Задача 1. (10 т.) Да се провери кои от следващите езици над азбуката $\Sigma = \{0, 1\}$ са едни и същи и кои са различни:

- 1. L_1 се представя чрез регулярния израз $1\cdot (0\cup 1)^*\cdot 0$
- 2. L_2 се разпознава от крайния недетерминиран автомат

$$\mathcal{A} = \langle \{q_0, q_1, q_2, q_3\}, \{0, 1\}, q_0, \delta, \{q_3\} \rangle$$

с функция на преходите δ , представена чрез таблицата:

q	0	1
q_0	$\{q_1\}$	$\{q_2\}$
q_1	$\{q_1, q_3\}$	$\{q_1\}$
q_2	$\{q_{2}\}$	$\{q_2, q_3\}$
q_3	Ø	Ø

3. L_3 се разпознава от крайния детерминиран автомат

$$\mathscr{C} = \langle \{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, q_0, \delta, \{q_2, q_4\} \rangle$$

с функция на преходите δ , представена чрез таблицата:

q	0	1
q_0	q_1	q_3
q_1	q_2	q_1
q_2	q_2	q_1
q_3	q_3	q_4
q_4	q_3	q_4

За да покажете, че два езика са различни посочете дума, която е от единя език, но не е от другия, а за да покажете, че два езика съвпадат сравнете крайните детерминирани автомати, които ги разпознават.

Решение.

Директно построяваме автомата, който отговаря на простичкия регулярен израз:

Именуваме състоянията на автомата за улеснение.

Очевидно от състояние А няма преход с 0, а от състояние С няма преход с 0 и 1. Следователно автомата не е тотален и го тотализираме.

Създаваме ново състояние S (sink), което ще играе ролята на /dev/null и ще обира липсващите преходи със съответните букви от входната азбука. Попадането в това ново състояние на автомата ще кара автомата да зацикля в същото състояние с всяка една последваща буква, която прочита и по този начин няма да му позволим да стига до финално състояние.

При така получения тотален краен автомат, от състояние В може да траверсираме недетерминирано отново до състояние В или до състояние С с 0. Следователно автомата е недерерминиран и го детерминираме.

състояние	преход с 0	преход с 1
A	<i>S</i> ново	<i>В</i> ново
S	S	S
В	{ <i>B</i> , <i>C</i> } HOBO	В
$\{B,C\}$	$\{B, C, S\}$	В
$\{B, C, S\}$	$\{B, C, S\}$	{ <i>B</i> , <i>S</i> } HOBO
$\{B, S\}$	$\{B, C, S\}$	$\{B,S\}$

Крайни състояния са тези, които имат поне едно крайно състояние в множеството, с което се репрезентират. Тъй като само С е крайно състояние, то крайните състояния в детерминирания краен автомат са {B,C} и {B,C,S}.

След операцията детерминизация не е гарантирано, че ще получим минимален краен детерминиран автомат. За това ще извършим и операцията минимизация. Преди това ще преименуваме състоянията за улеснение.

Минимизация. Разделяме състоянията на два класа на еквивалентност – междинни и терминиращи (нефинални и финални).

$$P_1 = \{A, B, C, F\},\$$

 $P_2 = \{D, E\}.$

състояние	преход с 0	преход с 1
A	P_1	P_1
В	P_2	P_1
C	P_1	P_1
D	P_2	P_1
E	P_2	P_1
F	P_2	P_1

Състоянията от P_2 имат еднакво поведение и тяхното множество няма да се разбие, но състоянията от P_1 имат различно поведение: A и C с 0 отиват в P_1 , а B и F с 0 отиват в P_2 . Следователно разбиваме множеството P_1 на две нови множества.

$$P_2 = \{D, E\},\$$

 $P_3 = \{A, C\},\$
 $P_4 = \{B, F\}$

състояние	преход с 0	преход с 1
A	P_4	P_3
В	P_2	P_4
C	P_3	P_3
D	P_2	P_4
E	P_2	P_4
F	P_2	P_4

Състоянията от P_2 и състоянията от P_4 имат еднакво поведение и множествата им няма да се разбият, но състоянията от P_3 имат различно поведение: A с 0 отива в P_4 , B с 0 отива в P_3 . Следователно разбиваме множеството P_3 на две нови множества.

$$P_2 = \{D, E\},\$$

 $P_4 = \{B, F\},\$
 $P_5 = \{A\},\$
 $P_6 = \{C\}$

състояние	преход с 0	преход с 1
A	P_6	P_4
В	P_2	P_4
C	P_6	P_6
D	P_2	P_4
E	P_2	P_4
F	P_2	P_4

Всички състояния от всички множества имат еднакво поведение. Алгоритъмът спира. Финалните състояния са тези, в които има поне едно финално състояния от оригиналния автомат, който минимизирахме – това е само състоянието P_2 . Окончателно за езика L_1 зададен с регулярния израз $1\cdot (0\cup 1)^*\cdot 0$ получаваме крайния детерминиран и минимизиран автомат:

За езика L_2 имаме следния краен недетерминиран автомат:

Очевидно е, че това е автомата, който разпознава всички думи, които започват и завършват с еднаква буква от входната азбука. Нека го тотализираме и след това детерминираме и минимизираме.

След тотализация автомата ще има следния вид:

Детерминизация:

състояние	преход с 0	преход с 1
q_0	q_1 ново	q_2 ново
q_1	$\{q_{1},q_{3}\}$ ново	q_1
q_2	q_2	$\{q_2,q_3\}$ ново
$\{q_1, q_3\}$	$\{q_1, q_3, \emptyset\}$	$\{q_1, \emptyset\}$ ново
$\{q_2, q_3\}$	$\{q_2, \emptyset\}$ ново	$\{q_2, q_3, \emptyset\}$
$\{q_1, q_3, \emptyset\}$	$\{q_1, q_3, \emptyset\}$	$\{q_1, \emptyset\}$
$\{q_1,\emptyset\}$	$\{q_1, q_3, \emptyset\}$	$\{q_1, \emptyset\}$
$\{q_2, q_3, \emptyset\}$	$\{q_2, \emptyset\}$	$\{q_2, q_3, \emptyset\}$
$\{q_2, \emptyset\}$	$\{q_2, \emptyset\}$	$\{q_2, q_3, \emptyset\}$

Преименуване:

Минимизация:

$$P_1 = \{q_0, q_1, q_2, q_6, q_7\},$$

$$P_2 = \{q_3, q_4, q_5, q_8\}$$

състояние	преход с 0	преход с 1
q_0	P_1	P_1
q_1	P_2	P_1
q_2	P_1	P_2
q_3	P_2	P_1
q_4	P_1	P_2
q_5	P_2	P_1
q_6	P_2	P_1
q_7	P_1	P_2
q_8	P_1	P_2

Разбиваме P_1 на $P_3=\{q_0\},$ $P_4=\{q_1,q_6\},$ $P_5=\{q_2,q_7\}$ и P_2 на $P_6=\{q_3,q_5\},$ $P_7=\{q_4,q_8\}.$

състояние	преход с 0	преход с 1
q_0	P_4	P_5
q_1	P_6	P_4
q_2	P_5	P_7
q_3	P_6	P_4
q_4	P_5	P_7
q_5	P_6	P_4
q_6	P_6	P_4
q_7	P_5	P_7
q_8	P_5	P_7

Алгоритъмът за минимизация терминира, тъй като състоянията от всяко множество имат еднакво поведение и не може да разбиваме повече. Финални състояния са тези, които в множеството си имат поне едно от състоянията, които са били финални в автомата, който минимизираме, а именно q_3 , q_4 , q_5 или q_8 . Това са съответно новите състояния P_6 и P_7 .

За езика L_3 имаме същия краен детерминиран автомат (освен това знаем, че той е и минимален), като този за езика L_2 (с точност до изоморфизъм/преименуване на състоянията). Следователно езиците L_2 и L_3 са едни и същи (и разпознават думите от азбуката $\Sigma=\{0,\,1\}$, които започват и завършват с еднакви букви).

За да докажем, че езика L_1 е различен е достатъчно да вземем дума от него, която започва с 1 и завършва на 0 (тъй като от L_1 няма думи започващи с 0). Това е например думата 10.