Hypothesis testing for means and variances

Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 26-27

ISE | Industrial & Enterprise Systems Engineering

©Chrysafis Vogiatzis. Do not distribute without permission of the author

Overview

Proportions: the procedure

Null hypothesis:

Test statistic:

Distribution:

$$H_0: p = p_0.$$
 $Z_0 = \frac{\ddot{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}.$ $Z_0 \sim \mathcal{N}(0,1).$

H_1	Rejection region	
$p \neq p_0$	$ Z_0 >z_{\alpha/2}$	$2\cdot (1-\Phi(Z_0))$
$p > p_0$	$Z_0 > Z_{\alpha}$	$1 - \Phi(Z_0)$
$p < p_0$	$Z_0 < -z_{\alpha}$	$\Phi(Z_0)$

Reject if Z_0 or \hat{p} falls in the rejection region or if P-value $< \alpha$.

Hypothesis testing for means

Hypothesis testing for means of normally distributed populations with known variance

Null hypothesis:

Test statistic:

Distribution:

$$H_0: \mu = \mu_0.$$
 $Z_0 = \frac{X - \mu_0}{\frac{\sigma}{\sqrt{n}}}.$ $Z_0 \sim \mathcal{N}(0, 1).$

H_1	Rejection region	<i>P</i> -value
$\mu \neq \mu_0$	$ Z_0 >z_{\alpha/2}$	$2\cdot (1-\Phi(Z_0))$
$\mu > \mu_0$	$Z_0>Z_{\alpha}$	$1-\Phi(Z_0)$
$\mu < \mu_0$	$Z_0 < -z_{\alpha}$	$\Phi(Z_0)$

Reject if Z_0 or \overline{X} falls in the rejection region or if P-value $< \alpha$.

Hypothesis testing for means of normally distributed populations with unknown variance

Null hypothesis:

Test statistic:

Distribution:

$$H_0: \mu = \mu_0.$$

$$T_0 = \frac{X - \mu_0}{\frac{s}{\sqrt{n}}}.$$

$$T_0 \sim T_{n-1}$$
.

H_1	Rejection region	<i>P</i> -value
$\mu \neq \mu_0$	$ T_0 > t_{\alpha/2, n-1}$	$2 \cdot (1 - T_{n-1}(T_0))$
$\mu > \mu_0$	$T_0 > t_{\alpha,n-1}$	$1 - T_{n-1}(T_0)$
$\mu < \mu_0$	$T_0 < -t_{\alpha,n-1}$	$T_{n-1}(T_0)$

Reject if T_0 or \overline{X} falls in the rejection region or if P-value $< \alpha$.

Hypothesis testing for means of not normally distributed populations

Null hypothesis:

Test statistic:

Distribution:

$$H_0: \mu = \mu_0.$$
 $Z_0 = \frac{X - \mu_0}{\frac{s}{\sqrt{n}}}.$ $Z_0 \sim \mathcal{N}(0, 1).$

H_1	Rejection region	
$\mu \neq \mu_0$	$ Z_0 > Z_{\alpha/2}$	$2\cdot (1-\Phi(Z_0))$
$\mu > \mu_0$	$Z_0>Z_{\alpha}$	$1-\Phi(Z_0)$
$\mu < \mu_0$	$Z_0 < -z_{\alpha}$	$\Phi(Z_0)$

Reject if Z_0 or \overline{X} falls in the rejection region or if P-value $< \alpha$.

Hypothesis testing for variances

Hypothesis testing for variances of normally distributed populations

Null hypothesis:

Test statistic:

Distribution:

$$H_0: \sigma^2 = \sigma_0^2.$$

$$\chi_0^2 = \frac{(n-1)\,s^2}{\sigma_0^2}.$$

$$\chi_0^2 \sim \chi_{n-1}^2.$$

H_1	Rejection region	CI region
$\sigma^2 \neq \sigma_0$	$\begin{array}{c} \chi_0^2 > \chi_{\alpha/2, n-1}^2 \\ \chi_0^2 < \chi_{1-\alpha/2, n-1}^2 \end{array}$	$\left[\frac{(n-1)\sigma_0^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)\sigma_0^2}{\chi^2_{1-\alpha/2,n-1}}\right]$
		, ,
$\sigma^2 > \sigma_0$	$\chi_0^2 > \chi_{\alpha,n-1}^2$	$\left[\frac{(n-1)\sigma_0^2}{\chi_{\alpha,n-1}^2},+\infty\right)$
$\sigma^2 < \sigma_0$	$\chi_0^2 < \chi_{1-\alpha,n-1}^2$	$\left(-\infty, rac{(n-1)\sigma_0^2}{\chi^2_{1-\alpha,n-1}} ight]$

Reject if χ_0^2 or σ_0^2 falls in the rejection region.

Example

A call center is concerned that call durations for a customer service representative are too **erratic**: high variations is call durations can lead to customer dissatisfaction who have to wait longer for a resolution. The company has collected data from n = 24 randomly selected phone calls from that specific customer representative and calculated that s = 5 minutes.

- **1** Is there enough evidence to suggest that $\sigma = 4$ minutes? Use $\alpha = 0.05$.
- 2 Assume that we do not care about the standard deviation being lower than 4 minutes; instead, we are only interested if the standard deviation is higher than that. Is there enough evidence to suggest that $\sigma=4$ minutes or is it higher than that? Again, you may use that $\alpha=0.05$.

First, set up your hypothesis:

$$H_0: \sigma^2=16$$

$$H_1: \sigma^2 \neq 16.$$

- Calculate $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{23 \cdot 5^2}{16} = 35.94$.
- Find the critical values for $\chi^2_{0.025,23}$ and $\chi^2_{0.975,23}$ as 38.076 and 11.689, respectively.
- Fail to reject as $\chi^2_{0.975,23} \le \chi^2_0 \le \chi^2_{0.025,23}$. For the second part, set up the hypothesis as:

$$H_0: \sigma^2 = 16$$

 $H_1: \sigma^2 > 16$.

- The test statistic is still $\chi_0^2 = 35.94$.
- However now we are only looking for $\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172$

First, set up your hypothesis:

$$H_0: \sigma^2=16$$

$$H_1: \sigma^2 \neq 16.$$

- Calculate $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{23 \cdot 5^2}{16} = 35.94$.
- Find the critical values for $\chi^2_{0.025,23}$ and $\chi^2_{0.975,23}$ as 38.076 and 11.689, respectively.
- **Fail to reject** as $\chi^2_{0.975,23} \le \chi^2_0 \le \chi^2_{0.025,23}$.

$$H_0: \sigma^2 = 16$$

$$H_1: \sigma^2 > 16.$$

- The test statistic is still $\chi_0^2 = 35.94$.
- However now we are only looking for $\sqrt{2}$

First, set up your hypothesis:

$$H_0: \sigma^2 = 16$$

 $H_1: \sigma^2 \neq 16$.

- Calculate $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{23 \cdot 5^2}{16} = 35.94$.
- Find the critical values for $\chi^2_{0.025,23}$ and $\chi^2_{0.975,23}$ as 38.076 and 11.689, respectively.
- Fail to reject as $\chi^2_{0.975,23} \le \chi^2_0 \le \chi^2_{0.025,23}$. For the second part, set up the hypothesis as:

$$H_0: \sigma^2 = 16$$

 $H_1: \sigma^2 > 16$.

- The test statistic is still $\chi_0^2 = 35.94$.
- However now we are only looking for $\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172$.

First, set up your hypothesis:

$$H_0: \sigma^2=16$$

$$H_1: \sigma^2 \neq 16.$$

- Calculate $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{23 \cdot 5^2}{16} = 35.94$.
- Find the critical values for $\chi^2_{0.025,23}$ and $\chi^2_{0.975,23}$ as 38.076 and 11.689, respectively.
- Fail to reject as $\chi^2_{0.975,23} \le \chi^2_0 \le \chi^2_{0.025,23}$.

For the second part, set up the hypothesis as

$$H_0: \sigma^2 = 16$$

- The test statistic is still $\chi_0^2 = 35.94$.
- However now we are only looking for $\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172$.

First, set up your hypothesis:

$$H_0: \sigma^2=16$$

$$H_1: \sigma^2 \neq 16.$$

- Calculate $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{23 \cdot 5^2}{16} = 35.94$.
- Find the critical values for $\chi^2_{0.025,23}$ and $\chi^2_{0.975,23}$ as 38.076 and 11.689, respectively.
- Fail to reject as $\chi^2_{0.975,23} \le \chi^2_0 \le \chi^2_{0.025,23}$.

For the second part, set up the hypothesis as:

$$H_0: \sigma^2 = 16$$

$$H_1: \sigma^2 > 16.$$

- The test statistic is still $\chi_0^2 = 35.94$.
- However now we are only looking for $\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172$.
- **Reject** then as $\chi_0^2 > \chi_{0.05,23}^2$.

First, set up your hypothesis:

$$H_0: \sigma^2=16$$

$$H_1: \sigma^2 \neq 16.$$

- Calculate $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{23 \cdot 5^2}{16} = 35.94$.
- Find the critical values for $\chi^2_{0.025,23}$ and $\chi^2_{0.975,23}$ as 38.076 and 11.689, respectively.
- Fail to reject as $\chi^2_{0.975,23} \le \chi^2_0 \le \chi^2_{0.025,23}$.

For the second part, set up the hypothesis as:

$$H_0: \sigma^2 = 16$$

$$H_1: \sigma^2 > 16.$$

- The test statistic is still $\chi_0^2 = 35.94$.
- However now we are only looking for $\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172$.
- **Reject** then as $\chi_0^2 > \chi_{0.05,23}^2$.

