Bibliography

- [Agrawal-03] M. Agrawal and L. Davis. Camera calibration using spheres: A dual-space approach. Research Report CAR-TR-984, Center for Automation Research, University of Maryland, 2003.
- [Aloimonos-90] J. Y. Aloimonos. Perspective approximations. *Image and Vision Computing*, 8(3):177–192, August 1990.
- [Anandan-02] P. Anandan and M. Irani. Factorization with uncertainty. *International Journal of Computer Vision*, 49(2/3):101–116, 2002.
- [Armstrong-94] M. Armstrong, A. Zisserman, and P. Beardsley. Euclidean reconstruction from uncalibrated images. In *Proc. British Machine Vision Conference*, pages 509–518, 1994.
- [Armstrong-96a] M. Armstrong. *Self-Calibration from Image Sequences*. PhD thesis, University of Oxford, England, 1996.
- [Armstrong-96b] M. Armstrong, A. Zisserman, and R. Hartley. Self-calibration from image triplets. In *Proc. European Conference on Computer Vision*, LNCS 1064/5, pages 3–16. Springer-Verlag, 1996.
- [Astrom-98] K. Åström and A. Heyden. Continuous time matching constraints for image streams. *International Journal of Computer Vision*, 28(1):85–96, 1998.
- [Avidan-98] S. Avidan and A. Shashua. Threading fundamental matrices. In *Proc. 5th European Conference on Computer Vision, Freiburg, Germany*, pages 124–140, 1998.
- [Baillard-99] C. Baillard and A. Zisserman. Automatic reconstruction of piecewise planar models from multiple views. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 559–565, June 1999.
- [Barrett-92] E. B. Barrett, M. H. Brill, N. N. Haag, and P. M. Payton. Invariant linear methods in photogrammetry and model-matching. In J. L. Mundy and A. Zisserman, editors, *Geometric invariance in computer vision*. MIT Press, Cambridge, 1992.
- [Bascle-98] B. Bascle and A. Blake. Separability of pose and expression in facial tracing and animation. In *Proc. International Conference on Computer Vision*, pages 323–328, 1998.
- [Basri-99] R. Basri and D. Jacobs. Projective alignment with regions. In *Proc. 7th International Conference on Computer Vision, Kerkyra, Greece*, pages 1158–1164, 1999.
- [Bathe-76] K-J. Bathe and E. Wilson. Numerical methods in finite element analysis. Prentice Hall, 1976.
 [Beardsley-92] P. A. Beardsley, D. Sinclair, and A. Zisserman. Ego-motion from six points. Insight meeting, Catholic University Leuven, February 1992.
- [Beardsley-94] P. A. Beardsley, A. Zisserman, and D. W. Murray. Navigation using affine structure and motion. In *Proc. European Conference on Computer Vision*, LNCS 800/801, pages 85–96. Springer-Verlag, 1994.
- [Beardsley-95a] P. A. Beardsley and A. Zisserman. Affine calibration of mobile vehicles. In *Europe–China workshop on Geometrical Modelling and Invariants for Computer Vision*, pages 214–221. Xidan University Press, Xi'an, China, 1995.
- [Beardsley-95b] P. A. Beardsley, I. D. Reid, A. Zisserman, and D. W. Murray. Active visual navigation using non-metric structure. In *Proc. International Conference on Computer Vision*, pages 58–64, 1995.

- [Beardsley-96] P. A. Beardsley, P. H. S. Torr, and A. Zisserman. 3D model aquisition from extended image sequences. In *Proc. 4th European Conference on Computer Vision, LNCS 1065, Cambridge*, pages 683–695, 1996.
- [Blake-87] A. Blake and A. Zisserman. *Visual Reconstruction*. MIT Press, Cambridge, USA, August 1987
- [Boehm-94] W. Boehm and H. Prautzsch. *Geometric Concepts for Geometric Design*. A. K. Peters, 1994.
- [Bookstein-79] F. Bookstein. Fitting conic sections to scattered data. *Computer Graphics and Image Processing*, 9:56–71, 1979.
- [Bougnoux-98] S. Bougnoux. From Projective to Euclidean space under any practical situation, a criticism of self-calibration. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 790–796, January 1998.
- [Boult-91] I. E. Boult and L. Gottesfeld Brown. Factorisation-based segmentation of motions. In *Proc. IEEE Workshop on Visual Motion*, 1991.
- [Brand-01] M. Brand. Morphable 3d models from video. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages II: 456–463, 2001.
- [Brown-71] D. C. Brown. Close-range camera calibration. *Photogrammetric Engineering*, 37(8):855–866, 1971.
- [Buchanan-88] T. Buchanan. The twisted cubic and camera calibration. *Computer Vision, Graphics and Image Processing*, 42:130–132, 1988.
- [Buchanan-92] T. Buchanan. Critical sets for 3D reconstruction using lines. In *Proc. European Conference on Computer Vision*, LNCS 588, pages 730–738. Springer-Verlag, 1992.
- [Canny-86] J. F. Canny. A computational approach to edge detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 8(6):679–698, 1986.
- [Capel-98] D. Capel and A. Zisserman. Automated mosaicing with super-resolution zoom. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, pages 885–891, June 1998.
- [Caprile-90] B. Caprile and V. Torre. Using vanishing points for camera calibration. *International Journal of Computer Vision*, 4:127–140, 1990.
- [Carlsson-93] S. Carlsson. Multiple image invariance using the double algebra. In *Applications of Invariance in Computer Vision*, volume SLN Comp. Science vol 825, pages 335–350, 1993.
- [Carlsson-94] S. Carlsson. Multiple image invariance using the double algebra. In J. Mundy, A. Zisserman, and D. Forsyth, editors, Applications of Invariance in Computer Vision LNCS 825. Springer-Verlag, 1994.
- [Carlsson-95] S. Carlsson. Duality of reconstruction and positioning from projective views. In *IEEE Workshop on Representation of Visual Scenes, Boston*, 1995.
- [Carlsson-98] S. Carlsson and D. Weinshall. Dual computation of projective shape and camera positions from multiple images. *International Journal of Computer Vision*, 27(3):227–241, 1998.
- [Christy-96] S. Christy and R. Horaud. Euclidean shape and motion from multiple perspective views by affine iteration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(11):1098–1104, November 1996.
- [Chum-03] O. Chum, T. Werner, and T. Pajdla. On joint orientation of epipoles. Research Report CTU– CMP–2003–10, Center for Machine Perception, K333 FEE Czech Technical University, Prague, Czech Republic, April 2003.
- [Cipolla-99] R. Cipolla, T. Drummond, and D. Robertson. Camera calibration from vanishing points in images of architectural scenes. In *Proc. British Machine Vision Conference*, September 1999.
- [Collins-93] R. T. Collins and J. R. Beveridge. Matching perspective views of coplanar structures using projective unwarping and similarity matching. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, 1993.
- [Costeira-98] J.P. Costeira and T. Kanade. A multibody factorization method for independently moving objects. *International Journal of Computer Vision*, 29(3):159–179, 1998.
- [Criminisi-98] A. Criminisi, I. Reid, and A. Zisserman. Duality, rigidity and planar parallax. In Proc.

- European Conference on Computer Vision, pages 846-861. Springer-Verlag, June 1998.
- [Criminisi-99a] A. Criminisi, I. Reid, and A. Zisserman. Single view metrology. In *Proc. 7th International Conference on Computer Vision, Kerkyra, Greece*, pages 434–442, September 1999.
- [Criminisi-99b] A. Criminisi, I. Reid, and A. Zisserman. A plane measuring device. *Image and Vision Computing*, 17(8):625–634, 1999.
- [Criminisi-00] A. Criminisi, I. Reid, and A. Zisserman. Single view metrology. *International Journal of Computer Vision*, 40(2):123–148, November 2000.
- [Criminisi-01] A. Criminisi. *Accurate Visual Metrology from Single and Multiple Uncalibrated Images*. Distinguished Dissertation Series. Springer-Verlag London Ltd., July 2001. ISBN: 1852334681.
- [Cross-98] G. Cross and A. Zisserman. Quadric surface reconstruction from dual-space geometry. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 25–31, January 1998.
- [Cross-99] G. Cross, A. W. Fitzgibbon, and A. Zisserman. Parallax geometry of smooth surfaces in multiple views. In *Proc. 7th International Conference on Computer Vision, Kerkyra, Greece*, pages 323–329, September 1999.
- [Csurka-97] G. Csurka, C. Zeller, Z. Zhang, and O. D. Faugeras. Characterizing the uncertainty of the fundamental matrix. *Computer Vision and Image Understanding*, 68(1):18–36, October 1997.
- [Csurka-98] G. Csurka, D. Demirdjian, A. Ruf, and R. Horaud. Closed-form solutions for the euclidean calibration of a stereo rig. In *Proc. 5th European Conference on Computer Vision, Freiburg, Germany*, pages 426–442, June 1998.
- [DeAgapito-98] L. de Agapito, E. Hayman, and I. Reid. Self-calibration of a rotating camera with varying intrinsic parameters. In *Proc. 9th British Machine Vision Conference, Southampton*, 1998.
- [DeAgapito-99] L. de Agapito, R. I. Hartley, and E. Hayman. Linear self-calibration of a rotating and zooming camera. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 15–21, 1999.
- [Dementhon-95] D. Dementhon and L. Davis. Model based pose in 25 lines of code. *International Journal of Computer Vision*, 15(1/2):123–141, 1995.
- [Devernay-95] F. Devernay and O. D. Faugeras. Automatic calibration and removal of distortion from scenes of structured environments. In *SPIE*, volume 2567, San Diego, CA, July 1995.
- [Devernay-96] F. Devernay and O. D. Faugeras. From projective to euclidean reconstruction. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 264–269, 1996.
- [Faugeras-90] O. D. Faugeras and S. J. Maybank. Motion from point matches: Multiplicity of solutions. *International Journal of Computer Vision*, 4:225–246, 1990.
- [Faugeras-92a] O. D. Faugeras, Q. Luong, and S. Maybank. Camera self-calibration: Theory and experiments. In *Proc. European Conference on Computer Vision*, LNCS 588, pages 321–334. Springer-Verlag, 1992.
- [Faugeras-92b] O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In *Proc. European Conference on Computer Vision*, LNCS 588, pages 563–578. Springer-Verlag, 1992.
- [Faugeras-93] O. D. Faugeras. *Three-Dimensional Computer Vision: a Geometric Viewpoint*. MIT Press, 1993.
- [Faugeras-94] O. D. Faugeras and L. Robert. What can two images tell us about a third one. In J. O. Eckland, editor, *Proc. 3rd European Conference on Computer Vision, Stockholm*, pages 485–492. Springer-Verlag, 1994.
- [Faugeras-95a] O. D. Faugeras and B. Mourrain. On the geometry and algebra of point and line correspondences between N images. In *Proc. International Conference on Computer Vision*, pages 951–962, 1995.
- [Faugeras-95b] O. D. Faugeras. Stratification of three-dimensional vision: projective, affine, and metric representation. *Journal of the Optical Society of America*, A12:465–484, 1995.
- [Faugeras-95c] O. D. Faugeras, S. Laveau, L. Robert, G. Csurka, and C. Zeller. 3-D reconstruction of urban scenes from sequences of images. Technical report, INRIA, 1995.
- [Faugeras-97] O. D. Faugeras and T. Papadopoulo. Grassmann-Cayley algebra for modeling systems of cameras and the algebraic equations of the manifold of trifocal tensors. Technical Report 3225, INRIA, Sophia-Antipolis, France, 1997.

- [Faugeras-98] O. D. Faugeras, L. Quan, and P. Sturm. Self-calibration of a 1D projective camera and its application to the self-calibration of a 2D projective camera. In *Proc. European Conference on Computer Vision*, pages 36–52, 1998.
- [Fischler-81] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. *Comm. Assoc. Comp. Mach.*, 24(6):381–395, 1981.
- [Fitzgibbon-98a] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image sequences. In *Proc. European Conference on Computer Vision*, pages 311–326. Springer-Verlag, June 1998.
- [Fitzgibbon-98b] A. W. Fitzgibbon, G. Cross, and A. Zisserman. Automatic 3D model construction for turn-table sequences. In R. Koch and L. Van Gool, editors, *3D Structure from Multiple Images of Large-Scale Environments, LNCS 1506*, pages 155–170. Springer-Verlag, June 1998.
- [Fitzgibbon-99] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least-squares fitting of ellipses. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(5):476–480, May 1999.
- [Gear-98] C. W. Gear. Multibody grouping from motion images. *International Journal of Computer Vision*, 29(2):133–150, 1998.
- [Giblin-87] P. Giblin and R. Weiss. Reconstruction of surfaces from profiles. In *Proc. 1st International Conference on Computer Vision, London*, pages 136–144, London, 1987.
- [Gill-78] P. E. Gill and W. Murray. Algorithms for the solution of the nonlinear least-squares problem. *SIAM J Num Anal*, 15(5):977–992, 1978.
- [Golub-89] G. H. Golub and C. F. Van Loan. *Matrix Computations*. The Johns Hopkins University Press, Baltimore, MD, second edition, 1989.
- [Gracie-68] G. Gracie. Analytical photogrammetry applied to single terrestrial photograph mensuration. In XIth International Conference of Photogrammetry, Lausanne, Switzerland, July 1968.
- [Gupta-97] R. Gupta and R. I. Hartley. Linear pushbroom cameras. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, September 1997.
- [Haralick-91] R. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle. Analysis and solutions of the three point perspective pose estimation problem. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 592–598, 1991.
- [Harris-88] C. J. Harris and M. Stephens. A combined corner and edge detector. In *Proc. 4th Alvey Vision Conference, Manchester*, pages 147–151, 1988.
- [Hartley-92a] R. I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In *Proc. European Conference on Computer Vision*, LNCS 588, pages 579–587. Springer-Verlag, 1992.
- [Hartley-92b] R. I. Hartley. Invariants of points seen in multiple images. GE internal report, GE CRD, Schenectady, NY 12301, USA, May 1992.
- [Hartley-92c] R. I. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, 1992.
- [Hartley-94a] R. I. Hartley. Self-calibration from multiple views with a rotating camera. In *Proc. Euro- pean Conference on Computer Vision*, LNCS 800/801, pages 471–478. Springer-Verlag, 1994.
- [Hartley-94b] R. I. Hartley. Euclidean reconstruction from uncalibrated views. In J. Mundy, A. Zisserman, and D. Forsyth, editors, *Applications of Invariance in Computer Vision*, LNCS 825, pages 237–256. Springer-Verlag, 1994.
- [Hartley-94c] R. I. Hartley. Projective reconstruction and invariants from multiple images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16:1036–1041, October 1994.
- [Hartley-94d] R. I. Hartley. Projective reconstruction from line correspondence. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, 1994.
- [Hartley-95a] R. I. Hartley. Multilinear relationships between coordinates of corresponding image points and lines. In *Proceedings of the Sophus Lie Symposium*, *Nordfjordeid*, *Norway* (not published yet), 1995.
- [Hartley-95b] R. I. Hartley. A linear method for reconstruction from lines and points. In *Proc. International Conference on Computer Vision*, pages 882–887, 1995.
- [Hartley-97a] R. I. Hartley. Lines and points in three views and the trifocal tensor. *International Journal*

- of Computer Vision, 22(2):125–140, 1997.
- [Hartley-97b] R. I. Hartley and P. Sturm. Triangulation. *Computer Vision and Image Understanding*, 68(2):146–157, November 1997.
- [Hartley-97c] R. I. Hartley. In defense of the eight-point algorithm. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(6):580 593, October 1997.
- [Hartley-97d] R. I. Hartley. Kruppa's equations derived from the fundamental matrix. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(2):133–135, 1997.
- [Hartley-97e] R. I. Hartley and T. Saxena. The cubic rational polynomial camera model. In *Proc. DARPA Image Understanding Workshop*, pages 649 653, 1997.
- [Hartley-98a] R. I. Hartley. Chirality. International Journal of Computer Vision, 26(1):41–61, 1998.
- [Hartley-98b] R. I. Hartley. Dualizing scene reconstruction algorithms. In R. Koch and L. Van Gool, editors, *3D Structure from Multiple Images of Large-Scale Environments, LNCS 1506*, pages 14–31. Springer-Verlag, June 1998.
- [Hartley-98c] R. I. Hartley. Computation of the quadrifocal tensor. In *Proc. European Conference on Computer Vision*, LNCS 1406, pages 20–35. Springer-Verlag, 1998.
- [Hartley-98d] R. I. Hartley. Minimizing algebraic error in geometric estimation problems. In *Proc. International Conference on Computer Vision*, pages 469–476, 1998.
- [Hartley-99] R. Hartley, L. de Agapito, E. Hayman, and I. Reid. Camera calibration and the search for infinity. In *Proc. 7th International Conference on Computer Vision, Kerkyra, Greece*, pages 510–517, September 1999.
- [Hartley-00a] R. I. Hartley and N. Y. Dano. Reconstruction from six-point sequences. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages II–480 II–486, 2000.
- [Hartley-00b] R. I. Hartley. Ambiguous configurations for 3-view projective reconstruction. In Proc. 6th European Conference on Computer Vision, Part I, LNCS 1842, Dublin, Ireland, pages 922–935, 2000
- [Hartley-02a] R. Hartley and F. Kahl. Critical curves and surfaces for euclidean reconstruction. In *Proc.* 7th European Conference on Computer Vision, Part II, LNCS 2351, Copenhagen, Denmark, pages 447–462, 2002.
- [Hartley-02b] R. Hartley and R. Kaucic. Sensitivity of calibration to principal point position. In *Proc.* 7th European Conference on Computer Vision, Copenhagen, Denmark, volume 2, pages 433–446. Springer-Verlag, 2002.
- [Hartley-03] R. Hartley and F. Kahl. A critical configuration for reconstruction from rectilinear motion. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, 2003.
- [Hayman-03] E. Hayman, T. Thórhallsson, and D.W. Murray. Tracking while zooming using affine transfer and multifocal tensors. *International Journal of Computer Vision*, 51(1):37–62, January 2003.
- [Heyden-95a] A. Heyden. Reconstruction from image sequences by means of relative depths. In E. Grimson, editor, *Proc. 5th International Conference on Computer Vision*, *Boston*, Cambridge, MA, June 1995.
- [Heyden-95b] A. Heyden. *Geometry and Algebra of Multiple Projective Transformations*. PhD thesis, Department of Mathematics, Lund University, Sweden, December 1995.
- [Heyden-97a] A. Heyden. Projective structure and motion from image sequences using subspace methods. In *Scandinavian Conference on Image Analysis, Lappenraanta*, pages 963–968, 1997.
- [Heyden-97b] A. Heyden and K. Åström. Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, 1997.
- [Heyden-97c] A. Heyden. Reconstruction from multiple images by means of using relative depths. *International Journal of Computer Vision*, 24(2):155–161, 1997.
- [Heyden-98] A. Heyden. Algebraic varieties in multiple view geometry. In *Proc. 5th European Conference on Computer Vision, Freiburg, Germany*, pages 3–19, 1998.
- [Hilbert-56] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea, NY, 1956.
- [Horaud-98] R. Horaud and G. Csurka. Self-calibration and Euclidean reconstruction using motions of a

- stereo rig. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 96–103, January 1998.
- [Horn-90] B. K. P. Horn. Relative orientation. International Journal of Computer Vision, 4:59-78, 1990.
- [Horn-91] B. K. P. Horn. Relative orientation revisited. *Journal of the Optical Society of America*, 8(10):1630–1638, 1991.
- [Horry-97] Y. Horry, K. Anjyo, and K. Arai. Tour into the picture: Using a spidery mesh interface to make animation from a single image. In *Proceedings of the ACM SIGGRAPH Conference on Computer Graphics*, pages 225–232, 1997.
- [Huang-89] T. S. Huang and O. D. Faugeras. Some properties of the E-matrix in two-view motion estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11:1310 1312, 1989.
- [Huber-81] P. J. Huber. Robust Statistics. John Wiley and Sons, 1981.
- [Huynh-03] D.Q. Huynh, R. Hartley, and A Heyden. Outlier correction of image sequences for the affine camera. In *Proc. 9th International Conference on Computer Vision, Vancouver, France*, 2003.
- [Irani-98] M. Irani, P. Anandan, and D. Weinshall. From reference frames to reference planes: Multi-view parallax geometry and applications. In *Proc. European Conference on Computer Vision*, 1998.
- [Irani-99] M. Irani. Multi-frame optical flow estimation using subspace contraints. In *Proc. International Conference on Computer Vision*, 1999.
- [Irani-00] Michal Irani and P. Anandan. Factorization with uncertainty. In *Proc. 6th European Conference on Computer Vision, Part I, LNCS 1842, Dublin, Ireland*, pages 539 553, 2000.
- [Jiang-02] G. Jiang, H. Tsui, L. Quan, and A. Zisserman. Single axis geometry by fitting conics. In *Proc.* 7th European Conference on Computer Vision, Copenhagen, Denmark, volume 1, pages 537–550. Springer-Verlag, 2002.
- [Kahl-98a] F. Kahl and A. Heyden. Structure and motion from points, lines and conics with affine cameras. In *Proc. 5th European Conference on Computer Vision, Freiburg, Germany*, pages 327–341, 1998.
- [Kahl-98b] F. Kahl and A. Heyden. Using conic correspondences in two images to estimate epipolar geometry. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 761–766, 1998.
- [Kahl-99] F. Kahl. Critical motions and ambiguous euclidean reconstructions in auto-calibration. In *Proc. 7th International Conference on Computer Vision, Kerkyra, Greece*, pages 469–475, 1999.
- [Kahl-01a] F. Kahl, R. Hartley, and K. Åström. Critical configurations for *n*-view projective reconstruction. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages II–158 II–163, 2001.
- [Kahl-01b] F. Kahl. *Geometry and Critical Configurations of Multiple Views*. PhD thesis, Lund Institute of Technology, 2001.
- [Kanatani-92] K. Kanatani. *Geometric computation for machine vision*. Oxford University Press, Oxford, 1992.
- [Kanatani-94] K. Kanatani. Statistical bias of conic fitting and renormalization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(3):320–326, 1994.
- [Kanatani-96] K. Kanatani. *Statistical Optimization for Geometric Computation: Theory and Practice*. Elsevier Science, Amsterdam, 1996.
- [Kaucic-01] R. Kaucic, R. I. Hartley, and N. Y. Dano. Plane-based projective reconstruction. In *Proc.* 8th International Conference on Computer Vision, Vancouver, Canada, pages I–420–427, 2001.
- [Klein-39] F. Klein. Elementary Mathematics from an Advanced Standpoint. Macmillan, New York, 1939
- [Knight-03] J. Knight, A. Zisserman, and I. Reid. Linear auto-calibration for ground plane motion. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, June 2003.
- [Koenderink-84] J. J. Koenderink. What does the occluding contour tell us about solid shape? *Perception*, 13:321–330, 1984.
- [Koenderink-90] J. Koenderink. Solid Shape. MIT Press, 1990.
- [Koenderink-91] J. J. Koenderink and A. J. van Doorn. Affine structure from motion. *Journal of the Optical Society of America*, 8(2):377–385, 1991.

- [Krames-42] J. Krames. Über die bei der Hauptaufgabe der Luftphotogrammetrie auftretenden "gefährlichen" Flächen. *Bildmessung und Luftbildwesen (Beilage zur Allg. Vermessungs-Nachr.)*, 17, Heft 1/2:1–18, 1942.
- [Kriegman-98] D. J. Kriegman and P. Belhumeur. What shadows reveal about object structure. In *Proc. European Conference on Computer Vision*, pages 399–414, 1998.
- [Laveau-96a] S. Laveau. Géométrie d'un système de N caméras. Théorie, estimation et applications. PhD thesis, INRIA, 1996.
- [Laveau-96b] S. Laveau and O. D. Faugeras. Oriented projective geometry in computer vision. In *Proc.* 4th European Conference on Computer Vision, LNCS 1065, Cambridge, pages 147–156, Springer–Verlag, 1996. Buxton B. and Cipolla R.
- [Liebowitz-98] D. Liebowitz and A. Zisserman. Metric rectification for perspective images of planes. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 482–488, June 1998.
- [Liebowitz-99a] D. Liebowitz, A. Criminisi, and A. Zisserman. Creating architectural models from images. In *Proc. EuroGraphics*, volume 18, pages 39–50, September 1999.
- [Liebowitz-99b] D. Liebowitz and A. Zisserman. Combining scene and auto-calibration constraints. In *Proc. 7th International Conference on Computer Vision, Kerkyra, Greece*, September 1999.
- [Liebowitz-01] D. Liebowitz. *Camera Calibration and Reconstruction of Geometry from Images*. PhD thesis, University of Oxford, Dept. Engineering Science, June 2001. D.Phil. thesis.
- [LonguetHiggins-81] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. *Nature*, 293:133–135, September 1981.
- [Luong-92] Q. Luong. *Matrice Fondamentale et Autocalibration en Vision par Ordinateur*. PhD thesis, Université de Paris-Sud, France, 1992.
- [Luong-94] Q. T. Luong and T. Viéville. Canonic representations for the geometries of multiple projective views. In *Proc. 3rd European Conference on Computer Vision, Stockholm*, pages 589–599, May 1994.
- [Luong-96] Q. T. Luong and T. Viéville. Canonical representations for the geometries of multiple projective views. *Computer Vision and Image Understanding*, 64(2):193–229, September 1996.
- [Lutkepohl-96] H. Lutkepohl. Handbook of Matrices. Wiley, ISBN 0471970158, 1996.
- [Ma-99] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. Euclidean reconstruction and reprojection up to subgroups. In *Proc. 7th International Conference on Computer Vision, Kerkyra, Greece*, pages 773–780, 1999.
- [Mathematica-92] S. Wolfram. *Mathematica A System for Doing Mathematics by Computer second edition*. Addison-Wesley, 1992.
- [Maybank-90] S. J. Maybank. The projective geometry of ambiguous surfaces. *Philosophical Transactions of the Royal Society of London, SERIES A*, A 332:1–47, 1990.
- [Maybank-93] S. J. Maybank. *Theory of reconstruction from image motion*. Springer-Verlag, Berlin, 1993.
- [Maybank-98] S. J. Maybank and A. Shashua. Ambiguity in reconstruction from images of six points. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 703–708, 1998.
- [McLauchlan-00] P. F. McLauchlan. Gauge independence in optimization algorithms for 3D vision. In W. Triggs, A. Zisserman, and R. Szeliski, editors, *Vision Algorithms: Theory and Practice*, volume 1883 of *LNCS*, pages 183–199. Springer, 2000.
- [Mohr-92] R. Mohr. Projective geometry and computer vision. In C. H. Chen, L. F. Pau, and P. S. P. Wang, editors, *Handbook of Pattern Recognition and Computer Vision*. World Scientific, 1992.
- [Mohr-93] R. Mohr, F. Veillon, and L. Quan. Relative 3D reconstruction using multiple uncalibrated images. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 543–548, 1993.
- [Moons-94] T. Moons, L. Van Gool, M. Van Diest, and E. Pauwels. Affine reconstruction from perspective image pairs. In J. Mundy, A. Zisserman, and D. Forsyth, editors, *Applications of Invariance in Computer Vision*, LNCS 825. Springer-Verlag, 1994.
- [Muehlich-98] M. Mühlich and R. Mester. The role of total least squares in motion analysis. In *Proc.* 5th European Conference on Computer Vision, Freiburg, Germany, pages 305–321. Springer-Verlag,

1998.

- [Mundy-92] J. Mundy and A. Zisserman. Geometric Invariance in Computer Vision. MIT Press, 1992.
- [Newsam-96] G. Newsam, D. Q. Huynh, M. Brooks, and H. P. Pan. Recovering unknown focal lengths in self-calibration: An essentially linear algorithm and degenerate configurations. In *Int. Arch. Photogrammetry & Remote Sensing*, volume XXXI-B3, pages 575–80, Vienna, 1996.
- [Niem-94] W. Niem and R. Buschmann. Automatic modelling of 3D natural objects from multiple views. In European Workshop on Combined Real and Synthetic Image Processing for Broadcast and Video Production, Hamburg, Germany, 1994.
- [Nister-00] D. Nister. Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors. In *Proc. European Conference on Computer Vision*, 2000.
- [Oskarsson-02] M. Oskarsson, A. Zisserman, and K. Åström. Minimal projective reconstruction for combinations of points and lines in three views. In *Proc. British Machine Vision Conference*, pages 62–72, 2002.
- [Poelman-94] C. Poelman and T. Kanade. A paraperspective factorization method for shape and motion recovery. In *Proc. 3rd European Conference on Computer Vision, Stockholm*, volume 2, pages 97–108, 1994.
- [Pollefeys-96] M. Pollefeys, L. Van Gool, and A. Oosterlinck. The modulus constraint: a new constraint for self-calibration. In *Proc. International Conference on Pattern Recognition*, pages 31–42, 1996.
- [Pollefeys-98] M. Pollefeys, R. Koch, and L. Van Gool. Self calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 90–96, 1998.
- [Pollefeys-99a] M. Pollefeys, R. Koch, and L. Van Gool. A simple and efficient rectification method for general motion. In *Proc. International Conference on Computer Vision*, pages 496–501, 1999.
- [Pollefeys-99b] M. Pollefeys. *Self-calibration and metric 3D reconstruction from uncalibrated image sequences*. PhD thesis, ESAT-PSI, K.U.Leuven, 1999.
- [Pollefeys-02] M. Pollefeys, F. Verbiest, and L. J. Van Gool. Surviving dominant planes in uncalibrated structure and motion recovery. In *ECCV* (2), pages 837–851, 2002.
- [Ponce-94] J. Ponce, D. H. Marimont, and T. A. Cass. Analytical methods for uncalibrated stereo and motion measurement. In *Proc. 3rd European Conference on Computer Vision, Stockholm*, volume 1, pages 463–470, 1994.
- [Porrill-91] J. Porrill and S. B. Pollard. Curve matching and stereo calibration. *Image and Vision Computing*, 9(1):45–50, 1991.
- [Pratt-87] V. Pratt. Direct least-squares fitting of algebraic surfaces. *Computer Graphics*, 21(4):145–151, 1987.
- [Press-88] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. *Numerical Recipes in C.* Cambridge University Press, 1988.
- [Pritchett-98] P. Pritchett and A. Zisserman. Wide baseline stereo matching. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 754–760, January 1998.
- [Proesmans-98] M. Proesmans, T. Tuytelaars, and L. J. Van Gool. Monocular image measurements. Technical Report Improofs-M12T21/1/P, K.U.Leuven, 1998.
- [Quan-94] L. Quan. Invariants of 6 points from 3 uncalibrated images. In J. O. Eckland, editor, *Proc.* 3rd European Conference on Computer Vision, Stockholm, pages 459–469. Springer-Verlag, 1994.
- [Quan-97a] L. Quan and T. Kanade. Affine structure from line correspondences with uncalibrated affine cameras. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(8):834–845, August 1997
- [Quan-97b] L. Quan. Uncalibrated 1D projective camera and 3D affine reconstruction of lines. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 60–65, 1997.
- [Quan-98] L. Quan and Z. Lan. Linear $n \ge 4$ -point pose determination. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 778–783, 1998.
- [Reid-96] I. D. Reid and D. W. Murray. Active tracking of foveated feature clusters using affine structure. *International Journal of Computer Vision*, 18(1):41–60, 1996.
- [Rinner-72] K. Rinner and R. Burkhardt. Photogrammetrie. In Handbuch der Vermessungskunde, volume

- Band III a/3. Jordan, Eggert, Kneissel, Stuttgart: J.B. Metzlersche Verlagsbuchhandlung, 1972.
- [Robert-93] L. Robert and O. D. Faugeras. Relative 3D positioning and 3D convex hull computation from a weakly calibrated stereo pair. In *Proc. 4th International Conference on Computer Vision*, *Berlin*, pages 540–544, 1993.
- [Rother-01] C. Rother and S. Carlsson. Linear multi view reconstruction and camera recovery. In *Proc.* 8th International Conference on Computer Vision, Vancouver, Canada, pages I–42–49, 2001.
- [Rother-03] C. Rother. *Multi-View Reconstruction and Camera Recovery using a Real or Virtual Reference Plane*. PhD thesis, Computational Vision and Active Perception Laboratory, Kungl Tekniska Högskolan, 2003.
- [Rousseeuw-87] P. J. Rousseeuw. Robust Regression and Outlier Detection. Wiley, New York, 1987.
- [Sampson-82] P. D. Sampson. Fitting conic sections to 'very scattered' data: An iterative refinement of the Bookstein algorithm. *Computer Vision, Graphics, and Image Processing*, 18:97–108, 1982.
- [Sawhney-98] H. S. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through topology inference and local to global alignment. In *Proc. European Conference on Computer Vision*, pages 103–119. Springer-Verlag, 1998.
- [Schaffalitzky-99] F. Schaffalitzky and A. Zisserman. Geometric grouping of repeated elements within images. In D.A. Forsyth, J.L. Mundy, V. Di Gesu, and R. Cipolla, editors, *Shape, Contour and Grouping in Computer Vision*, LNCS 1681, pages 165–181. Springer-Verlag, 1999.
- [Schaffalitzky-00a] F. Schaffalitzky. Direct solution of modulus constraints. In *Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, Bangalore*, pages 314–321, 2000.
- [Schaffalitzky-00b] F. Schaffalitzky and A. Zisserman. Planar grouping for automatic detection of vanishing lines and points. *Image and Vision Computing*, 18:647–658, 2000.
- [Schaffalitzky-00c] F. Schaffalitzky, A. Zisserman, R. I. Hartley, and P. H. S. Torr. A six point solution for structure and motion. In *Proc. European Conference on Computer Vision*, pages 632–648. Springer-Verlag, June 2000.
- [Schmid-97] C. Schmid and A. Zisserman. Automatic line matching across views. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 666–671, 1997.
- [Schmid-98] C. Schmid and A. Zisserman. The geometry and matching of curves in multiple views. In *Proc. European Conference on Computer Vision*, pages 394–409. Springer-Verlag, June 1998.
- [Se-00] S. Se. Zebra-crossing detection for the partially sighted. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 211–217, 2000.
- [Semple-79] J. G. Semple and G. T. Kneebone. Algebraic Projective Geometry. Oxford University Press, 1979.
- [Shapiro-95] L. S. Shapiro, A. Zisserman, and M. Brady. 3D motion recovery via affine epipolar geometry. *International Journal of Computer Vision*, 16(2):147–182, 1995.
- [Shashua-94] A. Shashua. Trilinearity in visual recognition by alignment. In *Proc. 3rd European Conference on Computer Vision, Stockholm*, volume 1, pages 479–484, May 1994.
- [Shashua-95a] A. Shashua. Algebraic functions for recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(8):779–789, August 1995.
- [Shashua-95b] A. Shashua and M. Werman. On the trilinear tensor of three perspective views and its underlying geometry. In *Proc. 5th International Conference on Computer Vision, Boston*, 1995.
- [Shashua-96] A. Shashua and S. J. Maybank. Degenerate N-point configurations of three views: Do critical surfaces exist? Technical Report TR 96-19, Hebrew University, Computer Science, November 1996.
- [Shashua-97] A. Shashua and S. Toelg. The quadric reference surface: Theory and applications. *International Journal of Computer Vision*, 23(2):185–198, 1997.
- [Shimshoni-99] I. Shimshoni, R. Basri, and E. Rivlin. A geometric interpretation of weak-perspective motion. Technical report, Technical, 1999.
- [Sinclair-92] D. A. Sinclair. *Experiments in Motion and Correspondence*. PhD thesis, University of Oxford, 1992.
- [Slama-80] C. Slama. *Manual of Photogrammetry*. American Society of Photogrammetry, Falls Church, VA, USA, 4th edition, 1980.

- [Spetsakis-91] M. E. Spetsakis and J. Aloimonos. A multi-frame approach to visual motion perception. *International Journal of Computer Vision*, 16(3):245–255, 1991.
- [Springer-64] C. E. Springer. Geometry and Analysis of Projective Spaces. Freeman, 1964.
- [Stein-99] G. Stein and A. Shashua. On degeneracy of linear reconstruction from three views: Linear line complex and applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(3):244–251, 1999.
- [Stolfi-91] J. Stolfi. Oriented Projective Geometry. Academic Press, 1991.
- [Strecha-02] C.Strecha and L. Van Gool. PDE-based multi-view depth estimation. *1st Int. Symp. of 3D Data Processing Visualization and Transmission*, pages 416–425, 2002.
- [Sturm-96] P. Sturm and W. Triggs. A factorization based algorithm for multi-image projective structure and motion. In *Proc. 4th European Conference on Computer Vision, Cambridge*, pages 709–720, 1996.
- [Sturm-97a] P. Sturm. Critical motion sequences for monocular self-calibration and uncalibrated Euclidean reconstruction. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, *Puerto Rico*, pages 1100–1105, June 1997.
- [Sturm-97b] P. Sturm. Vision 3D non calibrée: Contributions à la reconstruction projective et étude des mouvements critiques pour l'auto calibrage. PhD thesis, INRIA Rhône-Alpes, 1997.
- [Sturm-99a] P. Sturm and S. J. Maybank. A method for interactive 3D reconstruction of piecewise planar objects from single images. In *Proc. 10th British Machine Vision Conference, Nottingham*, 1999.
- [Sturm-99b] P. Sturm. Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length. In *Proc. 10th British Machine Vision Conference, Nottingham*, pages 63–72, 1999.
- [Sturm-99c] P. Sturm and S. Maybank. On plane based camera calibration: A general algorithm, singularities, applications. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 432–437, June 1999.
- [Sturm-01] P. Sturm. On focal length calibration from two views. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 145–150, 2001.
- [Sutherland-63] I. E. Sutherland. Sketchpad: A man-machine graphical communications system. Technical Report 296, MIT Lincoln Laboratories, 1963. Also published by Garland Publishing, New York, 1980.
- [Szeliski-96] R. Szeliski and S. B. Kang. Shape ambiguities in structure from motion. In B. Buxton and Cipolla R., editors, *Proc. 4th European Conference on Computer Vision*, *LNCS 1064*, *Cambridge*, pages 709–721. Springer–Verlag, 1996.
- [Szeliski-97] R. Szeliski and S. Heung-Yeung. Creating full view panoramic image mosaics and environment maps. In *Proceedings of the ACM SIGGRAPH Conference on Computer Graphics*, 1997.
- [Taubin-91] G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. *PAMI*, 13(11):1115–1138, 1991.
- [Thorhallsson-99] T. Thorhallsson and D.W. Murray. The tensors of three affine views. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, 1999.
- [Tomasi-92] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization approach. *International Journal of Computer Vision*, 9(2):137–154, November 1992.
- [Tordoff-01] B. Tordoff and D.W. Murray. Reactive zoom control while tracking using an affine camera. In *Proc. British Machine Vision Conference*, volume 1, pages 53–62, 2001.
- [Torr-93] P. H. S. Torr and D. W. Murray. Outlier detection and motion segmentation. In *Proc SPIE Sensor Fusion VI*, pages 432–443, Boston, September 1993.
- [Torr-95a] P. H. S. Torr, A. Zisserman, and D. W. Murray. Motion clustering using the trilinear constraint over three views. In R. Mohr and C. Wu, editors, *Europe–China Workshop on Geometrical Modelling and Invariants for Computer Vision*, pages 118–125. Xidan University Press, 1995.
- [Torr-95b] P. H. S. Torr. *Motion segmentation and outlier detection*. PhD thesis, Dept. of Engineering Science, University of Oxford, 1995.
- [Torr-97] P. H. S. Torr and A. Zisserman. Robust parameterization and computation of the trifocal tensor.

- Image and Vision Computing, 15:591-605, 1997.
- [Torr-98] P. H. S. Torr and A. Zisserman. Robust computation and parameterization of multiple view relations. In *Proc. 6th International Conference on Computer Vision, Bombay, India*, pages 727–732, January 1998.
- [Torr-99] P. H. S. Torr, A. W. Fitzgibbon, and A. Zisserman. The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. *International Journal of Computer Vision*, 32(1):27–44, August 1999.
- [Torresani-01] L. Torresani, D. Yang, G. Alexander, and C. Bregler. Tracking and modelling non-rigid objects with rank constraints. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages I: 493–500, 2001.
- [Triggs-95] W. Triggs. The geometry of projective reconstruction i: Matching constraints and the joint image. In *Proc. International Conference on Computer Vision*, pages 338–343, 1995.
- [Triggs-96] W. Triggs. Factorization methods for projective structure and motion. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 845–851, 1996.
- [Triggs-97] W. Triggs. Auto-calibration and the absolute quadric. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, pages 609–614, 1997.
- [Triggs-98] W. Triggs. Autocalibration from planar scenes. In *Proc. 5th European Conference on Computer Vision, Freiburg, Germany*, 1998.
- [Triggs-99a] W. Triggs. Camera pose and calibration from 4 or 5 known 3D points. In *Proc. International Conference on Computer Vision*, pages 278–284, 1999.
- [Triggs-99b] W. Triggs. Differential matching constraints. In *Proc. International Conference on Computer Vision*, pages 370–376, 1999.
- [Triggs-00a] W. Triggs, P. F. McLauchlan, R. I. Hartley, and A. Fitzgibbon. Bundle adjustment for structure from motion. In *Vision Algorithms: Theory and Practice*. Springer-Verlag, 2000.
- [Triggs-00b] W Triggs. Plane + parallax, tensors and factorization. In *Proc. European Conference on Computer Vision*, pages 522–538, 2000.
- [Tsai-84] R. Y. Tsai and T. S. Huang. The perspective view of three points. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6:13–27, 1984.
- [VanGool-98] L. Van Gool, M. Proesmans, and A. Zisserman. Planar homologies as a basis for grouping and recognition. *Image and Vision Computing*, 16:21–26, January 1998.
- [Vieville-93] T. Viéville and Q. Luong. Motion of points and lines in the uncalibrated case. Technical Report 2054, I.N.R.I.A., 1993.
- [Vieville-95] T. Viéville and D. Lingrand. Using singular displacements for uncalibrated monocular vision systems. Technical Report 2678, I.N.R.I.A., 1995.
- [VonSanden-08] H. von Sanden. *Die Bestimmung der Kernpunkte in der Photogrammetrie*. PhD thesis, Univ. Göttingen, December 1908.
- [Weinshall-95] D. Weinshall, M. Werman, and A. Shashua. Shape descriptors: Bilinear, trilinear and quadrilinear relations for multi-point geometry and linear projective reconstruction algorithms. In *IEEE Workshop on Representation of Visual Scenes, Boston*, pages 58–65, 1995.
- [Weng-88] J. Weng, N. Ahuja, and T. S. Huang. Closed-form solution and maximum likelihood: A robust approach to motion and structure estimation. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, 1988.
- [Weng-89] J. Weng, T. S. Huang, and N. Ahuja. Motion and structure from two perspective views: algorithms, error analysis and error estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11(5):451–476, 1989.
- [Werner-01] T. Werner and T. Pajdla. Oriented matching constraints. In T Cootes and C Taylor, editors, *Proc. British Machine Vision Conference*, pages 441–450, London, UK, September 2001. British Machine Vision Association.
- [Werner-03] T. Werner. A constraint on five points in two images. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition*, June 2003.
- [Wolfe-91] W. J. Wolfe, D. Mathis, C. Weber Sklair, and M. Magee. The perspective view of three points. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(1):66–73, January 1991.

- [Xu-96] G. Xu and Z. Zhang. *Epipolar Geometry in Stereo, Motion and Object Recognition*. Kluwer Academic Publishers, 1996.
- [Zeller-96] C. Zeller. *Projective, Affine and Euclidean Calibration in Computer Vision and the Application of Three Dimensional Perception.* PhD thesis, RobotVis Group, INRIA Sophia-Antipolis, 1996.
- [Zhang-95] Z. Zhang, R. Deriche, O. D. Faugeras, and Q. Luong. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. *Artificial Intelligence*, 78:87–119, 1995.
- [Zhang-98] Z. Zhang. Determining the epipolar geometry and its uncertainty a review. *International Journal of Computer Vision*, 27(2):161–195, March 1998.
- [Zhang-00] Z. Zhang. A flexible new technique for camera calibration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(11):1330–1334, November 2000.
- [Zisserman-92] A. Zisserman. Notes on geometric invariance in vision. Tutorial, British Machine Vision Conference, 1992.
- [Zisserman-94] A. Zisserman and S. Maybank. A case against epipolar geometry. In J. Mundy, A. Zisserman, and D. Forsyth, editors, *Applications of Invariance in Computer Vision LNCS* 825. Springer-Verlag, 1994.
- [Zisserman-95a] A. Zisserman, J. Mundy, D. Forsyth, J. Liu, N. Pillow, C. Rothwell, and S. Utcke. Class-based grouping in perspective images. In *Proc. International Conference on Computer Vision*, 1995.
- [Zisserman-95b] A. Zisserman, P. Beardsley, and I. Reid. Metric calibration of a stereo rig. In *IEEE Workshop on Representation of Visual Scenes, Boston*, pages 93–100, 1995.
- [Zisserman-96] A. Zisserman. A users guide to the trifocal tensor. Dept. of Engineering Science, University of Oxford, 1996.
- [Zisserman-98] A. Zisserman, D. Liebowitz, and M. Armstrong. Resolving ambiguities in auto-calibration. *Philosophical Transactions of the Royal Society of London, SERIES A*, 356(1740):1193–1211, 1998.