Chenxu Luo

PERSONAL

ADDRESS: 260 Malone Hall, 3400N Charles St. Baltimore, MD

PHONE: +1 4104690515, +1 4105370482

EMAIL: chenxuluo@jhu.edu, chenxuluo6@gmail.com

EDUCATION

Sep. 2016- Ph.D in Computer Science, Johns Hopkins University

Advisor: Alan Yuille (Bloomberg Distinguished Professor)

Sep. 2012- Jul.2016 Bachelor of Science in Information and Computational Science

School of Mathematical Sciences, Peking University, Beijing, China

WORK EXPERIENCE

Aug. 2016 - Research assistant in computer science department

Whiting School of Engineering, Johns Hopkins University

Advisor: Alan Yuille

Topic: Joint 2D and 3D human pose estimation from monocular images.

MAR 2015 - JUN. 2016 | Research assistant in National Engineering Laboratory for Video Tech-

nology, School of EECS, Peking University

Advisor: Yizhou Wang

Topic: Action Recognition from 3D skeletons.

LANGUAGES

Chinese(Native), English(Fluent)

PROGRAMMING SKILLS

Programming Languages C/C++,python,lua,matlab,

Deep Learning Frameworks torch, pytorch, caffe, mxnet,tensorflow,

Operating Systems Linux, Windows

RESEARCH INTERESTS

My research interests lie in the field of computer vision, robotics, machine learning, especially deep neural networks.

Currently, I am focused on recognizing and understanding human in the scene. I am interested in its applications in robotics and human-computer interaction.

I am also interested in other topics such as 3D vision and generative models.

PUBLICATIONS

1. <u>Chenxu Luo</u>, Chang Ma, Chunyu Wang, Yizhou Wang. Learning Discriminative Activated Simplices for Action Recognition. AAAI 2017.

RESEARCH EXPERIENCES

Human Pose Estimation

- Implemented and trained the "Stacked Hourglass Network" in caffe and torch. I modified the network and achieved better result on MPII dataset.
- Implemented a volumetric regression network for 3D human pose estimation from monocular images combining 2D joints locations, based on stacked hourglass network architecture.
- Proposed a fully convolutional kinematic model for 3D Human pose estimation that combines combine localization of 2D joints and dense regression for 3D pose of each body parts.
- Our methods can take advantages of multi-source data including images with 2D annotations, 3D datasets captured in controlled environments as well as large amount of synthetic data with groundtruth annotations.
- In preparation and will be submitted to ICCV 2017.

Action Recognition based on 3D skeletons

- Enhanced the discrimination of previous activated simplices method by adding block-diagonal constrains and introducing shared dictionary.
- Achieved the state-of-the-art results on three popular 3D action recognition datasets as well as a large new composed dataset.
- This work is published in AAAI 2017.

COURSE PROJECTS

• Foundations of Digital Media (12/2015,Peking University)

Detecting vehicles and people in surveillance video using faster-rcnn. Rank top in the course project challenge.

AWARDS

- Freshman Scholarship,2nd class,Peking University,2012
- "May Forth" Scholarship, Peking University, 2013
- "99" Mathematical Scholarship, School of Mathematical Sciences, 2014
- Leo KoGuan Scholarship, Peking University, 2015
- Award for Academic Excellents, Peking University,2015