

Intro. Number Theory

Fermat and Euler

Review

N denotes an n-bit positive integer. p denotes a prime.

•
$$Z_N = \{0, 1, ..., N-1\}$$

• $(Z_N)^*$ = (set of invertible elements in Z_N) = = { $x \in Z_N : gcd(x,N) = 1$ }

Can find inverses efficiently using Euclid alg.: time = $O(n^2)$

Fermat's theorem (1640)

Thm: Let p be a prime

$$\forall x \in (Z_p)^*: x^{p-1} = 1 \text{ in } Z_p$$

Example: p=5.
$$3^4 = 81 = 1$$
 in Z_5

So:
$$x \in (Z_p)^* \implies x \cdot x^{p-2} = 1 \implies x^{-1} = x^{p-2}$$
 in Z_p

another way to compute inverses, but less efficient than Euclid

Application: generating random primes

Suppose we want to generate a large random prime

```
say, prime p of length 1024 bits (i.e. p \approx 2^{1024})
```

Step 1: choose a random integer $p \in [2^{1024}, 2^{1025}-1]$

Step 2: test if $2^{p-1} = 1$ in Z_p

If so, output p and stop. If not, goto step 1.

Simple algorithm (not the best). Pr[p not prime] < 2⁻⁶⁰

The structure of $(Z_p)^*$

Thm (Euler): $(Z_p)^*$ is a **cyclic group**, that is

$$\exists g \in (Z_p)^*$$
 such that $\{1, g, g^2, g^3, ..., g^{p-2}\} = (Z_p)^*$

g is called a **generator** of $(Z_p)^*$

Example: p=7.
$$\{1, 3, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = (Z_7)^*$$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Order

```
For g \in (Z_p)^* the set \{1, g, g^2, g^3, ...\} is called
the group generated by g, denoted <g>
```

<u>Def</u>: the order of $g \in (Z_p)^*$ is the size of $\langle g \rangle$ ord_p(g) = $|\langle g \rangle|$ = (smallest a>0 s.t. $g^a = 1$ in Z_p)

Examples: $ord_7(3) = 6$; $ord_7(2) = 3$; $ord_7(1) = 1$

<u>Thm</u> (Lagrange): $\forall g \in (Z_p)^*$: ord_p(g) divides p-1

Euler's generalization of Fermat (1736)

Def: For an integer N define
$$\varphi(N) = |(Z_N)^*|$$
 (Euler's φ func.)

Examples:
$$\phi(12) = |\{1,5,7,11\}| = 4$$
; $\phi(p) = p-1$
For N=p·q: $\phi(N) = N-p-q+1 = (p-1)(q-1)$

Thm (Euler):
$$\forall x \in (Z_N)^*$$
: $x^{\phi(N)} = 1$ in Z_N

Example:
$$5^{\phi(12)} = 5^4 = 625 = 1$$
 in Z_{12}

Generalization of Fermat. Basis of the RSA cryptosystem

End of Segment