LABORATOR#2

- EX#1 Scrieţi un program în Python care determină şi afişează precizia maşinii, formatată ca număr scris sub formă ştiințifică cu 4 zecimale şi notată cu eps.
- **EX#2** Scrieţi un program în Python care calculează şi afişează în virgulă mobilă cu 16 de zecimale, pentru $n \in \{0,1,2,\ldots,10\}$, numărul x=1/n şi rezultatul următoarelor operații

$$(n+1)x-1 \tag{1}$$

obținute după $k \in \{10, 20, 30\}$ repetări.

Comentați rezultatele obținute.

EX#3 Scrieți un program în Python care calculează sumele parțiale

$$s_n(x) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!}, \quad x \in \mathbb{R},$$
 (2)

pentru $n = 0, ..., N, N \in \mathbb{N}^*$, asociate seriei de aproximare pentru funcția $\sin x, x \in \mathbb{R}$, și afișează sub forma unui tabel n (formatat ca număr întreg), $s_n(x)$ (formatat ca număr în virgulă mobilă cu 20 de zecimale) și eroarea absolută a două sume parțiale consecutive, i.e. $|s_n(x) - s_{n-1}(x)|$ pentru $n \geq 1$, respectiv $|s_n(x)|$ pentru n = 0 (formatată ca număr scris sub forma științifică cu 4 zecimale).

EX#4 Reluați EX#3 scriind o funcție Python care are ca date de intrare:

- numărul de termeni ai seriei (2), $N \in \mathbb{N}^*$;
- argumentul seriei (2), $x \in \mathbb{R}$;

și ca date de ieșire:

- numărul de termeni ai seriei (2), N, formatat ca număr întreg;
- suma parțială a seriei (2) cu N termeni, $s_N(x)$, formatat ca număr în virgulă mobilă cu 20 de zecimale.

Apelați această funcție într-un script Python pentru a afișa tabelul cerut la EX#3.

EX#5 Scrieți un script în Python prin care să arătați că are loc relația

$$\sum_{k=0}^{\infty} \frac{1}{3^k} = \frac{3}{2} \,.$$

 $\mathbf{EX\#6}$ Constanta π se poate calcula folosind sumele parțiale ale seriei

$$s_n = 4\sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1} \,. \tag{3}$$

Scrieţi un fişier script în Python care aproximează constanta π folosind sumele parţiale s_n ale seriei (3) cu $n=1,\ldots,N$ termeni, $N\in\mathbb{N}^*$, eroarea relativă corespunzătoare, i.e. $|s_n(x)-\pi|/|\pi|$ pentru $n\geq 1$, şi eroarea relativă a sumei parţiale actuale în raport cu suma parţială de la pasul anterior, i.e. $|s_n(x)-s_{n-1}(x)|/|s_{n-1}(x)|$ pentru $n\geq 2$, respectiv $|s_n(x)|$ pentru n=1.

Indicații:

Pentru a calcula valoarea exactă a constantei π , folosiți variabila predefinită pi.

Pentru afișarea rezultatelor, folosiți instrucțiunile de formatare asociate comenzii print.