

The VoltDB Codeline

John Hugg

I was hired by Mike Stonebraker to commercialize the H-Store¹ research [Stonebraker et al. 2007b] in early 2008. For the first year, I collaborated with academic researchers building the prototype, with close oversight from Mike Stonebraker.² Andy Pavlo and I presented our early results at VLDB 2008 [Kallman et al. 2008] in August of that year. I then helped lead the efforts to commercialize VoltDB, ultimately spending the next ten years developing VoltDB with a team I was privileged to work with. In my time at VoltDB, Inc., Mike Stonebraker served as our CTO and then advisor, offering wisdom and direction for the team.

VoltDB was conceived after the success of Vertica³; if, Vertica, a system dedicated to analytical data, could beat a general-purpose system by an order of magnitude at analytical workloads, could a system dedicated to operational data do the same for operational workloads? This was the next step in Mike Stonebraker's crusade against the one-size-fits-all database.

VoltDB was to be a shared-nothing, distributed OLTP database. Rethinking assumptions about traditional systems, VoltDB threw out shared-memory concurrency, buffer pools and traditional disk persistence, and client-side transaction control. It assumed that high-volume OLTP workloads were mostly horizontally partitionable, and that analytics would migrate to special-purpose systems, keeping queries short.

The proposed system would dramatically reduce scaling issues, support native replication and high availability, and reduce costs for operational workloads without sacrificing transactions and strong consistency.

^{1.} For more on H-Store see Chapter 19: H-Store/VoltDB.

^{2.} See https://dl.acm.org/citation.cfm?id=1454211 for the list of collaborators.

^{3.} For more on Vertica see Chapters 18 and 27.

VoltDB 1.0 was originally released in April 2010, after nearly two years of internal development. Work on the H-Store academic project continued in parallel. Over the years, many ideas and experimental results were shared between the researchers and the VoltDB engineering team, but code diverged as the two systems had different purposes. VoltDB also hired a number of graduate students who worked on the H-Store project.

Compaction⁴

In the Fall of 2010, the very first customer, who was equal parts brave and foolish, was using VoltDB 1.x in production and was running into challenges with memory usage.

This customer was using the resident set size (RSS) for the VoltDB process as reported by the OS as the key metric. While memory usage monitoring is more complex than disk usage monitoring, this is a good metric to use in most cases.

The problem was that the RSS was increasing with use, even though the data was not growing. Yes, records were being updated, deleted, and added, but the total number of records and the size of the logical data they represented was not growing. However, eventually, VoltDB would use all of the memory on the machine. This early customer was forced to restart VoltDB on a periodic basis—not great for a system designed for uptime. Needless to say, this was unacceptable for an inmemory database focused on operational workloads.

The problem was quickly identified as allocator fragmentation. Under it all, VoltDB was using GNU LibC malloc, which allocated big slabs of virtual address space and doled out smaller chunks on request. Allocator fragmentation happens when a slab is logically only half used, but the "holes" that can be used to service new allocations are too small to be useful.

There are two main ways to deal with this problem. The most common approach is to use a custom allocator. The two most common alternatives are JEMalloc and TCMalloc. Both are substantially more sophisticated at avoiding fragmentation waste than the default GLibC malloc.

The VoltDB team tried these options first but ran into challenges because VoltDB mixed C++ and Java in the same process. Using these allocators with the in-process JVM was challenging at the time.

^{4.} Compaction, which is critical to running VoltDB for more than a few hours, didn't come up in the initial design or research because academics don't always run things the way one might in production. It ended up being critical to success.

The second approach, which is both more challenging and more effective, is do all the allocation yourself. You don't actually have to manage 100% of allocations. Short-lived allocations and permanent allocations tend not to contribute to allocator fragmentation. You primarily have to worry about data with unknown and variable life cycles, which is really critical for any in-memory database.

The team focused on three main types of memory usage that fit this profile.

- Tuple storage—a logical array of fixed size tuples per table.
- Blob storage—a set of variable-sized binary objects linked from tuples.
- Index storage—trees and hash tables that provide fast access to tuples by key.

Two teams set about implementing two different approaches to see which might work best.

The first team took on indexes and blob storage. The plan was to remake these data structures in such a way that they never had any "holes" at all. For indexes, all allocations for a specific index with a specific key width would be done sequentially into a linked list of memory-mapped slabs. Whenever a tree node or hash entry was deleted, the record at the very end of the set of allocations would be moved into the hole, and the pointers in the data structure would be reconfigured for the new address. Blob storage was managed similarly, but with pools for various size blobs.

There was a concern that the extra pointer fixups would impact performance, but measurements showed this was not significant. Now indexes and blobs *could not fragment*. This came at an engineering cost of several engineer-months, but without much performance impact to the product.

Tuple storage took a different approach. Tuples would be allocated into a linked list of memory-mapped slabs, much like index data, but holes from deletion would be tracked, rather than filled. Whenever the number of holes exceeded a threshold (e.g., 5%), a compaction process would be initiated that would rearrange tuples and merge blocks. This would bind fragmentation to a fixed amount, which met the requirements of VoltDB and the customer.

In the end, we didn't pick a winner; we used both schemes in different places. Both prototypes were sufficient and with an early product, there were many other things to improve. The anti-fragmentation work was a huge success and is considered a competitive advantage of VoltDB compared to other in-memory stores that often use memory less efficiently.⁵ Without it, it would be hard to use VoltDB in any production workloads.

^{5.} The competition catch-up is a long story. Most systems can't do what VoltDB does because they use shared-memory multi-threading and even lock-free or wait-free data structures. These are

These kinds of problems can really illustrate the gulf between research and production.

It turns out compaction is critical to running VoltDB for more than a few hours, but this didn't come up because of the research results. We previously assumed that if a steady state workload worked for an hour, it would work forever, but this is absolutely not the case.

Lesson. Memory usage should closely track the actual data stored, and systems should be tested for much longer periods of time.

Latency

Version 1.0 of the VoltDB database, like the H-Store prototype it was based on, used a transaction ordering and consensus scheme that was based on the ideas described in the original H-Store paper [Stonebraker et al. 2007b], but with additional safety. Oversimplifying a bit, nodes would collect all candidate work in a 5 ms epoch and then exchange between all nodes the work inside the cluster for that 5 ms. This work would then be ordered based on a scheme similar to Twitter Snowflake.⁶

This scheme guaranteed a total, global pre-order for all submitted transactions. That is, before a transaction was run, its serializable order with respect to all other transactions was known.

Compared to contemporary transaction ordering schemes, VoltDB offered more fault tolerance than two-phase-commit and was dramatically simpler than using a schema like Paxos for ordering. It also supported significantly higher throughput than either.

Having a global pre-ordering of all transactions required less coordination between cluster nodes when the work itself was being done [Stonebraker et al. 2007b]. In theory, participants have broad leeway to re-order work, so it can be executed more efficiently, provided it produces results effectively equivalent to the specified order. This was all part of the original H-Store research [Stonebraker et al. 2007b].

So, what's the catch? This scheme used wall clocks to order transactions. That meant transactions must wait up to 5 ms for the epoch to close, plus network round trip time, plus any clock skew. In a single data center, Network Time Protocol (NTP)

much harder to compact. Other systems *can* use TCMalloc or JEMalloc because they don't embed the JVM.

^{6. &}quot;Announcing Snowflake," the Twitter blog, June 1, 2010. https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html. Last accessed March 29, 2018.

is capable of synchronizing clocks to about 1 ms, but that configuration isn't trivial to get right. Network skew is also typically low but can be affected by common things like background network copies or garbage collections.

To put it more clearly, on a single-node VoltDB instance, client operations would take at least 5 ms even if it did no actual work. That means a synchronous benchmark client could do 200 trivial transactions per second, substantially slower than MySQL for most workloads.

In a cluster, it was worse. Getting NTP set up well in order to evaluate VoltDB was a stumbling block, especially in the new world of the cloud. This meant the delay might be 10-20 ms. The original VoltDB paper assumes achieving clock synchronization is trivial, but we found that to be just false *enough* to cause problems. We didn't just need synced-clocks, we needed them to stay synced for days, months, or even years without issue.

None of this affected throughput. The VoltDB client was fully asynchronous by design and could processes responses in the order they arrived. A proper parallel workload could achieve millions of transactions per second on the right cluster, but asking prospective users to build fully asynchronous apps proved too much of a challenge. Users were not used to developing that way and changing user habits is difficult.

VoltDB needed to be faster than MySQL without application wizardry.

Many months of disagreement and thought from the engineering team culminated in a small meeting where a decision had to be made.

A rough plan was hashed out to replace VoltDB consensus with a post-order system that would slash latency to near zero while keeping throughput. The new system would limit some performance improvements to cross-partition transactions (which are typically rare for VoltDB use cases) and it would require several engineers working for almost a year, time that could be spent on more visible features.

Engineering came out of that meeting resolved to fix the latency issues. As part of the plan, the VoltDB 1.0 consensus scheme would be kept, but only to bootstrap a new system of elected partition leaders that serialized all per-partition work and a single, global cross-partition serializer that determined the order of crosspartition work.

This scheme was launched with version 3.0, and average cluster latency was reduced to nearly nothing now that we did not have to hold transactions for clock skew and the all-to-all exchange. Typical response latencies were less than a millisecond with a good network.

This directly led to VoltDB use in low-latency industries like ad-tech and personalization.

Lesson. Response time is as important as throughput.

Disk Persistence

When VoltDB launched, the high-availability story was 100% redundancy through clustering. There were periodic disk snapshots, so you would see data loss only if you lost multiple nodes, and then you might only lose minutes of recent data. The argument was that servers were more reliable, and per-machine UPSs (uninterruptive power supplies) were increasingly common, so multiple failures weren't a likely occurrence.

The argument didn't land.

VoltDB technical marketing and sales spent too much time countering the idea that VoltDB wouldn't keep your data safe. Competitors reinforced this narrative. In early 2011, it got to the point where lack of disk persistence was severely limiting customer growth.

VoltDB needed per-transaction disk persistence without compromising the performance it was known for. Part of the original H-Store/VoltDB thesis was that logging was one of the things holding traditional RDBMSs back when they moved to memory [Harizopoulos et al. 2008], so this posed quite a challenge.

To address this problem, Engineering added an inter-snapshot log to VoltDB but broke with the ARIES (Algorithms for Recovery and isolation Exploiting Semantics) style logs used by traditional RDBMSs. VoltDB already heavily relied on determinism and logical descriptions of operations to replicate between nodes. Engineering chose to leverage that work to write a logical log to disk that described procedure calls and SQL statements, rather than mutated data.

This approach had a huge technical advantage for VoltDB. As soon as transactions were ordered for a given partition (but before they were executed), they could be written to disk. This meant disk writes *and* the actual computation could be done *simultaneously*. As soon as both were completed, the transaction could be confirmed to the caller. Other systems performed operations and *then* wrote binary change-logs to disk. The logical approach and VoltDB implementation meant disk persistence didn't have substantial impact on throughput, and only minimal impact on latency.

Per-transaction disk-persistence was added in VoltDB 2.5 in Fall 2011 and almost immediately silenced persistence-based criticism of VoltDB. It's clear that without this feature, VoltDB would have seen much more limited use.

As an addendum, we have a lot more data today about how common complete cluster failure is with VoltDB. Cluster failures for well-run VoltDB instances are rare, but not always 100% unavoidable, and not all VoltDB clusters are well run. Disk persistence is a feature that not only cut off a line of criticism, but also gets exercised by users from time to time.

Lesson. People don't trust in-memory systems as system of record.

Latency Redux

In 2013, within a year of reducing average latency in VoltDB to nil, VoltDB was courted by a major telecommunications OEM (original equipment manufacturer) looking to replace Oracle across their stack. Oracle's pricing made it hard for them to compete with upstart Asian vendors who had built their stacks without Oracle, and Oracle's deployment model was poorly suited to virtualization and data-center orchestration.

Replacing Oracle would be a substantial boost to competitiveness.

During the OEM's VoltDB evaluation, latency quickly became an issue. While average latency met requirements, long tail latency did not. For a typical call authorization application, the service level agreement might dictate that any decision not made in 50 ms can't be billed to the customer, forcing the authorization provider to pay the call cost.

VoltDB created a new automated test to measure long tail latency. Rather than measure average latency or measure at the common 99th percentile or even the 99.999th percentile, Engineering set out to specifically count the number of transactions that took longer than 50 ms in a given window. The goal was to reduce that number to zero for a long-term run in our lab so the customer could support P99.999 latency under 50 ms in their deployments.

Once you start measuring the right things, the problem is mostly solved, but there was still code to write. We moved more of the statistics collection and health monitoring code out of blocking paths. We changed how objects were allocated and used to nearly eliminate the need for stop-the-world garbage collection events. We also tuned buffer sizes and Java virtual machine parameters to get everything running nice and "boring."

If there's one thing VoltDB Engineering learned over the course of ten years of development, it's that customers want their operational databases to be as boring and unsurprising as possible. This was the final piece of the puzzle that closed the first major telecommunications customer, with more coming right on their heels.

Today, a significant portion of the world's mobile calls and texts are authorized through a VoltDB-based system.

Lesson. P50 is a bad measure—P99 is better—P99.999 is best.

Conclusion

Of course, the incidents described here are just a tiny sliver of the challenges and adventures we encountered building VoltDB into the mature and trusted system it is today. Building a system from a research paper, to a prototype, to a 1.0, and to a robust platform deployed around the world is an unparalleled learning experience.

The Collected Works of Michael Stonebraker

- D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. F. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and S. B. Zdonik. 2003a. Aurora: A data stream management system. In *Proc. ACM SIGMOD International Conference on Management of Data*, p. 666. DOI: 10.1145/872757.872855. 225, 228, 229, 230, 232
- D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. B. Zdonik. 2003b. Aurora: a new model and architecture for data stream management. *VLDB Journal*, 12(2): 120–139. DOI: 10.1007/s00778-003-0095-z. 228, 229, 324
- D. J. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey, S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D. Kossmann, S. Madden, S. Mehrotra, T. Milo, J. F. Naughton, R. Ramakrishnan, V. Markl, C. Olston, B. C. Ooi, C. Ré, D. Suciu, M. Stonebraker, T. Walter, and J. Widom. 2014. The Beckman report on database research. ACM SIGMOD Record, 43(3): 61–70. DOI: 10.1145/2694428.2694441. 92
- D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey, S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D. Kossmann, S. Madden, S. Mehrotra, T. Milo, J. F. Naughton, R. Ramakrishnan, V. Markl, C. Olston, B. C. Ooi, C. Ré, D. Suciu, M. Stonebraker, T. Walter, and J. Widom. 2016. The Beckman report on database research. *Communications of the ACM*, 59(2): 92–99. DOI: 10.1145/2845915. 92
- Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and M. Stonebraker. 2015a. Temporal rules discovery for web data cleaning. *Proc. VLDB Endowment*, 9(4): 336–347. http://www.vldb.org/pvldb/vol9/p336-abedjan.pdf. 297
- Z. Abedjan, J. Morcos, M. N. Gubanov, I. F. Ilyas, M. Stonebraker, P. Papotti, and M. Ouzzani. 2015b. Dataxformer: Leveraging the web for semantic transformations. In *Proc.* 7th Biennial Conference on Innovative Data Systems Research. http://www.cidrdb.org/ cidr2015/Papers/CIDR15_Paper31.pdf. 296, 297

- Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, and N. Tang. 2016a. Detecting data errors: Where are we and what needs to be done? *Proc. VLDB Endowment*, 9(12): 993–1004. http://www.vldb.org/pvldb/vol9/p993-abedjan.pdf. 298
- Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker. 2016b. Dataxformer: A robust transformation discovery system. In *Proc. 32nd International Conference on Data Engineering*, pp. 1134–1145. DOI: 10.1109/ICDE.2016.7498319. 296
- S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, S. Ceri, W. B. Croft, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, D. Gawlick, J. Gray, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, M. L. Kersten, M. J. Pazzani, M. Lesk, D. Maier, J. F. Naughton, H. Schek, T. K. Sellis, A. Silberschatz, M. Stonebraker, R. T. Snodgrass, J. D. Ullman, G. Weikum, J. Widom, and S. B. Zdonik. 2003. The Lowell database research self assessment. CoRR, cs.DB/0310006. http://arxiv.org/abs/cs.DB/0310006.
- S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, S. Ceri, W. B. Croft, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, D. Gawlick, J. Gray, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, M. L. Kersten, M. J. Pazzani, M. Lesk, D. Maier, J. F. Naughton, H. Schek, T. K. Sellis, A. Silberschatz, M. Stonebraker, R. T. Snodgrass, J. D. Ullman, G. Weikum, J. Widom, and S. B. Zdonik. 2005. The Lowell database research self-assessment. Communications of the ACM, 48(5): 111–118. DOI: 10.1145/1060710.1060718. 92
- R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer, M. J. Carey, S. Chaudhuri, A. Doan,
 D. Florescu, M. J. Franklin, H. Garcia-Molina, J. Gehrke, L. Gruenwald, L. M. Haas,
 A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. F. Korth, D. Kossmann, S. Madden,
 R. Magoulas, B. C. Ooi, T. O'Reilly, R. Ramakrishnan, S. Sarawagi, M. Stonebraker,
 A. S. Szalay, and G. Weikum. 2008. The Claremont report on database research. ACM
 SIGMOD Record, 37(3): 9–19. DOI: 10.1145/1462571.1462573. 92
- R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer, M. J. Carey, S. Chaudhuri, A. Doan,
 D. Florescu, M. J. Franklin, H. Garcia-Molina, J. Gehrke, L. Gruenwald, L. M. Haas,
 A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. F. Korth, D. Kossmann, S. Madden,
 R. Magoulas, B. C. Ooi, T. O'Reilly, R. Ramakrishnan, S. Sarawagi, M. Stonebraker,
 A. S. Szalay, and G. Weikum. 2009. The Claremont report on database research.
 Communications of the ACM, 52(6): 56–65. DOI: 10.1145/1516046.1516062. 92
- A. Aiken, J. Chen, M. Lin, M. Spalding, M. Stonebraker, and A. Woodruff. 1995. The Tioga-2 database visualization environment. In *Proc. Workshop on Database Issues for Data Visualization*, pp. 181–207. DOI: 10.1007/3-540-62221-7_15.
- A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff. 1996. Tioga-2: A direct manipulation database visualization environment. In *Proc. 12th International Conference on Data Engineering*, pp. 208–217. DOI: 10.1109/ICDE.1996.492109.
- E. Allman and M. Stonebraker. 1982. Observations on the evolution of a software system. *IEEE Computer*, 15(6): 27–32. DOI: 10.1109/MC.1982.1654047.

- E. Allman, M. Stonebraker, and G. Held. 1976. Embedding a relational data sublanguage in a general purpose programming language. In *Proc. SIGPLAN Conference on Data:*Abstraction, Definition and Structure, pp. 25–35. DOI: 10.1145/800237.807115. 195
- J. T. Anderson and M. Stonebraker. 1994. SEQUOIA 2000 metadata schema for satellite images. *ACM SIGMOD Record*, 23(4): 42–48. DOI: 10.1145/190627.190642.
- A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts. 2004. Linear road: A stream data management benchmark. In *Proc. 30th International Conference on Very Large Data Bases*, pp. 480–491. http://www.vldb.org/ conf/2004/RS12P1.pdf. 326
- T. Atwoode, J. Dash, J. Stein, M. Stonebraker, and M. E. S. Loomis. 1994. Objects and databases (panel). In *Proc. 9th Annual Conference on Object-Oriented Programming Systems, Languages, and Applications*, pp. 371–372. DOI: 10.1145/191080.191138.
- H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, E. F. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and S. B. Zdonik. 2004. Retrospective on Aurora. *VLDB Journal*, 13(4): 370–383. DOI: 10.1007/s00778-004-0133-5. 228, 229
- M. Balazinska, H. Balakrishnan, and M. Stonebraker. 2004b. Load management and high availability in the Medusa distributed stream processing system. In *Proc. ACM* SIGMOD International Conference on Management of Data, pp. 929–930. DOI: 10.1145/ 1007568.1007701. 325
- M. Balazinska, H. Balakrishnan, and M. Stonebraker. 2004a. Contract-based load management in federated distributed systems. In *Proc. 1st USENIX Symposium on Networked Systems Design and Implementation*. http://www.usenix.org/events/nsdi04/tech/balazinska.html. 228, 230
- M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. 2005. Fault-tolerance in the Borealis distributed stream processing system. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 13–24. DOI: 10.1145/1066157.1066160. 228, 230, 234, 325
- M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. 2008. Fault-tolerance in the borealis distributed stream processing system. *ACM Transactions on Database Systems*, 33(1): 3:1–3:44. DOI: 10.1145/1331904.1331907.
- D. Barbará, J. A. Blakeley, D. H. Fishman, D. B. Lomet, and M. Stonebraker. 1994. The impact of database research on industrial products (panel summary). *ACM SIGMOD Record*, 23(3): 35–40. DOI: 10.1145/187436.187455.
- V. Barr and M. Stonebraker. 2015a. A valuable lesson, and whither hadoop? *Communications of the ACM*, 58(1): 18–19. DOI: 10.1145/2686591. 50
- V. Barr and M. Stonebraker. 2015b. How men can help women in cs; winning 'computing's nobel prize'. *Communications of the ACM*, 58(11): 10–11. DOI: 10.1145/2820419.
- V. Barr, M. Stonebraker, R. C. Fernandez, D. Deng, and M. L. Brodie. 2017. How we teach cs2all, and what to do about database decay. *Communications of the ACM*, 60(1): 10–11. http://dl.acm.org/citation.cfm?id=3014349.

- L. Battle, M. Stonebraker, and R. Chang. 2013. Dynamic reduction of query result sets for interactive visualization. In *Proc. 2013 IEEE International Conference on Big Data*, pp. 1–8. DOI: 10.1109/BigData.2013.6691708.
- L. Battle, R. Chang, and M. Stonebraker. 2016. Dynamic prefetching of data tiles for interactive visualization. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 1363–1375. DOI: 10.1145/2882903.2882919.
- R. Berman and M. Stonebraker. 1977. GEO-OUEL: a system for the manipulation and display of geographic data. In *Proc. 4th Annual Conference Computer Graphics and Interactive Techniques*, pp. 186–191. DOI: 10.1145/563858.563892.
- P. A. Bernstein, U. Dayal, D. J. DeWitt, D. Gawlick, J. Gray, M. Jarke, B. G. Lindsay, P. C. Lockemann, D. Maier, E. J. Neuhold, A. Reuter, L. A. Rowe, H. Schek, J. W. Schmidt, M. Schrefl, and M. Stonebraker. 1989. Future directions in DBMS research—the Laguna Beach participants. *ACM SIGMOD Record*, 18(1): 17–26. 92
- P. A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, J. Gray, G. Held, J. M. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. F. Naughton, H. Pirahesh, M. Stonebraker, and J. D. Ullman. 1998a. The Asilomar report on database research. *ACM SIGMOD Record*, 27(4): 74–80. DOI: 10.1145/306101.306137.
- P. A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, J. Gray, G. Held, J. M. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. F. Naughton, H. Pirahesh, M. Stonebraker, and J. D. Ullman. 1998b. The Asilomar report on database research. *CoRR*, cs.DB/9811013. http://arxiv.org/abs/cs.DB/9811013. 92
- A. Bhide and M. Stonebraker. 1987. Performance issues in high performance transaction processing architectures. In *Proc. 2nd International Workshop High Performance Transaction Systems*, pp. 277–300. DOI: 10.1007/3-540-51085-0_51. 91
- A. Bhide and M. Stonebraker. 1988. A performance comparison of two architectures for fast transaction processing. In *Proc. 4th International Conference on Data Engineering*, pp. 536–545. DOI: 10.1109/ICDE.1988.105501. 91
- M. L. Brodie and M. Stonebraker. 1993. Darwin: On the incremental migration of legacy information systems. Technical Report TR-0222-10-92-165, GTE Laboratories Incorporated.
- M. L. Brodie and M. Stonebraker. 1995a. *Migrating Legacy Systems: Gateways, Interfaces, and the Incremental Approach*. Morgan Kaufmann. 91
- M. L. Brodie and M. Stonebraker. 1995b. *Legacy Information Systems Migration: Gateways, Interfaces, and the Incremental Approach.* Morgan Kaufmann.
- M. L. Brodie, R. M. Michael Stonebraker, and J. Pei. 2018. The case for the co-evolution of applications and data. In *New England Database Days*.
- P. Brown and M. Stonebraker. 1995. Bigsur: A system for the management of earth science data. In *Proc. 21th International Conference on Very Large Data Bases*, pp. 720–728. http://www.vldb.org/conf/1995/P720.pdf.

- M. J. Carey and M. Stonebraker. 1984. The performance of concurrency control algorithms for database management systems. In *Proc. 10th International Conference on Very Large Data Bases*, pp. 107–118. http://www.vldb.org/conf/1984/P107.pdf. 91, 200
- D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik. 2002. Monitoring streams—A new class of data management applications. In *Proc. 28th International Conference on Very Large Data Bases*, pp. 215–226. DOI: 10.1016/B978-155860869-6/50027-5. 228, 229, 324
- D. Carney, U. Çetintemel, A. Rasin, S. B. Zdonik, M. Cherniack, and M. Stonebraker. 2003. Operator scheduling in a data stream manager. In *Proc. 29th International Conference on Very Large Data Bases*, pp. 838–849. http://www.vldb.org/conf/2003/papers/S25P02.pdf. 228, 229
- U. Çetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan, A. Pavlo, M. Stonebraker, E. Sutherland, N. Tatbul, K. Tufte, H. Wang, and S. B. Zdonik. 2014. S-store: A streaming NewSQL system for big velocity applications. *Proc. VLDB Endowment*, 7(13): 1633–1636. http://www.vldb.org/pvldb/vol7/p1633-cetintemel.pdf. 234, 251
- U. Çetintemel, D. J. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, M. Cherniack, J. Hwang, S. Madden, A. Maskey, A. Rasin, E. Ryvkina, M. Stonebraker, N. Tatbul, Y. Xing, and S. Zdonik. 2016. The Aurora and Borealis stream processing engines. In M. N. Garofalakis, J. Gehrke, and R. Rastogi, editors, *Data Stream Management—Processing High-Speed Data Streams*, pp. 337–359. Springer. ISBN 978-3-540-28607-3. DOI: 10.1007/978-3-540-28608-0_17.
- R. Chandra, A. Segev, and M. Stonebraker. 1994. Implementing calendars and temporal rules in next generation databases. In *Proc. 10th International Conference on Data Engineering*, pp. 264–273. DOI: 10.1109/ICDE.1994.283040. 91
- S. Chaudhuri, A. K. Chandra, U. Dayal, J. Gray, M. Stonebraker, G. Wiederhold, and M. Y. Vardi. 1996. Database research: Lead, follow, or get out of the way?—panel abstract. In *Proc. 12th International Conference on Data Engineering*, p. 190.
- P. Chen, V. Gadepally, and M. Stonebraker. 2016. The BigDAWG monitoring framework. In *Proc. 2016 IEEE High Performance Extreme Computing Conference*, pp. 1–6. DOI: 10.1109/HPEC.2016.7761642. 373
- Y. Chi, C. R. Mechoso, M. Stonebraker, K. Sklower, R. Troy, R. R. Muntz, and E. Mesrobian. 1997. ESMDIS: earth system model data information system. In *Proc. 9th International Conference on Scientific and Statistical Database Management*, pp. 116–118. DOI: 10.1109/SSDM.1997.621169.
- P. Cudré-Mauroux, H. Kimura, K. Lim, J. Rogers, R. Simakov, E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. J. DeWitt, B. Heath, D. Maier, S. Madden, J. M. Patel, M. Stonebraker, and S. B. Zdonik. 2009. A demonstration of SciDB: A science-oriented DBMS. *Proc. VLDB Endowment*, 2(2): 1534–1537. DOI: 10.14778/1687553.1687584.
- J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. B. Zdonik. 2013. Anti-caching: A new approach to database management system architecture. *Proc. VLDB Endowment*, 6(14): 1942–1953. http://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf.

- J. DeBrabant, J. Arulraj, A. Pavlo, M. Stonebraker, S. B. Zdonik, and S. Dulloor. 2014. A prolegomenon on OLTP database systems for non-volatile memory. In *Proc. 5th International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures*, pp. 57–63. http://www.adms-conf.org/2014/adms14_debrabant.pdf.
- D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang. 2017a. The data civilizer system. In *Proc. 8th Biennial Conference on Innovative Data Systems Research*. http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf. 293
- D. Deng, A. Kim, S. Madden, and M. Stonebraker. 2017b. SILKMOTH: an efficient method for finding related sets with maximum matching constraints. *CoRR*, abs/1704.04738. http://arxiv.org/abs/1704.04738.
- D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker, and D. A. Wood. 1984. Implementation techniques for main memory database systems. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 1–8. DOI: 10.1145/602259.602261. 111
- D. J. DeWitt and M. Stonebraker. January 2008. MapReduce: A major step backwards. *The Database Column*. http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html. Accessed April 8, 2018. 50, 114, 136, 184, 209
- D. J. DeWitt, I. F. Ilyas, J. F. Naughton, and M. Stonebraker. 2013. We are drowning in a sea of least publishable units (lpus). In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 921–922. DOI: 10.1145/2463676.2465345.
- P. Dobbins, T. Dohzen, C. Grant, J. Hammer, M. Jones, D. Oliver, M. Pamuk, J. Shin, and M. Stonebraker. 2007. Morpheus 2.0: A data transformation management system. In *Proc. 3rd International Workshop on Database Interoperability*.
- T. Dohzen, M. Pamuk, J. Hammer, and M. Stonebraker. 2006. Data integration through transform reuse in the Morpheus project. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 736–738. DOI: 10.1145/1142473.1142571.
- J. Dozier, M. Stonebraker, and J. Frew. 1994. Sequoia 2000: A next-generation information system for the study of global change. In *Proc. 13th IEEE Symposium Mass Storage Systems*, pp. 47–56. DOI: 10.1109/MASS.1994.373028.
- J. Duggan and M. Stonebraker. 2014. Incremental elasticity for array databases. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 409–420. DOI: 10.1145/2588555.2588569.
- J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden, D. Maier, T. Mattson, and S. B. Zdonik. 2015a. The BigDAWG polystore system. ACM SIGMOD Record, 44(2): 11–16. DOI: 10.1145/2814710.2814713. 284
- J. Duggan, O. Papaemmanouil, L. Battle, and M. Stonebraker. 2015b. Skew-aware join optimization for array databases. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 123–135. DOI: 10.1145/2723372.2723709.

- A. Dziedzic, J. Duggan, A. J. Elmore, V. Gadepally, and M. Stonebraker. 2015. BigDAWG: a polystore for diverse interactive applications. Data Systems for Interactive Analysis Workshop.
- A. Dziedzic, A. J. Elmore, and M. Stonebraker. 2016. Data transformation and migration in polystores. In Proc. 2016 IEEE High Performance Extreme Computing Conference, pp. 1-6. DOI: 10.1109/HPEC.2016.7761594. 372
- A. J. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Çetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska, S. Madden, D. Maier, T. G. Mattson, S. Papadopoulos, J. Parkhurst, N. Tatbul, M. Vartak, and S. Zdonik. 2015. A demonstration of the Big-DAWG polystore system. Proc. VLDB Endowment, 8(12): 1908-1911. http://www.vldb .org/pvldb/vol8/p1908-Elmore.pdf. 287, 371
- R. S. Epstein and M. Stonebraker. 1980. Analysis of distributed data base processing strategies. In Proc. 6th International Conference on Very Data Bases, pp. 92-101.
- R. S. Epstein, M. Stonebraker, and E. Wong. 1978. Distributed query processing in a relational data base system. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 169–180. DOI: 10.1145/509252.509292. 198
- R. C. Fernandez, Z. Abedjan, S. Madden, and M. Stonebraker. 2016. Towards large-scale data discovery: position paper. In Proc. 3rd International Workshop on Exploratory Search in Databases and the Web, pp. 3-5. DOI: 10.1145/2948674.2948675.
- R. C. Fernandez, D. Deng, E. Mansour, A. A. Qahtan, W. Tao, Z. Abedjan, A. K. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang. 2017b. A demo of the data civilizer system. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 1639-1642. DOI: 10.1145/3035918.3058740.
- R. C. Fernandez, D. Deng, E. Mansour, A. A. Qahtan, W. Tao, Z. Abedjan, A. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang. 2017a. A demo of the data civilizer system. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 1636-1642. 293
- R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker. 2018a. Aurum: A data discovery system. In Proc. 34th International Conference on Data Engineering, pp. 1001-1012.
- R. C. Fernandez, E. Mansour, A. Qahtan, A. Elmagarmid, I. Ilyas, S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang. 2018b. Seeping semantics: Linking datasets using word embeddings for data discovery. In Proc. 34th International Conference on Data Engineering, pp. 989-1000.
- V. Gadepally, P. Chen, J. Duggan, A. J. Elmore, B. Haynes, J. Kepner, S. Madden, T. Mattson, and M. Stonebraker. 2016a. The BigDAWG polystore system and architecture. In Proc. 2016 IEEE High Performance Extreme Computing Conference, pp. 1–6. DOI: 10.1109/ HPEC.2016.7761636. 287, 373
- V. Gadepally, P. Chen, J. Duggan, A. J. Elmore, B. Haynes, J. Kepner, S. Madden, T. Mattson, and M. Stonebraker. 2016b. The BigDAWG polystore system and architecture. CoRR, abs/1609.07548. http://arxiv.org/abs/1609.07548.

- V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepnera, S. Madden, T. Mattson, and M. Stonebraker. 2016c. The BigDAWG polystore system and architecture. In *Proc.* 2016 IEEE High Performance Extreme Computing Conference, pp. 1–6. DOI: 10.1109/HPEC.2016.7761636.
- V. Gadepally, J. Duggan, A. J. Elmore, J. Kepner, S. Madden, T. Mattson, and M. Stonebraker. 2016d. The BigDAWG architecture. *CoRR*, abs/1602.08791. http://arxiv.org/abs/1602.08791.
- A. Go, M. Stonebraker, and C. Williams. 1975. An approach to implementing a geo-data system. In *Proc. Workshop on Data Bases for Interactive Design*, pp. 67–77.
- J. Gray, H. Schek, M. Stonebraker, and J. D. Ullman. 2003. The Lowell report. In *Proc. ACM SIGMOD International Conference on Management of Data*, p. 680. DOI: 10.1145/872757 .872873. 92
- M. N. Gubanov and M. Stonebraker. 2013. Bootstraping synonym resolution at web scale. In *Proc. DIMACS/CCICADA Workshop on Big Data Integration*.
- M. N. Gubanov and M. Stonebraker. 2014. Large-scale semantic profile extraction. In *Proc.* 17th International Conference on Extending Database Technology, pp. 644–647. DOI: 10.5441/002/edbt.2014.64.
- M. N. Gubanov, M. Stonebraker, and D. Bruckner. 2014. Text and structured data fusion in data tamer at scale. In *Proc. 30th International Conference on Data Engineering*, pp. 1258–1261. DOI: 10.1109/ICDE.2014.6816755.
- A. M. Gupta, V. Gadepally, and M. Stonebraker. 2016. Cross-engine query execution in federated database systems. In *Proc. 2016 IEEE High Performance Extreme Computing Conference*, pp. 1–6. DOI: 10.1109/HPEC.2016.7761648. 373
- A. Guttman and M. Stonebraker. 1982. Using a relational database management system for computer aided design data. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 5(2): 21–28. http://sites.computer.org/debull/82JUN-CD.pdf. 201
- J. Hammer, M. Stonebraker, and O. Topsakal. 2005. THALIA: test harness for the assessment of legacy information integration approaches. In *Proc. 21st International Conference on Data Engineering*, pp. 485–486. DOI: 10.1109/ICDE.2005.140.
- R. Harding, D. V. Aken, A. Pavlo, and M. Stonebraker. 2017. An evaluation of distributed concurrency control. *Proc. VLDB Endowment*, 10(5): 553–564. DOI: 10.14778/3055540.3055548.
- S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. 2008. OLTP through the looking glass, and what we found there. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 981–992. DOI: 10.1145/1376616.1376713. 152, 246, 251, 346
- P. B. Hawthorn and M. Stonebraker. 1979. Performance analysis of a relational data base management system. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 1–12. DOI: 10.1145/582095.582097.
- G. Held and M. Stonebraker. 1975. Storage structures and access methods in the relational data base management system INGRES. In *Proc. ACM Pacific 75—Data: Its Use, Organization and Management*, pp. 26–33. 194

- G. Held and M. Stonebraker. 1978. B-trees re-examined. Communications of the ACM, 21(2): 139-143. DOI: 10.1145/359340.359348. 90, 197
- G. Held, M. Stonebraker, and E. Wong. 1975. INGRES: A relational data base system. In National Computer Conference, pp. 409-416. DOI: 10.1145/1499949.1500029. 102, 397
- J. M. Hellerstein and M. Stonebraker. 1993. Predicate migration: Optimizing queries with expensive predicates. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 267-276. DOI: 10.1145/170035.170078.
- J. M. Hellerstein and M. Stonebraker. 2005. Readings in Database Systems, 4. MIT Press. ISBN 978-0-262-69314-1. http://mitpress.mit.edu/books/readings-database-systems.
- J. M. Hellerstein, M. Stonebraker, and R. Caccia. 1999. Independent, open enterprise data integration. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 22(1): 43-49. http://sites.computer.org/debull/99mar/cohera.ps.
- J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton. 2007. Architecture of a database system. Foundations and Trends in Databases, 1(2): 141-259. DOI: 10.1561/1900000002.
- W. Hong and M. Stonebraker. 1991. Optimization of parallel query execution plans in XPRS. In Proc. 1st International Conference on Parallel and Distributed Information Systems, pp. 218-225. DOI: 10.1109/PDIS.1991.183106.
- W. Hong and M. Stonebraker. 1993. Optimization of parallel query execution plans in XPRS. *Distributed and Parallel Databases*, 1(1): 9-32. DOI: 10.1007/BF01277518.
- J. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker, and S. B. Zdonik. 2005. High-availability algorithms for distributed stream processing. In Proc. 21st International Conference on Data Engineering, pp. 779–790. DOI: 10.1109/ICDE.2005 .72, 228, 230, 325
- A. Jhingran and M. Stonebraker. 1990. Alternatives in complex object representation: A performance perspective. In Proc. 6th International Conference on Data Engineering, pp. 94-102. DOI: 10.1109/ICDE.1990.113458.
- A. Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M. Stonebraker. 2014. VERTEXICA: your relational friend for graph analytics! Proc. VLDB Endowment, 7(13): 1669-1672. http://www.vldb.org/pvldb/vol7/p1669-jindal.pdf.
- R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. 2008. H-store: a high-performance, distributed main memory transaction processing system. Proc. VLDB Endowment, 1(2): 1496-1499. DOI: 10.14778/1454159.1454211. 247, 249, 341
- R. H. Katz, J. K. Ousterhout, D. A. Patterson, and M. Stonebraker. 1988. A project on high performance I/O subsystems. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 11(1): 40-47. http://sites.computer.org/debull/88MAR-CD.pdf.
- J. T. Kohl, C. Staelin, and M. Stonebraker. 1993a. Highlight: Using a log-structured file system for tertiary storage management. In Proc. of the Usenix Winter 1993 Technical Conference, pp. 435-448.

- J. T. Kohl, M. Stonebraker, and C. Staelin. 1993b. Highlight: a file system for tertiary storage. In *Proc. 12th IEEE Symposium Mass Storage Systems*, pp. 157–161. DOI: 10.1109/MASS .1993.289765.
- C. P. Kolovson and M. Stonebraker. 1989. Indexing techniques for historical databases. In Proc. 5th International Conference on Data Engineering, pp. 127–137. DOI: 10.1109/ ICDE.1989.47208.
- C. P. Kolovson and M. Stonebraker. 1991. Segment indexes: Dynamic indexing techniques for multi-dimensional interval data. In *Proc. ACM SIGMOD International Conference* on *Management of Data*, pp. 138–147. DOI: 10.1145/115790.115807.
- R. A. Kowalski, D. B. Lenat, E. Soloway, M. Stonebraker, and A. Walker. 1988. Knowledge management—panel report. In *Proc. 2nd International Conference on Expert Database Systems*, pp. 63–69.
- A. Kumar and M. Stonebraker. 1987a. The effect of join selectivities on optimal nesting order. *ACM SIGMOD Record*, 16(1): 28–41. DOI: 10.1145/24820.24822.
- A. Kumar and M. Stonebraker. 1987b. Performance evaluation of an operating system transaction manager. In *Proc. 13th International Conference on Very Large Data Bases*, pp. 473–481. http://www.vldb.org/conf/1987/P473.pdf.
- A. Kumar and M. Stonebraker. 1988. Semantics based transaction management techniques for replicated data. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 117–125. DOI: 10.1145/50202.50215.
- A. Kumar and M. Stonebraker. 1989. Performance considerations for an operating system transaction manager. *IEEE Transactions on Software Engineering*, 15(6): 705–714. DOI: 10.1109/32.24724.
- R. Kung, E. N. Hanson, Y. E. Ioannidis, T. K. Sellis, L. D. Shapiro, and M. Stonebraker. 1984. Heuristic search in data base systems. In *Proc. 1st International Workshop on Expert Database Systems*, pp. 537–548.
- C. A. Lynch and M. Stonebraker. 1988. Extended user-defined indexing with application to textual databases. In *Proc. 14th International Conference on Very Large Data Bases*, pp. 306–317. http://www.vldb.org/conf/1988/P306.pdf.
- N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. 2014. Rethinking main memory OLTP recovery. In *Proc. 30th International Conference on Data Engineering*, pp. 604–615. DOI: 10.1109/ICDE.2014.6816685.
- E. Mansour, D. Deng, A. Qahtan, R. C. Fernandez, Wenbo, Z. Abedjan, A. Elmagarmid, I. Ilyas, S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang. 2018. Building data civilizer pipelines with an advanced workflow engine. In *Proc. 34th International Conference on Data Engineering*, pp. 1593–1596.
- T. Mattson, D. A. Bader, J. W. Berry, A. Buluç, J. Dongarra, C. Faloutsos, J. Feo, J. R. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. E. Leiserson, A. Lumsdaine, D. A. Padua, S. Poole, S. P. Reinhardt, M. Stonebraker, S. Wallach, and A. Yoo. 2013. Standards for graph algorithm primitives. In *Proc. 2013 IEEE High Performance Extreme Computing Conference*, pp. 1–2. DOI: 10.1109/HPEC.2013.6670338.

- T. Mattson, D. A. Bader, J. W. Berry, A. Buluç, J. J. Dongarra, C. Faloutsos, J. Feo, J. R. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. E. Leiserson, A. Lumsdaine, D. A. Padua, S. W. Poole, S. P. Reinhardt, M. Stonebraker, S. Wallach, and A. Yoo. 2014. Standards for graph algorithm primitives. CoRR, abs/1408.0393. DOI: 10.1109/HPEC .2013.6670338.
- N. H. McDonald and M. Stonebraker. 1975. CUPID the friendly query language. In Proc. ACM Pacific 75—Data: Its Use, Organization and Management, pp. 127-131.
- J. Meehan, N. Tatbul, S. B. Zdonik, C. Aslantas, U. Çetintemel, J. Du, T. Kraska, S. Madden, D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and H. Wang. 2015a. S-store: Streaming meets transaction processing. CoRR, abs/1503.01143. DOI: 10.14778/2831360 .2831367.234
- J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Çetintemel, J. Du, T. Kraska, S. Madden, D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and H. Wang. 2015b. S-store: Streaming meets transaction processing. Proc. VLDB Endowment, 8(13): 2134-2145. DOI: 10 .14778/2831360.2831367. 234, 288, 331, 374
- J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker. 2015. Dataxformer: An interactive data transformation tool. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 883-888. DOI: 10.1145/2723372 .2735366, 296
- B. Muthuswamy, L. Kerschberg, C. Zaniolo, M. Stonebraker, D. S. P. Jr., and M. Jarke. 1985. Architectures for expert-DBMS (panel). In Proc. 1985 ACM Annual Conference on the Range of Computing: Mid-80's, pp. 424-426. DOI: 10.1145/320435.320555.
- K. O'Brien, V. Gadepally, J. Duggan, A. Dziedzic, A. J. Elmore, J. Kepner, S. Madden, T. Mattson, Z. She, and M. Stonebraker. 2017. BigDAWG polystore release and demonstration. CoRR, abs/1701.05799. http://arxiv.org/abs/1701.05799.
- V. E. Ogle and M. Stonebraker. 1995. Chabot: Retrieval from a relational database of images. IEEE Computer, 28(9): 40-48. DOI: 10.1109/2.410150.
- M. A. Olson, W. Hong, M. Ubell, and M. Stonebraker. 1996. Query processing in a parallel object-relational database system. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 19(4): 3-10. http://sites.computer.org/debull/96DEC-CD.pdf.
- C. Olston, M. Stonebraker, A. Aiken, and J. M. Hellerstein. 1998a. VIQING: visual interactive querying. In Proc. 1998 IEEE Symposium on Visual Languages, pp. 162-169. DOI: 10.1109/VL.1998.706159.
- C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding, and M. Stonebraker. 1998b. Datasplash. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 550-552. DOI: 10.1145/276304.276377.
- J. Ong, D. Fogg, and M. Stonebraker. 1984. Implementation of data abstraction in the relational database system ingres. ACM SIGMOD Record, 14(1): 1-14. DOI: 10.1145/ 984540.984541. 201, 202, 206
- R. Overmyer and M. Stonebraker. 1982. Implementation of a time expert in a data base system. ACM SIGMOD Record, 12(3): 51-60. DOI: 10.1145/984505.984509.

- A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker. 2009. A comparison of approaches to large-scale data analysis. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 165–178. DOI: 10.1145/1559845 .1559865.
- H. Pirk, S. Madden, and M. Stonebraker. 2015. By their fruits shall ye know them: A data analyst's perspective on massively parallel system design. In *Proc. 11th Workshop on Data Management on New Hardware*, pp. 5:1–5:6. DOI: 10.1145/2771937.2771944.
- G. Planthaber, M. Stonebraker, and J. Frew. 2012. Earthdb: scalable analysis of MODIS data using SciDB. In *Proc. 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data*, pp. 11–19. DOI: 10.1145/2447481.2447483.
- S. Potamianos and M. Stonebraker. 1996. The POSTGRES rules system. In *Active Database Systems: Triggers and Rules For Advanced Database Processing*, pp. 43–61. Morgan Kaufmann. 91, 168
- C. Ré, D. Agrawal, M. Balazinska, M. Cafarella, M. Jordan, T. Kraska, and R. Ramakrishnan. 2015. Machine learning and databases: The sound of things to come or a cacophony of hype? In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 283–284.
- D. R. Ries and M. Stonebraker. 1977a. Effects of locking granularity in a database management system. *ACM Transactions on Database Systems*, 2(3): 233–246. DOI: 10.1145/320557.320566. 91, 198
- D. R. Ries and M. Stonebraker. 1977b. A study of the effects of locking granularity in a data base management system (abstract). In *Proc. ACM SIGMOD International Conference on Management of Data*, p. 121. DOI: 10.1145/509404.509422. 91
- D. R. Ries and M. Stonebraker. 1979. Locking granularity revisited. *ACM Transactions on Database Systems*, 4(2): 210–227. http://doi.acm.org/10.1145/320071.320078. DOI: 10.1145/320071.320078. 91
- L. A. Rowe and M. Stonebraker. 1981. Architecture of future data base systems. *ACM SIGMOD Record*, 11(1): 30–44. DOI: 10.1145/984471.984473.
- L. A. Rowe and M. Stonebraker. 1986. The commercial INGRES epilogue. In M. Stonebraker, editor, *The INGRES Papers: Anatomy of a Relational Database System*, pp. 63–82. Addison-Wesley.
- L. A. Rowe and M. Stonebraker. 1987. The POSTGRES data model. In *Proc. 13th International Conference on Very Large Data Bases*, pp. 83–96. http://www.vldb.org/conf/1987/P083.pdf. 258
- L. A. Rowe and M. Stonebraker. 1990. The POSTGRES data model. In A. F. Cardenas and D. McLeod, editors, *Research Foundations in Object-Oriented and Semantic Database Systems*, pp. 91–110. Prentice Hall.
- S. Sarawagi and M. Stonebraker. 1994. Efficient organization of large multidimensional arrays. In *Proc. 10th International Conference on Data Engineering*, pp. 328–336. DOI: 10.1109/ICDE.1994.283048.

- S. Sarawagi and M. Stonebraker. 1996. Reordering query execution in tertiary memory databases. In Proc. 22th International Conference on Very Large Data Bases. http://www .vldb.org/conf/1996/P156.pdf.
- G. A. Schloss and M. Stonebraker. 1990. Highly redundant management of distributed data. In Proc. Workshop on the Management of Replicated Data, pp. 91–92.
- A. Seering, P. Cudré-Mauroux, S. Madden, and M. Stonebraker. 2012. Efficient versioning for scientific array databases. In Proc. 28th International Conference on Data Engineering, pp. 1013-1024. DOI: 10.1109/ICDE.2012.102.
- L. J. Seligman, N. J. Belkin, E. J. Neuhold, M. Stonebraker, and G. Wiederhold. 1995. Metrics for accessing heterogeneous data: Is there any hope? (panel). In Proc. 21th International Conference on Very Large Data Bases, p. 633. http://www.vldb.org/conf/ 1995/P633.pdf.
- M. I. Seltzer and M. Stonebraker. 1990. Transaction support in read optimizied and write optimized file systems. In Proc. 16th International Conference on Very Large Data Bases, pp. 174-185. http://www.vldb.org/conf/1990/P174.pdf.
- M. I. Seltzer and M. Stonebraker. 1991. Read optimized file system designs: A performance evaluation. In *Proc. 7th International Conference on Data Engineering*, pp. 602–611. DOI: 10.1109/ICDE.1991.131509.
- M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboulnaga, and M. Stonebraker. 2016. Clay: Finegrained adaptive partitioning for general database schemas. Proc. VLDB Endowment, 10(4): 445-456. DOI: 10.14778/3025111.3025125.
- J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, and A. Yu. 1996. Data replication in mariposa. In Proc. 12th International Conference on Data Engineering, pp. 485-494. DOI: 10.1109/ICDE.1996.492198.
- A. Silberschatz, M. Stonebraker, and J. D. Ullman. 1990. Database systems: Achievements and opportunities—the "Lagunita" report of the NSF invitational workshop on the future of database system research held in Palo Alto, CA, February 22-23, 1990. ACM SIGMOD Record, 19(4): 6-22. DOI: 10.1145/122058.122059. 92
- A. Silberschatz, M. Stonebraker, and J. D. Ullman. 1991. Database systems: Achievements and opportunities. Communications of the ACM, 34(10): 110-120. DOI: 10.1145/ 125223.125272.
- A. Silberschatz, M. Stonebraker, and J. D. Ullman. 1996. Database research: Achievements and opportunities into the 21st century. ACM SIGMOD Record, 25(1): 52-63. DOI: 10.1145/381854.381886.
- D. Skeen and M. Stonebraker. 1981. A formal model of crash recovery in a distributed system. In Proc. 5th Berkeley Workshop on Distributed Data Management and Computer Networks, pp. 129-142.
- D. Skeen and M. Stonebraker. 1983. A formal model of crash recovery in a distributed system. IEEE Transactions on Software Engineering, 9(3): 219–228. DOI: 10.1109/TSE .1983.236608.199

- M. Stonebraker and R. Cattell. 2011. 10 rules for scalable performance in "simple operation" datastores. *Communications of the ACM*, 54(6): 72–80. DOI: 10.1145/1953122.1953144.
- M. Stonebraker and U. Çetintemel. 2005. "One size fits all": An idea whose time has come and gone (abstract). In *Proc. 21st International Conference on Data Engineering*, pp. 2–11. DOI: 10.1109/ICDE.2005.1. 50, 92, 103, 131, 152, 367, 401
- M. Stonebraker and D. J. DeWitt. 2008. A tribute to Jim Gray. *Communications of the ACM*, 51(11): 54–57. DOI: 10.1145/1400214.1400230.
- M. Stonebraker and A. Guttman. 1984. Using a relational database management system for computer aided design data—an update. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 7(2): 56–60. http://sites.computer.org/debull/84JUN-CD.pdf.
- M. Stonebraker and A. Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In *Proc. of the 1984 ACM SIGMOD International Conference on Management of Data (SIGMOD '84)*, pp. 47–57. ACM, New York. DOI:10.1145/602259.602266. 201
- M. Stonebraker and M. A. Hearst. 1988. Future trends in expert data base systems. In *Proc.* 2nd International Conference on Expert Database Systems, pp. 3–20. 395
- M. Stonebraker and G. Held. 1975. Networks, hierarchies and relations in data base management systems. In *Proc. ACM Pacific 75—Data: Its Use, Organization and Management*, pp. 1–9.
- M. Stonebraker and J. M. Hellerstein, editors. 1998. *Readings in Database Systems*, 3. Morgan Kaufmann.
- M. Stonebraker and J. M. Hellerstein. 2001. Content integration for e-business. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 552–560. DOI: 10.1145/375663.375739.
- M. Stonebraker and J. Hong. 2009. Saying good-bye to DBMSS, designing effective interfaces. *Communications of the ACM*, 52(9): 12–13. DOI: 10.1145/1562164.1562169.
- M. Stonebraker and J. Hong. 2012. Researchers' big data crisis; understanding design and functionality. *Communications of the ACM*, 55(2): 10–11. DOI: 10.1145/2076450 .2076453.
- M. Stonebraker and J. Kalash. 1982. TIMBER: A sophisticated relation browser (invited paper). In *Proc. 8th International Conference on Very Data Bases*, pp. 1–10. http://www.vldb.org/conf/1982/P001.pdf.
- M. Stonebraker and K. Keller. 1980. Embedding expert knowledge and hypothetical data bases into a data base system. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 58–66. DOI: 10.1145/582250.582261. 200
- M. Stonebraker and G. Kemnitz. 1991. The Postgres next generation database management system. *Communications of the ACM*, 34(10): 78–92. DOI: 10.1145/125223.125262. 168, 206, 213
- M. Stonebraker and A. Kumar. 1986. Operating system support for data management. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 9(3): 43–50. http://sites.computer.org/debull/86SEP-CD.pdf. 47

- M. Stonebraker and D. Moore. 1996. Object-Relational DBMSs: The Next Great Wave. Morgan Kaufmann. 111
- M. Stonebraker and E. J. Neuhold. 1977. A distributed database version of INGRES. In Proc. 2nd Berkeley Workshop on Distributed Data Management and Computer Networks, pp. 19-36. 109, 198, 199
- M. Stonebraker and M. A. Olson. 1993. Large object support in POSTGRES. In Proc. 9th International Conference on Data Engineering, pp. 355–362. DOI: 10.1109/ICDE.1993 .344046.
- M. Stonebraker and J. Robertson. 2013. Big data is "buzzword du jour;" CS academics "have the best job". *Communications of the ACM*, 56(9): 10–11. DOI: 10.1145/2500468 .2500471.
- M. Stonebraker and L. A. Rowe. 1977. Observations on data manipulation languages and their embedding in general purpose programming languages. In Proc. 3rd International Conference on Very Data Bases, pp. 128-143.
- M. Stonebraker and L. A. Rowe. 1984. Database portals: A new application program interface. In Proc. 10th International Conference on Very Large Data Bases, pp. 3-13. http://www .vldb.org/conf/1984/P003.pdf.
- M. Stonebraker and L. A. Rowe. 1986. The design of Postgres. In *Proc. ACM SIGMOD* International Conference on Management of Data, pp. 340-355. DOI: 10.1145/16894 .16888. 149, 203, 206
- M. Stonebraker and P. Rubinstein. 1976. The INGRES protection system. In Proc. 1976 ACM Annual Conference, pp. 80-84. DOI: 10.1145/800191.805536. 398
- M. Stonebraker and G. A. Schloss. 1990. Distributed RAID—A new multiple copy algorithm. In Proc. 6th International Conference on Data Engineering, pp. 430-437. DOI: 10.1109/ ICDE.1990.113496.
- M. Stonebraker and A. Weisberg. 2013. The VoltDB main memory DBMS. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 36(2): 21–27. http://sites.computer .org/debull/A13june/VoltDB1.pdf.
- M. Stonebraker and E. Wong. 1974b. Access control in a relational data base management system by query modification. In Proc. 1974 ACM Annual Conference, Volume 1, pp. 180-186. DOI: 10.1145/800182.810400. 45
- M. Stonebraker, P. Rubinstein, R. Conway, D. Strip, H. R. Hartson, D. K. Hsiao, and E. B. Fernandez. 1976a. SIGBDP (paper session). In Proc. 1976 ACM Annual Conference, p. 79. DOI: 10.1145/800191.805535.
- M. Stonebraker, E. Wong, P. Kreps, and G. Held. 1976b. The design and implementation of INGRES. ACM Transactions on Database Systems, 1(3): 189-222. DOI: 10.1145/320473 .320476.47, 148, 398
- M. Stonebraker, R. R. Johnson, and S. Rosenberg. 1982a. A rules system for a relational data base management system. In Proc. 2nd International Conference on Databases: Improving Database Usability and Responsiveness, pp. 323-335. 91, 202

- M. Stonebraker, J. Woodfill, J. Ranstrom, M. C. Murphy, J. Kalash, M. J. Carey, and K. Arnold. 1982b. Performance analysis of distributed data base systems. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 5(4): 58–65. http://sites.computer.org/debull/82DEC-CD.pdf.
- M. Stonebraker, W. B. Rubenstein, and A. Guttman. 1983a. Application of abstract data types and abstract indices to CAD data bases. In *Engineering Design Applications*, pp. 107–113.
- M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and A. Guttman. 1983b. Document processing in a relational database system. *ACM Transactions on Information Systems*, 1(2): 143–158. DOI: 10.1145/357431.357433.
- M. Stonebraker, J. Woodfill, and E. Andersen. 1983c. Implementation of rules in relational data base systems. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 6(4): 65–74. http://sites.computer.org/debull/83DEC-CD.pdf. 91, 202
- M. Stonebraker, J. Woodfill, J. Ranstrom, J. Kalash, K. Arnold, and E. Andersen. 1983d. Performance analysis of distributed data base systems. In *Proc. 2nd Symposium on Reliable Distributed Systems*, pp. 135–138.
- M. Stonebraker, J. Woodfill, J. Ranstrom, M. C. Murphy, M. Meyer, and E. Allman. 1983e. Performance enhancements to a relational database system. *ACM Transactions on Database Systems*, 8(2): 167–185. DOI: 10.1145/319983.319984.
- M. Stonebraker, E. Anderson, E. N. Hanson, and W. B. Rubenstein. 1984a. Quel as a data type. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 208–214. DOI: 10.1145/602259.602287. 208
- M. Stonebraker, J. Woodfill, J. Ranstrom, J. Kalash, K. Arnold, and E. Andersen. 1984b. Performance analysis of distributed data base systems. *Performance Evaluation*, 4(3): 220. DOI: 10.1016/0166-5316(84)90036-1.
- M. Stonebraker, D. DuBourdieux, and W. Edwards. 1985. Problems in supporting data base transactions in an operating system transaction manager. *Operating Systems Review*, 19(1): 6–14. DOI: 10.1145/1041490.1041491.
- M. Stonebraker, T. K. Sellis, and E. N. Hanson. 1986. An analysis of rule indexing implementations in data base systems. In *Proc. 1st International Conference on Expert Database Systems*, pp. 465–476. 91
- M. Stonebraker, J. Anton, and E. N. Hanson. 1987a. Extending a database system with procedures. *ACM Transactions on Database Systems*, 12(3): 350–376. DOI: 10.1145/27629.27631.
- M. Stonebraker, J. Anton, and M. Hirohama. 1987b. Extendability in POSTGRES. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 10(2): 16–23. http://sites.computer.org/debull/87JUN-CD.pdf.
- M. Stonebraker, E. N. Hanson, and C. Hong. 1987c. The design of the postgres rules system. In *Proc. 3th International Conference on Data Engineering*, pp. 365–374. DOI: 10.1109/ICDE.1987.7272402. 91

- M. Stonebraker, E. N. Hanson, and S. Potamianos. 1988a. The POSTGRES rule manager. IEEE Transactions on Software Engineering, 14(7): 897-907. DOI: 10.1109/32.42733. 91, 168
- M. Stonebraker, R. H. Katz, D. A. Patterson, and J. K. Ousterhout. 1988b. The design of XPRS. In Proc. 14th International Conference on Very Large Data Bases, pp. 318-330. http://www.vldb.org/conf/1988/P318.pdf.
- M. Stonebraker, M. A. Hearst, and S. Potamianos. 1989. A commentary on the POSTGRES rule system. ACM SIGMOD Record, 18(3): 5-11. DOI: 10.1145/71031.71032. 91, 168,
- M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. 1990a. On rules, procedures, caching and views in data base systems. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 281-290. DOI: 10.1145/93597.98737.
- M. Stonebraker, L. A. Rowe, and M. Hirohama. 1990b. The implementation of postgres. IEEE Transactions on Knowledge and Data Engineering, 2(1): 125-142. DOI: 10.1109/ 69.50912.47, 168
- M. Stonebraker, L. A. Rowe, B. G. Lindsay, J. Gray, M. J. Carey, and D. Beech. 1990e. Third generation data base system manifesto—The committee for advanced DBMS function. In Proc. ACM SIGMOD International Conference on Management of Data, p. 396.
- M. Stonebraker, L. A. Rowe, B. G. Lindsay, J. Gray, M. J. Carey, M. L. Brodie, P. A. Bernstein, and D. Beech. 1990c. Third-generation database system manifesto—The committee for advanced DBMS function. ACM SIGMOD Record, 19(3): 31-44. DOI: 10.1145/ 101077.390001.91
- M. Stonebraker, L. A. Rowe, B. G. Lindsay, J. Gray, M. J. Carey, M. L. Brodie, P. A. Bernstein, and D. Beech. 1990d. Third-generation database system manifesto—The committee for advanced DBMS function. In Proc. IFIP TC2/WG 2.6 Working Conference on Object-Oriented Databases: Analysis, Design & Construction, pp. 495-511. 91
- M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and A. Reuter. 1993a. DBMS research at a crossroads: The Vienna update. In Proc. 19th International Conference on Very Large Data Bases, pp. 688-692. http://www.vldb.org/conf/1993/P688.pdf.
- M. Stonebraker, J. Chen, N. Nathan, C. Paxson, A. Su, and J. Wu. 1993b. Tioga: A databaseoriented visualization tool. In *Proceedings IEEE Conference Visualization*, pp. 86–93. DOI: 10.1109/VISUAL.1993.398855.393
- M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu. 1993c. Tioga: Providing data management support for scientific visualization applications. In Proc. 19th International Conference on Very Large Data Bases, pp. 25-38. http://www.vldb.org/ conf/1993/P025.pdf. 393
- M. Stonebraker, J. Frew, and J. Dozier. 1993d. The SEQUOIA 2000 project. In Proc. 3rd International Symposium Advances in Spatial Databases, pp. 397-412. DOI: 10.1007/3-540-56869-7_22.

- M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. 1993e. The Sequoia 2000 benchmark. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 2–11. DOI: 10.1145/170035.170038.
- M. Stonebraker, P. M. Aoki, R. Devine, W. Litwin, and M. A. Olson. 1994a. Mariposa: A new architecture for distributed data. In *Proc. 10th International Conference on Data Engineering*, pp. 54–65. DOI: 10.1109/ICDE.1994.283004. 401
- M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah, and C. Staelin. 1994b. An economic paradigm for query processing and data migration in Mariposa. In *Proc. 3rd International Conference on Parallel and Distributed Information Systems*, pp. 58–67. DOI: 10.1109/PDIS.1994.331732.
- M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. 1996. Mariposa: A wide-area distributed database system. *VLDB Journal*, 5(1): 48–63. DOI: 10.1007/s007780050015.
- M. Stonebraker, P. Brown, and M. Herbach. 1998a. Interoperability, distributed applications and distributed databases: The virtual table interface. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 21(3): 25–33. http://sites.computer.org/debull/98sept/informix.ps.
- M. Stonebraker, P. Brown, and D. Moore. 1998b. *Object-Relational DBMSs*, 2. Morgan Kaufmann.
- M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O'Neil, P. E. O'Neil, A. Rasin, N. Tran, and S. B. Zdonik. 2005a. C-store: A column-oriented DBMS. In *Proc. 31st International Conference on Very Large Data Bases*, pp. 553–564. http://www.vldb2005.org/program/paper/thu/p553-stonebraker.pdf. 104, 132, 151, 238, 242, 258, 333, 335, 402
- M. Stonebraker, U. Çetintemel, and S. B. Zdonik. 2005b. The 8 requirements of real-time stream processing. *ACM SIGMOD Record*, 34(4): 42–47. DOI: 10.1145/1107499.1107504. 282
- M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. B. Zdonik. 2007a. One size fits all? Part 2: Benchmarking studies. In *Proc. 3rd Biennial Conference on Innovative Data Systems Research*, pp. 173–184. http://www.cidrdb.org/cidr2007/papers/cidr07p20.pdf. 103, 282
- M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. 2007b. The end of an architectural era (it's time for a complete rewrite). In *Proc. 33rd International Conference on Very Large Data Bases*, pp. 1150–1160. http://www.vldb.org/conf/2007/papers/industrial/p1150-stonebraker.pdf. 247, 341, 344
- M. Stonebraker, J. Becla, D. J. DeWitt, K. Lim, D. Maier, O. Ratzesberger, and S. B. Zdonik. 2009. Requirements for science data bases and SciDB. In *Proc. 4th Biennial Conference* on *Innovative Data Systems Research*. http://www-db.cs.wisc.edu/cidr/cidr2009/ Paper_26.pdf. 257

- M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin. 2010. Mapreduce and parallel DBMSS: friends or foes? Communications of the ACM, 53(1): 64-71. DOI: 10.1145/1629175.1629197. 50, 136, 251
- M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. 2011. The architecture of SciDB. In Proc. 23rd International Conference on Scientific and Statistical Database Management, pp. 1-16. DOI: 10.1007/978-3-642-22351-8_1.
- M. Stonebraker, A. Ailamaki, J. Kepner, and A. S. Szalay. 2012. The future of scientific data bases. In Proc. 28th International Conference on Data Engineering, pp. 7-8. DOI: 10.1109/ICDE.2012.151.
- M. Stonebraker, P. Brown, D. Zhang, and J. Becla. 2013a. SciDB: A database management system for applications with complex analytics. Computing in Science and Engineering, 15(3): 54-62. DOI: 10.1109/MCSE.2013.19.
- M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu. 2013b. Data curation at scale: The data tamer system. In Proc. 6th Biennial Conference on Innovative Data Systems Research. http://www.cidrdb.org/cidr2013/ Papers/CIDR13_Paper28.pdf. 105, 150, 269, 297, 357, 358
- M. Stonebraker, J. Duggan, L. Battle, and O. Papaemmanouil. 2013c. SciDB DBMS research at M.I.T. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 36(4): 21-30. http://sites.computer.org/debull/A13dec/p21.pdf.
- M. Stonebraker, S. Madden, and P. Dubey. 2013d. Intel "big data" science and technology center vision and execution plan. ACM SIGMOD Record, 42(1): 44-49. DOI: 10.1145/ 2481528.2481537.
- M. Stonebraker, A. Pavlo, R. Taft, and M. L. Brodie. 2014. Enterprise database applications and the cloud: A difficult road ahead. In Proc. 7th IEEE International Conference on Cloud Computing, pp. 1-6. DOI: 10.1109/IC2E.2014.97.
- M. Stonebraker, D. Deng, and M. L. Brodie. 2016. Database decay and how to avoid it. In Proc. 2016 IEEE International Conference on Big Data, pp. 7-16. DOI: 10.1109/BigData .2016.7840584.
- M. Stonebraker, D. Deng, and M. L. Brodie. 2017. Application-database co-evolution: A new design and development paradigm. In North East Database Day, pp. 1-3.
- M. Stonebraker. 1972a. Retrieval efficiency using combined indexes. In Proc. 1972 ACM-SIGFIDET Workshop on Data Description, Access and Control, pp. 243–256.
- M. Stonebraker. 1972b. A simplification of forrester's model of an urban area. IEEE Transactions on Systems, Man, and Cybernetics, 2(4): 468-472. DOI: 10.1109/TSMC .1972.4309156.
- M. Stonebraker. 1974a. The choice of partial inversions and combined indices. International Journal Parallel Programming, 3(2): 167–188. DOI: 10.1007/BF00976642.
- M. Stonebraker. 1974b. A functional view of data independence. In Proc. 1974 ACM SIGMOD Workshop on Data Description, Access and Control, pp. 63-81. DOI: 10.1145/800296 .811505.404,405

- M. Stonebraker. 1975. Getting started in INGRES—A tutorial, Memorandum No. ERL-M518, Electronics Research Laboratory, College of Engineering, UC Berkeley. 196
- M. Stonebraker. 1975. Implementation of integrity constraints and views by query modification. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 65–78. DOI: 10.1145/500080.500091. 45, 90
- M. Stonebraker. 1976a. Proposal for a network INGRES. In *Proc. 1st Berkeley Workshop on Distributed Data Management and Computer Networks*, p. 132.
- M. Stonebraker. 1976b. The data base management system INGRES. In *Proc. 1st Berkeley Workshop on Distributed Data Management and Computer Networks*, p. 336. 195
- M. Stonebraker. 1976c. A comparison of the use of links and secondary indices in a relational data base system. In *Proc. 2nd International Conference on Software Engineering*, pp. 527–531. http://dl.acm.org/citation.cfm?id=807727.
- M. Stonebraker. 1978. Concurrency control and consistency of multiple copies of data in distributed INGRES. In *Proc. 3rd Berkeley Workshop on Distributed Data Management and Computer Networks*, pp. 235–258. 90, 398
- M. Stonebraker. May 1979a. Muffin: A distributed database machine. Technical Report ERL Technical Report UCB/ERL M79/28, University of California at Berkeley. 151
- M. Stonebraker. 1979b. Concurrency control and consistency of multiple copies of data in distributed INGRES. *IEEE Transactions on Software Engineering*, 5(3): 188–194. DOI: 10.1109/TSE.1979.234180. 398
- M. Stonebraker. 1980. Retrospection on a database system. *ACM Transactions on Database Systems*, 5(2): 225–240. DOI: 10.1145/320141.320158.
- M. Stonebraker. 1981a. Operating system support for database management. *Communications of the ACM*, 24(7): 412–418. DOI: 10.1145/358699.358703.
- M. Stonebraker. 1981b. Chairman's column. ACM SIGMOD Record, 11(3): i-iv.
- M. Stonebraker. 1981c. Chaiman's column. ACM SIGMOD Record, 11(4): 2-4.
- M. Stonebraker. 1981d. Chairman's column. ACM SIGMOD Record, 12(1): 1-3.
- M. Stonebraker. 1981e. In memory of Kevin Whitney. ACM SIGMOD Record, 12(1): 7.
- M. Stonebraker. 1981f. Chairman's column. ACM SIGMOD Record, 11(1): 1–4.
- M. Stonebraker. 1981g. Hypothetical data bases as views. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 224–229. DOI: 10.1145/582318.582352.
- M. Stonebraker. 1982a. Chairman's column. ACM SIGMOD Record, 12(3): 2-4.
- M. Stonebraker. 1982b. Letter to Peter Denning (two VLDB conferences). *ACM SIGMOD Record*, 12(3): 6–7.
- M. Stonebraker. 1982c. Chairman's column. ACM SIGMOD Record, 12(4): a-c.
- M. Stonebraker. 1982d. Chairman's column. *ACM SIGMOD Record*, 13(1): 2–3&4.
- M. Stonebraker. 1982e. Adding semantic knowledge to a relational database system. In M. L. Brodie, M. John, and S. J. W., editors, *On Conceptual Modelling*, pp. 333–352. Springer. DOI: 10.1007/978-1-4612-5196-5_12.

- M. Stonebraker. 1982f. A database perspective. In M. L. Brodie, M. John, and S. J. W., editors, On Conceptual Modelling, pp. 457-458. Springer. DOI: 10.1007/978-1-4612-5196-5_18.
- M. Stonebraker. 1983a. DBMS and AI: is there any common point of view? In *Proc. ACM* SIGMOD International Conference on Management of Data, p. 134. DOI: 10.1145/582192 .582215. 201, 205
- M. Stonebraker. April 1983b. Chairman's column. ACM SIGMOD Record, 13(3): 1-3.
- M. Stonebraker. January 1983c. Chairman's column. ACM SIGMOD Record, 13(2): 1-3.
- M. Stonebraker. 1984. Virtual memory transaction management. Operating Systems Review, 18(2): 8-16. DOI: 10.1145/850755.850757. 203
- M. Stonebraker. 1985a. Triggers and inference in data base systems. In Proc. 1985 ACM Annual Conference on the Range of Computing: Mid-80's Perspective, p. 426. DOI: 10.1145/320435.323372.
- M. Stonebraker. 1985b. Triggers and inference in database systems. In M. L. Brodie and J. Mylopoulos, editors, On Knowledge Base Management Systems, pp. 297-314. Springer. 202
- M. Stonebraker. 1985c. Expert database systems/bases de données et systèmes experts. In Journées Bases de Données Avancés.
- M. Stonebraker. 1985d. The case for shared nothing. In Proc. International Workshop on High-Performance Transaction Systems, p. 0. 91
- M. Stonebraker. 1985e. Tips on benchmarking data base systems. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 8(1): 10–18. http://sites.computer.org/ debull/85MAR-CD.pdf.
- M. Stonebraker, editor. 1986a. The INGRES Papers: Anatomy of a Relational Database System. Addison-Wesley.
- M. Stonebraker. 1986b. Inclusion of new types in relational data base systems. In Proc. 2nd International Conference on Data Engineering, pp. 262-269. DOI: 10.1109/ICDE.1986 .7266230. 88, 202, 258
- M. Stonebraker. 1986c. Object management in Postgres using procedures. In Proc. International Workshop on Object-Oriented Database Systems, pp. 66-72. http://dl .acm.org/citation.cfm?id=318840.45, 88, 399
- M. Stonebraker. 1986d. The case for shared nothing. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 9(1): 4-9. http://sites.computer.org/debull/86MAR-CD.pdf. 91, 216
- M. Stonebraker. 1986e. Design of relational systems (introduction to section 1). In M. Stonebraker, editor, The INGRES Papers: Anatomy of a Relational Database System, pp. 1-3. Addison-Wesley.
- M. Stonebraker. 1986f. Supporting studies on relational systems (introduction to section 2). In M. Stonebraker, editor, *The INGRES Papers*, pp. 83–85. Addison-Wesley.

- M. Stonebraker. 1986g. Distributed database systems (introduction to section 3). In M. Stonebraker, editor, *The INGRES Papers: Anatomy of a Relational Database System*, pp. 183–186. Addison-Wesley.
- M. Stonebraker. 1986h. The design and implementation of distributed INGRES. In M. Stonebraker, editor, *The INGRES Papers: Anatomy of a Relational Database System*, pp. 187–196. Addison-Wesley.
- M. Stonebraker. 1986i. User interfaces for database systems (introduction to section 4). In M. Stonebraker, editor, *The INGRES Papers: Anatomy of a Relational Database System*, pp. 243–245. Addison-Wesley.
- M. Stonebraker. 1986j. Extended semantics for the relational model (introduction to section 5). In M. Stonebraker, editor, *The INGRES Papers: Anatomy of a Relational Database System*, pp. 313–316. Addison-Wesley.
- M. Stonebraker. 1986k. Database design (introduction to section 6). In M. Stonebraker, editor, *The INGRES Papers: Anatomy of a Relational Database System*, pp. 393–394. Addison-Wesley.
- M. Stonebraker. 1986l. Object management in a relational data base system. In *Digest of Papers COMPCON*, pp. 336–341.
- M. Stonebraker. 1987. The design of the POSTGRES storage system. In *Proc. 13th International Conference on Very Large Data Bases*, pp. 289–300. http://www.vldb.org/conf/1987/P289.pdf. 168, 214, 258
- M. Stonebraker, editor. 1988a. Readings in Database Systems. Morgan Kaufmann.
- M. Stonebraker. 1988b. Future trends in data base systems. In *Proc. 4th International Conference on Data Engineering*, pp. 222–231. DOI: 10.1109/ICDE.1988.105464.
- M. Stonebraker. 1989a. The case for partial indexes. *ACM SIGMOD Record*, 18(4): 4–11. DOI: 10.1145/74120.74121.
- M. Stonebraker. 1989b. Future trends in database systems. *IEEE Transactions on Knowledge and Data Engineering*, 1(1): 33–44. DOI: 10.1109/69.43402.
- M. Stonebraker. 1990a. The third-generation database manifesto: A brief retrospection. In *Proc. IFIP TC2/WG 2.6 Working Conference on Object-Oriented Databases: Analysis, Design & Construction*, pp. 71–72.
- M. Stonebraker. 1990b. Architecture of future data base systems. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 13(4): 18–23. http://sites.computer.org/debull/90DEC-CD.pdf.
- M. Stonebraker. 1990c. Data base research at Berkeley. *ACM SIGMOD Record*, 19(4): 113–118. DOI: 10.1145/122058.122072.
- M. Stonebraker. 1990d. Introduction to the special issue on database prototype systems. *IEEE Transactions on Knowledge and Data Engineering*, 2(1): 1–3. DOI: 10.1109/TKDE .1990.10000.
- M. Stonebraker. 1990e. The Postgres DBMS. In *Proc. ACM SIGMOD International Conference on Management of Data*, p. 394.

- M. Stonebraker. 1991a. Managing persistent objects in a multi-level store. In *Proc. ACM SIGMOD International Conference on Management of Data*, pp. 2–11. DOI: 10.1145/115790.115791.
- M. Stonebraker. 1991b. Object management in Postgres using procedures. In K. R. Dittrich, U. Dayal, and A. P. Buchmann, editors, On Object-Oriented Database System, pp. 53–64. Springer. DOI: http://10.1007/978-3-642-84374-7_5.
- M. Stonebraker. 1971. The reduction of large scale Markov models for random chains. Ph.D. Dissertation. University of Michigan, Ann Arbor, MI. AAI7123885. 43
- M. Stonebraker. 1992a. The integration of rule systems and database systems. *IEEE Transactions on Knowledge and Data Engineering*, 4(5): 415–423. DOI: 10.1109/69 .166984. 91
- M. Stonebraker, editor. 1992b. *Proceedings of the 1992 ACM SIGMOD International Conference on Management of Data*. ACM Press.
- M. Stonebraker. 1993a. The SEQUOIA 2000 project. *Quarterly Bulletin IEEE Technical Committee on Data Engineering*, 16(1): 24–28. http://sites.computer.org/debull/93MAR-CD.pdf.
- M. Stonebraker. 1993b. Are we polishing a round ball? (panel abstract). In *Proc. 9th International Conference on Data Engineering*, p. 606.
- M. Stonebraker. 1993c. The miro DBMS. In *Proc. ACM SIGMOD International Conference on Management of Data*, p. 439. DOI: 10.1145/170035.170124. 314
- M. Stonebraker. 1994a. SEQUOIA 2000: A reflection of the first three years. In *Proc. 7th International Working Conference on Scientific and Statistical Database Management*, pp. 108–116. DOI: 10.1109/SSDM.1994.336956.
- M. Stonebraker, editor. 1994b. Readings in Database Systems, 2. Morgan Kaufmann.
- M. Stonebraker. 1994c. Legacy systems—the Achilles heel of downsizing (panel). In *Proc.* 3rd International Conference on Parallel and Distributed Information Systems, p. 108.
- M. Stonebraker. 1994d. In memory of Bob Kooi (1951-1993). *ACM SIGMOD Record*, 23(1): 3. DOI: 10.1145/181550.181551.
- M. Stonebraker. 1995. An overview of the Sequoia 2000 project. *Digital Technical Journal*, 7(3). http://www.hpl.hp.com/hpjournal/dtj/vol7num3/vol7num3art3.pdf. 215, 255
- M. Stonebraker. 1998. Are we working on the right problems? (panel). In *Proc. ACM SIGMOD International Conference on Management of Data*, p. 496. DOI: 10.1145/276304.276348.
- M. Stonebraker. 2002. Too much middleware. *ACM SIGMOD Record*, 31(1): 97–106. DOI: 10.1145/507338.507362. 91
- M. Stonebraker. 2003. Visionary: A next generation visualization system for databases. In *Proc. ACM SIGMOD International Conference on Management of Data*, p. 635. http://www.acm.org/sigmod/sigmod03/eproceedings/papers/ind00.pdf.
- M. Stonebraker. 2004. Outrageous ideas and/or thoughts while shaving. In *Proc. 20th International Conference on Data Engineering*, p. 869. DOI: 10.1109/ICDE.2004 .1320096.

- M. Stonebraker. 2008a. Why did Jim Gray win the Turing Award? *ACM SIGMOD Record*, 37(2): 33–34. DOI: 10.1145/1379387.1379398.
- M. Stonebraker. 2008b. Technical perspective—one size fits all: An idea whose time has come and gone. *Communications of the ACM*, 51(12): 76. DOI: 10.1145/1409360.1409379. 92
- M. Stonebraker. 2009a. Stream processing. In L. Liu and M. T. Özsu, editors. *Encyclopedia of Database Systems*, pp. 2837–2838. Springer. DOI: 10.1007/978-0-387-39940-9_371.
- M. Stonebraker. 2009b. A new direction for tpc? In *Proc. 1st TPC Technology Conference on Performance Evaluation and Benchmarking*, pp. 11–17. DOI: 10.1007/978-3-642-10424-4 2.
- M. Stonebraker. 2010a. SQL databases v. nosql databases. *Communications of the ACM*, 53(4): 10–11. DOI: 10.1145/1721654.1721659. 50
- M. Stonebraker. 2010b. In search of database consistency. *Communications of the ACM*, 53(10): 8–9. DOI: 10.1145/1831407.1831411.
- M. Stonebraker. 2011a. Stonebraker on data warehouses. *Communications of the ACM*, 54(5): 10-11. DOI: 10.1145/1941487.1941491.
- M. Stonebraker. 2011b. Stonebraker on nosql and enterprises. *Communications of the ACM*, 54(8): 10–11. DOI: 10.1145/1978542.1978546. 50
- M. Stonebraker. 2012a. SciDB: An open-source DBMS for scientific data. *ERCIM News*, 2012(89). http://ercim-news.ercim.eu/en89/special/scidb-an-open-source-dbms-for-scientific-data.
- M. Stonebraker. 2012b. New opportunities for new SQL. *Communications of the ACM*, 55(11): 10–11. DOI: 10.1145/2366316.2366319.
- M. Stonebraker. 2013. We are under attack; by the least publishable unit. In *Proc. 6th Biennial Conference on Innovative Data Systems Research*. http://www.cidrdb.org/cidr2013/Talks/CIDR13_Gongshow16.ppt. 273
- M. Stonebraker. 2015a. Turing lecture. In *Proc. Federated Computing Research Conference*, pp. 2–2. DOI: 10.1145/2820468.2820471.
- M. Stonebraker. 2015b. What it's like to win the Turing Award. *Communications of the ACM*, 58(11): 11. xxxi, xxxiii
- M. Stonebraker. 2015c. The Case for Polystores. ACM SIGMOD Blog, http://wp.sigmod.org/?p=1629. 370, 371
- M. Stonebraker. 2016. The land sharks are on the squawk box. *Communications of the ACM*, 59(2): 74–83. DOI: 10.1145/2869958. 50, 129, 139, 260, 319
- M. Stonebraker. 2018. My top ten fears about the DBMS field. In *Proc. 34th International Conference on Data Engineering*, pp. 24–28.
- M. Sullivan and M. Stonebraker. 1991. Using write protected data structures to improve software fault tolerance in highly available database management systems. In *Proc.* 17th International Conference on Very Large Data Bases, pp. 171–180. http://www.vldb.org/conf/1991/P171.pdf.

- R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga, A. Pavlo, and M. Stonebraker. 2014a. E-store: Fine-grained elastic partitioning for distributed transaction processing. Proc. VLDB Endowment, 8(3): 245–256. http://www.vldb.org/ pvldb/vol8/p245-taft.pdf. 188, 251
- R. Taft, M. Vartak, N. R. Satish, N. Sundaram, S. Madden, and M. Stonebraker. 2014b. Genbase: a complex analytics genomics benchmark. In Proc. ACM SIGMOD International Conference on Management of Data, pp. 177-188. DOI: 10.1145/2588555 .2595633.
- R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker, and D. J. DeWitt. 2016. Step: Scalable tenant placement for managing database-as-a-service deployments. In Proc. 7th ACM Symposium on Cloud Computing, pp. 388-400. DOI: 10.1145/2987550 .2987575.
- R. Taft, N. El-Sayed, M. Serafini, Y. Lu, A. Aboulnaga, M. Stonebraker, R. Mayerhofer, and F. Andrade. 2018. P-Store: an elastic database system with predictive provisioning. In Proc. ACM SIGMOD International Conference on Management of Data. 188
- W. Tao, D. Deng, and M. Stonebraker. 2017. Approximate string joins with abbreviations. Proc. VLDB Endowment, 11(1): 53-65.
- N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. 2003. Load shedding in a data stream manager. In Proc. 29th International Conference on Very Large Data Bases, pp. 309-320. http://www.vldb.org/conf/2003/papers/S10P03.pdf. 228, 229
- N. Tatbul, S. Zdonik, J. Meehan, C. Aslantas, M. Stonebraker, K. Tufte, C. Giossi, and H. Quach. 2015. Handling shared, mutable state in stream processing with correctness guarantees. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 38(4): 94–104. http://sites.computer.org/debull/A15dec/p94.pdf.
- T. J. Teorey, J. W. DeHeus, R. Gerritsen, H. L. Morgan, J. F. Spitzer, and M. Stonebraker. 1976. SIGMOD (paper session). In Proc. 1976 ACM Annual Conference, p. 275. DOI: 10.1145/800191.805596.
- M. S. Tuttle, S. H. Brown, K. E. Campbell, J. S. Carter, K. Keck, M. J. Lincoln, S. J. Nelson, and M. Stonebraker. 2001a. The semantic web as "perfection seeking": A view from drug terminology. In Proc. 1st Semantic Web Working Symposium, pp. 5-16. http://www.semanticweb.org/SWWS/program/full/paper49.pdf.
- M. S. Tuttle, S. H. Brown, K. E. Campbell, J. S. Carter, K. Keck, M. J. Lincoln, S. J. Nelson, and M. Stonebraker. 2001b. The semantic web as "perfection seeking": A view from drug terminology. In I. F. Cruz, S. Decker, J. Euzenat, and D. L. McGuinness, editors, The Emerging Semantic Web, Selected Papers from the 1st Semantic Web Working Symposium, volume 75 of Frontiers in Artificial Intelligence and Applications. IOS Press.
- J. Widom, A. Bosworth, B. Lindsey, M. Stonebraker, and D. Suciu. 2000. Of XML and databases (panel session): Where's the beef? In Proc. ACM SIGMOD International Conference on Management of Data, p. 576. DOI: 10.1145/335191.335476.

- M. W. Wilkins, R. Berlin, T. Payne, and G. Wiederhold. 1985. Relational and entity-relationship model databases and specialized design files in vlsi design. In *Proc.* 22nd ACM/IEEE Design Automation Conference, pp. 410–416.
- J. Woodfill and M. Stonebraker. 1983. An implementation of hypothetical relations. In *Proc.* 9th International Conference on Very Data Bases, pp. 157–166. http://www.vldb.org/conf/1983/P157.pdf.
- A. Woodruff and M. Stonebraker. 1995. Buffering of intermediate results in dataflow diagrams. In *Proc. IEEE Symposium on Visual Languages*, p. 187. DOI: 10.1109/VL.1995.520808.
- A. Woodruff and M. Stonebraker. 1997. Supporting fine-grained data lineage in a database visualization environment. In *Proc. 13th International Conference on Data Engineering*, pp. 91–102. DOI: 10.1109/ICDE.1997.581742.
- A. Woodruff, P. Wisnovsky, C. Taylor, M. Stonebraker, C. Paxson, J. Chen, and A. Aiken. 1994. Zooming and tunneling in Tioga: Supporting navigation in multimedia space. In *Proc. IEEE Symposium on Visual Languages*, pp. 191–193. DOI: 10.1109/VL.1994.363622.
- A. Woodruff, A. Su, M. Stonebraker, C. Paxson, J. Chen, A. Aiken, P. Wisnovsky, and C. Taylor. 1995. Navigation and coordination primitives for multidimensional visual browsers. In *Proc. IFIP WG 2.6 3rd Working Conference Visual Database Systems*, pp. 360–371. DOI: 10.1007/978-0-387-34905-3 23.
- A. Woodruff, J. A. Landay, and M. Stonebraker. 1998a. Goal-directed zoom. In *CHI '98 Conference Summary on Human Factors in Computing Systems*, pp. 305–306. DOI: 10.1145/286498.286781.
- A. Woodruff, J. A. Landay, and M. Stonebraker. 1998b. Constant density visualizations of non-uniform distributions of data. In *Proc. 11th Annual ACM Symposium on User Interface Software and Technology*, pp. 19–28. DOI: 10.1145/288392.288397.
- A. Woodruff, J. A. Landay, and M. Stonebraker. 1998c. Constant information density in zoomable interfaces. In *Proc. Working Conference on Advanced Visual Interfaces*, pp. 57–65. DOI: 10.1145/948496.948505.
- A. Woodruff, J. A. Landay, and M. Stonebraker. 1999. VIDA: (visual information density adjuster). In *CHI '99 Extended Abstracts on Human Factors in Computing Systems*, pp. 19–20. DOI: 10.1145/632716.632730.
- A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac, M. Lin, M. Spalding, and M. Stonebraker. 2001. Datasplash: A direct manipulation environment for programming semantic zoom visualizations of tabular data. *Journal of Visual Languages and Computing*, 12(5): 551–571. DOI: 10.1006/jvlc.2001.0219.
- E. Wu, S. Madden, and M. Stonebraker. 2012. A demonstration of dbwipes: Clean as you query. *Proc. VLDB Endowment*, 5(12): 1894–1897. DOI: 10.14778/2367502.2367531.
- E. Wu, S. Madden, and M. Stonebraker. 2013. Subzero: A fine-grained lineage system for scientific databases. In *Proc. 29th International Conference on Data Engineering*, pp. 865–876. DOI: 10.1109/ICDE.2013.6544881.

- X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. 2014. Staring into the abyss: An evaluation of concurrency control with one thousand cores. Proc. VLDB Endowment, 8(3): 209-220. http://www.vldb.org/pvldb/vol8/p209-yu.pdf.
- K. Yu, V. Gadepally, and M. Stonebraker. 2017. Database engine integration and performance analysis of the BigDAWG polystore system. High Performance Extreme Computing Conference (HPEC). IEEE, 2017. DOI: 10.1109/HPEC.2017.8091081. 376
- S. B. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Balazinska, and H. Balakrishnan. 2003. The aurora and medusa projects. Quarterly Bulletin IEEE Technical Committee on Data Engineering, 26(1): 3-10. http://sites.computer.org/debull/ A03mar/zdonik.ps. 228, 324

References

- D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. 2005. The design of the Borealis stream processing engine. *Proc. of the 2nd Biennial Conference on Innovative Data Systems Research (CIDR*'05), Asilomar, CA, January. 228
- Z. Abedjan, L. Golab, and F. Naumann. August 2015. Profiling relational data: a survey. *The VLDB Journal*, 24(4): 557–581. DOI: DOI: 10.1007/s00778-015-0389-y. 297
- ACM. 2015a. Announcement: Michael Stonebraker, Pioneer in Database Systems Architecture, Receives 2014 ACM Turing Award. http://amturing.acm.org/award_winners/stonebraker_1172121.cfm. Accessed February 5, 2018.
- ACM. March 2015b. Press Release: MIT's Stonebraker Brought Relational Database Systems from Concept to Commercial Success, Set the Research Agenda for the Multibillion-Dollar Database Field for Decades. http://sigmodrecord.org/publications/sigmodRecord/1503/pdfs/04_announcements_Stonebraker.pdf. Accessed February 5, 2018.
- ACM. 2016. A.M. Turing Award Citation and Biography. http://amturing.acm.org/award_winners/stonebraker_1172121.cfm. Accessed September 24, 2018. xxxi
- Y. Ahmad, B. Berg, U. Çetintemel, M. Humphrey, J. Hwang, A. Jhingran, A. Maskey, O. Papaemmanouil, A. Rasin, N. Tatbul, W. Xing, Y. Xing, and S. Zdonik. June 2005. Distributed operation in the Borealis Stream Processing Engine. Demonstration, *ACM SIGMOD International Conference on Management of Data (SIGMOD'05)*. Baltimore, MD. Best Demonstration Award. 230, 325
- M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. 1976. System R: relational approach to database management. ACM Transactions on Database Systems, 1(2): 97–137. DOI: 10.1145/320455.320457. 397
- P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. 2017. Macrobase: Prioritizing attention in fast data. *Proc. of the 2017 ACM International Conference on Management of Data*. ACM. DOI: 10.1145/3035918.3035928.374
- Berkeley Software Distribution. n.d. In Wikipedia. http://en.wikipedia.org/wiki/Berkeley_ Software_Distribution. Last accessed March 1, 2018. 109

- G. Beskales, I.F. Ilyas, L. Golab, and A. Galiullin. 2013. On the relative trust between inconsistent data and inaccurate constraints. *Proc. of the IEEE International Conference on Data Engineering*, *ICDE 2013*, pp. 541–552. Australia. DOI: 10.1109/ ICDE.2013.6544854. 270
- L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley. 2017. ScaLAPACK Users' Guide. Society for Industrial and Applied Mathematics http://netlib.org/scalapack/slug/index.html. Last accessed December 31, 2017. 258
- D. Bitton, D. J. DeWitt, and C. Turbyfill. 1983. Benchmarking database systems—a systematic approach. Computer Sciences Technical Report #526, University of Wisconsin. http://minds.wisconsin.edu/handle/1793/58490, 111
- P. A. Boncz, M. L. Kersten, and S. Manegold. December 2008. Breaking the memory wall in MonetDB. *Communications of the ACM*, 51(12): 77–85. DOI: 10.1145/1409360 .1409380.151
- M. L. Brodie. June 2015. Understanding data science: an emerging discipline for dataintensive discovery. In S. Cutt, editor, *Getting Data Right: Tackling the Challenges of Big Data Volume and Variety*. O'Reilly Media, Sebastopol, CA. 291
- Brown University, Department of Computer Science. Fall 2002. Next generation stream-based applications. *Conduit Magazine*, 11(2). https://cs.brown.edu/about/conduit/conduit/v11n2.pdf. Last accessed May 14, 2018. 322
- BSD licenses. n.d. In Wikipedia. http://en.wikipedia.org/wiki/BSD_licenses. Last accessed March 1, 2018. 109
- M. Cafarella and C. Ré. April 2018. The last decade of database research and its blindingly bright future. or Database Research: A love song. DAWN Project, Stanford University. http://dawn.cs.stanford.edu/2018/04/11/db-community/. 6
- M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E Hall, M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling. 1994. Shoring up persistent applications. *Proc. of the 1994 ACM SIGMOD international conference on Management of data (SIGMOD '94)*, 383–394. DOI: 10.1145/191839.191915. 152
- M. J. Carey, D. J. Dewitt, M. J. Franklin, N.E. Hall, M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling. 1994. Shoring up persistent applications. In *Proc. of the 1994 ACM SIGMOD International Conference on Management of Data (SIGMOD '94)*, pp. 383–394. DOI: 10.1145/191839.191915. 336
- M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. E. Cody, R. Fagin, M. Flickner, A. W. Luniewski, W. Niblack, and D. Petkovic. 1995. Towards heterogeneous multimedia information systems: The garlic approach. In *Research Issues in Data Engineering*, 1995: Distributed Object Management, Proceedings, pp. 124–131. IEEE. DOI: 10.1109/RIDE.1995.378736. 284
- CERN. http://home.cern/about/computing. Last accessed December 31, 2017.
- D. D. Chamberlin and R. F. Boyce. 1974. SEQUEL: A structured English query language. In *Proc. of the 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data Description*,

- Access and Control (SIGFIDET '74), pp. 249-264. ACM, New York. DOI: 10.1145/800296 .811515.404,407
- D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W. Wade. 1976. SEQUEL 2: a unified approach to data definition, manipulation, and control. IBM Journal of Research and Development, 20(6): 560-575. DOI: 10.1147/rd.206.0560.398
- S. Chandrasekaran, O, Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. 2003. TelegraphCQ: Continuous dataflow processing for an uncertain world. Proc. of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD '03), pp. 668-668. ACM, New York. DOI:10.1145/872757.872857.231
- J. Chen, D.J. DeWitt, F. Tian, and Y. Wang. 2000. NiagaraCQ: A scalable continuous query system for Internet databases. Proc. of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD '00), pp. 379-390. ACM, New York. DOI 10.1145/ 342009.335432.231
- M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, and S. Zdonik. 2003. Scalable distributed stream processing. Proc. of the First Biennial Conference on Innovative Database Systems (CIDR'03), Asilomar, CA, January. 228
- C. M. Christensen. 1997. The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business School Press, Boston, MA. 100
- X. Chu, I. F. Ilyas, and P. Papotti. 2013a. Holistic data cleaning: Putting violations into context. Proc. of the IEEE International Conference on Data Engineering, ICDE 2013, pp. 458-469. Australia. DOI: 10.1109/ICDE.2013.6544847 270, 297
- X. Chu, I. F. Ilyas, and P. Papotti. 2013b. Discovering denial constraints. Proc. of the VLDB Endowment, PVLDB 6(13): 1498-1509. DOI: 10.14778/2536258.2536262. 270
- X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. 2015. Katara: A data cleaning system powered by knowledge bases and crowdsourcing. In Proc. of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD '15), pp. 1247-1261. ACM, New York. DOI: 10.1145/2723372.2749431. 297
- P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. 2009. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research 38.6: 1767-1771. DOI: 10.1093/nar/gkp1137. 374
- E. F. Codd. June 1970. A relational model of data for large shared data banks. Communications of the ACM, 13(6): 377-387. DOI: 10.1145/362384.362685. 42, 98, 166, 397, 404, 405,
- M. Collins. 2016. Thomson Reuters uses Tamr to deliver better connected content at a fraction of the time and cost of legacy approaches. Tamr blog, July 28. https://www.tamr.com/video/thomson-reuters-uses-tamr-deliver-betterconnected-content-fraction-time-cost-legacy-approaches/. Last accessed January 24, 2018. 275

- G. Copeland and D. Maier. 1984. Making smalltalk a database system. *Proc. of the 1984 ACM SIGMOD International Conference on Management of Data (SIGMOD '84*), pp. 316–325. ACM, New York. DOI: 10.1145/602259.602300. 111
- C. Cranor, T. Johnson, V. Shkapenyuk, and O. Spatscheck. 2003. Gigascope: A stream database for network applications. *Proc. of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD '03)*, pp. 647–651. ACM, New York. DOI: 10.1145/872757.872838. 231
- A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Cetintemel, and S. Zdonik. 2015. Tupleware: "Big Data, Big Analytics, Small Clusters." *CIDR*. DOI: 10.1.1.696.32. 374
- M. Dallachiesa, A. Ebaid, A. Eldawi, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang. 2013. NADEEF, a commodity data cleaning system. *Proc. of the 2013 ACM SIGMOD Conference on Management of Data*, pp. 541–552. New York. http://dx.doi.org/10.1145/ 2463676.2465327. 270, 297
- T. Dasu and J. M. Loh. 2012. Statistical distortion: Consequences of data cleaning. *PVLDB*, 5(11): 1674–1683. DOI: 10.14778/2350229.2350279. 297
- C. J. Date and E. F. Codd. 1975. The relational and network approaches: Comparison of the application programming interfaces. In *Proc. of the 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control: Data Models: Data-Structure-Set Versus Relational (SIGFIDET '74)*, pp. 83–113. ACM, New York. DOI: 10.1145/800297.811534. 405
- D. J. DeWitt. 1979a. Direct a multiprocessor organization for supporting relational database management systems. *IEEE Transactions of Computers*, 28(6), 395–406. DOI: 10.1109/TC.1979.1675379. 109
- D. J. DeWitt. 1979b. Query execution in DIRECT. In *Proc. of the 1979 ACM SIGMOD International Conference on Management of Data (SIGMOD '79)*, pp. 13–22. ACM, New York. DOI: 10.1145/582095.582098. 109
- D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Muralikrishna. 1986. GAMMA—a high performance dataflow database machine. *Proc. of the 12th International Conference on Very Large Data Bases (VLDB '86)*, W. W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, editors, pp. 228–237. Morgan Kaufmann Publishers Inc., San Francisco, CA. 111
- D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and R. Rasmussen. March 1990. The Gamma database machine project. *IEEE Transactions on Knowledge and Data Engineering*, 2(1): 44–62. DOI: 10.1109/69.50905. 151, 400
- D. DeWitt and J. Gray. June 1992. Parallel database systems: the future of high performance database systems. *Communications of the ACM*, 35(6): 85–98. DOI: 10.1145/129888
- D. J. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes, M. Flasza, and J. Gramling. 2013. Split query processing in polybase. *Proc. of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD '13)*, pp. 1255–1266. ACM, New York. 284

- C. Diaconu, C. Freedman, E. Ismert, P-A. Larson, P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling. 2013. Hekaton: SQL server's memory-optimized OLTP engine. In *Proc.* of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD '13), pp. 1243–1254. ACM, New York. DOI: 10.1145/2463676.2463710.
- K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. November 1976. The notions of consistency and predicate locks in a database system. *Communications of the ACM*, 19(11): 624–633. DOI: 10.1145/360363.360369. 114
- W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. April 2012. Towards certain fixes with editing rules and master data. *The VLDB Journal*, 21(2): 213–238. DOI: 10.1007/s00778-011-0253-7. 297
- D. Fogg. September 1982. Implementation of domain abstraction in the relational database system INGRES. Master of Science Report, Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA. 201
- T. Flory, A. Robbin, and M. David. May 1988. Creating SIPP longitudinal analysis files using a relational database management system. CDE Working Paper No. 88-32, Institute for Research on Poverty, University of Wisconsin-Madison, Madison, WI. 197
- V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa, C. Yee, and A. Reuther. 2015. D4M: Bringing associative arrays to database engines. *High Performance Extreme Computing Conference (HPEC)*. IEEE, 2015. DOI: 10.1109/HPEC.2015.7322472. 370
- V. Gadepally, K. O'Brien, A. Dziedzic, A. Elmore, J. Kepner, S. Madden, T. Mattson, J. Rogers, Z. She, and M. Stonebraker. September 2017. BigDAWG Version 0.1. *IEEE High Performance Extreme*. DOI: 10.1109/HPEC.2017.8091077. 288, 369
- J. Gantz and D. Reinsel. 2013. The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East—United States, IDC, February. 5
- L. Gerhardt, C. H. Faham, and Y. Yao. 2015. Accelerating scientific analysis with SciDB. *Journal of Physics: Conference Series*, 664(7). 268
- B. Grad. 2007. Oral history of Michael Stonebraker, Transcription. Recorded: August 23, 2007. Computer History Museum, Moultonborough, NH. http://archive.computerhistory.org/resources/access/text/2012/12/102635858-05-01-acc.pdf. Last accessed April 8, 2018. 42, 43, 44, 98
- A. Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In *Proc. of the* 1984 ACM SIGMOD International Conference on Management of Data (SIGMOD '84), pp. 47–57. ACM, New York. DOI: 10.1145/602259.602266. 205
- L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. 1989. Extensible query processing in starburst. In *Proc. of the 1989 ACM SIGMOD International Conference on Management of Data (SIGMOD '89)*, pp. 377–388. ACM, New York. DOI: 10.1145/67544.66962. 399
- D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris, D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker. 2014. Demonstration of the Myria big data management service. *Proc. of the 2014 ACM SIGMOD International Conference*

- on Management of Data (SIGMOD '14), p. 881–884. ACM, New York. DOI: 10.1145/2588555.2594530. 284, 370
- B. Haynes, A. Cheung, and M. Balazinska. 2016. PipeGen: Data pipe generator for hybrid analytics. *Proc. of the Seventh ACM Symposium on Cloud Computing (SoCC '16)*, M. K. Aguilera, B. Cooper, and Y. Diao, editors, pp. 470–483. ACM, New York. DOI: 10.1145/2987550.2987567. 287
- M. A. Hearst. 2009. Search user interfaces. Cambridge University Press, New York. 394
- J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. 1995. Generalized search trees for database systems. In *Proc. of the 21th International Conference on Very Large Data Bases (VLDB '95)*, pp. 562–573. Morgan Kaufmann Publishers Inc., San Francisco, CA. http://dl.acm.org/citation.cfm?id=645921.673145. 210
- J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou, V. Samoladas. 2002. On a model of indexability and its bounds for range queries, *Journal of the ACM (JACM)*, 49.1: 35–55. DOI: 10.1145/505241.505244. 210
- IBM. 1997. Special Issue on IBM's S/390 Parallel Sysplex Cluster. IBM Systems Journal, 36(2).
- S. Idreos, F. Groffen, N. Nes, S. Manegold, S. K. Mullender, and M. L. Kersten. 2012.

 MonetDB: two decades of research in column-oriented database architectures. *IEEE Data Engineering Bulletin*, 35(1): 40–45. 258
- N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan, U. Çetintemel, M. Cherniack, R. Tibbetts, and S. Zdonik. 2008. Towards a streaming SQL standard. *Proc. VLDB Endowment*, pp. 1379–1390. August 1–2. DOI: 10.14778/1454159.1454179. 229
- A. E. W. Johnson, T. J. Pollard, L. Shen, L. H. Lehman, M. Feng, M. Ghassemi, B. E. Moody, P. Szolovits, L. A. G. Celi, and R. G. Mark. 2016. MIMIC-III, a freely accessible critical care database. *Scientific Data* 3: 160035 DOI: 10.1038/sdata.2016.35. 370
- V. Josifovski, P. Schwarz, L. Haas, and E. Lin. 2002. Garlic: a new flavor of federated query processing for DB2. In *Proc. of the 2002 ACM SIGMOD International Conference on Management of Data (SIGMOD '02)*, pp. 524–532. ACM, New York. DOI: 10.1145/564691.564751. 401
- J. W. Josten, C. Mohan, I. Narang, and J. Z. Teng. 1997. DB2's use of the coupling facility for data sharing. *IBM Systems Journal*, 36(2): 327–351. DOI: 10.1147/sj.362.0327. 400
- S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. 2011. Wrangler: Interactive visual specification of data transformation scripts. In *Proc. of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11)*, pp. 3363–3372. ACM, New York. DOI: 10.1145/1978942.1979444. 297
- R. Katz. editor. June 1982. Special issue on design data management. *IEEE Database Engineering Newsletter*, 5(2). 200
- J. Kepner, V. Gadepally, D. Hutchison, H. Jensen, T. Mattson, S. Samsi, and A. Reuther. 2016. Associative array model of SQL, NoSQL, and NewSQL Databases. *IEEE High*

- Performance Extreme Computing Conference (HPEC) 2016, Waltham, MA, September 13-15. DOI: 10.1109/HPEC.2016.7761647. 289
- V. Kevin and M. Whitney. 1974. Relational data management implementation techniques. In Proc. of the 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control (SIGFIDET '74), pp. 321-350. ACM, New York. DOI: 10.1145/800296 .811519 404
- Z. Khayyat, I.F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and S. Yin. 2015. Bigdansing: A system for big data cleansing. In Proc. of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD '15), pp. 1215-1230. ACM, New York. DOI: 10.1145/2723372.2747646. 297
- R. Kimball and M. Ross. 2013. The Data Warehouse Toolkit. John Wiley & Sons, Inc. https: //www.kimballgroup.com/data-warehouse-business-intelligence-resources/books/. Last accessed March 2, 2018. 337
- M. Kornacker, C. Mohan, and J.M. Hellerstein. 1997. Concurrency and recovery in generalized search trees. In Proc. of the 1997 ACM SIGMOD International Conference on Management of Data (SIGMOD '97), pp. 62–72. ACM, New York. DOI: 10.1145/253260 .253272.210
- A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear. August 2012. The Vertica Analytic Database: C-Store 7 years later. Proc. VLDB Endowment, 5(12): 1790-1801. DOI: 10.14778/2367502.2367518. 333, 336
- L. Lamport. 2001. Paxos Made Simple. http://lamport.azurewebsites.net/pubs/paxossimple.pdf. Last accessed December 31, 2017. 258
- D. Laney. 2001. 3D data management: controlling data volume, variety and velocity. META Group Research, February 6. https://blogs.gartner.com/doug-laney/files/2012/01/ ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf. Last accessed April 22, 2018. 357
- P-A. Larson, C. Clinciu, E.N. Hanson, A. Oks, S.L. Price, S. Rangarajan, A. Surna, and Q. Zhou. 2011. SQL server column store indexes. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (SIGMOD '11), pp. 1177-1184. ACM, New York. DOI: 10.1145/1989323.1989448.
- J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Polyzotis, and M. J. Carey. 2014. MISO: Souping up big data query processing with a multistore system. Proc. of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD '14), pp. 1591-1602. ACM, New York. DOI: 10.1145/2588555.2588568. 284
- B. G. Lindsay. 1987. A retrospective of R*: a distributed database management system. In Proc. of the IEEE,75(5): 668-673. DOI: 10.1109/PROC.1987.13780. 400
- B. Liskov and S.N. Zilles. 1974. Programming with abstract data types. SIGPLAN Notices, 9(4): 50-59. DOI: 10.1145/942572.807045. 88
- S. Marcin and A. Csillaghy. 2016. Running scientific algorithms as array database operators: Bringing the processing power to the data. 2016 IEEE International Conference on Big Data. pp. 3187-3193. DOI: 10.1109/BigData.2016.7840974. 350

- T. Mattson, V. Gadepally, Z. She, A. Dziedzic, and J. Parkhurst. 2017. Demonstrating the BigDAWG polystore system for ocean metagenomic analysis. CIDR'17 Chaminade, CA. http://cidrdb.org/cidr2017/papers/p120-mattson-cidr17.pdf. 288, 374
- J. Meehan, C. Aslantas, S. Zdonik, N. Tatbul, and J. Du. 2017. Data ingestion for the connected world. Conference on Innovative Data Systems Research (CIDR'17), Chaminade, CA, January. 376
- A. Metaxides, W. B. Helgeson, R. E. Seth, G. C. Bryson, M. A. Coane, D. G. Dodd, C. P. Earnest, R. W. Engles, L. N. Harper, P. A. Hartley, D. J. Hopkin, J. D. Joyce, S. C. Knapp, J. R. Lucking, J. M. Muro, M. P. Persily, M. A. Ramm, J. F. Russell, R. F. Schubert, J. R. Sidlo, M. M. Smith, and G. T. Werner. April 1971. Data Base Task Group Report to the CODASYL Programming Language Committee. ACM, New York. 43
- C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. 1992. ARIES: a transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Transactions on Database Systems, 17(1), 94–162. DOI: 10.1145/128765.128770.402
- R. Motwani, J. Widom, A. Arasu B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma. 2003. Query processing, approximation, and resource management in a data stream management system. Proc. of the First Biennial Conference on Innovative Data Systems Research (CIDR), January. 229, 231
- A. Oloso, K-S Kuo, T. Clune, P. Brown, A. Poliakov, H. Yu. 2016. Implementing connected component labeling as a user defined operator for SciDB. Proc. of 2016 IEEE International Conference on Big Data (Big Data). Washington, DC. DOI: 10.1109/ BigData.2016.7840945. 263, 350
- M. A. Olson. 1993. The design and implementation of the inversion file system. USENIX Winter. http://www.usenix.org/conference/usenix-winter-1993-conference/presentation/ design-and-implementation-inversion-file-syste. Last accessed January 22, 2018. 215
- J. C. Ong. 1982. Implementation of abstract data types in the relational database system INGRES, Master of Science Report, Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, September 1982. 201
- A. Palmer. 2013. Culture matters: Facebook CIO talks about how well Vertica, Facebook people mesh. Koa Labs Blog, December 20. http://koablog.wordpress.com/2013/ 12/20/culture-matters-facebook-cio-talks-about-how-well-vertica-facebook-people-like and the control of the cmesh. Last accessed March 14, 2018. 132, 133
- A. Palmer. 2015a. The simple truth: happy people, healthy company. Tamr Blog, March 23. http://www.tamr.com/the-simple-truth-happy-people-healthy-company/. Last accessed March 14, 2018. 138
- A. Palmer. 2015b. Where the red book meets the unicorn, Xconomy, June 22. http:// www.xconomy.com/boston/2015/06/22/where-the-red-book-meets-the-unicorn/ Last accessed March 14, 2018. 130
- A. Pavlo and M. Aslett. September 2016. What's really new with NewSQL? ACM SIGMOD Record, 45(2): 45-55. DOI: DOI: 10.1145/3003665.3003674. 246

- G. Press. 2016. Cleaning big data: most time-consuming, least enjoyable data science task, survey says. Forbes, May 23. https://www.forbes.com/sites/gilpress/2016/03/23/datapreparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/ #79e14e326f63.357
- N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and D. Srivastava. 2015. Combining quantitative and logical data cleaning. PVLDB, 9(4): 300-311. DOI: 10.14778/2856318 .2856325, 297
- E. Ryvkina, A. S. Maskey, M. Cherniack, and S. Zdonik. 2006. Revision processing in a stream processing engine: a high-level design. Proc. of the 22nd International Conference on Data Engineering (ICDE'06), pp. 141-. Atlanta, GA, April. IEEE Computer Society, Washington, DC. DOI: 10.1109/ICDE.2006.130. 228
- C. Saracco and D. Haderle. 2013. The history and growth of IBM's DB2. IEEE Annals of the History of Computing, 35(2): 54-66. DOI: 10.1109/MAHC.2012.55. 398
- N. Savage. May 2015. Forging relationships. Communications of the ACM, 58(6): 22–23. DOI: 10.1145/2754956.
- M. C. Schatz and B. Langmead. 2013. The DNA data deluge. IEEE Spectrum Magazine. https://spectrum.ieee.org/biomedical/devices/the-dna-data-deluge. 354
- Z. She, S. Ravishankar, and J. Duggan. 2016. BigDAWG polystore query optimization through semantic equivalences. High Performance Extreme Computing Conference (HPEC). IEEE, 2016. DOI: :10.1109/HPEC.2016.7761584. 373
- SIGFIDET panel discussion. 1974. In Proc. of the 1974 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control: Data Models: Data-Structure-Set Versus Relational (SIGFIDET '74), pp. 121-144. ACM, New York. DOI: 10.1145/800297.811534.
- R. Snodgrass. December 1982. Monitoring distributed systems: a relational approach. Ph.D. Dissertation, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 197
- A. Szalay. June 2008. The Sloan digital sky survey and beyond. ACM SIGMOD Record, 37(2): 61-66, 255
- Tamr. 2017. Tamr awarded patent for enterprise-scale data unification system. Tamr blog. February 9 2017. https://www.tamr.com/tamr-awarded-patent-enterprise-scale-dataunification-system-2/. Last accessed January 24, 2018. 275
- R. Tan, R. Chirkova, V. Gadepally, and T. Mattson. 2017. Enabling query processing across heterogeneous data models: A survey. IEEE Big Data Workshop: Methods to Manage Heterogeneous Big Data and Polystore Databases, Boston, MA. DOI: 10.1109/BigData .2017.8258302.284,376
- N. Tatbul and S. Zdonik. 2006. Window-aware Load Shedding for Aggregation Queries over Data Streams. In Proc. of the 32nd International Conference on Very Large Databases (VLDB'06), Seoul, Korea. 228, 229

- N. Tatbul, U. Çetintemel, and S. Zdonik. 2007. "Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing." *International Conference on Very Large Data Bases (VLDB'07)*, Vienna, Austria. 228, 229
- R. P. van de Riet. 1986. Expert database systems. In *Future Generation Computer Systems*, 2(3): 191–199, DOI: 10.1016/0167-739X(86)90015-4. 407
- M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis. September 2015. Seedb: Efficient data-driven visualization recommendations to support visual analytics. *PVLDB*, 8(13): 2182–2193. DOI: 10.14778/2831360.2831371. 297
- B. Wallace. June 9, 1986. Data base tool links to remote sites. *Network World*. http://books.google.com/books?id=aBwEAAAAMBAJ&pg=PA49&lpg=PA49&dq=ingres+star&source=bl&ots=FSMIR4thMj&sig=S1fzaaOT5CHRq4cwbLFEQp4UYCs&hl=en&sa=X&ved=0ahUKEwjJ1J_NttvZAhUG82MKHco2CfAQ6AEIYzAP#v=onepage&q=ingres%20star&f=false. Last accessed March 14, 2018.305
- J. Wang and N. J. Tang. 2014. Towards dependable data repairing with fixing rules. In *Proc.* of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD '14), pp. 457–468. ACM, New York. DOI: 10.1145/2588555.2610494. 297
- E. Wong and K. Youssefi. September 1976. Decomposition—a strategy for query processing. *ACM Transactions on Database Systems*, 1(3): 223–241. DOI: 10.1145/320473.320479. 196
- E. Wu and S. Madden. 2013. Scorpion: Explaining away outliers in aggregate queries. *PVLDB*, 6(8): 553–564. DOI: 10.14778/2536354.2536356. 297
- Y. Xing, S. Zdonik, and J.-H. Hwang. April 2005. Dynamic load distribution in the Borealis Stream Processor. *Proc. of the 21st International Conference on Data Engineering* (*ICDE*'05), Tokyo, Japan. DOI: 10.1109/ICDE.2005.53. 228, 230, 325

Index

Page numbers with 'f' indicate figures; page numbers with 'n' indicate footnotes.

```
50-year perspective of Stonebraker
                                                     Management System By Query
  1970 fall, University of Michigan, 107-108
                                                     Modification" (Stonebraker and
  1976 fall, Wisconsin, 108-111
                                                     Wong), 45
  1983 fall, Berkeley, 111
                                              Access methods
  1988-1995, 111-112
                                                Ingres, 575-585, 577f, 582f
  2000, Project Sequoia, 112-113
                                                Postgres, 534-535
  2003, CIDR Conference launch, 113
                                              Access Methods Interface (AMI), 582–585
  2005, MIT sabbatical, 113-114
                                              ACM Software System Award, 44
  2008, MapReduce, 114
                                              Actian enterprise, 310
  2014, Turing Award, 114
                                              Active databases in Postgres, 212–213
  2016, MIT, 115
                                              Active-passive replication in OLTP, 434-435
                                              Addamark system, 494
  2017, encounter, 115
1000 Genomes Browser, 267
                                              Address space limitations in Ingres, 574-
1 Million Veterans program, 354
                                                     575
                                              Administration files in Ingres, 576
Abadi, Daniel J., 56f
                                              ADMINS system, 404
  C-Store project perspective article, 235-
                                              ADT-Ingres, 206
                                              Adult supervision for startup companies,
  end of architectural era, 463-489
                                                     122-123
  H-Store prototype, 247, 249
                                              Advanced H-Store strategy, 478
  OLTP databases, 411-439
                                              Affero GPL license, 262
  Vertica Systems, 334
                                              Aggregation operators in C-Store, 509
Abstract data types (ADTs)
                                              Aggregation systems in one size fits all,
  Ingres, 88, 148
                                                     451-452
  Ingres prototype, 202, 203f
                                              AI systems
  Postgres, 88, 149, 206-212, 316, 523
                                                Ingres-oriented, 202
"Access Control in a Relational Database
                                                machine learning, 66
```

Algorithmic complexity in Tamr, 359–361	Aurum system
Allman, Eric, 99, 111, 195	Data Civilizer, 189
Allocator fragmentation in VoltDB, 342-	description, 299
343	AUX directory in Ingres, 576
AllofUs program, 354	Availability
Anchor tuples in H-Store, 474	OLTP design, 468–470
Anchored projections in C-Store, 497	one size fits all, 454–455
Anton, Jeff	AVL trees, 436
Miro team, 314f	AWS Redshift, 222
Postgres productionization, 315	
AntsDBMS, 478	B-trees and B-tree indexes, 90
Anurag, Maskey, on Aurora project, 324f	C-Store, 503
Aoki, Paul, 312–313n	commercial Ingres codeline, 307
Apache Hadoop project, 4–5, 171	description, 493
criticism of, 69, 184	OLTP, 429, 435-436
open source impact, 171	and Postgres, 210
Apache HAWQ, 222	"B-Trees Re-examined" (Stonebraker and
Apache Spark, 402	Held), 196–197
Application logic in one size fits all, 452–454,	Bachman, Charles
458	relational-CODASYL debate, 404, 406
Area greater than (AGT) operator in Postgres,	Turing Award, 3, 48, 87
525	Bailis, Peter, 159
ARIES (Algorithms for Recovery and	Balakrishnan, Hari
isolation Exploiting Semantics),	C-Store project, 238
346	StreamBase, 232, 329
Arizona State University, 149	Balazinska, Magdalena
Array Functional Language (AFL) for SciDB,	Aurora/Borealis/StreamBase reunion,
267, 353-354	332f
Arrays	Borealis project, 186
Postgres, 537	stream processing era article, 225-234
SciDB, 260-262, 261f	Bates-Haus, Nikolaus, Tamr codeline
AS/400 platform, 380	article, 357–366, 365f
Aster Data	Batkin, Adam, C-Store seminal work,
founding, 222	491-518
Postgres parallelization, 209	Battle, Leilani, 159
Audio data management, 265	Bear, Chuck, 334-336
Aurora codelines and stream processing	Beaumont, Chris, 353
systems, 321–326, 324f	Begoli, Edmon, 370
Aurora project	Berkeley Municipal Court system, 148
founding, 46	Berkeley Software Distribution (BSD) license
origins, 225–227	and Ingres, 166–167
research story, 387–391	origins, 165, 398
StreamBase based on, 89	Berkeley years
systems, 227–231	1983 fall, 111

technical contributions, 185-186	data movement, 286-287
BerkeleyDB in StreamBase, 453	description, 189
Berman, Richard, 99	development, 284-285
Bernstein, Philip A.	ISTC, 279–280
on leadership and advocacy, 87-92	one size does not fit all, 282-284
relational database Ph.D, 403	origins, 280-282, 281-282f
Berube, Paul, 374	perspective on, 63–64
Beskales, George	query modeling and optimization, 285-
Data Tamer project, 269-270, 273	286
Tamr co-founder, 360, 365f	releases and demos, 287-288, 288f
Tamr company, 120, 274	Biller, Steve, 374
Betts, Ryan, 249	BIN directory in Ingres, 576
BFGoodrich company, 97-98	Biobank program, 354
Bicycle story, 15–16	Bioinformatics market, 263–267
Anacortes, 16, 17f	Bitstrings in C-Store, 509
Battle Lake, 26–27	Blob storage in VoltDB, 343
Carrington, 26	Blocking, 359
difficult part, 79	Bochkov, Dmitry, 337
Drake, 22-24, 23f	Bohrbugs, 34
Ellicottville, 28	Borealis codelines for stream processing
Luddington, 28	systems, 321–326
Marias Pass, 21, 21f	Borealis project
as metaphor for building system software,	Aurora project move to, 325
32-35	origins, 225-227
Moultonborough, 35	systems, 227–231, 230f
Sutton, 31–32	Bottleneck studies, 436
Troy, 30	Bowes, Ari, on Miro team, 314f
Winthrop, 18	Boyce, Bruce, 406
Wollaston Beach, 31–32, 31f	Brooks, Fred, 223
Big Data era	Brown, Paul
characteristics, 5-6	quad chart, 111
and Postgres, 209	SciDB codeline, 352
stream processing in, 233-234	scientific data management article,
volume, velocity, and variety, 357	253-268
BigDAWG codeline	Bruckner, Daniel
future, 376	Data Tamer project, 269-270, 273
introduction, 367-370	Tamr company, 274, 365f
milestones, 369, 369f	Buffer management
origins, 370–371, 371f	OLTP, 414
public demonstration, 371-373, 372f	Shore, 421, 423
refining, 373–374, 374f	Buffer Pool Manager in Shore, 419
release, 375-376	Bulk copy of data in QUEL, 566
BigDAWG polystore system	Business acumen on startup company
conclusion, 288–289	teams, 122–123

Business-to-consumer (B2C) space, 150	Ingres project contributions, 185-186
Butterworth, Paul, commercial Ingres	Carnes, Donna, on Miro team, 314f
codeline article, 303-310	Carney, Don
	Aurora project, 324f
C language in Postgres codelines, 311–312	StreamBase Systems, 232
C-Store project, 104	Carter, Fred, commercial Ingres codeline
column-oriented database, 132	article, 303-310
COMMIT statements, 506	CASSM project, 109
concat operators, 509	Catalog relations in Ingres, 576
covering sets of projections, 498	
deletes, 503	Çetintemel, Ugur
launch, 46-47	Aurora/Borealis/StreamBase reunion,
one size doesn't fit all era, 187	332f
performance, 151	Aurora project, 323, 324f
primary keys, 496	one size does not fit all, 282-284
prototype, 121	one size fits all seminal work, 441-462
Vertica Systems based on, 89	StreamBase Systems, 232
C-Store project perspective	Chamberlin, Don
Abadi and computer science, 235–238	IBM Database, 382, 384
building, 240–242, 241f	relational-CODASYL debate, 406
idea, evolution, and impact, 238-240	XQuery language, 208
Vertica Systems founding, 242–244	Chen, Jolly
C-Store seminal work	Postgres conversion, 149
abstract, 491-492	Postgres parser, 218
conclusion, 516-517	PostgreSQL, 170
data model, 496-500, 499f	SQLization project, 317–318
introduction, 492-496, 495f	Chen, Peinan, 373
performance, 511–515	Cherniack, Mitch, 103
query execution, 509–510	Aurora/Borealis/StreamBase reunion,
query optimization, 510	$332\mathbf{f}$
related work, 515-516	Aurora project, 235, 323, 324f
RS column store, 500–501	C-Store seminal work, 491–518
storage management, 502-503	expert sourcing, 273
tuple movers, 508	StreamBase Systems, 232
updates and transactions, 503-508, 505f	Tamr project, 120
WS column store, 502, 507–508	Vertica Systems, 334
Cache-conscious B-trees in OLTP, 435–436	Chicken Test in Postgres productionization,
Caches in rules systems, 546	315
Cafarella, Michael, 6	Chisholm, Sally (Penny), 373-374
Caltech Mead-Conway VLSI design era, 201	Chisholm Laboratory data for BigDAWG
Career flowchart, 54–55	polystore system, 287, 374
Carey, Michael J., 56f	Christiansen, Clayton, 27, 61, 100
data storage capabilities, 308	CitusDB, 222–223
Ingres later years article, 193–204	Classes, transaction, 471, 480-481

Climate change and Project Sequoia,	Company control in startup company guidelines, 127
CLOS (Common LISP Object System), 522,	Compatibility problem in one size fits all,
530-531	442
CLOSER function in Ingres, 585	Complex objects
Cloud Spanner, 70–71	Ingres, 202–203
Cloudera	Postgres, 207–208
and MapReduce, 69–70	Complexity
open source impact, 171	avoiding, 236–237
Cluster computing in OLTP, 416	rules systems, 541–543
CODASYL (Conference on Data Systems	Vertica Systems, 338–339
Languages)	Compression methods in C-Store project,
Codd report, 43	240–242, 241f
database standard proposal, 87, 97–98	Computer Information and Control
Codd, Edgar (Ted)	Engineering (CICE) program, 43
Ingres development, 100	Computer science degrees
Ingres inspired by, 43–44, 148	need for, 81–82
Ingres platform, 101	University of Michigan, 107–108
matrix algebra, 258	Computer Systems Research Group (CSRG)
relational-CODASYL debate, 404–406	165–167
scientific data management, 263	Concepts limitation in Postgres, 522
SCM SIGFIDET conference, 403	Concurrency control
Stonebraker influenced by, 42-44	C-Store, 505–506
Turing Award, 3, 48	Distributed Ingres, 200
Cohera Corporation, 89, 401	H-Store, 478
Collected works of Stonebraker, 607–633	Ingres, 588–591
Column-oriented database, 132	OLTP, 433
Column store architecture, 239–240, 242,	Postgres, 214n
492-493	CondorDB, 245
Comeau, Al, 384	Conference on Innovative Data Systems
Commercial Ingres codeline, 303–304	Research (CIDR)
conclusion, 309	BigDAWG polystore system, 288
open source Ingres, 309–310	creation, 50, 92
product production, 305-306	launch, 113
research to commercial efforts, 304-305	success of, 76
storage structures, 306–308	Connection points in Aurora, 229
user-defined types, 308-309	Consistency
Commercialization	OLTP, 435
C-Store project, 242–244	QUEL, 567
impact for, 237-238	Constrained tree applications (CTAs), 472
Postgres, 220–223	Constrained tree schema in H-Store project
Commuting members, 473	247
Compaction in VoltDB, 342-344	Constructed types in Postgres, 523
Companies founded by Stonebraker, 48–49	Control flow in Ingres, 575

Decompress operators in C-Store, 509	Ellicott, Andy, 134
Deep storage technologies in Postgres,	Ellison, Larry
215-216	Oracle claims, 149
Deferred update and recovery in Ingres,	SQL language support, 196
600-602	Elmore, Aaron J., BigDAWG polystore
DELETE function in Ingres, 584	system article, 279–289
Deleted record vectors (DRVs) in C-Store,	Emberson, Richard, on Miro team, 314f
504	EMP1 (friend), 27
Densepack values in storage, 493, 501	Encoding schemes in C-Store, 500–501
Depth of transaction classes, 475	"End of an Architectural Era: It's Time
"Design and Implementation of Ingres"	for a Complete Rewrite" paper
(Stonebraker), 47	(Stonebraker), 247
Design problems in Postgres, 549–550	End of architectural era seminal work
DeWitt, David J.	abstract, 463-464
50-year perspective article, 107–115	H-Store, 473–479, 479f
CIDR, 92	introduction, 464-466
CondorDB version, 245	OLTP design considerations, 466-470
Gamma, 151, 400	one size does not fit all comments,
H-Store project, 246	483-486
Hadoop criticism, 184	performance, 479-483, 479f
one size doesn't fit all era, 188	summary and future work, 486-487
publications, 76	transaction, processing and environment
Shore prototype, 152	assumptions, 470-473
Vertica Systems, 136, 336	End of epochs in C-Store, 504
DIRECT project, 109–111	End-to-end system Data Civilizer design,
Disk orientation DBMS limitation, 226	294-295
Disk persistence in VoltDB, 346-347	EnterpriseDB, 222
Distinct values in C-Store, 500–501	Entrepreneur-Turned-Shark (friend), 28
Distributed COMMIT processing in C-Store,	Epochs in C-Store, 504–505, 505f
506	Epstein, Bob
Distributed computing, 400	BSD license, 166
Distributed databases, 150	Distributed Ingres, 198
Distributed Ingres, 198–200, 199f, 305	Ingres source code, 110–111
Docker tool for BigDAWG, 375	stored procedures, 91
Document data management in Ingres, 201	venture capitalist contact, 140
Dozier, Jeff, 112	EQUEL language for Ingres
Du, Jiang, 376	comments, 570–571
Dynamic loading in Postgres, 551–552	invocation from, 573–574
Dynamic locking in H-Store, 477	overview, 568–570
Dziedzic, Adam, 373	Erwin, Christina, on Aurora project, 324f
	ETL toolkit, 358
Early years and education, 42–43	Exceptions in rules systems, 539
Elephants, 4, 94	Excessive formalism, 162

Expanding fields, failure to cope with,	Foreign-order values in C-Store, 501
155-158, 156f	Forgotten customers, 158–159
Expansive execution in BigDAWG polystore	Fork-lift upgrades in OLTP design, 468
system, 285	Fournier, Marc, 318
Experimental results for OLTP, 428-432	Franklin, Michael J., 56f
Expert database systems, Ingres-oriented,	papers rejected by, 113
202	Telegraph Team, 325
Expert sourcing, 273	Frew, Jim, 112
Explicit parallelism in Tamr, 363	Freytag, Christoph, 173
Extremely Large Data Bases (XLDB)	Functional ideas, 184
conference and workshop, 256–257	Functions
•	Postgres, 208–209, 211, 523–527
Fabry, Bob, 165	POSTQUEL, 535–536, 555–556
Factoring in one size fits all, 458–459, 459f	
Failover	Gadepally, Vijay
OLTP design, 469	BigDAWG codeline article, 367–376
one size fits all, 454–455	BigDAWG releases, 287
Failures	Galvez, Eddie
consequences, 160-163	Aurora project, 324f
expanding fields, 155–158, 156f	StreamBase Systems, 232, 330
forgotten customers, 158–159	Gamma project, 111, 151, 400
paper deluge, 159–160	Garlic project, 401
summary, 164	Gates, Bill, 215n
Fast path feature in Postgres, 218, 316,	GEM language, 217
530-531	Generalized Search Tree (GiST) interface,
Federation architecture, 401	210-211
Female Ph.D.s graduated, 394	Genomic data for SciDB, 354-355
Fernandez, Raul Castro	Geographic Information Systems (GIS), 148
Aurum research story, 387–391	GET function in Ingres, 583
Data Civilizer, 189	Gigascope project, 231
Data Civilizer article, 291-300	Global Biobank Engine, 267
Festschrift, 143-144	Go, Angela, 148
Files	Goby company
Ingres, 576–578, 577f	B2C space, 150
UNIX environment, 571	Data Tamer, 152
Financial-feed processing in one size fits	startup, 90
all, 446–447, 448f	Google technologies, 70–71
FIND function in Ingres, 583–584	Goss, Jeff, 385f
First customers for startup companies, 126	Gosselin, Dave, 352–353
First International Conference on Expert	Governor's Academy, 43
Database Systems, 407–408	GPUs, 67
Fogg, Dennis, 206	Graduate students, 82
Ford, Jim, 99	Graphical user interfaces (GUIs) in
Foreign keys in C-Store, 496	prototypes, 121

Grassy Brook company	end of architectural era seminal work,
founding, 140-141	463-489
quad chart, 230–232, 231f	Haderle, Don, recollections article, 397-402
Gray, Jim, 36	Hadoop, 4–5
2002 SIGMOD conference, 113	criticism of, 69, 184
CIDR, 92	open source impact, 171
Project Sequoia, 112	Hadoop Distributed File System (HDFS), 70
scientific data management, 255, 259	Hagen, Dale, 384, 385f
System R project, 100	Hamilton, James
Tandem Computers, 101	on 2014 ACM Turing Award, 93-95
Turing Award, 3, 48, 114	IBM relational database code bases
Great Relational-CODASYL Debate, 403–406	article, 379–385
Greenplum startup, 209, 221–222	on server costs, 67–68
Grid computing in OLTP design, 468	Hammer, Joachim, 90
Gupta, Ankush, 373	Hanson, Eric, 212
Guttman, Antonin	Harizopoulos, Stavros
Ingres CAD management features,	end of architectural era seminal work,
201–202	463-489
R-Tree index structure, 205, 210	H-Store prototype, 247
	OLTP databases, 411–439
H-Store, 245–246	Harris, Herschel, 385f
basic strategy, 478	HASH structure in commercial Ingres
buddies, 475	codeline, 306-307
conclusion, 251	Hatoun, Matt, on Aurora project, 324f
database designer, 475	Hawthorn, Paula
description, 47	Illustra, 221
execution supervisor, 475	Miro team, 314f
founding, 104	Postgres productionization, 315
general transactions, 247	Hearst, Marti, student perspective article,
ideas source, 151–152	393-396
one size doesn't fit all era, 187	Heath, Bobbi
performance, 479-483, 479f	H-Store prototype, 249
prototypes, 247–250	StreamBase Systems, 232
query execution, 474–475	Hedges, Richard, 384
system architecture, 246–247, 473–474	Heisenbugs, 34
transaction classes, 471–473	Held, Gerald
transaction management, replication	"B-Trees Re-examined," 194–197
and recovery, 476–478	Ingres implementation seminal work,
VoltDB and PayPal, 250	561-605
VoltDB based on, 89	relational database industry birth, 97-106
VoltDB executor in, 75	Helland, Pat, end of architectural era
VoltDB split, 251	seminal work, 463-489
Hachem, Nabil	Hellerstein, Joseph M.
Data Civilizer, 295	Data Tamer, 152

Hellerstein, Joseph M. (continued)	future, 384-385
Postgres codelines, 313	portable code base, 381-384
Postgres description, 186	IEEE International Conference on Data
Postgres perspective article, 205-224	Engineering 2015 talk, 35
Postgres project, 102	Illustra codelines, 311
Tamr project, 120	overview, 313-317
Telegraph Team, 325	Postgres and SQL, 315-316
Heroku provider, 219–220	Postgres productionization, 315
High availability	Illustra Information Technologies, Inc.
OLTP, 417, 468-470	open source impact, 171
one size fits all, 454–455	Oracle competitor, 102–103
High water mark (HWM) in C-Store, 504-	Postgres, 112
505, 505f	Postgres commercial adaptations, 220-
Hill, Faith, 294	221
Hints in Postgres, 525	startup, 206
HiPac project, 213	Ilyas, Ihab
Hirohama, Michael, Postgres implementa-	Data Tamer project article, 269-277
tion seminal work, 519-559	Tamr co-founder, 120, 188, 360, 365f
Historical mode queries, 495	Implementation efficiency in rules systems,
Hive executor, 114	544
Hobbib, Bill, 232, 326	"Implementation of Integrity Constraints
Hong, Wei	and Views By Query Modification"
Illustra, 206, 221	(Stonebraker),45
Miro team, 314f	"Implementation of Postgres" (Stone-
Postgres and Illustra codelines article,	braker), 47
311-319	Implementing rules, 91
Postgres conversion, 149	IMS database, 88
XPRS architecture, 216–217	In-QTel, 233
Horizontica version, 249, 331	Inbound vs. outbound processing in one
Hot standby in OLTP design, 469	size fits all, 449–450f, 449–451
Howe, Bill, 370	INDEX catalog in Ingres, 580
HTCondor project, 245	Indexes
Hugg, John	C-Store, 498, 499f, 501, 509
H-Store prototype, 249–250	commercial Ingres, 306–307
VoltDB codeline article, 341–348	Postgres, 525, 550
Huras, Matt, 383–384, 385f	primary and secondary, 493
Hwang, Jeong-Hyon, on Aurora project, 324f	VoltDB, 343
Hypothetical relations in Ingres, 201	Industrial Liaison Program (ILP), 121
	Industry involvement, 46
IBM	InfiniBand, 67
IMS database, 88	Informix
SQL language, 102	Illustra integrated into, 35
IBM relational database code bases	Illustra purchase, 102–103, 112
four code bases, 379–381	startups bought by, 66

Informix Universal Server, 317	impact, 3
Ingres implementation seminal work,	leadership and advocacy, 87-90
561-562	open source, 167–168, 309–310
Access Methods Interface, 582-585	platform, 101
conclusion, 602-603	Postgres design helped by, 27-28
concurrency control, 588–591	process structure, 110–111
data structures and access methods,	target platform, 108
575–585, 577f, 582f	team, 99–100
deferred update and recovery, 600-602	timing, 98-99
EQUEL, 568-571	Wisconsin, fall 1976, 108-111
file structure, 576–578, 577f	Ingres Star, 305
future extensions, 603	Inheritance in Postgres, 524, 529
introduction, 562-563	Innovators Dilemma (Christiansen), 27, 61,
invocation from EQUEL, 573-574	100
invocation from UNIX, 572-573	INSERT function in Ingres, 584
performance, 602	Insertion vectors (IVs) in C-Store, 504
Process 2, 585–591	Inserts in C-Store, 503
Process 3, 591–599	Instructions vs. cycles in OLTP, 432
Process 4, 599–602	INTEGRITY catalog in Ingres, 580
process structure, 571–575, 572f, 574f	Integrity control in QUEL, 567
QUEL and utility commands, 563-568	Intel Science and Technology Center (ISTC)
query modification, 585-588	for Big Data, 279, 367
storage structures, 580-582, 582f	Intellectual property, 126
system catalogs, 578–580	Inter-snapshot log in VoltDB, 346
UNIX environment, 571–572	Intermediate H-Store strategy, 478
user feedback, 602-603	Inversion file system, 215
Ingres later years, 193–194	Irrelevant theories, 161–162
contributions, 195-198	ISAM (indexed sequential access method),
Distributed Ingres, 198–200, 199f	306-307
relational DBMS, 194-198, 197f	Islands in BigDAWG polystore system, 284
support domains, 201–204	
Ingres project	Join indexes in C-Store, 498, 499f, 501, 509
ATTRIBUTE catalog, 579-580	Join operators in C-Store, 509
Berkeley years, 185–186	Jones, Anita, 193
birth of, 43-45	Jones, Evan, 248–249
and BSD, 166–167	Joy, Bill, 109, 165
commercial codeline. See Commercial	JSON data model, 208
Ingres codeline	
competition, 100-103	K-safe systems, 494, 499–500
COPY command, 600	Katz, Randy, 216
copyright, 109-110	KDB system, 494
decomposition of queries, 591–597	Kelley, Gary, 151
distributed, 150	Kepner, Jeremy, 370
ideas source, 147–148	Kerschberg, Larry, 407

Low water mark (LWM) in C-Store, 504	Mariposa system
LSM-tree concept, 495	description, 88-89
Lucking, J. R., 404-405	federation architecture, 401
	prototype, 150
MacAIMS Data Management System, 404	Mark, Roger, 370
MacDonald, Nancy, 99	Marketing problem in one size fits all, 442
Machine learning, 66	MARS system, 436
Madden, Samuel, 56f	Mask operators in C-Store, 509
BigDAWG, 370	Mattson, Tim, BigDAWG polystore system
C-Store project, 238, 240	article, 279–289
C-Store seminal work, 491–518	McCline, Matt, 215n
end of architectural era seminal work,	McKnight, Kathy, 384
463-489	McPherson, John, 382, 384
Festschrift, 143	McQueston, James, 349, 351-353, 355
H-Store prototype, 247	MDM (master data management), 358
ISTC, 279, 281	Meehan, John, 376
OLTP databases seminal work, 411-439	Memory
research contributions article, 183-189	OLTP design, 466–467
Vertica Systems, 334	studies, 436
Madden, Samuel, on Stonebraker	Memory resident databases in OLTP, 416
academic career and birth of Ingres,	Merck databases, 64–65
43-45	Meredith, Jeff
advocacy, 50	Illustra, 206, 221
awards and honors, 49	Miro team, 314f
companies founded, 48-49	Postgres, 312, 314
early years and education, 42–43	Merge-out process, 495, 508
industry, MIT, and new millennium,	Message transport in one size fits all, 458
46-47	Method and System for Large Scale Data
legacy, 47-48	Curation patent, 275
personal life, 50	MIMIC (Multiparameter Intelligent
post-Ingres years, 45–46	Monitoring in Intensive Care)
synopsis, 41–42	dataset, 370–371, 371f
MADlib library, 221–222	Miro team, 314f
Mahony, Colin, 134	Miso system, 284
Maier, David, 176, 325	"Mission to Planet Earth" (MTPE) effort,
Main memory	112-113
OLTP design, 466-467	Mistakes in startup company guidelines,
studies, 436	128
"Making Smalltalk a Database System"	MIT
(Copeland and Maier), 111	2005 sabbatical, 113-114
MapReduce	2016, 115
blog post, 114	Aurora and StreamBase projects, 46
criticism of, 5, 68-70, 136	Industrial Liaison Program, 121
and Postgres, 209	research contributions, 186

MIT CSAIL, 103	Nonkeyed storage structure in Ingres, 581
MODIFY command in OVQP, 599-600	Nonrepeatable errors, 34
Mohan, C., 382, 384	Normal functions in Postgres, 524
Mom (friend), 27	NoSQL systems, 246
MonetDB project, 113, 151	Novartis Institute for Biomedical Research
Morgenthaler, Gary, on Miro team, 314f	(NIBR), 121, 152, 361
Morpheus project	
description, 47	Object identifiers (OIDs) in Postgres, 532
prototype, 150	Object Management Extension in
startup, 90	commercial Ingres, 308
Morris, Barry	Object management in Postgres implemen-
Aurora/Borealis/StreamBase reunion,	tation, 520
332f	"Object Management in Postgres Using
StreamBase Systems, 232	Procedures" (Stonebraker), 45–46
Mucklo, Matthew, 376	Object-orientation in Postgres, 206–207,
Muffin parallel databases, 151	531-532
MUFFIN prototype, 200	Object-Oriented Databases (OODBs), 111-
Multi-core support in OLTP, 434	112, 217–218
Multi-threading in OLTP design, 467	Object-Relational DBMSs: Tracking the
Multilingual access in Postgres, 522	Next Great Wave (Stonebraker and
Myria project, 284	Brown), 111
MySQL, 137	Object-Relational model, 186
	O'Brien, Kyle, 375
Nakerud, Jon, 149	O'Connell, Claire, 360
NASA "Mission to Planet Earth" effort,	Olson, Mike
112-113	Illustra, 221
National Science Foundation (NSF)	Inversion file system, 215
proposal success rate, 74	open source article, 165-171
RANN program, 147–148	Postgres B-tree implementation, 214n
Naughton, Jeff, 113	Postgres codelines, 313
Naumann, Felix, RDBMS genealogy article,	OLTP (Online Transaction Processing)
173-179	applications in H-Store project,
Navigational era, 3	246-247
Naylor, Arch, 107–108	OLTP (Online Transaction Processing)
Nested queries in Postgres, 528	databases seminal work
Netezza startup, 221	abstract, 411-412
Network Time Protocol (NTP) for VoltDB,	alternative DBMS architectures, 413
344-345	cache-conscious B-trees, 435–436
New Order transactions in OLTP, 426,	conclusion, 436-437
430-432, 431-432f	concurrency control, 433
NewSQL architecture, 246, 282f	contributions and paper organization,
No-overwrite storage manager in Postgres,	414-415
548	experimental results, 428-432
Non-volatile RAM, 67	future engines, 433–436

instructions vs. cycles, 432	data warehouses, 443-445, 444-445f,
introduction, 412-415	455-456
multi-core support, 434	DBMS processing and application logic
New Order transactions, 430-432, 431-	integration, 452-454, 453f
432f	factoring, 458-459, 459f
overheads, 414	financial-feed processing, 446-447, 448f
payment, 429-430, 429f	high availability, 454-455
performance study, 424-432	inbound versus outbound processing,
related work, 436	449–450f, 449–451
replication management, 434-435	introduction, 441-442
results, 414-415, 415f	performance, 448-455
setup and measurement methodology,	scientific databases, 457
427	sensor-based applications, 445-446
Shore, 418-424	sensor networks, 456
throughput, 428	stream processing, 445-447, 448f
trends, 416–418	synchronization, 455
weak consistency, 435	text search, 457
OLTP (Online Transaction Processing)	XML databases, 457–458
design considerations	One-variable detachment in Ingres, 592–593
grid computing and fork-lift upgrades,	One-Variable Query Processor (OVQP) in
468	Ingres, 597–599
high availability, 468–470	O'Neil, Pat, C-Store seminal work, 491–518
knobs, 470	Ong, James, 206
main memory, 466–467	Open source
multi-threading and resource control,	BSD and Ingres, 166–167
467	BSD license, 165
payment transactions, 429-430, 429f	Ingres impact, 167–168
"OLTP: Through the Looking Glass" paper	open source Ingres, 309–310
(Harizopoulos), 152	post-Ingres, 168–169
One-shot applications, 472	Postgres, 218–220
One-shot transactions, 247, 474, 476	PostgreSQL, 318-319
One size does not fit all	research impact, 169–171
BigDAWG polystore system, 282–284	OPENR function in Ingres, 583
in end of architectural era seminal work,	"Operating System Support for Data
483-486	Management" (Stonebraker and
overview, 4–5	Kumar), 47
research contributions, 187–188	Operators
special-purpose database systems,	C-Store queries, 509–510
103	Postgres, 525–526, 528
One size fits all: An idea whose time has	scientific data management, 262-263
come and gone seminal work	Optimizations in Shore, 423
abstract, 441	OQL language, 208
conclusion, 460	Oracle Corporation
correct primitives, 451–452	competition with, 102–103

Oracle Corporation (continued)	startup companies, 132–135
performance claims, 149	Partridge, John
Postgres attack by, 209	Aurora/Borealis/StreamBase reunion,
Tamr, 363–364	332f
Orca optimizer, 221	Aurora language, 227n
OS/2 Database Manager, 381–383	connection points, 229n
OS/2 system, 381–383	RFID tagging, 225n
Ousterhout, John, 216	StreamBase customers, 327–328
Ouzzani, Mourad	StreamBase founding, 232
Data Civilizer, 189	StreamBase issues, 328–329
Data Civilizer article, 291–300	Past data access as DBMS limitation, 226
"Over My Dead Body" issues in StreamBase,	Patents, 126
328-329	Path expressions in Postgres, 528
Overheads in OLTP, 414	Patterson, Dave, 216
,	Pavlo, Andrew
Pagan, Alexander	H-Store project, 187
Data Tamer project, 269–270, 273	H-Store project article, 245–251
Tamr company, 120, 274, 365f	VoltDB executor in H-Store, 75
Palmer, Andy, 104	PayPal, 250
2014 Turing Award Ceremony, 130f	Pearson Correlation Coefficient (PCC), 292
"Cue Ball", 144	People for startup companies, 138
Data Tamer project, 269	Performance
Festschrift, 143	BigDAWG polystore system, 287, 288f
startup company article, 129–138	bottleneck studies, 436
Tamr CEO, 105, 123, 274	C-Store, 151, 511–515
Tamr company, 365f	Data Unification, 358
Vertica Systems, 142–143, 242–243	H-Store, 479–483, 479f
Paper deluge, 159–160	Ingres, 602
Paper requirements, 159–161	locking methods, 90-91
ParAccel, 222	OLTP, 424-432
Paradigm4, 89	one size fits all, 448–455
Paradise project, 113	Postgres, 30-32, 549-550, 554-555, 555f
Parallel databases ideas source, 151	Permute operators in C-Store, 509
Parallel Data Warehouse project, Microsoft,	Perna, Janet, 382, 384, 401
47	Persistence
Parallel DBMS in Postgres, 316	Postgres, 522
Parallel Sysplex, 400	VoltDB, 346-347
Parallelism in Tamr, 363	Persistent CLOS, 522
PARAMD function in Ingres, 584	Persistent redo logs, 470
PARAMI function in Ingres, 584	Personal life of Stonebraker, 50
Parsers in Ingres, 586	Peterlee IS/1 System, 404
Partitions in C-Store, 498	Ph.D. paper requirements, 159
Partnerships	Pipes, 572
leadership approach, 131–132	Pirahesh, Hamid, 382, 384

Pitch decks in startup company guidelines,	POSTQUEL query language, 528-530
123-125	programming language, 552-554
Pivotal company, 221–222	rules systems, 538–547
Plans for C-Store queries, 509–510	status and performance, 554-555, 555f
Poliakov, Alex, SciDB codeline article,	storage systems, 547–550
349-355	Postgres perspective, 205
Polybase system, 284	active databases and rule systems,
Polystores. See BigDAWG polystore system	212-213
Portable code base for IBM relational	commercial adaptations, 220-223
databases, 381-384	context, 205–206
Post-Ingres years	deep storage technologies, 215-216
open source, 168–169	language support, 217-218
overview, 45-46	lessons, 223–224
Postgres codelines, 311	log-centric storage and recovery, 213-
conclusion, 319	215
PostgreSQL, 317–319	overview, 206–207
prototype, 311-313	software impact, 218–223
Postgres design, 15–16	XPRS architecture, 216-217
base typess, 523	Postgres project, 102
bicycle trip metaphor, 32–35	abstract data types, 88, 149
conclusion, 35-36	description, 186
Illustra buyout, 32	ideas source, 149–150
inheritance, 524, 529	Illustra purchase, 111–112
Ingres help for, 27–28	impact, 3
Internet takeoff, 30	POSTQUEL, 400
Land Sharks, 29	productionization, 315
marketing challenge, 28-29	satisfaction with, 78–79
performance benchmark, 30–32	and SQL, 315–316
speedbumps, 24–26	start of, 203–204
start, 15–22, 22f	PostgreSQL
Postgres implementation seminal work	creation, 170, 400
abstract, 519	impact, 3
conclusion, 555–557	open source, 218–220, 317–319
data model, 523–528	software architecture, 210
data model and query language overview,	POSTQUEL query language
521-523	features, 528–530
data model critique, 532–537	functions, 526–528, 555–556, 555f
design problems, 549–550	Potamianos, Spyros, 212
dynamic loading and process structure,	Pragmatism in startup companies, 135–137
551-552	Pricing models, 134
fast path feature, 530–531	Primary-copy replication control, 90
implementation introduction, 550–554	Primary indexes, 493
introduction, 520–521	Primitives in one size fits all, 451–452
object-orientation, 531–532	Princeton University, 43

Probabilistic reasoning in scientific data	complex objects, 203
management, 266	description, 195–196, 197f
Problems	overview, 563-565
ignoring, 163	and standardization, 398-399
solving, 276–277	utility commands, 565–568
Process 2 in Ingres, 585–591	Query classes in H-Store, 480–482
Process 3 in Ingres, 591–599	Query decomposition in Ingres, 591–597
Process 4 in Ingres, 599–602	Query execution
Process structure	C-Store, 509–510
Ingres, 571–575, 572f, 574f	H-Store, 474–475
Postgres, 551–552	Query modeling and optimization in
Project operators in C-Store, 509	BigDAWG, 285–286
Project Oxygen, 225	Query modification in Ingres, 90, 585–588
Project Sequoia	Query optimization in C-Store, 510
2000, 112–113	Query rewrite implementation in rules
Postgres, 215	systems, 538–541
Projections in C-Store, 496–498, 510	Quiet (friend), 27
PROTECTION catalog in Ingres, 580	Quiet (interia), 2
Prototypes	R-Tree index structure
ADT-Ingres, 202, 203f	Ingres, 201–202
Data Tamer project, 270–273	and Postgres, 210
H-Store project, 247–250	Radical simplicity for Postgres transactional
Mariposa, 150	storage, 214
Morpheus, 150	RAID storage architectures, 216
MUFFIN, 200	Raising money for startup companies, 127
noise in, 389	RAP project, 109
Postgres, 311–313	RARES project, 109
Shore, 152	Rasin, Alex, 334
startup companies, 120–121	on Aurora project, 324f
Tamr project, 121	RCA company, 97–98
PRS2 system, 212	Ré, Chris, 6
Punctuated Streams Team, 325	Read-optimized systems, 492
Purify tool for Postgres productionization,	Real-time requirements as DBMS limitation,
315	227
Putzolu, Franco, 101	Real-world impact in rules of thumb,
PVLDB 2016 paper, 297–298	236-238
1 1 /	Record deduplication in Data Tamer project,
Qatar Computing Research Institute (QCRI)	272-273
creation, 105	Recorded Future company, 296–297
Data Civilizer project, 189	Recovery
Data Tamer, 152	C-Store, 506–508
Tamr project, 120	database logs for, 21–22
Quel language, 102	H-Store, 476–478
comments, 570–571	Ingres, 600–602
	- '

Postgres, 213-216	Resident set size (RSS) in VoltDB, 342
Red Brick Systems, 66	Resource control in OLTP design, 467
Redo logs	RETRIEVE commands in Ingres, 573
H-Store, 482	Reviews, unsatisfactory, 160–161
OLTP design, 470	RFID (radio frequency identification)
"Reduction of Large Scale Markov Models	tagging, 225n
for Random Chains" dissertation	Ries, Dan, 200
(Stonebraker), 43	Rivers, Jonathan, 350
Referential integrity, 538–539	Robinson, John "JR"
Reformatting tuples in Ingres, 593	Shared Nothing band, 138f
Relational-CODASYL debate, 404–406	Tamr, 365f
Relational database industry birth, 94	Vertica Systems, 339
Ingres competition, 100–103	Rock fetches, 124
Ingres team, 99–100	Rogers, Jennie, BigDAWG polystore system
Ingres timing, 98–99	article, 279–289
maturity stage, 103–105	Rollbacks in C-Store, 506
overview, 97–98	Roots in OLTP tables, 471
Relational database management systems	Route 66 TV show, 81
(RDBMS)	Row store architecture, 492
industry birth timeline, 173–179, 174–	Rowe, Larry
176f, 178–179f	commercial Ingres codeline, 305
Ingres later years, 194–198, 197f	Ingres founding, 303
Relational databases, brief history of, 2–6	Postgres, 36, 88, 206, 217
Relational era, 3	Postgres implementation seminal work,
Relational models in one size does not fit	519-559
all world, 483–485	RTI founding, 101, 303
Relations	RS column store in C-Store, 500–501
Ingres, 576–580	RTI (Relational Technology, Inc.), 101
QUEL, 566	commercial version, 111
Remote direct memory access (RDMA), 67	founding, 166–167, 398
Rendezvous system, 404	Ingres basis of, 198
REPLACE command in Ingres, 584, 600–601	Rubenstein, Brad, 205
Replication management in OLTP, 434–435	Ruby-on-Rails system, 486
Research, open source impact on, 169–171	Rules systems in Postgres, 212–213
Research Applied to the National Needs	complexity, 541–543
(RANN) program, 147–148	implementation efficiency, 544
Research contributions	introduction, 538–541
2010s and beyond, 188-189	knowledge management, 520
Berkeley years, 185–186	push for, 316
MIT, 186	second system, 545–547
one size doesn't fit all era, 187–188	views, 543-544
technical rules of engagement, 183-185	
Research story about Aurora project, 387–	S-Store project, 234, 331
391	Sales in startup company guidelines, 128

Sales problem in one size fits all, 442	Self-funded companies, 74
Salz, Jon, 232, 328–330	Self-order values in C-Store, 501
Sarawagi, Sunita, 215	Selinger, Pat, 382, 384, 407
ScaLAPACK analytics, 349	Sensor-based applications in one size fits
Scaling in Tamr, 362–365	all, 445–446, 456
Schek, Hans, 92	SEQUEL language, 102
Schema mapping in Data Tamer project,	Service of Stonebraker, 49
270–272, 271f	Shankland, Jim, on Miro team, 314f
Schieffer, Berni, 384, 385f	Shared-nothing architecture in SciDB
Schlamb, Kelly, 385f	codeline, 351
Schreiber, Mark	Shared Nothing band, 80, 138f
Data Civilizer, 64, 294	Sharma, Kristi Sen, SciDB codeline article,
Tamr, 361	349–355
Schultz, Hayden, 331	She, Zuohao (Jack), 373
Schuster, Stu, 101	Shims in BigDAWG polystore system, 284
SciDB codeline, 349	Shore (Scalable Heterogeneous Object
connectivity, 349–351	Repository), 418–419
features focus, 351–352	architecture, 419–422, 420f
genomic data, 354–355	prototype, 152
hard numbers, 352–353	removing components, 422–424
languages, 353–354	Shore Storage Manager (SSM), 418
security, 354	Short One (friend), 27
SciDB project	Sibley, Ed, 404, 406
contributions for, 89	SIGFIDET conference, 403–408
description, 47	Singer, Adam, on Aurora project, 324f
one size doesn't fit all era, 188	Single-partition transactions in H-Store
Scientific data management, 253–254	project, 247
beginning tasks, 260–263, 261f	Single-sited transactions, 472, 474, 476
current users, 267–268	Single threading in OLTP, 413, 416–417
first users, 263–267	Skeen, Dale, 195, 200
logistics, 259–260	Skok, David, 151–152
mountain representation, 254–256	Sleepycat startup, 171
planning, 256–259	Sloan Digital Sky Survey (SDSS), 113, 255–
Scientific databases in one size fits all, 457	256
Scope in BigDAWG polystore system, 284	Slotted pages in Shore, 419
SDTM (Study Data Tabulation Model), 364	SMALLTALK language, 553
Search in one size fits all, 457	Smooth (friend), 28
Search User Interfaces (Hearst), 394	Snapshot isolation, 495, 503–505
Second System Effect, 223	Snodgrass, Rick, 198
· · · · · · · · · · · · · · · · · · ·	Software impact in Postgres, 218–223
Secondary indexes, 493	1 0 ,
Secrecy in startup company guidelines, 127	Solicitation in startup company guidelines,
Security in SciDB, 354	123-125 Sort laws and appreciate in C. Store, 407, 409.
Segments in C-Store, 498	Sort keys and operators in C-Store, 497–498,
Select operators in C-Store, 509	509

Source code for Ingres project, 109–110	State storage in one size fits all, 458
SOURCE directory in Ingres, 576	Status in Postgres, 554–555, 555f
Space budget in C-Store, 500	Sterile transaction classes, 473, 476
Spanner, 70–71	Stonebraker, Beth, 50, 141, 144
•	Stonebraker, Leslie, 50, 141, 144
Spark, 402	
Spending money guidelines for startup	Stonebraker, Michael
companies, 125–126	collected works, 607–633
Sprite distributed OS, 216	failures article, 155–164, 156f
SQL language, 102	ideas article, 147–153
introduction, 404	Postgres design, construction, and
MapReduce, 114	commercialization story, 15–37
one size does not fit all world, 485–486	startup company guidelines. See Startup
and Postgres, 315–316	companies, guidelines
vs. Quel, 196	Winslett interview, 59–83
SQuAl system, 323	Stonebraker, Michael, biography overview
Stable memory in Postgres, 548	academic career and birth of Ingres,
Stanford Linear Accelerator (SLAC) facility,	43-45
257	academic positions, 43
Star schema in data warehousing, 443, 444f	advocacy, 50, 91-92
Starburst project, 213	awards and honors, 49
Startup companies, founded, 48–49	career flowchart, 54–55
Startup companies, guidelines	companies founded, 48-49
business acumen on team, 122–123	early years and education, 42–43
company control, 127	industry, MIT, and new millennium,
first customers, 126	46-47
ideas, 119–120	legacy, 47-48
intellectual property, 126	personal life, 50
introduction, 119	post-Ingres years, 45–46
lighthouse customers, 122	sabbatical at MIT, 113–114
mistakes, 128	student genealogy chart, 52–53, 56f
pitch deck and VC solicitation, 123–125	synopsis, 41–42
raising money, 127	Stonebraker, Michael, seminal works
sales, 128	C-Store, 491–518
secrecy, 127	end of architectural era, 463–489
spending money, 125–126	Ingres implementation, 561–605
summary, 128	OLTP databases, 411–439
	one size fits all, 441–462
teams and prototypes, 120–121	,
venture capitalists, 127	Postgres implementation, 519–559
Startup companies, running	Stonebraker's good ideas
introduction, 129–130	abstract data types, 148
overview, 130–132	Data Tamer, 152
partnerships, 132–135	data warehouses, 151
people in, 138	distributed databases, 150
pragmatism, 135–137	H-Store/VoltDB, 151–152

Stonebraker's good ideas (continued)	Subject matter experts (SMEs) in Tamr,
how to exploit, 153	361-362
Ingres, 147–148	Survey of Income and Program Participation
parallel databases, 151	(SIPP) data, 197–198
Postgres, 149–150	Sybase, 400
startup company guidelines, 119–120	Synchronization in one size fits all, 455
Stonebraker, Sandra, 50, 141, 144	Sysplex Coupling Facility, 380
Storage allocators in C-Store, 502–503	System catalogs in Ingres, 578–580
Storage keys in C-Store, 498	System i, 380
Storage management and structures	System-level data management problems
C-Store, 502–503	and approaches, 91–92
commercial Ingres codeline, 306–308	System R system, 88, 100
Ingres, 580–582, 582f	architectural features, 465
Postgres, 213–216, 547–550	code base, 380
QUEL, 566–567	development, 44
Stored procedures, 91	vs. Ingres, 196
STRATEGY program in OVQP, 597–599	Systems, leadership and advocacy, 87–90
Stream processing era	Szalay, Alex, 112–113
Aurora and Borealis origins, 225–227	Szolovits, Peter, 370
Aurora and Borealis systems, 227–231	
concurrent efforts, 231-232	T-trees, 436
current systems, 233–234	Table fragments in H-Store, 475
StreamBase Systems, 232–233	Tall Shark (friend), 27
Stream processing in one size fits all,	Tamr codeline, 357
445–447, 448f	algorithmic complexity, 359-361
STREAM project, 231	conclusion, 365-366, 366f
Stream-SQL, enthusiasm for, 484	Data Unification, 358-359
STREAM Team, 325	user emphasis, 361–362
StreamBase codelines, 321–322, 322f	variety, 362–365
April Fool's Day joke, 330–331	Tamr project and company
conclusion, 331-332	creation, 105
customers, 327–328	from Data Tamer, 90
development, 326-327	founding, 273–275
issues, 328–330	idea for, 120, 152
StreamBase Systems	prototype, 120
Architecture Committee, 329	Tandem Computers, 101
aggregation systems, 451	Tang, Nan
from Aurora, 89	Data Civilizer, 189
founding, 46, 232-233	Data Civilizer article, 291–300
Grassy Brook renamed to, 142	Tango, Jo
textual language, 229	at Highland event, 132
Strongly two-phase applications, 473	venture capitalist perspective article,
Student genealogy chart, 52-53, 56f	139-144
Student perspective, 393–396, 395f	Tarashansky, Igor, 352

Tatbul, Nesime	Training workloads in C-Store, 500
Aurora/Borealis/StreamBase codelines	Trajman, Omer, 335
article, 321-332	Tran, Nga, C-Store seminal work, 491-
Aurora/Borealis/StreamBase reunion,	518
332f	Transaction-less databases, 413
Taylor, Cimarron, on Miro team, 314f	Transactions
Teams for startup companies, 120–121	C-Store, 503-508, 505f
Technical rules of engagement, 183–185	concurrency control. See Concurrency
Technology Licensing Offices (TLOs), 126	control
Telegraph Team, 325	features, 470–471
TelegraphCQ project, 231	H-Store, 247, 476–478
Telenauv company, 90	OLTP, 417-418
Temporal Functional Dependencies in Data	rollbacks, 506
Civilizer, 297	schema characteristics, 471-473
Tenure paper requirements, 159	Transitive closure in Postgres, 529
Teradata, 222	Trees schemas, 471–472
Term sheets in startup company guidelines,	Triggers
124-125	DBMS limitation, 226
Terminal monitor in Ingres, 572	one size fits all, 450
Test-of-time award, 202	Postgres, 213
Text search in one size fits all, 457	rules systems, 212, 539–540
Thomson Reuters (TR) company, 274	Triple Rock (friend), 27
Thread support in Shore, 420–421	Trust with venture capitalists, 140
Three dimensional problems, 520	Tsichritzis, Dennis, 403–404
Throughput in OLTP, 428	Tuple movers
Tibbetts, Richard	C-Store, 494–495, 508
Aurora/Borealis/StreamBase reunion,	Vertica Systems, 337
332 f	Tuple storage in VoltDB, 343
StreamBase development, 326-327	Tuples in Ingres
StreamBase issues, 328–330	AMI, 583
StreamBase Systems, 232	substitution, 592
TIBCO Software, Inc., 233, 321	TIDs, 581
Time travel feature in Postgres, 316, 529,	variables, 563
548, 550	Turing Award in 2014
TimeSeries DataBlade in Postgres, 317	citation, 130
Timestamp authorities (TAs) in C-Store, 504	overview, 114-115
TimesTen system, 436	perspectives, 93-95
TMP directory in Ingres, 576	Two-phase applications, 473, 476
TPC (Transaction Processing Performance	Types in Postgres, 523, 532–537
Council) benchmark	
Data Unification, 358	Ubell, Michael
H-Store, 479–483, 479f	Illustra, 221
OLTP, 424-425, 425f	Miro team, 314f
TPC-B, 382, 436	Postgres productionization, 315

Undo logs	patent infringement suit, 126
H-Store, 482	satisfaction with, 78–79
OLTP design, 471	Tamr, 364
UNIN process structure, 571–572	venture capitalist perspective, 142–143
Union types in Postgres, 532–534	Vertica Systems codeline, 333
Unix platforms	architectural decisions, 336-339
Ingres, 101, 571–573	building, 333-334
systems based on, 47	conclusion, 340
Updates	customers, 334-335, 339-340
C-Store, 503–508, 505f	features discussion, 335-336
Ingres, 600–602	Video data management, 265
Uptone (friend), 28, 30	Vietnam war, 81
Urban Dynamics, 43	Views
Urban systems, 147–148	Ingres, 44, 586
User-Defined Aggregate (UDA) functions in	rules systems, 543–544
Postgres, 209	Vincent, Tim, 383-384, 385f
User-defined extensions (UDXs)	VLDB demo paper for H-Store prototype,
Ingres prototype, 202	249
SciDB codeline, 350	VLSI CAD design era, 201–202
User-defined functions (UDFs) in Postgres,	Voice-of-Experience (friend), 28, 30
209, 211	VoltDB
User-defined types (UDTs) in commercial	creation, 104
Ingres codeline, 308–309	from H-Store, 89
User emphasis in Tamr, 361–362	H-Store executor, 75
User experience (UX) design and	H-Store split, 251
implementation in Tamr, 361	PayPal interest in, 250
User feedback for Ingres, 602–603	VoltDB codeline, 341-342
Utility commands in Ingres, 563–568,	compaction, 342-344
599-602	disk persistence, 346–347
	latency, 344–348
VanderPlas, Jake, 353	Volume in Tamr, 361–362
Varaiya, Pravin, 17, 148	
Variety in Tamr, 361–365	Weak consistency in OLTP, 435
Venture capitalists	Wei Hong Optimizer, 217
perspective, 139-144	Weisberg, Ariel, 249
in startup company guidelines, 127	Whales, 158
Verisk Health, 121, 152	Whitney, Kevin, 404
Vernica, Rares, 350, 353–354	Whittaker, Andrew, 370
Vertica Systems	Whyte, Nick, 99
from C-Store, 89	Widom, Jennifer, 228–229, 325
creation, 104	Winer, Mike, 385f
founding, 133–135, 242–244	WinFS project, 215n
HP purchase of, 67	Winslete, Marianne, interview with
impact of, 113–114	Stonebraker, 59–83
· ,	,

Wisconsin, 1996 fall, 108-111	Yan, Robin, on Aurora project, 324f
Wisconsin Benchmark, 436	Youssefi, Karel
Wong, Eugene, 98	Ingres team, 99
Ingres, 88	Tandem Computers, 101
Ingres founding, 41, 148, 303	Yu, Andrew
Ingres implementation seminal work,	Postgres parser, 218
561-605	PostgreSQL, 170
RTI founding, 398	SQLization project, 317-318
Stonebraker guided by, 3, 43	Yu, Katherine, 376
Worker sites in H-Store, 477	
Workflow-based diagrammatic languages,	Zaniolo, Carlo, 217
227n	Zdonik, Stan, 103
Workload in OLTP, 425-427, 426f	Aurora/Borealis/StreamBase reunion,
Write-ahead logging in Postgres, 214	332f
Write-optimized systems, 492	Aurora project, 322–323, 324f
WS column store in C-Store, 502, 507–508	Borealis project, 186
	expert sourcing, 273
Xiao, Min	H-Store project, 245–246
OMDB, 338	Shared Nothing band, 138f
Vertica Systems, 339	stream processing era article, 225–234
Xing, Ying, on Aurora project, 324f	StreamBase Systems, 232
XML databases in one size fits all, 457–	Tamr project, 120
458	Vertica Systems, 334, 339
XPRS architecture in Postgres, 216–217	Zero-billion-dollar ideas, 185
XQuery language, 208	Zhang, Donghui, 353–354
XRM-An Extended (N-ary) Relational	Zilles, Stephen, 88
Memory, 404	Zook, Bill, 99

Biographies

Editor

Michael L. Brodie

Michael L. Brodie has over 45 years of experience in research and industrial practice in databases, distributed systems, integration, artificial intelligence, and multidisciplinary problem-solving. Dr. Brodie is a research scientist at the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology; advises startups; serves on advisory boards of national and international research organizations; and is an adjunct professor at the National University of Ireland, Galway and at the University of

Technology, Sydney. As Chief Scientist of IT at Verizon for over 20 years, he was responsible for advanced technologies, architectures, and methodologies for IT strategies and for guiding industrial-scale deployments of emerging technologies. He has served on several National Academy of Science committees. Current interests include Big Data, Data Science, and Information Systems evolution. Dr. Brodie holds a Ph.D. in databases from the University of Toronto and a Doctor of Science (honoris causa) from the National University of Ireland. Visit www.Michaelbrodie.com for further information.

Authors

Daniel J. Abadi

Daniel J. Abadi is the Darnell-Kanal Professor of Computer Science at the University of Maryland, College Park. He performs research on database system architecture and implementation, especially at the intersection of scalable and distributed systems. He is best known for the development of the storage and query execution engines of the C-Store (column-oriented database) prototype, which was commercialized by Vertica and eventually acquired by Hewlett-Packard, and for his HadoopDB research on fault-tolerant scal-

able analytical database systems, which was commercialized by Hadapt and acquired by Teradata in 2014. Abadi has been a recipient of a Churchill Scholarship, a NSF CAREER Award, a Sloan Research Fellowship, a VLDB Best Paper Award, a VLDB 10-year Best Paper Award, the 2008 SIGMOD Jim Gray Doctoral Dissertation Award, the 2013–2014 Yale Provost's Teaching Prize, and the 2013 VLDB Early Career Researcher Award. He received his Ph.D. in 2008 from MIT. He blogs at DBMS Musings (http://dbmsmusings.blogspot.com) and Tweets at @daniel_abadi.

Magdalena Balazinska

Magdalena Balazinska is a professor in the Paul G. Allen School of Computer Science and Engineering at the University of Washington and is the director of the University's eScience Institute. She's also director of the IGERT PhD Program in Big Data and Data Science and the associated Advanced Data Science PhD Option. Her research interests are in database management systems with a current focus on data management for data science, big data systems, and cloud computing. Magdalena holds a Ph.D. from the Mas-

sachusetts Institute of Technology (2006). She is a Microsoft Research New Faculty Fellow (2007) and received the inaugural VLDB Women in Database Research Award (2016), an ACM SIGMOD Test-of-Time Award (2017), an NSF CAREER Award (2009), a 10-year most influential paper award (2010), a Google Research Award (2011),

an HP Labs Research Innovation Award (2009 and 2010), a Rogel Faculty Support Award (2006), a Microsoft Research Graduate Fellowship (2003–2005), and multiple best-paper awards.

Nikolaus Bates-Haus

Nikolaus Bates-Haus is Technical Lead at Tamr Inc., an enterprise-scale data unification company, where he assembled the original engineering team and led the development of the first generation of the product. Prior to joining Tamr, Nik was Lead Architect and Director of Engineering at Endeca (acquired by Oracle in 2011), where he led development of the MDEX analytical database engine, a schema-on-read column store designed for large-scale parallel query evaluation. Previously, Nik worked in data integration, ma-

chine learning, parallel computation, and real-time processing at Torrent Systems, Thinking Machines, and Philips Research North America. Nik holds an M.S. in Computer Science from Columbia University and a B.A. in Mathematics/Computer Science from Wesleyan University. Tamr is Nik's seventh startup.

Philip A. Bernstein

Philip A. Bernstein is a Distinguished Scientist at Microsoft Research, where he has worked for over 20 years. He is also an Affiliate Professor of Computer Science at the University of Washington. Over the last 20 years, he has been a product architect at Microsoft and Digital Equipment Corp., a professor at Harvard University and Wang Institute of Graduate Studies, and a VP Software at Sequoia Systems. He has published over 150 papers and 2 books on the theory and implementation of database systems, especially on transac-

tion processing and data integration, and has contributed to a variety of database products. He is an ACM Fellow, an AAAS Fellow, a winner of ACM SIGMOD's Codd Innovations Award, a member of the Washington State Academy of Sciences, and a member of the U.S. National Academy of Engineering. He received a B.S. from Cornell and M.Sc. and Ph.D. degrees from the University of Toronto.

Janice L. Brown

Janice L. Brown is president and founder of Janice Brown & Associates, Inc., a communications consulting firm. She uses strategic communications to help entrepreneurs and visionary thinkers launch technology companies, products, and ventures, as well as sell their products and ideas. She has been involved in three ventures (so far) with 2014 Turing Award-winner Michael Stonebraker: Vertica Systems, Tamr, and the Intel Science and Technology Center for Big Data. Her background includes positions at several public rela-

tions and advertising agencies, and product PR positions at two large technology companies. Her work for the Open Software Foundation won the PRSA's Silver Anvil Award, the "Oscar" of the PR industry. Brown has a B.A. from Simmons College. Visit www.janicebrown.com.

Paul Brown

Paul Brown first met Mike Stonebraker in early 1992 at Brewed Awakening coffee shop on Euclid Avenue in Berkeley, CA. Mike and John Forrest were interviewing Paul to take over the job Mike Olson had just left. Paul had a latte. Mike had tea. Since then, Paul has worked for two of Mike's startups: Illustra Information Technologies and SciDB / Paradigm4. He was co-author with Mike of a book and a number of research papers. Paul has worked for a series of DBMS companies all starting with the letter "I": Ingres, Illustra, Informix,

and IBM. Alliterative ennui setting in, Paul joined Paradigm4 as SciDB's Chief Architect. He has since moved on to work for Teradata. Paul likes dogs, DBMSs, and (void *). He hopes he might have just picked up sufficient gravitas in this industry to pull off the beard.

Paul Butterworth

Paul Butterworth served as Chief Systems Architect at Ingres from 1980-1990. He is currently co-founder and Chief Technology Officer (CTO) at VANTIQ, Inc. His past roles include Executive Vice President, Engineering at You Technology Inc., and co-founder and CTO of Emotive Communications, where he conceived and designed the Emotive Cloud Platform for enterprise mobile computing. Before that, Paul was an architect at Oracle and a founder & CTO at AmberPoint, where he directed the technical strategy for

the AmberPoint SOA governance products. Prior to AmberPoint, Paul was a Distinguished Engineer and Chief Technologist for the Developer Tools Group at Sun Microsystems and a founder, Chief Architect, and Senior Vice President of Forte Software. Paul holds undergraduate and graduate degrees in Computer Science from UC Irvine.

Michael J. Carey

Michael J. Carey received his B.S. and M.S. from Carnegie-Mellon University and his Ph.D. from the University of California, Berkeley, in 1979, 1981, and 1983, respectively. He is currently a Bren Professor of Information and Computer Sciences at the University of California, Irvine (UCI) and a consulting architect at Couchbase, Inc. Before joining UCI in 2008, Mike worked at BEA Systems for seven years and led the development of BEA's AquaLogic Data Services Platform product for virtual data integration. He also spent a

dozen years teaching at the University of Wisconsin-Madison, five years at the IBM Almaden Research Center working on object-relational databases, and a year and a half at Propel Software, an e-commerce platform startup, during the infamous 2000-2001 Internet bubble. He is an ACM Fellow, an IEEE Fellow, a member of the National Academy of Engineering, and a recipient of the ACM SIGMOD E.F. Codd Innovations Award. His current interests center on data-intensive computing and scalable data management (a.k.a. Big Data).

Fred Carter

Fred Carter, a software architect in a variety of software areas, worked at Ingres Corporation in several senior positions, including Principal Scientist/Chief Architect. He is currently a principal architect at VANTIQ, Inc. Prior to VANTIQ, Fred was the runtime architect for AmberPoint, which was subsequently purchased by Oracle. At Oracle, he continued in that role, moving the AmberPoint system to a cloud-based, application performance monitoring service. Past roles included architect for EAI products at Forte (contin-

uing at Sun Microsystems) and technical leadership positions at Oracle, where he designed distributed object services for interactive TV, online services, and content management, and chaired the Technical Committee for the Object Definition Alliance to foster standardization in the area of network-based multimedia systems. Fred has an undergraduate degree in Computer Science from Northwestern University and received his M.S. in Computer Science from UC Berkeley.

Raul Castro Fernandez

Raul Castro Fernandez is a postdoc at MIT, working with Samuel Madden and Michael Stonebraker on data discovery—how to help people find relevant data among databases, data lakes, and the cloud. Raul built Aurum, a data discovery system, to identify relevant data sets among structured data. Among other research lines, he is looking at how to incorporate unstructured data sources, such as PDFs and emails. More generally, he is interested in data-related problems, from efficient data processing to machine

learning engineering. Before MIT, Raul completed his Ph.D. at Imperial College London, where he focused on designing new abstractions and building systems for large-scale data processing.

Ugur Çetintemel

Ugur Cetintemel is a professor in the department of Computer Science at Brown University. His research is on the design and engineering of high-performance, user-friendly data management and processing systems that allow users to analyze large data sets interactively. Ugur chaired SIGMOD '09 and served on the editorial boards of VLDB Journal, Distributed and Parallel Databases, and SIGMOD Record. He is the recipient of a National Science Foundation Career Award and an IEEE 10-year test of time award in Data Engineering,

among others. Ugur was a co-founder and a senior architect of StreamBase, a company that specializes in high-performance data processing. He was also a Brown Manning Assistant Professor and has been serving as the Chair of the Computer Science Department at Brown since July 2014.

Xuedong Chen

Xuedong Chen is currently an Amazon.com Web Services software developer in Andover, Massachusetts. From 2002–2007 he was a Ph.D. candidate at UMass Boston, advised by Pat and Betty O'Neil. He, along with Pat O'Neil and others, were coauthors with Mike Stonebraker.

Mitch Cherniack

Mitch Cherniack is an Associate Professor at Brandeis University. He is a previous winner of an NSF Career Award and co-founder of Vertica Systems and StreamBase Systems. His research in Database Systems has focused on query optimization, streaming data systems, and column-based database architectures. Mitch received his Ph.D. from Brown University in 1999, an M.S. from Concordia University in 1992, and a B.Ed. from McGill University in 1984.

David J. DeWitt

David J. DeWitt joined the Computer Sciences Department at the University of Wisconsin in September 1976 after receiving his Ph.D. from the University of Michigan. He served as department chair from July 1999 to July 2004. He held the title of John P. Morgridge Professor of Computer Sciences when he retired from the University of Wisconsin in 2008. In 2008, he joined Microsoft as a Technical Fellow to establish and manage the Jim Gray Systems Lab in Madison. In 2016, he moved to Boston to join the MIT

Computer Science and AI Laboratory as an Adjunct Professor. Professor DeWitt is a member of the National Academy of Engineering (1998), a fellow of the American Academy of Arts and Sciences (2007), and an ACM Fellow (1995). He received the 1995 Ted Codd SIGMOD Innovations Award. His pioneering contributions to the field of scalable database systems for "big data" were recognized by ACM with the 2009 Software Systems Award.

Aaron J. Elmore

Aaron J. Elmore is an assistant professor in the Department of Computer Science and the College of the University of Chicago. Aaron was previously a postdoctoral associate at MIT working with Mike Stonebraker and Sam Madden. Aaron's thesis on *Elasticity Primitives for Database-as-a-Service* was completed at the University of California, Santa Barbara under the supervision of Divy Agrawal and Amr El Abbadi. Prior to receiving a Ph.D., Aaron spent several years in industry and completed an M.S. at the University of Chicago.

Miguel Ferreira

Miguel Ferreira is an alumnus of MIT. He was coauthor of the paper, "Integrating Compression and Execution in Column-Oriented Database Systems," while working with Samuel Madden and Daniel Abadi, and "C-store: A Column-Oriented DBMS," with Mike Stonebraker, Daniel Abadi, and others.

Vijay Gadepally

Vijay Gadepally is a senior member of the technical staff at the Massachusetts Institute of Technology (MIT) Lincoln Laboratory and works closely with the Computer Science and Artificial Intelligence Laboratory (CSAIL). Vijay holds an M.Sc. and Ph.D. in Electrical and Computer Engineering from The Ohio State University and a B.Tech in Electrical Engineering from the Indian Institute of Technology, Kanpur. In 2011, Vijay received an Outstanding Graduate Student Award at The Ohio State University. In 2016, Vijay

received the MIT Lincoln Laboratory's Early Career Technical Achievement Award and in 2017 was named to AFCEA's inaugural 40 under 40 list. Vijay's research interests are in high-performance computing, machine learning, graph algorithms, and high-performance databases.

Nabil Hachem

Nabil Hachem is currently Vice President, Head of Data Architecture, Technology, and Standards at MassMutual. He was formerly Global Head of Data Engineering at Novartis Institute for Biomedical Research, Inc. He also held senior data engineering posts at Vertica Systems, Inc., Infinity Pharmaceuticals, Upromise Inc., Fidelity Investments Corp., and Ask Jeeves Inc. Nabil began his career as an electrical engineer and operations department manager for a data telecommunications firm in Lebanon. In ad-

dition to his commercial career, Nabil taught computer science at Worcester Polytechnic Institute. He co-authored dozens of papers on scientific databases, file structures, and join algorithms, among others. Nabil received a degree in Electrical Engineering from the American University of Beirut and earned his Ph.D. in Computer Engineering from Syracuse University.

Don Haderle

Don Haderle joined IBM in 1968 as a software developer and retired in 2005 as the software executive operating as Chief Technology Officer (CTO) for Information Management. He consulted with venture capitalists and advised startups. He currently sits on technical advisory boards for a number of companies and consults independently. Considered the father of commercial high-performance, industrial-strength relational database systems, he was the technical leader and chief architect of DB2 from 1977–1998. He

led DB2's overall architecture and development, making key personal contributions to and holding fundamental patents in all key elements, including: logging primitives, memory management, transaction fail-save and recovery techniques, query processing, data integrity, sorting, and indexing. As CTO, Haderle collaborated with researchers to incubate new product directions for the information management industry. Don was appointed an IBM Fellow in 1989 and Vice President of Advanced Technology in 1991; named an ACM Fellow in 2000; and elected to the National Academy of Engineering in 2008. He is a graduate of UC Berkeley (B.A., Economics, 1967).

James Hamilton

James Hamilton is Vice President and Distinguished Engineer on the Amazon Web Services team, where he focuses on infrastructure efficiency, reliability, and scaling. He has spent more than 20 years working on high-scale services, database management systems, and compilers. Prior to joining AWS, James was architect on the Microsoft Data Center Futures team and the Windows Live Platform Services team. He was General Manager of the Microsoft Exchange Hosted Services team and has led many of the SQL Server en-

gineering teams through numerous releases. Before joining Microsoft, James was Lead Architect on the IBM DB2 UDB team. He holds a B.Sc. inComputer Science from the University of Victoria and a Master's in Math, Computer Science from the University of Waterloo.

Stavros Harizopoulos

Stavros Harizopoulos is currently a Software Engineer at Facebook, where he leads initiatives on Realtime Analytics. Before that, he was a Principal Engineer at AWS Redshift, a petabyte-scale columnar Data Warehouse in the cloud, where he was leading efforts on performance and scalability. In 2011, he co-founded Amiato, a fully managed real-time ETL cloud service, which was later acquired by Amazon. In the past, Stavros has held research-scientist positions at HP Labs and MIT CSAIL, working on characterizing the

energy efficiency of database servers, as well as dissecting the performance characteristics of modern in-memory and column-store databases. He is a Carnegie Mellon Ph.D. and a Y Combinator alumnus.

Marti Hearst

Marti Hearst is a professor in the School of Information and the EECS Department at UC Berkeley. She was formerly a member of the research staff at Xerox PARC and received her Ph.D. from the CS Division at UC Berkeley. Her primary research interests are user interfaces for search engines, information visualization, natural language processing, and improving education. Her book *Search User Interfaces* was the first of its kind in academics. Prof. Hearst was named a Fellow of the ACM in 2013 and a member

of the CHI Academy in 2017, and is president of the Association for Computational Linguistics. She has received four student-initiated Excellence in Teaching Awards.

Jerry Held

Jerry Held has been a successful Silicon Valley entrepreneur, executive, and investor for over 40 years. He has managed all growth stages of companies, from conception to multi-billion-dollar global enterprise. He is currently chairman of Tamr and Madaket Health and serves on the boards of NetApp, Informatica, and Copia Global. His past board service includes roles as executive chairman of Vertica Systems and MemSQL and lead independent director of Business Objects. Previously, Dr. Held was "CEO-in-residence" at ven-

ture capital firm Kleiner Perkins Caufield & Byers. He was senior vice president of Oracle Corporation's server product division and a member of the executive team that grew Tandem Computers from pre-revenue to multi-billion-dollar company. Among many other roles, he led pioneering work in fault-tolerant, shared-nothing, and scale-out relational database systems. He received his Ph.D. in Computer Science from the University of California, Berkeley, where he led the initial development of the Ingres relational database management system.

Pat Helland

Pat Helland has been building databases, transaction systems, distributed systems, messaging systems, multiprocessor hardware, and scalable cloud systems since 1978. At Tandem Computers, he was Chief Architect of the transaction engine for NonStop SQL. At Microsoft, he architected Microsoft Transaction Server, Distributed Transaction Coordinator, SQL Service Broker, and evolved the Cosmos big data infrastructure to include optimizing database features as well as petabyt-scale transactionally correct event

processing. While at Amazon, Pat contributed to the design of the Dynamo eventually consistent store and also the Product Catalog. Pat attended the University of California, Irvine from 1973–1976 and was in the inaugural UC Irvine Information and Computer Science Hall of Fame. Pat chairs the Dean's Leadership Council of the Donald Bren School of Information and Computer Sciences (ICS), UC Irvine.

Joseph M. Hellerstein

Joseph M. Hellerstein is the Jim Gray Professor of Computer Science at the University of California, Berkeley, whose work focuses on data-centric systems and the way they drive computing. He is an ACM Fellow, an Alfred P. Sloan Research Fellow, and the recipient of three ACM-SIGMOD "Test of Time" awards for his research. In 2010, Fortune Magazine included him in their list of 50 smartest people in technology, and MIT's Technology Review magazine included his work on their TR10 list of the 10 technologies "most

likely to change our world." Hellerstein is the co-founder and Chief Strategy Officer of Trifacta, a software vendor providing intelligent interactive solutions to the messy problem of wrangling data. He serves on the technical advisory boards of a number of computing and Internet companies including Dell EMC, SurveyMonkey, Captricity, and Datometry, and previously served as the Director of Intel Research, Berkeley.

Wei Hong

Wei Hong is an engineering director in Google's Data Infrastructure and Analysis (DIA) group, responsible for the streaming data processing area including building and maintaining the infrastructure for some of Google's most revenue-critical data pipelines in Ads and Commerce. Prior to joining Google, he cofounded and led three startup companies: Illustra and Cohera with Mike Stonebraker in database systems and Arch Rock in Internet of Things. He also held senior engineering leadership positions at Informix,

PeopleSoft, Cisco, and Nest. He was a senior researcher at Intel Research Berkeley working on sensor networks and streaming database systems and won an ACM SIGMOD Test of Time Award. He is a co-inventor of 80 patents. He received his Ph.D. from UC Berkeley and hos ME, BE, and BS from Tsinghua University.

John Hugg

John Hugg has had a deep love for problems relating to data. He's worked at three database product startups and worked on database problems within larger organizations as well. Although John dabbled in statistics in graduate school, Dr. Stonebraker lured him back to databases using the nascent VoltDB project. Working with the very special VoltDB team was an unmatched opportunity to learn and be challenged. John received an M.S in 2007 and a B.S. in 2005 from Tufts University.

Ihab Ilyas

Ihab Ilyas is a professor in the Cheriton School of Computer Science at the University of Waterloo, where his main research focuses on the areas of big data and database systems, with special interest in data quality and integration, managing uncertain data, rank-aware query processing, and information extraction. Ihab is also a co-founder of Tamr, a startup focusing on large-scale data integration and cleaning. He is a recipient of the Ontario Early Researcher Award (2009), a Cheriton Faculty Fellowship (2013),

an NSERC Discovery Accelerator Award (2014), and a Google Faculty Award (2014), and he is an ACM Distinguished Scientist. Ihab is an elected member of the VLDB Endowment board of trustees, elected SIGMOD vice chair, and an associate editor of *ACM Transactions on Database Systems* (TODS). He holds a Ph.D. in Computer Science from Purdue University and a B.Sc. and an M.Sc. from Alexandria University.

Jason Kinchen

Jason Kinchen, Paradigm4's V.P. of Engineering, is a software professional with over 30 years' experience in delivering highly complex products to life science, automotive, aerospace, and other engineering markets. He is an expert in leading technical teams in all facets of a project life cycle from feasibility analysis to requirements to functional design to delivery and enhancement, and experienced in developing quality-driven processes improving the software development life cycle and driving strategic planning. Jason is an

avid cyclist and a Red Cross disaster action team volunteer.

Moshe Tov Kreps

Moshe Tov Kreps (formerly known as Peter Kreps) is a former researcher at the University of California at Berkeley and the Lawrence Berkeley National Laboratory. He was coauthor, with Mike Stonebraker, Eugene Wong, and Gerald Held, of the seminal paper, "The Design and Implementation of INGRES," published in the ACM Transactions on Database Systems in September 1976.

Edmond Lau

Edmond Lau is the co-founder of Co Leadership, where his mission is to transform engineers into leaders. He runs leadership experiences, multi-week programs, and online courses to bridge people from where they are to the lives and careers they dream of. He's the author of *The Effective Engineer*, the now the de facto onboarding guide for many engineering teams. He's spent his career leading engineering teams across Silicon Valley at Quip, Quora, Google, and Ooyala. As a leadership coach, Edmond also works

directly with CTO's, directors, managers, and other emerging leaders to unlock what's possible for them. Edmond has been featured in the *New York Times*, *Forbes*, *Time*, *Slate*, *Inc.*, *Fortune*, and *Wired*. He blogs at coleadership.com, has a website (www.theeffectiveengineer.com), and tweets at @edmondlau.

Shilpa Lawande

Shilpa Lawande is CEO and co-founder of postscript .us, an AI startup on a mission to free doctors from clinical paperwork. Previously, she was VP/GM HPE Big Data Platform, including its flagship Vertica Analytics Platform. Shilpa was a founding engineer at Vertica and led its Engineering and Customer Success teams from startup through the company's acquisition by HP. Shilpa has several patents and books on data warehousing to her name, and was named to the 2012 Mass High Tech Women to Watch list and Rev

Boston 20 in 2015. Shilpa serves as an advisor at Tamr, and as mentor/volunteer at two educational initiatives, Year Up (Boston) and CSPathshala (India). Shilpa has a M.S. in Computer Science from the University of Wisconsin-Madison and a B.S in Computer Science and Engineering from the Indian Institute of Technology, Mumbai.

Amerson Lin

Amerson Lin received his B.S. and M.Eng both in Computer Science at MIT, the latter in 2005. He returned to Singapore to serve in the military and government before returning to the world of software. He was a consultant at Pivotal and then a business development lead at Palantir in both Singapore and the U.S. Amerson currently runs his own Insurtech startup—Gigacover—which delivers digital insurance to Southeast Asia.

Samuel Madden

Samuel Madden is a professor of Electrical Engineering and Computer Science in MIT's Computer Science and Artificial Intelligence Laboratory. His research interests include databases, distributed computing, and networking. He is known for his work on sensor networks, column-oriented database, high-performance transaction processing, and cloud databases. Madden received his Ph.D. in 2003 from the University of California at Berkeley, where he worked on the TinyDB system for data collection from sensor networks. Mad-

den was named one of Technology Review's Top 35 Under 35 (2005), and is the recipient of several awards, including an NSF CAREER Award (2004), a Sloan Foundation Fellowship (2007), VLDB best paper awards (2004, 2007), and a MobiCom 2006 best paper award. He also received "test of time" awards in SIGMOD 2013 and 2017 (for his work on Acquisitional Query Processing in SIGMOD 2003 and on Fault Tolerance in the Borealis system in SIGMOD 2007), and a ten-year best paper award in VLDB 2015 (for his work on the C-Store system).

Tim Mattson

Tim Mattson is a parallel programmer. He earned his Ph.D. in Chemistry from the University of California, Santa Cruz for his work in molecular scattering theory. Since 1993, Tim has been with Intel Corporation, where he has worked on High Performance Computing: both software (OpenMP, OpenCL, RCCE, and OCR) and hardware/software co-design (ASCI Red, 80-core TFLOP chip, and the 48 core SCC). Tim's academic collaborations include work on the fundamental design patterns of parallel programming, the

BigDAWG polystore system, the TileDB array storage manager, and building blocks for graphs "in the language of linear algebra" (the GraphBLAS). Currently, he leads a team of researchers at Intel working on technologies that help application programmers write highly optimized code that runs on future parallel systems. Outside of computing, Tim fills his time with coastal sea kayaking. He is an ACA-certified kayaking coach (level 5, advanced open ocean) and instructor trainer (level three, basic coastal).

Felix Naumann

Felix Naumann studied Mathematics, Economics, and Computer Science at the University of Technology in Berlin. He completed his Ph.D. thesis on "Quality-driven Query Answering" in 2000. In 2001 and 2002, he worked at the IBM Almaden Research Center on topics of data integration. From 2003–2006, he was assistant professor for information integration at the Humboldt-University of Berlin. Since then, he has held the chair for information systems at the Hasso Plattner Institute at the University of Potsdam in Ger-

many. He is Editor-in-Chief of *Information Systems*, and his research interests are in data profiling, data cleansing, and text mining.

Mike Olson

Mike Olson co-founded Cloudera in 2008 and served as its CEO until 2013 when he took on his current role of chief strategy officer (CSO). As CSO, Mike is responsible for Cloudera's product strategy, open-source leadership, engineering alignment, and direct engagement with customers. Prior to Cloudera, Mike was CEO of Sleepycat Software, makers of Berkeley DB, the open-source embedded database engine. Mike spent two years at Oracle Corporation as Vice President for Embedded Technologies after Oracle's

acquisition of Sleepycat in 2006. Prior to joining Sleepycat, Mike held technical and business positions at database vendors Britton Lee, Illustra Information Technologies, and Informix Software. Mike has a B.S. and an M.S. in Computer Science from the University of California, Berkeley. Mike tweets at @mikeolson.

Elizabeth O'Neil

Elizabeth O'Neil (Betty) is a Professor of Computer Science at the University of Massachusetts, Boston. Her focus is research, teaching, and software development in database engines: performance analysis, transactions, XML support, Unicode support, buffering methods. In addition to her work for UMass Boston, she was, among other pursuits, a long-term (1977–1996) part-time Senior Scientist for Bolt, Beranek, and Newman, Inc., and during two sabbaticals was a full-time consultant for Microsoft Corporation. She is the owner of two patents owned by Microsoft.

Patrick O'Neil

Patrick O'Neil is Professor Emeritus at the University of Massachusetts, Boston. His research has focused on database system cost-performance, transaction isolation, data warehousing, variations of bitmap indexing, and multi-dimensional databases/OLAP. In addition to his research, teaching, and service activities, he is the coauthor—with his wife Elizabeth (Betty)—of a database management textbook, and has been active in developing database performance benchmarks and corporate database consulting. He holds several patents.

Mourad Ouzzani

Mourad Ouzzani is a principal scientist with the Qatar Computing Research Institute, HBKU. Before joining QCRI, he was a research associate professor at Purdue University. His current research interests include data integration, data cleaning, and building large-scale systems to enable science and engineering. He is the lead PI of Rayyan, a system for supporting the creation of systematic reviews, which had more than 11,000 users as of March 2017. He has extensively published in top-tier venues including SIGMOD, PVLDB, ICDE,

and TKDE. He received Purdue University Seed for Success Awards in 2009 and 2012. He received his Ph.D. from Virginia Tech and his M.S. and B.S. from USTHB, Algeria.

Andy Palmer

Andy Palmer is co-founder and CEO of Tamr, Inc., the enterprise-scale data unification company that he founded with fellow serial entrepreneur and 2014 Turing Award winner Michael Stonebraker, Ph.D., and others. Previously, Palmer was co-founder and founding CEO of Vertica Systems (also with Mike Stonebraker), a pioneering analytics database company (acquired by HP). He founded Koa Labs, a seed fund supporting the Boston/Cambridge entrepreneurial ecosystem, is a founder-partner at The Founder Col-

lective, and holds a research affiliate position at MIT CSAIL. During his career as an entrepreneur, Palmer has served as Founder, founding investor, BoD member, or advisor to more than 60 startup companies in technology, healthcare, and the

life sciences. He also served as Global Head of Software and Data Engineering at Novartis Institutes for BioMedical Research (NIBR) and as a member of the start-up team and Chief Information and Administrative Officer at Infinity Pharmaceuticals (NASDAQ: INFI). Previously, he held positions at innovative technology companies Bowstreet, pcOrder.com, and Trilogy. He holds a BA from Bowdoin (1988) and an MBA from the Tuck School of Business at Dartmouth (1994).

Andy Pavlo

Andy Pavlo is an assistant professor of Databaseology in the Computer Science Department at Carnegie Mellon University. He also used to raise clams. Andy received a Ph,D, in 2013 and an M.Sc. in 2009, both from Brown University, and an M.Sc. in 2006 and a B.Sc., both from Rochester Institute of Technology.

Alex Poliakov

Alex Poliakov has over a decade of experience developing distributed database internals. At Paradigm4, he helps set the vision for the SciDB product and leads a team of Customer Solutions experts who help researchers in scientific and commercial applications make optimal use of SciDB to create new insights, products, and services for their companies. Alex previously worked at Netezza, after graduating from MIT's Course 6. Alex is into flying drones and producing drone videos.

Alexander Rasin

Alexander Rasin is an Associate Professor in the College of Computing and Digital Media (CDM) at DePaul University. He received his Ph.D. and M.Sc. in Computer Science from Brown University, Providence, RI. He is a co-Director of Data Systems and Optimization Lab at CDM and his primary research interest is in database forensics and cybersecurity applications of forensic analysis. Dr. Rasin's other research projects focus on building and tuning performance of domain-specific data management systems—currently in the

areas of computer-aided diagnosis and software analytics. Several of his current research projects are supported by NSF.

Jennie Rogers

Erdös number is 3.

Jennie Rogers is the Lisa Wissner-Slivka and Benjamin Slivka Junior Professor in Computer Science and an Assistant Professor at Northwestern University. Before that she was a postdoctoral associate in the Database Group at MIT CSAIL where she worked with Mike Stonebraker and Sam Madden. She received her Ph.D. from Brown University under the guidance of Ugur Çetintemel. Her research interests include the management of science data, federated databases, cloud computing, and database performance modeling. Her

Lawrence A. Rowe

Lawrence A. Rowe is an Emeritus Professor of Electrical Engineering and Computer Science at U.C. Berkeley. His research interests are software systems and applications. His group developed the Berkeley Lecture Webcasting System that produced 30 course lecture webcasts each week viewed by over 500,000 people per month. His publications received three "best paper" and two "test of time" awards. He is an investor/advisor in The Batchery a Berkeley-based seed-stage incubator. Rowe is an ACM Fellow, a co-recipient of

the 2002 U.C. Technology Leadership Council Award for IT Innovation, the recipient of the 2007 U.C. Irvine Donald Bren School of ICS Distinguished Alumni Award, the 2009 recipient of the ACM SIGMM Technical Achievement Award, and a corecipient of the Inaugural ACM SIGMOD Systems Award for the development of modern object-relational DBMS. Larry and his wife Jean produce and sell award-winning premium wines using Napa Valley grapes under the Greyscale Wines brand.

Kriti Sen Sharma

Kriti Sen Sharma is a Customer Solutions Architect at Paradigm4. He works on projects spanning multiple domains (genomics, imaging, wearables, finance, etc.). Using his skills in collaborative problem-solving, algorithm development, and programming, he builds end-to-end applications that address customers' bigdata needs and enable them to gain business insights rapidly. Kriti is an avid blogger and also loves biking and hiking. Kriti received a Ph.D. in 2013 and an M.Sc. in 2009, both from Virginia Polytechnic Institute and

State University, and an a B.Tech. from Indian Institute of Technology, Kharagpur, in 2005.

Nan Tang

Nan Tang is a senior scientist at Qatar Computing Research Institute, HBKU, Qatar Foundation, Qatar. He received his Ph.D. from the Chinese University of Hong Kong in 2007. He worked as a research staff member at CWI, the Netherlands, from 2008–2010. He was a research fellow at University of Edinburgh from 2010–2012. His current research interests include data curation, data visualization, and intelligent and immersive data analytics.

Jo Tango

Jo Tango founded Kepha Partners. He has invested in the e-commerce, search engine, Internet ad network, wireless, supply chain software, storage, database, security, on-line payments, and data center virtualization spaces. He has been a founding investor in many Stonebraker companies: Goby (acquired by NAVTEQ), Paradigm4, StreamBase Systems (acquired by TIBCO), Vertica Systems (acquired by Hewlett-Packard), and VoltDB. Jo previously was at Highland Capital Partners for nearly nine years, where he was a General

Partner. He also spent five years with Bain & Company, where he was based in Singapore, Hong Kong, and Boston, and focused on technology and startup projects. Jo attended Yale University (B.A., *summa cum laude* and Phi Beta Kappa) and Harvard Business School (M.B.A., Baker Scholar). He writes a personal blog at jtangoVC.com.

Nesime Tatbul

Nesime Tatbul is a senior research scientist at the Intel Science and Technology Center at MIT CSAIL. Before joining Intel Labs, she was a faculty member at the Computer Science Department of ETH Zurich. She received her B.S. and M.S. in Computer Engineering from the Middle East Technical University (METU) and her M.S. and Ph.D. in Computer Science from Brown University. Her primary research area is database systems. She is the recipient of an IBM Faculty Award in 2008, a Best System Demonstration Award

at SIGMOD 2005, and the Best Poster and the Grand Challenge awards at DEBS 2011. She has served on the organization and program committees for various conferences including SIGMOD (as an industrial program co-chair in 2014 and a group leader in 2011), VLDB, and ICDE (as a PC track chair for Streams, Sensor Networks, and Complex Event Processing in 2013).

Nga Tran

Nga Tran is currently the Director of Engineering in the server development team at Vertica, where she has worked for the last 14 years. Previously, she was a Ph.D. candidate at Brandeis University, where she participated in research that contributed to Mike Stonebraker's research.

Marianne Winslett

Marianne Winslett has been a professor in the Department of Computer Science at the University of Illinois since 1987, and served as the Director of Illinois's research center in Singapore, the Advanced Digital Sciences Center, from 2009–2013. Her research interests lie in information management and security, from the infrastructure level on up to the application level. She is an ACM Fellow and the recipient of a Presidential Young Investigator Award from the U.S. National Science Foundation. She is the former Vice-Chair of ACM

SIGMOD and the former co-Editor-in-Chief of ACM Transactions on the Web, and has served on the editorial boards of ACM Transactions on Database Systems, IEEE

Transactions on Knowledge and Data Engineering, ACM Transactions on Information and System Security, The Very Large Data Bases Journal, and ACM Transactions on the Web. She has received two best paper awards for research on managing regulatory compliance data (VLDB, SSS), one best paper award for research on analyzing browser extensions to detect security vulnerabilities (USENIX Security), and one for keyword search (ICDE). Her Ph.D. is from Stanford University.

Eugene Wong

Eugene Wong is Professor Emeritus at the University of California, Berkeley. His distinguished career includes contributions to academia, business, and public service. As Department Chair of EECS, he led the department through its greatest period of growth and into one of the highest ranked departments in its field. In 2004, the Wireless Foundation was established in Cory Hall upon completion of the Eugene and Joan C. Wong Center for Communications Research. He authored or co-authored over 100 scholarly articles and

published 4 books, mentored students, and supervised over 20 dissertations. In 1980, he co-founded (with Michael Stonebraker and Lawrence A. Rowe) the INGRES Corporation. He was the Associate Director of the Office of Science and Technology Policy, under George H. Bush; from 1994–1996, he was Vice President for Research and Development for Hong Kong University of Science and Technology. He received the ACM Software System Award in 1988 for his work on INGRES, and was awarded the 2005 IEEE Founders Medal, with the apt citation: "For leadership in national and international engineering research and technology policy, for pioneering contributions in relational databases."

Stan Zdonik

Stan Zdonik is a tenured professor of Computer Science at Brown University and a noted researcher in database management systems. Much of his work involves applying data management techniques to novel database architectures, to enable new applications. He is co-developer of the Aurora and Borealis stream processing engines, C-Store column store DBMS, and H-Store NewSQL DBMS, and has contributed to other systems including SciDB and the BigDAWG polystore system. He co-founded (with Michael Stonebraker)

two startup companies: StreamBase Systems and Vertica Systems. Earlier, while at Bolt Beranek and Newman Inc., Dr. Zdonik worked on the Prophet System, a data management tool for pharmacologists. He has more than 150 peer-reviewed papers in the database field and was named an ACM Fellow in 2006. Dr. Zdonik has a B.S in Computer Science and one in Industrial Management, an M.S. in Computer Science, and the degree of Electrical Engineer, all from MIT, where he went on to receive his Ph.D. in database management under Prof. Michael Hammer.