

ACADEMIC – GRADUATE STUDIES AND RESEARCH DIVISION SECOND SEMESTER 2022-2023 Course Handout (Part -II)

16-01-2023

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No.: CE G575

Course Title: Freight Transportation

Instructor-in-charge: Prasanta Sahu (prasanta.sahu@hyderabad.bits-pilani.ac.in)

Office: D-327

Course Description: Introduction to Freight System, Overview of three-layer structure of freight: Global, Regional and Local, Freight Transport Industry Structure: Maritime freight Transport, Air freight Transport, Road freight Transport, Rail Freight Transport. Factors affecting freight demand, Freight generation, Freight trip generation, Modelling Inter-Regional Freight Demand Models. Use of GPS and Bluetooth Data for Freight Analysis, International best practices of freight models. Freight Distribution Structures, Logistics Network Planning, Distribution centers, urban freight consolidation centers and warehouses: location, design and operation, Warehouse management and information, Material Management and Inventory Theory, Economic Order Quantity, Demand forecasting for inventory replenishment systems. Off-hour freight delivery (OHD) schemes, Freight emission modelling, Humanitarian Logistics. Relief Network Models for Efficient Disaster Management.

1. Scope and objectives of the course:

Scope: The freight transport system is essential for the effectiveness and efficiency of the overall logistics system in a company. When studying freight transport systems, it is crucial to understand the demand for the services as well as properties of freight transport systems and their components used in supplying the transport services, as well as the influence of policy decisions. The perspectives of transport operators, their customers and the society are taken in this course and the focus is mostly on European conditions.

Course Outcome: At the end of this course, the students are expected to develop ability to:

- 1. Define technical terms and explain basic technical and operational concepts
- 2. Characterize the traffic modes road, rail, sea, air and pipelines as well as combinations of them
- 3. Combine technical components and operational concepts into freight transport systems
- 4. Choose and illustrate an appropriate transport service for a specific transport demand
- 5. Review the trends and challenges for the freight transport industry
- 6. Match quantitative tools with specific problems
- 7. Solve simple route planning and transport allocation problems quantitatively

Student Learning Outcomes (SLOs) assessed in this course -(a), (b), (c), (e), (h), (i), (j), and (k).

2. Textbook(s):

Text Book (TB)

- T1: Tavasszy, L., and DeJong, G. Modeling Freight Transport, Elsevier 1st Edition 2014
- **T2**: Sunil Chopra, Peter Meindl and D V Kalra, "Supply Chain Management: Strategy, planning and Operation", Pearson Education, Sixth Edition, India, 2016.

Reference Books (RB)

- R1: De Dios Ortuzar, J., and Willumsen, L. G. Modelling transport. John Wiley & Sons., 2011
- **R2:** Donald J. Bowersox, David J. Closs, and M. Bixby Cooper "Supply Chain Logistics Management", Second Edition, Tata McGraw-Hill.
- R3: Sarkar, P.K., Maitri, V., and Joshi, G.J. Transportation Planning, Principles, Practices and Policies, PHI Pvt. Ltd., 2016

Lecture wise Course Plan

Lecture No.	Topics Covered	Learning objectives	Reference to TB, RB	SLO*
1	Economic Activity and Freight Transport System	system components of	T1:Ch.1; T2:Ch.7; R1: Ch.1; R2: Ch. 1; R3: Ch. 8	a, c
2-3	Overview Transportation Demand Modeling	concepts of Travel Demand	T1: Ch.1;; T2:Ch.7; R1: Ch.1; R2: Ch.1; R3: Ch.8;	a,c,e
4-6	Introduction to freight transportation modelling: Aggregate and		T1: Ch.1; T2:Ch.7R1: Ch.1;	a,b,j

	disaggregate models; I-O Model,		R2: Ch.1; R3: Ch. 8	
	Global, Regional, Local		,	
7-9	Freight Travel Analysis Zones	To be able to understand	T1: Ch.4; T2:Ch.7;	a,c,e
	(FTAZ) and Freight survey design;		R1: Ch.1; R2: Ch.1	,.,.
	Data collection	and design FTAZ	; R3: Ch.8	
	Freight Trip Generation and Land	To be able to develop	T1: Ch.3; R1: Ch.3	a,b,j,k
10-16	Use	various trip generation	; R2: Ch.1 ; R3:	, ,
	Freight Generation and Freight Trip	models; To be familiar	Ch.9	
	Generation; Trend and time series	with econometric model		
	models; System dynamics models	development using R-		
	Zonal trip rate models; Model	studio		
	aggregation and transferability			
	Freight Trip Distribution	To learn and solve trip	T1: Ch.5; T2:Ch.8;	a,b,e,j,k
	Distribution of freight flows		R1: Ch.4; R2: Ch.2	
17-23	Production/Consumption to	able to calibrate the	; R3: Ch.9	
	origin/destination	impedance factor for future		
		trip distribution.		
	Mode Choice		T1: Ch.6; T2:Ch.8;	a,b,e,k
	Competing modes for specific		R1: Ch.5; R3: Ch.9	
24-28	commodity choice; Behavioural	freight travel behaviour; To		
	methodology; Associated factors	estimate freight choice		
		models using N-Logit		
	Assignment Models	To learn how to assign	T1: Ch.7,8;	a,b,e,k
	Assignment Algorithms for freight	freight trips on a coded	T2:Ch.8; R1: Ch. 6,	
25-30	Typical algorithms used Data needs	network. To be able to	7, 8; R2: Ch.3; R3:	
		model the empty trips in	Ch.9	
		the modelling system.		
	Supply Chain Management; Supply	Identify the major drivers	T1: Ch.9; T2:	a,b,c,e.k
	Chain Drivers and Metrics;	of supply chain	Ch.3,4,5 69	
	Designing the distribution network;	performance. Discuss the		
	Planning demand and supply in	role each driver plays.		
	supply chain; Planning and managing	obstacles that must be		
	inventories in a supply chain	obstacies that must be		
33-39		overcome to manage a supply chain		
		successfully. Designing the		
		distribution network in a		
		supply chain, Network		
		design in the supply chain,		
		Network design in		
		uncertain environment		
	Freight Transportation, and	Sourcing decisions in a	T2: Ch. 14	c,e,i,j
	Sourcing Sourcing	supply chain,		٠,٠,٠,١
40.4		Transportation in the		
40-41		supply chain, Pricing and		
		revenue management in the		
		supply chain		
	Sustainability and the supply chain	Introduction to	T2: Ch.17	a,f,h,i,j
42	and the supply chain	sustainability; Issues and	[,-,- <u>,-</u> ,
44		Sustamadility. Issues and		

*Student Learning Outcomes (SLOs):

SLOs are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Evaluation Scheme

Sl. No.	Evaluation component	Duration	Weightage	Date, time	Nature of component
1.	Quiz (at least two)	40 Minutes	10%	To be announced in class	ОВ
2.	Assignments (at least 2)	-	15%	Continuous	ОВ
3.	Term Paper	-	15%	Continuous	OB
4.	Mid-semester exam	90 Minutes	25%	17/03 9.30 - 11.00AM	СВ
5.	Comprehensive Exam	3 Hours	35%	17/05 FN	СВ

Office Consultation Hour: To be announced in the class.

Notices: All Notices concerning to the course will be displayed on CMS, Google

Classroom and Notice Board of Civil Engg. Department.

Make up policy: Makeup will be given only to the genuine cases with prior permission.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge

CE G575