

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

K5

KURT F. WENDT LIBRARY COLLEGE OF ENGINEERING UNIVERSITY OF WISCONSIN MADISON, WI 53706

HANDBOOK OF HYDRAULICS

McGraw-Hill Book & Inc

PUBLISHERS OF BOOKS FOR

Coal Age v Electric Railway Journal
Electrical World v Engineering News-Record
American Machinist v Ingenieria Internacional
Engineering & Mining Journal v Power
Chemical & Metallurgical Engineering
Electrical Merchandising

HANDBOOK

OF

HYDRAULICS

FOR THE SOLUTION OF HYDRAULIC PROBLEMS

BY

HORACE WILLIAMS KING

HYDRAULIC ENGINEERING UNIVERSITY OF MICHIGAN

FIRST EDITION THIRD IMPRESSION

McGRAW-HILL BOOK COMPANY, Inc. **NEW YORK: 370 SEVENTH AVENUE** LONDON: 6 & 8 BOUVERIE ST., E. C. 4

1918

COPYRIGHT, 1918, BY THE McGraw-Hill Book Company, Inc.

Engin TC 100

PREFACE

In applied Hydraulics rational theory must give place to experimental knowledge. Though every particle of flowing water moves in accordance with definite fixed laws, such laws are intricate and imperfectly understood. In many instances the basic formulas used in hydraulic computations are derived from theoretical considerations, but they must invariably be corrected by experimental coefficients and frequently they become thereby so transformed as to bear but a slight resemblance to the original formulas.

Many thousands of experiments on flowing water have been performed during the last two centuries, the results of which form the basis of our present science of hydraulics. These experiments present many incongruities and as they do not cover the range of conditions required in practice, it is difficult to devise from them accurate working rules and formulas. The hydraulic engineer is therefore confronted with the task of making what appears to be the most reasonable application of the available data to each problem that he encounters.

A great number of empirical formulas have been devised, which provide an indirect method of transferring experimental results to practical problems. In using such formulas, however, the engineer should not lose sight of the fact that results obtained by them will be subject to errors corresponding to the discrepancies in the experiments on which the formulas are based.

The active interest in experimental research during recent years has been productive of such a rapidly increasing number of hydraulic formulas that engineers generally are not in a position to make critical comparisons and select those that possess the greatest merit. The result has been a tendency to cling to the old and accepted formulas. The author believes that unless the newer formulas have apparent advantages over the old, the latter are preferable inasmuch as their peculiarities are known and it is easier to select coefficients for them.

but they should be discarded as soon as more accurate or simpler formulas become available.

In this book the older and commonly accepted formulas are given preference except where a gain in accuracy or simplicity or both will result from the adoption of new formulas or methods. The author departs from standard American practice in advocating the use of the Manning formula in place of the Kutter formula. He has not done this, however, until he has been able to prove that the two formulas give practically identical results by using the same coefficient. New weir formulas are also submitted which are shown to be simpler and to conform to existing experimental data more consistently than other formulas. Exponential formulas are advocated for pipes but a simplified method of using them is given in detail.

This book is intended primarily to assist in the solution of hydraulic problems. In preparing the manuscript the author has continually kept in mind the twofold purpose, of securing an accuracy consistent with the best experiments and of simplifying calculations. This has necessitated an examination of a vast amount of data and has resulted in the preparation of a great many tables. A knowledge of the fundamental principles of hydraulics is presupposed and derivations have been omitted except where they have appeared necessary in explaining new methods. It is believed that the book will be useful to practising engineers and to students.

In the preparation of tables care has been taken to make them correct to the last figure and all computations and formulas have been independently checked. The author will be grateful to those who may call to his attention any errors or omissions.

A work of this kind is, in a large measure, a recompilation of the results of others, and a great many books and publications have necessarily been consulted. Reference to such use has been made at the proper place in the text. In the preparation of this volume the author acknowledges assistance from the following:

Mr. Robert E. Horton reviewed the manuscript and proof and made many valuable criticisms and suggestions relative to the character of material and scope of the book. He gave the author free access to all of the records in his office and many of the data contained herein were obtained from this source. For being able to present the book in its present form the author is, in a large measure, indebted to Mr. Horton's helpful suggestions, and he takes this opportunity to express his grateful appreciation.

Professor Theodore R. Running rendered valuable assistance in mathematical computations, especially in checking the author's weir formula by the method of least squares and in suggesting the method employed in the construction of the Manning formula diagrams.

Mr. Chester O. Wisler assisted in checking formulas and tables and in reading proof, and gave many valuable suggestions which were made use of in preparing this book.

Mr. Harry R. Leach, Mr. Floyd A. Nagler, and Mr. Russell A. Dodge shared with the author the bulk of the labor of computing and checking tables, reading proof, and other details. It has only been through the hearty coöperation, loyalty, and active interest of these men that the completion of this volume at the present time has been made possible.

Messrs. M. J. Orbeck, J. B. Jewell, C. N. Ward, R. B. Sleight, and W. O'B. Henderson rendered valuable assistance in computing and checking.

HORACE W. KING.

Ann Arbor, Michigan, January, 1918.

CONTENTS

CHAPTER	L						٠	
Hydraulic Units							P	AGE
								1
Hydraulic units								
Conversion tables	•	 •	•	•	٠	•	•	4
CHAPTER I	Ι							
Hydrostatics								
Weight of water								11
Atmospheric pressure		 i				i		11
Hydrostatic pressure								12
Hydrostatic pressure against dam	ıs	 Ċ	Ċ		Ċ	i		14
Pressure on curved surfaces	.~							18
Hydrostatic tables		 ·						21
	•	 •	·	•	·	·	•	
CHAPTER II	II							
Orifices								
Fundamental considerations								35
Orifices with full contraction								38
Orifices with contractions suppres	sed							39
Effects of velocity of approach .								40
Short tubes								41
Submerged orifices								44
Gates								45
Tables for orifices and gates								48
•								
CHAPTER I	V							
SHARP CRESTED WEIRS								
General considerations								63
Rectangular weirs with free over								65
Precautions for accurate use of sha								74
Submerged weirs								76
	-							

					Page
Trapezoidal weirs					88
Weirs with crest not level					90
Determination of mean discharge	ge fro	m	seve	ral	
observations					91
Choice of weirs for maximum accurac					92
Tables for solution of weir formulas				•	93
CHAPTER V					
WEIRS NOT SHARP CRESTED				•	
General considerations					199
Formula for determining discharge			•	•	128
Modifications of nappe form					
Broad crested weirs					
Weirs of triangular section					
Weirs of trapezoidal section					
Weirs of irregular section					
Submerged weirs and dams					139
Falls					141
Tables of weir coefficients					143
				•	140
CHAPTER VI					
FLOW OF WATER THROUGH PIPES					
Fundamental principles					149
Loss of head at entrance to pipes .					151
Loss of head due to friction		, .			152
Common formulas for friction loss in	pipes	٠			154
Formulas advocated		٠			158
Discussion of pipe formulas					160
Solution of pipe formulas					
Other losses in pipes					164
Critical velocity					169
Tables to assist in solution of pipe p	roblen	s .			170
CHAPTER VII					
F C					
FLOW OF WATER IN OPEN CHANNELS					100
General considerations	h	 !		•	100
Formulas for flow of water in open c					
Discussion of open channel formulas			٠.	•	180

1	PAGE	
Solution of Manning formula	201	
Tables to assist in solution of open channel formulas.	204	
CHAPTER VIII		
MEASUREMENT OF FLOWING WATER		
General considerations	231	
Discharge measurements by Pitot tubes	243	
Discharge measurements by floats	244	
Continuous stream discharge records	257	
General considerations		
SPECIAL PROBLEMS		
Backwater curve	278	
Short canals with free discharge	288	
The mass diagram for storage problems	29 4	
CHAPTER X		
Savana - Dananayan Tanana		
•	210	
Logarithmic and other tables	910	
APPENDIX A		
Comparison of weir formulas with experiments	383	
APPENDIX B		
Comparison of Kutter. Manning, Bazin formulas with	ı	
Scobey's experiments		

TABLES

No.	P	AGE
	Conversion of units of length	4
	Conversion of units of weight	4
	Conversion of units of power	5
4.	Inches in decimals of a foot	5
5.	Factors for conversion of units	6
6.	Weights of materials used in hydraulic construction .	10
7.	Density and weight of water at different temperatures	11
8.	Atmospheric pressures and corresponding heights of	
	water and mercury columns	12
9.	Hydrostatic pressure in pounds per square foot for	
	different heads	21
10.	Hydrostatic pressure in pounds per square inch for	
	different heads	22
11.	Heads corresponding to different hydrostatic pressures	
	in pounds per square inch	27
12.	Hydrostatic pressures against dams	29
13.	Distances to centers of pressures against dams	30
14.	Theoretical horsepower of one cubic foot per second of	
	water for heads up to 100 feet	31
15.	Theoretical kilowatts of one cubic foot per second of	
	water for heads up to 100 feet	33
16.	Theoretical velocities for heads up to 5 feet	48
	Theoretical velocities for heads up to 50 feet	49
	Theoretical velocities for heads up to 500 feet	50
	Heads corresponding to velocities up to 10 feet per	
	second	51
20.	Heads corresponding to velocities up to 50 feet per	
	second	53
21.	Coefficients of discharge for circular orifices with full	
	contraction	54
22.	Coefficients of discharge for square orifices with full	
	contraction	55
23.	Coefficients of discharge for rectangular orifices with	
	full contraction	5 6
	viii Digitizad by G000/e	

TABLES

No.	Characteristics of alteriates of the state o	AGE
24.	Coefficients of discharge for various shaped orifices	
25	with full contraction	57
20.	Coefficients of discharge for rectangular orifices with	-0
26	partially suppressed contraction	5 8
20.		*0
97	orifices	5 9
21.	rounded corners	59
28	Coefficients of discharge for various models of gates	60
	Coefficients of discharge for submerged gates	61
	Coefficients of discharge for submerged tubes	62
	Coefficients for V-notch weir formulas	86
	1.47 powers of numbers	93
	Discharge over weirs without velocity of approach	98
		103
	• • •	104
	•	109
		110
		113
		117
	•	122
		127
	· ·	143
43.	Coefficients for broad crested weirs with rounded	
	upstream corner	144
		144
45.	Coefficients for weirs of triangular section with	
	vertical upstream face and sloping downstream	
		144
46 .	Coefficients for weirs of triangular section with vertical	
		145
47.	Coefficients for weirs of triangular section with both	
		145
48.	Coefficients for weirs of trapezoidal section with both	
	24000	146
49.	Coefficients for weirs of trapezoidal section with both	
	10000 moments	146
50 .	Coefficients for weirs of trapezoidal section with	
	upstream face inclined and downstream face	
	vertical	147

Ю.		AGE
	Coefficients for weirs of irregular section	147
		147
53.	Coefficients for models of existing dams	148
		170
	Coefficients for loss of head at entrance to pipes	171
56.	Coefficients for Chezy formula	171
57.	Coefficients for friction in pipes	172
58 .	Coefficients for friction in pipes	173
	Loss of head due to friction in pipes	
	Solution of pipe formula, diameter in feet	
61.	Solution of pipe formula, diameter in inches	178
62.	Loss of head due to sudden enlargement in pipes	181
63.	Coefficients for determining loss of head due to	
	sudden enlargement in pipes	181
64.	Coefficients for determining loss of head due to gradual	
	enlargement in pipes	182
65.	Loss of head due to sudden contractions in pipes	182
66.	Coefficients for determining loss of head due to sudden	
	contractions in pipes	183
	Loss of head due to valves or obstructions in pipes .	184
68.	Coefficients for determining loss of head due to valves	
	or obstructions in pipes	184
	Loss of head due to bends in pipes	185
70.	Coefficients for determining loss of head due to bends	
	in pipes	186
	Lower critical velocities	187
	Higher critical velocities	187
73.	Horton's coefficients for Kutter's and Manning's	
	formulas	191
74.	Coefficients for Bazin's open channel formula	193
75.	Comparison of coefficients in Kutter's, Manning's	
	and Bazin's formulas	204
	Chezy coefficient from Kutter's formula	207
	Chezy coefficient from Bazin's formula	210
	Coefficients for Manning's formula	210
	Hydraulic elements for pipes flowing part full	211
	Hydraulic elements for trapezoidal canal sections	
	Solution of Manning's formula	215
	Determination of slopes by Manning's formula	222
02	Square reats of desimal numbers	224

TABLES

NO.		Page
84.	Two-thirds powers of numbers	225
85.	Three-eighths powers of numbers	227
86.	Rating table for Price meters	238
87.	Specimen stream discharge table	276
88.	Specimen backwater computations	283
89.	Specimen tabulation for mass diagram	29 6
90.	Evaporations from water surfaces	298
91.	Logarithms of numbers	311
92.	Cologarithms of numbers	32 9
93.	Natural sines and cosines of angles	347
94.	Natural tangents and cotangents of angles	349
	Natural secants and cosecants of angles	351
	Squares, cubes, square roots, cube roots, reciprocals.	353
	Square roots of numbers from 1000 to 10,000	373
	Circumferences of circles by hundredths	375
	Areas of circles by hundredths	377
	Circumferences of circles by eighths	379
	Areas of circles by eighths	381
102.	Comparison of weir formulas with Bazin's experi-	
	ments	386
	Comparative discrepancies of weir formulas	388
104.	Comparison of weir formulas with Fteley and Stearns'	
	experiments	390
	Comparative discrepancies of weir formulas	390
106.	Comparison of weir formulas with Francis' and Fteley	
	and Stearns' experiments	394
	Comparative discrepancies of weir formulas	395
108.	Comparison of submerged weir formulas with Bazin	
	experiments	397
109.	Comparison of submerged weir formulas with Francis'	
	experiments of 1883	398
110.	Comparison of submerged weir formulas with Fteley	
	and Stearns' experiments	40 0
111.	Comparison of submerged weir formulas with Francis'	
		401
12.	Comparison of Kutter's, Manning's, and Bazin's	
	formulas with Scobov's experiments	404

HANDBOOK OF HYDRAULICS

CHAPTER I

HYDRAULIC UNITS

Basic Units.—In the United States and England the three primary units used as a basis for hydraulic measurements are: the foot, the pound, and the second. If not otherwise stated in this volume, these units will be understood. In countries using the metric system the corresponding units are the meter, the kilogram and the second. Tables 1, 2 and 5, pages 4 and 6, will assist in converting one system of units to the other.

Dimensions, such as diameters of pipes and orifices are frequently expressed in inches, or feet and inches, but these should always be changed to feet and decimals of a foot before substituting in hydraulic formulas. Table 4, page 5, may be used for converting inches to decimals of a foot.

Units of Volume and Flow.—The following units have been used in the United States to express respectively, volumes of water and volumes per time of flowing water:

Volumes:

- (a) Cubic feet
- (b) Gallons
- (c) Acre-feet
- (d) Cubic feet per second-day
- (e) Inches per area.

Volumes per time:

- (a) Cubic feet per second
- (b) Cubic feet per minute
- (c) Gallons per minute
- (d) Gallons per 24 hours
- (e) Miner's inches
- (f) Square inches of water
- (g) Inches per area per time.

The cubic foot is the most convenient unit of volume for expressing small quantities of water, such as capacities of tanks or small reservoirs. Water, in cities, is commonly sold on the basis of the number of cubic feet consumed.

The United States gallon, which contains 231 cubic inches or 0.13368 cubic feet, is the standard of liquid measure. It is commonly used to express volumes in connection with municipal water supply. Reservoir capacities are frequently stated in millions of gallons.

An acre-foot of water is the volume required to cover an area of 1 acre to the depth of 1 foot and is therefore equal to 43,560 cubic feet. This unit has been quite generally adopted in the irrigated sections of the United States and its use is becoming prevalent throughout the country. One cubic foot per second flowing for 24 hours equals 1.9835 acre-feet, or 2 acre-feet within an error of less than 1 per cent. Since hydraulic data are never accurate enough to justify the use of a closer value it is customary to consider that 1 second-foot flowing for 24 hours equals 2 acre-feet. In the author's opinion the acre-foot is the most convenient unit for expressing large volumes of water for the following reasons:

- (a) It is convenient for irrigation purposes since it includes the standard unit of land area.
- (b) It is convenient to reduce the capacities of reservoirs to this unit, where areas are expressed in acres.
- (c) It is convenient for storage calculations since it may readily be transferred to or from units of flow.
- (d) It enables large volumes to be expressed without the use of extremely large numbers.

The cubic foot per second-day or second-foot-day is a volume of water equal to a flow of 1 cubic foot per second for 24 hours or 86,400 cubic feet, or, approximately 2 acre-feet. This unit is sometimes used in storage computations.

Inches per area or simply inches depth is a unit generally used in connection with drainage areas. Precipitation and evaporation records are given in inches, the area to which the depth applies being frequently understood. A depth of 1 inch over an area of 1 acre is called an acre-inch. An acre-inch is equal to $\frac{1}{12}$ acre-foot or 3630 cubic feet.

A number of units expressing volume per time are used in hydraulic work. The most common practice in the United States and Great Britain is to express the volume of flowing water in cubic feet per second. The abbreviated term second-feet has been adopted by the U. S. Geological Survey and the U. S. Reclamation Service and is used quite generally by American engineers. In England, India and Australia the term cusecs

is more commonly used. The author has adopted the term second-feet in this volume as it is more in accord with American usage. This unit is gradually supplanting other units, hitherto used in special classes of work, which are defined below.

The unit, cubic feet per minute is used by millwrights and turbine manufacturers.

The capacities of pumps are generally expressed in *United States gallons per minute*.

The capacities of water-works plants or the consumption of water by municipalities is usually stated in *gallons* or *millions* of gallons per 24 hours.

The miner's inch was formerly used in hydraulic mining and irrigation in Western United States. It is defined as the quantity of water which will flow through an orifice 1 inch square under a stated head which varies from 4 inches to $6\frac{1}{2}$ inches in different localities. The use of this unit has lead to much confusion and its value in terms of cubic feet per second (see Table 5) has been fixed by statute in most of the Western States.

Square inches of water is a unit which was formerly much used by millwrights and waterwheel builders. It commonly means the theoretical discharge through an orifice of a given cross-section, without contraction, under some particular head. Early millwrights in many cases failed to distinguish between the area of the orifice and the area of the jet and much confusion has resulted.

In comparing the run-off from a drainage area with the precipitation, it is often convenient to express the run-off in terms of inches per month or inches per year. In this connection it may be helpful to remember that 1 acre-inch per hour equals approximately 1 second-foot.

The use of cubic feet per second may properly displace the units cubic feet per minute, U. S. gallons per minute, U. S. gallons per 24 hours, miner's inches, and square inches of water in practically all instances where these units have hitherto been used. There is no reason why the supply of water to a town should be expressed in gallons per 24 hours, when the water sold to consumers is generally measured and charged for in terms of cubic feet. Likewise, the capacities of pumps and the discharge of turbines may be as readily expressed in cubic feet per second as in terms of the units now commonly used. Table 5, page 6, gives the conversion factors, with their logarithms, for converting one system of units to another.

Digitized by GOOGLC

HANDBOOK OF HYDRAULICS

TABLE 1.—Conversion of Units of Length Meters to Feet

Meters	0	1	2	3	4	5	6	7	8	9
		3.28	6.56	9.84	13.12	16.40	19.68	22.97	26.25	29.53
10	32.81	36.09								
20	65.62	68.90	72.18	75.46		82.02				
30	98.42	101.71	104.99						124.67	127.9
40	131,23	134.51	137.79	141.08	144.36	147.64	150.92	154.20	157.48	160.7
50	164.04	167.32	170.60	173.88	177.16	180.45	183.73	187.01	190.29	193.5
60			203.41							
70	229.66	232.94	236,22	239.50	242.78	246.06	249.34	252.62	255.90	259.1
80			269.03							
90	295.27									

Feet to Meters

Feet	0	1	2	3	4	5	6	7	8	9
		0.305								2.743
10	3.048	3.353	3.658	3.962	4.267	4.572	4.877	5.182	5.486	6.791
20	6.096	6.401	6.706	7.010	7.315	7.620	7.925	8.230	8.534	8.839
30	9.144	9.449	9.754				10.973			
40	12.192	12.497	12.802	13.106	13.411	13.716	14.021	14.326	14.630	14.935
50	15.240	15.545	15.850	16.154	16.459	16.764	17.069	17.374	17.678	17.983
60			18.898							
70	21.336									
80			24.994							
·9ŏ	27.432									

TABLE 2.—CONVERSION OF UNITS OF WEIGHT Kilograms to Pounds Avoirdupois

Kilograms	. 0	1	2	3	4	5	-6	7	8	9
		2.20	4.41				13.23			19.84
10	22.05	24.25	26.46	28.66	30.86	33.07	85.27			
20	44.09	46.30	48.50	50.71	52.91	55.12	57.32	59.52	61.73	63.93
20 30	66.14	68.34	70.55	72.75	74.98	77.16	79.37	81.57	83.78	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03
50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07
60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.21
90										218.26

Pounds Avoirdupois to Kilograms

Pounds	0	1 .	2	3	4	5	6	7	8	9
		0.4536	0.9072	1.361	1.814	2.268	2.722	3.175	3.629	4.082
10	4.536	4.990	5.443	5.897	6.350	6.804	7.257	7.711	8.165	8.61
20	9.072	9.525	9.979	10.433	10.886	11.340	11.793	12.247	12.701	13, 15
30	13.608	14.061	14.515	14.969	15.422	15.876	16.329	16.783	17.237	17.690
40	18.144	18.597	19.051	19.504	19. 95 8	20.412	20.865	21.319	21.772	22.22
50	22.680	23.133	23.587	24.040	24.494	24.948	25.401	25.855	26.308	26.76
60	27,216	27.669	28.123	28.576	29.030	29.484	29.937	30.391	30.844	31.29
70	31.752	32.205	32.659	33.112	33.566	34.019	34.473	34.927	35.380	35.83
80	36.287	36.741	37.195	37.648	38.102	38.555	39.009	39.463	39.916	40.37
90	40.823	41.277	41.731	42.184	42.638	43.091	43.545	43.999	44.452	44.90

HYDRAULIC UNITS

TABLE 3.—Conversion of Units of Power Kilowatts to Horsepower

Kilowatts	0	1	2	3	4	5	6	7	8	.9
-		1.340					8.043			
10	13.405	14.745	16.086	17.426	18.767	20.107	21.448	22.788	24.129	25.469
20	26.810	28.150	29.491	30.831	32.172	33.512	34.853	36.193	37.534	38.874
30	40.214	41.555	42.895	44.236	45.576	46.917	48,257	49.598	50.938	52.279
40	53.619	54.9 6 0	56.300	57.641	58.981	60.322	61.662	63.003	64.343	65.684
50	67.024	68.365	69.705	71.046	72.386	73.727	75.067	76.408	77.748	79.089
60	80.429	81.770	83.110	84.451	85.791	87.132	88.472	89.813	91.153	92.494
70	93.834	95.175	96.515	97.856	99.196	100.54	101.88	103.22	104.56	105.90
80	107.24	108.58	109.92	111.26	112.60	113.94	115.28	116.62	117.96	119.30
90	120 64	121.98	123 32	124 67	126 01	127 25	128 60	130 03	131 37	132 71

Horsepower to Kilowatts

Horsepower	0	1	2	3	4	5	6	7	8	9
10 20 30 40 50 60 70 80	14.920 22.380 29.840 37.300 44.760 52.220 59.680	0.746 8.206 15.666 23.126 30.586 38.046 45.506 52.966 60.426 67.886	8.952 16.412 23.872 31.332 38.792 46.252 53.712 61.172	9.698 17.158 24.618 32.078 39.538 46.998 54.458 61.918	17.904 25.364 32.824 40.284 47.744 55.204 62.664	11.190 18.650 26.110 33.570 41.030 48.490 55.950 63.410	11.936 19.396 26.856 34.316 41.776 49.236 56.696 64.156	12.682 20.142 27.602 35.062 42.522 49.982 57.442 64.902	13.428 20.888 28.348 85.808 43.268 50.728 58.188 65.648	14.174 21.634 29.094 36.554 44.014 51.474 58.934 66.394

Table 4.—Inches and Fractions Expressed in Decimals of a Foot

Inches			F	ractions	of inches			
	0	1/8	1/4	36	34	58	34	38
0	.0000	.0104	.0208	.0313	.0417	.0521	.0625	.0729
1	.0833	.0937	.1042	.1146	.1250	.1354	.1458	.156
2	. 1667	.1771	.1875	.1979	.2083	.2188	.2292	.239
3	. 2500	.2604	.2708	.2813	.2917	.3021	.3125	.322
4	.3333	.3437	.3542	.3646	.3750	.3854	.3958	.406
5	.4167	.4271	.4375	.4479	.4583	.4688	.4792	.489
6	. 5000	.5104	. 5208	.5313	.5417	. 5521	. 5625	. 572
7	. 5833	. 5937	.6042	.6146	. 6250	.6354	.6458	.656
8	.6667	.6771	.6875	.6979	.7083	.7188	.7292	.739
9	.7500	.7604	.7708	.7813	.7917	.8021	.8125	.822
10	.8333	.8437	. 8542	.8646	.8750	.8854	.8958	.906
11	.9167	.9271	.9375	.9479	.9583	.9688	.9792	.989
12	1.0000							

LABLE 5

To reduce B to A, multiply B by G Unit B Square centimeters Cubic inches Cubic centimeters Cubic feet Cubic yards U. S. gallons Square meters Square meters Square inches Feet Inches Inches Inches Centimeters Square feet Square feet Kilometers Square feet Hectares Inches Feet Meters Acres Acres 00000035870 000022957 000015783 Factor G0015625* 0038610 00062137 62137 00030480 00018939 40469 0001 * 0069444 15500 092902 30480 027778 083333 025400 39370 061024 028317 76456 13368 To reduce A to B, multiply A by F. 4.79335 1.79335 4.4840248402 44370 58670 36091 39288 all negative 92082 40483 60712 00000 84164 . 59517 19033 Logarithm of G characteristic 0.20665 3.515980.51598 1.556302.80618 2.41330 4.63909 3.60712 Logarithm of F characteristic all positive 2.15836 0.80967.07918 . 59517 0.3928800000 87393 1,728.• 16.387 35.3145 1.3079 7,4805 2.47. 10,000. 144. 6.4516 10.764 1.60935 4,046.9 3.2808 36. • 112. • 2.5400 Factor P 27,878,400. Factors for conversion of units. Square inches Aores..... Cubic meters..... Square miles..... Kilometers.... Subic inches..... Unit A Yards.... Square feet.... Cubic feet.... Acres..... Inches Meters · Exact values. Miles.... Miles.... Square miles Hectares.... Subic feet... Hectares... SURFACE:

TABLE 5 (Continued)

To reduce B to A, multiply B by G per minute per 24 hours Unit B mperial gallons Liters Cubio inches Cubio inches Cubio inches Cubic feet Cubic yards Cubic meters Cubic feet Cubic feet Liters Cubic feet Cubic inches Cubic feet p Cubic feet p U. S. gallon U. S. gallon Acre-feet Cubic feet Acre-feet Cubic feet 32585 000000035870 0015625* 00061983 00081071 00027548 0000074805 00000043044 01875 000011574 0022280 0000015472 50417 Factor G 00002295 0036065 016387 035314 016667 22009 80356 55411 83311 To reduce A to B, multiply A by F. mdtirago.I O O oitairateanado evitagen lla 3.63639 3.55709 2.21450 . 34259 . 90502 . 74360 18955 70257 5.06349 3.193824.93651 2.65208 5.81045 0.29743 2.36361 2.44291 1.78550 .07930 0.09498 63909 20772 77815 evitisoq lla 3.0911448698 2.806185.12607 .44527 .65741 3.55991characteriatic mdirisyo. A lo 1.9835 3.7854 1.2003 4.5437 1.2445 1.8047 6.2321 28.317 231.* 277.274 61.0234 3.0689 27,878,400. * 640. * 2,323,200. * 53.333 86,400. • 448.83 646,317. Factor F + Usually taken as 2. Factors for conversion of units. square mile.... nches depth on 1 square mile.... Inches depth on 1 square mile.... Millions U. S. gallons... Feet depth on I square mile. Acre-feet. Millions U. S. gallons Imperial gallons.... Fluid ounces..... Agre-feet..... Unit A S. bushels..... VOLUMB (continued): Acre-feet..... Cubic feet.... FLOWING WATER Exact values. Second-feet. U. S. gallons iters.... Cubic feet. Second-feet Acre-inches Second-feet Second-feet Second-feet

To reduce B to A multiply B by G Table 5 (Continued)
Factors for conversion of units. To reduce A to B. multiply A by P.

ractors for conversion of units.		to o, mai	upiy a by	r. Io reduce	10 reduce A to B, multiply A by r. 10 reduce B to A, multiply B by G	
Unit A	Factor F	mdiitagod Y to esitarietica evitiaog lla	Logarithm Of O characteristics all negative	Factor G	Unit B	
FLOWING WATER (continued): Second-feet Second-feet Second-feet Second-feet Second-feet Second-feet	723.98 50.* 50.* 50.*	2.85972 1.69897 1.69897 1.69897 1.69897	3.14028 2.30103 2.30103 2.30103 2.30103	.0013813 .02* .02* .02*	Acre-feet per 365 days Miner's inches, Idaho Miner's inches, Kausas Miner's inches, Nebraska Miner's inches, New Wextoo	
Second-feet Second-feet Second-feet Second-feet Second-feet		1.69897 1.60206 1.60206 1.60206 1.60206	2.30103 2.30103 2.39794 2.39794 2.39794	.02* .025* .025* .025*	Miner's inches, N. Dakota Miner's inches, S. Dakota Miner's inches, Arizona Miner's inches, California Miner's inches, Montana	
Second-fect. Second-feet. Millions U. S. gallons per day Inches depth per hour. Inches depth per day.	40. * 38. 4 * 1. 5472 645. 33 26. 889	1.60206 1.58433 0.18955 2.80978 1.42957	2.39794 2.41567 1.81045 3.19022 2.57043	. 025 * . 026042 . 64632 . 0015496 . 037190	Miner's inches, Oregon Miner's inches, Colorado Second-feet per square mile Second-feet per square mile	
Second-feet per square mile Second-feet per square mile Second-feet per square mile Second-feet per square mile	1.0413 1.0785 1.1157 1.1529 13.574	0.01758 0.03283 0.04755 0.06179 1.13272	1.98242 1.96717 1.95245 1.93821 2.86728	. 96032 . 92720 . 89630 . 86738	Inches depth per 28 days Inches depth per 29 days Inches depth per 30 days Inches depth per 31 days Inches depth per 31 days Inches depth per 35 days	
Second-feet per square mile Acte-inches per hour Cubio-feet per minute U. S. gallons per minute	13.612 1.0083† 7.4805 10,772. 1,440.	1.13391 0.00360 0.87393 4.03229 3.15836	1.86609 1.99640 1.12607 5.96771 4.84164	.073467 .99173† .13368 .000092834 .00069444	Inches depth per 366 days Second-feet U. S. gallons per minute U. S. gallons per 24 hours U. S. gallons per 24 hours	
* Exact values † Usually to	† Usually taken as unity:					1

Digitized by Google

TABLE 5 (Concluded)

Factors for conversion of units.	nits. To reduce A to B,	to B, mul	multiply A by F.		To reduce B to A , multiply B by G .
Unit A	Factor P	Marithm N to Seiteristies Seli positive	mithrago O to soitsirstosarado evitagen lla	Factor G	Unit B
Wellograms and Galdes: Miles per hour. Meters per second. Meters per second. Fall in feet per mile. Slope in seconds of arc.	1.4667 3.2808 2.2369 5,280.	0.16633 0.51598 0.34965 3.72263 5.31443	1.83367 1.48402 1.65036 4.27737 6.68557	.88182 .30480 .44704 .00018939	Feet per second Reie per second Miles per hour Slope per foot
Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean)	14.697 29.921 760. 33.907 1.0333	1.16723 1.47598 2.88081 1.53030 0.01422	2.83277 2.52402 3.11910 2.46970 1.98578	.068041 .033421 .0013158 .029492 .96778	Pounds per square inch Inches of mercury Millimeters of mercury Feet of water Kilograms per square centimeter
Inches of mercury Pounds per square inch Pounds per square inch Feet of water. Pounds per square inch	1.135 2.0359 51.711 62.416 2.3071	0.05500 0.30875 1.71359 1.79530 0.36807	1.94500 1.69125 2.28641 2.20470 1.63693	. \$8106 . 49119 . 019338 . 016022 . 43344	Feet of water Inches of mercury Millimeters of mercury Pounds per square foot Feet of water
Weight: Pounds Grams Kliograms Long tons (2240 pounds) Long tons	7,000.* 15,432 2,2046 1,12* 1,0160	3.84510 1.18843 0.34333 0.04922 0.00691	4.15490 2.81157 1.65667 1.95078 1.99300	.00014286 .064799 .45359 .89286	Grains Grains Pounds Short tons Metric tons (1000 kilograms)
Power: Horsepower Kilowatts Kilowatts Horsepower Horsepower	550. * 1.3405 8,760* 8,760* 11,743	2.74036 0.12726 8.94250 3.94250 4.06977	3.25964 1.87274 6.05750 6.05750 5.93023	.0018182 .746 .00011416 .00011416	Foot-pounds per second Horsepower Kilowatt-hours per year Horsepower-hours per year Kilowatt-hours per year

Exact value

TABLE 5 (Continued)

Unit A	Factor F	Logarithm of P characteristics evities fla	Logarithm of G characteristics all negative	Factor G	Unit B
Promise Wares (confined)		,			
COMPANIE WATER (COMPANIE)	00 001	01010	4 1 1000	0010010	A 6 4 90 F. J.
Second-reet	123.98	7,809.7	3. I±025	510013013	Acre-reet per soo days
Second-feet	20.	1.69897	2.30103	.02	Miner's inches, Idaho
Second-teet.	20.	1.69897	2.30108	. 20.	Miner's inches, Kansas
Second-feet		1.69897	2.30108	.70	Miner's inches, Nebraska
Second-feet	20.	1.69897	2.30103	.03	Miner's inches, New Mexico
Second-feet	. 55	1 69897	2 30103	•60	Miner's inches N Dakote
Sport foot	•	1 60807	90106		Minor's inches & Debote
Second foot		1.00001	20202	****	Minor sinches, D. Dakous
Decomo-leer.	.04	1.00200	0 2000	200	Willer's inches, Arizona
Second-feet	* * * * * * * * * * * * * * * * * * * *	1.00200	203030	.020	Miner's inches, Camornia
Second-leet	*0.*	1.00200	7. 38(84	.020.	Miner's inches, Montana
Second-fect	•.0	1.60206	2.39794	.025	Miner's inches, Oregon
Second-feet	38.4*	1.58433	2.41567	.026042	8
Millions U. S. gallons per day	1.5472	0.18955	1.81045	.64632	
Inches depth per hour	645.33	2.80978	3.19022	.0015496	Second-feet per square mile
Inches depth per day	26.889	1.42957	2.57043	.037190	Second-feet per square mile
Googlefoot nor sough mile	1 0413	0.01759	1 08949	08039	Inches denth new 98 days
Google Foot nor somers mile	1 0785	03983	1 96717	06260	Inches don't non 20 deurs
Googna-feet per square mile	1157	04755	1 05945	80830	Inches depth per 20 desire
Good for nor comme mile	1111	06170	1 02001	00000	Inches depth per so days
Second-teet per square mile	10.1029	0.001	1.90041	00100	Thenes depth per of days
Second-feet per square mile	13.5/4	1.15272	2.00128	.0000	Inches depth per 365 days
Second-feet per square mile	13.612	1.13391	1.86609	.073467	Inches derth per 366 days
Acre-inches per hour	1.0083+	0.00360	1.99640	.99173+	Second-feet.
Cubic-feet per minute.	7.4805	0.87393	1.12607	. 13368	U. S. gallons ner minute
Cubic-feet per minute	10,772.	4.03229	5.96771	.000092834	U. S. gallons per 24 hours
U. S. gallons per minute	1,440.*	3.15836	4.84164	.00069444	U. S. gallons per 24 hours

+ Usually taken as unity:

TABLE 5 (Concluded)

Unit A	Factor F	Logarithm of F characteristies all positive	ogarithm of G characteristics all negative	Factor G	Unit B
VELOCITIES AND GRADES: Miles per hour. Moters per second Meters per second Fall in feet per mile. Slope in seconds of arc.	1.4667 3.2808 2.2369 5.280.	0.16633 0.51598 0.34965 3.72263 5.31443	1.83367 1.48402 1.65035 4.27737 6.68557	.68182 .30480 .44704 .00018939 .0000048481	Feet per second Feet per second Miles per hour Slope per foot Slope per foot
Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean) Atmospheres (mean)	14.697 29.921 760 33.907 1.0333	1.16723 1.47598 2.88081 1.53030 0.01422	2.83277 2.52402 3.11919 2.46970 1.98578	.068041 .033421 .0013158 .029492 .96778	Pounds per square inch Inches of mercury Millimeters of mercury Feet of water Kilograms per square centimeter
Inches of mercury. Pounds per square inch. Pounds per square inch. Feet of water. Pounds per square inch.	1.135 2.0359 51.711 62.416 2.3071	0.05500 0.30875 1.71359 1.79530 0.36307	1.94500 1.69125 2.28641 2.20470 1.63693	. \$8106 . 49119 . 019338 . 016022 . 43344	Feet of water Inches of mercury Millimeters of mercury Pounds per square foot Feet of water
Weight: Pounds Pounds Grams Kilograms Ling tons (2240 pounds) Long tons	7,000.* 15,432 2,246 1.12* 1.0160	3.84510 1.18843 0.34333 0.04922 0.00691	4.15490 2.81157 1.65667 1.95078 1.99309	.00014286 .064799 .45359 .89286 .98421	Grains Grains Pounds Short tons Meric tons (1000 kilograms)
Power: Horsepower Kilowatts Kilowatts Horsepower Horsepower	550.* 1.3405 8,760* 8,760* 11,743	2.74036 0.12726 3.94250 3.94250 4.06977	3.25964 1.87274 6.05750 6.05750 5.93023	.0018182 .746 .00011416 .00011416	Foot-pounds per second Horsepower Kilowatt-hours per year Horsepower-hours per year Kilowatt-hours ner vear

TABLE 6.—AVERAGE WEIGHT, IN POUNDS PER CUBIC FOOT, OF VARIOUS MATERIALS USED IN HYDRAULIC CONSTRUCTION

G. b. t	W-:-1:	G.b.t.	Wainki
Substance	Weight	Substance	Weight
CLAY, EARTH AND MUD:		MASONRY AND ITS MA-	1
Clav	122-162	TERIALS—(continued):	
Earth, dry and loose	72-80	Sand, pure quartz, dry,	
Earth, dry and shaken	82-92	loose	87-106
Earth, dry and moderately		Sand, pure quartz, dry,	
rammed	90-100	slightly shaken	92-110
Earth, slightly moist, loose	70-76	Sand, pure quartz, dry,	100-120
Earth, more moist, loose Earth, more moist, shaken.	66-68 75-90	rammed Sand, natural, dry, loose.	80-110
Earth, more moist, moder-	15-90	Sand, natural, dry, loose. Sand, natural, dry, shak-	80-110
ately rammed	90-100	en	85-125
Earth, as soft flowing mud.	104-112	Sand, wet, voids full of	
Earth, as soft mud well		water	118-128
pressed into a box	110-120	Stone	135-195
Mud, dry, close	80-110	Stone, quarried, loosely	
Mud, wet, moderately		piled	80-110
pressed	110-130	Stone, broken, loose	77-112
Mud, wet, fluid	104-120	Stone, broken, rammed	79–121
MASONRY AND ITS MA-		METAL AND ALLOYS:	
TERIALS:		Brass (copper and zinc)	487-524
Brick, best pressed	150	Bronse (copper and tin)	524-537
Brick, common hard	125	Copper, cast	537-548
Brick, soft, inferior	100	Copper, rolled	548-562
Brickwork, pressed brick,		Iron and steel, cast	438-483
fine joints	140	Average	450
Brickwork, medium quality	125	Iron and steel, wrought	475-494
Brickwork, coarse, inferior	100	Average	480 425–450
soft bricks	100 72-105	Spelter or sinc	450-470
Cement, pressed	115	Steel	490
Cement, set	168-187	Tin	459
Concrete, 1 : 3 : 6	140	Zinc	438
Gravel, loose	82-125	Mercury (32°F.)	849
Gravel, rammed	90-145		
Masonry of granite or		Woods (DRY)*	40.4
stone of like weight:	107	White oak	46.4
Well-dressed	165	White pine	25.6 38.1
Well-scabbled rubble, 20	154	Southern long-leaf pinc Douglas fir	32.1
per cent. mortar Roughly scabbled rubble.	104	Short-leaf yellow pine	38.4
25 to 35 per cent. mortar.	150	Norway pine	30.2
Well-scabbled dry rubble.	138	Spruce and eastern fir	25.0
Roughly scabbled dry		Hemlock	26-32
rubble	125	Cypress	29.8
Masonry of sandstone or		Cedar	23.1
stone of like weight		Chestnut	41.0
weighs about seven-	l l	California redwood	26.2
eights of the above.	90-115	California spruce	25.0
Mortar, hardened	A0-119		
	<u> </u>		

^{*} The weights of green or unseasoned timbers are 20 to 40 per cent. greater.

CHAPTER II

HYDROSTATICS

Weight of Water

The maximum density of water occurs at a temperature of 39.3°F. From this point the density decreases with either an increase or decrease in temperature. In the following pages the weight of water is assumed to be 62.4 pounds per cubic foot, which figure is close enough for ordinary engineering computations. Table 7 gives relative densities and weights in pounds per cubic foot of distilled water for different temperatures in degrees Fahrenheit between the freezing and boiling points.

TABLE 7

Tem- pera- ture	Rela- tive density	Weight	Tem- pera- ture		Weight	Tem- pera- ture		Weight
32	0.99987	62.416	60	0.99907	62.366	140	0.98338	61.386
35	0.99996	62.421	70	0.99802	62.300	150	0.98043	61.203
39.3	1.00000	62.424	80	0.99669	62.217	160	0.97729	61.006
40	0.99999	62.423	90	0.99510	62.118	170	0.97397	60.799
43	0.99997	62.422	100	0.99318	61.998	180	0.97056	60.586
45	0.99992	62.419	110	0.99105	61.865	190	0.96701	60.365
50	0.99975	62.408	120	0.98870	61.719	200	0.96333	60.135
55	0.99946	62.390	130	0.98608	61.555	212	0.95865	59.843

Atmospheric Pressure

Atmospheric pressure on the earth's surface varies with meteorological conditions, and decreases as the altitude increases. At sea level the mean atmospheric pressure averages about 2116 pounds per square foot or 14.7 pounds per square inch, the latter being commonly designated as one atmosphere. This is equivalent to the weight of a column of water 33.92 feet high or a column of mercury 29.92 inches or 760 millimeters high. If, therefore, all of the air is exhausted from a pipe the

lower end of which is immersed in water, at sea level, the water will rise in the pipe to a height of nearly 34 feet.

This principal is made use of in designing siphons, suction pipes for pumps and draft tubes for turbines. In practice a perfect vacuum is difficult to obtain and the height to which a water column may, with safety, be depended upon to rise is about 75 per cent. of the theoretical amount.

Table 8 gives mean atmospheric pressures in pounds per square inch, with corresponding heights of water columns in feet and heights of mercury columns in inches, for different elevations above sea level in feet.

TABLE 8

0 14.70 33.9 29.9 3,000 13.16 30.4 26.8 6,000 11.80 2 250 14.57 33.6 29.6 3,250 13.04 30.1 26.6 6,250 11.70 2 500 14.44 33.3 29.3 3,500 12.92 29.8 26.3 6,500 11.60 2	_	•							
250 14.57 33.6 29.6 3,250 13.04 30.1 26.6 6,250 11.70 250 14.44 33.3 29.3 3,500 12.92 29.8 26.3 6,500 11.60 2	Elevation	Atmospheric pheric pressure Height	or water column Height of mercury column	Elevation Atmospheric	Height of water	Height of mercury column	Elevation Atmospheric pheric pressure	Height of water column	Height of mercury column
1,250 14.05 32.4 28.6 4,250 12.58 29.0 25.6 7,250 11.31 2 1,500 13.92 32.1 28.3 4,500 12.46 28.8 25.4 7,500 11.21 2 1,750 13.79 31.8 28.1 4,750 12.35 28.5 25.1 7,750 11.12 2 2,000 13.66 31.5 27.8 5,000 12.23 28.2 24.9 8,000 11.03 2 2,250 13.53 31.2 27.5 5,250 12.12 28.0 24.7 8,250 10.94 2 2,500 13.41 30.9 27.3 5,500 12.01 27.7 24.5 8,500 10.85 2	250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500	14.57 14.44 33 14.31 33 14.18 32 14.05 32 13.92 32 13.79 31 13.66 31 13.53 31 13.41	3.6 29.6 3.3 29.3 3.0 29.1 2.7 28.8 2.4 28.6 2.1 28.3 1.8 28.1 1.5 27.8 1.2 27.5 0.9 27.3	3,250 13.6 3,500 12.9 3,750 12.8 4,000 12.6 4,250 12.5 4,500 12.4 4,750 12.3 5,000 12.2 5,250 12.1 5,500 12.0	4 30.1 2 29.8 1 29.6 9 29.3 8 29.0 6 28.8 5 28.5 3 28.2 2 28.0 1 27.7	26.6 6, 26.3 6; 26.0 6, 25.8 7, 25.6 7, 25.1 7, 24.9 8, 24.7 8, 24.5 8,	250 11.70 500 11.60 750 11.50 000 11.40 .250 11.31 .500 11.21 .750 11.12 .000 11.03 .250 10.94 .500 10.85	27.0 26.7 26.5 26.3 26.1 25.9 25.7 25.5 25.3 25.1	24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.5 22.3 22.1 21.9

Hydrostatic Pressure

The pressure of a fluid at any point, according to *Pascal's law*, is normal to the surface on which it acts and of equal intensity in all directions. Water, being a perfect fluid, conforms rigidly to this law.

The intensity of pressure on any submerged surface is directly proportional to the weight of the fluid and the depth of submergence. A similar pressure is exerted against the sides, and bottom of a vessel or reservoir containing water. The pressure at any point in a body of water with a free surface is equal to the sum of the pressure of the water above it and the atmospheric

pressure. In practice the atmospheric pressure may frequently be neglected as it may act equally on both sides of the surface being considered. This is not necessarily the case, however, and the effect of atmospheric pressure should always be given careful consideration.

Pressure on Plane Surfaces.—Let Figs. 1, 2 and 3, represent submerged, horizontal, vertical and inclined planes respectively. LM, in each figure, represents the horizontal projection of a plane surface of any shape on a vertical plane at right angles

to the given plane, L'M' being the true size of the given surface. G is the center of gravity and R the point of application of the resultant pressure. y and x are the vertical distances from G and R respectively to the water surface, y' and x' being corresponding distances along the inclined plane, measured at right angles to the intersection of this plane with the water surface. The inclined plane makes an angle θ with the vertical. Let A represent the area of the surface, k the radius of gyration about its horizontal axis through the center of gravity, P the total pressure and w the weight of a cubic unit of water. Then, for each plane

$$P = wAy \tag{1}$$

and for the inclined plane

$$P = wAy'\cos\theta. \tag{2}$$

For a horizontal plane the point of application of the resultant pressure passes through G, the center of gravity of the surface. For a vertical plane

$$x = y + \frac{k^2}{y} \qquad \text{Digitized by Google} \tag{3}$$

and for an inclined plane

$$x' = y' + \frac{k^2}{y'} \tag{4}$$

or

$$x = y + \frac{k^2 \cos^2 \theta}{y} \qquad . \tag{5}$$

Fig. 4 shows the more common shapes encountered in hydraulic problems, with the vertical distance x from the base to the center of gravity, G, and the squares of the radii of gyration, k^2 , about the horizontal axes, through the centers of gravity.

Hydrostatic Pressures against Dams

In designing dams all hydrostatic pressures should be carefully analyzed. This includes:

- (a) Static pressure on upstream and downstream faces of dam.
 - (b) Upward pressure against base of dam.
- (c) For overflow dams, pressure resulting from the formation of a vacuum beneath the overfalling sheet.

Pressure against Faces of Dams.—Let Figs. 5 and 6 represent cross-sections of dams, D being the vertical height and H the depth of water passing over the dams, both in feet.

The pressure against the face of the dam at a depth y is 62.4y pounds per square foot or 0.4333y pounds per square inch. Table 9, page 21, gives pressures in pounds per square foot, and Table 10, page 22, pressures in pounds per square inch for different heads. Table 11, page 27, gives heads in feet corresponding to different pressures in pounds per square inch.

Fig. 6.

The total horizontal pressure is the same, for a given height of dam and depth of water, regardless of the curvature or inclination of the face of the dam. Let P_R be the total or resultant pressure against the face of the dam, and P_V and P_H , respectively, the vertical and horizontal components of this pressure. Then for each case indicated in Figs. 5 and 6,

$$P_H = 31.2 (2DH + D^2) (6)$$

and calling d the distance above the base of the dam at which P_H acts

$$d = \frac{D}{3} \left(1 + \frac{H}{D + 2H} \right) \tag{7}$$

Tables 12 and 13, pages 29 and 30, give values of P_H and d for heights of dam from 1 to 50 feet and depths of overflow from 0 to 9 feet. These tables may also be used for obtaining P_H and d for other submerged surfaces.

If the water surface is at the same elevation as the top of the dam, H = 0 and

$$P_H = 31.2D^2 \text{ and } d = \frac{1}{3}D$$

For dams with vertical faces the pressure has no vertical component and

$$P_R = P_H$$

For dams with inclined plane faces, if l is the length from crest to base of dam,

$$P_R = 31.2l(D + 2H)$$
Digitized by Google (8)

and calling d' the distance above the base of the dam, measured along its face, at which P_R acts

$$d' = \frac{d}{\sin \theta} = \frac{l}{3} \left(1 + \frac{H}{D + 2H} \right) \tag{9}$$

and when H = 0

$$P_R = 31.2lD \text{ and } d' = \frac{l}{3}$$

For dams with curved or irregularly sloping upstream faces, illustrated in Fig. 6, P_R is the resultant of all of the normal components acting on the face of the dam. In such cases P_V is equal to the area *amnc* multiplied by 62.4, and it acts vertically downward through the center of gravity of this area. P_H and d are the same as for a dam with a vertical upstream face. The intensity and point of application of P_R may be readily obtained by completing the parallelogram of forces.

. Upward Pressure under Dams.—When a solid masonry dam is built on a rock foundation, there is a tendency for water to pass from the pond above the dam, through seams in the rock to the base of the dam. There results an upward hydrostatic pressure and inside of the point where the resultant of the other forces acting on the dam cuts its base, it will have an overturning effect. There is no way to determine to just what extent such a pressure exists but it is evidently greater for the more seamy rocks. It is therefore advisable, in preparing the foundation for such a dam, to remove all loose material and get down to the best rock practicable. A common practice is to construct a cut-off wall of concrete or masonry, extending several feet into firm rock, near the heel of the dam.

Fig. 5 represents a common type of reinforced-concrete dam. It consists of a floor, deck, and buttresses, and usually a cut-off wall at the heel. Such a dam may or may not be subjected to overflow. When it is required to withstand overflow, provision must be made to prevent erosion at the toe. When this type of dam is built on firm rock, the floor may be omitted. With the floor it is well adapted to almost any kind of an earth foundation. The problems of seepage and upward pressure on the base of a dam of this kind are important.

Experiments were performed by Colman¹ to determine conditions affecting upward pressure under dams with permeable foundations. In a measure water passing through earth follows

¹ J. B. T. COLMAN: The Action of Water under Dams. Trans. Amer. c. Civ. Eng., vol. 80, pp. 421-483,

the laws of the flow of water through pipes. If water passes under a dam there is a greater static pressure near the heel of the dam than near its toe as there is a loss of head due to friction between these two points.

Referring to Fig. 5, if F represents the depth of water back of the dam in feet, l' the breadth of the base of the dam in feet, and P_u the total upward pressure in pounds per foot of length of dam, the following formulas, as shown from Colman's experiments, appear safe for determining upward pressure under dams on earth foundations:

With no cut-off at the heel of the dam or with ordinary sheet piling

$$P_{\mathbf{u}} = \frac{62.4}{2} F l' = 31.2 F l' \tag{10}$$

With an impervious cut-off at the heel of the dam

$$P_{u} = \frac{62.4}{3} F l' = 20.8 F l' \tag{11}$$

The point of application of the resultant, P_u , in each case is $\frac{1}{3}i'$ from the heel of the dam.

With an impervious cut-off at both the heel and toe of the dam the upward pressure is slightly greater than with a cut-off at the heel only and the point of application of P_u is $\frac{5}{1}l'$ from the heel of the dam.

One important point brought out by Colman's investigation is that a cut-off to be effective in reducing upward pressure must be water-tight. Sheet piling as ordinarily driven is never water-tight and for this reason a good concrete cut-off of moderate depth will probably be more effective in preventing upward pressure than any amount of sheet piling.

Vacuum under Overfalling Sheet.—In case the water falling over a dam is contained between retaining walls at the ends of the dam in such a manner as to prevent the entrance of air along its downstream face, a vacuum will tend to form under the overfalling sheet of water. The effect of this action is to unbalance the atmospheric pressure on the two sides of the dam, or in other words, to increase the head on the upstream side. The amount of unbalanced pressure will be the pressure required to deflect the overfalling sheet of water from the path it would follow if air were freely admitted into a path conforming to the crest of the dam. In the extreme case the pressure against the upstream face of the dam will be increased by an amount equal to 34 feet of water. This difficulty may be over-

come by providing for the entrance of air, or by so designing the downstream face of the dam that there will be no space between it and the overfalling water.

Pressure on Curved Surfaces

Uniform Pressure on Cylindrical Surfaces.—Fig. 7 represents a cross-section of a pipe or cylinder subjected to a uniform internal hydrostatic pressure and Fig. 8 represents a similar cross-section subjected to a uniform external pressure. The pressure at each point on the circumference is normal to the surface as indicated by the arrows. The resultants of these

normal pressures, on opposite sides of any diameter, are equal and in opposite directions, and cause a stress in a direction tangent to the circumference. If S be the stress in pounds per linear inch, h the static head of water in feet and d the diameter of the pipe in inches,

 $S = \frac{1.3}{6} hd \tag{12}$

S is tension for internal pressure and compression for external pressure.

Formula 12 may be used for computing the tension in pressure pipes where h (the head to the center of the pipe) is large as compared to d. Also for cylindrical tanks having a vertical axis, and for thin circular arch dams. This formula applies to a segment of a cylinder provided the edges are rigidly supported.

Uniform Pressure on Spherical Surfaces.—If S be the stress in pounds per linear inch on the surface of a sphere subjected

to uniform hydrostatic pressure, h the static head in feet and d the diameter of the sphere in inches.

$$S = \frac{1.3}{12} hd {13}$$

S will be tension when the hydrostatic pressure is applied to the inner surface and compression when applied to the outer surface. The formula applies to segmental surfaces as well as complete spheres.

Non-uniform Pressure on Cylindrical Surfaces.—Let Fig. 9 represent a cross-section of a tank filled with water. The bottom of the tank is the segment of a cylinder. A horizontal section is rectangular. The tank is rigidly supported at the sides A and B. It is desired to find the tension S at any point P of the cylindrical surface.

Let W equal the weight of water per linear inch (parallel to axis of cylinder) on segment QP plus the weight of material in the segment. The radius to P makes an angle θ with the vertical. The tension per linear inch is given by the formula

$$S = \frac{W}{\sin \theta} \tag{14}$$

Non-uniform: Pressure on Spherical Surfaces.—Fig. 9 may also represent a cross-section of a cylindrical water tank, with axis vertical, having a spherical bottom. In this case it may be necessary to determine the tension either along or at right angles to a meridional circumference of the sphere.

If S be the tension in pounds per linear inch along a meridional circumference (SS in figure), θ the angle of the cone subtended by the spherical segment PP, W' the total weight of water

above the segment plus the weight of the segment and r the radius of the sphere in inches.

$$S = \frac{W'}{2\pi r \sin^2 \theta} \tag{15}$$

If S' be the tension in pounds per linear inch across a meridional circumference (at right angles to SS), h the head of water in feet on P, and r the radius of the sphere in inches,

$$S' = \frac{1.3}{12} hr {16}$$

Non-uniform Pressure on Conical Surfaces.—Fig. 10 represents a cross-section of a cylindrical tank with a conical bottom filled with water. At any point P there will be tension along the element of the cone and also at right angles to it.

If S be the tension in pounds per linear inch in the direction of an element of the cone (SS in figure), θ the angle which any element makes with the axis of the cone, W' the total weight of water above the segment of the cone whose base is the circle, intercepted by the horizontal plane through PP plus the weight of the segment, and r' the radius of the circle cut from the cone by this plane,

$$S = \frac{W'}{2\pi r'\cos\theta} \tag{17}$$

If S' be the tension in pounds per linear inch across an element of the cone, h the head of water in feet on P, θ the angle which any element makes with the axis of the cone and a the distance from the apex of the cone to P,

$$S' = \frac{1.3}{3} ha \tan \theta \tag{18}$$

From the above equation it is evident that S' will be a maximum when ha is maximum. It will be zero at D and if DB is less than BC the maximum value of S' will be at B.

In determining W or W' and other quantities in the foregoing equations it will be found more convenient to make a drawing from which the necessary dimensions may be approximately scaled. The results obtained in this manner will be sufficiently accurate for ordinary purposes.

In case the conditions of the problem are reversed and the pressures are applied to the opposite or convex sides of the surfaces the stresses will be equal in amount but will be compression instead of tension.

Table 9.—Hydrostatic Pressure in Pounds per Square Foot for Different Heads

Weight of Water 62:4 Pounds per Cubic Foot

Head in feet	0	1	2	3	4	5	6	7	8	9
					070			407	400	
. 0	80	62	125	187		312 936	374	437	499 1,123	562
10	624	686	749	811	874			1,061	1,123	1,186
20	1,248	1,310	1,373	1,435	1,498	1,560		1,685	1,747	1,810
30	1,872	1,934	1,997	2,059		2,184	2,246	2,309	2,371	2,434
40	2,496	2,558	2,621	2,683	2,746	2,808	2,870	2,933	2,995	3,058
50 '	3,120 3,744	3,182 3,806	3,245 3,869	3,307 3,931	3,370 3,994	3,432 4,056	3,494 4,118	3,557 4,181	3,619 4,248	3,682 4,306
60	3,722	4,430		4,555		4,680	4,742	4,805		4,930
70	4,368 4,992	5,054	4,493			5,304		5,429		5,554
80						5,928	5,990	6.053	6,115	6.178
90	5,616	5,678	5,741	5,803						i .
100	6,240	6,302	6,365	6,427	6,490	6,552	6,614	6,677	6,739	6,802
110 .	6,864	6,926	6,989	7,051	7,114 7,738	7,176	7,238	7,301	7,363	7,426
120	7,488	7,550	7.613	7,675	7,738	7,800	7,862	7,925	7,987	8,050
130	8,112	8,174	8,237	8,299	8,362	8,424	8,486	8,549		8,674
140	8,736	8,174 8,798	8,861	8,923	8,986	9,048	9,110	9,173	9,235	9,298
150	9,360	9,422	9,485	9,547	9,610	9,672	9,734	9,797	9,859	9,922
160	0.084	10.046	10 109	10.171	10.234	10,296	10,358	10,421	10,483	10,546
170	10.608	10.670	10.733	10.795	10.858	10.920	10.982	11.045	11,107	11,170
180	111.232	11.294	11.357	11.419	11.482	11.544	11.606	11,009	11,731	11,794
190	11,856	11,918	11,981	12,043	12,106	12,168	12,230	12,293	12,355	12,418
200	12,480	12,542	12,605	12,667	12,730	12,792	12,854	12,917	12,979	13,042
210	112 104	13.166	13.229	13.291	13.354	13.416	13.478	18.541	13,003	13,000
220	13,728	13,790	13,858	13,915	13,978	14,040	14,102	14,165	14,227 14,851	14,290
230	14,352	14,414	14,477	14,539	14,602	14,664	14,726	14,789	14,851	14,914
240	14,976	15,038	15,101	15,163	15,226	15,288	15,850	15,413	15,475	15,538
250	15,600	15.662	15,725	15,787	15,850	15,912	15,974	16,637	16,099	16,162
260	18 224	16.286	18.349	16.411	16.474	16.530	16.598	16.001	10.723	10,780
270	16.848	16,910	16,973	17,035	17,098	77,160	17,222	17,285	17,347	17,410
280	17.472	17,534	17.597	17,659	17,722	17,784	17,846	17,909	17,347 17,971	18,034
290	18,096	18,158	18,221	18,283	18,346	18,408	18,470	18,533	18,595	18,658
300	18,720	18,782	18,845	18,907	18,970	19,032	19,094	19,157	19,219	19,282
310	19 344	19.406	10.469	19.531	19.594	19.000	19.718	19.781	19,010	סטש,ענו
320	110 089	on mu	ion noai	90 155	אוצ ותיו	201 2XII	201 142	211 44 IN	20.40 <i>(</i>	ZULOW
330	20,592	20,654	20,717	20,779	20,842	20,904	20,966	21,029	21,091 21,715	21,154
340										
350	21.840	21,902	21,965	22,027	22,090	2 2,152	22,214	22,277	22,339 22,963	22,402
360	22,464	22,526	22,589	22,651	22,714	22,776	22,838	22,901	22,963	23,026
370	123.088	23.150	23.213	23.275	23.338	23,400	23,402	23,525	23,387	23,000
380	93 712	23 774	23 237	23.899	23.962	24.024	24.086	24.149	24.211	24.2/4
390	24,336	24,398	24,461	24,523	24,586	24,64 8	24,710	24,773	24,835	24,898
400	24,960	25,022	25,085	25,147	25,210	25,27 2	25,334	25,397	25,459	25,522
410	19K KR4	125 BAB	25.700	25.771	25 X34	25.890	25.958	26.021	26.083	20,140
420	126 208	28 270	26.333	26.395	126.458	26.520	26.582	26.645	26.707	26.770
430	26.832	26.894	26.957	27.019	27.082	27,144	27,206	27,269	27,331	27,394
440	27,456	27,518	27,581	27,643	27,706	27,76 8	27,830	27,893	27,955	28,018
450	28,080	28,142	28,205	28,267	28,330	28,392	28,454	28,517	28,579	28,642
400	198 704	199 7AR	I 9R R 90	198 801	128 054	29.016	20.07X	29.141	29.203	29,200
470	29,328	29,390	29,453	29,515	29,578	29,64 0	29,702	29,765	29,827 30,451	29,890
480	29,952	30,014	30,077	30,139	30,202	30,264	30,326	30,389	30,451	30,514
490	30,576	30,638	30,701	30,763	30,826	30,88 8	30,950	31 ,013	31,075	31,138
	1									

Table 10.—Hydrostatic Pressures in Pounds per Square Inch for Different Heads

Weight of Water 62.4 Pounds per Cubic Foot

	***	agne of	Wate	1 02.2	r ounu	s ber	- Gross	1006		
Head in feet	0	i	2	3	4	5	6	7	8	9
0	0.00	0.04	0.09	0.13	0.17	0.22	0.26	0.30	0.35	0.39
1	0.43	0.48	0.52	0.56	0.61	0.65	0.69	0.74	0.78	0.82
2	0.87	0.91	0.95	1.00	1.04	1.08	1.13	1.17	1.21	1.26
2 3 4	1.30	1.34	1.39	1.43	1.47	1.52	1.56	1.60	1.65	1.69
*	1.73	1.78	1.82	1.86	1.91	1.95	1.99	2.04	2.08	2.12
5	2.17	2.21	2.25	2.30	2.34	2.38	2.43	2,47	2.51	2.56
6 7	2.60	2.64	2.69	2.73	2.77	2.82	2.86	2.90	2.95	2.99
7 8	3.03	3.08	3.12	3.16	3.21	3.25	3.29	3.34	3.38	3.42
. 9	3.47 3.90	3.51 3.94	3.55 3.99	3.60 4.03	3.64 4.07	3.68 4.12	3.73 4.16	3.77 4.20	3.81 4.25	3.86 4.29
-		0.01	0.55	2.00	4.00		4.10	4.20	2.20	
10	4.33	4.38	4.42	4.46	4.51	4.55	4.59	4.64	4.68	4.72
11	4.77 5.20	4.81 5.24	4.85 5.29	4.90	4.94 5.37	4.98 5.42	5.03	5.07	5.11	5.16 5.59
12 13	5.63	5.68	5.72	5.33 5.76	5.81	5.85	5.46 5.89	5.50 5.94	5.55 5.98	6.02
14	6.07	6.11	6.15	6.20	6.24	6.28	6.33	6.37	6.41	6.46
15	6.50	6.54	6.59	6.63	6.67	6.72	6.76	6.80	6.85	6.89
16 17	6.93	6.98	7.02	7.06	7.11	7.15	7.19	7.24	7.28	7.32
18	7.87 7.80	7.41 7.84	7.45 7.89	7.50 7.93	7.54 7.97	7.58 8.02	7.63 8.06	7.67 8.10	7.71 8.15	7.76 8.19
· 19	8.23	8.28	8.32	8.36	8.41	8.45	8.49	8.54	8.58	8.62
20 21	8.67	8.71	8.75	8.80	8.84	8.88	8.93	8.97	9.01	9.06
21 22	9.10 9.53	9.14 9.58	9.19 9.62	9.23 9.66	9.27 9.71	9.32 9.75	9. 3 6 9.79	9.40 9.84	9.45 9.88	9.49 9.92
23	9.97	10.01	10.05	10.10	10.14	10.18	10.23	10.27	10.31	10.36
24	10.40	10.41	10.49	10.53	10.57	10.62	10.66	10.70	10.75	10.79
0.5	** **	40.00	10.00	10.00						
25 26	10.83 11.27	10.88 11.31	10.92 11.35	10.96 11.40	11.01 11.44	11.05 11.48	11.09 11.53	11.14 11.57	11.18 11.61	11.22 11.66
27	11.70	.11.74	11.79	11.83	11 87	11.92	11.96	12.00	12.05	12.09
28	12.13	-11.74 12.18	12.22	12.26	11.87 12.31	12.35	12.39	12.44	12.48	12.52
29	12.57	12.61	12.65	12.70	12.74	12.78	12.83	12.87	12.91	12.96
30	13.00	13.04	13.09	13.13	13.17	13.22	13.26	19 20	13.35	13.39
31	13.43	13.48	13.52	13.50	13.61	13.65	13.69	18.30 18.74	13.78	13.82
32	18.87	13.91	13.95	14.00	14.04	14.08	14.13	14.17	14.21	14.26
33	14.30	14.34	14.39	14.43	14.47	14.52	14.56	14.60	14.65	14.69
34	14.73	14.78	14.82	14.86	14.91	14.95	14.99	15.04	15.08	15.12
35	15.17	15,21	15.25	15.30	15.34	15.38	15.43	15.47	15.51	15.56
36	15.60	15.64	15.69	15.73	15.77	15.82	15.86	15.90	15.95	15.99
37	16.03	16.08	16.12	16.16	15.77 16.21	16.25	16.29	16.34	16.38	16.42
38	16.47	16.51	16.55	16.60	16.64	16.68	16.73	16.77	16.81	16.86
39	16.90	16.94	16.99	17.03	17.07	17.12	17.16	17.20	17.25	17.29
40	17.33	17.38	17.42	17.46	17.51	17.55	17.59	17.64	17.68	17.72
. 41	17.33 17.77	17.81	17.85	17.90	17.94	17.98	18.03	18.07	17.68 18.11	18.16
42	18.20	18:24	18.29	18.33	18.37	18.42	18.46	18.50	18.55	18.59
43 44	18.63 19.07	18.68 19.11	18.72 19.15	18.76 19.20	18.81 19.24	18.85 19.28	18.89 19.33	18.94 19.37	18.98 19.41	19.02 19.46
22	18.07	19.11	18.19	18.20	15.44	10.40	18.00	19.07	19.21	10.10
45	19.50	19.54	19.59	19.63	19.67	19.72	19.76	19.80	19.85	19.89
46	19.93	19.98	20.02	20.06	20.11	20.15	20.19	20.24	20.28 20.71	20.32
47	20.37	20.41	20.45	20.50	20.54	20.58	20.63	20.67	20.71	20.76
48 49	20.80 21.23	20.84 21.28	20.89 21.32	20.93 21.36	20.97 21.41	21.02 21.45	21.06 21.49	21.10 21.54	21.15 21.58	21.19 21.62
40	21.40	41.ac	21.02	#1.00		#1. 10	21.38	21.04	41.00	*1.02
										

TABLE 10 (Continued)

HYDBOSTATIC PRESSURES IN POUNDS PER SQUARE INCH FOR DIFFERENT HEADS

Weight of Water 62.4 Pounds per Cubic Foot

	We	gnt or	Water	02.4	Counc	a ber	doin 1	100		
Head in feet	. 0	1	2	3	4	5	6	7	8	9
50 51 52 53 .54	21.67 22.10 22.53 22.97 23.40	21.71 22.14 22.58 23.01 23.44	21.75 22.19 22.62 23.05 23.49	21.80 22.23 22.66 23.10 23.53	21.84 22.27 22.71 23.14 23.57	21.88 22.32 22.75 23.18 23.62	21.93 22.36 22.79 23.23 23.66	21.97 22.40 22.84 23.27 23.70	22.45 22.45 27.88 23.81 23.75	22.49 22.92 23.36
55	23.83	23.88	23.92	23.96	24.01	24.05	24.09	24.14	24.18	24.22
56	24.27	24.31	24.35	24.40	24.44	24.48	24.53	24.57	24.61	24.66
57	24.70	24.74	24.79	24.83	24.87	24.92	24.96	25.00	25.05	25.09
58	25.13	25.18	25.22	25.26	25.31	25.35	25.39	25.44	25.48	25.52
59	25.57	25.61	25.65	25.70	25.74	25.78	25.83	25.87	25.97	25.96
60	26.00	26.04	26.09	26.13	26.17	26.22	26.26	26.30	26.35	26.30.
61	26.43	26.48	26.52	26.56	26.61	26.65	26.69	26.74	26.78	26.92.
62	26.87	26.91	26.95	27.00	27.04	27.08	27.13	27.17	27.21	27.26.
63	27.30	27.34	27.39	27.43	27.47	27.52	27.56	27.60	27.65	27.69.
64	27.73	27.78	27.82	27.86	27.91	27.95	27.99	28.04	28.08	28.12
65	28.17	28.21	28.25	28.30	28.34	28.38	28.43	28.47	28.51	28.56
66	28.60	28.64	28.69	28.73	28.77	28.82	28.86	28.90	28.95	28.99
67	29.03	29.08	29.12	29.16	29.21	29.25	29.29	29.34	29.38	29.42
68	29.47	29.51	29.55	29.60	29:64	29.68	29.73	29.77	29.81	29.86
69	29.90	29.94	29.99	30.03	30.07	30.12	30.16	30.20	30.25	30.29
70	30.33	30.38	30.42	30.46	30.51	30.55	30.59	30.64	30.68	30.72
71	30.77	30.81	30.85	30.90	30.94	30.98	31.03	31.07	31.11	31.16
72	31.20	31.24	31.29	31.33	31.37	31.42	31.46	31.50	31.55	31.59
73	31.63	31.68	31.72	31.76	31.81	31.85	31.89	31.94	31.98	32.02
74	32.07	32.11	32.15	33.20	32.24	32.28	32.33	32.37	32.41	32.46
75	32.50	32.54	32.59	32.63	32.67	32.72	32.76	32.80	32.85	32.89
76	32.93	32.98	33.02	33.06	33.11	33.15	33.19	33.24	33.28	33.32
77	33.37	33.41	33.45	33.50	33.54	33.58	33.63	33.67	33.71	33.76
78	33.80	33.84	33.89	33.93	33.97	34.02	34.06	34.10	34.15	34.19
79	34.23	34.28	34.32	34.36	34.41	34.45	34.49	34.54	34.58	34.62
80	34.67	34.71	34.75	34.80	34.84	34.88	34.93	34.97	35.01	35.06
81	35.10	35.14	35.19	35.23	35.27	35.32	35.36	35.40	35.45	35.49
82	35.53	35.58	35.62	35.66	35.71	35.75	35.79	35.84	35.88	35.92
83	35.97	36.01	36.06	36.10	36.14	36.18	36.23	36.27	36.31	36.36
84	36.40	36.44	36.49	36.53	36.57	36.62	36.66	36.70	36.75	36.79
85	36.83	36.88	36.92	36.96	37.01	37.05	37.09	37.14	37.18	37.22
86	37.27	37.31	37.35	37.40	37.44	37.48	37.53	37.57	37.61	37.66
87	37.70	37.74	37.79	37.83	37.87	37.92	37.96	38.00	38.05	38.09
88	38.13	38.18	38.22	38.26	38.31	38.35	38.39	38.44	38.48	38.52
89	38.57	38.61	38.65	38.70	38.74	38.78	38.83	38.87	38.91	38.96
90	39.00	39.04	39.09	39.13	39.17	39.22	39.26	39.30	39.35	39.39
91	39.43	39.48	39.52	39.56	39.61	39.65	39.69	39.74	39.78	39.82
92	39.87	39.91	39.95	40.00	40.04	40.08	40.13	40.17	40.21	40.26
93	40.30	40.34	30.39	40.43	40.47	40.52	40.56	40.60	40.65	40.69
94	40.73	40.78	40.82	40.86	40.91	40.95	40.99	41.04	41.08	41.12
95	41.17	41.21	41.25	41.30	41.34	41.38	41.43	41.47	41.51	41.56
96	41.60	41.64	41.69	41.73	41.77	41.82	41.86	41.90	41.95	41.99
97	42.03	42.08	42.12	42.16	42.21	42.25	42.29	42.84	42.38	42.42
98	42.47	42.51	42.55	42.60	42.64	42.68	42.73	42.77	42.81	42.86
99	42.90	42.94	42.99	43.03	43.07	43.12	43.16	43.20	43.25	43.29

Table 10 (Continued)

HYDROSTATIC PRESSURES IN POUNDS PER SQUARE INCH FOR DIFFERENT HEADS

Weight of Water 62.4 Pounds per Cubic Foot

		Rue or		04.2 1	- Oulus	e her				
Head in feet	0	1	2	3	4	5	6	7	8	9
100	43.33	43.38	43.42	43.46	43.51	43.55	43.59	43.64	43.68	43.72
101	43.77	43.81	43.85	43.90	43.94	43.98	44.03	44.07	44.11	44.16
102	44.20	44.24	44.29	44.33	44.37	44.42	44.46	44.50	44.55	44.59
103	44.63	44.68	44.72	44.76	44.81	44.85	44.89	44.94	44.98	45.02
104	45.07	45.11	45.15	45.20	45.24	45.28	45.33	45.37	45.41	45.46
105	45.50	45.54	45.59	45.63	45.67	45.72	45.76	45.80	45.85	45.89
106	45.93	45.98	46.02	46.06	46.11	46.15	46.19	46.24	46.28	46.32
107	46.37	46.41	46.45	46.50	46.54	46.58	46.63	46.67	46.71	46.76
108	46.80	46.84	46.89	46.93	46.97	47.02	47.06	47.10	47.15	47.19
109	47.23	47.28	47.32	47.36	47.41	47.45	47.49	47.54	47.58	47.62
110	47.67	47.71	47.75	47.80	47.84	47.88	47.93	47.97	48.01	48.06
111	48.10	48.14	48.19	48.23	48.27	48.32	48.36	48.40	48.45	48.49
112	48.53	48.58	48.62	48.66	48.71	48.75	48.79	48.84	48.88	48.92
113	48.97	49.01	49.05	49.10	49.14	49.18	49.23	49.27	49.31	49.36
114	49.40	49.44	49.49	49.53	49.57	49.62	49.66	49.70	49.75	49.79
115	49.83	49.88	49.92	49.96	50.01	50.05	50.09	50.14	50.18	50.22
116	50.27	50.31	50.35	50.40	50.44	50.48	50.53	50.57	50.61	50.66
117	50.70	50.74	50.79	50.83	50.87	50.92	50.96	51.00	51.05	51.09
118	51.13	51.18	51.22	51.26	51.31	51.35	51.39	51.44	51.48	51.52
119	51.57	51.61	51.65	51.70	51.74	51.78	51.83	51.87	51.91	51.96
120	52.00	52.04	52.09	52.13	52.17	52.22	52.26	52.30	52.35	52.39
121	52.43	52.48	52.52	52.56	52.61	52.65	52.69	52.74	52.78	52.82
122	52.87	52.91	52.95	53.00	53.04	53.08	53.13	53.17	53.21	53.26
123	53.30	53.34	53.39	53.43	53.47	53.52	53.56	53.60	53.65	53.69
124	53.73	53.78	53.82	53.86	53.91	53.95	53.99	54.04	54.08	54.12
125	54.17	54.21	54.25	54.30	54.34	54.38	54.43	54.47	54.51	54.56
126	54.60	54.64	54.69	54.73	54.77	54.82	54.86	54.90	54.95	54.99
127	55.03	55.08	55.12	55.16	55.21	55.25	55.29	55.34	55.38	55.42
128	55.47	55.51	55.55	55.60	55.64	55.68	66.73	55.7	55.81	55.86
129	55.90	55.94	55.99	56.03	56.07	56.12	56.16	56.20	56.25	56.29
130	56.33	56.38	56.42	56.46	56.51	56.55	56.59	56.64	56.68	56.72
131	56.77	56.81	56.85	56.90	56.94	56.98	57.03	57.07	57.11	57.16
132	57.20	57.24	57.29	57.33	57.37	57.42	57.46	57.50	57.55	57.59
133	57.63	57.68	57.72	57.76	57.81	57.85	57.89	57.94	57.98	58.02
134	58.07	58.11	58.15	58.20	58.24	58.28	58.33	58.37	58.41	58.46
135	58.50	58.54	58.59	58.63	58.67	58.72	58.76	58.80	58.85	58.89
136	58.93	58.98	59.02	59.06	59.11	59.15	59.19	59.24	59.28	59.32
137	59.37	59.41	59.45	59.50	59.54	59.58	59.63	59.67	59.71	59.76
138	59.80	59.84	59.89	59.93	59.97	60.02	60.06	60.10	60.15	60.19
139	60.23	60.28	60.32	60.36	60.41	60.45	60.49	60.54	60.58	60.62
140	60.67	60.71	60.75	60.80	60.84	60.88	60.93	60.97	61.01	61.06
141	61.10	61.14	61.19	61.23	61.27	61.32	61.36	61.40	61.45	61.49
142	61.53	16.58	61.62	61.66	61.71	61.75	61.79	61.84	61.88	61.92
143	61.97	62.01	62.05	62.10	62.14	62.18	62.23	62.27	62.31	62.36
144	62.40	62.44	62.49	62.53	62.57	62.62	62.66	62.70	62.75	62.79
145	62.83	62.88	62.92	62.96	63.01	63.05	63.09	63.14	63.18	63.22
146	63.27	63.31	63.35	63.40	63.44	63.48	63.53	63.57	63.61	63.66
147	63.70	63.74	63.79	63.83	63.87	63.92	63.96	64.00	64.05	64.09
148	64.13	64.18	64.22	64.26	64.31	64.35	64.83	64.44	64.48	64.52
149	64.57	64.61	64.65	64.70	64.74	64.78	64.83	64.87	64.91	64.96

Table 10 (Continued)

Hydrostatic Pressures in Pounds per Square Inch for Different Heads

Weight of Water 62.4 Pounds per Cubic Foot

Head in feet	0	1	2	3	4	5	6	7	8	9
150	65.00	65.04	65.09	65.13	65.17	65.22	65.26	65.30	65.35	65.39
151	65.43	65.48	65.52		65.61	65.65	65.69	65.74	65.78	65.82
152	65.87	65.91	65.95	66.00	66.04	66.08	86.13	66.17	66.21	66.26
		00.91								
153	66.30	66.34	66.39	66.43	66.47	66.52	66.56	66.60	66.65	66.69
154	66.73	66.78	66.82	66.86	66.91	66.95	66.99	67.04	67.08	67.12
155	67.17	67.21	67.25	67.30	67.34	67.38	67.43	67.47	67.51	67.56
156	67.60	67.64	67.69	67.73	67.77	67.82	67.86	67.90	67.95	67.99
157	68.03	68.08	68.12	68.16	68.21	68.25	68.29	68.34	68.38	68.42
158	68.47	68.51	68.55	68.60	68.64	68.68	68.73	68.77	68.81	68.86
159	68.90	68.94	68.99	69.03	69.07	69.12	69.16	69.20	69.25	69.29
160	69.33	69.38	69.42	69.46	69.51	69.55	69.59	69.64	69.68	69.72
161	69.77	69.81	69.85	69.90	69.94	69.98	70.03	70.07	70.11	70.16
162	70.20	70.24	70.29	70.33		70.42	70.46	70.50	70.55	70.59
163	70.63	70.68	70.72	70.76		70.85	70.89	70.94	70.98	71.02
164	71.07	71.11	71.15	71.20	71.24	71.28	71.33	71.37	71.41	71.46
165	71.50	71.54	71.59	71.63	71.67	71.72	71.76	71.80	71.85	71.89
166	71.93	71.98	72.02	72.06	72.11	72.15	72.19	72.24	72.28	72.32
					72.54	72.58	72.63	72.67	72.71	72.76
167	72.37	72.41	72.45	72.50	70.07					
168	72.80	72.84	72.89	72.93	72.97	73.02	73.06	73.10	73.15	73.19
169	73.23	73.28	73.32	73.36	73.41	73.45	73.49	73.54	73.58	73.62
170	73.67	73.71	73.75	73.80	73.84	73.88	73.93	73.97	74.01	74.06
171	74.10	74.14	74.19	74.23	74.27	74.32	74.36	74.40	74.45	74.49
172	74.53	74.58	74.62	74.66	74.71	74.75	74.79	74.84	74.88	74.92
173	74.97	75.01	75.05	75.10	75.14	75.18	75.23	75.27	75.31	75.36
174	75.40	75.44	75.49	75.53	75.57	75.62	75.66	75.70	75.75	75.79
175	75.83	75.88	75.92	75.96	76.01	76.05	76.09	76.14	76.18	76.22
176	76.27	76.31	76.35	76.40	76.44	76.48	76.53	76.57	76.61	76.66
177	76.70	76.74	76.79	76.83	76.87	76.92	76.96	77.00	77.05	77.09
178	77.13	77.18	77.22	77.26	77.31	77.35	77.39	77.44	77.48	77.52
179	77.57	77.61	77.65	77.70	77.74	77.78	77.83	77.87	77.91	77.96
180	78.00	78.04	78.09	78.13	78.17	78.22	78.26	78.30	78.35	78.39
181	78.43	78.48	78.52	78.56	78.61	78.65	78.69	78.74	78.78	78.82
101	78.87	78.91	78.95	79.00	79.04	79.08	79.13	79.17	79.21	79.26
182									79.65	79.69
183	79.30	79.34	79.39	79.43	79.47	79.52	79.56	79.60		
184	79.78	79.78	79.82	79.86	79.91	79.95	79.99	80.04	80.08	80.12
185	80.17	80.21	80.25	80.30	80.34	80.38	80.43	80.47	80.51	80.56
186	80.60	80.64	80.69	80.78	80.77	80.82	80.86	80.90	80.95	80.99
187	81.08	81.08	81.12	81.16	81.21	81.25	81.29	81.34	81.38	81.42
188	81.47	81.51	81.55	81.60	81.64	81.68	81.73	81.77	81.81	81.86
189	81.90	81.94	81.99	82.03	82.07	82.12	82.16	82.20	82.25	82.29
190	82.33	82.38	82.42	82.46	82.51	82.55	82.59	82.64	82.68	82.72
191	82.77	82.81	82.85	82.90	82.94	82.98	83.03	83.07	83.11	83.16
192	83.20	83.24	83.29	83.33	83.37	83.42	83.46	83.50	83.55	83.59
193	83.63	83.68	83.72	83.76	83.81	83.85	83.89	83.94	83.98	84.02
194	84.07	84.11	84.15	84.20	84.24	84.28	84.33	84.37	84.41	84.46
195	84.50	84.54	84.59	84.63	84.67	84.72	84.76	84.80	84.85	84.89
				85.06	85.11	85.15	85.19	85.24	85.28	85.32
196	84.93	84.98	85.02		00.11	85.58	85.63	85.67	85.71	85.76
197	85.37	85.41	85.45	85.50	85.54					86.19
198	85.80	85.84	85.89	85.93	85.97	86.02	86.06 86.49	86.10 86.54	86.15 86.58	86.62
199	86.23	86.28	86.32	86.36	86.41	86.45				

TABLE 10 (Concluded)

Hydrostatic Pressures in Pounds per Square Inch for Different Heads

Weight of Water 62.4 Pounds per Cubic Foot

Head in			ignt or				. p	u			
201 87.10 87.14 87.19 87.23 87.27 87.32 87.36 87.40 87.45 87.49 202 203 87.56 87.56 87.62 87.66 87.77 187.75 87.79 87.84 87.88 87.29 204 88.40 85.44 88.49 88.53 88.57 88.62 88.66 88.70 88.76 88.79 205 88.83 88.84 88.49 88.53 88.57 88.62 88.66 88.70 88.76 88.79 206 89.27 89.31 89.35 89.40 89.44 89.48 89.58 89.09 89.14 89.18 89.22 207 89.70 89.74 89.79 89.83 89.48 89.44 89.48 89.58 89.09 89.14 89.65 89.60 208 90.13 90.18 90.22 90.26 90.31 90.55 90.39 90.44 90.48 90.52 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 208 90.13 90.18 90.22 90.26 90.31 90.55 90.39 90.44 90.48 90.52 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 210 91.00 91.04 91.09 91.13 91.17 91.22 91.26 91.30 91.35 91.39 211 91.43 91.44 91.48 91.52 91.56 91.61 91.65 91.69 91.74 91.78 91.52 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 214 92.73 92.78 92.82 92.86 92.91 92.95 92.99 93.04 93.08 93.17 92.17 92.21 92.26 92.60		0	1	2	3	4	- 5	6	7	8	9
201 87.10 87.14 87.19 87.23 87.27 87.32 87.36 87.40 87.45 87.49 202 203 87.56 87.56 87.62 87.66 87.77 187.75 87.79 87.84 87.88 77.98 87.85 87.69 87.70 87.85 87.79 87.84 87.88 77.88 77.98 88.40 88.40 88.44 88.49 88.53 88.57 88.62 88.66 88.70 88.76 88.79 206 89.27 89.31 89.35 89.40 89.44 89.48 89.58 89.09 89.14 89.18 89.22 207 89.70 89.74 89.79 89.83 89.48 89.44 89.48 89.59 89.09 89.14 90.43 90.65 209 90.13 90.18 90.22 90.26 90.31 90.35 90.39 90.49 40.64 90.45 209 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 210 91.00 91.04 91.09 91.01 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 92.34 92.39 92.43 92.47 92.32 92.56 92.60 92.65 92.60 9	200 .	88 67	86 71	86 75	86 80	88 84	88 88	86 93	88 97	87 01	87 A
202 87.53 87.56 87.62 87.66 87.71 87.75 87.79 87.84 87.88 87.92 203 88.40 88.40 88.44 88.49 88.53 88.14 88.18 88.23 88.27 88.81 88.32 204 88.40 88.44 88.49 88.53 88.14 88.18 88.23 88.27 88.81 88.32 205 88.83 88.88 88.92 88.96 89.01 89.05 89.09 89.14 89.18 89.22 206 89.27 89.21 89.31 89.35 89.40 89.44 89.48 89.63 89.57 89.61 89.66 207 89.70 89.70 89.73 89.83 89.87 89.22 89.96 90.00 90.65 90.09 208 90.13 90.18 90.22 90.26 90.31 90.35 90.39 90.44 90.48 90.52 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.49 90.49 90.57 210 91.00 91.04 91.09 91.13 91.17 91.22 91.26 91.30 91.35 91.39 211 91.43 91.48 91.52 91.56 91.61 91.65 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.61 92.69 92.65 92.69 92.61 92.61 92.60 92.61 92.61 92.60 92.65 92.69 92.61 92.6					87 93	87 97	87 32	87 36			
208 87.97 88.01 88.44 88.49 88.53 88.57 88.62 88.66 88.70 88.75 88.79 206 89.27 89.31 89.35 89.40 89.44 89.48 89.53 89.57 89.61 89.66 207 89.70 89.74 89.29 90.26 90.31 90.35 90.39 90.44 90.48 90.52 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 210 91.00 91.04 91.09 91.09 11.39 11.79 91.22 91.26 91.30 91.37 91.35 91.39 211 91.43 91.48 91.52 91.56 91.61 91.65 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 92.84 92.29 92.86 92.91 92.95 92.99 93.04 93.08 93.12 213 92.30 92.34 92.89 92.43 92.47 92.52 92.56 92.60 92.65 92.69 21.49 92.73 92.78 92.82 92.86 92.91 92.95 92.99 93.04 93.08 93.12 215 93.17 93.21 93.25 93.30 93.34 93.38 93.43 93.47 93.51 93.56 93.99 94.99 94.09 94.09 94.99 94.99 94.99 94.99 94.99 94.99 94.99 95.03 95.07 95.12 95.12 94.03 94.99 94.99 94.99 94.99 95.03 95.07 95.12 95.16 95.09 95.09 95.25 92.29 95.20 95.25 95.29 95.20 95.25 95.29 95.29 95.29 95.20 95.20 95.25 95.29 95.29 95.20 95.25 95.29 95.20 95.25 95.29 95.20 95.20 95.20 95.20 95.20 95.20						87 71	97 75				
204 88.40 85.44 88.49 88.53 88.57 88.62 88.66 88.70 88.75 88.79 205 88.83 88.88 88.92 88.96 89.01 89.45 89.53 89.57 89.61 89.66 207 89.70 88.74 89.79 89.83 89.87 89.92 89.90 99.14 89.18 89.22 208 90.13 90.18 90.22 90.26 90.31 90.35 90.39 90.44 90.48 90.52 209 90.57 90.61 90.65 90.70 90.74 90.73 90.83 90.87 90.91 90.65 210 91.00 91.04 91.09 91.13 91.17 91.22 91.26 91.30 91.35 91.39 211 91.43 91.48 91.52 91.56 91.61 91.65 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 213 92.30 92.34 92.39 92.43 92.47 92.52 92.66 92.60 92.65 92.69 92.63 92.13 92.17 92.21 92.26 214 92.73 92.78 92.82 92.86 92.91 92.95 92.99 93.04 93.08 93.12 215 93.17 93.17 93.1 93.25 93.30 93.34 93.34 93.47 93.51 93.56 216 93.60 93.64 93.69 93.73 93.77 93.82 93.66 93.90 93.64 93.68 93.12 217 94.03 94.08 94.12 94.16 94.21 94.25 94.29 94.84 94.38 94.47 94.51 94.55 94.60 94.64 94.68 94.73 94.77 94.81 94.89 94.09 94.09 94.09 95.03 95.07 95.12 96.16 95.20 95.25 95.29 220 95.33 95.38 95.42 95.46 95.51 95.55 95.59 95.64 95.68 95.92 95.29 99.23 96.63 96.68 96.79 96.07 96.19 96.37 96.87 96.81 96.87 96.87 96.87 96.87 96.87 96.87 96.87 96.89 96.89 96.89 96.89 96.89 96.37 96.89 96.37 96.89 96.39 96.89						QQ 14				00.00	
205 88.83 88.88 88.92 88.96 89.01 89.05 89.09 89.14 89.18 89.22 206 89.27 89.31 89.35 89.40 89.44 89.48 89.53 89.57 89.61 89.66 207 89.70 89.71 89.79 89.83 89.87 89.92 89.90 90.00 90.06 90.09 90.05 90.09 90.07 89.71 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 90.00 90.06 90.09 90.07 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 90.00 91.09 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 90.00 90.06 90.09 90.05 90.09 90.07 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 90.00 90.06 90.09 90.07 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 90.00 90.07 90.61 90.96 90.00						00.14			00.21	00.81	
206 89.27 89.31 89.35 89.40 89.44 89.48 89.53 89.57 89.61 89.66 207 89.70 90.13 90.18 90.22 90.26 90.31 90.35 90.39 90.44 90.48 90.52 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 210 91.04 91.04 91.09 91.13 91.17 91.22 91.56 91.80 91.74 91.78 91.82 211 91.43 91.52 91.56 91.61 91.66 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 221 92.36 92.89 92.89 92.89 92.89 93.04 93.08 93.12 214 92.73 92.78 92.82 92.86 92.91 92.95 92.99 93.04 93.08 93.12 215 93.17 93.21 93.25 93.80 93.37 93.37 93.82 93.66 93.90 93.95 93.95 93.94 93.68 93.12 216 93.60 93.64 93.69 93.73 93.77 93.82 93.66 93.90 93.95 93.94 93.68 93.12 218 94.47 94.51 94.55 94.60 94.64 94.68 94.73 94.77 94.81 94.89 94.90 94.94 94.99 95.53 95.07 95.12 95.25 95.25 95.29 95.2	204	00.10	00.44	00.49	00.00	00.01	00.02	00,00	00.10	88.79	80.19
206 89.27 89.31 89.35 89.40 89.44 89.48 89.53 89.57 89.61 89.66 207 89.70 90.13 90.18 90.22 90.26 90.31 90.35 90.39 90.44 90.48 90.52 209 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 210 91.04 91.04 91.09 91.13 91.17 91.22 91.56 91.80 91.74 91.78 91.82 211 91.43 91.52 91.56 91.61 91.66 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 221 92.36 92.89 92.89 92.89 92.89 93.04 93.08 93.12 214 92.73 92.78 92.82 92.86 92.91 92.95 92.99 93.04 93.08 93.12 215 93.17 93.21 93.25 93.80 93.37 93.37 93.82 93.66 93.90 93.95 93.95 93.94 93.68 93.12 216 93.60 93.64 93.69 93.73 93.77 93.82 93.66 93.90 93.95 93.94 93.68 93.12 218 94.47 94.51 94.55 94.60 94.64 94.68 94.73 94.77 94.81 94.89 94.90 94.94 94.99 95.53 95.07 95.12 95.25 95.25 95.29 95.2	205	88 83	88 88	88 09	88 08	80 01	80 A5	80 00	90 14	90 10	90.99
208 90.13 90.18 90.22 90.26 90.31 90.85 90.39 90.44 90.48 90.52 200 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 210 91.04 91.09 91.13 91.17 91.22 91.26 91.30 91.35 91.39 211 91.43 91.48 91.52 91.56 91.61 91.65 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 214 92.73 92.78 92.82 92.86 92.47 92.52 92.56 92.60 92.65 92.69 92.50 92.47 92.52 92.56 92.60 92.65 92.69 92.65 92.60 92.60		20 27	80.31	80.35		80 44				90.10	
208 90.13 90.18 90.22 90.26 90.31 90.85 90.39 90.44 90.48 90.52 200 90.57 90.61 90.65 90.70 90.74 90.78 90.83 90.87 90.91 90.96 210 91.04 91.09 91.13 91.17 91.22 91.26 91.30 91.35 91.39 211 91.43 91.48 91.52 91.56 91.61 91.65 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.26 214 92.73 92.78 92.82 92.86 92.47 92.52 92.56 92.60 92.65 92.69 92.50 92.47 92.52 92.56 92.60 92.65 92.69 92.65 92.60 92.60		80.70	80 74	80.70						00.01	
209		00 13	00.14	00.70						00.00	
210 91.00 91.04 91.09 91.13 91.17 91.22 91.26 91.30 91.35 91.36 211 91.43 91.48 91.52 91.56 91.61 91.65 91.69 91.74 91.78 91.82 212 91.87 91.91 91.95 92.00 92.04 92.08 92.33 92.17 92.21 92.26 92.49 92.39 92.47 92.52 92.56 92.69 92.65 92.69 92.69 92.69 92.69 92.69 93.73 93.73 93.77 93.82 93.68 93.90 93.95 93.99 92.77 94.03 94.09 94.09 94.09 94.09 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 94.69 95.09 95.07 95.12 96.16 95.20 95.25 95.29 92.22 96.22 96.24 96.29 96.33 96.37 96.42 96.89 96.39 96.39 96.07 96.11 96.16 92.22 96.29 96.24 96.29 96.33 96.37 96.42 96.89 96.89 96.39 96.09 96.69 96.55 96.59 96.24 96.29 96.24 96.29 96.81 96.85 96.89 96.09 96.94 96.98 97.02 92.22 96.70 97.71 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 97.89 97.39 97.89 98.02 99.80											
211	208	80.01	90.01	80.00	80.10	30.74	. 30.10	¥U.00	80.01	90.91	80.80
211	210	91 00	01 04	91.09	01 13	01 17	01 22	01 26	01 20	01 25	01 20
212 91.87 91.91 91.95 92.00 92.04 92.08 92.13 92.17 92.21 92.21 92.24 92.27 92.85 92.89 92.47 92.25 92.50 92.60 92.65 92.60 92.65 92.60 92.65 92.80 92.81 92.89 92.81 92.89 93.94 93.04 93.08 93.12 216 93.60 93.64 93.69 93.73 93.77 93.82 93.80 93.90 93.95 93.90 93.95 93.99 93.04 93.69 93.95 93.90 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.95 93.77 93.81 93.84 94.21 94.21 94.25 94.20 94.60 94.61 94.21 94.25 94.20 94.41 94.21 94.21 94.25 94.20 94.60 94.61 94.61 94.61 94.61 94.61 94.61 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>01 70</td> <td></td>										01 70	
213 92.30 92.34 92.39 92.43 92.47 92.52 92.56 92.60 92.65 92.69 93.04 93.08 93.12 215 93.17 93.21 93.25 93.86 92.91 92.95 92.99 93.04 93.08 93.12 216 93.60 93.64 93.69 93.73 93.77 93.82 93.86 93.90 93.95 93.99 217 94.03 94.05 94.16 94.21 94.16 94.21 94.25 94.29 94.34 94.38 94.42 218 94.47 94.51 94.55 94.60 94.64 94.68 94.73 94.77 94.81 94.86 94.72 94.51 94.55 94.60 94.64 94.68 94.73 94.77 94.81 94.86 94.21 94.00 94.94 94.99 95.03 95.07 95.12 95.16 95.20 95.25 95.29 95.29 96.64 95.81 94.87 94.89 95.03 95.07 95.12 95.16 95.20 95.25 95.29 96.64 96.81 96.89 96.3				01 05	92.00						
214 92.73 92.78 92.82 92.86 92.91 92.95 92.99 93.04 93.68 93.12 215 93.17 93.21 93.25 93.30 93.34 93.38 93.43 93.47 93.51 93.56 217 94.03 94.08 94.12 94.12 94.21 94.25 94.29 94.34 94.34 94.38 94.22 94.21 94.25 94.29 94.34 94.34 94.38 94.22 94.25 94.29 94.34 94.38 94.22 94.29 94.44 94.41 94.61 94.60 94.61 94.62 94.77 94.81 94.86 94.77 94.81 94.86 94.72 96.10 95.25											
215 93.17 93.21 93.25 93.30 93.34 93.38 93.43 93.47 93.51 93.56 93.99 217 94.03 94.08 94.12 94.16 94.21 94.25 94.29 94.34 94.38 94.42 218 94.47 94.51 94.55 94.60 94.64 94.68 94.73 94.77 94.81 94.86 94.12 94.16 94.21 94.65 94.69 94.68 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 94.73 94.77 94.81 94.86 95.51 95.96 95.12 95.16 95.20 95.25 95.29 95.29 96.20 96.24 96.29 96.33 96.37 96.42 96.49 96.50 96.55 96.59 96.30 96.70 96.11 96.16 96.50 96.55 96.59 96.30 96.70 96.11 96.16 96.81 97.02 224 97.07 97.11 97.15 97.20 97.24 97.23 97.33 97.37 97.41 97.46 97.22 97.37 97.41 97.46 97.22 97.33 97.39 98.80 99.80 99.80 99.80 99.80 99.10 99.15 99.19 99.23 99.23 99.28 99.32 99.38 99.80 99.80 99.80 99.90 99.10 99.15 99.19 99.23 99.23 99.28 99.32 99.80 99.80 99.80 99.90 99.00 99.10 99.15 99.19 99.22 90.03 100.40 100.41 100.19 100.23 100.27 100.32 100.81 100.40 100.41 100.19 100.23 100.27 100.32 100.81 100.40 10.88 100.82 100.66 100.71 100.75 100.79 100.04 100.08 100.43 100.45 100.4					92 86		02 05		03 M	02.00	
216 93.60 93.64 93.69 93.73 93.77 93.82 93.86 93.90 33.55 93.59 29 218 94.47 94.51 94.55 94.60 94.64 94.25 94.29 94.34 94.38 94.42 194.86 94.73 94.81 94.86 94.12 94.69 94.68 94.73 94.77 94.81 94.86 94.90 94.94 94.99 95.03 95.07 95.12 95.16 95.20 95.25 95.29 92.20 95.33 95.81 95.85 95.90 95.94 95.98 96.03 96.07 95.15 95.75 95.29 96.20 96.24 96.29 96.33 96.37 96.42 96.49 96.99 96.30 96.07 96.11 96.16 95.20 96.24 96.29 96.33 96.37 96.42 96.49 96.99 96.39 96.07 96.11 96.16 96.22 96.70 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 97.59 97.69 97.24 97.28 97.33 97.37 97.41 97.46 97.59 97.69 97.24 97.28 97.33 97.37 97.41 97.46 97.99 97.24 97.28 97.33 97.37 97.41 97.46 97.99 97.29 97.24 97.29 99.23 99.28 99.39 99.80 99.84 98.89 98.99 99.89	212	J0	02.10	02.02	J2.00	02.01	02.00	02.00	00.UI	<i>5</i> 0.00	80.12
216 93.60 93.64 93.69 93.73 93.77 93.82 93.86 93.90 33.55 93.59 29 218 94.47 94.51 94.55 94.60 94.64 94.25 94.29 94.34 94.38 94.42 194.86 94.73 94.81 94.86 94.12 94.69 94.68 94.73 94.77 94.81 94.86 94.90 94.94 94.99 95.03 95.07 95.12 95.16 95.20 95.25 95.29 92.20 95.33 95.81 95.85 95.90 95.94 95.98 96.03 96.07 95.15 95.75 95.29 96.20 96.24 96.29 96.33 96.37 96.42 96.49 96.99 96.30 96.07 96.11 96.16 95.20 96.24 96.29 96.33 96.37 96.42 96.49 96.99 96.39 96.07 96.11 96.16 96.22 96.70 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 97.59 97.69 97.24 97.28 97.33 97.37 97.41 97.46 97.59 97.69 97.24 97.28 97.33 97.37 97.41 97.46 97.99 97.24 97.28 97.33 97.37 97.41 97.46 97.99 97.29 97.24 97.29 99.23 99.28 99.39 99.80 99.84 98.89 98.99 99.89	215	93.17	93.21	93.25	93.30	93.34	93.38	93.43	93.47	93.51	93.5A
217 94.03 94.08 94.12 94.16 94.21 94.25 94.29 94.34 34.38 94.73 94.77 94.81 94.86 94.99 94.99 95.03 95.07 95.12 95.16 95.20 95.25 95.29 92.20 95.33 95.38 95.42 95.46 95.51 95.55 95.59 95.64 95.68 95.77 95.81 95.85 95.90 96.94 96.99 95.03 96.07 96.11 96.16 95.20 96.24 96.29 96.39 96.37 96.27 96.21 96.57 96.81 95.86 96.39 96.39 96.63 96.68 96.72 96.70 96.81 96.85 96.89 96.04 96.96 97.02 223 96.20 97.07 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 97.90 97.07 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 97.99 98.37 98.41 98.45 98.89 98.11 98.15 98.19 98.24 98.28 98.32 227 98.37 98.41 98.45 98.50 98.54 98.58 98.39 88.67 99.10 99.15 99.19 99.23 99.28 99.32 99.36 99.47 90.02 99.06 99.10 99.15 99.19 99.23 99.28 99.32 99.36 99.41 90.45 99.49 99.54 95.89 96.24 98.06 99.41 90.45 99.49 95.49 95.98 99.62 99.63 99.67 99.71 100.31 100.23 100.27 100.32 100.53 100.58 100.62 100.68 100.62 100.71 100.75 100.79 100.48 100.49 101.44 101.49 101.53 101.57 101.62 101.66 101.70 101.75 101.79 238 103.81 103.28 103.81 103.28 103.28 103.38 103.28 103.38 103.28 103.38 103.28 103.38 103.38 103.28 103.38 103.38 103.38 103.28 103.39 103.57 103.51 103.54 103.55 103.50 103.74 103.74 103.78 103.84 103.58 103.81 103.22 103.36 103.37 103.38 103.38 103.38 103.28 103.39 103.44 103.54 104.49 104.49 104.49 104.50 104.41 104.29 104.50 104.40 104.44 104.99 104.53 104.27 102.28 102.57 102.27 102.31 102.35 102.40 102.44 102.48 102.48 102.57 102.57 102.51 103.39 103.57 103.61 103.65 103.70 103.31 103.38 103.39 103.44 103.48 103.52 104.60 104.60 106.6											
218 94.47 94.51 94.55 94.60 94.64 94.68 94.73 94.77 94.81 94.86 219 94.90 94.94 94.99 95.03 95.07 95.12 95.16 95.26 95.25 95.29 95.33 95.38 95.42 95.46 95.51 95.55 95.89 95.64 95.77 95.81 95.85 95.90 96.93 96.03 96.07 96.11 96.16 222 96.20 96.24 96.29 96.24 96.29 96.83 96.37 96.81 96.85 96.89 96.03 96.67 96.15 96.56 97.02 224 97.07 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 225 97.50 97.54 97.59 97.63 97.64 97.28 97.33 97.37 97.41 97.46 225 97.39 97.39 97.99 98.27 98.37 98.41 98.45 98.50 98.64 98.89 98.24 98.28 98.32 227 98.37 98.31 98.41 98.45 98.50 98.54 98.58 98.69 98.67 98.71 98.76 228 98.26 99.28 99.32 99.32 99.36 99.41 99.45 99.49 99.45 99.10 99.15 99.19 229 99.23 99.28 99.32 99.36 99.41 99.45 99.49 99.47 99.58 99.68 23 100.10 100.14 100.19 100.23 100.27 100.23 100.27 100.23 100.40 100.45 100.45 100.49 223 100.53 100.58 100.62 100.66 100.71 100.75 100.79 100.84 100.88 100.49 101.40 101.44 101.49 101.53 101.57 101.62 101.66 101.70 101.75 101.79 235 102.70 102.74 102.79 102.81 102.85 103.85 103.85 103.85 103.85 103.85 103.85 103.85 103.85 103.85 103.85 103.85 103.85 103.74 102.87 102.87 102.77 102.81 102.85 103.74 104.87 104.97 104.48 104.49 104.49 104.28 102.87 102.87 102.87 102.77 102.31 102.35 103.65 103.79 103.85 103				94.12		94.21	94.25	94.29			
219 94.90 94.94 94.99 95.03 95.07 95.12 95.16 95.20 95.25 95.29 95.33 95.38 95.42 95.46 95.51 95.59 95.59 95.64 95.68 95.72 96.20 96.20 96.24 96.29 96.33 96.37 96.42 96.40 96.40 96.50 96.55 96.59 96.37 96.63 96.63 96.68 96.72 96.76 96.81 96.85 96.89 96.04 96.96 97.02 224 97.07 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 225 97.69 97.69 97.63 97.67 97.29 97.24 97.28 97.33 97.37 97.41 97.45 226 97.93 97.94 97.89 98.02 98.06 98.11 98.15 98.19 98.24 98.28 98.32 98.40 98.80 98.94 99.85 98.80 98.64 98.81 98.82 98.80 98.84 98.89 98.93 99.36 99.41 99.58 98.37 98.41 98.45 98.50 98.54 98.58 98.89 98.29 98.64 98.89 98.29 99.30 99.90 99.00 99.00 99.00 99.15 99.15 99.12 229 99.23 99.28 99.32 99.36 99.41 99.45 99.49 99.54 99.58 99.62 99.32 99.36 99.41 99.45 99.49 99.54 99.58 99.62 231 100.10 100.14 100.19 100.23 100.27 100.32 100.36 100.40 100.45 100.49 12222 100.53 100.58 100.62 100.68 100.77 100.73 100.73 100.74 101.75 101.79 233 100.97 101.01 101.05 101.10 101.14 101.18 101.25 101.05 101.10 101.14 101.18 101.25 101.05 101.10 101.14 101.18 101.25 101.06 101.70 101.75 101.79 235 102.40 102.44 102.44 102.44 102.48 103.49 103.48 103.52 239 103.67 103.61 103.65 103.60 103.74 103.74 103.78 103.87 103.81 103.28 103.28 103.38 103.38 103.28 103.28 103.37 103.81 103.28 103.28 103.37 103.38 103.38 103.28 103.36 103.37 103.39 103.44 103.48 103.52 104.40 104.47 104.48 104.52 104.46 104.65 104.69 104.74 104.78 104.82 242 104.47 104.91 104.99 104.13 104.17 104.65 104.69 104.74 104.78 104.82 242 104.47 104.91 104.95 104.50 104.65 104.60 105.47 105.21 105.21 105.26 106.60 106.64 106.69 105.47 105.69 106.60 106.64 106.69 105.47 106.51 106.60 105.64 106.69 106.64 106.69 106.67 106.67 106.73 107.74 107.03 107.74 107.73 107.72 107.74 106.51 106.60 106.68 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106.69 106											
220 95.33 95.38 95.42 95.46 95.51 95.55 95.50 96.64 95.68 95.72 221 95.77 95.81 95.85 95.90 95.94 95.98 96.03 96.07 96.11 96.16 222 96.20 96.24 96.29 96.33 96.37 96.42 96.68 96.07 96.11 96.16 223 96.63 96.68 96.72 96.76 96.81 96.85 96.89 96.09 96.94 96.96 97.02 224 97.07 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 225 97.50 97.54 97.89 98.02 98.06 98.94 96.98 96.03 96.55 96.59 96.22 97.30 97.54 97.59 97.20 97.24 97.28 97.33 97.37 97.41 97.46 225 97.50 97.54 98.37 98.40 98.06 98.11 98.15 98.19 98.24 98.28 98.32 227 98.37 98.41 98.45 98.50 98.54 98.58 98.63 98.67 98.71 98.76 228 99.28 99.28 99.32 99.36 99.41 99.45 99.49 99.45 99.99 99.28 99.28 99.32 99.36 99.41 99.45 99.49 99.45 99.68 99.62 220 99.67 99.71 99.75 99.80 99.84 99.85 99.99 99.97 100.01 100.06 231 100.10 100.14 100.19 100.23 100.27 100.32 100.36 100.40 100.45 100.49 223 100.53 100.58 100.62 100.66 100.71 100.75 100.79 100.84 100.88 100.92 233 100.97 100.10 1101.55 101.10 101.14 101.12 101.13 101.13 101.23 101.27 101.31 101.36 224 102.27 102.27 102.27 102.23 102.35 102.36 100.40 101.44 101.49 101.53 101.57 101.62 101.66 101.70 101.75 101.79 235 102.70 102.77 102.7											
221 96.20 96.24 96.29 96.33 96.37 96.42 96.49 96.59 96.50 96.55 96.59 96.53 96.63 96.63 96.68 96.72 96.76 96.81 96.85 96.89 96.94 96.98 97.02 224 97.07 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 225 97.50 97.54 97.59 97.63 97.67 97.27 97.77 97.80 97.85 97.89 226 97.93 97.98 98.02 98.06 98.11 98.15 98.19 88.24 98.28 98.32 227 98.37 98.41 98.45 98.50 98.54 98.55 98.69 96.94 96.98 97.32 99.23 99.23 99.32 99.36 99.41 99.45 99.68 99.10 99.15 99.19 99.23 99.23 99.32 99.36 99.41 99.45 99.46 99.54 99.58 99.62 99.64 96.98 99.62 99.66 99.10 99.15 99.19 99.23 99.23 99.36 99.41 99.45 99.49 99.45 99.49 99.45 99.64 95.89 96.22 100.53 100.58 100.62 100.68 100.23 100.27 100.32 100.83 100.40 100.45 100.49 120.23 100.71 100.75 100.79 100.41 100.49 120.23 120.23 100.57 100.71 100.75 100.79 100.41 101.36 120.35 120.35 120.37 120.35			02.00	02111	30.00			*****	55.120	00.20	30.20
221 96.20 96.24 98.29 96.33 96.37 96.42 96.49 96.50 96.55 96.59 96.52 96.59 96.53 96.67 96.57 96.59 96.53 96.69 96.53 96.69 96.55 96.59 96.59 96.53 96.69 96.51 96.59 96.55 96.59 96.59 96.50 96.55 96.59 96.50 96.55 96.59 96.50 96.55 96.59 96.50 96.55 96.59 96.50 96.55 96.59 96.50 96.55 96.59 96.50 96.55 96.59 96.50 96.50 96.55 96.59 96.50 96.50 96.55 96.59 96.50 96.50 96.55 96.59 96.50 97.00 97.11 97.46 97.20 97.24 97.23 97.33 97.37 97.41 97.46 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 98.50 98.54 98.58 98.32 98.60 98.51 98.15 98.15 98.60 98.71 98.76 228 98.23 98.28 98.39 98.39 98.79 99.02 99.06 99.10 99.15 99.15 99.12 99.23 99.23 99.32 99.36 99.41 99.45 99.49 95.44 99.48 99.64 99.58 99.62 99.63 99.67 99.71 99.75 99.80 99.40 99.80 99.80 99.97 100.01 100.04 100.05 100.07 100.07 100.07 100.07 100.08 100.20 100.08 100.09 100.04 100.	220	95.33	95.38	95.42	95.46	95.51	95.55	95.59	95.64	95.68	95.72
222 96. 62 96. 24 96. 29 96. 34 96. 37 96. 42 96. 46 96. 50 96. 55 96. 59 22 22 97.07 97.11 97.15 97.20 97.24 97.28 97.33 97.37 97.41 97.46 225 97.08 97.09 97.24 97.28 97.33 97.37 97.41 97.46 225 97.09 97.24 97.28 97.33 97.37 97.41 97.46 226 97.09 97.24 97.28 97.33 97.37 97.41 97.46 226 97.09 97.24 97.28 97.33 97.37 97.41 97.46 227 98. 37 98. 41 98. 45 98.50 98. 45 98. 58 98. 39 8. 24 98. 28 98. 32 227 98. 37 98. 41 98. 45 98. 50 98. 45 98. 58 98. 58 98. 59 86. 79 8.71 98. 76 228 98. 80 98. 84 98. 89 98. 89 98. 89 99. 28 100. 14 100. 19 100. 23 100. 27 100. 22 100. 28 100. 36 100. 40 100. 45 100. 49 223 100. 35 100. 58						95.94					
224 96.63 96.68 96.72 96.76 96.81 96.85 96.89 96.94 96.98 97.74 97.46 97.27 97.11 97.45 97.20 97.24 97.24 97.28 97.33 97.37 97.41 97.46 97.28 97.39 97.30 97.37 97.41 97.46 97.38 97.38 97.38 97.38 97.38 97.38 97.38 97.38 97.38 97.38 97.38 97.38 97.38 97.39 97.41 97.46 97.38 97.39 97.39 97.41 97.46 97.39 97.39 97.30 97.39 97.30 97	222			96.29	96.33	96.37				96.55	
224 97.07 97.11 97.15 97.20 97.24 97.33 97.31 97.31 97.41 97.46 225 97.50 97.54 97.63 97.67 97.72 97.76 97.80 97.85 97.89 226 97.33 97.84 98.50 98.06 98.11 98.15 98.19 98.24 98.28 98.38 98.89 98.81 98.85 98.56 98.85 98.67 98.71 198.76 99.00 99.00 99.10 99.15 99.19 199.41 99.45 99.44 99.49 99.44 99.49 99.44 99.49 99.44 99.49 99.47 99.10 99.15 99.69 99.89 99.97 100.06 231 100.10 100.14 100.19 100.23 100.27 100.32 100.32 100.31 100.40 100.04 100.04 231 100.10 100.15 101.15 101.13 101.13 101.13 101.13 101.14 101.13 101.13 <				96.72	96.76						
226 97.93 97.98 98.02 98.06 98.11 98.15 98.19 88.24 98.28 98.32 227 98.37 98.37 98.41 98.45 98.50 98.89 98.99 98.99 99.06 99.10 99.15 99.19 99.29 99.08 99.20 99.08 99.10 99.15 99.19 99.29 99.08 99.20 99.08 99.20 99.08 99.20 99.08 99.20 99.20 99.08 99.20 99.2	224										
226 97.93 97.98 98.02 98.06 98.11 98.15 98.19 88.24 98.28 98.32 227 98.37 98.37 98.41 98.45 98.50 98.89 98.99 98.99 99.06 99.10 99.15 99.19 99.29 99.08 99.20 99.08 99.10 99.15 99.19 99.29 99.08 99.20 99.08 99.20 99.08 99.20 99.08 99.20 99.20 99.08 99.20 99.2											
226 97.93 97.93 98.20 98.06 98.11 98.15 98.19 98.24 98.28 98.32 98.36 98.37 98.71 98.76 228 98.80 98.34 98.45 98.50 98.54 98.56 98.53 98.67 98.71 98.76 229 99.23 99.28 99.28 99.32 99.36 99.41 99.45 99.09 99.54 99.58 99.68 99.23 100.10 100.14 100.19 100.23 100.27 100.32 100.32 100.36 100.40 100.45 100.49 232 100.53 100.58 100.62 100.66 100.71 100.75 100.79 100.84 100.88 100.92 233 100.97 101.01 101.05 101.10 101.14 101.14 101.29 101.53 101.57 101.62 101.66 101.70 107.75 101.79 102.31 102.35 102.24 102.25 102.31 102.35 102.24 102.25 102.31 102.35 102.24 102.48 102.38 101.38 101.38 101.38 101.23 101.57 101.62 101.66 101.70 101.75 101.79 102.31 102.35 102.40 102.44 102.48 102.48 102.57 102.61 102.66 237 102.79 102.31 103.58 103.22 103.26 103.31 103.38 103.38 103.38 103.39 103.44 103.48 103.52 103.50 103.65			97.54			97.67	97.72		97.80	97.85	97.89
227 98.37 98.41 98.45 98.50 98.54 99.83 98.79 99.29 99.69 90.9 91.0 90.15 99.15 99.19 99.25 99.23 99.28 99.32 99.36 99.41 99.45 99.49 99.54 99.58 99.62 230 99.67 99.71 99.75 99.80 99.41 99.45 99.49 99.54 99.58 99.62 231 100.10 100.14 100.19 100.23 100.27 100.32 100.36 100.40 100.45 100.49 232 100.53 100.85 100.62 100.66 100.71 100.75 100.79 100.06 41 100.85 100.92 233 100.97 101.01 101.05 101.10 101.14 101.18 101.23 101.27 101.31 101.36 234 101.40 101.44 101.49 101.53 101.57 101.62 101.66 101.70 101.75 101.79 235 102.27 102.23 1102.35 102.40 102.44 102.48 102.52 102.28 102.27 102.31 102.35 102.40 102.44 102.48 102.53 102.57 102.61 102.66 237 102.70 102.74 102.79 102.83 102.87 102.92 102.96 103.00 103.05 103.09 238 103.13 103.18 103.22 103.26 103.31 103.35 103.39 103.44 103.48 103.52 239 103.67 103.61 103.65 103.70 103.74 103.78 103.83 103.87 103.91 103.96 241 104.43 104.48 104.52 104.56 104.61 104.65 104.69 104.74 104.78 104.82 242 104.47 104.91 104.95 105.00 105.04 105.06 105.09 106.44 104.48 104.52 105.03 105.04 105.00 105.04 105.05 105.09 106.44 104.78 104.82 242 104.47 104.91 104.95 105.00 105.04 105.05 105.69 106.40 104.74 104.78 104.82 243 105.30 105.34 105.39 105.47 105.50 105.64 105.69 105.69 106.04 106.08 106.12 105.66 106.60 106.64 106.69 106.73 106.73 105.78 105.82 105.80 105.77 105.21 105.26 106.60 106.64 106.69 106.67 106.67 106.67 106.73 107.03 107.08 107.12 107.12 107.16 107.21 107.25 107.29 107.34 107.38 107.42 107.03 107.08 107.12 107.12 107.16 107.21 107.25 107.34 107.34 107.38 107.42 107.08 107.12 107.12 107.12 107.12 107.13 106.27 106.82 106.36 106.09 106.95 106.99 107.34 107.38 107.42 107.08 107.12 107.12 107.12 107.12 107.12 107.12 107.12 107.13 107.24 107.34 107.34 107.38 107.42 107.08 107.12 107.12 107.12 107.12 107.12 107.13 107.24 107.34 107.34 107.38 107.42 107.08 107.12 107.13 107.13 107.24 107.34 107.34 107.38 107.42 107.08 107.12 107.13 107.13 107.24 107.34 107.34 107.34 107.38 107.42 107.34 107.38 107.42 107.34 107.34 107.38 107.42 107.34 107.38 107.42 107.34 107.38 107.42 107.34	226	97.93	97.98	98.02	98.06	98.11	98.15	98.19	98.24	98.28	98.32
229 99.23 99.28 99.32 99.36 99.41 99.45 99.49 99.54 99.58 99.62 230 99.67 99.71 99.75 99.80 99.84 99.88 99.93 99.97 100.01 100.06 231 100.10 100.14 100.19 100.23 100.27 100.32 100.36 100.40 100.45 100.49 232 100.53 100.58 100.62 100.68 100.60 100.71 100.75 100.79 100.08 100.68 100.69 233 100.97 101.01 101.05 101.10 101.14 101.18 101.23 101.27 101.31 101.36 234 101.40 101.44 101.49 101.53 101.57 101.62 101.66 101.70 101.75 101.79 235 102.27 102.31 102.35 102.40 102.44 102.48 102.53 102.57 102.61 102.66 237 102.70 102.74 102.79 102.83 102.87 102.92 102.96 103.67 103.61 103.65 103.70 103.78 103.89 103.87 103.81 103.22 103.66 103.71 103.78 103.88 103.22 103.67 103.61 103.65 103.70 103.78 103.89 103.87 103.91 103.99 241 104.43 104.48 104.52 104.56 104.61 104.65 104.69 104.74 104.78 104.82 242 104.87 104.91 104.95 105.39 105.30 105.34 105.39 105.48 105.39 105.59 105.69 105.69 105.69 105.69 105.69 105.69 105.69 105.69 105.69 105.65 106.69 105.47 105.51 105.65 105.69 105.69 106.65 1	227							98.63	98.67	98.71	98.76
229 99.23 99.28 99.32 99.36 99.41 99.45 99.40 99.54 99.58 99.62 230 99.67 99.71 99.75 99.80 99.84 99.88 99.93 99.97 100.01 100.06 231 100.10 100.14 100.19 100.23 100.23 100.27 100.32 100.38 100.40 100.45 100.49 232 100.53 100.58 100.62 100.68 100.77 100.75 100.79 100.84 100.88 100.92 233 100.97 101.01 101.05 101.10 101.14 101.18 101.23 101.27 101.31 101.36 234 101.40 101.44 101.49 101.55 101.10 101.15 101.16 101.18 101.23 101.27 101.31 101.36 234 101.40 101.44 101.49 101.53 101.57 101.62 101.60 101.70 101.75 101.75 101.79 235 102.27 102.31 102.35 102.40 102.44 102.48 102.53 102.57 102.61 102.66 237 102.70 102.74 102.79 102.83 102.87 102.95 102.69 102.14 102.18 102.22 236 102.27 102.31 103.35 103.40 103.45 103.39 103.44 103.45 103.29 103.67 103.61 103.65 103.70 103.74 103.78 103.39 103.44 103.48 103.52 239 103.67 103.61 103.65 103.70 103.74 103.78 103.83 103.89 103.44 103.48 103.52 240 104.00 104.04 104.09 104.13 104.17 104.22 104.26 104.30 104.35 104.48 104.52 104.56 104.61 104.65 104.69 104.74 104.78 104.82 104.48 104.52 104.56 104.61 104.65 104.69 104.74 104.78 104.82 242 104.87 104.91 104.95 105.09 105.04 105.08 105.13 105.13 105.13 105.39 105.43 105.69 105.69 106.69 106.73 105.73 105.78 105.89 105.89 105.69 106.64 106.69 106.62 106.69 106.77 106.82 106.80 105.64 106.69 106.65 106.69 106.67 106.85 106.69 106.77 106.51 106.56 106.69 106.69 106.69 106.77 107.03 107.03 107.03 107.12 107.12 107.12 107.15 107.25 107.25 107.34 107.34 107.43 107.42 107.03 107.08 107.12 107.13 107.15 107.25 107.25 107.34 107.34 107.43 107.42 107.13 107.13 107.12 107.13 107.15 107.25 107.35 107.34 107.34 107.43 107	228	98.80	98.84	98.89	98.93	98.97	99.02		99.10	99.15	99.19
231	229	99.23	99.28	99.32	99.36	99,41	99.45	99.49	99.54	99.58	99.62
231											
232 100. 53 100. 58 100. 62 100. 66 100. 71 100. 75 100. 79 100. 84 100. 88 100. 92 233 100. 97 101. 01 101. 05 101. 10 101. 14 101. 18 101. 23 101. 66 101. 70 101. 67 101. 79 102. 81 102. 31 101. 82 101. 81 101. 38 101. 32 101. 67 101. 66 101. 70 101. 75 101. 79 235 102. 71 102. 31 102. 35 102. 40 102. 44 102. 48 102. 53 102. 57 102. 61 102. 66 237 102. 74 102. 79 102. 81 102. 87 102. 92 102. 93 103. 01 03. 05 103. 09 238 103. 13 103. 18 103. 22 103. 26 103. 31 103. 35 103. 38 103. 22 103. 26 103. 31 103. 35 103. 38 103. 44 103. 48 103. 52 239 103. 67 103. 61 103. 65 103. 69 103. 67 103. 61 103. 65 103. 69 104. 73 104. 21 104. 23 104. 24 104. 33 104. 48 104. 52 104. 56 104. 61 104. 65 104. 69 104. 71 104. 91				99.75		99.84	99.88		99.97	100.01	100.06
233		100.10	100.14	100.19	100.23	100.27	100.32	100.36	100.40	100.45	100.49
235		100.53	100.58	100.62	100.66	100.71	100.75	100.79	100.84	100.88	100.92
235 102.27 102.31 102.35 102.40 102.44 102.48 107.33 102.57 102.61 102.66 237 102.70 102.74 102.79 102.83 102.87 102.81 102.95 102.96 103.00 103.05 103.09 238 103.13 103.18 103.22 103.26 103.31 103.35 103.39 103.44 103.48 103.52 240 103.67 103.61 103.65 103.70 103.74 103.78 103.83 103.87 103.91 103.65 103.70 103.74 103.78 103.83 103.87 103.91 103.96 240 104.00 104.04 104.09 104.13 104.17 104.22 104.26 104.30 104.35 104.48 104.52 104.56 104.61 104.65 104.69 104.74 104.78 104.82 242 104.87 104.91 104.95 105.00 105.04 105.08 105.13 105.17 105.21 105.26 243 105.30 105.34 105.39 105.43 105.47 105.25 105.66 105.69 106.65 105.60 105.65 105.69 244 105.73 105.78 105.82 105.86 105.91 105.95 105.09 106.04 106.08 106.12 106.65 106.60 106.64 106.69 106.77 106.21 106.26 106.80 106.64 106.69 106.77 106.21 106.26 106.80 106.64 106.69 106.77 106.21 106.26 106.80 106.64 106.69 106.77 106.21 106.26 106.80 106.64 106.69 106.77 106.21 106.25 106.80 106.84 106.80 106.84 106.89 106.77 106.82 106.86 106.80 106.65 106.69 106.77 106.82 106.80 106.84 106.69 106.77 106.82 106.80 106.84 106.69 106.77 107.03 107.03 107.03 107.12 107.12 107.12 107.25 107.29 107.34 107.38 107.42 107.38 107.42 107.38 107.42 107.38 107.4		100.97	101.01	101.05	101.10	101.14	101.18	101.23	101.27	101.31	101.36
236	234	101.40	101.44	101.49	101.53	101.57	101.62	101.66	101.70	101.75	101.79
236	. 005	101 00	101 00	101 00	101 00	100 04	100 0-	100 00	100 14	100 10	100 00
237 102. 70 102. 74 102. 79 102. 83 102. 87 102. 95 102. 96 103. 00 103. 05 103. 05 238 103. 31 31 33. 31 103. 22 103. 26 103. 31 103. 35 103. 39 103. 44 103. 48 103. 52 239 103. 67 103. 61 103. 65 103. 70 103. 74 103. 78 103. 83 103. 39 103. 44 103. 48 103. 52 240 104. 00 104. 04 104. 09 104. 13 104. 17 104. 22 104. 26 104. 30 104. 38 104. 48 104. 52 104. 56 104. 61 104. 65 104. 69 104. 74 104. 78 104. 82 242 104. 87 104. 91 104. 95 105. 00 105. 04 105. 08 105. 81 105. 13 105. 17 105. 21 105. 26 243 105. 30 105. 34 105. 39 105. 43 105. 47 105. 52 105. 66 105. 60 105. 61 105.		101.83	101.88	101.92	101.96	102.01	102.05	102.09	102.14	102.18	102.22
238 103. 13 103. 18 103. 22 103. 26 103. 31 103. 78 103. 83 103. 44 103. 48 103. 52 103. 61 103. 65 103. 67 103. 61 103. 65 103. 67 103. 61 103. 65 103. 67 103. 61 103. 68 103. 62 103. 63 103. 68 103. 68 103. 68 103. 68 103. 68 103. 68 103. 68 103. 68 103. 69 104. 39 104. 39 104. 31 104. 35 104. 31 104. 31 104. 48 104. 52 104. 50 104. 65 104. 65 104. 69 104. 74 104. 78 104. 82 242 104. 87 104. 91 104. 95 105. 00 105. 47 105. 62 105. 63 105. 17 105. 21 105. 26 243 105. 30 105. 34 105. 39 105. 48 105. 39 105. 47 105. 62 105. 69 106. 60 105. 68 105. 61		100.70	102.31	102.35	102.40	102.44	102.48	107.53	102.57	102.61	102.00
239		102.70	102.74	102,79	102.63	102.87	102.92	102.98	103.00	103.05	103.09
240 104.00 104.04 104.09 104.13 104.17 104.22 104.26 104.30 104.35 104.39 241 104.47 104.28 104.56 104.61 104.65 104.69 104.74 104.78 104.82 242 104.87 104.91 104.95 105.00 105.04 105.08 105.13 105.17 105.21 105.22 243 105.30 105.34 105.39 105.47 105.52 105.65 105.60 105.65 105.60 105.65 105.60 105.65 106.69 244 106.73 105.78 105.82 105.86 105.91 105.95 105.99 106.04 106.08 106.12 245 106.17 106.21 106.25 106.30 106.34 106.38 106.31 106.37 106.87 106.82 106.80 106.65 106.69 106.65 106.69 106.65 106.69 106.65 106.69 106.65 106.69 106.65 106.69 106.95 106.99 247 107.03 107.08 107.12 107.12 107.12 107.15 107.25 107.29 107.34 107.38 107.42		103.13	103.18	103.22	103.26	103.31	103.35	103.39	103.44	103.48	103.52
241 104. 43 104. 48 104. 52 104. 56 104. 61 104. 65 104. 60 104. 74 104. 78 104. 78 242 104. 87 104. 91 104. 95 105. 00 105. 04 105. 08 105. 13 105. 17 105. 21 105. 26 243 105. 30 105. 34 105. 39 105. 43 105. 47 105. 52 105. 66 105. 60 105. 65 105. 69 105. 03 105. 105. 08 105.	209	103.07	103.01	103.05	103.70	100,74	ws.18	100.93	103.87	103.91	103.90
241 104. 43 104. 48 104. 52 104. 56 104. 61 104. 65 104. 60 104. 74 104. 78 104. 78 242 104. 87 104. 91 104. 95 105. 00 105. 04 105. 08 105. 13 105. 17 105. 21 105. 26 243 105. 30 105. 34 105. 39 105. 43 105. 47 105. 52 105. 66 105. 60 105. 65 105. 69 105. 03 105. 105. 08 105.	240	104 00	104 04	104 00	104 19	104 17	104 99	104 94	104 20	104 9E	104 30
242 104. 87 104. 91 104. 95 105. 00 105. 04 105. 08 105. 13 105. 17 105. 21 105. 26 105. 30 105. 34 105. 39 105. 43 105. 47 105. 52 105. 56 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 60 105. 65 105. 69 105. 95 105. 95 105. 99 105. 99 105. 91		104 42	104 49	104 59	104 50	104 81	104 65	104 RO	104 74	104.00	104 20
243 105. 30 105. 34 105. 39 105. 43 105. 47 105. 52 105. 66 105. 60 105. 65 105. 69 105. 73 105. 78 105. 82 105. 86 105. 91 105. 95 105. 99 106. 04 106. 08 106. 12 105. 105. 105. 105. 105. 105. 105. 105.		104 87	104 01	104 05	105 00	105 04	105 00	105 12	105 17	105 91	105 94
244 106.73 105.78 105.82 105.86 105.91 105.95 105.99 106.04 106.08 106.12 106.17 106.21 106.25 106.30 106.34 106.38 106.47 106.47 106.51 106.91 106.91 106.97 106.97 106.82 106.80 106.80 106.80 106.80 106.80 106.80 106.90 106.91 106.73 106.77 106.82 106.80 106.90 106.95 106.99 107.03 107.08 107.12 107.12 107.2 107.2 107.2 107.2 107.2 107.2 107.34 107.38 107.42											
245 106.17 106.21 106.25 106.30 106.34 106.38 106.43 106.47 106.51 106.56 246 106.60 106.64 106.69 106.73 106.77 106.82 106.86 106.90 106.95 106.99 107.03 107.08 107.12 107.18 107.2 107.25 107.29 107.34 107.38 107.42											
246 106.60 106.64 106.69 106.73 106.77 106.82 106.86 106.90 106.95 106.99 107.03 107.08 107.12 107.16 107.21 107.25 107.29 107.34 107.38 107.42		-30.,0		130.02	135.00	-30.01	-50.50	-50.05	.,,,,,,,	200.00	-50.12
246 106.60 106.64 106.69 106.73 106.77 106.82 106.86 106.90 106.95 106.99 107.03 107.08 107.12 107.16 107.21 107.25 107.29 107.34 107.38 107.42	245	106.17	106.21	106.25	106.30	106.34	106.38	106.43	106.47	106.51	106.56
247 107.03 107.08 107.12 107.16 107.21 107.25 107.29 107.34 107.38 107.42		106.60	106.64	106.69	106.73	106.77	106.82	106.86	106.90	106.95	106.99
		107.03	107.08	107.12	107.16	107.21	107.25	107.29	107.34	107.38	107.42
248 107.47 107.51 107.55 107.60 107.64 107.68 107.73 107.77 107.81 107.86	248										
249 107.90 107.94 107.99 108.03 108.07 108.12 108.16 108.20 108.25 108.29											

TABLE 11.—HEADS IN FEET CORRESPONDING TO DIFFERENT HYDROSTATIC PRESSURES IN POUNDS PER SQUARE INCH

Weight of Water 62.4 Pounds per Cubic Foot

Pressure in pounds per square inch	0	1	2	3	4	5	6	7	8	0
0	0.00	0.23	0.46	0.69	0.92	1.15	1.38	1.62	1.85	2.08
1	2.31	2.54	2.77	3.00	3.23	3.46	3.69	3.92	4.15	4.38
2	4.62	4.85	5.06	5.31	5.54	5.77	6.00	6.23	6.46	6.69
3	6.92	7.15	7.38	7.62	7.85	8.08	8.31	8.54	8.77	9.00
4	9.23	9.46	9.69	9.92	10.15	10.38	10.62	10.85	11.08	11.31
5	11.54	11.77	12.00	12.23	12.46	12.69	12.92	13.15	13.38	13.62
6	13.85	14.08	14.31	14.54	14.77	15.00	15.23	15.46	15.69	15.92
7	16.15	16.38	16.62	16.85	17.08	17.31	17.54	17.77	18.00	18.23
8	18.46	18.69	18.92	19.15	19.38	19.62	19.85	20.08	20.31	20.54
9	20.77	21.00	21.23	21.46	21.69	-21.92	22.15	22.38	22.62	22.85
10	23.08	23.31	23.54	23.77	24.00	24.23	24.46	24.69	24.92	25.15
11	25.38	25.62	25.85	26.08	26.31	26.54	26.77	27.00	27.23	27.46
12	27.69	27.92	28.15	28.38	28.62	28.85	29.08	29.31	29.54	29.77
13	30.60	30.23	30.46	30.69	30.92	31.15	31.38	31.62	31.85	32.08
14	32.31	32.54	32.77	33.00	33.23	33.46	33.69	33.92	34.15	34.38
15	34.62	34.85	35.08	35.31	35.54	35.77	36.00	36.23	36.46	36.69
16	36.92	37.15	37.38	37.62	37.85	38.08	38.31	38.54	38.77	39.00
17	39.23	39.46	39.69	39.92	40.15	40.38	40.62	40.85	41.08	41.31
18	41.54	41.77	42.00	42.23	42.46	42.69	42.92	43.15	43.38	43.62
19	43.85	44.08	44.31	44.54	44.77	45.00	45.23	45.46	45.69	45.92
20	46.15	46.38	46.62	46.85	47.08	47.31	47.54	47,77	48.00	48.23
21	48.46	48.69	48.92	49.15	49.38	49.62	49.85	50.08	50.31	50.54
22	50.77	51.00	51.23	51.46	51.69	51.92	52.15	52.38	52.62	52.85
23	53.08	53.31	53.54	53.77	54.00	54.23	54.46	54.69	54.92	55.15
24	55.38	55.62	55.85	56.08	56.31	56.54	56.77	57.00	57.23	57.46
25	57.69	57.92	58.15	58.38	58.62	58.85	59.08	59.31	59.54	59.77
26	60.00	60.23	60.46	60.69	60.92	61.15	61.38	61.62	61.85	62.08
27	62.31	62.54	62.77	63.00	63.23	63.46	63.69	63.92	64.15	64.38
28	64.62	64.85	65.08	65.31	65.54	65.77	66.00	66.23	66.46	66.69
29	66.92	67.15	67.38	67.62	67.85	68.08	68.31	68.54	68.77	69.00
30	69.23	69.46	69.69	69.92	70.15	70.38	70.62	70.85	71.08	71.31
31	71.54	71.77	72.00	72.23	72.46	72.69	72.92	73.15	73.38	73.62
82	73.85	74.08	74.31	74.54	74.77	75.00	75.23	75.46	75.69	75.92
83	76.15	76.38	76.62	76.85	77.08	77.31	77.54	77.77	78.00	78.23
84	78.46	78.69	78.92	79.15	79.38	79.62	79.85	80.08	80.31	80.54
35	80.77	81.00	81,23	81.46	81.69	81.92	82.15	82.38	82.62	82.85
36	83.08	83.31	83,54	83.77	84.00	84.23	84.46	84.69	84.92	85.15
37	85.38	85.62	85,85	86.08	86.31	86.54	86.77	87.00	87.23	87.46
38	87.69	87.92	88,15	88.38	88.62	88.85	89.08	89.31	89.54	89.77
39	90.00	90.23	90,46	90.69	90.92	91.15	91.38	91.62	91.85	92.08
40	92.31		92.77	93.00	93.23	93.46	93.69	93.92	94.15	94.38
41	94.62		95.08	95.31	95.54	95.77	96.00	96.23	96.46	96.69
42	96.92		97.38	97.62	97.85	98.08	98.31	98.54	98.77	99.00
43	99.23		99.69	99.92	100.15	100.38	100.62	100.85	101.08	101.31
44	101.54		102.00	102.23	102.46	102.69	102.92	103.15	103.38	103.62
45 46 47 48 49	106.15 108.46 110.77	106.38 108.69 111.00	106.62 108.92 111.23	109.15 111.46	107.08 109.38 111.69	105.00 107.31 109.62 111.92 114.23	107.54 109.85 112.15	107.77 110.08 112.38	108.00 110.31 112.62	108.23 110.54 112.85

Table 11 (Concluded)

HEADS IN FEET CORRESPONDING TO DIFFERENT HYDROSTATIC PRESSURES IN POUNDS PER SQUARE INCH

Weight of Water 62.4 Pounds per Cubic Foot

	Wei	ght of	Water	62.4	Pound	s per	Cubic	Foot		
Pressure in pounds per square inch	0	1	2	3	4	5	6	7	8	9
50 51 52	117.69	117.92 120.23	118.15 120.46	118.38 120.69	118.62 120.92	118.85 121.15	119.08 121.38	119.31 121.62	117.23 119.54 121.85	119.77 122.08
53 54	122.31	122.54	122.77	123.00	123.23	123.46	123.69	123.92	124.15 126.46	124.38
55 56 57	129.23	129.46	129.69	129.92	130.15	130.38	130.62	130.85	128.77 131.08 133.38	131.31
58 59	133.85	134.08	134.31	134.54	134.77	135.00	135.23	135.46	135.69 138.00	135.92
60 61 62	140.77	141.00	141.23	141.46	141.69	141.92	142.15	142.38	140.31 142.62 144.92	142.85
63 64	145.38	145.62	145.85	146.08	146.31	146.54	146.77	147.00	147.23 149.54	147.46
65 66 67	152.31	152.54	152.77	153.00	153.23	153.46	153.69	153.92	151.85 154.15 156.46	154.38
68 69	156.92 159.23	157.15 159.46	157.38 159.69	157.62 159.92	157.85 160.15	158.08 160.38	158.31 160.62	158.54 160.85	158.77 161.08	159.00 161.31
70 71 72	163.85 166.15	164.08 166.38	164.31 166.62	164.54 166.85	164.77 167.08	165.00 167.31	165.23 167.54	165.46 167.77	163.38 165.69 168.00	165.92 168.23
73 74	170.77	171.00	171.23	171.46	171.69	171.92	172.15	172.38	170.31 172.62	172.85
75 76 77	175.38 177.69	175.62 177.92	175.85 178.15	176.08 178.38	176.31 178.62	176.54 178.85	176.77 179.08	177,00 179,31	174.92 177.23 179.54	177.46 179.77
78 79 80									181.85 184.15 186.46	
81 82 83	186.92 189.23	187.15 189.46	187.38 189.69	187.62 189.92	187.85 190.15	188.08 190.38	188.31 190.62	188.54 190.85	188.77 191.08 193.38	189.00 191.31
84 85	193.85	194.08 196.38	194.31	194.54	194.77	195.00	195.23	195.46	195.69 198.00	195.92
. 86 87 88	198.46 200.77	198.69 201.00	198.92 201.23	199.15 201.46	199.38 201.69	199.62 201.92	199.85 202.15	202.38	200.31 202.62 204.92	202.85
89 90	205.38 207.69	205.62 207.92	205.85 208.15	206.08 208.38	206.31 208.62	206.54 208.85	206.77 209.08	207.00 209.31	207.23 209.54	207.46 209.77
91 92 93	212.31 214.62	212.54 214.85	212.77 215.08	213.00 215.31	213.23 215.54	213.46 215.77	213.69 216.00	213.92 216.23	211.85 214.15 216.46	214.38 216.69
94 95	216.92 219.23	217.15 219.46	217.38 219.69	217.62 219.92	217.85 220.15	218.08 220.38	218.31 220.62	218.54 220.85	218.77 221.08	219.00 221.31
96 97 98	223.85 226.15	224.08 226.38	224.31 226.62	224.54 226.85	$224.77 \\ 227.08$	225.00 227.31	225.23 227.54	225.46 227.77	228.00	225.92 228.23
99	228.46	228.69	228.92	229.15	229.38	229.62	229.85	230.08	230.31	230.54

TABLE 12.-TOTAL HORIZONTAL HYDROSTATIC PRESSURES IN Pounds Per Lineal Foot for Dams with Overflow

D = Height of dam in feet H = Depth of overflow in feet P = Pressure in pounds per lineal foof P = 31.2 (2DH + D^{3}).

Plys					H i	n feet				
D in feet	0	1	2	3	4	5	6	7	8	9
1 2 3 4 5	31 125 281 499 780	250 468 749	156 374 655 998 1,404	218 499 842 1,248 1,716	281 624 1,030 1,498 2,028	343 749 1,217 1,747 2,340	406 874 1,404 1,997 2,652	468 998 1,591 2,246 2,964	530 1,123 1,778 2,496 3,276	1,248 1,966 2,746
6 7 8 9	1,123 1,529 1,997 2,527 3,120	1,966 2,496 3,089	1,872 2,402 2,995 3,650 4,368	2,246 2,839 3,494 4,212 4,992	2,621 3,276 3,994 4,774 5,616	2,995 3,713 4,493 5,335 6,240	3,370 4,150 4,992 5,897 6,864	3,744 4,586 5,491 6,458 7,488	4,118 5,023 5,990 7,020 8,112	5,460 6,490 7,582
11 12 13 14 15	3,775 4,493 5,273 6,115 7,020	6,084 6,989	5,148 5,990 6,895 7,862 8,892	5,834 6,739 7,706 8,736 9,828	6,521 7,488 8,518 9,610 10,764	10,483		12,230	9,266 10,483 11,762 13,104 14,508	9,953 11,233 12,574 13,978 15,444
16 17 18 19 20	10,109 11,263	8,986 10,078 11,232 12,449 13,728	12,355 $13,634$	13,478 14,820	13,260 14,602 16,006	$14,321 \\ 15,725$	16,848 18,377	16,442 17,971 19,562	15,974 17,503 19,094 20,748 22,464	16,973 18,564 20,218 21,934 23,712
21 22 23 24 25	15,101 16,505 17,971	15,070 16,474 17,940 19,469 21,060	17,846 19,375 20,966	19,219 20,810 22,464	20,592 22,246 23,962	21,965 23,681 25,459	25,116 26,957	24,710 26,551 28,454	24,242 26,083 27,986 29,952 31,980	25,553 27,456 29,422 31,450 33,540
26 27 28 29 30	22,745 24,461 26,239	22,714 24,430 26,208 28,049 29,952	26,114 27,955 29,858	27,799 29,702 31,668	29,484 31,450 33,478	33,197 35,287	32,854 34,944 37,097	34,538 36 691 38,906	34,070 36,223 38,438 40,716 43,056	35,693 37,908 40,186 42,526 44,928
31 32 33 34 35	31,949 33,977 36,067	31,918 33,946 36,036 38,189 40,404	35,942 38,095 40,310	37,939 40,154 42,432	39,936 42,214 44,554	41,933 44,273 46,675	43,930 46,332 48,797	45,926 48,391 50,918	45,458 47,923 50,450 53,040 55,692	47,393 49,920 52,510 55,162 57,876
36 37 38 39 40	42,713 45,053 47,455	42,682 45,022 47,424 49,889 52,416	47,330 49,795 52,322	49,639 52,166 54,756	51,948 54,538 57,190	54,257 56,909 59,623	56,566 59,280 62,057	58,874 61,651 64,490	58,406 61,183 64,022 66,924 69,888	60,653 63,492 66,394 69,358 72,384
41 42 43 44 45	55,037 57,689 60,403	55,006 57,658 60,372 63,149 65,988	60,278 63,055 65,894	62,899 65,738 68,640	65,520 68,422 71,386	68,141 71,105 74,131	70,762 73,788 76,877	73,382 76,471 79,622	72,914 76,003 79,154 82,368 85,644	75,473 78,624 81,838 85,114 88,452
46 47 48 49 50	66,019 68,921 71,885 74,911	68,890 71,854 74,880 77,969	71,760 74,786 77,875 81,026	74,630 77,719 80,870 84,084	77,501 80,652 83,866 87,142	80,371 83,585 86,861 90,199	83,242 86,518 89,856 93,257	86,112 89,450 92,851 96,315	88,982 92,383 95,846 99,372	91,853 95,316 98,842 102,430 106,080

TABLE 13.-VERTICAL DISTANCES ABOVE BASE TO CENTERS OF HORIZONTAL PRESSURE FOR DAMS WITH OVERFLOW

 $\begin{array}{l} D = \text{height of dam in feet.} \\ H = \text{depth of overflow'in feet.} \\ d = \text{distance above base in feet to center of pressure.} \\ d = \frac{D}{3} \left(1 + \frac{H}{D+2\,H} \right). \end{array}$

			- 2 11/							
D in					H in	feet				
feet	0	1	2	3	4	5	6	7	8	9
1 2 3 4 5	.33 .67 1.00 1.33 1.67	.44 .83 1.20 1.56 1.90	.47 .89 1.29 1.67 2.04	.48 .92 1.33 1.73 2.12	.48 .93 1.36 1.78 2.18	.48 .94 1.38 1.81 2.22	.48 .95 1.40 1.83 2.25	.49 .96 1.41 1.85 2.28	.49 .96 1.42 1.87 2.30	.49 .97 1.43 1.88 2.32
6 7 8 9	2.00 2.33 2.67 3.00 3.33	2.25 2.59 2.93 3.27 3.61	2.40 2.76 3.11 3.46 3.81	2.50 2.87 3.24 3.60 3.96	2.57 2.96 3.33 3.71 4.07	2.62 3.02 3.41 3.79 4.17	2.67 3.07 3.47 3.86 4.24	2.70 3.11 3.52 3.91 4.31	2.73 3.14 3.56 3.96 4.36	2.75 3.17 3.59 4.00 4.40
11 12 13 14 15	3.67 4.00 4.33 4.67 5.00	3.95 4.29 4.62 4.96 5.29	4.16 4.50 4.84 5.19 5.53	4.31 4.67 5.02 5.37 5.71	4.44 4.80 5.16 5.52 5.87	4.54 4.91 5.28 5.64 6.00	4.62 5.00 5.37 5.74 6.11	4.69 5.08 5.46 5.83 6.21	4.75 5.14 5.58 5.91 6.29	4.80 5.20 5.59 5.98 6.36
16 17 18 19 20	5.33 5.67 6.00 6.33 6.67	5.63 5.96 6.30 6.63 6.97	5.87 6.21 6.55 6.88 7.22	6.06 6.41 6.75 7.09 7.44	6.22 6.57 6.92 7.27 7.62	6.36 6.71 7.07 7.43 7.78	6.48 6.85 7.20 7.56 7.92	6.58 6.95 7.31 7.68 8.05	6.67 7.04 7.41 7.78 8.15	6.75 7.12 7.50 7.87 8.25
21 22 23 24 25	7.00 7.33 7.67 8.00 8.33	7.30 7.64 7.97 8.31 8.64	7.56 7.90 8.23 8.57 8.91	7.78 8.12 8.46 8.80 9.14	7.97 8.31 8.66 9.00 9.34	8.13 8.48 8.83 9.18 9.52	8.27 8.63 8.98 9.33 9.68	8.40 8.76 9.12 9.47 9.83	8.51 8.88 9.24 9.60 9.96	8.62 8.98 9.35 9.71 10.08
26 27 28 29 30	8.67 9.00 9.33 9.67 10.00	8.98 9.31 9.64 9.98	9.24 9.58 9.92 10.25 10.59	10.16 10.50	10.37 10.71	10.56 10.91	10.38 10.73 11.08	10.89 11.24	10.32 10.67 11.03 11.38	10.44 10.80 11.16 11.52
31 32 33 34 35	10.33 10.67 11.00 11.33 11.67	10.98 11.31 11.65	11.26	$11.85 \\ 12.18$	12.07 12.41	11.94 12.28 12.62		12.29 12.64 12.99		13.29
36 37 38 39 40	12.00 12.33 12.67 13.00	12.32 12.65 12.98 13.32 13.65	12.60 12.93 13.27 13.60	12.86 13.19 13.53 13.87	13.09 13.43	13.80 13.65 13.99 14.33	13.50 13.84 14.19 14.53 14.87	13.68 14.03 14.37 14.72	13.85 14.19 14.54 14.89	14.00 14.35 14.70 15.05
41 42 43 44 45	13.67 14.00 14.33 14.67	13.98 14.32 14.65 14.99 15.32	14.27 14.61 14.94 15.28	14.54 14.88 15.21 15.55	14.78 15.12 15.46 15.79	15.01 15.35 15.69 16.02	15.21 15.56	15.41 15.75 16.09 16.44	15.58 15.93 16.28 16.62	15.75 16.10 16.45
46 47 48 49	15.33 15.67 16.00 16.33	15.65 15.99 16.32 16.65 16.99	15.95 16.28 16.62 16.95	16.22 16.55 16.89 17.22	16.47 16.81 17.14 17.48	16.70 17.04 17.38 17.72	16.92 17.26 17.60 17.94	17.12 17.46 17.81 18.15	17.31 17.66 18.00 18.34	17.49 17.84 18.18 18.53

TABLE 14.—THEORETICAL HORSEPOWER OF 1 CUBIC FOOT PER SECOND OF WATER, FOR HEADS FROM 0 TO 100 FEET

PER SEC	COND	OF W	ATER	, FOR	HEA	DS FR	OM U	TO 10	JUFE	ET
Head in feet	0	1	2	3	4	5	6	7	8	9
1	.113	.125	.136	.147	.159	.170	.182	.193	.204	.216
2	.227	.238	.250	.261	.272	.284	.295	.306	.318	.329
3	.340	.352	.363	.374	.386	.397	.408	.420	.431	.442
4	.454	.465	.477	.488	.499	.511	.522	.533	.545	.556
5	.567	.579	.590	.601	.613	.624	.635	.647	.658	.669
6	.681	.692	.703	.715	.726	.737	.749	.760	.771	.783
· 7	.794	.806	.817	.828	.840	.851	.862	.874	.885	.896
· 8	.908	.919	.930	.942	.953	.964	.976	.987	.998	1.010
· 9	1.021	1.032	1.044	1.055	1.066	1.078	1.089	1.101	1.112	1.123
· 10	1.135	1.146	1.157	1.169	1.180	1.191	1.203	1.214	1.225	1.237
11	1.248	1.259	1.271	1.282	1.293	1.305	1.316	1.327	1.339	1.350
12	1.361	1.373	1.384	1.395	1.407	1.418	1.430	1.441	1.452	1.464
13	1.475	1.486	1.498	1.509	1.520	1.532	1.543	1.554	1.566	1.577
14	1.588	1.600	1.611	1.622	1.634	1.645	1.656	1.668	1.679	1.690
15	1.702	1.713	1.725	1.736	1.747	1.759	1.770	1.781	1.793	1.804
16	1.815	1.827	1.838	1.849	1.861	1.872	1.883	1.895	1.906	1.917
17	1.929	1.940	1.951	1.963	1.974	1.985	1.997	2.008	2.019	2.031
18	2.042	2.054	2.065	2.076	2.088	2.099	2.110	2.122	2.133	2.144
19	2.156	2.167	2.178	2.190	2.201	2.212	2.224	2.235	2.246	2.258
20	2.269	2.280	2.292	2.303	2.314	2.326	2.337	2.349	2.360	2.371
21	2.383	2.394	2.405	2.417	2.428	2.439	2.451	2.462	2.473	2.485
22	2.496	2.507	2.519	2.530	2.541	2.553	2.564	2.575	2.587	2.598
23	2.609	2.621	2.632	2.643	2.655	2.666	2.678	2.689	2.700	2.712
24	2.723	2.734	2.746	2.757	2.768	2.780	2.791	2.802	2.814	2.825
25	2.836	2.848	2.859	2.870	2.882	2.893	2.904	2.916	2.927	2.938
26	2.950	2.961	2.973	2.984	2.995	3.007	3.018	3.029	3.041	3.052
27	3.063	3.075	3.086	3.097	3.109	3.120	3.131	3.143	3.154	3.165
28	3.177	3.188	3.199	3.211	3.222	3.233	3.245	3.256	3.267	3.279
29	3.290	3.302	3.313	3.324	3.336	3.347	3.358	3.370	3.381	3.392
30	3.404	3.415	3.426	3.438	3.449	3.460	3.472	3.483	3.494	3.506
31	3.517	3.528	3.540	3.551	3.562	3.574	3.585	3.597	3.608	3.619
32	3.631	3.642	3.653	3.665	3.676	3.687	3.699	3.710	3.721	3.733
33	3.744	3.755	3.767	3.778	3.789	3.801	3.812	3.823	3.835	3.846
34	3.857	3.869	3.880	3.891	3.903	3.914	3.926	3.937	3.948	3.960
35	3.971	3.982	3.994	4.005	4.016	4.028	4.039	4.050	4.062	4.073
36	4.084	4.096	4.107	4.118	4.130	4.141	4.152	4.164	4.175	4.186
37	4.198	4.209	4.221	4.232	4.243	4.255	4.266	4.277	4.289	4.300
38	4.311	4.323	4.334	4.345	4.357	4.368	4.379	4.391	4.402	4.413
39	4.425	4.436	4.447	4.459	4.470	4.481	4.493	4.504	4.515	4.527
40	4.538	4.550	4.561	4.572	4.584	4.595	4.606	4.618	4.629	4.640
41	4.652	4.663	4.674	4.686	4.697	4.708	4.720	4.731	4.742	4.754
42	4.765	4.776	4.788	4.799	4.810	4.822	4.833	4.845	4.856	4.867
43	4.879	4.890	4.901	4.913	4.924	4.935	4.947	4.958	4.969	4.981
44	4.992	5.003	5.015	5.026	5.037	5.049	5.060	5.071	5.083	5.094
45	5.105	5.117	5.128	5.139	5.151	5.162	5.174	5.185	5.196	5.208
46 47 48 49 50	5.219 5.332 5.446 5.559 5.673	5.344 5.457 5.571	5.242 5.355 5.469 5.582 5.695	5.253 5.366 5.480 5.593 5.707	5.264 5.378 5.491 5.605 5.718	5.276 5.389 5.503 5.616 5.729	5.287 5.400 5.514 5.627 5.741	5.298 5.412 5.525 5.639 5.752	5.310 5.423 5.537 5.650 5.763	5.321 5.434 5.548 5.661 5.775

Table 14 (Concluded)

THEORETICAL HORSEPOWER OF 1 CUBIC FOOT PER SECOND OF WATER, FOR HEADS FROM 0 TO 100 FEET

	*** A.	EII, F	01, 11	EADS	FICOR	1 0 10	100	- Déi		
Head in feet	0	1	2	3	4	5	6	7	8	9
51	5.786							5.866		5.888
52	5.900	5.911	5.922		5.945		5.968	5.979	5.990	
53	6.013	6.024	6.036		6.058		6.081	6.093	6.104	6.115
54	6.127	6.138			6.172		6.195	6.206	6.217	6.229
55	6.240	6.251	6.263	6.274	6.285	6.297	6.308	6.319	6.331	6.342
56	6.353	6.365	6.376	6.387	6.399	6.410	6.422	6.433	6.444	6.456
57	6.467	6.478	6.490		6.512		6.535	6.546	6.558	6.569
58	6.580		6.603	6.614	6.626		6.648	6.660	6.671	6.682
59	6.694	6.705	6.717	6.728	6.739	6.751	6.762	6.773	6.785	6.796
60	6.807	6.819	6.830	6.841	6.853		6.875	6.887	6.898	6.909
61	6.921	6.932	6.943	6.955	6.966	6.977	6.989	7.000	7.011	7.023
62	7.034	7.046	7.057	7.068	7.080	7.091	7.102	7.114	7.125	7.136
63	7.148	7.159	7.170	7.182	7.193	7.204	7.102 7.216	7.227	7.238	7.250
64	7.261	7.272	7.284	7.295	7.306	7.318	7.329	7.341	7.352	7.363
65	7.375	7.386	7.397	7.409	7.420	7.431	7.443	7.454	7.465	7.477
66	7.488	7.499	7.511	7.522	7.533	7.545	7.556	7.567	7.579	7.590
67	7.601	7.613	7.624	7.635	7.647	7.658	7.670	7.681	7.692	7.704
68	7.715	7.726	7.738	7.749	7.760	7.772	7.783	7.794	7.806	7.817
69	7.828	7.840	7.851	7.862	7.874	7.885	7.896	7.908	7.919	
70	7.942	7.953	7.965	7.976	7.987	7.999	8.010	8.021	8.033	8.044
71	8.055	8.067	8.078	8.089	8.101	8.112	8.123	8.135	8.146	8.157
72	8.169	8.180	8.191	8.203	8.214	8.225	8.237	8.248	8.259	8.271
72 73	8.282	8.294	8.305	8.316	8.328	8.339	8.350	8.362	8.373	8.384
74	8.396	8.407	8.418	8.430	8.441	8.452	8.464	8.475	8.486	8.498
75	8.509	8.520	8.532	8.543	8.554	8.566	8.577	8.589	8.600	8.611
76	8.623	8.634	8.645	8.657	8.668	8.679	8.691	8.702	8.713	8.725
77	8.736	8.747	8.759	8.770	8.781	8.793	8.804	8.815	8.827	8.838
78	8.849	8.861	8.872	8.883	8.895	8.906	8.918	8.929	8.940	8.952
l 79	8.963	8.974	8.986	8.997	9.008	9.020	9.031	9.042	9.054	9.065
80	9.076	9.088	9.099	9.110	9.122	9.133	9.144	9.156	9.167	9.178
81	9.190	9.201	9.213	9.224	9.235	9.247	9.258	9.269	9.281	9.292
82	9.303	9.315	9.326	9.337	9.349	9.360	9.371	9.383	9.394	9.405
83	9.417	9.428	9.439	9.451	9.462	9.473	9.485	9.496	9.507	9.519
84	9.530	9.542	9.553	9.564	9.576	9.587	9.598	9.610	9.621	9.632
85	9.644	9.655	9.666	9.678	9.689	9.700	9.712	9.723	9.734	9.746
86	9.757	9.768	9.780	9.791	9.802	9.814	9.825	9.837	9.848	9.859
87	9.871	9.882	9.893	9.905	9.916	9.927		9.950	9.961	9.973
88	9.984		10 007		10.020	10.041		10.062	10.075	
89						10.154				
90						10.268				
91	10 324	10 336	10 347	10 258	10 370	10.381	10 200	10 404	10 415	امود ۱۵
92	10.438	10.440	10.461	10.472	10.483	10.495	10.506	10.517	10 520	10 540
93						10.608				
94	10.665	10.676	10.687	10.699	10.710	10.721	10.733	10.744	10.755	10.767
95	10.778	10.790	10.801	10.812	10.824	10.835	10.846	10.858	10.869	10.880
96	1 1					10.948				• •
97	11.005	11.016	11.028	11.039	11.050	11.062	11.073	11 085	11 006	11 107
98	11.119	11.130	11.141	11.153	11 164	11.062 11.175	11 187	11 109	11 210	11 221
99	11.232	11.243	11.255	11.266	11.277	11.289	11 300	11 311	11 323	11 334
100	11.345	11.357	11.368	11.379	11.391	11.402	11 414	11 425	11 438	11 446
	1			-3.5.0	001					
										

TABLE 15

THEORETICAL KILOWATTS OF 1 CUBIC FOOT PER SECOND OF
WATER FOR HEADS FROM 0 TO 100 FEET

Head in feet	0	1	2	3	4	5	6	7	8	9
1 2 3 4 5	.085 .169 .254 .339 .423	.093 .178 .262 .347 .432	.102 .186 .271 .355	.110 .195 .279 .364 .449	.118 .203 .288 .372 .457	.127 .212 .296 .381 .466	.135 .220 .305 .389 .474	.144 .229 .313 .398 .482	.152 .237 .322 .406 .491	.161 .245 .330 .415 .499
6 7 8 9	.508 .592 .677 .762	.516 .601 .686 .770	.525 .609 .694 .779 .863	.533 .618 .702 .787 .872	.542 .626 .711 .796 .880	.550 .635 .719 .804 .889	.559 .643 .728 .813 .897	. 567 . 652 . 736 . 821 . 906	.576 .660 .745 .829	.584 .669 .753 .838
11 12 13 14	.931 1.016 1.100 1.185	.939 1.024 1.109 1.193	.948 1.033 1.117 1.202 1.286	.956 1.041 1.126 1.210	.965 1.049 1.134 1.219	.973 1.058 1.143 1.227	.982 1.066 1.151 1.236	.990 1.075 1.160 1.244	.999 1.083 1.168 1.253	1.007 1.092 1.176 1.261
16 17 18 19 20	1.354 1.439 1.523 1.608	1.363 1.447 1.532 1.617	1.871 1.456 1.540 1.625 1.710	1.380 1.464 1.549 1.633	1.388 1.473 1.557 1.642	1.397 1.481 1.566 1.650	1.405 1.490 1.574 1.659	1.413 1.498 1.583 1.667	1.422 1.507 1.591 1.676	1.430 1.515 1.600 1.684
21 22 23 24 25	1.777 1.862 1.947	1.786 1.870 1.955	1.794 1:879 1.964 2.048 2.133	1.803 1.887 1.972	1.811 1.896 1.981	1.820 1.904 1.989	1.828 1.913 1.997	1.837 1.921 2.006	1.845 1.930 2.014	1.854 1.938 2.023
26 27 28 29 30	2.201 2.285 2.370 2.454	2.209 2.294 2.378 2.463		2.226 2.311 2.395 2.480	2.234 2.319 2.404 2.488	2.243 2.328 2.412 2.497	2.251 2.336 2.421 2.505	2.260 2.344 2.429 2.514	2.268 2.353 2.438 2.522	2.277 2.361 2.446 2.531
34	2.624 2.708 2.793 2.878 2.962	2.632 2.717 2.801 2.886	2.641 2.725 2.810 2.895	2.649 2.734 2.818 2.903	2.658 2.742 2.827 2.912	2.666 2.751 2.835 2.920	2.675 2.759 2.844 2.928	2.683 2.768 2.852 2.937	2.691 2.776 2.861 2.945	2.700 2.785 2.869 2.954
36 37 38 39	3.047 3.132 3.216 3.301 3.385	3.055 3.140 3.225 3.309	3.064 3.148 3.233 3.318	3.072 3.157 3.242 3.326	3.081 3.165 3.250 3.335	3.089 3.174 3.259 3.343	3.098 3.182 3.267 3.352	3.106 3.191 3.275 3.360	3.115 3.199 3.284 3.369	3.123 3.208 3.292 3.377
41 42 43 44	3.470 3.555 3.639 3.724 3.809	3.479 3.563 3.648 3.732	3.487 3.572 3.656 3.741	3.496 3.580 3.665 3.749	3.504 3.589 3.673 3.758	3.512 3.597 3.682 3.766	3.521 3.606 3.690 3.775	3.529 3.614 3.699 3.783	3.538 3.622 3.707 3.792	3.546 3.631 3.716 3.800
46 47 48 49	3.893 3.978 4.063 4.147 4.232	3.902 3.986 4.071 4.156	3.910 3.995 4.080 4.164	3.919 4.003 4.088 4.173	3.927 4.012 4.096 4.181	3.936 4.020 4.105 4.190	3.944 4.029 4.113 4.198	3.953 4.037 4.122 4.206	3.961 4.046 4.130 4.215	3.969 4.054 4.139 4.223

2

Table 15 (Concluded)

THEORETICAL KILOWATTS OF 1 CUBIC FOOT PER SECOND OF WATER FOR HEADS FROM 0 TO 100 FEET

Head in feet	0	1.	2	3	4	5	6	7	8	9
51 52 53 54 55	4.486	4.494	4.503	4.342 4.427 4.511 4.596 4.680	4.520	4.528	4.537	4.545	4.553	4.393 4.477 4.562 4.647 4.731
56 57 58 59 60	4.909	$\frac{4.917}{5.002}$	$\frac{4.926}{5.011}$	4.934 5.019	4.943 5.027	4.951 5.036	4.960 5.044	4.968 5.053	4.977 5.061	4.816 4.900 4.985 5.070 5.154
61 62 63 64 65	5.247 5.332 5.417	5.256 5.341 5.425	5.264 5.349 5.434	5.273 5.358 5.442	5.281 5.366 5.451	5.290 5.374 5.459	5.298 5.383 5.468	5.307 5.391 5.476	5.315 5.400 5.484	5.239 5.324 5.408 5.493 5.578
66 67 68 69 70	5.671 5.755	5.679 5.764	$5.688 \\ 5.772$	5.611 5.696 5.781 5.865 5.950	5.705 5.789	5.713 5.798	$5.721 \\ 5.806$	5.730 5.815	5.738 5.823	5.662 5.747 5.831 5.916 6.001
71 72 73 74 75	6.009 6.094 6.179 6.263	6.018 6.102 6.187 6.272	6.026 6.111 6.195 6.280	6.035	6.043 6.128 6.212 6.297	6.052 6 136 6.221 6.305	6.060 6.145 6.229 6.314	6.068 6.153 6.238 6.322	6.077 6.162 6.246 6.331	6.085 6.170 6.255 6.339
76 77 78 79 80	6.432 6.517 6.602 6.686	6.441 6.526 6.610 6.695	6.449 6.534 6.619 6.703	6.458 6.542 6.627 6.712 6.796	6.466 6.551 6.636 6.720	6.475 6.559 6.644 6.729	6.483 6.568 6.652 6.737	6.492 6.576 6.661 6.746	6.500 6.585 6.669 6.754	6.509 6.593 6.678 6.763
81 82 83 84 85	6.856 6.940 7.025 7.110	6.864 6.949 7.033 7.118	6.873 6.957 7.042 7.126	6.881 6.966 7.050 7.135 7.220	6.889 6.974 7.059 7.143	6.898 6.983 7.067 7.152	6.906 6.991 7.076 7.160	6.915 6.999 7.084 7.169	6.923 7.008 7.093 7.177	6.932 7.016 7.101 7.186
86 87 88 89	7.279 7.363	7.287 7.372	7.296 7.380	7.304 7.389 7.473 7.558 7.643	7.313 7.397	7.321 7.406	7.330 7.414	7.338 7.423	7.34 6 7.431	7.355 7.440
91 92		7.710 7.795	7.719 7.804	7.727 7.812	7.736 7.820	7.744 7.829	7.753 7.837	7.761	7.770 7.854	7.778 7.863
96 97 98 99		8.134 8.218 8.303 8.388	8.142 8.227 8.311 8.396	8.151 8.235 8.320 8.404	8.159 8.244 8.328 8.413	8.167 8.252 8.337 8.421	8.176 8.261 8.345 8.430	8.184 8.209 8.354 8.438	8.193 8.278 8.362 8.447	8.201 8.286 8.371 8.455

CHAPTER III

ORIFICES

The following nomenclature will be used in discussing orifices:

L =Breadth of rectangular orifice in feet

M = Height of rectangular orifice in feet

d =Diameter of circular orifice in feet

a =Area of orifice in square feet

Q =Discharge in cubic feet per second

v =Mean velocity in feet per second

v_i = Theoretical mean velocity in feet per second

h = Head on center of orifice

g = Acceleration due to gravity = 32.16 approximately

 $C_v = \text{Coefficient of velocity}$

 C_{σ} = Coefficient of contraction

 $C = \text{Coefficient of discharge} = C_i C_c$

Fundamental Considerations

Theoretical Velocity.—The theoretical velocity of water flowing through an orifice is, by Torricelli's theorem, the velocity acquired by a body falling freely in vacuo through a distance equal to the difference in elevation between the surface of the water and the elevation of the center of the orifice. It was the discovery of this great fundamental principle which lead to our modern development of the science of hydraulics. The Torricelli theorem may be expressed by the formula

$$v_t = \sqrt{2gh} \tag{1}$$

or

$$h = \frac{v_i^2}{2g} \tag{2}$$

Tables 16, 17, and 18, pages 48, 49, and 50, give values of v_t for heads ranging from 0 to 500 feet. Tables 19 and 20, pages 51 and 53 give theoretical heads for velocities ranging from 0 to 50 feet per second.

Contraction.—The area of cross-section of a jet is less than the area of the orifice from which it discharges. When a jet leaves an orifice it contracts to a smaller area, later expanding and becoming more or less irregular. The section of minimum

Frg. 11.

Orifice.

area is called the *vena contracta*. Let AD, Fig. 11, represent a section of a side of a vessel containing water which passes through an orifice BC. The vena contracta is at E, a little over one diameter from the inner edge of the wall.

The amount of contraction depends upon the form of the opening. Sharp corners at the inner edge of the orifice cause a maximum contraction and rounded corners conforming to the shape of a contracting jet cause the minimum contraction. There are various intermediate conditions.

The ratio of the area of the vena contracta to the area of the orifice is called the coefficient of contraction, C_c . Its mean value is approximately 0.62 for a sharp-edged orifice, and approaches unity for an orifice with rounded corners.

The discharge from an orifice is equal to the product of the area of a section of the jet at the vena contracta and the mean velocity, or

$$Q = C_c a v (3)$$

The mean velocity of a jet is always slightly less than the theoretical velocity. The ratio of the mean velocity to the theoretical velocity is called the coefficient of velocity, C_v . The numerical value of C_v ranges between 0.96 and 0.99 with 0.98 a fair average value.

Equation (3) may be written

$$Q = C_c C_v a v_t (4)$$

 \mathbf{or}

$$Q = Cav_t (5)$$

or

$$Q = Ca \sqrt{2gh} \tag{6}$$

in which a is the area of the orifice and C the coefficient of discharge.

The coefficients of velocity and contraction are difficult to determine experimentally and are of theoretical rather than actical value. The coefficient of discharge may be determined

by measuring the quantity of water flowing from an orifice of known dimensions in a given time and determining the ratio between this discharge and the theoretical discharge. It is therefore the coefficient of discharge in which engineers are particularly interested. This coefficient has been found to vary with the head and the size of the orifice.

The sharp-edged orifice provides an accurate means of measuring small quantities of water. Orifices with rounded edges are frequently used in design and it is desirable to have coefficients of discharge for such orifices.

Rectangular Orifices.—In general the above discussion applies to an orifice of any shape. There is, however, a fundamental error in assuming that the head on the center of any

Fig. 12.—Rectangular orifice.

orifice, not horizontal, is the mean head. Referring to Fig. 12 the theoretical formula for discharge over a rectangular orifice may be derived as follows:

Let h_1 be the head on the upper edge of the orifice and h_2 the head on the lower edge. The discharge through any elementary strip of area Ldy at a distance y below the water surface is given by the equation

$$dQ = Ldy \sqrt{2gy}$$

which integrated between the limits h_2 and h_1 gives

$$Q = \frac{2}{3} L \sqrt{2g} \left(h_2^{3/2} - h_1^{3/2} \right) \tag{7}$$

When h_1 is zero this equation reduces to

$$Q = \frac{2}{3} \sqrt{2g} L h_2^{\frac{3}{2}}$$
 (8)

which is the theoretical formula of discharge for a rectangular weir.

Equation (7) gives the theoretical discharge for a rectangular orifice. A similar though more complicated expression would give the theoretical discharge through circular orifices. The formula

$$Q = LM \sqrt{2gh}$$
 (9)

in which h is the head on the center of the orifice, may be used without appreciable error unless h_1 is small as compared to M. For $h_1 = M$ equation (9) gives results about 1 per cent. too great and for $h_1 = 2M$ results are 0.3 per cent. too great.

Equation (9) is the base formula usually employed. Even for the lower heads the correction necessary may be made in applying the discharge coefficient. The actual working formula for discharge from a rectangular orifice, the same as for a circular orifice, or orifice of any other shape is, therefore,

$$Q = Ca\sqrt{2gh} \tag{10}$$

in which a is the area of the opening, C the coefficient of discharge and h the head on the center of the orifice.

Orifices with Full Contraction

Many experiments to determine the coefficients of discharge for sharp-edged orifices have been performed. Tables of coefficients of discharge for square and circular orifices, which have been quite generally accepted by modern hydraulicians were published by Hamilton Smith, 1 Jr., in 1886. These tables which were prepared with great care, are based upon experiments by Poncelet and Lebros, T. G. Ellis, Hamilton Smith, Jr., Julius Weisbach, W. C. Unwin, J. B. Francis, R. Steckel, Darcy and Bazin. Tables 21 and 22, pages 54 and 55, are reproductions of Smith's tables of coefficients of discharge through circular orifices and square orifices respectively.

Later experiments by Judd and King,² and Bilton³ do not altogether confirm the results in Smith's tables. After a careful study of the earlier experiments in connection with his own and those by Judd and King, Bilton concludes:

- 1. The assumption that a coefficient of discharge common to all orifices from ½ inch to 12 inches in diameter is reached at a head of 100 feet is erroneous.
- 2. That in order to obtain complete and perfect contraction a certain minimum diameter and head are required. These

¹ Hamilton Smith, Jr.: Hydraulics, pp. 58-59.

² HORACE JUDD and ROY S. KING: Some Experiments on the Frictionless Orifice. From paper read before the American Association for the Advancement of Science, July, 1906. *Engineering News*, Sept. 27, 1906.

³ H. J. I. Bilton: Coefficients of Discharge through Circular Orifices. From paper read before the Victorian Institute of Engineers, April, 1908. Engineering News, July 9, 1908.

appear to be approximately $2\frac{1}{2}$ inches and 17 inches respectively.

- 3. That orifices of $2\frac{1}{2}$ inches diameter and over, under heads of 17 inches and over, have a common coefficient of discharge, lying between 0.59 and 0.60 but which is probably about 0.598 (subject to the head being not less than 2 or 3 diameters).
- 4. That in the case of orifices smaller than 2½ inches in diameter, contraction is never perfect and complete under any head, but is suppressed more and more as the diameter decreases, each size of orifice having its own constant or "normal" coefficient of discharge and its own critical head.
- 5. That as the diameter decreases, the normal coefficient increases, as also the critical head.
- 6. That in an infinitely small orifice, contraction is entirely suppressed and unity becomes the coefficient of discharge for all heads (subject to the effects of capillarity, cohesion, viscosity, temperature, etc.).
- 7. That the discharge of a circular orifice under any given head is the same, whether the jet be horizontal, vertical, or at any intermediate angle.

It is probable that with proper modification the above comments will apply to square or rectangular orifices. The approximate coefficient, 0.60 for orifices above $2\frac{1}{2}$ inches in diameter and for heads greater than 17 inches, can be easily remembered.

A table of coefficients of discharge for rectangular orifices has been prepared by Fanning¹ from experiments by Michelotti, Bossut, Rennie, Castel, Lespinasse and Ellis. Fanning's results to three decimal places are given in Table 23, page 56. The coefficients given are for orifices 1 foot wide, and from 0.125 to 4 feet high under heads of from 0.3 to 50 feet.

Table 24, page 57, prepared by Bovey² from experiments on orifices of different shapes, having the same area as a circle ½ inch in diameter, gives the effect of shape of opening on the coefficient of discharge. It does not necessarily follow that a similar relation will hold for orifices of larger areas.

Orifices with Contractions Suppressed

Orifices with contractions either wholly or partially suppressed are not commonly used for measuring water because

¹ J. T. FANNING: Water Supply Engineering, pp. 205-206.

^{*} HENRY T. BOVEY: Hydraulics, p. 40.

of the uncertainty which exists in selecting a proper coefficient of discharge. Such orifices, however, are often used in design and values of these coefficients are important. Unfortunately, available experimental data do not cover as wide a range of conditions as is desirable.

Table 25, page 58, has been prepared from results obtained by Smith! from experiments by Lebros. Though the orifices experimented upon were small, they should form a guide for selecting coefficients for larger orifices. It is probable that coefficients of discharge for orifices with contractions suppressed will decrease slightly as the size of the opening increases the same as for sharp-edged orifices. In Table 25 suppressed contraction means that the side of the channel coincides with the edge of the orifice and partly suppressed contraction means that the distance between the side of the channel and edge of the orifice is 0.066 foot.

Effects of Velocity of Approach

In the discussion thus far it has been assumed that water has been discharged from a reservoir which is large in comparison with the area of the orifice. When the area of the cross-section of the channel conducting water to the orifice is small compared to the area of the orifice, so that there is an appreciable velocity of approach, the discharge through the orifice will be increased.

There are but few experiments available on the effects of velocity of approach on the discharge through orifices. It has been customary to consider that the measured head should be increased by the velocity head due to the mean velocity in the channel of approach. This assumption would probably be approximately true if the velocity of approach were uniform. The velocity, however, is not uniform in all parts of the section and the kinetic energy of the water in the channel is greater² than it would be for uniform velocity. This conclusion is borne out by experiments on velocity of approach for weirs. The formula for discharge through any orifice with velocity of approach correction may be written.

$$Q = aC \sqrt{2g \left(h + \beta \frac{V^2}{2g}\right)}$$
 (11)

¹ Hamilton Smith, Jr.: Hydraulies, pp. 65-67.

² See discussion by ROBERT E. HORTON, Water Supply and Irrigation Paper No. 200, U. S. Geological Survey, pp. 17-20.

in which β is an empirical coefficient and V is the mean velocity of approach. Calling A the area of the channel of approach, since

$$V = \frac{Q}{A}$$

$$\text{den}$$

$$A = \frac{1}{2} \cdot \frac{1}{2}$$

The equation may be written $Q = Ca \sqrt{2gh} \left(h + \frac{\beta}{2a} \cdot \frac{Q^2}{A^2} \right)^{\frac{1}{2}}$ (12)

Reducing by a method analogous to that given on page 70 for weirs, the general formula for discharge from an orifice with velocity of approach becomes

$$Q = Ca \sqrt{2gh} \left(1 + \frac{C^2\beta}{2} \cdot \frac{a^2}{A^2} \right) \tag{13}$$

Experiments with orifices for determining β are not available but from experiments on sharp-crested weirs it appears to have a value of about-6.4, and assuming this value for sharpedged orifices, the formula is

$$Q = Ca \sqrt{2gh} \left(1 + 3.2 C^2 \frac{a^2}{A^2} \right)$$
 (14)

Short Tubes

Borda's mouthpiece is a short cylindrical tube projecting inwardly as shown in Fig. 13. The inward edge of the tube must be relatively thin and sharp to insure perfect contraction and its length must be such, about $\frac{1}{2}d$, that the jet will not touch the sides of the tube. The following are average coefficients.

$$C = 0.51, \quad C_v = 0.98 \quad C_s = 0.52$$

Fig. 13.—Borda's mouthpiece.

Fig. 14.—Standard short tube.

Standard Short Tubes.—A cylindrical tube, having a length of from 2 to 3 diameters with the inner end set flush with a flat wall so as to form a sharp-cornered entrance is commonly called a standard short tube. In such tubes, Fig. 14, the issuing jet touches the sides of the tube after leaving the

inner face and the tube flows full. The coefficient of contraction is considered unity. The coefficient of discharge varies from 0.78 to 0.83. The mean value generally used is

$$C = 0.82$$

Fig. 15.—Short tube projecting inward.

Fig. 16.—Convergent tube with sharp corner at entrance.

Short tubes projecting inward as shown in Fig. 15 have coefficients of discharge varying from 0.72 to 0.80. The average value commonly employed is

$$C = 0.75$$

rounded corner at entrance.

Fig. 17.—Convergent tube with Fig. 18.—Converging bellmouthed orifice.

Convergent short tubes are frustrums of cones as shown in Figs. 16 and 17. Fig. 16 has the larger base set flush with a flat wall so as to form a sharp-cornered entrance. Fig. 17 has the entrance to the tube slightly rounded. The sides of the tube make an angle θ with the axis of the cone.

Experiments for these tubes give conflicting results. Fair average values are given by Unwin¹ as follows:

Angle θ	0°	$5\frac{3}{4}^{\circ}$	11¼°	221⁄2°	45°
C, for Fig. 16	0.83	0.94	0.92	0.85	
C, for Fig. 17	0.97	0.95	0.92	0.88	0.75

Converging Bell-mouthed Orifice.—If the surface of the opening is rounded to conform to the shape of the contracted jet, Fig. 18, C_c approaches unity. The following are coefficients by Weisbach² for d=0.033 foot. Other experiments indicate that these results hold approximately for larger orifices.

h in feet	0,066	1.640	11.480	55.770	337.930
<i>C</i>					

A day

Fig. 19.—Diverging tube with sharp corner at entrance.

Fig. 20.—Diverging tube with rounded corner at entrance.

Diverging Conical Tubes.—Figs. 19 and 20. The coefficient of discharge varies with the angle of divergence and length of tube. Experiments by Venturi showed discharge to be a maximum with l=9d, and angle of divergence equal to 5°. If divergence is not too great the tube will flow full. The coefficient of discharge is variable but when so designed that the tube flows full the following results may be obtained:

For Fig. 19,
$$C = 1.4$$

For Fig. 20, $C = 2.0$

Nozzles.—A very complete set of experiments on the flow of water through nozzles was performed by Freeman³ at Lowell, Mass., in 1888.

Two types of nozzles are in common use. Each are converging cones, one smooth throughout, Fig. 21, and the other with

¹ W. C. Unwin: Treatise on Hydraulies, p. 89.

² Julius Weisbach; Ingenieur und Machinen-Mechanik, p. 969 (ed. 1875).

^{*} JOHN R. FREEMAN: Experiments Relating to Hydraulics of Fire Streams, Trans. Amer. Soc. Civ. Eng., vol. 21, pp. 303-482.

a narrow ring at the outlet, Fig. 23. The opening in the ring nozzle is similar to a sharp-cornered orifice, which causes a contraction of the jet. The smooth nozzle may terminate in a cylinder, with the conical part curved as shown in Fig. 22. The ring nozzle was found by Freeman's experiments to have no particular advantage over smooth nozzles.

The following are mean values of coefficients of discharge of smooth nozzles as determined by Freeman:

Diameter in inches... 11/6 ¾ 7∕8 11/4 136 0.983 0.982 0.972 0.976 0.971 0.959

Fig. 21. Fig. 22.

Fig. 23. Different shaped nozzles.

The following are mean values of coefficients of discharge for ring nozzles as determined from Freeman's experiments. The ratio of the diameter of opening to diameter just back of ring is given.

Ratio 0.60 0.70 0.800.850.900.950.630 0.650 0.680 0.710 0.730 0.770 0.870 0.975

Submerged Orifices

The discharge through submerged orifices is given by the formula

$$Q = Ca\sqrt{2gh} \tag{15}$$

where h is the difference in elevations of water surfaces above and below the orifice, C the coefficient of discharge and a the area of the opening. There are but few experiments available for determining C for submerged orifices. What data there are indicate that discharge coefficients are not greatly affected by submergence.

Table 26, page 59, gives coefficients of discharge for submerged sharp-edged orifices of various dimensions compiled from the best available data. Table 27, page 59, gives coefficients of discharge for an orifice 1 foot square with rounded edges, from experiments by Ellis.1

¹ Trans. Amer. Soc. Civ. Eng., vol. 5, p. 19

Gates

Gates Discharging Freely into Air.—The results of experiments on models of gates shown in the Figs. 24 and 25 are given by Unwin.¹ Table 28, page 60, giving coefficients of discharge for various depths of water above the top of the openings, was computed from Unwin's results. The head on

Fig. 24.—Gates discharging freely into air.

the center of orifice in this table may be obtained by adding half of the depth of opening to the depth of water above the top of orifice.

Determination of the coefficient of discharge of a sluice gate of the Argo dam at Ann Arbor, Mich., was made by Ward² in 1916. The gate is approximately 4 feet wide and 5 feet high. The opening is between concrete piers with beveled

Fig. 25.—Gates with prolonged bottoms and sides.

noses. The gate closes on a base 1 foot above the concrete floor. The bottom of the gate formed the upper edge of the opening. Below the gate is a concrete basin 2.5 feet deep and 20 feet long. The water in the river below the dam when the test was made was lower than the gate sill. The mean head on the center of the opening was about 8 feet. For this head the mean of several observations gave a coefficient of discharge of 0.545.

¹ W. C. Unwin: Hydraulics. Encyclopædia Britannica, 11th edition, vol. 14, p. 41.

² C. N. WARD: An unpublished thesis for the University of Michigan.

Submerged Gates.—Submerged gates are frequently encountered in engineering practice. They may be used for either intakes or sluices. Such gates are subject to a variety of entrance conditions which affect the contraction and consequently the coefficient of discharge. The most common case is where the bottom of the opening is nearly flush with the floor of the structure and the sides of the opening are flush with the piers in which the gate guides are placed. The contraction at the sides and bottom of the opening will then be greatly reduced. If the gate rests on a sill somewhat higher than the floor of the structure or if the gate guides project beyond the sides the amount of contraction will be increased. There is usually complete contraction at the top of the opening. The effect of contraction on such openings, however, appears to decrease as the size of the opening increases.

Only a few experiments on submerged gates are available and these are of a very general character. The problem is also complicated by the fact that a standing wave usually forms below the gate and there is a question as to the proper distance below the gate for measuring the water-surface elevation. The engineer is usually more interested in the elevation that occurs below the turbulence caused by the standing wave.

The experiments bearing on this subject have been discussed by Parker.¹ He analyzes experiments by Bornemann,² Chatterton³ and Benton.⁴ Chatterton gives the following formula for C for values of h below 5 feet.

$$C = 0.615 + 0.007 \times 2^{6-h} \tag{16}$$

Benton gives the following formula for heads below 5 feet and widths of gate opening (W) up to 10 feet:

$$C = 0.7201 + 0.0074 W (17)$$

Formulas (16) and (17) are based upon independent sets of observations. It will be observed that in formula (16) C varies only with h and in formula (17) it varies only with W. Results by the two formulas agree quite closely for heads of 1 foot or less but differ by from 10 to 25 per cent. for the higher heads. This divergence may be accounted for by the condi-

PHILIP À MORLEY PARKER: Control of Water, pp. 164-168.

² Civilingenieur, vol. 26, p. 297.

Hydraulic Experiments in the Kistna Delta. Punjab Irrigation Branch Paper, No. 8.

tions under which the experiments were performed. The conditions which will affect the discharge through submerged gates are explained below and these should be given careful consideration in each case before selecting a coefficient of discharge.

(a) The type of construction as affecting contraction. The greater the contraction the less the discharge.

(b) The condition of channels leading to and from the gate as affecting velocity of approach and velocity of retreat.

(c) The height of standing wave and point chosen for measuring elevation of water surface below the gate with reference to same. The discharge coefficient will be less when the head below the gate is measured in the trough of the standing wave than when measured farther downstream below all turbulence. The height of standing wave below the gate will increase as the depth of water decreases.

Table 29, page 61, gives values of the coefficient of discharge, C, computed from Chatterton's and Benton's formulas (formulas (16) and (17)).

Submerged Tubes.—Stewart¹ experimented on submerged tubes 4 feet square, with lengths varying from 0.31 to 14 feet, and heads from 0.05 to 0.30 feet. The entrance conditions included sharp edges and various degrees of suppressed contraction. Rogers and Smith have extended the experiments by Stewart to include sharp-edged tubes 6, 8, and 10 inches square, with varying lengths under heads up to 2.2 feet. Rogers and Smith² decided from their investigation that the coefficient of discharge C, varied as L/D, L being the length of tube and D the length of one side of the cross-section of the tube, and was independent of the head.

The author has prepared Table 30, page 62, from the results of these experiments assuming that the coefficient of discharge for any submerged tube varies as $\frac{L}{p}$, L and p being respectively the length of tube and perimeter of cross-section of the tube. For a square tube, p=4D. It is evident that this assumption may be erroneous but it appears reasonable and as safe as any in view of the fact that there are no experimental data for circular or rectangular tubes.

¹C. B. STEWART: Investigation of Flow through Large Submerged Orifices and Tubes. *Bulletin* of the University of Wisconsin, No. 216.

² T. C. ROGERS and T. L. SMITH: Experiments with Submerged Orifices and Tubes. *Engineering News*, Nov. 2, 1916.

Table 16.—Theoretical Velocities in Feet per Second, for Heads from 0 to 5 Feet. From the Formula

 $v_i = \sqrt{2ah}$

$v_i = \sqrt{2gn}$										
Head in feet	0	1	2	3	4	5	6	7	8	9
.0 .1 .2 .3	0.00 2.54 3.59 4.39 5.07	0.80 2.66 3.68 4.47 5.14	1.13 2.78 3.76 4.54 5.20	1.39 2.89 3.85 4.61 5.26	1.60 3.00 3.93 4.68 5.32	1.79 3.11 4.01 4.74 5.38	1.96 3.21 4.09 4.81 5.44	2.12 3.31 4.17 4.88 5.50	2.27 3.40 4.24 4.94 5.56	2.41 3.50 4.32 5.01 5.61
.5 .6 .7 .8	5.67 6.21 6.71 7.17 7.61	5.73 6.26 6.76 7.22 7.65	5.78 6.31 6.80 7.26 7.69	5.84 6.37 6.85 7.31 7.73	5.89 6.42 6.90 7.35 7.78	5.95 6.47 6.95 7.39 7.82	6.00 6.52 6.99 7.44 7.86	6.06 6.56 7.04 7.48 7.90	6.11 6.61 7.08 7.52 7.94	6.16 6.66 7.13 7.57 7.98
1.0 1.1 1.2 1.3 1.4	8.02 8.41 8.79 9.14 9.49	8.06 8.45 8.82 9.18 9.52	8.10 8.49 8.86 9.21 9.56	8.14 8.53 8.89 9.25 9.59	8.18 8.56 8.93 9.28 9.62	8.22 8.60 8.97 9.32 9.66	8.26 8.64 9.00 9.35 9.69	8.30 8.68 9.04 9.39 9.72	8.33 8.71 9.07 9.42 9.76	8.37 8.75 9.11 9.45 9.79
1.5 1.6 1.7 1.8 1.9	10.46 10.76	9.86 10.18 10.49 10.79 11.08	10.21 10.52 10.82	10.55 10.85	$10.58 \\ 10.88$	10.30 10.61 10.91	10.64 10.94	10.37 10.67 10.97	10.40 10.70 11.00	10.43 10.73 11 03
2.0 2.1 2.2 2.3 2.4	11.90	11.37 11.65 11.92 12.19 12.45	11.95	11.98	12.00	12.03	12.06	12.08	12.11	12.14
2.5 2.6 2.7 2.8 2.9	12.93 13.18 13.42	12.71 12.96 13.20 13.45 13.68	12.98 13.23 13.47	13.01 13.25 13.49	13.03 13.28 13.52	13.06 13.30 13.54	13.08 13.32 13.56	13.10 13.35 13.59	13.13 13.37 13.61	13.15 13.40 13.63
3.0 3.1 3.2 3.3 3.4	14.12 14.35 14.57	13.91 14.14 14.37 14.59 14.81	14.17 14.39 14.61	14.19 14.41 14.63	14.21 14.44 14.66	14.23 14.46 14.68	14.26 14.48 14.70	14.28 14.50 14.72	14.30 14.53 14.74	14.32 14.55 14.77
3.5 3.6 3.7 3.8 3.9	15.22 15.43 15.63	15.02 15.24 15.45 15.65 15.86	15.26 15.47 15.68	15.28 15.49 15.70	15.30 15.51 15.72	15.32 15.53 15.74	15.34 15.55 15.76	15.36 15.57 15.78	15.39 15.59 15.80	15.41 15.61 15.82
4.0 4.1 4.2 4.3 4.4	16.44 16.63	16.06 16.26 16.46 16.65 16.84	16.48 16.67	16.50 16.69	16.51 16.71	$16.53 \\ 16.73$	$16.55 \\ 16.75$	16.57 16.77	16.59 16.79	16.61 16.80
4.5 4.6 4.7 4.8 4.9	17.20 17.39 17.57	17.03 17.22 17.41 17.59 17.77	17.24 17.42 17.61	17.26 17.44 17.63	17.28 17.46 17.64	17.29 17.48 17.66	17.31 17.50 17.68	17.33 17.52 17.70	17.35 17.53 17.72	17.37 17.55 17.73

TABLE 17.—THEORETICAL VELOCITIES IN FEET PER SECOND, FOR HEADS FROM 0 TO 50 FEET. FROM THE FORMULA

 $v_i = \sqrt{2gh}$

Head in feet	0	,	2	3	4	5	6	7	8	9
0 1 2 3 4	13.89	8.41 11.62 14.12		12.16 14.57	9.49 12.42 14.79	9.82 12.68 15.00	15.22	10.46 13.18 15.43	13.42 15.63	11.05 13.66 15.84
5 6 7 8 9	19.64 21.22 22.68	19.81 21.37 22.83	18.29 19.97 21.52 22.97 24.32	20.13 21.67 23.11	20.29 21.81 23.24	20.45 21.96 23.38	20.60 22.11 23.52	20.76 22.26 23.65	20.91 22.40 23.79	21.06 22.54 23.93
10 11 12 13 14	26.60 27.78 28.92	26.72 27.90 29.03	25.61 26.84 28.01 29.14 30.22	26.96 28.13 29.25	27.08 28.24 29.36	27.20 28.36 29.47	27.31 28.47 29.58	27.43 28.58 29.68	27.55 28.69 29.79	27.66 28.80 29.90
15 16 17 18 19	33.07 34.03	33.16 34.12	31.27 32.28 33.26 34.21 35.14	33.35 34.31	$33.45 \\ 34.40$	33.55 34.50	33.65 34.59	33.74 34.68	33.84 34.77	33.93 34.87
20 21 22 23 24	37.62 38.46	37.70 38.54	36.05 36.93 37.79 38.63 39.45	37.88 38.71	37.96 38.80	38.04 38.88	38.12 38.96	$38.21 \\ 39.04$	$38.29 \\ 39.13$	$38.38 \\ 39.21$
25 26 27 28 29	40.89 41.67 42.44	40.97 41.75 42.51	40.26 41.05 41.83 42.59 43.34	41.13 41.90 42.66	41.21 41.98 42.74	41.29 42.06 42.82	41.36 42.13 42.89	41.44 42.21 42.97	41.52 42.29 43.04	41.60 42.36 43.11
30 31 32 33 34	44.65 45.37 46.07	44.72 45.44 46.14	44.07 44.79 45.51 46.21 46.90	44.87 45.58 46.28	44.94 45.65 46.35	45.01 45.72 46.42	45.08 45.79 46.49	45.15 45.86 46.56	45.23 45.93 46.63	45.30 46.00 46.69
35 36 37 38 39	48.12 48.78 49.44	48.19 48.85 49.50	47.58 48.25 48.92 49.57 50.21	48.32 48.98 49.63	48.39 49.05 49.70	48.45 49.11 49.76	48.52 49.18 49.83	48.59 49.24 49.89	48.65 49.31 49.96	48.72 49.37 50.02
40 41 42 43 44	51.35 51.97 52 .59	51.41 52.04 52.65	50.85 51 47 52 10 52.71 53.32	51.54 52.16 52.77	51.60 52.22 52.83	51.67 52.28 52.90	51.73 52.35 52.96	51.79 52.41 53.02	51.85 52.47 53.08	51.91 52.53 53.14
45 46 47 48 49	54.39 54.98 55.56	54.45 55.04 55.62	53.92 54.51 55.10 55.68 56.25	54.57 55.16 55.74	54.63 55.22 55.80	54.69 55.27 55.85	54.75 55.33 55.91	54.81 55.39 55.97	54.87 55.45 56.03	54.92 55.51 56.08

Table 18.—Theoretical Velocities in Feet per Second, for Heads from 0 to 500 Feet. From the Formula

 $v_t = \sqrt{2qh}$

				<i>v</i> _t –	$\sqrt{2g}$	n	•			
Head in feet	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
00	0	8.02	11.34	13.89	16.04	17.93	19.64	21.22	22.68	
10	25.36	26.60	27.78	28.92	30.01	31.06		33.07	34.03	34.96
20	35.87	36.75	37.62	38.46	39.29	40.10	40.89	41.67	42.44	48.19
30 40	43.93 50.72	44.65 51.35	45.37 51.97	46.07 52.59	46.76 53.20	47.45 53.80	48.12 54.39	48.78 54.98	49.44 55.56	50.08 56.14
20	30.12	01.00	01.81	02.00	00.20	00.00	UT.00	01.00	00.00	50.12
50	56.71	57.27	57.83	58.39	58.93	59.48	60.02	60.55	61.08	61.60
60	62.12	62.64	63.15	63.66	64.16	64.66	65.15	65.65	66.13	66.62
70	67.10	67.58	68.05	68.52	68.99	69.46	69.92	70.88	70.83	71.28
80 90	71.73 76.08	72.18 76.51	72.62 76.93	73.06 77.34	73.50 77.76	73.94 78.17	74.37 78.58	74.80 78.99	75.23 79.39	75.66 79.80
80	10.00	70.01	10.50	11.02	11.10	10.11	10.00	10.00	18.00	P
100	80.20	80.60	81.00	81.39	81.79	82.18	82.57	82.96	83.35	83.73
110	84.11	84.50	84.88	85.25	85.63	86.00	86.38	86.75	87.12	
120	87.85	88.22	88.58	88.95	89.31	89.67	90.02	90.38	90.74	91.09
130	91.44	91.79	92.14	92.49	92.84	93.18	93.53	93.87	94.21	94.55 97.90
140	94.89	95.23	95.57	95.91	96.24	96.57	96.91	97.24	97.57	97.90
150	98.22	98.55	98.88	99.20	99.53	99.85	100.17	100.49	100.81	101.13
160	101.45	101.77	102.08	102.39	102.71	103.02	103.33	103.64	103.95	104.26
170		104.87								
180	107.60	107.90	108.20	108.49	108.79	109.08	109.37	109.67	109.96	110.26
190	110.55	110.84	111.13	111.42	111.71	112.00	112.28	112 57	112.85	118.14
200	113.42	113.70	113.99	114.27	114.55	114.83	115.11	115.39	115.67	115.94
210	116.22	116.50	116.77	117.05	117.32	117.60	117.87	118.14	118.42	118.69
220	118.96	119.23	119.49	119.76	120.03	120.30	120.57	120.83	121.10	121.36
230	121.63	121.89	122.16	122.42	122.68	122.94	123.21	123.47	123.73	123.99
240	124.25	124.50	124.76	125.02	125.28	125.53	125.79	128.04	126.30	126.55
250	128 81	127.06	127 31	127 57	197 82	128 07	128 32	128 57	128 82	129.07
260	120.31	129.57	120.82	130.06	130 31	130 56	130.80	131 .05	131.29	131.54
270		132.03								
280	124 20	124 44	134 68	124 02	125 16	125 30	135 63	135 67	136 10	138.34
290	136.58	136.81	137.05	137.28	137.51	137.75	137.98	138.22	138.45	138.68
300	128 01	120 14	130 37	130 60	120 83	140 08	140 90	140 52	140 75	140 08
310	141 21	139.14 141.43	141.66	141.89	142.12	142 34	142.57	142.79	143.02	148.24
320	143.47	143.69	143.91	144.14	144.36	144.58	144.80	145.03	145.25	145.47
330	145.69	145.91	146.13	146.35	146.57	146.79	147.01	147.23	147.45	147,66
340	147.88	148.10	148.32	148.53	148.75	148.96	149.18	149.40	149.61	149.83
350	150 04	150.25	150 47	150 AS	150 00	151 11	151 32	151 53	151 75	151 QR
360	152.17	152.38	152.59	152.80	153.01	153.22	153.43	153.64	153.85	154.06
370	154.27	154.48	154.69	154.89	155.10	155.31	155.51	155.72	155.93	156.13
380	156.34	154.48 156.54	156.75	156.95	157.16	157.36	157.57	157.77	157.98	158.18
390	158.38	158.59	158.79	158.99	159.19	159.39	159.60	159.80	160.00	160.20
400	160 40	180 80	160 90	161 00	161 20	181 40	161 60	161 90	162 00	162 10
410	162.30	160.60 162.59	162.79	162.99	163.18	163.38	183.58	163.77	163.97	164.17
420	164.36	164.56	164.75	164.95	165.14	165.34	165.53	165.73	165.92	166.11
430	166.31	166.50	166.69	166.88	167.08	167.27	167.46	167.66	167.85	168.04
440	168.23	168.42	168.61	168.80	168.99	169.18	169.37	169.56	169.75	169.94
450	170 13	170.32	170.51	170.70	170 88	171.07	171.26	171.45	171.64	171.82
460		172.20								
470	173.87	174.05	174.24	174.42	174.61	174.79	174.98	175.16	175.35	175.53
480	175.71	175.89	176.08	176.26	176.44	176.62	176.80	176.99	177.17	177.35
490	177.53	177.71	177.89	178.07	178.25	178.43	178.61	178.79	178.97	179.15
	<u>' </u>							<u> </u>		

TABLE 19.—THEORETICAL HEADS IN FEET CORRESPONDING TO VELOCITIES FROM 0 TO 10 FEET PER

SECOND. FROM THE FORMULA $h_t = \frac{v^2}{2g}$

Velocity in	1									
feet per	0	1	2	3	4	5	6	7	8	9
second	1	! -	_		•	"	Ĭ .			
					<u> </u>		i			<u> </u>
0.0	0000	0.0000	0000	مممم ما	0000	0000	0.0001	0.0001	0.0001	0001
1 .1	.0002	.0002	.0002	.0003	.0003	.0003	.0004	.0004	.0005	.0006
.2	.0002	.0002	.0002	.0008	.0009	.0010	.0004	.0001		
.3	.0014	.0015	.0016	.0005	.0018	.0010	.0020	.0021	.0012	.0013 .0024
1 .4	.0025	.0026	.0027	.0029	.0030	.0019	.0020	.0021	.0022	.0027
									.0000	.0037
.5	.0039	.0040	.0042	.0044	.0045	.0047	.0049	.0051	.0052	.0054
.6	.0056	.0058	.0060	.0062	.0064	.0066	.0068	.0070	.0072	.0074
.7	.0076	.0078	.0061	.0083	.0085	.0087	.0090	.0092	.0095	.0097
.8	.0099	.0102	.0105	.0107	.0110	.0112	.0115	.0118	.0120	.0123
.9	.0126	.0129	.0132	.0134	.0137	.0140	.0143	.0146	.0149	.0152
1.0	.0155	.0159	.0162	.0165	.0168	.0171	.0175	.0178	.0181	.0185
1.1	.0188	.0192	.0195	.0199	.0202	.0206	.0209	.0213	.0216	.0220
1.2	.0224	.0228	.0231	.0235	.0239	.0243	.0247	.0251	.0255	.0259
1.2 1.3	.0263	.0267	.0271	.0275	.0279	.0283	.0288	.0292	.0296	0300
1.4	.0305	.0309	.0313	.0318	.0322	.0327	.0331	.0336	.0341	.0345
1										!
1.5	.0350	.0354	.0359	.0364	.0369	.0374	.0378	.0383	.0388	.0393
1.6 1.7	.0398	.0403	.0408	.0413	.0418	.0423	.0428	.0434	.0439	.0444
1.7	.0449	.0455	.0460	.0465	.0471	.0476	.0482	.0487	.0493	.0498
1.8 1.9	.0504	.0509	.0515	.0521	.0526	.0532	.0538	.0544	.0549	.0555
•	.0561	.0567	.0573	.0579	.0585	.0591	.0597	.0603	.0609	.0616
2.0	.0622	.0628	.0634	.0641	.0647	.0653	.0660	.0666	.0673	.0679
2.1	.0686	.0692	.0699	.0705	.0712	.0719	.0725	.0732	.0739	.0746
2.2	.0752	.0759	.0766	.0773	.0780	.0787	.0704	.0801	.0808	.0815
2.3	.0822	.0830	.0837	.0844	.0851	.0859	.0866	.0873	.0881	.0888
2.4	.0895	.0903	.0910	.0918	.0926	.0933	.0941	.0948	.0956	.0964
2.5	.0972	.0979	.0987	.0995	.1003	.1011	. 1019	.1027	.1035	.1043
1 26	.1051	.1059	.1067	.1075	1084	.1092	.1100	.1108	.1117	1125
2.7	.1133	.1142	.1150	.1159	.1167	.1176	.1184	.1193	1201	.1210
2.7 2.8	.1219	.1228	.1236	.1245	.1254	.1263	.1272	.1281	.1290	.1299
2.9	.1308	.1317	.1326	.1335	. 1344	.1353	.1362	.1371	.1381	.1390
				- 1		- 1)			1
3.0 3.1	.1399	.1409	.1418	.1427	.1437	.1446	.1456	. 1465	.1475	.1484
3.2	.1494 .1592	.1504 .1602	. 1513	.1523	.1533	. 1543	.1552	. 1562	.1572	.1582
3.2			.1612	.1622	.1632	.1642	.1652	1662	.1673	.1683
3.4	.1693 .1797	.1703	.1714	.1724	.1734	.1745	.1755	.1766	.1776 .1883	.1787
1			.1818	.1829	1		.1861	.1872	- 1	
3.5	.1904	. 1915	.1926	. 1937	.1948	.1959	.1970	. 1981	.1992	.2004
3.6	.2015	.2026	.2037	.2049	.2060	.2071	.2083	.2094	.2105	.2117
3.7	.2128	.2140	.2151	.2163	.2175	.2186	.2198	.2210	.2221	.2233
3.8 3.9	.2245	.2257	.2269	.2280	. 2292	.2304	.2316	.2328	.2340	.2352
	.2365	.2377	.2389	.2401	.2413	.2426	.2438	.2450	.2463	.2475
4.0	.2487	.2500	.2512	.2525	.2537	.2550	.2563	.2575	.2588	.2601
1 41 1	.2613	.2626	.2639	.2652	.2665	.2677	.2690	.2703	.2716	.2729
4.2	.2742	.2755	.2769	.2782	.2795	.2808	.2821	.2835	.2848	.2861
4.2 4.3	.2875	.2888	.2901	.2915	.2928	.2942	.2955	.2969	.2982	.2996
4.4	.3010	.3023	.3037	.3051	.3065	.3079	.3092	.3106	.3120	.3134
4.5	.3148	.3162	.3176	.3190	.3204	.3218	.3233	.3247	.3261	.3275
4.6	.3290	.3304	.3318	.3333	.3347	.3362	.3376	.3390	.3405	.3420
4.7	.3434	.3449	.3463	.3478	.3493	.3508	.3522	.3537	.3552	.3567
4.8	.3582	.3597	.3612	.3627	.3642	.3657	.3672	.3687	.3702	.3717
4.9	.3733	.3748	.3763	.3779	.3794	.3809	.3825	.3840	.3856	.3871
l	.0.00	.0.20	.0.00	.01.0	.0.02	.0000	.0020	.0020	.0000	

Table 19 (Concluded)

THEORETICAL HEADS IN FEET CORRESPONDING TO VELOCITIES

FROM 0 to 10 Feet per Second. From the Formula $h_t=rac{v^2}{2g}$

Velocity in feet per second	0	. 1	.2	3	4	5	6	7	8	9
5. 5.1	.4044		.4076	.4092	.4108	.4124	.4140	.4156	0.4012 .4172	.4188
5.2 5.3 5.4	.4204 .4367 .4534	.4220 .4384 .4550	.4236 .4400 .4567	.4253 .4417 .4584	.4269 .4433 .4601	.4285 .4450 .4618	.4302 .4467 .4635	.4318 .4483 .4652	.4334 .4500 .4669	.4351 .4517 .4686
5.5 5.6 5.7	.4703 .4876 .5051	.4720 .4893 .5069	.4737 .4911 .5087	.4754 .4928 .5105	.4772 .4946 .5122	.4789 .4963 .5140	.4806 .4981 .5158	.4824 .4998 .5176	.4841 .5016 .5194	.4858 .5034 .5212
5.8 5.9	.5230 .5412	.5248 .5430	.5266 .5449	.5284 .5467	.5302 .5486	.5321 .5504	.5339 .5523	.5357 .5541	.5375 .5560	.5394 .5578
6.0 6.1 6.2	.5597 .5785 .5976	.5616 .5804 .5996	.5634 .5823 .6015	.5653 .5842 .6034	.5672 .5861 .6054	.5691 .5880 .6073	.5710 .5900 .6093	.5728 .5919 .6112	.5747 .5938 .6132	.5766 .5957 .6151
6.3 6.4	.6171 .6368	.6190 .6388	.6210 .6408	.6230 .6428	.6249 .6448	.6269 .6468	.6289 .6488	.6309 .6508	.6328 .6528	.6348 .6549
6.5 6.6 6.7	.6569 .6772 .6979	.6589 .6793 .7000	.6609 .6813 .7021	.6629 .6834 .7042	.6650 .6855 .7063	.6670 .6875 .7084	.6691 .6896 .7105	.6711 .6917 .7126	.6731 .6938 .7147	.6752 .6958 .7168
6.8 6.9	.7189 .7402	.7210 .7424 .7640	.7231 .7445	.7253 .7467 .7684	.7274 .7488 .7705	.7295 .7510 .7727	.7316 .7531 .7749	.7338 .7553 .7771	.7359 .7575 .7793	.7381 .7596 .7815
7.0 7.1 7.2	.7618 .7837 .8060	,7859 .8082	.7662 .7882 .8105	.7904 .8127	.7926 .8150	.7948 .8172	.7970 .8195	.7993 .8217	.8015 .8240	.8037 .8262 .8491
7.3 7.4 7.5	.8285 .8514 .8745	.8308 .8537 .8769	.8331 .8560 .8792	.8353 .8583 .8815	.8376 .8606 .8839	.8399 .8629 .8862	.8422 .8652 .8886	.8445 .8676 .8909	.8468 .8699 .8933	.8722
7.6 7.7 7.8	.8980 .9218 .9459	.9004 .9242	.9027 .9266 .9508	.9051 .9290 .9532	.9075 .9314 .9556	.9099 .9338 .9581	.9122 .9362 .9605	.9146 .9386 .9629	.9170 .9411 .9654	.9194 .9435 .9678
7.9 8.0	.9703	.9728	.9752	.9777 1 0025	.9802 1.0050	.9826 1.0075	.9851 1.0100	.9876 1.0125	.9901 1.0150	.9925 1.0175
8.1 8.2 8.3	1.0711	1.0736	1.0762	1.0788	1.0814	1.0840	1.0866	1.0892	1.0403 1.0659 1.0918	1.0944
8.4 8.5 8.6	1 1233	1.1259	1 1286	1.1312	1.1339	1.1365	1.1392	1.1419	1.1180 1.1445 1.1714	1.1472
8.7 8.8	1.1768	1.1795	1,1822 1,2095	1.1849	$1.1876 \\ 1.2150$	$1.1903 \\ 1.2177$	1.1931	1.1958 1.2232	1.1985 1.2260 1.2537	1.2012
8.9 9.0 9.1	1.2593	1.2621	1.2649	1.2677	1.2705	1.2734	1.2762	1.2790	1.2818 1.3102	1.2846
9.2 9.3 9.4	1.3159	1.3188	1.3216 1.3505	1.3245 1.3534	1.3274 1.3563	1.3303 1.3592	1.3331 1.3621	1.3360 1.3650	1.3389 1.3679 1.3972	1.3418 1.3708
9.5 9.6	1.4031	1.4061	1.4091 1.4388	1.4120 1.4418	1.4150 1.4448	1.4179 1.4478	1.4209 1.4508	1.4239 1.4538	1.4269 1.4568	1.4299 1.4598
9.7 9.8 9.9	1 4932	1.4962	1.4993	1.5023	1.5054	1.5084	1.5115	1.5146	1.4871 1.5176 1.5485	11.5207
	'									

Table 20.—Theoretical Heads in Feet Corresponding to Velocities From 0 to 50 Feet per Second.

From the Formula $h_t=rac{v^2}{2g}$

							29			
Velocity in feet per second	0	1	2	3	4	5	6	7	8	9
0 1 2 3 4	0.000 .016 .062 .140 .249	0.000 .019 .069 .149 .261	0.001 .022 .075 .159 .274	0.001 .026 .082 .169	0.002 .030 .090 .180	0.004 .035 .097 .190 .315	0.006 .040 .105 .202 .329	.008 .045 .113 .213 .343	0.010 .050 .122 .224 .358	0.0 .0 .1 .2 .3
5 6 7 8 9	.389 .560 .762 .995 1.259	.404 .579 .784 1.020	.420 .598 .806 1.045 1.316	.437 .617 .828 1.071 1.345	.453 .637 .851 1.097 1.374	.470 .657 .874 1.123 1.403	.488 .677 .898 1.150 1.433	.505 .698 .922 1.177 1.463	.523 .719 .946 1.204 1.494	.5 .7 .9 1.2 1.5
10 11 12 13 14	1.555 1.881 2.239 2.627 3.047	1.586 1.916 2.276 2.668 3.091	1.618 1.950 2.314 2.709 3.135	1.650 1.985 2.352 2.750 3.179	1.682 2.021 2.391 2.792 3.224	1.714 2.056 2.429 2.834 3.269	1.747 2.092 2.468 2.876 3.314	1.780 2.128 2.508 2.918 3.360	1.813 2.165 2.547 2.961 3.406	1.8 2.2 2.5 3.0 3.4
15 16 17 18 19	3.498 3.989 4.493 5.037 5.613	3.545 4.030 4.546 5.093 5.672	3.592 4.080 4.600 5.150 5.732	3.639 4.131 4.653 5.207 5.791	3.687 4.182 4.707 5.264 5.851	3.735 4.233 4.761 5.321 5.912	3.784 4.284 4.816 5.379 5.973	3.832 4.336 4.871 5.437 6.034	3.881 4.388 4.926 5.495 6.095	3.9 4.4 4.9 5.5 6.1
20 21 22 23 24	6.219 6.856 7.525 8.225 8.955	6.281 6.922 7.593 8.296 9.030	6.344 6.988 7.662 8.368 9.105	6.407 7.054 7.731 8.440 9.181	6.470 7.120 7.801 8.513 9.256	6.534 7.187 7.871 8.586 9.332	6.598 7.254 7.941 8.659 9.409	6.662 7.821 8.011 8.733 9:485	6.726 7.389 8.082 8.807 9.562	6.7 7.4 8.1 8.8 9.6
25 26 27 28 29	11.334	9.795 40.591 11.418 12.276 13.166	11.502 12.364	10.754 11.587 12.452	10.83 6 11.672 12.540	10.918 11.758 12.628	11.843 12.717	11.083 11.929 12.806	11.167 12.016 12.896	11.2 12.1 12.9
30 31 32 33 34	14.941 15.920 16.931	14.086 15.037 16.020 17.034 18.079	15.134 16.120 17.137	15.232 16.220 17.240	15.329 16.321 17.344	15.427 16.422 17.448	15.525 16.523 17.552	15.623 16.625 17.657	15.722 16.726 17.762	15.8 16.8 17.8
35 36 37 38 39	20.149 21.284 22.450 23.647	19.155 20.261 21.399 22.569 23.769	20.374 21.515 22.687 23.891	20.487 21.631 22.806 24.013	20.600 21.747 22.925 24.135	20.713 21.863 23.045 24.258	20.826 21.980 23.165 24.381	20.940 22.097 23.285 24.504	21.055 22.215 23.405 24.628	21.1 22.3 23.5 24.7
40 41 42 43 44	24.876 26.135 27.425 28.747 30.100	25.000 26.263 27.556 28.881 30.237	25.125 26.391 27.687 29.015 30.374	25.250 26.519 27.819 29.149 30.511	25.376 26.647 27.950 29.284 30.649	25.501 26.776 28.082 29.419 30.788	25.627 26.905 28.215 29.555 30.927	25.754 27.035 28.347 29.691 31.065	25.881 27.165 28.480 29.827 31.204	26.0 27.2 28.6 29.9 31.3
45 46 47 48 49	32.898 34.344 35.821	31.623 32.041 34.490 35.970 37.482	33.185 34.637 36.120	33.329 34.784 36.270	33.473 34.931 36.420	33.617 35.079 36.571	33.762 35.227 36.722	35.375 36.873	35.523 37.025	35.6 37.1

Table 21.—Smith's Coefficients of Discharge for Vertical Circular Orifices with Full Contraction

Head in feet to center of orifice		`			£)ie/mē	ters i	in fee	t				
Head to co	.02	.03	.04	. 05	.07	.10	.12	.15	. 20	.40	.60	.80	1.00
											1		
.3?			• • • •			. 621				i	1		l
.4		• • • • •	. 637	. 631	. 624	. 618	.612	.606]			
. 5		.643	. 633	.627	. 621	.615	.610	. 605	. 600	. 596	. 592		
.6	.655	.640	. 630	.624	.618	.613	.609	. 605	.601	. 596	. 593	. 590	
. 7	.651	.637	. 628	. 622	.616	.611	. 607	.604	. 601	. 597	. 594	. 591	. 590
.8	.648	.634	. 626	. 620	.615	.610	.606	.603	.601	. 597	. 594	.592	. 591
.9						.609						. 593	. 591
													ĺ
1.0	. 644	. 631	. 623	.617	.612	.608	.605	.603	.600	. 598	. 595	.593	. 591
1.2	.641	. 628	. 620	.615	.610	. 606	.604	.602	. воо	. 598	. 596	. 594	. 592
1.4	. 638	. 625	.618	. 613	. 609	. 605	. 603	. 601	. 600	. 599	. 596	. 594	. 593
1.6	. 636	. 624	.617	.612	.608	. 605	. 602	. 601	.600	. 599	. 597	. 595	. 594
1.8	. 634	. 622	. 615	. 611	. 607	. 604	. 602	. 601	. 599	. 599	. 597	. 595	. 595
													1
2.0						.604							
2.5													. 596
3.0						. 603						. 597	
3.5						.602						. 597	•
4.0	. 623	.614	. 609	.605	. 603	.602	.600	. 599	. 599	. 598	. 597	. 597	. 596
	001	010	200	-0-	000	201	E00	E00	FO 0	E00	507	E00	E0.5
5.0 6.0						.600							. 596
7.0						.600							
8.0						.600							
9.0						.599							
8.0	.013	.007	. 004	.002	. 000	. טשש	. 999	. ಅಕ್ಟ	. 397	. 597	. 280	. 080	. ၁୫၁
10.0	.611	. 606	. 603	.601	. 599	. 598	. 598	. 597	. 597	. 597	. 596	. 596	. 595
20.0	.601	. 600	. 599	. 598	. 597	. 596	. 596	. 596	. 596	. 596	. 596	. 595	. 594
50.0?	. 596	. 596	. 595	. 595	. 594	. 594	. 594	. 594	. 594	. 594	. 594	. 593	. 593
100.0?	. 593	. 593	. 592	. 592	. 592	. 592	. 592	. 592	. 592	. 592	. 592	. 592	. 592

TABLE 22.—SMITH'S COEFFICIENTS OF DISCHARGE FOR VERTICAL SQUARE ORIFICES WITH FULL CONTRACTION

n feet nter fice		/	"/	ت _{Lé}	ngth	of sid	le of	squar	e in f	eet			
Head in feet to center of orifice	. 02	. 03	.04	.05	.07	. 10	.12	.15	. 20	.40	.60	.80	1.00
.3?				. 642	. 6 32	. 624	.617	.612			-		
.4			. 643	. 637	. 628	. 621	.616	.611					
.5		.648	. 639	. 633	. 625	.619	. 614	.610	. 605	.601	. 597		
.6			. 636									. 596	
.7			.633										
.8			. 631									1	1
.9	. 650	.637	.629	. 623	.619	.614	.610	.608	. 605	. 603	.601	. 599	. 598
											ļ		İ
1.0											. 601		
1.2											.602		
1.4											. 602		
1.6											.603		
1.8	.638	. 627	. 620	.616	.612	.609	. 607	. 606	. 605	. 605	. 603	. 602	. 602
2.0	627	200	610	915	010	200	000	204	905	605	. 604	200	600
2.5											.604		
3.0											.604		
3.5											.604		
4.0											.603		
1.0	.020	.010	.011	. 020	. 000	. 000	. 000	. 000	.000	.000		. 000	
5.0	.626	.617	. 613	.610	. 607	.608	. 605	.605	.604	.604	.603	.602	. 602
6.0											.603		
7.0											.603		
8.0											. 603		
9.0	.618	.612	. 609	. 607	.606	.604	. 604	.604	.603	.603	. 602	. 602	. 601
1									٠ ا	٠.			
											. 602		
											. 601		
50.0?													
100.0?	. 599	. 598	. 598	. 598	. 598	. 598	. 598	. 598	. 598	. 598	. 598	. 598	. 598

Table 23.—Fanning's Coefficients of Discharge for Vertical Rectangular Orifices, 1 Foot Wide, with Full Contraction. Head is Measured to Center of Orifice

Head in			Heig	ht of o	rifice in	feet		
feet	0.125	0.25	0.5	0.75	1.0	1.5	2.0	4.0
.3	0.626							
.4	.625	.619			1		1	İ
.5	.624	.618	.615			l		
.6	.623	.618	.614					
.7	.623	.617	.613	.610				
.8	.622	.617	.612	.609			1	
.9	.622	.616	.612	.609	.605			
1.0	.622	.616	.611	.608	.605	. 608		
1.25	.621	.615	.611	.608	.605	.607		
1.5	.620	.615	.610	.607	.604	.607	.609	
1.75	.619	.614	.610	.607	.604	.607	.609	
2.	.619	.614	.609	.606	.604	.606	.609	
<u> </u>	.010	.011		,,,,,				
2.25	.618	.613	.609	.606	.604	.606	.608	
2.5	.617	.613	.609	.606	.604	.606	.608	.610
2.75	.617	.612	.608	.605	.603	.606	.608	.610
3.	.616	.612	.608	.605	. 6 03	. 605	.607	.609
3.5	.615	.611	.607	.604	.603	.605	.607	.608
4.	.614	.610	.607	.604	.603	.604	.606	.608
4.5	.613	.610	.606	.603	.602	.604	.606	.607
5.	.612	.609	.605	. 603	.602	. 604	.605	.606
6.	.610	.608	.604	.602	.601	.603	.604	.605
7	.609	.607	.604	.602	.601	.602	.603	.605
8.	.608	.606	.603	.601	.601	.602	.603	.604
. 9.	.607	.605	.602	.601	.601	.601	.602	.603
10.	.606	604	.602	.601	.601	.601	.602	.603
15.	.607	.603	.601	.601	.601	.601	.602	.603
20.	.607	.604	.602	.601	.601	.601	.602	.603
25.	.608	.604	.602	.602	.601	.601	.603	.604
30.	.609	.604	. 603	.602	.601	.602	. 603	.605
35.	.610	.605	.603	.602	.601	.602	.604	.606
40.	.611	. 606	.604	.603	.602	.603	.605	.607
50.	.614	.607	.605	. 604	.602	. 603	.606	.609

TABLE 24.—COEFFICIENTS OF DISCHARGE BY BOVEY, FOR VARIOUS SHAPED SHARP-EDGED ORIFICES WITH COMPLETE CONTRACTION. THIS TABLE INDICATES THE EFFECT OF THE SHAPE OF ORIFICES ON THE COEFFICIENT OF DISCHARGE. THE AREA OF ORIFICE IN EACH CASE WAS 0.196 SQUARE INCHES

center				Form	of orifice			
set to rifice	ılar	Squ	ıare	ratio	angular, of sides 1:1	Rect ratio 1	gular	
Head in fe	Circular	Sides vertical	Diago- nal vertical	Long sides vertical	Long sides horizontal	Long sides vertical	Long sides horizontal	Triangular
1	.620	.627	.628	.642	. 643	.663	.664	. 636
2	.613	.620	.628	.634	.636	.650	. 651	.628
4	.608	.616	.618	.628	.629	.641	.642	.623
6	. 607	. 614	.616	. 626	. 627	. 637	.637	.620
8	.606	.613	.614	.623	.625	.634	. 635	. 619
10	.605	.612	.613	. 622	:624	.632	. 633	.618
12	.604	.611	.612	.622	.623	.631	.631	.618
14	.604	.610	.612	.621	.622	.630	.630	.618
16	603	.610	.611	.620	.622	.630	.630	.617
18	. 603	.610	.611	.620	.621	.630	.629	.616
20	. 603	. 609	.611	.620	.621	. 629	.628	.616

TABLE 25.—COEFFICIENTS OF DISCHARGE FOR RECTANGULAR ORIFICES WITH PARTIALLY SUPPRESSED CONTRACTIONS

	Dimensions of	Не	ead in f	eet
Description of contraction	orifice in feet	1	3	5
	Hor. Vert.			
Complete contraction	.656 by .656	. 598	.604	.603
-	.328	.616	.615	.611
	.164	.631	.627	.620
	.098	. 632	.628	.623
	.033	. 652	. 634	. 620
Suppressed at bottom only	.656 by .656	. 620	. 624	.625
	.328	. 649	.647	.643
	.164	. 671	.668	.666
	098	. 680	.677	.677
	.033	.710	. 705	.696
Suppressed on both sides only	.656 by .656	. 632	. 628	.628
	.328	. 637	. 630	.630
	.164	. 641	.634	.635
	.098	. 653	.643	.639
	.033	.682	. 667	.655
Suppressed at bottom and partly on	.656 by .656	. 633	. 636	.637
one side.	.328	. 658	. 656	.654
	. 164	. 676	.673	.672
	.098	. 682	.683	.681
	.033	.708	.705	.695
Suppressed at bottom and partly on	.656 by .656	.678	.664	.663
two sides.		.680	.675	.672
		.687	.680	.673
		.693	.688	.683
•		.708	. 705	.698
Suppressed on bottom and two sides	.656 by .656	.690	.677	.672
Complete suppression	.656 by .656		.950	

Table. 26.—Miscellaneous Coefficients of Discharge for Various Sharp-edged Submerged Orifices. The Two Orifices Experimented on by Ellis were Horizontal. All Other Orifices were Vertical

Dimensions of	Author-	Head in feet									
orifice in feet	ity	0.3	0.5	1.0	2.0	4.0	6.0	10.0	18.0		
Circle, d = .05 Circle, d = .10 Square, .05 by .05	H. Smith	.600	. 600	. 600	. 599	. 598					
Square, .10 by .10 Rectangle, $l = 3.0$,								.618			
d = .05. Circle, $d = 1.0$. Square, 1.0 by 1.0. Square, 4.0 by 4.0.								. 600 . 605			

Table 27.—Coefficients of Discharge for Submerged Vertical Square Orifice with Rounded Corners. From Experiments by Ellis.

Dimensions of orifice	Head in feet									
in feet	3	4	5	6	8	10	12	14	18	
Square, 1.0 by 1.0	. 952	.948	.946	.945	. 944	. 943	.943	.944	.944	

Table 28.—Coefficients of Discharge for Models A, B, C, D, E and F, Figs. 24 and 25, Page 45

Figure	Depth of opening	Va	lues	of C	for v		s dep orifi		f wat	er ab	ove 1	top
	in feet	0.07	0.1	0.3	0.5	0.7	1.0	2.0	3.0	5.0	7.0	10.0
A	1.31			. 597	. 604	.610	.616	.618	610	.608	. 594	. 592
	0.66		:	. 632	.638	. 640	. 641	. 640	.638	.637	.636	. 634
	0.16			.691	.688	.684	.683	.678	.674	.672	.670	.668
	0.10			.711	. 700	. 695	. 692	. 688	. 682	. 677	. 675	. 672
В	1.31			. 643	. 650	. 654	. 656	. 649	. 636	. 620	.615	.611
	0.66	l		.664	.670	.674	.675	. 676	.674	.673	.671	. 669
	0.16	1		.662	.681	.688	. 693	.695	.694	.692	.691	. 689
	0.10			. 693	. 700	. 705	. 708	.710	. 705	. 699	. 695	. 693
c	1.31		ĺ	.648	. 654	. 658	. 660	. 652	.638	.622	.616	.612
	0.66	l	l	.667	.673	.676	.678	.679	. 677	.674	.672	. 670
	0.16	1	l. 	.664	.682	. 690	. 695	. 697	. 696	.693	. 692	. 690
	0.10											. 693
D	0.656	.487	. 495	. 539	. 562	. 577	. 588	. 601	.601	. 601	. 601	.601
	0.164											. 606
E	0.656	.487	.495	. 530	. 554	.573	. 580	. 595	. 599	. 602	.602	.601
_	0,164											.617
F	0.656	530	535	569	584	.595	600	608	. 610	.610	.609	. 608
-	0.164											.649

Table 29.—Coefficients of Discharge, C, for Submerged Gates from Chatterton's and Benton's Formulas Formulas (16) and (17), page 46

Head in	Authority	Width of opening in feet							
feet	Authority	2	4	6	8	10	12		
. 02	Chatterton	.83	.83	.83	.83.	.83	.83		
	Benton	.73	.75	.76	.78	.79	.81		
.05	Chatterton	.83	.83	.83	.83	.83	.83		
	Benton	.73	.75	.76	.78	.79	.81		
.10	Chatterton	.82	.82	.82	.82	.82	.82		
	Benton	.73	.75	.76	.78	.79	.81		
. 15	Chatterton	.82	.82	.82	.82	.82	.82		
	Benton	.73	.75	.76	.78	.79	.81		
.2	Chatterton	.81	.81	.81	.81	.81	.81		
	Benton	.73	.75	.76	.78	.79	.81		
.3	Chatterton	. 80	.80	.80	.80	.80	.80		
	Benton	. 73	.75	.76	.78	.79	.81		
.4	Chatterton	.78	.78	.78	.78	.78	.78		
	Benton	.73	.75	.76	.78	.79	.81		
. 5	Chatterton	.77	.77	.77	.77	.77	.77		
	Benton	.73	.75	.76	.78	.79	.81		
.75	Chatterton	.75	.75	.75	.75	.75	.75		
	Benton	.73	.75	.76	.78	.79	.81		
1.0	Chatterton	.73	.73	.73	.73	.73	.73		
	Benton	.73	75	.76	.78	.79	.81		
1.5	Chatterton	.69	.69	.69	.69	. 69	.69		
	Benton,	.73	.75	.76	.78	. 79	.81		
2.0	Chatterton	.67	.67	.67	.67	.67	.67		
	Benton	.73	.75	.76	.78	.79	.81		
2.5	Chatterton	.65	.65	.65	.65	. 65	.65		
	Benton	.73	.75	.76	.78	. 79	.81		
3.0	Chatterton	.64	.64	.64	.64	. 64	. 64		
	Benton	.73	.75	.76	.78	. 79	.81		
3.5	Chatterton	. 64	.64	.64	.64	.64	.64		
	Benton	. 73	.75	.76	.78	.79	.81		
4.0	Chatterton	.63	.63	.63	.63	.63	.63		
	Benton	. 73	.75	.76	.78	.79	.81		
4.5	Chatterton	.63	.63	.63	.63	.63	.63		
	Benton	.73	.75	.76	.78	.79	.81		
5.0	Chatterton	. 62	.62	.62	.62	.62	.62		
	Benton	. 73	.75	.76	.78	.79	.81		

Table 30.—Coefficients of Discharge, C, for Submerged Tubes. Compiled from Experiments by Stewart, and Rogers and Smith. L= Length of Tube. p= Perimeter of Crosssection of Tubes

	Condition of edges at entrance									
$\frac{L}{p}$	All corners square	Contractions suppressed on bottom only	suppressed on bottom	Contractions suppressed on bottom and two sides	suppressed on bottom, two					
.02	. 61	. 63	.68	.77	.95					
.04	.62	.64	.68	.77	.94					
.06	.63	.65	. 69	.76	.94					
.08	.65	.66	. 69	.74	.93					
.10	.66	. 67	. 69	.73	.93					
.12	.67	.68	.70	.72	.93					
.14	. 69	.69	.71	.72	.92					
.16	.71	.70	.72	.72	.92					
.18	.72	.71	.73	.72	.92					
.20	.74	.73	.74	.73	.92					
.22	.75	.74	.75	.75	.91					
.24	.77	. 7 5	.76	.78	.91					
. 26	.78	.76	.77	.81	.91					
.28	.78	.76	.78	.82	.91					
.30	.79	.77	.79	.88	.91					
.35	.79	.78	. 80	84	.90					
.40	.80	.79	. 80	.84	.90					
.60	.80	. 80	.81	.84	.90					
.80	80	.80	.81	.85	.90					
1.00	.80	.81	.82	.85	.90					

CHAPTER IV

SHARP-CRESTED WEIRS

Any obstruction, of regular section, so placed across the channel of a stream that water flows over it, is called a weir. An orifice becomes a weir when its sides intersect the surface of the water, the overfalling water then coming into contact only with the two sides and bottom of the opening. The bottom of this opening is termed the crest of the weir. The overfalling sheet of water is commonly called the nappe.

A weir may be designed with sharp corners so that the water in discharging touches only the inner edges of the sides or crest. In such cases there is a contraction of the nappe similar to the contraction of a jet issuing from an orifice. There is also a contraction or depression of the water surface beginning at a distance upstream from the weir equal to about twice the depth of water passing over the weir.

When the weir is so designed that the nappe touches only the upstream edge of the crest it is called a sharp-crested or thin-edged weir. Similarly, if the nappe touches only the upstream edge of the sides the weir is said to have end contractions. When there is no contraction at the sides of the nappe the weir is said to have suppressed contractions, and the weir is called a suppressed weir. The most common example of a suppressed weir is where the channel is of rectangular cross-section and the length of the weir equals the width of the channel.

The velocity of approach is usually understood to be the mean velocity of the water in the channel, just above the weir. The velocity of retreat is the mean velocity of the water in the channel as it leaves the weir.

Sharp-crested weirs are used only for the purpose of measuring water. With weirs not sharp-crested the measurement of water is usually though not necessarily a secondary consideration. Overflow dams and spillways for reservoirs are examples of weirs not sharp-crested.

Thin-edged weirs as usually constructed have a rectangular,

trapezoidal, or triangular shape. Rectangular and trapezoidal weirs ordinarily have level crests. Triangular weirs should be so set that their sides make equal angles with the vertical.

When the elevation of the water surface below a weir is less than the elevation of its crest it is called a weir with free overfall. When the crest of the weir is below the elevation of the lower water surface the weir is said to be submerged or drowned.

Fig. 26,-Weir with free overfall.

Fig. 27.—Submerged weir.

Referring to Figs. 26 and 27, the following nomenclature will be used:

For all weirs:

H = Measured head or difference in elevation between the crest of weir and the water surface above the weir.

A =Area of section of channel of approach.

W = Width of the channel of approach.

P = Height of weir above the bottom of the channel of approach.

Q =Discharge over weir in second-feet.

 $V = \text{Mean velocity of approach } = \frac{Q}{A}$

g = Acceleration due to gravity.

 $h = \text{Velocity head} = \frac{V^2}{2g}$

G = Depth of water above the weir = P + H.

d = Area of section of channel of approach divided by the length of the weir.

 $C, C_1, C_2, \alpha, \beta,$ etc. = Empirical coefficients.

For suppressed weirs:

L = Measured length of weir.

 $d = \frac{A}{L} = G =$ Depth of water above the weir.

For weirs with end contractions:

L' = Measured length of weir.

L =Length of weir corrected for end contractions.

N = Number of end contractions.

 $d = \frac{A}{L}$ for any channel of approach and $\frac{WG}{L}$ for a rectangular channel of approach.

For submerged weirs:

D = Depth of submergence.

Z = H - D = The difference in elevation of water surface above and below weir.

 d_1 = Area of section of channel below the weir divided by the length of weir.

Rectangular Weirs with Free Overfall

Fundamental Considerations.—The theoretical discharge over a rectangular weir with free overfall (page 37) is given by the formula $Q_t = 3\sqrt{2g} LH^{3/2}$ (1)

An empirical factor corresponding to the coefficient of discharge for an orifice is usually applied to the theoretical formula. This coefficient may be considered as the product of the coefficients of velocity and contraction. Including this coefficient and combining it with $\sqrt{2g}$, which is assumed to be a constant, the formula may be written

 $Q = CLH^{3/2} \tag{2}$

If the above equation represented accurately the law of the flow of water over weirs, the value of C could be readily determined experimentally. It is known, however, that C is not exactly a constant. The problem is also complicated by the fact that the discharge is affected by the velocity of approach, the effect of which is to increase the discharge.

Modern Weir Formulas.—Many formulas have been suggested for determining the discharge over rectangular, sharp-orested weirs with free overfall. For the most part such formulas have been based upon the experiments of Francis, 1 Fteley and Stearns, 2 and Bazin. 2

¹ J. B. Francis: Lowell Hydraulic Experiments. Also Trans. Amer. Soc. Civ. Eng., vol. 12, p. 303.

² Trans. Amer. Soc. Civ. Eng., vol. 12.

^{*} Annales des Ponts et Chaussess, October, 1888. Translation by Marichal and Trautwine: Proc. Eng. Club, Phila., January, 1890. Also Annales des Ponts et Chaussess for 1894, 1er Trimestre.

The following are the more commonly used weir formulas, written to include the velocity of approach correction:

1. The Francis formula for sharp-created weirs, with and without end contractions

$$Q = 3.33L \left[(H + h)^{32} - h^{32} \right]$$

When there are end contractions L is to be corrected by the formula

$$L = L' - 0.1NH \tag{4}$$

(3)

2. The Fteley and Stearns formula for sharp-crested weirs with and without end contractions

$$Q = 3.31L (H + \alpha h)^{34} + 0.007 L$$
 (5)

When there are end contractions L is to be corrected by the formula L = L' - 0.1NH (4)

 $\alpha = 1.50$ for suppressed weirs and 2.05 for weirs with end contractions.

3. The Bazin formula for suppressed weirs

$$Q = \left(0.405 + \frac{0.00984}{H}\right) \left(1 + 0.55 \frac{H^2}{d^2}\right) LH \sqrt{2gH}$$
 (6)

4. Lyman's diagram¹ gives discharges for suppressed weirs, which includes velocity of approach correction. The reader is referred to the original publication for this diagram.

The author also submits his formula for sharp-crested weirs, either with or without end contractions

$$Q = 3.34LH^{1.47} \left(1 + 0.56 \frac{H^2}{d^2} \right) \tag{7}$$

When there are end contractions L is to be corrected by the formula $L = L' - 0.1NH \tag{4}$

Each of the above formulas will be discussed in tura.

The Francis Formula.—Up to the present time the Francis formula has been more generally used than any other weir formula. Francis based his formula upon his experiments at Lowell, Mass., in 1852. The following is the approximate range of conditions under which the experiments were performed:

Head	0.6 to 1.6 feet
Length of weir	8.0 and 10.0 feet
Height of weir	2.0 and 5.0 feet
Width of channel	10.0 and 14.0 feet
Velocity of approach	0.2 to 1.0

Plate XXI, Trans. Am. Soc. Civ. Eng., vol. 77.

² J. B. Francis; Lowell Hydraulic Experiments, pp. 103-135.

With these experiments as a basis Francis investigated the general formula

$$Q = C_1 L H^n \tag{8}$$

He obtained 1.47 for a value of n but used 1.5, finally adopting as the formula which represented the mean of his observations, not including the velocity of approach correction

$$\hat{Q} = 3.33 LH^{1.5}$$
 (9)

The experimental values of C ranged from 3.31 to 3.36, so that the mean value selected deviated by nearly 1 per cent. from the results of his own experiments. The general Francis formula, as written to include velocity of approach correction, is given on page 66, formula (3).

The later experiments of Fteley and Stearns, and Bazin show that the Francis formula may give results in error by 5 or 10 per cent. The formula is especially unreliable for low weirs having a high velocity of approach and for low heads under all conditions.

One reason for the extensive use of the Francis formula is doubtless because of its supposed simplicity. In reality, however, with the Francis method of correcting for velocity of approach it is as complicated as any of the other weirs formulas. Without the velocity of approach correction, the Francis formula can be easily remembered and may be used for rough computations. Where accuracy is essential the formula should be discarded, unless the conditions of measurement correspond approximately to those of the Francis experiments.

The Francis correction for end contractions

$$L = L' - 0.1NH \tag{4}$$

still appears to be as satisfactory as any that has yet been suggested. Additional experimental data regarding this matter, however, are badly needed. Many engineers prefer the use of weirs with suppressed contraction because of the uncertainty which exists regarding the proper correction for end contractions.

Table 39, page 117, gives discharges in cubic feet per second per foot of length over sharp crested weirs, without velocity of approach correction, by the Francis formula, for heads from 0 to 7 feet.

The Fteley and Stearns Formula.—Fteley and Stearns, 1877-79, experimented with two sharp-crested suppressed weirs, 5 and 19 feet long and 3.17 and 6.55 feet high respectively. Heads on the former were observed up to approximately 0.8 feet, and on the latter to 1.6 feet. The respective velocities of approach reached maximums of about 0.6 and 0.8 feet per second. They also experimented on a weir with end contractions 3.56 feet high with lengths of from 2.3 to 4.0 feet. Heads on this weir were read up to nearly 1.0 feet, the maximum velocity of approach being 0.54 feet per second.

The Fteley and Stearns formula (formula (5), page 66) was derived from the results of the above experiments combined with those of Francis. The term 0.007L in the formula was added to make it agree with their low-head experiments. The later experiments of Bazin (see Appendix A) show discharges approximately 3 per cent. greater for the low heads than were obtained by Fteley and Stearns. Additional experiments are needed to clear up the apparent inconsistencies in the results of these two investigators.

The Bazin Formula.—By far the most complete weir experiments that have yet been performed were those of Bazin's in 1886. Bazin experimented on suppressed weirs in a concrete channel, with vertical sides, 2 meters wide. The head was measured 16.4 feet upstream from the weir by means of a hook gage. These experiments were especially valuable in that weirs of several heights were used and the effect of velocity of approach on discharge could be studied. The results of 381 experiments in all are given. The lowest head observed by Bazin was about 0.3 feet. Below this head there was a tendency for the nappe to adhere to the downstream face of the weir. The following is a summary of Bazin's experiments:

Number of Length of weir Height of weir Maximum head in feet in feet 'experiments 67 6.56 3.72 1.017 38 3.28 3.72 1.340 48 1.64 3.30 1.780 1.433 58 6.56 2.47 58 6.56 1.64 1.407 68 6.56 1 16 1.338 0.79 1.338 44 6.56

¹ Trans. Amer. Soc. Civ. Eng., vol. 12, pp. 1-118.

² Annales des Ponts et Chaussees, October, 1888.

From these experiments Bazin derived his formula for suppressed weirs. He began his study with the fundamental expression

 $Q = C_1 L H \sqrt{2gH} \tag{10}$

which corrected for velocity of approach becomes

$$Q = C_1 L \sqrt{2g} \left(H + \alpha \frac{V^2}{2g} \right)^{3/2} \tag{11}$$

Also

$$V = \frac{Q}{A} = \frac{Q}{dL} \tag{12}$$

Substituting for Q in equation (12) its approximate value in equation (10)

$$V = \frac{C_1 LH \sqrt{2gH}}{dL} = \frac{C_1 \sqrt{2g}H^{\frac{3}{2}}}{d}$$

Substituting this value of V in equation (11) there results the expression

$$Q = C_1 LH \sqrt{2gH} \left(1 + \alpha C_1^2 \frac{H^2}{d^2}\right)^{3/2}$$

Expanding by the binomial theorem and neglecting all terms except the first two since they will always be very small quantities

$$Q = C_1 LH \sqrt{2gH} \left(1 + \frac{3}{2} \alpha C_1^2 \frac{H^2}{d^2} \right)$$
 (13)

Or considering the expression $3\alpha C_1^2$ as a coefficient the value of which is to be determined; equation (13) may be written.

$$Q = C_1 L H \sqrt{2gH} \left(1 + C_2 \frac{H^2}{d^2} \right)$$
 (14)

If the above formula, with constant values of the two coefficients, expressed accurately the law of flow over weirs the determination of the value of these coefficients would be a simple matter. Bazin found, however, that constant values of each coefficient could not be so chosen as to make results determined by the formula agree with his experimental discharges. After a careful analysis of his experiments and those of Fteley and Stearns he chose the following values, reduced from metric to English units:

$$C_1 = 0.405 + \frac{0.00984}{H} \tag{15}$$

$$C_2 = 0.55 \tag{16}$$

making the completed equation (equation (6), page 66), as already given.

Another method of correcting for velocity of approach is as follows. The fundamental weir formula without velocity of approach may be written

$$Q = \frac{2}{3} CLH \sqrt{2gH}$$
 (17)

This formula may be taken to consist of two parts, CLH and $\frac{2}{3}\sqrt{2gH}$. CLH may be considered the area of the opening corrected for crest and surface contraction and $\frac{2}{3}\sqrt{2gH}$ the theoretical mean velocity. It appears more reasonable to the author that H should be corrected for velocity of approach only insofar as it is the head producing the velocity. H in the first part of the equation enters into it solely as a factor in the area of the opening, which is not changed by velocity of approach. Under this assumption, equation (17), when corrected for velocity of approach, may be written

$$Q = C_1 L \sqrt{2g} H \left(H + \beta \frac{V^2}{2g} \right)^{\frac{1}{2}}$$
 (18)

and since

$$V = Q/dL \tag{12}$$

this value of V may be substituted in equation (18), and solving for Q there results

$$Q = \frac{C_1 L \sqrt{2g} H^{\frac{3}{2}}}{\sqrt{1 - C_1^2 \beta \frac{H^2}{d^2}}}$$
 (19)

Expanding the denominator of this expression by the binomial theorem and neglecting all terms of the fourth power and above, which will always be very small quantities,

$$Q = C_1 L \sqrt{2g} H^{\frac{3}{2}} \left(1 + \frac{C_1^{\frac{1}{2}} \beta}{2} \cdot \frac{H^2}{d^2} \right)$$
 (20)

or the equivalent expression

$$Q = C_1 L \sqrt{2g} H^{3/2} \left(1 + C_2 \frac{H^2}{d^2} \right)$$
 (21)

which is the form of the formula for discharge over a weir based upon the theoretical formula and the above assumption for velocity of approach.

It will be observed that equations (14) and (21), though based upon different assumptions, are of the same general form. The only difference is in the factors that enter into the value of C_2 which in either case is empirical and must be determined by experiment. By equating the values of C_2 in the two equations it will be seen that $\beta = 3\alpha$.

Lyman's Diagram.—The results of a very thorough investigation, of all of the accepted weir experiments available at the time, was published by Lyman' in 1913. In this connection a diagram was prepared which gives discharges over sharpcrested suppressed weirs. This diagram conforms very closely to the experiments of Francis, Fteley and Stearns, and Bazin, as well as additional experiments by himself. The diagram is convenient for use but is limited to heads below 1.6 feet.

The Author's Formula.—The author has investigated the flow of water over sharp-crested weirs, using as a basis the work and experiments of Francis, Fteley and Stearns, and Bazin, to determine the extent to which existing weir formulas are consistent with these experiments. In connection with his investigation the author derived the formula which is discussed below. Comparative results by these various formulas are shown in Appendix A.

Starting with the expression

$$Q = C_1 \sqrt{2g} L H^{\frac{3}{2}} \left(1 + C_2 \frac{H^2}{d^2} \right) \qquad (14 \text{ or } 21)$$

It has already been stated that constant values of C_1 and C_2 cannot be so chosen as to make this formula fit the results of existing experimental data. Some modification in form is therefore necessary. Bazin's method of accomplishing this is given on page 69.

After many trials and a careful comparison with the experimental results of Bazin, Fteley and Stearns, and Francis, the following values of C_1 and C_2 in the above equation were finally adopted:

$$C_1 = \frac{0.4165}{H^{0.03}}$$

$$C_2 = 0.56$$

¹ RICHARD R. LYMAN: Measurement of the Flow of Streams by Approved Forms of Weirs, with New Formulas and Diagrams. Trans. Amer. Soc. Civ. Eng., vol. 77, pp. 1189-1337.

The above value of C_1 indicates that the coefficient of contraction for sharp crested weirs varies with $H^{-0.03}$. It will be observed that the author's value of C_2 is very nearly the same as that chosen by Bazin.

Using the nomenclature given on page 64 and substituting the above values of C_1 and C_2 in formula (14 or 21), with g = 32.16, the author's general formula for discharge over sharp crested weirs, both with and without end contractions, becomes:

$$Q = 3.34LH^{1.47} \left(1 + 0.56 \frac{H^2}{d^2}\right) \tag{7}$$

For weirs with end contractions, and especially if the cnannel of approach is irregular, the formula may be more convenient in the form

$$Q = 3.34LH^{1.47} \left[1 + 0.56 \left(\frac{LH}{A} \right)^2 \right]$$
 (7a)

When there are end contractions L is to be corrected by the formula $L = L' - 0.1NH \tag{4}$

The following is a summary of conclusions resulting from the author's study of sharp-crested weirs, all of which are believed to be substantiated by the results shown in Appendix A.

- 1. The author's formula (formula (7) or (7a)) agrees more closely with the Bazin experiments on suppressed weirs than any of the commonly used weir formulas which have been discussed above (see Appendix A, Tables 102 and 103 and Fig. 89).
- 2. The author's formula gives results about 2 per cent. greater than those obtained by the Fteley and Stearns experiments. There is a very apparent inconsistency between these experiments and those of Bazin, especially for the lower heads, and it is impossible to obtain a formula which will agree with both sets of experiments. The author has designed his formula to conform to the results obtained by Bazin (see Appendix A, Tables 104, 105, 106 and 107 and Figs. 90 and 91).
- 3. The author's formula gives results agreeing with the Francis experiments on weirs with end contractions within a maximum discrepancy of about 2 per cent. In general this discrepancy is but slightly greater than that of the Francis formula applied to the same experiments (see Appendix A, Tables 106 and 107, and Fig. 91).
 - 4. As a general formula applied to all of the experiments the

author's formula shows a much closer agreement than either the Bazin, Fteley and Stearns or Francis formulas.

5. A formula which does not require a separate correction for velocity of approach, if not too complicated, may be more readily used than a formula requiring such a correction. The author's formula like the Bazin formula does not require a separate correction for velocity of approach and it possesses advantages over the Bazin formula from the standpoints of accuracy, simplicity and range of application.

A set of experiments on a weir, exactly duplicating the dimensions of Bazin's standard weir (2 meters wide and 3.72 feet high) with heads ranging from 0.4 to 4.0 feet have recently (May, 1917) been completed by Nagler. Heads were measured by means of hook gages and discharges were determined by chemical gaging (page 249). Great care was taken in conducting these experiments and there is every indication of a high degree of accuracy in the results. A brief summary of conclusions based upon the results of Nagler's experiments is as follows.

- 1. Nagler's results agree with the results of Bazin's experiments (between heads of 0.4 and 1.4 feet, the range of heads common to each set of experiments) within a maximum discrepancy of 1 per cent. and an average discrepancy of 0.4 per cent.
- 2. Nagler's experiments show practically the same discrepancy with the Fteley and Stearns experiments as exists between the Bazin experiments and Fteley and Stearns experiments.
- 3. The author's formula agrees with the Bazin experiments much closer than with Nagler's experiments. The agreement with Nagler's experiments appears close enough to justify the conclusion that the author's formula is reliable, within a probable error of 1 per cent., for heads from the lowest up to 4 feet.

The term 3.34LH^{1,47} in the author's formula (formula (7) or (7a) page 72) gives discharges without velocity of approach correction. The expression within the parentheses is the factor correcting for velocity of approach. When the area of the channel of approach is large in comparison with the area of the weir opening, or for rough computations, the velocity of approach correction may be neglected, the formula becoming

$$Q = 3.34LH^{1.47} (22)$$

¹ F. A. Nagler: Verification of the Bazin Weir Formula by Hydro-Chemical Gagings. *Proc.* Amer. Soc. Civ. Eng., Jan., 1918.

Table 33, page 98, gives values of $3.34\ H^{1.47}$ for heads from 0 to 2 feet with an interval of 0.001 feet, and for heads from 2 to 7 feet with an interval of 0.01 feet. Table 34, page 103, gives values of $1+.56\ \frac{H^2}{d^2}$ for intervals of $\frac{H}{d}$ (or $\frac{LH}{A}$) differing by 0.001. To determine the discharge, with velocity of approach correction, per linear foot of weir, H and $\frac{H}{d}$ (or $\frac{LH}{A}$) being known, multiply the discharge given in Table 33 by the corrective factor given in Table 34. The total discharge for a weir of any length, will be this product multiplied by the length of weir, corrected for end contractions if necessary by the formula L = L' - 0.1NH

Table 32, page 93, gives values of $H^{1.47}$ with intervals of 0.001 from 0 to 2 feet and with intervals of 0.01 from 2 to 7

feet.

Table 35, page 104, gives discharges by the author's formula over sharp-crested suppressed weirs per foot of length for different heights of weir under heads of from 0.2 to 1.64 feet.

Precautions for Accurate Use of Sharp-crested Weirs

In order to obtain the most accurate results from weir formulas, they should be limited in their use as far as practicable to the conditions of the experiments on which they are based. The following are some of the prevantions to be observed and conditions to be fulfilled.

- 1. The head should be measured far enough upstream from the weir to be above the effect of surface contraction. Francis and Fteley and Stearns measured heads 6 feet, and Bazin 16.4 feet upstream from the weir. Experiments seem to indicate that no effect of surface contraction can be detected at a distance of 2.5H back of the wein and from this point up to a distance of 16.4 feet, H appears to be constant excepting insofar as it is affected by the surface slope necessary to produce velocity in the channel of approach. As the author's weir formula is based in a large measure on Bazin's experiments, it appears that H should preferably be measured at a distance of approximately 16 feet upstream from the weir when using this formula.
- 2. For the best results H should be measured by means of a hook gage in a well or stilling-box connected by a pipe to the

channel. This pipe should enter the channel flush with the surface in order that the elevation of the water surface in the well may not be effected by the velocity of the water. Where long weirs are used, simultaneous readings are sometimes made in separate stilling-boxes connected to each side of the channel and perhaps one or more points on the bottom in order to obtain a more accurate mean value of H. The head should preferably be determined from the mean of at least 20 observations taken at equal intervals of about 20 or 30 seconds in order to eliminate the effects of waves in the channel of approach which cause a fluctuation of the elevation of the water surface in the well.

- 3. The crest of the weir should be so constructed as to insure perfect contraction. This requires that the upstream edge shall be sharp and smooth and that the crest shall be thin enough to prevent any tendency of the water to adhere to its top surface. Special care is necessary when H is less than 0.3 feet to prevent the nappe from adhering to the top or downstream faces of the weir. When H is less than 0.2 feet, it becomes difficult to prevent such adherence and the formula for sharp-crested weirs becomes unreliable. For high heads the thickness of the weir crest is not of so great importance as long as the upstream edge is sharp. The nappe, when thoroughly aerated, will spring clear of the edge if the width of crest is not more than 16H. The thin weir is preferable for accurate work, however, under all conditions. A metal crest free from rust, with a sharp right-angled corner on the upstream edge, a crest width of inch and beveled to the thickness of the metal on the lower face, should give satisfactory results. The upstream face of the weir should be vertical and the crest should be level.
- 4. The nappe should be perfectly aerated. This usually requires the construction of air passages leading to the space beneath the nappe of suppressed weirs. For weirs with end contractions, the length of the weir being less than the width of the channel, no special provision for aeration is necessary. Francis states that in order to assure perfect aeration of the nappe, the elevation of the water surface on the downstream side of the weir should be at least ½H below the crest of the weir.
- 5. To obtain the best results from weir formulas their use should be limited as far as practicable to the range of experimental data on which they are based. In general the author's

formula may be used with more assurance for weirs from 1 to 4 feet high and where the heads are from 0.2 to 1.5 feet, though Nagler's experiments (page 73) indicate that the formula is equally accurate up to heads of 4 feet for a weir 3.72 feet high. On account of the wide range of the experiments on which the author's formula is based it seems reasonable to believe that it will probably give satisfactory results for higher weirs and greater heads than have yet been used in any experiments.

Submerged Weirs

When the elevation of water surface in the channel below a weir is above the crest, the weir is said to be submerged or drowned. The problems involved in determining discharges over submerged weirs are complicated and have not been completely investigated. The nomenclature used in the following discussion is given on pages 64 and 65 (see Fig. 27).

A theoretical formula for discharge over submerged weirs may be obtained by dividing the overflow into two parts, the portion above the level of the lower water surface being considered as a weir and the remainder being treated as a submerged orifice. The theoretical combined discharge is then

$$Q = \sqrt{2a}L \left[\frac{2}{3}(H-D)^{\frac{3}{2}} + D(H-D)^{\frac{1}{2}} \right]$$
 (23)

or since H - D = Z

$$Q = \frac{2}{3}\sqrt{2aLZ^{3/2}} + \sqrt{2a}L\sqrt{Z}D$$
 (24)

$$Q = L\sqrt{Z} (C_1 Z + C_2 D) \tag{25}$$

 C_1 and C_2 being empirical coefficients whose values are to be determined. This basic formula was used by Francis, and Fteley and Stearns in obtaining their submerged-weir formulas.

Experiments on submerged weirs have been performed by Francis, Fteley and Stearns, and Bazin, which form the basis of several submerged-weir formulas.

The Francis¹ experiments of 1848 were performed on a weir 6.5 feet high. The quantity of water, which was kept practically constant, was measured on a weir with free overfall. The measured head on the weir varied from 0.85 to 0.97 feet and the depth of submergence ranged from 0.02 to 0.49 feet.

In 1883 Francis² experimented with a weir 5.8 feet high, the discharge being measured by a weir with free overfall. In

² Trans. Amer. Soc. Civ. Eng., vol. 13, p. 303.

¹J. B. Francis: Lowell Hydraulic Experiments, p. 102.

these experiments the head varied from approximately 1.1 to 2.3 feet and the depth of submergence from 0.2 to 1.1 feet.

The Fteley and Stearns¹ experiments, 1882, were performed on a weir 3.17 feet high, the head ranging from 0.40 to 0.81 feet and the depth of submergence from 0.1 to 0.8 feet. The discharges were determined from a weir with free overfall.

In each of the above sets of experiments the cross-section of the channel below the weir had a greater area than the cross-section of the channel above the weir.

Bazin² experimented on submerged weirs 0.24 meters, 0.35 meters, 0.50 meters, and 0.75 meters high by comparing the discharges over these weirs with discharges over his standard weir 3.72 feet high. These weirs were constructed in a rectangular channel 2 meters wide, the length of the weirs being the same as the width of the channel. The following table gives the approximate range of these experiments expressed in English units:

P	Mini	paum	Maximum .			
in feet	H in feet	D in feet	H in feet	D in feet		
0.79	0.34	0.13	1.49	1.31		
1.14	0.19	0.09	1.47	1.30		
1.64	0.21	0.06	1.43	1.18		
2.47	0.33	0.10	1.36	0.98		

Between the limits expressed in this table the experiments covered intermediate values of H and D. In all 326 experiments are recorded. Heads were measured 5 meters upstream and 11 meters downstream from the weir.

Francis Submerged-weir Formula.—Starting with the fundamental formula (formula (25)), from his experiments in 1883 Francis derived the following formula for discharge over submerged weirs:

$$Q = 3.33 L\sqrt{Z} (H + 0.381D). \qquad (26)$$

Fteley and Stearns Submerged-weir Formula.—From their own experiments in connection with the Francis experiments of 1848, Fteley and Stearns adopted the formula

$$Q = CL\sqrt{Z}\left(H + \frac{D}{2}\right) \tag{27}$$

¹ Trans. Amer. Soc. Civ. Eng., vol. 12, p. 104.

² Annales des Ponts et Chaussees for 1894, 1er Trimestre, p. 249.

and prepared the following table of values of C, corresponding to different values of D/H, to accompany the formula:

COEFFICIENT C, FTELEY AND STEARING'S SUBMERGED-WEIR FORMULA

D H	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0		3.359	3.352	3.343	3.335	3.327	3.318	3.310	3.302	
.2 .3 .4	3.214	3.278 3.207 3.150	3.201	3.194	3.188	3.182	3.176	3.170	3.165	
.5 · .6 .7	3.092	8.110 3.091 3.093	3.090	3.090	3.089	3.089	3.089	3.090	3.090	3.091
.8 .9	1	3.127 3.200	1			!				

.Herschel Submerged-weir Formula.—Basing his investigation on the experiments of Francis in 1848 and 1883, and the Fteley and Stearns experiments, Herschel adopted the formula

$$Q = 3.33 L(NH)^{32} (28)$$

and prepared the following table of values of N corresponding to different values of D/H to accompany the formula. The velocity of approach correction is the same as the Francis correction for weirs with free overfall.

COEFFICIENT N, HERSCHEL'S SUBMERGED-WEIR FORMULA

$\frac{D}{H}$.00	.01	.02	.08	.04	.05	.96	.07	.08	.09
0.0	1.000	1.004	1.008	1.006	1 . 007	1.007	1.007	1.006	1.006	1.005
.1	1.005	1.003	1.002	1000	.098	.996	.994	.992	.989	.987
.2	.985	.982	.980	.977	.975	.972	.970	.967	,964	.961
.3	.959	.956	.953	.950	.947	.944	.941	.938	.935	.932
.4	. 929	.926	.922	.919	.915	.912	.908	.904	.900	. 896
.5	.892	.888	.884	.880	.875	.871	.866	.861	.856	.851
.6	.846	.841	.836	.830	.824	.818	.813	. 806	.800	.794
.7	.787	.780	.773	.766	.758	.750	.742	.732	.723	:714
.8	.703	. 692	.681	.669	.656	.644	.631	.618	.604	. 590
.9	. 574	. 557	. 539	. 520	.498	.471	.441	.402	.352	.275

¹ Trans. Amer. Soc. Civ. Eng., vol. 14, p. 189.

Bazin Submerged-weir Formula.—The method adopted by Bazin in deducing a formula from his experiments was to obtain corrective factors to be applied to his formula for weirs with free overfall. Calling the ratio of the discharge of the submerged weir to the discharge of the weir with free overfall $\frac{m}{m_1}$ and using the nomenclature given on pages 64 and 65 he deduced the following formulas:

$$\frac{m}{m_1} = 1.06 + \frac{1}{4} \frac{D}{P} - \left[0.008 + \frac{1}{3} \frac{D}{P} + \frac{1}{3} \frac{D^2}{P^2} \right] \frac{P}{H}$$
 (29)

$$\frac{m}{m_1} = \left(1.08 + 0.18 \, \frac{D}{P}\right) \sqrt[3]{\frac{Z}{H}} \tag{30}$$

In general, formula (29) should be used for values of $\frac{m}{m_1}$ greater than 0.9 and formula (30) should be used for values less than 0.9. Bazin plotted the results of his experiments using $\frac{m}{m_1}$ and $\frac{P}{H}$ for coordinates arranged to give curves for similar values of $\frac{D}{P}$. Equation (29) and (30) are plotted on a diagram and the resulting curves come remarkably close to the mean of the experimental values. The exact limits of application of formulas (29) and (30) may be seen from this diagram.

In a later publication, Bazin derived the following approximate general formula, applicable to all submerged weirs:

$$\frac{m}{m_1} = \left((1.05 + 0.21 \frac{D}{P}) \sqrt[3]{\frac{Z}{H}} \right)$$
 (31)

and combining this formula with formula (6), page 66, there results the complete formula for discharge over submerged weirs

$$Q = \left(1.05 + 0.21 \frac{D}{P}\right) \sqrt[3]{\frac{Z}{H}} \left(0.405 + \frac{0.00984}{H}\right) \left(1 + 0.55 \frac{H^2}{d^2}\right) LH \sqrt{2gH}$$
(32)

The Author's Submerged-weir Formula.—Starting with the fundamental formula (page 76).

$$Q = L\sqrt{Z} (C_1Z + C_2D)$$
 (25)

Plate 8, Annules des Ponts et Chausses for 1894, 1er Trimestre.

² Annales des Pants et Chaussess for 1898, 1er Trimestre, p. 235.

in a manner similar to that employed for weirs with free overfall the correction for velocity of approach may be made to the head causing movement of the water, that is to the Z outside of the parenthesis, the Z within the parenthesis and D being considered purely as factors entering into the area of the opening. The formula corrected for velocity of approach, using the nomenclature given on pages 64 and 65 then becomes:

$$Q = L \left(Z + \beta \frac{V^2}{2g} \right)^{\frac{1}{2}} (C_1 Z + C_2 D)$$
 (33)

or since $V = \frac{Q}{dL}$

$$Q = L \left(Z + \frac{\beta}{2g} \cdot \frac{Q^2}{d^2 L^2} \right)^{\frac{1}{2}} \cdot (C_1 Z + C_2 D)$$
 (34)

In a manner identical with that already explained for weirs with free overfall (page 70), by mathematical transformation, formula (34) may be reduced to the form

$$Q = L\sqrt{Z} (C_1Z + C_2D) \left[1 + C \frac{(C_1Z + C_2D)^2}{d^2}\right]$$
 (35)

Equation (35) may be considered the theoretical form of formula for discharge over a submerged weir with velocity of approach correction. If this formula correctly expressed the law of flow over submerged weirs, values of the coefficients which it contains could be chosen to fit the available experimental data within the range of probable experimental error. This the author has been unable to do, but by using this formula as a base and modifying it as it appeared necessary he derived an empirical formula which gives results fairly concordant with all of the experiments investigated.

Francis does not give the distance below the weir at which the heads of submergence, for his experiments of 1848, were measured, but states that they were measured a "short distance" below the weir. In his experiments of 1883 he chose a distance of 18 feet below the weir for measuring heads. Fteley and Stearns measured heads of submergence 6 feet below the weir and Bazin made his measurements 36 feet below the weir.

There is always a tendency for a standing wave to form below a submerged weir. The result of this is to cause a depression of the water surface just below the place where the overfalling heet joins the water of the lower channel. Below this depres-

sion there is a piling up of water and turbulence continues for some distance farther downstream.

It thus appears that considerable uncertainty must result when the head of submergence is measured where such turbulence exists. The author believes that in order that a formula of the form of equation (35) may be applicable, the head of submergence should be measured in the trough of the standing wave, that is where the lowest water surface occurs just below the overfalling sheet. The difference between the head of water passing over the weir and the depth of submergence measured in the trough of the standing wave is the true head causing discharge over the weir. There is not, in general, any effect of submergence until the trough of the wave reaches an elevation higher than the crest of the weir.

It is not ordinarily practicable, however, to measure the head of submergence in the trough of the standing wave because of the difficulty of determining the proper point of measurement and the tendency of the standing wave to shift its position with changing values of H and D. Moreover, in practical problems it is more frequently the elevation of the water surface in the channel below the weir after the normal conditions of flow have been established that is of greatest importance. A submergedweir formula conforming to these conditions of measurement is therefore desirable.

As the author's formula is empirical no derivation can be given, but a brief discussion of the line of reasoning and steps taken in obtaining it is here given.

Starting with equation (35), page 30, and using the nomenclature given on pages 64 and 65,

$$Q = L\sqrt{Z} (C_1 Z + C_2 D) \left[1 + C \frac{(C_1 Z + C_2 D)^2}{d^2} \right]$$
 (35)

The equation, for trial, was modified and put in the form

$$Q = LZ^{0.47} (C_1 Z + C_2 D) \left(1 + C \frac{\theta H^2}{d^2} \right)$$
 (36)

and then assuming that the form might be similar to that for weirs with free overfall it was written

$$Q = 3.34LZ^{0.47} (Z + C_1D) \left(1 + 0.56 \frac{H^2}{d^2}\right)$$
 (37)

This equation resembles in form equation (35) and makes no allowance for the standing-wave conditions at the lower side

of the weir. When the head of submergence is measured in the channel below all turbulence caused by the overfalling sheet, this head will be greater than when it is measured in the trough of the standing wave. A factor may therefore be added to Z to make it equal the value of Z in the trough of the standing wave. After repeated trials, from Bazin's experiments, the writer found that the quantity by which Z should be increased appeared to vary directly as \sqrt{ZHD} and inversely as $\sqrt{d_{11}}$ and modifying equation (37) accordingly.

$$Q = 3.34L \left(Z + C_4 \sqrt{\frac{ZHD}{d_1}} \right)^{0.47} (Z + C_5D) \left(1 + 0.56 \frac{H^2}{d^2} \right)$$
(38)

which may be written

$$Q = 3.34 LZ^{1.47} \left(1 + C_4 \sqrt{\frac{HD}{d_1 Z}} \right)^{0.47} \left(1 + C_4 \frac{D}{Z} \right) \left(1 + 0.56 \frac{H^3}{d^2} \right)$$
(39)

The factor within the first parenthesis, in the above equation, will not ordinarily exceed unity by more than 20 per cent. and it may therefore be put in a nearly equivalent form by writing the exponent 0.5 instead of 0.47, expanding by the binomial theorem and neglecting all terms except the first two. The equation may then be written

$$Q = 3.34LZ^{1.47} \left(1 + C_5 \sqrt{\frac{HD}{d_1Z}}\right) \left(1 + C_5 \frac{D}{Z}\right) \left(1 + 0.56 \frac{H^2}{d^4}\right)$$
(40)

Values of the above coefficients were derived from the experimental data, and with these values substituted the author's formula for flow over submerged weirs, using the nomenclature given on pages 64 and 65, becomes,

$$Q = 3.34LZ^{1.47} \left(1 + \frac{1}{5} \sqrt{\frac{HD}{d_1 Z}} \right) \left(1 + 1.2 \frac{D}{Z} \right) \left(1 + 0.56 \frac{H^2}{d^2} \right)$$
(41)

If there are end contractions, the Francis method of correction (page 67) may be used. Formula (41) applies to all submerged rectangular sharp-crested weirs fo all channel conditions. It gives results agreeing within approximately 3 per cent. with the experiments of Francis, Fteley and Stearns, and Bazin, and it seems reasonable to believe that equally good results may be expected if due care is taken in making measure-

ments, and the depth of submergence (D) is measured below all turbulence caused by the overfalling water.

When D is measured in the trough of the standing wave, it is believed that the discharge may be represented approximately by the formula

$$Q = 3.34LZ^{1.47} \left(1 + 1.2 \frac{D}{Z} \right) \left(1 + 0.56 \frac{H^2}{d^2} \right)$$
 (42)

This formula, however, lacks experimental verification.

A submerged-weir formula to be generally applicable should take into consideration the dimensions of the channels both above and below the weir.

The formulas of Francis, Fteley and Stgarns, and Herschel which do not consider the effect of the size of the channel give results varying in places by more than 25 per cent. from the results of the Bazin experiments. These formulas are complicated by the requirement of a separate velocity of approach correction, which renders their solution very difficult. The apparent simple form of the formulas as given without the velocity of approach correction is deceiving.

Additional experimental data with various heights of weirs and dimensions of channels, with values of H and D varying through as wide a range as possible are needed to assist in a more comprehensive study of the subject of flow over submerged weirs. Such experiments should give the head of submergence in the trough of the standing wave as well as at a point in the channel where the normal condition of flow has been established. It is important also that the slope or grade of the lower channel should be given, in order that the head of submergence taken at one point may be transferred to a point farther up or down the channel if desired.

In Appendix A various tables (Tables 108 to 111 inclusive) with discussions of same are given for the purpose of showing the extent to which the submerged-weir formulas given in the preceding pages agree with the available experimental data. These tables cover practically the entire range of the experiments by Francis, Fteley and Stearns, and Bazin. The accuracy and general applicability of the author's formula can best be determined by an examination of these tabulated results, and the author makes no claim for his formula which cannot be substantiated by them.

The solution of the formula may be simplified by the use of tables. Table 33, page 98, gives values of

Table 34, page 103, gives values of

$$1+0.56\frac{H^2}{d^2}$$

and Table 36, page 109, gives values of

$$\left(1 + \frac{1}{5}\sqrt{\frac{H\overline{D}}{d_1\overline{Z}}}\right)\left(1 + 1.2\frac{\overline{D}}{\overline{Z}}\right)$$

corresponding to different values of $\frac{H}{d_1}$ and $\frac{D}{Z}$. The discharge is the product of these three quantities and the length of the weir. By careful interpolation values may be taken from Table 36 that will be accurate within 1 per cent. of error, which is close enough for ordinary purposes when the probable limits in accuracy of the formula are considered.

In the form given, formula (41) is directly applicable to problems in which the discharge over the weir is to be determined. In certain problems it is desired to know the amount that the elevation of water surface in a channel will be raised by the construction of a submerged weir of a given height. In this case Q is given, D is the depth of water in the channel minus the height of weir and d_1 may be readily obtained. Z is unknown, as are also H and d which depend upon Z for their values. The formula can best be solved by assuming successive values for Z until a value is found which satisfies the equation. By using the tables above referred to the successive solutions will be much simplified.

A similar method is necessary in solving problems where it is desired to determine the height of submerged weir necessary to raise the elevation of water surface in a channel a given amount. In this case Q and Z are given, and d and d_1 may be readily obtained. H and D = H - Z are the only unknown quantities and the equation may be solved by assuming successive values of H. With H determined, the height of weir is equal to the depth of water in the channel above the weir minus H.

V-Notch Weirs

V-notch weirs may be used to advantage in measuring discharges which do not exceed from 15 to 20 cubic feet per second.

Using the nomenclature indicated in Fig. 28, the theoretical discharge is given by the formula

Fig. 28.—V-notch weir.

If z represents the slope which the side of the weir makes with the vertical then

$$L = 2 zH \text{ and}$$

 $Q = \frac{8}{15} \sqrt{2g} zH^{5/2}$ (44)

For a right-angled notch z becomes unity and combining a coefficient of discharge with the constant part (assuming g to be a constant) of the above equation, the formula for discharge over a right-angled V-notch weir with sharp edges may be written

$$Q = CH^{5/2} \tag{45}$$

A more general form of this expression is

$$Q = C'H^n \tag{46}$$

The author has made a thorough investigation of the above formula based upon the results of experiments at the University of Michigan,2 supplemented by experiments by Thompson3 and Barr.4 From the University of Michigan experiments the author deduced the following formula, as representing the mean of the experimental results:

$$Q = 2.52 \ H^{2.47} \tag{47}$$

As the three sets of experiments are not entirely consistent with each other, Table 31, page 86, giving a summary of the results of all of the experiments investigated is reproduced.

- 1 University of Michigan Technic, October, 1916, pp. 190-195.
- 2 University of Michigan Technic, October, 1916, p. 191.
- PROF. JAMES THOMPSON: Papers in Physics and Engineering, p. 46, Cambridge.
- 4 JAMES BARR: Experiments upon the Flow of Water over Triangular Notches. Engineering, April 8 and 15, 1910.

It will be noted in each set of experiments that the value of C gradually decreases as the head increases. This indicates that an exponent of H less than 2.5 should give a more nearly constant coefficient. From column 7 is will be seen that an exponent of 2.47 for the University of Michigan experiments gives a nearly constant value of C', approximately 2.52, as already given in formula (47).

Table 31.—Values of Coefficients Computed from Experiments on Right-angled V-notched Weirs, for Formulas $Q=CH^{2.5}$ and $Q=C'H^{2.47}$

H in feet		pson's ments		rr's iments		y of Michi- eriments
in reet	. c	C'	$\begin{vmatrix} \cdot & c \end{vmatrix}$	C"	. c	C'
.15	2.570	2.428	2.588	2.445	2.672	2.524
. 20	2.562	2.441	2.566	2.446	2.646	2.521
. 25	2.555	2.451	2.551	2.447	2.626	2.519
. 30	2.550	2.460	2.539	2.449	2.610	2.518
. 35	2.545	2.466	2.530	2.451	2.597	2.517
.40	2.540	2.471	2.522.	2.454	2.587	2.517
. 45	2.537	2.477	2.517	2.458	2.579	2.518
. 50	2.534	2.482	2.512	2.460	2.572	2.519
. 55	2.532	2.487	2.508	2.463	2.565	2.519
. 60	2.530	2.491	2.504	2.465	2.560	2.520
.65			2.500	2.468	2.554	2.521
.70)3° 4 ° 5	- '	2.497	2.470	2.549	2.522
.75	ļ. ·		2.494	2.473	2 544	2.522
. 80			2.492	2,475	2.540	2523
.85	16.57		2.490	2.478	2,534	2.523
.90					2.530	2.523
1.0				l	2.523	2.523
1.1					2.515	2.522
1.2			``.	,	2.509	2.523
1.3		, .			2.503	2.523
1.4			•		2.498	2.523
1.5					2.493	2.523
1.6					2.488	2.523
1.7					2,484	2.524
1.8					2.480	2.524

An exponent of 2.478 for Barr's experiments will give a nearly constant coefficient equal to approximately 2.48.

The exponent of H that would best fit Thompson's experiments is nearly 2.49. There is however but little information available regarding the manner in which these experiments were performed and as they cover such a narrow range of discharge they are not entitled to the weight of the other experiments.

A very careful investigation was carried on by Barr to determine the effect of roughness of the upstream surface of the notch plate. Barr's original experiments were performed with notches cut in smooth brass plates. To determine the effect that roughness of the upstream face had upon discharge the surface was varnished, and dusted with emery before the varnish dried. The weir with the rough face gave discharges approximately 2 per cent. greater than the weir with the smooth face. The effect of this roughness is apparently to reduce the vertical component of the velocity of the water approaching the weir from below crest level and so also to reduce crest contraction.

The weir for the University of Michigan experiments was cut from a steel plate 1/4 inch thick, the upstream edge being a sharp right angle, and the lower edge beveled to make the crest of the weir 1/2 inch thick.

It will be observed from columns 5 and 7 of Table 31 that the values of C' are about 2 per cent. greater for the University of Michigan experiments than for Barr's experiments. This may be accounted for by the effect of roughness of the upstream surface of the weir plate as observed by Barr. The plate used in the University of Michigan experiments was of ordinary commercial steel plate and undoubtedly very much rougher than the smooth brass plate used in the Barr experiments. Assuming that this explanation accounts for the 2 per cent. discrepancy the two sets of experiments give results varying by less than 1 per cent, throughout.

Table 37, page 110, gives discharges over right-angled V-notch weirs by the formula $Q=2.52H^{2.47}$, for heads from 0 to 1.5 feet, with intervals of 0.00% feet.

There are no data for determining the effect of velocity of approach on V-notch weirs. Ordinarily this correction is insignificant as the cross-sectional area of the channel above the weir is much greater than the area of the weir opening. By assuming that the conditions for rectangular weirs (pages

69 to 71) hold for triangular weirs, the formula with velocity of approach correction may be written approximately

$$Q = 2.52H^{2.47} \left(1 + 0.23 \frac{H^4}{A^2} \right) \tag{48}$$

in which A is the area of the channel of approach.

There are but few experimental data for discharge over V-notch weirs not right-angled. Assuming, however, the same coefficient of discharge as for right-angled notches, the general formula for all V-notch weirs becomes

$$Q = 2.52zH^{2.47} (49)$$

In most cases a right-angled notch can be used as readily as any other. It should always be used when practicable, as the formula of discharge for such weirs is based upon more accurate experimental knowledge than for notches of other angles. The right-angled notch, moreover, has the advantage of being simpler to construct.

Trapezoidal Weirs

The discharge over a trapezoidal weir is commonly considered as the combined discharge of a rectangular weir of length L', Fig. 29, and a V-notch weir with side slopes $\frac{b}{H} = z$. Under

Fig. 29.—Trapesoidal weir.

this assumption, combining formulas (22) and (47), pages 73 and 85, the formula for discharge over sharp-crested trapezoidal weirs with end contractions, not including velocity of approach correction, becomes

$$Q = 3.34L'H^{1.47} + 2.52\varepsilon H^{2.47}$$

or

$$Q = 3.34H^{1.47} (L' + 0.75zH)$$
 (50)

Formula (50) will unquestionably give too great a discharge, since the contractions at the sides will be greater for a long weir than for the V-notch weir. The author submits the following

formula for trapezoidal weirs, with end contractions and velocity of approach correction, which must be considered as a rough approximation since it is entirely lacking in experimental verification:

$$Q = 3.34H^{1.47} (L' + 0.75zH - 0.2H) \left[1 + 0.56 \left(\frac{HL}{A} \right)^z \right]$$
 (51)

If z = 0 this equation reduces to the ordinary weir formula, with the Francis correction for end contractions. Formula (51) should not be used where L' is less than 2H.

Cippoletti Weirs.—From a study of the Francis experiments, Cippoletti, an Italian engineer, concluded that a value of z of 0.25 would approximately offset the effect of end contractions of a rectangular weir and give a formula of the form

$$Q = CLH^{3/2} \tag{2}$$

Cippoletti finally chose a value of 3.3% for C, having concluded that the value 3.33 obtained by Francis was too small. The reasons for this choice are not clear. It is, however, this value of C which has been quite generally adopted for Cippoletti weirs, and the formula which has been extensively used is

$$Q = 3.3\% LH^{3/2} (52)$$

in which L is the measured length of crest of weir.

Experiments by Flinn and Dyer¹ and others indicate that the value of C increased as H decreases, suggesting the need of either a greater slope for the sides of the weir or an exponent of H less than 1.5. Table 38, page 113, gives values of Q for Cippoletti weirs by formula (52).

Formula (52) should not be used when a high degree of accuracy is required. No method of correcting for velocity of approach is suggested. It was intended by Cippoletti that the Francis velocity-of-approach correction should be used.

The author believes that his formula for rectangular weirs, written in the form

$$Q = 3.34LH^{1.47} \left[1 + 0.56 \left(\frac{HL}{A} \right)^2 \right]$$
 (7a)

will apply more readily and accurately to Cippoletti weirs than formula (52). The sloping sides are introduced solely to offset

¹ A. D. FLINN and C. W. D. DYER: The Cippeletti Trapezoidal Weir. *Trans.* Amer. Soc. Civ. Eng., vol. 32.

the effects of end contractions and the conditions become similar to those for a weir with end contractions suppressed.

Assuming formula (51), and the Francis correction for end contractions (formula (4)), in order that the slope of the sides of the Cippoletti weir may just offset the effect of end contractions, the following relation must exist:

$$0.75zH = 0.2H$$

or

$$z = 0.267$$

which is very close to 0.25, the value used by Cippoletti.

·Weirs with Crest Not Level

When the crest of a weir is not level, Fig. 30, if the inclination is slight, the discharge will be given quite accurately by the formula for rectangular weirs, using the mean head H_m . A more precise formula may be obtained from the expression

Fig. 30.—Weir with crest not level.

$$Q = 3.34 \left((1 + 0.56 \frac{H_{m^2}}{d^2}) \int_0^L H^{1.47} dl \right)$$

in which

$$H=H_1+\frac{H_2-H_1}{L}!$$

The resulting formula for discharge over a weir with crest inclined and vertical sides is

$$Q = \frac{1.352 L (H_2^{2,47} - H_1^{2,47})}{H_2 - H_1} \left(1 + 0.56 \frac{H_m^2}{d^2} \right)$$
 (53)

If there are end contractions, L' being the measured length and L the corrected length of weir

$$L = L' - 0.1 (H_1 + H_2) (54)$$

Determination of Mean Discharge from Several Observations

In measuring the discharge over a weir greater accuracy may usually be obtained by making several measurements of head at short intervals of time apart. These measurements will not give quite constant values of H, even though uniform conditions of flow exist, owing to surge in the channel and unavoidable errors in measurement. Even under favorable conditions when great care is taken, heads measured in a stilling-box, by means of a hook gage, may show considerable variation.

Consider n observations to be made in a total time T at intervals of t_1 , t_2 , t_3 , t_n . The measured heads corresponding to these intervals are H_1 , H_2 , H_3 , H_n ; H_m being the mean head.

Assuming formula (7), page 72, for rectangular weirs, the mean discharge in cubic feet per second for any number of observations is

$$Q = \frac{3.34 L}{2T} \left[t_1 H_1^{1.47} + (t_1 + t_2) H_2^{1.47} + (t_2 + t_3) H_3^{1.47} + t_{n-1} H_n^{1.47} \right] \left(1 + 0.56 \frac{H_m^2}{d^2} \right)$$
(55)

If the time intervals are equal

$$Q = \frac{3.34 L}{n-1} \left(\frac{1}{2} H_1^{1.47} + H_2^{1.47} + H_3^{1.47} \right) + \frac{1}{2} H_n^{1.47} \left(1 + 0.56 \frac{H_m^2}{d^2} \right)$$
 (56)

When the fluctuations in head do not have a range of more than 0.02 feet the error from using the formula

$$Q = 3.34LH_m^{1.47} \left(1 + 0.56 \frac{H_m^2}{d^2}\right)$$

is insignificant.

When a weir is used for obtaining continuous-discharge records of a stream with fluctuating stage, to obtain the mean daily flow from several different gage readings, the discharge should be computed for each reading, and the mean of these discharges, weighted to correspond to the proper time interval, should be taken. Formula (55) may be used for this purpose if preferred, or formula (56) providing that the same time interval is employed throughout. If there is much fluctuation in stage, an appreciable error will be introduced in using the mean head

for computing the discharge, the actual discharge being greater than that determined from the mean head where the head varies continuously in the same direction between observations. This is because the discharge varies faster than the head.

Choice of Weir for Maximum Accuracy

In selecting a weir for the accurate measurement of water, care should be taken to choose the weir best adapted to the particular conditions. Usually the quantity of water, or the limiting quantities if the flow fluctuates, may be determined approximately before beginning the measurement. The best weir for the purpose may then be selected, giving careful consideration to the following important points:

- 1. Owing to the tendency of the nappe to adhere to the downstream face, weirs should not be used where the measured head is less than 0.2 feet.
- 2. In all cases the length of a rectangular weir should be at least three times the head.
- 3. The head on the weir should preferably not be greater than 1.5 feet.
- 4. The percentage of error in discharge resulting from a given error in measuring head decreases as the head increases. Greater accuracy may therefore be secured by selecting a weir of such dimensions as to have the discharge occur under the maximum head practicable, subject to the requirements of paragraphs 1, 2 and 3 above.

Table 41, page 127, giving the percentage of error in discharge, for different discharges and dimensions of weirs, resulting from various errors in measuring head, has been prepared to assist in the selection of the best weir for a given purpose. Of the weirs listed those given in bold type are recommended. The table is intended merely as a guide, however, and the engineer must use his judgment in selecting a weir which will best conform to the requirements of the four paragraphs given above.

One point brought out quite clearly by Table 41 is that right-angled V-notch weirs are preferable to weirs of any other type for measuring discharges below 1 cubic foot per second, and they are at least as accurate as any other weir for discharges up to 10 cubic feet per second. They are therefore particularly adapted to the measurement of fluctuating discharges where the maximum discharge does not greatly exceed 10 cubic feet per second.

Table 32.-1.47 Powers of Numbers

		D D O E		•• • •	J 11 11 24	J OF	11011	<i></i>		
Number	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.00	.0000		0001	0000	0000	0004		0007	0000	0010
	.0000	.0000	.0001	.0002	.0003	.0004	.0095	.0007	.0008	.0010
.01 .02	.0011	.0013	.0015	.0017	.0019	.0021	.0023	.0025	.0027	.0030
.02	.0032	.0034	.0037	.0039	.0042	.0044 .0072	.0047 .0075	.0049	.0052 .0082	.0055
	.0088	.0061		.0000	.0069	.0072	.0070	.00/9		
.04	.0088	.0091	.0095	.0098	.0101	.0105	.0108	.0112	.0115	.0119
.05	.0122	.0126	.0130	.0133	.0137	.0141	.0145	.0148	.0152	.0156
.06	.0160	.0164	.0168	.0172	.0176	.0180	.0184	.0188	.0192	.0196
.07	.0201	0205	0000	.0213	.0218	.0222	.0226	.0231	.0235	.0240
.08	.0244	.0205 .0249	.0209 .0253	.0258	.0262	.0267	.0271	.0276	.0281	.0286
.09	.0290	.0295	.0300	.0305	.0309	.0314	.0319	.0324	.0329	.0334
.00	.0250	.0280	.0000	.0000	.0000	.0014	.0010	.0024	.0020	.0001
.10	.0339	.0344	.0349	.0354	.0359	.0364	.0369	.0374	.0379	.0385
.11	.0390	.0395	.0400	.0406	.0411	.0416	.0421	.0427	.0432	.0438
.12	.0443	.0448	.0454	.0459	.0465	.0470	.0476	.0482	.0487	.0493
.13	.0498	.0504	.0510	.0515	.0521	.0527	.0533	.0538	.0544	.0550
.14	.0556	.0562	.0567	.0573	.0579	.0585		.0597	.0603	.0609
	, , , , ,						10002			
. 15	.0615	.0621	.0627	.0633	.0639	.0645	.0652	.0658	.0664	.0670
. 15 . 16	.0676	.0682	.0689	.0695	.0701	.0707	.0714	.0720	.0726	.0733
17	.0739	.0746	.0752	.0758	.0765	.0771	.0778	.0784	.0791	.0797
.18	.0804	.0811	.0817	.0824	.0830	.0837	.0844	.0850	.0857	.0864
.19	.0871	.0877	.0884	.0891	.0898	.0904	.0911	.0918	.0925	.0932
.20	.0939	.0946	.0953	.0959	.0966	.0973	.0980	.0987	.0994	.1001 .1073
.21	.1009	.1016	. 1023	.1030	. 1037	.1044	.1051	. 1058	.1066	. 1073
.22	.1080	. 1087	. 1094	.1102	.1109	.1116	.1124	.1131	. 1138	.1145
.23 .24	.1153	.1160	.1168	.1175	.1182	.1190	.1197	. 1205	. 1212	. 1220
.24	.1227	.1235	.1242	. 1250	.1257	. 1265	.1273	.1280	.1288	. 1295
					1					
. 25	.1303 .1380 .1459	.1311	.1319 .1396 .1475	.1326	. 1334	.1342	.1349	.1357	. 1365	.1373
.26	.1380	. 1388 . 1467	.1396	.1404 .1483	.1412	. 1420	.1428	. 1436	. 1443	. 1451
.27	.1459	.1467	.1475	.1483	. 1491	.1499	,1507	. 1515	. 1523	. 1531
.28 .29	. 1539	.1547	. 1556	. 1564	.1572	.1580	.1588	.1596	.1604	. 1613
.29	.1621	. 1629	.1637	.1645	.1654	. 1662	.1670	. 1679	.1687	. 1695
	1204	4840	1700	4800	1707			1500		
.30	.1704	.1712 .1796	.1720 .1805	.1729 .1813	.1737	.1746	.1754	.1762	.1771	.1779
.31 .32	.1788	1000	.1890	.1813	.1822 .1908	. 1830	.1839 .1925	.1847	.1856 .1942	. 1865 . 1951
.32	. 1873 . 1960	.1882 .1969	.1977	.1899 .1986	.1995	.1916		. 2021	.2030	.2039
.34	.2048	.2057	2066	2075	.2083	.2004	.2013		.2119	.2128
.04	.2020	.2007	.2000	.2010	.2003	.2092	.2101	.2110	.2119	.2120
.35	.2137	.2146	.2155	.2164	.2173	.2182	.2191	. 2200	.2209	.2218
.36	.2227	.2236	.2245	2255	.2264	.2273	.2282	.2291	.2300	.2310
.37	.2319	.2328	.2337	.2346	.2356	.2365	.2374	.2384	.2393	.2402
.38	.2411	.2421	.2430	.2440	.2449	.2458	.2468	.2477	.2487	.2496
.39	.2505	.2515	.2524	.2534	.2543	.2553	.2562	.2572	.2581	.2591
			.2021	.2001		.2000	.2002	.20.2	.2001	
.40	.2600	.2610	.2620	. 2629	.2639	.2648	.2658	.2668	.2677	.2687
.41	.2696	.2706	.2716	.2726	.2735	.2745	.2755	.2764	.2677 .2774	.2784
.42	.2794	.2804	.2813	.2823	. 2833	.2843	.2853	.2862	.2872	.2882
.43	.2892	.2902	.2912	.2922	.2932	.2942	.2951	.2961	.2971	.2981
.44	.2991	.3001	.3011	.3021	.3031	.3041	.3051	.3062	.3072	.3082
				· I						
45	.3092	.3102	.3112	.3122	.8132	.3142 .3245	.3153	.3163	3173	.3183
46	.3193	.3204	.3214	.3224	. 3234	.3245	.3255	.3265	.3275	.3286
.47	.3296	.3306	.3317	.3327	.3337	.3348	.8358	.3368	.3379	.3389
.48	.3400 .3504	.3410	.3420	.3431	.3441	.3452	. 3462	.3473	.3483	.3494
.49	.3504	.3515	.3525	. 3536	.3546	.3556	. 3567	.3578	.3589	. 3599
		1	"					-		ļ

Table 32 (Continued)

1.47 Powers of Numbers

Number	.000	.001	.002	.003	.004	.005	.006	.037	.003	.009
.50	.3610	. 3620	.3631	.3642	.3652	.3663	.3674	.3684	.3695	.3706
.51	.3716	.3727	.3738	.3749	.3759	.3770	.3781	.3792	.3803	.3813
.52	.3824	.3620 .3727 .3835	.3846	.3857	.3868	.3878	.3889	.3900	.3911	.3922
.53	.3933	.3944	.3955	.3965	.3976	.3987	.3998	.4009	.4020	.4031
.54	.4042	.4053	.4084	.4075	4086	4097	.4108	.4119	.4131	.4142
		ı	i							
.55	.4153	.4164	.4175	.4186	.4197	.4208	.4219	. 4231	.4242	.4253
.56	.4364	.4275	.4287	.4298	.4309	.4320	.4331	.4343	.4354	.4365
.57	.4377	.4388	.4399	.4411	.4422	. 4433	.4444	.4456	.4467	.4479
.58	.4490	.4501	.4513	.4524	.4536	.4547	.4558	.4570	.4581	.4593
.59	.4604	.4616	.4627	.4639	.4650	.4662	.4673	.4685	.4696	.4708
.60	.4719	.4731	.4743	.4754	.4766	.4777	.4789	.4801	.4812	.4824
.61	.4835	.4847	.4859	.4871	.4892	.4894	.4906	.4917	.4929	.4941
							.5023	.5035	.5047	.5059
.62	.4952	.4964	.4976	.4988 .5106	.5000 .5118	.5011		.5153	.5165	.5177
.63	.5070	.5082 .5201	.5094		.5118	.5130	.5141	.0100	.0100	.0177
.64	.5189	.5201	.5213	. 5225	.5237	.5249	.5261	.5273	.5285	.5297
.65	. 5309	.5321	.5333	.5345	.5357	.5369	.5381	.5393	. 5405	.5417
.66	.5429	.5441	.5453	.5465	.5478	.5490	.5502	.5514	.5526	.5538
.67	.5551	.5563	.5575	.5587	.5599	.5612	.5624	.5636	.5648	.5660
.00	2072	EGOE		.5710	.5722	.5734	.5747	.5759	.5771	.5783
.68	.5673	.5685	.5697	.0710		.0704	.0747		.5895	.5907
.69	.5796	.5808	.5820	.5833	.5845	.5858	.5870	.5882	.5895	.5907
.70	.5920	.5932	. 5944	.5957	.5969	.5982	.5994	.6007	.6019	.6032
71	.6044	.6057	.6069	.6082	.6091	.6107	.6120	.6132	.6145	.6157
.72	.6170	.6183	.6195	.6208	.6220	. 6233	.6246	.6259	.6271	.6284
.73	.6296	.6309	.6322	.6334	.6347	.6360	.6373	.6385	.6398	.6411
.74	.6424	.0436	.6449	.6462	.6475	.6488	6500	.6513	.6526	. 6539
	0550	2524	0-77	0700		0010	0000	0040	0055	0007
.73 .76	.6552	. 6564 . 6693	.6577	.6590	.6603	.6616	.6629	.6642	.6655	. 6667
.76	.6680	.66693	. 6706	.6719	.6732	.6745	.6758	. 0771	.6784	. 6797
.77	.6810	.6823	.6836	.6849	.6962	.6875	.6888	.6901	.6914	.6927
.78	.6940	. 6953	.6967	.6980	. 6993	.7006	.7019	.7032	.7045	.7058
.79	.7072	.7085	.7098	.7111	.7124	.7138	.7151	.7164	.7177	.7190
.80	.7204	.7217	.7230	.7243 .7376 .7510	7256	.7270	.7283	.7296	.7310	.7323
.81	7336	.7350	7363	7376	.7256 .7389	.7403	.7416	.7430	.7443	.7456
.82	.7336 .7470	.7483	.7363 .7497	7510	.7523	.7537	.7550	.7564	.7577	.7591
.04	.7604	.7618	.7631	.7645	.7658	.7672	.7685	.7699	.7712	.7726
.83 .84	.7739	.7753	.7766	.7780	.7793	.7807	.7821	.7834	.7848	.7861
1		1								
.85	.7875	.7889	.7902	.7916	.7929	.7943	.7957	.7970	.7984	.7998
.86	.8012	.8025	.8039	.8053	.8066	.8080	.8094	.8107	.8121	.8135
.87	.8149	.8163	.8176	.8190	.8204	.8218	.8232	.8245	.8259	.8263
.88	.8287	.8301	.8314	.8328	.8342	.8356	.8370	.8384	.8398	.8412
.87 .88 .89	.8426	.8440	.8453	.8467	.8481	.8495	.8509	.8523	.8537	. 8551
.90	8565	8570	.8593	.8607	. 8621	. 2635	.8649	.8663	.8677	.8691
.91	.8565 .8706	.8579 .8720	8734	8749	8769	.8776	.8790	.8804	.8818	.8832
.92	.8846	.8861	.8734 .8875	.8748 .8889	.8762 .8903	.8917	.8931	.8946	.8960	.8974
.92	. 8988		0017	.9031	.9045	.9059	.9073	.9088	.9102	.9116
.93	.9131	.9002	.9017 .91 5 9	.9174	.9188	.9202	.9216	.9231	.9245	.9259
		- [- 1			ŀ				
.95	.9274	.9288	.9302	.9317	.9331	.9346	.9360	.9374	.9389	.9403
.96	.9418	.9432	.9446	.9461	.9475	.9490	.9504	.9519	.9533	.9548
.97	. 9562	.9577	.9591	.9606	.9620	.9635	.9649	.9664	.9678	. 9693
.98	.9707	.9722	.9737	.9751	.9766	.9780	.9795	.9810	.9824	.9839
.99	.9853	.9868	.9883	.9897	.9912	.9927	.9941	.9956	.9971	. 9985
									1	

Table 32 (Continued)

1.47 Powers of Numbers

Number	.000	001	.002	.003	.004	.005	.006	.007	.008	.009
1.00 1.01 1.02	1.0147	1.0015 1.0162 1.0310	1.0177	1.0192	1.0207	1.0221	1.0236	1.0251	1.0266	1.0281
1.03 1.04	1.0444	1.0459 1.0609	1.0474	1.0489	1.0504	1.0519	1.0534	1.0549	1.0564	1.0579
1.05 1.06 1.07	1.0744	1.0759 1.0909 1.1061	1.0774 1.0925	1.0789	1.0804 1.0955	1.0819 1.0970	1.0834 1.0985	1.0849 1.1000	1.0864 1.1015	1.0879 1.1031
1.08 1.09	11.1198	1.1213 1.1366	1.1228	1.1244	1.1259	1.1274	1.1290	1.1305	1.1320	1.1335
1.10 1.11 1.12 1.13	1.1658 1.1813	1.1519 1.1673 1.1828 1.1984	1.1689 1.1844	1.1704 1.1859	1.1720 1.1875	1.1735 1.1890	1.1751 1.1906	1,1766 1.1921	1.1782 1.1937	1.1797
1.14	1.2124	1.2140	1.2155	1.2171	1.2187	1,2202	1.2218	1.2234	1.2249	1.2265
1.16 1.17 1.18 1.19	1.2438 1.2596 1.2755	1.2454 1.2612 1.2771 1.2930	1.2470 1.2628 1.2786	1.2486 1.2643 1.2802	1.2501 1.2659 1.2818	1.2517 1.2675 1.2834	1.2533 1.2691 1.2850	1.2549 1.2707 1.2866	1.2565 1.2723 1.2882	1.2580 1.2739 1.2898
1.23	1.3234 1.3395	11 2573	1.3266 1.3427 1.3589	1.3282 1.3444 1.3606	1.3299 1.3460 1.3622	1.3315 1.3476 1.3638	1.3331 1.3492 1.3854	1.3347 1.3508 1.3670	1.3363 1.3525 1.3687	1.3379 1.3541 1.3703
1.26	1.3882	1.3736 1.3899 1.4062	1.3915 1.4079	1.3931 1.4095	1.3947 1.4111	1.3964 1.4128	1.3980 1.4144	1.3997 1.4161	1.4013 1.4177	1.4029 1.4193
1.28 1.29	11.4375	1.4391 1.4557	1.4408	1.4424	1.4441	1.4457	1.4474	1.4490	1.4507	1.4524
1.30 1.31 1.32 1.33 1.34	1.4873 1.5040 1.5208	1.4723 1.4889 1.5057 1.5224 1.5393	1.4906 1.5073 1.5241	1.4923 1.5090 1.5258	1.4940 1.5107 1.5275	1.4956 1.5124 1.5292	1.4973 1.5140 1.5308	1.4990 1.5157 1.5325	1.5006 1.5174 1.5342	1.5023 1.5191 1.5359
1.35 1.36 1.37 1.38 1.39	1.5885	1.5562 1.5732 1.5902 1.6073 1.6244	1.5919 1.6090	1.5936 1.6107	1.5953 1.6124	1.5970	1.5987 1.6158	1.6004	1.6021 1.6192	1.6210
1.40 1.41 1.42 1.43	1.6399 1.6571 1.6744 1.6918	1.6416 1.6588 1.6762 1.6935	1.6433 1.6606 1.6779 1.6953	1.6450 1.6623 1.6796 1.6970	1.6468 1.6640 1.6813 1.6987	1.6485 1.6658 1.6831 1.7005	1.6502 1.6675 1.6848 1.7022	1.6519 1.6692 1.6866 1.7040	1.6537 1.6710 1.6883 1.7057	1.6554 1.6727 1.6900 1.7075
1.44 1.45 1.46 1.47 1.48	1.7267 1.7442 1.7618	1.7109 1.7284 1.7460 1.7636 1.7812	1.7302 1.7477 1.7653	1.7319 1.7495 1.7671	1.7337 1.7512 1.7689 1.7865	1.7354 1.7530 1.7706 1.7883	1.7372 1.7548 1.7724 1.7901	1.7389 1.7565 1.7741 1.7918	1.7407 1.7583 1.7759 1.7936	1.7425 1.7600 1.7777 1.7954
1.49	1.7972	1.7989	1.8007	1.8025	1.8042	1.8060	1.8078	1.8096	1.8113	1.8131

Table 32 (Continued)

1.47 POWERS OF NUMBERS

Number	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
1.50 1.51	1.8327	1.8345	1.8363	1.8381	1.8399	1.8416	1.8434	1.8452	1.8291 1.8470	1.8488
1.52	1.8506	1.8524	1.8542	1.8560	1.8578	1.8595	1.8613	1.8631	1.8649	1.8667
1.53									1.8829	
1.54	1.8865	1.8883	1.8901	1.8919	1.8937	1.8955	1.8973	1.8991	1.9009	1.9027
1.55									1.9190	
1.56									1.9371	
1.57	1.0500	1 0400	1 0494	1 0644	1 0440	1 0499	1.9017	1 0717	1.9553 1.9736	1.90/1
1.58 1.59	1.9772	1.9790	1.9809	1.9827	1.9845	1.9864	1.9882	1,9900	1.9918	1.9937
1.60	1 1					i i			2.0102	
1.61	2 0130	9 0157	9 0178	2.0010	2.0020	2.0047	2.0000	2.0001	2.0286	2.0120
1.62	2.0108	2 0341	2.0170	2.0103	2 0307	2.0201	2.0240	2.0200	9 0471	2.0000
1.63	2 0508	2 0526	2 0545	2 0563	2 0589	2 0800	2 0810	2 0637	2.0471 2.0658	2.0404
1.64	2.0693	2.0711	2.0730	2.0748	2.0767	2.0786	3.0804	2.0823	2.0841	2.0860
1.65	2 0879	2 0897	2 0016	2 0034	2 0053	2 0072	2 0000	2 1000	2.1028	2 1048
1.66	2.1065	2.1084	2.1102	2.1121	2.1140	2.1158	2.1177	2.1196	2 1214	2.1233
1.67	2.1252	2.1270	2.1289	2.1308	2.1327	2.1345	2.1364	2.1383	2.1401	2.1420
1.68	2.1439	2.1458	2,1476	2,1495	2.1514	2.1533	2.1552	2.1570	2.1589	2.1608
1.69	2.1627	2.1646	2.1664	2.1683	2.1702	2.1721	2.1740	2.1759	2.1777	2.1796
1.70	2.1815	2.1834	2.1853	2.1872	2.1891	2.1910	2.1929	2.1947	2.1966	2.1985
1.71	2.2004	2.2023	2.2042	2.2061	2.2080	2,2099	2.2118	2,2137	2.2156	2,2175
1.72	[2.2194]	2.2213	2,2232	2.2251	2.2270	2.2289	2.2308	2.2327	2.2346	2.2365
1.73	2.2384	2.2403	2.2422	2.2441	2.2460	2.2479	2.2498	2.2517	2.2536	2.2555
1.74	2.2574	2.2593	2,2612	2.2631	2.2650	2.2669	2.2689	2.2708	2.2727	2.2746
1.75	2.2765	2.2784	2.2803	2.2822	2.2841	2.2860	2.2880	2.2899	2.2918 2.3110	2.2937
1.76	2.2956	2.2976	2.2995	2.3014	2.3033	2.3052	2.3072	2.3091	2.3110	2.8129
1.77	2.3148	2.3168	2.3187	2.3206	2.3225	2.3244	2.3264	2.3283	2.3302	2.3322
1.78 1.79	2.3148 2.3341 2.3534	2.3300	2.3380	2.3399	2.3418	2.3437	2.3457	2.34/0	2.3490	2.3015
1.80	2.3727	2.3747	2.3766	2.3786	2.3805	2.3824	2.3844	2.3863	2.3883	2.3902
1.81	2.3922	2.3941	2.3960	2.3980	2.3999	2.4019	2.4039	2.4058	2.4077	2.4097
1.82	2.4116	2.4136	2.4155	2.4175	2.4194	2.4214	2.4233	2.4253	2.4272 2.4467	2.4292
1.83 1.84	2.4311	2.4331	2.4350	2.4370	2.4389	2.4409	2.4428	2.4448	2.4467	2.4487
1.54	1 1								2.4663	
1.85									2.4860	
1.86	2.4899	2.4919	2.4939	2.4958	2.4978	2.4998	2.5017	2.5037	2.5057	2.5076
1.87	2.5096	2.5116	2.5136	2.5155	2.51/5	2.5195	2.5215	2.5234	z.5254	2.5274 2.5472
1.88	2.5294	2.0314	2.0000	2.0303	2.55/3	2.5593	2.5413	2.0432	Z.0402	2.0472
1.89	1 1								i	2.5670
1.90										2.5869
1.91	2.5889	2.5909	2.0929	2.5949	2.0909	2.5989	2.6009	2.6029	2.6049	2.6069 2.6269
1.92 1.93	2 6200	2 6200	2 6220	2 6240	2.0109	2 6200	2 8400	2.0228	2 8440	2.6469
1.94										2.6670
1.95	2 8800	9 8710	9 8720	9 8751	9 6771	9 6701	9 8911	0 6021	0 8981	2.6871
1.96	2 6802	2 6019	2 6022	2 8059	2 6079	2 8002	2 7012	2.0031	9 7052	2 7072
1.97	2 7004	2 7114	2 7134	2 7154	2 7174	2 7105	2 7215	2 7225	2 7255	2.7073 2.7276
1.98	2.7296	2.7316	2.7336	2.7357	2.7377	2.7397	2.7418	2.7438	2.7458	2.7479
1.99	2.7499	2.7519	2.7539	2.7560	2.7580	2.7600	2.7621	2.7641	2.7661	2.7479 2.7682
	1	1	556			1	1	1-,,,,,,,	1	1

Table 32 (Concluded)

1.47 Powers of Numbers

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
2.0 2.1 2.2 2.3 2.4	2.770 2.976 3.187 3.402 3.622	2.791 2.997 3.208 3.424 3.644	2.811 3.018 3.230 3.446 3.666	2.832 3.039 3.251 3.468 3.688	2.852 3.060 3.272 3.490 3.711	2.873 3.081 3.294 3.511 3.733	2.893 3.102 3.315 3.533 3.756	2.914 3.123 3.337 3.555 3.778	2.935 3.144 3.359 3.578 3.801	2.955 3.166 3.380 3.600 3.823
2.5 2.6 2.7 2.8	3.846 4.074 4.306 4.543	3.868 4.097 4.330 4.567	3.891 4.120 4.353 4.591	3.914 4.143 4.377 4.615	3.937 4.166 4.400 4.639	3.959 4.190 4.424 4.663	3.982 4.213 4.448 4.687	4.005 4.236 4.471 4.711	4.028 4.260 4.495 4.735	4.051 4.283 4.519 4.759
2.9 3.0 3.1 3.2 3.3	5.028 5.276 5.528 5.784	5.052 5.301 5.553 5.810	5.077 5.326 5.579 5.835	4.856 5.102 5.351 5.604 5.861	4.881 5.127 5.376 5.629 5.887	5.151 5.402 5.655 5.913	4.930 5.176 5.427 5.681 5.939	4.954 5.201 5.452 5.707 5.965	4.979 5.226 5.477 5.732 5.991	5.251 5.503 5.758 6.017
3.4 3.5 3.6 3.7 3.8	6.043 6.306 6.573 6.843 7.117	6.070 6.333 6.600 6.870 7.144	6.096 6.360 6.627 6.898 7.172	6.122 6.386 6.654 6.925 7.200	6.148 6.413 6.681 6.952 7.227	6.174 6.439 6.708 6.980 7.255	6.201 6.466 6.735 7.007 7.283	6.227 6.493 6.762 7.034 7.310	6.254 6.519 6.789 7.062 7.338	6.280 6.546 6.816 7.089 7.366
3.9 4.0 4.1 4.2 4.3	7.394 7.674 7.958 8.245 8.535	7.422 7.702 7.986 8.274 8.564	7.450 7.731 8.015 8.303 8.593	7.478 7.759 8.044 8.331 8.623	7.506 7.787 8.072 8.360 8.652	7.534 7.816 8.101 8.389 8.681	7.562 7.844 8.130 8.418 8.711	7.590 7.872 8.158 8.448 8.740	7.618 7.901 8.187 8.477 8.769	7.646 7.929 8.216 8.506 8.799
4.4 4.5 4.6 4.7 4.8		10.064	9.788 10.094						10.280	
4.9 5.0 5.1 \$.2 5.3	10.653 10.968 11.286	10.373 10.685 11.000 11.318 11.638	10.716 11.031 11.349	10.747 11.063 11.381	10.779 11.095 11.413	10.810 11.126 11.445	10.842 11.158 11.478	10.873 11.190 11.510	10.905 11.222 11.542	10.936 11.254 11.574
5.4 5.5 5.6 5.7 5.8	11.929 12.256 12.585 12.916	11.962 12.288	11.994 12.321 12.651 12.983	12.027 12.354 12.684 13.016	12.060 12.387 12.717 13.050	12.092 12.420 12.750 13.083	12.125 12.453 12.783 13.117	12.157 12.486 12.816 13.150	12.190 12.519 12.850 13.184	12.223 12.552 12.883 13.217
5.9 6.0 6.1 6.2	13.588 13.928 14.270 14.616 14.963	13.622 13.962 14.305 14.650	13.656 13.996 14.339 14.685	13.690 14.030 14.374 14.720	13.724 14.064 14.408 14.754	13.758 14.099 14.443 14.789	13.792 14.133 14.477 14.824	13.826 14.167 14.512 14.859	13.860 14.202 14.546 14.894	13.894 14.236 14.581 14.929
6.4 6.5 6.6 6.7 6.8	15.867 16.023 16.381 16.741 17.104	15.349 15.702 16.058 16.417 16.778	15.384 15.738 16.094 16.453 16.814	15.420 15.773 16.130 16.489 16.850	15.455 15.809 16.166 16.525 16.886	15.490 15.844 16.201 16.561 16.923	15.525 15.880 16.237 16.597 16.959	15.561 15.916 16.273 16.633 16.995	15.596 15.951 16.309 16.669 17.032	15.632 15.987 16.345 16.705 17.068

Table 33.—Discharge in Cubic Feet per Second per Foot of Length, Over Sharp-crested Weirs, Without Velocity of Approach Correction, by the Formula $Q=3.34\ H^{1.47}$

			ORMU	JLA Q	= 3	.34 H				
Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	-009
.00	.0000	.0001	.0004	.0007	.0010	.0014	.0018	.0023	.0028	.0033
.01	.0038		.0050							
.02	.0106		.0122							
.03	.0193	.0202	.0212							
.04	.0294	.0305	.0316	.0327						
.05	.0409	.0421	.0433	.0145	.0457	.0470	.0483	.0495	.0508	.0521
.06	.0534		.0561	.0574						
.07	.0670	.0684	.0698	.0713	.0727	.0741			.0786	.0800
.08	.0815		.0845		.0876					
.09	.0969		.1001		.1033					
.10	.1132	.1148	.1165	.1182	.1199	.1216	. 1233	.1250	.1267	.1285
.11	.1302		.1337	.1355	.1372	.1390				
.12	.1480		.1516		.1553	.1571				
.13	.1664	.1683	.1702	.1721	.1740	.1759				
.14	.1856		.1895		.1934					
.15	.2054	.2074	.2094	.2115	.2135	.2155	.2176	.2196	.2217	.2238
.16	.2258	.2279	.2300	.2321	.2342	.2363				
.17	.2469	.2490	.2512	.2533	.2555	.2576		.2620		.2664
.18	.2685		.2729	.2751	.2773	.2796		.2840		.2885
.19	.2907	.2930	.2953	.2975	.2998	.3021	.3043	.3066		.3112
.20	.3135	.3158	.3181	.3205	.3228	.3251	.3274	.3298	.3321	.3345
.21	.3368	.3392	.3416	.3439	.3463	.3487	.3511	.3535	.3559	.3583
.22	.3607	.3631	. 3655	.3679	.3703	.3728	.3752	.3777	.3801	.3826
.23	.3850	.3875	.3900	.3924	.3949	.3974	.3999	.4024	.4049	.4074
.24	.4099	.4124	.4149	.4174	.4200	.4225	.4250	.4276	.4301	.4327
.25	.4352	.4378	.4404	.4429	.4455	.4481	.4507	.4533	.4559	.4585
.26	.4611	.4637	.4663	.4689	.4715	.4741	.4768	.4794	.4821	.4847
.27	.4874	.4900	.4927	. 4953	.4980	.5007	. 5034	.5060	.5087	.5114
.28	.5141	.5168	.5195	.5222	.5250	.5277	.5304	.5331	.5359	.5386
.29	.5413	.5441	.5468	.5496	. 5524	.5551	.5579	.5607	.5634	.5662
.30	.5690	.5718	.5746	.5774	.5802	. 5830	.5858	.5886	. 5915	.5943
.31	.5971	.6000	.6028	.6056	.6084	.6113	.6142	.6170	.6199	.6228
.32	. 6256	.6285	.6314	.6343	.6372	.6401	.6430	. 6459	.6488	.6517
.83	.6546	.6575	.6604	. 6633	.6663	.6692	.6721	.6751	.6780	.6810
.34	.6840	.6869	.6899	.6928	. 6958	.6988	.7018	.7047	.7077	.7107
.35	.7137	.7167	.7197	.7227	.7257	.7287	.7318	.7348	.7378	.7409
.36	.7439	.7469	.7500	.7530	.7561	.7591	.7622	.7652	.7683	.7714
.37	.7745	.7775	.7806	.7837	.7868	.7899	.7930	.7961	.7992	.8023
.38	.8054	.8085	.8117	.8148	.8179	.8210	.8242	.8273	. 8305	.8336
.39	.8368	.8399	.8431	.8463	.8494	.8526	.8558	.8590	.8621	.8653
.40	.8685	.8717	.8749	.8781	.8813	.8845	.8877	.8909	.8942	.8974
.41 .42	.9006	.9038	.9071	.9103	.9136	.9168	.9201	.9233	.9266 .9593	.9298 .9626
.43	.9331 .9659	.9364	. 9396	.9429 .9759	.9462	.9495	.9528	.9561	. 9925	
.44		1.0025	.9725	1.0092	.9792	.9825	.9858 1.0192	.9891 1 0226	1.0259	.9958 1.0293
		1.0361		- 1						
		1.0700								
.47	1 1000	1.1043	1 1077	1 1119	1 1147	1 1181	1 1914	1 1250	1 1285	1 1320
.48	1 1355	1.1389	1 1424	1 1450	1 1404	1 1590	1 1584	1 1500	1 1834	1 1860
.49	1 1704	1.1739	1 1774	1 1800	1 1845	1 1880	1 1915	1 1950	1 1986	1.2021
										-,

TABLE 33 (Continued)

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

 $Q = 3.34 \ H^{1.47}$

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.50 .51 .52 .53 .54	1.2413 1.2772 1.3135	1.2449 1.2808	1.2484 1.2845 1.3208	1.2520 1.2881 1.3244	1.2556 1.2917 1.3281	1.2234 1.2592 1.2953 1.3318 1.3685	1.2628 1.2990 1.3354	1.2664 1.3026 1.3391	1.2700 1.3062 1.3427	1.2736 1.3099 1.3464
.55 .56 .57 .58 .59	1.4242 1.4618 1.4996 1.5378	1.4280 1.4656 1.5034 1.5416	1.4317 1.4693 1.5072 1.5455	1.4355 1.4731 1.5111 1.5493	1.4392 1.4769 1.5149 1.5531	1.4056 1.4430 1.4807 1.5187 1.5570	1.4467 1.4844 1.5225 1.5608	1.4505 1.4882 1.5263 1.5647	1.4543 1.4920 1.5301 1.5685	1.4580 1.4958 1.5340 1.5724
.60 .61 .62 .63	1.6150 1.6541 1.6935 1.7331	1.6189 1.6580 1.6974 1.7371	1.6228 1.6619 1.7014 1.7411	1.6267 1.6659 1.7053 1.7451	1.6306 1.6698 1.7093 1.7491	1.5956 1.6345 1.6737 1.7133 1.7531	1.6384 1.6777 1.7172 1.7571	1.6423 1.6816 1.7212 1.7611	1.6463 1.6856 1.7252 1.7651	1.6502 1.6895 1.7292 1.7691
. 65 . 66 . 67 . 68 . 69	1.8133 1.8539 1.8947 1.9358	1.8174 1.8579 1.8988 1.9399	1.8214 1.8620 1.9029 1.9440	1.8255 1.8661 1.9070 1.9482	1.8295 1.8701 1.9111 1.9523	1.7932 1.8336 1.8742 1.9152 1.9564	1.8376 1.8783 1.9193 1.9606	1.8417 1.8824 1.9234 1.9647	1.8457 1.8865 1.9275 1.9688	1.8498 1.8906 1.9316 1.9730
.70 .71 .72 .73 .74	2.0188 2.0607 2.1030 2.1454	2.0230 2.0650 2.1072 2.1497	2.0272 2.0692 2.1114 2.1540	2.0314 2.0734 2.1157 2.1582	2.0356 2.0776 2.1109 2.1625	1.9979 2.0397 2.0818 2.1242 2.1668	2.0439 2.0860 2.1284 2.1711	2.0481 2.0903 2.1327 2.1753	2.0523 2.0945 2.1369 2.1796	2.0565 2.0987 2.1412 2.1839
.75 .76 .77 .78 .79	2.2312 2.2745 2.3181 2.3619	2.2355 2.2788 2.3224 2.3663	2.2399 2.2832 2.3268 2.3707	2.2442 2.2875 2.3312 2.3751	2.2485 2.2919 2.3355 2.3795	2.2097 2.2528 2.2962 2.3399 2.3839	2.2572 2.3006 2.3443 2.3883	2.2615 2.3050 2.3487 2.3927	2.2658 2.3093 2.3531 2.3971	2.2702 2.3137 2.3575 2.4015
.80 .81 .82 .83 .84	2.4503 2.4949 2.5398 2.5849	2.4547 2.4994 2.5443 2.5894	2.4592 2.5038 2.5488 2.5939	2.4636 2.5083 2.5533 2.5985	2.4681 2.5128 2.5578 2.6030	2.4281 2.4726 2.5173 2.5623 2.6075	2.4770 2.5218 2.5668 2.6121	2.4815 2.5263 2.5713 2.6166	2.4860 2.5308 2.5758 2.6211	2.4904 2.5353 2.5803 2.6257
.85 .86 .87 .88 .89	2.6758 2.7217 2.7678 2.8142	2.6804 2.7263 2.7724 2.8188	2.6850 2.7309 2.7771 2.8235	2.6896 2.7355 2.7817 2.8281	2.6941 2.7401 2.7863 2.8328	2.6530 2.6987 2.7447 2.7910 2.8374	2.7033 2.7493 2.7956 2.8421	2.7079 2.7539 2.8002 2.8468	2.7125 2.7586 2.8049 2.8514	2.7171 2.7632 2.8095 2.8561
.90 .91 .92 .93 .94	2.9076 2.9547 3.0020 3.0496	2.9123 2.9594 3.0068 3.0544	2.9170 2.9642 3.0115 3.0591	2.9217 2.9689 3.0163 3.0639	2.9264 2.9736 3.0210 3.0687	2.8842 2.9311 2.9783 3.0258 3.0735	2.9358 2.9831 3.0306 3.0783	2.9406 2.9878 3.0353 3.0830	2.9453 2.9926 3.0401 3.0878	2.9500 2.9973 3.0448 3.0926
. 95 . 96 . 97 . 98 . 99	3.1455 3.1937 3.2423	3.1503 3.1986 3.2471	3.1551 3.2034 3.2520	3.1599 3.2083 3.2569	3.1648 3.2131 3.2617	3.1214 3.1696 3.2180 3.2666 3.3155	3.1744 3.2228 3.2715	3.1792 3.2277 3.2764	3.1841 3.2325 3.2813	3.1889 3.2374 3.2861

TABLE 33 (Continued)

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

 $Q = 3.34 H^{1.47}$

.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
3.3892	3.3941	3.3991	3.4040	3.4090	3.4139	3.4188	3.4238	3.4287	3.4337
3.4387	3.4436	3.4486	3.4535	3.4585	3.4635	3.4684	3.4734	3.4784	3.4834
3.4883	3.4933	3.4983	3.5033	3.5083	3.5132	3.5182	3.5232	3.5282	3.5332
3.5884	3.5934	3.5984	3.6034	3.6085	3.6135	3.6185	3.6236	3.6286	3.6336
3.6387	3.6437	3.6488	3.6538	3.6589	3.6640	3.6690	3.6741	3.6791	3.6842
3.6893	3.6943	3.6994	3.7045	3.7096	3.7146	3.7197	3.7248	3.7299	3.7350
3.7401	3.7452	3.7503	3.7554	3.7605	3.7656	3.7707	3.7758	3.7809	3.7860
3.8423	3.8475	3.8526	3.8577	3.8629	3.8680	3.8732	3.8783	3.8835	3.8886
3.8938	3.8989	3.9041	3.9093	3.9144	3.9196	3.9248	3.9299	3.9351	3.9403
3.9455	3.9506	3.9558	3.9610	3.9662	3.9714	3.9766	3.9818	3.9870	3.9922
3.9974	4.0026	4.0078	4.0130	4.0182	4.0234	4.0286	4.0338	4.0390	4.0442
4.1018	4.1070	4.1123	4.1175	4.1228	4.1280	4.1333	4.1385	4.1438	4.1490
4.1543	4.1596	4.1649	4.1701	4.1754	4.1807	4.1859	4.1912	4.1965	4.2018
4.2071	4.2124	4.2176	4.2229	4.2282	4.2335	4.2388	4.2441	4.2494	4.2547
4.2600	4.2653	4.2706	4.2760	4.2813	4.2866	4.2919	4.2972	4.3025	4.3079
4.3666	4.3719	4.3773	4.3826	4.3880	4.3934	4.3987	4.4041	4.4094	4.4148
4.4202	4.4256	4.4309	4.4363	4.4417	4.4471	4.4524	4.4578	4.4632	4.4686
4.4740	4.4794	4.4848	4.4902	4.4956	4.5010	4.5064	4.5118	4.5172	4.5226
4.5280	4.5334	4.5388	4.5443	4.5497	4.5551	4.5605	4.5659	4.5714	4.5768
4.6366	4.6421	4.6476	4.6530	4.6585	4.6639	4.6694	4.6749	4.6803	4.6858
4.6913	4.6967	4.7022	4.7077	4.7132	4.7187	4.7241	4.7296	4.7351	4.7406
4.7461	4.7516	4.7571	4.7626	4.7681	4.7736	4.7791	4.7846	4.7901	4.7956
4.8011	4.8067	4.8122	4.8177	4.8232	4.8287	4.8343	4.8398	4.8453	4.8509
4.9118	4.9174	4.9229	4.9285	4.9341	4.9396	4.9452	4.9507	4.9563	4.9619
4.9675	4.9730	4.9786	4.9842	4.9898	4.9954	5.0009	5.0065	5.0121	5.0177
5.0233	5.0289	5.0345	5.0401	5.0457	5.0513	5.0569	5.0625	5.0681	5.0737
5.0793	5.0850	5.0906	5.0962	5.1018	5.1074	5.1131	5.1187	5.1243	5.1300
5.1920	5.1977	5.2033	5.2090	5.2147	5.2203	5.2260	5.2316	5.2373	5.2430
5.2487	5.2543	5.2600	5.2657	5.2714	5.2770	5.2827	5.2884	5.2941	5.2998
5.3055	5.3112	5.3169	5.3226	5.3283	5.3340	5.3397	5.3454	5.3511	5.3568
5.3625	5.3682	5.3739	5.3797	5.3854	5.3911	5.3968	5.4026	5.4083	5.4140
5.4771	5.4829	5.4886	5.4944	5.5002	5.5059	5.5117	5.5174	5.5232	5.5290
5.5348	5.5405	5.5463	5.5521	5.5578	5.5636	5.5694	5.5752	5.5810	5.5868
5.5926	5.5983	5.6041	5.6099	5.6157	5.6215	5.6273	5.6331	5.6389	5.6447
5.6505	5.6564	5.6622	5.6680	5.6738	5.6796	5.6854	5.6912	5.6971	5.7029
5.7671	5.7729	5.7788	5.7846	5.7905	5.7963	5.8022	5.8081	5.8139	5.8198
5.8257	5.8315	5.8374	5.8433	5.8491	5.8550	5.8609	5.8668	5.8727	5.8785
	3. 3400 3. 3892 3. 4837 3. 4833 3. 4833 3. 5882 3. 5882 3. 5884 3. 6387 3. 7911 3. 8423 3. 9455 3. 9974 4. 0495 4. 1013 4. 2670 4. 1045 4. 2670 4. 3132 4. 2670 4. 3168 4. 2670 4. 3168 4. 2670 5. 2682 5. 1082 5. 108	3. 3400 3. 3449 3. 3892 3. 3941 3. 4387 3. 4438 3. 4838 3. 4933 3. 5832 3. 5432 3. 5884 3. 5934 3. 6387 3. 6437 3. 6893 3. 6943 3. 7911 3. 7962 3. 8423 3. 8475 3. 8983 3. 8983 3. 7911 3. 7962 3. 8423 3. 8475 3. 8983 3. 8983 3. 9455 3. 9506 4. 0495 4. 0547 4. 1018 4. 1070 4. 1018 4. 1070 4. 2011 4. 2124 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 634 4. 2600 4. 635 4. 3182 4. 3666 4. 3719 4. 8613 4. 6967 4. 7461 4. 7516 4. 8013 4. 6967 4. 7461 4. 7516 4. 8013 4. 6967 5. 7675 5. 1920 5. 1356 5. 1412 5. 3055 5. 1312 5. 3055 5. 312 5. 3055 5. 3152 5. 1920 5. 1977 5. 2487 5. 2543 5. 1920 5. 1977 5. 2487 5. 2543 5. 5936 5. 5853 5. 5936 5. 5854 5. 5936 5. 5854 5. 5936 5. 5856 5. 5856 5. 5856 5. 5856 5. 5856 5. 5857 5. 5856 5. 5857 5. 5857 5. 5857 5. 787 5. 787 5. 7815 5. 7825 7. 7815	3. 3400 3. 3449 3. 3498 3. 3892 3. 3941 3. 3991 3. 4386 3. 4486 3. 4486 3. 4883 3. 4983 3. 4983 3. 5822 3. 5482 3. 5822 3. 5482 3. 5824 3. 592	3. 3400 3. 3449 3. 3498 3. 3547 3. 3892 3. 3941 3. 3991 3. 4040 3. 3498 3. 3543 3. 4983 3. 4983 3. 4983 3. 4983 3. 5083 3. 5083 3. 5083 3. 5083 3. 5083 3. 5083 3. 5083 3. 5083 3. 5083 3. 5084 3. 6387 3. 6487 3. 6488 3. 6583 3. 6893 3. 6993 3. 6994 3. 6943 3. 6994 3. 6943 3. 6994 3. 6943 3. 6994 3. 6943 3. 6994 3. 6945 3. 7041 3. 7452 3. 7503 3. 7554 3. 7911 3. 7962 3. 8013 3. 9558 3. 9566 3. 9558 3. 9564 3. 9558 3. 9451 3. 9455 3. 9506 3. 9558 3. 9614 3. 9034 3. 9944 4. 0028 4. 0078 4. 0130 4. 0495 4. 0547 4. 0599 4. 0651 4. 1014 4. 1070 4. 1123 4. 1175 4. 2071 4. 2124 4. 2176 4. 2260 4. 2653 4. 2766 4. 2760 4. 3132 4. 3165 4. 3238 4. 3292 4. 3666 4. 3719 4. 3484 4. 4902 4. 4202 4. 4204 4. 420	3.3400 3.3449 3.3498 3.3547 3.3507 3.3892 3.3941 3.3991 3.4040 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.4535 3.5522 3.5522 3.5522 3.5522 3.5522 3.5522 3.5523 3.5523 3.5523 3.5523 3.5523 3.5523 3.5523 3.6034 3.6085 3.637 3.6437 3.6438 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.6538 3.8041 3.7045 3.	3. 3400 3. 3449 3. 3498 3. 3547 3. 3597 3. 3646 3. 3892 3. 3941 3. 3991 3. 4040 3. 4535 3. 4635 3. 4383 3. 4436 3. 4436 3. 4535 3. 4535 3. 4635 3. 4838 3. 4933 3. 4983 3. 5033 3. 5033 3. 5132 3. 5322 3. 5422 3. 5432 3. 5522 3. 5532 3. 5533 3. 5533 3. 533 3. 683 3. 6933 3. 6934 3. 6034 3. 6085 3. 6135 3. 6893 3. 6943 3. 6943 3. 6943 3. 6943 3. 6943 3. 6943 3. 6943 3. 6943 3. 6943 3. 6943 3. 6943 3. 6944 3. 7045 3. 7665 3. 7656 3. 7613 3. 7656 3. 7613 3. 7656 3. 9762 3. 8013 3. 8064 3. 8116 3. 8167 3. 4925 3. 8526 3. 8577 3. 8629 3. 8167 3. 9455 3. 9506 3. 9558 3. 9513 3. 9451 3. 9455 3. 9506 3. 9558 3. 9610 3. 9662 3. 9714 3. 9974 4. 0028 4. 0078 4. 0078 4. 0078 4. 0078 4. 0078 4. 0078 4. 0078 4. 0078 4. 0078 4. 0078 4. 0078 4. 0074 4. 1123 4. 1175 4. 1228 4. 1230 4. 2600 4. 6053 4. 7064 4. 2704 4. 2824 4. 2506 4. 653 4. 2706 4. 2204 4. 2606 4. 653 4. 2706 4. 2204 4. 4202 4. 4256 4. 4309 4. 4363 4. 4417 4. 470 4. 4794 4. 4848 4. 902 4. 4956 4. 5010 4. 5280 4. 5334 4. 5431 4. 5460 4. 5234 4. 5384 4. 5407 4. 5280 4. 5334 4. 5437 4. 5451 4. 5476 4. 6530 4. 6585 4. 6394 4. 6334 4. 6913 4. 6967 4. 7022 4. 7077 4. 7132 4. 7187 4. 7401 4. 7714 4. 7816 4. 7711 4. 7124 4. 7714	3. 3400 3. 3449 3. 3498 3. 3547 3. 3597 3. 3646 3. 3645 3. 3891 3. 3891 3. 4040 3. 4139 3. 4188 3. 4387 3. 4436 3. 4486 3. 4486 3. 4486 3. 4486 3. 4486 3. 4486 3. 4486 3. 4486 3. 4486 3. 4535 3. 4635 3. 4635 3. 4684 3. 5822 3. 5482 3. 5522 3. 5532 3. 5533 3. 5633 3. 5683 3. 5683 3. 6883 3. 6933 3. 6983 3. 8989 3. 9041 3. 9094 3. 8083 3. 8989 3. 9041 3. 9093 3. 9144 3. 9196 3. 9483 3. 9958 3. 9610 3. 9620 3. 974 3. 9748 4. 0028 4. 0078 4. 0078 4. 0130 4. 0182 4. 0234 4. 0238 4. 0495 4. 0628 4. 0078 4. 0078 4. 0130 4. 0182 4. 0234 4. 0286 4. 1018 4. 1070 4. 1123 4. 1175 4. 1228 4. 1200 4. 2603 4. 2603 4. 2653 4. 2766 4. 2709 4. 2813 4. 2864 4. 2600 4. 6633 4. 2766 4. 2204 4. 2203 4. 2304 4. 2604 4. 6536 4. 2760 4. 2863 4. 2766 4. 4202 4. 4266 4. 4309 4. 4363 4. 4417 4. 4471 4. 4484 4. 5280 4. 5633 4. 2766 4. 4309 4. 4363 4. 4417 4. 4471 4. 4454 4. 5280 4. 5634 4. 5639 4. 5634 4. 5680 4. 5634 4. 5680 4. 5634 4. 5680 4. 5639 4. 5634 4. 5680 4. 5639 4. 5634 4. 5680 4. 5639 4. 5635 4. 5765 4. 5771 4. 7628 4. 7731 4. 7821 4. 7736 4. 7791 4. 8011 4. 8067 4. 8122 4. 8177 4. 7821 4. 7736 4. 7791 4. 8011 4. 8067 4. 8122 4. 8177 4. 8232 4. 8343 4. 8967 4. 5639 5. 5635 5. 5635 5. 5155 5. 1585 5. 1638 5. 1694 5. 5635 5. 5635 5. 5635 5. 5635 5. 5635 5. 5635 5. 5635 5. 5635 5. 5635 5. 5645 5. 5465 5. 5625 5. 5625 5. 5785 5. 5785 5. 5785 5. 5785 5. 57	3. 3400 3. 3449 3. 3498 3. 3547 3. 3597 3. 3646 3. 3695 3. 3744 3. 3892 3. 3941 3. 3991 3. 4040 3. 4139 3. 4188 3. 4238 3. 4383 3. 4436 3. 4436 3. 4535 3. 4635 3. 4635 3. 4684 3. 4734 3. 4838 3. 4933 3. 4933 3. 4535 3. 4535 3. 5132 3. 5132 3. 5132 3. 5132 3. 5132 3. 5233 3. 5832 3. 5432 3. 5432 3. 5522 3. 5532 3. 5533 3. 5633 3. 5	3. 3400 3. 3449 3. 3498 3. 3547 3. 3597 3. 3646 3. 3695 3. 3744 3. 3793 3. 3892 3. 3941 3. 3991 3. 4040 3. 4090 3. 4139 3. 4188 3. 4238 3. 4237 3. 4383 3. 4383 3. 4983 3. 4983 3. 5083 3. 5532 3. 5582 3. 5532 3. 5683 3. 5683 3. 5783 3. 5882 3. 5482 3. 5532 3. 5583 3. 5633 3. 5683 3. 5783 3. 5882 3. 6483 3. 6488 3. 6583 3. 5683 3. 5683 3. 5783 3. 6884 3. 6437 3. 6488 3. 6538 3. 6583 3. 6680 3. 6741 3. 6791 3. 6893 3. 6943 3. 6944 3. 7045 3. 7065 3. 7656 3. 7707 3. 7758 3. 7809 3. 7401 3. 7452 3. 7503 3. 7554 3. 7605 3. 7656 3. 7707 3. 7758 3. 7809 3. 7411 3. 7452 3. 7503 3. 8526 3. 8

Digifized by GOOST

Table 33 (Continued)

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH, OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FORMULA

 $Q = 3.34 \ H^{1.47}$

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
1.50 1.51 1.52 1.53 1.54	6.1213 6.1810 6.2408	6.0677 6.1272 6.1869 6.2468 6.3069	6.1332 6.1929 6.2528	6.1392 6.1989 6.2588	6.1451 6.2049 6.2648	6.1511 6.2109 6.2708	6.1571 6.2169 6.2768	6.1630 6.2229 6.2829	6.1690 6.2288 6.2889	6.1750 6.2348 6.2949
1.55 1.56 1.57 1.58 1.59	6.3611 6.4215 6.4821 6.5429	6.3672 6.4276 6.4882 6.5490 6.6100	6.3732 6.4336 6.4943 6.5551	6.3792 6.4397 6.5004 6.5612	6.3853 6.4458 6.5064 6.5673	6.3913 6.4518 6.5125 6.5734	6.3973 6.4579 6.5186 6.5795	6.4034 6.4639 6.5247 6.5856	6.4094 6.4700 6.5307 6.5917	6.4155 6.4761 6.5368 6.5978
1.60 1.61 1.62 1.63 1.64	6.6650 6.7264 6.7879 6.8495	6.6712 6.7325 6.7940 6.8557 6.9176	6.6773 6.7386 6.8002 6.8619	6.6834 6.7448 6.8063 6.8681	6.6895 6.7509 6.8125 6.8743	6.6957 6.7571 6.8187 6.8804	6.7018 6.7632 6.8249 6.8866	6.7079 6.7694 6.8310 6.8928	6.7141 6.7755 6.8372 6.8990	6.7202 6.7817 6.8434 6.9052
1.65 1.66 1.67 - 1.68 1.69	6.9734 7.0357 7.0981 7.1606	6.9797 7.0419 7.1043 7.1669 7.2297	6.9859 7.0481 7.1106 7.1732	6.9921 7.0544 7.1168 7.1794	6.9983 7.0606 7.1231 7.1857	7.0045 7.0668 7.1293 7.1920	7.0108 7.0731 7.1356 7.1982	7.0170 7.0793 7.1418 7.2045	7.0232 7.0856 7.1481 7.2108	7.0294 7.0918 7.1544 7.2171
1.70 •1.71 1.72 1.73 1.74	7.2863 7.3494 7.4126 7.4761	7.2926 7.3557 7.4190 7.4824 7.5461	7.2989 7.3610 7.4253 7.4888	7.3052 7.3673 7.4317 7.4951	7.3115 7.3737 7.4380 7.5015	7.3178 7.3800 7.4443 7.5079	7.3241 7.3863 7.4507 7.5142	7.3304 7.3926 7.4570 7.5206	7.3367 7.3990 7.4634 7.5270	7.8431 7.4053 7.4697 7.5338
1.75 1.76 1.77 1.78 1.79	7.6035 7.6674 7.7316 7.7959	7.6099 7.6738 7.7380 7.8023 7.8668	7.6163 7.6802 7.7444 7.8087	7.6227 7.6867 7.7508 7.8152	7.6290 7.6931 7.7573 7.8216	7.6354 7.6995 7.7637 7.8281	7.6418 7.7059 7.7701 7.8345	7.6482 7.7123 7.7765 7.8410	7.6546 7.7187 7.7830 7.8474	7.6610 7.7251 7.7894 7.8539
1.80 1.81		7.9314 7.9963 8.0612 8.1264	7.9379 8.0027 8.0678 8.1329	7.9444 8.0092 8.0743 8.1395	7.9509 8.0157 8.0808 8.1460	7.9573 8.0222 8.0873 8.1525	7.9638 8.0287 8.0938 8.1590	7.9703 8.0352 8.1003 8.1656	7.9768 8.0417 8.1068 8.1721	7.9833 8.0482 8.1134 8.1786
1.85 1.86 1.87 1.88	8.2507 8.3163 8.3821 8.4481 8.5142	8.2572 8.3229 8.3887 8.4547	8.2638 8.3294 8.3953 8.4613	8.2703 8.3360 8.4019 8.4679	8.2769 8.3426 8.4085 8.4745	8.2835 8.3492 8.4151 8.4811	8.2900 8.3558 8.4217 8.4877	8.2966 8.3623 8.4283 8.4944	8.3032 8.3689 8.4349 8.5010	8.3097 8.3755 8.4415 8.5076
1.90 1.91 1.92	8.5805 8.6470 8.7136 8.7804 8.8474	8.5872 8.6537 8.7203 8.7871	8.5938 8.6603 8.7270 8.7938	8.6004 8.6670 8.7336 8.8005	8.6071 8.6736 8.7403 8.8072	8.6137 8.6803 8.7470 8.8139	8.6204 8.6870 8.7537 8.8206	8.6270 8.6936 8.7604 8.8273	8.6337 8.7003 8.7670 8.8340	8.6403 8.7070 8.7737 8.8407
1.95 1.96 1.97 1.98	8.9145 8.9818 9.0492 9.1168 9.1846	8.9212 8.9885 9.0560 9.1236	8.9279 8.9953 9.0627 9.1304	8.9347 9.0020 9.0695 9.1371	8.9414 9.0087 9.0762 9.1439	8.9481 9.0155 9.0830 9.1507	8.9549 9.0222 9.0898 9.1575	8.9616 9.0290 9.0965 9.1643	8.9683 9.0357 9.1033 9.1710	8.9750 9.0425 9.1101 9.1778

TABLE 33 (Concluded)

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, by THE FORMULA

 $Q = 3.34 \ H^{1.47}$

2.1 0.940 10.010 10.080 10.150 10.290 10.380 10.381 10.421 10.582 11.385 11.436 11.506 11.582 11.656 11.728 11.801 11.875 11.974 11.146 11.218 12.31 12.384 12.489 12.548 12.590 13.072 13.148 13.224 13.300 13.377 13.453 12.684 12.920 12.996 13.072 13.148 13.224 13.300 13.377 13.453 12.68 13.607 13.684 13.761 13.838 13.916 13.993 14.071 14.149 14.227 12.7 14.383 14.461 14.540 14.619 14.697 14.76 14.855 14.935 14.935 15.73 15.233 15.331 15.413 15.433 15.433 15.635 15.733 15.734 15.331 15.433 15.433 15.433 15.433 15.635 15.734 15.734 15.173 15.233 15.333 15.413 15.794 15.573 15.635 15.734 15.734 15.315 13.300 13.377 13.453 12.9 15.976 16.087 16.138 16.220 16.301 16.383 16.465 16.546 16.628 13.1 17.622 17.705 17.789 17.873 17.975 18.041 18.125 18.216 18.204 13.3 13.318 19.404 19.409 19.577 19.633 19.757 18.041 18.125 18.216 18.204 13.3 19.318 19.404 19.400 19.577 19.633 19.750 19.837 19.923 20.010 23.3 23.2 23.333 23.484 23.576 23.8 23.770 23.862 23.395 23.210 23.302 23.395 23.447 23.384 23.576 23.8 23.770 23.862 23.954 24.046 24.139 24.331 24.324 24.416 24.509 23.8 24.665 24.788 24.865 24.695 24.788 24.895 29.883 29.881 29.893 29.191 29.280 24.1 26.579 26.674 28.709 26.865 29.960 27.066 27.152 27.248 27.448 23.576 24.695 24.788 24.895 29.883 29.881 29.883 29.881 29.883 29.881 29.883 29.881 29.883 29.881 29.883 29.881 29.883 29.881 29.883 29.881 29.883 29.881 29.883	Head in feet	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
2.1 0.940 10.016 10.080 10.150 10.220 10.360 10.361 10.421 10.562 12.22 10.644 10.715 10.787 10.858 10.930 11.002 11.074 11.146 11.218 12.31 12.365 11.436 11.436 11.566 11.582 11.656 11.728 11.801 11.875 11.949 12.45 12.319 12.394 12.469 12.543 12.618 12.604 12.543 12.618 12.604 12.543 12.618 12.604 12.618 1	2.0	9,252	9.321	9.389	9.457	9.526	9.595	9.664	9.733	9.802	9.8
2.2 10, 644 10, 715 10, 787 10, 588 10, 930 11, 002 11, 074 11, 146 11, 218 12, 34 12, 206 12, 171 12, 245 12, 319 12, 394 12, 469 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 12, 618 12, 694 12, 543 13, 614 14, 619 14, 697 14, 776 14, 855 14, 935 15, 014 12, 21, 13, 15, 13, 15, 143 15, 493 15, 573 15, 633 15, 734 15, 815 12, 91 17, 625 17, 705 17, 789 17, 873 17, 957 18, 641 18, 125 18, 210 18, 294 13, 11, 17, 622 17, 705 17, 789 17, 873 17, 957 18, 641 18, 125 18, 210 18, 294 13, 34 24, 21, 348 18, 344 18, 719 18, 694 18, 894 18, 894 18, 634 18, 751 19, 609 19, 146 13, 34 34, 34 24, 34, 34, 34, 34, 34, 34, 34, 34, 34, 3											
2.3		10 644	10 715	10 787	10 858	10 030	11 002	11 074	11 148	11 218	111 9
2.4 12.096 12.171 12.245 12.319 12.394 12.469 12.543 12.618 12.694 1 2.5 12.844 12.920 12.996 13.072 13.148 13.224 13.300 13.377 13.453 1 2.7 14.383 14.481 14.540 14.619 14.697 14.776 14.855 14.935 15.014 1 2.8 15.173 15.253 15.333 15.413 15.493 15.573 15.653 15.734 15.815 1 2.9 15.976 16.067 16.138 16.220 16.301 16.383 16.465 16.546 16.628 1 3.0 16.793 16.875 16.977 17.040 17.123 17.206 17.289 17.372 17.455 1 3.1 17.622 17.705 17.789 17.873 17.957 18.041 18.125 18.210 18.294 1 3.2 18.464 18.549 18.344 18.719 18.804 18.808 18.975 19.006 19.146 1 3.3 19.318 19.404 19.400 19.577 19.663 19.750 19.837 19.923 20.010 2 3.5 21.063 21.152 21.240 21.329 21.418 21.507 21.596 21.685 21.775 2 3.6 21.954 22.044 22.133 22.223 23.313 22.404 22.404 22.584 22.572 23.395 23.22 23.313 22.404 22.404 22.584 23.575 23.62 24.782 25.20 25.915 26.000 26.104 26.199 26.294 26.389 25.434 23.576 26.204 24.204 24.205 24.438 24.695 24.788 24.881 24.975 25.008 25.162 25.256 25.349 25.349 25.443 24.44 22.575 26.604 28.702 28.605 29.684 29.785 29.885 29											
2.5 12.844 12.920 12.996 13.072 13.148 13.224 13.300 13.377 13.453 12.6 13.607 13.684 14.540 14.540 14.619 14.997 14.776 14.856 14.953 15.014 12.8 15.173 15.253 15.333 15.413 15.493 15.573 15.653 15.734 15.815 15.976 16.067 16.138 16.220 16.301 16.383 16.465 16.564 16.628 13.1 17.622 17.705 17.789 17.873 17.957 18.041 18.125 18.210 18.294 13.3 19.318 19.444 19.40 19.577 19.663 19.750 19.837 19.232 20.1012 3.4 20.185 20.272 20.359 20.447 20.535 20.622 20.710 20.798 20.887 23.5 23											
2.6 13.607 13.684 13.761 13.838 13.916 13.993 14.071 14.149 14.227 12.7 14.383 14.481 14.540 14.619 14.677 14.776 14.855 14.935 15.014 12.8 15.173 15.253 15.333 15.413 15.493 15.573 15.653 15.734 15.815 15.976 16.007 16.138 16.220 16.301 16.383 16.465 16.540 16.628 13.1 17.622 17.705 17.789 17.873 17.957 18.041 18.125 18.210 18.294 13.2 18.464 18.549 18.634 18.719 18.804 18.889 18.975 19.000 19.671 19.631 19.837 19.932 20.0102 3.4 20.185 20.272 20.369 20.447 20.535 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.887 23.5 20.622 20.710 20.798 20.885 23.129 23.210 23.302 23.393 23.494 23.576 23.862 24.095 24.695 24.782 23.954 24.095 24.095 24.795 25.068 25.102 23.302 23.393 23.494 23.576 24.095 24.795 25.088 25.102 25.256 25.256 25.369 25.349 25.449 25.783 27.549 25.495 20.792 28.895 29.891 27.695 27.248 27						l 1				1	ı
2.7 14. 383 14. 481 14. 540 14. 619 14. 697 14. 776 14. 855 14. 935 15. 014 1 2. 8 15. 173 15. 253 15. 333 15. 413 15. 493 15. 743 15. 653 15. 734 15. 815 1 2. 9 15. 796 16. 057 16. 138 16. 220 16. 301 16. 383 16. 465 16. 546 16. 628 1 3. 1 17. 622 17. 705 17. 789 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 17. 879 18. 841 18. 125 18. 210 18. 294 1 3. 3 19. 318 19. 404 19. 490 19. 577 19. 663 19. 750 19. 837 19. 923 20. 010 2 3. 4 20. 185 20. 272 20. 2589 20. 447 20. 538 20. 252 20. 710 20. 789 20. 887 2 3. 5 20. 622 20. 710 20. 789 20. 887 2 3. 5 20. 622 20. 710 20. 789 20. 887 2 3. 6 22. 856 22. 947 23. 038 23. 129. 23. 210 23. 302 23. 339 23. 449 23. 576 2 3. 6 22. 947 23. 038 23. 129. 23. 210 23. 302 23. 339 23. 449 23. 576 2 4. 788 2 4. 881 24. 975 25. 688 25. 162 25. 556 25. 549 25. 549 25. 4788 24. 881 24. 975 25. 688 25. 162 25. 556 25. 549 25. 349 25. 4788 24. 881 24. 975 25. 680 25. 162 25. 556 25. 549 25. 349 25. 4788 24. 881 24. 975 25. 680 25. 162 25. 556 25. 549 25. 349 25. 4788 24. 881 24. 975 25. 680 25. 162 25. 556 25. 349 25. 349 25. 443 24. 44 22. 27. 537 27. 634 27. 730 27. 827 27. 827 27. 924 28. 621 28. 118 28. 27. 248 27. 344 24. 44 22. 27. 537 27. 634 27. 730 27. 827 27. 827 27. 924 28. 621 28. 118 28. 27. 248 27. 344 24. 42. 24. 42. 24. 43. 24. 42. 42		12.844	12.920	12.990	13.072	13.148	13.224	13.300	13.377	13.453	13.5
2.8 15.173 15.253 15.333 15.413 15.493 15.573 15.653 15.734 15.815 16.976 16.057 16.138 16.220 16.303 16.383 16.465 16.465 16.646 16.628 13.0 16.793 16.875 16.977 17.795 17.795 17.795 17.957 18.041 18.125 18.210 18.294 13.2 18.464 18.549 18.034 18.713 17.957 18.804 18.891 18.975 19.000 19.146 13.3 19.318 19.404 19.490 19.577 19.663 19.750 19.837 19.232 20.010 20.788 20.212 20.212 20.259 20.447 20.535 20.622 20.710 20.798 20.887 23.6 21.954 22.044 22.133 22.223 22.313 22.404 22.404 22.584 22.675 23.7 22.866 22.947 23.038 23.192 23.210 23.302 23.303 23.494 22.584 22.675 23.77 23.882 23.984 24.046 24.139 24.231 24.324 24.461 24.593 24.211 24.324 24.461 24.594 24.211 24.324 24.461 24.594 24.231 24.244 24.234 24.461 24.594 24.231 24.344 24.461 24.594 24.231 24.344 24.461 24.594 24.231 24.344 24.344 24.461 24.594 24.231 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.461 24.594 24.341 24.344 24.594 24.341 24.344 24.464 24.344											
2.9 15.976 16.097 16.138 16.220 16.301 16.383 16.465 16.546 16.628 13.1 17.622 17.705 17.789 17.871 17.957 18.041 18.125 18.210 18.294 13.2 18.444 18.549 18.634 18.719 18.804 18.889 18.975 19.060 19.146 13.3 19.318 19.404 19.400 19.577 19.663 19.750 19.837 19.923 20.010 23.3 20.185 20.272 20.359 20.447 20.535 20.622 20.710 20.788 20.887 23.35 20.622 20.710 20.788 20.887 23.35 20.622 20.710 20.788 20.887 23.35 20.622 20.710 20.788 20.887 23.35 23.22 23.33 22.233 22.404 22.494 22.584 22.675 23.36 22.954 22.047 23.388 23.170 23.862 23.954 24.046 24.139 24.231 24.324 24.416 24.509 23.88 23.770 23.862 23.954 24.046 24.139 24.231 24.324 24.416 24.509 23.4065 24.788 24.881 24.975 25.088 25.165 25.565 25.364 25.349 25.443 24.244 24.25 27.537 27.634 27.637 27.887 27.897 27.8											
3.0 16.793 16.875 16.957 17.040 17.123 17.206 17.289 17.372 17.455 1 3.1 17.622 17.705 17.789 17.873 17.957 18.041 18.125 18.201 18.294 1 3.2 18.404 18.404 18.491 18.304 18.809 18.804 18.809 18.975 19.000 19.1461 3.3 19.318 19.404 19.400 19.577 19.663 19.750 19.837 19.933 20.010 2 3.4 20.185 20.272 20.359 20.447 20.535 20.622 20.710 20.789 20.887 2 3.5 21.063 21.152 21.240 21.329 21.418 21.507 21.506 21.685 21.775 2 3.6 21.954 22.044 22.133 22.223 22.313 22.404 22.404 22.404 22.584 22.675 2 3.8 23.770 23.802 23.9364 24.040 24.139 24.231 24.324 24.418 24.509 2 3.8 23.770 23.802 23.9364 24.046 24.139 24.231 24.324 24.418 24.509 2 3.8 23.770 23.802 23.9364 24.046 24.139 24.231 24.324 24.418 24.509 2 4.4 22.553 25.600 25.505 25.505 25.349 25.443 24.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 28.215 27.344 27.354 24.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 28.215 28.312 24.3 28.507 28.604 28.702 28.799 28.895 29.803 29.003 29.19 29.289 24.4 29.486 29.585 29.684 29.782 29.881 29.990 30.079 30.178 30.278 34.7 33.573 31.679 31.780 31.881 31.982 32.083 33.100 33.202 33.350 34.8 4.9 34.541 34.455 34.749 34.852 34.956 35.600 35.165 35.260 33.559 33.500 3											
3.1	2.9	15.976	16.057	16.138	16.220	16.301	16.383	16.465	16.546	16.628	16.7
3.1	3.0	16.793	16.875	16.957	17.040	17.123	17,206	17.289	17.372	17.455	17.5
3.2 18. 464 18. 549 18. 634 18. 719 18. 804 18. 889 18. 975 19. 060 19. 146 13. 31 19. 318 19. 404 19. 400 19. 577 19. 683 19. 750 19. 837 19. 923 20. 0102 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 20. 622 20. 710 20. 798 20. 887 23. 55 22. 548 22. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 23. 675 24. 695 24. 788 24. 881 24. 975 25. 680 25. 256 25. 256 25. 349 25. 440 24. 406 24. 476 24. 788 24. 881 24. 975 25. 680 25. 256											
3.4 19.318 19.404 19.490 19.577 19.663 19.750 19.837 19.923 20.010 2 3.5 21.963 21.152 21.240 21.329 21.418 21.507 21.506 21.685 21.775 2 3.6 21.964 22.044 22.133 22.223 22.313 22.404 22.404 22.564 22.675 2 3.8 23.770 23.862 23.964 24.046 24.139 24.231 24.324 24.416 24.509 2 3.8 23.770 23.862 23.964 24.046 24.139 24.231 24.324 24.416 24.509 2 3.9 24.605 24.788 24.881 24.975 25.068 25.162 25.265 25.349 25.443 2 4.0 25.632 25.726 25.820 25.915 26.000 26.104 26.199 26.294 26.389 2 4.1 26.579 26.674 26.769 26.865 26.960 27.066 27.152 27.248 27.344 2 4.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 28.215 28.312 2 4.4 29.486 20.585 29.684 29.782 29.881 29.980 30.079 30.178 30.278 3 4.5 30.477 31.578 31.679 31.780 31.881 31.982 32.083 32.194 32.286 34.8 33.510 33.612 33.715 33.818 33.921 34.024 1.27 35.21 34.22 34.84 34.945 34.749 34.852 34.985 35.600 35.165 35.200 33.201 34.8 33.510 33.510 33.612 33.715 33.818 33.921 34.024 1.27 34.21 34.32 34.84 33.510 33.612 33.715 33.818 33.921 34.024 1.27 34.21 34.32 34.84 33.510 33.612 33.715 33.818 33.913 34.127 34.127 34.31 34.9 34.541 34.045 34.749 34.852 34.956 35.060 35.165 35.200 35.373 35.50 35.852 35.887 35.792 35.897 36.001 36.107 36.212 36.317 36.422 35.38 33.84 39.953 40.041 40.170 40.279 40.388 40.497 40.066 40.715 45.2 33.844 39.953 40.041 40.170 40.279 40.388 40.497 40.066 40.715 45.5 40.394 41.03 41.153 41.26 34.358 40.279 44.399 45.494 45.504 44.82 44.42 44.42 44.89 44.352 44.483 44.82 44.594 44.707 44.889 43.899 43.953 40.041 40.170 40.279 40.388 40.497 40.066 40.715 45.94 44.257 44.309 44.42 35 44.253 44.254 44.259 44.399 44.497 45.060 40.715 45.94 44.259 44.881 44.99 45.364 49.786 33.34 44.82 44.594 44.707 44.889 43.899 43.991 44.033 44.493 44.824 45.944 42.774 42.585 42.696 42.807 42.918 45.94 44.579 44.399 44.482 44.594 44.707 44.889 43.899 43.891 44.033 44.493 44.824 45.944 42.774 42.585 42.696 42.807 42.918 45.94 44.594	3 2	18 484	18 549	18 634	18.719	18.804	18 889	18 975	10 060	10 148	10 2
3.4		10 218	10 404	10 400	10 577	10 663	10 750	10 837	10 023	20 010	20 0
3.5 21.063 21.152 21.240 21.329 21.418 21.507 21.596 21.685 21.775 2 3.6 6 21.064 22.044 22.133 22.233 22.313 22.404 22.404 22.584 22.675 2 3.7 22.866 22.947 23.038 23.129 23.210 23.302 23.339 23.484 23.576 2 3.89 23.470 23.862 23.964 24.066 24.139 24.231 24.324 24.416 24.509 2 3.9 24.695 24.788 24.881 24.975 25.068 25.162 25.256 25.349 25.439 25.449 24.416 24.509 2 4.0 25.632 25.726 25.820 25.915 26.000 26.104 26.199 26.294 26.389 24.1 26.532 27.248 27.344 24.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 27.248 27.344 24.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 28.215 28.312 24.3 22.866 29.684 29.782 29.881 29.980 30.079 30.178 30.278 34.4 29.486 29.585 29.684 29.782 29.881 29.980 30.079 30.178 30.278 34.5 33.477 31.578 31.679 31.780 31.881 31.982 32.083 32.184 32.285 34.8 33.510 33.612 33.715 33.818 33.921 34.024 1.27 32.349 32.500 32.692 32.794 32.806 32.998 33.100 33.202 33.305 34.9 34.541 34.645 34.749 34.852 34.99 23.500 35.692 35.897 36.001 35.652 35.89 23.89 35.897 39.89 30.079 30.178 30.578 36.03 36.739 36.844 39.953 40.04 49.179 30.278 37.606 37.663 37.664 37.803 39.844 39.953 40.041 49.179 39.185 39.303 39.411 39.519 39.503 39.673 30.676 30.676 30.676 30.676 37.056 37.162 37.268 37.374 37.481 55.3 38.84 39.953 40.041 49.179 40.279 40.388 40.497 40.666 40.715 45.54 42.27 44.39 44.22 44.42 44.											
3.6 21. 954 22. 044 22. 133 22. 223 22. 313 22. 404 22. 404 22. 404 22. 658 22. 675 23. 770 23. 862 23. 954 24. 046 24. 139 24. 231 24. 324 24. 416 24. 509 23. 97 23. 862 23. 954 24. 046 24. 139 24. 231 24. 324 24. 416 24. 509 23. 97 24. 695 24. 788 24. 881 24. 975 25. 608 25. 162 25. 256 25. 349 25. 443 24. 24. 26. 26. 27. 152 27. 248 27. 344 24. 27. 537 27. 634 27. 730 27. 827 27. 924 28. 602 27. 152 27. 248 27. 344 24. 27. 537 27. 634 27. 730 27. 827 27. 924 28. 621 28. 118 28. 215 28. 312 24. 324 24. 34							1				1
3.7 22.866 22.947 23.038 23.129 23.210 23.302 23.303 23.464 23.576 23.8 23.770 23.88 24.065 24.066 24.139 24.231 24.324 24.16 24.509 24.139 24.231 24.324 24.16 24.509 25.439 25.443 24.0 25.652 25.668 25.162 25.256 25.349 25.443 24.0 25.652 25.668 25.162 25.256 25.349 25.443 24.1 26.579 26.674 28.769 26.865 26.960 27.066 27.152 26.294 26.389 24.2 27.537 27.634 27.730 27.827 27.924 28.021 28.1318 28.215 28.312 24.3 28.507 28.504 28.702 28.799 28.897 28.805 29.003 29.191 29.259 24.4 29.456 29.555 29.684 29.782 29.881 29.890 30.079 30.178 30.278 34.5 24.5 25.5 25.5 25.5 25.5 25.5 25.5 2											
3.8 23.770 23.862 23.954 24.046 24.136 24.231 24.324 24.416 24.509 23.95 24.788 24.881 24.975 25.068 25.162 25.256 25.349 25.443 24.41 24.509 25.349 25.443 24.253 24.505 25.726 25.349 25.443 24.253 24.253 25.726 25.349 25.443 24.253 24.253 25.266 25.349 2		21.954	ZZ.044	ZZ.133	ZZ.ZZ3	22.313	22.404	22.494	22.584	22.675	22.7
3.9 24.895 24.788 24.881 24.975 25.068 25.162 25.256 25.349 25.443 24.0 25.632 25.726 25.820 25.915 26.009 26.104 26.199 26.294 26.399 24.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 28.215 28.312 24.3 25.607 28.604 28.702 28.799 28.897 28.995 29.083 29.191 29.289 24.4 29.486 29.885 29.684 29.782 29.881 29.890 30.079 30.178 30.278 34.5 30.477 30.576 30.676 30.776 30.876 30.976 31.076 31.176 31.276 34.6 31.477 31.578 31.679 31.780 31.881 31.982 32.083 32.184 32.286 34.7 32.489 32.590 32.692 32.794 22.890 32.692 33.100 33.202 33.053 48.8 33.510 33.612 33.715 33.818 39.291 34.024 34.127 34.231 34.334 34.641 34.645 34.749 34.852 34.852 34.856 35.600 35.582 35.887 35.797 38.018 38.281 39.893 39.883 35.283 35.283 35.293 36.834 36.950 37.056 37.162 37.268 37.374 37.481 35.3 38.764 33.872 33.893 0.087 39.141 39.143 39.444 39.444 39.444 39.444 39.444 39.444 39.953 40.061 40.170 40.279 40.388 40.497 40.606 40.715 45.644 42.57 44.389 44.427 44.894 44.427 44.589 44.452 44.594 44.707 44.891 44.932 45.044 47.066 40.715 48.816 48.944 49.948 45.944 44.507 44.819 44.932 45.045 45.045 45.816 48.816 48.932 49.184 49.948											
4.0 25.632 25.726 25.820 25.915 26.009 26.104 26.199 26.294 26.389 24.2 27.537 27.634 27.730 27.827 27.924 28.021 27.152 27.248 27.344 24.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 28.215 28.312 24.3 28.507 28.604 28.702 28.799 28.897 28.895 29.083 29.191 29.289 24.4 29.486 29.585 29.684 29.782 29.881 29.980 30.079 30.178 30.278 34.5 30.477 30.576 30.676 30.776 30.876 30.976 31.076 31.176 31.276 34.6 31.477 31.578 31.679 31.780 31.881 31.983 32.083 32.184 32.286 34.7 32.489 32.590 32.692 32.794 32.896 32.998 33.100 33.202 33.305 34.8 33.510 33.612 33.715 33.818 33.921 34.024 34.127 34.231 34.334 34.9 34.541 34.455 34.749 34.852 34.956 35.060 35.165 35.260 35.582 35.687 35.792 35.897 36.001 36.107 36.212 36.317 36.325 35.87 35.792 35.897 36.001 36.107 36.212 36.317 36.35 35.20 35.87 35.792 35.897 36.001 36.107 36.212 37.268 37.343 35.5 33 38.764 38.872 38.980 39.087 39.195 39.303 9.411 39.193 39.683 35.582 35.887 35.23 39.90 673 39.195 39.303 9.411 39.193 39.683 35.582 35.87 35.23 39.90 673 39.195 39.303 9.411 39.193 39.683 35.582 35.87 34.344 32.285 34.454 34.257 34.258 39.411 39.519 39.628 35.587 35.74 33.872 38.980 39.087 39.195 39.303 9.411 39.193 39.683 35.582 35.87 34.344 32.285 34.287 44.2558 42.686 42.807 42.918 44.257 44.3594 44.824 44.824 44.594 44.707 44.819 44.924 45.694 44.257 44.2585 42.696 42.807 42.918 45.59 45.334 45.497 45.610 45.723 45.837 45.908 43.809 43.921 44.033 45.99 45.334 45.974 45.608 44.107 46.219 44.819 44.924 45.094 44.004 47.618 48.816 48.974 55.008 48.108 4											
4.1 26.579 26.674 26.769 26.865 26.960 27.066 27.152 27.248 27.344 24.2 27.537 27.634 27.307 27.827 27.924 28.021 28.118 28.255 28.312 24.3 28.507 28.604 28.702 28.799 28.897 28.995 29.093 29.191 29.289 24.4 29.486 29.585 29.684 29.782 29.881 29.980 30.079 30.178 30.278 34.5 30.477 30.578 30.676 30.767 30.876 30.676 30.676 30.477 30.578 30.676 30.767 30.876 30.676 30.376	3.9	24.695	24.788	24.881	24.975	25.068	25.162	25.256	25.349	25.443	25.5
4.1 26.579 26.674 26.769 26.865 26.960 27.066 27.152 27.248 27.344 24.2 27.537 27.634 27.307 27.827 27.924 28.021 28.118 28.255 28.312 24.3 28.507 28.604 28.702 28.799 28.897 28.995 29.093 29.191 29.289 24.4 29.486 29.585 29.684 29.782 29.881 29.980 30.079 30.178 30.278 34.5 30.477 30.578 30.676 30.767 30.876 30.676 30.676 30.477 30.578 30.676 30.767 30.876 30.676 30.376	4.0	25.632	25.726	25.820	25.915	26.009	26.104	26.199	26.294	26.389	26.4
4.2 27.537 27.634 27.730 27.827 27.924 28.021 28.118 28.215 28.312 24.3 28.507 28.604 28.702 28.799 28.897 29.895 29.093 29.191 29.289 24.4 29.486 29.585 29.684 29.782 29.881 29.980 30.079 30.178 30.278 34.5 30.477 31.578 30.676 30.776 30.876 30.976 31.076 31.176 31.276 34.6 31.477 31.578 30.678 30.780 30.987 32.083 32.184 32.286 34.7 32.489 32.590 32.692 32.794 32.806 32.989 33.510 33.212 33.351 34.86 33.510 33.612 33.715 33.818 33.921 34.024 34.127 34.231 34.334 34.9 34.641 34.645 34.749 34.852 34.856 35.600 35.165 35.260 35.260 35.369 35.369 35.369 35.260 35.260 35.260 35.260 35.260 35.363 36.333 36.333 36.333 36.333 36.333 36.333 36.333 36.343 38.844 38.860 37.664 37.800 37.907 38.014 38.121 38.228 38.335 38.442 38.549 35.3 38.444 39.953 40.601 40.170 40.279 40.388 40.407 40.606 40.715 45.6 42.032 42.143 42.253 42.364 42.474 42.555 42.032 42.143 42.253 42.504 43.804		26.579	26.674	26.769	26.865	26.960	27.056	27.152	27.248	27.344	27.4
4.3 28.607 28.604 28.702 28.799 28.897 28.895 29.083 29.191 29.289 28.45 29.486 29.585 29.684 29.782 29.881 29.890 30.079 30.178 30.278 34.5 30.477 30.576 30.676 30.776 30.876 30.976 31.076 31.176 31.276 34.6 31.477 31.578 31.679 31.780 31.881 31.982 32.083 32.184 32.286 34.7 33.510 33.612 33.715 33.818 33.921 34.024 34.127 34.231 34.334 34.9 34.641 34.645 34.749 34.852 34.966 35.060 35.165 35.269 35.373 35.582 35.687 35.792 35.897 36.001 36.107 36.212 36.317 36.337 36.337 39.36.884 36.960 37.066 37.162 37.268 37.374 37.481 35.3 38.764 38.872 38.923 39.087 39.159 39.683 39.411 39.519 39.623 35.587 35.877 35.289 36.384 36.493 39.874 38.723 39.98 39.087 39.159 39.303 39.411 39.159 39.683 35.587 35.344 34.344 34.251 34.265 34.744 35.564 34.542 34.542 34.544 35.574 34.344 34.544 34.544 34.544 34.544 34.544 34.544 34.544 34.544 34.544 35.744 35.864 35.874 38.344 39.945 36.344 34.744 35.864 36.894 34.904 34.251 36.343 34.744 35.864 36.894 34.809 34.944 39.454											
4.4		28 507	28 604	28. 702	28.790	28 897	28.905	29.093	29 191	29 280	29 3
4.5 30.477 30.576 30.676 30.776 30.876 30.976 31.076 31.176 31.276 3 4.6 31.477 31.578 31.679 31.780 31.881 31.982 32.083 32.184 32.286 3 4.7 32.489 32.590 32.692 32.794 32.806 32.998 33.100 33.2184 32.286 3 4.8 33.510 33.612 33.715 33.818 33.921 34.024 34.127 34.231 34.334 34.9 34.641 34.945 34.749 34.852 34.666 35.060 35.165 35.209 35.373 35.52 33.687 35.979 35.897 36.001 36.107 36.212 36.317 36.422 35.51 36.33 36.739 36.884 36.960 37.056 37.162 37.268 37.374 37.481 35.2 37.594 37.800 37.907 38.014 38.121 38.228 38.335 38.442 38.549 35.3 38.764 38.872 38.980 39.087 39.185 39.303 39.411 39.519 39.628 35.54 39.844 39.953 40.061 40.170 40.279 40.388 40.497 40.606 40.715 45.6 42.032 42.143 42.253 42.364 42.744 42.558 42.606 42.607 42.918 45.57 43.140 43.251 43.363 43.474 43.586 43.608 43.804 39.41 40.47 40.67 40.57 44.257 44.389 44.457 44.85 44.594 44.707 44.819 44.932 45.064 42.608 42.807 42.918 45.94 45.59 45.384 45.497 45.610 45.778 45.818 45.97 45.618 47.766 34.778 47.893 48.008 48.123 48.239 48.354 48.469 44.577 46.261 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.469 44.507 46.2 48.816 48.932 49.745 50.211 50.328 50.455 50.679 50.679 50.079 50.913 56.2 48.816 48.932 49.04 51.503 49.512 49.024 49.512 49.024 49.512 49.024 49.934 51.249 51.266 51.383 45.504 51.501 51.619 51.737 51.855 51.973 52.091 5											
4.6 31. 477 31. 578 31. 679 31. 780 31. 881 31. 982 32. 083 32. 184 32. 286 34. 782 33. 510 33. 612 33. 715 33. 818 33. 921 34. 024 34. 127 34. 231 34. 33. 43. 43. 33. 510 33. 612 33. 715 33. 818 33. 921 34. 024 34. 127 34. 231 34. 334 34. 93 34. 641 34. 645 34. 749 34. 852 34. 956 35. 060 35. 165 35. 269 35. 373 35. 582 35. 687 35. 792 35. 897 36. 001 36. 107 36. 212 36. 317											
4.8 33.510 33.612 33.715 33.818 33.921 34.024 34.127 34.231 34.334 4.9 34.541 34.645 34.749 34.852 34.956 35.060 35.165 35.269 35.373 3 5.0 35.6 833 36.739 36.827 35.792 35.897 36.001 36.107 36.212 36.317 36.422 3 5.1 36.6 833 36.739 36.824 36.950 37.007 38.014 38.121 38.228 38.351 38.442 38.540 3 5.3 38.764 38.372 38.980 39.067 39.185 39.303 39.411 39.519 39.628 3 38.344 39.953 40.061 40.170 40.279 40.388 40.497 40.066 40.715 45.5 45.5 45.2 45.2 45.2 45.2 45.2 45.											
4.8 33.510 33.612 33.715 33.818 33.921 34.024 34.127 34.231 34.334 34.94 34.641 34.645 34.749 34.852 34.856 35.060 35.165 35.269 35.373 35.00 35.582 35.687 35.879 36.001 36.107 36.212 36.317 36.422 35.33 36.333 36.342 38.844 36.950 37.056 37.162 37.268 37.374 37.481 35.2 37.694 37.800 37.907 38.014 38.121 38.228 38.335 38.442 38.549 35.3 38.764 38.872 38.903 39.873 39.195 39.303 39.411 39.519 39.628 35.40 39.844 39.953 40.061 40.170 40.279 40.388 40.497 40.606 40.715 45.6 42.032 42.143 42.253 42.364 42.474 42.555 42.696 42.807 42.918 45.6 42.032 42.143 42.253 42.364 42.474 42.555 42.696 42.807 42.918 45.6 42.57 44.369 44.482 45.56 43.56 43.569 43.569 43.569 45.645 45.65 45.656 45.657 45.659 45.657		20 400	91.0(0	01.018	29 704	01.001	22 000	22 100	22 000	22 200	22.0
4. 9 34. 541 34. 645 34. 749 34. 852 34. 856 35. 060 35. 165 35. 269 35. 373 35. 82 35. 887 35. 792 35. 897 36. 001 36. 107 36. 212 36. 317 36. 422 35. 887 35. 792 35. 896 37. 162 37. 268 37. 374 37. 481 35. 2 37. 694 37. 800 37. 907 38. 014 38. 121 38. 228 38. 335 38. 442 38. 549 35. 3 38. 764 38. 872 38. 890 39. 087 39. 195 39. 303 39. 411 39. 519 39. 628 39. 844 39. 953 40. 041 40. 170 40. 279 40. 388 40. 497 40. 606 40. 715 45. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40		22 510	22 619	32 715	22 210	33 021	34 094	34 197	24 221	24 224	24 4
5.0 35.582 35.687 85.792 35.897 36.001 36.107 36.212 36.317 36.422 3 5.1 36.633 36.739 36.884 36.960 37.056 37.162 37.268 37.374 37.481 3 5.2 37.694 37.800 37.907 38.014 38.121 38.228 38.335 38.422 38.549 3 5.3 38.764 38.872 38.980 39.067 39.195 39.303 39.411 39.519 39.628 3 5.4 39.844 39.953 40.061 40.170 40.279 40.388 40.497 40.606 40.715 4 5.5 40.934 41.043 41.153 41.263 41.372 41.482 41.592 41.702 41.812 4 5.6 42.032 42.143 42.253 42.364 42.474 42.585 42.696 42.807 42.918 4 5.7 43.140 43.251 43.363 43.474 43.586 43.698 43.809 43.921 44.033 4 5.8 44.257 44.399 44.842 44.594 44.707 44.819 4.932 45.695 45.15 5.9 45.384 45.497 45.610 45.723 45.887 45.996 42.807 42.918 4 6.0 46.519 46.633 46.747 46.861 46.975 47.090 47.204 47.319 47.434 46.291 4 6.1 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.469 48.555 4 6.2 48.816 48.932 49.48 49.104 49.280 49.390 49.512 49.628 49.745 6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.706 50.913 5 6.5 52.327 52.446 52.584 52.801 52.801 52.901 53.099 53.188 53.2775 5											
5.1 36.633 36.739 38.884 36.960 37.066 37.162 37.268 37.374 37.481 35.2 37.694 37.809 37.907 38.014 38.121 38.228 38.335 38.442 38.549 3 5.3 38.764 38.872 38.990 39.087 39.195 39.303 39.411 39.519 39.628 3 5.4 39.844 39.953 49.061 40.179 40.279 40.388 40.497 40.606 40.715 4 5.6 42.032 42.143 42.253 42.364 42.474 42.565 42.696 42.807 42.918 4 5.7 43.140 43.251 43.363 43.474 43.586 43.698 43.809 43.921 44.033 4 5.8 44.257 44.369 44.482 44.594 47.077 44.819 44.932 45.045 45.188 4 5.9 45.384 45.497 45.61 45.723 45.891 45.992 47.702 47.702 47.819 46.21 47.663 47.778 48.861 48.923 48.294 48.494 48.894 48.894 48.894 48.894 48.894 48.894 48.894 49.894 48.894 49.894 4											i
5.3 38.764 38.872 38.980 39.087 39.195 39.303 39.411 39.519 39.6281 35.5 40.934 11.043 41.153 41.263 41.372 41.482 41.592 41.702 41.812 45.6 42.032 42.143 42.253 42.364 42.474 42.585 42.696 42.807 42.918 45.8 44.257 44.369 44.594 45.596 43.688 43.809 43.891 44.924 45.595 45.8 44.574 43.994 45.610 45.723 45.807 44.812 44.592 45.045 15.158 45.9 45.384 45.497 45.610 45.723 45.837 45.950 46.064 46.177 46.291 46.01 46.519 46.33 46.747 46.861 46.975 47.090 47.204 47.319 47.434 46.61 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.469 48.585 46.3 49.978 45.009 45.211 50.328 50.445 50.562 50.679 50.706 50.913 56.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.091 5											
5.3 38.764 38.872 38.980 39.087 39.195 39.303 39.411 39.519 39.6281 3 5.5 40.934 11.043 41.153 41.263 40.279 40.388 40.497 40.606 40.715 4 5.6 42.032 42.143 42.253 42.364 42.474 42.585 42.696 42.807 42.918 4 5.8 44.257 44.369 44.524 45.946 43.809 43.809 43.921 44.033 4 5.8 44.257 44.369 44.592 44.594 45.95 45.8 45.8 45.27 44.369 44.592 45.064 45.15 15.8 45.8 45.27 44.369 44.592 45.065 45.15 15.9 45.384 45.497 45.610 45.723 45.837 45.950 46.064 46.177 46.291 4 6.0 46.519 46.333 46.747 46.861 46.975 47.090 47.204 47.319 47.434 46.2 48.861 48.932 49.48 49.18 49.280 49.394 48.354 48.469 48.585 46.2 48.816 48.932 49.48 49.18 49.280 49.394 49.512 49.88 49.745 63.4 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.706 50.913 56.3 49.978 50.294 55.256 55.237 52.446 52.564 52.883 52.801 52.920 53.099 53.188 53.2775 52.091 5		36.633	36.739	36.884	36.950	37.056	37.162	37.268	37.374	37.481	37.5
5.4 39.844 39.953 40.061 40.170 40.279 40.388 40.497 40.666 40.715 45.6 40.934 41.043 41.153 41.263 41.372 41.482 41.592 41.702 41.812 45.6 42.032 42.143 42.253 42.383 42.344 42.586 42.696 42.807 42.918 45.6 43.140 43.251 43.363 43.474 43.586 43.698 43.809 43.921 44.033 45.8 44.257 44.389 44.457 44.594 44.707 44.819 44.93 45.045 45.188 45.97 45.819 44.93 45.045 45.188 45.97 45.610 45.723 45.837 45.905 46.04 46.177 46.291 46.21 47.663 47.768 47.663 47.768 48.908 48.186 48.932 49.489 49.184 49.289 49.512 49.628 49.745 62.4 48.816 48.932 49.489 49.184 49.280 49.394 49.512 49.628 49.745 63.4 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 56.55 52.327 52.446 52.684 52.884 52.801 52.801 52.901 53.207 52.466 52.837 52.801 52.801 52.901 53.207 53.207 52.091 53.207		37.694	37.800	37.907	38.014	38.121	38.228	38.335	38.442	38.549	38.6
5.5 40.934 11.043 41.153 41.263 41.372 41.482 41.592 41.702 41.812 4 5.6 42.032 42.143 42.253 42.364 42.474 42.565 42.696 42.807 42.918 4 5.7 43.140 43.251 43.363 43.474 43.586 43.698 43.809 43.921 44.033 4 5.8 44.257 44.369 44.482 44.594 44.707 44.819 44.932 45.045 45.158 4 5.9 45.334 45.497 45.610 45.723 45.837 45.950 46.064 46.177 46.201 4 6.0 46.519 46.633 46.747 46.861 46.975 47.009 47.204 47.319 47.319 48.661 47.778 47.893 48.008 48.123 48.239 48.354 48.499 48.585 62.2 48.816 48.932 49.48 49.164 49.280 49.396 49.512 49.628 49.745 4 6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.706 50.913 5 6.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.091 5 6.5 52.327 52.446 52.564 52.683 52.801 52.920 53.039 53.188 53.2775											
5.6 42.632 42.143 22.253 42.364 42.474 42.585 42.696 42.807 42.918 4 5.7 43.140 43.251 43.363 43.474 43.586 43.698 43.921 44.033 4 5.8 44.257 44.369 44.482 44.594 44.707 44.819 44.932 45.045 45.158 4 5.9 45.384 45.497 45.610 45.723 45.837 45.950 46.064 46.177 46.291 4 6.0 46.519 46.633 46.747 46.861 46.975 47.090 47.204 47.319 47.434 4 6.1 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.499 48.585 4 6.2 48.816 48.932 49.48 49.164 49.280 49.396 49.512 49.628 49.745 4 6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 5 6.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.0915 6.5 52.327 52.446 52.584 52.883 52.801 52.920 53.099 53.158 53.2775	· 5.4	39.844	39.953	40.061	40.170	40.279	40.388	40.497	40.606	40.715	40.8
5.6 42.632 42.143 22.253 42.364 42.474 42.585 42.696 42.807 42.918 4 5.7 43.140 43.251 43.363 43.474 43.586 43.698 43.921 44.033 4 5.8 44.257 44.369 44.482 44.594 44.707 44.819 44.932 45.045 45.158 4 5.9 45.384 45.497 45.610 45.723 45.837 45.950 46.064 46.177 46.291 4 6.0 46.519 46.633 46.747 46.861 46.975 47.090 47.204 47.319 47.434 4 6.1 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.499 48.585 4 6.2 48.816 48.932 49.48 49.164 49.280 49.396 49.512 49.628 49.745 4 6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 5 6.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.0915 6.5 52.327 52.446 52.584 52.883 52.801 52.920 53.099 53.158 53.2775	5.5	40.934	11.043	41.153	41.263	41.372	41.482	41.592	41,702	41.812	41.9
5.7 43.140 43.251 43.363 43.474 43.586 43.608 43.809 43.921 44.032 45.045		42.032	42.143	42.253	42.364	42.474	42.585	42.696	42.807	42.918	43.0
5.8 44.257 44.389 44.482 44.594 44.707 44.4819 44.932 45.045 45.188 45.384 45.497 45.610 45.723 45.837 45.950 46.064 46.177 46.291 46.184 47.7683 47.778 47.893 48.084 48.123 48.239 48.354 48.489 48.489 48.492 48.816 48.932 49.48 49.184 49.280 49.390 49.512 49.638 49.745 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 56.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.091 50.246 52.327 52.446 52.564 52.683 52.801 52.920 53.039 53.158 53.2775											
5.9 45.384 45.497 45.610 45.723 45.837 45.950 46.064 46.177 46.291 4 6.0 46.519 46.333 46.747 46.861 46.975 47.090 47.204 47.319 47.434 4 6.1 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.469 48.585 4 6.2 48.816 48.932 49. 48 49.164 49.280 49.390 49.512 49.628 49.745 6 6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.706 50.913 5 6.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.091 5 6.5 52.327 52.446 52.584 52.683 52.801 52.920 53.039 53.158 53.2775											
6.0 46.519 46.633 46.747 46.861 46.975 47.090 47.204 47.319 47.434 4 6.1 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.469 48.585 4 6.2 48.861 48.232 49.48 49.164 49.542 49.512 49.628 49.784 50.62 50.679 50.798 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 5 6.4 51.149 51.268 51.383 51.501 51.619 51.737 51.855 51.973 52.091 5 6.5 52.327 52.446 52.564 52.683 52.801 52.920 53.039 53.188 53.2775											
6.1 47.663 47.778 47.893 48.008 48.123 48.239 48.354 48.469 48.585 4 6.2 48.816 48.932 49. 48 49.164 49.280 49.396 49.512 49.628 49.745 4 6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 6.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.091 5 6.5 52.327 52.446 52.564 52.683 52.801 52.920 53.039 53.158 53.277 5		1 1									ι
6.2 48.816 48.932 49. 48149.164 49.280149.396149.512149.638149.74514 6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 5 6.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.0915 6.5 52.327 52.446 52.564 52.683 52.801 52.920 53.039 53.158 53.277 5											
6.3 49.978 50.094 50.211 50.328 50.445 50.562 50.679 50.796 50.913 50.45 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.091 50.562 52.327 52.46 52.564 52.563 52.801 52.902 53.039 53.158 53.277 52.562 5		10.003	40.070	40 40	40.008	10.143	40.209	40.504	40.409	10.000	10.7
6.4 51.149 51.266 51.383 51.501 51.619 51.737 51.855 51.973 52.091 5											
6.5		49.9/8	50.094	50.Z11	00.328	00.445	50.502	50.0/9	50.796	50.913	0.19
6.5	5.4										
		52.327	52.446	52.564	52.683	52.801	52.920	53.039	53.158	53.277	53.3
6.6 53.515 53.634 53.754 53.873 53.993 54.112 54.232 54.352 54.471 5	6.6	53.515	53.634	53.754	53.873	53.993	54.112	54.232	54.352	54.471	54.5
6.7		54.711	54.831	54.952	55.072	55.192	55.313	55.433	55.554	55.674	55.7
6.8		55.916	56.037	56.158	56.279	56.400	56.521	56.642	56.764	56.886	57.0
6.9 57.129 57.251 57.372 57.494 57.616 57.738 57.860 57.983 58.105 5		57.129	57.251	57.372	57.494	57.616	57.738	57.860	57.983	58.105	58.2

Table 34.—Values of $\left(1+0.56\,\frac{H^2}{d^2}\right)$ Corresponding to Different Values of $\frac{H}{d}\left(\operatorname{or}\,\frac{LH}{A}\right)$. Velocity of Approach Correction for Sharp-crested Weirs. See page 64 for notation

<i>H</i> ₫	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.00 .01 .02 .08 .04	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001	1.000 1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.001
.05 .06 .07 .08 .09	1.002 1.003 1.004 1.005	1.002 1.003 1.004 1.005	1.002 1.003 1.004 1.005	1.002 1.003 1.004 1.005	1.002 1.003 1.004 1.005	1 1	1.002 1.003 1.004 1.005	1.003 1.003 1.004 1.005	1.003 1.003 1.004 1.005	1.003 1.003 1.004 1.005
.10 .11 .12 .13 .14	1.007 1.008 1.009 1.011	1.007 1.008 1.010 1.011	1.007 1.008 1.010 1.011	1.007 1.008 1.010 1.011	1.007 1.009 1.010 1.012	1.006 1.007 1.009 1.010 1.012	1.008 1.009 1.010 1.012	1.008 1.009 1.011 1.012	1.008 1.009 1.011 1.012	1.008 1.009 1.011 1.012
.15 .16 .17 .18 .19	1.014 1.016 1.018 1.020	1.015 1.016 1.018 1.020	1.015 1.017 1.019 1.021	1.015 1.017 1.019 1.021	1.015 1.017 1.019 1.021	1.013 1.015 1.017 1.019 1.021	1.015 1.017 1.019 1.022	1.016 1.018 1.020 1.022	1.016 1.018 1.020 1.022	1.016 1.018 1.020 1.022
.20 .21 .22 .23 .24	1.025 1.027 1.030 1.032	1.025 1.027 1.030 1.033	1.025 1.028 1.030 1.033	1.025 1.028 1.030 1.033	1.026 1.028 1.031 1.033	1.024 1.026 1.028 1.031 1.034	1.026 1.029 1.031 1.034	1.026 1.029 1.031 1.034	1.027 1.029 1.032 1.034	1.027 1.029 1.032 1.035
.25 .26 .27 .28 .29	1.038 1.041 1.044 1.047	1.038 1.041 1.044 1.047	1.038 1.041 1.045 1.048	1.039 1.042 1.045 1.048	1.039 1.042 1.045 1.048	1.036 1.039 1.042 1.045 1.049	1.040 1.043 1.046 1.049	1.040 1.043 1.046 1.049	1.040 1.043 1.046 1.050	1.041 1.044 1.047 1.050
.30 .31 .32 .33 .34	1.054 1.057 1.061 1.065	1.054 1.058 1.061 1.065	1.055 1.058 1.062 1.065	1.055 1.058 1.062 1.066	1.055 1.059 1.062 1.066	1.052 1.056 1.059 1.063 1.067	1.056 1.059 1.063 1.067	1.056 1.060 1.064 1.067	1.057 1.060 1.064 1.068	1.057 1.061 1.064 1.068
.35 .36 .37 .38 .39	1.073 1.077 1.081 1.085	1.073 1.077 1.081 1.086	1.073 1.077 1.082 1.086	1.074 1.078 1.082 1.086	1.074 1.078 1.083 1.087	1.071 1.075 1.079 1.083 1.087	1.075 1.079 1.083 1.088	1.075 1.080 1.084 1.088	1.076 1.080 1.084 1.089	1.076 1.080 1.085 1.089
.40 .41 .42 .43 .44	1.099 1.104 1.108	1.099 1.104 1.109	1.100 1.104 1.109	1.100 1.105 1.110	1.101 1.105 1.110	1.092 1.096 1.101 1.106 1.111	1.162 1.106 1.111	1.102 1.107 1.112	1.103 1.107 1.112	1.103 1.108 1.113
.45 .46 .47 .48 .49	1.118 1.124 1.129	1.119 1.124 1.130	1.120 1.125 1.130	1.120 1.125 1.131	1.121 1.126 1.131	1.116 1.121 1.126 1.132 1.137	1.122 1.127 1.132	1.122 1.127 1.133	1.123 1.128 1.133	1.123 1.128 1.134

Table 35.—Discharge in Cubic Feet per Second per Foot of Length of Sharp-Crested Weirs with End Contractions Suppressed, by the Formula $Q=3.34\ H^{1.47}\ (1\ +\ .56\ \frac{H^2}{d^2})$

See page 64 for notation

								or not	
Head in inches	Head in feet			Heig	ht of	veir in	leet		
In Inches	in reet	0.5	0.75	1.	1.5	2.	3.	4.	в.
236 2716 214 2916 256	.200	. 328	.321	.318	.316	.315	.314	.314	. 31
27/16	.205	.341	.333	.330	.328	. 327	. 326	. 326	. 32
21/2	.210	.354	.346	.343	.340	. 339	. 338	. 337	. 33
2% 6	.215	.367	.358	.355	.352	.351	.350	.349	. 34
2%	.220	.380	.371	.367	. 364	.363	. 362	. 361	. 36
211/16	.225	. 393	.384	.380	.376	.375	.374	.373	.37
234	.230	.406	.397	.393	.389	.387	.386	. 386	. 38
234 21316	.235	.420	.410	.406	.401	.400	.398	.398	. 39
2/8	.240	.434	.423	.419	.414	.413	.411	.411	.41
276	.245	.448	.437	.432	.427	.426	.424	.423	.42
3	.250	.462	.450	.445	.440	.438	.436	.436	.43
31/16	.255	.477	.464	.458	.453	.451	.449	.449	. 44
378	.260	.491	.478	.472	.466	.464	.462	.462	.46
314 314 314	.265 .270	.506	.492 .506	.486 .500	.480 .494	.478 .491	.476 .489	.475 .488	.47
	.275	. 536	.521	.514	. 507	.505	. 502		
3716	.280	.551	.535	.528	.521	.518	.516	.502	.50
37%	.285	.567	.550	.542	.535	.532	.529	.529	. 52
3126	.290	.582	.565	.557	.549	.546	.543	.543	. 54
3516 358 3716 312 3916	.295	.598	.580	.571	.563	.560	.557	. 557	. 55
	.300	.614	. 595	. 586	. 578	. 574	.572	. 571	. 57
356 356	.305	.630	.610	.601	. 592	. 589	. 586	. 585	. 58
311/16	.310	.646	.625	.601 .616	.607	.603	. 600	. 599	. 59
334	.315	.662	.641	.631	.622	.618	.614	.613	. 61
311/16 33/4 313/16	.320	.679	.657	.646	. 636	. 632	. 629	.628	. 62
376 315/16	.325 .330	.696	.673	.662	.651	. 647	.643	.642	. 64
31½ 6		.713	.689	.677	.666	.662	. 658	.657	. 65
4	.335	.730	.705	. 693	.682	. 677	. 673	.671	. 67
41/6 41/8	.340	.747	.721	.709	. 697	.692	. 688	.686	. 68
	.345	.764	.738	.724	.712	.707	.703	.701	.70
4316 414 4516 438 4716	.350	.782	.754	.740	.728	.722	.718	.716	.71
414	.355	.799 .817	.771 .788	.757 .773	.744	.738	.733	.731	. 73
4916	.360	.817	.788	.773	.760	.753	.749	.747	.74
428	.365	.835	.805	.790	.776	.769	.764	.762	.76
	.370	.853	.822	.806	.792	.785	.780	.778	.77
416 4916 458	.375	.871	.839	.823	.808	.801	.795	.793	.79
4216	.380	.889	.856	.840	.824	.817	.811	.809	. 80
411/	.385	.908 .926	.874 .892	.857 .874	.840	.833	.827	.825	. 82
41116	.395	.945	.909	.891	.857 .873	.849 .865	.843 .859	.841 .857	.83
413/16	.400	.964	.927	.908	.890	.882	.875	.873	.87
478	.405	.983	.946	.926	.907	.898	.892	.889	.88
415/16	.410	1.003	.964	.943	.924	.915	.908	.905	.90
5	.415	1.022	.982	.961	.941	.932	.925	.921	.91
51/16	.420	1.042	1.001	.979	.958	.949	.941	.937	.93
-/10	1	-•• 	1001			.025	.041	. 501	. 00

Table 35 (Continued)

Discharge in Cubic Feet per Second per Foot of Length of Sharp-Crested Weirs with End Contractions Suppressed, by the Formula $Q=3.34\ H^{1.47}\ (1\ +\ .56\ \frac{H^2}{d^2})$

See page 64 for notation

		See page 64 for notation							
Head	Head			Heig	tht of	weir in	feet		
in inches	in feet	0.5	0.75	1.	1.5	2.	3.	4.	6.
51/6 51/6 53/1 6 51/4 55/1 6	.425 .430 .435 .440 .445	1.082 1.102 1.122	1.076	1.015 1.033 1.051	.975 .993 1.010 1.028 1.046	.983 1.000 1.017	.975 .992 1.008	.971 .988 1.005	.968 .985 1.002
5% 574 6 574 6 594 6	.465	1.183 1.204 1.225	$1.133 \\ 1.153 \\ 1.173$	1.107 1.126 1.145	1.064 1.082 1.100 1.118 1.136	1.070 1.088 1.105	1.060 1.077 1.095	1.056 1.073 1.090	1.052 1.070 1.087
513/16 53/4 51/6 57/6 51/4	.475 .480 .485 .490 .495	1.288 1.309 1.331	$1.232 \\ 1.253 \\ 1.273$	$1.202 \\ 1.222 \\ 1.241$	1.154 1.173 1.192 1.210 1.229	1.159 1.177 1.196	1.147 1.165 1.183	1.143 1.160 1.178	1.139 1.157 1.174
6 6) (6 6) 6 6) 4	.500 .505 .510 .515 .520	1.397 1.419 1.441	1.334 1.355 1.376	1.301 1.321 1.341	1.248 1.267 1.286 1.305 1.324	1.251 1.270 1.289	1.238 1.256 1.274	1.232 1.250 1.268	1.228 1.246 1.264
65/6 638 63/6 63/2 69/6	.525 .530 .535 .540 .545	1.508 1.531 1.554	1.440 1.461 1.483	1.402 1.422 1.443	1.344 1.364 1.383 1.403 1.423	1.346 1.365 1.384	1.330 1.349 1.368	1.324 1.342 1.361	1.318 1.337 1.355
69/6 69/6 61/16 63/1 61/16	.550 .555 .560 .565 .570	1.647 1.670	1.570 1.592	$1.527 \\ 1.548$	1.443 1.463 1.483 1.503 1.524	$1.462 \\ 1.482$	1.444	1.436 1.455	1.430
676 61916 7 7316 738	.575 .580 .585 .590 .595	1.742	1.659	1.613	1.544 1.565 1.586 1.606 1.627	1.542	1.522	1.513	1.506
73/6 73/6 75/6 73/6 73/6	.600 .605 .610 .615 .620	$1.864 \\ 1.888 \\ 1.913$	$1.774 \\ 1.797 \\ 1.821$	1.723 1.745 1.767	1.648 1.670 1.691 1.712 1.734	1.644 1.664 1.685	1.621 1.641 1.661	1.610 1.630 1.650	1.604 1.623 1.643
714 784 e 756 714 e 734	.625 .630 .635 .640 .645	1.988 2.014 2.039	1.891 1.915 1.939	1.835 1.858 1.881	1.755 1.776 1.798 1.820 1.842	1.748 1.769 1.790	1.722 1.742 1.763	1.711 1.731 1.751	1.702 1.722 1.742

Table 35 (Continued)

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH OF SHARP-CRESTED WEIRS WITH END CONTRACTIONS SUP-

PRESSED, BY THE FORMULA $Q = 3.34 \ H^{1.47} \ (1 + .56 \ \frac{H^2}{d^2})$

See page 64 for notation

	,					Dee pa	ge or	or not	aut011
Head	Head	*		Hei	ght of	weir in	feet		
in inches	in feet	0.5	0.75	1.	1.5	2.	3.	4.	6.
713/16 776 715/16	.650 .655 .660 .665	2.116 2.142	2.011 2.036	1.951 1.974	1.864 1.866 1.908 1.930	1.854 1.876	1.825 1.846	1.813 1.834	1.803 1.823
81/16	.670	2.194	2.085	2.021	1.953	1.919	1.888	1.875	1.864
816 818 8816 814 8516	.675 .680 .685 .690 .695	$2.247 \\ 2.273 \\ 2.300$	2.135 2.160 2.185	$2.068 \\ 2.092 \\ 2.116$	1.975 1.998 2.020 2.043 2.066	$1.963 \\ 1.985 \\ 2.007$	1.931 1.952 2.974	1.917 1.938 1.959	1.905 1.926 1.947
836 8716 832 8316 836	.700 .705 .710 .715 .720	2.354 2.381 2.408 2.435 2.463	2.235 2.261 2.286 2.312 2.338	2.165 2.189 2.214 2.238 2.263	2.089 2.112 2.135 2.159 2.182	2.051 2.074 2.096 2.119 2.142	2.017 2.038 2.060 2.082 2.104	2.002 2.023 2.044 2.066 2.087	1.989 2.010 2.031 2.053 2.074
81116 834 81316 878 81516	.725 .730 .735 .740 .745	2.573	2.442	2.363	2.206 2.229 2.253 2.276 2.300	2.233	12.193	2.175	2.095 2.117 2.138 2.160 2.182
9 916 918 936 914	.750 .755 .760 .765 .770	2.629 2.657 2.686 2.714 2.743	2.494 2.521 2.548 2.574 2.601	2.414 2.439 2.465 2.490 2.516	2.324 2.348 2.372 2.397 2.421	2.279 2.303 2.326 2.349 2.373	2.237 2.260 2.282 2.305 2.327	2.219 2.241 2.263 2.285 2.307	2.203 2.225 2.247 2.269 2.291
9516 988 9716 912 9916	.775 .780 .785 .790 .795	2.771 2.800 2.829 2.858 2.887	2.628 2.655 2.682 2.710 2.737	2.542 2.568 2.593 2.619 2.646	2.446 2.470 2.495 2.519 2.544	2.396 2.420 2.444 2.468 2.493	2.350 2.373 2.396 2.419 2.442	2.330 2.352 2.37 5 2.398 2.421	2.313 2.335 2.357 2.380 2.402
9916 956 91116 934 91316	.810	$\frac{2.975}{3.005}$	$2.820 \\ 2.848$	2.725 2.751	2.619 2.644	$\frac{2.565}{2.589}$	$2.512 \\ 2.536$	2.489 2.512	2.425 2.447 2.470 2.492 2.515
978 91516 10 10)16 10)8	.825 .830 .835 840 .845	3.064 3.094 3.124 3.154 3.184	2.904 2.932 2.961 2.989 3.017	2.805 2.832 2.859 2.887 2.914	2.695 2.720 2.746 2.772 2.797	2.637 2.662 2.687 2.712 2.637	2.583 2.607 2.630 2.654 2.678	2.558 2.582 2.605 2.628 2.652	2.538 2.561 2.584 2.607 2.630
103(6 1014 105(6 1036 107(6	.850 .855 .860 .865	3.214 3.244 3.275 3.305	3.045 3.074 3.103 3.132	2.942 2.969 2.997 3.024	2.823 2.849 2.875 2.901	2.762 2.787 2.812 2.837	2.702 2.726 2.750 2.774	2.676 2.699 2.723 2.747	2.653 2.676 2.699 2.723 2.746
	<u> </u>		<u> </u>				1	1	

Table 35 (Continued)

Discharge in Cubic Feet per Second per Foot of Length of Sharp-Crested Weirs with End Contractions Suppressed, by the Formula $Q=3.34\ H^{1.47}\ (1\ +\ .56\ \frac{H^2}{d^2})$

See page 64 for notation

Head	Head			Heig	ght of w	eir in feet		
in inches	in feet	0.5	0.75	1.	1.5	2. 3.	4.	6.
10½ 10¾ 10¾ 10½ 1011 1034	.875 .880 .885 .890 .895	3.398 3.429 3.460	3.220 3.249 3.278	3.108 3.136 3.164	$\begin{array}{c} 2.9802 \\ 3.0062 \\ 3.0332 \end{array}$.887 2.82 .912 2.84 .938 2.87 .963 2.89 .989 2.92	2.818 2.842 72.866	2.793 2.817 2.841
1018/16 1076 1078 1018/16 11 111/16	.915	3.554 3.586 3.617	3.367 3.397 3.427	3.249 3.478 3.506	3.113 3 3.140 3 3.167 3	.015 2.94 .040 2.97 .066 2.99 .092 3.02 .119 3.04	1 2.939 3 2.963 1 2.988	2.912 2.936 2.960
1116 1116 1156 1156 1116 1156	.930 .935 .940 .945	3.713 3.745 3.777 3.809	3.517 3.548 3.578 3.609	3.392 3.421 3.450 3.480	3.248 3 3.276 3 3.303 3 3.331 3	.145 3.07 .171 3.09 .198 3.12 .224 3.14 .251 3.17	3 3 . 062 2 3 . 087 7 3 . 111 2 3 . 136	3.032 3.057 3.081 3.105
1136 11746 1132 11946 1158	.900	3.940	3.732	3.597	3.4423	.277 3.193 .304 3.223 .331 3.244 .358 3.27 .385 3.30	3.237	3.204
11116 1134 111316 1176 111316	.980 .985	$\frac{4.038}{4.071}$	3.825 3.856	$\frac{3.687}{3.717}$	$\begin{bmatrix} 3.526 & 3 \\ 3.554 & 3 \end{bmatrix}$.412 3.326 .439 3.35 .466 3.37 .493 3.40 .520 3.43	$\frac{2}{3}, \frac{3}{3}$	3.278 3.303
12 1214 1214 1234 1236 1214	1.00 1.01 1.02 1.03 1.04	4.238 4.306 4.374	4.014 4.078 4.142	3.869 3.930 3.991	3.697 3 3.754 3 3.812 3	.548 3.45 .603 3.51 .658 3.56 .714 3.61 .770 3.67	$\begin{vmatrix} 3.466 \\ 3.518 \\ 3.570 \end{vmatrix}$	3.429 3.479 3.530
1256 12116 12136 12136 12156 1316	1.05 1.06 1.07 1.08 1.09	4.649 4.719	4.403 4.469	$4.241 \\ 4.305$	$\begin{bmatrix} 4.048 & 3 \\ 4.108 & 3 \end{bmatrix}$.827 3.72 .883 3.77 .940 3.83 .998 3.88 .055 3.94	$\frac{2}{3}.781$	3.737 3.789
13% 6 13% 6 13% 6 13% 6 13% 6 131% 6	1.10 1.11 1.12 1.13 1.14	4.930 5.002 5.073	4.670 4.738 4.806	4.497 4.562 4.627	4.288 4 4.349 4 4.411 4	.113 3.99 .172 4.05 .230 4.10 .289 4.16 .349 4.22	3.997 4.051 4.106	3.947 4.000 4.053
1315/16 1315/16 141/16 141/2 141/4	1.15 1.16 1.17 1.18 1.19	5.291 5.364 5.437	5.012 5.082 5.152	4.825 4.892 4.959	4.597 4 4.660 4 4.723 4	.408 4.27 .468 4.33 .528 4.39 .589 4.45 .650 4.50	$\begin{array}{c} 5 & 4.272 \\ 3 & 4.328 \\ 0 & 4.384 \end{array}$	4.215 4.270 4.324

Digitized by GOOSI

TABLE 35 (Concluded)

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH OF SHARP-CRESTED WEIRS WITH END CONTRACTIONS SUPPRESSED, BY THE FORMULA $Q=3.34\ H^{1.47}\ (1\ +\ .56\ \frac{H^2}{d^2})$

See page 64 for notation

Head	Head			Heig	ght of			101 11	
in inches	in feet	0.5	0.75	1.	1.5	2.	3.	4.	6.
1436 1412 1456 1434 1476	1.20 1.21 1.22 1.23 1.24	5.660 5.735 5.810	5.364 5.435 5.506	5.162 5.231 5.300	4.914 4.979 5.043	4.772 4.834 4.896	4.625 4.684 4.743	4.554 4.611 4.668	4.435 4.490 4.546 4.602 4.658
15 1514 1514 1534 1534	1.25 1.26 1.27 1.28 1.29	5.961 6.038 6.114 6.191 6.269	5.651 5.724 5.797 5.870 5.944	5.438 5.508 5.578 5.648 5.719	5.174 5.240 5.306 5.372 5.438	5.021 5.084 5.147 5.211 5.275	4.861 4.921 4.981 5.042 5.102	4.784 4.842 4.901 4.959 5.018	4.714 4.770 4.827 4.884 4.941
1556 151346 151346 151546 16146	1.32	6.503 6.582	6.167 6.242	$5.934 \\ 6.006$	5.640 5.708	$5.468 \\ 5.533$	$5.286 \\ 5.348$	5.197 5.257	4.999 5.057 5.115 5.173 5.231
16% 6 16% 6 16% 6 16% 6 16% 6 161 16	1.35 1.36 1.37 1.38 1.39	6.740 6.820 6.900 6.981 7.061	6.394 6.470 6.546 6.623 6.700	6.152 6.225 6.298 6.372 6.446	5.845 5.914 5.983 6.052 6.122	5.664 5.730 5.796 5.863 5.930	5.472 5.535 5.598 5.661 5.724	5.377 5.438 5.499 5.560 5.622	5.290 5.349 5.408 5.468 5.527
1613/6 1615/6 171/6 171/6 171/6	1.40 1.41 1.42 1.43 1.44	7.224 7.306 7.388	6.856 6.934 7.012	6.596 6.671 6.746	6.404	6.065 6.133 6.201	5.852 5.916 5.980	5.746 5.808 5.870	5.587 5.647 5.707 5.768 5.829
1736 1714 1734 1734 1738	1.45 1.46 1.47 1.48 1.49	$7.719 \\ 7.803$	7.329 7.409	$7.052 \\ 7.129$	6.692 6.764	$6.476 \\ 6.545$	$6.241 \\ 6.307$	6.122	5.890 5.951 6.012 6.074 6.136
18% 18½	1.54	8.056 8.141 8.226 8.312	7.652 7.733 7.815 7.897	7.362 7.440 7.519 7.598	6.984 7.058 7.132 7.206	6.756 6.826 6.897 6.969	6.506 6.573 6.640 6.707	6.379 6.443 6.508 6.573	6.198 6.260 6.322 6.385 6.448
1856 18116 18136 18156 1916	1.55 1.56 1.57 1.58 1.59	8.398 8.484 8.570 8.657 8.744	7.979 8.062 8.145 8.228 8.311	7.677 7.757 7.837 7.917 7.998	7.281 7.356 7.431 7.507 7.583	7.040 7.112 7.185 7.257 7.330	6.775 6.843 6.911 6.979 7.048	6.639 6.705 6.771 6.837 6.903	6.511 6.575 6.638 6.702 6.766
19346 19346 19346 19346 19346	1.60 1.61 1.62 1.63 1.64	8.832 8.919 9.007 9.096 9.185	8.395 8.479 8.564 8.649 8.734	8.079 8.160 8.241 8.323 8.405	7.659 7.736 7.813 7.890 7.967	7.402 7.476 7.549 7.623 7.697	7.117 7.186 7.255 7.325 7.395	6.970 7.037 7.104 7.171 7.239	6.830 6.895 6.960 7.025 7.090

Table 36.—Values of the Expression $\left(1+\frac{1}{5}\sqrt{\frac{DH}{Zd_1}}\right)\left(1+\frac{D}{2}\right)$ Corresponding to Different Values of $\frac{H}{d_1}$ and $\frac{D}{Z}$ to Assist in Solution of Submerged-Weir Formula (Formula (41)), Page 82.

H D D Z Z 0.2 0.2 0.3 0.4 0.5 0.0 0.1 0.3 0.4 0.5 0.0 0.1 1.00 1.00 1.00 1.00 7.00 8.71 8.98 0.0 1.00 1.00 5.0 7.99 8.40 9.21 1.16 1.30 1.14 1.17 8.14 8.56 8.72 8.88 9.16 9.39 0.1 1.12 1.15 1.16 5. t 7.12 9.33 0.2 1.24 1.27 1.29 1.31 1.32 5.2 5.3 7.24 7.36 8.28 8.43 9.05 9.33 9.58 9.50 9.76 1.43 1.44 1.58 8.88 9.22 0.3 1.36 1.41 1.45 1.47 7.48 8.58 9.68 9.94 5.4 9.04 9.38 0.4 1.48 1.54 1.56 1.60 1.61 1.72 1.74 1.76 5.5 7.60 8.73 9.20 9.55 9.85 10.12 1.60 1.67 1.70 0.5 1.87 0.6 1.72 1.80 1.84 1.89 1.91 5.6 7.72 8.88 9.36 9.72 10.03 10.30 9.02 9.17 9.32 1.98 1.94 2.06 5.7 9.52 9.89 10.21 10.49 2.01 2.03 7.84 0.7 1.84 2.12 2.15 2.18 5.8 7.96 9.68 10.06 10.39 10.67 1.96 2.21 0.8 2.07 0.9 2.08 2.21 2.26 2.30 2.33 2.36 5.9 8.08 9.84 10.23 10.56 10.86 9.47 10.00 10.40 10.74 11.04 9.62 10.16 10.57 10.92 11.23 9.77 10.32 10.74 11.10 11.41 9.92 10.48 10.91 11.28 11.60 2.51 1.0 2.20 2.34 2.40 2.44 2.48 6.0 8.20 2.59 2.322.47 2.54 2.63 2.66 6.1 8.32 1.1 1.2 2.44 2.61 2.68 2.73 2.78 2.82 6.2 8.44 1.3 2.56 2.74 2.82 2.88 2.93 2.97 6.3 8.56 8.68 10.07 10.64 11.08 11.46 11.79 2.68 2.88 2.96 3.03 1.4 3.08 3.13 6.4 8.80 10.22 10.81 11.25 11.64 11.97 8.92 10.37 10.97 11.42 11.82 12.16 9.04 10.52 11.13 11.59 12.00 12.35 9.16 10.67 11.30 11.76 12.1812.54 9.28 10.82 11.46 11.93 12.36 12.73 8.11 3.23 3.28 6.5 1.5 2.8 3.02 3.18 3.15 3.29 3.43 3.39 3.54 3.70 6.6 6.7 6.8 1.6 1.7 3.33 3.48 2.92 3.25 3.44 3.40 3.54 3.60 3.76 3.04 3.63 3.78 1.8 3.16 1,9 3.28 3.57 3.69 3.85 3.92 6.9 9.40 10.97 11.62 12.11 12.55 12.92 9.52 11.12 11.79 12.28 12.73 13.11 9.64 11.28 11.96 12.46 12.91 13.30 9.76 11.43 12.12 12.64 13.10 13.49 9.88 11.58 12.29 12.82 13.28 13.68 3.70 3.84 4.08 2.0 3.40 3.83 3.93 4.01 7.0 4.17 4.32 4.24 2.1 3.52 8.98 4.08 7.1 4.23 2.2 3.64 3.98 4.12 4.40 7.2 2.3 3.76 4.12 4.27 4.38 4.48 4.57 7.3 4.54 2:4 3.88 4.26 4.42 4.64 4.73 7.4 10.00 11.73 12.45 13.00 13.46 13.87 10.12 11.88 12.62 13.17 13.65 14.07 10.24 12.04 12.78 13.35 13.83 14.27 10.36 12.19 12.95 13.53 14.02 14.45 10.48 12.24 13.12 13.71 14.21 14.65 4.69 4.89 7.5 4.40 4.57 4.80 2.5 4.00 4.12 4.24 4.36 2.6 2.7 4.54 4.85 5.00 5.06 4.71 4.96 7.6 4.68 4.86 5.12 5.23 7.7 4.82 2.8 5.15 5.28 5.39 7.8 5.01 2.9 4.48 4.96 5.31 5.45 5.56 7.9 5.16 10.60 12.50 13.28 13.88 14.39 14.84 10.72 12.65 13.45 14.06 14.58 15.04 13.84 12.80 13.62 14.24 14.77 15.01 10.96 12.96 13.78 14.42 14.96 15.43 11.08 13.11 13.95 14.60 15.14 15.63 3.0 5.31 4.60 5.10 5.47 5.61 5.73 8.0 4.72 4.84 4.96 5.25 5.39 5.53 5.63 5.79 5.77 5.90 8.1 3,1 5.466.06 3.2 5.94 5.61 8.2 3,3 5.77 5.95 6.10 6.23 8.3 3.4 5.08 5.67 5.92 6.11 6.26 6.40 8.4 11. 20 13. 26 14. 12 14. 78 15. 33 15. 83 11. 32 13. 42 14. 29 14. 96 15. 52 16. 02 11. 44 13. 57 14. 46 15. 14 15. 71 16. 22 11. 56 13. 73 14. 63 15. 82 15. 90 16. 42 3.5 5.20 5.82 6.07 6.27 6.43 6.58 8.5 3.6 3.7 5.32 6.22 6.38 6.60 6.76 6.75 8.6 8.7 5.96 6.43 6.92 5.44 6.10 6.25 6.75 6.93 3.8 5.56 6.53 7.09 8.8 3.9 5.68 6.39 6.91 7.27 8.9 11.68 13.88 14.80 15.50 16.09 16.61 6.68 7.10 4.0 5.80 7.07 11.80 14.04 14.97 15.68 16.28 16.81 6.53 6.84 7.27 7.44 9.0 11.92 14.19 15.14 15.86 16.47 17.01 12.04 14.85 15.31 16.04 16.66 17.21 12.16 14.51 15.48 16.23 16.85 17.41 12.28 14.66 15.65 16.41 17.04 17.61 6.68 6.99 7.23 7.44 7.62 9.1 4.1 5.92 4.2 6.04 6.82 6.97 7.15 7.40 7.61 7.79 9.2 4.3 6.16 7.30 7.56 7.78 7.97 9.3 4.4 6.28 7.11 7.46 7.72 7.95 8.14 9.4 9.5 12.40 14.82 15.82 16.59 17.23 17.81 9.6 12.52 14.97 15.99 16.77 17.43 18.01 9.7 12.64 15.13 16.16 16.95 17.62 18.21 9.8 12.76 15.29 16.33 17.14 17.82 18.41 9.9 12.88 15.44 16.51 17.82 18.41 7.26 8.32 4.5 6.40 7.61 7.89 8.12 4.6 6.52 7.40 7.77 7.93 8.05 8.22 8.29 8.50 8.68 4.7 6.64 6.76 7.55 7.70 8.46 8.38 8.86 8.08 8.63 8.55 8.81 9.03 4.9 6.88 7.84 8.24

Table 37.—Discharge in Cubic Feet per Second Over Right-angled V-notch Weirs by the Formula, $O=2.52\ H^{2.47}$

			V	<i>–</i> 2.	52 H					
Head H in feet	.000	.001	.002	.003	.004	. 005	.006	.007	.008	. 009
.10 .11 .12 .13	.0108 .0134	.0088 .0111 .0137 .0166 .0200	.0113 .0140 .0170	.0116	.0118 .0145 .0176	.0121	.0123 .0151 .0183	.0126 .0154 .0186	.0103 .0129 .0157 .0189 .0225	.0131
.15 .16 .17 18	.0233 .0273 .0317 .0365 .0417	.0277 .0321 .0370	.0281 .0326 .0375	.0244 .0285 .0331 .0380 .0434	.0290 .0335 .0385	.0294 .0340 .0390	.0299 .0345 .0396	.0350 .0401	.0308	.0360
.20 .21 .22 .23 .24	.0473 .0534 .0599 .0668 .0742	.0540 .0606 .0676	.0547 .0612 .0683	.0491 .0553 .0619 .0690 .0765	.0559 .0626 .0697		.0572	.0579 .0647 .0720	.0522 .0586 .0654 .0727 .0805	.0592 .0661 .0735
.25 .26 .27 .28 .29	.0821 .0904 .0993 .1086 .1185	.0829 .0913 .1002 .1096 .1195	.0922 .1011 .1105	.0845 .0930 .1020 .1115 .1215	.0939 .1029 .1125	.0862 .0948 .1039 .1135 .1236	.0870 .0957 .1048 .1145	.0879 .0966 .1057 .1155 .1256	.0887 .0975 .1067 .1165 .1267	.0896 .0984 .1076 .1175 .1277
.30 .31 .32 .33	.129 .140 .151 .163 .176	.130 .141 .152 .164 .177	.131 .142 .154 .166 .178	.132 .143 .155 .167 .179	.133 .144 .156 .168 .181	1.157	.135 .147 .158 .171 .183	.136 .148 .159 .172 .185	.138 .149 .161 .173 .186	. 139 . 150 . 162 . 174 . 187
.35 .36 .37 .38 .39	.189 .202 .216 .231 .246	.190 .204 .218 .232 .248	.191 .205 .219 .234 .249	.193 .206 .221 .236 .251	.194 .208 .222 .237 .253	.195 .209 .224 .239 .254	.197 .211 .225 .240 .256	.198 .212 .227 .242 .257	.199 .213 .228 .243 .259	.201 .215 .229 .245 .261
.40 .41 .42 .43 .44	.262 .279 .296 .313 .332	.264 .280 .297 .315 .334	.299	.267 .284 .301 .319 .337	.269 .285 .303 .321 .339	.305	.272 .289 .306 .324 .343	.274 .291 .308 .326 .345	.275 .292 .310 .328 .347	.277 .294 .312 .330 .349
.46	.370 .390	.372 .393 .413	.374 .395 .416	.376 .397 .418	.358 .378 .399 .420 .442	.401 .422	. 362 . 382 . 403 . 424 . 446	.405	.366 .386 .407 .428 .450	.368 .388 .409 .431 .453
. 52	.501	.504	.482 .506 .530	.508	.511	.513	.516 .540	.518 .543	.520 .545	.475 .499 .523 .548 .573
.55 .56 .57 .58 .59	.576 .602 .629 .656 .685	.605 .632 .659	.607 .634 .662	.610 .637 .665	.613 .640 .668	.615 .643 .670	. 645	.621 .648 .676	.623 .651 .679	. 599 . 626 . 654 . 682 . 711

Table 37 (Continued)

Discharge in Cubic Feet per Second Over Right-angled $V ext{-}\mathrm{Notch}$ Weirs by the Formula, $Q=2.52~H^{2.47}$

Head H in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.60 .61 .62	.714 .743 .774	.717 .746 .777	.720 .749 .780	.723 .753 .783	.725 .756 .786	.728 .759 .789	.731 .762 .793	.734 .765 .796	.737 .768 .799	.740 .771 .802
.63 .64	.805 .837	.808 .840	.811 .843	.815 .847	.818 .850	.821 .853	. 824 . 857	.827 .860	. 831 . 863	. 834 . 866
.65 .66 .67 .68	.870 .903 .937 .972	.873 .906 .941 .976	.876 .910 .944 .979	.948 .983	.883 .917 .951 .986	.920 .955 .990	.890 .923 .958 .994		.896 .930 .965 1.001 1.037	
.70 .71 .72 .73	1.044 1.082 1.120 1.158	1.048 1.085 1.123 1.162	1.052 1.089 1.127 1.166	1.055 1.093 1.131 1.170	1.059 1.097 1.135 1.174	1.063 1.101 1.139 1.178	1.067 1.104 1.143 1.182	1.070 1.108 1.147 1.186	1.074 1.112 1.151 1.190	1.078 1.116 1.154 1.194
.75 .76 .77 .78	1.238 1.279 1.321 1.364	1.242 1.284 1.326 1.369	1.246 1.288 1.330 1.373	1.251 1.292 1.334 1.377	1.255 1.296 1.339 1.382	1.259 1.300 1.343 1.386	1.263 1.305 1.347 1.390	1.267 1.309 1.351 1.395	1.230 1.271 1.313 1.356 1.399	1.275 1.317 1.360 1.403
.80 .81 .82 .83	1.452 1.498 1.544 1.591	1.457 1.502 1.548 1.595	1.461 1.507 1.553 1.600	1.466 1.511 1.558 1.605	1:470 1.516 1.562 1.610	1.475 1.521 1.567 1.614	1.479 1.525 1.572 1.619	1.484 1.530 1.576 1.624	1.534 1.581 1.629	1.493 1.539 1.586 1.633
.85 .86 .87 .88	1.687 1.736 1.787 1.838	1.692 1.741 1.792 1.843	1.697 1.746 1.797 1.848	1.702 1.751 1.802 1.853	1.707 1.756 1.807 1.859	1.712 1.761 1.812 1.864	1.717 1.766 1.817 1.869	1.721 1.772 1.822 1.874	1.677 1.726 1.777 1.828 1.879	1.731 1.782 1.833 1.885
.90 .91 .92 .93	1.943 1.996 2.051 2.107	1.948 2.002 2.057 2.112	1.953 2.007 2.062 2.118	1.959 2.013 2.068 2.123	1.964 2.018 2.073 2.129	1.969 2.024 2.079 2.135	1.975 2.029 2.084 2.140	1.980 2.035 2.090 2.146	1.932 1.986 2.040 2.095 2.152 2.209	1.991 2.046 2.101 2.157
.95 .96 .97	2.220 2.278 2.337 2.397	2.226 2.284 2.343 2.403	2.232 2.290 2.349 2.410	2.238 2.296 2.355 2.416	2.243 2.302 2.361 2.422	2.249 2.308 2.367 2.428	2.255 2.314 2.373 2.434	2.261 2.320 2.379 2.440	2.267 2.326 2.385 2.446 2.507	2.272 2.332 2.391 2.452
1.00 1.01 1.02 1.03	2.520 2.583 2.646 2.711	2.526 2.589 2.653 2.718	2.533 2.595 2.659 2.724	2.539 2.602 2.666 2.731	2.545 2.608 2.672 2.737	2.551 2.614 2.679 2.744	2.558 2.621 2.685 2.750	2.564 2.627 2.691 2.757	2 570	2.576 2.640 2.704 2.770
1.05 1.06 1.07 1.08	2.843 2.910 2.978 3.048	2.850 2.917 2.985 3.055	2.856 2.924 2.992 3.062	2.863 2.931 2.999 3.069	2.870 2.937 3.006 3.076	2.876 2.944 3.013 3.083	2.883 2.951 3.020 3.090	2.890 2.958 3.027 3.097	2.897 2.965 3.034 3.104 3.175	2.903 2.972 3.041 3.111

Table 37 (Concluded)

DISCHARGE IN CUBIC FEET PER SECOND OVER RIGHT-ANGLED V-NOTCH WEIRS BY THE FORMULA, $Q=2.52\ H^{2.47}$

Head H in feet	.000 .00	1 .002 .003	.004 .005	.006 .00	7 .008 .009
1.10 1.11 1.12 1.13 1.14	3.189 3.19 3.261 3.26 3.334 3.34 3.408 3.41 3.483 3.49	6 3.203 3.211 8 3.276 3.283 1 3.349 3.356 6 3.423 3.431 1 3.498 3.506	3.218 3.228 3.290 3.298 3.364 3.371 3.438 3.446 3.513 3.521	3.232 3.23 3.305 3.31 3.378 3.38 3.453 3.46 3.529 3.53	9 3.247 3.254 2 3.319 3.327 6 3.393 3.401 1 3.468 3.476 6 3.544 3.551
1.15 1.16 1.17 1.18 1.19	3.559 3.56 3.636 3.64 3.714 3.72 3.793 3.80 3.873 3.88	7 3.574 3.582 4 3.652 3.659 2 3.730 3.737 1 3.809 3.817 1 3.889 3.897	3.590 3.597 3.667 3.675 3.745 3.753 73.825 3.833 73.905 3.913	7 3.605 3.61 5 3.683 3.69 3 3.761 3.76 3 3.841 3.84 3 3.921 3.92	3 3.621 3.628 0 3.698 3.706 9 3.777 3.785 9 3.857 3.865 9 3.937 3.945
1.20 1.21 1.22 1.23 1.24	4.035 4.04 4.118 4.12 4.202 4.21	4 4.052 4.060 7 4.135 4.143 1 4.219 4.228	4.069 4.077 4.152 4.160 4.236 4.245	4.085 4.09 4.169 4.17 4.253 4.26	1 4.019 4.027 3 4.102 4.110 7 4.185 4.194 2 4.270 4.279 7 4.356 4.364
1.25 1.26 1.27 1.28 1.29	4.460 4.46 4.548 4.55 4.637 4.64	9 4.477 4.486 7 4.566 4.574 6 4.655 4.664	4.495 4.504 4.583 4.592 4.673 4.682	4.513 4.52 4.601 4.61 4.691 4.70	4 4.442 4.451 1 4.530 4.539 0 4.619 4.628 0 4.709 4.718 0 4.800 4.809
1.30 1.31 1.32 1.33 1.34	5.003 5.01	2 5.022 5.031 $7 5.116 5.126$	5.041 5.050	5.059 5.06	2 4.891 4.901 5 4.984 4.994 9 5.078 5.088 4 5.173 5.183 0 5.269 5.279
1.35 1.36 1.37 1.38 1.39	5.386 5.39 5.484 5.49 5.584 5.59	6 5.405 5.415 4 5.504 5.514 4 5.604 5.614	5.425 5.435 5.524 5.534 5.624 5.634	5.445 5.45 5.544 5.55 5.644 5.65	7 5.366 5.376 5 5.464 5.474 4 5.564 5.574 4 5.664 5.674 5 5.765 5.775
1.40 1.41 1.42 1.43 1.44	5.888 5.89 5.992 6.00 6.097 6.10	$85.9095.919 \ 26.0186.023 \ 76.1186.128$	5.929 5.940 6.034 6.044 6.139 6.149	5.950 5.96 6.055 6.06 6.160 6.17	7 5.867 5.878 1 5.971 5.981 5 6.076 6.086 1 6.181 6.192 7 6.288 6.299
1.45 1.46 1.47 1.48 1.49	6.526 6.53 6.637 6.64	7 6 . 548 6 . 559 8 6 . 659 6 . 670	6.570 6.581 6.681 6.692	6.703 6.70	6.396 6.407 6.504 6.515 6.615 6.626 6.726 6.737 6.838 6.849
1.50 1.51 1.52 1.53 1.54	7.204 7.21	6 7.228 7.239	17.25117.262	17.274 7.28	0 6.951 6.962 4 7.065 7.077 9 7.181 7.193 6 7.298 7.309 4 7.415 7.427
1.55 1.56 1.57 1.58 1.59	7.439 7.45 7.558 7.57 7.678 7.69 7.800 7.81 7.922 7.93	1 7.463 7.475 0 7.582 7.594 1 7.703 7.715 2 7.824 7.836 5 7.947 7.959	7.487 7.499 7.606 7.618 7.727 7.739 7.849 7.861 7.972 7.984	7.510 7.52 7.630 7.64 7.751 7.76 7.873 7.88 7.996 8.00	2 7.534 7.546 2 7.654 7.666 3 7.775 7.788 5 7.898 7.910 9 8.021 8.034

Digitized by GOOGLO

Table 38.—Discharge Over Cippoletti Weirs in Cubic Feet per Second by the Formula Q=3.3% $LH^{3/2}$

Head in	l			Li	ength of weir in feet					
feet	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0
.01	.003	.01	.01	.01	.01	.01	.02	.02	.02	0.
.02	.010	Öī	.02	.02	.03	.04	.05	.06	.07	.ŏ
.03	.018	.03	.04		.05	.07	.09	.11	.12	1.1
.03	.010	.00		.04					1.12	1.2
.04	.027	.04	.05	.07	.08	111	.13	.16	.19	
. 05	.038	.06	.08	.09	.11	.15	.19	.23	.26	.3
.06	.050	.07	.10	.12	.15	.20	.25	.30	. 35	.4
.07	.062 .076	.09	.12	.15	.19	.25	.31	.37	.44	. 5
. 08	.076	.11	.15	. 19	.23	.30	.38	.46	. 53	.6
.09	.091	.14	.18	.23	.27	.36	.45	. 55	.64	.7
. 10	.107	.16	.21	.27	.32	.43	.53	.64	.75	.8
.11	.123	.18	.25	.31	.37	.49	. 61	.74	.86	.9
. 12	.140	.21	.28	.35	.42	.56	.70	.84	.98	1.1
.13	.158	.24	.32	.39	.47	. 63	.79	.95	1.10	1.2
.14	.176	.26	.35	.48	.53	.71	.88	1.06	1.23	1.4
. 15	.196	.29	.39	.49	.59	78	.98	1.17	1.37	1.5
. 16	.216	.32	.43	.54	.65	.86	1.08	1.29	1.51	1.7
.17	.236	.35	.47	.59	.71	.94	1.18	1.42	1.65	1.8
.18	.257	.39	.51	.64	77	1.03	1.29	1.54	1.80	2.0
.10	.201		1.57	.70		1.03	1 20	1 07	1.00	2.0
. 19	.279	.42	.56	. 40	.84	1.12	1.39	1.67 1.81	$\frac{1.95}{2.11}$	2.2
.20	.301	.45	.60	.75	.90	1.20_	1.51		1	2.4
.21	.324	.49	. 65	.81	.97 1.04	1.30	1.62	1.94	2.27	2.5
.22	.347	. 52	.69	.87	1.04	1.39	1.74	2.08	2.43	2.7
.23	.371	. 56	.74	.93	1.11	1.49	1.86	2.23	2.60	2.9
.24	.396	. 59	.79	.99	1.19	1.58	1.98	2.23 2.38	2.77	3.1
.25	.421	.63	.84	1.05	1.26	1.68	2.10	2.53	2.95	3.3
.26	.446	. 67	.89	1.11	1.34	1.79	2.23	2.68	3.12	3.5
.27	.472	.71	.94	1.18	1.42	1.89	2.36	2.83	3.31	3.7
.28	.499	.75	1.00	1.25	1.50	2.00	2.49	2.99	3.49	3.9
. 29	.526	.75 .79	1.05	1.31	1.58	2.10	2.63	2.99 3.15	3.68	4.2
.30	.553	.83	1.11	1.38	1.66	2.21	2.77	3.32	3.87	4.4
.31	.581	.87	1.16	1.45	1.74	2.32	2.91	3.49	4.07	4.6
32	.609	.91	1.22	1.52	1.83	2.44	3.05	3.66	4.27	4.8
.33	.638	.96	1 28	1.59	1.91	2.55	3.19	3.83	4.47	5.1
.34	.667	1.00	1.28 1.33	1.67	2.00	2.67	3.34	4.00	4.67	5.3
			1 20	1.74	2.09	9.70				
.35	.697		1.39	ŀ	1	2.79	3.49	4.18	4.88	5.5
.36	.727	1.09	1.45	1.82	2.18	2.91	3.64	4.36	5.09	5.8
.37	.758	1.14	1.52	1.89	2.27	3.03	3.79	4.55	5.30	6.0
.38	.789		1.58	1.97	2.37	3.15	3.79 3.94	4.55 4.73	5.52	6.3
.39	.820		1.64	2.05	2.46	3.28	4.10	4.92	5.74	6.5
.40	.852		1.70	2.13	2.56	3.41	4.26	5.11	5.96	6.8
.41	.884	1.33	1.77	2.21	2.65	3.54	4.42	5.30	6.19	7.0
.42	.916		1.83	2.29	2.75	3.67	4.58	5.50	6.41	7.3
.43	.949		1.90	$\frac{2.29}{2.37}$	2.85	3.80	4.75	5.70	6.65	7.3
. 44		1.47	1.97	2.46	2.95	3.93	4.91	5.90	6.88	7 0
.45	1.016	1.52	2.03	2.54	3.05	4.07	5.08	6.10	7.11	7.8 8.1
.46	1.050			2.62	3.15	4.20	5.25	6.30	ł	8.4
.40 .47	1.085		$\frac{2.10}{2.17}$	2.71	3.25	4.34	5.42	6.51	7.35 7.59 7.84	8.6
			2.24	2.80	3.36		5.60	6.72	7 84	8.9
.48	1.120	1.00				4.48			0.04	
.49	1.155	1.75	$\frac{2.31}{2.38}$	2.89 2.97	3.46 3.57	4.62 4.76	5.77 5.95	6.93	8.08	$\frac{9.2}{9.5}$
. 50	1.190							7.14	8.33	

Table 38 (Continued)

Discharge Over Cippoletti Weirs in Cubic Feet per Second by the Formula Q=3.3% LH^{32}

Head in				Le	ngth o	of weir	in fee	t		
feet	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0
.51 .52 .53 .54 .55	1.226 1.262 1.299 1.336 1.373	1.84 1.89 1.95 2.00 2.06	2.45 2.52 2.60 2.67 2.75	3.06 3.15 3.25 3.34 3.43	3.68 3.79 3.90 4.01 4.12	4.90 5.05 5.20 5.34 5.49	6.13 6.31 6.50 6.68 6.87	7.36 7.57 7.79 8.02 8.24	9.09 9.35	9.81 10.10 10.39 10.69 10.99
.56 .57 .58 .59 .60	1.411 1.449 1.487 1.526 1.565	2.12 2.17 2.23 2.29 2.35	2.82 2.90 2.97 3.05 3.13	3.53 3.62 3.72 3.81 3.91	4.23 4.35 4.46 4.58 4.69	5.64 5.80 5.95 6.10 6.26	7.05 7.24 7.44 7.63 7.82	8.92 9.15	10.14 10.41 10.68	11.29 11.59 11.90 12.21 12.52
. 61 . 62 . 63 . 64 . 65	1.604 1.644 1.683 1.724 1.764	2.41 2.47 2.53 2.59 2.65	3.21 3.29 3.37 3.45 3.53	4.01 4.11 4.21 4.31 4.41	4.81 4.93 5.05 5.17 5.29	6.42 6.57 6.73 6.89 7.06	8.62		11.51 11.78 12.07	13.79
. 66 . 67 . 68 . 69 . 70	1.805 1.846 1.888 1.930 1.972	2.71 2.77 2.83 2.89 2.96	3.61 3.69 3.78 3.86 3.94	4.51 4.61 4.72 4.82 4.93	5.42 5.54 5.66 5.79 5.92	7.22 7.39 7.55 7.72 7.89	9.23 9.44 9.65	10.83 11.08 11.33 11.58 11.83	12.92 13.21 13.51	14.77 15.10 15.44
.71 .72 .73 .74 .75	2.014 2.057 2.100 2.143 2.187	3.02 3.09 3.15 3.21 3.28	4.03 4.11 4.20 4.29 4.37	5.03 5.14 5.25 5.36 5.47	6.04 6.17 6.30 6.43 6.56	8.23 8.40 8.57	10.07 10.28 10.50 10.72 10.93	12.34 12.60 12.86	14.40 14.70 15.00	16.45 16.80 17.15
. 76 . 77 . 78 . 79 . 80	2.231 2.275 2.319 2.364 2.409	3.34 3.41 3.48 3.56 3.61	4.46 4.55 4.64 4.73 4.82	5.58 5.69 5.80 5.91 6.02	6.69 6.82 6.96 7.09 7.23	9.10 9.28 9.46	11.15 11.37 11.60 11.82 12.05	13.65 13.92 14.18	15.92 16.23 16.55	18.20 18.55 18.91
.81 .82 .83 .84 .85	2.454 2.500 2.546 2.592 2.638	3.68 3.75 3.82 3.89 3.96	4.91 5.00 5.09 5.18 5.28	6.13 6.25 6.36 6.48 6.59	7.64 7.78	9.82 10.00 10.18 10.37 10.55	12.73 12.96	15.00 15.27 15.55	17.50 17.82 18.14	20.00
. 86 . 87. . 88 . 89 . 90	2.685 2.732 2.779 2.827 2.875	4.03 4.10 4.17 4.24 4.31	5.37 5.46 5.56 5.65 5.75	6.71 6.83 6.95 7.07 7.19	8.20 8.34 8.48	10.93 11.12 11.31	13.66 13.90 14.13	16.39 16.68 16.96	19.12 19.45 19.79	21.48 21.86 22.23 22.61 23.00
.91 .92 .93 .94 .95	2.923 2.971 3.019 3.068 3.117	4.38 4.46 4.53 4.60 4.68	5.85 5.94 6.04 6.14 6.23	7.31 7.43 7.55 7.67 7.79	8.91 9.06 9.20	12.27	14.85 15.10 15.34	17.83 18.12 18.41	20.80 21.14 21.48	23.38 23.77 24.16 24.55 24.94
.96 .97 .98 .99	3.167 3.216 3.266 3.316 3.367	4.75 4.82 4.90 4.97 5.05	6.33 6.43 6.53 6.63 6.73	7.92 8.04 8.16 8.29 8.42	9.65 9.80 9.95	13.06 13.27	16.08 16.33 16.58	19.30 19.60 19.90	22.51 22.86 23.2 1	25.33 25.73 26.13 26.53 26.93

Table 38 (Continued)

DISCHARGE OVER CIPPOLETTI WEIRS IN CUBIC FEET PER SECOND BY THE FORMULA, Q=3.3% $LH^{3/2}$

Head in			, L	ength of	f weir in	feet		
feet.	1.0	1.5 2.0	2.5	3.0	4.0	5.0 6.0	7.0	8.0
1.01 1.02 1.03 1.04 1.05	3.417 3.468 3.519 3.571 3.622	5.13 6.8 5.20 6.9 5.28 7.0 5.36 7.1 5.43 7.2	4 8.67 4 8.80 4 8.93	10.40 10.56 10.71	13.87 17 14.08 17 14.28 17	7.09 20.5 7.34 20.8 7.60 21.1 7.85 21.4 3.11 21.7	1 24.28 2 24.64 2 24.99	27.75 28.15 28.57
1.06 1.07 1.08 1.09 1.10	3.674 3.726 3.779 3.831 3.884	5.51 7.3 5.59 7.4 5.67 7.5 5.75 7.6 5.83 7.7	5 9.32 6 9.45 6 9.58	11.18 11.34 11.49	$14.91 18 \\ 15.11 18 \\ 15.32 19$	3.37 22.0 3.63 22.3 3.89 22.6 9.16 22.9 9.42 23.3	6 26.08 7 26.45 9 26.82	29.81 30.23 30.65
1.11 1.12 1.13 1.14 1.15	3.937 3.990 4.044 4.098 4.152	6.15 8.2	$ \begin{array}{c c} 8 & 9.98 \\ 9 & 10.11 \\ 0 & 10.24 \end{array} $	11.97 12.13 12.29	$15.96 19 \\ 16.18 20 \\ 16.39 20$	9.69 23.6 9.95 23.9 9.22 24.2 9.49 24.5 9.76 24.9	4 27.93 6 28.31 9 28.69	31.92 32.35 32.78
1.16 1.17 1.18 1.19 1.20	4.206 4.261 4.315 4.370 4.426	6.47 8.6	3110.79	112.95	17.26[2]	1.03 25.2 1.30 25.5 1.58 25.8 1.85 26.2 2.13 26.5	9130.21	34.52
1.21 1.22 1.23 1.24 1.25	4.481 4.537 4.593 4.649 4.705	6.89 9.0 6.89 9.1 6.97 9.3	$7 11.34 \\ 9 11.48 \\ 0 11.62$	13.61 13.78 13.95	$18.15 22 \\ 18.37 22 \\ 18.59 23$	2.40 26.8 2.68 27.2 2.96 27.5 3.24 27.8 3.53 28.2	2 31.76 6 32.15 9 32.54	36.74 37.19
1.26 1.27 1.28 1.29 1.30	4.762 4.818 4.875 4.933 4.990	$egin{array}{c c} 7.23 & 9.6 \\ 7.31 & 9.7 \\ 7.40 & 9.8 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.46 14.63 14.80	$19.27 \begin{vmatrix} 24 \\ 19.50 \begin{vmatrix} 24 \\ 19.73 \end{vmatrix} 24$	3.81 28.5 1.09 28.9 1.38 29.2 1.66 29.6 1.95 29.9	1 33.73 5 34.13 0 34.53	38.55 39.00 39.46
1.31 1.32 1.33 1.34 1.35	5.048 5.106 5.164 5.222 5.281	7.57 10.1 7.66 10.2 7.75 10.3 7.83 10.4 7.92 10.5	$\begin{array}{c c} 3 & 12.91 \\ 4 & 13.05 \end{array}$	15.49 15.67	$20.66 28 \ 20.89 26$	$\begin{bmatrix} 5.82 & 30.9 \\ 3.11 & 31.3 \end{bmatrix}$	8 36.15 3 36.56	$\frac{41.31}{41.78}$
1.36 1.37 1.38 1.39 1.40	5.340 5.399 5.458 5.517 5.577	8.01 10.6 8.10 10.8 8.19 10.9 8.27 11.0 8.36 11.1	$egin{array}{c c} 0 & 13.50 \\ 2 & 13.64 \\ 3 & 13.79 \end{array}$	16.20 16.37 16.55	$egin{array}{c cccc} 21.59 & 26 \ 21.83 & 27 \ 22.07 & 27 \end{array}$	$\begin{array}{c} 3.99 32.3 \\ 7.29 32.7 \\ 7.59 33.1 \end{array}$	9 37.79 5 38.20 0 38.62	44.14
1.41 1.42 1.43 1.44 1.45	5.637 5.697 5.757 5.818 5.878	8.45 11.2 8.54 11.3 8.63 11.5 8.73 11.6 8.82 11.7	1 14.39 4 14.54 6 14.69	17.27 17.45 17.63	$egin{array}{c} 23.03 & 28 \ 23.27 & 29 \ 23.51 & 29 \ \end{array}$	$\begin{array}{c c} 3.79 & 34.5 \\ 0.09 & 34.9 \\ 0.39 & 35.2 \end{array}$	$egin{array}{c c} 4 & 40.30 \\ 1 & 40.72 \\ 7 & 41.15 \end{array}$	46.06 46.54 47.03
1.46 1.47 1.48 1.49 1.50	5.939 6.000 6.062 6.123 6.185	8.91 11.8 9.00 12.0 9.09 12.1 9.18 12.2 9.28 12.3	$2 15.15 \\ 5 15.31$	18.19 18.37	24 . 25 30 24 . 49 30	0.31 36.3 $0.62 36.7$	$7 42.43 \\ 4 42.86$	48.49 48.99

Table 38 (Concluded)

Discharge Over Cippoletti Weirs in Cubic Feet per Second by the Formula $Q=3.3\%\ LH^{34}$

Head in				Leng	th of	weir in	feet			
feet	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0
1.51 1.52 1.53 1.54 1.55	6.247 6.309 6.371 6.434 6.497	9.46 9.56 9.65	12.62 12.74 12.87	15.77 15.93 16.08	18.93 19.11 19.30	25.24 25.49 25.74	31.55 31.86 32.17	37.85 38.23 38.60	44.16 44.60 45.04	49.98 50.47 50.97 51.47 51.97
1.56 1.57 1.58 1.59 1.60	6.560 6.623 6.686 6.750 6.814	10.03	13.37	16.71	20.06	26.75	33.43	40.12	46.80	52.48 52.98 53.49 54.00 54.51
1.61 1.62 1.63 1.64 1.65	6.878 6.942 7.006 7.071 7.136	$10.51 \\ 10.61$	$14.01 \\ 14.14$	$17.51 \\ 17.68$	$\frac{21.02}{21.21}$	28.02 28.28	$35.03 \\ 35.35$	$\frac{42.04}{42.42}$	49.04 49.50	56.05 56.57
1.66 1.67 1.68 1.69 1.70	7.266 7.331 7.397	10.90 11.00 11.10	14.53 14.66 14.79	18.16 18.33 18.49	21.80 21.99 22.19	29.06 29.32 29.59	36.33 36.66 36.98	43.59 43.99 44.38	50.86 51.32 51.78	57.60 58.13 58.65 59.17 59.70
1.71 1.72 1.73 1.74 1.75	7.528 7.594 7.661 7.727 7.794	11.39 11.49 11.59	15.19 15.32 15.45	18.98 19.15 19.32	22.78 22.98 23.18	30.38 30.64 30.91	37.97 38.30 38.64	45.57 45.96 46.36	53.16 53.62 54.09	60.23 60.76 61.29 61.82 62.35
1.76 1.77 1.78 1.79 1.80	7.861 7.928 7.995 8.063 8.130	11.89 11.99 12.09	15.86 15.99 16.13	19.82 19.99 20.16	23.78 23.99 24.19	31.71 31.98 32.25	39.64 39.98 40.31	47.57 47.97 48.38	55.50 55.97 56.44	64.50
1.81 1.82 1.83 1.84 1.85	8.198 8.266 8.334 8.403 8.471	$12.50 \\ 12.61$	16.67 16.81	20.83 21.01	$25.00 \\ 25.21$	33.34 33.61	$\frac{41.67}{42.01}$	50.01 50.42	58.34 58.82	66.68 67.22
1.86 1.87 1.88 1.89 1.90	8.540 8.609 8.678 8.748 8.817	$12.91 \\ 13.02 \\ 13.12$	17.22 17.36 17.50	21.52 21.69 21.87	25.83 26.03 26.24	34.44 34.71 34.99	43.05 43.39 43.74	51.66 52.07 52.49	60.26 60.75 61.23	68.87 69.43 69.98
1.91 1.92 1.93 1.94 1.95	8.887 8.957 9.027 9.097 9.168	13.43 13.54	$17.91 \\ 18.05$	22.39 22.57	26.87 27.08	35.83 36.11	44.78 45.13	53.74 54.16	62.70 63.19	$71.65 \\ 72.21$
1.96 1.97 1.98 1.99 2.00	9.238 9.309 9.380 9.451 9.522	14.07 14.18	18.76 18.90	23.45 23.63	$28.14 \\ 28.35$	37.52 37.80	46.90 47.26	56.28 56.71	65.66 66.16	75.04 75.61

Table 39.—Discharge in Cubic Feet per Second per Foot of Length over Sharp-Crested Weirs, without Velocity of Approach Correction, by the Francis Formula $Q=3.33H^{\frac{3}{2}}$

	Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
	.00	.0000	.0001	.0003	.0005	.0008	.0012	.0015	.0020	.0024	.0028
ı	.01	.0033	.0038	.0044	.0049	.0055	.0061	.0067	.0074	.0080	.0087
ı	.02	.0094	.0101	.0109	.0116	.0124	.0132	.0140	.0148	.0156	.0164
ı	03	.0266	.0182	.0191	.0200	.0209 :0307	.0218	.0227	.0237	.0247	.0256
ļ	.05	.0372	.0384	.0395	.0406	.0418	.0430	.0441	.0453	.0465	.0477
1	.06	.0489	.0502	.0514	.0527	.0539	.0552	.0565	.0578	.0590	.0604
Ĺ	.07	.0617	.0630	.0643	.0657	.0670	.0684	.0698	.0712	.0725	.0739
ı	.08	.0753	.0768	.0782	.0796	.0811	.0825	.0840	.0855	.0869	.0884
l	.09	.0899	.0914	.0929	.0944	.0960	.0975	.0990	.1006	.1022	.1037
ı	.10	.1053	.1069	.1085	.1101	.1117	.1133	.1149	.1166	.1182	.1198
ı	.11 . .12	.1215	.1231 .1402	.1248	.1265	.1282	.1299	.1316	.1333	.1350	. 1367
ł	.13	.1561	.1579	.1419 .1597	.1436	.1454	.1472	.1489	.1507	.1525	.1543
ı	.14	.1744	.1763	.1782	.1615	.1633 .1820	.1652 .1839	.1670 .1858	.1689 .1877	.1707 .1896	.1726 .1915
l	.15	. 1935	.1954	.1973	.1993	.2012	.2032	.2052	.2072	.2091	.2111
ı	.16	.2131	.2151	.2171	.2191	.2212	.2232	.2252	.2273	.2293	.2314
ı	.17	.2334	.2355	.2375	.2396	.2417	.2438	.2459	.2480	.2501	.2522
l	.18	.2543	.2564	.2586	.2607	.2628	.2650	.2671	.2693	.2714	.2736
ĺ	. 19	.2758	.2780	.2802	.2823	.2845	.2867	.2890	.2912	.2934	.2956
	.20	.2978	.3001	.3023	.3046	.3068	.3091	.3113	.3136	.3159	.3182
1	.21	.3205	.3228	.3250	.3274	.3297	.3320	.3343	.3366	.3389	.3413
ı	.22	.3436	.3460	.3483	.3507	.3530	.3554	.3578	.3601	. 3625	.3649
1	.23 .24	.3673 .3915	.3697 .3940	.3721 .3964	.3745	.3769	.3794	.3818	.3842	.3866	.3891
l	.25	1 1			.3989	.4014	.4038	.4063	.4088	.4113	.4138
1	.26	.4162 .4415	.4187 .4440	.4213	.4238	.4263	.4288	.4313	.4339	.4364	.4389
1	.27	.4672	.4698	.4466 .4724	.4491 .4750	.4517 .4776	.4543 .4802	.4568 .4828	.4594	.4620	.4646
ı	. 2 8	.4934	.4960	.4987	.5013	.5040	.5067	.5093	.4855 .5120	.4881 .5147	.4907 .5174
ı	.29	.5200	.5227	.5254	.5281	.5308	.5336	.5363	.5390	.5417	.5444
ı	.30	.5472	.5499	.5527	. 5554	.5582	.5609	.5637	.5664	.5692	.5720
ı	.31	.5748	.5775	.5803	.5831	.5859	.5887	.5915	.5943	.5972	.6000
ı	.32	. 6028	.6056	.6085	.6113	.6141	.6170	.6198	.6227	.6255	.6284
1	.33	.6313	.6341	.6370	.6399	.6428	.6457	.6486	.6515	.6544	.6573
	.34	.6602	.6631	. 66 60	.6689	.6719	.6748	.6777	.6807	.6836	.6866
1	.35	.6895	.6925	.6954	.6984	.7014	.7043	.7073	.7103	.7133	.7163
ŀ	.36	.7193	.7223	.7253	.7283	.7313	.7343	.7373	.7404	.7434	.7464
l	.37 .38	.7495	.7525	.7555	.7586	.7616	.7647	.7678	.7708	.7739	.7770
	.38	.7800 .8110	.7831 .8142	.7862 .8173	.7893 .8204	.7924 .8235	.7955 .8267	·.7986 .8298	.8017 .8330	.8048 .8361	.8079
1	.40					1					.8393
1	.40 .41	.8424 .8742	.8456 .8774	.8488 .8806	.8519 .8838	.8551 .8870	.8583 .8903	.8615	.8646	.8678	.8710
1	.42	.9064	.9096	.9129	.9161	.9194	.9226	.8935 .9259	.8967 .9292	.8999 .9324	.9032 .9357
	.43	.9390	.9422	.9455	.9488	.9521	.9554	.9587	.9620	.9653	.9686
1	.44	.9719	.9752	.9785	.9819	.9852	.9885	.9919	.9952		1.0019
ı	.45	1.0052	1.0086	1.0119	1.0153	1.0187	1.0220	1.0254	1 0288	1 0321	1 0355
ı	.46	1.0389	1.0423	1.0457	1.0491	1.0525	1.0559	1.0593	1.0627	1.0661	1.0696
l	.47	1.0730	1.0764	1.0798	1.0833	1.0867	1.0901	1.0936	1.0970	1.1005	1.1039
	.48	1.1074	1.1109	1.1143	1.1178	1.1213	1.1248	1.1282	1.1317	11.1352	1.1387
L	.49	1.1422	1.1457	1.1492	1.1527	1.1562	1.1597	1.1632	1.1668	1.1703	1.1738

Table 39 (Continued)

Discharge in Cubic Feet per Second per Foot of Length over Sharp-Crested Weirs, without Velocity of Approach Correction, by the Francis Formula $Q=3.33H^{32}$

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.50 .51 .52 .53	1.2128 1.2487 1.2849	1.2164 1.2523 1.2885	1.1844 1.2200 1.2559 1.2921 1.3287	1.2235 1.2595 1.2958	1.2271 1.2631 1.2994	1.2307 1.2667 1.3031	1.2343 1.2703 1.3067	1.2379 1.2740 1.3104	1.2415 1.2776 1.3141	1.2451
.55 .56 .57 .58 .59	1.3955 1.4330 1.4709 1.5091	1.3992 1.4368 1.4747 1.5130	1.4406 1.4785 1.5168	1.4067 1.4444 1.4823 1.5206	1.4105 1.4481 1.4862 1.5245	1.4142 1.4519 1.4900 1.5283	1.4180 1.4557 1.4938 1.5322	1.4217 1.4595 1.4976 1.5361	1.4255 1.4633 1.5014 1.5399	1.4293 1.4671 1.5053 1.5438
.60 .61 .62 .63 .64	1.5865 1.6257 1.6652 1.7050	1.5904 1.6296 1.6691 1.7090	1.5943 1.6335 1.6731 1.7130	1.5982 1.6375 1.6771 1.7170	1.6021 1.6414 1.6810 1.7210	1.6060 1.6454 1.6850 1.7250	1.6100 1.6493 1.6890 1.7290	1.6139 1.6533 1.6930 1.7330	1.6178 1.6572 1.6970 1.7370	1.7010 1.7410
. 65 . 66 . 67 . 68 . 69	1.7855 1.8262 1.8673 1.9086	1.7896 1.8303 1.8714 1.9128	1.9169	1.7977 1.8385 1.8796 1.9211	1.8018 1.8426 1.8838 1.9252	1.8058 1.8467 1.8879 1.9294	1.8099 1.8508 1.8920 1.9336	1.8140 1.8549 1.8962 1.9377	1.8181 1.8590 1.9003 1.9419	1.8221 1.8632 1.9045 1.9461
.70 .71 .72 .73 .74	1.9922 2.0344 2.0770 2.1198	1.9964 2.0387 2.0812 2.1241	2.0429 2.0855 2.1284	2.0048 2.0472 2.0898 2.1327	2.0091 2.0514 2.0941 2.1370	2.0133 2.0557 2.0983 2.1413	2.0175 2.0599 2.1026 2.1456	2.0217 2.0642 2.1069 2.1499	2.0260 2.0684 2.1112 2.1543	2.0302 2.0727 2.1155 2.1586
.75 .76 .77 .78 .79	2.2063 2.2500 2.2940 2.3382	2.2107 2.2544 2.2984 2.3427	2.2150 2.2588 2.3028 2.3471	2.2194 2.2632 2.3072 2.3515	2.2237 2.2675 2.3116 2.3560	2.2281 2.2719 2.3161 2.3604	2.2325 2.2763 2.3205 2.3649	2.2369 2.2807 2.3249 2.3694	2.2412 2.2851 2.3293 2.3738	
.80 .81 .82 .83	2.4276 2.4727 2.5180 2.5637	2.4321 2.4772 2.5226 2.5683	2.5728	2.4411 2.4862 2.5317 2.5774	2.4456 2.4908 2.5363 2.5820	2.4501 2.4953 2.5408 2.5866	2.4546 2.4999 2.5454 2.5912	2.4591 2.5044 2.5500 2.5958	2.4636 2.5089 2.5545 2.6004	2.4681 2.5135 2.5591 2.6050
.85 .86 .87 .88 .89	2.6558 2.7022 2.7490 2.7959	2.6604 2.7069 2.7536 2.8007	2.6188 2.6650 2.7116 2.7583 2.8054	2.6697 2.7162 2.7630 2.8101	2.6743 2.7209 2.7677 2.8148	2.6790 2.7256 2.7724 2.8195	2.6836 2.7302 2.7771 2.8243	2.6883 2.7349 2.7818 2.8290	2.6929 2.7396 2.7865 2.8337	2.6976 2.7443 2.7912 2.8385
.90 .91 .92 .93	2.8907 2.9385 2.9865 3.0348	2.8955 2.9433 2.9914 3.0397	2.8527 2.9003 2.9481 2.9962 3.0445	2.9050 2.9529 3.0010 3.0494	2.9098 2.9577 3.0058 3.0542	2.9146 2.9625 3.0107 3.0591	2.9194 2.9673 3.0155 3.0639	2.9241 2.9721 3.0203 3.0688	2.9289 2.9769 3.0252 3.0737	2.9337 2.9817 3.0300 3.0785
.95 .96 .97 .98 .99	3.1322 3.1813 3.2306	3.1371 3.1862 3.2355	3.0931 3.1420 3.1911 3.2405 3.2901	3.1469 3.1960 3.2454	3.1518 3.2010 3.2504	3.1567 3.2059 3.2554	3.1616 3.2108 3.2603	3.1665 3.2158 3.2653	3.1714 3.2207 3.2702	3.1764 3.2257

Table 39 (Continued)

Discharge in Cubic Feet per Second per Foot of Length over Sharp Crested Weirs, without Velocity of Approach Correction, by the Francis Formula $Q=3.33H^{36}$

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
1.00 1.01 1.02 1.03 1.04	3.3801 3.4304 3.4810	3.3350 3.3851 3.4354 3.4860 3.5369	3.3901 3.4405 3.4911	3.3951 3.4455 3.4962	3.4002 3.4506 3.5013	3.4052 3.4557 3.5063	3.4102 3.4607 3.5114	$3.4153 \\ 3.4658 \\ 3.5165$	3.4203 3.4708 3.5216	3.4254 3.4759 3.5267
1.05 1.06 1.07 1.08 1.09	3.6342 3.6857 3.7375	3.5880 3.6393 3.6909 3.7427 3.7947	$3.6444 \\ 3.6960 \\ 3.7479$	$3.6496 \\ 3.7012 \\ 3.7531$	3.6547 3.7064 3.7583	$3.6599 \\ 3.7116 \\ 3.7635$	$3.6651 \\ 3.7167 \\ 3.7687$	3.6702 3.7219 3.7739	3.6754 3.7271 3.7791	3.680 3.732 3.784
1.10 1.11 1.12 1.13 1.14	3.8418 3.8943 3.9470 4.0000	3.8470 3.8996 3.9523 4.0053 4.0586	3.8523 3.9048 3.9576 4.0106	3.8575 3.9101 3.9629 4.0160	3.8628 3.9154 3.9682 4.0213	3.8680 3.9206 3.9735 4.0266	3.8733 3.9259 3.9788 4.0319	3.8785 3.9312 3.9841 4.0372	3.8838 3.9365 3.9894 4.0426	3.889 3.941 3.994 4.047
1.15 1.16 1.17 1.18 1.19	4.1067 4.1604 4.2143 4.2684	4.1120 4.1657 4.2197 4.2738 4.3282	4.1174 4.1711 4.2251 4.2793	4,1228 4,1765 4,2305 4,2847	3.1281 4.1819 4.2359 4.2901	4.1335 4.1873 4.2413 4.2956	4.1389 4.1927 4.2467 4.3010	4.1442 3.1981 4.2522 4.3065	4.1496 4.2035 4.2576 4.3119	4.1556 4.2089 4.2636 4.3173
1.20 1.21 1.22 1.23 1.24	4.4322 4.4873 4.5426	4.3829 4.4377 4.4928 4.5481 4.6036	4.4432 4.4983 4.5537	4.4487 4.5038 4.5592	4.4542 4.5094 4.5647	4.4597 4.5149 4.5703	4.4652 4.5204 4.5759	4.4707 4.5260 4.5814	4.4763 4.5315 4.5870	4.481 4.537 4.592
1.25 1.26 -1.27 1.28 1.29	4.7098 4.7660 4.8224	4.6594 4.7154 4.7716 4.8280 4.8847	4.7210 4.7772 4.8337	4.7266 4.7829 4.8393	4.7322 4.7885 4.8450	4.7378 4.7941 4.8506	4.7435 4.7998 4.8563	4.7491 4.8054 4.8620	4,7547 4,8111 4,8676	4.760 4.816 4.873
1.30 1.31 1.32 1.33 1.34	4.9929 5.0502 5.1077	4.9415 4.9986 5.0559 5.1134 5.1712	4.0043 5.0616 5.1192	5.0100 5.0674 5.1249	5.0158 5.0731 5.1307	5.0215 5.0789 5.1365	5.0272 5.0846 5.1423	5.0330 5.0904 5.1480	5.0387 5.0961 5.1538	5.044 5.101 5.159
1.35 1.36 1.37 1.38 1.39	5.2814 5.3398 5.3984	5.2291 5.2873 5.3456 5.4042 5.4630	5.2931 5.3515 5.4101	5.2989 5.3573 5.4160	5.3048 5.3632 5.4219	5.3106 5.3691 5.4277	5.3164 5.3749 5.4336	5.3223 5.3808 5.4395	5.3281 5.3866 5.4454	5.334 5.392 5.451
1.40 1.41 1.42 1.43 1.44	5.5162 5.5754 5.6348 5.6944	5.5221 5.5813 5.6407 5.7004 5.7602	5.5280 5.5872 5.6467 5.7064	5.5339 5.5932 5.6526 5.7123	5.5398 5.5991 5.6586 5.7183	5.5457 5.6050 5.6646 5.7243	5.5516 5.6110 5.6705 5.7303	5.5576 5.6169 5.6765 5.7363	5.5635 5.6229 5.6825 5.7423	5.569 5.628 5.688 5.748
1.45 1.46 1.47 1.48	5.8143 5.8745 5.9350 5.9957	5.8203 5.8806 5.9410 6.0017	5.8263 5.8866 5.9471 6.0078	5.8323 5.8926 5.9532 6.0139	5.8384 5.8987 5.9592 6.0200	5.8444 5.9047 5.9653 6.0261	5.8504 5.9108 5.9714 6.0322	5.8564 5.9168 5.9774 6.0382	5.8625 5.9229 5.9835 6.0443	5.868 5.928 5.989 6.050

Table 39 (Continued)

Discharge in Cubic Feet per Second per Foot of Length over Sharp-Crested Weirs, without Velocity of Approach .Correction, by the Francis Formula $Q=3.33H^{34}$

Head in feet	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
1.50 1.51 1.52 1.53 1.54	6.1789 6.2404 6.3020	6.1850 6.2465 6.3082	6.1912 6.2527 6.3144	6.1973 6.2588 6.3206	6.2034 6.2650 6.3268	6.1482 6.2096 6.2712 6.3330 6.3949	6.2157 6.2773 6.3391	6.2219 6.2835 6.3453	6.2280 6.2897 6.3515	6.2342 6.2959 6.3577
1.55 1.56 1.57 1.58 1.59	6.4260 6.4883 6.5508 6.6135	6.4322 6.4945 6.5570 6.6198	6.4385 6.5008 6.5633 6.6260	6.4447 6.5070 6.5696 6.6323	6.4509 6.5133 6.5758 6.6386	6.4571 6.5195 6.5821 6.6449 6.7079	6.4634 6.5258 6.5884 6.6512	6.4696 6.5320 6.5946 6.6575	6.4758 6.5383 6.6009 6.6638	6.4821 6.5445 6.6072 6.6701
1.60 1.61 1.62 1.63 1.64	6.8027 6.8662 6.9299	6.8091 6.8726 6.9363	6.8154 6.8789 6.9426	6.8217 6.8853 6.9490	6.8281 6.8916 6.9554	6.7711 6.8344 6.8980 6.9618 7.0258	6.8408 6.9044 6.9682	6.8471 6.9108 6.9746	6.8535 6.9171 6.9810	6.8598 6.9235 6.9874
1.65 1.66 1.67 1.68 1.69	7.1221 7.1865 7.2512	7.1285 7.1930 7.2576	7.1349 7.1994 7.2641	7.1414 7.2059 7.2706	7.1478 7.2124 7.2771	7.0899 7.1543 7.2188 7.2836 7.3485	7.1607 7.2253 7.2901	7.1672 7.2318 7.2965	7.1736 7.2382 7.3030	7.1801 7.2447 7.3095
1.70 1.71 1.72 1.73 1.74	7.4463 7.5117 7.5773	7.4528 7.5182 7.5839	7.4593 7.5248 7.5904	7.4659 7.5313 7.5970	7.4724 7.5379 7.6036	7.6102	7.4855 7.5510 7.6167	7.4920 7.5576 7.6233	7.4986 7.5641 7.6299	7.4397 7.5051 7.5707 7.6365 7.7024
1.75 1.76 1.77 1.78 1.79	7.7752 7.8416 7.9081	7.7819 7.8482 7.9148	7.7885 7.8549 7.9215	7.7951 7.8615 7.9281	7.8018 7.8682 7.9348	7.8084	7.8150 7.8815 7.9482	7.8217 7.8882 7.9548	7.8283 7.8948 7.9615	7.7686 7.8349 7.9015 7.9682 8.0351
1.80 1.81 1.82 1.83 1.84	8.1089 8.1762 8.2437	8.1156 8.1829 8.2504	8.1223 8.1897 8.2572	8.1291 8.1964 8.2640	8.1358 8.2032 8.2707	8.1425 8.2099 8.2775	8.1493 8.2167 8.2842	8.1560 8.2234 8.2910	8.1627 8.2302 8.2978	8.1022 8.1695 8.2369 8.3046 8.3724
1.85 1.86 1.87 1.88 1.89	8.4472 8.5154 8.5838	8.4540 8.5223 8.5907	8.4608 8.5291 8.5975	8.4677 8.5359 8.6044	8.4745 8.5428 8.6112	8.4813 8.5496 8.6181	8.4881 8.5564 8.6250	8.4949 8.5633 8.6318	8.5018 8.5701 8.6387	8.4404 8.5086 8.5770 8.6455 8.7143
1.90 1.91 1.92 1.93 1.94	8.7901 8.8592 8.9285	8.7970 8.8662 8.9355	8.8039 8.8731 8.9424	8.8108 8.8800 8.9494	8.8177 8.8869 8.9563	8.8246 8.8939 8.9633	8.8316 8.9008 8.9702	8.8385 8.9077 8.9772	8.8454 8.9147 8.9841	8.7832 8.8523 8.9216 8.9911 9.0607
1.95 1.96 1.97 1.98 1.99	9.1375 9.2075 9.2777	9.1445 9.2145 9.2848	9.1515 9.2216 9.2918	9.1585 9.2286 9.2988	9.1655 9.2356 9.3059	9.1725 9.2426 9.3129	9.1795 9.2496 9.3199	9.1865 9.2567 9.3270	9.1935 9.2637 9.3340	9.1305 9.2005 9.2707 9.3411 9.4116

Digitized by GOOGLE

TABLE 39 (Concluded).

DISCHARGE IN CUBIC FEET PER SECOND PER FOOT OF LENGTH OVER SHARP-CRESTED WEIRS, WITHOUT VELOCITY OF APPROACH CORRECTION, BY THE FRANCIS FORMULA $Q=3.33H^{\frac{3}{2}}$

Head in feet	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
2.0 2.1 2.2 2.3 2.4	10.866 11.615	10.206 10.940 11.691	9.560 10.279 11.015 11.767 12.536	10.352 11.089 11.843	10.425 11.164 11.920	10.498 11.239 11.996	11.314 12.073	10.645 11.389 12.150	10.718 11.464 12.227	10.792 11.540 12.304
2.5 2.6 2.7 2.8 2.9	13.961 14.774 15.602	14.041 14.856 15.686	13.321 14.122 14.938 15.769 16.616	14.203 15.021 15.853	14.284 15.103 15.938	14.365 15.186 16.022	14.447 15.269 16.106	14.528 15.352 16.191	14.610 15.485 16.275	14.692 15.519 16.360
3.0 3.1 3.2 3.3 3.4	18.176 19.062 19.963	18.264 19.151 20.053	17.476 18.352 19.241 20.144 21.061	18.440 19.331 20.235	18.528 19.421 20.327	18.617 19.511 20.418	18.706 19.601 20.509	18.795 19.691 20.601	18.884 19.781 20.693	18.973 19.872 20.785
3.5 3.6 3.7 3.8 3.9	22.746 23.700 24.667	22.840 23.796 24.765	21.992 22.935 23.892 24.862 25.845	23.031 23.989 24.960	23.126 24.085 25.058	23.221 24.182 25.156	23.317 24.279 25.254	23.412 24.376 25,352	23.508 24.473 25.450	23.604 24.570 25.549
4.0 4.1 4.2 4.3 4.4	27.645 28.663 29.693	27.746 28.765 29.796	26.840 27.848 28.868 29.900 30.944	27.949 28.970 30.004	28.051 29.073 30.108	28.152 29.176 30.212	28.254 29.279 30.316	28.356 29.382 30.420	28.458 29.486 30.525	29.589 30.630
4.5 4.6 4.7 4.8 4.9	32.853 33.931 35.019	32.961 34.039 35.129	32.000 33.068 34.147 35.238 36.341	33.175 34.256 35.348	33.283 34.365 35.458	33.391 34.473 35.568	33.498 34.582 35.678	33.606 34.691 35.788	33.714 34.801 35.898	33.822 34.910 36.009
5.0 5.1 5.2 5.3 5.4	38.353 39.487 40.631	38.466 39.601 40.746	37.454 38.579 39.715 40.861 42.019	38.692 39.829 40.977	38.805 39.943 41.092	38.918 40.058 41.207	39.032 40.172 41.323	39.145 40.287 41.439	39.259 40.401 41.554	39.373 40.516 41.670
5.5 5.6 5.7 5.8 5.9	44.129 45.317 46.514	44.247 45.436 46.635	43.187 44.366 45.555 46.755 47.965	44.484 45.675 46.876	44.603 45.794 46.996	44.722 45.914 47.117	44.840 46.034 47.238	44.959 46.154 47.359	45.078 46.274 47. 4 80	45.197 46.394 47.601
6.0 6.1 6.2 6.3 6.4	50.169 51.408 52.657	50.293 51.532 52.782	49.186 50.416 51.657 52.908 54.168	50.540 51.782 53.034	50.664 51.906 53.159	50.787 52.031 53.285	50.911 52.156 53.411	51.036 52.281 53.537	51.160 52.406 53.663	51.284 52.531 53.789
6.5 6.6 6.7 6.8 6.9	56.462 57.751 59.048	56.591 57.880 59.179	55.439 56.719 58.009 59.309 60.618	56.848 58 139 59.440	56.977 58.269 59.570	57.105 58.398 59.701	57.234 58.528 59.831	57.363 58.658 50.962	57.492 58.788 60.093	57.621 58.918 60.224

TABLE 40.—THREE-HALVES POWERS OF NUMBERS

TABL	E 4U.	— I H	KEE-I	IALVE	8 1	OWER	OF	1101	MBER	3
No.	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
.00	.0000	.0000	.0001	.0002	.0003	.0004	.0005	.0006	.0007	. 0009
.01	.0010	.0012	.0013	.0015	.0017	.0018	.0020	.0022	0004	0000
.02	.0028	0030	.0033	.0035	.0037	.0040	.0042	0044	.0024 .0047	0040
.02	.0052	.0030	.0057	.0060	.0063	.0065	.0068	.0044	.0074	.0026 .0049 .0077
.03 .04	.0080	.0083	.0086	.0089	.0092	.0095	.0099	.0102	.0105	.0108
.05	.0112	.0115	.0119	.0122	.0125	.0129	.0132	.0136	.0140	.0143
.00	0147	.0151	.0154	0158	.0162	.0166	.0170	.0173	.0177	0190 0101
.06 .07	.0147 .0185	.0189	.0193	.0158 .0197	.0201	.0205	.0210	.0214	.0218	0333
.00	0000	.0231	.0235	.0239	.0243	.0248	.0252	.0257	.0261	0181 .0222 .0265
.08 .09	.0226 .0270	.0275	.0279	.0284	0288	.0293	.0297	.0302	.0307	.0312
10	.0316	.0321	.0326	.0331	0335	.0340	.0345	.0350	. 0355	. 0360
.10	.0365	.0370	.0375	.0380	0385	.0390	.0395	.0400	.0405	.0300
.11	.0416	.0421	.0426	.0431	0436	.0442	.0447	.0452	.0458	.0463
12	.0440	.0474	0420	.0485	0491	.0496	.0502	.0507	.0513	.0518
.10 .11 .12 .13 .14	.0469 .0524	.0529	.0480 .0535	.0541	0546	.0552	.0558	.0564	.0569	.0575
		0507		0500	.0604	+	0010	0000	0000	0004
.15	.0581	.0587	.0593	.0598	.0664	.0610	.0616	.0622	.0628	.0634
.16 .17	.0640 .0701	.0646 .0707	.0652 .0713	.0658 .0720	0706	.0732	.0738	.0082	.0688	.0695
1/	.0701	.0707	.0/13	.0720	0726 0789	.0796	.0738	.0745	.0751	.0/5/
.18 .19	.0764	.0770 .0835	.0776 .0841	.0783	0854	.0861	.0802	.0809 .0874	.0815	.0822
		- 1	- 1	- 1	1	1	- 1		- 1	
.20	.0894	.0901	.0908	.0915	.0921	.0928	.0935	.0942	.0949	.0955
.21	.0962 .1032	.0969 .1039	.0976	.0983 .1053	.0990	.0997	.1004 .1074	.1011	.1018	. 1025
.21 .22 .23 .24	. 1032	. 1039	.0976 .1046	.1053	1060	.1067	.1074	.1081	. 1089	. 1096
23	.1103	.1110	.1118	.1125	1132	.1139	.1146	.1154	.1161	.1168
24	.1176	.1183	.1191	.1198	,1205	.1213	.1220	.1228	.1235	. 1243
25 26	.1250 .1326 .1403 .1482	.1258 .1333 .1411	.1265 .1341 .1419	.1273 .1349 .1426	1280	1288	.1295 .1372 .1450	. 1303	.1311	. 1318
26	.1326	.1333	.1341	.1349	1356	.1364	.1372	. 1380	.1387	.1395
27	.1403	.1411	.1419	.1426	1434	.1442	.1450	.1380	. 1466	.1474
28	.1482	.1490	.1498	. 1506	.1434 .1514	.1522	.1530	. 1538	. 1546	. 1554
28 29	.1562	.1570	.1578	.1586	.1594	.1602	.1611	.1619	.1627	. 1635
30	.1643	1652	.1660	.1668	.1676	.1684	.1693	.1701	.1709	.1718
.31	.1726	.1652 .1734	.1743	.1751	.1760	.1768	.1776	.1785	.1793	.1802
32	1910	18191	.1827	.1836	1844	.1853	.1861	.1870	.1879	.1887
.33	.1896	1904	.1913	.1922	1930	.1939	.1948	.1956	. 1965	.1974
.34	.1983	1991	.2000	.2009	.2018	.2026	.2035	.2044	.2053	.2062
35	.2071	.2080	.2089	.2097	.2106	.2115	.2124	.2133	.2142	.2151
.35 .36	.2160	2169	2178	2187	21961	.2205	.2214	.2223	.2232	.2242
.37	.2251	.2169 .2260	.2178 .2269	.2187 .2278	2287	.2296	.2306	.2315	.2324	.2333
.38	.2342	2352	.2361	.2370	2380	.2389	.2398	.2408	.2417	.2426
.39	.2436	.2445	.2454	.2464	.2473	.2483	.2492	.2501	.2511	.2520
.40	.2530	.2539	.2549	.2558	.2568	.2578	.2587	.2597	.2606	.2616
.41	2625	2635	0845	2854	2664	.2674	.2683	2603	.2703	.2712
.42	.2625 .2722	.2635 .2732	.2645 .2741	.2654 .2751	2761	.2771	.2781	.2693 .2790	.2800	.2810
.43	.2820	.2830	2840	.2849	2859	.2869	.2879	2889	.2899	.2909
.44	.2919	.2929	.2939	.2949	2959	.2969	.2979	.2989	.2999	.3009
	2010		9090	2040	2050	2060	2070	2000	2100	
.45 .46	.3019 .3120	.3029 .3130	.3039	.3049 .3150	.3059	.3069	.3079	.3089 .3191	.3100	.3110 .3212
. 10	.3120	3232	.3243	.3253	.3263	.3274	.3181	.3191	.3202 .3305	.3315
47 .				. 0400	. 04001	.0414	.0404	.0404		.0010
.47	2205	2224	2244	2257	2267	2270	2200	2200	2400	2490
.47 .48 .49	.3325	.3336	.3346 .3451	.3357 .3462	.3367 .3472	.3378 .3483	.3388	.3399 .3504	.3409	.3420 .3525

TABLE 40 (Continued)

THREE-HALVES POWERS OF NUMBERS

No.	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009
	1 0000	2540	0257	2507	9270	.3589	.3599	2010	2001	
.50	.3536	.3546 .3653 .3761	.3557	.3567	.3578	. 33389	. 3599	.3610	.3621	.3631
.51	.3642 .3750	. 3053	.3664 .3773	.3674 .3782	.3685 .3793	.3696 .3804	.3707	.3717	.3728	.3739
.52	.3750	.3761	.3773	.3782	.3793	. 3804	.3815	. 3826	.3837	.3847
.52	.3858	.3869	.3880	.3891	.3902	. 3913	.3924	. 3935	.3946	.3957
.54	.3968	.3869 .3979	. 3990	.4001	.4012	.4023	.4035	.4046	.4057	.4068
	1 1	1	- 1		1					
.55	.4079	.4090 .4202 .4315	.4101	.4112	.4123	.4135	.4146	.4157	.4168	.4179
.56	.4191	.4202	.4213	.4224	. 4236	.4247	.4258	. 4269	.4281	.4292
.56 .57 .58	.4303 .4417	.4315	.4213 .4326	.4224 .4337 .4451	.4236 .4349	.4360	.4372	.4383	. 4394	.4406
58	4417	.4429	.4440	4451	.4463	.4474	.4486	. 4497	. 4509	.4520
.59	.4532	.4544	.4555	.4566	.4578	.4590	.4601	.4613	. 4624	.4636
	1	1	,	1		1				11000
.60	.4648 .4764 .4882	.4659 .4776 .4894	.4671 .4788	.4682 .4799 .4917	.4694	.4706 .4823 .4941	.4718	.4729	.4741	.4752
.61	47R4	4776	4788	4700	4811	4823	.4835	.4847	.4858	.4870
.62	4999	4804	4906	4017	.4811 .4929	4041	.4953	.4965	.4977	.4988
.63	5000	.5012	.5024	.5036	.5048	.5060	.5072	.5084	5096	.5108
.03	.5120	.5012	.0022	.0000	2140	.0000	5100			
.64	.5120	.5132	.5144	.5156	.5168	.5180	.5192	. 5204	.5216	.5228
05	2040	EOEO	EGGE	E07"	2000	E201	E212	.5325	. 5338	.5350
. 65	.5240 .5362 .5484	.5253 .5374	.5265 .5386 .5509	.0211	.5289 .5411 .5533	.5301	.5313 .54 35 .5558			.0300
.66	.5302	.5374	.5386	.5399	.5411	.5423	.5435	.5447	.5460	.5472
.67	.5484	.5496 .5620	.5509	.5521	.5533	.5546	.5558	.5570	.5583	.5595
.68	.5007	.5620	.5632	.5277 .5399 .5521 .5645	.5657	.5669	.5682	.5694	.5707	.5/19
.66 .67 .68	.5732	.5744	.5632 .5757	.5769	.5782	.5669 .5794	.5806	.5819	.5832	.5844
	1 1									
.70 .71	.5857 .5983 .6109 .6237	.5869 .5995	.5882 .6008 .6135	.5894	.5907 .6033	.5919	.5932	.5945 .6071	.5957	.5970
.71	.5983	.5995	.6008	.6020	.6033	.6046	.6059	.6071	.6084	.6097
.72	.6109	.6122	.6135	.6148	.6160	.6173	.6186	.6199	.6212	.6224
. 73	6237	6250	. 62631	.6278	.6288	.6301	.6314	.6327	.6340	. 6353
.72 .73 .74	.6366	.6122 .6250 .6379	.6392	.6404	.6160 .6288 .6417	.6430	.6443	. 6456	. 6469	.6482
•••	1	, ,								
. 75	.6495	.6508 .6639 .6770 .6902	.6521 .6652 .6783 .6915	.6534	.6547 .6678	.6560	.6573	. 6586	.6599	.6612
.75 .76	6626	6639	6652	6665	6678	6601	.6704	.6717	.6730	6744
-10	6757	6770	6783	6796	.6809	6823	6836	.6849	.6862	6876
70	6990	6009	6015	.6665 .6796 .6929	.6942	.6823 .6955	.6968	.6982	.6995	.6744 .6876 .7008
.77 .78 .79	.6626 .6757 .6889 .7022	.7035	.7048	.7062	.7075	.7088	.7102	.7115	.7129	.7142
.78	.1022	.1000	.1030	.1002	.1010	.7000	.7102		.1128	. / 142
.80	.7155 .7290 .7425 .7562	.7169	7182	.7196	.7209	7223	.7236	.7250	.7263	.7276
.OU	7900	7902	.7182 .7317 .7453	7921	7244	.7223 .7358	.7371	.7385	.7398	.7412
.81 .82	7405	7490	7459	7488	.7344 .7480	.7493	.7507	.7521	.7534	.7548
.82	./920	.7303 .7439 .7575	.7589	.7331 .7466 .7603	7010	.7630	.7644	.7658	.7671	.7685
.83 .84	./30Z	./5/5	. / 309	.7003	.7616	. / 030				
.84	.7699	.7712	.7726	.7740	.7754	.7768	.7781	.7795	.7809	.7823
0.0		2050	7004	more.	#000	2000	2000	2004		
.85	.7837	.7850 .7989	.7864 .8003	.7878	.7892	.7906	.7920	.7934	.7947	.7961
.86	.7975	.7989	.8003	.8017	.8031	.8045	.8059	.8073	.8087	.8101
.87	.8115	.8129	.8143 .8283	.8157 .8297	.8171	.8185	.8199	.8213	.8227	.8241
. 88 . 89	.7837 .7975 .8115 .8255	.8269	.8283	.8297	.8311	.8326	.8340	.8354	.8368	.8382
.89	.8396	.8410	.8425	.8439	.8453	.8467	.8481	.8495	.8510	.8524
							١	l		l
.90	.8538	.8552 .8695	.8567 .8709	.8581	.8595	.8609	.8624	.8638	.8652	.8667
.91	.8681	.8695	.8709	.8724	.8738	.8752	.8767	.8781	.8796	.8810
.92	.8824	.8839	8853	.8868	.8882	.8896	.8911	.8925 .9070	.8940	.8954
.93	.8969	.8983	.8998	.9012	.9026	.9041	.9056	.9070	. 9085	.9099
.93 .94	.8538 .8681 .8824 .8969 .9114	.9128	.9143	.9157	.9172	.9186		.9216	. 9230	.9245
	1			1	1					
.95	.9259	.9274	.9289	.9303	.9318	.9333	.9347	.9362	.9377	.9391
.96	.9406		.9435	.9450	.9465	.9480		.9509	.9524	.9539
07	OKK2	.9568	.9583	.9598	.9613	0697	.9642	.9657	.9672	.9687
.97 .98	.9553 .9702	.9716		.9746	.9761	.9776	.9791	.9806	.9821	.9835
.99	.9850	.9865		.9895	.9910	.9925				.9985
.88	.8000	. 8000	. 2000	. 8080	. 5510		.0010	. 0000	1 .0010	.000

TABLE 40 (Continued)

THREE-HALVES POWERS OF NUMBERS

No.	.000	.001	.002	.003	.004	.005	.006	.007	.008	.0 <u>0</u> 9
1.00	1 0150	1.0165	1.0181	1.0196	1.0211	1.0075 1.0226 1.0377	1.0241	1.0256	1.0271	1.0286
1.02 1.03 1.04	1.0453	1.0468	1.0484	1.0499	1.0514	1.0530 1.0683	1.0545	1.0560	1.0575	1.0591
1.05 1.06 1.07 1.08 1.09	1.0913 1.1068 1.1224	1.0929 1.1084 1.1239	1.0944 1.1098 1.1255	1.0960 1.1114 1.1271	1.0975 1.1129 1.1286	1.0836 1.0991 1.1146 1.1302 1.1458	1.1006 1.1161 1.1317	1.1022 1.1177 1.1333	1.1037 1.1193 1.1349	1.1053 1.1208 1.1364
1.10 1.11 1.12 1.13 1.14	1.1695 1.1853 1.2012	1.1710 1.1869 1.2028	1.1726 1.1885 1.2044	1.1742 1.1901 1.2060	1.1758 1.1917 1.2076	1.1616 1.1774 1.1932 1.2092 1.2252	1,1789 1,1948 1,2108	1.1805 1.1964 1.2124	1.1821 1.1980 1.2140	1.1837 1.1996 1.2156
1.15 1.16 1.17 1.18 1.19	1.2494 1.2655 1.2818	1.2510 1.2672 1.2834	1.2526 1.2688 1.2851	1.2542 1.2704 1.2867	1.2558 1.2720 1.2883	1.2413 1.2574 1.2737 1.2900 1.3063	1.2591 1.2753 1.2916	1.2607 1.2769 1.2932	1.2623 1.2786 1.2948	1.2639 1.2802 1.2965
1.20 1.21 1.22 1.23 1.24	1.3310 1.3475 1.3641	1.3327 1.3492 1.3658	1.3343 1.3509 1.3675	1.3360 1.3525 1.3691	1.3376 1.3542 1.3708	1.3228 1.3393 1.3558 1.3725 1.3892	1.3409 1.3575 1.3741	1.3426 1.3591 1.3758	1.3442 1.3608 1.3775	1.3459 1.3625 1.3791
1.25 1.26 1.27 1.28 1.29	1.4143 1.4312 1.4482	1.4160 1.4329 1.4499	1.4177 1.4346 1.4516	1.4194 1.4363 1.4533	1.4211 1.4380 1.4550	1.4059 1.4228 1.4397 1.4567 1.4737	1.4245 1.4414 1.4584	1.4262 1.4431 1.4601	1.4278 1.4448 1.4618	1.4295 1.4465 1.4635
1.30 1.31 1.32 1.33 1.34	1.4994 1.5166	1.5011 1.5183	1.5028 1.5200 1.5373	1.5045 1.5217 1.5390	1.5062 1.5235 1.5408	1.4908 1.5080 1.5252 1.5425 1.5599	1.5097 1.5269 1.5442	1.5114 1.5286 1.5460	1.5304 1.5477	1.5321 1.5494
1.35 1.36 1.37 1.38 1.39	1.6035	1.6053 1.6229	1.6071	1.6088	1.6106	1.5773 1.5948 1.6123 1.6300 1.6476	1.6317	1.6335	1.6353	1.6370
1.40 1.41 1.42 1.43 1.44	1.6921	1.6939	1.6957	1.6975	1.6993	1.6654 1.6832 1.7011 1.7190 1.7370	1.7029	1.7046	1.7244	1.7262
1.45 1.46 1.47 1.48 1.49	1.7823	1.7841	1.7859 1.8041	1.7877	1.7896	1.7551 1.7732 1.7914 1.8096 1.8279	1.7932	1.8133	1.8151	1.8169

Table 40 (Continued)

THREE-HALVES POWERS OF NUMBERS

No.	.00	.01	.02	.03	.04	. 05	.06	.07	.08	.09
1.5	1.837	1.856	1.874	2.081	1.911	1.930 2.120	1.948 2.139	1.967 2.158	1.986 2.178	2.005 2.197
1.7	2.216 2.415	2.236 2.435	2.256 2.455	2.276 2.476	2.295 2.496	2.315 2.516	2.335 2.537	2.355 2.557	2.375 2.578	2.395 2.598
1.9	2.619	2.640 2.850	2.660 2.871	2.681 2.892	2.702	2.723 2.935	2.744	2.765 2.978	2.786	2.807
2.0 2.1 2.2	3.043 3.263	3.065 3.285	3.087 3.308	3.109 3.330	2.914 3.131 3.352	3.153 3.375	2.957 3.174 3.398	3.197 3.420	3.000 3.219 3.448	3.022 3.241 3.465
2.3 2.4	3.488 3.718	3.511 3.741	3.534 3.765	3.557 3.788	3.580 3.811	3.602 3.835	3.626 3.858	3.649 3.882	3.672 3.906	3.695 3.929
2.5 2.6	3.953 4.192	3.977 4.217	4.000 4.241	4.024 4.265	4.048 4.290	4.072 4.314	4.096 4.338	4.120 4.363	4.144 4.387	4.168 4.412
2.7 2.8	4.437	4.461	4.486	4.511	4.536 4.786	4.560	4.585	4.610 4.862	4.635 4.888	4.660 4.913
2.9 3.0	4.938 5.196	4.964 5.222	4.990 5.248	5.015 5.274	5.041 5.300	5.067 5.327	5.093 5.353	5.118 5.379	5.144 5.405	5.170 5.432
3.1 3.2	5.458 5.724	5.484 5.751	5.511 5.778	5.538 5.805	5.564 5.832	5.591 5.859	5.617 5.886	5.644 5.913	5.671 5.940	5.698 5.968
3.3 3.4	5.995 6.269	6.022 6.297	6.049 6.325	6.077 6.352	6.104 6.380	6.132 6.408	6.159 6.436	6.186 6.464	6.214 6.492	6.242 6.520
3.5 3.6	6.548 6.830	6.576 6.859	6.604 6.888	6.632 6.916	6.660 6.945	6.689 6.973	6.717 7.002	6.745 7.031	6.774 7.060	6.802 7.088
3.7 3.8	7.117 7.408	7.146 7.437	7.175 7.466	7.204 7.496	7.233 7.525	7.262 7.554	7.291 7.584	7.320 7.613	7.349 7.643	7.378 7.672
3.9 4.0	7.702 8.000	7.732 8.030	7.761 8.060	7.791 8.090	7.821 8.120	7.850 8.150	7.880 8.181	7.910 8.211	7.940 8.241	7.970 8.272
4.1 4.2	8.302 8.607	8.332 8.638	8.363 8.669	8.393 8.700	8.424 8.731	8.454 8.762	8.485 8.793	8.515 8.824	8.546 8.855	8.577 8.886
4.3 4.4	8.917 9.230	8.948 9.261	8.979 9.292	9.010 9.324	9.041 9.356	9.073 9.387	9.104 9.419	9.135 9.451	9.167 9.482	9.198 9.514
4.5 4.6	9.546 9.866	9.578 9.898	9.610 9.930	9.642 9.963	9.674 9.995	9.706 10.03	9.738 10.06	9.770 10.09	9.802 10.12	9.834 10.16
4.7 4.8	10.19	10.22	10.25	10.29	10.32	10.35 10.68	10.39 10.71	10.42 10.75	10.45	10.48 10.81
	1	Ì	1		1			- 1	1	11.15
5.1	11.52	11.55	11.59	11.62	11.65	11.69	11.72	11.76	11.79	11.48 11.82 12.17
5.3	12.20	12.24	12,27	12.31	12.34	12.37	12.41	12.44	12.48	12.51 12.86
5.5	12.90	12.93	12.97	13.00	13.04	13.07	13.11	13.15	13.18	13.22
5.7	13.61	13.64	13.68	13.72	13.75	13.79	13.82	13.86	13.90	13.57 13.93
								14.59		14.29 14.66
6.1	15.07	15.10	15.14	15.18	15.21	15.25	15.29	15.33	15.36	15.03 15.40
6.2 6.3	15.44 15.81	15.85	15.89	15.93	15.59 15.96	15.62 16.00	15.66 16.04	15.70 16.08	16.12	15.78 16.15
6.4	16.19	16.23	16.27	16.30	16.34	16.38	16.42	16.46	16.50	16.53

TABLE 40 (Concluded)

THREE-HALVES POWERS OF NUMBERS

No.	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
6.5 6.6 6.7 6.8	16.57 16.96 17.34 17.73	16.61 16.99 17.38 17.77	16.65 17.03 17.42 17.81	16.69 17.07 17.46 17.85	16.72 17.11 17.50 17.89	16.76 17.15 17.54 17.93	16.80 17.19 17.58 17.97	16.84 17.22 17.62 18.01	16.88 17.26 17.65 18.05	16.92 17.30 17.69 18.09
7.0 7.1 7.2 7.3	18.12 18.52 18.92 19.32 19.72	18.16 18.56 18.96 19.36 19.76	18.60 19.00 19.40 19.80	18.64 19.04 19.44 19.85	18.68 19.08 19.48 19.89	18.72 19.12 19.52 19.93	18.36 18.76 19.16 19.56 19.97	18.40 18.80 19.20 19.60 20.01	18.44 18.84 19.24 19.64 20.05	18.48 18.88 19.28 19.68 20.09
7.4 7.5 7.6 7.7 7.8	20.13 20.54 20.95 21.37 21.78	21.41 21.83	20.21 20.62 21.03 21.45 21.87	20.25 20.66 21.08 21.49 21.91	20.29 20.70 21.12 21.53 21.95	20.33 20.75 21.16 21.58 21.99	20.38 20.79 21.20 21.62 22.04	20.42 20.83 21.24 21.66 22.08	20.46 20.87 21.28 21.70 22.12	20.50 20.91 21.32 21.74 22.16
7.9 8.0 8.1 8.2 8.3	22.20 22.63 23.05 23.48 23.91	22.67 23.10 23.52 23.96	22.29 22.71 23.14 23.57 24.00	22.33 22.75 23.18 23.61 24.04	22.37 22.80 23.22 23.65 24.09	23.70 24.13	22.46 22.88 23.31 23.74 24.17	22.50 22.93 23.35 23.78 24.22	22.54 22.97 23.40 23.83 24.26	22.58 23.01 23.44 23.87 24.30
8.4 8.5 8.6 8.7 8.8	24.78 24.78 25.22 25.66 26.10	24.83 25.26 25.71 26.15	24.43 24.87 25.31 25.75 26.19	25.79 26.24	24.52 24.96 25.40 25.84 26.28 26.73	25.00 25.44 25.88 26.33	25.04 25.48 25.93 26.37	24.65 25.09 25.53 25.97 26.42	24.69 25.13 25.57 26.02 26.46	24.74 25.18 25.62 26.06 26.51
9.0 9.1 9.2 9.3	27.00 27.45 27.90 28.36	27.04 27.50 27.95 28.41	27.09 27.54 28.00 28.45	27.14 27.59 28.04 28.50	27.18 27.63 28.09 28.54	27.23 27.68 28.13 28.59	27.27 27.72 28.18 28.64	27.3: 27.7: 28.22 28.68	28.27 28.73	26.96. 27.41 27.86 28.32 28.77
9.5 9.6 9.7 9.8	29.28 29.74 30.21 30.68	29.33 29.79 30.26 30.73	29.37 29.84 30.30 30.77	29.42 29.88 30.35 30.82	29.47 29.93 30.40 30.87	29.51 29.98 30.44 30.91	29.56 30.02 30.49 30.96	29.61 30.07 30.54 31.01	29.19 29.65 30.12 30.58 31.06	29.23 29.70 30.16 30.63 31.10
10.0 10.1 10.2 10.3	31.62 32.10 32.58 33.06	31.67 32.15 32.62 33.10	31.72 32.19 32.67 33.15	31.77 32.24 32.72 33.20	31.81 32.29 32.77 33.25	31.86 32.34 32.82 33.30	31.91 32.38 32.86 33.35	31.96 32.43 32.91 33.39	32.00 82.48 32.96 33.44	31.58 32.05 32.53 33.01 33.49
10.5 10.6 10.7 10.8	34.02 34.51 35.00 35.49	34.07 34.56 35.05 35.54	34.12 34.61 35.10 35.59	34.17 34.66 35.15 35.64	34.22 34.71 35.20 35.69	34.27 34.76 35.25 35.74	34.32 34.80 35.30	34.36 34.85 35.34	33.93 34.41 34.90 35.39 35.89	33.98 34.46 34.95 35.44 35.94
10.9 11.0 11.1 11.2	35.99 36.48 36.98 37.48	36.53 37.03 37.53	36.58 37.08 37.58	36.63 37.13 37.63	36.18 36.68 37.18 37.68	36.23 36.73 37.23 37.73	36.28 36.78 37.28 37.78	36.33	36.38 36.88 37.38 37.88 38.39	36.43 36.93 37.43 37.94 38.44
					38.69				38.90	38.95

Table 41.—Percentage of Error in Discharge, for Different Discharges Over Rectangular Weirs of Different Lengths and Right-angled V-notch Weirs, Resulting from Various Errors in Measuring Head

Discharge	Error in	1 24	Veir . long		eir long		/eir . long		eir Llong	an V-n	ght- gled otch ier
in second- feet Q	head in feet	Head	Per cent. error in Q	Head	Per cent. error in Q	Head	Per cent. error in Q	Head	Per cent. error in Q	Head	Per cent. error in Q
0.05	0.001 0.005 0.010		2.6 13.2 26.6	1	4.0 21.2 43.6	0.02	8.0 41.0 85.0	0.01	12.0 68.0 144.0	0.20	1.2 6.1 12.2
0.10	0.001 0.005 0.010	0.09	1.6 8.1 16.4	0.06	2.6 13.2 26.6	0.03	5.0 25.0 51.5	0.02	8.0 41.0 85.0	0.27	0.9 4.6 9.1
0.50	0.001 0.005 0.010 0.050	0.27	0.5 2.7 5.5 27.3	0.17	0.9 4.3 8.7 45.7	0.09	1.6 8.1 16.4 89.5	0.06	2.6 13.2 26.6	0.52	0.5 2.4 4.8 28.8
1.00	0.001 0.005 0.010 0.050		0.3 1.7 3.4 17.0	0.27	0.5 2.7 5.5 27.3	0.15	1.0 5.0 10.1 53.6	0.09	1.6 8.1 16.4 89.5	1	0.4 1.8 3.6 18.0
2.50	0.001 0.005 0.010 0.050	0.82	0.2 0.9 1.8 9.1	0.51	0.3 1.5 3.0 14.7	0.27	0.5 2.7 5.5 27.3	0.17	0.9 4.3 8.7 45.7	1.00	0.8 1.2 2.5 12.4
5.00	0.001 0.005 0.010 0.050	1.32	0.1 0.6 1.1 5.6	0.82	0.2 0.9 1.8 9.1	0.44	0.3 1.7 3.4 17.0	0.27	0.5 2.7 5.5 - 27.3	1.32	0.2 0.9 1.9 9.3
10.00	0.001 0.005 0.010 0.050	2.11	0.1 0.4 0.7 3.5	1.32	0.1 0.6 1.1 5.6	0.71	0.2 1.1 2.1 10.6	0.44	0.3 1.7 3.4 17.0	1,75	0.1 0.7 1.5 7.8
25.00	0.001 0.005 0.010 0.050	3.93	0.1 0.2 0.4 1.8	2.45	0.1 0.3 0.6 3.0	1.32	0.1 0.6 1.1 5.6	0.82	0.2 0.9 1.8 9.1	2.53	0.1 0.5 1.0 5.0

CHAPTER V

WEIRS NOT SHARP-CRESTED

Weirs are frequently constructed in channels for the purpose of obtaining continuous records of discharge. In such cases it may be very difficult to maintain a thin-edged weir, due to damage from floating drift and ice and a more substantial weir with a thicker crest may be advisable. It is also often convenient to be able to use an existing weir or overflow dam for measuring discharge. Weirs, of various dimensions and shapes are used in hydraulic structures and in designing such structures it is important to be able to compute approximately the discharges over these weirs.

The amount of water which will pass over a weir, not sharp-created, depends to a large extent upon the shape of its crest, and it is necessary to resort to experiment to determine the discharge over any particular shape. Inasmuch as the number of shapes of weirs is unlimited, it is not to be expected that experimental data are or ever will be available for them all. There are available, however, the results of several series of experiments on weirs of different cross-sections which furnish much valuable information for determining discharges over weirs of the same or similar shapes.

Formula for Determining Discharge

The following discussion is based upon the method given by Horton¹ for determining the discharge over weirs of irregular section. The base formula

$$Q = CLH^{\frac{3}{2}} \tag{1}$$

is assumed for all weirs, values of C being determined from experiments for the different types, and arranged in tables to correspond to different values of H.

¹ ROBERT E. HORTON: Water Supply and Irrigation Paper No. 200, U.S. Geological Survey, pp. 59-134.

Horton made a velocity of approach correction by adding $\frac{V^2}{2g}$ to the measured head before computing his value of C from the experimental results. This same method of correcting for velocity of approach should therefore be employed in using the values of C given in the following tables. Formula (1) with velocity of approach correction becomes

$$Q = CL \left(H + \frac{V^2}{2g}\right)^{\frac{3}{2}} \tag{2}$$

Following the same line of reasoning given on page 69 for sharp-crested weirs, and using the nomenclature given on page 64, formula (2) may be written in the approximately equivalent form

$$Q = CLH^{3/2} \left(1 + 0.024 C^2 \frac{H^2}{d^2}\right)$$
 (3)

or if preferred

$$Q = CLH^{32} \left[1 + 0.024 \ C^2 \left(\frac{LH}{A} \right)^2 \right]$$
 (3a)

Table 40, page 122, giving three-halves powers of numbers, will assist in the solution of the above formulas.

The available experiments are not extensive enough to provide for the determination of the effect of velocity of approach on weirs not sharp-crested. The tables of coefficients in this chapter probably apply more accurately where the velocity of approach is not high. From a consideration of conditions for sharp-crested weirs it appears that discharges, for high velocities of approach, will be somewhat greater than is given by formula (2).

Since experimental conditions will seldom be duplicated in practice it is probable that errors may result from the general use of the coefficients given in this chapter. Extreme accuracy, however, is not always necessary in design, where uncertainty as to the exact quantity of water to be provided for may exist. The available data will usually be sufficient, for comparing weir sections to determine the section which will best fulfil certain requirements; e.g., the shape of crest that will give the maximum or the minimum discharge under a given head.

When a weir, other than a sharp-crested weir, is to be constructed for measuring water, an exact duplicate of some model for which experimental coefficients have been obtained should be used if possible. When overflow dams are used for gaging streams, coefficients may be selected from the table for the weir section most closely resembling the section in question. For dams having irregular crests, or if experimental coefficients are not available for a model resembling the dam, it may be advisable to make a few discharge measurements of the stream and determine the values of coefficients corresponding to different heads through as wide a range of discharges as possible. Judgment and experience and an intimate knowledge of weir hydraulics are essential in selecting weir coefficients, similar to that required in selecting coefficients for pipe and open-channel formulas.

Modifications of the Nappe Form

The problem of establishing a fixed relation between head and discharge, for weirs not sharp-crested, is complicated by the fact that the nappe may assume a variety of forms in passing over the weir. For each modification of nappe form there is a corresponding change in the relation between head and discharge. The effect of this condition is more noticeable for low heads. The following is a discussion by Horton¹ on the effects of modification of nappe form.

The elaborate investigations of Bazin relative to the physics of weir discharge set forth clearly the importance of taking into consideration the particular form assumed by the nappe. This is especially true in weirs of irregular section in which there is usually more opportunity for change of form than for a thin-edged weir. In general the nappe may:

- 1. Discharge freely, touching only the upstream crest edge.
- 2. Adhere to top of crest.
- 3. Adhere to downstream face of crest.
- 4. Adhere to both top and downstream face.
- 5. Remain detached, but become wetted underneath.
- 6. Adhere to top, but remain detached from face and become wetted underneath.
- 7. In any of the cases where the nappe is "wetted underneath" this condition may be replaced by a depressed nappe, having air imprisoned underneath at less than atmospheric pressure.

¹ ROBERT E. HORTON: Water Supply and Irrigation Paper No. 200, U.S. Geological Survey, pp. 60-61.

The nappe may undergo several of these modifications in succession as the head is varied. The successive forms that appear with an increasing stage may differ from those pertaining to similar stages with a decreasing head. The head at which the changes of nappe form occur vary with the rate of change of head, whether increasing or decreasing, and with other conditions.

The law of coefficients may be greatly modified or even reversed when a change of form takes place in the nappe. The coefficient curve for any form of weir having a stable nappe is a continuous, smooth line. When the nappe becomes depressed, detached, or wetted underneath during the progress of an experiment, the resulting coefficient curve may consist of a series of discontinuous or even disconnected arcs terminating abruptly in "points d'arrêt," where the form of nappe changes. The modifications of nappe form are usually confined to comparatively low heads, the nappe sometimes undergoing several successive changes as the head increases from zero until a stable condition is reached, beyond which further increase of head produces no change. The condition of the nappe when depressed or wetted underneath can usually be restored to that of free discharge by providing adequate aeration.

Among weirs of irregular section there is a large class for which, from the nature of their section, the nappe can assume only one form unless drowned. Such weirs, it is suggested, may, if properly calibrated, equal or exceed the usefulness of the thin-edged weir for purposes of stream gaging, because of their greater stability of section and because the thin-edged weir is not free from modification of nappe form for low heads.

As an example, Bazin gives the following coefficients applying to a thin-edged weir 2.46 feet high, with a head of 0.656 foot, under various conditions:

Condition of nappe	Bazin coeffi- cient m	$C=m\sqrt{2_b}$
Free discharge, full aeration	0.433	3.47
Nappe depressed, partial vacuum underneath		3.69
Nappe wetted underneath, downstream water	0.40=	
level, 0.42 foot below crest	0.497	3.99
sault at a distance	0.554	4.45

These coefficients include velocity of approach effect, which tends to magnify their differences somewhat. There is, however, a range of 25 per cent. variation in discharge between the extremes.

The departure in the weir coefficient from that applying to a thin-edged weir, for most forms of weirs of irregular section, results from some permanent modification of the nappe form. Weirs with sloping upstream faces reduce the crest contraction, broad-crested weirs cause adherence of the nappe to the crest, aprons cause permanent adherence of the nappe to the downstream face.

Broad-Crested Weirs

A weir that is approximately rectangular in cross-section is called a broad-crested weir, and unless otherwise noted will be assumed to have vertical faces, a plane level crest and sharp right-angled corners. Fig. 31 represents a broad-crested

Fig. 31.—Broad-crested weir.

weir, having a height P and a breadth B. The head, H, should be measured at least 3H upstream from the weir. A short distance above the upper edge of the weir the water surface curves downward until a depth e is reached which depth remains nearly constant to a point near the lower edge of the weir.

Unwin¹ has shown that the theoretical formula for discharge over a broad-crested weir takes the form

$$Q = CLH^{\frac{3}{2}} \tag{1}$$

and if the upstream corner of the weir is rounded sufficiently to overcome the effects of crest contraction while the crest of the weir is inclined slightly downward the theoretical value of C is 3.087. This value is seldom obtained in practice. For

¹ W. C. Unwin: A Treatise on Hydraulics, p. 102.

broad-crested weirs, as for other weirs not sharp-crested, formula (1), page 128, is assumed and values of C corresponding to different values of E and E must be determined experimentally.

Experiments on broad-crested weirs have been performed by Blackwell, Bazin, the U. S. Deep Waterways Board, and the U. S. Geological Survey. These experiments cover a wide range of conditions as to head, breadth, and height of weir. Considerable discrepancy exists in the results of the different experimenters especially for heads below 0.5 feet. For heads from 0.5 to about 1.5 feet the coefficient becomes more uniform and for heads from 1.5 feet to the point where the nappe becomes detached from the crest of the weir the coefficient as given by the different experiments is nearly constant and equals approximately 2.63. When the head reaches from one to two times the breadth of the weir, the nappe becomes detached and the discharge is approximately equal to that for a sharp-crested weir. The degree of roughness of the crest, within reasonable limits, appears to have but little effect upon the discharge.

In order to put the results of the various experiments in a form convenient for use, Table 42, page 143, has been prepared by graphically interpolating the results of all experiments, giving more weight to those of the U. S. Geological Survey. This table should give values of C within the limits of accuracy of the original experiments. Velocity of approach correction should be made by formula (2) or (3), page 129. Table 40, page 122, gives three-halves powers of numbers.

Modifications of Broad-crested Weirs.—The effect of rounding the upstream corner of a broad-crested weir (Fig. 32), is to lower the weir by decreasing the crest contraction. In other words, rounding the upstream corner increases the discharge for a given head. Table 43, page 144, gives a résumé of experiments on this type of weir. From a comparison of these experiments with those for a broad-crested weir with sharp upstream corner it appears that the effect of rounding the upstream corner on a radius of 4 inches is to increase the coefficient, C, approximately 9 per cent. Experimental data for determining the effect of rounding the corner on a radius greater or less than 4 inches are not available.

Blackwell experimented with three weirs 3.0 feet broad having a slightly inclined crest, Fig. 33. The effect of inclining the crest is not quite clear from the experiments but appears to slightly increase the coefficient of discharge. The results of

these experiments are rather inconsistent, especially for low heads. Table 44, page 144, has been obtained from Blackwell's experiments.

The condition obtained by sloping the top of a broad-crested weir is similar to that of a triangular weir with the upstream face vertical. The coefficients given in Tables 45 and 46, pages 144 and 145, will therefore be valuable for selecting coefficients for broad-crested weirs with sloping crests.

Fig. 32.—Broad-crested weir with upstream corner rounded.

Fig. 33.—Broad-crested weir with sloping crest.

Weirs of Triangular Section

Fig. 34 represents the cross-section of a weir having the upper face vertical, and the lower face inclined downward; the two faces meeting in a sharp angle which forms the crest of the weir.

Bazin has experimented with weirs of this type, 2.46 feet high, giving various slopes to the downstream face. The

Fig. 34.—Triangular weir.

coefficients resulting from those experiments are given in Table 45, page 144.

It will be observed that the coefficient for a given slope in each case shown by the experiments is nearly constant for heads above 0.7 feet. It seems fair to assume, therefore, that these values could be extended to higher heads with reasonable assurance. The average values of the coefficients given in

Table 45, for heads above 0.7 feet were plotted logarithmically and found to fall very accurately on a straight line. This line was then extended to include slopes of 20 horizontal to 1 vertical from which the values given in Table 46, page 145, were taken. Table 46 may be used for computing discharges over weirs of the types shown in Fig. 33 or 34, for heads above 0.7 feet. These coefficients are to be used for broad-crested weirs with inclined tops only when the breadth is of sufficient width to prevent the nappe from springing clear; otherwise, the discharge will be approximately the same as for a thin-edged weir.

Fig. 35.—Triangular weir.

Bazin also experimented with weirs of triangular cross-sections, 1.64 feet high, having both faces inclined, Fig. 35. Coefficients to be used with the base formula, which cover the range of these experiments, are given in Table 47, page 145.

The velocity of approach correction for weirs of triangular section should be made in accordance with formula (2) or (3).

Weirs of Trapezoidal Section

Fig. 36 represents a weir of trapezoidal section with both upstream and downstream faces inclined. Experiments on

Fig. 36.—Trapezoidal weir.

this type of weir were made by Bazin and the United States Deep Waterways Board. Bazin's experiments were all on weirs 2.64 feet high, the breadth of crest varying from 0.66 to 1.32 feet. Two experiments on weirs of this type, each 4.9 feet high, were performed by the United States Deep Waterways Board.

Coefficients covering the range of Bazin's experiments are given in Table 48, page 146. Table 49, page 146, gives coefficients resulting from the experiments by the United States Deep Waterways Board.

For weirs of trapezoidal cross-section with sloping upstream and vertical downstream face, Fig. 37, there are five series of

Fig. 37.—Trapezoidal weir.

experiments by the United States Deep Waterways Board. All of the models for these experiments were approximately 4.9 feet high and the breadth of crest AB was either 0.33 or 0.66 feet. The length of all weirs was 6.58 feet.

Table 50, page 147, gives coefficients derived from these experiments. Discharges over trapezoidal weirs should be corrected for velocity of approach by formula (2) or (3).

Weirs of Irregular Section

Figs. 38 to 42 inclusive represent models of weirs experimented upon by the U.S. Deep Waterways Board, under

the direction of G. W. Rafter, at the hydraulic laboratory of Cornell University. From four to seven experiments were run on each model, the range of head varying approximately

from 1 to 5.5 feet. Values of C tabulated from these experiments are given in Table 51, page 147.

Experiments on models of the old Croton dam (Figs. 43 to 47 inclusive) were made at Cornell University in 1899, for the

Fig. 43.

Fig. 44.

Fig. 45.

Fig. 46.

Fig. 47.

city of New York, under the direction of J. R. Freeman. The models were given different degrees of roughness to determine the effect of roughness of crest on discharge. Table 52, page 147, gives the tabulated results of these experiments.

Experiments for the U. S. Geological Survey, under the direction of Robert E. Horton, were performed in 1903 at the hydraulic laboratory of Cornell University to determine the coefficients of discharge of weirs modeled after various types of dams. Figs. 48 to 55 inclusive show forms of crests of

models experimented upon. The weirs were all 11.25 feet high and either 8 or 15 feet long. The purpose of the experiments was to enable the Geological Survey to more accurately determine discharges over weirs at gaging stations. Coefficients obtained from these experiments are given in Table 53, page 148.

Fig. 56 is a cross-section of the old dam at Austin, Texas. Five series of gagings of flow over this dam were made with a current meter by Taylor¹ in 1900. The range of head was from 0.42 to 1.44 feet.

Fig. 57 is a cross-section of the Blackstone River dam at Albion, Mass. Five current meter measurements of the water passing over this dam were made by Dwight Porter. The head in each case was about 1 foot and the resulting values of C vary from 3.41 to 3.94.

The last two lines in Table 53, page 148, give mean values of C as determined for measurement of flow over the above dams.

Submerged Weirs and Dams

There are three types of problems in connection with submerged weirs (not sharp-crested) or dams.

- (a) To determine the discharge, the head and depth of submergence being given.
- (b) To determine the height of dam necessary to raise the elevation of water surface a given amount.
- (c) To determine the amount that a dam of a given height will raise the elevation of the water surface.

Fig. 58.—Submerged dam.

In general, the methods of solution will be the same as that already discussed (page 84) for sharp-crested submerged weirs. Fig. 58 represents such a weir or dam, H being the depth of water passing over the dam and D the depth of submergence, measured below all turbulence caused by the standing wave. The notation will be the same as that given on pages 64 and 65.

As already stated, page 83, a submerged-weir formula to be generally applicable must consider the channel dimensions above and below the weir. A weir coefficient must also be

¹ T. U. TAYLOR: The Austin Dam. Water Supply and Irrigation Paper No. 40.

selected for each shape of crest. For some weirs the problem is still farther complicated by the fact that not only the coefficient of discharge but the height of the standing wave may be affected by the form of the crest of the weir. Weirs with broad flat crests, either level or gently sloping, may have a standing wave form before the water is free from the weir. The effect of this condition is similar to reducing the depth of water in the channel below the weir. This will cause a higher standing wave than would form in the natural channel and result in a greater discharge for a given difference in elevation of water surfaces above and below the weir.

Bazin has experimented with a number of models of submerged weirs having heights of either 1.15 or 2.46 feet. Nelles¹ has prepared an abstract of Bazin's experiments on broadcrested weirs and weirs of triangular and trapezoidal crosssections. Owing to the difficulties referred to above as well as the necessarily limited range of the experiments it is impossible to develop any working formula from these data. Each type of weir is a problem in itself and each requires an extensive investigation, covering a wide range of conditions. When it is considered that weir sections may be constructed in an indefinite number of shapes it may be seen that a most extensive set of experiments will be necessary before an understanding of this subject may be expected.

The author's formula for flow over sharp-crested submerged weirs (formula (41), page 82) using the nomenclature given on pages 64 and 65, is

$$Q = 3.34 LZ^{1.47} \left(1 + \frac{1}{5} \sqrt{\frac{HD}{d_1 Z}}\right) \left(1 + 1.2 \frac{D}{Z}\right) \left(1 + 0.56 \frac{H^2}{d^2}\right) (4)$$

From a study of Bazin's experiments it appears that all of the symbols in the above formula, and probably another which corrects for shape of crest, influence the discharge over submerged dams and weirs. In the light of present knowledge of the subject, however, it appears impossible to outline any definite method of procedure.

The author submits the following approximate rules for determining discharges over submerged dams and weirs not sharp-crested:

1. When D is not greater than 0.2H, use the ordinary weir formula, $Q = CLH^{32}$, choosing the proper value of C from

¹ G. T. Nelles: Flow over Submerged Dams. Trans. Amer. Soc. Civ. Eng., vol. 44, pp. 362-383.

Tables 42 to 53 inclusive, and correction for velocity of approach if necessary by formula (2) or (3), page 129. Values of H34 are given in Table 40, page 122.

- 2. For narrow weirs having a crest with a sharp upstream corner or for weirs of triangular section with the downstream face not flatter than 2 horizontal to 1 vertical, use formula (4).
- 3. For weirs with rounded crests not over 5 feet broad. increase results from formula (4) by 10 per cent.
- 4. For weirs with very broad crests or gently sloping downstream faces, increase results from formula (4) by from 10-to 30 per cent, or even more. The necessity of this correction is due largely to the fact that a standing wave may form on the crest of the weir.

In applying the above rules it should be remembered that D is the depth of submergence measured below all turbulence caused by the overfalling water. These rules provide for an approximate solution of all submerged-weir problems.

If it is required, from formula (4), to determine the height of dam of a given length, necessary to raise the water surface in a channel a given height, the discharge Q being known, Z is given and the areas of the channels above and below the weir, and therefore d and d_1 may be determined. Q may be corrected if necessary by the above rules. D = H - Z and the only unknown quantity in the equation is H which may be determined from formula (4) by successive approximations.

A similar method may be employed to determine the amount which the water surface in a stream will be raised by a submerged weir of a given height. (See discussion page 84.)

Falls

A canal or chute may terminate abruptly in such a manner as to allow the water to fall freely over its end without any reduction of its section. A longitudinal section of a fall is shown in A, Fig. 59. The canal may be of any crosssection, the more common forms being rectangular or trapezoidal, as shown in B and C, Fig. 59.

There are no experimental data for determining the discharge cor-

Fig. 59.—Fall.

responding to a given head, H, but an approximate solution Digitized by Google

may be obtained by considering the fall a weir whose height equals zero. In this case d in formula (7) (page 72) becomes equal to H and the formula for a fall at the end of a channel of rectangular cross-section may be written

$$Q = 5.21LH^{1.47} (5)$$

By assuming that the effects of contraction on the portion of the channel above the sloping sides will be similar to that on the rest of the channel, the formula for falls of trapezoidal crosssection, becomes approximately

$$Q = 5.21H^{1.47} (L + 0.8zH) (6)$$

 $z = \frac{b}{H}$ being the slopes of the sides of the channel. In formulas (5) and (6) H should be measured at least 3H, and usually not more than 16 feet, above the crest of the fall.

The solution of the above formulas will be simplified by the use of Table 32, page 93.

Notch Falls or Drops.—In constructing canal systems it is frequently required to drop the water of a canal to a lower elevation and at the same time maintain a certain specified

Fig. 60.—Notch fall or drop.

depth above the drop. This may be done by building a bulk-head across the canal, which contains a notch flush with the bottom of the canal. Fig. 60 represents such a structure, A being a cross-section and B a longitudinal section. The bulk-head across the canal section abcd contains the notch efgh. L is the width of opening at the bottom of the notch and H is the depth of water in the canal above the structure. A and a represent respectively the cross-sectional areas of the channel and notch. The following formulas are based upon a study of the best available data but they lack direct experimental verification.

A and a represent respectively the cross-sectional areas below water level of the channel and the notch.

For rectangular notches, with upstream edges of sides rounded to suppress contractions

$$Q = 3.62LH^{1.47} \left(1 + 0.44 \frac{a^2}{A^2} \right) \tag{7}$$

For rectangular notches with end contractions

$$Q = 3.62H^{1.47} (L - 0.2H) \left(1 + 0.44 \frac{a^2}{A^2}\right)$$
 (8)

For trapezoidal notches with end contractions suppressed, z being the slope of sides of notch, horizontal to vertical

$$Q = 3.62H^{1.47} (L + 0.8zH) \left(1 + 0.44 \frac{a^2}{A^2}\right)$$
 (9)

For trapezoidal notches with end contractions

$$Q = 3.62H^{1.47} (L + 0.8zH - 0.2H) \left(1 + 0.44 \frac{a^2}{A^2}\right) (10)$$

Table 42.—Values of C in the Formula, $Q = CLH^{3/2}$ for Broad-crested Weirs

Measured head	Breadth of crest of weir in feet
in feet, H	0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00 10.00 15.00
0.2	2.80 2.75 2.69 2.62 2.54 2.48 2.44 2.38 2.34 2.49 2.68
0.4	2.92 2.80 2.72 2.64 2.61 2.60 2.58 2.54 2.50 2.56 2.70
0.6	3.08 2.89 2.75 2.64 2.61 2.60 2.68 2.69 2.70 2.70 2.70
0.8	3.30 3.04 2.85 2.68 2.60 2.60 2.67 2.68 2.68 2.69 2.64
1.0	3.32 3.14 2.98 2.75 2.66 2.64 2.65 2.67 2.68 2.68 2.63
1.2	3.32 3.20 3.08 2.86 2.70 2.65 2.64 2.67 2.66 2.69 2.64
1,4	3.32 3.26 3.20 2.92 2.77 2.68 2.64 2.65 2.65 2.65 2.67 2.64
1.6	3.32 3.29 3.28 3.07 2.89 2.75 2.68 2.66 2.65 2.64 2.63
1.8	3.32 3.32 3.31 3.07 2.88 2.74 2.68 2.66 2.65 2.64 2.63
2.0	3.32 3.31 3.30 3.03 2.85 2.76 2.72 2.68 2.65 2.64 2.63
2.5	3.32 3.32 3.31 3.28 3.07 2.89 2.81 2.72 2.67 2.64 2.63
3.0	3.32 3.32 3.32 3.32 3.20 3.05 2.92 2.73 2.66 2.64 2.63
3.5	3.32 3.32 3.32 3.32 3.32 3.19 2.97 2.76 2.68 2.64 2.63
4.0	3.32 3.32 3.32 3.32 3.32 3.32 3.07 2.79 2.70 2.64 2.63
4.5	3.32 3.32 3.32 3.32 3.32 3.32 3.32 2.88 2.74 2.64 2.63
5.0	3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.07 2.79 2.64 2.63
5.5	3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32
·	

Table 43.—Values of C in the Formula, $Q = CLH^{3/2}$ for Models of Broad-crested Weirs with Rounded Upstream Corner

	eet	of et, B	et, P				He	ad in	feet	, <i>H</i>			
Name of experimenter	Radius o	Breadth weir in fe	Height of weir in fe	0.4	0.6	0.8	1.0	1.5	2.0	2.5	3.0	4.0	5.0
BazinBazinU. S. Deep	0.83			2.93 2.70									
Waterways U. S. Deep Waterways	0.33		1	1	1								3.50 2.81

Table 44.—Values of C in the Formula, $Q = CLH^{34}$ for Broad-Crested Weirs with Crests Inclined Slightly Downward

Slope of	Length	Head in feet, H								
crest	of weir in feet	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
12 to 1	3.0	2.58	2.87	2.57	2.60	2.84	2.81	2.70		
18 to 1	3.0	2.91	2.92	2.53	2.60	2.80	2.74	2.62		
18 to 1	10.0	2.52	2.68	2.73	2.80	2:90	2.80	2.68		

Table 45.—Values of C in the Formula $Q=CLH^{32}$ for Weirs of Triangular Cross-section with Vertical Upstream Face and Sloping Downstream Face

Slope of	Height of weir					Head	l in fe	et, H	!			
stream face	in feet, <i>P</i>		0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.5
Hor. Vert.												
1 to 1	2.46	3.88	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.85
2 to 1	2.46	3.48	3.48	3.49	3.49	3.50	3.50	3.50	3.50	3.50	3.51	3.51
2 to 1	1.64	3.56	3.47	3.47	3.51	3.54	3.57	3.58	3.58	3.58	3.59	3.57
3 to 1	1.64		2.90	3.11	3.22	3.26	3.33	3.37	3.40	3.40	3.41	3.41
5 to 1	2.46		3.08	3.06	3.05	3.05	3.07	3.09	3.12	3.13	3.13	3.13
10 to 1	2.46		2.82	2.83	2.84	2.86	2.89	2.90	2.91	2.91	2.92	2.93
	İ	<u> </u>	t			1	L		1	L		L

Table 46.—Values of C in the Formula $Q=CLH^{95}$, being the Mean and Extension of Experimental Results, on Weirs of Triangular Cross-section with Vertical Upstream Face and Sloping Downstream Face. This Table Should be Used only for Heads Above 0.7 Foot

Slope of downstream face	Value of C	Slope of downstream face	Value of C	Slope of downstream face	Value of C
Hor. Vert.		Hor. Vert.		Hor. Vert.	
1 to 1	3.85	6 to 1	3.07	12 to 1	2.86
2 to 1	3.54	7 to 1	3.02	14 to 1	2.80
- 3 to 1	3.35	8 to 1	2.98	16 to 1	2.76
4 to 1	3.21	9 to 1	2.94	18 to 1	2.72
5 to 1	3.13	10 to 1	2.92	20 to 1	2.69

Table 47.—Values of C in the Formula $Q = CLH^{3/2}$ for Weirs of Triangular Cross-section with Both Faces Inclined. For Heads Above 1.5 Feet Use the Value of C Given for a Head of 1.5 Feet

Slope of up-	Slope of			Head in fe	eet, H	
stream face	stream face	0.2 0.3	0.4 0.5	0.6 0.7	0.8 0.9 1.0	1.2 1.5
1 to 1 1 to 1 1 to 1 2 to 1 1 to 2	3 to 1 2 to 1 2 to 1 2 to 1	3.82 3.80 3.55 3.88 3.85 3.82 3.81 3.74 3.71	3.77 3.77 3.52 3.48 3.83 3.81 3.77 3.77 3.68 3.69	3.79 3.82 3.46 3.45 3.81 3.83 3.78 3.82 3.72 3.73	4.11 4.10 4.08 3.84 3.85 3.85 3.46 3.47 3.48 3.86 3.87 3.87 3.83 3.84 3.84 3.73 3.74 3.74	3.85 3.84 3.47 3.46 3.87 3.87 3.84 3.84 3.73 3.71
1 to 3 Vertical			1-1-1-1-1		3.69 3.69 3.69 3.58 3.58 3.58	

Table 48.1—Values of C in the Formula $Q = CLH^{\frac{3}{2}}$ for Weirs of Trapezoidal Cross-section with Both Faces Inclined. This Table Indicates That Values of C Increase Slightly for Heads Above 1.5 Feet

,													
Slope of up-	Slope of	Width of crest				:	Heac	l in i	feet,	H			
stream face	stream face	in feet	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.5
<u></u>	<u> </u>			!	<u>!</u>	<u> </u>	<u> </u>		<u>L</u> _	<u> </u>	<u> </u>	<u>!</u>	<u>!</u>
Hor. Vert.	Hor.												
1 to 2	1 to 1	0.66	2.70	2.82	2.89	3.02	3.13	3.24	3.34	3.44	3.52	3.66	3.82
1 to 2	2 to 1	0.66	2.71	2.79	2.83	2.92	3.03	3.14	3.27	3.32	3.38	3.50	3.61
1 to 2	3 to 1	0.66	2.70	2.76	2.80	2.91	3.00	3.07	3.14	3.21	3.27	3.37	3.45
1 to 2	4 to 1	0.66	2.71	2.74	2.84	2.88	2.98	3.06	3.12	3.17	3.21	3.28	3.35
1 to 2	5 to 1	0.66	2.71	2.80	2.86	2.88	2.93	3.02	3.08	3.12	3.17	3.23	3.26
1 to 2	2 to 1	1.32		2.71	2.77	2.80	2.80	2.84	2.88	2.93	2.98	3.08	3.22
1 to 2	4 to 1	1.32		2.76	2.80	2.82	2.82	2.85	2.88	2.91	2.94	3.01	3.10
1 to 2	6 to 1	1.32			2.79	2.80	2.82	2.85	2.87	2.90	2.93	2.98	3.08
2 to 1	2 to 1	0.67	2.82	2.94	3.04	3.13	3.20	3.26	3.32	3.38	3.43	3.51	3.61
1 to 1	2 to 1	0.67	2.73	2.86	2.92	3.02	3.12	3.21	3.29	3.36	3.42	3.53	3.65
1 to 3	2 to 1	0.67	2.50	2.62	2.75	2.87	2.99	3.09	3.18	3.27	3.34	3.46	3.55
Vertical	2 to 1	0.67	2.55	2.58	2.66	2.77	2.90	2.99	3.09	3 18	3.26	3.39	3.51
	<u> </u>			<u> </u>								١	

Table 49.2—Values of C in the Formula $Q=CLH^{32}$ for Weirs of Trapezoidal Cross-section with Both Faces

Inclined

Slope of	Slope of	Width				Н	ead i	n fee	et, H	'		
upstream face	stream face	of crest in feet	1.6	1.8	2.0	2.5	3.0	3.5	4.0	45	5.0	5.5
Hor. Vert.	Hor. Vert.											
2 to 1 2 to 1	# > 2 to 1 5 to 1	0.67 0.33										3.70 3. 5 8

¹ See also Table 49.

² See also Table 48

Table 50.—Values of C in the Formula $Q=CLH^{32}$ for Weirs of Trapezoidal Cross-section with the Upstream Face Inclined and the Downstream Face Vertical

Slope of	Width of	1							Н	ead	iı	n fe	et	, <i>H</i>	!					
upstream face	crest in feet		1.0	0	1.	5	2	.0	2	. 5	3	. 0	3	. 5	4	.0	4	. 5	5.	0
Hor. Vert.									Π										Γ	
2 to 1	0.33	•	3.8	35	3.	82	3	. 79	3.	.77	3.	. 75	3.	73	3.	70	3	. 67	3.	в
2 to 1	0.66	1	3.4	11	3.	57	3	. 65	3.	70	3.	72	3.	72	3.	73	3.	. 78	3.	7
3 to 1	0.66	-			١		3	. 57	3.	57	3.	57	3.	57	3.	57	3.	. 57	3.	5
4 to 1	0.66	1			١.,		3	48	3.	48	3.	48	3.	48	3.	48	3.	. 48	3.	4
5 to 1	0.66	1			١.,		3	39	3.	39	3.	39	3.	39	3.	39	3.	. 39	3.	3

Table 51.—Values of C in the Formula $Q=CLH^{32}$ for Weirs of Irregular Cross-section

No. of		-		He	ad in	ieet, <i>H</i>				
figure	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
38	3.13	3.22	3.22	3.22	3.22	3.22	3.22	3.22	3.22	3.22
39	1	3.41	3.35	3.30	3.33	3.37	3.38	3.38	3.38	3.3
40	3.47	3.46	3.41	3.35	3.32	3.33	3.37	3.41	3.46	
41	1			3.44	3.39	3.38	3.38	3.39	3.41	
42	3.28	3.29	3.32	3.39	3.46	3.51	3.59	3.62	3.65	

Table 52.—Values of C in the Formula $Q=CLH^{32}$ from Experiments at Cornell University on Models of Old Croton Dam

No.				1	Head	in f	eet, l	Н		
fig- ure	Description of model	0.2	0.4	0.6	0.8	1.0	1.5	2.0	2.5	3.0
43 43 43	Made of smooth pine Made of unplaned plank Rough slope—smooth crest	1	2.89	2.94	2.99	3.03	3.11	3.14	3.15	ł I
43 44 44	Made of unplaned plank Rough slope—Crest un-	3.60	3.62	3.64	3.66	3.67		3.70		3.15
44 45	planed plank	3.57 3.30	3.58 3.08	3.58 3.01	3.59 3.05	3.59 3.18	l	3.61 3.46		3.49
46 47 47	End a open End a with sloping approach	3.53	3.50	3.46	3.43	3.41	3.36 3.43	3.33	3.32	

Table 53.—Values of C in the Formula $Q=CLH^{32}$ from Experiments at Cornell University on Models Resembling Existing Dams (Except that the Last Two Experiments Were Made On Actual Dams)

	No.	Length of				He	ad in	feet,	H .			
	of figure	model in feet	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5 0
	48	7.94	Ī	3.30	3.32	3.36	3.40	3.43	3.48	3.53	3.62	3.70
Į	48	15.97	3.32	3.44	3.46	3.42	3.41	3.46	3.50		1	
ı	49	7.98	1	3.38	3.46	3.51	3.55	3.58	3.62	3.68	3.74	3.83
ı	49	15.97	3.22	3.48	3.61	3.67	3.70	3.72			1	
l	50	15.97	3.15	3.45	3.64	3.75	3.82	3.87	3.88			
1	51	15.97	3.18	3.32	3.43	3.52	3.59	3.64		l		
1	52	15.97	3.18	3.30	3.37	3.42	3.46	3.49	3.52	3.54		
	53	15.97	3.28	3.50	3.54	3.52	3.36	3.31	3.30		ĺ	
1	54	15.97	3.53	3.54	3.55	3.50	3.35	3.27	3.25	3.25	}	
	55	15.93	3.13	3.14	3.10	3.41	3.20	3.26	3.31	3.37	ĺ	
1	56		3.09	3.11	3.33	1		1	ŀ		l	
1	57	1		3.80		İ			1	i	i	

CHAPTER VI

FLOW OF WATER THROUGH PIPES

Fundamental Principles.—Fig. 61 represents a pipe line fed by a reservoir in which the water surface is maintained at a constant elevation. The discharge from the outlet P will be

Frg. 61.

constant after a condition of equilibrium has been established. It is evident that the same quantity of water is then passing any section of the pipe. If v_1 and v_2 be mean velocities at any two sections M and N, and A_1 and A_2 the respective areas of sections, this relation is expressed by the equations

$$Q = A_1 v_1 = A_2 v_2 \tag{1}$$

also

$$v_1 = \frac{Q}{A_1} \text{ and } v_2 = \frac{Q}{A_2}$$
 (2)

Bernoulli's theorem is the basis of all formulas for determining the flow of water through pipes. It assumes the ideal conditions of stream line motion and no friction losses. Referring to Fig. 61, Bernoulli's theorem may be expressed by the following equation which relation holds for any sections of the pipe.

$$H_T = h_1 + \frac{v_1^2}{2g} + Z_1 = h_2 + \frac{v_2^2}{2g} + Z_2$$
 (3)

In the application of Bernoulli's theorem to practical problems, allowance must be made for friction losses. The inner surface of a pipe always resists the movement of water, which resistance increases with the roughness of the material of which the pipe is constructed. Obstructions in pipes such as valves, bends, and contractions or enlargements cause an additional resistance to flow. This resistance has the effect of reducing the effective head and such losses of head are commonly spoken of as friction losses.

Bernoulli's theorem may be corrected to include friction losses. Considering M and N any two sections of a pipe, Fig. 61, if H_a represents the losses due to all causes between these sections, the equation may be written

$$h_1 + \frac{{v_1}^2}{2a} + Z_1 = h_2 + \frac{{v_2}^2}{2a} + Z_2 + H_a$$
 (4)

If H represents the difference in elevation between the water surface in the reservoir and the outlet end of the pipe, and v the velocity with which the water leaves the pipe Bernoulli's equation for all losses in the pipe reduces to

$$H = H_a + \frac{v^2}{2a}.$$
 (5)

In other words, the total head is equal to the sum of the lost heads and the velocity head at the point of discharge.

It is now necessary to analyze separately the various factors entering into the term H_a . The following notation will be used:

 $H_0 =$ Loss of head at entrance to pipe.

 H_1 = Total loss of head due to friction between water and pipe.

 H_2 = Loss of head due to enlargements of pipe.

 H_3 = Loss of head due to contractions of pipe.

 H_4 = Loss of head due to valves.

 H_{δ} = Loss of head due to bends in pipe.

The complete equation for head lost in a pipe may be written

$$H_a = H_0 + H_1 + H_2 + H_3 + H_4 + H_5 \tag{6}$$

and the equation for total head is

$$H = \frac{v^2}{2a} + H_0 + H_1 + H_2 + H_4 + H_6 \qquad (7)$$

In the above equation v is the velocity at which the water leaves the pipe, or if the pipe is of uniform diameter throughout it is also the entrance velocity. In long pipes, that is pipes having a length of 500 diameters or more, H_1 is by far the most important consideration. Frequently with very long

pipes the other losses are so small a percentage of the total loss in head that they may be neglected. In the case of short pipes, however, all losses should be carefully analyzed.

In certain problems it may be found more convenient to express formula (7) in the form

$$H = \frac{v^2}{2g} + K_0 \frac{v^2}{2g} + H_1 + K_2 \frac{v^2}{2g} + K_3 \frac{v^2}{2g} + K_4 \frac{v^2}{2g} + K_5 \frac{v^2}{2g}$$
 (8)

In this formula v is the velocity in the part of the pipe being considered, and in the case of loss of head due to enlargement or contraction, v will be the velocity in the smaller pipe. For a system of pipes of different diameters the velocity in one pipe may be expressed in terms of velocity in any other pipe by means of the simple relation that the velocities in the two pipes vary inversely as the squares of their respective diameters. The use of formula (8) will frequently be simplified by expressing all losses of head in terms of one value of v.

Loss of Head at Entrance to Pipes

The upper end of a pipe for a distance of 2 or 3 diameters below the entrance is similar to a short tube and the head lost in this portion of a pipe is comparable to the loss in a short tube (page 41). If h is the head producing the discharge, v the mean velocity at the entrance to the pipe and C the coefficient of discharge,

 $v = C\sqrt{2gh},$ $h = \frac{1}{C^2} \cdot \frac{v^2}{2a}$

and

since h is the sum of the velocity head and the head lost at entrance,

 $H_0 = \frac{1}{C^2} \cdot \frac{v^2}{2g} - \frac{v^2}{2g} = \left(\frac{1}{C^2} - 1\right) \frac{v^2}{2g} \tag{9}$

or, if

$$K_0 = \frac{1}{C^2} - 1 \tag{10}$$

$$H_0 = K_0 \frac{v^2}{2g}$$
 (11)

since C is equal to approximately 0.82 for a sharp-cornered entrance, K_0 under these conditions will be approximately 0.50. This value will be reduced by rounding the entrance

corners and it approaches zero for a bell-mouth entrance. The maximum value of K_0 occurs for an inward projecting entrance (page 42). The following may be taken as mean values of C with corresponding values of K_0 :

For inward projecting entrance, C = 0.75, $K_0 = 0.78$. For sharp-cornered entrance C = 0.82, $K_0 = 0.50$. For slightly rounded entrance C = 0.90, $K_0 = 0.23$. For bell-mouth entrance C = 0.98, $K_0 = 0.04$.

For convenience of reference the above values of K_0 are repeated in Table 55, page 171. Table 54, page 170, gives values of lost head at entrance to pipes corresponding to velocities of from 2 to 30 feet per second

Loss of Head Due to Friction

By far the most important consideration in connection with the flow of water in pipes is the determination of the proper allowance for friction between the moving water and the inner surface of the pipe. In the case of long pipes, this loss may so far exceed the combined effect of all other losses as to make the consideration of the latter unnecessary. All losses should be investigated, however, and especially those due to poor alignment either horizontally or vertically (see loss of head due to bends, page 168).

An investigation of the loss of head due to friction in pipes must necessarily be based upon experimental rather than theoretical considerations. A large number of experiments on different kinds of pipe have been performed during the past century, the results of which are now available in a more or less satisfactory form. It is unfortunate that these experiments present many apparent inconsistencies.

The fact that the existing experimental data, which have been taken with great care and usually under favorable conditions, give conflicting results emphasizes the fact that the engineer in practice is apt to get results equally conflicting and difficult to explain.

The one thing that the engineer should be warned against is the danger of accepting blindly a formula which gives average results, without first assuring himself that his conditions are average conditions. Before selecting a formula for a given problem the engineer should have some knowledge of the dis-

crepancies in the experimental data on which the formula is based in order that he may understand the possible error attached to his result. It should also be remembered that designing a pipe too small to discharge a given quantity of water may lead to serious inconvenience if not financial loss, while a pipe of slightly larger diameter which provides the required capacity may not add materially to the cost. The engineer should therefore know the worst condition as well as the average and best conditions to be expected in solving all pipe problems.

It has been quite generally accepted that the loss of head due to friction in a straight pipe of uniform diameter, free from obstructions, varies with the roughness of the inner surface of the pipe, directly as the length of the pipe, and as some power of the diameter and velocity of water.

The formula which, until the last few years, has been used almost exclusively is the Chezy formula, usually written for pipes, in the form

$$H_1 = f \frac{l}{d} \frac{v^2}{2g} \tag{12}$$

 H_1 being the friction head, l the length of pipe and d the diameter of pipe, all expressed in feet; v is the velocity of water in feet per second, and f is an empirical coefficient which varies with the roughness of the pipe and also with v and d.

The ideal formula would evidently express H_1 as a function of l, d and v with a coefficient depending for its value solely on the degree of roughness of the pipe. This coefficient should then be constant for all pipes constructed of the same material. Many attempts to devise such a formula have been made, but with indifferent success. Most of the more recent investigations have been based upon the so-called exponential formula written in the form

$$H_1 = K \frac{l}{d^n} v^m \tag{13}$$

K being the coefficient which varies with the roughness of the pipe and m and n being constant exponents.

It may readily be seen by logarithmically plotting experimental results for different pipes that m is not a constant, but apparently increases with the degree of roughness of the pipe, being as low as 1.74 for very smooth pipes and as high as 2.08 in cases of extreme roughness. A value of 1.25 for n appears

to fit quite satisfactorily all experimental results and this value has been quite generally accepted.

Common Formulas for Friction Loss in Pipes

Before proceeding with the discussion of this subject the more commonly used formulas for loss of head due to friction in pipes are here introduced. The following nomenclature will be used:

l =Length of pipe in feet.

 $H_1 =$ Loss of head due to friction in length l in feet.

 $H_f =$ Loss of head due to friction in 1000 feet of pipe.

d =Diameter of pipe in feet.

v =Mean velocity of water in feet per second.

 $r = \text{Mean hydraulic radius} = \frac{d}{4}$

 $s = \text{Mean slope of hydraulic gradient in distance considered} = \frac{H_1}{2}$.

f, K_1 , K, K', and c = Empirical coefficients. m, and n = Empirical exponents.

The Chezy formula

$$H_1 = f \, \frac{l}{d} \, \frac{v^2}{2a} \tag{12}$$

which has been extensively used for cast-iron pipes, is being replaced by other formulas: f varies with both \dot{v} and d. Fanning's values of f for straight smooth pipes, which have been commonly used, are given in Table 56, page 171. As originally published Fanning's coefficients are one-fourth of the values given in Table 56 since he uses r in place of d in the above formula. In this form Fanning's formula, with the accompanying table of coefficients, is intended to apply to smooth open channels as well as pipes. Several formulas for determining f, which is expressed as a function of v or d, have been used in the past. Among these may be mentioned the formulas of D'Aubisson, Weisbach and Darcy. Later investigations have shown, however, that since f varies with both v and d the Chezy formula can best be used in connection with a table.

The Williams and Hazen formula, expressed in the nomenclature given above, is

 $H_1 = K \frac{lv^{1.87}}{d^{1.25}} \tag{14}$

K ranges from 0.00028 to 0.00048 with an average value of 0.00038 for ordinary clean pipes. For rough tuberculated pipes K may become as high as 0.00070.

Tutton's formulas proposed in 1899 for the discharge of pipes constructed of different materials are as follows:

For new cast-iron pipes, and pipes of similar degree of roughness

$$v = cr^{0.66} s^{0.51}$$
 $c = 126 \text{ to } 158$ (15a)

For cast-iron pipes slightly tuberculated or with mud deposits $v = cr^{0.66} s^{0.51}$ c = 87 to 132 (15b)

For cast-iron pipes heavily tuberculated

$$v = cr^{0.66} s^{0.51}$$
 $c = 30 \text{ to } 85$ (15c)

For new asphalt-coated pipes

$$v = cr^{0.62} s^{0.55} \qquad c = 175 \qquad (15d)$$

For old asphalt-coated pipes

$$v = cr^{0.66} s^{0.51}$$
 $c = 80 \text{ to } 140$ (15e)

For wood stave pipes

$$v = cr^{0.66} \ s^{0.51} \qquad c = 129 \tag{15f}$$

For new tar- or asphalt-coated lap-riveted pipes

$$v = cr^{0.66} s^{0.51}$$
 $c = 125 \text{ to } 135$ (15g)

For old tar- or asphalt-coated lap-riveted pipes

$$v = cr^{0.66} s^{0.51}$$
 $c = 110 \text{ to } 114$ (15h)

Unwin's Formula.—After a careful study of the available experimental data on the flow of water in iron pipes, Unwin² adopted the base formula

$$H_1 = K' \frac{l}{d^n} \frac{v^m}{2q} \tag{16}$$

and prepared the following table of values of K', m and n to be substituted in the formula.

Kind of pipe	K'	m	n
Wrought-iron.	.0226	1.75	1.210
Asphalted-iron	.0254	1.85	1.127
Riveted wrought-iron		1.87	1.390
New cast-iron	.0215	1.95	1.168
Cleaned cast-iron	.0243	2.00	1.168
Incrusted cast-iron	.0440	2.00	1.160

¹ C. H. TUTTON; The Flow of Water in Pipes. Journal Association of Engineering Societies, 1899, vol. 23, p. 151.

² W. C. Unwin; A Treatise on Hydraulics, p. 217.

Moritz and Scobey Formulas for Wood Stave Pipes.— Moritz in 1911 published¹ the results of an investigation of wood stave pipe based upon a study of experiments by himself and other experiments available at that time. This investigation included experiments on pipes of diameters varying from 4 to 5534 inches. Moritz derived formulas for loss of head, velocity, and discharge which are given below.

Scobey in 1916 published² the results of a very thorough investigation on wood stave pipe. Scobey offered a new set of formulas "based upon all experiments on round stave pipe known to him from description in engineering literature," and supplemented by an extensive set of experiments in which he was aided by Ernest C. Fortier. Scobey's formula which is given below represents within an error of \(^2\)\% of 1 per cent. the mean of all the experiments, the maximum divergence for individual experiments being about 30 per cent. plus and minus.

The Moritz formulas for wood stave pipes are

$$H_f = 0.38 \frac{v^{1.8}}{d^{1.26}} \tag{17a}$$

$$v = 1.72d^{0.7} H_f^{0.555} {17b}$$

$$Q = 1.35d^{2.7} H_f^{0.555} (17c)$$

The Scobey formulas for wood stave pipes are

$$H_f = 0.419 \; \frac{v^{1.8}}{d^{1.17}} \tag{18a}$$

$$v = 1.62d^{0.65} H_f^{0.555} (18b)$$

$$Q = 1.272d^{2.65} H_f^{0.555} (18c)$$

Barnes' Formulas.—In 1916 Barnes published the results of a very comprehensive investigation of the available experiments on friction in pipes and open channels. As a result of this investigation new formulas were developed for a number of different kinds of pipe. In each case the formula for new clean pipe is given together with a percentage to be added to Q to allow for deterioration. These formulas are as follows:

¹ E. A. Moritz: Flow of Water in Wood Stave Pipes. Trans. Amer. Soc. Civ. Eng., vol. 74, p. 411.

² FRED C. Scobey: The Flow of Water in Wood Stave Pipe. Bulletin No. 376, U. S. Department of Agriculture.

² A. A. Barnes; Hydraulic Flow Reviewed, Spon and Chamberlain Publishers.

For new asphalted cast-iron pipes. For purposes of design 45 per cent. to be added to Q to allow for deterioration.

$$v = 174.1 \ r^{0.769} \ s^{0.529} \ \text{or} \ H_1 = 0.000436 \ \frac{lv^{1.891}}{d^{1.454}} \quad (19a)$$

For new uncoated cast-iron pipes. Add 55 per cent. to Q to allow for deterioration.

$$v = 136.6 \ r^{0.600} \ s^{0.512}$$
 or $H_1 = 0.000343 \ \frac{lv^{1.953}}{d^{1.172}}$ (19b)

For new asphalted screw-jointed riveted wrought-iron pipes. Add 33 per cent. to Q to allow for deterioration.

$$v = 190.2 \ r^{0.608} \ s^{0.557} \ \text{or} \quad H_1 = 0.000368 \ \frac{lv^{1.795}}{d^{1.092}} \quad (19c)$$

For new asphalted single-riveted wrought-iron and steel pipes. Add 33 per cent. to Q to allow for deterioration.

$$v = 171.4 \ r^{0.723} \ s^{0.527} \ or \ H_1 = 0.000386 \frac{lv^{1.898}}{d^{1.372}} \ (19d)$$

For new asphalted double-riveted wrought-iron and steel pipes. Add 33 per cent. to Q to allow for deterioration.

$$v = 129.9 \ r^{0.440} \ s^{0.520} \ \text{or} \quad H_1 = 0.000279 \ \frac{lv^{1.923}}{d^{0.846}} \quad (19e)$$

For clean lead pipes. Add 5 per cent. to Q to allow for deterioration.

$$v = 232.8r^{0.679} s^{0.591} \text{ or } H_1 = 0.000486 \frac{lv^{1.692}}{d^{1.149}}$$
 (9f)

For clean glass pipes. Add 5 per cent. to Q to allow for deterioration.

$$v = 143.0 \ r^{0.562} \ s^{0.556} \ {
m or} \quad H_1 = 0.000539 \ \frac{l v^{1.799}}{d^{1.011}} \quad (19g)$$

For new smooth wood stave pipes. Add 8 per cent. to Q to allow for deterioration.

$$v = 223.3r^{0.660} s^{0.586} \text{ or } H_1 = 0.000467 \frac{lv^{1.707}}{d^{1.126}}$$
 (19h)

For new unplaned wood stave pipes. Add 8 per cent. to Q to allow for deterioration.

$$v = 182.5r^{0.666} s^{0.569} \text{ or } H_1 = 0.000540 \frac{lv^{1.757}}{d^{1.171}}$$
 (19i)

For neat cement pipes. Add 6 per cent. to Q to allow for deterioration.

$$y = 136.3r^{0.635} s^{0.484} \text{ or } H_1 = 0.000240 \frac{lv^{2.066}}{d^{1.312}}$$
 (19j)

Formulas Advocated

The author has adopted the method, suggested by F. C. Lea, of selecting formulas in pairs of the form

$$H_1 = K \frac{l}{d^{1.25}} \cdot v^m \tag{20}$$

which cover the upper and lower ranges of experimental data for each kind of pipe. The general formula to express the loss of head due to friction in pipes has been taken as

$$H_1 = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2q} \tag{21}$$

Since the exponent of v has been shown to vary for different kinds of pipe, it seems simpler to assume for it a constant value of 2 and to prepare a table of values of K_1 varying with the roughness of the pipe and velocity of water but not varying with d.

From equations (20) and (21) the following relation between K_1 and v may be obtained:

$$K_1 = \frac{2gK}{v^{2-m}} \tag{22}$$

The following equations are recommended by the author as expressing approximately the upper and lower limits of experimental values for the classes of pipes named. The first five equations which are given by Lea, have been verified by a careful examination of practically all of the available experimental data pertaining to the subject. The last two formulas have been computed by the author and are based upon what are apparently the most reliable available data.²

- ¹ F. C. LEA: Hydraulics, p. 138.
- ² C. D. Marx and C. B. Wing: Experiments on Flow of Water in 6-Foot Steel and Wood Pipe Line at Ogden, Utah. *Trans.* Amer. Soc. Civ. Eng., vols. 40 and 44.
- T. A. NOBLE: Flow of Water in Wood Pipes. Trans. Amer. Soc. Civ. Eng., vol. 49.
- E. A. MORITZ: Experiments on the Flow of Water in Wood Stave Pipes. Trans. Amer. Soc. Civ. Eng., vol. 74.
- H. D. Newell: Studies of the Coefficient of Friction in Reinforced-Concrete Pipe. Engineering News. May 1, 1913.
- FRED C. Scobey: The Flow of Water in Wood Stave Pipe. Bulletin No. 376, U. S. Department of Agriculture.

For clean cast-iron pipes:

$$H_1 = .00029 \frac{lv^{1.80}}{d^{1.25}} \text{ to } .00042 \frac{lv^{1.97}}{d^{1.25}}; \text{ mean } H_1 = .00036 \frac{lv^{1.95}}{d^{1.25}}$$
 (23a)

For old cast-iron pipes:

$$H_1 = .00047 \frac{lv^{1.24}}{d^{1.25}} \text{ to } .00069 \frac{lv^{2.04}}{d^{1.25}}; \text{ mean } H_1 = .00060 \frac{lv^2}{d^{1.25}}$$
 (23b)

For clean riveted pipes:

$$H_1 = .00040 \frac{lv^{1.92}}{d^{1.25}} \text{ to } .00054 \frac{lv^{2.08}}{d^{1.25}}; \text{ mean } H_1 = .00050 \frac{lv^2}{d^{1.25}}$$
 (23c)

For galvanised pipes:

$$H_1 = .00035 \frac{lv^{1.80}}{d^{1.25}} \text{ to } .00045 \frac{lv^{1.96}}{d^{1.25}}; \text{ mean } H_1 = .00040 \frac{lv^{1.88}}{d^{1.25}}$$
 (23d)

For smooth asphalted pipes:

$$H_1 = .00030 \frac{v^{1.76}}{d^{1.25}} \text{ to } .00038 \frac{lv^{1.81}}{d^{1.25}}; \text{ mean } H_1 = .00034 \frac{lv^{1.78}}{d^{1.36}}$$
 (23c)

For clean wooden pipes:

$$H_1 = .00037 \frac{lv^{1.74}}{d^{1.25}} \text{ to } .00053 \frac{lv^{1.81}}{d^{1.25}}; \text{ mean } H_1 = .00045 \frac{lv^{1.77}}{d^{1.25}}$$
 (23f)

For concrete pipes:

$$H_1 = .00040 \frac{lv^{1.75}}{d^{1.25}}$$
 to .00068 $\frac{lv^{1.06}}{d^{1.25}}$; mean $H_1 = .00050 \frac{lv^{1.85}}{d^{1.25}}$ (23g)

Practically all of the experimental results for the kinds of pipe listed lie between the first two values of H_1 as given in the above formulas. The last values of H_1 represent the approximate means of the experiments. Table 57, page 172, gives values of K_1 to be used in the formula

$$H_1 = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2a} \tag{21}$$

which were computed from formula (22), the values of K and m being taken from formulas 23a to 23g inclusive. Tables 60 and 61, pages 175 and 178, giving values of $\frac{1}{d^{1.25}}$, with d expressed in feet or inches will assist in solving formula (21).

It will be observed that Table 57 leaves considerable discretion in choosing the value of K_1 . There will always be an element of uncertainty in this choice and care in making the selection to correspond to the conditions is essential if any degree of accuracy is to be expected. In general, to use the lower values of K_1 the pipe should be of good quality, each section should be carefully laid to grade and placed in true alignment, and the pipe should be well maintained and kept clean. If jointed pipes are used, a smooth surface should be obtained at the joints. With only ordinary care in these regards the higher values will be safer.

The values of K_1 given in Table 57 do not include all kinds nor conditions of pipe. The list of pipes given, however, is about as extensive as the available experimental data warrant. When it is remembered that, other things being equal, the value of K_1 depends only upon the degree of roughness of the pipe it should not be difficult to decide to which class the pipe in question belongs or which class it more closely resembles.

The amount of allowance necessary for deterioration may be difficult to decide. The carrying capacity of wooden and concrete pipes changes little with age. There is a tendency for deposits to form on the inner surface of iron and steel pipes which results both in increasing the roughness of the surface and in decreasing the effective diameter of the pipe. Such deposits usually take the form of hemispheres not exceeding 1 to 1½ inches in diameter. The effect of deposits is more noticeable on pipes of small diameter, which in extreme cases may be entirely blocked.

The deterioration of iron and steel pipes is greatly retarded by a good coating of bitumen or pitch. The effectiveness of the coating depends upon the quality of the material used and the care taken to place it in smooth even layers. Only the uncoated portions of such pipes will be incrusted to any great extent, though a very minute hole may form the nucleus of a deposit.

The method suggested by Barnes (pages 156 to 158) of adding a certain percentage to Q to allow for deterioration has advantages. In some ways it would appear more consistent to apply a correction to the diameter of the pipe, since the effect of corrosion is to reduce the effective diameter. It is doubtful, however, whether the more common method of considering the deterioration in selecting the coefficient is not equally satisfactory.

Discussion of Pipe Formulas

The modern tendency is undoubtedly to express friction loss in pipes by the general formula

$$H_1 = K \frac{l}{d^n} v^m (20)$$

In this form the formula has the advantage of simplicity and at the same time it appears to conform to the laws of flow as indicated by the available experiments as well as any formula

that has yet been suggested. In the latter regard it unquestionably possesses advantages over the Chezy formula.

The general plan of procedure has been to select the experiments for pipes of a certain class and by means of logarithmic plotting to determine the values of K, m and n which best represent the mean of the experiments used. Such formulas manifestly give results which at the best correspond only to the means of experimental values. In studying any particular set of experiments it will usually be found that several values of the above constants may be selected which appear to fit the experiments equally well. This fact accounts for the large number of pipe formulas of this type which have been promulgated during the past few years. Every investigator has found that many of the experimental results when plotted fall far from the mean position which may be expressed by any formula.

Probably the most successful attempt to classify and correlate the available pipe experiments and to deduce from them mean working formulas is that of Barnes (page 156). investigation has evidently been conducted with great care and thoroughness and the resulting formulas show a remarkably close agreement with the greater portion of the experiments. It does not appear quite clear however why the flow through pipes quite similar in character should apparently follow widely varying laws as indicated by the divergence in exponents selected. As an example it may be noted that Barnes chooses an exponent for d of 1.372 for single-riveted pipes and decides that the addition of another row of rivets changes the value of this exponent to 0.846.

The wide divergence in experimental results cannot be explained on the grounds of experimental error. Experiments which have been performed with great care and under favorable conditions frequently fall far from the mean values determined from other experiments. It therefore appears that there is danger in definitely accepting any formula or group of formulas designed to give mean values. In using the formulas expressing the approximate upper and lower ranges of experimental values, or the general formula (formula (21)) with values of K_1 determined from these formulas, the engineer can readily see the limiting results which have been obtained and use his discretion in selecting what appears to be the most reasonable or safest value, basing his decision on the particular conditions involved in the problem. Digitized by Google

Though a list of mean values of K_1 is included in Table 57 the author is opposed to using them indiscriminately. The engineer should, by a careful study of conditions and a knowledge of the kind of pipe to be used and class of workmanship to be insisted upon, be able to estimate a coefficient for each individual case.

Solution of Pipe Formulas

Formula (21) (page 158) is sufficient for the solution of any pipe problem involving only the loss of head due to friction. For convenience this formula is here repeated, the nomenclature being that given on page 154.

$$H_1 = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2a} \tag{21}$$

The length of pipe, or length corresponding to a given loss of head, is always given. There are three general types of problems:

 To determine the friction head; the diameter of pipe and velocity or discharge being given.

Solution.—H₁ may be obtained directly from formula (21), with the assistance of the tables. K_1 is given in Table 57, page 172. Values of $\frac{1}{d^{1.45}}$ may be taken from the second column of Table 60, page 175, or Table 61, page 178. Values of $\frac{v^2}{2g}$ are given in Tables 19 and 20, pages 51 and 53. If preferred, the head lost in 1000 feet of pipe 1 foot in diameter may be taken from Table 59, page 174, and Tables 60 and 61 may be used to reduce this loss of head to any other diameter. For any other length of pipe multiply the above result by the length in feet divided by 1000.

To determine the discharge or velocity; the diameter and friction head being given.

Solution.—Formula (21) may be used by first assuming a velocity and choosing a value of K_1 , corresponding to the assumed velocity, from Table 57, $\frac{1}{d^{1.36}}$ being taken from Table 60 or 61 as before. After solving for v a new value of K_1 may be selected from Table 57, and v may be determined again in the same manner. If the second value of v differs greatly from the first value, the equation may be solved a third time, though two solutions are usually sufficient.

Equation (21) may be transposed to the form

$$v = \sqrt{\frac{2g \cdot H_1}{K_1} \cdot d^{0.625}}$$

or putting $\sqrt{\frac{2g}{K_1}} = c_1$ and $\frac{H_1}{l} = s$ the formula becomes

$$v = c_1 s^{1/2} d^{0.625} (21a)$$

This form of the equation may in some cases be more convenient than formula (21). Table 58, page 173, gives c_1 for different values of v and the third columns of Tables 60 and 61 give $d^{0.625}$ with d expressed in either feet or inches. The same general method must be followed in solving problems by formula (21a) as by formula (21). c_1 must be first assumed, then v may be computed, and a new value of c_1 chosen to correspond to this value of v when the formula may again be solved for a closer value of v. In the same manner a third value of v may be computed if necessary.

If the discharge of the pipe is required it may be obtained from the relation.

$$Q = Av$$

A being the area of the pipe in square feet. Values of A corresponding to diameters of pipes expressed in feet and inches respectively are given in the fourth columns of Tables 60 and 61, pages 175 and 178.

3. To determine the diameter; the friction head and discharge being given.

Solution.—Formula (21) may be applied directly but the solution will be somewhat complicated. Formula (21) may be transposed to the form

$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1} \right)^{\frac{1}{16.25}}$$
 (21b)

The solution of formula (21b) is given in the first and fifth columns of Tables 60 and 61, pages 175 and 178. Intermediate values of d not given in these tables may be interpolated to the nearest 0.01 foot or $\frac{1}{16}$ inch.

Formula (21b) must be solved by successive approximations. A value of v is first assumed and K_1 is taken from Table 57, page 172. Then d may be determined with the aid of table 60 or 61 by computing $\frac{K_1Q^2l}{H_1}$ and selecting from column 1

the value of d corresponding to the value of $\frac{K_1Q^2l}{H_1}$ given in column 5. The corresponding cross-sectional area of the pipe is given in column 4. From the relation $v = \frac{Q}{A}$ the approximate velocity may be determined and a new value of K_1 may be selected from Table 57. A new value of d may now be computed in the same manner as before.

The above process should be repeated until the computed value of d does not differ sufficiently from the assumed d to affect appreciably the value of K_1 . Usually two solutions are sufficient.

Other Losses in Pipes

In the complete solution of a pipe problem it may be necessary to consider the velocity head and losses of head other than H_1 , the loss due to friction. As already set forth (pages, 150 and 151) the total head is represented by the equation

$$H = \frac{v^2}{2a} + H_0 + H_1 + H_2 + H_3 + H_4 + H_6 \tag{7}$$

which may also be written

$$H = \frac{v^2}{2g} + K_0 \frac{v^2}{2g} + K_1 \frac{1}{d^{1.25}} \cdot \frac{v^2}{2g} + K_2 \frac{v^2}{2g} + K_3 \frac{v^2}{2g} + K_4 \frac{v^2}{2g} + K_5 \frac{v^2}{2g}$$
(8)

In the above formulas $\frac{v^2}{2g}$, H_0 , H_1 , H_2 , etc., and K_0 , K_1 , K_2 , K_3 , etc., vary with the velocity. Problems in which the velocity and diameter and length of pipe are given to determine the total head, H, may be solved directly from formulas (7) and (8). Other problems, in which v is unknown, must be solved by a method of approximations. Since the loss from friction, H_1 , in nearly all cases greatly exceeds all other losses, it is usual to make a first solution of the problem by neglecting all losses except H_1 , and thus obtain an approximate value of v to be used in formulas (7) or (8). Successive solutions should be made until the computed value of v does not differ sufficiently from the v used in the solution to appreciably affect the head losses or the values of the coefficients used.

The method of obtaining K_0 and K_1 have already been explained, together with the use of tables of values of these coefficients. The determination of values of K_2 , K_3 , K_4 and K_5 will now be taken up in order.

Loss of Head Due to Sudden and Gradual Enlargements.— Borda has investigated this matter theoretically and found that the loss in pipes due to sudden enlargement may be represented by the formula

$$H_2 = \frac{(v_1 - v_2)^2}{2g} \tag{25}$$

in which H_2 is the lost head and v_1 and v_2 the velocities in the smaller and larger pipes respectively.

This loss has also been investigated experimentally by Baer, ¹ Brightmore, ² Archer³ and others. These experiments are fairly concordant and show that Borda's theoretical formula gives values of H_2 too small for the lower velocities and smaller differences in diameter of the two pipes and too large for the opposite conditions. Many combinations of pipes were used, in the experiments, between the approximate limits of 1.5 inches and 6 inches in diameter. The maximum velocity in the smaller pipe in any of the experiments was about 30 feet per second.

As a result of his experiments, Archer deduced the formula

$$H_2 = 1.098 \frac{(v_1 - v_2)^{1.919}}{2a} = 0.01705(v_1 - v_2)^{1.919}$$
 (26)

This formula appears to be as satisfactory as any yet suggested. It does not hold in the limit when the area of the larger pipe becomes infinite, and the total velocity head is evidently lost. In such cases the formula gives values of H_2 slightly greater than $\frac{v^2}{2g}$ for velocities below 3 feet per second, from which point it gradually decreases with the velocity, to about 80 per cent. of $\frac{v^2}{2g}$ for a velocity of 40 feet per second.

Table 62, page 181, gives values of H_2 for velocities up to 40 feet per second with the ratio of the diameter of the larger pipe to the diameter of the smaller pipe varying from 1.2 to infinity. This table was computed by formula (26) for ratios

¹ Dingler's Journal, March 23, 1907.

² Proc. Inst. of Civ. Eng., vol. 169, p. 323.

³ W. H. Archer: Loss of Head Due to Enlargements in Pipes. *Trans.* Amer. Soc. Civ. Eng., vol. 76, pp. 999-1026.

of 3 or less, and for ratios from 4 to infinity, the values given were interpolated graphically between values from formula (26) for ratio 3 and the total velocity head for ratio infinity. Table 63, page 181, gives a corresponding table of K_2 for use in the formula

$$H_2 = K_2 \frac{v^2}{2g} \tag{27}$$

Losses due to gradual enlargement have been investigated by Parker¹ from a study of experiments by Andres, Gibson and others. The formula suggested by Andres for a conical enlargement may be written:

$$H_2 = f \frac{v_1^2 - v_2^2}{2g} \tag{28}$$

in which v_1 and v_2 are velocities in smaller and larger pipes respectively and f is an empirical coefficient depending for its value upon the angle θ between the sides of the pipe (θ = double the angle between the axis of the pipe and its side).

Andres gives values of f for smaller values of θ and Gibson for values up to 90°. Their results are not entirely consistent, but the author has used them to plot a mean curve giving the results of Andres more weight for the smaller angles. The following are results obtained in this manner:

Using the above values of f, Table 64, page 182, which gives K_2 in the formula

$$H_2 = K_2 \frac{v^2}{2g} (27)$$

has been prepared. v is the velocity in the smaller pipe. It will not be practicable to give a table of values of H_2 , for gradual enlargement, as H_2 in this case varies with three functions—the angle of the cone, the ratio of diameter of two pipes, and the velocity.

Loss of Head Due to Contractions.—Merriman's suggests the

¹ Philip A. Morley Parken: The Control of Water, pp. 796-800.

² Mansfield Merriman: Treatise on Hydraulics, p. 183.

following formula for determining the loss of head due to sudden contraction:

$$H_3 = \left(\frac{1}{c} - 1\right) \frac{^2v^2}{2g} \tag{29}$$

in which v is the velocity in the smaller pipe and

$$c = 0.582 + \frac{0.0418}{1.1 - r} \tag{30}$$

r being the ratio of diameters of the two pipes.

Brightmore¹ experimented on pipes 6 inches in diameter contracted to 4 inches and 3 inches, the mean of his results being represented approximately by the formula

$$H_3 = \frac{0.7(v_1 - v_2)^2}{2\sigma} \tag{31}$$

Parker² suggests that formula (29) be used for higher velocities when the head lost is 1 foot or more while formula (31) is more reliable for smaller losses of head.

Following the above suggestion the author computed H_3 by both formulas for various velocities and diameter ratios. The results were then plotted and curves drawn through the points by gradually changing from results obtained by formula (31) for lower velocities to formula (29) for higher velocities. Values of H_3 taken from these curves are given in Table 65, page 182. Corresponding values of K_3 for determining loss of head due to sudden contraction in the formula

$$H_3 = K_3 \frac{v^2}{2a} \tag{32}$$

are given in Table 66, page 183, v being the velocity in the smaller pipe.

Loss of Head Due to Obstructions.—The most common obstructions in pipes are valves when partially open, though the following analysis should apply approximately to any obstructions. The basic formula chosen is

$$H_4 = K_4 \frac{v^2}{2a} (33)$$

in which H_4 is the loss of head due to the obstruction, K_4 is an empirical coefficient, and v is the mean velocity of water in the pipe. Experiments indicate that K_4 varies with the amount of obstruction but it does not appear to vary appreciably with the velocity.

¹ Proc. Inst. Civ. Eng., vol. 169, p. 323.

² PHILIP . MORLEY PARKER: The Control of Water, pp. 796-800.

Parker¹ has correlated experiments by Smith, Kuichling and Weisbach, the results of which are fairly concordant. The author has plotted all of these experiments graphically and drawn a mean curve through them. Values of K_4 taken from this curve, for different ratios of area of pipe to area at obstruction, are given in Table 68, page 184. Table 67, page 184, gives corresponding values of lost head, H_4 , for different velocities.

Loss of Head Due to Bends.—The loss of head due to bends in pipes is considered as the excess loss over what would occur in a straight pipe of the same material and equal length. It is probable that the roughness of the pipe has some effect upon this loss of head but present data are not sufficient to show to what extent this is the case. It is usual to consider the loss due to bends for all kinds of pipes, to be a function of the velocity and radius of the bend.

Most investigators have considered that the loss of head varies with the radius of the bend expressed in pipe diameters. In what appears, however, to be a very satisfactory analysis of the experiments bearing on this subject, Fuller² shows that a closer agreement with available experimental data may be obtained by considering the lost head for pipes of all diameters to be a function of the radius of the center line of the pipe without regard to its diameter. Fuller gives the formula

$$H_5 = cv^{2.25} (34)$$

in which H_b is the lost head in feet for bends of 90°, v is the velocity in feet per second, and c is a coefficient varying with the radius of the center line of the pipe. Fuller gives a curve of values of c for different radii up to 60 feet, from which the following table was prepared.

Ra- dius in feet	с	Ra- dius in feet	с	Ra- dius in feet	ن	Ra- dius in feet	с	Ra- dius in feet	с
0.00 0.25 0.50 1.00	.01350 .00600 .00400 .00275	2 3 4 5	.00243 .00239 .00236 .00233	6 7 8 10	.00230 .00242 .00271 .00335	15 20 25 30	.00478 .00597 .00656 .00695	40 50 60	. 00750 . 00803 . 00860

¹ PHILIP A. MORLEY PARKER: The Control of Water, p. 787.

² W. E. Fuller; Loss of Head in Bends. Journal of New England Water Works Association, December, 1913.

Table 69, page 185, giving loss of head in 90° bends for different radii and velocities, was computed from formula (34) using values of c contained in the above table. Table 70, page 186, gives corresponding values of K_5 to use in the formula

$$H_5 = K_5 \frac{v^2}{2q} \tag{35}$$

For bends less than 90° Fuller gives the following approximate rules:

For loss of head due to 45° bends use three-fourths that due to 90° bends of the same radius.

For loss of head due to 22.5° bends use one-half that due to 90° bends of the same radius.

For loss of head due to a Y branch, use three-fourths that due to a tee (zero radius).

It appears from Tables 69 and 70 that a minimum loss of head occurs for radii of from 4 to 7 feet. In designing a pipe line, however, it may be found that the total loss of head in the pipe line between two given points will be less by using a

Fig. 62.

curve of greater radius due to shortening the length of the pipe. This may be seen from Fig. 62. Assuming that the radius of the bend CD is from 4 to 7 feet, the radius giving the minimum excess loss of head, the bend AB having a greater radius than CD, the total loss of head in the pipe AB may be less than the total loss of head in the pipe ACDB because of its shorter length.

Critical Velocity

Under the conditions discussed in the preceding pages the flow of water in pipes has been considered turbulent, and the loss of head due to friction was found to vary as v^n , n ranging from about 1.7 to 2.1. This law, however, does not apply to very small pipes nor very low velocities. In such cases there is a velocity, called the *critical velocity*, below which stream-line flow exists and the loss of head due to friction varies directly as v.

There appear to be two points of critical velocity; the lower critical velocity being the velocity below which stream-line flow always exists and the higher critical velocity being the velocity above which turbulent flow always exists. Between the two critical velocities the flow may be either stream-line or turbulent.

Our knowledge on this subject is based largely upon experiments by Reynolds, the results of which are summarized in the equations given below. If v_c is the lower critical velocity, v_d the higher critical velocity, T the temperature of the water in degrees Centigrade, and d the diameter of the pipe in feet

$$v_c = \frac{0.0388}{d(1 + 0.0336T + 0.000221T^2)}$$
 (36)

and

$$v_d = \frac{0.2458}{d(1 + 0.0336T + 0.000221T^2)}$$
(37)

Table 71, page 187, gives the lower critical velocities for different temperatures and diameters of pipes computed from formula (36) and Table 72, page 187, gives the corresponding higher critical velocities computed from formula (37). The values contained in these tables must be considered as only rough approximations as they are based upon a limited range of experiments, and Barnes and Coker² have produced streamline motion at velocities 50 per cent. greater than are given by formula (37).

If v' be the velocity (below the critical velocity) in feet per second, d_i the diameter of the pipe in inches, h the friction head in feet, l the length of pipe in feet, and T the temperature of water in degrees Centigrade, the velocity in a pipe, where stream-line flow exists, is given by the following formula by Reynolds:

$$v' = \frac{361d_1^2h}{l}(1 + 0.0337T + 0.000221T^2)$$
 (38)

It will be noted from Tables 71 and 72 that critical velocities occur below the velocities in which the engineer is usually interested.

TABLE 54.—Loss of Head, Ho, AT ENTRANCE TO PIPES

Condition at		Velocity in feet per second													
entrance	2	3	4	5	6	7	8	10	12	14	16	18	20	25	30
Inward-projecting Sharp-cornered Slightly rounded Bell-mouth	.03	.07	. 12	. 19	.28 .13	.38 .18	. 50 . 23	.78	1.12 .51	1.52 .70		2.52 1.16	3.11 1.48	ł	7.00 3.2

¹ Phil. Trans. Royal Society, 1882 and 1895.

² H. T. Barnes and E. G. Coker: The Flow of Water through Pipes. Proc. Royal Society of London, 1905.

Table 55.—Values of K_0 for Determining Loss of Head at Entrance to Pipes from the Formula $H_0 = K_0 \frac{v^2}{2g}$

Condition at entrance							
Inward-projecting pipe	.78						
Sharp-cornered	. 50						
Slightly rounded	.23						
Bell-mouth	. 04						

Table 56.—Values of f in the Chezy Formula $H_1 = f \frac{l}{d} \cdot \frac{v^2}{2g}$ as Determined by Fanning, for Straight Smooth Pipes

Diameter of pipe in	ļ. 	Mean velocity (v) in feet per second										
inches	0.5	1.0	2.0	3.0	4.0	5.0	10.0	15.0	20.0			
0.5	.0418	. 0381	.0340	.0317	. 0300	. 0287	.0250	. 0237	.0231			
0.75								.0235				
1.	.0398	.0353	.0317	.0300	.0285	.0274	.0245	.0234	.0228			
1.5	.0384	.0343	.0310	.0292	.0278	.0268	.0241	.0231	.0226			
2.	.0364	.0330	.0301	.0284	.0272	.0263	.0237	.0228	.0223			
3.	.0354	.0317	.0288	.0273	.0263	. 0254	.0232	.0224	.0219			
4.	.0340	.0306	.0279	.0265	.0255	. 0247	.0226	.0219	.0214			
5.	.0328	.0297	.0271	.0258	.0249	.0241	.0222	. 0215	.0211			
6.	.0317	.0289	.0264	.0252	.0243	. 0236	.0219	.0212	. 0208			
8.	.0296	.0275	.0253	.0242	.0234	. 0227	.0212	.0207	. 0202			
10.	.0283	.0262	.0242	. 0232	. 0225	.0220	.0206	.0201	.0197			
12.	.0268	.0250	.0233	.0224	.0218	.0213	.0201	.0196	.0192			
14.	.0256	.0241	.0225	.0217	.0211	.0207	.0196	.0192	.0188			
16.	.0244	.0232	.0218	.0210	.0205	. 0201	.0192	.0188	.0184			
18.	.0236	. 0224	.0211	.0204	. 0 199	.0196	.0188	.0183	.0181			
20.	.0229	.0216	.0204	.0198	.0194	.0191	.0184	.0180	.0177			
24.									.0170			
30.	.0194	.0186	.0179	.0175	.0173	.0171	.0166	.0163	.0161			
36.	.0177	.0171	.0166	.0164	.0162	.0161	.0156	.0154	.0152			
42.	.0164	.0160	.0156	.0154	.0153	.0152	.0148	.0146	.0145			
48.	.0153	.0150	.0147	.0146	.0145	.0144	.0141	.0139	.0138			
54.								.0133				
60.								.0127				
72.								.0117				
84.								.0109				

Table 57.—Values of K₁ for Determing the Loss of Head (in Fert) Due to Friction in Pipes In This Formula l = Length of Pipe in Feet and dFROM THE FORMULA $H_1=K_1 \frac{l}{d^{1.35}} \cdot \frac{v^2}{2g}$

Diameter of Pipe in Feet. Values of $rac{1}{d^{1.26}}$ for Different Diameters of Pipe are

GIVEN IN TABLES 60 AND 61

	93	Мевп	022 027 027 026	88888	020 020 019 019
	Concrete pipe	οT	<u> </u>	<u> </u>	<u> </u>
	ပိ	From	028 028 018	010 010 013 013 013	00000
	oden	меэМ	929 929 929 920 920 920 920 920	020 010 010 017 017	015 013 013 013
	Clean wooden pipe	οT	488888	25222 25222 25222	019 018 018 017
	Clea	morA	028 024 018 017	.016 .015 .013 .013	.010 .010 .010
	h pipe	Mean	.025 .022 .019 .017	.015 .015 .013 .013	.011 .011 .010 .010
	Smooth asphalted pi	οT	.028 .025 .020 .019	018 017 016 016 015	.014 .013 .013
•	qdere S	тотЯ	.023 .019 .016 .015	.013 .013 .012 .010	8888
T I	pes	Мевп	020 020 020 020 020 020 020 020 020 020	.020 .020 .020 .019	.018 .018 .018
3	Galvanised pipe	οТ	0888 0888 0888 0888	026 026 026 026 026	.026 .025 .025
	Ga	from	.028 .023 .018	.016 .015 .015 .013	.012 .012 .011
TWO OF STREET	reted	паэМ	.032 .032 .032 .032	.032 .032 .032 .032 .032	.032 .032 .032
CIA NEW IN	Clean riveted pipe	οT	88888	22222	4222
411	Cle	From	.026 .025 .025 .024	22222	.021 .020 .020
	-t-	Мевп	888888	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.038 .038 .038 .038
	Old cast- iron pipe	oT	22222	948 948 950 950	.050 .051 .051
	6.5	Trom	88888	.028 .027 .027 .027	028 025 025 420
	- 5 6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean	920 920 920 920 920 920	.019 .019 .018 .018	.016 .016 .015
	Clean cast- iron pipe	•T	.028 .027 .026 .026	.026 .025 .025 .025	.025 .024 .024
	g _.	тотЯ	.022 .019 .017 .015	.014 .013 .012 .012	0000
	Velocity		O 01 02 4.		20. 30. 40.

Table 58.—Values of c_1 in the Formula $v=c_1s^{1/4}d^{0.656}$. In This Formula $s=\frac{H_1}{l}$ and $d=\mathrm{Diam}$ -ETER OF PIPE IN FEET. VALUES OF 40.655 ARE GIVEN IN TABLES 60 AND 61. SQUARE ROOTS OF

	, e	мезл	£ 44 4 5	22223	58 58 59 60
	Concrete		00000	000000	00000
	ncre pipe	•T	888888	88888	88888
	ကို		90rd4r0	104440	5-56-75
	•	from	5047.0	28285	74. 78. 81.
			410101010	40000	<u> </u>
	Clean wooden pipe	Мевп	444 55 55	28882	98 72 72 73
	n wo pipe		F-104100	F08	∞000m
1	D. II	οT	34444	322323	61000
	es		Ø-000	H9H46	009
	ರ	From	7.23.23.23	43885	55.2.28
			4111100	000011	14140000
	th pipe	паэМ	84828	38858	\$2233
88	कृष्ट		⊙ ‱∞•4	7.6.6.4	80770
	Smooth	οT	855.2488	88888	88554
3	S d		20000	00000	∞ -∞∞-
TABLE	2	mor4	888223	57.426	228888
<u> </u>					www.w.
IN	Galvanised pipe	Mesn	*******	527	88288
	vani pipe	οT	ப்பல்வல்	F-0-14:00	-: w.r. & O
GIVEN	<u> 5</u> .d	-T	84444 74444	84444	22222
2	38		0:10:4:00:00	9-046	-0000-
5		mo14	5223	34825	34444
ARE	Clean riveted pipe	Меап	24444	44444 66666	2444 252 253 253 253 253 253 253 253 253 253
22	. 9 4 .		48000	6000 €	010000100
A	n riv pipe	oT	43448	44888	33333
	8		00000	0000000	80404
NUMBERS	ט	morT	\$5.25.55 52.25.55	88844	57.55.55.
DECIMAL	cast- pipe	ma9M	33333	33333	33333
B	pig	οT	6-500	∞ ∠ ™ 4 ⊢	∞r-04:0
<u> </u>	Pg		337388	88888	35.8 35.7 35.6 35.4
51	Oldiron		00000	910001B	80041
~ I		From	34444	8 8 9 9 9	22222
	Clean cast- iron pipe	mas M	55	88888	£65 65 65 65
	2.2	οT	6.047-0	-0460	1.64.08
	lean		84.04.04 0.04.04	පුපුපුපු	55555
	8.5	WOL-	∞ ∞ ⇔ r∪ 4	œe-	HH400
	~	From C.	55 55 67 67 67 67 67 67 67 67 67 67 67 67 67	82228	52222
		Velocity	0.5 34	6. 8. 15.	20. 25. 50. 50.

TABLE 59.—Loss of Head Due to Friction in 1000 Feet of Straight Pipe for a Diameter of I Foot. To Determine the Friction Head lost per 1000 Feet of Pipe of any Other Diameter, Multi-PLY THE VALUES IN THIS TABLE BY $\frac{1}{\gamma_1}$ VALUES OF $\frac{1}{\gamma_1}$ ARE GIVEN IN TABLES 60 AND 61

	rete e	To	2. 10. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	362. 394. 128.
	Concrete pipe	From	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97. 105.
	vooden	To	TRESOND SORES PROC4	 1855 1807 1807
	Clean wooden pipe	From	84300 40880 00878	93.
$d^{1.25}$	th I pipe	To	112447 921222 22822 1 1 2 2 2 2 2 2 2 2 2 2 2 2	120.
	Smooth asphalted p	From	90017240 12042 47222	81. 11 87. 11
.25		To I	27778818 17041 17040	
	Galvanized pipe	From	0162258 88781 87858 0162584 88781 87858	99. 210. 107. 229. 115. 248.
		To F	#40880 0000 0000	
d1.25	Clean riveted pipe			367 401 437
	Cle	From	25.55.55.55.55.55.55.55.55.55.55.55.55.5	200. 200.
	l cast- n pipe	To To	27.50 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	415. 452. 492.
	Oldiron	From		246. 245.
	Clean cast- iron pipe	To To	0.00 41.00 62.00 6	2507 2507 240.
	Clea	From		
,	city		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Velocity		0-1984m 6-1995 HISEHA 5-1866 18	22.2
-			l .	

Table 60.—To Assist in Solving Pipe Problems. Diameter in Feet with Corresponding Values of $\frac{1}{d^{1.25}}$, $d^{0.625}$, Areas of Circles, and Values of $\frac{K_1Q^2l}{H_1}$ Corresponding to d in the Formula,

$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{5 \cdot 25}}$$

Diameter in feet	$\frac{1}{d^{1.25}}$ (feet)	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$	Diameter in feet	1 d1.25 (ft.)	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
0.05 0.06 0.07 0.08 0.09 0.10	42.295 33.675 27.773 28.504 20.286 17.783	.1538 .1723 .1898 .2063 .2220 .2371	.0020 .0028 .0038 .0050 .0064 .0079	.000006 .000015 .000035 .000069 .000128 .000223	1.55 1.60	.578 .556 .535	1.288 1.315 1.341 1.367 1.393	1.767 1.887 2.011 2.138 2.270	333.5 396.2 468.0 550.1 643.5
0.12 0.14 0.16 0.18 0.20	14.159 11.677 9.882 8.529 7.477	.2657 .2926 .3181 .3423 .3657	.0113 .0154 .0201 .0255 .0314	.00058 .00131 .00263 .00489 .00850	1.75 1.80 1.85 1.90 1.95	.480 .464 .448	1.419 1.444 1.469 1.493 1.517	2.405 2.545 2.688 2.835 2.986	749.2 868.6 1,003. 1,154. 1,322.
0.25 0.30 0.35 0.40 0.45	5.657 4.504 3.715 3.144 2.713	.4205 .4712 .5188 .5640 .6071	.0491 .0707 .0962 .1257 .1590	.0274 .0714 .1600 .3230 .6000	$\frac{2.10}{2.15}$.408 .396 .384	1.541 1.565 1.590 1.614 1.637	3.142 3.301 3.464 3.631 3.801	1,510. 1,719. 1,951. 2,208. 2,491.
0.50 0.55 0.60 0.65 0.70	2.378 2.111 1.894 1.713 1.562	.6485 .6883 .7266 .7640 .8001	.1963 .2376 .2827 .3318 .3848	1.043 1.720 2.716 4.135 6.101	2.25 2.30 2.35 2.40 2.45	.353 .344 .335	1.660 1.683 1.706 1.728 1.751	3.976 4.155 4.337 4.524 4.714	2,803. 3,146. 3,522. 3,933. 4,383.
0.75 0.80 0.85 0.90 0.95	1.433 1.322 1.225 1.141 1.066	.8353 .8697 .9035 .9362 .9686	.4418 .5027 .5675 .6362 .7088	8.764 12.300 16.910 22.830 30.320	2.50 2.55 2.60 2.65 2.70	.310 .303 .296	1.773 1.795 1.817 1.839 1.861	4.909 5.107 5.309 5.515 5.726	4,874. 5,408. 5,988. 6,618. 7,300.
1.00 1.05 1.10 1.15 1.20	.888 .840	1.000 1.031 1.061 1.091 1.121	.785 .866 .950 1.039 1.131	39.69 51.28 65.46 82.67 103.40	2.75 2.80 2.85 2.90 2.95	.276 .270 .264	1.883 1.904 1.925 1.946 1.967	5.940 6.158 6.379 6.605 6.835	8,038. 8,836. 9,696. 10,620. 11,620.
1.25 1.30 1.35 1.40 1.45	.720 .687 .657	1.150 1.178 1.206 1.234 1.261	1.227 1.327 1.431 1.539 1.651	128.1 157.4 191.8 232.2 279.2	3.00 3.05 3.10 3.15 3.20	.248 .243 .238	1.987 2.008 2.028 2.049 2.069	7.069 7.306 7.548 7.793 8.042	12,690. 13,840. 15,080. 16,400. 17,810.

Table 60 (Continued)

To Assist in Solving Pipe Problems. Diameter in Feet with Corresponding Values of $\frac{1}{d^{1.25}}$, $d^{0.625}$, Areas of Circles, and Values of $\frac{K_1Q^2l}{H_1}$ Corresponding to d in the Formula,

$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{5.25}}$$

Diameter in feet	$\frac{1}{d^{1.25}}$ (feet)	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$	Diameter in feet	1 d1.25 (feet)	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
3.25 3.30 3.35 3.40 3.45	.2291 .2248 .2206 .2166 .2127	2.129	8.296 8.553 8.814 9.079 9.348	19,320 20,930 22,650 24,490 26,440	5.05 5.10 5.15	.1321 .1305 .1289	2.735 2.752 2.769 2.786 2.803	19.63 20.03 20.43 20.83 21.24	185,500 195,400 205,800 216,600 227,900
3.50 3.55 3.60 3.65 3.70	.2089 .2052 .2017 .1982 .1949	2.246	9.621 9.898 10.18 10.46 10.75	28,510 30,720 33,060 35,540 38,170	5.30 5.35 5.40	.1229 .1215	2.836 2.853	21.65 22.06 22.48 22.90 23.33	239,600 251,800 264,500 277,800 291,600
3.75 3.80 3.85 3.90 3.95	.1917 .1885 .1854 .1825 .1796	2.284 2.303 2.322 2.341 2.360	11.34 11.64 11.95	40,960 43,910 47,030 50,320 53,800	5.55 5.60 5.65	.1187 .1174 .1161 .1148 .1135	2.919 2.935 2.951	23.76 24.19 24.63 25.07 25.52	305,900 320,800 336,200 352,300 369,000
4.00 4.05 4.10 4.15 4.20	.1768 .1741 .1714 .1688 .1663	2.378 2.397 2.415 2.434 2.452	12.88 13.20 13.53	57,480 61,350 65,430 69,730 74,250	5.85 5.90	.1111 .1099 .1087	3.017	25.97 26.42 26.88 27.34 27.81	386,300 404,300 422,900 442,200 462,300
4.25 4.30 4.35 4.40 4.45	.1639 .1615 .1592 .1569 .1547	2.470 2.488 2.507 2.525 2.543	14.52 14.86 15.21	79,020 84,020 89,280 94,790 100,590	6.05 6.10 6.15	.1065 .1054 .1043 .1032 .1022	3.096 3.112	28.27 28.75 29.22 29.71 30.19	483,000 504,500 526,800 549,900 573,800
4.50 4.55 4.60 4.65 4.70	.1526 .1505 .1484 .1464 .1445	2.560 2.578 2.596 2.614 2.631	16.26 16.62 16.98	106,660 113,040 119,720 126,700 134,030	6.35 6.40		3.191	30.68 31.17 31.67 32.17 32.67	598,500 624,000 650,400 677,800 706,100
4.75 4.80 4.85 4,90 4.95	.1426 .1408 .1390 .1372 .1354	2.648 2.665 2.683 2.700 2.718	18.10 18.47 18.86	141,670 149,680 158,050 166,800 175,940	6.60	.0954 .0945 .0936	3.222 3.238 3.253 3.268 3.283	33.18 33.70 34.21 34.73 35.26	735,300 765,500 796,600 828,800 862,000

Table 60 (Concluded)

To Assist in Solving Pipe Problems. Diameter in Feet with Corresponding Values of $\frac{1}{d^{1.25}}$, $d^{0.625}$,

Areas of Circles, and Values of $\frac{K_1Q^2l}{H_1}$

Corresponding to d in the Formula,

$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1} \right)^{\frac{1}{5.25}}$$

Diameter in feet	$\frac{1}{d^{1.25}}$ (feet)	d ^{0.825} (feet)	Area in square feet	$\frac{K_1Q^{2l}}{H_1}$	Diameter in feet	$\frac{1}{d^{1.25}}$ (feet)	d ^{0.825} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
6.75 6.80 6.85 6.90 6.95	.0910 .0902 .0894	3.299 3.314 3.329 3.344 3.360	35.78 36.32 36.85 37.39 37.94	896,300 931,800 968,400 1,006,000 1,044,900	8.55 8.60 8.65	.0684 .0679 .0674	3.810 3.824 3.838 3.852 3.866	56.75 57.41 58.09 58.77 59.45	3,007,000 3,101,000 3,197,000 3,296,000 3,397,000
7.10 7.15	.0871 .0863 .0855	3.375 3.390 3.404 3.419 3.434	38.48 39.04 39.59 40.15 40.72	1,085,000 1,126,000 1,169,000 1,213,000 1,258,000	8.90	.0660 .0655 .0650	3.880 3.894 3.907 3.920 3.934	60.13 60.82 61.51 62.21 62.91	3,501,000 3,607,000 3,716,000 3,828,000 3,942,000
7.25 7.30 7.35 7.40 7.45	.0833 .0826 .0819	3.449 3.464 3.479 3.493 3.508	41.28 41.85 42.43 43.01 43.59	1,305,000 1,353,000 1,402,000 1,453,000 1,505,000	9.05 9.10 9.15	.0641 .0637 .0633 .0628 .0624	3.962 3.976 3.989	63.62 64.33 65.04 65.76 66.48	4,059,000 4,179,000 4,302,000 4,427,000 4,556,000
7.50 7.55 7.60 7.65 7.70	.0799 .0792 .0785	3.523 3.538 3.552 3.567 3.582	44.18 44.77 45.36 45.96 46.57	1,559,000 1,614,000 1,671,000 1,729,000 1,789,000	9.30 9.35 9.40	.0612	4.030 4.044 4.057	67.20 67.93 68.66 69.40 70.14	4,687,000 4,821,000 4,959,000 5,100,000 5,244,000
7.75 7.80 7.85 7.90 7.95	.0767 .0761 .0755	3.596 3.610 3.625 3.640 3.654	47.17 47.78 48.40 49.02 49.64	1,851,000 1,915,000 1,980,000 2,047,000 2,116,000	9.55 9.60 9.65	.0600 .0596 .0592 .0588 .0584	4.098 4.111 4.125	70.88 71.63 72.38 73.14 73.90	5,391,000 5,542,000 5,696,000 5,854,000 6,015,000
8.05 8.10 8.15 8.20	.0738 .0732 .0726 .0721	3.696 3.710 3.724	50.27 50.90 51.53 52.17 52.81	2,187,000 2,260,000 2,335,000 2,411,000 2,490,000	9.80 9.85 9.90 9.95	.0580 .0577 .0573 .0569 .0565	4.164 4.177 4.190 4.204	74.66 75.43 76.20 76.98 77.76	6,179,000 6,348,000 6,520,000 6,695,000 6,874,000
8.25 8.30 8.35 8.40 8.45	.0710 .0704 .0699	3.739 3.754 3.768 3.782 3.796	53.46 54.11 54.76 55.42 56.08	2,571,000 2,654,000 2,739,000 2,826,000 2,915,000	10.00	.0562	4.217	78.54	7,058,000

Table 61.—To Assist in Solving Pipe Problems. Diameter in Inches with Corresponding Values of $\frac{1}{d^{1.25}}$, $d^{0.625}$, Areas of Circles, and Values of $\frac{K_1Q^2l}{H_1}$

Corresponding to d in the Formula,

$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1} \right)^{\frac{1}{5.25}}$$

Diameter in inches	1 d1.25 (feet)	d0.625 (feet)	Area in square feet	$\frac{K_1Q^{2}}{H_1}$	Diameter in inches	$\frac{1}{d^{1.2\delta}}$ (ft.)	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
1/4	126.35 76.11 53.12 32.00 22.39	.0890 .1146 .1372 .1768 .2113	.0008	.000002	15½ 16 16½ 17 17½	.698 .672 .647	1.174 1.197 1.220 1.243 1.266	1.310 1.396 1.485 1.576 1.670	152.1 179.7 211.2 247.0 287.7
114 114 134 2 216	16.87 13.45 11.10 9.390 7.105	.2434 .2727 .3001 .3263 .3751	.0085 .0123 .0167 .0218 .0341	.000276 .00072 .00162 .00326 .01050	18 18½ 19 19½ 20	. 582 . 563 . 545	1.288 1.311 1.333 1.355 1.376	1.767 1.867 1.969 2.074 2.182	333.5 385.1 443.0 507.7 579.8
3 3½ 4 4½ 5	5.657 4.665 3.948 3.408 2.987	.4205 .4630 .5033 .5417 .5786	.0668 .0873 .1104	.0274 .0616 .1241 .2303 .4005	2014 21 2114 22 2214	.497 .482 .469	1.398 1.419 1.440 1.461 1.482	2.292 2.405 2.521 2.640 2.761	660.2 749.2 847.8 956.5 1,076.3
5½ 6 6½ 7 7½	2.652 2.378 2.152 1.962 1.799	.6141 .6485 .6817 .7139 .7455	.2673	1.0430 1.588 2.343	23 23½ 24 24½ 25	.432 .420 .410	1.502 1.522 1.542 1.562 1.582	2.885 3.012 3.142 3.274 3.409	
8 8 9 9 9 10	1.660 1.539 1.433 1.339 1.256	.7761 .8061 .8354 .8642 .8923	.3491 .3941 .4418 .4922 .5454	4.723 6.493 8.764 11.64 15.24	25½ 26 26½ 27 27½	.380 .371 .363	1.602 1.621 1.641 1.660 1.679	3.547 3.687 3.830 3.976 4.125	2,076. 2,299. 2,541. 2,803. 3,086.
101/2 11 111/2 12 12/2	.950	.9198 .9470 .9736 1.000 1.026	.7213 .7854 .8522	19.69 25.13 31.74 89.69 49.16	28 281/2 29 291/2 30	.339 .332 .325 .318	1.698 1.717 1.736 1.755 1.773	4.276 4.430 4.587 4.746 4.909	3,392. 3,723. 4,079. 4,462. 4,874.
13 13½ 14 14 14½ 15	.863 .825 .789	1.051 1.076 1.101 1.126 1.150	.9218 .9940 1.069 1.147 1.227	60.42 73.66 89.16 107.35 128.07	301/2 31 31 1/2 32 32 1/2	.305 .299 .293	1.792 1.810 1.828 1.846 1.864	5.074 5.241 5.412 5.585 5.761	5,316. 5,789. 6,296. 6,838. 7,419.

Table 61 (Continued)

To Assist in Solving Pipe Problems. Diameter in Inches with Corresponding Values of $\frac{1}{d^{1.26}}$, $d^{0.625}$, Areas of Circles, and Values of $\frac{K_1Q^2l}{H_1}$ Corresponding to d in the For-

MULA,
$$d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{5.25}}$$

Diameter in inches	$\begin{vmatrix} \frac{1}{d^{1.26}} \\ \text{(feet)} \end{vmatrix} d^{0.626} $		$\frac{K_1Q^2l}{H_1}$	Diameter in inches	$\begin{vmatrix} \frac{1}{d^{1.25}} \\ (\text{feet}) \end{vmatrix}$	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
33 33½ 34 34½ 35	.2824 1.882 .2771 1.900 .2720 1.918 .2671 1.936 .2623 1.953	6.121 6.305 6.492	8,038 8,698 9,402 10,151 10,950	50½ 51 51½ 52 52½	.1659 .1639 .1619 .1600 .1581	$\frac{2.485}{2.500}$	13.91 14.19 14.47 14.75 15.03	75,030 79,020 83,170 87,490 92,010
351/2 36 361/2 37 371/2	.2577 1.970 .2533 1.983 .2489 2.004 .2448 2.021 .2407 2.038	7.069 7.266 7.467	11,790 12,690 13,650 14,660 15,730	53 53½ 54 54 54½ 55	.1562 .1544 .1526 .1508 .1491	2.545 2.560 2.575	15.32 15.61 15.90 16.20 16.50	96,700 101,580 106,660 111,960 117,450
38 38½ 39 39½ 40	.2367 .2329 .2292 .2255 .2255 .2220 .2220	8.085 8.296 8.510	16,860 18,060 19,320 20,660 22,070	55½ 56 56¾ 57 57½	.1474 .1458 .1442 .1426 .1410	2.619 2.634 2.648	16.80 17.10 17.41 17.72 18.03	123,200 129,100 135,300 141,700 148,300
4012 41 4114 42 42	.2186 2.130 .2153 2.154 .2121 2.175 .2089 2.186 .2058 2.208	9.168 9.394 9.621	23,550 25,120 26,770 28,510 30,340	58 58½ 59 59½ 60	.1395 .1380 .1366 .1351 .1337	2.692 2.706 2.720	18.35 18.67 18.99 19.31 19.63	155,200 162,400 169,800 177,500 185,500
43 43½ 44 44 44½ 45	.2028 2.22 .1999 2.23 .1970 2.25 .1943 2.26 .1916 2.28	10.32 10.56 10.80	32,260 34,280 36,400 38,620 40,960	60½ 61 61½ 62 62½	.1323 .1310 .1297 .1284 .1271	2.763 2.777 2.791	19.96 20.29 20.63 20.97 21.31	193,700 202,300 211,100 220,300 229,800
4514 46 4614 47 4714	.1890 2.301 .1864 2.316 .1839 2.333 .1815 2.343 .1791 2.363	11.54 11.79 12.05	43,400 45,970 48,650 51,460 54,410	63 63½ 64 64½ 65	.1259 .1246 .1234 .1222 .1210	2.832 2.847 2.861	21.65 21.99 22.34 22.69 23.04	239,600 249,800 260,300 271,100 282,300
48 48½ 49 49¼ 50	.1768 2 .378 .1745 2 .394 .1723 2 .409 .1701 2 .425 .1680 2 .440	12.83 13.10 13.36	57,480 60,690 64,050 67,550 71,210	6514 66 6614 67 6734	.1198 .1187 .1176 .1165 .1154	2.903 2.917 2.930	23.40 23.76 24.12 24.48 24.85	293,900 305,900 318,300 331,000 344,200

Table 61 (Concluded)

To Assist in Solving Pipe Problems. Diameter in Inches with Corresponding Values of $\frac{1}{d^{1.25}}$, $d^{0.625}$,

Areas of Circles, and Values of $\frac{\overset{\sim}{K_1}Q^2l}{H_1}$

Corresponding to d in the For-

. MULA, $d = 0.496 \left(\frac{K_1 Q^2 l}{H_1}\right)^{\frac{1}{5.25}}$

Diameter in inches	$\frac{1}{d^{1.25}}$ (feet)	d ^{0.625} (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$	Diameter in inches		d0.625 (feet)	Area in square feet	$\frac{K_1Q^2l}{H_1}$
68 68½ 69 69½ 70	.1133 .1123 .1113	2.957 2.971 2.984 2.998 3.011	25.22 25.59 25.97 26.35 26.73	357,800 371,800 386,300 401,200 416,600	851/2 86 861/2 87 871/2	. 0859 . 0853 . 6847 . 0841 . 0835	3.425 3.438 3.450	39.87 40.34 40.81 41.28 41.76	1,191,000 1,228,000 1,266,000 1,305,000 1,344,000
70½ 71 71½ 72 72½	. 1084 . 1074 . 1065	3.025 3.038 3.052 3.065 3.078		432,500 448,800 465,600 483,000 500,900	88 88½ 89 89½ 90	.0829 .0823 .0817 .0811 .0806	3.486 3.499 3.511	42.24 42.72 43.20 43.69 44.18	i,385,000 1,427,000 1,470,000 1,514,000 1,559,000
73 73½ 74 74½ 75	.1038 .1029 .1020	3.090 3.104 3.117 3.131 3.144	29.07 29.47 29.87 30.27 30.68	519,300 538,200 557,700 577,900 598,500	901/2 91 911/2 92 921/2	.0800 .0795 .0789 .0784 .0779	3.547 3.560 3.572	44.67 45.17 45.66 46.16 48.67	1,605,000 1,652,000 1,700,000 1,749,000 1,799,000
75½ 76 76½ 77 77½	.0995 .0987 .0979 .0971	3.157 3.170 3.183 3.196 3.209	31.92 32.34 32.76	619,700 641,500 664,000 687,100 710,900	93 93½ 94 94 94½ 95	.0773 .0768 .0763 .0758 .0753	3.608 3.619 3.632	47.17 47.68 48.19 48.71 49.22	1,851,000 1,904,000 1,958,000 2,013,000 2,070,000
78 781/2 79 791/2 80	. 0956 . 0948 . 0941 . 0934	3.222 3.235 3.248 3.261 3.273	33.61 34.04 34.47 34.91	1	11	.0748 .0743 .0738 .0734 .0729	3.668 3.680 3.692 3.704	50.79 51.32 51.85	2,128,000 2,187,000 2,247,000 2,309,000 2,372,000
801/2 81 811/2 82 821/2	. 0919 . 0912 . 0905 . 0898	3.285 3.298 3.311 3.324 3.337	35.78 36.23 36.67 37.12	896,300 925,700 956,000 987,000	98 98½ 99 99¾ 100	.0715	3.727 3.739 3.751	52.92 53.46 54.00	2,640,000
83 83 84 84 84 85	. 0884 . 0878 . 087	1 3.350 1 3.363 3 3.378 1 3.388 5 3.400	38.03 38.48 38.94	1,018,900 1,051,500 1,084,900 1,119,400 1,154,600					

Table 62.—Loss of Head (H_2) Due to Sudden Enlargement in Pipes. $\frac{d_2}{d_1}=$ Ratio of Diameter of Larger Pipe to Diameter of Smaller Pipe. v= Velocity in Smaller Pipe

$\frac{d_2}{d_1}$					Vel	ocit	y, v, i	n feet	per	secon	d		
dı	2	3	4	5	6	7	8	10	12	15	20	30	40
1.2	.01	.01	.02	.04	.06	.07	.10	.14	.21	.32	.55	1.20	2.08
1.4	.02	.04	.06	. 10	.14	.18	.23	.36	. 51	.78	1.36	2.96	5.14
1.6	.02	. 05	.09	. 14	. 20	. 28	.36	. 55	.78	1.19	2.07	4.50	7.82
1.8	.03	.07	.12	. 18	. 26	.35	.45	.70	.99	1.52	2.64	5.74	9.97
2.0	.04	.08	. 14	. 22	. 31	.41	. 5 3	.81	1.16	1.77	3.08	6.71	11.65
2.5	. 05	. 10	. 17	. 27	.38	. 51	.66	1.01	1.44	2.20	3.83	8.34	14.48
3.0	.05	.11	. 19	.30	.42	. 57	.74	1.13	1.60	2.46	4.27	9.29	16.14
4.0	.06	.12	.22	. 33	.47	.63	.82	1.26	1.79	2.75	4.78	10.44	18.15
5.0	.06	.13	. 23	. 35	. 50	.67	.87	1.34	1.90	2.93	5.12	11.19	19.52
10.0	.06	.14	. 24	.37	. 54	. 73	.95	1.47	2.11	3.27	5.75	12.69	22.31
∞ ′	.06	.14	. 25	. 39	. 56	.76	1.00	1.55	2.24	3.50	6.22	13.99	24.88
		1											

Table 63.—Values of K_2 for Determining Loss of Head Due to Sudden Enlargement in Pipes from the Formula $H_2=K_2\frac{v^2}{2g}$. $\frac{d^2}{d_1}=$ Ratio of Larger Pipe to Smaller Pipe. v= Velocity in Smaller Pipe

$\frac{d_2}{d_1}$				v	elocit	ty, v,	in fee	et per	seco	nd			
$\overline{d_1}$	2	3	4	5	6	7	8	10	12	15	20	30	40
1.2 1.4 1.6 1.8	.11 .26 .40	.10 .26 .39	.25 .38	. 24 . 37	.10 .24 .37	t	.24 .36	.23 .35	.09 .23 .35	.09 .22 .34 .43	.09 .22 .33	.21 .32	.08 .20 .32 .40
2.0	.60	. 58			.55				.52		.50		.47
2.5 3.0 4.0	.74 .83	.72 .80 .89			.68 .76 .84		.74	.73	.64 .72 .80	.63 .70 .79	. 69	.60 .67	. 58 . 65 . 73
5.0 10.0	.96	.93	.91 .97	.90	.89	. 88	.87	. 86	.85 .94	.84 .94	.82	. 80	.78 .90
∞	1:00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 64.—Values of K_2 for Determining Loss of Head Due to Gradual Enlargements in Pipes from the

Formula $H_2 = K_2 \frac{v^2}{2g}$. $\frac{d_2}{d_1} = \text{Ratio of Diameter of}$

LARGER PIPE TO DIAMETER OF SMALLER PIPE.

ANGLE OF CONE IS TWICE THE ANGLE

BETWEEN THE AXIS OF THE CONE

AND ITS SIDE

$\frac{dz}{d_1}$							Angle	of c	one					
$\overline{d_1}$	2°	40	60	80	10°	15°	20°	25°	30°	35°	40°	45°	50°	60°
1.1	.01	.01	.01	.02	. 03	. 05	.10	. 13	.16	.18	. 19	. 20	. 21	.23
1.2	.02	.02	.02	.03	.04	.09	. 16	. 21	. 25	. 29	.31	. 33	. 35	. 37
1.4	.02	.03	.03	.04	.06	.12	.23	. 30	. 36	.41	.44	.47	. 50	. 53
1.6	.03	.03	.04	.05	.07	.14	.26	. 35	.42	.47	. 51	. 54	. 57	. 61
1.8	.03	.04	.04	.05	.07	. 15	.28	.37	.44	. 50	. 54	. 58	.61	. 65
2.0	.03	.04	.04	.05	.07	.16	. 29	.38	. 46	. 52	. 56	. 60	.63	. 68
2.5	.03	.04	.04	.05	.08	.16	. 30	. 39	.48	. 54	. 58	. 62	. 65	. 70
3.0	.03	.04	.04	.05	.08	. 16	. 31	.40	.48	. 55	. 59	.63	. 66	. 71
œ	.03	.04	.05	.06	.08	. 16	.31	.40	.49	. 56	. 60	. 64	. 67	. 72
											1		!	

Table 65.—Loss of Head (H_3) Due to Sudden Contractions in Pipes. $\frac{d_2}{d_1}=$ Ratio of Diameter of Larger Pipe to Diameter of Smaller Pipe. v= Velocity in Smaller Pipe

d ₂				V	elocit	y, v,	in fee	t per	Sec o	nd			
$\frac{d_2}{d_1}$	2	3	4	5	6	7	8	10	12	15	20	30	40
1.1	.00	.00	.01	.01	. 02	.03	.04	.06	.09	. 15	.29	.75	1.49
1.2	.00	.01	.02	.03	.04	.06	. 07	.12	.18	.28	.54	1.38	2.74
1.4	.01	.02	.04	.07	. 10	.13	.17	. 27	.40	.65	1.14	2.68	4.98
1.6	.02	.04	.06	. 10	. 14	. 20	. 26	.40	. 67	.89	1.56	3.44	5.97
1.8	.02	.05	.08	. 13	. 19	. 25	. 33	. 51	. 73	1.12	1.92	4.05	6.72
2.0	.02	.05	.09	. 14	.21	. 28	. 36	. 55	. 79	1.19	2.06	4.28	7.09
2.2	.02	.06	. 10	. 15	. 22	. 30	. 38	. 59	. 84	1.28	2.20	4.56	7.41
2.5	.03	.06	. 10	. 16	.23	.31	.40	62	.88	1.34	2.30	4.76	7.71
3.0	.03	.06	.11	.17	. 24	.32	. 42	. 65	. 92	1.40	2.41	4.98	8.11
4.0	.03	.06	. 12	. 18	. 25	.34	.44	. 69	. 97	1.48	2.53	5.24	8.48
5.0	.03	.07	. 12	. 18	. 26	.35	. 46	.70	1.00	1.52	2.60	5.36	8.67
10.0	.03	. 07	. 12	. 19	. 27	. 36	. 47				2.68		
∞	.03	.07	.12	. 19	.27	.36	.47	- F		1	2.71		

Digitized by GOOGLO

Table 66.—Values of K₃ for Determining Loss of Head Due to Sudden Contraction in Pipes from the For-

MULA $H_1 = K_1 \frac{v^2}{2g}$. $\frac{d_2}{d_1} = \text{Ratio of Diameter of}$ Larger Pipe to Diameter of Smaller Pipe. v = Velocity in Smaller Pipe

d ₂				V	elocit	y, v, i	n fee	t per	secor	ıd.			
<u>d2</u> d1	2	3.	4	5	6	7	8	10	12	15	20	30	40
1.1	.03	.04	.04	.04	.04	.04	.04	.04	.04	.04	.05	. 05	.06
1.2	.07	.07	.07	.07	.07	.07	.07	.08	.08	.08	.09	. 10	. 11
1.4	.17	.17	.17	.17	.17	.17	.17	.18	.18	.18	. 18	. 19	. 20
1.6	.26	. 26	. 26	. 26	.26	.26	. 26	. 26	. 26	.25	. 25	. 25	. 24
1.8	.34	. 34	.34	.34	.34	.34	.33	.33	.32	.32	.31	. 29	. 27
2.0	.38	. 38	.37	. 37	.37	.37	. 36	.36	.35	.34	. 33	. 31	. 29
2.2	.40	.40	.40	. 39	. 39	.39	. 39	.38	.37	.37	. 35	. 33	. 30
2.5	.42	.42	.42	.41	.41	.41	.40	.40	.39	.38	.37	. 34	. 31
3.0	.44	.44	.44	.43	.43	.43	.42	.42	.41	.40	.39	. 36	. 33
4.0	.47	.46	.46	.46	.45	.45	.45	.44	.43	.42	.41	. 37	. 34
5.0	.48	.48	.47	. 47	.47	.46	.46	.45	. 45	.44	.42	. 38	. 35
10.0	. 49	.48	.48	.48	.48	.47	.47	. 46	. 46	.45	.43	.40	. 36
∞	.49	.49	.48	.48	.48	.47	.47	.47	.46	.45	.44	.41	. 38

Table 67.—Loss of Head (H_4) Due to Valves or Obstructions in Pipes. $\frac{A}{A_0}=$ Ratio of Area of Pipe to Area of Opening in Obstruction. v= Velocity of Water in the Pipe

A					Velo	city, 1	, in f	eet pe	r seco	ond			
$\frac{A}{A_0}$	1	2	3	4	5	6.	7	8	10	12	15	20	30
1.05	.00	.01	.01	.03	.04	.06	.08	.10	. 15	.23	.36	.61	1.37
1.1	.00	.01	.03	.05	.07	.11	.15	.19	.30	.43	.67	1.20	2.70
1.2	.01	.03	.06	.10	.16	.24	.32	.42	.65	.94	1.47	2.61	5.88
1.4	.01	.06	. 13	.24	.37	.54	.73	.95	1.49	2.14	3.35	5.95	13.35
1.6	.02	.10	.22	.38	.60	.86	1.17	1.53	2.39	3.44	5.38	9.56	21.52
										_	l		
1.8	.03	. 13		.54		1.22	1.66				7.64		
2.0	.04	.17	.38	.67	1.05	1.51	2.06	2.69	4.20	.6.05	9.46	16.82	
2.2	.05	.20	.46	.81	1.27	1.83	2.49	3.26	5.09	7.33	11.45	20.35	45.78
2.5	.06	.25	.56	1.00	1.56	2.24	3.05	3.98	6.23	8.97	14.01	24.91	56.05
3.0	.08	.31	.71	1.26	1.97	2.83	3.85	5.03	7.87	11.33	17.70	31.47	70.80
4.0	.10	.42		1.68		3.78	5.14		ı		23.60		
5.0	.12		1.12	1.99	3.11	4.48	6.10						112.10
6.0	.15		1.31	2.33		5.25	7.14			1			131.18
0.0			1.01		0.01	0.20		1.00		20.00	020	00.00	2021.20
7.0	.16	5	1.46	2.59	4.05	5.83	7.93	10.36	16.19	23.31	36.41	64.74	145.67
8.0	.18	1	1.59	2.82	4.41	6.35	8.64	11.28	17.63	25.39	39.66	70.51	158.65
9.0	.19	7	1.74	3.10	4.84	6.97	9.49	12.39	19.37	27.89	43.57	77.47	174.31
10.0	.21	.84	1.89	3.36	5.26	75.7	10.30	13.45	21.02	30.27	47.30	84.09	189.20
	[1	<u> </u>	l	L						

Table 68.—Values of K_4 for Determining Loss of Head due to Obstructions in Pipes from the Formula

 $H_4 = K_4 \frac{v^2}{2g}$. $\frac{A_1}{A_0}$ = the Ratio of Area of Pipe

TO AREA OF OPENING IN OBSTRUCTION

$\frac{A_1}{A_0}$	K4	$\frac{A_1}{A_0}$	K4	$\frac{A_1}{A_0}$	K4.
1.05	.10	2.0	2.70	6.0	9.4
1.1	.19	2.2	3.27	7.0	10.4
1.2	.42	2.5	4.00	8.0	11.3
1.4	.96	3.0	5.06	9.0	12.5
1.6	1.54	4.0	6.75	10.0	13.5
1.8	2.17	5.0	8.01	11	
i .	1 1	I	I	•	I

Table 69.—Loss of Head, H_5 , in Feet, due to 90° Bends in Pipes. R = the Radius in Feet of the Center Line of Pipe. V = Velocity of Water in the Pipe

R						Velo	city,	v, in	feet p	er se	ond		
feet	2	3	4	5	6	7	8	10	12	15	20	30	40
.0	.06	. 16	. 31	. 50	.76	1.08	1.45	2.40	3.62	5.98	11.42	28.44	54.32
.25	.03	.07	. 14	. 22	.34	.48	.65	1.08	1.61	2.66	5.08	12.64	24.14
.50	.02	.05	.09	. 15	.23	.32	.43	.71	1.07	1.77	3.38	8.43	16.09
1.	.01	.03	.06	. 10	.16	.22	.30	.49	.74	1.22	2.33	5.79	11.07
2.	.01	.03	.06	.09	. 14	. 19	.26	.43	.65	1.08	2.06	5.12	9.78
3.	.,	00	.05		٠,	.19	.26	.43	يم ا	1.06	2.02	5.03	9.62
4.	.01		.05							1.05	•		
5.	1							ı	ı	1.03			
6.			.05							1.02			9.38
7.	1 1		.06				.26			1.02			
′ '	.01	.03	.00	.09	. 14	.19	.20	.40	.00	1.07	2.05	5.10	9.74
8.	.01	.03	.06	. 10	.15	.22	.29	.48	.73	1.20	2.29	5.71	10.91
10.	.02	.04	.08	. 13	. 19	.27	.36	. 60	.90	1.48	2.83	7.06	13.48
15.	. 02	.06	. 11	. 18	. 27	.38	. 52	.85	1.28	2.12	4.04	10.07	19.23
20.	.03	.07	. 14	. 22	. 34	.48	. 64	1.06	1.60	2.64	5.05	12.57	24.02
25.	.03	.08	. 15	.25	. 37	. 52	.71	1.17	1.76	2.91	5.55	13.82	26.40
ا ۔۔ ا	ا۔۔ ا		ا۔ ا										
30.			.16			.55				3.08		14.64	
40.	, ,	- 1	. 17			.60				3.32		15.80	
50.			. 18			. 64				3.56		16.91	
60.	.04	. 10	. 20	.32	.49	.69	.93	1.53	2.31	3.81	7.28	18.11	34.61

Table 70.—Values of K_6 for Determining the Loss of Head due to 90° Bends in Pipes from the Formula $H_5 = K_5 \frac{v^2}{2g}, \quad v = \text{the Velocity of Water in the}$

Pipe, R = THE RADIUS OF THE CENTER LINE OF THE PIPE

										_			
R				,	Veloc	ity, v,	in fe	et pe	r sec	ond			
, it	2	3	4	5	6	7	8	10	12	15	20	30	40
.0	1.03	1.14	1.23	1.30	1.36	1.42	1.46	1.54	1.62	1.71	1.84	2.03	2.18
.25	.46	.51	. 55	.58	.60	. 63	. 65	•. 69	.72	.76	.82	.90	.97
. 50	. 31	. 34	.36	.38	.40	.42	.43	.46	.49	. 51	. 54	. 60	.65
1.	. 21	.23	.25	.26	.28	.29	.30	.31	.33	. 35	.37	.41	.44
2.	. 19	.21	.22	.23	.24	.25	.26	.28	.29	.31	. 33	.36	. 39
3.	. 18	. 20	. 22	. 23	. 24	. 25	.26	.27	.29	.30	. 33	.36	.39
4.	.18	. 20	. 21	. 23	.23	. 25	.26	.27	.28	.30	. 82	.35	.38
5.	.18	. 20	.21	. 22	.23	. 24	.25	.27	28	.29	. 32	. 35	. 38
6.	.18	. 19	.21	. 22	.23	. 24	. 25	.26	. 28	.29	.31	. 35	.37
7.	. 19	.21	. 22	. 23	. 24	.25	. 26	.28	. 29	.31	. 33	. 36	. 39
8.	.21	.23	. 25	.26	.27	.28	. 29	. 31	.32	.34	.37	.41	. 44
10.	.26	. 29	.31	. 32	.34	. 35	. 36	.38	.40	.42	.46	. 50	. 54
15.	. 37	.41	.43	.46	.48	. 50	. 52	. 55	. 57	. 61	. 65	.72	.77
20.	.45	. 51	. 54	. 57	.60	. 62	. 64	. 68	.72	.75	.81	. 90	. 97
25.	.50	. 56	. 59	. 63	. 65	.69	.71	.75	.79	. 83	.89	99	1.06
30.	. 53	. 58	. 63	. 67	.70	.73	. 75	. 79	. 83	. 88	. 95	1.05	1.12
4 0.	. 57	. 64	. 68	. 72	.76	. 79	.81	. 86	90	.95	1.02	1.13	1.21
50.	.61	. 68	. 73	. 77	. 81	. 84	. 87	. 92	. 96	1.02	1.08	1.21	1.30
60.	. 66	.73	.78	. 83	. 87	.90	. 93	. 98	1.03	1.09	1.17	1.30	1.36

Table 71.—Lower Critical Velocities Computed from Formula (36) (Page 170)

Tempe	rature	1		E	iame	ter of	pipe	in in	ches		
Cent.	Fahr.	1/2	3/4	1	11/2	2	3	4	6	9	12
0	32	.98	. 62	.47	.31	. 23	. 16	. 12	.08	.05	. 03
10	50	.69	.46	. 34	. 23	. 17	. 12	.09	.06	.04	. 02
20	68	. 53	. 35	. 26	.18	. 13	. 09	.07	.04	. 03	. 02
30	86	.42	. 28	. 21	.14	.11	.07	. 05	.04	.02	. 01
40	104	.35	.23	.17	.11	.09	.06	.04	.03	.02	.01
50	122	.29	. 19	.14	.10	.07	. 05	.04	.02	.02	.01
60	140	.24	.16	.12	.08	.06	.04	.03	.02	.01	.01
70	158	.21	. 14	.10	.07	. 05	. 03	. 03	.02	.01	.00
80	176	.18	.12	.09	.06	. 05	.03	.02	.02	.01	.00
90	194	.16	.11	. 08	. 05	.04	. 03	. 02	. 01	. 01	. 00
100	212	. 14	. 10	.07	.05	.04	.02	. 02	.01	.01	.00

Table 72.—Higher Critical Velocities Computed from Formula (37) (Page 170)

		Di	ameto	er of p	oipe i	n incl	nes		
1/2	34	1	11/2	2	3	4	6	9	12
5.8	9 3.93	2.95	1.97	1.47	.98	.74	.49	. 33	. 246
4.3	4 2.90	2.17	1.45	1.09	.72	. 54	. 36	. 24	. 181
3.3	5 2.23	1.68	1.12	.84	.56	.42	.28	. 19	. 140
2.6	7 1.78	1.34	.89	.67	.45	. 33	.22	. 15	. 111
2.1	9 1.46	1.09	.73	.55	. 36	.27	.16	. 12	. 091
1.8	3 1.22	.91	.61	.46	. 30	.23	. 15	.10	. 076
1.5	5 1.03	.77	.52	.39	.26	. 19	.13	.09	.064
1.3	3 .89	.66	.44	.33	.22	.17	.11	. 07	.055
1.1	6 .77	.58	.39	. 29	. 19	. 14	.10	.06	.048
1.0	1 .68	.51	.34	. 25	.17	. 13	.08	.06	.042
.9	0 .60	.45	.30	.22	. 15	.11	.07	. 05	. 037
	1.0	1.01 .68	1.01 .68 .51	1.01 .68 .51 .34	1.01 .68 .51 .34 .25	1.01 .68 .51 .34 .25 .17	1.01 .68 .51 .34 .25 .17 .13	1.01 .68 .51 .34 .25 .17 .13 .08	1.01 .68 .51 .34 .25 .17 .13 .08 .06

CHAPTER VII

FLOW OF WATER IN OPEN CHANNELS

The flow of water in open channels presents a problem even more complicated than the flow of water in pipes. This is due to a number of causes among which may be mentioned the great variety in shape and size of open conduits, variation in materials of which or through which the channels are constructed and difficulties of tabulating experimental data covering so wide a range of conditions. Theory offers little assistance in this connection and working formulas must be based largely upon the results of experimental investigation. Unfortunately the condition is still farther complicated by discrepancies and apparent inconsistencies in the available experimental data.

Fig. 63.—Longitudinal section of open channel.

Fig. 63 represents a longitudinal section of an open channel of any cross-section. In general the water surface will be approximately parallel to the bottom of the channel. The water surface at B is a distance H below the elevation of the water surface at A. Motion of the water is produced by gravity acting through the vertical distance H. If there were no resisting forces, the velocity of the water would be continually accelerated the same as with falling bodies. In this case the resisting force is the friction between the moving water and the wetted surface of the channel. H may be considered as a measure of this resistance.

Formulas for Flow of Water in Open Channels.—Referring to Fig. 63, the following nomenclature will be used:

a = Area of cross-section of channel in square feet.

p = Wetted perimeter or length of wetted border of crosssection of channel in feet.

 $r = \frac{a}{x}$ = Mean hydraulic radius in feet.

l =Length of reach of channel considered in feet.

H = Difference in elevation of water surfaces in distance l.

 $s = \frac{H}{I}$, commonly called the slope of water surface.

v = Mean velocity of water in feet per second.

Q = av = Total discharge of channel in second-feet.

d = Diameter of circular conduits in feet.

n =Coefficients of roughness in Kutter's and Manning's formulas.

m =Coefficient of roughness in Bazin's formula.

f =Coefficient of roughness in Biel's formula.

t = Temperature coefficient in Biel's formula.

c =Coefficient in Chezy formula.

 $K = \frac{1.486}{n} =$ Coefficient in Manning's formula.

The Chezy Formula.—The earliest formula for determining the flow of water in open channels (also used for pipes, see page 154) was suggested by Chezy in 1775. The Chezy formula for open channels is usually written

$$v = c\sqrt{r_8} \tag{1}$$

This formula is based upon the assumption that the resistance to flow, H, varies directly as the square of the velocity, v, and area of wetted surface, pl, and inversely as the cross-sectional area of the channel. a.

From the limited data available at the time. Chezy believed c to be constant for all channels constructed of the same class of material and to vary only with the degree of roughness of the channel. Later investigators have concluded that c is a function of r, or r and s as well as a coefficient whose value depends upon the degree of roughness of the channel, and have developed formulas in accordance with this idea.

In the following pages are given a number of open channel formulas. The list includes the older formulas that have received common acceptance, and some of the more recent formulas, which have been based upon later compilations of experimental data. Digitized by Google

The Kutter Formula.—The following formula for determining c in the Chezy formula $(v = c\sqrt{r_8})$, published by Ganguillet and Kutter in 1869, is commonly called the Kutter formula:

$$c = \frac{41.65 + \frac{0.00281}{8} + \frac{1.811}{n}}{1 + \frac{n}{\sqrt{r}} \left(41.65 + \frac{0.00281}{8}\right)}$$
(2)

Manning's formula, published² in 1890, gives the following value of c in the Chezy formula:

$$c = \frac{1.486}{r} r^{1/6} \tag{3}$$

The complete Manning's formula being

$$v = \frac{1.486}{r} r^{2/3} s^{1/2} = Kr^{3/3} s^{1/2} \tag{4}$$

The expression $\frac{1.486}{n}$ in Manning's formula was designed to make the values of n correspond to the values of Kutter's n.

Values of n, in Kutter's formula, for different types of channels as given by the authors of the formula are as follows:

n = 0.009 for well-planed timber.

n = 0.010 for neat cement.

n = 0.011 for cement mortar with one-third sand.

n = 0.012 for unplaned timber.

n = 0.013 for ashlar and well-laid brickwork.

n = 0.015 for rough brickwork.

n = 0.017 for rubble masonry.

n = 0.020 for canals in firm gravel.

n = 0.025 for canals and rivers in good condition.

 $\vec{n} = 0.030$ for canals and rivers with stones and weeds.

n = 0.035 for canals and rivers in bad order.

The above values do not cover the range of present practice,

and in many cases they are not in accordance with the results of later experiments. A more complete list of values of n has

Inst. Civ. Eng. of Ireland, 1890, vol. 20. Digitized by GOOG

¹ Ganguillet and Kutter: Flow of Water in Rivers and Other Channels.

Translation by Herring and Trautwine, John Wiley and Sons, Publishers.

ROBERT MANNING: Flow of Water in Open Channels and Pipes. Trans.

Table 73.—Horton's Values of n. To be Used With Kutter's and Manning's Formulas.

Surface	Best	Good	Fair	Bad
Uncoated cast-iron pipe	0.012 0.011 0.012	0.013 0.012* 0.013	0.014 0.013* 0.014	0.015
Commercial wrought-iron pipe, galvan- ised	0.013	0.014	0.015	0.017
Smooth brass and glass pipe	0.009 0.010 0.013	0.010 0.011* 0.015*	0.011 0.013* 0.017*	0.013
Vitrified sewer pipe	$\left\{ \begin{array}{c} 0.010 \\ 0.011 \end{array} \right\}$	0.018*	0.015	0.017
Common clay drainage tile	0.011	0.012*	0.014*	0.017
Brick in cement mortar; brick sewers Neat cement surfaces	0.012 0.010	0.013 0.011	0.015*	0.017
Cement mortar surfaces	0.011	0.012	0.013*	0.015
Concrete pipe	0.012 0.010	0.013 0.011	0.015*	0.016
Plank Flumes:				
Planed Unplaned	0.010 0.011	0.012* 0.013*	0.013 0.014	0.014
With battens	0.012 0.012	0.015*	0.016	0 010
Concrete-lined channels Cement-rubble surface	0.012	0.020	0.025	0.018
Dry-rubble surface	0.025	0.030	0.033	0.035
Dressed-ashlar surface Semicircular metal flumes, smooth	0.013 0.011	0.014 0.012	0.015 0.013	0.017
Semicircular metal flumes, corrugated	0.0225	0.025	0.0275	0.030
Earth, straight and uniform	0.017	0.020	0.0225	d.025
Rock cuts, smooth and uniform	0.025 0.035	0.030	0.033*	0.035
Rock cuts, jagged and irregular Winding sluggish canals	0.033	0.025*	0.0275	0.030
Dredged earth channels	0.025	0.0275*	0.030	0.033
on earth banks	0.025	0.030	0.035*	0.040
Earth bottom, rubbie sides Natural Stream Channels:	0.028	0.030*	0.033*	0.035
(1) Clean, straight bank, full stage, no		l		
rifts or deep pools	0.025	0.0275	0.030	0.033
stones	0.030	0.033	0.035	0.040
(3) Winding, some pools and shoals, clean	0.033	0.035	0.040	0.045
(4) Same as (3), lower stages, more				
ineffective slope and sections (5) Same as (3), some weeds and	0.040	0.045	0.050	0.055
stones	0.035	0.040	0.045	0.050
(6) Same as (4), stony sections	0.045	0.050	0.055	0.060
weedy or with very deep pools	0.050 0.075	0.060	0.070	0.080
(8) Very weedy reaches	0.075	0.100	0.125	0.150

^{*} Values commonly used in designing.

been prepared by Horton¹ from an examination of the best available experiments. These values were designed only for use in Kutter's formula but they will apply equally to Manning's formula (see discussion, pages 196 to 200). Horton's list of coefficients has the advantage of giving values which correspond to practically the entire range of experiments for each class of channel. The author does not recommend either Kutter's or Manning's formula for pipes but they are sometimes used for this purpose, especially for large pipes, and values of n for different classes of pipes may be valuable for reference. Horton's complete list is therefore given. The coefficients for common clay drainage tile have been added by the author. Horton's values of n with this addition are given in Table 73.

The Bazin Formula.—The following formula was proposed by Bazin in 1897. Like the Kutter formula it determines a value of c in the Chezy formula $(v = c\sqrt{r_8})$.

$$c = \frac{157.6}{1 + \frac{m}{\sqrt{r}}} \tag{5}$$

The following values of m are given by Bazin:

m = 0.109 for smooth cement or planed wood.

m = 0.290 for planks, ashlar, and brick.

m = 0.833 for rubble masonry.

m = 1.540 for earth channels of very regular surface.

m = 2.360 for ordinary earth channels.

m = 3.170 for exceptionally rough channels encumbered with weeds and boulders.

The above list does not include all of the different types of channels that are being constructed at the present time. The values of m given are, moreover, averages and offer no clue to the range in variation to be expected for a given class of channels. Table 74 shows the range in values of m as determined from measurements of a large number of channels. It corresponds approximately to Horton's table of values of m. The range of results agrees quite closely with the values of m as determined from the 269 experiments tabulated by Scobey (see Appendix B).

¹ ROBERT E. HORTON: Some Better Kutter's Formula Coefficients. Engineering News, Feb. 24 and May 4, 1916.

TABLE	74.—	VALUES	OF	m	FOR	BAZIN'S	FORMULA

	Best	Good	Fair	Bad
Vitrified sewer pipe	.10	.40	.60	.90
Common clay drain tile	.20	.30	. 50	.90
Glased brickwork	.10	.25	.40	.60
Brick in cement mortar	.25	.40	.60	.90
Neat cement surfaces	.00	.10	.25	.40
Cement-mortar surfaces	. 10	.20	.40	.60
Concrete pipe	.25	.40	.60	.75
Plank flumes, planed	.00	.25	.40	. 50
Plank flumes, unplaned	. 10	.40	.50	. 60
Plank flumes, with battins	.25	.60	.75	1.00
Concrete-lined channels	.25	.50	.75	1.00
Rubble masonry	.90	1.25	1.90	2.50
Dry rubble	1.90	2.50	2.90	3.15
Ashlar masonry	.40	.50	.65	.90
Smooth metal flumes	.10	.25	.40	.60
Corrugated metal flumes	1.60	1.90	2.20	2.50
Earth canals in good condition	.90	1.25	1.60	1.90
Earth canals with weeds, rocks, etc	1.90	2.50	3.15	3.80
Canals excavated in rock	2.50	3.15	3.70	4.20
Natural streams in good condition	1.90	2.50	3.15	3.80
Natural streams with weeds, rocks, etc	8.15	4.40	6.30	8.80

Biel's formula, proposed in 1907 for flow in pipes and open channels, expressed in English units, may be written

$$v^{2} = \frac{1811rs}{0.0663 + \frac{f}{\sqrt{r}} + \frac{8.2t}{(100f + 2)v\sqrt{r}}}$$
(6)

in which f and t are respectively coefficients of roughness of the channel and viscosity of the water. It is claimed by the author of the formula that it applies to the flow of other liquids and to the flow of gases in pipes.

The values of the coefficient of roughness are:

f = 0.018 for smooth boards and wrought-iron pipes.

f = 0.036 for new cast-iron and smooth cement pipes.

f = 0.054 for rough boards and smooth brickwork.

f = 0.072 for smooth masonry or brick channels.

f = 0.290 for rough masonry.

f = 0.500 for canals in earth and regular streams.

¹ Zeitschrift Verein deutsches Ingenieure. Mittheilungen über Forscharbeiten, Heft 44. Digitized by Google

f = 0.750 for canals and rivers with stones and weeds. f = 1.060 for canals and rivers in bad condition.

The coefficient t varies with the temperature of the water as follows:

32°F., t = 0.0179 40°F., t = 0.0157 50°F., t = 0.0135 60°F., t = 0.0115 70°F., t = 0.0097

A large number of so-called exponential or logarithmic formulas for flow in open channels have been advocated during the past few years. Of these the following are given:

The Williams and Hazen Formula.

$$v = c_1 r^{0.67} s^{0.54} (7)$$

 $c_1 = 205$ to 185 for very smooth channels.

 $c_1 = 165$ to 155 for ordinary unplaned plank.

 $c_1 = 155$ to 125 for ordinary sewer crock.

 $c_1 = 155$ to 120 for ordinary brick sewers.

 $c_1 = 105$ to 75 for ordinary earth channels.

 $c_1 = 75$ to 45 for rough natural channels.

Lea's formulas for open channels give a varying coefficient and varying exponents for the different classes of channels, as follows:

For smooth channels lined with cement or planed boards

$$s = (0.000065 \text{ to } 0.00011) \frac{v^{1.75}}{r^{1.25}}$$
 (8a)

For smooth channels lined with well-pointed brick, or concrete

$$s = (0.000065 \text{ to } 0.00011) \frac{v^{1.88}}{r^{1.15}}$$
 (8b)

For channels lined with ashlar masonry or small pebbles

$$s = 0.00015 \, \frac{v^{1.96}}{r^{1.4}} \tag{8c}$$

For channels lined with rubble masonry, large pebbles, rock, and exceptionally smooth earth channels free from deposits

$$s = 0.00023 \frac{v^{1.96}}{r^{1.3 \text{ to } 1.8}} \tag{8d}$$

For earth channels in ordinary condition

$$s = (0.00033 \text{ to } 0.00050) \frac{v^{2.1}}{r^{1.3 \text{ to } 1.5}}$$
 (8e)

For earth channels of exceptional resistance

$$s = (0.00050 \text{ to } 0.00085) \frac{v^{2.1}}{r^{1.3 \text{ to } 1.5}}$$
 (8f)

Barnes' formulas for open channels, published in 1916, were adopted after a comprehensive investigation of available experimental data. The formulas for newly constructed channels are given. To allow for deterioration, in designing a conduit for a required capacity, a given percentage should be added to Q and the slope and channel conditions should be determined for this excess capacity. The following are Barnes' formulas for open channels.

For clean planed wood troughs or flumes. Add 8 per cent. to Q for purposes of design to allow for deterioration.

$$v = 223.3r^{0.660}s^{0.586} \text{ or } s = 0.0000981 \frac{v^{1.707}}{r^{1.126}}$$
 (9a)

For clean unplaned wood troughs or flumes. Add 8 per cent. to Q to allow for deterioration.

$$v = 182.5 r^{0.666} s^{0.569} \text{ or } s = 0.0001066 \frac{v^{1.757}}{r^{1.171}}$$
 (9b)

For clean neat cement channels. Add 6 per cent. to Q to allow for deterioration.

$$v = 136.3r^{0.635}s^{0.484} \text{ or } s = 0.0000389 \frac{v^{2.066}}{r^{1.312}}$$
 (9c)

For clean hard brick well-pointed conduits. Add 5 per cent. to Q to allow for deterioration.

$$v = 92.1r^{0.602}s^{0.466} \text{ or } s = 0.0000609 \frac{v^{2.146}}{r^{1.492}}$$
 (9d)

For clean smooth-faced concrete conduits. Add 5 per cent. to Q to allow for deterioration.

$$v = 95.1r^{0.567}s^{0.471} \text{ or } s = 0.0000631 \frac{v^{2.123}}{r^{1.204}}$$
 (9e)

For dressed masonry channels in cement with no projecting surfaces. Add 8 per cent. to Q to allow for deterioration.

$$v = 109.7r^{0.713}s^{0.483} \text{ or } s = 0.0000597 \frac{v^{2.070}}{r^{1.476}}$$
 (9f)

¹ A. A. Barnes: Hydraulic Flow Reviewed, Spon and Chamberlain, Publishers.

For rock-faced masonry channels in cement. Add 8 per cent. to Q to allow for deterioration.

$$v = 80.5r^{0.668}s^{0.482} \text{ or } s = 0.0001112 \frac{v^{2.075}}{r^{1.356}}$$
 (9g)

For hammer dressed dry masonry water courses. Add 10 per cent. to Q to allow for deterioration.

$$v = 70.0r^{0.520}s^{0.500} \text{ or } s = 0.0002041 \frac{v^{2.000}}{r^{1.640}}$$
 (9h)

For earth canals in average working condition and rivers free from vegetation. No addition to Q.

$$v = 58.4r^{0.694}s^{0.496} \text{ or } s = 0.0002746 \frac{v^{2.016}}{r^{1.399}}$$
 (9i)

Discussion of Open-Channel Formulas

In the light of our present knowledge it would be difficult to say that any one of the foregoing formulas or sets of formulas possesses marked advantages from the standpoint of accuracy. Probably any of the formulas in experienced hands will give reasonably satisfactory results and yet no one of them will prove to be infallible under all conditions. In applying these formulas to practical problems the inexperienced man may find his results even more disappointing.

In any of the formulas listed, excepting the Barnes formulas, it is necessary to select a coefficient, representing the degree of roughness of the channel. Values of this coefficient corresponding to the range of fluctuation of experimental results accompany each of the formulas. From these values the coefficient best suited to the particular conditions must be selected. If the Barnes formulas are used the problem becomes one of selecting the formula corresponding to the proper type of channel. Since these formulas represent average conditions they do not indicate the limits of variation in results that may be expected from their use. In the author's opinion this feature is objectionable as pointed out in connection with pipe formulas (see discussion, pages 160 to 162).

As already stated it does not appear that any one formula has the advantage from considerations of relative accuracy. The adoption of a particular formula therefore becomes a matter of convenience or expediency. Unless some advantage is to be gained there appears to be no reason for discontinuing the use of an old and tried formula for the adoption of a more recent one.

The exponential formulas have the advantage of requiring a smaller table of coefficients than the older formulas but this fact does not simplify their solution. Odd exponents without corresponding tables of powers of numbers are awkward to handle.

It is important that the engineer who deals frequently with hydraulic problems should familiarize himsef with some particular formula and that he should think in terms of that formula in order that a certain value of coefficient will have a definite meaning to him. In this connection it must be admitted that the engineer will find it more convenient to have for his special formula the formula which has common acceptance in his locality. To the average American engineer "Kutter's n" has a very specific meaning.

The three formulas which have received general acceptance are the Kutter formula, the Bazin formula, and the Manning formula. Of the three formulas the Kutter formula has been used most extensively, and almost exclusively in the United States. In France the Bazin formula has to a large extent replaced the Kutter formula. In Australia and India the Manning formula has been extensively used. The further discussion of this subject will be limited to these three formulas.

Comparisons of Kutter, Manning, and Bazin Formulas

The following discussion will be based upon the hypothesis that each of the three formulas (formulas (2), (4), and (5), pages 190 and 192) will give equally good results in the hands of experienced men and that no one of them has any advantage from the standpoint of accuracy. It then becomes a question of deciding on the most suitable formula from considerations of simplicity and the advantages to be gained from using the formula that has been generally accepted.

The Bazin and Kutter formulas are each expressions for determining c in the Chezy formula $(v = c\sqrt{rs})$, page 189. In the Bazin formula c, not being a function of s, has one less variable than in the Kutter formula, in which it is a function of both r and s, and a table of values of c derived from the Bazin formula (Table 77, page 210) is more condensed and convenient for use than the corresponding table (Table 76, page 207) for Kutter's formula. In this regard the Bazin

formula has an advantage from the standpoint of simplicity. The objection to adopting the Bazin formula by engineers accustomed to the Kutter formula is that it will entail the necessity of becoming familiar with a new set of coefficients.

The coefficient K of the Manning formula varies only with n and thus possesses an advantage over either of the other formulas. The evident objection that the exponent of 2/3 for r adds a complication may be overcome by the use of tables. It will be shown later (pages 200 to 203) that, with the assistance of Tables 79 to 85 inclusive, the solution of problems by the Manning formula may be made simpler than is possible with either the Kutter or Bazin formulas.

The Kutter formula has been used almost exclusively in the United States and American engineers have been accustomed to think of open channels in terms of "Kutter's n." They have for this reason been reluctant to adopt a new formula involving the necessity of familiarizing themselves with a new set of coefficients. It remains to be shown, therefore, that the same n used in Kutter's and Manning's formulas gives practically identical results within the limits of our experimental knowledge and throughout the range of ordinary application. This will be shown to be the case and the author believes that the general adoption of the Manning formula, as a substitute for the Kutter formula, will be a step in advance.

Table 75, page 204, has been prepared to show the values of the coefficient of roughness in the three formulas which will give equivalent results. Values of c, in the Chezy formula $(v=c\sqrt{r_8})$, between the extreme limits that will be encountered in practice, are selected for different hydraulic radii, and corresponding values of Kutter's n for various slopes, and Manning's n and Bazin's m are given.

This table is particularly instructive in showing the effect of slope on the value of c when determined from Kutter's formula and the conditions under which Manning's and Kutter's formulas give approximately the same results.

From an examination of Table 75 it will be seen that for channels having a hydraulic radius less than unity, Kutter's n when used in Manning's formula gives higher velocities than Kutter's formula, except for the smoother channels. For hydraulic radii from 1 to 10 feet the agreement between Kutter's and Manning's formulas is very close for all kinds of channels except for the flattest slopes. For hydraulic radii above 10

feet Manning's formula will in general give higher velocities than Kutter's formula, with the same value of n.

It will be observed that the close agreement between Manning's and Kutter's formulas occurs under the conditions which usually obtain in practice. Ordinary channels, excepting sewers and drain pipes, have hydraulic radii between 1 and 10 feet and slopes are not frequently less than 0.0001. Common values of Kutter's n used for designing vitrified pipe or concrete sewers or drains are from 0.013 to 0.015 and for these values Manning's and Kutter's formulas agree very closely, even for the smaller hydraulic radii. It should also be remembered that Kutter's formula is purely empirical and that the experiments on which it is based lie primarily within the range of hydraulic radii and channel conditions in which the agreement with Manning's formula is closest. There is, moreover, a question as to whether the slope has the effect on the value of

The term $\frac{0.00281}{}$ in the Kutter c that Kutter assigned to it.

formula was introduced primarily to make the formula fit the experiments of Humphreys and Abbott¹ on the flow in the Mississippi River. The velocity measurements for these experiments were made by the double-float method and it is now believed that these measurements gave too high velocities. There is no doubt but that great uncertainty exists regarding the accuracy of the slope measurements which were made by means of an engineer's level. The smallest slope measured was 0.0000034, less than 0.02 foot per mile, and the difficulties of determining the elevations of water surface and the probable error of level work under such conditions, throws considerable doubt upon the accuracy of the work as a whole. Bazin, as a result of his investigation, decided that the slope did not effect the value of c in the Chezy formula and designed his formula accordingly.

Channels are usually constructed on slopes greater than 0.0001 and so in reality the correction for slope in Kutter's formula is not important, and especially so, in view of the uncertainty which exists in the proper selection of n. It is probably due to this fact that Kutter's formula has given such generally satisfactory results. In other words, the Kutter formula would doubtless give equal satisfaction if the terms

Report on the Hydraulics of the Mississippi River, 1861.

involving s were omitted altogether, and the formula could be simplified without detracting from its accuracy. It certainly has not been demonstrated that the slope in any way effects the value of c in the Chezy formula and it appears more consistent, to use a formula of the simpler form in which terms of no particular significance, that are based upon the results of uncertain experimental data, do not exist.

In order to determine the comparative values of the coefficients in Kutter's, Manning's and Bazin's formulas under actual working conditions, the author has had the computations in the experiments listed by Scobey¹ for 269 channels, extended to include Manning's n and Bazin's m. The results of this work are given in Table 112, Appendix B. It will be seen that the agreement between Manning's n and Kutter's n is most remarkable, and the author submits this table as the best evidence that the two formulas give results agreeing well within the limits of uncertainty which must exist in selecting the proper value of n, for all working conditions.

It will be noted that Bazin's formula cannot give a value of c greater than 157.6 unless m becomes negative. Scobey's experiments show a negative m in a few instances.

Solution of Kutter and Bazin Formulas.—The solution of each formula will be simplified by the use of tables. Table 76, page 207, gives values of c by the Kutter formula corresponding to different values of s, r and n. Table 77, page 210, gives values of c by the Bazin formula corresponding to different values of r and m. With the value of c determined by either of these tables the Chezy formula

$$v = c \sqrt{rs} \tag{1}$$

may be readily solved. Table 83, page 224, containing the square roots of decimal numbers will assist in the operation. r for trapezoidal sections and circular segments may be obtained from Tables 79 and 80 respectively, pages 211 and 212. There are three general types of problems, the methods of solving which are given below. n is given in each case.

1. The cross-sectional dimensions and slope of channel are given; to obtain v or Q.

Solution.—Compute r from the relation r = a/p or obtain

¹ FRED C. Scober: The Flow of Water in Irrigation Channels. Bulletin No. 194, U. S. Department of Agriculture.

it from Table 79 or 80. Take c from Table 75 or 76. Solve for v and if Q is desired Q = av.

2. The velocity and dimensions of cross-section of channel are given; to obtain s.

Solution.—Compute r or take it from Table 79 or 80. Take c from Table 75 or 76 (If Kutter's formula is used approximate value of s must be assumed). If preferred the Chezy formula may be written

$$s = \frac{v^2}{c^2r} \tag{1a}$$

from which s may be obtained. If Kutter's formula is used, a second solution may be required if the assumed s does not agree approximately with the computed s.

3. The discharge and slope are given; to obtain dimensions of cross-section of channel.

Solution.—The proportional dimensions must be given; as for example the channel is to be of semicircular section flowing three-fourths full, or trapezoidal section with side slopes of 2 to 1 and bottom width three times the depth of water.

Considering the latter case, let D represent the depth of water. Then from Table 80 it is seen that r=0.670D. From Table 76 select a value of c corresponding to an assumed value of r.

Also for this example $v = Q/a = \frac{Q}{5D^2}$ By substituting the Chezy

formula may now be written in terms of known quantities and D and the resulting equation may be solved for D.

A similar process may be followed for channels of segmental circular section, using Table 79 in place of Table 80.

Solution of Manning Formula.—The solution of this formula will be simplified by the use of tables. The application of Tables 81, 82 and 85, pages 215, 222 and 227, is explained below. Tables 83 and 84, pages 224 and 225, will assist in evaluating $s\frac{1}{2}$ and $r\frac{2}{3}$. The coefficient n may be applied directly or Table 78, page 210, may be used if desired. For convenience of reference the Manning formula is here repeated.

$$v = \frac{1.486}{n} r^{35} s^{12} \tag{4}$$

The method of solving the three general types of open-channel problems is indicated below. n is given in each case.

1. The cross-sectional dimensions and slope of channel are given; to obtain v or Q.

Solution.—Compute r or obtain it from Tables 79 or 80, pages 211 and 212. From Table 81, page 215, find the value of nv corresponding to this r and the given s. Divide the tabulated value of nv by n to obtain v. If Q is desired Q = av.

2. The velocity and dimensions of cross-section of channel are given; to obtain s.

Solution.—For solving problems of this type the Manning formula may be conveniently expressed in the form

$$s = \frac{(nv)^2}{2.2082r^{\frac{4}{3}}} \tag{4a}$$

Values of $\frac{1}{2.2082r\%}$ are given in Table 82. To determine s multiply the tabulated value by $(nv)^2$. Approximate values of s may be obtained by interpolation from Table 81.

3. The discharge and slope are given; to obtain dimensions of cross-section of channel. Two general cases will be described.

oss-section of channel. Two general cases will be described.

Solution for Canals of Trapezoidal Section.—Referring to the

Fig. 64.—Canal section.

section shown in Fig. 64. Let b be the bottom width of canal and D the depth of water. Also let e/D = z and b/D = y. These two ratios must be given to complete the problem. Also

 $r = c_x D$, in which c_x is the factor, taken from Table 80. The equation for D may now be expressed

$$D = \left(\frac{0.673Qn}{c_z^{34}8^{1/2}(y+z)}\right)^{36} \tag{4b}$$

Table 85, page 227, gives $\frac{3}{8}$ powers of numbers. After D has been determined, b may be obtained from the relation

$$b = yD$$

For example, it is required to find the bottom width of a canal, where Q=300 second-feet, s=0.0002, the side slopes of the canal are to be 2 to 1 and the depth of water in the canal is to be one-third of the bottom width. n is taken as 0.0225.

From the above data y = 3 and z = 2. From Table 80

 $c_x = 0.670$ and from Table 84 $c_x^{2/5} = 0.765$. From Table 83, $s^{1/2} = 0.01414$ whence

$$D = \left(\frac{0.673 \times 300 \times 0.0225}{0.765 \times 0.01414(3+2)}\right)^{3/6} = 84.0^{3/6}$$

and from Table 85, D = 5.27. b = 3D = 15.81.

Solution for Conduits of Circular Section.—Let A, P and R be respectively the area, hydraulic radius, and wetted perimeter for any circular conduit of diameter d flowing full and a, p, and r the corresponding elements when flowing with a depth D, Fig. 65. Let $a = c_a A$, $p = c_p P$, $r = c_r R = c_r d/4 = c_d d$. These coefficients are all functions of D/d.

Fig. 65.—Circular conduit.

The formula for d may be written

$$d = \left(\frac{2.159Qn}{c_{a}c_{r}^{24}8^{1/2}}\right)^{36} = \left(\frac{KQn}{8^{1/2}}\right)^{36}$$
 (4c)

Table 79, page 211, contains values of K and also values of c_a , c_p , c_r , and c_d . Table 85, page 227, gives $\frac{3}{8}$ powers of numbers.

For example, a circular conduit is to flow $\frac{3}{4}$ full when carrying 20 second-feet of water. s = 0.0015 and n = 0.015, d is required.

From Tables 79 and 83 K = 2.37 and $S^{\frac{1}{2}} = 0.03873$, whence $(2.37 \times 20 \times 0.015)^{\frac{1}{2}}$

$$d = \left(\frac{2.37 \times 20 \times 0.015}{0.03873}\right)^{36} = 18.36^{36}$$

and from Table 85 d = 2.98 feet.

Manning's formula gives Q a maximum when D = 0.938d and K = 2.007. The minimum diameter of a circular conduit for a given discharge is therefore,

$$d = \left(\frac{2Qn}{8^{\frac{1}{2}}}\right)^{\frac{3}{6}} \tag{4d}$$

Formula (4d) should be used when the flow is unobstructed and the diameter for a given maximum discharge is required. If water is backed up so that the conduit flows full, formula (4c) with K=2.159 will probably apply more accurately.

Diagrams for Solution of Manning Formula.—The Manning formula is readily adaptable to graphical solution. Diagram 1, page 230, is intended for sewers and small canals and Diagram 2, opposite page 230, gives a general solution of the formula for channels having hydraulic radii from 0 to 30 feet.

Table 75.—Comparison of Coefficients of Roughness in Kutter's, Manning's and Bazin's Formulas

Hy- draulic	c, Che-		n,]	Kutter	's form	ula			n, Man-	m, Bazin's
radius r, feet	gy for-	.000025	. 00005	. 8 = . 0001	s = .0002	. 0004		s = .01	ning's for- mula	for- mula
0.1	10 15 20 30 40 50 75 100	.040 .028 .022 .016 .013 .011	.042 .032 .025 .018 .015 .012	.044 .034 .027 .020 .016 .014	.045 .035 .028 .022 .017 .015 .011	.047 .037 .029 .022 .018 .015 .011	.038 .031 .023 .019 .016 .012	.019 .016 .012		4.67 3.01 2.18 1.34 .930 .681 .348 .182
0.2	15 20 30 40 50 75 100 125	.037 .029 .021 .017 .014 .010	.040 .032 .023 .018 .015 .011	.041 .034 .024 .020 .017 .012 .010	.042 .036 .026 .021 .018 .013 .010	.042 .037 .027 .022 .018 .013 .011		.023 .019 .014 .011	.076 .057 .038 .028 .023 .015 .011	4.25 3.08 1.90 1.31 .963 .492 .258 .117
0.4	20 30 40 50 75 100 125 150	.038 .027 .021 .017 .012 .010	.040 .029 .022 .019 .013 .011	.042 .030 .024 .020 .015 .0115	.045 .032 .025 .021 .015 .012 .010	.045 .032 .026 .022 .016 .012 .010	.033 .026 .022 .016 .013	.034 .027 .023 .016 .013	.026 .017 .013	4.35 2.69 1.86 1.36 .696 .364 .165 .032
0.6	30 40 50 75 100 125 150	.031 .024 .020 .014 .011 .009	.033 .026 .021 .015 .012 .010	.035 .027 .023 .016 .013 .010	.036 .028 .024 .017 .013 .011	.036 .029 .024 .017 .013 .011	.030 .024 .017 .013 .011	.030 .025 .017 .014 .011	.046 .034 .027 .018 .014 .011	3.29 2.28 1.67 .853 .446 .202 .039
0.8	30 40 50 75 100 125 150	.035 .027 .022 .015 .012 .010	.036 .028 .023 .017 .013 .010	.038 .030 .024 .017 .013 .011	.039 .031 .025 .017 .013 .011	.040 .031 .026 .018 .014 .012	.031 .026 .018 .014 .012	.032 .026 .018 .014 .012	.048 .036 .029 .019 .014 .0115	3.80 2.63 1.93 .985 .515 .233 .045

Table 75 (Continued)

Comparison of Coefficients of Roughness in Kutter's, Manning's and Bazin's Formulas

Hy- draulic	c, Che-		n,]	Kutter	's forn	nula			n, Man-	m, Basin's
radius r, feet	gy for-	. 000025	. 8 = . 00005	.0001	. 0002	. 0004	.8 = .001	.01	ning's for- mula	for- mula
1.0	30 40 50 75 100 125 150	.037 .029 .024 .016 .013 .010	.039 .030 .025 .017 .014 .011	.041 .031 .026 .018 .014 .012	.042 .033 .027 .019 .014 .012	.042 .033 .027 .019 .015 .012	.043 .034 .028 .019 .015 .012	.034 .028 .019 .015 .012		4.25 2.94 2.15 1.10 .576 .261 .050
1.5	30 40 50 75 100 125 150	.043 .034 .027 .019 .014 .012	.044 .035 .029 .020 .015 .012	.045 .036 .029 .020 .015 .012	.046 .037 .030 .020 .016 .013	.047 .037 .030 .021 .016 .013	.021 .016 .013	.037 .031 .022 .016 .013	.053 .040 .032 .021 .016 .013	5.20 3.60 2.63 1.35 .705 .319
2.0	40 50 75 100 125 150 175	.037 .030 .021 .016 .013 .011	.038 .031 .022 .016 .013 .011	.039 .032 .022 .016 .013 .011	.040 .032 .022 .017 .013 .011	.040 .032 .022 .017 .013 .011	.033 .022 .017 .013 .011	.033 .022 .017 .013 .011		4.16 3.04 1.56 .814 .369 .071 114
3.0	40 50 75 100 125 150 175	.043 .035 .024 .018 .014 .012	.043 .035 .024 .018 .014 .012	.044 .036 .024 .018 .014 .012	.044 .036 .024 .018 .014 .012	.044 .036 .024 .018 .014 .012	.036 .024 .018 .014 .012	.036 .024 .018 .014 .012	.045 .036 .024 .018 .014 .012	5.09 3.73 1.91 .998 .452 .087 173
4.0	50 75 100 125 150 175 200	.039 .026 .019 .015 .013 .011	.039 .026 .019 .015 .013 .011	.039 .025 .019 .015 .012 .011	.039 .025 .019 .015 .012 .011	.039 .025 .019 .015 .012 .011	.025 .019 .015 .012 .011	.025 .019 .015 .012 .011	.015	4.30 2.20 1.15 .522 .100 200 424

Table 75 (Concluded)

Comparison of Coefficients of Roughness in Kutter's, Manning's and Bazin's Formulas

Hy- draulic	c, Che-		n, K	utter's	Form	ula			n, Man-	m, Bazin's
radius r, feet	for- mula	. 000025	, s = .00005	s = .0001	s = .0002	. 0004	s = .001		ning's for- mula	for- mula
6.0	50 75 100 125 150 175 200	.045 .030 .022 .017 .014 .012 .010	.045 .029 .021 .017 .014 .012	.044 .029 .021 .016 .013 .011	.043 .028 .020 .016 .013 .011	.042 .027 .020 .016 .013 .011	.016 .013 .011	.027 :020 .016 .013	.027 .020 .016 .013	5.27 2.70 1.41 .639 .122 245 519
8.0	50 75 100 125 150 175 200	.048 .033 .024 .019 .015 .013	.048 .031 .023 .018 .014 .012	.047 .030 .022 .017 .014 .012	.046 .029 .021 .017 .014 .011	.045 .028 .021 .016 .013 .011	.028 .020 .016 .013	.044 .028 .020 .016 .013 .011	.028 .021 .017 .014	6.09 3.11 1.63 .738 .141 283 600
10.0	75 100 125 150 175 200 225	.039 .027 .019 .016 .013 .011	.034 .024 .018 .015 .013 .011	.032 .023 .018 .014 .012 .010	.031 .022 .017 .014 .012 .010	.030 .022 .017 .014 .012 .010	.021 .017 .014 .012 .010	.030 .021 .016 .014 .011 .010	.022 .017 .015 .012 .011	3.48 1.82 .825 .158 316 670 949
20.0	75 100 125 150 175 200 225	.045 .033 .024 .019 .016 .013	.041 .029 .021 .017 .014 .012	.037 .026 .020 .016 .013 .011	.036 .025 .019 .015 .012 .011	.034 .024 .018 .015 .012 .010	.018 .014 .012 .010		.024 020 .016 .014 .012	4.92 2.58 1.17 .224 447 948 -1.34
30.0	75 100 125 150 175 200 225	.050 .037 .027 .022 .017 .014 .012	.047 .031 .023 .018 .015 .012 .011	.041 .028 .021 .016 .013 .011 .010	.039 .026 .019 .015 .013 .011	.036 .025 .019 .015 .012 .011	.024 .018 .015 .012 .010		.018 .015 .013	6.08 3.16 1.43 274 548 -1.16 -1.64

Table 76.—Values of c from Kutter's Formula for Use in the Chezy Formula $v=c\sqrt{r_8}$

r	.009	.010	.011	.012	.013	.014	.015	.017	.020	.0225	.025	.030	. 035	.040	
	Slo	pe s	= .0	0008	5 = 1	l in 2	0,00	0 =	0.26	4 feet	per	mile			
.1 .2 .3 .4 .6	.2 100 87 77 68 62 56 51 44 35 30 26 21 18 15 114 99 88 79 71 65 59 50 41 36 31 25 21 18 15 4 124 109 97 88 79 72 66 57 46 40 35 28 24 20 6 139 122 109 98 90 82 76 65 53 46 41 33 28 24 24 25 25 25 25 25 25														
.8 1.0 1.5 2.	150 158 173 184	133 140 154 164	119 126 139 148	107 114 126 135		90 96 107 115			59 64 72 79	52 56 64 70	46 49 57 62	37 40 47 51	31 34 40 44	27 29 34 38	
3. *3.28 4. 6.	198 201 207 220	178 181 187 199	161 164 170 182	148 151 156 168	136 139 145 156	127 129 135 146		104 106 111 122	88 91 95 105	79 81 85 94	71 72 77 85	59 60 64 72	50 52 56 63	44 46 49 58	
10. 20. 50. 100.	234 250 266 275	212 228 245 254	195 211 228 237	181 196 213 222	169 184 201 210	158 174 190 200	165 181	134 149 165 175	116 131 148 158	105 120 136 146	96 110 127 137	82 96 112 123	72 85 101 112	64 77 93 104	
1	Slope s = .0001 = 1 in 10,000 = 0.528 feet per mile														
.1 .2 .3 .4	90 112 125 136	78 98 109 119	68 86 97 106	60 76 87 95	54 69 78 86	49 63 72 79	44 57 65 72	37 48 56 62	30 39 45 50	25 33 39 43	22 29 34 38	17 23 27 31	14 19 22 25	12 16 19 22	
.6 .8 1.0 1.5	149 158 166 178	131 140 147 159	118 1 26 132 144	105 114 120 130	96 103 109 120	88 95 101 111	81 88 93 103	70 76 81 89	57 63 67 75	50 55 59 66	44 48 52 59	35 39 42 48	30 33 35 41	25 28 31 35	
2. 3. 4. 6.	187 198 206 215	168 178 186 195	151 162 169 178	138 149 155 164	143	134	125	96 104 111 119	81 89 94 102	71 79 84 92	64 71 76 84	53 59 64 71	45 51 55 61	39 45 49 54	
10. 20. 50. 100.	226 237 249 255	205 216 227 234	188 200 211 218	174 185 197 204	162 173 185 191	163 175	154 166	139	111 122 134 140			78 89 100 108	69 79 91 98	62 71 83 91	

^{*} Values of c are the same for all slopes when r = 3.28 feet.

Table 76 (Continued)

Values of c from Kutter's Formula for Use in the Chezy Formula $v=c\sqrt{rs}$

r	.009	.010	.011	.012	.013	.014	.015	.017	.020	.0225	.025	.030	. 035	.040	
	Slop	e s =	= .00)02 =	= 1 i	n 50	00 =	1.0)56 fe	et pe	r mi	le			
.1 .2 .3 .4	.2 121 105 93 83 74 67 61 52 42 36 31 25 21 17 3 33 116 103 92 83 76 69 59 48 42 36 32 92 24 20 34 143 125 112 100 91 83 76 65 53 46 40 32 27 23 36 31 25 112 100 91 83 76 65 53 46 40 32 27 23 36 37 38 38 38 38 38 38 38														
.6 .8 1.0 1.5	164 170	145	131 136	118 123	107 113	92 99 104 113	85 91 96 105	73 79 83 91	60 65 69 77	52 57 60 67	46 50 54 60	37 41 44 49	31 34 37 42	26 29 32 36	
• 2. 3. 4. 6.	188 200, 205 213	170 179 185 193	163 168	149 155	137 143	128 133		97 105 111 117	82 89 94 100	72 79 84 90	64 72 76 82	54 59 63 69	45 51 55 60	40 45 48 53	
10. 20. 50. 100.	222 231 240 245	201 210 220 224	194 203	180 189	168 177	158 167		125 134 143 148	108 117 126 131	98 106 116 121	89 98 108 113	76 85 94 99	67 76 85 90	60 68 78 83	
	Slope s = .0004 = 1 in 2500 = 2.112 feet per mile														
.1 .2 .3 .4	104 126 138 148	89 110 120 129	78 97 107 115	69 87 96 104	62 78 87 94	56 71 79 86	50 65 73 79	43 54 62 68	34 44 50 55	29 37 43 47	25 32 37 42	19 25 30 33	16 21 24 27	13 18 21 23	
.6 .8 1.0 1.5	157 166 172 183	148 154	133 138	121 125	115	95 101 106 114	87 93 98 106	75 81 85 93	62 67 70 78	54 58 62 68	47 51 55 61	38 42 45 50	31 35 37 42	27 30 32 37	
	190 199 204 211	184	162 168	149 154	138 142	133	124	98 105 110 116	83 89 94 99	73 79 84 89	65 71 76 81	54 59 63 69	45 51 55 60	40 45 48 53	
10. 20. 50. 100.	235	207 215	190 198	176	164 173	154 162	138 146 154 158	123 131 139 1 43	107 115 123 127	96 104 112 116	88 96 104 108	75 83 91 96	66 73 82 87	59 66 75 80	

TABLE 76 (Concluded)

Values of c from Kutter's Formula for Use in the Chezy Formula $v=c\sqrt{r_3}$

r	.009	.010	.011	.012	.013	.014	.015	.017	.020	.0225	.025	. 030	.035	.040	
	Slo	pe s	= .	001	= 1	in 10	000 :	= 5.	28 fe	et pe	r mil	e			
.1 .2 .3 .4	.2 129 113 99 89 81 73 86 57 45 39 34 27 22 18 31 124 109 98 89 81 74 63 51 44 39 30 25 21 .4 150 131 117 105 96 88 80 69 56 48 43 34 28 24 .6 161 142 127 115 104 96 88 76 63 55 48 39 32 27 .8 169 150 134 122 111 102 94 82 68 59 52 42 35 30														
.6 .8 1.0 1.5				122 127	111 116				63 68 71 78	55 59 62 69			32 35 38 43	27 30 33 37	
2. 3. 4. 6.	191 199 204 211	171 179 184 190	155 163 168 174	149 154	142	121 128 133 139	112 119 124 130	98 105 110 116	83 89 93 99	73 79 83 89	66 71 75 81	54 59 68 68	46 51 54 59	40 45 48 52	
10. 20. 50. 100.	218 225 232 236	197 205 212 216	181 188 196 200	175 182		145 153 160 164	136 144 151 155	122 129 137 141	105 113 120 124	95 102 110 114	87 94 101 105	74 81 89 94	65 72 79 85	58 65 72 77	
	SI	ope (; =	.01	= 1 i	in 10	0 =	52.8	3 feet	per	mile				
.1 .2 .3 .4	110 130 143 151	125	83 100 111 119	74 90 100 107	66 81 90 98	60 74 83 89	54 67 76 82	46 57 64 70	36 46 52 57	31 39 45 49	27 34 39 44	21 27 31 35	17 22 25 29	14 19 22 24	
.6 .8 1.0 1.5	162 170 175 185		129 135 141 149	128	106 112 117 125	98 103 108 116	90 95 99 107	77 82 87 94	64 68 72 79	55 60 63 69	49 53 56 62	39 43 45 51	33 35 38 43	28 31 33 37	
2. 3. 4. 6.	191 199 204 210	171 179 184 190	155 162 167 173	149 154	142	121 128 132 138	112 119 123 129	99 105 109 115	83 89 93 99	74 79 83 88	66 71 76 81	55 59 63 68	46 51 55 59	40 45 48 52	
10. 20. 50. 100.	217 225 231 235	196 204 210 214	180 187 194 197	166 173 181 184	154 161 168 172	145 152 158 162	136 143 150 153	121 128 135 139	105 112 119 122	94 101 108 112	86 93 100 104	74 80 87 91	65 71 78 82	58 64 71 75	

Note.—For slopes greater than .01 c remains practically constant.

Table 77.—Values of c from Bazin's Formula for Use in the Chezy Formula $v=c\sqrt{rs}$

Hydraulic radius, r in feet	m = .109	m = .290	m = .833	m = 1.54	m = 2.35	m = 3.17
.1	117	82	43	27	19	14
.2	127	96	55	35	25	19
.3 ·	131	103	63	41	30	23
.4	135	108	68	46	32	26
. 5	137	112	72	50	37	29
.6	139	116	76	53	39	31
.8	141	119	82	58	43	35
1.0	142	122	86	62	47	38
1.25	144	125	90	66	51	41
1.5	145	128	94	70	54	44
1.75	146	130	97	73	57	46
2.0	147	132	99	76	59	49
2.5	148	134	103	80	64	53
3.	149	136	107	84	67	56
4	150	138	111	89	72	61
5.	151	140	115	94	77	65
6.	151	142	118	98	80	69
8.	152	144	122	102	86	74
10.	153	145	125	106	90	79
12.	153	145	127	109	94	82
15.	153	146	130	113	98	87
20 .	154	148	133	117	103	92
30.	154	150	137	123	. 110	100
40.	155	151	139	127	115	105
50.	155	152	141	129	119	108

Table 78.—Values of K in Manning's Formula Corresponding to Different Values of n. $K = \frac{1.486}{n}$

n	K	n	K	n.	K	n	K	n	K
.009	165	.015	99	.021	71	.030	50	. 050	30
.010 .011	149 135	.016 .017	93 87	.022 .023	68 65	.0325 .035	46 43	.060 .070	25 21
.012 .013	124 114	.018 .019	83 78	.024 .025	62 59	.0375 .040	40 37	.080	19 17
.014	106	. 020	74	.0275	54	.045	33	.100	15

Table 79.—Ratios for Determining Hydraulic Elements of Circular Conduits Flowing Part Full. See Page 203 for Nomenclature

	CONDU	TS FL	OWING	PAR	r Full.	SEE	PAGE 2	03 FOR	Nome	NCLAT	TURE
$\frac{D}{d}$	$\frac{a}{A}$	$\frac{p}{P}$	$\frac{r}{R}$	$\frac{r}{d}$	2.159 CaCr38	$\frac{D}{d}$	$\frac{a}{A}$	$\frac{p}{P}$	r R	<u>r</u> d	2.159 CaCr34
.01 .02 .03 .04	C _a .0017 .0048 .0087 .0134 .0187	C _p .0638 .0904 .1108 .1282 .1436	Cr .027 .053 .080 .105		% 3210. 1340. 725. 450.	.51 .52 .53 .54	C _a .5127 .5255 .5382 .5509 .5635		1.025 1.037 1.048	C ₄ . 253 . 256 . 259 . 262 . 265	K 4.18 4.04 3.91 3.80 3.69
.06 .07 .08 .09	.0245 .0308 .0375 .0445 .0520	.1575 .1705 .1826 .1940 .2048	.156 .181 .205 .230 .254	.039 .045 .051 .057 .063	305. 220. 166. 129.	. 56 . 57 . 58 . 59 . 60	.5762 .5888 .6014 .6140 .6265	. 5511 . 5576	1.070 1.081 1.091 1.101 1.111	.268 .270 .273 .275 .278	3.58 3.48 3.39 3.30 3.21
.11 .12 .13 .14 .15	.0599 .0680 .0764 .0851 .0941	.2152 .2252 .2348 .2442 .2531	.278 .302 .325 .348 .372	.070 .075 .081 .087 .093	84.6 70.6 59.7 51.2 44.4	.61 .62 .63 .64 .65	.6389 .6513 .6636 .6759 .6881	. 5771 . 5837 . 5903	1.120 1.129 1.137 1.145 1.153	.280 .282 .284 .286 .288	3.14 3.06 2.99 2.92 2.86
.16 .17 .18 .19 .20	.1033 .1127 .1224 .1328 .1424	. 2619 . 2706 . 2790 . 2871 . 2952	.394 .417 .439 .461 .482	.099 .104 .110 .115 .121	38.8 34.3 30.5 27.4 24.7	.66 .67 .68 .69	.7002 .7122 .7241 .7360 .7477	.6173 .6241	1.160 1.167 1.173 1.179 1.185	. 290 . 292 . 293 . 295 . 296	2.79 2.73 2.68 2.63 2.58
.21 .22 .23 .24 .25	. 1527 . 1631 . 1737 . 1845 . 1955	. 3031 . 3108 . 3184 . 3259 . 3333	.504 .525 .546 .566 .587	.126 .131 .136 .142 .147	22.3 20.3 18.6 17.1 15.8	.71 .72 .73 .74 .75	.7593 .7708 .7822 .7934 .8045	. 6521 . 6593	1.190 1.195 1:199 1.203 1.207	. 298 . 299 . 300 . 301 . 302	2.53 2.49 2.45 2.41 2.37
.26 .27 .28 .29 .30	.2066 .2178 .2292 .2407 .2523	.3407 .3479 .3550 .3620 .3690	.607 .626 .646 .665 .684	. 161 . 166	14.6 13.5 12.6 11.8 11.0	.76 .77 .78 .79 .80	.8155 .8263 .8369 .8473 .8576	.6741 .6816 .6892 .6969 .7048	$1.214 \\ 1.216$.302 .303 .301 .304 .304	2.33 2.30 2.27 2.24 2.21
.31 .32 .33 .34 .35	.2640 .2759 .2878 .2998 .3119	. 3759 . 3827 . 3895 . 3963 . 4031	.702 .721 .739 .757 .774	. 176 . 180 . 185 . 189 . 193	10.35 9.74 9.18 8.67 8.21	.81 .82 .83 .84 .85	. 8677 . 8776 . 8873 . 8967 . 9059	.7210 .7294 .7381	1.217 1.217 1.216 1.215 1.213	.304 .304 .304 .304 .303	2.18 2.16 2.14 2.11 2.09
.36 .37 .38 .39 .40	.3241 .3364 .3487 .3611 .3735	.4097 .4163 .4229 .4295 .4359	.791 .808 .825 .841 .857	. 198 . 202 . 206 . 210 . 214	7.78 7.40 7.04 6.71 6.41	.86 .87 .88 .89	.9149 .9236 .9320 .9401 .9480	.7652 .7748 .7848	1.210 1.207 1.203 1.198 1.192	.303 .302 .301 .299 .298	2.08 2.06 2.05 2.04 2.03
.41 .42 .43 .44 .45	.3860 .3986 .4112 .4238 .4365	.4424 .4489 .4553 .4617 .4681	. 873 . 888 . 903 . 918 . 932	.218 .222 .226 .229 .233	6.13 5.86 5.62 5.39 5.18	.91 .92 .93 .94 .95	.9555 .9625 .9692 .9754 .9813	. 8174 . 8295	1.185 1.177 1.168 1.158 1.146	. 296 . 294 . 292 . 289 . 286	2.02 2.01 2.01 2.01 2.01
.46 .47 .48 .49 .50	.4491 .4618 .4745 .4873 .5000	. 4745 . 4809 . 4872 . 4936 . 5000	.946 .960 .974 .987 1.000	. 236 . 240 . 243 . 247 . 250	4.99 4.80 4.63 4.47 4.32	.96 .97 .98 .99 1.00	.9866 .9913 .9952 .9983 1.0000	.9096	1.094	. 283 . 279 . 274 . 267 . 250	2.02 2.03 2.04 2.07 2.16

Table 80.—For Determining Hydraulic Radius, r, for Trapezoidal Channels of Various Side Slopes Let $x = \frac{\text{depth of water}}{\text{bottom width of channel}} = \frac{D}{b}$ and $c_x = \frac{C}{b}$

tabulated value. Then $r = c_x D$

Side slopes of channel, ratio of horizontal to vertical x y y y y y y y y y y											
Vertical 34-1 32-1 34-1 1-1 132-1 2-1 232-1 3-1 4-1	_	Si	de slor	es of	channe	l, ratio	of ho	rizont	al to v	ertical	
01 980 982 983 982 980 976 973 309 981 92 961 955 948 941 927 967 967 967 965 961 955 948 941 926 933 936 936 934 926 916 995 894 872 05 999 918 922 922 920 911 899 886 883 866 883 866 883 866 883 866 883 866 883 866 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 886 883 889 887 841 822	<i>x</i>	Vertical	1/4-1	1∕2−1	34-1	1-1	1½-1	2-1	21/2-1	3–1	4-1
02 962 965 967 967 961 961 955 948 941 926 848 941 927 889 931 951 949 943 935 926 916 905 894 872 0.5 909 918 922 922 920 911 899 886 874 850 0.6 893 903 908 909 906 896 886 853 869 856 830 0.8 862 876 882 883 881 869 856 830 812 0.8 862 876 882 883 881 869 857 841 825 809 381 1.0 833 850 858 860 858 845 829 812 797 767 1.1 820 838 847 849 847 834 818 801 784 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
.03 .9443 .949 .951 .949 .943 .935 .926 .916 .905 .894 .872 .05 .999 .918 .922 .922 .920 .911 .899 .886 .874 .850 .06 .893 .903 .908 .909 .906 .896 .883 .869 .866 .830 .07 .877 .889 .895 .896 .893 .882 .883 .839 .832 .795 .09 .847 .863 .870 .871 .869 .857 .841 .825 .809 .781 .10 .833 .850 .858 .860 .858 .845 .829 .812 .797 .767 .11 .820 .838 .847 .849 .847 .848 .824 .807 .790 .773 .744 .13 .794 .814 .825 .828 .826 .814 .797<	.01		.982	.983	.983	.982	.980	.976	.973		.961
.04 .926 .933 .936 .936 .934 .926 .916 .905 .894 .872 .05 .909 .908 .909 .906 .896 .883 .889 .856 .830 .06 .893 .903 .908 .909 .906 .896 .883 .889 .856 .830 .08 .862 .876 .882 .883 .881 .889 .852 .883 .823 .795 .09 .847 .863 .870 .871 .869 .857 .841 .825 .809 .781 .10 .833 .850 .858 .860 .858 .845 .829 .812 .797 .767 .11 .820 .838 .847 .849 .847 .834 .818 .801 .784 .755 .12 .806 .826 .838 .836 .824 .807 .790 .773 .744 .745 .14	.02		.965	. 967	.967	.965	.961	. 955	.948	.941	.927
.05 .909 .918 .922 .922 .920 .911 .899 .886 .874 .850 .06 .893 .903 .908 .909 .906 .886 .883 .899 .856 .830 .07 .877 .889 .895 .893 .882 .886 .853 .839 .812 .09 .847 .863 .870 .871 .869 .857 .841 .825 .809 .781 .10 .833 .850 .858 .860 .858 .845 .829 .812 .797 .767 .11 .820 .838 .847 .849 .847 .834 .818 .801 .784 .755 .12 .806 .826 .836 .838 .824 .807 .790 .773 .744 .13 .794 .814 .825 .828 .826 .814 .797 .779 .763 .734	.03										
.06 893 .903 .908 .909 .906 .896 .883 .869 .856 .830 .812 .862 .862 .883 .881 .869 .854 .839 .822 .795 .09 .847 .863 .870 .871 .869 .857 .841 .825 .809 .781 .10 .833 .850 .858 .860 .858 .845 .889 .812 .797 .767 .11 .820 .838 .847 .849 .847 .834 .818 .801 .784 .755 .12 .806 .826 .836 .838 .836 .824 .807 .790 .773 .744 .13 .794 .814 .825 .828 .826 .814 .797 .779 .763 .734 .15 .769 .793 .805 .809 .807 .795 .776 .761 .744 .715 .74	.04	.926	. 933	.936	.936	.934	.926	.916	.905	.894	.872
.06 893 .903 .908 .909 .906 .896 .883 .869 .856 .830 .812 .862 .862 .883 .881 .869 .854 .839 .822 .795 .09 .847 .863 .870 .871 .869 .857 .841 .825 .809 .781 .10 .833 .850 .858 .860 .858 .845 .889 .812 .797 .767 .11 .820 .838 .847 .849 .847 .834 .818 .801 .784 .755 .12 .806 .826 .836 .838 .836 .824 .807 .790 .773 .744 .13 .794 .814 .825 .828 .826 .814 .797 .779 .763 .734 .15 .769 .793 .805 .809 .807 .795 .776 .761 .744 .715 .74	0.5	000	010	000		000		000	000	074	050
.07	.05		.918	.922	.922	.920	.911	.899	.886	.8/4	.800
.08 .862 .876 .882 .883 .881 .869 .854 .839 .823 .795 .09 .847 .863 .870 .871 .869 .857 .841 .825 .809 .781 .10 .833 .850 .858 .860 .858 .845 .829 .812 .797 .767 .11 .820 .836 .838 .847 .849 .847 .834 .818 .801 .784 .755 .12 .806 .826 .836 .838 .836 .824 .807 .790 .773 .744 .13 .794 .814 .825 .828 .826 .814 .777 .779 .763 .734 .14 .781 .803 .815 .819 .817 .804 .787 .779 .753 .724 .15 .769 .793 .805 .809 .807 .795 .778 .761 </td <td>.00</td> <td></td> <td></td> <td>.908</td> <td>.909</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.830</td>	.00			.908	.909						.830
.09 .847 .863 .870 .871 .869 .857 .841 .825 .809 .781 .10 .833 .850 .858 .860 .858 .845 .829 .812 .797 .767 .11 .820 .838 .847 .849 .847 .834 .818 .801 .784 .752 .12 .806 .826 .836 .838 .836 .824 .807 .790 .773 .744 .13 .794 .814 .825 .828 .826 .814 .797 .779 .763 .734 .14 .781 .803 .815 .819 .817 .804 .787 .770 .753 .724 .15 .769 .793 .805 .809 .807 .795 .761 .744 .715 .746 .774 .715 .761 .744 .715 .762 .777 .782 .780 .787 .7	.07										
10	.00	.802		.002						.823	. 790
11 820 838 847 849 847 834 818 801 784 755 12 806 826 836 838 836 824 807 790 773 744 13 794 814 825 828 826 814 797 779 763 734 14 781 803 815 819 817 804 787 770 753 724 15 769 793 805 809 807 795 770 752 736 707 16 758 782 795 800 799 786 769 752 736 707 17 746 772 786 791 790 778 761 744 712 706 182 700 181 735 762 2777 782 782 700 783 736 720 693 720 693<	.09	. 041	. 803	.870	.8/1	. 809	.807	.841	.825	.809	. 781
11 820 838 847 849 847 834 818 801 784 755 12 806 826 836 838 836 824 807 790 773 744 13 794 814 825 828 826 814 797 779 763 734 14 781 803 815 819 817 804 787 770 753 724 15 769 793 805 809 807 795 770 752 736 707 16 758 782 795 800 799 786 769 752 736 707 17 746 772 786 791 790 778 761 744 712 706 182 700 181 735 762 2777 782 782 700 783 736 720 693 720 693<	10	833	850	858	860	858	845	820	819	797	767
1.12 8.06 8.26 8.36 8.38 8.36 8.24 8.07 .790 .773 .744 1.3 .794 8.14 .825 8.28 8.26 8.14 .797 .779 .763 .734 1.4 .781 .803 .815 .819 .817 .804 .787 .770 .753 .724 1.5 .769 .793 .805 .809 .807 .795 .778 .761 .744 .715 1.6 .758 .782 .795 .800 .799 .788 .769 .752 .736 .707 1.7 .746 .772 .786 .791 .790 .778 .761 .744 .715 .760 .782 .770 .753 .736 .720 .693 .746 .729 .733 .746 .729 .733 .746 .729 .713 .886 20 .714 .743 .752 .759 .7	1 11								801		755
.14 .781 .803 .815 .819 .817 .804 .787 .770 .753 .724 .15 .769 .793 .805 .807 .795 .776 .761 .744 .715 .766 .775 .800 .799 .786 .769 .752 .762 .707 .786 .701 .790 .778 .761 .744 .712 .786 .791 .790 .778 .761 .744 .728 .700 .788 .762 .776 .768 .782 .770 .753 .736 .720 .693 .19 .725 .768 .774 .774 .763 .736 .720 .693 .865 .720 .693 .722 .706 .679 .721 .704 .734 .752 .759 .759 .748 .732 .716 .700 .674 .222 .694 .726 .744 .751 .752 .741 .726 .709 .694 .688<	12		826	836	838	836	824	807	790	773	744
.14 .781 .803 .815 .819 .817 .804 .787 .770 .753 .724 .15 .769 .793 .805 .807 .795 .776 .761 .744 .715 .766 .775 .800 .799 .786 .769 .752 .762 .707 .786 .701 .790 .778 .761 .744 .712 .786 .791 .790 .778 .761 .744 .728 .700 .788 .762 .776 .768 .782 .770 .753 .736 .720 .693 .19 .725 .768 .774 .774 .763 .736 .720 .693 .865 .720 .693 .722 .706 .679 .721 .704 .734 .752 .759 .759 .748 .732 .716 .700 .674 .222 .694 .726 .744 .751 .752 .741 .726 .709 .694 .688<	13	794	814	825	828			707	779	763	
	14								770		
. 17					.020	.01.	.001				
. 17	.15	.769	.793	. 805	.809	.807	.795	.778	.761	.744	.715
. 17	.16	.758	.782	.795	.800		.786	.769	.752	.736	.707
20 714 .743 .760 .767 .766 .755 .739 .722 .706 .679 21 .704 .734 .752 .759 .759 .748 .732 .716 .700 .674 22 .694 .726 .744 .751 .752 .741 .726 .709 .694 .668 .23 .885 .717 .736 .744 .745 .735 .720 .704 .888 .663 .24 .676 .709 .729 .737 .739 .729 .714 .698 .683 .658 .25 .667 .701 .722 .730 .732 .723 .708 .693 .678 .649 .26 .658 .693 .715 .724 .726 .717 .703 .688 .673 .649 .27 .649 .686 .708 .717 .720 .712 .698 .683 .668	.17		.772	.786	.791	.790			.744	.728	.700
20 714 .743 .760 .767 .766 .755 .739 .722 .706 .679 21 .704 .734 .752 .759 .759 .748 .732 .716 .700 .674 22 .694 .726 .744 .751 .752 .741 .726 .709 .694 .668 .23 .885 .717 .736 .744 .745 .735 .720 .704 .888 .663 .24 .676 .709 .729 .737 .739 .729 .714 .698 .683 .658 .25 .667 .701 .722 .730 .732 .723 .708 .693 .678 .649 .26 .658 .693 .715 .724 .726 .717 .703 .688 .673 .649 .27 .649 .686 .708 .717 .720 .712 .698 .683 .668	.18	.735	.762	.777			.770		.736	.720	. 693
20 714 .743 .760 .767 .766 .755 .739 .722 .706 .679 21 .704 .734 .752 .759 .759 .748 .732 .716 .700 .674 22 .694 .726 .744 .751 .752 .741 .726 .709 .694 .668 .23 .885 .717 .736 .744 .745 .735 .720 .704 .888 .663 .24 .676 .709 .729 .737 .739 .729 .714 .698 .683 .658 .25 .667 .701 .722 .730 .732 .723 .708 .693 .678 .649 .26 .658 .693 .715 .724 .726 .717 .703 .688 .673 .649 .27 .649 .686 .708 .717 .720 .712 .698 .683 .668	. 19		. 752		.774	.774	.763		.729	.713	
. 22									f		
. 22	.20	.714	.743	.760	. 767	.766	. 755	.739	.722		. 679
.23	.21							. 732			. 674
25 .667 .701 .722 .730 .732 .723 .708 .693 .678 .653 .26 .658 .693 .715 .724 .726 .717 .703 .688 .673 .649 .27 .649 .686 .708 .717 .720 .712 .698 .683 .668 .644 .28 .641 .678 .701 .711 .714 .707 .698 .683 .668 .644 .29 .633 .671 .695 .706 .709 .702 .688 .673 .660 .637 .30 .625 .664 .688 .700 .703 .697 .683 .669 .656 .633 .31 .617 .657 .682 .694 .698 .692 .679 .665 .652 .630 .32 .610 .651 .676 .689 .693 .687 .675 .661 .648 <td>. 22</td> <td></td> <td>.726</td> <td></td> <td>.751</td> <td></td> <td>.741</td> <td>.726</td> <td></td> <td></td> <td>.668</td>	. 22		.726		.751		.741	.726			.668
25 .667 .701 .722 .730 .732 .723 .708 .693 .678 .653 .26 .658 .693 .715 .724 .726 .717 .703 .688 .673 .649 .27 .649 .686 .708 .717 .720 .712 .698 .683 .668 .644 .28 .641 .678 .701 .711 .714 .707 .698 .683 .668 .644 .29 .633 .671 .695 .706 .709 .702 .688 .673 .660 .637 .30 .625 .664 .688 .700 .703 .697 .683 .669 .656 .633 .31 .617 .657 .682 .694 .698 .692 .679 .665 .652 .630 .32 .610 .651 .676 .689 .693 .687 .675 .661 .648 <td>.23</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>720</td> <td></td> <td></td> <td>.663</td>	.23							720			.663
. 26	.24	.676	.709	.729	.737	.739	.729	.714	.698	. 683	.658
. 26	ا م	007	701	700	700	700	700	700	200	070	000
27 649 .686 .708 .717 .720 .712 .698 .683 .668 .645 28 .641 .678 .701 .711 .714 .707 .693 .678 .604 .644 .641 .29 .633 .671 .695 .706 .709 .702 .688 .673 .660 .637 .30 .625 .664 .688 .700 .703 .697 .683 .669 .656 .633 .31 .617 .657 .682 .694 .698 .692 .679 .665 .652 .630 .32 .610 .651 .676 .689 .693 .687 .675 .661 .648 .622 .33 .602 .644 .670 .684 .688 .683 .671 .657 .645 .624 .34 .595 .638 .665 .678 .683 .678 .667 .657	.25	.007	. 701	. 722	.730	700	. 723				.003
.28 .641 .678 .701 .711 .714 .707 .693 .673 .664 .641 .29 .633 .671 .695 .706 .709 .702 .688 .673 .660 .637 .30 .625 .664 .688 .700 .703 .697 .683 .669 .656 .633 .31 .617 .657 .682 .694 .698 .692 .679 .665 .652 .630 .32 .610 .651 .676 .689 .693 .687 .675 .661 .648 .627 .33 .602 .644 .670 .684 .688 .683 .671 .657 .645 .621 .34 .595 .638 .665 .678 .683 .678 .664 .641 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .618 .36 .581 .626 .654 .668 .674 .670 .669 .647 .655 .643 .632 .612 .37 .575 .620 .648 .649 .669	.20		.093		717						.049
.29 .633 .671 .695 .706 .709 .702 .688 .673 .660 .637 .30 .625 .664 .688 .700 .703 .697 .683 .669 .656 .633 .31 .617 .657 .682 .694 .698 .692 .679 .665 .632 .633 .32 .610 .651 .676 .689 .693 .687 .675 .661 .484 .627 .33 .602 .644 .670 .684 .683 .671 .657 .645 .644 .621 .34 .595 .638 .665 .678 .683 .678 .667 .654 .641 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .611 .36 .581 .626 .654 .668 .674 .670 .659 .647 .635 .615 .37 .575 .620 .648 .644 .669 .666 .655 .643 .632 .612 .38 .568 .614 .643 .659 .665 .662	.27		. 080	. 708			712		.083		
.30 .625 .664 .688 .700 .703 .697 .683 .669 .656 .633 .31 .617 .657 .682 .694 .698 .692 .679 .665 .652 .630 .32 .610 .651 .676 .689 .693 .687 .675 .661 .648 .622 .33 .602 .644 .670 .684 .683 .683 .671 .657 .465 .624 .34 .595 .638 .665 .678 .683 .678 .667 .654 .441 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .615 .36 .581 .626 .654 .668 .674 .670 .659 .647 .634 .641 .621 .37 .575 .620 .648 .664 .669 .666 .652 .640 </td <td>.40</td> <td></td>	.40										
.31 .617 .682 .694 .698 .692 .679 .665 .652 .630 .32 .610 .651 .676 .689 .693 .687 .675 .661 .448 .627 .33 .602 .644 .670 .684 .688 .683 .671 .657 .645 .624 .34 .595 .638 .665 .678 .683 .677 .667 .654 .641 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .618 .36 .581 .626 .654 .668 .674 .670 .659 .647 .635 .615 .615 .37 .575 .620 .648 .664 .669 .666 .655 .643 .632 .610 .38 .568 .614 .643 .659 .665 .662 .622 .640 .629 </td <td>.29</td> <td>.033</td> <td>.071</td> <td>. 093</td> <td>. 700</td> <td>. 109</td> <td>. 702</td> <td>.088</td> <td>.073</td> <td>.000</td> <td>.037</td>	.29	.033	.071	. 093	. 700	. 109	. 702	.088	.073	.000	.037
.31 .617 .682 .694 .698 .692 .679 .665 .652 .630 .32 .610 .651 .676 .689 .693 .687 .675 .661 .448 .627 .33 .602 .644 .670 .684 .688 .683 .671 .657 .645 .624 .34 .595 .638 .665 .678 .683 .677 .667 .654 .641 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .618 .36 .581 .626 .654 .668 .674 .670 .659 .647 .635 .615 .615 .37 .575 .620 .648 .664 .669 .666 .655 .643 .632 .610 .38 .568 .614 .643 .659 .665 .662 .622 .640 .629 </td <td>30</td> <td>625</td> <td>664</td> <td>688</td> <td>700</td> <td>703</td> <td>697</td> <td>683</td> <td>660</td> <td>656</td> <td>633</td>	30	625	664	688	700	703	697	683	660	656	633
.32 610 .651 .676 .689 .693 .687 .675 .661 .648 .627 .33 .602 .644 .670 .684 .688 .683 .671 .657 .645 .624 .34 .595 .638 .665 .678 .683 .678 .667 .654 .641 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .618 .36 .581 .626 .654 .668 .674 .670 .659 .647 .635 .615 .37 .575 .620 .648 .664 .669 .666 .655 .643 .632 .612 .38 .568 .614 .643 .659 .665 .662 .652 .640 .629 .610 .39 .562 .608 .638 .654 .661 .658 .649 .637 .626 .607 .40 .556 .603 .633 .650 .657 .655 .645 .634 .623 .605	31	617	657	689			602	670	665	652	630
.33 .602 .644 .670 .684 .688 .683 .671 .657 .645 .624 .34 .595 .638 .665 .678 .683 .678 .667 .654 .641 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .618 .36 .581 .626 .654 .668 .674 .670 .659 .647 .635 .615 .37 .575 .620 .648 .664 .669 .666 .655 .643 .632 .612 .38 .568 .614 .643 .659 .665 .662 .652 .640 .629 .610 .39 .562 .608 .638 .654 .661 .658 .649 .637 .626 .607 .40 .556 .603 .633 .650 .657 .655 .645 .634 .623 .608	32										627
.34 .595 .638 .665 .678 .683 .678 .667 .654 .641 .621 .35 .588 .632 .659 .673 .678 .674 .663 .650 .638 .618 .36 .581 .626 .654 .668 .674 .670 .659 .647 .635 .615 .37 .575 .620 .648 .664 .669 .665 .662 .655 .643 .632 .612 .38 .568 .614 .643 .659 .665 .662 .662 .640 .629 .610 .39 .562 .608 .638 .654 .661 .658 .649 .637 .626 .607 .40 .556 .603 .633 .650 .657 .655 .645 .634 .623 .602	33				684			671			
.35	34	595	638		678		678	667	654		621
. 38	1	.555	. 550		1						t
. 38	.35	. 588	. 632	. 659	.673	.678	. 674	. 663	. 650	. 638	.618
. 38	.36							. 659		. 635	.615
. 38	.37	. 575	. 620	. 648			. 666	. 655	.643	. 632	.612
.39 .562 .608 .638 .654 .661 .658 .649 .637 .626 .607 .40 .556 .603 .633 .650 .657 .655 .645 .634 .623 .605	.38						. 662			. 629	.610
.40 .556 .603 .633 .650 .657 .655 .645 .634 .623 .605	. 39		.608	. 638	. 654	.661					.607
.40 .556 .603 .633 .650 .657 .655 .645 .634 .623 .605 .41 .549 .598 .629 .646 .653 .652 .642 .631 .621 .603											
.41 .549 .598 .629 .646 .653 .652 .642 .631 .621 .603	.40										
	.41	.549	. 598	. 629	.646	. 653	. 652	. 642	. 631	. 621	. 603
		1			ł			1		l	1

Table 80 (Continued)

For Determining Hydraulic Radius, r, for Trapezoidal Channels of Various Side Slopes

Let $x = \frac{\text{depth of water}}{\text{bottom width of channel}} = \frac{D}{b}$ and $c_x = \text{tabulated}$ value. Then $r = c_x D$

_	Si	de slor	es of	channe	l, ratio	of ho	rizont	a to v	ertical	
x	Vertical	1/4-1	⅓-1	34-1	1-1	1}{-1	2-1	2½-1	3–1	4-1
.42 .43 .44	.543 .538 .532	. 592 . 587 . 582	.624 .619 .615	.641 .637 .633	. 649 . 645 . 641	.648 .645 .642	.639 .636 .633	.629 .626 .623	.618 .616 .613	. 600 . 598 . 596
.45 .46 .47 .48 .49	.526 .521 .515 .510 .505	.577 .572 .568 .563 .558	.611 .606 .602 .598 .594	.629 .626 .622 .618	.638 .635 .631 .628 .625	. 639 . 636 . 633 . 630 . 627	.631 .628 .625 .623 .620	.621 .618 .616 .614 .611	.611 .609 .607 .605	.594 .592 .591 .589 .587
.50 .51 .52 .53 .54	.500 .495 .490 .485 .481	.554 .550 .545 .541 .537	.590 .587 .583 .579 .576	.611 .608 .604 .601	.621 .618 .615 .612 .610	.624 .622 .619 .617	.618 .616 .613 .611	.609 .607 .605 .603	. 601 . 599 . 597 . 595 . 594	.586 .584 .583 .581 .580
. 55 . 56 . 57 . 58 . 59	.476 .472 .467 .463 .459	.533 .529 .525 .521 .518	.572 .568 .565 .562 .558	.595 .592 .589 .586 .583	.607 .604 .601 .598	.612 .610 .607 .605 .603	.607 .605 .603 .601	. 600 . 598 . 596 . 594 . 593	. 592 . 590 . 589 . 587 . 586	.578 .577 .576 .574 .573
.60 .61 .62 .63 .64	.455 .450 .446 .442 .439	.514 .510 .507 .504 .500	.555 .552 .549 .546 .543	.580 .577 .575 .572 .569	.593 .591 .588 .586 .584	.601 .599 .597 .595 .593	.597 .596 .594 .592 .590	.591 .589 .588 .586 .585	. 584 . 583 . 581 . 580 . 579	.572 .571 .569 .568 .567
.65 .66 .67 .68	.435 .431 .427 .424 .420	.497 .494 .490 .487	.540 .537 .534 .532 .529	.567 .564 .562 .559 .557	.581 .579 .577 .575 .573	.591 .589 .587 .585 .583	.589 .587 .586 .584 .583	. 583 . 582 . 580 . 579 . 578	.577 .576 .575 .574 .573	. 566 . 565 . 564 . 563 . 562
.70 .71 .72 .73 .74	.417 .413 .410 .407 .403	.481 .478 .475 .472 .469	.526 .524 .521 .518 .516	.555 .552 .550 .548 .546	. 571 . 569 . 567 . 565 . 563	.582 .580 .578 .577 .575	.581 .580 .578 .577 .576	.577 .575 .574 .573 .572	.571 .570 .569 .568 .567	.561 .560 .559 .558 .558
.75 .76 .77 .78 .79	.400 .397 .394 .391 .388	.467 .464 .461 .458 .456	.514 .511 .509 .507 .504	. 544 . 542 . 539 . 537 . 535	. 561 . 559 . 557 . 555 . 554	.570 .569	.574 .573 .572 .570 .569		. 566 . 565 . 564 . 563 . 562	. 557 . 556 . 555 . 554 . 554
.80 .81 .82 .83	.385 .382 .379 .376	.453 .450 .448 .445	.498	. 530	. 552 . 550 . 548 . 547	.565	. 568 . 567 . 566 . 565		.561 .560 .559 .558	. 553 . 552 . 551 . 551

Table 80 (Concluded)

FOR DETERMINING HYDRAULIC RADIUS, r, FOR TRAPEZOIDAL CHANNELS OF VARIOUS SIDE SLOPES

 $\frac{\text{depth of water}}{\text{bottom width of channel}} = \frac{D}{b} \text{ and } c_x = \text{tabulated}$ value. Then $r = c_x D$

	Si	Side slopes of channel, ratio of horizontal to vertical Vertical											
x	Vertical	34-1	}2 -1	34-1	1-1	11/2-1	21	21/2-1	3-1	4-1			
. 84	.373	. 443	. 493	. 526	. 545	. 561	. 563	. 561	. 558	. 550			
.85 .86 .87 .88	.370 .368 .365 .362 .360	.441 .438 .436 .434 .431	.491 .489 .487 .485 .483	.524 .522 .520 .519 .517	.544 .542 .540 .539 .537	.560 .558 .557 .556 .555	.562 .561 .560 .559	.560 .559 .558 .558 .557	. 557 . 556 . 555 . 554 . 554	.549 .549 .548 .547 .547			
.90 .91 .92 .93 .94	.357 .355 .352 .350 .347	.429 .427 .425 .423 .420	.481 .479 .478 .476 .474	.515 .514 .512 .511 .509	.536 .534 .533 .532 .530	.554 .552 .551 .550 .549	.557 .556 .555 .554 .553	. 556 . 555 . 554 . 553 . 553	.553 .552 .551 .551 .550	. 546 . 546 . 545 . 544 . 544			
.95 .96 .97 .98 .99	.345 .342 .340 .338 .336	.418 .416 .414 .412 .410	.472 .470 .469 .467	.507 .506 .504 .503 .501	.529 .528 .526 .525 .524	.548 .547 .546 .545 .544	.553 .552 .551 .550 .549	.552 .551 .550 .550 .549	.549 .549 .548 .547 .547	.543 .543 .542 .542 .541			
1.00 1.01 1.02 1.03 1.04	.333 .331 .329 .327 .325	.408 .406 .404 .403 .401	.464 .462 .460 .459	.500 .499 .497 .496 .494	.522 .521 .520 .519 .518	.543 .542 .541 .540 .539	.548 .547 .547 .546 .545	.548 .547 .547 .546 .545	.546 .545 .545 .544 .544	.541 .540 .540 .539 .539			
1.05 1.06 1.07 1.08 1.09	.323 .321 .318 .316 .314	.399 .397 .395 .394 .392	.456 .454 .452 .451 .449	.493 .492 .490 .489 .488	.516 .515 .514 .513 .512	.538 .537 .536 .535 .534	.544 .543 .543 .542 .541	.545 .544 .543 .543 .542	.543 .543 .542 .541 .541	.538 .538 .537 .537 .537			
1.10 1.11 1.12 1.13 1.14	.312 .311 .309 .307 .305	.390 .388 .387 .385 .384	.448 .446 .445 .444 .442	.487 .485 .484 .483 .482	.511 .510 .509 .508 .507	.534 .533 .532 .531 .530	.541 .540 .539 .539 .538	.542 .541 .540 .540 .539	.540 .540 .539 .539 .538	.536 .536 .535 .535 .535			
1.15 1.16 1.17 1.18 1.19	.303 .301 .299 .298 .296	.382 .380 .379 .377 .376	.441 .440 .438 .437 .436	.481 .479 .478 .477 .476	.506 .505 .504 .503 .502	.529 .529 .528 .527 .526	.537 .537 .536 .535 .535	.539 .538 .538 .537 .537	.538 .537 .537 .536 .536	.534 .534 .533 .533			
1.20 1.21 1.22 1.23 1.24	.294 .292 .291 .289 .287	.374 .373 .371 .370 .368	.434 .433 .432 .431 .429	.475 .474 .473 .472 .471	.501 .500 .499 .498 .497	.526 .525 .524 .523 .523	.534 .533 .533 .532 .532	.536 .536 .535 .535 .534	.536 .535 .535 .534 .534	.532 .532 .532 .531 .531			
1.25	.286	. 367	.428	.470	. 496	. 522	.531	.534	. 533	.531			

Table 81.—Values of nv Corresponding to Different Values of r and s in Manning's Formula, $v = \frac{1.486}{n} r^{3/6} s^{1/2}$ To determine v, divide the tabulated valves by n

8 =			r	= hy	draulic	radiu	s in fee	et		
£lope	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
.00005	.0023	.0036	.0047	.0057	.0066	.0075	.0083	.0091	.0098	.0105
10	.0032	.0051	.0067	.0081	.0094	.0106	.0117	.0128	.0139	
15	.0039		.0082	.0099	.0115	.0130	.0144	.0157	.0170	
20	.0045	.0072				.0150			.0196	
25	.0051	.0080	.0105	.0128	.0148	.0167	.0185	.0203	.0219	.0235
.00030	.0056	.0088	.0115	.0140	.0162	.0183	.0203	.0222	.0240	
35	.0060	.0095	.0125 .0133	.0151	.0175	.0198	.0219	.0240	. 0259	.0278
40	.0064	.0102	.0133	.0161	.0187	.0211	.0234	.0256	.0277	.0297
45 50	.0068	.0108	.0141 .0149	.0171	.0199	.0224 $.0236$.0272	.0294	.0310
30	.0072	.0114	.0149	.0100	.0209	.0230	.0202	.0200	.0310	.0332
.00055	.0075	.0119	.0156	.0189	.0220	.0248	.0275	.0300	.0325	
60	.0078	.0125	.0163	.0198	.0229	.0259	.0287	.0314	.0339	.0364
65	.0082	.0130	.0170	.0206	.0239	.0270	.0299	.0327	.0353	.0379
70 75	.0085	.0135	.0176	.0213	.0248	.0280	.0310	.0339	.0367	.0393
45	.0088	.0139	.0182	.0221	.0250	.0290	.0321	.0351	.0379	.0407
.00080	.0091	.0144	.0188	.0228	.0265	.0299	.0331	.0362	.0392	.0420
85	.0093	.0148	.0194	.0235	.0273	.0308	.0342	.0374		.0433
90	.0096	.0153	.0200	.0242	.0281	.0317	.0351	.0384	.0416	.0446
95	.0099	.0157	0205 0211	.0249	.0289		.0361	.0395	.0427	.0458
100	.0101	.0101	.0211	.0255	.0296	.0334	.0370	.0405	.0439	.0470
.0011	.0106	.0169	.0221	.0268	.0311	.0351	.0389	.0425	. 0459	.0493
12	.0111	.0176	.0231	.0280	.0324	.0366	.0406	.0444	.0480	
13 14	.0115	.0183	.0240	.0291	.0338	.0381	.0422	.0462	.0500	
15			.0249			.0395 .0410	.0438	.0479	.0518	
.0016	.0128	.0203	.0266	.0323	.0375	.0423	.0469	.0512	.0554	.0594
. 17 18	.0132	.0210	.0275 .0283	.0333	.0387	.0436	.0483 .0497	.0528	.0571	.0613
19	.0136	.0210		.0352			.0511	.0543	.0587	
20		.0227				.0473			.0620	
.0025	.0160	.0254	.0333	.0403	.0468	.0529	.0586	.0641	. 0693	.0743
30	.0175					.0579		.0702	.0759	
35	.0189	.0301		.0477			.0693	.0758	.0820	
40	.0202	.0321	.0421	.0510	.0592	.0669	.0741		.0876	
45	.0215	.0341	.0447	.0541	.0628	.0709	.0786			.0997
.0050	.0226	.0359	.0471	.0570	.0662	.0748	.0828	.0906	.0980	. 1051
55	.0237		.0494			.0784	.0869	.0950		.1102
60	.0248	.0394	.0516	.0625	.0725	.0819	.0908	.0992	. 1073	.1151
65	.0258		.0537		.0755	.0852	.0945	.1033	.1117	.1198
70	.0268	.0425	.0557	.0675	.0783	.0884	.0980	.1071	. 1159	.1243
.0075	.0277		.0577		.0811	.0916	. 1015	.1109	. 1200	. 1287
80	.0286	.0455	.0596	.0722	.0837	.0946	.1048	.1145	. 1239	. 1329
85	.0295	.0469	.0614	.0744	.0863	.0975	. 1080	.1181	.1277	. 1370
90	.0304	.0482	.0632	.0765	.0888	. 1003	.1111	. 1215	.1314	.1410
95	.0312	.0495	.0649	.0786	.0912	. 1030	. 1142	. 1248	. 1350	. 1448
.0100	.0320	.0508	.0666	.0807	. 0936	. 1057	.1172	. 1281	. 1385	.1486
.0100	.0320	.0008	.0000	.0007	.0830	. 1007	.1172	. 1201	. 1383	. 1480

TABLE 81 (Continued)

Values of nv Corresponding to Different Values of r and s in Manning's Formula, $v = \frac{1.486}{n} r^{34}s^{1/2}$ To determine v, divide the tabulated values by n

S											
1.00005				r	= hy	draulic	radiu	in fee	t		
10	slope	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
15 0.194 0.206 0.217 0.228 0.239 0.249 0.259 0.269 0.279 0.289 0.224 0.237 0.250 0.263 0.275 0.288 0.299 0.311 0.322 0.334 0.306 0.373 0.0030 0.274 0.291 0.307 0.322 0.337 0.352 0.367 0.381 0.395 0.409 35 0.296 0.314 0.331 0.348 0.364 0.380 0.396 0.411 0.427 0.441 0.45 0.317 0.336 0.354 0.375 0.399 0.407 0.423 0.440 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.472 0.454 0.456 0.457 0.473 0.492 0.510 0.528 0.0055 0.371 0.394 0.415 0.438 0.447 0.447 0.449 0.467 0.458 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.553 0.554 0.454 0.445 0.445 0.445 0.447 0.449 0.456 0.551 0.558 0.560 0.582 0.603 0.624 0.646 0.448 0.445 0.445 0.456 0.447 0.449 0.456 0.551 0.581 0.661 0.581 0.604 0.645 0.448 0.475 0.504 0.553 0.553 0.555 0.560 0.602 0.624 0.646 0.0080 0.448 0.475 0.501 0.526 0.551 0.538 0.560 0.582 0.603 0.624 0.646 0.0080 0.448 0.475 0.501 0.526 0.551 0.575 0.599 0.622 0.645 0.6687 0.501 0.551 0.558 0.560 0.685 0.660 0.684 0.708 0.501 0.551 0.558 0.660 0.684 0.0080 0.455 0.503 0.558 0.558 0.660 0.684 0.0080 0		.0112	.0119	.0125	.0132	.0138	.0144	.0150	.0156	.0161	
0.0030			.0168	.0177	.0186	.0195	.0203	.0212	.0220	.0228	
0.0030			.0206	.0217	.0228	.0239	.0249	.0259	.0269	.0279	
.00030		.0224	.0237	.0250	.0263	.0275	.0288	.0299	.0311	.0322	.0334
35	25	.0250	.0200	.0280	.0294	.0308	,0321	. 0333	.0348	.0300	.03/3
35	00030	0274	0291	0307	0322	0337	0352	0367	0381	0395	0400
\$\begin{array}{c} 45 & 0.336 & 0.336 & 0.376 & 0.395 & 0.413 & 0.431 & 0.449 & 0.467 & 0.484 & 0.9500 & 0.0528 & 0.371 & 0.394 & 0.415 & 0.435 & 0.445 & 0.447 & 0.492 & 0.510 & 0.528 & 0.0055 & 0.371 & 0.394 & 0.415 & 0.436 & 0.487 & 0.477 & 0.496 & 0.516 & 0.535 & 0.553 & 0.565 & 0.005 & 0.428 & 0.411 & 0.434 & 0.466 & 0.477 & 0.498 & 0.519 & 0.539 & 0.558 & 0.578 & 0.565 & 0.040 & 0.428 & 0.451 & 0.474 & 0.497 & 0.518 & 0.560 & 0.582 & 0.603 & 0.624 & 0.646 & 0.0080 & 0.448 & 0.460 & 0.485 & 0.509 & 0.533 & 0.556 & 0.580 & 0.602 & 0.624 & 0.646 & 0.0080 & 0.448 & 0.475 & 0.501 & 0.552 & 0.551 & 0.538 & 0.560 & 0.582 & 0.603 & 0.624 & 0.668 & 0.0080 & 0.448 & 0.0516 & 0.542 & 0.568 & 0.593 & 0.617 & 0.041 & 0.665 & 0.688 & 0.0080 & 0.0080 & 0.0080 & 0.516 & 0.542 & 0.568 & 0.593 & 0.617 & 0.041 & 0.665 & 0.688 & 0.0080 & 0.0080 & 0.0080 & 0.516 & 0.542 & 0.568 & 0.593 & 0.617 & 0.041 & 0.665 & 0.688 & 0.0080 & 0.0080 & 0.0080 & 0.0516 & 0.543 & 0.669 & 0.695 & 0.0721 & 0.0080 & 0.0510 & 0.531 & 0.560 & 0.584 & 0.0610 & 0.635 & 0.660 & 0.684 & 0.0708 & 0.0080 & 0.0510 & 0.531 & 0.560 & 0.588 & 0.6610 & 0.0633 & 0.668 & 0.0084 & 0.0080 & 0.0095 & 0.0721 & 0.0746 & 0.0011 & 0.5525 & 0.557 & 0.587 & 0.617 & 0.0446 & 0.674 & 0.0702 & 0.0729 & 0.0721 & 0.0746 & 0.0011 & 0.5025 & 0.0581 & 0.613 & 0.644 & 0.675 & 0.0744 & 0.0733 & 0.0762 & 0.0790 & 0.0817 & 0.0011 & 0.0010		.0296	.0314	.0331	.0348	.0364	.0380	.0396	.0411	.0427	.0441
\$\begin{array}{c} 45 & 0.336 & 0.336 & 0.376 & 0.395 & 0.413 & 0.431 & 0.449 & 0.467 & 0.484 & 0.9500 & 0.0528 & 0.371 & 0.394 & 0.415 & 0.435 & 0.445 & 0.447 & 0.492 & 0.510 & 0.528 & 0.0055 & 0.371 & 0.394 & 0.415 & 0.436 & 0.487 & 0.477 & 0.496 & 0.516 & 0.535 & 0.553 & 0.565 & 0.005 & 0.428 & 0.411 & 0.434 & 0.466 & 0.477 & 0.498 & 0.519 & 0.539 & 0.558 & 0.578 & 0.565 & 0.040 & 0.428 & 0.451 & 0.474 & 0.497 & 0.518 & 0.560 & 0.582 & 0.603 & 0.624 & 0.646 & 0.0080 & 0.448 & 0.460 & 0.485 & 0.509 & 0.533 & 0.556 & 0.580 & 0.602 & 0.624 & 0.646 & 0.0080 & 0.448 & 0.475 & 0.501 & 0.552 & 0.551 & 0.538 & 0.560 & 0.582 & 0.603 & 0.624 & 0.668 & 0.0080 & 0.448 & 0.0516 & 0.542 & 0.568 & 0.593 & 0.617 & 0.041 & 0.665 & 0.688 & 0.0080 & 0.0080 & 0.0080 & 0.516 & 0.542 & 0.568 & 0.593 & 0.617 & 0.041 & 0.665 & 0.688 & 0.0080 & 0.0080 & 0.0080 & 0.516 & 0.542 & 0.568 & 0.593 & 0.617 & 0.041 & 0.665 & 0.688 & 0.0080 & 0.0080 & 0.0080 & 0.0516 & 0.543 & 0.669 & 0.695 & 0.0721 & 0.0080 & 0.0510 & 0.531 & 0.560 & 0.584 & 0.0610 & 0.635 & 0.660 & 0.684 & 0.0708 & 0.0080 & 0.0510 & 0.531 & 0.560 & 0.588 & 0.6610 & 0.0633 & 0.668 & 0.0084 & 0.0080 & 0.0095 & 0.0721 & 0.0746 & 0.0011 & 0.5525 & 0.557 & 0.587 & 0.617 & 0.0446 & 0.674 & 0.0702 & 0.0729 & 0.0721 & 0.0746 & 0.0011 & 0.5025 & 0.0581 & 0.613 & 0.644 & 0.675 & 0.0744 & 0.0733 & 0.0762 & 0.0790 & 0.0817 & 0.0011 & 0.0010	40	.0317	.0336	.0354	.0372	.0389	.0407	.0423	.0440	.0456	.0472
50 .0354 .0375 .0396 .0416 .0435 .0454 .0473 .0492 .0510 .0528 .00055 .0371 .0394 .0415 .0436 .0487 .0496 .0516 .0535 .0553 65 .0405 .0428 .0451 .0474 .0497 .0518 .0560 .0581 .0560 .0581 .0601 .0581 .0601 .0581 .0601 .0521 .0622 .0624 .0664 .0624 .0664 .0642 .0668 .0590 .0533 .0556 .0580 .0602 .0624 .0646 .00080 .0448 .0475 .0501 .0526 .0551 .0575 .0599 .0622 .0645 .0668 .0603 .0617 .0641 .0668 .0608 .0617 .0646 .0573 .0600 .0627 .0653 .0661 .0648 .0702 .0733 .0723 .0721 .0746 .0011 .0525 .0557 .0587		.0336	.0356	.0376	.0395	.0413	.0431	.0449	.0467	.0484	. 0500
60	50	.0354	.0375	.0396	.0416	.0435	.0454	.0473	.0492	.0510	.0528
60	00055	0271	0204	0415	0420	0457	0477	0400	0510	0595	OEE .
.00880 .0448 .0475 .0501 .0526 .0551 .0575 .0599 .0622 .0645 .0668 .0588 .0462 .0489 .0516 .0542 .0568 .0593 .0617 .0641 .0665 .0688 .90 .0475 .0503 .0531 .0558 .0584 .0610 .0635 .0660 .0684 .0708 .95 .0488 .0517 .0546 .0573 .0600 .0027 .0653 .0678 .0703 .0727 .000 .0501 .0531 .0550 .0588 .0516 .0643 .0669 .0695 .0721 .0746 .0011 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0782 .0011 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0782 .0549 .0581 .0613 .0644 .0675 .0704 .0733 .0762 .0790 .0817 .13 .0571 .0605 .0638 .0671 .0702 .0733 .0763 .0793 .0822 .0851 .14 .0593 .0628 .0642 .0998 .0729 .0761 .0792 .0823 .0853 .0883 .15 .0613 .0650 .0686 .0720 .0754 .0787 .0820 .0852 .0883 .0914 .0016 .0633 .0671 .0708 .0744 .0779 .0813 .0847 .0880 .0912 .0944 .17 .0653 .0692 .0730 .0767 .0803 .0838 .0873 .0907 .0940 .0973 .18 .0672 .0712 .0751 .0789 .0826 .0862 .0898 .0933 .0967 .1001 .19 .0690 .0732 .0772 .0811 .0349 .0886 .0923 .0959 .0994 .1028 .20 .0708 .0751 .0792 .0832 .0851 .0883 .0912 .0944 .0793 .0852 .0883 .0912 .0944 .0793 .0852 .0851 .0937 .0939 .0949 .0973 .0922 .0758 .0792 .0832 .0851 .0867 .0999 .0994 .1026 .0708 .0751 .0792 .0832 .0851 .0867 .0999 .0994 .1026 .0708 .0751 .0792 .0832 .0851 .0867 .0994 .1026 .0055 .0792 .0839 .0885 .0930 .0947 .1061 .1061 .1119 .1160 .1152 .1203 .1252 .1301 .1349 .1396 .0937 .0993 .1047 .1100 .1152 .1203 .1252 .1301 .1349 .1396 .0050 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 .555 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .60 .1227 .1303 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .0055 .1344 .1536 .1529 .1575 .1640 .1591 .1592 .1582 .0055 .1344 .1536 .1533 .1611 .1687 .1761 .1833 .1904 .1974 .2043 .0055 .1344 .1566 .1529 .1701 .1771 .1840 .1908 .1974 .0055 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .15		0385	0411	0434	0450	0477	0400	0510	.0530	0550	0579
.00880 .0448 .0475 .0501 .0526 .0551 .0575 .0599 .0622 .0645 .0668 .0588 .0462 .0489 .0516 .0542 .0568 .0593 .0617 .0641 .0665 .0688 .90 .0475 .0503 .0531 .0558 .0584 .0610 .0635 .0660 .0684 .0708 .95 .0488 .0517 .0546 .0573 .0600 .0027 .0653 .0678 .0703 .0727 .000 .0501 .0531 .0550 .0588 .0516 .0643 .0669 .0695 .0721 .0746 .0011 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0782 .0011 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0782 .0549 .0581 .0613 .0644 .0675 .0704 .0733 .0762 .0790 .0817 .13 .0571 .0605 .0638 .0671 .0702 .0733 .0763 .0793 .0822 .0851 .14 .0593 .0628 .0642 .0998 .0729 .0761 .0792 .0823 .0853 .0883 .15 .0613 .0650 .0686 .0720 .0754 .0787 .0820 .0852 .0883 .0914 .0016 .0633 .0671 .0708 .0744 .0779 .0813 .0847 .0880 .0912 .0944 .17 .0653 .0692 .0730 .0767 .0803 .0838 .0873 .0907 .0940 .0973 .18 .0672 .0712 .0751 .0789 .0826 .0862 .0898 .0933 .0967 .1001 .19 .0690 .0732 .0772 .0811 .0349 .0886 .0923 .0959 .0994 .1028 .20 .0708 .0751 .0792 .0832 .0851 .0883 .0912 .0944 .0793 .0852 .0883 .0912 .0944 .0793 .0852 .0851 .0937 .0939 .0949 .0973 .0922 .0758 .0792 .0832 .0851 .0867 .0999 .0994 .1026 .0708 .0751 .0792 .0832 .0851 .0867 .0999 .0994 .1026 .0708 .0751 .0792 .0832 .0851 .0867 .0994 .1026 .0055 .0792 .0839 .0885 .0930 .0947 .1061 .1061 .1119 .1160 .1152 .1203 .1252 .1301 .1349 .1396 .0937 .0993 .1047 .1100 .1152 .1203 .1252 .1301 .1349 .1396 .0050 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 .555 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .60 .1227 .1303 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .0055 .1344 .1536 .1529 .1575 .1640 .1591 .1592 .1582 .0055 .1344 .1536 .1533 .1611 .1687 .1761 .1833 .1904 .1974 .2043 .0055 .1344 .1566 .1529 .1701 .1771 .1840 .1908 .1974 .0055 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .15		0405	.0428	0451	0474	0407	0519	0540	0561	0581	0601
.00880 .0448 .0475 .0501 .0526 .0551 .0575 .0599 .0622 .0645 .0668 .0588 .0462 .0489 .0516 .0542 .0568 .0593 .0617 .0641 .0665 .0688 .90 .0475 .0503 .0531 .0558 .0584 .0610 .0635 .0660 .0684 .0708 .95 .0488 .0517 .0546 .0573 .0600 .0027 .0653 .0678 .0703 .0727 .000 .0501 .0531 .0550 .0588 .0516 .0643 .0669 .0695 .0721 .0746 .0011 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0782 .0011 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0782 .0549 .0581 .0613 .0644 .0675 .0704 .0733 .0762 .0790 .0817 .13 .0571 .0605 .0638 .0671 .0702 .0733 .0763 .0793 .0822 .0851 .14 .0593 .0628 .0642 .0998 .0729 .0761 .0792 .0823 .0853 .0883 .15 .0613 .0650 .0686 .0720 .0754 .0787 .0820 .0852 .0883 .0914 .0016 .0633 .0671 .0708 .0744 .0779 .0813 .0847 .0880 .0912 .0944 .17 .0653 .0692 .0730 .0767 .0803 .0838 .0873 .0907 .0940 .0973 .18 .0672 .0712 .0751 .0789 .0826 .0862 .0898 .0933 .0967 .1001 .19 .0690 .0732 .0772 .0811 .0349 .0886 .0923 .0959 .0994 .1028 .20 .0708 .0751 .0792 .0832 .0851 .0883 .0912 .0944 .0793 .0852 .0883 .0912 .0944 .0793 .0852 .0851 .0937 .0939 .0949 .0973 .0922 .0758 .0792 .0832 .0851 .0867 .0999 .0994 .1026 .0708 .0751 .0792 .0832 .0851 .0867 .0999 .0994 .1026 .0708 .0751 .0792 .0832 .0851 .0867 .0994 .1026 .0055 .0792 .0839 .0885 .0930 .0947 .1061 .1061 .1119 .1160 .1152 .1203 .1252 .1301 .1349 .1396 .0937 .0993 .1047 .1100 .1152 .1203 .1252 .1301 .1349 .1396 .0050 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 .555 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .60 .1227 .1303 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .0055 .1344 .1536 .1529 .1575 .1640 .1591 .1592 .1582 .0055 .1344 .1536 .1533 .1611 .1687 .1761 .1833 .1904 .1974 .2043 .0055 .1344 .1566 .1529 .1701 .1771 .1840 .1908 .1974 .0055 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299 .1504 .15		0419	.0444	0468	.0492	0515	.0538	.0560	.0582	.0603	0624
.00080	75	.0434	.0460	.0485	.0509	.0533	.0556	.0580	.0602	.0624	.0646
85 0.462 0.489 0.516 0.542 0.568 0.693 0.617 0.641 0.665 0.688 90 0.475 0.503 0.531 0.558 0.584 0.610 0.635 0.680 0.684 0.708 95 0.488 0.517 0.546 0.573 0.600 0.627 0.653 0.678 0.703 0.727 100 0.501 0.531 0.560 0.588 0.616 0.643 0.669 0.695 0.721 0.746 .0011 0.525 0.557 0.587 0.617 0.646 0.674 0.702 0.729 0.756 0.782 12 0.549 0.581 0.613 0.644 0.675 0.704 0.733 0.762 0.790 0.817 13 0.571 0.605 0.638 0.671 0.702 0.733 0.763 0.793 0.822 0.851 14 0.593 0.628 0.662 0.666 0.729 0.761 0.792 0.823 0.853 0.883 15 0.613 0.650 0.686 0.720 0.754 0.787 0.820 0.852 0.883 0.914 .0016 0.633 0.6671 0.708 0.744 0.779 0.813 0.847 0.880 0.9012 0.944 17 0.653 0.6692 0.730 0.767 0.803 0.838 0.873 0.907 0.940 0.973 18 0.672 0.712 0.751 0.789 0.826 0.862 0.898 0.933 0.967 1.001 19 0.690 0.732 0.772 0.811 0.849 0.866 0.923 0.959 0.994 1.028 20 0.708 0.751 0.792 0.832 0.871 0.909 0.047 0.984 1.020 1.055 .0025 0.792 0.839 0.885 0.930 0.974 1.016 1.058 1.099 1.140 1.180 30 0.867 0.919 0.970 1.019 1.067 1.113 1.159 1.204 1.249 1.292 35 0.937 0.993 1.047 1.100 1.52 1.203 1.252 1.301 1.349 1.396 40 1.001 1.061 1.119 1.176 1.231 1.286 1.339 1.391 1.442 1.492 45 1.062 1.126 1.188 1.248 1.306 1.364 1.420 1.475 1.529 1.582 .0050 1.120 1.187 1.252 1.315 1.377 1.438 1.497 1.555 1.612 1.668 5 1.777 1.353 1.427 1.499 1.570 1.639 1.707 1.773 1.838 1.902 70 1.325										ı	
90		.0448	.0475	.0501	.0526	.0551	.0575	.0599	.0622	.0645	
95 0.488 0.517 0.546 0.573 0.600 0.627 0.653 0.678 0.703 0.727 100 0.501 0.531 0.560 0.588 0.616 0.643 0.669 0.695 0.721 0.746 100 0.525 0.557 0.587 0.617 0.646 0.647 0.702 0.729 0.755 0.782 12 0.549 0.581 0.613 0.644 0.675 0.704 0.733 0.762 0.799 0.817 13 0.571 0.605 0.638 0.6671 0.702 0.733 0.763 0.793 0.822 0.851 14 0.593 0.628 0.662 0.696 0.729 0.761 0.792 0.823 0.853 0.883 15 0.613 0.650 0.686 0.720 0.754 0.787 0.820 0.852 0.883 0.914 10016 0.633 0.671 0.708 0.744 0.779 0.813 0.847 0.880 0.912 0.944 17 0.653 0.692 0.730 0.767 0.803 0.888 0.873 0.907 0.940 0.973 18 0.672 0.712 0.751 0.789 0.826 0.862 0.898 0.933 0.967 1.001 19 0.690 0.732 0.772 0.811 0.849 0.886 0.923 0.959 0.994 1.020 20 0.708 0.751 0.792 0.832 0.871 0.909 0.947 0.984 1.020 1.055 0.025 0.792 0.839 0.885 0.930 0.974 1.016 1.058 1.099 1.140 1.180 30 0.867 0.919 0.970 1.019 1.067 1.113 1.159 1.204 1.249 1.292 35 0.937 0.993 1.047 1.100 1.152 1.203 1.252 1.301 1.349 1.394 40 1.001 1.061 1.119 1.176 1.231 1.286 1.339 1.391 1.442 1.492 45 1.062 1.126 1.188 1.248 1.306 1.364 1.420 1.475 1.529 1.582 0.050 1.120 1.187 1.252 1.315 1.377 1.438 1.497 1.555 1.612 1.668 5 1.277 1.353 1.427 1.499 1.570 1.639 1.707 1.773 1.838 1.902 70 1.325 1.404 1.481 1.556 1.629 1.701 1.771 1.840 1.908 1.974 0.075 1.371 1.453 1.533 1611 1.687 1.761 1.833 1.904 1.974 0.204 80 1.416 1.501 1.583 1.664 1.742 1.818 1.893 1.967 2.039 2.110 85 1.460 1.547 1.632 1.715 1.795 1.874 1.952 2.027 2.102 2.75 90 1.502 1.592 1.679 1.764 1.847 1.929 2.0		.0462	.0489	.0516	.0542	.0568	.0593	.0617	.0641	.0665	
100			.0503	.0531	.0558	.0584	.0610	.0635	.0660	.0684	
.0011 .0525 .0557 .0587 .0617 .0646 .0674 .0702 .0729 .0756 .0782 .0549 .0581 .0613 .0644 .0675 .0704 .0733 .0762 .0790 .0817 .13 .0571 .0605 .0638 .0671 .0702 .0733 .0763 .0793 .0822 .0851 .14 .0593 .0628 .0662 .0696 .0729 .0761 .0792 .0823 .0853 .0883 .15 .0613 .0650 .0686 .0720 .0754 .0787 .0820 .0852 .0883 .0914 .0016 .0633 .0667 .0708 .0744 .0779 .0813 .0847 .0880 .0912 .0944 .17 .0653 .0692 .0730 .0767 .0803 .0838 .0873 .0907 .0940 .0973 .18 .0672 .0712 .0751 .0789 .0826 .0882 .0888 .0933 .0967 .1001 .19 .0690 .0732 .0772 .0811 .0849 .0886 .0923 .0959 .0994 .1028 .20 .0708 .0751 .0792 .0832 .0871 .0909 .0947 .0984 .1020 .1055 .0025 .0792 .0839 .0885 .0930 .0974 .1016 .1058 .1099 .1140 .1180 .0067 .0919 .0970 .1019 .1067 .1113 .1159 .1204 .1249 .1292 .35 .0937 .0993 .1047 .1100 .1152 .1203 .1252 .1301 .1349 .1396 .1061 .1011 .1061 .1119 .1176 .1231 .1286 .1339 .1391 .1442 .1492 .45 .1062 .1126 .1188 .1248 .1306 .1364 .1420 .1475 .1529 .1582 .0050 .1120 .1125 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .60 .1227 .1303 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .65 .1277 .1353 .1427 .1499 .1570 .1639 .1707 .1773 .1838 .1902 .0075 .1371 .1453 .1533 .1611 .1687 .1761 .1833 .1904 .1974 .2043 .80 .1416 .1501 .1583 .1664 .1742 .1818 .1893 .1967 .2039 .2110 .85 .1460 .1547 .1632 .1715 .1795 .1874 .1952 .2027 .2102 .2175 .90 .1502 .1592 .1679 .1764 .1847 .1929 .2008 .2086 .2163 .2238 .95 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299		0501	.0517	.0540	.05/3	.0000	.0027	.0653	.0078	0703	
12	100	.0001	.0031	.0500	.0000	.0010	.0043	.0009	.0093	.0721	.0720
12	.0011	.0525	.0557	.0587	.0617	.0646	.0674	.0702	.0729	.0756	
14	12	.0549	.0581	.0613	.0644	.0675	.0704	.0733	.0762	.0790	.0817
14	13	.0571	.0605	.0638	.0671	.0702	.0733	.0763	.0793	.0822	. 0851
.0016		. 0593	.0628	.0662	.0696	.0729	.0761	.0792	.0823	.0853	
18	15	.0613	.0650	.0686	.0720	.0754	.0787	.0820	.0852	. 0883	.0914
18	0016	0633	0671	0709	0744	0770	0012	0947	Veev	0019	0044
18	17	0653	0692	0730	0767	0803	0838	0873	0907	0040	0073
19	18	0672	0712	0751	0789	0826	0862	0808	0933	0967	1001
20 .0708 .0751 .0792 .0832 .0871 .0909 .0947 .0984 .1020 .1055 .0025 .0792 .0839 .0885 .0930 .0974 .1016 .1058 .1099 .1140 .1180 30 .0867 .0919 .0970 .1019 .1067 .1131 .1159 .1204 .1249 .1249 35 .0937 .0993 .1047 .1100 .152 .1203 .1252 .1301 .1349 .1396 .1339 .1391 .1442 .1396 40 .1001 .1061 .1118 .1276 .1231 .1286 .1339 .1391 .1442 .1475 .1529 .1582 .0050 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 55 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 65 .1277 .1350 .1427 .1300 .1371 .1441 .1509	19		0732	.0772	.0811	.0849	.0886	.0923	.0959	.0994	
30	20		.0751	.0792	.0832	.0871	.0909	.0947	.0984	. 1020	. 1055
30					0000						
35			.0839	.0885	.0930	.0974	.1016	. 1058	.1099	11140	.1180
.0050 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 .55 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .60 .1227 .1300 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .65 .1277 .1353 .1427 .1499 .1570 .1639 .1707 .1773 .1838 .1902 .70 .1325 .1404 .1481 .1556 .1629 .1701 .1771 .1840 .1908 .1974 .0075 .1371 .1453 .1533 .1611 .1687 .1761 .1833 .1904 .1974 .2043 .80 .1416 .1501 .1583 .1664 .1742 .1818 .1893 .1967 .2039 .2110 .85 .1460 .1547 .1632 .1715 .1795 .1874 .1952 .2027 .2102 .2175 .90 .1502 .1592 .1679 .1764 .1847 .1929 .2008 .2086 .2163 .2238 .95 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299		.0807	.0919	1047	1100	1150	.1113	.1109	1204	1249	1202
.0050 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 .55 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .60 .1227 .1300 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .65 .1277 .1353 .1427 .1499 .1570 .1639 .1707 .1773 .1838 .1902 .70 .1325 .1404 .1481 .1556 .1629 .1701 .1771 .1840 .1908 .1974 .0075 .1371 .1453 .1533 .1611 .1687 .1761 .1833 .1904 .1974 .2043 .80 .1416 .1501 .1583 .1664 .1742 .1818 .1893 .1967 .2039 .2110 .85 .1460 .1547 .1632 .1715 .1795 .1874 .1952 .2027 .2102 .2175 .90 .1502 .1592 .1679 .1764 .1847 .1929 .2008 .2086 .2163 .2238 .95 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299		1001	1061	1110	1178	1931	1203	1202	1301	1449	1400
.0050 .1120 .1187 .1252 .1315 .1377 .1438 .1497 .1555 .1612 .1668 .55 .1174 .1245 .1313 .1379 .1444 .1508 .1570 .1631 .1691 .1749 .60 .1227 .1300 .1371 .1441 .1509 .1575 .1640 .1703 .1766 .1827 .65 .1277 .1353 .1427 .1499 .1570 .1639 .1707 .1773 .1838 .1902 .70 .1325 .1404 .1481 .1556 .1629 .1701 .1771 .1840 .1908 .1974 .0075 .1371 .1453 .1533 .1611 .1687 .1761 .1833 .1904 .1974 .2043 .80 .1416 .1501 .1583 .1664 .1742 .1818 .1893 .1967 .2039 .2110 .85 .1460 .1547 .1632 .1715 .1795 .1874 .1952 .2027 .2102 .2175 .90 .1502 .1592 .1679 .1764 .1847 .1929 .2008 .2086 .2163 .2238 .95 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299	45	1062	1126	1188	1248	1306	1364	1420	1475	1520	1582
55										1	
55	.0050	. 1120	.1187	.1252	. 1315	. 1377	. 1438	. 1497	. 1555	. 1612	
60	55	. 1174	. 1245	.1313	.1379	. 1444	.1508	. 1570	. 1631	1.1691	. 1749
.0075	60	1227	. 1300	.1371	.1441	. 1509	. 1575	. 1640	. 1703	1.1766	1827
.0075	65	. 1277	. 1353	.1427	.1499	.1570	. 1639	. 1707	. 1773	1838	. 1902
80	70	. 1325	. 1404	.1481	. 1996	. 1029	. 1701	.1771	. 1840	TA08	19/4
80	.0075	. 1371	. 1453	. 1533	.1611	. 1687	.1761	.1833	. 1904	.1974	. 2043
95 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299		. 1416	. 1501	.1583	.1664	.1742	.1818	.1893	.1967	2039	2110
95 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299	85	. 1460	. 1547	. 1632	.1715	.1795	. 1874	. 1952	. 2027	.2102	
95 .1544 .1636 .1726 .1813 .1898 .1981 .2063 .2143 .2222 .2299		. 1502	. 1592	.1679	. 1764	.1847	. 1929	.2008	. 2086	.2163	
.0100 .1584 .1678 .1770 .1860 .1947 .2033 .2117 .2199 .2280 .2359	95	. 1544	. 1636	. 1726	. 1813	.1898	. 1981	. 2063	.2143	. 2222	
.0100 .1004 .1079 .1770 .1800 .1947 .2033 .2117 .2199 .2280 .2359	0100	1504	1070	1770	1000	1047	0000	0117	0100	0000	0250
	.0100	.1004	. 1078	.1770	. 1800	. 1947	. 2033	.2117	.2199	.2280	. 2359

TABLE 81 (Continued)

Values of nv Corresponding to Different Values of r and s in Manning's Formula, $v = \frac{1.486}{n} r^{2/5} s^{1/2}$ To determine v, divide the tabulated values by n

8 =		•	r	- hy	iraulio	radiu	in fee	t		
slope	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
. 00005	.0172			.0188					.0214	.0219
10	.0244			.0266	.0274	.0281	. 0288 . 0353	.0295	.0302	.0309
15 20	.0299	.0308		.0326						
25		.0397		.0377 .0421			. 0407 . 0456			. 0437 . 0489
.00030	.0422	.0435	.0449	.0462	.0474	. 0487	.0499	.0511	.0523	. 0535
35	.0456			.0498	.0512	.0526	. 0539	.0552	. 0565	
40	. 0487	.0503	.0518	.0533	.0548	.0562	.0576	.0590	.0604	
45						.0596				
50	.0545	.0562	.0579	.0596	.0612	.0628	.0644	.0660	.0676	.0691
.00055	.0572	.0590	.0607	.0625	.0642	.0659	.0676	.0692		.0725
60 65		.0616				.0688				
70	.0645		.0685		.0724	.0716	.0762	0781	.0800	.0818
75	.0667		.0709	.0730	.0750	.0770	.0789	.0809	.0828	
.00080	. 0689	.0711	.0732	.0753	.0774	0705	.0815	0005	.0855	0074
85	.0711	0733	0755	0777	0798	0810	0840	0881	.0881	
l šŏ	.0731	.0754	.0777	.0799	.0821	.0819 .0843	.0864	.0886	.0907	.0927
95	.0751	.0775	.0798	.0821	.0844	.0866	.0888	.0910	.0931	
100	.0771	.0795	.0819	.0842	.0866	.0889	.0911	.0934	.0956	.0978
.0011	.0808	.0834	.0859	.0884	.0908	.0932	.0956	.0979	.1002	.1025
12	.0844	.0871	.0897	.0923	.0948	.0973	.0928	.1023	.1047	. 1071
13 14	.0879 .0912	.0906	0080	.0960	1094	.1013	1039	1105	.1090	11157
15		.0974	.1003	.1032	.1060	.1088	.1116	.1143	1170	.1197
.0016	.0975	1006	1036	1066	1005	.1124	1153	1181	.1200	. 1236
17	. 1005	. 1036	. 1068	.1098	. 1129	. 1159	. 1188	. 1218	.1246	.1274
18	. 1034	.1066	.1099	.1130	.1161	.1192	. 1222	. 1252	.1282 .1317	. 1311
19	. 1062	.1096	.1129	.1161	.1193	.1192 .1225 .1257	. 1256	.1287	.1317	. 1347
20	. 1090	.1124	.1158	.1191	. 1224	.1257	. 1289	.1320	. 1352	. 1382
.0025	.1218	.1257	. 1295	.1332	.1369	. 1405	. 1441	.1476	.1511	. 1546
30 35	. 1335 . 1442	.1377	1520	1578	1610	. 1539 . 1662	1705	.1617	. 1655 . 1788	1890
40	.1541	1590	1638	.1685	1731	1777	. 1822	. 1867	1911	. 1955
45	. 1635	.1686	. 1737	. 1787	. 1836	1885	. 1933	1980	2027	2074
. 0050	.1723	.1777	. 1831	.1884	. 1936	. 1987	.2037	. 2087	.2137	.2186
55	. 1807	.1864	. 1920	. 1976	. 2030	2084	2137	. 2189	.2241	. 2292
60	.1888	. 1947	.2006	.2063	.2120	.2177	. 2232	. 2287	.2341	. 2394
65		.2027	.2088	.2148	. 2207	. 2265	. 2323		.2436	
70	. 2039	.2103	.2106	. 2229	. 2290	.2351	. 2411	.2470	. 2528	. 2000
.0075	.2110		. 2242	. 2307	. 2371	. 2433	.2495		.2617	. 2677
80	.2180		. 2316	. 2383	.2448	. 2513	.2577	.2640		2765
85 90	.2247	.2317	. 2397 . 2456	. 2456 . 2527	. 2524	. 2591 . 2666	. 2657 . 2734	. 2722 . 2801	. 2786 . 2867	. 2850 . 2932
90 95				.2527		. 2739	.2808	2877	.2946	
, J100		- 1		. 2664		.2810	- 1	i	1	1
. 5100	. 2701	. 2014	. 2008	. 2001	. 2101	. 2010	. 2001	. 2002	. 3022	3081

TABLE 81 (Continued)

Values of nv Corresponding to Different Values of r and s in Manning's Formula, $v=\frac{1.486}{n} r^{34} s^{14}$

To determine v, divide the tabulated values by n

	1		r	= hy	draulio	radiu	s in fee	et		
s == slope				,						
	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
.00005	.0223	.0228	.0233	.0238			.0251	.0256	.0260	.0265
10	.0316	.0323	.0329	.0336	.0343	.0349	.0356	.0362	.0368	.0374
15	.0387	.0395	.0403	.0412	.0420	.0428	.0435	.0443	.0451	.0459
20	.0447	.0456	.0466	.0475	.0484	.0494	.0503	.0512	.0521	.0530
25	.0500	. 05 10	.0521	.0531	.0542	.0552	.0562	.0572	.0582	.0592
.00030	.0547	.0559	.0571	.0582	.0593	.0605	.0616	.0627	.0638	.0649
35	.0591	.0604	.0616	.0629	.0641	.0653	.0665	.0677	.0689	.0701
40	.0632	.0645	.0659	.0672	.0685	.0698	.0711	.0724	.0736	.0749
45	.0670			.0713				.0768	.0781	.0794
50	.0706	.0722	.0737	.0751	.0766	.0781	.0795	.0809	.0823	.0837
.00055	.0741	.0757	.0773	.0788	.0803	.0819	.0834		.0864	.0878
60	.0774	.0791		.0823	.0839	.0855	.0871	.0886	.0902	.0917
65	.0806		.0840	.0857	.0873	.0890	.0906	.0923	.0939	.0955
70	.0836		.0872	.0889	.0906	.0924	.0941	.0957	.0974	.0991
7 5	.0865	.0884	.0902	.0920	.0938	.0956	.0974	.0991	.1008	. 1026
.00080	.0894	.0913	.0932	.0950	.0969	.0987	. 1005	.1024	.1041	. 1059
85	.0921		.0960	.0980	.0999	.1018	.1036	.1055	.1073	. 1092
90	.0948	.0968	.0988	.0980 .1008	.1028	.1047	.1066	.1086	.1105	. 1123
95	.0974	.0995	.1015	.1036	.1056	.1076	.1096	.1115	.1135	. 1154
100	.0999	. 1021	.1042	.1036 .1063	.1083	.1104	.1124	.1144	.1164	. 1184
.0011	.1048	. 1070	.1093	.1114	.1136	.1158	.1179	.1200	. 1221	. 1242
12	. 1094	.1118	.1141	.1164	.1137	. 1209	.1231	.1254	.1275	. 1297
13	.1139	.1164	.1188	. 1212	. 1235	. 1259	. 1282	. 1305	.1328	. 1350
14	.1182	.1207	. 1232	.1257 .1301	.1282	. 1306	. 1330	. 1354	.1378	. 1401
15	.1224	.1250	.1276	.1301	.1327	.1352	. 1377	.1401	.1426	. 1450
.0016		. 1291	. 1318	.1344	. 1370	.1396	.1422	.1447	.1473	. 1498
17	.1303		. 1358	.1385	. 1412	.1439	.1466	.1492	.1518	. 1544
. 18			.1397	.1385 .1426	. 1453	.1481	.1508	. 1535	.1562	. 1589
19			.1436	. 1465	. 1493	.1439 .1481 .1522	.1550	. 1577	.1605	. 1633
20	.1413	.1443	.1473	.1503	. 1532	.1561	.1590	.1618	.1647	. 1675
.0025		. 1614	. 1647	. 1680 . 1840	. 1713	.1745	.1777	. 1809	. 1841	. 1872
30			. 1804	. 1840	. 1876	. 1912	.1947	. 1982	.2017	. 2051
35		. 1909	. 1949	.1988	. 2027	2065	. 21031	.2141		.2215
40		. 2041		.2125	.2167	.2208	.2248	. 2289	. 2329	. 2368
45	.2119	.2165	.2210	.2254	.2298	. 2342	.2385	.2427	. 2470	. 2512
.0050				. 2376	.2422			. 2559	. 2603	. 2648
55		. 2393	. 2443	.2492	. 2541	. 2589	. 2636	.2684	.2731	.2777
60			. 2552	. 2603		.2704	.2754	. 2803	. 2852	.2901
65			. 2656					.2917	. 2968	. 3019
70	.2643	.2700	.2756	.2811	. 2866	. 2920	.2974	. 3028	.3080	. 3133
.0075				. 2910	. 2967	3023	. 3079	.3134	. 3189	. 3242
80			. 2946	. 3005	. 3064	.3122	.3180	. 8237	. 3293	. 3349
85			.3037	.3098	.3158	.3218	.3277 .3372	. 3336	. 3395	. 3452
90	.2997			.3188				. 3433	. 3493	. 3552
95	. 3079	.3145	.3210	. 3275	. 3339	. 3402	. 3465	. 3527	. 3589	. 3650
.0100	.3159	. 3227	. 3294	. 3360	. 3426	. 3491	. 3555	. 3619	. 3682	. 3745

Table 81 (Continued)

VALUES OF nv CORRESPONDING TO DIFFERENT VALUES OF $r \text{ and } s \text{ in Manning's Formula, } v = \frac{1.486}{n} r^{25} s^{1/2}$

To determine v, divide the tabulated values by n

s = slope .00005	4.2	4.4	4.6	_						
			4.0	4.8	5.0	5.2	5.4	5.6	5.8	6.0
	0274	0282	0291	0299	0307	.0315	0323	.0331	0339	0347
10	.0387	.0399	.0411	.0423	.0435	.0446	.0457	.0469	.0480	.0491
15	.0474	.0489	.0503	.0518	.0532	.0546	.0560	.0574	.0588	.0601
20	.0547	.0564	.0581	.0598	.0615	.0631	.0647	.0663	.0678	.0694
25	.0612	.0631	.0650	.0669	.0687	.0705	.0723	.0741	.0759	.0776
.00030	.0670	.0691	.0712	.0732	.0753	.0773	.0792	.0812	.0831	.0850
35	.0724	.0747	.0769	.0791	.0813	.0831	.0856	.0877	.0897	.0918
40	.0774	.0798	.0822	.0816	.0369	.0892	.0915	.0937	.0959	.0981
45	.0821	.0846	.0872			.0946				
50	.0865	.0892	.0919	.0946	.0972	.0997	. 1023	.1048	.1073	.1097
.00055	.0907	.0936	.0964	.0992	.1019	.1046	. 1073	. 1099	.1125	.1152
60	.0948	.0977	.1007	.1036	.1064	.1092	.1120	.1148	.1175	.1202
65	.0986	.1017	.1048	.1078	.1108	.1137 .1180	.1166	.1195	.1223	.1251
70	.1024	.1056	.1087	.1119	.1150	.1180	.1210	.1240	.1269	.1298
75	. 1059	.1093	.1125	.1158	.1190	.1222	.1253	.1284	.1314	. 1344
.00080	.1094	.1129	.1163	.1196	.1229	.1262	.1294	. 1325	.1357	. 1388
85	1128	1163	1108	1233	1267	. 1300	.1334	.1366	.1399	.1431
90	.1161	.1197	.1233	.1269	.1304	.1338 .1375	.1372	.1406	.1439	. 1472
95	.1192	.1230	.1267	.1303	. 1339	.1375	.1410	.1444	.1479	. 1512
100	. 1223	.1262	.1300	.1337	.1374	.1410	.1446	.1482	.1517	.1553
.0011	. 1283	.1323	.1363	.1402	. 1441	.1479	.1517	. 1554	. 1591	
12	.1340	.1382	.1424	.1465	. 1505	.1545	.1584	. 1623	.1662	. 1700
13	. 1395	.1439	. 1482	. 1525	.1567	.1545 .1608	.1649	.1690	.1730	
14	.1447	.1493	.1538	.1582	.1626	.1669	.1711	.1753		.1836
15	.1498	.1545	. 1592	.1638	.1683	.1727	. 1771	.1815	.1858	.1900
.0016	.1547	. 1596	.1644	.1691	. 1738	.1784	. 1830	. 1874	.1919	.1963
17	. 1595	. 1645	. 1695	.1743	.1792	. 1839	.1886	. 1932	. 1978	.2023
18	.1641	. 1693	.1744	.1794	.1844	.1892	.1941	.1988		.2082
19	.1686	.1739	.1792	.1843	.1894	.1944	. 1994	. 2043	.2091	
20	.1730	.1784	.1838	.1891	.1943	. 1995	.2046	.2096	.2145	.2194
.0025	.1934	.1995	.2055	.2114	.2173	.2230	.2287	.2343	.2399	.2454
30	.2119	.2186	.2251	.2316	.2380	.2443	.2505	.2567		.2688
35	.2289	.2361 .2524	.2432	.2502	.2571	.2639	.2706	.2772	.2838	.2903
40	.2447	.2524	.2600	.2674	.2748	.2821		.2964	.3034	.3103
45	.2595	.2677	.2757	.2837	.2915	.2992	.3068	.3144	.3218	.3292
.0050	.2735	.2821	.2906	.2990	.3072	.3154	.3234	.3314	. 3392	.3470
55	.2869	.2959	.3048	.3136	.3222	.3308	.3392	.3475	.3558	.3639
60	. 2996	.3091	.3184	.3275	.3366	.3455	.3543	.3630	.3716	.3801
65	.3119	.3217	.3314	.3409	.3503	.3596	.3688	.3778	.3868	. 3956
70	.3237					.3732				
.0075	.3350	.3456	.3560	.3662	. 3763	.3863	.3931	.4058		
80	.3460	.3569	.3676	.3782	.3886	.3989			1	1
85	.3566	.3679	.3790	.3898	.4006		1	I	ı	1
	. 3670	.3785	. 3899	.4012	- 1		- 1]		1
95	.3770	.3889	.4006							- 1
.0100	. 3868	.3990							ogle	

Table 81 (Continued)

Values of nv Corresponding to Different Values of r and s in Manning's Formula, $v=\frac{1.486}{n} \ r^{25}s^{1/2}$ To determine v, divide the tabulated values by n

8			r	= hy	draulic	rediu	s in fee	et		_
slope	6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0
.00005		.0362		.0377		.0392		.0406 .0574	.0413	.0420
10 15	.0502	.0512	.0523	.0533	.0544	.0554	.0564	.0704	.0584	.0728
20	.0709	.0724	.0739	.0754	.0769	.0784	.0798	.0812	.0826	.0841
2 5	.0793	.0810	.0827	.0843	.0860	.0876	.0892	.0908	.0924	.0940
.00030	.0869	.0887	.0906	.0924	.0942	.0960	.0977	.0995		.1030
35	.0938	.0958	.0978	.0998	. 1017	. 1037	. 1056	. 1075		.1112
40 45	.1003	.1025	.1046	.1067	.1088	.1108 .1175	1107	.1149	.1169	.1189
50	.1121	.1145	.1169	.1193	.1216	.1239	.1262	.1284	.1307	.1329
.00055	.1176	.1201	1996	. 1251	1975	. 1299	. 1323	.1347	.1371	.1394
60	.1229		.1281		.1332	.1357	.1382	.1407	.1432	.1456
65	. 1279	. 1306	. 1333	.1360	. 1386	.1413	.1439	.1464	. 1490	.1515
70 75	.1327	. 1355 . 1403	.1383		.1439 .1489		.1493 .1545	.1520 .1573	.1546 .1601	. 1573 . 1628
.00080		.1449				.1567	.1596		.1653	
85 90	. 1462 . 1505	.1493 .1537	.1524	1600	.1585 .1631	.1662	.1645 .1693	.1675 .1723	.1704 .1753	.1733 .1783
95	.1546	.1579			.1676	1708	.1739	.1771	.1801	.1832
100	. 1586	.1620	.1653	.1687	.1720	.1752	.1785	.1817	.1848	.1880
.0011	. 1663	. 1699	.1734	.1769	.1804	.1838	.1872	.1905	.1938	. 1971
12	. 1737	.1774	.1811	.1848	.1884 .1961	.1919	.1955	.1990	.2025	. 2059
13 14	. 1808 . 1877	. 1847 . 1917	.1885	. 1923 1008	.1961	2073	.2035 .2111	.2071	.2107 .2187	.2143
15	1942	.1984	.2025	2066	.2106	.2146	2186	.2225	.2264	2302
.0016	.2006	. 2049	.2091	2134	.2175	.2216	.2257	.2298	.2338	.2378
17	2068	.2112	.2156	.2199	.2242	.2285	.2327	.2368	.2410	. 2451
18	.2128	.2173			.2307		.2394	.2437	.2480	.2522
19 20	.2186	.2233		.2325 .2385	.2370	.2415		.2504	.2548 .2614	. 2591 . 2658
.0025	. 2508	0501	0014	000	.2719	.2770	.2822	.2872	.2922	.2972
30	.2747	.2561	.2614 .2864	.2667 .2921		.3035		.3146	.3201	.3256
35	. 2967	.3030	.3093	.3156	.3217	.3278	.3338	.3398	.3458	.3517
40 45	.3172 .3364		.3307			.3504		.3633 .3853	.3696 .3921	.3759
	. 3304	.0400		- 1	- 1	- 1	.3785	. 0000	.0821	.3987
.0050	. 3546	.3622		.3771				.4062	.4133	.4203
55 60	.3719 .3885			.3956 .4132	.4033	.4109	.4185	ļ]	
65		.4130	. 10.70	. 1102	1			.		
70		- }	1		- [1			j	

Table 81 (Concluded)

Values of nv Corresponding to Different Values of r and s in Manning's Formula, $v=\frac{1.486}{n}\,r^3\,s^{1/2}$ To determine v, divide the tabulated values by n

. =			r	= hy	iraulic	radius	in fee	t		
slope	8.2	8.4	8.6	8.8	9.0	9.2	9.4	9.6	9.8	10.0
.00005	.0427	.0434	.0441	.0448	.0455	.0461	.0468	.0475	.0481	.0488
10	.0604	.0614	.0624	.0633	.0643	.0653	.0662	.0671	.0681	.0690
15	.0740	.0752	.0764	.0776	.0787	.0799	.0811	.0822	.0833	.0845
20	.0855	.0868	.0882	.0896	.0909	.0923	.0936	.0949	.0962	.0975
25	.0955	.0971	.0986	. 1002	. 1017	.1032	. 1047	.1061	. 1076	. 1091
.00030	. 1047	. 1064	. 1080				.1146	. 1163	.1179	. 1195
35	.1131		.1167			. 1221			. 1273	.1290
· 40	. 1209	.1228	.1248			.1305	. 1324	. 1343	. 1361	. 1380
45	. 1282	.1303		. 1344			.1404	.1424	.1444	
50	. 1351	.1373	.1395	. 1416	.1438	.1459	.1480	.1501	.1522	.1542
.00055	.1417	.1440	.1463	.1485	.1508	. 1530	.1552	.1574	.1596	. 1618
60	.1480	. 1504	.1528	.1552	. 1575		.1621	. 1644	.1667	.1690
65	. 1541	. 1566		. 1615		. 1664	.1687	.1711	.1735	.1759
70	. 1599			. 1676			. 1751	.1776	.1801	. 1825
75	. 1655	.1682	.1708	. 1735	.1761	.1787	.1813	.1838	.1864	.1889
.00080	. 1709	.1737	. 1764	.1792		. 1845	.1872	. 1899	. 1925	. 1951
85	. 1762		.1819	.1847	.1875	.1902	. 1930	. 1957	. 1984	.2011
90	. 1813	. 1842	. 1871	. 1900	.1929	. 1957	.1986	. 2014	.2042	.2069
95	. 1863	. 1893	. 1923	.1952	.1982	.2011	.2040	. 2069	. 2098	.2126
100	.1911	.1942	.1973	.2003	. 2033	.2063	. 2093	.2123	.2152	.2181
.0011	. 2004		.2069	.2101	.2133	.2164	.2195	. 2226	. 2257	. 2288
12	. 2093		.2161	.2194			. 2293	. 2325	. 2357	. 2389
13	.2179		.2249	.2284	.2318	.2352	.2386	. 2420	. 2454	.2487
14	.2261						.2477	.2512	.2546	.2581
15	. 2340	.2378	.2416	.2453	.2490	. 2527	. 2563	.2600	. 2636	.2671
.0016	.2417			. 2534	.2572		. 2648		. 2722	.2759
17	.2491				. 2651		. 2729	.2768	. 2806	.2844
18	.2564			.2687	.2728	.2768	. 2808	.2848	. 2887	. 2926
19	.2634			.2761		.2844			. 2966	. 3007
20	.2702	.2746	.2790	.2833	.2875	.2918	.2960	.3002	.3044	.3085
.0025	. 3021			.3167	. 3215				. 3403	.3449
30	.3310								. 3727	.3778
35	.3575						. 3916		. 4026	.4081
40	.3822			.4006	.4066	.4127	.4186	.4245	ŀ	- 1
45	.4054	.4119	.4184	Ì	1	l	j	- 1	- 1	
	i		i				1	1		

Table 82.—Values of $\frac{1}{2.2082\,r^{53}}$ Corresponding to Different Values of r, for Determining the Slope of Open Channels by Manning's Formula

To determine s, multiply the tabulated value corresponding to r by $(nv)^2$

r	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.1	9.76	8.59	7.67	6.88	6.23	5.68	5.21	4.81	4.46	4.15
. 2	3.87	3.63	3.41	3.22	3.04	2.88	2.73	2.60	2.47	2.36
.2 .3	2.25	2.16	2.07	1.99	1.91	1.84	1.77	1.70	1.65	1.59
.9	1.54	1.49	1.44	1.40	1.35	1.31	1.28	1.24	1.20	1 17
.4 .5	1.14	1.11	1.08	1.06		1.01	.981	.958	.936	1.17
.0	l l				1.03	i			1	
.6 .7 .8	.895	.875	.857 .702 .590	.839 .689	.821 .677 .571	.804	.788 .653 .554	.772	.757 .631 .537	743
.7	.729 .610	.715	.702	.689	.677	.665	.653	.642 .545	.631	.620
.8	.610	.600	.590	.581	.571	.562	.554	.545	.537	.529
.9	.521	.514	.506	.499	.492	.485	.478	.472	.465	.459
1.0	.453	.447	.441	.435	.492 .430	.424	.419	.414	.409	.404
1.1	.399	.394	.389	.385	.380	.376	.372 .333	.367	.363	.359 .322
1.2 1.3 1.4 1.5	.355	.351	.347	.344	.340	.336	.333	.329	.326	.322
1.3	.319	.316	.313	.310	.307	304	.301	208	.295	.292
1 4	.289	.286	.284	.281	.279	.304 .276	.273	.298 .271	.269	.266
1.7	.264	.261	.259	.257	.255	.253	.250	.248	.246	.244
1.0	1			1	1		1		1	1
1.6 1.7	.242	.240	.238	.236	.234	.232 .215 .199	.230	.229 .212	.227	.225
1.7	.223	.221	.220	.218	.216	.215	.213	.212	.210	.208
1.8	.207	.221	.220	.218	.201	.199	.213	1.197	.195	.194
1.8 1.9	.192	.191	.190	1.189	.187	.186	.185	.183	.182	.181
2.0	.180	.179	.177	.176	.175	.174	.173	.172	.171	.169
2.1	.168	.167	.166	.165	1	.163		.161	.160	.159
2.2	.158	.157	.156	.155	.164 .155	.154	.162 .153	.152	.151	.150
2.2	.100	1107	.100	147	.100	104	.100	.102	.101	.100
2.3	.149	.148	.147	.147 .139	.146	.145	.144	.143	.143	.142
2.4	.141	.140	.139	.139	.138	.137	.136	.136	.135	.134
2.5	.133	.133	.132	.131	.131	.130	.129	.129	.128	.127
2.6	.127	. 126	. 125	.125 .119	.124 .118	.124 .118	.123 .117	.122 .116	.122 .116	.121
2.7	.120	.120	.119	.119	.118	.118	.117	.116	116	.115
2.8	.115	.114	.114	.113	.113	.112	112	111	111	.110
2.0	.109	.109	.108	.108	.108	.107	.112	.111	.111 .106	.105
2.9 3.0	.105	.104	.104	.103	.103	.102	.102	.101	.101	.101
	1				.0985	.0981	.0977	.0972	.0968	.0964
3.1	.1002	.0998 .0956	.0993 .0952	.0989 .0948	.0945	.0941	.0937	.0972	.0929	.0925
3.1 3.2 3.3	.0900	.0918	.0932	.0911	.0940	.0000	.0937	.0900		.0920
3.3	.0921		.0914	.0911	.0907	.0903	.0900	.0896	.0893	.0889
3.4	.0886	.0882	.0879	.0875	.0872	.0869	.0865	.0862	.0859	.0855
3.5	.0852	.0849	.0846	.0843	.0839	.0836	.0833	.0830	.0827	.0824
3.6	.0821	.0818	.0815	.0812	.0809	.0806	.0803	.0800	.0797	.0794
3.7	.0791	.0818 .0788	.0786	.0812 .0783	.0809 .0780	.0806 .0777	.0803 .0775	.0800 .0772	.0769	.0766
3.8	.0764	.0761	.0758	.0756	.0753	.0750	.0748	.0745	.0743	.0740
3.9	.0738	.0735	.0733	.0730	.0728	.0725	.0723	.0720	.0718	.0716
4.0	.0713	.0711	.0708	.0706	.0704	.0701	.0699	.0697	.0695	.0692
	1 1				l .	1		1	i	
4.1	.0690	.0688	.0686	.0683	.0681	.0679	.0677	.0675	.0673	.0670 .0650 .0630
4.2	.0668	.0666	.0664	.0662	.0660	.0658	.0656	.0654	.0652	.0650
4.3	.0648	.0646	.0644	.0642	.0640	.0638	.0636	.0634	.0632	.0630
4.4	.0628	.0626	.0624	.0622	.0621	.0619	.0617	.0615	.0613	.0611
4.4 4.5	.0610	.0608	.0606	.0604	.0602	.0601	.0599	.0597	.0595	.0594
4.6	.0592	.0590	.0589	.0587	.0585	.0583	.0582	.0580	.0578	.0577
4.7	.0575	.0574	.0572	.0570	.0569	.0567	.0566	.0564	.0562	.0561
4.8	.0559	.0558	.0556	.0555	.0553	.0552	.0550	.0549	.0547	.0546
4.9	.0544	.0543	.0541	.0540	.0538	.0537	.0535	.0534	.0533	.0531
						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			••••••	
5.0	.0530	.0528	.0527	.0525	.0524	.0523	.0521	.0520	.0519	.0517

Digitized by GOOGLE

Table 82 (Concluded)

Values of $\frac{1}{2.2082 \, r^{\frac{1}{16}}}$ Corresponding to Different Values

of r for Determining the Slope of Open Channels by Manning's Formula

To determine s, multiply the tabulated value corresponding to r by $(nv)^2$

	•	•	.2	.3	.4	.5	.6	.7	.8	.9
r	.0	.1	.2	.0	•*		.0	.,	.0	
5	.0530	.0516	.0503	.0490	.0478	.0466	.0455	.0445	.0435	.0425
6	.0415	.0406	.0398	.0389	.0381	.0373	.0365	.0358	.0351	.0345
7	.0338	.0332	.0326	.0320	.0314	.0308	.0303	.0298	.0293	.0288
/ 8 9	.0242	.0238	.0235	.0232	.0228	.0225	.0222	.0219	.0216	.0213
10	.0210	.0207	.0205	.0202	.0199	.0197	.0194	.0192	.0190	.0187
10	.0185	.0183	.0181	.0179	.0177	.0175	.0173	.0171	.0169	.0167
12	.0165	.0163	.0161	.0160	.0158	.0156	.0154	.0153	.0151	.0150
13	.0148	.0147	.0145	.0144	.0142	.0141	.0140	.0138	.0137	.0136
14	.0134	.0133	.0132	.0130	.0129	.0128	.0127	.0126	.0125	.0124
15	.01224	.01213	.01203	.01192	.01182	.01172	.01162	.01152	.01142	.01132
16 17			.01105 .01020				.01069			.01044
18			.00946							
19	.00893	.00887				.00863				
· 20	.00834	.00829	.00823	.00818			.00802	.00797		.00787
21	.00782	.00777	.00772	.00767	.00762	.00758	.00753	.00748	.00744	.00739
22	.00735	.00730	.00726 .00684	.00722	.00717	.00713	.00709	.00705	.00700	.00696
23 24	.00692	00651	.00647	00643	00640	00636	00633	.00630	00626	.00623
25	.00620		.00613		.00607	i .		i i	.00594	1
25 26			.00582							
27			.00554		.00548	.00546	.00543	.00540	.00538	
28	.00533	.00530	.00528	.00525	.00523	.00520	.00518	.00515	.00513	.00511
29	.00508	.00506	.00504	.00501						
30	.00486	.00484	.00482	.00479	.00477	.00475	.00473	.00471	.00469	.00467
31	.00465	.00463	.00461 .00442	.00459	.00457	.00455	.00453	.00451	.00449	.00448
32 33	00440	00444	.00442	00423	00439	.00437	.00418	.00438	.00415	.00413
34	.00411	.00410	.00408	.00407	.00405	.00403	.00402	.00400	.00399	.00397
35	.00396	.00394	.00393	.00391	.00390	.00388	.00387	.00385	.00384	.00382
36	.00381	.00380	.00378	.00377	.00375	.00374	.00373	.00371	.00370	.00369
37			.00365	.00363	.00362	.00361	.00360	.00358	.00357	
38 39	.00354		.00352			.00348			.00333	.00344
	.00331					.00326				1 1
40 41	.00320	.00330	.00329	00328	00327	00315	00324	00313	00322	00321
42	.00310	.00309	.00308	.00307	.00306	.00305	.00304	.00303	.00302	.00302
43	.00301	.00300	.00299	.00298	.00297	.00296	.00295	.00294	.00293	.00292
44	.00292	.00291	.00290	.00289	.00288	.00287	.00286	.00285	.00285	.00284
45	.00283	.00282				.00279			.00276	
46	.00275	.00274	.00273	.00272	.00272	.00271	.00270	.00269	.00268	.00268
47	.00267		.00265			.00263	.00263	.00262	.00261	00252
48 49	.00260	.00259	.00251	.00257	.00257	.00230	.00233	.00248	.00247	.00247
50	.00246					.00243				
51	.00239		00238	00238	00243	.00236	.00236	.00235	.00235	.00234
52	.00233	.00233	.00232	.00232	.00231	.00230	.00230	.00229	.00229	.00228
53	.00227	.00227	.00226	.00226	.00225	.00225	.00224	.00224	.00223	.00222
54	.00222	.00221	.00221	.00220	.00220	.00219	.00219	.00218	300218	.00217
				L				9	٧	

TABLE 83.—SQUARE ROOTS OF DECIMAL NUMBERS

Num- ber	0	1	2	3	4	5	6	7	8	9
.00001	.003162			.003606		.003873	.004000	.004123	.004243	.004359
.00002	.004472	.004583	.004690	.004796	.004899	.005000	.005099	.005196	.005292	.005385
.00003	.005477	.005568	.005657	.005745			.006000	.006083	.006164	.006245
.00004	.006325	.006403	.006481	.006557		.006708		.006856	.006928	.007000
.00005	.007071	.007141	.007211	.007280	.007348	.007416	.007483	.007550	.007616	.007681
.00006	.007746		.007874	.007937		.008062	.008124	.008185	.008246	.008307
.00007	.008367				.008602	.008660	.008718	.008775		.008888
.00008	.008944	.009000	.009055		.009165	.009220	.009274	.009327	.009381	.009434
.00009	.009487	.009539	.009592		.009695	.009747	.009798	.009849	.009899	.009950
.00010	.010000	.010050	.010100	.010149	.010198	.010247	.010296	.010344	.010392	.010440
.0001	.01000	.01049	.01095	.01140	.01183	.01225	.01265	.01304	.01342	.01378
.0002	.01414	.01449	.01483	.01517	.01549	.01581	.01612	.01643	.01673	.01703
.0003	.01732	.01761	.01789	.01817	.01844	.01871	.01897	.01924	.01949	.01975
.0004	.02000	.02025	.02049	.02074	.02098	.02121	.02145	.02168	.02191	.02214
.0005	.02236	.02258	.02280	.02302	.02324	.02345	.02366	.02387	.02408	.02429
.0006	.02449	.02470	.02490	.02510	.02530	.02550	.02569	.02588	.02608	.02627
.0007	.02646	.02665	.02683	.02702	.02720	.02739	.02757	.02775	.02793	.02811
.0008	.02828	.02846	.02864	.02881	.02898	.02915	.02933	.02950	.02966	.02983
.0009	.03000	.03017	.03033	.03050	.03066	.03082	.03098	.03114	.03130	.03146
.0010	.03162	.03178	.03194	.03209	.03225	.03240	.03256	.03271	.03286	.03302
.001	.03162	.03317	.03464	.03606	.03742	.03873	.04000	.04123	.04243	.04359
.002	.04472	.04583	.04690	.04796	.04899	.05000	.05099	.05196	.05292	.05385
.003	.05477	.05568	.05657	.05745	.05831	.05916		.06083	.06164	.06245
.004	.06325	.06403	.06481	.06557	.06633	.06708	.06782	.06856	.06928	.07000
.005	.07071	.07141	.07211	.07280	.07348	.07416	.07483	.07550	.07616	.07681
.006	.07746	.07810	.07874	.07937	.08000	.08062	.08124	.08185	.08246	.08307
.007	.08367	.08426	.08485	.08544	.08602	.08660		.08775	.08832	.08888
.008	.08944	.09000	.09055	.09110	.09165	.09220		.09327	.09381	.09434
.009	.09487	.09539		.09644	.09695	.09747		.09849	.09899	.09950
.010	.10000	.10050	.10100	.10149	.10198	.10247	.10296	.10344	.10392	. 10440
.01	.1000	.1049	.1095	.1140	.1183	.1225		. 1304	.1342	. 1378
.02	.1414	.1449		.1517	.1549	.1581		.1643	.1673	. 1703
.03	.1732	.1761		.1817	.1844			.1924	.1949	.1975
.04	.2000	.2025	.2049	.2074	.2098	.2121		.2168	.2191	.2214
.05	.2236	.2258	.2280	.2302	.2324	.2345	.2366	.2387	.2408	.2429
.06	.2449	.2470	.2490	.2510	.2530	.2550	.2569	.2588	.2608	. 2627
.07	.2646	.2665	.2683	.2702	.2720	.2739	.2757	.2775	.2793	.2811
.08	.2828	.2846	.2864	.2881	.2898	.2915		.2950	.2966	. 2983
.09	.3000	.3017	.3033	.3050	.3066	.3082		.3114	.3130	.3146
.10	.3162	.3178	.3194	.3209	.3225	.3240	.3256	.3271	.3286	. 3302

TABLE 84.—Two-thirds Powers of Numbers

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
Number	.00	.01	.02	.03	.04	.03	.00	.07	.08	.08
.0 .1 .2 .3 .4	.000 .215 .342 .448 .543	.046 .229 .353 .458 .552	.074 .243 .364 . 468 .561	.097 .256 .375 .477 .570	.117 .269 .386 .487	.136 .282 .397 .497 .587	.153 .295 .407 .506 .596	.170 .307 .418 .515 .604	.186 .319 .428 .525 .613	.201 .331 .438 .534 .622
.5 .6 .7 .8 .9	.630 .711 .788 .862 .932	.638 .719 .796 .869 .939	.647 .727 .803 .876 .946	.655 .735 .811 .883 .953	.663 .743 .818 .890 .960	.671 .750 .825 .897 .966	.679 .758 .832 .904 .973	.687 .765 .840 .911 .980	.695 .773 .847 .918 .987	.703 .781 .855 .925 .993
1.0 1.1 1.2 1.3	1.065 1.129 1.191	1.072 1.136 1.197	1.078 1.142 1.203	1.020 1.085 1.148 1.209 1.269	1.091 1.154 1.215	1.097 1.160 1.221	1.104 1.167 1.227	1.110 1.173 1. 23 3	1.117 1.179 1.239	1.123 1.185 1.245
1.5 1.6 1.7 1.8 1.9	1.424 1.480	1.430 1.485	1.436 1.491	1.328 1.385 1.441 1.496 1.550	1.447 1.502	1.452 1.507	1.458 1.513	1.463 1.518	1.469 1.523	1.474 1.529
2.0 2.1 2.2 2.3 2.4	1.639 1.691 1.742	1.645 1.697 1.747	1.650 1.702 1.752	1.603 1.655 1.707 1.757 1.807	1.660 1.712 1.762	1.665 1.717 1.767	1.671 1.722 1.772	1.676 1.727 1.777	1.681 1.732 1.782	1.686 1.737 1.787
2.5 2.6 2.7 2.8 2.9	1.891 1.939	1.896 1.944	1.900 1.949	1.857 1.905 1.953 2.001 2.048	1.910 1.958 2.006	1.915 1.963 2.010	1.920 1.968 2.015	1.925 1.972 2.020	1.929 1.977 2.024	1.934 1.982 2.029
3.0 3.1 3.2 3.3 3.4	2.217	2.221	2.226	2.094 2.140 2.185 2.230 2.274	2.234	2.239	2.243	2.248	2.252	2.257
3.5 3.6 3.7 3.8 3.9	2.349 2.392 2.435	2.353 2.397 2.439	2.358 2.401 2.444	2.318 2.362 2.405 2.448 2.490	2.366 2.409 2.452	2.371 2.414 2.457	2.375 2.418 2.461	2.379 2.422 2.465	2.384 2.427 2.469	2.388 2.431 2.474
4.0 4.1 4.2 4.3 4.4	2.562 2.603 2.644	2.566 2.607 2.648	2.570 2.611 2.653	2.532 2.574 2.616 2.657 2.698	2.579 2.620 2.661	2.583 2.624 2.665	2.587 2.628 2.669	2.591 2.632 2.673	2.595 2.636 2.677	2.599 2.640 2.681
4.5 4.6 4.7 4.8 4.9	12.806	2.810	2.814	2.738 2.778 2.818 2.858 2.897	2.822	2.826	2.830	2.834	2.838	2.842

Table 84 (Concluded)

Two-thirds Powers of Numbers

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
5.0 5.1 5.2 5.3 5.4	2.924 2.963 3.001 3.040 3.078	2.928 2.967 3.005 3.044 3.082	2.932 2.971 3.009 3.047 3.086	2.936 2.975 3.013 3.051 3.089	2.940 2.979 3.017 3.055 3.093	2.944 2.982 3.021 3.059 3.097	2.947 2.986 3.024 3.063 3.101	2.951 2.990 3.028 3.067 3.105	2.955 2.994 3.032 3.070 3.108	2.959 2.998 3.036 3.074 3.112
5.5 5.6 5.7 5.8 5.9	3.116 3.154 3.191 3.228 3.265	3.120 3.157 3.195 3.232 3.269	3.123 3.161 3.198 3.236 3.273	3.127 3.165 3.202 3.239 3.276	3.131 3.169 3.206 3.243 3.280	3.135 3.172 3.210 3.247 3.284	3.138 3.176 3.213 3.250 3.287	3.142 3.180 3.217 3.254 3.291	3.146 3.184 3.221 3.258 3.295	3.150 3.187 3.224 3.261 3.298
6.0 6.1 6.2 6.3 6.4	3.411 3.447	3.306 3.342 3.379 3.415 3.451	3.418 3.454	$3.422 \\ 3.458$	$3.426 \\ 3.461$	3.429 3.465	3.433 3.469	3.43 0 3.472	3.440 3.476	3.444 3.479
6.5 6.6 6.7 6.8 6.9	3.483 3.519 3.554 3.589 3.624	3.486 3.522 3.558 3.593 3.628	3.490 3.526 3.561 3.596 3.631	3.494 3.529 3.565 3.600 3.635	3.497 3.533 3.568 3.603 3.638	3.501 3.536 3.572 3.607 3.642	3.504 3.540 3.575 3.610 3.645	3.508 3.543 3.579 3.614 3.649	3.511 3.547 3.582 3.617 3.652	3.515 3.550 3.586 3.621 3.656
7.0 7.1 7.2 7.3 7.4	13.694	3.663 3.698 3.732 3.767 3.801	3 701	3.705	13.708	3.712	3.715	13.718	13.722	3.691 3.725 3.760 3.794 3.828
7.5 7.6 7.7 7.8 7.9	3.832 3.866 3.899 3.933 3.967	3.835 3.869 3.903 3.937 3.970	3.838 3.872 3.906 3.940 3.973	3.842 3.876 3.910 3.943 3.977	3.845 3.879 3.913 3.947 3.980	3.849 3.883 3.916 3.950 3.983	3.852 3.886 3.920 3.953 3.987	3.855 3.889 3.923 3.957 3.990	3.859 3.893 3.926 3.960 3.993	3.862 3.896 3.930 3.963 3.997
8.0 8.1 8.2 8.3 8.4	4.033 4.066 4.099	4.003 4.037 4.070 4.103 4.136	4.040 4.073 4.106	4.043 4.076 4.109	4.047 4.080 4.113	4.050 4.083 4.116	4.053 4.086 4.119	4.057 4.090 4.122	4.060 4.093 4.126	4.063 4.096 4.129
8.5 8.6 8.7 8.8 8.9	4.230	4.168 4.201 4.233 4.266 4.298	4.237	4.240	4.243	4.246	4.249	4.253 4.285	4.256	4.259 4.291
9.0 9.1 9.2 9.3 9.4	4.391	4.330 4.362 4.394 4.426 4.457	4.397	4.400	4.403	4.407	4.410	4.413	4.416	4.419
9.5 9.6 9.7 9.8 9.9	4.580	4.489 4.520 4.551 4.583 4.614	4.586	4.589	4.592	4.595	4.598	4.601	4.604	4.514 4.545 4.576 4.608 4.639
10.0	4.642			<u> </u>			Diam'r 1	by Go	ogle	

TABLE 85.—THREE-EIGHTHS POWERS OF NUMBERS

Number	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0 .1 .2 .3	.00 .42 .55 .64 .71	.18 .44 .56 .65 .72	.23 .45 .57 .65 .72	.27 .47 .58 .66 .73	.30 .48 .59 .67	.33 .49 .59 .67	.35 .50 .60 .68	.37 .51 .61 .69 .75	.39 .53 .62 .70	.41 .54 .63 .70
.5 .6 .7 .8 .9	.77 .83 .87 .92 .96	.78 .83 .88 .92 .97	.78 .84 .88 .93 .97	.79 .84 .89 .93 .97	.79 .85 .89 .94 .98	.80 .85 .90 .94 .98	.80 .86 .90 .94 .98	.81 .86 .91 .95	.82 .87 .91 .95	.82 .87 .92 .96 1.00
1.0	1.00	1.00	1.01	1.01	1.01	1.02	1.02	1.03	1.03	1.03
1.1	1.04	1.04	1.04	1.05	1.05	1.05	1.06	1.06	1.06	1.07
1.2	1.07	1.07	1.08	1.08	1.08	1.09	1.09	1.09	1.10	1.10
1.3	1.10	1.11	1.11	1.11	1.12	1.12	1.12	1.13	1.13	1.13
1.4	1.13	1.14	1.14	1.14	1.15	1.15	1.15	1.16	1.16	1.16
1.5	1.16	1.17	1.17	1.17	1.18	1.18	1.18	1.18	1.19	1.19
1.6	1.19	1.20	1.20	1.20	1.20	1.21	1.21	1.21	1.21	1.22
1.7	1.22	1.22	1.23	1.23	1.23	1.23	1.24	1.24	1.24	1.24
1.8	1.25	1.25	1.25	1.25	1.26	1.26	1.26	1.26	1.27	1.27
1.9	1.27	1.27	1.28	1.28	1.28	1.28	1.29	1.29	1.29	1.29
2.0	1.30	1.30	1.30	1.30	1.31	1.31	1.31	1.31	1.32	1.32
2.1	1.32	1.32	1.33	1.33	1.33	1.33	1.33	1.34	1.34	1.34
2.2	1.34	1.35	1.35	1.35	1.35	1.36	1.36	1.36	1.36	1.36
2.3	1.37	1.37	1.37	1.37	1.38	1.38	1.38	1.38	1.38	1.39
2.4	1.39	1.39	1.39	1.40	1.40	1.40	1.40	1.40	1.41	1.41
2.5	1.41	1.41	1.41	1.42	1.42	1.42	1.42	1.42	1.43	1.43
2.6	1.43	1.43	1.44	1.44	1.44	1.44	1.44	1.45	1.45	1.45
2.7	1.45	1.45	1.46	1.46	1.46	1.46	1.46	1.47	1.47	1.47
2.8	1.47	1.47	1.48	1.48	1.48	1.48	1.48	1.48	1.49	1.49
2.9	1.49	1.49	1.49	1.50	1.50	1.50	1.50	1.50	1.51	1.51
3.0	1.51	1.51	1.51	1.52	1.52	1.52	1.52	1.52	1.52	1.53
3.1	1.53	1.53	1.53	1.53	1.54	1.54	1.54	1.54	1.54	1.54
3.2	1.55	1.55	1.55	1.55	1.55	1.56	1.56	1.56	1.56	1.56
3.3	1.56	1.57	1.57	1.57	1.57	1.57	1.58	1.58	1.58	1.58
3.4	1.58	1.58	1.59	1.59	1.59	1.59	1.59	1.59	1.60	1.60
3.5	1.60	1.60	1.60	1.61	1.61	1.61	1.61	1.61	1.61	1.62
3.6	1.62	1.62	1.62	1.62	1.62	1.63	1.63	1.63	1.63	1.63
3.7	1.63	1.63	1.64	1.64	1.64	1.64	1.64	1.64	1.65	1.65
3.8	1.65	1.65	1.65	1.65	1.66	1.66	1.66	1.66	1.66	1.66
3.9	1.67	1.67	1.67	1.67	1.67	1.67	1.68	1.68	1.68	1.68
4.0	1.68	1.68	1.68	1.69	1.69	1.69	1.69	1.69	1.69	1.70
4.1	1.70	1.70	1.70	1.70	1.70	1.71	1.71	1.71	1.71	1.71
4.2	1.71	1.71	1.72	1.72	1.72	1.72	1.72	1.72	1.73	1.73
4.3	1.73	1.73	1.73	1.73	1.73	1.74	1.74	1.74	1.74	1.74
4.4	1.74	1.74	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.76
4.5	1.76	1.76	1.76	1.76	1.76	1.77	1.77	1.77	1.77	1.77
4.6	1.77	1.77	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.79
4.7	1.79	1.79	1.79	1.79	1.79	1.79	1.80	1.80	1.80	1.80
4.8	1.80	1.80	1.80	1.81	1.81	1.81	1.81	1.81	1.81	1.81
4.9	1.81	1.82	1.82	1.82	1.82	1.82	1.82	1.82	1.83	1.83

HANDBOOK OF HYDRAULICS

Table 85 (Continued)

THREE-EIGHTHS POWERS OF NUMBERS

							110101			
Number	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
5.	1.83	1.84	1.86	1.87	1.88	1.89	1.91	1.92	1.93	1.94
6.	1.96	1.97	1.98	1.99	2.01	2.02	2.03	2.04	2.05	2.06
7.	2.07	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17
8.	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26	2.27
9.	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.34	2.35	2.36
10.	2.37	2.38	2.39	2.40	2.41	2.42	2.42	2.43	2.44	2.45
11.	2.46	2.46	2.47	2.48	2.49	2.50	2.51	2.52	2.52	2.53
12.	2.54	2.55	2.56	2.56	2.57	2.58	2.59	2.59	2.60	2.61
13.	2.62	2.62	2.63	2.64	2.65	2.65	2.66	2.67	2.68	2.68
14.	2.69	2.70	2.71	2.71	2.72	2.73	2.73	2.74	2.75	2.75
15.	2.76	2.77	2.77	2.78	2.79	2.79	2.80	2.81	2.81	2.82
16.	2.83	2.84	2.84	2.85	2.86	2.86	2.87	2.87	2.88	2.89
17.	2.89	2.90	2.91	2.91	2.92	2.93	2.93	2.94	2.94	2.95
18.	2.96	2.96	2.97	2.97	2.98	2.99	2.99	3.00	3.00	3.01
19.	3.02	3.02	3.03	3.03	3.04	3.05	3.05	3.06	3.06	3.07
20.	3.08	3.08	3.09	3.09	3.10	3.10	3.11	3.12	3.12	3.13
21.	3.13	3.14	3.14	3.15	3.15	3.16	3.17	3.17	3.18	3.18
22.	3.19	3.19	3.20	3.20	3.21	3.21	3.22	3.22	3.23	3.24
23.	3.24	3.25	3.25	3.26	3.26	3.27	3.27	3.28	3.28	3.29
24.	3.29	3.30	3.30	3.31	3.31	3.32	3.32	3.33	3.33	3.34
25.	3.34	3.35	3.35	3.36	3.36	3.37	3.37	3.38	3.38	3.39
26.	3.39	3.40	3.40	3.41	3.41	3.42	3.42	3.48	3.43	3.44
27.	3.44	3.45	3.45	3.46	3.46	3.47	3.47	3.47	3.48	3.48
28.	3.49	3.49	3.50	3.50	3.51	3.51	3.52	3.52	3.53	3.53
29.	3.54	3.54	3.54	3.55	3.55	3.56	8.56	3.57	3.57	3.58
30. 31. 32. 33.	3.58 3.62 3.67 3.71 3.75	3.58 3.63 3.67 3.72 3.76	3.59 3.63 3.68 3.72 3.76	3.59 3.64 3.68 3.72 3.76	3.60 3.64 3.69 3.73 3.77	3.60 /3.65 3.69 3.73 3.77	3.61 3.65 3.69 3.74 3.78	3.61 3.66 3.70 3.74 3.78	3.62 3.66 3.70 3.74 3.79	3.62 3.66 3.71 3.75 3.79
35.	3.79	3.80	3.80	3.81	3.81	3.81	3.82	3.82	3.83	3.83
36.	3.83	3.84	3.84	3.85	3.85	3.85	3.86	3.86	3.87	3.87
37.	3.87	3.88	3.88	3.89	3.89	3.89	3.90	3.90	3.91	3.91
38.	3.91	3.92	3.92	3.92	3.93	3.93	3.94	3.94	3.94	3.95
39.	3.95	3.95	3.96	3.96	3.97	3.97	3.97	3.98	3.98	3.98
40.	3.99	3.99	4.00	4.00	4.00	4.01	4.01	4.01	4.02	4.02
41.	4.03	4.03	4.03	4.04	4.04	4.04	4.05	4.05	4.05	4.06
42.	4.06	4.07	4.07	4.07	4.08	4.08	4.08	4.09	4.09	4.09
43.	4.10	4.10	4.10	4.11	4.11	4.12	4.12	4.12	4.13	4.13
44.	4.13	4.14	4.14	4.14	4.15	4.15	4.15	4.16	4.16	4.16
45.	4.17	4.17	4.18	4.18	4.18	4.19	4.19	4.19	4.20	4.20
46.	4.20	4.21	4.21	4.21	4.22	4.22	4.22	4.23	4.23	4.23
47.	4.24	4.24	4.24	4.25	4.25	4.25	4.26	4.26	4.26	4.27
48.	4.27	4.27	4.28	4.28	4.28	4.29	4.29	4.29	4.30	4.30
49	4.30	4.31	4.31	4.31	4.32	4.32	4.32	4.33	4.33	4.33
50.	4.34	4.34	4.34	4.35	4.35	4.35	4.36	4.36	4.36	4.37
51.	4.37	4.37	4.37	4.38	4.38	4.38	4.39	4.39	4.39	4.40
52.	4.40	4.40	4.41	4.41	4.41	4.42	4.42	4.42	4.43	4.13
53.	4.43	4.44	4.44	4.44	4.44	4.45	4.45	4.45	4.46	4.46
54.	4.46	4.47	4.47	4.47	4.48	4.48	4.48	4.48	1.49	4.49

TABLE 85 (Concluded)

THREE-EIGHTHS POWERS OF NUMBERS

Number	0	1	2	3	4	5	6	7	8	9
50.	4.34	4.37	4.40	4.43	4.46	4.49	4.52	4.55	4.58	4.61
60.	4.64	4.67	4.70	4.73	4.76	4.78	4.81	4.84	4.87	4.89
70.	4.92	4.95	4.97	5.00	5.02	5.05	5.07	5.10	5.12	5.15
80.	5.17	5.20	5.22	5.24	5.27	5.29	5.31	5.34	5.36	5.38
90.	5.41	5.43	5.45	5.47	5.49	5.52	5.54	5.56	5.58	5.60
100.	5.62	5.64	5.67	5.69	5.71	5.73	5.75	5.77	5.79	5.81
110.	5.83	5.85	5.87	5.89	5.91	5.93	5.95	5.96	5.98	6.00
120.	6.02	6.04	6.06	6.08	6.10	6.11	6.13	6.15	6.17	6.19
130.	6.20	6.22	6.24	6.26	6.28	6.29	6.31	6.33	6.35	6.36
140.	6.38	6.40	6.41	6.43	6.45	6.46	6.48	6.50	6.51	6.53
150.	6.55	6.56	6.58	6.60	6.61	6.63	6.64	6.66	6.68	6.69
160.	6.71	6.72	6.74	6.75	6.77	6.78	6.80	6.81	6.83	6.84
170.	6.86	6.87	6.89	6.90	6.92	6.93	6.95	6.96	6.98	6.99
180.	7.01	7.02	7.04	7.05	7.07	7.08	7.10	7.11	7.12	7.14
190.	7.15	7.17	7.18	7.20	7.21	7.22	7.24	7.25	7.27	7.28
200.	7.29	7.31	7.32	7.34	7.35	7.36	7.37	7.39	7.40	7.42
210.	7.43	7.44	7.46	7.47	7.48	7.50	7.51	7.52	7.54	7.55
220.	7.56	7.57	7.58	7.60	7.61	7.62	7.63	7.65	7.66	7.67
230.	7.69	7.70	7.71	7.72	7.73	7.75	7.76	7.77	7.78	7.80
240.	7.81	7.82	7.83	7.85	7.86	7.87	7.88	7.89	7.91	7.92
250.	7.93	7.94	7.95	7.96	7.98	7.99	8.00	8.01	8.02	8.04
260.	8.05	8.06	8.07	8.08	8.09	8.10	8.12	8.13	8.14	8.15
270.	8.16	8.17	8.18	8.20	8.21	8.22	8.23	8.24	8.25	8.26
280.	8.27	8.28	8.30	8.31	8.32	8.33	8.34	8.35	8.36	8.37
290.	8.38	8.39	8.40	8.42	8.43	8.44	8.45	8.46	8.47	8.48
300.	8.49	8.50	8.51	8.52	8.58	8.54	8.55	8.56	8.57	8.58
310.	8.60	8.61	8.62	8.63	8.64	8.65	8.66	8.67	8.68	8.69
320.	8.70	8.71	8.72	8.73	8.74	8.75	8.76	8.77	8.78	8.79
330.	8.80	8.81	8.82	8.83	8.84	8.85	8.86	8.87	8.88	8.89
340.	8.90	8.91	8.92	8.93	8.94	8.95	8.96	8.97	8.98	8.99
350.	9.00	9.01	9.01	9.02	9.03	9.04	9.05	9.06	9.07	9.08
360.	9.09	9.10	9.11	9.12	9.13	9.14	9.15	9.16	9.17	9.18
370.	9.18	9.19	9.20	9.21	9.22	9.23	9.24	9.25	9.26	9.27
380.	9.28	9.29	9.30	9.30	9.31	9.32	9.33	9.34	9.35	9.36
390.	9.37	9.38	9.39	9.40	9.40	9.41	9.42	9.43	9.44	9.45
400.	9.46	9.47	9.48	9.48	9.49	9.50	9.51	9.52	9.53	9.54
410.	9.55	9.55	9.56	9.57	9.58	9.59	9.60	9.61	9.61	9.62
420.	9.63	9.64	9.65	9.66	9.67	9.67	9.68	9.69	9.70	9.71
430.	9.72	9.73	9.73	9.74	9.75	9.76	9.77	9.78	9.78	9.79
440.	9.80	9.81	9.82	9.83	9.83	9.84	9.85	9.86	9.87	9.88
450. 460. 470. 480. 490.	10.13	9.89 9.97 10.06 10.13 10.21	10.14	$10.07 \\ 10.15$	10.00 10.08 10.16	10.01 10.09 10.17	10.09 10.17	$10.10 \\ 10.18$	10.03 10.11 10.19	10.04 10.12 10.20
500. 510. 520. 530. 540.	10.44 10.51	10.29 10.37 10.44 10.52 10.59	10.45 10.52	10.38 10.46 10.53	10.39 10.47 10.54	10.40 10.47 10.55	10.41 10.48 10.55	10.41 10.49 10.56	10.42 10.50 10.57	10.43 10.50 10.58

DIAGRAM 1. (See note diagram 2.)

DIAGRAM FOR SOLUTION

MANNING'S FORMULA

$$v = \frac{1.486}{n} r^{\frac{9}{14}} s^{\frac{14}{14}}$$

Problem: Any three quantities known, to find the unknown.

Writing the equation, $vn = 1.486 r^{\frac{3}{2}} s^{\frac{1}{2}}$, find the intersection of the two known quantities which occur on the same side of the equation, section with the third known quantity. The other co-ordinate of this intersection gives

,080

.035

CHAPTER VIII

MEASUREMENT OF FLOWING WATER

The measurement of flowing water is becoming a matter of increasing importance to the engineer. Both in the laboratory and in the field of practice the most accurate and effective methods of measurement are demanded. The determination of the empirical coefficients used in hydraulic formulas are all based upon actual measurements of flow and the reliability of these formulas is dependent upon the accuracy of such measurements. Continuous stream-discharge records, similar to those published by the United States Geological Survey, are based upon periodic measurements of flow, which records are an essential feature of the economic development of natural streams. The rapid improvement in the design of water turbines has produced a keen rivalry among manufacturers, and accurate methods of measuring water have been demanded for determining the efficiency of turbine installations. Municipalities are requiring more economy in the use of water for domestic purposes which is being accomplished through a more general use of service meters. In irrigated districts where water is continually increasing in value the problem of waste prevention is becoming more important and there is a growing tendency to require a record of the amount of water used on each farm.

On account of the many and varying demands in the matter of measuring flowing water, various methods of measurement, each more or less suited to the particular conditions, have been devised. In general, all methods of measuring water may be classed in one of two divisions, which, with a list of methods coming under each, are as follows:

- (a) Velocity-area methods, velocity measured by:
 - 1. Current meter.
 - 2. Pitot tube.
 - 3. Floats.
 - 4. Traveling screen.
 - 5. Color method.

- (b) Direct-discharge methods;
 - 1. Gravimetric.
 - 2. Volumetric.
 - 3. Weirs.
 - 4. Orifices.
 - 5. Meters.
 - 6. Chemical gaging

Gravimetric and volumetric methods of measuring water, which require the determination of the weight or volume of water flowing in a given time, are adapted primarily to experimental work in laboratories or to the measurement of comparatively small quantities of water and will not be discussed. The methods of measuring water with orifices or weirs is explained in the chapters under these headings. The other methods listed above are explained in the following pages.

Velocity-area methods involve the determination of the mean velocity of the water, and with the cross-sectional area of the channel known the discharge equals the product of the two factors. The color and traveling screen methods provide for the determination of the mean velocity from a single observation. The current meter and Pitot tube give velocities in only one point in the cross-section at a time, and floats give the mean velocity in a limited area of the cross-section.

The current meter is generally preferred for measuring water in open channels, and is used almost exclusively for rivers. Before studying in detail the different methods of measurement a knowledge of the distribution of velocities in the crosssection of a channel is essential.

Distribution of Velocities

There is usually a noticeable lack of uniformity in the distribution of velocities in open channels and especially those of irregular section. The upper sketch in Fig. 66, reproduced from U. S. Geological Survey Water Supply Paper No. 305, is a typical example. The numbers in the cross-section indicate velocities in feet per second from which lines of equal velocity are drawn. In general, these lines follow quite well-defined laws which can be best understood from a study of vertical velocity curves.

surface and continuing at intervals of about 6 inches or 1 foot, the last velocity being taken as close to the bed of the stream as practicable. The velocities thus taken are plotted on cross-section paper with depths as ordinates and velocities as abscissas, a smooth curve being drawn as nearly as may be

Fig. 66.—Distribution of velocities in open channel.

through these points. The velocity at any depth may then be scaled from this curve, the mean velocity being equal to the area included between the vertical axis and the curve and the horizontal lines at top and bottom of the curve, divided by the depth of water.

Fig. 66 shows examples of vertical velocity curves. Many such curves have been made by the United States Geological Survey for numerous streams, from a study of which the following fundamental principles have been deducted:

1. The maximum velocity occurs at a distance below the surface equal to about 5 to 25 per cent. of the depth of the stream, the per cent. increasing as the depth of the stream increases. For shallow streams with rough beds the thread of maximum velocity lies very near to the surface.

Fig. 67.—Distribution of velocities in ice-covered streams.

- 2. The vertical velocity curve approximates a parabola, whose axis is horizontal and passes through the point of maximum velocity.
- 3. The mean velocity in a vertical, within a maximum error of about 3 per cent. and an average error of 1 per cent., occurs at 0.6 depth.

- 4. The mean velocity in a vertical, within a maximum error of about 1 per cent. and an average error of zero, is given by the mean of the velocities at 0.2 depth and 0.8 depth.
- 5. The mean velocity in a vertical is from about 80 to 95 per cent. of the surface velocity, which percentage is slightly less for shallow streams than for deep streams.

The laws governing the distribution of velocities in open channels do not all hold for ice-covered streams. Fig. 67, reproduced from U. S. Geological Survey Water Supply Paper No. 337, is a typical example of a stream flowing under a complete covering of ice. The mean velocity does not occur at 0.6 depth for an ice-covered stream but it is given very accurately by the mean of the velocities at 0.2 depth and 0.8 depth.

Instruments for Measuring Velocity

The current meter is quite generally used for measuring velocities in open channels. This instrument consists of a suitable frame on which is mounted a wheel that is moved by the current and actuates a device for determining the number of revolutions in a given time. The rate at which the wheel revolves varies with the velocity of the current. Ordinarily the current meter is provided with a mechanism which completes an electric circuit at each revolution or at a given number of revolutions of the wheel, and wires from the meter properly connected to batteries and buzzer or other indicating device, enables the observer to determine the rate at which the wheel revolves. The so-called acoustic meter has a drum attachment which strikes after a given number of revolutions of the wheel, the sound being conveyed to the observer through a hollow tube. by which the meter is held. Other meters are arranged with mechanical recording devices. Current meters may be suspended from a cable or attached to a rod; the former are generally provided with electrical contact and are better suited to the gaging of large streams. Meters attached to rods are very convenient for gaging small streams.

Two general types of wheels are used on current meters: those having a vertical axis with cups attached to the outer perimeter, and those with a horizontal axis and blades of the screw-propeller shape. Each type of wheel has its advocates and probably each type is better suited to particular conditions.

The propeller-shaped wheels are believed to be more accurate for measuring turbulent water since they are not affected to the same extent by eddies and cross-currents, while the cup meters are affected equally by currents from any direction. It is probable, however, that any of the standard makes of current meters when properly used, under conditions to which they are suited, will give results accurate enough for ordinary stream-gaging work.

There are three different makes of current meters that have been extensively used in the United States—the Price meter, the Ott meter and the Haskell meter. Of these, the Price meter has cups attached to a wheel with a vertical axis, and the other two have wheels of the screw-propeller type which revolve on a horizontal axis.

The Price meter¹ has been adopted by the Water Resources Branch of the U. S. Geological Survey for its stream-gaging work and is more extensively used for this purpose than any other meter. Both electric and acoustic Price meters are manufactured.

The Ott meter² has recently been used in making turbine tests with satisfactory results.

The Haskell meter³ has been used extensively by the U. S. Lake Survey for gaging the large rivers of the Great Lakes drainage system, and it appears to be particularly well adapted to this class of work.

Rating the Current Meter.—Before a current meter can be used, it is necessary to establish a relation between number of revolutions and velocity of water by moving the meter through still water at a known rate and determining the number of revolutions in a given time. This operation is called rating the meter. A meter may be rated from a boat moving at a uniform rate in still water but it is better to have this work done at a properly equipped rating station. A meter should be rated when new and at least once a year thereafter, and after any accident to the meter or alteration of parts that will be likely to change its rating.

The observations from a current meter rating give velocities in feet per second with corresponding revolutions per second.

¹ Manufactured and sold by W. & L. E. Gurley, Troy, N. Y.

² Sold in United States by Keuffel & Esser Co., New York.

Manufactured by E. S. Ritchie & Sons, Brookline, Mass.

These values are usually plotted on ordinary cross-section paper, and the smooth line or lines passing through their mean position is called the *rating curve*. A rating curve for a small Price electric meter is shown in Fig. 68. Rating curves for all makes of current meters plot as straight lines and it is characteristic of such curves that there is a break in the line at a point usually corresponding to a velocity of from 4 to 6 feet per second.

Fig. 68.—Typical rating curve for current meter.

From the rating curve a rating table is prepared, which gives velocities corresponding to different rates of revolution of the wheel. Table 86 is a rating table published by W. & L. E. Gurley. It is the mean of the ratings of ten small electric meters (Patterns Nos. 617 and 618) and is claimed by the makers to give values for any meter of similar pattern in good order, within an error of 1 per cent.

Table 86.—Approximate Rating Table for Price Meters Nos. 617, 618, 621, 623, and 624, Velocities in Feet per Second Corresponding to Different Times and Numbers of Revolutions.

Time in	Number of Revolutions												
sec.	5	10	20	30	40	50	60	70	80	90	100	150	200
42 43	$\begin{array}{c} 0.30 \\ 0.30 \\ 0.29 \end{array}$	0.57 0.56 0.54	1.10 1.07 1.05	1.64 1.60 1.56	$2.18 \\ 2.13 \\ 2.08$	$2.71 \\ 2.65 \\ 2.59$	$3.26 \\ 3.18 \\ 3.11$	3.81 3.72 3.63	$\frac{4.34}{4.24}$ $\frac{4.14}{4.14}$	4.89 4.77 4.66	5.43 5.30 5.18	8.14 7.95 7.77	11.12 10.85 10.59 10.34 10.10
46	$\begin{array}{c} 0.28 \\ 0.27 \\ 0.26 \end{array}$	0.51 0.50 0.49	1.01 0.99 0.97 0.95 0.93	1.47 1.44 1.41	1.95 1.91 1.87	2.43 2.38 2.33	2.90 2.84 2.78	$3.39 \\ 3.32 \\ 3.25$	3.87 3.79 3.71	4.35 4.26 4.17	4.84 4.74 4.64	7.26 7.11 6.96	9.65 9.45
51 52 53	$\begin{array}{c} 0.25 \\ 0.25 \\ 0.24 \end{array}$	$0.46 \\ 0.46 \\ 0.45$	0.91 0.90 0.88 0.86 0.85	$1.32 \\ 1.29 \\ 1.27$	1.75 1.72 1.69	2.19 2.15 2.11	2.62 2.57 2.52	$3.06 \\ 3.00 \\ 2.94$	$3.49 \\ 3.42 \\ 3.36$	$3.93 \\ 3.85 \\ 3.78$	4.36 4.28 4.20	$6.54 \\ 6.42 \\ 6.30$	8.72 8.56
	$\begin{array}{c} 0.23 \\ 0.23 \\ 0.22 \end{array}$	$0.43 \\ 0.42 \\ 0.41$	0.83 0.82 0.80 0.79 0.78	$1.21 \\ 1.19 \\ 1.17$	1.60 1.57 1.54	1.99 1.96 1.93	$2.39 \\ 2.35 \\ 2.31$	$2.78 \\ 2.73 \\ 2.68$	$3.18 \\ 3.12 \\ 3.07$	3.58 3.52 3.46	3.98 3.91 3.84	5.96 5.86 5.76	8.09 7.95 7.81 7.68 7.55
60 61 62 63 64	$\begin{array}{c} 0.22 \\ 0.21 \\ 0.21 \end{array}$	0.39 0.39 0.38	0.77 0.75 0.74 0.73 0.72	1.11 1.09 1.07	$1.46 \\ 1.44 \\ 1.42$	1.84 1.81 1.78	$2.19 \\ 2.16 \\ 2.13$	$2.55 \\ 2.51 \\ 2.47$	$2.92 \\ 2.87 \\ 2.82$	$3.29 \\ 3.24 \\ 3.19$	3.65 3.59 3.53	5.47 5.38 5.30	7.42 7.30 7.18 7.07 6.96

Pitot tubes are especially adapted to the measurement of velocities in pipes, and may be used for measuring velocities, in

pipes and open channels, that are too high to be conveniently measured with current meters. In its simplest form the Pitot tube is a pipe bent to a right angle as shown in Fig. 69. When the shorter leg is pointed against the current, the water will rise a distance equal to the velocity head or $h = \frac{v^2}{2g}$. It has been shown by experiment that this relation holds rigidly.

There are practical difficulties in the way of using the Pitot tube in its simplest form, since the distance which the water in the tube rises above the water surface cannot be accurately determined.

To obviate this difficulty a second pipe, or static leg, is introduced, Fig. 70, the two pipes being clamped together and attached at the upper end to an air pump or provided with other means for exhausting the air. The static leg may be simply a straight pipe extending into the water or it may be bent at right

angles and pointed downstream or otherwise arranged to measure the static pressure of the water. When this instrument is placed in running water, the air may be exhausted an equal amount in each leg and the water drawn up to an elevation convenient to read. The upper ends of the pipes should be of glass so that the height of water columns may be observed. There is always a certain amount of suction in the static leg so that the difference in height of water columns will not equal the velocity head. however, be proportional to the velocity head.

If $h_1 - h_2$ equals the difference in height of water columns, v the velocity of water being measured and c a coefficient that is constant for each instrument, the velocity is given by the formula

$$v = c\sqrt{2g(h_1 - h_2)} \tag{1}$$

To obtain c the instrument should be rated by moving it through still-water at a known velocity the same as for a current meter.

Floats are sometimes used for the approximate measurement of velocities in open channels. These may be classified as surface floats, subsurface floats and rod floats. The principal involved is the determination of the time required for a floating object to pass from one cross-section of a channel to another, the velocity of the float being considered the same as the velocity of the filaments of the water through which it travels.

A surface float may be any object floating near the surface and to sufficient depth to partake of the motion of the upper filaments. The mean velocity in the vertical will vary from about 80 per cent. of the observed surface velocity for the shallowest streams to 95 per cent. for very deep streams. Surface floats should not be used when there is sufficient wind to affect their movement.

A subsurface float consists of a small surface float connected by a fine line to a larger float, which is weighted to remain submerged and keep the line taut without drawing down the surface float. The submerged float being large, the effect of the surface float is usually neglected. To get the mean velocity in the vertical directly from this combination the submerged float should be submerged to about 0.6 of the mean depth of the stream along the path followed by the float. This float has little value for stream-gaging purposes. It is sometimes used for determining the velocity and direction of subsurface currents in lakes, harbors, and other large bodies of water.

Rod floats are made from wooden poles or hollow tin cylinders weighted at one end so as to cause them to float in an upright position with the unweighted end above the water surface. They should be submerged as much as possible without coming in contact with the bottom of the channel. Rod floats are usually assumed to give directly the mean velocity in the vertical. They are used more satisfactorily in artificial channels, or natural streams of regular section.

As the result of an extensive experimental investigation in which the flow in a wooden flume, determined from rod float measurements, was compared with the discharge over a sharp crested weir, Francis¹ deduced the following relation between the mean velocity in the vertical section along the path of a rod float and the velocity of the float:

$$v = v_r(1.012 - 0.116\sqrt{d'/d})$$

in which v is the mean velocity in the vertical, v, is the mean velocity of the rod float, d is the depth of water, and d' is the distance from the bottom of the float to the bed of the channel. The above relation probably applies more accurately for small values of d'/d and should not be used where d' is greater than 0.25d.

¹ J. B. Francis: Lowell Hydraulic Experiments, p. 195.

Discharge Measurements by Current Meter

Current-meter measurements may be made from a bridge, a car suspended from a cableway, or a boat, or if the stream is small enough the gaging may be made by wading.

The first step is to assume a permanent initial reference point and mark off distances, usually 5 or 10 feet, along the bridge or cableway or a special line stretched across the channel. For small streams, where the gaging is made by wading, a cloth tape is sometimes stretched across the stream from the initial point. Soundings are then taken and current-meter measurements are made to determine the depths and mean velocities in vertical lines at different points along the cross-section of the channel. Points of measurement are so chosen that the mean of the velocities in two adjacent vertical lines will give approximately the mean velocity of the portion of the cross-section of the channel between them. The mean velocity in a vertical (see pages 232 to 235) may be obtained by one of the following methods:

- 1. By plotting vertical velocity curves.
- 2. By taking the velocity at 0.6 depth.
- 3. By the mean of velocities at 0.2 and 0.8 depth.
- 4. By integration; that is, moving the meter slowly and at a uniform rate from the surface of the water to the bottom of the channel and back again, noting the time and number of revolutions of the meter. This method is not recommended for inexperienced observers.
- 5. By taking a velocity near the surface of the stream and applying a corrective factor (from 0.80 to 0.95) to reduce to mean velocity. This approximate method must sometimes be resorted to when the current is so swift as to make measurements at the depths required by any of the above methods impracticable.

If d_1 and d_2 represent the depths of water at two adjacent verticals where velocities have been observed, v_1 and v_2 the respective mean velocities and l the distance between the verticals, the discharge of the portion of the cross-section of the channel between the verticals is

$$l\left(\frac{v_1+v_2}{2}\right)\left(\frac{d_1+d_2}{2}\right) \tag{2}$$

and the total discharge of the stream is the sum of such terms for the entire cross-section of the stream. Points of measurement along the cross-section of the channel should be selected at abrupt changes in velocity or the profile of the bottom. Where conditions are fairly uniform it is customary to make measurements at equal distances apart. It is usually necessary to take one or two measurements close to both edges of the channel.

CURRENT METER NOTES

Date Apr. 15,1916. Time. 10ALA to 11.A.M. Stream. HUTON River.

Observer CO.Wisler Location Fuller St. Bridge, Ann Arbor Mich.

Meter Price 12. Gage height, beg. 2.75. end. 2.76. mean. 2.76.

Total area. 275. 7. Mean velocity 3.46. Dicharge 1023.5.

COMPUTATIONS							OBSERVATIONS					
Discharg	Area	Width	Mean depth	Mean in sec- tion	Mean in ver- tieal	At point	Rev- olu tions	Time in seconds	Depth of ob- servat.	Depth	Dist. from initial point	
0.0	.78	1.5	52	079	0.79					0.35	0+95	
8.8	6.45	.5	1.29	1.37	0.79	aca,	.15	44.8	041	0.68	+50	
		 			1.95	2.18	40	12.4	0.38	1.90	+100	
66.7	267	10	2.67	251		1.71	40	54.2	1.52			
					3.07	3.80	90	54.4	0.69	3.44	+200	
122.2	37.2	10	3.72	3.29	,	2.34	60	54.4	2.72	.		
					3.51	4.03	90	51.2	0.80	3.99	+300	
141.6	386	10	9.86	9.67	•	2.99	70	54.0	3.19			
l		4	l 		3.82	4.18	90	49.6	075	3.79	+100	
70,0	187	5	374	3.74		9.46	80	59.2	2.98			
					965	4.90	90	180	0.75	3.74	+450	
604	16.0	5	3.20	377		2.99	70	54.2	2.99			

+110	0 19	0.49	SI A	an a	409	953			• • • • • • • • • • • • • • • • • • • •	•••••	
T.(16)								1.57	2	214	11.2
1+1.0								7.9.7.		****	8. 7:5:
4								1,38	2	2.76	94
1+30	1.75	0.35	50.0	80	3.67	925					
								1.15	<i>5</i>	5.75	15.2
1.4.8.0						2.06					
••••		1.24	49.4	90	1.41			ا			
	l	l	İ	.	i		707	9/9		295.9	10234

No .. 2... of ... 2... Sheets, Comp. by EKM. Chk. by .. G. T.M. Make notes on back.

On page 242 is shown a typical sheet of current-meter notes where the mean velocities in the verticals are obtained by the 0.2, 0.8 depth method. Methods of observation and computations may be seen from these notes.

A method similar to the above is followed in measuring the discharge of ice-covered streams. Holes must be cut in the ice to admit the current meter and in addition to measuring the depth of water the depth to the bottom of the ice must be determined, the latter being subtracted from the former to obtain the depth of water to be used in computing the area of cross-section.

The mean velocities in the verticals for ice-covered streams may be obtained:

- 1. By plotting vertical velocity curves, or
- 2. By obtaining the means of velocities at 0.2 and 0.8 depth.

Discharge Measurements by Pitot Tubes

In measuring discharges of open channels with Pitot tubes (page 238) the observations and computations will be similar to those described above for current-meter measurements. Pitot tubes are sometimes used for measuring velocities in pipes, in

which case the following method of determining discharges may be used.

Velocities should be taken at a number of points in a cross-section of the pipe and these points should be plotted in their proper position in a circle, drawn to suitable scale, which represents a section of the water flowing through the pipe. Such a section is illustrated in Fig. 71. Velocities (not shown in figure) should be written adjacent to each

Fig. 71.

plotted point. A convenient number of concentric circles, preferably 5 or 10, should be so drawn that rings of equal area will be formed. If d equals the diameter of the pipe the proper radii for the concentric circles for 10 rings will be, 0.16d, 0.22d, 0.27d, 0.31d, 0.35d, 0.39d, 0.42d, 0.45d and 0.48d. For 5 rings use alternate values beginning with 0.22d. The mean velocity in each ring may then be obtained by observation, and the mean velocity for the pipe will be the average of the mean velocities for the rings.

Discharge Measurements by Floats

Before beginning a discharge determination by means of floats (page 239) it is necessary to select a uniform reach of channel and lay out two cross-sections of the stream from, say, 100 to 300 feet apart which will mark the places of beginning and ending float observations.

Fig. 72 illustrates a graphical method described by Unwin¹ for taking observations and making computations. Two cross-sections are selected L distance apart. Lines marked with tags every 10 feet, or at some other convenient interval

may be stretched across the stream over these sections. Soundings to get data for plotting the cross-sections are then made. As many float measurements as desired may be obtained, observers taking the time required for the floats to pass between the cross-sections and noting the place where the floats pass over each section.

From these observations a diagram similar to Fig. 72 may be prepared. The cross-sections are plotted to suitable scale and the channel is divided into equal sections by dotted lines. The paths of the floats are shown by full lines. The straight line AB is halfway between the water-surface lines of the two cross-sections. From the point where the full lines, representing the

¹ W. C. Unwin: A Treatise on Hydraulics, p. 286.

paths of the floats, cut AB verticals are dropped on which the observed velocities for each float, corrected by the proper coefficient to reduce to mean velocity, are plotted to a convenient scale. The line ACB which connects the points thus obtained is the mean-velocity line. The mean velocities for Sections I, II, III, etc., are found by scaling the ordinates, in the middle of these sections, between lines AB and ACB. The discharge in any section is given by the product of the average end areas and mean velocities. The following table illustrates a method of keeping computations.

Section	End areas of section, square feet	Mean area of section, square feet	Mean velocity, feet per second	Discharge, cubic feet per second
I	27.2 30.7	28.95	0.41	11.9
11	41.1 45.1	43.1	0.98	42.2
111	66.6 67.2	66.9	1.37	91.6
IV	77.7 70.9	74.3	1.90	141.2
v	80.4 79.1	79.75	2.31	184.2
VI	85.5 79.7	82.6	2.20	181.7
VII	60.3 64.1	62.2	1.97	122.5
VIII	55.5 51.2	53.35	1.75	93.4
IX	50.2 46.2	48.2	1.37	66.0
X	35.5 31.0	33.25	0.45	15.0
Total				949.7

Discharge Measurements by Traveling Screen

The traveling-screen method of measuring flowing water is adapted only to open channels of very regular cross-section.

This method requires quite elaborate preparations but when the apparatus is once installed it may be used for as many observations as desired.

A very light canvas screen, varnished to insure impermeability, is suspended by a stiff frame from a wheeled carriage mounted on tracks along the edges of the channel. The rate of movement of the screen must necessarily be the mean velocity of the water. A small crack, about 0.5 inch, should be provided between the screen and the sides and bottom of the channel to insure freedom of movement. The distance through which the screen moves is limited to the reach of uniform straight section. The velocity of the screen is usually determined electrically.

A similar method is sometimes employed in which the screen is suspended from floats, properly weighted to provide the right clearance between the screen and the bottom of the channel.

Theoretically a correction should be applied to provide for leakage around the screen. The error introduced by neglecting this correction is, however, very small. The area of the water cross-section should be carefully taken. The discharge will be the product of this area and the velocity of the screen.

Discharge Measurements by Color Method

This method has been employed for measuring the velocity in pipes. The process consists of injecting a solution of coloring matter, commonly fluorescein, into the pipe and observing the time required for it to move through a known distance. The particles of coloring matter will usually remain within a prism having a length equal to 1 per cent. of the distance traveled. The explanation of this phenomenon lies in the fact that in turbulent water there is a continual crosswise as well as longitudinal movement of the particles. This indicates that in general all particles of water are moving through the pipe with the same longitudinal velocity.

The coloring matter may be introduced at the intake of the pipe or it can be injected by a force pump or gun¹ into the pipe at any point. The second point of observation which must be at the outlet of the pipe should be at a distance at least 200 times the mean velocity in feet per second from the place where

Digitized by GOOgle

¹ A gun for injecting coloring matter into pipes is described in U. S. Department of Agriculture Bulletin No. 376 by Fred C. Scorer.

the coloring matter is introduced. Time observations should be made at the instant the coloring matter is introduced and at the first and last appearance of the coloring matter at the second point of observation. The mean velocity will be the distance between the two points of observation divided by the mean of these two time intervals. The discharge of the pipe is the product of this mean velocity and the area of the pipe. This method is limited to conditions where the outlet of the pipe is exposed in order that the coloring matter may be seen.

This method could be modified by substituting for the coloring matter a concentrated salt brine or some other chemical that is a good conductor of electricity. Then two poles of an electric circuit, properly connected to batteries and a galvanometer, could be inserted in the water at the second point of observation. The galvanometer should show a stronger current while the prism containing the chemical is passing the poles. This method has an advantage in that it does not necessitate seeing the water. The second point of observation can be at any part of the pipe line, as it will only be necessary to drill small holes in the pipe to insert the poles.

These methods have never been applied to open channels but they would probably be satisfactory for fairly high velocities in smooth channels.

Discharge Measurements by Venturi Meter

There are a number of types of small service meters for measuring water for domestic purposes which automatically record the flow of water. These meters are adaptable only to conditions involving the measurement of flow through very small pipes. For measuring the flow through large pipes the Venturi meter has been quite generally adopted, and the principal which it involves may be applied under various conditions.

The principle of the Venturi meter was first stated in 1797 by J. B. Venturi an Italian, and was first applied by Herschel¹ to the measurement of flow in pipes in 1887. Fig. 73 shows a Venturi meter in horizontal position, with approximate dimensions as generally constructed. It resembles the frustrums of two cones having altitudes in the ratio of 1 to 3, with the top

¹ Trans. Amer. Soc. Civ. Eng., vol. 17, p. 228.

and bottom bases equal. The smaller bases are connected and form what is called the throat of the meter while the larger bases connect to the pipe. The direction of flow through the meter is from the shorter to the longer section. Two piezometer tubes are shown in the figure at the throat and entrance to the meter.

Fig. 73.—Venturi meter.

Let h_1 and h_2 represent the height above the axis of the meter to which the water rises in the piezometer tubes at the entrance and throat of the meter respectively, and let v_1 , d_1 and a_1 and v_2 , d_2 and a_2 be the corresponding velocities, diameters, and areas at the two places. Then from Bernoulli's theorem, neglecting friction

$$\frac{v_2^2-v_1^2}{2g}=h_1-h_2 \tag{3}$$

and since

$$Q = a_1v_1 = a_2v_2$$

the formula for discharge through a Venturi meter including the empirical coefficient c, becomes

$$Q = \frac{ca_1a_2}{\sqrt{a_1^2 - a_2^2}} \sqrt{2g(h_1 - h_2)}$$
 (4)

or expressed in terms of diameter

$$Q = \frac{c\pi d_1^2 d_2^2}{4\sqrt{d_1^4 - d_2^4}} \sqrt{2g(h_1 - h_2)}$$
 (5)

For meters having a definite ratio of inlet to throat diameter

$$R = \frac{d_1}{d_2} \tag{6}$$

and putting

$$K = \frac{\pi R^2}{4} \sqrt{\frac{2g}{R^4 - 1}} \tag{7}$$

formula (5) may be written

$$Q = cKd_2^2\sqrt{h_1 - h_2} \tag{8}$$

The following table gives values of R with corresponding values of K.

2.1 R 2.3 2.8 2.9 3.0 6.50 6.47 6.44 6.41 6.40 6.38 6.37 6.36 6.35 6.34 6.34

The value of c will depend upon the roughness of the interior surface of the meter. For clean cast iron the value of c will usually range from 0.97 to 0.99.

Venturi meters are manufactured for permanent installations with the piezometer tubes connected to an automatic recording instrument which registers on a "Chart Recorder Dial" a continuous graphic record of the rate of flow through the meter. A "Register Counter Dial" shows the total volume of flow through the meter in cubic feet, gallons, or pounds and an "Indicator Dial" shows the present rate of flow.

Discharge Measurements by Chemical Gaging²

Chemi-hydrometry or chemical gaging consists of determining discharges by introducing a chemical at a known rate into flowing water, and determining the quantity of the chemical in the stream at a section far enough downstream to insure a thorough mixture of the chemical with the water to be measured. Common salt (NaCl) is the chemical usually employed, and chemical gaging is frequently referred to as the salt-solution method. For convenience the salt is dissolved in water to form a brine before being introduced into the stream.

Let Q represent the discharge of the stream in second-feet. If w pounds per second of salt are introduced, and after thorough mixture a sample taken from the stream shows that 1 pound of water contains n pounds of salt, then

$$\frac{w}{62.4Q} = \frac{n}{1} \text{ or } Q = \frac{w}{62.4n} \tag{9}$$

The above formula is not readily applicable, owing to the fact that several factors enter into the determination of n which complicate the problem. The waters of natural streams usually

¹ Manufactured by the Builders Iron Foundry, Providence, R. I.

² For a full discussion of this subject see B. F. Groat: Chemi-Hydrometry and Precise Turbine Testing. Trans. Amer. Soc. Civ. Eng., vol. 80, p. 951.

Also F. A. NAGLER: Verification of Bazin Weir Formula by Hydro-Chemical Gaging. *Proc.* Amer. Soc. Civ. Eng., Jan., 1918.

contain an initial quantity of salt in solution, which must be considered in making a correct gaging.

The method of "Special Dilutions" and "Balanced Evaporations" will be described. In this method a special dilution of the salt-solution sample, with the natural water of the stream is prepared. This special dilution should contain, as nearly as can be determined, the same quantity of salt per unit volume as the sample taken from the channel after salt has been introduced.

There are three sets of samples to be examined as follows:

- 1. The dosed stream water; that is, the water of the stream after salt has been introduced and the salt has become thoroughly mixed with the water of the stream.
- 2. The salt-solution sample; that is, the brine which is prepared to be introduced into the stream.
- 3. The special dilution; that is, the mixture of the salt solution with the natural stream water, prepared in the laboratory.

By this method it is not necessary to analyze the natural stream water, as the effect of the salt which it contains is eliminated in the computations.

A saturated solution of salt and water contains about 20 pounds of salt per cubic foot of water. It is usually desirable to have the brine which is to be introduced into the water as concentrated as possible in order to reduce the size of the mixing tank. A saturated solution is inadvisable owing to the tendency of the salt to crystallize at the edge of the tank, but a solution consisting of 16 pounds of salt per cubic foot of water will be satisfactory.

Salt solution should be added to the stream at such a rate as to increase its salt content by at least 0.003 pounds per cubic foot and under no circumstances should the initial salt content exceed 25 per cent. of the salt content of the dosed water. For example, a stream having an approximate discharge of 100 second-feet should have salt added at the rate of at least 0.3 pounds per second and if the natural stream water contained say 0.0009 pounds of salt per cubic foot the salt should be added at a minimum rate of 0.36 pounds per second.

For obtaining the maximum accuracy in making chemical tests the method of balanced evaporation should be used. This requires that the dosed stream water and the special dilution samples be evaporated and that the salt-solution sample be diluted until each contains, as nearly as can be estimated, the

same quantity of salt in the sample analyzed. From the dosed stream water and for the special dilution, samples of 500 cubic centimeters may conveniently be selected. These should then be evaporated until the volume is about 10 cubic centimeters. A 10-cubic centimeter sample of the salt solution which contains approximately the same amount of salt as these samples should then be obtained by dilution.

Preparing Special Dilutions.—Special dilutions should be prepared with great care. Assuming that a dilution of 1 in 2500 is desired it may be obtained in the following manner. The contents of two 10-cubic centimeter pipettes are discharged into a 500-cubic centimeter volumetric flask which has been previously washed with some of the natural stream water sample. The flask is then filled to the 500-cubic centimeter mark from the natural stream water sample, and inverted about 40 times to insure a thorough mixture, the temperature of the salt solution and natural stream water being recorded. This solution then has a ratio of dilution of 25 to 1. The volume of one 10-cubic centimeter pipette filled with this "stock" solution is then discharged into a 1000-cubic centimeter volumetric flask which has been previously washed with some of the natural stream water sample. The flask is then filled with natural stream water up to the 1000-cubic centimeter mark and thoroughly shaken to insure a good mixture of the two solutions, the temperature of each solution being recorded. The resulting mixture then has a ratio of dilution of 1 in 2500.

Dilutions of the salt solution sample with distilled water are made in a similar manner. If the special dilution is to be evaporated to one-fiftieth of its original volume, the ratio of dilution, being, say, 1 in 2500, the salt solution sample which is not evaporated should be diluted in the ratio of 50 to 2500 or 1 to 50.

Evaporation of Samples.—The samples may be conveniently evaporated in the following manner. A sample of say 500 cubic centimeters is first measured in a volumetric flask, the temperature being noted. This is then emptied into a separatory funnel, arranged to discharge into a casserole of about 100-cubic centimeters capacity which is heated by means of a gas jet under a water bath or by an electric heater. Small quantities of the sample are dropped into the casserole at intervals as required. The sample should be evaporated at a temperature slightly below the boiling point. An electric fan blowing over the sur-

face of the water will hasten evaporation. From 5 to 10 hours will be required to evaporate a 500-cubic centimeter sample, depending upon the humidity of the air and the success in producing artificial air currents. After the sample has entirely run out the separatory funnel should be washed with distilled water, which should also be evaporated. The evaporation should continue until about 10 cubic centimeters remain in the case-role.

Samples of both the dosed stream water and special dilutions are evaporated in this manner. The contents of a 10-cubic centimeter pipette of the dilutions of the salt-solution sample are emptied directly into a casserole. The three samples are now ready for the chemical test or titration.

Titrating Samples.—The reagent used in the salt analysis is silver nitrate, which is dissolved in distilled water in some standard proportions. It is essential that a sufficient quantity of this solution be prepared at one time, to make all of the tests required for one discharge measurement. The silver nitrate solution should be kept in a dark-colored bottle and be placed in a dark closet to prevent action by light. The strength of solution for conducting the test should not be less than about 1.5 grams of chemically pure silver nitrate to 1 liter of distilled water.

A potassium bichromate solution having a concentration of 50 grams per liter may be used to indicate the end point in the reactions of the silver nitrate upon the sodium chloride. About 6 or 7 drops of this solution will be sufficient for samples of the strength of those described above.

The titration of the above samples requires about 50 cubic centimeters of the silver nitrate solution. A 100-cubic centimeter burette containing more of the silver nitrate solution than will be required for a test is placed above the casserole containing the sample to be analyzed, and an initial reading of the burette is taken. One drop of potassium bichromate is added to the initial sample and silver nitrate solution is admitted from the burette at the rate of about 4 drops per second until the end of the reaction is nearly reached. The sample should be stirred continuously with a glass rod and 1 drop of potassium bichromate should be added for each 10 cubic centimeters of the silver nitrate solution. As the end of the reaction approaches, the rate of admitting silver nitrate should be reduced to about 1 drop in 2 seconds. The potassium bichromate gives the sample a yel-

low color, which is replaced by a permanent orange tinge when the end of the reaction is reached. This means that the point has been reached where the silver nitrate admitted has just neutralized all of the salt in the sample. A final reading of the burette should be made at this point. The amount of silver nitrate used is a measure of the quantity of salt contained in the sample. Some difficulty may be experienced at first in detecting the end of the reaction as the change in color is not very marked, but with a little experience this point may be determined with considerable accuracy. It is important that about the same amount of silver nitrate and the same amount of potassium bichromate should be used in making all of the tests for a single discharge measurement.

The following is a list of the principal laboratory apparatus

- 1 balance with weights, sensitive to 1 milligram.
- 1 rough scales for weighing salt.
- 1 four-unit evaporator.
- 4 ½-liter separatory funnels.
- 1 100-cubic centimeter burette.
- 8 number 3 casseroles.
- 1 1-liter volumetric flask.
- 1 500-cubic centimeter volumetric flask.
- 1 100-cubic centimeter volumetric flask.
- 1 thermometer.
- 2 10-cubic centimeter pipettes.
- 3 1-liter flasks.
- 25 1-gallon bottles for samples.
 - 5 1-quart bottles.

The quantities of salt, silver nitrate and potassium bichromate that will be necessary will depend upon the flow of the stream, and the number of measurements to be made. A bottle of hydrochloric acid should be kept on hand for cleaning casseroles, but care should be taken to wash away all traces of the acid from the casseroles before using them for a new test.

Determination of Discharge.—The following nomenclature is used:

- Q = Discharge of the stream in second-feet.
- q =Discharge of salt solution in second-feet.
- r' = Ratio of volume of natural stream water to volume of salt solution in the special dilution.

- R' = Ratio of volume of total mixture to volume of salt solution in the special dilution.
 - t = Volume of silver nitrate solution required to titrate a unit volume of the salt-solution sample. In other words if the unit volume is 1 liter, t = the difference between initial and final readings of the burette for the silver nitrate solution multiplied by the ratio of dilution of the salt-solution sample multiplied by 1000 and divided by the volume in cubic centimeters of the sample discharged into the casserole.
- t_2 = Volume of silver nitrate solution required to titrate a unit volume of the dosed stream sample. Or, for unit of 1 liter, t = difference between initial and final readings of burette multiplied by 1000 and divided by the actual volume in cubic centimeters discharged into the separatory funnel for evaporation.
- t'₂ = Volume of silver nitrate solution required to titrate a unit volume of the special dilution. Or, similar to t₂,
 t'₂ = difference of burette readings multiplied by 1000 and divided by the actual volume in cubic centimeters discharged into the separatory funnel for evaporation.

The discharge of the stream is given by the following equa-

$$Q = q \frac{r'}{1 + R' \frac{t_2 - t'_2}{t - t_2}} \tag{10}$$

The above formula is accurate enough for ordinary work. Where great refinement is desired a shrinkage coefficient may be applied to correct for shrinkage of volume caused by mixing two salt solutions of different densities. Such corrections, however, will not ordinarily effect the final discharge more than a small fraction of 1 per cent. All flasks, pipettes, etc., used for measuring volumes should be calibrated with great care at different temperatures. Where great precision is required all volumetric measurements should be corrected for temperature by reducing all volumes to volumes at some particular temperature. Ordinarily, however, if care is taken to make all measurements at as nearly a uniform temperature as possible such corrections will not be necessary. If the variation in temperature during a test is not more than 20°F, the error introduced into the results by neglecting temperature corrections will not be

more than 0.5 per cent. A detailed discussion of the sources of error in the measurement of water by the method of chemi-hydrometry and the derivation of formula (10), together with correction factors to be applied for the more precise application of the method is given in Mr. Groat's valuable paper.¹

Operations for Obtaining Samples.—Various methods of introducing the salt solution and taking samples have been suggested. The one described below will be satisfactory for open channels. While the salt solution is being introduced samples should be taken as follows:

- (a) Sample of salt solution.
- (b) Sample of natural stream water.
- (c) Sample of dosed stream water after the salt solution has become thoroughly mixed with the water in the stream.

Before beginning the measurement an apparatus for introducing the salt solution at a uniform rate must be provided.

This may consist of a mixing tank and a discharge tank, preferably arranged at such elevations that the former may discharge into the latter by gravity. A satisfactory arrangement is shown in Fig. 74. The mixing tank ABCD should be large enough to contain solution for the entire measurement after the discharge tank EFGH has been filled from it. The area of a horizontal section of the discharge tank need not be more than 1 or 2 square feet, and the height

E S A B

of the tank should be at least 2 feet. A pipe P leads water from the discharge tank to the point where the solution is to be introduced into the stream.

The salt for one test is placed in the mixing tank and the water added. All of the salt should be dissolved by stirring before any of the solution leaves the tank. After all the salt

¹ Trans. Amer. Soc. Civ. Eng., vol. 80, p. 951.

is dissolved the solution passes through the valve A and a 40-mesh screen S to the discharge tank. The elevation of the surface in the discharge tank is maintained at the elevation of the fixed hook K by hand regulation of the valve A. The valve G is set by trial, to the proper rate of discharge by noting the time required to fill a carefully calibrated vessel. The valve as thus set is left unchanged until the end of the measurement. For a depth of 2 feet in the discharge tank the elevation of the surface of the solution may vary 0.04 feet without affecting the discharge at G by more than 1 per cent. There should be no difficulty in regulating this elevation within 0.02 feet.

A continuous sample of the salt solution may be taken from a small perforation in the side of either tank. The sample of natural stream water should be taken above the point where the salt solution is introduced and during the period that it is being introduced. The dosed stream sample should be taken far enough downstream and after sufficient lapse of time from the time of beginning dosing, to insure a thorough mixture of the maximum quantity of salt that the stream should carry. These samples should preferably be continuous samples requiring some little time to secure. An air-tight can containing a small perforation to permit the entrance of water when the can is immersed and another perforation connected by a small pipe or tube to the air would be satisfactory for the purpose. narily dosed stream samples should be taken at more than one point in the cross-section of the stream in order to determine whether the mixture of the salt with the stream is satisfactory.

It will usually be necessary to make preliminary investigations to determine the proper place for taking samples of dosed stream water and the necessary time interval between the time of beginning dosing and taking the sample. Parker¹ gives the following approximate rules.

Let v represent the mean velocity of the stream and b its width. Then for streams with depths between 1/0b and 1/0b complete mixture does not occur until a distance of at least 6b has been traversed, and the discharge of the solution has continued for a period of at least $24 \ b/v$ seconds.

It is apparent that the chemical method of gaging is more suitable to turbulent waters, and it is doubtful whether it can be applied satisfactorily to sluggish streams.

¹ PHILIP A. MORLEY PARKER: Control of Water, p. 73.

Continuous Stream-discharge Records

In order to properly understand the fluctuations in flow and to estimate the available discharge of a stream continuous daily discharge records extending over a period of several years are essential. Frequently erroneous and misleading results will be obtained by basing conclusions on a few scattering discharge measurements or even on continuous records for 1 or 2 years.

The best data on which to base an estimate of the future discharge of a stream are records of discharge for preceding years, but such records to be a trustworthy guide should over a period long enough to include a wide range of conditions of flow. Usually records for a period of 10 years will give a good idea of normal conditions of flow but they should not be depended upon to give extreme low water or flood conditions.

Appreciating the importance of this matter, the U.S. Geological Survey in 1888 began a systematic gaging of the more important streams in the United States. As a result continuous discharge records of many streams for long periods of years have been kept, and on other streams, owing largely to inadequate appropriations, the records are more or less fragmentary and intermittent. All of the stream-discharge records of the U.S. Geological Survey are published in its Water Supply and Irrigation Papers.1

The general method of procedure to obtain data for continuous discharge records is indicated in the following outline:

- 1. Select a suitable location for a gaging station.
- 2. Install gage, build necessary structures and put station in permanent condition. Employ gage reader or otherwise provide for keeping a continuous record of stage.
- 3. Make discharge measurements at different stages of the stream through as wide a range in fluctuation as possible, keeping a record of gage height at the time each discharge measurement is made.
- 4. After sufficient discharge measurements have been obtained, prepare a discharge curve with discharges as abscissas and corresponding gage heights as ordinates.

17

¹ These papers may be obtained as published by applying to the Director of the U.S. Geological Survey or they may be purchased from the Superintendent of Documents. Washington, D. C. Most of the older issues are now out of print. Digitized by Google

- 5. From the discharge curve prepare a table giving discharges corresponding to gage heights for each 0.01-foot interval.
- From the discharge table and daily gage records prepare a table of daily discharges.
- 7. After the discharge curve has been completed discharge measurements should be made from time to time to check the curve. If these points indicate that the relation between gage height and discharge has changed, the curve should be corrected.

The above steps will be considered in detail in the following pages.

Selection of Site for Gaging Station.—The following discussion assumes that discharge measurements are to be made with a current meter. It applies, however, to other methods of measurement except as it refers to the actual determination of discharges. Below is given a list of the essential points to be considered in making a reconnaissance for determining the most suitable location for a gaging station.

- 1. General location of place at which records are desired.
- 2. Structure from which current-meter measurements are to be made.
- 3. Conditions favorable to a constant relation between gage height and discharge.
- 4. Uniform channel conditions at section where currentmeter measurements are to be made.
 - 5. Accessibility of site.
 - 6. Availability of gage reader or attendant.
 - 7. Cost of construction and maintenance.

Before definitely selecting a site for a gaging station it is sometimes necessary to determine the general locality that will give the best records of discharge for a given portion of the drainage area of a stream. In special cases a definite section of the stream may be given where discharge records are required, but frequently the engineer is allowed considerable discretion in the matter. Usually the discharge will not vary greatly between the points where two tributaries enter a stream, and in cases where a general investigation only is being made the exact locality where records are obtained is not essential.

Whenever practicable, it is customary to so locate the gaging station that current-meter measurements may be made from an existing bridge. If this is not feasible, a structure must usually be provided. For small streams a foot bridge may be constructed, and in streams not more than 3 feet deep currentmeter measurements may be made by wading. Streams not over 800 feet wide are frequently spanned by a wire cable on which a car is operated by the observer. Current-meter measurements in large streams are sometimes made from boats anchored at various points along the cross-section, the position being obtained by transits on shore or by means of a sextant.

Probably the most important consideration in selecting the location for a gaging station is to chose a place for installing the gage, where the channel conditions are such that a constant relation between gage height and discharge may be maintained. This necessitates a good control; the control being that portion of the stream bed, usually below the gage, which controls the elevation of water surface at the gage. Streams are commonly made up of alternate reaches of slack water and ripples or rapids. The head of a rapids is necessarily of a more or less permanent character and usually it controls the elevation of the water surface for some distance upstream. The proper location for the gage is evidently in the slack water a short distance above the rapids. A similar condition may be obtained by a bar or large boulders which obstruct the flow of the stream and cause the water to back up behind them.

If the control is permanent the shifting of bars or other slight changes in channel conditions above it will have little or no effect on the elevation of water surface at the gage, but any change in the control will immediately effect this elevation. Sometimes the channel of a stream has such a permanent character that the stream bed itself provides a satisfactory control. On streams where a good natural control is not available an artificial control may be constructed. Such a control may be an obstruction, built of wood or concrete, usually in the form of a low weir extending across the channel. Some streams with shifting beds have no natural control and an artificial control cannot be maintained. In such cases there can be no permanent relation between gage height and discharge and special methods for obtaining discharge records are necessary (see page 273).

The river channel, at the place selected for making currentmeter measurements, should be free from large rocks and other obstructions; there should be a straight reach of channel above and below the cross-section to be gaged; there should be no eddies nor slack water; and velocities should be measurable, neither too high nor too low, for all ordinary stages of the river. As a matter of convenience the current-meter measurements should be made at a point close to the gage but this is not necessary, providing the gage is not so far away that the stream will change materially in stage during the time occupied by the observer in walking between the two places. Current-meter measurements during low stages of the stream are sometimes made by wading at some place more satisfactorily than the regular station.

A gaging station should be readily accessible from a railway station or highway. Since several discharge measurements must usually be made each year a location should be chosen which will entail the smallest expense possible for making trips.

If a non-recording gage is installed at a gaging station the daily attendance of a gage reader is necessary. A recording gage should ordinarily be visited once a week to change sheets or to see that the gage is operating properly. These matters should therefore be given careful consideration in selecting a site.

The cost of constructing and maintaining a gaging station should also be investigated. If records are wanted for a comparatively short time the first cost should be reduced as much as possible. On the other hand, if a permanent station is to be established the first cost may be comparatively unimportant. The relative accuracy of results to be obtained by the different types of installation should also be considered in this connection.

Installation and Description of Gages.—After selecting the site for a gaging station the gage should be installed and all work required to clean out and improve the channel should be completed as soon as practicable. A gage reader or attendant should then be employed and the taking of gage records should be begun without unnecessary delay.

Gages may be classified as recording and non-recording. The most common form of non-recording gage is the staff gage which may be erected in either a vertical or inclined position. A staff gage may be a strip of board or a thin sheet of metal attached to a board, which is graduated to tenths of a foot in elevation. Gages in 2 or 5 feet sections of sheet steel with enamelled faces and subdivisions, are accurate, convenient, and more durable than ordinary painted staff gages. In reading the gage hundredths of a foot should be estimated.

A vertical staff gage should be rigidly attached to a bridge

abutment, rock, or other permanent object in such a manner that there will be no danger of its becoming dislodged by ice, drift, or otherwise. It should be placed in quiet water and so faced that it may be easily read. The gage should extend deep enough into the water and be long enough to insure a reading for the lowest and highest stages of the stream.

Inclined staff gages should be made of 4 by 4-inch or heavier timber bolted to concrete supports. Marks should be placed with a level at 0.1 foot intervals of elevation. Inclined gages are not as trustworthy as vertical staff gages and should not be used when a suitable place for installing the latter can be found.

The elevation of water surface is sometimes obtained by suspending a plummet from the end of a tape or chain and measuring the distance to the water surface from some fixed point overhead as from a mark on a bridge or overhanging tree. This method may be resorted to when conditions are favorable and a satisfactory location for a staff gage cannot be found.

A gage should always be carefully referenced to two permanent bench marks, preferably located so that a comparison of some mark on the gage can be made with at least one of the bench marks from a single set up of the level. The gage should be checked from a bench mark at frequent intervals as the reliability of the records obtained depends upon the maintenance of the gage at an absolutely fixed elevation. In case the gage is accidentally moved or destroyed, it should be carefully replaced so as to give the same readings that it gave in its original position.

There are a number of different recording gages on the market which give a continuous record of stage. A common type of recording gage consists of drum which is revolved by a float as the stage changes and a pencil, actuated by a clock, which moves across the face of the drum parallel to its axis. A sheet of properly ruled cross-section paper is fastened to the drum and on this a graph is traced giving the height of water surface and corresponding time. Usually these gages are provided with an 8-day clock, and the sheet of paper is just large enough to last through this period. It is necessary therefore for an attendant to visit these gages once a week to replace the paper and wind the clock. A non-recording gage should always be erected close to a recording gage and the two gages should be adjusted to give the same reading. Whenever a new sheet of

paper is placed on the recording gage it should be set accurately as to time and gage reading as given by the non-recording gage and the date, time, and gage reading should be written on the sheet near the point where the record begins. When the sheet is removed the date and time and reading of the non-recording gage should be written near the point where the record ends. This provides for the adjustment of intervening records where such adjustment is necessary and insures against a possible error from using the wrong foot mark in taking records from the graph.¹

There are two types of recording gages, operated by weight-driven clocks, which are designed to run from 2 to 3 months without attention. These are the Stevens² gage and the intermittent Gurley³ gage. The Stevens gage gives a record in the form of a hydrograph similar to that described above but the method by which it is produced is reversed in that the clock revolves the drum and the float moves the pencil. The paper is fed from a large roll which contains about one year's supply. Records may be removed as desired, and if the gage is operating properly, it requires no attention oftener than is necessary to wind the clock.

The Gurley gage has three type wheels, one containing the time, which is operated by a clock and two which give the elevation of the water surface to feet and hundredths of a foot are controlled by a float. A record of the elevation of the water surface is printed every 15 minutes when a rubber-faced hammer strikes a strip of carbon backed paper which passes over the type wheels.

The Stevens gage and Gurley intermittent gage give satisfactory results when properly installed and they require less frequent attention than other gages. They are rather complicated, however, and considerable skill is necessary to properly install and operate them. If the expense of weekly attention is not too great, one of the simpler and less expensive gages will prove equally satisfactory.

Recording gages should be securely housed in order to protect them from storms and the possible ravages of lawless persons. Gage houses are usually built over wells connected to the stream

Manufactured by W. & L. E. Gurley, Troy, N. Y.

¹ Gages of this type are manufactured by Julian P. Friez, Baltimore, Md., and W. & L. E. Gurley, Troy, N. Y.

² Manufactured by Leupold & Voelpel, Portland, Ore.

through a pipe, which should lie below the lowest water-surface elevation. At permanent stations the gage house and well should preferably be constructed of concrete. In cold climates the well should be banked up by earth to protect against freezing and in some cases artificial heat within the well must be provided. Specific directions for setting up, operating, and protecting the different makes of gages are given by the manufacturers.¹

In deciding as to the advisability of installing a recording or non-recording gage several points must be considered. Those favorable to the installation of a non-recording gage are:

- 1. Cheaper first cost.
- 2. No mechanism to get out of order.

The recording gage possesses the following advantages:

- 1. Gives a continuous record.
- 2. Lower maintenance cost.
- 3. Does not require daily attendance, and therefore
- 4. May be installed in more remote places.
- 5. Reliability of record not subject to idiosyncrasies of gage reader.

On streams subject to a wide daily fluctuation in flow, due to artificial regulation by power plants or from other causes, a recording gage is essential. On streams having a fairly uniform flow, with a reliable gage reader, the records from a non-recording gage where readings are taken once or twice daily, may be entirely satisfactory.

Discharge Measurements.—Discharge measurements at a gaging station are usually made with a current meter, but other methods may sometimes be preferable. The different methods of measuring flowing water have already been described and of these the following are, under proper conditions, suitable for measuring discharges of natural streams:

- 1. Current meter (see pages 235 and 241)
- 2. Floats (see pages 239 and 244).
- 3. Weirs (see Chapters IV and V).
- 4. Chemical gaging (see page 249).

The current-meter method of determining discharges is satisfactory, provided the velocity is measurable and the flow

 $^{^{\}rm 1}$ For fuller discussion of this subject see John C. Hoyt and N. C. Grover; River Discharge, pp. 23–36.

is not too turbulent. Ordinarily floats should not be used if a current-meter measurement is practicable. If, however, a current meter is not available or if it is required to measure a stream at flood stage where a meter cannot be operated, the float method may be necessary.

A weir, if properly constructed, provides the most satisfactory means of obtaining continuous discharge records. crested weir is used the discharge corresponding to a given head may be obtained directly from formula (7), page 72. weir has a cross-section similar to any of the sections given on pages 132 to 138, the coefficients corresponding to the particular shape of crest may be taken from Tables 42 to 53 inclusive, pages 143 to 148, and applied to formula (1), page 128. If a weir having a cross-section for which no experimental coefficients have been obtained is to be used, the discharges corresponding to different gage heights should be measured. weir is properly constructed, the control for the gaging station is permanent. There is usually, however, a tendency for silt to deposit back of the weir and increase the velocity of approach. This condition should be carefully studied and from time to time measurements should be made to check the relation of gage height to discharge. For permanent stations sharpcrested weirs will not usually be as satisfactory as weirs of some other type as it will be found difficult to maintain a sharp crest.

Streams can ordinarily be measured, with a current meter, at low and medium stages with little difficulty, but to complete the discharge curve measurements at flood stages are required. These are often difficult to obtain, partly because of the short duration of such stages and also because of rapid changes of stage, swift currents, and obstruction of the stream surface by floating drift or ice. Under such conditions accurate current meter measurements become impossible (see page 266). Very often flood discharges may more readily be obtained by using an adjacent dam as a weir, after selecting a suitable coefficient. It is desirable that a profile and section of the dam shall have been obtained previously during low water stages. In general, the dam becomes increasingly more accurate and the current meter less so as the stage increases.

The method of chemical gaging is well adapted to small turbulent streams where a straight uniform reach of channel, suitable for current-meter measurements, cannot be found. Such streams are frequently encountered in rocky, mountainous

districts, where the channels are rough but usually of a permanent character. There is, under such conditions, little difficulty in locating a gage above a permanent control, and a discharge curve once determined, may be used indefinitely. The comparatively high cost of measuring discharges may therefore be justified, if records for a long period are desired.

Discharge Curves.—A discharge curve may be obtained by plotting on ordinary cross-section paper, discharges as abscissas with corresponding gage heights as ordinates and drawing a smooth curve through the mean position of these points. If the gagings have been properly made the points should lie very close to the curve.

Fig. 75.—Discharge, mean velocity, and area curves.

An area curve is a graphical representation of the area of the cross-section of the channel for different gage heights. Data for the curve are obtained by taking areas, corresponding to proper intervals of gage height, from a plotted cross-section.

For each gaging of a stream a value of the mean velocity for the particular gage height may be obtained by dividing the discharge by the area. From the values thus obtained a meanvelocity curve may be plotted.

Fig. 75 shows typical discharge, mean-velocity and area curves. The same vertical coördinates are used for each curve. For corresponding gage heights the abscissa of the discharge

Digitized by GOOGLE

curve is evidently the product of the abscissas of the other two curves. Area and mean-velocity curves when plotted in connection with discharge curves may assist in determining the accuracy of individual measurements by showing whether a discrepancy is due to erroneous measurement of area or velocity.

During a rising stage the flow of a stream is greater, for a given gage height, and during a falling stage less than when the flow is uniform. It is therefore important that gage readings at the beginning and end of a discharge measurement should be as nearly equal as practicable. Fig. 76 is a discharge curve for a rising and falling flood, the points 5 to 17 inclusive indicating the sequence of measurements during the flood. The

Fig. 76.—Typical discharge, curve for flood stages.

discharge curve for a rising flood is below and for a receding flood above the discharge curve for a constant stage, the amount of divergence increasing with the rate of change in stage.

Straight-line Methods of Plotting Discharge Curves.—It frequently happens that there are not sufficient measurements to determine a discharge curve accurately, when plotted by the method described above, or it may be desired to extend the curve above or below the range of plotted points. In some instances it may be necessary to plot the best curve possible from a very limited number of measurements or even from a single measurement. In such cases it is customary to select coördinates that are respectively functions of the gage height

Digitized by GOOGLO

and discharge, such that, when the values of these functions for given discharge measurements are plotted, they will lie on a straight line. Two methods of plotting discharge curves as straight lines will be described.

Logarithmic Discharge Curves.—From an investigation of many discharge curves it has been found that they may be approximately represented by an equation of the form

$$Q = p(G - e)^n (11)$$

Q being the discharge in second-feet, G the gage reading in feet and p, e and n constants. If e is given a value such that G-e=0 when Q=0, and the logarithms of Q and G-e for given discharge measurements are plotted on ordinary cross-section paper, the points should lie very close to a straight line. If equation (11) held rigidly for all stages of a stream, e would be the gage height of zero discharge but for extremely small discharges, the actual curve departs somewhat from this form, as there is usually a small discharge for some distance below a gage reading of e. It will therefore be necessary to consider e as the value that must be used to make the corresponding logarithms of Q and G-e plot on a straight line. It is slightly greater than the gage height of zero discharge.

Equation (11) may be written

$$\log Q = n \log (G - e) + \log p \tag{12}$$

which is evidently the equation of a straight line referred to the axes $\log Q$ and $\log (G - e)$, n being the tangent of the angle which the line makes with the $\log (G - e)$ axis and p the intercept on the Q axis. After the line has been plotted the equation of the curve may be obtained by taking n and p from the diagram, and substituting their values in equation (12) which in turn may be transformed to the form of equation (11).

Fig. 77 shows a logarithmic and ordinary discharge curve (that is a discharge curve plotted on ordinary cross-section paper with gage heights and discharges for coordinates) of the Huron River at Fuller St. Bridge, Ann Arbor, Mich. A method of obtaining e graphically is also indicated. The ordinary discharge curve is first plotted as accurately as possible, and on this curve the points A, B, and C are so selected that the discharges to which they correspond are in geometric progression. In this case 200, 800, and 3200 second-feet were chosen though any other points in geometric progression such as 500, 1000, and

2000 second-feet might have been used. The main considerations are to select three points where the curve is accurately established and if possible to choose a ratio which will locate two of the points near the lower end and one quite well up on the curve. From the points A and B vertical lines are extended upward and from the points B and C horizontal lines are drawn which intersect the vertical lines at E and D. The lines DE and BA are then drawn to their intersection F, and the vertical

Fig. 77.-Logarithm discharge curve.

distance of F from the origin is e, the quantity sought. This method is theoretically correct¹ but may give a result slightly in error due to inaccuracy in plotting.

After e has been determined values of Q and G - e may be plotted on logarithmic paper or the logarithms of these quantities may be plotted on ordinary cross-section paper. The points should lie close to a straight line but a difference of a few hundredths in e will greatly affect the positions of points for the smaller discharges and it may be that on first trial the lower

¹ For the proof of this method see Theodore R. Running: Empirical Formulas, p. 47,

points will not fall exactly in line with the upper ones. A slight correction to the value of e will then be necessary. The logarithm of the required correction will be given approximately by the vertical distance from the lowest plotted point to a straight line passed through the upper points.

After the logarithmic discharge curve has been satisfactorily plotted the equation of the curve may be written or any desired point may be transferred directly to the ordinary discharge curve. The equation of the curve shown in Fig. 77 is

$$Q = 351(G - 0.67)^{1.451} \tag{11a}$$

The ordinary discharge curve as plotted is a graph of this equation. It is evident that in this case a logarithmic discharge curve could have been drawn with practically the same result from a much smaller number of points.

Theoretically three measurements at different stages of a stream will determine the equation of the discharge curve. The three corresponding values of Q and G can be substituted in equation (11) and three simultaneous equations from which p, e and n may be determined will result. The equation of the curve may then be written by substituting these values in the original equation, or after e has been determined the logarithms of Q and G - e may be plotted.

With two discharge measurements given, e may be obtained from field observations and an approximate logarithmic discharge curve may be drawn through the two plotted positions of Q and G - e. Very approximately with a single discharge measurement, e, may be obtained as above and a line drawn through the one plotted point at an angle whose tangent is 1.5 with the $\log (G - e)$ axis. Such a method should be used only when a rough estimate of discharge at some particular stage is desired.

The serious objection to plotting a discharge curve from a small number of observations is that it does not provide for the elimination of erroneous measurements. Where accurate records are required a number of observations, covering as wide a range of stage as practicable are essential.

The Area, Mean-depth Discharge Curve.—This method, devised by Stevens, is based upon the assumption that the mean

¹ J. C. STEVENS: A Method of Estimating Stream Discharge from a Limited Number of Gagings. Engineering News, July 18, 1907.

velocity at the gaging section is given by the Chezy formula and that

$$Q = ac\sqrt{rs} \tag{13}$$

the nomenclature being the same as given on page 189. The mean depth d which is approximately equal to r for most natural streams may be substituted for r in the above equation. If w is the width of the stream

$$d = \frac{a}{w} \tag{14}$$

and writing d for r in equation (13)

$$Q = c\sqrt{s} \times a\sqrt{d} \tag{15}$$

If Q be considered a function of $a\sqrt{d}$ with $c\sqrt{s}$ constant this expression is the equation of a straight line.

From investigations of a number of streams it has been found that when Q is plotted as a function of $a\sqrt{d}$ the points lie very close to a straight line. The apparent errors in assuming c and s to be constants and the exponent of d to be $\frac{1}{2}$ appear to very nearly balance each other.

Fig. 78 shows a discharge curve prepared by this method from the same data that were used for Fig. 77. To facilitate plotting, a curve of $a\sqrt{d}$ is usually constructed, which will include the entire range of stage and after it has been completed points on the discharge curve may be determined directly from gage readings. Values of $a\sqrt{d}$ may be computed for each foot or half-foot interval of gage height, dimensions used in the computations being scaled from a plotted cross-section of the channel. The dotted line indicates the method of locating a discharge measurement of 1757 second-feet, with corresponding gage reading of 3.65 feet, on the $a\sqrt{d}$ discharge curve and transferring the point to the ordinary discharge curve.

The $a\sqrt{d}$ discharge curve intersects the axis of zero discharge at a point where the value of $a\sqrt{d}$ is about 60 corresponding to a gage reading of 0.75. This may be compared to the value of e=0.67 obtained from the logarithmic discharge curve, Fig. 77. The true gage reading of zero discharge is doubtless somewhat below either of these values. However, as two gagings of about 50 second-feet fall on the straight line in each case it is apparent that both the logarithmic and $a\sqrt{d}$ discharge curves are accurate for all but the very smallest discharges. Results obtained from studies of other streams bear out this conclusion. Stevens states that the $a\sqrt{d}$ discharge curve will intersect the zero dis-

charge ordinate at a point corresponding to a depth of flowing water of from 1 to 2 feet.

A discharge curve may be plotted approximately by this method from a limited number of gagings. Theoretically two discharge measurements will determine the position of the line instead of three which are required by the logarithmic method. With a single measurement the line may be roughly located by

Fig. 78.—Area, mean-depth discharge curve.

drawing it through the plotted point to intersect the ordinate of zero discharge at a value of $a\sqrt{d}$ corresponding to a depth of water from 1 to 2 feet.

A careful comparison of Figs. 77 and 78, shows that the results obtained by the two methods of plotting are practically identical. Either method is believed to be trustworthy provided a few reliable discharge measurements are available. If a question should arise regarding the best method to use in a particular case it will probably be better to use each of them and let one check the other. The logarithmic method has the advantage of giving a simple equation for the discharge curve which may be used in computing the discharge table.

It should be understood that the above discussion refers only to streams having a reasonably uniform cross-section and it does not apply to channels with banks that have abruptly changing slopes. If the stream has a flood plain at a gaging section, the portion of the channel lying outside of the regular banks of the stream should be considered separately.

Discharge Table.—After a discharge curve has been satisfactorily plotted and checked, a discharge table should be prepared. The following is a portion of the discharge table for the Huron River at the Fuller St. station, which gives discharges for each 0.01-foot interval of gage height.

Gage height, feet	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.0	531	537	543	548	554	560	566	572	578	584
2.1	590	596	602	608	614	620	626	632	638	644
2.2	651	657	663	669	675	682	688	694	701	707
2.3	713	720	726	732	739	745	752	758	765	771
2.4	778	784	791	797	804	810	817	824	830	837
2.5	844	850	857	864	870	877	884	891	898	901
2.6	911	918	925	932	939	946	953	960	967	974
2.7	981	988	995	1,002	1,009	1,016	1,023	1,030	1,037	1,044
2.8	1,051	1,059	1,066	1,073	1,080	1,087	1,095	1,102	1,109	1,116
2.9	1,124	1,131	1,138	1,146	1,153	1,161	1,168	1,175	1,183	1,190

The completed table should cover the entire range in stage of the stream. Such a table may be used directly without interpolation, and materially reduces the labor of working up daily discharges from the gage records.

The most satisfactory method of computing a discharge table is from the equation of the discharge curve, similar to equation (11a), page 269. It will be found necessary to compute discharges by the formula only for each 0.1-foot interval of gage height, the remaining discharges being determined by the method of differences. The first differences will gradually increase while the second differences will decrease slightly with an increase of stage and become very nearly constant for the higher stages. In order to have the quantities in the table correct to the nearest second-foot the computations by differences should be carried out to one or two decimal places, and the results tabulated to the nearest whole number.

A discharge table may be made directly from the discharge

curve, by scaling values from the curve for each 0.1-foot interval of gage height, and interpolating intermediate values. The quantities thus obtained should then be adjusted till the first and second differences vary uniformly. This process will be found to be very tedious, and is not as satisfactory as the method of computing values from the equation of the curve.

Verification of Discharge Curve.—The accuracy of the discharge records obtained at any station depends in a large measure upon the maintenance of a known relation between gage height and discharge. Any conditions of flow which may have a tendency to effect the control should be carefully watched. It is therefore advisable to make occasional gagings of the stream, particularly after floods, to check the discharge curve. If it should be found at any time that a change of channel conditions has affected the relation of stage to discharge it will be necessary to make a new set of gagings and construct a new discharge curve. The time when the use of the new discharge curve should be substituted for the old will be the time at which, in the judgment of the engineer, the change in channel conditions occurred.

Streams with Shifting Beds.—There are certain streams, of which those in southwestern United States are typical, which have continually shifting beds and consequently a continually changing relation between gage height and discharge. To obtain continuous discharge records on such streams discharge measurements should be made every few days. If the stage of the stream does not change rapidly the discharge may be assumed to vary uniformly between successive gagings and intermediate discharges may be interpolated. This method, however, is not satisfactory and it fails entirely for varying rates of change in flow.

Several methods have been suggested for obtaining continuous discharge records from gage readings, but only one, the Stout method, will be described. An average discharge curve is first drawn from the discharge measurements. Then for each discharge measurement the correction, plus or minus, is obtained which must be applied to the gage reading to make it correspond to the approximate discharge curve. These corrections are then plotted for the proper date, as shown in Fig. 79, after which a curve is drawn through the points. The points may be connected simply with the idea of obtaining a smooth curve unless some condition such as a flood on a par-

ticular day might indicate that there had been only a slight change in the channel up to that time. After the curve has been completed, the gage readings for each day may be corrected and these in turn may be used to obtain discharges from the approximate curve or table of discharges.

Fig. 79.—Curve for correcting gage readings for changing channel conditions.

Discharge of Streams during Freezing Weather. —The freezing of a stream may or may not affect the relation of gage height to discharge. If the control (see page 259) is free from ice the stream at the gage may be entirely frozen over without changing this relation. As soon, however, as ice forms at the control the water will be backed up and cause a decreased discharge for a given gage height. Ice may collect above or below a control in sufficient quantity to temporarily form a new control. There are three distinct types of ice formation; surface ice, anchor ice, and frazil or slush ice. In any of these forms or in their combined influence ice may cause a backing up effect of the water of a stream.

Anchor ice forms in running water on cold nights when the temperature of the water is below 32°F., adhering to the bed of the river or to some other surface with which the water comes in contact. When the temperature of the water becomes a small fraction of a degree greater than 32°F. the anchor ice becomes loosened from the object to which it is attached, rises to the surface and floats down stream. Frazil or slush ice forms in running water, when the temperature of the water is below 32°F., in the shape of small needles or thin flakes which

¹This subject is fully discussed in Water Supply Paper No. 337 of the U. S. Geological Survey.

may collect in large masses and float on the surface of the stream.

Ice jams may occur at a point in a stream where a swift current enters a body of slack water. The slack water may freeze over while the portion of the stream with the swift current will not freeze but presents a condition favorable for the formation of frazil ice. Two pieces of ice in contact will freeze together almost instantaneously providing the temperature of the thin layer of water between them is below 32°F. Hence the pieces of frazil ice upon coming in contact with the solid ice covering may immediately freeze to it and result in the formation of an ice jam. During protracted cold spells ice jams formed in this manner may cause serious damage from floods due to back water.

Anchor ice may adhere to the bed of the stream at the control and cause a temporary backing up of water. This ice, which forms always at night, will become loosened when the sun's rays strike the water even though the air remains several degrees below freezing temperature. The presence of anchor ice at the control is indicated by a drop in the gage reading during the morning hours and a rise at night.

· It is evident that the effect of ice in a stream will always be to cause a greater gage reading for a given discharge than is given by the open-water condition. The gage reading may be affected for comparatively short or intermittent periods, as when anchor ice forms at the control, or for several days or weeks when the obstruction is caused by an ice jam or covering of ice. For the more permanent obstruction the problem of keeping continuous discharge records is quite similar to that described for streams with shifting channels. A careful study of ice conditions and frequent discharge measurements are necessary. Since it is evident that the stage of a stream will not fluctuate greatly during freezing weather the discharge may be considered to vary uniformly between successive gagings if they are not taken too far apart.

A method of correcting gagings, similar to the method for shifting channels illustrated in Fig. 79, may be used for applying a correction to gage readings to make them correspond to the proper discharges for the open-water curve. Such corrections will always be negative. A record of daily temperatures. for the period in question, preferably in the form of a graph

TABLE 87.

DAILY DISCHARGE, IN SECOND-FEET, OF SEVIER RIVER NEAR GUNNISON, UTAH, FOR 1910

2 805 550 715 850 590 100 30 140 44 255 715 330 3 782 570 805 828 550 110 30 190 44 240 550 330 4 805 550 900 805 470 100 30 140 90 215 418 330 5 782 550 1,150 760 470 100 30 120 90 202 418 330 7 715 470 1,410 715 435 80 30 120 90 202 418 330 8 715 470 1,380 670 470 80 30 120 120 202 348 300 10 670 480 1,300 650 435 60 30 120 152 228 330 285 <td< th=""><th>Day</th><th>Jan.</th><th>Feb.</th><th>Mar.</th><th>Apr.</th><th>May</th><th>June</th><th>July</th><th>Aug.</th><th>Sept.</th><th>Oct.</th><th>Nov.</th><th>Dec.</th></td<>	Day	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
3 782 570 805 828 550 110 30 190 44 240 550 330 4 805 550 900 805 470 100 30 178 80 228 435 330 5 782 550 1,120 715 490 100 30 120 90 202 418 330 6 715 470 1,410 715 435 80 30 120 90 202 418 330 7 715 470 1,350 670 470 80 30 120 120 202 368 300 9 692 470 1,350 670 400 70 30 100 152 202 336 300 200 148 300 280 60 30 120 152 228 330 226 152 240 315 240													330 330
5 782 550 1,120 715 490 100 30 140 90 215 418 330 6 782 470 1,150 760 470 100 30 120 90 202 418 330 7 715 470 1,410 715 435 80 30 120 120 202 348 300 8 715 470 1,380 670 470 80 30 120 120 202 348 300 10 670 480 1,300 650 435 60 30 120 152 228 330 285 11 670 490 1,300 650 435 60 30 100 165 228 330 285 12 630 510 1,200 470 400 60 30 165 152 240 315 240	3		570	805	828	550	110	30	190	44	240	550	330
6	4						100			80			330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
8 715 470 1,380 670 470 80 30 120 120 202 348 300 9 692 470 1,350 670 400 70 30 100 152 222 330 300 10 670 480 1,300 650 435 60 30 120 152 228 330 285 11 670 490 1,300 590 470 60 30 100 165 228 330 240 12 630 510 1,200 470 400 60 30 165 152 240 315 240 14 590 510 1,200 470 365 52 30 120 152 240 315 240 16 715 470 1,200 435 330 60 30 120 152 270 315 240	7			1.410			80						300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8			1,380		470	80	30	120	120	202	348	300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1,350			70 80			152	202		300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 1	- 1						- 1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	630	510	1,220	510	400		30				315	240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			510	1,200						152		315	240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14		510	1,200						152			255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								- 1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	550	510	1,200		400					285		330
20 550 550 1,150 418 300 44 37 90 270 300 300 382 21 530 570 1,150 470 315 44 60 80 435 300 315 382 23 530 590 1,200 400 270 44 60 70 400 315 300 380 24 530 590 1,200 412 202 44 60 70 400 315 300 370 25 510 590 1,200 435 60 44 60 70 400 315 300 370 26 510 610 1,250 435 100 37 110 60 400 330 300 360 27 470 630 1,800 452 120 30 110 52 335 385 315 360	18										285		382
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												300	382
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						- 1							
24 530 590 1,200 418 202 44 60 70 400 315 300 370 25 510 590 1,200 435 60 44 60 60 60 400 330 300 370 26 510 610 1,250 435 100 37 110 60 400 330 300 360 27 470 630 1,180 452 190 30 110 60 365 382 315 360 28 470 630 1,000 452 120 30 110 52 330 365 315 360 29 435 1,000 452 100 30 120 52 315 400 315 350 30 400 950 470 100 30 120 52 285 400 330 350	22	530	590	1,180	452	270	44	60	80	435	315	300	380
25 510 590 1,200 435 60 44 60 60 400 330 300 370 26 510 610 1,250 435 100 37 110 60 400 330 300 360 27 470 630 1,801 452 190 30 110 60 365 382 315 360 28 470 630 1,000 452 120 30 110 52 330 365 315 360 29 435 1,000 452 100 30 120 52 315 400 315 350 30 400 1 950 470 100 30 120 52 285 400 330 350		530		1,200									380
26		510											
27 470 630 1,180 452 190 30 110 60 365 382 315 360 28 470 630 1,000 452 120 30 110 52 330 365 315 360 29 435 1,000 452 100 30 120 52 315 400 315 350 30 400 950 470 100 30 120 52 285 400 330 350	1												
29 435 1,000 452 100 30 120 52 315 400 315 350 30 400 950 470 100 30 120 52 285 400 330 350	27	470	630	1,180	452	190	30	110	60	365	382	315	360
30 400 950 470 100 30 120 52 285 400 330 350	28		630				30						
31 510 950 100 120 44 400 350	30						30						
	31												

Note.—Daily discharge determined from discharge rating curve fairly well defined. Discharge interpolated for days on which gage was not read. Discharge Dec. 22 to 31 estimated.

MONTHLY DISCHARGE OF SEVIER RIVER NEAR GUNNISON, UTAH, FOR 1910 [Drainage area, 3,990 square miles]

	Di	scharge	in second	Run				
Month	Maxi- mum Mini- mum Mea		Mean	Per square mile	Depth in inches on drainage area	Total in acre-feet	Accu- racy	
January February March April	805 630 1,410 875	400 470 715 400	600 537 1,130 554	0.150 .135 .283 .139	0.17 .14 .33 .16	36,900 29,800 69,500 33,000	B B B	
May June July August	590 110 120 315	60 30 30 44	333 60.2 52 108	.083 .015 .013	.10 .02 .01	20,500 3,580 3,200 6,640	B B B A A	
September October November December	435 400 715 382	202 300 240	213 282 353 326	.053 .071 .088 .082	.06 .08 .10	12,700 17,300 21,000 20,000	A A A B	
The year	1,410	30	379	.095	1.29	274,000		

may be valuable in drawing the curve of gage corrections between the known points. After this curve has been completed the gage readings may be corrected and applied to the openwater discharge curve.

Records of Discharge.—Daily discharge records should be tabulated and kept in a form convenient for reference. Table 87 indicates the form adopted by the U. S. Geological Survey.

Fig. 80.-Hydrograph.

Hydrographs, Fig. 80, are graphical representations of records of discharge, the ordinates expressing discharges and the abscissas time. They may be plotted continuously or on separate sheets, usually for yearly periods. Hydrographs convey a better mental picture of the discharge of a stream than is possible from tabulated values and, when drawn to a small scale, they are very valuable for reports and other purposes where general conditions only are to be expressed. Hydrographs plotted to a scale of from 1 to 2 inches to the month may be used to advantage in many problems pertaining to stream flow and in connection with the mass diagram, page 294, they may be helpful in storage calculations.

CHAPTER IX

SPECIAL PROBLEMS

Backwater Curve

Backwater curve is the term applied to the profile of the surface of the water in a channel above a dam or other obstruction. The problem may be encountered in either canals or natural streams. When a dam is constructed across a natural stream it may be necessary to determine the flow line for flood discharges in the pond above the dam in order to estimate property damages or to calculate the effect of backwater on a power plant above the dam. The solution here given is general and applies to either natural or artificial channels. The problem as commonly stated gives the discharge and elevation of water surface at the obstruction causing backwater; it being desired to obtain the elevation of water surface at successive points upstream from the obstruction.

The first step in the solution consists of dividing the stream into reaches of such length that a mean cross-section of the reach may be obtained which, when used in the computations, will give results within the desired limits of accuracy. The computations usually start at the obstruction with a known or assumed discharge and corresponding elevation of water surface. The slope through the first reach is then calculated from which the elevation of water surface at the beginning of the second reach may be obtained. This elevation may then be used as a basis for computing the slope in the second reach, which in turn gives data for obtaining the elevation of water surface at the beginning of the third reach. In the same manner the slope of other reaches may be determined until the solution has been carried as far as is desired.

A plan of the channel and data for obtaining as many crosssections as are desired should be available. Fig. 81 shows a plan, longitudinal section and two typical cross-sections of a natural stream. The plan shows contours from which cross-

sections at any desired points may be obtained. In addition to such contours as many actual elevations as are available should be plotted on the map. This applies especially to elevations of the stream bed which should show clearly the main channel of the stream. The more accurate the data contained on the map the more reliable will be the slope computations. A map of this kind is not necessary for artificial channels of regular form as cross-sections may be readily obtained at any point.

Fig. 81.—Plan, profile and cross-sections of stream for backwater computations.

The figure shows a dam MN constructed between contours gg. AB, BC, CD, etc., are successive reaches in which slopes are to be computed. The length of reach to be chosen will depend upon the uniformity of the channel and the rate of slope. In general, the more regular the channel and the smaller the slope the longer the reach that may be chosen. Ordinarily the longer reaches will be taken nearest to the obstruction and become shorter farther upstream. Where sudden changes in cross-

section occur it is generally advisable to take a short reach that extends from just below to just above the place where the change occurs.

The longitudinal section, Fig. 81, shows the general form of the backwater curve. The backwater curve gradually approaches the line of normal water surface and will ultimately become tangent to it. In practical problems it may be assumed that when the slope of the backwater curve becomes approximately parallel to the bed of the stream, the limit of the backwater has been reached.

The slope of each reach may be computed by any of the formulas for flow in open channels. To do this a mean cross-section for the reach must be obtained. For regular canals this cross-section may usually be taken as the section at the middle of the reach. For natural streams a mean of all cross-sections in the reach, as nearly as may be obtained by practicable means, should be used. This mean cross-section may be obtained by plotting a number of sections, having a common center line, over each other and drawing an average line through them. The elevation of water surface to be used in this case will be the elevation at the middle of the reach.

If backwater curves for several different discharges are to be determined, time may be saved by computing several areas and hydraulic radii for the mean cross-sections for each reach. using elevations of water surface chosen arbitrarily within the range of assumed conditions, and from these values drawing area curves and hydraulic radii curves by plotting on crosssection paper elevations for ordinates and areas and hydraulic radii respectively for abscissas. Any values then needed in the computations may be taken from these curves. The areas of plotted cross-sections may be conveniently obtained by means of a planimeter. Where several elevations of water surface are to be considered at any cross-section it will be found convenient to first compute the area for the highest water surface and then, for the next lower water surface, subtract the area between the elevations of the two water surfaces. This subtractive quantity will be equal to the difference in elevation of the two surfaces multiplied by their mean length. The length of wetted perimeter may be scaled from the cross-section. ordinary river channels the wetted perimeter is equal approximately to the width of the stream plus the maximum depth of water, or more accurately for channels of nearly rectangular

cross-section, it is equal to the width of stream plus 2 times the mean depth.

After obtaining mean cross-sections the first step in the computations is to assume a slope for the reach being considered in order that an elevation of water surface, at the middle of the reach, for the cross-section may be obtained. With this trial elevation decided upon the area and hydraulic radius for the section may be determined and $v = \frac{Q}{a}$ found. The slope of water surface may then be computed by an open-channel for-If the computed slope differs materially from the assumed slope a second computation may be made, using this computed slope for determining the trial elevation of water surface at the middle of the reach. Usually, however, the error in area introduced by using the assumed slope will be insignificant and a second computation will not be necessary. the slope of water surface for the first reach has been determined. the elevation of water surface at the beginning of the second reach may be obtained and the computations for the other reaches may be made in the same manner as described for the first reach.

Slope computations may be readily made by means of Manning's formula (page 190), which may be written in the form

$$s = \frac{n^2 v^2}{2.2082 r^{\frac{1}{2}}} \tag{1}$$

Values of $\frac{1}{2.2082r^{+}}$ for a range of r from 0.1 to 55 feet are given in Table 82, page 222, and by using this table the solution reduces to the simple operation of multiplying the tabulated value corresponding to the given r by $(nv)^2$. The computations may be still farther reduced by using Diagram 2, opposite page 230, for determining s. This diagram will be accurate enough for ordinary backwater calculations.

Engineers who are accustomed to use Kutter's formula for computations of this kind will find that the two formulas give results agreeing very closely. If, however, it has been decided to use a certain value of n with Kutter's formula the corresponding value of n for Manning's formula which will give identical results may be obtained from Table 75, page 204.

It will generally be found more convenient to mark off 100 feet stations on the center line of the channel, beginning with

station 0 at the downstream end of the curve. All elevations should be referred to the same datum, and tied to one or more permanent bench marks.

Preferably the results of computations should be kept in tabular form in order to systematize the work and provide a concise record for future reference. Table 88 is an example of a form which may be used for backwater computations.

It is sometimes desired to determine the height to which water in a stream at a given point may be raised by the construction of a dam or otherwise without backing up the water above a certain elevation at some point farther upstream. In this case the method to be followed in making computations is the same as described above except that they proceed downstream instead of upstream and slope corrections are subtracted instead of added.

In cases where the stream is divided between two channels as in passing around opposite sides of an island, the given discharge is divided by judgment between the two channels. The slope in each with its portion of the discharge is computed and if it is found that the computed slope for one channel gives a greater difference of elevation between the ends of the island than the computed slope for the other channel, the computation is repeated, reducing the proportion of the discharge assumed to pass through the channel which gave the greater difference in elevation and increasing the proportion of discharge for the channel which gave the smaller difference in elevation. has the effect of increasing the calculated slope in one channel and reducing it in the other. The operation is repeated until the flow is so divided between the two channels that starting with an assumed elevation at one end the calculated elevation at the other end of each channel is the same.

After two complete trial solutions have been made, the following graphical method may be employed to complete the computations. Let Q_1 be one of the trial discharges for either channel and Q_2 the other trial discharge for the same channel. Consider discharges as abscissas and elevations as ordinates. On the ordinate Q_1 plot the elevations obtained for each channel for the trial solution in which Q_1 was used and on the ordinate Q_2 plot the elevations obtained by the other trial solution. The ordinate of the point of intersection of the straight lines connecting the points for each channel will be the approximate evation required. The abscissa of the point gives the ap-

ELEVATION OF WATER Table 88.—Backwater Computations. Q = 20,000 Second-feet. Surface at Dam = 512.6.

Elevation at upper end of reach	513.40	513.44	513.51	513.60	513.78	514.59	514.92	515.57	516.53
Fall in reach	.795	.045	.075	.081	. 187	908.	. 329	.650	960
Slope	.00014	.00015	.00015	.00027	.00017	.00031	.00047	.00050	.00032
Rough- ness	.030	.030	.030	.030	.030	.030	.030	.035	.035
Mean velocity $v = \frac{Q}{a}$	3.09	3.37	3.47	3.51	3.57	4.02	4.42	4.15	3.86
Hydrau- lic radius, r	11.9	13.1	12.8	8.9	13.1	8.6	8.3	9.1	11.4
Trial mean area,	6,461	5,934	2,607	5,697	5,595	4,980	4,520	4,815	5,175
Trial mean elevation	512.9	513.4	513.5	513.6	513.7	514.1	514.7	515.1	516.1
Elevation at lower end	512.6	513.40	513.44	513.51	513.60	513.78	514.59	514.92	515.57
Length of reach	5,300	300	200	300	1,100	2,600	200	1,300	3,000
Upper	53	26	61	64	22	101	108	121	151
Lower	0	53	26	61	45	75	101	108	121

proximate discharge of the channel for which Q_1 and Q_2 were trial discharges. The values obtained by this method may be checked by slope calculations.

In case a stream has a flood plain which is overflowed during higher stages it is better not to include this portion of the discharge in the computations for the main channel, but to subdivide the flow by judgment between the flood plain and main channel making the calculations in the same manner as for a channel divided by an island, as already described. Trial subdivisions should be repeated until a division of the flow has been found such that the fall on the flood plain in the given reach becomes the same as the fall in the main channel.

As a rule the generally accepted values of coefficients of roughness cannot be followed closely in applying the formulas for flow in open channels, especially in case of low water and in channels subject to backwater from dams. In such channels there is usually more or less slackwater in places along the bottom and sides of the channel, which cannot properly be included as an effective part of the channel. It is usually difficult to eliminate slackwater areas from measured crosssections and in order that slope computations may, in a measure, allow for this condition it is necessary to use a larger coefficient of roughness. Natural channels may require the use of a coefficient of roughness of 0.040 or 0.050 in cases where the bed and banks are such that the categorical coefficient of roughness would be 0.025 to 0.030. The presence of slackwater may often be detected by the growth of aquatic grass, in which case, even though there is a good current, the coefficient of roughness will be much larger than for a channel free from such obstruction.

It is frequently important to determine whether an existing or proposed dam has caused or will cause a rise in the surface elevation of a stream at some point upstream from the dam. In such cases a profile of the water surface when not influenced by backwater is essential. The best method of obtaining the necessary data is to keep a continuous daily record of stage and discharge at the point in question. If this information is secured before the dam is built it will furnish the best possible evidence as to the natural stage of the stream, and frequently such data cannot be secured after the dam has been built, even by drawing down the water, owing to changes in the channel by silting and the formation of bars at the head of the pond.

Divided Flow in Pipes

An example of this problem is illustrated by Fig. 82. The pipe AB divides at B into the two branches BEC and BFC which reunite at C where they discharge into the pipe CD. Let l, l_1 , l_2 and l_3 represent respectively the lengths of pipes AB, BEC, BFC, and CD and d, d_1 , d_2 and d_3 and v, v_1 , v_2 and v_3 the corresponding diameters and velocities. K_1 , K'_1 , K''_1 , and K'''_1 are friction coefficients (see page 154 and Table 57, page

Fig. 82.—Pipe with divided flow.

172). The total head lost in friction from A to B is represented by h_1 from B to C by h_2 , from C to D by h_3 , and from A to D the total head lost in the system is represented by H. It is apparent that

$$H = h_1 + h_2 + h_3 \tag{2}$$

also, see page 158,

$$H = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2g} + K'_1 \frac{l_1}{d_1^{1.25}} \cdot \frac{v_1^2}{2g} + K'''_1 \frac{l_3}{d_3^{1.25}} \cdot \frac{v_3^2}{2g}$$
(3)

And since the lost head in the two branching pipes must be the same

$$K'_1 \frac{l_1}{d_1^{1.25}} \cdot \frac{v_1^2}{2q} = K''_1 \frac{l_2}{d_2^{1.25}} \cdot \frac{v_2^2}{2q}$$
 (4)

and

$$v_1 \sqrt{\frac{K'_1 l_1}{d_1^{1.25}}} = v_2 \sqrt{\frac{K''_1 l_2}{d_2^{1.25}}}$$
 (5)

From the principle of continuity of flow the following relation may be obtained

$$vd^2 = v_1d_1^2 + v_2d_2^2 = v_3d_3^2 (6)$$

Also from equations (5) and (6)

$$v_{1} = \frac{vd^{2}\sqrt{\frac{K''_{1}\bar{l}_{2}}{d_{2}^{1.25}}}}{d_{1}^{2}\sqrt{\frac{K''_{1}\bar{l}_{2}}{d_{2}^{1.25}}} + d_{2}^{2}\sqrt{\frac{K'_{1}\bar{l}_{1}}{d_{1}^{1\cdot26}}}}$$
(7)

$$v_2 = \frac{vd^2 \sqrt{\frac{K'_1 l_1}{d_1^{1.25}}}}{d_1^2 \sqrt{\frac{K''_1 l_2}{d_2^{1.25}}} + d_2^2 \sqrt{\frac{K'_1 l_1}{d_1^{1.25}}}}$$
(8)

$$v_3 = \frac{vd^2}{d_3^2} \tag{9}$$

and from equations (3), (7), (8), and (9)

$$H = \frac{v^2}{2g} \left[K_1 \frac{l_1}{d^{1.25}} + K'_1 \frac{l_1}{d_1^{1.25}} \left(\frac{d^2 \sqrt{\frac{K''_1 l_2}{d_2^{1.25}}}}{d_1^2 \sqrt{\frac{K''_1 l_2}{d_2^{1.25}}} + d_2^2 \sqrt{\frac{K'_1 l_1}{d_1^{1.25}}}} \right)^2 + K'''_1 \frac{l_3}{d_3^{1.25}} \frac{d^4}{d_3^4} \right]$$
(10)

From this equation v may be computed, and v_1 , v_2 and v_3 may be obtained from equations (7), (8) and (9). Also H may be calculated when the discharge and all dimensions of the pipe system are given. If H and the discharge and all dimensions except one are given the missing dimension may be computed from the above formulas.

Fig. 83.—Pipe with branches discharging at different elevations.

The use of Table 60 or 61, pages 175 and 178, which give values of $\frac{1}{d^{1.25}}$ will simplify the computations. The values of K_1 , K'_1 , K''_1 and K'''_1 are to be taken from Table 57, page 172. These values will vary slightly with the velocity, and as they must be chosen from an assumed velocity it may be necessary to make a second solution of the problem after obtaining approximate velocities from the first solution.

Another problem sometimes encountered is illustrated in Fig. 83. AB is a main pipe line which divides at B into the branches

BC and BD. y is the head lost in friction in the pipe AB and h_1 and h_2 represent the total head lost in friction to the outlets C and D respectively. l, l_1 and l_2 are the respective lengths of AB, BC, and BD, and d, d_1 and d_2 and v, v_1 and v_2 are corresponding diameters and velocities. K_1 , K'_1 , and K''_1 are friction coefficients (see page 154 and Table 57, page 172).

The loss of head due to friction in the two branch pipes is represented by the equations

$$h_1 - y = K'_1 \frac{l_1}{d_1^{1.25}} \cdot \frac{r_1^2}{2g}$$
 and $h_2 - y = K''_1 \frac{l_2}{d_2^{1.25}} \cdot \frac{v_2^2}{2g}$ (11)

and for the main pipe AB

$$y = K_1 \frac{l}{d^{1.25}} \cdot \frac{v^2}{2g} \tag{12}$$

and from the principle of continuity of flow

$$d^2v = d_1^2v_1 + d_2^2v_2 (13)$$

From the relations expressed by the above equations the following formulas may be written

$$2gh_1 = K_1 \frac{l}{d^{1.25}} \left(\frac{d_1^2}{d^2} v_1 + \frac{d_2^2}{d^2} v_2 \right)^2 + K'_1 \frac{l_1}{d_1^{1.25}} v_1^2$$
 (14)

and

$$2g(h_1 - h_2) = K_1' \frac{l_1}{d_1^{1.25}} v_1^2 - K''_1 \frac{l_2}{d_2^{1.25}} v_2^2$$
 (15)

From equations (14) and (15) any two unknown quantities may be determined. If all dimensions of the pipe system and h_1 and h_2 are given v_1 and v_2 may be determined and also the discharges of each of the branch pipes. Similarly d_1 and d_2 may be computed when the other quantities are given. It will usually be found more convenient to solve equation (15) first in order to express one unknown in terms of the other for substituting in equation (14). The values of K_1 , K'_1 and K''_1 must first be chosen by trial as described on page 162 and a second solution may be necessary.

A trial method of determining the discharge for a system of pipes, similar to that shown in Fig. 82, is as follows. Assume a discharge and compute h_1 and h_2 . Find $H - (h_1 + h_3)$ for a trial value of h_2 . With this trial value compute the discharge through pipes E and F. Find the difference between the assumed discharge and the combined discharge of pipes E and F. The true discharge will lie between the assumed discharge and the combined discharge of pipes E and F as computed.

Assume another discharge and again in the same manner find the difference between the assumed discharge and the combined discharge through pipes E and F. Using rectangular coordinates, plot to suitable scale, the differences for each set of computations against the corresponding assumed discharges. Connect the plotted points with a straight line. The point of intersection of this line with the coördinate of zero difference gives approximately the true discharge. A slight error is introduced by assuming a straight line variation between the plotted points. To get a closer result, determine a new difference by the above method using this approximate value of the true discharge. Plot this difference as before and draw a curve through the three plotted points. The intersection of this curve with the coördinate of zero difference should be very close to the true discharge.

A method similar to the above may be employed for determining the discharge through the system of pipes shown in Fig. 83. Q is assumed and y computed after which the combined discharge of pipes BC and BD is obtained. Successive assumptions are then made and the assumed discharges and differences are plotted by the method described above to determine the true discharge.

Short Canals with Free Discharge

A problem frequently encountered in engineering design deals with the flow of water through a short canal having its intake in a comparatively quiet body of water and discharging freely at its lower end. Practical examples of this problem are, a canal excavated around a dam to serve as a spillway for a reservoir or a chute constructed on a steep grade to carry the water in a canal to a lower level.

The problem presents two special cases which necessitate modifications in the method of solution. They are, however, both based upon the principle that there is a certain maximum discharge at the intake which cannot be exceeded. Which of the two methods is to be used depends upon whether the slope of the channel is sufficient to carry this maximum discharge.

The solution for each case is given below. A trapezoidal canal section is assumed in each case, and formulas are derived which are later given in a simplified form for rectangular sections.

Short Canal with Flat Stope.—Fig. 84 shows a longitudinal section and cross-section of the canal. The water enters the canal from a reservoir at the upper end and leaves with free discharge at the lower end. The following nomenclature is used:

D =Depth of water above canal bottom at entrance.

H =Depth of water in canal just above outlet.

 h_0 = Lost head at entrance plus velocity head.

 v_0 = Mean velocity in upper end of canal.

b =Width of canal bottom.

z = Slope of sides of canal; horizontal to vertical.

l =Length of canal.

s =Slope of water surface in canal.

 s_1 = Slope of bottom of canal.

r = Hydraulic radius of cross-section of canal.

C =Coefficient of discharge.

Fig. 84.—Short canal with flat slope.

The value of C will vary from unity for perfect entrance conditions, with well-rounded corners to 0.82 where all corners at entrance to canal are sharp.

The velocity just below the entrance to the canal is given by the formula

$$v_0 = C\sqrt{2gh_0}. (16)$$

Also, letting a represent the area of water section in the upper end of canal

$$Q = av_0 = C\sqrt{2g}h_0^{1/2}(D - h_0)[b + z(D - h_0)]$$
 (17)

This equation equals zero when $h_0 = 0$ and also when $h_0 = D$. The maximum value of Q, therefore, lies somewhere between these limits. The value of h_0 which will give the maximum possible value of Q may be obtained by differentiating equation (17) with respect to h_0 and equating to zero. This gives, after reduction, the equation

$$5zh_0^2 - 3(2zD + b)h_0 + (Db + zD^2) = 0 (18)$$

For a rectangular channel z equals zero and for maximum discharge

$$h_0 = \frac{1}{3}D \tag{19}$$

Substituting this value of h_0 in formula (17) the resulting formula of discharge for a rectangular section is

$$Q(\text{Maximum}) = 3.087CbD^{34}$$
 (20)

From equation (18) the value of h_0 which gives maximum discharge for a trapezoidal section is

$$h_0 = \frac{3(2zD+b) - \sqrt{16z^2D^2 + 16zDb + 9b^2}}{10z}$$
 (21)

Substituting this value of h_0 in formula (17) the maximum value of Q for a trapezoidal section may be obtained.

The next step in the solution is to determine whether the slope of the canal is sufficient to carry this maximum discharge with a depth of water in the canal not greater than $D - h_0$. If it is, the discharge of the canal will be equal to the maximum discharge as given by formulas (17) and (21), but if the slope of the canal is not great enough it will cause a backing-up effect and result in a smaller value of h_0 and consequently a smaller discharge.

The lower end of the canal becomes a fall, the discharge over which (see page 142) is given by the formula

$$Q = 5.21H^{1.47}(L + 0.8zH) (22)$$

The last term of this formula disappears for a rectangular section.

To determine the depth of water in the lower end of the canal, assuming the maximum value of Q, substitute this value of Q in formula (22) and solve for H. Then determine

$$s_t = \frac{D - h_0 - II}{l} + s_1 \tag{23}$$

which may be called a trial value of the slope of the canal. For the next step determine the slope necessary to carry the maximum Q as given by formula (17) from one of the formulas

Digitized by GOOST

for flow in open channels. Manning's formula (see page 202, also Table 82, page 222) may be written in the form

$$s = \frac{v^2 n^2}{2.2082r^{\frac{5}{4}}} \tag{24}$$

In this formula r and v may usually be taken as the hydraulic radius and velocity respectively midway between the entrance and outlet to the canal where the depth of water equals $\frac{1}{2}(D-h_0+H)$. In the case of long canals where there is a material difference in the depths of water at the two ends of the canal it may be necessary to compute the slope of water surface in accordance with the method described for backwater curves (page 278), but usually the slope computed from a section midway between the ends of the canal will cause an inappreciable error in the result.

Considering formulas (23) and (24) if $s_t > s$ the discharge through the canal will be the maximum Q given by formula (17). If $s_t < s$ or negative a value of h_0 less than the value for maximum discharge must be assumed when new trial values of Q, H, s_t and s may be computed by formulas (17), (22), (23) and (24) respectively. Additional trials may be made in the same manner and the process should be continued until $s_t = s$ or until satisfied that the result is close enough for the purpose.

Canal with Steep Slope.—In this case, the discharge is the maximum Q as given by formula (17). The canal having a steep slope, the velocity of water in the canal will be continually accelerated until the slope of the canal is just sufficient to overcome the friction loss due to the velocity. As commonly encountered in practice, Q is given and the problem is to get the dimensions of channel at successive points along the canal required to carry the given quantity of water.

The first step is to determine h_0 and the dimensions of the entrance to the canal. Assume Q, D, and z to be given, which is the common condition. By substituting these values in equations (17) and (21), b and h_0 may be determined. If the channel is rectangular h_0 is given by equation (19) and b, by equation (20). The depth of water in the upper end of the canal is $D - h_0$.

The next step in the solution is to determine dimensions of the channel at successive points along the canal. This problem is illustrated in Fig. 85. A, B, C, etc. are short reaches of the canal to be designed, and dimensions of cross-sections of channel

between reaches A and B, B and C, etc. are to be determined. Computations for each reach are made independently, the cross-section at the lower end of reach A being first determined, then the cross-section at the lower end of reach B and so on.

The following nomenclature will be used.

l =Length of reach considered.

 $s_1 =$ Slope of bottom of canal.

 h_1 = Fall of water surface in reach considered.

 $H_1 =$ Loss of head in reach due to friction.

 d_0 = Depth of water in upper end of reach.

 d_1 = Depth of water in lower end of reach.

 b_0 = Width of canal bottom at upper end of reach.

 b_1 = Width of canal bottom at lower end of reach.

 v_0 = Mean velocity of water at upper end of reach.

 v_1 = Mean velocity of water at lower end of reach.

r = Hydraulic radius of section at middle of reach.

z = Slope of sides of canal.

n =Coefficient in Manning's formula.

Fig. 85.—Short canal with steep slope.

Referring to Fig. 85 the following equation is obtained directly from Bernoulli's theorem:

$$h_1 + \frac{{v_0}^2}{2g} = H_1 + \frac{{v_1}^2}{2g} \tag{25}$$

From Manning's formula (page 190)

$$v = \frac{1.486}{n} r^{\frac{2}{3}} s^{\frac{1}{2}} = \frac{1.486}{n} r^{\frac{2}{3}} \left(\frac{H_1}{l}\right)^{\frac{1}{2}}$$
 (26)

and approximately, putting $v = \frac{1}{2}(v_0 + v_1)$ $H_1 = \frac{\ln^2(v_0 + v_1)^2}{8.83r^{\frac{1}{2}}}$

$$H_1 = \frac{\ln^2(v_0 + v_1)^2}{8.83r^{\frac{1}{2}}} \tag{27}$$

Substituting this value of H_1 , equation (25) may be written

$$h_1 + \frac{v_0^2}{2g} - \frac{\ln^2(v_0 + v_1)^2}{8.83r^{5/3}} - \frac{v_1^2}{2g} = 0$$
 (28)

In equation (28) h_1 , v_0 , v_1 and r may be expressed in terms of b_0 , b_1 , d_0 , d_1 and Q and in this manner the following equation has been derived:

$$d_{0} + s_{1}l - d_{1} + \frac{Q^{2}}{2gd_{0}^{2}(b_{0} + zd_{0})^{2}} - \frac{Q^{2}}{2gd_{1}^{2}(b_{1} + zd_{1})^{2}} - \frac{ln^{2}Q^{2}}{8.83} \left(\frac{1}{d_{0}(b_{0} + zd_{0})} + \frac{1}{d_{1}(b_{1} + zd_{1})}\right)^{2} \times \left(\frac{2(b_{0} + b_{1}) + 4(d_{0} + d_{1})\sqrt{1 + z^{2}}}{(d_{0} + d_{1})[(b_{0} + b_{1}) + z(d_{0} + d_{1})]}\right)^{\frac{4}{3}} = 0$$
 (29)

In equation (29) b_1 and d_1 are the only unknown quantities. Assuming one of these quantities the other may be calculated. Probably a better way is to state b_1 in terms of d_1 , as for example $b_1 = 2d_1$ or $b_1 = 3d_1$ according to the general form of cross-section that is desired. If it is planned to have a channel of uniform width and determine the depth of water at different points $b_1 = b_0$ becomes constant and only d_1 is unknown. Likewise, the width of channel at different points may be determined for a constant depth of water. For a channel of rectangular cross-section z = 0 and formula (29) becomes simplified. In all cases formula (29) must be solved by substituting trial values. The last term, which is the correction for friction, is usually a comparatively small quantity for the upper reaches and may be neglected in the first trial solution. The value of b_1 or d_1 thus obtained will be slightly too small and a somewhat larger value should be used for substitution in the complete formula. After the section at the lower end of the first reach has been determined, because of the fact that the channel is becoming smaller, it should not be difficult to make a fairly close estimate of the dimension to substitute in the formula for the first trial solution for the next reach.

Probably the most valuable special application of formula (29) is to channels having a rectangular cross-section, and constant depth of water. In this case z = 0, and $d_0 = d_1 = d$ (a constant) and b_1 , the width at the lower end of successive reaches, is the only quantity to be determined. Under these conditions the formula reduces to

$$s_1 l d^2 + \frac{Q^2}{2gb_0^2} - \frac{Q^2}{2gb_1^2} - \frac{ln^2Q^2}{8.83} \left(\frac{1}{b_0} + \frac{1}{b_1}\right)^2 \left(\frac{1}{d} + \frac{4}{b_0 + b_1}\right)^{\frac{4}{15}} = 0 \quad (30)$$

The dimensions of a channel for any form of cross-section may be obtained approximately by first determining crosssections by formula (30), then for any form of section not

rectangular determine a section of the required shape having approximately the same area as the rectangular section. For a trapezoidal section the area should be a little larger and for a semicircular section the area should be a little smaller than for the rectangular section.

A channel carrying water at an accelerating velocity will, if extended far enough, approach a condition of uniform velocity where the sectional area of the channel will be constant. In the case of comparatively long channels it may be advisable to compute this minimum section in order to know the limit to which the result is approaching. This limit will be reached when the velocity becomes great enough to cause a frictional resistance that will overcome the slope of the channel. The minimum section may be computed by any of the open-channel formulas. Using Manning's formula the following relation exists

$$Q = \frac{1.486s^{\frac{1}{2}}[d(b+zd)]^{\frac{6}{3}}}{n(b+2d\sqrt{1+z^2})^{\frac{2}{3}}}$$
(31)

or if z = 0

$$Q = \frac{1.486s^{1/2}(db)^{\frac{6}{2}}}{n(b+2d)^{\frac{2}{2}}}$$
 (32)

With either b (width) or d (depth) given in equation (31) or (32), the other may be determined. The equation must be solved by substituting trial values.

The Mass Diagram for Storage Problems

The flow of natural streams is always subject to more or less daily as well as seasonal fluctuation. It is not an unusual condition for the maximum flow of streams to be as much as 100 times greater than the minimum flow. This condition, in many cases, retards the full economic development of rivers for purposes requiring a uniform rate of flow, or a varying use at certain specified rates.

It is possible to regulate the discharge of certain rivers by means of artificial storage, dependent upon the availability of sites where suitable reservoirs may be economically constructed. In connection with the investigation of storage possibilities of any stream two general types of problems may be encountered. It may be required to determine the storage necessary to provide for a use of water at a uniform rate or at certain speci-

fied rates, or the storage capacity being given, it may be required to determine the available supply of water based upon given requirements as to rate or rates of flow.

Storage problems may be readily solved by means of the mass diagram, a method first described by Rippl. The

Fig. 86.—Mass diagram.

method of applying the principle of the mass diagram is shown by the example given in the following pages. Fig. 86 shows a mass curve of discharge data for the Huron River near Geddes,

¹ Proc. Inst. Civ. Eng., vol. 71, p. 279,

TABLE 89.—DISCHARGE DATA OF HURON RIVER AT GEDDES

Year and month	Mean discharge, second-feet	Total discharge, acre-feet	Total discharge corrected, acre-feet	Mass discharge, acre-feet
1904 April May June July August September October November December	404 225 130 139	64,080 25,050 13,500 8,060 8,618 11,280 15,562 10,020 9,982	63,750 24,720 13,170 7,730 8,288 10,950 15,392 9,850 9,810	63,750 88,470 101,640 109,370 117,658 128,608 144,000 153,850 163,660
J905 January February March April May June July August September October December	204 170 750 668 606 1,083 399 297 260 361 454 488	12,660 9,520 46,500 30,100 37,600 64,980 24,750 18,400 15,600 22,400 27,240 30,250	12,490 9,350 46,330 29,770 64,650 24,420 18,070 15,270 22,230 27,080	176,150 185,500 231,830 271,600 308,870 373,520 397,940 416,010 431,280 453,510 480,580 510,660
1906 January. February March April. May June July August September October November December	685 426 515 620 454 322 148 156 84 139 279 2447	42,490 23,860 31,940 37,200 28,200 19,320 9,180 9,680 5,040 8,620 16,320 27,700	42,320 23,690 31,770 36,870 27,870 18,990 8,850 9,350 4,710 8,450 16,150 27,530	552,980 576,670 608,440 645,310 673,180 692,170 701,020 710,370 715,080 723,530 739,680 767,210
1907 January February March April May June July August September October November December	980 386 719 859 804 410 240 138 221 316 362 452	60,760 21,600 44,600 51,540 49,800 24,600 14,880 8,560 18,260 19,560 21,720 28,020	60,590 21,430 44,430 51,270 49,470 24,270 14,560 8,230 12,930 12,930 21,550 27,850	827,800 849,230 893,660 944,870 994,340 1,018,610 1,033,170 1,041,400 1,064,330 1,073,720 1,095,270 1,123,120

Mich., for the years 1904 to 1914 inclusive. Table 89 is an extract from the data and computations on which this mass diagram is based.

The second column of Table 89 gives the mean monthly discharges in second-feet. The third column contains monthly discharges in acre-feet obtained by multiplying the mean monthly discharge by two times the number of days in the month. The fourth column is obtained by deducting estimated seepage and evaporation losses from the quantities given in the third column. The amount of seepage loss depends upon the geological formation of the basin in which the reservoir is located, and this matter should be given the most careful consideration in each particular case. The evaporation loss will vary with the area of exposed water surface, the season of the year, the humidity of the atmosphere, the temperature, the velocity of the wind and other factors. Mean values of evaporation from free water surfaces in different localities are given in Table 90, page 298.

The last column of Table 89 gives the total discharges in acre-feet, corrected for evaporation and seepage losses, from April 1, 1904, up to the end of each month. The irregular line ACNDB, Fig. 86, is the curve plotted from these total discharges, and is called the mass curve. Any point on this mass curve represents the total flow in acre-feet, from the beginning of the period to the date given by the corresponding abscissa and the slope of a tangent to the line at this point indicates the rate of flow in second-feet. Straight lines on the diagram indicate a uniform flow, and the slope of such lines indicates the rate of flow. This rate of flow may be obtained by dividing the amount of rise in acre-feet for a given period by two times the number of days in the period. The sloping lines at the lower right-hand side of the diagram show the slopes for the different rates of flow indicated.

The straight line, CMDM', tangent to the two lowest points of the mass curve Fig. 86, gives the maximum uniform flow that may be provided by the stream on the assumption of adequate storage. The maximum ordinate MN between this line, hereinafter referred to as the use line, and the mass curve, gives the storage that will be necessary to provide for this maximum rate of flow. Scaling from the diagram it is found that a storage capacity of approximately 245,000 acre-

TABLE 90.—MONTHLY AND YEARLY EVAPORATIONS PROM WATER SUBPACES

		MONTHELL AND LEARLI EVAPORATIONS FROM WATER SURFACES	T T	TUVE	Z Z	OKA I	NO P	KOM	V ATER	SURF	\CES		
					Evar	oration	Evaporation in inches	3					
Location	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year
Boston, Mass.	96.0	1.05	1.70	2.97	4.40	5.54	5.98	5.50	4.12	3.16	2.35	1.51	39.20
Kochester, N. Y	0.52	2.5	1.33	2.62	3.93	4.94	5.47	5.30	4.15	3.16	1.45	1.13	34.54
Bisminghem Afr	77.1	1.26	30	2.97	3.64	4.40	5.11	4.73	3.63	2.65	1.70	1.56	35.27
California Obio	3 8	S. :	2.25	4.45	5.91	7.28	7.36	7.34	9.9	4.00	2.22	1.50	51.34
Camiornia, Cuio	3	1.50	8. 8.	4.12	5.07	6.21	7.20	7.26	5.63	3.00	1.50	1.00	45.99
Klamath, Ore	0.50	1.25	3.57	6.64	7.15	6.99	8.01	9.21	6.13	2.50	8	9	53 45
N. Yakima Wash	1.75	2.50	6.25	_	8.36	8.80	10.74	9.41	5.51	3.15	8	1.60	67.96
Minidoka, Idaho	2.22	2.50	8.4			12.31	15.00	13.50	11.00	8.50	5.75	3.50	96.52
Granite Reef, Aris	4.25	4.40	5.25	_		12.00	12.75	12.50	11.00	8.31	6.56	4.22	97.74
Salton Sea, Cal	3.61	5.01	6.75	8.6	11.00	13.50	14.77	12.53	12.40	9.20	6.21		108.65
Kingsbury, Cal	0.77	1.25	2.46	2.56	3.39	5.80	7.55	8.65	6.48	4.05	2.12	1.19	46.27
Independence, Cal	1.66	2.42	4 . 52	28.9	8.63	00.01	9.45	8.10	6.07	3.87	2.49	1.37	65.45
Emdrup, Denmark	0.70	o. 20	0.0	2.00	3.70	2.40	5.20	4.40	2.60	1.30	0.70	0.50	27.90
Lee Bridge, England	0.75	9.	1.07	2.10	2.75	3.14	3.44	2.85	1.61	1.08	0.67	0.57	20.61
Cape Colony, So. Airica	4. 57	9.02	5	1.79	1.20	1.81	1.77	1.94	2.68	4.11	2.09	5.65	30.08
									_		_	_	

feet will be required to provide a maximum uniform flow of 424 second-feet.

The foregoing results are based upon the assumption that the reservoir is empty on the date indicated by the point C. From this point water flows into the reservoir at the rates indicated by the mass curve and flows out of the reservoir at the uniform rate indicated by the use line CMDM'. The amount of water remaining in the reservoir on any date is given by the length of the ordinate intercepted by the two lines. At D all of the water has been drawn from the reservoir. From D the reservoir begins to fill again and (assuming MN = M'N' to be the capacity of the reservoir) on the date when the ordinate between the use line and mass curve becomes M'N' the reservoir is full. From this point until a tangent to the mass curve becomes parallel to the use line, water will be wasted from the reservoir and the discharge will be greater than that indicated by the use line.

To find the storage capacity required to provide for a minimum flow of say 300 second-feet, draw lines, with a slope corresponding to this rate of flow, tangent to the mass curve at the low points a, b, c, d, e, etc., extending them downward till they intersect the mass curve. Then the maximum ordinate between any of these use lines and the mass curve, mn, will give the required storage capacity. In this case the surplus water, during the high-water season, after the reservoir is full will be wasted and the available flow will be greater than 300 second-feet until the point is reached where the tangent to the mass curve becomes parallel to the use line.

The problem is similar when it is desired to find the rate of flow which can be secured with a storage reservoir of given capacity. Lines of different slopes may be tried at the low points of the mass curve until a slope is found which gives a maximum ordinate corresponding to the given capacity. It can usually be told from inspection about where the maximum ordinate will occur, and the problem may then be solved approximately by drawing in this ordinate as closely as possible to its correct position and from a point a distance below the mass curve equal to the given storage capacity extend upward a tangent to the mass curve. The slope of this line will be the approximate rate of flow required. This work should be carefully checked and lines should be drawn at the slope thus de-

termined tangent to other low points on the mass curve in order to make sure that no greater ordinate may be found.

Other types of storage problems may be encountered but in general they may be solved by an application of the above principles. In cases where the storage is limited and the problem becomes one of storing a portion of the flow that occurs during high stages to supplement the following low-water flows, it may be more convenient to plot separate mass curves to a larger scale for each year or two-year period. This provides for a more detailed study and results may be scaled with greater accuracy. In order to obtain a general conception of the problem, however, it will generally be found advantageous to first prepare a mass diagram of the entire discharge data.

In many cases water will not be used at a uniform rate. This is especially true of irrigation where water is required only throughout the growing season and during the remainder of the year it must be stored if the entire flow of the stream is to be conserved. The line RPS, Fig. 86, is the use line for the Huron River assuming that the total discharge for the period is to be used at the following rates:

May	. 10 per cent.
June	. 25 per cent.
July	. 30 per cent.
August	. 25 per cent.
September	. 10 per cent.

Assuming that the same quantity of water will be required each year, the available yearly supply will be equal approximately to that obtained for the maximum uniform flow, or from the data given for the Huron River it will be very nearly equal to a uniform flow of 424 second-feet or a total yearly flow of 310,000 acre-feet.

The use line, for a non-uniform rate of use must be drawn so as to be tangent to the mass curve at two points the same as for uniform use. In doing this care must be taken to see that each point of the use line comes directly over the time to which it pertains. A simple method of procedure is to first plot the mass curve and then on a piece of tracing paper, using the same scale, plot a trial use line. Then place the latter over the former and see if the use line can be so placed that each point will be

over the proper time and at the same time be tangent to the mass curve at two points. If this cannot be done, the correction can be determined and a new use line may be drawn and applied to the mass curve in the same manner. A second trial will usually give a use line which will fulfil the above requirements and thus give the maximum yearly supply of water available. The storage required will be the maximum ordinate between the mass curve and use line. For the problem given this storage is represented by the ordinate PQ and equals 390,000 acre-feet.

Other problems involving a non-uniform rate of use such as are presented by a limited storage capacity, or when a quantity of water less than the maximum discharge is required may be readily solved by an application of the above principles.

Fig. 87.—Reservoir with supply canal.

A special case where the mass diagram may be used to advantage is in the determination of the capacity of supply canal to feed a reservoir not tributary to the stream supplying the water. The conditions of this problem may be seen from Fig. 87. AB is a stream which supplies the water, to be stored in the reservoir CD. The canal AC carries water from the stream to the reservoir. The annual consumption of water from the reservoir and available discharge from the stream for a period

of years are given. The required capacities of canal and storage reservoir are to be determined.

In this case the quantities which determine the use line are given so that it may be plotted once for all, preferably on transparent paper. The seepage and evaporation losses in the canal and reservoir should be considered as additional water consumed and correction for same should be included in the use line. The next step is to assume a capacity for the canal, and plot a mass curve of water diverted into the canal, using the same scale as that chosen for the use line but on a separate sheet. When the available supply of water in the stream is equal to or greater than the capacity of the canal, the capacity of the canal will be the quantity diverted, otherwise this quantity will be the available flow of the stream.

After this mass curve has been plotted, a trial should be made by the method described above, to determine whether the use curve can be so moved as to be tangent to it at two points. If not, a new capacity of canal must be assumed and a new mass curve plotted and the above process repeated until the use line and the mass curve may be placed so as to be tangent to each other at two points. The last assumed capacity of the supply canal will be the required capacity and the maximum ordinate between the mass curve and use line will be the required storage capacity.

9 .

Determination of Reservoir Spillway Capacity

In designing a dam for storage purposes, it is essential to provide a spillway of sufficient capacity to prevent the water surface in the reservoir, even under extreme flood conditions, from rising above a certain fixed safe elevation. In calculating the required spillway capacity for a reservoir, it is necessary to consider the worst possible flood conditions for the locality and assume such flood to discharge into the reservoir when full. Under these conditions water will begin to flow over the spillway as soon as the first flood waters enter the reservoir. The reservoir produces an equalizing effect upon the flood, so that the maximum discharge over the spillway will be something less than the maximum flood discharge. The extent of this equalizing effect increases with the size of the reservoir and for reservoirs that are small in comparison with the discharge,

· Digitized by Google

may be inappreciable.

The solution here given, first suggested by Jacob, is general and may be applied to any data. Areas of water surface corresponding to different depths of water passing over the spillway are generally taken from topographic maps. Maximum flood discharges may be estimated from a study of records for the stream in question and other streams in the locality, or it may be investigated from the standpoint of run-off to be expected from the severest storms. It is characteristic of floods that they rise quite rapidly to a peak and then recede more slowly.

A concrete example involving the principles of the solution of this problem is given below. A similar method may be employed to solve any problems of this kind.

Statement of Problem.—A stream tributary to a reservoir has the following flood wave:

Date and time	Second-feet
May 10, 9 A.M	40
May 10, 12 Noon	400
May 10, 5 P.M	1,200
May 11, 12 Midnight	900
May 11, 12 Noon	650
May 12, 12 Midnight	450
May 12, 12 Noon	
May 13, 12 Midnight	150
May 13, 12 Noon	

At 9 A.M., May 10, the water in the reservoir was at the elevation of the crest of the spillway. The spillway is a weir of ogee section, 20 feet long, the discharge over which is given by the formula $Q=3.4LH^{3/2}$. The area of the reservoir is 1000 acres at the spillway crest, which increases by 30 acres for each 1-foot rise in elevation. Determine the maximum depth of water that passes over the spillway.

Solution of Problem.—1. Prepare a table showing the discharge in second-feet for each time given in the problem and also the discharge in acre-feet for each period and the total flood discharge in acre-feet at the end of each period as follows:

 $_{\text{Digitized by}}Google$

¹ C. C. Jacob; Computing the Size of a Reservoir Spillway. *Engineering News*, June 13, 1912.

Date and time	Second- feet	Acre-feet	Acre-feet mass
May 10, 9 A.M	40		
May 10, 12 Noon	400	55	55
May 10, 5 P.M		333	388
May 11, 12 Midnight	900	612	1,000
May 11, 12 Noon	650	775	1,775
May 12, 12 Midnight	450	550	2,325
May 12, 12 Noon	250	350	2,675
May 13, 12 Midnight		200	2,875
May 13, 12 Noon	100	125	3,000

2. Prepare a table showing depth of water above spillway crest in the reservoir and the corresponding areas of flow line, volumes of water above crest of spillway and discharge over spillway.

Depth above spillway crest, feet	Area of flow line, acres	Volume above spillway crest, acre-feet	Discharge over spillway, second-feet
0.0	1,000	0	.0.0
0.5	1,015	504	24.0
1.0	1,030	1,015	68.0
1.5	1,045	1,534	124.0
2.0	1,060	2,060	190.7
2.5	1,075	2,594	268.8
3.0	1,090	3,135	353.3

- 3. From the last two columns of the preceding table plot a curve to suitable scale, which will show the relation between volume of water above crest of spillway in acre-feet and discharge over spillway in second-feet, EF, Fig. 88.
- 4. From the data in the first table plot a mass curve, to suitable scale, PM, Fig. 88, with total flow of river in acre-feet for the ordinates and time in days for the abscissas. The vertical scale should be such that the total discharge in acrefeet may be plotted and the horizontal scale should provide for the entire flood period.

From the same origin P and with the same coördinates plot a mass curve PN representing the total discharge over the spillway. This must be done by a method of approximations, proceeding in the following manner: Assume that after some

reasonable short period from the beginning of the flood, say at 4 P.M. on May 10, the total discharge over the spillway has been 100 acre-feet. This is represented at A, and means that

Fig. 88.—Determination of reservoir spillway capacity.

the mass curve of discharge over the spillway should pass through this point, if the assumption is correct.

To find the correct position of the point from this assumed

position, determine the length of the ordinate AB, which gives as the assumed volume of water in the reservoir approximately 210 acre-feet. Then from the curve EF determine the discharge in second-feet over the spillway corresponding to a volume of 210 acre-feet in the reservoir. This is approximately 8 second-feet. Since 8 second-feet is the discharge at 4 P.M. and the discharge at 9 A.M. was 0 second-feet, the average for the period is approximately 4 second-feet and the total discharge for the 7-hour period is 2½ acre-feet.

It thus appears that the first assumption that 100 acre-feet had discharged over the weir was much too great and consequently the volume of water remaining in the reservoir and represented by AB was correspondingly too small and the resulting discharge over the weir (8 second-feet or a total of 2½ acre-feet) is too small. The correct total discharge over the weir for the period, therefore, lies somewhere between 2½ acre-feet and 100 acre-feet, but is obviously much closer to the former.

For the second assumption, therefore, we may assume 4 acre-feet for the total discharge over the weir, and in the same manner as above determine 3 acre-feet for the recomputed value, which is sufficiently close to the assumed discharge. Plotting 3 acre-feet for the total discharge over the spillway at 4 P.M., May 10, and connecting this point with zero discharge at 9 A.M., gives the first section of the mass curve. The following table, which gives only the final trial solution indicates the method of making computations.

Date and time	Assumed mass dis- charge over spillway, acre-feet	Volume in reser- voir above spill- way	Dis- charge over spill- way, second- feet	Dis- charge for period, acre- feet	Computed mass discharge over spillway, acre-feet
May 10, 9 A.M					i
May 10, 4 P.M	4	306	11	3	3
May 10, 12 Midnight	40	960	62	24	27
May 11, 12 Noon	120	1,660	140	101	128
May 11, 12 Midnight	280	2,050	187	161	289
May 12, 12 Noon	460	2,210	210	199	488
May 12, 12 Midnight	700	2,180	207	208	696
May 13, 12 Noon	900	2,100	195	201	897

The secon. point on the curve may be taken at 12 o'clock midnight between May 10 and 11. Since the general direction of the curve can now be seen the assumed position of this point C should ordinarily be made closely enough so that one trial will be sufficient. In the same manner as above the ordinate CD is found to represent a volume of about 960 acre-feet, for which the corresponding spillway discharge is 62 second-feet. Since the discharge at the last point of observation was 11 feet the average discharge for this period is 36.5 second-feet or a total for the period of 24 acre-feet. The grand total discharge over the weir since the beginning of the flood is found by adding the total for the period to the grand total obtained at the end of the last period, which gives, in this case, 3 acre-feet plus 24 acre-feet, or 27 acre-feet. This determines the location of a second point on the mass curve.

Similarly other points may be found and the curve extended as far as desired. The maximum vertical ordinate between the two mass curves evidently gives the maximum volume of water above the spillway crest, which equals 2160 acre-feet. From curve EF the corresponding discharge over the weir is found to be 208 second-feet and the head on the weir necessary to provide this discharge, determined from the weir formula, is 2.11 feet. The time of maximum discharge is 2 P.M., May 12.

It will be noted that the maximum discharge over the spill-way is only 17 per cent. of the maximum flood discharge. The reason for this small percentage is because of the short duration of the flood wave. With a longer flood period the discharge over the weir will continue to increase and gradually approach the discharge of the stream.

Use of Logarithms

The common or Briggs logarithms are the only ones used in ordinary mathematical calculations. In this system the logarithm of a number is the power to which 10 must be raised to equal the number. Thus the logarithms of 1, 10, 100, 1000, 10,000, etc., are respectively 0, 1, 2, 3, 4, etc., and the logarithms of 0.1, 0.01, 0.001, and 0 are respectively -1, -2, -3, and $-\infty$. It is apparent that all numbers greater than unity have positive logarithms and those less than unity have negative logarithms.

The logarithms of all numbers which are not integral powers of 10 are fractional and consist of an integer called the characteristic and a decimal fraction which is termed the mantissa. The logarithms of numbers greater than unity have characteristics one less than the number of places to the left of the decimal point, and for a given sequence of figures the mantissas are equal. The following examples will illustrate:

Logarithm of 4.45 = 0.64836 Logarithm of 44.5 = 1.64836 Logarithm of 445 = 2.64836 Logarithm of 4450 = 3.64836

Negative logarithms, that is, the logarithms of numbers less than unity, are generally expressed with negative characteristics and positive mantissas. This gives a common mantissa for a given sequence of figures regardless of whether the number is greater or less than unity. A minus sign over the characteristic indicates that the characteristic is negative and the mantissa positive. Frequently 10 is added to such logarithms to make the whole logarithm positive, it being understood that the logarithm is 10 less than indicated. The following examples illustrate different methods of expressing the logarithms of numbers less than unity:

If the logarithm of a number is subtracted from zero the difference is called the cologarithm of the number. The cologarithm of a number is thus the logarithm of its reciprocal. It is evident also that the cologarithm of a number less than unity is positive. The following table gives logarithms and corresponding cologarithms of various numbers, the mantissas in all cases being positive and the characteristics positive or negative as required.

Number	Logarithm	Cologarithm
4,450	3.64836	$\overline{4}.35164$
445	2.64836	$\bar{3}.35164$
44.5	1.64836	$\bar{2}.35164$
4.45	0.64836	$\bar{1}.35164$
0.445	$\overline{1}.64836$	0.35164
0.0445	$\overline{2}$. 64836	1.35164
0.00445	$\overline{3}$. 64836	2.35164
0.000445	$\overline{4}$. 64836	3,35164
		Digitized by GOOGIC

Tables of logarithms are of great value in simplifying the operations of multiplication, division, involution and evolution and in evaluating expressions containing fractional exponents, they are indispensable. Ordinarily logarithmic tables contain only the mantissas, as the value of the characteristic can be readily determined from the position of the decimal point. Table 91, page 311, contains logarithms of numbers from 1 to 10,000 to five places of decimals, and Table 92, page 329, gives corresponding cologarithms.

Below are indicated the processes to be followed in the solution of a few fundamental problems involving the use of logarithms. The words logarithm and cologarithm are abbreviated to log and colog respectively.

$$\log abc = \log a + \log b + \log c$$

$$\log \frac{ab}{c} = \log a + \log b - \log c = \log a + \log b + \operatorname{colog} c$$

$$\log b^x = x \log b = -x \operatorname{colog} b$$

$$\log \frac{1}{b^x} = -x \log b = x \operatorname{colog} b$$

$$\log ab^x = \log a + x \log b = \log a - x \operatorname{colog} b$$

$$\log \frac{a}{b^x} = \log a - x \log b = \log a + x \operatorname{colog} b$$

Owing to the fact that it is very confusing to multiply logarithms having a negative characteristic and positive mantissa, it will be found much simpler to use cologarithms as indicated above when a number less than unity is to be raised to any power. The following numerical examples indicate the simplest method of solving such problems.

Problem.—Given $y = 3.127 \times 0.04156^{0.217}$; to determine y.

```
\log y = \log 3.127 - 0.217 \operatorname{colog} 0.04156
\log y = 0.49513 - 0.217 \times 1.38132
= 0.19538
y = 1.568
Problem.—Given y = \frac{0.07658}{0.1917^{0.261}}; to determine y.
\log y = \log 0.07658 + 0.251 \operatorname{colog} 0.1917
= \overline{2}.88412 + 0.251 \times 0.71738
= \overline{1}.06418
y = 0.1159
```

CHAPTER X

GENERAL REFERENCE TABLES

By familiarizing himself with the location and purpose of the various tables contained in this volume, the engineer will be able to simplify the processes involved in hydraulic calculations. Following each chapter in the preceding pages the tables pertaining to the subject matter treated in that chapter are given. Tables which will be found useful in general hydraulic computations are included in the following pages.

Many problems may be worked with sufficient accuracy with a slide rule. A log log slide rule will be found particularly convenient in evaluating hydraulic formulas. Where greater accuracy is required logarithms should be used. In order to save time and reduce the liability of error the engineer should use logarithms in the place of direct methods of calculation when-Table 91, page 311 contains five place logarithms ever possible. of numbers up to 10,000 and Table 92, page 329 gives the corresponding cologarithms of numbers. The latter table will be found especially useful in problems involving mixed operations of multiplication and division and in raising to any powers numbers less than unity. The principle of logarithms and typical problems involving their use are given on pages 307 to 309.

Tables 93, 94, and 95, pages 347 to 352 inclusive, give the natural trigonometric functions to 5 decimal places for intervals of 10 minutes. Table 96, page 353, contains the squares, cubes, square roots, cube roots, and reciprocals of numbers from 1 to 1000. Table 97, page 373, gives the square roots of numbers from 1000 to 10,000, with an interval of 10, to 2 decimal places. Tables 98 and 99, pages 375 and 377 give respectively circumferences and areas of circles, with diameters up to 10, for intervals of .01 and Tables 100 and 101, pages 379 and 381, give circumferences and areas, for diameters of circles up to 100, for intervals of ½. Ordinarily Tables 60 and 61, pages 175 and 178 will be found more convenient for determining areas of circles in the solution of pipe problems than Tables 99 and 101.

Table 91.—Logarithms of Numbers

			ABIIE								
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
100	00 00	0 043	087	130	173	217	260	303	346	389	
101	43	2 47	518	561	604	647	689	732	775	817	44 43 42
102	86	0 903	945	988	604 *030	*072	*115	*157	*199	*242	1 4.4 4.8 4.9
103	01 28	4 32		410	452	494	536	578	620 *036	662 *078	2 8.8 8.6 8.4
104 105	70 02 11	3 744 9 16		828 243	870 284	912 325	953 366	995 407	449	490	8 18.2 12.9 12.6 4 17.6 17.2 16.8
106	53	1 57	612	653	694	735	776	816	857	898	5 22,0 21,5 21.0
107	93	8 97	*019	*060	*100	*141	*181	*222	*262	*302	6 26.4 25.8 25.2 7 30.8 30.1 29.4
108	03 34		423	463	503	543	583	623	663	703	8 85.3 34.4 33.6
109	74	3 78	822	862	902	941	981	*021	*060	*100	9 39.6 38.7 87.8
110	04 13			258	297	336	376	415	454	493	411 401 00
111	53	2 57		650	689	727	766	805	844	883	41 40 39
112 113	92 05 30	2 96 8 34	l 999 3 385	*038 423	*077 461	*115 500	*154 538	*192 576	*231 614	*269 652	1 4.1 4.0 3.9
114	69		767	805	843	881	918	956	994	*032	2 8.2 8.0 7.8 3 12.8 12.0 11.7
115	06 07	0 10	145	183	221	258	296	333	371	408	4 16.4 16.0 15.6
116	4.4			558	595	633	670	707	744	781	6 24.6 24.0 23.4
117 118	07 18	9 85 8 22	5 893 5 262	930 298	967 835	*004 372	*041 408	*078 445	*115 482	*151 518	7 28.7 28.0 27.8
119	65			664	700	737	778	809	846	882	8 32.8 32.0 31.2 9 36.9 36.0 35.1
120	91	8 95	990	*027	*063	*099	*135	*171	*207	*243	
121	08 27	9 31	4 850	386	422	458	493	529	565	600	38 37 36
122	68	6 67	2 707	748	778	814	849	884	920	955	1 3.8 3.7 3.6
123	99			*096	*132	*167	*202	*237	*272	*307	2 7.6 7.4 7.2
124 125	09 34 60		7 412 6 760	447 795	482 830	517 864	552 899	587 934	968	656 *008	3 11.4 11.1 10.8 4 15.2 14.8 14.4
126	10 0	7 07	2 106	140	175	209	248	278	812	346	5 19.0 18.5 18.0
127	38	0 41	5 449	483	517	551	585	619	658	687	6 22.8 22.2 21.6 7 26.6 25.9 25.2
128 129	72			823 160	857	890 227	924	958 294	992 327	*025 361	8 30.4 29 6 28.8 9 34.2 33.3 32.4
	11 00			-1	198		261	-	1	694	9 04.2 55.5 64.4
130				494	528	561	594 926	628 959	992	*024	351 341 38
131 132	12 00			826 156	860 189	898 222	254	287	320	352	1 1 1 1
133	88	35 41	8 450	488	516	548	581	613	646	678	1 8.5 3.4 3.3 2 7.0 6.8 6.6
134	7:	10 74	8 775	808	840	872	905	937	969	*001	8 10.5 10.2 9.9
185	13 0		6 098	130	162	194	226	258	290	822 640	4 14.0 13.6 13.2 5 17.5 17.0 16.5
136 137		54 38 72 70		450 767	481 799	518 830	545 862	577 893	609 925	956	
138	1 9	88 *01	9 +051	*082	*114	*145	*176	*208	*239	*270	7 24.5 23.8 23.1 8 28.0 27.2 26.4
139	14 8	01 33	3 364	395	426	457	489	520	551	582	9 81.5 80.6 29.7
140	6:	13 64	4 675	706	737	768	799	829	860	891	
141		22 95	8 988		*045	*076	*106	*137	*168	*198	32 31 80
142	15 2				351	381	412	442	473	503	1 8.2 8.1 8.0
148		34 56 36 86		625 927	655 957	685 987	715 *017	746 *0 47	776 *077	806 *107	2 6.4 6.2 6.0 3 9.6 9.8 9.0
144	16 1	37 16		227	256	286	316	846	376	406	4 12.8 12.4 12.0
146	4	35 46	5 496	524	554	584	613	643	673	702	5 16.0 15.5 15.0 6 19.2 18.6 18.0
147	1,7	82 76 26 08			850	879 173	909	938 231	967 260	997 289	7 22.4 21.7 21.0
148 149		26 00 19 34		114 406	148 435	173 464	493	522	551	580	8 25.6 24.8 24.0 9 28.8 27.9 27.0
150		09 6		696	725	754	782	811	_	869	
<u> </u>	┨──	- -	-	-	-	-	-	-	-	-	
N.	L.	ol·	L 2	3	4	5	6	7	8	9	P. P.
1	15.	~ ·	"	١	*	ľ	"	Ι.	Dhitized	Ġ	ogle
	•							•	- yuzeti	9.50	

TABLE 91 (Continued) LOGARITHMS OF NUMBERS

150 1 151			1	2	3	4	5	6	7	8	9	P. P.
151	- 1	609					L		<u></u>			1.1.
151			638	667	696	725	754	782	811	840	869	
		898	926	955	984	*013	*041	*070	*099	*127	*156	29 28
158		184 169	213 498	241 526	270 554	298	827	355	384	412	441	1 2.9 2.8
154		752	780	808	837	583 865	611 893	639 921	667 949	696 977	724 *005	2 5.8 5.6
		033	061	089	117	145	173	201	229	257	285	3 8.7 8.4 4 11.6 11.3
156		312	340	368	896	424	451	479	507	535	562	5 14.5 14.0
157		590	618	645	673	700	728	756	783	811	838	6 17.4 16.8 7 20.3 19.6
158 159 2		866 140	893 167	921 194	948 222	976 249	*003 276	*030 303	*058 330	*085 358	*112 385	8 23.3 22.4 9 26.1 25.2
160		112	439	466	493	520	548	575	602	629	656	Alsertisors
161		583	710	737	763	790	817	844	871	898	925	27 26
162	9	352	978	*005	*032	*059	*085	*112	*139	*165	*192	1
		219	245	272	299	325	352	878	405	431	458	1 2.7 2.6 2 5.4 5.2
164	4	184	511	537	564	590	617	648	669	696	722	8 8.1 7.8
165 166 2		748)11	775 037	801 063	827 089	854 115	880 141	906 167	932 194	958 220	985 246	4 10.8 10.4 5 13.5 13.0
167		272	298	824	350	876	401	427	453	479	505	6 16.2 15,6
168	ŧ	31	557	583	608	634	660	686	712	737	763	7 18.9 18.2 8 21.6 20.8
169		789	814	840	866	891	917	943	968	994	*019	9 24.8 23.4
170 2		145	070	096	121	147	172	198	223	249	274	
171	8	900	325	850	876	401	426	452	477	502	528	, 25
172	į	553	578 830	603 855	629 880	654	679	704	729	754	779	1 2.5
178 174 2		155	080	105	130	905 155	930 180	955 204	980 229	*005 254	*030 279	2 5.0 8 7.5
175		304	329	858	878	408	428	452	477	502	527	4 10.0
176		551	576	601	625	650	674	699	724	748	778	5 12.5 6 15.0
177 178 2		797 142	822 066	846 091	871 115	895 139	920	944 188	969 212	993	*018 261	7 17.5
179		285	310	334	358	382	164 406	431	455	237 479	503	8 20.0 9 22.5
180		27	551	575	600	624	648	672	696	720	744	
181	. 7	768	792	816	840	864	888	912	935	959	983	24 23
182 2		07	031	055	079	102	126	150	174	198	221	1 24 23
183 184		245 182	269 505	298 529	316 558	840 576	864 600	387 628	411 647	435 670	458 694	2 4.8 4.6
185	7	717	741	764	788	811	834	858	881	905	928	8 7.9 6.9 4 9.6 9.2
186	9	051	975	996	+021	*045	*068	*091	*114	*138	*161	5 13.0 11.5
		184	207	231	254	277	800	828	846	870	893	6 14.4 13.8 7 16.8 16.1
188 189		416 546	439 669	462 692	485 715	508 738	531 761	554 784	577 807	600 830	623 852	8 19.2 18.4 9 21.6 20.7
190	_	375	898	921	944	967	989	*012	*035	*058	*081	- srm sort
	28 1	103	126	149	171	194	217	240	262	285	807	22 21
192		330	858	875	898	421	443	466	488	511	538	1
193	Į	556	578	601	623	646	668	691	718	735	758	1 11 12 13
194 195 2		780 003	803 026	825	847	870	892	914	937	959	981	8 66 6.8
196		226	248	048 270	070 292	092 314	115 836	137 358	159 380	181 408	208 425	5 11.0 10.5
197	4	147	469	491	513	535	557	579	601	628	645	6 18.2 12.6 7 15.4 14.7
198	(67	688	710	732	754	776	798	820	842	868	8 17.6 16.8
199		385	907	929	951	973	994	*016	*038	*060	*081	9 19.8 18.9
200 3	30 1	103	125	146	168	190	211	233	255	276	298	
N.	L	0	1	2	3	4	5	6	7	8 ji≢zed by	G o	ogl P.P.

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
200	80 108	125	146	168	190	211	283	255	276	298	
201 202	820 535	341	863 578	884 600	406 621	428 643	449 664	471	492 707	514 728	, 22 21
203	750	557 771	792	814	835	856	878	685 899	920	942	1 2.3 2.1 2 4.4 4.3
204	963	984	*006	*027	*048	*069	*091	*112	*133	*154	8 6.6 6.8
205 206	31 175 887	197 468	218 429	239 450	260 471	281 492	302	323 534	845	366	4 8.8 8.4 5 11.0 10.5
206	557 597	618	639	660	681	702	513 723	744	555 765	576 785	6 18.2 12.6
208	806	827	848	869	890	911	931	952	973	994	7 15.4 14.7 8 17.8 16.8
209	32 015	035	056	077	098	118	139	160	181	201	9 19.8 18.9
210		243	263	284	305	325	346	366	387	408	
211 212	428 634	449 654	469 675	490 695	510 715	531 786	552 756	572 777	593 797	613 818	20
213	838	858	879	899	919	940	960	980	*001	*021	1 2.0 2 4.0
214	83 041	062	082	102	122	143	163	183	203	224	8 6.0
215 216	244 445	264 465	284 486	304 506	325 526	845 546	365 566	385 586	405 606	425 626	4 8.0 5 10.0
216	646 646	666	486 686	706	726	746	766	786	806	826	6 12.0
218	846	866	885	905	925	945	965	985	*005	*025	6 12.0 7 14.0 8 16.0
219	34 044	064	084	104	124	143	163	183	203	223	9 18.0
220	242	262	282	301	321	341	361	380	400	420	
221 222	439 635	459	479 674	498 694	518 713	537 733	557 753	577 772	596 792	616 811	, 19
223	830	655 850	869	889	908	928	947	967	986	*005	1 1.9
224	830 35 025	044	064	083	102	122	141	160	180	199	2 8.8 8 5.7
225	218	238	257	276	295	815	884	353	372	892	4 7.6 5 9.5
226 227	411 603	430 622	449 641	468 660	488 679	507 698	526 717	545 786	564 755	583 774	6 11.4
228	793	813	832	851	870	889	908	927	946	965	8 15.2
229	984	*003	*021	*040	*059	*078	*097	*116	*135	*154	9 17.1
230	36 173	192	211	229	248	267	286	305	324	342	18
231 232	861 549	380 568	899 586	418 605	436 624	455 642	474 661	493 680	511 698	580 717	l '
233	736		773	791	810	829	847	866	884	903	1 1.8
234	922	940	959	977	996	*014	*033	*051	*070	*088	8 5.4
235 236	37 107 291	125 310	144 328	162 346	181 365	199 883	218 401	236 420	254 438	273 457	4 7.2 5 9.0
237	475	493	511	530	548	566	585	603	621	689	5 9.0 6 10.8 7 12.6
238	658	676	694	712	731	749	767	785	803	822	8 14.4
239	840	858	876	894	912	931	949	967	985	*003	9 16.2
240	88 021	089	057	075	093	112	130	148	166	184	17
241 242	202 882	220 399	238 417	256 435	274 453	292 471	810 489	828 507	346 525	364 543	1
242	561	578	596	614	632	650	668	686	703	721	1 1.7
244	739	757	775	792	810	828	846	863	881	899	3 8.1
245 246	917 39 094	934 111	952 129	970	987	*005	*023	*041	*058 235	*076 252	5 8.5
247	270	287	305	146 322	164 840	182 358	199 375	217 393	410	428	6 10.3 7 11.9
248	445	463	480	498	515	533	550	568	585	602 777	8 18.6
249	620	637	655	672	690	707	724	742	759		9 15.8
250	794	811	829	846	863	881	898	915	983	950	
N.	L.O	1	2	3	4	5	6	7	8 igitized (9 G(P.P. ogle

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	. 9	P. P.
250	39 794	811	829	846	863	881	898	915	933	950	
251	967	985	*002	*019	*037	*054	*071	*088	*106	*123	, 18
252 258	40 140 312	157 329	175 846	192 864	209 881	226 398	243 415	261 432	278 449	295 466	1 1.8
254	483	500	518	535	552	569	586	603	620	637	2 8.6 8 5.4
255	654	671	688	705	722	739	756	778	790	807	4 7.2 5 9.0
256 257	824 993	841 *010	858 *027	875 *044	892 *061	909 *078	926 *095	943 *111	960 *128	976 *145	6 10.8
258	41 162	179	196	212	229	246	263	280	296	313	7 12.6 8 14.4
259	830	347	363	380	897	414	.480	447	464	481	9 16.2
260	497	514	531	547	564	581	597	614	631	647	
261	664	681	697	714	731	747	764	780	797	814	17
262 263	830 996	847 *012	863 *029	880 *045	896 *062	913 *078	929 *095	946 *111	963 *127	979 *144	1 1.7
264	42 160	177	193	210	226	243	259	275	292	308	2 3.4 3 5.1
265 266	325	341	357	374	390	406	423	439	455	472	4 6.8
266	488	504	521	537	553	570	586	602	619	635	5 8.5 6 10.2
267 268	651 813	667 880	684 846	700 862	716 878	732 894	749 911	765 927	781 943	797 959	7 11.9
269	975	991	*008	*024	*040	*056	*072	* 088	*104	*120	8 13.6 9 15.3
270	43 136	152	169	185	201	217	233	249	265	281	·
271	297	313	329	345	361	377	393	409	425	441	16
272	457	473	489	505	521	537	553	569	584	600	1 1.6
273 274	616 775	682 791	648 807	664 823	680. 838	696 854	712 870	727 886	743 902	759 917	2 8.2 8 4.8
275	933	949	965	981	996	*012	*028	*044	*059	*075	4 6.4
276	44 091	107	122	188	154	170	185	201	217	232	5 8.0 6 9.6
277	248	264	279	295	311	326	342	358	373	389	7 11.2
278 279	404 560	420 576	436 592	451 607	467 623	483 638	498 654	514 669	529 685	545 700	8 12.8 9 14.4
280	716	781	747	762	778	793	809	824	840	855	
281	• 871	886	902	917	932	948	963	979	994	*010	15
282	45 025	040	056	071	086	102	117	133	148	163	1 1.5
283	179	194	209	225	240	255	271	286	301	317	8 8.0
284 285	832 484	347 500	362 515	878 530	393 545	408 561	423 576	439 591	454 606	469 621	8 4.5 4 6.0
286	697	652	667	682	697	712	728	743	758	773	5 7.5
287	788	803	818	834	849	864	879	894	909	924	6 9.0 7 10.5
288 289	939 46 690	954 105	969 120	984 135	*000 150	*015 165	*030 180	*045 195	*060 210	*075 225	3 12.0 9 13.5
290	240	255	270	285	300	315	330	345	359	374	0 10.0
291	389	404	419	434	449	464	479	494	509	523	. 14
292	538	553	568	583	598	613	627	642	657	672	1 1.4
293	687	702	716	731	746	761	776	790	805	820	2 28
294	835 800	850	864	879	894	909	928	938	958	967	8 4.2 4 5.6
295 296	982 47 129	997 144	*012 159	*026 173	*041 188	*056 202	*070 217	*085 232	*100 246	*114 261	5 7.0
297	276	290	305	819	334	349	363	378	392	407	6 8.4 7 9.8
298	422	486	451	465	480	494	509	524	538	558	8 11.2
299	567	582	596	611	625	640	654	669	688	698	9 12.6
300	712	727	741	756	770	784	799	813	828	842	
N.	L. 0	1	2	3	4	5	6	7	8 itized by	9 Go	P. P. ogle

TABLE 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
300	47 712	727	741	756	770	784	799	813	828	842	
801	857	871	885	900	914	929	943	958	972	986	
802	48 001	015	029	044	058	073	087	101	116	130	
303	144	159	178	187	202	216	230	244	259	273	
304 305	287 430	802 444	816 458	830 473	844	859 501	873	887	401	416	15
806	572	586	601	615	487 629	643	515 657	530 671	544 686	558 700	
807	714	728	742	756	770	785	799	813	827	841	1 1.5 2 8.0
308	855	869	883	897	911	926	940	954	968	982	8 4.5
309	996	*010	*024	*038	*052	*066	*080	*094	*108	*122	4 6.0 5 7.5
310	49 136	150	164	178	192	206	220	234	248	262	6 9.0 7 10.5
811	276	290	304	818	832	346	860	874	388	402	8 12.0 9 13.5
812	415	429	443	457	471	485	499	513	527	541	2 1 10.0
313	554	568	582	596	610	624	638	651	665	679	
314 315	693 831	707 845	721 859	734 872	748 886	762 900	776 914	790 927	803 941	817 955	
316	969	982	996	*010	*024	*037	*051	*065	*079	*092	. 14
817	50 106	120	133	147	161	174	188	202	215	229	1 1.6
318	243	256	270	284	297	311	325	838	352	365	2 2.8
819	379	393	406	420	433	447	461	474	488	501	8 4.2 4 5.6
320	515	529	542	556	569	583	596	610	623	637	5 7.0 6 8.4
821	651	664	678	691	705	718	732	745	759	772	
322	786	799	813	826	840	853	866	880	893	907	8 11.2 9 12.6
823	920	934	947	961	974	987	*001	*014	*028	*041	'
324 325	51 055 188	068 202	081 215	095 228	108 242	121 255	135 268	148 282	162 295	175 308	
326	322	335	348	362	375	888	402	415	428	441	
327	455 587	468	481	495	508	521	534	548	561	574	, 13
328	587	601	614	627	640	654	667	680	693	706	1 1.3
829	720	733	746	759	772	786	799	812	825	838	2 2.6 3 3.9
830	-851	865	878	891	904	917	930	943	957	970	4 52 5 6.5
331	983	996	*009	*022	*035	*048	*061	*075	*088	*101	6 7.8 7 9.1
332	52 114	127	140	153	166	179	192	205 836	218	231	. 8 10.4
833 834	244 375	257 388	270 401	284 414	297 427	810 440	323 453	466	349 479	362 492	9 11.7
835	504	517	580	543	556	569	582	595	608	621	
336	634	647	660	673	686	699	711	724	737	750	
337	763	776	789	802	815	827	840	853	866	879	12
838	892	905	917	930	943	956	969	982	994	*007	1 -
839	53 020 148	033 161	173	058 186	199	212	224	237	250	185 263	1 1.2 2 2.4 8 8.6
340											4 4.8
341	275	288	301	814	826	839	352	864	377	390	5 6.0 6 7.2
842 843	408 529	415 542	428 555	441 567	453 580	466 593	479 605	491 618	504 631	517 643	7 8.4
344 344	656	668	681	694	706	719	782	744	757	769	8 9.6 .
845	782	794	807	820	832	845	857	870	882	895	9 10.8
846	. 908 54 033	920	933	945	958	970	983	995	*008	*020	
847	54 033	045	058	070	083	095	108	120	133	145	
848 849	158 283	170 295	183 307	195 320	208 332	220 845	233 357	245 870	258 382	270 394	
850	407	419	432	444	456	469	481	494	506	518	
		-						-		<u> </u>	
N.	L. 0	1	2	3	4	5	6	7	8	9	P.P.

Table 91 (Continued) LOGARITHMS OF NUMBERS

850 54 407 419 432 444 456 469 481 494 506 518 851 531 543 555 568 580 593 605 617 630 642 852 654 667 679 691 704 716 728 741 753 765 853 777 790 802 814 827 839 851 864 876 888 854 900 913 925 937 949 962 974 986 988 *011 855 55 023 035 047 060 072 084 096 108 121 133 856 145 157 169 182 194 206 081 23 230 242 255 857 267 279 291 803 815 328 340 352 364 376 858 888 400 413 425 437 449 461 478 485 497 859 509 522 534 546 558 570 562 594 606 618 860 630 642 654 666 678 691 703 715 727 739 861 751 763 775 787 799 811 823 835 847 859 862 871 883 895 907 919 931 943 955 967 979 863 894 56 110 122 134 146 158 170 182 194 205 217	P. P.
351 531 543 555 568 590 593 605 617 630 642 352 654 667 679 691 704 716 722 741 758 765 353 777 790 802 814 827 839 851 864 876 888 354 900 913 925 937 949 962 974 986 998 *011 355 55 523 035 047 060 072 084 096 108 121 133 356 145 157 169 182 194 206 218 230 242 225 357 267 279 291 303 315 328 340 352 364 376 358 389 400 413 425 437 449 461 473 445 461 478	1 1.3 2 2.6 3 3.9 4 5.2 5 7.8 7 9.1
862 654 667 679 691 704 716 728 741 758 765 353 777 790 802 814 827 839 851 864 876 888 354 900 913 925 937 949 962 974 986 998 4011 355 155 023 035 047 060 072 084 096 108 121 133 356 145 157 169 182 194 206 218 220 242 255 357 287 279 291 303 315 328 340 352 364 376 359 509 522 354 546 558 570 582 564 606 618 361 751 763 775 787 799 811 823 835 847 859 3	1 1.3 2 2.6 3 3.9 4 5.2 5 7.8 7 9.1
862 654 667 679 691 704 716 728 741 758 765 353 777 790 802 814 827 839 851 864 876 888 364 900 913 925 937 949 962 974 986 998 4011 356 145 157 169 152 194 206 213 220 242 255 357 287 279 291 303 315 328 340 352 364 376 359 509 522 534 546 558 570 582 564 606 618 360 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 811 823 835 847 859 362 8	1 1.3 2 2.6 3 3.9 4 5.2 5 7.8 7 9.1
368 777 790 802 814 827 889 851 864 876 888 354 900 913 925 937 949 962 974 966 988 *911 355 55 023 035 047 060 072 084 096 108 121 133 366 145 157 169 182 194 206 218 220 242 255 367 279 291 303 315 328 340 352 364 376 376 359 509 522 534 546 558 570 582 594 606 618 360 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 311 823 3855 947 859 3	1 1.3 2 2.6 3 3.9 4 5.2 5 7.8 7 9.1
855 55 023 035 047 060 072 084 096 108 121 138 135 145 157 169 182 194 206 218 230 242 255 267 279 291 303 315 323 340 352 364 376 358 388 400 413 425 437 449 461 473 485 497 359 509 522 534 546 558 570 562 564 606 618 860 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 811 823 835 847 859 362 871 883 895 907 919 981 943 955 967 979 364 561 101 122 134 146 158 170 182 194 205 217	1 1.3 2 2.6 3 3.9 4 5.2 5 7.8 7 9.1
366	1 1.3 2 2.6 3 3.9 4 5.2 5 7.8 7 9.1
357 267 279 291 303 315 328 340 352 364 876 358 388 400 413 425 437 449 461 473 485 497 369 509 522 534 546 568 570 582 594 606 618 360 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 811 823 835 847 859 362 871 883 896 907 919 981 943 955 967 979 363 991 *008 *015 *027 *068 *060 *062 *074 *086 *098 364 56 101 122 134 146 158 170 182 194 205 217	2 2.6 3 3.9 4 5.2 5 6.3 6 7.8 7 9.1
358 388 400 413 425 437 449 461 473 485 497 359 509 522 534 546 568 570 582 594 606 618 360 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 811 823 835 847 859 363 991 908 901 799 981 943 965 967 979 364 561 101 122 134 146 158 170 182 194 205 217	8 3.9 4 5.2 5 6.3 6 7.8 7 9.1
359 509 522 534 546 558 570 562 594 606 618 360 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 811 823 835 847 859 362 871 883 895 907 919 981 943 965 967 979 363 991 *003 *015 *027 *068 *060 *060 *024 *074 *086 *088 364 56 101 122 134 146 158 170 182 194 205 217	5 6.3 6 7.8 7 9.1
860 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 811 823 835 847 859 362 871 883 896 907 919 981 943 955 967 979 363 991 *008 *015 *027 *068 *060 *062 *074 *086 *098 364 56 110 122 134 146 158 170 182 194 205 217	6 7.8 7 9.1
361 751 763 775 787 799 811 823 835 847 859 862 871 883 895 907 919 981 943 965 967 979 863 863 991 *008 *015 *027 *068 *060 *062 *074 *086 *098 864 56 110 122 134 146 158 170 182 194 205 217	
862 871 883 895 907 919 981 943 955 967 979 983 863 991 *008 *015 *027 *068 *060 *062 *074 *086 *098 864 56 110 122 134 146 158 170 182 194 205 217	
863 991 *003 *015 *027 *088 *050 *062 *074 *086 *098 864 56 110 122 134 146 158 170 182 194 205 217	9 11.7
864 56 110 122 134 146 158 170 182 194 205 217	
985 990 941 959 965 977 960 961 919 964 996	
365 229 241 253 265 277 289 301 312 324 336	12
866 348 360 372 384 396 407 419 431 443 455	!
367 467 478 490 502 514 526 538 549 561 573	1 1.3
860 708 714 726 738 750 761 773 785 707 808	2 2:4 8 3.6
970 890 832 844 855 867 870 801 902 914 926	4 4.8 5 6.0
	8 7.2 7 8.4
000 EN 054 000 000 000 101 110 110 110 110 110 11	B 9.6
873 171 183 194 206 217 229 241 252 264 276	10.8
874 287 299 810 822 834 845 857 868 880 892	
875 403 415 426 438 449 461 478 484 496 507	
876 519 530 542 553 565 576 588 600 611 623	11
877 634 646 657 669 680 692 703 715 726 738	1
878	
	8 8.8 4 4.4
900 870 850 1001 1013 1022 1003 1027 1008 1070 1001	5 5.5
001 100 002 102 110 121 100 120 101 112 101 100	6 6.6 7 7.7
882 200 218 229 240 252 263 274 220 297 509	8.8
	9.9
384 433 444 456 467 478 490 501 512 524 585 385 546 557 569 580 591 602 614 625 636 647	
886 659 670 681 692 704 715 726 787 749 760	•
887 771 782 794 805 816 827 888 850 861 872	10
388 883 894 906 917 928 939 950 961 973 984	1
889 995 *006 *017 *028 *040 *051 *062 *078 *084 *095	
890 59 106 118 129 140 151 162 173 184 195 207	
391 218 229 240 251 262 273 284 295 306 318	5 5.0
892 829 840 851 862 873 884 895 406 417 428 909 450 450 461 477 428 599 599 599	6.0 7 7.0
030 303 400 401 472 403 484 500 511 622 504	8 8.0
394 500 561 572 583 594 605 616 627 688 649	9.0
895	
897 879 890 901 912 923 934 945 956 966 977	•
898 988 999 *010 *021 *032 *043 *054 *065 *076 *086	
899 60 097 108 119 130 141 152 163 173 184 195	
400 206 217 228 239 249 260 271 282 293 304	
N. L.0 1 2 3 4 5 6 7 8 9	
Cobgle	P. P.

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
	L. 0				-	<u> </u>					1.1.
400	60 206	217	228	239	249	260	271	282	293	304	
401	314 423	325 433	336 444	847	358 466	369 477	379 487	390 498	401	412 520	l l
402 403	531	541	552	455 563	574	584	595	606	509 617	627	
404	638	649	660	670	681	692	703	713	724	735	1
405 406	746 853	706 863	767 874	778 885	788 895	799 906	810 917	821 927	831 938	842 949	. 1
407	959	756 863 970	981	991	*002	*013	*023	*034	*045	* 055	, 11
408 409	61 066 172	077 183	087 194	098 204	109 215	119 225	130 236	140 247	151 257	162 268	1 1.1 2 2.2
410	278	289	300	310	321	331	342	352	363	374	3 3.3 4 4.4
411	884		405	416	426	437	448	458	469	479	5 5.5
412	490	395 500	511	521	532	542	553	568	574	584	7 7.7
418	595 700	606 711	616	627 781	637	648 752	658	669	679	690	8 8.8 9 9.9
414 415	700 805	711 815	721 826	781 886	742 847	752 857	763 868	669 773 878	784 888	794 899	·
416	909	920	930	941	951	962	972	982	993	*003	
417 418	62 014	024 128	034	045	055	066	076	086	097	107	
419	118 221	232	138 242	149 252	159 263	170 273	180 284	190 294	201 304	211 315	l
420	825	335	346	356	366	377	387	397	408	418	. ю
421	428	439	449	459	469	480	490	500	511	521	1
421 422 423 424 425 426 427	531	542	552 655 757	562	572	583	593	603 706	613	624	1 1.0 2 2.0
423	634 737	644 747	757	665 767	675 778	685 788	696 798	808	716 818	726 829	3 3.0 4 4.0
425	839	849	859	870	880	890	900	910	921	931	5 5.0
426	941 63 043	951 053	961 063	972 073	982 083	992 094	*002 104	*012 114	*022 124	*033 134	6 6.0 7 7.0
428 429	144	155	165	175	185	195	205	215	225	236	8 8.0 9 9.0
429	246	256	266	276	286	296	306	317	327	337	9 9.0
430	347	857	367	377	387	397	407	417	428	488	
431	448 548	458 558 659	468 568	478 579	488 589	498 599	508	518 619	528 629	538 639	
432 433	649	659	669	679	689	699	609 709	719	729	739	
424 I	749	759	769	779	789	799	809	819	829	839	
435 436 437 438	849 949	859 959	869 969	879 979	889 988	899 998	909 *008	919 *018	929 *028	939 *038	9
437	64 048	058	068	078	088	098	108	118	128	137	1 0.9
438 439	147 246	157 256	167 266	177 276	187 286	197 296	207 306	217 316	227 326	237 335	2 1.8 8 2.7
440	345	355	365	375	385	395	404	414	424	434	4 8.6 5 4.5
441	444	454	464	473	483	493	503	513	523	532	6 5.4 7 6.3
442	542	552	562	572	582	591	601	611	621	631	8 7.2 9 8.1
448 444	640	650 748	660	670	680	689 787	699 797	709 807	719 816	729 826	5 5.1
445	738 836	846	758 856	768 865	777 875	885	895	904	914	924	}
446	933	943 040	953	963 060	972	080	992	*002	*011	*021	1
447 448	65 031 128	137	050 147	060 157	070 167	079 176	089 186	099 196	108 205	118 215	
449	225	234	244	254	263	273	283	292	302	312	
450	321	831	341	350	360	369	379	389	398	408	
N.	L. 0	1	2	3	4	5	6	7	8 . Digit	9 zed by	Google

Table 91 (Continued) Logarithms of Numbers

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
450	65 321	331	341	350	360	369	379	389	398	408	
451 452 453	418 514 610	427 523 619	437 533 629	447 543 639	456 552 648	466 562 658	475 571 667	485 581 677	495 591 686	504 600 696	
454 455	706 801 896	715 811 906	725 820 916	734 830 925	744 839 935	753 849 944	763 858 954	772 868 963	782 877 973	792 887 982	
457 458 459	992 66 087 181	*001 096 191	*011 106 200	*020 115 210	*030 124 219	*039 134 229	*049 143 238	*058 153 247	*068 162 257	*077 172 266	1 1.0 2 2.0
460	276	285	295	304	314	323	382	342	351	361	8 8.0 4 4.0 5 5.0
461 462 463	370 464 558	380 474 567	889 483 577	398 492 586	408 502 596	417 511 605	427 521 614	436 530 624	445 539 633 727	455 549 642	6 6.0 7 7.0 8 8.0 9 9.0
464 465 466 467	652 745 839 932	661 755 848 941	671 764 857 950	680 773 867 960	689 783 876 969	699 792 885 978	708 801 894 987	717 811 904 997	820 913 *006	736 829 922 *015	
468 469	67 025 117	034 127	043 136	052 145	062 154	071 164	080 173	089 182	099 191	108 201	
470 471	210 302	219 811	228 321	237 330	247 839	256 348	265 857	274 367	284 876	293 385	9
472 473 474 475	394 486 578 669	403 495 587 679	413 504 596 688	422 514 605 697	431 523 614 706	440 532 624 715	449 541 633 724	459 550 642 733	468 560 651 742	477 569 660 752	1 0.9 -2 1.8 8 2.7 4 3.6 5 4.5
476 477 478	761 852 943	770 861 952	779 870 961	788 879 970	706 797 888 979	806 897 988	815 906 997	825 916 *006	925 *015	843 984 *024	5 4.5 6 5.4 7 6.8 8 7.2 9 8.1
479 480	68 034 124	183	052 142	061 151	160	169	088 178	187	106 196	205	
481 482 483	215 305 895	224 314 404	233 323 413	242 832 422	251 841 431	260 350 440	269 859 449	278 368 458	287 877 467	296 386 476	
484 485 486	485 574 664	494 583 673	502 592 681 771	511 601 690	520 610 699	529 619 708	588 628 717	547 637 726	556 646 735	565 655 744	, 8
487 488 489	753 842 931	762 851 940	771 860 949	780 869 958	789 878 966	797 886 975	806 895 984	815 904 993	824 913 *002	833 922 *011	1 0.8 2 1.6 3 2.4 4 3.2 5 4.0 6 4.8
490 491	69 020 108	028 117	126	135	055 144	064 152	073 161	170	090 179	188	7 5.6
492 493 494	197 285 373	205 294 381	214 302 390	223 311 399	232 320 408	241 329 417	249 338 425	258 346 434	267 355 443	276 364 452	8 6.4 9 7.2
495 496 497 498	461 548 636 723	469 557 644 782	478 566 653 740	487 574 662 749	496 583 671 758	504 592 679 767	513 601 688 775	522 609 697 784	531 618 705 793	539 627 714 801	
499 500	- · 810 897	906	914	923	932	854 940	862 949	958	966	888 975	
N.	L. 0	1	2	3	4	5	6	7 Digitiz	8	9	_{gle} P. P.

Table 91 (Continued)
LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
						-			-		
500	69 897	906	914	923	982	940	949	958	966	975	ł
501 502	984 70 070	992 079	*001 088	*010	*018 105	*027 114	*036 122	*044 181	*053 140	*062 148	
502 508	157	165	174	096 183	191	200	209	217	226	284	i .
508 504	248	252	260	269	278	286	295	803	812	821	ŀ
505	829	838	846	855	864	372	881	889	898	406	
506	415 501	424 509	432 518	441 526	449 585	458 544	467 552	475 561	484 569	492 578	9
507 508	586	595	603	612	621	629	638	646	655	663	1 0.9
509	672	680	. 689	697	706	714	723	781	655 740	749	2 1.8 8 2.7
510	757	766	774	783	791	800	808	817	825	884	4 8.6 5 4.5
511	842	851	859	868	876	885	893	902	910	919	6 5.4 7 6.3
512 513	927 71 012	935 020	944 029	952 037	961	969 054	978 063	986 071	995 079	*008 088	8 7.2
514	71 012 096	105	113	122	130	139	147	155	164	172	9 8.1
515	181	189	198	204	214	223	231	240	248	257	
516	265	273 357	282	290	299	307	815	824	382 416	841	ŀ
517 518	849 433	857 441	866 450	874 458	383 466	891 475	399 483	408 492	416 500	425 508	I
519	517	525	583	542	550	559	567	575	584	592	1
520	600	609	617	625	684	642	650	659	667	675	
521	684	692	700	709	717	725	784	742	750	759	1 0.8
522 523	767	775 858	784	792 875	800 883	809 892	817 900	825 908	834 917	842 925	2 1.6
524	850 933	941	867 950	958	966	975	983	991	999	*008	8 2.4 4 8.2
525	72 016	024	032	041	049	057	066	074	082	090	5 4.0
526	099	107	115	123	132	140	148	156	165	-173	6 4.8 7 5.6
527 528	181 263	189 272	198 280	206 288	214 296	222 304	230 313	239 821	247 329	255 837	8 6.4
529	346	854	862	870	378	387	895	403	411	419	9 7.3
5 30	428	436	444	452	460	469	477	485	493	501	
581	509	518	526	534	542	550	558	567	575	583	ł
532 533	591 678	599 681	607 689	616 697	624 705	632 713	640 722	648 730	656 788	665 746	
534	754	762	770	779	787	795	803	811	819	827	i
585	835	843	852	860	868	876	884	892	900	908	1 7
536 537	916	925 *006	933 *014	941 *022	949 *030	957 *068	965 *046	973 *054	981 *062	989 *070	1 1
588	997 78 078	086	094	102	111	119	127	185	143	151	1 0.7
539	159	167	175	183	191	199	207	215	223	281	2 1.4 3 2.1 4 2.8
540	239	247	255	268	272	280	288	296	804	812	5 8.5 6 4.2
541	820 400	828 408	836 416	844 424	352 432	860 440	368 448	876 456	384 464	392 472	7 4.9 8 56
542 543	480	488	496	504	512	520	1 528	536	544	552	9 6.3
544	560	568	576	584	592	600	608 687	616	624	632	l
545	640	648	656	664	672	679	687	695	703 783	711 791	
546 547	719 799	727 807	735 815	743 823	751 830	759 838	767 846	775 854	862	870	
548	878	886	894	902	910	918	926	933	941	949	
549	957	965	978	981	989	997	*005	*013	*020	+028	
6 50	74 036	044	052	960	968	076	084	092	099	107	1
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Continued) Logarithms of Numbers

N.	L . 0	1	2	3	4	5	6	7	8	9	P. P.
550	74 086	044	052	060	068	076	084	092	099	107	
551	115	123	181	139	147	155	162	170	178	186	ł
552	194	202	210	218	225	233	241	249	257	265	
553	273	280	288	296	304	812	820	327	335	343	
554	351	859	367	374	882	390	398 476	406	414	421	
555	429	437	445	453	461	468	476	484	492	500	
556	507	515	523	531	539	547	554	562	570	578	
557	586	593	601	609	617	624	632	640	648 726	656	
558 559	663 741	671 749	679	687 764	695	702 780	710 788	718 796	803	788 811	
560	819	827	757 834	842	772 850	858	865	873	881	889	
561	896	904	912	920	927	935	943	950	058	966	, 8
562	974	981	989	997	*005	*012	*020	*028	*035	*043	1 0.8
563	75 051	059	066	074	082	089	097	105	113	120	2 1.6 3 2.4
564	128	136	143	151	159	166	174	182	189	197	4 8.2
565	205	213	220	228	236 312	243	251	259	266	274	5 4.0
566	282	289	297	305	812	820	828	835	843	851	6 4.8 7 5.6
567	358 435	366 442	874 450	881 458	889	397	404	412 488	420 496	427	8 6.4
568 569	511	519	526	534	465 542	473 549	481 557	488 565	496 572	504 580	9 7.2
570	587	595	603	610	618	626	633	641	648	656	
571	664	671	679	686	694	702	709	717	724	732	
572	740	747	755	762	770	778	785	793	800	808	
578	815	823	831	838	846	858 929	861	868	876	884	
574	891	899	906	914	921	929	937	944	952	959	
575	967	974	982	989	997	*005	*012	*020	*027	*085	
576	76 042	050	057	065	072	080	087	095	103	110	
577 578	118 198	125 200	133 208	140 215	148 223	155 230	163 238	170 245	178 253	185 260	
579	268	275	283	290	298	305	313	320	328	835	
580	848	350	858	365	373	380	888	395	403	410	7
581	418	425	433	440	448	455	462	470	477	485	1
582	492	500	507	515	522	530	537	545	552	559	1 0.7 2 1.4
583	567	574	582	589	597	604	612	619	626	634	8 2.1
584	641	649	656	664	671	678	686	698	701	708	4 2.8 5 3.5
585	716	723	730	738	745	753	760	768	775	782	6 4.2
586	790	797	805	812	819	827	834	842	849	856	7 4.9
587 588	864 988	871 945	879 953	886 960	893 967	901 975	908 982	916 989	923 997	980 *004	8 5.6 9 6.3
589	77 012	019	026	034	041	048	056	063	070	078	0,00
590	085	093	100	107	115	122	129	137	144	151	
591	159	166	173	181	188	195	203	210	217	225	
592	232	240	247	254	262	269	276	283	291	298	
593	305	813	820	327	835	842	849	857	864	371	
594	879	386 459	893	401	408	415	422	430	437	444	
595	452	459	466	474	481	488	495	503	510	517	
596 597	525 597	532 605	539 612	546 619	554 627	561 634	568 641	576 648	583 656	590 663	
598	670	677	685	692	699	706	714	721	728	735	
599	743	750	757	764	772	779	786	793	801	808	
600	815	822	830	837	844	851	859	866	873	880	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.
		-	-		-	ľ	1		aitizad b	١Ğ٥	ogle
	•			<u> </u>			1	L U	gitized t		VIII

TABLE 91 (Continued)
LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
600	77 815	822	830	837	844	851	859	866	878	880	
601	887	895	902	909	916	924	931	938	945	952	1
602 603	960 78 032	967 039	974 046	981 053	988 061	996 068	*003 075	*010 082	*017 089	*025 097	l i
604	104	111	118	125	132	140	147	154	161	168	1
605 606	176	183	190	197	204	211	219	226	233 305	240	1
606	247	254	262	269	276	283	290	297	305	312	. 8
607	819 390	326 398	833 405	340 412	347 419	355 426	362 433	869 440	876 447	383 455	1 0.8
608 609	390 462	469	476	483	490	497	504	512	519	526	2 1.6
610	533	540	547	554	561	569	576	583	590	597	4 3.2 5 4.0
611	604	611	618	625	633	640	647	654	661	668	6 4.8 7 5.6
613	675 746	752	689 760	696 767	704 774	711 781	718 789	725 796	508	739 810	8 6.4
614	817	682 753 824	831	838	845	852	859	866	732 803 873	880	9- 7.2
612 613 614 615 616	888	895	902	909	916	923	930	937	944	951	
616	958	965	972	979	986	993	*000	*007	*014	*021	
617	79 029 099	036 106	048 113	050 120	057 127	064 134	071 141	078 148	085 155	092 162	
618 619	169	176	183	190	197	204	211	218	225	232	
620	239	246	253	260	267	274	281	288	295	302	7
621	309	316 386	323 393	330	337	844	851	358 428	365	372	1 1 1
622 623	379 449	386 456	893 463	400 470	407 477	414 484	421 491	428	435 505	442 511	2 1.4
694	518	525	532	539	546	553	560	567	574	581	8 2.1 4 2.8
625 626 627 628	588 657	595	602	609	616	623 692	630 699	637	644	650	5 8.5
626	657	664 734	671	678	685	692	699	706	713 782	720 789	6 4.2
628	727 796	803	741 810	748 817	754 824	761 831	768 837	775 844	851	858	8 5.6
629	865	872	879	886	893	900	906	913	920	927	9 6.3
630	934	941	948	955	962	969	975	982	989	996	
631	80 003 072	010	017	024	030	037	044	051	058	065	
682	072 140	079 147	085 154	092	099	106 175	113 182	120 188	127 195 264	134 202	
634	209	216	223	161 229	168 236	243	250	257	264	271	l
632 633 634 635	209 277	284	291	229 298	305	312	250 318	325	1 332	339	
636	346	353	859	366	373	380	387	393	400	407.	
637 638	414 482	421 489	428 496	434 502	441 509	448 516	455 523	462 530	468 536	475 543	1 0.6 2 1.3
639	550	557	564	570	577	584	591	598	604	611	8 1.8
640	618	625	632	638	645	652	659	665	672	679	4 2.4 5 3.0 6 3.6
641	686	693	699	706	713	720	726	733	740	747	7 4.3
642	754	760	767	774	781	787	794	801	808 875	814 882	8 4.8 9 5.4
643 644	821 889	828 895	835 902	841 909	848 916	855 922	862 929	868 936	943	949	
645	956	963	969	976	983	990	996	*003 070	*010	*017	l
646	81 023	030	037	043	050	057	064	070	077	084	
647 648	090 158	097 164	104 171	111 178	117 184	124 191	131 198	137 204	144 211	151 218	
649	224	231	238	245	251	258	265	271	278	285	
650	291	298	805	811	318	325	831	338	345	351	
N.	L. 0	1	2	3	4	5	6	7	8	9 litized by	Google

Table 91 (Continued) LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
650	81 291	298	305	311	318	325	331	338	345	351	
651	858	365	371	378	385	391	398	405	411	418	
652 653	425 491	431 498	438 505	445 511	451	458 525	465	471 538	478	485 551	
654	558	564	571	578	518 584	591	531 598	604	544 611	617	
655	624	631	637	644	651	657	664	671	677	684	
656	690	697	704	710	717	723	730	737	743	750	
657 658	757 823	763 829	770 836	776 842	783 849	790 856	796 862	803 869	809 875	816 882	
659	889	895	902	908	915	921	928	935	941	948	
660	954	961	968	974	981	987	994	*000	*007	*014	7
661	82 020	027	033	040	046	053	060	066	073	079	1 0.7
662 663	086 151	092 158 228	099 164	105 171	112 178	119 184	125 191	132	138 204	145 210	2 1.4
664	217	228	230	236	243	249	256	263	269	276	8 2.1 4 2.8
665	282	289	295	802	808	315	321	828	334	841	6 3.5
666	347	854	860	867	873	880	887	893	400	406	6 4.2
667 668	413 478	419 484	426 491	432 497	439 504	445	452 517	458 523	465	471	8 5.6
669	543	549	556	562	569	510 575	582	588	530 595	536 601	9 6.8
670	607	614	620	627	633	640	646	653	659	666	
671	672	679 748	685	692	698	705 769	711	718	724	730	1 ' 1
672	787	748	750	756	763	769	776 840	782 847	789	795 860	
673 674	802 866	808 872	814 879	821 885	827 892	834 898	905	911	853 918	924	1
675	930	937	943	950	956	963	969	975	982	988	
676	995	*001	*008	*014	*020	963 *027	*033	*040	*046	*052	l l
	83 059	065	072	078	085 149	091	097	104 168	110 174	117 181	1
678 679	123 187	129 193	136 200	142 206	213	155 219	161 225	232	238	245	l
680	251	257	264	270	276	283	289	296	302	808	
681	815	321	327	334	340	347	353	859	866	872	1 0.6
682	878	385	391	398	404	410	417	423	429	436	1 2 1.3 1
683 684	442	448	455	461 525	467 531	474	480 544	487 550	493	499 563	3 1.8 4 2.4
685	506 569	512 575	518 582	588	594	537 601	607	613	556 620 683	626	5 3.0
686	632	639	645	651	658	664	670	613 677	683	689	6 3.6 7 4.2
687	696 759	702	708	715	721	727 790	734 797	740 803	746 809	753	8 4.8 9 5.4
688 689	759 822	765 828	771 835	778 841	784 847	853	860	866	872	816 879	915.6
690	885	891	897	904	910	916	923	929	935	942	
691	948	954	960	967	973	979	985	992	998	*004	1
692	84 011	017	023	029	036	042	048	055	061	067	
693	073	080	086	092	098	105	111	117	123	130	ĺ
694 695	136 198	142 205	148 211	155 217	161 223	167 230	173 236	180 242	186 248	192 255	
696	261	267	273	217 280	286	292	298	805	811	817	-
697	323	330 392	836	342	348:	354	361	367	373	379	j
698 699	886 448	392 454	398 460	404 466	410 473	417 479	423 485	429 491	435 497	442 504	
700	510	516	522	528	535	541	547	553	559	566	
N.	L. 0	1	2	3	4	5	6	7 Digitize	.8 C	003	P.P.

TABLE 91 (Continued) LOGARITHMS OF NUMBERS

700 84 510 701 572 702 684 703 696 704 777 705 706 880 707 708 85 003 709 065 710 126 711 187 712 248 713 309 714 370 715 431	578 640 702 763 825 887 948 009 071 132 193 254 315 376	522 584 646 770 831 893 954 016 077 138	528 590 652 714 776 837 899 960 022 083 144	585 597 658 720 782 844 905 967 028 089	541 603 665 726 788 850 911 973	547 609 671 733 794 856	553 615 677 739 800	559 621 683 745	566 628 689 751	P. P.
701 572 702 834 703 696 704 757 706 819 706 880 707 942 708 85 008 709 065 710 126 711 187 712 248 713 309 714 370 715 431	578 640 702 763 825 887 948 009 071 132 193 254 315 376	584 646 708 770 831 893 954 016 077	.590 652 714 776 837 899 960 022 083	597 658 720 782 844 905 967 028	603 665 726 788 850 911	609 671 733 794	615 677 739	621 683 745	628 689 751	
702 684 703 696 704 757 705 819 707 942 708 85 003 709 065 710 126 711 187 712 248 713 309 714 370	640 702 763 825 887 948 009 071 132 193 254 315 376	646 708 770 831 893 954 016 077	652 714 776 837 899 960 022 083	658 720 782 844 905 967 028	665 726 788 850 911	671 733 794	677 739	683 745	689 751	
702 684 703 696 704 757 705 819 707 942 708 85 003 709 065 710 126 711 187 712 248 713 309 714 370	640 702 763 825 887 948 009 071 132 193 254 315 376	646 708 770 831 893 954 016 077	652 714 776 837 899 960 022 083	658 720 782 844 905 967 028	665 726 788 850 911	671 733 794	677 739	683 745	689 751	
704 757 706 880 707 942 708 85 003 709 065 710 126 711 187 712 248 713 309 714 370 715 431	702 763 825 887 948 009 071 132 193 254 315 376	708 770 831 893 954 016 077	776 837 899 960 022 083	720 782 844 905 967 028	726 788 850 911	733 794	739	745	751	1
705 819 706 880 707 942 708 85 003 709 665 710 126 711 187 712 248 713 309 714 370 715 431	825 887 948 009 071 132 193 254 315 376	831 893 954 016 077 138	837 899 960 022 083	844 905 967 028	850 911		I SAAA			ı
706 880 707 942 708 85 003 709 065 710 126 711 187 712 248 713 309 714 370 715 431	887 948 009 071 132 193 254 315 376	893 954 016 077 138	899 960 022 083	905 967 028	911	1 800		807	813	
707 942 708 85 003 709 126 710 127 712 248 713 309 714 370 715 431	948 009 071 132 193 254 315 376	954 016 077 138	960 022 083	967 028		917	862 924	868 930	874 936	
708 85 003 709 065 710 126 711 187 712 248 713 309 714 370 715 431	009 071 132 193 254 315 376	016 077 138	022 083	028		979	985	991	997	, 7
710 126 711 187 712 248 713 309 714 370 715 431	132 193 254 315 376	138		080	034	040	046	052	058	1 0.7
711 187 712 248 713 309 714 370 715 431	193 254 315 376		144	003	095	101	107	114	120	2 1.4 8 2.1
712 248 713 309 714 370 715 431	254 315 376	199		150	156	163	169	175	181	4 2.8 5 3.5
713 309 714 370 715 431	315 376		205	211	217	224	230	236	242	6 4.2 7 4.9
714 370 715 431	376	260	266	272	278	285	291	297	803	7 4.9 8 5.6
715 431		321 382	327 388	333 894	339 400	345 406	852 412	858 418	864 425	9 6.8
701	437	443	449	455	461	467	473	479	425 485	· ·
716 491	497	503	509	516	522	528	534	540	546	
717 552	558	564	509 570	576	582	588	594	600	606	ĺ
718 612	618	625	631	637	643	649	655	661	667	ł
719 673	679	685	691	697	703	709	715	721	727	
720 733 721 794	739 800	745 806	751 812	757 818	763 824	769 830	775 836	781 842	788 848	, •
722 854	860	866	872	878	884	890	896	902	908	. 1 0.6
723 914	920	926	932	938	944	950	956	962	968	2 1.3
724 974	980	986	992	998	*004	*010	*016	*022	*028	3 1.8 4 2.4
725 86 034	040	016	052	058	064	070	076	082	088	5 3.0
726 094 727 153	100 159	106	112	118	124 183	130 189	136 195	141 201	147 207	6 3.6 7 4.2
728 213	219	165 225	171 231	177 237	243	219	255	261	267	8 4.8
729 273	279	285	291	297	303	308	814	820	326	9 5.4
730 332	338	344	850	356	362	368	374	380	386	ł
781 392	398	404	410	415	421	427	433	439	445	
732 451	457	463	469	475	481	487	493	499	504	ł
783 510 784 570	516 576	522 581	528 587	534 593	540 599	546 605	552 611	558 617	564 623	
735 629	635	641	646	652	658	664	670	676	682	
736 688	694	700	705	711	717	723	729	735	741	5
737 747	753	759	764	770	776	782	788	794	800	1 0.5
738 806	812 870	817 876	823 882	829 888	835 894	841 900	847 906	853 911	859 917	2 1.0
739 864 740 923	929	935	941	947	953	958	964	970	976	8 1.5 4 2.0 5 2.5
741 982	988	994	999	*005	*011	*017	*023	*029	*035	6 3.0 7 3.5
742 87 040	046	052	058	064	070	075	081	087	093	8 4.0
743 099	105	111	116	122	128	134	140	146	151	9 45
744 157	163	169	175	181	186	192	198	204	210	
745 216	221	227	233	239	245 303	251	256	262	268 326	ļ
746 274 747 332	280 338	286 344	291 849	297 855	861	309 367	315 373	820 879	384	
748 390	396	402	408	413	419	425	431	437	442	
749 448	454	460	466	471	477	483	489	495	500	
750 506	512	518	523	529	535	541	547	552	558	
N 1			•	4	Ę	0	7	•	•	· p p
N. IL.0	1	2	8	4	5	6	7	8 Dia	9	Google

Table 91 (Continued)
LOGARITHMS OF NUMBERS

D	T A	,				_	_	-	· ·		D D
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
750	87 506	512	518	523	529	535	541	547	552	558	
751	564	570	576	581	587	593	599	604	610	616	
752	622	628	633	639	645	651	656	662	668	674	
753	679	685	691	697	703	708	714	720	726	731	
754 755	737 795	743 800	749 806	754 812	760 818	766 823	772 829	777 835	783 841	789 846	
756	852	858	864	869	875	881	887	892	898	904	
757	910	858 915	921	927	933 990	938	944	950	955	961	
758	967	973	978	984	990	996	*001	*007	*013	*018	
1 1	88 024	030	036	041	047	053	058	064	070	076	
760 761	081 138	087 144	150	098 156	104	110 167	116 173	121	127 184	133	, 6
762	195	201	207	213	218	224	230	235	241	247	1 0.6
763	252	258	264	270	275	981	230 287	235 292	298	304	2 1.2 3 1.8
764	309	315	321	326	332	338	343	849	855	360	4 2.4 5 8.0
765	366	372	877	883	389	895	400	406	412	417	5 8.0
766 767	423 480	429 485	434 491	440 497	446 502	451 508	457 513	463 519	468 525	474 530	6 3.6 7 4.2
758	536	542	547	553	559	564	570	576	581	587	8 4.8
769	593	598	604	610	615	621	627	632	638	643	9 5.4
770	649	655	660	666	672	677	683	689	694	700	
771	705	711	717	722 779	728	734	739	745 801	750 807	756 812	I
772 773	762 818	767 824	773 829	835	784 840	790 846	795 852	857	863	868	
774	874	880	885	891	897	902	908	913	919	925	ł
775	930	936	941	947	953	958	964	969	975	981	ł
776	986	992	997	*003	*009	*014	*020	*025	*031	*037	İ
777	89 042 098	048 104	053 109	059 115	064 120	070 126	076 131	081 137	087 143	092 148	l
779	154	159	165	170	176	182	187	193	198	204	
780	209	215	221	226	232	237	243	248	254	260	. 5
781	265	271	276	282	287	293	298	804	810	815	1 0.5
782	321	326	832	837	343	348 404	854 409	860	365 421	871 426	2 1.0
783 784	876 432	382 437	387 443	393 448	398 454	459	465	415 470	476	481	8 1.5 4 2.0
785	487	492	498	504	509	515	520	526	531	537	6 2.5
786	542	548	553	559	564	570	575	581	586	592	6 3.0 7 3.5
787	597	603	609	614	620	625	631	636	642	647	8 4.0
788 789	653 708	658 713	664 719	669 724	675 730	680 735	686 741	691 746	697 752	702 757	9 4.5
790	763	768	774	779	785	790	796	801	807	812	ł
791	818	823	829	834	840	845	851	856	862	867	i
792	873	878	883	889	894	900	851 905	911	916	922	I
793	927	933	938	944	949	955	960	966	971	977	l
794 795	982 90 037	988 042	993 048	998 053	*004 059	*009 064	*015 069	*020 075	*026 080	*031 086	l
796	091	097	102	108	113	119	124	129	135	140	l
797	146	151	157	162	168	173	179	184	189	195	ı
798	200	206	211	217	222	227	233	238	244	249	I
799	255	260	266	271	276	282	287	293	298	304	
800	809	814	820	325	831	836	842	847	352	358	
N.	L. O	1	2	3	4	5	6	7	8-	9	P. P.
						<u> </u>		Digitize	by G	00g	le

TABLE 91 (Continued)
LOGARITHMS OF NUMBERS

N. L. O 1 2 3 4 5 6 7 8 0 P. P.	$\overline{}$										_	
801	N.	L. 0	1	2	3	4	5	6	7	8	0	P. P.
803 417 423 428 424 439 445 450 455 461 466 883 49 504 505 515 520 804 526 581 586 542 547 558 585 560 585 500 566 601 607 612 617 623 628 806 634 639 644 650 655 660 666 671 623 628 808 741 747 752 757 763 768 714 720 775 730 799 714 720 775 730 799 714 720 775 730 730 799 714 720 775 730 730 799 714 720 775 730 738 809 786 800 806 811 816 822 827 882 838 843 843 810 849 854 859 865 870 870 899 934 940 945 950 968 910 966 972 977 982 988 993 998 *004 1 0.8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
805 580 585 590 596 601 607 612 617 623 628 866 867 693 686 8703 709 714 720 725 730 736 888 741 747 752 757 763 768 773 779 774 789 809 795 800 806 811 816 822 827 832 838 843 886 891 897 811 992 907 913 918 924 929 934 940 945 950 861 966 972 977 982 988 993 998 904 404 11 962 068 073 078 084 089 094 100 105 110 813 11 16 121 126 132 137 142 148 153 158 164 6 34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		363	869	874	880	385						
805 580 585 590 596 601 607 612 617 623 628 866 867 693 686 8703 709 714 720 725 730 736 888 741 747 752 757 763 768 773 779 774 789 809 795 800 806 811 816 822 827 832 838 843 886 891 897 811 992 907 913 918 924 929 934 940 945 950 861 966 972 977 982 988 993 998 904 404 11 962 068 073 078 084 089 094 100 105 110 813 11 16 121 126 132 137 142 148 153 158 164 6 34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	802	472	423					504	509		520	
806	804	526	531	536	542			558	563	569	574	
806	805		585		596			612	617	623	628	
810 840 806 811 816 822 827 832 838 843 811 902 907 913 918 924 929 934 940 945 950 813 966 961 966 972 977 962 988 993 998 904 813 91 090 014 020 025 030 036 041 046 052 057 12 813 91 090 014 020 025 030 036 041 046 052 057 12 12 148 153 158 164 402 148 153 158 164 402 14 180 185 190 196 201 206 212 217 42 34 49 254 259 265 270 1 42 3 48 32 291 297 302 307	806	634	639	644 604	650	655	660	666	671	677	682	
810 840 806 811 816 822 827 832 838 843 811 902 907 913 918 924 929 934 940 945 950 813 966 961 966 972 977 962 988 993 998 904 813 91 090 014 020 025 030 036 041 046 052 057 12 813 91 090 014 020 025 030 036 041 046 052 057 12 12 148 153 158 164 402 148 153 158 164 402 14 180 185 190 196 201 206 212 217 42 34 49 254 259 265 270 1 42 3 48 32 291 297 302 307		741	747	752	757			773	779	794		
811		795	800	806	811		822	827	832	838	843	
813 91 009 014 020 025 030 036 041 046 052 057 \$ 124 181 161 121 126 132 137 142 148 153 158 164 \$ 2.4 181 181 181 180 185 180 185 181 169 174 180 185 190 196 201 206 212 217 \$ 3.0 181 19 196 220 228 233 238 243 249 254 259 265 270 \$ 3.6 181 19 228 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 329 345 350 356 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 329 387 392 397 403 408 413 418 424 429 \$ 3.6 181 182 322 487 492 498 503 508 514 519 524 529 535 587 824 593 598 603 609 614 619 624 630 635 640 \$ 3.6 182 329 41 593 598 603 609 614 619 624 630 635 640 \$ 3.6 182 329 328 308 314 319 824 829 834 840 845 850 822 823 808 314 319 824 829 834 840 845 850 822 855 861 866 871 876 882 887 892 897 903 \$ 3.0 183 383 30 404 049 054 059 35 383 065 070 075 080 085 091 096 101 106 111 3 15 383 117 122 127 332 137 143 148 148 153 158 163 4 20 4 20 428 433 488 443 449 454 459 409 054 409 054 059 3 10 3 18 834 117 122 127 332 137 143 148 148 153 158 163 4 20 4 20 4 20 4 20 4 20 4 407 412 418 423 836 324 330 335 340 345 350 355 361 366 371 31 98 4.5 837 372 378 823 283 803 803 803 804 409 90 814 319 8 4.5 837 372 378 823 388 293 298 304 309 314 319 8 4.5 837 372 378 823 388 324 330 335 340 345 350 355 361 366 371 39 8 4.5 836 536 886 593 598 603 609 614 619 624 629 844 634 639 645 650 655 660 665 670 675 681 845 686 691 696 701 706 711 716 712 716 722 727 732 732 847 788 793 799 804 809 814 819 824 829 834 848 840 845 880 895 890 901 906 911 916 921 927 932 937 888 848 849 849 881 886 901 906 911 916 921 927 932 937 888 888 880 889 889 889 880 880 880 880												
813 91 009 014 020 025 030 036 041 046 052 057 \$ 124 181 161 121 126 132 137 142 148 153 158 164 \$ 2.4 181 181 181 180 185 180 185 181 169 174 180 185 190 196 201 206 212 217 \$ 3.0 181 19 196 220 228 233 238 243 249 254 259 265 270 \$ 3.6 181 19 228 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 334 339 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 329 345 350 356 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 328 34 34 39 344 350 355 360 365 371 376 \$ 3.6 181 182 329 387 392 397 403 408 413 418 424 429 \$ 3.6 181 182 322 487 492 498 503 508 514 519 524 529 535 587 824 593 598 603 609 614 619 624 630 635 640 \$ 3.6 182 329 41 593 598 603 609 614 619 624 630 635 640 \$ 3.6 182 329 328 308 314 319 824 829 834 840 845 850 822 823 808 314 319 824 829 834 840 845 850 822 855 861 866 871 876 882 887 892 897 903 \$ 3.0 183 383 30 404 049 054 059 35 383 065 070 075 080 085 091 096 101 106 111 3 15 383 117 122 127 332 137 143 148 148 153 158 163 4 20 4 20 428 433 488 443 449 454 459 409 054 409 054 059 3 10 3 18 834 117 122 127 332 137 143 148 148 153 158 163 4 20 4 20 4 20 4 20 4 20 4 407 412 418 423 836 324 330 335 340 345 350 355 361 366 371 31 98 4.5 837 372 378 823 283 803 803 803 804 409 90 814 319 8 4.5 837 372 378 823 388 293 298 304 309 314 319 8 4.5 837 372 378 823 388 324 330 335 340 345 350 355 361 366 371 39 8 4.5 836 536 886 593 598 603 609 614 619 624 629 844 634 639 645 650 655 660 665 670 675 681 845 686 691 696 701 706 711 716 712 716 722 727 732 732 847 788 793 799 804 809 814 819 824 829 834 848 840 845 880 895 890 901 906 911 916 921 927 932 937 888 848 849 849 881 886 901 906 911 916 921 927 932 937 888 888 880 889 889 889 880 880 880 880		902			918	924			940	945	950	1
815 116 121 126 132 137 142 148 153 158 164 5 8.6 816 169 174 180 185 190 196 201 206 212 217 6 8.6 817 222 228 233 238 243 249 254 259 265 270 7 4.2 818 275 281 286 291 297 302 307 312 318 323 348 339 344 350 355 360 365 371 376 820 381 387 392 397 403 408 413 418 424 429 821 434 440 445 450 455 461 466 471 477 482 822 487 492 498 503 508 514 519 524 529 535 823 540 545 551 556 561 566 572 577 582 587 824 593 598 603 609 614 619 624 639 635 825 645 651 656 661 666 672 677 682 687 693 826 698 703 709 714 719 724 730 735 740 745 827 751 756 756 756 772 777 782 787 793 798 828 803 808 814 819 824 829 834 840 845 850 829 855 861 866 871 876 882 887 892 897 903 830 908 913 918 924 929 934 939 944 950 955 831 960 965 971 976 981 986 991 997 902 4007 832 92 012 018 023 028 033 038 044 049 054 059 833 965 070 075 080 085 091 096 101 106 111 834 117 122 127 132 137 143 148 153 158 163 4 835 169 174 179 184 189 195 200 205 210 215 5 836 221 226 221 236 241 247 252 257 262 267 7 837 273 278 283 288 293 298 304 309 314 319 8 4.5 840 428 433 438 443 449 454 459 464 469 474 841 480 485 490 495 500 505 511 516 521 526 530	812	906	96L	966	972	977	982	988		1 998	057	3 1.3
816	814	062	068	073	078	084	089		100	105	110	8 1.8
816	815	116	121	126	132	137	142	148	153	158	164	5 8.0
818	816	169	174	180	185	190	196	201	206	212	217	6 3.6
820 381 387 392 397 403 408 413 418 424 429 821 434 440 445 450 455 565 461 466 471 477 482 822 487 492 498 503 508 514 519 524 529 585 823 540 545 551 556 561 566 672 577 582 587 824 593 598 603 609 614 619 624 630 635 640 825 645 651 656 661 666 672 677 682 687 693 827 751 756 761 766 772 777 782 787 793 788 828 903 808 814 819 824 829 834 840 845 850 830 908 913 918 924 929 934 939 944 950 965 831 960 965 971 976 981 986 991 997 **002 **007 832 92 012 018 023 028 033 038 044 049 054 059 833 065 070 075 080 085 091 096 101 106 111 3 15 834 117 122 127 132 137 143 148 158 158 163 4 20 837 273 278 283 288 293 294 309 314 319 318 835 836 294 330 335 340 345 350 355 361 366 371 883 840 428 433 438 443 449 454 459 464 469 474 841 480 485 490 495 500 505 511 516 521 526 842 634 639 645 650 650 650 665 660 665 670 675 681 844 634 639 645 650 650 650 665 670 675 681 844 634 639 645 650 650 650 665 670 675 681 846 737 742 747 752 758 763 768 773 778 783 847 788 793 799 804 809 814 819 824 829 834 848 840 845 850 855 860 871 876 873 778 783 847 788 793 799 804 809 814 819 824 829 834 848 840 845 850 855 860 807 1076 711 716 722 727 732 847 788 793 799 804 809 814 819 824 829 834 848 840 845 850 855 860 865 670 675 681 849 891 896 901 906 911 916 921 927 932 937 850 942 947 952 957 962 967 973 978 983 988	817	222										8 4.8
821	818		334							871	876	9 5,4
822	820	381	387	392	397	403	408	413	418	424	429	
824 593 598 603 609 614 619 624 630 635 640 825 645 651 656 661 666 672 677 682 687 693 882 687 693 709 714 719 724 730 735 740 745 827 751 756 761 766 772 777 782 787 793 798 829 855 861 866 871 876 882 887 892 895 803 808 814 819 824 829 834 840 845 850 855 861 866 871 876 882 887 892 897 903 831 918 924 929 934 939 944 950 955 831 960 965 971 976 981 986 991 997 *002 *007 882 92 012 018 023 028 033 038 044 049 054 059 055 833 065 070 075 080 085 091 096 101 106 111 22 127 132 137 143 148 153 153 163 163 163 834 117 122 127 132 137 143 148 153 153 163 163 163 835 169 174 179 184 189 195 200 205 210 216 836 221 226 221 236 241 247 252 257 262 267 837 273 278 283 288 293 293 304 309 314 319 883 324 330 335 340 345 350 355 355 361 366 371 838 357 273 278 283 288 293 293 304 309 314 319 84 40 845 839 276 881 887 892 897 402 407 412 418 423 840 845 850 855 863 622 1266 66 671 86 803 804 804 804 805 805 855 863 866 871 883 876 881 887 892 897 402 407 412 418 423 841 480 485 490 495 500 505 511 516 521 526 844 634 639 645 650 655 660 665 670 675 681 842 634 639 645 650 655 660 665 670 675 681 844 634 639 645 650 655 660 665 670 675 681 846 737 742 747 752 788 763 768 773 778 783 847 788 793 799 804 809 814 819 824 829 834 848 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 884 888 848 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 888 888 849 891 896 901 906 911 916 921 927 932 937 888 888 849 891 896 901 906 911 916 921 927 932 937 888 888 849 891 896 901 906 911 916 921 927 932 937 888 888 849 891 896 901 906 911 916 921 927 932 937 888 888 849 891 896 901 906 911 916 921 927 932 937 888 888 889 889 889 889 889 889 889 88	821	434	440	445	450				471	477	482	
825		487	492		503		514		524	529		
825 645 651 656 661 666 672 677 682 687 693 827 751 756 761 766 772 777 782 787 793 798 828 803 808 814 819 824 829 834 840 845 850 829 855 861 866 871 876 882 887 892 897 903 830 908 913 918 924 929 934 939 944 950 955 831 960 965 971 976 981 986 991 997 *002 *007 832 92 012 018 023 028 033 038 044 049 054 059 833 085 070 075 080 085 091 096 101 106 111 36 115 834 117 122 127 132 137 143 148 153 158 163 4 20 835 169 174 179 184 189 195 200 205 210 215 5 836 837 223 278 233 288 293 208 304 309 314 319 883 683 824 330 835 340 340 309 314 319 8 40 845 839 376 381 887 392 397 402 407 412 418 423 840 428 433 438 443 449 454 459 464 469 474 841 480 485 490 495 500 505 511 516 521 526 842 831 583 583 583 583 584 693 699 614 619 624 629 844 634 639 645 650 655 660 665 670 675 681 842 531 586 542 547 552 557 562 567 572 578 843 583 583 583 584 593 598 603 609 614 619 624 629 844 634 639 645 650 655 660 665 670 675 681 845 846 737 742 747 752 758 763 778 778 783 783 799 804 809 814 819 824 829 834 848 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 884 848 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 884 888 849 891 896 901 906 911 916 921 927 932 937 884 886 849 891 896 901 906 911 916 921 927 932 937 884 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 885 885 885 885 885 885 885 885 885 88	828		598									
829 855 861 866 871 876 882 887 892 897 903 883 965 861 868 871 876 882 87 892 897 903 883 965 861 868 871 876 882 87 892 897 892 897 893 894 950 955 861 868 871 876 882 87 892 897 893 994 955 956 883 965 970 975 893 983 984 965 991 997 *002 *007 11 0.5 833 965 970 975 890 895 991 996 101 106 111 106 111 11 11 11 11 11 11 11 11 11 11 11 1	825	645					672	677	682			i i
829 855 861 866 871 876 882 887 892 897 903 883 965 861 868 871 876 882 87 892 897 903 883 965 861 868 871 876 882 87 892 897 892 897 893 894 950 955 861 868 871 876 882 87 892 897 893 994 955 956 883 965 970 975 893 983 984 965 991 997 *002 *007 11 0.5 833 965 970 975 890 895 991 996 101 106 111 106 111 11 11 11 11 11 11 11 11 11 11 11 1	826	698	703	709	714	719	724	730	735	740	745	l i
829 855 861 866 871 876 882 887 892 897 993 831 980 913 918 924 929 934 939 944 950 955 831 980 921 918 918 922 912 918 923 923 923 924 929 934 939 944 950 955 832 922 912 918 923 938 938 944 949 954 959 957 932 933 933 943 949 954 959 957 958	827	751	756		766		777	782	787	793		
831 960 965 971 976 981 986 991 997 *002 *007 882 92 92 102 018 023 028 033 038 044 049 054 059 833 065 070 075 080 085 091 096 101 106 111 18 15 834 117 122 127 132 137 143 148 153 158 163 158 636 221 226 221 236 241 247 252 257 262 267 63 837 273 278 283 288 293 298 304 309 314 319 883 324 330 335 840 345 350 355 353 385 340 345 350 355 369 376 381 387 392 397 402 407 412 418 423 841 480 485 490 495 500 505 511 516 521 526 842 531 536 542 547 552 557 562 567 572 578 843 843 638 638 645 650 655 660 665 670 675 681 844 634 639 645 650 655 660 665 670 675 681 845 845 866 691 696 701 706 711 716 722 727 732 732 846 737 742 747 752 758 763 768 773 778 783 848 848 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 834 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 888 886 849 891 896 901 906 911 916 921 927 932 937 888 888 884 884 840 845 850 855 860 865 870 875 881 886 889 891 896 901 906 911 916 921 927 932 937 888 886 889 891 896 901 906 911 916 921 927 932 937 888 886 889 891 896 901 906 911 916 921 927 932 937 888 886 889 891 896 901 906 911 916 921 927 932 937 888 888 884 884 884 884 884 884 884 88	828 829	855 855	861	866				887		897		
831 92 012 018 023 028 033 038 044 049 054 059 1 1 0.5 838 055 070 075 080 085 091 096 101 106 111 3 1.5 834 117 122 127 132 137 143 148 153 158 163 4 2.0 835 169 174 179 184 189 195 200 205 210 215 5 2.5 837 273 278 283 288 293 298 304 309 314 319 8 4.0 835 839 376 381 887 392 397 402 407 412 418 423 841 480 485 490 495 500 505 511 516 521 526 842 531 536 542 547 552 557 562 567 572 578 843 583 583 583 583 583 583 583 583 583 58	830	908	913	918	924	929	934	939	944	950	955	5
883	831	960	965	971	976	981	986	991	997	*002	*007	1 100
835 169 174 179 184 189 195 200 205 210 216 836 836 221 226 221 236 241 247 252 257 262 267 7 837 233 238 238 238 238 304 309 314 319 84 839 376 381 387 392 397 402 407 412 418 423 423 438 443 449 454 459 464 469 474 484 434 434 449 454 459 464 469 474 484 434	832	92 012	018	023	028	033	038	044	049	054	059	
835 169 174 179 184 189 195 200 205 210 216 836 836 221 226 221 236 241 247 252 257 262 267 7 837 233 238 238 238 238 304 309 314 319 84 839 376 381 387 392 397 402 407 412 418 423 423 438 443 449 454 459 464 469 474 484 434 434 449 454 459 464 469 474 484 434	833	065	070	075	080	085	091	096		106		I 8 i 1.5 I
836 221 226 231 236 241 247 252 257 262 267 273 278 283 283 288 293 293 804 309 314 319 383 383 383 387 392 397 402 407 412 418 423 418 423 484 484 485 490 495 500 505 511 516 521 526 842 531 536 542 547 552 557 562 567 572 578 843 583 583 598 603 609 614 619 624 629 434 634 639 645 650 655 660 665 670 675 681 846 686 691 696 701 706 711 716 722 727 732 847 788 793 799 804 809 814 819 824 829 824 829 834 840 845 850 855 860 865 870 875 881 886 891 896 901 906 911 916 921 927 932 937 850 885 885 891 896 901 906 911 916 921 927 932 937 850 885 885 891 896 901 906 911 916 921 927 932 937 850 885 885 891 896 901 906 911 916 921 927 932 937 850 885 885 885 885 885 885 885 885 885	834	160	174	170	184	189		200				5 2.5
839	836	221	226	231	236		247	252	257	262	267	6 3.0
839	837	273	278	283	288	293	298	304		814		8 4.0 I
840	838	824	330		840	845	350					9 4.5
841												
843 583 588 593 598 603 609 614 619 624 629 844 629 845 680 645 650 655 660 665 670 675 681 846 737 742 747 752 758 763 768 773 778 783 783 799 804 809 814 819 824 829 834 849 891 896 901 906 911 916 921 927 932 937 850 855 960 865 870 875 881 886 849 841 849 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 855 860 865 870 875 881 886 849 849 849 849 840 845 850 855 860 865 870 875 881 886 849 849 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 84												
843 583 588 593 598 603 609 614 619 624 629 844 629 845 680 645 650 655 660 665 670 675 681 846 737 742 747 752 758 763 768 773 778 783 783 799 804 809 814 819 824 829 834 849 891 896 901 906 911 916 921 927 932 937 850 855 960 865 870 875 881 886 849 841 849 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 855 860 865 870 875 881 886 849 849 849 849 840 845 850 855 860 865 870 875 881 886 849 849 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 850 855 860 865 870 875 881 886 840 845 84			536			552	557	562		572	578	l
844 634 639 645 650 655 660 665 670 675 681 845 846 891 696 701 706 711 716 722 727 732 732 846 737 742 747 752 758 763 768 773 778 783 847 788 793 799 804 809 814 819 824 829 834 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 850 850 850 850 850 850 850 850 850	843	583	588	593	598	603	609	614	619	624	629	
846 737 742 747 752 758 763 768 773 778 783 783 847 788 798 904 809 814 819 824 829 834 834 849 891 896 901 906 911 916 921 927 932 937 850 850 855 860 865 870 875 881 886 886 891 896 901 906 911 916 921 927 932 937 850 850 855 860 865 870 875 881 886 886 891 896 901 906 911 916 921 927 932 932 937 850 850 850 850 855 860 865 870 875 881 886 886 891 891 891 891 891 891 891 891 891 891	844		639		650	655		665	670	675		
847 788 793 799 804 809 814 819 824 829 834 849 849 845 850 855 860 911 916 921 927 932 937 850 942 947 952 957 962 967 973 978 983 988 N. L. 0 1 2 3 4 5 6 7 8 9 P.P.	845	727	74.)		701	758	763	768	772	778	783	
848 840 845 850 855 860 91 91 91 91 91 91 91 91 91 91 92 92 93 93 93 93 93 93 93 98		788	793		804	809	814	819	824	829	834	
849 891 896 901 906 911 916 921 927 932 937 850 942 947 952 957 962 967 973 978 983 988 N. L. 0 1 2 3 4 5 6 7 8 9 P.P.		840	845	850	855	860	865	870	875	881	886	
N. L.0 1 2 3 4 5 6 7 8 9 P.P.	849				906	911						
	850	942	947	952	957	962	967	973	978	983	988	
	N.	L. 0	1	2	3	4	5	6	7	-	- (P.P. Google

TABLE 91 (Continued)
LOGARITHMS OF NUMBERS

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
850	92 942	947	952	957	962	967	973	978	983	988	
851	993	998	*003	*008	*013	*018	*024	*029	*034	*039	
852	93 044	049	054	059	064	069	075	080	085	090	
853 854	095 146	100 151	105 156	110 161	115 166	120 171	125 176	131 181	136 186	141 192	
855	197	202	207	212	217	222	227	232	237	242	
856	247	252	258	263	268	273	278	283	288	293	
857	298	303	308	813	318	823	328	334	339	344	, •
858	349	354	359	364	369	374	379	384	389	394	1 0.6
859 860	899 450	404	409	414	420	425 475	480	435	440	445	2 1.2 3 1.8 4 2.4
861	500	505	510	515	520	526	531	536	541	546	6 3.6
862	551	556	561	566	571	576	581	586	591	596	7 4.3
863	601	606 656	611	616	621	626	631	636	641	646	8 4.8 9 5.4
864	651	656	661	666	671	676	682	687	692	697	.,
865 866	702 752	707 757	712 762	717 767	722 772	727 777	732 782	737 787	742 792	747 797	
867	802	807	812	817	822	827	832	837	842	847	'
868	852	857	862	867	872	877	882	887	892	897	
869	902	907	912	917	922	927	932	937	942	947	
870	952	957	962	967	972	977	982	987	992	997	5
871	94 002	007	012	017	022	027	032	037	042	047	1 0.5
872 873	052 101	057 106	062 111	067 116	072 121	077 126	082 131	086 136	091 141	096 146	2 1.0
874	151	156	161	166	171	176	181	186	191	196	8 1.5
875	201	206	211	216	221	226	231	236	240	245	4 2.0 5 2.5
876	250	255	260	265	270	275	280	285	290	295	6 8.0
877	300	305	310	315	320	325	330	335	340	345	7 8.5 8 4.0
878 879	349 399	354 404	359 409	364 414	369 419	374 424	379 429	384 433	389 438	394 443	9 4.5
880	448	453	458	463	468	473	478	483	488	493	
881	498	503	507	512	517	522	527	532	537	542	
882	547	552	557	562	567	571	576	581	586	591	
883	596	601	606	611	616	621	626	630	635	640	
884	645 694	650 699	655 704	660 709	665 714	670	675	680	685	689	
885 886	743	748	753	758	763	719 768	724 773	729 778	784 783	788 787	4
887	792	797	802	807	812	817	822	827	832	836	نداد ا
888	841	846	851	856	861	866	871	876	880	885	1 0.4 2 0.8
889	890	895	900	905	910	915	919	924	929	934	8 1.2 4 1.6
890	939	944	949	954	959	963	968	973	978	983	5 2.0 6 2.4
891	988	993	998	*002	*007	*012	*017	*022	*027	*032	7 2.8 8 8.2
892 893	95 036 085	041 090	046 095	051 100	056 105	061 109	066 114	071 119	075 124	080 129	9 3.6
894	134	139	143	148	153	158	163	168	173	177	- ,
895	182	187	192	197	202	207	211	216	221	226	
896	231	236	240	245	250	255	260	265	270	274	
897	279	284	289	294	299	303	308	313	318	323	
898 899	328 376	332 381	337 386	342 390	347 395	352 400	357 405	361 410	366 415	371 419	
900	424	429	434	439	444	448	453	458	468	468	
N.	L. 0	1	2	3	4	5	6	7	8 (3 % 0	gle P. P.

Table 91 (Continued) LOGARITHMS OF NUMBERS

				JUGA	141 4 41	III.	ar ta	UMB.	6163		
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
900	95 424	429	434	439	444	448	453	458	463	468	
901	472	477	482	487	492	497	501	506	511	516	
902	521	525	530	535	540	545	550	554	559	564	
902 903	569	525 574	530 578	535 583	540 588	693	598	554 602	559 607	612	
904	617	622	626	631	I 636	641	646	650	655	660	
905 906	665 713	670 718	674 722	679 727	720	689 737	694	698 746	703 751	708 756	
907	761	766	770	775	684 732 780 828	785	694 742 789 837	794	799	804	
908	809	813	818	775 823	828	785 832	837	842	799 847	852	
909	856	861	866	871	875	880	885	890	895	899	
910	904	909	914	918	923	928	933	938	942	947	5
911	952	957	961	966	971	976	980	985	990	995	1 1
912	999	*004	*009	*014	*019	*023	980 *028	985 *033	*038	*042	1 0.5 2 1.0 ·
913	96 047 095	052 099	057 104	061 109	066	071 118	176	080 128	085 133	090 137	3 1.5
914 915	142	147	152	156	114 161	166	076 123 171	175	180	185	4 2.0 5 2.5
916	190	194	199	204	209	213	218	993	227	232	6 3.0
917	237	242	246	251	256	261	265	270	275	280	7 8.5
918 919	284 332	289 336	294 841	298 346	303 350	308 355	313 360	317 365	322 369	327 374	8 4.0 9 4.5
920	379	384	388	393	398	402	407	412	417	421	
921	426	431	435	440	445	450 497	454	459	464	468	
922	473	478	483	487 534	492	497	501	506	511	515	
923	520	525	530	534	539	544	548	553	558	562	
924 925	567 614	572 619	577 624	581 628 675	586 633	591 638	595	600 647	605 652 699	609	
926	661	666	670	675	680	685	642 689	694	699	656 703	
927	708	713	717	TZZ	727	731	736	741	745	750	
928 929	755	759 806	764	769	774	778 825	783 830	788 834	792 839	797 844	
	802		811	816	820						
930	848 895	853 900	904	862	867	872	876	928	932	937	1.4
931 932	890	946	951	909 956	914 960	918 965	923 970	974	979	984	1 0.4
QQQ I	942 988	993	997	956 *002	*007	*011	*016	*021	*025	*030	2 0.8 8 1.2
934 935 936	97 035	039	044	049	053 100	058	063	067	072	077	4 1.6
985	081	086	090	095	100	104	109	114	118 165	123 169	5 2.0 6 2.4 7 2.8
937	128 174	132 179	137 183	142 188	146 192	151 197	155 202 248	160 206	211	216	7 2.8 8 3.2
938	220	225	230	234	239	243	248	253	257	262	9 8.6
939	267	271	276	280	285	290	294	299	304	308	
940	813	317	322	327	331	336	340	345	350	354	
941	359 405	364 410	368 414	373 419	377 424	382 428 474	387 433 479	391 437	396 442	400 447	
942	400 451	456	460	465	470	474	479	483	488	493	
943 944	497	456 502	460 506	511	516	520	525 571	529	534	539	
945	543	548	552	557	562	566	571	575	580	585	
946	589	594	598	603	607	612	617	621	626	630 676	1
947 948	635 681	640 685	644	649 695	653	658 704	663 708	713	672 717	722	
948 949	727	781	736	740	745	749	754	759	763	768	
950	772	777	782	786	791	795	800	804	809	813	
N.	L.0	1	2	3	4	5	6	7	8	9	P. P.

Table 91 (Concluded) LOGARITHMS OF NUMBERS

		_	_		_	_					
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P .
950	97 772	777	782	786	791	795	800	804	809	813	
951	818	823	827	832	836	841	845	850	855	859	ĺ
952	864	868	873	877	660	886	891	896	900	905	
953 954	909 955	914 959	918 964	923 968	928 973	932 978	937 982	941	946 991	950 996	
955	98 000	005	009	014	019	023	028	032	037	041	
955 956	046	050	055	059	064	068	073	078	082	087	· ·
957	091	096	100	105	109	114	118	123	127	132	
958 959	137 182	141 186	146 191	150 195	155 200	159 204	164 209	168 214	173 218	177 223	
960	227	232	236	241	245	250	254	259	263	268	_
961	272	277	281	286	290	295	299	304	308	313	5
962	318	322	327	831 876	336	340	845	849	854	358	1 0.5 2 1.0
963 964	863 408	367 412	372 417	876 421	381 426	385 430	390 435	894 439	399	403 448	8 1.5
965	453	457	462	466	471	475	480	484	444	493	4 2.0 5 2.5
966	498	502	507	511	516	520	525	529	534	538	6 8.0
967	543	547	552	556	561	565	525 570	574	579	583	7 3.5 8 4.9
968 969	588 632	592 637	597 641	601 646	605 650	610 655	614 659	619 664	623 668	628 673	8 4.0 9 4.5
970	677	682	686	691	695	700	704	709	713	717	
971	722	726	731	735	740	744	749	753	758	762	
972	767	771	776	780	784 829	789	793 838 883	798	802	807	
978	811	816	820	825	829	834	838	843	847	851 896	
974 975	856 900	860	865 909	869 914	874 918	878 923	883	887 932	892 936	896	
976	945	905 949	954	958	963	967	927 972	976	981	941 985	
977	989	994	998	*003	*007	*012	*016	*021	*025	*029	
978	99 034	038	043	047	052	056	061	065	069	074	
979		127	131	136	140	145	105	109	114	118	
980 981	167	171	176	180	185	189	193	198	202	207	4
982	211	216	220	224	229	233	238	242	247	251	1 0.4 2 0.8
983	255	260	264	269	229 273	277	238 282	286	291	295	3 1.2
984	300 344	304 348	308 352	313 357	317	322 366	326 370	330 374	335 379	339 383	4 1.6 5 2.0
985 986	388	392	396	401	361 405	410	414	419	423	427	6 2.4
987	432	436	441	445	449	454	458	463	467	471	7 2.8 8 3.1
988	476	480	484	489	493	498	502	506	511	515	9 8.6
989	520	524	528	533	537	542	546	550	555	559	
990	<u>564</u> 607	568 612	616	577	581 625	585 629	590 634	638	599 642	603	
991 992	651	656	616 660	621 664	669	673	677	682	686	691	
993	695	699	704	708	712	717	721	726	730	734	
994	739	743	747	752	756	760	765	769	774	778	
995 996	782 826	787 830	791	795 839	800 843	804 848	808 852	813 856	817 861	822 865	
997	870	874	835 878	883	887	891	896	900	904	909	
998	913	917	922	926	930	935	939	944	948	952	
999	957	961	965	970	974	978	983	987	991	996	
1000	00 000	004	009	013	017	022	026	030	085	089	****
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
	l i		l	l i)	Digitiz:	ed by C	1009	gle

TABLE 92.—COLOGARITHMS OF NUMBERS

_													
No		0	1	2	3	4	5	6	7	8	9	P	.P.
100 1	.00 .99	000 568 140	*957 525 097	*913 482 055	*870 439 012	*827 396 *970	*783 353 *928	*740 311 *885	*697 268 *843	*654 225 *801	*611 183 *758	1 4 1 2 9	43 42 4 4 9 8
34	.98	716 297	674 255	632 213	590 172	548 130	506 088	454 047	422 005	380 *964	338 *922	3 13 4 18	13 13
5 6	.97	469	840 428	798 388	757 347	716 306	675 265	634	593 184	551 143	510 102	5 22 6 26	22 21 26 25
7 8 9	.96	062 658 257	021 617 218	*981 577 178	*940 537 138	*900 497 098	*859 457 059	*819 417 019	*778 377 *979	*738 337 *940	*698 297 *900	7 31 8 35 9 40	30 29 34 34 39 38
110	.95	861 468	821 429	782 390	742 350	703 311	664 273	624 234	585 195	546 156	507 117	1 41	40 89
34	.94	078 692 310	039 654 271	001 615 233	*962 577 195	*923 539 157	*885 500 119	*846 462 082	*808 424 044	*769 386 006	*731 348 *968	2 8 3 12 4 16	8 8 12 12 ·16 16
5	.93	930 554	892 517	855 479	817 442	779 405	742 367	704 330	667 293	629 256	592 219	5 21 6 25	20 20 24 23
7 8 9	.92	181 812 445	144 775 409	107 738 372	070 702 336	033 665 300	*996 628 263	*959 592 227	*922 555 191	*885 518 154	*849 482 118	7 29 8 33 9 37	28 27 32 31 36 35
120 1	. 91	082 721	046 686	010 650	*973 614	*937 578	*901 542	*865 507	*829 471	*793 435	*757 400	38 1 4	37 36 4 4
1 2 3 4	.90	364 009 658	328 *974 623	293 *939 588	257 *904 553	222 *868 518	186 *833 483	151 *798 448	116 *763 413	080 *728 379	045 *693 344	2 8 3 11 4 15	7 7 11 11 15 14
5 6 7	. 89	309 963	274 928	240 894	205 860	170 825	136 791	101 757	066 722	032 688	*997 654	5 19 6 23	19 18 22 22
89	.88	620 279 941	585 245 907	551 211 874	517 177 840	483 143 807	449 110 773	415 076 739	381 042 706	. 347 008 673	313 *975 639	7 27 8 30 9 34	26 25 30 29 33 32
130 1 2	05	606 273	572 240	539 207	506 174	472 140	439 107	406 074	372 041	339 008	306 *976	35 1 4	34 33 3 3 7 7
3	. 87	943 615 290	910 582 257	877 550 225	844 517 192	811 484 160	778 452 128	746 419 095	713 387 063	680 354 031	648 322 *999	2 7 3 11 4 14	7 7 10 10 14 13
5 6 7	. 86	967 646	934 614	902 582	870 550	838 519	806 487	774 455	742 423	710 391	678 360	5 18 6 21	17 17 20 20 24 23
89	. 85	328 012 699	296 *981 667	265 *949 636	233 *918 605	201 *886 574	170 *855 543	138 *824 511	107 *792 480	075 •761 449	044 *730 418	7 25 8 28 9 32	24 23 27 26 31 30
140	0.4	387 078	356 047	325 017	294 *986	263 *955	232 *924	201 *894	171 *863	140 *832	109 *802	32 1 3	81 80
1 2 3 4	.84	771 466 164	741 436 134	710 406 103	680 375 073	649 345 043	619 315 013	588 285 *983	558 254 •953	527 224 *923	497 194 •893	2 6 3 10 4 13	6 6 9 9 12 12
5 6 7 8	. 83	565	833 535	803 505	773 476	744 446	714 416	684 387	654 357	624 327	594 298	5 16 6 19	16 15 19 18
8	. 82	268 974 681	239 944 652	209 915 623	180 886 594	150 857 565	121 827 536	091 798 507	062 769 478	033 740 449	003 711 420	7 22 8 26 9 29	22 21 25 24 28 27
150		391	362	333	304	275	246	218	189	160	131		

Table 92 (Continued)
Cologarithms of Numbers

	1													
No.		0	1	2	3	4	5	6	7	8	9		P.P	-
150 1 2 3 4	.82 .81	391 102 816 531 248	362 074 787 502 220	333 045 759 474 192	304 016 730 446 163	275 *987 702 417 135	246 *959 673 389 107	218 *930 645 361 079	189 *901 616 333 051	160 *873 588 304 023	131 *844 559 276 *995	1 2 3 4	29 3 6 9 12	28 3 6 8 11
5 6 7 8 9	.80 .79	967 688 410 134 860	939 660 382 107 833	911 632 355 079 806	883 604 327 052 778	855 576 300 024 751	827 549 272 *997 724	799 521 244 •970 697	771 493 217 •942 670	743 465 189 *915 642	715 438 162 *888 615	5 6 7 8 9	15 17 20 23 26	14 17 20 22 25
160 1 2 3 4	.78	588 317 048 781 516	561 290 022 755 489	534 263 *995 728 463	507 237 *968 701 436	480 210 *941 675 410	452 183 *915 648 383	425 156 *888 622 357	398 129 *861 595 331	371 102 *835 569 304	344 075 *808 542 278	1 2 3 4	27 3 5 8 11	26 3 5 8 10
5 6 7 8 9	. 77	252 989 728 469 211	225 963 702 443 186	199 937 676 417 160	173 911 650 392 134	146 885 624 366 109	120 859 599 340 083	094 833 573 314 057	068 806 547 288 032	042 780 521 263 006	015 754 495 237 *981	5 6 7 8 9	14 16 19 22 24	13 16 18 21 23
170 1 2 3 4	.76	955 700 447 195 945	930 675 422 170 920	904 650 397 145 895	879 624 371 120 870	853 599 346 095 845	828 574 321 070 820	802 548 296 045 796	777 523 271 020 771	751 498 246 *995 746	726 472 221 *970 721		1 2 3 4	25 3 5 8 10
5 6 7 8 9	. 74	696 449 203 958 715	671 424 178 934 690	647 399 154 909 666	622 375 129 885 642	597 350 105 861 618	572 326 080 836 594	548 301 056 812 569	523 276 031 788 545	498 252 007 763 521	473 227 982 739 497		5 6 7 8 9	13 15 18 20 23
180 1 2 3 4	. 73	473 232 993 755 518	449 208 969 731 495	425 184 945 707 471	400 160 921 684 447	376 136 898 660 424	352 112 874 636 400	328 088 850 613 377	304 065 826 589 353	280 041 802 565 330	256 017 779 542 306	1 2 3 4	24 5 7 10	23 2 5 7 9
5 6 7 8 9	. 72	283 049 816 584 354	259 025 793 561 331	236 002 769 538 308	212 *979 746 515 285	189 *955 723 492 262	166 *932 700 469 239	142 *909 677 446 216	119 *886 654 423 193	095 *862 630 400 170	072 *839 607 377 148	5 6 7 8 9	12 14 17 19 22	12 14 16 18 21
190 1 2 3 4	. 71	125 897 670 444 220	102 874 647 422 197	079 851 625 399 175	056 829 602 377 153	033 806 579 354 130	011 783 557 332 108	*988 760 534 309 086	*965 738 512 287 063	*942 715 489 265 041	*919 693 467 242 019	1 2 3 4	22 4 7 9	21 2 4 6 8
5 6 7 8 9	.70	997 774 553 333 115	974 752 531 312 093	952 730 509 290 071	930 708 487 268 049	908 686 465 246 027	885 664 443 224 006	863 642 421 202 *984	841 620 399 180 *962	819 597 377 158 *940	797 575 355 137 919	5 6 7 8 9	11 13 15 18 20	11 13 15 17 19
200	. 69	897	875	854	832	810	789	767	745	724	702	-		

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P.P.
200	. 69	897	875	854	832	810	789	767	745	724	702	22 21
1		680	659	637	616	594	572	551	529	508	486	1 2 2
2		465	443	422	400	379	357	336	315	293	272	2 4 4
3		250	229	208	186	165	144	122	101	080	058	3 7 6
4		037	016	*994	*973	*952	*931	*909	*888	*867	*846	4 9 8
5	. 68	825	803	782	761	740	719	698	677	655	634	5 11 11
6		613	592	571	550	529	508	487	466	445	424	6 13 13
7		403	382	361	340	319	298	277	256	235	215	9 15 15
8		194	173	152	131	110	089	069	048	027	006	8 18 17
9		985	965	944	923	902	882	861	840	819	799	9 20 19
210	. 66	778	757	737	716	695	675	654	634	613	592	20
1		572	551	531	510	490	469	448	428	407	387	1 2
2		366	346	325	305	285	264	244	223	203	182	· 2 4
3		162	142	121	101	081	060	040	020	*999	•979	3 6
4		959	938	918	898	878	857	837	817	797	776	4 8
5	. 65	756	736	716	696	675	655	635	615	595	575	5 10
6		555	535	514	494	474	454	434	414	394	374	6 12
7		354	334	314	294	274	254	234	214	194	174	7 14
8		154	134	115	095	075	055	035	015	*995	*975	8 16
9		956	936	916	896	876	857	837	817	797	777	9 18
220	. 64	758	738	718	699	679	659	639	620	600	580	19
1		561	541	521	502	482	463	443	423	404	384	1 2
2		365	345	326	306	287	267	247	228	208	189	2 4
3		170	150	131	111	092	072	053	033	014	*995	3 6
4		975	956	936	917	898	878	859	840	820	801	4 8
5		782	762	743	724	705	685	666	647	628	608	5 10
6		589	570	551	532	512	493	474	455	436	417	6 11
7		397	378	359	340	321	302	283	264	245	226	7 13
8		207	187	168	149	130	111	092	073	054	035	8 15
9		016	*997	•979	•960	*941	•922	*903	*884	*865	*846	9 17
230	. 63	827	808	789	771	752	733	714	695	676	658	18
1		639	620	601	582	564	545	526	507	489	470	1 2
2		451	432	414	395	376	358	339	320	302	283	2 4
3		264	246	227	209	190	171	153	134	116	097	3 5
4		078	060	041	023	004	*986	*967	*949	*930	*912	4 7
5	. 62	893	875	856	838	819	801	782	764	746	727	5 9
6		709	690	672	654	635	617	599	580	562	543	6 11
7		525	507	489	470	452	434	415	397	379	361	7 13
8		342	324	306	288	269	251	233	215	197	178	8 14
9		160	142	124	106	088	069	051	033	015	*997	9 16
240	. 61	979	961	943	925	907	888	870	852	834	816	17
1		798	780	762	744	726	708	690	672	654	636	1 2
2		618	601	583	565	547	529	511	493	475	457	2 3
3		439	422	404	386	368	350	332	314	297	279	3 5
4		261	243	225	208	190	172	154	137	119	101	4 7
5	. 60	083	066	048	030	013	*995	*977	*959	*942	*924	5 9
6		906	889	871	854	836	818	801	783	765	748	6 10
7		730	713	695	678	660	642	625	607	590	572	7 12
8		555	537	520	502	485	467	450	432	415	398	8 14
9		380	363	345	328	310	293	276	258	241	223	9 15
250		20 6	189	171	154	137	119	102	085	067	050	

Table 92 (Continued) Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	l F	P.P.
250 1 2 3 4	. 60 . 59	206 033 860 688 517	189 015 843 671 500	171 *998 825 654 482	154 *981 808 636 465	137 *963 791 .619 448	119 •946 774 602 431	102 *929 757 585 414	085 *912 739 568 397	067 *894 722 551 380	050 *877 705 534 363	1 2 3 4	18 2 4 5 7
5 6 7 8 9	. 58	346 176 007 838 670	329 159 *990 821 653	312 142 *973 804 637	295 125 *956 788 620	278 108 *939 771 603	261 091 *922 754 586	244 074 *905 737 570	227 057 *889 720 553	210 040 *872 704 536	193 024 *855 687 519	5 6 7 8 9	9 11 13 14 16
260 1 2 3 4	. 57	503 336 170 004 840	486 319 153 *988 823	469 303 137 *971 807	453 286 120 *955 790	436 269 104 *938 774	419 253 087 *922 757	403 236 071 *905 741	386 220 054 *889 725	369 203 037 *873 708	353 186 021 *856 692	1 2 3 4	17 2 3 5 7
5 6 7 8 9		675 512 349 187 025	659 496 333 170 009	643 479 316 154 *992	626 463 300 138 *976	610 447 284 122 *960	594 430 268 106 *944	577 414 251 089 *928	561 398 235 073 *912	545 381 219 057 *896	528 365 203 041 *880	5 6 7 8 9	9 10 12 14 15
270 1 2 3 4	. 56	864 703 543 384 225	848 687 527 368 209	831 671 511 352 193	815 655 495 336 177	799 639 479 320 162	783 623 463 304 146	767 607 447 288 130	751 591 431 273 114	735 575 416 257 098	719 559 400 241 083	2 2 3 4	16 2 3 5 6
5 6 7 8 9	. 55	067 909 752 596 440	051 893 736 580 424	035 878 721 564 408	019 862 705 549 393	004 846 689 533 377	988 830 674 517 362	*972 815 658 502 346	*956 799 642 486 331	*941 783 627 471 315	*925 768 611 455 300	5 6 7 8 9	8 10 11 13 14
280 1 2 3 4	. 54	284 129 975 821 668	269 114 960 806 653	253 098 944 791 638	238 083 929 775 622	222 068 914 760 607	207 052 898 745 592	191 037 883 729 577	176 021 867 714 561	160 006 852 699 546	145 *990 837 683 531	1 2 3 4	15 2 3 5 6
5 6 7 8 9	. 53	516 363 212 061 910	500 348 197 046 895	485 333 182 031 880	470 318 166 016 865	455 303 151 000 850	439 288 136 *985 835	424 272 121 *970 820	409 257 106 955 805	394 242 091 *940 790	379 227 076 *925 775	5 6 7 8 9	8 9 11 12 14
290 1 2 3 4		760 611 462 313 165	745 596 447 298 150	730 581 432 284 136	715 566 417 269 121	700 551 402 254 106	685 536 387 239 091	670 521 373 224 077	655 506 358 210 062	641 491 343 195 047	626 477 328 180 033	1 2 3 4	14 1 3 4 6
5 6 7 8 9	. 52	018 871 724 578 433	003 856 710 564 418	*988 841 695 549 404	*974 827 681 535 389	*959 812 666 520 375	*944 798 651 506 360	*930 783 637 491 346	*915 768 622 476 331	*900 754 608 462 317	*886 739 593 447 302	5 6 7 8 9	7 8 10 11 13
300		288	27 3	259	244	230	216	201	187	172	158		

Table 92 (Continued)
Cologarithms of Numbers

													-
No.	<u> </u>	0	1	2	3	4	5	6	7	8	9	P	. P.
300 1 2 3 4	. 52 . 51	288 143 999 856 713	273 129 985 841 698	259 115 971 827 684	244 100 956 813 670	230 086 942 798 656	216 071 927 784 641	201 057 913 770 627	187 042 899 756 613	172 028 884 741 599	158 014 870 727 584	1 2 3 4	15 2 3 5 6
5 6 7 8 9		570 428 286 145 004	556 414 272 131 *990	542 399 258 117 *976	527 385 244 103 *962	513 371 230 089 *948	499 357 215 074 *934	485 343 201 060 *920	470 329 187 046 •906	456 314 173 032 *892	442 300 159 018 *878	5 6 7 8 9	8 9 11 12 14
310 1 2 3 4	. 50	864 724 585 446 307	850 710 571 432 293	836 696 557 418 279	822 682 543 404 266	808 668 529 390 252	794 654 515 376 238	780 640 501 362 224	766 626 487 349 210	752 612 473 335 197	738 598 459 321 183	1 2 3 4	14 1 3 4 6
5 6 7 8 9	. 49	169 031 894 757 621	155 018 880 744 607	141 004 867 730 594	128 *990 853 716 580	114 *976 839 703 567	100 *963 826 689 553	086 *949 812 675 539	073 *935 798 662 526	059 *921 785 648 512	045 *908 771 635 499	5 6 7 8 9	7 8 10 11 13
320 1 2 3 4	.48	485 349 214 080 945	471 336 201 066 932	458 322 187 053 919	444 309 174 039 905	431 295 160 026 892	417 282 147 013 879	404 268 134 *999 865	390 255 120 *986 852	377 241 107 *972 838	363 228 093 *959 825	1 2 3 4	18 1 3 4 5
5 6 7 8 9		812 678 545 413 280	798 665 532 399 267	785 652 519 386 254	772 638 505 373 241	758 625 492 360 228	745 612 479 346 214	732 598 466 333 201	718 585 452 320 188	705 572 439 307 175	692 559 426 294 162	5 6 7 8 9	7 8 9 10 12
330 1 2 3 4	.47	149 017 886 756 625	135 004 873 743 612	122 *991 860 730 599	109 *978 847 716 586	096 *965 834 703 573	083 *952 821 690 560	070 *939 808 677 547	057 *925 795 664 534	043 *912 782 651 521	030 *899 769 638 508	1 2 3 4	12 1 2 4 5
5 6 7 8 9	.46	496 366 237 108 980	483 353 224 095 967	470 340 211 083 954	457 327 198 070 942	444 314 185 057 929	431 301 173 044 916	418 289 160 031 903	405 276 147 018 890	392 263 134 006 878	379 250 121 *993 865	5 6 7 8 9	6 7 8 10 11
340 1 2 3 4		852 725 597 471 344	839 712 585 458 332	827 699 572 445 319	814 686 559 433 306	801 674 547 420 294	788 661 534 407 231	776 648 521 395 268	763 636 509 382 256	750 623 496 369 243	737 610 483 357 231		
5 6 7 8 9	.45	218 092 967 842 717	206 080 955 830 705	193 067 942 817 693	180 055 930 805 680	168 042 917 792 668	155 030 905 780 655	143 017 892 767 643	130 005 880 755 630	118 *992 867 742 618	105 *980 855 730 606		
350		593	581	568	556	544	531	519	506	494	482		

Table 92 (Continued)
Cologarithms of Numbers

77		_			_		1 -	0	·			_	<u>. 1</u>
No.		0	1	2	3	4	5	6	7	8	9	P	.P.
350 1 2 3 4	. 45	593 469 346 223 100	581 457 333 210 087	568 445 321 198 075	556 432 309 186 063	544 420 296 173 051	531 407 284 161 038	519 395 272 149 026	506 383 259 136 014	494 370 247 124 002	482 358 235 112 *989	1 2 3 4	18 1 3 4 5
5 6 7 8 9	. 44	977 855 733 612 491	965 843 721 600 478	953 831 709 587 466	940 818 697 575 454	928 806 685 563 442	916 794 672 551 430	904 782 660 539 418	892 770 648 527 406	879 758 636 515 394	867 745 624 503 382	5 6 7 8 9	7 8 9 10 12
360 1 2 3 4	. 43	370 249 129 009 890	358 237 117 *997 878	346 225 105 *985 866	334 213 093 •973 854	322 201 081 *962 842	309 189 069 •950 830	297 177 057 *938 818	285 165 045 *926 806	273 153 033 •914 795	261 141 021 *902 783	1 2 3 4	12 1 2 4 5
5 6 7 8 9		771 652 533 415 297	759 640 522 403 286	747 628 510 392 274	735 616 498 380 262	723 604 486 368 250	711 593 474 356 239	699 581 462 344 227	688 569 451 333 215	676 557 439 321 203	664 545 427 309 192	5 6 7 8 9	6 7 8 10 11
370 1 2 3 4	. 42	180 063 946 829 713	168 051 934 817 701	156 039 922 806 690	145 028 911 794 678	133 016 899 783 666	121 004 887 771 655	109 *992 876 759 643	098 *981 864 748 632	086 *069 852 736 620	*074 957 841 724 608	1 2 3 4	11 1 2 3 4
5 6 7 8 9		597 481 366 251 136	585 470 354 239 125	574 458 343 228 113	562 447 331 216 102	551 435 320 205 090	539 424 308 193 079	527 412 297 182 067	516 400 285 170 056	504 389 274 159 045	493 377 262 148 033	5 6 7 8 9	6 7 8 9 10
380 1 2 3 4	. 41	022 908 794 680 567	010 896 782 669 556	*999 885 771 657 544	*987 873 760 646 533	*976 862 748 635 522	*965 851 737 623 510	*953 839 726 612 499	*942 828 714 601 488	*930 816 703 590 476	*919 805 691 578 465	1 2 3 4	10 1 2 3 4
5 6 7 8 9		454 341 229 117 005	443 330 218 106 *994	431 319 206 094 *983	420 308 195 083 •972	409 296 184 072 *960	398 285 173 061 •949	386 274 162 050 •938	375 263 150 039 *927	364 251 139 027 •916	353 240 128 016 *905	5 6 7 8 9	5 6 7 8 9
390 1 2 3 4	. 40	894 782 671 561 450	882 771 660 550 439	871 760 649 539 428	860 749 638 528 417	849 738 627 517 406	838 727 616 506 395	827 716 605 494 384	816 705 594 483 373	805 694 583 472 362	793 682 572 461 351		
5 6 7 8 9	. 39	340 230 121 012 903	329 220 110 001 892	318 209 099 *990 881	307 198 088 *979 870	296 187 077 *968 859	285 176 066 *957 848	274 165 055 *946 837	263 154 044 *935 827	252 143 034 •924 816	241 132 *023 914 805		
400		794	783	772	761	751	74 0	729	718	707	696		

Table 92 (Continued)
Cologarithms of Numbers

No.	·	0	1	2	3	4	5	6	7	8	9	P	.P:
400 1 2 3 4	.39	794 686 577 469 362	783 675 567 459 351	772 664 556 448 340	761 653 545 437 330	751 642 534 426 319	740 631 523 416 308	729 621 513 405 297	718 610 502 394 287	707 599 491 383 276	696 588 480 373 265		
5 6 7 8 9	.38	254 147 041 934 828	244 137 030 923 817	233 126 019 913 806	222 115 009 902 796	212 105 *998 891 785	201 094 *987 881 775	190 083 •977 870 764	179 073 *966 860 753	169 062 *955 849 743	158 051 *945 838 732	1 2 3 4	11 1 2 3 4
410 1 2 3 4		722 616 510 405 300	711 605 500 394 289	700 595 489 384 279	690 584 479 373 269	679 574 468 363 258	669 563 458 352 248	658 552 447 342 237	648 542 437 331 227	-637 531 426 321 216	626 521 416 310 206	5 6 7 8 9	6 7 8 9 10
5 6 7 8 9	.37	195 091 986 882 779	185 080 976 872 768	174 070 966 862 758	164 059 955 851 748	153 049 945 841 737	143 038 934 830 727	132 028 924 820 716	122 018 914 810 706	112 007 903 799 696	101 *997 893 789 685		
420 1 2 3 4		675 572 469 366 263	665 561 458 356 253	654 551 448 345 243	644 541 438 335 233	634 531 428 325 222	623 520 417 315 212	613 510 407 304 202	603 500 397 294 192	592 489 387 284 182	582 479 376 274 171	1 2 3 4	10 1 2 3 4
5 6 7 8 9	.36	161 059 957 856 754	151 049 947 845 744	141 039 937 835 734	130 028 927 825 724	120 018 917 815 714	110 008 906 805 704	100 *998 896 795 694	090 *988 886 785 683	079 *978 876 775 673	069 *967 866 764 663	5 6 7 8 9	5 6 7 8 9
430 1 2 3 4		653 552 452 351 251	643 542 442 341 241	633 532 432 331 231	623 522 421 321 221	613 512 411 311 211	603 502 401 301 201	593 492 391 291 191	583 482 381 281 181	572 472 371 271 171	562 462 361 261 161		
5 6 7 8 9	.35	151 051 952 853 754	141 041 942 843 744	131 031 932 833 734	121 021 922 823 724	111 012 912 813 714	101 002 902 803 704	091 *992 892 793 694	081 *982 882 783 684	071 *972 872 773 674	061 *962 863 763 665	1 2 3 4	9 1 2 3 4
440 1 2 3 4		655 556 458 360 262	645 546 448 350 252	635 536 438 340 242	625 527 428 330 232	615 517 418 320 223	605 507 409 311 213	596 497 399 301 203	586 487 389 291 193	576 477 379 281 184	566 468 369 271 174	5 6 7 8 9	5 6 7 8
5 6 7 8 9	. 34	164 067 969 872 775	154 057 960 863 766	144 047 950 853 756	135 037 940 843 746	125 028 930 833 737	115 018 921 824 727	105 008 911 814 717	096 *998 901 804 708	086 *989 892 795 698	076 *979 882 785 688		
450		679	669	659	650	640	631	621	611	602	592		

Table 92 (Continued)

COLOGARITHMS OF NUMBERS .

NT.		0	1	2	8	4	5	6	7	8	9	P	P.
No.		0	1		0	4		6	-	!	8	L.	· • ·
450 1	. 34	679 582 486	669 573 477	659 563 467	650 553 457	640 544 448	631 534 438	621 525 429	611 515 419	602 505 409	592 496 400		
2 3 4		390 294	381 285	371 275	361 266	352 256	342 247	333 237	323 228	314 218	304 208		
5 6 7		199 104	189 094	180 084	170 075	161 065	151 056	142 046	132 037	123 027 •932	113 018 •923	1	10 1
7 8 9	. 33	913 819	*999 904 809	*989 894 800	*980 885 790	970 876 781	*961 866 771	*951 857 762	*942 847 753	932 838 743	923 828 734	2 3 4	2 3 4
460 1		724 630	715 620	705 611	696 602	686 592	677 583	668 573	658 564	649 555	639 545	5	5 6
2 3 4		536 442 348	526 433 339	517 423 329	508 414 320	498 404 311	489 395 301	479 386 292	470 376 283	461 367 273	451 358 264	6 7 8 9	5 6 7 8 9
		255 161	245 152	236 143	227 133	217	208 115	199 106	189 096	180 087	171 078		•
5 6 7 8 9	. 32	068 975 883	059 966 873	050 957 864	040 948 855	124 031 938 846	022 929 836	013 920 827	003 911 818	*994 901 809	*985 892 799		
470		790	781	772	763	753 661	744	735 643	726 633	716 624	707		9 1
1 2 3 4		698 606 514	689 597 505	679 587 496	670 578 486	569 477	652 560 468	551 459	541 450	532 440	615 523 431	1 2 3	2 3 4
1 1		422 331	413 321	404 312	395 303	386 294	376 285	367 276	358 267	349 258	340 248	4 5 7	
5 6 7 8		239 148 057	230 139 048	221 130 039	212 121 030	203 112 021	194 103 012	185 094 003	175 084 •994	166 075 •985	157 066 *976	7 8 9	5 6 7 8
9 480	. 31	966 876	957 867	948 858	939 849	930 840	921 831	912 822	903 813	894 804	885 795		
1 2 3		785 695	776 686	767 677	758 668	749 659	740 650	731 641	722 632	713 623	704 614		
3 4		605 515	596 506	587 498	578 489	569 480	560 471	551 462	542 453	533 444	524 435		
5 6 7		426 336 247	417 327 238	408 319 229	399 310 220	390 301 211	381 292 203	372 283 194	363 274 185	354 265 176	345 256 167	1 2	1 2 2 3
8 9		158 069	149 060	140 051	131 042	122 034	114 025	105 016	096 007	087 *998	078 *989	3 4	3
490 1	. 30	980 892	972 883	963 874	954 865 777	945 856	936 848	927 839	918 830	.910 821 733	901 812 724	5 6 7	4 5
2 3 4		803 715 627	795 706 619	786 698 610	689 601	768 680 592	759 671 583	751 662 575	742 654 566	645 557	636 548	8	4 5 6 7
5 6		539 452	531 443	522 434	513 426	504 417	496 408	487 399	478 391	469 382	461 373		
6 7 8 9		364 277 190	356 268 181	347 260 173	338 251 164	329 242 155	321 233 146	312 225 138	303 216 129	295 207 120	286 199 112		
500		103	094	086	077	068	060	051	042	034	025		

Table 92 (Continued)
Cologarithms of Numbers

No.		0	1	2	3	4	5	6	7	8	9	P	Р.
500 1 2 3 4	.30	103 016 930 843 757	094 008 921 835 748	086 *999 912 826 740	077 *990 904 817 731	068 *982 895 809 722	060 *973 886 800 714	051 *964 878 791 705	042 *956 869 783 697	034 *947 860 774 688	025 *938 852 766 679		
5 6 7 8 9		671 585 499 414 328	662 576 491 405 320	654 568 482 397 311	645 559 474 388 303	636 551 465 379 294	628 542 456 371 286	619 533 448 362 277	611 525 439 354 269	602 516 431 345 260	594 508 422 337 251	1 2 3 4	9 1 2 3 4
510 1 2 3 4	. 28	243 158 073 988 904	234 149 065 980 895	226 141 056 971 887	217 132 048 963 878	209 124 039 954 870	200 115 031 946 861	192 107 022 937 853	183 098 014 929 845	175 090 005 921 836	166 081 *997 912 828	5 6 7 8 9	5 6 7 8
5 6 7 8 9		819 735 651 567 483	811 727 643 559 475	802 718 634 550 467	794 710 626 542 458	786 701 617 534 450	777 693 609 525 441	769 685 601 517 433	760 676 592 508 425	752 668 584 500 416	743 659 575 492 408		
520 1 2 3 4		400 316 233 150 067	391 308 225 142 059	383 300 216 133 050	375 291 208 125 042	366 283 200 117 034	358 275 191 108 025	350 266 183 100 017	341 258 175 092 009	333 250 166 083 001	325 241 158 075 *992	1 2 3 4	8 1 2 2 3
5 6 7 8 9	. 27	984 901 819 737 654	976 893 811 728 646	968 885 802 720 638	959 877 794 712 630	951 868 786 704 622	943 860 778 696 613	934 852 770 687 605	926 844 761 679 597	918 835 753 671 589	910 827 745 663 581	5 6 7 8 9	4 5 6 7
530 1 2 3 4		572 491 409 327 246	564 482 401 319 238	556 474 393 311 230	548 466 384 303 221	540 458 376 295 213	531 450 368 287 205	523 442 360 278 197	515 433 352 270 189	507 425 344 262 181	499 417 335 254 173		
5 6 7 8 9	.26	165 084 003 922 841	157 075 •994 914 833	148 067 •986 906 825	140 059 •978 898 817	132 051 •970 889 809	124 043 •962 881 801	116 035 •954 873 793	108 027 *946 865 785	100 019 •938 857 777	092 011 *930 849 769	1 2 3 4	7 1 1 2 3
540 1 2 3 4		761 680 600 520 440	753 672 592 512 432	745 664 584 504 424	737 656 576 496 416	728 648 568 488 408	720 640 560 480 400	712 632 552 472 392	704 624 544 464 384	696 616 536 456 376	688 608 528 448 368	5 6 7 8 9	4 4 5 6
5 6 7 8 9		360 281 201 122 043	352 273 193 114 035	344 265 185 106 027	336 257 177 098 019	328 249 170 090 011	321 241 162 082 003	313 233 154 074 •995	305 225 146 067 •987	297 217 138 059 *980	289 209 130 051 •972		
550	.25	964	956	948	940	932	924	916	908	901	893		

Table 92 (Continued) Cologarithms of Numbers

				OLGG	ARI	HMS	OF	NUM	BEK				
No.		0	1	2	3	4	5	6	7	8	9	Ρ.	Р.
550 1 2 3 4	. 25	964 885 806 727 649	956 877 798 720 641	948 869 790 712 633	940 861 782 704 626	932 853 775 696 618	924 845 767 688 610	916 838 759 680 602	908 830 751 673 594	901 822 743 665 586	893 814 735 657 579		
5 6 7 8 9	•	571 493 414 337 259	563 485 497 329 251	555 477 399 321 243	547 469 391 313 236	539 461 383 305 228	532 453 376 298 220	524 446 368 290 212	516 438 360 282 204	508 430 352 274 197	500 422 344 267 189	-	8
560 1 2 3 4	. 24	181 104 026 949 872	173 096 019 941 864	166 088 011 934 857	158 080 003 926 849	150 073 *995 918 841	142 065 988 911 834	135 057 *980 903 826	127 050 *972 895 818	119 042 *965 887 811	111 034 957 880 803	1 2 3 4 5	1 2 2 3 4
5 6 7 8 9		795 718 642 565 489	787 711 634 558 481	780 703 626 550 474	772 695 619 542 466	764 688 611 535 458	757 680 603 527 451	749 672 596 519 443	741 665 588 512 435	734 657 580 504 428	726 649 573 496 420	6 7 8 9	5 6 7
570 1 2 3 4		413 336 260 185 109	405 329 253 177 101	397 321 245 169 094	390 314 238 162 • 086	382 306 230 154 079	374 298 222 147 071	367 291 215 139 063	359 283 207 132 056	352 276 200 124 048	344 268 192 116 041		
5 6 7 8 9	. 23	033 958 882 807 732	026 950 875 800 725	018 943 867 792 717	011 935 860 785 710	003 928 852 777 702	*995 920 845 770 695	*988 913 837 762 687	*980 905 830 755 680	*973 897 822 747 672	*965 890 815 740 665		7
580 1 2 3 4		657 582 508 433 359	650 575 500 426 351	642 567 493 418 344	635 560 485 411 336	627 552 478 403 329	620 545 470 396 322	612 538 463 388 314	605 530 455 381 307	597 523 448 374 299	590 515 441 366 292	1 2 3 4 5	1 2 3 4
5 6 7 8 9	.22	284 210 136 062 988	277 203 129 055 981	270 195 121 047 974	262 188 114 040 966	255 181 107 033 959	247 173 099 025 952	240 166 092 018 944	232 158 084 011 937	225 151 077 003 930	218 144 070 *996 922	6 7 8 9	4 5 6
590 1 2 3 4		915 841 768 695 621	907 834 760 687 614	900 827 753 680 607	893 819 746 673 599	885 812 738 665 592	878 805 731 658 585	871 797 724 651 578	863 790 717 643 570	856 783 709 636 563	849 775 702 629 556		
5 6 7 8 9		548 475 403 330 257	541 468 395 323 250	534 461 388 315 243	526 454 381 308 236	519 446 373 301 228	512 439 366 294 221	505 432 359 286 214	497 424 352 279 207	490 417 344 272 199	483 410 337 265 192		
600		185	178	170	163	156	149	141	134	127	120	L	

Table 92 (Continued)
Cologarithms of Numbers

							-		7			B	P.
No.	<u> </u>	0	1	2	3	4	5	6	7	8	9	F.	F.
600 1 2 3 4	.22	185 113 040 968 896	178 105 033 961 889	170 098 026 954 882	163 091 019 947 875	156 084 012 939 868	149 076 004 932 860	141 069 *997 925 853	134 062 *990 918 846	127 055 *983 911 839	120 048 *975 903 832		
5 6 7 8 9		824 753 681 610 538	817 746 674 602 531	810 738 667 595 524	803 731 660 588 517	796 724 653 581 510	789 717 645 574 503	781 710 638 567 496	774 703 631 560 488	767 695 624 553 481	760 688 617 545 474	1 2 3 4	8 1 2 2 3
610 1 2 3 4		467 396 325 254 183	460 389 318 247 176	453 382 311 240 169	446 375 304 233 162	439 367 296 226 155	431 360 289 219 148	424 353 282 211 141	417 346 275 204 134	410 339 268 197 127	403 332 261 190 120	5 6 7 8 9	4 5 6 6 7
5 6 7 8 9	. 20	112 042 971 901 831	105 035 964 894 824	098 028 957 887 817	091 021 950 880 810	084 014 943 873 803	077 007 936 866 796	070 000 929 859 789	063 *993 922 852 782	056 *986 915 845 775	049 *979 908 838 768		
620 1 2 3 4		761 691 621 551 482	754 684 614 544 475	747 677 607 537 468	740 670 600 530 461	733 663 593 523 454	726 656 586 516 447	719 649 579 509 440	712 642 572 502 433	705 635 565 495 426	698 628 558 489 419	1 2 3 4	7 1 1 2 3
5 6 7 8 9		412 343 273 204 135	405 336 266 197 128	398 329 259 190 121	39.1 322 252 183 114	384 315 246 176 107	377 308 239 169 100	370 301 232 163 094	363 294 225 156 087	356 287 218 149 080	350 280 211 142 073	5 6 7 8 9	4 4 5 6 6
630 1 2 3 4	. 19	066 997 928 860 791	059 990 921 853 784	052 983 915 846 777	045 976 908 839 771	038 970 901 832 764	031 963 894 825 757	025 956 887 818 750	018 949 880 812 743	011 942 873 805 736	004 935 866 798 729	,	
5 6 7 8 9		723 654 586 518 450	716 647 579 511 443	709 641 572 504 436	702 634 566 498 430	695 627 559 491 423	688 620 552 484 416	682 613 545 477 409	675 607 538 470 402	668 600 532 464 396	661 593 525 457 389	1 2 3 4	6 1 1 2 2
640 1 2 3 4		382 314 246 179 111	375 307 240 172 105	368 301 233 165 098	362 294 226 159 091	355 287 219 152 084	348 280 213 145 078	341 274 206 138 071	335 267 199 132 064	328 260 192 125 057	821 253 186 118 051	5 6 7 8	3 4 4 5 5
5 6 7 8	.18	044 977 910 842 776	037 970 903 836 769	031 963 896 829 762	024 957 889 822 755	017 950 883 816 749	010 943 876 809 742	004 936 869 802 735	*997 930 863 796 729	*990 923 856 789 722	*983 916 849 782 715	-	
650		709	7 02	695	689	682	675	669	662	655	649		

TABLE 92 (Continued)
COLOGARITHMS OF NUMBERS

			, 1		, 1		. 1	0	7			P	
No.		0	1	2	3	4	5	6	7	!	9	P.	P.
650 1 2 3 4	.18	709 642 575 509 442	702 635 569 502 436	695 629 562 495 429	689 622 555 489 422	682 615 549 482 416	675 609 542 475 409	669 602 535 469 402	662 595 529 462 396	655 589 522 456 389	649 582 515 449 383		
5 6 7 8 9		376 310 243 177 111	369 303 237 171 105	363 296 230 164 098	356 290 224 158 092	349 283 217 151 085	343 277 210 144 079	336 270 204 138 072	329 263 197 131 065	323 257 191 125 059	316 250 184 118 052		
660 1 2 3 4	.17	046 980 914 849 783	039 973 908 842 777	032 967 901 836 770	026 960 895 829 764	019 954 888 822 757	013 947 881 816 751	006 940 875 809 744	000 934 868 803 737	*993 927 862 796 731	*986 921 855 790 724	1 2 3 4	7 1 1 2 3
5 6 7 8 9		718 653 587 522 457	711 646 581 516 451	705 640 574 509 444	698 633 568 503 438	692 627 561 496 431	685 620 555 490 425	679 613 548 483 418	672 607 542 477 412	666 600 535 470 405	659 594 529 464 399	5 6 7 8 9	4 4 5 6
670 1 2 3 4		393 328 263 198 134	386 321 257 192 128	380 315 250 186 121	373 308 244 179 115	367 302 237 173 108	360 295 231 166 102	354 289 224 160 095	347 282 218 153 089	341 276 211 147 082	334 270 205 140 076		
5 6 7 8 9	.16	070 005 941 877 813	063 *999 935 871 807	057 *992 928 864 800	050 *986 922 858 794	044 *980 915 851 787	037 *973 909 845 781	031 *967 903 839 775	025 *960 896 932 768	018 *954 890 826 762	012 •948 883 819 755		
680 1 2 3 4		749 685 622 558 494	743 679 615 552 488	736 673 609 545 482	730 666 602 539 475	724 660 596 533 469	717 653 590 526 463	711 647 583 520 4 56	704 641 577 513 450	698 634 571 507 444	692 628 564 501 437	1 2 3 4	6 1 1 2 2
5 6 7 8 9		431 368 304 241 178	425 361 298 235 172	418 355 292 229 165	412 349 285 222 159	406 342 279 216 153	399 336 273 210 147	393 330 266 203 140	387 323 260 197 134	380 317 254 191 128	374 311 247 184 121	5 6 7 8 9	3 4 4 5 5
690 1 2 3 4	. 15	115 052 989 927 864	109 046 983 920 858	103 040 977 914 852	096 033 971 908 845	090 027 964 902 839	084 021 958 895 833	077 015 952 889 827	071 008 945 883 820	065 002 939 877 814	058 *996 933 870 808		
5 6 7 8 9		802 739 677 614 552	795 733 670 608 546	789 727 664 602 540	783 720 658 596 534	777 714 652 590 527	770 708 646 583 521	764 702 639 577 515	758 695 633 571 509	752 689 627 565 503	745 683 621 558 496		
700		490	484	478	472	465	459	453	447	441	434		

 ${\sf Digitized\ by\ Google}$

Table 92 (Continued)
Cologarithms of Numbers

No.	0	1	2	3	4	5	6	7	8	9	P.	P.
700 1 2 3 4	.15 49 42 36 30 24	8 422 6 360 4 298	478 416 354 292 230	472 410 348 286 224	465 403 342 280 218	335 274	453 391 329 267 206	447 385 323 261 200	441 379 317 255 193	434 372 311 249 187		
5 6 7 8 9	18 12 05 05 .14 99 93	0 113 8 052 7 991	169 107 046 984 923	163 101 040 978 917	156 095 033 972 911	150 089 027 966 905	144 083 021 960 899	138 076 015 954 893	132 070 009 948 886	126 064 003 942 880	1 2 3 4	1 1 2 3
710 1 2 3 4	87 81 75 69 63	3 807 2 746 1 685	862 801 740 679 618	856 795 734 673 612	850 789 728 667 606	844 783 722 661 600	837 776 715 655 594	831 770 709 648 588	825 764 703 642 582	819 758 697 636 575	5 6 7 8 9	4 4 5 6
5 6 7 8 9	56 50 44 38 32	9 503 8 442 8 382	557 497 436 375 315	551 491 430 369 309	545 484 424 363 303	539 478 418 357 297	533 472 412 351 291	527 466 406 345 285	521 460 400 339 279	515 454 394 333 273		
720 1 2 3 4	26 20 14 08 02	6 200 6 140 6 080	255 194 134 074 014	249 188 128 068 008	243 182 122 062 002	237 176 116 056 •996	231 170 110 050 •990	225 164 104 044 •984	219 158 098 038 •978	212 152 092 032 *972	1 2 3 4	1 1 2 2
5 6 7 · 8	.13 96 90 84 78 72	6 900 7 841 7 781	954 894 835 775 715	948 888 829 769 709	942 882 823 763 703	936 876 817 757 697	930 870 811 751 6 92	924 864 805 745 686	918 859 799 739 680	912 853 793 733 674	5 6 7 8 9	3 4 4 5 5
730 1 2 3 4	66 60 54 49 43	8 602 9 543 0 484	656 596 537 478 419	650 590 531 472 413	644 585 525 466 407	638 579 519 460 401	632 573 513 454 395	626 567 507 448 389	620 561 501 442 383	614 555 496 436 377		
5 6 7 8 9	37 31 25 19 13	3 247 4 188	359 300 241 183 124	354 295 236 177 118	348 289 230 171 112	342 283 224 165 106	336 277 218 159 100	330 271 212 153 094	324 265 206 147 089	318 259 200 141 083	5 1 2 3 4	1 1 2 2
740 1 2 3 4	07 01 .12 96 90 84	8 012 0 954 1 895	065 006 948 889 831	059 001 942 884 825	053 *995 936 878 819	047 *989 930 872 814	042 *983 925 866 808	036 •977 919 860 802	030 *971 913 854 796	024 *965 907 849 790	5 6 7 8 9	3 4 4 5
5 6 7 8 9	78 72 66 61 55	6 720 8 662 0 604	773 714 656 598 540	767 709 651 592 534	761 703 645 587 529	755 697 639 581 523	749 691 633 575 517	744 685 627 569 511	738 680 621 563 505	732 674 616 558 500		
750	49	4 488	482	477	471	465	459	453	448	442		

 ${}_{\text{Digitized by}}Google$

TABLE 92 (Continued)
COLOGARITHMS OF NUMBERS

				JARI		OF.		BEK				
No.		0 1	2	3	4	5	6	7	8	9 .	P.]	P.
750 1 2 3 4	4 3 3	94 488 36 436 78 37 21 31 63 25	2 367 5 309	477 419 361 303 246	471 413 355 297 240	407 349 292	459 401 344 286 228	453 396 338 280 223	448 390 332 274 217	442 384 326 269 211	ł	
5 6 7 8 9	1 0 0	05 200 48 14: 90 08: 33 02: 76 970	2 136 5 079 7 022	188 131 073 016 959	182 125 067 010 953	177 119 062 004 947	171 113 056 •999 942	165 108 050 •993 936	159 102 045 •987 930	154 096 039 *982 924		
760 1 2 3 4	86 86 74	19 913 62 856 05 799 48 742 91 685	850 793 736	902 844 787 730 674	896 839 782 725 668	890 833 776 719 662	884 827 770 713 657	879 822 765 708 651	873 816 759 702 645	867 810 753 696 640	6 1 2 3 4	1 1 2 2
5 6 7 8 9	52	34 458	566 509 453	617 560 503 447 390	611 554 498 441 385	605 549 492 436 379	600 543 487 430 373	594 537 481 424 368	588 532 475 419 362	583 526 470 413 357	5 6 7 8	3 4 4 5 5
770 1 2 3 4	35 29 23 18 12	95 289 38 233 32 176	283 227 171	334 278 221 165 109	328 272 216 160 103	323 266 210 154 098	317 261 205 148 092	311 255 199 143 087	306 250 193 137 081	300 244 188 132 075		
5 6 7 8 9	. 10 95 90 84	4 008 58 952 02 896	003 947	053 *997 941 885 830	047 *991 936 880 824	042 *986 930 874 818	036 •980 924 869 813	031 *975 919 863 807	025 •969 913 857 802	019 *963 908 852 796		
780 1 2 3 4	79 73 67 62 56	5 729 79 674 24 618	779 724 668 613 557	774 718 663 607 552	768 713 657 602 546	763 707 652 596 541	757 702 646 591 535	752 696 640 585 530	746 690 635 579 524	740 685 629 574 519	5 1 2 3 4	1 1 2 2
5 6 7 8 9	51 45 40 34 29	8 452 3 397 7 342	502 447 391 336 281	496 441 386 331 276	491 436 380 325 270	485 430 375 320 265	480 425 369 314 259	474 419 364 309 254	469 414 358 303 248	463 408 353 298 243	5 6 7 8 9	3 4 4 5
790 1 2 3 4	23 18 12 07 01	32 177 27 122 3 067	226 171 117 062 007	221 166 111 056 002	215 160 106 051 •996	210 155 100 045 *991	204 149 095 040 •985	199 144 089 034 •980	193 138 084 029 •974	188 133 078 023 •969		
5 6 7 8 9	.09 96 90 85 80 74	903 54 849	898 843 789	947 892 838 783 729	941 887 832 778 724	936 881 827 773 718	931 876 821 767 713	925 871 816 762 707	920 865 811 756 702	914 860 805 751 696		
800	69	686	680	675	669	664	658	653	648	642		

TABLE 92 (Continued)
COLOGARITHMS OF NUMBERS

No.		0	1	2	3	4	5	6	.7	: 8	.19	P.P.
800 1 2 3 4	.09	691 637 583 528 474	686 631 577 523 469	680 626 572 518 464	675 620 566 512 458	669 615 561 507 453	664 610 555 501 447	658 604 550 496 442	653 599 545 491 437	648 593 539 485 431	642 588 534 480 426	-
5 6 7 8 9		420 366 313 259 205	415 361 307 253 200	410 356 302 248 194	404 350 297 243 189	399 345 291 237 184	393 340 286 232 178	388 334 280 227 173	383 329 275 221 168	377 323 270 216 162	372 318 264 211 157	
810 1 2 3 4	.08	151 098 044 991 938	146 093 039 986 932	141 087 034 980 927	135 082 028 975 922	130 076 023 970 916	125 071 018 964 911	119 066 012 9#9 906	114 060 007 954 900	109 055 002 948 895	103 050 *996 943 890	6 1 1 2 1 3 2 4 2
5 6 7 8 9		884 831 778 725 672	879 826 772 719 666	874 820 767 714 661	868 815 762 709 656	863 810 757 703 650	858 804 751 698 645	852 799 746 693 640	847 794 741 688 635	842 788 735 682 629	836 783 730 677 624	5 3 6 4 7 4 8 5 9 5
820 3 1 2 3 4		619 566 513 460 407	613 560 508 455 402	608 555 502 449 397	603 550 497 444 391	597 545 492 439 386	592 539 486 434 381	587 534 481 428 376	582 529 476 423 370	576 523 471 418 .365	571 518 465 413 360	1 2
5 6 7 8 9		355 302 249 197 145	349 297 244 192 139	344 291 239 186 134	339 286 234 181 129	334 281 228 176 124	328 276 223 171 118	323 270 218 166 113	318 265 213 160 108	260 207 155 103	307 255 202 150 097	
830 1 2 3 4	. 07	092 040 988 935 883	087 035 982 930 878	082 029 977 925 878	076 024 972 920 868	071 019 967 915 863	066 014 962 909 857	061 009 956 904 852	056 003 951 899 847	9050 *908 946 894 842	045 *993 941 889 837	5 1 1 2 1 3 2 4 2
5 6 7 8 9		831 779 727 676 624	826 774 722 670- 619	821 769 717 665 613	816 764 712 660 6 08	811 759 707 655 6 03	805 753 702 650 598	800 748 696 645 593	795 743 691 639 588	790 738 686 634 582	785 733 681 629 577	5 3 6 3 7 4 8 4 9 5
840 1 2 3 4		572 520 469 417 366	567 515 464 412 361	562 510 458 407 355	557 505 453 402 350	551 500 448 397 345	546 495 443 391 340	541 489 438 386 335	536 484 433 381 330	531 479 428 376 325	526 474 422 371 319).).
5 6 7 8 9		314 263 212 160 109	309 258 207 155 104	304 253 201 150 099	299 248 196 145 094	294 242 191 140 089	289 237 186 135 0 84	284 232 181 130 079	278 227 176 125 073	273 222 171 119 068	268 217 166 114 063	•
850		058	053	048	043	038	033	027	022	017	012	

 $\mathsf{Digitized} \ \mathsf{by} \ Google$

Table 92 (Continued)
Cologarithms of Numbers

T T		_			ARIT	-	-	•	-	_			
No.		0	1	2	3	4	5	6	7	8	9		P.P.
850 1 2 3 4	.07 .06	058 007 956 905 854	053 002 951 900 849	048 *997 946 895 844	043 *992 941 890 839	038 *987 936 885 834	033 *982 931 880 829	027 *976 925 875 824	022 *971 920 869 819	017 *966 915 864 814	012 *961 910 859 808		
5 6 7 8 9		803 753 702 651 601	798 748 697 646 596	793 742 692 641 591	788 737 687 636 586	783 732 682 631 580	778 727 677 626 575	773 722 672 621 570	768 717 666 616, 565	763 712 661 611 560	758 707 656 606 555	1 2 3 4	1 1 2 2
860 1 2 3 4		550 500 449 399 349	545 495 444 394 344	540 490 439 389 339	535 485 434 •384 334	530 480 429 379 329	525 474 424 374 324	520 469 419 369 318	515 464 414 364 313	510 459 409 359 308	505 454 404 354 303	5 6 7 8 9	3 4 4 5 5
5 6 7 8 9		298 248 198 148 098	293 243 193 143 093	288 238 188 138 088	283 233 183 133 083	278 228 178 128 078	273 223 173 123 073	268 218 168 118 068	263 213 163 113 063	258 298 158 108 058	253 203 153 103 053		
870 1 2 3 4	. 05	048 998 948 899 849	043 993 943 894 844	038 988 938 889 839	033 983 933 884 834	028 978 928 879 829	023 973 923 874 824	018 968 918 869 819	013 963 914 864 814	008 958 909 859 809	003 953 904 954 804	1 2 3 4	1 1 2 2
5 6 7 8 9		799 750 700 651 601	794 745 695 646 596	789 740 690 641 591	784 735 685 636 586	779 730 680 631 581	774 725 675 626 576	769 720 670 621 571	764 715 665 616 567	760 710 660 611 562	755 705 655 606 557	5 6 7 8 9	3 4 4 5
880 1 2 3 4	:	552 502 453 404 355	547 497 448 399 350	542 493 443 394 345	537 488 438 389 340	532 483 433 384 335	527 478 429 379 330	522 473 424 374 325	517 468 419 370 320	512 463 414 365 315	507 458 409 360 311		
5 6 7 8 9		306 257 208 159 110	301 252 203 154 105	296 247 198 149 100	291 242 193 144 095	286 237 188 139 090	281 232 183 134 085	276 227 178 129 081	271 222 173 124 076	266 217 168 120 071	262 213 164 115 066	1 2 3 4	0 1 1 2
890 1 2 3 4	.04	061 012 964 915 866	056 007 959 910 861	051 002 954 905 857	046 *998 949 900 852	041 *993 944 895 847	037 *988 939 891 842	032 *983 934 886 837	027 *978 929 881 832	022 *973 925 876 827	017 *968 920 871 823	5 6 7 8 9	2 2 3 4
5 6 7 8 9		818 769 721 672 624	813 764 716 668 619	808 760 711 663 614	803 755 706 658 610	798 750 701 653 605	793 745 697 648 600	789 740 692 643 595	784 735 687 639 590	779 730 682 634 585	774 726 677 629 581		
900		576	571	566	561	556	552	547	542	537	532		

 ${}_{\text{Digitized by}}Google$

Table 92 (Continued) Cologarithms of Numbers

No.	0	1	2	3	4	5	6	7	8	9	P	. P .
900 1 2 3 4	.04 576 528 479 431 383	571 523 475 426 378	566 518 470 422 374	561 513 465 417 369	556 508 460 412 364	552 503 455 407 359	547 499 450 402 354	542 494 446 398 350	537 489 441 393 345	532 484 436 388 340		
5 6 7 8 9	335 287 239 191 144	330 282 234 187 139	326 278 230 182 134	321 273 225 177 129	316 268 220 172 125	311 263 215 168 120	306 258 211 163 115	302 254 206 158 110	297 249 201 153 105	292 244 196 148 101		
910 1 2 3 4	096 048 001 .03 953 905	091 043 *996 948 901	086 039 *991 943 896	082 034 *986 939 891	077 029 *981 934 886	072 024 *977 929 882	067 020 *972 924 877	062 015 *967 920 872	058 010 *962 915 867	053 005 *958 910 863	1 2 3 4	1 1 2 2
5 6 7 8 9	858 810 763 716 668	853 806 758 711 664	848 801 754 706 659	844 796 749 702 654	839 791 744 697 650	834 787 739 692 645	829 782 735 687 640	825 777 730 683 635	820 773 725 678 631	815 768 720 673 626	5 6 7 8 9	3 4 4 5
920 1 2 3 4	621 574 527 480 433	616 569 522 475 428	612 565 517 470 423	607 560 513 466 419	602 555 508 461 414	598 550 503 456 409	593 546 499 452 405	588 541 494 447 400	583 536 489 442 395	579 532 485 438 391		
5 6 7 8 9	386 339 292 245 198	381 334 287 241 194	376 330 283 236 189	372 325 278 231 184	367 320 273 226 180	362 315 269 222 175	358 311 264 217 170	353 306 259 212 166	348 301 255 208 161	344 297 250 203 156		
930 1 2 3 4	152 105 058 012 .02 965	147 100 054 007 961	142 096 049 003 956	138 091 044 *998 951	133 086 040 *993 947	128 082 035 *989 942	124 077 030 *984 937	119 072 026 *979 933	114 068 021 *975 928	110 063 016 *970 923	1 2 3 4	0 1 1 2
5 6 7 8 9	919 872 826 780 733	914 868 821 775 729	910 863 817 770 724	905 858 812 766 720	900 854 808 761 715	896 849 803 757 710	891 845 798 752 706	886 840 794 747 701	882 835 789 743 696	877 831 784 738 692	5 6 7 8	2 2 3 4
940 1 2 3 4	687 641 595 549 503	683 636 590 544 498	678 632 586 540 494	673 627 581 535 489	669 623 576 530 484	664 618 572 526 480	660 613 567 521 475	655 609 563 517 471	650 604 558 512 466	646 600 553 507 461		
5 6 7 8	457 411 365 319 273	452 406 360 315 269	448 402 356 310 264	443 397 351 305 260	438 393 347 301 255	434 388 342 296 251	429 383 337 292 246	425 379 333 287 241	420 374 328 283 237	415 370 324 278 232		
950	228	223	218	214	209	205	200	196	191	187		

Table 92 (Concluded) Cologarithms of Numbers

N _a			, 1		2	4	-		7	T e	l c		. D
No.		0	1	2	3	4	5	6	7	8	9	1 1	P.P.
950 1 2 3 4	.02	228 182 136 091 045	.223 177 132 086 041	218 173 127 082 036	214 168 123 077 032	209 164 118 072 027	205 159 114 068 022	200 155 109 063 018	196 150 104 059 013	191 145 100 054 009	187 141 095 050 004		
5 6 7 8 9	.01	000 954 909 863 818	*995 950 904 859 814	*991 945 900 854 809	*986 941 895 850 805	*981 936 891 845 800	*977 932 886 841 796	*972 927 882 836 791	*968 922 877 832 786	*963 918 873 827 782	*959 913 868 823 777		
960 1 2 3 4		773 728 682 637 592	768 723 678 633 588	764 719 673 628 583	759 714 669 624 579	755 710 664 619 574	750 705 660 615 570	746 701 655 610 565	741 696 651 606 561	737 692 646 601 556	732 687 642 597 552	1 2 3 4	1 1 2 2
5 6 7 8 9		547 502 457 412 368	543 498 453 408 363	538 493 448 403 359	534 489 444 399 354	529 484 439 395 350	525 480 435 390 345	520 475 430 386 341	516 471 426 381 336	511 466 421 377 332	507 462 417 372 327	5 6 7 8 9	3 4 4 5
970 1 2 3 4		323 278 233 189 144	318 274 229 184 140	314 269 224 180 135	309 265 220 175 131	305 260 216 171 126	300 256 211 166 122	296 251 207 162 117	291 247 202 157 113	287 242 198 153 108	283 238 193 149 104		
5 6 7 8 9	.00	100 055 011 966 922	095 051 006 962 917	091 046 002 957 913	086 042 •997 953 908	082 037 *993 948 904	077 033 *988 944 900	073 028 •984 939 895	068 024 *979 935 891	064 019 *975 931 886	059 015 *971 926 882		,
980 1 2 3 4		877 833 789 745 700	873 829 784 740 696	869 824 780 736 692	864 820 776 731 687	860 815 771 727 683	855 811 767 723 678	851 807 762 718 674	846 802 758 714 670	842 798 753 709 665	838 793 749 705 661	1 2 3 4	0 1 1 2
5 6 7 8 9		656 612 568 524 480	652 608 564 520 476	648 604 559 516 472	643 599 555 511 467	639 595 551 507 463	634 590 546 502 458	630 586 542 498 454	626 581 537 494 450	621 577 533 489 445	617 573 529 485 441	5 6 7 8 9	2 2 3 4
990 1 2 3 4		436 393 349 305 261	432 388 344 301 257	428 384 340 296 253	423 379 336 292 248	419 375 331 288 244	415 371 327 283 240	410 366 323 279 235	406 362 318 274 231	401 358 314 270 226	397 353 309 266 222		
5 6 7 8 9		218 174 130 087 043	213 170 126 083 039	209 165 122 078 035	205 161 117 074 030	200 157 113 070 026	196 152 109 065 022	192 148 104 061 017	187 144 100 056 013	183 139 096 052 009	178 135 091 048 004		•
1000		000											

TABLE 93.—NATURAL SINES AND COSINES

		BLE 95.	-NATO		NES AN			
808				SINES				es
Degrees	0′	10'	20'	30′	40′	50′	60′	Cosines
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01454	0.01745	89
1	0.01745	0.02036	0.02327	0.02618	0.02908	0.03199	0.03490	88
2	0.03490	0.03781	0.04071	0.04362	0.04653	0.04943	0.05234	87
3	0.05234	0.05524	0.05814	0.06105	0.06395	0.06685	0.06976	86
4	0.06976	0.07266	0.07556	0.07846	0.08136	0.08426	0.08716	85
5	0.08716	0.09005	0.09295	0.09585	0.09874	0.10164	0.10453	84
6	0.10453	0.10742	0.11031	0.11320	0.11609	0.11898	0.12187	83
7	0.12187	0.12476	0.12764	0.13053	0.13341	0.13629	0.13917	82
8	0.13917	0.14205	0.14493	0.14781	0.15069	0.15356	0.15643	81
9	0.15643	0.15931	0.16218	0.16505	0.16792	0.17078	0.17365	80
10	0.17365	0.17651	0.17937	0.18224	0.18509	0.18795	0.19081	79
11	0.19081	0.19366	0.19652	0.19937	0.20222	0.20507	0.20791	78
12	0.20791	0.21076	0.21360	0.21644	0.21928	0.22212	0.22495	77
13	0.22495	0.22778	0.23062	0.23345	0.23627	0.23910	0.24192	76
14	0.24192	0.24474	0.24756	0.25038	0.25320	0.25601	0.25882	75
15	0.25882	0.26163	0.26443	0.26724	0.27004	0.27284	0.27564	74
16	0.27564	0.27843	0.28123	0.28402	0.28680	0.28959	0.29237	73
17	0.29237	0.29515	0.29793	0.30071	0.30348	0.30625	0.30902	72
18	0.30902	0.31178	0.31454	0.31730	0.32006	0.32282	0.32557	71
19	0.32557	0.32832	0.33106	0.33381	0.33655	0.33929	0.34202	70
20	0.34202	0.34475	0.34748	0.35021	0.35293	0.35565	0.35837	69
21	0.35837	0.36108	0.36379	0.36650	0.36921	0.37191	0.37461	68
22	0.37461	0.37730	0.37999	0.38268	0.38537	0.38805	0.39073	67
23	0.39073	0.39341	0.39608	0.39875	0.40142	0.40408	0.40674	66
24 -	0.40674	0.40939	0.41204	0.41469	0.41734	0.41998	0.42262	65
25	0.42262	0.42525	0.42788	0.43051	0.43313	0.43575	0.43837	64
26	0.43837	0.44098	0.44359	0.44620	0.44880	0.45140	0.45399	63
27	0.45399	0.45658	0.45917	0.46175	0.46433	0.46690	0.46947	62
28	0.46947	0.47204	0.47460	0.47716	0.47971	0.48226	0.48481	61
29	0.48481	0.48735	0.48989	0.49242	0.49495	0.49748	0.50000	60
30	0.50000	0.50252	0.50503	0.50754	0.51004	0.51254	0.51504	59
31	0.51504	0.51753	0.52002	0.52250	0.52498	0.52745	0.52992	58
32	0.52992	0.53238	0.53484	0.53730	0.53975	0.54220	0.54464	57
33	0.54464	0.54708	0.54951	0.55194	0.55436	0.55678	0.55919	56
34	0.55919	0.56160	0.56401	0.56641	0.56880	0.57119	0.57358	55
35	0.57358	0.57596	0.57833	0.58070	0.58307	0.58543	0.58779	54
36	0.58779	0.59014	0.59248	0.59482	0.59716	0.59949	0.60182	53
37	0.60182	0.60414	0.60645	0.60876	0.61107	0.61337	0.61566	52
38	0.61566	0.61795	0.62024	0.62251	0.62479	0.62706	0.62932	51
39	0.62932	0.63158	0.63383	0.63608	0.63832	0.64056	0.64279	50
40	0.64279	0.64501	0.64723	0.64945	0.65166	0.65386	0.65606	49
41	0.65606	0.65825	0.66044	0.66262	0.66480	0.66697	0.66913	48
42	0.66913	0.67129	0.67344	0.67559	0.67773	0.67987	0.68200	47
43	0.68200	0.68412	0.68624	0.68835	0.69046	0.69256	0.69466	46
44	0.69466	0.69675	0.69883	0.70091	0.70298	0.70505	0.70711	45
Sines	60′	50′	40′	30′	20'	10′	0′	Degrees
20		·	(COSINE	8			Ä

Table 93 (Concluded) Natural Sines and Cosines

88				COSINE	3			8
Degrees	0′	10'	20′	30′	40′	50′	60′	Sines
0	1.00000	1.00000	0.99998	0.99996	0.99993	0.99989	0.99985	89
1	0.99985	0.99979	0.99973	0.99966	0.99958	0.99949	0.99939	88
2	0.99939	0.99929	0.99917	0.99905	0.99892	0.99878	0.99863	87
3	0.99863	0.99847	0.99831	0.99813	0.99795	0.99776	0.99756	86
4	0.99756	0.99736	0.99714	0.99692	0.99668	0.99644	0.99619	85
5	0.99619	0.99594	0.99567	0.99540	0.99511	0.99482	0.99452	84
6	0.99452	0.99421	0.99390	0.99357	0.99324	0.99290	0.99255	83
7	0.99255	0.99219	0.99182	0.99144	0.99106	0.99067	0.99027	82
8	0.99027	0.98986	0.98944	0.98902	0.98858	0.98814	0.98769	81
9	0.98769	0.98723	0.98676	0.98629	0.98580	0.98531	0.98481	80
10	0.98481	0.98430	0.98378	0.98325	0.98272	0.98218	0.98163	79
11	0.98163	0.98107	0.98050	0.97992	0.97934	0.97875	0.97815	78
12	0.97815	0.97754	0.97692	0.97630	0.97566	0.97502	0.97437	77
13	0.97437	0.97371	0.97304	0.97237	0.97169	0.97100	0.97030	76
14	0.97030	0.96959	0.96887	0.96815	0.96742	0.96667	0.96593	75
15	0.96593	0.96517	0.96440	0.96363	0.96285	0.96206	0.96126	74
16	0.96126	0.96046	0.95964	0.95882	0.95799	0.95715	0.95630	73
17	0.95630	0.95545	0.95459	0.95372	0.95284	0.95195	0.95106	72
18	0.95106	0.95015	0.94924	0.94832	0.94740	0.94646	0.94552	71
19	0.94552	0.94457	0.94361	0.94264	0.94167	0.94068	0.93969	70
20	0.93969	0.93869	0.93769	0.93667	0.93565	0.93462	0.93358	69
21	0.93358	0.93253	0.93148	0.93042	0.92935	0.92827	0.92718	68
22	0.92718	0.92609	0.92499	0.92388	0.92276	0.92164	0.92050	67
23	0.92050	0.91936	0.91822	0.91706	0.91590	0.91472	0.91355	66
24	0.91355	0.91236	0.91116	0.90996	0.90875	0.90753	0.90631	65
25	0.90631	0.90507	0.90383	0.90259	0.90133	0.90007	0.89879	64
26	0.89879	0.89752	0.89623	0.89493	0.89363	0.89232	0.89101	63
27	0.89101	0.88968	0.88835	0.88701	0.88566	0.88431	0.88295	62
28	0.88295	0.88158	0.88020	0.87882	0.87743	0.87603	0.87462	61
29	0.87462	0.87321	0.87178	0.87036	0.86892	0.86748	0.86603	60
30	0.86603	0.86457	0.86310	0.86163	0.86015	0.85866	0.85717	59
31	0.85717	0.85567	0.85416	0.85264	0.85112	0.84959	0.84805	58
32	0.84805	0.84650	0.84495	0.84339	0.84182	0.84025	0.83867	57
33	0.83867	0.83708	0.83549	0.83389	0.83228	0.83066	0.82904	56
34	0.82904	0.82741	0.82577	0.82413	0.82248	0.82082	0.81915	55
35	0.81915	0.81748	0.81580	0.81412	0.81242	0.81072	0.80902	54
36	0.80902	0.80730	0.80558	0.80386	0.80212	0.80038	0.79864	53
37	0.79864	0.79688	0.79512	0.79335	0.79158	0.78980	0.78801	52
38	0.78801	0.78622	0.78442	0.78261	0.78079	0.77897	0.77715	51
39	0.77715	0.77531	0.77347	0.77162	0.76977	0.76791	0.76604	50
40	0.76604	0.76417	0.76229	0.76041	0.75851	0.75661	0.75471	49
41	0.75471	0.75280	0.75088	0.74896	0.74703	0.74509	0.74314	48
42	0.74314	0.74120	0.73924	0.73728	0.73531	0.73333	0.73135	47
43	0.73135	0.72937	0.72737	0.72537	0.72337	0.72136	0.71934	46
44	0.71934	0.71732	0.71529	0.71325	0.71121	0.70916	0.70711	45
Cosines	60'	50′	40'	30'	20′	10′	0'	Degrees
[°				SINES		albu (-200		1 0

TABLE 94.—NATURAL TANGENTS AND COTANGENTS

	T							
8			T	ANGEN'	TS			nts
Degrees	0′	10′	20′	30′	40′	50′	60′	Co- tangents
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01455	0.01746	89
1	0.01746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88
2	0.03492	0.03783	0.04075	0.04366	0.04658	0.04949	0.05241	87
3	0.05241	0.05533	0.05824	0.06116	0.06408	0.06700	0.06993	86
4	0.06993	0.07285	0.07578	0.07870	0.08163	0.08456	0.08749	85
5 6 7 8	0.08749 0.10510 0.12278 0.14054 0.15838	0.09042 0.10805 0.12574 0.14351 0.16137	0.09335 0.11099 0.12869 0.14648 0.16435	0.09629 0.11394 0.13165 0.14945 0.16734	0.09923 0.11688 0.13461 0.15243 0.17033	0.10216 0.11983 0.13758 0.15540 0.17333	0.10510 0.12278 0.14054 0.15838 0.17633	84 83 82 81 80
10	0.17633	0.17933	0.18233	0.18534	0.18835	0.19136	0.19438	79
11	0.19438	0.19740	0.20042	0.20345	0.20648	0.20952	0.21256	78
12	0.21256	0.21560	0.21864	0.22169	0.22475	0.22781	0.23087	77
13	0.23087	0.23393	0.23700	0.24008	0.24316	0.24624	0.24933	76
14	0.24933	0.25242	0.25552	0.25862	0.26172	0.26483	0.26795	75
15	0.26795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	74
16	0.28675	0.28990	0.29305	0.29621	0.29938	0.30255	0.30573	73
17	0.30573	0.30891	0.31210	0.31530	0.31850	0.32171	0.32492	72
18	0.32492	0.32814	0.33136	0.33460	0.33783	0.34108	0.34433	71
19	0.34433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397	70
20	0.36397	0.36727	0.37057	0.37388	0.37720	0.38053	0.38386	69
21	0.38386	0.38721	0.39055	0.39391	0.39727	0.40065	0.40403	68
22	0.40403	0.40741	0.41081	0.41421	0.41763	0.42105	0.42447	67
23	0.42447	0.42791	0.43136	0.43481	0.43828	0.44175	0.44523	66
24	0.44523	0.44872	0.45222	0.45573	0.45924	0.46277	0.46631	65
25	0.46631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	64
26	0.48773	0.49134	0.49495	0.49858	0.50222	0.50587	0.50953	63
27	0.50953	0.51320	0.51688	0.52057	0.52427	0.52798	0.53171	62
28	0.53171	0.53545	0.53920	0.54296	0.54674	0.55051	0.55431	61
29	0.55431	0.55812	0.56194	0.56577	0.56962	0.57348	0.57735	60
30	0.57735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086	59
31	0.60086	0.60483	0.60881	0.61280	0.61681	0.62083	0.62487	58
32	0.62487	0.62892	0.63299	0.63707	0.64117	0.64528	0.64941	57
33	0.64941	0.65355	0.65771	0.66189	0.66608	0.67028	0.67451	56
34	0.67451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	55
35	0.70021	0.70455	0.70891	0.71329	0.71769	0.72211	0.72654	54
36	0.72654	0.73100	0.73547	0.73996	0.74447	0.74900	0.75355	53
37	0.75355	0.75812	0.76272	0.76733	0.77196	0.77661	0.78129	52
38	0.78129	0.78598	0.79070	0.79544	0.80020	0.80498	0.80978	51
39	0.80978	0.81461	0.81946	0.82434	0.82923	0.83415	0.83910	50
40	0.83910	0.84407	0.84906	0.85408	0.85912	0.86419	0.86929	49
41	0.86929	0.87441	0.87955	0.88473	0.88992	0.89515	0.90040	48
42	0.90040	0.90569	0.91099	0.91633	0.92170	0.92709	0.93252	47
43	0.93252	0.93797	0.94345	0.94896	0.95451	0.96008	0.96569	46
44	0.96569	0.97133	0.97700	0.98270	0.98843	0.99420	1.00000	45
Tangents	60′	50′	40′	30′	20′	10′	0′	Degrees
E	COTANGENTS						A	

Table 94 (Concluded)
NATURAL TANGENTS AND COTANGENTS

8			CO	TANGE	NTS			nte
Degrees	0'	10'	20′	30′	40'	50′	60′	Tangents
0 1 2	57.28996 28.63625	343.77371 49.10388 26.43160	171.88540 42.96408 24.54176	114.58865 38.18846		68.75009 31.24158 20.20555	57.28996 28.63625 19.08114	89 88 87
3 4	19.08114 14.30067	18.07498 13.72674	17.16934 13.19688	16.34986	15.60478 12.25051	14.92442 11.82617	14.30067 11.43005	86 85
5 6 7 8	11.43005 9.51436 8.14435	11.05943 9.25530 7.95302	10.71191 9.00983 7.77035	10.38540 8.77689 7.59575	10.07803 8.55555 7.42871	9.78817 8.34496 7.26873	9.51436 8.14435 7.11537	84 83 82
9	7.11537	6.96823	6.82694	6.69116	6.56055	6.43484	6.31375	81
	6.31375	6.19703	6.08444	5.97576	5.87080	5.76937	5.67128	80
10	5.67128	5.57638	5.48451	5.39552	5.30928	5.22566	5.14455	79
11	5.14455	5.06584	4.98940	4.91516	4.84300	4.77286	4.70463	78
12	4.70463	4.63825	4.57363	4.51071	4.44942	4.38969	4.33148	77
13	4.33148	4.27471	4.21933	4.16530	4.11256	4.06107	4.01078	76
14	4.01078	3.96165	3.91364	3.86671	3.82083	3.77595	3.73205	75
15	3.73205	3.68909	3.64705	3.60588	3.56557	3.52609	3.48741	74
16	3.48741	3.44951	3.41236	3.37594	3.34023	3.30521	3.27085	73
17	3.27085	3.23714	3.20406	3.17159	3.13972	3.10842	3.07768	72
18	3.07768	3.04749	3.01783	2.98869	2.96004	2.93189	2.90421	71
19	2.90421	2.87700	2.85023	2.82391	2.79802	2.77254	2.74748	70
20	2.74748	2.72281	2.69853	2.67462	2.65109	2.62791	2.60509	69
21	2.60509	2.58261	2.56046	2.53865	2.51715	2.49597	2.47509	68
22	2.47509	2.45451	2.43422	2.41421	2.39449	2.37504	2.35585	67
23	2.35585	2.33693	2.31826	2.29984	2.28167	2.26374	2.24604	66
24	2.24604	2.22857	2.21132	2.19430	2.17749	2.16090	2.14451	65
25	2.14451	2.12832	2.11233	2.09654	2.08094	2.06553	2.05030	64
26	2.05030	2.03526	2.02039	2.00569	1.99116	1.97680	1.96261	63
27	1.96261	1.94858	1.93470	1.92098	1.90741	1.89400	1.88073	62
28	1.83073	1.86760	1.85462	1.84177	1.82907	1.81649	1.80405	61
29	1.80405	1.79174	1.77955	1.76749	1.75556	1.74375	1.73205	60
30	1.73205	1.72047	1.70901	1.69766	1.68643	1.67530	1.66428	59
31	1.66428	1.65337	1.64256	1.63185	1.62125	1.61074	1.60033	58
32	1.60033	1.59002	1.57981	1.56969	1.55966	1.54972	1.53987	57
33	1.53987	1.53010	1.52043	1.51084	1.50133	1.49190	1.48256	56
34	1.48256	1.47330	1.46411	1.45501	1.44598	1.43703	1.42815	55
35	1.42815	1.41934	1.41061	1.40195	1.39336	1.38484	1.37638	54
36	1.37638	1.36800	1.35968	1.35142	1.34323	1.33511	1.32704	53
37	1.32704	1.31904	1.31110	1.30323	1.29541	1.28764	1.27994	52
38	1.27994	1.27230	1.26471	1.25717	1.24969	1.24227	1.23490	51
39	1.23490	1.22758	1.22031	1.21310	1.20593	1.19882	1.19175	50
40	1.19175	1.18474	1.17777	1.17085	1.16398	1.15715	1.15037	49
41	1.15037	1.14363	1.13694	1.13029	1.12369	1.11713	1.11061	48
42	1.11061	1.10414	1.09770	1.09131	1.08496	1.07864	1.07237	47
43	1.07237	1.06613	1.05994	1.05378	1.04766	1.04158	1.03553	46
Co- tangents	60'	50'	40'	30'	20'	1.00583	0′	Degrees 45
tan			TA	NGENT	PS	· Goo	ole -	Deg

TABLE 95.—NATURAL SECANTS AND COSECANTS

	TABLE 93.—INATURAM DECANTS AND COSECANTS								
sees			` S	ECANT	3			ante	
Degrees	0′	10′	20′	30′	40′	50′	60′	Cosecants	
0	1.00000	1.00000	1.00002	1.00004	1.00007	1.00011	1.00015	89	
1	1.00015	1.00021	1.00027	1.00034	1.00042	1.00051	1.00061	88	
2	1.00061	1.00072	1.00083	1.00095	1.00108	1.00122	1.00137	87	
3	1.00137	1.00153	1.00169	1.00187	1.00205	1.00224	1.00244	86	
4	1.00244	1.00265	1.00287	1.00309	1.00333	1.00357	1.00382	85	
5	1.00382	1.00408	1.00435	1.00463	1.00491	1.00521	1.00551	84	
6	1.00551	1.00582	1.00614	1.00647	1.00681	1.00715	1.00751	83	
7	1.00751	1.00787	1.00825	1.00863	1.00902	1.00942	1.00983	82	
8	1.00983	1.01024	1.01067	1.01111	1.01155	1.01200	1.01247	81	
9	1.01247	1.01294	1.01342	1.01391	1.01440	1.01491	1.01543	80	
10	1.01543	1.01595	1.01649	1.01703	1.01758	1.01815	1.01872	79	
11	1.01872	1.01930	1.01989	1.02049	1.02110	1.02171	1.02234	78	
12	1.02234	1.02298	1.02362	1.02428	1.02494	1.02562	1.02630	77	
13	1.02630	1.02700	1.02770	1.02842	1.02914	1.02987	1.03061	76	
14	1.03061	1.03137	1.03213	1.03290	1.03368	1.03447	1.03528	75	
15	1.03528	1.03609	1.03691	1.03774	1.03858	1.03944	1.04030	74	
16	1.04030	1.04117	1.04206	1.04295	1.04385	1.04477	1.04569	73	
17	1.04569	1.04663	1.04757	1.04853	1.04950	1.05047	1.05146	72	
18	1.05146	1.05246	1.05347	1.05449	1.05552	1.05657	1.05762	71	
19	1.05762	1.05869	1.05976	1.06085	1.06195	1.06306	1.06418	70	
20 -	1.06418	1.06531	1.06645	1.06761	1.06878	1.06995	1.07115	69	
21	1.07115	1.07235	1.07356	1.07479	1.07602	1.07727	1.07853	68	
22	1.07853	1.07981	1.08109	1.08239	1.08370	1.08503	1.08636	67	
23	1.08636	1.08771	1.08907	1.09044	1.09183	1.09323	1.09464	66	
24	1.09464	1.09606	1.09750	1.09895	1.10041	1.10189	1.10338	65	
25	1.10338	1.10488	1.10640	1.10793	1.10947	1.11103	1.11260	64	
26	1.11260	1.11419	1.11579	1.11740	1.11903	1.12067	1.12233	63	
27	1.12233	1.12400	1.12568	1.12738	1.12910	1.13083	1.13257	62	
28	1.13257	1.13433	1.13610	1.13789	1.13970	1.14152	1.14335	61	
29	1.14335	1.14521	1.14707	1.14896	1.15085	1.15277	1.15470	60	
30	1.15470	1.15665	1.15861	1.16059	1.16259	1.16460	1.16663	59	
31	1.16663	1.16868	1.17075	1.17283	1.17493	1.17704	1.17918	58	
32	1.17918	1,18133	1.18350	1.18569	1.18790	1.19012	1.19236	57	
33	1.19236	1.19463	1.19691	1.19920	1.20152	1.20386	1.20622	56	
34	1.20622	1.20859	1.21099	1.21341	1.21584	1.21830	1.22077	55	
35	1.22077	1.22327	1.22579	1.22833	1.23089	1.23347	1.23607	54	
36	1.23607	1.23869	1.24134	1.24400	1.24669	1.24940	1.25214	53	
37	1.25214	1.25489	1.25767	1.26047	1.26330	1.26615	1.26902	52	
38	1.26902	1.27191	1.27483	1.27778	1.28075	1.28374	1.28676	51	
39	1.28676	1.28980	1.29287	1.29597	1.29909	1.30228	1.30541	50	
40	1.30541	1.30861	1.31183	1.31509	1.31837	1.32168	1.32501	49	
41	1.32501	1.32838	1.33177	1.33519	1.33864	1.34212	1.34563	48	
42	1.34563	1.34917	1.35274	1.35634	1.35997	1.36363	1.36733	47	
43	1.36733	1.37105	1.37481	1.37860	1.38242	1.38628	1.39016	46	
44	1.39016	1.39409	1.39804	1.40203	1.40606	1.41012	1.41421	45	
Secants	60'	50'	- 40′	30′	20'	10′	θ'	Degrees	
Sec			CC	SECAN	rs	-		De	

· bigitized by Google

TABLE 95 (Concluded)
NATURAL SECANTS AND COSECANTS

8			CO	SECANT	s			nts
Degrees	0′	10′	20′	30′	40′	50'	60′	Secants
0	57.29869	49.11406	171.88831 42.97571	38.20155	34.38232	68.75736 31.25758	57.29869 28.65371	89 88 87
1 2 3 4	28.65371 19.10732 14.33559	26.45051 18.10262 13.76312	24.56212 17.19843 13.23472	16.38041	21.49368 15.63679 12.29125	20.23028 14.95788 11.86837	19.10732 14.33559 11.47371	87 86 85
5 6 7 8	11.47371 9.56677	11.10455 9.30917	10.75849 9.06515	10.43343 8.83367	8.61379	9.83912 8.40466	9.56677 8.20551	84 83 82
8 9	8.20551 7.18530 6.39245	8.01565 7.03962 6.27719	7.83443 6.89979 6.16607	7.66130 6.76547 6.05 886	7.49571 6.63633 5.95536	7.33719 6.51208 5.85539	7.18530 6.39245 5.75877	81 80
10	5.75877	5.66533	5.57493	5.48740	5.40263	5.32049	5.24084	79
11	5.24084	5.16359	5.08863	5.01585	4.94517	4.87649	4.80973	78
12	4.80973	4.74482	4.68167	4.62023	4.56041	4.50216	4.44541	77
13	4.44541	4.39012	4.33622	4.28366	4.23239	4.18238	4.13357	76
14	4.13357	4.08591	4.03938	3.99393	3.94952	3.90613	3.86370	75
15 16	3.86370 3.62796	3.82223 3.59154	3.78166 3.55587	3.74198 3.52094	3.70315 3.48671	3.66515 3.45317	3.62796 3.42030 3.23607	74 73 72
17 18 19	3.42030 3.23607 3.07155	3.38808 3.20737 3.04584	3.35649 3.17920 3.02057	3.32551 3.15155 2.99574	3.29512 3.12440 2.97135	3.26531 3.09774 2.94737	3.23607 3.07155 2.92380	71 70
20	2.92380	2.90063	2.87785	2.85545	2.83342	2.81175	2.79043	69
21	2.79043	2.76945	2.74881	2.72850	2.70851	2.68884	2.66947	68
22	2.66947	2.65040	2.63162	2.61313	2.59491	2.57698	2.55930	67
23	2.55930	2.54190	2.52474	2.50784	2.49119	2.47477	2.45859	66
24	2.45859	2.44264	2.42692	2.41142	2.39614	2.38107	2.36620	65
25	2.36620	2.35154	2.33708	2.32282	2.30875	2.29487	2.28117	64
26	2.28117	2.26766	2.25432	2.24116	2.22817	2.21535	2.20269	63
27	2.20269	2.19019	2.17786	2.16568	2.15366	2.14178	2.13005	62
28	2.13005	2.11847	2.10704	2.09574	2.08458	2.07356	2.06267	61
29	2.06267	2.05191	2.04128	2.03077	2.02039	2.01014	2.00000	60
30	2.00000	1.98998	1.98008	1.97029	1.96062	1.95106	1.94160	59
31	1.94160	1.93226	1.92302	1.91388	1.90485	1.89591	1.88708	58
32	1.88708	1.87834	1.86970	1.86116	1.85271	1.84435	1.83608	57
33	1.82608	1.82790	1.81981	1.81180	1.80388	1.79604	1.78829	56
34	1.78829	1.78062	1.77303	1.76552	1.75808	1.75073	1.74345	55
35	1.74345	1.73624	1.72911	1.72205	1.71506	1.70815	1.70130	54
36	1.70130	1.69452	1.68782	1.68117	1.67460	1.66809	1.66164	53
37	1.66164	1.65526	1.64894	1.64268	1.63648	1.63035	1.62427	52
38	1.62427	1.61825	1.61229	1.60639	1.60054	1.59475	1.58902	51
39	1.58902	1.58333	1.57771	1.57213	1.56661	1.56114	1.55572	50
40	1.55572	1.55036	1.54504	1.53977	1.53455	1.52938	1.52425	49
41	1.52425	1.51918	1.51415	1.50916	1.50422	1.49933	1.49448	48
42	1.49448	1.48967	1.48491	1.48019	1.47551	1.47087	1.46628	47
43	1.46628	1.46173	1.45721	1.45274	1.44831	1.44391	1.43956	40
44	1.43956	1.43524	1.43096	1.42672	1.42251	1.41835	1.41421	41
Cosecants	60'	50'	40'	30′	20'	10'	0'	Degrees
Jose			5	SECANT	S	d by GOO		Deg

Digitized by GOOGLE

Table 96.—Squares, Cubes, Square Roots, Cube Roots, Reciprocals

			TROCALS		,
Num.	Square	Cube	Square root	Cube root	Reciprocal
1 2 3 4 5	1 4 9 16 25	1 8 27 64 125	1.0000000 1.4142136 1.7320508 2.0000000 2.2360680	1.0000000 1.2599210 1.4422496 1.5874011 1.7099759	1.000000000 0.500000000 .333333333 .250000000
· 6	36	216	2.4494897	1.8171206	.166666667
· 7	49	343	2.6457513	1.9129312	.142857143
· 8	64	512	2.8284271	2.0000000	.125000000
· 9	81	729	3.0000000	2.0800837	.111111111
· 10	1 00	1 000	3.1622777	2.1544347	.1000000000
11	1 21	1 331	3.3166248	2.2239801	.090909091
12	1 44	1 728	3.4641016	2.2894286	.083333333
13	1 69	2 197	3.6055513	2.3513347	.076923077
14	1 96	2 744	3.7416574	2.4101422	.071428571
15	2 25	3 375	3.8729833	2.4662121	.066666667
16	2 56	4 096	4.000000	2.5198421	.062500000
17	2 89	4 913	4.1231056	2.5712816	.058823529
18	3 24	5 832	4.2426407	2.6207414	.055555556
19	3 61	6 859	4.3588989	2.6684016	.052631579
20	4 00	8 000	4.4721360	2.7144177	.050000000
21	4 41	9 261	4.5825757	2.7589243	.047619048
22	4 84	10 648	4.6904158	2.8020393	.045454545
23	5 29	12 167	4.7958315	2.8438670	.043478261
24	5 76	13 824	4.8989795	2.8844991	.041666667
25	6 25	15 625	5.0000000	2.9240177	.040000000
26	6 76	17 576	5.0990195	2.9624960	.038461538
27	7 29	19 683	5.1961524	3.0000000	.037037037
28	7 84	21 952	5.2915026	3.0365889	.035714286
29	8 41	24 389	5.3851648	3.0723168	.034482759
30	9 00	27 000	5.4772256	3.1072325	.0333333333
31	9 61	29 791	5.5677644	3.1413806	.032258065
32	10 24	32 768	5.6568542	3.1748021	.031250000
33	10 89	35 937	5.7445626	3.2075343	.030303030
34	11 56	39 304	5.8309519	3.2396118	.029411765
35	12 25	42 875	5,9160798	3.2710663	.028571429
36	12 96	46 656	6.0000000	3.3019272	.027777778
37	13 69	50 653	6.0827625	3.3322218	.027027027
38	14 44	54 872	6.1644140	3.3619754	.026315789
39	15 21	59 319	6.2449980	3.3912114	.025641026
40	16 00	64 000	6.3245553	3.4199519	.025000000
41	16 81	68 921	6.4031242	3.4482172	.024390244
42	17 64	74 088	6.4807407	3.4760266	.023809524
43	18 49	79 507	6.5574385	3.5033981	.023255814
44	19 36	85 184	6.6332496	3.5303483	.022727273
45	20 25	91 125	6.7082039	3.5568933	.022222222
46	21 16	97 336	6.7823300	3.5830479	.021739130
47	22 09	103 823	6.8556546	3.6088261	.021276596
48	23 04	110 592	6.9282032	3.6342411	.020833333
49	24 01	117 649	7.0000000	3.6593057	.020408163
50	25 00	125 000	7.0710678	3.6840314	.020000000

Table 96 (Continued)

QUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.	Square	Cube	Square root	Cube root	Reciprocal
51	26 01	132 651	7.1414284	3.7084298	.019607843
52	27 04	140 608	7.2111026	3.7325111	.019230769
53	28 09	148 877	7.2801099	3.7562858	.01886 7 925
54	29 16	157 464	7.3484692	3.7797631	.018518519
55	30 25	166 375	7.4161985	3.8029525	.018181818
56	31 36	175 616	7.4833148	3.8258624	.017857143
57	32 49	185 193	7.5498344	3.8485011	.017543860
58	33 64	195 112	7.6157731	3.8708766	
59	34 81	205 379	7.6811457	3.8929965	.016949153
60	36 00	216 000	7.7459667	3.9148676	.016666667
61	37 21	226 981	7.8102497	3.9364972	.016393443
62	38 44	238 328	7.8740079	3.9578915	.016129032
63	39 69	250 047	7.9372539	3.9790571	.015873016
64	40 96	262 144	8.0000000	4.0000000	.015625000
65	42 25	274 625	8.0622577	4.0207256	.015384615
66	43 56	287 496	8.1240384	4.0412401	
67	44 89	300 763	8.1853528	4.0615480	.014925373
68	46 24	314 432	8.2462113	4.0816551	.014705882
69	47 61	328 509	8.3066239	4.1015661	.014492754
70	49 00	343 000	8.3666003	4.1212853	.014285714
71	50 41	357 911	8.4261498	4.1408178	.014084507
72	51 84	373 248	8.4852814	4.1601676	.013888889
73	53 29	389 017	8.5440037	4.1793392	.013698630
74	54 76	405 224	8.6023253	4.1983364	.013513514
75	56 25	421 875	8.6602540	4.2171633	.013333333
76	57 76	- 438 976	8.7177979	4.2358236	.013157895
77	59 29	456 533	8.7749644	4.2543210	.012987013
78	60 84	474 552	8.8317609	4.2726586	.012820513
79	62 41	493 039	8.8881944	4.2908404	.012658228
80	64 00	512 000	8.9442719	4.3088695	
81	65 61	531 441	9.0000000 9.0553851	4.3267487 4.3444815	.012345679 .012195122
82 83 84	67 24 68 89 70 56	551 368 571 787 592 704	9.1104336 9.1651514	4.3620707 4.3795191	.012048193
85	70 36 72 25	614 125	9.2195445	4.3968296	.011764706
86	73 96	636 056	9.2736185	4.4140049	.011627907
87	75 69	658 503	9.3273791	4.4310476	.011494253
88	77 44	681 472	9.3808315	4.4479602	.011363636
89	79 21	704 969	9.4339811	4.4647451	.011235955
90	81 00	729 000	9.4868330	4.4814047	.011111111
91 92 93	82 81 84 64	753 571 778 688 804 357	9.5393920 9.5916630	4.4979414	.010989011 .010869565
94 95	86 49 88 36 90 25	830 584 857 375	9.6436508 9.6953597 9.7467943	4.5306549 4.5468359 4.5629026	.010752688 .010638298 .010526316
96	92 16	884 736	9.7979590	4.5788570	.010416667
97	94 09	912 673	9.8488578	4.5947009	.010309278
98	96 04	941 192	9.8994949	4.6104363	.010204082
99	98 01	970 299	9.9498744	4.6260650	.010101010
100	1 00 00	1 000 000	10.0000000	4.6415888	

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
101 102	1 02 01 1 04 04	1 030 301 1 061 208	10.0498756 10.0995049	4.6570095 4.6723287 4.6875482	.009900990 .009803922 .009708738
103 104 105	1 06 09 1 08 16 1 10 25	1 092 727 1 124 864 1 157 625	10.1488916 10.1980390 10.2469508	4.7026694 4.7176940	.009708788 .009615385 .009523810
106	1 12 36	1 191 016	10.2956301	4.7326235	.009433962
107	1 14 49	1 225 043	10.3440804	4.7474594	.009345794
108	1 16 64	1 259 712	10.3923048	4.7622032	.009259259
109	1 18 81	1 295 029	10.4403065	4.7768562	.009174312
110	1 21 00	1 331 000	10.4880885	4.7914199	
111 112 113	1 23 21 1 25 44 1 27 69	1 367 631 1 404 928 1 442 897	10.5356538 10.5830052 10.6301458 10.6770783	4.8058955 4.8202845 4.8345881 4.8488076	.009009009 .008928571 .008849558 .008771930
114 115 116	1 29 96 1 32 25 1 34 56	1 481 544 1 520 875 1 560 896	10.770783	4.8629442	.008695652
117	1 36 89	1 601 613	10.8166538	4.8909732	.008547009
118	1 39 24	1 643 032	10.8627805	4.9048681	.008474576
119	1 41 61	1 685 159	10.9087121	4.9186847	.008403361
120	1 44 00	1 728 000	10.9544512	4.9324242	.008333333
121	1 46 41	1 771 561	11.0000000	4.9460874	.008264463
122	1 48 84	1 815 848	11.0453610	4.9596757	.008196721
123	1 51 29	1 860 867	11.0905365	4.9731898	.008130081
124	1 53 76	1 906 624	11.1355287	4.9866310	.008064516
125	1 56 25	1 953 125	11.1803399	5.0000000	.008000000
126	1 58 76	2 000 376	11.2249722	5.0132979	.007936508
127	1 61 29	2 048 383	11.2694277	5.0265257	.007874016
128	1 63 84	2 097 152	11.3137085	5.0396842	.007812500
129	1 66 41	2 146 689	11.3578167	5.0527743	.007751938
130	1 69 00	2 197 000	11.4017543	5.0657970	.007692308
131	1 71 61	2 248 091	11.4455231	5.0787531	.007633588
132	1 74 24	2 299 968	11.4891253	5.0916434	.007575758
133	1 76 89	2 352 637	11.5325626	5.1044687	.007518797
134	1 79 56	2 406 104	11.5758369	5.1172299	.007462687
135	1 82 25	2 460 375	11.6189500	5.1299278	.007407407
136	1 84 96	2 515 456	11.6619038	5.1425632	.007352941
137	1 87 69	2 571 353	11.7046999	5.1551367	.007299270
138	1 90 44	2 628 072	11.7473401	5.1676493	.007246377
139	1 93 21	2 685 619	11.7898261	5.1801015	.007194245
140	1 96 00	2 744 000	11.8321596	5.1924941	.007142857
141	1 98 81	2 803 221	11.8743422	5.2048279	.007092199
142	2 01 64	2 863 288	11.9163753	5.2171034	.007042254
143	2 04 49	2 924 207	11.9582607	5.2293215	.006993007
144	2 07 36	2 985 984	12.0000000	5.2414828	.006944444
145	2 10 25	3 048 625	12.0415946	5.2535879	.006896552
146	2 13 16	3 112 136	12.0830460	5.2656374	.006849315
147	2 16 09	3 176 523	12.1243557	5.2776321	.006802721
148	2 19 04	3 241 792	12.1655251	5.2895725	.006756757
149	2 22 01	3 307 949	12.2065556	5.3014592	.006711409
150	2 25 00	3 375 000	12.2474487	5.3132928	.006666667

Table 96 (Continued)

Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciproca
151	2 28 01	3 442 951	12.2882057	5.3250740	.00662251
152	2 31 04	3 511 808	12.3288280	5.3368033	.00657894
153	2 34 09	3 581 577	12.3693169	5.3484812	.00653594
154	2 37 16	3 652 264	12.4096736	5.3601084	.00649350
155	2 40 25	3 723 875	12.4498996	5.3716854	.00645161
156	2 43 36	3 796 416	12.4899960	5.3832126 5.3946907	.00641025
157	2 46 49	3 869 893 3 944 312	12.5299641 12.5698051	5.4061202	.00632911
158	2 49 64 2 52 81	4 019 679	12.6095202	5.4175015	.00628930
159 160	2 56 00	4 096 000	12.6491106	5.4288352	.00625000
161	2 59 21	4 173 281	12.6885775	5.4401218	.00621118
162	2 62 44	4 251 528	12.7279221	5.4513618	.0061728
163	2 65 69	4 330 747	12.7671453	5.4625556	.0061349
164	2 68 96	4 410 944	12.8062485	5.4737037	.0060975
165	2 72 25	4 492 125	12.8452326	5.4848066	.0060606
166	2 75 56	4 574 296	12.8840987	5.4958647	.0060240
167	2 78 89	4 657 463	12.9228480	5.5068784	.0059880
168	2 82 24	4 741 632	12.9614814	5.5178484 5.5287748	.0059523
169 170	2 85 61 2 89 00	4 826 809 4 913 000	13.0000000 13.0384048	5.5396583	.0058823
171	2 92 41	5 000 211	13.0766968	5.5504991 5.5612978	.0058479 .0058139
172 173	2 95 84	5 088 448 5 177 717	13.1148770 13.1529464	5.5720546	.0057803
173	2 99 29 3 02 76	5 268 024	13.1909060	5.5827702	.0057471
174 175	3 06 25	5 359 375	13.2287566	5.5934447	.0057142
176	3 09 76	5 451 776	13.2664992	5.6040787	.0056818
177	3 13 29	5 545 233	13.3041347	5.6146724	.0056497
178	3 16 84	5 639 752	13.3416641	5.6252263	.00561797
179	3 20 41	5 735 339	13.3790882	5.6357408	.00558659
180	3 24 00	5 832 000	13.4164079	5.6462162	.0055555
181	3 27 61	5 929 741	13.4536240	5.6566528	.00552486
182	3 31 24	6 028 568	13.4907376	5.6670511	.00549450
183	3 34 89	6 128 487	13.5277493	5.6774114	.00546448
184	3 38 56	6 229 504	13.5646600	5.6877340	.00543478
185	3 42 25	6 331 625	13.6014705	5.6980192	.00540540
186	3 45 96	6 434 856	13.6381817	5.7082675	.0053763
187	3 49 69	6 539 203	13.6747943	5.7184791	.0053475
188	3 53 44	6 644 672	13.7113092	5.7286543	.0053191
189	3 57 21	6 751 269	13.7477271	5.7387936	.0052910
190	3 61 00	6 859 000	13.7840488	5.7488971	.0052631
191	3 64 81	6 967 871	13.8202750	5.7589652	.0052356
192	3 68 64	7 077 888	13.8564065	5.7689982	.0052083
193	3 72 49	7 189 057	13.8924440	5.7789966	.0051813 .0051546
194 195	3 76 36 3 80 25	7 301 384 7 414 875	13.9283883 13.9642400	5.7889604 5.7988900	.0051282
196	3 84 16	7 529 536	14.0000000	5.8087857	.0051020
197	3 88 09	7 645 373	14.0356688	5.8186479	.0050761
198	3 92 04	7 762 392	14.0712473	5.8284767	.0050506
199	3 96 01	7 880 599	14.1067360	5.8382725	.0050251
200	4 00 00	8 000 000	14.1421356	5.8480355	.0050000

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

OUUNI	,	5, 10402222			
Num.	Square	Cube	Square root	Cube root	Reciprocal
201 202	4 04 01 4 08 04	8 120 601 8 242 408	14.1774469 14.2126704	5.8577660 5.8674643	.004975124
203	4 12 09	8 365 427	14.2478068	5.8771307	.004926108
204	4 16 16	8 489 664	14.2828569	5.8867653	.004901961
205	4 20 25	8 615 125	14.3178211	5.8963685	.004878049
206	4 24 36	8 741 816	14.3527001	5.9059406	.004854369
207	4 28 49	8 869 743	14.3874946	5.9154817	.004830918
208	4 32 64	8 998 912	14.4222051	5.9249921	.004807692
209	4 36 81	9 129 329	14.4568323	5.9344721	.004784689
210	4 41 00	9 261 000	14.4913767	5.9439220	.004761905
211	4 45 21	9 393 931	14.5258390	5.9533418	.004739336
212	4 49 44	9 528 128	14.5602198	5.9627320	.004716981
213	4 53 69	9 663 597	14.5945195	5.9720926	.004694836
214	4 57 96	9 800 344	14.6287388	5.9814240	.004672897
215	4 62 25	9 938 375	14.6628783	. 5.9907264	.004651163
216	4 66 56	10 077 696	14.6969385	6.0000000	.004629630
217	4 70 89	10 218 313	14.7309199	6.0092450	.004608295
218	4 75 24	10 360 232	14.7648231	6.0184617	.004587156
219	4 79 61	10 503 459	14.7986486	6.0276502	.004566210
220	4 84 00	10 648 000	14.8323970	6.0368107	.004545455
221	4 88 41	10 793 861	14.8660687	6.0459435	.004524887
222	4 92 84	10 941 048	14.8996644	6.0550489	.004504505
223	4 97 29	11 089 567	14.9331845	6.0641270	.004484305
224	5 01 76	11 239 424	14.9666295	6.0731779	.004464286
225	5 06 25	11 390 625	15.0000000	6.0822020	.004444444
226	5 10 76	11 543 176	15.0332964	6.0911994	.004424779
227	5 15 29	11 697 083	15.0665192	6.1001702	.004405286
228	5 19 84	11 852 352	15.0996689	6.1091147	.004385965
229	5 24 41	12 008 989	15.1327460	6.1180332	.004366812
230	5 29 00	12 167 000	15.1657509	6.1269257	.004347826
001	5 33 61	12 326 391	15.1986842	6.1357924	.004329004
231 232	5 38 24	12 487 168	15.2315462	6.1446337	.004310345
232	5 42 89	12 649 337	15.2643375	6.1534495	.004291845
234	5 47 56	12 812 904	15.2970585	6.1622401	.004273504
235	5 52 25	12 977 875	15.3297097	6.1710058	.004255319
000	5 56 96	13 144 256	15.3622915	6.1797466	.004237288
236 237	5 61 69	13 312 053	15.3948043	6.1884628	.004219409
238	5 66 44	13 481 272	15.4272486	6.1971544	.004201681
239	5 71 21	13 651 919	15.4596248	6.2058218	.004184100
240	5 76 00	13 824 000	15.4919334	6.2144650	.004166667
	F 00 01	13 997 521	15.5241747	6.2230843	.004149378
241	5 80 81 5 85 64	14 172 488	15.5563492	6.2316797	.004132231
242 243	5 90 49	14 348 907	15.5884573	6.2402515	.004115226
244	5 95 36	14 526 784	15.6204994	6.2487998	.004098361
245	6 00 25	14 706 125	15.6524758	6.2573248	.004081633
	0.05.16	14 994 024	15.6843871	6.2658266	.004065041
246	6 05 16	14 886 936 15 069 223	15.7162336	6.2743054	.004048583
247	6 10 09 6 15 04	15 252 992	15.7480157	6.2827613	.004032258
248 249	6 20 01	15 438 249	15.7797338	6.2911946	.004016064
250	6 25 00	15 625 000	15.8113883	6.2996053	.004000000
200	32000	,	-3		<u>'</u>

Table 96 (Continued)

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.	Square	Cube	Square root	Cube root	Reciprocal
251	6 30 01	15 813 251	15.8429795	6.3079935	.003984064
252	6 35 04	16 003 008	15.8745079	6.3163596	.003968254
253	6 40 09	16 194 277	15.9059737	6.3247035	.003952569
254	6 45 16	16 387 064	15.9373775	6.3330256	.003937008
255	6 50 25	16 581 375	15.9687194	6.3413257	.003921569
256	6 55 36	16 777 216	16.0000000	6.3496042	.003906250
257	6 60 49	16 974 593	16.0312195	6.3578611	.003891051
258	6 65 64	17 173 512	16.0623784	6.3660968	.003875969
259	6 70 81	17 373 979	16.0934769	6.3743111	.003861004
260	6 76 00	17 576 000	16.1245155	6.3825043	.003846154
261	6 81 21	17 779 581	16.1554944	6.3906765	.003831418
262	6 86 44	17 984 728	16.1864141	6.3988279	.003816794
263	6 91 69	18 191 447	16.2172747	6.4069585	.003802281
264	6 96 96	18 399 744	16.2480768	6.4150687	. 003787879
265	7 02 25	· 18 609 625	16.2788206	6.4231583	.003773585
266	7 07 56	18 821 096	16.3095064	6.4312276	.003759398
267	7 12 89	19 034 163	16.3401346	6.4392767	.003745318
268	7 18 24	19 248 832	16.3707055	6.4473057	.003731343
269	7 23 61	19 465 109	16.4012195	6.4553148	.003717472
270	7 29 00	19 683 000	16.4316767	6.4633041	.003703704
271	7.34 41	19 902 511	16.4620776	6.4712736	. 003690037
272	7 39 84	20 123 648	16.4924225	6.4792236	.003676471
273	7 45 29	20 346 417	16.5227116	6.4871541	.003663004
274	7 50 76	20 570 824	16.5529454	6.4950653	.003649635
275	7 56 25	20 796 875	16.5831240	6.5029572	.003636364
276	7 61 76	21 024 576	16.6132477	6.5108300	. 003623188
277	7 67 29	21 253 933	16.6433170	6.5186839	.003610108
278	7 72 84	21 484 952	16.6733320	6.5265189	. 003597122
279	7 78 41	21 717 639	16.7032931	6.5343351	.003584229
280	7 84 00	21 952 000	16.7332005	6.5421326	.003571429
281	7 89 61	22 188 041	16.7630546	6.5499116	,003558719
282	7 95 24	22 425 768	16.7928556	6.5576722	.003546099
283	8 00 89	22 665 187	16.8226038	6.5654144	.003533569
284	8 06 56	22 906 304	16.8522995	6.5731385	.003521127
285	8 12 25	23 149 125	16.8819430	6.5808443	.003508772
286	8 17 96	23 393 656	16.9115345	6.5885323	.003496503
287	8 23 69	23 639 903	16.9410743	6.5962023	.003484321
288	8 29 44	23 887 872	16.9705627	6.6038545	.003472222
289	8 35 21	24 137 569	17.0000000	6.6114890	.003460208
290	8 41 00	24 389 000	17.0293864	6.6191060	.003448276
291	8 46 81	24 642 171	17.0587221	6.6267054	.003436426
292	8 52 64	24 897 088	17.0880075	6.6342874	.003424658
293	8 58 49	25 153 757	17.1172428	6.6418522	.003412969
294	8 64 36	25 412 184	17.1464282	6.6493998	.003401361
295	8 70 25	25 672 375	17.1755640	6.6569302	.003389831
296	8 76 16	25 934 836	17.2046505	6.6644437	.003378378
297	8 82 09	26 198 073	17.2336879	6.6719403	.003367003
298	8 88 04	26 463 592	17.2626765	6.6794200	.003355705
299	8 94 01	26 730 899	17.2916165	6.6868831	.003344482
300	9 00 00	27 000 000	17.3205081	6.6943295	. 003333333
		'			<u>'</u>

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

DQUAR	EES, CUBE	s, SQUARE R	JOOTS, CUBE	noors, n	ECIPROCAL
Num.	Square	Cube	Square root	Cube root	Reciprocal
301	9 06 01	27 270 901	17.3493516	6.7017593	.003322259
302	9 12 04	27 543 608	17.3781472	6.7091729	.003311258
303	9 18 09	27 818 127	17.4068952	6.7165700	.003300330
304	9 24 16	28 094 464	17.4355958	6.7239508	.003289474
305	9 30 25	28 372 625	17.4642492	6.7313155	.003278689
306	9 36 36	28 652 616	17.4928557	6.7386641	.003267974
307	9 42 49	28 934 443	17.5214155	6.7459967	.003257329
308	9 48 64	29 218 112	17.5499288	6.7533134	.003246753
309	9 54 81	29 503 629	17.5783958	6.7606143	.003236246
310	9 61 00	29 791 000	17.6068169	6.7678995	.003225806
311	9 67 21	30 080 231	17.6351921	6.7751690	.003215434
312	9 73 44	30 371 328	17.6635217	6.7824229	.003205128
313	9 79 69	30 664 297	17.6918060	6.7896613	.003194888
314	9 85 96	30 959 144	17.7200451	6.7968844	.003184713
315	9 92 25	31 255 875	17.7482393	6.8040921	.003174603
316	9 98 56	31 554 496	17.7763888	6.8112847	.003164557
317	10 04 89	31 855 013	17.8044938	6.8184620	.003154574
318	10 11 24	32 157 432	17.8325545	6.8256242	.003144654
319	10 17 61	32 461 759	17.8605711	6.8327714	.003134796
320	10 24 00	32 768 000	17.8885438	6.8399037	.003125000
321	10 30 41	33 076 161	17.9164729	6.8470213	.003115268
322	10 36 84	33 386 248	17.9443584	6.8541240	.003105590
323	10 43 29	33 698 267	17.9722008	6.8612120	.003095978
324	10 49 76	34 012 224	18.0000000	6.8682855	.003086420
325	10 56 25	34 328 125	18.0277564	6.8753443	.003076923
326	10 62 76	34 645 976	18.0554701	6.8823888	.003067488
327	10 69 29	34 965 783	18.0831413	6.8894188	.003058104
328	10 75 84	35 287 552	18.1107703	6.8964345	.003048780
329	10 82 41	35 611 289	18.1383571	6.9034359	.003039514
330	10 89 00	35 937 000	18.1659021	6.9104232	.0030303030
331	10 95 61	36 264 691	18.1934054	6.9173964	.003021148
332	11 02 24	36 594 368	18.2208672	6.9243556	.003012048
333	11 08 89	36 926 037	18.2482876	6.9313008	.003003003
334	11 15 56	37 259 704	18.2756669	6.9382321	.002994012
335	11 22 25	37 595 375	18.3030052	6.9451496	.002985078
336	11 28 96	37 933 056	18.3303028	6.9520533	.002976190
337	11 35 69	38 272 753	18.3575598	6.9589434	.002967359
338	11 42 44	38 614 472	18.3847763	6.9658198	.002958580
339	11 49 21	38 958 219	18.4119526	6.9726826	.002949853
340	11 56 00	39 304 000	18.4390889	6.9795321	.002941176
341	11 62 81	39 651 821	18.4661853	6.9863681	.00293255;
342	11 69 64	40 001 688	18.4932420	6.9931906	.00292397;
343	11 76 49	40 353 607	18.5202592	7.0000000	.00291545;
344	11 83 36	40 707 584	18.5472370	7.0067962	.00290697;
345	11 90 25	41 063 625	18.5741756	7.0135791	.00289855;
346 347 348 349 350	11 97 16 12 04 09 12 11 04 12 18 01 12 25 00	41 421 736 41 781 923 42 144 192 42 508 549 42 875 000	18.6010752 18.6279360 18.6547581 18.6815417 18.7082869	7.0203490 7.0271058 7.0338497 7.0405806 7.0472987	.002890173 .002881844 .002873563 .002865330

Table 96 (Continued)

Squares, Cubes, Square Roots, Cube Roots, Reciprocals

			l		
Num.	Square	Cube	Square root	Cube root	Reciprocal
351	12 32 01	43 243 551	18.7349940	7.0540041	.002849003
352	12 39 04	43 614 208	18.7616630	7.0606967	.002840909
353	12 46 09	43 986 977	18.7882942	7.0673767	.002832861
354	12 53 16	44 361 864	18.8148877	7.0740440	.002824859
355	12 60 25	44 738 875	18.8414437	7.0806988	.002816901
			40.00=000		
356	12 67 36	45 118 016	18.8679623	7.0873411	.002808989
357	12 74 49	45 499 293	18.8944436	7.0939709	.002801120
358	12 81 64	45 882 712	18.9208879	7.1005885	.002793296
359	12 88 81 12 96 00	46 268 279 46 656 000	18.9472953 18.9736660	7.1071937 7.1137866	.002785515
360	12 90 00	40 000 000	18.9730000	7.1137800	.00277778
361	13 03 21	47 045 881	19.0000000	7.1203674	.002770083
362	13 10 44	47 437 928	19.0262976	7.1269360	.002762431
363	13 17 69	47 832 147	19.0525589	7.1334925	.002754821
364	13 24 96	48 228 544	19.0787840	7.1400370	.002747253
365	13 32 25	48 627 125	19.1049732	7.1465695	.002739726
366	13 39 56	49 027 896	19.1311265	7.1530901	.002732240
367	13 46 89	49 430 863	19.1572441	7.1595988	.002724796
368	13 54 24	49 836 032	19.1833261	7.1660957	.002717391
369	13 61 61	50 243 409	19.2093727	7.1725809	.002710027
370	13 69 00	50 653 000	19.2353841	7.1790544	.002702703
0.0	10 00 00	00 000 000		***************************************	
371	13 76 41	51 064 811	19.2613603	7.1855162	.002695418
372	13 83 84	51 478 848	19.2873015	7.1919663	.002688172
373	13 91 29	51 895 117	19.3132079	7.1984050	.002680965
374	13 98 76	52 313 624	19.3390796	7.2048322	.002673797
375	14 06 25	52 734 375	19.3649167	7.2112479	.002666667
376	14 13 76	53 157 376	19.3907134	7.2176522	.002659574
377	14 21 29	53 582 633	19.4164878	7.2240450	.002652520
378	14 28 84	54 010 152	19.4422221	7.2304268	.002645503
379	14 36 41	54 439 939	19.4679223	7.2367972	.002638522
380	14 44 00	54 872 000	19.4935887	7.2431565	.002631579
	14 51 01	55 306 341	19.5192213	7.2495045	000004050
381	14 51 61	55 742 968	19.5448203	7.2558415	.002624672 .002617801
382 383	14 59 24 14 66 89	56 181 887	19.5703858	7.2621675	.002617801
384	14 74 56	. 56 623 104	19.5959179	7.2684824	.002604167
385	14 82 25	57 066 625	19.6214169	7.2747864	.002597403
386	14 89 96	5 7 512 456	19.6468827	7.2810794	.002590674
387	14 97 69	57 960 603	19.6723156	7.2873617	.002583979
388	15 05 44	58 411 072	19.6977156	7.2936330	.002577320
389	15 13 21	58 863 869	19.7230829	7.2998936	.002570694
390	15 21 00	59 319 000	19.7484177	7.3061436	.002564103
391	15 28 81	59 776 471	19.7737199	7.8123828	.002557545
392	15 36 64	60 236 288	19.7989899	7.3186114	.002551020
393	15 44 49	60 698 457	19.8242276	7.3248295	.C02544529
394	15 52 36	61 162 984	19.8494332	7.3310369	.002538071
395	15 60 25	61 629 875	19.8746069	7.3372339	.002531646
200	15 68 16	62 099 136	19.8997487	7 9494905	000505050
396	15 76 09	62 570 773	19.8997487	7.3431205	.002525253 .002518892
397 398	15 76 09	63 044 792	19.9248088	7.3495966 7.3557624	.002518892
399	15 92 01	63 521 199	19.9499873	7.3619178	.002512563
400	16 00 00	64 000 000	20.0000000	7.3680630	.002500000
		1 0 x 000 000	, ~0.0000000	1.00000000	

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Table 96 (Continued)

Squares, Cubes, Square Roots, Cube Roots, Reciprocals

451 20 34 01 91 733 851 21.2367606 7.6687665 002217295 452 20 43 04 92 345 408 21.2602916 7.6744303 002212389 453 20 52 09 92 959 677 21.2837967 7.6800857 002207506 454 20 61 16 93 576 664 21.3072758 7.6857328 002202643 455 20 70 25 94 196 375 21.3307290 7.6913717 002197802 456 20 79 36 94 818 816 21.3541565 7.6970023 002192982 457 20 88 49 95 443 993 21.3775583 7.7026246 002188184 458 20 97 64 96 071 912 21.4009346 7.7082388 002183406 459 21 06 81 96 702 579 21.4242853 7.7138484 002178649						
453 20 43 40 92 345 408 21 260 29 50 90 99 677 21 2837087 7 7 8800857 0022002643 455 20 70 25 94 196 375 21 3307290 7 6857328 002202643 455 20 70 36 94 818 816 21 3541565 7 6913717 0022192882 457 20 88 49 95 443 993 21 3775583 7 7026246 002183846 458 20 97 64 96 7071912 21 4009346 7 7082388 .002183846 460 21 16 00 97 336 000 21 44726166 7 7194426 .00218982 460 21 16 00 97 336 000 21 4470166 7	Num.	Square	Cube	Square root	Cube root	Reciprocal
453 20 43 40 92 345 408 21 260 29 50 90 99 677 21 2837087 7 7 8800857 0022002643 455 20 70 25 94 196 375 21 3307290 7 6857328 002202643 455 20 70 36 94 818 816 21 3541565 7 6913717 0022192882 457 20 88 49 95 443 993 21 3775583 7 7026246 002183846 458 20 97 64 96 7071912 21 4009346 7 7082388 .002183846 460 21 16 00 97 336 000 21 44726166 7 7194426 .00218982 460 21 16 00 97 336 000 21 4470166 7	451	90.24.01	01 722 951	21 2267606	7 8697885	002217205
453 20 52 09 92 959 677 21 2837967 7.8800857 .002207564 455 20 70 25 94 196 375 21 3307290 7.6913717 .002197802 456 20 79 36 94 818 816 21 .3541565 7.697023 .002192982 457 20 88 49 95 443 993 21 .3775583 7.7026246 .0021881840 458 20 76 49 6071 912 21 .4009346 7.702388 .0021831840 459 21 06 81 96 702 579 21 .4242853 7.7138448 .00217364 460 21 16 00 97 336 000 21 .4476106 7.719426 .00217364 461 21 25 21 97 972 181 21 .4709106 7.7250325 .00216917 463 21 34 44 98 611 128 21 .409185 7.736187 .002159827 465 21 62 25 100 544 625 21 .5638587 7.747309 .002155078 466 21 71 56 101 194 696 21 .587031 7.7528606 .002135058 467 21 99 61 103 161 709 21 .5638587						
455 20 70 25 94 196 375 21.33072758 7.8857328 .002202643 456 20 70 25 94 196 375 21.3307290 7.6913717 .002197802 457 20 88 49 95 443 993 21.3775583 7.7026246 .002188184 458 20 97 64 96 071 912 21.4009346 7.7082388 .002183406 459 21 06 81 96 702 579 21.4242853 7.7026246 .002183406 460 21 16 00 97 336 000 21.4476106 7.7194426 .002173913 461 21 25 21 97 972 181 21.4709106 7.7250325 .002169197 462 21 34 44 98 611 128 21.4941853 7.7306147 .002146452 463 21 34 44 98 611 128 21.4941853 7.73061877 .002159827 464 21 32 96 99 898 97 344 21.5406992 7.7417532 .002155172 465 21 62 25 100 544 625 21.5538587 7.7473109 .002155172 466 21 71 56 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 .002141328 468 21 90 24 102 503 232 21.6333077 7.7639361 .002135124 469 21 99 61 103 161 709 21.6564078 7.769361 .002131296 470 22 99 00 103 823 000 21.0794834 7.77949801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123126 472 22 27 84 103 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002119765 476 22 65 76 107 850 176 21.8174242 7.8079254 .00210840 477 22 75 29 108 531 333 21.8403297 7.8133892 .00210840 478 22 84 84 109 215 332 21.8860868 7.8242942 .00210840 479 22 94 41 109 902 239 21.8860868 7.8242942 .002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 .0020906488 483 23 32 89 112 678 587 21.9772810 7.8602244 .002061856 486 23 61 66 114 791 256 22.0454077 7.8622242 .0020074689 489 23 91 21 116 930 169 22.0454077 7.8622242 .002076383 481 23 13 61 111 284 641 21.9317122 7.8351688 .002090633 481 23 13 61 114 791 256 22.0454077 7.8622242 .00207683 483 23 32 89 112 678 587 21.9772810 7.8809946 .0020367633 484 23 42 56 113 379 904 22.000000 7.880943 7.8297353 .002083384 489 23 91 21 116 930 169 22.1133444 7.8783684 .002044999 .002076893 490 24 01 00 117 649 000 22.1359436 7.894946 .002036660 .002044990 .002012072 490 44 04 03 122 763 473 22.2236033 7.894946 .002036660 .002042991 .002042991 .0020020202 .00204299 .0020020202 .00204299 .00200202	402					
455 20 70 25 94 196 375 21.3307290 7.6913717 .002197802 456 20 79 36 94 818 816 21.3541565 7.6970023 .002192982 457 20 88 49 95 443 993 21.375583 7.7026246 .002183184 458 20 76 68 96 071 912 21.4009346 7.7026248 .002178649 459 21 06 81 96 702 579 21.4242853 7.7138448 .002178649 460 21 16 00 97 336 000 21.4476106 7.7194426 .002173913 461 21 25 21 97 972 181 21.4709106 7.7250325 .002164502 463 21 34 44 98 611 128 21.4941853 7.736141 .002164502 464 21 52 96 99 897 344 21.5406592 7.7473109 .002150538 466 21 71 56 101 194 696 21.580897 7.7473109 .002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 .002145923 468 21 79 64 102 503 323 2	400					
456 20 79 36 94 818 816 21 3541565 7.6970023 .002192982 457 20 88 49 95 443 903 21 .3775583 7.7026246 .002188184 458 20 97 64 96 071 912 21 .4009346 7.7082388 .002178649 460 21 16 00 97 336 000 21 .4242853 7.7134428 .002178649 460 21 16 00 97 336 000 21 .4476106 7.7250325 .002169187 461 21 25 21 97 972 181 21 .47709106 7.7250325 .002169187 463 21 34 34 98 611 128 21 .4941853 7.7361877 .002159827 464 21 52 96 99 897 344 21 .5174348 7.7361877 .002159827 467 21 80 89 101 847 563 21 .6101828 7.7584023 .002145923 468 21 90 24 102 503 222 21 .6333077 7.7639361 .002136752 468 21 90 24 105 161 709 21 .6564078 7.764960 .002136752 477 22 18 4 105 164 488		20 01 10				
457 20 88 49 95 443 993 21.3775583 7.7026246 .002188148 458 20 97 64 96 071 912 21.4009346 7.7082388 .002183404 460 21 16 00 97 336 000 21.442853 7.7138448 .002178649 461 21 25 21 97 972 181 21.4709106 7.7250325 .002169197 463 21 34 44 98 611 128 21.4941853 7.7361877 .002159827 464 21 52 96 99 897 344 21.5174348 7.7361877 .002159827 465 21 62 25 100 544 625 21.5638587 7.7417532 .002155582 466 21 71 56 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6333077 7.7639361 .002136794 467 21 80 89 103 161 709 21.558607 7.7649420 .002132196 470 22 09 00 103 823 000 21.6794834 7.7749801 .002127660 471 22 18 41 104 487 111 <	400	20 70 25	94 196 375	21.3307290	7.0913717	.002197802
457 20 88 49 95 443 993 21.3775583 7.7026246 .002188148 458 20 97 64 96 071 912 21.4009346 7.7082388 .002183404 460 21 16 00 97 336 000 21.442853 7.7138448 .002178649 461 21 25 21 97 972 181 21.4709106 7.7250325 .002169197 463 21 34 44 98 611 128 21.4941853 7.7361877 .002159827 464 21 52 96 99 897 344 21.5174348 7.7361877 .002159827 465 21 62 25 100 544 625 21.5638587 7.7417532 .002155582 466 21 71 56 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6333077 7.7639361 .002136794 467 21 80 89 103 161 709 21.558607 7.7649420 .002132196 470 22 09 00 103 823 000 21.6794834 7.7749801 .002127660 471 22 18 41 104 487 111 <	456	20 79 36	94 818 816	21.3541565	7.6970023	.002192982
458 20 97 64 96 071 912 21.4009346 7.7082388 .002173649 459 21 68 81 96 702 579 21.4242853 7.718448 .002173649 460 21 16 00 97 336 000 21.4476106 7.7250325 .002173913 461 21 25 21 97 972 181 21.4941853 7.7306141 .002164502 463 21 43 69 99 2525 847 21.5174348 7.7306147 .002169197 464 21 52 96 99 897 344 21.5406502 7.7417532 .002159827 465 21 62 25 100 544 625 21.5638587 7.7473109 .0021555172 466 21 71 56 101 194 696 21.5870331 7.7528066 .002145923 467 21 80 89 103 847 663 21.6101828 7.7584023 .002145924 469 21 99 61 103 161 709 21.654078 7.7639361 .002136752 470 22 87 44 105 154 048 21.7255610 7.7859028 .002118464 473 22 37 29 105 823 817					7 7026246	
490 21 16 00 97 336 000 21.4242283 7.7138448 .002173913 461 21 25 21 97 972 181 21.476106 7.7194426 .002173913 462 21 34 44 98 611 128 21.4476106 7.7250325 .002164502 463 21 43 69 99 252 847 21.5174348 7.7361877 .002159827 465 21 62 25 100 544 625 21.5638587 7.7473109 .0021595282 466 21 71 56 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 .002145923 468 21 90 24 102 503 232 21.6333077 7.7639361 .002136752 468 21 90 961 103 161 709 21.654078 7.7794801 .00212760 471 22 18 41 104 487 111 21.7025344 7.7804904 .00212760 472 22 27 84 105 154 048 21.7255610 7.7859928 .002114165 473 22 37 29 105 823 817					7.7082388	
460 21 16 00 97 336 000 21.4476106 7.7194426 .002173913 461 21 25 21 97 972 181 21.4709106 7.7250325 .002169197 462 21 34 44 98 611 128 21.4941853 7.7306141 .002164502 463 21 43 69 99 825 847 21.5174348 7.73107 .002159827 464 21 52 96 99 897 344 21.5406692 7.7417532 .0021559827 465 21 62 25 100 544 625 21.5638587 7.7473109 .002155382 466 21 71 56 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 .002145923 468 21 90 61 103 161 709 21.6584078 7.7693861 .002136752 470 22 90 00 103 823 000 21.6794834 7.7749801 .002127660 471 21 84 1 104 487 111 21.7025344 7.804904 .002123142 472 22 7 84 105 154 048 <t< td=""><td></td><td></td><td>96 702 579</td><td></td><td>7.7138448</td><td></td></t<>			96 702 579		7.7138448	
462 21 34 44 98 611 128 21.4941853 7.7306141 .002164502 463 14 3 69 99 2525 287 21.5174348 7.731677 .002155172 464 21 52 96 99 897 344 21.5406592 7.7417532 .002155172 465 21 62 25 100 544 625 21.5638587 7.7473109 .002155172 466 21 75 86 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 .002145923 468 21 90 61 103 161 709 21.653077 7.7639361 .002136752 470 22 99 00 103 823 000 21.6794834 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914925 .002109705 474 22 66 76 107 850 176						.002173913
462 21 34 44 98 611 128 21.4941853 7.7306141 .002164502 463 14 3 69 99 2525 287 21.5174348 7.731677 .002155172 464 21 52 96 99 897 344 21.5406592 7.7417532 .002155172 465 21 62 25 100 544 625 21.5638587 7.7473109 .002155172 466 21 75 86 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 .002145923 468 21 90 61 103 161 709 21.653077 7.7639361 .002136752 470 22 99 00 103 823 000 21.6794834 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914925 .002109705 474 22 66 76 107 850 176					-	
463				21.4709106		
466 21 71 56 101 194 696 21.5870331 7.7528606 002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 002141328 468 21 90 24 102 503 232 21.6333077 7.7639361 002136752 469 21 99 61 103 161 709 21.6564078 7.7694620 002132196 470 22 09 00 103 823 000 21.6794834 7.7749801 002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 00212364 472 22 27 84 105 154 048 21.7255610 7.7859928 002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 002114644 474 22 46 76 106 496 424 21.7715411 7.7989745 002109705 475 22 56 25 107 171 875 21.7944947 7.8024538 002105263 476 22 75 29 108 531 333 21.8403297 7.8133892 002096436 479 22 94 41 109 902 239 21.8860866 7.824942 002096436 480 23 04 00 110 592 000 21.9089023 7.827353 002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 002096436 482 23 23 24 111 980 168 21.9544984 7.8405949 002074689 483 23 32 89 112 678 587 21.9772610 7.860349 002074689 483 23 32 89 112 678 587 21.9772610 7.860349 002074689 483 23 32 89 112 678 587 21.9772610 7.860349 002074689 488 23 81 44 116 214 272 22.0907000 7.8514244 002066116 485 23 52 25 114 084 125 22.0227155 7.8668281 002063338 489 23 81 44 116 214 272 22.0907200 7.850444 00206616 485 23 81 44 116 214 272 22.0907200 7.850444 002066166 488 23 81 44 116 214 272 22.0907200 7.850444 002066164 489 23 42 06 41 119 996 488 22.1810730 7.8869484 002044980 490 24 01 00 117 649 000 22.1359436 7.887352 002044981 490 24 01 00 117 649 000 22.1359436 7.887352 002044981 490 24 01 00 117 649 000 22.1359436 7.887352 002044981 490 24 00 00 117 649 000 22.1359436 7.887352 002040816 491 24 10 81 118 370 771 22.1585198 7.8890946 002076834 493 24 20 64 119 096 488 22.1810730 7.8894488 0020023250 002049816 490 24 01 00 117 649 000 22.1359436 7.887352 002040816 490 24 00 00 117 649 000 22.1359436 7.887352 002040816 490 24 00 00 117 649 000 22.1359436 7.897917 0020228398 494 24 00 61 122 053 376 22.2485955 7.9104599 00202020291 498 24 00 61 122 053 376 22.2485955 7.9104599 00202020291 499 24 90 01 122 563 473 22.2934968 7.9210994 0020020202020204990 24 00 01 123 505 9			98 611 128		7.7306141	
466 21 71 56 101 194 696 21.5870331 7.7528606 002145923 467 21 80 89 101 847 563 21.6101828 7.7584023 002141328 468 21 90 24 102 503 232 21.6333077 7.7639361 002136752 469 21 99 61 103 161 709 21.6564078 7.7694620 002132196 470 22 09 00 103 823 000 21.6794834 7.7749801 002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 00212364 472 22 27 84 105 154 048 21.7255610 7.7859928 002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 002114644 474 22 46 76 106 496 424 21.7715411 7.7989745 002109705 475 22 56 25 107 171 875 21.7944947 7.8024538 002105263 476 22 75 29 108 531 333 21.8403297 7.8133892 002096436 479 22 94 41 109 902 239 21.8860866 7.824942 002096436 480 23 04 00 110 592 000 21.9089023 7.827353 002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 002096436 482 23 23 24 111 980 168 21.9544984 7.8405949 002074689 483 23 32 89 112 678 587 21.9772610 7.860349 002074689 483 23 32 89 112 678 587 21.9772610 7.860349 002074689 483 23 32 89 112 678 587 21.9772610 7.860349 002074689 488 23 81 44 116 214 272 22.0907000 7.8514244 002066116 485 23 52 25 114 084 125 22.0227155 7.8668281 002063338 489 23 81 44 116 214 272 22.0907200 7.850444 00206616 485 23 81 44 116 214 272 22.0907200 7.850444 002066166 488 23 81 44 116 214 272 22.0907200 7.850444 002066164 489 23 42 06 41 119 996 488 22.1810730 7.8869484 002044980 490 24 01 00 117 649 000 22.1359436 7.887352 002044981 490 24 01 00 117 649 000 22.1359436 7.887352 002044981 490 24 01 00 117 649 000 22.1359436 7.887352 002044981 490 24 00 00 117 649 000 22.1359436 7.887352 002040816 491 24 10 81 118 370 771 22.1585198 7.8890946 002076834 493 24 20 64 119 096 488 22.1810730 7.8894488 0020023250 002049816 490 24 01 00 117 649 000 22.1359436 7.887352 002040816 490 24 00 00 117 649 000 22.1359436 7.887352 002040816 490 24 00 00 117 649 000 22.1359436 7.897917 0020228398 494 24 00 61 122 053 376 22.2485955 7.9104599 00202020291 498 24 00 61 122 053 376 22.2485955 7.9104599 00202020291 499 24 90 01 122 563 473 22.2934968 7.9210994 0020020202020204990 24 00 01 123 505 9			99 252 847		7.7361877	
466 21 71 56 101 194 696 21.5870331 7.7528606 .002145923 467 21 80 89 101 847 563 21.6101828 7.7534023 .002141328 468 21 99 61 103 161 709 21.6564078 7.7639361 .002132196 470 22 09 00 103 823 000 21.6794834 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .0021231864 472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002119487 474 22 66 76 106 496 424 21.7715411 7.7809745 .002109705 475 22 56 25 107 171 875 21.7944947 7.8024538 .002105263 478 22 84 84 109 213 352 21.8632111 7.813892 .00210640 479 29 4 41 109 902 239 21.8860686 7.8242942 .002087683 480 23 02 32 111 980 168			99 897 344		7.7417532	.002155172
467 21 80 89 101 847 563 21.6101828 7.7584023 .002141328 468 21 90 24 102 503 232 21.6333077 7.7639361 .002132196 470 22 09 00 103 823 000 21.6564078 7.7694620 .002132196 470 22 09 00 103 823 000 21.6564078 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7899745 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .0021194165 474 22 46 76 106 496 424 21.7715411 7.7989745 .002109705 475 22 56 25 107 171 875 21.7944947 7.8024538 .002109264 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 84 109 215 352 21.8632111 7.818454 .002096436 480 23 04 00 110 592 000	465	21 62 25	100 544 625	21.5638587.	7.7473109	.002150538
467 21 80 89 101 847 563 21.6101828 7.7584023 .002141328 468 21 90 24 102 503 232 21.6333077 7.7639361 .002132196 470 22 09 00 103 823 000 21.6564078 7.7694620 .002132196 470 22 09 00 103 823 000 21.6564078 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7899745 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .0021194165 474 22 46 76 106 496 424 21.7715411 7.7989745 .002109705 475 22 56 25 107 171 875 21.7944947 7.8024538 .002109264 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 84 109 215 352 21.8632111 7.818454 .002096436 480 23 04 00 110 592 000	100	01 71 80	101 104 808	01 5070991	7 7500606	000145000
488 21 90 24 102 503 232 21 .6333077 7.7639361 .002136752 469 21 99 61 103 161 709 21 .6554078 7.764920 .002132196 470 22 09 00 103 823 000 21 .6794834 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002114165 474 22 46 76 106 496 424 21.7715411 7.7069745 .002109705 475 22 56 25 107 171 875 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 41 109 902 239 21.8860386 7.827353 .002097064 479 22 94 41 109 902 239 21.8860866 7.824242 .002067683 480 23 32 32 110 5857						
469 21 99 61 103 161 709 21.6564078 7.7694620 .002132196 470 22 09 00 103 823 000 21.6794834 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002114165 474 22 46 76 106 496 424 21.7715411 7.7069745 .002109705 475 22 56 25 107 171 875 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 479 22 84 84 109 215 352 21.8632111 7.8188456 .0022096436 480 23 04 00 110 592 000 21.9089023 7.8237353 .002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 .0020704689 482 23 23 24 111 891 688						
470 22 09 00 103 823 000 21.6794834 7.7749801 .002127660 471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002119765 474 22 46 76 106 496 424 21.7715411 7.7969745 .002109705 475 22 65 76 107 171 875 21.7914947 7.8024538 .002105263 476 26 57 76 107 850 176 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .0020996436 478 22 94 41 109 902 239 21.8860866 7.824924 .002096763 480 23 04 00 110 592 000 21.9089023 7.8351688 .002097633 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079024 482 23 23 24 112 678587						
471 22 18 41 104 487 111 21.7025344 7.7804904 .002123142 472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002114165 474 22 46 76 106 496 424 21.7715411 7.7969745 .002109705 475 22 56 25 107 171 875 21.7944947 7.8024538 .002105263 476 22 65 76 107 850 176 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 84 109 215 352 21.8632111 7.8188456 .002092050 479 22 94 41 109 902 239 21.8860486 7.8242942 .002087683 481 23 13 61 111 284 641 21.917122 7.8351688 .002079002 482 23 32 24 111 980 168 21.9544984 7.8460134 .002061834 483 23 32 289 112 678 587						
472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002114165 474 22 46 76 106 496 424 21.7715411 7.7969745 .002109705 475 22 56 25 107 171 875 21.7715411 7.8024538 .002105263 476 22 65 76 107 850 176 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 41 109 902 239 21.8860868 7.8242942 .002087683 480 23 04 00 110 592 000 21.9089023 7.8297353 .002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079092 482 23 23 24 111 980 168 21.9544984 7.8465134 .002076383 484 23 42 56 113 379 904 22.0450000 7.8514244 .00206116 485 23 52 25 114 084 125	470	22 09 00	103 823 000	21.0794834	7.7749801	.002127660
472 22 27 84 105 154 048 21.7255610 7.7859928 .002118644 473 22 37 29 105 823 817 21.7485632 7.7914875 .002114165 474 22 46 76 106 496 424 21.7715411 7.7969745 .002109705 475 22 56 25 107 171 875 21.7715411 7.8024538 .002105263 476 22 65 76 107 850 176 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 41 109 902 239 21.8860868 7.8242942 .002087683 480 23 04 00 110 592 000 21.9089023 7.8297353 .002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079092 482 23 23 24 111 980 168 21.9544984 7.8465134 .002076383 484 23 42 56 113 379 904 22.0450000 7.8514244 .00206116 485 23 52 25 114 084 125	471	22 18 41	104 487 111	21 7025344	7 7804904	002123142
473 22 37 29 105 823 817 21.7485632 7.7914875 .002114165 474 22 46 76 106 496 424 21.7715411 7.7069745 .002109705 475 22 56 25 107 171 875 21.7944947 7.8024538 .002105263 476 22 65 76 107 850 176 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 479 22 84 84 109 215 352 21.8632111 7.8188456 .002096256 479 22 94 41 109 902 239 21.8860686 7.8242942 .002087683 480 23 04 00 110 592 000 21.9089023 7.8351688 .002079002 482 23 23 24 111 980 168 21.9544984 7.845049 .002074689 483 23 32 89 112 678 587 21.9772610 7.861244 .002074689 485 23 52 25 114 084 125 22.0227155 7.868231 .002066116 487 23 71 69 115 501 303		22 27 84		21 7255610	7 7859928	
474 22 46 76 106 496 424 21.7715411 7.7969745 .002109705 475 22 56 25 107 171 875 21.7715411 7.8024538 .002105263 476 22 65 76 107 850 176 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 41 109 902 239 21.8680386 7.824924 .0020967633 480 23 04 00 110 592 000 21.9089023 7.8297353 .0020987683 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079002 482 23 23 24 111 980 168 21.954984 7.8460134 .002074689 483 23 32 89 112 678 587 21.9772610 7.8662281 .00206116 485 23 52 25 114 084 125 22.0227155 7.8682281 .002061186 488 23 61 96 114 791 256 22.0454077 7.8622242 .002061856 488 23 81 44 116 214 272					7 7914875	
475 22 56 25 107 171 875 21.7944947 7.8024538 .002105263 476 22 65 76 107 850 176 21.8174242 7.8079254 .002100840 477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 479 22 84 84 109 215 352 21.8632111 7.8188456 .002092050 479 22 94 41 109 902 239 21.8860686 7.8242942 .002087683 480 23 04 00 110 592 000 21.9089023 7.8297353 .00208333 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079002 483 23 32 24 111 980 168 21.9544984 7.8405949 .00207689 483 23 32 29 112 678 587 21.9772610 7.8460134 .00207689 484 23 42 56 113 379 904 22.0020000 7.8548281 .00206116 485 23 71 69 115 501 303 22.0680765 7.8676130 .002057613 487 23 71 69 115 501 303				21.7715411		
477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 84 109 215 352 21.8632111 7.8188456 .002092050 479 22 94 41 109 902 239 21.8860686 7.8242942 .002087683 480 23 04 00 110 592 000 21.9089023 7.8257533 .002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079092 482 23 23 24 111 980 168 21.9544984 7.8405949 .002074689 483 23 32 89 112 678 587 21.9772610 7.8614244 .002074689 485 23 52 25 114 084 125 22.0227155 7.8562231 .002066116 486 23 61 96 114 791 256 22.0454077 7.8622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.8729944 .002049180 489 23 91 21 116 930 169 22.1133444 7.873584 .002044990 490 24 10 81 118 370 771			107 171 875	21.7944947		
477 22 75 29 108 531 333 21.8403297 7.8133892 .002096436 478 22 84 84 109 215 352 21.8632111 7.8188456 .002092050 479 22 94 41 109 902 239 21.8860686 7.8242942 .002087683 480 23 04 00 110 592 000 21.9089023 7.8257533 .002087683 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079092 482 23 23 24 111 980 168 21.9544984 7.8405949 .002074689 483 23 32 89 112 678 587 21.9772610 7.8614244 .002074689 485 23 52 25 114 084 125 22.0227155 7.8562231 .002066116 486 23 61 96 114 791 256 22.0454077 7.8622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.8729944 .002049180 489 23 91 21 116 930 169 22.1133444 7.873584 .002044990 490 24 10 81 118 370 771						
478 22 84 84 109 215 352 21.8632111 7.8188456 .002092050 479 22 94 41 109 902 239 21.863268 7.8242942 .002087633 480 23 04 00 110 592 000 21.9089023 7.8297353 .002083333 481 23 13 61 111 284 641 21.9317122 7.8351688 .002074689 482 23 23 24 111 980 168 21.9544984 7.8460134 .002074689 483 23 32 89 112 678 587 21.9772610 7.8460134 .002076333 484 23 42 56 113 379 904 22.0020000 7.8514244 .002066116 485 23 52 25 114 084 125 22.0227155 7.8622242 .002061856 486 23 61 96 114 791 256 22.0454077 7.8622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.86722242 .002057613 488 23 81 44 116 214 272 22.0907220 7.8729944 .002049180 490 24 10 81 118 370 771			107 850 176			.002100840
479 22 94 41 109 902 239 21.8860686 7.8242942 .002087683 480 23 04 00 110 592 000 21.9089023 7.8297353 .002083333 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079002 482 23 23 24 111 980 168 21.9544984 7.8460134 .002074689 483 23 32 89 112 678 587 21.9772610 7.8460134 .002076393 484 23 42 56 113 379 904 22.0000000 7.8514244 .002066116 485 23 52 25 114 084 125 22.0227155 7.86622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.8676130 .002057388 488 23 81 44 116 214 272 22.0907220 7.8729944 .002049180 489 23 91 21 116 930 169 22.1133444 7.873684 .002044990 490 24 10 00 117 649 000 22.1585198 7.8897917 .002043686 492 24 20 64 119 095 488						
480 23 04 00 110 592 000 21.9089023 7.8297353 .002083333 481 23 13 61 111 284 641 21.9317122 7.8351688 .002079002 482 23 23 24 111 980 168 21.9574984 7.8405349 .002074689 483 23 32 89 112 678 587 21.9772610 7.8460134 .002070393 484 23 42 56 113 379 904 22.0000000 7.8514244 .002066116 485 23 52 25 114 084 125 22.0227155 7.8568281 .002061856 486 23 61 96 114 791 256 22.0454077 7.8622242 .002007613 487 23 71 69 115 501 303 22.0680765 7.8676130 .002053388 488 23 81 44 116 214 272 22.0907220 7.8729944 .002049180 490 24 01 00 117 649 000 22.1359436 7.8837352 .002040816 491 24 10 81 118 370 771 22.1585198 7.8899944 .002032520 493 24 30 49 119 823 157						
481 23 13 61 111 284 641 21.9317122 7.8351688 .002079002 482 23 23 24 111 980 168 21.9544984 7.8405949 .002074689 483 23 32 89 112 678 587 21.9772610 7.8460134 .002070393 484 23 42 56 113 379 904 22.0000000 7.8514244 .002066116 485 23 52 25 114 084 125 22.0227155 7.8568281 .002061856 486 23 61 96 114 791 256 22.0454077 7.8622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.8676130 .002057388 488 23 81 44 116 214 272 22.0907220 7.8729944 .002049180 489 23 91 21 116 930 169 22.1133444 7.8783684 .002049180 490 24 01 00 117 649 000 22.1359436 7.8837352 .002040816 491 24 10 81 118 370 771 22.1585198 7.8890946 .002036660 492 24 20 64 119 095 488 22.1810730 7.894948 .002032630 493 24 30 49 119 823 157 22.2036033 7.8997917 .0020236388 494 24 40 36 120 553 784 22.2261108 7.9051294 .002042491 495 24 50 25 121 287 375 22.2485955 7.9104599 .002020202 496 24 60 16 122 023 936 22.2710575 7.9157832 .002016129 497 24 70 09 122 763 473 22.2934968 7.9210994 .002012072 498 24 80 04 123 505 992 22.3159136 7.9264085 .002008032 499 24 90 01 124 251 499 22.38383079 7.9317104 .00200400816						
482 23 23 24 111 980 168 21 .9544984 7 .8405949 .002074689 483 23 32 89 112 678 587 21 .9772610 7 .8460134 .002070393 484 23 42 56 113 379 904 22 .0000000 7 .8514244 .002066116 485 23 52 25 114 084 125 22 .0227155 7 .8568281 .002061856 486 23 61 96 114 791 256 22 .0454077 7 .8622242 .002057613 487 23 71 69 115 501 303 22 .080765 7 .8676130 .00205388 488 23 81 44 116 214 272 22 .0907220 7 .8729944 .002049180 489 23 91 21 116 930 169 22 .1133444 7 .8738684 .00204990 490 24 01 00 117 649 000 22 .1359436 7 .8837352 .002040816 491 24 10 81 118 370 771 22 .15810730 7 .8944468 .002032520 493 24 20 64 119 095 488 22 .1810730 7 .8944468 .002032520 493 24 30 34 <t< td=""><td>480</td><td>23 04 00</td><td>110 592 000</td><td>21.9089023</td><td>7.8297353</td><td>.002083333</td></t<>	480	23 04 00	110 592 000	21.9089023	7.8297353	.002083333
482 23 23 24 111 980 168 21 .9544984 7 .8405949 .002074689 483 23 32 89 112 678 587 21 .9772610 7 .8460134 .002070393 484 23 42 56 113 379 904 22 .0000000 7 .8514244 .002066116 485 23 52 25 114 084 125 22 .0227155 7 .8568281 .002061856 486 23 61 96 114 791 256 22 .0454077 7 .8622242 .002057613 487 23 71 69 115 501 303 22 .080765 7 .8676130 .00205388 488 23 81 44 116 214 272 22 .0907220 7 .8729944 .002049180 489 23 91 21 116 930 169 22 .1133444 7 .8738684 .00204990 490 24 01 00 117 649 000 22 .1359436 7 .8837352 .002040816 491 24 10 81 118 370 771 22 .15810730 7 .8944468 .002032520 493 24 20 64 119 095 488 22 .1810730 7 .8944468 .002032520 493 24 30 34 <t< td=""><td>491</td><td>29 12 61</td><td>111 994 841</td><td>91 0217199</td><td>7 9351699</td><td>002070002</td></t<>	491	29 12 61	111 994 841	91 0217199	7 9351699	002070002
483 23 32 89 112 678 587 21.9772610 7.8460134 .002076393 484 23 42 56 113 379 904 22.0000000 7.8514244 .002066116 485 23 52 25 114 084 125 22.0227155 7.8682821 .002061856 486 23 61 96 114 791 256 22.0454077 7.8622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.8676130 .002053388 488 23 81 44 116 214 272 22.0907220 7.8729944 .002049180 489 23 91 21 116 930 169 22.1133444 7.8783684 .002044991 490 24 01 00 117 649 000 22.1359436 7.8897852 .002046816 491 24 10 81 118 370 771 22.1585198 7.899646 .00203660 492 24 20 64 119 995 488 22.1810730 7.897917 .002023520 493 24 30 49 119 823 157 22.2036033 7.897917 .00202352 495 24 50 25 121 287 375						
484 23 42 56 113 379 904 22.0000000 7.8514244 .002066116 485 23 52 25 114 084 125 22.0227155 7.8568281 .002061856 486 23 61 96 114 791 256 22.0454077 7.8622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.8676130 .002053388 488 23 81 44 116 214 272 22.0907220 7.8729944 .00204990 489 23 91 21 116 930 169 22.1133444 7.873364 .002044990 490 24 01 00 117 649 000 22.1359436 7.8837352 .002046816 491 24 10 81 118 370 771 22.1585198 7.8899946 .002036660 492 24 20 64 119 995 488 22.1810730 7.8944468 .002032520 493 24 30 49 119 823 157 22.2036033 7.9051294 .0020228398 495 24 50 25 121 287 375 22.2485955 7.9104599 .002024291 496 24 60 16 122 023 936	182			21 0772810		
485 23 52 25 114 084 125 22.0227155 7.8568281 .002061856 486 23 61 96 114 791 256 22.0454077 7.8622242 .002057613 487 23 71 69 115 501 303 22.0680765 7.8676130 .002057338 488 23 81 44 116 214 272 22.0907220 7.8729944 .002049180 489 23 91 21 116 930 169 22.1133444 7.8733684 .00204990 490 24 01 00 117 649 000 22.1359436 7.887352 .002040816 491 24 10 81 118 370 771 22.1585198 7.8899446 .002036660 492 24 20 64 119 095 488 22.1810730 7.894448 .002032530 493 24 30 49 119 823 157 22.2036033 7.8997917 .002023239 495 24 50 25 121 287 375 22.248108 7.9051294 .002024291 495 24 50 25 121 287 375 22.2485955 7.91457832 .002016129 496 24 60 16 122 023 936	484					
486						
487 23 71 69 115 501 303 22.0680765 7.8676130 .002053388 488 23 81 44 116 214 272 22.0907220 7.8729044 .0020409180 489 23 91 21 116 930 169 22.1133444 7.8783684 .002044990 490 24 01 00 117 649 000 22.1355436 7.8837352 .002040816 491 24 10 81 118 370 771 22.1585198 7.8899046 .00203660 492 24 20 64 119 095 488 22.1810730 7.8947917 .002023250 493 24 30 49 119 823 157 22.2036033 7.8997917 .002023250 494 24 40 36 120 553 784 22.2261108 7.9051294 .002024291 495 24 50 25 121 287 375 22.2485955 7.9104599 .002020202 496 24 60 16 122 023 936 22.2710575 7.9157832 .002016129 497 24 70 09 122 763 473 22.2934968 7.9210994 .002012072 498 24 80 04 123 505 992	200	20 02 20	111 001 140	22.022.100		. 502001300
487 23 71 69 115 501 303 22.0680765 7.8676130 .002053388 488 23 81 44 116 214 272 22.0907220 7.8729044 .0020409180 489 23 91 21 116 930 169 22.1133444 7.8783684 .002044990 490 24 01 00 117 649 000 22.1355436 7.8837352 .002040816 491 24 10 81 118 370 771 22.1585198 7.8899046 .00203660 492 24 20 64 119 095 488 22.1810730 7.8947917 .002023250 493 24 30 49 119 823 157 22.2036033 7.8997917 .002023250 494 24 40 36 120 553 784 22.2261108 7.9051294 .002024291 495 24 50 25 121 287 375 22.2485955 7.9104599 .002020202 496 24 60 16 122 023 936 22.2710575 7.9157832 .002016129 497 24 70 09 122 763 473 22.2934968 7.9210994 .002012072 498 24 80 04 123 505 992	486	23 61 96	114 791 256	22.0454077	7.8622242	.002057613
488 23 81 44 116 214 272 22 .0907220 7 .8729944 .002049180 489 23 91 21 116 930 169 22 .1133444 7 .8783684 .002044990 490 24 01 00 117 649 000 22 .1359436 7 .8837352 .002040816 491 24 10 81 118 370 771 22 .1585198 7 .8890946 .002036660 492 24 20 64 119 095 488 22 .1810730 7 .8944468 .002032520 493 24 30 49 119 823 157 22 .2036033 7 .8997917 .002028398 494 24 40 36 120 553 784 22 .2861108 7 .99104599 .002024291 495 24 50 25 121 287 375 22 .2485955 7 .9104599 .002020202 496 24 60 16 122 023 936 22 .2710575 7 .9157832 .002016129 497 24 70 09 122 763 473 22 .2934968 7 .9210994 .002012072 498 24 80 04 123 505 992 22 .3159136 7 .9264085 .0020008032 499 24 90 01						
489 23 91 21 116 930 169 22.1133444 7.8783684 .002044990 490 24 01 00 117 649 000 22.1359436 7.8837352 .002040816 491 24 10 81 118 370 771 22.1581918 7.8899946 .002036660 492 24 20 64 119 095 488 22.1810730 7.8944468 .002032520 493 24 30 49 119 823 157 22.2036033 7.8997917 .002028388 494 24 40 36 120 553 784 22.2261108 7.9051294 .002024291 495 24 50 25 121 287 375 22.2485955 7.910599 .00200202 496 24 60 16 122 023 936 22.2710575 7.9157832 .002016129 497 24 70 09 122 763 473 22.2934968 7.9210994 .002012072 498 24 80 04 123 505 992 22.3159136 7.9264085 .002008032 499 24 90 01 124 251 499 22.38383079 7.9317104 .002004008					7.8729944	
490 24 01 00 117 649 000 22.1359436 7.8837352 .002040816 491 24 10 81 118 370 771 22.1585198 7.8890946 .002036660 492 24 20 64 119 995 488 22.1810730 7.8944468 .002032520 493 24 30 49 119 823 157 22.2036033 7.8997917 .002028398 494 24 40 36 120 553 784 22.2261108 7.9051294 .002024291 495 24 50 25 121 287 375 22.2485955 7.9104599 .002020202 496 24 60 16 122 023 936 22.2710575 7.9157832 .002012072 497 24 70 09 122 763 473 22.2934968 7.9210994 .002012072 498 24 80 04 123 505 992 22.3159136 7.9264085 .002008032 499 24 90 01 124 251 499 22.38383079 7.9817104 .0022004008					7.8783684	
492 24 20 64 119 095 488 22 .1810730 7 .8944448 .002032530 493 24 30 49 119 823 157 22 .2036033 7 .8997917 .002028398 494 24 40 36 120 553 784 22 .2261108 7 .9051294 .0022024291 495 24 50 25 121 287 375 22 .2485955 7 .9104599 .002020202 496 24 60 16 122 023 936 22 .2710575 7 .9157832 .002016129 497 24 70 09 122 763 473 22 .2934968 7 .9210994 .002012072 498 24 80 04 123 505 992 22 .3159136 7 .9264085 .002008032 499 24 90 01 124 251 499 22 .3383079 7 .9317104 .002004008						
492 24 20 64 119 095 488 22 .1810730 7 .8944448 .002032530 493 24 30 49 119 823 157 22 .2036033 7 .8997917 .002028398 494 24 40 36 120 553 784 22 .2261108 7 .9051294 .0022024291 495 24 50 25 121 287 375 22 .2485955 7 .9104599 .002020202 496 24 60 16 122 023 936 22 .2710575 7 .9157832 .002016129 497 24 70 09 122 763 473 22 .2934968 7 .9210994 .002012072 498 24 80 04 123 505 992 22 .3159136 7 .9264085 .002008032 499 24 90 01 124 251 499 22 .3383079 7 .9317104 .002004008						
493 24 30 49 119 823 157 22 2036033 7 8997917 002028398 494 24 40 36 120 553 784 22 2261108 7 .9051294 002024291 495 24 50 25 121 287 375 22 .2485955 7 .9104599 002020202 496 24 60 16 122 023 936 22 .2710575 7 .9157832 002016129 497 24 70 09 122 763 473 22 .2934968 7 .9210994 .002012072 498 24 80 04 123 505 992 22 .3159136 7 .9264085 .002008032 499 24 90 01 124 251 499 23.383079 7 .9317104 .002004008						
494 24 40 36 120 553 784 22.2261108 7.9051294 .002024291 495 24 50 25 121 287 375 22.2485955 7.9104599 .002020202 496 24 60 16 122 023 936 22.2710575 7.9157832 .002016129 497 24 70 09 122 763 473 22.2934968 7.9210994 .002012072 498 24 80 04 123 505 992 22.3159136 7.9264085 .002004008 499 24 90 01 124 251 499 22.3383079 7.9317104 .002004008						
495 24 50 25 121 287 375 22.2485955 7.9104599 .002020202 496 24 60 16 122 023 936 22.2710575 7.9157832 .002016129 497 24 70 09 122 763 473 22.2934968 7.9210904 .002012072 498 24 80 04 123 505 992 22.3159136 7.9264085 .002008032 499 24 90 01 124 251 499 22.3383079 7.9317104 .0022004008						
496 24 60 16 122 023 936 22 2710575 7.9157832 .002016129 497 24 70 09 122 763 473 22 2934968 7.9210994 .002012072 498 24 80 04 123 505 992 22 3159136 7.9264085 .002008032 499 24 90 01 124 251 499 22 3383079 7.9317104 .0022004008						
497 24 70 09 122 763 473 22 2934968 7 9210994 002012072 498 24 80 04 123 505 992 22 3159136 7 9264085 002008030 499 24 90 01 124 251 499 22 3383079 7 9317104 002004008	490	44 OU 40	141 481 313	22.2400900	4.9104999	.002020202
497 24 70 09 122 763 473 22 2934968 7 9210994 002012072 498 24 80 04 123 505 992 22 3159136 7 9264085 002008030 499 24 90 01 124 251 499 22 3383079 7 9317104 002004008	496	24 60 16	122 023 936	22.2710575	7.9157832	.002016120
498 24 80 04 123 505 992 22.3159136 7.9264085 .002008032 499 24 90 01 124 251 499 22.3383079 7.9317104 .002004008		24 70 09				002012072
499 24 90 01 124 251 499 22,3383079 7,9317104 .002004008						
1 1						

Table 96 (Continued)

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.	Square	Cube	Square root	Cube root	Reciprocal
501	25 10 01	125 751 501	22.3830293	7.9422931	.001996008
502	25 20 04	126 506 008	22.4053565	7.9475739	.001992032
503	25 30 09	127 263 527	22.4276615	7.9528477	.001988072
504	25 40 16	128 024 064	22.4499443	7.9581144	001984127
505	25 50 25	128 787 625	22.4722051	7.9633743	.001980198
		100 554 010		- 00000=1	001050005
506	25 60 36	129 554 216	22.4944438	7.9686271	.001976285
507	25 70 49	130 323 843 131 096 512	22.5166605	7.9738731 7.9791122	.001972387 .001968504
508	25 80 64	131 872 229	22.5388553 22.5610283	7.9843444	.001968637
509 510	25 90 81 26 01 00	132 651 000	22.5831796	7.9895697	.001960784
310	20 01 00	102 001 000	22.0001.00	1.0000001	.001000101
511	26 11 21	133 432 831	22.6053091	7.9947883	.001956947
512	26 21 44	134 217 728	22.6274170	8.0000000	.001953125
513	26 31 69	135 005 697	22.6495033	8.0052049	.001949318
514	26 41 96	135 796 744	22.6715681	8.0104032	.001945525
515	26 52 25	136 590 875	22.6936114	8.0155946	.001941748
516	26 62 56	137 388 096	22.7156334	8.0207794	.001937984
517	26 72 89	138 188 413	22.7376340	8.0259574	.001934236
518	26 83 24	138 991 832	22.7596134	8.0311287	.001930502
519	26 93 61	139 798 359	22.7815715	8.0362935	.001926782
520	27 04 00	140 608 000	22.8035085	8.0414515	.001923077
020	2.0100			0.0121010	
521	27 14 41	141 420 761	22.8254244	8.0466030	.001919386
522	27 24 84	142 236 648	22.8473193	8.0517479	.001915709
523	27 35 29	143 055 667	22.8691933	8.0568862	.001912046
524	27 45 76	143 877 824	22.8910463	8.0620180	.001908397
525	27 56 25	144 703 125	22.9128785	8.0671432	.001904762
526	27 66 76	145 531 576	22.9346899	8.0722620	.001901141
527	27 77 29	146 363 183	22.9564806	8.0773743	.001897533
528	27 87 84	147 197 952	22.9782506	8.0824800	.001893939
529	27 98 41	148 035 889	23.0000000	8.0875794	.001890359
530	28 09 00	148 877 000	23.0217289	8.0926723	.001886792
		149 721 291	23.0434372	8.0977589	.001883239
531 532	28 19 61	150 568 768	23.0454372	8.1028390	.001879699
533	28 30 24	151 419 437	23.0867928	8.1079128	.001876173
534	28 40 89 28 51 56	152 273 304	23.1084400	8.1129803	.001872659
535	28 62 25	153 130 375	23.1300670	8.1180414	.001869159
- 1	·				
536	28 72 96	153 990 656	23.1516738	8.1230962	.001865672
537	28 83 69	154 854 153	23.1732605	8.1281447	.001862197
538	28 94 44	155 720 872	23.1948270	8.1331870	.001858736
539	29 05 21	156 590 819	23.2163735	8.1382230	.001855288
540	29 16 00	157 464 000	23.2379001	8.1432529	.001851852
541	29 26 81	158 340 421	23.2594067	8.1482765	.001848429
542	29 37 64	159 220 088	23.2808935	8.1532939	.001845018
543	29 48 49	160 103 007	23.3023604	8.1583051	.001841621
544	29 59 36	160 989 184	23.3238076	8.1633102	.001838235
545	29 70 25	161 878 625	23.3452351	8.1683092	.001834862
		100 881 000	00 0000400	0.1700000	001021500
546	29 81 16	162 771 336	23.3666429 23.3880311	8.1733020 8.1782888	.001831502 .001828154
547	29 92 09	163 667 323 164 566 592	23.4093998	8.1832695	.001824818
548	30 03 04 30 14 01	165 469 149	23.4307490	8.1882441	.001821494
		100 100 170			
549 550	30 25 00	166 375 000	23 . 4520788	8.1932127	.001818182

Table 96 (Continued)

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

	ES, CODE	, Decrina i	,	,	ECITIOCAIS
Num.	Square	Cube	Square root	Cube root	Reciprocal
551	30 36 01	167 284 151	23.4733892	8.1981753	.001814882
552	30 47 04	168 196 608	23.4946802	8.2031319	.001811594
553	30 58 09	169 112 377	23.5159520	8.2080825	.001808318
554	30 69 16	170 031 464	23.5372046	8.2130271	.001805054
555	30 80 25	170 953 875	23.5584380	8.2179657	.001801802
556	30 91 36	171 879 616	23.5796522	8.2228985	.001798561
557	31 02 49	172 808 693	23.6008474	8.2278254	.001795332
558	31 13 64	173 741 112	23.6220236	8.2327463	.001792115
559	31 24 81	174 676 879	23.6431808	8.2376614	.001788909
560	31 36 00	175 616 000	23.6643191	8.2425706	.001785714
561	31 47 21	176 558 481	23.6854386	8.2474740	.001782531
562	31 58 44	177 504 328	23.7065392	8.2523715	.001779359
563	31 69 69	178 453 547	23.7276210	8.2572633	.001776199
564	31 80 96	179 406 144	23.7486842	8.2621492	.001773050
565	31 92 25	180 362 125	23.7697286	8.2670294	.001769912
566	32 03 56	181 321 496	23.7907545	8.2719039	.001766784
567	32 14 89	182 284 263	23.8117618	8.2767726	.001763668
568	32 26 24	183 250 432	23.8327506	8.2816355	.001760563
569	32 37 61	184 220 009	23.8537209	8.2864928	.001757469
570	32 49 00	185 193 000	23.8746728	8.2913444	.001754386
571	32 60 41	186 169 411	23.8956063	8.2961903	.001751313
572	32 71 84	187 149 248	23.9165215	8.3010304	.001748252
573	32 83 29	188 132 517	23.9374184	8.3058651	.001745201
574	32 94 76	189 119 224	23.9582971	8.3106941	.001742160
575	33 06 25	190 109 375	23.9791576	8.3155175	.001739130
576	33 17 76	191 102 976	24.0000000	8.3203353	.001736111
577	33 29 29	192 100 033	24.0208243	8.3251475	.001733102
578	33 40 84	193 100 552	24.0416306	8.3299542	.001730104
579	33 52 41	194 104 539	24.0624188	8.3347553	.001727116
580	33 64 00	195 112 000	24.0831891	8.3395509	.001724138
581	33 75 61	196 122 941	24.1039416	8.3443410	.001721170
582	33 87 24	197 137 368	24.1246762	8.3491256	.001718213
583	33 98 89	198 155 287	24.1453929	8.3539047	.001715266
584	34 10 56	199 176 704	24.1660919	8.3586784	.001712329
585	34 22 25	200 201 625	24.1867732	8.3634466	.001709402
586	34 33 96	201 230 056	24.2074369	8.3682095	.001706485
587	34 45 69	202 262 003	24.2280829	8.3729668	.001703578
588	34 57 44	203 297 472	24.2487113	8.3777188	.001700680
589	34 69 21	204 336 469	24.2693222	8.3824653	.001697793
590	34 81 00	205 379 000	24.2899156	8.3872065	.001694915
591	34 92 81	206 425 071	24.3104916	8.3919423	.001692047
592	35 04 64	207 474 688	24.3310501	8.3966729	.001689189
593	35 16 49	208 527 857	24.3515913	8.4013981	.001686341
594	35 28 36	209 584 584	24.3721152	8.4061180	.001683502
595	35 40 25	210 644 875	24.3926218	8.4108326	.001680672
596	35 52 16	211 708 736	34.4131112	8.4155419	.001677852
597	35 64 09	212 776 173	24.4835834	8.4202460	.001675042
598	35 76 04	213 847 192	24.4540385	8.4249448	.001672241
599	35 88 01	214 921 799	24.4744765	8.4296383	.001669449
600	36 00 00	216 000 000	24.4948974	8.4343267	.001666667

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
601	36 12 01	217 081 801	24.5153013	8.4390098	.001663894
602	36 24 04	218 167 208	24.5356883	8.4436877	.001661130
603	36 36 09	219 256 227	24.5560583	8.4483605	.001658375
604	36 48 16	220 348 864	24.5764115	8.4530281	.001655629
605	36 60 25	221 445 125	24.5967478	8.4576906	.001652893
606	36 72 36	222 545 016	24.6170673	8.4623479	.001650165
607	36 84 49	223 648 543	24.6373700	8.4670000	.001647446
608	36 96 64	224 755 712	24.6576560	8.4716471	.001644737
609	37 08 81	225 866 529	24.6779254	8.4762892	.001642036
610	37 21 00	226 981 000	24.6981781	8.4809261	.001639344
611	37 33 21	228 099 131	24.7184142	8.4855579	.001636661
612	37 45 44	229 220 928	24.7386338	8.4901848	.001633987
613	37 57 69	230 346 397	24.7588368	8.4948065	.001631321
614	37 69 96	231 475 544	24.7790234	8.4994233	.001628664
615	37 82 25	232 608 375	24.7991935	8.5040350	.001626016
616	37 94 56	233 744 896	24.8193473	8.5086417	.001623377
617	38 06 89	234 885 113	24.8394847	8.5132435	.001620746
618	38 19 24	236 029 032	24.8596058	8.5178403	.001618123
619	38 31 61	237 176 659	24.8797106	8.5224321	.001615509
620	38 44 00	238 328 000	24.8997992	8.5270189	.001612903
621	38 56 41	239 483 061	24.9198716	8.5316009	.001610306
622	38 68 84	240 641 848	24.9399278	8.5361780	.001607717
623	38 81 29	241 804 367	24.9599679	8.5407501	.001605136
624	38 93 76	242 970 624	24.9799920	8.5453173	.001602564
625	39 06 25	244 140 625	25.0000000	8.5498797	.001600000
626	39 18 76	245 314 376	25.0199920	8.5514372	.001597444
627	39 31 29	246 491 883	25.0399681	8.5589899	.001594896
628	39 43 84	247 673 152	25.0599282	8.5635377	.001592357
629	39 56 41	248 858 189	25.0798724	8.5680807	.001589825
630	39 69 00	250 047 000	25.0998008	8.5726189	.001587302
631	39 81 61	251 239 591	25.1197134	8.5771523	.001584786
632	39 94 24	252 435 968	25.1396102	8.5816809	.001582278
633	40 06 89	253 636 137	25.1594913	8.5862047	.001579779
634	40 19 56	254 840 104	25.1793566 25.1992063	8.5907238 8.5952380	.001577287 .001574803
635	40 32 25	256 047 875	25.1992003	8.0902000	.00137 #800
636	40 44 96	257 259 456	25.2190404	8.5997476	.001572327
637	40 57 69	258 474 853	25.2388589	8.6042525	.001569859
638	40 70 44	259 694 072	25.2586619	8.6087526	.001567398
639	40 83 21	260 917 119	25.2784493	8.6132480	.001564945
640	40 96 0 0	262 144 000	25.2982213	8.6177388	.001562500
641	41 08 81	263 374 721	25.3179778	8.6222248	.001560062
642	41 21 64	264 609 288	25.3377189	8.6267063	.001557632
643	41 34 49	265 847 707	25.3574447	8.6311830	.001555210
644 645	41 47 36 41 60 25	267 089 984 268 336 125	25.3771551 25.3968502	8.6356551 8.6401226	.001552795
040	41 00 25	208 330 123	20.0800002	0.0101220	
646	41 73 16	269 586 136	25.4165301	8.6445855	.001547988
647	41 86 09	270 840 023	25.4361947	8.6490437	.001545595
648	41 99 04	272 097 792	25.4558441	8.6534974	.001543210 .001540832
649	42 12 01	273 359 449 274 625 000	25.4754784 25.4950976	8.6579465 8.6623911	.001538462
650	42 25 00	214 020 UN)	20.700000	0.0020011	.301000202

Table 96 (Continued)

Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
651	42 38 01	275 894 451	25.5147016	8.6668310	.001536098
652 653	42 51 04	277 167 808	25.5342907	8.6712665	.001533742
	42 64 09	278 445 077	25.5538647	8.6756974	.001531394
654 655	42 77 16 42 90 25	279 726 264 281 011 375	25.5734237	8.6801237 8.6845456	.001529052 .001526718
000	42 90 25	281 011 375	25.5929678	8.0843430	.001526718
656	43 03 36	282 300 416	25.6124969	8.6889630	.001524390
657	43 16 49	283 593 393	25.6320112	8.6933759	.001522070
658	43 29 64	284 890 312	25:6515107	8.6977843	.001519757
659 660	43 42 81 43 56 00	286 191 179 287 496 000	25.6709953 25.6904652	8.7021882 8.7065877	.001517451 .001515152
				• • • • • • • • • • • • • • • • • • • •	
661	43 69 21	288 804 781	25.7099203	8.7109827	.001512859
662	43 82 44	290 117 528	25.7293607	8.7153734	.001510574
663	43 95 69	291 434 247	25.7487864	8.7197596	.001508296
664	44 08 96	292 754 944	25.7681975	8.7241414	.001506024
665	44 22 25	294 079 625	25.7875939	8.7285187	.001503759
666	44 35 56	295 408 296	25.8069758	8.7328918	.001501502
667	44 48 89	296 740 963	25.8263431	8.7372604	.001499250
668	44 62 24	298 077 632	25.8456960	8.7416246	.001497006
669	44 75 61	299 418 309	25.8650343	8.7459846	.001494768
670	44 89 0 0	300 763 000	25.8843582	8.7503401	.001492537
671	45 02 41	302 111 711	25.9036677	8.7546913	.001490313
672	45 15 84	303 464 448	25.9229628	8.7590383	.001488095
673	45 29 29	304 821 217	25.9422435	8.7633809	.001485884
674	45 42 76	306 182 024	25.9615100	8.7677192	.001483680
675	45 56 25	307 546 875	25.9807621	8.7720532	.001481481
676	45 69 76	308 915 776	26.0000000	8.7763830	.001479290
677	45 83 29	310 288 733	26.0192237	8.7807084	.001477105
678	45 96 84	311 665 752	26.0384331	8.7850296	.001474926
679	46 10 41	313 046 839	26.0576284	8.7893466	.001472754
680	46 24 00	314 432 000	26.0768096	8.7936593	.001470588
681	46 37 61	315 821 241	26.0959767	8.7979679	.001468429
682	46 51 24	317 214 568	26.1151297	8.8022721	.001466276
683	46 64 89	318 611 987	26.1342687	8.8065722	.001464129
684	46 78 56	320 013 504	26.1533937	8.8108681	.001461988
685	46 92 25	321 419 125	26.1725047	8.8151598	.001459854
686	47 05 96	322 828 856	26.1916017	8.8194474	.001457726
687	47 19 69	324 242 703	26.2106848	8.8237307	.001455604
688	47 33 44	325 660 672	26.2297541	8.8280099	.001453488
689	47 47 21	327 082 769	26.2488095	8.8322850	.001451379
690	47 61 00	328 509 000	26.2678511	8.8365559	.001449275
691	47 74 81	329 939 371	26.2868789	8.8408227	.001447178
692	47 88 64	331 373 888	26.3058929	8.8450854	.001445087
693	48 02 49	332 812 557	26.3248932	8.8493440	.001443001
694	48 16 36	334 255 384	26.3438797	8.8535985	.001440922
695	48 30 25	335 702 375	26.3628527	8.8578489	.001438849
696	48 44 16	337 153 536	26.3818119	8.8620952	.001436782
697	48 58 09	338 608 873	26.4007576	8.8663375	.001434720
698	48 72 04	340 068 392	26.4196896	8.8705757	.001432665
699	48 86 01	341 532 099	26.4386081	8.8748099	.001430615
700	49 00 00	343 000 000	26.4575131	8.8790400	.001428571

Table 96 (Continued)
Squares, Cubes, Square Roots, Cube Roots, Reciprocals

Num.	Square	Cube	Square root	Cube root	Reciprocal
701	49 14 01	344 472 101	26.4764046	8.8832661	.001426534
702	49 28 04	345 948 408	26.4952826	8.8874882	.001424501
	49 42 09	347 428 927	26.5141472	8.8917063	.001422475
703			26.5329983	8.8959204	.001422475
704	49 56 16	348 913 664			
705	49 70 25	350 402 625	26.5518361	8.9001304	.001418440
706	49 84 36	351 895 816	26.5706605	8.9043366	.001416431
707	49 98 49	353 393 243	26.5894716	8.9085387	.001414427
708	50 12 64	354 894 912	26.6082694	8.9127369	.001412429
709	50 26 81	356 400 829	26.6270539	8.9169311	.001410437
710	50 41 00	357 911 000	26.6458252	8.9211214	.001408451
711	50 55 21	359 425 431	26.6645833	8.9253078	.001406470
712	50 69 44	360 944 128	26.6833281	8.9294902	.001404494
713	50 83 69	362 467 097	26.7020598	8.9336687	.001402525
714	50 97 96	363 994 344	26.7207784	8.9378433	.001400560
715	51 12 25	365 525 875	26.7394839	8.9420140	.001398601
716	51 26 56	367 061 696	26.7581763	8.9461809	.001396648
717	.51 40 89	368 601 813	26.7768557	8.9503438	.001394700
718	51 55 24	370 146 232	26.7955220	8.9545029	.001392758
719	51 69 61	371 694 959	26.8141754	8.9586581	.001390821
720	51 84 00	373 248 000	26.8328157	8.9628095	.001388889
721	51 98 41	374 805 361	26.8514432	8.9669570	.001386963
722	52 12 84	376 367 048	26.8700577	8.9711007	.001385042
723	52 27 29	377 933 067	26.8886593	8.9752406	.001383126
724	52 41 76	379 503 424	26.9072481	8.9793766	.001381215
725	52 56 25	381 078 125	26.9258240	8.9835089	.001379310
	FO FO FO	000 057 150	00 0440070	0.0070070	001055410
726	52 70 76	382 657 176	26.9443872	8.9876373	.001377410
727	52 85 29	384 240 583	26.9629375	8.9917620	.001375516
728	52 99 84	385 828 352	26.9814751	8.9958829	.001373626
729	53 14 41	387 420 489 389 017 000	-27.0000000	9.0000000	.001371742
730	53 29 00	999 017 000	27.0185122	9.0041134	.001369863
731	53 43 61	390 617 891	27.0370117	9.0082229	.001367989
732	53 58 24	392 223 168	27.0554985	9.0123288	.001366120
733	53 72 89	393 832 837	27.0739727	9.0164309	.001364256
734	53 87 56	395 446 904	27.0924344	9.0205293	.001362398
735	54 02 25	397 065 375	27.1108834	9.0246239	.001360544
190	J4 02 20	001 000 010	27.1100001	0.0240200	.001000011
736	54 16 96	398 688 256	27.1293199	9.0287149	.001358696
737	54 31 69	400 315 553	27 1477439	9.0328021	.001356852
738	54 46 44	401 947 272	27.1477439 27.1661554	9.0368857	.001355014
739	54 61 21	403 583 419	27.1845544	9.0409655	.001353180
740	54 76 00	405 224 000	27.2029410	9.0450417	.001351351
110	22.000	-30 2 000		0200111	.501001001
741	54 90 81	406 869 021	27.2213152	9.0491142	.001349528
742	55 05 64	408 518 488	27.2396769	9.0531831	.001347709
743	55 20 49	410 172 407	27.2580263	9.0572482	.001345895
744	55 35 36	411 830 784	27.2763634	9.0613098	.001344086
745	55 50 25	413 493 625	27.2946881	9.0653677	.001342282
	- 1			•	
	55 65 16	415 160 936	27.3130006	9.0694220	.001340483
746		410 000 700.	27.3313007	9.0734726	.001338688
746 747	55 80 09	416 832 723	27.0010007	0.0101120	
	55 95 04	418 508 992	27.3495887	9.0775197	.001336898
747			27.3495887 27.3678644 27.3861279	9.0775197 9.0815631 9.0856030	.001336898 .001335113 .001333333

Table 96 (Continued)
Squares, Cures, Square Roots, Cure Roots, Reciprocals

SQUAR	es, Cubes	, SQUARE R	oots, Cube	ROOTS, R	ECIPROCALS
Num.	Square	Cube	Square root	Cube root	Reciprocal
751 752 753 754	56 40 01 56 55 04 56 70 09 56 85 16	423 564 751 425 259 008 426 957 777 428 661 064	27.4043792 27.4226184 27.4408455 27.4590604	9.0896392 9.0936719 9.0977010 9.1017265	.001331558 .001329787 .001328021 .001326260
755	57 00 25	430 368 875	27.4772633	9.1057485	.001324503
756 757 758 759	57 15 36 57 30 49 57 45 64 57 60 81 57 76 00	432 081 216 433 798 093 435 519 512 437 245 479 438 976 000	27.4954542 27.5136330 27.5317998 27.5499546 27.5680975	9.1097669 9.1137818 9.1177931 9.1218010 9.1258053	.001322751 .001321004 .001319261 .001317523 .001315789
760 761 762	57 91 21 58 06 44	440 711 081 442 450 728	27.5862284 27.6043475	9.1298061 9.1338034	.001314060
763 764 765	58 21 69 58 36 96 58 52 25	444 194 947 445 943 744 447 697 125	27.6224546 27.6405499 27.6586334	9.1377971 9.1417874 9.1457742	.001310616 .001308901 .001307190
766 767 768 769	58 67 56 58 82 89 58 98 24 59 13 61	449 455 096 451 217 663 452 984 832 454 756 609	27.6767050 27.6947648 27.7128129 27.7308492 27.7488739	9.1497576 9.1537375 9.1577139 9.1616869	.001305483 .001303781 .001302083 .001300390
770 771 772	59 29 00 59 44 41 59 59 84	456 533 000 458 314 011 460 099 648	27.7668868 27.7848880	9.1656565 9.1696225 9.1735852	.001298701 .001297017 .001295337
773 774 775	59 75 29 59 90 76 60 06 25	461 889 917 463 684 824 465 484 375	27.8028775 27.8208555 27.8389218	9.1775445 9.1815003 9.1854527	.001293661 .001291990 .001290323
776 777 778 779 780	60 21 76 60 37 29 60 52 84 60 68 41 60 84 00	467 288 576 469 097 433 470 910 952 472 729 139 474 552 000	27.8567766 27.8747197 27.8926514 27.9105715 27.9284801	9.1894018 9.1933474 9.1972897 9.2012286 9.2051641	.001288660 .001287001 .001285347 .001283697 .001282051
781 782 783 784 785	60 99 61 61 15 24 61 30 89 61 46 56 61 62 25	476 379 541 478 211 768 480 048 687 481 890 304 483 736 625	27.9463772 27.9642629 27.9821372 28.0000000 28.0178515	9.2090962 9.2130250 9.2169505 9.2208726 9.2247914	.001280410 .001278772 .001277139 .001275510 .001273885
786 787 788 789 790	61 77 96 61 93 69 62 09 44 62 25 21 62 41 00	485 587 656 487 443 403 489 303 872 491 169 069 493 039 000	28.0356915 28.0535203 28.0713377 28.0891438 28.1069386	9.2287068 9.2326189 9.2365277 9.2404333 9.2443355	.001272265 .001270648 -:001269036 .001267427 .001265823
791 792 793 794	62 56 81 62 72 64 62 88 49 63 04 36 63 20 25	494 913 671 496 793 088 498 677 257 500 566 184 502 459 875	28.1247222 28.1424946 28.1602557 28.1780056 28.1957444	9.2482344 9.2521300 9.2560224 9.2599114 9.2637973	.001264223 .001262626 .001261034 .001259446 .001257862
795 796 797 798 799	63 20 25 63 36 16 63 52 09 63 68 04 63 84 01	504 358 336 506 261 573 508 169 592 510 082 399	28.2134720 28.2311884 28.2488938 28.2665881	9.2676798 9.2715592 9.2754352 9.2793081	.001256281 .001254705 .001253133 .001251564
800	64 00 00	512 000 000	28.2842712	9.2831777	.001250000

TABLE 96 (Continued) SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPEOCALS

Num. Square Cube Square root Cube root Reciprocal 801 64 16 01 513 922 401 28.3019434 9.2870440 .001248439 802 64 32 04 515 849 608 28.3196045 9.2990972 .001248833 803 64 46 16 519 718 464 28.3348938 9.2996239 .00124330 806 64 96 36 523 606 616 28.3901391 9.3063278 .001240695 807 65 12 49 525 557 943 28.4077454 9.3101750 .001240695 807 65 12 49 525 557 943 28.4077454 9.3101750 .001237624 808 65 28 64 527 514 112 28.4253408 9.3140190 .001237624 809 65 44 81 529 475 129 28.44504989 9.3216975 .001233046 811 65 77 21 533 411 731 28.4790617 9.3253200 .001233046 812 65 93 44 535 387 328 28.4790617 9.3253200 .001233046 812 65 99 44 535 387 328			<u>, </u>	·	·	
802 64 32 04 515 849 608 28 3196045 9.2909072 .00124883 803 64 48 16 519 718 1627 28 3372546 9.2947671 .001243781 804 64 64 16 519 718 464 28 3548938 9.2986239 .001243781 806 64 96 36 521 660 125 28 .3725219 9.3024775 .001243781 806 64 96 36 523 606 616 28 .3901391 9.3063278 .001240965 807 65 12 49 525 557 943 28 .4077454 9.3101750 .001239157 808 65 24 81 529 475 129 28 .429253 9.3140190 .001237624 809 65 44 81 529 475 129 28 .429253 9.3140190 .001237624 810 65 61 00 531 441 000 28 .4604989 9.3216975 .001234568 811 65 77 21 533 411 731 28 .4756137 9.3255320 .001238501 813 66 99 69 537 367 797 28 .5131649 9.331916 .001229619 814 66 2596 539 353 144 <td>Num.</td> <td>Square</td> <td>Cube</td> <td>Square root</td> <td>Cube root</td> <td>Reciprocal</td>	Num.	Square	Cube	Square root	Cube root	Reciprocal
804 64 64 16 519 718 464 28, 3548938 9, 2986239 .001243781 806 64 80 25 521 660 125 28, 3725219 9, 3024775 .001242236 807 65 12 49 525 557 943 28, 4077454 9, 3101750 .001239157 808 65 28 64 527 514 112 28, 4253408 9, 3140190 .001237624 809 65 44 81 529 475 129 28, 429253 9, 3178599 .001230624 811 65 61 00 531 441 000 28, 4604989 9, 3216975 .001234688 811 65 77 21 533 411 731 28, 4786117 9, 3255320 .001233012 813 66 09 69 537 367 797 28, 5131549 9, 3331916 .001230012 814 68 25 96 539 34375 28, 5482048 9, 3446575 .001225490 816 66 58 56 543 338 496 28, 5582119 9, 3446575 .001225490 817 66 74 89 545 338 513 28, 5582119 9, 3484731 .001223990 818 66 71 24 <td< td=""><td>802</td><td>64 32 04</td><td>515 849 608</td><td>28.3196045</td><td>9.2909072</td><td>.001246883</td></td<>	802	64 32 04	515 849 608	28.3196045	9.2909072	.001246883
807 65 12 49 525 557 943 28. 4077454 9. 3101750 .001237624 809 65 28 64 527 514 112 28. 4253408 9. 3178599 .001237624 810 65 61 00 531 441 000 28. 4604989 9. 3216975 .001234668 811 65 77 21 533 411 731 28. 4780617 9. 3255320 .001233046 812 65 93 44 535 387 328 28. 4956137 9. 32370167 .001230012 813 66 06 99 537 367 797 28. 5131549 9. 3370167 .001230012 814 66 25 96 539 353 144 28. 5365219 9. 3370167 .001228601 816 66 58 56 543 338 496 28. 5657137 9. 3446575 .001225490 817 66 74 89 545 338 513 28. 5832119 9. 3444731 .001223494 819 67 07 61 549 353 259 28. 6181760 9. 360952 .00122494 821 67 40 41 553 387 661 28. 6705424 9. 3675051 .001216645 823 67 73 29 <	804	64 64 16	519 718 464	28.3548938	9.2986239	.001243781
808 65 28 64 527 514 112 28. 4253408 9. 3140190 .001237624 810 65 44 81 529 475 129 28. 4604989 9. 3216975 .001234068 811 65 77 21 533 411 731 28. 4780617 9. 3255320 .001234046 812 65 93 44 535 387 328 28. 4956137 9. 3293634 .001230012 814 66 25 96 539 353 144 28. 5306862 9. 3370167 .001238061 815 66 42 25 541 343 375 28. 5482048 9. 3408386 .001225990 816 66 58 56 543 338 496 28. 5657137 9. 3446575 .001225990 817 66 74 89 545 338 513 28. 5832119 9. 3445731 .001223990 818 66 91 24 547 343 432 28. 6006993 9. 3522857 .001225490 818 66 91 24 547 343 432 28. 6006993 9. 3599016 .001219512 821 67 40 41 553 387 661 28. 6530976 9. 3637049 .001219512 822 67 56 84						.001240695
811 65 77 21 533 411 731 28. 4780617 9. 3255320 .001233046 812 65 93 44 535 387 328 28. 4956137 9. 3293634 .001231527 813 66 09 69 537 367 797 28. 5131549 9. 3331916 .001230012 814 66 25 96 539 353 144 28. 5306852 9. 3370167 .001228601 815 66 42 25 541 343 375 28. 5482048 9. 3408386 .001228601 816 66 58 56 543 338 496 28. 5657137 9. 3446575 .001228601 817 66 74 89 545 338 513 28. 5832119 9. 3484731 .001223990 818 66 91 24 547 343 432 28. 6006993 9. 3522857 .001222494 819 67 07 61 549 353 259 28. 6181760 9. 3560952 .001221001 820 67 24 00 551 368 000 28. 6356421 9. 3599016 .001219512 821 67 40 41 553 387 661 28. 6530676 9. 3750961 .001216545 823 67 73 29 557 441 767 28. 6879766 9. 3713022 .001219027 824 67 89 76 559 476 224 28. 7054002 9. 3750963 .0012115067 825 68 06 25 561 515 625 28. 7228132 9. 3788873 .001212121 826 68 22 76 563 559 976 28. 7402157 9. 3826752 .0012201212 826 68 22 76 563 559 976 28. 7402157 9. 3826752 .0012201212 827 68 39 29 565 609 283 28. 7576077 9. 3864600 .001209190 829 68 72 41 569 722 789 28. 7729801 9. 3977964 .001209729 829 68 72 41 569 722 789 28. 7729801 9. 3977964 .001209729 829 68 72 41 569 722 789 28. 7923601 9. 3940206 .001209138 831 69 05 61 573 856 191 28. 8270706 9. 375038 .001212121 831 69 05 61 573 856 191 28. 8270706 9. 3977964 .001204819 832 69 22 24 575 930 368 28. 8444102 9. 4053387 .001204819 833 69 88 89 578 009 537 28. 8617394 9. 4091054 .001204819 834 69 55 56 580 093 704 28. 8790582 9. 4128690 .001199041 835 69 72 25 582 182 875 28. 8963666 9. 4166297 .001197605 836 69 88 96 584 277 056 28. 9136646 9. 4203873 .001191672 837 70 05 69 586 376 253 28. 99654967 9. 4316423 .001197605 836 69 88 96 584 277 056 28. 9136646 9. 4203873 .001191672 837 70 05 69 586 376 253 28. 99654967 9. 4316423 .001197605 836 69 88 96 584 277 056 28. 9136646 9. 4203873 .001197605 837 70 05 69 586 376 253 28. 99654967 9. 4316423 .001197605 841 70 72 81 589 589 719 28. 9654967 9. 4316423 .001197605 844 70 70 80 64 596 597 50 603 551 125 20.0688837 9. 4421400 .001180638 845 71 10 04 609 800 1	808	65 28 64	527 514 112 529 475 129	28.4253408	9.3140190	.001237624
812 66 98 44 535 387 328 28. 4956137 9. 3293634 .001231527 813 66 00 69 537 367 797 28. 5306852 9. 3370167 .001230012 815 66 42 25 541 343 375 28. 5306852 9. 3408388 .001228501 816 66 58 56 543 338 496 28. 5657137 9. 3446575 .001228690 817 66 74 89 545 338 513 28. 5832119 9. 3444731 .001223990 818 66 91 24 547 343 432 28. 6006993 9. 3522857 .00122390 820 67 24 00 551 368 000 28. 6356421 9. 3509952 .001221001 821 67 40 41 553 387 661 28. 6530976 9. 3637049 .001218027 822 67 56 84 555 412 248 28. 6705424 9. 3675051 .001216047 822 67 58 97 6 559 476 224 28. 7054002 9. 3758973 .001215067 824 67 89 76 559 476 224 28. 7054002 9. 3758873 .0012120614 826 68 22 76						
814 66 25 96 539 353 144 28. 5306862 9.3870167 .001228601 816 66 58 56 541 343 375 28. 5482048 9.3408386 .001226994 817 66 74 89 545 338 496 28. 5657137 9.3446575 .001225490 818 66 91 24 547 343 432 28. 6006993 9.3522857 .001222494 819 67 07 61 549 353 259 28. 6181760 9.3509922 .001221001 820 67 24 00 551 368 000 28. 6356421 9.3599016 .001219512 821 67 40 41 553 387 661 28. 6530976 9.3637049 .001218027 822 67 56 84 555 412 248 28. 6705424 9.3675051 .001216067 824 67 89 76 559 476 224 28. 7054002 9.3738073 .001215067 825 68 02 25 561 515 625 28. 742187 9.3826752 .001215067 827 68 39 29 565 609 283 28. 7576077 9.3826752 .001210654 827 68 39 29 565 609	812	65 93 44	535 387 328	28.4956137	9.3293634	.001231527
817 66 74 89 545 338 513 28.5832119 9.3484731 .001223690 818 66 91 24 547 343 432 28.6006903 9.3529857 .001222494 819 67 07 61 549 353 259 28.6181760 9.3560952 .001221001 820 67 24 00 551 368 000 28.6356421 9.3599016 .001219512 821 67 67 64 555 387 661 28.6705424 9.3637049 .001218057 822 67 73 29 557 441 767 28.6705424 9.3675051 .001215067 824 67 89 76 559 476 224 28.7054002 9.375963 .001213567 825 68 06 25 561 515 625 28.7228132 9.375963 .001213672 827 68 39 29 565 609 283 28.7576077 9.3826752 .001210654 827 68 39 29 565 609 283 28.7526077 9.384000 .001207729 829 68 72 41 569 722 789 28.7923601 9.397401 .00120782 829 68 72 41 569 722 789	814	66 25 96	539 353 144	28.5306852	9.3370167	.001228501
818 66 91 24 547 343 432 28.6006993 9.3522857 .001222404 820 67 27 61 549 353 259 28.6181760 9.3509952 .001221001 820 67 24 00 551 368 000 28.6356421 9.3599016 .001219512 821 67 40 41 553 387 661 28.6530976 9.3637049 .001218027 822 67 56 84 555 412 248 28.6705424 9.3675051 .001216047 824 67 89 76 556 476 224 28.7054002 9.3750963 .001215067 824 67 89 76 556 476 224 28.7228132 9.3788873 .001212121 826 68 22 76 563 559 976 28.7402157 9.3826752 .001210654 827 68 39 29 565 609 283 28.7576077 9.3846400 .001207129 828 68 72 41 569 722789 28.7923601 9.3977964 .001207129 828 68 72 41 569 722789 28.790706 9.4015691 .001203389 831 69 05 61 573 856 191	816 817	66 58 56 66 74 89				
821 67 40 41 553 387 661 28.6530976 9.3637049 .001218027 822 67 56 84 555 412 248 28.6705424 9.3675051 .001216645 823 67 73 29 557 441 767 28.6879766 9.3713022 .001216045 824 67 89 76 559 476 224 28.7054002 9.375963 .001213592 825 68 06 25 561 515 625 28.7228132 9.3788873 .001212121 826 68 22 76 563 559 976 28.76077 9.3826752 .001210654 827 68 39 29 565 609 283 28.7576077 9.3826752 .001210654 828 68 55 84 567 663 552 28.7749881 9.3907401 .00120729 829 68 72 41 569 722 789 28.7923601 9.3977964 .001204273 831 69 05 61 573 856 191 28.8270706 9.4015691 .001204389 832 69 22 24 575 930 368 28.8444102 9.4015691 .001204389 834 69 35 65 580 093 704	818 819	66 91 24 67 07 61	547 343 432 549 353 259	28.6006993 28.6181760	9.3522857 9.3560952	.001222494 .001221001
822 67 56 84 555 412 248 28.6705424 9.3675051 .001216565 823 67 73 29 557 441 767 28.6879766 9.3713022 .001215067 824 67 89 76 559 476 224 28.7054002 9.3750963 .001215067 825 68 06 25 561 515 625 28.7228132 9.3758873 .001213592 826 68 22 76 563 559 976 28.7402157 9.3826752 .001210548 827 68 39 29 565 609 283 28.77749891 9.3802400 .001207729 829 68 72 41 560 722 789 28.7723801 9.397246 .001206273 830 68 89 00 571 787 000 28.8097206 9.3977964 .001204819 831 69 05 61 573 856 191 28.8270706 9.4015601 .001203389 833 69 38 89 578 009 537 28.8193649 9.4091054 .001204819 834 69 55 56 580 937 704 28.8790582 9.412669 .00119044 835 69 72 25 582 182 875	1 1					
825 68 06 25 561 515 625 28.7228132 9.3788873 .001212121 826 68 22 76 563 559 976 28.7402157 9.3826752 .001210654 827 68 39 29 565 609 283 28.7576077 9.3864600 .001209190 828 68 55 84 567 663 552 28.7793801 9.3902419 .00120729 829 68 72 41 569 722 789 28.7923601 9.3940206 .001204819 831 69 05 61 573 856 191 28.8270706 9.4015691 .001204819 832 69 22 24 575 930 368 28. 8474102 9.4015691 .001204819 831 69 05 61 573 856 191 28.8270706 9.4015691 .001204819 832 69 22 24 575 930 368 28. 8474102 9.401564 .0012048369 834 69 35 56 580 093 704 28. 8790582 9.4126890 .00119041 835 69 72 25 582 182 875 28. 8963666 9.4203873 .001197605 836 69 88 96 584 277 056	822 823	67 56 84 67 73 29	557 441 767	28.6879766	9.3675051 9.3713022	.001216545 .001215067
827 68 39 29 565 609 283 28.7576077 9.3864600 .001209190 828 68 55 84 567 663 552 28.7749801 9.3940206 .001207729 830 68 89 00 571 787 000 28.8097206 9.3977964 .001204819 831 69 05 61 573 856 191 28.8097206 9.4015691 .001203689 832 69 22 24 575 930 368 28. 8444102 9.4053387 .00120480 834 69 55 56 580 093 704 28.8617394 9.4091054 .001200480 835 69 72 25 582 182 875 28.8963666 9.4166297 .001199041 836 69 88 96 584 277 056 28.9136646 9.4203873 .001193705 837 70 05 69 586 376 253 28. 9309523 9.421420 .001194743 838 70 22 44 588 480 472 28. 9482297 9.4278936 .00119374 840 70 56 00 592 704 000 28. 9827535 9.4353880 .00119376 841 70 72 81 596 367 688	824 825					
829 68 72 41 569 722 789 28.7923601 9.3940206 .001206273 831 69 05 61 571 787 000 28.8097206 9.3977964 .001204819 832 69 22 24 575 930 368 28.8270706 9.4015691 .001203369 833 69 28 89 578 930 368 28.8444102 9.4091054 .001201923 834 69 55 56 580 093 704 28.8790582 9.4128690 .001199041 835 69 72 25 582 182 875 28.8963666 9.4203873 .001197605 836 68 88 96 584 277 056 28.9136646 9.4203873 .001197605 837 70 05 69 586 376 253 28.9309523 9.4241420 .001194763 838 70 22 44 588 480 472 28.9482297 9.4278936 .001193317 839 70 39 21 590 589 719 28.9654967 9.4316423 .001194763 841 70 72 81 594 823 321 29.0000000 9.4391307 .001189041 842 70 89 64 596 947 688	827	68 39 29	565 609 283	28.7576077	9.3864600	.001209190
831 69 05 61 573 856 191 28.8270706 9.4015601 .001203369 832 69 22 24 575 930 368 28.8444102 9.4053387 .001201923 833 69 38 89 578 009 537 28.8617394 9.4091054 .001200480 835 69 72 25 582 182 875 28.8963666 9.4166297 .001199041 835 69 72 25 582 182 875 28.8963666 9.4166297 .001199041 837 70 05 69 586 376 253 28.9309523 9.42241420 .001194743 838 70 22 44 588 480 472 28.9458297 9.4278936 .001194743 839 70 39 21 590 589 719 28.9458967 9.4316423 .001194783 839 70 39 21 590 589 719 28.9854967 9.4316423 .001191895 840 70 56 00 592 704 000 28.985755 9.4353880 .0011904768 842 70 89 64 596 947 688 29.0172363 9.422470 .001187648 843 71 06 49 599 077 107 29.0344623 9.4466072 .001187648 843 71 06 49 599 077 107 29.0344623 9.4466072 .001186240 844 71 23 36 601 211 584 29.0516781 9.4503410 .001184834 845 71 10 4 609 800 192 29.1204396 9.4652470 .00118038 846 71 57 16 605 495 736 29.0860791 9.4577999 .001182033 847 71 74 09 607 645 423 29.1032644 9.4615249 .00118038 848 71 10 10 4 609 800 192 29.1204396 9.4652470 .001178568 849 72 08 01 611 960 049 29.1376046 9.4859661 .001177856	829	68 72 41	569 722 789	28.7923601	9.3940206	.001206273
883 66 38 89 578 009 537 28.8617394 9.4091054 001200480 834 69 55 56 580 003 704 28.8790582 9.4128690 001199041 836 69 72 25 582 182 875 28.8963666 9.4166297 001197605 836 69 88 96 584 277 056 28.9136646 9.4203873 001197605 837 70 05 69 586 376 253 28.9309523 9.4241420 001194743 838 70 22 44 588 480 472 28.9482297 9.4278936 001193317 839 70 39 21 590 589 719 28.9654967 9.4316423 001190476 841 70 72 81 594 823 321 29.0000000 9.4391307 001189061 842 70 89 64 596 947 688 29.0172363 9.4428704 001187648 843 71 06 49 599 077 107 29.0344623 9.4503410 001186240 844 71 23 36 601 211 584 29.0516781 9.4503410 001184334 845 71 40 25 603 351 125	831	69 05 61	573 856 191	28.8270706	9.4015691	.001203369
835 69 72 25 582 182 875 28.8963666 9.4166297 .001197605 836 69 88 96 584 277 056 28.9136646 9.4203873 .001196172 837 70 05 69 586 876 253 28.9309523 9.421420 .001194743 838 70 22 44 588 480 472 28.9482297 9.4278936 .001193317 839 70 39 21 590 589 719 28.9654967 9.4316423 .001191895 840 70 56 00 592 704 000 28.9827535 9.4353880 .001190476 841 70 72 81 594 823 321 29.0000000 9.4391307 .001187648 843 71 08 96 596 90 77 107 29.0344623 9.4428704 .001187648 843 71 03 6 601 211 584 29.0516781 9.4503410 .001184834 844 71 23 36 601 211 584 29.0516781 9.450719 .001183432 846 71 57 16 605 495 736 29.0860791 9.4577999 .00118203 847 71 74 09 607 645 423	833	69 38 89	578 009 537	28.8617394	9.4091054	.001200480
837 70 05 69 586 376 253 28. 9309523 9. 4241420 001194743 838 70 22 44 588 480 472 28. 9482297 9. 4278936 001193317 840 70 56 00 592 704 000 28. 9654967 9. 4316423 001191895 841 70 72 81 594 823 321 29. 0000000 9. 4391307 001189061 842 70 89 64 596 947 688 29. 0172363 9. 4428704 001187648 843 71 06 49 599 077 107 29. 0344623 9. 4466072 001186240 844 71 23 36 601 211 584 29. 0516781 9. 4503410 001184334 845 71 40 25 603 351 125 29. 0860791 9. 4577999 001182033 847 71 74 09 607 645 423 29. 1032644 9. 4615249 001180638 848 71 91 04 609 800 192 29. 1204396 9. 4652470 001179245 849 72 08 01 611 960 049 29. 1378046 9. 4652470 001177856	835	69 72 25	582 182 875	28.8963666	9.4166297	.001197605
839 70 39 21 590 589 719 28.9654967 9.4316423 .001191895 841 70 72 81 594 823 321 29.000000 9.4391307 .001189061 842 70 89 64 596 947 688 29.0172363 9.4428704 .001187648 843 71 06 49 599 077 107 29.0344623 9.4466072 .001186240 844 71 23 36 601 211 584 29.0516781 9.4503410 .001183432 845 71 40 25 603 351 125 29.0860791 9.4577999 .00118233 847 71 74 09 607 645 423 29.1032644 9.4615249 .001180638 848 71 91 04 609 800 192 29.1204396 9.4652470 .00117856 849 72 08 01 611 960 049 29.1376046 9.4899661 .001177856	837	70 05 69	586 376 253	28.9309523	9.4241420	.001194743
842 70 89 64 596 647 688 29 .0172363 9 .4428704 .001187648 843 71 06 49 599 077 107 29 .0344623 9 .4466072 .001186240 844 71 23 36 601 211 584 29 .0516781 9 .4504719 .001184834 845 71 40 25 603 351 125 29 .0868837 9 .4510719 .001183432 846 71 57 16 605 495 736 29 .0860791 9 .4577999 .001182033 847 71 74 09 607 645 423 29 .1032644 9 .4615249 .001180638 848 71 91 04 609 800 192 29 .1274396 9 .4652470 .00117856 849 72 08 01 611 960 049 29 .1376046 9 .4889661 .001177856	839	70 39 21	590 589 719	28.9654967	9.4316423	.001191895
843 71 06 49 599 077 107 29 .0344623 9 .4466072 .001186240 844 71 23 36 601 211 584 29 .0516781 9 .4503410 .001184834 845 71 40 25 603 351 125 29 .0868837 9 .4540719 .001183432 846 71 57 16 605 495 736 29 .0860791 9 .4577999 .001182033 847 71 74 09 607 645 423 29 .1032644 9 .4615249 .001180638 848 71 91 04 609 800 192 29 .1234396 9 .4652470 .00117856 849 72 08 01 611 960 049 29 .1376046 9 .4889661 .001177856						
846 71 57 16 605 495 736 29.0860791 9.4577999 .001182033 847 71 74 09 607 645 423 29.1032644 9.4615249 .001180638 848 71 91 04 609 800 192 29.1204396 9.4652470 .001179245 849 72 08 01 611 960 049 29.1376046 9.4689661 .001177856	843 844	71 06 49 71 23 36	599 077 107 601 211 584	29.0344623 29.0516781	9.4466072 9.4503410	.001186240 .001184834
847 71 74 09 607 645 423 29 .1032644 9 .4615249 .001180638 848 71 91 04 609 800 192 29 .1204306 9 .4652470 .001179245 849 72 08 01 611 960 049 29 .1376046 9 .4689661 .001177856						
	847	71 74 09	607 645 423 609 800 192	29.1032644 29.1204396	9.4615249 9.4652470	.001180638 .001179245

Table 96 (Continued)
Source Roots, Cube Roots, Reciprocals

SQUARE	s, Cubes,	SQUARE I	loots, Cube	Roots, H	CECIPROCALS
Num.	Square	Cube	Square root	Cube root	Reciprocal
851	72 42 01	616 295 051	29.1719043	9.4763957	.001175088
852	72 59 04	618 470 208	29.1890390	9.4801061	.001173709
853	72 76 09	620 650 477	29.2061637	9.4838136	.001172333
854	72 93 16	622 835 864	29.2232784	9.4875182	.001170960
855	73 10 25	625 026 375	29.2403830	9.4912200	.001169591
856	73 27 36	627 222 016	29.2574777	9.4949188	.001168224
857	73 44 49	629 422 793	29.2745623	9.4986147	.001166861
858	73 61 64	631 628 712	29.2916370	9.5023078	.001165501
859	73 78 81	633 839 779	29.3087018	9.5059980	.001164144
860	73 96 00	636 056 000	29.3257566	9.5096854	.001162791
861	74 13 21	638 277 381	29.3428015	9.5133699	.001161440
862	74 30 44	640 503 928	29.3598365	9.5170515	.001160093
863	74 47 69	642 735 647	29.3768616	9.5207303	.001158749
864	74 64 96	644 972 544	29.3938769	9.5244063	.001157407
865	74 82 25	647 214 625	29.4108823	9.5280794	.001156069
866	74 99 56	649 461 896	29.4278779	9.5317497	.001154734
867	75 16 89	651 714 363	29.4448637	9.5354172	.001153403
868	75 34 24	653 972 032	29.4618397	9.5390818	.001152074
869	75 51 61	656 234 909	29.4788059	9.5427437	.001150748
870	75 69 00	658 503 000	29.4957624	9.5464027	.001149425
871	75 86 41	660 776 311	29.5127091	9.5500589	.001148106
872	76 03 84	663 054 848	29.5296461	9.5537123	.001146789
873	76 21 29	665 338 617,	29.5465734	9.5573630	.001145475
874	76 28 76	667 627 624	29.5634910	9.5610108	.001144165
875	76 56 25	669 921 875	29.5803989	9.5646559	.001142857
876	76 73 76	672 221 376	29.5972972	9.5682982	.001141553
877	76 91 29	674 526 133	29.6141858	9.5719377	.001140251
878	77 08 84	676 836 152	29.6310648	9.5755745	.001138952
879	77 26 41	679 151 439	29.6479342	9.5792085	.001137656
880	77 44 00	681 472 000	29.6647939	9.5828397	.001136364
881	77 61 61	683 797 841	29.6816442	9.5864682	.001135074
882	77 79 24	686 128 968	29.6984848	9.5900939	.001133787
883	77 96 89	688 465 387	29.7153159	9.5937169	.001132503
884	78 14 56	690 807 104	29.7321375	9.5973373	.001131222
885	78 32 25	693 154 125	29.7489496	9.6009548	.001129944
886	78 49 96	695 506 456	29.7657521	9.6045696	.001128668
887	78 67 69	697 864 103	29.7825452	9.6081817	.001127396
888	78 85 44	700 227 072	29.7993289	9.6117911	.001126126
889	79 03 21	702 595 369	29.8161030	9.6153977	.001124859
890	79 21 00	704 969 000	29.8328678	9.6190017	.001123596
891	79 38 81	707 347 971	29.8496231	9.6226030	.001122334
892	79 56 64	709 732 288	29.8663690	9.6262016	.001121076
893	79 74 49	712 121 957	29.8831056	9.6297975	.001119821
894	79 92 36	714 516 984	29.8998328	9.6333907	.001118568
895	80 10 25	716 917 375	29.9165506	9.6369812	.001117318
896	80 28 16	719 323 136	29.9332591	9.6405690	.001116071
897	80 46 09	721 734 273	29.9499583	9.6441542	.001114827
898	80 64 04	724 150 792	29.9666481	9.6477367	.001113586
899	80 82 01	726 572 699	29.9833287	9.6513166	.001112347
900	81 00 00	729 000 000	30.0000000	9.6548938	.001111111

Table 96 (Continued)

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.	Square	Cube	Square root	Cube root	Reciprocal
901	81 18 01	731 432 701	30.0166620	9.6584684	.001109878
902	81 36 04	733 870 808	30.0333148	9.6620403	.001108647
903	81 54 09	736 314 327	30.0499584	9.6656096	.001107420
904	81 72 16	738 763 264	30.0665928	9.6691762	.001106195
905	81 90 25	741 217 625	30.0832179	9.6727403	.001104972
906	82 08 36	743 677 416	30.0998339	9.6763017	.001103753
907	82 26 49	746 142 643	30.1164407	9.6798604	.001102536
908	82 44 64	748 613 312	30.1330383	9.6834166	.001101322
909	82 62 81	751 089 429	30.1496269	9.6869701	.001100110
910	82 81 00	753 571 000	30.1662063	9.6905211	.001098901
911	82 99 21	756 058 031	30.1827765	9.6940694	.001097695
912	83 17 44	758 550 528	30.1993377	9.6976151	.001096491
913	83 35 69	761 048 497	30.2158899	9.7011583	.001095290
914	83 53 96	763 551 944	30.2324329	9.7046989	.001094092
915	83 72 25	766 060 875	30.2489669	9.7082369	.001092896
916	83 90 56	768 575 296	30.2654919	9.7117723	.001091703
917	84 08 89	771 095 213	30.2820079	9.7153051	.001090513
918	84 27 24	773 620 632	30.2985148	9.7188354	.001089325
919	84 45 61	776 151 559	30.3150128	9.7223631	.001088139
920	84 64 00	. 778 688 000	30.3315018	9.7258883	.001086957
921	84 82 41	781 229 961	30.3479818	9.7294109	.001085776
922	85 00 84	783 777 448	30.3644529	9.7329309	.001084599
923	85 19 29	786 330 467	30.3809151	9.7364484	.001083424
924	85 37 76	788 889 024	30.3973683	9.7399634	.001082251
925	85 56 25	791 453 125	30.4138127	9.7434758	.001081081
926	85 74 76	794 022 776	30.4302481	9.7469857	.001079914
927	85 93 29	796 597 983	30.4466747	9.7504930	.001078749
928	86 11 84	799 178 752	30.4630924	9.7539979	.001077586
929	86 30 41	801 765 089	30.4795013	9.7575002	.001076426
930	86 49 00	804 357 000	30.4959014	9.7610001	.001075269
931	86 67 61	806 954 491	30.5122926	9.7644974	.001074114
932	86 86 24	809 557 568	30.5286750	9.7679922	.001072961
933	87 04 89	812 166 237	30.5450487	9.7714845	.001071811
934	87 23 56	814 780 504	30.5614136	9.7749743	.001070664
935	87 42 25	817 400 375	30.5777697	9.7784616	.001069519
936	87 60 96	820 025 856	30.5941171	9.7819466	.001068376
937	87 79 69	822 656 953	30.6104557	9.7854288	.001067236
938	87 98 44	825 293 672	30.6267857	9.7889087	.001066098
939	88 17 21	827 936 019	30.6431069	9.7923861	.001064963
940	88 36 00	830 584 000	30.6594194	9.7958611	.001063830
941	88 54 81	833 237 621	30.6757233	9.7993336	.001062699
942	88 73 64	835 896 888	30.6920185	9.8028036	.001061571
943	88 92 49	838 561 807	30.7083051	9.8062711	.001060445
944	89 11 36	841 232 384	30.7245830	9.8097362	.001059322
945	89 30 25	843 908 625	30.7408523	9.8131989	.001058201
946	89 49 16	846 590 536	30.7571130	9.8166591	.001057082
947	89 68 09	849 278 123	30.7733651	9.8201169	.001055966
948	89 87 04	851 971 392	30.7896086	9.8235723	.001054852
949	90 06 01	854 670 349	30.8058436	9.8270252	.001053741
950	90 25 00	857 375 000	30.8220700	9.8304757	.001052632

Table 96 (Concluded)

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, RECIPROCALS

Num.		1		1	
	Square	Cube	Square root	Cube root	Reciprocal
951	90 44 01	860 085 351	30.8382879	9.8339238	.001051525
952	90 63 04	862 801 408	30.8544972	9.8373695	.001050420
953	90 82 09	865 523 177	30.8706981	9.8408127	.001049318
954	91 01 16	868 250 664	30.8868904	9.8442536	.001048218
955	91 20 25	870 983 875	30.9030743	9.8476920	.001047120
-	52.25.25	111 233 310			
956	91 39 36	873 722 816	30.9192497	9.8511280	.001046025
957	91 58 49	876 467 493	30.9354166	9.8545617	.001044932
958	91 77 64	879 217 912	30.9515751	9.8579929	.001043841
959	91 96 81	881 974 079	30.9677251	9.8614218	.001042753
960	92 16 00	884 736 000	30.9838668	9.8648483	.001041667
961	92 35 21	887 503 681	31.0000000	9.8682724	.001040583
962	92 54 44	890 277 128	31.0161248	9.8716941	.001039501
963	92 73 69	893 056 347	31.0322413	9.8751135	.001038422
964	92 92 98	895 841 344	31.0483494	9.8785305	.001037344
965	93 12 25	898 632 125	31.0644491	9.8819451	.001036269
500	00 12 20	300 002 120	01.0011101	0.0010101	.001000200
966	93 31 56	901 428 696	31.0805405	9.8853574	.001035197
967	93 50 89	904 231 063	31.0966236	9.8887673	.001034126
968	93 70 24	907 039 232	31.1126984	9.8921749	.001033058
969	93 89 61	909 853 209	31.1287648	9.8955801	.001031992
970	94 09 00	912 673 000	31.1448230	9.8989830	.001030928
971	94 28 41	915 498 611	31.1608729	9.9023835	.001029866
972	94 47 84	918 330 048.	31.1769145	9.9057817	.001028807
973	94 67 29	921 167 317	31.1929479	9.9091776	.001027749
974	94 86 76	924 010 424	31.2089731	9.9125712	.001026694
975	95 06 25	926 859 375	31.2249900	9.9159624	.001025641
976	95 25 76	929 714 176	31.2409987	9.9193513	.001024590
977	95 45 29	932 574 833	31.2569992	9.9227379	.001023541
973	95 64 84	935 441 352	31.2729915	9.9261222	.001022495
979	95 84 41	938 313 739	31.2889757	9.9295042	.001021450
980	96 04 00	941 192 000	31.3049517	9:9328839	.001020408
981	96 23 61	944 076 141	31.3209195	9.9362613	.001019368
982	96 43 24	946 966 168	31.3368792	9.9396363	.001018330
983	96 62 89	949 862 087	31.3528308	9.9430092	.001017294
984	96 82 56	952 763 904	31.3687743	9.9463797	.001016260
985	97 02 25	955 671 625	31.3847097	9.9497479	.001015228
986	97 21 96	958 585 256	31.4006369	9.9531138	.001014199
987	97 41 69	961 504 803	31.4165561	9.9564775	.001013171
988	97 61 44	964 430 272	31.4324673	9.9598389	.001013171
989	97 81 21	967 361 669	31.4483704	9.9631981	.001011122
990	98 01 00	970 299 000	21.4642654	9.9665549	.001010101
991	98 20 81	973 242 271	31.4801525	9.9699095	.001009082
992	98 40 64	976 191 488	31.4960315	9.9732619	.001008065
993	98 60 49	979 146 657	31.5119025	9.9766120	.001007049
994	98 80 36	982 107 784	31.5277655	9.9799599	.001006036
995	99 00 25	985 074 875	31.5436206	9.9833055	.001005025
996	99 20 16	000 047 000	21 5504677	0.0000400	0010040
	99 40 09	988 047 936 991 026 973	31.5594677 31.5753068	9.9866488 9.9899900	.001004016 .001003009
	1 00 30 00				001000000
997	00 60 04				
998	99 60 04	994 011 992	31.5911380	9.9933289	.001002004
998 999	99 60 04 99 80 01 1,00 00 00	994 011 992 997 002 999 1,000 000 000	31.6069613	9.9933289 9.9966656 10.0000000	.001002004 .001001001 .001000000

TABLE 97.—SQUARE ROOTS OF NUMBERS FROM 1000 TO 10000

Number	00	10	20	30	40	50	60	70	80	90
1,000 1,100 1,200 1,300 1,400	33.17 34.64 36.06	31.78 33.32 34.79 36.19 37.55	33.47 34.93 36.33	33.62 35.07 36.47	33.76 35.21 36.61	33.91 35.36 36.74	34.06 35.50 36.88	34.21 35.64 37.01	34.35 35.78 37.15	34.50 35.92 37.28
1,500 1,600 1,700 1,800 1,900	40.00 41.23 42.43	38.86 40.12 41.35 42.54 43.70	40.25 41.47 42.66	40.37 41.59 42.78	40.50 41.71 42.90	40.62 41.83 43.01	40.74 41.95 43.13	40.87 42.07 43.24	40.99 42.19 43.36	41.11 42.31 43.47
2,000 2,100 2,200 2,300 2,400	45.83 46.90 47.96	44.83 45.93 47.01 48.06 49.09	46.04 47.12 48.17	46.15 47.22 48.27	46.26 47.33 48.37	46.37 47.43 48.48	46.48 47.54 48.58	46.58 47.64 48.68	46.69 47.75 48.79	46.80 47.85 48.89
2,500 2,600 2,700 2,800 2,900	50.99 51.96 52.92	50.10 51.09 52.06 53.01 53.94	51.19 52.15 53.10	51.28 52.25 53.20	51.38 52.35 53.29	51.48 52.44 53.39	51.58 52.54 53.48	51.67 52.63 53.57	51.77 52.73 53.67	51.87 52.82 53.76
3,000 3,100 3,200 3,300 3,400	55.68 56.57 57.45	54.86 55.77 56.66 57.53 58.40	55.86 56.75 57.62	55.95 56.83 57.71	56.04 56.92 57.79	56.12 57.01 57.88	56.21 57.10 57.97	56.30 57.18 58.05	56.39 57.27 58.14	56.48 57.36 58.22
3,500 3,600 3,700 3,800 3,900	60.00 60.83 61.64	59.25 60.08 60.91 61.73 62.53	60.17 60.99 61.81	60.25 61.07 61.89	$60.33 \\ 61.16 \\ 61.97$	$60.42 \\ 61.24 \\ 62.05$	$60.50 \\ 61.32 \\ 62.13$	60.58 61.40 62.21	60.66 61.48 62.29	60.75 61.56 62.37
4,000 4,100 4,200 4,300 4,400	64.03 64.81 65.57 66.33	63.32 64.11 64.88 65.65 66.41	64.19 64.96 65.73 66.48	64.27 65.04 65.80 66.56	64.34 65.12 65.88 66.63	64.42 65.19 65.95 66.71	64.50 65.27 66.03 66.78	64.58 65.35 66.11 66.86	64.65 65.42 66.18 66.93	64.73 65.50 66.26 67.01
4,500 4,600 4,700 4,800 4,900	67.82 68.56 69.28 70.00	67.16 67.90 68.63 69.35 70.07	67.97 68.70 69.43 70.14	68.04 68.77 69.50 70.21	68.12 68.85 69.57 70.29	68.19 68.92 69.64 70.36	68.26 68.99 69.71 70.43	68.34 69.07 69.79 70.50	68.41 69.14 69.86 70.57	68.48 69.21 69.93 70.64
5,000 5,100 5,200 5,300 5,400	71.41 72.11 72.80	70.78 71.48 72.18 72.87 73.55	71.55 72.25 72.94	71.62 72.32 73.01	71.69 72.39 73.08	71.76 72.46 73.14	71.83 72.53 73.21	71.90 72.59 73.28	71.97 72.66 73.35	72.04 72.73 73.42

Table 97 (Concluded)
Square Roots of Numbers from 1000 to 10000

Number	00	10	20	30	40	50	60	70	80	90
5,500 5,600 5,700 5,800 5,900	74.83 75.50 76.16	74.90 75.56 76.22	74.97 75.63 76.29	75.03 75.70 76.35	75.10 75.76 76.42	75.17 75.83 76.49	75.23 75.89 76.55	75.30 75.96 76.62	74.70 75.37 76.03 76.68 77.33	75.43 76.09 76.75
6,000 6,100 6,200 6,300 6,400	78.10 78.74 79.37	78.17 78.80 79.44	78.23 78.87 79.50	78.29 78.93 79.56	78.36 78.99 79.62	78.42 79.06 79.69	78.49 79.12 79.75	78.55 79.18 79.81	77.97 78.61 79.25 79.87 80.50	78.68 79.31 79.94
6,500 6,600 6,700 6,800 6,900	81.24 81.85 82.46	81.30 81.91 82.52	81.36 81.98 82.58	81.42 82.04 82.64	81.49 82.10 82.70	81.55 82.16 82.76	81.61 82.22 82.83	81.67 82.28 82.89	81.12 81.73 82.34 82.95 83.55	81.79 82.40 83.01
7,000 7,100 7,200 7,300 7,400	84.26 84.85 85.44	84.32 84.91 85.50	84.38 84.97 85.56	84.44 85.03 85.62	84.50 85.09 85.67	84.56 85.15 85.73	84.62 85.21 85.79	84.68 85.26 85.85	84.14 84.73 85.32 85.91 86.49	84.79 85.38 85.97
7,500 7,600 7,700 7,800 7,900	87.18 87.75 88.32	87.24 87.81 88.37	87.29 87.86 88.43	87.35 87.92 88.49	87.41 87.98 88.54	87.46 88.03 88.60	87.52 88.09 88.66	87.58 88.15 88.71	87.06 87.64 88.20 88.77 89.33	87.69 88.26 88.83
8,000 8,100 8,200 8,300 8,400	90.00 90.55 91.10	90.06 90.61 91.16	90.11 90.66 91.21	90.17 90.72 91.27	90.22 90.77 91.32	90.28 90.83 91.38	90.33 90.88 91.43	90.39 90.94 91.49	89.89 90.44 90.99 91.54 92.09	90.50 91.05 91.60
8,500 8,600 8,700 8,800 8,900	92.74 93.27 93.81	92.79 93.33 93.86	92.84 93.38 93.91	92.90 93.43 93.97	92.95 93.49 94.02	93.01 93.54 94.07	93.06 93.59 94.13	93.11 93.65 94.18	92.63 93.17 93.70 94.23 94.76	93.22 93.75 94.29
9,000 9,100 9,200 9,300 9,400	95.39 95.92 96.44	95.45 95.97 96.49	95.50 96.02 96.54	95.55 96.07 96.59	95.60 96.12 96.64	95.66 96.18 96.70	95.71 96.23 96.75	95.76 96.28 96.80	95.29 95.81 96.33 96.85 97.37	95.86 96.38 96.90
9,500 9,600 9,700 9,800 9,900	97.98 98.49 98.99	$98.03 \\ 98.54 \\ 99.05$	98.08 98.59 99.10	98.13 98.64 99.15	98.18 98.69 99.20	98.23 98.74 99.25	98.29 98.79 99.30	98.34 98.84 99.35	97.88 98.39 98.89 99.40 99.90	98.44 98.94 99.45

Table 98.—Circumferences of Circles by Hundredths

	<u> </u>									
Diam.	.00	.01	.02	.03	. 04	. 05	. 06	.07	. 08	.09
0.0 .1 .2 .3	10.628	0.031 0.346 0.660 0.974 1.288	0.691	0.723	0.754	0.785	10.817	0.848	10.880	0.283 0.597 0.911 1.225 1.539
0.5 .6 .7 .8	$\begin{bmatrix} 1.885 \\ 2.199 \\ 2.513 \end{bmatrix}$	1.602 1.916 2.231 2.545 2.859	$1.948 \\ 2.262 \\ 2.576$	$1.979 \\ 2.293 \\ 2.608$	2.011 2.325 2.639	2.042 2.356 2.670	2.073 2.388 2.702	$2.105 \\ 2.419 \\ 2.733$	$egin{array}{c} 2.136 \ 2.450 \ 2.765 \end{array}$	1.854 2.168 2.482 2.796 3.110
1.0 .1 .2 .3 .4	3.456 3.770 4.084 4.398	3.173 3.487 3.801 4.115 4.430	3.519 3.833 4.147 4.461	3.550 3.864 4.178 4.492	3.581 3.896 4.210 4.524	3.613 3.927 4.241 4.555	3.644 3.958 4.273 4.587	3.676 3.990 4.304 4.618	3.707 4.021 4.335 4.650	3.424 3.738 4.053 4.367 4.681
1.5 .6 .7 .8 .9	5.027 5.341 5.655	4.744 5.058 5.372 5.686 6.000	5.089 5.404 5.718	5.121 5.435 5.749	5.152 5.466 5.781	5.184 5.498 5.812	5.215 5.529 5.843	5.246 5.561 5.875	5.278 5.592 5.906	4.995 5.309 5.623 5.938 6.252
2.0 .1 .2 .3	6.597 6.912 7.226	6.315 6.629 6.943 7.257 7.571	6.660 6.974 7.288	6.692 7.006 7.320	6.723 7.037 7.351	6.754 7.069 7.383	6.786 7.100 7.414	6.817 7.131 7.446	6.849 7.163 7.477	6.566 6.880 7.194 7.508 7.823
2.5 .6 .7 .8	8.168 8.482 8.796	7.885 8.200 8.514 8.828 9.142	8.231 8.545 8.859	8.262 8.577 8.891	8.294 8.608 8.922	8.325 8.639 8.954	8.357 8.671 8.985	8.388 8.702 9.016	8.419 8.734 9.048	8.137 8.451 8.765 9.079 9.393
3.0 .1 .2 .3	$ 9.739 \\ 10.05$	9.456 9.770 10.08 10.40 10.71	$9.802 \\ 10.12$	$9.833 \\ 10.15$	$9.865 \\ 10.18$	$9.896 \\ 10.21$	$9.927 \\ 10.24$	$9.959 \\ 10.27$	9.990 10.30	9.708 10.022 10.34 10.65 10.96
3.5 .6 .7 .8 .9	11.31 11.62 11.94	11.03 11.34 11.66 11.97 12.28	11.37 11.69 12.00	11.40 11.72 12.03	11.44 11.75 12.06	11.47 11.78 12.10	11.50 11.81 12.13	11.53 11.84 12.16	11.56 11.88 12.19	11.59 11.91 12.22
4.0 .1 .2 .3	12.88 13.19 13.51	12.60 12.91 13.23 13.54 13.85	12.94 13.26 13.57	12.97 13.29 13.60	13.01 13.32 13.63	13.04 13.35 13.67	13.07 13.38 13.70	13.10 13.41 13.73	13.13 13.45 13.76	13.16 13.48 13.79
4.5 .6 .7 .8 .9	14.45 14.77 15.08	14.17 14.48 14.80 15.11 15.43	14.51 14.83 15.14	14.55 14.86 15.17	14.58 14.89 15.21	14.61 14.92 15.24	14.64 14.95 15.27	14.67 14.99 15.30	14.70 15.02 15.33	14.73 15.05 15.36

Table 98 (Concluded)
CIRCUMFERENCES OF CIRCLES BY HUNDREDTHS

Diam.	0	1	2	3	4	5	6	7	8	9
5.0 .1 .2 .3 .4	16.02 16.34 16.65	$16.05 \\ 16.37 \\ 16.68$	$16.08 \\ 16.40 \\ 16.71$	$16.12 \\ 16.43 \\ 16.74$	16.15 16.46 16.78	16.18 16.49 16.81	16.21 16.52 16.84	16.24 16.56 16.87	15.96 16.27 16.59 16.90 17.22	16.62 16.93
5.5 .6 .7 .8	17.59 17.91 18.22	17.62 17.94 18.25	17.66 17.97 18.28	17.69 18.00 18.32	17.72 18.03 18.35	17.75 18.06 18.38	17.78 18.10 18.41	17.81 18.13 18.44	17.53 17.84 18.16 18.47 18.79	17.88 18.19 18.50
6.0 .1 .2 .3	19.16 19.48	19.20 19.51 19.82	19.23 19.54 19.85	19.26 19.57 19.89	19.29 19.60 19.92	19.32 19.63 19.95	19.35 19.67 19.98	19.38 19.70 20.01	19.10 19.42 19.73 20.04 20.36	19.45 19.76 20.07
6.5 .6 .7 .8	20.73 21.05	20.77 21.08 21.39	20.80 21.11 21.43	20.83 21.14 21.46	$20.86 \\ 21.17 \\ 21.49$	$20.89 \\ 21.21 \\ 21.52$	$20.92 \\ 21.24 \\ 21.55$	$20.95 \\ 21.27 \\ 21.58$	20.67 20.99 21.30 21.61 21.93	21.02 21.33 21.65
7.0 .1 .2 .3	21.99 22.31 22.62 22.93 23.25	22.02 22.34 22.65 22.97 23.28	22.05 22.37 22.68 23.00 23.31	22.09 22.40 22.71 23.03 23.34	22.12 22.43 22.75 23.06 23.37	22.15 22.46 22.78 23.09 23.40	22.18 22.49 22.81 23.12 23.44	22.21 22.53 22.84 23.15 23.47	22.24 22.56 22.87 23.18 23.50	22.27 22.59 22.90 23.22 23.53
7.5 .6 .7 .8	23.56 23.88 24.19 24.50 24.82	23.59 23.91 24.22 24.54 24.85	23.62 23.94 24.25 24.57 24.88	23.66 23.97 24.28 24.60 24.91	23.69 24.00 24.32 24.63 24.94	23.72 24.03 24.35 24.66 24.98	23.75 24.06 24.38 24.69 25.01	23.78 24.10 24.41 24.72 25.04	23.81 24.13 24.44 24.76 25.07	23.84 24.16 24.47 24.79 25.10
8.0 .1 .2 .3	25.13 25.45 25.76	25.16 25.48 25.79	25.20 25.51 25.82	25.23 25.54 25.86	25.26 25.57 25.89	25.29 25.60 25.92	25.32 25.64 25.95	25.35 25.67 25.98	25.38 25.70 26.01 26.33 26.64	25.42 25.73 26.04
8.5 .6 .7 .8	27.33 27.65	27.36 27.68	27.39 27.71	$27.43 \\ 27.74$	27.46 27.77	27.49 27.80	27.52 27.83	27.55 27.87	26.95 27.27 27.58 27.90 28.21	27.61 27.93
9.0 .1 .2 .3	28.59 28.90	28.62 28.93 29.25	28.65 28.97 29.28	28.68 29.00 29.31	28.71 29.03 29.34	28.75 29.06 29.37	28.78 29.09 29.41	28.81 29.12 29.44	28.53, 28.84 29.15 29.47 29.78	28.87 29.19 29.50
9.5 .6 .7 .8	130.47	30.50	30.541	30.57	30.60	30.63	30.66	30.69	30.72	30.13 30.44 30.76 31.07 31.38

TABLE 99.—AREAS OF CIRCLES BY HUNDREDTHS

Diam.	.00	.01	. 02	. 03	. 04	. 05	.06	.07	.08	.09
0.0 0.1 0.2 0.3 0.4	0.008 0.031 0.071	0.000 0.010 0.035 0.075 0.132	0.011 0.038 0.080	0.013 0.042 0.086	0.015 0.045 0.091	0.018 0.049 0.096	0.020 0.053 0.102	0.023 0.057 0.108	0.025 0.062 0.113	0.006 0.028 0.066 0.119 0.189
0.5 0.6 0.7 0.8 0.9	0.283 0.385 0.503	0.204 0.292 0.396 0.515 0.650	0.302 0.407 0.528	0.312 0.419 0.541	0.322 0.430 0.554	0.332 0.442 0.567	0.342 0.454 0.581	0.353 0.466 0.594	0.363 0.478 0.608	0.273 0.374 0.490 0.622 0.770
1.0 1.1 1.2 1.3 1.4	0.950 1.131 1.327	0.801 0.968 1.150 1.348 1.561	0.985 1.169 1.368	1.003 1.188 1.389	1.021 1.208 1.410	1.039 1.227 1.431	1.057 1.247 1.453	1.075 1.267 1.474	1.094 1.287 1.496	0.933 1.112 1.307 1.517 1.744
1.5 1.6 1.7 1.8 1.9	2 011	1.791 2.036 2.297 2.573 2.865	2 061	2 087	2 112	2 138	2 164	2 190	2 217	1.986 2.243 2.516 2.806 3.110
2.2	3.801 4.155	3.173 3.497 3.836 4.191 4.562	3.871 1.227	3.906 4.264	3.941 4.301	3.976 4.337	4.011 4.374	4.047	4.083 4.449	3.431 3.767 4.119 4.486 4.870
2.6 2.7 2.8	5.309 5.726 6.158	4.948 4 5.350 5 5.768 5 6.202 6 6.651 6	5.391 5.811 5.246	5.433 5.853 6.290	5.474 5.896 6.335	5.515 5.940 6.379	5.557 5.983 6.424	5.599 8.026 6.469	5.641 6.070 6.514	5.269 5.683 6.114 6.560 7.022
3.1 3.2 3.3	7.548 8.042 8.553	7.116 7 7.596 7 8.093 8 8.605 8 9.133 9	7.645 3.143 3.657	7.694 8.194 8.709	7.744 8.245 8.762	7.793 8.296 8.814	7.843 8.347 8.867	7.892 3.398 3.920	7.942 8.450 8.973	7.499 7.992 8.501 9.026 9.566
3.7 3.8	10.75 11.34	9.68 10.24 10.81 11.40 12.01	0.29 0.87 1.46	10.93 11.52	10.99 11.58	11.04 11.64	10.52 11.10 11.70	10.58 11.16 11.76	11.22 11.82	10.69 11.28 11.88
4.2	13.85 14.52	12.63 1 13.27 1 13.92 1 14.59 1 15.27 1	3.99 1 4.66	14.05 14.73	14.12 14.79	14.19 14.86	14.25 1 14.93 1	4.32 1 5.00	14.39 1 15.07 1	4.45 5.14
4.6 4.7 4.8	16.62 17.35 18.10	15.98 1 16.69 1 17.42 1 18.17 1 18.93 1	6.76 1 7.50 1 8.25 1	6.84 7.57 8.32	16.91 17.65 18.40	16.98 17.72 18.47	17.06 1 17.80 1 18.55 1	7.13 7.87 8.63	17.20 1 17.95 1 18.70 1	7.28 8.02 8.78

Table 99 (Concluded) AREAS OF CIRCLES BY HUNDREDTHS

Diam.	.0	.1 .2	.3	.4	.5	.6	.7	.8	.9
5.0 .1 .2 .3 .4	20.43 21.24 22.06	19.71 19.7 20.51 20.5 21.32 21.4 22.15 22.2 22.99 23.0	$\begin{array}{c c} 9 & 20.67 \\ 0 & 21.48 \\ 3 & 22.31 \end{array}$	20.75 21.57 22.40	20.83 21.65 22.48	20.91 21.73 22.56	20.99 21.81 22.65	21.07 21.90 22.73	21.16 21.98 22.82
5.5 .6 .7 .8 .9	125.521	23.84 23.9 24.72 24.8 25.61 25.7 26.51 26.6 27.43 27.5	0125.791	25.88	25.97	26.061	26.15	26.241	26.33 I
.4	29.22 30.19 31.17 32.17	28.37 28.4 29.32 29.4 30.29 30.3 31.27 31.3 32.27 32.3	2 29.51 9 30.48 7 31.47 7 32.47	29.61 30.58 31.57 32.57	29.71 30.68 31.67 32.67	29.80 30.78 31.77 32.78	29.90 30.88 31.87 32.88	30.00 30.97 31.97 32.98	30.09 31.07 32.07 33.08
.7 .8 .9	35.26 36.32 37.39	33.29 33.3 34.32 34.4 35.36 35.4 36.42 36.5 37.50 37.6	35.57 36.64 37.72	35.68 36.75 37.83	35.78 36.85 37.94	35.89 36.96 38.05	36.00 37.07 38.16	36.10 37.18 38.26	36.21 37.28 38.37
.3	41.85	38.59 38.70 39.70 39.8 40.83 40.9 41.97 42.0 43.12 43.2	42.20	42.31	42.43	12.54 4	12.06/4	12.78	42.89
.6 .7 .8	45.36 46.57 47.78	44.30 44.4 45.48 45.60 46.69 46.8 47.91 48.0 49.14 49.2	45.72 46.93 48.15	45.84 47.05 48.27	45.96 47.17 48.40	16.08 4 17.29 4 18.52 4	16.20 4 17.42 4 18.65 4	16.32 17.54 18.77	46.45 47.66 48.89
.1 .2 .3	51.53 5 52.81 5 54.11 5	50.39 50.55 51.66 51.75 52.94 53.05 54.24 54.35 55.55 55.68	51.91 53.20 54.50	52.04 53.33 54.63	52.17 5 53.46 5 54.76 5	52.30 8 53.59 8 54.89 8	52.42 8 53.72 8 55.02 8	52.55 53.85 55.15	52.68 53.98 55.29
.6 .7 .8 .9	58.09 5 59.45 5 60.82 6 62.21	56.88 57.03 58.22 58.36 59.58 59.73 60.96 61.16 62.35 62.49	58.49 59.86 61.24 62.63	58.63 59.99 61.38 62.77	58.77 8 60.13 6 61.51 6 62.91 6	58.90 50.27 51.65 63.05	59.04 5 50.41 6 51.79 6 53.19 6	59.17 30.55 31.93 33.33	59.31 60.68 82.07 83.48
.3	66.48 67.93 69.40	83.76 63.96 65.18 65.33 66.62 66.77 68.08 68.22 69.55 69.69	66.91 68.37 69.84	67.06 68.51 69.99	57.20 58.66 70.14	37.35 6 38.81 70.29	37.49 6 38.96 6 70.44 7	37.64 39.10 70.58	87.78 89.25 70.73
.6 .7 .8	72.38 73.90 75.43	71.03 71.18 72.53 72.68 74.05 74.20 75.58 75.74 77.13 77.29	72.84 74.36 75.89	72.99 74.51 76.05	73.14 74.66 76.20	73 . 29 7 74 . 82 7 76 . 36 7	73.44 74.97 76.51	73.59 75.12 76.67	73.75 75.28 76.82

Table 100.—Circumferences of Circles by Eighths

Diam.	0	36	14	3/6	1/2	56	34	₹6
0	.0000	.3927	.7854	1.178	1.571	1.963	2.356	2.749
1	3.142	3.534	3.927	4.320	4.712	5.105	5.498	5.890
2	6.233	6.676	7.069	7.461	7.854	8.247	8.639	9.032
3	9.425	9.817	10.21	10.60	11.00	11.39	11.78	12.17
4	12.57	12.96	13.35	13.74	14.14	14.53	14.92	15.32
5	15.71	16.10	16.49	16.89	17.28	17.67	18.06	18.46
6	18.85	19.24	19.63	20.03	20.42	20.81	21.21	21.60
7	21.99	22.38	22.78	23.17	23.56	23.95	24.35	24.74
8	25.13	25.53	25.92	26.31	26.70	27.10	27.49	27.88
9	28.27	28.67	29.06	29.45	29.85	30.24	30.63	31.02
10	31.42	31.81	32.20	32.59	32.99	33.38	33.77	34.16
1	34.56	34.95	35.34	35.74	36.13	36.52	36.91	37.31
2	37.70	38.09	38.48	38.88	39.27	39.66	40.06	40.45
3	40.84	41.23	41.63	42.02	42.41	42.80	43.20	43.59
4	43.98	44.37	44.77	45.16	45.55	45.95	46.34	46.73
15	47.12	47.52	47.91	48.30	48.69	49.09	49.48	49.87
6	50.27	50.66	51.05	51.44	51.84	52.23	52.62	53.01
7	53.41	53.80	54.19	54.59	54.98	55.37	55.76	56.16
8	56.55	56.94	57.33	57.73	58.12	58.51	58.90	59.30
9	59.69	60.08	60.48	60.87	61.26	61.65	62.05	62.44
20	62.83	63.22	63.62	64.01	64.40	64.80	65.19	65.58
1	65.97	66.37	66.76	67.15	67.54	67.94	68.33	68.72
2	69.12	69.51	69.90	70.29	70.69	71.08	71.47	71.86
3	72.26	72.65	73.04	73.43	73.83	74.22	74.61	75.01
4	75.40	75.79	76.18	76.58	76.97	77.36	77.75	78.15
25	78.54	78.93	79.33	79.72	80.11	80.50	80.90	81.29
6	81.68	82.07	82.47	82.86	83.25	83.64	84.04	84.43
7	84.82	85.22	85.61	86.00	86.39	86.79	87.18	87.57
8	87.96	88.36	88.75	89.14	89.54	89.93	90.32	90.71
9	91.11	91.50	91.89	92.28	92.68	93.07	93.46	93.86
30	94.25	94.64	95.03	95.43	95.82	96.21	96.60	97.00
1	97.39	97.78	98.17	98.57	98.96	99.35	99.75	100.1
2	100.5	100.9	101.3	101.7	102.1	102.5	102.9	103.3
3	103.7	104.1	104.5	104.9	105.2	105.6	106.0	106.4
4	106.8	107.2	107.6	108.0	108.4	108.8	109.2	109.6
35	110.0	110.3	110.7	111.1	111.5	111.9	112.3	112.7
6	113.1	113.5	113.9	114.3	114.7	115.1	115.5	115.8
7	116.2	116.6	117.0	117.4	117.8	118.2	118.6	119.0
8	119.4	119.8	120.2	120.6	121.0	121.3	121.7	122.1
9	122.5	122.9	123.3	123.7	124.1	124.5	124.9	125.3
40	125.7	126.1	126.4	126.8	127.2	127.6	128.0	128.4
1	128.8	129.2	129.6	130.0	130.4	130.8	131.2	131.6
2	131.9	132.3	132.7	133.1	133.5	133.9	134.3	134.7
3	135.1	135.5	135.9	136.3	136.7	137.1	137.4	137.8
4	138.2	138.6	139.0	139.4	139.8	140.2	140.6	141.0
45	141.4	141.8	142.2	142.5	142.9	143.3	143.7	144.1
6	144.5	144.9	145.3	145.7	146.1	146.5	146.9	147.3
7	147.7	148.0	148.4	148.8	149.2	149.6	150.0	150.4
8	150.8	151.2	151.6	152.0	152.4	152.8	153.2	153.5
9	153.9	154.3	154.7	155.1	155.5	155.9	156.3	156.7

Table 100 (Concluded)
CIRCUMFERENCES OF CIRCLES BY EIGHTHS

		— т						
Diam.	0	1 %	1/4	36	1/2	5/8	34	7/8
50 1 2 3 4	157.1 160.2 163.4 166.5 169.6	157.5 160.6 163.8 166.9	157.9 161.0 164.1 167.3 170.4	158.3 161.4 164.5 167.7 170.8	158.7 161.8 164.9 168.1 171.2	159.0 162.2 165.3 168.5 171.6	159.4 162.6 165.7 168.9 172.0	159.8 163.0 166.1 169.3 172.4
55	172.8	173.2	173.6	174.0	174.4	174.8	175.1	175.5
6	175.9	176.3	176.7	177.1	177.5	177.9	178.3	178.7
7	179.1	179.5	179.9	180.2	180.6	181.0	181.4	181.8
8	182.2	182.6	183.0	183.4	183.8	184.2	184.6	185.0
9	185.4	185.7	186.1	186.5	186.9	187.3	187.7	188.1
60	188.5	188.9	189.3	189.7	190.1	190.5	190.9	191.2
1	191.6	192.0	192.4	192.8	193.2	193.6	194.0	194.4
2	194.8	195.2	195.6	196.0	196.3	196.7	197.1	197.5
3	197.9	198.3	198.7	199.1	199.5	199.9	200.3	200.7
4	201.1	201.5	201.8	202.2	202.6	203.0	203.4	203.8
65 6 7 8	204.2 207.3 210.5 213.6 216.8	204.6 207.7 210.9 214.0 217.2	205.0 208.1 211.3 214.4 217.6	205.4 208.5 211.7 214.8 217.9	205.8 208.9 212.1 215.2 218.3	206.2 209.3 212.5 215.6 218.7	206.6 209.7 212.8 216.0 219.1	207.0 210.1 213.2 216.4 219.5
70	219.9	220.3	220.7	221.1	221.5	221.9	222.3	222.7
1	223.1	223.4	223.8	224.2	224.6	225.0	225.4	225.8
2	226.2	226.6	227.0	227.4	227.8	228.2	228.6	228.9
3	229.3	229.7	230.1	230.5	230.9	231.3	231.7	232.1
4	232.5	232.9	233.3	233.7	234.0	234.4	234.8	235.2
75	235.6	236.0	236.4	236.8	237.2	237.6	238.0	238.4
6	238.8	239.2	239.5	239.9	240.3	240.7	241.1	241.5
7	241.9	242.3	242.7	243.1	243.5	243.9	244.3	244.7
8	245.0	245.4	245.8	246.2	246.6	247.0	247.4	247.8
9	248.2	248.6	249.0	249.4	249.8	250.1	250.5	250.9
80	251.3	251.7	252.1	252.5	252.9	253.3	253.7	254.1
1	254.5	254.9	255.3	255.6	256.0	256.4	256.8	257.2
2	257.6	258.0	258.4	258.8	259.2	259.6	260.0	260.4
3	260.8	261.1	261.5	261.9	262.3	262.7	263.1	263.5
4	263.9	264.3	264.7	265.1	265.5	265.9	266.2	266.6
85	267.0	267.4	267.8	268.2	268.6	269.0	269.4	269.8
6	270.2	270.6	271.0	271.4	271.7	272.1	272.5	272.9
7	273.3	273.7	274.1	274.5	274.9	275.3	275.7	276.1
8	276.5	276.9	277.2	277.6	278.0	278.4	278.8	279.2
9	279.6	280.0	280.4	280.8	281.2	281.6	282.0	282.4
90	282.7	283.1	283.5	283.9	284.3	284.7	285.1	285.5
1	285.9	286.3	286.7	287.1	287.5	287.8	288.2	288.6
2	289.0	289.4	289.8	290.2	290.6	291.0	291.4	291.8
3	292.2	292.6	293.0	293.3	293.7	294.1	294.5	294.9
4	295.3	295.7	296.1	296.5	296.9	297.3	297.7	298.1
95	298.5	298.8	299.2	299.6	300.0	300.4	300.8	301.2
6	301.6	302.0	302.4	302.8	303.2	303.6	303.9	304.3
7	304.7	305.1	305.5	305.9	306.3	306.7	307.1	307.5
8	307.9	308.3	308.7	309.1	309.4	309.8	310.2	310.6
9	311.0	311.4	311.8	312.2	312.6	313.0	313.4	313.8

 $\mathsf{Digitized} \ \mathsf{by} \ Google$

TABLE 101.—AREAS OF CIRCLES BY EIGHTHS

1 AB	LE 101	AR	EAS O	CIRC	CLES B	Y EIG	нтнв	
Diam.	0	3,6	14	3/8	3/2	58	34	7/6
0	.0000	.0123	.0491	.1104	.1963	.3068	4.418	.6013
1	.7854	.9940	1.227	1.485	1.767	2.074	2.405	2.761
2	3.142	3.547	3.976	4.430	4.909	5.412	5.940	6.492
3	7.069	7.670	8.296	8.946	9.621	10.32	11.04	11.79
4	12.57	13.36	14.19	15.03	15.90	16.80	17.72	18.67
5	19.63	20.63	21.65	22.69	23.76	24.85	25.97	27.11
6	28.27	29.47	30.68	31.92	33.18	34.47	35.78	37.12
7	38.48	39.87	41.28	42.72	44.18	45.66	47.17	48.71
8	50.27	51.85	53.46	55.09	56.75	58.43	60.13	61.86
9	63.62	65.40	67.20	69.03	70.88	72.76	74.66	76.59
10	78.54	80.52	82.52	84.54	86.59	88.66	90.76	92.89
1	95.03	97.21	99.40	101.6	103.9	106.1	108.4	110.8
2	113.1	115.5	117.9	120.3	122.7	125.2	127.7	130.2
3	132.7	135.3	137.9	140.5	143.1	145.8	148.5	151.2
4	153.9	156.7	159.5	162.3	165.1	168.0	170.9	173.8
15	176.7	179.7	182.7	185.7	188.7	191.7	194.8	197.9
6	201.1	204.2	207.4	210.6	213.8	217.1	220.4	223.7
7	227.0	230.3	233.7	237.1	240.5	244.0	247.4	250.9
8	254.5	258.0	261.6	265.2	268.8	272.4	276.1	279.8
9	283.5	287.3	291.0	294.8	-298.6	302.5	306.4	310.2
20	314.2	318.1	322.1	326.1	330.1	334.1	338.2	342.2
1	346.4	350.5	354.7	358.8	363.1	367.3	371.5	375.8
2	380.1	384.5	388.8	393.2	397.6	402.0	406.5	411.0
3	415.5	420.0	424.6	429.1	433.7	438.4	443.0	447.7
4	452.4	457.1	461.9	466.6	471.4	476.3	481.1	486.0
25	490.9	495.8	500.7	505.7	510.7	515.7	520.8	525.8
6	530.9	536.0	541.2	546.4	551.5	556.8	562.0	567.3
7	572.6	577.9	583.2	588.6	594.0	599.4	604.8	610.3
8	615.8	621.3	626.8	632.4	637.9	643.5	649.2	654.8
9	660.5	666.2	672.0	677.7	683.5	689.3	695.1	701.0
30	706.9	712.8	718.7	724.6	730.6	736.6	742.6	748.7
1	754.8	760.9	767.0	773.1	779.3	785.5	791.7	798.0
2	804.2	810.5	816.9	823.2	829.6	836.0	842.4	848.8
3	855.3	861.8	868.3	874.8	881.4	888.0	894.6	901.3
4	907.9	914.6	921.3	928.1	934.8	941.6	948.4	955.3
35	962.1	969.0	975.9	982.8	989.8	996.8	1004	1011
6	1018	1025	1032	1039	1046	1054	1061	1068
7	1075	1082	1090	1097	1104	1112	1119	1127
8	1134	1142	1149	1157	1164	1172	1179	1187
9	1195	1202	1210	1218	1225	1233	1241	1249
40	1257	1265	1272	1280	1288	1296	1304	1312
1	1320	1328	1336	1345	1353	1361	1369	1377
• 2	1385	1394	1402	1410	1419	1427	1435	1444
3	1452	1461	1469	1478	1486	1495	1503	1512
4	1521	1529	1538	1547	1555	1564	1573	1582
45	1590	1599	1608	1617	1626	1635	1644	1653
6	1662	1671	1680	1689	1698	1707	1717	1726
7	1735	1744	1753	1763	1772	1781	1791	1800
8	1810	1819	1828	1838	1847	1857	1867	1876
9	1886	1895	1905	1915	1924	1934	1944	1954

TABLE 101 (Concluded)
AREAS OF CIRCLES BY EIGHTHS

Diam.	0	1/8	1/4	36	1/2	56	34	7/6
50 1 2 3	1963 2043 2124 2206	1973 2053 2134 2217	1983 2063 2144 2227	1993 2073 2154 2238	2003 2083 2165 2248	2013 2093 2175 2259	2023 2103 2185 2269	2033 2114 2196 2280
55 6 7 8	2290 2376 2463 2552 2642	2301 2387 2474 2563 2653	2311 2397 2485 2574 2665	2322 2408 2496 2585 2676	2333 2419 2507 2597 2688	2344 2430 2518 2608 2699	2354 2441 2529 2619 2711	2365 2452 2541 2631 2722
60 1 2 3	2734 2827 2922 3019 3117	2839 2934 3031 3130	2757 2851 2946 3043 3142	2863 2959 3056 3154	2781 2875 2971 3068 3167	2792 2887 2983 3080 3179	2804 2899 2995 3093 3192	2816 2911 3007 3105 3204
65 6 7 8	3217 3318 3421 3526 3632	3230 3331 3434 3539 3645	3242 3344 3447 3552 3658	3255 3357 3460 3565 3672	3267 3370 3473 3578 3685	3280 3382 3486 3592 3699	3293 3395 3499 3605 3712	3306 3408 3513 3618 3726
70 1 2 3	3739 3848 3959 4072	3753 3862 3973 4086	3766 3876 3987 4100	3780 3890 4001 4114	3794 3904 4015 4128	3807 3917 4029 4142	3821 3931 4043 4157	3835 3945 4057 4171
75 6 7	4185 4301 4418 4536 4657	4200 4315 4433 4551 4672	4214 4330 4447 4566 4687	4228 4345 4462 4581 4702	4243 1359 4477 4596 4717	4257 4374 4492 4611 4733	4272 4388 4507 4626 4748	4286 4403 4522 4642 4763
8 9 80 1	4778 4902 5027 5153	4794 4917 5042 5169	4809 4933 5058 5185	4824 4948 5074 5201	4840 4964 5090 5217	4855 4980 5105 5233	4871 4995 5121 5249	4886 5011 5137 5265
2 3 4 85 6	5281 5411 5542 5675 5809	5297 5427 5558 5691 5826	5313 5443 5575 5708 5843	5329 5460 5591 5725 5860	5346 5476 5608 5741 5877	5362 5492 5625 5758 5894	5378 5509 5641 5775 5911	5394 5525 5658 5792 5928
7 8 9	5945 6082 6221 6362	5962 6099 6239 6379	5979 6117 6256 6397	5996 6134 6274 6415	6013 6151 6291 6433	6030 6169 6309	6048 6186 6326 6468	6065 6204 6344 6486
1 2 3 4 95	6504 6648 6793 6940 7088	6522 6666 6811 6958 7107	6540 6684 6829 6977	6558 6702 6848 6995	6576 6720 6866 7014 7163	6594 6738 6885 7032	6612 6756 6903 7051	6630 6775 6921 7070 7219
6 7 8 9	7088 7238 7390 7543 7698	7107 7257 7409 7562 7717	7126 7276 7428 7581 7737	7295 7447 7601 7756	7314 7466 7620 7776	7182 7333 7485 7639 7795	7352 7505 7659 7815	7219 7371 7524 7678 7834

Digitized by GOOGLO

APPENDIX A

COMPARISON OF WEIR FORMULAS WITH EXPERIMENTS

Inasmuch as the author is advocating a new weir formula for sharp-crested weirs with free overfall and also a new formula for submerged weirs it appears advisable to submit the data on which these formulas are based.

In the following pages the formulas and experiments of Francis, Fteley and Stearns, and Bazin are investigated. Tables and diagrams are given which show the extent to which these formulas and the author's formulas (formula (7) or (7a), page 72, for weirs with free overfall and formula (41), page 82, for submerged weirs, agree with the experiments. The following discussion should be read in connection with that given on pages 63 to 84.

Application of Formula to Suppressed Weirs

The Bazin Experiments.—The most complete set of experiments on suppressed weirs are those of Bazin. Table 102 has been prepared to show how the author's formula for weirs with free overfall and some of the more commonly used weir formulas agree with Bazin's experiments. This table covers practically the entire range of these experiments, the heights of weir varying from 0.79 to 3.72 feet, with a range of head of from 0.2 to 1.4 feet.

In column 5 of this table are given Bazin's experimental discharges. These values were computed by using Bazin's diagram¹ of coefficients which gives the mean of his experimental results. Columns 6 and 7 give discharges by the Bazin formula and the author's formula respectively. Discharges obtained by other methods are also given as follows: In column 8 by the Lyman diagram, in column 9 by the Francis formula, in

¹ Plate 22, Annales des Ponts et Chaussees, October, 1888.

column 10 by the Fteley and Stearns formula and in column 11 by formula (2); the latter will be explained later (page 389).

It will be observed that in general the author's formula comes somewhat closer to the experimental values than any of the other formulas. Bazin's formula and Lyman's diagram also agree very well with the experimental values. diagram was based upon measurements made 15 feet upstream from the weir by means of a plummet suspended by a tape, and a correction was made to the Bazin experiments to make them conform to this method of measurement. This doubtless accounts in a measure at least for the discrepancies in these results. The discharges by the Ftelev and Stearns formula are in general less than the experimental results but they exceed them for the higher heads on the weir 0.79 feet high and approach them again for the weir 3.72 feet high. This indicates the need of a varying coefficient to be applied to a formula of this kind. The Francis formula shows a wide variance from these experimental results. It compares more favorably for the highest weir, however, which is what would be expected since the Francis formula is based upon experiments with higher weirs than the Bazin formula.

The author's formula agrees with the experimental results especially well for the lower heads. It is here that investigators have generally had difficulty in deriving a formula that would give discharges sufficiently great without departing too far from the experiments for higher heads.

Fig. 89 shows graphically the discrepancies resulting from Table 102. The experimental values are shown on the straight line which is used as a base. The discrepancies of the formulas from these values for different heads are indicated by the broken lines. The comparative results by the various formulas can be readily seen from this figure.

Table 103 has been prepared from Fig. 89 by determining the areas between each of the broken lines and the base line. Areas above the base are indicated as plus and those below minus. The figures are not definite quantities but represent the comparative discrepancies for each formula. The last four columns show a summary of the results, the last column giving the comparative total discrepancies both plus and minus. From these figures it will be seen that the author's formula agrees a little closer with the Bazin experiments than any of the other formulas.

Table 102.—Showing Comparative Values of Discharge over Suppressed Weirs as Determined from Bazin's Experiments and as Computed by Various Weir Formulas

Height of weir	Messured head	Area of channel of approach divided by length of weir	Velocity of approach	Experimental discharge	Discharge by Bazin formula	Discharge by author's formula	Discharge by Lyman diagram	Discharge by Francis formula	Discharge by Fteley & Stearns formula	Discharge by formula (2)
P	H	d	V	Q	Q	Q	Q	Q	Q	Q
1	2	3	4	5	6	7	8	9	10	11
0.79 1.16	0.2 0.3 0.4 0.6 0.8 1.0 1.3 0.2 0.3 0.4 0.6 0.8 1.0 1.3	0.99 1.09 1.19 1.39 1.59 1.79 2.09 1.36 1.46 1.76 1.96 2.16 2.46 2.46 2.66 3.16 4.16 5.16	1.70 2.17 2.86 .23 .40 .57 .94 1.33	2.614 3.726 5.694	21.896	2.747 3.924 5.976 .322 .582 .899 1.679 2.630 3.741	3.881 5.943 .313 .574 .887 1.658 2.600 3.737 5.695	20.226	3.878 6.033 .308 .561 .870 1.627 2.560	5.956 .312 .575 .891 1.669 2.621 3.733 5.675
1.04	0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.4 2.0 3.0 4.0	1.84 2.04 2.24 2.44 2.64 2.84 3.04 3.64 4.64 5.64	.30 .44 .73 1.04 1.37 1.69	.576 .883 1.633 2.542 3.601 4.799 6.132	.585 .890 1.633 2.537 3.590 4.785 6.115 10.846 20.934	.577 .887 1.640 2.551 3.609 4.804	.569 .874 1.619 2.536 3.616 4.838 6.177	.550 .852 1.575 2.446 3.449 4.573 5.808 10.126 19.118	.556 .860 1.592 2.487 3.539 4.728	.569 .878 1.630 2.543 3.604 4.804 6.134

TABLE 102 (Concluded)

Showing Comparative Values of Discharge over Suppressed Weirs as Determined from Bazin's Experiments and as Computed by Various Weir Formulas

Height of weir	H Messured head	Area of channel of approach divided by length of weir	Velocity of approach	Experimental discharge	Discharge by Bazin formula	Discharge by author's formula	Discharge by Lyman diagram	Discharge by Francis formula	Discharge by Freley & Stearns formula	Discharge by formula (2)
1	2	3	4	5	6	7	8	9	10	11
	 								1	
2.47	0.2	2.67 2.77	.12 .21	.318 .575	.327 .581	.319 .573	.311 .565	.298	.303	. 309 . 565
	0.4	2.87	.31	.878	.881	.878	.865	.847	.851	.868
l	0.6	3.07		1.611	1.604		1.592	1.563	1.569	1.600
	0.8	3.27	.76	2.495	2.474		2.470	2.418		2.478
	1.0	3.47		3.510	3.479		3.498	3.399		3.492
ł	1.2	3.67	1.27	4.650	4.613		4.640	4.493		
i	1.4	3.87		5.908	5.869		5.905	5,695		5:892
l	2.0	4.47	2.30	• • • • •	10.325	10.289		9.888		
l	3.0	5.47	3.59		19.833	19.618				
l	4.0	6.47	4.81		31.637	31.113		29.171	32.016	
l	5.6	7.47	5.95	• • • • •	45.497	44.509	1 · · · · ·	41.389	46.529	
3.72	0.2	3.92	.08	.318	.326	.318	.309	.298	.303	.308
3.72	0.3	4.02	.14	.573	.579	.571	.561	.548	.551	.562
	0.4	4.12	.21	.874	.876	.873	.856	.845	848	.863
ł	0.6	4.82	.37	1.591	1.588		1.569	1.559	1.557	1.582
ł	0.8	4.52	.54	2.444	2.437		2.418	2.401		2.439
l	1.0	4.72	.72	3.423	3.410	3.424	3.411	3.367	3.370	3.420
l	1.2	4.92	.92	4.511	4.499	4.512	4.502	4.442	4.467	4.515
1	1.4	5.12	1.11	5.706	5.699	5.705		5.618	5.661	5.720
1	2.0	5.72	1.78		9.923	9.884		9.704	9.865	· .
1	3.0	6.72	2.81		18.878	18.667		18,160		
1	4.0	7.72	3.88		30.006			28.416		
	5.0	8.72	4.94		43.088	42 . 133		40.264	43.500	l
_		1				L				

TABLE 103.—SHOWING COMPARATIVE DISCREPANCIES BETWEEN
BAZIN'S EXPERIMENTAL VALUES OF DISCHARGE OVER
SUPPRESSED WEIRS AND DISCHARGES AS
COMPUTED BY VARIOUS FORMULAS

				Heig	ght	of	wei	r '						
Name of	0.	79	1	. 16	1	. 64	2	.47	3	.72	Total	Total	Sum of differ-	Total
formula				Di	Discrepancy						+ .	-	ences	- 4
	+	-	+	-	+	-	+	-	+	-				
Bazin	74	9	22	29	9	32	5	91	5	29	115	1 9 0	-75	305
formula	123	.,.	40	2	28			50			+145	249		
Lyman's diagram.	1	45	9	21	58	21		68.		76	68	231	- 163	299
Fteley & Stearns	34	59		185		237		173		180	34	844	-810	878
Francis'		524		409	١	579	١	440	١	227		2,179	-2,179	2,179
Formula (2)	50	9	11	12	8	9		7 3	8	27	77	130	- 53	207

- + indicates area under curve above base line.
- indicates area under curve below base line.

The Fteley and Stearns Experiments.—These experiments were made with two weirs 5 feet and 19 feet long and 3.17 feet and 6.55 feet high respectively. Table 104, Fig. 90, and Table 105 have been prepared to show the discrepancies between the Fteley and Stearns experiments and various formulas. The values given in column 6 of Table 104 were obtained graphically by plotting all of the Fteley and Stearns experiments with Q per linear foot and H as coördinates. The discharges for the heads given in the table were taken directly from the curve. The scale was so chosen that discharges could be read to thousandths of a cubic foot per second.

The Fteley and Stearns formula agrees closest with these experiments. The author's formula and the Bazin formula give results greater than the experimental values. The Bazin experiments are not consistent with those of Fteley and Stearns, as can be seen by comparing results of the former, interpolated between weirs 2.47 and 3.72 feet high, with results of the latter for the weir 3.17 feet high. It is therefore impossible to have any formula agree closely with both sets of experiments. The maximum divergence occurs with the weir 19 feet long where the author's formula gives some results about 0.04 cubic feet

per second too great. It will be observed from Fig. 90 that the curve of variance of the author's formula is nearly parallel to that of the Bazin formula. It is to be hoped that additional experiments will soon be available to clear up the apparent inconsistencies in the experiments of Bazin and Fteley and Stearns (see discussion, page 402).

Fig. 90.

Verification of Formula

In order to determine whether the author's formula will fit the experimental data as satisfactorily as any other formula of this type the general equation

$$Q = ALH^m \left[1 + B \left(\frac{H}{d} \right)^n \right] \tag{1}$$

was investigated and compared with the author's formula by the laborious process of least squares. The formula determined from the data in Table 102 as the one fulfilling the requirement that the sum of the squares of the residual errors shall be a minimum is

$$Q = 3.33LH^{1.48} \left[1 + 0.53 \left(\frac{H}{d} \right)^{1.92} \right]$$
 (2)

TABLE 104.—SHOWING COMPARATIVE VALUES OF DISCHARGE OVER SUPPRESSED WEIRS AS DETERMINED FROM FILLEY AND STEARNS' EXPERIMENTS AND AS COMPUTED BY VARIOUS FORMULAS

Length of weir	Height of weir	Measured head	Area of channel of approach divided by length of weir	Velocity of approach	Experimental dis-	By Basin's for- mula	By the author's formula	By Francis' for- mula	By Fteley and Stearns' formula
L	P	H	d	v	Q	Q	Q	Q	Q
1	2	3	4	5	6	7	8	9	10
5.0	3.17 6.55	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.5 0.6 0.8 1.0 1.2	3.27 3.37 3.47 3.57 3.67 3.77 3.87 3.97 7.05 7.15 7.35 7.75 7.75 7.95 8.15	.04 .09 .16 .24 .33 .42 .52 .62 .17 .22 .32 .44 .57 .70	.113 .308 .557 .857 1.193 1.570 1.990 2.450 1.172 1.540 2.383 3.334 4.397 5.570 6.824	.128 .326 .579 .878 1.217 1.604 2.004 2.450 1.208 1.577 2.412 3.360 4.414 5.568 6.816	.114 .314 .571 .877 1.218 1.598 2.013 2.461 1.209 1.583 2.422 3.373 4.425 5.572 6.809	.105 .298 .548 .845 1.182 1.560 1.966 2.408 1.178 1.551 2.390 3.345 4.404 5.530 6.804	.113 .302 .551 .848 1.188 1.560 1.968 2.417 1.182 1.550 2.387 3.345 4.403 5.555 6.807

Table 105.—Showing Comparative Discrepancies between Fteley and Stearns' Experimental Values of Discharge over Suppressed Weirs and Discharges as Computed by Vari-

ous Formulas

Length 5.0 Length 19.0 Height 3.17 Height 6.55 Sum Total Name of Total Total of differ-+ & Discrepancy formula + ences + + 55 88 3 143 3 +140146 Author's formula... 48 117 5 165 5 +160170 Francis'..... 27 36 27 77 - 50 104 41 Fteley & Stearns. 32 24 18 24 50 - 26 74

In other words, formula (2) fits the experimental data in Table 102 better than any other formula of the type of equation (1). This refers to actual numerical discrepancies and not to percentages of error.

Discharges as computed by this formula are shown in column 11 of Table 102. The comparative discrepancy for each height of weir is shown in Fig. 89 and in Table 103. It will be seen that in general formula (2) agrees closer with the experiments than results by the author's formula (column 7) for the low weirs, while the author's formula agrees better for the higher weirs. In all cases the author's formula agrees closer with the experimental discharges for the lower heads. It is evident from a study of the data contained in Table 102, that if a formula of the type of equation (1) is to give results agreeing closely with the experiments for low heads, the exponent m must be approximately 1.47, since the term within the brackets is affected very little by the height of the weir and a comparatively large change must be made in the coefficient A to greatly effect the value of Q. In the last column of Table 103 it is shown that the total relative discrepancies of the author's formula and formula (2) are 249 and 207 respectively, a difference which is insignificant when the comparative simplicity of the two formulas is considered. It is also evident that the percentage of error in using the author's formula is less than for formula (2) since the discrepancies of the former are in all cases less for the lower heads. It therefore appears that the author's formula will give, within a very small margin, results agreeing as closely with the Bazin experiments as any formula of the type represented by equation (1).

Application of Formula to Contracted Weirs

Using the experiments of Francis and Fteley and Stearns as a basis the author has endeavored to adapt his formula to contracted weirs. In doing this the correction for end contraction has been taken as that determined by Francis, the effective length of the weir being

$$L = L' - 0.1NH$$

Undoubtedly some error is introduced in using this formula, and Francis states that it should not be used for weirs having a length less than three times the head.

In applying the author's formula to contracted weirs it should be borne in mind that the term d represents the cross-sectional area of the channel of approach per unit length of the weir, or

$$d = \frac{A}{L}$$

and for rectangular channels of approach

$$d = \frac{WG}{L}$$

In Table 106 the results obtained by the author's formula are compared with the experimental value of Francis and Fteley and Stearns. The results given cover practically the entire range of these experiments. The Francis experiments were performed on weirs 5.048 feet and 2.014 feet high and approximately 8 feet and 10 feet wide. The Fteley and Stearns experiments were conducted with a weir 3.56 feet high and from 2.3 to 4 feet wide.

The discharges over the Francis weirs were measured volumetrically. Fteley and Stearns determined the discharge over their contracted weirs by allowing the same quantity of water to pass over the same weir with contractions suppressed. The author recomputed the discharges in the Fteley and Stearns experiments by using the curve of discharge already referred to, page 388, from which the quantities in Table 104 for the suppressed weir 3.17 feet high were computed. The quantities taken from this curve were then corrected for velocity of approach to correspond to a weir 3.56 feet high. It is believed that this method gives results more in accord with the discharges measured volumetrically for the suppressed weir than the Fteley and Stearns method of using their formula to compute them.

Table 106 includes one experiment from each group of the Francis¹ experiments, the experiment chosen being the one in which the computed value of C came the nearest to the mean value of C for the group of experiments considered. Practically all of the Fteley and Stearns experiments on contracted weirs are included. Column 9 of this table gives the experimental or measured discharge over the weir. Columns 10, 11, and 12 show discharges as computed by the Francis formula, the Fteley and Stearns formula, and the author's formula respectively.

Fig. 91 shows graphically the discrepancies between experi-

¹ J. B. Francis: Lowell Hydraulic Experiments, pp. 122-125.

Fig. 91.—Discrepancies between experimental discharges over weirs with end contractions and discharges as computed by various formulas.

Table 106.—Showing Comparative Values of Discharge over Contracted Weirs as Determined by Experiments by Francis and by Fteley and Stearns and as Computed by Various Formulas

Height of weir	Measured head	Area of channel divided by length of weir	Number of end contractions	Measured length	Corrected length	Width of channel	city of ap-	Measured discharge	Q by Francis' for- mula	O by Fteley and Stearns' formula	Q by the author's formula
	Mea	div div	<u> </u>			Wid	Velocity proach	M eas charge	O b	Stea	9 by
P	H	d	N	L'	L	W	V	Q	Q	Q	Q
1	2	3	4	5	6	7	8	9	10	11	12
				Fra	ncis' E	xperin	nents				
5.048 5.048 5.048 2.014 5.048 5.048 2.014 5.048 2.014	1.550 1.242 1.012 1.022 1.023 1.028 0.977 1.005 0.796 0.787 0.815 0.655 0.679	6.290 6.060 6.058 3.042 6.025 6.053 5.844 2.801 5.863 5.659	2 2 2 4 2 0 0 2 2 2 4 4 2 0 2 4 4	9.997 9.997 7.997 9.997 9.997 9.997 9.997 9.997 9.997 7.997	9.995 9.838 9.840 9.995 9.875 9.866 7.725	13.96 13.96 13.96 13.96 13.96 13.96 9.99 13.96 13.96 13.96 13.96	.539 .557 .327 .687 .421 .228 .544 .446	4.648 3.402 3.423 3.558 3.246 3.373 2.366 2.365 2.469 1.592 1.780 1.878	3.402 3.387 3.519 3.236 3.378 2.370 2.347 2.462 1.593 1.778	4.650 3.407 3.386 3.605 3.284 3.395	4.642 3.425 3.405 3.588 3.275 3.416 3.400 3.400 2.499
l		· ·	Fte	ley and	Stear	ns' Ex	perime	ents			·
3.56	.330 .394 .484 .450 .582 .498 .568 .576 .600 .740 .686 .890 .955 .706 .871 .806 .932	3.736 3.775 3.890 3.954 4.044 4.010 4.142 4.058 4.181 4.308 4.181 4.366 4.450 4.450 4.450 4.450 4.450 4.503	1212121122111221111	4.006 3.008 4.008 3.008 3.311 2.813 4.006 3.811 3.007 2.312 2.313 4.006 3.010 3.010 3.010 3.310	3.266 2.197 3.956 3.254 2.883 2.162 3.252 3.946 2.859 3.241 2.135 2.135 2.135	55555555555555555555555555555555555555	.054 .053 .098 .098 .166 .162 .158 .228 .226 .219 .295 .285 .289 .275 .336 .352 .357 .430	1.902	1.460 1.553 2.125 1.897 2.801 3.114	.338 .467 .636 .832 1.125 1.013 1.480 1.479 1.439 2.158 1.464 1.558 2.128 2.128 2.128	.260 .349 .485 .657 .852 1 .033 1 .510 1 .205 1 .461 1 .258 2 .188 1 .931 2 .831 2 .213 3 .136 2 .021 2 .745 2 .745 3 .036 3 .110

mental and computed discharges as determined from Table 106. Considerable irregularity exists in these discrepancies for each set of experiments as shown by the broken character of the lines. This may be due either to experimental error or to improperly applying the same correction for end contractions to all of the weirs.

Table 107, prepared from Fig. 91, shows comparative discrepancies between computed and experimental values of discharge. From the last column it will be seen that the author's formula agrees as closely with the experiments as the Francis or Fteley and Stearns formula. The next to the last column shows that the author's formula and the Fteley and Stearns formula give an average result slightly greater than the experimental values while the results by the Francis formula are less than those obtained from the experiments.

TABLE 107.—Showing Comparative Discrepancies between Francis', and Fteley and Stearns' Experimental Values of Discharge over Contracted

Weirs and Discharges as Computed by Various Formulas

Name of formula		ncis' iments	Ftele Stea experi	rns	Total	Total	Sum	Total + &
Ivanie of formula		Discre	pancy		+	-	differ- ences	T-00
	+		+					
Author's formula	126	1	73	82	109	33	+166	282
Francis' formula	. 7 91			140	7	231	- 224	238
Fteley & Stearns	178	1		113	178	114	+64	292

Comparison of Author's Submerged-weir Formula with Experiments.—Table 108 has been prepared to show comparative values of discharge as obtained from Bazin's experiments, the author's submerged-weir formula (formula (41), page 82) and the Bazin general formula (formula (32), page 79). The experimental discharges, given in column 7, were obtained by computing values of $\frac{m}{m'}$ by formulas (29) and (30), page 79, taking care to use each within the limits of its proper application and applying these values to Bazin's experimental discrepance of $\frac{m}{m'}$

charges over weirs of the same height with free overfall. These formulas were used only within the approximate range of the experimental data on which they were based. Since the curves of these formulas plot very precisely as a mean of the experimental points no appreciable error is introduced in using them instead of using the experimental results directly. It will be seen that the greatest divergence of results by the author's formula from Bazin's experimental results is approximately 2 per cent., while the total divergence is less than for the Bazin general formula (formula (32), page 79).

Table 109 shows a comparison of discharges over submerged weirs as determined from the Francis experiments of 1883, the Francis submerged-weir formula (formula (26), page 77), and the author's submerged-weir formula. The experimental values were obtained by determining the quantity of water that would flow over the same weir with free overfall by means of the Francis formula. Francis appears to have neglected the velocity of approach correction in computing his discharges over the weir with free overfall. The discharges corrected for velocity of approach are given in column 7. Francis experimented on two weirs having a combined length of 22.2 feet. A complete description of the apparatus used is not given and information as to the width of the channel below the weir is entirely lacking. From an examination of the sketch submitted with Francis' paper an assumption of a channel width below the weir of 1.6 times the combined length of weirs appeared conservative and this width was used in the computa-The height of the weir above the bottom of the lower channel was determined by scaling and taken as 7.3 feet. Owing to the lack of data regarding channel conditions below the weir some uncertainty exists as to the results obtained by the author's formula. Since, however, d_1 is sure to be a comparatively large quantity, considerable change in the area of the section of the lower channel will be necessary to greatly effect the computed discharges. It will be observed that the author's formula gives discharges from about 1 to 2 per cent. greater than the experimental values while the Francis formula gives results an equal amount less than the experiments. a velocity-of-approach correction were applied to the Francis submerged-weir formula its agreement with the experiments would be closer but, in his discussion, Francis does not speak of the necessity for such a correction. Digitized by Google

Table 108.—Comparison of Discharges over Submerg: Weirs as Determined by Bazin's Two Precise Submerged-weir Formulas, with Bazin's General Submerged-weir Formula and the Author's Submerged-weir Formula

Height of weir	Measured head	Area of channel of approach divided by length of weir	Depth of sub- mergence	Difference in elevation of water surfaces	Area of channel below weir di- vided by length of weir	Experimental discharge by Bazin's formulas	Discharge by author's formula	Discharge by Bazin's general formula	reggn to 80 +	- Os
P	H	_ d	D	Z	d_1	Q_7	Q_8	Qs	6	0
1	2	3	4	5	6	7	8	9	10	11
A0	0.2 0.5 11.0 11.5 0.2 0.5 11.0	3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.5 4.5	0.1 0.1 0.2 0.3 0.5 0.6 0.7 0.9 0.3 0.5 0.5 0.6 0.1 0.1 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 0.1 \\ 0.4 \\ 0.3 \\ 0.1 \\ 0.9 \\ 0.5 \\ 0.1 \\ 0.9 \\ 0.5 \\ 0.1 \\ 0.1 \\ 0.9 \\ 0.5 \\ 0.1 \\ 0.1 \\ 0.9 \\ 0.5 \\ 0.1 \\ 0.1 \\ 0.9 \\ 0.5 \\ 0.1 \\ 0.9 \\ 0.5 \\ 0.1 \\ 0.9 \\ 0.5 \\ 0.1 \\ 0.9 \\ 0.5 \\$	1.1 1.1 1.2 1.4 1.1 1.3 1.5 1.7 1.9 1.3 1.6 2.0 2.4 2.1 2.1 2.1 2.2 2.4 2.1 2.3 2.5 2.7 2.9 2.1 2.3 3.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	5.44 .27 1.16 1.08 .79 3.49 3.25 2.59 1.82 6.65 6.43 6.04 5.11	28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1	.28 1.27 1.18 3.91 3.48 3.19 3.48 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19	.00 00 00 +.03 01 +.01 +.01 +.05 +.14 +.05 +.05 01 +.01 +.01 +.02 00 00 01 +.01 +.01 +.02 02 02 +.04 05 01 01 01 01 01 01 01 01	++++++++++++++++++++++++++++++++++++++

Table 109.—Comparison of Discharges over Submerged Weirs as Determined from Francis' Experiments of 1883, with the Francis Submerged-weir Formula and the Author's Submerged-weir Formula

Height of weir	Measured head	Area of upper channel divided by length of weir	Depth of submer-gence	H-D	Experimental discharge by Francis formula	Experimental discharge corrected for vel of approach.	Discharge by Francis' submerged-weir formula	Discharge by author's submerged- weir formula	90-	Q1-Q0
P	H	d	D	Z	Q6	Q7	Q8	Q•	0	0
1	2	3	4	5	6	7	8	9	10	11
5.8	1.203 1.227 1.391 1.491 1.720 1.740 1.743 1.804 1.917 1.994 2.032 2.090 2.188 2.190 2.212 2.319 2.318 1.037 1.091 1.156 1.149 1.328	7.027 7.077 7.191 7.291 7.540 7.543 7.604 7.717 7.794 7.892 7.890 7.989 8.012 8.119 8.118 6.837 6.891 6.895	0.327 0.528 0.730 0.732 1.054 1.071 0.727 1.111 1.102 0.263 0.448 0.657 0.636	0.918 0.799 0.452 1.254 1.275 1.260 1.012 0.921 1.506 1.362 1.358 1.114 1.119 1.485 1.208 1.216 0.774 0.443 0.443 0.513	10.10 3.31 3.31 3.30 3.29 3.28 Tota	l – disc	10.04	y	+ .06 + .03 03 + .05 + .23 + .05 + .08 + .19 + .15 + .10 + .12 + .22 + .22 00 05 02 + .10 02 + .10 02 + .10 03	020409 + .0212 + .011213 + .0532091420172725092205090007070707

A comparison of the author's submerged-weir formula with the experiments of Fteley and Stearns is given in Table 110. The experimental results are used directly without any attempt to balance experimental errors. The volume of water passing over the submerged weir in each set of experiments was obtained by allowing the same quantity of water to flow over the weir with free overfall, and computing the discharge.

The accuracy of the determination of the quantity of water flowing over the submerged weir therefore depends upon the method employed in computing the discharge over the weir with free overfall. Fteley and Stearns using their own experiments with those of Francis computed this discharge by means of the Francis formula. The author recomputed the discharges for the Fteley and Stearns experiments by means of the curve used in preparing column 6 of Table 104 for the weir 3.17 feet high, as already described (pages 388 and 392). Since Fteley and Stearns used this same weir for their submerged-weir experiments, placing obstructions in the channel to back the water up above the crest of the weir, it seems evident that greater accuracy may be obtained by taking directly the experimental values of discharges rather than to depend upon results computed by any formula.

Table 110, column 7 gives the experimental discharges as computed by Fteley and Stearns by means of the Francis formula. Column 8 gives the author's recomputed values as above described. Column 9 contains discharges as computed by the Fteley and Stearns submerged-weir formula (formula (27), page 77) with variable coefficient, and column 10 gives the discharges as computed by the author's submerged-weir formula. It will be seen from this table that the author's formula, in all cases, gives results greater than the experimental discharges. The discrepancies are within 3 per cent. for the smaller values of D, but increase as D becomes larger. It is probable that the agreement of the formula with these experiments would have been closer if D had been measured farther downstream, since, at a distance of 6 feet below the weir, a portion of the high velocity possessed by the water passing over the weir still remained to be converted into static head. This condition it appears would be more noticeable for the larger values of D, for in this case the water would leave the weir in a more nearly horizontal direction causing a smaller loss of head due to change of direction and resulting turbulence.

Table 110.—Comparative Values of Discharge over Submerged Weirs as Determined from Experiments by Fteley and Stearns and as Computed by the Fteley and Stearns' Formula and by the Author's Submerged-weir Formula

Height of weir	Measured head	Area of upper channel divided by length of weir	Depth of submergence	H-D	Area of lower channel divided by length of weir	Experimental discharge	Experimental discharge direct from Fteley & Steams' experiments	Q by F. & S. formula with variable coefficient	Q by author's submerged- weir formula	Q. — Q.	Q=-Q:0
P	H	d	D	Z	d ₁	Q7	Q ₈	Q•	Q10	9	0
1	2	3	4	5	6	7	8	9	10	11	12
3.17	.578 .396 .662 .574 .508 .592 .416 .633 .450 .486 .812 .742 .545 .545 .719 .625 .815	3.748 3.566 3.832 3.744 3.678 3.769 3.586 3.780 3.886 3.716 3.803 3.626 3.982 3.912 3.715 3.598 3.795 3.985	.010 .016 .033 .046 .073 .112 .118 .096 .266 .209 .261 .219 .308 .516 .519 .419 .337 .573 .589 .795	.568 .380 .629 .528 .435 .480 .298 .229 .450 .337 .372 .231 .178 .223 .126 .091 .091 .036 .036 .036	5.217 5.288 5.257 5.280 5.327 5.395 5.405 5.565 5.663 5.565 5.654 5.583 6.103 5.929 5.786 6.197 6.223 6.583	.83 1.81 1.47 1.20 1.47 .83 .56 1.47 1.81 1.20 1.46 .83 .83	1.49 .85 1.84 1.49 1.22 1.49 .85 1.84 1.22 1.49 .85 1.84 1.49 .85 .57	1.48 .84 .57 1.47 1.81 1.20 1.48 .84 .83	.86 1.86 1.49 1.22 1.52 .87 .59 1.53 1.90	.03 .02 .01 .01 .02 .03 .02 .01 .01 .00 .02 .01 .01 .02 .04 .02 .01 .01 .02 .01 .00	03 01 02 . 00 . 00 02 02 02 03 03 03 03 03 03 04 04 03 04 04 08 04 08 09
						al — d	discreps discreps & — di	ncy	ancy	.37 .00 .37	.00 98 .98

Since Francis measured the head of submergence "just below the weir" in his experiments of 1848 the author's formula cannot be applied to them. Table 111 shows a comparison of the results of these experiments with formula (42), page 83. The discrepancy in each case is less than 3 per cent. D was probably measured near the trough of the standing wave and the rather close agreement between the computed and experimental values is some evidence to substantiate the author's opinion that formula (42) will give approximate discharges over submerged weirs if the head of submergence is measured in the trough of the standing wave.

It is impossible to make a thoroughly consistent comparison of the four sets of experiments described above with the author's formula because of the different points chosen by the experimenters in measuring the head of submergence. It seems fair to conclude, however, from a study of the results given in Tables 108, 109 and 110 that if the head of submergence is measured at a point corresponding to that chosen by Bazin (36 feet below the weir), the author's submerged-weir formula should give results correct within from 1 to 3 per cent.

Table 111.—Comparative Discharges over Submerged Weir as Determined from Francis' Experiments of 1848 and the Author's Formula.

ੇ Height of weir	H Measured head	Area of upper channel divided by length of weir	Depth of sub- mergence	H – D	Experimental discharge by Francis' formula	Discharge by F.& S. formula with variable coef.	Discharge by formula (42)	Qe — Q7	Q. — Q.
1	2	3	4	5	6	7	8	9	10
6.5	.853 .848 .852 .857 .882 .970	7.353 7.348 7.352 7.357 7.382 7.470	.020 .065 .085 .105 .220	To	otal - d	2.63 2.63 2.64 2.64 2.62 2.62 discrepander discrepander	01 01 02 02 .00 .00 06	$\begin{array}{c}03 \\ +.07 \\ +.04 \\ +.05 \\ +.07 \\ \hline +.27 \\03 \\ .30 \end{array}$	

Causes of Inconsistencies in Weir Experiments

A careful scrutiny of the foregoing experiments reveals many apparent inconsistencies in the results of the different investigators. It will be noted, however, that in every case each set of experiments is consistent in itself within the limits of experimental error. The conclusion must be that such inconsistencies are due to different conditions under which the experiments have been performed and failure to consider certain fundamental underlying principles.

Probably the most noticeable incongruity exists in the experimental results of Bazin and Fteley and Stearns. Each set of experiments is consistent in itself and apparently each was performed with great care and under equally favorable circumstances. It would therefore appear that some difference in conditions, which enters into the relation between head and discharge, existed which has not hitherto been considered in weir investigations, and for the more precise use of weirs, corrective factors to allow for such conditions should be included in weir formulas.

Explanation of the reasons for these conflicting experimental data has hardly passed the stage of conjecture. Apparently the inconsistencies in the Bazin and Fteley and Stearns experiments are not due to the different methods employed in measuring heads nor differences in the shape or degree of sharpness of weir crests. Barr, experimenting with V-notch weirs, (page 87) found that increasing the roughness of the upstream face of a weir, by reducing the vertical component of the velocity of approach and so reducing crest contraction, increased the discharge. A similar relation between degree of roughness of upstream face and discharge may exist for rectangular weirs. It is also probable that the discharge over weirs increases slightly with the temperature of the water due to a diminution of the coefficient of viscosity.

It is important that future experimenters should give complete data relative to temperature of the water and degree of roughness of the upstream face of the weir. All dimensions and a detailed description of the apparatus used in experiments should also be given. In general it may be stated that before materially greater precision in the measurement of flow over weirs may be expected, the fundamental laws affecting such flow must be more thoroughly investigated.

APPENDIX B

Comparison of Kutter, Manning and Bazin Formulas with Scobey's Experiments

Table 112, as given in the following pages, is a reproduction of experiments and computations prepared by F. C. Scobey, and published in Bulletin 194 of the United States Department of Agriculture with the addition of the last three columns which give coefficients for Manning's and Bazin's formulas. A comparison of Kutter's n and Manning's n, as given respectively in columns 15 and 16, will be found especially enlightening. Column 18 gives values of Bazin's m for each experiment, except where m is negative.

As stated on page 198 the author has found that the Manning formula gives practically the same results as the Kutter formula, within the ordinary range of conditions encountered in practice, when the same value of n is used with each formula. Scobey's experiments show this to be true to a remarkable degree.

Table 112 may be used to advantage in connection with Table 73, page 191, or Table 74, page 193, in selecting coefficients for either the Kutter, Manning, or Bazin formulas. In designing canals, too much care and study can not be exercised in selecting the coefficient which will most accurately apply to the given conditions. It is still very doubtful whether any one of the above formulas conforms closely to the laws of flow in open channels and it is therefore desirable, in each case, to select a coefficient from experiments on a channel resembling as closely as may be the channel to be designed. This refers to channel dimensions and alignment as well as to the degree of roughness of the channel. Since the following table gives quite full data in these regards it should furnish valuable assistance in the intelligent selection of coefficients.

Table 112.—Elements of Experiments for the Determination of Retardation Factors in the Chezy, Kutter, Manning and Bazin Formulas*

	7-1- AV																1						
tion	≅ ,nizsa	m		.283	.611	444	.136	.173	.129	.165	.321	***	956		.382	.335	.432	226	411	321	.467	1.10	489
arda	7 SanianeM # 4:	u	12.2	116.4	95.5	0.20	10.5	137.9	134.2	35.4	117.3	36.7	116.4		12.8	20.5	39.3	00.00	200	113.7	6.4	8.8	0 00
Coefficients of retardation	a gainasM	n n	105 1		0106				0111 1	.0110			0198			0124 1	120	0194	134	0131		189	0140 11
nts	-	-											_						-	-	22.5	0. 68	2010
fficie	Kutter 🛱	2	7.01	4.01	5 0108	1 0140	7 .0108		6 .0113	5 .0115	3 .01	5 .0110	0 -		1 .0132	4 .0124	2 .0130	6 0195	0 0130	0.01	0 .0142	0.01	0 01
Coe	Chezy =	0			150.6	114	136.	132.	141	134	-	161	138	K	118.	97.	100	106.6	100	129.	119.	90	11
13	Hydraulic grade	8			0144	9000							0005500		.000329	. 08244	.08244	02078	•	.0014	.00177	.00273	ODORR
12	Hydraulic mean radius, ft.	2	5.23	2.45	30.88	1 36	.83	.82	1.37	.94	1.31	2.81	54	2.91	1.30	. 29	01.	40	200	2.13	2.15	2.15	166
11	Wetted peri- meter, ft.	d	3.60	0.30	96.50	0 39	6.22	6.12	1.50	0.35	0.71	25.20	300	6.34	6.9		:0	5 68	78	50	3.50	3.50	
10	Discharge per second, cu. ft.	0	824.00 6	469.70 5	942 00	949 00	14.51	13.55	74.64 1	154.00 1	10.001	293.62	921 90 9	316.70 2	50.49 1	16.42					205.00 1	205.00 1	96 86
6	Mean velocity per second, ft.	, a	5.48 1.	3.81	0.62	0 13	2.81	2.71	4.74	2.78	10.0	61.15	3 65	4.14	2.45	5.05	4				7.15	6.94	10 22
00	Area of water section, sq. ft.	a	332.9	123.5	11 75 9	19 67	5.16	5.00	15.73	9.76	14.08	20.73	60.50	76.59	20.59		. 6	X X	76	28.95	71	40	
7	verage depth,	V	5.6	:	:			:	:			3.10	2.76	3.24	1.36	0.0	80.0			Di C	10	1	
9	pproximate max- mum depth, ft.	i.	9.9	2.97	9.3	4	:	:	3.5	1.30	. 13	000	800	.55	. 65	.36	1 20	71	04	1	2.98		
20	oproximate sur-	I.A.	59.0	49.1	53.7				4.5	6.1	6.4	27.7	22.0	23.6	15.5	3.1	3.0	4.4	1.1			1	0
4	ngth of reach tested, ft.	Гę	602.0	2,400.0	1,000.0 53.7	0.006	700.0	700.0	318.0	514.5	440.0	1,699.0	1.819.0	1,020.6	2,400.0	180.0	180.0	600.0	039.0	640.0	1,075.0	220.0	100
60	Name and description of channel		New	Canal, Boise project	Main Canal, Boise project	CHEVE	nduit, curve	:		cement	ant	Kidenbaugh, very smooth	CHITTER	tangent and curves	es	No. I, smooth	te No. I, same reach	Pond chute, smooth	Tractille project emooth	Ha project, tangent	illa project, wavy	Umatilla project, curve	Arone churto amonth atraight
6	ass (accuracy) ass	CI	Ö	m2			-	B ²	25	3	1	A	24	4	-	2	2		-				
-	eference number,	В	1	5a	44	120	69	7a	80	90	100	11	22	14	150	160	170	100	200	210	220	230	200

.529 .554 .634 .634	.570		. 653	•	1.08	792	.843	981	1.04	1.04	- : '	_	1 19	-	1.29	_	1.44	1.43	1.48	1.84	7,41		.071		
0145 102.7 0147 101.4 0154 96.7			94.9	95.6	268			200						73.7	71.3		61.6	8.09	63.4	0.60	49.0	147.5	134.2	131.8	6.101
			0155		.0167			0182	.0194				0100							0220	.0002	0101	0111	01113	0010.
.0144 .0146 .0154		.0158	.0171	.0157	.0160	.0167	.0171	0176	76.8 .0188	.0188			0100			.0211		•		.0231	.0204	0103	0112	.0115	-0116
109.0 109.0 109.7		80.8	92.0	89.2	80.2	87.7	72.6			76.2	92.5	86.9	80.00	75.0	67.1	74.3	58.0	_	63.8	64.4	97.8	169.0	150.0	139.2	149.1
000626 000619 000629	00062	07180	.07230	90100	.00099	2000	.000694	001100	.001444	.001449	.000525	.0000639	670000	000000	001021	.000574	.00063	.0005839	.000851	.000482	78000	24.60 2.28 .0003108	.00024	.001288	e17000.
2020	94	.51	88.	.83	5.04	. 98	.52	300	88	.95	94	38	000	1.02	0.6	.63	.70			1.60	1.49	2.28	1.94	.35	1.00
24.07 26.00 26.00	14.38	11.28	5.94	12,50	5.67	6.88	3.98	13 95	6.81	68.9	98.30 17.20 1.	98.30 17.10 1	74.80 10.10 1.	19 67	95 74 13 90	22.75	68.6	4.52	12.30	16.64	20.74	24.60	22.70	10.85	10.00
133.30 23.95 1 120.90 24.07 1 212.00 26.00 2 54 64 17 16 1	107.60	89.80	18.71	26.79	5.7	15.34	2.86	97 16 13 95 1	19.36	18.54	98.30	98.30	74.80	95.74	95.74	84.32	8.50	3.05	23.64	47.83	00.05	251.80	142.10	86.99	108.90
8.8.8.6		15.52	3.74	2.62	1.86	2.27	1.38	3.58	2.89	2.83			2.00			2.27			1.88	1.79	1.90			5.79	
34.20 36.18 53.80	27.90	5.78	5.28	10.21	3.06	6.75	2.07	32.06	69.9	6.56	33,38	32.52	20.20	10 95	19.61	37.09	6.96	2.85	12.57	26.68	30.92	56.11	44.05	15.02	40.17
2.34	4.11	.56	1.43	:	.57		08.	70.1	1.52	1.60	2.58	2.58	20.7	00.2	1.09	1.77	:	1.04	1.14	2.07	:	5.61	2.51	2.28	2.70
	111	.57	1.80	:	828	3 :	06.	1.55	2.15 1.52	1.90	2.78	2.78	77.7	77.7	1.10	2.20		1.70	- i	9 2.20	:	:		:	
468.5 22.8 1,000.0 23.0 2	0 7.0	0 10.4	743.3 3.5	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 2.6	755.6 21.0	5 4.4	1,000.0 4.1	0 12.8	0 12.6	0 12.7	0 12.	013 0 12 4 1 10 1 09	0 21.0	0	575.4 2.7	0 11.0	329.6 12.9		9.6			. 17.
1,000.	3,000.0	210.	743	1,000	206.0	1,000.0	350.0	1 089	6000.5	1,000.	240.	1,013.	240.	1,013.	1 013	301.	0.009	575.	669	329	800	800.0	500.0	1,119.0	•
Weber, medium smooth Weber, medium smooth Weber, medium smooth	ne, new		angent		project	SS	South Cottonwood Ward, sand	Modesto main, rocks	sand	Arroyo Ditch, tangent, moss	Canal, rough, tangent	Canal, tangent and curve	nt	Canal, tangent and curve.	Canal, tangent and curve	ct.	Riverside, two curves	wash	Riverside, rough, broken	Riverside, sandy bottom	Kiverside, sand, grass	tened	Bitter Root Valley Irrigation Co.		Orchard Mesa Fower, surfaced.
Weber, n Weber, n Weber, n	Hamilton Mill Flume, new South Canal	al	South Canal	sand	Lateral 12, Orland project	Colton, tangent, moss	tonwood	Modesto main, rocks	Los Nietos, deposit, sand	tch, tang	al, rough	al, tanger	Canal, tangent	al, tange	Canal, tangent	Orland project.	rerside, t	Small ditch, cement wash	rerside, r	verside, s	Wooden Flumes	Reno, surfaced, battened	t Valley	King Hill, smooth	lesa Fow
Davis and Davis and Davis and	Hamilton M	South Canal	South Canal	Santa Ana,	teral 12,	lton, tar	uth Coti	odesto n	S Nieto	royo Dit	North Can	rth Can			North Can		Upper, Riv	all ditel	Lower, Riv	Upper, Riv	pper, Kiv	no, surf.	tter Roc	ng Hill,	chard M
A Da	A Ha	Sol	Sol	Sar	A Lat	Con	A Sou	AMC	A Lo		A No	ANO	A No	ANO		A Ma	Up	BSm	A Lo	A Up	OF		A Bit	A Ki	5
23821	331	33a	340	36a		39a	40 7	41	43	_	45	46	-	248	202		52a			25	260		58	26	200

_
ted
ini
out
ت
\sim
12 (
112 (
) TE 115
VABLE 112 (

81	<u> </u>	189	22	83	263	311	88.9	3 8 8	38	28	25	88	35
							-	-	_	-			
17	e'M	134.2 124.2 121.2		119.2	118.2	115.4		115.5	66		96.2	2 8	_
16	n 8'M	01110	0115	0125	.0127	0129	0145	0141	0150	0153	0155	0158	0146
15	и в.у	.0114 .0123 .0126			0122		0138	0131	0150	0150	0155	0156	0157
14	v	136.2 138.9 137.6	139.0		132.5		88.3	115.5	100.2	96.4	97.5	8.0	8.3
13	60	000710 000965 000858	.00210	.00213	.00016	.000133	88.0	001044		.000274	.00053	.002019	- 40
12	6	.96	1.90	1.72			.66	26.69		.04	. 85	93	.87
п	d	15.10 1.11 17.97 1.96 18.60 2.12		15.22 1 13.26 1	0.861	16.30	3.32	17.45 17.65	7.70	7.23	13.02	3.63	0.00
10	0	63.30 1 209.30 1 228.80 1	399.77 2 160.79 1 153.40 1	206.88 1	92.80	66.50 1	2.16	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	64.02 1	16.01			
6	a	3.80 5.96 5.81	9.12 7.80 7.30	5.45	26.32	2.08	1.64	62.4	3.34	3.13	80.8	3.99	1.35
00	в	16.77 35.21 39.45	43.82 20.80 21.20	26.10	40.00	31.90 53.10	1.32	17.27	19.15	10.41	12.34	13.92	5.38
7	depth depth	1.40 2.94 3.29	2.08	.63	333:	3.00	.66	57	.61	1.07	233	33	9.6
9	Max. depth	:::	:::	:::	200	:::	11			: 42	:::		-
20	Appi,	12.0	16.0	10.0	15.8	9.6	5.0	11.9	6.11	7.87	10.0	0.0	0.01
4	T		1,100.0 834.0 834.0	834.0	700.0 15.8 1.000.0 15.7	1,000.0	606.0	616.0 11.9	437.0	750.0 7.8	1,000.0	195.0 10.0	163.2
69	Name and description	Mesa Power, Surfaced Mesa Power, Surfaced Mesa Power, Surfaced Oregon Irrigation Co	waterworn, slin	Creek, waterworn, slime	Fargo drop, plank, tar-coated Bitter Root Valley Irrigation Co Bitter Root Valley Irrigation Co	Hedge, new, surfaced. Bitter Root Valley Irrigation Co	Lateral No. 4. Telluride flume, surfaced.	Arnold, curves and tangent	curve	floor transverse	old, surfaced, tangent and curve	A Swalley, tangent and curves	tangent and curve
73		Orchard Orchard Orchard A Central	surface Alkali Cr Alkali Cr	A Alkali Cr A Alkali Cr		Bitter Ro	-			Oxford, fi	B Swalley, t	Swalley,	S Golden R
	no.	61a 62a 63a				252				888			
_	Ref.	0000	- ಕರ	ಕ್ಷಾ ಕ್ಷಾ	575	666	. 21		₹ ₩	ထတ်င	o oò	ಹಹ	8000

.861	000	.22	23.50	25	. 59	860	980	192	224	171	332	388	421	498	936	873	54		381	10/1	89	89.	100	288	908	333
84.1	_	-	_		_	61.2	54.5	97.0	35.7	47.2	19.7	113.6	11.3	01.7	82.2	83.4	69.9	_	-	50.8			47 4	14.6	89.3	111.5
0171	0214	9610	0203	0217	0210	0092 1	0096 1	1 6010.	0110	0101	0124 1	0131	0134 1	0146 1			0530		_	0940			1 1010	.0130	7910	0134 1
.0167	0184	1010.	0201	.0202		6600	.0101	0110	0112	.0122	.0126	0127	.013	.0139	.0179		00100			0935		.0298	0110	0130	.0164	0134
97.4 76.9 86.9		87.5	87.7	67.0	81.8	136.2	142.3	100 0	116.6	121.5	112.5	100.0	109.6	83.4	83.1	82.3	62.8		111.5	61.0	55.5	52.4	185 0	133.0	105.2	109.9
.0000568 .01069	.00038	.000084	0004	.0006299	.00031	.0052	.0023	0000	00117	.00175	.0022	00120	.000175	.00130	.00386	.00537	000411	T COLOR	.001367	00000	.001597	.000636	00017	.000154		.00031
2 .59 2 .59 0 1 .04	1 .33	00 2.30	2 2.86	5 .86	0 2.94	_			. 41			84	. 91	. 31	2 1.07	0.65	5 1 04		98.	1 23	1 1.05	5 1.78	03.88	2.40	2.62	85 86
95 20.55 96 6.12 35 11.60	97 4.5	25 23.6 34 9 2	50 23.3	72 11.7	00 28.6	3.13		36	02		59 6.44	83	80	34	19 6.8	30 6.3	70 7.3		44 6.90	44 10 69 1	44 8.2	80 14.65	52	53.	53	55 25.0
43.05 21.96 19.35		67.25	197.	15.	207.	7.04	19.	20.	4.	2.	19.	6.81	8	1.	36	333	14.		19.	19.44	19.	45.				10
6.11						6.01	5.34	9.37	2.55	2.88	4.40	1.82	1.38	1.68	5.35	5.77	1.92		3.87	1 49						3.62
39.91	1.49	55.30	66.60	10.09	84.05	1.17	3.66	:			4.25				7.32	5.77	7.67		5.90	13.06	8.62	26.02	207.50	129.06	139.81	10 94
2.91	:	2.94	:	1.04	:	3	:	:		:	:	:				:	:	-	1.40	1 77	1.70	2.26	100	2.53	2.74	000
4.5		4		9.8		8 .66	7 1.11	75	5 .70	6 .55	8 1.12	4.5 1.50	2 1.65	2 .50	12.00	0 1.68	0 1.77	,	2 1.50	7 4 1 95 1 77	11.77	5 2.70		3.70	3.90	3.95
470.0 13. 400.0 4. 014.4 6.		746.3 7.4	50.0	-	0.00	200.0		7 00			325.0 5.					189.0 5	45.0 6		4 0.022	35	10	213.6 11.5	910	000.0 51	,200.0 51.	11 4
-	:	101	-	9	-		9	: :		:		2 .	-	:			. 1.7						-	1,0	. 1,2	:
ad and Jorda sand	lking	Ited	bottom	ss		gent	nt	No. 80	o. 108	No. 172	nt	ung banda.	ing bands	bands.	bands	bands	d iron	1		ore			8 AV	y		ent
asphalted ke City an	cting ce	med	ks on b	and moss	Metal Flumes	oth, tan	1, tange	nooth.	ooth, N	smooth,	n, tange	, projectir	project.	ojecting	necting	necting	rrugate	Masonry-lined	ides	ed sides	l sides.		Channels anted clar	ted cla	ted cla	City sediment
main, a falt Lak battens	i, proje	ine, sli	er, Roc	, sand	er, grav	a, smod	smooth	lect, sn	nal, sm	steral, s	smooth	ulch. p	feeder,	dge, pre	ral, pro	ral, pre	irve. co	Mason	ubble si	nehinke	plastered sides	tar laid	Earth Ceme	cemen	cemen	er, sedi
Modesto main, asphalted Lateral, Salt Lake City and Jordan Wheeler, battens, worn, sand	Elm farm, projecting calking	Roller flume, slimed.	Bear River, Rocks on	Fullerton, sand and	Bear River, gravel	Minnesota, smooth, tangen	Garland, smooth, tangen	Boise project, smooth. No. 80	Moro Canal, smooth, No. 108	Yarnell lateral, smooth, No. 1	Garland, smooth, tangent.	Fartridge lateral, projecting band Golden Gulch, projecting bands	Ten-mile feeder, projecting band	South Ri	King late	King lateral, projecting bands.	Ning lateral, projecting bands Stuart, curve, corrugated iron		Jacobs, rubble sides	Jacobs, unchinked	Jacobs, p	Orr, mortar laid	Interstate, cemented clay	Farmer's,	Farmer's, cemented clay	Bear Kiver, Rear River
ABA	1	A	B	V	B	B													V	V	V	B	11	B	¥	
90	20	8 4	50	96	70	980	99	010	20	30	40	50	70	80	09a	00	12a		113	115	9	1	1180	6	0	210

ĝ
nu
nti
ర్ర
_
112 (
Е 113
11

16 17 18	X s,W u s,W	90.5 89.5 87.7 86.9		.0175 85.1 .929 .0181 82.4 .929 .0197 75.6 .938 .0206 72.5 1.02	.0184 81.0 1.04 .0185 80.5 1.05 .0189 79.0 1.02	.0190 78.4 1.14	76.4		.0229 65.1 1.32 .0215 69.3 1.10 .0202 73.8 1.15
14 15	u K,8	99.3 0165.0	0170 0170 0194	100.0 .0174 .083.8 .0176 .06.6 .0180 .06.4 .0186	92.0.0181.0 90.8.0183.0 81.5.0184.0	90.5.0186	.0194	.0199	61.6 61.6 74.6 6195
13	80	00027 000273 00038 0000804	00025 00025 00050	0002301 00049 000617 000460	2 .000295 4 .000438 0 .00083	4 .000111	.0001867	15 .000127	
11 12	т -	400	13.90 .99 41.70 2.84 41.43 1.73	26.30 2.60 14.75 1.11 5.00 .47 5.58 .50	106.93 21.90 2.12 . 161.75 29.20 2.04 . 45.90 14.80 1.20	92.08 26.90 2.34	28.70 2.8	89 28.90 2.85	4.46 10.80 1.07
101	0	109.56 64.02 140.55 85.51	372.10 175.50	32.27 32.27 2.70 2.70	106.93 161.75 45.90	92.08 26.	171.60 28.	187.89	22.2.3
6 8	a	2.36 2.02 1.86		2.45 1.96 1.14 3.97	2.72	1.46		1.67	
- 1		4.44 31.66 75.60	135.90 135.90 1.20	68.40 16.43 2.37 2.78	46.48 59.57 17.80	63.10	8		8 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	Av. depth	1.94 1.67 1.13 2.31	2.83	2.85 1.21 .53	1.29	2.47	3.03	3.17	01.00
9 9	Max. depth	2.21 8.22 8.22 8.00	2.4	8.1. 8.4.5. 8.5.5.	22.1 688	3.00	8.8	3.6	10.4.0
9	App.	23.9 18.9 68.0	13.5	.0 24.0 3.80 .0 13.6 1.40 .0 4.5 .75 .0 5.5 .90	29.0 13.7	750.0 25.5 3.00 2.47	750.0 27.0 3.80 3.03	750.0 26.5 3.60 3.17	20.40
4	T	100.0 23.9 2.80 1.94 18.9 2.24 1.67 2,600.0 68.0 1.20 1.13 900.0 129.0 3.00 2.31	800.0 400.0 600.0	9,89,9	1,000.0 29.0 2.90 2.32 1,000.0 29.0 2.80 1.99				-ī:,
8	Name and description	Bear River, Corinne Branch, ailt Bear River, Corinne Branch, loam Fort Lyons, silt, very smooth	Winter Creek, compact clay. Empire intake, sand, gravel. Empire intake, firm gravel.	Billings Land and Irrigation slick loam Jarbeau Power, clay loam Cove, sandy loam, grass Cove, sandy loam, grass	Billings Land and Irrigation silted. Grand Canal, hard bed Logan, Hyde Park and Smith	clay, Billings	Same reach Billings Land and Irrigation same reach	Bi	main, ctay Maxwell, sandy bed Bear River, Corinne Branch, ctay Millyille and Providence.
2	no. Class	23a B 24a 25a		130 A 131a 132 B 133 B	-	137 B		140 A 141 A	142 B 1430 C 1440 C

1.28	1.13	1.16	1.40	1.44 1.67 1.50		2.49	3.31	1.69	1.61	1.66 1.68 1.62
711.5	8 4	32.0	88.8	63.6 68.0 66.4 67.3	0.80	0.00.4.6.1	32.6	4 5 7 7 7	68.5	
				0234 0219 0224 0221		0293		0222 6		0230 0233 0244 6
0.0200 .00		0204 0205 0206 0		0212 0213 .0 0216 .0 0216 .0	0217 0218 0219 0219					0225 0226 0228 0228
						2000				
78.3	86.99	52.	73.73	62.2 73.0 79.6 74.4	82128	69.77	63.9	83	68.11.0	62.73
.00015 .00022 .00056	.000308	000334	.000312 .00046 .00020	.000175 .00077 .0000107	0003795	00036	00220 00362 000481	.0001682	00020	.000377 .000262 .0007365
1.40 1.69 1.04	2.85	.33	2.03	88 1.52 2.90 1.80	1.11	2.04	8488	3.69	2.16	2.13 1.97 1.11
15.60 16.52 7.73 22.10	7.19	080	8.8.3	9.20 13.56 71.90 17.80	773	18.15 11.65 24.50	180	80	10855	285
1611	200 2	29 20 30 30 30 30 30 30 30 30 30 30 30 30 30	50 2 56 1 31 28	.37 .36 .23 .00	29 36. 29 27.	20222	60 26 16 32 16 17	91	72 18 19 20 19 19 19 19 19 19 19 19 19 19 19 19 19	35
23.55 42.16 4.03 15.44	207.	9.	112.50 68.56 95.31	6. 89. 67.	87. 68.	57.98 15.22 62.00	27.	336.	32.32	92.
1.08 1.51 1.01 .67	2.56	1.74	2.00	2.49 2.43 2.09	1.34	1.24	3.86 1.39 1.44	2.08	3.12	2.09 1.63 1.78
21.78 27.91 4.00 22.96	88.8	22.28	80.00	2.50	94 50 50 50 50 50 50 50 50 50 50 50 50 50	30 37	9222		922.0	.80
				8 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	288213		5 19 18	-	26.27.11	22/21/27/1
5 1.53 0 2.20 3 .53 0 1.09	3.37	25.6	22.15	31.72 31.72 32.98 51.94	0.000	2.31	11.46	9 36	2.48 1.66 92	2.1
0.68.4	1.0	28.4	0.0101	1.40 2.08 4.10 2.65	22.50	2.50	1.90	5.00	3.40	2.77
21.6 21.0 21.0	24.0	9.0	26.5 14.8 27.0	8.4 12.0 70.0 16.5	10.0 35.8 27.0	16.1 10.5 25.0	25.5	38.0	17.0 16.6 12.0	15.5 27.0 12.0
75.0 14.2 2.05 1. 550.0 14.8 2.30 2. 7.5 83 1,000.0 21.0 1.40 1.	400.0	400.0	750.0 100.0 1,000.0	400.0 60.0 200.0	0.000,1	495.0	238.0	500.0	900.0	,000.0 400.0 568.0
sand onted	Logan City, gravel bed	: : :	bitter foot valley irrigation Co. Logan and Richmond, clay. Bitter Root Valley Irrigation Co. Billings Land and Irrigation Co.	1.2. Hyde Park and Smithfi bed ploughed, grassy, fine granite, few rocks. mperial Water Co. N.	sedimented. rrowed, gras	Bessemer (a), smooth adobe Big Ditch high line, silted Louden, elean sand Mesa lateral (b), fine silt bad	Rio Grande lateral 1 (c), gravel Rio Grande lateral 1, gravel. Santa Ana main, cemented sand California Development Co., een.	tral main	Salt River Valley. Lewiston, clay, moss patches. Geo. Rist, gravel	Big Ditch, sand bed, mud sides 1 Bitter Root Valley Irrigation Co. Lateral 10, Orland project
B Log Mes Solva	B Bill	17 0000	A Bit		Poi Cro Bes	Lou Me				
	Da L	53a 54a E	N	R	63a 64 65a	30 00	170a 171a 172 A 173 A	4 A	Sa A	78 79 80 A
146 147 148 149	155	15.5	156	159 160 161 161	16.	16 16 16 16 16 16 16 16	172 173 173 173	174	175 176a 177a	178 179 180

			_
18	E	2 888228	3
17	W'8	58.88.81.85.85.84.88 83.47.84.88 8 8 88.88.82.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Š
16	s,W	7920-7920-7920-7920-7920-7920-7920-7920-	2
15	u g, X	0230 0230 0231 0232 0238 0238 0238 0248 0248 0248 0258 0260 0260 0260 0260 0260 0260 0260 026	5
14	v	\$4.48\$P\$8288484 \$888884 # \$252884 \$ \$0-4	3
23	8 0	000043 000075 0000856 000116 000117 0001014 000737 0000831 0000831 0000831 0000831 0000831 0000831 0000831 0000831 0000831	*10000
12	٤.	6.80 -48 6.00 -65 6.00 -	3
=	a	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	3
9	9	2.34 6.80 .46. 7.90 8.12. 71. 7.90 8.12. 71. 83.85.20.901.83 .83.86. 7.40 7.71 .70. 7.80 7.73 .70. 83.86.74 .70. 83.86.74 .70. 83.80 7.54 .85. 84.80 89.80 89.80 .85. 85.80 89.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 85.80 89.80 .85. 86.8	11.00
6	4	1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
∞		28.25.44.15.25.25.25.25.25.25.25.25.25.25.25.25.25	8
	чэдөр Ул.	1.5.00 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1
9	Max. depth	6.5 683 .51 1.1.2.50 2.12 1.1.2.50 2.12 1.1.2.50 2.12 1.1.2.50 2.12 1.2.50 2.1	3
10	App. width	0.00 1110 110 110 110 110 110 110 110 11	
*	T	80.0 7.8 8.0 5.1 8.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	
8	Name and description	Providence Upper, packed Bear River lateral, silt and moss Bear River lateral 2, silt, grass. Orland South Main River Branch Canal, few cobbles. Providence, medium gravel. College and City, gravel, roots. Logan, Hyde Park and Thatcher. Samal dich, mew. College and City, uneven. Billings Land and Irrigation Co. gravel. Billings Land and Irrigation Co. Bitter Roots, earth bed. Bitter Roots, earth bed. Bitter Roots, earth bed. Bitter Roots, earth bed. Bitter Roots, earth bed. Bitter Root Valley Irrigation Co. Bitter Root Valley Irrigation Co. Bitter Root Valley Irrigation Co. Bitter Root Ogden, gravel. Main Branch Turlock district, hard Ogden, gravel. Billings Land and Irrigation Co. Bitter Roots Valley Irrigation Co. Bitter Roots Valley Irrigation Co. Bitter Roots Walley Irrigation Co. Bitter Roots Walley Ordan. Loveland and Greely. Farmer's few rooks. Billings Land and Irrigation Co. Billings Land and Irrigation Co.	sand bed
C.1	no.		-
_	.on	1812 1822 1832 1832 184 186 1898 1898 1898 1992 1992 1993 1994 1994 1995 1996 1996 1996 1996 1996 1996 1996	

	88 48889188 0.0000000000000000000000000000000000
O 10410010 60000 1 60	
	24 27 84 4 2 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5
	.0330 .0347 .0395 .0396 .0310 .0417 .0407 .0402 .0416
0277 0274 0229 0229 0229 0229 0229 0229 0229 022	0315 0318 0318 0319 0321 0321 0324 0329 0348 0352 0352 0352
6 426.458.458.458.4 74 44 4 1.040.106. 88841. 8 81	23.25 24.25 25 25 25 25 25 25 25 25 25 25 25 25 2
19	
.000842 .000829 .001168 .001168 .002683 .00368 .00368 .00368 .00361 .00029	000684 001044 0014 0014 00083 00083 00083 00083 00083 00083 00088 00088 00089 00089 00089 00089 00089
	1.22 1.22 1.22 1.32 1.32 1.32 1.32 1.32
8 8 8 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	52 56 68 88 88 88 88 88 88 88 88 88 88 88 88
9 727478 88 88 88 88 88 88 88 88 88 88 88 88 8	883
	22.22.00 0.42.22.20
2. 1.1.1.2.2.2.2.4. 1.1.1.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2.1. 2.1. 2.2. 2.2. 2.2. 2.2. 2.2. 2.2.
	20
	7.4 7.44.80.47 0.88.84.85
. 99 . 22 . 22 . 24 . 25 . 35 . 35 . 35 . 35 . 35 . 35 . 35	1. 20 1. 20
4. 515.851.85.85.85.85.85.85.85.85.85.85.85.85.85.	8.5 8.5 8.5 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
R 0804887 0844 0 80	0.00 1
400.0 40	294.9 355.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
400.0 400.0 662.6 662.6 600.0 718.0 700.0 5,280.0 1,164.5 600.0 600.0	::==: : :=
Co., co.	with with control cont
rigation C rigation C sand bed. Procks. Interal. C O, gravel. To C, Nov. C O, gravel. To C, Nov. To	SS
gation gation gation gation ocks. lateral l, grav Co., N Co., N i, irregular rea	mosent nt nt nt nt nt sides cob cob cob cob cob cob sides sides critical trict
Irrigation (Irrig	sa sa sa sa sa sa sa sa sa sa sa sa sa s
and Irri and Irri and Irri and Irri and Irri ne silt, ne	taged in the second in the sec
use Land and Irrigation Co. 10 reach. 11 reach. 12 reach. 13 reach. 14 reach. 15 reach. 16 reach. 17 reach. 18 reach. 18 reach. 18 reach. 18 reach. 18 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 19 reach. 10 reach. 10 reach. 11 reach. 12 reach. 13 reach. 14 reach. 15 reach. 16 reach. 17 reach. 18 reach. 19 reach. 10 r	Riverside, sand, mose. Riverside, tangent, with Riverside, sane, with Riverside, sane, with Riverside, sane, with Riverside, sane, with Riverside, sone cobbles, for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Cotton-wood for Big Liverside for For Big Cotton for For For Big Cotton for For For Big Cotton for For For Big Cotton for For For Big Cotton for For For For Big Cotton for For For For For For For For For For F
Land reach. Land reach. reach. e Pow e Pow c P	Riversid Rivers Rivers Rivers Rivers Rivers Rivers Rivers Rivers I Power I Power And a River Rivers
Fig. 1. S. I. S. I. S. I. S. I. S. I. S. I. S. I. S. I. S. S. S. S. S. S. S. S. S. S. S. S. S.	R. H. H. H. H. H. H. H. H. H. H. H. H. H.
Billings Land and Irrigation C same reach. Billings Land and Irrigation C same reach. Foreign Foreign C of the Control of the	A Upper, Riverside, sand, moes. A Lower, Riverside, ingest. A Lower, Riverside, ingest. Gurve. Hyuru, gravel bed, gravel bed, log sides. Bessener (c), loses stones. Bessener (c), loses stones. Bessener (c), loses stones. Bessener (c), loses stones. A Lower, from Big Cottonwood. Smithfield lateral and ond Irrigetion Collings Land and Irrigetion Collings Land and Irrigetion Collings Land and Besson Ward most Logan and Hyde Park, gravel B Hillsboro, rough. B Hillsboro, rough. B Lateral 29's, Turlock district, san A Perrault, hard bed, grass.
A W AA DW A A A W W W W W W W W W W W W	PICHER BYSTER TOTAL
207 208 208 200 2210 22113 2215 2215 2216 2218 2218 2218 2218 2220	222 224 224 225a 225a 229 229 231 232 233 2334 2335

Table 112 (Continued)

82	E	8.158 44445446 000000000000000
12	N.S	23.33.93.93.93.93.93.93.93.93.93.93.93.93
91	u	0.02
<u> </u>	s,W	
15	K'8	
4	o	23.00 20.00 20.00
13	••	000246 0000146 0000115 000015 000005 000002 000007 0000129 0001129 000009
22	١.	7.445 888 882 44 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
=	a	21.7.1.4.4.5.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
2	o	45 89 17 811 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6	a	4448 5844848 48448 48448888883
∞	8	3.55.55.55.55.55.55.55.55.55.55.55.55.55
7	Av.	41.44.88 12.1.28.1.1.28.1.1.28.1.1.28.1.1.28.1.2.2.2.2
9	Max. depth	2 80 2 2 80 2 3 3 11 11 11 11 11 11 11 11 11 11 11 11
2	App. width	16.00 16.00 17
*	7	6 6 1.20 .94 308.0 15.0 2.80 111 308.0 15.0 2.80 111 308.0 13.2 90 .86 300.0 3.2 90 .86 10.00.0 13.0 17 17 10.00.0 13.0 17 17 10.00.0 14.0 17 10.00.0 15.0 17 10.00.0 18.0 18.0 18.0 18.0 18.0 18.0 18
8	Name and description	Hyrum lateral, rocks, moss. Small ditch, hard bed, deded, small ditch, hard bed, deded, sughtan City Electric Light Comoss. Brigham City Electric Light Comoss. Rugher, Farsh bed, sught, few cobbles. Buller, grass slopes. Brigham City much vegetation. Thatcher lateral, much vegetation. Thatcher lateral, much vegetation. Thatcher lateral, much vegetation. Small ditch, grass-lined. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Cobble-bottomed. Beasley. Logan and Hyde Park. Hyrum lateral. Smithfield lateral. Smithfield lateral. Smithfield lateral.
22	Class	नवन धन ध धननवन
	Ref. No.	2238a 2238a 2240 2240 2241 2245 2245 2245 2245 2245 2245 2245

	78.5 1.13 65.1 1.65 63.4 1.61 55.8 2.00 53.2 2.34 50.9 2.29	55.9 1.89 47.3 2.46 47.4 2.58
	2235 2235 2287 2287 2280 2280	0.0267 0.0315 8.0314 4.
	90.5 .0185 .0525 .0728 .0228 .060 .0228 .060 .0256 .060 .0256 .0269 .0256 .025	57.4.0249.0267 549.1.0291.0315 4 50.9.0298.0314 4
	.000132 .00030 .00080 .001852 .00044	.00045 .0005253 .0030
	68. 00 18. 50 2.31 .000132 66. 50 17. 10. 2.10 .00030 46. 61 13. 81 1. 45 .00089 70. 19 15. 24 1. 48 .00182 66. 50 16. 90 2.13 .00044 70. 19 15. 50 1. 44 .00237	12.35 1.17 .00045 12.22 1.24 .0005253 13.42 1.52 .0030
	68.00 66.50 70.19 70.19	19.04 19.04 70.19
<u></u>	8 43.10 1.58 8 20.21 2.30 8 20.21 2.30 8 36.00 1.85 8 36.00 1.85 3 22.22 3.16	1.45 1.32 5.15 1.26 1.40 3.44
	55 3.08 50 1.68 50 1.73 50 1.78 50 1.78 50 1.78 50 1.78	0 1.38 14 0 1.52 15 0 2.15 26
	250.0 14.0 3.45 3.08 44. 450.0 13.0 3.15 3.76 33. 900.0 13.0 2.70 1.68 23. 337.0 13.0 2.50 1.73 2.00.0 12.5 2.50 1.78 23. 100.0 12.5 2.50 1.78 23.	0 10.51.8 0 10.01.8 0 9.52.8
Sidehill Cuts with Retaining	Hedge, plastered wall. Bedge, earth and gravel bed. Cove, concrete floor. Cogan, Hyde Park and Smithfield Hedge, concrete wall and floor. Logan, Hyde Park and Smithfield.	A Lower, Riverside Water Co
Sidehill	A Hedge, plan A Hedge, cart A Cove, concur B Logan, Hyd B Logan, Hyd B Logan, Hyd B Logan, Hyd	A Lower, Riv A Lower, Riv B Logan, Hyc
	261 262 263 265 265 265 266	

A	Basin open channel formula 192 Chesy coefficient from,
Accelerated flow in channels 291-294 Acceleration of gravity 35	table
Acre-foot	192, 193, 404-413
conversion factors 7	comparison with Kutter
Acre-inches	and Manning formulas,
conversion factors	197-200, 204-206
Acres, conversion factors 6	comparison with Scobey's
Aeration of nappe	experiments403-413 solution of200
Anchor ice	Basin sharp-crested weir for-
pipes 166	mula
Angles, trigonometric functions	comparison with experi- ments383-388
of, tables347-352	ments383-388
Approach, velocity of 40, 63-70, 103	Bazin submerged weir formula 79
Archer, sudden enlargement in pipes 165	comparison with experi- ments395-398
Arcs of circles, table	Bell-mouthed orifices42, 43
Area, conversion factors 6	Bends in pipes
Area, mean-depth discharge	coefficient for loss of head,
curve269-272	table
Areas of circles, diameters by eighths	Benton, coefficients for sub-
by hundredths 377	merged gates 61
pipes, diameters in feet 175	submerged gate formula 46
in inches 178	Bernoulli's theorem 149, 292
Asphalted pipes, Barnes for- mulas 157	Biel, open channel formula 193 Bilton, experiments on orifices 38
mulas	Blackstone River dam139, 148
coefficients for, tables 172, 173	Borda's mouthpiece 49
loss of head, pipe I foot	Blackwell, experiments on
in diameter, table 174	broad-created weirs 133
solution of, table 175 Lea formula 159	Bornemann experiments on sub- merged gates 46
Tutton formulas 155	Bossut, experiments on orifices 39
Unwin formula 155	Bovey, H. T., coefficients for
Atmosphere, value of 11	orifices, table 57
Atmospheres, conversion fac-	experiments on orifices 39 Branched pipes
tors	Brass, weight of 10
Atmospheric pressures, table 12	Brick, brickwork, weight of 10
Austin dam139, 148	Brightmore, enlargement in
_	pipes 105
. В	formula for contraction in
Backwater curve278-284	Broad-created weirs. (See Weirs.)
Baer, pipe experiments 165	Bronze, weight of 10
Barnes, A. A., open channel for-	Bushels, conversion factors 7
mulas	~
Barnes and Coker, critical ve-	C
lecity	Canals (see also Open Channels),
Barr, V-notched weirs85, 86, 87	188-236
Semin, effect of nappe form on discharge	short with free dis- charge288-294
experiments, orifices 38	Scobey's experiments
sharp-created weirs, 65, 67,	on403-413
68, 71-74, 383-388, 402	Castel, experiments on orifices. 39
submerged weirs, 76, 77, 80, 82, 83, 395–398	Cast-iron pipes, discharge of, Barnes formulas 157
weirs not sharp-created	Barnes formulas 157 Chezy formula 153, 154
133, 134, 135, 140	formula advocated158, 160
	Digitized by V. at 11, 11, 21, 12

Clay, weight of.....

Cast-iron pipes, formula, coeffi-	Clay, weight of 10
cients for, tables 172, 173	Coefficient of contraction, ori-
loss of head, pipe 1 foot	fices
in diameter, table 174 solution of, table 175	Coefficients for pipes151, 164
Lea formula	loss of head at entrance.151, 152
Lea formula	table
Unwin Iormuia 155	loss of head due to bends 168
Williams and Hasen for- mula	table 186 loss of head due to contrac-
Centers of gravity and radii of	tions 166
gyration of plane sur-	table
18Ce8 14	oss of head due to enlarge-
Centers of pressure on dams,	ments
table	loss of head due to friction,
Channels (see also Open Chan-	152-160
nels)	tables171, 172, 173
elements for part full,	oss of head due to valves or other obstructions 167
table	
trapesoidal, hydraulic	table 184 loss of head due to Y-
radii, table 212	branches 169
Chatterton, coefficients for sub-	Coefficients for submerged weir
merged gates 61 formula for submerged	formulas
gates 46	Coefficients of discharge, gates,
gates	free discharge 45
divined y 202, 220, 200	table
apparatus	gates, submerged 46 table
ing	nozsles
application to stream gag- ing	OFIDORS
evaporation of samples 251	circular, full contraction,
formula for discharge 254	comparativa different
nomenclature 253 obtaining samples 255 special dilutions 251	table
special dilutions 251	miseelianeous suomergeu,
Chemi-nydrometry (see Chem-	table59 rectangular, full contrac-
ical Gaging)249, 256 Chesy formula, open channels. 189	tion, table 56
coefficients, Bazin formula,	square, full contraction,
table	table
coefficients, Kutter for-	suppressed contractions,
coefficients, Manning for-	table
mula, table 210	submerged tubes 47
comparison of coefficient by	Venturi meter, table 249
Kutter, Manning and	Venturi meter, table 249
Basin formulas, table, 204-206	Coefficients of roughness for
Chezy formula, pipes153, 154	open channels, comparison of by Kutter, Manning and Besin formulas.204–208, 401–413
Chezy formula, pipes153, 154 coefficients for171	Manning and Basin
Cippoletti weirs	formulas.204-206, 404-413 values for Basin formula,
Circles, areas of, diameters by	192, 193, 404-413
eighths	values for Biel's formula,
by nunareaths 377	193, 194
pipes, diameters in feet 175 in inches 178	values for Manning or Kutter formula,
in inches 178 Circles, center of gravity and	190, 191, 404-413
radius of gyration of 14	values for Williams and
circumferences of, diameters	Hasen formula 194
by eighths	Colman, upward pressure under dams
by hundredths 375 Circles, segments of, areas and	Colorarithms of numbers, table 329
ares 211	Cologarithms, use of307-309
Circular conduits 203	Color method of measuring ve-
hydraulic elements for part full, table	Cologarithms, use of 307-309 Color method of measuring velocity
- u, vavic 211	COMPOUND DIDES

Conduits. (See Open Channels.)	Curve, backwater278-284
Concrete pipes, discharge of 158-160	Cusecs
coefficients for, tables .172,173 loss of head, pipe 1 foot in	Cylindrical surfaces, pressure
diameter, table 174	on18, 19
solution of formula, table 175	
Concrete weight of 10	D
Conical surfaces, pressure on 20 Conical tubes	
Conical tubes	Dams, centers of pressure, table, 30
Contracted weirs (see also	Dams, centers of pressure, table, 30 Croton dam, models of,
143	experiments 137
comparison of formulas with	coefficients for 147
experiments391-395	models of dams, experi-
Contraction36, 37, 38, 39	ments 138
experiments391–395 Contraction36, 37, 38, 39 coefficient of, for orifices35, 36	coefficients for, table 148
end, for falls or drops 142	pressure against, table 29
end, for rectangular weirs,	submerged139-141 upward pressure under 16
63, 65, 66, 72 end, for trapezoidal weirs 88-90	vacuum on downstream
Contraction in pipes 150 166	vacuum on downstream face 17
Contraction in pipes 150 166 coefficients for loss of	Darcy pipe formula 154
head, table 183	Darcy and Bazin, experiments
loss of nead, table 182	on orifices 38
Contraction of jet 36	D'Aubison pipe formula 154
Contraction suppressed, orifices 39	Depth of submergence, weirs, 80-93, 140, 141, 401
Contraction suppressed, weirs 63,76	Density of water
comparison of formulas	Diameter corresponding to given
with experiments. 383-391	area, pipes, tables. 175, 178
Control, definition, discussion 259	Discharge coefficient. (See
effects of ice on 274 Conversion of units, tables for,	Cafficient of Discharge.)
Conversion of units, tables for,	Discharge curves 257, 265-275
feet to meters 4	direct method of plotting 265
flowing water	gage reading of zero dis- charge 267, 270
prades	charge
inches to feet and decimals, 4	straight-line methods of
kilograms to pounds 4	straight-line methods of plotting266-272
kilowatts to horsepower 5	area, mean-depth method,
length	269-272 logarithmic method. 267-269
pounds to kilograms 4	streams with shifting beds. 273
power9	verification of 273
pressure 9	verification of
surface6	Discharge measurements, meth-
velocity 9	ods of231, 232 chemical gaging249-256
volume	color method
weight 9 Copper, weight of 10 Cosecants, natural, table 351	color method
Cosecants, natural, table 351	dams, for flood discharges. 264
Cosines, natural, table 347	float method 244
Co-tangents, natural, table 349	orifices. (See Orifices.)
Critical velocity	Pitot tube
values of, table 187 Croton dam, old, sections of 137	walcoity area mothods 921
coefficients for 147	Venturi meter 247–240
Cubes and cube roots, table 353	Venturi meter247-249 weirs. (See Weirs.)
Cubic foot per second-day 2	Discharge, records of275, 276
Cubic foot per second, equiva-	Distilled water, density and
lent horsepower, table. 31	weight of
kilowatts, table	Distribution of velocities232-235
Current meter231, 232, 235-238 application to stream gag-	Ditches. (See Open Channels.)
ing	Diverging tubes
	Double floats
description	Drait tubes
rating	Drops
Current meter notes 242	Drowned weirs. (See Submerged
Curvature in pipes. (See Denas.)	Weirs.) Google
27	

E	Frazil ice	275
Earth, weight of 10	Freeman, J. R., experiments on irregular weirs	137
Earth, weight of	on nossles43	. 44
drops 142	on nossles	
for rectangular weirs, 63, 65, 66, 72	(see also Pipes)150, 152-	104 262
for trapezoidal weirs88-90	Fteley and Stearns experi-	
Ellipse, center of gravity and radius of gyration of 14	ments, sharp-crested	
Ellis, T. G., experiments on ori-	74. 388	395
fices	m e n t s, sharp-crested weirs, 65, 67, 68, 71, 72, 74, 388– submerged weirs, 76, 77, 80,	
coefficients for submerged orifices 59	82, 83, 399, Fteley and Stearns, sharp-	400
Enlargement in pipes, loss of .	crested weir formula, 66	-68
head150, 165	comparison with experi-	
gradual enlargement, coeffi- cients for, table 182	ments388- Fteley and Stearns, submerged	393
sudden enlargement, table. 181	weir formula76, 77	, 83
coemcients for, table 181	coefficients forcomparison with experi-	. 78
Entrance to pipes150, 151 coefficients for loss of head,	ments399,	400
table	•	
Evaporation, correction for	G	
reservoirs196, 297	Gages, installation and descrip-	
from water surfaces, table, 298	tion	263
${f F}$	258-	260
Falls, formulas for discharge 141, 142	Gallons, conversion factors6,	7, 8
Fanning, J. T., friction losses in pipes	Gallons, U.S	2
coefficients for, table 171	158-	
rectangular orifices 39	coefficients for, tables . 172,	173
coefficients for, table 56 Feet, conversion factors 6	loss of head, pipe 1 foot in diameter, table	174
Feet to inches and fractions,	diameter, table solution of formula, table, Ganguillet and Kutter. (See	175
to meters, table 4	Ganguillet and Kutter. (See Kutter.)	
Floods, determination of spill-	, Gates45	-47
way capacity302-307	coefficients of discharge for, 60,	<i>e</i> 1
discharge curves for 266 measurement of 264	submerged	46
Floats	with free discharge	45
discharge measurements by, 244 surface, sub-surface, and	Gibson, pipe experiments, en-	166
rod floats 240	Glass pipes, discharge formula.	157
Flinn and Dyer, weir experi-	Gradual enlargement in pipes, 150,	165
ments 89 Foot-pounds, conversion fac-	coefficients for loss of head,	100
tors 9		181
Fortier, pipe experiments 156 Francis, J. B., experiments, ori-	Grains, conversion factors Grams, conversion factors	9
	Gravel, weight of	10
fices	Gravity, acceleration of	35 25 5
submerged weirs, 76, 80, 82.	Groat, chemical gaging	$\frac{262}{262}$
53, 390-401		
Francis formula for rod floats 240 Francis sharp-crested weir for-	H	
mula	Haskel current meter Head lost in pipes. (See Pipes.)	23 6
comparison with experi-	Head lost in pipes. (See Pipes.))
ments391-395 correction for end contrac-	Head of submergence, weirs, 80-83, 140, 141.	401
tions 67	80-83, 140, 141, Head on orifices	-37
discharge by, table 117 Francis submerged weir formula,	on weirs	, 74
76, 77, 83	drostatic pressures.	
comparison with experi-	table	37

Heads with corresponding hy-	Kutter's formula 190_100
	Kutter's formula189-192 Chesy coefficient from207
drostatic pressures in	Chery coemcient from 207
pounds per square	coefficients of roughness for,
foot, table21	190, 191, 40 4 -413
per square inch, table 22	comparison with Manning
	and Pagin formula
	and Basin formula,
Hectares, conversion factors. 6 Herschel, Clemens, submerged-	197-200, 204-206
Herschel, Clemens, submerged-	comparison with Scobey's
weir coefficients 78 formula	experiments 403-413
formula 78.83	solution of 200
Vanduri madan 947	200
Venturi meter 247	
Horsepower, conversion factors, 9	_
to kilowatts, table 5	L
to kilowatts, table 5 of one second-foot, table 31	
Horton R E effects of penns	Lead pipes, discharge formula 157 Lea open channel formula 194 pipe formulas 158, 260
Horton, R. E., effects of nappe form on discharge, 130, 132	Les open channel formula 104
form on disensize. 150, 152	nine formula 107 mais 194
experiments on models of	pipe formulas
dams	Tentos, experiments on orinces, 58-40
formula for weirs not sharp-	Liters, conversion factors 7
crested128, 129	Lespinasse and Ellis, experi-
walues of Kutter coefficient 101	ments on orifices 39
values of Kutter coefficient, 191	
Humphreys and Abbot, Mississippi River experi-	Logarithmic discharge curve, 266-269
sippi River experi-	Logarithms of numbers, table 311
ments 199	use of
Hydrographs	Loss of head in nines (See Pince)
	Lyman wois diamen.
Hydrostatics11-34	Lyman, weir diagram00, /1
Hydrostatic pressures 12	comparison with Bazin ex-
against dams 14	periments 383–388
against overflow dams,	-
table	
	M
table	IVI
on conical surfaces 20 on cylindrical surfaces18, 19	
on cylindrical surfaces18.19	Manning open channel formula
on plane surfaces13, 14	backwater curve, ap-
	plication to 201-204
on spherical surfaces18, 19	plication to291-294
	Chesy coefficient from 210
Ι .	coefficients of roughness for,
· •	190, 191, 403-413
T	comparison with Kutter
Ice, anchor	and Basin formulas,
Ice-covered streams, 234, 235,	107 900 004 000
243, 274	197-200, 204-206
Ice, frazil or slush274, 275	comparison with Scobey's
Inches, conversion factors 6	experiments403-413
	diagrams for solution of 230
depth on drainage basins 2	
conversion factors 8	short canals, application to,
of mercury 9	291-294
per area 2	slopes by, table
	solution of
	velocities by, table 215
to decimals of a foot, table 5	Masonry, weight of
Iron, weight of	Moss discuss and limited to
Irregular weirs	Mass diagram, application to
	storage problems 294-302
	Measurement of flowing water
. J	(see also Discharge
•	Measurements)231, 277
Tarab datamaination of smill	
Jacob, determination of spill-	Mercury column, conversion
way capacity 303	factors
Judd and King, experiments on	height of 12
orifices 38	weight of 10
	Merriman formula contraction
•	Merriman formula, contraction
K	in pipes
27	Metals and alloys, weight of 10
	Meters to feet, table 4
Kilograms, conversion factors 9	Michelotti, experiments on ori-
to nounda table	
to pounds, table 4	
Kilometers, conversion factors. 6	Miles, conversion factors 6
Kilowatts, conversion factors 9	Managa inch
of one count foot table 22	Miner's inch
of one second-foot, table 33	
of one second-foot, table	inches, conversion factors. Moritz pipe formulas 156 Mud weight of

N.	orifices.gates, table
Nagler, weir experiments 73	circular, full contraction.
Nappe, definition of	table
effect of modification of	comparative, dinerent
form on discharge 130-132 Nelles, submerged weirs 140	shapes, table 57
Notched falls	miscellaneous submerged,
Notched falls	rectangular, full contrac-
. Weire).	tion, table56
Nozzles	square, full contraction.
0	table
· ·	table
Obstructions in pipes150, 167	short_tubes41-43
coefficients for loss of head,	submerged tubes 47
table	table
Open channels188. 236	Ounces, fluid, conversion fac-
accelerated flow in291-294	tors
Dackwater curve210-204	
circular conduits 203 measurement of flow231, 277	P
short canals with free dis-	P
charge 288	Parker, Philip AM., chemical
charge	gaging
Open channels, coefficients of	gradual enlargement in pipes
roughness, comparison of by Kutter, Manning and Bazin formulas,	submerged gates 46
and Bazin formulas.	andden contraction in nines. 167
204-206, 404-413	Pascal's law
values for Bazin formula,	Pipes149, 187
192, 193, 404–413	deterioration of 156-158 166
values for Biel formula, 193, 194 values for Manning or Kut-	discussion of formulas160–162
ter formula,	discussion of formulas . 160–16: divided flow in 285–28! hydraulic elements of, table, 21: measurement of velocity in, 23: nomenclature for formulas, 15:
190, 191, 404-413	hydraulic elements of, table, 211
values for Williams and Hazen formula 194	measurement of velocity in, 230
Open channels, coefficients for	solution of formulas162-164
Chesw formula, by	solution of formulas 162–164 table
Bazin formula 210	Pipes, bends in
by Kutter formula 207 by Manning formula 210	coemcients for loss of nead,
Open channel formulas, Barnes	table
formula 195	Pipes, contraction in150-166
Bazin formula 192	coemcients for loss of nead.
Biel formula	table
comparison of, 197–200, 403–413	Pipes, enlargement in 150–165
discussion of	graduai eniargement, co-
Kutter formula189-192	efficients for loss of
Lea formula	head, table 182 sudden enlargement, coeffi-
nomenclature 189	cients for loss of head,
solution of200-203	table 181
nomenclature	table
mula	head, table
bell mouthed 42 43	coefficients for loss of head
rectangular	table
submerged 44	loss of head, table 170
with full contraction 38	Pipes, loss of head in friction,
with suppressed contrac- tion	150, 152–154
Orifices, coefficients of discharge	coefficients for, Chesy 17: coefficients for, Lea 172, 173 formulas for, Barnes for-
ior gates, free dis-	formulas for, Barnes for-
charge	mula
table	Chezy formula 15
40	Ter 10LID/018************************************

Pipes, loss of head in friction,	Retreat, velocity of 63
Morits formula 156	Reynolds, critical velocities 17
Scobey formula 156 Tutton formula 155	Rippl, mass diagram 250 Riveted pipes. (See Steel Riv-
Williams and Hasen for-	eted Pipes.)
mula 154	Rogers and Smith, experiments
Unwin formula 155	on submerged tubes 47
for pipe 1 foot in diameter, 174	coefficients for submerged
Pipes, valves and obstructions, 150, 167	tubes
coefficients for loss of head.	and Roots.)
table	<u></u>
loss of head, table 184	8
Pipes, Y-branches in, loss of	Only and other months of the color
head	Salt solution method (see also Chemical Gaging) . 249-256
discharge measurements by, 243	Sand, weight of
Plane surfaces, centers of grav-	Sand, weight of
ity and radii of gyra-	wood stave pipes 15t
tion of	open channel experiments,
Poncelet and Lebros, experi-	Secants, natural, table 35
ments on orifices 38	Second-feet
Porter, experiments on Black-	conversion factors 7,8
stone River dam, 139, 148	Semicircle, center of gravity and
Pounds, conversion factors 9	radius of gyration of 14
Pounds per square foot for dif- ferent heads 21	Sharp-crested weirs. (See Weirs.)
ferent heads	Short canals with free discharge, 288–294
sion factors 9	with flat slope 289-291
for different heads 22	with steep slope291-294
equivalent heads 27	Short tubes, converging42, 46
Pounds to kilograms, table 4 Powers and roots of numbers,	diverging 4
cubes, table 353	standard
cube roots, table 353	Siphons 13
1.47 powers, table 93	Smith, experiments on obstruc-
reciprocals, table 353	tions in pipes 168
squares, table	Smith. Hamilton Jr., coeffi-
square roots, table, 224, 353, 373	cients for circular ori-
three-eighths, table	fices
two-thirds, table 225	suppressed 58
Pressure, hydrostatic	square orifices 55
against dams	submerged orifices 59
against overflow dams,	orifices with full contrac-
table	tion
on conical surfaces 20	nressed 40
on cylindrical surfaces 18, 19	pressed
on cylindrical surfaces18, 19 on plane surfaces13, 14	Spillway capacity, determina-
on spherical surfaces. 18, 19, 20	tion of302-307 Square inches of water
upward under dams 16 Pressure, atmospheric11, 12, 13	Square inches of water
Price current meter236, 237, 238	Square roots of numbers less than unity, table 224
1 1100 Current meter200, 201, 230	of numbers from 1000 to
R	10.000, table 373
	Squares and square roots, table, 353 Standing wave46, 47, 80, 81, 401
Rafter, G. W., experiments on	Standing wave 46, 47, 80, 81, 401
irregular weirs 136 Rating current meters236-238	Stecker, experiments on orinces, 36
Reciprocals, table of	Steel riveted pipes, discharge of, Barnes formulas 157
Records, stream-discharge meas-	formula advocated158-160
urements 257	coemcients for, table, 172, 173
Rectangle, center of gravity	loss of head, nine 1 foot.
and radius of gyration	in diameter, table 174 solution of table 175 Lea formula 158, 156 Tutton formulas 156
of	Tee formule 159 150
Rectangular weirs. (See Weirs.)	Tutton formulas
Rennie, experiments on orifices. 39	Unwin formula 155
,	Unwin formula 158

Steel, weight of	U. S. gallon, conversion factors, 6, 7,8
	U. S. Geological Survey, experi-
	o. a. deological parvey, experi-
Stewart, C. B., coefficients for	ments on broad-,
submerged tubes59, 62	crested weirs133, 183
experiments on submerged	sample of records, table 276
tubes	stream-discharge 257
Cr	
Stone, weight of	Units, hydraulic (see also Unit
Storage problems, use of mass	in Question) 1-9
Duotage Diopsettin, and or many	1
diagram	basic units
Stout method shifting channels, 27	units of volume and flow . 1-3
Court incomed, printering entanticus, at	Ti-it
Straight line discharge curves. 200	Units, conversion factors, table. 6-9
area, mean-depth method,	flowing water
000 070	
209-212	grades 9
logarithmic method267-269	[ength6
Stream-discharge records 257	power 9
Stream gaging. (See Discharge	pressures 9
Measurements.)	
Streams with shifting beds 273	velocities
Submerged gates 46	volume 6, 7
Submerged gates	Volume
coefficient of discharge.	weight 9
table 61	Units, tables for conversion of 4, 5
	Childs, dables for conversion of 4, 0
Submerged orifices 44	feet to meters 4
Submerged tubes	horsepower to kilowatts 5
Dubiner ged, tubes	inches and for others to ford
coefficients of discharge,	inches and fractions to feet
table	and decimals 5
table 62	
Submerged weirs. (See Weirs.)	kilograms to pounds 4
Suction pipes for pumps 12	kilowatts to horsepower 5
Sudden enlargement in pipes 150–165	
coefficients for loss of head,	pounds to kilograms 4
	Harrin W C hroad-arceted
table	Oliwini, W. O., Dioma-ciomou
loss of head, table 181	Unwin, W. C., broad-crested weirs, theoretical for-
Suppressed contraction, orifices, 39	_mula
	and distributed and an annual to the same and the same an
Suppressed weirs. (See Weirs.)	coefficients for convergent
	short tubes
T	discharge measurements by
-	
Tables. (See Subject in Question.)	floats 244
	experiments on orifices 38
Tangents, natural, table 349	experiments on ormose 30
Taylor, experiments on Austin	gates with free discharge 45
	coefficients for, table 60
dam	, coefficients for, capte 00
Theoretical velocity 35	pipe formula 155 University of Michigan, V-
Themeson considered as V	University of Michigan, V-
Thompson, experiments on V-	on the same
notched weirs 85, 86, 87	notched weir experi- ments85, 86, 87
Three-eighths powers, table 227	ments85, 86, 87
Three-eighths powers, table 227 Three-halves powers, table 122	
Three-halves powers, table 122	
Tin, weight of	·
Tim, weight of	
Tons, conversion factors 9	W
Torricelli's theorem 35	Vacuum under overfalling sheet, 17
The second of the control of the con	Valves in pipes
Trapezoidal weirs. (See Weirs.)	and distants for large of board
Trapezoid, center of gravity and	coefficients for loss of head,
	table
radius of gyration of 14	table
Traveling screen method of	Valadian adding
measuring velocity, 231,245	Velocity, critical
The second of th	values of table
Triangle, center of gravity and	
radius of gyration of . 14 Triangular weirs. (See Weirs.)	Velocity, instruments for meas-
This market (See Wains)	uring235-241, 245-247
Triangular weirs. (See Weirs.)	color mothed 921 946
Trigonometric functions, tables,	color method231, 240
347-352	current meters, 231, 232, 235-
	238 241-244 263
Tubes, short, converging42, 43	uring. 235-241, 245-247 color method
diverging	noats231, 239, 240, 244
diverging 43	Pitot tubes
standard41	4-0
standard	traveling screen
coefficients of dischar-	Velocity, open channels. (See
coefficients of discharge,	also Open Channels.)
table	amo Open Channels.)
Tutton, pipe formulas 155	distribution of232-235
r assor, hihe tormmiss 199	formulas for 199_10s
	101Hittian 101,100-180
U	formulas for188-196 measurement of231, 241
-	
U. S. Deep Waterways Board,	Valanian michae (Que -1
Doop wave ways Doard,	Velocity, orifices. (See also
experiments on weirs,	Orifices.)
133, 135, 136	Velocity, orifices. (See also Orifices.) coefficient of 63
200, 100, 100	OUGHERIE DI DO
	Dializada Google
	Digitized by Google

Velocity, theoretical35, 36 velocity of approach 40 Velocity, pipes. (See also Pipes.)	Weirs, trapesoidal section. 135, 136
Velocity of approach 40 Velocity nines (See also Pines)	coefficients of discharge, table146, 147
critical velocity169, 187	triangular section 184, 135
formulas for149, 160	coefficients of discharge,
formulas for	table
velocity head151, 164 Velocity, weirs. (See also Weirs.)	Weirs, rectangular sharp- crested63-67, 93-127 comparison of formulas
Velocity, weirs. (See also Weirs.)	crested63-67, 93-127
theoretical mean velocity	with experiments 383-395
over	suppressed weirs383-391
Velocity of retreat. 63	verification of author's
Vens contracta 36 Venturi, experiments on tubes 43 Venturi meter 247-249 coefficients for 249	formula
Venturi, experiments on tubes. 43	weirs with end contrac-
venturi meter247-249	tions
V-notched weirs. (See Weirs.)	tions
The state of the s	
	Fteley and Stearns66, 68
\mathbf{w}	Fteley and Stearns66, 68 Lyman's diagram66, 71
**	theoretical
Word experiments on setes 45	precautions for accurate
Ward, experiments on gates 45 Water, density of, table 11	use of
measurement of (see also	discharges by author's
Discharge Measurement),	formula 98
231, 277	formula 98 discharges by author's
weight of, table	formula corrected for
Water column, height of 12 Weight, conversion factors 9	velocity of approach . 104
Weight, conversion factors 9 conversion of kilograms to	discharge by Francis formula
pounds 4	1.47 powers of numbers. 93
conversion of pounds to	three-halves powers of
conversion of pounds to kilograms 4	numbers 122
of materials, table 10	velocity of approach cor-
Weirs, aeration of nappe 75	rection, author's for- mula
application to stream gag- ing263, 264	mula
causes of inconsistencies in	69, 70
experiments 402	Weirs, submerged
choice of for maximum ea.	channel below weir 83
ouracy	comparison of formulas
definition of terms 63	with experiments. 395-401
end contractions, 63–67, 72, 74.	formulas, author's 70–84 Bazin 79
88-90, 143, 391-395	Francis 77
mean discharge for several	Fteley and Stearns 77
observations 91	Herschel
modification of nappe form,	theoretical
130–132 nomenclature	solution of author's for- mula84
precautions for accurate	table
use of	submerged dams139-141
Weirs, not sharp-crested128, 148	Weirs, trapezoidal88-90
basic formula 128	application of author's for-
velocity of approach cor-	mula. 89 Cippoletti weirs 89 Cippoletti formula 89 discharge by Cippoletti
rection 129 broad-crested weirs, rec-	Cippoletti weirs 89
tangular section132, 133	discharge by Cippoletti
coefficients of discharge,	iormula, table iio
tables143, 144 dams, models of 138	formulas88, 89
dams, models of 138	formulas
coefficients of discharge, table	accuracy of 127
table	formulas for right angled
coefficients of discharge,	notch
table	. disonarge by, table 110
old Croton dam, models of . 137	general formula 88
coefficients of discharge,	theoretical considerations 84
table 147	velocity of approach 87

Weisbach, J., experiments on	Wooden pipes, Moritz formula.	15
obstructions in pipes 168	Scobey formula	150
experiments on orifices 38	Tutton formula	15
pipe formula 154	Woods, weight of	10
Williams and Hasen, open chan-	Wrought-iron pipes, discharge	
nel formula 194	of, Barnes formula	15
pipe formula 154	Unwin formula	15
Wooden pipes, discharge of,		
Barnes formulas 157	Y	
formula advocated158-160		
coefficients for, tables,	Yards, conversion factors	. (
172, 173	Y-branches, loss of head in	169
loss of head for pipe 1	7	
foot in diameter 174	4	
solution of, table 175	Zinc, weight of	. 10
	•	

89006719025

TC 160 K5 1918

COLLEGE OF ENGINEERING
UNIVERSITY OF WISCONSINI
MADISON, WI 53706
Engineering Library

Digitized by Google

89006719025

,689006719025a