Due Week 2

Reading: Review vector norms, matrix norms, orthogonality, projections.

- 1. Sketch the unit circle $\{\boldsymbol{x}, \|\boldsymbol{x}\|_p = 1\}$ in \mathbb{R}^2 and \mathbb{R}^3 for p = 1, 2, and ∞ .
- 2. (a) Write the definition of the vector norm $\|\boldsymbol{x}\|_2$.
 - (b) Show that if Q is an orthogonal matrix, then $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$.

(c) Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}$$
 and

Without calculating Qx directly, what is the value of $||Qx||_2$?

- 3. If \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^m , the matrix $A = I + \boldsymbol{u}\boldsymbol{v}^T$ is know as a rank-one perturbation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha \boldsymbol{u}\boldsymbol{v}^T$ for some scalar α , and give an expression for α . For what \boldsymbol{u} and \boldsymbol{v} is A singular? If it is singular, what is Null(A)?
- 4. Given \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^n , show that if $E = \boldsymbol{u}\boldsymbol{v}^T$, then $||E||_2 = ||\boldsymbol{u}||_2 ||\boldsymbol{v}||_2$. Is the same true for the Frobenius norm, i.e., $||E||_F = ||\boldsymbol{u}||_F ||\boldsymbol{v}||_F$? Prove it or give a counterexample.
- 5. Consider the matrix

$$A = \begin{bmatrix} -2 & 3 & 2 \\ -4 & 5 & 1 \\ 1 & -2 & 4 \end{bmatrix}.$$

What are the ℓ^1 , ℓ^2 , ℓ^{∞} -, and Frobenius norms of A?

- 6. Given $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, show that $A^T A$ is nonsingular if and only if A has full rank.
- 7. Consider the matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

- (a) What is the orthogonal projector P onto range(A), and what is the image under P of the vector $(1,2,3)^T$?
- (b) Same questions for B.