



## Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

| b. Prove the following using the laws of logic:  ¬[{(p∨q)∧r} → ¬q] ⇔ ¬[¬[(p∨q)∧r] ∨. ¬q] ⇔ q∧r.  c. Give i) a direct proof ii) an Indirect proof for the following statement "If n is an odd integer then n + 9 is an even integer".  OR  Q.2 a. Define i) an open statement ii) quantifiers.  b. Test the validity of the following arguments.  i) p∧q p p (q → r) P P → ~q √ q → ¬r ∴ r P → ~q → ¬r ∴ r P → ~q → ¬r ∴ ~r P → ~q → ~q → ~r → ~r → ~r → ~r → ~r → ~r | M<br>6 | L  | C   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----|
| $ \begin{array}{c} \neg \left[ \{ (p \lor q) \land r \} \rightarrow \neg q \right] \Leftrightarrow \neg \left[ \neg \left[ (p \lor q) \land r \right] \lor \neg q \right] \Leftrightarrow q \land r. \end{array} \\ \hline \text{C.}  \text{Give i) a direct proof ii) an Indirect proof for the following statement "If n is an odd integer then n+9 is an even integer". \\ \hline \textbf{OR} \\ \hline \textbf{Q.2}  \textbf{a.}  \text{Define i) an open statement ii) quantifiers.} \\ \hline \textbf{b.}  \text{Test the validity of the following arguments.} \\ \hline \textbf{i)}  & \text{ii)} \\ \hline p \land q \\ \hline p \rightarrow (q \rightarrow r) \\ \hline \therefore r \\ \hline \end{array}  \begin{array}{c} p \\ \hline p \rightarrow q \\ \hline \qquad & q \rightarrow \neg r \\ \hline \vdots \sim r \\ \hline \end{array} \\ \hline \textbf{c.}  \text{For the following statements the universe comprises all non – zero integers.} \\ \hline \textbf{Determine the truth value of each statement.} \\ \hline \textbf{i)}  \exists x, \exists y \left[ xy \neq 1 \right] \\ \hline \textbf{iii)}  \forall x, \exists y \left[ xy \neq 1 \right] \\ \hline \textbf{iii)}  \forall x, \exists y \left[ xy \neq 1 \right] \\ \hline \textbf{iv)}  \exists x, \exists y \left[ (2x + y = 5) \land (x - 3y = -8) \right] \\ \hline \textbf{V)}  \exists x, \exists y \left[ (3x - y = 17) \land (2x + 4y = 3) \right]. \\ \hline \hline  \textbf{Module - 2} \\ \hline \textbf{Q.3}  \textbf{a.}  \text{Define the well ordering principle. By Mathematical induction, prove that} \\ \hline 1 + 2 + 3 + \dots + n = \frac{1}{2} n(n+1), n \in z^+. \\ \hline \end{array}$                                                                                                                                              | 0      | L1 | CO1 |
| $ \begin{array}{c} \neg \left[ \left\{ (p \vee q) \wedge r \right\} \rightarrow \neg q \right] \Leftrightarrow \neg \left[ \neg \left[ (p \vee q) \wedge r \right] \vee \cdot \neg q \right] \Leftrightarrow q \wedge r \right. \\ \hline \\ c. & \text{Give i) a direct proof ii) an Indirect proof for the following statement "If n is an odd integer then n + 9 is an even integer". \\ \hline \\ \hline \\ \textbf{OR} \\ \hline \\ \textbf{Q.2} & \textbf{a.} & \text{Define i) an open statement ii) quantifiers.} \\ \hline \\ \textbf{b.} & \text{Test the validity of the following arguments.} \\ \hline \\ \textbf{i)} & \begin{array}{c} p \wedge q \\ p \rightarrow (q \rightarrow r) \\ \hline \vdots r \end{array} & \begin{array}{c} P \\ p \rightarrow \sim q \\ \hline \sim q \rightarrow r \\ \hline \vdots \sim r \end{array} \\ \hline \\ \textbf{c.} & \text{For the following statements the universe comprises all non-zero integers.} \\ \hline \\ \textbf{Determine the truth value of each statement.} \\ \hline \textbf{i)} & \exists x, \exists y \left[ xy \neq 1 \right] \\ \hline \textbf{iii)} & \forall x, \exists y \left[ xy \neq 1 \right] \\ \hline \textbf{iii)} & \forall x, \exists y \left[ xy \neq 1 \right] \\ \hline \textbf{iv)} & \exists x, \exists y \left[ (2x + y = 5) \wedge (x - 3y = -8) \right] \\ \hline \textbf{V)} & \exists x, \exists y \left[ (3x - y = 17) \wedge (2x + 4y = 3) \right]. \\ \hline \\ \hline \\ \textbf{Module - 2} \\ \hline \\ \textbf{Q.3} & \textbf{a.} & \textbf{Define the well ordering principle. By Mathematical induction, prove that} \\ \hline & 1 + 2 + 3 + \dots + n = \frac{1}{2} n(n + 1), n \in z^+. \\ \hline \end{array}$                                                                                                                        | 7      | L2 | CO1 |
| Q.2 a. Define i) an open statement ii) quantifiers.  b. Test the validity of the following arguments.  i) $p \land q$ $p \rightarrow (q \rightarrow r)$ $r$ c. For the following statements the universe comprises all non – zero integers. Determine the truth value of each statement.  i) $\exists x, \exists y [xy = 1]$ ii) $\exists x, \forall y [xy = 1]$ iii) $\forall x, \exists y [xy = 1]$ iv) $\exists x, \exists y [(2x + y = 5) \land (x - 3y = -8)]$ v) $\exists x, \exists y [(3x - y = 17) \land (2x + 4y = 3)]$ .  Module – 2  Q.3 a. Define the well ordering principle. By Mathematical induction, prove that $1 + 2 + 3 + \dots + n = \frac{1}{2} n(n + 1), n \in z^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 22 | COI |
| <ul> <li>Q.2 a. Define i) an open statement ii) quantifiers.</li> <li>b. Test the validity of the following arguments.  i)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7      | L2 | CO1 |
| b. Test the validity of the following arguments.  i) $p \land q$ $p \rightarrow (q \rightarrow r)$ $r$ c. For the following statements the universe comprises all non – zero integers. Determine the truth value of each statement.  i) $\exists x, \exists y [xy = 1]$ ii) $\exists x, \forall y [xy = 1]$ iii) $\forall x, \exists y [xy = 1]$ iv) $\exists x, \exists y [(2x + y = 5) \land (x - 3y = -8)]$ v) $\exists x, \exists y [(3x - y = 17) \land (2x + 4y = 3)]$ .  Module – 2  Q.3  a. Define the well ordering principle. By Mathematical induction, prove that $1 + 2 + 3 + \dots + n = \frac{1}{2} n(n + 1), n \in z^{+}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    |     |
| ii) $p \land q$ $p \rightarrow (q \rightarrow r)$ $\therefore r$ P P P P P P P P P P P P P P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6      | L2 | CO1 |
| c. For the following statements the universe comprises all non – zero integers. Determine the truth value of each statement.  i) $\exists x, \exists y \ [xy = 1]$ ii) $\exists x, \forall y \ [xy = 1]$ iii) $\forall x, \exists y \ [xy = 1]$ iv) $\exists x, \exists y \ [(2x + y = 5) \land (x - 3y = -8)]$ v) $\exists x, \exists y \ [(3x - y = 17) \land (2x + 4y = 3)]$ .  Module – 2  Q.3 a. Define the well ordering principle. By Mathematical induction, prove that $1 + 2 + 3 + \dots + n = \frac{1}{2} n(n + 1)$ , $n \in z^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7      | L2 | C01 |
| i) $\exists x, \exists y [xy = 1]$ ii) $\exists x, \forall y [xy = 1]$ iii) $\forall x, \exists y [xy = 1]$ iv) $\exists x, \exists y [(2x + y = 5) \land (x - 3y = -8)]$ v) $\exists x, \exists y [(3x - y = 17) \land (2x + 4y = 3)].$ Module – 2  Q.3 a. Define the well ordering principle. By Mathematical induction, prove that $1 + 2 + 3 + \dots + n = \frac{1}{2} n(n + 1), n \in z^+.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7      | L2 | CO1 |
| Q.3 a. Define the well ordering principle. By Mathematical induction, prove that $1+2+3+\ldots+n=\frac{1}{2}n(n+1)$ , $n\in z^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |    |     |
| $1+2+3+\ldots+n=\frac{1}{2}n(n+1), n \in z^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |    |     |
| <b>b.</b> Prove that $F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{1-\sqrt{5}}{2} \right)^n \right]$ . For $F_0$ , $F_1$ , $F_2$ , are the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6      | L2 | CO2 |
| Fibonacci numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7      | L2 | CO2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7      | L3 | CO2 |
| MASSASAUGA'. In how many of these all four A's are together? How many of them begin with S's?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | LJ | CO2 |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |    | 1   |

| a.       | Prove that $4n < n^2 - 7$ for all positive integers $n \ge 6$ .                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b.       | Find the co-efficients of $x^9$ $y^3$ in the expansion of $(2x - 3y)^{12}$ .                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| c.       | Let $a_0=1$ , $a_1=2$ , $a_3=3$ and $a_n=a_{n-1}+a_{n-3}$ for $n\geq 3$ , prove that $a_n\leq 3^n$ for all +ve integers n.                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | Module - 3                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| а.       | State Pigeon hole principle. Prove that if 30 dictionaries in a library contains a total of 61,327 pages then atleast one of dictionaries must have atleast 2045 pages. | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b.       | Define power set. For any sets A, B, C $\leq$ U, prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$ .                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| с.       | Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$ if $(gof)(x) = 9 x^2 - 9x + 3$ , determine a & b.                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | OR OR                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| а.       | Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x - 5, & \text{if } x > 0 \\ 1 - 3x, & \text{if } x \le 0 \end{cases}$ Find $f^{1}(-5, 5)$ and $f^{1}(-6, 5)$ .   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| h        | Let N be the get a CN to the                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | $R = \{(a, b) / a \in N, b \in N, a - b \text{ is divisible by 5}\}$ . Prove that R is an equivalence relation.                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | i) Determine the relation matrix for R ii) Construct the diagraph for R.                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1        | Module – 4                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a.       | and not divisible by 5 and 7.                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>b</b> | Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ , where $n \ge 0$ and $F_0 = 0$ .                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | b. c. a. b. c.                                                                                                                                                          | b. Find the co-efficients of $x^0$ $y^1$ in the expansion of $(2x-3y)^{12}$ .  c. Let $a_0=1$ , $a_1=2$ , $a_3=3$ and $a_n=a_{n-1}+a_{n-3}$ for $n\geq 3$ , prove that $a_n\leq 3^n$ for all +ve integers $n$ .  Module $-3$ a. State Pigeon hole principle. Prove that if 30 dictionaries in a library contains a total of 61,327 pages then at least one of dictionaries must have at least 2045 pages.  b. Define power set. For any sets $A$ , $B$ , $C\leq U$ , prove that $A\times (B\cup C)=(A\times B)\cup (A\times C)$ .  c. Let $f$ and $g$ be functions from $R$ to $R$ defined by $f(x)=ax+b$ and $g(x)=1-x+x^2$ if $(gof)(x)=9$ $x^2-9x+3$ , determine $a\otimes b$ .  OR  a. Let $f:R\to R$ be defined by $f(x)=\frac{3}{3}x-5$ , if $x>0$ Find $f^1$ (-5, 5) and $f^1$ (-6, 5).  b. Let $R$ be the set of Natural numbers. Let a relation $R$ be defined by $R=\{(a,b)/a\in N$ , $b\in N$ , $a-b$ is divisible by 5}. Prove that $R$ is an equivalence relation.  c. For $A=\{a,b,c,d,e\}$ , the Hasse diagram for the poset( $A$ , $R$ ) is as shown below:  i) Determine the relation matrix for $R$ ii) Construct the diagraph for $R$ .  b. Solve the recurrence relation $F_{n+2}=F_{n+1}+F_{n}$ , where $n\geq 0$ and $F_0=0$ . | <ul> <li>b. Find the co-efficients of x<sup>0</sup> y<sup>3</sup> in the expansion of (2x - 3y)<sup>12</sup>.</li> <li>c. Let a<sub>0</sub> = 1, a<sub>1</sub> = 2, a<sub>3</sub> = 3 and a<sub>n</sub> = a<sub>n-1</sub> + a<sub>n-3</sub> for n ≥ 3, prove that a<sub>n</sub> ≤ 3<sup>n</sup> for all +ve integers n.</li> <li>a. State Pigeon hole principle. Prove that if 30 dictionaries in a library contains a total of 61,327 pages then at least one of dictionaries must have at least 2045 pages.</li> <li>b. Define power set. For any sets A, B, C ≤ U, prove that A × (B ∪ C) = (A × B) ∪ (A × C).</li> <li>c. Let f and g be functions from R to R defined by f(x) = ax + b and g(x) = 1 - x + x<sup>2</sup> if (gof) (x) = 9 x<sup>2</sup> - 9x + 3, determine a &amp; b.</li> <li>DR</li> <li>a. Let f: R → R be defined by f(x) = 3x - 5, if x &gt; 0</li> <li>b. Let N be the set of Natural numbers. Let a relation R be defined by R = {(a, b) / a ∈ N , b ∈ N , a - b is divisible by 5}. Prove that R is an equivalence relation.</li> <li>c. For A = { a, b, c, d, e}, the Hasse diagram for the poset(A, R) is as shown below:  i) Determine the relation matrix for R  ii) Construct the diagraph for R.</li> <li>b. Solve the recurrence relation F<sub>n+2</sub> = F<sub>n+1</sub> + F<sub>n</sub>, where n ≥ 0 and F<sub>n</sub> = 0. 7</li> </ul> | b. Find the co-efficients of $x^0$ $y^1$ in the expansion of $(2x - 3y)^{12}$ .  c. Let $a_0 = 1$ , $a_1 = 2$ , $a_2 = 3$ and $a_n = a_{n-1} + a_{n-2}$ for $n \ge 3$ , prove that $a_n \le 3^n$ for $y \ge 3$ .  a. State Pigeon hole principle. Prove that if 30 dictionaries in a library contains a total of 61,327 pages then at least one of dictionaries must have at least 2045 pages.  b. Define power set. For any sets A, B, C \( \equiv \) U, prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$ .  c. Let f and g be functions from R to R defined by $f(x) = ax + b$ and $f(x) = ax + b$ |

| -0   | 0.8 | <ul> <li>a. Find the Rook polynomial for the chess board contain 4 squares as shown in the Fig.Q8(a).</li> <li>1 2 3 4 Fig.Q8(a)</li> </ul>                                                                              | 6 | L3 | CO4 |
|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-----|
|      | 1   | Solve the recurrence relation $a_n = 5a_{n-1} + 6a_{n-2}$ , $n \ge 2$ , $a_0 = 1$ , $a_1 = 3$ .                                                                                                                          | 7 | L2 | CO4 |
|      | c   | Find the distinct numbers which are multiples of at least one of 15, 40 and 35 not exceeding 1000.                                                                                                                       | 7 | L3 | CO4 |
|      |     | Module – 5                                                                                                                                                                                                               | • | 1  |     |
| Q.9  | 8.  | Define group and subgroup with example each.                                                                                                                                                                             | 6 | L1 | CO5 |
|      | b.  | State and prove Lagrange's theorem.                                                                                                                                                                                      | 7 | L2 | CO5 |
|      | Ç.  | Define Klein 4 group. Verify A = {e, a, b, c} is a Klein 4 group.                                                                                                                                                        | 7 | L2 | CO5 |
|      |     | OR 4                                                                                                                                                                                                                     |   |    |     |
| Q.10 | a.  | Prove that the intersection of two subgroup of a group is a subgroup of the group.                                                                                                                                       | 6 | L2 | CO5 |
|      | b.  | Prove that the cube roots of unity form a group under the multiplication.                                                                                                                                                | 7 | L2 | CO5 |
|      | c.  | Let $G = S_4$ , the symmetric group of order 4, for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ , find the subgroup $H = \langle a \rangle$ , determine the number of left cosets of H in G. | 7 | L3 | CO5 |