Les fonctions logiques

L'algèbre de BOOLE Les fonctions OUI, NON, ET, OU Les fonctions NOR, NAND, OU exclusif

La logique binaire

Le binaire permet de représenter facilement l'état logique d'un système technique ou de ses entréessorties. C'est une logique à deux états.

Un interrupteur est ouvert ou fermé. Une lampe est allumée ou éteinte Une tension est élevée ou faible Une pression est présente ou pas.

Exemple de l'interrupteur

Exemple de la diode

Ouvert : état 0 Fermé : état 1

Dans le cas d'un circuit logique électronique, l'état d'une entrée ou d'une sortie est défini par sa tension.

Us est proche de la tension d'alimentation : **Niveau haut** (H, high), état logique 1

Us est proche de O volt : **Niveau bas** (L, Low), état logique **0**

LES FONCTIONS LOGIQUES DE BASE

La fonction OUI

Équation

S = e

L'état de la sortie est égal à l'état de l'entrée, cette fonction ne présente par d'intérêt d'un point de vue logique mais peut être utile d'un point de vue technologique.

La fonction NON

Équation

L'état logique de la sortie est le **complément** de celui de l'entrée

La fonction OU

Équation

$$S = a + b$$

La sortie est à l'état 1 si au moins une des entrées est à l'état 1.

La fonction ET

Équation

$$S = a.b$$

La sortie est à l'état 1 si les deux entrées sont simultanément à l'état 1.

L'algèbre de Boole : L'algèbre de boole est l'algèbre de la logique binaire (Georges BOOLE, philosophe et mathématicien anglais, 1854)

Propriétés

Commutativité du produit et de la somme logique	a . b = b . a	$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$
Associativité du produit et de la somme logique	(a . b) . c = a . (b . c)	(a + b) + c = a + (b + c)
Distributivité du produit logique par rapport à la somme logique	$a \cdot (b + c) = ab + ac$	
Distributivité de la somme logique par rapport au produit logique	$a + b c = (a + b) \cdot (a + c)$	

Complémentation	a.ā=(a. a = 0 a + a = 1	
Idempotence	a + a = a	$a \cdot a = a$	
Élément neutre	a+0=a	a . 1 = a	
Élément absorbant	a.0=0	a + 1 = 1	

Relations utiles

Absorption	$\mathbf{a} + \mathbf{a}\mathbf{b} = \mathbf{a}$	$a \cdot (b + a) = a$
	a+āb=a+b	

Théorèmes de de Morgan

Le complément d'une somme logique est égal au produit du complément de chacun des termes.	$\overline{a+b} = \overline{a} \cdot \overline{b}$
---	--

Les opérateurs universels NOR et NAND

L'opérateur NAND (NON ET)

Cet opérateur est un opérateur ET avec la sortie complémentée.

Équation

$$S = \overline{a \cdot b}$$

L'opérateur NOR (NON OU)

Cet opérateur est un opérateur OU avec la sortie complémentée.

Équation

$$S = \overline{a + b}$$

Les opérateurs NOR et NAND peuvent remplacer tous les autres.

L'opérateur OU exclusif XOR

La sortie est à l'état 1 si une et une seule des entrée est à 1

Symbole logique

Table de vérité

а	Ь	S
0	0	0
0	1	1
1	0	1
1	1	0

Équation

$$S = \overline{a.b} + a\overline{b}$$

On peut écrire

Le complément de la fonction OU exclusif est la fonction identité (a = b) $\mathbf{S} = \overline{\mathbf{a}}.\overline{\mathbf{b}} + \mathbf{a}.\mathbf{b}$

Auteur : alain.charbonnel@ac-caen.fr