Answers to exercises Session 5

Marjolein Fokkema

Exercise 1

Read in data:

```
load("MASQ.Rda")
set.seed(1)
train <- sample(1:nrow(MASQ), size = nrow(MASQ)*.8)</pre>
summary(MASQ)
   D_DEPDYS
                   AD
                                     AA
                                                    GDD
                                                                    GDA
   0:1927
                    : 26.00
                                     :17.00
                                                      :12.00
                                                                      :11.0
             Min.
                              Min.
                                               Min.
                                                               Min.
             1st Qu.: 64.00
   1:1670
                              1st Qu.:22.00
                                               1st Qu.:20.00
                                                               1st Qu.:19.0
##
             Median : 77.00
                              Median :28.00
                                               Median :29.00
                                                               Median:24.0
##
             Mean
                    : 75.05
                              Mean
                                     :32.01
                                                     :30.64
                                                               Mean
                                                                      :25.4
                                               Mean
             3rd Qu.: 88.00
                              3rd Qu.:39.00
                                               3rd Qu.:40.00
                                                               3rd Qu.:31.0
##
##
             Max.
                    :110.00
                              Max.
                                     :83.00
                                               Max. :60.00
                                                               Max.
                                                                    :54.0
##
         GDM
                      leeftijd
                                  geslacht
           :15.0
                          :17.0
                                  m:1317
##
  Min.
                   Min.
   1st Qu.:31.0
                   1st Qu.:28.0
                                  v:2280
## Median :40.0
                   Median:38.0
## Mean
           :40.6
                   Mean
                          :38.8
## 3rd Qu.:50.0
                   3rd Qu.:48.0
## Max.
           :75.0
                   Max.
                          :91.0
round(cor(MASQ[train, sapply(MASQ, is.numeric)]), digits = 2)
##
              AD
                   AA
                        GDD
                              GDA
                                    GDM leeftijd
## AD
            1.00 0.51 0.79 0.61 0.74
                                             0.01
```

```
## AA 0.51 1.00 0.58 0.79 0.70 0.01
## GDD 0.79 0.58 1.00 0.72 0.81 -0.07
## GDA 0.61 0.79 0.72 1.00 0.80 -0.05
## GDM 0.74 0.70 0.81 0.80 1.00 -0.04
## leeftijd 0.01 0.01 -0.07 -0.05 -0.04 1.00
```

Fit a smoothing spline of the AD variable to predict D_DEPDYS :

```
##
## Family: binomial
## Link function: logit
##
## Formula:
## D_DEPDYS ~ s(AD, bs = "cr")
## Parametric coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
                          0.04751 -5.07 3.98e-07 ***
## (Intercept) -0.24089
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Approximate significance of smooth terms:
         edf Ref.df Chi.sq p-value
## s(AD) 4.09 5.041 672.4 <2e-16 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## R-sq.(adj) = 0.297 Deviance explained = 23.7\%
## -REML = 1522.2 Scale est. = 1
                                         n = 2877
plot(GAM, residuals = TRUE)
```


Inspect the basis functions that were created for AD:

Exercise 2: Multiple predictors

```
library("mgcv")
GAM \leftarrow gam(D_DEPDYS \sim s(AD) + s(AA) + s(GDD) + s(GDA) + s(GDM) + s(leeftijd) + geslacht,
           data = MASQ[train, ], method = "REML", family = "binomial")
summary(GAM)
##
## Family: binomial
## Link function: logit
##
## Formula:
## D_DEPDYS \sim s(AD) + s(AA) + s(GDD) + s(GDA) + s(GDM) + s(leeftijd) +
##
       geslacht
##
## Parametric coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.33822
                           0.07755 -4.361 1.29e-05 ***
```

```
## geslachtv
               0.13314
                           0.09517
                                     1.399
                                              0.162
##
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
## Approximate significance of smooth terms:
                 edf Ref.df Chi.sq p-value
##
               4.243 5.238 148.910
## s(AD)
                                    < 2e-16 ***
                     1.002
## s(AA)
               1.001
                              0.115
                                    0.73591
## s(GDD)
               2.185
                     2.793
                            11.185
                                    0.00971 **
               3.855
                     4.806
                            33.279 4.62e-06 ***
## s(GDA)
## s(GDM)
               1.001
                     1.001
                            52.723
                                    < 2e-16 ***
## s(leeftijd) 3.050 3.817
                            17.530
                                    0.00137 **
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## R-sq.(adj) = 0.331
                        Deviance explained =
## -REML = 1478.1 Scale est. = 1
                                         n = 2877
par(mfrow = c(2, 3))
plot(GAM)
```


We compute the mean squared error and misclassification rate using predicted probabilities, for both training and test observations:

```
y_train <- as.numeric(MASQ[train, "D_DEPDYS"]) - 1
y_test <- as.numeric(MASQ[-train, "D_DEPDYS"]) - 1

## Training data
GAM_preds_train <- predict(GAM, newdata = MASQ[train, ], type = "response")
mean((y_train - GAM_preds_train)^2) ## Brier score</pre>
```

[1] 0.1653101 tab_train <- prop.table(table(MASQ[train, "D_DEPDYS"], GAM_preds_train > .5)) ## confusion matrix tab_train ## ## **FALSE** TRUE 0 0.4174487 0.1223497 ## 1 0.1160932 0.3441084 1 - sum(diag(tab_train)) ## MCR ## [1] 0.2384428 ## Test data GAM_preds_test <- predict(GAM, newdata = MASQ[-train,], type = "response")</pre> mean((y_test - GAM_preds_test)^2) ## Brier score ## [1] 0.1666467 tab_test <- prop.table(table(MASQ[-train, "D_DEPDYS"], GAM_preds_test > .5)) ## confusion matrix tab_test ## ## FALSE TRUE ## 0 0.4027778 0.1166667 1 0.1236111 0.3569444 ## 1 - sum(diag(tab_test)) ## MCR ## [1] 0.2402778 The Brier score and confusion matrices are quite similar between training and test data, indicating little overfitting.

overhtting.

```
## Or, compute ROC curve
library("pROC")
plot(roc(resp = y_test, pred = GAM_preds_test))
```


auc(resp = y_test, pred = GAM_preds_test)

Area under the curve: 0.8295

Exercise 4: Fit a conditional inference tree

```
library("partykit")
ct <- ctree(D_DEPDYS ~ . , data = MASQ[train, ])
plot(ct, gp = gpar(cex = .5))</pre>
```


The conditional inference tree indicates a positive effect of the AD, GDM and GDD subscales on the probability of having a depressive / dysthymic disorder.

```
## Training data
ct_preds_train <- predict(ct, newdata = MASQ[train, ], type = "prob")[ , 2]
mean((y_train - ct_preds_train)^2) ## Brier score</pre>
```

[1] 0.1705674

```
tab_train <- prop.table(table(MASQ[train, "D_DEPDYS"], ct_preds_train > .5)) ## confusion matrix
1 - sum(diag(tab_train)) ## MCR
```

[1] 0.2457421

```
## Test data
y_test <- as.numeric(MASQ[-train, "D_DEPDYS"]) - 1
ct_preds_test <- predict(ct, newdata = MASQ[-train, ], type = "prob")[ , 2]
mean((y_test - ct_preds_test)^2) ## Brier score</pre>
```

[1] 0.1738697

```
tab_test <- prop.table(table(MASQ[-train, "D_DEPDYS"], ct_preds_test > .5)) ## confusion matrix
1 - sum(diag(tab_test)) ## MCR
```

[1] 0.2388889

The conditional inference tree provided best predictive accuracy of the single trees.

```
## AUC on test observations
plot(roc(resp = y_test, pred = ct_preds_test))
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases</pre>
```



```
auc(resp = y_test, pred = ct_preds_test)

## Setting levels: control = 0, case = 1
## Setting direction: controls < cases

## Area under the curve: 0.805</pre>
```

Exercise 5: Fit a bagged ensemble and random forest

Fit the ensembles:

Bagging

For these data, the out-of-bag (OOB) error decreases fast with the first 100 trees. After 200-300 trees, the OOB error stabilizes.

Note that for binary classification, three curves are provided: The black curve shows the misclassification error, the green and red curves show the classification error in each of the classes (comparable to sensitivity and specificity).

```
plot(rf.ens, cex.lab = .7, cex.axis = .7, cex.main = .7, main = "Random forest")
```

Random forest

The OOB error plotted against the number of trees shows a very similar pattern as with the bagged ensemble. Compute train MCR:

[1] 0

Compute test MCR:

```
tab <- prop.table(table(MASQ[-train, "D_DEPDYS"],
predict(bag.ens, newdata = MASQ[-train,])))
1 - sum(diag(tab)) ## misclassification rate for bagging</pre>
```

[1] 0.2388889

```
tab <- prop.table(table(MASQ[-train, "D_DEPDYS"],
predict(rf.ens, newdata = MASQ[-train,])))
1 - sum(diag(tab)) ## misclassification rate for RF</pre>
```

[1] 0.2388889

We compute squared error on predicted probabilitites (Brier score) for the training data:

```
predict(bag.ens, newdata = MASQ[train,], type = "prob")[1:10, ]
##
            0
## 1017 0.982 0.018
## 679 0.816 0.184
## 2177 0.960 0.040
## 930 0.058 0.942
## 1533 0.788 0.212
## 471 0.998 0.002
## 2347 0.812 0.188
## 270 0.966 0.034
## 1211 0.922 0.078
## 3379 0.878 0.122
Note that the predict method returns predicted probabilities for both classes, for objects of class
randomForest.
Therefore, we selected the second column of the returned probabilities ([ , 2]):
```

[1] 0.02466598

[1] 0.02431729

And for the test data:

[1] 0.1765018

[1] 0.1723298

Test MCRs are identical for the bagged ensemble and random forest. Test SEL is lower for the random forest.

Interpretation

We inspect variable importances:

importance(bag.ens)

##

AD

```
26.008074 46.6261372
                                             62.061330
                                                               545.20309
## AA
            11.210061 19.5952066
                                             23.683674
                                                               163.04057
## GDD
            24.875687 18.2097877
                                             36.050773
                                                               168.41636
  GDA
            18.096720 3.1288186
                                             17.552676
##
                                                               158.92755
## GDM
            24.393229 39.5161589
                                             54.590675
                                                               187.79771
## leeftijd 2.752565 5.6442541
                                              6.098998
                                                               185.04514
## geslacht -1.634730 -0.1247933
                                                                20.31331
                                             -1.150591
```

1 MeanDecreaseAccuracy MeanDecreaseGini

```
varImpPlot(bag.ens, cex = .7, cex.main = .7)
```

0

bag.ens

According to the reduction in MSE for the out-of-bag observations (left panel) if the values of each predictor variable are permuted, the AD (anhedonic depression), GDM (general distress mixed), and GDD (general distress depression) are the most important predictors of a depressive disorder diagnosis.

According to the improvement in node purity (i.e., training error; right panel), AD, leeftijd (age) and GDM are the most important predictors of of a depressive disorder diagnosis.

importance(rf.ens)

```
##
                    0
                              1 MeanDecreaseAccuracy MeanDecreaseGini
            33.630440 48.266024
                                            66.064052
## AD
                                                              399.27306
## AA
             6.599139 15.579649
                                            17.047234
                                                              166.79307
## GDD
            22.394085 16.774428
                                            33.745150
                                                              239.10990
## GDA
            13.584839
                      1.184124
                                                              168.00515
                                            12.532481
## GDM
            21.001515 36.662315
                                            47.677333
                                                              245.91414
## leeftijd 1.773007 5.834744
                                             5.682049
                                                             184.13887
## geslacht 1.344184 1.423987
                                             1.931168
                                                              25.26403
varImpPlot(rf.ens, cex = .7, cex.main = .7)
```

rf.ens

The AD, GDM and GDD scales appear most important in the random forest.

We request partial dependence plots for the bagged ensemble:

```
par(mfrow = c(1, 3))
partialPlot(bag.ens, x.var = "AD", pred.data = MASQ[train,], which.class = "1")
partialPlot(bag.ens, x.var = "GDD", pred.data = MASQ[train,], which.class = "1")
partialPlot(bag.ens, x.var = "geslacht", pred.data = MASQ[train,], which.class = "1")
```

Partial Dependence on "AD Partial Dependence on "GDI Partial Dependence on "geslace

Note that we have to specify the appropriate class label for these plots if we perform classification, otherwise we get partial dependence plots for the effect on the probability of belonging to the first ("0", non-depressed) class.

```
par(mfrow = c(1, 3))
partialPlot(rf.ens, x.var = "AD", pred.data = MASQ[train,], which.class = "1")
partialPlot(rf.ens, x.var = "GDD", pred.data = MASQ[train,], which.class = "1")
partialPlot(rf.ens, x.var = "geslacht", pred.data = MASQ[train,], which.class = "1")
```

Partial Dependence on "AD Partial Dependence on "GDI Partial Dependence on "geslar

