Интерференция лазерного излучения (4.5.2)

Стеценко Георгий, Б02-312

1 Аннотация

Цель работы: Исследовать зависимость видности интерфереционной картины от разности хода интерферирующих лучей и от их поляризации.

Оборудование и материалы: Не-Ne лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф C1-76, поляроид, линейка.

2 Теоретические сведения

Лазер представляет собой интерферометр Фабри-Перо – газовую трубку с двумя параллельными зеркалами по обе стороны. Пусть ΔF – половина диапазона генерации лазера, а $\Delta \nu$ – межмодовое расстояние. Тогда межмодовое расстояние выражается как

$$\Delta \nu = \frac{c}{2L} \tag{1}$$

При этом число мод можно оценить как

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu}.\tag{2}$$

(2)

Видность Видность интерфереционной картины – параметр, определяемый формулой

$$\mathcal{V} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где I_{max} , I_{min} – максимальная и минимальная интенсивности света интерфереционной картины вблизи выбранной точки. Разобьём его на произведение функций параметров установки

$$\mathcal{V} = \mathcal{V}_1 \mathcal{V}_2 \mathcal{V}_3$$
.

Здесь \mathcal{V}_1

$$\mathcal{V}_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{4}$$

где $\delta = \frac{B_m^2}{A_m^2}$, A_m^2 и B_m^2 – интенсивности волн. Параметр δ выражает отношение интенсивностей интерферирующих волн.

Величина \mathcal{V}_2 зависит от геометрической разности хода интерферирующих волн,

$$\mathcal{V}_2 = \frac{\sum_n A_n^2 \cos \frac{2\pi \Delta \nu n l}{c}}{\sum_n A_n^2},$$

где l — разность хода, $\Delta \nu$ — спектральный состав излучения, A_n^2 — интенсивности мод.

Рис. 1: Зависимость $V_2(l)$.

Приблизим \mathcal{V}_2 вблизи максимума

$$\mathcal{V}_2 = e^{-\left(\frac{\pi\Delta Fl}{c}\right)^2}$$

Таким образом, ма имеем гауссову зависимость видности от разности хода $\mathcal{V}_2(l)$ с полушириной

$$l_{1/2} = \frac{c}{\pi \Delta F} \sqrt{\ln 2} \approx \frac{0.26c}{\Delta F}.$$
 (5)

Величина \mathcal{V}_3 соответсвует тому факту, что при интерференции поляризованных волн интерфирируют лишь компоненты, поляризованные одинкаово. Необходимо рассмотреть различные случаи поляризации лазера. Пусть на входе в ДК свет поляризован по кругу. Тогда имеем две поляризованные линейно волны с некоторым углом β между ними, соответсвующий множитель для видности:

$$\mathcal{V}_3 = |\cos \beta|. \tag{6}$$

Если же лазер излучает хаотически поляризованный свет, то мы также имеем две линейно поляризованные волны, но их амплитуды уже флуктуируют. В таком случае множитель для видности:

$$V_3 = \cos^2 \beta \tag{7}$$

3 Экспериментальная установка

Рис. 2. Схема установки. З, З₁, З₂, З₃ — зеркала. Π_1 и Π_2 — поляроиды. Б₁ и Б₂ — блоки № 1 и 2. ДК — делительный кубик, РФ — ромб Френеля. $\Phi \Pi$ — фотодиод, Э — экран, Π К — пьезокерамика, Π — линза

В работе используется интерферометр Майкельсона (Рис. 2). Луч лазера, отражённый от зеркала З и прошедший через ромб Френеля (РФ), делится делительным кубиком ДК на два луча. Первый проходит блок B_1 с поляроидом Π_1 и зеркалом 3_1 , прикленным к пьезокерамике, которая может совершать малые колебания вдоль луча, с возможностью изменения угла наклона зеркала. Второй проходит блок B_2 с линзой Π_2 и зеркалом Π_2 и зеркалом Π_3 в фокальной плоскости линзы, чтобы выходящий луч, в отличие от первого, был параллелен входящему. Оба луча, проходя ДК, попадают на сферическое зеркало Π_3 и интерферируют на экране. Интенсивность света считывается фотодиодом на осциллограф через щель, параллельную интерфереционным полосам, в центре экрана. На экране осциллографа наблюдаются колебания с изменяющимся периодом, так как сдфиг фаз у интерферирующих лучей пропорционален смещению зеркала Π_3 .

По картине на экране осциллографа можно определить параметры видности по следующим формулам:

$$\delta = \frac{h_1}{h_2},\tag{8}$$

$$\mathcal{V} = \frac{h_4 - h_3}{h_4 + h_3},\tag{9}$$

Здесь 0 — уровень при отсутствии лучей, 1 и 2 — при закрытии одного из них. Используя δ , можно рассчитать \mathcal{V}_1 по формуле (5).

Рис. 2: Осциллограмма сигналов фотодиода.

При условии одинаковой поляризации лучей ($\alpha = 0$),

$$\mathcal{V}_2 = \frac{\mathcal{V}}{\mathcal{V}_1}.\tag{10}$$

$$\mathcal{V}_3 = \frac{\mathcal{V}}{\mathcal{V}_1}.\tag{11}$$

4 Результаты измерений и обработка результатов

4.1 Изучение поляризации лазера

Вращая поляризатор Π_1 , мы можем наблюдать изменение видности.

 β , 1° 180 170 160 150 140 130 120 110 100 90 80 h_1 , div 3.8 3.0 2.62.0 2.4 2.0 1.9 1.8 1.4 1.5 1.0 h_2 , div 2.3 2.8 2.7 3.0 2.5 2.8 2.9 3.0 3.8 5.0 4.1 h_3 , div 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 h_4 , div 4.2 3.4 2.6 2.0 1.7 1.5 1.4 $\bar{1}.6$ 2.5 3.3 4.2 $\overline{\mathcal{V}}$ 0.3110.4040.509 0.6000.6490.6840.7020.6670.5240.4160.311 1.652 1.0710.9630.6670.9600.7140.6550.6000.3680.3660.200 \mathcal{V}_1 0.9690.9991.000 0.9801.000 0.9860.9780.9680.8870.8860.7450.612 \mathcal{V}_3 0.3210.4040.5100.6500.6940.7180.6890.5900.4700.418 $\sigma(\mathcal{V}_3)$ 0.0190.0180.0190.0240.0210.0240.0260.0270.0410.0360.062

Таблица 1: Результаты измерений

Примечание: считается, что погрешность измерений $\sigma(h)=0.1$ div, в силу размера деления осциллографа.

Рис. 3: Зависимость приведенной видности от угла поляризатора

Как видно, полученная зависимость аппроксимируется косинусом угла. Из чего следует, что лазер излучает линейно поляризованный свет.

4.2 Изучение зависимости видности от разности хода

Снимем зависимости h_1 , h_2 , h_3 , h_4 (l). Для удобства чтения данные перенесены в раздел 6, приложение. Отобразим полученную зависимость на графике.

Рис. 4: Зависимость видности от разности хода

Видно, что не удалось снять ярко выраженный второй максимум, но видно, что расстояние между максимумами действительно составило ≈ 65 cm, что соответствует расстоянию между зеркалами в лазере. Также медленная перестройка мод в среднем диапазоне мешала снять последовательные точки, что видно на графике как некоторые "прыжки" зависимости.

Однако, достаточно хорошо удалось снять первый максимум; приблизим его гауссианом. Полуширина составит $2\sqrt{B\ln 2}\approx (9.4\pm0.6)$ сm. В таком случае

$$\Delta F = \frac{0.26c}{l_{1/2}} \approx (0.83 \pm 0.06) \text{ GHz}$$

– полуширина диапазона генерации лазера.

Межмодовое расстояние $\Delta \nu = \frac{c}{2L} \approx 0.23$ GHZ. Тогда определим число мод, укладывающиеся в интервал генерации:

 $N\approx 1+2\frac{0.83~\mathrm{GHZ}}{0.23~\mathrm{GHZ}}\approx 8$

5 Обсуждение результатов и выводы

Было исследовано влияние поляризации и относительной задержки лучей при интерференции на видность интерференционной картины от света, испущенного лазером. С помощью полученных зависимостей можно определить тип поляризации света, генерируемого лазером: после прохождения ромба Френеля свет имел круговую поляризацию, а значит лазер генерирует линейно поляризованный свет. Кроме того, была получена правдоподобная картина зависимости видности интерференционной картины от относительной задержки лучей, с ухудшением качества данных в середние

диапазона. Анализ позволил оценить диапазон генерации лазера и удостоверит модового расстояния, а значит и получить количество генерируемых мод (≈ 8)	гься в величине меж-
6	

6 Приложение

Таблица 2: Зависимость видности от базы интерферометра (часть 1)

l, cm	8	10	12	14	16	18	20	21	22	23
h_1 , div	2.0	2.2	2.1	2.0	1.8	1.9	1.9	2.6	4.4	5.4
h_2 , div	3.0	2.8	3.0	3.1	3.6	3.8	4.0	3.5	2.2	2.4
h_3 , div	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
h_4 , div	2.3	2.0	2.0	2.0	2.6	3.2	3.7	4.3	5.2	5.5
V	0.553	0.600	0.600	0.600	0.509	0.429	0.368	0.301	0.212	0.185
δ	0.667	0.786	0.700	0.645	0.500	0.500	0.475	0.743	2.000	2.250
V_1	0.980	0.993	0.984	0.976	0.943	0.943	0.935	0.989	0.943	0.923
V_3	0.565	0.604	0.610	0.614	0.540	0.455	0.393	0.304	0.225	0.201
$\sigma(V_3)$	0.019	0.020	0.020	0.020	0.019	0.018	0.017	0.016	0.015	0.015

Таблица 3: Зависимость видности от базы интерферометра (часть 2)

l, cm	24	25	26	27	28	30	32	34	36	38
h_1 , div	4.7	4.6	5.4	5.3	4.5	4.2	5.1	5.2	5.0	4.9
h_2 , div	2.5	2.4	2.0	2.3	3.1	3.3	2.6	2.5	2.5	2.6
h_3 , div	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
h_4 , div	6.2	6.4	6.8	7.2	7.3	7.2	7.4	7.2	7.0	6.7
V	0.127	0.111	0.081	0.053	0.046	0.053	0.039	0.053	0.067	0.088
δ	1.880	1.917	2.700	2.304	1.452	1.273	1.962	2.080	2.000	1.885
V_1	0.952	0.949	0.888	0.919	0.983	0.993	0.946	0.937	0.943	0.952
V_3	0.133	0.117	0.091	0.057	0.047	0.053	0.041	0.056	0.071	0.093
$\sigma(V_3)$	0.014	0.014	0.014	0.013	0.013	0.013	0.013	0.013	0.013	0.015

Таблица 4: Зависимость видности от базы интерферометра (часть 3)

l, cm	42	44	46	48	52	54	56	58	60
h_1 , div	3.4	4.4	4.4	3.1	3.5	4.0	4.0	5.0	5.2
h_2 , div	3.1	3.2	3.4	4.8	4.2	3.8	3.7	3.1	2.6
h_3 , div	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
h_4 , div	6.0	7.4	7.6	7.8	7.2	7.6	7.5	7.6	7.6
V	0.143	0.039	0.026	0.013	0.053	0.026	0.032	0.026	0.026
δ	1.097	1.375	1.294	0.646	0.833	1.053	1.081	1.613	2.000
V_1	0.999	0.987	0.992	0.977	0.996	1.000	0.999	0.972	0.943
V_3	0.143	0.039	0.026	0.013	0.053	0.026	0.054	0.026	0.027
$\sigma(V_3)$	0.014	0.013	0.013	0.013	0.013	0.001	0.013	0.013	0.013

Таблица 5: Зависимость видности от базы интерферометра (часть 4)

l, cm	62	64	66	68	69	70	71	72	73	74
h_1 , div	4.7	4.4	4.1	3.9	5.0	4.8	4.6	4.4	4.2	4.4
h_2 , div	3.2	3.4	3.7	3.3	2.4	1.8	1.6	1.6	1.8	1.5
h_3 , div	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
h_4 , div	7.6	7.6	7.2	6.8	6.4	5.0	4.4	4.0	3.8	3.6
V	0.026	0.026	0.053	0.081	0.111	0.231	0.290	0.333	0.356	0.379
δ	1.469	1.294	1.108	1.182	2.083	2.667	2.875	2.750	2.333	2.933
V_1	0.982	0.992	0.999	0.997	0.936	0.891	0.875	0.884	0.917	0.871
V_3	0.026	0.026	0.053	0.081	0.119	0.259	0.332	0.377	0.388	0.436
$\sigma(V_3)$	0.013	0.013	0.010	0.002	0.010	0.015	0.018	0.018	0.015	0.019

Таблица 6: Зависимость видности от базы интерферометра (часть 5)

l, cm	75	76	77	78	79	80
h_1 , div	4.3	4.2	3.8	3.8	4.2	4.0
h_2 , div	1.6	1.6	1.8	1.8	1.1	1.8
h_3 , div	8.0	8.0	8.0	8.0	8.0	8.0
h_4 , div	3.6	3.4	3.0	3.0	3.2	4.0
V	0.379	0.404	0.455	0.455	0.429	0.333
δ	2.688	2.625	2.111	2.111	3.818	2.222
V_1	0.889	0.894	0.934	0.934	0.811	0.925
V_3	0.427	0.451	0.487	0.487	0.528	0.360
$\sigma(V_3)$	0.017	0.017	0.014	0.018	0.018	0.017