Artificial Intelligence

Steve James
Probabilistic Planning

The planning problem

Find a sequence of actions to achieve some goal

Plans

- It's great when a plan just works
 - But the real world isn't like that

To plan effectively, we must take uncertainty seriously

Probabilistic planning

- As before:
 - Generalise deterministic logic to probabilities
 - Generalise deterministic planning to probabilistic planning
- This results in a harder planning problem
- In particular:
 - Must model stochasticity
 - Plans can fail
 - Can no longer compute straight-line plans

Stochastic outcomes

$$s' = T(s, a)$$

$$C(s, a, s')$$

Probability distribution over transitions T(s'|s,a)R(s,a,s')

Probabilistic planning

- Recall systems that change over time
 - Problem has a state
 - State has the Markov property

$$P(S_t|S_{t-1},A_{t-1},S_{t-2},A_{t-2},...,S_0,A_0) = P(S_t|S_{t-1},A_{t-1})$$

Only previous state

The Markov Property

- Needs to be extended for planning
 - $-s_{t+1}$ depends only on s_t and a_t Agent chooses this
 - $-r_t$ depends only on s_t , a_t and s_{t+1}
- Current state is a sufficient statistic of agent's history
- This means that:
 - Decision-making depends only on current state
 - The agent does not need to remember its history

Probabilistic planning

- Markov Decision Processes (MDPs):
 - The canonical decision-making formulation.
 - Problem has a set of states.
 - Agent has available actions.
 - Actions cause stochastic transitions.
 - Transitions have costs/rewards.
 - Transitions, costs depend only on previous state.
 - Agent must choose actions to maximise expected reward (minimise costs) summed over time.

Markov decision processes

- S: set of states
- A: set of actions

- $\langle S, A, R, T, \gamma \rangle$
- γ : discount factor $\in [0,1]$
- R: reward function
 - -R(s, a, s') is the reward received taking action a from state s and transitioning to state s'
- T: transition function
 - -T(s'|s,a) is the probability of transitioning to state s' after taking action a in state s

MDPs

- Goal: choose actions to maximises return: expected sum of discounted rewards
 - (equivalent to min sum of costs)

Why summed rewards?

Episodic problems

Some problems end when you hit a particular

state

- Model: transition to absorbing state.
- In practice: reset the problem.

Example

- States: set of grid locations
- Actions: up, down, left, right
- Transition function: move in direction of action with p = 0.9
- Reward function: -1 for every step, 1000 for (absorbing) goal

Back to PDDL

- MDPs do not contain the structure of PDDL
 - PPDDL: probabilistic planning domain definition language
- Now operators have probabilistic outcomes:

```
(:action move_left
  :parameters (x, y)
  :precondition (not (wall(x-1, y))
  :effect (probabilistic
     0.8 (and (at(x-1)) (not at(x)) (decrease (reward) 1))
     0.2 (and (at(x+1)) (not(at(x))(decrease (reward) 1))
     )
)
```

Example

MDPs

Our goal is to find a policy

$$\pi: S \to A$$

 ... that maximises return: expected sum of rewards: (equiv min sum of costs)

$$R^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \, r_t\right]$$

Policies and plans

- Compare a policy:
 - An action for every state

- With a plan
 - A sequence of actions

Why the difference?

Policies

Planning

So our goal is to produce an optimal policy:

$$\pi^*(s) := \underset{\pi}{\operatorname{argmax}} R^{\pi}(s)$$

- Note: we know T and R
- Useful fact: such a policy always exists
 - But might be more than one

Planning

Key quantity is the return given by a policy from a state:

$$R^{\pi}(s)$$

Define the value function to estimate this quantity:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

Value functions

- V is a useful thing to know
 - Maybe we can use it to improve π ?
 - How to find V?

Monte Carlo

• Simplest thing you can do: sample R(s)

Monte Carlo

• Simplest thing you can do: sample R(s)

Monte Carlo

• Simplest thing you can do: sample R(s)

Do this repeatedly and average:

$$V^{\pi}(s) = \frac{R_1(s) + R_2(s) + \dots + R_n(s)}{n}$$

Monte Carlo estimation

- For each state s
 - Repeat many times:
 - Start at s
 - Run policy forward until absorbing state (or $\gamma^t < \epsilon$)
 - Write down discount sum of rewards received
 - This is a sample of V(s)
 - Average these samples
- This always works!
 - But very high variance. Why?

Monte Carlo estimation

Doing better

- We need estimate of R that doesn't grow in variance as episode length increases
- Might there be some relationship between values that we can use as an extra source of information?

$$R(s_0) = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \dots + \gamma^n r_n$$

$$R(s_1) = \gamma^0 r_1 + \gamma^1 r_2 + \gamma^2 r_3 + \dots + \gamma^{n-1} r_n$$

Bellman

 Bellman's equation is a condition that must hold for V:

Value of

next state

$$V^{\pi}(s) = \mathbb{E}_{s'}[r(s,\pi(s),s') + \gamma V^{\pi}(s')]$$

Value of this state

Reward

Dynamic programming

• We can use this expression to update V

$$V^{\pi}(s) \leftarrow \sum_{s'} \left[T(s'|s,\pi(s)) \times (r(s,\pi(s),s') + \gamma V^{\pi}(s')) \right]$$

This algorithm is called dynamic programming

Value iteration

 This gives us an algorithm for computing the value function for a specific given fixed policy

Repeat:

- Make a copy of the VF
- For each state in VF, assign value using BE
- Replace old VF

Value iteration

- $V(s) = 0, \forall s$
- Do:
 - $-V_{old} = copy(V)$
 - For each state s:
 - $V(s) = \sum_{s'} [T(s, \pi(s), s') \times (r(s, \pi(s), s') + \gamma V_{old}(s'))]$
- Until V converges
- Notes:
 - Fixed policy π
 - -V(s')=0, definitionally, if s is absorbing

Policy iteration

- Recall that we seek the policy that maximises $V^{\pi}(s)$, $\forall s$
- Therefore we know that for the optimal policy π^*

$$V^{\pi^*}(s) \geq V^{\pi}(s), \forall \pi, s$$

• This means that any change to V^{π} that increases V^{π} anywhere obtains a better policy

Policy iteration

- Leads to a general policy improvement framework:
 - Start with policy π
 - Estimate V^{π}
 - Improve π

•
$$\pi(s) = \underset{a}{\operatorname{argmax}} \mathbb{E}[r + \gamma V^{\pi}(s')], \forall s$$

- This is policy iteration
 - Guaranteed to converge to optimal policy
 - Steps 2,3 can be interleaved as rapidly as you like

Policy iteration

- $V(s) = 0, \forall s$
- Do:
 - $-V_{old} = copy(V)$
 - For each state s:
 - $V(s) = \sum_{s'} [T(s, \pi(s), s') \times (r(s, \pi(s), s') + \gamma V_{old}(s'))]$
 - For each state s:
 - $\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} [T(s, a s') \times (r(s, a, s') + \gamma V_{old}(s'))]$
- While π changes
- Finds an optimal policy in time polynomial in |S| and |A|
 - There are $|A|^{|S|}$ possible policies

Improvements

- Extensions to the basic algorithm largely deal with controlling the size of the state sweeps
 - Not all states are reachable
 - Not all states need to be updated at each iteration
 - Not all states are likely to be encountered from a start state

- $V(s) = 0, \forall s$
- vQueue.insert(s, 0) $\forall s$
- While π changes
 - -s ←vQueue.pop()
 - $-V(s) = \sum_{s'} [T(s, \pi(s), s') \times (r(s, \pi(s), s') + \gamma V_{old}(s'))]$
 - $-\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} [T(s, a \ s') \times (r(s, a, s') + \gamma V_{old}(s'))]$
 - For all s_p such that $T(s_p, \pi(s), s) > 0$:
 - vQueue.insert(s_p , $\Delta V(s)$)
- DP algorithms can solve problems with millions of states.

Elevator scheduling

- Crites and Barto (1985)
 - System with 4 lifts, 10 floors
 - Realistic simulator
 - 46 dimensional state space

Algorithm	AvgWait	SquaredWait	SystemTime	Percent>60 secs
SECTOR	30.3	1643	59.5	13.50
HUFF	22.8	884	55.3	5.10
DLB	22.6	880	55.8	5.18
$_{ m LQF}$	23.5	877	53.5	4.92
BASIC HUFF	23.2	875	54.7	4.94
$_{ m FIM}$	20.8	685	53.4	3.10
ESA	20.1	667	52.3	3.12
RLd	18.8	593	45.4	2.40
$RL_{\mathbf{p}}$	18.6	585	45.7	2.49