ELECENG 2CJ4 Lab 4

Raeed Hassan hassam41

L01 McMaster University October 26, 2020

- a) The measured values for V_{sat+} and V_{sat-} are $V_{sat+} = 7.1378$ and $V_{sat-} = -7.13792$. The calculated values for V_{th+} and V_{th-} are $V_{th+} = \frac{R_2}{R_1 + R_2} V_{sat+} = 7.1378 \left(\frac{10k}{35k}\right) = 2.039V$ and $V_{th-} = \frac{R_2}{R_1 + R_2} V_{sat-} = -7.13792 \left(\frac{10k}{35k}\right) = -2.039V$.
- b) The waveforms for $v_c(t)$ and $v_{out}(t)$ for C=10nF, $R_3=100k\Omega$ can be seen in Figure 1. The period was measured to be approximately $500\mu s$ (2 kHz). The theoretical period was calculated to be $T=RC\left(\ln\frac{V_{sat+}-V_{th-}}{V_{sat+}-V_{th+}}+\ln\frac{V_{sat-}-V_{th+}}{V_{sat-}-V_{th-}}\right)=0.001175\approx 1175\mu s$ (851 Hz). The calculated theoretical value was over double the measured period.

Figure 1: $v_c(t)$ (green) and $v_{out}(t)$ (cyan) for $C = 10nF, R_3 = 100k\Omega$

c) The waveforms for $v_c(t)$ and $v_{out}(t)$ for C = 10nF, $R_3 = 10k\Omega$ can be seen in Figure 2. The period was measured to be approximately $94\mu s$ (10.7 kHz).

Figure 2: $v_c(t)$ (green) and $v_{out}(t)$ (cyan) for $C = 10nF, R_3 = 10k\Omega$

The waveforms for $v_c(t)$ and $v_{out}(t)$ for C = 100nF, $R_3 = 100k\Omega$ can be seen in Figure 3. The period was measured to be approximately 5ms (200 Hz).

Figure 3: $v_c(t)$ (green) and $v_{out}(t)$ (cyan) for $C=100nF, R_3=100k\Omega$

The waveforms for $v_c(t)$ and $v_{out}(t)$ for C = 100nF, $R_3 = 10k\Omega$ can be seen in Figure 4. The period was measured to be approximately $915\mu s$ (1.09 kHz).

Figure 4: $v_c(t)$ (green) and $v_{out}(t)$ (cyan) for $C = 100nF, R_3 = 10k\Omega$

d) The waveforms for $v_c(t)$ and $v_{out}(t)$ can be seen in Figure 5. The period was measured to be approximately 310 μ s (3.22 KHz).

Figure 5: $v_c(t)$ (green) and $v_{out}(t)$ (cyan)