Assignment 2

Part 1

1. 模型描述

- 1) 词向量扩展:循环神经网络的训练通常需要在高维空间,因此通过嵌入层将单个输入扩展至高维度。其中,A和B均是(batch, maxlen)的二维矩阵,分别表示两个加数。在词扩展中,A和B中的每个元素被替换特定向量,分别生成C和D,均是(batch, maxlen, extension)的三维矩阵。
- 2) 词向量拼接: 考虑加法操作,以 a=(a1, a2, ···)和 b=(b1, b2, ···)为例,a 和 b 均是逆序的。首先,计算个位之和 a1+b1,产生和的个位数和进位,然后计算十位数······在 RNN 训练过程中,两个加数的相同位的数据同步输入,产生的和作为输出,进位信息隐含在隐状态中。因此,需要将 C 和 D 中对应位置的词向量进行拼接,生成(batch, maxlen, 2 * extension)的三维矩阵 E。
- 3) RNN 层: 在 RNN 模型定义中,我们取 input_size=output_size=2*extension,层数为 2。查阅 Pytorch 的官方文档可知,RNN 的输入的规格是(seq_len, batch, input_size) 的,输出的规格是(seq_len, batch, output_size)。显然加数的最大位数 maxlen 即对应于 seq_len,因此需互换 E 的第 1 维度和第二维度,而 E 的第三维度保持不变。在我的代码中,在词向量扩展前输入即已进行转置,因而 E 无须互换维度。于是,输出 F 是 (maxlen, batch, output_size) 的三维矩阵。
- **4)**仿射变换: 仿射变换压缩输出 F, 将 output_size=64 压缩为 10, 生成 (max1en, batch, 10) 的矩阵 G。从概率的角度来看,我们可以把向量 G[i,j,:]理解为 A[i,j]+B[i,j]产生的相应位的和值的概率。
- 5) argmax: argmax 过程即依据概率大小决策,对向量 G[i,j,:] 中最大概率对应的下标作为相应位的和值,生成(maxlen, batch)的二维矩阵 H,即求和结果。

2. 训练模型

以交叉熵损失函数作为评判标准,以 AdamW 算法作为学习算法,学习率取值 0.001,以批量作为基本单元进行模型训练。

3. 运行结果

(注: 在 Part 1 中, extension=32, maxlen=11, RNN 层数为 2)

No. of Step	Value of Loss
0	2. 328
50	1.916
	•••
1300	0.00108

•••	
2950	0.0001679

对于 20000 个测试样例, 其准确率达到了 1.0000, 效果良好。

Part 2

Part 1 所构造的模型已经能够良好地完成整数加法的任务,无须进一步提升模型能力。因此,关注于如何简化模型。改变 RNN 层数以及 Extension 值,观察模型的能力变化情况。为体现区分度,且权衡训练时间,将 maxlen 增加至 50。

1. 单层 RNN & Extension=32

使用单层 RNN,设置 extension=32,观察训练过程,结果如下:

No. of Step	Value of Loss
0	2. 158
50	0. 47
1500	0.0098
2950	0. 001598

对于 20000 个测试样例,其准确率依旧达到了 1.0000。可见,模型能力虽然简化,但依旧能较好地适用于 50 位内整数的加法运算。同时,观测到在最后的 steps 中, loss 值虽然整体仍处于减小态势,但出现了起伏情况。

2. 单层 RNN & Extension=16

使用单层 RNN,设置 extension=16,观察训练过程,结果如下:

No. of Step	Value of Loss
0	2. 573
50	0.69
•••	•••
1500	0. 1488
•••	•••
2900	0. 0223
2950	0. 0205

Extension 值減半,使得 RNN 的输入维度减半,RNN 模型的能力也随之下降。最终损失值比情况 1 大一个数量级。同时,对于 20000 个测试样例,其准确率是 0.9673。尽管准确率较高,但出现了错误的预测结果。当要求高准确度时,该模型的能力已有所欠缺。

3. 单层 RNN & Extension=8

使用单层 RNN,设置 extension=8,观察训练过程,结果如下:

No. of Step	Value of Loss
0	2.628

50	1.098
	•••
1500	0. 317
•••	•••
2900	0. 1610

从损失值的变化,我们可以看出,当 extension=8 时,模型的能力大大降低。对于 20000 个测试样例,其准确率是 0.0579。可见,此时,该模型已不再适用于整数的加法运算。

(接下来,恢复RNN的层数至双层,观察模型能力的回升情况)

4. 双层 RNN & Extension=8

使用双层 RNN,设置 extension=8,观察训练过程,结果如下:

Value of Loss
2. 432
0.85
0. 3024
•••
0.0342
0.0318

从损失值的变化情况,我们可以发现损失值较情况 3 显著减小。同时,对于 20000 个测试样例,其准确率是 0.9136。可见,模型的能力显著回升。但是,当要求高准确率时,模型能力依旧有所不足。

5. 双层 RNN & Extension=16

使用双层 RNN,设置 extension=16,观察训练过程,结果如下:

No. of Step	Value of Loss
0	2.075
50	0. 527
•••	
1500	0. 03757
•••	
2900	0.0030
2950	0. 0027

从损失值的变化情况,我们可以发现损失值比情况 4 再一次显著减小。同时,对于 20000 个测试样例,其准确率是 1.0000。可见,模型的能力已经回升至不弱于情况 1。

Part 3

在 Part 2,我们分析了模型的复杂程度(即 RNN 层数和 Extension 取值)对模型能力的影响,在该部分,我们分析学习率取值对模型收敛速度的影响。以maxlen=50,单层 RNN、extension=32 为例。

1) 当 learning rate=0.001, train steps=3000 时

No. of Step	Value of Loss
0	2. 158
50	0. 47
•••	•••
1500	0.0098
2950	0. 001598

对于 20000 个测试样例, 其准确率是 1.0000

2) 当 learning_rate=0.01, train_steps=1000 时

No. of Step	Value of Loss
0	2. 613
50	0. 4297
•••	•••
500	0. 00266
•••	•••
950	0.0007

对于 20000 个测试样例,其准确率是 1.0000。从损失值的变化情况,可以看出模型的收敛速度明显加快。

3) 当 learning rate=0.1, train steps=1000 时

No. of Step	Value of Loss
0	2. 2479
50	0. 3147
•••	•••
400	0. 0496
450	0. 0548
•••	•••
600	0. 01816
650	0. 03223
•••	•••
850	0.0138
900	0. 0215
950	0.0161

对于 20000 个测试样例,其准确率是 0.72915。从损失值的变化情况,我们可以观察到显著的起伏现象,模型收敛能力严重受损。

总结

RNN 的层数直接影响 RNN 的复杂程度,Extension 的值决定输入 RNN 的数据空间维度。两者都能影响模型的能力。双层 RNN 和 Extension=32 的组合,能够极佳地适用于整数加法的模拟任务。考虑简化模型,对于高准确率的要求,单层 RNN和 Extension=32,双层 RNN和 Extension=16 的组合,也能良好地适用于整数加法的模拟任务。同时 learning_rate 取值 0.01 既能保证良好的收敛性,又能获得较快的收敛速度。

附言

1. 运行指令

程序使用 Pytorch 框架,直接键入"python source.py"即可。

2. 变更模型

默认使用 myPTRNNModel()模型。若要选择 myAdvPTRNNModel()模型,须在 source.py 中改变相应注释行。其中 myAdvPTRNNModel()采用的是简化版模型,单层 RNN 和 Extension=32 的组合, learning rate=0.01。