Hw3

Highlight

Q1: run the NB learner in Mallet

Q2: build a Multi-variate Bernoulli NB learner

Q3: build a Multinomial NB learner

Q2

 build_NB1.sh training_data test_data prior_delta cond_prob_delta model_file sys_output > acc

prior_delta: delta for calculating P(c).

 cond_prob_delta: delta for calculating P(f|c).

Model file

```
c1 P(c1) lg P(c1)
                              ## Ig is 10-based
f1 c1 P(f1|c1) Ig P(f1|c1)
f2 c1 P(f2|c1) Ig P(f2|c1)
f1 c2 P(f1|c2) lg P(f1|c2)
f2 c2 P(f2|c2) Ig P(f2|c2)
```

Sys_output

instanceName trueClass c_1 p_1 c_2 p_2 ... instanceName will be array:0, array:1, etc.

The (c_i, p_i) pairs should be sorted by the value of p_i.

$$p_i = P(c_i|x) = \frac{P(x|c_i)P(c_i)}{P(x)}$$

$$P(x) = \sum_{i} P(c_i, x) = \sum_{i} P(x|c_i)P(c_i)$$

The issue of underflow

$$p_i = P(c_i|x) = \frac{P(x|c_i)P(c_i)}{P(x)} = \frac{P(x,c_i)}{\sum_{c_i} P(x,c_i)}$$

$$lgP(x,c_1) \text{ is -200, } lgP(x,c_2) \text{ is -201, } lgP(x,c_3) \text{ is -202.}$$

What is p_i ?

 $p_3 = \frac{10^{-2}}{1+10^{-1}+10^{-2}} = 1/111 = 0.009$

$$p_1 = \frac{10^{-200}}{10^{-200} + 10^{-201} + 10^{-202}} = \frac{1}{1 + 10^{-1} + 10^{-2}} = 100/111 = 0.901$$

$$p_2 = \frac{10^{-1}}{1 + 10^{-1} + 10^{-2}} = 10/111 = 0.09$$

Efficiency issue: Ex 1

$$lg \ P(c) \prod_{k=1}^{|V|} P(w_k|c)^{N_{ik}}$$

$$= lgP(c) + \sum_{k=1}^{|V|} lg(P(w_k|c)^{N_{ik}})$$

$$= lgP(c) + \sum_{k=1}^{|V|} N_{ik} lg P(w_k|c)$$

Efficiency: Ex #2

$$P(d_i, c)$$

= $P(c) (\prod_{w_k \in d_i} P(w_k|c)) (\prod_{w_k \notin d_i} (1 - P(w_k|c)))$

$$= P(c) \left(\prod_{w_k \in d_i} P(w_k|c) \right) \frac{\prod_{w_k} (1 - P(w_k|c))}{\prod_{w_k \in d_i} (1 - P(w_k|c))}$$

$$= P(c) \prod_{w_k \in d_i} \frac{P(w_k|c)}{1 - P(w_k|c)} \prod_{w_k} (1 - P(w_k|c))$$

Efficiency: Ex #3

Multinomial model:

Let $P(c_j | d_i) = 1$ if d_i has the label c_j = 0 otherwise

$$P(w_t|c_j) = \frac{1 + \sum_{i=1}^{|D|} N_{it} P(c_j|d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} P(c_j|d_i)}$$

Complexity: $O(|V| * |D| * |V| * |C|) = O(|V|^2 * |C| * |D|)$

How to make it faster?

$$Z(c_j) = 0$$
 for every c_j ;

for each d_i

Let c_i be the class label of d_i

for each w_t that is present in d_i

Let N_{it} be the number of times w_t appears in d_i

$$cnt(w_t, c_j) + = N_{it}$$

$$Z(c_j) + = N_{it}$$

for each c_j

for each w_t

$$P(w_t|c_j) = \frac{1 + cnt(w_t, c_j)}{|V| + Z(c_j)}$$

Complexity: O(|V| * |C| + |D| * avg(feat/doc))