HOMEWORK 3

Data Science II

Devashi Gulati

University of Georgia

Contents

1	Question 2	3
	1.1	3
	1.2	3
	1.3	3
	1.4	4

1 Question 2

1.1

We should choose $\Theta > 1$ so that all the points in the first cluster having m_1 points are detected accurately since the diameter is around 1. Also, we should have $\Theta < 1.75$ so that both the clusters are separated as the distance between them is around 1.75. Therefore, I would choose $\Theta = 1.25$ or $\Theta = 1.5$.

1.2

The first eigenvalue we get is 0. We will get $m_1 - 1$ eigenvectors which look like:

$$\begin{bmatrix} -1 & 1 & 0 & 0 & \dots & 0 \end{bmatrix}^{T}$$
$$\begin{bmatrix} -1 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^{T}$$

. . .

$$\begin{bmatrix} -1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix}^T$$

and similarly $m_2 - 1$ eigenvectors for the second cluster. We will also get m_1 as an eigenvalue with eigenvector

$$\begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix}^T$$

where we have 1 for the entries corresponding to the first cluster.

And m_2 as an eigenvalue with eigenvector

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \end{bmatrix}^T$$

where we have 1 for the entries corresponding to the second cluster.

For this problem, we have k = 2. So we should use the last two eigenvectors corresponding to the two non-zero eigenvalues. The rest of the $(m_1 + m_2 - k)$ eigenvalues are 0 and have the corresponding eigenvectors above.

1.3

$$L = D^{-1/2} A D^{-1/2}$$

If λ, \vec{v} are eigenvalue and eigenvector for L, then $L\vec{v} = \lambda \vec{v}$.

$$\vec{v} = [\sqrt{d_{11}}, \sqrt{d_{22}}, \dots, \sqrt{d_{nn}}]^T$$

$$\lambda = 1$$

$$L\vec{v} = D^{-1/2}AD^{-1/2}\vec{v}$$

$$D^{-1/2}\vec{v} = \begin{bmatrix} \frac{1}{\sqrt{d_{11}}} & 0 & 0 & \dots & 0\\ 0 & \frac{1}{\sqrt{d_{22}}} & 0 & \dots & 0\\ & & \vdots & & \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{d_{nn}}} \end{bmatrix} \begin{bmatrix} \sqrt{d_{11}}\\ \sqrt{d_{22}}\\ \vdots\\ \sqrt{d_{nn}} \end{bmatrix} = \begin{bmatrix} 1\\1\\\vdots\\ 1\end{bmatrix}$$

$$A\begin{bmatrix} 1\\1\\1\\\vdots\\ d_{nn} \end{bmatrix} = \begin{bmatrix} d_{11}\\d_{22}\\\vdots\\d_{nn} \end{bmatrix}$$

$$D^{-1/2}\begin{bmatrix} d_{11}\\d_{22}\\\vdots\\d_{nn} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{d_{11}}} & 0 & 0 & \dots & 0\\ 0 & \frac{1}{\sqrt{d_{22}}} & 0 & \dots & 0\\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{d_{22}}} \end{bmatrix} \begin{bmatrix} d_{11}\\d_{22}\\\vdots\\d_{nn} \end{bmatrix} = \begin{bmatrix} \sqrt{d_{11}}\\\sqrt{d_{22}}\\\vdots\\\sqrt{d_{nn}} \end{bmatrix}$$

Hence $L\vec{v} = 1\vec{v}$.

1.4

To show: $P^{\infty} = D^{-1/2} \vec{v_1} \vec{v_1}^T D^{1/2}$.

Here \vec{v}_1 is the eigenvector corresponding to eigenvalue 1 of $L=D^{-1/2}AD^{-1/2}$.

From the previous problem, we know:

$$\vec{v}_1 = [\sqrt{d_{11}}, \sqrt{d_{22}}, \dots, \sqrt{d_{nn}}]^T$$

$$P = D^{-1}A = \begin{bmatrix} \frac{1}{d_{11}} & 0 & \dots & 0\\ 0 & \frac{1}{d_{22}} & \dots & 0\\ & \vdots & & \\ 0 & 0 & \dots & \frac{1}{d_{nn}} \end{bmatrix} \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} p_{ij} = \frac{a_{ij}}{d_{ii}} \end{bmatrix}$$

$$P^t = (D^{-1}A)^t = D^{-1/2}(D^{-1/2}AD^{-1/2})^tD^{1/2} = D^{-1/2}L^tD^{1/2}$$

Now since L is the normalized graph Laplacian, it has the property that all the eigen values except the leading one are less than 1. Using this and diagonalization, we get

$$L = PDP^{-1} = \begin{bmatrix} \vec{v_1} \vec{v_2} \dots \vec{v_n} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ & \vdots & & \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} \vec{v_1} \vec{v_2} \dots \vec{v_n} \end{bmatrix}^T$$

$$L^{\infty} = PD^{\infty}P^{-1} = P \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & \lim_{t \to \infty} (\lambda_2)^t & \dots & 0 \\ & \vdots & & & \\ 0 & 0 & \dots & \lim_{t \to \infty} (\lambda_n)^t \end{bmatrix} P^{-1} = P \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & 0 \end{bmatrix} P^{-1}$$

$$P\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & 0 \end{bmatrix} P^{-1} = \begin{bmatrix} \vec{v_1} \vec{v_2} \dots \vec{v_n} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} \vec{v_1} \vec{v_2} \dots \vec{v_n} \end{bmatrix}^T = \begin{bmatrix} \vec{v_1} \vec{v_2} \dots \vec{v_n} \end{bmatrix}^T = \begin{bmatrix} \vec{v_1} \vec{v_2} \dots \vec{v_n} \end{bmatrix}^T$$

Hence

$$P^{\infty} = D^{-1/2} L^{\infty} D^{1/2} = D^{-1/2} \vec{v_1} \vec{v_1}^T D^{1/2}$$

References