Business Problem

In a competitive telecom market with a churn rate of 15-25%, retaining existing customers is more cost-effective than acquiring new ones.

This project aims to predict churn among high-value prepaid users in the Indian and Southeast Asian markets using customer data from 4 months.

Data Overview and Preparation

- Data contains records for June, July, August, and September (months 6 to 9).
- Churn is defined as no usage of calls or mobile data in month 9.
- High-value customers are those above the 70th percentile of average recharge in months 6 and 7.
- Only high-value customers are retained for modeling.
- All month-9 features are dropped after churn tagging.

EDA and Feature Engineering

- Summary statistics and distribution plots were used to understand customer behaviors.
- New features were created based on differences and averages over good and action months.
- Missing values were imputed appropriately.

Modeling and Evaluation

- Two models used: Logistic Regression (for interpretability) and Random Forest (for accuracy).

- Class imbalance handled using resampling/weights.
- Evaluation metrics: Accuracy, Precision, Recall, ROC-AUC.
- Random Forest performed best in accuracy, while Logistic Regression revealed important features.

Key Predictors of Churn

- Decrease in outgoing and incoming call duration.
- Drop in 2G/3G data usage in the action month.
- Reduction in recharge amount or frequency.

Recommendations

- Target at-risk users with tailored offers or data incentives.
- Monitor changes in call/data usage behavior proactively.
- Set up alerts for sudden drops in recharge frequency or amounts.

Recharge Distribution

Outgoing MOU vs Churn

Incoming MOU vs Churn

2G Data Usage vs Churn

3G Data Usage vs Churn

