Calculabilité TP1

Y. Deville C-H. Bertrand Van Ouytsel - V. Coppé - A. Gerniers N. Golenvaux - M. Parmentier

Février 2021

1. L'ensemble des nombres impairs positifs est-il énumérable?

Réponse : Oui

La fonction $f:\mathbb{N}\to E$ qui envoie n sur 2n+1 est une bijection (car c'est une surjection : si y est un nombre impair, alors $\frac{y-1}{2}\in\mathbb{N}$ et $f(\frac{y-1}{2})=y$ et c'est une injection : si f(n)=f(m), alors 2n+1=2m+1 et donc n=m).

2. L'ensemble des nombres premiers positifs est-il énumérable?

Réponse : Vrai

La fonction $f:\mathbb{N} \to E$ qui envoie n sur le n-ième plus petit nombre premier est une bijection (car l'ensemble des nombres premiers est infini, inclus dans \mathbb{N} et totalement ordonné).

3. L'ensemble des nombres entiers (positifs et négatifs) est-il énumérable?

Réponse : Oui

La fonction $f:\mathbb{N}\to\mathbb{Z}$ qui envoie n sur $-\frac{n}{2}$ si n est pair et $\frac{n-1}{2}$ si n est impair est une bijection.

4. L'ensemble des nombres rationnels est-il énumérable?

Réponse : Oui

La fonction $f:\mathbb{N}\to\mathbb{Q}$ qui envoie n sur le n-ième nombre obtenu en parcourant le tableau ci-dessous (en suivant les diagonales descendantes de droite à gauche et en négligeant les répétitions) est une bijection.

	0	1	-1	2	-2	
1	$\frac{0}{1}$	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$	$\frac{-1}{1}$	$\frac{2}{1}$	$\frac{-2}{1}$	
1 2 3 4	$\frac{0}{2}$	$\frac{1}{2}$	$ \begin{array}{r} -\frac{1}{1} \\ -\frac{1}{2} \\ -\frac{1}{3} \\ -\frac{1}{4} \end{array} $	$\frac{2}{2}$	$\frac{-2}{2}$	
3	$\frac{0}{3}$	$\frac{1}{3}$	$\frac{-1}{3}$	$\frac{2}{3}$	$\frac{-2}{3}$	
	$\frac{0}{4}$	$\frac{1}{4}$	$\frac{-1}{4}$	$\frac{2}{4}$	$\frac{-2}{4}$	
:						

5. L'ensemble des nombres irrationnels compris entre 0 et 1 est-il énumérable?

Réponse : Non

L'ensemble des nombres réels entre 0 et 1 n'est pas énumérable (voir cours). Or, $[0;1]\cap \mathbb{Q}$ est énumérable car c'est un sous-ensemble infini de \mathbb{Q} (qui est énumérable). Comme $[0;1]=([0;1]\cap \mathbb{Q})\cup([0;1]\backslash \mathbb{Q})$, l'ensemble $[0;1]\backslash \mathbb{Q}$ ne peut pas être énumérable.

En effet, supposons par l'absurde que $([0;1]\backslash\mathbb{Q})$ est énumérable, on a alors deux bijections $f_1:\mathbb{N}\to([0;1]\cap\mathbb{Q})$ et $f_2:\mathbb{N}\to([0;1]\backslash\mathbb{Q})$. Alors la fonction $g:\mathbb{N}\to[0;1]$ qui envoie n sur $f_1(\frac{n}{2})$ si n est pair et n sur $f_2(\frac{n-1}{2})$ si n est impair est une bijection (et donc [0;1] est énumérable), ce qui est absurde.

6. L'ensemble des fonctions de $\mathbb N$ dans $\{0,1\}$ est-il énumérable?

Réponse : Non

La démonstration se fait avec l'aide de la méthode de la diagonalisation de Cantor vue en classe.

On suppose $F=\{f:\mathbb{N}\to\{0,1\}\}$ énumérable. Il existe donc une énumération des éléments de $F:f_0,f_1,\ldots,f_k,\ldots$. On peut représenter une fonction $f_k\in F$ comme la suite $f_k(0),f_k(1),\ldots,f_k(k),\ldots$ On peut donc construire une table infinie : (slide suivant)

	0	1	2		k	
f_0	$f_0(0)$	$f_0(1)$ $f_1(1)$ $f_2(1)$	$f_0(2)$		$f_0(k)$	
f_1	$f_1(0)$	$f_1(1)$	$f_1(2)$		$f_1(k)$	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$		$f_2(k)$	
:	:	$f_k(1)$:	٠.	:	
f_k	$f_k(0)$	$f_k(1)$	$f_k(2)$		$f_k(k)$	
:						٠.

Soit la fonction f constituée des éléments de la diagonale : $f=f_0(0), f_1(1), f_2(2), \ldots, f_k(k), \ldots$ On construit la fonction $f'=f'(0), f'(1), f'(2), \ldots, f'(k), \ldots$ où $f'(i)=1-f_i(i)$. La fonction f' est également une fonction de $\mathbb N$ dans $\{0,1\}$. Elle est donc dans l'énumération puisque par hypothèse, F est énumérable. Dès lors, il existe p tel que $f_p=f'$:

$$f_p = f_p(0), f_p(1), f_p(2), \dots, f_p(p), \dots$$

= $f' = f'(0), f'(1), f'(2), \dots, f'(p), \dots$

Contradiction car $f'(p) \neq f_p(p)$ par définition de f'. Donc, $f' \neq f_p$ ce qui implique que f' n'est pas dans l'énumération. Conclusion, F n'est pas énumérable.

7. Est-il vrai que l'ensemble des mots de longueur finie d'un alphabet énumérable est lui-même énumérable ?

Réponse : Oui

Justifions d'abord par récurrence que l'ensemble des mots M_n d'une longueur fixée n d'un alphabet énumérable est lui-même énumérable.

Pour n=0, M_n ne contient qu'un élément (le mot vide) et est donc évidemment énumérable.

Supposons que M_n soit énumérable pour un certain n, montrons qu'il en est de même pour M_{n+1} . Puisque l'alphabet $\mathcal A$ est énumérable, il existe une bijection $g:\mathbb N\to \mathcal A$. Puisque l'alphabet M_n est énumérable, il existe une bijection $f_n:\mathbb N\to M_n$.

Alors, la fonction $f_{n+1}:\mathbb{N}\to M_{n+1}$ qui envoie n sur le n-ième élément obtenu en parcourant le tableau ci-dessous (en suivant les diagonales descendantes de droite à gauche) est une bijection.

	$f_n(0)$	$f_n(1)$	$f_n(2)$	$f_n(3)$	
g(0)	$f_n(0) + g(0)$	$f_n(1) + g(0)$	$f_n(2) + g(0)$	$f_n(3) + g(0)$	
g(1)	$f_n(0) + g(1)$	$f_n(1) + g(1)$	$f_n(2) + g(1)$	$f_n(3) + g(1)$	
g(2)	$f_n(0) + g(2)$	$f_n(1) + g(2)$	$f_n(2) + g(2)$	$f_n(3) + g(2)$	
g(3)	$f_n(0) + g(3)$	$f_n(1) + g(3)$	$f_n(2) + g(3)$	$f_n(3) + g(3)$	
:					

Remarque : dans ce contexte, le symbole $\ll + \gg$ désigne la concaténation.

Justifions à présent que l'ensemble des mots $M=\bigcup_{n=0}^{\infty}M_n$ de longueur finie d'un alphabet énumérable est lui-même énumérable. Pour tout n, on a une bijection $f_n:\mathbb{N}\to M_n$. Alors, la fonction $h:\mathbb{N}\to M$ qui envoie n sur le n-ième élément obtenu en parcourant le tableau ci-dessous (en suivant les

diagonales descendantes de droite à gauche) est une bijection.

	0	1	2	3	
f_0	$f_0(0)$	$f_0(1)$	$f_0(2)$	$f_0(3)$	
f_1	$f_1(0)$	$f_0(1)$ $f_1(1)$ $f_2(1)$	$f_1(2)$	$f_1(3)$	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	$f_2(3)$	
f_3	$f_3(0)$	$f_3(1)$	$f_3(2)$	$f_3(3)$	
:					

8. Est-il vrai que l'ensemble des mots de longueur infinie d'un alphabet énumérable est lui-même énumérable ?

Réponse : Non

Contre-exemple : l'ensemble des nombres réels entre 0 et 1 peuvent être vus comme l'ensemble des mots de longueur potentiellement infinie réalisés à partir de l'alphabet $\mathcal{A} = \{0,1\}.$

9. Supposons avoir deux ensembles A et B avec la même cardinalité. Si A n'est pas énumérable, B peut-il être énumérable?

Réponse : Non

Supposons par l'absurde que B est énumérable, alors il existe une bijection $f:\mathbb{N}\to B.$ Si A et B ont la même cardinalité, alors il existe une bijection $g:A\to B.$ Soit h la fonction inverse de la fonction g (qui existe et est unique car g est une bijection). Alors la fonction $(f\circ h):\mathbb{N}\to A$ est une bijection et donc A est énumérable. C'est absurde, donc B ne peut pas être énumérable.

10. Les ensembles $]0,1[,]-1,1[,]-\frac{\pi}{2},\frac{\pi}{2}[$ et $\mathbb R$ ont-ils tous la même cardinalité?

Réponse : Oui

Les fonctions $f:]0,1[\to]-1,1[,g:]-1,1[\to]-\frac{\pi}{2},\frac{\pi}{2}[$ et $h:]-\frac{\pi}{2},\frac{\pi}{2}[\to\mathbb{R}$ et qui envoient respectivement x sur 2x-1, x sur $\frac{x\pi}{2}$ et x sur $\tan(x)$ sont toutes les trois des bijections.

Answer the following questions in the given order.

- 1. True or false : a set X is countable iff $\mathcal{P}(X)$ (the set of all the subsets of X, the empty set and X itself included) is countable.
- 2. Show Cantor's Theorem : if X is a set, then $\mathcal{P}(X)$ has never the same cardinality as X.
- 3. If X is finite, what is the cardinality of $\mathcal{P}(X)$ with respect to the cardinality of X?

Réponse :

1. Faux. Un contre-exemple extronné par $\mathbb N$. En effet, il y a une bijection $g:\mathcal F(\mathbb N,\{0,1\})\to\mathcal P(\mathbb N)$ entre l'ensemble $\mathcal F(\mathbb N,\{0,1\})$ des fonctions de $\mathbb N$ dans $\{0,1\}$ avec l'ensemble $\mathcal P(\mathbb N)$ des sous-ensembles de $\mathbb N$:

$$(f: \mathbb{N} \to \{0, 1\}) \stackrel{g}{\mapsto} \{n \in \mathbb{N} \mid f(n) = 1\}$$

Or, nous savons déjà que l'ensemble $\mathcal{F}(\mathbb{N},\{0,1\})$ n'est pas énumérable, donc l'ensemble $\mathcal{P}(\mathbb{N})$ ne peut pas l'être non plus.

Réponse :

2. Supposons par l'absurde qu'il existe une bijection $f: X \to \mathcal{P}(X)$. Posons l'ensemble :

$$E = \{x \in X \mid x \notin f(x)\}$$

Pour chaque $x \in X$, f(x) est un sous-ensemble de X, la définition de E fait donc bien sens et E est un sous-ensemble de X. Puisque f est une bijection, notons $g: \mathcal{P}(X) \to X$ son unique fonction inverse. Puisque $E \in \mathcal{P}(X)$, l'élément e = g(E) est bien

un élément de X. L'élément e doit donc soit se trouver dans E, soit ne pas se trouver dans E.

Or, supposons qu'il se trouve dans E, alors par définition de E on a que $e \notin f(e) = E$, ce qui est absurde.

De même, supposons qu'il ne se trouve pas dans E, alors par définition de E on a que $e\in f(e)=E$, ce qui est absurde.

En conclusion, e est un élément de X qui n'est ni dans E ni dans $X \setminus E$. C'est absurde. Donc notre supposition de départ, celle selon laquelle la bijection f peut exister, ne peut être vraie.

Réponse :

3. Notons |X| la cardinalité de l'ensemble fini X (c'est-à-dire son nombre d'éléments). Alors le nombre de sous-ensembles possibles de X est le nombre de sous-ensembles de X à 0 éléments (il n'y en a qu'un : l'ensemble vide), plus le nombre de sous-ensembles de X à un élément (il y en a exactement |X|), plus le nombre de sous-ensembles de X à 2 éléments (pour construire un tel sous-ensemble, il faut choisir 2 éléments distincts parmi |X|, il y en a donc $C^2_{|X|}$), plus le nombre de sous-ensembles de X à 3 éléments (pour construire un tel sous-ensemble, il faut choisir 3 éléments distincts parmi |X|, il y en a donc $C^3_{|X|}$), et ainsi de suite jusqu'à l'unique sous-ensemble de X qui contient |X| éléments : l'ensemble X lui-même. En conclusion, il y a donc $C^0_{|X|} + C^1_{|X|} + C^2_{|X|} + C^3_{|X|} + \ldots + C^{|X|-1}_{|X|} + C^{|X|}_{|X|}$ sous-ensembles

 $C_{|X|}^{\circ} + C_{|X|}^{\circ} + C_{|X|}^{\circ} + C_{|X|}^{\circ} + C_{|X|}^{\circ} + C_{|X|}^{\circ}$ sous-ensembles possibles de X, ce qui est égal à (formule de combinatoire bien connue) $2^{|X|}$. La cardinalité de $\mathcal{P}(X)$ est donc $2^{|X|}$ (raison pour laquelle l'ensemble des sous-ensembles d'un ensemble est parfois noté 2^{X} , même quand X n'est pas nécesssairement fini).

Using a cardinality argument, show that there are functions that are not computable by a Python program.

Réponse : L'ensemble des programmes peut être vu comme l'ensemble des mots finis réalisés à partir d'un alphabet fini, ce que nous savons déjà être énumérable. Or, nous savons également que l'ensemble $\mathcal{F}(\mathbb{N},\{0,1\})$ n'est pas énumérable. Il est donc impossible qu'il existe au moins un programme pour chaque fonction de \mathbb{N} dans $\{0,1\}$, et il existe donc certainement au moins une infinité de fonctions non calculables (à l'aide d'un programme python).

If A_i ($i \in \mathbb{N}$) are countable sets,

- 1. prove that $A_1 \times A_2$ is a countable set.
- 2. prove that $\bigcup_{i=0}^{\infty} A_i$ is a countable set.

Réponse:

1. Soit $f: \mathbb{N} \to A_1$ une bijection. Soit $g: \mathbb{N} \to A_2$ une bijection. Pour construire une bijection $h: \mathbb{N} \to A_1 \times A_2$, il suffit de considérer la fonction qui envoie n sur le n-ième élément obtenu en parcourant le tableau ci-dessous (en suivant les diagonales descendantes de droite à gauche).

	f(0)	f(1)	f(2)	f(3)	
g(0)	(f(0),g(0))	(f(1),g(0))	(f(2),g(0))	(f(3),g(0))	
g(1)	(f(0), g(1))	(f(1),g(1))	(f(2),g(1))	(f(3),g(1))	
g(2)	(f(0), g(2))	(f(1),g(2))	(f(2),g(2))	(f(3),g(2))	
g(3)	(f(0), g(3))	(f(1),g(3))	(f(2),g(3))	(f(3),g(3))	
<u> </u>					

Réponse :

2. Soit $f_i: \mathbb{N} \to A_i$ is bijections. Pour constuire une bjection $h: \mathbb{N} \to \bigcup_{i=0}^\infty A_i$, il suffit de considérer la fonction qui envoie n sur le n-ième élément obtenu en parcourant le tableau ci-dessous (en suivant les diagonales descendantes de droite à gauche et en négligeant les répétitions).

	0	1	2	3	
f_0	$f_0(0)$	$f_0(1)$	$f_0(2)$	$f_0(3)$	
f_1	$f_0(0)$ $f_1(0)$ $f_2(0)$	$f_1(1)$	$f_1(2)$	$f_1(3)$	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	$f_2(3)$	
f_3	$f_3(0)$	$f_3(1)$	$f_3(2)$	$f_3(3)$	

Write a program that lists these sets :

- $1. \mathbb{Z}$
- 2. $\{a,b,c\}^*$ (all words formed with the alphabet $\{a,b,c\}$)
- 3. The set of all Python programs

```
print(0)
n = 0
while True do
n = n + 1
print(n)
print(-n)
```

 $alphabet = \{'a', 'b', 'c'\}$ # the alphabet we are using print(") # the empty word $list = {"}$ # a list that contains all the words of length 0 while True do $new_list = \{ \}$ for $word \in list$ do $\textbf{for } \mathit{symbol} \in \mathit{alphabet} \ \textbf{do}$ print(word + symbol) # every word of length n can be obtained as a word of length n-1 + one symbol of the alphabet add (word + symbol) to new_list # we update our new list of words of length n

 $list = new_list \quad \#$ we replace our list of words of length n-1 with our new list of words of length n

3. On dénote par C un compilateur de Python. Il renvoie 1 si un mot donné est un programme Python valide, 0 sinon.

```
alphabet = \{ a', b', c', d', \dots, c', c', d', \dots \} # a list of all the symbols
 which are allowed in a Python program
list = \{"\}
                          \# a list that contains all the words of length 0
while True do
    new\_list = \{ \}
    for word \in list do
        for symbol \in alphabet do
            if C(word + symbol) == 1 then
              print(word + symbol) # again, every word of length n
                  can be obtained as a word of length n-1 + one symbol
                  of the alphabet, but this time we have to check if the
                  word is a valid Python program before printing it
            add (word + symbol) to new\_list # we update our new
              list of words of length n
```

 $list = new_list$ # we replace our list of words of length n-1 with our new list of words of length n