parametrizaciones de los restantes lados del cuadrado D^* . Utilizando el mismo argumento que antes, vemos que $T \circ \mathbf{c}_2$ es una parametrización de la recta $y = 1 - x, 0 \le x \le 1$ [el segmento de recta que une (0,1) y (1,0)]; $T \circ \mathbf{c}_3$ es la recta $y = x+1, -1 \le x \le 0$ que une (0,1) y (-1,0); y $T \circ \mathbf{c}_4$ es la recta $y = -x-1, -1 \le x \le 0$ que une (-1,0) y (0,-1). Así, parece razonable pensar que T "inclina" el cuadrado D^* y lo lleva al cuadrado D cuyos vértices son (1,0), (0,1), (-1,0), (0,-1) (Figura 6.1.4).

Figura 6.1.4 El efecto de T sobre la región D^* .

Para demostrar que efectivamente este es el caso, sea $-1 \le \alpha \le 1$ y sea L_{α} (Figura 6.1.3) una recta fija parametrizada mediante $\mathbf{c}(t) = (\alpha,t), -1 \le t \le 1$; entonces $T(\mathbf{c}(t)) = ((\alpha+t)/2, (\alpha-t)/2)$ es una parametrización de la recta $y = -x + \alpha, (\alpha-1)/2 \le x \le (\alpha+1)/2$. Esta recta comienza, para t = -1, en el punto $((\alpha-1)/2, (1+\alpha)/2)$ y termina en el punto $((1+\alpha)/2, (\alpha-1)/2)$; como se puede comprobar fácilmente, estos puntos están sobre las rectas $T \circ \mathbf{c}_3$ y $T \circ \mathbf{c}_1$, respectivamente. Por tanto, cuando α varía entre -1 y 1, L_{α} barre el cuadrado D^* mientras que $T(L_{\alpha})$ barre el cuadrado D definido por los vértices (-1,0), (0,1), (1,0) y (0,-1).

Imágenes de aplicaciones

El siguiente teorema es una forma útil de describir la imagen $T(D^*)$.

Teorema 1 Sea A una matriz 2×2 con det $A \neq 0$ y sea T una aplicación lineal de \mathbb{R}^2 en \mathbb{R}^2 , dada por $T(\mathbf{x}) = A\mathbf{x}$ (multiplicación de matrices). Entonces T transforma paralelogramos en paralelogramos y vértices en vértices. Además, si $T(D^*)$ es un paralelogramo, D^* tiene que ser un paralelogramo.

La demostración del Teorema 1 se deja para los Ejercicios 14 y 16 enunciados al final de esta sección. Este teorema simplifica el resultado del Ejemplo 2, ya que solo necesitamos hallar los vértices de $T(D^*)$ y luego conectarlos mediante líneas rectas.