Digital Signal Processing

Class 7 02/11/2025

ENGR 71

- Class Overview
 - Discrete-Time Signals and Systems
- Assignments
 - Reading:
 Chapter 2: Discrete-Time Signals and Systems
 Begin reading Chapter 3
 - Lab 1 Aliasing lab
 - Will be up on Moodle this afternoon

ENGR 71

- Lab 1-Aliasing Lab
 - Find a short piece of music to download
 - Subsample to demonstrate aliasing
 - Repeat the subsampling, but prior to subsampling, apply a low-pass anti-aliasing filter.
 - Compare the results
 - Mystery piece
- More details and sample code will be placed on Moodle: <u>Lab 1</u>

ENGR 71

Homework 3

```
- Problems: 2.9 (a), 2.17(a), 2.28(a & c), 2.35, 2.46, C2.14(write your own code) C2.8 (use Matlab functions)

Due Feb. 20
```

Class Information

- Topics in Discrete-Time Signals and Systems
 - Discrete-Time Signals
 - Discrete-Time Systems
 - Analysis of Linear Time-Invariant Systems
 - Description of Systems by Difference Equations
 - Implementation of Discrete-Time Systems
 - Correlation of Discrete-Time Systems

FIR and IIR System

- Finite Impulse Response systems (FIR)
 - For causal FIR system: impulse response lasts a finite number of steps h(n) = 0, n < 0 and $n \ge M$

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$

- Output is weighted sum of input values y(n) = F[x(n), x(n-1), ..., x(n-M+2), x(n-M+1)]
- Finite memory length
- Not recursive

FIR and IIR System

- Infinite Impulse Response systems (IIR)
 - For causal system, h(n) persists for n going to infinity

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

- Infinite memory. Response depends on all previous inputs
- Usually results from system with recursion where current output depends on previous outputs.

$$y(n) = F[y(n-1), y(n-2), ..., y(n-N), x(n), x(n-1), ..., x(n-M)]$$

- Could have something like moving average that goes on for ∞
 - But real physical systems are not infinite

Difference Equations

LTI systems characterized by constant-coefficient difference equations

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

N'th order system corresponds to

N'th order difference equation

Difference Equations

Example on Moodle page

$$\lambda^{n} - 0.6\lambda^{n-1} + 0.08\lambda^{n-2} = 0$$
Impulse response: $h(n) = -\left(\frac{1}{5}\right)^{n} + 2\left(\frac{2}{5}\right)^{n}$

Step response:
$$s(n) = \sum_{k=1}^{n} h(n-k) = \frac{1}{12} \left[25 + \frac{1}{5^n} (3 - 2^{n+4}) \right]$$

Also, Matlab commands using b's and a's from difference equation: impz(b,a) \rightarrow impz(1,[1, -0.6, 0.08]) for this system stepz(b,a) \rightarrow stepz(1,[1, -0.6, 0.08])

Difference Equations

- Implementation of Discrete-Time System
 - We will discuss two forms
 - Direct form I
 - Direct form II

Direct form I

Difference Equation:
$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

- Uses separate delays for both input and output
- Cascade of two LTI systems

$$v(n) = \sum_{k=0}^{M} b_k x_k (n-k)$$
 , $y(n) = v(n) - \sum_{k=1}^{N} a_k y_k (n-k)$

Example:
$$y(n) = -a_1y(n-1) + b_0x(n) + b_1(n-1)$$

Easy to get from difference equation

$$v(n) = b_0 x(n) + b_1 x(n-1)$$

$$y(n) = v(n) - a_1 y(n-1)$$

Direct form II

Difference Equation:
$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

- The order of cascaded LTI systems doesn't matter because of the commutative property of convolution
- Cascade of two LTI systems $h_1(n) * h_2(n) = h_2(n) * h_1(n)$

- Direct form II
 - Input-output relationship is same for interchanged systems
 - Cascaded interchanged systems:

$$w(n) = x(n) - \sum_{k=1}^{N} a_k w(n-k)$$
 , $y(n) = \sum_{k=0}^{M} b_k w(n-k)$

Example:
$$y(n) = -a_1 y(n-1) + b_0 x(n) + b_1 (n-1)$$
 $(N = 1, M = 1)$

$$w(n) = x(n) - a_1 w(n-1)$$

$$y(n) = b_0 w(n) + b_1 w(n-1)$$

- Direct form II
 - Notice that w(n) is shifted in both subsystems
 - Just use one shifter:

- Number of operations:
 - Direct form I:

```
- Number of Multiplications: N+M+1 (example: 1+1+1=3)
```

- Number of delays: M+N (example: 1+1=2)
- Direct form II
 - Number of Multiplications: N+M+1 (example: 1+1+1=3)
 - Number of delays: M+N-1 (example: 1+1=2)

If N=0: Weighted Moving Average Filter

$$y(n) = \sum_{k=0}^{M} b_k x(n-k)$$

- Nonrecursive, FIR $h(n) = [b_0, b_1, ..., b_M]$
- Weighted moving average of inputs
- If just averaging, weights are all 1/(M+1)

- Advantages of direct form I
 - Simplicity
 - Better stability in finite precision arithmetic
 - Lower round-off error for coefficient quantization
- Disadvantages of direct form 1
 - Twice as many delays (memory requirement is higher)
 - More sensitive to overflow in fixed-point arithmetic
 - Increased computational load for high order filters
 - Due to twice as many delays

- Advantages of direct form II
 - Half as many delays
 - Half the memory required for direct form 1
 - Less sensitive to overflow for fixed point arithmetic
 - Faster execution in some DSP processors
 - Optimized for direct form 2
 - More common in real-world implementations
 - Audio processing, communication systems, embedded processors
- Disadvantages of direct form 2
 - Less intuitive
 - Instability in finite precision arithmetic
 - Potential for higher round-off error in floating point implementations
- Bottom Line: Use Direct form II

- Convert to direct form 1
- Write difference equation
- Find impulse response

Correlation

A way to see how similar signals are

- Correlation:
$$r_{xy}(n) = \sum_{k=-\infty}^{\infty} x(k)y(k-n)$$

- Compare this to convolution: $x(n) * y(n) = \sum_{k=-\infty}^{n} x(k)y(n-k)$

https://lpsa.swarthmore.edu/Convolution/CI.html

Correlation

- A way to see how similar signals are
 - Notation can be confusing.
 - Correlation looks at similarity of two signals as a function of lag (I), so book uses notation

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
 where *l* is the lag

Moving average filters