

INTRODUCTION TO MODELING

Matt Brems General Assembly, D.C.

AGENDA

1. Data Science Process & Modeling

2. Linear Regression

DATA SCIENCE PROCESS

- Define problem. Data Science Problem
 Gather data. csv, database
 Explore data. EDA

 - Model with data.
 - Evaluate model.
 - Answer problem.

Modeling is something that we naturally do.

Commute time 5 minutes to get to Metro v 20 minutes on Metro (40) (30) 5 minutes from Metro to GA-Lyft: 20

- Modeling is something that we naturally do.
- A **model** is a simplification of reality.

- Modeling is something that we naturally do.
- A **model** is a simplification of reality.
 - How do we simplify?
 - Making assumptions about how things behave.
 - Taking into account only really important factors.

"Essentially, all models are wrong, but some are useful."

— George Box, 1987

WHY DO WE MODEL?

- Prediction 5000 Prices

 How long does it take me to get to work?

 - How much money is a 29-year-old DSI alum expected to make?
- Inference medical studies
 - What is the effect of sex on income?
 - How much more money can I be expected to make in a year?

MACHINE LEARNING ALGORITHMS

- **Machine learning** is a term we use to describe getting computers (machines) to learn without needing to be explicitly programmed.
- There are many different machine learning algorithms we'll cover in the class from linear regression to neural networks!

MACHINE LEARNING ALGORITHMS DATA SCIENCE PROBLEM Supervised Learning 4 have access to our y Unsupervised Learning 4 do not have access to output we want to variable +Y is continuous

TERMINOLOGY

- X: our data, the independent/explanatory variables we use to predict Y.
- Y: our data, the dependent variable we want to predict.
- \widehat{Y} : our predicted values of Y.

La"Y-hat"

relationship

MODELING GOALS

1. Use observed values of X and Y to model relationship between them.

2. Build model that makes \mathbf{Y} and $\widehat{\mathbf{Y}}$ as close as possible.

3. Use observed values of X and existing model to make predictions \hat{Y} .

$$f(X) = 0$$