Notes on CEV

Dec. 32, 2999

1 Fokker-Planck Equation

Consider the CEV process,

$$dS_t = \sigma S_t^{\beta} dW_t, \tag{1}$$

with $\beta < 1$, the corresponding Fokker-Planck equation is given by

$$-\frac{\partial p(t_0, S_0; t, s)}{\partial t} + \frac{1}{2}\sigma^2 \frac{\partial^2}{\partial s^2} \left(s^{2\beta} p(t_0, S_0; t, s) \right) = 0, \tag{2}$$

with the initial condition

$$p(t_0, S_0; t_0, s) = \delta(s - S_0), \tag{3}$$

where $\delta(x)$ is the Dirac delta function. In the following, we will write $p(t,s) \equiv p(t_0, S_0; t, s)$. Define the Laplace transform of the forward transition density p(t,s) as

$$g(\lambda, s) = \int_0^{+\infty} e^{-\lambda t} p(t, s) dt, \tag{4}$$

the Fokker-Planck equation (2) becomes

$$\frac{\partial^2 g(\lambda, s)}{\partial s^2} + \frac{4\beta}{s} \frac{\partial g(\lambda, s)}{\partial s} + \left(\frac{2\lambda}{\sigma^2 s^{2\beta}} + \frac{2\beta(2\beta - 1)}{s^2}\right) g(\lambda, s) = 0.$$
 (5)

Following [1], if u(x) satisfies the Bessel equation of order ν ,

$$u'' + \frac{1}{x}u' + \left(1 - \frac{\nu^2}{x^2}\right)u = 0, (6)$$

and let $y(x) = x^a u(bx^c)$, then y(x) satisfies

$$y'' + \frac{1 - 2a}{x}y' + \left(b^2c^2x^{2c - 2} + \frac{a^2 - \nu^2c^2}{x^2}\right)y = 0.$$
 (7)

Comparing the coefficients with Eq. (5), we have

$$a = \frac{1}{2}(1 - 4\beta), \qquad b = \frac{2\nu\sqrt{2\lambda}}{\sigma} = \frac{\sqrt{2\lambda}}{\sigma(1 - \beta)}, \qquad c = \frac{1}{2\nu} = 1 - \beta, \qquad \nu = \frac{1}{2(1 - \beta)}.$$
 (8)

Then, the general solution to Eq. (5) is given by

$$g(\lambda, s) = s^{(1-4\beta)/2} \left[A(\lambda) J_{\nu} \left(\frac{2\nu\sqrt{2\lambda}}{\sigma} s^{\frac{1}{2\nu}} \right) + B(\lambda) Y_{\nu} \left(\frac{2\nu\sqrt{2\lambda}}{\sigma} s^{\frac{1}{2\nu}} \right) \right], \tag{9}$$

where $J_{\nu}(x)$ and $Y_{\nu}(x)$ are the Bessel functions of the first and second kind, respectively. To determine the coefficients $A(\lambda)$ and $B(\lambda)$, and subsequently the forward transition density p(t,s), boundary conditions in the s direction is needed.

- 2 Absorbing boundary condition
- 3 Reflection boundary condition
- 4 European option pricing
- 5 SABR
- 6 Free boundary CEV
- 7 Free boundary SABR

References

[1] See http://mathworld.wolfram.com/BesselDifferentialEquation.html.