Mechanical Properties of thin-films used in Semiconductor Devices

MM3011

Mechanical Metallurgy Lab

IIT Madras 7 November 2016

Outline

- ► Fabrication of Semiconductor devices
- ▶ Thin Films
- Mechanical Behavior Problems
- Mechanical Testing Techniques
 - Micro-Tensile testing
 - Nano-Indentation test
- Data Analysis
- Applications

Semiconductor Devices

History of semiconductor devices

Images from https://en.wikipedia.org/wiki/Transistor and /Cat's-whisker_d etector

Evolution of IC Devices and Technology

MOSFET

Figure1:Complimentary Metal-Oxide Semiconductor Transistor[1]

Evolution of IC Devices and Technology

Fairchild Semiconductor, 1959

 $\label{prop:prop:prop:interconnections} \ [4] \ \mbox{and First generation semiconductor } chip[1]$

Thin Films

▶ **Defination:** A thin film is a 2 dimensional layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness.

Characteristics of Thin Films:

- size
- cost consideration
- complex interconnections
- low or prescribed temperature coefficients
- low noise
- wide range of resistor and capacitor values
- Reproducibility
- compatibility with silicon
- finer grain size

Mechanical Behavior Problems[1]

- Plastic Deformation
- Wafer Cracking
- ► Thin Film Peeling
- Metal Crack Problem
- Electromigration and voiding

Considerations in Mechanical Behavior

- ► Thin Film Stresses
 - Residual stresses
 - Lattice Misfit (epitaxial film)
 - Thermal stresses
 - External stresses
- Finer Grain size
- ▶ Dislocations (10¹¹cm⁻²)
- Impurities
- Voids

Failure associated with inhomogeneous plastic flow

Bird's Beak and Dislocations

MOSFET

Figure1:Complimentary Metal-Oxide Semiconductor Transistor[1]

Wafer Cracking

Thin Film Debonding

► Thin Film Peeling

► Thin Film Buckling

Metal Crack Problem in Interconnect Metals

Electromigration Problem for Interconnect Metals

Methods for Mechanical Characterization of Thin Films

- At present there are no specific ASTM Standards for testing of Thin films
- Standard methods for bulk materials are scaled down to fit the thin film specimen geometry
- ▶ Some of the Testing techniques presently used are:
 - Micro-Tensile Testing
 - Nano Indentation method
 - Wafer/Substrate Curvature Testing
 - Pressurized Bulge Test
 - Adhesion Testing (Thin films to its Substrate)

MICRO TENSILE TESTING

- Problems with conventional testing methods
 - ▶ thin film separation
 - gripping of the sample
 - sensitivity
 - stress and strain measurements
- Fabrication of Micro-Tensile test specimen
 - Silicon frame tensile specimen
 - Photo lithographic patterning
 - Selective etching of Silicon substrate
 - Silicon frame cutting
- Force measurement using load cells
- Displacement measurement using interferometric techniques

Micro-Tensile test specimen

Fabrication of Micro-Tensile test specimen.[4]

- Silicon frame tensile specimen
- Photo lithographic patterning
- Selective etching of Silicon substrate
- Silicon frame cutting

Micro-Tensile testing

 $\hline \mbox{Figure 3:Tensile specimen assembly including aluminum tensile specimen and MEMS support assembly and force gage for use in the TEM. [4]$

NANO INDENTATION TESTING

- Similar to the conventional hardness test, but is performed on a much smaller scale by use of specialized equipment
 - A nano-intender
- ► The force(P) required to press a sharp diamond indenter into tested material is continuously recorded as a function of the indentation depth(h)

Nano Indentation Testing

Measurement of Elastic Modulus of Thin Film

Figure4:Load-depth record from an instrumented indentation test of an electrodeposited Cu film $1\mu m$ thick.[4]

Nano Indentation Testing

 E_r is the reduced Elastic modulus of the sample S is stiffness $\frac{dP}{dh}$, taken for unloading portion of curve.

A is contact Area

 ν_i is the Poisson's ratio of the intender ν_f is the Poisson's ratio of the thin film E_i is the indenter's elastic modulus E_f is the thin film's elastic modulus

Nano Indentation Testing

Hardness is defined as the ratio of indentation load and projected contact area:

$$H = \frac{P_{max}}{A_{projected}}$$

▶ For a metal film the yield stress, σ_{ys} , can be taken as the 1/3 of the hardness measured by nano-indentation, or more accurately it can be extracted from the extent of the plastic zone size around the indenter, c:

$$\sigma_{ys}=rac{3P_{max}}{2\pi c^2}$$

Interpretation of Experimental Values

Material	Fabrication Method	Thickness(μm)	Yield Strength(MPa)	UTS(MPa)/Hardness(GPa)	Young's Modulus(GPa)
Microtensile Test[2]					
Al	e-beam evaporated method	1	94	151	24-30
Cu	e-beam evaporated method	1	160	-	125-129
Au	e-beam evaporated method	1	90	-	53-55
Nano Indentation Test[4]					
Cu	electro-deposited annealed	0.5	-	1.04-1.27	121-132
Cu	electro-deposited annealed, polished	0.5	-	1.21-1.29	131-138

Reviews of the mechanical properties of thin films have appeared over the years. The general conclusions formulated are still relevant:

- ► The elastic properties of thin films ordinarily do not differ greatly from bulk properties, and Youngs moduli measured by various techniques do not differ greatly.
- ► The thinner the films, the greater are the hardness and strength.
- Specimen preparation methods and the structure of the films have a significant effect on the mechanical properties of the films.

Grain size and structural size effects

- ▶ Hall-Petch rule
 - Strength increases with the inverse square root of the grain size
 - ► Thin films(up to certain small grain size) have higher strengths than bulk materials of the same chemical composition.
- Low Elongation to Failure
 - Very low values are not commonly interpreted to mean that the film lacks the capacity for plastic deformation, but rather is considered to be a geometric effect.
- Young's modulus
 - young's modulus values generally match with the bulk materials but significantly depend on the experimentation method.[4]

Grain Size Effects

Figure5:SEM image of Au membrane highlighting the number of grains through the film thickness. average grain size is 250-300nm.[2]

Structural Size Effects

Figure5:Stress strain plots for AI membranes showing effects of specimen thickness[2]

Thin Films in Modern Microprocessor

Figure6:SEM section view of AMD K6 Microprocessor[1]

Bibliography

- William D.Nix. Mechanical Properties of Thin Films. http://imechanica.org/files/353ClassNotes2005.pdf.
 [Online; accessed 07-Nov-2016]. 2005.
- H.D. Espinosa, B.C. Prorok, and B. Peng. "Plasticity size effects in free-standing submicron polycrystalline {FCC} films subjected to pure tension". In: *Journal of the Mechanics and Physics of Solids* 52.3 (2004), pp. 667–689. ISSN: 0022-5096. DOI: http://dx.doi.org/10.1016/j.jmps.2003.07.001.
- David A. McLean. "Thin films in microelectronics". In: *Thin Solid Films* 8.1 (1971), pp. 1–17. ISSN: 0040-6090. DOI: http://dx.doi.org/10.1016/0040-6090(71)90092-7.
- David T. Read and Alex A. Volinsky. "Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characterization, and Reliability". In: Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging. Springer US, 2007, A135–A180. ISBN: 978-0-387-32989-5. DOI: 10.1007/0-387-32989-7-4.

- Chanakya Yadav MM14B043
- ▶ Jnana Teja MM14B016
- ► Akshat Bhushan MM14B005
- Sathish Kumar MM14B045
- ► Prathyusha MM14B036
- Anand Shekar MM12B031