

CZ2003 Computer Graphics and Visualisation

Experiment 2: Parametric Curves

Name: Ngo Jun Hao Jason

Matriculation Number: XXXXXXXX

Lab Group: XXX

Exercise 1

Exercise 2

1. Straight Line Segment

- defines a red straight line segment
 o starts from (-1, -2, 1) and ends at (1, 2, -1)
- 2.

a. Circle

defines a red circle parallel to the x-y plane
 o with radius of 1 unit and centre at (0, 0, -0.5)

b. Arc of Circle

- defines an arc of a circle
 - o almost the same equations as above, except that
 - only 1/3 of the circle is drawn $(2*\pi*u/3)$
 - centre is at (0, 0, 0.5)

a. Ellipse

- start with a circle (radius = 1, centre (0,0)) in the x-y plane
 - o $x = 1 * cos(2*\pi*u)$
 - o $y = 1 * sin(2*\pi*u)$
 - oz=0
- scale circle in the y-direction by 2 to get an ellipse
 - o $x = 1 * cos(2*\pi*u)$
 - o $y = 2 * sin(2*\pi*u)$
 - oz=0
- translate ellipse by $\pi/4$ in the positive y-direction
 - o $x = 1 * cos(2*\pi*u)$
 - o $y = 2 * sin(2*\pi*u) + \pi/4$
 - o z = 0
- rotate ellipse about y-axis
 - o $x = 1*\cos(2*\pi*u)$
 - o $y = 2*\sin(2*\pi*u) + \pi/4$
 - o $z = 1*\cos(2*\pi*u)$
- rotate ellipse about y-axis in the opposite direction (final ellipse)
 - o $x = 1*\cos(2*\pi*u)$
 - o $y = 2*\sin(2*\pi*u) + \pi/4$
 - o $z = -1*\cos(2*\pi*u)$

b. Arc of Ellipse

- start with a circle (radius = 1, centre (0,0)) in the x-y plane
 - o $x = 1 * cos(2*\pi*u)$
 - o $y = 1 * sin(2*\pi*u)$
 - oz=0
- scale circle in the x-direction by 2 to get an ellipse
 - o $x = 2 * cos(2*\pi*u)$
 - o $y = 1 * sin(2*\pi*u)$
 - oz=0
- draw 1/4 of an ellipse to get an arc
 - o $x = 2 * cos(2*\pi*u/4)$
 - o $y = 1 * sin(2*\pi*u/4)$
 - o z = 0
- start drawing the arc from π /2 instead of 0 radians (final arc)
 - o $x = 2 * cos(2*\pi*u/4 + \pi /2)$
 - o $y = 1 * \sin(2*\pi*u/4 + \pi/2)$
 - o z = 0

4. 2D Spiral

- start with a circle (radius = 1, centre (0,0)) in the x-y plane
 - o $x = 1 * cos(2*\pi*u)$
 - o $y = 1 * sin(2*\pi*u)$
 - oz=0
- let radius scale based on parameter u
 - o $x = u * cos(2*\pi*u)$
 - o $y = u * sin(2*\pi*u)$
 - oz=0
- make the spiral go through 16 revolutions, along with changing resolution to 1000 (final spiral)
 - o $x = u * cos(2*\pi*u)$
 - o $y = u * sin(2*\pi*u)$
 - o z = 0

5. 3D Helix

- start with a circle (radius = 1, centre (0,0)) in the x-y plane
 - o $x = 1 * cos(2*\pi*u)$
 - o $y = 1 * sin(2*\pi*u)$
 - oz=0
- make the circle grow from z = -4 to z = 4
 - o $x = 1 * cos(2*\pi*u)$
 - o $y = 1 * sin(2*\pi*u)$
 - o z = 8*u 4
- make the helix do 6 revolutions (final helix)
 - o $x = 1 * cos(6*2*\pi*u)$
 - o $y = 1 * sin(6*2*\pi*u)$
 - o z = 8*u 4

Exercise 3

Sine Curve

- explicit to parametric: let x = u
- standard sine curve
 - o x = u
 - o $y = \sin(2^*\pi^*u)$
 - oz=0
 - o domain: 0 to 2π

Exercise 4

1. Straight Line Segment

a. resolution of 20:

- looks just like resolution of 100
 - o all points lie on the same line segment
 - b. resolution of 5:

- looks just like resolution of 100 and 20
 - o all points lie on the same line segment

c. resolution of 2:

- looks just like resolution of 100, 20 and 5
 - o all points lie on the same line segment

2.

- a. Circle
 - i. resolution of 20:

- it is possible to see 20 straight line segments that interpolate from point to point
 - ii. resolution of 5:

• linear interpolation between 5 points result in a pentagon

iii. resolution of 2

- linear interpolation between 2 points result in a straight line segment
 - b. Arc of Circle
 - i. resolution of 20:

- looks just like resolution of 100
 - o 20 points are enough to make this arc looks smooth
 - ii. resolution of 5:

• possible to see 5 line segments

iii. resolution of 2:

- 2 line segments
- 3.
- a. Ellipse
 - i. resolution of 20:

- a not-so-smooth ellipse
 - ii. resolution of 5:

• a deformed pentagon

iii. resolution of 2:

- a straight line segment
 - b. Arc of Ellipse
 - i. resolution of 20:

 arc looks smooth enough with 20 line segments ii. resolution of 5:

• 5 line segments which follow the general shape of the arc

iii. resolution of 2:

- 2 line segments that follow the general shape of the arc
- 4. 2D Spiral
 - a. resolution of 100:

- cool-looking shape
 - b. resolution of 20:

• looks neater with 20 edges

c. resolution of 5:

d. resolution of 2 (added offset of 1 unit in z-direction):

5. 3D Helix

a. resolution of 100:

b. resolution of 20:

c. resolution of 5:

d. resolution of 2:

6. Sine Curve

a. resolution of 20:

• it is possible to see the line segments at maximum amplitude of the sine curve b. resolution of 5:

c. resolution of 2 (added offset of 1 unit in z-direction):

Exercise 5

- general note: BS Contact crashes if domain is from a larger value to a smaller value
- 1. Straight Line Segment

 $u \in [-2, 0]$:

2.

a. Circle

 $u \in [0, 0.333]$:

- approximately the original arc of circle
 - b. Arc of Circle

 $u \in [0, 3]$:

• just like the original circle

3.

a. Ellipse

 $u \in [-1, 0]$:

just like the original ellipse
 b. Arc of Ellipse

 $u \in [-2, 1]$:

- starts from angle $\alpha = -\pi$ and ends at angle $\alpha = -\pi/2$ if the rotational offset of $\pi/2$ is not considered
- 4. 2D Spiral

 $u \in [0.875, 1]$:

- outermost 2 revolutions of the spiral
 - o 1 2/16 = 0.875

5. 3D Helix

 $u \in [0.3, 0.6]$:

6. Sine Curve

 $u \in [-70, 30]$:

Exercise 6

• refer to the folder "Created_Shapes"

Exercise 7

refer to this report