Intro of Out-of-distribution Generalization

Dinghuai Zhang 2020.12

What's "spurious" correlation?

Common training examples

Waterbirds

y: waterbird a: water background

a: female

y: landbird a: land background

y: dark hair a: male

Test examples

y: waterbird a: land background

y: blond hair a: male

CelebA

"true label" and "spurious label"

What's "spurious" correlation?

"true label" and "spurious label"

GroupDRO

$$\hat{\theta}_{\mathrm{DRO}} := \underset{\theta \in \Theta}{\mathrm{arg\,min}} \Big\{ \hat{\mathcal{R}}(\theta) := \underset{g \in \mathcal{G}}{\mathrm{max}} \, \mathbb{E}_{(x,y) \sim \hat{P}_g}[\ell(\theta;(x,y))] \Big\},$$

DISTRIBUTIONALLY ROBUST NEURAL NETWORKS FOR GROUP SHIFTS:
ON THE IMPORTANCE OF REGULARIZATION FOR WORST-CASE GENERALIZATION, Shiori Sagawa et al.

Standard	Regularization
	Strong ℓ_2 Penalty

		Average Accuracy		Worst-Group Accuracy			
		ERM	DRO	ERM	DRO		
Waterbirds	Train	100.0	100.0	100.0	100.0		
	Test	97.3	97.4	60.0	76.9		
CelebA	Train	100.0	100.0	99.9	100.0		
	Test	94.8	94.7	41.1	41.1		
MultiNLI	Train	99.9	99.3	99.9	99.0		
	Test	82.5	82.0	65.7	66.4		
,							
Waterbirds	Train	97.6	99.1	35.7	97.5		
	Test	95.7	96.6	21.3	84.6		
CelebA	Train	95.7	95.0	40.4	93.4		
	Test	95.8	93.5	37.8	86.7		

Overparameterization exacerbates spurious correlations

As model size grows, avg errors decrease, but worst group error increases

Reason: overparametrized models use spurious feature to classify

An investigation of why overparameterization exacerbates spurious correlations, Shiori Sagawa et al.

How to get rid of "spurious" feature? Or, how to do invariant learning

Causal inference using invariant prediction: identification and confidence intervals. Jonas Peters et al

Invariant Causal Predictoin (ICP)

Assumption 1 (Invariant prediction) There exists a vector of coefficients $\gamma^* = (\gamma_1^*, \dots, \gamma_p^*)^t$ with support $S^* := \{k : \gamma_k^* \neq 0\} \subseteq \{1, \dots, p\}$ that satisfies

for all
$$e \in \mathcal{E}$$
: X^e has an arbitrary distribution and
$$Y^e = \mu + X^e \gamma^* + \varepsilon^e, \quad \varepsilon^e \sim F_\varepsilon \text{ and } \varepsilon^e \perp X^e_{S^*}, \tag{3}$$

where $\mu \in \mathbb{R}$ is an intercept term, $\varepsilon^{\underline{e}}$ is random noise with mean zero, finite variance and the same distribution F_{ε} across all $e \in \mathcal{E}$.

We will interchangeably use "domain" and "environment".

Causal Transfer Learning

```
Algorithm 1: Subset search
   Inputs: Sample (\mathbf{x}_i^k, y_i^k)_{i=1}^{n_k} for tasks k \in \{1, \dots, D\}, threshold \delta for independence
     test.
   Outputs: Estimated invariant subset \hat{S}.
1 Set S_{acc} = \{\}, MSE = \{\}.
2 for S \subseteq \{1,\ldots,p\} do
        linearly regress Y on \mathbf{X}_S and compute the residuals R_{\beta^{CS(S)}} on a validation set.
        compute H = \text{HSIC}_b\left((R_{\beta^{CS(S)},i}, K_i)_{i=1}^n\right) and the corresponding p-value p^* (or
         the p-value from an alternative test, e.g., Levene test.).
        if p^* > \delta then
5
             compute \widehat{\mathcal{E}}_{\mathbb{P}^1,\dots,D}(\beta^{CS(S)}), the empirical estimate of \mathcal{E}_{\mathbb{P}^1,\dots,D}(\beta^{CS(S)}) on a
              validation set.
             S_{acc}.add(S), MSE.add(\widehat{\mathcal{E}}_{\mathbb{P}^1,...,D}(\beta^{CS(S)}))
        end
9 end
10 Select \hat{S} according to RULE, see Section 3.4.
```

Invariant Risk Minimization

$$\min_{\substack{\Phi:\mathcal{X}\to\mathcal{H}\\w:\mathcal{H}\to\mathcal{Y}}} \sum_{e\in\mathcal{E}_{\mathrm{tr}}} R^e(w\circ\Phi)$$
subject to $w\in \underset{\bar{w}:\mathcal{H}\to\mathcal{Y}}{\arg\min} R^e(\bar{w}\circ\Phi)$, for all $e\in\mathcal{E}_{\mathrm{tr}}$. (IRM)

$$\min_{\Phi: \mathcal{X} \to \mathcal{Y}} \sum_{e \in \mathcal{E}_{tr}} R^e(\Phi) + \lambda \cdot \|\nabla_{w|w=1.0} R^e(w \cdot \Phi)\|^2,$$
 (IRMv1)

ColoredMNIST

- Binary classification: 0~4 as positive class, 5~9 as negative class
- Each image is either red or green
- Domain1 (train): In all positive images, 70% are red; in all negative images, 30% are red.

Algorithm	Acc. train envs.	Acc. test env.
ERM	87.4 ± 0.2	17.1 ± 0.6
IRM (ours)	70.8 ± 0.9	66.9 ± 2.5
Random guessing (hypothetical)	50	50
Optimal invariant model (hypothetical)	75	75
ERM, grayscale model (oracle)	73.5 ± 0.2	73.0 ± 0.4

REx

$$\mathcal{R}_{\text{V-REx}} \doteq \beta \text{Var}(\{\mathcal{R}_1, ..., \mathcal{R}_m\}) + \sum_{e=1}^m \mathcal{R}_e$$

Out-of-Distribution Generalization via Risk Extrapolation (REx), David Krueger et al.

Learning explanations that are hard to vary

$$\mathcal{C}^{\epsilon}(\theta^*) := -\max_{(e,e')\in\mathcal{E}^2} \max_{\theta\in N_{e,\theta^*}^{\epsilon}} |\mathcal{L}_{e'}(\theta) - \mathcal{L}_{e}(\theta)|.$$

Learning explanations that are hard to vary Giambattista Parascandolo et al.

"and mask"

a threshold
$$\tau \in [0, 1]$$

$$[m_{\tau}]_j = \mathbb{1} [\tau d \leq |\sum_e \operatorname{sign}([\nabla \mathcal{L}_e]_j)|]$$

$$m_t(\theta) \odot \nabla \mathcal{L}(\theta)$$

Learning explanations that are hard to vary Giambattista Parascandolo et al.

Figure 5: A 4-dimensional instantiation of the synthetic memorization dataset for visualization. Every example is a dot in both circles, and it can be classified by finding either of the "oracle" decision boundaries shown.

Figure 6: Results on the synthetic dataset.

CIFAR10 random label

Figure 8: As the AND-mask threshold increases, memorization on CIFAR-10 with random labels is quickly hindered.

Learning explanations that are hard to vary Giambattista Parascandolo et al.

Gradient Starvation

"overfitting" property of ERM

Gradient Starvation: A Learning Proclivity in Neural Networks Mohammad Pezeshki et al.

Learning from Failure

- Setting: eg. No multiple domains
- 99% data: label & color has 1 to 1 corresponding
- 1% data: label & color has no corresponding

Learning from Failure: Training Debiased Classifier from Biased Classifier Junhyun Nam et al.

- More papers at https://sites.google.com/site/irinarish/ood_generalization
- Thank you very much!