Fototrofní organismy

Skupina biologů zkoumá možnosti pěstování fototrofních organismů v nehostinném prostředí. Pro experiment zvolili dlouhou chodbu v jeskyni, kterou pro své účely pomyslně rozdělili do N úseků číslovaných z levého konce chodby k pravému postupně od 1 do N. Organismy na stěnách jeskyně zamýšlejí osvětlovat pomocí dvou robotů, z nichž každý je vybaven svítilnou s dlouhým dosvitem. Kromě úseku, ve kterém se první robot právě nachází, osvítí ještě D_1 nejbližších úseků v každém směru. Znamená to tedy, že první robot osvítí $1+2\times D_1$ úseků, pokud je dostatečně vzdálen od obou konců chodby. Analogicky osvítí druhý robot D_2 nejbližších úseků v každém směru, přičemž typicky platí $D_1 \neq D_2$.

Roboty se po chodbě pohybují. První začíná v úseku číslo 1 a přesouvá se až k úseku číslo N, druhý se naopak přesouvá z úseku číslo N až k úseku číslo 1. Platí, že první robot při svém pohybu čeká v k-tém úseku čas T_k , zatímco druhý robot čas S_k . Zároveň platí $T_1 + ... + T_N = S_1 + ... + S_N$. Znamená to, že oba roboty ukončí průchod chodbou ve stejném okamžiku. Poté se mohou opět podobným způsobem vracet a díky tomu pravidelně osvětlovat jednotlivé úseky jeskyně. Čas na přesun z jednoho úseku do druhého je zanadbatelný vůči době čekání v úsecích, proto jej považujeme za nulový.

Biologové se zajímají, jaká bude kvalita osvětlení v jednotlivých úsecích při jednom průchodu robotů chodbou, tedy v čase $T_1 + ... + T_N$. Kvalitu osvětlení úseku vyjadřují celým číslem, které je odvozené od toho, po jakou dobu je daný úsek osvětlován pouze jedním robotem (prvním nebo druhým, označme tuto dobu jako O_1) a po jakou dobu oběma roboty současně (doba O_2). Kvalita osvětlení je stanovena výrazem $2 \times O_1 + 3 \times O_2$.

Úloha

Jsou dány dosvity robotů a jejich časy strávené v jednotlivých úsecích chodby. Pro jeden průchod robotů určete, jaká je minimální a maximální hodnota kvality osvícení úseků.

Obrázek 1. Schémata zachycují průběh průchodu robotů chodbou postupně v časech 0, 2, 5 a 14. Platí N = 6, D_1 = 1, D_2 = 2. Úseky jsou reprezenotvané čtverečky, první robot světle modrým kolečkem, druhý robot červeno-fialovým kolečkem. Úsek osvětlený jedním robotem je zvýrazněn žlutě, úsek osvětlený oběma roboty oranžově. Časy T_k jsou uvedené nad úseky, časy S_k pod úseky. Tmavě modrá čísla uvnitř úseků odpovídají doposud dosažené kvalitě osvětlení. Roboty dokončí pohyb v čase 14.

Vstup

První řádek vstupu obsahuje tři celá čísla N, D_1 a D_2 , oddělená mezerou, kde N je počet úseků chodby, D_1 je dosvit prvního robotu a D_2 je dosvit druhého robotu.

Platí $1 \le N \le 8 \times 10^6$, $0 \le D_1$, $D_2 \le N$. Kvalita osvětlení každého z úseků nepřesáhne během průchodu robotů hodnotu 10^8 .

Výstup

Výstup obsahuje jeden textový řádek s celými čísly K_{\min} a K_{\max} oddělenými mezerou, kde K_{\min} je minimální kvalita osvětlení v úsecích po dokončení jednoho průchodu robotů a K_{\max} je maximální kvalita osvícení.

Příklad 1

Vstup

10/5/22, 9:28 AM

4 1 1 1 2 3 4

2 3 4 1

Výstup

16 27

Příklad 2

Vstup

6 1 2

2 3 1 1 1 6

2 2 3 1 4 2

Výstup

24 32

Data a řešení Příkladu 2 můžeme vidět na **Obrázku 1**.

Veřejná data

Veřejná data k úloze jsou k dispozici. Veřejná data jsou uložena také v odevzdávacím systému a při každém odevzdání/spuštění úlohy dostává řešitel kompletní výstup na stdout a stderr ze svého programu pro každý soubor veřejných dat.

Veřejná data