PORPHYRIN-METAL COMPLEX-ALBUMIN CLATHRATE COMPOUND AND OXYGEN CARRIER

Patent number:

JP8301873

Publication date:

1996-11-19

Inventor:

TSUCHIDA HIDETOSHI; NISHIDE HIROYUKI;

KOMATSU TERUYUKI

Applicant:

TSUCHIDA HIDETOSHI

Classification:

- international:

C07D487/22

- european:

Application number: JP19950106314 19950428

Priority number(s):

Abstract of JP8301873

PURPOSE: To obtain a new compound containing a porphyrin-metal complex as an oxygen-adsorbing/desorbing site, excellent in biocompatibility as an oxygen carrier, and also relatively easy to produce using industrial membranes.

CONSTITUTION: This new compound is obtained by including in an albumin a substituted porphyrin-metal complex with a group IV or V transition metal ion as the centrally coordinated metal e.g. a 5,10,15,20tetra

[&alpha ,&alpha ,&alpha -o-(substituted amido)phenyl]porphyrin metal complex of the formula (R1 is H or methyl; M is Fe or Co ion; (n) is 0-17; (m) is 7-17)}. This new compound is obtained by the following process: a porphyrin metal is dissolved in a solvent such as dimethylformamide and the resultant solution is incorporated with an aqueous solution of an albumin such as human serum albumin followed by repeating concentration by ultrafiltration.

Also published as:

EP0739634 (A2)

US6008198 (A1)

EP0739634 (A3) EP0739634 (B1)

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-301873

(43)公開日 平成8年(1996)11月19日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技	術表示箇所
C 0 7 D 487/22		9271-4C	C 0 7 D 487/22		
// A 6 1 K 31/555	ABZ		A 6 1 K 31/555	ABZ	
B 0 1 D 53/14		•	B01D 53/14	В	

		審査請求 未請求 請求項の数6 OL (全 9	頁)		
(21)出顧番号	特願平7-106314	(71)出願人 000218719	000218719		
		土田 英俊			
(22)出願日	平成7年(1995)4月28日	東京都練馬区関町南2丁目10番10号			
	·	(72)発明者 土田 英俊			
		東京都練馬区関町南 2 -10-10			
		(72)発明者 西出 宏之			
		東京都中野区若宮 3 -28-13			
		(72)発明者 小松 晃之			
		東京都世田谷区下馬1-40-4			
		(74)代理人 弁理士 鈴江 武彦			

(54) 【発明の名称】 ポルフィリン金属鉗体-アルブミン包接化合物及び酸素運搬体

(57)【要約】

【目的】ポルフィリン金属錯体を酸素吸脱着部位として 含有する酸素運搬体として生体適合性により優れ、工業 的規模での製造も比較的容易な新規化合物および酸素運 搬体を提供する。

【構成】周期律第4及び第5周期に属する遷移金属イオンを中心配位金属とする置換ボルフィリン金属錯体をアルブミンに包接させてなるポルフィリン金属錯体-アルブミン包接化合物、及びこの包接化合物を有効成分とする酸素運搬体。

【特許請求の範囲】

【請求項1】 周期律第4及び第5周期に属する遷移金属イオンを中心配位金属とする置換ポルフィリン金属錯体をアルブミンに包接させてなるポルフィリン金属錯体ーアルブミン包接化合物。

1

【請求項2】 下記化1に示される一般式(I) 【化1】

(一般式(I) において、R、は水素又はメチル基、M は鉄又はコバルトイオン、nは0ないし17の整数、及びmは7ないし17の整数)で表わされる5、10、15、20-テトラ $[\alpha,\alpha,\alpha,\alpha-o-($ 置換アミド)フェニル] ポルフィリン金属錯体をアルブミンに包接させてなるポルフィリン金属錯体-アルブミン包接化合物。

【請求項3】 下記化2に示される一般式 (II) 【化2】

$$R_2$$
 $O(CH_2)_2CH_3$
 R_3
 $O(CH_2)_3CH_3$
 $O(CH_2)_3CH_3$
 $O(CH_2)_3CH_3$
 $O(CH_2)_3CH_3$
 $O(CH_2)_3CH_3$
 $O(CH_2)_3CH_3$
 $O(CH_2)_3CH_3$

(一般式(II)において、R、はビニル基又は式-(CH,)CHO(CH,)、CH,(CCで、hは0ないし17の整数)で表わされる1-アルカンオキシエチル基、R、は水素又はメチル基、Mは鉄又はコバルトイオン、jは0ないし17の整数、及びkは3ないし10の整数)で表わされるポルフィリン金属錯体をアルブミンに包接させてなるポルフィリン金属錯体-アルブミン包接化合物。

【請求項4】 鉄又はコバルトが+2価の状態にある請求項2又は3記載の包接化合物。

【請求項5】 アルブミンがヒト血清アルブミン又は組換えヒト血清アルブミンである請求項1ないし4のいずれか1項記載の包接化合物。

【請求項6】 請求項1ないし5のいずれか1項記載の ポルフィリン金属錯体-アルブミン包接化合物を有効成 分として含む酸素運搬体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、酸素吸脱着部位として 10 ポルフィリン金属錯体を包接した新規包接化合物、及び この包接化合物を有効成分とする酸素運搬体に関する。 【0002】

【従来の技術】ヘモグロビンやミオグロビン中に存在するボルフィリン鉄(II)錯体は、酸素分子を可逆的に吸脱着する。とのような天然のボルフィリン鉄(II)錯体に類似する酸素吸脱着機能を合成の錯体により達成させようとする研究は、従来から数多く報告されている(例えば、J. P. コールマン(Collman), Accounts of Chemical Research, 10, 265(1977); F. バソロ(Basolo), B. M. ホフマン(Hoffman), J. A. アイバーズ(Ibers), 同、8,384(197

A. アイバーズ (Ibers), 同、8, 384 (1975) 等参照)。ところで、合成の化合物(特に合成のボルフィリン金属錯体等)を用いてその機能を生理条件下(生理塩水溶液(pH7.4)中室温ないし37℃)で再現させ、医療用途、例えば人工赤血球、臓器保存液、あるいは人工肺等のための酸素供給液に利用しようとする場合には、次の条件、すなわち、(i)酸素結合能を増大させるためには一般に軸塩基配位子の存在が必要であるが、そのような配位子として広く用いられているイミダゾール誘導体には薬理作用を有するものがあり、生体内毒性の高いものがあるので、その濃度を最小限に抑制すること、及び(ii)ボルフィリン金属錯体を水に可溶化するだけでなく、これを微視的疎水性環境内に包埋・固定することにより、中心金属のプロトンによる酸化、及びμーオキソ二量体を経由する酸化を防止して酸素配位錯体を安定に保持することが必要である。

【0003】上記条件(i)については、本発明者等は、既に、イミダゾリル基を共有結合によりボルフィリン環に結合させたボルフィリン化合物、すなわち分子内に軸塩基を持つ置換ボルフィリン化合物(ボルフィリン/イミダゾールのモル比を1:1の最小必要量に抑制したこととなる)を合成し、これが安定な酸素配位錯体を形成することを明らかにしている(特開平6-271577号公報参照)。このボルフィリン錯体において、特にエステル結合により軸塩基を結合した場合には、生分解性も高く、生体内投与に際してきわめて有利なものとなる。すなわち、安全性の高い酸素結合部位(ボルフィリン金属錯体)の開発は、本発明者等により確立されているということができる。

50 【0004】他方、上記条件(ii)、すなわち水溶液中

3

でポルフィリン金属錯体に対し微視的疎水環境を提供す ることについては、界面活性剤からなるミセル又はリン 脂質からなる二分子膜小胞体を利用することが知られて いる。しかしながら、ミセルはその形態が動的であり、 二分子膜小胞体に比べ安定性の点で劣るとともに、その 形成する疎水環境の疎水性も低い。従って、形状が比較 的安定で十分な疎水性領域を提供できる二分子膜小胞体 が錯体に疎水環境を提供するためのキャリアーとして利 用されることが多い。これに基づき、リン脂質小胞体の て分散させることにより生理条件下でも安定に酸素を輸 送できる酸素運搬体の開発が継続して推進されてきた。

【0005】本発明者等も、ポルフィリン環上に末端親 水性アルキル置換基を導入し、ポルフィリンに両親媒性 構造を付与すれば、リン脂質二分子膜の疎水環境へ高い 配向性をもって包埋できるものとの考えから、既に種々 の両親媒性ポルフィリン鉄錯体を合成し、これらのポル フィリン錯体をリン脂質二分子膜中に包埋・配向させる ことにより、水相系において有効な一連の酸素運搬体を 報、特開昭58-213777号公報参照)。

【0006】しかし、これら酸素運搬体では、多量のリ ン脂質を使用するため、工業的規模での製造の点、また 代謝を含む生体適合性の点でなお改善の余地がある。 [0007]

【発明が解決しようとする課題】そこで、本発明は、ポ*

*ルフィリン金属錯体を酸素吸脱着部位として含有する酸 素運搬体として生体適合性により優れ、工業的規模での 製造も比較的容易な新規化合物および酸素運搬体を提供 しようとするものである。

[0008]

【課題を解決するための手段】本発明らは、生理条件下 で安定に酸素を運搬できる酸素運搬体の分子設計と機能 発現、及びポルフィリン金属錯体に対して疎水環境を提 供し得る生体適合性の高いキャリアーについて鋭意研究 二分子膜間にポルフィリン金属錯体を高い配向性をもっ 10 を重ねた結果、血漿タンパク質の50~55%を占め、 生体内で種々の化合物の運搬を担っているアルブミン が、ポルフィリン金属錯体に優れた疎水環境を提供する ことができ、これに所定のポルフィリン金属錯体を包接 させて得られるポルフィリン金属錯体-アルブミン包接 化合物が水中で安定な酸素配位錯体を形成し、酸素運搬 体として機能することを見い出し、本発明を完成するに 至った。

【0009】すなわち、本発明によれば、周期律第4及 び第5周期に属する遷移金属イオンを中心配位金属とす 開発している(例えば、特開昭60-101490号公 20 る置換ポルフィリン金属錯体をアルブミンに包接させて なるポルフィリン金属錯体-アルブミン包接化合物が提 供される。

> 【0010】置換ポルフィリン金属錯体は、最も好まし くは、下記化3に示される一般式(1) 【化3】

【0011】(一般式(I)において、R, は水素又は 40 1 メチル基、Mは鉄又はコバルトイオン、nは0ないし1 7の整数、及びmは7ないし17の整数)で表わされる 5, 10, 15, 20-テトラ [α, α, α, α-ο-(置換アミド) フェニル] ボルフィリン金属錯体である か、または下記化4に示される一般式(II) 【化4】

$$H_2$$
 O
 $O(CH_2)_3CH_3$
 $O(CH$

50

【0012】(一般式(II)において、R, はビニル基 又は式-(CH,)CHO(CH,),CH,(CC で、hは0ないし17の整数)で表わされる1-アルカ ンオキシエチル基、R,は水素又はメチル基、Mは鉄又 はコバルトイオン、 jは0ないし17の整数、及びkは 3ないし10の整数)で表わされるポルフィリン金属錯 体である。

【0013】酸素運搬体としては、式(I)又は式(I I) で表わされるポルフィリン金属錯体における中心金 属Mである鉄又はコバルトは+2価の状態にある。

【0014】アルブミンは、その由来を特に制限するも のではないが、ヒト血清アルブミン又は組換えヒト血清 アルブミンであることが好ましい。特に近年、遺伝子組 換え技術の進展により、構造・組成及び物理化学的特徴 がヒト血清アルブミンと全く同一である高純度の組換え ヒト血清アルブミンが開発されてきており(横山、大 村、臨床分子医学、1,939(1993)参照)、と の組換えヒト血清アルブミンに置換ポルフィリン金属錯 体を包接させてなるボルフィリン金属錯体-組換えヒト 血清アルブミン包接化合物は、全合成系として提供でき 20 るので、工業的規模での製造も比較的容易である。

【0015】また、本発明によれば、上記本発明のポル フィリン金属錯体-アルブミン包接化合物を有効成分と して含む酸素運搬体が提供される。

【0016】以下、本発明をさらに詳しく説明する。本 発明において、以後詳述するボルフィリン金属錯体を包 接するアルブミンは、血液中ではコロイド浸透圧調整を 主な役割とする単純タンパク質であるが、また栄養物質 やその代謝産物あるいは薬物等の輸送タンパク質として 質には見られないアルブミンの非特異的結合能に着目し て完成されたものである。

【0017】アルブミンは、血漿タンパク質であるか ら、生体への適用、特に赤血球代替物としての利用に関 しては、リン脂質小胞体を用いる系に比べて格段に有利

【0018】本発明に用いるアルブミンは、ヒト血清ア ルブミン、組換えヒト血清アルブミン、ウシ血清アルブ ミン等その由来に制限はない。なお、ヒトへの適用を考 えた場合、ヒト血清アルブミン又は組換えヒト血清アル 40 ブミンを用いることが好ましい。

【0019】本発明において、アルブミンにより包接さ れる置換ポルフィリン金属錯体は、周期律第4及び第5 周期に属する遷移金属(すなわち、クロム、マンガン、 鉄、コバルト、ルテニウム等)イオンを中心配位金属と する置換ポルフィリン金属錯体であれば特に制限はな い。中心配位金属としては、鉄及びコバルトが好まし く、鉄が特に好ましい。なお、置換ポルフィリン金属錯 体は、イミダゾールを結合したものであることが特に有 用である。

【0020】本発明の特に好ましい態様において、置換 ポルフィリン金属錯体は、上記一般式(I)又は(II) で表わされるものである。

【0021】一般式(1)で表わされる5,10,1 $5, 20-テトラ [\alpha, \alpha, \alpha, \alpha-o-(置換アミ$ ド)フェニル] ボルフィリン金属錯体は、そのアルキル イミダゾリル基がポルフィリン環の2-位に結合してい ることが重要である。本発明者らの研究によれば、分子 内にそのようなイミダゾリル基を持たないポルフィリン 10 錯体は、外部から小過剰のイミダゾール誘導体(例え は、1-メチルイミダゾール)を添加しても、水相系で は安定な酸素錯体を生成することなく直ちに劣化した。 【0022】また、一般式(II)で示されるポルフィリ ンは、生体中のヘモグロビンと同様のプロトポルフィリ ンIX誘導体であり、生体適合性に優れることはいうまで もない。一般式(II)で表わされる化合物のうち、R2 がビニル基であるポルフィリン誘導体は、T.G.トレ ーラー (Traylor) ら、J. Am. Chem. So c., 101, 6716 (1979) に記載の方法によ り合成できる。R、が1-アルカンオキシエチル基であ るポルフィリン誘導体は、例えば以下のプロセスにより 合成できる。

[0023] 土田ら、Chem. Lett., 199 4, 1953に記載の方法により合成した8, 13-ビ X(1'-r)ルカンオキシエチル) -3, 7, 12, 1 7-テトラメチル-2、18-ビス(2)-アルカンオ キシカルボニルエチル) -21, 23H-ポルフィリン を1~5規定の塩酸に溶解し、室温で1~24時間撹拌 する。ポルフィリンが塩酸に不溶の場合は、テトラヒド も機能している。本発明は、このような、他のタンパク 30 ロフラン、アセトン等の有機溶媒を適宜添加してポルフ ィリンを均一に溶解させることが必要である。反応終了 後、溶媒を減圧留去し、残渣をクロロホルム、ジクロロ メタン、ベンゼン等で抽出し、純水で洗浄する。その 後、有機層を蒸発乾固し、これをシリカゲルカラムで分 離精製して、エステル結合の1つを加水分解したモノエ ステル体を得る。このモノエステル体を窒素雰囲気下で トリエチルアミン、ピリジン、4-ジメチルアミノビリ ジン等の塩基を含む無水テトラヒドロフラン、ジメチル ホルムアミド等に溶解し、-20~30℃、望ましくは -20~0℃でピバリン酸クロリドを加え、10~60 分間撹拌した後、さらに1-(3-アミノアルキル)イ ミダゾールを滴下し、−20~30℃で1~24時間反 応させる。反応溶媒を減圧除去後、残渣をクロロホル ム、ジクロロメタン、ベンゼン等の有機溶媒で抽出し、 純水で洗浄する。最後に、有機層を減圧乾固し、これを シリカゲルカラムで分離精製し、所望の8,13-ビス (1'-アルカンオキシエチル)-2-(2'-アルカ ンオキシカルボニルエチル-18-(2'-(3"-イ ミダゾリル)アルキル)アミノカルボニルエチル)ー 50 3, 7, 12, 17-テトラメチル-21, 23H-ポ 7

(5)

40

ルフィリンを得る。

【0024】さらに、中心金属の導入、すなわち、鉄錯 体、コバルト錯体などへの誘導は、常法(例えば、D. ドルフィン編、ザ・ポルフィリン、1978年、アカデ ミック・プレス社等参照)に従って行うことができる。 一般に、鉄錯体の場合には、ポルフィナト鉄(III)錯 体が、コバルト錯体の場合には、ポルフィナトコバルト (II) 錯体が得られる。

【0025】さて、本発明の置換ポルフィリン金属錯体 - アルブミン包接化合物を調製するには、まず、ポルフ 10 ィリン金属(例えば、2-(8'-(N-イミダゾリ ル))オクタノイルオキシメチル)-メソーテトラ ィナト鉄(III)錯体)を水溶性の溶媒(例えば、ジメ チルホルムアミド、ジメチルスルホキシド、メタノール 等)に溶解し、これにアルブミン(例えば、ヒト血清ア ルブミン)の水溶液(溶媒として、例えば水、リン酸緩 衝液(p H 5 ~ 9)、生理食塩水、クレーブス-リンガ -溶液等)を加えた後、軽く振盪する。得られた水分散 液を限外ろ過(例えば、限外分子量20.000~4 0,000の限外ろ過膜を使用)により総量の10%程 度まで濃縮した後、再び水等を加え、限外ろ過を行う操 作を繰り返すと、ポルフィリン金属錯体-アルブミン包 接化合物が得られる。この分散液は、4~35℃で数ヵ 月間保存後でも沈殿、凝集等はまったく認められず安定

【0026】なお、ポルフィリン金属錯体の中心金属が 鉄(III)である場合、還元剤(例えば、亜二チオン酸 ナトリウム、アスコルビン酸等の水溶液)を窒素雰囲気 下で添加する等の常法により中心鉄を3価から2価へ還 元することにより、酸素結合活性を付与することができ る。との還元は、還元剤の添加によるばかりでなく、バ ラジウムカーボン/水素ガスによっても行うことができ る。例えば、ポルフィリン鉄(III)錯体を乾燥ジクロ ロメタン、ベンゼン、トルエン等に溶解し、少量のパラ ジウムカーボンを添加した後、水素ガスを室温で十分に 吹き込むことにより中心鉄を還元することができる。還 元後、ハラジウムカーボンをろ別し、ろ液を真空乾燥し た後用いることができる。以上の還元は、包接反応の前 に行うことができる。

【0027】とのようにして得られた本発明のポルフィ リン金属錯体-アルブミン包接化合物は、アルブミンに よって形成される内部疎水領域内にポルフィリン金属錯 体が包埋・固定(包接)されたものである。なお、アル ブミン 1 モルに包接・結合されたポルフィリン金属錯体 の数は、例えば、スカチャード・ブロット(Scatchard plot) (C. J. Halfman, T. Nishida, Biochemist ry、11,3493 (1972)) 等を作成することに より決定できる。アルブミン (例えば、ヒト血清アルブ ミン) に対する置換ポルフィリン金属錯体 (例えば、2 - (8'-(2"-メチル-1-イミダゾリル))オク タノイルオキシメチル-メソーテトラ (α, α, α, α-o-ピバルアミドフェニル) ポルフィナト鉄 (II) 錯 体)の結合数は、1~3である。

【0028】上に述べたように、本発明のポルフィリン 金属錯体-アルブミン包接化合物においては、酸素吸着 席であるポルフィリン金属錯体がアルブミンの内部疎水 環境内に固定されているため、中心金属のプロトンによ る酸化、及びμーオキソ二量化を経由する酸化劣化過程 が完全に抑止される結果、本発明の包接化合物は水相系 においても安定な酸素配位錯体が保持できる。

【0029】また、本発明のポルフィリン金属錯体-ア ルブミン包接化合物は、その酸素結合部位が合成の置換 ボルフィリン金属錯体で構成されているため、その酸素 親和力、毒性、生分解性等は、当該置換ポルフィリン金 属錯体の化学構造を制御することにより任意に調整する ことができる。また、アルブミンへの包接に際しては、 ポルフィリン金属錯体(被包接分子)の親疎水バランス (極性) や分子容がきわめて重要な因子となっている 20 が、テトラフェニルポルフィリン誘導体(一般式(1) など)のようなかさ高い分子(その分子容は、10~2 lnm'であり、一般式(II)等のプロトポルフィリン の分子容2~3.5 n m'の約2~10倍に相当する) でも包接結合して十分に所期の機能を発揮することが本 発明により明らかにされた。このことは、今後、アルブ ミン錯体の分子設計に新しい知見を与えるものと期待さ れる。

【0030】上に述べた説明からも明らかなように、本 発明のポルフィリン金属錯体 - アルブミン包接化合物 は、酸素と接触すると速やかに安定な酸素配位錯体を生 成する。そして、この酸素配位錯体は、酸素分圧に応じ て酸素を吸脱着できる。この酸素吸脱着は酸素分圧差に より可逆的に繰り返し安定に行うことができる。また、 酸素結合解離は、迅速であり、本発明の包接化合物は生 体内血流中でも酸素を効率よく運搬できる半人工系酸素 運搬体として、また組換えヒト血清アルブミンを用いた 場合には、全合成系酸素運搬体として機能し得る。

【0031】本発明者らの実験によれば、ポルフィリン 鉄(II)錯体-アルブミン包接化合物(例えば、2-(8'-(2"-メチル-1-イミダゾリル))オクタ ノイルオキシメチルーメソーテトラ (α, α, α, αo-ピバルアミドフェニル) ポルフィナト鉄 (II) 錯体 -ヒト血清アルブミン包接化合物)の25℃における酸 素配位錯体の半減期(て1/2)は16時間以上である。 これに対し、同条件でリン脂質小胞体の二分子層間に包 埋した同酸素配位錯体の半減期は4時間以上であり、ま た界面活性剤トリトンX-100(商品名)を用いて分 散させたミセル溶液中では 1 分以下と短かった。とのよ うに、ポルフィリン金属錯体をアルブミンの内部疎水環 50 境内に包接させることにより酸素配位錯体の寿命が大幅 に延長されることが明らかとなっている。

【〇〇32】以上詳述した置換ポルフィリン金属錯体を アルブミンの内部疎水領域に包接した結果優れた酸素結 合機能を有する本発明のポルフィリン金属錯体-アルブ ミン包接化合物は、上に述べたような酸素運搬体として 機能するばかりでなく、例えば中心金属が周期律表第4 ~第5周期の遷移金属である場合、広く酸化還元反応、 酸素酸化反流、活性酸素分解反応、光酸素活性化反応、 さらには酸素添加反応の触媒として作用し得るものであ る。従って、本発明の包接化合物は、前述のようにそれ 10 自体人工酸素運搬体として、またガス吸着剤、酸素吸脱 着剤、酸素酸化・還元触媒、酸素添加反応触媒、光酸素 活性化触媒などとして有用である。また、本発明の包接 化合物は、その製造が簡単であり、特に組換えヒト血清 アルブミンを用いた場合などは工業的規模での生産に適 している。

9

[0033]

【実施例】以下本発明を実施例により説明するが、本発 明はそれらに限定されるものではない。

実施例1

特開平6-271577号公報記載の手法に従い、2-(8'-(2"-メチル-1"-イミダゾリル))オク タノイルオキシメチル)-5,10,15,20-テト ラキス (α, α, α, α - 0 - U / V / V)ポルフィナト鉄(III)錯体を得た。この錯体(0.1 4 ミリモル) のジメチルスルホキシド溶液 (12 m 1) にヒト血清アルブミン(0.1ミリモル)のリン酸緩衝 水溶液 (pH7. 4、1/30mM) 100mlを加 え、振盪した。その混合液を限外ろ過装置(アドバンテ ック製ウルトラフィルター:限外分子量20,000) で20mlまで濃縮した。この濃縮物に92mlのリン 酸緩衝水溶液 (pH7.4、1/30mM) を加え、振 盪した後、再度限外ろ過による濃縮及びリン酸緩衝水溶 液による希釈を行った。とうして、所望のポルフィリン 鉄(III)錯体-アルブミン包接化合物の分散液を得 た。この分散液は、室温又は4℃で数ヵ月間保存しても 沈殿・凝集等が認められず、きわめて安定であった。 【0034】との分散液に少量の亜ニチオン酸水溶液を **窒素雰囲気下で添加し、ポルフィリン錯体の中心鉄を+** 2価に還元した。こうして、目的とする2-(8'-(2"-メチル-1"-イミダゾリル)) オクタノイル オキシメチル) -5, 10, 15, 20-テトラキス ィナト鉄(II)錯体-アルブミン包接化合物の分散液を 得た。

【0035】との分散液に一酸化炭素ガスを通気した 後、窒素換気しながら、氷浴中で光照射(500♥)す ると、デオキシ体が得られる。この分散液を1/50に 希釈し、石英製分光測定用セルに移し、窒素下で密封し

42 nm、439 nmであり、分子内塩基が1つ配位し た5配位デオキシ型に相当する。

【0036】との分散液に酸素ガスを通気すると、直ち にスペクトルが変化し、λ_{uax} 548 nm、424 nm のスペクトルが得られた。これは、アルブミンに包接さ れたポルフィリン鉄(II)錯体が酸素化錯体となってい ることを明らかに示すものである。この酸素化錯体の分 散液に窒素を通気すると、可視吸収スペクトルは酸素化 型スペクトルから再びデオキシ型スペクトルへ変化し、 これにより酸素の吸脱着が可逆的に生起することが確認 された。なお、酸素及び窒素の交互の通気を繰り返すと とによって、酸素の吸脱着を繰り返し行うことができ た。また、上記酸素化錯体の半寿命は25℃において1 6時間以上であった。

【0037】実施例2

実施例1で用いたポルフィリン鉄(III)錯体の代わり に、2-(18'-(N-イミダゾリル))オクタデカ ノイルオキシメチル) -5, 10, 15, 20-テトラ キス $(\alpha, \alpha, \alpha, \alpha-o-(2, 2-i)$ メチルオクタ 20 デカンアミドフェニル) ポルフィナト鉄 (III) 錯体 (1.4ミリモル)を、ヒト血清アルブミンの代わり に、ウシ血清アルブミンを用いた以外は、実施例1とま ったく同じ手法により、2-(18'-(N-イミダゾ リル))オクタデカノイルオキシメチル)-5,10, 15, $20-\mathcal{F}$ \mathcal{F} \mathcal{F} 2-ジメチルオクタデカンアミドフェニル) ポルフィナ ト鉄(II)錯体-アルブミン包接化合物の分散液を調製 した。その可視吸収スペクトルは λ ... が 5 6 2 n m 、 541nm、436nmであり、デオキシ型に相当す 30 る。実施例1と同様に酸素を通気することにより酸素化 錯体に相当する可視吸収スペクトル (λ_{nax} 544 n m、423 nm)を得た。この酸素化錯体の分散液に窒 素を通気すると、元のデオキシ型スペクトルが得られ、 酸素の可逆的吸脱着が確認された。なお、との酸素化錯 体の半寿命は25℃において15時間以上であった。 【0038】実施例3

2-(8'-(N-イミダゾリル)) オクタノイルオキ シメチル) -5, 10, 15, 20-テトラキス (α, α, α, α-ο-ピバルアミドフェニル) ポルフィナト 40 鉄(III) 錯体(1.4ミリモル)をベンゼン(20m 1) に溶解し、10%パラジウム黒を少量加え、水素ガ スを20分間吹き込んで、中心鉄を還元した後、触媒を ろ別した。この溶液に一酸化炭素を通気してポルフィリ ン鉄錯体を一酸化炭素錯体に転化した後、溶媒を減圧下 で留去した。固体残渣を一酸化炭素を通気したジメチル スルホキシド溶液(10m1)に溶解し、これにヒト血 清アルブミンのリン酸緩衝水溶液(pH7.4、1/3 0mM) 100mlを加え、振盪した。その混合液を限 外ろ過装置 (アドバンテック製ウルトラフィルター:限 た。その可視吸収スペクトルは λ a.x が 5 6 3 n m 、 5 50 外分子量 2 0 , 0 0 0) で 2 0 m l まで 濃縮した。その 濃縮物に92mlのリン酸緩衝水溶液(pH7.4、1 /30mM)を加え、振盪した後、再度限外ろ過による 濃縮及びリン酸緩衝水溶液による希釈を行った。こうし て、所望の一酸化炭素配位ポルフィリン鉄(II)錯体-アルブミン包接化合物の分散液を得た。

11

【0039】この分散液を窒素換気しながら、氷浴中で 光照射(500W)するとデオキシ体が得られた。とう して、目的とする2-(8'-(N-イミダゾリル)) オクタノイルオキシメチル) -5, 10, 15, 20-ル)ポルフィナト鉄(II)錯体-アルブミン包接化合物 の分散液を得た。

【0040】この分散液を1/50に希釈し、石英製分 光測定用セルに移し、窒素下で密封した。その可視吸収 スペクトルはλ_{aax} が564nm、541nm、435 nmであり、分子内塩基が1つ配位した5配位デオキシ 型に相当する。

【0041】この分散液に酸素ガスを通気すると、直ち にスペクトルが変化し、λ ax 546 nm、423 nm のスペクトルが得られた。これは、アルブミンに包接さ れたポルフィリン鉄(II)錯体が酸素化錯体となってい ることを明らかに示すものである。この酸素化錯体の分 散液に窒素を通気すると、可視吸収スペクトルは酸素化 型スペクトルから再びデオキシ型スペクトルへ変化し、 これにより酸素の吸脱着が可逆的に生起することが確認 された。なお、酸素及び窒素の交互の通気を繰り返すと とによって、酸素の吸脱着を繰り返し行うことができ た。また、上記酸素化錯体の半寿命は25℃において1 4時間以上であった。

【0042】実施例4

実施例1において、ヒト血清アルブミンの代りに組換え ヒト血清アルブミン (ミドリ十字社製) を用いた以外は 全く同様の手法に従い、2-(8'-(2"-メチル-1"-イミダゾリル))オクタノイルオキシメチル)-o-ピバルアミドフェニル)ポルフィナト鉄(III)錯 体-組換えヒト血清アルブミン包接化合物の分散液を得 た。その可視吸収は、λ_{ax} が562 n m 、540 n m、439 n mであり、デオキシ型に相当する。この分 散液に、実施例1と同様に酸素ガスを通気すると、酸素 化錯体に相当する可視吸収スペクトル (λ x 5 4 5 n m、423nm)を得た。この酸素化錯体の分散液に窒 素ガスを通気すると、元のデオキシ型スペクトルが得ら れ、酸素の可逆的吸脱着を確認した。また、上記酸素化 錯体の半寿命は25℃において14時間以上であった。 【0043】実施例5

2-(8'-(N-イミダゾリル)) オクタノイルオキ シメチル) -5, 10, 15, 20-テトラキス (α, フェニル)ポルフィナトコバルト(II)錯体(0.14 50 ミリモル)を加え、30分間撹拌した後、1-(3-ア

ミリモル)のジメチルスルホキシド溶液(12ml)に ヒト血清アルブミン(0.1ミリモル)のリン酸緩衝水 溶液(pH7.4、1/30mM)100m1を加え、 振盪した。その混合液を限外ろ過装置(アドバンテック 製ウルトラフィルター:限外分子量20,000)で2 0mlまで濃縮した。この濃縮物に92mlのリン酸緩 衝水溶液(pH7.4、1/30mM)を加え、振盪し た後、再度限外ろ過による濃縮及びリン酸緩衝水溶液に よる希釈を行った。とうして、所望のポルフィリンコバ ルト(II)錯体-アルブミン包接化合物の分散液を得 た。この分散液は、室温又は4°Cで数ヵ月間保存しても 沈殿・凝集等が認められず、安定であった。この分散液 に窒素を通気することによりポルフィリンコバルト(I I) 錯体をデオキシ体とした。この分散液を1/50に 希釈し、石英製分光測定用セルに移し、窒素下で密封し た。その可視吸収スペクトルはλ_{max} が530nm、4 11 nmであり、分子内塩基が1つ配位した5配位デオ キシ型に相当する。

【0044】この分散液に酸素ガスを通気すると、直ち にスペクトルが変化し、λ_{ax} 547nm、416nm のスペクトルが得られた。これは、アルブミンに包接さ れたポルフィリンコバルト (II) 錯体が酸素化錯体とな っていることを明らかに示すものである。この酸素化錯 体の分散液に窒素を通気すると、可視吸収スペクトルは 酸素化型スペクトルから再びデオキシ型スペクトルへ変 化し、これにより酸素の吸脱着が可逆的に生起すること が確認された。なお、酸素及び窒素の交互の通気を繰り 返すことによって、酸素の吸脱着を繰り返し行うことが できた。また、上記酸素化錯体の半寿命は25°Cにおい 30 て11時間以上であった。

【0045】実施例6

土田ら、Chem. Lett., 1994, 1953に 記載の方法により合成した8,13-ビス(1)-メト キシエチル) -3, 7, 12, 17-テトラメチル-2, 18-ビス(2'-メチルオキシカルボニルエチ ル) -21, 23H-ポルフィリン(0.34mg、 0.52 ミリモル)を4 N塩酸(4 m l) に溶解し、室 温で20分間撹拌した。この反応混合物をジクロロメタ ンで抽出し、純水で洗浄した。有機層を無水硫酸ナトリ 40 ウムで乾燥した後、ろ過し、減圧乾固した。これをシリ カゲルカラム (ジクロロメタン/メタノール=20/1 (容量/容量))で分離精製して、エステル結合の1つ を加水分解したモノエステル体を収量165mg(収 率:50%)で得た。

【0046】Cのモノエステル体(165mg、0.2 6ミリモル)を4-ジメチルアミノピリジン(62.9 mg、0.51ミリモル)を含む無水テトラヒドロフラ ン(5ml)に溶解し、窒素雰囲気下、−15℃に冷却」 した。 これにピバリン酸クロリド (63μ1、0.51

ミノプロピル) イミダゾール (150μ1、1.28ミ リモル)を加え、−10~0℃で1時間、さらに室温で 4時間反応させた。反応溶媒を減圧除去後、残渣をジク ロロメタンで抽出し、純水で洗浄した。有機層を無水硫 酸ナトリウムで乾燥し、ろ過した後、減圧乾固し、これ をシリカゲルカラム (クロロホルム/メタノール=20 /1(容量/容量))で分離精製し、8,13-ビス (1'-メトキシエチル)-2-(2'-メチルオキシ カルボニルエチルー18-(2'-(3"-イミダゾリ ル) プロピル) アミノカルボニルエチル) -3, 7, 1 10

13

【0047】元素分析値(重量%):C69.4(6 9. 1), H6. 98 (7. 14), N13. 4 (1 3. 1) (但し、括弧内の値は、C4, H,, N, O, に対 する計算値を示す)

2, 17-テトラメチル-21, 23H-ポルフィリン

を収量100mg(収率:52%)で得た。

3, 568, 533, 499, 402 nm

薄層クロマトグラフィー(メルクシリカゲルプレート、 クロロホルム/メタノール=20/1(容量/容 量)):Rf:0.42(モノスポット) FAB-質量スペクトル:748 [M]* 赤外吸収スペクトル (cm⁻¹):1645 (ν...。 (ア ミド))、1732 (ν_c, (エステル)) 可視吸収スペクトル: (クロロホルム) λ_{aax} : 62

'H NMR (CDC1, 、TMS基準)、δ(pp m))10.5、10.0(4H、m、メソ位-H)、 6.9、6.1(3H、t、イミダゾール環H)、6. 0 (2H, s, (CH, O)CH-), 4.3 (4H, CH, CH) $t - CH_2 CH_2 COO - 3.8 \sim 3.6 (18)$ H, m, CH, O-, CH, -), 3. $3\sim3$. 1 (6 H, t, -CH, CH, COO-, -CONHCH , -), 2. 9 (2H, t, -CH, Im), 2. 3 (6 H, s, (CH, O) CHC \underline{H}_2), 1.8 (3)

H, s, COOCH,), 1. 3 (2H, m, -CH,

CH, CH, -)

【0048】 こうして得られたポルフィリン誘導体(1 00mg、0.13ミリモル) をジメチルホルムアミド (10m1) に溶解し、十分に窒素置換した後、塩化鉄 (II) (266mg、1.34ミリモル)を素早く加 え、そのまま60℃で2時間反応させた。反応溶媒を減 40 圧除去して得られた固体残渣をクロロホルムに溶解し、 水洗し、有機層を無水硫酸ナトリウムで脱水処理した。 これをろ過したろ液を減圧乾固し、得られた固体残渣を シリカゲルカラム (クロロホルム/メタノール=5/1 (容量/容量))で分離精製し、目的の分画を集め、真

84mg (収率78%) で得た。 【0049】元素分析値(重量%):C61.8(6 1. 7), H6. 41 (6. 38), N (11. 4 (1

空乾燥した。こうして所望のポルフィリン鉄錯体を収量

CIに対する計算値を示す。) 薄層クロマトグラフィー(メルクシリカゲルプレート、 クロロホルム/メタノール=10/1(容量/容量):

Rf: 0.34 (モノスポット)

FAB-質量スペクトル:801 [M-C1]* 赤外吸収スペクトル (cm⁻¹):1652 (ν_ε, (ア ミド))、1728 (ν_{ε-}。 (エステル))

可視吸収スペクトル: (クロロホルム) λ ... : 37 1,500,535nm。

【0050】この錯体(0.14ミリモル)のジメチル スホキシド溶液(12ml)にヒト血清アルブミン (0.1ミリモル) のリン酸緩衝水溶液 (pH7.4、 1/30 mM) 100 m l を加え、振盪した。その混合 液を限外ろ過装置(アドバンテック製ウルトラフィルタ ー:限外分子量20,000)で20mlまで濃縮し た。この濃縮物に92mlのリン酸緩衝水溶液(pH 7. 4、1/30mM)を加え、振盪した後、再度限外 ろ過による濃縮及びリン酸緩衝水溶液による希釈を行っ た。とうして、所望のポルフィリン鉄(III)錯体-ア 20 ルブミン包接化合物の分散液を得た。この分散液は、室 温又は4℃で数ヵ月間保存しても沈殿・凝集等が認めら れず、きわめて安定であった。

【0051】との分散液に少量の亜ニチオン酸水溶液を 窒素雰囲気下で添加し、ポルフィリン錯体の中心鉄を+ 2価に還元した。とうして、目的とする8,13-ビス (1'-メトキシエチル)-2-(2'-メトキシカル ボニルエチル) -18-(2'-(3"-イミダゾリ ル) プロピル) アミノカルボニル) エチルー3, 7, 1 2, 17-テトラメチルーポルフィナト鉄(II)錯体-アルブミン包接化合物の分散液を得た。この分散液を1 /50に希釈し、石英製分光測定用セルに移し、窒素下。 で密封した。その可視吸収スペクトルは λ 2 2 x が 5 5 2 nm、419nmであり、分子内塩基が1つ配位した5 配位デオキシ型に相当する。

【0052】この分散液に酸素ガスを通気すると、直ち にスペクトルが変化し、λ ax 567 nm、536 n m、408 n m のスペクトルが得られた。これは、アル ブミンに包接されたポルフィリン鉄(II)錯体が酸素化 錯体となっていることを明らかに示すものである。この 酸素化錯体の半寿命は25℃において1時間以内であっ た。一方、デオキシ体の分散液に一酸化炭素ガスを通気 すると、速やかに一酸化炭素錯体の形成を示すスペクト ル (λ_{**} 560nm、631nm、412nm)が得 られた。この一酸化炭素錯体は室温できわめて安定であ

【0053】実施例7

実施例1で用いたボルフィリン鉄(III) 錯体の代わり に、8, 13-ビス(1'-(オクタデカン)エチル) -2-(2'-オクタデカンオキシカルボニル)エチ 1. 7) (但し、括弧内の値は、C₄, H₅₁N, O, Fe 50 ル) -18-(2'-(10"(2-メチルイミダゾリ ル) デカン) アミノカルボニル) エチルー3,7,1 2, 17-テトラメチル-ポルフィナト鉄(III)錯体 を用い、ヒト血清アルブミンの代わりに、ウシ血清アル ブミンを用いた以外は、実施例5とまったく同じ手法に より、8、13-ビス(1'-(オクタデカン)エチ ル)-2-(2'-オクタデカンオキシカルボニル)エ チル) - 18 - (2' - (10" (2 - メチルイミダゾ リル) デカン) アミノカルボニル) エチルー3,7,1 2.17-テトラメチルーポルフィナト鉄(II)錯体-アルブミン包接化合物の分散液を調製した。その可視吸 10 あることが明らかにされた。レーザーフラッシュホトリ 収スペクトルはλax が553nm、420nmであ り、デオキシ型に相当する。実施例1と同様に酸素を通 気することにより酸素化錯体に相当する可視吸収スペク トル (λ_{nax} 567 nm、536 nm、407 nm)を 得た。この酸素化錯体の半寿命は25℃において1時間 以内であった。一方、デオキシ体の分散液に一酸化炭素 ガスを通気すると、速やかに一酸化炭素錯体の形成を示 すスペクトル (λmax 560nm、531nm、413 nm)が得られた。との一酸化炭素錯体は室温できわめ て安定であった。

【0054】試験例1

実施例1の包接化合物について、スカチャード・プロッ トからアルブミンに対するポルフィリン鉄錯体の結合数 を決定したところ、結合数は1であった。また、平衡定 数は2.6×10°(M⁻¹)となり、ビリルビンなどと 同程度の強い結合であることが明らかとなった。デオキ

シ体ーオキシ体の繰り返しサイクルは25℃で100回 以上観察された。酸素親和度(P_{1/2}(O₂))は24 Torr (37℃) であった。酸素結合解離平衡曲線よ り見積もった肺(110Torr)-末梢組織(40T orr)間の酸素運搬効率は約20%(37°C)であ り、本包接化合物が赤血球代替用の酸素運搬体として有 効に作用することが示された。また、酸素結合のエンタ ルビー/エントロビー変化から、本包接化合物中の酸素 配位錯体の挙動は赤血球中のヘモグロビンとほぼ同じで シス法により求めた酸素結合解離速度定数 k ... 及び k off は、それぞれ、2. 4×10° (M-1 s-1) 及び 3. 2×10³ (s-1)であり、本包接化合物は赤血球 よりも迅速に酸素を結合・解離する能力があることが示 された。以上の結果から、本包接化合物は、体内を高速 流動したときにもそれに追随して十分に酸素を運搬する 能力があることがわかる。

[0055]

【発明の効果】以上説明したように、本発明によれば、 20 ポルフィリン金属錯体を酸素吸脱着部位として含有する 酸素運搬体として生体適合性により優れ、生理的条件下 でも優れた酸素吸脱着能を示し、工業的規模での製造も 比較的容易な置換ポルフィリン金属錯体-アルブミン包 接化合物およびこれを有効成分とする酸素運搬体が提供 される。