Problem Set - 19 Jan 2024

PROBLEM 1 (2012 AMC 8 #10)

How many 4-digit numbers greater than 1000 are there that use the four digits of 2012?

(A) 6

(B) 7

(C) 8

(D) 9

(E) 12

PROBLEM 2 (2021 AMC 12A #17)

Trapezoid \overline{ABCD} has $\overline{AB} \parallel \overline{CD}, BC = CD = 43$, and $\overline{AD} \perp \overline{BD}$. Let O be the intersection of the diagonals \overline{AC} and \overline{BD} , and let P be the midpoint of \overline{BD} . Given that OP = 11, the length of AD can be written in the form $m\sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. What is m+n?

(A) 65

(B) 132

(C) 157

(D) 194

(E) 215

PROBLEM 3 (2018 AMC 12A #20)

Triangle ABC is an isosceles right triangle with AB=AC=3. Let M be the midpoint of hypotenuse \overline{BC} . Points I and E lie on sides \overline{AC} and \overline{AB} , respectively, so that AI>AE and AIME is a cyclic quadrilateral. Given that triangle EMI has area 2, the length CI can be written as $\frac{a-\sqrt{b}}{c}$, where $a,\ b,\$ and c are positive integers and b is not divisible by the square of any prime. What is the value of a+b+c?

(A) 9

(B) 10

(C) 11

(D) 12

(E) 13

PROBLEM 4 (2013 AIME II #7)

A group of clerks is assigned the task of sorting 1775 files. Each clerk sorts at a constant rate of 30 files per hour. At the end of the first hour, some of the clerks are reassigned to another task; at the end of the second hour, the same number of the remaining clerks are also reassigned to another task, and a similar assignment occurs at the end of the third hour. The group finishes the sorting in 3 hours and 10 minutes. Find the number of files sorted during the first one and a half hours of sorting.

PROBLEM 5 (2011 AMC 10B #25)

Let T_1 be a triangle with side lengths 2011, 2012, and 2013. For $n \ge 1$, if $T_n = \triangle ABC$ and D, E, and F are the points of tangency of the incircle of $\triangle ABC$ to the sides AB, BC, and AC, respectively, then T_{n+1} is a triangle with side lengths AD, BE, and CF, if it exists. What is the perimeter of the last triangle in the sequence (T_n) ?

(A) $\frac{1509}{8}$

(B) $\frac{1509}{32}$

(C) $\frac{1509}{64}$

(D) $\frac{1509}{128}$

(E) $\frac{1509}{256}$

Using content from the AoPS Wiki | amctrivial.com