Vorlesung 11: Linearkombinationen (Forts.)

30.11.2022

Erinnerung: Linearkombinationen

Ein Vektor $x \in V$ eines \mathbb{K} -Vektorraums V mit

$$x = \sum_{i=1}^{p} \lambda_i v_i = \lambda_1 v_1 + \dots + \lambda_p v_p \quad (\lambda_i \in \mathbb{K})$$

heißt Linearkombination der Vektoren $v_1, \ldots, v_p \in V$.

linear (un-)abhängig

Sei V ein \mathbb{K} -Vektorraum.

linear (un-)abhängig

Sei V ein \mathbb{K} -Vektorraum.

Vektoren $v_1, \ldots, v_k \in V$ heißen linear unabhängig, wenn gilt

$$\sum_{i=1}^k \lambda_i v_i = 0 \quad \Rightarrow \quad \lambda_1 = \lambda_2 = \cdots = \lambda_k = 0.$$

linear (un-)abhängig

Sei V ein \mathbb{K} -Vektorraum.

Vektoren $v_1, \ldots, v_k \in V$ heißen linear unabhängig, wenn gilt

$$\sum_{i=1}^k \lambda_i v_i = 0 \quad \Rightarrow \quad \lambda_1 = \lambda_2 = \cdots = \lambda_k = 0.$$

Die Vektoren v_1, \ldots, v_k heißen **linear abhängig**, wenn es eine nichttriviale Linearkombination des Nullvektors aus v_1, \ldots, v_k gibt.

4 D > 4 A P > 4 E > 4 E > 9 Q Q

Ergänzungen

Zweckmäßige Definition: die leere Menge ist linear unabhängig.

Ergänzungen

Zweckmäßige Definition: die leere Menge ist linear unabhängig.

Verallgemeinerung: Eine *unendliche Menge* von Vektoren $M \subset V$ heißt **linear unabhängig**, wenn alle endlichen Teilmengen von M linear unabhängig sind, und **linear abhängig**, wenn sie eine endliche, linear abhängige Menge enthält.

Beispiel

Gegeben:
$$v_1=(1,2),\ v_2=(0,1),\ v_3=(0,2)\in\mathbb{R}^2.$$

Beispiel

Gegeben:
$$v_1 = (1, 2), v_2 = (0, 1), v_3 = (0, 2) \in \mathbb{R}^2$$
.

Die drei Vektoren v_1, v_2, v_3 sind linear abhängig, ebenso die zwei Vektoren v_2, v_3 .

Beispiel

Gegeben:
$$v_1 = (1, 2), v_2 = (0, 1), v_3 = (0, 2) \in \mathbb{R}^2$$
.

Die drei Vektoren v_1, v_2, v_3 sind linear abhängig, ebenso die zwei Vektoren v_2, v_3 .

Die zwei Vektoren v_1, v_2 sind linear unabhängig, ebenso v_1, v_3 .

Beispiel: nur ein Vektor

Es sei k = 1; wir betrachten also einen einzigen Vektor $v \in V$.

Beispiel: nur ein Vektor

Es sei k = 1; wir betrachten also einen einzigen Vektor $v \in V$.

v ist genau dann linear abhängig, wenn v = 0,

v ist genau dann linear unabhängig, wenn $v \neq 0$.

Gegeben 2 Vektoren x, y eines \mathbb{K} -Vektorraums V.

Gegeben 2 Vektoren x,y eines \mathbb{K} -Vektorraums V. Wenn x,y linear abhängig sind, so gilt eine der Gleichungen $\mathbf{x}=\alpha \mathbf{y}$ oder $\mathbf{y}=\beta \mathbf{x}$ mit gewissen $\alpha,\beta\in\mathbb{K}$.

Gegeben 2 Vektoren x, y eines \mathbb{K} -Vektorraums V.

Wenn x, y linear abhängig sind, so gilt eine der Gleichungen

$$x = \alpha y$$
 oder $y = \beta x$ mit gewissen $\alpha, \beta \in \mathbb{K}$.

Man nennt die Vektoren dann auch proportional.

Gegeben 2 Vektoren x, y eines \mathbb{K} -Vektorraums V.

Wenn x, y linear abhängig sind, so gilt eine der Gleichungen

$$x = \alpha y$$
 oder $y = \beta x$ mit gewissen $\alpha, \beta \in \mathbb{K}$.

Man nennt die Vektoren dann auch proportional.

Umgekehrt gilt: Sind x, y proportional, so sind x, y linear abhängig.

■ Kommt unter den Vektoren $v_1, ..., v_k$ der Nullvektor vor, so sind sie linear abhängig.

■ Kommt unter den Vektoren $v_1, ..., v_k$ der Nullvektor vor, so sind sie linear abhängig.

- Kommt unter den Vektoren $v_1, ..., v_k$ der Nullvektor vor, so sind sie linear abhängig.
- v₁,..., v_k sind linear abhängig, wenn zwei proportionale
 Vektoren vorkommen oder wenn ein Vektor eine
 Linearkombination der übrigen ist.

- Kommt unter den Vektoren $v_1, ..., v_k$ der Nullvektor vor, so sind sie linear abhängig.
- v₁,..., v_k sind linear abhängig, wenn zwei proportionale
 Vektoren vorkommen oder wenn ein Vektor eine
 Linearkombination der übrigen ist.
- Im Vektorraum $\mathbb{R}[X]$ der Polynome über \mathbb{R} sind 1+X und 1-X linear unabhängig.

- Kommt unter den Vektoren $v_1, ..., v_k$ der Nullvektor vor, so sind sie linear abhängig.
- v₁,..., v_k sind linear abhängig, wenn zwei proportionale
 Vektoren vorkommen oder wenn ein Vektor eine
 Linearkombination der übrigen ist.
- Im Vektorraum $\mathbb{R}[X]$ der Polynome über \mathbb{R} sind 1+X und 1-X linear unabhängig.
- Die Menge der Monome $\{X^i \mid i \in \mathbb{N}_0\}$ im Vektorraum $\mathbb{K}[X]$ der Polynome ist linear unabhängig.

Kriterium für "linear abhängig"

Satz 6.9

Die Vektoren $v_1, \ldots, v_k \pmod k > 1$ eines Vektorraums V sind genau dann linear abhängig, wenn es einen Vektor unter ihnen gibt, der sich als Linearkombination der übrigen darstellen lässt.

Obermenge bleibt linear abhängig

Satz 6.10

Sind $v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$ (n > k) Vektoren eines Vektorraums V, und sind v_1, \ldots, v_k linear abhängig, dann sind auch v_1, \ldots, v_n linear abhängig.

Teilmenge bleibt linear unabhängig

Satz 6.11

Sind v_1, \ldots, v_k linear unabhängige Vektoren eines Vektorraums V, dann sind auch v_1, \ldots, v_m linear unabhängig für jedes $m \leq k$.

mehr LK als Vektoren sind linear abhängig

Satz 6.12

k+1 Linearkombinationen von k Vektoren eines Vektorraums V sind stets linear abhängig.

mehr LK als Vektoren sind linear abhängig

Satz 6.12

k+1 Linearkombinationen von k Vektoren eines Vektorraums V sind stets linear abhängig.

mehr LK als Vektoren sind linear abhängig

Satz 6.12

k+1 Linearkombinationen von k Vektoren eines Vektorraums V sind stets linear abhängig.

Folgerung: In $V = \mathbb{K}^n$ sind (n+1) Vektoren $v_1, ..., v_{n+1}$ immer linear abhängig.

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Die **lineare Hülle** oder der **Spann** [M] von M ist für $M \neq \emptyset$ die Menge aller Linearkombinationen von Vektoren aus M.

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Die **lineare Hülle** oder der **Spann** [M] von M ist für $M \neq \emptyset$ die Menge aller Linearkombinationen von Vektoren aus M.

Für $M = \emptyset$ setzen wir $[\emptyset] = \{0\}$.

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Die **lineare Hülle** oder der **Spann** [M] von M ist für $M \neq \emptyset$ die Menge aller Linearkombinationen von Vektoren aus M.

Für
$$M = \emptyset$$
 setzen wir $[\emptyset] = \{0\}$.

Ist $M = \{v_1, \dots, v_n\}$, so schreibt man auch $[v_1, \dots, v_k]$ statt $[\{v_1, \dots, v_k\}]$.

Beispiele

■ Die lineare Hülle der Vektoren $v_1 = (1,2)$ und $v_2 = (0,1)$ in \mathbb{R}^2 ist der gesamte \mathbb{R}^2

40148147171

Beispiele

- Die lineare Hülle der Vektoren $v_1=(1,2)$ und $v_2=(0,1)$ in \mathbb{R}^2 ist der gesamte \mathbb{R}^2
- Die lineare Hülle $[X^0, X^1, X^2, X^3]$ ist die Menge der Polynome vom Grad kleiner gleich 3. Die Menge *aller* Polynome $\mathbb{K}[X]$ ist die lineare Hülle *aller* Monome X^0, X^1, X^2, \ldots

Elementaroperationen

Sei V ein \mathbb{K} -Vektorraum und $v_1, \ldots, v_k \in V$.

Elementaroperationen

Sei V ein \mathbb{K} -Vektorraum und $v_1, \ldots, v_k \in V$. Für diese Vektoren erklären wir folgende **Elementar-Operationen**:

- (I) Ersetzen eines Vektors v_i durch λv_i mit $\lambda \in \mathbb{K} \setminus \{0\}$.
- (II) Ersetzen eines Vektors v_i durch $v_i + v_j$ mit $j \in \{1, \dots, m\}$ und $j \neq i$.

EOP's und lineare Hülle

■ Die lineare Hülle $[v_1, \ldots, v_k]$ bleibt bei Elementar-Operationen ungeändert, d.h. es gilt

$$[v_1,\ldots,v_i+v_j,\ldots,v_j,\ldots v_k] = [v_1,\ldots,v_i,\ldots,v_j,\ldots v_k]$$
$$[v_1,\ldots,\lambda v_i,\ldots,v_j,\ldots v_k] = [v_1,\ldots,v_i,\ldots,v_j,\ldots v_k].$$

EOP's und lineare Hülle

■ Die lineare Hülle $[v_1, \ldots, v_k]$ bleibt bei Elementar-Operationen ungeändert, d.h. es gilt

$$[v_1,\ldots,v_i+v_j,\ldots,v_j,\ldots v_k] = [v_1,\ldots,v_i,\ldots,v_j,\ldots v_k]$$
$$[v_1,\ldots,\lambda v_i,\ldots,v_j,\ldots v_k] = [v_1,\ldots,v_i,\ldots,v_j,\ldots v_k].$$

■ Eine Menge $\{v_1, \ldots, v_k\}$ von Vektoren bleibt linear unabhängig (bzw. linear abhängig), wenn man Elementar-Operationen auf v_1, \ldots, v_k ausführt.

Allgemeine Eigenschaften

Gegeben:
$$V = Vektorraum$$
, $M \subset V$

Dann gilt:

$$\begin{array}{ccc} M & \subset & [M] \\ M_1 \subset M_2 & \Longrightarrow & [M_1] \subset [M_2]. \end{array}$$

Erzeugende Mengen

Gegeben sei ein \mathbb{K} -Vektorraum V.

Erzeugende Mengen

Gegeben sei ein \mathbb{K} -Vektorraum V.

Eine Menge $M \subset V$ mit [M] = V heißt erzeugende Menge oder Erzeugendensystem von V.

4 D > 4 A > 4 B > 4 B > B = 40 Q C

Erzeugende Mengen

Gegeben sei ein \mathbb{K} -Vektorraum V.

Eine Menge $M \subset V$ mit [M] = V heißt erzeugende Menge oder Erzeugendensystem von V.

Eine erzeugende Menge M von V heißt minimal, wenn es keine echte Teilmenge M' von M gibt, für die [M'] = V gilt.

Die Menge $M=\{v_1,v_2,v_3\}$ mit $v_1=(1,2),\ v_2=(0,1),\ v_3=(0,2)$ ist eine erzeugende Menge des \mathbb{R}^2 , denn jedes $v\in\mathbb{R}^2$ ist als Linearkombination von $v_1,\ v_2,\ v_3$ darstellbar.

Die Menge $M=\{v_1,v_2,v_3\}$ mit $v_1=(1,2),\ v_2=(0,1),\ v_3=(0,2)$ ist eine erzeugende Menge des \mathbb{R}^2 , denn jedes $v\in\mathbb{R}^2$ ist als Linearkombination von $v_1,\ v_2,\ v_3$ darstellbar.

M ist nicht minimal, denn für die echten Teilmengen $M'=\{v_1,\ v_2\}$ und $M''=\{v_1,\ v_3\}$ gilt ebenfalls $[M']=[M'']=\mathbb{R}^2$.

40.40.45.45. 5.00

Die Menge $M=\{v_1,v_2,v_3\}$ mit $v_1=(1,2),\ v_2=(0,1),\ v_3=(0,2)$ ist eine erzeugende Menge des \mathbb{R}^2 , denn jedes $v\in\mathbb{R}^2$ ist als Linearkombination von $v_1,\ v_2,\ v_3$ darstellbar.

M ist nicht minimal, denn für die echten Teilmengen $M' = \{v_1, v_2\}$ und $M'' = \{v_1, v_3\}$ gilt ebenfalls $[M'] = [M''] = \mathbb{R}^2$.

Die Mengen M' und M'' sind minimale erzeugende Mengen von \mathbb{R}^2 .

Maximal linear unabhängig

Eine linear unabhängige Menge $B \subset V$ heißt **maximal**, wenn jede linear unabhängige Teilmenge $B \subset B' \subset V$ mit B übereinstimmt.

Basis

Eine Teilmenge $B \subset V$ eines \mathbb{K} -Vektorraums V heißt eine Basis, wenn B linear unabhängig und erzeugend ist.

Beispiel: Standardbasis

$$B = \{e_1, \dots, e_n\}$$
 ist erzeugende Menge von \mathbb{K}^n , denn für jedes $v = (v_1, \dots, v_n) \in \mathbb{K}^n$ gilt

$$v = \sum_{i=1}^{n} v_i e_i.$$

Beispiel: Standardbasis

 $B = \{e_1, \dots, e_n\}$ ist erzeugende Menge von \mathbb{K}^n , denn für jedes $v = (v_1, \dots, v_n) \in \mathbb{K}^n$ gilt

$$v = \sum_{i=1}^{n} v_i e_i.$$

B ist auch linear unabhängig. Denn

$$0=(0,\ldots,0)=\sum_{i=1}^n\lambda_ie_i\iff\lambda_i=0\ \forall i.$$

40.44.45.45.5

Beispiel: Standardbasis

 $B = \{e_1, \dots, e_n\}$ ist erzeugende Menge von \mathbb{K}^n , denn für jedes $v = (v_1, \dots, v_n) \in \mathbb{K}^n$ gilt

$$v = \sum_{i=1}^{n} v_i e_i.$$

B ist auch linear unabhängig. Denn

$$0=(0,\ldots,0)=\sum_{i=1}^n\lambda_ie_i\iff\lambda_i=0\ \forall i.$$

Man nennt diese Basis auch die **Standardbasis** des \mathbb{K}^n .

Eine weitere Basis des \mathbb{K}^n ist $B = \{b_1, \ldots, b_n\}$ mit

$$b_1 = (1,0,0,0,\dots,0)$$

$$b_2 = (1,1,0,0,\dots,0)$$

$$b_3 = (1,1,1,0,\dots,0)$$

$$\vdots$$

$$b_n = (1,1,1,1,\dots,1)$$
:

Eine weitere Basis des \mathbb{K}^n ist $B = \{b_1, \ldots, b_n\}$ mit

$$b_1 = (1,0,0,0,\ldots,0)$$

$$b_2 = (1,1,0,0,\ldots,0)$$

$$b_3 = (1,1,1,0,\ldots,0)$$

$$\vdots$$

$$b_n = (1,1,1,1,\ldots,1)$$

B ist erzeugend:

man kann die Standardbasisvektoren e_1, \ldots, e_n alle durch die b_i linear kombinieren: $e_1 = b_1$, $e_2 = b_2 - b_1$, \ldots , $e_n = b_n - b_{n-1}$;

Eine weitere Basis des \mathbb{K}^n ist $B = \{b_1, \ldots, b_n\}$ mit

$$b_1 = (1,0,0,0,\ldots,0)$$

$$b_2 = (1,1,0,0,\ldots,0)$$

$$b_3 = (1,1,1,0,\ldots,0)$$

$$\vdots$$

$$b_n = (1,1,1,1,\ldots,1)$$

B ist erzeugend:

man kann die Standardbasisvektoren e_1, \ldots, e_n alle durch die b_i linear kombinieren: $e_1 = b_1$, $e_2 = b_2 - b_1$, \ldots , $e_n = b_n - b_{n-1}$; somit kann man auch alle Vektoren in \mathbb{K}^n aus Vektoren in B linear kombinieren.

Eine weitere Basis des \mathbb{K}^n ist $B = \{b_1, \ldots, b_n\}$ mit

$$b_1 = (1,0,0,0,\ldots,0)$$

$$b_2 = (1,1,0,0,\ldots,0)$$

$$b_3 = (1,1,1,0,\ldots,0)$$

$$\vdots$$

$$b_n = (1,1,1,1,\ldots,1)$$

B ist erzeugend:

man kann die Standardbasisvektoren e_1, \ldots, e_n alle durch die b_i linear kombinieren: $e_1 = b_1$, $e_2 = b_2 - b_1$, \ldots , $e_n = b_n - b_{n-1}$; somit kann man auch alle Vektoren in \mathbb{K}^n aus Vektoren in B linear kombinieren.

B ist auch linear unabhängig.

Analog: Im Vektorraum $\mathbb{K}[X]$ aller Polynome über \mathbb{K} ist die Menge aller Monome $B = \{m_i := X^i \mid i \in \mathbb{N}_0\}$ eine (unendliche) Basis.

Analog: Im Vektorraum $\mathbb{K}[X]$ aller Polynome über \mathbb{K} ist die Menge aller Monome $B=\{m_i:=X^i\ \big|\ i\in\mathbb{N}_0\}$ eine (unendliche) Basis.

Der Nullraum $\{0\}$ hat die Basis $B = \emptyset$.

Satz 7.3: Basis = minimal erzeugend

Eine Teilmenge B eines \mathbb{K} -Vektorraumes V ist eine Basis genau dann, wenn B eine minimale erzeugende Menge ist.

Satz 7.4: Basis = maximal linear unabhängig

Eine Teilmenge B eines \mathbb{K} -Vektorraumes V ist eine Basis genau dann, wenn B maximal linear unabhängig ist.

Vorlesung 12: Dimension. Basen und Basenwechsel

02.12.2022

Als Vorbereitung lesen Sie bitte im Skript: Seiten 81-87