Tarea 2: Optimización - Convexidad y Descenso de Gradiente

Oscar Esaú Peralta Rosales

2/17/2020

Problemas

Problema 1

El conjunto $S = \{a \in \mathcal{R}^k | p(0) = 1, |p(t)| \le 1 \text{ paraunt } \in [\alpha, \beta] \}$ donde $a = [a_1, ..., a_1]^T$ y $p(t) = a_1 + a_2 t + ... + a_k t^{k-1}$, ¿Es convexo?.

Solución

Sean $a, b \in S$ dos vectores y $\mu \in [0, 1]$ por probar que $\mu a + (1 - \mu)b \in S$ es verdadera.

Cómo $a, b \in S$ entonces existe un $t \in (\alpha, \beta)$ tal que $p(t) = a_1 + a_2 t + ... + a_k t^{k-1}$ y $p(t) = b_1 + b_2 t + ... + b_k t^{k-1}$. Además notemos que si p(0) = 1 entonces $a_1 = 1$ y $b_1 = 1$.

Comprobemos que si $\mu a + (1 - \mu)b \in S$ entonces $p_{ab}(t) = (\mu a_1 + (1 - \mu)b_1) + (\mu a_2 + (1 - \mu)b_2)t + ... + (\mu a_k + (1 - \mu)b_k)t^{k-1r}$ evualuado en cero es 1.

$$p_{ab}(t) = (\mu a_1 + (1 - \mu)b_1) + (\mu a_2 + (1 - \mu)b_2)t + \dots + (\mu a_k + (1 - \mu)b_k)t^{k-1r}$$

$$p_{ab}(0) = (\mu a_1 + (1 - \mu)b_1) + (\mu a_2 + (1 - \mu)b_2) * 0 + \dots + (\mu a_k + (1 - \mu)b_k) * 0$$

$$p_{ab}(0) = (\mu a_1 + (1 - \mu)b_1) = 1 + \mu a_1 - \mu b_1$$

Cómo $a_1 = 1$ y $b_1 = 1$, entonces $p_{ab}(0) = 1$.

Por otro lado como $|p(t)| \leq 1$ entonces demostremos $|p_{ab}(t)| \leq 1$, luego

$$\begin{split} |p_{ab}(t)| &= |(\mu a_1 + (1-\mu)b_1) + (\mu a_2 + (1-\mu)b_2)t + \ldots + (\mu a_k + (1-\mu)b_k)t^{k-1r}| \\ |p_{ab}(t)| &= |\mu a_1 + (1-\mu)b_1 + \mu a_2t + (1-\mu)b_2t + \ldots + \mu a_kt^{k-1r} + (1-\mu)b_kt^{k-1r}| \\ |p_{ab}(t)| &= |\mu a_1 + \mu a_2t + \ldots + \mu a_kt^{k-1r} + (1-\mu)b_1 + (1-\mu)b_2t + \ldots + (1-\mu)b_kt^{k-1r}| \\ |p_{ab}(t)| &= |\mu(a_1 + a_2t + \ldots + a_kt^{k-1r}) + (1-\mu)(b_1 + b_2t + \ldots + b_kt^{k-1r})| \\ |p_{ab}(t)| &\leq \mu|a_1 + a_2t + \ldots + a_kt^{k-1r}| + (1-\mu)|b_1 + b_2t + \ldots + b_kt^{k-1r}| \\ |p_{ab}(t)| &\leq \mu|p(t)| + (1-\mu)|p(t)| \end{split}$$

Como $|p(t)| \le 1$ y $\mu \in [0,1]$ entonces $|p_{ab}(t)| \le 1$. Así $\mu a + (1-\mu)b \in S$ es verdadero y S es convexo.

Problema 2

Suponga que f es convexa, $\lambda_1 > 0$, $\lambda_2 \le 0$ con $\lambda_1 + \lambda_2 = 1$, y sean $x_1, x_2 \in dom f$. Muestre que la desigualdad $f(\lambda_1 x_1 + \lambda_2 x_2) \ge \lambda_1 f(x_1) + \lambda_2 f(x_2)$ siempre se cumple.

Solución

Notemos que $\lambda_1 = 1 - \lambda_2$, como $\lambda_2 \le 0$ entonces $\lambda_1 \ge 1$ y dividiendo por $lambda_1$ tenemos que $1 \ge \frac{1}{\lambda_1}$ y como $\lambda_1 \ge 1$ entonces $0 < \frac{1}{\lambda_1} \le 1$,

Sea a y b dos puntos en el dominio de f y un $\alpha=\frac{1}{\lambda_1}\in(0,1],$ luego como f es convexa tenemos que

$$f(\frac{1}{\lambda_1}a + (1 - \frac{1}{\lambda_1})b) \le \frac{1}{\lambda_1}f(a) + (1 - \frac{1}{\lambda_1})f(b)$$

$$\lambda_1 f(\frac{1}{\lambda_1}a + (1 - \frac{1}{\lambda_1})b) \le f(a) + (\lambda_1 - 1)f(b)$$

$$\lambda_1 f(\frac{1}{\lambda_1}a + (1 - \frac{1}{\lambda_1})b) \le f(a) - \lambda_2 f(b)$$

$$f(a) \ge \lambda_1 f(\frac{1}{\lambda_1}a + (1 - \frac{1}{\lambda_1})b) + \lambda_2 f(b)$$

Tomemos $a = \lambda_1 x_1 + \lambda_2 x_2$ y $b = x_2$

$$f(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \geq \lambda_{1}f(\frac{\lambda_{1}x_{1} + \lambda_{2}x_{2}}{\lambda_{1}} + (1 - \frac{1}{\lambda_{1}})x_{2}) + \lambda_{2}f(x_{2})$$

$$f(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \geq \lambda_{1}f(x_{1} + \frac{\lambda_{2}}{\lambda_{1}}x_{2} + (x_{2} - \frac{x_{2}}{\lambda_{1}})) + \lambda_{2}f(x_{2})$$

$$f(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \geq \lambda_{1}f(x_{1} + x_{2}(\frac{\lambda_{2} - 1}{\lambda_{1}} + 1)) + \lambda_{2}f(x_{2})$$

$$f(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \geq \lambda_{1}f(x_{1} + x_{2}(\frac{\lambda_{2} - 1}{\lambda_{1}} + \frac{\lambda_{1}}{\lambda_{1}})) + \lambda_{2}f(x_{2})$$

$$f(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \geq \lambda_{1}f(x_{1} + x_{2}(\frac{\lambda_{2} + \lambda_{1} - 1}{\lambda_{1}})) + \lambda_{2}f(x_{2})$$

Como $\lambda_1 + \lambda_2 = 1$

$$f(\lambda_1 x_1 + \lambda_2 x_2) \ge \lambda_1 f(x_1 + x_2(\frac{0}{\lambda_1})) + \lambda_2 f(x_2)$$

y así

$$f(\lambda_1 x_1 + \lambda_2 x_2) \ge \lambda_1 f(x_1) + \lambda_2 f(x_2)$$

Problema 3

Muestre que la función $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = -\exp(-g(x))$ es convexa, donde $g: \mathbb{R}^n \to \mathbb{R}$ tiene un dominio convexo y cumple

$$\begin{pmatrix} \nabla^2 g(x) & \nabla g(x) \\ \nabla^T g(x) & 1 \end{pmatrix} \ge 0$$

para $x \in dom g$

Solución

f es convexa si su Hessiano asociado es semidefinido positivo o positivo. Así procedamos a calcularlo.

$$\begin{split} f(x) &= -\exp(-g(x)) \\ \nabla_x f(x) &= \exp(-g(x)) \nabla g(x) \\ \nabla_x^2 f(x) &= \exp(-g(x)) \nabla^2 g(x) - \nabla g(x) \exp(-g(x)) \nabla^T g(x) \\ \nabla_x^2 f(x) &= \exp(-g(x)) \Big(\nabla^2 g(x) - \nabla g(x) \nabla^T g(x) \Big) \end{split}$$

Notemos que $\exp(-g(x))$ es positivo solonos falta comprobar que $\nabla^2 g(x) - \nabla g(x) \nabla^T g(x)$ sea una matriz definida positiva.

Notemos que la matriz provista anteriormente es semidefinida positiva y por tanto su determinante debe ser mayor o igual a cero

$$\det \begin{pmatrix} \nabla^2 g(x) & \nabla g(x) \\ \nabla^T g(x) & 1 \end{pmatrix} = \nabla^2 g(x) - \nabla g(x) \nabla^T g(x) \ge 0$$

por tanto

$$\nabla_x^2 f(x) = \exp(-g(x)) \left(\nabla^2 g(x) - \nabla g(x) \nabla^T g(x) \right) > = 0$$

y así, f es una función convexa.