CRPL-F 141 PART A

FOR OFFICIAL USE

on 1 Rarem of Stundards Library, Jan 1956

Reference back ... t to be taken in more limitary.

PART A IONOSPHERIC DATA

ISSUED May 1956

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL-F 141
PART A

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

Issued 22 May 1956

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
Predicted and Observed Sunspot Numbers	5
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	8, 9, 21, 32
Tables of Ionospheric Data	9
Graphs of Ionospheric Data	32
Index of Tables and Graphs of Ionospheric Data in CRPL-F141 (Part A)	68

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above, plus an additional symbol, R: "Scaling of characteristic is influenced or prevented by absorption in the neighborhood of the critical frequency," (May 1955). Also, beginning with January 1956, additional meanings are assigned to T: A smoothed value which better fits the observations, replacing a doubtful or clearly inconsistent observed value; and to U: foF2 minus foF1 is 0.5 Mc or less (used with (M3000)F2).

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, R, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h°F2 (and h°E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the symbol D, only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

At night B for fEs is counted on the low side when there is a numerical value of foF2; otherwise it is omitted from the median count.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice

in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report TRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h°Fl, foFl, h°E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h°Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

PREDICTED AND OBSERVED SUNSPOT NUMBERS

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month				Pred:	icted	Suns	ot Ni	umber			
	1956	1955	1954	1953	1952	1951	1950	1949	1948	1947	1946
December		42	11	15	33	53	86	108	114	126	85
November		35	10	16	38	52	87	112	115	124	83
October	135	31	10	17	43	5 2	90	114	116	119	81
September	119	30	8	18	46	54	91	115	117	121	79
August	105	27	8	18	49	57	96	111	123	122	77
July	95	22	8	20	51	60	101	108	125	116	7 3
June	89	18	9	21	· 52	63	103	108	129	112	67
May	77	16	10	22	52	68	102	108	130	109	67
April	68	13	10	24	52	74	101	109	133	107	62
March	60	14	11	27	52	78	103	111	133	105	51
February	5 3	14	12	29	51	82	103	113	133	90	46
January	48	12	14	30	53	85	105	112	130	88	42

The latest available information follows concerning the corresponding observed Zürich numbers (some of which may be subject to minor change) beginning with the minimum of April 1954.

Observed Sunspot Number

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1954 1955									8 55		9	12

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Buenos Aires, Argentina

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Canberra, Australia

Canberra, Australia Hobart, Tasmania Townsville, Australia

University of Graz: Graz, Austria

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Elisabethville, Belgian Congo Leopoldville, Belgian Congo

Defence Research Board, Canada: Churchill, Canada Ottawa, Canada Resolute Bay, Canada Winnipeg, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China:
Formosa, China

Danish National Committee of URSI: Godhavn, Greenland

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:

Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt, Holland

Indian Council of Scientific and Industrial Research, Radio Research Committee, New Delhi, India:

Ahmedabad, India (Physical Research Laboratory)

Bombay, India (All India Radio)

Calcutta, India (Institute of Radio Physics and Electronics)

Delhi, India (All India Radio)
Madras, India (All India Radio)
Tirushy (Tirushiranalli) India (All In

Tiruchý (Tiruchirapalli), India (All India Radio)

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research:

Campbell I.

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Oslo, Norway Tromso, Norway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa Nairobi, Kenya (East African Meteorological Department)

Research Institute of National Defence, Stockholm, Sweden: Kiruna, Sweden Upsala, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzer-land:

Schwarzenburg, Switzerland

United States Army Signal Corps:

Adak, Alaska
Ft. Monmouth, New Jersey
Okinawa I.
White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska

Fairbanks, Alaska (Geophysical Institute of the University of Alaska)

Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)

Maui, Hawaii

Narsarssuak, Greenland

Panama Canal Zone

Puerto Rico, W. I.

San Francisco, California (Stanford University) Talara, Peru (Instituto Geofisico de Huancayo)

Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 through 83 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

The interpretation of a cell is as follows: UF 32

The U is a weight meaning doubtful. Other weights are I, interpolated, D, greater than, and E, less than. Absence of a letter in the upper left position means full weight is given to the observation.

Symbols such as F above are given in the upper right position.

There should be no difficulty in the placing of the decimal point. For the time being, a final zero will be found in each value of foFl and foE. Thus at a later date it will be possible to register more closely scaled values of these characteristics, whenever such are reported.

washing	ton, O. C	. (30.7°	N, 77.1°	Table 1				April 1956
Time	h*F2	foF2	h°F1	foF1	h°E	foE	f Es	(M3000)F2
00	290	6.7					(2.4)	2.70
01	200	6.3						2.70
02	290	6.1						2.70
03	280	5.7						2.70
04	200	5.3						2.70
05	270	4.9					1.7	2,00
06	250	5.8	270		119	1.9		3.05
07	250	6.9	240	4.2	109	2.6		3.00
08	270	7.8	225	4.6	105	3.0	3.6	3.05
09	280	8.7	210	4.0	103	3.3	3.5	2.95
10	310	9.4	205	4.9	101	3.4	3.7	2.90
11	310	9.4	210	5.1	102	3.5		2.80
12	320	9.0	215	5.2	101	3.6	3.6	2.80
13	330	10.2	215	5.2	101	3.6		2.75
14	320	10.0	220	5.2	101	3.6		2.70
15	340	9.6	220	5.0	101	3.5		2.75
16	300	9.5	230	4.0	105	3.2		2.80
17	270	9.4	240	4.4	109	2.8	2.0	2.80
18	250	9.5	255		119	2.1	2.2	2.90
19	240	9.2					1.6	2.90
20	240	8.2					3.0	2,80
21	260	7.6					2.6	2.75
22	270	7.0						2.70
23	280	6.8					(3.0)	2.70

Table 2 Norway (69.7°N, 19.0°E) March 1956 Time h°F2 foF2 h*F1 h * E foE (M3000)F2 f Es (4.0) 3.2 (4.0) (5.4) (5.2) 4.9 4.6 4.4 5.1 5.8 01 02 3.6 3.0 3.0 2.9 1.4 <1.7 (345) (2.40) (2.55) 2.65 2.70 2.80 2.90 2.80 2.90 2.90 2.90 2.90 2.90 03 04 05 (305) 300 ---2.3 2.6 2.7 2.0 2.9 2.8 2.6 2.6 2.6 2.6 200 06 07 08 09 ---(250) 6.6 7.2 7.1 7.9 8.6 8.4 8.2 7.8 8.0 260 ---(245) (250) 250 245 115 115 110 11 12 13 255 255 255 255 245 245 110 115 2.90 2.95 2.95 2.90 2.90 2.80 14 15 16 17 18 19 20 21 250 245 110 245 245 105 120 5.9 5.4 5.8 (6.0) 2.4 3.2 3.2 <3.4 3.2 3.0 245 (250) 110 (275) (280) (2.80) (260) (5.3) (2.70) (5,0)3.0

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 15.0°E.

Sweep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

				Table 3				
Kiruna,	Sweden (67.0°N,	20.3°E)					March 1956
Time	h°F2	foF2	h'Fl	foF1	h°E	foE	f Es	(M3000)F2
00	(325)	(5.0)					3.1	
01	(310)	(5.2)					<3.8	
02	(305)	(5.0)					2.2	
03	(310)	(5,0)					2.2	
04	300	(4.4)					2.0	(2.7)
05	295	(4.7)				E	<2.0	(2.75)
06	275	5.2			115	<1.7		2.9
07	260	5.6	250			<2.0		3.0
08	260	6.4	240					3.05
09	250	7.1	230	(4.0)	110	2.4	<1.9	3.0
10	265	7.8	230	(4.0)	110	2.8		3.0
11	275	8.3	230	(4.2)	110		<1.9	2.9
12	260	8.6	225	(4.0)	110	2.9		2.9
13	260	9.0	230	4.1	110	<2.9	<3.0	2.9
14	260	8.5	230		110	2.6	<3.0	2.9
15	250	8.0	2 35					3.0
16	2 55	8.0	240			2.0	<2.0	3.0
17	260	7.2	240			<1.8	2.0	3.0
18	260	6.5					<3.1	3.0
19	250	(6.0)					<3.0	(2.9)
20	260	(5,5)					3.8	(2,9)
21	275	(5.0)					3.5	(2.8)
22	(300)	(5.2)					3.8	(2.8)
23	(280)	(4.9)					5.0	

				Table 4				
Fairban	ks, Alask	a (64.9°	N, 147.8	ow)				March 1956
Time	h°F2	foF2	h*F1	foF1	h°E	foE	f Es	(M3000)F2
00		(3,5)			-		4.4	(2.80)
01		(4.6)					4.2	(2.60)
02	ł	(4.6)					4.4	(2.70)
03		(4.0)					3.8	(2.60)
04	i	(3.5)					3.2	(2,55)
05	1	(3.8)					3.6	(2.70)
06	i	(4.3)					3.1	(2.85)
07	ŀ	(4.8)						(2.90)
08		(5.4)			117			(2,95)
09	1	5.9			117			3.00
10	1	(6.4)						2.80
11	ļ	6.6		(4.5)	113			2.80
12	}	7.4			115			2,90
13	l .	7.7						2.85
14	1	8.0			119			2.85
15		7.8			121			3.00
16		(8.2)			123			(3.05)
17	l	(8.0)			131			(3.05)
18	l	(7.4)			145			(3.10)
19	l	(6.9)					1.8	(3.10)
20		(5.4)					3.0	(3,20)
21		(4.3)					2.0	(3,00)
22		(4.4)					3.4	(3.10)
23		(4.0)					4.2	(2.90)

Time: 15.0°E. Sweep: 0.8 Mc to 14.0 Mc in 30 seconds.

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

										•								
An	chorage	. Alask	a (61.2°	N. 149.9	Table 5				March 1956	Narcars	suak, Gre	enland (61. 2°N	Table 6				March 1956
Ti	те	h°F2	foF2	h'F1	foF1	h°E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h°F1	foF1	h° E	foE	f Es	(M3000)F2
000000000000000000000000000000000000000	001 012 013 013 014 015 016 017 018 019 010 011 011 011 011 011 011 011 011		2.9 3.3 3.1 3.5 3.5 3.5 4.9 4.9 5.5 6.0 8.4 8.6 8.6 8.5 8.5 4.6 8.5 8.5 4.6 8.5 8.5 4.6 8.5 8.5 8.5 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6		(4.5) 4.6	130 128 127 125 121 120 121 119 127 137	2.0 2.4 2.7 2.8 3.0 3.0 3.0 2.7 2.5 2.2	2.4 2.1	2.50 2.40 2.45 2.40 2.40 2.50 2.80 2.80 2.80 2.70 2.75 2.75 2.80 2.85 2.90 2.95 2.90 2.95 2.90 2.95 2.90 2.95 2.90 2.95	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23		(3.4) (4.2) (3.9) (4.1) (5.2) 6.1 6.6 7.0 7.8 8.1 (8.0) (8.5) (7.2) (6.8) (6.2) (7.1) (6.0) (4.6) (5.5)		(4,5) (4,6) (4,6) (4,6) (4,3)	119 117 115 111 112 111 111 113 120	2.7 (2.8) 3.0 3.1 (3.1) 3.1; (3.0) (3.0) 2.6 2.2	3.4 3.8 4.0 4.0 3.9 3.6 3.0 3.6 3.3 4.2 4.5	(2.75) (2.75) (2.85) (2.70) (2.70) (3.10) (3.05) (3.00) (2.90) (2.90) (2.90) (2.90) (2.90) (3.00) (2.95) (3.00) (2.70) (2.70) (2.75)

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

					Table 7									Table 8				
0s1c	Norway	(60.0	°N, 11.	1°E)					March 1956	Upsala,	Sweden (59.8°N.	17.6°E)					March 1956
Time	h*	F2	foF2	h'Fl	·foF1	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	3	05	4.8					<1.4	2,50	00	320	4.5						2.6
01	2	90	4.6					<1.3	2,50	01	320	4.4						2.7
02	3	00	4.2					<1.2	2.50	02	330	4.2					1.8	2.6
03	3	00	3.8					<1.1	2,50	03	315	3.5						2.7
04	3	00	3.6					<1.2	2.60	04	310	3.3						2.7
05	2	90	3.4					<1.3	2.65	05	290	3.7				E		2.75
06	2	75	4.3					<1.4	2.70	06	260	4.6				1.5		2.9
07	2	50	5.2	250		120	2.0		3.00	07	250	5.5	240	3.4	115	2.0		2.9
08	2	45	5.8	250		115	2.4		3,00	08	265	6.4	240	3.8	110	2.4		2.9
09	2	50	7.1	240		110	2.7		3,00	09	270	7.3	230	4.1	110	2.8		2.9
10	2	50	7.8	235		110	2.9		3.00	10	270	8.1	220	4.3	105	2.9		2.9
11	2	60	8.1	230		110	3.0		2.90	11	270	8.8	220	4.5	105	3.0		2.9
12	2	50	9.1	235		110	3,1		2,90	12	265	9.4	220	4.5	105	3.1		2.9
13	2	50	9.5	240		110	3.1		3,00	13	2 60	9.7	230	4.5	105	3.1		2.9
14	2	50	9.6	235		110	3.0		3,00	14	245	9.7	225	4.1	105	3.0		3.0
15	2	45	9.7	240		110	2.9		3.00	15	240	9.6	230	3.8	110	2.8		3.0
16	2	45	9.4	245		110	2.6		3.05	16	235	9.4	240	3.7	110	2.5		3.0
17	2	45	9.2			115	2.3		3,00	17	235	9.0			115	2.2		3.0
18	2	40	8.7				2.0		3,05	18	230	8.8				1.5		3.0
19	2	40	8.0					<1.4	3,00	19	220	7.8				E		2.9
20	2	40	6.3					<1.4	2.85	20	230	6.7						2.9
21	2	45	6.2					<1.4	2.80	21	260	5.4						2.7
22	2	60	5.6					<1.4	2,60	22	275	5.0					3.0	2.7
23	2	85	5.0					<1.4	2.50	23	300	4.4					3.0	2,7

Time: 15.0° E. Sweep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

Time: 15.0°E. Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

Adak, A	laska <u>(51</u>	.9°N, 170	6.6°W)	Table (9			March 1956	Graz, A	ustria (4	47.1°N, 1	5.5°E)	Table 1	2			March 1956
Time	h'F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	310 310 310 320 310 320 270 250 250 250 250 250 250 220 220 220 22	4.0 4.0 3.8 3.7 3.8 3.7 4.7 6.6 7.6 9.4 10.5 11.6 11.6 11.6 11.6 10.7	220 220 210 210 220 220 220 220		145 113 110 110 111 110 119 (121) 117 111 114	1.7 (2.4) (2.9) (3.1) (3.3) (3.4) (2.9) (2.8) 2.3		2.6 2.6 2.5 2.5 2.5 2.9 3.15 3.15 3.10 3.0 2.9 2.95 2.95 3.0 3.05 3.1 3.1 3.1	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	320 340 310 300 300 290 240 230 250 250 230 230 230 230 230 240 250 250 250 250 250 250 250 250 250 25	5.2 5.1 5.0 4.8 4.4 4.6 7.0 10.3 >11.0 >11.0 >11.0 10.8 10.2 10.0 9.4 8.2 10.0 9.4 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	(220) 225 210 210 210 220	(3.8) (4.3) 4.5 4.9 4.5 4.2	===	(3,5) (3,7) (3,8) (3,8) (3,5) (3,5) (3,3)		

Time: 180.0°W. Sweep: 1.0 Mc to 25.0 Mc in 27 seconds.

Time: 15.0°E. Sweep: 2.5 Mc to 12.0 Mc in 2 minutes.

Ft. Mon	mouth, Ne	w Jersey	(40.3°N	Table 1 , 74.1°W				March 1956	White S	ands, New	Mexico		Table 12				March 1956
Time	h°F2	foF2	h°F1	foF1	h°E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 270 280 270 280 280 260 240 240 270 260 270 260 250 240 240 240 250 240 240 270 270 270 270 270 270 270 270 270 27	6.0 5.5 5.4 5.0 (4.2) 4.0 4.8 6.8 8.2 8.9 9.8 10.2 10.8 11.1 10.8 10.6 10.0 9.6 8.8 7.2 6.8 6.8	245 230 220 210 210 210 220 220 225 230 240	4.6 4.8 5.0 5.0 4.6 4.5	113 111 110 109 109 111 109 111 111 117	<1.6 2.4 (3.0) (3.3) (3.5) (3.6) (3.7) (3.6) (3.4) (3.1) 2.5 <1.7		2.75 2.75 2.80 (2.80) (2.85) 3.00 3.20 3.20 3.10 3.00 3.00 2.95 2.90 2.90 2.95 3.00 3.05 2.95 2.90 2.90 2.95 3.00 3.05 2.95 2.90 2.90 2.90 2.90	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	280 280 280 260 (280 270 240 250 260 260 280 270 260 280 270 260 220 220 (255 220 270	5.3 5.5 5.1 5.0 4.6 5.3 7.7 9.5 10.6 11.2 12.5 12.4 11.6 11.6 11.6 11.6 9.1 6.3 5.2	250 230 220 210 205 210 215 220 230 235 240	(4,4) (5,0) (4,9) (5,3) (5,0)	(115) 109 (109) 109 (109) (110) 111 111 111 111 112	(2,2) (2,8) (3,2) (3,5) (3,7) (3,8) (3,8) (3,5) (3,2) (2,6)	(2.2) (2.9) (2.8) (2.8) (2.2) (2.3) 2.4 3.0 4.8 4.5 4.1 4.4 4.7 3.6 3.9 2.9 2.4 (2.7) (2.2) (2.2)	2.65 2.70 2.70 2.70 2.65 2.75 2.90 3.15 3.05 2.95 2.85 2.80 2.80 2.80 2.80 2.80 2.80 2.85 2.85 2.85

Time: 75.0° W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

					Table 13	3			
	Okinawa	I. (26.3	3°N, 127.	8°E)					March 1956
	Time	h'F2	foF2	h'F1	foFl	h * E	foE	f Es	(M3000)F2
	00	260	10.4						2.80
	01	260	10.1					1.9	2.85
	02	250	9.4						2.90
	03	240	8.8					2.2	3.05
	04	220	6.9						3.00
	05	230	5.7						2.80
	06	260	5.1					2.0	2.75
	07	240	7.6			131	2.1	2.8	3.20
	08	230	10.0	240		113	(2.9)	4.4	3.25
	09	(250)	10.8	230		109	(3.3)	4.5	3.10
	10	(270)	12.4	230		110	(3.5)	4.8	3.00
	11	270	13.3	220		109	(3.7)	4.8	2.90
	12	290	14.0	220		111	(3.8)	5.1	2.85
1	13	330	15.0	210		110	(3.9)	5.0	2.80
	14	330	16.0	220		111	3.8	4.9	2.80
	15	320	16.2	230		113	3.7	4.7	2.80
	16	310	16.4	230		113	3.5	4.7	2.80
	17	280	16.1	235		115	3.0	4.4	2.85
	18	250	14.8			121	2.3	3.2	2.90
	19	240	14.9					3.1	2.90
	20	250	(15.2)					2.1	2.85
	21	230	(14.8)					2.2	(2,80)
	22	240	13.3						2.85
	23	250	(11.4)						(2.80)

Time: 135.0°E. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Formosa	China	(25.0°N,	121.5°E)					March 1956
Time	h'F2	foF2	h*F1	foF1	h'E	foE	fEs	(M3000)F2
00	260	11.9					<1.7	2.9
01	260	9.8					<1.7	3.0
02	260	9.6					<1.7	3.0
03								
04								
05								
06								
07								
08	240	11.0			120	3.1		3,0
09	250	12.5	240		120	3.4	<3.8	3.0
10	260	13.4	230		120	(3,6)	<4.1	2.9
11	(260)		220		120		4.3	2.7
12	(280)		220		120		<5.0	2.7
13	(270)		220		120	3.8	4.7	2.7
14	(270)		240		120	3.6	<4.4	2.8
15	270	>16.8	240		120	3.5	4.2	2.8
16	(270)		240		120	(3.2)	4.0	(2.9)
17	260	>16.5	240		120	2.8	3.4	2.95
18	260	>16.5				•	<2.8	(2.8)
19	280	>16.5					2.7	(2.8)
20	280	>16.8					2.2	(2.7)
21	240	>16.8					2.2	(2.95)
22	240	13.6					<1.8	2.9
23	260	12.6					<1.7	2.9

Table 14

Time: $120.0^{\circ}E$, 5weep: 1.1 Mc to 19.5 Mc in 15 minutes, manual operation.

				. =0.11	Table 1	<u>5</u>			March 1956
	Maui, Ha	waii (20	.8°N, 15	6.5°W)					
	Time	h'F2	foF2	h'F1	foF1	h°E	foE	f Es	(M3000)F2
Π	00	240	8.2						3.00
	01	250	7.1						3.00
	02	240	6.4						3.00
	03	230	5.3						2.90
	04	260	4.0						2.80
	05	290	3.4						2.70
	06	310	3.7						2.65
	07	250	7.4			130	2.0		3.10
	08	250	10.0	240		1.17	2.8	3.7	3.20
	09	260	11.3	230		111	3.3	4.3	3,00
	10	270	12.3	220		111	3.6	5.0	2.90
	11	280	12.8	215		111	3.8	4.7	2.75
	12	290	13.8	210		111	3.9	4.6	2.75
	13	320	14.3	215	5.2	109	3.9	4.8	2.70
	14	340	14.6	220		109	3.8	4.3	2.70
	15	330	14.8	235		111	3.6	3.8	2.70
	16	300	15.3	235		111	3.4	4.0	2.80
	17	260	14.2	240		117	2.9	3.4	2.80
	18	250	13.6			127	2.0	2.6	2.90
	19	250	13.2					2.8	2.90
	20	240	12.3					2.4	2,90
	21	230	11.6					1.8	2.90
	22	250	10.1						2.90
	23	250	9.4						3.00

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1	5			
Puerto	Rico, W.	I. (18.5	°N, 67.2	PW)				March 1956
Time	h'F2	foF2	h'F1	foF1	h°E	foE	f Es	(M3000)F2
00	270	8.4						2.95
01	260	7.8						3,00
02	250	7.5						3.05
03	240	6.2						3.10
04	250	5.3						3,00
05	250	4.9						2.80
06	290	4.6					(2.3)	2.80
07	250	7.1				>1.8		3,20
08	240	9.2	240		115	2.8		3.20
09	260	10.8	230		111	3.3		3.05
10	280	12.1	230		111	3.6		3.00
11	280	12.6	220	5.2	111	3.8		2.95
12	290	12.7	215	5.3	111	3.9		2.85
13	300	13.1	220	5.3	112	3.9		2.85
14	300	12.9	220	5.3	111	3.8		2,80
15	300	12.8	225		113	3.6		2.80
16	(280)	12.3	230		111	3,4	3.4	2,80
17	250	11.8	240		117	2.9	3.7	2.80
18	250	11.5						2.85
19	240	10.9					2.7	2.95
20	250	9.6					(2.8)	2.90
21	250	9.1					(3.1)	2.80
22	280	8.6					(3.2)	2.80
23	280	8.6						2.85

Time: 60.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Guam I.	(13.6°N,	144.9°E)		Table 17				March 1956
Time	h°F2	foF2	h'F1	foF1	h * E	foE	f Es	(M3000)F2
00 01	235 230	13.0 12.5					1.7	3.10 3.15
02	225	10.4					1,4	3.20
03 04	230 235	8.6 7.1						3.15 3.20
05 06	235 235	5.8 4.8					2.2 2.1	3.20 3.20
07 08	250 240	8.3 10.8	230		121 113	2.0	2.5	3.20 3.10
09 10		12.2 13.0	220 215		111 111	3.3		2.90 2.65
11 12		13.0 12.5	210 210		113 111	3.7 3.8		2.40 2.35
13 14		12.3 12.8	200 205		112	3.7 3.6		.30 2.40
15 16		13.1 13.8	220 230		111 111	3.5		2.50 2.50
17 18	265	14.0 14.2	240		117 125	2.9	3.5 2.6	2.55 2.50
19	310	13.5			123	2.0	2.0	2.45 2.40
20 21	340 300	12.9 12.8					1.6	2.60
22 23	245 235	12.6 13.0					2.7 2.6	2.80 3.05

Time: 150.0°E. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 18 Panama Canal Zone (9.4°N, 79.9°W) March 1956 Time h°F2 foF2 h°F1 foF1 h º E foE f Es (M3000)F2 00 250 9.6 8.8 3.05 01 02 230 230 230 3.20 3.20 6.6 5.1 4.4 3.7 3.6 7.6 03 04 05 06 07 08 3.00 2.90 2.80 240 250 1.8 290 2.70 (2.1) 3.0 (3.5) 3.8 (4.0) (4.0) (4.1) (4.0) (3.8) 3.3 2.9 (2.1) 250 125 (250)10.0 11.4 235 225 113 3.2 3.00 2.95 2.90 2.85 2.80 2.75 2.75 2.75 (2.80) (2.80) (2.85) (5,4) (5,6) 5,6 09 10 11 12 (270) 110 110 110 110 280 (280) 220 210 210 4.1 13.3 14.0 14.2 14.5 14.4 290 13 14 15 280 (300) 210 210 109 109 4.5 4.1 3.8 2.8 2.3 (310) 225 14.4 (13.8) (13.2) 16 17 290 280 230 110 240 112 18 19 20 250 240 250 (12.1) (11.9) (2.85) (2.85) 21 22 230 (11,6) (2.85) 2.85 240 (10.8) 240 10.1

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1	9		_					00 00 00	Table 2	<u>0</u>			
Resolute	Bay, Car	nada (74,	7°N, 94	.9°W)			ŀ	ebruary 1956	Kiruna,	5weden (67.8°N,	20.3°E)				re	bruary 1956
Time	h'F2	foF2	h'F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00	250	4.0						3.0	00	305	(3.7)					3.0	
01	250	3,8						3.0	01	300	(3.8)					2,5	
02	260	3.3					<1.2	3.0	02	310	(4.0)					2.5	
03	260	3.3					<1.3	3.0	03	295	(3.5)					<1.6	(2.8)
04	270	3.0						3.0	04	285	(3.8)					<1.1	(2.95)
0 5	270	3.2					<1.4	(2.9)	05	265	3.7						2.85
06	270	3.2					<1.4	3.05	06	270	3.0						3.0
07	270	4.0					<1.4	(3,0)	07	260	4.0				E		3.05
08	260	4.2				1.2	<1.4	3.05	08	245	5.5						3.1
09	250	4.6			120	1.5		(3,2)	09	230	6.5						3.3
10	240	5.2			105	1.5		3.2	10	230	7.2						3.25
11	250	5.2			110	1.6		3.1	11	230	7.3				2.4		3.2
12	250	5.4			115	1.8		3.2	12	225	8.1				2.5		3.2
13	240	5.6			110	1.9		3.2	13	230	8.2						3.3
14	240	5.6			110	1.8		3,2	14	225	8.0						3.3
15	260	5.2			120	1.6		3,05	15	230	7.3						3.3
16	250	5.2			120	1.6		2.95	16	230	6.4						3.2
17	250	5.2				1.7		3.0	17	225	5.5				Ε	<1.5	3.2
18	250	5.2					<1.2	2.9	18	225	4.3						(3, 2)
19	250	5.0					<1.2	(3.05)	19	250	4.2					<2.0	
20	240	4.7					<1.6	3.0	20	(275)	(3.4)					<2.0	
21	250	4.2					<1.1	3.0	21	(275)	(4.0)					3.0	
22	250	4.0					<1.4	2.9	22	(300)	(3.8)					3.5	
23	250	4.2						2.9	23	(300)	(4.6)					<3.4	

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 15.0°E. Sweep: 0.8 Mc to 14.0 Mc in 30 seconds.

			Table 2	1				
Anchora	ge, Alaska (61	.2°N, 149.9) (Wo			Fe	ebruary 1956	
Time	h'F2 foF	2 h'F1	foFl	h°E	foE	f Es	(M3000)F2	_
00	2.0	0					2,60	
01	1.0	3					2,45	
02	1.	9				1.6	2.50	
03	2.0	D					2.50	
04	(1.0						(2.45)	
05	1.	9				1.4	2.50	
06	1.0						(2.50)	
07	2.	7					2.70	
08	4.	5		130			2,90	
09	6.0	0		131	2.2		3.05	
10	6.0	3		131	2.5		3.00	
11	7.0	5		129	2.7		2.90	
12	8.0)		130	2.8		2.90	
13	8.4	4		131	2.8		2.90	
14	8.6	5		131	2.7		2.85	
15	8.9	5		136	2.4		2.90	
16	8.4	4		140	2.0		2.95	
17	7.0	3					2.95	
18	6.3	2					2.90	
19	4.	7					2.90	
20	3,:	3					2.90	
21	2.	7					2.80	
22	2.	4					2.70	
23	2.0	1					(2.70)	

Time: 150.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 2	2			
Churchi	ll, Canad	a (58.8°)	N. 94.2°		=		Fe	bruary 1956
Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 300 300 300 320 340 340 330 270 270 270 270 270 260 250 260 250 260 290 300 300 300	4.0 3.8 3.6 (3.6) 4.0 4.8 5.8 6.9 7.7 8.0 8.8 8.0 6.9 5.2 5.2 5.4 4.5 4.5	250 260 250 260 240	4.0 4.1 4.1	120 115 130 120 120 110 115 110 120 125 125 125 125 130 130 120 120 120 130 130	2.5 2.4 2.4 2.6 3.0 3.0 2.5 3.0 3.0 3.1 3.1 3.1 2.4 2.4 2.7 2.8 2.6	5.0 5.0 4.5 4.6 4.5 4.0 4.1 3.6 3.3 3.3 4.0 5.0 5.0	(2,9) (3,05) (3,00) (2,8) (2,9) 2,8 3,0 3,2 3,2 3,2 3,2 3,15 3,15 3,15 3,15 3,17 3,2 3,2 3,2 3,2 3,2 3,15 3,10 3,2 3,2 3,2 3,15 3,10 3,2 3,2 3,2 3,2 3,10 3,0 3,0 3,0 3,0

Time: 90.0°W. 5weep: 0.6 Mc to 15.0 Mc in 16 seconds.

Winnipe	g, Canada	(49.9°N	, 97.4°W	Table 2	3		Fe	ebruary 1956	5chwarz	enburg, 5	witzerla	nd (46.8	<u>Table</u> °N, 7.3°			Fe	bruary 1956
Time	h*F2	foF2	h*F1	foFl	h'E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 320 320 320 320 320 320 320 320 320	3.0 2.8 2.8 2.7 4 2.4 2.4 2.8 6.0 2 7.9 8.4 8.8 9.1 9.0 9.0 6.8 3 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	240 240 240 240 240 240 250	4.0 4.0 4.3 4.3 4.2 4.0	120 120 120 120 125 125 120 120 120	2.0 2.6 2.8 3.0 3.1 3.1 3.1 3.2 2.3	<1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7	2.8 2.7 2.7 2.7 2.7 2.7 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 290 290 290 280 260 245 240 200 200 200 200 200 200 200 200 200	4.0 4.0 3.8 3.8 3.3 3.1 3.4 6.4 8.5 10.0 10.0 9.4 9.5 9.1 8.5 7.3 6.4 4.2 3.5 4.0			100 100 100 100 100 100 100 100	1.9 2.5 2.8 3.0 3.2 3.2 3.2 3.2 3.2		3.1 3.2 3.2 3.2 3.3 3.3 3.4 3.8 3.8 3.8 3.6 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Time: 75.0°W. 5weep: 1.0 Mc to 15.0 Mc in 15 seconds.

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

Talara,	, Pe r u (4.	6°5, 81.	3°W)	Table :	27		Fe	ebruary 1956	Elisabe	thville,	Belgian	Congo (1	<u>Table 2</u> 1.6°5, 2	<u>8</u> 7.5°E)		Fe	bruary 1956
Time	h*F2	foF2	h*Fl	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h°F1	foFl	h*E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	230 220 220 230 240 250 260 (240) (300) (300) 300 (320) (240) 240 280 310 280 280 280 250	9.7 8.0 6.6 6.1 4.9 4.9 9.5 11.0 11.7 11.4 12.0 12.3 12.4 12.7 (13.0) (12.4) (13.0) (11.6) 11.6	235 220 210 200 200 200 200 200 215 230	 4.9 5.0 5.0 4.8 	123 111 111 109 109 108 107 107 107	2.0 2.9 3.4 3.7 3.8 4.0 4.0 3.7 3.5 2.9	5.0 5.0 5.2 4.8 4.7 4.4 4.7 4.4 4.7 6.6 6.9 6.2 6.9 6.2 6.3 4.3 3.5 4.3 3.5 3.6 3.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4	3.10 3.15 3.30 3.20 3.30 3.20 3.10 2.90 2.75 2.65 2.40 2.30 2.40 2.50 2.60 2.60 2.60 2.65 (2.60) (2.65) (3.00) 3.00	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	230 245 240 265 250 300 330 335 325 325 320 290 265 250 240 240 240 245	6.4 5.4 4.7 4.0 8.5 9.6 10.3 11.5 11.8 >11.8 >11.8 >11.5 11.1 11.1 11.1 11.1 11.1 11.2 11.0 10.3 8.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9	240 235 230 225 220 220 220 220 240 240 255	5.0 5.0 5.0 5.0 5.0	115 110 110 110 110 110 110 110 110	2.4 3.0 3.6 3.8 3.9 4.0 3.9 3.8 3.4 2.9	1.6 1.8 2.4 4.0 3.4 3.0 2.5 1.9	2.65 2.7 2.7 2.7 2.7 2.8 2.6 2.5 2.45 2.5 2.45 2.5 2.6 2.6 2.6 2.6 2.7 2.7

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

				Table 2	29								Table	30			
Huancay	o, Peru (12.0°5,	75.3°W)				Fe	bruary 1956	Lindau/	Harz, Ger	many (51	.6°N, 10	.1°E)				January 1956
Time	h°F2	foF2	h°F1	foFl	h ª E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00	300	(9.2)					4.6	(3,05)	00	300	2.9					2.3	2.8
01	250	(7.4)					4.5	(3.10)	01	280	2.8					2.4	2.9
02	230	6.6					4.7	3,20	02	300	2.8					2.3	2.85
03	230	5.8					3.3	3,25	03	290	2.6					2.7	2.85
04	230	4.8					(3.6)	3,30	04	280	2.4					2.4	2.9
05	230	3.7					(5,9)	3.30	05	265	2.3					2.6	3.0
06	280	5.0					4.2	3.00	06	260	2,2					2.8	3.05
07	240	8.4	240		111	2.6	8.5	3.00	07	265	2.3					2.8	3.05
. 08		10.2	225		107		11.5	2.80	08	230	4.0				E	2.4	3.2
09	(300)	11.0	210		105		12.5	2.55	09	220	6.8				1.8	3.3	3.5
10	(300)	11.2	205	4.9	105		12.6	2,45	10	220	7.7			110	2.4	3.7	3.5
11	(330)	11.2	200	5.1	105		12.7	2.40	11	220	8.2			110	2.5	3.6	3.4
12	355	11.3	200	5.1	105		12.7	2.35	12	225	8.4			110	2.6	3.7	3.5
13	335	11.0	200	5.0	103		12.7	2.35	13	225	8.7			110	2.7	3.8	3.4
14	(330)	11.5	200	4.9	105		12.3	2.35	14	230	8.4			110	2.6	3.8	3.4
15		11.4	200		106		11.9	2.40	15	220	7.9			115	2.3	3.8	3.45
16		11.4	200		105		11.6	2.45	16	215	6.8				2.0	3.2	3.4
17	240	11.7	230		105		9.3	2.40	17	215	6.7				Ε	2.9	3.4
1 18	260	11.5			113	2.1	6.0	2.35	18	215	5.2					2.7	3.3
19	310	11.0						2.30	19	225	3.9					2.3	3,2
20	350	9.6						2,30	20	250	3.2					2.2	3.0
21	370	(10.1)						(2.40)	21	275	3.0					2.2	2.9
: 22	330	(9.9)					(3.6)	(2.60)	22	300	2.8					2.1	2.8
23	290	(9.9)					(4.2)	(2.70)	23	305	2.8					2.3	2.8

Time: 75.0°N . Sweep: 1.0~Mc to 25.0~Mc in 13.5~seconds.

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 4 minutes.

Table 31 Wakkanai, Japan (45.4°N, 141.7°E) Akita, Japan (39.7°N, 140.1°E) January 1956 Time h°F2 foF2 h°F1 foFl h° E foE f Es (M3000)F2 Time h°F2 foF2 00 01 02 310 3.3 00 340 3.3 3.4 3.2 3.2 3.1 2.9 2.8 5.0 7.4 8.5 310 280 2.1 01 02 3.3 3.3 3.3 3.0 2.8 4.2 330 300 290 03 04 05 06 07 260 03 04 05 06 07 08 09 270 260 290 300 270 250 290 260 240 08 230 6.8 8.2 9.6 250 260 270 240 10 11 12 240 9.6 10.1 9.0 8.8 240 240 9.4 11 12 13 14 15 260 260 13 14 15 240 230 8.4 260 260 250 250 250 8.1 7.0 5.9 5.1 16 17 18 19 20 220 230 6.6 5.8 4.6 3.4 3.0 3.2 3.3 16 17 18 19 230 250 290 250 280 20 21 3.0 3.2 3.2 3.2 21 310 320 310 22 23 22 340 23 3.3 350

Time: 135.0°E.

5weep: 1.0 Mc to 22.0 Mc in 1 minute.

Time: 135.0°E. Sweep: 0.85 Mc to 22.0 Mc in 2 minutes.

Table 32

foFl

h°E

foE f Es

2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5

3.0 3.0 3.0 3.0 2.7 2.7 3.0 2.8

January 1956

(M3000)F2

Tokyo,	Japan (35	.7°N, 13	9.5°E)	Table 3	<u>13</u>			January 1956	Yamagaw	a, Japan	(31.2°N,	130.6°E	Table 3	4			January 1956
Time	h°F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	310 300 260 240 240 280 260 230 230 250 250 250 240 240 240 240 240 240 230	3.3 3.4 3.2 3.0 2.8 2.9 5.5 8.4 10.0 9.9 9.2 8.5 8.3 7.5	240 230 230 230 230 230 230 230 230 230 23	4.7 4.8 4.8 4.6 4.1	140 120 110 110 110 110 110 120 120	1.6 2.4 3.0 3.2 3.3 3.3 >3.2 3.1 2.8 2.3	2.3 2.4 2.3 2.1 2.5 3.1 >3.4 3.3 3.0 2.6	2.8 2.85 3.1 3.0 2.9 3.0 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14	290 290 290 250 250 250 250 230 240 240 250 250 250 240 240 240 240 240 240 240 240 240 24	3.5 3.6 3.4 2.7 2.7 3.8 7.3 8.5 9.7 10.5 11.0 11.1 10.8 9.6 9.0					2.3 2.3 2.3 2.3 2.3 2.2 2.1 2.2	1
17 18 19 20 21 22 23	220 230 240 250 280 290 300	6.4 5.5 4.3 3.4 3.1 3.3 3.2					2.1 2.2 2.4 2.5	3.3 3.2 3.3 3.1 3.0 2.9 2.9	17 18 19 20 21 22 23	230 210 230 230 240 260 290	8.1 7.0 6.2 5.5 5.0 4.0 3.7					3.0 2.4 2.3 2.3 2.3 2.3 2.3	

Time: 135.0°E.

5weep: 1.0 Mc to 17.2 Mc in 2 minutes.

Time: 135.0°E. Sweep: 1.0 Mc to 22.0 Mc in 1 minute.

Talara,	Peru (4.6	°S, 81.	3°W)	Table 3	5		J	anuary 1956	Huancay	o, Peru (12.0°5, 7	75.3°W)	Table :	<u>36</u>		j	anuary 1956
Time	h*F2	foF2	h'Fl	foFl	h*E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'F1	foFl	h*E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	240 240 240 240 250 250 250 (300) 320 (320) (320) (320) (320) 260 260 260 260 240	9,2 7,3 6,3 5,2 4,4 4,4 3,9 7,2 9,8 11,2 11,6 11,6 11,6 11,6 11,6 11,6 11,6	230 215 210 200 200 200 195 200 225 240	4.8 4.9 5.0 4.9	121 113 109 110 111 111 110 111 113 117	2.9 3.4 3.6 3.8 3.9 3.7 3.5 3.3 2.9	5.7 5.9 5.2 4.7 3.8 4.0 4.8 6.0 6.8 6.8 6.5 5.3 6.6 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	3. 20 3. 30 3. 30 3. 15 3. 15 3. 25 2. 90 3. 00 2. 85 2. 65 2. 40 2. 30 2. 30 2. 20 2. 45 2. 55 2. 70 2. 80 2. 85 2. 90 2. 90 3. 10	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	330 300 290 280 260 240 270 240 300 330 350 350 320 (300) 270 280 320 330 340 340 340 340 340 340 340 340 34	(8, 2) (7, 2) 6, 4 5, 6 5, 0 8, 9 10, 3 10, 9 10, 8 10, 7 10, 3 10, 0 10, 1 10, 5 10, 5 11, 0 10, 5 11, 0 10, 5 11, 0 10, 5 11, 0 10, 5 11, 0 10, 5 11, 0 10, 5 11, 0 11, 0 11	235 220 210 205 200 200 200 200 210 235	5.0 4.9 5.1 5.1 5.1 5.0 4.7	129 111 109 107 107 107 107 109 109 119	2.6 3.1 (3.1) 2.7 2.1	7.0 10.5 12.0 12.5 12.6 12.7 12.4 12.7 10.7 8.5 5.2	(2, 90) (2, 90) (2, 90) 3, 00 3, 20 3, 35 3, 35 3, 10 3, 00 2, 90 2, 65 2, 35 2, 30 2, 25 2, 35 2, 40 2, 45 2, 55 2, 60 2, 55 2, 60 2, 55 2, 45 2, 50 2, 45 2, 50 2, 45 2, 50 2, 45 2, 50 2, 45 2, 50 2, 45 2, 50 2, 45 2, 50 2, 45 2, 50 2, 45 2, 50 2, 50 2, 45 2, 50 2, 70

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 75.0° W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

December 1955

(M3000)F2

				Table	37								Table 3	<u>18</u>			
Johanne	esburg, Un	ion of 5	. Africa	(26.2°5	, 28.1°	E)		January 1956	Capetow	n, Union	of 5. Af	rica (34	.205, 18	.3°E)			January 1956
Time	h*F2	foF2	h*F1	foF1	h°E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03	<260 <250 <250 240	5.6 5.2 4.9 4.1					2.2 1.9 2.2 1.8	2.8 2.9 2.9 2.9	00 01 02 03	280 270 <280 270	4.8 4.6 4.6 4.2					2.0 2.5 2.6 2.2	2.7 2.8 2.8 2.8
04 05 06 07 08 09 10 11 12 13 14 15 16 17	280 260 280 350 350 350 350 350 350 350 350 350 35	3.6 3.4 5.0 6.1 7.0 8.1 8.6 9.3 9.4 9.3 9.2 8.6 8.6 8.2	250 230 220 210 210 210 210 210 210 210 210 21	2.8 4.2 4.7 5.0 5.1 5.2 5.2 5.2 5.1 5.0 4.8 4.4 3.6	130 110 110 110 110 110 110 110 110 110	2.0 2.7 3.2 3.5 3.7 3.8 3.9 4.0 3.9 3.6 3.4 3.0 2.4	1.7 2.7 3.6 3.7 4.2 4.1	2.8 2.8 3.0 3.0 2.8 2.7 2.7 2.7 2.8 2.7 2.8 2.8 2.8 2.9 2.9	04 05 06 07 08 09 10 11 12 13 14 15 16	<280 <280 270 280 340 360 360 360 360 360 340 340 320 300	3.8 3.6 4.5 5.9 6.7 7.5 8.0 8.1 8.6 9.0 9.0 9.2 8.6 8.0 7.6	240 230 220 210 210 200 210 210 210 210 220 230	3.6 4.6 4.8 4.9 5.1 5.1 5.1 5.0 4.7 4.3	140 120 110 110 110 110 110 110 110 110	1.6 2.4 3.0 3.3 3.6 3.7 3.8 3.9 3.7 3.6 3.2 2.8	2.3 2.0 2.5 3.1 3.5 4.0 4.0 4.1 4.1 3.8 4.1 4.1 3.8	2.75 2.7 2.9 2.9 2.7 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2.8 2.8 2.8
19 20 21 22 23	250 <250 240 250 <280	8.1 7.8 6.8 5.8 5.6					2.9 2.4 2.2 2.0 2.1	2.9 2.9 2.9 2.8 2.75	19 20 21 22 23	270 250 240 240 260	7.4 7.4 6.8 5.6 5.0	240	3.4	120	2.3	3.3 3.0 2.7 2.9 2.1	2.9 3.0 2.9 2.9 2.8

Time: 30.0°E. 5weep: 1.0 Mc to 15.0 Mc in 7 seconds.

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

De Bil	t, Holland	(52.1°N		Table 3	9		De	ecember 1955	Wakkanai	, Japan	(45.4°N,	141.7°E	Table	<u>40</u>		De	ecember 1955
Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	300 300 290 280 270 260 240 240 215 220 220 230 215 215 215 215 215 200 300 300 305	3.1 3.1 3.0 2.7 2.4 2.3 3.0 5.6 7.2 7.4 7.9 7.7 6.1 5.0 3.9 3.0 5.5 2.5 2.5 2.5	220 225 220 225 225 225 225 230	3.0 3.4 3.7 3.6 3.3 3.0	140 125 115 120 120 120 125 140	1.9 2.2 2.5 2.6 2.7 2.5 2.3 1.9	2.6 2.8 2.6 2.3	2.5 2.55 2.55 2.66 3.09 2.99 3.4 3.5 3.5 3.4 3.4 3.3 3.2 2.5 2.5 2.5 2.5	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	320 310 300 270 260 250 230 230 230 230 230 220 220 220 220 330 340 330	3.2 3.3 3.3 3.2 3.0 5.0 7.0 8.0 9.3 8.9 9.3 8.1 8.0 7.5 6.0 4.5 3.7 3.2 2.2 2.3 3.3					2.0	

Time: 0.0°. Sweep: 0.8 Mc to 20.0 Mc in 20 seconds.

Time: 135.0°E. 5weep: 1.0 Mc to 22.0 Mc in 1 minute.

	Akita,	Јарап (39,	.7°N, 14	0.1°E)	Table 4	11		De	cember 1955	5an Fra	ncisco, C	alifornia	37.4°	<u>Table 4</u> N, 122.2			De
į.	Time	h°F2	foF2	h*Fl	foFl	h°E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h°F1	foFl	h°E	foE	f Es
And the state of t	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	340 340 320 280 290 250 250 260 260 260 250 250 250 250 250 250 250 250 250 25	3.2 3.2 3.3 3.2 3.3 3.0 5.6 8.8 8.6 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8					2.3 2.5 2.5 2.5 2.5 2.1 2.1 2.5 3.1 2.5 2.5 2.5 2.5 2.5 2.5 2.7		00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	(260) 250 (260) (250) (250) (250) (250) 240 220 220 230 240 240 240 230 220 200 200 210 220 250 250 260 (270)	(3,2) (3,2) 3,4 3,3 3,3 3,0 (3,0) (4,3) (7,1) (7,1) 4,0 9,0 8,6 9,4 10,0 9,9 9,4 9,0 8,7 7,1 4,9 9,0 8,7 7,1 7,1 2,7 2,7 2,7	230 220 210 210 220 220 220 220	(3.9) (4.2) (4.4) 	<120 (110) (110) (110) (110) (110) (110) (110) <120	(2.0) (2.8) (3.0) (3.1) 3.2 3.2 3.0 (2.7) (2.1)	<pre><2.0 <2.2 <1.7 2.4 <1.6 <1.7 <1.6 2.0 3.5 3.3 (3.6) <3.2 2.7 3.0 2.6 (2.4) 2.4 2.4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1</pre>

Time: 135.0°E. Sweep: 0.85 Mc to 22.0 Mc in 2 minutes.

Time: 120.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 4	<u>3</u>		_						Table 4	4			
Tokyo,	Japan (35	.7°N, 13	9.5°E)				De	cember 1955	Yamagawa	, Japan	(31.2°N,	130.6°E)			De	cember 1955
Time	h*F2	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2	Time	h¹F2	foF2	h'Fl	foF1	h*E	foE	f Es	(M3000)F2
00	300	3.1						2.8	00	320	3.3						
01	290	3.2						2.8	01	300	3.4						
02	280	3.3						2.9	02	280	3.3						
03	270	3.2					2.2	2.9	03	280	3.2						
04	240	3, 2					2.1	3.0	04	260	3.4						
05	270	2.9						2.9	05	260	3.0						
06	270	3.1						3.0	06	300	2.6						
07	240	6.1			150	1.7		3.35	07	260	4.4					2.1	
08	230	7.7	230	3.1	120	2.4	3.1	3.4	08	240	7.9						
09	230	8.9	230	4.0	110	2.9	3.3	3.4	09	240	9.5						
10	240	9.1	230	4.4	110	3.0	3.8	3.3	10	240	10.0						
11	240	9.5	230	4.5	110	3.2	3.8	3.3	11	240	10.2					4.8	
12	240	9.3	230	4.6	110	3.3	4.0	3.3	12	250	10.5					5.4	
13	240	9,0	230	4.5	110	3.2	3.6	3.3	13	250	10.8					5.4	
14	240	8.4	230	4.0	110	3.0	3.6	3, 35	14	250	10.3					5.4 3.7	
15	230	8.0	230		120	2.6	3.0	3.4	15	240	9.9						
16	230	7.1					2.7	3.4	16	240	9.2					3.3	
17	210	5.6					1.8	3.3	17	220	8.4					3,2	
18	230	4.7						3.2	18	210	7.0					2.3	
19	240	4.1						3.2	19	220	5.8					2.3	
20	250	3.4						3,2	20	230	5.4					2.3	
21	260	3.0						3.0	21	240	5.0						
22	290	2.9						2.8	22	250	4.3						
23	320	3.0						2.75	23	290	3.6						

Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 minutes.

Time: 135.0°E. 5weep: 1.0 Mc to 22.0 Mc in 1 minute.

Johanne	esburg, Un	ion of S	. Africa	Table 45 (26.2°S		E)	06	ecember 1955	Capetow	n, Union	of S. Afr	rica (34.	Table 4			0e	cember 1955
Time	h¹F2	foF2	h'F1	foF1	h [®] E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h°F1	foFl	h¹E	foE	f Es	(M3000)F2
00	<260	6.0					1.8	2.8	00	280	5.1					2.2	2.7
01	<260	5.9						2.9	01	280	5.0					2.4	2.7
02	250	5.5						2.9	02	280	4.8					2.1	2.7
03	<250	5.0						2.9	03	270	4.7					2.0	2.8
04	<240	4.3						2.9	04	<270	4.5					1.8	2.8
0 5	260	4.4						2.9	05	280	4.3						2.8
06	250	6.0	240	3.2	120	2.2		3.1	06	260	5.6	250	2.7	130	2.0	2.4	3.0
07	290	6.9	220	4.4	110	2.9		2.9	07	280	6.8	230	4.0	120	2.6		2.9
08	330	8.0	210	4.9	110	3.3		2.7	08	320	8.0	220	4.7	110	3.0		2.7
09	350	9.0	210	5.1	110	3.6		2.7	09	340	8.7	220	4.9	110	3.4	3.9	2.6
10	350	9.8	210	5.2	110	3.8		2.7	10	350	9.1	210	5.2	110	3.6	4.4	2.6
11	350	10.2	200	5.2	110	3.9		2.7	11	360	9.5	210	5.2	110	3.8	4.4	2.6
12	350	10.4	200	5.2	110	3.9	4.0	2.7	12	360	9.8	210	5.2	110	3.8	4.0	2.6
13	350	10.3	200	5.2	110		4.2	2.7	13	360	10.1	210	5.2	110	3.8	4.2	2.6
14	350	10.0	210	5.2	110	3.8	4.1	2.7	14	350	9.7	210	5.2	110	3.8	4.4	2.6
15	340	9.5	210	5.1	110	3.6	4.0	2.7	15	350	9.5	210	5.1	110	3.7	4.4	2.7
16	310	9.6	220	4.8	110	3.3	3.9	2.8	16	330	9.4	220	4.9	110	3.5	4.1	2.7
17	300	9.6	220	4.4	110	2.9	3.6	2.8	17	320	9.0	220	4.7	110	3.2	3.7	2.8
18	270	9.0	240	3.4	110	2.3	3.0	2.9	18	290	8.8	220	4.2	110	2.8	3.4	2.8
19	250	8.9					2.4	2.9	19	270	8.3	240	3.4	120	2.2	2.9	2.9
20	<250	8.3						2.9	20	240	7.8					2.6	3.0
21	240	7.6						2.9	21	240	7.0					2.6	2.9
22	250	6.6						2.8	22	250	6.2					2.2	2.9
23	<270	6.3					2.0	2.8	23	260	5.6					2.0	2.8

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Buenos	Aires, Ar	gentina	(34.5°S,	Table 4 58.5°W)	<u></u>		0e	cember 1955	Nairobi	, Kenya (1.305, 36	6.8°E)	Table 4	<u>8</u>		No	vember 1955
Time	h°F2	foF2	h°F1	foF1	h°E	foE	f Es	(M3000)F2	Time	h'F2	foF2	h°F1	foFl	h º E	foE	f Es	(M3000)F2
00	300	9.2					3.6	2.8	00	200	>9.9						(3,35)
01	290	9.2					3.0	2.9	01	<250	>9.0						(2.8)
02	280	8.6					3.5	2.9	02	260	>0.6						2.9
03	260	0.4					3.1	3.0	03	260	8.2						3.0
04 05	280	7.8						2.8	04	230	7.2						3.1
05	250	7.6					2.8	2.8	05	220	6.0						3.2
06	240	8.2	230		100	2.7	3.8	2.85	06	230	5.0						3.2
07	300	8.0	210				4.0	2.7	07	250	>7.0	240		120	2.3	2.8	3.25
08	300	9.2	210				4.0	2.6	08	260	8.7	230	4.6	110	3.0		3.2
09	360	9.5	200				3.5	2,6	09	290	9.8	220	5.0	110	3.4		2.9
10	400	10.2	200					2.6	10	300	>10.1		5.0	110	3.6	(4.2)	2.8
11	390	10.8	200					2.7	11	300	10.8		5.1	110		(5.3)	2.6
12	360	11.3	210	5.2				2.8	12	340	11.1		5.4	110			2.7
13	330	11.6	(210)					2,9	13	(340)	(11.6)			(110)			(2.6)
14	310	11.5	210					2.9	14	(340)	(11.9)		(5.2)	110			(2,6)
15	300	11.5	210					3,0	15	330	11.8		5.0	110		(5.2)	2.6
16	300	10.6	220				4.3	3.0	16	330	12.2	220	5.0	110	3.2	3.8	2.6
17	290	10.4	220				3.5	3.0	17	(300)	11.8	240	4.6	120	2.8	3.6	2.7
10	280	9.0	230				3.0	3.0	18	(300)	>11.0	260				3.6	
19	280	9.4						2.9	19	310	>11.0					2.8	
20	300	9.2						2.8	20	340						2.8	
21	320	9.4						2.0	21	320						(3.1)	
22	310	9.2					3.2	2.0	22	260						2.6	
23	310	9.4					3.5	2.8	23	220							

Time: 60.0° W. Sweep: 1.0 Mc to 25.0 Mc in 27 seconds.

Time: 45.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

August 1955
foE fEs (M3000)F2
3,7 2,95
3,7 3,10
3,6 3,10
3.7 3.10
3.8 3.10
3,5 3,10
1.6 3.5 3.30
2.3 4.0 3.45
2.8 5.3 3.40
3.0 >7.0 3.20
3, 2 6, 2 3, 00
3,4 >5,0 2,85
3.5 4.6 2.90
3.4 4.6 2.90
3,3 5,8 2,95
3.2 5.4 3.05
2.9 5.1 3.15
2.5 5.4 3.15
1.9 4.2 3.15
4.2 3.20
4.0 3.45
4.2 3,20
4.0 2.90
3.7 2.80

Time: $75.0^{\circ}E$. 5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Time: 75.0°E, 5weep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

				Table 5	<u> 1</u>								Table :	52			
Calcut	ta, India	(22.9°N,	88.5°E)					August 1955	8ombay,	India (1	9.0°N, 7	3.0°E)					August 1955
Time	h°F2	foF2	h°F1	foF1	h°E	foE	f Es	(M3000)F2	Time	*	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 260 230 240 270 270 270 310 350 350 350 350 350 320 290 290 290 290 290 290 290 290 290 2	5.0 4.5 3.8 3.3 3.0 2.5 4.2 6.8 7.5 9,1 10.0 11.6 11.6 11.8 11.5 11.4 11.0 10.1 9.0 5.5 11.4 11.0 10.1 9.0 10.1	220 205 200 190 185 180 200 200 205 215 215	3.8 4.2 4.4 4.6 4.7 4.7 4.6 4.7 4.6 4.7 4.6 3.6	105 100 100 100 100 100 100 100 100 100	2.6 2.8 3.2 3.5 3.7 3.8 3.7 3.4 3.1 3.0 2.6	2.0 2.5 2.1 2.9 3.6 4.0 3.6 4.0 5.2 5.2 5.2 4.3 4.4 4.5 4.0 4.5 4.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	2.95 3.10 3.10 3.10 3.10 3.05 3.20 3.10 (3.05 2.90 2.80 2.75 2.80 2.75 2.85 2.95 3.05 3.15 3.20 3.15 3.20 3.15 3.00	00 01 02 03 04 05 06:30 07 08:30 09 10 11 12 13 14 15 16 17 18	270 300 330 360 390 420 420 420 390 390 390 390 390 300 (300)	4. 4 5. 1 6. 8 7. 4 8. 1 9. 7 10. 0 9. 4 9. 2 (7. 1) 5. 8 4. 7						3,35 3,10 3,10 2,95 2,65 2,55 2,55 2,55 2,55 2,65 2,65 2,6

Time: 90.0°E. 5weep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Time: $75.0^{\circ}E$, 5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

									-								
				Table 5	3								Table 5	4			
Madras,	India (1	3.0°N, 8	0.2°E)					August 1955	Tiruchy,	India (10.8°N,	78.8°E)					August 1955
Time		foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2	Time	₩.	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00									00								
01									01								
02									02								
03	1								03								
04									04								
05									05								
06	320	5.8						3.00	06	300	5.4						3.10
07	360	7.4						2.80	07	320	7.3						3.00
08	400	8.1						2,60	08	360	8.0						2.80
09	450	7.9						2.45	09	400	7.6						2.60
10	480	7.3						2.30	10	440	7.5						2.50 2.50
11 12	480	7.4						2.30	11	440	7.6						2.50
13	480 480	7.7 7.9						2.30	12	440	7.6						2.50
13	480	8.5						2,30 2,30	13	440 440	7.8 8.4						2,50
15	480	>8.8						2.30	15	400	8.9						2,60
16	420	9.3						2.55	16	400	9.3						2,60
17	400	10.5						2.60	17	360	9.7						2.80
18	360	10.2						2.80	18	360	>9.2						2,80
19	360	8.7						2.80	19	320	8.5						3,00
20	360	>7.5						2.80	20	320	7.5						3.00
21	320	>6.0						3.00	21	320	6.5						3.00
22									21.30	280	6.0						3,25
23									23								

Time: $75.0^{\circ}E$, 5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation, *Height at 0.83 foF2.

Time: $75.0^{\circ}E$. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Table 55 Table 56 Greenland (69.2°N, 53.5°W) July 1955 July 1955 Delhi, India (28.6°N, 77.1°E) Time h'F2 foF2 h'Fl h'E f Es (M3000)F2 f Es (M3000)F2 foE h'F1 foF1 h*E foE Time foF2 (5.6) (5.4) (5.7) 3.25 250 (4.0)1.4 1.7 3.2 00 01 250 260 (4.0) (4.0) 250 240 <1.7 2.7 2.3 <2.4 3.6 3.8 3.7 3.7 01 300 3.10 (3,0) (3,3) (3,6) (3,7) (4,0) (4,0) 4,1 4,1 02 (3,3)02 120 120 110 230 220 03 (280) (3.8)(1.7)---03 (3.9) (4.2) (1.8) 2.0 2.2 2.4 3.25 04 (330) 280 (4.8) 3.25 3.25 3.25 3.10 3.00 210 280 4.5 5.2 05 06 (360) 470 (4.0) (4.4) 210 200 110 06 280 07 (2.5) 6.4 100 07 280 4.6 (4.7) (4.7) 08 09 (390) 210 100 2.6 2.8 2.9 2.9 2.9 2.9 2.8 2.7 2.5 (2.7)300 08 380 210 100 100 3.8 (3.1) (3.0) 09 320 330 7.4 10 400 210 3.00 10 11 12 400 380 (4.9) (4.9) 200 200 100 3.0 3.0 320 3.00 11 4.1 4.2 4.2 4.1 (3.0) (2.9) 100 3.1 3.2 12 320 320 8.5 8.5 390 (350) 200 200 100 100 100 3.00 13 (5.0) 13 14 15 (5.0) (4.9) 4.6 5.8 320 320 8.5 (3.1)360 360 360 3.00 200 3.1 15 320 290 280 (4.8) (4.8) 200 200 100 16 17 4.0 6.2 (3.0)8.4 16 3.20 3.9 5.0 8.0 (3.0)3.25 3.25 3.25 3.25 3.20 7.8 7.4 7.1 210 220 18 19 360 (4.6) 3.8 (110) 5.2 (2.9)18 340 (4.7) (4.6) 2.2 4.5 280 3.6 (110) (3.0)19 300 (290) (260) 20 220 (110) (3,1) 280 20 21 21 22 (4.5) (4.2) 240 (3.2)(120) 1.8 290 >6.5 <2.4 1.7 240 (1.6) 300 6.0 5.9 120 3.1 (3.9) 1.5 (3.1) 3,10

Time:

45.0°W. 1.0 Mc to 25.0 Mc in 16.2 seconds.

Time

Time: $75.0^{\circ}E$. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

h'Fl

*Height at 0.83 foF2.

h'F2

Calcutta, India (22.9°N, 88.5°E)

foF2

44		(02 00N	79 (05	Table 57	:			July 1955
Time	h°F2	(23.0°N, foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00	300	4.0					4,2	3,00
01	290	3.8					4.0	3.10
02	290	3.6					3.8	3.15
03	300	3.3					3.4	3,15
04	300	3.1					3.6	3,20
05	290						3.6	3.20
		3.0	240	(2.2)		1.7	3.7	3.35
06	250	4.4	240	(3.3)		2.4	3.9	3.30
07	275	5.7	220	3.9	113			3.30
08	280	6.6	215	4.2	110	2.8	4.3	
09	320	6.8	230	4.4	107	3.0	4.4	3.10
10	335	7.3	210	4.5	107	3.2	5.8	3.00
11	370	7.9	205	4.6	107	3.4	7.0	2,85
12	370	8.3	210	4.6	107	3.5	7.0	2.75
13	360	9.2	210	4.6	107	3.5	6.0	2.80
14	340	9.2	220	4.6	110	3.4	6.0	2.90
15	330	9.1	215	4.4	107	3.3	6.2	2.90
16	320	9.2	230	4.2	107	3.0	6.2	2.85
17	310	8.6	230	4.0	111	2.6	4.0	3.00
18	300	8.3	240	3.6	120	2.2	5.2	3.05
19	250	7.6					4.2	3, 15
20	240	6.9					5.0	3, 20
	230	6.0					4.0	3, 20
21	255	5.2					4.0	3, 10
22							4.2	2.90
23	300	4.5					4.2	2.70

Time: 75.0°E.

0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

00	275	4.9					2.2	3.10
01	270	4.5						3, 10
02	250	4.3					2.2	3,10
03	250	3.8					1.8	3, 10
04	250	3.2					2.8	3,10
05	250	3.0					-•-	3, 10
06	240	4.5			120	2.0	3,1	3.10
07	265	6.0	220	3.2	105	2.4	3.6	3.10
08	310	7.3	210	4.1	100	3.0	3.9	2.95
09	320	8.3	205	4.6	100	3.4	4.8	2.85
10	340	9.5	200	5.0	100	3.4	5.4	2.80
11	340	10.5	200	5.1	100	3.4	5.3	2.65
12	340.	11.0	195	5.0	100	3.5	5.2	2,65
13	345	11.1	200	4.9	100	3.5	4.9	2.75
14	330	11.3	200	4.7	100	3.3	4.6	2.85
15	310	11.2		4.4	100	3.0		
16	300	11.0		4.4	105		5.6 5.1	2.95
	295		210			3.0		3.00
17	280	10.5		4.0	105	2.7	4.8	3.05
18		10.0 9.4	220	3.5	120	2.0	5.0	3.10
19	245						3.6	3.10
20	220	8.5					3.2	3.25
21	220	7.2					2.6	3,35
22	250	6.1					27	3 20

Table 58

foF1

h°E

foE

f Es

2.4

July 1955

(M3000)F2

3.10

Time: 90.0°E.

260

23

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

5.2

Bombay,	India (1	9.0°N, 7	3.0°E)	Table	<u>59</u>			July 1955	Madras,	India (1	3.0°N, 8	0.2°E)	Table (60			July 1955
Time	*	foF2	h'Fl	foF1	h°E	foE	f Es	(M3000)F2	Time		foF2	h'F1	foFl	h°E	foE	f Es	(M3000)F2
Time 01 02 03 04 05 06:30 07 08:30 09 10 11 12 13 14 15	270 300 330 330 360 390 420 450 480 (450)	4.5 5.0 6.0 6.6 7.4 8.1 8.9 9.6 9.8	h*F1	foFl	h°E	foE	f Es	3,35 3,10 2,95 2,95 2,80 2,65 2,55 2,45 2,30 (2,45)	Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	320 360 400 440 450 470 480 480 460 470	5.9 7.1 7.6 >7.4 7.8 7.1 7.7 >8.0 8.1 8.6	h*F1	foFl	h°E	foE	f Es	3.00 2.80 2.60 2.50 2.45 2.35 2.30 2.30 2.30 2.35
17 18 19 20 21 22 23	(420) 390 360 330 300 300	-(8.4) 9.4 8.2 6.2 5.6 4.6						(2,55) 2,65 2,80 2,95 3,10 3,10	17 18 19 20 21 22 23	410 360 360 320 300	8.8 >8.8 >8.5 7.5 6.0						2.60 2.80 2.80 3.00 3.10

Time: $75.0^{\circ}E$. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Time: 75.0°E.

1.5 Mc to 18.0 Mc in 5 minutes, manual operation. Sweep:

*Height at 0.83 foF2.

3.0

				Table 6	51								Table 6	2			
Tiruchy	, India (10.0°N,	70.8°E)					July 1955	Townsvi	lle, Aust	ralia (1	9.3°S, 1	46.7°E)				April 1955*
Time		foF2	h°F1	foF1	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 21:30	320 320 360 400 440 440 440 440 400 400 360 360 320 320	5.1 6.8 7.3 7.2 7.2 7.1 7.5 8.5 8.5 8.5 8.5 6.4 6.0						3,00 2,80 2,80 2,60 2,50 2,50 2,50 2,50 2,50 2,60 2,60 2,80 2,80 3,00 3,00 3,00	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	250 250 250 230 250 270 250 250 250 250 250 250 250 250 250 25	(3.7) 3.4 3.3 3.3 3.0 2.8 3.0 >5.2 6.6 8.0 8.4 7.6 7.0 8.2 8.3 >7.4 4.7 4.6 3.8 3.8	230 220 210 210 200 205 	3.9 4.2 4.3 4.4 4.4 4.4 4.2 	120 100 100 100 100 100 100 100 100	2.0 2.5 2.9 3.1 3.3 3.3 3.3 3.2 3.0 2.8 2.2	3.5 3.1 2.8 2.6 2.5 3.0 3.5 4.3 4.4 4.4 4.4 4.7 4.2 3.4 2.3 3.1 3.5	(3, 2) (3, 2) (3, 2) (3, 4) (3, 3) (3, 1) 3, 3 3, 6 3, 55 3, 5 3, 4 3, 4 3, 25 3, 25 3, 25 3, 4 3, 4 3, 4 3, 25 3, 25 3, 25 3, 3, 25 3, 3, 25 3, 3, 25 3, 3, 3, 25 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

Time: 75.0°E . Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Sweep: 1.0 Mc to 16.0 Mc in 1 minute 35 Sweep: 1.0 Mc from April 1 to 19, inclusive. Table 63 Table 64 Camberra, Australia (35.3°S, 149.0°E) April 1955 Tasmania (42.9°S 147.3°E) April 1955 Hobart h°E foE f Es (M3000)F2 foE f Es (M3000)F2 Time h'F2 foF2 h°F1 foFl Time h°F2 foF2 h°F1 foF1 h°E 3.1 00 2.2 2.9 2.9 3.0 3.7 3.7 3.7 3.7 3.3 2.7 3.1 270 00 3.1 3.1 3.2 3.1 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 01 270 2.0 2.3 2.3 2.1 2.1 2.0 3.5 ---02 03 3.0 270 260 <230 3.3 04 05 06 07 08 09 10 11 12 260 3.0 3.1 3.1 3.2 3.2 3.1 3.15 3.1 3.2 3.2 3.1 3.2 3.2 3.45 250 280 (200) 3.1 4.6 5.5 6.0 3.6 3.6 3.5 1.5 2.0 2.5 2.7 240 120 100 4.5 4.9 5.2 5.9 6.4 230 220 (3.6) (4.0) 4.2 4.2 4.3 4.2 (4.1) (4.0) 2.4 2.7 2.9 3.0 3.1 3.1 3.0 2.8 2.5 (1.9) 230 100 260 210 100 210 100 6.0 6.5 6.6 3.5 250 265 210 200 100 210 200 100 100 3.7 3.6 3.8 3.9 3.4 2.8 3.2 2.8 2.4 1.9 2.1 4.0 4.0 4.0 4.0 200 200 2.8 2.9 2.9 2.8 2.5 2.2 1.7 100 100 100 100 100 100 100 100 260 200 200 6.5 6.4 6.2 5.6 5.5 6.6 6.8 6.0 13 14 15 260 250 200 200 3.4 3.4 200 220 200 210 3.5 3.5 3.5 250 210 100 220 6.6 6.2 5.2 16 17 16 17 230 220 (3.5)100 230 220 230 100 4.0 4.2 3.5 3.0 2.5 18 210 3.4 3.2 3.2 230 3.1 3.0 3.0 18 19 20 21 22 23 19 20 21 22 4.3 240 ---250 3.1 3.2 250 270 3.0 4.0 2.0 ---3.6 3.8

Time: 150.0°E.

23

Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Time: 150.0°E.

280

150.0°E.

1.0 Mc to 16.0 Mc in 1 minute 55 secon

Time:

1.0 Mc to 13.0 Mc in 1 minute 55 seconds. Sweep:

2.4

Campbel	1 I. (52.	5°S, 169.	2°E)	Table 6	<u>s</u> •		Fe	bruary 1951	Campbel	l I. (52.	5°S,_169	.2°E)	Table (<u>56</u> *			January 1951
Time	h°F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'F1	foFl	h'E	foE	f Es	(M3000)F2
00 01 02									00 01 02 03								
03 04									04								
05 06	260	(4.1)				2.1	2.9		05 06	250	4.4			120	2.4	3.6	3.0
07	310	5.0	250	4.2	120	2.7	3.2	3.0	07	350	5.4	240	4.3	110	3.1	3.6	2.9
08	340	5.4	240	4.4	110	3.1	3.4	3.0	08	350	5.7	220	4.5	110	3.2	4.4	3.0
09	350	5.6	230	4.5	120	3.3	3.5	3.0	09	350	6.2	220	4.6	110	3.4	4.2	3.0
10	350	6.2	230	4.6	110	3.4	3.8	3.0	10	350	6.4	220	4.8	110	3.6	4.2	3.0
11	330	6.4	220	4.7	110	3.5	3.9	3.0	11	350	6.6	220	4.8	110	3.7	4.1	3.0
12	330	6.6	210	4.7	110	3.6	4.0	2.9	12	350	6.5	210	4.9	110	3.8	4.2	2.9
13	350	6.6	230	4.7	110	3.6	3.8	2 9	13	350	6.3	220	4.9	110	3.7	4.2	2.95
14	340	6.8	230	4.6	110	3.4	3.7	2.5	14	350	6.5	210	4.8	110	3.6	4.0	2.9
15	320	7.0	240	4.5	110	3.3		2.9	15	350	6.6	220	4.7	110	3.5	3.8	2.9
16	310	6.8	230	4.5	120	3.0		3.0	16	340	6.8	230	4.5	110	3.3	3.3	2.9
17	300	7.0	250		120	2.7	3.0	2.9	17	310	6.8	240	4.3	120	3.0		3.0
18	290	6.8	250		140	2.4	3.2	2.95	18	290	6.7	250	3.8	130	2.7	3.0	3.0
19 20	260	7.0				2.0	3.6	3.0	19 20	260	6.8	260		140	2.2		2.9
21 22	300	(6.5)					2.6		21 22	260	7.1						2.7
23	300						3.3		23	280	6.2					2.8	2.8

Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

Time: 165.0° E. Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation.

*Observations taken on a 16-hour working schedule.

_	Table 67* 1 I. (52.5°5, 169.2°E)											Table 6	8*				
Campbel	11 I. (52.	5°5, 169	.2°E)				De	ecember 1950	Campbe	11 I. (52.	5°5, 169	. 2°E)				No	vember 1950
Time	h°F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00									00								
01									01								
02									02								
03	1								03								
04									04								
05	250	4.9			120	2.6	3.5	3,1	05	-260	4.6	250		120	2.4	3.2	3,1
06									06								
07	320	5.7	240	4.6	110	3.2	3.4	3.0	07	360	5.4	240	4.5	110	3.1		3.0
08	350	6.0	230	4.7	110	3.4	3.7	3.0	08	400	5.5	230	4.6	110	3.3		2.8
09	340	6.3	220	4.7	110	3.5	4.1	2,95	09	360	6.0	230	4.6	110	3.5		2.9
10	350	6.4	210	4.8	110	3.6	4.2	3.0	10	360	6.4	230	4.7	110	3.6		2.9
11	350	6.4	220	4.9	110	3.7	4.1	2.9	11	360	6.4	220	4.8	110	3.6		2.9
12	350	6.6	210	4.9	110	3.7	4.0	2.9	12	350	6.5	220	4.8	110	3.6	3.8	2,9
13	350	6.4	210	4.9	110	3.7	4.1	2.9	13	340	6.8	220	4.8	110	3,6		2.9 2.9
14	350	6.6	220	4.8	110	3.6	4.0	2.9	14	330	6.6	220	4.6	110	3.5		2.9
15	340	6.9	230	4.7	110	3.5		2.9	15	320	7.0	230	4.6	110	3,3		2.9
16	330	6.8	230	4.6	110	3.3		2.9	16	310	7.1	240	4.5	110	3,1		2.9
17	300	7.1	240	4.4	120	3.0	3,2	2.9	17	300	7.1	250	4.1	120	2.8		3.0
18	300	7.3	250	3.9	120	2.6	3.2	3.0	18	280	7.2	250		140	2.4	2.8	2.9
19	250	7.6			140	2,2	3.6	2.9	19	260	7.3			140	2.0	2.9	2.9
20								(0.0)	20								
21	260	7.0					2.8	(2.8)	21	280	6.7					4.0	2.9
22	000	, ,						(0.0)	22								
23	290	6.0					4.0	(2.8)	23	290	5.6					4.2	2.8

Time: 165.0°E.

*Observations taken on a 16-hour working schedule.

Table 69* Campbell I. (52.5°5, 169.2°E) September 1950 h°F2 foF2 h°F1 foFl h°E foE f Es (M3000)F2 Time 00 01 02 03 04 05 06 07 08 09 10 11 12 (2.85)300 2.7 2.4 2.8 3.0 3.2 3.3 3.4 3.3 3.2 2.9 2.6 2.0 3.3 120 120 120 120 120 120 120 120 5.0 5.3 5.7 250 300 230 230 220 220 230 230 230 3.1 3.2 3.1 3.1 3.1 3.1 3.15 3.1 3.1 3.2 9 4.4 4.5 4.6 4.5 4.5 4.4 4.1 310 320 300 6.0 6.1 6.4 6.3 13 14 15 300 300 6.2 6.2 6.2 230 240 120 120 280 16 17 18 19 270 260 250 270 5.5 5.2 20 21 22 2.9 300 4.2 2.2 300 3.3 3.7 (2.7)

Time: 165.0°E.

Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

Campbel	1 I. (52.	5°5 . 169.	2°E)	Table 7	Ī ₄₀			July 1950
Time	h*F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2
00								
Q1								
02								
03								
04								
05	(290)	(2.9)					2.7	(2,6)
06								
07	280	2.9						2.7
08	240	4.7			120	1.8	2.1	3.2
09	240	5.8			110	2.3		3.2
10	250	6.4	220		120	2.6		3,3
11	250	7.0	240	3,6	110	2.8		3.2
12	250	7.6	240	3.6	120	2.8		3.2
13	250	7.6	230	3.5	110	2.7		3.3
14	250	7.3	240	3.5	120	2.5		3.2
15	240	7.4	230	3.2	120	2.2		3.2
16	240	6.8			120	2.0		3.2
17	240	5.6						3.1
18	250	4.9						3.0
19	250	4.5						2,95
20								(0.0)
21	320	3.7						(2.9)
22 23	320						2.6	

Time: 165.0°E, 5weep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation.

*Observations	taken on a	16-hour working	g schedule.

Campbel	1 I. (52.	5°5, 169	.2°E)					August 1950
Time	h°F2	foF2	h°F1	foF1	h°E	foE	f Es	(M3000)F2
00								
01								
02								
03								
04								
05	(290)	(2.9)						(2.75)
06								
07	250	4.0			120	1.9	2.6	2.9
08	250	5.0	230		120	2.3	2.6	3.2
09	250	5.5	230		120	2.6	3.2	3.2
10	250	5.8	230	4.0	120	2,9	3,4	3.2
11	270	6.5	230	4.2	120	3.0	3,8	3.2
12	270	6.6	240	4.2	120	3.1		3.1
13	270	6.6	230	4.2	120	3.1	3.5	3.1
14	260	6.8	240	4.0	120	2.8		3.2
15	250	6.8	240	4.0	120	2.6		3.2
16	250	6.6			140	2.2		3, 2
17	250	5.8				1.6		3.1
18	250	5.3						3.0
19	250	4.5						2.9
20								
21	290	3.9					3.3	(2.8)
22								\
23	320	3,2					3,2	(2.7)

Time: 165,0°E, Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

Campbel	1 I. (52.	5°S, 169	.2°E)	Table 7	2*			June 1950
Time	h'F2	foF2	h*Fl	foFl	h°E	foE	f Es	(M3000)F2
00								
01								
02								
03								
04								
05	300	(2.9)					2.8	(2.8)
06								
07	260	(3,2)						(2.75)
08	250	5.1			110	2.1		3.1
09	240	6.3	230	4.0	110	2.2		3, 2
10	240	7.2	240	3.7	120	2.5		3,2
11	250	8.1	240	3.6	120	2.7		3.1
12	250	8.4	240	3. c	110	2.7		3,2
13	250	8.4	240	3.8	120	2.6		3.2
14	240	8.3	240	3.4	120	2.4		3, 1
15	240	8.2	230	3.9	120	2.1		3.15
16	250	7.1	220	3.5	120	2.0		3, 1
17	240	6.2						3,0
18	250	5.2						3.0
19	250	4.6						(2.9)
20								
21	270						3.0	
22								
23	300						4.0	

5weep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation, *Observations taken on a 16-hour working schedule.

Time: 165.0°E, Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation. *Observations taken on a 16-hour working schedule.

TABLE 73
IONOSPHERIC DATA

foF2, Mc, April 1956

75°W Mean Time

10F2, MC, APITI 1956					/ 5°W Med	in time	
Station Washington, D.C. Lat 38.7°N Lo	ng. 77. I°W	Sweep	I.O Mc to	25.0 Mc	in 13.5 sec.	Manual 🗆 Auton	natic 🛭
	08 09	10 11	12 13	14 15	16 17 18		23
	62 63 68	70 70	74 76	76 76	76 74 74	70 70 67 66	63
02 56 48 48 43 42 33 45	61 72 71	69 76	78 84	84 87	84 79 88	90 86 72 67	72
03 68 64 66 60 52 44 57	72 86 96	106 110	109 108	109 107 1	.04 100 98	88 80 78 70	68
04 66 64 57 58 53 44 56	76 92 98	107 106	108 113	114 113 1	.15 114 114		74
05 72 71 63 62 55 57 58	68 78 86	96 92	97 102	98 92	92 92 90	84 78 76 6 8	U F 67
06 67 64 62 56 50 50 63	76 88 88	96 110	117 113	110 105 1	.00 107 103	100 88 69 76	80
07 68 68 64 57 53 50 58	62 72 78	84 81	92 94	92 93	90 88 92	87 76 69 64	60
08 60 56 55 50 44 43 56	70 86 96	96 97	106 102	103 103 1	.02 101 97	94 83 76 68	66
09 64 63 58 57 50 46 58	80 96 103	110 112	118 115	113 106 1	.07 106 103	98 88 84 72	U F 72
10 70 68 58 57 53 50 59	66 76 90	97 98	101 105	I C 105 1	.03 100 94	90 80 79 80	F 72
F F F U F U F F 11 69 63 62 58 54 50 64	85 96 101	110 110	111 113	106 113 1	10 107 102	94 86 82 78	84
F F F 12 75 70 64 60 58 59 70	89 100 107	108 114	113 112	112 109 1	05 102 102	99 90 88 86	82
US	5 94 109 119	122 120	119 120	118 118 1	13 108 106	U 5 100 93 92 90	88
	5 F 93 104 115	U H H	H		12 107 104		90
CCF	95 102 105	120 120	120 120	119 115 1	15 114 110		80
			Н		13 110 110	98 88 79 76	76
	92 108 111	120 115	119 120	116 115 1	13 108 109	105 96 88 84	75
18 68 62 58 48 46 45 54	F 60 62	66 67	69 72	71 71	70 71 73		60
19 60 57 56 54 52 47 55	59 61 64	68 73	76 80	79 79	78 78 80	78 72 66 64	F 66
20 65 62 61 54 51 48 59	72 79 82	86 87	H 90 90	89 90	88 92 87	94 83 76 68	68
21 66 64 62 58 53 50 53	55 57 54	60 60	62 61	63 70	90 100 97	90 68 63 39	29
UFIC F F F E G E	G 41 47 52	E G 47 51	E G 58		70 70 69		U J 46
23 32 24 21 19 19 30 44	56 58 62	62 67	68 68		70 69 70	70 68 68 64	62
F	78 87 95		102 103		98 92 94	96 94 90 82	80
	76 82 90		100 105		98 95 96	94 88 78 80	71
26 68 67 66 64 59 63 55	64 63 68	75 82	84 86	83 84	78 78 100	U R B B	В
	G E G E G 37 40 41	E G E G	E G E G 45 45	E G 44 56	62 56 68	F U F U B I F 58 50 30 30	F 31
UFUF F F F E G	46 50 51	52 52	53 53	55 56	58 66 66	F U F 68 64 45 42	49
FFFF		64 69	70 74	74 76	76 77 77	U S U F U F	57
F U P U P U P U F F 30 60 52 38 38 37 42 45	F 50 52 60		86 86		92 89 86	84 77 68 66	F 66
med	69 78 87	94 94	98 102	100 96	95 94 95	92 82 76 70	68
NO 29 28 28 29 29 30 29	30 30 30		30 30	30 30	30 30 30 TORY, NATIONAL B	30 30 29 29	JLDER, COLO.
			-			•	

Station: Washington, D.C. Lat. 38.7°N Long. 77.1°W

TABLE **74**IONOSPHERIC DATA

foF2, Mc, April 1956 75°W Mean Time

Sweep 1.0 Mc to 25.0 Mc in

13.5 sec.

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

Manual

Automatic

Automatic

TABLE 75
IONOSPHERIC DATA

foFI, Mc, April 1956

75°W Mean Time

Station: Washington, D.C. Lat. 38.7°N Long. 77.1°W Sweep 1.0 Mc to 25.0 Mc in 13.5 sec. Manual □ Automatic 🛛 00 01 02 03 04 05 06 07 08 09 12 | 13 | 14 | 15 16 17 18 19 20 21 22 23 10 11 500 01 460 490 520 520 520 LUL L 02 450 480 500 520 530 500 480 Q L ŗ L L L L 03 L L L L L 04 L L L L L L L L Q L L L 05 Q L L Ĺ L L L L L L Q L Г Г L Г L L L L L L 07 Q Q LUL L T L Ľ 08 540 Q Q L L Ĺ L Ĺ L L L L Q 09 560 L L Ĺ c Q L L L 10 L Q L L L L 11 580 590 560 L U L 550 Q L L L L lu Llu L L L L 12 550 Α Α L L L L L Q 13 Q Q L L L L Q Q 500 14 520 Q Α A L L L 15 L L L L L Н L L Q L L 16 500 Q L L L L L L L L L Q 17 560 O L 500 520 530 540 540 540 560 18 540 500 Q Н Н LUL Q L Н L L L L 550 560 600 590 580 20 L L 500 21 20 490 510 500 500 490 L Q 22 370 410 430 460 470 480 480 500 500 L Н Н Н н L L 23 490 520 540 420 470 480 500 L L L L Α L L 24 480 L L L L 25 26 480 480 540 560 540 580 510 27 370 400 410 420 440 450 450 440 440 450 L U L 430 440 28 440 460 470 480 470 500 480 460 450 420 UL L 330 380 420 490 490 500 500 500 520 500 470 29 L L 8 UL Н 440 450 490 530 510 520 540 540 30 420 460 480 490 510 520 520 520 500 480 440 MED NO

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 76
IONOSPHERIC DATA

foE, Mc, April 1956

75°W Mean Time

												=	12	13	14	15	16	17	18	19	20	21	22	23
		<u> </u>	02		01		190	A	Н	210	10 H	Н	350	Н		Н			190					
							190	Н	Н			υH							Н					
2							A	230 A	280 A		340 A		360 A				H							
3							A	Α	A	300 A	Н	350	Α	340 A	340	330	310	270 A	190 A					
4								A			340	360 A	A	A	350 A	340 A	310							
5									270	310	340						300	280	190 A					
6								250	300	320	350	_	360		350	340	_	270	A					
7								250	290	320		A	Α	Α			U P 310	270						
8							A	250	310	330			360	350	360	350		280	Α					
9							200	260	A			H 380	390	380	360	I A 340	330	H 280	Α					
0							A	H 260	300	340	350	370	380	370	1 C 360	360	320	280	Α					
1_							180	U A	300		A	A		U A	Н		320		210					
									A	A	А		U A 370	C H			Н	Н						
2							170 A	U A	Α	A	Н	260 A					H		UA					
3					-		Н	270 H		υн	350 H	Н	380	Н	Н	Н			U A					
4							190 U P	2 7 0	310 H	340	360	380	380	380	360	350	330	280	200 A					
5								270 H		340 U R	370 R		380 U H	360 H	360	350 H	320	300 H				-		
6									310	340		,,	370			360	340	290	210					
7							180		300		340		340	340	A	A		Н 290	^					
8										320	U A 330	310	R			360	330	280						
9							190	1 280	Н 310	Н 310	U A 330	R	R	R	R	350	320	280	Α					
0							U A		U A 320			350	350	360	360	360	320	280	Α					
1							UP	I A			UA	ΙA	370			I R			210					
							UR	Н	Н				U B 380	ΙB					U A	1/0				
2							Н	Н		[U A	UA	A I		Α				160				
3							i				Ì		360		i			290				-		
4.							210					Α	380 A	380 A	Н				Н			-		
5							-	H			380				370 U A		330 A		240 U A					
6_							210	260 B	300 U A	320	340	360	350 U P	340	320	350			220					
7									290	320			330 U P	320	330	330	320 U P	280	220	170				
88						160	250	260	300	310	340	340	340	350	380	380		270	230					
9								270	300	320	340	340	370	U P 360	350				230					
0							В	270	300	330	U P 340	350	340	350		U A.		F 280	220					
ED							190	260	300	330	340	350	360	360	360	350	320	280	210					
ΝО						1	18	25	25	27		23	22	24	27	27	28	28	19	2			l	OULOER

75°W Mean Time

TABLE 77
IONOSPHERIC DATA

fEs, Mc, April 1956

1,0 Mc to 25,0 Mc in 13.5 sec. Manual □ Automatic ☒ Station: Washington, D.C. Lat. 38.7° N Long. 77.1° W Sweep 00 01 02 03 04 05 06 07 08 09 10 | 11 12 13 14 15 16 17 18 19 20 21 22 23 G G G Ε Ε G G G S 01 5 Ε Ε Ε Ε G G G G G G G S G S S S S S G G S S 03 18 32 36 32 41 33 38 28 S S Ε S Ε S 5 S 30 39 5 S Ε 5 5 S 05 S Ē Ε S G S S S 06 5 S G S S S S 07 38 36 38 5 5 S Ε G G G S S S 5 G 37 08 39 40 S Ε Ε Ε G G G S G S S 09 40 34 5 5 5 5 G Ε S S G G G G \$ S 10 S S S 29 11 43 48 40 40 S G S S G 12 29 49 5 S S 13 33 42 50 64 72 38 39 47 S S S 5 G G G 55 47 14 24 47 36 56 c c S G 50 90 110 170 90 G G G 21 29 23 33 44 72 39 54 16 36 S S S S 17 28 47 50 49 44 40 S G G S 24 18 39 S 5 G G G G G G S 19 G G S S G G G 20 S 5 G G G S G G G 21 38 c G G В G G G G S S G G G S 22 70 17 Ε G S S S S G 40 23 40 40 40 S S Ε 5 5 G G G G G G G 5 S Ś 24 S s S S 5 G G G S 37 S S В 26 36 В В В В В G В G G G G G 27 39 5 Ε E Ε G G G G G G S G G G В S 28 E 5 G G G G G В Ε 5 S G 29 21 32 34 39 36 38 Ε Ε В G S 30 35 72 58 40 48 68 53 17 37 26 30 36 35 36 28 22 16 30 MED NO 9 12 13 13 27 30 30 30 30 30 30 30 29 30 30 30 30 17 CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 78 IONOSPHERIC DATA

f min, Mc, April 1956

75°W Mean Time

Station: Washington, D.C. Lat. 38.7°N Lang. 77.1°W Sweep 1.0 Mc ta 25.0 Mc in 13.5 sec.

Manual □ Autamatic 🛭

_				,			, ,																		
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
01	E S	E	E S	E	E	Е	E S 15	E S 16	E S 16	E S	21	20	E S 16	E \$	E S 17	د S 16	E S 16	E S 16	E S	E S 16	E S	E S	E S	E S	
02	E S 12	E	Е	Е	Е	E	E S 15	E S 16	E S 16	E S 16	E \$	20	19	E S 15	E S 16	E S	E S 16	E S 15	E S 14	E	E S	E S	E S	E S 16	
03	E S 12	E S 15	E S	E S	E S	E S 14	E S 15	E S 15	E S 16	E S 16	E S 16	23	19	E S 16	18	E S 16	19	E S	E S	Ε	E S	E S	E S	E S	
04	E S	E S	E	E S	E	E S	E S	E S	E S	E S	E S	23	21	20	23	E S	20	E S	E S	E S	E S	E S	E S	E S	
05	E S	E S	E S	E S	Е	E S	E S	E S	E S 16	E S	22	21	21	23	E S	E S	E S 16	E S	E S	E S	E S	E S	E S	E S	
06	E S 16	E	E	E	Ε	E S	E S	E S	E S	E S 16	E S	19	19	22	17	E S	E S 16	E S	E S	E S 16	E S	E S 16	E S	E S	\vdash
07	E S 16	E S	E S	E S	E S 13	E S 16	E S 16	E S	E S	E S	E S	20	21	22	19	18	E S	E S 16	E S	E S	E S	E S 16	E S	16 E S 16	_
08	E S 16	E S	E S 15	E S 16	E S 13	E	E S 13	E S 16	E S 16	E S	E S 16	20	23	24	E S	E S	E S	E S	E S	E S	E S	E S	E S 16	E S 16	-
09	E S	E	E	E	E	E S	E S	E S 15	E S	E S						E S	E S	E S	E S	E S	E S	E S	E S	E S	-
	E S	ES	E S	E S	E S	E S	16 E S	E S	16 E S	17 E S	20 E S	23	25	23	22 C	16	16 E S	17 E S	14 E S	16 E S	15 E 3	16 E	15 E S	16 E S	\vdash
10	16 E S	16 E S	13 E S	11 E S	12 E S	16 E S	16 E S	16 E S	16 E S	18 E S	16 E S	21	19	20	E S	18	16 E S	16 E S	17 E S	18 E	15 E S	E S	16 E S	16 E S	\vdash
11	15 E 8	16 E	16 E	11 E S	12 E S	13 E S	16 E S	16 E S	16 E S	16	16 E S	21 E S	20	21	17 E S	18	' 17	16 E S	16 E S	E S	16 E S	16 E S	15 E S	16 E S	-
12	15 E S	E S	E S	13 E S	13 E	13 E S	16 E S	16 E S	16 E S	19 E S	16 E S	16 E S		18 E S	15 E S	26	23 È \$	16	16 E S	15 E	16 E S	16 E S	16 E S	16	-
13	15 E S	15 E S	15 E S	12 E S	E S	16 E S	16 E S	15 E S	16 E S	16 E S	16 E S	16 E S	16	16 E S	17	18 E S	16 E S	1 7 E S	15 E S	E S	16 E S	16 E S	15 E S	E S	-
14	16 E S	15 C	15 C	16 E S	12 E S	16 E	17 E S	16 E S	16 E S	16 E S	16 E S	16	17 E S	16 E S	17	16 E S	16 E S	16	16 E S	16 E S	16 E S	16 E S	15 E S	15 E S	
15	16 E 5	E S	E S	15 F	13 E	E S	15 E S	15 E 5	16 E \$	15 E S	16	_20	16	16	20	17	17	19 E S	15 E S	16 E S	15 E S	15 E S	15 E S	15 E S	-
16	16 E S	15 E S	15 E S	E S	E S	15 E S	15 E S	16 E S	16 E S	16 E S	20	21	20	19	19	18 E S	19 E S	16 E S	15 E S	16 E S	16 E S	15 E S	16 E S	16 E S	\vdash
17	16 E S	16 E S	16 E S	16 E S	16 E S	13 E S	15 E S	16 E S	16 E 5	17	19	19	22	20	19	16	16	16	16	16	15 E S	16 E S	15 E S	15	<u> </u>
18	15	12	15 E S	13	12	13	16	16	16	21	.24	25	27	22	21	19	19	18	18	18	16	15	16	14	<u> </u>
19	15	13	13	12	E S	15	E S 16	E S	18	18	20	24	24	21	25	18	24	E S	20	E S	E S	E S 16	E S	E S 15	_
20	E S 16	E S	E S	E S	E S	E S 15	E S 16	E S 16	17	E S 16	18	24	22	23	22	E S 16	E S 16	E S	E S 15	E S 15	E S	E S	E S	E S	_
21	E S 15	E S	E S 16	E S 12	E S 12	E S 14	17	18	17	21	21	21	25	22	22	25	.53	18	17	14	E	E	E S	15	
22	Е	Е	С	Е	E S 12	E S 13	E S 15	18	17	25	27	24	33	39	22	24	20	19	E S 15	E S	E S 14	E S 13	E S 16	E S	L
23	E S 15	E	E	E	E S	E S	E S	E S	E S 16	E S	19	21	24	19	22	E S	E S	E S	E S	E S	E S 15	E S 15	E S 16	E S 16	
24	E S 15	E S	Е	E S	E S	E S	18	17	E S	E S	22	22	19	E S	20	16	E S 16	E S	E S	E S	E S	E S	E S	E S	
25	E S 15	E S 16	E S 16	E S 12	E S 16	E S 16	19	E S 16	E S 16	17	21	19	19	15	E S 16	21	E S	E S 16	E S	E S	Е	E S 15	E S	E S 15	Г
26	19	E S 11	E S 13	E S 13	Е	E S	18	E S 15	E S 16	E S 16	20	20	24	24	18	17	E S	21	E S	E S	22	E 8	В	В	Г
27	В	В	В	В	В	22	В	27	24	20	18	19	22	20	20	E S	28	E S	E S	E S	E S	19	E S	20	
28	E \$	E S 16	Е	Е	Е	E	E S 15	E S	18	18	22	24	23	23	23	21	17	22	E S	20	E S	E	E S	E S 16	
29	20	E S	E 5	Е	E S 12	E	18	18	20	18	24	24	24	23	27	H 23	20	18		20	E	Е	E S	E S 16	
	E	E	E	Е	E S	E S			E S	E S				-			E S		18 E S		E S	Е	E S	E S	
30					12	11	27	18	16	15	19	21	20	18	21	18	16	18	15	23	11		16	16	
				-	-				-		-	-				-	_								-
MED																									
NO																									
											CENT	PAI P	ADIO P	ROPAG	ATION	LABOR	RATORY	. NATI	ONAL	BUREAL	J OF S	TANDA	RDS. B	OULDER,	COLO

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDAROS, BOULDER, COLO.

75°W Mean Time

290 320

270 470

270 280

TABLE 79 IONOSPHERIC DATA

h'F2, Km, April 1956

US

MED NO
L

290 290

290 290

320 320

450 360

360 260

Stotion Washington, D.C. Lat. 38.7°N Long. 77.1°W Sweep 1.0 Mc to 25.0 Mc in 13.5 sec. Monuol □ Automatic 図 00 01 02 03 04 05 Ĺπ 18 19 U S 330 UL U L 270 260 260 260 280 300 280 310 320 300 250 280 270 270 270 270 250 260 280 240 230 270 300 250 280 280 310 290 270 280 240 280 250 230 240 280 260 250 260 260 280 320 290 260 240 250 280 260 260 290 280 260 260 250 260 270 250 240 270 280 280 |330 |300 |320 |320 280 280 270 250 260 310 310 320 310 280 300 250 250 2,60 250 250 230 250 250 240 260 U A 300 270 250 270 260 260 240 240 290 280 260 240 240 280 270 310 300 320 300 250 250 260 250 280 280

440 450 420 430

UL

280 310

 430 430

400 390

370 360

500 430

610 610 540

320 290 270

370 320

380 350

300 290 340 250 280 250 250 260 250 L UL 360 350 300 290 240 340 390 360 300 320 400 G В В В В E B 500 G UF В G 530 510 320 360 500 530 US В 360 410 330 320 350 310 330 280 450 380 290 290

310 320

320 340

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

270 250

TABLE 80
IONOSPHERIC DATA

CENTRAL RACIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

TABLE 81
IONOSPHERIC DATA

h'E, Km, April 1956

		1: Washington, D.C. Lot. 38.7°N Long. 77.1°W									التيات			100							4 - 1			omatic	_
-	00	01	02	03	04	05	06	07	08 H	09	10 H	II H	12	13 H	14	15 H	16	17	18	19	20	21	22	23	┝
1							119	109 H	109 H	105		105 H	101	101	101	101	109	109	125 H						┡
2_							A	109	105 U A	101	105	101	101	101	101	101	109	113	119						Ļ
3							_ ^	А		103		109	101		101	105	109	109	127						L
4							115	109	109		101	101	U A 101		101	105	109	109	119						L
15								115	105	U A 101	109	101	101	103	101	101	101	103	119						
6								111	103	101	H 101	103	H 101	101	101	101	101	105	120						
7							121	115	105	101	101	101	101	H 101	H 101	101	101	109	121						Γ
8									UA			H	107		Ξ	Ξ									Γ
ò							H					Н	H 105			ΙA	Н	Н							Γ
			-				A	H					•		I C			IA	Н						t
.0							S						101 U A	U A											t
1_									A I			Н	101	Н		EΒ	ΕВ	Н							t
2							129 A	109	1 <u>07</u>	105 A	101 H	99	99	101	101	111	107 H	109	119		_		_		╁
. 3							E S	105 H		н	101 H	1 <u>0</u> 1	101	101 H	99 H	101 H	103	113	119 H				-		╀
4							141 E S	107 H	105 H	99		99	99	99	99	99	101	109	117				_		╀
5					_		121			103	105	105	103	101	101	103	109	115	119						Ļ
6								101	101	101		101	101	101	101	101	105	109	115					ļ	ļ
7							119	105	103	101		101	101	101	101	101	101	111	111						
8							119	109	107	105	105	107	103	105	101	105	101	111							
9							E S	121	111	109	H 109	105	105	103	105	107	E B	109	E B						Γ
0							E A		ΕА	99	Н	Н	101												T
1									105				103												T
									H				U B	I B						220			<u> </u>		t
2								Н												120					t
3							111 U B						103									-	-		t
4							129						1.01		H				H		-		\vdash		╁
5							-	101	105	101	101	101	101	101	101	101 A	105 A	111 A	115		-		-		╀
6			-				125	111	105 E B	103	105	101	103	101	105					s	-				╀
27							<u> </u>			103	101	101	105	101	101	103	119	115	120		<u> </u>				ļ
28						121		109	109	103	103	107	109	109	105	109			121						L
9							U B 129	109	109	105	105	107	1,09	105	111	105	E B		119						L
30							В	113	105	101	101	105	105	105	105	101	105	1.09	109						L
																									Ī
4ED			-				119	109	105	103	101	102	101	101	101	101	105	109	119						
ΝО						1	15	28	27	29	30	30	30	30	30	28	26	29	27	1					Г

MED NO

300 305

 290 280

 270 275

TABLE 82 IONOSPHERIC DATA

> CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS. BOULDER, COLD.

280 290

TABLE 83
IONOSPHERIC DATA

(M3000) FI, April 1956

75°W Mean Time

Stat	ion W	Voshington, D.C. Lot. 38.7°N Long.77.1°								w	Swe	ep	1.0 N	Ac to	25	5.0 M	ic in	13.	.5 sec	;.	Mor	nuol [J Aut	omatic	: IXI
	00	01	02	03	04	05	_		08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
01							G	L		340	350	360	H 345	340	330	350		L	L						
02								L	i.	L	380	360	355	340	3 3 5	340	335	L	L						
03							Q	Q	L	L	L	L	L	L.	L	L	L	L	Q						
							Q	Q	L	L	L	L	L	L	L	L	L	Q	Q						_
04					-		-	L	L	L	L	L	L	L	L	L	L	L	Q		-				_
0.5				-				Q			L	L			L	L	L		Q		_			\vdash	\vdash
06							-		L		L	L	L	L	L	L	L	L	Q		_		_		<u> </u>
07																									<u>_</u>
0.8							Q	Q	L	L	U L 360	L	L	L	L	L	L	А	Q						L
09							Q	Q		L	L	370	Н	L	L	L	L	L	O						
10							Q			Н	Н	Н	370	L	I C	L	L	L	Q						
11							Q	L	L	L	L	H 245	360	Н	350	L	L	L	C						
12							L	L	L	Ł	L	UL	UL	UL	Н	L	L	U A	Q						\vdash
							А	А	А	L	L	262 L	365 L	380 L	Н	L	U A	U A	Q						
13							Q	Q	L	L	I A		Н	Н	Н	Н	L	Q	Q		-				-
14							Q	A	A	L	A	395 A	A	380 L	U A	A	A	L	Q:					-	-
15								Q	L	L	L	L	L	Н	Н	L	L	L	Q		_				<u> </u>
16												_		390											<u> </u>
17							Q	L	L	Н	Н		380	L	L	Н	L	L	Q						
18							Q	_	335	335	345		360	350	330	340	330	350							
19							Q		350	H 335	325		U B 330	330	340	L	U L 330	L	L						Г
20							Q	L	L	Н	Н	Н	H 350			225	L	L	L						
							L	240	240	Н . 70							200		L						
21					 								370		H			310 L	L	Q					_
22	-		_	-			300 L	310	340	370	390	400	380	350	350	340	320 L	L	L		-		-		-
23				_			L	325 L	340 L	360 L	380	360 L	350 L	340 A	350 H	350 L	L	L			-				-
24								L	L	Н	390 L	Н			370 H	L		L	L			_			
25			<u> </u>						_		_			335											L
26				<u> </u>			Q	L					340	U L 310	350	330	330	320	L						
27								330	350	Н 390	390		370	370	370	370	330	320	L						
28						Q	290	H	!			H		H	H	H] н	ì	L						
29								ł			1	1	360		1	l H	ı	L	L						
30							В	ľ	l		UA	UA	l	H	1	UA	U A	L	L						
30							ļ	340	330	350	340	350	360	350	345	-	-				-				-
	_		_	-			-	-	-	-							-			_			-		-
N-5								330	340	360	360	360	360	350	350	340	330	320							
MED	-				-		3	7	10		├	-	 	-	-	-		5							-
				1		1			10		1 2	1 10	11	1 4 /	12	1 4 4	10								

CENTRAL RADIO PROPAGATION LABORATORY, NATIONAL BUREAU OF STANDARDS, BOULDER, COLO.

FAIRBANKS, ALASKA Fig. 7. 64.9°N, 147.8°W

MARCH 1956

NBS 490

NBS 490

E. B. APPERSONNE PROFITOS SPECIES BASES

Fig. 15. UPSALA, SWEDEN
59.8°N, 17.6°E
MARCH 1956

- LIMITING FREQUENCY = 3 Mc. - LIMITING FREQUENCY = 5 Mc. - LIMITING FREQUENCY = 7 Mc. Fig. 14. OSLO, NORWAY MARCH 1956 NBS 490 ≥ 400 HEIGHT VIRTUAL LOCAL TIME S FREQUENCY PERCENTAGE OF TO FOR fes > LIMITING F - LIMITING FREQUENCY = 3 Mc. - LIMITING FREQUENCY = 5 Mc - LIMITING FREQUENCY = 7 Mc.

LOCAL TIME

o3 NBS 490

Fig. 16. UPSALA, SWEDEN

z

HEIGHT

VIRTUAL

PERCENTAGE OF TO FOR FES > LIMITING FOR S O O O O

MARCH 1956

40.3°N, 74.1°W MARCH 1956

Fig. 23. WHITE SANDS, NEW MEXICO 32.3°N, 106.5°W **MARCH 1956**

Fig. 29. MAUI, HAWAII 20.8°N, 156.5°W

MARCH 1956

PUERTO RICO, W. I. Fig. 31.

18.5°N, 67.2°W

MARCH 1956

JULY 1955

28.6°N, 77.1°E

42.9°S, 147. 3°E

NBS 490

APRIL 1955

52.5°S, 169.2°E

DECEMBER 1950

52.5°S,169.2°E

NOVEMBER 1950

Z 400 HEIGHT 300 200 VIRTUAL LOC - INTERPOLATED LOCAL TIME TOTAL TIME
G FREQUENCY PERCENTAGE OF TO FOR FESTIMITING FOR SESTIMITING FOR SESTIMITI . LIMITING FREQUENCY = 3 Mc. o, -- LIMITING FREQUENCY = 5 Mc. x, --- LIMITING FREQUENCY = 7 Mc. Fig. 134. CAMPBELL I. DECEMBER 1950 NBS 490

52.5°S, 169.2°E

JUNE 1950

Index of Tables and Graphs of lonospheric Data

in CRPL-F141 (Part A)

	Table page	Figure page
Adak Alaska		
Adak, Alaska March 1956	. 10	36
Ahmedabad, India	. 10	50
August 1955	. 17	56
July 1955		60
	. 10	00
Akita, Japan	. 14	47
January 1956	•	52
Anchorage, Alaska	. 10	32
	. 9	34
March 1956	•	42
	. 12	42
Bombay, India	. 17	57
August 1955	. 18	61
July 1955	. 10	01
Buenos Aires, Argentina	14	cc
December 1955	. 16	55
Calcutta, India	17	C7
August 1955		5 7
July 1955	. 18	60
Campbell I.	10	
February 1951	. 19	64
January 1951	. 19	64
December 1950		65
November 1950	. 20	65
September 1950		66
August 1950		66
July 1950		67
June 1950	. 20	67
Camberra, Australia	10	40
April 1955	. 19	63
Capetown, Union of S. Africa		50
January 1956	. 15	50
December 1955	. 16	54
Churchill, Canada	10	40
February 1956	. 12	42
De Bilt, Holland		~ 1
December 1955	. 15	51
Delhi, India		5 /
August 1955	. 17	56 50
July 1955	. 18	59
Elisabethville, Belgian Congo	1.0	45
February 1956	. 13	45

Index (CRPL-F141 (Part A), continued)

	Table page	Figure page
Fairbanks, Alaska March 1956	. 9	33
Formosa, China March 1956		38
Ft. Monmouth, New Jersey March 1956	. 10	37
Godhavn, Greenland July 1955	. 18	59
Graz, Austria March 1956	. 10	36
Guam I. March 1956	. 11	40
Hobart, Tasmania April 1955	. 19	63
Huancayo, Peru February 1956	. 13	46
January 1956 Johannesburg, Union of S. Africa		49
January 1956	. 15	50 54
Kiruna, Sweden March 1956	. 9	33
February 1956		41 44
February 1956		46
January 1956		58
August 1955 July 1955	. 18	61
March 1956	. 11	39
November 1955	. 16	55
March 1956	. 9	34
March 1956	. 11	38
March 1956	. 10	35
February 1956	. 13	44
March 1956	. 11	40
March 1956	. 11	39

Index (CRPL-F141 (Part A), concluded)

	Table page	Figure page
Resolute Bay, Canada February 1956	. 12	41
San Francisco, California December 1955	. 15	52
February 1956		43
February 1956	. 13	45
January 1956	. 14	49
Tiruchy; India		
August 1955	. 17	58
July 1955	. 19	62
Tokyo, Japan		
January 1956	. 14	48
January 1956	. 16	53
Townsville, Australia		
April 1955	. 19	62
Tromso, Norway		
March 1956	. 9	32
Upsala, Sweden		
March 1956	. 10	35
Wakkanai, Japan		
January 1956	. 14	47
December 1955		51
Washington, D. C.		
April 1956	9	32
White Sands, New Mexico	•	
March 1956	. 10	37
Winnipeg, Canada	• •	•
February 1956	. 12	43
Yamagawa, Japan	. 15	10
January 1956	. 14	48
December 1955.	. 16	53
December 1/du,	• 10	30

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL-Jp. month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports,

Monthly:

Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11—499—, monthly supplements to TM 11—499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 31-3-28 series). On sale by Superintendent of Documents, U. S. Government CRPL--D. Printing Office, Washington 25, D. C. Members of the Armed Forces should address cognizant military office.

CRPL--F. (Part A). Ionospheric Data.

(Part B). Solar-Geophysical Data.

Limited distribution. These publications are in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics, and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

NBS Circular 557. Worldwide Radio Noise Levels Expected in the Frequency Band 10 Kilocycles to 100 Megacycles.

> These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publication listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

