Zadanie 3

 $\it Superciągiem$ ciągów X i Ynazywamy każdy taki ciągZ,że zarówno Xjak i Ysą podciągami ciągu Z

Ułóż algorytm, który dla danych ciągów X i Y znajduje ich najkrótszy superciąg.

(ang. Shortest Common Supersequence, SCS)

Algorytm

Problem można rozwiązać przy użyciu programowania dynamicznego. Niech $X=x_1x_2...x_n$ oraz $Y=y_1y_2...y_m$ będą ciągami wejściowymi o długościach odpowiednio n=|X| i m=|Y|.

Obliczanie długości SCS

Definiujemy tablicę dp[i,j] jako długość najkrótszego wspólnego superciągu dla prefiksów X[1..i] oraz Y[1..j]. Wartości w tablicy obliczamy zgodnie z następującą rekurencją, zakłądając indeksowanie od 1:

$$\mathrm{dp}[i,j] = \begin{cases} j & \mathrm{dla}\ i = 0 \\ i & \mathrm{dla}\ j = 0 \\ \mathrm{dp}[i-1,j-1] + 1 & \mathrm{jeśli}\ x_i = y_j \\ \min(\mathrm{dp}[i-1,j],\mathrm{dp}[i,j-1]) + 1\ \mathrm{jeśli}\ x_i \neq x_j \end{cases}$$

Ostateczna długość najkróteszego superciągu dla całych ciągów X i Y znajduje się w komórce $\mathrm{dp}[n,m].$

Odtworzenie superciągu

Aby odtworzyć sam superciąg (a nie tylko jego długość), należy prześledzić ścieżkę w tablicy dp od komórki (n,m) do (0,0). Zaczynając od $i=n,\,j=m$, wykonujemy następujące kroki, dopóki i>0 lub j>0.

- 1. Jeśli $x_i = y_j$: dodajemy x_i na początek wyniku i przechodzimy do komórki (i-1,j-1).
- 2. Jeśli $x_i \neq y_i$:
 - i. Jeśli $\mathbf{dp}[i-1,j] \leq \mathbf{dp}[i,j-1]$: dodajemy X_i na początek wyniku i przechodzimy do komórki (i-1,j).
 - ii. Jeśli $\mathbf{dp}[i-1,j]>\mathbf{dp}[i,j-1]$: dodajemy Y_j na początek wyniku i przechodzimy do komórki (i,j-1).
- 3. Jeśli i = 0: dodajemy pozostały prefiks Y[1..j] na początek wyniku i kończymy.
- 4. Jeśli j = 0: dodajemy pozostały prefiks X[1..i] na początek wyniku i kończymy.

Dowód poprawności

W każdej komórce dp[i, j] przechowujemy długość najkrótszego wspólnego superciągu dla prefiksów X[1..i] i Y[1..j]. Poprawność algorytmu wynika z zasady optymalności.

1. Przypadki bazowe:

i. dp[i, 0] = i:

Najkrótszy superciąg dla X[1..i] i pustego ciągu to sam X[1..i], który ma długość i.

ii. dp[0, j] = j:

Analogicznie dla Y[1..j] i pustego ciągu.

2. Krok rekurencyjny:

Rozważmy problem dla dp[i, j].

i. Jeśli $x_i = y_i$:

Ostatni znak obu prefiksów jest taki sam. Możemy go użyć jako ostatniego znaku wspólnego superciągu. Pozostała część superciągu musi być najkrótszym superciągiem dla prefiksów X[1..i-1] i Y[1..j-1]. Jego długość to $\mathrm{dp}[i-1,j-1]$. Zatem całkowita długość wynosi $\mathrm{dp}[i-1,j-1]+1$.

ii. Jeśli $x_i \neq y_i$:

Ostatnio znak superciągu musi być albo x_i , albo y_i .

- a. Jeśli wybierzemy x_i , musimy znaleźć SCS dla X[1..i-1] i Y[1..j], a następnie dołączyć x_i . Długość wyniesie ${\rm dp}[i-1,j]+1$.
- b. Jeśli wybierzemy y_j , musimy znaleźć SCS dla X[1..1] i Y[1..j-1], a następnie dołączyć y_j . Długość wyniesie dp[i,j-1]+1.

Wybieramy opcję, kóra dalej krótszy wynik, stąd $\min(dp[i-1,j],dp[i,j-1]) + 1$.

Ponieważ w każdym kroku podejmujemy optymalną lokalnie decyzję, która prowadzi do globalnego optimum, algorytm jest poprawny.

Analiza złożoności

Niech n = |X| oraz m = |Y|.

- Złożoność czasowa: Algorytm wypełnia tablicę o wymiarach $(n+1) \times (m+1)$. Obliczenie wartości każdej komórki zajmuje stały czas O(1). Odtworzenie ciągu trwa O(n+m), ponieważ przechodzimy od (n,m) do (0,0). Zatem całkowita złożoność czasowa wynosi $O(n \cdot m)$.
- Złożoność pamięciowa: Wymagane jest przechowywanie całej tablicy dp, co zajmuje $O(n\cdot m)$ pamięci.