Supplementary Materials for Submission 11223: TAG

	De	blur	Super-r	resolution	CIF	AR10	Imag	eNet	Audio o	leclipping	Audio i	npainting
Method	FID↓	LPIPS↓	FID↓	LPIPS↓	FID↓	Acc.↑	FID↓	Acc.↑	FAD↓	$DTW \downarrow$	FAD↓	$DTW \downarrow$
TFG TFG + TAG (ours)	64.2 62.7	0.154 0.151	65.5 64.7	0.187 0.175	114.1 102.7	55.8 61.5	231.0 219.4	14.3 17.8	1.42 0.74	256 120	0.52 0.42	74 51
TCS [1001]	96.5	0.350	188.7	0.518	160.5	63.7	297.9	15.1	20.03	549	6.25	446
Timestep Guidance [201]	469.8	0.951	483.8	0.973	371.5	11.3	536.5	25.0	33.67	112	21.96	900
Self-Guidance [919]	297.7	0.612	426.9	0.711	188.6	42.9	280.5	14.5	35.05	116	19.39	892
	Polariz	ability α	Dip	$\mathbf{pole}\mu$	Heat ca	pacity C _v	$\epsilon_{ m HC}$	МО	$\epsilon_{\mathbf{L}}$	UMO	Ga	ı p ε Δ
Method	$\overline{\mathrm{MAE}\downarrow}$	Stab.↑	$\overline{\mathrm{MAE}\!\downarrow}$	Stab.↑	$MAE \downarrow$	Stab.↑	$\overline{\mathrm{MAE}\!\downarrow}$	Stab.↑	$\overline{\mathrm{MAE}\!\downarrow}$	Stab.↑	$MAE \downarrow$	Stab.↑
TFG TFG + TAG (ours)	8.91 4.46	19.2 43.6	2.41 1.28	$26.3 \\ 94.3$	2.65 2.67	$96.2 \\ 96.7$	0.55 0.43	14.6 93.9	1.33 0.89	$10.8 \\ 92.5$	1.40 0.78	16.1 82.8
TCS [1001]	5.40	99.2	1.43	99.2	3.35	99.1	N/A	N/A	1.22	99.2	1.31	99.2
Timestep Guidance [201]	10.98	84.4	N/A	N/A	4.09	85.5	0.70	83.5	1.36	73.0	1.30	83.5
Self-Guidance [919]	7.66	80.2	32.54	80.3	3.80	80.3	N/A	N/A	1.32	80.3	1.27	80.4

Table R1: Comparison of TFG-based methods. The best result for each metric is highlighted in **bold**.

Method	FID ↓	Acc. ↑
DPS	217.1	57.5
TAG (ours) TCS [12] Timestep Guidance [12] Self-Guidance [134]	190.4 213.4 393.2 205.4	63.2 29.4 9.4 51.6
Epsilon Scaling [134] Time Shift Sampler [312]	226.5 247.7	56.8 56.4
Langevin Dynamics [712]	_	_

Table R2: Additional baselines when applying DPS on CIFAR-10.

Method	FID ↓	Acc. ↑
$\eta = 0$	_	-
$\eta = 0.05$	-	-
$\eta = 0.10$	-	-
$\eta = 0.15$	-	-

Table R3: Effect of Input perturbation on DPS, CIFAR-10.

Method	FID ↓	Acc. ↑
DPS DPS + TAG (ours)	176.6 161.3	56.9 60.6
$\frac{\text{TFG}}{\text{TFG} + \text{TAG (ours)}}$	77.5 74.0	54.3 55.6

Table R4: Evaluation with 50,000 samples on CIFAR-10. 100 inference steps.

Method	\mid FID \downarrow	Acc. ↑				
Original Update Order						
$\frac{\text{DPS} + \text{TAG}}{\text{TFG} + \text{TAG}}$	$190.4 \\ 102.7$	63.2 61.5				
Changed Update Order						
$\frac{\mathrm{DPS} + \mathrm{TAG}}{\mathrm{TFG} + \mathrm{TAG}}$	203.5	60.1 54.1				

Table R5: Effect of original vs. changed update order for Algorithm 1 (TAG) on CIFAR-10.

	Training Steps						
	5K	10K	15K	20K	25K	30K	Unet 30K
FID ↓	115.2	116.0	116.3	116.3	117.9	102.7	117.4 54.8
Acc. ↑	54.9	55.3	54.6	54.7	53.6	61.5	54.8

Table R6: Quantitative evaluation of TFG+TAG for varying training steps on CIFAR10.

Layers	W1 distance \downarrow
0 (No TAG)	6.458
1	1.716
2	1.681
3	1.975
4	1.714
5	1.713
6	1.788

Table R7: Robustness of time classifier network on toy experiment.

(a) Original images of corrupted reverse process.

(b) Images after applying TAG.

Figure R1: Comparison of images with different noise levels.

References

- [1] Han, D., et al. (2024). Understanding training-free diffusion guidance: Mechanisms and limitations. arXiv:2403.12404.
- [2] Ho, J., Salimans, T. (2022). Classifier-Free Diffusion Guidance. arXiv:2207.12598.
- [3] He, Y., et al. (2024). CFG++: Manifold-constrained classifier-free guidance for diffusion models. arXiv:2406.08070.
- [4] Lin, C. H., et al. (2025). Diffusion models without classifier-free guidance. arXiv:2502.12154.
- [5] Shi, J., et al. (2023). Language-driven scene synthesis using multi-conditional diffusion model. arXiv:2310.15948.
- [6] Schneuing, A., et al. (2024). Inverse molecular design with multi-conditional diffusion guidance. arXiv:2401.13858.
- [7] Inference-time diffusion model distillation. (n.d.). arXiv:2412.08871.
- [8] Li, J., et al. (2023). On error propagation of diffusion models. arXiv:2308.05021.
- [9] Ning, Z., Li, W., He, D., & Zhang, L. (2023). Input perturbation reduces exposure bias in diffusion models. In *Proceedings of the International Conference on Machine Learning (ICML)* (arXiv:2301.11706).
- [10] Ning, Z., Li, W., He, D., & Zhang, L. (2024). Elucidating the exposure bias in diffusion models. In *Proceedings of the International Conference on Learning Representations* (ICLR) (arXiv:2308.15321).
- [11] Li, Z., Liu, J., & Zhang, L. (2024). Alleviating exposure bias in diffusion models through sampling with shifted time steps. In *Advances in Neural Information Processing Systems*.
- [12] Le, N. A. K., Nguyen, T., & Tran, A. T. (2024). Classification diffusion models: Revitalizing density ratio estimation. In *Proceedings of the Neural Information Processing Systems (NeurIPS)* (arXiv:2402.10095).
- [13] Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. In *Proceedings of the Neural Information Processing Systems (NeurIPS)* (arXiv:1907.05600).
- [14] Ye, H., et al. (2024). TFG: Unified training-free guidance for diffusion models. arXiv:2409.15761.
- [15] Jung, H., Park, Y., Schmid, L., Jo, J., Lee, D., Kim, B., Yun, S.-Y., & Shin, J. (2024). Conditional synthesis of 3D molecules with time correction sampler. In Advances in Neural Information Processing Systems, 37.
- [16] Sadat, S., Kansy, M., Hilliges, O., & Weber, R. M. (2024). No training, no problem: Rethinking classifier-free guidance for diffusion models. arXiv:2407.02687.
- [17] Li, T., Luo, W., Chen, Z., Ma, L., & Qi, G. J. (2024). Self-guidance: Boosting flow and diffusion generation on their own. arXiv:2412.05827.

- [18] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-based generative modeling through stochastic differential equations. In *Proceedings of the International Conference on Learning Representations (ICLR)*.
- [19] Zhang, L., & Agrawala, M. (2023). Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*.
- [20] Chung, H., et al. (2022). Diffusion posterior sampling for general noisy inverse problems. arXiv:2209.14687.
- [21] Bhat, S. F., Mitra, N., & Wonka, P. (2024). Loosecontrol: Lifting ControlNet for generalized depth conditioning. In ACM SIGGRAPH 2024 Conference Papers, 1–11.
- [22] Lin, H., Cho, J., Zala, A., & Bansal, M. (2024). Ctrl-adapter: An efficient and versatile framework for adapting diverse controls to any diffusion model. arXiv:2404.09967.
- [23] Yang, J., Zhao, J., Wang, P., Wang, Z., & Liang, Y. (2025). Meta ControlNet: Enhancing task adaptation via meta learning. In *Proceedings of The Second Conference on Parsimony and Learning (Proceedings Track)*. Available at https://openreview.net/forum?id=ju63pUpq0N.
- [24] Rout, L., et al. (2025). RB-modulation: Training-free personalization of diffusion models using stochastic optimal control. In *Proceedings of the International Conference on Learning Representations (ICLR)* (arXiv:2405.17401).
- [25] Bar-Tal, O., et al. (2023). MultiDiffusion: Fusing diffusion paths for controlled image generation. In *Proceedings of the International Conference on Machine Learning (ICML)*.
- [26] Yu, J., Wang, Y., Zhao, C., Ghanem, B., & Zhang, J. (2023). FreeDoM: Training-free energy-guided conditional diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- [27] He, Y., Murata, N., Lai, C. H., Takida, Y., Uesaka, T., Kim, D., Liao, W. H., Mitsufuji, Y., Kolter, J. Z., Salakhutdinov, R., & Ermon, S. (2024). Manifold preserving guided diffusion (MPGD). In *Proceedings of the International Conference on Learning Representations (ICLR)*.
- [28] Du, Y., Mao, J., Tenenbaum, J. B. (2024). Learning iterative reasoning through energy diffusion. arXiv preprint arXiv:2406.11179.