Rozpoznawanie człowieka metodami biometrii Projekt 2. — Rozpoznawanie na podstawie głosu Raport

Bartłomiej Dach

7 kwietnia 2019

Nr	Nazwa	Opis	Licencja	
1	matplotlib 3.0.3	Tworzenie wykresów i wizualizacji	PSF	[1]
2	numpy 1.16.2	Wielowymiarowe tablicowe struktury danych	BSD	[4]
3	pandas $0.24.2$	Struktury do manipulacji i analizy danych	BSD	[3]
4	seaborn 0.9.0	Rozszerzone wizualizacje danych	BSD	[5]
5	scipy 1.2.1	Algorytmy pomocnicze (transformata Fo-	BSD	[2]
		uriera, manipulacja dźwiękiem)		

Tablica 1: Lista bibliotek użytych w projekcie

Rysunek 1: Liczba fałszywych pozytywów (ang. false accept) i fałszywych odrzuceń (ang. false reject) próbek głosów z testowanego zbioru w zależności od przyjętego progu odległości między próbkami podczas klasyfikacji. Oddzielono wyniki dla każdej z czterech rejestrowanych fraz.

- (a) Macierz pomyłek dla słowa biometria przy progu t = 800.

0.5

(b) Macierz pomyłek dla słowa chrząszcz przy progu t = 800.

- (c) Macierz pomyłek dla słowa poniedziałekprzy progu t = 900.
- (d) Macierz pomyłek dla zdania Jutro pojadę na wycieczkę, albo zostanę w domu przy progu t = 1100.

Rysunek 2: Macierze pomyłek dla wartości progu minimalizujących liczbę fałszywych pozytywów i negatywów dla poszczególnych zarejestrowanych fraz.

- 1 Wstęp
- 2 Opis aplikacji
- 2.1 Zastosowane biblioteki
- 2.2 Instrukcja obsługi
- 3 Opis metody
- 3.1 Wyznaczanie współczynników mel-cepstralnych
- 3.2 Klasyfikacja nowych próbek
- 4 Wyniki eksperymentalne
- 5 Podsumowanie

Literatura

- [1] Hunter, J.D., "Matplotlib: A 2D graphics environment", Computing In Science & Engineering, tom 9, nr 3, s. 90–95, 2007.
- [2] Jones, E., Oliphant T.E., Peterson P. i inni, "SciPy: Open source scientific tools for Python". [Online] Dostępne: https://www.scipy.org/. [Dostęp 7 kwietnia 2019]
- [3] McKinney, W., "Data Structures for Statistical Computing in Python", *Proceedings* of the 9th Python in Science Conference, s. 51–56, 2010.
- [4] Oliphant, T.E., A Guide to NumPy, Trelgol Publishing, Stany Zjednoczone, 2006.
- [5] Waskom, M. i inni, "seaborn: statistical data visualization". [Online] Dostępne: https://seaborn.pydata.org/. [Dostęp 7 kwietnia 2019]