Teorema (Euler)

Si G es un grafo conexo plano con n vértices, e aristas y f caras, entonces

$$n - e + f = 2$$

Demostración (Inducción sobre n):

- Paso base: n = 1, G consta únicamente de bucles.
 - Si e = 0, f = 1. (La fórmula es válida).
 - Si e > 0, cada bucle adicional pasa a través de una cara y la corta en dos (Jordan), esto aumenta el número de aristas y el número de caras en 1.

Luego la fórmula se cumple para n=1 y cualquier número de aristas.

- Paso inductivo: n > 1, supongamos que la fórmula es válida para todo grafo con menos de n vértices.
 - \circ Como G es conexo, existe una arista que no es un bucle.
 - Si se contrae esta arista se obtiene un grafo plano G' con n' vértices, e' aristas y f' caras.
 - La contracción no cambia el número de caras (sólo se reduce la frontera), pero reduce el número de vértices y aristas en 1, luego f' = f, e' = e 1 y n' = n 1 < n.
 - Por hipótesis de inducción, n' e' + f' = 2.
 - Por lo tanto, (n-1) (e-1) + f = 2, es decir, n-e+f=2.

Corolario

Si G es un grafo plano simple con al menos tres vértices, entonces

$$e < 3n - 6$$

- Si *G* es conexo:
 - o Como G es simple y $n \ge 3$, $I(F_i) \ge 3$. (No hay bucles que generan fronteras de longitud 1 ni aristas múltiples que generan fronteras de longitud 2).
 - Luego $\sum I(F_i) \ge 3f$, es decir, $2e \ge 3f$.
 - Como f = e n + 2, $2e \ge 3e 3n + 6$, es decir, $e \le 3n 6$.
- Si G no es conexo: Se agregan aristas a G hasta que sea conexo, en este caso, G' es un grafo conexo con e' aristas y n vértices. Luego $e < e' \le 3n 6$.

G simple: No hay

→ No hay fronteras

bucles

de longitud 1

Como G es conexo, vale Eule:

$$n-e+f=2 \rightarrow f=2-n+e$$

E no conexo : e aristas

G:
$$\begin{cases} n \\ e^{2} \\ f \end{cases}$$
Lema
$$e < e^{2} \leq 3n - 6$$

$$e < e^{2} \leq 3n - 6$$

Proposición

Sea G un grafo plano simple con n vértices, entonces las siguientes proposiciones son equivalentes:

- I. G tiene 3n 6 aristas.
- II. G es una triangulación.
- III. G es un grafo plano maximal.

- 141 $e = 3n 6 \text{ sii } n = \frac{e + 6}{3} \text{ sii } 3f = 2e = \sum l(F_i) \text{ sii } l(F_i) = 3.$
- Hay una cara cuya frontera es mayor a un 3-ciclo sii hay una forma de agregar una arista para obtener un grafo simple mayor.

· G no es triangulación

Teorema (Kuratowski)

- Un grafo G es plano sii no contiene una subdivisión de K_5 o $K_{3,3}$.
- Un grafo G es plano sii no contiene un subgrafo homeomorfo a K_5 o $K_{3,3}$.

- · H = G (Eliminar vértices o aristas)
- · Régniciones en serie (a enpainisiones)
- $\cdot \quad H \qquad \left(\begin{array}{ccc} H' \stackrel{\triangle}{=} K_5 & o & H' \stackrel{\triangle}{=} K_{3,3} \end{array} \right) .$

G contiene un subgrafo (H)

homeomorfo (H')
$$\alpha$$
 K_5 \Rightarrow $K_{3,3}$ \Longrightarrow G no es plano

 $(H' \cong K_5 \oplus K_{3,3})$

Grafo de Petersen

- 1. Elimino el vértice b: G1 subgrafo de G.
- 2. Reducción en serie en a, en g y en c: Gz

G2 es Homeomorfo a G1

 $G_2 \cong K_{3,3}$

G contiene un subgraso homeomorfo a K3,3.

Por el teorema de Kuratowski G no es plano.