

## Ferienkurs

# ${\bf Experimental physik} \ {\bf 2}$

SS 2018

# Lösung Aufgabenblatt 1

Hagen Übele Maximilian Ries

## Aufgabe 1 (Coulomb Gesetz)

- a) An den Ecken eines zwölfseitiges Polygon sitzen Ladungen mit der Ladung  $q=1\,\mathrm{C}$ . Welche Kraft resultiert auf eine Probeladung gleicher Ladung im Zentrum der Anordnung. (Sie können sich die Anordnung wie die Zahlen eines Uhrenblattes vorstellen, der Durchmesser sei  $30\,\mathrm{cm}$ )
- b) Welche Kraft wirkt auf die Probeladung, wenn eine Ladung entfernt wird? (Beispielsweise die 6 Uhr Ladung)
- c) Nun seien 13 Ladungen mit  $q=1\,\mathrm{C}$  auf den Ecken eines 13-seitigen Polygons verteilt. Welche Kraft wirkt nun auf die Probeladung? (Der Durchmesser sei der selbe).
- d) Welche Kraft wirkt auf die Probeladung, wenn eine der 13 Probeladungen entfernt wird?

#### Lösung

a) Null

b)

$$F = \frac{1}{4\pi\epsilon_0} \frac{qQ}{r^2}$$

mit r als Abstand zu den Punktladungen.

$$F = \frac{1}{4\pi\epsilon_0} \frac{-q^2}{r^2}$$

die Kraft zeigt in Richtung der fehlenden Ladung, die 11 restlichen Ladungen gleichen sich aus bis auf den Teil des fehlenden q.

$$F = -3.994 \cdot 10^{11} \,\mathrm{N}$$

c) Null

d)

$$F = -3,994 \cdot 10^{11} \,\mathrm{N}$$

## Aufgabe 2 (Gausscher Satz Differentiell)

Das elektrische Feld einer Region sei  $\vec{E} = kr^3\hat{r}$  in sphärischen Koordinaten.

- a) Bestimmen Sie die Ladungsdichte  $\rho$
- b) Bestimmen Sie die Ladung einer Kugel mit Radius R um den Ursprung.

#### Lösung

a) 
$$\rho = \epsilon_0 \nabla \cdot \vec{E} = \epsilon_0 \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \cdot kr^3) = \epsilon_0 \frac{1}{r^2} k (5r^4) = 5\epsilon_0 kr^2$$
 (1)

b) 
$$Q = \epsilon_0 \oint \vec{E} \cdot da = \epsilon_0 (kR^3) (4\pi R^2) = 4\pi \epsilon_0 kR^5$$
 (2)

### Aufgabe 3 (Fluss durch Fläche)

Eine Punktladung q sitze in der Ecke eines Quaders (siehe Abbildung 1). Bestimmen Sie den Fluss von  $\vec{E}$  durch die geschwärzte Seite.



Abbildung 1: Skizze Aufgabe X

#### Lösung

Man stelle sich den Quader als Teil eines größeren Quaders vor, wie in Abbildung . Die markierte Fläche (a) erhält den selben Fluss, wie alle 24 Flächen (A) der 8 Teilwürfel. Daraus folgt:

$$\iiint_{a} \vec{E} \cdot d^{3}a = \frac{1}{24} \iiint_{A} \vec{E} \cdot d^{3}a = \frac{q}{24\epsilon_{0}}$$
 (3)



## Aufgabe 4 (Unendliche geladene Flächen)

Es befinden sich zwei unendliche ausgedehnte Platten parallel zueinander (siehe Abbildung ). Die Platten sind gegengleich geladen mit  $\pm \sigma$ , bestimmen Sie das elek-



trische Feld in den Regionen (i), (ii) und (iii).

#### Lösung

Der Betrag der Felder ist jeweils  $E=\frac{1}{2\epsilon_0}\sigma$ . Für die erste Platte hat es ein positives Vorzeichen rechts der Platte und ein negatives links der Platte, für die zweite Platte ist dies genau umgekehrt. (Siehe Abbildung ) Daraus folgt, dass das E-Feld in den Bereichen (i) und (iii) verschwindet, im Bereich (ii) addieren sich die Felder zu  $E=\frac{\sigma}{\epsilon_0}$ 



## Aufgabe 5 (Maxwell Gleichung)

Eines der folgenden Felder kann kein elektrostatisches Feld sein, welches?

a) 
$$\vec{E} = k[xy\hat{x} + 2yz\hat{y} + 3xz\hat{z}]$$

b) 
$$\vec{E} = k[y^2\hat{x} + (2xy + z^2)\hat{y} + 2yz\hat{z}]$$

Bestimmen Sie das Potential des korrekten Feldes.

#### Lösung

a) 
$$\nabla \times \vec{E}_1 = k[\hat{x}(0-2y) + \hat{y}(0-3z) + \hat{z}(0-x)] \neq 0$$

b) 
$$\nabla \times \vec{E}_2 = k[\hat{x}(2z - 2z) + \hat{y}(0 - 0) + \hat{z}(2y - 2y)] = 0$$

Also ist  $\vec{E}_2$  das korrekte Feld.

$$\Phi(x,y,z) = -\iiint_0^{(x_0,y_0,z_0)} \vec{E} d\vec{r} = -k(xy^2 + yz^2)$$

### Aufgabe 6 (Energie einer Anordnung)

- a) Drei Ladungen liegen in den Ecken eines Quadrates. (Siehe Abbildung ). Welche Arbeit muss aufgewandt werden um eine Weiter Ladung +q aus der Ferne in die vierte Ecke zu bewegen?
- b) Wie viel Energie befindet sich in der ganzen Anordnung?



#### Lösung

a) 
$$V = \frac{1}{4\pi\epsilon_0} \sum_{r_{ij}} \frac{q_i}{r_{ij}} = \frac{1}{4\pi\epsilon_0} \left\{ \frac{-q}{a} + \frac{1}{\sqrt{2}a} + \frac{-q}{a} \right\} = \frac{q}{4\pi\epsilon_0 a} \left( -2 + \frac{1}{\sqrt{2}} \right)$$

$$W_4 = qV = \frac{q^2}{4\pi\epsilon_0 a} \left( -2 + \frac{1}{\sqrt{2}} \right)$$

b) 
$$W_1 = 0, W_2 = \frac{1}{4\pi\epsilon_0} \left(\frac{-q^2}{a}\right), W_3 = \frac{1}{4\pi\epsilon_0} \left(\frac{-q^2}{\sqrt{2}a} - \frac{-q^2}{a}\right), W_4 = (siehe(a)).$$

$$W_{tot} = \frac{1}{4\pi\epsilon_0} \frac{q^2}{a} \left\{ -1 + \frac{1}{\sqrt{2}} - 1 - 2 + \frac{1}{\sqrt{2}} \right\} = \frac{1}{4\pi\epsilon_0} \frac{2q^2}{a} \left( -2 + \frac{1}{\sqrt{2}} \right)$$

## Aufgabe 7 (Plattenkondensator)

Die beiden Platten eines Plattenkondensators (Plattenabstand  $d=1\,\mathrm{cm}$ , Spannung zwischen den Platten  $U=5\,\mathrm{kV}$ ) haben die Fläche  $A=0.1\,\mathrm{m}^2$ .

a) Wie groß sind die Kapazität des Kondensators und die Ladung auf den Platten? Berechnen Sie außerdem das resultierende elektrische Feld.

b) Leiten Sie her, dass die im Kondensator gespeicherte Energie  $W_{\text{Feld}}$  über Gleichung (4) ausgedrückt werden kann.

$$W_{\text{Feld}} = \frac{1}{2}CU^2 \tag{4}$$

c) Im Feld des Plattenkondensators sei ein atomarer Dipol ( $q=\pm e$ , Ladungsabstand  $d=5\cdot 10^{-11}\,\mathrm{m}$ ). Wie groß ist das Drehmoment, das auf den Dipol wirkt, wenn die Dipolachse parallel zu den **Platten** steht? Welche Energie gewinnt man bzw. muss man aufwenden, wenn die Dipolachse parallel bzw. antiparallel zur **Feldrichtung** gestellt wird?

#### Lösung

a) Es ergibt sich:

$$C = \epsilon_0 \frac{A}{d} = 88.5 \,\mathrm{pF} \tag{5}$$

$$Q = C \cdot U = 4.4 \cdot 10^{-7} \,\mathrm{C} \tag{6}$$

$$E = \frac{U}{d} = 5 \cdot 10^5 \, \frac{\mathrm{V}}{\mathrm{m}} \tag{7}$$

b) Entlädt man den Kondensator, der auf die Spannung  $U_0$  aufgeladen war, über einen Widerstand R, so muss die gesamte im Kondensator gespeicherte Energie  $W_{\text{Feld}}$  in Joulsche Wärme im Widerstand R übergehen. Man erhält daher:

$$W_{\text{Feld}} = \int_0^\infty I^2 \cdot R \, \mathrm{d}t \tag{8}$$

Mit  $I = \frac{U_0}{R} \cdot e^{-\frac{t}{RC}}$  folgt:

$$W_{\text{Feld}} = \frac{U_0^2}{R} \cdot \left( -\frac{R \cdot C}{2} \right) \cdot e^{-\frac{2t}{RC}} \Big|_0^{\infty} \tag{9}$$

$$=\frac{U_0^2C}{2}\tag{10}$$

c) Mit  $\vec{D} = \vec{p} \times \vec{E}$ erhält man den Betrag des Drehmoments zu:

$$|\vec{D}| = 4 \cdot 10^{-24} \,\mathrm{N \cdot m}$$
 (11)

Damit ergibt sich die potentielle Energie  $W_{pot}$  zu:

$$W_{\text{pot}} = \vec{p} \cdot \vec{E} = 4 \cdot 10^{-24} \,\text{N} \cdot \text{m}$$
 (12)



## Aufgabe 8 (Anordnung von Kondensatoren)

Wie groß ist die Gesamtkapazität der in Abbildung gezeigten Schaltung?

#### Lösung

Die Schaltung kann durch die Umzeichnung vereinfacht werden.



Die Kapazität im gestrichelten Kasten ist:

$$C_K = C + \frac{1}{2}C = \frac{3}{2}C$$

Der Rechte Zweig gesamt ergibt:

$$\frac{1}{C} + \frac{2}{3C} = \frac{5}{3C} \Rightarrow C_r = \frac{3}{5}C$$

Für linken und rechten Zweig gilt:

$$C_l + C_r = \frac{3}{5}C + 2C = \frac{13}{5}C$$

Also für die Gesamtkapazität

$$\frac{1}{C_{ges}} = \frac{5}{13}C + C \Rightarrow C_{ges} = \frac{13}{18}C$$