

南湖架构后端流水线的设计与改进

张紫飞、徐易难、蔺嘉炜、王华强中科院计算所 2022年8月25日

⇔后端流水线

⇔后端流水线改进

CtrlBlock	雁栖湖架构	南湖架构	变化
Decode/Rename/ Dispatch/Commit	6	6	-
Instruction Fusion	NO	YES	新增
Move Elimination	NO	YES	新增
ROB Size	192	256	+ 64
ExuBlock	雁栖湖架构	南湖架构	变化
Integer RegFile Size	160	192	+ 32
Float RegFile Size	160	192	+ 32
Reservation Station Size	16 ; 1i1o	32 ; 2i2o	半分布式
ALU + MDU	4 + 2	4 + 2	-
FMAC + FMISC	4 + 2	4 + 2	-
B-extension	NO	YES	新增
K-extension	NO	YES	新增
Debug-extension	NO	YES	新增

Instruction Fusion

- 执行
 - 两个指令融合为一个 Micro Op
 - 复用原有计算类型
 - •新计算类型
 - 立即数快速传递
- •目的
 - 减轻后端流水线执行压力
 - 消除数据前递延迟

复用:得到64位数据的低32位

新计算类型:得到64位数据的第二个8比特

Instruction Fusion

SPEC2006 指令融合 Uops 减少百分比

Rename & Move Elimination

- 维护逻辑寄存器和物理寄存器的映射
- Move Elimination
 - Move 指令进入 ROB 时标记为已完成,无需发射执行
 - 通过修改重命名表的映射关系实现
 - RefCounter 记录物理寄存器被映射的次数
 - RefCounter 为0时,释放物理寄存器

Move Elimination

• 例子

0: add x2, x1, x1

1: mv x3, x2

2: add x5, x3, x4

Move 消除 0: add x2, x1, x1

1: mv x3, x2

2: add x5, x3, x2

重命名表:

程序流:

0: 初始值

1: add

x0	0
x1	1
x2	32
х3	32
•••	•••

2: mv

Move Elimination

SPEC2006 中 Move Elimination的指令百分比

Reservation Station

- 组织关系
 - 2进2出
 - 一个保留站均衡两个执行单元

雁栖湖架构保留站组织形式

南湖架构保留站组织形式

Reservation Station: Select Policy

- Normal Select
 - 根据位置信息选择多个
- Age Select
 - 利用 Age Matrix 选择 1 个

雁栖湖架构 IndexQueue Age 算法

南湖架构 Normal Select

0	true			
1	true	true		
2	true	false	true	
3	true	false	false	true
	0	1	2	3

南湖架构 Age Matrix 算法

Reservation Station: FMA 2-Step Execution

- 乘法操作数如果就位,可以提前出队计算
 - 乘法计算结果存到保留站,等待加法操作数
 - 保留站前递/时序定点优化

FMA 保留站 一项的变化过程

⇔ B & K Extension

- B: Bit-Manipulation Extension, 位操作扩展
- K: Cryptographic Extension,标量密码学扩展

1. Extensions	2. Extensions Overview		
1.1. Zba extension	2.1. Zbkb - Bitmanip instructions for Cryptography		
1.2. Zbb: Basic bit-manipulation	2.2. Zbkc - Carry-less multiply instructions		
1.2.1. Logical with negate	2.3. Zbkx - Crossbar permutation instructions		
1.2.2. Count leading/trailing zero bits	2.4. Zknd - NIST Suite: AES Decryption		
1.2.3. Count population	2.5. Zkne - NIST Suite: AES Encryption		
1.2.4. Integer minimum/maximum	2.6. Zknh - NIST Suite: Hash Function Instructions 2.7. Zksed - ShangMi Suite: SM4 Block Cipher Instructions 2.8. Zksh - ShangMi Suite: SM3 Hash Function Instructions		
1.2.5. Sign- and zero-extension			
1.2.6. Bitwise rotation	2.9. Zkr - Entropy Source Extension		
1.2.7. OR Combine	2.10. Zkn - NIST Algorithm Suite		
1.2.8. Byte-reverse	2.11. Zks - ShangMi Algorithm Suite		
1.3. Zbc: Carry-less multiplication	2.12. Zk - Standard scalar cryptography extension		
1.4. Zbs: Single-bit instructions	2.13. Zkt - Data Independent Execution Latency		
B Extension	K Extension		

Debug Extension

- 让处理器上的程序通过gdb被远程调试
 - 暂停程序执行
 - 单步执行
 - 硬件断点 Trigger

敬请批评指正!