Methods:

Sequencing runs:

ONT 1D R9 runs were carried out in the lab:

Species name	Sample name	Total sequences	Total size (bp)	Longest sequence	Genome size (approx, pg 2C)		
Sorbus aria	Database: SCI-	17,928	23,196,528	66,551	0.71		
		0160729_Sorbus- or112154.					
Nepenthes	Database:	51,608	68,411,676	95,184	0.28		
alata	SCI-FEST- (N.pervillei)						
	A_20160729_Napenthes-						
	alata.						
Silene	Database:	22,923	36,943,694	23,031	2.7 (S.latifolia)		
uniflora	SCI-FEST-						
	C_20160802_Silene_1D_sf.						
Erycina	Database:	57,699	71,713,785	144,298	1.9		
echinata	SCI-FEST- (E.diaphena)						
	C_20160802_Erycina.						
Beta patula	Database:	23,694	40,492,055	117,469	1.25;1.28		
	SCI-FEST-				(B.vulgaris/B.maritim		
	$A_20160802$	_beta.					

Science festival sequencing was carried out in the Kew Science Festival marquee (with flowcells later transported back to the lab to continue running in some cases):

	Sci fest	Sci fest		Reads		Time to	First	fasta	<u>.</u>
	dresequenc-	ran-	Sci fest	se-	bp se-	identifica-	se-	file	(11)
Species Name	ing run number	domised letter	guessed ID	quenced at ID	quenced at ID	$ \text{tion} \\ (\text{TTI}) $	quence start	$rac{ ext{write}}{ ext{time}}$	(oldest TTI)
???	Sample_01	?	Nepenthe alata	es1460*	1495967	*	?	?	14:35*
???	Sample_02	?	Arabidop lyrata ssp. petraea**		603677*	*	?	17:26	(next day)
Silene uniflora	$Sample_03$	F	Silene uniflora	1,421	2,725,09	0	?	14:50	15:19
Erycina echinata	Sample_04	Е	Erycina echinata	1,679	2,028,97	5	?	16:56	22:56
Sorbus aria	Sample_05	D	Sorbus aria	210	505,043		?	14:11	14:19
Beta patula	Sample_06	В	Beta patula	3,546	7,226,10	6	?	16:01	16:05

Resampling in silico:

Simulations with 20 replicates were constructed by subsampling (without replacement) from the R4IDs-sequencing and festival-resequenced data sets. For each simulation replicate, the R4ID input and resequencing run were subsampled randomly for 100, 500, 1000, 5000 and 10000 reads, in combination (25 orthogonal combinations per input sample). Each R4IDs dataset was converted to a BLASTN database separately.

Sample ID via BLASTN:

Each simulated sample was matched to every BLASTN database in turn with the following parameters: blastn -outfmt "6 sacc qacc length pident evalue" -evalue 0.01 -num_threads 6 -num_alignments 1 -max_hsps 1 -db \$this_db -query \$this_test_input

Only the top hit for each read is reported in the output file. Output files for each database/sample intensity combination (5 samples * 5 databases * 5 sampling intensities * 5 database intensities; 625 total) were then combined as follows: For each input sample at a given sampling/DB intensity combination, all hits against each of the 5 databases were collected for every read. The following ID statistics were then compiled:

Stat	Definition
TP	Reads only
one-	matching the
way	correct DB
FP one-	Reads only
way	matching an
	incorrect DB
TP	Reads
two-	matching the
way	correct DB,
	and at least
	one other DB,
	but with the
	longest number
	of identities for
	the correct DB
FP two-	Reads
way	matching the
	correct DB,
	and at least
	one other DB,
	but with the
	longest number
	of identities for
	the INcorrect
	DB; or
	matching more
	than one DB
	but NOT the
	correct one at
	all

Stat	Definition
mean	Average of (TP
bias	hit -
	next-best-hit)
	for all reads
	with at least
	two hits, one
	of which is for
	the correct DB
two-	Ratio of TP
way	two-way: total
rate	two-way hits
two-	Ratio of hits
way	with bias $>$
rate	50bp: total
with	two-way hits
cutoff	(e.g., more
	$\mathbf{stringent})$
total	Total number
hits	of reads with
	any hit to any
	DB

Not all replicate / sample combinations generated results owing to random error. In the plots below data were aggregated amongst replicates. 20 replicates were carried out in total.

 $\it Note$: For these the following sample identities were assumed...

Sample	File	TP label
sample_1	_Volun	nes <u>N.</u> Slata
	FEST-	
	A_sci-	
	fest-	
	$data_2$	0160823_{samp}
	-	retools.fasta
$sample_2$		nes_SCI-
		Arabidopsis
		(omitted $)$
	fest-	
		0160823_samp
	-	retools.fasta
$sample_3$		ne S_SGH ora
	FEST-	
	A_sci-	
	fest-	04.00000
		0160823_samp
1 4	-	retools.fasta
sample_4		ne £_&@I nata
	FEST-	
	A_sci-	
	fest-	0160000
		0160823_samp
	runs.po	retools.fasta

Sample	File TP label
sample_5	_Volume S.:8G I-
	FEST-
	A_sci-
	fest-
	$data_20160823_sample_05_basecall_both$
	runs.poretools.fasta
$sample_6$	_Volume s B. S @Hala
	FEST-
	A_sci-
	fest-
	$data_20160823_sample_06_basecall_both$
	runs.poretools.fasta

Results

```
# set up
library(ROCR)
## Loading required package: gplots
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
##
       lowess
library(lattice)
# read in the input for each labelling / subsampling size
rep_01 = read.table('~/Documents/all_work/programming/oddjects-sandbox/R4IDs/collected_all_replicates.t
# cbind them all into a big table, adding the 'training_intensity' and 'query_intensity' cols
# calculate TP rate for a variety of cutoffs
# plot basic
plot(sample_DB_intensity ~ species_DB_intensity, data=rep_01[rep_01$TP_species=='Beta-patula',])
plot(sample_DB_intensity ~ two_way_rate_with_cutoff, data=rep_01[rep_01$TP_species=='Beta-patula',])
# plot heatmap prediction
#rep_01[rep_01$TP_species=='Beta-patula',c(2,4,12)]
levels(rep_01$TP_species)
species = c(
  "Beta-patula",
  "Erycina-echinata",
  "Napenthes-alata",
  "Silene-uniflora",
 "Sorbus-aria")
levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01
levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01
```

```
levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01
levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01[rep_01$TP_s]
levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01, col.region

Now plot 2-way rate with cutoff=50:
levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01
```

levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01
levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01
levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=rep_01

Now repeat it properly for all reps. Mean bias first:

```
# read in the input for each labelling / subsampling size
all_reps = read.table('~/Documents/all_work/programming/oddjects-sandbox/R4IDs/collected_really_all_rep
# bias
levelplot(mean_bias ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps$TP_
```

levelplot(two way rate with cutoff ~ log10(sample DB intensity)*log10(species DB intensity),data=rep 01

Beta patula 500 4.0 log10(species_DB_intensity) - 400 3.5 - 300 3.0 - 200 2.5 100 2.0 0 2.5 2.0 3.0 3.5 4.0 log10(sample_DB_intensity)

levelplot(mean_bias ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$TP_

Erycina echinata

levelplot(mean_bias ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$TP_

Napenthes alata

levelplot(mean_bias ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$TP_

Silene uniflora

levelplot(mean_bias ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$TP_

Sorbus aria

levelplot(mean_bias ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps, col.regions

Now plot 2-way rate %:

levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$

levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$

Erycina echinata

levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$

Napenthes alata

levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$

Silene uniflora

levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps[all_reps\$

Sorbus aria

levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps, col.regi

Now plot 2-way rate with cutoff=50:

levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_re

levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_re

Erycina echinata

levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_re

Napenthes alata

levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_re

Silene uniflora

levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_re

Sorbus aria 4.0 - - - 1.0 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0

3.0

log10(sample_DB_intensity)

2.0

2.5

levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_re

3.5

4.0

boxplot(mean_bias ~ species_DB_intensity * sample_DB_intensity,data=all_reps[all_reps\$TP_species=='Sorb
boxplot(two_way_rate ~ species_DB_intensity * sample_DB_intensity,data=all_reps[all_reps\$TP_species=='S
boxplot(two_way_rate_with_cutoff ~ species_DB_intensity * sample_DB_intensity,data=all_reps[all_reps\$TP_species=='N
boxplot(two_way_rate ~ species_DB_intensity * sample_DB_intensity,data=all_reps[all_reps\$TP_species=='N
boxplot(mean_bias ~ species_DB_intensity * sample_DB_intensity,data=all_reps[all_reps\$TP_species=='Siles
boxplot(mean_bias ~ species_DB_intensity * sample_DB_intensity,data=all_reps[all_reps\$TP_species=='Siles
boxplot(mean_bias ~ species_DB_intensity * sample_DB_intensity,data=all_reps[all_reps\$TP_species=='Eryc

Now try adding 1- and 2-way hits

```
levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec
```


levelplot((one_way_TP + two_way_TP) / total_hits ~ log10(sample_DB_intensity)*log10(species_DB_intensity)

Hits ratios heatmap by species:

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec

Beta patula 4.0 log10(species_DB_intensity) - 2.0 3.5 - 1.5 3.0 1.0 2.5 0.5 2.0 2.5 3.0 3.5 2.0 4.0 log10(sample_DB_intensity)

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec

Erycina echinata

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec

Napenthes alata

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec

Silene uniflora

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec

Sorbus aria

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec

So far...

OK: something a bit odd is going on here, but basically it looks like a) it's all working OK more or less b) species DB intensity seems to make a bigger difference than sample effort/intensity..

To show this, collect all the aggregates in one:

```
par(mfrow=c(2,3))
levelplot(two_way_rate ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps, col.regi
```


levelplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_re

levelplot(mean_bias ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps, col.regions

mean #ident bias

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP) ~ log10(sample_DB_intensity)*log10(spec

levelplot((one_way_TP + two_way_TP) / total_hits ~ log10(sample_DB_intensity)*log10(species_DB_intensity)

total TP:all_hits

levelplot(total_hits ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps, col.region

total hits

checking headline stuff; how does blast DB intensity affect outputs?:

```
par(mfrow=c(2,3))
boxplot((one_way_TP + two_way_TP) /(one_way_FP + two_way_FP) ~ log10(species_DB_intensity),data=all_rep
boxplot((one_way_TP + two_way_TP) /(total_hits) ~ log10(species_DB_intensity),data=all_reps, col.region
boxplot(mean_bias ~ log10(species_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length(he
boxplot(two_way_rate ~ log10(species_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length
boxplot(two_way_rate_with_cutoff ~ log10(species_DB_intensity),data=all_reps, col.regions = heat.colors
boxplot(total_hits ~ log10(species_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length(heat.colors)]
```


how does resequencing (sampling) intensity affect the same?:

```
par(mfrow=c(2,3))
boxplot((one_way_TP + two_way_TP) /(one_way_FP + two_way_FP) ~ log10(sample_DB_intensity),data=all_reps
boxplot((one_way_TP + two_way_TP) /(total_hits) ~ log10(sample_DB_intensity),data=all_reps, col.regions
boxplot(mean_bias ~ log10(sample_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length(heaboxplot(two_way_rate ~ log10(sample_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length(boxplot(two_way_rate_with_cutoff ~ log10(sample_DB_intensity),data=all_reps, col.regions = heat.colors(boxplot(total_hits ~ log10(sample_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length(heaboxplot(total_hits ~ log10(sample_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length(heaboxplot(total_hits ~ log10(sample_DB_intensity),data=all_reps, col.regions = heat.colors(100)[length(heaboxplot(total_hits) ~ log10(sample_DB_i
```


Final summary; ploting expected positive reads vs total sampling intensity:

levelplot(total_hits ~ log10(sample_DB_intensity)*log10(species_DB_intensity),data=all_reps, col.regions

true positive hits expectation

levelplot(two_way_rate_with_cutoff*total_hits ~ log10(sample_DB_intensity)*log10(species_DB_intensity),

TP hit expectation, applying cutoff>50bp

levelplot((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP+one_way_TP + two_way_TP) ~ log10(sample_

levelplot((one_way_FP + two_way_FP) / (one_way_FP + two_way_FP+one_way_TP + two_way_TP) ~ log10(sample_

levelplot(((one_way_TP + two_way_TP) / (one_way_FP + two_way_FP+one_way_TP + two_way_TP)*total_hits) ~

expected reads TP:FP+TP

levelplot(((one_way_FP + two_way_FP) / (one_way_FP + two_way_FP+one_way_TP + two_way_TP)*total_hits) ~

expected reads FP:FP+TP

 $\#levelplot((one_way_TP \ + \ two_way_TP) \ / \ total_hits \ ~ log10(sample_DB_intensity) * log10(species_DB_intensity) + log$

Conclusion

Overall it seems to be working fine, e.g. we get hits and length differences that tend to correct at low intensities (10E4 is a bloody small amount of sequencing..!)

The biggest determinant of overall success seems to be R4IDs database sampling effort, not resequencing effort. This is interesting.

The length bias cutoff (hits' length difference greater than 50 in favour of TP database for a positive hit) seems to greatly improve accuracy at the expense of total number of hits. An optimal tradeoff will depend on the expected taxonomic distance between likely ID candidates.

Unsure what is driving the between-species differences, but the quality of the runs in terms of total yield and also q-scores is probably to blame, as well as genome size (since this affects coverage). Our target genomes here range from ~ 0.28 to 3.0Gbp, and our maximum R4IDs sequencing yields are in the 20Mbp (0.02Gbp) to 70Mbp zone; so we are sequencing much less than a 1x-coverage genome. Insofar as this works at all it is probably partly (largely?) due to bias; in the **A. thaliana** data we observed that plastid depths were ~ 350 x even though total genome depth $\sim 2x$ (max).

Note will need to know genome sizes more accurately if at all possible - only have C-values.