A Basic LATEX Tutorial for **Math** Students

Singyuan Yeh

NTU

September 28 2021

Table of Contents

- Preamble
- 2 Introduction to LATEX
- More Skills on LATEX
- 4 Reference

Outline

- Preamble
- 2 Introduction to LATEX
- More Skills on LATEX
- 4 Reference

Preamble

- This slides is for **math**. In fact, LaTeXis good to typesetting, *e.g.* CV, poster or thesis.
- This slides is for searching keywords instead of studying so I set the hyperlink in outline.
- If I add *, the method in this slides would be seldom used.

Preamble >> September 28 2021

How to Write tex

Compiler? Editor?

Recommend

Use Overleaf and change the compiler to "xelatex".

Preamble >> September 28 2021

Outline

- Preamble
- 2 Introduction to LATEX
 - Basic command
 - Math
- More Skills on LATEX
- 4 Reference

Chinese

Add the following in preamble

```
\usepackage{fontspec}
\usepackage{xeCJK}
\setCJKmainfont{標楷體}
\XeTeXlinebreaklocale "zh"
\XeTeXlinebreakskip = Opt plus 1pt
```

The first line is to set Chinese font. Note that 標楷體 does't work on Overleaf ヌ

Rules

- Each command is start from "backslash symbol" (\).
 e.g. LaTeX, \LaTeX; \, \textbackslash.
- Comment some text using "percentile symbol" %
- New line using "double backslash symbol" (\\)
- There is no different between one space and multiple space.
- The following is environment

```
\begin{environment}\end{environment}
```

• "quotation mark" is ``quotation mark''.

Space

The following table listed some command which are most often used

Display	Command
ab	a\!b
ab	ab
a b	ab
a b	a~b
a b	a b
a b	a\qaud b

For instance, integral $\int \cos\theta \ d\theta$ ($\hat{\theta} \in \mathbb{I} \$ or second fundamental form $\mathbb{I} \$ ($\hat{\theta} \in \mathbb{I} \$).

Font variance

Display	Command
Roman ¹	Roman
italic	{\it italic}
boldface	{\bf boldface}
sans serif	{\sf sans serif}
typewriter	{\tt typewriter}
SAMLL CAPS	{\sc Samll Caps}

For instance, refer to W. RUDIN, *Principles of Mathematical Analysis*, ({\sc W. Rudin}, {\it Principles of Mathematical Analysis})

¹Actually, this is not Roman font in beamer.

Font size

Display	Command
footnotesize	{\footnotesize footnotesize}
small	{\small small}
Normalsize	Normalsize
Large	{\Large Large}

Outline for Math

- Function and Greek Symbols
- Math Font
- Inline and Display Mode
- Align and Aligned
- Label and Ref
- Tag
- Conditional Function
- Array
- Matrix
- Bracket (Matrix + Align)
- Box

Function and Greek symbols

Just Google LaTeX symbols! Note that:

• There are two type of some Greek symbols

```
\epsilon $\epsilon$ arepsilon$ $\varphi$ \varphi $\phi$ $\pri$ $\varphi$
```

- Please don't use \forall , which is not a formal symbol.
- If you hope to use function which is not defined, two method: for example cosec, instead of *cosec*.
 - Declare in preamble \DeclareMathOperator{\cosec}{cosec} and use

\cosec

Just use \operatorname{cosec}x instead of \mathrm{cosec}x, cosec x instead of cosecx.

Math font

Display	Command
italic	\$italic\$
R	\$\mathrm{R}\$
v	\$\mathbf{R}\$
\mathbb{R}	\$\mathbb{R}\$
\mathcal{M}	\$\mathcal{M}\$
р	\$\mathtt{p}\$
Re	<pre>\$\mathfrak{Re}\$</pre>
1	\$\mathds{1}\$

Note that if the command $\frac{1}{s}$ is used, $\frac{dsfont}{s}$ should be included.

Inline mode and Display mode

Inline mode use \$ \$.

For all $\epsilon > 0$ exist $\delta > 0$ such that if $|x - x_0| < \delta$,

```
For all $\epsilon>0$ exist $\delta>0$ such that if $|x-x_0|<\ delta$,
```

• Display mode use \$\$ \$\$ or \[\] or \begin{equation*}\end{equation*}.

then

$$|f(x)-f(x_0)|<\epsilon$$
.

```
then
\begin{equation*}
\left|f(x)-f(x_0)\right|<\epsilon\,.
\end{equation*}</pre>
```

Note that don't forget punctuation marks.

Display style in inline mode*

Use \limits_ to force it under the operator.

- **Limit**: $\lim_{x\to 3} f(x)$ instead of $\lim_{x\to 3} f(x)$
 - \$\\lim\\limits_{x\to 3} f(x)\$, \$\\lim_{x\to 3} f(x)\$
- Summation: $\sum_{n=1}^{\infty}a_n$ instead of $\sum_{n=1}^{\infty}a_n$ \$\sum\limits_{n=1}^\infty a_n\$, \$\sum_{n=1}^\infty a_n\$

Actually, I seldom use this method.

Align and Aligned

Use & to align multiple equation.

$$|a - b| \le |a - c| + |c - b|$$

 $\le |a - c| + |c - d| + |d - b|$

```
\begin{align*}
|a-b| &\leq |a-c|+|c-b|\\
&\leq |a-c|+|c-d|+|d-b|
\end{align*}
```

or

```
\begin{equation*}
\begin{aligned}
|a-b| &\leq |a-c|+|c-b|\\
&\leq |a-c|+|c-d|+|d-b|
\end{aligned}
\end{equation*}
```

Label and Ref*

Use \ref and \label or \nonumber. Note that * is for number and so does equation environment.

$$\nabla \cdot \mathbf{E} = \rho / \epsilon_0 \tag{1}$$

$$\nabla \cdot \mathbf{B} = 0$$

The Equation (1) is Gauss's law.

```
\begin{align}
&\nabla\cdot\mathbf{E}=\rho/\epsilon_0 \label{eq:gauss}\\
&\nabla\cdot\mathbf{B}=0 \nonumber
\end{align}
The Equation (\ref{eq:gauss}) is Gauss's law.
```

Actually, I usually use next method when I just write a report.

Tag

I could just label what I hope to label in environment equation* and align* when I just write homework or report.

$$\nabla \cdot \mathbf{E} = \rho / \epsilon_0 \tag{\spadesuit}$$

$$\nabla \cdot \mathbf{B} = 0$$

The Equation (\spadesuit) is Gauss's law.

Fun fact of tag

```
$\spadesuit$
$\clubsuit$
$\stacklozenge$
$\blacklozenge$
$\blacksquare$
$\blacksquare$
$\stacksquare$
$\st
```

Note that I usually use filled symbols, instead of ♡, \$\heartsuit\$ or ★, \$\star\$. However, the package \$\usepackage{fdsymbol}\$ is included for filled heart, \$\varheartsuit\$.

Conditional function

Use $\operatorname{login\{cases\}} \$ and $\operatorname{login\{cases\}} \$

$$\mathbb{1}_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

```
\begin{equation*}
\mathds{1}_{\mathbb{Q}}(x) =
\begin{cases}
1 &\mbox{if~} x\in\mathbb{Q}\\
0 &\mbox{if~} x\notin\mathbb{Q}\
\end{cases}
\end{equation*}
```

Array

```
Use \begin{array}{}\end{array}.
```

```
\begin{array}{cccc} \frac{1}{1} & \frac{1}{2} & \cdots \\ \frac{2}{1} & \frac{2}{2} & \cdots \\ \vdots & \vdots & \ddots \end{array}
```

```
\begin{equation*}
\begin{array}{clr}
\frac{1}{1} &\frac{1}{2} &\cdots\\
\frac{2}{1} &\frac{2}{2} &\cdots\\
\vdots &\vdots &\ddots
\end{array}
\end{equation*}
```

Note that c, 1, r means center, left and right respectively.

Fun fact of dot

```
a \dots b
                       lie on line
         $a\ldots b$
a \cdots b $a\cdots b$ lie on center
a : b
                      vertical
         $a\vdots b$
a \cdot \cdot \cdot b
                       diagonal
         $a\ddots b$
a \cdot b
                       back diagonal
         $a\bddots b$
a \cdot b $a\cdot b$
                       one dot
a \bullet b $a\bullet b$ big dot
\dot{a}
         $\dot{a}$ as you seen
a
         $\ddot{a}$
                       as you seen
```

If you hope to use back diagonal, you should define

\newcommand{\bddots}{\rotatebox[origin=c]{70}{\$\ddots\$}} in preamble.

Matrix

This is pmatrix

$$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$$

```
\begin{equation*}
\begin{pmatrix}
\sigma_{xx} &\sigma_{xy}\\
\sigma_{yx} &\sigma_{yy}
\end{pmatrix}
\end{equation*}
```

This is bmatrix

$$egin{bmatrix} \sigma_{xx} & \sigma_{xy} \ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$$

```
\begin{equation*}
\begin{bmatrix}
\sigma_{xx} &\sigma_{xy}\\
\sigma_{yx} &\sigma_{yy}
\end{bmatrix}
\end{equation*}
```

Bracket

(Warning!) Please use \left and \right!

• \left(\frac{1}{2}\right)

$$\left(\frac{1}{2}\right)$$
 $\left(\frac{1}{2}\right)$

• left|\int f\right|

$$\left| \int f \right| = \left| \int f \right|$$

Warning

Some professors put great emphasis on this detail.

Bracket and Align

Use \left\{, \right. and environment aligned.

$$\begin{cases} \Delta u + \lambda u = 0 & x \in \Omega \\ u = 0 & x \in \partial \Omega \end{cases}$$

```
\begin{equation*}
\left\{
\begin{aligned}
&\Delta u+\lambda u=0 \quad x\in\Omega\\
&u=0\quad x\in\partial\Omega
\end{aligned}
\right.
\end{equation*}
```

Bracket + Array = Matrix*

Use \left[, \right] and \left(, \right) and environment array.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

```
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
```

```
\begin{equation*}
\left(
  \begin{array}{11}
a &b\\ c &d
  \end{array}
  \right)
\end{equation*}
```

```
\begin{equation*}
\begin{pmatrix}
a &b\\ c &d
\end{pmatrix}
\end{equation*}
```

I usually use the environment bmatrix or pmatrix

Bracket + Array = Align*

$$\begin{cases} u_t = \Delta u \\ \lim_{t \to 0} u = f(x) & \text{I.C.} \\ u(0, t) = g(x) & \text{B.C.} \end{cases}$$

```
\begin{equation*}
\left\{\begin{array}{ll}
u_t=\Delta u &\\
\lim_{t\to 0}u=f(x) &\mbox{I.C.}\\
u(0, t)=g(x) &\mbox{B.C.}
\end{array}\right.
\end{equation*}
```

```
\begin{cases} u_t = \Delta u \\ \lim_{t \to 0} u = f(x) \quad \text{I.C.} \\ u(0, t) = g(x) \quad \text{B.C.} \end{cases}
```

```
\begin{equation*}
\left\{\begin{aligned}
&u_t=\Delta u \\
&\lim_{t\to 0}u=f(x) \quad\mbox{I.}

C.}
&u(0, t)=g(x) \quad\mbox{B.C.}
\end{aligned}\right.
\end{equation*}
```

Note that array is **inline mode** but it can align many times.

Outline

- More Skills on LATEX
 - Item and Enumerate
 - Figure, Table and Minipage
 - Footnote
 - Miscellaneous Method

Item

- A
- B
- **.** C
 - ! D

```
\begin{itemize}
\item A
\item B
\item [$\clubsuit$] C
\item [!] D
\end{itemize}
```

Enumerate

- a. A
 - (i) A-a
 - (ii) A-b
- b. B

```
\begin{enumerate}[a.]
\item A
\begin{enumerate}[(i)]
\item A-a
\item A-b
\end{enumerate}
\item B
\end{enumerate}
```

Fun fact of enumerate

Begin Use \setcounter{enumi}{}

- 4. A
- 5. B

```
\begin{enumerate}
\setcounter{enumi}{3}
\item A
\item B
\end{enumerate}
```

Separation Use \itemsep

- 1. A
- 2. B

```
\begin{enumerate}
\itemsep=+3mm
\item A
\item B
\end{enumerate}
```

- The command itemsep is commonly used which make each answer to problem separate clearly.
- The package \usepackage{enumerate} should be included.

Figure: This is caption

```
\begin{figure}[H]
\begin{center}
\includegraphics[scale=??]{path}
\caption{This is caption}
\end{center}
\end{figure}
```

- There are two method to control the size of figure: [scale=??] or [width=??]
- Usually, we will create a folder to collect figures, e.g. fig/name.png.
- The package \usepackage{graphicx} should be included.
- The command H is introduced next page.

Fun fact of float

Command	Description
h	Place here! Not recommend!
t	Place at the top of the page.
b	Place at the bottom of the page.
Н	Place it at precisely the location in
	the LaTeX code.

- The command # should include \usepackage{float}.
- H preserve a whole text width minipage. Thus, we will introduce how to make figure and text side by side next.

Minipage

This is left minipage.

This is right minipage.

This is second line.

```
\noindent
\begin{minipage}{1.0\textwidth}
\noindent
\begin{minipage}{0.48\textwidth}
This is left minipage.
\end{minipage}
\hfill
\begin{minipage}{0.48\textwidth}
This is right minipage.
\end{minipage}
\end{minipage}
```

Remark of minipage

- Use \hfill to fill the horizontal space, which flush left the left minipage and flush right the right minipage so separate two minipage.
- Using a big \minipage to wrap two minipage is because make sure we could fix the begin of next new line.
- Using \noindent make sure there is no indent.

Minipage and Figure (figure and text side by side)

$$G_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$


```
\noindent\begin{minipage}{1.0\textwidth}
\noindent\begin{minipage}{0.48\textwidth}
\begin{equation*}
G_{\max}-\frac{1}{2}Rg_{\max}=\frac{8\pi G}{c^4}T_{\max}
\end{equation*}
\end{minipage}
\hfill
\begin{minipage}{0.48\textwidth}
\begin{figure}[H]\begin{center}
\includegraphics[scale=0.15]{fig/brain.png}
\end{center}\end{figure}
\end{minipage}
\end{minipage}
```

Table

You could use online table generator to help you create a clear latex code.

Chap	StuA	StuB
1	100	95
2	60	80

Width and Rule of table (1/2)

name	1	2	3
name	1	2	3
name	1	2	3

- The package \usepackage{booktabs} is for rule.
- The package \usepackage{tabularx} is for width.
- Replace the vert | by !{\vrule width ??pt}
- Replace the \hline by \noalign{\hrule height ??pt}
- Replace the vert c by >{\centering\arraybackslash}m{??cm}, and similar work for 1 and r. Ragged means uneven.

Width and Rule of table (2/2)

```
\begin{table}[H]
\begin{tabular}
{!{\vrule width 1.5pt}
>{\raggedright\arraybackslash}m{3.5cm} |
*2{>{\centering\arraybackslash}m{1cm} |}
>{\raggedleft \arraybackslash}m{1cm}
!{\vrule width 1.5pt}}
\noalign{\hrule height 1.5pt}
name & 1 & 2 & 3\\
\noalign{\hrule height 1.5pt}
name & 1 & 2 & 3\\\hline
name & 1 & 2 & 3\\
\noalign{\hrule height 1.5pt}
\end{tabular}
\end{table}
```

Footnote

- If you refer to some reference, you should write down precisely².
- You hope to add annotation for your answer³.

```
If you refer to some reference, you should write down precisely\
footnote{This is footnote.}
```

```
You hope to add annotation for your answer\footnotemark .

\footnotetext{Actually, I copy my friend's answer.}
```

²This is footnote.

³Actually, I copy my friend's answer.

Make your report easy to read (1/2)

As title.

- \hspace{length}, \vspace{length}: separate from horizontal and vertical space.
- \hfill, \vfill: flush right and left, *i.e.* horizontal separation; flush up and down, *i.e.* vertical separation.
- \newpage: for new page.
- \noindent, \indent: for indent. Note that if you space lines in your code, the new line will contain a indent.

Make your report easy to read (2/2)

(cont'd)

- \setlength{\parindent}{??ex} in preamble could be used to change indent length.
- \setlength{\parskip}{??ex} in preamble could be used to change paragraph space.
- \renewcommand{\baselinestretch}{2.0} in preamble could change the line spacing.

Fun fact of Length

Command	Display	Description
pt		a point
ex	_	height of an 'x'
em		width of an 'M'
mm	-	a millimeter
cm		a centimeter
in		a inch

Usually, pt for rule; ex, em for indent or paragraph space; and mm, cm, in for figure.

Boxed and Fbox

Use \boxed in math mode and \fbox in text mode. For instance, the following is the Gauss-Bonnet Theorem on two dimensional surface with boundary $\partial \mathcal{M}$

$$\left[\int_{\mathcal{M}} K \, dA + \int_{\partial \mathcal{M}} \kappa_g \, ds = 2\pi \chi(\mathcal{M}) \right].$$

```
the following is the \fbox{Gaussian-Bonnet Theorem} on two dimensional
    surface with boundary $\partial\mathcal{M}$
\begin{equation*}
\boxed{\int_{\mathcal{M}} K\,dA+\int_{\partial\mathcal{M}} \kappa_g\,
    ds=2\pi\chi(\mathcal{M})}\,.
\end{equation*}
```

Outline

- Preamble
- Introduction to LATEX
- More Skills on LATEX
- 4 Reference

Reference

[1] G.J Lee, 大家來學 *PTEX*, (2004).

Reference >>