

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
26 septembre 2002 (26.09.2002)

PCT

(10) Numéro de publication internationale
WO 02/074268 A2

- (51) Classification internationale des brevets⁷ : **A61K 7/13, C09B 26/02, C07D 233/88**
- (21) Numéro de la demande internationale :
PCT/FR02/00857
- (22) Date de dépôt international : 11 mars 2002 (11.03.2002)
- (25) Langue de dépôt : **français**
- (26) Langue de publication : **français**
- (30) Données relatives à la priorité :
01/03538 15 mars 2001 (15.03.2001) FR
- (71) Déposant (*pour tous les États désignés sauf US*) :
L'OREAL [FR/FR]; 14, rue Royal, F-75008 Paris (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (*pour US seulement*) : **VIDAL, Laurent [FR/FR]; 7, rue de Rungis, F-75013 Paris (FR). DAVID, Hervé [FR/FR]; 5 Avenue du Président Wilson, F-94340 Joinville le Pont (FR).**
- (74) Mandataire : **FEVRIER, Murielle; L'Oréal - DPI, 6, rue Bertrand Sincholle, F-92110 Clichy (FR).**
- (81) États désignés (*national*) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (*régional*) : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

— sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

WO 02/074268 A2

(54) Title: NOVEL DYEING COMPOSITIONS FOR THE DYEING OF KERATIN FIBRES COMPRISING 5-MEMBERED HETEROCYCLIC HYDRAZONE COMPOUNDS AS AN OXIDATION BASE

(54) Titre : NOUVELLES COMPOSITIONS TINCTORIALES POUR LA TEINTURE DE FIBRES KERATINIQUES COMPRENANT À TITRE DE BASE D'OXYDATION DES COMPOSÉS HYDRAZONE HETEROCYCLIQUES À 5 CHAINONS

(57) Abstract: The invention relates to a novel composition that is used for the oxidation dyeing of keratin fibres, in particular human hair, comprising at least one 5-membered heterocyclic hydrazone-type compound as an oxidation base and at least one coupling agent. The invention also relates to the dyeing method using same and to novel 5-membered heterocyclic hydrazone compounds.

(57) Abrégé : L'invention a pour objet une nouvelle composition utile pour la teinture par oxydation des fibres kératiniques, en particulier des cheveux humains comprenant à titre de base d'oxydation au moins un composé du type hydrazone hétérocyclique à 5 chainons et au moins un coupleur ainsi que le procédé de teinture les mettant en oeuvre. L'invention a aussi pour objet de nouveaux composés hydrazone hétérocycliques à 5 chaînons.

COMPOSITIONS TINCTORIALES POUR LA TEINTURE DE FIBRES KERATINIQUES COMPRENANT
A TITRE DE BASE D'OXYDATION DES COMPOSÉS HYDRAZONE HÉTÉROCYCLIQUES À 6
CHAINONS

L'invention a pour objet une nouvelle composition tinctoriale utile pour la
5 teinture par oxydation des fibres kératiniques, en particulier des cheveux humains
comprenant à titre de base d'oxydation au moins un composé hydrazone
hétérocyclique à 5 chaînons ainsi que le procédé de teinture les mettant en œuvre.
L'invention a aussi pour objet de nouveaux composés hydrazone hétérocycliques à 5
chaînons.

10 Il est connu de teindre les fibres kératiniques et en particulier les cheveux
humains avec des compositions tinctoriales contenant des précurseurs de colorant
d'oxydation, appelés généralement bases d'oxydation, tels que des ortho ou
paraphénylenediamines, des ortho ou paraaminophénols et des composés
hétérocycliques. Ces bases d'oxydation sont des composés incolores ou faiblement
15 colorés qui, associés à des produits oxydants, peuvent donner naissance par un
processus de condensation oxydative à des composés colorés.

On sait également que l'on peut faire varier les nuances obtenues avec ces
bases d'oxydation en les associant à des coupleurs ou modificateurs de coloration, ces
derniers étant choisis notamment parmi les métadiamines aromatiques, les
20 métaaminophénols, les métadiphénols et certains composés hétérocycliques tels que
des composés indoliques.

La variété des molécules mises en jeu au niveau des bases d'oxydation et
des coupleurs, permet l'obtention d'une riche palette de couleurs.

La coloration dite "permanente" obtenue grâce à ces colorants d'oxydation,
25 doit par ailleurs satisfaire un certain nombre d'exigences. Ainsi, elle doit être sans
inconvénient sur le plan toxicologique, elle doit permettre d'obtenir des nuances dans
l'intensité souhaitée et présenter une bonne tenue face aux agents extérieurs tels que
la lumière, les intempéries, le lavage, les ondulations permanentes, la transpiration et
les frottements.

30 Les colorants doivent également permettre de couvrir les cheveux blancs,
et être enfin les moins sélectifs possibles, c'est-à-dire permettre d'obtenir des écarts de
coloration les plus faibles possibles tout au long d'une même fibre kératinique, qui est
en général différemment sensibilisée (i.e. abîmée) entre sa pointe et sa racine.

Il est déjà connu d'utiliser des composés hydrazones en particulier pour la
35 réalisation de composition pour la teinture de fibres kératiniques. Par exemple, la

demande de brevet FR1599968 au nom de THERACHEMIE et la demande de brevet DE1922400 au nom de HENKEL décrivent de telles compositions. Ces compositions ne sont cependant pas totalement satisfaisantes, en particulier, elles ne sont pas totalement satisfaisantes au niveau de la brillance et de la puissance de la couleur
5 obtenue.

Le but de la présente invention est de fournir de nouvelles compositions tinctoriales ne présentant pas les inconvénients de celles de la technique antérieure. En particulier, le but de la présente invention est de fournir des compositions pour la teinture de fibres kératiniques par oxydation qui présentent des teintures brillantes
10 puissantes, peu sélectives et particulièrement résistantes, capables d'engendrer des colorations intenses dans des nuances variées.

Ce but est atteint avec la présente invention qui a pour objet une composition tinctoriale pour la teinture de fibres kératiniques comprenant dans un milieu approprié à la teinture de ces fibres,

15 • à titre de base d'oxydation, au moins un composé du type hydrazone de formule (I) suivante ou le sel d'addition avec un acide ou une base correspondant

dans laquelle

- X représente un atome de soufre ou NR_3 , Y représente un atome d'azote ou CR_2 , et Z représente un atome d'azote ou CR_4 ;
- A représente un atome d'hydrogène ; un radical acyle , un radical alkylsulfonyle en $\text{C}_1\text{-C}_4$ ou un radical arylsulfonyle, ces radicaux étant éventuellement substitués par un méthyl, un alkoxy en $\text{C}_1\text{-C}_2$ ou un carboxy,
- R_1 et R_3 représentent, chacun séparément, une chaîne carbonée en $\text{C}_1\text{-C}_{11}$, saturée ou pouvant contenir une ou plusieurs liaisons doubles et/ou une ou plusieurs liaisons-triples, linéaire ou ramifiée, pouvant former un cycle ayant de 3 à 6 chaînons, éventuellement aromatique, un ou plusieurs atomes de carbone de la chaîne pouvant être remplacés par un atome d'oxygène, d'azote, d'halogène ou de soufre, par un groupe SO_2 à l'exception du carbone lié directement à l'atome d'azote ou de

carbone du cycle; les radicaux R₁ et R₃ ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso ;

- R₂ et R₄ représentent, chacun séparément un atome d'hydrogène ; un radical alkyle ou alcényle en C₁-C₁₂, linéaire ou ramifié, pouvant former un cycle 5 carboné ayant de 3 à 6 chaînons, éventuellement aromatique, un ou plusieurs atomes de carbone des radicaux alkyle ou alcényle pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote ou de soufre, par un groupement SO₂, ou par un halogène,

avec les conditions suivantes

10 lorsque X = NR₃ alors Z = CR₄,

lorsque X = S soit Z = N et Y = CR₂ soit Z = CR₄ et Y = N

et

- au moins un coupleur ou le sel d'addition avec un acide correspondant.

Dans les définitions ci-dessus, sauf autre indication, les radicaux ou 15 groupes alkyle sont linéaires ou ramifiés et comprennent, de 1 à 10 atomes de carbone, de préférence 1 à 4 atomes de carbone. Un alcoxy est O-alkyle.

Un radical alkylsulfonyle est un radical Alk-SO₂⁻, un radical arylsulfonyle est un radical Ar-SO₂⁻, un radical alkylsulfoxyde est un radical Alk-SO-, un radical arylsulfoxyde est un radical Ar-SO-.

20 Un radical aryle est par exemple un groupe phényle, naphtyl, de préférence phényle.

Selon le pH de la composition, il peut exister dans le milieu un équilibre acido-basique entre la formule (I) et la formule (I') ci-dessous.

L'objet de la présente invention porte sur les compositions contenant l'une et/ou l'autre des formes tautomères de formules (I) et (I'). Cependant, par souci de clarté, on se limitera dans ce qui suit à la description de composés de formule (I), cet enseignement étant directement transposable aux composés de formule (I').

Selon l'invention, lorsque qu'il est indiqué qu'un ou plusieurs des atomes de carbone des radicaux R_1 et R_3 peuvent être remplacés par un atome d'oxygène, d'azote, d'halogène ou de soufre ou par un groupement SO_2 , et/ou que les radicaux R_1 et R_3 peuvent contenir une ou plusieurs liaisons doubles, cela signifie que l'on peut, à titre d'exemple, faire les transformations suivantes :

10

Parmi les radicaux R_1 et R_3 définis ci-dessus, on préfère les radicaux choisis parmi un radical alkyle ou alcényle en C_1-C_4 pouvant être substitué par un ou plusieurs substituants hydroxy, amino éventuellement substitué, carboxyl ; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogène, un ou plusieurs groupes alkyle en C_1-C_4 , alkoxy en C_1-C_4 , amino, hydroxy, trifluorométhyle, alkylamino en C_1-C_4 , carboxy ou sulfonyle ; un radical benzyle pouvant être substitué par un ou plusieurs atomes d'halogène, un ou plusieurs groupes alkyle en C_1-C_4 , alkoxy en C_1-C_4 , amino, trifluorométhyle ; un radical alkylamino en C_1-C_4 ; un hétérocycle choisi parmi l'imidazole, le thiazole, la pyridine ou la pyrimidine ; un radical $(CH_2)_p-T-(CH_2)_q-$ VR' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V désignent indépendamment un atome d'oxygène ou un radical NHR" avec R" désignant un hydrogène ou un méthyle.

Lorsque R_1 et/ou R_3 est substitué par un atome d'halogène, cet atome est de préférence le chlore, le brome ou le fluor.

Parmi les radicaux R₁ et R₃ de la formule (I) définie ci-dessus, on préfère plus particulièrement les radicaux méthyle ; éthyle ; isopropyle ; hydroxyéthyle ; aminoéthyle ; carboxyméthyle ; carboxyéthyle ; phényle ; 2-méthoxyphényle ; 3-méthoxyphényle ; 4-méthoxyphényle ; 2-hydroxyphényle ; 3-hydroxyphényle ; 4-hydroxyphényle ; benzyle ; les hétérocycles choisis parmi pyridyle, imidazolyle, pyrimidinyle. Plus particulièrement, les radicaux R₁ et R₃ sont choisis parmi les groupes méthyle ; éthyle ; phényle ; 2-méthoxyphényl ; 2-hydroxyphényl ; hydroxyéthyle ; aminoéthyle ; carboxyéthyle.

Lorsqu'il est indiqué pour R₂ et R₄ qu'un ou plusieurs des atomes les 10 constituants peuvent être remplacés par un atome d'oxygène, d'azote, d'halogène ou de soufre, ou par un groupement SO₂, cela signifie que l'on peut faire les transformations décrites précédemment pour R₁. Dans le cas de R₂ et R₄, l'halogène est de préférence choisi parmi le chlore, le brome ou le fluor.

Les radicaux R₂ et R₄ de la formule (I) préférés sont choisis parmi un atome 15 d'hydrogène ; un radical alkyle par exemple méthyle, éthyle, propyle, isopropyle ; un radical alkyle substitué par un hydroxy, amino ou un halogène comme hydroxyméthyle, hydroxyéthyle, 1,2-dihydroxyéthyle, 1,2-dihydroxypropyle, 2,3-dihydroxypropyle, aminométhyle, aminoéthyle, aminopropyle trifluorométhyle ; un radical phényle pouvant être substitué par un ou plusieurs substituants choisis parmi les radicaux 20 alkyle, hydroxy, amino, alcoxy, carboxyl, trifluorométhyle, sulfonique ; les radicaux benzyle et les benzyles substitués par un alcoxy, par exemple méthoxy, ou hydroxy notamment 2-méthoxybenzyle, 3-méthoxybenzyle, 4-méthoxybenzyle, 2-hydroxybenzyle, 3-hydroxybenzyle, 4-hydroxybenzyle ; un hétérocycle choisi parmi N-pyrrolidinyle, N-pipéridinyle, N-morpholine, N-pipérazinyle ou N-imidazolyle ; un radical 25 alcoxy comme méthoxy ou éthoxy ; un radical phosphonyle ; un radical siloxy ; un radical amino ; un radical acyle ; un radical acylamino ; un radical sulfonamide ; un radical uréido ; un radical sulfonylamino.

Les radicaux R₂ et R₄ préférés sont l'hydrogène ; un radical alkyle choisi 30 parmi méthyle, éthyle ; un radical alkyle substitué choisi parmi trifluorométhyle ; hydroxyméthyle, hydroxyéthyle, aminométhyle, aminoéthyle ; le benzyle ; un phényl éventuellement substitué par un ou plusieurs radicaux choisis parmi les radicaux méthyle, hydroxy, amino, méthoxy ; 2-méthoxybenzyle ; 4-méthoxybenzyle ; 2-

hydroxybenzyle ; 4-hydroxybenzyle ; un hétérocycle choisi parmi pyrrolidinyle, pipéridinyle ; un radical méthoxy ; un radical acyle ; un radical amino. Plus particulièrement, les radicaux R₂ et R₄ sont choisis parmi l'hydrogène ; méthyle ; éthyle ; trifluorométhyle ; phényle ; pyrrolidinyle ; méthoxy ; amino.

5 Parmi les radicaux A de la formule (I) définie ci-dessus, on préfère les radicaux choisis parmi l'hydrogène ; un radical acyle ; un radical méthylsulfonyle ; un radical phénylsulfonyle ; un radical toluylsulfonyle. Plus particulièrement, le radical A est l'hydrogène.

10 Selon des modes de réalisation particuliers, le composé de formule (I) présente l'une des formules suivantes :

dans lesquelles R₁, R₂, R₃, R₄ et A sont tels que définis précédemment.

A titre d'exemple de composés de formule (Ia), appelés (1-R1-3R2-1,3-dihydro-imidazol-2-ylidène)-hydrazone, on peut citer:

- (1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; (1,3-dihydroxyethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; (1,3-diaminoethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; (4-méthoxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; (4-pyrrolidino-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ;

(4-carboxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; (4-phényl-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; (4-amino-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone

- N-acetyl (1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-acetyl

5 (1,3-dihydroxyethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-acetyl (1,3-diaminoethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-acetyl (4-méthoxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-acetyl (4-pyrrolidino -1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-acetyl (4-carboxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-acetyl (4-phényl-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-acetyl (4-amino-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone

- N-formyl (1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-formyl

(1,3-dihydroxyethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-formyl (1,3-diaminoethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-formyl (4-méthoxy-1,3-

15 dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-formyl (4-pyrrolidino -1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-formyl (4-carboxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-formyl (4-phényl-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; N-formyl (4-amino-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone

20 • Acide N-methanesulfonique (1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (1,3-dihydroxyethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (1,3-diaminoethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (4-méthoxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (4-pyrrolidino -1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (4-carboxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (4-phényl-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (4-amino-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone.

30 • Acide N-phenylsulfonique (1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (1,3-dihydroxyethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (1,3-diaminoethyl-1,3-dihydro-

imidazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (4-méthoxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (4- pyrrolidino -1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (4-carboxy-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (4-phényl-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone ;
5 Acide N- phenylsulfonique (4-amino-1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone.

A titre d'exemple de composés de formule (Ic), appelés les (2-R1-4-R3-2,4-dihydro-triazol-3-ylidene)-hydrazone, on peut citer:

- 10 • (2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; (2,4-dihydroxyethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; (2,4-diaminoethyl)-2,4-dihydro-triazol-3-ylidène)-hydrazone ; (5-méthoxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; (5-pyrrolidino -2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; (5-carboxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ;
15 (5-phényl-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; (5-amino-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone
- N-acetyl (2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-acetyl (2,4-dihydroxyethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-acetyl (2,4-diaminoethyl)-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-acetyl (5-méthoxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-acetyl (5-pyrrolidino -2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-acetyl (5-carboxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-acetyl (5-phényl-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-acetyl (5-amino-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone
20
- 25 • N-formyl (2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-formyl (2,4-dihydroxyethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-formyl (2,4-diaminoethyl)-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-formyl (5-méthoxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-formyl (5-pyrrolidino -2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-formyl (5-carboxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-formyl (5-phényl-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; N-formyl (5-amino-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone
30

- Acide N-methanesulfonique (2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- methanesulfonique (2,4-dihydroxyethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- methanesulfonique (2,4-diaminoethyl)-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- methanesulfonique (5-méthoxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- methanesulfonique (5- pyrrolidino -2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- methanesulfonique (5-carboxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- methanesulfonique (5-phényl-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- methanesulfonique (5-amino-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone.

- Acide N-phenylsulfonique (2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- phenylsulfonique (2,4-dihydroxyethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- phenylsulfonique (2,4-(2-amino-ethyl)-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-méthoxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- phenylsulfonique (5- pyrrolidino -2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-carboxy-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-phényl-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-amino-2,4-dimethyl-2,4-dihydro-triazol-3-ylidène)-hydrazone.

A titre d'exemple de composés de formule (Id), appelé les (3-R1-3H-thiadiazol-2-ylidene)-hydrazone, on peut citer

- (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; (5-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (5- pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (5-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (5-(4'-fluorosulfonyl)phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (5-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone
- N-acetyl (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (5-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (5- pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-

hydrazone ; N-acetyl (5-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (5-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (5-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.

- N-formyl (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (5-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (5-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (5-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (5-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (5-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.
- Acide N-methanesulfonique (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (5-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (5-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (5-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (5-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- methanesulfonique (5-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.
- Acide N-phenylsulfonique (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N- phenylsulfonique (5-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.

A titre de composés de formule (Ie), appelés les (3-R1-3H-thiadiazol-2-ylidene)-hydrazone, on peut citer:

- (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; (4-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (4- pyrrolidino-3-methyl-3H-thiadiazol-2-

ylidène)-hydrazone ; (4-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; (4-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone

- N-acetyl (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (4-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (4-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (4-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (4-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-acetyl (4-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.
- 10 • N-formyl (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (4-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (4-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (4-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (4-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; N-formyl (4-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.
- 15 • Acide N-methanesulfonique (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-methanesulfonique (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-methanesulfonique (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-methanesulfonique (4-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-methanesulfonique (4-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-methanesulfonique (4-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-methanesulfonique (4-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-methanesulfonique (4-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.
- 20 • Acide N-phenylsulfonique (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.
- 25 • Acide N-phenylsulfonique (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (3-hydroxyethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (3-aminoethyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.
- 30 • Acide N-phenylsulfonique (3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-méthoxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-pyrrolidino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-carboxy-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-phényl-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone ; Acide N-phenylsulfonique (4-amino-3-methyl-3H-thiadiazol-2-ylidène)-hydrazone.

Selon un mode de réalisation particulier, le composé de type hydrazone correspond à la formule (Ia) dans laquelle R1 et R3 représentent un radical alkyle en C1-C4 et R2, R4 et A sont l'hydrogène.

Selon un mode de réalisation différent, le composé de type hydrazone correspond à la formule (Id) dans laquelle R4 est un radical phényle substitué ou non, R1 est un radical alkyle en C1-C4 et A est un atome d'hydrogène.

Les composés de formules (I) utiles dans la composition de la présente invention peuvent être obtenus à partir des procédés de préparation décrits par exemple dans les publications de Manecke G., Kautz J. ; *Tetrahedron Lett.*, 1972, 7, 10 629-632, *Chemical Abstracts*, 1961, 55, 4537F, et Hunig S., Muller F. ; *Liebigs Ann. Chem.*, BD609, 1957, 160-170.

Le coupleur utile dans la composition de la présente invention est un coupleur conventionnellement utilisé pour la teinture de fibres kératiniques. Parmi ces coupleurs, on peut notamment citer les métaphénylénediamines, les méta-aminophénols, les métadiphénols et les coupleurs hétérocycliques.

Parmi les coupleurs hétérocycliques utilisables dans la composition tinctoriale conforme à l'invention, on peut notamment citer les dérivés indoliques, les dérivés indoliniques, les dérivés de benzimidazole, les dérivés de benzomorpholine, les dérivés de sésamol, les dérivés pyrazolo-azoliques, les dérivés pyrrolo-azoliques, 20 les dérivés imidazolo-azoliques, les dérivés pyrazolo-pyrimidiniques, les dérivés de pyrazolin-3,5-diones, les dérivés pyrrolo-[3,2-d]-oxazoliques, les dérivés pyrazolo-[3,4-d]-thiazoliques, les dérivés S-oxyde-thiazolo-azoliques, les dérivés S,S-dioxyde-thiazolo-azoliques, et leurs sels d'addition avec un acide.

A titre d'exemple, on peut citer le 2-méthyl 5-aminophénol, le 5-N-(β -hydroxyéthyl)amino 2-méthyl phénol, le 6-chloro-2-méthyl-5-aminophénol, le 3-amino phénol, le 1,3-dihydroxy benzène, le 1,3-dihydroxy 2-méthyl benzène, le 4-chloro 1,3-dihydroxy benzène, le 2,4-diamino 1-(β -hydroxyéthoxy) benzène, le 2-amino 4-(β -hydroxyéthylamino) 1-méthoxybenzène, le 1,3-diamino benzène, le 1,3-bis-(2,4-diaminophenoxy)propane, la 3-uréido aniline, le 3-uréido 1-diméthylamino benzène, le 30 sésamol, le 1- β -hydroxyéthylamino-3,4-méthylénedioxybenzène, l' α -naphtol, le 2 méthyl-1-naphtol, le 6-hydroxy indole, le 4-hydroxy indole, le 4-hydroxy N-méthyl indole, la 2-amino-3-hydroxy pyridine, la 6-hydroxy benzomorpholine la 3,5-diamino-

2,6-diméthoxypyridine, le 1-N-(β -hydroxyéthyl)amino-3,4-méthylène dioxybenzène, le 2,6-bis-(β -hydroxyéthylamino)toluène et leurs sels d'addition.

Dans la composition de la présente invention, le ou les composés de formule (I) sont chacun présents de préférence en quantité comprise entre 0,001 et 10 %, plus préférentiellement entre 0,005 et 6 % en poids du poids total de la composition tinctoriale et le ou les coupleurs sont présents en quantité de préférence comprise entre 0,001 et 10 %, plus préférentiellement de 0,005 à 6 % en poids du poids total de la composition tinctoriale.

La composition selon la présente invention peut de plus comprendre une ou plusieurs bases d'oxydation additionnelles différentes des bases d'oxydation de formule (I). Ces bases d'oxydation additionnelles sont choisies parmi les bases d'oxydation classiquement utilisées en teinture d'oxydation, par exemple les paraphénylénediamines, les bis-phénylalkylénediamines, les para-aminophénols, les ortho-aminophénols et les bases hétérocycliques.

Parmi les paraphénylénediamines, on peut citer à titre d'exemple, la paraphénylénediamine, la paratoluylénediamine, la 2-chloro paraphénylénediamine, la 2,3-diméthyl paraphénylénediamine, la 2,6-diméthyl paraphénylénediamine, la 2,6-diéthyl paraphénylénediamine, la 2,5-diméthyl paraphénylénediamine, la N,N-diméthyl paraphénylénediamine, la N,N-diéthyl paraphénylénediamine, la N,N-dipropyl paraphénylénediamine, la 4-amino N,N-diéthyl 3-méthyl aniline, la N,N-bis-(β -hydroxyéthyl) paraphénylénediamine, la 4-N,N-bis-(β -hydroxyéthyl)amino 2-méthyl aniline, la 4-N,N-bis-(β -hydroxyéthyl)amino 2-chloro aniline, la 2- β -hydroxyéthyl paraphénylénediamine, la 2-fluoro paraphénylénediamine, la 2-isopropyl paraphénylénediamine, la N-(β -hydroxypropyl) paraphénylénediamine, la 2-hydroxyméthyl paraphénylénediamine, la N,N-diméthyl 3-méthyl paraphénylénediamine, la N,N-(éthyl, β -hydroxyéthyl) paraphénylénediamine, la N-(β , γ -dihydroxypropyl) paraphénylénediamine, la N-(4'-aminophényl) paraphénylénediamine, la N-phényl paraphénylénediamine, la 2- β -hydroxyéthoxy paraphénylénediamine, la 2- β -acétylaminoéthoxy, paraphénylénediamine, la N-(β -méthoxyéthyl) paraphénylénediamine, et leurs sels d'addition avec un acide.

Parmi les paraphénylénediamines citées ci-dessus, la paraphénylénediamine, la paratoluylénediamine, la 2-isopropyl paraphénylénediamine, la 2- β -hydroxyéthyl paraphénylénediamine, la 2- β -hydroxyéthoxy paraphénylénediamine, la 2,6-diméthyl paraphénylénediamine, la 2,6-diéthyl

paraphénylènediamine, la 2,3-diméthyl paraphénylènediamine, la N,N-bis-(β -hydroxyéthyl) paraphénylènediamine, la 2-chloro paraphénylènediamine, la 2- β -acétylaminoéthyloxy paraphénylènediamine, et leurs sels d'addition avec un acide sont particulièrement préférées.

5 Parmi les bis-phénylalkylènediamines, on peut citer à titre d'exemple, le N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) éthylènediamine, la N,N'-bis-(4'-aminophényl) tétraméthylènediamine, la N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthyl-aminophényl) tétraméthylènediamine, la N,N'-bis-(éthyl) N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, le 1,8-bis-(2,5-diamino phénoxy)-3,6-dioxaoctane, et leurs sels d'addition avec un acide.

10 Parmi les para-aminophénols, on peut citer à titre d'exemple, le para-aminophénol, le 4-amino 3-méthyl phénol, le 4-amino 3-fluoro phénol, le 4-amino 3-hydroxyméthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-hydroxyméthyl phénol, le 4-amino 2-méthoxyméthyl phénol, le 4-amino 2-aminométhyl phénol, le 4-amino 2-(β -hydroxyéthyl aminométhyl) phénol, le 4-amino 2-fluoro phénol, et leurs sels d'addition avec un acide.

15 Parmi les ortho-aminophénols, on peut citer à titre d'exemple, le 2-amino phénol, le 2-amino 5-méthyl phénol, le 2-amino 6-méthyl phénol, le 5-acétamido 2-amino phénol, et leurs sels d'addition avec un acide.

Parmi les bases hétérocycliques, on peut citer à titre d'exemple, les dérivés pyridiniques, les dérivés pyrimidiniques et les dérivés pyrazoliques.

20 Parmi les dérivés pyridiniques, on peut citer les composés décrits par exemple dans les brevets GB 1 026 978 et GB 1 153 196, comme la 2,5-diamino pyridine, la 2-(4-méthoxyphényl)amino 3-amino pyridine, la 2,3-diamino 6-méthoxy pyridine, la 2-(β -méthoxyéthyl)amino 3-amino 6-méthoxy pyridine, la 3,4-diamino pyridine, et leurs sels d'addition avec un acide.

25 Parmi les dérivés pyrimidiniques, on peut citer les composés décrits par exemple dans les brevets DE 2 359 399 ; JP 88-169 571 ; JP 05 163 124 ; EP 0 770 375 ou demande de brevet WO 96/15765 comme la 2,4,5,6-tétra-aminopyrimidine, la 4-hydroxy 2,5,6-triaminopyrimidine, la 2-hydroxy 4,5,6-triaminopyrimidine, la 2,4-dihydroxy 5,6-diaminopyrimidine, la 2,5,6-triaminopyrimidine, et les dérivés pyrazolo-pyrimidiniques tels ceux mentionnés dans la demande de brevet FR-A-2 750 048 et parmi lesquels on peut citer la pyrazolo-[1,5-a]-pyrimidine-3,7-diamine ; la 2,5-

diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine ; la pyrazolo-[1,5-a]-pyrimidine-3,5-diamine ; la 2,7-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,5-diamine ; le 3-amino pyrazolo-[1,5-a]-pyrimidin-7-ol ; le 3-amino pyrazolo-[1,5-a]-pyrimidin-5-ol ; le 2-(3-amino pyrazolo-[1,5-a]-pyrimidin-7-ylamino)-éthanol, le 2-(7-amino pyrazolo-[1,5-a]-pyrimidin-3-ylamino)-éthanol, le 2-[(3-amino-pyrazolo[1,5-a]pyrimidin-7-yl)-(2-hydroxy-éthyl)-amino]-éthanol, le 2-[(7-amino-pyrazolo[1,5-a]pyrimidin-3-yl)-(2-hydroxy-éthyl)-amino]-éthanol, la 5,6-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine, la 2,6-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine, la 2, 5, N 7, N 7-tetraméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine, la 3-amino-5-méthyl-7-imidazolylpropylamino pyrazolo-[1,5-a]-pyrimidine et leurs sels d'addition avec un acide et leurs formes tautomères, lorsqu'il existe un équilibre tautomérique.

Parmi les dérivés pyrazoliques, on peut citer les composés décrits dans les brevets DE 3 843 892, DE 4 133 957 et demandes de brevet WO 94/08969, WO 94/08970, FR-A-2 733 749 et DE 195 43 988 comme le 4,5-diamino 1-méthyl pyrazole, le 4,5-diamino 1-(β -hydroxyéthyl) pyrazole, le 3,4-diamino pyrazole, le 4,5-diamino 1-(4'-chlorobenzyl) pyrazole, le 4,5-diamino 1,3-diméthyl pyrazole, le 4,5-diamino 3-méthyl 1-phényl pyrazole, le 4,5-diamino 1-méthyl 3-phényl pyrazole, le 4-amino 1,3-diméthyl 5-hydrazino pyrazole, le 1-benzyl 4,5-diamino 3-méthyl pyrazole, le 4,5-diamino 3-tert-butyl 1-méthyl pyrazole, le 4,5-diamino 1-tert-butyl 3-méthyl pyrazole, le 4,5-diamino 1-(β -hydroxyéthyl) 3-méthyl pyrazole, le 4,5-diamino 1-éthyl 3-méthyl pyrazole, le 4,5-diamino 1-éthyl 3-(4'-méthoxyphényl) pyrazole, le 4,5-diamino 1-éthyl 3-hydroxyméthyl pyrazole, le 4,5-diamino 3-hydroxyméthyl 1-méthyl pyrazole, le 4,5-diamino 3-hydroxyméthyl 1-isopropyl pyrazole, le 4,5-diamino 3-méthyl 1-isopropyl pyrazole, le 4-amino 5-(2'-aminoéthyl)amino 1,3-diméthyl pyrazole, le 3,4,5-triamino pyrazole, le 1-méthyl 3,4,5-triamino pyrazole, le 3,5-diamino 1-méthyl 4-méthylamino pyrazole, le 3,5-diamino 4-(β -hydroxyéthyl)amino 1-méthyl pyrazole, et leurs sels d'addition avec un acide.

Dans la composition de la présente invention, la base additionnelle est présente en quantité de préférence comprise entre 0,001 et 10 % en poids environ du poids total de la composition tinctoriale et encore plus préférentiellement de 0,005 à 6 %.

D'une manière générale, les acides permettant de former le sel d'addition avec un acide utilisable dans le cadre des compositions tinctoriales de l'invention pour les bases d'oxydation et les coupleurs sont notamment choisis les acides minéraux ou organiques comme l'acide chlorhydrique, l'acide bromhydrique, l'acide

orthophosphorique, l'acide sulfurique, les acides carboxyliques comme l'acide acétique, l'acide tartrique, l'acide citrique, l'acide lactique, les acides sulfoniques.

Les sels d'addition utilisables dans le cadre de l'invention sont par exemple choisis parmi les sels d'addition avec la soude, la potasse, l'ammoniaque, les amines 5 ou les alcanolamines.

La composition tinctoriale conforme à l'invention peut en outre contenir un ou plusieurs colorants directs pouvant notamment être choisis parmi les colorants nitrés de la série benzénique, les colorants directs cationiques, les colorants directs azoïques, les colorants directs méthéniques.

10 Le milieu approprié pour la teinture appelé aussi support de teinture est généralement constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique pour solubiliser les composés qui ne seraient pas suffisamment solubles dans l'eau. A titre de solvant organique, on peut par exemple citer les alcanols inférieurs en C₁-C₄, tels que l'éthanol et l'isopropanol ; les polyols et éthers de polyols 15 comme le 2-butoxyéthanol, le propylèneglycol, le monométhyléther de propylèneglycol, le monoéthyléther et le monométhyléther du diéthylèneglycol, ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, et leurs mélanges.

20 Les solvants peuvent être présents dans des proportions de préférence comprises entre 1 et 40 % en poids environ par rapport au poids total de la composition tinctoriale, et encore plus préférentiellement entre 5 et 30 % en poids environ.

25 La composition tinctoriale conforme à l'invention peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux, tels que des agents tensio-actifs anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des polymères anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des agents épaississants minéraux ou organiques, et en particulier les épaississants associatifs polymères anioniques, cationiques, non ioniques et amphotères, des agents antioxydants, des agents de pénétration, des agents séquestrants, des parfums, des 30 tampons, des agents dispersants, des agents de conditionnement tels que par exemple des silicones volatiles ou non volatiles, modifiées ou non modifiées, des agents filmogènes, des céramides, des agents conservateurs, des agents opacifiants.

Les adjuvants ci-dessus sont en général présents en quantité comprise pour chacun d'eux entre 0,01 et 20 % en poids par rapport au poids de la composition.

Bien entendu, l'homme de l'art veillera à choisir ce ou ces éventuels composés complémentaires de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition de teinture d'oxydation conforme à l'invention ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions 5 envisagées.

Le pH de la composition tinctoriale conforme à l'invention est généralement compris entre 3 et 12 environ, et de préférence entre 5 et 11 environ. Il peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques ou bien encore à l'aide de systèmes 10 tampons classiques.

Parmi les agents acidifiants, on peut citer, à titre d'exemple, les acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, l'acide sulfurique, les acides carboxyliques comme l'acide acétique, l'acide tartrique, l'acide citrique, l'acide lactique, les acides sulfoniques.

15 Parmi les agents alcalinisants on peut citer, à titre d'exemple, l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxydes de sodium ou de potassium et les composés de formule (III) suivante :

20 dans laquelle W est un reste propylène éventuellement substitué par un groupe hydroxyle ou un radical alkyle en C₁-C₄; R₆, R₇, R₈ et R₉, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C₁-C₄ ou hydroxyalkyle en C₁-C₄.

25 La composition tinctoriale selon l'invention peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

30 L'invention a également pour objet un procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux mettant en œuvre la composition tinctoriale telle que définie précédemment.

Selon ce procédé, on applique sur les fibres la composition selon la présente invention telle que définie précédemment, la couleur étant révélée à l'aide d'un agent oxydant. La couleur peut être révélée à pH acide, neutre ou alcalin et l'agent

oxydant peut être ajouté à la composition de l'invention juste au moment de l'emploi ou il peut être mis en œuvre à partir d'une composition oxydante le contenant, appliquée simultanément ou séquentiellement à la composition de l'invention sur les fibres.

Selon un mode de réalisation particulier, la composition selon la présente invention est mélangée, de préférence au moment de l'emploi, à une composition contenant, dans un milieu approprié pour la teinture, au moins un agent oxydant, cet agent oxydant étant présent en une quantité suffisante pour développer une coloration. Le mélange obtenu est ensuite appliqué sur les fibres kératiniques. Après un temps de pose de 3 à 50 minutes environ, de préférence 5 à 30 minutes environ, les fibres kératiniques sont rincées, lavées au shampooing, rincées à nouveau puis séchées.

Les agents oxydants classiquement utilisés pour la teinture d'oxydation des fibres kératiniques sont par exemple le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux alcalins, les persels tels que les perborates et persulfates, les peracides et les systèmes d'oxydations enzymatiques.

Les systèmes d'oxydations enzymatiques sont par exemple choisis parmi les peroxydases, le cas échéant en présence d'au moins un donneur pour ces peroxydases, les oxydoréductases à 2 électrons en présence d'au moins un donneur pour ces oxydoréductases, et les oxydoréductases à 4 électrons.

A titre d'oxydoréductases à 2 électrons, on peut citer les pyranose oxydases, les glucose oxydases, les glycérol oxydases, les lactate oxydases, les pyruvate oxydases et les uricases. A titre d'oxydoréductases à 4 électrons, on peut citer les laccases, les tyrosinases, les catéchol oxydases et les polyphénol oxydases. A titre de peroxydases, on peut citer les NADH peroxydases, les acides gras peroxydases, les NADPH peroxydases, les cytochrome C peroxydase, les glutathion peroxydases, les catalases et les peroxydases simplex.

Le peroxyde d'hydrogène et les systèmes d'oxydations enzymatiques sont particulièrement préférés.

La composition oxydante contenant l'agent oxydant peut renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux et tels que définis précédemment.

Le pH de la composition oxydante renfermant l'agent oxydant est tel qu'après mélange avec la composition tinctoriale, le pH de la composition résultante appliquée sur les fibres kératiniques varie de préférence entre 3 et 12 environ, et

encore plus préférentiellement entre 5 et 11. Il peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques et tels que définis précédemment.

La composition qui est finalement appliquée sur les fibres kératiniques peut 5 se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

Un autre objet de l'invention est un dispositif à plusieurs compartiments ou "kit" de teinture dans lequel un premier compartiment renferme la composition 10 tinctoriale définie ci-dessus et un deuxième compartiment renferme la composition oxydante. Ce dispositif peut être équipé d'un moyen permettant de délivrer sur les cheveux le mélange souhaité, tel que les dispositifs décrits dans le brevet FR-2 586 913 au nom de la demanderesse.

La présente invention a enfin pour objet des composés nouveaux de 15 formules (I), (Ia), (Ic), (Id) et (Ie) telles que définis précédemment à l'exception des composés suivants : le 1,3-diméthyl 1,3 dihydro imidazol-2-one hydrazone, le (5-phényl (2,4-diméthyl) 2,4 dihydro triazole-3- ylidène) hydrazone, le (4-phényl 3-méthyl 3-hydro thiadiazol -2-ylidène) hydrazone, le (3-méthyl 3-hydro thiadiazole-2-ylidène)hydrazone, le 5-phényl 3-méthyl 3-hydro thiadiazole) hydrazone.

20 Les exemples qui suivent servent à illustrer l'invention sans toutefois en limiter la portée.

EXEMPLESEXEMPLES DE SYNTHESEI. Synthèse du (1,3-diméthyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone

5

Etape n°1 : Préparation du 2-méthylthio-1-méthylimidazole

10 Dans un ballon, on a introduit 11,4 g de 2-mercaptop-1-méthylimidazole (0,1 mol), 6,85 ml d'iodure de méthyle (0,11 mol), 16,86 ml de triéthylamine et 50 ml d'éthanol. Le mélange homogène à l'origine a été laissé à 45°C pendant 1,5 heure. Le milieu réactionnel est alors concentré puis repris à l'eau et extrait avec de l'acétate d'éthyle. Après séchage sur sulfate de sodium, filtration et concentration de la phase organique, 6,48 g d'une huile jaune orangée pure est obtenue (rendement 51%).

15 L'analyse RMN ¹H (CDCl₃ d₃, 200 MHz, ppm) conforme au produit attendu était la suivante : 7,06 (d, J = 1,3 Hz, 1H) ; 6,92 (d, J = 1,3 Hz, 1H) ; 3,6 (s, 3H) ; 2,6 (s, 3H). L'analyse RMN ¹³C (DMSO d₆, 200 MHz, ppm) conforme au produit attendu était la suivante : 128,8 ; 122,7 ; 32,50 ; 15,51

20 L'analyse en FIA/ESI^{+/}/MS conforme au produit attendu était la suivante : M/Z : 129 (M+H)⁺

Etape n°2 : Préparation du 2-méthylsulfonyl-1-méthylimidazole

25 Dans un ballon, on a introduit 2 g de 2-méthylthio-1-méthylimidazole (0,0156 mol), 9,35 g de acide métachloroperoxybenzoïque 70-75 % (0,039 mol), 50 ml de chloroforme. Le mélange homogène à l'origine a été mis à 0°C puis laissé à TA pendant 8 heures. Au milieu réactionnel est ajoutée une solution de soude 1N jusqu'à pH 8-9 et extrait avec du dichlorométhane. Après séchage sur sulfate de sodium,

filtration et concentration de la phase organique, 1,46 g d'un solide blanc pur est obtenu (rendement 59%).

L'analyse RMN ^1H (CDCl_3 d_3 , 200 MHz, ppm) conforme au produit attendu était la suivante : 7 (d, $J = 0,9$ Hz, 1H) ; 6,89 (s_{élargi}, 1H) ; 3,9 (s, 3H) ; 3,3 (s, 3H). L'analyse

5 RMN ^{13}C (DMSO d_6 , 200 MHz, ppm) conforme au produit attendu était la suivante : 129 ; 128,8 ; 43,3 ; 35,4

L'analyse en FIA/ESI $^{+/-}$ /MS conforme au produit attendu était la suivante : M/Z : 161 ($\text{M}+\text{H})^+$

10 **Etape n°3 : Préparation du sel de méthosulfate de 2-methylsulfonyl-1,3-diméthylimidazolinium**

Dans un ballon, on a introduit 0,5 g de 2-méthylsulfonyl-1-méthylimidazole (0.0031 mol), 2,96 ml de diméthylsulfate (0.031 mol) et 7 ml d'acétate d'éthyle. Le mélange hétérogène à l'origine a été laissé à 45°C pendant 8 heures. Le précipité obtenu est alors filtré puis lavé plusieurs fois à l'acétate d'éthyle. Le solide blanc alors obtenu est séché sous vide en présence de P_2O_5 ; 0,55 g d'un solide blanc a été obtenus (rendement 61%).

L'analyse RMN ^1H (DMSO d_6 , 200 MHz, ppm) conforme au produit attendu était la suivante : 8,34 (s, 2H) ; 4,11 (s, 6H) ; 3,74 (s, 3H) ; 3,38 (s, 3H). L'analyse RMN

20 ^{13}C (D_2O d_2 , 200 MHz, ppm) conforme au produit attendu était la suivante : 127,3 ; 55,8 ; 44,6 ; 38,6

L'analyse en FIA/ESI $^{+/-}$ /MS conforme au produit attendu était la suivante : M/Z : 175 ($\text{M})^+$

25 **Etape n°4 : Préparation du (1,3-dimethyl-1,3-dihydro-imidazol-2-ylidène)-hydrazone.**

Dans un ballon, on a introduit 0,9 g du sel de méthosulfate de 2-méthylsulfonyl-1,3-diméthylimidazolinium (0.00315 mol), 0,306 ml d'hydrazine hydrate (0,00630 mol), 0,4 ml de triéthylamine et 5,4 ml d'éthanol. Le mélange homogène à l'origine a été laissé à température ambiante pendant 1,5 heures sous argon. Après avoir concentré le milieu réactionnel, quelques millilitres d'eau sont ajoutés. La phase aqueuse est extraite plusieurs fois avec un volume conséquent de 1-butanol. La phase organique est ensuite séchée sur sulfate de sodium, filtrée et

concentrée. L'huile ainsi obtenue est reprise par de l'éthanol. Une solution d'acide chlorhydrique dans l'éthanol est alors ajoutée. Un précipité blanc est obtenu par filtration. Après séchage sous vide en présence de P₂O₅, 0,57 g d'un solide blanc pur a été obtenu (rendement 73 %).

5 L'analyse RMN ¹H (DMSO d₆, 200 MHz, ppm) conforme au produit attendu était la suivante : 8,20 (s élargi, 2H échangeables) ; 7,61 (s, 2H) ; 3,83 (s, 6H). L'analyse RMN ¹³C (DMSO d₆, 200 MHz, ppm) conforme au produit attendu était la suivante : 121,7 ; 35,3

10 L'analyse en FIA/ESI^{+/−}/MS conforme au produit attendu était la suivante : M/Z : 127 (M+H)⁺

Analyse élémentaire :

%	C	H	N	O	Cl
calculé	24,20	5,80	22,57	4,51	42,92
trouvé	20,52	4,95	21,42	4,76	43,12

Le produit obtenu contient 3,3 molécules d'HCl et 0,7 molécule d'eau.

EXEMPLES 1 A 6 DE TEINTURE

On prépare les compositions tinctoriales suivantes (quantité en mole)

Exemples	1	2	3	4	5	6
1,3-diméthyl-(1,3-dihydro-imidazol-2-ylidène)-hydrazone	10 ⁻³	-	-	10 ⁻³	-	-
5-(4-fluorosulfophényl)-(1,3-dihydro-thiadiazol-2-ylidène)-hydrazone **	-	10 ⁻³	10 ⁻³	-	10 ⁻³	10 ⁻³
2,4-diamino-phénoxyéthanol, dichlorhydrate (couleur)	10 ⁻³	10 ⁻³	-	10 ⁻³	10 ⁻³	-
2-méthyl-5-aminophénol (couleur)	-	-	10 ⁻³	-	-	10 ⁻³
Support de teinture (1)	(*)	(*)	(*)			
Support de teinture (2)				(*)	(*)	(*)
Eau déminéralisée q.s.p.	100 g					

** produit commercial

5

(*) Support de teinture (1) pH 9,5

Alcool éthylique à 96°	20 g
Métabisulfite de sodium en solution aqueuse à 35%	0,2275g M.A
Sel pentasodique de l'acide diethylene triamino pentacétique	0,48g M.A
Alkyl en C ₈ -C ₁₅ polyglucoside vendu en solution à 60% sous la dénomination ORAMIXCG110 par la société SEPPIC	3,6g M.A
Alcool benzylque	2,0g
Polyéthylène glycol à 8 moles d'OE	3,0g
NH ₄ Cl	4,28g
Ammoniaque à 20% de NH3	6,8 g

(*) Support de teinture (2) pH 7

Alcool éthylique à 96°	20 g
Métabisulfite de sodium en solution aqueuse à 35%	0,2275g M.A
Sel pentasodique de l'acide diethylene triamino pentacétique	0,48g M.A
Alkyl en C ₈ -C ₁₅ polyglucoside vendu en solution à 60% sous la dénomination ORAMIXCG110 par la société SEPPIC	3,6g M.A
Alcool benzylque	2,0g
Polyéthylène glycol à 8 moles d'OE	3,0 g
K ₂ HPO ₄	20,9 g

10,88g

Au moment de l'emploi, chaque composition est mélangée avec un poids égal d'eau oxygénée à 20 volumes (6% en poids). On obtient un pH final de 7 avec la support de teinture (2) et un pH 9,5 avec la support de teinture (1).

Chaque mélange obtenu est appliqué sur des mèches de cheveux gris à 90
5 % de blancs. Après 30 min de pose, les mèches sont rinçées, lavées avec un shampooing standard, rinçées à nouveau puis séchées.

Les résultats de teinture suivants ont été obtenus.

Exemples	1	2	3	4	5	6
Nuance observée	Cuivré	Cuivré- rouge	Cuivré-	doré	Rouge cuivré	Cuivré

REVENDICATIONS

1. Composition tinctoriale pour la teinture de fibres kératiniques comprenant dans un milieu approprié à la teinture de ces fibres,
- 5 • à titre de base d'oxydation, au moins un composé du type hydrazone de formule (I) suivante ou le sel d'addition avec un acide ou une base correspondant

dans laquelle

- X représente un atome de soufre ou NR₃, Y représente un atome d'azote ou CR₂, et Z représente un atome d'azote ou CR₄;
 - A représente un atome d'hydrogène ; un radical acyle , un radical alkylsulfonyle en C₁-C₄ ou un radical arylsulfonyle, ces radicaux étant éventuellement substitués par un méthyl, un alkoxy en C₁-C₂ ou un carboxyl,
 - R₁ et R₃ représentent, chacun séparément, une chaîne carbonée en C₁-C₁₁, saturée ou pouvant contenir une ou plusieurs liaisons doubles et/ou une ou plusieurs liaisons triples, linéaire ou ramifiée, pouvant former un cycle ayant de 3 à 6 chaînons, éventuellement aromatique, un ou plusieurs atomes de carbone de la chaîne pouvant être remplacés par un atome d'oxygène, d'azote, d'halogène ou de soufre, par un groupe SO₂ à l'exception du carbone lié directement à l'atome d'azote ou de carbone du cycle; les radicaux R₁ et R₃ ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso ;
 - R₂ et R₄ représentent, chacun séparément un atome d'hydrogène ; un radical alkyle ou alcényle en C₁-C₁₂, linéaire ou ramifié, pouvant former un cycle carboné ayant de 3 à 6 chaînons, éventuellement aromatique, un ou plusieurs atomes de carbone des radicaux alkyle ou alcényle pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote; de soufre ou d'halogène, ou par un groupement SO₂,
- avec les conditions suivantes
- lorsque X = NR₃ alors Z = CR₄,

lorsque X = S soit Z = N et Y = CR₂ soit Z = CR₄ et Y = N

et

- au moins un coupleur ou le sel d'addition avec un acide correspondant.

5 2. Composition selon la revendication 1 dans laquelle A représente l'hydrogène ; un radical acyle ; un radical méthylsulfonyle ; un radical phénylsulfonyle ; un radical toluylsulfonyle.

10 3. Composition selon la revendication 1 ou 2 dans laquelle R₁ et R₃ représentent un radical alkyle ou alcényle en C₁-C₄ pouvant être substitué par un ou plusieurs substituants hydroxy, amino éventuellement substitué, carboxyl ; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogène, groupes alkyle en C₁-C₄, alcoxy en C₁-C₄, amino, hydroxy, trifluorométhyle, alkylamino en C₁-C₄, carboxy, sulfonyle ; un radical benzyle pouvant être substitué par un ou plusieurs atomes d'halogène, groupes alkyle en C₁-C₄, alcoxy en C₁-C₄, amino, hydroxy, trifluorométhyle, alkylamino en C₁-C₄, carboxy, sulfonyle ; un radical alkylamino en C₁-C₄ ; un hétérocycle choisi parmi l'imidazole, le thiazole, la pyridine ou la pyrimidine ; un radical (CH₂)_p-T-(CH₂)_q-VR' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V désignent indépendamment un atome d'oxygène ou un radical NR'' avec R'' désignant un hydrogène ou un méthyle.

20 4. Composition selon la revendication 3 dans laquelle R₁ et R₃ représentent un radical méthyle ; éthyle ; isopropyle ; hydroxyéthyle ; aminoéthyle ; carboxyméthyle ; carboxyéthyle ; phényle ; 2-méthoxyphényle ; 3-méthoxyphényle ; 4-méthoxyphényle ; 2-hydroxyphényle ; 3-hydroxyphényle ; 4-hydroxyphényle ; benzyle ; les hétérocycles choisi parmi pyridyle, imidazolyle, pyrimidinyle.

25 5. Composition selon la revendication 4 dans laquelle R₁ et R₃ représentent un méthyle ; éthyle ; phényle ; 2-méthoxyphényl ; 2-hydroxyphényl ; hydroxyéthyle ; aminoéthyle ; carboxyéthyle.

30 6. Composition selon l'une quelconque des revendications précédentes dans laquelle R₂ et R₄ représentent un atome d'hydrogène ; un radical alkyle pouvant être substitué par un hydroxy, amino ou halogène ; un radical phényle éventuellement substitué par un ou plusieurs substituants choisis parmi les radicaux alkyle, hydroxy, amino, alcoxy, carboxyl, trifluorométhyle, sulfonique ; un benzyle pouvant être substitué par un alcoxy ou hydroxy ; un hétérocycle choisi parmi N-pyrrolidinyle, N-pipéridinyle, N-morpholine, N-pipérazinyle ou N-imidazolyle ; un radical alcoxy ; un radical phosphonyle ; un radical siloxy ; un radical amino ; un radical acyle ; un radical acylamino ; un radical sulfonamide ; un radical uréido ; un radical sulfonylamino.

7. Composition selon la revendication 6 dans laquelle R₂ et R₄ représentent l'hydrogène ; un radical alkyle choisi parmi méthyle, éthyle ; un radical alkyl substitué choisi parmi trifluorométhyle, hydroxyméthyle, hydroxyéthyle, aminométhyle, aminoéthyle ; le benzyle ; un phényle éventuellement substitué par un ou 5 plusieurs radicaux choisis parmi les radicaux méthyle, hydroxy, amino, méthoxy ; 2-méthoxybenzyle ; 4-méthoxybenzyle ; 2-hydroxybenzyle ; 4-hydroxybenzyle ; un hétérocycle choisi parmi pyrrolidinyle, pipéridinyle ; un radical méthoxy ; un radical acyle ; un radical amino.

8. Composition selon la revendication 7 dans laquelle R₂ et R₄ 10 représentent l'hydrogène ; méthyle ; éthyle ; trifluorométhyle ; phényle ; pyrrolidinyle ; hydroxyméthyle ; hydroxyéthyle ; aminométhyle ; aminoéthyle ; méthoxy ; amino.

9. Composition selon l'une quelconque des revendications précédentes dans laquelle le composés de formule (I) présentent l'une des formules suivantes

15

dans lesquelles les groupes R₁, R₂, R₃, R₄ et A sont tels que définis à l'une quelconque des revendications 1 à 8.

10. Composition selon la revendication 9 dans laquelle le composé du type hydrazone correspond à la formule (Ia) dans laquelle R₁ et R₃ représentent un radical alkyle en C1-C4 et R₂ et R₄ sont l'hydrogène.

11. Composition selon la revendication 9 dans laquelle le composé de type hydrazone correspond à la formule (Id) dans laquelle R4 est un radical phényle substitué ou non, R1 est un radical alkyle en C1-C4 et A est un atome d'hydrogène.

5 12. Composition selon l'une quelconque des revendications précédentes dans laquelle le coupleur est choisi parmi les métaphénylènediamines, les métaminophénols, les métadiphénols et les coupleurs hétérocycliques.

10 13. Composition selon l'une quelconque des revendications précédentes dans laquelle le ou les composés de formule (I) sont, chacun, présents en quantité comprise entre 0,001 et 10 %, et le ou les coupleurs sont présents en quantité comprise entre 0,001 et 10 %, en poids du poids total de la composition tinctoriale.

14. Composition selon l'une quelconque des revendications 1 à 13 comprenant de plus une base d'oxydation additionnelle choisie parmi les paraphénylènediamines, les bis-phénylalkylènediamines, les para-aminophénols, les ortho-aminophénols, les bases hétérocycliques, et leurs sels d'addition avec un acide.

15 15. Composition selon la revendication 14, dans laquelle la base d'oxydation additionnelle est présente en quantité comprise entre 0,001 et 10 %, de préférence entre 0,005 et 6 % en poids du poids total de la composition tinctoriale.

16. Composition selon l'une quelconque des revendications 1 à 15 comprenant de plus un colorant direct.

20 17. Procédé de teinture d'oxydation des fibres kératiniques caractérisé en ce qu'on applique sur les fibres au moins une composition telle que définie à l'une quelconque des revendications 1 à 16, et qu'on révèle la couleur à l'aide d'un agent oxydant.

25 18. Procédé selon la revendication 17 dans lequel l'agent oxydant est choisi parmi le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux alcalins, les persels, les peracides et les systèmes d'oxydation enzymatique.

30 19. Procédé selon la revendication 18 dans lequel le système d'oxydation enzymatique est choisi parmi les peroxydases en présence d'au moins un donneur pour ces peroxydases, les oxydoréductases à 2 électrons en présence d'au moins un donneur pour ces oxydoréductases, et les oxydoréductases à 4 électrons.

20. Procédé selon l'une des revendications 17 à 19 dans lequel l'agent oxydant est mélangé au moment de l'emploi à la composition telle que définie selon l'une quelconque des revendications 1 à 16.

35 21. Procédé selon l'une quelconque des revendications 17 à 19 dans lequel l'agent oxydant est appliqué sous forme de composition oxydante simultanément ou

séquentiellement à la composition telle que définie selon l'une quelconque des revendications 1 à 16 sur les fibres.

22. Dispositif à plusieurs compartiments ou "kit" de teinture à plusieurs compartiments, dans lequel un premier compartiment contient une composition telle que définie à l'une quelconque des revendications 1 à 16 et un deuxième compartiment contient un agent oxydant.

23. Nouveaux composés de formules (I), (Ia), (Ic), (Id) ou (Ie) telles que définies selon l'une quelconque des revendications 1 à 11 à l'exception des composés suivants : le 1,3-diméthyl 1,3 dihydro imidazol-2-one hydrazone, le (5-phényl (2,4-diméthyl) 2,4 dihydro triazole-3- ylidène) hydrazone, le (4-phényl 3-méthyl 3-hydro thiadiazol -2-ylidène) hydrazone, le (3-méthyl 3-hydro thiadiazole-2-ylidène)hydrazone, le 5-phényl 3-méthyl 3-hydro thiadiazole) hydrazone.

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
26 septembre 2002 (26.09.2002)

PCT

(10) Numéro de publication internationale
WO 2002/074268 A3

- (51) Classification internationale des brevets⁷ : A61K 7/13, C09B 26/02, C07D 233/88
- (21) Numéro de la demande internationale : PCT/FR2002/000857
- (22) Date de dépôt international : 11 mars 2002 (11.03.2002)
- (25) Langue de dépôt : français
- (26) Langue de publication : français
- (30) Données relatives à la priorité : 01/03538 15 mars 2001 (15.03.2001) FR
- (71) Déposant (*pour tous les États désignés sauf US*) : L'OREAL [FR/FR]; 14, rue Royal, F-75008 Paris (FR).
- (72) Inventeurs: BIRAUT, Véronique; Ash Tree Cottage, High Street Widdington, Saffron Walden CB113SG, Essex (GB). TERRANOVA, Eric; 102, avenue de la Bastide, F-06520 Magagnosc (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (*pour US seulement*) : VIDAL, Laurent [FR/FR]; 7, rue de Rungis, F-75013 Paris (FR). DAVID, Hervé [FR/FR]; 5 Avenue du Président Wilson, F-94340 Joinville le Pont (FR).
- (74) Mandataire : FEVRIER, Murielle; L'Oréal - DPI, 6, rue Bertrand Sincholle, F-92110 Clichy (FR).
- (81) États désignés (*national*) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (*regional*) : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

- avec rapport de recherche internationale
— avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

(88) Date de publication du rapport de recherche internationale: 22 janvier 2004

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

A3

(54) Title: DYEING COMPOSITIONS FOR THE DYEING OF KERATIN FIBRES, COMPRISING HETEROCYCLIC HYDRAZONE COMPOUNDS

WO 2002/074268

(54) Titre : COMPOSITIONS TINCTORIALES POUR LA TEINTURE DE FIBRES KERATINIQUES COMPRENANT DES COMPOSÉS HYDRAZONE-HETEROCYCLIQUES

(57) Abstract: The invention relates to a novel composition that is used for the oxidation dyeing of keratin fibres, in particular human hair, comprising at least one 5-membered heterocyclic hydrazone-type compound as an oxidation base and at least one coupling agent. The invention also relates to the dyeing method using same and to novel 5-membered heterocyclic hydrazone compounds.

(57) Abrégé : L'invention a pour objet une nouvelle composition utile pour la teinture par oxydation des fibres kératiniques, en particulier des cheveux humains comprenant à titre de base d'oxydation au moins un composé du type hydrazone hétérocyclique à 5 chaînons et au moins un coupleur ainsi que le procédé de teinture les mettant en oeuvre. L'invention a aussi pour objet de nouveaux composés hydrazone hétérocycliques à 5 chaînons.

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/FR 02/00857

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K7/13 C09B26/02 C07D233/88

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K C09B C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 1 219 035 A (THERACHEMIE) 13 January 1971 (1971-01-13) cited in the application page 2, left-hand column, line 45 -right-hand column, line 73; claims 1,3,4,18 ---	1,9,17, 23
X	US 5 518 891 A (SUKHOTIN ALEXEI ET AL) 21 May 1996 (1996-05-21) claims 1,3 ---	23
X	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, VIII" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 623, 1959, pages 191-201, XP008000099 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 193 -page 194; example X ---	23

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

30 October 2003

13/11/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Voyiazoglou, D

INTERNATIONAL SEARCH REPORT

Inte... Application No
PCT/FR 02/00857

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, XVII" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 641, 1961, pages 104-112, XP008000101 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 106 -page 107; examples XI,XII,XIV,VI ---	23
A	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, XVIII" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 647, 1961, pages 66-76, XP008000100 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 66 -page 70; examples II,III,XII,XIV,XVIII ---	23
A	DATABASE WPI Section Ch, Week 197948 Derwent Publications Ltd., London, GB; Class E13, AN 1979-87177B XP002188483 & SU 649 708 A (GORELIK M V), 23 May 1979 (1979-05-23) * composé du BRN (Beilstein Registry Number) : 607324 (1,3-dimethyl-1,3-dihydro-imidazol-2-one hydrazone) * abstract ---	23
A	DD 295 366 A (UNIV ERNST MORITZ ARNDT) 31 October 1991 (1991-10-31) page 1 ---	23
A	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, II" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 609, 1957, pages 160-172, XP001058975 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 160 -page 164; examples I-III,VIII,IX,XI,XXIV ---	23
A	DE 22 27 214 A (UREAL) 14 December 1972 (1972-12-14) claims 1,4 -----	1,9,17

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/FR 02/00857

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
GB 1219035	A 13-01-1971	AT BE CH DE DK FR NL US	282072 B 733731 A 524369 A 1922400 A1 122006 B 1599968 A 6906270 A ,B, 3634013 A	10-06-1970 28-11-1969 30-06-1972 04-12-1969 03-01-1972 20-07-1970 02-12-1969 11-01-1972
US 5518891	A 21-05-1996	US	5710012 A	20-01-1998
SU 649708	A 28-02-1979	SU	649708 A1	28-02-1979
DD 295366	A 31-10-1991	DD	295366 A5	31-10-1991
DE 2227214	A 14-12-1972	BE CA CA CH DE FR GB IT LU US US US LU	784359 A1 1021324 A1 1020463 A2 560539 A5 2227214 A1 2140205 A1 1360562 A 982408 B 63287 A1 3869454 A 3985499 A 4151162 A 64565 A1	04-12-1972 22-11-1977 08-11-1977 15-04-1975 14-12-1972 12-01-1973 17-07-1974 21-10-1974 22-01-1973 04-03-1975 12-10-1976 24-04-1979 16-07-1973

RAPPORT DE RECHERCHE INTERNATIONALE

Date internationale No
PCT/FR 02/00857

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 A61K7/13 C09B26/02 C07D233/88

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 A61K C09B C07D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, WPI Data

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	GB 1 219 035 A (THERACHEMIE) 13 janvier 1971 (1971-01-13) cité dans la demande page 2, colonne de gauche, ligne 45 -colonne de droite, ligne 73; revendications 1,3,4,18 ---	1,9,17, 23
X	US 5 518 891 A (SUKHOTIN ALEXEI ET AL) 21 mai 1996 (1996-05-21) revendications 1,3 ---	23
X	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, VIII" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 623, 1959, pages 191-201, XP008000099 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 193 -page 194; exemple X ---	23

Voir la Suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *E* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

T document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

X document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

Y document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

& document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

30 octobre 2003

Date d'expédition du présent rapport de recherche internationale

13/11/2003

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Voyiazoglou, D

RAPPORT DE RECHERCHE INTERNATIONALE

Demande nationale No
PCT/FR 02/00857

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, XVII" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 641, 1961, pages 104-112, XP008000101 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 106 -page 107; exemples XI,XII,XIV,VI ---	23
A	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, XVIII" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 647, 1961, pages 66-76, XP008000100 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 66 -page 70; exemples II,III,XII,XIV,XVIII ---	23
A	DATABASE WPI Section Ch, Week 197948 Derwent Publications Ltd., London, GB; Class E13, AN 1979-87177B XP002188483 & SU 649 708 A (GORELIK M V), 23 mai 1979 (1979-05-23) * composé du BRN (Beilstein Registry Number) : 607324 (1,3-dimethyl-1,3-dihydro-imidazol-2-one hydrazone) * abrégé ---	23
A	DD 295 366 A (UNIV ERNST MORITZ ARNDT) 31 octobre 1991 (1991-10-31) page 1 ---	23
A	S. HÜNIG ET AL: "Azofarbstoffe durch oxydative Kupplung, II" JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 609, 1957, pages 160-172, XP001058975 VERLAG CHEMIE GMBH. WEINHEIM., DE ISSN: 0075-4617 page 160 -page 164; exemples I-III,VIII,IX,XI,XXIV ---	23
A	DE 22 27 214 A (UREAL) 14 décembre 1972 (1972-12-14) revendications 1,4 -----	1,9,17

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

De
PCT/FR 02/00857

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
GB 1219035	A 13-01-1971	AT 282072 B BE 733731 A CH 524369 A DE 1922400 A1 DK 122006 B FR 1599968 A NL 6906270 A , B, US 3634013 A.	10-06-1970 28-11-1969 30-06-1972 04-12-1969 03-01-1972 20-07-1970 02-12-1969 11-01-1972
US 5518891	A 21-05-1996	US 5710012 A	20-01-1998
SU 649708	A 28-02-1979	SU 649708 A1	28-02-1979
DD 295366	A 31-10-1991	DD 295366 A5	31-10-1991
DE 2227214	A 14-12-1972	BE 784359 A1 CA 1021324 A1 CA 1020463 A2 CH 560539 A5 DE 2227214 A1 FR 2140205 A1 GB 1360562 A IT 982408 B LU 63287 A1 US 3869454 A US 3985499 A US 4151162 A LU 64565 A1	04-12-1972 22-11-1977 08-11-1977 15-04-1975 14-12-1972 12-01-1973 17-07-1974 21-10-1974 22-01-1973 04-03-1975 12-10-1976 24-04-1979 16-07-1973

This Page Blank (uspto)