S/N: TBD

In the Claims

Please remove claims **1** to 45 from prosecution as they have been allowed and will issue in the parent application.

Please add the following new claims 46 to 91:

46. A high f_{MAX} deep submicron MOSFET structure, comprising:

a substrate;

5

a MOSFET on the substrate; the MOSFET having a source and a drain and including a silicide portion over a gate electrode;

a first ILD layer over the substrate and the MOSFET wherein the silicide portion over the gate electrode is exposed;

a metal gate portion:

over the first ILD layer; and

over the silicide portion over the gate electrode;

the metal gate portion having a width substantially greater than the width of the silicide portion over the gate electrode;

a second ILD layer over the metal gate portion and the first ILD layer;

a first metal contact through the second ILD layer contacting the metal gate portion; and

S/N: TBD

a second metal contact through the second and first ILD layers contacting the

drain completing the formation of the high f_{MAX} deep submicron MOSFET

structure;

whereby the width of the metal gate portion reduces R_{g} and increases the f_{MAX} of

the high f_{MAX} deep submicron MOSFET structure.

47. The structure of claim 46, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

under the first ILD layer.

48. The structure of claim 46, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

between the first ILD layer;

the dielectric layer being comprised of Si₃N₄ or SiON.

49. The structure of claim 46, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised of CoSi_x, CoSi₂, or TiSi₂; the

first ILD layer is comprised of oxide, silicon oxide, USG or TEOS; the metal gate

portion is comprised of W, Al, Cu, TiN or Au; the second ILD layer is comprised of

S/N: TBD

oxide, silicon oxide, HDP or FSG; and the first and second metal contacts are each

comprised of W or Cu.

50. The structure of claim 46, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised CoSix; the first ILD layer is

comprised of silicon oxide; the metal gate portion is comprised of tungsten; the

second ILD layer is comprised silicon oxide; and the first and second metal contacts

each being comprised of tungsten.

51. The structure of claim 46, wherein the gate electrode has a width of from about

500 to 5000Å and the metal gate portion has a width of from about 500 to 8000Å.

52. The structure of claim 46, wherein the gate electrode has a width of from about

1000 to 3500Å and the metal gate portion has a width of from about 1000 to 3000Å.

53. The structure of claim 46, wherein the gate electrode has a width of about

 $0.13\mu m$ and the metal gate portion has a width of from about 1800 to 2400Å.

54. The structure of claim 46, wherein the gate electrode has a height of from about

1000 to 3000Å; the silicide portion over the gate electrode has a thickness of from

S/N: TBD

about 270 to 330Å; the first ILD layer has a thickness of from about 1700 to 1900Å;

and the metal gate portion has a thickness of from about 1800 to 2200Å.

55. The structure of claim 46, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of from

about 290 to 310Å; the first ILD layer has a thickness of about 1800Å; and the metal

gate portion has a thickness of from about 1900 to 2100Å.

56. The structure of claim 46, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of about

300Å; the first ILD layer has a thickness of about 1800Å; and the metal gate portion

has a thickness of about 2000Å.

57. The structure of claim 46, wherein the MOSFET includes a source silicide

portion over at least a portion of the source and a drain silicide portion over at least

a portion of the drain; and wherein the second metal contact contacts the drain

silicide portion.

58. The structure of claim 46, wherein the MOSFET includes a source CoSi_x silicide

portion over at least a portion of the source and a drain CoSi_x silicide portion over

S/N: TBD

at least a portion of the drain; and wherein the second metal contacts the

drain CoSi_x silicide portion.

59. The structure of claim 46, wherein the first ILD layer is planarized.

60. The structure of claim 46, wherein the high f_{MAX} deep submicron MOSFET

structure is positioned within an RF circuit.

61. The structure of claim 46, wherein the gate electrode has a gate oxide

thereunder; the gate oxide having a thickness proximate the source and drain to

significantly reduce the parasitic capacitance and increase the f_{max} of the high f_{MAX}

deep submicron MOSFET structure.

S/N: TBD

5

15

62. A high f_{MAX} deep submicron MOSFET structure, comprising:

a substrate;

a MOSFET on the substrate; the MOSFET having a source and a drain and including a silicide portion over a gate electrode; the gate electrode having a width of from about 500 to 5000Å;

a first ILD layer over the substrate and the MOSFET wherein the silicide portion over the gate electrode is exposed;

a metal gate portion:

over the first ILD layer;

and over the silicide portion over the gate electrode;

the metal gate portion having a width of from about 500 to 8000Å;

a second ILD layer over the metal gate portion and the first ILD layer;

a first metal contact through the second ILD layer contacting the metal gate portion; and

a second metal contact through the second and first ILD layers contacting the drain completing the formation of the high f_{MAX} deep submicron MOSFET structure;

whereby the width of the metal gate portion reduces R_g and increases the f_{MAX} of the high f_{MAX} deep submicron MOSFET structure.

63. The structure of claim 62, including a dielectric layer:

S/N: TBD

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

under the first ILD layer.

64. The structure of claim 62, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

between the first ILD layer;

the dielectric layer being comprised of Si₃N₄ or SiON.

65. The structure of claim 62, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised of CoSi_x, CoSi₂ or TiSi₂; the

first ILD layer is comprised of oxide, silicon oxide, USG or TEOS; the metal gate

portion is comprised of W, Al, Cu, TiN or Au; the second ILD layer is comprised of

oxide, silicon oxide, HDP or FSG; and the first and second metal contacts are each

comprised of W or Cu.

66. The structure of claim 62, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised CoSix; the first ILD layer is

comprised of silicon oxide; the metal gate portion is comprised of tungsten; the

S/N: TBD

second ILD layer is comprised silicon oxide; and the first and second metal contacts

each being comprised of tungsten.

67. The structure of claim 62, wherein the gate electrode has a width of from about

1000 to 3500Å and the metal gate portion has a width of from about 1000 to 3000Å.

68. The structure of claim 62, wherein the gate electrode has a width of about

0.13µm and the metal gate portion has a width of from about 1800 to 2400Å.

69. The structure of claim 62, wherein the gate electrode has a height of from about

1000 to 3000Å; the silicide portion over the gate electrode has a thickness of from

about 270 to 330Å; the first ILD layer has a thickness of from about 1700 to 1900Å;

and the metal gate portion has a thickness of from about 1800 to 2200Å

70. The structure of claim 62, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of from

about 290 to 310Å; the first ILD layer has a thickness of about 1800Å; and the metal

gate portion has a thickness of from about 1900 to 2100Å.

71. The structure of claim 62, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion 30 over the gate electrode 18 has a thickness of

S/N: TBD

about 300Å; the first ILD layer has a thickness of about 1800Å; and the metal gate

portion has a thickness of about 2000Å.

72. The structure of claim 62, wherein the MOSFET includes a source silicide

portion over at least a portion of the source and a drain silicide portion over at least

a portion of the drain; and wherein the second metal contact contacts the drain

silicide portion.

73. The structure of claim 62, wherein the MOSFET includes a source CoSi_x silicide

portion over at least a portion of the source and a drain CoSix silicide portion over

at least a portion of the drain; and wherein the second metal contact contacts the

drain CoSi_x silicide portion.

74. The structure of claim 62, wherein the high f_{MAX} deep submicron MOSFET

structure is positioned within an RF circuit.

75. The structure of claim 62, wherein the gate electrode has a gate oxide

thereunder; the gate oxide having a thickness proximate the source and drain to

significantly reduce the parasitic capacitance and increase the f_{max} of the high f_{MAX}

deep submicron MOSFET structure.

S/N: TBD

76. The structure of claim 62, wherein the first ILD layer is planarized.

77. A high f_{MAX} deep submicron MOSFET structure, comprising:

a substrate;

a MOSFET on the substrate; the MOSFET having a source and a drain and including a silicide portion over a gate electrode; the gate electrode having a gate oxide thereunder; the gate oxide having a thickness proximate the source and drain to significantly reduce the parasitic capacitance and increase the f_{max} of the high f_{MAX} deep submicron MOSFET structure;

a first ILD layer over the substrate and the MOSFET wherein the silicide portion over the gate electrode is exposed;

10 a metal gate portion:

15

over the first ILD layer; and

over the silicide portion over the gate electrode;

the metal gate portion having a width substantially greater than the width of the silicide portion over the gate electrode;

a second ILD layer over the metal gate portion and the first ILD layer;

a first metal contact through the second ILD layer contacting the metal gate portion; and

a second metal contact through the second and first ILD layers contacting the

drain completing the formation of the high f_{MAX} deep submicron MOSFET

20 structure;

whereby the width of the metal gate portion reduces Rg and increases the f_{MAX} of

the high f_{MAX} deep submicron MOSFET structure.

78. The structure of claim 77, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

under the first ILD layer.

79. The structure of claim 77, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

between the first ILD layer;

the dielectric layer being comprised of Si₃N₄ or SiON.

80. The structure of claim 77, wherein the gate electrode is comprised polysilicon;

the silicide portion over the gate electrode is comprised of CoSi_x, CoSi₂, or TiSi₂; the

first ILD layer is comprised of oxide, silicon oxide, USG or TEOS; the metal gate

portion is comprised of W, Al, Cu, TiN or Au; the second ILD layer is comprised of

S/N: TBD

oxide, silicon oxide, HDP or FSG; and the first and second metal contacts are each

comprised of W or Cu.

81. The structure of claim 77, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised of CoSix; the first ILD layer

is comprised of silicon oxide; the metal gate portion is comprised of tungsten; the

second ILD layer is comprised of silicon oxide; and the first and second metal

contacts are each comprised of tungsten.

82. The structure of claim 77, wherein the gate electrode has a width of from about

500 to 5000Å and the metal gate portion has a width of from about 500 to 8000Å.

83. The structure of claim 77, wherein the gate electrode has a width of from about

1000 to 3500Å and the metal gate portion has a width of from about 1000 to 3000Å.

84. The structure of claim 77, wherein the gate electrode has a width of about

0.13µm and the metal gate portion has a width of from about 1800 to 2400Å.

85. The structure of claim 77, wherein the gate electrode has a height of from about

1000 to 3000Å; the silicide portion over the gate electrode has a thickness of from

S/N: TBD

about 270 to 330Å; the first ILD layer has a thickness of from about 1700 to 1900Å;

and the metal gate portion has a thickness of from about 1800 to 2200Å.

86. The structure of claim 77, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of from

about 290 to 310Å; the first ILD layer has a thickness of about 1800Å; and the metal

gate portion has a thickness of from about 1900 to 2100Å.

87. The structure of claim 77, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of about

300Å; the first ILD layer has a thickness of about 1800Å; and the metal gate portion

has a thickness of about 2000Å.

88. The structure of claim 77, wherein the MOSFET includes a source silicide

portion over at least a portion of the source and a drain silicide portion over at least

a portion of the drain; and wherein the second metal contact contacts the drain

silicide portion.

89. The structure of claim 77, wherein the MOSFET includes a source CoSi_x silicide

portion over at least a portion of the source and a drain CoSix silicide portion over

S/N: TBD

at least a portion of the drain; and wherein the second metal contact contacts the

drain CoSi_x silicide portion.

90. The structure of claim 77, wherein the first ILD layer is planarized.

91. The structure of claim 77, wherein the high f_{MAX} deep submicron MOSFET

structure is positioned within an RF circuit.

Remarks

In the Claims

Claims 3 to 45 have been removed from prosecution as they have

been allowed and will issue in the parent application.

Claims 46 to 91 are new and have been added to better encompass

the full scope and breadth of the invention notwithstanding the patentability of the

original claims.

CONCLUSION

S/N: TBD

Allowance of all claims is requested. Issuance of the application is

requested.

Attached hereto is a marked-up version of the changes made to

the specification and claims by the current amendment. The attached page is

captioned "Version with markings to show changes made."

It is requested that the Examiner issue only written Office Actions

and communications in this application.

Respectively submitted,

Stephen B. Ackerman

Reg. No. 37,761

S/N: TBD

Version with markings to show changes made.

Please add the following claims:

-- 46. A high f_{MAX} deep submicron MOSFET structure, comprising:

a substrate;

a MOSFET on the substrate; the MOSFET having a source and a drain and including a silicide portion over a gate electrode;

5 a first ILD layer over the substrate and the MOSFET wherein the silicide portion over the gate electrode is exposed;

a metal gate portion:

over the first ILD layer; and

over the silicide portion over the gate electrode;

the metal gate portion having a width substantially greater than the width of the silicide portion over the gate electrode;

a second ILD layer over the metal gate portion and the first ILD layer;

a first metal contact through the second ILD layer contacting the metal gate portion; and

S/N: TBD

a second metal contact through the second and first ILD layers contacting the

drain completing the formation of the high f_{MAX} deep submicron MOSFET

structure;

whereby the width of the metal gate portion reduces R_g and increases the f_{MAX} of

the high f_{MAX} deep submicron MOSFET structure.

47. The structure of claim 46, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

under the first ILD layer.

48. The structure of claim 46, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

between the first ILD layer;

the dielectric layer being comprised of Si₃N₄ or SiON.

49. The structure of claim 46, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised of CoSi_x, CoSi₂, or TiSi₂; the

first ILD layer is comprised of oxide, silicon oxide, USG or TEOS; the metal gate

portion is comprised of W, Al, Cu, TiN or Au; the second ILD layer is comprised of

S/N: TBD

oxide, silicon oxide, HDP or FSG; and the first and second metal contacts are each

comprised of W or Cu.

50. The structure of claim 46, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised CoSix; the first ILD layer is

comprised of silicon oxide; the metal gate portion is comprised of tungsten; the

second ILD layer is comprised silicon oxide; and the first and second metal contacts

each being comprised of tungsten.

51. The structure of claim 46, wherein the gate electrode has a width of from about

500 to 5000Å and the metal gate portion has a width of from about 500 to 8000Å.

52. The structure of claim 46, wherein the gate electrode has a width of from about

1000 to 3500Å and the metal gate portion has a width of from about 1000 to 3000Å.

53. The structure of claim 46, wherein the gate electrode has a width of about

0.13µm and the metal gate portion has a width of from about 1800 to 2400Å.

54. The structure of claim 46, wherein the gate electrode has a height of from about

1000 to 3000Å; the silicide portion over the gate electrode has a thickness of from

S/N: TBD

about 270 to 330Å; the first ILD layer has a thickness of from about 1700 to 1900Å;

and the metal gate portion has a thickness of from about 1800 to 2200Å.

55. The structure of claim 46, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of from

about 290 to 310Å; the first ILD layer has a thickness of about 1800Å; and the metal

gate portion has a thickness of from about 1900 to 2100Å.

56. The structure of claim 46, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of about

300Å; the first ILD layer has a thickness of about 1800Å; and the metal gate portion

has a thickness of about 2000Å.

57. The structure of claim 46, wherein the MOSFET includes a source silicide

portion over at least a portion of the source and a drain silicide portion over at least

a portion of the drain; and wherein the second metal contact contacts the drain

silicide portion.

58. The structure of claim 46, wherein the MOSFET includes a source CoSi_x silicide

portion over at least a portion of the source and a drain CoSi_x silicide portion over

S/N: TBD

at least a portion of the drain; and wherein the second metal contact contacts the

drain CoSi_x silicide portion.

59. The structure of claim 46, wherein the first ILD layer is planarized.

60. The structure of claim 46, wherein the high f_{MAX} deep submicron MOSFET

structure is positioned within an RF circuit.

61. The structure of claim 46, wherein the gate electrode has a gate oxide

thereunder; the gate oxide having a thickness proximate the source and drain to

significantly reduce the parasitic capacitance and increase the f_{max} of the high f_{MAX}

deep submicron MOSFET structure.

S/N: TBD

5

15

62. A high f_{MAX} deep submicron MOSFET structure, comprising:

a substrate;

a MOSFET on the substrate; the MOSFET having a source and a drain and including a silicide portion over a gate electrode; the gate electrode having a width of from about 500 to 5000Å;

a first ILD layer over the substrate and the MOSFET wherein the silicide portion over the gate electrode is exposed;

a metal gate portion:

over the first ILD layer;

and over the silicide portion over the gate electrode;

the metal gate portion having a width of from about 500 to 8000Å;

a second ILD layer over the metal gate portion and the first ILD layer;

a first metal contact through the second ILD layer contacting the metal gate portion; and

a second metal contact through the second and first ILD layers contacting the drain completing the formation of the high f_{MAX} deep submicron MOSFET structure;

whereby the width of the metal gate portion reduces R_g and increases the f_{MAX} of the high f_{MAX} deep submicron MOSFET structure.

63. The structure of claim 62, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

under the first ILD layer.

64. The structure of claim 62, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

between the first ILD layer;

the dielectric layer being comprised of Si₃N₄ or SiON.

65. The structure of claim 62, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised of CoSi_x, CoSi₂ or TiSi₂; the

first ILD layer is comprised of oxide, silicon oxide, USG or TEOS; the metal gate

portion is comprised of W, Al, Cu, TiN or Au; the second ILD layer is comprised of

oxide, silicon oxide, HDP or FSG; and the first and second metal contacts are each

comprised of W or Cu.

66. The structure of claim 62, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised CoSi_x; the first ILD layer is

comprised of silicon oxide; the metal gate portion is comprised of tungsten; the

S/N: TBD

second ILD layer is comprised silicon oxide; and the first and second metal contacts

each being comprised of tungsten.

67. The structure of claim 62, wherein the gate electrode has a width of from about

1000 to 3500Å and the metal gate portion has a width of from about 1000 to 3000Å.

68. The structure of claim 62, wherein the gate electrode has a width of about

0.13µm and the metal gate portion has a width of from about 1800 to 2400Å.

69. The structure of claim 62, wherein the gate electrode has a height of from about

1000 to 3000Å; the silicide portion over the gate electrode has a thickness of from

about 270 to 330Å; the first ILD layer has a thickness of from about 1700 to 1900Å;

and the metal gate portion has a thickness of from about 1800 to 2200Å

70. The structure of claim 62, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of from

about 290 to 310Å; the first ILD layer has a thickness of about 1800Å; and the metal

gate portion has a thickness of from about 1900 to 2100Å.

71. The structure of claim 62, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion 30 over the gate electrode 18 has a thickness of

S/N: TBD

about 300Å; the first ILD layer has a thickness of about 1800Å; and the metal gate

portion has a thickness of about 2000Å.

72. The structure of claim 62, wherein the MOSFET includes a source silicide

portion over at least a portion of the source and a drain silicide portion over at least

a portion of the drain; and wherein the second metal contact contacts the drain

silicide portion.

73. The structure of claim 62, wherein the MOSFET includes a source CoSix silicide

portion over at least a portion of the source and a drain CoSi_x silicide portion over

at least a portion of the drain; and wherein the second metal contact contacts the

drain CoSi_x silicide portion.

74. The structure of claim 62, wherein the high f_{MAX} deep submicron MOSFET

structure is positioned within an RF circuit.

75. The structure of claim 62, wherein the gate electrode has a gate oxide

thereunder; the gate oxide having a thickness proximate the source and drain to

significantly reduce the parasitic capacitance and increase the f_{max} of the high f_{MAX}

deep submicron MOSFET structure.

S/N: TBD

76. The structure of claim 62, wherein the first ILD layer is planarized.

77. A high f_{MAX} deep submicron MOSFET structure, comprising:

a substrate;

a MOSFET on the substrate; the MOSFET having a source and a drain and including a silicide portion over a gate electrode; the gate electrode having a gate oxide thereunder; the gate oxide having a thickness proximate the source and drain to significantly reduce the parasitic capacitance and increase the f_{max} of the high f_{MAX} deep submicron MOSFET structure;

a first ILD layer over the substrate and the MOSFET wherein the silicide portion over the gate electrode is exposed;

10 a metal gate portion:

15

over the first ILD layer; and

over the silicide portion over the gate electrode;

the metal gate portion having a width substantially greater than the width of the silicide portion over the gate electrode;

a second ILD layer over the metal gate portion and the first ILD layer;

a first metal contact through the second ILD layer contacting the metal gate portion; and

S/N: TBD

a second metal contact through the second and first ILD layers contacting the

drain completing the formation of the high f_{MAX} deep submicron MOSFET

20 structure;

whereby the width of the metal gate portion reduces R_g and increases the f_{MAX} of

the high f_{MAX} deep submicron MOSFET structure.

78. The structure of claim 77, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

under the first ILD layer.

79. The structure of claim 77, including a dielectric layer:

over the substrate and MOSFET but not over the silicide portion over the

gate electrode; and

between the first ILD layer;

the dielectric layer being comprised of Si₃N₄ or SiON.

80. The structure of claim 77, wherein the gate electrode is comprised polysilicon;

the silicide portion over the gate electrode is comprised of CoSi_x, CoSi₂, or TiSi₂; the

first ILD layer is comprised of oxide, silicon oxide, USG or TEOS; the metal gate

portion is comprised of W, Al, Cu, TiN or Au; the second ILD layer is comprised of

S/N: TBD

oxide, silicon oxide, HDP or FSG; and the first and second metal contacts are each

comprised of W or Cu.

81. The structure of claim 77, wherein the gate electrode is comprised of polysilicon;

the silicide portion over the gate electrode is comprised of CoSix; the first ILD layer

is comprised of silicon oxide; the metal gate portion is comprised of tungsten; the

second ILD layer is comprised of silicon oxide; and the first and second metal

contacts are each comprised of tungsten.

82. The structure of claim 77, wherein the gate electrode has a width of from about

500 to 5000Å and the metal gate portion has a width of from about 500 to 8000Å.

83. The structure of claim 77, wherein the gate electrode has a width of from about

1000 to 3500Å and the metal gate portion has a width of from about 1000 to 3000Å.

84. The structure of claim 77, wherein the gate electrode has a width of about

0.13μm and the metal gate portion has a width of from about 1800 to 2400Å.

85. The structure of claim 77, wherein the gate electrode has a height of from about

1000 to 3000Å; the silicide portion over the gate electrode has a thickness of from

S/N: TBD

about 270 to 330Å; the first ILD layer has a thickness of from about 1700 to 1900Å;

and the metal gate portion has a thickness of from about 1800 to 2200Å.

86. The structure of claim 77, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of from

about 290 to 310Å; the first ILD layer has a thickness of about 1800Å; and the metal

gate portion has a thickness of from about 1900 to 2100Å.

87. The structure of claim 77, wherein the gate electrode has a height of from about

1500 to 2200Å; the silicide portion over the gate electrode has a thickness of about

300Å; the first ILD layer has a thickness of about 1800Å; and the metal gate portion

has a thickness of about 2000Å.

88. The structure of claim 77, wherein the MOSFET includes a source silicide

portion over at least a portion of the source and a drain silicide portion over at least

a portion of the drain; and wherein the second metal contact contacts the drain

silicide portion.

89. The structure of claim 77, wherein the MOSFET includes a source CoSi_x silicide

portion over at least a portion of the source and a drain CoSix silicide portion over

S/N: TBD

at least a portion of the drain; and wherein the second metal contact contacts the drain CoSi_x silicide portion.

90. The structure of claim 77, wherein the first ILD layer is planarized.

91. The structure of claim 77, wherein the high f_{MAX} deep submicron MOSFET structure is positioned within an RF circuit. --