MATH 307 Final Exam

December 14, 2021

- No calculators, cellphones, laptops or notes
- Time allowed: 2 hours 30 minutes
- 75 total marks
- Write your name and student number in the space below
- Notation:
 - A^T is the transpose of the matrix A
 - R(A) is the range of the matrix A (also called the column space)
 - N(A) is the *nullspace* of the matrix A
 - \bullet U^{\perp} is the orthogonal complement of the subspace $U\subseteq\mathbb{R}^n$
 - $\omega_N = e^{2\pi i/N}$

Name:	Solutions
	30,000,00.13

Student Number:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total
10	12	10	7	8	10	5	6	7	75

- 1. Determine whether the statement is True or False. No justification required.
 - (a) (2 marks) The matrix

$$\begin{bmatrix}
5 & -1 & -1 & 2 & 1 \\
1 & 3 & 3 & -1 & 2 \\
-4 & 5 & 4 & 0 & 0 \\
3 & 2 & 6 & 8 & -7
\end{bmatrix}$$

is the coefficient matrix of a natural cubic spline for 6 data points $(t_0, y_0), \ldots, (t_5, y_5)$ such that $t_k - t_{k-1} = 1$ for each $k = 1, \ldots, 5$.

(b) (2 marks) If A is a complex hermitian matrix then the diagonal entries of A are real numbers.

(c) (2 marks) Let X be a (normalized) data matrix, let \boldsymbol{x} be a row of X, let \boldsymbol{w}_1 be the first weight vector of X and let \boldsymbol{w}_2 be the second weight vector of X. If $\langle \boldsymbol{x}, \boldsymbol{w}_1 \rangle \neq 0$ then $|\langle \boldsymbol{x}, \boldsymbol{w}_2 \rangle| < ||\boldsymbol{x}||$.

True
$$X = \langle x, w_1 \rangle w_1 + \dots + \langle x, w_p \rangle w_p$$

$$= \sum |\langle x, w_2 \rangle|^2 \leq ||x||^2 - |\langle x, w_1 \rangle|^2 \leq ||x||^2$$

(d) (2 marks) If DFT(x) = DFT(y) then x = y.

(e) (2 marks) Let U_1 and U_2 be subspaces of \mathbb{R}^n . Let P_1 be the projection onto U_1 and let P_2 be the projection onto U_2 . If $P_1P_2=0$ then U_1 and U_2 are orthogonal subspaces.

True
$$P_1P_2 \Rightarrow R(P_2) \subset N(P_1)$$

 $\Rightarrow U_1 \subset U_1^{\perp}$
 $\Rightarrow U_1 \perp U_2$

- 2. Short answer questions. Each part is independent of the others. Justify your answers.
 - (a) (3 marks) Determine all values c such that the matrix

$$A = \left[\begin{array}{cc} 3 & c \\ -1 & 5 \end{array} \right]$$

is orthogonally diagonalizable. In other words, find all possible values c such that there exists a diagonal matrix D and orthogonal matrix P such that $A = PDP^T$.

A is symmetric truefore
$$c = -1$$

(b) (3 marks) Let A be a 3×3 matrix (not a diagonal matrix) such that the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 1/2$ and $\lambda_3 = -6$. Let $\boldsymbol{x}_0 \in \mathbb{R}^3$ be a random nonzero vector and let $\boldsymbol{x}_k = A^{-k}\boldsymbol{x}_0$. Determine the (most likely) value c such that

$$\frac{\langle x_k, x_{k+1} \rangle}{\langle x_k, x_k \rangle} \to c \text{ as } k \to \infty$$

This is the power method applied to A^{-1} .

The dominant eigenvalue of A^{-1} is 2 since eigenvalues of A^{-1} are 1, 2, -1/6. C = 2

(c) (3 marks) Determine all values k such that Ax = b has a unique solution where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & k \end{bmatrix} \qquad b = \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & k \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 3 & k-1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & k-7 & 0 \end{bmatrix}$$

$$\Rightarrow \text{ Unique solution for } k \neq 7$$

(d) Compute DFT(x) where $x = 5\cos(4\pi t + \pi/2) \in \mathbb{C}^8$. Recall, the vector t is $t = \begin{bmatrix} 0 & 1/8 & 1/4 & 3/8 & 1/2 & 5/8 & 3/4 & 7/8 \end{bmatrix}^T$

$$\begin{array}{l}
X = 5\cos\left(4\pi \frac{1}{2} + \pi/2\right) \implies A = 5 \quad k = 2 \quad d = \pi/2 \\
DFT(X) = AN e^{i\phi} e_{k} + AN e^{i\phi} e_{N-k} \\
= 20 e^{i\pi/2} e_{2} + 20 e^{i\pi/2} e_{6} \\
= 20 i e_{2} \implies 20 i e_{6} \\
= \begin{cases}
0 \\
20i \\
0 \\
0
\end{cases}$$

3. Consider the matrix

$$A = \left[\begin{array}{rrrrr} -1 & -2 & -2 & -1 \\ 4 & 10 & 11 & 2 \\ -3 & -2 & 0 & -7 \end{array} \right]$$

- (a) (5 marks) Compute the LU decomposition of A.
- (b) (2 marks) Determine the dimension of $N(A^T)$.
- (c) (3 marks) Find a basis of N(A).

(a)
$$\begin{bmatrix} -1 & -2 & -2 & -1 \\ 4 & 10 & 11 & 2 \\ -3 & -2 & 0 & -7 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & -2 & -2 & -1 \\ 0 & 2 & 3 & -2 \\ 0 & 4 & 6 & -4 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 - 2 & -2 & -1 \\ 0 & 2 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 & -2 & -1 \\ 0 & 2 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(b)
$$N(A^T) = R(A)^{\perp}$$

(b)
$$N(A^T) = R(A)^{\perp}$$
 Since $rank(A) = 2$ we have

$$dim(R(A)^{\perp}) = 3 - 2 = 1$$

$$\Rightarrow dim(N(A^{\top})) = 1$$

(c)
$$x_{y} = t$$

 $x_{3} = S$
 $x_{1} = (2t - 3s)/2 = t - \frac{3}{2}s$
 $x_{1} = -(t + 2s + 2(t - \frac{3}{2}s))$
 $= -t - 2s - 2t + 3s$
 $= -3t + s$

$$\Rightarrow x = \begin{bmatrix} -3t + 5 \\ t - \frac{3}{2} 5 \\ 5 \\ t \end{bmatrix}$$

$$= -(t+2s+2(t-\frac{3}{2}s))$$

$$= -t-2s-2t+3s$$

$$= -3t+s$$

$$N(A) = spon \left\{ \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3/2 \\ 1 \\ 0 \end{bmatrix} \right\}$$

4. (7 marks) Find the shortest distance from x to $U = \text{span}\{u_1, u_2\} \subseteq \mathbb{R}^4$ where

$$oldsymbol{u}_1 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} \qquad \qquad oldsymbol{u}_2 = egin{bmatrix} 1 \ 1 \ 2 \ 0 \end{bmatrix} \qquad \qquad oldsymbol{x} = egin{bmatrix} 0 \ 1 \ 0 \ 1 \end{bmatrix}$$

The shortest distance is || x-proju(x) ||.

Note dim (U) = dim (U+) = 2. Find an orthonormal basis

ob u by Gram-Schmidt:

$$\Sigma_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Sigma_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \frac{\langle [1], [1] \rangle}{\langle [1], [1] \rangle} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Compute the projection:

$$Produ(x) = \left\langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\rangle \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \left\langle \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\rangle \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \frac{2}{4} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$\Rightarrow || \times - \operatorname{produ}(X)|| = || \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} || = || \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} ||$$

$$= \frac{1}{2} \sqrt{2} = \overline{1}$$

5. Consider the matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

- (a) (5 marks) Compute the thin QR decomposition $A = Q_1 R_1$.
- (b) (3 marks) Use the thin QR decomposition to find the least squares approximation $Ax \cong b$ for the vector

$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix}$$

(a) Find an orthogonal basis of R(A). Note that

columns I and 2 are orthogonal, and columns 2 and 3 also.

$$\underline{Y}_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad \underline{Y}_{2} = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \quad \underline{Y}_{2} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\Rightarrow Q_{1} = \frac{1}{3} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad R_{1} = \begin{bmatrix} 3 & 0 & 13 \\ 0 & 13 & 0 \\ 0 & 0 & 13 \end{bmatrix}$$

(b)
$$A \times \approx b \Rightarrow R_1 \times = Q_1^{7}b \Rightarrow Q_1^{7}b = \frac{1}{6}\begin{bmatrix} 2\\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & 0 & 13 & 2/13 \\ 0 & 13 & 0 & 1/13 \\ 0 & 0 & 13 & 3/13 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 0 & 3 & 2 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 3 & 3 \end{bmatrix}$$

6. Consider the matrix

$$A = \frac{1}{2} \left[\begin{array}{rrrr} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & -3 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & -3 & -1 \end{array} \right]$$

- (a) (5 marks) Compute the condition number of A. (Hint: consider A^TA not AA^T .)
- (b) (5 marks) Find a *unit* vector \boldsymbol{x} such that $||A\boldsymbol{x}|| = ||A||$.

=> Characteristic polynomial
$$(A(x)=(x-1)(x-4)(x^2-16x+16))$$

=> Eigenvalues ob A^TA are 1, 4, 2, 8 $(x-8)(x-2)$

is
$$\mathbf{g}_1$$
 therefore solve $(\overline{A}A - 8I)Y = 0$

$$= \sqrt{\frac{1}{2}} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 & 0 \\ 0 & 0 & -3 & 3 & 0 \\ 0 & 0 & 3 & -3 & 0 \end{bmatrix}$$

$$\Rightarrow \mathbf{g}_1 = \sqrt{\frac{1}{2}} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 3 & 0 \\ 0 & 0 & 3 & -3 & 0 \end{bmatrix}$$

$$3 = \frac{1}{12}$$

7. (5 marks) Use at least 3 iterations of the power method to approximate the dominant eigenvalue and corresponding eigenvector of the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$Let \times_{0} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad X_{2} = \begin{bmatrix} 5 \\ 7 \\ 5 \end{bmatrix} \quad X_{3} = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \\ 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 12 \\ 12 \end{bmatrix}$$

$$A =$$

8. (6 marks) Let $u_1, u_2 \in \mathbb{R}^3$ such that $||u_1|| = a > 0$, $||u_2|| = b > 0$, and $\langle u_1, u_2 \rangle = 0$. Determine the eigenvalues and eigenvectors of the matrix

$$A = \boldsymbol{u}_1 \boldsymbol{u}_1^T + \boldsymbol{u}_2 \boldsymbol{u}_2^T$$

Let \underline{U}_3 be any vector that is orthogonal to \underline{U}_1 and \underline{U}_2 .

Then the eigenvalues of A are $a^2, b^2, 0$ with corresponding eigenvectors $\underline{U}_1, \underline{U}_2, \underline{U}_3$. Since $A\underline{U}_1 = (\underline{U}_1, \underline{U}_1^T + \underline{U}_2, \underline{U}_1^T)\underline{U}_1 = \underline{U}_1\underline{U}_1^T\underline{U}_1 + \underline{U}_2, \underline{U}_1^T\underline{U}_1$ $= ||\underline{U}_1||^2\underline{U}_1 + (\underline{U}_2, \underline{U}_1^T)\underline{U}_2 = a^2\underline{U}_1$ $A\underline{U}_2 = \underline{A}^2\underline{U}_2$ $A\underline{U}_3 = \underline{U}_1\underline{U}_1^T\underline{U}_3 + \underline{U}_2\underline{U}_2^T\underline{U}_3 = 0$ = 0

9. (7 marks) Let $y \in \mathbb{C}^8$ such that

$$m{y} = egin{bmatrix} 1 & 0 \ 2 - 2i \ 1 + i\sqrt{3} \ 0 \ 1 - i\sqrt{3} \ 2 + 2i \ 0 \ \end{bmatrix}$$

Find values A_0 , A_1 , A_2 , k_1 , k_2 , ϕ_1 , ϕ_2 such that y = DFT(x) where x is of the form

$$x = A_0 + A_1 \cos(2\pi k_1 t + \phi_1) + A_2 \cos(2\pi k_2 t + \phi_2)$$
, $k_1 < k_2$

Recall $t \in \mathbb{C}^N$ is the vector

$$t = \begin{bmatrix} 0 \\ 1/N \\ 2/N \\ \vdots \\ (N-1)/N \end{bmatrix}$$

If
$$Y = A \cos(2\pi k \pm 4d)$$
 has $DFT(Y) = AN e^{id} e_{K} + AN e^{-id} e_{N-K}$

$$\Rightarrow k_1 = 2 \qquad \frac{A_1(8)}{2} e^{id_1} = 2 - 2i = 2 \cdot 2 \cdot e^{-i\pi/4}$$

$$k_2 = 3 \qquad \frac{A_2(8)}{2} e^{id_2} = 1 + i \cdot 3 = 2 \cdot e^{i\pi/3}$$

$$| k_1 = 2 \quad A_1 = \frac{1}{12} \quad \phi_1 = -\frac{\pi}{4}$$

$$| k_2 = 3 \quad A_2 = \frac{1}{2} \quad \phi_2 = \frac{\pi}{3}$$

$$| A_0 = \frac{1}{8}$$