TD de Maths

Groupes

Exercice 1

- Dans $G = \mathbb{R} *x \mathbb{R}$ on définit la loi de composition interne dans G : (x,y) *(x',y') = (xx',xy'+y). Montrer que (G,*) est un groupe non abélien.
- Dans $G = \mathbb{R} \setminus \{-1\}$ on définit la loi de composition interne dans G : x * y = x + y + xyMontrer que (G, *) est un groupe abélien. Résoudre dans ce groupe a * x = b. Exemple : 3 * x = 1.

Exercice 2

- Dans \mathbb{R} on définit la loi de composition interne : $x * y = \sqrt[3]{x^3 + y^3}$. Montrer que (\mathbb{R} , *) est un groupe abélien isomorphe à (\mathbb{R} , +).
- Dans l'intervalle]-1,+1[montrer que $x \star y = \frac{x+y}{1+xy}$ définit une loi de composition interne.

Montrer que]-1,+1[muni de cette loi est un groupe isomorphe à $(\mathbb{R},+)$ (penser à $x \to \operatorname{th} x$)

Exercice 3

Soient
$$n$$
 un naturel non nul et $U = \left\{ e^{i\frac{2k\pi}{n}} / k \in \mathbb{Z} \right\}$

Montrer que (U,\times) est un groupe. Quel est son ordre?

Trouver un groupe additif isomorphe à (U,\times) .

Dans le cas particulier n = 12, déterminer l'orbite et l'ordre de chaque élément du groupe U. faire une figure

Revenant au cas général, déterminer suivant k et n l'ordre de $x_k = e^{i\frac{2k\pi}{n}}$ dans le groupe U.

Exercice 4

Soit F l'ensemble des 6 fonctions f_i suivantes :

$$f_1(x) = x, f_2(x) = 1 - x, f_3(x) = \frac{1}{x}, f_4(x) = \frac{1}{1 - x}, f_5(x) = 1 - \frac{1}{x}, f_6(x) = \frac{x}{x - 1}$$

Montrer que f_1 , f_2 et f_3 sont des bijections de $E = \mathbb{R} - \{-1, 1\}$ dans lui-même.

En déduire qu'il en est de même pour f_4 , f_5 et f_6 .

Faire la table de l'opération \circ dans F.

Montrer que (F, \circ) est un groupe et déterminer tous les sous-groupes.

Montrer que (F, \circ) est isomorphe à S_3 .

Exercice 5

Soient (E, \star) et (F, \otimes) deux groupes et $f: E \to F$ un morphisme de groupes

- Soit H un sous-groupe de E. On considère l'ensemble $\overrightarrow{f}(H) = \{y \in F \mid \exists x \in H \mid y = f(x)\}$ des images par f des éléments de H. Montrer que $\overrightarrow{f}(H)$ est un sous-groupe de F.
- Soit K un sous-groupe de F.
 On considère l'ensemble f(K) = {x ∈ E / f(x) ∈ K} des éléments de E dont l'image appartient à K.
 Montrer que f(K) est un sous-groupe de E.
- Soit $x \in E$. Montrer que l'ordre de f(x) dans (F, \otimes) est un diviseur de l'ordre de x dans (E, \star)
- Trouver tous les morphismes de groupe de $\mathbb{Z}/7\mathbb{Z}$ dans $\mathbb{Z}/13\mathbb{Z}$
- Trouver tous les morphismes de groupe de $\mathbb{Z}/3\mathbb{Z}$ dans $\mathbb{Z}/12\mathbb{Z}$

Exercice 6

ightharpoonup Décomposer la permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 5 & 6 & 10 & 7 & 9 & 2 & 11 & 1 & 12 & 4 & 8 \end{pmatrix}$

en produit de cycles de supports disjoints puis en produit de transpositions. Quelle est sa signature ?

- ➤ Quelle est la composée de 2 cycles dont les supports ont un et un seul élément commun ?
- Décomposer en produit de cycles disjoints la composée de 2 cycles dont les supports ont exactement deux éléments communs.
- Quelle est la signature de la permutation de l'alphabet représentée par le mot

pvlwihcbfazoteqkdxnsuymgjr

Exercice 7: Groupe des permutations

Dans tout le problème, n est un entier supérieur ou égal à 3 et S_n est le groupe des permutations de $\{1..n\}$. Une transposition est notée (i,j), un p-cycle est noté $(x_1,x_2,...,x_p)$ pour deux permutations σ_1 et σ_2 , on notera $\sigma_1.\sigma_2$ au lieu de $\sigma_1 \circ \sigma_2$ leur composée.

- 1) Soient i et j deux entiers tels que $1 \le i < j \le n$. Calculer les composées suivantes :
 - a) (1,2).(1,3)..(1,i)
 - b) (1,i).(1,i-1)..(1,3).(1,2)
 - c) (1,i).(1,j).(1,i)
 - d) (j+1, j, j-1,...,2,1).(1,2,...j-1, j)
 - e) (i, i+1).(i+1, i+2)..(j-2, j-1).(j-1, j)
 - f) (j, j-1).(j-1, j-2)...(3, 2).(2, 1)
 - g) (i, i+1, ..., j-2, j-1).(j, j-1, ..., i+1, i)
- 2) Soient:

 $A = \{(1,2),(1,3),...,(1,n)\} \text{ l'ensemble des transpositions de 1 avec les autres entiers}$ $B = \{(1,2),(2,3),...,(n-2,n-1),(n-1,n)\} \text{ l'ensemble des transpositions de 2 entiers consécutifs}$ $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix}$

- a) Montrer que toute permutation peut s'écrire comme composée d'éléments de A Ecrire σ comme composée d'éléments de A
- b) Montrer que toute permutation peut s'écrire comme composée d'éléments de B Ecrire σ comme composée d'éléments de B
- 3) Soient τ et τ ' deux transpositions.

Montrer que $\tau.\tau' = id$ ou $(\tau.\tau').(\tau.\tau') = id$ ou $(\tau.\tau').(\tau.\tau').(\tau.\tau') = id$

- 4) Soit σ une permutation telle que pour toute transposition τ , $\sigma \cdot \tau = \tau \cdot \sigma$
 - a) En considérant la transposition $\tau = (1,2)$, utiliser l'égalité $(\sigma.\tau)(n) = (\tau.\sigma)(n)$ pour démontrer que $\sigma(n) \neq 1$ et $\sigma(n) \neq 2$
 - b) En poursuivant, montrer que $\sigma(n) = n$.
 - c) Poursuivre. Conclure.

