Table 1: Cross-architecture generalization performance on CIFAR-100 from ResNet-18 to ResNet-50. We report the average of five runs. 'R18 \rightarrow R18' and 'R50 \rightarrow R50' stand for the case where score computation and subset training are done on the same model, as baselines. The best performance in the cross-architecture scenario is in bold. Test accuracy on the whole dataset is 80.10.

	$ResNet-18 \rightarrow ResNet-50$			
Pruning Rate (\rightarrow)	30%	50%	70%	90%
Random	77.17 ± 0.38	73.74 ± 0.36	66.66 ± 0.35	40.48 ± 1.05
EL2N	$79.46{\scriptstyle~\pm0.41}$	$74.85 ~\pm 0.26$	$58.75 ~\pm 0.62$	$16.19 ~ \pm 1.94$
Dyn-Unc	79.90 ± 0.28	75.78 ± 0.43	$61.75{\scriptstyle~\pm0.63}$	$25.08{\scriptstyle~\pm 1.50}$
CCS	$77.24{\scriptstyle~\pm 0.30}$	$73.81{\scriptstyle~\pm 0.26}$	$66.66 ~\pm 0.26$	$40.31{\scriptstyle~\pm 1.72}$
DUAL	79.48 ± 0.28	$\textbf{76.47} \pm 0.51$	$\textbf{68.56} \pm 0.89$	$29.82 ~\pm 1.51$
$DUAL + \beta$ sampling	79.53 ± 0.43	75.08 ± 0.32	67.54 ± 0.54	50.34 ± 1.51
$\overline{\text{DUAL (R50} \rightarrow \text{R50})}$	79.60 ± 0.30	76.64 ± 0.28	68.60 ± 0.21	29.84 ± 1.94
DUAL (R50 \rightarrow R50)+ β sampling	$79.63{\scriptstyle~\pm 0.33}$	$76.49{\scriptstyle~\pm0.40}$	$70.37{\scriptstyle~\pm0.26}$	$50.27{\scriptstyle~\pm1.48}$
$\overline{\text{DUAL (R18} \rightarrow \text{R18})}$	77.43 ± 0.18	74.62 ± 0.47	66.41 ± 0.52	34.38 ± 1.39
DUAL (R18 \rightarrow R18)+ β sampling	77.86 ± 0.12	74.66 ± 0.12	$69.25 ~\pm 0.22$	54.54 ± 0.09