

=> fram: Hv!

RELATIONEN

Relation. Gegeben sei die Menge $A = \{a, b, c\}$ und die Relation auf A

$$R = \{(a, a), (a, b), (b, a), (b, b), (c, c)\} \subseteq A \times A.$$

Ist R reflexiv, irreflexiv, symmetrisch, asymmetrisch, antisymmetrisch oder transitiv?

Lösung.

R= $\{(a,a),(a,b)\}$ (b,a) (b,b)

(c,a) $\{(b,b)\}$ gamble Diagonale $\in \mathbb{R}$, d.h. reflexiv: $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $\forall x \in A$: $(x,x) \in \mathbb{R}$. $(x,x) \in \mathbb{R}$. (x,

(b) a) $\in \mathbb{R}$ \wedge (a, a) $\in \mathbb{R}$ \wedge (b, a) $\in \mathbb{R}$ \wedge (b, b) $\in \mathbb{R}$ \wedge (b, a) $\in \mathbb{R}$ \wedge (b, a) $\in \mathbb{R}$ \wedge (b, a) $\in \mathbb{R}$ \wedge (b, b) $\in \mathbb{R}$ \wedge (b, c) $\in \mathbb{R}$ \wedge (b, c

(c,c) ER ~ (c,c) ER => (c,c) ER /

Teilbarkeitsrelation. Ist die Relation R_{\parallel} auf \mathbb{Z} definiert durch

eine Ordnung?

Val. Verlessuy:
$$\underline{n} \in \mathbb{Z}$$
! (dert sicht antisymmetrisch)

Lösung.

reflexiv: $\forall a \in \mathbb{Z}$: $(a_{j}a_{j}) \in \mathbb{R}_{j}$ \iff $\exists n \in \mathbb{N}$: $\underline{a} \cdot n = \underline{a}$ \vee $(N = 1)$

autisymmetrisch: $\forall a_{j}b_{j} \in \mathbb{Z}$: $(a_{j}b_{j}) \in \mathbb{R}_{j}$ \wedge $(b_{j}a_{j}) \in \mathbb{R}_{j}$ \Rightarrow $a = b$

$$\exists m \in \mathbb{N}: a_{j}b_{j} \in \mathbb{Z}: (a_{j}b_{j}) \in \mathbb{R}_{j} \wedge (b_{j}a_{j}) \in \mathbb{R}_{j}$$

$$\exists m \in \mathbb{N}: a_{j}b_{j} \in \mathbb{Z}: (a_{j}b_{j}) \in \mathbb{R}_{j} \wedge (b_{j}a_{j}) \in \mathbb{R}_{j}$$

$$\Rightarrow a = b \cdot \vee$$

$$\Rightarrow a =$$

Kongruenzrelation. Ist die Relation R_{\equiv} auf \mathbb{Z} definiert durch

$$R_{\equiv} = \{(a, b) \mid a \equiv b \pmod{m}\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

eine Äquivalenzrelation?

Lösung.

Lösung.

teflexiv:
$$a \equiv a \pmod{n} \pmod{n} \pmod{n}$$

symmetrisch: $a \equiv b \pmod{n} \pmod{n} \pmod{n}$

transitiv: $a \equiv b \pmod{n} \wedge b \equiv c \pmod{n}$
 $a \equiv b \pmod{n} \wedge b \equiv c \pmod{n}$
 $a \equiv b \pmod{n} \wedge b \equiv c \pmod{n}$
 $a \equiv c \pmod{n}$
 $a \equiv b \pmod{n} \wedge b \equiv c \pmod{n}$
 $a \equiv c \pmod{n}$

Mutterrelation. Ist die Relation R auf der Menge M aller Menschen definiert durch

$$R = \{(a, b) \mid a \text{ ist Mutter von } b\} \subseteq M \times M$$

reflexiv, irreflexiv, symmetrisch, asymmetrisch, antisymmetrisch oder transitiv?

Lösung.

reflexiv: × Ich bin nicht meine Mutter! (a nicht Mutter von a)

irreflexiv: \ Yedet) ist with some /ihre Muller.

Symmetrisch: X Ich bin wicht die Mutter meiner Mutter!

asymmetrisch: / Heder) ist vielet die Muster seiner/leres Muster.

antisymm: a Muter von b 1 h Muter von a => ... / (ex falso quadhibet)

O da asymmetrisch

transitiv: × a Mutter von b, b Mutter c => a Großmutter von c, wicht die Mutter!

Relation und Funktion. Gegeben seien die Relationen $R_1 = \{(x,y) | y = x^2\}$ und $R_2 = \{(x,y) | y^2 = x\}$ auf \mathbb{R} .

- 1. Zeichnen Sie die Relationen im kartesischen Koordinatensystem.
- 2. Falls möglich: geben Sie Funktionen $f_1, f_2: \mathbb{R} \to \mathbb{R}$ an, die R_1 bzw. R_2 als Graphen besitzen.
- 3. Geben Sie die zu sqrt: $\mathbb{R}_0^+ \to \mathbb{R}$, sqrt $(x) = \sqrt{x}$ gehörende Relation an.

2. $f_n: R \rightarrow R, x \mapsto f(x) = x^2$

Iz gibt es vicht, da Rz kein Graph ermor Flet!

2. $t_0: \mathbb{R} \to \mathbb{R}$ $(x, sqrt(x)) \mid x \in \mathbb{R}^+$ $= \{ (x, tx) \mid x \in \mathbb{R}^+ \} = \{ (x, tx) \mid x \in \mathbb{R}^$

