CSC 211: Object Oriented Programming

Number Systems, Further look into DataTypes

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Spring 2020

Number systems

- A way to represent numbers
 - 'numbers are expressed in a certain base
- Why study number systems in CS?
 - √ to understand data representation
- Examples of number systems
 - √ binary
 - √ decimal
 - √ octal
 - √ hexadecimal

Number systems

Positional number systems

assuming base b:

...
$$d_2b^2 + d_1b^1 + d_0b^0 + d_{-1}b^{-1} + d_{-2}b^{-2}$$
...

$$43.23 = 4 \cdot 10^{1} + 3 \cdot 10^{0} + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}$$

_

4

Decimal number system

- Base 10
- Symbols

0123456789

$$456 = 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0$$

Binary number system • Base 2

0 1

Most Significant Bit

Symbols

Least Significant Bit

$$1010 = (1 \cdot 2^3) + (0 \cdot 2^2) + (1 \cdot 2^1) + (0 \cdot 2^0)$$

Binary to Decimal?

100101000

110.101

Try these ..

What is a **bit**? What is a **byte**?

Bits and computers

- · A bit can only have two values (states)
 - ✓ easy to embed into physical devices
- **Transistor**
 - processors have billions of transistors
 - √ transistors can be switched **on** and **off**

Decimal to other bases

- · Repeatedly divide by base
 - √ collect remainders
 - ✓ output in reverse order

57₁₀

- $\sqrt{57} / 2 = 28 R 1$
- $\sqrt{28} / 2 = 14 R 0$
- $\sqrt{14} / 2 = 7 R 0$
- $\sqrt{7} / 2 = 3 R 1$
- $\sqrt{3} / 2 = 1 R 1$
- $\sqrt{1} / 2 = 0 R 1$

1110012

Hexadecimal number system

- Base 16
- · Symbols

0123456789ABCDEF

 $4A1C = (4 \cdot 16^3) + (10 \cdot 16^2) + (1 \cdot 16^1) + (12 \cdot 16^0)$

12

Hexadecimal to decimal

1050B

A 0 1 0 F

Binary to hexadecimal

Hex	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Bin	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0ct	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17

10011101 11010011 1111111

Humans think in **base 10.** Computers think in **base 2.** Humans use **base 16** to easily manipulate data in **base 2.**

4

Color codes

Shades of yellow color chart

Color	HTML / CSS Color Name	Hex Code #RRGGBB	Decimal Code (R,G,B)
	lightyellow	#FFFFE0	rgb(255,255,224)
	lemonchiffon	#FFFACD	rgb(255,250,205)
	lightgoldenrodyellow	#FAFAD2	rgb(250,250,210)
	papayawhip	#FFEFD5	rgb(255,239,213)
	moccasin	#FFE4B5	rgb(255,228,181)
	peachpuff	#FFDAB9	rgb(255,218,185)
	palegoldenrod	#EEE8AA	rgb(238,232,170)
	khaki	#F0E68C	rgb(240,230,140)
	darkkhaki	#BDB76B	rgb(189,183,107)
	yellow	#FFFF00	rgb(255,255,0)
	olive	#808000	rgb(128,128,0)
	greenyellow	#ADFF2F	rgb(173,255,47)
	yellowgreen	#9ACD32	rgb(154,205,50)

What is the color code of 'greenyellow' in **binary**?

https://www.rapidtables.com/web/color/Yellow Color.html

31 oct = 25 dec?

16

Going back to C++ ...

Integer literals in C++

```
int d = 42;
int o = 052;
int x = 0x2a;
int X = 0X2A;
int b = 0b101010; // C++14
```

- ' decimal-literal is a non-zero decimal digit (1, 2, 3, 4, 5, 6, 7, 8, 9), followed by zero or more decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- octal-literal is the digit zero (0) followed by zero or more octal digits (0, 1, 2, 3, 4, 5, 6, 7)
- hex-literal is the character sequence 0x or the character sequence 0X followed by one or more hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F)
- **binary-literal** is the character sequence **b** or the character sequence **b** followed by one or more binary digits (0, 1)

https://en.cppreference.com/w/cpp/language/integer_literal

DISPLAY 2.2 Some Number Types

Type Name	Memory Used	Size Range	Precision
short (also called short int)	2 bytes	-32,768 to 32,767	(not applicable)
int	4 bytes	-2,147,483,648 to 2,147,483,647	(not applicable)
long (also called long int)	4 bytes	-2,147,483,648 to 2,147,483,647	(not applicable)
float	4 bytes	approximately 10 ⁻³⁸ to 10 ³⁸	7 digits
doub1e	8 bytes	approximately 10 ⁻³⁰⁸ to 10 ³⁰⁸	15 digits
long double	10 bytes	approximately 10 ⁻⁴⁹³² to 10 ⁴⁹³²	19 digits

These are only sample values to give you a general idea of how the types differ. The values for any of these entries may be different on your system. Precision refers to the number of meaningful digits, including digits in front of the decimal point. The ranges for the types float, double, and long double are the ranges for positive numbers. Negative numbers have a similar range, but with a negative sign in front of each number.

from: Problem Solving with C++, 10th Edition, Walter Savitch

Туре	Size in	Format	Value range						
Type	bits	rormat	Approximate	Exact					
character	8	signed		-128 to 127					
		unsigned		0 to 255					
	16	unsigned		0 to 65535					
	32	unsigned		0 to 1114111 (0x10ffff)					
integer	16	signed	± 3.27 · 10 ⁴	-32768 to 32767					
		unsigned	0 to 6.55 · 10 ⁴	0 to 65535					
	32	signed	± 2.14 · 10 ⁹	-2,147,483,648 to 2,147,483,647					
		unsigned	0 to 4.29 · 10 ⁹	0 to 4,294,967,295					
	64	signed	± 9.22 · 10 ¹⁸	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807					
		unsigned	0 to 1.84 · 10 ¹⁹	0 to 18,446,744,073,709,551,615					
floating point	32	IEEE- 754 &	 min subnormal: ± 1.401,298,4 · 10⁻⁴⁵ min normal: ± 1.175,494,3 · 10⁻³⁸ max: ± 3.402,823,4 · 10³⁸ 	min subnormal: ±0x1p-149 min normal: ±0x1p-126 max: ±0x1.fffffep+127					
	64	IEEE- 754 ਛਾ	 min subnormal: ± 4.940,656,458,412 · 10⁻³²⁴ min normal: ± 2.225,073,858,507,201,4 · 10⁻³⁰⁸ max: ± 1.797,693,134,862,315,7 · 10³⁰⁸ 	 min subnormal: ±0x1p-1074 min normal: ±0x1p-1022 max: ±0x1.fffffffffffp+1023 					

https://en.cppreference.com/w/cpp/language/types

byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8 byte 9 from: Problem Solving with C++, 10th Edition, Walter Savitch