1.4.2

Sean M y N dos variedades diferenciables y  $f:M\to N$  una aplicación diferenciable. Entonces f es contínua.

R: (una de las maneras de resolver)

Hay que demostrar que cualquier que sea el abierto V de N, se tiene que  $f^{-1}(V)$  (imagen recíproca de V por f) es un abierto de M.

Notese que se dice "  $f^{-1}(V)$  es la imagen recíproca de V por f " y no por  $f^{-1}$  visto que por definición,  $f^{-1}(V) = \{x \in M : f(x) \in V\};$ de hecho, ni siquiera se sabe si existe la función  $f^{-1}$ .

Sea  $\{\phi_{\alpha}: U_{\alpha} \to A_{\alpha}\} \ \alpha \in I$  un atlas de M y  $\{\psi_{\beta}: V_{\beta} \to B_{\beta}\} \ \beta \in J$ , un atlas de N.

Consideremos los  $\alpha$  de I tal que  $f^{-1}(V) \cap U_{\alpha} \neq \emptyset$ Ahora bien, cada  $\phi_{\alpha}\left[(U_{\alpha} \cap f^{-1}(V)\right]$  es un abierto de  $\mathbb{R}^n$  por definición de diferenciabilidade de f.

(Pues es el dominio de  $\psi_{\beta} \circ f \circ \phi_{\alpha}^{-1}$  para cada tal  $\beta$  que  $V \cap V_{\beta} \neq \emptyset$ ; ver la segunda, pero equivalente, definición).

 $U_\alpha\cap f^{-1}(V)=\phi_\alpha^{-1}\left\{\phi_\alpha\left[(U_\alpha\cap f^{-1}(V)\right]\right\} \text{ es un abierto de }M\text{ por definición de topología de }M\text{ (pues es la imagen recíproca, por }\phi_\alpha,\text{ de }\phi_\alpha$  $[(U_{\alpha} \cap f^{-1}(V)] \operatorname{de} \mathbb{R}^n).$ 

Como  $f^{-1}(V) = \cup_{\alpha \in I} (U_{\alpha} \cap f^{-1}(V))$  resulta que es también un abierto de M.

Notese que un abierto de N es la imagen recíproca, por una carta de N, de un abierto de N

(o la unión de tales imágenes recíprocas:  $V = \bigcup_{\beta \in J} \psi_{\beta}^{-1}(V \cap B_{\beta})$ ).

