

Using Transformers in Image Classification

Zainab Mohammad Rajit Puzhakkarezhath Aviral Mehrotra Nicholas Chiu

Introduction

- Transformers were introduced in 2017 and have become widely used in NLP applications
- In 2021, vision transformers were adapted for computer vision applications

"AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE" http://arxiv-export-lb.library.cornell.edu/pdf/2010.11929

 Vision transformers (ViT) are scalable and outperform while still being relatively cheap to fine-tune

Problem

- Motivation: Image classification now typically uses a CNN, so what is the best moving forward?
- Goal: Build and train our own vision transformer model and compare it to CNN models (our own and ResNet50)
- Will our results show similarities with the original paper? What does this say about the performance and approach of using transformers in the domain of computer vision?

Dataset

- EuroSAT
 - 27,000 labelled 64x64 satellite images

Annual Crop

 Classified into 10 different land use classes (e.g. highway, forest, river, etc)

Herbaceous Vegetation

Using real map data as opposed to simpler images better reflects the viability of using transformers in image classification.

Forest

Approach

- First, we convert the images to pixel values.
- We then perform data augmentation and we take image patches and convert them to 1D sequences.
- Positional embeddings are added to these sequences.

Vision Transformer

Transformer Encoder

CNN Model

- 5-layer CNN as baseline to compare
 - 3x3 kernel
 - ReLU activation
 - MaxPooling
- Dropout of 10% to prevent overfitting

CNN Results

Vision Transformer Results

Evaluation

	Our CNN (25 epochs)	ResNet50 (25 epochs)	Vision Transformer (3 epochs)
Trainable Parameters	157,018	17,132,490	85,806,346
Time per Epoch	8-9s	22-23s	>=5000s (83 mins)
Validation Accuracy	87.20%	94.69%	98.46%
Validation Loss	0.4658	0.2988	0.0728

Lessons Learned

- The fundamental approach was to create an image classification problem by using image patches as tokens in a sequence, and then processing it with a transformer.
 - Need to be trained on large amounts of data
- ViT requires huge amounts of computational resources and time when training from scratch
 - Has the potential to beat other state-of-the-art CNN architectures with a more powerful machine and pretrained data

Future Work

- Current trends are suggesting a shift to the transformer architecture.
 - A study in June 2021 added a transformer backend to ResNet which reduced costs and increased accuracy.
 - Tesla is now also using transformers in its autopilot system.
- Future computer vision could move towards transformers instead of CNNs

Thank You!

Questions?