BFS

```
Breadth-First Search in Graphs:
    BFS is similar to level-order traversal of a tree
BFS (Graph G) {
    choose start vertex;
    Queue Q = new Queue();
    Q.enqueue (start);
    boolean seen[1...n];
    for (k=1; k \le n; k++) seen[k] = false;
    seen[start] = true;
    while (! Q.isEmpty()) {
         x = Q.dequeue();
         visit (x);
         for each vertex y such that (x,y) is an edge {
             // find each y by traversing adjacency list of x, or
             // by iterating across row x of adjacency matrix
             if (! seen[y]) {
                  Q.enqueue (y);
                  seen[y] = true;
                  // optionally add edge (x,y) to the BFS tree;
             }
```

}

Example: Undirected Graph

BFS starting at vertex 1:

BFS starting at vertex 5:

BFS order: 1,2,4,3,5,7,6,8,9 BFS order: 5,2,4,6,8,1,3,7,9

(BFS order is the same as level-order of the BFS tree)

Example: Directed Graph

BFS starting at vertex 1:

BFS starting at vertex 5:

BFS order: 1,4,2,5,3,6,8,7,9 BFS order: 5,2,8,1,3,6,4,7,9

(BFS order is the same as level-order of the BFS tree)

Analysis of BFS:

If graph represented using adjacency matrix: $\theta(n^2)$ time

If graph represented using adjacency lists: $\theta(n+m)$ time Simplifies to $\theta(m)$ time if graph is connected, because $m \ge n-1$ for connected graphs

Note: it is more efficient to use adjacency lists, because $m \le n^2$ for all graphs

Applications of BFS:

- Shortest paths (fewest edges) from start vertex to each other vertex
- Connectedness of undirected graph:

Is the graph connected?

If not, find all the connected components

Components: {1,2,4,5} {3,6} {7,8,9}

Strong connectedness of directed graph:
 For all x, y, do there exist paths from x to y and from y to x?

First do BFS from any chosen start vertex in given graph G.

Then construct the reverse of graph G to obtain G'. (How?)

Next do BFS in G' using the same start vertex.

G (also G') is strongly connected if and only if both the BFS in G and the BFS in G' reach every vertex; that is, each BFS builds one BFS tree that has every vertex.