AT#03: Noções da Física Moderna

Bartolomeu Joaquim Ubisse

Instituto Superior de Ciências de Saúde (ISCISA)

(Aulas preparadas para estudantes de Radiologia)

9 de Fevereiro de 2022

Conteúdos

- Modelos atômicos Estrutura do átomo
 - Modelo de Dalton
 - Modelo de Thomson
 - Modelo de Rutherford
 - Modelo atómico de Bohr

A matéria que compõe a natureza é composta por átomos e, a sua diversificação resulta do tipo de átomos que a compõe e os seus rearranjos.

Átomos são partículas infinitamente pequenas que constituem toda a matéria do universo.

Figura 1: Alguns rearranjos atómicos [Fonte: <url> . Acesso em 31/10/2021]

O que são modelos em Ciência?

Figura 2: Desenhos de uma árvore

Cada desenho dá uma ideia de árvore baseando-se nas observações de quêm fez o desenho. Deste modo, pode-se notar que o último desenho parece dar mais detalhes da árvore, porém, nunca passa de desenho para árvore concreta que se possa pegar e obter frutos.

Assim, modelo é algo que permite ter uma ideia do algo, explicar a sua natureza, estrutura e fazer previsões. Um modelo pode sofrer modificações consoante as novas observações que o anterior pode não conteplar.

Modelos atômicos - Estrutura do átomo Modelo de Dalton (1766-1844)

O Homem também na sequência das suas observações experimentais, foi desenhando vários modelos do átomo convista a explicar o que ia observando e em seguida fazer previões. Para a nossa consideração, importa os modelos de **Dalton**, **Thomson**, **Rutherford** e **Bohr**.

Figura 3: Modelo atômico de Dalton

- Todas as substâncias são formadas de pequenas partículas chamadas átomos;
- Todos os átomos de um determinado elemento são idênticos entre si e de ≠ elementos são ≠s entre si. A ≠ está nas suas massas relativas;
- Os átomos não se alteram quando formam compostos químicos;
- Os átomos são permanentes e indivisíveis e não podem ser criados ou destruídos. A reacção química só altera o rearranjo dos átomos.

Modelos atômicos - Estrutura do átomo Modelo de Dalton (1766-1844)

Contribuições importantes:

- Explicou como eram os átomos e como é que se combinavam
- Propôs a regra de máxima simplicidade a natureza favorecia a formação de átomos compostos - binários.- Postulou a lei das proporções multiplas que ditava a ordem natural da formação de átomos compostos.

2 Limitações:

- A regra de máxima simplicidade admitia a relação de 1:1 e, por essa razão a água devia ser HO e a amónia seria NH o que não é correcto hoje.
- Dalton não contepla a natureza eléctrica da matéria

Modelo de Thomson (1856 - 1940)

Figura 4: Tubos de raios catódicos

Figura 5: Modelo atômico de Thomson

Raios catódicos são desviados pelo campo eléctrico assim como pelo campo magnético.

Como os raios catódicos carregam uma carga negativa e são deflectido pela placa positiva na grelha, então eles são cargas electricas negativas carregadas pelas partículas da matéria \leadsto Descobre-se electrões

Modelo de Thomson (1856 - 1940)

Determinação de q/m

Dado que se está perante dois campos (eléctrico e magnético), os dois são ajustados de modo que o raio catódico não seja deflectida e, nesta situação $Fm=Fe.\ A$ relação carga-massa é:

$$\frac{q}{m} = \frac{1}{2} \frac{E^2}{VB^2} \tag{1}$$

Onde, V é a diferença de ppotencial em Volts, E é a intensidade do campo eléctrico em N/C e B é a intensidade da indução magnética em Wb/m^2

Conhecendo-se as magnitudes de todos parámetros do segundo membro da Eq.1, Thomson obteve o valor da relação q/m como sendo:

$$\frac{q}{m} = 1.76 \times 10^8 C/g$$

Com este resultado e conhecendo-se o valor da carga elementar

Modelo de Thomson (1856 - 1940)

Ontribuições importantes:

- Thomson descobre a existência de electrão.
- O átomo é constituido de electrões que giram em císculos imersos em uma bolha esférica de uma substância carregada positivamente. O átomo é electronéutro

2 Limitações:

- O modelo de Thomson n\u00e3o consegue explicar a estabilidade do \u00e1tomo;
- Não faz mensão à existência no núcleo, pelo que, não consegue explicar o fenómeno de espalhamento que algumas partículas carregadas sofrem ao colidirem com átomos.

Modelo de Rutherford (1871 - 1937)

Figura 6: Experimento de Rutherford (Geiger & Marsden)

Figura 7: Modelo atômico de Rutherford

Modelo de Rutherford (1871 - 1937)

Contribuições e limitações do Modelo de Rutherford

- Contribuições importantes:
 - O átomo consiste em um núcleo muito pequeno, positivamente carregado e rodeado por uma nuvem de electrões;
 - A massa do átomo é concentrada no núcleo
- 2 Limitações:
 - Os electrões giram em orbitas circulares entorno do núcleo e, estes circulam a uma grande velocidade → Isso faria com que irradiasse uma certa energia e, por conseguinte, electrão pudesse cair no núcleo.
 - O núcleo do modelo de Rutherford era somente constituido por partículas positivas.

Em 1912, James Chadwick, aluno de Rutherford, descobre os neutrões e validou a hipótese de Rutherford na qual a maior massa está no núcleo. De acordo com James, os neutrões possuem uma massa relativamente maior que os protões.

Modelo de Bohr

Bohr resolveu a questão da instabilidade do modelo atômico de Rutherford impondo as seguintes regras de quantização:

 Os electrões deslocam-se em orbitas cisculares nos quais o momento angular L é múltiplo inteiro da constante \hbar

$$L = mvr_n = n\hbar \qquad \mathsf{n} = 1,2,3,\dots \tag{2}$$

Figura 8: Modelo atômico de Bohr

$$r_n = \frac{n^2 \hbar^2}{mkZe^2} \tag{3}$$

$$r_1 = \frac{\hbar^2}{mke^2} = 0.529 \times 10^{-10} m = 0.529 \mathring{A}$$

 $r_1 \rightsquigarrow \mathsf{Raio} \; \mathsf{de} \; \mathsf{Bohr}$

Modelo de Bohr

 Os electrões, ao se deslocarem nas suas órbitas, chamadas estacionárias, embora estejam animados de um movimento acelerado e periódico, não irradiam energia (radiação electromagnética);

$$E = E_c + E_p = \frac{1}{2}m_e v^2 - k\frac{Ze^2}{r_n}$$

$$E_n = -\frac{m_e k^2 e^4}{2\hbar^2} \left(\frac{Z^2}{n^2}\right)$$
(4)

Para o átomo de Hidrogéncio, n=Z=1 :

$$E_1 = -13.58 \text{ eV}$$
 (5)

Esta é a energia do estado mais baixo do átomo de Hidrogénio (Energia do estado fundamental).

Assim, para qualquer outro nível:

Modelo de Bohr

$$E_n = E_1\left(\frac{1}{n^2}\right) \tag{6}$$

• Quando o electrão passa de uma órbita para a outra, irradia-se ou absorve-se uma quantidade de energia $\hbar\omega$ igual à diferença das energias das duas órbitas e/ou níveis.

$$\hbar\omega = E_f - E_i \Rightarrow \omega = \frac{E_1}{\hbar} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{7}$$

onde ω é a frequência angular ($\omega=2\pi f$) do fotão absorvido ou emitido, dependendo da ordem dos níveis de transição.

Modelo de Bohr

Os postulados de Bohr para o átomo de Hidrogénio estão em consonância com os resultados experimentais do espectro óptico do mesmo átomo descritos pela fórmula de **Rydberg**.

Considerando o número de onda $(\bar{\nu} = \frac{c}{v} = \frac{1}{\lambda})$, pode-se escrever:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{8}$$

onde, $R_H=\frac{mk^2e^4}{4\pi c\hbar^3}$ é a constante de Rydberg ($R_H=1.09681\times 10^7~{\rm m}^{-1}$) e c é a velocidade da luz no vácuo.

Modelo de Bohr

Séries de espectro do átomo de Hidrogénio

Figura 9: Séries de espectro do átomo de Hidrogénio []

Tabela 1: Séries de emissão do átomo de Hidrogénio [Podgoršak,2009]

Série	Faixa	Órbita	limite da
		final	série (\AA)
Lyman	UV	1	911
Balmer	Visivel	2	3646
Paschen	IR	3	8210
Brackett	IR	4	14584
Pfund	IR	5	22957

Modelo de Bohr

Contribuição e limitações do modelo de Bohr

- Contribuições:
 - Explica a estabilidade dos átomos assumindo a ideia de quantização;
 - Explica adequadamente o espectro de linhas do átomo de hidrogênio
- 2 Limitações:
 - Não explica o porquê de não emissão de radiação pelos electrões ao se deslocarem nas suas orbitas (orbitas estacionárias);
 - Não explica porque é que o electrão permanece em um nível energético correpondente ao estado excitado por um período de tempo antes de regressar ao seu estado fundamental. Qual é o mecanismo físico que o faz esperar no estado excitado?
 - O modelo de Bohr estabelece o número máximo de electrões em cada nível a 2n². Porém, este limite só funciona para alguns átomos como, por exemplo, ⁴₂He e ₃Li e não para átomos mais complexos.

Estas limitações e mais, levaram ao surgimento da mecânica $_{17/}$ quântica!