HW₁

王晶 16340217

Exercise 1

首先使用均匀分布产生随机数,产生x轴上位于[0,1]区间,y轴上位于[0,1]区间的点。

上图从左到右分别是采样次数N = 20, 50, 100, 200, 300, 500, 1000, 5000时,所计算得到的pi值。

当每个采样点次数重复20次后,得到的均值方差如下:

采样点数	20	50	100	200	300	500	1000	5000
均值	3.02	3.124	3.226	3.145	3.202	3.108	3.157	3.142
方差	0.31559	0.16292	0.19443	0.09206	0.079697	0.068656	0.0508	0.022077

分析

可以看出,均值随着采样点的增加,逐渐地趋于平稳,而方差则随着采样点地增加而减小。

核心代码:

```
my_pi = zeros(8,22);
N = [20, 50, 100, 200, 300, 500, 1000, 5000];
t = [1,2,3,4,5,6,7,8];
for i=1:8
   for j=1:20
      rng('shuffle');%初始化随机发生器
       x = rand(1,N(i));%二维样本的x坐标, x: [-1,1]
       rng('shuffle');%再次初始化随机发生器,与上次不同,将产生独立的随机数
       y = rand(1,N(i));%二维样本的y坐标, y:[-1:1]
       s = sum(x.^2+y.^2 \le 1); % 计算落在单位圆内的点数
      my_pi(i,j) = s/N(i)*4; %计算pi值
   end
end
for i=1:8
   my_pi(i,21) = mean(my_pi(i,1:20)); %均值
   my_pi(i,22) = sqrt(sum((my_pi(i,1:20)-my_pi(i,21)).^2)/20); %方差
end
```

当每个采样点次数重复20次后,得到的均值方差如下图:

均值:

方差:

Exercise 2

我认为应该采用**均匀分布**的随机采样来获取 x 的值

上图从左到右分别是采样次数N = 5, 10, 20, 30, 40, 50, 60, 70, 80, 100时,所计算得到的积分结果,**可以看出积分结果在采样点非常少的时候,很不理想,误差非常大,但随着采样点数量增加,效果有所好转**

当每个采样点次数重复100次后,得到的均值方差如下:

采样点数	5	10	20	30	40	50	60	70	80	100
均值	0.2548	0.23661	0.25336	0.25163	0.25001	0.24753	0.25038	0.25598	0.25032	0.25248
方差	0.19566	0.087164	0.077677	0.058787	0.052641	0.10227	0.06277	0.034286	0.032776	0.041445

核心代码:

```
a = 0;
b = 1;
N = [5, 10, 20, 30, 40, 50, 60, 70, 80, 100];
xAxis = 1:10;
ans = zeros(10,102);
for i=1:10
for k=1:100
t = rand(1,N(i));
x = a+(b-a)*t;
s = sum(monte_carlo_f(x));
ans(i,k) = s*(b-a)/N(i);
end
ans(i,101) = mean(ans(i,1:100));
ans(i,102) = sqrt(sum((ans(i,1:100)-ans(i,21)).^2)/100);
end
```

这是通过平均值法实现的,除此之外还可以使用随机点法来实现

通过直方图显示:

Exercise 3

对于积分:

$$\int_{x=2}^{4} \int_{y=-1}^{1} f(x,y) = \frac{y^2 * e^{-y^2} + x^4 * e^{-x^2}}{x * e^{-x^2}}$$

首先,我认为**无法通过公式直接求解积分*,并且我认为可以使用**均匀分布**随机采样来获取点 (x, y)

下图从左到右分别是采样次数N = 10, 20, 30, 40, 50, 60, 70, 80, 100, 200, 500时, 所计算得到的积分。

可以发现当取样点非常小的时候,例如只有10个或者20个的时候,会造成非常大的误差,而图中显示当取样点为10或20个的时候,甚至出现的积分为0的情况,因此,少量样本的情况下,**积分结果并不理想**。

具体原因可以看下面的图和分析。

对每个采样点次数重复100次后,得到的均值方差如下:

采样点数	10	20	30	40	50	60	70	80	100	200	500
均值	118400	104000	117333	130400	124800	105600	108342	113200	102720	119520	11302
方差	245796.6639	160798.0099	229767.0318	142884.5688	92079.9652	70754.6622	90394.1483	61838.4993	101848.515	84102.7942	24770.56

核心代码:

```
a=2;
b=4:
c=-1;
d=1;
N = [10, 20, 30, 40, 50, 60, 70, 80, 100, 200, 500];
ans = zeros(11,102);
zMax = 800000;
xAxis = 1:11;
for i=1:11 %11种取样次数
for k=1:100 %重复100次
rng('shuffle');
xff = a+(b-a).*rand(1,N(i));
rng('shuffle');
yff = c+(d-c).*rand(1,N(i));
rng('shuffle');
zff = zMax.*rand(1,N(i));
for j=1:N(i)
  s(j) = monte_carlo_f2(xff(j),yff(j));
ratio = sum( zff <= s) / N(i);
ans(i,k) = ratio*2*2*800000;
end
for i=1:11
   ans(i,101) = mean(ans(i,1:100));%计算均值
   ans(i,102) = sqrt(sum((ans(i,1:100)-ans(i,21)).^2)/100);%计算方差
end
```

然后通过 Matlab 的 integral2() 函数来计算真实的积分结果:

```
>> fun = @(x,y) ( (y.^2).*(exp(-y.^2))+(x.^4).*(exp(-x.^2)) )./ ( x.*(exp(-x.^2)) );
>> integral2(fun, 2, 4, -1, 1)

ans =

112958.615426945
```

分析

可以发现所求出的均值大多在110000左右,与通过内置函数计算出的正确结果相近,而方差也随着采样点的增加而有逐渐减小的趋势

均值和方差的柱状图

下图是单次取样500个点进行蒙特卡洛法求积分的结果,可以看到函数 f(x, y) 所表示的曲面

可以发现当x在区间[2,4]上,y在区间[-1,1]上的时候,z的取值在大部分情况下都非常小,因此造成了采样点极少的时候,会出现结果等于0的情况了。这是我使用随机点法的做法,其实还可以使用平均值法来实现