Sieci komputerowe

Wykład 15 IPv6

Dlaczego IPv6

- Podstawowy i najważniejszy powód
 - Więcej adresów
 - Urządzenia PDA, telefony komórkowe, wszelkie urządzenia elektroniczne...
 - Nowi użytkownicy Chiny, Indie
- IPv5?
 - Internet Stream Protocol
 - Eksperymentalny
 - QoS

IPv4

- 3706,65 milionów adresów IPv4
- 925,58 milionów wolnych adresów
 - Czyli pozostaje ok. 25% wolnych adresów IPv4! -Dlaczego?
 - Bo są niechętnie przydzielane przecież jest NAT
 - NAT często powoduje problemy

Użycie adresacji IPv4

			2009-01-01	2008-01-01	increase	Country
1	-	US	1458.21 M	1408.15 M	4%	United States
2	(3)	CN	181.80 M	135.31 M	34%	China
3	(2)	JP	151.56 M	141.47 M	7%	Japan
4	_	EU	120.29 M	120.35 M	0%	Multi-country
in	Europe					-
5	_	GB	86.31 M	83.50 M	3%	United Kingdom
6	(7)	DE	81.75 M	72.46 M	13%	Germany
7	(6)	CA	74.49 M	73.20 M	2%	Canada
8	-	FR	68.04 M	67.79 M	0%	France
9	_	KR	66.82 M	58.86 M	14%	Korea
10	_	ΑU	36.26 M	33.43 M	8%	Australia
11	(12)	BR	29.75 M	23.46 M	27%	Brazil
12	(11)	IT	29.64 M	24.04 M	23%	Italy
13	(16)	TW	24.01 M	19.83 M	21%	Taiwan
14	(18)	RU	23.18 M	17.01 M	36%	Russia
15	(14)	ES	21.67 M	20.42 M	6%	Spain

NAT

- Problemy z urządzeniami np. VoIP i wieloma protokołami
- Zmniejsza tempo rozwoju aplikacji i protokołów
- Zmniejsza wydajność i niezawodność

Zalety większej liczby adresów

- Ipv6: 6,67x10²⁷ adresów na metr kwadratowy :)
- IPv4: ok. 8,5 adresu na km kwadratowy :(
- Łatwość autokonfiguracji
- Łatwiejsze zarządzanie adresacją
- Więcej miejsca na wiele poziomów hierarchii, możliwość efektywnej agregacji tras
- NAT nie jest konieczny

Zapis adresu IPv6

- Adresy 128bit
- Reprezentacja heksadecymalna z dwukropkiem po 16 bitach
- 2001:6a0:1:b001:21d:9ff:fe05:a97
- Skompresowana forma zapisu
 - ff01:0:0:0:0:0:0:45 \rightarrow ff01::45
- URL: http://[2001:6a0:1:b001:21d:9ff:fe05:a97]:443/

Równoważne zapisy

- 2001:06a0:0000:0000:0000:0000:1228:57ab
- 2001:06a0:0000:0000:0000:1228:57ab
- 2001:06a0:0:0:0:0:1228:57ab
- 2001:06a0:0:0::1228:57ab
- 2001:06a0::1228:57ab
- 2001:6a0::1228:57ab

Adresacja IPv6

- ::/128 adres nieokreślony (używany aby wskazać brak adresu IPv6)
- ::1/128 adres loopback (tak jak 127.0.0.1)
- ff00::/8 multicast
 - ff02::2 wszystkie routery
 - ff02::1 wszystkie węzły
- fe80::/10 link-local unicast
- fc00:/8 unique local unicast (ULA)
- Inne global unicast (RFC 3587)

Adresy Global Unicast

- Global routing prefix identyfikacja odbiorcy jego zbioru podsieci
 - Obecnie przydzielane prefiksy: 2001, 2003, 2400...
- Subnet ID identyfikacja podsieci wewnątrz sieci odbiorcy
- LIR otrzymuje /32
- /48 do /128 przydzielane dla użytkowników końcowych

Interface ID

- Zwykle budowane wg EUI-64 (ang. Extended Unique Identifier)
 - Choć są inne metody
 - np. ustawienie ręczne
 - generowanie pseudo-losowe

EUI-64

U/L – Universal/Local – dokonuje się inwersji

Link local

- Używany przy autokonfiguracji, gdy nie ma routera
- Umożliwia komunikację w sieci lokalnej

ULA

- Unique Local IPv6 Unicast Address
- Global ID są tworzone w sposób pseudolosowy

Własności ULA

- Dobrze znany prefiks, ułatwia filtrowanie na ruterach brzegowych
- Niezależny od usługodawcy (ISP)
- W przypadku rutowania poza sieć lokalną nie wystąpi konflikt

Autokonfiguracja

- ICMPv6 (m.in. Neighbor Discovery + Protokół Multicast Listener Discovery + SAA +...)
 - Stateless Address Autoconfiguration (SAA)
 - Na początku powstaje adres link-local
 - Tworzona jest wiadomość Neighbor Solicitation z wygenerowanym adresem jako docelowym, aby wykryć konflikt, jeśli nie ma konfliktu, adres jest przypisywany do interfejsu
 - Jeśli w sieci jest router, wysyła komunikaty Router Advertisement, w których informuje hosty np. o prefiksie unicast global

RADVD

- Linux IPv6 Router Advertisement Daemon
 - Wysyła komunikaty Router Advertisement
- Istnieje także implementacja DHCPv6
 - Lepsza kontrola nad adresacją
 - Możliwość przesyłania dodatkowych parametrów, np. adresów DNS
 - DNS mogą być ogłaszane także w komunikatach RA

IPv6 na MIM UW

- Prefix: 2001:6a0:1:b000::/60
- Rozgłaszane wewnątrz prefiksy:
 - 2001:6a0:1:b001::/64
 - 2001:6a0:1:b002::/64
 - 2001:6a0:1:b003::/64
 - **–** (...)

W IPv6 ND zamiast ARP

- Neighbor Discovery:
 - Komunikaty:
 - Neighbor Solicitation Message (DA: multicast)
 - Neighbor Solicitation Message (DA: adres IPv6 pytającego)
- Nie ma komunikatów typu broadcast

ICMPv6

Typ Znaczenie

Raporty błędów

Cel nieosiągalny (Destination Unreachable, RFC4443) 2 Pakiet za duży (Packet Too Big, RFC4443) 3 Przekroczono czas (Time Exceeded, RFC4443) 4 Problem parametrów (Parameter Problem, RFC4443) 127 Zarezerowano na potrzeby rozszerzeń protokołu Informacje Żądanie echa (Echo Request RFC4443) 128 Odpowiedź echa (Echo Reply RFC4443) 129 133 Zapytanie o ruter (Router Solicitation RFC4861) 134 Ogłoszenie rutera (Router Advertisement RFC4861) 135 Zapytanie o adres sprzętowy sąsiada (Neighbor Solicitation RFC4861) 136 Ogłoszenie adresu sprzętowego sąsiada (Neighbor Advertisement RFC4861) 255 Zarezerowano na potrzeby rozszerzeń protokołu

Nagłówek IPv6

+-+-+-+	-+-+-+-	+-+-+	+-+	-+	+-+	-+-+-+-+	+-+	-+-+-	+-+-+-	+-+
Version										١
+-+-+-+	-+-+-+-	+-+-+-	+-+	-+	+-+	-+-+-+	+-+	-+-+-	+-+-+-	+-+
1	Payload	_		•			•	-		١
+-+-+-+	-+-+-+-	+-+-+	+-+	-+	+-+	-+-+-+	+-+	-+-+-	+-+-+-	+-+
+										4
										١
+	Source Address									4
1										
+										4
+-+-+-+	-+-+-+-	+-+-+	+-+	-+	+-+·	-+-+-+	+-+	-+-+-	+-+-+-	+-+
+										4
				_						
+		De	estinat.	ion	Addre	ess				+
+										4
1					_					
	-+-+-+-+				L _ L _ L .				. 4. – 4. – 4. –	4-4

Własności nagłówka IP6

- Prostsza budowa w porównaniu z IPv4
 - 40 bajtów (tylko 2x długość nagłówka IPv4)
 - Adresy 128 bit
 - Brak opcji i pół związanych z fragmentacją
 - Brak sumy kontrolnej nagłówka
 - Pole Next Header rozbudowuje funkcjonalność w efektywny sposób

Next Header

+	+						
IPv6 header	TCP header + da	TCP header + data					
Next Header = TCP	 	 					
±							
IPv6 header	Routing header	TCP header + data	a				
Next Header = Routing	= Next Header = TCP	 					
+	+	+	 +				
IPv6 header	Routing header	Fragment header 					
Next Header = Routing	Next Header = Fragment	Next Header = TCP					
Next Header = Routing +	Next Header = TCP TCP Houting header Next Header =	 	 +				

Next Header c.d.

- Nagłówki różnych typów
 - Hop-by-Hop Options
 - Routing (lista adresów routing źródłowy)
 - Fragment (obsługa fragmentacji, ale nie przez routery pośrednie)
 - Destination Options
 - Authentication
 - Encapsulating Security Payload

Migracja do IPv6

- Nie trzeba rezygnować
 - Adresy i ruting IPv4 i IPv6 mogą współistnieć na danym interfejsie lub w sieci
 - Tunelowanie IPv6 po IPv4
 - Do testów: http://tunnelbroker.net/
 - Aplikacje wybierają wersje protokołu IP bazując na istnieniu rekordu AAAA w DNS
 - Jeśli istnieje jest używany IPv6, jeśli nie IPv4

Konfiguracja tunelu

Rejestracja:

- http://tunnelbroker.net
 - modprobe ipv6
 - ip tunnel add he-ipv6 mode sit remote 216.66.84.42 local 193.0.96.15 ttl 255
 - ip link set he-ipv6 up
 - ip addr add 2001:470:1f12:116::2/64 dev he-ipv6
 - ip route add ::/0 dev he-ipv6
 - ip -f inet6 addr