

ЭТИКЕТКА

СЛКН.431232.029 ЭТ

Микросхема интегральная 564 ИЕ11В Функциональное назначение – 4-х-разрядный двоичный реверсивный счетчик

Климатическое исполнение УХЛ Схема расположения выводов

Схема электрическая функциональная

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода		
1	V – разрешение установки	9	R – установка нуля		
2	Выход четвертого разряда	10	± 1 – сложение / вычитание		
3	D8 – параллельный вход 4-го разряда	11	Выход второго разряда		
4	D1 - параллельный вход 1-го разряда	12	D2 – параллельный вход 2-го разряда		
5	Р0 – вход переноса	13	D4 - параллельный вход 3-го разряда		
6	Выход первого разряда	14	Выход третьего разряда		
7	Р – выход переноса	15	С – тактовый вход		
8	Общий	16	Питание		

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, U_{IH} = 5 \; B, U_{IL} = 0B$ $U_{CC} = 10 \; B, U_{IH} = 10 \; B, U_{IL} = 0B$	U _{OL}	-	0,01 0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B	U_{OH}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1.5$ B, $U_{IH} = 3.5$ B $U_{CC} = 10$ B, $U_{IL} = 3.0$ B, $U_{IH} = 7.0$ B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1.5$ B, $U_{IH} = 3.5$ B $U_{CC} = 10$ B, $U_{IL} = 3.0$ B, $U_{IH} = 7.0$ B	U _{OH min}	4,2 9,0	- -
5. Входной ток низкого уровня, мк A , при: $U_{\rm CC}$ =15 B	${ m I}_{ m IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{\rm CC}$ =15 В	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, U_{O} = 0,4 \; B$ $U_{CC} = 10 \; B, U_{O} = 0,5 \; B$	I _{OL}	0,4 1,0	- -
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 2,5 \; B \\ U_{CC} = 10 \; B, \; U_O = 9,5 \; B$	I_{OH}	/-1,0/ /-1,0/	- -
9. Ток потребления, мкА, при: $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	I_{CC}	- - -	5,0 10,0 20,0
10.Ток потребления в динамическом режиме, мА, при: $U_{CC} = 10~B$ $f = 100~\kappa\Gamma u, C_L = 50~\pi\Phi$	I _{occ}	-	0,52

Продолжение таблицы 1			
1	2	3	4
11. Время задержки распространения при включении (выключении) от тактового входа к параллельному выходу, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$		-	830 300
12. Время задержки распространения при включении (выключении) от тактового входа к выходу переноса, нС, при: $U_{CC} = 5 \; B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, \; C_L = 50 \; \pi \Phi$		- -	910 310
13. Время задержки распространения при включении (выключении) от входа переноса к выходу переноса, нС, при: $U_{CC} = 5 \; B, \; C_L = 50 \; \pi \Phi$ $U_{CC} = 10 \; B, \; C_L = 50 \; \pi \Phi$	t _{PHL} (t _{PLH})	-	410 170
14. Время задержки распространения при включении (выключении) от входа «разрешение установки» к выходу переноса, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$		-	1200 400
15. Время задержки распространения при включении (выключении) от входа «разрешение установки» к параллельному выходу, нС, при: $U_{CC}=5~B,~C_L=50~\pi\Phi$ $U_{CC}=10~B,~C_L=50~\pi\Phi$		-	780 280
16. Входная емкость, п Φ , при: $U_{CC} = 10~B$	C _I	-	15,0

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г,

серебро

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

 $2.1~{\rm M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{\rm u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{\rm ^{\circ}}$ С не менее $100000~{\rm u}$., а в облегченных режимах, которые приводят в ТУ при $U_{\rm CC}=5{\rm B}\pm10\%$ - не менее $120000~{\rm u}$.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИЕ11В соответствуют техническим условиям бК0.347.064 ТУ 3/02 и признаны годными для эксплуатации.

Приняты по		от			
	(извещение, акт и др.)			(дата)	
Место для шт	гампа ОТК				Место для штампа ВГ
Место для шт	гампа «Перепроверка	произ	ведена	ı	»
Приняты по	(извещение, акт и др.)	от		(дата)	
Место для шт	гампа ОТК				Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка. Остальные указания по применению и эксплуатации – в соответствии с 6К0.347.064 ТУ/02.