morphisms preserving truth.
- Quantification: Over regions and field states.