Error Analysis of Matrix Multiplication with Narrow Range Floating-Point Arithmetic

Mantas Mikaitis

School of Computer Science, University of Leeds, Leeds, UK Joint work with Theo Mary, CNRS, Paris, France

FHNW Campus Brugg-Windisch
The Platform for Advanced Scientific Computing conference (PASC25)
Brugg, Switzerland
18 June, 2025

MS5F: Fast and Accurate Numerical Linear Algebra on Low-Precision Hardware: Algorithms and Error Analysis

Presentations:

9:00-9:30 Error Analysis of Matrix Multiplication with Narrow Range Floating-Point Arithmetic. **Mantas Mikaitis (Univ. Leeds)**

9:30-10:00 Fast and Accurate Algorithm Efficiently Using FMA for Matrix Multiplication. Katsuhisa Ozaki (Shibaura Institute of Technology)

10:00-10:30 DGEMM Emulation Using INT8 Matrix Engines and its Rounding Error Analysis. Yuki Uchino (RIKEN Center for Computational Science)

10:30-11:00 Precision Redefined: Unlocking and Delivering the Full Power of Modern GPUs for Scientific Computing. Harun Bayraktar (NVIDIA)

8-bit floating point on the TOP500 (June 2025)

Devices counted: P100, V100, A100, H100, MI210, MI250X, MI300X, Intel Data Center GPU, from https://www.top500.org.

NVIDIA Blackwell throughputs (FLOPS) fp8 (9×10^{15}) fp16 (4.5×10^{15}) fp64 (0.04×10^{15}) .

IEEE P3109: 8-bit format on one slide

C.4 Value Table: P4, emin = -7, emax = 7

0x00 = 0.0000.000 = 0.0

$0x01 = 0.0000.001 = +0b0.001 \times 2^{-7} = 0.0009765625$	$0x41 = 0.1000.001 = +0b1.001 \times 2^{\circ}0 = 1.125$	$0x81 = 1.0000.001 = -0b0.001 \times 2^{-7} = -0.0009765625$	$0xc1 = 1.1000.001 = -0b1.001 \times 20 = -1.125$
$0x02 = 0.0000.010 = +0b0.010 \times 2^{-7} = 0.001953125$	$0x42 = 0.1000.010 = +0b1.010 \times 2^{\circ}0 = 1.25$	$0x82 = 1.0000.010 = -0b0.010 \times 2^{-7} = -0.001953125$	$0xc2 = 1.1000.010 = -0b1.010 \times 2^{\circ}0 = -1.25$
$0x03 = 0.0000.011 = +0b0.011 \times 2^{-7} = 0.0029296875$	$0x43 = 0.1000.011 = +0b1.011 \times 2^{\circ}0 = 1.375$	$0x83 = 1.0000.011 = -0b0.011 \times 2^{-7}7 = -0.0029296875$	$0xc3 = 1.1000.011 = -0b1.011 \times 270 = -1.375$
$0x04 = 0.0000 \cdot 100 = +0b0 \cdot 100 \times 2^{\circ} - 7 = 0.00390625$	$0x44 = 0.1000.100 = +0b1.100 \times 2^{\circ}0 = 1.5$	$0x84 = 1.0000.100 = -0b0.100 \times 2^{\circ}-7 = -0.00390625$	$0xc4 = 1.1000.100 = -0b1.100 \times 2^{\circ}0 = -1.5$
$0x05 = 0.0000.101 = +0b0.101 \times 2^{-7} = 0.0048828125$	$0x45 = 0.1000.101 = +0b1.101 \times 2^{\circ}0 = 1.625$	$0x85 = 1.0000.101 = -0b0.101 \times 2^{\circ}-7 = -0.0048828125$	$0xc5 = 1.1000.101 = -0b1.101 \times 2^{\circ}0 = -1.625$
$0x06 = 0.0000.110 = +0b0.110 \times 2^{-7} = 0.005859375$	$0x46 = 0.1000.110 = +0b1.110 \times 2^{\circ}0 = 1.75$	0x86 = 1.0000.110 = -0b0.110×2°-7 = -0.005859375	$0xc6 = 1.1000.110 = -0b1.110 \times 20 = -1.75$
$0x07 = 0.0000.111 = +0b0.111 \times 2^{-7} = 0.0068359375$	$0x47 = 0.1000.111 = +0b1.111 \times 2^{\circ}0 = 1.875$	$0x87 = 1.0000.111 = -0b0.111 \times 2^{\circ}-7 = -0.0068359375$	$0xc7 = 1.1000.111 = -0b1.111 \times 20 = -1.875$
$0x08 = 0.0001.000 = +0b1.000 \times 2^{-7} = 0.0078125$	$0x48 = 0.1001.000 = +0b1.000 \times 2^{\circ}1 = 2.0$	$0x88 = 1.0001.000 = -0b1.000 \times 2^{-7} = -0.0078125$	$0xc8 = 1.1001.000 = -0b1.000 \times 2^{-1} = -2.0$
$0x09 = 0.0001.001 = +0b1.001 \times 2^{-7} = 0.0087890625$	$0x49 = 0.1001.001 = +0b1.001 \times 2^{\circ}1 = 2.25$	$0x89 = 1.0001.001 = -0b1.001 \times 2^{-7} = -0.0087890625$	$0xc9 = 1.1001.001 = -0b1.001 \times 2^{-1} = -2.25$
$0x0a = 0.0001.010 = +0b1.010 \times 2^{-7} = 0.009765625$	$0x4a = 0.1001.010 = +0b1.010 \times 2^{-1} = 2.5$	$0x8a = 1.0001.010 = -0b1.010 \times 2^{-7} = -0.009765625$	$0xca = 1.1001.010 = -0b1.010 \times 2^{-1} = -2.5$
$0x0b = 0.0001.011 = +0b1.011 \times 2^{\circ}-7 = 0.0107421875$	$0x4b = 0.1001.011 = +0b1.011 \times 2^{\circ}1 = 2.75$	$0x8b = 1.0001.011 = -0b1.011 \times 2^{\circ}-7 = -0.0107421875$	$0xcb = 1.1001.011 = -0b1.011 \times 2^{\circ}1 = -2.75$
$0x0c = 0.0001.100 = +0b1.100 \times 2^{\circ}-7 = 0.01171875$	$0x4c = 0.1001.100 = +0b1.100 \times 2^{\circ}1 = 3.0$	$0x8c = 1.0001.100 = -0b1.100 \times 2^{\circ}-7 = -0.01171875$	$0xcc = 1.1001.100 = -0b1.100 \times 2^{\circ}1 = -3.0$
$0x04 = 0.0001.101 = +0b1.101 \times 2^{-7} = 0.0126953125$	$0x4d = 0.1001.101 = +0b1.101 \times 2^{\circ}1 = 3.25$	0x8d = 1.0001.101 = -0b1.101×2~7 = -0.0126953125	$0xcd = 1.1001.101 = -0b1.101 \times 2^1 = -3.25$
$0x0e = 0.0001.110 = +0b1.110 \times 2^{-7} = 0.013671875$	$0x4e = 0.1001.110 = +0b1.110 \times 2^{\circ}1 = 3.5$	0x8e = 1.0001.110 = -0b1.110×2~7 = -0.013671875	$0xce = 1.1001.110 = -0b1.110 \times 2^{\circ}1 = -3.5$
$0x0f = 0.0001.111 = +0b1.111 \times 2^{-7} = 0.0146484375$	$0x4f = 0.1001.111 = +0b1.111 \times 2^{\circ}1 = 3.75$	$0x8f = 1.0001.111 = -0b1.111 \times 2^{-7} = -0.0146484375$	$0xcf = 1.1001.111 = -0b1.111 \times 2^{-1} = -3.75$
$0x10 = 0.0010.000 = +0b1.000 \times 2^{-6} = 0.015625$	$0x50 = 0.1010.000 = +0b1.000 \times 2^{\circ}2 = 4.0$	$0x90 = 1.0010.000 = -0b1.000 \times 2^{-6} = -0.015625$	$0xd0 = 1.1010.000 = -0b1.000 \times 2^2 = -4.0$
$0x11 = 0.0010.001 = +0b1.001 \times 2^{-6} = 0.017578125$	$0x51 = 0.1010.001 = +0b1.001 \times 2^{\circ}2 = 4.5$	$0x91 = 1.0010.001 = -0b1.001 \times 2^{-}6 = -0.017578125$	$0xd1 = 1.1010.001 = -0b1.001 \times 2^{-2} = -4.5$
$0x12 = 0.0010.010 = +0b1.010 \times 2^{-6} = 0.01963125$	$0x52 = 0.1010.010 = +0b1.010 \times 2^{\circ}2 = 5.0$	$0x92 = 1.0010.010 = -0b1.010 \times 2^{\circ}-6 = -0.01953125$	$0xd2 = 1.1010.010 = -0b1.010 \times 2^{2} = -5.0$
$0x13 = 0.0010.011 = +0b1.011 \times 2^{-6} = 0.021484375$	$0x53 = 0.1010.011 = +0b1.011 \times 2^{\circ}2 = 5.5$	$0x93 = 1.0010.011 = -0b1.011 \times 2^{\circ}-6 = -0.021484375$	$0xd3 = 1.1010.011 = -0b1.011 \times 2^{2} = -5.5$
$0x14 = 0.0010.100 = +0b1.100 \times 2^{-6} = 0.0234375$	$0x54 = 0.1010.100 = +0b1.100 \times 2^{\circ}2 = 6.0$	0x94 = 1.0010.100 = -0b1.100×2~6 = -0.0234375	$0xd4 = 1.1010.100 = -0b1.100 \times 2^{2} = -6.0$
$0x15 = 0.0010.101 = +0b1.101 \times 2^{-6} = 0.025390625$	$0x55 = 0.1010.101 = +0b1.101 \times 2^{\circ}2 = 6.5$	0x95 = 1.0010.101 = -0b1.101×2~6 = -0.025390625	$0xd5 = 1.1010.101 = -0b1.101 \times 2^2 = -6.5$
$0x16 = 0.0010.110 = +0b1.110 \times 2^{-}6 = 0.02734375$	$0x56 = 0.1010.110 = +0b1.110 \times 2^{\circ}2 = 7.0$	$0x96 = 1.0010.110 = -0b1.110 \times 2^{-}6 = -0.02734375$	$0xd6 = 1.1010.110 = -0b1.110 \times 272 = -7.0$
$0x17 = 0.0010.111 = +0b1.111 \times 2^{-6} = 0.029296875$	$0x57 = 0.1010.111 = +0b1.111 \times 2^{\circ}2 = 7.5$	$0x97 = 1.0010.111 = -0b1.111 \times 2^{-}6 = -0.029296875$	$0xd7 = 1.1010.111 = -0b1.111 \times 2^2 = -7.5$
$0x18 = 0.0011.000 = +0b1.000 \times 2^{-5} = 0.03125$	$0x58 = 0.1011.000 = +0b1.000 \times 2^{\circ}3 = 8.0$	$0x98 = 1.0011.000 = -0b1.000 \times 2^{-5} = -0.03125$	$0xd8 = 1.1011.000 = -0b1.000 \times 2^{-3} = -8.0$
$0x19 = 0.0011.001 = +0b1.001 \times 2^{-5} = 0.03515625$	$0x59 = 0.1011.001 = +0b1.001 \times 2^3 = 9.0$	$0x99 = 1.0011.001 = -0b1.001 \times 2^{-5} = -0.03515625$	$0xd9 = 1.1011.001 = -0b1.001 \times 2^{\circ}3 = -9.0$
$0x1a = 0.0011.010 = +0b1.010 \times 2^{-5} = 0.0390625$	$0x5a = 0.1011.010 = +0b1.010 \times 2^3 = 10.0$	$0x9a = 1.0011.010 = -0b1.010 \times 2^{\circ}-5 = -0.0390625$	$0xda = 1.1011.010 = -0b1.010 \times 2^{\circ}3 = -10.0$
$0x1b = 0.0011.011 = +0b1.011 \times 2^{-5} = 0.04296875$	$0x5b = 0.1011.011 = +0b1.011 \times 2^3 = 11.0$	$0x9b = 1.0011.011 = -0b1.011 \times 2^{-5} = -0.04296875$	$0xdb = 1.1011.011 = -0b1.011 \times 2^3 = -11.0$
0x1c = 0.0011.100 = +0b1.100×2~5 = 0.046875	$0x5c = 0.1011.100 = +0b1.100 \times 2^3 = 12.0$	0x9c = 1.0011.100 = -0b1.100×2'-5 = -0.046875	$0xdc = 1.1011.100 = -0b1.100 \times 2^3 = -12.0$
$0x1d = 0.0011.101 = +0b1.101 \times 2^{-5} = 0.05078125$	$0x5d = 0.1011.101 = +0b1.101 \times 2^{\circ}3 = 13.0$	$0x9d = 1.0011.101 = -0b1.101 \times 2^{-5} = -0.05078125$	$0xdd = 1.1011.101 = -0b1.101 \times 2^{-3} = -13.0$
$0x1e = 0.0011.110 = +0b1.110 \times 2^{-5} = 0.0546875$	$0x5e = 0.1011.110 = +0b1.110 \times 2^{\circ}3 = 14.0$	$0x9e = 1.0011.110 = -0b1.110 \times 2^{-5} = -0.0546875$	$0xde = 1.1011.110 = -0b1.110 \times 2^3 = -14.0$
$0x1f = 0.0011.111 = +0b1.111 \times 2^{-5} = 0.05859375$	$0x5f = 0.1011.111 = +0b1.111 \times 2^{\circ}3 = 15.0$	$0x9f = 1.0011.111 = -0b1.111 \times 2^{-5} = -0.05859375$	$0xdf = 1.1011.111 = -0b1.111 \times 2^3 = -15.0$
$0x20 = 0.0100.000 = +0b1.000 \times 2^{-4} = 0.0625$	$0x60 = 0.1100.000 = +0b1.000 \times 2^{2} = 16.0$	$0xa0 = 1.0100.000 = -0b1.000 \times 2^{-4} = -0.0625$	$0xe0 = 1.1100.000 = -0b1.000 \times 2^{2} = -16.0$
$0x21 = 0.0100.001 = +0b1.001 \times 2^{-4} = 0.0703125$	$0x61 = 0.1100.001 = +0b1.001 \times 2^4 = 18.0$	$0xa1 = 1.0100.001 = -0b1.001 \times 2^{-4} = -0.0703125$	$0xe1 = 1.1100.001 = -0b1.001 \times 2^4 = -18.0$
$0x22 = 0.0100.010 = +0b1.010 \times 2^{-4} = 0.078125$	$0x62 = 0.1100.010 = +0b1.010 \times 2^4 = 20.0$	$0xa2 = 1.0100.010 = -0b1.010 \times 2^{-4} = -0.078125$	$0xe2 = 1.1100.010 = -0b1.010 \times 2^4 = -20.0$
$0x23 = 0.0100.011 = +0b1.011 \times 2^{-4} = 0.0859375$	$0x63 = 0.1100.011 = +0b1.011 \times 2^{2}4 = 22.0$	$0xa3 = 1.0100.011 = -0b1.011 \times 2^{-4} = -0.0859375$	$0xe3 = 1.1100.011 = -0b1.011 \times 2^4 = -22.0$
$0x24 = 0.0100.100 = +0b1.100 \times 2^{-4} = 0.09375$	$0x64 = 0.1100.100 = +0b1.100 \times 2^{-4} = 24.0$	$0xa4 = 1.0100.100 = -0b1.100 \times 2^{-4} = -0.09375$	$0xe4 = 1.1100.100 = -0b1.100 \times 2^{-4} = -24.0$
$0x25 = 0.0100.101 = +0b1.101 \times 2^{-4} = 0.1015625$	$0x65 = 0.1100.101 = +0b1.101 \times 2^{-4} = 26.0$	$0xa5 = 1.0100.101 = -0b1.101 \times 2^{-4} = -0.1015625$	$0xe5 = 1.1100.101 = -0b1.101 \times 2^{-4} = -26.0$
$0x26 = 0.0100.110 = +0b1.110 \times 2^{\circ}-4 = 0.109375$	$0\pi66 = 0.1100.110 = +0b1.110 \times 2^{-4} = 28.0$	$0xa6 = 1.0100.110 = -0b1.110 \times 2^{\circ}-4 = -0.109375$	$0xe6 = 1.1100.110 = -0b1.110 \times 2^{\circ}4 = -28.0$
$0x27 = 0.0100.111 = +0b1.111 \times 2^{-4} = 0.1171875$	$0x67 = 0.1100.111 = +0b1.111 \times 2^{2}4 = 30.0$	$0xa7 = 1.0100.111 = -0b1.111 \times 2^{\circ}-4 = -0.1171875$	0xe7 = 1.1100.111 = -0b1.111×2'4 = -30.0
$0x28 = 0.0101.000 = +0b1.000 \times 2^{-3} = 0.125$	$0x68 = 0.1101.000 = +0b1.000 \times 2^{\circ}5 = 32.0$	$0xa8 = 1.0101.000 = -0b1.000 \times 2^{-3} = -0.125$	$0xe8 = 1.1101.000 = -0b1.000 \times 2^{\circ}5 = -32.0$
$0x29 = 0.0101.001 = +0b1.001 \times 2^{-3} = 0.140625$	$0x69 = 0.1101.001 = +0b1.001 \times 25 = 36.0$	$0xa9 = 1.0101.001 = -0b1.001 \times 2^{-3} = -0.140625$	$0xe9 = 1.1101.001 = -0b1.001 \times 27b = -36.0$
$0x2a = 0.0101.010 = +0b1.010 \times 2^{-3} = 0.15625$	0x6a = 0.1101.010 = +0b1.010×2% = 40.0	$0xaa = 1.0101.010 = -0b1.010 \times 2^{-3} = -0.15625$ $0xab = 1.0101.011 = -0b1.011 \times 2^{-3} = -0.171875$	0xea = 1.1101.010 = -0b1.010×25 = -40.0
$0x2b = 0.0101.011 = +0b1.011 \times 2^{-3} = 0.171875$	$0x6b = 0.1101.011 = +0b1.011 \times 2\% = 44.0$		$0xeb = 1.1101.011 = -0b1.011 \times 2\% = -44.0$
0x2c = 0.0101.100 = +0b1.100×2-3 = 0.1875	$0x6c = 0.1101.100 = +0b1.100 \times 2^{\circ}6 = 48.0$ $0x6d = 0.1101.101 = +0b1.101 \times 2^{\circ}6 = 52.0$	0xac = 1.0101.100 = -0b1.100×2~3 = -0.1875	0xec = 1.1101.100 = -0b1.100×276 = -48.0
$0x2d = 0.0101.101 = +0b1.101 \times 2^{-3} = 0.203125$ $0x2e = 0.0101.110 = +0b1.110 \times 2^{-3} = 0.21875$	0x6e = 0.1101.101 = +061.101×25 = 52.0 0x6e = 0.1101.110 = +061.110×25 = 56.0	$0xad = 1.0101.101 = -0b1.101 \times 2^{\circ}-3 = -0.203125$ $0xae = 1.0101.110 = -0b1.110 \times 2^{\circ}-3 = -0.21875$	$0xed = 1.1101.101 = -0b1.101 \times 2^5 = -52.0$ $0xee = 1.1101.110 = -0b1.110 \times 2^5 = -56.0$
0x2f = 0.0101.110 = +061.110 x 2 -3 = 0.21876 0x2f = 0.0101.111 = +061.111 x 2 -3 = 0.234376	0x6f = 0.1101.111 = +0b1.111×2°5 = 60.0	0xaf = 1.0101.111 = -0b1.110×2-3 = -0.21875	0xef = 1.1101.111 = -0b1.110×25 = -56.0
0x30 = 0.0110.000 = +0b1.000×2°-2 = 0.25	0x70 = 0.1110.000 = +0b1.000 × 2°6 = 64.0	0xb0 = 1.0101.111 = -061.111 × 2 -3 = -0.254378 0xb0 = 1.0110.000 = -061.000 × 2 -2 = -0.25	0xf0 = 1.1101.111 = -051.111 × 2 5 = -60.0 0xf0 = 1.1110.000 = -051.000 × 2 6 = -64.0
0x30 = 0.0110.000 = +001.000 x 2 -2 = 0.28 0x31 = 0.0110.001 = +001.001 x 2 -2 = 0.28125	0x71 = 0.1110.000 = +0b1.000 x 2 6 = 64.0	0xb1 = 1.0110.000 = -0b1.000 × 2 - 2 = -0.28 0xb1 = 1.0110.001 = -0b1.001 × 2 - 2 = -0.28125	0xf1 = 1.1110.000 = -0b1.000 x 2 6 = -64.0
0x31 = 0.0110.001 = +001.001 x 2 -2 = 0.20120 0x32 = 0.0110.010 = +001.010 x 2 -2 = 0.3125	0x72 = 0.1110.001 = +0b1.001 x 2 6 = 12.0	0xb2 = 1.0110.001 = -0b1.001 × 2 - 2 = -0.28128	0xf2 = 1.1110.001 = -0b1.001×26 = -12.0
0x33 = 0.0110.010 = +001.010 × 2 -2 = 0.3120 0x33 = 0.0110.011 = +001.011 × 2 -2 = 0.34375	0x73 = 0.1110.011 = +0b1.011×2°6 = 88.0	0xb3 = 1.0110.010 = -001.010×2 -2 = -0.3120 0xb3 = 1.0110.011 = -0b1.011×2 -2 = -0.34375	0xf3 = 1.1110.010 = -001.010×2 0 = -00.0
0x34 = 0.0110.011 = +001.011 × 2 - 2 = 0.34310	0x74 = 0.1110.100 = +0b1.100×2°6 = 96.0	0xb4 = 1.0110.100 = -0b1.100×2*-2 = -0.375	0xf4 = 1.1110.100 = -0b1.100×26 = -96.0
0x35 = 0.0110.101 = +0b1.101×2^-2 = 0.40625	0x75 = 0.1110.101 = +0b1.101×2°6 = 104.0	0xb5 = 1.0110.101 = -0b1.101×2*-2 = -0.40625	0xf5 = 1.1110.101 = -0b1.101×2°6 = -104.0
0x36 = 0.0110.101 = +061.101 x 2 - 2 = 0.40626 0x36 = 0.0110.110 = +061.110 x 2 - 2 = 0.4376	0x76 = 0.1110.110 = +0b1.110 x 2 6 = 112.0	0xb6 = 1.0110.101 = -0b1.101 × 2*-2 = -0.40626	0xf6 = 1.1110.101 = -0b1.101×2 6 = -104.0
0x37 = 0.0110.111 = +0b1.111×2~2 = 0.46875	0x77 = 0.1110.111 = +0b1.111×2*6 = 120.0	0xb7 = 1.0110.111 = -0b1.111×2*-2 = -0.46875	0xf7 = 1.1110.111 = -0b1.111×276 = -120.0
0x38 = 0.0111.000 = +0b1.000×2~1 = 0.5	0x78 = 0.1111.000 = +0b1.000×27 = 128.0	0xb8 = 1.0111.000 = -0b1.000×2*-1 = -0.5	0xf8 = 1.1111.000 = -0b1.000×27 = -128.0
0x39 = 0.0111.001 = +0b1.001×2~1 = 0.5625	0x79 = 0.1111.001 = +0b1.001×2·7 = 144.0	0xb9 = 1.0111.001 = -0b1.001×2*-1 = -0.5625	0xf9 = 1.1111.001 = -0b1.001×27 = -144.0
0x3a = 0.0111.010 = +0b1.010×2~1 = 0.625	0x7a = 0.1111.010 = +0b1.010×2·7 = 160.0	0xba = 1.0111.010 = -0b1.010×2*-1 = -0.625	0xfa = 1.1111.010 = -0b1.010×2·7 = -160.0
0x3b = 0.0111.011 = +0b1.011×2^-1 = 0.6875	0x7b = 0.1111.011 = +0b1.011×27 = 176.0	0xbb = 1.0111.011 = -0b1.011×2°-1 = -0.6875	0xfb = 1.1111.011 = -0b1.011×27 = -176.0
0x3c = 0.0111.100 = +0b1.100×2^-1 = 0.75	$0x7c = 0.1111.100 = +0b1.100 \times 27 = 192.0$	0xbc = 1.0111.100 = -0b1.100×2'-1 = -0.75	0xfc = 1.1111.100 = -0b1.100×27 = -192.0
$0x34 = 0.0111.101 = +0b1.101 \times 2^{-1} = 0.8126$	$0x74 = 0.1111.101 = +0b1.101 \times 27 = 208.0$	0xbd = 1.0111.101 = -0b1.101×2'-1 = -0.8125	0xfd = 1.1111.101 = -0b1.101×27 = -208.0
$0x3e = 0.0111.110 = +0b1.110 \times 2^{-1} = 0.875$	$0x7e = 0.1111.110 = +0b1.110 \times 277 = 224.0$	0xbe = 1.0111.110 = -0b1.110×2-1 = -0.875	$0xfe = 1.1111.110 = -0b1.110 \times 27 = -224.0$
$0x3f = 0.0111.111 = +0b1.111 \times 2^{-1} = 0.9375$	0x7f = 0.1111.111 = +Inf	$0xbf = 1.0111.111 = -0b1.111 \times 2^{-1} = -0.9375$	0xff = 1.1111.111 = -Inf

 $0x40 = 0.1000.000 = +0b1.000 \times 2^{\circ}0 = 1.0$ 0x80 = 1.0000.000 = NaN

 $0xc0 = 1.1000.000 = -0b1.000 \times 20 = -1.0$

4/6/8/16-bit floating point formats have narrow ranges

Format	precision	min pos.	max pos.	и
binary64 (double)	53	2^{-1022}	$\sim 1.798 \times 10^{308}$	2^{-53}
binary32 (single)	24	2^{-126}	$\sim 3.403\times 10^{38}$	2^{-24}
tf32 (19-bit)	11	2^{-126}	$\sim 3.401\times 10^{38}$	2^{-11}
bfloat16	8	2^{-126}	$\sim 3.389\times 10^{38}$	2^{-8}
binary16	11	2^{-14}	65504	2^{-11}
fp8-E4M3	4	2^{-6}	448	2^{-4}
fp8-E5M2	3	2^{-14}	57344	2^{-3}
fp6-E2M3	4	2^{0}	7.5	2^{-4}
fp6-E3M2	3	2^{-2}	28	2^{-3}
fp4-E2M1	2	2 ⁰	6	2^{-2}

Mixed-precision matrix multipliers

Formats with narrow ranges are available in matrix multiply operation.

Hardware matrix multipliers in mixed precision

- \bullet Example above is 4 \times 4, but dimensions differ across architectures.
- Internal dot product precision, rounding, and subnormal support.

While the input formats have narrow ranges, the output is less constrained on both the precision and range.

Part 1: Basic single-word algorithm

Single-word algorithm

Goal: Given A and B, matrices in binary64, multiply them accurately using mixed-precision MMAs.

- Scale input matrices A and B.
- 2 Round input matrices to the input format.
- Multiply scaled and rounded A and B in the accumulation format.
- Scale the output matrix.

$$C = \Lambda^{-1} \Big(\mathrm{fl}(\Lambda A) \mathrm{fl}(BM) \Big) M^{-1}$$

- Λ and M are nonsingular diagonal matrices with diagonal coefficients λ_i and μ_i respectively.
- Scale coefficients λ_i and μ_i are powers of two.

Single-word algorithm

Let θ be the maximum value we can afford in the scaled A and B.

Scaling by powers of two means the maximum entry per row of A or column of B is in $(\theta/2, \theta]$.

We should maximise θ to reduce number of underflows, but at the same time remove possibility of overflow.

Choose:

$$\theta = \min(f_{\max}, \sqrt{F_{\max}/n}).$$

which avoids overflow in the input and in the accumulation of n products.

- Take $A \in \mathbb{R}^{4 \times 4}$ and $B \in \mathbb{R}^{4 \times 4}$.
- Set fp8-E4M3 as the *input format* with $f_{\rm max}=448$.
- Set binary16 as the accumulation format with $F_{\rm max} = 65504$.
- No subnormal floating-point numbers.
- This gives min(448, $\sqrt{65504/4}$) = min(448, 127.9687) $\approx 127 = \theta$.

Scaling factors

In this case before rounding matrices to the *input format* we need to scale them such that 127 is the maximum value that appears.

- 127 is lower than $f_{\rm max} = 448$ no *input format* overflows.
- $127 \times 127 = 16129$ and if we accumulate four such products we get $64616 < F_{\rm max} = 65504$. No accumulation format overflows.

Take

$$A = \begin{bmatrix} 500 & 1 & 1 & 2^{-6} \\ 128 & 128 & 128 & 128 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \end{bmatrix}.$$

We have

$$AB = \begin{bmatrix} 502.015625 & 64258 & 502.015625 & 502.015625 \\ 512 & 65536 & 512 & 512 \\ 4 & 512 & 4 & 4 \\ 4 & 512 & 4 & 4 \end{bmatrix}.$$

Overflows in the above example if no scaling is applied

(Input) $500 > f_{\text{max}} = 448$ and (output) $65536 > F_{\text{max}} = 65504$.

$$C = \Lambda^{-1} \Big(\mathrm{fl}(\Lambda A) \mathrm{fl}(BM) \Big) M^{-1}, \quad \theta = 127$$

Step 1: Scale A and B.

$$\Lambda A = \begin{bmatrix} 2^{-2} & 0 & 0 & 0 \\ 0 & 2^{-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 500 & 1 & 1 & 2^{-6} \\ 128 & 128 & 128 & 128 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 125 & 2^{-2} & 2^{-2} & 2^{-8} \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$BM = \begin{bmatrix} 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^{-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix}$$

How the scale coefficients are calculated

For example, take the first row of A. The largest value is 500 and we need to get it below $\theta=127$. $\lambda_1=2^{\lfloor \log_2(127/500)\rfloor}=2^{-2}$.

$$C = \Lambda^{-1} \Big(\mathrm{fl}(\Lambda A) \mathrm{fl}(BM) \Big) M^{-1}$$

Step 2: Round to the *input format* fp8-E4M3 ($f_{\min} = 2^{-6}$).

$$\mathsf{fI}(\Lambda A) = \mathsf{fI}\left(\begin{bmatrix} 125 & 2^{-2} & 2^{-2} & 2^{-8} \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 125 & 2^{-2} & 2^{-2} & \mathbf{0} \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathsf{fI}(BM) = \mathsf{fI}\left(\begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix}$$

Underflow in the above example

Notice that since subnormals are off, numbers $\leq f_{\min}/2$ will round to zero, causing underflow. This happened to $\Lambda A(1,4)=2^{-8}$, which resulted from scaling the first row of A, where originally $A(1,4)=2^{-6}$.

$$C = \Lambda^{-1} \Big(\mathrm{fl}(\Lambda A) \mathrm{fl}(BM) \Big) M^{-1}$$

Step 3: Perform matrix multiply in the accumulation format binary16 ($T=11,\ F_{\rm max}=65504$).

$$\begin{bmatrix} 125 & 2^{-2} & 2^{-2} & 0 \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 125.5 & 8032 & 125.5 & 125.5 \\ 256 & 16384 & 256 & 256 \\ 4 & 256 & 4 & 4 \\ 4 & 256 & 4 & 4 \end{bmatrix}$$

$$C = \Lambda^{-1} \Big(\mathrm{fl}(\Lambda A) \mathrm{fl}(BM) \Big) M^{-1}$$

Step 4: Undo the scaling.

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 125.5 & 8032 & 125.5 & 125.5 \\ 256 & 16384 & 256 & 256 \\ 4 & 256 & 4 & 4 \\ 4 & 256 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} =$$

$$C = \Lambda^{-1} \Big(\mathrm{fl}(\Lambda A) \mathrm{fl}(BM) \Big) M^{-1}$$

Comparison. Our result computed with mixed-precision MMA:

$$AB \approx egin{bmatrix} {\bf 502} & {\bf 64256} & {\bf 502} & {\bf 502} \\ 512 & 65536 & 512 & 512 \\ 4 & 512 & 4 & 4 \\ 4 & 512 & 4 & 4 \end{pmatrix}$$

And the exact result

	502.015625	64258	502.015625	502.015625
AB =	512	65536	512	512
	4	512	4	4
	4	512	4	4

Part 2: Multi-word algorithm

Again, for a step-by-step example, take

$$A = \begin{bmatrix} 500 & 1 & 1 & 2^{-6} \\ 128 & 128 & 128 & 128 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \end{bmatrix}.$$

Step 1: Scale A and B (same as before).

$$\Lambda \mathcal{A} = \begin{bmatrix} 2^{-2} & 0 & 0 & 0 \\ 0 & 2^{-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 500 & 1 & 1 & 2^{-6} \\ 128 & 128 & 128 & 128 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 125 & 2^{-2} & 2^{-2} & 2^{-8} \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$BM = \begin{bmatrix} 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \\ 1 & 128 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^{-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix}$$

Step 2: Round to the *input format*, in **double-word representation**.

We will round each ΛA and BM to two fp8-E4M3 matrices instead of one.

Compute the first word (first of the two matrices):

$$A^{(0)} = \mathsf{fI}(\Lambda A) = \mathsf{fI}\left(\begin{bmatrix} 125 & 2^{-2} & 2^{-2} & 2^{-8} \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 125 & 2^{-2} & 2^{-2} & \mathbf{0} \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$B^{(0)} = \mathsf{fI}(BM) = \mathsf{fI}\left(\begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix}$$

Step 2: Round to the *input format* fp8-E4M3, in **double-word representation**.

Compute the second word (rounding/underflow error in the first step):

Since $B^{(0)} = BM, B^{(1)} = zeros(4, 4)$.

Extra scaling

Notice the division by $u^1=2^{-4}$ before rounding, which is done to reduce underflows in the input format. In general, the multi-word split is

$$A^{(i)} = \mathsf{fI}\left(\left(\Lambda A - \sum_{k=0}^{i-1} u^k A^{(k)}\right) / u^i\right).$$

Step 3: Perform matrix products and add them in the *accumulation* format binary16.

p-word case

After splitting ΛA and BM into $A^{(0)}, \ldots, A^{(p-1)}$ and $B^{(0)}, \ldots, B^{(p-1)}$, approximate matrix multiply by p(p+1)/2 products

$$C \approx \Lambda^{-1} \left(\sum_{i+j < p} u^{i+j} A^{(i)} B^{(j)} \right) M^{-1}.$$

In our double-word case

$$A^{(0)}B^{(0)} + uA^{(1)}B^{(0)} =$$

$$A^{(0)}B^{(0)} + uA^{(1)}B^{(0)} = \begin{bmatrix} 125 & 2^{-2} & 2^{-2} & 0 \\ 64 & 64 & 64 & 64 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 2^{-4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \\ 1 & 64 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 125.5 & 8032 & 125.5 & 125.5 \\ 256 & 16384 & 256 & 256 \end{bmatrix} + \begin{bmatrix} 2^{-8} & 0.25 & 2^{-8} & 2^{-8} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C \approx \Lambda^{-1} \left(\sum_{i+j < p} u^{i+j} A^{(i)} B^{(j)} \right) M^{-1}.$$

Step 4: Undo the scaling.

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 125.50390625 & 8032.25 & 125.50390625 & 125.50390625 \\ 256 & 16384 & 256 & 256 \\ 4 & 256 & 4 & 4 \\ 4 & 256 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} 502.015625 & 64258 & 502.015625 & 502.015625 \\ 512 & 65536 & 512 & 512 \\ 4 & 512 & 4 & 4 \\ 4 & 512 & 4 & 4 \end{bmatrix} = AB.$$

Part 3: Numerical experiments

Numerical experiments

We generate $A \in \mathbb{R}^{10 \times n}$ and $B \in \mathbb{R}^{n \times 10}$ and vary n.

Elements in $[-10^{10}, -10^{-10}] \cup [10^{-10}, 10^{10}]$.

Measure the accuracy with $\frac{\|\widehat{C} - C\|_{\infty}}{\|A\|_{\infty} \|B\|_{\infty}}$ where C is computed in binary64.

We check with subnormals on/off to detect any improvements due to gradual underflow.

We also plot the variants of MMA without any range (exponent) limitations.

Numerical experiments I

Numerical experiments II

Numerical experiments III

Part 4: Error analysis

Matrix Multiply-Accumulate (MMA)

Model 1

The following model describes a mixed-precision MMA operation to compute C = AB, assuming round-to-nearest ties-to-even is used. We have two FP formats:

• Input format with precision t, unit roundoff $u=2^{-t}$, exponent in $[e_{min}, e_{max}]$, range of normalized values $\pm [f_{\min}, f_{\max}]$. The maximum distance between any number in $[-f_{\min}, f_{\min}]$ and the nearest FP number is

$$g_{\min} = egin{cases} f_{\min}/2 & ext{if subnormals are not available} \ uf_{\min} & ext{with subnormals (gradual underflow)} \end{cases}$$

• Accumulation format with $T \geq t$, $U = 2^{-T}$, exponent in $[E_{\min}, E_{\max}] \supseteq [e_{\min}, e_{\max}]$, and range of norm. numbers $\pm [F_{\min}, F_{\max}]$. The maximum distance between any number in $[-F_{\min}, F_{\min}]$ and the nearest FP number is

$$G_{\min} = egin{cases} F_{\min}/2 & ext{if subnormals are not available} \\ UF_{\min} & ext{with subnormals (gradual underflow)} \end{cases}$$

Models of worst-case rounding errors

Rounding error model based on [Demmel, 1984]

Take $x, y \in \mathbb{R}$. Assuming no overflows occur, the rounding operator to the *input format* is described as

$$\mathsf{fl}(x) = x(1+\delta) + \eta, \quad |\delta| \le u, \quad |\eta| \le \mathsf{g}_{\min}, \quad \eta\delta = 0,$$

and arithmetic operations in the accumulation format as

$$\mathsf{FL}(x \, \mathsf{op} \, y) = (x \, \mathsf{op} \, y)(1 + \delta) + \eta, \quad |\delta| \leq U, \quad |\eta| \leq \mathcal{G}_{\min}, \quad \eta \delta = 0,$$

with op $\in \{+, -, \times, \div\}$.

Here $\eta\delta=$ 0 accounts for only one type of error, rounding or overflow.

Error analysis: summary

Single-word algorithm:

$$\|\widehat{C} - AB\|_{\infty} \lesssim \left(2u + nU + 4n^2\theta^{-1}g_{\min} + 4n^2\theta^{-2}G_{\min}\right)\|A\|_{\infty}\|B\|_{\infty}.$$

p-word algorithm:

$$\begin{split} \|\widehat{C} - AB\|_{\infty} &\lesssim \Big((p+1)u^p + 4nu^{p-1}\theta^{-1}g_{\min} \\ &+ (n+p^2)U + 2p(p+1)n^2\theta^{-2}G_{\min} \Big) \|A\|_{\infty} \|B\|_{\infty}. \end{split}$$

Summary

- Underflows in narrow-range FP formats not a problem, provided three types of scaling are used.
- Shown algorithms require minimal bit-level manipulations.
- Can be used to obtain binary32 accuracy in high performance.
- If higher accuracy is needed, MMA can still be used in conjunction with binary64—see the next talks.

SIAM SISC paper

T. Mary, and M. Mikaitis. Error Analysis of Matrix Multiplication with Narrow Range Floating-Point Arithmetic. Preprint. Accepted for SIAM SISC. Mar. 2025.

dhttps://bit.ly/42dqpkn.

Slides and more info at http://mmikaitis.github.io

References I

- J. Demmel
 - Underflow and the reliability of numerical software SIAM J. Sci. Comput., 5:4. Dec. 1984.
 - P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh Mixed precision block fused multiply-add: Error analysis and application to GPU tensor cores
 - SIAM J. Sci. Comput., 42:3. Jan. 2020.
- M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis Matrix Multiplication in Multiword Arithmetic: Error Analysis and Application to GPU Tensor Cores SIAM J. Sci. Comput., 45:1. Feb. 2023.
- M. Fasi and M. Mikaitis CPFloat: A C library for Simulating Low-Precision Arithmetic ACM Trans. Math. Software, 49, 2023