Задача 4

При полном окислении на воздухе (реакции 1 и 2) твердого образца $\bf A$ массой 10,000 г образовались только твердое вещество $\bf B$ массой 14,000 г и газ $\bf B$ (плотность газа при н.у. равна 1,9643 г/л) объёмом 0,374 л (н.у.). Вещество $\bf B$ растворили в стехиометрическом количестве разбавленной серной кислоты (реакция $\bf 3$), образовавшийся раствор смешали с избытком раствора аммиака (реакция $\bf 4$), при этом выпал осадок $\bf \Gamma$ массой $\bf 18,725$ г.

Если провести аналогичные операции с 10,000 г твердого образца **Ж** такого же качественного состава что и **A**, то также образуется газ **B** объёмом 0,748 л (н.у.).

При растворении образца A в концентрированной азотной кислоте (реакции 5 и 6) образуется раствор соли C_1 , если же растворение проводить в очень разбавленной азотной кислоте (2-3% по массе), то, как ни странно, образуется раствор соли C_2 . Обе соли содержат катионы одного металла.

При расчетах значения атомных масс следует округлять до целых значений, кроме хлора $(A_r(Cl) = 35,5)$.

- 1) Установите формулы веществ **Б**, **В**, Γ , **С**₁, **С**₂. Для веществ **Б** Γ нужно привести соответствующие расчеты.
- 2) Как называются **A** и **Ж**? Приведите соответствующие расчеты. Напишите название романа Николая Островского, в котором упоминается **A**?
 - 3) Напишите уравнения реакций 1-6.
- 4) Почему при растворении **A** в очень разбавленной азотной кислоте образуется соль **C**2, а не **C**1?

Решение

1) Определим газ В, для этого рассчитаем его молярную массу:

 $M_B = 1,9643 \text{ г/л} \cdot 22,4 \text{ л/моль} \approx 44 \text{ г/моль}$. Следовательно, газ **B** – оксид углерода(IV), т.к. другие газы (N₂O, C₃H₈) с такой молярной массой не могут образоваться при сжигании.

$$n(CO_2)=0,374$$
 л : 22,4 л/моль $\approx 0,0167$ моль $= n(C)^{\mu_3$ А $m(C)^{\mu_3}$ А $= 0,0167$ моль \cdot 12 г/моль $\approx 0,2$ г

2) Вещество **A** содержит атомы какого-то металла, поэтому, скорее всего, **Б** – оксид металла, Γ – гидроксид этого металла.

I способ (метод эквивалентов)

Используя метод эквивалента (с учетом того, что реакции 3 и 4 являются не окислительновосстановительными) можно записать выражение для определения молярной массы эквивалента металла в оксиде \mathbf{F} и гидроксиде $\mathbf{\Gamma}$:

$$\frac{M_{Me}^{9KB} + 17}{M_{Me}^{9KB} + 8} = \frac{18,725}{14,000}$$

Отсюда находим, что молярная масса эквивалента металла равна 18,667 г/моль. Чтобы получить молярную массу металла, необходимо умножить полученное значение на валентность металла. Перебирая валентности от I до VIII, получаем одно подходящее значение молярной массы металла, равное 56 г/моль. Следовательно, металл — железо. Вещество \mathbf{F} — $\mathrm{Fe_2O_3}$, вещество $\mathbf{\Gamma}$ — $\mathrm{Fe}(\mathrm{OH})_3$.

II способ (составление и решение уравнения с параметром)

Если обозначить валентность металла за «х», тогда можно записать формулу оксида металла, как Me_2O_x или $MeO_{0,5x}$, формула гидроксида будет — $Me(OH)_x$. Если мы записываем формулу оксид металла, как $MeO_{0,5x}$, то можем использовать соображение, что количество вещества таких формульных единиц оксида металла равно количеству вещества гидроксида металла. Тогда отношение масс оксида металла и гидроксида металла будет равно отношению молярных масс $MeO_{0,5x}$ и $Me(OH)_x$. Можно записать:

$$\frac{M_{Me(OH)_X}}{M_{MeO_{0.5X}}} = \frac{m_{Me(OH)_X}}{m_{MeO_{0.5X}}}$$

Подставим численные данные и выразим значения молярных масс веществ через молярную массу металла и валентность металла, равную «х»:

$$\frac{M_{Me} + x \cdot 17}{M_{Me} + 0.5x \cdot 16} = \frac{18,725}{14,000}$$

Выражая молярную массу металла через валентность металла, получаем выражение с параметром:

$$M_{Me} = 18,667 \cdot x$$

Перебирая валентности от I до VIII, получаем одно подходящее значение молярной массы металла, равное 56 г/моль. Следовательно, металл – железо. Вещество \mathbf{F} – Fe₂O₃, вещество $\mathbf{\Gamma}$ – Fe(OH)₃.

3) Найдем массу железа в образце А:

```
n(Fe(OH)_3) = 18,725 \ \Gamma : 107 \ \Gamma/моль = 0,175 \ моль = n(Fe) m(Fe)^{\mu_3 \ A} = 0,175 \ моль \cdot 56 \ \Gamma/моль \approx 9,8 \ \Gamma
```

Можно сделать вывод, что в веществе \mathbf{A} содержатся только углерод и железо, причем массовая доля углерода составляет 2%. Следовательно, \mathbf{A} — сталь.

- 4) При сгорании **Ж** образуется в два раза больше диоксида углерода, следовательно, массовая доля углерода в **Ж** в два раза больше, чем в **A**, и составляет 4%. Следовательно, **Ж** чугун.
 - 5) Название романа Николая Островского «Как закалялась сталь».
- 6) При растворении стали в концентрированной азотной кислоте образуется нитрат железа(III) (соль C₁), другой солью, содержащей железо, может быть только нитрат железа(II) (соль C₂). В очень разбавленной азотной кислоте образуется нитрат железа(II), т.к. при очень низкой концентрации азотной кислоты восстановление азота идёт до конца, т.е. до аммиака. Поэтому в растворе формируется восстановительная среда, следовательно, железо не окисляется до степени окисления +3, а только до +2.

7) Уравнения реакций:

Критерии оценивания:

- 1) Определение формул веществ **Б, В, Г, С**₁, **С**₂ по 2 балла. Для веществ **Б** Γ должны быть приведены расчеты, иначе 0 баллов.
- 2) Названия \mathbf{A} **и** \mathbf{K} по 1 баллу при наличии соответствующих расчетов, иначе 0 баллов. Название романа 1 балл.
- 3) Уравнения реакций 1-6 по одному баллу, при отсутствии хотя бы одного коэффициента (неправильно выставленном коэффициенте) 0,5 балла за реакцию.
 - 4) Объяснение, почему образуется соль C_2 , а не C_1 , l балл.

A	Б	В	Γ	ж	C ₁	C ₂
сталь	Fe ₂ O ₃	CO ₂	Fe(OH) ₃	чугун	Fe(NO ₃) ₃	Fe(NO ₃) ₂