Examen 2 Session 1

Mardi 24 janvier 2017 - 2h

Documents et calculatrices interdits, hormis une feuille A4 recto-verso manuscrite.

N.B.: La rédaction sera prise en compte dans la notation. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Il est toutefois préférable de conserver l'ordre proposé (difficulté croissante)

Exercice 1

- 1. (Cours) Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et $u\in E$. Donner la définition de "la suite u_n converge vers u dans E".
- 2. Application : $E = L^1([0, +\infty[) \text{ muni de la norme } ||u||_{L^1} = \int_0^{+\infty} |u(x)| dx$. Soit la suite (u_n) définie par :

$$u_n(x) = e^{-x} \sin^n x$$
 , $\forall x \in [0, +\infty[$

Trouver la limite dans $L^1([0, +\infty[)$ de la suite u_n .

Exercice 2

- 1. (Cours)
 - (i) Soit $f \in L^1(\mathbb{R})$. Rappeler la définition de la transformée de Fourier de f, notée \hat{f} . On suppose que $\hat{f} \in L^1(\mathbb{R})$. Exprimer \hat{f} en fonction de f (en le justifiant).
 - (ii) Soit $f,g\in L^1(\mathbb{R})$. Rappeler la définition du produit de convolution f*g. A quel espace appartient f*g ?

Que peut-on dire de la transformée de Fourier de f * g?

2. Application : On cherche une fonction $f \in L^1(\mathbb{R})$ solution de l'équation intégrale :

$$\int_{\mathbb{R}} \frac{f(t)}{1 + (x - t)^2} dt = \frac{1}{4 + x^2} \tag{1}$$

- (i) Exprimer l'équation (1) sous forme d'une équation de convolution, et déterminer \hat{f} .
- (ii) En déduire une solution f.

Exercice 3

- 1. (Cours) Soit $f \in L^1(\mathbb{R})$ telle que $x \to xf(x) \in L^1(\mathbb{R})$. Donner la relation entre la transformée de Fourier de xf(x) et celle de f.

 On suppose de plus que $x \to x^2f(x) \in L^1(\mathbb{R})$. Donner la relation entre la transformée de Fourier de $x^2f(x)$ et celle de f.
- 2. Application : Soit la fonction f définie par :

$$f(x) = \begin{cases} 1 - x^2 & si \quad x \le 1\\ 0 & sinon \end{cases}$$

Montrer que la transformée de Fourier de f vaut :

$$\hat{f}(\nu) = -\frac{\cos(2\pi\nu)}{\pi^2\nu^2} + \frac{\sin(2\pi\nu)}{2\pi^2\nu^3}$$

3. En déduire l'intégrale

$$\int_{\mathbb{R}} \left(\frac{u \cos u - \sin u}{u^3} \right) \cos(ux) du$$

Exercice 4

On pose pour $x \in \mathbb{R}$: $f(x) = \int_0^{+\infty} e^{-t^2} \cos(tx) dt$

- 1. Montrer que f est définie, continue sur \mathbb{R} .
- 2. Montrer que f dérivable et calculer sa dérivée f'.
- 3. Montrer que f est solution d'une équation différentielle du premier ordre. En déduire f.

Exercice 5

Soit $E=C^0([0,1])$ l'espace des fonctions $f:[0,1]\to\mathbb{R}$ continues sur [0,1], muni de la norme

$$||f||_{\infty} = \sup_{[0,1]} |f(x)|$$

Soit $p \in E$ fixée. On définit l'application P qui à tout $f \in E$ associe l'application P(f) définie par

$$P(f)(x) = \int_0^x f(t)p(t)dt$$

- 1. Montrer que P est une application linéaire continue de E dans E.
- 2. On rappelle que pour l'application linéaire continue P, sa norme est définie par

$$|||P||| = \sup_{f \in E, f \neq 0} \frac{||P(f)||_{\infty}}{||f||_{\infty}}$$

- (i) Montrer que $|||P||| \le \int_0^1 |p(t)| dt$.
- (ii) On suppose dans cette question que p est positive sur [0,1]. Montrer par un choix simple de f que $||P|| = \int_0^1 |p(t)| dt$.
- (iii) Pour p de signe quelconque, on pose $f_n(t) = \frac{np(t)}{\sqrt{1+n^2p(t)^2}}$. Montrer que $f_n \in E$. Calculer $P(f_n)$ et en déduire que $|||P||| = \int_0^1 |p(t)| dt$.

Exercice 6

Soit l'espace de Banach $E = (\mathcal{C}^1([0,1]), N)$ où $N(f) = ||f||_{\infty} + ||f'||_{\infty}$. On considère l'opérateur T défini sur E par

$$Tf(x) = 1 + \int_0^x f(t - t^2) dt.$$

- 1. Justifier que T est un opérateur de E dans E.
- 2. Calculer $(T \circ T)f$ et $((T \circ T)f)'$.
- 3. Montrer que $T \circ T$ est contractant dans E. On pourra étudier les variations de $t \to t t^2$ sur [0,1].
- 4. En déduire que $T \circ T$, puis que T, admettent un unique point fixe dans E.
- 5. Montrer qu'il existe une unique fonction f de classe C^1 sur [0,1] telle que $f'(x) = f(x-x^2)$ et f(0) = 1.