Fundamentals of Machine Learning

BAYESIAN DECISION THEORY

- Bayesian Decision Theory
- Evaluation methods
- Hypothesis Testing

Decision Theory

We assume the decision maker, or agent, has a set of possible actions, A, to choose from.

Every action has cost and benefits depending on underlying state of nature $h \in \mathcal{H}$.

Encode this information to loss function $\ell(h, a)$, loss which we incur if action $a \in A$ is taken at state of nature, $h \in \mathcal{H}$.

Risk:
$$R(a|x) \triangleq \mathbb{E}_{p(h|x)}\left[\ell(h,a)\right] = \sum_{h \in \mathcal{H}} \ell(h,a) p(h|x)$$

Optimal Policy:
$$\pi^*(x) = \operatorname*{argmin}_{a \in \mathcal{A}} \mathbb{E}_{p(h|x)} \left[\ell(h, a) \right]$$

Maximum expected utility: $\pi^*(x) = \operatorname*{argmax}_{a \in \mathcal{A}} \mathbb{E}_h \left[U(h,a) \right]$

Utility Function

$$U(h,a) = -\ell(h,a)$$

Classification- Accuracy

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection

Be aware of class imbalance.

$$Accuracy = (TP + TN) / (TP + FN + FP + TN)$$

True Positive Rate (TPR) e.g., predict how many disease correctly in disease cohort

$$TPR = TP / (TP + FN)$$

False Positive Rate (FPR) e.g., predict how many disease in healthy cohort

$$FPR = FP/(FP + TN)$$

Classification-ROC curve

EER: FPR = FNR = 1 - TPR

Area under ROC curve is computed.

The higher the AUROC, the better the classifier.

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation
Actual c	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection

TPR = TP / (TP + FN), e.g., predict how many disease correctly in disease cohort FPR = FP / (FP + TN), e.g., predict how many disease in healthy cohort

Classification- Precision-Recall Curve

Recall = TPR = TP / (TP + FN) - predict how many positive correctly in positive cohort

Precision = Positive Predictive Value (PPV)

= TP / (TP +FP) - predict how many positive correctly if prediction is positive.

Area under PR curve is computed.

The higher the AUC of PR curve, the better the classifier.

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation
Actual c	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection

Hypothesis Testing

Suppose we have two hypotheses or models, commonly called the null hypothesis, M_0 , and the alternative hypothesis, M_1 , and we want to know which one is more likely to be true.

The optimal decision to pick alternative hypothesis iff

$$P(M_1|D) > P(M_0|D)$$

$$\frac{\mathsf{P}(\mathsf{M}_1|\mathsf{D})}{\mathsf{P}(\mathsf{M}_0|\mathsf{D})} > 1$$

Hypothesis Testing

If we use uniform prior $p(M_0) = p(M_1) = 0.5$, the decision rule becomes

$$\frac{\mathsf{P}(\mathsf{D}\mid\mathsf{M}_1)}{\mathsf{P}(\mathsf{D}\mid\mathsf{M}_0)} > 1$$

Bayes Factor = ratio of marginal likelihood of two models

$$B_{1,0} \triangleq \frac{\mathsf{P}(\mathsf{D} \mid \mathsf{M}_1)}{\mathsf{P}(\mathsf{D} \mid \mathsf{M}_0)}$$

Bayes factor $BF(1,0)$	Interpretation
$BF < \frac{1}{100}$	Decisive evidence for M_0
$BF < \frac{1}{10}$	Strong evidence for M_0
$\frac{1}{10} < BF < \frac{1}{3}$	Moderate evidence for M_0
$\frac{1}{10} < BF < \frac{1}{3}$ $\frac{1}{3} < BF < 1$	Weak evidence for M_0
1 < BF < 3	Weak evidence for M_1
3 < BF < 10	Moderate evidence for M_1
BF > 10	Strong evidence for M_1
BF > 100	Decisive evidence for M_1

Table 5.6: Jeffreys scale of evidence for interpreting Bayes factors.

Bayesian Model Selection

Suppose we have a set *M* of more than 2 models, and we want to pick the most likely.

The optimal action is picking the most probable model

$$\hat{m} = \operatorname*{argmax}_{m \in \mathcal{M}} p(m|\mathcal{D})$$

where

$$p(m|\mathcal{D}) = \frac{p(\mathcal{D}|m)p(m)}{\sum_{m \in \mathcal{M}} p(\mathcal{D}|m)p(m)}$$

Bayesian Model Selection

If the prior over models is uniform, p(m) = 1/|M|, then the Maximum A Posterior (MAP) is given by

$$\hat{m} = \operatorname*{argmax}_{m \in \mathcal{M}} p(\mathcal{D}|m)$$

The quantity $p(\mathcal{D}|m)$ is given by

$$p(\mathcal{D}|m) = \int p(\mathcal{D}|\theta, m) p(\theta|m) d\theta$$
 prior

This is known as the **marginal likelihood**, or the **evidence** for model m.

Consider two models, a simple one, m₁, and a more complex one, m₂.

Suppose that both can explain the data by suitably optimizing their parameters.

Intuitively we should prefer m₁, since it is simpler and just as good as m₂.

This principle is known as Occam's razor

Bayesian Occam's razor effect

Intuition from Squid Game

Complex Model

Simple Model

Few θ averaged over the parameter space