Модели на софтуерни системи

доц. Олга Георгиева

СУ, ФМИ катедра "Софтуерни технологии"

Модели на софтуерни системи

Лекция 2:

Z нотация. Логики и доказателства

ФС - дефиниция

Формалната система се дефинира чрез два основни елемента:

- 1) **формален език (синтаксис)**: азбука + граматика
- 2) **система за извод/заключение (семантика)**: аксиоми + правила за извод,

Така можем да

- доказваме теореми;
- чрез доказателство, умозаключение.

Софтуерна нотация

Изграждането на ясна, точна спецификация е в основата на всяко формализирано описание.

Една формална спецификация би трябвало да описва голямо количество проза. Тя трябва да съпоставя математическите обекти към особеностите на проектираната система:

състояния на системата, структури от данни, техни свойства и операции с тях.

Z нотация - 1

Нотациите, в частност Z нотацията, се базират на две теории:

математическата логика и теорията на множествата

Математическите обекти и техните характеристики се събират в структури, наречени *схеми*. Езикът на *схемите* се използва за структурни и композиционни описания:

- събиране на части от информацията,
- формулиране на общи описания и
- доказателства, необходими при следващо приложение.

Езикът на схемите може да се използва за описание на:

- тип (данни)
- на състоянието на системата и начините
- за промяна на състояние.

Чрез схемите може да се изследват характеристиките на системата.

Z нотация - 2

• Z нотацията се базира на:

математическата логика и теорията на множествата

• Схеми - Начин на структуриране на математиката чрез "именувани" структури – записи с декларативна и ограничаваща част

• Изчисления със схеми

Математически оператори за построяване на по-големи схеми чрез по-малки

• Синтактични конвертори за целите на:

- описание на характеристиките/функциите на системата
- разсъждения с цел *пречистване* (refinements) на проектирането с цел достигне на формално описание, което е най-лесно и точно за програмиране.

Customer Information Control System (CICS)

 CICS е фамилия от продукти за банкови трансакции, която осигурява достъп до данни, комуникация, цялостност, сигурност т.е. управлява информация...Има около 30000 лиценза.

Производител: IBM UK Laboratories at Hursley Park.

История:

- от средата на 1970 регулярно обновяване на версиите
- началото на 80-те и академичната идея на Оксфорд (Tony Hoare)
- адаптация на формалния метод към индустриално приложение
- юни, 1989 първата версия на CICS, реализирана чрез Z.
- 1992 Награда за технологични постижения.

> B-notation (B method)

B is a tool-supported <u>formal method</u> based around <u>Abstract Machine Notation</u>. It was originally developed by <u>Jean-Raymond Abrial</u> in <u>France</u> and the <u>UK</u>. **B** is related to the <u>Z notation</u> and supports development of <u>programming language</u> code from specifications. It is attracting increasing interest in industry. It has robust, commercially <u>available tool support</u> for <u>specification</u>, <u>design</u>, <u>proof</u> and <u>code generation</u>.

Compared to Z, B is slightly more low-level and more focused on <u>refinement</u> to code rather than just <u>formal</u> <u>specification</u> — hence it is easier to correctly implement a specification written in B than one in Z.

Математическата логика

Две формални системи, които са в основата на

- Пропозиционна логика (Propositional logic)
- Предикатна логика (Predicate logic)

Основни методи за доказателство, използвани за тези системи

- Дедукция (Natural deduction)
- Доказателство чрез опровергаване (Proof by contradiction)
- Доказателство чрез анализ на случаи (Proof by case analysis)
- Разсъждение чрез равенства (Equational reasoning)

Пропозиционна логика: Твърдения (propositions)

Обхваща езика на логиката, **базирана на традиционните** (пропозиционни) твърдения.

Представя се рамката на мислене чрез твърдения: правила и условия за получаване на резултат/заключение.

Твърдението е изявление (изказване) за предполагаем факт. То е или вярно или невярно, но никога и двете.

Примери:

Портокалът е плод.

Картофът е плод.

Портокалите не са единствените плодове.

Паролата е осемзнакова символна поредица.

. . .

Твърденията могат да бъдат изразени по различни начини.

Пример:

Пет е по-голямо от четири

Четири е по-малко от пет

Пропозиционна логика: Съюзи

Твърденията могат да бъдат свързани с различни съюзи:

_	negation	not
^	conjunction	and
V	disjunction	or
⇒	implication	implies
\Leftrightarrow	equivalence	if and only if

Приоритет на операциите

Зад. Използвайки приоритета на операциите напишете еквивалентна скобова версия на израза ¬p ∧ q ∨ r ⇔ q ⇒ p ∧ r

Ome.
$$(((\neg p) \land q) \lor r) \Leftrightarrow (q \Rightarrow (p \land r))$$

С помощта на съюзите можем да изразим сложни твърдения:

- ¬(jaffa cakes are biscuits)
- Пример 1:
- your cat is rich ∧ your dog is good looking
- the economic recovery has started ∨ the minister is lying
- Jim is thirty-something ⇒ Jim is under forty
- Jim is thirty-something ⇔ Jim is under forty

Пример 2: Система за даване на бонуси ...

Пропозиционна логика: синтаксис

Език:

Азбука: { p, q, r, ..., \neg , $^{\wedge}$, v, \Rightarrow , \Leftrightarrow }

Граматика:

Ако няма двусмислие, обикновено скобите не се пишат.

Пропозиционна логика: семантика

Значението на пропозиционното изречение (wff) се дефинира като:

А) Всеки примитивен символ (**p**, **q**, **r**, ...) се интерпретира чрез твърдение, което се свързва със съответната си стойност на истинност.

Пр.: **р** - Днес е сряда.

Б) Истинността на сложните твърдения се дефинира единствено от истинността на отделните съставящи твърдения.

таблици на истинност

Конюнкция	
1 CHICH INCHIZE	

Дизюнкция

Импликация (ако-то)

Еквивалентност		
(тогава и само тогава		

р	q	$p \wedge q$
t	t	t
t	f	f
f	t	f
f	f	f

р	q	$p \vee q$
t	t	t
t	f	t
f	t	t
f	f	f

р	q	$p \Rightarrow q$
t	t	t
t	f	f
f	t	t
f	f	t

р	q	p ⇔ q
t	t	t
t	f	f
f	t	f
f	f	t

Зад.: Дайте пример за твърдение, което е нито истина, нито лъжа.

Отрицание

Специални случаи:

1. Някои твърдения винаги се интерпретират като верни: **тавтология** (tautology)

2. Някои твърдения винаги се интерпретират като неверни: **противоречие (contradiction)**

3. Твърдение, което е нито истина, нито лъжа (**contingency**) – например случайност

Примери:

Как може да докажете еквивалентност за следното твърдение?

$$(\neg p \Rightarrow p \land q) \Leftrightarrow p$$

Покажете:

b)
$$p \land (p => q) => q$$

Пр.

S1 и S2 – сигнали на железопътни релси;

Как можем да осигурим безопасност на движението?

отг: $(\neg (S1 ^ S2))$

Значение на доказателството

Повишава качеството на софтуера, защото:

- **изясняване на изискванията:** Процесът на конструиране на доказателства може да помогне в изясняването на системата, както и да идентифицира скритите допускания.
- при **проектирането**: доказателството може да покаже не само, че проектът е верен, но и да обясни защо е верен.
- в етапа на **изпълнение**: осигурява факта, че имплементираната част от кода се "държи" като нейната спецификация.
- то е приложима част при използване на формалните методи в практиката.
- note!: "The trick of using formal methods effectively is to know when proofs are worth doing and when they are not."

Основни методи за доказателство, използвани за тези системи

- Дедукция (Natural deduction)
- Доказателство чрез опровергаване (Proof by contradiction)
- Доказателство чрез анализ на случаи (Proof by case analysis)
 - Разсъждение чрез равенства (Equational reasoning)

Доказателство

• Пишем Р |= W , твърдението W е истина, когато твърденията от списъка Р са истина. **Тогава W е семантично следствие на Р**.

```
Зад. Докажете: (р ∧ q) |- (р v q)
```

Отговор:

```
p \wedge q premise

p \wedge - elimination

p \vee q \wedge - introduction
```

Съществуват различни стилове (техники) на доказателство.

Пропозиционни изчисления

За да завършим нашата система се нуждаем от множество от правила за извод (изчисления).

Представяне на правилата:

Ако можем да докажем тези факти Можем да направим заключение за тези факти

или

$$\frac{premiss_1}{conclusion}$$
 ... $\frac{premiss_n}{conclusion}$ [name]

Истинността на заключението е следствие на истинността на предпоставката!

Havum! The rules come in two flavours: the *op*-elimination rule and the *op*-introduction rule. Using *these rules to introduce and eliminate* different operators, we can start from a set of propositions, or hypotheses, and derive another proposition.

If the set of hypotheses is empty, then we call the derived proposition a theorem.

Пропозиционни изчисления – правила за заключение

Пр.: Конюнкция

$$\frac{p \quad q}{p \land q} \quad [\land -intro] \qquad \frac{p \land q}{p} \quad [\land -elim1] \qquad \frac{p \land q}{q} \quad [\land -elim2]$$

Дизюнкция – за "elim" използват се предположения

$$\frac{p}{p \vee q} \text{ [\vee-intro1]} \quad \frac{q}{p \vee q} \text{ [\vee-intro2]} \quad \frac{p \vee q}{r} \quad \frac{r}{r} \quad \text{[\vee-elim$^{[i]}$]}$$

Импликация (предпоставката е по-силна от следствието)

$$\frac{q}{p \Rightarrow q} [\Rightarrow -intro^{[i]}] \qquad \frac{p \Rightarrow q \quad p}{q} [\Rightarrow -elim]$$

Пропозиционни изчисления – правила за заключение

Три правила за заключение за отрицанието:

$$\frac{[p]^{[i]}}{false} = \frac{p \neg p}{false} [\neg -elim] = \frac{[\neg p]^{[j]}}{p} = \frac{false}{p} [false - elim^{[j]}]$$

Тавталогията а ⇔ b кореспондира с две правила за извод:

$$\frac{b}{a} [a \Leftrightarrow b] \qquad \frac{a}{b} [a \Leftrightarrow b]$$

1. Доказателство чрез Дедукция

Доказателството се конструира отзад напред - използва се формулираната цел, за да се избере подходящо правилото за извод.

 Πp : if have to prove $\mathbf{p} \Rightarrow \mathbf{q}$, then reach for \Rightarrow -introduction

Пр. Докажете, че **р ^ q ⇔ q ^ р**. т.е. можем да получим

Много от правилата за заключение на Дедукцията са по-добре познати като техника за доказателство, с която те се асоциират:

=> - elimination = modus ponens

правило:

- \neg introduction = proof by contradiction (assume that the conclusion is not true and derive something that we know to be false Modus Tollens)
 - v elimination = proof by cases (break proof in to separate parts and then combine)

2. Доказателство чрез разглеждане на различни случаи

Стил: Прекъсваме доказателството на части, които след това комбинираме.

p е предположение, което може да бъде направено, за да докажем r.

Зад. Да се докаже, че дизюнкцията е комутативна т.е. **р v q ⇔ q v p**:

$$\frac{p \vee q}{q \vee p} \frac{\lceil p \rceil^{[1]}}{\lceil q \vee p \rceil} [\vee -\text{intro2}] \frac{\lceil q \rceil^{[1]}}{q \vee p} [\vee -\text{intro1}]}{q \vee p} [\vee -\text{elim}^{[1]}]$$

Специални форми: Case analysis

Derives from the rule for v-elimination

Find the cases **p** and **q** such that p **v** q holds. Then show that r holds in each case $\mathbf{p} \Rightarrow \mathbf{r}$ and $\mathbf{q} \Rightarrow \mathbf{r}$. The justication of this proof technique relies on this property of implication:

$$(p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q \Rightarrow r)$$
 Case Analysis

Notice the common and simpler version of this property when $\mathbf{q} \equiv \mathbf{p}$:

$$(p \Rightarrow r) \land (\neg p \Rightarrow r) \equiv r$$
 Simple Case Analysis

This proof technique generalizes to a case analysis of more than two cases in the obvious way

•Example:

show
$$|a| > 0$$
,

where
$$|a| = a$$
 if $a > 0$, and $|a| = -a$ if $a < 0$

3. Доказателства чрез еквивалентност/равенства

• Ще използваме и доказателство чрез равенства ("equational reasoning"). Техниката е много обща и с широко приложение:

"Equations are often a natural way of expressing mathematical knowledge and lie at the heart of a class of formal specification methods for software known as *algebraic specification*.

The properties of the equality relation allow us to reason by **'replacing equals by equals'**, a very powerful and general technique." (οτ "Using Z")

• Съществуват и други стилове. Много от тях се изграждат на базата на конкретно практическо правило за извод (заключение).

3. Доказателство чрез равенство/еквивалентност

Увеличаваме символите на нашата формална система с още един:

Две изречения са еквивалентни (≡), ако и само ако имат равна стойност на истинност при всяка интерпретация.

Съществуват различни свойства на еквивалентността. Те могат да бъдат използвани при доказателства, реализирани чрез еквивалентност. Тези свойства включват комутативност, асоциативност и дистрибутивност на операциите, закони на Де Морган, закон за двойното отрицание.

Зад. Докажете чрез еквивалентности: ¬ (р ^ ¬q) ≡ (q \lor ¬р)

Д-во:
$$\neg (p \land \neg q)$$
 $\equiv DeMorgan$
 $\neg p \lor \neg \neg q$
 $\equiv Double Negation$
 $\neg p \lor q$
 $\equiv Commutative$
 $q \lor \neg p$

Qn: Why won't this form of proof work for all theorems?

Връзка между синтактичната и семантичната област

- Пропозиционното изчисление е последователно ако:
 - Всичко, което може да се докаже, е валидно/вярно:
 - Ако $P \mid -W$, то $P \mid = W$
- Пропозиционното изчисление е *пълно* (*цялостно*) ако:
 - Всичко, което е валидно, може да бъде доказано чрез правила за извод:
 - Ако P = W, то P W
- Това ни позволява да преминаваме от единия в другия "свят".
- Практически можем да заместваме ⇔ с ≡ .

За да покажем $| - P \equiv Q$ можем да демонстрираме $| = P \equiv Q$

Предикатна логика (Predicate logic)

Езикът на пропозиционната логика ни позволява да формулираме твърдения за специфични обекти, но не ни дава възможност да формализираме изказвания от типа: "Всеки портокал е оранжев". Тази формализация не разкрива вътрешната структура на твърдението.

Пр. Примери за универсални твърдения:

- Всеки студент има факултетен номер.
- Each student must hand in course work.
- Nobody knows the trouble I seen.
- Jim doesn't know anybody who can sign his bail application.

Пр. Примери за екзистенциални твърдения

- I heard it from one of your friends.
- A mad dog has bitten Andy.
- Some people prefer logic.

Предикатна логика - формализация

Универсални твърдения - описват характеристика(и) на всеки обект от разглежданото множество. Заявяваме, че всички елементи от дадено множество **S** удовлетворяват свойство **P**.

Пр. Ако S == {Larry, Joe, Moe} искаме да заявим, че всички елементи на S са актьори, то:

(Larry is a stooge) ^ (Joe is a stooge) ^ (Moe is a stooge) (stooge – актьор, клоун)

Алтерантивно:

създаваме шаблон (template): Stooge()

Stooge(Larry)[^] Stooge (Joe)[^] Stooge (Moe)

Тогава:

Stooge() се нарича ПРЕДИКАТ.

Предикатна логика - формализация

За големи множества това записване е трудно (или невъзможно).

Алтернативно използваме съкращение от вида:

1) Универсално твърдение:

 $\forall x : S \bullet Stooge(x)$

което е съкращение на

Stooge(x1) ^ Stooge(x2) ^ Stooge(x3) ^ ...

Предикатна логика - формализация

Екзистенциални твърдения: съществуването на елемент от множество **S**, който удовлетворява/притежава качество **P**:

2)
$$\exists x : S \bullet P(x)$$

което е съкращение на

Предикатите могат да се разглеждат като булеви функции: когато се приложат към аргумент връщат стойност истина или лъжа.

Предикатите могат да имат *n* аргумента.

$$\Pi p$$
: P(x, y, z)

Предикатна логика: Синтаксис

Азбука: Включва елементите на пропозиционната логика, но допълнително и определителите ∀ ∃ и • .

- ∀ универсален определител,
- ∃ екзистенциален определител;

Граматика:

Забележка. ! Изразите използват знака • .

Гнездови определители

$$\forall$$
 x:A • (\forall y:B • (\exists z:C • P(x,y,z)))

- обикновено се пропускат скобите,
- комбинират се близките променливи с някой определител и тогава:

Определители и декларации в Z нотацията

В Z нотацията двата типа определители имат подобен синтаксис:

 $\Theta x : a \mid p \bullet q$

където

- Θ определител (∀ или ∃)
- х ограничена променлива
- а обхват на х
- р ограничение
- **q** предикат

The existentially quantified predicate

$$\exists x: a \mid p \bullet q$$

is pronounced 'there exists an x in a satisfying p, such that q'. The universally quantified predicate

$$\forall x: a \mid p \bullet q$$

is pronounced 'for all x in a satisfying p, q holds'.

The optional constraint p restricts the set of objects under consideration; only those objects in a that satisfy p are to be considered. The constraint takes on the role of a conjunction or an implication, depending upon the quantifier concerned, as may be seen from the following equivalences:

$$(\exists x : a \mid p \bullet q) \Leftrightarrow (\exists x : a \bullet p \land q)$$
$$(\forall x : a \mid p \bullet q) \Leftrightarrow (\forall x : a \bullet p \Rightarrow q)$$

Пример:

Let *Friends* stand for the set of all your friends, and let *x* told *y* mean that *x* has told *y*.

```
\exists f: Friends • f told me
```

Предикатна логика: Семантика

Включва повече отколкото пропозиционната логика. Основната идея:

- $\forall x \bullet P(x)$ is true iff P is true of all values of x,
- $\exists x \bullet Q(x)$ is true iff Q is true for some value of x

Предикатна логика: Изчисления

- Въвеждат се дедуктивни правила за въвеждане (intro) и елиминиране (elim) аналогично на пропозиционната логика:
- може да се използва дедуктивния стил като се предполага, че ${\bf q}$ е валидно за произволен елемент от ${\bf a}$

Пр. За универсалния определител

За екзистенциалния определител:

$$\frac{t \in a \quad p[t/x] \quad q[t/x]}{\exists \, x : a \mid p \bullet q} \quad [\exists -\text{intro}]$$

Равенство (еднаквост)

Въвеждаме един нов символ на Предикатната логика ": = ", който да представи факта, че два обекта са еднакви.

Това е еквивалентно да имаме отделен (специален) предикат "equals", но ние използваме по-общото означение.

Нови правила: към нашия дедуктивен апарат за доказателство.

Най-важното от тях е:

Заместване (Substitution rule): Ако m=n, то валидното за n е валидно и за m.

$$m = n, S(n)$$
$$S[m/n]$$

Примери:

$$(x \le y + 2)[0/x] \Leftrightarrow (0 \le y + 2)$$

$$(\exists x : \mathbb{N} \bullet x \le y + 2)[5/y] \Leftrightarrow (\exists x : \mathbb{N} \bullet x \le 5 + 2)$$

The one-point rule

Идеята за равенство позволява да се манипулира екзистенциалния определител.

Ако идентичността на две променливи е показана, то в рамките на определителя може да се заместят всички стойности на тази променлива, а определителят да се премахне.

Ako $\exists x : a \cdot p \land x = t$, **то one-point rule** води до следния еквивалентен израз:

$$(\exists x : a \cdot p \wedge x) = t \Leftrightarrow t \in a \wedge p[t/x]$$

Полза:

- ако знаем, че обектът x съществува с определена характеристика p и ако сме идентифицирали x като t, то правим заключение, че p е характеристика и на t.
- по този начин се премахва променливата и екзистенциалния определител без да променяме силата на предиката. (опростяване на израза)

Пр. Предикатът

$$\exists n : N \cdot 4 + n = 6 \land n = 2$$
 е еквивалентен на $2 \in N \land 4 + 2 = 6$