Detailed Notes on SOA, Web Services, QoS, SLA, Scalability, and Elasticity

Contents

1	Ser	vice-Oriented Architecture (SOA)	2
	1.1	Definition	2
	1.2	Key Characteristics	2
	1.3	Approach	2
2	Wel	b Services	3
	2.1	Definition	3
	2.2	Key Characteristics	3
	2.3	Web Services Description Language (WSDL)	3
	2.4	Types of Operations in WSDL	3
3	Qua	ality of Service (QoS) and Service-Level Agreements (SLA)	4
	3.1	Quality of Service (QoS)	4
		3.1.1 Definition	4
		3.1.2 Modern Use	4
	3.2	Service-Level Agreement (SLA)	4
		3.2.1 Definition	4
		3.2.2 Key Components	4
4	Sca	lability and Elasticity	5
	4.1	Scalability	5
		4.1.1 Definition	5
	4.2	Elasticity	5
		4.2.1 Definition	5
	4.3	Achieving Scalability and Elasticity	5
		4.3.1 Methods	5
5	Dyr	namic Provisioning in Detail	5
6	Mu	lti-Tenant Design in Detail	6

1 Service-Oriented Architecture (SOA)

1.1 Definition

- Service-Oriented Architecture (SOA) is a software design approach where applications are constructed as a collection of services.
- These services are modular, reusable, and can interact with each other to perform tasks.
- SOA emphasizes flexible design principles for scalable, maintainable, and reusable services.

1.2 Key Characteristics

1. Collection of Services:

• Independent, modular components performing specific functions.

2. Flexible Design Principles:

• Supports scalable and maintainable service development.

3. Loosely Coupled:

• Services can be modified or replaced with minimal impact on others.

4. Reusable Across Domains:

• Services are versatile and reduce development redundancy.

1.3 Approach

- Often implemented using the Web Service model.
- Utilizes standard protocols such as HTTP, SOAP, or REST for seamless communication between services.

2 Web Services

2.1 Definition

- Web Services are self-describing, stateless modules accessible over a network.
- They expose functionalities through APIs (Application Programming Interfaces).

2.2 Key Characteristics

1. Self-Describing:

• Defined using standards like WSDL (Web Services Description Language).

2. Stateless:

• No client state information is retained between requests.

3. Accessible over the Network:

• Services are available over the internet.

2.3 Web Services Description Language (WSDL)

- An XML-based language describing the details of a web service.
- Specifies data types, messages, and operations provided by the service.

2.4 Types of Operations in WSDL

- 1. **One-Way**: A message is sent without expecting a response.
- 2. Request & Response: A client sends a request and waits for a response.
- 3. Solicit Response: The service sends a request and expects a response.
- 4. **Notification**: A service sends messages without expecting a response.

3 Quality of Service (QoS) and Service-Level Agreements (SLA)

3.1 Quality of Service (QoS)

3.1.1 Definition

• A set of technologies aimed at managing network traffic to improve user experience.

3.1.2 Modern Use

1. Customer Care Evaluations:

- Focuses on QoS from customer experience perspective.
- Only issues negatively affecting customer satisfaction, such as delays or interruptions in services, are considered.

2. Technological Evaluations:

- Involves assessing the performance of technical systems.
- Adjustments in procedures or software are made to optimize performance and resource utilization, ensuring smooth and efficient operations.

3.2 Service-Level Agreement (SLA)

3.2.1 Definition

• A formal contract between a service provider and a customer outlining service standards.

3.2.2 Key Components

1. Performance Guarantee Metrics:

- Metrics like up-time ratio, system throughput, and response time.
- Up-time and Down-time Ratio: Specifies the expected availability of the service.
- **System Throughput**: Measures the amount of data processed by the system in a given time frame.
- Response Time: The time it takes for the system to respond to user requests.

2. Problem Management:

• Details the process for addressing issues.

3. Penalties for Non-Performance:

• Specifies penalties or compensations if the service provider fails to meet agreed performance levels.

4. Documented Security Capabilities:

• Outlines the security measures in place to protect the customer's data and ensure service reliability.

4 Scalability and Elasticity

4.1 Scalability

4.1.1 Definition

• Ability of a system to handle increased work or expand to manage growth.

4.2 Elasticity

4.2.1 Definition

• System's ability to automatically adapt to changing demand by scaling resources up or down.

4.3 Achieving Scalability and Elasticity

4.3.1 Methods

1. Dynamic Provisioning:

- **Definition**: Automatically adjusting resources (like servers or storage) based on current demand.
- How it works: Administrators or systems can allocate or deallocate resources in real-time to match user needs.

2. Multi-Tenant Design:

- A single application serves multiple customers with individualized environments.
- **Definition**: A software architecture where a single instance of the application serves multiple customers (tenants).
- How it works: Each customer gets a virtual partition of the application, allowing them to customize their experience without affecting others.

5 Dynamic Provisioning in Detail

• Problem in Traditional Computing:

- 1. Under-Provisioning: Insufficient resources leading to poor performance.
- 2. Over-Provisioning: Excess resources leading to wasted costs.
- Solution: Adjust resources in real-time to match user demand.

6 Multi-Tenant Design in Detail

- **Definition**: One software application serves multiple customers securely.
- Features:
 - 1. Customization: Tailoring services without affecting others.
 - 2. Quality of Service: Ensures secure, reliable service.