## **Emotional Crowd Sound**

Predicting the emotional affect within a crowd

Inspired by: Emotional sounds of crowds: spectrogram-based analysis using deep learning



# **Emotional Affect**

Emotional affect is a way to determine arousal of emotions based on what emotion it is and the level or degree of **intensity** of that emotion.

It's common to identify emotions in **individuals**, but what about **crowds**?

Crowds tend to use 'mirroring' and synchronization, but can also have multiple different emotions





## Spectrograms EDA

01

02

#### Normalized

Audio files 20-20k Hz range (which are audible to humans)

03

#### **Spectrograms**

-spgrambw draw spectrogram function (MATLAB)

- -png images using a 400 samples
- frame increment of 4.5 millisecond

#### **Filtered**

Filtered out silence blocks

04

## **Splitting**

The data was heavily unbalanced with Neutral having over 5k images, Approval having around 3k images and Disapproval having just over 300



#### What are Spectrograms?

















Neutral

Approval

Approval

Approval

Disapproval

Disapproval

Disapproval Disapproval

X axis = Time

Y axis = Frequency

Color Intensity = Amplitude

Amplitude can be interpreted as 'loudness' of the frequency



#### Approaches to Models

#### Their Approach

They trained an AlexNet with 4 epochs, L2 Regularization and were also getting a validation score at around 97% average over 4 networks.

#### **Basic Sequential CNN**

The model was overfit - added dropout layers Control - only one dense layer at the end

#### Stretched it

More nodes in the layers

#### Compacted it

Compacting - using larger pool sizing to (then with less strides)

#### **Changing Strides**

Overlapping the filters by taking less strides





# Best Results Market Results

| Clas |  |  |  |
|------|--|--|--|
|      |  |  |  |

|             | precision | recall | support |
|-------------|-----------|--------|---------|
| Approval    | 93%       | 95%    | 1432    |
| Disapproval | 84%       | 888    | 312     |
| Neutral     | 98%       | 96%    | 2928    |

Average accuracy 96%



#### 'Compacted Sequential Model'

- larger pool size (4, 4) in one stretched out layer
- smaller strides (3)

## Differences In Predicting Affect (0-3.5 kHz)







Approval

**Predicted Neutral** 

44% Approval 52% Neutral

Approval

**Predicted Approval** 

49% Approval 47% Neutral Neutral

**Predicted Neutral** 

47% Approval 51% Neutral

## Differences In Predicting Affect (0-3.5 kHz)







Disapproval
Predicted Disapproval
31% Approval
46% Disapproval

Disapproval
Predicted Approval
45% Approval
31% Disapproval

Disapproval
Predicted Neutral
14% Disapproval
63% Neutral



















RGB (Red, Green, Blue Channel)

to

BGR (Blue, Green Red Channel)

^ i.e. Blue Dominate color



#### **Further Research**

- → Even though my process was to get to transfer learning, I did not however, my next steps would be to use Global Average Pooling Layers after transfer learning model
- → If this research is going to be used in real time, I think it would be important to include and to train the model to know what silence is and not take them out.
- → Also, as stated before, I would like to use Independent Component Analysis to aid in learning to distinguish and predict emotional affect within crowds where there are multiple different emotions.



### Thank You for Your Time

