# **YELP DATASET ANALYSIS**

# Part 1: Yelp Dataset Profiling and Understanding

1. Profile the data by finding the total number of records for each of the tables below:

```
i. Attribute table = 10000
```

ii. Business table = 10000

iii. Category table = 10000

iv. Checkin table = 10000

v. elite\_years table = 10000

vi. friend table = 10000

vii. hours table = 10000

viii. photo table = 10000

ix. review table = 10000

**x. tip table = 10000** 

xi. user table = 10000

## **SOLUTON: -**

Sample code (including NULL values):

select count(\*) as

total records

from attribute;

```
+-----+
| total_records |
+-----+
| 10000 |
+-----+
```

2. Find the total distinct records by either the foreign key or primary key for each table. If two foreign keys are listed in the table, please specify which foreign key.

```
i. Business = 10000
ii. Hours = 1562
iii. Category = 2643
iv. Attribute = 1115
v. Review = (id = 10000, business_id = 8090, user_id = 9581)
vi. Checkin = 493
vii. Photo = (business_id = 6493, id = 10000)
viii. Tip = (business_id = 3979, id = 537)
ix. User = 10000
x. Friend = 11
xi. Elite_years = 2780
```

Note: Primary Keys are denoted in the ER-Diagram with a yellow key icon.

## **SOLUTION: -**

- i. SELECT COUNT (distinct id ) from business
- ii. SELECT COUNT (distinct business\_id ) from hours
- iii. SELECT COUNT (distinct business\_id ) from Category
- iv. SELECT COUNT (distinct business\_id ) from Attribute
- v. SELECT COUNT (distinct id), count(distinct business\_id), COUNT(distinct user\_id)

from review

- vi. SELECT COUNT (distinct business\_id ) from Checkin
- vii. SELECT COUNT (distinct id ), count(distinct business\_id ) from photo

viii. SELECT COUNT (distinct business\_id ),count ( distinct user\_id) from tip ix. SELECT COUNT (distinct id ) from User
SELECT COUNT (distinct user\_id ) from Friend
SELECT COUNT (distinct user\_id ) from Elite\_yers

3. Are there any columns with null values in the Users table? Indicate "yes," or "no."

### **Answer:**

No

### **SQL** code used to arrive at answer:

SELECT COUNT(\* ) from User

where id is NULL OR

name is NULL OR

review\_count IS NULL OR

yelping\_since IS NULL OR

useful IS NULL OR

funny IS NULL OR

cool IS NULL OR

fans IS NULL OR

average\_stars IS NULL OR

compliment hot IS NULL OR

compliment more IS NULL OR

compliment\_profile IS NULL OR
compliment\_cute IS NULL OR
compliment\_list IS NULL OR
compliment\_note IS NULL OR
compliment\_plain IS NULL OR
compliment\_cool IS NULL OR
compliment\_funny IS NULL OR
compliment\_funny IS NULL OR
compliment\_writer IS NULL OR
compliment\_photos IS NULL

4. For each table and column listed below, display the smallest (minimum), largest (maximum), and average (mean) value for the following fields:

## **SOLUTION: -**

i. Table: Review, Column: Stars

min: 1 max: 5 avg: 3.7082

ii. Table: Business, Column: Stars

min: 1 max: 5 avg: 3.6549

iii. Table: Tip, Column: Likes

min: 0 max: 2 avg: 0.0144

iv. Table: Checkin, Column: Count

min: 1 max: 53 avg: 1.9414

v. Table: User, Column: Review\_count

min: 0 max: 2000 avg: 24.2995

## **QUERIES FOR ABOVE ANSWERS: -**

i. SELECT min(stars), max(stars), avg(stars) from Review

ii. SELECT min(stars), max(stars), avg(stars) from Business

iii. SELECT min(likes), max(likes), avg(likes) from Tip

iv. SELECT min(count), max(count), avg(count) from Checkin

v. SELECT min(Review\_count), max(Review\_count), avg(Review\_count) from User

# 5. List the cities with the most reviews in descending order:

SQL code used to arrive at answer:

SELECT city, SUM(review\_count) AS 'Most\_Reviews'

FROM business

GROUP BY city

ORDER BY Most\_Reviews DESC;

# Copy and Paste the Result Below:

| city            | Most_Reviews |        |  |
|-----------------|--------------|--------|--|
| Las Vegas       | 82854        | ⊦<br>I |  |
| Phoenix         | 34503        |        |  |
| Toronto         | 24113        |        |  |
| Scottsdale      | 20614        |        |  |
| Charlotte       | 12523        |        |  |
| Henderson       | 10871        |        |  |
| Tempe           | 10504        |        |  |
| Pittsburgh      | 9798         |        |  |
| Montréal        | 9448         | ĺ      |  |
| Chandler        | 8112         | ĺ      |  |
| Mesa            | 6875         | ĺ      |  |
| Gilbert         | 6380         |        |  |
| Cleveland       | 5593         |        |  |
| Madison         | 5265         |        |  |
| Glendale        | 4406         |        |  |
| Mississauga     | 3814         |        |  |
| Edinburgh       | 2792         |        |  |
| Peoria          | 2624         |        |  |
| North Las Vegas | 2438         |        |  |
| Markham         | 2352         |        |  |
| Champaign       | 2029         |        |  |
| Stuttgart       | 1849         |        |  |
| Surprise        | 1520         |        |  |
| Lakewood        | 1465         |        |  |
| Goodyear        | 1155         |        |  |
| ·               |              | F      |  |

## **6.** Find the distribution of star ratings to the business in the following cities:

### i. Avon

### **SQL** code used to arrive at answer:

SELECT stars, sum(review\_count) FROM business

WHERE city = 'Avon'

**GROUP BY stars** 

# Copy and Paste the Resulting Table Below (2 columns â€" star rating and count):

| +   | sum(review_count) |  |
|-----|-------------------|--|
| +   |                   |  |
| 1.5 | 10                |  |
| 2.5 | 6                 |  |
| 3.5 | 88                |  |
| 4.0 | 21                |  |
| 4.5 | 31                |  |
| 5.0 | 3                 |  |
| +   |                   |  |
|     |                   |  |

### ii. Beachwood

### **SQL** code used to arrive at answer:

SELECT stars, sum(review\_count) FROM business

WHERE city = 'Beachwood'

**GROUP BY stars** 

# Copy and Paste the Resulting Table Below (2 columns â€" star rating and count):

| +     | ·                 | + |
|-------|-------------------|---|
| stars | sum(review_count) |   |
| +     | <del></del>       | + |
| 2.0   | 8                 |   |
| 2.5   | 3                 |   |
| 3.0   | 11                |   |
| 3.5   | 6                 |   |
| 4.0   | 69                |   |
| 4.5   | 17                |   |
| 5.0   | 23                |   |
| +     | ·                 | + |
|       |                   |   |

# 7. Find the top 3 users based on their total number of reviews:

## **SQL** code used to arrive at answer:

```
SELECT id, name, review_count AS 'Total_Number_Of_Reviews'

FROM user

ORDER BY Total_Number_Of_Reviews DESC

LIMIT 3;
```

# **Copy and Paste the Result Below:**

| id                     | name   | Total_Number_Of_Reviews |
|------------------------|--------|-------------------------|
| -G7Zkl1wIWBBmD0KRy_sCw | Gerald | 2000                    |
| -3s52C4zL_DHRK0ULG6qtg | Sara   | 1629                    |
| -8lbUNlXVSoXqaRRiHiSNg | Yuri   | 1339                    |

# 8. Does posing more reviews correlate with more fans? Please explain your findings and interpretation of the results:

## **SOLUTION: -**

No, Hence posing more reviews do not correlate with more fans.

Here is my findings and interpretation that clarify that posing more reviews do not correlate with more fans.

SELECT id, name, review\_count, fans, yelping\_since
FROM user
ORDER BY fans desc

| 9I98YbNQnLdAmcYfb324Q  <br>8EnCioUmDygAbsYZmTeRQ  <br>-2vR0DIsmQ6WfcSzKWigw | Amy       | 600  |     |                     |
|-----------------------------------------------------------------------------|-----------|------|-----|---------------------|
|                                                                             |           | 609  | 503 | 2007-07-19 00:00:00 |
| 2VPADTEMOGNIFCSZVIJI OU 1                                                   | Mimi      | 968  | 497 | 2011-03-30 00:00:00 |
| -ZAMODIZINGOMI CZZKMIŚM                                                     | Harald    | 1153 | 311 | 2012-11-27 00:00:00 |
| G7Zkl1wIWBBmD0KRy_sCw                                                       | Gerald    | 2000 | 253 | 2012-12-16 00:00:00 |
| 0IiMAZI2SsQ7VmyzJjokQ                                                       | Christine | 930  | 173 | 2009-07-08 00:00:00 |
| g3XIcCb2b-BD0QBCcq2Sw                                                       | Lisa      | 813  | 159 | 2009-10-05 00:00:00 |
| 9bbDysuiWeo2VShFJJtcw                                                       | Cat       | 377  | 133 | 2009-02-05 00:00:00 |
| FZBTkAZEXoP7CYvRV2ZwQ                                                       | William   | 1215 | 126 | 2015-02-19 00:00:00 |
| 9da1xk7zgnnf01uTVYGkA                                                       | Fran      | 862  | 124 | 2012-04-05 00:00:00 |
| lh59ko3dxChBSZ9U7LfUw                                                       | Lissa     | 834  | 120 | 2007-08-14 00:00:00 |
| B-QEUESGWHPE_889WJaeg                                                       | Mark      | 861  | 115 | 2009-05-31 00:00:00 |
| DmqnhW4Omr3YhmnigaqHg                                                       | Tiffany   | 408  | 111 | 2008-10-28 00:00:00 |
| cv9PPT7IHux7XUc9dOpkg                                                       | bernice   | 255  | 105 | 2007-08-29 00:00:00 |
| DFCC64NXgqrx108aLU5rg                                                       | Roanna    | 1039 | 104 | 2006-03-28 00:00:00 |
| IgKkE8JvYNWeGu8ze4P8Q                                                       | Angela    | 694  | 101 | 2010-10-01 00:00:00 |
| K2Tcgh2EKX6e6HqqIrBIQ                                                       | .Hon      | 1246 | 101 | 2006-07-19 00:00:00 |
| 4viTt9UC441WCFJwleMNQ                                                       | Ben       | 307  | 96  | 2007-03-10 00:00:00 |
| 3i9bhfvrM3F1wsC9XIB8g                                                       | Linda     | 584  | 89  | 2005-08-07 00:00:00 |
| kLVfaJytOJY2-QdQoCcNQ                                                       | Christina | 842  | 85  | 2012-10-08 00:00:00 |
| ePh4Prox7ZXnEBNGKyUEA                                                       | Jessica   | 220  | 84  | 2009-01-12 00:00:00 |
| 4BEUkLvHQntN6qPfKJP2w                                                       | Greg      | 408  | 81  | 2008-02-16 00:00:00 |
| C-18EHSLXtZZVfUAUhsPA                                                       | Nieves    | 178  | 80  | 2013-07-08 00:00:00 |
| dw8f7FLaUmWR7bfJ_Yf0w                                                       | Sui       | 754  | 78  | 2009-09-07 00:00:00 |
| 8lbUNlXVSoXqaRRiHiSNg                                                       | Yuri      | 1339 | 76  | 2008-01-03 00:00:00 |
| 0zEEaDFIjABtPQni0XlHA                                                       | Nicole    | 161  | 73  | 2009-04-30 00:00:00 |

# 9. Are there more reviews with the word "love" or with the word "hate" in them?

### **Answer:**

The word 'Love' has more reviews than 'Hate'.

### **SQL** code used to arrive at answer:

SELECT COUNT(\*) AS 'HATE'

FROM review

WHERE text LIKE '%hate%';



SELECT COUNT(\*) AS 'LOVE'
FROM review
WHERE text LIKE '%love%';

| LOVE | |------+ | 1780 | |------+

# 10. Find the top 10 users with the most fans:

# **SQL** code used to arrive at answer:

SELECT id, name, fans FROM user ORDER BY fans DESC LIMIT 10;

# Copy and Paste the Result Below:

| id                     | name      | fans |
|------------------------|-----------|------|
| -9I98YbNQnLdAmcYfb324Q | Amy       | 503  |
| -8EnCioUmDygAbsYZmTeRQ | Mimi      | 497  |
| 2vR0DIsmQ6WfcSzKWigw   | Harald    | 311  |
| -G7Zkl1wIWBBmD0KRy_sCw | Gerald    | 253  |
| -0IiMAZI2SsQ7VmyzJjokQ | Christine | 173  |
| -g3XIcCb2b-BD0QBCcq2Sw | Lisa      | 159  |
| -9bbDysuiWeo2VShFJJtcw | Cat       | 133  |
| -FZBTkAZEXoP7CYvRV2ZwQ | William   | 126  |
| -9da1xk7zgnnf01uTVYGkA | Fran      | 124  |
| -lh59ko3dxChBSZ9U7LfUw | Lissa     | 120  |

# **Part 2: Inferences and Analysis**

- 1. Pick one city and category of your choice and group the businesses in that city or category by their overall star rating. Compare the businesses with 2-3 stars to the businesses with 4-5 stars and answer the following questions. Include your code.
- i. Do the two groups you chose to analyze have a different distribution of hours?

  YES
- ii. Do the two groups you chose to analyze have a different number of reviews?

  YES
- iii. Are you able to infer anything from the location data provided between these two groups? Explain.

Hence, based on the findings, we can see that there can be a connection between a company's rating and its location. Businesses with a high rating are likely to be close neighbors. Additionally, their working hours are similar. Additionally, companies with longer working hours typically receive higher ratings.

| name                                   | category    | ,       |       | 1                    |
|----------------------------------------|-------------|---------|-------|----------------------|
| Charlie D's Catfish & Chicken          | Restaurants | Phoenix | 85034 | Saturday 11:00-18:00 |
| Bootleggers Modern American Smokehouse | Restaurants | Phoenix | 85028 | Saturday 11:00-22:00 |
| Gallagher's                            | Restaurants | Phoenix | 85024 | Saturday 9:00-2:00   |
| McDonald's                             | Restaurants | Phoenix | 85004 | Saturday 5:00-0:00   |

| rating    | reviews |
|-----------|---------|
| 4-5 stars | 7       |
| 4-5 stars | 431     |
| 2-3 stars | 60      |
| 2-3 stars | 8       |

## **SQL** code used for analysis:

SELECT B.name, C.category, B.city, B.postal\_code as zipcode, hours,
CASE

WHEN stars BETWEEN 2 AND 3 THEN '2-3 stars'
WHEN stars BETWEEN 4 AND 5 THEN '4-5 stars'

END AS rating, B.review\_count as reviews

From business B Inner join hours H on B.id = H.business\_id

Inner join category C on C.business\_id = B.id

Where city = 'Phoenix' and category = 'Restaurants' and rating in ('2-3

stars','4-5 stars')

Group By name

Order By stars desc

2. Group business based on the ones that are open and the ones that are closed. What differences can you find between the ones that are still open and the ones that are closed? List at least two differences and the SQL code you used to arrive at your answer.

#### i. Difference 1:

The business that are still open have higher rating.

### ii. Difference 2:

The business that are still open have more reviews and have longer working hours.

## **SQL** code used for analysis:

SELECT b.name, c.category, b.is\_open, h.hours, b.stars, b.review\_count, b.postal\_code

FROM business AS b INNER JOIN category AS c

ON b.id = c.business id

INNER JOIN hours AS h

ON h.business id = c.business id

WHERE b.city = 'Toronto' AND b.state = 'ON'

GROUP BY b.is open

## ORDER BY b.stars

| name                                          | category                   | is_open | hours                                          | stars      |
|-----------------------------------------------|----------------------------|---------|------------------------------------------------|------------|
| 99 Cent Sushi<br>  Toronto Acupuncture Studio | Restaurants<br>Acupuncture |         | Saturday 11:00-23:00<br>  Saturday 10:00-14:00 | 2.0<br>4.5 |
|                                               |                            |         | review_count   posta                           | al_code    |

**3.** For this last part of your analysis, you are going to choose the type of analysis you want to conduct on the Yelp dataset and are going to prepare the data for analysis.

Ideas for analysis include: Parsing out keywords and business attributes for sentiment analysis, clustering businesses to find commonalities or anomalies between them, predicting the overall star rating for a business, predicting the number of fans a user will have, and so on. These are just a few examples to get you started, so feel free to be creative and come up with your own problem you want to solve. Provide answers, in-line, to all of the following:

## i. Indicate the type of analysis you chose to do:

I chose to study the preference among different types of food Like Chinese, Japanese, Indian and etc on yelp database.

ii. Write 1-2 brief paragraphs on the type of data you will need for your analysis and why you chose that data:

I will select various categories of cuisine such as "Chinese", "Mexican", "Korean", "French", "Italian", "Japanese", and "Indian". Afterward, I will examine the star ratings and review counts to gain insights into the popularity of these food types on Yelp.

## iii. Output of your finished dataset:

| category | Number_Of_Resturants | Total_Review       | Star  | city           |
|----------|----------------------|--------------------|-------|----------------|
| Korean   | 2                    | 31.5               | 4.25  | Cuyahoga Falls |
| French   | 2                    | 128.5              | 4.0   | Las Vegas      |
| Japanese | 5                    | 30.4               | 3.8   | Las Vegas      |
| Indian   | 5                    | 12.6               | 3.6   | Edinburgh      |
| Italian  | 2                    | 74.0               | 3.5   | Montréal       |
| Mexican  | 7                    | 46.714285714285715 | 3.5   | Tolleson       |
| Chinese  | 4                    | 199.0              | 3.125 | Edinburgh      |

# iv. Provide the SQL code you used to create your final dataset:

SELECT A.category, COUNT(B.name) AS

'Number\_Of\_Resturants', AVG(review\_count) AS 'Total\_Review',

AVG(stars) AS 'Star', B.city

FROM business AS B INNER JOIN category AS A

ON B.id = A.business\_id

WHERE A.category IN

("Korean", "Mexican", "French", "Italian", "Chinese", "Indian", "Japanese")

**GROUP BY A.category** 

ORDER BY AVG(stars) DESC