Convolución 2D

- La convolución se realiza moviendo el kernel (conocido también como máscara) sobre la imagen, generalmente se comienza en la esquina izquierda.
- Matemáticamente podemos definir la convolución como m n

$$I_{2}(i,j) = \sum_{k=1}^{m} \sum_{l=1}^{n} I(i-k+2,j-l+2)H(k,l)$$

 Donde i va desde 1 hasta M y j de 1 hasta N, MxN representa el tamaño de la imagen y mxn el tamaño del kernel.

Convolución

I ₁₁	I ₁₂	I ₁₃				•	I _{1N}
I ₂₁	I ₁₁						
I ₃₁							
I ₄₁			•				
				•			
					•		
•							
I _{M1}							I _{MN}

H ₁₁	H ₁₂	H _{1m}
H ₂₁	H ₂₂	H ₂₃
H _{n1}	H ₃₂	H _{nm}

Mascara de tamaño mxn

$$i=2, j=2$$

 $\mathbf{I}_{\mathbf{m}}$

 l_{m2}

$$I_{m}$$

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

\mathbf{H}

5	-3	-2
4	2	-1
-4	3	1

H'

1	3	-4
-1	2	4
-2	-3	5

$$i=2,j=2$$

$$Im(1,1)* H'(1,1)=2*1=2$$

$$Im(1,2) *H'(1,2)=2*3=2$$

$$Im(1,3)* H'(1,3) = 2*-4= 2$$

$$Im(1,1)* H(3,3)= 2*1= 2$$

$$Im(1,2) *H(3,1)= 2*3= 2$$

$$Im(1,3)* H(2,1) = 2*4= 2$$

H

5	-3	-2
4	2	-1
-4	3	1

 \mathbf{H}^{\flat}

1	3	-4
-1	2	4
-2	-3	5

H' se puede generar a partir de H usando

H'= H(end:-1:1,end:-1:1)

O también

H'= flipud(flipIr(H))

 $\mathbf{I}_{\mathbf{m}}$

 $\mathbf{I}_{\mathbf{m}2}$

