Dejal Legaritma ve Dojal 21stel Zonksiyon. Com: Dopal loparitma

lox = Sidt, x70 formityle veriter bir forbiryonder. Lendon 19 4-los xx70 igin toniml.

x-100

Lendon ontendr.

x-100

x-100 li logx= ∞ $y=log_{x}^{x}$ x>0 $y=log_{x}^{x}$ x>0 $y=log_{x}^{x}$ $y=log_{x}^{$ * lax fonksiyonum tes 1)-y=ex lex=0 fonksiyonudr yoni In-1x = ex div. * f(x)=ex fonksiyonin a "dapal ostel fonto you der? Afonksiyon ortender. $\int_{1}^{y} \int_{3y=a^{x}}^{a>1}$ * loga fontoryonum Lax-00 ters fonksiyoned. 1 0× 0 * f(x)=ax (axo, 0 + 1) fonksiyonna "Gerel wel fonksigen der * forkinger artende.

Osellilleri (Dogal Logaritma)

@lne=1 @ ln(xy) = lnx+lny 3) ln(xg)=lnx-lny

(4) $ln(\frac{1}{x}) = -lnx$ (5) lnx' = rlnx (6) $lne^{x} = x$.

(4) $ln(\frac{1}{x}) = -lnx$ (5) lnx' = rlnx (6) $lne^{x} = x$.

(7) $ln(\frac{1}{x}) = -lnx$ (6) lnx' = rlnx (7) $lne^{x} = x$.

(8) $lne^{x} = x$.

(9) $lne^{x} = x$.

x'e poise trevisioni, hesoplaye On: Asajidahi Jonksiyonlerin

 $(6.)(2x) = \frac{2}{2x} = \frac{1}{x}$ $a_1)(\ln(x^2+3))' = \frac{2x}{x^2+3}$

ンタチロ Tomi d (ln/x1) = 1/x

Or: In 4+ lasinx = In (4. sinx)

 $\frac{5}{2x-3}$ $\ln(\frac{x+1}{2x-3}) = \ln(x+1) - \ln(2x-3)$

 $\frac{\partial n!}{\partial n!} \ln \frac{1}{8} = \frac{\ln 1 - \ln 8}{3} - \ln 8 = -\ln 2^{3} - 3 \ln 2$

Oscil. Mar: (Gerel Logaritma)

(1) 1099=1 (2) 109(xy)=109x+109y (3) 109(x3)=109x_109y

(4) 109 = - 109 (5) 109 x = r 109 x 6) 109 ax = x 7/02=0 8) 109x = lox

```
Ozellille: (Witel Forhsigonle)
```

(1)
$$e^{\ln x} = x$$
. (3) $x' = e^{\ln \ln x}$. (5) $\log_0 = y = y$.
(2) $a^{\log_0 x} = x$. (5) $a^x = e^{x \ln a}$. (6) $\ln x = y = y = e^y$.

$$0$$
): x iqin $e^{2x-6}=4$. $denklemini 402unu2$
 $e^{2x-6}=4=$). $lne^{2x-6}=ln4$.

$$2x - 6 = \ln 4$$

$$x = \ln 4 + 6$$

$$x = 2\ln 2 + 6 = \ln 2 + 3$$

Crevle:

Theoler:
$$\frac{\left(\int_{-\infty}^{\infty} |x|^{2}\right)^{1}}{\left(\int_{-\infty}^{\infty} |x|^{2}\right)^{1}} = \frac{1}{x} \left(\frac{1}{x}\right)^{1} = \frac{1}{x} \left(\frac{1}{x}\right)^{1}$$

(4)
$$(e^{x})' = e^{x}$$
 (5) $(a^{f(x)})' = f'(x)a^{f(x)}lna$.

(6)
$$(\log_a^{f(x)})' = \frac{f'(x)}{f(x) \ln a}$$
.

$$3 \cdot a \cdot b \cdot b \cdot e^{\sin x} = \cos x e^{\sin x}$$

 $3 \cdot a \cdot (5e^{x}) = 5e^{x} b \cdot (e^{\sin x}) = \cos x e^{\sin x}$
 $a \cdot b \cdot (e^{\sin x}) = \frac{3}{2\sqrt{3x+1}} \cdot e^{\sqrt{3x+1}}$
 $a \cdot b \cdot (e^{-x}) = -e^{-x} d \cdot (e^{\sqrt{3x+1}}) = \frac{3}{2\sqrt{3x+1}} \cdot e^{\sqrt{3x+1}}$

$$\frac{1}{2} = \frac{(x^2+1) \cdot (x+3)^{\frac{1}{2}}}{x-1} = \frac{1}{2} = \frac{1}{2}$$

$$\ln y = \ln (x^{2}+1) \cdot (x+3)^{1/2}$$

 $lny = ln(x^{2}+1).(x+3)^{1/2} - ln(x-1)$

 $\frac{3^{1}}{3!} = \frac{2x}{x^{2}1} + \frac{1}{2} \cdot \frac{1}{x+3} - \frac{1}{x-1}$

$$y' = \frac{(x^{2}+1) \cdot (x+3)^{1/2}}{x-1} \cdot \left(\frac{2x}{x^{2}+1} + \frac{1}{2(x+3)} - \frac{1}{x-1}\right)$$

 $\tilde{x} = \tilde{x}$ $f(x) = x^{x}$, x > 0, f'(x) = ? (Y = f(x))

 $y = x^{x} =$ $\ln y = \ln x^{x} =$ $\ln y = x \ln x$

I Jol: , loy = xlx

 $\frac{y'}{y} = 1.ln \times + x \cdot \frac{1}{x}$

 $\frac{J'}{J} = L_{N \times + 1}$

 $y'=y.(lnx+1)=x^{x}(lnx+1)$

I yol $y = x^{\times} = y = e^{\ln x} = e^{\times \ln x}$ $y = e^{\times \ln x} = y' = (\times \ln x)' e^{\times \ln x}$ $y = (\times \ln x)' e^{\times \ln x}$ $y = (\times \ln x)' e^{\times \ln x}$

** Bis Limit Olarah e sayisi

$$0 e = \lim_{x \to 0} (1+x) \frac{1}{x}$$

Q lim
$$(1+ax)^{\frac{1}{x}}=e^{a}$$
.
 $yada$
 $\lim_{x\to\infty}(1+\frac{a}{x})^{x}=e^{a}$.

Tens Cigonometrik Fonkiyonler Eper y=sinx fonkiyonur komesi [-z,z] alınırsa tes fonksiyonu y=sin-1x 1 -1/2

Tanim Kirresi: (-00,00)
Gorando Kirresi: -1=y≤1

*y=>inx, Gire-bir degildr

* y=cosx Tenim Komesi: (- N, N) Corun L' Komesi: (-1, 1) Corun L' Komesi: (-1, 1) * y=cosx, bire-bir deprildir Eper y=cosx fonksiyonunun.

tonim kumes: [0,Ti] alininsa.

tonim kumes: [0,Ti] alininsa.

y=cosx fonksiyonu bire-bir

olur ve ters fonksiyonu.

olur ve ters fonksiyonu.

y=cos-1x = arccosx pelulindedir.

y=arccosx

Tonim kumesi: -1 ± x ≤ 1

Gorink Kumesi: 0 ≤ y ≤ 7.

Your Kimesi: x + 72, 732, --Corunt komesi: (-00,00). y=tanx bire-bir depildir *y=cotx

Tom kimes : X = 0, Fx, F22, 60 mints lumesi: (-00,00) y=cotx bire-bir depildir.

Eper g=tanx fonksiyonum tom analy (-2, 3) alinesa fonksigen bire-bir olur. ve tesi y=ton-1x=arctonx dir. Tonim kumesi: - av < x < au Gorant Romes i: - 2 44 (3

Eper 4=cotx tonksiyonung tonim araligi (0,2) alinirsa fonlisiyon bire-bir olurve ters fonlaryony y = cot-1x = arccotx dir - - - y=arccotx Tanim komesi: - arexca

Connti komesi: 044 (2.

NOT: xy= arcsecx fonkonyonunun tenim kumesi: x =-1 veya x >-1 goront kimesi: OSYSZ, Y+= div.

y=arccosecx fonksiyonunun tonim kumesi: x ≤-1 veya x>,1
ponin に kumesi: マミととう、ソナロ dv.

Tom: * y = arcsinx, [-2,] analyginda siny=x olan

* y = arcasx, [0,7] analyginda cosy=x olan.

or: arcsin(\frac{\sqrt{3}}{2}), arccos(-\frac{1}{2}) deperterini hesaplayiniz

 $arcsin(\frac{12}{2}) = a =) sina = \frac{12}{2} =) a = \frac{3}{3}, a \in [-\frac{3}{2}, \frac{3}{2}]$

 $arccos(-\frac{1}{2})=b=)cosb=-\frac{1}{2}=)b=\frac{27}{3},b\in[0,2]$

Ó5:

41	4=arcsinx	y=arccosx
V2	3	七
13/4		专
古	47	7 75
1/2	スて	3
	0	1 3
0		

X	jearcsinx	y=arccosx
10/2	- z	52
立	-25	32
1-2	- 75	22

Comining = arctenx, (-2,2) analiginda tony=x olon sayıdır. *Y=arceotx, (0,2) analiginda coty=x olan sayıdır.

3n: arcton(1/3), ercton(-13) deperterni bulunt

 $arcton(\frac{1}{15})=a=).tona=\frac{1}{15}-).a=\frac{7}{15}, \frac{7}{15}\in(-\frac{7}{2},\frac{7}{2})$

arcton(-13)=b=) tonb=-13.-) b=-3, -3 = (2,2)

on:	×	y=orcton	× .	- X	y arctonx -23 -24	
	v3.	K/3 K/4		-1. -1	725 26	
	1 0-1/2	0.26		13	6	

Ozderlituer:

- 4) arccosx+arccos(-x)= x
- 11.) arcsinx+arccasx = 3.
- iv) arcsecx+arccosecx= = = = .

1.)
$$\left(\operatorname{arcsin} x\right) = \frac{1}{\sqrt{1-x^2}}$$
, $\left(\operatorname{arcsin} u(x)\right) = \frac{u'(x)}{\sqrt{1-(ux)^2}}$

$$ii.)(\operatorname{arccos} x) = \frac{1}{\sqrt{1-x^2}}, (\operatorname{arccos} 2(x))' = -\frac{2'(x)}{\sqrt{1-(u(x))^2}}$$

$$iii.)(arctonx) = \frac{1}{1+x^2}, (arcton u(x)) = \frac{u'(x)}{1+(u(x))^2}$$

$$(v.)(arccotx)' = -\frac{1}{1+x^2}$$
, $(arccotu(x))' = -\frac{\upsilon'(x)}{1+(\iota(x))^2}$

$$(1.)(arcsec \times) = \frac{1}{|x| \sqrt{x^2-1}}, (arcsec 21(x)) = \frac{21(x)}{|u(x)|, \sqrt{u_{\infty}^2-1}}, (|u|)$$

$$vi.)(arccosecx) = \frac{1}{|x|.\sqrt{x^2-1}}, (arccosec 2i\alpha) = \frac{u'(x)}{|u(x)|.\sqrt{u^2(x)-1}}$$

Hiperbolik Zonksiyonlar

*
$$sinhx = \frac{e^{x} - e^{-x}}{2}$$
, * $sinhx = \frac{e^{x} + e^{-x}}{2}$

Buraden
$$2 \sinh x \cdot \cosh x = 2 \cdot (e^{x} - e^{-x}) \cdot (e^{x} + e^{-x}) = e^{2x} - e^{-2x} = \sinh 2x$$

Hipebolih Fonksiyonların Ordes lihleri

$$* cosh^2x - sinh^2x = 1.$$

$$x \cosh 2x = \cosh^2 x + \sinh^2 x$$

*
$$tanh^2 \times = 1 - sech^2 \times$$

$$* co+h^2x = 1+cosech^2x$$

Hiperbolih Fonksiyonların Torevleri

Hiperbolik
$$+3hx$$
 $\int |x| dx = \int |x| dx = \int$

Ters Hiperbolth Fonksiyonlar

Tes Hiperbolth Tonkorgonlarin Curellering (sinh-1x) =
$$\frac{1}{VI+x^2}$$
, $(sinh-1u(x)) = \frac{u'(x)}{VI+u^2(x)}$

ii) $(sinh-1x) = \frac{1}{VI+x^2}$, $(sinh-1u(x)) = \frac{u'(x)}{VI+u^2(x)}$

iii) $(cosh-1x) = \frac{1}{Vx^2-1}$, $(cosh-1u(x)) = \frac{u'(x)}{Vu'(x)-1}$

iii) $(tanh-1x) = \frac{1}{1-x^2}$, $(tanh-1u(x)) = \frac{u'(x)}{1-u'(x)}$

iv) $(cosh-1x) = \frac{1}{1-x^2}$, $(cosh-1u(x)) = \frac{u'(x)}{1-u'(x)}$

vi) $(sech-1x) = \frac{1}{1-x^2}$, $(sech-1u(x)) = -u'(x)$

vi) $(cosech-1x) = \frac{1}{1+x^2}$, $(cosech-1u(x)) = -u'(x)$

$$2\cosh(\ln x) = 2 \cdot \frac{(e^{\ln x} + e^{-\ln x})}{2!}$$

$$= e^{\ln x} + e^{-\ln x}$$

$$= x + x^{-1}$$

$$= x + \frac{1}{x}$$

$$\frac{5n!}{y'} = \ln(\sinh x) = y' = ?$$

$$\frac{y'}{s \ln h x}$$

$$\frac{y'}{s \ln h x} = \coth x$$

$$\frac{y'}{s \ln h x}$$

$$\frac{\partial s}{\partial s} = \frac{y' = ?}{(e^{\cos hx})} = \frac{y' = ?}{(e^{\cos hx})}$$

y'= cosh(e coshx), sinhx. e coshx

$$O_{2}$$
: $ton(arcsin(-\frac{1}{2})) = ton(-\frac{2}{6}) = -ton\frac{2}{6} = -\frac{1}{13}$

$$\frac{\partial h}{\partial x} : Sec(arccos \frac{1}{2}) = Sec(\frac{z}{3}) = 2$$

$$y' = \frac{e^{x}}{\sqrt{1-e^{2x}}}$$

$$y' = \frac{-\left(\ln \sin x\right)}{\sqrt{1-\ln^2 \sin x}} = \frac{-\cos x}{\sqrt{1-\ln^2 \sin x}} = \frac{\cot x}{\sqrt{1-\ln^2 \sin x}}$$

En:
$$y = ln \operatorname{arcten} \times =)$$
. $y' = ?$,
 $y' = \frac{1}{\operatorname{arcten} \times} = \frac{1}{1+x^2} = \frac{1}{(1+x^2), \operatorname{arcten} \times}$