Máster en Ingeniería Informática

Redes de Nueva Generación

Profesor:

Dr. Juan Carlos Fabero Jiménez (UCM)

Contenidos

- Tema 1: IP de nueva generación: IPv6
- Tema 2: Encaminamiento interno: OSPF
- Tema 3: Encaminamiento externo: BGPv4
- Tema 4: Encaminamiento troncal: MPLS
- Tema 5: Redes definidas por software: SDN
- Tema 6: Encaminamiento multicast
- Tema 7: Servicios avanzados: RTP, VoIP, IPTV

Protocolos de Encaminamiento

Introducción

Sistemas Autónomos

- Conjunto conexo de redes IP y encaminadores bajo el control de una o varias organizaciones y con política de encaminamiento común (RFC1930)
 - Utiliza un protocolo de pasarela interior (IGP, Internal Gateway Protocol). Generalmente OSPF o RIP.
 - Se comunica con otros AS mediante un protocolo de pasarela de frontera (BGP, Border Gateway Protocol)

Protocolos de Encaminamiento Interior

RIP (Routing Internet Protocol)

- Definido en los RFC 1058 (v1) y 2453 (v2).
- Pertenece a la familia de protocolos de vectordistancia.

Formato del mensaje de actualización

_	Orden (1)	Versión (1)	Cero (2)	
	Ident. Fam. Dirección (2)		Cero (2)	
	Dirección IP (4)			
\prec	Cero (4)			
		(4)		
	Métrica (4)			

Observaciones

- Las 5 últimas líneas (entrada RIP) se repiten para cada destino.
- El número máximo de saltos es 16 (inalcanzable).
- Orden:
 - Request (1)
 - Response (2)

Formato del mensaje de actualización

Orden (1)	Versión (1)	Cero (2)		
Ident. Fam. l	Dirección (2)	Marca de ruta (2)		
Dirección IP (4)				
Máscara de red (4)				
Siguiente salto (4)				
Métrica (4)				

Observaciones

- Marca de ruta (route tag): distingue entre rutas RIP y externas.
- El número máximo de saltos es 16 (inalcanzable).
- Si AFI==0xFFFF, significa que se utiliza autenticación. En el RFC4822 se define el método de autenticación criptográfica para RIPv2.

Protocolos de Encaminamiento Interior

Encaminamiento en Linux

Encaminamiento en GNU/Linux

FRR (FRRouting)

- FRR es el sucesor de Quagga.
- Superdemonio genérico de encaminamiento.
- Soporta, entre otros, los siguientes protocolos:
 - RIP (versiones 1 y 2)
 - RIPng (RIP para IPv6)
 - OSPFv2
 - OSPFv3 (OSPF para IPv6)
 - BGPv4 y BGPv4+
 - IS-IS
 - Multicast...

FRR

FRR

Configuración de FRR

/etc/frr/frr.conf

```
frr version 7.5.1
frr defaults traditional
hostname FRR-3
log syslog informational
service integrated-vtysh-config
!
interface eth0
ip address 192.168.23.3/24!
```

La configuración la haremos mediante mediante vtysh (CLI)

```
root@FRR-1:/# vtysh
Hello, this is FRRouting (version 7.5.1).
Copyright 1996-2005 Kunihiro Ishiguro, et al.
FRR-1# configure terminal
FRR-1(config)# interface eth0
FRR-1(config-if)# ip address 192.168.12.1/24
FRR-1(config-if)# end
FRR-1# write
Note: this version of vtysh never writes vtysh.conf
Building Configuration...
Integrated configuration saved to /etc/frr/frr.conf
[OK]
2022/07/23 18:57:47 WATCHFRR: configuration write completed with exit code 0
FRR-1#
```

Zebra

Configuración de RIPd

- Si necesario, reiniciar quagga: service quagga restart
- Conectar con zebra mediante vtysh:

```
# vtysh
Copyright 1996-2005 Kunihiro Ishiguro, et al.
uml1# configure terminal
uml1(config)# router rip
uml1(config-router)# network eth0
uml1(config-router)# network eth1
uml1(config-router)# network eth2
uml1(config-router)# network eth3
uml1(config-router)# end
uml1# write
Building Configuration...
Configuration saved to /etc/quagga/zebra.conf
Configuration saved to /etc/quagga/ripd.conf
[OK]
uml1# quit
```

Zebra

Configuración de RIPd

Se ha creado el archivo /etc/quagga/ripd.conf:

```
hostname ripd
password zebra
router rip
network eth0
network eth1
network eth2
network eth3
```

Ejercicio:

- Crear la siguiente configuración de red y utilizar RIP en las máquinas FRR de GNS3.
- Comprobar las tablas de rutas mediante el comando show ip route y los mensajes intercambiados mediante wireshark.

Ejercicio:

- Crear la siguiente configuración de red y utilizar RIP en las máquinas FRR de GNS3.
- Comprobar las tablas de rutas mediante el comando show ip route y los mensajes intercambiados mediante wireshark.


```
FRR-3(config-router)# do show ip route

Codes: K - kernel route, C - connected, S - static, R - RIP,

O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,

T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,

F - PBR, f - OpenFabric,

> - selected route, * - FIB route, q - queued, r - rejected, b - backup

C>* 172.16.3.0/24 is directly connected, eth1, 00:00:13

R>* 172.16.4.0/24 [120/3] via 192.168.23.2, eth0, weight 1, 00:00:06

R>* 192.168.12.0/24 [120/2] via 192.168.23.2, eth0, weight 1, 00:00:06

C>* 192.168.23.0/24 is directly connected, eth0, 00:00:23

R>* 192.168.24.0/24 [120/2] via 192.168.23.2, eth0, weight 1, 00:00:06

FRR-3(config-router)#
```

```
FRR-3(config-router)# do show running-config
Current configuration:
frr version 7.5.1
frr defaults traditional
hostname FRR-3
log syslog informational
service integrated-vtysh-config
interface eth0
ip address 192.168.23.3/24
interface eth1
ip address 172.16.3.3/24
router rip
network eth0
network eth1
passive-interface eth1
line vty
end
```

Zebra

Configuración de RIPngd

La configuración de RIPng es muy similar a la de RIP.

```
FRR-1# configure terminal
FRR-1(config)# router ripng
FRR-1(config-router)# network eth0
FRR-1(config-router)# network eth1
FRR-1(config-router)# passive-interface eth1
FRR-1(config-router)# end
FRR-1# write
```

Ejercicio:

- Crear la siguiente configuración de red y utilizar RIPng.
- Comprobar las tablas de rutas y los mensajes intercambiados.

Ejercicio:

- Crear la siguiente configuración de red y utilizar RIPng.
- Comprobar las tablas de rutas y los mensajes intercambiados.

FRR-1# show ipv6 route

Codes: K - kernel route, C - connected, S - static, R - RIPng,

O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,

v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR,

f - OpenFabric,

> - selected route, * - FIB route, q - queued, r - rejected, b - backup

C>* 2001:db8:1::/64 is directly connected, eth1, 00:05:13

R>* 2001:db8:3::/64 [120/3] via fe80::80f7:82ff:fea0:e87, eth0, weight 1, 00:02:14

R>* 2001:db8:4::/64 [120/3] via fe80::80f7:82ff:fea0:e87, eth0, weight 1, 00:00:44

C * fe80::/64 is directly connected, eth0, 00:06:31

C * fe80::/64 is directly connected, eth1, 00:06:32

Protocolos de Encaminamiento Interior

OSPF

Open Shortest Path First

- Es el IGP más utilizado.
- Pertenece a la familia de encaminamiento por estado del enlace.
- Se puede dividir el SA en áreas.

 Cada área se conecta al área 0, que recibe el nombre de transal de AS

El problema de la inundación

- SPF necesita información topológica del estado de todos los enlaces.
- La información se recaba en cada encaminador y se difunde por la red.
- Es necesario acotar el proceso de inundación.
- Mediante el router-id y la edad del anuncio.

Encaminador Designado

- Para disminuir el número de mensajes intercambiados en una red de difusión, uno de los encaminadores es elegido como encaminador designado (DR, Designated Router)
- Para aumentar la fiabilidad, se designa a otro encaminador como copia de seguridad (BDR, Backup Designated Router).
- Los demás encaminadores crean adyacencias sólo con el DR y el BDR.

Funcionamiento

Cada encaminador descubre a sus vecinos (hello)

Se envía una descripción de la base de datos (DB Description)

 Se envía el estado de los enlaces (LSA, Link State Advertisement)

Cálculo de rutas (SPF)

- Una vez que se han intercambiado los estados del enlace, cada encaminador realiza el cálculo de rutas.
- Ejemplo:

Protocolos de Encaminamiento Interior

OSPFv2

OSPFv2

Características

- Definido en el RFC 2328 (abril de 1998).
- Emplea un modelo jerárquico de 2 niveles: todas las áreas deben conectarse directamente al área 0 (troncal).
- El cálculo del árbol SPF (Shortest Path First) se realiza de manera independiente en cada área.
- Generalmente ofrece una mejor convergencia que los algoritmos de vector distancia (RIP).
- Baja utilización de la red en el estado estacionario (sólo mensajes hello periódicos)
- No soporta IPv6.

OSPFv2

Ejemplo:

Para crear la siguiente topología:

router ospf
router-id 0.0.0.1
network 10.0.12.0/24 area 0
network 172.16.11.0/28 area 0
network 172.16.12.0/24 area 0
passive-interface eth1
passive-interface eth2

router ospf
router-id 0.0.0.2
network 10.0.12.0/24 area 0
network 172.16.21.0/24 area 0
network 172.16.22.0/24 area 0
passive-interface eth1
passive-interface eth2

Protocolos de Encaminamiento Interior

OSPF: definiciones

Áreas:

- En una red grande, el algoritmo SPF puede ser muy costoso computacionalmente.
 - OSFP permite dividir la red en áreas.
- Un área:
 - Es un conjunto lógico de redes y encaminadores.
 - Puede coincidir con fronteras administrativas o topológicas.
 - Cada área se distingue por un número de 32 bits.
- Ventajas:
 - Dentro del área, cada encaminador mantiene la misma información topológica del área. No conocen las topologías fuera del área. Sólo conocen rutas a los destinos externos al área.
 - Menor información topológica en cada dispositivo.
 - La mayor parte de los LSA se distribuyen sólo dentro del área.
 - Se limita el número de mensajes de actualización.
 - El algoritmo SPF se limita a la topología del área.
 - Menor coste computacional.

Áreas

- Área troncal (backbone)
 - Todas las redes OSFP contienen al menos un área, que se identifica con el número 0.
 - Recibe el nombre de troncal.
 - Cualquier otra área debe estar conectada físicamente con la troncal.
 - Otras áreas inyectan información de encaminamiento en la troncal, que a su vez la distribuye a otras áreas.

Tipos de Encaminadores

- Internos: pertenecen sólo a un área.
 - Sólo mantienen información topológica de su área.
- Troncales: en el área troncal.
- Frontera de área (ABR): interconectan un área con la troncal.
 - Mantienen bases de datos de topología separadas para cada área.
- Frontera de AS (ASBR): intercambian información de encaminamiento entre la red OSPF y otros algoritmos.

Encaminamiento

- Cada datagrama se encamina hacia la frontera de área.
- Puesto que los encaminadores frontera de área pertenecen a la troncal, se encamina el datagrama hacia la frontera del área de destino.
- Se encamina el datagrama hacia el destino final.

Base de datos de estado del enlace

- Contiene la información topológica sobre el área.
 - Dispositivos.
 - Enlaces físicos.
- Contiene rutas hacia destinos exteriores al área.

Anuncio de estado del enlace (Link State Advertisement, LSA)

- El contenido de un LSA describe un componente de la red (encaminador, enlace o ruta externa).
- Se intercambian LSA entre encaminadores adyacentes.
 - Con el fin de actualizar la base de datos de estado del enlace.
- Cuando un encaminador genera o modifica un LSA, debe anunciar el cambio por toda la red (área).
- Cuando se recibe un LSA, se actualiza la información topológica y se reenvía el LSA a cada encaminador adyacente (inundación controlada y fiable).

Información en los LSA

- Encaminador (router) (tipo 1): Describe el estado de los interfaces (enlaces) de cada encaminador. Se difunde por toda el área.
- Red (network) (tipo 2): Contiene los encaminadores conectados a una red de difusión. Se genera por el DR. Se difunde por toda el área.
- Resumen (summary) (tipos 3 y 4): Se genera por un ABR. La información se anuncia en la troncal, y luego se inyecta en las otras áreas.
 - Tipo 3: describe rutas a destinos que pertenecen a otras áreas (destinos inter-áreas).
 - Tipo 4: describe rutas a encaminadores ASBR.
- Externos (external AS) (tipos 5 y 7): describe rutas a destinos fuera de la red OSPF. Son generados por los ASBR. Se difunden por todas las áreas de la red OSPF.

OSPF: Definiciones

Tipos de LSA

Protocolos de Encaminamiento Interior

OSPF: Comunicación entre vecinos

OSPF: Comunicación entre vecinos

Proceso OSPF

- Todo encaminador OSPF debe realizar una serie de tareas:
 - Descubrimiento de vecinos.
 - Elección del encaminador designado DR (si procede).
 - Establecimiento de adyacencias.
 - Para el intercambio de información topológica.
 - Sincronización de la base de datos.
 - Cálculo de rutas mediante SPF.
- Para realizar estas tareas, los encaminadores intercambian entre sí distintos tipos de mensajes.

OSPF: Comunicación entre vecinos

Todos los mensajes OSPF comparten la misma cabecera

- Version=2
- Packet Type
 - 1=Hello
 - 2=Database Description
 - 3=Link State Request
 - 4=Link State Update
 - 5=Link State Acknowledgment
- Authentication Type
 - 0=No Authentication
 - 1=Simple Password
- Authentication Data
 - Contraseña si Type=1

1	Version
1	Packet Type
2	Packet Length
4	Router ID
4	Area ID
2	Checksum
2	Authentication Type
8	Authentication Data

OSPF: Descubrimiento de vecinos

Saludo (hello)

- Para descubrir las redes/encaminadores conectados directamente y el coste del enlace.
- Encaminadores conectados directamente establecen una relación de vecindad.
 - Cada mensaje hello porta los identificadores de los encaminadores (RID) que han sido descubiertos a través de ese enlace.
 - Cuando un encaminador recibe un hello con su propio RID, establece una relación de vecindad con el emisor.
- Para crear una relación de vecindad:
 - Ambos encaminadores deben pertenecer a la misma área.
 - Deben coincidir en el método de autenticación (si se ha definido).
 - Deben definir los mismos intervalos de hello y dead.
 - Ambos deben estar de acuerdo en la indicación de stub del área.
- Los mensajes hello se intercambian periódicamente entre vecinos.

OSPF: Descubrimiento de vecinos

Elección del encaminador designado, DR

- En redes de acceso múltiple.
 - Para evitar crear adyacencias de todos con todos.
- Cada mensaje hello incluye la prioridad del encaminador, el identificador del DR (Designated Routed) y el del BDR (Backup Designated Router).
- Para elegir el DR:
 - El encaminador con mayor prioridad.
 - Si igual, el encaminador con RID más alto.
- Una vez elegido el DR (y el BDR):
 - Establece adyacencias con cada encaminador del enlace.

OSPF: Establecimiento de adyacencias

- Dos encaminadores OSPF son adyacentes cuando han sincronizado su información topológica.
 - No todo vecino es adyacente.

Dos pasos:

- Paso 1:
 - Intercambio de descripción de datos de enlace.
 - Lista de los LSA almacenados en la base local.
- Paso 2:
 - Cada encaminador solicita de sus vecinos los LSA más recientes

OSPF: Comunicación entre vecinos

- Descripción de base de datos (DBDesc, Data Base Description)
 - Contiene el conjunto de LSA contenidos en la base de datos local del encaminador.
 - Cada LSA lleva una marca de tiempo.
- Solicitud de estado de los enlaces (LSReq, Link State Request)
 - Solicita el envío del LSA a los encaminadores adyacentes.
- Actualización del estado de los enlaces (LSUpdate, Link State Update)
 - Contiene el LSA solicitado.
- Confirmación del estado de los enlaces (LSAck, Link State Acknowledge)
 - Confirmación del LSA recibido.

Protocolos de Encaminamiento Interior

OSPF: Máquina de estados

OSPF: Máquina de estados

- Se definen una serie de estados para cada vecino y los eventos asociados.
 - Down: Estado inicial. No se ha recibido información a través de ese enlace.
 - Attempt: En redes de no difusión. El vecino parece inactivo.
 Se intenta restablecer la vecindad.
 - Init: Se ha recibido un paquete hello pero el RID local no está listado en él.
 - 2-way: Comunicación bidireccional, vecindad establecida.
 - ExStart: los vecinos están comenzando a formar la adyacencia.
 - Exchange: los dos vecinos están intercambiando sus bases de datos.
 - Loading: los dos vecinos están sincronizando sus bases de datos.
 - Full: los dos vecinos son adyacentes y sus bases de datos están sincronizadas

Protocolos de Encaminamiento Interior

OSPF: Redistribución de rutas

OSPF: Redistribución de rutas

- Es el proceso de introducir rutas externas dentro de la red OSPF.
 - Las rutas pueden ser estáticas o aprendidas mediante otro protocolo de encaminamiento.
- Las rutas externas se anuncian en un ASBR.
- Dos partes:
 - Parte externa: representa la porción de la ruta exterior a la red OSPF. El ASBR asigna un coste externo a esta parte.
 - Parte interna: representa la porción de la ruta dentro de la red OSPF. Su coste se calcula según el algoritmo OSPF.
- Dos tipos de rutas externas:
 - Tipo External 1: el coste total es la suma del coste externo más el coste OSPF.
 - Tipo External 2: el coste total el siempre el coste externo. Se ignora el coste OSPF de alcanzar al ASBR.

OSPF: Redistribución de rutas

Ejemplo

El ASBR redistribuye la ruta hacia 10.99.5.0/24 en OSPF. La subred pertenece a la red RIP. El coste externo se ha configurado como 50.

Protocolos de Encaminamiento Interior

OSPF: Áreas stub

OSPF: Áreas stub

- Un área stub (terminal) es un área que no contiene información a rutas externas.
 - En lugar de ello, el ABR genera una ruta por defecto.
- Un área stub no puede contener un ASBR.

OSPF: Áreas totally stubby

- Un área totally stubby (totalmente terminal) es un área que no contiene información a rutas fuera del área
 - En lugar de ello, el ABR genera una ruta por defecto.
- Un área totally stubby no puede contener un ASBR.

OSPF: Áreas *NSSA*

- Un área NSSA (not-so-stubby area) es un área stub que contiene un ASBR.
- El ABR que la une con la troncal no inyecta rutas externas al área, pero propaga las generadas por el ASBR dentro de la NSSA en la troncal.

Protocolos de Encaminamiento Interior

OSPF: Agregado de rutas

OSPF: Agregado de rutas

Definición

- Es el proceso de resumir varias redes consecutivas en una sola.
- Dos tipos de agregados:

 Inter-área: se realiza en el ABR para agregar los anuncios desde el área.

Protocolos de Encaminamiento Interior

- interface <iface>
 - Se emplea para configurar parámetros de un interfaz:
 - authentication: activa la autenticación en este interfaz
 - authentication-key: la clave de autenticación
 - cost: El coste del interfaz (puede no ser simétrico)
 - dead-interval: periodo antes de declarar muerto a un vecino
 - hello-interval: periodo entre paquetes HELLO
 - message-digest-key: Clave de autenticación de huellas de mensajes
 - mtu-ignore: desactiva la detección de desacuerdo en la MTU
 - network: tipo de red (broadcast, NBMA, p-t-p...)
 - priority: prioridad del encaminador para ser elegido DR
 - retransmit-interval: periodo entre retransmisiones de avisos de pérdida de enlace

- router ospf
 - area: parámetros de área OSPF (coste, autenticación, filtros de rutas, enlace virtual, área stub...)
 - auto-cost: calcula el coste OSPF según el ancho de banda del enlace
 - compatible: lista de compatibilidad OSPF (con RFC1583)
 - default-information: control de la distribución de la información de encaminamiento predeterminada
 - default-metric: métrica de las rutas redistribuidas
 - distance: define una distancia adicional para rutas externas, interárea o intra-área
 - distribute-list: filtra redes en la actualización de rutas
 - end: sale del modo actual y cambia a modo enable
 - log-adjacency-changes: traza los cambios en estado de adyacencia
 - max-metric: distancia máxima/infinita de OSPF
 - mpls-te: configura parámetros MPLS-TE
 - neighbor: especifica un encaminador vecino
 - network: activa encaminamiento en una red IP
 - no: desactiva una orden o la restaura a sus valores predeterminados

- router ospf
 - ospf: órdenes específicas de ospf
 - passive-interface: suprime el envío de actualizaciones de ruta sobre un interfaz
 - quit: vuelve al modo cli anterior
 - redistribute: controla la redistribución de información que proviene de otros protocolos (sólo en ASBR)
 - refresh: ajusta parámetros de refresco
 - router-id: identificador del proceso ospf
 - show: muestra información del sistema actual
 - timers: ajusta intervalos de temporización de encaminamiento

Zebra

Definición de demonios

/etc/quagga/daemons

```
This file tells the quagga package which daemons to start.
#
# Entries are in the format: <daemon>=(yes|no|priority)
  0, "no" = disabled
  1, "yes" = highest priority
# 2 .. 10 = lower priorities
#
# When activation a daemon at the first time, a config file, even if it is
# empty, has to be present *and* be owned by the user and group "quagga", else
# the daemon will not be started by /etc/init.d/quagga. The permissions should
# be u=rw,q=r,o=.
# When using "vtysh" such a config file is also needed. It should be owned by
# group "quaggavty" and set to ug=rw,o= though.
#
zebra=ves
bgpd=no
ospfd=yes
ospf6d=no
ripd=no
ripngd=no
isisd=no
```

Configuración básica

- En el archivo /etc/quagga/ospfd.conf se configuran los distintos aspectos de OSPF.
- Los principales parámetros son:
 - Network: indica las redes involucradas en el algoritmo de manera que ospfd conozca los interfaces activos. Cada red se asocia con el área correspondiente.
 - **Router-id**: permite identificar de manera única a cada encaminador participante. Sigue la notación IP.
 - Priority: la prioridad del encaminador para ser elegido como encaminador designado (DR o BDR).
 - **Redistribute**: especifica qué rutas (de otros protocolos) deben inyectarse en OSPF (sólo en ASBR).
 - area X.X.X.X range A.B.C.D/M: agregado de rutas inter-área (sólo ABR).
 - area X.X.X.X stub [no-summary]: definición de un área stub.

Configuración básica

Ejemplo:

```
root@uml1:~# vtysh
Hello, this is Quagga (version 0.99.23.1).
Copyright 1996-2005 Kunihiro Ishiguro, et al.
uml1# configure terminal
uml1(config)# router ospf
                                                     Sólo en ASBR
uml1(config-router)# router-id 0.0.0.1
uml1(config-router)# redistribute rip
uml1(config-router)# redistribute bgp
uml1(config-router)# network 192.168,0.0/24 area 0
uml1(config-router)# end
uml1# write
Building Configuration...
Configuration saved to /etc/quagga/zebra.conf
Configuration saved to /etc/quagga/ospfd.conf
[OK]
uml1# exit
root@uml1:~#
Sección de router
```

Ejemplo (ya visto):

Crear la siguiente topología

Áreas

- Para controlar el tamaño de las tablas de rutas se puede dividir el AS en áreas.
- Un área es un conjunto de redes y encaminadores agrupados con un identificador común.
- Un identificador de área es un número entero de 32 bits, en notación punto-decimal (como IP) o entero.
- El área 0 (equivalente a 0.0.0.0) recibe el nombre de troncal.
- Todas las áreas deben conectarse con la troncal.

Ejercicio:

Configurar 6 máquinas virtuales para crear el siguiente AS:

Configuración básica con áreas

Ejemplo (en FRR-3):

```
router ospf
passive-interface eth2
network 10.0.13.0/24 area 0
network 10.0.34.0/24 area 34
network 172.16.3.0/24 area 34
```

Notas:

En los encaminadores internos de las áreas 34 y 56 se podría poner:

network 0.0.0.0/0 area 1 (ó 2)

- Pero entonces hay un problema. ¿Cuál? ¿Cuál sería la solución?
- Comprobar las rutas que se añaden en cada encaminador
- Definir las áreas 34 y 56 como stub, en todos los encaminadores del área:

area 1 stub

- Comprobar que se añade una ruta por defecto.
- Definir el área 34 como totally stubby: en el encaminador ABR:

area 34 stub no-summary

 Comprobar que desaparecen las redes OSPF de fuera del área.

Ejercicio:

- Comprobar las tablas de rutas de los encaminadores: ip route show
- Aparecen las direcciones privadas 10.0.x.0/24.
- Para suprimirlas, añadir en la sección router ospf (sólo ABR): area <X> range 10.0.0.0/16 not-advertise
- Probar a hacer traceroute desde FRR-4 a FRR-6.
- Comprobar con ayuda de wireshark qué sucede.

Ejercicio:

- En el caso de que todos los encaminadores estuvieran en el área 0, las rutas a 10.0.x.0/24 seguirían apareciendo.
- Para evitarlo:

router ospf distribute-list not-private out connected

access-list not-private deny 10.0.0.0/8 access-list not-private permit any

Protocolos de Encaminamiento Interior

OSPFv3

Características

- Definido en el RFC5340 (julio 2008) y actualizado en RFC 6845, 6860 y 7503.
- Específico para IPv6.
- Basado en OSPFv2, con algunas mejoras.
- Distribuye prefijos IPv6.
- Utiliza directamente IPv6 (no necesita encapsulamiento adicional)
- Tipos de interfaces:
 - P2P (Point To Point)
 - P2MP (Point To Multipoint)
 - Broadcast
 - NBMA (Non Broadcast Multiple Access)
 - Virtual

Link LSA

- Un único LSA por link.
- Inundación de ámbito "enlace local"
- Proporciona dirección de encaminador de enlace local.
- Enumera todos los prefijos IPv6 asociados con el enlace.

Inter-Area Prefix LSA

- Enumera los destinos fuera del área pero dentro del SA.
- Se crea un resumen del área, que se inyecta en las demás áreas.
- Se origina en un ABR.
- Sólo se inyectan en la troncal las rutas intra-área.

OSPF6d

Configuración de OSPFv3

 Mediante CLI (vtysh) (ejemplo, no es preciso escribir todas estas opciones)

```
interface eth0
     ipv6 ospf6 cost 2
     ipv6 ospf6 hello-interval 60
     ipv6 ospf6 dead-interval 240
     ipv6 ospf6 retransmit-interval 5
     ipv6 ospf6 priority 5
     ipv6 ospf6 transmit-delay 1
     ipv6 ospf6 instance-id 0
interface eth1
     ipv6 ospf6 passive
     ipv6 ospf6 cost 50
router ospf6
     router-id 1.1.1.26
     interface eth0 area 0.0.0.0
     interface eth1 area 0.0.0.22
     ! Si queremos hacer agregados:
     area 0.0.0.0 range 2001:db8:400:139::/64
     area 0.0.0.22 range 2001:db8:200::/48
```

OSPF6d

Verificación del estado mediante CLI

```
root@FRR-3:/# vtysh
FRR-3# show ipv6 ospf6 neighbor
Neighbor ID
              Pri DeadTime State/IfState
                                                 Duration I/F[State]
10.0.13.1
              1 00:00:37 Full/BDR
                                             00:00:41 eth1[DR]
172.16.4.4 1 00:00:38
                              Full/DR
                                             00:00:36 eth0[BDR]
FRR-3# show ipv6 route
Codes: K - kernel route, C - connected, S - static, R - RIPng,
    O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table,
    v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR,
    f - OpenFabric.
    > - selected route, * - FIB route, q - queued, r - rejected, b - backup
O 2001:db8:3::/64 [110/10000] is directly connected, eth2, weight 1, 00:01:44
C>* 2001:db8:3::/64 is directly connected, eth2, 00:01:44
O>* 2001:db8:4::/64 [110/20000] via fe80::7080:caff:fef6:98c1, eth0, weight 1, 00:00:54
O>* 2001:db8:5::/64 [110/40000] via fe80::9837:7aff:feca:f4c9, eth1, weight 1, 00:00:55
O>* 2001:db8:6::/64 [110/50000] via fe80::9837:7aff:feca:f4c9, eth1, weight 1, 00:00:55
C * fe80::/64 is directly connected, eth2, 00:01:45
```

Implementar el siguiente esquema:

Solución

Para FRR-3 (ejemplo)

```
interface eth0
ip address 10.0.34.3/24
interface eth1
ip address 10.0.13.3/24
interface eth2
ip address 172.16.3.0/24
ipv6 address 2001:db8:3::3/64
ipv6 ospf6 passive
router ospf
passive-interface eth2
network 10.0.13.0/24 area 0
network 10.0.34.0/24 area 34
network 172.16.3.0/24 area 34
router ospf6
interface eth1 area 0
interface eth0 area 34
interface eth2 area 34
```