Data Science (Prof. Neff) Versuchsdatum 28.10.2020

Bestimmung der Viskosität von Spülmittel

Gruppe 6: Benjamin Hamm (2060696), Jan Klotter (2060690),

Anna Kuhn (2051063), Michael Schulze (2061282)

Rohdaten der einzelnen Gruppenmitglieder

```
dataMichael = readtable("Blasen_Steigzeit_Michael.csv");
%imageFrosch = imread("frosch_AleoVera_Spuellotion.png");
dataBenjamin = readtable("Blasen_Steigzeit_Benjamin.csv");
%imageW5 = imread("W5_eco.png");
dataJan = readtable("Blasen_Steigzeit_Jan.csv");
dataAnna = readtable("Blasen_Steigzeit_Anna.csv");
%imageEcover = imread("ecover_Colorwaschmittel.png");
```

```
%Michael
disp(" ")
```

```
disp("<strong> I) --- Messwerte Michael - Frosch Aloe Vera Spül-Lotion ---</strong>")
```

I) --- Messwerte Michael - Frosch Aloe Vera Spül-Lotion ---

```
%imshow(imageFrosch)
[d1, v1, a1, b1] = eval_data(dataMichael);
```

 $data = 10 \times 2 \ table$

	Blase_in_mm	Steigzeit_5
1	2.0000	19.0000
2	3.5000	9.8000
3	3.5000	9.7000
4	3.0000	8.8000
5	2.0000	21.5000
6	4.0000	8.0000
7	4.0000	8.8000
8	3.0000	9.7000
9	2.5000	22.0000
10	3.0000	11.5000

¹a) Viskosität über den Mittelwert aus 10 Messungen

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit

 $T = 10 \times 6 \text{ table}$

	d	V	eta	deltaEta	reynold	turbulent
1	0.0020	0.0026	0.8491	1.1125	0.0064	0
2	0.0035	0.0051	1.3413	0.9924	0.0136	0
3	0.0035	0.0052	1.3276	0.9812	0.0139	0
4	0.0030	0.0057	0.8849	0.7472	0.0197	0
5	0.0020	0.0023	0.9608	1.2810	0.0050	0
6	0.0040	0.0063	1.4301	0.9195	0.0179	0
7	0.0040	0.0057	1.5731	1.0213	0.0148	0
8	0.0030	0.0052	0.9754	0.8294	0.0163	0
9	0.0025	0.0023	1.5362	1.7178	0.0038	0
10	0.0030	0.0043	1.1564	0.9988	0.0116	0

2) Viskosität über lineare Regression

ausgleichsgerade =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

Jermacea Coeffic	Estimate	SE	tStat	pValue
(Intercept)	-3.7679e-07	5.8891e-07	-0.63982	0.54018
x1	0.00063237	0.00012578	5.0275	0.0010174

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 5.66e-07

R-squared: 0.76, Adjusted R-Squared: 0.73

F-statistic vs. constant model: 25.3, p-value = 0.00102

Übersicht der berechneten Viskositäten

p = 68.7200

t = 1.0600

1a) Viskosität über den Mittelwert aus 10 Messungen

 η = 1.2035 ± 0.0917 bzw. als Intervall [1.1118 ... 1.2952] Ns/m²

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit

 $\eta = 0.8491 \pm 1.1792$ bzw. als Intervall [-0.3301 ... 2.0284] Ns/m²

 η = 1.3413 ± 1.0519 bzw. als Intervall [0.2893 ... 2.3932] Ns/m²

 η = 1.3276 ± 1.0401 bzw. als Intervall [0.2875 ... 2.3676] Ns/m²

 η = 0.8849 ± 0.7921 bzw. als Intervall [0.0928 ... 1.6769] Ns/m²

 η = 0.9608 ± 1.3578 bzw. als Intervall [-0.3970 ... 2.3187] Ns/m²

 η = 1.4301 \pm 0.9747 bzw. als Intervall [0.4554 ... 2.4047] Ns/m²

 η = 1.5731 \pm 1.0825 bzw. als Intervall [0.4906 ... 2.6556] Ns/m²

 η = 0.9754 \pm 0.8792 bzw. als Intervall [0.0962 ... 1.8545] Ns/m² η = 1.5362 \pm 1.8209 bzw. als Intervall [-0.2847 ... 3.3571] Ns/m²

 $\eta = 1.1564 \pm 1.0587$ bzw. als Intervall [0.0977 ... 2.2150] Ns/m²

```
2) Viskosität über lineare Regression 
 \eta = 1.4130 \pm 1.4978 bzw. als Intervall [-0.0848 ... 2.9108] Ns/m²
```


%Benjamin
disp(" ")

disp(" II) --- Messwerte Benjamin - W5 eco ---")

II) --- Messwerte Benjamin - W5 eco ---

%imshow(imageW5)
[d2, v2, a2, b2] = eval_data(dataBenjamin);

 $data = 10 \times 2 \ table$

	Blase_in_mm	Steigzeit_5
1	2.0000	54
2	3.0000	26
3	4.0000	16

	Blase_in_mm	Steigzeit_5
4	4.0000	13
5	0.5000	287
6	1.5000	44
7	0.3000	570
8	4.0000	11
9	1.0000	64
10	1.0000	83

1a) Viskosität über den Mittelwert aus 10 Messungen

mittelwert = 1.6301

standardabweichung = 0.8881
standardunsicherheit = 0.2809

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit

 $T = 10 \times 6 \text{ table}$

	d	V	eta	deltaEta	reynold	turbulent
1	0.0020	0.0009	2.4133	4.3503	0.0008	0
2	0.0030	0.0019	2.6144	2.7072	0.0023	0
3	0.0040	0.0031	2.8602	2.0795	0.0045	0
4	0.0040	0.0038	2.3239	1.6040	0.0068	0
5	0.0005	0.0002	0.8016	6.8688	0.0001	0
6	0.0015	0.0011	1.1061	2.1641	0.0016	0
7	0.0003	0.0001	0.5731	9.2703	0.0000	0
8	0.0040	0.0045	1.9664	1.3156	0.0095	0
9	0.0010	0.0008	0.7150	2.0795	0.0011	0
10	0.0010	0.0006	0.9273	2.9519	0.0007	0

2) Viskosität über lineare Regression

ausgleichsgerade =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-1.9038e-07	2.2687e-07	-0.83917	0.42574
x1	0.0010673	9.9415e-05	10.736	4.9843e-06

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 4.73e-07

R-squared: 0.935, Adjusted R-Squared: 0.927

F-statistic vs. constant model: 115, p-value = 4.98e-06

Übersicht der berechneten Viskositäten

```
p = 68.7200
t = 1.0600
```

1a) Viskosität über den Mittelwert aus 10 Messungen $\eta = 1.6301 \pm 0.2977$ bzw. als Intervall [1.3324 ... 1.9278] Ns/m²

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit η = 2.4133 \pm 4.6113 bzw. als Intervall [-2.1981 ... 7.0246] Ns/m² η = 2.6144 \pm 2.8696 bzw. als Intervall [-0.2552 ... 5.4840] Ns/m² η = 2.8602 \pm 2.2042 bzw. als Intervall [0.6559 ... 5.0644] Ns/m² η = 2.3239 \pm 1.7002 bzw. als Intervall [0.6237 ... 4.0241] Ns/m² η = 0.8016 \pm 7.2810 bzw. als Intervall [-6.4793 ... 8.0826] Ns/m²

 η = 1.1061 ± 2.2940 bzw. als Intervall [-1.1879 ... 3.4001] Ns/m² η = 0.5731 ± 9.8265 bzw. als Intervall [-9.2533 ... 10.3996] Ns/m²

 $\eta = 1.9664 \pm 1.3945$ bzw. als Intervall [0.5719 ... 3.3608] Ns/m²

 η = 0.7150 \pm 2.2042 bzw. als Intervall [-1.4892 ... 2.9193] Ns/m² η = 0.9273 \pm 3.1290 bzw. als Intervall [-2.2017 ... 4.0564] Ns/m²

 $\eta = 0.92/3 \pm 3.1290$ DZW. als intervall [-2.201/ ... 4.0564] NS/M

2) Viskosität über lineare Regression

 η = 2.3848 \pm 2.5279 bzw. als Intervall [-0.1431 ... 4.9128] Ns/m²

%Jan
disp(" ")

disp(" III) --- Messwerte Jan - Frosch Aloe Vera Spül-Lotion ---")

III) --- Messwerte Jan - Frosch Aloe Vera Spül-Lotion ---

%imshow(imageFrosch)

[d3, v3, a3, b3] = eval_data(dataJan);

 $data = 10 \times 2 \ table$

	Blase_in_mm	Steigzeit_5
1	4	10.0000
2	2	16.7000
3	2	50.0000
4	5	1.9000
5	3	12.5000
6	3	16.7000
7	2	16.7000
8	2	25.0000
9	5	2.5000
10	5	5.0000

1a) Viskosität über den Mittelwert aus 10 Messungen

mittelwert = 1.2194

standardabweichung = 0.5579

standardunsicherheit = 0.1764

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit

 $T = 10 \times 6 \text{ table}$

	d	V	eta	deltaEta	reynold	turbulent
1	0.0040	0.0050	1.7876	1.1790	0.0115	0
2	0.0020	0.0030	0.7463	0.9637	0.0082	0
3	0.0020	0.0010	2.2345	3.8703	0.0009	0
4	0.0050	0.0263	0.5307	0.2612	0.2541	1
5	0.0030	0.0040	1.2569	1.0960	0.0098	0
6	0.0030	0.0030	1.6792	1.5335	0.0055	0
7	0.0020	0.0030	0.7463	0.9637	0.0082	0
8	0.0020	0.0020	1.1172	1.5299	0.0037	0
9	0.0050	0.0200	0.6983	0.3447	0.1468	0
10	0.0050	0.0100	1.3966	0.7052	0.0367	0

2) Viskosität über lineare Regression

ausgleichsgerade =

Linear regression model:

$y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	1.3295e-06	5.6794e-07	2.341	0.047341
x1	0.00023228	5.0487e-05	4.6007	0.0017538

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 1.3e-06

R-squared: 0.726, Adjusted R-Squared: 0.691

F-statistic vs. constant model: 21.2, p-value = 0.00175

Übersicht der berechneten Viskositäten

p = 68.7200

t = 1.0600

1a) Viskosität über den Mittelwert aus 10 Messungen

 $\eta = 1.2194 \pm 0.1870$ bzw. als Intervall [1.0324 ... 1.4064] Ns/m²

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit

- η = 1.7876 \pm 1.2497 bzw. als Intervall [0.5379 ... 3.0373] Ns/m²
- η = 0.7463 ± 1.0215 bzw. als Intervall [-0.2752 ... 1.7678] Ns/m²
- η = 2.2345 \pm 4.1025 bzw. als Intervall [-1.8680 ... 6.3370] Ns/m²
- η = 0.5307 \pm 0.2768 bzw. als Intervall [0.2539 ... 0.8075] Ns/m²
- $\eta = 1.2569 \pm 1.1618$ bzw. als Intervall [0.0951 ... 2.4187] Ns/m²
- η = 1.6792 ± 1.6255 bzw. als Intervall [0.0537 ... 3.3048] Ns/m²
- η = 0.7463 \pm 1.0215 bzw. als Intervall [-0.2752 ... 1.7678] Ns/m²
- η = 1.1172 ± 1.6216 bzw. als Intervall [-0.5044 ... 2.7389] Ns/m² η = 0.6983 ± 0.3654 bzw. als Intervall [0.3328 ... 1.0637] Ns/m²
- $\eta = 1.3966 \pm 0.7475$ bzw. als Intervall [0.6490 ... 2.1441] Ns/m²

2) Viskosität über lineare Regression

 $\eta = 0.5190 \pm 0.5502$ bzw. als Intervall [-0.0311 ... 1.0692] Ns/m²


```
%Anna
disp(" ")
```

```
disp("<strong> IV) --- Messwerte Anna - ecover Colorwaschmittel flüssig Konzentrat Apfelblüte
```

IV) --- Messwerte Anna - ecover Colorwaschmittel flüssig Konzentrat Apfelblüte & Freesie ---

%imshow(imageEcover)
[d4, v4, a4, b4] = eval_data(dataAnna);

 $data = 10 \times 2 \ table$

	Blase_in_mm	Steigzeit_5
1	1.5000	15.2000
2	1.0000	25.0000
3	3.0000	13.2000
4	2.0000	13.9000

	Blase_in_mm	Steigzeit_5
5	1.0000	20.0000
6	0.5000	33.3000
7	3.0000	13.1000
8	3.0000	13.9000
9	5.0000	1.0000
10	4.5000	2.0000

1a) Viskosität über den Mittelwert aus 10 Messungen

mittelwert = 0.6373

standardabweichung = 0.5099
standardunsicherheit = 0.1612

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit

 $T = 10 \times 6 \text{ table}$

	d	V	eta	deltaEta	reynold	turbulent
1	0.0015	0.0033	0.3821	0.6400	0.0132	0
2	0.0010	0.0020	0.2793	0.7052	0.0073	0
3	0.0030	0.0038	1.3273	1.1656	0.0088	0
4	0.0020	0.0036	0.6212	0.7897	0.0119	0
5	0.0010	0.0025	0.2235	0.5582	0.0115	0
6	0.0005	0.0015	0.0930	0.4619	0.0083	0
7	0.0030	0.0038	1.3172	1.1556	0.0089	0
8	0.0030	0.0036	1.3977	1.2364	0.0079	0
9	0.0050	0.0500	0.2793	0.1370	0.9174	1
10	0.0045	0.0250	0.4525	0.2473	0.2548	1

2) Viskosität über lineare Regression

ausgleichsgerade =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	8.1028e-07	3.685e-07	2.1989	0.059097
x1	0.00012196	2.059e-05	5.9232	0.00035241

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 9.7e-07

R-squared: 0.814, Adjusted R-Squared: 0.791

F-statistic vs. constant model: 35.1, p-value = 0.000352

Übersicht der berechneten Viskositäten

p = 68.7200

t = 1.0600

```
1a) Viskosität über den Mittelwert aus 10 Messungen
η = 0.6373 ± 0.1709 bzw. als Intervall [0.4664 ... 0.8082] Ns/m²

1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit
η = 0.3821 ± 0.6784 bzw. als Intervall [-0.2963 ... 1.0605] Ns/m²
η = 0.2793 ± 0.7475 bzw. als Intervall [-0.4682 ... 1.0269] Ns/m²
η = 1.3273 ± 1.2355 bzw. als Intervall [0.0917 ... 2.5628] Ns/m²
η = 0.6212 ± 0.8370 bzw. als Intervall [-0.2158 ... 1.4582] Ns/m²
η = 0.2235 ± 0.5917 bzw. als Intervall [-0.3682 ... 0.8151] Ns/m²
η = 0.0930 ± 0.4896 bzw. als Intervall [-0.3966 ... 0.5827] Ns/m²
η = 1.3172 ± 1.2249 bzw. als Intervall [0.0923 ... 2.5422] Ns/m²
```

2) Viskosität über lineare Regression

 $\eta = 0.2725 \pm 0.2889$ bzw. als Intervall [-0.0164 ... 0.5614] Ns/m²

 η = 1.3977 ± 1.3106 bzw. als Intervall [0.0870 ... 2.7083] Ns/m² η = 0.2793 ± 0.1452 bzw. als Intervall [0.1341 ... 0.4245] Ns/m² η = 0.4525 ± 0.2621 bzw. als Intervall [0.1904 ... 0.7146] Ns/m²

Plot aller Werte

```
disp(" ")
```

Plotten der Einzelwerte und Ausgleichsgeraden aller Gruppenmitglieder

```
x = (0:1e-3:50*1e-3);
y1 = a1*x + b1;
y2 = a2*x + b2;
y3 = a3*x + b3;
y4 = a4*x + b4;
h1 = plot(x,y1, "r");
hold on;
    plot(v1,(d1 ./2).^2, "rx");
    h2 = plot(x,y2, "g");
    plot(v2,(d2 ./2).^2, "go");
    h3 = plot(x,y3, "b");
    plot(v3,(d3 ./2).^2, "b+");
    h4 = plot(x,y4, "m");
    plot(v4,(d4 ./2).^2, "ms");
    grid on;
    title('r² vs. v | lineare Regression');
    ylabel('r²_{Blase} in m²', 'Interpreter', 'tex');
xlabel('v_{Blase} in m/s', 'Interpreter', 'tex');
    legend([h1 h2 h3 h4], {"Frosch - Michael","W5 - Benjamin", "Frosch - Jan","ecover - Anna"
    set(gcf, 'position', [0.0000, -0.0000050, 600, 500])
    xlim([0.0000 0.025]);
    ylim([-0.0000050 0.0000350]);
hold off;
```



```
disp(" ")
```

disp("Wie im Bericht beschrieben können wir die lineare Regression nur für die Messdaten von I

Wie im Bericht beschrieben können wir die lineare Regression nur für die Messdaten von Michael und Benjamin anwend

```
h1 = plot(x,y1, "r");
hold on;
  plot(v1,(d1 ./2).^2, "rx");

h2 = plot(x,y2, "g");
  plot(v2,(d2 ./2).^2, "go");

grid on;
  title('r² vs. v | lineare Regression');
  ylabel('r²_{Blase} in m²', 'Interpreter', 'tex');
  xlabel('v_{Blase} in m/s', 'Interpreter', 'tex');
  legend([h1 h2], {"Frosch - Michael", "W5 - Benjamin"});
```

```
set(gcf, 'position', [0.0000, -0.0000050, 600, 500])
xlim([0.0000 0.025]);
ylim([-0.0000050 0.0000350]);
hold off;
```



```
function [r_d, r_v, r_a, r_b] = eval_data(tmpdata)
% Rückgabewerte sind Durchmesser d und Geschwindigkeit v
% sowie Koeffizienten der Geradengleichung y = a*x + b
data = tmpdata
```

Konstanten

Steigzeit der Blasen für 5 cm in s

```
t = data.Steigzeit_5cm_in_s;
```

Geschwindigkeit der Blasen in m/s

```
v = s ./ t;
```

Durchmesser der Blasen in m

```
d = data.Blase_in_mm .* 1e-3;
r = d / 2;
```

Dichte des Spülmittels in kg/m³

```
%aus Sicherheitsdatenblatt Frosch Aleo Vera Spül-Lotion
rho = 1025;
```

Viskosität des Spülmittels in N*s/m²

```
eta = (2*rho*g * (d ./2).^2) ./ (9 .* v);
```

Statistische Kenngrößen der berechneten Viskosität

```
disp(" ")
disp("<strong> 1a) Viskosität über den Mittelwert aus 10 Messungen </strong>")
mittelwert = mean(eta)
standardabweichung = std(eta)
standardunsicherheit = standardabweichung / sqrt(length(eta))
```

Reynolds-Zahl zur Abschätzung der Strömung

```
reynold = (v .* d .* rho) ./ (eta);
%Kugeln ab Re > 0.2 als turbulente Strömung
turbulent = reynold > 0.2;
```

Abschätzung der Unsicherheiten

```
disp(" ")
disp("<strong> 1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit </str
%geschätzte Unsicherheit für Durchmesser
% 0.5 mm (Halber Milimeter nach Augenmaß abschätzbar)
b_deltaD = 0.5 * 1e-3;
%geschätzte Unsicherheit für Zeit 0.5 s
% (Genaugigkeit von 0.5 Sekunden durch Software bestimmbar)
b_deltaT = 0.5;
%geschätzte Unsicherheit für Geschwindigkeit m/s
b_deltaV = b_deltaD / b_deltaT;

%Dreieckverteilung Geschwindigkeit
u_Vdreieck = b_deltaV / 2 * sqrt(6);</pre>
```

```
%Dreieckverteilung Durchmesser
u_Ddreieck = b_deltaD / 2 * sqrt(6);
```

Fehlerfortpflanzung - Kombinierte Standardunsicherheit

```
%Ableitung eta nach Geschwindigkeit
dEta_dV = - (2 * r.^2 * g * rho) ./ (9 * v.^2);
%Ableitung eta nach Radius
dEta_dR = (4 * g * rho * r) ./ (9 * v);

%Kombinierte Standardunsicherheit
deltaEta = sqrt((dEta_dV .* u_Vdreieck).^2 + (dEta_dR .* u_Ddreieck).^2);
```

Darstellung der Werte als Tabelle

```
%varNames = {"d in m" "v in m/s" "eta in Ns/m²" "delta eta" "Re" "Turbulent?"}
T = table(d, v, eta, deltaEta, reynold, turbulent)
```

Ausgleichsgerade (lineare Regression) von r² zu v

```
disp(" ")
disp("<strong> 2) Viskosität über lineare Regression </strong>")
ausgleichsgerade = fitlm(v,(d ./2).^2, "linear")
steigung = ausgleichsgerade.Coefficients.Estimate(2);
intercept = ausgleichsgerade.Coefficients.Estimate(1);
se_v = ausgleichsgerade.Coefficients.SE(2);
se_r_2 = ausgleichsgerade.Coefficients.SE(1);
```

Plotten der Werte und Ausgleichsgeraden

```
%plot(v,(d ./2).^2, "x")
%hold on
    plot(ausgleichsgerade)
    grid on
    title('r² vs. v | lineare Regression')
    ylabel('r²_{Blase} in m²', 'Interpreter', 'tex')
    xlabel('v_{Blase} in m/s', 'Interpreter', 'tex')
    set(gcf, 'position', [0.0000, -0.0000050, 600, 500])
%hold off
```

Rückgabewerte

```
r_d = d;
r_v = v;
r_a = steigung;
r_b = intercept;

%r.^2 = (9 * eta * v) / (2 * g * rho)

%Zufallspunkt
v = 0.5;
```

```
%Ausgleichsgerade Y-Wert zu Zufallspunkt
   r 2 = v * r a;
   eta_linReg = (r_2 * 2 * g * rho) / (9 * v);
   %Ableitung eta nach Steigung
    dEta_dm = (2 * g * rho) / 9;
   %Ableitung eta nach Radius
   dEta_dR = (4 * g * rho * sqrt(r_2)) / (9 * v)
   %Kombinierte Standardunsicherheit Lineare Regression
    deltaEta LinReg = abs(dEta dm * se r 2);
   disp(" ")
   disp("<strong> Übersicht der berechneten Viskositäten </strong>")
   %% t-Verteilung für wenige Messwerte
   % Freiheitsgrade v = 9 \% v = n - 1
   p = 68.72 %Aus Tabelle (GUM Arbeiten mit Messdaten S. 94)
   t = 1.06 %Aus Tabelle (GUM Arbeiten mit Messdaten S. 94)
   disp(" ")
   disp("<strong> 1a) Viskosität über den Mittelwert aus 10 Messungen </strong>")
    Eta_Intervall1 = [mittelwert - t * standardunsicherheit, mittelwert + t * standardunsiche
   text = sprintf("%s = %0.4f %s %0.4f bzw. als Intervall [%0.4f ... %0.4f] Ns/m²",char(951)
   disp(text)
   disp(" ")
   disp("<strong> 1b) Viskosität über Einzelwerte mit kombinierter Standardunsicherheit </st
    Eta_Intervall2 = [eta, -t*deltaEta,eta,t*deltaEta];
   for i = 1:length(eta)
        text = sprintf("%s = %0.4f %s %0.4f bzw. als Intervall [%0.4f ... %0.4f] Ns/m²",char(
        disp(text)
    end
   disp(" ")
   disp("<strong> 2) Viskosität über lineare Regression </strong>")
    Eta_Intervall3 = [eta_linReg - t * deltaEta_LinReg, eta_linReg + t * deltaEta_LinReg];
   text = sprintf("%s = %0.4f %s %0.4f bzw. als Intervall [%0.4f ... %0.4f] Ns/m²", char(951)
   disp(text)
end
```