(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-314177 (P2002-314177A)

(43)公開日 平成14年10月25日(2002.10.25)

(51) Int.Cl.7

證別記号

FΙ

テーマコード(参考)

H01S 3/094

H01S 3/094

S 5F072

審査請求 未請求 請求項の数5 OL (全 11 頁)

(21)出願番号 特顧2001-114255(P2001-114255) (71)出願人 000002200 セントラル硝子株式会社 山口県宇部市大字沖宇部5253番地 (72)発明者 井上 博之 東京都武蔵野市境南町1-20-9 (72)発明者 の保田 能徳 山口県宇部市大字沖宇部5253番地 セントラル硝子株式会社化学研究所内 (74)代理人 100108671 弁理士 西 義之

最終頁に続く

(54) [発明の名称] $1.4\sim1.52\mu\mathrm{m}$ 帯の光増幅器またはレーザー発振器の励起方法

(57)【要約】

【課題】 $1.4 \sim 1.52 \mu \text{m帯の光増幅器またはレーザー発振器の励起方法を提供する。$

【解決手段】 少なくとも励起光源、合分波器、増幅用光導波路を備えた1.4~1.52 μ m帯光増幅器において、波長0.75~0.85 μ mの範囲から少なくとも1波長と、波長1.35~1.45 μ mの範囲から少なくとも1波長の、互いに異なる二種類以上の波長で励起する。

【特許請求の範囲】

【請求項 1 】 少なくとも励起光源、合分波器、増幅用 光導波路を備えた1. 4~1. 52 μm帯光増幅器にお いて、増幅用光導波路のコア部はTmを含有し、波長 0. 75~0. 85 μ m の 範囲 から 少なくとも 1 波長 (励起波長1) と、波長1.35~1.45 µ m の範囲 から少なくとも1波長(励起波長2)の、互いに異なる 二種類以上の波長で励起することを特徴とする、1.4 ~1.52 µm帯光増幅器の励起方法。

【請求項2】 少なくとも励起光源、台分波器、増幅用 10 光導波路を備えた1. 4~1. 52μm帯レーザー発振 器において、波長0. 75~0. 85μmの範囲から少 なくとも 1 波長 (励起波長 1) と、波長 1. 35~1. 45 μmの範囲から少なくとも1波長(励起波長2) の、互いに異なる二種類以上の波長で励起することを特 徴とする、1. 4~1. 52 μm帯レーザー発振器の励 起方法。

【請求項3】 増幅用光導波路のコア部が、Tmを添加 したハライド酸化物ガラス、ハライドガラス、カルコゲ ナイドガラス、カルコハライドガラス、テルライトガラ ス、ビスマス酸塩ガラス、ゲルマネートガラス、ガリウ ム酸塩ガラスから選ばれる少なくとも一種類のガラスか らなることを特徴とする、請求項1または請求項2に記 載の1. 4~1. 52 µm帯の光増幅器の励起方法また は1.4~1.52μπ帯レーザー発振器の励起方法。 【請求項4】 励起光源の少なくとも一つが半導体レー ザーであることを特徴とする、請求項1から請求項3の いずれか記載の1.4~1.52 µm帯光増幅器の励起 方法または 1. 4~1. 52 μm帯レーザ発振器の励起 方法。

【請求項5】 波長0.75~0.85 µ m の範囲から 選ばれる励起波長の励起パワー (P1)と、波長1.3 5~1. 45 μmの範囲から選ばれる励起波長の励起バ ワー (P2) の比率 (R) が、R=P1/(P1+P 2)×100%で表されるとき、パワー比率が0%<R ≦90%の範囲内にあることを特徴とする、請求項1~ 請求項4のいずれか記載の1.4~1.52μm帯光増 幅器の励起方法または1.4~1.52μm帯レーザー 発振器の励起方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、1.4~1.52 μm帯の光通信などで用いられる光増幅器またはレーザ 一発振器の励起方法に関するものである。

[0002]

【従来の技術】光通信において、石英ファイバの最低損 失波長である1.55 um帯、0分散波長である1.3 μm帯が使われてきた。これらの波長帯に対して光増幅 器の研究開発が活発に行われ、特に1.55 μm帯で大 きな成功をおさめてきた。近年になり、インターネット 50 報告している。

やデータ伝送の高速大容量化が求められ、通信容量増加 の観点から波長多重通信 (WDM) が実用化されつつあ る。しかし、1.55μm帯だけでは、いずれ容量が不 足する可能性があり、別の帯域を求める動きが出てき た。特に、1. 3から1. 7 μmまでの石英ファイバー の広い透過波長範囲全域を通信に使用したいと言う要求 が強い。このため、Tmを添加した1.47μm帯や 1. 65 μm帯ファイバー増幅器の研究が盛んに行われ

40

ている。 [0003] 【発明が解決しようとする課題】1. 47 μm帯の増幅 またはレーザー発振にはTmを添加した低フォノンガラ スのファイバーを使用する提案がなされている(1988年 第14回欧州光学委員会議事録、D.N.Payne他 Rareearth -doping fiber laser and amplifiers pp49-53.および IEEE.J.Quantum Electronics vol.24(6) (1988) 920-923)。そのTmの準位を図1に示す。1. 47 μm帯の 増幅とは'H,→'F,の誘導放出過程を利用して行われる ものであり、実際には1. 4~1. 52μmの幅広い利 得、増幅帯域を持っている。励起方法としては、1.0 6 μmで二段階励起する方法(特開平5-275792)、0. 7~0.89μm帯でTmの'H,を直接励起する方法 (特開平4-265251)、1.2 μm帯で二段階励起する方 法 (特開平4-180279) などが開示されている。しかし、 Tmの'H, 準位の蛍光寿命は'F, の蛍光寿命よりも短 く、増幅またはレーザー発振に必要な反転分布を得ると とは困難であることが知られている。このような特性は 自己停止 (Self terminating) 機構と言われ、高効率な 増幅またはレーザー発振に不向きとされている。このた め、*F.を短寿命化するために、Eu, Tb, Ho, P rなどを添加する方法(特開平4-265251,特開平5-1451 68、特開平7-45899) が開示されている。しかし、これ らの共添加元素は、一定の濃度以上添加すると、目的波 長の1. 4~1. 52 μm帯にも吸収の裾がかかるなど して、好ましくないエネルギー移動を生じ、1.4~ 1. 52 μm帯の増幅効率に悪影響を与えることから、 増幅媒質の組成に制限がある。また、Tm添加ファイバ --を二波長で励起する提案もなされているが、多くはア ップコンバージョン過程を利用した短波長光源である (例えば、特開平5-319858、特開平8-307000など)。 【0004】とれに対し、最近になって励起効率とパワ 一変換効率の向上を目的とした研究が活発になってき た。特開2001-007426や特開2001-024263では、二波長励 起によって従来の一波長または二波長励起よりも高効率 で増幅できる事が示されている。また、S.Aozasa他、OF C2001 Technical digest series, FD1やF.Ray他、OFC20 01 Technical digest series, PD2Tは、 $1.40\,\mu$ mで の一波長励起や1.24 μmと1.40 μmの二波長励起 により40%を越えるパワー変換効率が得られることを

3

【0005】しかし、波長1.40 μ mの一波長で励起する5.Aozasaらの方法では、対応する吸収がないために基底状態である 3 H。から効率よく上準位に励起できない(図1 5 8照)。また、F.Rayらの方法では発光下準位である 3 H。 $\rightarrow {}^{3}$ H。 $\rightarrow {}^{}^{3}$ H。 $\rightarrow {}^{3}$ H。 $\rightarrow {}^{3}$ H。 $\rightarrow {}^{3}$ H。 $\rightarrow {}^{3}$ H。 $\rightarrow {$

[0006]

【課題を解決するための具体的手段】本発明者らは、前記問題を包括的に考慮し、鋭意検討の結果、'H,と'F,問で効率よく反転分布を形成できるだけでなく、高い量子効率で増幅できる励起方法を見いだし、本発明に到達した。

【0008】以下本発明について詳述する。

【0009】Tmを添加した高効率な1.4~1.52 μm帯 (エネルギー差:約6800c m-1) の光増幅ま たはレーザ発振には、フォノンエネルギー700cm-1 以下の低フォノンエネルギー材料が適しており、シリカ 系酸化物やホウ酸系酸化物のような高フォノンエネルギ 30 ー材料(一般に] 000c m-1程度)は、不適当とされ ている。このような低フォノンエネルギーガラス材料と しては、ハライドガラス、カルコゲナイドガラス、ハラ イド酸化物ガラス、カルコハライドガラス、テルライト ガラス(亜テルル酸塩ガラス)、ビスマス酸塩ガラス、 グルマネートガラス、ガリウム酸塩ガラスなどが知られ ている。ところが、これらの低フォノンエネルギーガラ ス材料は、アップコンバージョンレーザー材料としても よく知られており、通常の励起方法では赤や青の発光に 励起エネルギーが消費され、1. 4~1. 5 2 μπ帯の 発光効率はきわめて低いととが知られている。また、 H,の蛍光寿命は発光下準位の'F,の蛍光寿命よりも短 く、自己停止機構の代表例とされ、レーザー発振自体が 困難なことが知られており、発振に成功した場合でも効 率はきわめて低い(例えば J.Y.Allain 他 , Electron ics lett. 25(1989)1660-1662) 。このため、前述の様 々な方法が試みられてきたが、いずれも最適な方法では なかった。

【0010】 これらの方法に対し、本発明は波長0.7 範囲内で設定することができる。例えば「m:2BLA5 $\sim 0.85 \mu$ mの範囲から少なくとも 1 波長と、波長 50 N(フッ化物ガラス)ではハイパワー半導体レーザーの

1. 35~1. 45 μmの範囲から少なくとも1波長の、互いに異なる二種類以上の波長で励起することで、

反転分布の形成が容易になる上に高い量子効率を得られ、低い励起パワーで高効率に増幅あるいはレーザー発振可能であることを見いだしたものである。

【0011】本発明の励起方法をさらに詳しく説明する (図2)。まず、光導波路のコアに含有されているTm イオンを、波長0. 75~0. 85μmから選ばれる少 なくとも1波長の励起光(以下、励起光1とする)によ 10 って、基底状態 ('H。) →'H,に励起する (励起過程 1)。次に、'H,→'F,の遷移(放射過程2)で1.4 ~1.52 µm帯の発光または増幅を生じる。次に、波 長1.35~1.45 µmの範囲から選ばれる少なくと も1波長の励起光(以下、励起光2とする)によって、 発光下準位(' F ₄)→' H ₄ のサブレベルに励起する(励 起過程2)。 との励起によって,F,の存在確率を実効的 に減少させ、自己停止機構を回避できるだけでなく、最 高の量子効率を得られる。最後に、再び³ H,→' F .(放 射過程2)により1.4~1.52μ㎡の発光が生じ る。また、この励起方法では励起光2による'H,→'F, の過程(励起過程3)によって、'H・の存在確立を効率 よく減少させられる特徴がある。

【0012】 3 H, の存在確率が増加すると、Tmの吸収スペクトルおよびESAスペクトル(図3)より1.4~1.7 μ mの非常に広い波長域で励起状態吸収(ESA: Excited State Absorption)が生じ、増幅効率を著しく低下させることが判る。このESAを、本発明は効率よく避けることができるが、さらに1.5~1.7 μ m帯の励起光を追加しても良い。この方法は、1.5 μ m付近のESA 損失(3 H, \rightarrow 3 F,)を低減するため、長波長側での利得特性を改善する効果もあり(T. Kasamatsu他,Proceedings OAA 5 99, POP1)、利得波長シフトT m添加ファイバー増幅器(CS-TDFA: Gain Shifted Thulium Doped Fiber Amplifier)として注目されている方法であ

[0013] 本発明の励起方法では、図2からすぐに判るとおり、 3 F、を仮想の基底準位として用いた準3準位過程になっており、反転分布の形成はきわめて容易である。また、この方法では基底準位から発光上準位である 3 H、に直接励起するため、高い量子効率を得られる。励起波長1の中でも、 3 H、 3 H。の誘導放出断面積が小さい0.75 3 0.79 4 1 mm は特に好ましい。また、励起波長2の中でも、1.35 3 1.42 4 1 mm は 3 1 F、の増幅過程に対して雑音要因となりにくいので、特に好ましい。

【0014】励起波長1と励起波長2の最適な波長選択は、Tmの添加濃度やガラス材料の種類によって変化するため、一概には規定できないが、本発明の各波長帯の範囲内で設定することができる。例えばTm: ZBLAN (フェル物ガラス)ではハイバワー半導体レーザーの

10

6

入手が可能な $0.78\mu m$ (励起波長1) と $1.40\mu m$ (励起波長2) を選ぶことができる。最適な励起光パワーの組み合わせは、Tm 濃度や光導波路の材質、導波路の開口数などに依存するため、一概には規定できないが、([励起波長1のパワー]/[励起波長1のパワー+励起波長2のパワー])×100%で表される励起パワー比率(R)が0%<R \leq 90%の範囲であることが好ましい。この範囲よりも励起波長2(波長1.35~ $1.45\mu m$)が弱い場合は、 1 1

【0015】本発明の励起方法を使用する場合、Tm添加煤質で1.47μm帯の増幅が可能な材料なら何でも使用可能であることは明らかである。このような材料としては、フォノンエネルギーの低いガラスが一般的に利用されており、特にカルコゲナイドガラス、ハライドガラス、カルコハライドガラス、ハライド酸化物ガラス、テルライトガラス(亜テルル酸塩ガラス)、ビスマス酸塩ガラス、ゲルマネートガラス,ガリウム酸塩ガラスなどが好ましい。

)

【0016】励起レーザーとしては、半導体レーザー、色素レーザー、固体レーザー、ガスレーザーなど、本発明の励起波長帯で発振するレーザーなら何でも良いが、特にファイバービグテール付きの半導体レーザー、ファイバーと結合した固体レーザー、ファイバーレーザーが好ましい。価格やサイズの面から、半導体レーザーが励起光源として好適である。また、Tmの吸収帯を完全に利用して励起効率を高めるために、広い発振波長帯域を初してがして傾えばラマンレーザー)を用いることや、各励起波長帯で波長の異なる複数のレーザーを組み合わせることも効果的である。

【0017】光増幅器を構成する場合は、波長分割多重 **素子(W D M)や光アイソレータのような光通信用光学 累子を、必要に応じて使用することができる。また、増** 幅器に利得監視や利得等化機能を内蔵または付属させる と、光通信システムの信頼性が向上するので好ましい。 利得の監視には、実質的に入射信号光強度と出力信号光 強度を比較できる方法なら、どんな方法を用いても良 い。波長多重通信を行う場合は、各波長に割り当てられ た信号ごとに検出、監視できる方法が望ましい。利得等 化機能は、受動的な方法でも能動的な方法でも良い。受 助的な利得等化方法としては、光学フィルターを利用し た構成が簡単である。能動的な利得等化方法は、利得監 視機能とフィードバック機能から構成され、実質的に入 射信号光強度と出力信号光強度を比較し、利得を一定に できる方法なら、どんな方法を用いても良い。最近では 多段構成とし、各段の励起光強度や励起波長ごとのパワ 一比を変化させる方法が広く行われている。波長多重通 信を行う場合は、各液長に割り当てられた信号どとに利得等化できる方法が望ましい。利得等化と同様の機能であるが、出力信号光強度を一定に保つような、出力等化機能も利得等化機能と同じように有効である。これらの機能は、遠隔操作でプログラミング可能なマイクロプロセッサなどで、自動的に調整可能になっていることが好ましい。

【0018】レーザー発振器を構成する場合は、光導波路をリング状に接続したり、直列または並列に複数台接続して、高出力化を図ることができる。また、ファイバーグレーティングなどを用いた狭帯域発振、波長可変発振や、パルス圧縮による超短パルス発振も可能である。 【0019】以上のように、励起波長を波長 $0.75\sim0.85\mu$ m帯と波長 $1.35\sim1.45\mu$ mの二波長励起とすることで、通常の一波長または二波長励起よりも高効率な $1.4\sim1.52\mu$ m帯光増幅器またはレーザー発振器を提供できる。

【0020】以下、実施例を挙げて本発明をさらに説明 するが、本発明はこれらの実施例に限定されるものでは ない。

[0021]

【実施例】実施例1

コアにTmを0.2mo1%、添加したフッ化物ガラスファイバーを用いた。コアとクラッドの基本ガラス組成を以下に示す。Tmは、Laを置換している。数字はmo1%である。

コア: 51ZrF, -19BaF, -4.5LaF, -2YF, -2A1F, -13.5LiF-8Pb

クラッド: 40HfF。-10ZrF。-19BaF。-3LaF。-2YF。-4A7F。-22 NaF

このファイバーの比屈折率差は1. 1%、カットオフ波 長は0. 70μm、コア直径は2. 4μmであった。ファイバー長は16mである。

【0022】次に測定に使用した光増幅器の構成を図4 に示す。励起には波長0.78μmの半導体レーザー2 と、波長1.40μmの半導体レーザー3を合波し、光 合分波素子4と髙NAの石英ファイバー5を介して光増 幅用フッ化物ファイバー1と結合している。石英ファイ バー5とフッ化物ファイバー1の結合はV溝ブロックを 利用し、接合端面は反射損失を低減するため斜めに光学 研磨して、紫外線硬化型の光学接着剤で固定した。 1. 4 7 μ m 帯の信号発生器 6 からの信号光を光合分波索子 4 を介して増幅用ファイバーに入射し、増幅された出射 光を光アイソレーター7に通して計測器8において小信 号利得の測定を行った。入力信号光は波長1.47μ m、パワーが-30dBmの連続光である。波長1.4 Ο μ m の単一波長で励起した場合の小信号利得と、二波 長で同時に励起した場合の小信号利得を図5に示す。二 波長励起の場合の入力パワーは、二波長の合計パワーで あり、パワー比率 (R) は40%に固定されている。二

波長励起では単一波長励起に対して5 d B以上の利得改 善が行われ、しきい値も低くなっていることが判る。 【0023】実施例2

実施例1と同様のフッ化物ファイバーを用い、同様の構 成で励起パワー比を変えて実験を行った。信号光の入射 条件および励起波長は実施例」と同様であり、二波長の 合計パワーは100mWに固定して計測した。結果を図 6に示す。励起波長0. 78 μmのパワー比率(R)が 0<R1≦90%の範囲で、波長1.40μm単一波長 励起の場合よりも高利得であることが判る。特に、パワ 10 B以上高利得であった。 -比率が1.5≦R≦83%の範囲では、1.4 μm単 一波長励起の場合の利得よりも2dB以上髙利得であっ た。

[0024] 実施例3

実施例1と同様の構成で、増幅媒質を1n系フッ化物ガ ラスファイバーとし、小信号利得を測定した。 T mの添 加濃度は0.2m01%であり、Gdの一部を置換して いる。数字はmo1%である。

コア組成:18Inf,-12Gaf,-20ZnF,-27BaF,-3PbF,-10GdF,

クラッド組成: 18InF, -12GaF, -20ZnF, -18BaF, -12SrF, -1 OGdF₃ -10YF₃

このファイバーの比屈折率差は1.1%、カットオフ波 長はO.70μmであった。測定に使用したファイバー 長は16mである。二波長励起は波長0.788 μmの 半導体レーザーと、波長1.38 μmの半導体レーザ -、(パワー比率(R)=40%)を使用した。実施例 1と同様に1.38 µm単一波長励起の場合と二波長励 起の場合を測定した結果、図7に示すように、二波長励 起の方が5dB以上高利得であった。

【0025】実施例4

実施例]と同様の構成で、増幅媒質をテルライト系酸化 物ガラスファイバーとし、小信号利得を測定した。Tm の添加濃度は0.6m01%であり、しaの一部を置換 している。数字はmo1%である。

コア組成: 90TeO, -8BaO-2La, O,

クラッド組成: 81TeO, -16BaO-3Y, O,

ファイバーの比屈折率差は0.7%、カットオフ波長は O. 70 μmであった。測定に使用したファイバー長は 2. 5 m である。励起は波長0. 788 μ m の半導体レ ーザーと、波長1. 40 μm/O)半導体レーザーを使用し た。パワー比率 (R) は40%である。図8に示すよう に、二波長励では1. 40 μm単一波長励起の場合より 3dB以上髙利得であった。

【0026】実施例5

実施例1と同様の構成で、増幅媒質をビスマス系酸化物 ガラスファイバーとし、小信号利得を測定した。 Tmの 添加濃度は0.6m01%であり、Laの一部を置換し ている。

[0027]

コアガラス組成: 75Bi, O, -18B, O, -5SiO, -2La, O, クラッドガラス組成:70Bi, O, -15CdO-15B, O, ファイバーの比屈折率差は1.2%、カットオフ波長は 70 μmであった。測定に使用したファイバー長は 2.5mである。励起は波長0.788μmの半導体レ ーザーと、波長1.40μmの半導体レーザーを使用し た。実施例1と同様に1. 40μπ単一波長励起の場合 と二波長励起(パワー比率(R)=50%)の場合を測 定した結果、図9に示すように、二波長励起の方が3 d

【0028】実施例6

実施例1と同様の構成で、増幅媒質をガリウム酸塩ガラ スファイバーとし、小信号利得を測定した。Tmの添加 濃度は0.3mo1%である。

コア組成: 30K, 0-30Ta, 03-40Ga, 0,

クラッド組成: 30K, O-25Ta, O, -45Ga, O,

このファイバーの比屈折率差は1.2%、カットオフ波 長はO. 70 μmであった。測定に使用したファイバー 長は8mである。励起は波長0.78μmの半導体レー 20 ザーと、波長1.35μmの半導体レーザーを使用し た。実施例1と同様に1.35 µm単一波長励起の場合 と二波長励起(パワー比率(R)=50%)の場合を測 定した結果、図10に示すように、二波長励起の方が3 d B以上髙利得であった。

【0029】実施例7

実施例1と同様の構成で、増幅媒質を硫化物ガラスファ イバーとし、小信号利得を測定した。Tmの添加濃度は O. 2mol%である。数字はmol%である。

[0 0 3 0] $\mbox{\it J}$: 30In, S, -40Ga, S, -30La, S,

30 クラッド: 12A1(PO₃)₃-11A1F₃-30.5RF₂-46.5MF₂ (R:M q.Ca M:Sr,Ba)

TmはLaを置換している。この導波路の比屈折率差は 1. 2%、カットオフ波長はO. 70 µ in であった。測 定に使用したファイバーは長さ14mである。二波長励 起は発振波長 0.78μ mと 1.45μ mの半導体レーザ ーを使用し、パワー比率(R)は20%である。また、 信号光波長は1.50μm、パワーは-30dRmである。 実施例1と同様に1. 45μm単一波長励起の場合と二 波長励起の場合の利得を測定した結果、図11に示すよ 40 うに、二波長励起の方が3 d B以上高利得であった。

【0031】実施例8

実施例1と同じファイバーで同じ構成を用い、波長1. 47 μmの信号光パワーを変化させてパワー変換効率 (PCE) を測定した。パワー変換効率は以下の式で定 發する。

【0032】PCE(%)=[(出力信号パワー)-(入力信 号パワー)] /(励起パワー)×100

励起バワーは台計100mWに固定した。二波長の場 台、波長0.78μmの半導体レーザーと、波長1.4 50 Ομmの半導体レーザーを使用した。励起パワー比率

(R) は40%に固定している。波長1. 40 μ mの単 一波長で励起した場合と二波長で同時に励起した場合の パワー変換効率を図12に示す。二波長励起では単一波 長励起に対して大幅にパワー変換効率が改善できること が判る。

[0033]

1

【発明の効果】本発明の励起方法を用いることにより、 高効率な1.4~1.52 μm帯光増幅器または1.4 ~1.52 µm帯レーザー発振器を構築できる。

【図面の簡単な説明】

- 【図1】Tinの準位図および吸収スペクトルである。
- 【図2】Tmの準位および本発明の励起方法を説明する 図である。
- 【図3】Tmの各準位からの吸収断面積を示す図であ
- 【図4】実施例1における増幅器の構成図である。
- 【図5】実施例1における増幅率の励起パワー依存性を 示す図である。
- 【図6】実施例2における増幅率の励起波長1と励起波 長2のパワー比依存性を示す図である。
- 【図7】実施例3における増幅率の励起パワー依存性を*

*示す図である。

【図8】実施例4における増幅率の励起パワー依存性を 示す図である。

10

- 【図9】実施例5における増幅率の励起パワー依存性を 示す図である。
- 【図 10】実施例6における増幅率の励起パワー依存性 を示す図である。
- 【図11】実施例7における増幅率の励起パワー依存性 を示す図である。
- 10 【図12】実施例8におけるパワー変換効率の信号光パ ワー依存性を示す図である。

【符号の説明】

- 1 光増幅用ファイバー
- 2 励起波長1を供給する光源
- 励起波長2を供給する光源
- 光合分波素子
- 5 高NA石英ファイバー
- 波長1. 4~1. 52μm帯の信号光発生装置
- 光アイソレーター 7
- 計測器 8 20

[図1]

[図3]

[図4]

)

)

)

)

100

励起パワー

(mW)

)

)

【図12】

フロントページの続き

)

(72)発明者 西村 夏哉

山口県宇部市大字沖宇部5253番地 セント

ラル硝子株式会社化学研究所内

(72)発明者 三浦 清貴

山口県宇部市大字冲宇部5253番地 セント ラル硝子株式会社化学研究所内 (72)発明者 手島 卓也

山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社化学研究所内

(72)発明者 藤原 誠司

山口県宇部市大宇沖宇部5253番地 セント ラル硝子株式会社化学研究所内

Fターム(参考) 5F072 AB07 AK06 JJ02 PP07 RR01

YY17

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-314177

(43)Date of publication of application: 25.10.2002

(51)Int.CI.

H01S 3/094

(21)Application number: 2001-114255

(71)Applicant:

CENTRAL GLASS CO LTD

(22)Date of filing:

12.04.2001

(72)Inventor:

INOUE HIROYUKI

KUBOTA YOSHINORI

NISHIMURA NATSUYA

MIURA SEIKI **TEJIMA TAKUYA FUJIWARA SEIJI**

(54) EXCITING METHOD OF OPTICAL AMPLIFIER OR LASER OSCILLATOR WITH 1.4 TO 1.52, m BAND

(57) Abstract:

PROBLEM TO BE SOLVED: To provide the exciting method of an optical amplifier or a laser oscillator with 1.4 to 1.52 . m band. SOLUTION: The optical amplifier with 1.4 to 1.52 . m band which is provided with an exciting light source, multiplexer/demultiplexer and an amplification optical waveguide is excited by the two or above types of different wavelengths of at least one wavelength from a range in the wavelengths 0.75 to 0.85 . m and one wavelength from a range in the wavelengths 1.35 to 1.45 . m.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In 1.4-1.52-micrometer band optical amplifier equipped with the excitation light source, a multi/demulitiplexer, and the optical waveguide for magnification at least The core section of the optical waveguide for magnification contains Tm. The range of 0.75-0.85micrometer wavelength to at least one wave (excitation wavelength 1), The excitation approach of 1.4-1.52-micrometer band optical amplifier characterized by exciting from the range of 1.35-1.45-micrometer wavelength on at least one wave (excitation wavelength 2) of mutually different wavelength [two or more kinds of].

[Claim 2] The excitation approach of 1.4-1.52-micrometer band laser oscillation machine characterized by exciting on at least one wave (excitation wavelength 2) of mutually different wavelength [two or more kinds of] in the excitation light source, a multi/demulitiplexer, and 1.4-1.52-micrometer band laser oscillation machine equipped with the optical waveguide for magnification from the range of the range of 0.75-0.85-micrometer wavelength to at least one wave (excitation wavelength 1), and 1.35-1.45micrometer wavelength at least.

[Claim 3] The excitation approach of the optical amplifier of 1.4-1.52-micrometer band according to claim 1 or 2 characterized by the core section of the optical waveguide for magnification consisting of at least one kind of glass chosen from the halide oxide glass which added Tm, halide glass, chalcogenide glass, KARUKO halide glass, a tellurite glass, bismuthate glass, a gel money toga lath, and gallium acid chloride glass, or the excitation approach of 1.4-1.52-micrometer band laser oscillation machine.

[Claim 4] Claim 1 to claim 3 characterized by at least one of the excitation light sources being semiconductor laser is the excitation approach of 1.4-1.52-micrometer band optical amplifier a publication, or the excitation approach of 1.4-1.52-micrometer band laser

[Claim 5] The excitation power of the excitation wavelength chosen from the range of 0.75-0.85-micrometer wavelength (P1), When the ratio (R) of the excitation power (P2) of the excitation wavelength chosen from the range of 1.35-1.45-micrometer wavelength is expressed with R=P1/(P1+P2) x100%, Claim 1 - claim 4 which are characterized by being in within the limits whose power ratio is 0% < R<=90% are the excitation approach of 1.4-1.52-micrometer band optical amplifier a publication, or the excitation approach of 1.4-1.52micrometer band laser oscillation machine either.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the excitation approach of the optical amplifier used by the optical communication of 1.4-1.52-micrometer band etc., or a laser oscillation machine.

[0002]

[Description of the Prior Art] In optical communication, 1.55-micrometer band which is the minimum loss wavelength of a quartz fiber, and 1.3-micrometer band which is 0 dispersive-wave length have been used. Researches and developments of an optical amplifier were actively done to these wavelength ranges, and a big success has been stored especially with 1.55-micrometer band. Recent years come, high-speed large capacity-ization of the Internet or data transmission is called for, and wave-length multiple telecommunication (WDM) is being put in practical use from a viewpoint of the increment in channel capacity. However, only with 1.55-micrometer band, capacity might be insufficient someday and the motion which asks for another band came out. The demand referred to as wanting to use the large transmitted wave length range whole region of the quartz fiber to 1.3 to 1.7 micrometers for a communication link especially is strong. For this reason, research of 1.47-micrometer band which added Tm, or 1.65-micrometer band fiber amplifier is done briskly.

[0003]

[Problem(s) to be Solved by the Invention] The proposal which uses the fiber of the low phonon glass which added Tm for magnification or laser oscillation of 1.47-micrometer band is made (Rareearth-doping fiber laser and amplifiers pp49-53, besides 1988 14th Europe [per year] optical committee minutes, and D.N.Payne, and IEEE.J.Quantum Electronics vol.24(6) (1988) 920-923). The level of Tm is shown in drawing 1. Magnification of 1.47-micrometer band is performed using the induced emission process of 3H4 ->3F4, and has 1.4-1.52-micrometer broad gain and a magnification band in fact. As the excitation approach, the approach (JP,5-275792,A) of exciting two steps by 1.06 micrometers, the approach (JP,4-265251,A) of exciting 3H4 of Tm directly with 0.7-0.89-micrometer band, the approach (JP,4-180279,A) of exciting two steps with 1.2-micrometer band, etc. are indicated. However, the life time of fluorescence of 3H4 level of Tm is shorter than the life time of fluorescence of 3F4, and it is known that it is difficult to acquire the inverted population required for magnification or laser oscillation. Such a property is called self-halt (Self terminating) device, and is made unsuitable for efficient magnification or laser oscillation. For this reason, in order to form 3F4 into a short life, the approach (JP,4-265251,A, JP,5-145168,A, JP,7-45899,A) of adding Eu, Tb, Ho, Pr, etc. is indicated. However, if it adds more than fixed concentration, since these coadditive elements will require the skirt of absorption also for 1.4-1.52-micrometer band of the purpose wavelength, will produce the energy transfer which is not desirable and will have a bad influence on the magnification effectiveness of 1.4-1.52-micrometer band, the presentation of a magnification medium has a limit. Moreover, although the proposal which excites Tm addition fiber with two waves is also made, many are the sources of short wave Nagamitsu using a rise conversion process (for example, JP,5-319858,A, JP,8-307000,A, etc.).

[0004] On the other hand, research aiming at improvement in excitation efficiency and power conversion efficiency is recently becoming active. It is shown by JP,2001-007426,A and JP,2001-024263,A that it is more efficient than one conventional wave or two-wave excitation, and can amplify by two-wave excitation. Moreover, OFC2001 Technical digest series besides S.Aozasa, PD1, and OFC2001 Technical digest series besides F.Ray and PD2 have reported that the power conversion efficiency which exceeds 40% by the one-wave excitation by 1.40 micrometers or two-wave excitation (1.24 micrometers and 1.40 micrometers) is acquired. [0005] However, by the approach of S.Aozasa and others excited with one wave with a wavelength of 1.40 micrometers, since there is no corresponding absorption, it cannot excite to upper level efficiently from 3H6 which are a ground state (refer to drawing 1). Moreover, since it will excite in process of [complicated] 3H6 ->3H5 ->3F4 ->3H4 which are the bottom level of luminescence and passes along 3F4 which are the bottom level of luminescence by F.Ray's and others approach, it cannot be said to be the optimal excitation approach which forms the inverted population. On the other hand, although it is the excitation approach better than the two aforementioned law since the direct excitation from the base is used by the approach of JP,2001-024263,A, there is room of an improvement at the point of quantum efficiency.

[0006]

[The concrete means for solving a technical problem] Comprehensively in consideration of said problem, wholeheartedly, as a result of examination, this invention persons found out the excitation approach which can be amplified with high quantum efficiency, and it not only can form the inverted population efficiently between 3H4 and 3F4, but they reached this invention.

[0007] That is, this invention offers efficient 1.4-1.52-micrometer band optical amplifier or a laser oscillation machine as the excitation light source at least in 1.4-1.52-micrometer band optical amplifier or laser oscillation equipment which used as the magnification medium optical waveguide which contained Tm to the core by exciting on at least one wave of mutually different wavelength [two or more kinds of] from the range of 0.75-0.85 micrometers to at least one wave, and the range of 1.35-1.45 micrometers.

[0008] This invention is explained in full detail below.

[0009] The low phonon energy ingredient not more than phonon energy 700cm-1 fits the efficient optical amplification or the laser oscillation of 1.4-1.52-micrometer band (energy difference; about 6800cm-1) which added Tm, and a high phonon energy ingredient (about [Generally / 1000cm-] 1) like a silica system oxide or a boric-acid system oxide is made unsuitable. As such a low phonon

energy glass ingredient, halide glass, chalcogenide glass, halide oxide glass, KARUKO halide glass, a tellurite glass (tellurite glass), bismuthate glass, a gel money toga lath, gallium acid chloride glass, etc. are known. However, these low phonon energy glass ingredients are well known also as a rise conversion laser ingredient, excitation energy is consumed by luminescence of red or blue and it is known for the usual excitation approach that the luminous efficiency of 1.4-1.52-micrometer band is very low. Moreover, the life time of fluorescence of 3H4 is shorter than the life time of fluorescence of 3F4 of the bottom level of luminescence, and effectiveness is very low, even when it considers as the example of representation of a self-halt device, it is known that the laser oscillation itself is difficult and it succeeds in an oscillation (for example, J.Y.Allain other s, Electronics lett.25 (1989) 1660-1662). For this reason, neither was the optimal approach although the above-mentioned various approaches had been tried.

[0010] To these approaches, this invention is exciting on at least one wave of mutually different wavelength [two or more kinds of] from the range of at least one wave and 1.35-1.45-micrometer wavelength, and formation of the inverted population turns easy up, it can acquire high quantum efficiency from the range of 0.75-0.85-micrometer wavelength, and it finds out that magnification or laser oscillation is possible efficient by low excitation power.

[0011] The excitation approach of this invention is explained in more detail (drawing 2). First, Tm ion contained to the core of optical waveguide is excited to ground state (3H6) ->3H4 by at least one wave of excitation light (it considers as the excitation light 1 hereafter) chosen from the wavelength of 0.75-0.85 micrometers (excitation process 1). Next, luminescence or magnification of 1.4-1.52-micrometer band is produced in transition (radiation process 2) of 3H4 ->3F4. Next, it excites on the sublevel of level (3F4) ->3H4 under luminescence by at least one wave of excitation light (it considers as the excitation light 2 hereafter) chosen from the range of 1.35-1.45-micrometer wavelength (excitation process 2). By this excitation, it decreases a 3F4 existence probability effectually, and a self-halt device is not only avoidable, but can acquire the highest quantum efficiency. Finally, luminescence of 1.4-1.52-micrometer band arises by 3H4 ->3F4 (radiation process 2) again. Moreover, by this excitation approach, there is the description efficiently decreased in 3H5 existence establishment by the process (excitation process 3) of 3H5 ->3F2 by the excitation light 2. [0012] When a 3H5 existence probability increases, it turns out that excitation state absorption (ESA:Excited State Absorption) arises in a 1.4-1.7-micrometer very large wavelength region, and magnification effectiveness is remarkably reduced from the absorption spectrum and ESA spectrum (drawing 3) of Tm. Although this invention can avoid this ESA efficiently, the excitation light of further 1.5-1.7-micrometer band may be added. in order that this approach may reduce the ESA loss near 1.5 micrometer (3H5 ->3F3) -- a long wave -- it is the approach which is effective in improving the gain property by the side of merit (T. Proceedings OAA'99 besides Kasamatsu, PDP1), and attracts attention as gain wavelength shift Tm addition fiber amplifier (GS-TDFA:Gain Shifted Thulium Doped Fiber Amplifier).

[0013] It is the semi- 3 level process in which it used as a ground level of imagination of 3F4, and formation of the inverted population is very easy as <u>drawing 2</u> shows immediately by the excitation approach of this invention. Moreover, by this approach, since it excites from a ground level directly to 3H4 which are luminescence top level, high quantum efficiency can be acquired. Especially 0.75-0.79 micrometers with the induced emission cross section of 3H4 ->3H6 small also in the excitation wavelength 1 are desirable. Moreover, since 1.35-1.42-micrometer band cannot cause a noise easily to the magnification process of 3H4 ->3F4 in the excitation wavelength 2, it is especially desirable.

[0014] Although the optimal wavelength selection of the excitation wavelength 1 and the excitation wavelength 2 cannot generally be ******(ed) since it changes with the classes of the addition concentration of Tm, or glass ingredient, it can be set up within the limits of each wavelength range of this invention. For example, in Tm:ZBLAN (fluoride glass), 0.78 micrometers (excitation wavelength 1) which can obtain high power semiconductor laser, and 1.40 micrometers (excitation wavelength 2) can be chosen. Although combination of the optimal excitation light power cannot generally be ******(ed) since it is dependent on the quality of the material of Tm concentration or optical waveguide, the numerical aperture of waveguide, etc., it is desirable that the excitation power ratio (R) expressed with x([power of excitation wavelength 1]/[power of power + excitation wavelength 2 of excitation wavelength 1])100% is 0% < R<=90% of range. When the excitation wavelength 2 (wavelength of 1.35-1.45 micrometers) is weaker than this range, it is hard coming to form the inverted population between 3H4 and 3F4, and sufficient magnification effectiveness cannot be acquired. Moreover, since a gain improvement of 2dB or more is achieved to the case where an excitation power ratio excites by excitation wavelength 2 independent one in 1.5% <= R<=83% of range, it is especially desirable.

[0015] When using the excitation approach of this invention, if it is the ingredient which can amplify 1.47-micrometer band by Tm addition medium, the thing usable anything is clear. Generally as such an ingredient, the low glass of phonon energy is used, and chalcogenide glass, halide glass, KARUKO halide glass, halide oxide glass, a tellurite glass (tellurite glass), bismuthate glass, a gel money toga lath, gallium acid chloride glass, etc. are especially desirable.

[0016] If it is laser oscillated by the excitation wavelength range of this invention, such as semiconductor laser, dye laser, solid state laser, and gas laser, as excitation laser, the solid state laser and fiber laser which were combined with semiconductor laser especially with a fiber pigtail and a fiber although it was good anything are desirable. The field of a price or size to semiconductor laser is suitable as the excitation light source. Moreover, in order to raise excitation efficiency, completely using the absorption band of Tm, it is also effective to use laser (for example, Raman laser) with a large oscillation wavelength band or to combine two or more laser with which wavelength differs by each excitation wavelength range.

[0017] When it constitutes an optical amplifier, a wavelength division multiplex component (WDM) and an optical element for optical communication like an optical isolator can be used if needed. Moreover, if a gain monitor and a gain identification function are built or attached to amplifier, since the dependability of an optical transmission system will improve, it is desirable. If it is the approach of measuring incidence signal light reinforcement and output signal light reinforcement substantially, what kind of approach may be used for the monitor of gain. When performing wave-length multiple telecommunication, the approach of detecting and supervising for every signal assigned to each wavelength is desirable. An active approach may be used for a gain identification function also by the passive approach. As the passive gain identification approach, the configuration using a light filter is easy. The active gain identification approach consists of a gain monitoring function and a feedback function, and measures incidence signal light reinforcement and output signal light reinforcement substantially, and if it is an approach as for which gain is made to regularity, what kind of approach may be used for it. Recently, it considers as a multistage configuration and the method of changing the power ratio for every excitation light reinforcement and excitation wavelength of each stage is performed widely. When performing wave-length multiple telecommunication, the approach of carrying out gain equalization for every signal by which it was assigned to each wavelength is desirable. Although it is the same function as gain identification, an output identification function which keeps output signal light reinforcement constant as well

as a gain identification function is effective. As for these functions, it is desirable that are a programmable microprocessor etc. and adjustment has become possible automatically by remote operation.

[0018] When it constitutes a laser oscillation machine, optical waveguide can be connected in the shape of a ring, or two or more sets can connect with a serial or juxtaposition, and a high increase in power can be attained. Moreover, the narrow-band oscillation and wavelength adjustable oscillation using a fiber grating etc., and the ultrashort pulse oscillation by pulse compression are also possible. [0019] As mentioned above, usual 1.4-1.52-micrometer band optical amplifier more efficient than one wave or two-wave excitation or a usual laser oscillation machine can be offered by considering excitation wavelength as two-wave excitation with a wavelength band [the band of 0.75-0.85 micrometers], and a wavelength of 1.35-1.45 micrometers.

[0020] Although an example is given and this invention is explained further hereafter, this invention is not limited to these examples. [0021]

[Example] 0.2-mol % and fluoride [which was added] glass fiber was used for example 1 core for Tm. The basic glass presentation of a core and a clad is shown below. Tm has permuted La. A figure is mol%.

core: -- 51ZrF4-19BaF2-4.5LaF3-2YF3-2AlF3-13.5LiF-8PbF2 clad: -- 40HfF4-10ZrF4-19BaF -- the relative index difference of this fiber was [0.70 micrometers and the core diameter of cut-off wavelength] 2.4 micrometers 1.1% three to 22 NaF three to 4 AlF three to 2 YF two to 3 LaF. Fiber length is 16m.

[0022] Next, the configuration of the optical amplifier used for measurement is shown in drawing 4. For excitation, the semiconductor laser 2 with a wavelength of 0.78 micrometers and the semiconductor laser 3 with a wavelength of 1.40 micrometers were multiplexed, and it has combined with the fluoride fiber 1 for optical amplification through the optical multiplexing/demultiplexing component 4 and the quartz fiber 5 of high NA. Association of a quartz fiber 5 and the fluoride fiber 1 used the V groove block, and in order that a junction end face might reduce reflection loss, it carried out optical polish and was aslant fixed with the optical adhesives of an ultraviolet curing mold. Incidence of the signal light from the signal generator 6 of 1.47-micrometer band was carried out to the fiber for magnification through the optical multiplexing/demultiplexing component 4, and small-signal gain was measured in the measuring instrument 8 through the amplified outgoing radiation light to the optical isolator 7. Input signal light is a continuation light the wavelength of 1.47 micrometers and whose power are -30dBm. The small-signal gain at the time of exciting on single wavelength with a wavelength of 1.40 micrometers and the small-signal gain at the time of exciting to coincidence with two waves are shown in drawing 5. The input control power in two-wave excitation is two waves of sum total power, and the power ratio (R) is being fixed to 40%. In two-wave excitation, a gain improvement of 5dB or more is made to single wavelength excitation, and it turns out that the threshold is also low.

[0023] It experimented by changing an excitation power ratio with the same configuration using the same fluoride fiber as example 2 example 1. The incidence conditions and excitation wavelength of signal light were the same as that of an example 1, it fixed to 100mW and two waves of sum total power was measured. A result is shown in <u>drawing 6</u> R> 6. It turns out that a power ratio (R) with an excitation wavelength of 0.78 micrometers is high interest profit from the case of wavelength [of 1.40 micrometers] single wavelength excitation in the range of 0<R1 <=90%. Especially in the range whose power ratio is 1.5<=R<=83%, it was 2dB or more high interest profit from the gain in 1.4-micrometer single wavelength excitation.

[0024] With the same configuration as example 3 example 1, the magnification medium was used as In system fluoride glass fiber, and small-signal gain was measured. The addition concentration of Tm is 0.2-mol% and has permuted a part of Gd. A figure is mol%. core presentation: -- 18InF3-12GaF3-20ZnF2-27BaF2-3PbF2-10GdF3-10YF3 clad presentation: -- 18InF3-12GaF3-20ZnF2-18BaF2-12SrF2-10GdF3-10YF3 -- the relative index difference of this fiber was 1.1%, and cut-off wavelength was 0.70 micrometers. The fiber length which used it for measurement is 16m. Two-wave excitation used semiconductor laser with a wavelength of 0.788 micrometers, semiconductor laser with a wavelength of 1.38 micrometers, and (power (ratio R) =40%). As a result of measuring the case of 1.38-micrometer single wavelength excitation, and the case of two-wave excitation like an example 1, as shown in drawing 7, the direction of two-wave excitation was 5dB or more high interest profit.

[0025] With the same configuration as example 4 example 1, the magnification medium was used as tellurite system oxide glass fiber, and small-signal gain was measured. The addition concentration of Tm is 0.6-mol% and has permuted a part of La. A figure is mol%. core presentation: — 90TeO2-8BaO-2La2O3 clad presentation: — the relative index difference of 3Y2O81TeO2-16BaO-3 fiber was 0.7%, and cut-off wavelength was 0.70 micrometers. The fiber length which used it for measurement is 2.5m. Excitation used semiconductor laser with a wavelength of 0.788 micrometers and semiconductor laser with a wavelength of 1.40 micrometers. A power ratio (R) is 40%. As shown in drawing 8, in two-wave **, it was 3dB or more high interest profit from the case of 1.40-micrometer single wavelength excitation.

[0026] With the same configuration as example 5 example 1, the magnification medium was used as bismuth system oxide glass fiber, and small-signal gain was measured. The addition concentration of Tm is 0.6-mol% and has permuted a part of La.

core glass presentation: — 75Bi2O3-18 B-2O3-5SiO2-2La2O3 clad glass presentation: — 70 Bi, the relative index difference of 2O3-15CdO-15 B-2O3 fiber was 1.2%, and cut-off wavelength was 0.70 micrometers. The fiber length which used it for measurement is 2.5m. Excitation used semiconductor laser with a wavelength of 0.788 micrometers and semiconductor laser with a wavelength of 1.40 micrometers. As a result of measuring the case of 1.40-micrometer single wavelength excitation, and the case of two-wave excitation (power (ratio R) =50%) like an example 1, as shown in drawing 9, the direction of two-wave excitation was 3dB or more high interest profit.

[0028] With the same configuration as example 6 example 1, the magnification medium was used as gallium acid chloride glass fiber, and small-signal gain was measured. The addition concentration of Tm is 0.3-mol%.

core presentation: -- 30K2O-30Ta2O3-40Ga2O3 clad presentation: -- 30K2O-25Ta2O3-45Ga 2O3 -- the relative index difference of this fiber was 1.2%, and cut-off wavelength was 0.70 micrometers. The fiber length which used it for measurement is 8m. Excitation used semiconductor laser with a wavelength of 0.78 micrometers and semiconductor laser with a wavelength of 1.35 micrometers. As a result of measuring the case of 1.35-micrometer single wavelength excitation, and the case of two-wave excitation (power (ratio R) =50%) like an example 1, as shown in drawing 10 , the direction of two-wave excitation was 3dB or more high interest profit.

[0029] With the same configuration as example 7 example 1, the magnification medium was used as sulfide glass fiber, and small-signal gain was measured. The addition concentration of Tm is 0.2-mol%. A figure is mol%.

[0030] core: -- 30In2S3-40Ga2S3-30La2S3 clad: -- 12aluminum(PO3)3-11AIF3-30.5RF2-46.5MF2 (R:Mg. calcium M:Sr, Ba) Tm has

permuted La. The relative index difference of this waveguide was 1.2%, and cut-off wavelength was 0.70 micrometers. The fiber used for measurement is 14m in die length. Two-wave excitation uses the oscillation wavelength of 0.78 micrometers, and 1.45-micrometer semiconductor laser, and a power ratio (R) is 20%. Moreover, signal light wave length is 1.50 micrometers, and power is -30dBm. As a result of measuring the gain the case of 1.45-micrometer single wavelength excitation, and in two-wave excitation like an example 1, as shown in drawing 11, the direction of two-wave excitation was 3dB or more high interest profit.

[0031] Signal light power with a wavelength of 1.47 micrometers was changed using the same configuration with the same fiber as example 8 example 1, and power conversion efficiency (PCE) was measured. The following formulas define power conversion efficiency.

[0032] PCE(%) =[(output signal power)-(input signal power)]/(excitation power) x100 excitation power was fixed to a total of 100mW. In the case of two waves, semiconductor laser with a wavelength of 0.78 micrometers and semiconductor laser with a wavelength of 1.40 micrometers were used. The excitation power ratio (R) is fixed to 40%. The power conversion efficiency at the time of exciting to coincidence with the case where it excites on single wavelength with a wavelength of 1.40 micrometers, and two waves is shown in drawing 12. In two-wave excitation, it turns out that power conversion efficiency is sharply improvable to single wavelength excitation. [0033]

[Effect of the Invention] By using the excitation approach of this invention, efficient 1.4-1.52-micrometer band optical amplifier or 1.4-1.52-micrometer band laser oscillation machine can be built.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

- [Drawing 1] It is the level scheme and absorption spectrum of Tm.
- [Drawing 2] It is drawing explaining the level of Tm, and the excitation approach of this invention.
- [Drawing 3] It is drawing showing the absorption cross section from each level of Tm.
- [Drawing 4] It is the block diagram of the amplifier in an example 1.
- [Drawing 5] It is drawing showing the excitation power dependency of the amplification factor in an example 1.
- [Drawing 6] It is drawing showing the power ratio dependency of the excitation wavelength 1 of an amplification factor, and the excitation wavelength 2 in an example 2.
- [Drawing 7] It is drawing showing the excitation power dependency of the amplification factor in an example 3.
- [Drawing 8] It is drawing showing the excitation power dependency of the amplification factor in an example 4.
- [Drawing 9] It is drawing showing the excitation power dependency of the amplification factor in an example 5.
- [Drawing 10] It is drawing showing the excitation power dependency of the amplification factor in an example 6.
- Drawing 11] It is drawing showing the excitation power dependency of the amplification factor in an example 7.
- [Drawing 12] It is drawing showing the signal light power dependency of the power conversion efficiency in an example 8.
- [Description of Notations]
- 1 Fiber for Optical Amplification
- 2 Light Source Which Supplies Excitation Wavelength 1
- 3 Light Source Which Supplies Excitation Wavelength 2
- 4 Optical Multiplexing/demultiplexing Component
- 5 High NA Quartz Fiber
- 6 Signal Light Generator of Wavelength Band of 1.4-1.52 Micrometers
- 7 Optical Isolator
- 8 Measuring Instrument

[Translation done.]