Parseo y Generación de Código – 2^{do} semestre 2019 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 2 Lenguajes regulares

Ejercicio 1. El alfabeto $\Sigma = \{abrir, leer, escribir, cerrar\}$ representa operaciones que se pueden hacer sobre un archivo. Dar un autómata finito determinístico que acepte el lenguaje en el que:

- Inicialmente el archivo está cerrado.
- Si el archivo está abierto, se lo puede cerrar pero no se lo puede abrir.
- Si el archivo está cerrado, se lo puede abrir pero no se lo puede cerrar.
- Sólo se puede leer y escribir cuando el archivo está abierto.

Ejercicio 2. En el alfabeto $\Sigma = \{a, b, ", \setminus \}$ dar un autómata finito determinístico que acepte el lenguaje de las cadenas que empiezan y terminan con comillas (") y no pueden incluir comillas en el medio salvo en la secuencia de escape \". La contrabarra \ se utiliza exclusivamente en las siguientes secuencias de escape:

Por ejemplo, las siguientes palabras están en el lenguaje:

y las siguientes palabras no están en el lenguaje:

Ejercicio 3. Construir autómatas finitos determinísticos que reconozcan los siguientes lenguajes en el alfabeto $\Sigma = \{a, b\}$:

- 1. $\{\alpha : |\alpha| \text{ es par}\}$
- 2. $\{\alpha : |\alpha|_a \text{ es par}\}$
- 3. $\{\alpha : |\alpha|_a \text{ es par y } |\alpha|_b \text{ es par}\}$
- 4. $\{\alpha : |\alpha|_a \text{ es par o } |\alpha|_b \text{ es par}\}$
- 5. $\{\alpha : \alpha \text{ incluye a } aab \text{ como subcadena}\}$
- 6. $\{\alpha : \alpha \text{ no incluye a } aab \text{ como subcadena}\}$

7. $\{\alpha : \alpha \text{ incluye a } aab \text{ como subcadena exactamente una vez}\}$

Ejercicio 4. Construir un autómata finito determinístico en el alfabeto $\Sigma = \{I, V\}$ que acepte el lenguaje de los números romanos del 1 al 8 (I, II, III, IV, V, VI, VII, VIII).

 $\bf Ejercicio~\bf 5.$ Considerar las expresiones regulares extendidas con las siguientes operaciones:

Clausura positiva: se escribe R^+ y representa la repetición una o más veces de cadenas de R, es decir $L(R^+) = L(R)^+$.

Opción: se escribe R? y representa la presencia opcional de una cadena de R, es decir $L(R) = L(R) \cup \{\epsilon\}$.

Comodín: se escribe • y representa cualquier símbolo del alfabeto, es decir $L(\bullet) = \{x \mid x \in \Sigma\}.$

Repetición entre n y m veces $(con\ n \leq m)$: se escribe $R\{n,m\}$ y representa la repetición entre n y m veces inclusive de cadenas de R, es decir $L(R\{n,m\}) = \bigcup_{i=n}^m L(R)^i$.

- 1. Escribir expresiones regulares que utilicen únicamente las operaciones ya conocidas y que sean equivalentes a R^+ , R?, y R{n, m} respectivamente (es decir: deben denotar el mismo lenguaje).
- 2. ¿Cómo es el AFN que resulta de aplicar la construcción de Thompson en cada caso?

Ejercicio 6. Sean R, S, T expresiones regulares. Demostrar que:

- 1. $L((R^*)^*) = L(R^*)$.
- 2. $L(R \cdot (S \mid T)) = L((R \cdot S) \mid (R \cdot T)).$
- 3. $\epsilon \in L(R \cdot S)$ si y sólo si $\epsilon \in L(R)$ y $\epsilon \in L(S)$.
- 4. $L(R^* \mid S^*) \subseteq L((R \mid S)^*)$.
- 5. No vale $L((R \mid S)^*) \subseteq L(R^* \mid S^*)$ en general.

Ejercicio 7. Describir el lenguaje denotado por cada una de las siguientes expresiones regulares:

- 1. $(a|b)a(a|b)^*$
- 2. $b^*ab^*(a|\epsilon)b^*$
- 3. $(ab)^*(a|\epsilon) \mid (ba)^*(b|\epsilon)$

Ejercicio 8. Dar expresiones regulares que reconozcan los siguientes lenguajes en el alfabeto $\Sigma = \{a, b\}$:

- 1. $\{\alpha : |\alpha| \text{ es par}\}.$
- 2. $\{\alpha : |\alpha|_a \text{ es par}\}.$
- 3. $\{\alpha : \alpha \text{ incluye a } aab \text{ como subcadena}\}$.
- 4. $\{\alpha: \alpha \text{ no incluye a } aab \text{ como subcadena}\}$. Sugerencia: observar que si hay dos a seguidas, todo el resto de la cadena a partir de ese punto no puede contener ninguna b.

Ejercicio 9. Para cada una de las siguientes expresiones regulares en el alfabeto $\Sigma = \{a, b\}$:

$$a^{\star}a \mid a^{\star}b$$

$$a^{\star}aa$$

- 1. Aplicar la construcción de Thompson para obtener un AFN que acepta el lenguaje denotado por la expresión regular.
- 2. Aplicar la construcción de subconjuntos al AFN para obtener un AFD que acepta el mismo lenguaje. *Nota:* recordar que **todos** los estados del AFD deben tener transiciones para **todos** los símbolos del alfabeto.
- 3. Convencerse de que en todas los lenguajes aceptados por los autómatas son los mismos que los que denotan las expresiones regulares.

Ejercicio 10. Para cada $n \ge 0$, considerar el lenguaje de las palabras capicúa de longitud 2n en el alfabeto $\Sigma = \{a, b\}$:

$$L_n = \{ \alpha \alpha^r : \alpha \in \Sigma^* \ y \ |\alpha| = n \}$$

- 1. Definir por inducción en n un autómata finito determinístico D_n que acepte el lenguaje L_n . (El autómata D_{n+1} que acepta el lenguaje L_{n+1} se construye a partir del autómata D_n que acepta el lenguaje L_n).
- 2. ¿Cuántos estados tiene D_n ? Probarlo por inducción.

Ejercicio 11. Suponer que L es un conjunto finito de palabras $\{\alpha_1, \ldots, \alpha_n\}$. Demostrar que existe un autómata finito determinístico que acepta el lenguaje L.

Ejercicio 12. Sea D_1 un autómata finito determinístico. Construir un AFD D_2 que acepta el lenguaje reverso al que acepta D_1 , es decir:

$$L(D_2) = \{\alpha^r : \alpha \in L(D_2)\}\$$

Ejercicio 13. Sea D_1 un autómata finito determinístico. Construir un AFD D_2 que acepta el complemento del lenguaje que acepta D_1 , es decir:

$$L(D_2) = \Sigma^* \setminus L(D_1)$$

Ejercicio 14. Sean D_1 y D_2 autómatas finitos determinísticos. Demostrar en cada uno de los siguientes casos que se puede construir un autómata finito determinístico D_3 que cumple:

- 1. $L(D_3) = L(D_1)^*$
- 2. $L(D_3) = L(D_1) \cdot L(D_2)$
- 3. $L(D_3) = L(D_1) \cup L(D_2)$
- 4. $L(D_3) = L(D_1) \cap L(D_2)$ utilizar la siguiente identidad de conjuntos: $A \cap B = (A^c \cup B^c)^c$, donde A^c denota el complemento de A.

Ejercicio 15. Usando el método de las ecuaciones, construir expresiones regulares que denoten los lenguajes aceptados por cada uno de los siguientes autómatas no determinísticos:

1. $N_1=(\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_0\})$ donde δ está dada por las siguientes transiciones:

Nota: si la a se piensa como un 0 y la b como un 1, el lenguaje es el de los números escritos en base binaria que son múltiplos de 3.

2. $N_2=(\{q_0,q_1,q_2,q_3,q_4,q_5\},\{a,b\},\delta,q_0,\{q_0,q_1,q_2,q_3,q_4,q_5\})$ donde δ está dada por las siguientes transiciones. Notar que todos los estados son finales pero el autómata no acepta todas las cadenas en el alfabeto $\{a,b\}$ – por ejemplo, la cadena aabb no es aceptada.

Nota: el lenguaje es el de las cadenas en las cuales a lo sumo un símbolo puede tener repeticiones.

3. $N_3=(\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_2\})$ donde δ está dada por las siguientes transiciones:

Nota: el lenguaje es el de las cadenas que no son de la forma $(ab)^*(a|\epsilon)$.

Ejercicio 16. Usando el lema de *pumping* y las propiedades de clausura de los lenguajes regulares¹ demostrar que los siguientes lenguajes en el alfabeto $\Sigma = \{a, b\}$ no son regulares:

- 1. $L_1=\{\alpha\in\Sigma^{\star}:\alpha=a^nb^n$ para algún $n\geq0\}=$ "as seguidas de bs, con igual cantidad de a y b".
- 2. $L_2=\{\alpha\in\Sigma^\star:\alpha=a^nb^na^m$ para algún $n\geq 0$ y algún $m\geq 0\}=$ "palabras en el lenguaje L_1 seguidas de una cantidad arbitraria de as".
- 3. $L_3 = \{\alpha \in \Sigma^* : \alpha = \alpha^r\} =$ "palabras capicúa".
- 4. $L_4 = \{\alpha \in \Sigma^* : \alpha = \beta \beta \text{ para alguna } \beta \in \Sigma^* \} = \text{``palabras que constan de dos mitades iguales''}.$
- 5. $L_5 = \{\alpha \in \Sigma^* : |\alpha|_a = |\alpha|_b\} =$ "palabras con igual cantidad de a y de b".
- 6. $L_6 = \{\alpha \in \Sigma^{\star} : |\alpha|_a > |\alpha|_b\} =$ "palabras con más a que b".
- 7. $L_7 = \{\alpha \in \Sigma^* : |\alpha|_a \neq |\alpha|_b\} = \text{``palabras con distinta cantidad de } a \text{ y de } b\text{''}.$

¹P. ej. "la intersección de dos lenguajes regulares es regular".