Experiments

What are Experiments?

The Practice of Experimenting

Observe

The Practice of Experimenting

- Observe
- Manipulate...

The Practice of Experimenting

- Observe
- Manipulate...
 - ... in order to intervene
 - ... in order to control

Observation

Observation

Observation

Causal Hypotheses

Causal Hypotheses

Three Characteristic Features of Experiments

Experimenting is an observation process characterised by:

- Control of background variables through manipulation
- Intervention on target variable through manipulation
- Observation of difference produced by intervention

John Stuart Mill (1806 –1873)

Mill's Method of Difference

1.We ask: what causes phenomenon *E*?

Mill's Method of Difference

1.We ask: what causes phenomenon *E*?

2.We conjecture: C causes E (hypothesis)

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: *C* causes *E* (*hypothesis*)
- 3.We produce two situations S_1 and S_2 , in which neither C nor E occur and in which all causally relevant factors are the same. (*successful control*)

Mill's Method of Difference

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: *C* causes *E* (*hypothesis*)

4. We activate C in S_1 but not in S_2 . (successful intervention)

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)
- 3.We produce two situations S_1 and S_2 , in which neither C nor E occur and in which all causally relevant factors are the same. (*successful control*)
- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)

- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)
- 6.In S_1 , something causes E (from 5)

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)

- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)
- 6.In S_1 , something causes E (from 5)
- 7. In S_2 , nothing causes *E* (*from 3*)

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)

- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)
- 6.In S_1 , something causes E (from 5)
- 7. In S_2 , nothing causes E (from 3)
- 8. The only differences between S_1 and S_2 are C and E (from 3 and 4)

Mill's Method of Difference

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)

- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)
- 6.In S_1 , something causes E (from 5)
- 7. In S_2 , nothing causes *E* (*from 3*)
- 8. The only differences between S_1 and S_2 are C and E (from 3 and 4)

Mill's Method of Difference

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)
- 3.We produce two situations S_1 and S_2 , in which neither C nor E occur and in which all causally relevant factors are the same. (*successful control*)
- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)
- 6.In S₁, something causes *E* (*from 5*)
- 7. In S_2 , nothing causes E (from 3)
- 8. The only differences between S_1 and S_2 are C and E (from 3 and 4)

Mill's Method of Difference

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)
- 3. We produce two situations S_1 and S_2 , in which neither C nor E occur and in which all causally relevant factors are the same. (successful control)
- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in We might fail to control all ation of differences) causally relevant factors
- 6.In S₁, something causes E (
- 7. In S_2 , nothing causes E (from 3)
- 8. The only differences between S_1 and S_2 are C and E (from 3 and 4)

Mill's Method of Difference

1.We ask: what causes phenomenon *E*?

```
We might fail to activate C in S_1, or and S_2, in which neither C nor E occur and in which an ease S_2, in which neither C nor E occur and in which an ease S_2, in which neither C nor E occur and in which are the same. (successful control)
```

- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)
- 6.In S₁, something causes *E* (*from 5*)
- 7. In S_2 , nothing causes E (from 3)
- 8. The only differences between S_1 and S_2 are C and E (from 3 and 4)

Mill's Method of Difference

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: *C* causes *E* (*hypothesis*)
- 3.We p We might be wrong in observing in which neither C nor E occur and in which a difference between S_1 and S_2 the same. (successful control)
- 4. We activate C in S_1 but not in S_2 . (successful intervention)
- 5. We observe that E occurs in S_1 but not in S_2 . Observation of differences
- 6.In S₁, something causes *E* (*from 5*)
- 7. In S_2 , nothing causes *E* (*from 3*)
- 8. The only differences between S_1 and S_2 are C and E (from 3 and 4)

Potential Sources of Error

Mill's Method of Difference

- 1.We ask: what causes phenomenon *E*?
- 2.We conjecture: C causes E (hypothesis)
- 3.We produce two situations S_4 and S_5 , in which neither C nor E occur and in which all causally relevant E we assume that E is caused, or that it is part of a deterministic system, or that it doesn't cause itself
- 5. We observe that E occurs in S_1 but not in S_2 . (observation of differences)
- 6.In S₁ something causes E (from 5)
- 7. In S_2 , nothing causes E (from 3)
- 8. The only differences between S_1 and S_2 are C and E (from 3 and 4)

Conclusion: C causes E

Summary

- Experiments are observational processes
- Experiments are characterised by manipulation, intervention, control and observation
- Experimental observations often offer a justification for accepting or rejecting a hypothesis
- The argument from experimental observation to causal claims is fallible: it might contain errors
- In order to minimize these potential errors we need to design experiments carefully

Distinguishing Experiments from other Empirical Practices

Observational studies

Edwin P. Hubble (1889–1953)

Observational studies

worker	w wage	h ₁ age	h ₂ education	x ₁ job type	p risk of injury	risk of death
1	\$3500	46	K-12	skilled	0.2	0.007
2	\$2775	28	K-8	office	0.05	0.0003
3	\$3000	32	B.S.	office	0.09	0.0002
n	\$2100	31	K-12	unskilled	0.4	0.01

Observation of *n* workers – more specifically of 6 properties of these workers

Observational studies

- no manipulation
- no intervention on target variable
- no control of background variable

Note: this relates to the example in the lecture. There can be control observational studies, see course literature.

Natural experiments

John Snow (1813 –1858)

Natural experiments

- no manipulation
- no intervention on target variable
- control of background variable (not achieved through manipulation)

Field Experiments

Maintain the same **found** conditions in both treatment and control group, varying only the intervention on the factor of interest.

Field experiments

- manipulation
- intervention on target variable
- control of background variable (not achieved through manipulation)

Laboratory Experiments

Construct the same background conditions in both treatment and control group (through manipulating the environment), varying only the intervention on the factor of interest.

Laboratory experiments

- manipulation
- intervention on target variable
- control of background variable, achieved through manipulation

Simulation Experiments

Construct a **representation** of a real system on a computer, and then perform various interventions on that representation

Simulation studies

- Manipulation of representations, not real variables
- intervention on representation
- control of background variable representations

Experiments: A Definition

An experiment is a *controlled observation* in which the observer *manipulates* the *real variables* that are believed to influence the outcome, both for the purpose of intervention and control.

Errors in Experiment

Failed Experiments?

The Michelson–Morley experiment (1887)

F

Productive "Failures"

"I haven't failed. I've found 10,000 ways that didn't work."

Thomas Edison (1847 –1931)

Non-productive Failures

 Experimental observations are powerful evidence only if the process is designed correctly

Non-productive Failures

- Experimental observations are powerful evidence only if the process is designed correctly
- Mill's *Method of Difference*: justifies conclusion only if assumptions about process are correct.

Non-productive Failures

- Experimental observations are powerful evidence only if the process is designed correctly
- Mill's *Method of Difference*: justifies conclusion only if assumptions about process are correct.
- Most important: all relevant factors are controlled

Failing to Control for a Relevant Factor

Jan Baptist van Helmont (1580 – 1644)

Failing to Control for a Relevant Factor

Observer Effect

旱

Failing to Control for a Relevant Factor

Confirmation Bias

Failing to Control for a Relevant Factor

Placebo Effect

Selection Bias

How to minimize bomber loss to enemy fire?

Answer 1: add armour to the areas that showed the *most* damage in returning aircraft

Damage density on returning aircraft

Selection Bias

How to minimize bomber loss to enemy fire?

Answer 1: add armour to the areas that showed the *most* damage in returning aircraft

Answer 2: add amour to areas that showed the *least* damage in returning wairs (reaft2—1950) because airplanes hit there do *not* return!

Internal Validity

The above errors compromise the process of experimentation:

- Control of background variable
- Intervention only on target variable
- Correct observation

Internal Validity

The above errors compromise the process of experimentation:

- Control of background variable
- Intervention only on target variable
- Correct observation

Only if such errors are absent can an experimental observation justify accepting or rejecting a hypothesis

In that case: conclusion from experimental observation are *internally valid*

Detecting Experimental Errors

Apply prior knowledge

- Theoretical knowledge
- Tacit experimenter's knowledge

Detecting Experimental Errors

Investigate previously performed experiments

- Repetition

An experiment is **repeatable** if there is enough information available about an experiment so that a competent person other than the original experimenter can repeat the experimental procedures

- Reproduction

An experimental result is **reproduced** if a competent repetition of the original experiment yields the same result

- Replication

An experimental result is **replicated** if a competent independent experiment, in the spirit of the original experiment, with independent data, analytical methods, laboratories, and instruments, yields the same result

How to implement experimental control?

Internal Validity

Experimental Control consists in

- accurately identifying the features that are relevant for an experimental result, and also
- in being able to influence these features in such a way that alternative explanations of the experimental result can be ruled out.

How to Influence/Control Relevant Features?

1. Divide experimental subjects/objects into treatment and control group

[Beginning at 0:42]

How to Influence/Control Relevant Features?

1. Divide experimental subjects/objects into treatment and control group

[Beginning at 0:52]

A before/after quasi-experiment

Using treatment & control groups

2. Holding things constant

- Finding situations with same background variables
- Constructing situations with same background variables

- Vacuum
- Faraday cage
- Outer space

Special case of elimination: Blinding

Special case of elimination: Blinding

 Single Blinding: Subjects do not know which treatment they are getting

Special case of elimination: Blinding

- Single Blinding: Subjects do not know which treatment they are getting
- Double Blinding: Experimenters do not know which treatments are administered to what subjects

4. Separating factors

4. Separating factors

Gravity Probe A experiment

Clock 2 is launched into space

[Beginning at 6:50]

4. Separating factors

Gravity Probe A experiment

4. Separating factors

Gravity Probe A experiment

4. Separating factors

Gravity Probe A experiment

4. Separating factors

Gravity Probe A experiment

Time dilation = difference clock 1 - (clock 1 -

- 1. Treatment/control group
- 2. Holding things constant
- 3. Elimination (& blinding)
- 4. Separation

Randomisation in Experiments

Randomised Controlled Trial (RCT)

厚

Randomised Controlled Trial (RCT)

Sample

Control group

Treatment group

Randomised Controlled Trial (RCT)

Importance of RCTs

"Hierarchy of Evidence"

Randomization eliminate selection bias

- Randomization eliminate selection bias
- Randomization helps convince others that you have not rigged the treatment/control division in favor of the outcome you want

- Randomization eliminate selection bias
- Randomization helps convince others that you have not rigged the treatment/control division in favor of the outcome you want
- Randomization facilitates blinding of the identity of treatments from investigators, participants, and assessors

Randomization helpful, but not necessary

- Avoid selection bias by other controlled assignment procedures
- Other controlled assignment procedures are also arguments against rigging selection
- Many other available blinding procedures that do not require randomization

Claim: Randomization ensures that background factors are equally distributed in treatment and control group

<u>Claim:</u> Randomization ensures that background factors are equally distributed in treatment and control group

Sample of objects with different pH values

<u>Claim:</u> Randomization ensures that background factors are equally distributed in treatment and control group

<u>Claim:</u> Randomization ensures that background factors are equally distributed in treatment and control group

Analogy: rolling a die

F

Debunking stronger claims for RCTs

<u>Claim:</u> Randomization ensures that background factors are equally distributed in treatment and control group

Analogy: rolling a die

Rolling it 10 times, a result like this should not be too surprising:

孠

Debunking stronger claims for RCTs

<u>Claim:</u> Randomization ensures that background factors are equally distributed in treatment and control group

孠

Debunking stronger claims for RCTs

Claim: Randomization ensures that background factors are equally distributed in treatment and

Claim: Randomization ensures that background factors are equally distributed in treatment and control group

• Any particular randomization might

- Any particular randomization might yield differing distributions in treatment and control
- Claim only true in infinite sequence
- But experimenters only randomize once, not repeatedly

Ronald Fisher 1890-1962

"Most experimenters on carrying out a random assignment will be shocked to find how far from equally the plots distribute themselves"

Fisher (1926)

Claim: Randomization ensures that background factors are equally distributed in treatment and control group

Any particular randomization might

- Any particular randomization might yield differing distributions in treatment and control
- Claim only true in infinite sequence
- But experimenters only randomize once, not repeatedly

Ronald Fisher 1890-1962

"Most experimenters on carrying out a random assignment will be shocked to find how far from equally the plots distribute themselves"

Fisher (1926)

1. Check for imbalances in known factors post-randomization

1. Check for imbalances in known factors post-randomization

2. Stratified randomization

 For those two balancing strategies, factors to be balanced need to be known

Consequence: randomization does not guarantee control of unknown factors

Transferring RCT Results

Result: e.g. average treatment effect (ATE): 50% increase in mean outcome in treatment vs. control group

Transferring RCT Results

Result: e.g. average treatment effect (ATE): 50% increase in mean outcome in treatment vs. control group

狊

Transferring RCT Results

Result: e.g. average treatment effect (ATE): 50% increase in mean outcome in treatment vs. control group

Summary

- Good reasons for randomization
- Randomizing not necessary for these objectives
- Randomization not a guarantee for control of known or unknown background factors
- RCT results cannot be generalized without further argument
- Good RCTs require background knowledge
- RCTs not better evidence in principle than other experiments