Some of the most important results (e.g. Cauchy's theorem) are so surprising at first sight that nothing short of a proof can make them credible - Sir Harold Jeffreys

1 Review Topics

Metric spaces, convergence in metric spaces

2 Exercises

- 2.1 Confirm that each of the following is a metric function on the given metric space
 - $d(x, y) = \left| \frac{1}{x} \frac{1}{y} \right|$, on $(0, \infty)$.
 - (i) $d(x, y) \ge 0$, since $|z| \ge 0$ for any z. Now, consider d(x, y) = 0. Then $\left| \frac{1}{x} \frac{1}{y} \right| = 0 \Leftrightarrow \frac{1}{x} \frac{1}{y} = 0 \Leftrightarrow x = y$.
 - (ii) $d(x, y) = \left| \frac{1}{x} \frac{1}{y} \right| = \left| -\left(\frac{1}{y} \frac{1}{x} \right) \right| = \left| \frac{1}{y} \frac{1}{x} \right| = d(y, x).$
 - (iii) $d(x, y) = \left| \frac{1}{x} \frac{1}{y} \right| = \left| \left(\frac{1}{x} \frac{1}{z} \right) + \left(\frac{1}{z} \frac{1}{y} \right) \right| \le \left| \frac{1}{x} \frac{1}{z} \right| + \left| \frac{1}{z} \frac{1}{y} \right| = d(x, z) + d(z, y).$
 - The "post-office" metric: $d(x, y) = ||x||_2 + ||y||_2$ for $x \neq y$, d(x, x) = 0, on \mathbb{R}^n .

Note: $||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$, for $x \in \mathbb{R}^n$.

- (i) $d(x, y) \ge 0$ since $||x||_2$, $||y||_2 \ge 0$. Consider d(x, y) = 0, $x \ne y$. Then, $||x||_2 = ||y||_2 = 0$, a contradiction. Thus, if d(x, y) = 0, x = y. The other direction is by definition of $d(\cdot, \cdot)$.
- (ii) $d(x, y) = ||x||_2 + ||y||_2 = ||y||_2 + ||x||_2 = d(y, x)$.
- $\text{(iii)} \ d\left(x,\,y\right) = \left\|x\right\|_2 + \left\|y\right\|_2 \leq \left\|x\right\|_2 + 2\left\|z\right\|_2 + \left\|y\right\|_2 = d\left(x,\,z\right) + d\left(z,\,y\right).$
- 2.2 Prove the triangle inequality for $|\cdot|$, i.e. for $x, y, z \in \mathbb{R}$, $|x-y| \le |x-z| + |z-y|$.

We start by proving $x \le |x|$. If x > 0, then x = |x|. If $x \le 0$, then $|x| = -x \ge 0 \ge x$. Similarly, $-x \le |-x| = |x|$. Now, consider x + y. If x + y > 0, then $|x + y| = x + y \le |x| + |y|$. If $x + y \le 0$, then $|x + y| = -(x + y) = (-x) + (-y) \le |x| + |y|$. Apply this result to $|x - y| = |(x - z) + (z - y)| \le |x - z| + |z - y|$.

2.3 Prove that every monotone increasing sequence in $\mathbb R$ that is bounded above converges to a limit in $\mathbb R$

Least Upper Bound Property for \mathbb{R} : For any set $A \subset \mathbb{R}$, an upper bound M for A is a real number such that $a \leq M < \infty$. Let M_A be the set of upper bounds for A. Then there exists a smallest element $\bar{a} \in M_A$, i.e. $\bar{a} \leq M$, for any $M \in M_A$.

Now, let a_n be our monotone increasing sequence. Let $A = \{a_1, a_2, \ldots\}$. This set is bounded, since the sequence is bounded. Thus, by the least upper bound property, \bar{a} , the least upper bound,

exists. We show $a_n \to \bar{a}$. Let $\epsilon > 0$. $\bar{a} - \epsilon$ is not an upper bound for A, thus there exists N such that $\bar{a} - \epsilon < a_N \le \bar{a}$. Now, since a_n is a monotone increasing sequence, for all $n \ge N$, $\bar{a} - \epsilon < a_n \le \bar{a}$, and thus we have shown that for any $\epsilon > 0$, there exists an N such that $d(a_n, \bar{a}) < \epsilon$ for all $n \ge N$, and we are done.

2.4 Prove that the sequence $a_n = 1 + \frac{(-1)^n}{n}$ converges.

Observe that $(-1)^n$ takes on two values: -1 and 1. Therefore, $|(-1)^n| = 1$. Let $\epsilon > 0$. Then, for $N > \frac{1}{\epsilon}$, we have that for any $n \ge N$, $\left|1 + \frac{(-1)^n}{n} - 1\right| = \left|\frac{(-1)^n}{n}\right| = \left|\frac{1}{n}\right| \le \frac{1}{N} < \epsilon$. Thus, $a_n \to 1$.

2.5 Let a_n be a sequence of positive real numbers, such that $\frac{a_{n+1}}{a_n}$ converges to a < 1. Prove that a_n converges.

We use two "auxiliary" results: 1. For $|\rho| < 1$, the sequence $a_n := \rho^n$ converges to 0 and 2. for sequences $a_n \le b_n \le c_n$, if $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = k$, then $b_n \to k$. Now, we prove the result. Since $\frac{a_{n+1}}{a_n} \to a$, for $\epsilon > 0$ chosen such that $a + \epsilon < 1$, and let N be such that $\frac{a_{n+1}}{a_n} < a + \epsilon$, and denote this relation by (*), for $n \ge N$. For $n \ge N$, $0 < a_n \le (a + \epsilon)^{n-N} a_N$. To see why, observe that for n = N + 1, $a_n < (a + \epsilon) a_N$. Now, we can iterate forward: for n = N + 2, by (*), we have that $\frac{a_{N+2}}{a_{N+1}} \frac{a_{N+1}}{a_N} < (a + \epsilon)^2 \to a_n < (a + \epsilon)^{n-N} a_N$. The argument could easily be made rigorous by induction. For brevity, we now let $M := (a + \epsilon)^{-N} a_N$, and turn back to

 $0 < a_n < (a + \epsilon)^n M$. Since M is a constant and $(a + \epsilon)^n$ converges to zero (by the first auxiliary

result), $(a + \epsilon)^n M \to 0 \cdot M = 0$. Thus, by the second auxiliary result, $a_n \to 0$.

2.6 Prove that if $a_n \to a$, $a_n > 0$ for all n, then $\sqrt{a_n} \to \sqrt{a}$.

We start by noting simple algebra lets us rework $\left|\sqrt{a_n}-\sqrt{a}\right|=\left|\frac{a_n-a}{\sqrt{a_n}+\sqrt{a}}\right|=\frac{|a_n-a|}{\sqrt{a_n}+\sqrt{a}}$. Now, we consider two cases: a=0 and a>0.

- a=0 Consider that for $\epsilon>0$, we can choose N such that $|a_n|<\epsilon^2$ for $n\geq N$, and the result immediately follows.
- a>0 Consider now that for $\epsilon>0$, we can choose N such that for all $n\geq N$, $|a_n-a|<\epsilon\sqrt{a}$. Thus, $\left|\sqrt{a_n}-\sqrt{a}\right|=\frac{|a_n-a|}{\sqrt{a_n}+\sqrt{a}}<\frac{|a_n-a|}{\sqrt{a}}<\epsilon$, and we are done.