Graph Theory

Outline:

- Introduction
 - Basic terminology and concepts
 - Representations of graphs
 - Operations on Graphs
- Walks, trails, paths, circuits and cycles
 - Eulerian circuits
 - Hamiltonian cycles
- Special types of graphs
- Graph isomorphism and homeomorphism
- Trees
- Graph problems and their applications

Slide 1

Graph Theory

Introduction and History

- Gained sustained interest and dev't only during 1920's.
- First paper on graph theory:
 - published by Leonhard Euler (Swiss) in 1736
 - includes explanation of Königsberg Bridge Problem

• First book on graph theory in 1936.

Slide 2

Graph Theory

Uses and Applications of Graphs

- Graphs are used to represent objects and relationships among those objects
- Can be used to represent
 - road systems
 - friendship networks
 - molecular structures
 - soldering lines on circuit boards
 - pattern recognition
 - parallel algorithms

Slide 3

Graphs & Digraphs

- GRAPH G = {V(G), E(G)}
 - \blacksquare G \equiv set of vertices V(G) + set of edges E(G)
 - Order of G ≡ number of vertices
 - ◆ Size of G ≡ number of edges

Types of graphs

- Directed Graph/Digraph
 - vertices u and v
 - directed edge e = (u, v) [ordered pair]
 - edge (u,v) is **incident from** u
 - edge (u,v) is incident to v
 - vertex v is adjacent to vertex u

Slide 4

Graphs & Digraphs

- GRAPH G = {V(G), E(G)}
 - \blacksquare G \equiv set of vertices V(G) + set of edges E(G)
 - Order of G ≡ number of vertices
 - Size of G ≡ number of edges

Types of graphs

- Undirected Graph
 - vertices u and v
 - undirected edge e = (u, v) or (v,u)
 - edge (u,v) (or (v,u)) is incident on both u and v
 - v is adjacent to u and u is adjacent to v
- ◆ adjacent edges = at least one common vertex

Slide 5

Graphs & Digraphs

• Example: Manila MRT system

 $V(G) = \{M, N, P, C, O, S, D\}$

 $E(G) = \{(M, D), (D, P), (D, C), (P, N), (P, C), (C, S), (O, C)\}$

Graphs & Digraphs

• Example: Courses in BSCS

 $\begin{aligned} V(G) &= \{2, 17, 56, 57, 11, 21, 22, 100, 123\} \\ E(G) &= \{(17, 56), (56, 57), (57, 123), (17, 11), (11, 21), \\ &(21, 123), (11, 22), (22, 100), (2, 100)\} \end{aligned}$

Slide 7

Graphs & Digraphs

• Example:

- Draw the directed graph G where V(G) = {a, b, c, d, e, f}
 - $E(G) = \{(a, d), (b, a), (b, e), (d, c), (f, e)\}$
- Draw the graph H where V(G) = {a, b, c, d, e, f}

 $E(G) = \{(a, d), (b, a), (b, e), (d, c), (f, e)\}$

Graph G

Graph H Slide 8

Subgraphs

- SUBGRAPH of G
 - $G_s = \{ V(G_s), E(G_s) \}$ where $V(G_s) \subseteq V(G)$ and $E(G_s) \subseteq E(G)$

Examples:

Subgraphs

- SPANNING SUBGRAPH of G
 - A subgraph $G_s = \{ V(G_s), E(G_s) \}$ where $V(G_s) = V(G)$.

Examples:

Subgraphs

- SUBGRAPH INDUCED by a set of vertices W
 - A subgraph $G_s = \{ V(G_s), E(G_s) \}$ where $V(G_s) = W$ and $E(G_s)$ are edges of G that join pairs of vertices in W.

Examples:

Graph Theory

- SPECIAL EDGES
 - **Loop** = connects a vertex to itself
 - Parallel/multiple edges = join same pair of vertices
- Weighted/ labeled edges = edges assigned weights Examples:

Graph Theory

- SPECIAL EDGES
 - Multigraph = graph with loops and/or parallel edges
 - Simple graph = graph w/o loops and/or parallel edges

Examples:

Graph Theory

- DEGREE of a VERTEX: Directed Graphs only
- in-degree $\rho^+(\mathbf{v}) \equiv \#$ of edges incident to \mathbf{v} .
- out-degree $\rho^-(v) = \#$ of edges incident from v.

Examples:

Slide 14

Graph Theory

- DEGREE of a VERTEX
 - Degree of vertex v ρ(v) = # of edges incident on v.
 = ρ⁻(v) + ρ⁺(v) in directed graphs

Examples:

Slide 15

Graph Theory

- DEGREE of a VERTEX
 - Degree of vertex v ρ(v) = # of edges incident on v.
 = ρ⁻(v) + ρ⁺(v) in directed graphs

Examples:

Slide 16

Graph Theory

SPECIAL VERTICES

- Isolated vertex $\mathbf{v} \equiv \rho(\mathbf{v}) = 0$.
- End vertex $\mathbf{v} \equiv \rho(\mathbf{v}) = 1$.
- Sink vertex $\mathbf{v} \equiv \rho^+(\mathbf{v}) = |V(G) 1|$ and $\rho^-(\mathbf{v}) = 0$.

Examples:

Graph Theory

FIRST THEOREM of GRAPH THEORY

- sum of $\rho(v) = 2 \cdot |E(G)|$
- sum of $\rho^+(v) = |E(G)|$
- sum of $\rho^{-}(v) = |E(G)|$

Example:

Graph Theory

HANDSHAKING LEMMA

of vertices with odd degree = even

Example:

Slide 19

Graph Representations

INCIDENCE MATRIX

- rows of incidence matrix M(G) ⇔ vertices
- columns of incidence matrix M(G) ⇔ edges
- entry for row v and column e = # of times e is incident on v.

Example:

e₁ e₂ e₃ e₄ e₅ e₆ e₇

Slide 20

Graph Representations

INCIDENCE MATRIX

- rows of incidence matrix M(G) ⇔ vertices
- columns of incidence matrix $M(G) \Leftrightarrow edges$
- entry for row v and column e = # of times e is incident on v.

Example:

e₁ e₂ e₃ e₄ e₅ e₆ e₇ A B C D

Slide 21

Graph Representations

ADJACENCY MATRIX

- rows of adjacency matrix M(G) ⇔ vertices
- columns of adjacency matrix M(G) ⇔ vertices
- entry for row i and column j = # of edges connecting i and j.

Example:

ABCDE AB C D

Slide 22

Graph Representations

ADJACENCY MATRIX

- rows of adjacency matrix M(G) ⇔ vertices
- \blacksquare columns of adjacency matrix M(G) \Leftrightarrow vertices
- lacksquare entry for row i and column j = # of edges connecting i and j.

Example:

ABCDE AB C D

Slide 23

Graph Operations

Removal of a vertex v from graph G

- $V(G v) = V(G) \{v\}$
- E(G v) = E(G) except those incident on v

Examples:

After removal of vertex A

After removal of vertex Pde 24

Graph Operations

- Removal of a edge e from graph G
- V(G − e) = V(G)
- $E(G e) = E(G) \{e\}$

Examples:

After removal of edge (A,D)

After removal of edge (D) [25]

Graph Operations

- Addition of an edge e to graph G
- V(G + e) = V(G)
- $E(G + e) = E(G) + \{e\}$

Examples:

After adding edge (A,D)

After adding of edge (C, §)_{de 26}

Graph Operations

- Complement of a (Simple) Graph
 - V(G^c) = V(G) and E(G^c) = edges such that:
 - given vertices a,b ∈ V(G):
 - edge (a,b) \in E(G^c) iff edge (a,b) \notin E(G)

Examples:

Graph G^c

Slide 27

Slide 29

Graph Theory

- Outline:
 - Introduction
 - ◆ Basic terminology and concepts
 - Representations of graphs
 - Operations on Graphs
 - Walks, trails, paths, circuits and cycles
 - Eulerian circuits
 - Hamiltonian cycles
 - Special types of graphs
 - Graph isomorphism and homeomorphism
 - Trees
 - Graph problems and their applications

Slide 28

Walks, Trails, Paths, etc.

- WALKS and related definitions
- walk \equiv finite non-empty sequence of edges $(V_1, V_2), (V_2, V_3), \dots, (V_{n-1}, V_n)$ such that (V_i, V_{i+1}) is an edge in G.
 - denoted by v₁ v₂ v₃ ... v_{n-1} v_n.
 - ullet v_1 is called the **initial vertex**
 - v_n is called the final vertex.
 - length ≡ number of edges in the walk.
 - even number of edges ≡ even walk
 - odd number of edges ≡ odd walk
- trail = walk + no repeated edges.
- path = walk + no repeated vertices.

Walks, Trails, Paths, etc.

WALKS and related definitions

Example:

ABCBDEH ABEDHFE FHEDBC ABDECBA ABDA

Walks, Trails, Paths, etc.

WALKS and related definitions

Example:

ADEFHEC BADEFHEF ADBCE ADEC

Slide 31

Walks, Trails, Paths, etc.

- WALKS and related definitions
- closed walk
 - \equiv walk that begins and ends at the same vertex.
- closed trail or circuit
 - \equiv closed walk + no repeated edges.
- closed path or cycle
 - \equiv closed walk + no repeated vertices.

Slide 32

Walks, Trails, Paths, etc.

WALKS and related definitions

Example:

ADECBDA BCEDAB BDEHFECB ABDEFHEDA

Slide 33

Walks, Trails, Paths, etc.

WALKS and related definitions

Example:

Slide 34

Walks, Trails, Paths, etc.

- CONNECTED and DISCONNECTED GRAPHS
 - connected (undirected) graph
 - \equiv there is a path between $\underline{any\,two}$ of its vertices.
 - disconnected (undirected) graph
 - \equiv a (undirected) graph that is not connected.
 - components ≡ connected subgraphs of a graph (Note: A connected graph is therefore made up of only one component.)
 - number of components denoted by C(G)

Walks, Trails, Paths, etc.

• CONNECTED and DISCONNECTED GRAPHS Example:

Slide 35

Walks, Trails, Paths, etc.

- STRONGLY CONNECTED GRAPHS
 - strongly connected (directed) graph
 - ≡ there is a path between <u>any two</u> of its vertices.
 - weakly connected (directed) graph
 - ≡ there is a path between any two of its vertices in the underlying undirected graph.

Slide 37

Walks, Trails, Paths, etc.

- CUT EDGES and CUT VERTICES
 - **cut edge** of graph G
 - \equiv edge e such that G e is a disconnected graph.
 - cut set \equiv set of all cut edges in G.
 - **cut vertex/point** of a graph G
 - \equiv vertex v such that G v is a disconnected graph.
- THEOREM. An edge e of a graph G is a cut edge of G iff it is not contained in any cycle of the graph G.

Slide 38

Walks, Trails, Paths, etc.

- DISTANCES and DIAMETERS
 - distance between two vertices u and v, d(u,v)
 - \equiv length of the *shortest path* between u and v.
 - diameter of a connected graph
 - ≡ *maximum distance* between any two of its vertices.

Slide 39

Walks, Trails, Paths, etc.

- DISTANCES and DIAMETERS
 - distance between two vertices u and v, d(u,v)
 - \equiv length of the *shortest path* between u and v.
 - diameter of a connected graph
 - ≡ maximum distance between any two of its vertices.

Slide 40

EULERIAN CIRCUITS

- Eulerian circuit in a graph G
 - ≡ circuit which includes all vertices and all edges of G.
- **Eulerian** graph \equiv if it contains a Eulerian circuit.
- THEOREM

A non-empty connected graph is Eulerian if and only if and only if every vertex has an even degree.

Graph G Graph H Graph J Graph K

Graph L Slide 41

EULERIAN CIRCUITS

Remarks:

- If we can find a trail through a graph that covers every edge exactly once but does not begin and end at the same vertex, then the graph is simply edgetraceable.
- A graph is edge-traceable if and only if it has at most two vertices of odd degree.

Graph K

EULERIAN CIRCUITS

An application: Königsberg Bridge Problem

Pass through all the bridges and return to starting point.

- Need to find an Eulerian circuit in corresponding graph
 - ◆ Vertices = locations
 - ◆ Edges = bridges

Slide 43

HAMILTONIAN CYCLES

Hamiltonian cycle

- ≡ a cycle which includes every vertex in the graph G exactly once (except for the initial and final vertices).
- A connected graph is Hamiltonian if it contains a Hamiltonian cycle.

Slide 44

Graph Theory

Outline:

- Introduction
 - ◆ Basic terminology and concepts
 - Representations of graphs
 - ◆ Operations on Graphs
- Walks, trails, paths, circuits and cycles
 - ◆ Eulerian circuits
 - ◆ Hamiltonian cycles
- Special types of graphs
- Graph isomorphism and homeomorphism
- Trees
- Graph problems and their applications