Joint Probability Distribution

- Today's Class
 - Joint Probability Mass Function
 - Marginal Probability Mass Function
 - Joint Probability Density Function
 - Marginal Probability Density Function
 - Conditional Distribution

Joint Probability Distributions

- We may care about multiple random variables
 - rainfall intensity at a gage, and river runoff
 - hours worked and productivity per hour
 - Lifetime of tarmac and total cost
 - Number of defects detected on different days

• • •

Joint pmf

- Let X and Y be two discrete rv's defined on the sample space of an experiment
- The joint probability mass function p(x, y):

$$p(x,y) = P(X = x \text{ and } Y = y)$$

where
$$p(x,y) \ge 0$$
 and $\sum_{x} \sum_{y} p(x,y) = 1$

 Let A be a set consisting of pairs of (x, y) values, then

$$P[X,Y \in A] = \sum_{(x,y) \in A} p(x,y)$$

Joint pmf Example

 Let X and Y denote the percent productivity and the amount of hours of work per day, respectively.

X\Y	6 hrs	8 hrs	10 hrs	12 hrs
50%	.014	.036	.058	.072
70%	.036	.216	.180	.043
90%	.072	.180	.079	.014

What is P(h=8)?

Marginal pmf

o The marginal probability mass functions of X and of Y:

$$p_x(x) = P(X = x) = \sum_{x} p(x, y)$$

$$p_x(x) = P(X = x) = \sum_{y} p(x, y)$$

 $p_y(y) = P(Y = y) = \sum_{x} p(x, y)$

Marginal pmf Example

 Let X and Y denote the percent productivity and the amount of hours of work per day, respectively.

X\Y	6 hrs	8 hrs	10 hrs	12 hrs	Marg- inal
50%	.014	.036	.058	.072	.180
70%	.036	.216	.180	.043	.475
90%	.072	.180	.079	.014	.345
Marg- inal	.122	.432	.317	.129	1

Exercise 5.1

 A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X and Y denote the number of hoses being used on the self-service and full-service islands at a particular time, respectively.

			У	
P(x,y)		0	1	2
	0	.10	.04	.02
X	1	.08	.20	.06
	2	.06	.14	.30

- What do the numbers inside the table add to?
- What is P(X=1 and Y=1)?
- What is P(X=1)?
- What is $P(X \le 1)$?

- Then P(X=1 and Y=1) = = .20.
- The probability P(X = 1) is computed by summing probabilities of all (x, y) pairs for which x = 1:

$$P(X=1) = p(1,0) + p(1,1) + p(1,2) = .34$$

• The probability $P(X \le 1)$ is computed by summing probabilities of all (x, y) pairs for which $x \le 1$:

$$P(Y \ge 100) = p(0,0) + p(0,1) + p(0,2) + p(1,0) + p(1,1) + p(1,2) = .5$$

Joint pdf Example

For r.v. X and Y

$$f(x,y) = x + y \ 0 \le x \le 1, \ 0 \le y \le 1$$

• Find $P(0 \le x \le 1/2, 0 \le y \le 1/2)$

• • • | Solution

$$P(0 \le x \le 1/2, \ 0 \le y \le 1/2)$$

$$= \int_0^{1/2} \int_0^{1/2} (x+y) dx dy$$

$$= \int_0^{1/2} \frac{1}{2} x^2 + yx \Big|_0^{1/2} dy$$

$$= \int_0^{1/2} \left(\frac{1}{8} + \frac{1}{2} y\right) dy$$

$$= \frac{1}{8} y + \frac{1}{4} y^2 \Big|_0^{1/2}$$

$$= \frac{1}{16} + \frac{1}{16}$$

$$= \frac{1}{8}$$

Joint pdf Example

For r.v. X and Y

$$f(x,y) = x + y \ 0 \le x \le 1, \ 0 \le y \le 1$$

- Find $f_x(x)(i.e. = \int_{-\infty}^{\infty} f(x, y) dy$)
- Find $f_y(y)(i.e. = \int_{-\infty}^{\infty} f(x, y) dx$)

Solution

o Marginal pdf
$$f_{x}(x) \qquad f_{y}(y)$$

$$= \int_{-\infty}^{\infty} f(x,y)dy \qquad = \int_{-\infty}^{\infty} f(x,y)dx$$

$$= \int_{0}^{1} (x+y)dy \qquad = \int_{0}^{1} (x+y)dx$$

$$= xy + \frac{1}{2}y^{2}\Big]_{0}^{1} \qquad = \frac{1}{2}x^{2} + yx\Big]_{0}^{1}$$

$$= x + \frac{1}{2} \qquad = y + \frac{1}{2}$$

Joint pdf

- Let X and Y be continuous rv's
- The joint probability density function f(x, y):

 $P[X,Y\in A]=\iint\limits_{\mathbb{R}}f(x,y)dxdy$

• If A is the two-dimensional rectangle

 $\{(x,y): a \le x \le b, c \le y \le d\}$

$$P[X, Y \in A] = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

Exercise 5.9

 Each front tire on a particular vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air pressure in each tire is a r.v.: X for the right tire and Y for the left tire, with joint pdf

$$f(x,y) \begin{cases} K(x^2 + y^2) & 20 \le x \le 30, 20 \le y \le 30 \\ 0 & otherwise \end{cases}$$

• What is the value of K?

• • •

Solution

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{20}^{30} \int_{20}^{30} K(x^2 + y^2) dx dy$$

$$= K \int_{20}^{30} \int_{20}^{30} (x^2 + y^2) dx dy$$

$$= K \int_{20}^{30} \frac{1}{3} x^3 + xy^2 \Big|_{20}^{30} dy$$

$$= K \int_{20}^{30} (\frac{19000}{3} + 10y^2) dy$$

$$= K \times (\frac{19000}{3} y + \frac{10}{3} y^3) \Big|_{20}^{30}$$

$$= 10K \times (\frac{19,000}{3} + \frac{19,000}{3})$$
Therefore, $K = \frac{3}{380,000}$

• • •

Exercise 5.9

 Each front tire on a particular vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air pressure in each tire is a r.v.: X for the right tire and Y for the left tire, with joint pdf

$$f(x,y) \begin{cases} K(x^2 + y^2) & 20 \le x \le 30, 20 \le y \le 30 \\ 0 & otherwise \end{cases}$$

 What is the probability that both tires are underfilled?

• • • Solution

= .3024

$P(X < 26 \text{ and } Y < 26) = \int_{20}^{26} \int_{20}^{26} K(x^2 + y^2) dx dy$ $= K \int_{20}^{26} \int_{20}^{26} (x^2 + y^2) dx dy$ $= K \int_{20}^{26} x^2 y + \frac{y^3}{3} \Big|_{20}^{26} dx$ $= K \int_{20}^{26} (6x^2 + 3192) dx$ $= K \times (\frac{6}{3}x^3 + 3192x) \Big|_{20}^{26}$ $= K \times (19,152 + 19,152)$ $= \frac{3}{380,000} \times 38,304$

Marginal Probability Density Function

 The marginal probability density functions of X and Y

$$f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Example: Marginal pdf

o Let the joint probability density function of rvs X and Y be

$$f(x,y)=2$$
 for $0 \le x \le y \le 1$

 Find the marginal probability distributions of random variable X and Y

Solution

Marginal pdf

o Marginal pdf
$$f_{x}(x) \qquad f_{y}(y)$$

$$= \int_{-\infty}^{\infty} f(x,y)dy \qquad = \int_{-\infty}^{\infty} f(x,y)dx$$

$$= \int_{x}^{1} 2dy \qquad = \int_{0}^{y} 2dx$$

$$= 2y]_{x}^{1} \qquad = 2x]_{0}^{y}$$

$$= 2y$$

• • •

Independence of rvs

 Two rvs, X and Y, are said to be independent if for every pair of x and y values,

$$p(x,y) = p_x(x) \cdot p_y(y)$$
 when X and Y are discrete

$$f(x,y) = f_x(x) \cdot f_y(y)$$
 when X and Y are continuous

• • •

Example

• Are X and Y independent?

p(x,y)	y=0	y=5	y=10	y=15	p(x)
x=0	.02	.06	.02	.10	.20
x=5	.04	.15	.20	.10	.49
x=10	.01	.15	.14	.01	.31
p(y)	.07	.36	.36	.21	

• • •

Solution

o Are X and Y independent?

p(x,y)	y=0	y=5	y=10	y=15	p(x)
x=0	.02	.06	.02	.10	.20
x=5	.04	.15	.20	.10	.49
x=10	.01	.15	.14	.01	.31
p(y)	.07	.36	.36	.21	

- $p(0,0) = .02 \neq .2 * .07 = .014 = p(0)*p(0)$
- Answer: No

• • •

More Than Two RVs

 If X₁, X₂, X₃, ..., X_n are all discrete rvs, the joint pmf of the variables is

$$P(X_1, X_2, X_3, ..., X_n) = P(X_1 = X_1, X_2 = X_2, ..., X_n = X_n)$$

 \bullet If the variables are continuous, the joint pdf of X_1 to X_n

$$\begin{split} &P\big(a_{\scriptscriptstyle 1} \leq X \leq b_{\scriptscriptstyle 1}, \dots, a_{\scriptscriptstyle n} \leq X \leq b_{\scriptscriptstyle n}\big) \\ &= \int_{a_{\scriptscriptstyle 1}}^{b_{\scriptscriptstyle 1}} \dots \int_{a_{\scriptscriptstyle n}}^{b_{\scriptscriptstyle n}} f\big(x_{\scriptscriptstyle 1}, \dots, x_{\scriptscriptstyle n}\big) dx_{\scriptscriptstyle n} \dots dx_{\scriptscriptstyle 1} \end{split}$$

Conditional Distribution

 Let X and Y be rvs, the conditional probability density of Y, given X = x is

$$p_{y|x}(y|x) = \frac{p(x,y)}{p_{y}(x)}$$
 for discrete

$$p_{_{Y|X}}(y|x) = \frac{p(x,y)}{p_{_{X}}(x)} \quad \text{for discrete}$$

$$f_{_{Y|X}}(y|x) = \frac{f(x,y)}{f_{_{X}}(x)} \quad \text{for continuous}$$

Example

o Let I and F be rvs of insurance and flood and the joint pmf is as follows:

	Flood	No flood
Has insurance	.04	.36
Doesn't have insurance	.06	.54

• Find the conditional pmf, P_{FII}(Flood|Has insurance)

Solution

	Flood	No flood	p _l (i)
Has insurance	.04	.36	.40
Doesn't have insurance	.06	.54	.60
p _F (f)	.10	.90	1.0

P_{F||}(Flod|Has insurance)

P(Flood AND Has insurance) = 0.04

P(Has Insurance)=0.40

 $P_{F|I}(Flood|Has\ Insurance)$

 $= \frac{P(Flood AND Has insurance)}{P(Flood AND Has insurance)}$

P(Has Insurance)

 $=\frac{0.04}{0.4}$

= 0.1

Example

 Let I and F be rvs of insurance and flood and the joint pmf is as follows:

	Flood	No flood
Has insurance	.04	.36
Doesn't have insurance	.06	.54

Find the conditional pmf,
 P_{FII}(No Flood|Has insurance)

• • • | Solution

	Flood	No flood	p _l (i)
Has insurance	.04	.36	.40
Doesn't have insurance	.06	.54	.60
p _F (f)	.10	.90	1.0

$P_{F|I}(No\ Flood|Has\ insurance)$

P_{F||}(No Flood|Has Insurance)

$$= \frac{P(\text{No Flood AND Has insurance})}{P(\text{No Flood AND Has insurance})}$$

P(Has Insurance)

$$=\frac{0.36}{0.4}$$

$$= 0.9$$