Problema del Viajante (TSP)

García Prado, Sergio sergio@garciparedes.me

25 de abril de 2017

Resumen

En este documento se realiza una descripción acerca del problema del viajante (TSP), que consiste en la búsqueda del camino más corto que permita visitar un conjunto de nodos. Además se proporcionan distintas formulaciones para dicho problema así como un conjunto de heurísticas aproximadas que permiten su resolución de manera mucho menos costosa. También se presenta la descripción de la variante del problema del viajante con ventana de tiempo (TSPTW), que se caracteriza por exigir que la visita de un determinado nodo se realice dentro de un intervalo temporal prefijado. Por último, se presentan las soluciones de distintos conjuntos de datos resultas mediantes las estrategias descritas en el documento.

1. Introducción

[TODO]

2. Problema del Viajante (TSP)

[TODO]

Minimizar
$$\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}x_{ij}$$
sujeto a
$$\sum_{i=1}^{n} x_{ij} = 1, \qquad \forall j \in \{1, ..., n\}$$
$$\sum_{j=1}^{n} x_{ij} = 1, \qquad \forall i \in \{1, ..., n\}$$
$$\sum_{i \in S, j \notin S} x_{ij} \ge 1, \qquad \forall S \subset N/S \ne \emptyset, S \ne N$$
$$x_{ij} \in \{0, 1\}, \quad \forall i, j \in \{1, ..., n\}$$

Ecuación 1: Formulación estándar para el problema del viajante (TSP).

2.1 Estrategia Exacta

[TODO]

2.2 Formulación de Tucker-Miller

[TODO]

2.3 Formulación de Redes

[TODO]

Minimizar
$$\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}x_{ij}$$
 sujeto a
$$\sum_{i=1}^{n} x_{ij} = 1, \qquad \forall j \in \{1, ..., n\}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad \forall i \in \{1, ..., n\}$$

$$u_{i} - u_{j} + nx_{ij} \leq n - 1, \quad \forall i, j \in \{2, ..., n\}, i \neq j$$

$$u_{i} \in \{2, ..., n\}, \qquad \forall i \in \{2, ..., n\}$$

$$u_{1} = 1, \qquad \qquad \forall i, j \in \{1, ..., n\}$$

Ecuación 2: Formulación de Tucker-Miller para el problema del viajante (TSP).

Minimizar
$$\sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}x_{ij}$$
sujeto a
$$\sum_{i=1}^{n} x_{ij} = 1, \qquad \forall j \in \{1, ..., n\}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad \forall i \in \{1, ..., n\}$$

$$\sum_{j=1}^{n} y_{ij} - \sum_{j=1}^{n} y_{ji} = b_{i}, \qquad \forall i \in \{1, ..., n\}$$

$$y_{ij} \leq (n-1)x_{ij}, \quad \forall i, j \in \{1, ..., n\}$$

$$b_{1} = n - 1,$$

$$b_{i} = -1, \qquad \forall i \in \{2, ..., n\}$$

$$y_{ij} \geq 0, \qquad \forall i, j \in \{1, ..., n\}$$

$$x_{ij} \in \{0, 1\}, \qquad \forall i, j \in \{1, ..., n\}$$

Ecuación 3: Formulación de Redes para els problema del viajante (TSP).

- 2.4 Estrategia Greedy
 [TODO]
- 2.5 Estrategia 2-OPT [TODO]
- 2.6 Estrategia GRASP [TODO]
- 2.7 Estrategia Simulated Anneling [TODO]
 - 3. Problema del Viajante con Ventana de Tiempo (TSPTW) [TODO]

$$\begin{aligned} & \text{Minimizar} & & \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} x_{ij} \\ & \text{sujeto a} & & \sum_{i=1}^{n} & x_{ij} = 1, & \forall j \in \{1, ..., n\} \\ & & & \sum_{j=1}^{n} & x_{ij} = 1, & \forall i \in \{1, ..., n\} \\ & & & \beta_i + d_{ij} - M(1 - x_{ij}) \leq \beta_j, & \forall i, j \in \{1, ..., n\}, j \neq 1 \\ & & u_i - u_j + n x_{ij} \leq n - 1, & \forall i, j \in \{2, ..., n\}, i \neq j \\ & & u_i \in \{2, ..., n\}, & \forall i \in \{2, ..., n\} \\ & & u_1 = 1, & \\ & & u_1 = 1, & \\ & & u_1 \leq \beta_i, & \forall i \in \{1, ..., n\} \\ & & \beta_i \leq b_i, & \forall i \in \{1, ..., n\} \\ & & x_{ij} \in \{0, 1\}, & \forall i, j \in \{1, ..., n\} \end{aligned}$$

Ecuación 4: Formulación de Tucker-Miller para el problema del viajante con ventana de tiempo (TSPTW).

4. RESOLUCIÓN DE PROBLEMAS

En esta sección se presentan los resultados obtenidos tras resolver el problema del viajante (TSP) con distintos conjuntos de datos de entrada. Dichos resultados se han agrupado por problema en lugar de por estrategia de resolución, lo cual permite comparar de manera más simple cada una de ellas. En algunos casos estos conjuntos de datos se corresponden con coordenadas cartesianas, para lo cual es necesario calcular la distancias entre cada par de puntos, lo que permite realizar una representación gráfica de la solución. Sin embargo, en otros casos tan solo se suministran las distancias, por lo que la representación gráfica no es posible. Por último, se resuelven dos problemas con ventana de tiempo (TSPTW) de manera exacta, para el cual se suministran además los puntos de inicio y fin permitidos para visitar cada nodo.

4.1 burma14

El conjunto de datos está formado por las coordenadas de 14 nodos (por lo que es necesario calcular las distancias previamente). En este caso se resuelve de manera exacta mediante la formulación de *Tucker-Miller* y la de *Redes*. En la tabla 1 se muestran los resultados de forma numérica mientras que en la figura 1 se muestra la representación gráfica. Tal y como se puede apreciar ambas soluciones son óptimas, sin embargo proporcionan caminos distintos

Método	Distancia	Camino
Exacto (TM)	30	1 2 3 4 12 5 6 14 7 13 8 11 9 10
Exacto (Redes)	30	1 10 9 11 8 13 7 6 5 12 4 3 14 2

Tabla 1: Soluciones para el conjunto de datos burma14

4.2 br17

El conjunto de datos está formado por la matriz de distancias de 17 nodos. En este caso se resuelve de manera exacta mediante la formulación de *Tucker-Miller* y la de *Redes*. Al igual que en el caso anterior, ambas soluciones son óptimas, sin embargo proporcionan caminos distintos. Los resultados se muestran en la tabla 2.

Figura 1: Representación gráfica de las distintas soluciones para el conjunto de datos burma14

Método	Distancia	Camino
Exacto (TM)	39	1 12 14 3 13 11 2 10 17 8 9 4 5 16 15 7 6
Exacto (Redes)	39	1 3 14 10 11 2 13 6 7 16 15 5 4 17 8 9 12

Tabla 2: Soluciones para el conjunto de datos br17

$4.3\ \mathrm{n}21\ 1$

El conjunto de datos está formado por la matriz de distancias de 21 nodos. En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, GRASP y Simulated Anneling. Los resultados se muestran en la tabla 3.

Método	Distancia	Camino
Exacto	-	-
Greedy	231	1 14 4 8 15 3 16 2 6 12 9 11 13 19 18 20 10 17 7 21 5
2-opt	221	1 5 21 14 4 17 7 10 18 20 19 11 13 9 12 6 2 16 3 15 8
GRASP	210	1 8 15 3 16 2 6 12 9 13 11 19 20 18 10 17 7 4 21 14 5
Simulated Annealing	198	1 5 14 21 7 17 4 10 20 18 19 13 11 9 12 6 2 16 3 15 8

Tabla 3: Soluciones para el conjunto de datos n21_1

$4.4\ \mathrm{n}21_2$

El conjunto de datos está formado por la matriz de distancias de 21 nodos. En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, GRASP y Simulated Anneling. Los resultados se muestran en la tabla 4.

Método	Distancia	Camino
Exacto	174	1 14 8 4 21 13 18 16 11 10 12 17 6 7 20 9 5 19 3 15 2
Greedy	230	1 2 21 11 10 20 13 18 16 12 17 7 6 4 8 5 9 19 3 15 14
2-opt	216	1 14 2 15 19 5 9 3 8 4 21 13 18 16 12 17 7 6 20 10 11
GRASP	178	1 14 21 13 18 16 11 10 12 17 20 7 6 4 8 5 9 19 3 15 2
Simulated Annealing	187	1 21 13 18 4 8 7 6 16 11 10 12 17 20 5 9 19 3 15 2 14

Tabla 4: Soluciones para el conjunto de datos n21 2

$4.5\ \mathrm{n}21_3$

El conjunto de datos está formado por la matriz de distancias de 21 nodos. En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, GRASP y Simulated Anneling. Los resultados se muestran en la tabla 5.

Método	Distancia	Camino
Exacto	213	1 6 20 16 15 18 13 12 8 3 5 19 17 10 9 11 2 21 4 14 7
Greedy	227	1 7 6 20 18 13 12 19 15 16 8 3 5 17 10 9 11 2 21 4 14
2-opt	217	1 7 6 20 16 15 8 18 13 12 19 3 5 17 10 9 11 2 21 4 14
GRASP	217	1 7 6 20 16 15 8 18 13 12 19 3 5 17 10 9 11 2 21 4 14
Simulated Annealing	213	1 7 14 4 21 2 11 9 10 17 19 5 3 8 13 12 18 15 16 20 6

Tabla 5: Soluciones para el conjunto de datos n21 3

$4.6\ \mathrm{n}21\ 4$

El conjunto de datos está formado por la matriz de distancias de 21 nodos. En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, GRASP y Simulated Anneling. Los resultados se muestran en la tabla 6.

Método	Distancia	Camino
Exacto	189	1 12 5 15 11 14 7 6 2 9 20 3 8 10 16 19 18 17 21 13 4
Greedy	254	1 12 15 11 20 2 6 9 7 14 5 16 19 18 17 10 3 8 4 13 21
2-opt	222	1 12 21 17 18 19 16 10 8 3 20 11 15 5 14 7 6 2 9 13 4
GRASP	213	1 12 5 14 7 6 2 9 10 16 19 18 17 21 13 4 8 3 20 11 15
Simulated Annealing	194	1 4 13 21 17 18 19 16 10 8 3 11 20 9 2 6 7 14 15 5 12

Tabla 6: Soluciones para el conjunto de datos n21 4

$4.7 \ \mathrm{n}21_5$

El conjunto de datos está formado por la matriz de distancias de 21 nodos. En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, GRASP y Simulated Anneling. Los resultados se muestran en la tabla 7.

Método	Distancia	Camino
Exacto	193	1 12 14 20 10 7 16 13 15 5 11 6 3 18 9 2 4 21 19 17 8
Greedy	212	1 8 17 19 21 4 2 9 18 3 6 11 5 15 16 10 7 13 20 14 12
2-opt	204	1 8 17 19 21 4 2 9 18 13 10 7 16 15 5 11 6 3 20 14 12
GRASP	203	1 7 10 5 11 6 3 15 16 13 18 9 2 4 19 21 17 8 12 14 20
Simulated Annealing	193	1 8 17 19 21 4 2 9 18 3 6 11 5 15 13 16 7 10 20 14 12

Tabla 7: Soluciones para el conjunto de datos n21 5

4.8 tsp 60 1

El conjunto de datos está formado por las coordenadas de 60 nodos (por lo que es necesario calcular las distancias previamente). En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, *GRASP* y *Simulated Anneling*. En la tabla 8 se muestran los resultados de forma numérica mientras que en la figura 2 se muestra la representación gráfica.

Método	Distancia	Camino
Exacto	-	-
Greedy	772	1 35 53 27 23 32 8 12 20 51 54 39 31 50 58 15 26 6 57 46 30 13 22 10 14 37 18 24 52 45 3 33 2 7 17 38 41 19 9 11 44 36 59 5 42 48 40 49 60 21 55 47 56 43 25 34 16 4 29 28
2-opt	752	1 35 53 27 23 32 8 12 20 51 21 42 48 5 56 36 11 44 59 3 33 45 52 24 41 38 17 2 7 30 46 26 6 57 15 58 31 50 54 39 40 49 60 22 10 13 14 37 18 29 4 34 16 25 19 9 43 47 55 28
GRASP	654	1 35 53 27 23 40 49 60 22 13 30 46 57 6 26 15 58 50 31 39 54 51 20 12 21 8 32 48 42 5 59 36 44 11 9 43 56 47 55 28 29 4 16 34 25 19 41 38 17 7 2 33 3 45 52 24 18 37 14 10
Simulated Annealing	666	1 10 22 13 60 49 40 20 12 21 51 54 39 31 50 58 15 26 6 57 46 30 14 24 41 38 17 7 2 33 3 45 52 37 18 29 4 19 25 34 16 28 55 43 9 11 44 59 36 47 56 5 48 42 8 32 23 27 53 35

Tabla 8: Soluciones para el conjunto de datos tsp 60 1

4.9 tsp 60 2

El conjunto de datos está formado por las coordenadas de 60 nodos (por lo que es necesario calcular las distancias previamente). En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, *GRASP* y *Simulated Anneling*. En la tabla 9 se muestran los resultados de forma numérica mientras que en la figura 3 se muestra la representación gráfica.

Método	Distancia	Camino
Exacto	-	-
Greedy	755	1 57 30 9 28 39 47 24 32 37 15 56 40 50 8 27 5 43 16 21 33 6 45 46 52 38 55 3 36 53 20 2 17 48 23 42 31 41 59 49 58 12 35 11 22 25 19 18 51 14 10 60 26 34 54 7 4 44 29 13
2-opt	686	1 57 30 9 28 4 44 29 13 5 27 8 40 50 56 15 54 7 26 34 60 10 14 47 39 19 25 24 32 37 18 51 43 16 21 33 6 45 46 52 38 55 3 36 53 20 2 17 12 35 11 22 31 23 48 42 41 59 49 58
GRASP	686	1 57 30 9 28 4 44 29 13 5 27 8 40 50 56 15 54 7 26 34 60 10 14 47 39 19 25 12 35 11 22 24 32 37 18 51 43 16 21 33 6 45 46 52 38 55 3 36 53 20 2 17 48 23 42 31 41 59 49 58
Simulated Annealing	691	1 57 3 52 46 38 55 6 33 45 21 16 43 51 18 50 40 8 27 5 13 29 44 4 28 30 9 14 10 60 34 26 7 54 56 15 37 24 32 47 39 19 25 22 11 12 35 59 41 31 42 48 23 17 2 20 53 36 49 58

Tabla 9: Soluciones para el conjunto de datos tsp 60 2

4.10 tsp 60 3

El conjunto de datos está formado por las coordenadas de 60 nodos (por lo que es necesario calcular las distancias previamente). En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, *GRASP* y *Simulated Anneling*. En la tabla 10 se muestran los resultados de forma numérica mientras que en la figura 4 se muestra la representación gráfica.

Método	Distancia	Camino
Exacto	-	-
Greedy	690	1 27 4 38 49 40 31 57 34 2 39 43 46 29 53 24 22 20 28 12 6 41 60 54 15 10 25 11 21 7 30 50 26 33 35 36 8 37 59 13 32 48 23 56 18 52 19 3 51 55 5 47 17 45 42 44 16 14 58 9
2-opt	751	1 9 58 14 16 44 45 42 17 47 55 3 19 51 52 18 23 56 48 13 32 35 36 8 37 59 5 21 11 7 30 15 54 60 41 6 28 12 22 20 29 43 39 53 46 33 26 24 50 10 25 31 57 34 2 40 49 38 4 27
GRASP	690	1 27 4 38 49 40 31 57 34 2 39 43 46 29 53 24 22 20 28 12 6 41 60 54 15 10 25 11 21 7 30 50 26 33 35 36 8 37 59 13 32 48 23 56 18 52 19 3 51 55 5 47 17 45 42 44 16 14 58 9
Simulated Annealing	682	1 9 4 24 22 20 26 33 46 29 43 39 53 57 2 34 31 40 32 13 35 36 8 37 59 52 18 56 23 48 49 38 58 14 16 17 55 3 19 51 5 47 42 45 44 21 11 7 30 15 10 25 60 41 6 28 12 54 50 27

Tabla 10: Soluciones para el conjunto de datos tsp 60 3

4.11 tsp 100 1

El conjunto de datos está formado por las coordenadas de 100 nodos (por lo que es necesario calcular las distancias previamente). En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy*, 2-opt, *GRASP* y *Simulated Anneling*. En la tabla 11 se muestran los resultados de forma numérica mientras que en la figura 5 se muestra la representación gráfica.

Método	Distancia	Camino
Exacto	-	-
Greedy	989	1 24 41 59 57 40 31 64 80 63 36 47 99 4 67 79 82 19 45 97 50 2 93 20 69 5 78 92 29 27 86 28 15 74 18 65 23 71 10 25 17 32 52 66 12 42 16 61 26 84 14 83 37 77 60 38 88 96 85 70 94 44 89 21 87 91 34 7 22 90 62 58 46 35 54 43 76 49 95 13 48 11 53 72 98 8 68 6 3 73 75 100 33 39 81 9 55 56 30 51
2-opt	1005	1 24 41 59 57 40 31 64 80 63 36 47 99 4 67 79 82 19 45 97 39 81 33 100 3 73 75 28 86 27 29 92 78 5 69 20 43 76 49 95 13 48 11 12 42 16 61 26 84 14 83 37 77 60 38 88 96 85 70 94 44 89 21 87 91 34 7 22 90 62 58 46 35 54 68 98 8 93 50 2 66 52 32 53 72 17 25 10 23 71 65 18 74 6 15 9 55 56 30 51
GRASP	899	1 28 86 27 29 92 78 5 69 20 43 76 49 95 13 48 11 10 25 17 32 52 66 12 42 16 61 26 84 14 83 37 77 60 38 88 96 85 70 94 44 89 21 87 91 34 7 22 90 62 58 46 35 54 68 98 8 53 72 71 23 65 18 74 6 15 75 73 3 100 33 45 97 19 79 67 82 24 41 59 57 40 31 64 80 63 36 47 99 4 93 50 2 39 81 9 55 56 30 51
Simulated Annealing	968	1 24 41 59 57 40 31 64 80 63 36 47 99 4 67 79 82 19 45 97 50 2 93 20 69 5 78 92 68 98 8 53 72 6 74 18 65 23 71 10 25 17 32 52 66 12 42 16 61 26 84 14 83 37 77 60 38 88 96 85 70 94 44 89 21 87 91 34 7 22 90 62 58 46 35 54 43 76 49 95 13 48 11 27 29 86 28 30 56 55 9 81 39 33 100 3 73 75 15 51

Tabla 11: Soluciones para el conjunto de datos tsp_100_1

$4.12 \ \text{tsp}_100_2$

El conjunto de datos está formado por las coordenadas de 100 nodos (por lo que es necesario calcular las distancias previamente). En este caso se ha resulto de manera exacta mediante la formulación de *Tucker-Miller* y de manera aproximada mediante heurísticas *Greedy, 2-opt, GRASP* y *Simulated Anneling*. En la tabla 12 se muestran los resultados de forma numérica mientras que en la figura 6 se muestra la representación gráfica.

Método	Distancia	Camino
Exacto	-	-
Greedy	935	1 22 45 82 11 62 92 4 35 44 48 94 34 42 68 56 32 85 61 25 99 38 66 73 19 43 74 40 7 64 83 41 60 15 90 36 30 17 10 58 29 72 18 33 70 88 91 100 69 95 2 49 46 12 80 93 50 3 71 14 65 52 96 89 97 79 28 63 98 78 77 86 9 55 53 51 26 6 59 57 8 5 13 81 84 24 39 54 67 27 75 47 37 21 16 23 76 20 31 87
2-opt	946	1 28 96 52 89 97 71 44 48 94 68 42 37 47 75 27 67 54 39 84 24 11 62 92 35 4 14 65 22 45 82 5 8 57 59 6 55 26 51 53 56 34 81 13 21 9 86 77 78 98 70 33 18 88 91 74 19 43 66 73 79 80 93 50 3 32 85 61 25 99 38 12 2 95 49 46 69 100 41 83 64 7 40 60 36 90 15 30 17 10 58 29 72 63 76 23 16 31 20 87
GRASP	863	1 87 31 20 16 23 76 63 88 91 70 33 18 72 29 58 10 17 30 15 90 36 60 40 7 64 83 74 41 100 69 46 49 95 2 12 38 99 25 61 85 32 3 50 93 80 79 73 66 43 19 71 65 14 97 89 52 96 28 98 78 77 86 9 5 21 26 51 53 55 59 6 57 8 13 81 84 24 39 54 67 47 75 27 37 56 68 42 34 94 48 44 35 4 92 62 11 82 45 22
Simulated Annealing	866	1 22 45 82 11 62 92 4 35 44 48 94 34 42 68 56 37 27 75 47 67 54 39 24 84 81 13 8 57 6 59 55 53 51 26 21 5 9 86 77 78 98 33 70 63 58 29 72 18 88 91 100 69 46 49 95 2 12 38 99 25 61 85 32 3 50 93 80 79 73 66 43 19 74 41 83 64 7 40 60 36 90 15 30 17 10 71 65 14 97 89 52 96 28 76 23 16 20 31 87

Tabla 12: Soluciones para el conjunto de datos tsp_100_2

4.13 n40w20.001

El conjunto de datos está formado por la matriz de distancias de 41 nodos junto con sus correspondientes ventanas de tiempo. En este caso se ha resulto de manera exacta mediante la formulación de Tucker-Miller añadiendo las correspondientes restricciones $beta(\beta)$ referidas a las ventanas de tiempo. Los resultados se muestran en la tabla 13.

Método	Distancia	Camino
Exacto	500	1 8 14 17 38 7 16 13 40 3 36 26 5 24 33 4 39 9 2 19 34 15 6 37 11 32 23
		22 27 20 10 30 12 28 35 29 25 21 18 41 31

Tabla 13: Soluciones para el conjunto de datos n40w20.001

$4.14 \quad n40w20.004$

El conjunto de datos está formado por la matriz de distancias de 41 nodos junto con sus correspondientes ventanas de tiempo. En este caso se ha resulto de manera exacta mediante la formulación de Tucker-Miller añadiendo las correspondientes restricciones $beta(\beta)$ referidas a las ventanas de tiempo. Los resultados se muestran en la tabla 14.

M	[étodo	Distancia	Camino
E	Exacto	382	1 14 20 27 34 4 8 16 29 10 31 19 38 5 30 32 7 25 33 37 39 15 9 11 24 6 12
			40 22 35 17 36 21 3 28 26 13 2 23 18 41

Tabla 14: Soluciones para el conjunto de datos n40w20.004

4.15 n60w20.005

El conjunto de datos está formado por la matriz de distancias de 61 nodos junto con sus correspondientes ventanas de tiempo. En este caso se ha resulto de manera exacta mediante la formulación de Tucker-Miller añadiendo las correspondientes restricciones $beta(\beta)$ referidas a las ventanas de tiempo. Los resultados se muestran en la tabla 15.

Método	Distancia	Camino
Exacto	603	1 9 12 14 36 19 27 43 52 13 51 34 8 30 35 4 45 48 11 21 56 17 29 38 46 20
		59 3 50 26 22 33 49 47 54 23 2 53 57 18 7 58 40 28 37 55 32 44 24 39 41
		60 31 15 10 6 25 61 16 42 5

Tabla 15: Soluciones para el conjunto de datos n60w20.005

 $\textbf{Figura 2:} \ \textit{Representaci\'on gr\'afica de las distintas soluciones para el conjunto de datos } \textbf{tsp_}60_1$

 ${\bf Figura~3:}~ Representaci\'on~gr\'afica~de~las~distintas~soluciones~para~el~conjunto~de~datos~tsp_60_2$

 ${\bf Figura~4:}~ Representaci\'on~gr\'afica~de~las~distintas~soluciones~para~el~conjunto~de~datos~tsp_60_3$

Figura 5: Representación gráfica de las distintas soluciones para el conjunto de datos tsp_100_1

Figura 6: Representación gráfica de las distintas soluciones para el conjunto de datos tsp_100_2

REFERENCIAS

- [1] AGUADO, J. S. Modelos de Investigación Operativa, 2016/17.
- [2] GARCÍA PRADO, S. Mosel Examples. https://github.com/garciparedes/mosel-examples.