

de Morgan's laws for sets (proof)

 ${\bf Canonical\ name} \quad {\bf DeMorgans Laws For Sets proof}$

 Date of creation
 2013-03-22 13:32:16

 Last modified on
 2013-03-22 13:32:16

 Owner
 mathcam (2727)

 Last modified by
 mathcam (2727)

Numerical id 7

Author mathcam (2727)

Entry type Proof Classification msc 03E30 Let X be a set with subsets $A_i \subset X$ for $i \in I$, where I is an arbitrary index-set. In other words, I can be finite, countable, or uncountable. We first show that

$$\left(\cup_{i\in I} A_i\right)' = \cap_{i\in I} A_i',$$

where A' denotes the complement of A.

Let us define $S = (\bigcup_{i \in I} A_i)'$ and $T = \bigcap_{i \in I} A_i'$. To establish the equality S = T, we shall use a standard argument for proving equalities in set theory. Namely, we show that $S \subset T$ and $T \subset S$. For the first claim, suppose x is an element in S. Then $x \notin \bigcup_{i \in I} A_i$, so $x \notin A_i$ for any $i \in I$. Hence $x \in A_i'$ for all $i \in I$, and $x \in \bigcap_{i \in I} A_i' = T$. Conversely, suppose x is an element in $T = \bigcap_{i \in I} A_i'$. Then $x \in A_i'$ for all $i \in I$. Hence $x \notin A_i$ for any $i \in I$, so $x \notin \bigcup_{i \in I} A_i$, and $x \in S$.

The second claim,

$$\left(\bigcap_{i\in I} A_i\right)' = \bigcup_{i\in I} A_i',$$

follows by applying the first claim to the sets A'_i .