BME Gépészmérnöki Kar	DINAMIKA	Név: Vári Gergő							
Műszaki Mechanikai Tanszék	1. HÁZI FELADAT	Neptun kód: MQHJOH							
2025/26 I.	Késedelmes beadás: □ Javítás: □								
Nyilatkozat: Aláírásommal igazolom, l készítettem el, az abban leírtak saját meg	Aláírás: Vári Gergő								

Csak a formai követelményeknek megfelelő és az ellenőrző program által helyesnek ítélt végeredményeket tartalmazó házi feladatokat értékeljük! https://www.mm.bme.hu/hwchk

Feladatkitűzés

Az ábrán vázolt mechanizmus az (x,y) síkban síkmozgást végez. Feladatunk a mechanizmus egyes tagjainak pillanatnyi sebesség- és gyorsulásállapotának vizsgálata.

- 1. Rajzolja meg a mechanizmus méretarányos szerkezeti ábráját az adott konfigurációban!
- 2. Határozza meg a (2) test szögsebességét és az S_2 súlypont sebességét (ω_2 , \mathbf{v}_S ,)!
- 3. Jelölje be a szerkezeti ábrán, hogy hol található a (2) test sebességpólusa, és rajzolja be a B, S₂ és C pontok sebességét!
- 4. Határozza meg a (2) test szöggyorsulását és az S_2 súlypont gyorsulását $(\varepsilon_2,\, {\bf a}_{S_2})!$
- 5. Rajzolja be a szerkezeti ábrára a B, S₂ és C pontok gyorsulását!
- 6. Számítsa ki a (2) test gyorsulásszögét és rajzolja be a szerkezeti ábrába a B, S₂ és C pontok gyorsulásvektorainál! Jelölje be az ábrán, hogy hol található a (2) test gyorsuláspólusa!
- 7. Határozza meg az S_2 súlypont gyorsulásvektorának tangenciális és normális irányú komponenseit $(\mathbf{a}_{S_2t}, \mathbf{a}_{S_2n})!$ Rajzolja be azokat a szerkezeti ábrába!
- 8. Számítsa ki az S₂ súlypont pályájának pillanatnyi görbületi sugarát $(\rho_{S_2})!$

Adatok

$$arphi=55~^\circ$$
 $l_1=0.07~\mathrm{m}$ $l_2=0.17~\mathrm{m}$ $l_3=0.04~\mathrm{m}$ $v_{\mathrm{C}x}=0.6~\mathrm{m/s}=\mathrm{\acute{a}ll}.$

(Rész)eredmények

ω_{2z}	$arepsilon_{2z}$	v_{S_2}	a_{S_2}	$a_{\mathrm{S}_{2}\mathrm{t}}$	$a_{\mathrm{S}_{2}\mathrm{n}}$	$ ho_{\mathrm{S}_2}$
[rad/s]	[rad/s ²]	[m/s]	$[m/s^2]$	$[m/s^2]$	$[m/s^2]$	[m]
1.638	16.613	0.56349	1.4304	0.017776	1.4303	0.222

Dinamika HF1

Vári Gergő (MQHJ0H)

2025.október 6.

1. ábra: Boulton & Watt gőzgép

Tartalomjegyzék

1	2-es test	szög -és	súly	po	ntj	án	ak	\mathbf{se}	be	SS	ége	9						
	1.1 Hely	vektorok																
	1.2 Szög	gsebesség																
	1.3 Súly	pont sebe	sség .															
	Sebesség 2-es test	.	súlv	'noi	nti	án:	ak	σv	or	SII	lás	sa						
•		vektorok		-	•			\sim										
	3.2 Szög	ggyorsulás																
	3.3 Súlv	pont gvor	sulás															

1 2-es test szög -és súlypontjának sebessége

1.1 Helyvektorok

$$\mathbf{r}_{AB} = \begin{bmatrix} l_3 \sin \phi \\ l_3 \cos \phi \\ 0 \end{bmatrix} \tag{1}$$

$$\mathbf{r}_{\mathrm{CB}} = \begin{bmatrix} -l_3 \cos \beta \\ l_3 \sin \beta \\ 0 \end{bmatrix} \tag{2}$$

$$\sin \beta = \frac{l_3 + l_3 \cos \phi}{l_2} \tag{3}$$

$$\mathbf{r}_{\mathrm{CB}} = \begin{bmatrix} -l_3 \cos \beta \\ l_3 \sin \beta \\ 0 \end{bmatrix} \tag{4}$$

(5)

$$\mathbf{r}_{\mathrm{C}S_2} = \frac{\mathbf{r}_{\mathrm{CB}}}{2} \tag{6}$$

$$\boldsymbol{r}_{\mathrm{EA}} = \begin{bmatrix} 0 \\ l_3 \\ 0 \end{bmatrix} \tag{7}$$

1.2 Szögsebesség

$$\boldsymbol{v}_{\mathrm{C}} = \begin{bmatrix} v_{\mathrm{C}x} \\ 0 \\ 0 \end{bmatrix} \tag{8}$$

$$\boldsymbol{v}_{\mathrm{E}} = \boldsymbol{0} \tag{9}$$

$$\boldsymbol{v}_{\mathrm{A}} = \boldsymbol{v}_{\mathrm{E}} + \boldsymbol{\omega}_{2} \times \boldsymbol{r}_{\mathrm{EA}} \tag{10}$$

$$\mathbf{v}_{\mathrm{B}} = \mathbf{v}_{\mathrm{C}} + \boldsymbol{\omega}_{2} \times \mathbf{r}_{\mathrm{CB}} = \mathbf{v}_{\mathrm{A}} + \boldsymbol{\omega}_{3} \times \mathbf{r}_{\mathrm{AB}} \Rightarrow$$
 (11)

(12)

$$\boldsymbol{\omega}_2 = \begin{bmatrix} 0\\0\\1.638 \end{bmatrix} [\text{rad/s}] \tag{13}$$

$$\boldsymbol{\omega}_3 = \begin{bmatrix} 0\\0\\-7.878 \end{bmatrix} [\text{rad/s}] \tag{14}$$

1.3 Súlypont sebesség

$$\boldsymbol{v}_{S_2} = \boldsymbol{v}_{\mathrm{C}} + \omega_2 \times \boldsymbol{r}_{\mathrm{C}S_2} = \begin{bmatrix} 0.55 \\ -0.13 \\ 0 \end{bmatrix} [\mathrm{m/s}]$$
 (15)

Sebességpólus

$$\mathbf{v}_{\mathrm{C}} = \mathbf{v}_{P_2} + \boldsymbol{\omega}_2 \times \mathbf{r}_{P_2\mathrm{C}} \Rightarrow$$
 (16)

$$\mathbf{v}_{\mathrm{C}} = \mathbf{v}_{P_{2}} + \mathbf{\omega}_{2} \times \mathbf{r}_{P_{2}\mathrm{C}} \Rightarrow$$

$$\mathbf{r}_{P_{2}\mathrm{C}} = \begin{bmatrix} 0 \\ -0.365 \\ 0 \end{bmatrix} [\mathrm{m}]$$
(16)

2-es test szög -és súlypontjának gyorsulása 3

Helyvektorok 3.1

$$\boldsymbol{r}_{\mathrm{EA}} = \begin{bmatrix} 0 \\ l_3 \\ 0 \end{bmatrix} \tag{18}$$

$$\boldsymbol{r}_{\mathrm{EB}} = \boldsymbol{r}_{\mathrm{EA}} + \boldsymbol{r}_{\mathrm{AB}} \tag{19}$$

Szöggyorsulás 3.2

$$\boldsymbol{a}_{\mathrm{C}} = \boldsymbol{0} \tag{20}$$

$$v_{\rm A} = r_3 \omega_3 \tag{21}$$

$$v_{\mathcal{A}} = r_3 \omega_3 \tag{21}$$

$$\boldsymbol{a}_{\mathcal{A}y} = -\frac{v_{\mathcal{A}}^2}{R + r_3} \tag{22}$$

$$\mathbf{a}_{\mathrm{A}} = \mathbf{a}_{\mathrm{E}} + \epsilon_{3} \times \mathbf{r}_{\mathrm{EA}} - \omega_{3}^{2} \mathbf{r}_{\mathrm{EA}} \Rightarrow$$
 (23)

$$\boldsymbol{a}_{\mathrm{E}} = \begin{bmatrix} 0\\1.862\\0 \end{bmatrix} [\mathrm{m/s^2}] \tag{24}$$

$$\mathbf{a}_{\mathrm{B}} = \mathbf{a}_{\mathrm{C}} + \epsilon_{2} \times \mathbf{r}_{\mathrm{CB}} - \boldsymbol{\omega}_{2}^{2} \mathbf{r}_{\mathrm{CB}} = \mathbf{a}_{\mathrm{E}} + \epsilon_{3} \times \mathbf{r}_{\mathrm{EB}} - \omega_{3} \mathbf{r}_{\mathrm{EB}} \Rightarrow$$
 (25)

$$\boldsymbol{\epsilon}_2 = \begin{bmatrix} 0\\0\\16.613 \end{bmatrix} [\text{m/s}^2] \tag{26}$$

$$\boldsymbol{\epsilon}_3 = \begin{bmatrix} 0\\0\\-22.562 \end{bmatrix} [\text{m/s}^2] \tag{27}$$

(28)

3.3 Súlypont gyorsulás

$$\boldsymbol{a}_{S_2} = \begin{bmatrix} -0.31038 \\ -1.3962 \\ 0 \end{bmatrix} [\text{m/s}^2] \tag{29}$$

(30)