

SUBJECT INDEX

A

A stars, high-latitude metal-rich, 575

Abell 1367, 116

Abundance ratios, as function of metallicity, 279–315

Abundances

carbon, see Carbon, abundance of

in carbon stars, 725–38

chromium, 298

cobalt, 301, 319, 676

in cool stars, see Abundances
in carbon stars; in M

stars; in N stars; in S

stars; in SC stars; and

Cool stars, abundances in

copper, 301–2, 311

in globular cluster stars, 292,
307–13, 336

in H II regions of Magellanic
Clouds, 314–15

importance of, in calculation
of model atmospheres,
706–7

iron, see Iron, abundance of
of iron-group elements, 297–
303

light-metal, 293–97, 310–11
in Local Group galaxies,
140–56

in M dwarfs, 720–22, 734
in M giants and supergiants,
717–20, 727–28, 730–34

in Magellanic Clouds, 141–
42, 149–50, 313–15,
638–39

in N stars, 725–29, 731

nitrogen, see Nitrogen,
abundance of

in Orion molecular cloud, 65–
69

oxygen, see Oxygen, abundance of

in S stars, 717, 722–25, 728–
34

in SC stars, 734–35

in Sk –69 202, 634–35,
639–40

solar, 284–85

technetium, 321, 717, 722–
24, 726

of very heavy elements, 303–
7, 311

Accretion disks, see also Cir-
cumstellar disks
in active galactic nuclei, 413,
415–16

in binary stars, 402
in low-mass X-ray binary
stars, 521, 524–25, 539–
42

in T Tauri stars, 376–90

Active galactic nuclei, *IUE*
observations of, 412–16

Age-metallicity relation, 140–
56, 325–35, 600–2, 613–14

Alpha Bootis, 291–92

Alpha Herculis, 733–34, 739,
743

Alpha Orionis
abundances in, 709, 718–19,
731–32
isotopic ratios in, 739, 743,
747

IUE observations of, 401

Alpha Scorpii, 739, 743

Arcturus moving group, 597

Aromatic infrared (AIR) bands,
166–67

Arp 220, 102

B

B stars
formation and evolution of,
4–5, 575

supergiant, 632–33, 635–40

Barnard's loop, 51

BD –18°5550, 291

Becklin-Neugebauer-Kleinmann-
Low nebula region, 46–48.

55

infrared emission of, 60–65
luminosities of sources in,
60–61

masers in, 49

polarization in, 61–63

Becklin-Neugebauer object

central star in, 73–74

circumstellar region of, 73–75
infrared emission of, 60–65

Beta Geminorum, 710, 717

Beta Lyrae, 402

Beta Pegasi, 717, 739, 747–48

Betelgeuse, see Alpha Orionis

Binary star evolution, 401–5

Binary stars

accretion in, 402

chromospheres of, 401–2

hot companions in, 403

IUE observations of, 401–5

mass flow in, 401–5

among T Tauri stars, 364

X-ray emission from close
accreting, 88–96, 100–4

Binary stars, Algol-type, 402–4

Binary stars, low-mass X-ray,
517–53

accretion disks in, 521, 524–
25, 539–42

atoll-source, 529, 533, 542–
45, 548–49

black hole candidates among,
523, 529, 533, 547–48

high-frequency noise (HFN)
in, 531–33, 544–45

low-frequency noise (LFN)
in, 525, 528, 531–35,
538, 541–42

luminosities of, 522–23

neutron stars in, 522–25,
528–29, 539–42

noise components in, 518–20,
524–28, 548–49

in normal galaxies, 96, 100–1

quasi-periodic oscillations in,
see Quasi-periodic
oscillations

very low-frequency noise
(VLFN) in, 528, 531–33,
544–45

Z-source

flaring branch (FB) in,
530, 536–38

horizontal branch (HB) in,
530–38

models for, 538–42

noise in, 531–33

quasi-periodic oscillations
in, 534–38

Binary stars, massive X-ray,

100–1, 521–22, 524

Binary stars, W Ursae-Majoris-
type, 402

Black hole candidates, 92, 523,
529, 533, 547–48

Black holes, 238–39

BP Tauri, 366, 379–80

C

Carbon

abundance of

in cool stars, 729–47

in dwarf stars, 283–89

in Magellanic Clouds, 314–
15

in red giant stars, 291–93

isotopic ratios of, 739–42

Carbon stars

abundances in, 725–38

isotopic ratios in, 738, 741–
45

model atmospheres of, 705–8

temperature scale for, 712

- Carina dwarf galaxy, 156
 CD –38°245, 298–300
 Centaurus A, 112, 122, 129,
 244
 Centaurus X-3, 524, 546–47
 Chi Cygni, 722–23, 739
 Chi Persei, 185
 Chlorine, isotopic ratios of, 748
 Chromium, abundance of, 298
 Circinus X-1, 545–47
 Circumstellar disk, around HL
 Tauri, 373–75, 382–83
 Circumstellar disks, 373–90
 accretion in, 376–90
 around FU Orionis objects,
 377, 384
 and stellar evolution, 383–85
 and stellar winds, 385–90
 in T Tauri stars, 373–90
 models for, 375–81
Cobalt
 abundance of, 301, 319, 676
 radioactive decay of, in sun-
 pernovae, 322, 646,
 667–74, 680–91
Cold dark matter, 560, 562
Comet Halley, 416
Comet IRAS-Araki-Alcock, 416
Comets, *IUE* observations of,
 416
Cool stars, 701–56. See also
 Carbon stars; M stars; N
 stars; S stars; and SC stars
 chromospheres of, 401
 CNO abundances in, 729–38
 isotopic abundance ratios in,
 738–49
 lithium abundances in, 727–
 29
 metal abundances in, 715–27
 model atmospheres of, 704–
 11
 surface gravities of, 713–14
 synthetic spectra of, 714–15
Copernicus satellite, 12–13
 observations with, 7–8, 13,
 400, 408–10
Copper, abundance of, 301–3,
 311
Coronal mass ejections (CMEs),
 422, 424, 447
COS-B satellite observations,
 469–70, 476–88, 495–98,
 506, 508–11
**Cosmic-ray anomalous com-
 ponent**, 207–8, 224–25
Cosmic-ray flares, 423
Cosmic-ray halo, 503–4, 507
Cosmic-ray production, 499–
 500, 503
 X-ray emission and, 101
Cosmic-ray spectrum
 electron, 500–1, 507
 variations in, 506–8
Cosmic rays
 abundances in, 498
 distribution in Galaxy of,
 477–83, 499–506
 and gamma-ray production,
 472–76
 in heliosphere, 223–25
 and interstellar medium, 205–
 6, 469–76, 483, 498–508
 in molecular clouds, 493, 497
 in solar neighborhood, 500–2
CY Cygni, 722, 740
Cygnus X-1, 524, 547
Cygnus X-2, 519, 523, 526–32,
 534–38, 541
Cygnus X-3, 101, 525
D
Diffuse interstellar bands
 (DIBs), 191–92
DF Tauri, 356, 358–59, 366–67
DN Tauri, 356, 358–59
DR Tauri, 356–59, 369
Draco dwarf galaxy, 156
DY Persei, 726
E
Einstein Observatory satellite
 observations
 of galaxies, 87–88, 99, 104–
 12, 120–24, 130
 of T Tauri stars, 353, 360
EXO 2030+337, 547
EXOSAT observations, 525–27
F
F stars, Galactic distribution of,
 619–622
Fairall 9, 415
**Fifth Orbiting Geophysical
 Observatory**, 425
Flare stars, 367–69
Formax A, 129, 244–45
Formax dwarf elliptical galaxy,
 142, 153–54
FU Orionis objects, 357, 377,
 384
G
Galactic center, gamma-ray
 emission from, 497–98
Galactic disk
 age of, 326–27
 gamma rays from, 476–86
 mass distribution in, 615–22
 surface density of, 615–22
 volume density of, 615–22
Galaxies
 evolution of spheroids of,
 567–69
 formation of disk, 556–69
 angular momentum distribu-
 tion in, 562
 continual-infall models of,
 561–62
 dissipation in, 557–62
 models of, 559–62
 star formation in, 560–61,
 565–69
 formation and evolution of
 very massive disk, 559–
 60
 gaseous halos around, 108–29
 cooling flows from 117–19,
 124
 radio sources and, 128–29
 temperature of 114–17
 masses of early-type, 120–27
 mergers of, 239–40, 242–43,
 265–69
 nuclei of, 10–11
 X-ray emission from, 103–
 8
 radio emission in, 100–1,
 128–29
 stellar populations of, 139–59
 X rays from normal, 87–138.
 See also Galaxies, ellipti-
 cal and Galaxies, spiral
Galaxies, BCM, 266–69
Galaxies, cD, 126, 265–69
Galaxies, dwarf elliptical, 142,
 153–56
Galaxies, dwarf spheroidal,
 238–39, 251–53, 263
Galaxies, elliptical, 108–29,
 235–77
 accretion in, 239–40, 242,
 246–48
 brightness profiles of, 248–
 50
 color gradients in, 261–65
 cooling flows in, 117–19
 cores of, 236–37, 239–40
 dust in, 240–46
 formation and evolution of,
 236–69
 fundamental plane of, 254–58
 luminosities of, 253–58, 260–
 65
 mergers of, 239–40, 242–43,
 265–69
 metallicity in, 262–65
 nuclei of, 237–39
 shapes of, 243–48
 isophote, 258–61
 shells and ripples in, 246–48
 stellar population gradients in,
 263
 structure of, 258–61

- tidal effects in, 250–51
 X-ray emission from, 108–29
- G**alaxies, SO
 classification of, 246, 258–61
 X-ray emission from, 108–29
- G**alaxies, spiral
 interstellar gas in, 4–5, 94,
 98–99
 X-ray emission from, 88–102
 correlation with optical,
 99–100
 correlation with radio continuum, 100–1
- G**alaxy
 asymmetric drift of stellar population of, 587, 589–92
 chemical evolution of, 279–49, 565–69, 585, 592–606
 cosmic-ray distribution in, 477–83, 499–506
 density distribution of stars in, 587–92
 formation of, 559
 models of, 563–65
 gamma-ray emission in, 469–516
 high-latitude stellar distribution of, 574–76
 infrared emission of, 163–66
 interstellar extinction curve of, 183–85, 190
 interstellar matter in, 5–6,
 161–98
 metal-poor spheroid of, 563–65, 567–68, 579–85
 molecular gas content of, 476–83, 496–97
 radio spectrum of, 507–8
 star counts in, 569–85
 star formation in, 563–69,
 585–606
 stellar population of, 139–46
 thick disk of, 571–73, 606–15
 age of, 613–15
 discreteness of, 609–13
 formation of, 606–7
 metallicity of stars in, 607–8
 star counts in, 576–78
 velocity dispersions of stars in, 587–92, 609–13
- X-ray sources in, 92–93, 103
- G**amma-ray emission
 from Galactic center, 497–98
 from Galactic disk, 476–86
 in local interstellar medium, 486–92
 from supernova remnants, 477, 491, 508, 680–82
 from Supernova 1987A, 672,
 684–90
- Gamma-ray emission, Galactic,
 469–516
 at medium latitudes, 488–92
 as molecular gas tracer, 492–98
- G**amma-ray halo, 487–92
- G**amma-ray line and gamma-ray proton solar flares, see Solar flares, gamma-ray line and gamma-ray proton
- G**amma-ray production processes, Galactic bremsstrahlung, 472–76
 cosmic-ray role in, 469–76
 inverse Compton scattering, 474–76, 491
 nuclear interactions in, 472–76
- G**amma-ray sources, searches for, 508–11
- G**amma-ray spectrum, variations of in Milky Way, 483–86, 506–7
- G**amma-rays, Galactic, intensities of, 475–76, 482, 496–97
- G**amma-rays, solar nuclear, 426–35. See also Solar flares, gamma-ray proton
- G**inga satellite observations of galaxies, 87
 of low-mass X-ray binaries, 529, 546
 of Supernova 1987A, 683, 685–88
- G**leise 15A, 734
- G**leise 205, 721
- G**leise 411, 734
- G**lobular clusters
 abundances in, 292, 307–13,
 336, 584
 age determinations of, 326–27, 338, 601–2, 614–15
 distribution of, 584
 evolution of, 9–11
 in Local Group galaxies, 146–47, 149
 metallicity in, 308–9
 X-ray sources in, 92–93
- G**ould's belt, 44, 487
- G**round-level events (GLEs), 423
- G**X 3+1, 523
- G**X 5+1, 519, 525–28, 534–36
- G**X 9+9, 523
- G**X 17+2, 526, 530–31, 535, 537
- G**X 339–4, 523, 547–48
- G**X 340+0, 531, 536, 538
- G**X 349+2, 525–26, 536
- G**X 77–61, 288–89, 727
- H**
- H**I regions, 5–7
- H**II regions
 abundances in, in Magellanic Clouds, 314–15
 in Orion molecular cloud, 42,
 50, 55–60, 73–75
 temperatures of, 5–6
- H**D 122563, 284, 289, 303–4
- H**D 140283, 291
- H**D 207739, 403
- H**eliopause, 211, 216, 229–31
- H**eliosphere, 199–234
 cosmic rays in, 223–25
 interstellar neutral gas in,
 217–23
 magnetic field of, 215–217,
 229–31
 structure of, 226–31
 terminal shock in, 226–29
- H**inotori satellite observations, 422, 435–36, 445
- H**L Tauri, 373–75, 382
- H**R 1105, 723, 747–48
- H**R 8714, 723
- H**S 1700+6416, 416
- H**ubble Space Telescope, 13–14
- I**
- I**C 342, 103–4
- I**C 1459, 240
- I**C 1613, 152
- I**CE (*International Cometary Explorer*), 416
- Infrared emission
 from circumstellar disks, 375–76
 of interstellar grains, 162–89,
 194–96
 from normal galaxies, 100–4
 in Orion molecular cloud, 44–46, 60–77
- Infrared observations
 of Supernova 1987A, 675–77
 of T Tauri stars, 375–76,
 381–84
- Interplanetary protons, 423,
 431–35, 441–48
- Interstellar dust, 206, 225–26.
 See also Interstellar grains
- Interstellar extinction curve,
 182–85, 190
- Interstellar gas
 heating of the, 192–93
 neutral, in heliosphere, 203–4, 217–23
 in Orion molecular cloud, 41–47
- high-velocity, 51
- kinematics and energetics of, 47–48

- Interstellar grains, 161–98. See also Interstellar dust
infrared emission of, 162–78,
185–87, 194–96
size spectrum of, 178–80
ultraviolet radiation of, 162,
183–88
- Interstellar magnetic field, 7,
213–17, 226–31
- Interstellar matter, 4–8. See also Interstellar grains; Very small grains; Polycyclic aromatic hydrocarbons
Supernova 1987A and, 677–78
- Interstellar medium
gamma rays and, 470–92
at high Galactic latitudes, 411
interaction of cosmic rays with, 205–6, 469–76,
483, 498–508
IUE observations of, 408–11
solar wind and, 199–234
as source of X-ray emission,
98–99, 108–29. See also Galaxies, gaseous halos around
- Interstellar medium, local, see Local interstellar medium
- Interstellar medium, very local, see Very local interstellar medium
- Interstellar pickup ions, 207,
221, 225
- Interstellar plasma, 210–15
- IRAS* bands, colors in the, 163–66, 173–76, 183–89, 194–96
- IRAS* observations
of diffuse Galactic radiation,
164, 182, 184–85
of galaxies, 242
of Orion molecular cloud, 42
of T Tauri stars, 375, 383
- IRc2, 61–65, 68–71, 73
circumstellar region of, 75–78
- IRc3–7, 61, 63–64
- IRC9, 64
- Iron
abundance of, 297–98
as measure of metallicity,
280–81, 284–85, 290,
327–28
production of, in star formation,
333–34, 340–45,
565–69, 603–6
- Isotopic ratios, in spectra of cool stars, 738–49
- IUE* (*International Ultraviolet Explorer*), 397–420
instrumentation, 397–99
- observations
of active galactic nuclei,
412–16
of close binary stars, 401–5
of comets, 416
of galaxies, 150
of the interstellar medium,
408–11
of planets, 416
of stellar chromospheres,
400
of stellar winds, 405–7
of Supernova 1987A, 411–12, 630–33, 642–43,
663–64, 677–78, 692
of T Tauri stars, 360
operation of, 397–99
- K
- K stars
dwarf, 403, 577–78, 619–20,
623
giant, 580, 608, 610, 619,
622
- Kapteyn's star, 720–21, 734
- Kitt Peak National Observatory,
predicted light pollution at,
25–26
- Kleinmann-Low nebula, see also Becklin-Neugebauer-Kleinmann-Low nebula
abundances in, 65–69
core of
chemistry of, 65–69
outflows from, 69–71
shocked gas in, 71–73
infrared emission of, 60–65
polarization in, 49, 61–63
- L
- Large Magellanic Cloud, 314–15
abundances in, 638–39
30 Doradus region in, 638
stellar population of, 145–46,
149
Supernova 1987A in, 630,
632, 635–39. See also Supernova 1987A
X-ray sources in, 89–92, 98
- Leo I dwarf elliptical galaxy,
154–55
- Leo II dwarf elliptical galaxy,
155
- Lick Observatory, predicted light pollution at, 24–25
- Light pollution, 19–40
model of, 20–22
predicted for future observatory sites, 32–35
- predicted for present observatory sites, 23–32
- Light sources, effect on sky brightness of, 36
- Lithium, abundance of, 282–83,
289, 361, 717, 727–29
- LMC X-1, 92, 525
- LMC X-3, 92, 547
- Local Bubble, 202–3
- Local Fluff, 202–5
- Local Group of galaxies
stellar populations of, 139–59
X-ray emission from, 88–94
- Local interstellar medium, 202
- IUE* observations of, 408–10
gamma-ray emission from,
486–87
- Long-period variable stars, 709–10
- Low-mass X-ray binary stars,
see Binary stars, low-mass X-ray
- Lowell Observatory, predicted light pollution at, 30–31
- Low-pressure sodium street lamps, 36
- Luminaries, 36–37
- LX Cygni, 740
- L1630, 42
- L1640, 42
- L1641, 42, 48, 52
- L1647, 42
- M
- M stars
dwarf, abundances in, 720–22, 734
dwarf emission, 367–68
flux distribution in, 711–12
giant and supergiant, abundances in, 717–20, 727–28, 730–34
isotopic ratios in spectra of,
739–40, 743–44, 747–48
model atmospheres for, 705–11
temperature scale for, 712
- Magellanic Clouds, see also Large Magellanic Cloud;
Small Magellanic Cloud
abundances in, 141, 149–50,
313–15, 638–39
globular cluster population of,
146
- interstellar medium in, 181,
411
- mass-loss rates in, 406
- metallicities in, 315
- wind velocities of stars in,
406

- Magnesium, isotopic ratios of, 747–48
- Magnetic field
interstellar, 7, 213–17, 226–31
in Orion molecular cloud, 48–50
solar, 447–48, 450–60
- Magnetic fields in T Tauri stars, 365–66
- Manganese, abundance of, 301, 319
- Masers, in Orion molecular cloud, 47, 49, 67–68, 70–71, 75–76
- Mauna Kea Observatory, predicted light pollution at, 27–28
- McDonald Observatory, predicted light pollution at, 26–27
- Metallicity
abundance ratios as a function of, 279–315
correlation of age with, 140–56, 325–34, 600–2, 613–14
correlation of color with, in galaxies, 263
correlation of orbital eccentricity with, 597–600
correlation of rotation velocity with, 593–97, 609–10
- Milky Way
gamma-ray observations of, 470–71
gamma-ray spectral variations along, 483–86
- Milky Way galaxy, see Galaxy
- Mir satellite, 683, 685–87
- Mira, see Omicron Ceti
- Mira variable stars, 709–10, 723, 734–35, 739–40, 748
- Missing mass, 575, 616–17, 620–23
- Molecular clouds, 10. See also Orion molecular cloud
cosmic-ray penetration of, 493
gamma-ray emission in, 492–97, 504
infrared emission in, 166–67, 185–87
T Tauri stars associated with, 352–53
UV radiation in, 186–87
- Molecular gas
content in Galaxy of, 496–97
gamma-ray radiation as tracer of, 492–98
- Monoceros R2 molecular cloud, 42–44
- Mount Hopkins, predicted light pollution at, 28–29
- Mount Lemmon, predicted light pollution at, 30
- Mount Wilson Observatory, predicted light pollution at, 24
- Mrk 335, 413–14
- MXB 1730–335, see Rapid Burster
- M13, 312
- M15, 310
- M17, 164
- M31
nucleus of, 237
stellar population of, 147–48
stellar winds in, 406
X-ray sources in, 89–96, 112
- M32
stellar population of, 151
tidal effects in, 250, 252
- M33
nucleus of, 239
stellar population of, 148–49
stellar winds in, 406
X-ray emission in, 94, 98, 107
X-ray sources in, 89–92
- M33 X-7, 91
- M51
X-ray emission in, 97, 103, 107
X-ray sources in, 95–96
- M55, 311
- M81
nucleus of, 237–38
X-ray emission in, 95, 97, 107
- M82
infrared emission in, 166
X-ray emission in, 95, 103–6, 130
- M83, 95–97, 103–4
- M86, 108, 125
- M87, 108, 120–24, 126
- M92, 310, 312
- M100, 95
- M101, 95, 98–99
- N
N stars
abundances in, 725–31
isotopic ratios in, 741–42, 745, 748
temperature scale for, 712
- Neutrino burst, 645–46, 649–63
- Neutrinos
detectors of, 652–56
properties of, 660–63
- in supernova explosions, 644–46, 649–52
from Supernova 1987A, 629, 631, 645–46, 652–60
- Neutron star; possible, in V Sagittae system, 403
- Neutron stars
in low-mass X-ray binary stars, 522–24, 528–29
magnetic field decay in, 522–24
magnetospheres of, 539–42
in supernovae, 646, 649–52, 659, 691–92
- NGC 121, 614
- NGC 147, 152–53, 252
- NGC 185, 152, 252
- NGC 205, 150–51, 252
- NGC 253, 95, 97, 103–6
- NGC 720, 125
- NGC 891, 571
- NGC 1275, 121
- NGC 1316, see Fornax A
- NGC 1395, 125
- NGC 1399, 124, 129
- NGC 1600, 237
- NGC 1961, 99
- NGC 1977, 42, 46
- NGC 2023, 42, 177
- NGC 2024, 42, 47, 49
- NGC 2149, 42
- NGC 3115, 238
- NGC 3628, 104, 106
- NGC 4038/9, 102
- NGC 4151, 415
- NGC 4406, 119, 240
- NGC 4438, 99
- NGC 4472, 108–10, 122–26
- NGC 4486B, 250
- NGC 4546, 244
- NGC 4589, 244
- NGC 4594, 238
- NGC 4631, 95, 99
- NGC 4636, 125
- NGC 4649, 125
- NGC 4696, 121
- NGC 5053, 309
- NGC 5128, see Centaurus A
- NGC 5266, 245
- NGC 5322, 240
- NGC 5363, 244
- NGC 5813, 239–40
- NGC 5846A, 251
- NGC 6822, 151–52
- NGC 6946, 95–96, 103
- NGC 7714, 103
- Nickel
abundance of, 298–300
decay of, in supernovae, 322, 669–70
- Night sky, brightness of, see Light pollution

- Nitrogen
abundance of
in cool giant stars, 729–38
in giant stars, 291–93
in Magellanic Clouds, 314
in metal-poor dwarfs, 286–89
isotopic ratios of, 742–43
- Nova Centauri 1986, 189
- Nucleosynthesis, 316–17
in intermediate-mass stars, 320–21, 323
in massive stars, 317–20, 323
in supernova explosions, 316, 566–69, 646–48, 679–80
- in Type Ia supernovae, 321–23
in very massive stars, 317, 323
- O
O stars, 4–7
OB association, in Orion, 50–51
OB stars
IUE observations of, 408
in Orion A H II region, 55–60
- Observatory sites
predicted light pollution at present, 19, 23–32
predicted light pollution at prospective, 19, 32–35
- Omega Centauri, 308
- Omicron Ceti, 723, 748
- Oort limit, 616, 620–22
- OMC 1, 44–47, 52–54
- OMC 2, 44, 46
- Orion molecular cloud, 41–85
Becklin–Neugebauer object in, see Becklin–Neugebauer object
distribution of gas in, 41–42
- H II region interface with, 55–60
- H II regions in, 42–46, 50, 73–76
infrared sources in, 44–47, 60–77
- Kleinmann–Low nebula in, see Kleinmann–Low nebula
low-mass-star distribution in, 51–52
- low-mass-star formation in, 52–55
- magnetic fields in, 48–50
- masses in, 42, 44–47, 65, 67
- molecular gas clumps in, 44–47, 65
- OB star interaction with, 55–60
- origin of, 42–44
outflows from stars in, 47–48
- photo-dissociation region in, 56–60
- polarization in, 48–50, 61–63
- star formation in, 44–55, 60–77
- supernova explosions in, 50–51
- Trapezium in, see Trapezium Cluster
- velocities of gas in, 47–48, 51, 67, 71–73
- Oxygen
abundance of
in cool stars, 729–38
in giant stars, 291–93
in globular cluster stars, 310, 312–13
in Magellanic Clouds, 314
as measure of relative abundances, 327–28, 334–35
in metal-poor dwarf stars, 285–86, 289–91
- isotopic ratios of, 743–47
- production of, in stellar evolution, 323–24, 340–45
- Oxygen/iron ratio, stellar, 565–69, 603–6
- P
Palomar Observatory, predicted light pollution at, 23–24
- Photo-dissociation regions, 56–60
- Pioneer 10*, 208
- 19 Pisces, 709, 713, 737, 748
- Planetary nebulae
PAH particles in, 166, 187, 189, 196
winds in nuclei of, 406–7
- Plasma physics, 14–16
- Polarization, 8
in Orion molecular cloud, 48–50, 61–63
- Polycyclic aromatic hydrocarbon molecules (PAHs), 166–96
dehydrogenation of, 177–78
destruction and formation of, 187–90
as heating mechanisms for interstellar gas, 192–93
infrared spectroscopy of, 169–78
in Orion molecular cloud, 57
in planetary nebulae, 166, 187, 189, 196
temperature fluctuations of, 168–71
- Population growth, effect on night sky brightness of, 21–22
- Population I stars,
in Local Group galaxies, 139–40, 143–44
as X-ray sources, 89, 92, 100–1
- Population II stars
abundances in, 291–93
extreme, formation of, 567, 605–6, 609
intermediate, evolution of, 606–7
in Local Group galaxies, 139–40, 143
- Population III stars, 335–36
- Project Stratoscope, 12
- Proton flares, 423–24
- Pulsar, in Supernova 1987A, 670–71, 674, 691–92
- Pulsars
accreting, 529, 533, 546–47
millisecond radio, 521–23, 526
- Q
Quasars, 416
- Quasi-periodic oscillations
in accreting pulsars, 546–47
in black hole candidates, 547–48
- in Circinus X-1, 545–46
- in low-mass X-ray binary stars
characteristics of, 518–10
discovery of, 525–29
flaring-branch, 536–38, 548
horizontal-branch, 534–38, 548
normal-branch, 536–38, 548
in Z-source, 529–31, 537–42
- in Rapid Burster, 546
- R
R Andromedae, 748
- R Canis Minoris, 722
- R Cygni, 740, 748–49
- R Lyrae, 723
- R Sculptoris, 742
- Radio bursts, solar-flare, 423–25, 427, 429, 432, 440–43, 458, 460
- Radio emission
in normal galaxies, correlation with X-ray, 97–103, 128–29
- from Supernova 1987A, 642

- Radio observations of solar wind flow, 206-7
 Radio spectrum of Galaxy, variation in, 507-8
 Radioactivity, supernova, 667, 678-91
 Rapid Burster, 525-26, 546
 Rho Ophiuchi dark cloud
 gamma-ray sources in, 509
 interstellar extinction of, 408
 T Tauri stars in, 352-53, 368
 RR Lyrae stars
 ages of, 614
 Galactic distribution of, 582-84, 596-97
 in Local Group galaxies, 146-47, 149
 RY Draconis, 742
 RY Lupi, 369
 RY Tauri, 357
 RZ Pegasi, 734-35
- S**
- S stars
 abundances in, 717, 722-25, 728-34
 isotopic ratios in, 739-40, 744, 747-49
 model atmospheres for, 705
 temperature scale for, 712
 Sacramento Peak Observatory,
 predicted light pollution at, 28-29
 SAS-2 satellite observations,
 469-70, 476-78, 482-83, 486-87, 506, 508
 SC stars
 abundances in, 724-25, 734-38
 isotopic ratios in, 740-41, 745
 Scandium, abundance of, 300-1, 319
 Scorpius X-1, 101, 519, 523-24, 526-28, 536-37, 541
 Sculptor dwarf elliptical galaxy, 142, 154
 Seyfert galaxies, 415
 Sigma Scorpii, 185
 Silicon, isotopic ratios of, 747-48
 SK 21-65, 314-15
 SK 41-68, 314-15
 Sk -69 202, 632-43. See also Supernova 1987A
 abundances in, 634-35, 639-40
 circumstellar shell of, 642-43
 evolution of, 636-43
 mass loss in, 636-40
 metallicity of, 638-39
Skylab observations, 424-25
 Small Magellanic Cloud
 stellar evolution in, 141-42
 stellar population of, 150
 X-ray sources in, 89-92
 SN 1980k, 95
 SN 1987A, see Supernova 1987A
 Solar abundances, 284-85
 Solar atmospheres, model, 284-85
 Solar cycle, influence on night sky brightness of, 22
 Solar flares. See also Proton flares; Radio bursts; Cosmic-ray flares
 classification of, 421-67
 from *Hinotori* observations, 435-36
 from *Skylab* observations, 424-25
 energy release processes in, 450-57
 filament activity and, 446-48, 453-61
 first phase of, 422, 425-29
 frequency of different classes of, 448-50
 gamma-ray line, 427-35
 gamma ray/proton, gradual, 431-37, 441-45, 461
 filament activity in, 447, 453
 frequency of, 448-49
 gamma ray/proton, impulsive, 431-34, 436, 440-41, 460-61
 filament activity in, 447, 453
 frequency of, 448-49
 nonthermal hard X-ray, 436, 438-40, 450, 460
 nuclear gamma rays in, 426-29, 431-32
 phases of, 458-60
 quiescent filament-eruption, 437, 445-46, 449-50, 461
 second phase of, 425-26
 acceleration in, 431-35
 thermal hard X-ray, 436-38, 460
 X-ray emission from, 424-60
Solar Maximum Mission (SMM) observations
 of solar flares, 422, 426-35
 of Supernova 1987A, 684-85
 Solar wind
 effect of neutral gas flow on, 220-23
 flow speed of, 200-2, 209-11, 215-17, 221-23
 interstellar medium and, 199-234
 proton flux density in 200-2
 ram pressure in, 200-2, 208-11
 shock front in, 206-8
 terminal shock in, 215, 226-29, 231
 Speckle interferometry, of Supernova 1987A, 676-77
 SS 433, 101
 Star-count analysis, 570-74
 Star counts, 569-85
 and central bulge of Galaxy, 578-79
 density profile from, 572-73, 576-78
 Galactic thick disk and, 576-78
 metal-poor spheroid and, 579-85
 Star formation, 4-8
 in disk galaxies, 560-61
 in Galactic spheroid, 563-65, 568-69, 602-5
 in Galaxy, 338-45, 585-86, 605-6
 in Local Group galaxies, 141-45, 148-56
 low-mass, 52-55
 in Orion molecular cloud, 44-55, 60-77
 Starburst galaxies
 low-activity nuclei of, 106-8
 nuclei of, 103-6
 X-ray emission from, 102-8
 Stars
 A-type, see A stars
 abundances in, see Abundances
 age determinations of 601-2, 613-15
 asymptotic giant branch, 320-21
 B-type, see B stars
 binary, see Binary stars; Binary stars, Algol-type;
 Binary stars, low-mass X-ray
 carbon, see Carbon stars
 chromospheres of, 399-402
 cool, see Cool stars
 distribution of, in Galaxy, 569-85
 F-type, see F stars
 giant, abundances in, 291-96
 high-velocity, 563-64
 metallicity of, 333-34
 subdwarf, 579-82
 intermediate-mass, 320-21
 low-mass, 51-55
 K-type, see K stars

- long-period variable, see Long-period variable stars
 low-mass, 565–67
 M-type, see M stars
 mass loss in, 406–7
 massive evolution of, 565–67, 638–42
 mass function of, 323–25
 mass loss in, 636–37
 nucleosynthesis in, 317–20, 323
 oxygen abundance in, 323–25
 as progenitors of supernovae, 629–30, 636–42
 metal-poor, 565–68, 594, 598–99, 608
 abundances in, 283–307
 dwarf, 328–30
 metal-rich, 565–66
 metallicity in, 279–349
 pre-main-sequence, 352–55
 in Orion molecular cloud, 51–55
 S-type, see S stars
 SC-type, see SC stars
 subdwarf, 562
 high-velocity, 579–82
 winds in, 406–7
 supergiant, 636–41
 very massive, nucleosynthesis in, 317, 335–36
 Stellar dynamics, 9–11, 586–92
 Stellar evolution, see also Nucleosynthesis
 binary-star, 401–5
 in Local Group galaxies, 139–56
 metallicity as measure of, 279–315
 pre-main-sequence, 353–55, 376, 383–91
 stellar winds and, 407
 Stellar populations, 139–59
 Stellar winds
IUE observations of, 400, 405–7
 in hot subdwarfs, 406
 in planetary nebulae, 406–7
 stellar evolution and, 407
 in T Tauri stars, 385–90
 Sun
 current interruption in magnetic fields of, 452–53, 459
 filaments in, 446–48, 453–61
 flares in, see Solar flares
 magnetic field of heliospheric winds and, 230–31
 flares and, 447, 450–56, 459
 particle acceleration in, 422–45
 tearing-mode process in, 451–52
 Supernova events
 core collapse in, 643–46
 gamma-ray emission in, 680–82
 X-ray emission in, 95, 682–84
 Supernova nucleosynthesis, 316–20, 328, 646–49, 679–80
 Supernova remnants
 and cosmic-ray production, 499
 as gamma-ray sources, 477, 491, 503, 508, 680–82
 X-ray emission of, 88–89, 94, 102–3, 115
 Supernova 1987A, 629–700
 core collapse in, 645–46, 659
 discovery of, 630–31
 distance to, 630, 675
 early observations of, 630–35
 gamma-ray emission of, 672, 684–90
 infrared spectrum of, 675–77
 interstellar matter and, 677–79
 light-curve of, 663–74
 early-stage, 663–670
 late-stage, 670–74
 radioactive decay influence on, 670–74, 680
 light echoes from, 664, 672, 678–79
 "mixing" in early stage of, 667–70
 neutrinos from, 629, 631, 645–46, 652, 654–60
 neutron star in, 646, 649–52, 691–92
 progenitor of, see Sk –69
 202
 pulsar in, 670–71, 674, 691–92
 radio emission from, 642
 radioactivity in, 667–74, 678–91
 speckle interferometry of, 676–77
 spectrum of, 631, 633–34, 674–78, 692
 ultraviolet spectrum of, 630–33, 642–43, 663–64, 675, 677–78, 692
 X-ray emission of, 682–90
 Supernovae
 neutrinos produced in explosions of, 644–46, 649–52
 in Orion molecular cloud, 50–51
 relative rates of Types I and II, 603–5
 shock propagation in explosions of, 646–49
 Type I, 566–68, 603–4, 680
 Type II, 566–68, 603–4, 631–32, 642, 667, 680
 explosion mechanism of, 643–46
 SX Cassiopeiae, 402
- T
- T Lyrae, 742
 T Tauri stars, 351–95
 accretion disks in, 376–90
 accretion rates in, 383–85
 chromospheres in, 366–67
 circumstellar region of, 373–90
 classical (CTTS), 355–91
 disk-star boundary layer in, 378–81
 flares in, 367–70
 infrared excess in, 389
 infrared spectra of, 375–85
 jets in, 388
 lithium abundance in, 361
 magnetic fields in, 365–73
 mass loss in, 385–90
 and molecular clouds, 52, 352–53
 photospheres of, 360–73
 photospheric spots in, 365–66
 rotation-activity correlation in, 370–73
 rotational velocity of, 361–63
 spectra of, 355–61
 spectroscopic binaries among, 364, 385
 veiling in spectra of, 360–61
 weak-line (WTTS), 355–65, 372, 390–91
 winds in, 385–90
 X-ray emission of, 370–73
 TAP 57, 356, 358–59
 Technetium, abundance of, 321, 717, 722–24, 726
 Terminal shock, 206–31
 Titanium, isotopic ratios of, 748
 Trapezium cluster, 50, 52–55
 47 Tucanae, 327

U

- U Cephei, 403–4
 Ultraviolet backscatter radiation, 204, 208, 231–32
 Ultraviolet observations, see *IUE* observations
 Ultraviolet extinction, 162, 183–91, 195
 US Naval Observatory, Flagstaff, predicted light pollution at, 31–32
 Ursa Minor elliptical galaxy, 155
 UU Aurigae, 735–36, 742
 UV Ceti stars, 367–68
 UY Centauri, 724–25, 740

V

- V Cancri, 749
 V Sagittae, 403
 Vanadium, abundance of, 301, 319
 Very local interstellar medium (VLISM), 199–234
 components of, 203–5
 cosmic rays in, 205–6
 densities and temperatures of, 204–5
 dust in, 206, 225
 magnetic field of, 205
 neutral atomic component of, 203–4
 solar wind interaction with, 206–8
 models of, 208–31
 velocity of, 204

Very small grains (VSGs), 161–65, 180–90

- chemical composition of, 180–81
 destruction and formation of, 187–90

Virgo cluster, X-ray emission in, 108–10, 120
 VLA observations of Orion molecular cloud, 63, 65
 of T Tauri stars, 353, 368, 373, 387

Voyager 1 and 2, 206
 22 Vulpeculae, 403
 VX Andromedae, 742
 V410 Tauri, 365, 368
 V471 Tauri, 403
 V1057 Cygni, 357, 377
 V0332+53, 547

W

- W Serpentis, 402
 W Ursae Majoris-type binary stars, 402
 White dwarfs, 408–10
 Wolf-Rayet stars, 407
 WZ Cassiopeiae, 725, 728, 740, 742

XYZ

- X-ray background emission extragalactic, 129–31
 Galactic, 94
 X-ray binary stars, see Binary stars, low-mass X-ray; Binary stars, massive X-ray

X-ray emission

- from normal galaxies, 87–138
 correlation with cosmic-ray production of, 101
 correlation with infrared emission of, 100–4
 correlation with optical emission of, 99–100, 116–17, 126–27, 130–31
 correlation with radio emission of, 97–101, 125–29
 and starburst activity, 102–8

- from solar flares, 424–50
 from spiral galaxies, 88–102
 from supernova events, 95, 682–84
 from supernova remnants, 88–89, 94, 102–3, 115
 from Supernova 1987A, 682–90
 from T Tauri stars, 370–73
 XZ Tauri, 373–75
 Y Canum Venaticorum, 725–26, 735–36, 738, 742–43
 YY Orionis stars, 357, 380–81
 Zinc, abundance of, 297, 300
 Zirconium
 abundances of, 723–24, 726
 isotopic ratios of, 748–49

MISCELLANEOUS

- 3C 273, 509
 4U 1626–67, 525
 4U 1820–30, 525–26