# ASTR8150/PHYS8150 Optimization

Fabien Baron

Georgia State University baron@chara.gsu.edu

Fall 2019

## Convexity of a set



- In a convex set, for every pair of points within the region, every point on the straight line segment that joins the pair of points is also within the region.
- A set which is hollow or has an indent, for example, a crescent shape, is not convex.

#### Convexity of a function



- A real-valued function is called is convex if the set of points on or above the graph of the function (epigraph) is a convex set.
- For a twice differentiable function of a single variable, if the second derivative is always greater than or equal to zero for its entire domain then the function is convex. Examples:  $f(x) = x^2$  or  $f(x) = e^x$
- Jensen's inequality: if X is a convex set and  $f: X \to \mathbb{R}$ , f is convex if:

$$\forall x_1, x_2 \in X, \forall t \in [0,1]: \quad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

Fabien Baron (GSU) Optimization Fall 2019 3/30

#### Smoothness of a function

- The smoothness of a function is a property measured by the number of derivatives it has which are continuous. A smooth function is a function that has derivatives of all orders everywhere in its domain.
- The function  $f(x) = |x|^k$  is continuous and k times differentiable at all x. But at x = 0 it is not (k + 1) times differentiable.
- The norms  $\ell_2$ ,  $\ell_1$  and pseudo-norm  $\ell_0$  are used in regularization.  $\ell_2$  is convex, differentiable and smooth.  $\ell_1$  is convex, differentiable but nonsmooth.  $\ell_0$  is non-convex and nonsmooth.

4 / 30

Fabien Baron (GSU) Optimization Fall 2019

## Gradient descent (1)



• Gradient descent is based on the observation that if the multi-variable function  $f(\mathbf{x})$  is defined differentiable in a neighborhood of a point  $\mathbf{x_0}$ , then  $F(\mathbf{x})$  decreases "fastest" if one goes from  $\mathbf{x_0}$  in the direction of the negative gradient of f at  $\mathbf{x_0}$ ,  $-\nabla f(\mathbf{x_0})$ .

# Gradient descent (2)



It follows that, if

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \nabla f(\mathbf{x}_n) \tag{1}$$

for  $\alpha$  small enough, then  $f(\mathbf{x_n}) \geq f(\mathbf{x_{n+1}})$ . In other words, the term  $\alpha \nabla f(\mathbf{x})$  is subtracted from  $\mathbf{x}$  because we want to move against the gradient, namely down toward the minimum.

- How can we choose  $\alpha$  ?
- The Rosenbrock function  $f(x_1, x_2) = (1 x_1)^2 + 100(x_2 x_1^2)^2$ . has a narrow curved valley which contains the minimum. The bottom of the valley is very flat. Because of the curved flat valley the optimization is zig-zagging slowly with small stepsizes towards the minimum.

#### Steepest descent using line search

- Inexact line search consist of finding  $\alpha_k \simeq \underset{\alpha \in \mathbb{R}_+}{\operatorname{argmin}} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$
- The **line search** method is one of two basic iterative approaches to find a local minimum  $\mathbf{x}^*$  of an objective function  $f: \mathbb{R}^n \to \mathbb{R}$  using gradients. The other approach is **trust region**.

#### **Algorithm 1** Steepest descent with line search

```
1: procedure STEEPEST DESCENT(f, x)
                                          ▷ Iteration counter + initial parameter guess
         k=0. x<sub>0</sub>
2:
        while \|\nabla f(\mathbf{x}_k)\| > \epsilon do
                                                                                      \triangleright \epsilon = \text{tolerance}
3:
              \mathbf{d_k} = -\nabla f(x_k)
                                      ▷ Descent direction = Steepest descent
4:
              \alpha_k \simeq \operatorname{argmin} f(\mathbf{x}_k + \alpha \mathbf{d}_k)
                                                                                          Line search
5:
                         \alpha \in \mathbb{R}_{\perp}
              \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k
6:
          k = k + 1
7:
         end while
8.
9: end procedure
```

#### Nonlinear conjugate gradient methods

- Let's pose  $\mathbf{g_k} = \nabla f(x_k)$
- $\bullet$  Conjugate directions deviate from the steepest descent  $d_k=-g_k$  by attempting moves based on the history of the previous moves
- The descent direction for nonlinear conjugate gradient methods is

$$\mathbf{d}_{\mathbf{k}+\mathbf{1}} = -\mathbf{g}_{\mathbf{k}+\mathbf{1}} + \beta_k \mathbf{d}_{\mathbf{k}}, \quad \mathbf{d}_{\mathbf{0}} = -\mathbf{g}_{\mathbf{0}}$$
 (2)

- $\bullet$  The variation of the gradient is measured by  $y_k = g_{k+1} g_k$
- The Conjugate Gradient update parameter  $\beta_k$  can be updated with different formulas

4□ > 4□ > 4 = > 4 = > = 90

## Conjugate gradient: convergence



 A comparison of the linear convergence of simple gradient descent with optimal step size (in green) and the superlinear convergence of conjugate gradient (in red) for minimizing a quadratic function.

#### Nonlinear conjugate gradient methods

$$\beta_k^{HS} = \frac{\mathbf{g}_{k+1}^{\mathsf{T}} \mathbf{y}_k}{\mathbf{d}_k^{\mathsf{T}} \mathbf{y}_k}$$
 (1952) in the original (linear) CG paper of Hestenes and Stiefel [59]

$$\beta_k^{FR} = \frac{\|\mathbf{g}_{k+1}\|^2}{\|\mathbf{g}_k\|^2}$$
 (1964) first nonlinear CG method, proposed by Fletcher and Reeves [45]

$$\beta_k^D = \frac{\mathbf{g}_{k+1}^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}{\mathbf{d}_k^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}$$
(1967) proposed by Daniel [39], requires evaluation of the Hessian  $\nabla^2 f(\mathbf{x})$ 

$$\beta_k^{PRP} = \frac{\mathbf{g}_{k+1}^{\dagger} \mathbf{y}_k}{\|\mathbf{g}_k\|^2}$$
 (1969) proposed by Polak and Ribière [84] and by Polyak [85]

$$\beta_k^{CD} = \frac{\|\mathbf{g}_{k+1}\|^2}{-\mathbf{d}_k^{\mathsf{T}} \mathbf{g}_k}$$
 (1987) proposed by Fletcher [44], CD stands for "Conjugate Descent"

$$\beta_k^{LS} = \frac{\mathbf{g}_{k+1}^{\mathsf{T}} \mathbf{y}_k}{-\mathbf{d}_k^{\mathsf{T}} \mathbf{g}_k}$$
(1991) proposed by Liu and Storey [67] 
$$\beta_k^{DY} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_k^{\mathsf{T}} \mathbf{y}_k}$$
(1999) proposed by Dai and Yuan [27]

$$\beta_k^{DY} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_1^\mathsf{T} y_k}$$
 (1999) proposed by Dai and Yuan [27]

$$\beta_k^N = \left(\mathbf{y}_k - 2\mathbf{d}_k \frac{\|\mathbf{y}_k\|^2}{\mathbf{d}_L^T \mathbf{y}_k}\right)^\mathsf{T} \frac{\mathbf{g}_{k+1}}{\mathbf{d}_L^T \mathbf{y}_k} \quad (2005) \quad \text{proposed by Hager and Zhang [53]}$$

#### Newton optimization method



Figure: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route.

Hessian is used to exploit the curvature information

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha [\mathbf{H} f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$
(3)

 $lpha \in (0,1)$ , with lpha = 1 the exact form.

Fabien Baron (GSU) Optimization Fall 2019 11/30

#### Newton-Raphson root-finding and eccentric anomaly

- Newton optimization method and Newton-Raphson's root finding methods are based on similar principles
- Newton-Raphson:  $x_{n+1} = x_n f(x_n)/f'(x_n)$
- Example: the mean anomaly is proportional to time it is an easily measured quantity for an orbiting body. Given the mean anomaly M, find the eccentric anomaly E and the orbital eccentricity e with Kepler's Equation:

$$M = E - e \sin E \tag{4}$$

□ → < □ → < □ → < □ → </li>
 □ → < □ → </li>

12/30

Fabien Baron (GSU) Optimization Fall 2019

#### Better than Newton: quasi-Newton methods

- Also known as variable metric methods, they avoid computing the Hessian then its inverse.
- The Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Davidon-Fletcher-Powell (DFP) algorithms build iteratively approximations of  $[\mathbf{H}f(\mathbf{x}_n)]^{-1}$ .
- The most successfull is Limited-memory BFGS (L-BFGS) that approximates  $[\mathbf{H}f(\mathbf{x}_n)]^{-1}\nabla f(\mathbf{x}_n)$  directly and thus can work on large scale problems (millions of variables).
- There are variants that attempt to deal with non-smooth functions (subgradient and bundle method)
- There are variants that deal with constrained miminization (i.e. bounds on variables or linearly tied variables) such as L-BFGS-B.
   Further refinements led to the VMLM algorithm in OptimPack.

Fabien Baron (GSU) Optimization Fall 2019 13 / 30

#### Trust-region method and Levenberg-Marquardt

• Consider the quadratic approximation of function f around  $x_0$ :

$$q(\epsilon) \simeq f(x_0) + \nabla f(x_0)\epsilon + \frac{1}{2}\epsilon^T \nabla^2 f(x_0)\epsilon$$
 (5)

- $q(\epsilon)$  has a close-form mimimum.
- $q(\epsilon)$  remains a good approximation within a given radius,  $||e||_2 < r^2$  defines the **trust region** radius r.
- The quadratic approximation predicts a certain reduction in the cost function,  $\Delta f_{\mathrm{pred}}$ , which is compared to the true reduction  $\Delta f_{\mathrm{actual}} = f(x) f(x+\epsilon)$ . By looking at the ratio  $\Delta f_{\mathrm{pred}}/\Delta f_{\mathrm{actual}}$  we can estimate the trust-region size at each iteration, jump to the closed-form minimum within the trust region, and iterate.
- The Levenberg-Marquardt algorithm (first published in 1944 by Kenneth Levenberg, rediscovered in 1963 by Donald Marquardt) uses the trust-region approach with conjugate-gradients and Gauss-Newton (Newton optimized for non-linear  $\chi^2$ ). Like conjugate gradient and Newton, these local optimization.

#### Derivative-free optimization methods

- Derivative-free optimization methods simply do not require gradient information
- Among the most popular local optimizer is Nelder–Mead method (aka downhill simplex method or amoeba method), which moves points of a polytope of n+1 vertices in n-parameter dimensions via reflection, contraction, expansion steps
- Most MCMC optimization methods.
- NLopt library provides mostly derivative-free algorithms, some of them for global optimization.

#### Constrained minimization: the Lagrangian method

- Constrained minimization is minimization under equality or inequality constrains. Bounded optimization is a special case of constrained optimization where bounds are imposed on parameters (e.g. positivity, or variable within a range). In Bayesian terms, we're imposing a prior.
- A classic example is:

$$(\tilde{x}, \tilde{y}) = \underset{(x,y) \in \mathbb{R}^2}{\operatorname{argmin}} (x+y)$$
 s. t.  $x^2 + y^2 = 1$ 

• We pose  $g(x,y) = x^2 + y^2 - 1$  and the Lagrangian is:

$$\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot g(x, y)$$
  
=  $x + y + \lambda(x^2 + y^2 - 1)$ .

where  $\lambda$  is a Lagrange multiplier.

4 1 1 4 1 1 4 2 1 4 2 1 4 2 1 4 2 1

16/30

#### Constrained minimization: the Lagrangian method

• The gradient with respect to variables x,y and  $\lambda$ 

$$\nabla_{x,y,\lambda} \mathcal{L}(x,y,\lambda) = \left(\frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial \lambda}\right)$$
$$= \left(1 + 2\lambda x, 1 + 2\lambda y, x^2 + y^2 - 1\right)$$

and therefore:

$$abla_{x,y,\lambda}\mathcal{L}(x,y,\lambda) = 0 \quad \Leftrightarrow \quad \begin{cases} 1 + 2\lambda x = 0 \\ 1 + 2\lambda y = 0 \\ x^2 + y^2 - 1 = 0 \end{cases}$$

• Solution  $x=y=-\frac{1}{2\lambda},\ \lambda\neq 0$ .. Substituting into the last equation we get  $\lambda=\pm\frac{1}{\sqrt{2}}$  which implies that the stationary points of  $\mathcal L$  are  $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},-\frac{1}{\sqrt{2}}\right),\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},\frac{1}{\sqrt{2}}\right)$ . And since  $f\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)=\sqrt{2}$  and  $f\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}$ . the solution is found.

# Constrained minimization: Half-quadratic splitting (1)

• Let's say we want to minimize:

$$ilde{oldsymbol{x}} = \operatorname*{argmin} rac{1}{2} \left\| oldsymbol{H} oldsymbol{x} - oldsymbol{y} 
ight\|_2^2 + \mu \Phi(oldsymbol{x})$$

where  $\Phi(x)$  is a function such that we wouldn't be able to solve this via Tikhonov. We saw a good example is  $\Phi(x) = \ell_1(x)$ .

 Splitting methods are methods that split the unconstrained problem into a constrained problem, using two different variables to represent the same one in different functions:

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \mu \Phi(\mathbf{z}) \quad s.t. \quad \mathbf{z} = \mathbf{x}$$
$$= \underset{\mathbf{x}, \mathbf{z}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \mu \Phi(\mathbf{z}) + \frac{\rho}{2} \|\mathbf{z} - \mathbf{x}\|_{2}^{2}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・釣♀@

Fabien Baron (GSU) Optimization Fall 2019 18 / 30

#### Constrained minimization: the two subproblems

• So we now want to minimize:

$$\mathcal{L}(x, z) = \frac{1}{2} \|Hx - y\|_{2}^{2} + \mu \Phi(z) + \frac{\rho}{2} \|z - x\|_{2}^{2}$$

- $\frac{\rho}{2} \| \mathbf{z} \mathbf{x} \|_2^2$  is called an augmented term, and  $\rho$  the augmented penalty or hyperparameter.
- The half-quadratic splitting method solves iteratively (iteration variable = k) the problem with respect to x, then z:

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \frac{\rho}{2} \| \tilde{\mathbf{z}}^{k} - \mathbf{x} \|_{2}^{2}$$
  $\mathbf{x}$  sub-problem

$$\tilde{\boldsymbol{z}}^{k+1} = \operatorname*{argmin}_{\boldsymbol{z}} \frac{\rho}{2} \left\| \boldsymbol{z} - \tilde{\boldsymbol{x}}^{k+1} \right\|_{2}^{2} + \mu \Phi(\boldsymbol{z})$$

z sub-problem

and then increases  $\rho$  from initially low values to higher and higher ones.

#### Constrained minimization: analytical solutions exist

• Why is this easier than the original problem ?

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \frac{\rho}{2} \|\tilde{\mathbf{z}}^{k} - \mathbf{x}\|_{2}^{2}$$
  $\mathbf{x}$  sub-problem

$$\tilde{\mathbf{z}}^{k+1} = \underset{\mathbf{z}}{\operatorname{argmin}} \frac{\rho}{2} \left\| \mathbf{z} - \tilde{\mathbf{x}}^{k+1} \right\|_{2}^{2} + \mu \Phi(\mathbf{z})$$
  $\mathbf{z}$  sub-problem

- ullet The  ${m x}$  sub-problem can be solved by Tikhonov.
- The z sub-problem can be solved analytically for some functions, for which we know the solution of the problem:

$$\operatorname{prox}_{f}(\boldsymbol{z}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \left( \frac{1}{2} \| \boldsymbol{z} - \boldsymbol{w} \|_{2}^{2} + f(\boldsymbol{w}) \right)$$

• This solution  $prox_f(z)$  is the **proximal operator** for the function f. At each point z it finds a close-by local minimum of f.

#### Proximal operator for the $\ell_1$ norm and positivity

ullet One can demonstrate that the proximal operator for  $\ell_1$  norm is:

$$\operatorname{prox}_{\alpha\ell_1}(\boldsymbol{z}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \ \left(\frac{1}{2} \left\| \boldsymbol{z} - \boldsymbol{w} \right\|_2^2 + \alpha\ell_1(\boldsymbol{w}) \right) = \operatorname{sign}(\boldsymbol{z}) \cdot \max(|\boldsymbol{z}| - \alpha, 0)$$

where  $\cdot$  is the Hadamard product.

 The proximal operator for positivity is the projection onto the positive set:

$$\operatorname{prox}_{I_{\mathbb{R}^+}}(\boldsymbol{z}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{+n}} \left( \frac{1}{2} \| \boldsymbol{z} - \boldsymbol{w} \|_2^2 \right) = \max(\boldsymbol{z}, 0)$$

4□ > 4□ > 4 = > 4 = > = 90

Fabien Baron (GSU) Optimization Fall 2019 21/30

## Half-quadratic splitting: beyond the 1:1 change of variable

- Half-quadratic splitting only involves analytical steps: the x sub-problem is solved via Tikhonov and the z sub-problem via proximal operators (provided it is known). Generalizing beyond z = x, we can also have more complex linear constrains under the form Ax + Bz + c = 0.
- How should we solve the total variation problem, i.e. minimize  $\frac{1}{2} \| \mathbf{H} \mathbf{x} \mathbf{y} \|_2^2 + \mu \ell_1(\nabla \mathbf{x}) ?$
- We only know the proximal operator for  $\ell_1(z)$  and not for  $\ell_1(\nabla z)$ . So we should not pose z=x, since we wouldn't know how to solve the z sub-problem. However we can pose  $z=\nabla x$ , leading to:

$$\mathcal{L}(x, z) = \frac{1}{2} \|Hx - y\|_{2}^{2} + \mu \ell_{1}(z) + \frac{\rho}{2} \|z - \nabla x\|_{2}^{2}$$

Fabien Baron (GSU) Optimization Fall 2019 22 / 30

#### Total variation solved via Half-quadratic splitting

$$\mathcal{L}(x, z) = \frac{1}{2} \| Hx - y \|_{2}^{2} + \mu \ell_{1}(z) + \frac{\rho}{2} \| z - \nabla x \|_{2}^{2}$$

• The x sub-problem is:

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \frac{\rho}{2} \| \tilde{\mathbf{z}}^{k} - \nabla \mathbf{x} \|_{2}^{2} \qquad \mathbf{x} \text{ sub-problem}$$

$$\Longrightarrow \mathbf{H}^{\top} (\mathbf{H} \mathbf{x} - \mathbf{y}) - \rho \nabla^{\top} (\tilde{\mathbf{z}}^{k} - \nabla \mathbf{x}) = 0$$

$$\Longrightarrow \tilde{\mathbf{x}}^{k+1} = (\mathbf{H}^{\top} \mathbf{H} + \rho \nabla^{\top} \nabla)^{-1} (\mathbf{H}^{\top} \mathbf{y} + \rho \nabla^{\top} \tilde{\mathbf{z}}^{k})$$

• The z sub-problem is:

$$egin{aligned} & ilde{m{z}}^{k+1} = \operatorname*{argmin}_{m{z}} \mu \ell_1(m{z}) + rac{
ho}{2} \left\| m{z} - m{
abla} ilde{m{x}}^{k+1} 
ight\|_2^2 & m{z} ext{ sub-problem} \ & = \operatorname*{prox}_{rac{\mu}{
ho}\ell_1}(m{
abla} ilde{m{x}}^{k+1}) = \operatorname*{sign}(m{
abla} ilde{m{x}}^{k+1}) \cdot \max(|m{
abla} ilde{m{x}}^{k+1}| - rac{\mu}{
ho}, 0) \end{aligned}$$

Fabien Baron (GSU) Optimization Fall 2019 23 / 30

#### Making the x step faster: some tricks

• The x sub-problem is the slowest one since it involves:

$$\tilde{\pmb{x}}^{k+1} = (\pmb{H}^{\top} \pmb{H} + \rho \nabla^{\top} \nabla)^{-1} (\pmb{H}^{\top} \pmb{y} + \rho \nabla^{\top} \tilde{\pmb{z}}^k)$$

but matrix inversion is a  $O(N^4)$  process and thus costly both in memory space and computing time. To be able to work with larger images, tricks to speed up the inversion are used in practice.

- One is to use sparse arrays that only store the non-zero elements of H and ∇. The inversion and subsequent multiplication are then faster.
- Using an **orthogonal wavelet basis**, W, as a sparsity basis instead of the spatial gradient  $\nabla$  since in this case  $W^{\top}W = \alpha I$ .
- Another is to employ the backslash operator in Julia (or Matlab). We have  $\mathbf{X}^{-1}\mathbf{Y} = \mathbf{X} \backslash \mathbf{Y}$ , but the latter operation doesn't store the inverted matrix  $\mathbf{X}^{-1}$ ; instead it just temporarily stores the parts useful for its multiplication by  $\mathbf{Y}$ .

$$\tilde{\pmb{x}}^{k+1} = (\pmb{H}^{ op} \pmb{H} + 
ho \pmb{
abla}^{ op} \pmb{
abla} ackslash (\pmb{H}^{ op} \pmb{y} + 
ho \pmb{
abla}^{ op} \tilde{\pmb{z}}^k)$$

Fabien Baron (GSU) Optimization Fall 2019 24/30

# Making the x step faster: circulant matrices (1)

- It turns out  $\nabla^{\top}\nabla$  and  $\mathbf{H}^{\top}\mathbf{H}$  can be simplified if  $\nabla$  and  $\mathbf{H}$  are circulant matrices, or concatenation of circulant matrices. This is the case when  $\nabla$  is the spatial gradient, and when  $\mathbf{H}$  is a convolution (= if modeling the imaging done by an optical system).
- A circulant matrix **C** takes the form:

$$\mathbf{C} = \begin{bmatrix} c_1 & c_n & \dots & c_3 & c_2 \\ c_2 & c_1 & c_n & & c_3 \\ \vdots & c_2 & c_1 & \ddots & \vdots \\ c_{n-1} & \vdots & \ddots & \ddots & c_n \\ c_n & c_{n-1} & \dots & c_2 & c_1 \end{bmatrix}.$$

• All circulant matrixes can be written as  $C = FDF^{\top}$  where F is the Fourier transform  $(n^2 \times n^2)$  if implemented via matrix operations) and  $D = \text{diag}(F([c_1 \dots c_n]))$  is diagonal.

Fabien Baron (GSU) Optimization Fall 2019 25 / 30

#### Making the x step faster: circulant matrices (2)

- ullet We remind that  $oldsymbol{F}^ op oldsymbol{F} = oldsymbol{I}$  since  $oldsymbol{F}^ op = oldsymbol{F}^{-1}$  and  $(oldsymbol{A}oldsymbol{B})^ op = oldsymbol{B}^ op oldsymbol{A}^ op$
- Since  $C = FDF^{\top}$ ,  $C^{\top} = ((FD)F^{\top})^{\top} = F(FD)^{\top} = FD^{\top}F^{\top}$
- Consequently  $\mathbf{C}^{\top}\mathbf{C} = \mathbf{F}\mathbf{D}\mathbf{F}^{\top}\mathbf{F}\mathbf{D}^{\top}\mathbf{F}^{\top} = \mathbf{F}\mathbf{D}^{2}\mathbf{F}^{\top}$  since  $\mathbf{D}$  is diagonal.
- The application relies on the fact that applying the Fourier transforms  $\mathbf{F}$  or  $\mathbf{F}^{-1}$  can be done with very fast FFT algorithms:

$$(\mathbf{H}^{\top}\mathbf{H} + \rho \nabla^{\top}\nabla)\tilde{\mathbf{x}}^{k+1} = \mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k}$$

$$(\mathbf{F}\mathbf{D}_{\mathbf{H}}^{2}\mathbf{F}^{\top} + \rho \mathbf{F}\mathbf{D}_{\nabla}^{2}\mathbf{F}^{\top})\tilde{\mathbf{x}}^{k+1} = \mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k}$$

$$\mathbf{F}(\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2})\mathbf{F}^{\top}\tilde{\mathbf{x}}^{k+1} = \mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k}$$

$$(\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2})\mathbf{F}^{\top}\tilde{\mathbf{x}}^{k+1} = \mathbf{F}^{-1}(\mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k})$$

$$\mathbf{F}^{\top}\tilde{\mathbf{x}}^{k+1} = \frac{\mathbf{F}^{-1}(\mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k})}{\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2}}$$

$$\tilde{\mathbf{x}}^{k+1} = \mathbf{F}\left(\frac{\mathbf{F}^{-1}(\mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k})}{\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2}}\right)$$

Fabien Baron (GSU) Optimization Fall 2019 26 / 30

#### Augmented Lagrangian methods

• Let's say we want to minimize f(x) under a sets of constraints on x. We saw we could express each of these constrains as  $g_i(x) = 0$ . Then we just need to minimize the Lagrangian:

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) = f(\boldsymbol{x}) + \sum_{i} \lambda_{i} \cdot g_{i}(\boldsymbol{x})$$

where  $\lambda$  is a vector this time.

• The idea is to use an augmented Lagrangian:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i} \lambda_{i} \cdot g_{i}(\mathbf{x}) + \frac{\rho}{2} \sum_{i} |g_{i}(\mathbf{x})|^{2}$$

where the augmentation term  $\sum_{i} |g_{i}(\mathbf{x})|^{2}$  is multiplied by penalty terms  $\rho$ .

The method of multipliers solves this by iterating:

$$oldsymbol{x}^{k+1} = \mathop{\mathrm{argmin}}_{oldsymbol{x}} \mathcal{L}(oldsymbol{x}, \lambda_i^k) \ \lambda_i^{k+1} = \lambda_i^k + 
ho^k g_i(oldsymbol{x}^k) \ orall_i \ orall_i$$

#### Example: Method of multipliers for linear constraints

- Let's say we want to minimize f(x) under a sets of linear constraints on x, we can express them as Ax = b.
- The augmented Lagrangian is:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

The method of multipliers solves this by iterating:

$$egin{aligned} \mathbf{x}^{k+1} &= \operatorname*{argmin}_{\mathbf{x}} \mathcal{L}(\mathbf{x}, oldsymbol{\lambda}^k) \ \mathbf{\lambda}^{k+1} &= oldsymbol{\lambda}^k + 
ho(\mathbf{A}\mathbf{x}^{k+1} - \mathbf{b}) \end{aligned}$$

4□ > 4ⓓ > 4≧ > 4≧ > ½ > 9<</p>

#### Alternating Direction Method of Multipliers (ADMM)

 Putting all our previous knowledge together, using variable splitting, Lagrangian multipliers, and augmentation terms, we come with ADMM, a method to solve:

$$\underset{x,z}{\operatorname{argmin}} f(x) + g(z) \quad \text{s.t. } Ax + Bz + c = 0$$

ADMM solves this by posing:

$$\mathcal{L}(\mathbf{x}, \mathbf{z}, \lambda) = f(\mathbf{x}) + g(\mathbf{z}) + \lambda^{\top} (\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} + \mathbf{c}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} + \mathbf{c}\|_{2}^{2}$$

• And then we iterate:

$$\begin{aligned} & \boldsymbol{x}^{k+1} = \operatorname*{argmin}_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}^k, \boldsymbol{\lambda}^k) \\ & \boldsymbol{z}^{k+1} = \operatorname*{argmin}_{\boldsymbol{z}} \mathcal{L}(\boldsymbol{x}^{k+1}, \boldsymbol{z}, \boldsymbol{\lambda}^k) \\ & \boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \rho (\boldsymbol{A} \boldsymbol{x}^{k+1} + \boldsymbol{B} \boldsymbol{z}^{k+1} + \boldsymbol{c}) \end{aligned}$$

Fabien Baron (GSU)

Optimization

Fall 2019 29/30

# Why use ADMM?

Since ADMM is solving:

$$\underset{x,z}{\operatorname{argmin}} f(x) + g(z) \quad \text{s.t. } Ax + Bz + c = 0$$

, we use it for the solution of Bayesian problems where f is the log-likelihood and g a regularization function or prior (e.g. positivity).

- More regularization terms can be added  $f(x) + g(z) + h(w) + \dots$
- If the log-likelihood can be split (by wavelengths, times, etc.) such as is often the case with  $\chi^2$  then ADMM allows for efficient parallelization of large-scale problems. In this case we go from f(x) to  $f_1(x_1) + f_2(x_2) + \ldots$  so that  $x = \{x_1, x_2, \ldots\}$  and  $f_1, f_2, \ldots$  can be minimized in parallel.

Fabien Baron (GSU)