ACTOR-CRITIC AMETHODS

Jonathan Campbell COMP-767 April 7, 2017

OVERVIEW

- Actor-critic method introduction.
 - Advantages of these methods
 - Example actor & critic.
- Results on cart-pole experiment.

ACTOR-CRITIC METHODS

- Actor
 - Determines policy π , e.g., P(a | s).
 - E.g., softmax policy
- Critic
 - Evaluates the current policy, e.g., through V(s).
 - Then update the actor's weights using the state's TD-error.
 - E.g., SARSA

ADVANTAGES OF ACTOR-CRITIC

- Smoother updates to policy than traditional algorithms.
 - E.g., in Q-learning:
 - small change in q-values could have large change in policy
 - But here policy has its own parameters.
- Good for continuous action spaces.
 - No need to take max q-val, e.g. (use policy parameters instead.)

CRITIC: SARSA(λ)

- Input: α : learning rate, γ : discount rate; λ : lambda value
- Input: $\phi(s, a)$: function for state-action features.
- Set of weights u, size: length of state-action features.
- Eligibility trace vector e
- Upon observation of (s, a, r, s'):
 - $\delta = r + u^{T}[\max_{a'} \phi(s, a')] u^{T}\phi(s, a)$
 - (Set next action to a'.)
 - $e += \varphi(s, a)$
 - u += α * δ * e
 - $e = \gamma * \lambda * e$

ACTOR: SOFTMAX

- Input: $\phi(s, a)$: function for state-action features.
- Set of weights u, size: length of state-action features.
 - Or could have **u** be matrix with dims [num. actions, num. feats].
- Choose action a w.r.t.:

$$\pi (a|s) = \frac{e^{u^T \varphi(s,a)}}{\sum_b e^{u^T \varphi(s,b)}}$$

ACTOR UPDATE

- Input: α : learning rate, γ : discount rate; λ : lambda value
- Input: $\varphi(s, a)$: function for state-action features.
- Input: δ : td-error from critic update
- Set of weights w
- Eligibility trace vector e

- Upon observation of (s, a, r, s'):
 - $e += \varphi(s, a)$
 - u += α * δ * e
 - $e = \gamma * \lambda * e$

CART-POLE EXPERIMENT

- Goal: keep balanced a pole connected to a cart.
- Actions: apply force to move cart left/right.
- Also known as pendulum task.
- Using OpenAI gym for implementation.

METHOD

- Run grid-search over parameter space to determine best params.
 - Evaluate agent every 50 episodes.
 - Run 5 episodes to evaluate and average results.

- Best performing parameters (γ =0.995) on CartPole task:
 - · \lambda: 0
 - α_{actor} : 0.0007
 - α_{critic} : 0.003
 - (Better results if actor learns slower than critic.)

PARAMETER RESULTS

