Evolución del Área de HPC en las Ciencias de la Computación en Argentina Hacia la integración nacional y regional

Dra. Alicia Marcela Printista

Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento de Informática

NUEVA RED INSTITUCIONAL

☆CENTROS CIENTÍFICOS TECNOLÓGICOS

- O UNIDADES EJECUTORAS
 - Agricultura y Ciencias Veterinarias
 - Biotecnología y Tecnología de los Alimentos
 - Ciencias Biológicas
 - Ciencias de la Salud
 - Ciencias de la Tierra, Atmósfera y Astronomía
 - Ociencias Sociales y Humanidades
 - Física, Química y Materiales
 - Ingenierías y Arquitectura
 - Matemáticas y Computación

MULTIDISCIPLINARIOS

La nueva estructura institucional propende a la mayor federalización de sus Centros e Institutos

Temario

- Antecedentes del área de HPC en Argentina
 - Universidades
 - Otros antecedentes
- •Una Iniciativa de cooperación Nacional en HPC
 - Secretaria de Articulación Científica y Tecnológica-MinCyT
- •Grupo de Investigación en Paralelismo-UNSL
- •Presentación de Lartop50

Antecedentes desde las Ciencias de la Computación

- Proyecto de Investigación en Sistemas Operativos y Software de Base para Sistemas Distribuidos
- UNSL-1987

FOMEC- Fondo para el Mejoramiento de la Calidad Universitaria

Formación de recursos Humanos

Computadora Paralela Parsytec con 2 links de 16 procesadores

PowerPC (UNSL)

- Red de Universidades con Carreras de Informática (UBA, UNLP, UNCPBA, UNS, UNSL)
 - Workshop de Sistemas Distribuidos y Paralelismo

Antecedentes desde las Ciencias de la Computación

- Programa Nacional para la Sociedad de la Información
 - → CLEMENTINA II. Silicon Graphics- Cray Origin 2000

MinCyT- 2003

- ENIEF 2004 XIV- Congreso de Métodos Numéricos (MECOM:
 - Congreso Mecánica Computacional)

 Special Session HPC
- 37 JAIIO –SADIO -

1er. Simposio de HPC ... HPCLatam

• 2004

2008

Antecedentes

• 2010

2006

HPC en Argentina

 Tecnología Grid Como Motor Del Desarrollo Regional, promovido por Programa Iberoamericano para el desarrollo de la Ciencias y Tecnología - Dr. Francisco Tirado (UCM) • 2008

Maestría en Cómputo de Altas Prestaciones y Tecnología GRID- (UNSL) Acreditada A-Coneau

• 2009

Programa de Grandes Instrumentos y Bases de Datos

Programa de Integración Nacional

representación institucional para el diseño, crecimiento y sostenimiento de una red nacional de centros de cálculo de alto desempeño.

espacio

un

de

MISIÓN: Generar facilidades transversales para los organismos de ciencia y tecnología en el área de cálculo de alto desempeño y otras tecnologías emergentes asociadas que aseguren un mejor servicio en el área a los usuarios del Sistema.

Objetivos

Consolidar una red nacional de centros de cálculo de alto desempeño interconectados, para satisfacer la creciente demanda de la comunidad científica y tecnológica en las siguientes áreas: almacenamiento ("data centers", "data grid"), grid computing, HPC ("High Performance computing"), HTC ("High Throughput Computing"), visualización, y otras tecnologías emergentes.

Requisitos

- o Formar parte de una institución del Sistema Científico Nacional.
- Formar recursos humanos de manera continua
- Presentar publicaciones o actividades científicas de relevancia en el área.
- Tener un conjunto de recursos de cómputo equipados con sistemas operativos u otras aplicaciones informáticas que permitan el procesamiento distribuido de aplicaciones (poseer un gran equipamiento)

SNCAD Hoy

Próximos Pasos (2013):

Constituir la Grid Nacional

Licitación de una Supercomputadora (ex Giol)

http://www.supercalculo.mincyt.gov.ar/

Grupo de Investigación en Paralelismo UNSL-Argentina

Modelos de Computación Paralela

Aplicación: Motores Paralelos de Búsqueda en Web

Desafío actual:

Modelos de Computación Paralela - Arquitecturas Modernas

Paralelismo?

Década del 90:

"... Demandas de mayor poder de computación que el que brinda la computación secuencial ..."

Aunque la Computación Paralela debía ser la respuesta a estas demandas, no lograba imponerse como paradigma corriente de computación

Paralelismo

¿Cuál podría ser la clave que impulsará el desarrollo de computaciones paralelas en el futuro?

Tres candidatos:

- el hardware
- el software
- un modelo de computación intermedio

Modelos de Computación

Definen un compromiso entre las capacidades del hardware y los requerimientos del software

Bulk Synchronous Parallel Model

Mecanismo de sincronización

superpasos

Valiant, Leslie G., "A Bridging Model for Parallel Computation", Communications of the ACM, Aug., 1990, Vol. 33, No. 8, pp. 103-111

``BSPlib: The BSP Programming Library' <u>Jonathan M. D. Hill</u>, <u>Bill McColl</u>, Dan C. Stefanescu, <u>Mark W. Goudreau</u>, Kevin Lang, Satish B. Rao, <u>Torsten Suel</u>, Thanasis Tsantilas, and <u>Rob Bisseling</u>. Parallel Computing, 1998.

Modelo de Costo BSP

T = W + CS

Cada P_i realiza cómputo con costo w_i envía out_i y recibe in_i mensajes

El costo de cada superpaso es:

•
$$w_s = max \{ w_i / i \in \{ 0, ..., P-1 \} \}$$

•
$$h_s = max \{ in_{s,i} @ out_{s,i} / i \in \{ 0, ..., P-1 \} \}$$

$$t_s \approx w_s + g_H * h_s + L_H$$

El costo de un Programa con R superpasos es:

$$T_R = \sum_{s=1,R} (t_s)$$

MODELO BSP

Una computadora *BSP* queda caracterizada por los siguientes parámetros :

- P es el número de procesadores de la máquina BSP
- **s** es la velocidad del procesador
- L es el costo, en steps, de realizar una sincronización por barrera
- g es el costo, en steps/word, de entregar mensajes

Las barreras globales son costosas de implementar

Sincronización Oblivia

MODELO OBSP

- → Basado en el concepto de superpasos
 - → Semántica *BSP* es preservada

- → Admite el particionado del conjunto de procesadores
 - → Relación de Sociedad

MODELO DE COSTO OBSP

La ejecución de un programa en una máquina *BSP* $X=\{p_0, p_1, ..., p_{P-1}\}$ avanza en superpasos:

Si el superpaso s finaliza en una sincronización oblivious:

$$\Omega_{s,i} = \{ p_j \in X / p_j \text{ envia/recibe un mensaje a/desde } p_i \text{ durante el superpaso } s \} \cup \{p_i\}$$

Si el superpaso s finaliza en una barrera global:

$$\Omega_{s,i} = X$$

MODELO DE COSTO OBSP

El costo individual de un superpaso oblivious:

$$t_{s,i} = \max \{ w_{s,j} / j \in \Omega_{s,i} \} + (g * h_{s,i} + L_{|\Omega s,i|})$$

$$h_{s,i} = \max \{ in_{s,j} @ out_{s,j} / j \in \Omega_{s,i} \}$$

Es el tiempo del "socio" que mas tiempo necesitó para completar el superpaso

MODELO DE COSTO OBSP

Sea $X=\{p_0, p_1, ..., p_{P-1}\}$ una sub-máquina BSP ejecutando la tarea τ

Es necesario definir un vector de acarreo: $\xi_X = (\xi_0, ..., \xi_{P-1})$

$$\Phi_{1,i}(\tau, X, \xi_X) = \max \{ \xi_{Xj} + w_{1,j} \ / \ j \in \Omega_{1,i} \} + (g * h_{1,i} + L_{|\Omega s,i|}) \quad i = 0,..., P-1$$

$$\begin{split} \Phi_{s,i}(\tau,X,\xi_{x}) = \max \; \{ \Phi_{s-1,j}(\tau,X,\xi_{x}) + w_{s,j} \; / \, j \in \Omega_{s,i} \} + \text{(g * h}_{s,\,i} + L_{\mid \Omega \, s,i\mid} \text{)} \\ s = 2,...,r, \; \; i = 0,..., \, P-1 \end{split}$$

MODELO OBSP

Una computadora *OBSP* queda caracterizada por los siguientes parámetros

- P es el número de procesadores de la máquina BSP
- **s** es la velocidad del procesador
- g es el costo, en steps/word, de entregar mensajes

Motores de Búsqueda basados en BSP

Consideramos búsquedas por igualdad (texto) y búsquedas por proximidad (videos, como imágenes, secuencias de audio, etc.).

Motores de Búsqueda basados en BSP

• Cluster:

- Texto: Índice Invertido: Distribución Global/Local y Estrategias de Buckets.

- Espacios Métricos: Sparse Spatial Selection:

Particionado por bloque/B-Tree/hibrido

BSP en memoria compartida?

- Ambientes Híbridos:
 - Espacios Métricos: Indice SSS: Particionado Global (por columna/fila; por batch/round robin).

Fig. hwloc facility- Dell Multiprocessor

Ambientes Jerárquicos

Arquitecturas complejas

Altamente escalables

Jerárquicas

Heterogéneas

Multi-BSP

Una computadora Multi-BSP queda caracterizada por los siguientes parámetros: $(p_1, g_1, L_1, m_1) (p_2, g_2, L_2, m_2) (p_3, g_3, L_3, m_3) ...$

Leslie G. Valiant. A Bridging Model for Multi-Core Computing. <u>Journal of Computer and System Sciences</u> - <u>Volume 77, Issue 1</u>, January 2011, Pages 154–166

August 29, 2012. MulticoreBSP for C released. A BSPlib version in C aimed at multicore architectures, developed by Albert-Jan Yzelman at the KU Leuven and the Intel ExaScience Lab.

Desafíos Actuales

- Caracterizar las arquitecturas actuales g_j y L_j
- ¿Cómo minimizar el impacto de estas nuevas arquitecturas? – Afinidad de hardware

¿Cómo planificar el trabajo? – Scheduling

Performance del estilo Multi-BSP.

Seminario Científico STIC-AmSud

« High performance scientific computing in cluster, grid, and cloud computing systems »

Muchas Gracias

marprinti@gmail.com

www.lidic.unsl.edu.ar