

Cardiovascular Disease Prediction from ECG images

If there are no ups and downs in your life, you are dead!

Team Members

Nishamohan Devadiga

PoojaShree NS

Avinash Ramesh

Github: https://github.com/rameshavinash94/Cardiovascular-Detection-using-ECG-images

What is ECG? —

An electrocardiogram (ECG) is a simple test that can be used to check your heart's rhythm and electrical activity.

12-lead Electrocardiogram (EKG)

Characteristics of ECG

Why ECG Images for CVD Prediction?

- Digital technologies have revolutionized the signal analysis and automated diagnosis
- Digitized ECG signals have advantages, such as security, easy to store, transmit, and retrieve
- It is essential to convert biomedical signals, such as electro-cardiograms (ECG) into digital form, for such computerized investigation

Existing System

Proposed System

Pros

- Without any delay, the results are instant.
- There is no need to visit a doctor just to confirm the ecg report.
- Following the initial findings, the patient may consult with a specialized doctor.
- Can be used in remote areas of the world where doctors are scarce and require long distance travel.

Cons

Every System has a Con

- Because we don't have a large image dataset to work with, the results may not be 100% correct.
- It is not intended to replace the present system; rather, it is intended to speed up the process.

Dataset

ECG images: https://data.mendeley.com/datasets/gwbz3fsgp8/2

We have used 4 categories for image classification for our ECG images

- Normal
- Myocardial infarction
- Abnormal Heart beat
- History of Myocardial infarction

Data Preparation and Preprocessing

Crucial step in our project is data preparation from ECG images.

- Convert all ECG images to grayscale
- Resize image per requirements
- Divide the images into 12 sections for each image extracting 12 lead values (1-12)
- Remove Grid lines from each lead image and convert to binary image

Data feature Extraction & Data Engineering

- To trace and extract only the necessary signal from images, we used the contour technique.
- The image is converted to a one-dimensional signal.
- After that, MinMaxScaler is used to scale the image.
- For each lead(1-12) signal in all ecg image, save the 1D signal values in a.csv file.
- In a single csv file, combine all 12 lead values with the target label added.

ML Model

We tested various algorithms and then utilized the enseble technique to stack algorithms to enhance performance because it was a classification problem.

Algos tested

Knn
Logistic Regression
SVM
Random forest
GaussianNB
xgboost

GridSearchCv for hyperparamter tuning

Ensemble of stacking multiple models using voting classifer

Our Deployment Architecture

High Level Architecture Diagram

Demo

https://cmpe255-project-q4uake3apq-uc.a.run.app

#