Matlab 2 – budowa modelu fotogrametrycznego

1. **Wykonanie transformacji afinicznej** do zamiany współrzędnych pikselowych na układ współrzędnych tłowych. Do wykonania tego zadania niezbędne jest wykonanie pomiaru na znaczkach tłowych (w układzie pikselowym) oraz współrzędnych punktów (w układzie tłowym, wczytywane z poliku tekstowego).

Równanie wykorzystywane do transformacji afinicznej:

$$X = X_0 + Ax$$

gdzie: X – wektor punktu P w układzie odniesienia, X₀ – wektor translacji, A – macierz obrotu.

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix} + \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

W celu rozwiązania układu równań liniowych należy zapisać układ równań poprawek:

	Α					
a_0	a_1	a_2	b_0	b_1	b_2	L
1	x_1	y 1	0	0	0	X_1
0	0	0	1	x_1	y 1	Y_1
1	X_2	Y_2	0	0	0	X_2
0	0	0	1	X_2	Y ₂	Y_2
•						•
	•					•
		•				•
			•			•
				•		•
					•	•
1	Xn	y n	0	0	0	X_n
0	0	0	1	\mathbf{x}_{n}	y n	Y_n

W celu wyznaczenia parametrów transformacji, należy rozwiązać równanie:

$$X_n = inv(A^T A) x A^T L$$

Dodatkowo należy wykonać tzw. analizę błędów:

- Wartości błędów na badanych punktach: $v = X_{pom} X_{wyr}$
- ullet Wartość błędu wyrównania: $m_0=\sqrt{rac{\sum vv}{(m-n)}}$, m liczba obserwacji, n liczba niewiadomych
- Wyznaczone parametry