$$h_c(1P)$$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

Quantum numbers are quark model prediction, C = - established by $\eta_{\it c}\,\gamma$ decay.

$h_c(1P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3525.38 ± 0.11 OUR A	WERAGE				
$3525.31\!\pm\!0.11\!\pm\!0.14$	832	$^{ m 1}$ ABLIKIM			$\psi(2S) \rightarrow \pi^0 \gamma$ hadrons
$3525.40 \pm 0.13 \pm 0.18$	3679	ABLIKIM	10 B	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \eta_C$
$3525.20 \pm 0.18 \pm 0.12$	1282	² DOBBS	08A	CLEO	$\psi(2S) \rightarrow \pi^0 \eta_c \gamma$
$3525.8 \pm 0.2 \pm 0.2$	13	ANDREOTTI	05 B	E835	$\overline{p}p \rightarrow \eta_C \gamma$
• • • We do not use	the following	data for averages,	fits,	limits, e	etc. • • •
3525.6 ± 0.5	92^{+23}_{-22}	ADAMS	09	CLEO	$\psi(2S) \to 2(\pi^{+}\pi^{-}\pi^{0})$
$3524.4 \pm 0.6 \pm 0.4$	168 ± 40	³ ROSNER	05	CLEO	$\psi(2S) \rightarrow \pi^0 \eta_C \gamma$
3527 ± 8	42	ANTONIAZZI	94	E705	300 π^{\pm} , $p \text{Li} \rightarrow$
					$J/\psi \pi^0 X$
$3526.28\!\pm\!0.18\!\pm\!0.19$	59	⁴ ARMSTRONG	92 D	E760	$\overline{p} p \rightarrow J/\psi \pi^0$
$3525.4 \pm 0.8 \pm 0.4$	5	BAGLIN	86	SPEC	$\overline{p} p \rightarrow J/\psi X$

$h_c(1P)$ WIDTH

VALUE (MeV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
$0.70 \pm 0.28 \pm 0.22$		832	$^{ m 1}$ ABLIKIM	12N	BES3	$\psi(2S) ightarrow \pi^0 \gamma$ hadrons
\bullet \bullet We do not	use th	ne follow	ing data for averages	, fits,	limits,	etc. • • •
< 1.44	90	3679	² ABLIKIM	10 B	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \eta_C$
< 1		13	ANDREOTTI	05 B	E835	$\overline{p} p \rightarrow \eta_C \gamma$
< 1.1	90	59	ARMSTRONG	92 D	E760	$\overline{p}p \rightarrow J/\psi \pi^0$
1 With floating	mass.					

 $^{^{2}}$ The central value is $\Gamma = 0.73 \pm 0.45 \pm 0.28$ MeV.

$h_c(1P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level	
$\overline{\Gamma_1}$	$J/\psi(1S)\pi^0$		_	
Γ_2^-	$J/\psi(1S)\pi\pi$	not seen		
Γ ₃	$rac{ ho\overline{ ho}}{\pi^+\pi^-\pi^0}$	$< 1.5 \times 10^{-}$		
Γ_4	$\pi^+\pi^-\pi^0$	< 2.2 × 10	3	
Γ_5	$2\pi^{+}2\pi^{-}\pi^{0}$	$(2.2^{+0.8}_{-0.7})\%$		
Γ_6	$3\pi^{+}3\pi^{-}\pi^{0}$	< 2.9 %		

HTTP://PDG.LBL.GOV

Page 1

Created: 5/30/2017 17:21

 $^{^1}$ With floating width. 2 Combination of exclusive and inclusive analyses for the reaction $\psi(2S)$ \to $~\pi^0\,h_{\rm C}$ \to $\pi^0 \eta_c \gamma$. This result is the average of DOBBS 08A and ROSNER 05. ³ Superseded by DOBBS 08A. ⁴ Mass central value and systematic error recalculated by us according to Eq. (16) in

ARMSTRONG 93B, using the value for the $\psi(2S)$ mass from AULCHENKO 03.

Radiative	decays
-----------	--------

Γ_7	$\gamma \eta$	$(4.7\pm2.1)\times10^{-4}$
Γ ₈	$\gamma \eta'$ (958)	$(1.5\pm0.4)\times10^{-3}$
Γ_9	$\gamma \eta_c(1S)$	$(51 \pm 6)\%$

$h_c(1P)$ PARTIAL WIDTHS

$h_c(1P) \Gamma(i)\Gamma(\overline{p}p)/\Gamma(total)$

 $\Gamma(\gamma \eta_c(1S)) \times \Gamma(p\overline{p})/\Gamma_{\text{total}}$

 $\Gamma_{9}\Gamma_{3}/\Gamma$

(, , , , , , , , , , , , , , , , , , ,	. // 1014	•			,
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do not use t	he followin	g data for averages,	fits, limits,	etc. • • •	
12.0 ± 4.5	13	$^{ m 1}$ ANDREOTTI	05в Е83 5	$\overline{p}p \rightarrow \eta_{C}\gamma$	
1 Assuming $\Gamma=1$ M	eV.				

$h_c(1P)$ BRANCHING RATIOS

 $\Gamma\big(J/\psi(1S)\pi\pi\big)/\Gamma\big(J/\psi(1S)\pi^0\big)$

 Γ_2/Γ_1

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.18	90	ARMSTRONG 92D	E760	$\overline{p}p \rightarrow J/\psi \pi^0$

 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_4/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
<2.2	¹ ADAMS	09	CLEO	$\psi(2S) \rightarrow \pi^0 \gamma \eta_C$
1 ADAMS 09 reports [$\Gamma(h_{c})$	$(1P) \rightarrow \pi^+\pi^-\pi^0$	$)/\Gamma_{tot}$	al] × [E	$B(\psi(2S) \rightarrow \pi^0 h_c(1P))]$

 $<0.19\times10^{-5}$ which we divide by our best value B($\psi(2S)\to\pi^0\,h_{c}(1P)$) = 8.6×10^{-4} .

$$\Gamma \big(2\pi^+\,2\pi^-\,\pi^0\big)/\Gamma_{\rm total}$$

 Γ_5/Γ

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.2^{+0.8}_{-0.6}\pm0.3$	92	¹ ADAMS	09	CLEO	$\psi(2S) \rightarrow \pi^0 \gamma \eta_c$

 $^{1}\text{ADAMS 09 reports } [\Gamma(h_{c}(1P)\to\ 2\pi^{+}\,2\pi^{-}\,\pi^{0})/\Gamma_{\text{total}}] \times [\mathrm{B}(\psi(2S)\to\ \pi^{0}\,h_{c}(1P))] = \\ (1.88^{+0.48}_{-0.45} + 0.30) \times ^{10^{-5}} \text{ which we divide by our best value } \mathrm{B}(\psi(2S)\to\ \pi^{0}\,h_{c}(1P))$ $=(8.6\pm1.3)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_6/Γ

$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
<2.9	¹ ADAMS	09	CLEO	$\overline{\psi(2S)} \rightarrow \pi^0 \gamma \eta_C$	
¹ ADAMS 09 reports $[\Gamma(h_c)]$	$(1P) \rightarrow 3\pi^{+}3\pi^{-}$	$\pi^0)/\Gamma_{t}$	otal] ×	$[B(\psi(2S)\to \pi^0h_c(1P))]$	

 $<2.5\times10^{-5}$ which we divide by our best value B $(\psi(2S)\to\pi^0h_c(1P))=8.6\times10^{-4}$.

- RADIATIVE DECAYS -----

 $\Gamma(\gamma\eta)/\Gamma_{\text{total}}$ Γ_7/Γ VALUE (units 10^{-4}) DOCUMENT ID **EVTS**

VALUE (units
$$10^{-4}$$
)EVTSDOCUMENT IDTECNCOMMENT4.7 \pm 1.5 \pm 1.418ABLIKIM16IBES3 $\psi(2S) \rightarrow \pi^0 \gamma \eta$

HTTP://PDG.LBL.GOV

Page 2

Created: 5/30/2017 17:21

$\Gamma(\gamma \eta'(958))/\Gamma_{\text{total}}$						Г ₈ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.52 \pm 0.27 \pm 0.29$	44	ABLIKIM	161	BES3	$\psi(2S) \rightarrow \pi^0$	$\gamma \eta'$ (958)
$\Gamma(\gamma\eta_c(1S))/\Gamma_{\text{total}}$						٦/و٦
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT	ID	TECN	COMMENT	
51 ± 6 OUR AVER	RAGE					
$54.3 \pm 6.7 \pm 5.2$	3679				$\theta \psi(2S) o au$	
$48 \pm 6 \pm 7$		$^{ m 1}$ DOBBS	0	8A CLEC	O $\psi(2S) ightarrow au$	$\tau^0 \eta_c \gamma$
• • • We do not use t	he following	g data for averages	s, fits,	limits, e	etc. • • •	
$48 \pm 6 \pm 7$	1282	² DOBBS	0	8A CLEC	O $\psi(2S) ightarrow au$	$\tau^0 \eta_c \gamma$
$46 \pm 12 \pm 7$	168	³ ROSNER	0	5 CLEC	$\psi(2S) ightarrow au$	$\tau^0 \frac{\eta_C \gamma}{\eta_C \gamma}$
$^{ m 1}$ Average of DOBBS	08A and RO	OSNER 05. DOBE	S 08A	reports	$\Gamma(h_c(1P) \rightarrow f$	$\gamma \eta_c(1S))/$
$\Gamma_{total}] \times [B(\psi(2S))]$	$\rightarrow \pi^0 h$	(1P))] = (4.16 + 0)	0.30 +	- 0.37) ×	10^{-4} which w	e divide by
our best value $R(a)$) ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	.0 h (1P)) — (8 6		2) ~ 10	-4 Our first or	ror is their
our best value B(ψ experiment's error	and our sec	ond error is the sys	temat	tic error	from using our	best value.
² DOBBS 08A report	ts $\Gamma(h_c(1F))$	$(2) \rightarrow \gamma \eta_c(1S))/(1S)$	_ +o+al] × [B($\psi(2S) \rightarrow \pi^0 h$	$a_{c}(1P))] =$
$(4.19 \pm 0.32 \pm 0.45)$						
$= (8.6 \pm 1.3) \times 10$						
$= (8.0 \pm 1.3) \times 10$ the systematic erro	or from usin	g our best value.	реппп	ent's en	or and our seco	Jilu error is
³ ROSNER 05 repor			_ 	1 × [B($\psi(2S) \rightarrow \pi^0 h$	$a_{c}(1P))] =$
$(4.0 \pm 0.8 \pm 0.7)$						
$= (8.6 \pm 1.3) \times 10$						
the systematic error			реппп	ent s en	or and our seco	Jila error is
-			~: .	.C D.4T	-106	
C	RUSS-PA	RTICLE BRAN	CHIN	IG KAI	105 —	_
$\Gamma(h_c(1P) \to p\overline{p})/\Gamma$	_{total} × Г	$(\psi(2S) \to \pi^0 h$	c(1F	?))/Γ _{tot}	tal	
				Г	$\Gamma_3/\Gamma imes \Gamma_{15}^{\psi(2S)}$	$^{()}/\Gamma^{\psi}(2S)$
VALUE	CL%	DOCUMENT ID			COMMENT	,
<1.3 × 10 ⁻⁷	90	ABLIKIM	13\/		$\psi(2S) \rightarrow \gamma p$	<u> </u>
						, p
$\Gamma(h_c(1P) \to \gamma \eta_c(1P))$	$(S))/\Gamma_{tota}$	$_{ m II}$ $ imes$ $\Gamma(\psi(2S)$ $-$	$\rightarrow \pi^0$	$h_c(1P)$)/F _{total}	
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		Г	$\Gamma_9/\Gamma imes \Gamma_{15}^{\psi(2S)}$	i) _{/Γ} ψ(2 <i>S</i>)
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID				/ -
4.3 ±0.4 OUR AVER	<u>EVTS</u> PAGE	DOCUMENT ID		TECN	COMMENT	
$4.58 \pm 0.40 \pm 0.50$	3679	¹ ABLIKIM	1 0 p	BECS	$\psi(2S) \rightarrow \pi^0$) o Y
		² DOBBS			$\psi(2S) \rightarrow \pi^0$ $\psi(2S) \rightarrow \pi^0$	
$4.16 \pm 0.30 \pm 0.37$	1430	DODDS	UOA	CLEU	$\psi(23) \rightarrow \pi^{\circ}$	$\gamma \eta_c$

Created: 5/30/2017 17:21

 $^{1}\,\mathrm{Not}$ independent of other branching fractions in ABLIKIM 10B. $^{2}\,\mathrm{Not}$ independent of other branching fractions in DOBBS 08A.

$h_c(1P)$ REFERENCES

Created: 5/30/2017 17:21