Regression Econometrics II

Douglas G. Steigerwald

UC Santa Barbara

Overview

Reference: B. Hansen Econometrics Chapter 2.20-2.23, 2.25-2.29

- Best Linear Projection is often called Regression
 - coined by Francis Galton 1886
- Regression coefficient: $\beta = (Var(x))^{-1} Cov(x, y)$
 - regression measures correlation not causality
- \bullet (y, x) jointly normally distributed yields "classic regression model"
- short regression coefficient is often a bound ("omitted variable bias")
- random coefficient model implies $\mathbb{E}(y|x)$ is linear in x

Origin

Francis Galton

- Galton: introduces regression, correlation, standard deviation
- 1886 paper studies joint distribution of heights (y, x)
 - y childrens height x parents height
 - in essence, he estimates $\mathbb{E}(y|x)$ slope is 2/3
 - ★ on average, children don't attain the height of their parents
 - ★ regression to the mean
- he deduces that this conclusion is a fallacy if the marginal distribution of y and x are the same (heights are stable)
- ullet if heights are stable, $\mu_{
 m y}=\mu_{
 m x}=\mu$
 - childrens heights are a linear combination of average height and parents height
 - $\star y = x\beta + \alpha + u$
 - $\star \alpha = (1 \beta) \mu$
 - $\star \mathcal{P}(y|x) = (1-\beta) u + x\beta$

Regression Fallacy

- if heights are stable, Var(y) = Var(x)
 - slope coefficient is always less than 1

$$\star \beta = Cov(x, y) / Var(x) = Corr(x, y)$$

- \star $-1 \leq Corr(x, y) \leq 1$
- ★ $\beta < 1$ in general
- regression fallacy: $\beta < 1$ implies Var(y) < Var(x)
 - ▶ clearly false, we derived β < 1 with Var(y) equal to Var(x)!
 - ▶ subtle, Secrist (1933) The Triumph of Mediocrity in Business
 - ★ department stores: regress 1920 profit on 1930 profit
 - \star interprets eta < 1 as triumph of mediocrity
- what condition implies Var(y) < Var(x)?
 - $Var(y) = \beta^2 Var(x) + Var(u)$
 - ★ Var(y) / Var(x) < 1 if $\beta^2 < 1 Var(u) / Var(x)$

Reverse Regression

- ullet Galton also noted, could regress x on y
 - reverse regression (parent height on child height)
- $x = y\beta^* + \alpha^* + u^*$
 - $\qquad \qquad \boldsymbol{\beta}^* = \mathit{Corr}(x,y) = \boldsymbol{\beta}$
- coefficients are identical
 - a natural feature of joint distributions (not causal)
- inverting a projection (or CEF) does not yield a projection (or CEF)
 - - ★ a valid equation, but not a linear projection (nor a CEF)
 - ★ hence projection of x on y does not have slope $1/\beta$

Regression Coefficients

• in regression, often the intercept is separated, if so

$$y = x^T \beta + \alpha + u$$

- x does not contain the value 1
- $\qquad \mathbb{E} y = \mathbb{E} x^T \beta + \alpha \text{ or } \mu_v = \mu_x^T \beta + \alpha$

$$\star \alpha = \mu_v - \mu_x^T \beta$$

• the regression model is sometimes written as

$$y - \mu_y = (x - \mu_x)^{\mathrm{T}} \beta + u$$

★ centered (deviations-from-mean) form

$$\star \ \beta_{lpc} = \left(\mathbb{E}\left(\left(x - \mu_{x} \right) \left(x - \mu_{x} \right)^{\mathsf{T}} \right) \right)^{-1} \mathbb{E}\left(\left(x - \mu_{x} \right) \left(y - \mu_{y} \right) \right)$$

$$\beta = (Var(x))^{-1} Cov(x, y)$$

Coefficient Decomposition

•
$$x^T=\left(x_1,x_2^T\right)$$
 with $\dim\left(x_1\right)=1$
$$y=x_1\beta_1+x_2^T\beta_2+u\quad \textit{Matrix Expression}$$

- $\beta_1 = (\mathbb{E}(\widetilde{x}\widetilde{x}^T))^{-1}\mathbb{E}(\widetilde{x}\widetilde{y})$
 - the correlation between x_1 and y after correlation with x_2 is removed
- "Two-Step" Procedure
 - regression 1: x_1 on x_2

$$\star x_1 = x_2^{\mathrm{T}} \gamma_2 + u_1$$

- regression 2: y on u_1
 - $\star \beta_1 = \mathbb{E}(u_1 y) / \mathbb{E}u_1^2$

Normal Regression

Assume (y, x) are jointly normally distributed, which implies (u, x) are jointly normally distributed

Best linear projection

$$y = x^{\mathrm{T}}\beta + u$$
 where $\beta = (\mathbb{E}(xx^{\mathrm{T}}))^{-1}\mathbb{E}(xy)$

- by construction $\mathbb{E}(xu) = 0$
 - together with jointly normal distribution, implies x and u are independent
 - ★ $\mathbb{E}(u|x) = \mathbb{E}(u) = 0$ ★ $\mathbb{E}(u^2|x) = \mathbb{E}(u^2) = \sigma^2$
- jointly normal distribution yields "classic regression model"

Review: Best Linear Predictor Error

best linear predictor (linear approximation)

$$\mathcal{P}\left(y|x\right) = x^{\mathrm{T}}\beta_{lpc}$$

decomposition

$$y = x^{T} \beta_{lpc} + u$$
 $u = e + (\mathbb{E}(y|x) - x^{T} \beta_{lpc})$

- error consists of two components
 - e deviation from conditional mean $\mathbb{E}\left(e|x\right)=0$
 - ightharpoons $\mathbb{E}\left(y|x
 ight)-x^{\mathrm{T}}eta_{lpc}$ error from approximation of conditional mean

Approximation Error

Example 1

- $y = x + x^2$ $x \sim \mathcal{N}(0, 1)$
 - $\mathbb{E}(y|x) = x + x^2$
 - e ≡ 0
- linear approximation

$$y = \beta x + \alpha + u$$

- ightharpoonup approximation $\mathcal{P}\left(y|x
 ight)=x+1$ differs sharply from $\mathbb{E}\left(y|x
 ight)$
- linear predictor error

$$u = 0 + (x + x^2) - (x + 1) = x^2 - 1$$

- u is a function of x, but uncorrelated with x
 - $\star \mathbb{E}(xu) = \mathbb{E}(x^3 x) = 0$

Approximation Error: Grouped Data

- ullet differs over groups could indicate nonlinear $\mathbb{E}\left(y|x\right)$
 - $\qquad \qquad \text{ group 1 } x \sim \mathcal{N}\left(2,1\right) \qquad \text{ group 2: } \ x \sim \mathcal{N}\left(4,1\right)$

- here $\nabla_x \mathbb{E}(y|x)$ does not differ over groups
 - $y|x \sim \mathcal{N}(m(x), 1)$ $m(x) = 2x \frac{x^2}{6}$ $\nabla_x \mathbb{E}(y|x) = 2 \frac{x}{3}$
- linear approximation does differ over groups
 - implication: conditional mean is nonlinear

Approximation Error: Omitted Covariates

• long regression (Goldberger coined these terms)

$$y = x_1^{\mathrm{T}} \beta_1 + x_2^{\mathrm{T}} \beta_2 + u$$
 $\mathbb{E}(xu) = 0$ $\beta = (\mathbb{E}(xx^{\mathrm{T}}))^{-1} \mathbb{E}(xy)$

short regression

$$y = x_1^{\mathrm{T}} \gamma_1 + u_1$$
 $\mathbb{E}(x_1 u_1) = 0$ $\gamma_1 = (\mathbb{E}(x_1 x_1^{\mathrm{T}}))^{-1} \mathbb{E}(x_1 y)$

- recall, both coefficient and error change
- the linear projection coefficient from the short regression is

$$\gamma_1 = \beta_1 + \left(\mathbb{E} \left(x_1 x_1^{\mathsf{T}} \right) \right)^{-1} \mathbb{E} \left(x_1 x_2 \right) \beta_2 + \left(\mathbb{E} \left(x_1 x_1^{\mathsf{T}} \right) \right)^{-1} \mathbb{E} \left(x_1 u \right)$$

$$\star \mathbb{E} \left(x u \right) = 0 \Rightarrow \mathbb{E} \left(x_1 u \right) = 0$$

- $\gamma_1 \neq \beta_1$ unless $\mathbb{E}(x_1x_2) = 0$ (or $\beta_2 = 0$)
 - ★ "omitted variable" bias

Short Regression Coefficient

in many cases, short regression coefficient is a bound

- Long regression: linear projection of log(wage) on x = (ed, ab)
 - ab intellectual ability, unobserved
- Short regression: linear projection of log(wage) on x = ed
 - ed and ab likely positively correlated
 - conditional on ed, ab likely increases wages
 - therefore $\gamma_1=\beta_1+c,\ c>0$
 - ★ an upper bound (not very useful here)

Approximation: Random Coefficient Model

- (linear) random coefficient model yields a linear CEF
- random coefficient model

$$y = x^{\mathrm{T}} \eta$$

- $\blacktriangleright \eta$ individual specific component
 - * random
 - \star independent of x
 - \star equals $\nabla_x y$, true causal effect
 - ★ i.e. change in response variable due to change in covariate
- Example: $y = \log(wages)$ x = ed
 - $ightharpoonup \eta$ individual-specific return to schooling

Random Coefficient Model Yields Linear CEF

- $\eta = \beta + v$
 - $ightharpoonup \mathbb{E}(\eta) = \beta \quad Var(\eta) = \Omega$
 - distribution of v is independent of x, mean 0 covariance Ω
- Conditional Expectation Function

$$\mathbb{E}(y|x) = x^{T}\mathbb{E}(\eta|x) = x^{T}\mathbb{E}(\eta) = x^{T}\beta$$
$$y = x^{T}\beta + e$$

- $e = x^{T}v$
 - ★ $\mathbb{E}(e|x) = 0$
 - $\star Var(e|x) = x^{T}\Omega x$
- (conditional) heteroskedasticity in a regression can be evidence that *y* is generated by a random coefficient model

Review

- How do we express β in terms of covariances? (consider a single covariate)
- $\beta = Cov(x, y) / Var(x)$

How does this change if Var(x) = Var(y)?

•
$$\beta = Cov(x, y) / (sd(x) sd(y)) = Corr(x, y)$$

How does this change, if we regress x on y?

•
$$\beta = Cov(x, y) / Var(y) = Corr(x, y)$$
 Identical!

How does the short (regression) coefficient differ from the long coefficient?

•
$$\gamma_{1(short)} = \beta_{1(long)} + (Var(x_1))^{-1} Cov(x_1, x_2) \beta_{2(long)}$$

When does the short (regression) coefficient provide a useful bound on the long coefficient?

• when the bias attenuated the measured response (sign of $\beta_{1(long)}$ differs from sign of $Cov(x_1, x_2) \beta_{2(long)}$)

Matrix Expression

ullet partition regressor matrix, with $Q_{12} = \mathbb{E}\left(x_1 x_2^{\mathrm{T}}\right)$

$$\left(egin{array}{cc} Q_{11} & Q_{12} \ Q_{21} & Q_{22} \end{array}
ight)^{-1} := \left(egin{array}{cc} Q^{11} & Q^{12} \ Q^{21} & Q^{22} \end{array}
ight)$$

- $Q^{11} = Q_{11} Q_{12}Q_{22}^{-1}Q_{21}$
 - \blacktriangleright variation in the component of x_1 that is uncorrelated with x_2
- $y x_2 Q_{22}^{-1} \mathbb{E}(x_2 y)$
 - component of y that is uncorrelated with x₂
- $Q^{12} = -Q^{11}Q_{12}Q_{22}^{-1}$
- $\bullet \ \beta = Q^{-1}\mathbb{E}\left(xy\right)$
 - $\beta_1 = Q^{11} \mathbb{E} (x_1 y) Q^{12} \mathbb{E} (x_2 y)$
 - $m{\beta}_1 = Q^{11} \mathbb{E} \left(x_1 \left(y x_2 Q_{22}^{-1} \mathbb{E} \left(x_2 y \right) \right) \right)$ Return to Decomposition