Outline

- (Cont.) Estimation of $E(Y_h)$
- Estimation vs. Prediction

- SLR and power analysis
- 4 Correlation Coefficient $\hat{\rho}$

Estimation of $E(Y_h)$

- X_h = the level of X for which we want to estimate the mean response.
- X_h could be observed or not, but should be within the range of {X_i}.
- $\mu_h = E(Y_h) = \beta_0 + \beta_1 X_h =$ the mean response at X_h .
- The estimate of μ_h is

$$\hat{\mu}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h.$$

• $\hat{\mu}_h \sim N(\mu_h, \sqrt{\operatorname{Var}(\hat{\mu}_h)})$. Why?

Estimation of $E(Y_h)$

• The variance of $\hat{\mu}_h$ is

$$Var(\hat{\mu}_h) = Var(\hat{\beta}_0 + \hat{\beta}_1 X_h)$$

$$= Var(\hat{\beta}_0) + X_h^2 Var(\hat{\beta}_1) + 2X_h Cov(\hat{\beta}_0, \hat{\beta}_1)$$

$$=$$

• The estimated variance of $\hat{\mu}_h$ is

$$\widehat{\operatorname{Var}(\hat{\mu}_h)} = \underline{\hspace{1cm}}$$

A useful test statistic is

$$\frac{\hat{\mu}_h - \mu_h}{\hat{\sigma}\sqrt{\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}} \sim T_{n-2}.$$

• A $(1 - \alpha)$ CI for μ_h is

Example: Wetland Species Richness

• The estimated mean number of species at $x_h = 0.10$ is

• The estimated variance of $\hat{\mu}_h$ is

$$\widehat{\operatorname{Var}(\hat{\mu}_h)} =$$

• The 95% CI for the mean number of species at $X_h = 0.10$ is

Interpretation:

Example: Wetland Species Richness

Outline

- (Cont.) Estimation of $E(Y_h)$
- 2 Estimation vs. Prediction

- SLR and power analysis
- 4 Correlation Coefficient $\hat{\rho}$

Example: Wetland Species Richness

- The fitted regression line is $\hat{y} = 10.357 4.622x$.
- The estimated error variance is $\hat{\sigma}^2 = \frac{479.03}{56} = 8.554$.
- Questions of interest:
 - What is the population mean number of species for a 10% forest cover around the wetland?
 - What is the number of species for a 10% forest cover around a wetland yet to be sampled?
- In both cases, the estimated/predicted value is:

$$\hat{y} = 10.357 - 4.622 \times 0.10 = 9.895.$$

Q: Which quantity has larger uncertainty?

Estimation vs. Prediction

Simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad \varepsilon_i \sim \text{iid } N(0, \sigma^2), \ i = 1, \dots, n.$$

- mean response at X = 0.1: $\beta_0 + \beta_1 \times 0.1$
- "new" response at X=0.1: $\beta_0+\beta_1\times 0.1+\varepsilon$
- sub-population vs. single observation

follow a Normal distribution with standard deviation σ .

For any fixed x, the responses y

Estimation vs. Prediction

Consider a simple model (with covariate **0**)

$$Y_i = \mu + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{iid} \ N(0, \sigma^2).$$

1 Then, estimate μ by

$$\hat{\mu} = \bar{Y}$$

• What is $Var(\hat{\mu})$?

Also, predict a new observation Y by

$$\hat{Y}_{(\text{new})} = \bar{Y}$$

• What is the variance of the prediction error?

Outline

- (Cont.) Estimation of $E(Y_h)$
- 2 Estimation vs. Prediction

- SLR and power analysis
- 4 Correlation Coefficient $\hat{\rho}$

Another view of T-test

Recall the simple linear regression (SLR) model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad \varepsilon_i \sim i.i.d. \ N(0, \sigma^2),$$

for all i = 1, ..., n.

Equivalently

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{MVN}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

where
$$\boldsymbol{X}_{n\times 2}=\begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$$
 denote the $n\times 2$ design matrix.

- One-sample test is a special case of SLR.
- Two-sample test is also a special case of SLR.

Another view of T-test

Let

$$Y_i=\beta_0+\varepsilon_i,\quad \varepsilon_i\sim i.i.d.\ N(0,\sigma^2),$$
 for all $i=1,\ldots,n.$

Equivalently

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{MVN}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

where
$$\pmb{X}_{n\times 1}=\left[\begin{array}{c}1\\ \vdots\\ 1\end{array}\right]$$
 denote the $n\times 1$ design matrix, and $\pmb{\beta}=\beta_0.$

The one-sample test is equivalent to

$$H_0: \beta_0 = \mu \text{ vs. } H_A: \beta_0 \neq \mu$$

Another view of two-sample test

Let

$$Y_i = \beta_0 \mathbb{1}_{i \text{ is in group } 1} + \beta_1 \mathbb{1}_{i \text{ is in group } 2} + \varepsilon_i, \quad \varepsilon_i \sim i.i.d. \ N(0, \sigma^2),$$
 for all $i = 1, \dots, n$.

Equivalently

$$\textbf{\textit{Y}} = \textbf{\textit{X}}\boldsymbol{\beta} + \varepsilon, \quad \varepsilon \sim \mathcal{MVN}(\textbf{0}, \sigma^2 \textbf{\textit{I}}).$$
 where $\textbf{\textit{X}}_{n \times 2} = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix}$ denote the $n \times 2$ design matrix, and $\boldsymbol{\beta} = (\beta_0, \beta_1)'$.

• The unpaired two sample test is equivalent to

$$H_0: \beta_0 - \beta_1 = 0$$
 vs. $H_A: \beta_0 - \beta_1 \neq 0$

Errors in Hypothesis Test

Reality	Our Decision			
	H_0	$H_{\mathcal{A}}$		
H_0		Type I		
		Error		
H_A	Type II			
	Error			

Example

Consider an SLR $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, where ε_i i.i.d. $N(0, \sigma^2)$. Suppose n = 20, $\sigma^2 = 0.01$, and $\bar{X} = 0.6$, $\sum_{i=1}^{n} (X_i - \bar{X})^2 = 10$. Graph the power for the hypothesis

$$H_0: \beta_0 = 3.35$$
 vs. $H_A: \beta_0 \neq 3.35$

with type 1 error 0.05.

Example: Power analysis in SLR

Since σ is known,

$$\hat{\beta}_0 \sim N\left(\beta_0, \operatorname{Var}(\hat{\beta}_0)\right),$$

where
$$\text{Var}(\hat{eta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right) \approx 0.03^2$$
.

- Under the null hypothesis H_0 : $\beta_0 = 3.35$,
- Rejection region is $|\hat{\beta}_0 3.35| > 1.96 * 0.03 \approx 0.06$.
- Under a particular alternative H_A : $\beta_0 = \mu$,
- Power at μ :

$$\mathsf{Power}(\mu) = \mathbb{P}\left(\underbrace{|\hat{eta}_0 - 3.35| > 0.06}_{\mathsf{rejection\ region\ calculated\ from\ } H_0} \Big| \mu
ight)$$

Example: Power analysis in SLR

μ	3.25	3.30	3.35	3.40	3.45
Power (μ)	.0.91	0.37	0.05	0.37	0.91

- \bullet The rejection region (top graph) and the power at $\mu=$ 3.3 (bottom graph)
- Power curve (right graph): a graph of the power for many alternative hypotheses

Outline

- (Cont.) Estimation of $E(Y_h)$
- Estimation vs. Prediction

- SLR and power analysis
- 4 Correlation Coefficient $\hat{\rho}$

Brainstorm

Why do we use vertical distance to define the fitted line?

Other choices?

- The sum of the squares of perpendicular distance
- The sum of absolute value of the distance

Correlation Model

- In simple linear regression, we model and predict Y given X = x.
- If interested in how two variables are related to each other,
 X and Y are to be treated symmetrically.
- Let X and Y both be random and have a bivariate distribution.
- A useful distribution is a bivariate normal distribution with a probability density that is parameterized by
 - μ_Y and σ_Y: the mean and the SD of the marginal distribution of Y
 - μ_X and σ_X: the mean and the SD of the marginal distribution of X
 - ρ_{YX} (or ρ): the **coefficient of correlation** between Y and X

Correlation Model

The probability density surface can be plotted using a 3D or contour plot.

Properties for bivariate normal (homework):

- Marginal distribution: $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$.
- Conditional distribution: $Y|X = x \sim N(\alpha + \beta x, \sigma_{Y|x}^2)$ where

$$\alpha = \mu_Y - \mu_X \rho \frac{\sigma_Y}{\sigma_X}, \quad \beta = \rho \frac{\sigma_Y}{\sigma_X}, \quad \sigma_{Y|X}^2 = \sigma_Y^2 (1 - \rho^2).$$

Population Correlation Coefficient

 The population correlation coefficient (also called Pearson correlation coefficient) between X and Y is

$$\rho = Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}.$$

- ρ is a measure of linear relationship between X and Y,
 −1 ≤ ρ ≤ 1.
- $\rho = 1$ indicates _____ correlation.
- $0 < \rho < 1$ indicates _____ correlation.
- ho = 0 indicates _____ relationship.
- $-1 < \rho < 0$ indicates _____ correlation.
- $\rho = -1$ indicates _____ correlation.

Example 1

Example 2

Example 3

Pearson's Sample Correlation Coefficient

• Based on the data $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$, the sample correlation coefficient

$$\hat{\rho} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

estimates ρ .

- Note the symmetry between X and Y in $\hat{\rho}$.
- Sample covariance

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

• $\hat{\rho} = \frac{s_{xy}}{s_x s_y}$ estimates the Pearson correlation coefficient.

Independence

Let (X, Y) be a bivariate random variable in \mathbb{R}^2 .

Independence:

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X = x)\mathbb{P}(Y \le y), \text{ for all } x, y \in \mathbb{R}.$$

• Uncorrelated:

$$Cov(X, Y) = 0.$$

- ullet Independence \longrightarrow uncorrelated, but not vice versa.
- Pearson correlation coefficient is a measure of the strength of linear dependence between two random variables.
- If Y = aX + b, then $\rho(X, Y) = 1$ when a > 0, and $\rho(X, Y) = -1$ when a < 0.

Linear independence

Statistical Inference on ρ

- Assume X and Y are from a bivariate normal distribution.
- Define Fisher's transformation

$$\lambda(\rho) = \frac{1}{2} ln\left(\frac{1+\rho}{1-\rho}\right) = \operatorname{arctanh}(\rho),$$

Fisher R.A. (1915) shows that

$$\lambda(\hat{\rho}) = \frac{1}{2} \ln \left(\frac{1+\hat{\rho}}{1-\hat{\rho}} \right) \approx N \left(\lambda(\rho), \frac{1}{n-3} \right).$$

• An approximate $(1 - \alpha)$ CI for $\lambda(\rho)$ is

$$\lambda(\hat{\rho}) \pm z_{\alpha/2} \sqrt{\frac{1}{n-3}} = \left[\hat{\lambda}_1, \hat{\lambda}_2\right].$$

• An approximate $(1 - \alpha)$ CI for ρ is

$$\left(\frac{e^{2\hat{\lambda}_1}-1}{e^{2\hat{\lambda}_1}+1}\equiv\right)\tanh(\hat{\lambda}_1)\leq\rho\leq\tanh(\hat{\lambda}_2)\left(\equiv\frac{e^{2\hat{\lambda}_2}-1}{e^{2\hat{\lambda}_2}+1}\right).$$

Example: Wetland Species Richness

From the summary statistics, we have

$$\hat{\rho} =$$

Find the Fisher's transformation

$$\lambda(\hat{\rho}) = \frac{1}{2} \log \left\{ \frac{1 + (-0.307)}{1 - (-0.307)} \right\} = \underline{\hspace{1cm}}$$

- An approximate 95% CI for $\lambda(\rho)$ is
- An approximate 95% CI for ρ is

$$\frac{e^{2(-0.582)} - 1}{e^{2(-0.582)} + 1} \le \rho \le \frac{e^{2(-0.0529)} - 1}{e^{2(-0.0529)} + 1}$$

which is ______.

Remarks on $\hat{\rho}$

$Correlation \neq Causation$

