

Fundamentos de Lógica

Aula 05

Cristiane Loesch

Brasília 2024

TRADUZA E VALIDE O ARGUMENTO:

(Adaptada – UFSC) "Se a taxa para importação diminuir, o comércio interno aumentará. A taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

TRADUZA E VALIDE O ARGUMENTO:

(Adaptada – UFSC) "Se a taxa para importação diminuir, o comércio interno aumentará. A taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

p: a taxa de importação vai diminuir

q: o comercio interno vai aumentar

r: a taxa federal de desconto vai diminuir

TRADUZA E VALIDE O ARGUMENTO:

(Adaptada – UFSC) "Se a taxa para importação diminuir, o comércio interno aumentará. A taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

						~			-	
n	. ^	taxa	Δ	IM	nort	$\sim \sim \sim$	$\alpha \vee \alpha $	air	nın	ııır
	_	Idxa	() (aua	u vai	(1111		
\sim	. ~		\mathbf{G}		$\rho \circ \iota$.c.yc	C V CLI	GII		GII
						3				

q: o comercio interno vai aumentar

r: a taxa federal de desconto vai diminuir

1.
$$p \rightarrow q$$

TRADUZA E VALIDE O ARGUMENTO:

(Adaptada – UFSC) "Se a taxa para importação diminuir, o comércio interno aumentará. A taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

p: a taxa de importação vai diminuir

q: o comercio interno vai aumentar

r: a taxa federal de desconto vai diminuir

1. $p \rightarrow q$

2. r v ~q

3. p

4. q (M. Ponens 1,3)

5. r (Silog Disj 2,4)

CONSTRUA A TABELA VERDADE DAS PROPOSIÇÕES:

a)
$$(p \rightarrow q) \land q \rightarrow p$$

b)
$$(p \rightarrow q) \land \sim p \rightarrow \sim q$$

CONSTRUA A TABELA VERDADE DAS PROPOSIÇÕES:

a)
$$(p \rightarrow q) \land q \rightarrow p$$

р	q	$p \rightarrow q$	$(p \rightarrow q) \wedge q$	$(b \rightarrow d) \lor d \rightarrow b$
V	V	V	V	V
V	F	F	F	V
F	V	V	V	F
F	F	V	F	V

CONSTRUA A TABELA VERDADE DAS PROPOSIÇÕES:

a) $(p \rightarrow q) \land q => p$ (argumento)

p	q	$p \rightarrow q$	$(p \rightarrow q) \wedge q$	$(p \rightarrow q) \land q \rightarrow p$
V	V	V	V	V
V	F	F	F	V
F	V	V	V	F
F	F	V	F	V

NÃO É TAUTOLOGIA

CONSTRUA A TABELA VERDADE DAS PROPOSIÇÕES:

a) $(p \rightarrow q) \land q => p$ (argumento)

p	q	$p \rightarrow q$	$(p \rightarrow q) \wedge q$	$(p \rightarrow q) \land q \rightarrow p$
V	V	V	V	V
V	F	F	F	V
F	V	V	V	F
F	F	V	F	V

NÃO É TAUTOLOGIA

Falácia da afirmação da conclusão

b)
$$(p \rightarrow q) \land \sim p \rightarrow \sim q$$

p	q	$p \rightarrow q$	~p	$(p \rightarrow q) \land \sim p$	~q	$(p \rightarrow q) \land \sim p \rightarrow \sim q$
V		V		F		V
V	F	F	F	F	V	V
F	V	V	V	V	F	F
F	F	V	V	V	V	V

b)
$$(p \rightarrow q) \land \neg p \Rightarrow \neg q \text{ (argumento)}$$

b)
$$(p \rightarrow q) \land \neg p \Rightarrow \neg q \text{ (argumento)}$$

Falácia da negação da conclusão

- Argumentos n\u00e3o v\u00e1lidos
- Baseiam-se em contingências em vez de tautologias
 - I) Falácia da afirmação da conclusão \rightarrow Exemplo: $(p \rightarrow q) \land q \rightarrow p$
 - II) Falácia da negação da conclusão \rightarrow Exemplo: $(p \rightarrow q) \land \sim p \rightarrow \sim q$

As falácias são argumentos inválidos e decorrem de erro na forma com o qual o argumento é construido.

VAMOS OBSERVAR ALGUNS ARGUMENTOS:

- EXEMPLO:
 - a) O aluno estuda e será aprovado.O aluno estuda.

b) O aluno estuda e será aprovado.O aluno será aprovado.

- EXEMPLO:
 - a) O aluno estuda e será aprovado.O aluno estuda.

VÁLIDO

$$p \wedge q => p$$

$$V \wedge V \Rightarrow V$$

b) O aluno estuda e será aprovado.O aluno será aprovado.

• EXEMPLO:

a) O aluno estuda e será aprovado.
 O aluno estuda.

VÁLIDO

$$p \wedge q => p$$

$$V \wedge V \Rightarrow V$$

b) O aluno estuda e será aprovado.O aluno será aprovado.

VÁLIDO

$$p \wedge q => q$$

$$V \wedge V => V$$

• EXEMPLO 2:

a)

Se o aluno estuda, então será aprovado.

O aluno estuda.

Portanto, será aprovado.

b)

Se o aluno estuda, então será aprovado.

O aluno será aprovado.

Portanto, o aluno estuda.

• EXEMPLO 2:

a)

Se o aluno estuda, então será aprovado.

O aluno estuda.

Portanto, será aprovado.

VÁLIDO

b)

Se o aluno estuda, então será aprovado.

O aluno será aprovado.

Portanto, o aluno estuda.

EXEMPLO 2:

a)

Se o aluno estuda, então será aprovado.

O aluno estuda.

Portanto, será aprovado.

b)

Se o aluno estuda, então será aprovado.

O aluno será aprovado.

Portanto, o aluno estuda.

VÁLIDO

q

 $V \rightarrow V = V$

EXEMPLO 2:

a)

Se o aluno estuda, então será aprovado.

O aluno estuda.

Portanto, será aprovado.

b)

Se o aluno estuda, então será aprovado.

INVÁLIDO

O aluno será aprovado.

Portanto, o aluno estuda.

VÁLIDO

 $p \rightarrow q$

p

q

 $V \rightarrow V = V$

EXEMPLO 2:

a) Se o aluno estuda, então será aprovado.

O aluno estuda.

Portanto, será aprovado.

b)

Se o aluno estuda, então será aprovado.

O aluno será aprovado.

Portanto, o aluno estuda.

VÁLIDO

INVÁLIDO

þ	\rightarrow	C
p		
p		

q

 $V \rightarrow V = V$

Fou $V \rightarrow V = V$

F ou V

 $p \rightarrow q$

p

• EXEMPLO 2:

a)
 Se o aluno estuda, então será aprovado.
 O aluno estuda.

Portanto, será aprovado.

b)Se o aluno estuda, então será aprovado.O aluno será aprovado.Portanto, o aluno estuda.

VÁLIDO

INVÁLIDO

p → q	
q	
V → V = V V V	

Modus Ponens (afirmação do

(afirmação do antecedente)

p $F ou V \rightarrow V = V$

F ou V

 $p \rightarrow q$

(Falácia da afirmação do

Modus Ponens

Falácia do

afirmação do consequente)

EXEMPLO 2:

a) Se o aluno estuda, então será aprovado. O aluno estuda.

Portanto, será aprovado.

b) Se o aluno estuda, então será aprovado. O aluno será aprovado. Portanto, o aluno estuda.

VÁLIDO

INVÁLIDO

p → q p q	
V → V = V V 	

Modus Ponens

(afirmação do antecedente)

p Fou $V \rightarrow V = V$

F ou V

 $p \rightarrow q$

(Falácia da

Modus Ponens

Falácia do

afirmação do consequente)

• EXEMPLO 3:

a)

Se o aluno estuda, então será aprovado.

O aluno não será aprovado.

Portanto, o aluno não estuda.

b)

Se o aluno estuda, então será aprovado.

O aluno não estuda.

Portanto, o aluno não será aprovado.

• EXEMPLO 3:

a)

Se o aluno estuda, então será aprovado.

O aluno não será aprovado.

Portanto, o aluno não estuda.

b)

Se o aluno estuda, então será aprovado.

O aluno não estuda.

Portanto, o aluno não será aprovado.

VÁLIDO

P → q ~q -----~p F → F = V V

• EXEMPLO 3:

a) Se o aluno estuda, então será aprovado.

O aluno não será aprovado.

Portanto, o aluno não estuda.

b)

Se o aluno estuda, então será aprovado.

O aluno não estuda.

Portanto, o aluno não será aprovado.

VÁLIDO

INVÁLIDO

p	\rightarrow	C
~	q	
		-
~	p	

F ou V

EXEMPLO 3:

 $p \rightarrow q$

~q

a) Se o aluno estuda, então será aprovado. O aluno não será aprovado. Portanto, o aluno não estuda.

b) Se o aluno estuda, então será aprovado. O aluno não estuda. Portanto, o aluno não será aprovado.

VÁLIDO

Modus Tollens

~p (negação do $F \rightarrow F = V$ consequente)

~q

 $F \rightarrow F \text{ ou } V = V$

 $p \rightarrow q$

~p

F ou V

INVÁLIDO

Falácia do Modus Tollens

(Falácia da negação do

antecedente)

• EXERCÍCIO: (Adaptada -Pref. Rio de Janeiro/ 2013)

Considere os argumentos:

- I) Todo guarda municipal é honesto. João é guarda municipal. Logo, João é honesto
- II) Todo cão é feroz. Rex é feroz. Logo, Rex é um cão.

Os argumentos I e II, respectivamente, são corretamente classificados como:

- A. válido e inválido
- B. válido e válido
- C. inválido e válido
- D. inválido e inválido

• EXERCÍCIO: (Adaptada -Pref. Rio de Janeiro/ 2013)

Considere os argumentos:

- I) Todo guarda municipal é honesto. João é guarda municipal. Logo, João é honesto
- II) Todo cão é feroz. Rex é feroz. Logo, Rex é um cão.

Os argumentos I e II, respectivamente, são corretamente classificados como:

- A. válido e inválido
- B. válido e válido
- C. inválido e válido
- D. inválido e inválido

• EXERCÍCIO:

Considere os argumentos:

- I) Se caso, então tenho filhos. Tenho filhos. Logo, me casei.
- II) Se caso, então tenho filhos. Logo, se não caso, então não tenho filhos.

Os argumentos I e II, respectivamente, são corretamente classificados como:

- A. válido e inválido
- B. válido e válido
- C. inválido e válido
- D. inválido e inválido

• EXERCÍCIO:

Considere os argumentos:

- I) Se caso, então tenho filhos. Tenho filhos. Logo, me casei.
- II) Se caso, então tenho filhos. Logo, se não caso, então não tenho filhos.

Os argumentos I e II, respectivamente, são corretamente classificados como:

Α.	válido	e inv	<i>v</i> álido
,	1 0011010	O	

- B. válido e válido
- C. inválido e válido
- D. inválido e inválido

Falacia M. Falacia da Ponens contrapositiva

Exemplo:

•

Se fizer todos os exercícios deste livro, então você terá aprendido matemática discreta. Você aprendeu matemática discreta.

Portanto, você fez todos os exercícios deste livro.

p: você fez todos os exercícios deste livro

q: você aprendeu matemática discreta

Simbologia: $p \rightarrow q, q \vdash p$

* este é um exemplo de argumento incorreto que usa falácia da afirmação da conclusão Pois, é possível aprender matemática discreta de maneira diferente sem ter que fazer todos os exercícios do livro.

Exemplo:

•

Se fizer todos os exercícios deste livro, então você terá aprendido matemática discreta. Você aprendeu matemática discreta.

Portanto, você fez todos os exercícios deste livro.

p: você fez todos os exercícios deste livro

q: você aprendeu matemática discreta

Simbologia: $p \rightarrow q, q \vdash p$

* este é um exemplo de argumento incorreto que usa falácia da afirmação da conclusão Pois, é possível aprender matemática discreta de maneira diferente sem ter que fazer todos os exercícios do livro.

II) Sofisma

 Filosofia: um engano, um argumento inválido, uma ideia equivocada ou ainda, uma crença falsa

Exemplo:

Deus é amor.

O amor é cego.

Paulo é cego.

Logo, Paulo é Deus.

II) Sofisma

 Filosofia: um engano, um argumento inválido, uma ideia equivocada ou ainda, uma crença falsa

```
Exemplo:

Deus é amor. → Abstrato → não pode ser valorado
O amor é cego.

Paulo é cego.
Logo, Paulo é Deus. → Conclusão lógica imperfeita
```

 Na matemática: quando a verdade das premissas não é suficiente para garantir a verdade da conclusão

EXEMPLO: (UFSC)

Se
$$\sqrt{2} > \frac{3}{2}$$
, então: $(\sqrt{2})^2 > (\frac{3}{2})^2$.

Temos:
$$\sqrt{2} > \frac{3}{2}$$

Consequentemente:
$$2 = (\sqrt{2})^2 > (\frac{3}{2})^2 = \frac{9}{4}$$

O formato é um Modus Ponens :
$$(p e p \rightarrow q) \rightarrow q$$

Mas a conclusão é falsa, pois a premissa é falsa.

LÓGICA DOS PREDICADOS

LÓGICA PROPOSICIONAL

- Análise de proposições compostas
- Não é suficiente para capturar todas as afirmações matemáticas

X

LÓGICA DOS PREDICADOS

 Usada para expressar o significado de um amplo grupo de proposições que permite explorar o objeto

EXEMPLO: Todos os matriculados em Fundamentos de Lógica são estudantes dedicados. Felipe está matriculado em Fundamentos de Lógica.

Logo, Felipe é um estudante dedicado.

EXEMPLOS: Observe as frases abaixo:

$$X + y = z$$

O aluno x tirou a maior nota da sala na prova.

O computador x está sob ataque de um hacker.

EXEMPLOS: Observe as frases abaixo:

x < 12

$$X + y = z$$

O aluno x tirou a maior nota da sala na prova.

O computador x está sob ataque de um hacker.

Declarações escritas em termos de VARIÁVEIS

Não podem ser valoradas em: V ou F

Não possuem valor verdade, então não são proposições

→ Sentença aberta

p(x) é uma sentença aberta em A (conjunto) se, e somente se, p(x) torna-se uma proposição (V ou F) toda vez que a variável x é substituída por qualquer elemento a tal que $a \in A$.

→ Sentença aberta

p(x) é uma sentença aberta em A (conjunto) se, e somente se, p(x) torna-se uma proposição (V ou F) toda vez que a variável x é substituída por qualquer elemento a tal que $a \in A$.

EXEMPLOS:

a)
$$P(x, y) : x = y + 3$$

$$P(1,2): 1 = 2 + 3 \rightarrow falsa$$

$$P(3,0): 3 = 0 + 3 \rightarrow verdadeira$$

EXEMPLOS:

a) P(x): O computador x está sendo invadido por um hacker

Sujeito: computador

Suponha que os computadores invadidos são CS1, MT2

O valor verdade das sentenças será:

P(CS1) → verdadeira

 $P(CS2) \rightarrow falsa$

P(MT2) → verdadeira

SENTENÇA ABERTA A UMA VARIÁVEL

→ Conjunto verdade: $Vp = \{x \mid x \in A \land p(x) \notin V\}$ ou $Vp = \{x \in A \mid p(x)\}$

SENTENÇA ABERTA A UMA VARIÁVEL

→ Conjunto verdade: $Vp = \{x \mid x \in A \land p(x) \notin V\}$ ou $Vp = \{x \in A \mid p(x)\}$

EXEMPLOS:

a) p(x): x+1 > 8, $x \in IN$

b) p(x): $x \in IN$

c) p(x): $x^2 - 2x > 0$, $x \in Z$

SENTENÇA ABERTA A UMA VARIÁVEL

→ Conjunto verdade: $Vp = \{x \mid x \in A \land p(x) \notin V\}$ ou $Vp = \{x \in A \mid p(x)\}$

EXEMPLOS:

a)
$$p(x)$$
: $x+1 > 8$, $x \in IN$

$$Vp = \{ x \in IN \land x+1 > 8 \} = \{ 8, 9, 10, ... \}$$

b) p(x): $x \in IN$

c)
$$p(x)$$
: $x^2 - 2x > 0$, $x \in Z$

SENTENÇA ABERTA A UMA VARIÁVEL

→ Conjunto verdade: $Vp = \{x \mid x \in A \land p(x) \notin V\}$ ou $Vp = \{x \in A \mid p(x)\}$

EXEMPLOS:

a)
$$p(x)$$
: $x+1 > 8$, $x \in IN$

$$Vp = \{ x \in IN \land x+1 > 8 \} = \{ 8, 9, 10, ... \}$$

b) p(x): $x \in IN$

$$Vp = \{ x \in IN \land x | 10 \} = \{1, 2, 5, 10 \}$$

c)
$$p(x)$$
: $x^2 - 2x > 0$, $x \in Z$

SENTENÇA ABERTA A UMA VARIÁVEL

$$\rightarrow$$
 Conjunto verdade: $Vp = \{x \mid x \in A \land p(x) \notin V\}$ ou $Vp = \{x \in A \mid p(x)\}$

EXEMPLOS:

a)
$$p(x): x+1 > 8, x \in IN$$

$$Vp = \{ x \in IN \land x+1 > 8 \} = \{ 8, 9, 10, ... \}$$

b) p(x): x é diviso de 10, x \in IN

$$Vp = \{ x \in IN \land x | 10 \} = \{1, 2, 5, 10 \}$$

c) p(x):
$$x^2 - 2x > 0$$
, $x \in Z$

$$Vp = \{ x \in Z \land x^2 - 2x > 0 \} = Z - \{0,1,2\}$$

SENTENÇA ABERTA A UMA VARIÁVEL

$$V_p = A \rightarrow \text{condição universal}$$

$$p(x) \notin V, \forall x \in A$$

$$V_{p} \subset A \rightarrow \operatorname{condição} \operatorname{possível}$$

p(x) é V para alguns valores de $x \subset A$

$$V_n = \emptyset \rightarrow \text{condição impossível}$$

p(x) não é V para nenhum valor de $x \subset A$

SENTENÇA ABERTA A DUAS VARIAVEIS

→ Conjunto verdade:

$$Vp = \{ (x,y) \mid x \in A \land x \in B \land p(x,y) \} \text{ ou } Vp = \{ (x,y) \in AxB \mid p(x,y) \}$$

SENTENÇA ABERTA A DUAS VARIAVEIS

→ Conjunto verdade:

$$Vp = \{ (x,y) \mid x \in A \land x \in B \land p(x,y) \} \text{ ou } Vp = \{ (x,y) \in AxB \mid p(x,y) \}$$

EXEMPLOS:

a)
$$p(x,y)$$
: $x < y$, $A = \{1,2,3,4\}$, $B = \{1,3,5\}$

b)
$$p(x,y)$$
: $mdc(x,y)=2$, $A=\{2,3,4\}$, $B=\{1,2,6\}$

c)
$$p(x,y)$$
: $2x+y=10$, IN x IN

SENTENÇA ABERTA A DUAS VARIAVEIS

→ Conjunto verdade:

$$Vp = \{ (x,y) \mid x \in A \land x \in B \land p(x,y) \} \text{ ou } Vp = \{ (x,y) \in AxB \mid p(x,y) \}$$

EXEMPLOS:

a) p(x,y): x < y, $A = \{1,2,3,4\}$, $B = \{1,3,5\}$

$$Vp = \{(x,y)/ x \in A \land x \in B \land p(x,y)\} = \{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$$

b) p(x,y): mdc(x,y)=2, $A=\{2,3,4\}$, $B=\{1,2,6\}$

c) p(x,y): 2x+y=10, IN x IN

SENTENÇA ABERTA A DUAS VARIAVEIS

→ Conjunto verdade:

$$Vp = \{ (x,y) \mid x \in A \land x \in B \land p(x,y) \} \text{ ou } Vp = \{ (x,y) \in AxB \mid p(x,y) \}$$

EXEMPLOS:

a) p(x,y): x < y, $A = \{1,2,3,4\}$, $B = \{1,3,5\}$

$$Vp = \{(x,y)/ x \in A \land x \in B \land p(x,y)\} = \{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$$

b) p(x,y): mdc(x,y)=2, $A=\{2,3,4\}$, $B=\{1,2,6\}$

$$Vp = \{(x,y)/ x \in A \land x \in B \land p(x,y)\} = \{(2,2), (2,6), (4,2), (4,6)\}$$

c) p(x,y): 2x+y=10, $IN \times IN$

SENTENÇA ABERTA A DUAS VARIAVEIS

→ Conjunto verdade:

$$Vp = \{ (x,y) \mid x \in A \land x \in B \land p(x,y) \} \text{ ou } Vp = \{ (x,y) \in AxB \mid p(x,y) \}$$

EXEMPLOS:

a)
$$p(x,y)$$
: $x < y$, $A = \{1,2,3,4\}$, $B = \{1,3,5\}$

$$Vp = \{(x,y)/\ x \in A \ \land x \in B \land p(x,y)\} = \{(1,3),\ (1,5),\ (2,3),\ (2,5),\ (3,5),\ (4,5)\}$$

b)
$$p(x,y)$$
: $mdc(x,y)=2$, $A=\{2,3,4\}$, $B=\{1,2,6\}$

$$Vp = \{(x,y)/ x \in A \land x \in B \land p(x,y)\} = \{(2,2), (2,6), (4,2), (4,6)\}$$

c)
$$p(x,y)$$
: $2x+y=10$, IN x IN

$$Vp = \{(x,y)/x, y \in IN \times IN \land p(x,y)\} = \{(1,8), (2,6), (3,4), (4,2)\}$$

SENTENÇA ABERTA A N VARIAVEIS

EXEMPLO:

$$18x - 7y + 13z = 39$$
 ZxZxZ

$$Vp = \{(x,y,z)/x, y, z \in Z \land p(x,y,z)\} = \{(1,-3,0), (4,1,-2), (3,4,1), \ldots\}$$

OPERAÇÕES LÓGICAS

→ conjunção: exemplo: x > 2 ∧ x < 8

OPERAÇÕES LÓGICAS

 \rightarrow conjunção: exemplo: $x > 2 \land x < 8$, $x \in R$

 $x p q p \wedge q$

5 V V V

 π V V

2 F V F

-1 F V F

8,5 V F F

OPERAÇÕES LÓGICAS

→ conjunção: exemplo: x > 2 ∧ x < 8

 \rightarrow disjunção: exemplo: $x > 2 \lor x < 8$

OPERAÇÕES LÓGICAS

→ conjunção: exemplo: x > 2 ∧ x < 8

 \rightarrow disjunção: exemplo: x > 2 v x < 8

 \rightarrow **negação:** exemplo: x é impar <=> ~ x é par , x \in IN

$$\sim (x < y) \iff x \ge y , x \in R$$

OPERAÇÕES LÓGICAS

→ conjunção: exemplo: x > 2 ∧ x < 8

 \rightarrow disjunção: exemplo: x > 2 v x < 8

 \rightarrow **negação:** exemplo: x é impar <=> \sim x é par , x \in IN

 \rightarrow condicional: exemplo: $x^2 - 5x + 6 = 0 \rightarrow x^2 - 9 = 0$

OPERAÇÕES LÓGICAS

- → conjunção: exemplo: $x > 2 \land x < 8$
- \rightarrow disjunção: exemplo: x > 2 v x < 8
- \rightarrow **negação:** exemplo: x é impar <=> ~ x é par , x \in IN
- \rightarrow condicional: exemplo: $x^2 5x + 6 = 0 \rightarrow x^2 9 = 0$
- \rightarrow bicondicional: exemplo: $x > -5 \leftrightarrow x < 0$

O que é predicado?

O que é predicado?

Na Lingua Portuguesa:

O atleta recebeu a medalł

O que é predicado?

Na Lingua Portuguesa:

Declarações escritas em termos de VARIÁVEIS

O atleta recebeu a medalha.

sujeito: O atleta

predicado: recebeu a medalha

Não podem ser valoradas em: V ou F

O que é predicado?

Na Lingua Portuguesa:

O atleta recebeu a medalł

sujeito: O atleta

predicado: recebeu a medalha

Na Matemática:

O que é predicado?

Na Lingua Portuguesa:

O atleta recebeu a medall

sujeito: O atleta

predicado: recebeu a medalha

Na Matemática:

x > 3

sujeito: x

predicado: > 3

O que é predicado?

Na Lingua Portuguesa:

O atleta recebeu a medall

sujeito: O atleta

predicado: recebeu a medalha

Na Matemática:

x > 3

Indicamos por:

sujeito: x

predicado: > 3

P(x): x > 3

x é a variável P é o predicado atribuido a x

Função proposicional de P em x:

O que é predicado?

Na Lingua Portuguesa:

O atleta recebeu a medall

x > 3

sujeito: O atleta

predicado: recebeu a medalha

Na Matemática:

Indicamos por:

P(x): x > 3

sujeito: x

predicado: > 3

x é a variável P é o predicado atribuido a x

EXEMPLOS:

a) P(x): x > 3, $x \in IN$

P(2): $2 > 3 \rightarrow \text{proposição Falsa}$

P(4): 4>3 → proposição Verdadeira

Quando atribui-se valores para x a declaração P(x) torna-se uma proposição e tem um valor-verdade

EXEMPLOS:

a) $P(x): x > 3, x \in IN$

P(2): $2 > 3 \rightarrow \text{proposição Falsa}$

P(4): 4>3 → proposição Verdadeira

b) P(x): x é um número real

 $P(\pi)$: π é um número real \rightarrow Verdadeira

P(raiz quadrada de -2) : raiz quadrada de -2 é um ní

Quando atribui-se valores para x a declaração P(x) torna-se uma proposição e tem um valor-verdade

EXEMPLOS EM PROGRAMAÇÃO:

if x>0 then x := x+1

EXEMPLOS EM PROGRAMAÇÃO:

if x>0 then x := x+1

- → o valor da variável x é inserido em P(x): x>0
 * neste ponto da execução do programa
- \rightarrow se P(x) é verdadeira para este valor de x => o comando é executado
- \rightarrow se P(x) é falsa => o comando não é executado e o valor de x não é alterado

EXEMPLOS EM PROGRAMAÇÃO :

temp:= x

x := y

y:= temp

LÓGICA DOS PREDICADOS - Predicados

EXEMPLOS EM PROGRAMAÇÃO:

```
temp:= x
x := y
y:= temp
    Condições iniciais: P(x,y): x=a e y = b
```

Condições finais : Q(x,y) : x = b e y = a

Se P(x) é verdadeira :

```
1^{\circ}) temp : = x => temp = a (recebe o valor de x)
2^{o}) x := y => temp = a; x = b
3^{\circ}) y := temp = a ; x = b ; y = a
```

*após a execução doprograma verifica-se que Q(x,y) é satisfeita => Q(x,y) é verdadeira

- → Predicado não tem valor verdade em si, então é preciso instanciar os valores de suas variáveis para transformá-lo em uma proposição.
- → Para transformar um predicado em uma proposição pode-se:
 - a) atribuir valor específico para a variável (como fizemos antes)
 - b) quantificar em qual faixa de valores de cada variável a proposição pode ser considerada verdadeira.

- → Predicado não tem valor verdade em si, então é preciso instanciar os valores de suas variáveis para transformá-lo em uma proposição.
- → Para transformar um predicado em uma proposição pode-se:
 - a) atribuir valor específico para a variável (como fizemos antes)
 - b) quantificar em qual faixa de valores de cada variável a proposição pode ser considerada verdadeira.

Palavras que quantificam:

- → Nenhum
- → Algum
- → Todos
- → Muitos
- → Poucos

EXEMPLO:

O computador x do laboratório está ligado.

EXEMPLO:

O computador x do laboratório está ligado.

Não tem valor verdade

EXEMPLO:

O computador x do laboratório está ligado.

Não tem valor verdade

Nenhum computador do laboratório está ligado.

EXEMPLO:

O computador x do laboratório está ligado.

Não tem valor verdade

Nenhum computador do laboratório está ligado.

Todos os computadores do laboratório estão ligados.

EXEMPLO:

O computador x do laboratório está ligado.

Não tem valor verdade

Nenhum computador do laboratório está ligado.

Todos os computadores do laboratório estão ligados.

Algum computador do laboratório está ligado.

EXEMPLO:

O computador x do laboratório está ligado.

Não tem valor verdade

Nenhum computador do laboratório está ligado.

Todos os computadores do laboratório estão ligados.

Algum computador do laboratório está ligado.

Tem valor verdade

DOMÍNIO OU UNIVERSO DO DISCURSO

→ é o conjunto de valores que as variáveis podem, em princípio, assumir.

DOMÍNIO OU UNIVERSO DO DISCURSO

→ é o conjunto de valores que as variáveis podem, em princípio, assumir.

EXEMPLOS:

P(x) : x > 2

→ domínio pode ser o conjunto dos números reais ou dos números inteiros, por exemplo

DOMÍNIO OU UNIVERSO DO DISCURSO

→ é o conjunto de valores que as variáveis podem, em princípio, assumir.

EXEMPLOS:

P(x) : x > 2

→ domínio pode ser o conjunto dos números reais ou dos números inteiros, por exemplo

P(x): " a pessoa x nasceu no país y"

DOMÍNIO OU UNIVERSO DO DISCURSO

→ é o conjunto de valores que as variáveis podem, em princípio, assumir.

EXEMPLOS:

P(x) : x > 2

→ domínio pode ser o conjunto dos números reais ou dos números inteiros, por exemplo

P(x): " a pessoa x nasceu no país y"

- → domínio de x : conjunto de todas as pessoas
- → domínio de y : conjunto de todos os países

TIPOS DE QUANTIFICADORES

- 1)UNIVERSAL * para todo
- 2)EXISTENCIAL * existe
- 3)SOBRE DOMÍNIOS FINITOS * Ilustrada em 1 e 2
- 4) COM DOMÍNIO RESTRITO
- 5)DE EXISTÊNCIA E UNICIDADE * existe um único

$$\forall x : P(x)$$

* para todos os valores de x no domínio, P(x) é verdadeiro

$$V_p = (x / x \in A \land p(x))$$

$$logo, V_p = A$$

$$\forall x : P(x)$$

* para todos os valores de x no domínio, P(x) é verdadeiro

$$V_p = (x / x \in A \land p(x))$$

$$logo, V_p = A$$

Sentença	Quando é verdadeira?	Quando é falsa?	
$\forall x P(x)$	P(x) é verdadeira para todo x .	Existe um x tal que $P(x)$ é falsa.	

$$\forall x: P(x)$$

* para todos os valores de x no domínio, P(x) é verdadeiro

$$V_p = (x / x \in A \land p(x))$$

$$logo, V_p = A$$

Sentença	Quando é verdadeira?	Quando é falsa?
$\forall x P(x)$	P(x) é verdadeira para todo x .	Existe um x tal que $P(x)$ é falsa.

Obs: um elemento x tal que P(x)=F é um contra-exemplo para o quantificador

- a) P(x) : x + 1 > x , $\forall x : P(x), x \in R$
- b) Q(x): x < 2 , $\forall x: Q(x), x \in R$
- c) $R(x): x^2 > 0$, $\forall x: R(x)$, mostre que R(x) é falsa para $x \in Z$.

EXEMPLOS:

- a) P(x): x + 1 > x, $\forall x: P(x), x \in R$ verdadeira
- b) Q(x): x < 2 , $\forall x: Q(x), x \in R$ falsa: $Q(3) > 2, x = 3 \in contra-exemplo$
- c) $R(x): x^2 > 0$, $\forall x: R(x)$, mostre que R(x) é falsa para $x \in Z$.

falsa : R(0) : $0^2 > 0 \rightarrow logo x = 0$ é contra-exemplo

EXEMPLO:

 $P(x): x^2 < 10$, $\forall x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(x): x^2 < 10$$
, $\forall x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$

$$P(x): x^2 < 10$$
, $\forall x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$

$$P(1): 1^2 < 10$$

$$P(x): x^2 < 10$$
, $\forall x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$

$$P(1): 1^2 < 10 \rightarrow V$$

P(2):
$$2^2 < 10 \rightarrow V$$

P(3):
$$3^2 < 10 \rightarrow V$$

$$P(4): 4^2 < 10 \rightarrow F$$

$$P(x): x^2 < 10$$
, $\forall x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$

$$P(1): 1^2 < 10 \rightarrow V$$

P(2):
$$2^2 < 10 \rightarrow V$$

P(3):
$$3^2 < 10 \rightarrow V$$

P(4):
$$4^2 < 10 \rightarrow F => contra-exemplo =>$$

Quando todos os elementos do domínio podem ser listados, $x_1, x_2, ..., x_n$, a quantificação universal é o mesmo que a conjunção :

$$P(X_1) \wedge P(X_2) \wedge \dots \wedge P(X_n)$$

pois esta conjunção é verdadeira se, e somente se, $P(x_1)$, $P(x_2)$, ..., $P(x_n)$, forem todas verdadeiras.

$$\exists x : P(x)$$

* existe um valor de x no domínio, P(x) é verdadeiro

$$V_p = (x / x \in A \land p(x))$$

 $logo, V_{_{D}} \neq \emptyset$

$$\exists x : P(x)$$

* existe um valor de x no domínio, P(x) é verdadeiro

$$V_p = (x / x \in A \land p(x))$$

logo, $V_p \neq \emptyset$

Sentença	Quando é verdadeira?	Quando é falsa?	
$\exists x P(x)$	Existe um x tal que $P(x)$ é verdadeira.	P(x) é falsa para todo x .	

Obs: um elemento x tal que P(x)=T é uma testemunha para o quantificador

- a) P(x) : x > 3 , $\exists x : P(x), x \in R$
- b) Q(x) : x = x + 1, $\exists x : Q(x), x \in R$

EXEMPLOS:

a)
$$P(x) : x > 3$$

$$\exists x: P(x), x \in R \longrightarrow verdadeira$$

$$P(4): 4 > 3$$

x=4 é testemunha

b)
$$O(x) : x = x + 1$$

b)
$$Q(x): x = x + 1$$
 , $\exists x: Q(x), x \in R$

Q(x) é falsa, $\forall x \in R$

logo,
$$\exists x: Q(x) \text{ \'e falsa}$$

EXEMPLO:

 $P(x): x^2 > 10$, $\exists x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(x): x^2 > 10$$
, $\exists x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(1) \lor P(2) \lor P(3) \lor P(4)$$

$$P(x): x^2 > 10$$
, $\exists x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(1) \lor P(2) \lor P(3) \lor P(4)$$

$$P(1): 1^2 > 10$$

$$P(2): 2^2 > 10$$

$$P(3): 3^2 > 10$$

$$P(4): 4^2 > 10$$

$$P(x): x^2 > 10$$
, $\exists x: P(x)$, $x \in ao$ conjunto dos inteiros positivos que não excedem 4

$$P(1) \lor P(2) \lor P(3) \lor P(4)$$

$$P(1): 1^2 > 10 \rightarrow F$$

P(2):
$$2^2 > 10 \rightarrow F$$

P(3):
$$3^2 > 10 \rightarrow F$$

P(4):
$$4^2 > 10 \rightarrow V => TESTEMUNHA$$

Quando todos os elementos do domínio podem ser listados, $x_1, x_2, ..., x_n$, a quantificação universal é o mesmo que a disjunção :

$$P(X_1) V P(X_2) V ... V P(X_n)$$

pois esta disjunção é verdadeira se, e somente se, pelo menos uma das $P(x_1)$, $P(x_2)$, ..., $P(x_n)$, for verdadeira.