Neuroinformatics Lecture (L1)

Prof. Dr. Gordon Pipa

Institute of Cognitive Science, University of Osnabrück

My Short CV

- Since 2011, professor and chair of the Neuroinformatics Department at the Institute of Cognitive Science in Osnabrück
- 2010: Habilitation in Biology at the TU-Darmstadt
- **Till 2010**, research group leader at *Max-Planck Institute for Brain Research in Frankfurt* and the *Frankfurt Institute of Advanced Studies*
- 2007–2009: Research fellow at the Massachusetts Institute for Technology and Harvard MGH
- 2006: Visiting Professor at the Balearic Institute of Complex Sciences
- 2002–2006: PhD thesis in informatics at Max-Planck Institute for Brain Research in Frankfurt and TU-Berlin
- 2002: Diploma in theoretical physics with a focus on stochastic and correlated systems

- Lectures are available via StudIP as Flash movies after the lecture was given.
- Exercise sheets are available via StudIP as a PDF.
- Solutions for the exercises will be available via StudIP as a PDF after the due date.
- Questionnaires and their solutions will be available via StudIP as a PDF after the lecture.

Color codes

Orange Q: Questionnaire Questions

Blue S: Questionnaire Solutions

Green R:

Rehearsal of last lecture

Probability Theory

Rehearsal

Classes of events x and y i.e. :

Classes x: Color: Red or Blue Classes y: Fruit: Apple or Orange

$$N = \sum_{i,j} n_{i,j} \quad c_i = \sum_j n_{i,j}$$

Marginal Probability

(Probability of X=x irrespective of class y)

$$p(X = x_i) = \frac{c_i}{N}.$$

Conditional Probability (Probability of Y=y given class X=x)

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Joint Probability (Probability of X=x and Y=y)

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Neuroinformatics - Prof. Dr. Gordon Pipa

Blue 4W:

- What is this it all about?
- What can I use it for?
- Why should I learn it?
- Potential BsC and MsC thesis topics

TRENDS in Cognitive Sciences Vol.10 No.7 July 2006

SCIENCE CO DIRECT.

Special Issue: Probabilistic models of cognition

Bayesian decision theory in sensorimotor control

Konrad P. Körding¹ and Daniel M. Wolpert²

¹Brain and Cognitive Sciences, Massachusetts Institute of Technology, Building NE46-4053, Cambridge, Massachusetts, 02139, USA ²Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK

Paper is uploaded in Studip

Neuroinformatics - Prof. Dr. Gordon Pipa

Importance of the lecture

- Participate!
- Use the lecture to ask question!
- Working from home does not replace the lecture.
- The lecture is important since it allows to US to interact. This gives you clues about the relevant topics for the exam!
- In the past we saw a strong correlation between grades in the exam and active presence in the lecture
- If you have a questions: Stop me and wave you hands,

Lecture Script

- Comes in a ZIP with Matlab files included
- Always work in progress!
- Migth be updated several times throughout the semester
- Version number will be indicated in file names
- If you find mistakes or if something is incomprehensible, write an email to niscript@ni.uos.de

Content Lecture Script Version 5.b

Neuroinformatics lecture script

Contents

1	Rec	ommended Literature	4
2	Intro	oduction	7
	2.1	Why do we need statistical modeling?	7
	2.2	Example: Model fitting	7
	2.3	How is the model constructed?	7
	2.4	Example: Linear combinations of polynomials	8
	2.5	Outlook: What is it useful for?	8
3	Drol	pability theory and related topics	10
,	3.1	Marginal probability	10
	3.2	Conditional probability	11
	3.3	Joint probability	11
	3.4	Sum and product rule	11
	3.5	Bayes' theorem	12
	3.6	Summary: Probability theory and Bayes	13
	3.7	Continuous random variables probability density functions	13
	3.8	Transformation of densities	15
	3.0	3.8.1 Example: Transformation of densities	16
	3.9		17
	3.9	Expectations	11
4	Grap	phical models	19
	4.1	Bayesian networks	19
	4.2	Statistical independence of variables	21
		4.2.1 Conditional independence of variables	21
	4.3	D-separation: Statistical independence in graphs	21
		4.3.1 Head-to-tail nodes	21
		4.3.2 Fixed head-to-tail nodes	23
	4.4	Head-to-head nodes	23
	4.5	Fixed head-to-head nodes	24
	4.6	Tail-to-tail nodes	24
		4.6.1 Fixed tail-to-tail nodes	25
	4.7	Overview & more	25
5	Prol	pability distributions	27
•	5.1	Discrete distributions	27
	5.1	5.1.1 Bernoulli distribution	27
		5.1.2 Binomial distribution	28
		5.1.3 Poisson distribution	28
	5.2	Continuous distributions	29
	3.2	5.2.1 Normal distribution	29
		5.2.2 Gamma distribution	31
		5.2.3 Beta distribution	32
		5.2.4 χ^2 distribution	33
	5.3		35
	5.3	Summary	33
6		lel Fitting via Maximum Likelihood	36
	6.1	The Maximum Likelihood Approach - Univariate Data	
		Sets	36
		6.1.1 Rationale of The ML Approach	37
		6.1.2 Setting up the likelihood function (for a single	
		data point)	37

Neuroinformatics lecture script

		6.1.3 Joint Likelihood (multiple data points) 6.1.4 Deriving the ML Estimators	38 38	
		6.1.5 Normal Distributions: Deriving μ_{ML}	38	
		6.1.6 Normal Distributions: σ_{MI}^2 and bias	40	
		6.1.7 Overview	41	
	6.2	Bivariate data: The linear regression	42	
	0.2	6.2.1 Transition from univariate data	42	
		6.2.2 The underlying model	43	
		6.2.3 Setting up our model	43	
		6.2.4 Setting up the likelihood function (bivariate) .	44	
		6.2.5 Maximizing the likelihood: The method of least		
		squares	44	
		6.2.6 The Moore-Penrose-pseudoinverse	46	
	6.3	Examples of model fitting (bivariate)	46	
		6.3.1 The pen and paper method	46	
		6.3.2 Fitting a model to data using Matlab	48	
7	Basi	s functions	51	
	7.1	Polynomial basis functions	51	
	7.2	Gaussian basis functions	51	
	7.3	Sigmoidal basis functions	52	
	7.4	Sinusoid basis functions	52	
	7.5	Bin-based basis functions	54	
		7.5.1 Continuity in piecewise polynomials	54	
		7.5.2 B-splines	55	
8	Gen	eralizability, validation and model selection	57	
	8.1	Training- and validation data	57	
	8.2	Number of basis functions, over- and underfitting	57	
	8.3	Cross-validation	58	
9	Model selection: Nested models, likelihood ratio and deviance			
	9.1	Nested and saturated models	61	
	9.2	Likelihood ratios	61	
	9.3	Saturated models	63	
10	Bias	-variance-decomposition	64	
11	Reg	ularization	66	
12	Bayı	esian regression	70	
		Conjugate prior and MAP estimates for Bernoulli	71	
		Sequential updates to the posterior/ prior	72	
		Choosing the right prior	73	
		Bayesian regression and regularization	73	
13	Mod	lel selection: Akaike Information Criterion	75	
_		The Kullback-Leibler divergernce	75	
		AIC: A bias-corrected approximation of the KL divergence		
		lel selection: Bootstrap and EIC	78	

Neuroinformatics lecture script

2 Introduction

2.1 Why do we need statistical modeling?

When collecting data in the real world - e.g. recording the spiking of a neuron - the data recorded is usually subject to random fluctuations (noise). Often the noise is intense enough to nearly completely hide the true structure of the data. We use statistical modeling to reconstruct this underlying structure from noisy data.

2.2 Example: Model fitting

Figure. An example of statistical modeling, In the first plot, we see the original function of lactic called underlying function or underlying model), which represents some course of a variable. For instance, this could be voltage over time, maybe a neuron's membrane potential, but also EEG-or behavioral data. The underlying function is unknown to us in the real world. Here, all we ever have is measured data, which is subject to noise, i.e. the observations are a superposition of the original (or underlying) function and noise (second plot). In order to unover the structure of the underlying function, we fit a flexible function to the observed data, the result is what we call our model (furth plot, teel (in). You can see a comparison of the estimated model (red) with the underlying function (black) in the fourth plot. Bear in mod that this comparison can't be done in the real world, since we never know the exact underlying function (black).

2.3 How is the model constructed?

Our estimated model (e.g., the red curve above) is a weighted inear combination of functions - so called basis functions - and consequently a function itself. The basis functions within a model usually stem from the same family of functions, e.g. polynomials, gaussians or cubic splines. In the first part of the lecture (and the script), we will mostly deal with polynomials as basis functions. Accordingly, our in basis functions are "xi", xi", xi", xi", in principle, was refre to choose the number of basis functions curselves. The corresponding weights are called w₀, w₁, x₂, ..., w₁. Thus, our polynomial model is defined as

 $y = w_0 + w_1x + w_2x^2 + ... + w_nx^n$

or in a different notation $y(\vec{w},x) = \sum (w_i \cdot x^i).$

For a better understanding, the Mallab code behind many of the figures in this script is provided with the script. Offen, an algorithmic approach is easier to understand than an analytic one. Thus, if there is anything you don't get, and there's a related figure, reading the code and playing around with it is highly recommensed. We aimed to so basic programming skills should emable you to understand the code in most cases. The Matlab fee for this figure is provided in childrig. In this case, you probably won't understand what the code is doing just yet. However, you might want to come back for

Matlab files for reproducing figures in the script

Structure of the Lecture series:

L1-8 : Probability and Maximum Likelihood

L9-10 : Regression Problem

L11 : Brain computer Interface

L12 : Nested Models

L13 : Families of Basis Functions

L14 : Bias Variance Decomposition

L15 : Modell selction AIC

L16-17 : Bootstrap EIC

L18 : Deep Brain stimulation (Theory and Practice)

L19 : Non-Gaussian Regression

L20 : Christmas Lecture (Awakenings / Zeit des Erwachens)

: Rehearsal of what we learned so far

L22 : Regularization

L23 : Bayes Regression – Maximum a posteriori

L24-25 : Classification

L26-27 : Expectation Maximization

L28 : QA

Written EXAM: 8th feb. from 4-8 p.m.

 Pattern Recognition and Machine Learning by Christopher M. Bishop, Publisher: Springer http://research.microsoft.com/en-us/um/people/cmbishop/prml/

Very nice book, from easy to advanced

Machine Learning: A Probabilistic Perspective

by Kevin Murphy, The MIT Press (7. September 2012)

Very nice book, from easy to advanced. Gives nice inside in BIG-Data analysis and what *Google* does!

http://www.cs.ubc.ca/~murphyk/MLbook/

Pattern Classification (2nd Edition)
 (Student Solutions Manual also available)
 by Duda, Hart, and Storck

Emphasizes classification, from easy to advanced

In All Likelihood

By Y. Pawitan, Publisher: Oxford University Press

Rather Advanced

 Advanced Engineering Mathematics Textbook (Student Solutions Manual also available)

by Erwin Kreyszig Mai 2011 61,90 Euro

2011. 1152 pages, Softcover

ISBN-10: 0-470-64613-6

ISBN-13: 978-0-470-64613-7 - John Wiley & Sons

Great Math book. Gives examples and combines these with rigorous proofs.

Edition 2007

273 pages,

Hard cover

English

Springer, Berlin

ISBN-10: 0387718869

ISBN-13: 9780387718866

Advanced!

Great book for people who want to know all about model selection

Neuroinformatics Lecture

Motivation for this course

- Modeling relations from data
- Inferring information from data
- Classifying data
- Predicting outcomes from data
- Identifying computational principles from the brain
- Understanding neuronal coding and behaviour

Other definition (emphasizes more the informatics part):

Development of tools for simulating neuronal activity, storing data. It is more like bioinformatics for neuroscience

Macroscopic network

Hagmann, et al. (2008), 'Mapping the structural core of human cerebral cortex' PLoS Biol 6(7): e159

Mesoscopic network

Modified figure from Blue Brain Project

Multiscale complex recurrent network of very heterogeneous elements that is self-organized and delay-coupled

Nested multi-scale encoding model

To what degree is the neuron's response driven by the input or stimulus, and emergent network activity?

- R. Haslinger, G. Pipa, B. Lima, W. Singer, E. N. Brown and S. Neuenschwander, 'Context Matters: The Illusive Simplicity of Macaque V1 Receptive Fields' (accepted in PLOS ONE)
- S. V. David, W. E. Vinje, J. L. Gallant, 'Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons', *The Journal of Neuroscience*, August 4, 2004 24(31):6991–7006 6991

To what degree is the neuron's response driven by the input or stimulus, and emergent network activity?

- G. Pipa, S. Neuenschwander, B. Lima, Z. Chen, E.N. Brown, 'Tomographic Reconstruction of Receptive fields', accepted in *Neural Computation*
- R. Haslinger, G. Pipa, B. Lima, W. Singer, E. N. Brown and S. Neuenschwander, 'Context Matters: The Illusive Simplicity of Macaque V1 Receptive Fields' (accepted in PLOS ONE)

Modeling of the encoding

1. Point Process GLM: inhomogeneous Poisson model

$$\lambda(t_k|f_{eta})_{GLM} = e^{\psi_{
m stim}(t_k)}$$

Modeling of the encoding

1. Point Process GLM: inhomogeneous Poisson model

$$\lambda(t_k|f_\beta)_{GLM} = e^{\psi_{\text{stim}}(t_k)}$$

Model is based on cubic splines

Dataset:

1 cell and 9 trials for 1 moving directions β

Neuroinformatics Lecture

Topics:

Probabilities and Bayes'

Apples and Oranges

2 x 2 Classes (color x fruit)

frequency of occurrence (here blue and the fruit orange)

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

 n_{ij} are the Counts

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

Marginal Probability

(Probability of $X=x_i$ irrespective of class y)

$$p(X = x_i)$$

•	Blue	Red	
Appels	3	2	5
Oranges	1	6	7
O	4	8	N=12

- Probability of X=Red irrespective of the fruit ?
- Probability of X=blue irrespective of the fruit ?
- Probability of Y= apple irrespective of the color?
- Probability of Y= orange irrespective of the color?

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$r_j = \sum_{i}^{I} n_{i,j}$$

Marginal Probability

(Probability of $X=x_i$ irrespective of class y)

$$p(X = x_i)$$

	Blue	Red	
Appels	3	2	5
Oranges	1	6	7
	4	8	N=12

- Probability of X=Red irrespective of the fruit ?
- Probability of *X*=blue irrespective of the fruit?
- Probability of Y= apple irrespective of the color ?
- Probability of Y= orange irrespective of the color?

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$c_i = \sum_j n_{i,j}$$

Marginal Probability

(Probability of $X=x_i$ irrespective of class y)

$$p(X=x_i)$$

	Blue	Red	
Appels	3	2	5
Oranges	1	6	7
	4	8	N=12

- Probability of X=Red irrespective of the fruit ?
- Probability of *X*=blue irrespective of the fruit?
- Probability of *Y*= apple irrespective of the color?
- Probability of Y= orange irrespective of the color?

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$N = \sum_{i,j} n_{i,j}$$

Marginal Probability

(Probability of $X=x_i$ irrespective of class y)

$$p(X = x_i)$$

	Blue	Red	
Appels	3	2	5
Oranges	1	6	7
O I	4	8	N=12

- Probability of X=Red irrespective of the fruit ?
- Probability of X=blue irrespective of the fruit ?
- Probability of *Y*= apple irrespective of the color?
- Probability of Y= orange irrespective of the color?

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$N = \sum_{i,j} n_{i,j} \quad c_i = \sum_j n_{i,j}$$

Marginal Probability

(Probability of $X=x_i$ irrespective of class y)

$$p(X=x_i)$$

X is a random variable.

$$p(X = x_i) =$$

That is the probability that the random variable X takes the value x_i

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$N = \sum_{i,j} n_{i,j} \quad c_i = \sum_j n_{i,j}$$

Conditional Probability

(Probability of $Y=y_j$ given class $X=x_i$)

$$p(Y = y_j | X = x_i)$$

	Blue	Red	
Appels	3	2	5
Oranges	1	6	7
	4	8	N=1

- Probability of X=Red given fruit=apple?
- Probability of *X*=Red given fruit=orange?
- Probability fruit=apple given X=Blue?
- Probability fruit=organge given X=Blue?

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$N = \sum_{i,j} n_{i,j} \quad c_i = \sum_j n_{i,j}$$

Marginal Probability

(Probability of $X=x_i$ irrespective of class y)

$$p(X = x_i) = \frac{c_i}{N}.$$

Conditional Probability

(Probability of $Y=y_i$ given class $X=x_i$)

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$N = \sum_{i,j} n_{i,j} \quad c_i = \sum_j n_{i,j}$$

Joint Probability

(Probability of X=x and Y=y)

$$p(X = x_i, Y = y_j)$$

	Blue	Red	
Appels	3	2	5
Oranges	1	6	7
	4	8	N=1

- Probability of X=Red and fruit=apple?
- Probability of X=Red and fruit=orange?
- Probability of X=Blue and fruit=apple?
- Probability of X=Blue and fruit=orange?

Classes x: Color: Red or Blue

Classes y: Fruit: Apple or Orange

$$N = \sum_{i,j} n_{i,j} \quad c_i = \sum_j n_{i,j}$$

Marginal Probability

(Probability of X=x irrespective of class y)

$$p(X = x_i) = \frac{c_i}{N}$$

Conditional Probability

(Probability of Y=y given class X=x)

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Joint Probability

(Probability of X=x and Y=y)

$$p(X = x_i, Y = y_j) =$$

Probability Theory

$$N = \sum_{i,j} n_{i,j}$$

$$c_i = \sum_j n_{i,j}$$

$$c_i = \sum_{i} n_{i,j}$$

Blue Red App. 5 Oran. 1 7 4 8 N = 12

Marginal Probability

(Probability of X=x irrespective of class y)

$$p(X = x_i) = \frac{c_i}{N}.$$

Conditional Probability

(Probability of Y=y given class X=x)

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Joint Probability

(Probability of X=x and Y=y)

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

marginal probability

Sum Rule

$$p(X = x_i) = \frac{c_i}{N} =$$

joint probability

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Instructions: Solve the following problems regarding the requested order during your lecture.

- 1. Use c_i , r_j , and $n_{i,j}$ to compute the following probabilities using their relative frequencies:
 - 1. joint probability $p(X = x_i, Y = y_i)$ using $n_{i,j}$:
 - 2. marginal probability $p(X = x_i)$ using c_i :
 - 3. marginal probability $p(X = x_i)$ using $n_{i,j}$:

joint probability

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$

$$= p(Y = y_j | X = x_i) p(X = x_i)$$

joint probability

conditional probability

marginal probability