Version 0 as of September 13, 2018

Primary authors: Jonathan Asaadi, Dalton Sessumes, Elena Gramellini

To be submitted to JINST

Comment to wowow@wow.edu by xxx, yyy

LARIAT INTERNAL DOCUMENT - NOT FOR PUBLIC DISTRIBUTION

Measurement of the Highland Formula in Liquid Argon LArIAT experiment

R. Acciarri, ⁷ C. Adams, ⁸ J. Asaadi, ¹³ M. Backfish, ⁷ W. Badgett, ⁷ B. Baller, ⁷ F. d. M. Blaszczyk, ² R. Bouabid, ⁴ C. Bromberg, ¹¹ R. Carey, ² F. Cavanna, ⁷ A. Chatterjee, ¹³ M. V. dos Santos, ¹ D. Edmunds, ¹⁶ M. Elkins, ¹⁶

J. Esquivel, J. Evans, 10 A. Falcone, 13 A. Farbin, 16 R. C. Fernandez, W. Flanagan, 16 B. Fleming, 15 W. Foreman, 4

D. Garcia-Gamez, ¹⁰ D. Gastler, ² B. Gelli, ³ T. Ghosh, ¹⁶ R. A. Gomes, ¹⁶ E. Gramellini, ¹⁵ R. Gran, ¹⁶ D. R. Gratieri, ³ P. Guzowski, ¹⁶ A. Habig, ¹⁶ A. Hahn, ⁷ P. Hamilton, ¹² C. Hill, ¹⁰ J. Ho, ⁴ A. Holin, ¹⁶ J. Hugon, ⁹ E. Iwai, ¹⁶

D. Jensen, R. Johnson, H. Jostlein, E. Kearns, E. Kemp, M. Kirby, T. Kobilarcik, M. Kordosky, 4

P. Kryczyński, ⁷ K. Lang, ¹⁶ R. Linehan, ² S. Lockwitz, ⁷ X. Luo, ¹⁵ A. Marchionni, ⁷ T. Maruyama, ¹⁶ L. M. Santos, ³ W. Metcalf, ¹⁶ C. A. Moura, ¹⁶ R. Nichol, ¹⁶ M. S. Nunes, ³ I. Nutini, ⁷ A. Olivier, ¹⁶ O. Palamara, ⁷ J. Paley, ⁷

I. Parmaksiz, ¹⁶ L. Paulucci, ¹⁶ D. Phan, ¹⁶ G. Pulliam, ¹² J. L. Raaf, ⁷ B. Rebel, ⁷ M. Reggiani-Guzzo, ³ O. Rodrigues, ¹² M. Ross-Lonergan, ⁶ D. Schmitz, ⁴ E. Segreto, ³ D. Sessumes, ¹³ S. Shahsavarani, ¹⁶ D. Shooltz, ¹⁶ D. Smith, ² M. Soderberg, ¹² B. Soubasis, ¹⁶ J. St. John, ⁷ M. Stancari, ⁷ D. Stefan, ¹⁶ M. Stephens, ¹⁶ R. Sulej, ¹⁶ A. Szelc, ¹⁰ M. Tzanov, ⁹ G. A. Valdiviesso, ¹ Z. Williams, ¹³ T. Yang, ⁷ J. Yu, ¹⁶ G. P. Zeller, ⁷ S. Zhang, ² and J. Zhu¹⁶

(The LArIAT Collaboration)

¹Universidade Federal de Alfenas, Poços de Caldas, MG, 37715-400, Brazil ²Boston University, Boston, MA 02215, USA ³ Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil ⁴University of Chicago, Chicago, IL, 60637, USA ⁵University of Cincinnati, Cincinnati, OH, 45221, USA ⁶Columbia University, New York, NY, 10027, USA ⁷Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ⁸Harvard University, Cambridge, MA 02138, USA ⁹Louisiana State University, Baton Rouge, LS 70803, USA ¹⁰ The University of Manchester, Manchester M13 9PL, United Kingdom ¹¹Michigan State University, East Lansing, MI 48824, USA ¹²Syracuse University, Syracuse, NY, 13244, USA ¹³University of Texas, Arlington, TX, 76019, USA ¹⁴College of William and Mary, Williamsburg, VA, 23185, USA ¹⁵ Yale University, New Haven, CT, 06520, USA 16 UNKNOWN (Dated: September 13, 2018)

This is where the abstract goes.

PACS numbers: 13.15.+g Neutrino interactions, 14.40.-n Mesons, 14.40.Be Light mesons (S=C=B=0), 13.75.-n Hadron-induced low- and intermediate-energy reactions and scattering (energy le 10 GeV)

MOTIVATIONS

MEASUREMENT'S STATISTICAL FOUNDATION

What are we measuring and why?

EXPERIMENTAL SETUP

What experimental setup?

The propagation of a particle in a medium depends upon the interaction of the particle with the medium itself. Multiple coulomb scattering (MCS) represents the multiple electromagnetic interactions between a charged particle and the atomic nuclei of the medium the particle traverses. The effect of MCS results in a deviation of the charged particle from its original trajectory. In the simple bi-dimensional representation shown in Figure 1, we define the incident momentum as $p_{\rm Inc}$, the outgoing

momentum as $p_{\rm out}$ and the scattering angle as θ_0 . For a given incoming momentum, it is customary to model the distribution of the scattering angles for small angles (< 10°) [cite Leo] with a gaussian centered at zero and standard deviation σ_{MSC} given by the Highland-Lynch-Dahl formula (referred to as the Highland formula in what follows). The Highland formula reads

$$\sigma_{MCS} = \frac{13.6 \text{ MeV}}{p_{\text{inc}}\beta c} z \sqrt{\frac{l}{X_0}} [1 + 0.0038 \ln(\frac{l}{X_0})], \quad (1)$$

where c is the speed of light, β is the velocity of the particle in units of c, l the length of the material traversed and X_0 is the radiation length in the medium.

FIG. 1: 2D sketch of MCS.

FIG. 2: 3D sketch of MCS.

In a more realistic tri-dimensional representation, show in Figure 2 we define θ_x and θ_y as the angle between the projections in the XZ and YZ planes. These angles are both distributed as gaussians centered at zero and standard deviation σ_{MSC} , in symbols:

$$\theta_x \sim \mathcal{N}(0, \sigma_{MSC}^2)$$
 and $\theta_y \sim \mathcal{N}(0, \sigma_{MSC}^2)$. (2)

For small angles, we can approximate the 3D angle between the incoming and outgoing momenta as

$$\theta_{3D} = \sqrt{\theta_x^2 + \theta_y^2}. (3)$$

Thus, we can assume that θ_{3D}^2 is distributed as the sum of two independent gaussian distributions with the same mean $\mu_x = \mu_y = 0$ and same standard deviation $\sigma_x = 0$

 $\sigma_y = \sigma_{MCS}$; in symbols,

$$\theta_{3D}^2 = \sum_{i=x,y} \theta_i^2 \sim \sum_{i=x,y} \Gamma(1/2, 2\sigma_i^2) = \Gamma(n/2, 2\sigma_{MCS}^2), \tag{4}$$

where n is the number of gaussian-distributed variables in the sum (in our case n=2) and Γ is the gamma distribution. Substituting n, we simply find

$$\theta_{3D}^2 \sim \Gamma(1, 2\sigma_{MCS}^2). \tag{5}$$

A common analytical parametrization of the gamma distribution in the k and α parameters is as follows:

$$\Gamma(k,\alpha) = \frac{1}{\Gamma(k)\alpha^k} x^{k-1} e^{-\frac{x}{\alpha}},\tag{6}$$

where $\Gamma(k)$ is the nicely confusing gamma function, i.e. the compact version of the factorial, $\Gamma(k) = (k-1)!$ – don't you love statisticians?

In our case, the form of the gamma distribution is greatly simplified by the fact that k=1. In fact, $\Gamma(1)=1$, $x^{k-1}=x^0=1$ and the gamma function becomes:

$$\theta_{3D}^2 \sim \Gamma(1, 2\sigma_{MCS}^2) = \frac{1}{2\sigma_{MCS}^2} e^{-\frac{\theta_{3D}^2}{2\sigma_{MCS}^2}}.$$
 (7)

In order to calculate the Highland formula as a function of the momentum, we divide the LArIAT events in bins of incident momentum and we measure σ_{MCS} in each bin. For each bin, we plot the θ_{3D}^2 distribution, we fit it with an exponential and we find the slope; then we calculate $\sigma_{MCS} \pm \delta \sigma_{MCS}$ from the estimated slope and the fit uncertainty.

The form of the function used to fit the θ_{3D}^2 distributions is the following

$$\theta_{3D}^2 \sim C e^{\alpha \theta_{3D}^2},\tag{8}$$

where C is a normalization factor and $\alpha = -\frac{1}{2\sigma_{MCS}^2}$. Thus, accounting for the propagation of uncertainties, we find

$$\sigma_{MCS} \pm \delta \sigma_{MCS} = \sqrt{-\frac{1}{2\alpha}} \pm \sigma_{MCS} \frac{\delta \alpha}{2\alpha},$$
 (9)

where $\delta \alpha$ is the uncertainty of the fit parameter.

MEASUREMENT METHODOLOGY

How are we measuring it?

3

RESULTS have one soon.

[1] Standard LArIAT detector reference: R. Acciarri $et\ al.$ (LArIAT Collaboration), hopefully we'll