Metabolic dysfunction is associated with alterations in gut microbiota in an obese adolescent cohort

Quin Xie

PhD candidate, Lab of Dr. Jayne Danska James Lepock Memorial Symposium 2024

Obesity: the emerging epidemic

NCD Risk Factor Collaboration (NCD-RisC), Lancet 390, 2627–2642 (2017) Wagenknecht et al, The Lancet Diabetes & Endocrinology 11, 242–250. (2023)

Role of gut microbiota (Mb) in obesity and metabolic dysfunction

de Wit et al., Sci. Transl. Med. 15, eadg2773 (2023)

Tilg et al., Nat. Rev. Immun. 20, 40-54 (2020)

Insulin resistance: HOMA-IR Caloric excess: Triglycerides

Glucose & fatty acid metabolic dysregulation

Relative and absolute quantification of microbiome sequencing

Obese adolescents at risk of Type 2 Diabetes

Inclusion criteria

- Age 12 18 years old
- Age- and sex-standardized BMI ≥97th percentile
- Median BMI = 39

Goal: to understand risk factors of metabolic dysfunction in obese adolescents

PBMC Plasma

Analysis of the gut microbiome of obese adolescents

Absolute bacteria abundance associated with gut microbiome diversity

bacterial diversity

bacteria taxa

Sex

Difference in absolute abundance: intrinsic to gut Mb or host influence

Bacterial biomass is a host-dependent feature

absolute abundance

Fecal biomass associated with gut microbiome variance

Sex associated with gut microbiome variance

Clustering of gut microbiome correspond to bacterial biomass

Clustering of gut microbiome from all individuals

Difference in cardiometabolic measures across microbiome clusters & sex

Insulin resistance

Sex p=0.0005, Cluster 2 p = 0.024, Cluster 3 p = 0.045, Sex-Cluster 2 interaction p = 0.002, Sex-Cluster 3 interaction p = 0.004

Plasma triglycerides

Sex p=0.0005, Cluster 2 p = 0.030, Cluster 3 p = 0.079, Sex-Cluster 2 interaction p = 0.0007, Sex-Cluster 3 interaction p = 0.004

Neutrophil activities associated with bacterial biomass

Neutrophil proteins associated with bacterial biomass in a sex-specific manner

Neutrophil activities associated with higher triglycerides in both sexes

Conclusions

- Multi-log order variation in bacterial biomass present in an obese adolescent cohort
- Absolute bacterial biomass revealed significant different in gut microbiome composition within the cohort, and association of gut microbiota cardiometabolic measures
- Association of bacterial biomass to cardiometabolic dysfunction and immune markers are sex-specific. In male participants, lower bacteria biomass associated with greater metabolic dysregulation & elevated systemic inflammation attributed to neutrophil activities

Acknowledgements

Danska Lab

Dr. Jayne Danska Alessandra de Paiva Granato Ildiko Grandal Lukasz Komorowski

Tiffany Kong
Sabrin Mishel
Anthony Wong
Christopher Yau

Graphics

Biorender

Centre for Advanced Single Cell Analysis at Sickkids

Dr. Cynthia Guidos Tina Chen

MI4D Study Group

Dr. Jill Hamilton on behalf of the Healthy Living Clinic

Allen-Vercoe Lab

Dr. Emma Allen-Vercoe

Committee Members

Dr. Andrew Paterson

Dr. Shane Harding

