Math 30, Wednesday April 8, 2020 I pm class Worksheet on Concavity, etc.

See today 5 G	Juiz on Related Rates
due by	1:59 pm
	at night
Questions?	
	circular cylinder
I'll grade quizzes	
toly & tomorrow	

MATH 30, 4/7-8/2020: WORKSHEET ON FIRST AND SECOND DERIV.S

(1) Discuss the graph of $f(x) = x^4 - 4x^3$ with respect to concavity, points of inflection, and local maxima and minima. You can use the picture below, but check your answers using calculus.

(2) Sketch the graph of a function satisfying the following conditions:

Now f'(0) = f'(2) = f'(4) = 0, f'(x) > 0 if x < 0 or 2 < x < 4, f''(x) > 0 if 1 < x < 3, f''(x) < 0 if x < 1 or x > 3.

(3) For the following functions, find the intervals on which f is increasing or decreasing. Find the local maxima and minima of f. Find the intervals of concavity and the inflection points. Then make a rough sketch of the graph.

(a)
$$f(x) = 4x^3 + 3x^2 - 6x + 1$$

(b)
$$g(x) = \sin x + \cos x$$
 for $0 \le x \le 2\pi$.

(c)
$$h(x) = x^4 e^{-x}$$
.

(d)
$$p(x) = 2 + 2x^2 - x^4$$
.

(4) Find the local maxima and minima of $f(x) = \frac{x^2}{x-1}$ using both the First Derivative Test ("Increasing/Decreasing") and the Second Derivative Test ("Concavity"). Which do you prefer?

#[,
$$f(x) = x^4 - 4x^3$$
.

Try day without The proph.

To see where incr. (decr: use $f'(x)$)

 $f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$

contical pts: $x=0$ and $x=3$?

when $x<3$: $f'(x) = 4x^2(x-3) \le 0$

Positive negative decreasing on $(-\infty,0)$

when $x>3$:

 $f'(x) = 4x^2(x-3) > 0$ where $f'<0$

105. pos.

So f is decreasing on $(3,\infty)$ This agrees of the on $(3,\infty)$ graph

MATH 30, 4/7-8/2020: WORKSHEET ON FIRST AND SECOND DERIV.S

(1) Discuss the graph of $f(x) = x^4 - 4x^3$ with respect to concavity, points of inflection, and local maxima and minima. You can use the picture below, but check your answers using calculus.

$$f'(0) = f'(2) - f'(4) = 0,$$

$$f'(x) > 0$$
 if $x < 0$ or $2 < x < 4$,

$$f'(x) < 0 \text{ if } 0 < x < 2 \text{ or } x > 4,$$

$$f''(x) > 0 \text{ if } 1 < x < 3,$$

$$f''(x) < 0 \text{ if } x < 1 \text{ or } x > 3.$$

(3) For the following functions, find the intervals on which f is increasing or decreasing. Find the local maxima and minima of f. Find the intervals of concavity and the inflection points. Then make a rough sketch of the graph.

(a)
$$f(x) = 4x^3 + 3x^2 - 6x + 1$$

(b)
$$g(x) = \sin x + \cos x$$
 for $0 \le x \le 2\pi$.

(c)
$$h(x) = x^4 e^{-x}$$
.

(d)
$$p(x) = 2 + 2x^2 - x^4$$
.

(4) Find the local maxima and minima of $f(x) = \frac{x^2}{x-1}$ using both the First Derivative Test ("Increasing/Decreasing") and the Second Derivative Test ("Concavity"). Which do you prefer?

#(cont'd.
$$f(x) = x^4 - 4x^3$$
 $f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$

for concervity:

 $f''(x) = (2x^2 - 24x = 12x(x-2))$

for $x < 0$: $f''(x) = 12x(x-2) > 0$

neg neg

so: f is concerve up

on $(-\infty, 0)$

for $0 < x < 2$: $f''(x) = 12x(x-2) < 0$

pos new

so: f is concerve down on $(0, 2)$
 f is concerve up on $(2, \infty)$
 f is concerve up on $(2, \infty)$

MATH 30, 4/7-8/2020; WORKSHEET ON FIRST AND SECOND DERIV.S

(1) Discuss the graph of $f(x) = x^4 - 4x^3$ with respect to concavity, points of inflection, and local maxima and minima. You can use the picture below, but check your answers using calculus.

Concare

(2) Sketch the graph of a function satisfying the following conditions:

$$f'(0) = f'(2) = f'(4) = 0,$$

$$f'(x) > 0$$
 if $x < 0$ or $2 < x < 4$,

$$f'(x) < 0 \text{ if } 0 < x < 2 \text{ or } x > 4,$$

$$f''(x) > 0$$
 if $1 < x < 3$,

$$f''(x) < 0 \text{ if } x < 1 \text{ or } x > 3.$$

functions, find the intervals on which f is increasing or decreasing. Find local maxima and minima of f. Find the intervals of concavity and the inflection points.

Then make a rough sketch of the graph. $(x) = 4x^3 + 3x^2 - 6x + 1$ $(x) = 4x^3 + 3x^2 - 6x + 1$

(b) $g(x) = \sin x + \cos x$ for $0 \le x \le 2\pi$.

(b)
$$g(x) = \sin x + \cos x$$
 for $0 \le x \le 2\pi$.

c)
$$h(x) = x^4 e^{-x}$$
. 15 **ello**

(c) $h(x) = x^{4}e^{-x}$. Is also, from $(-\infty, 3)$

(d)
$$p(x) = 2 + 2x^2 - x^4$$
.

ina, from

(4) Find the local maxima and minima of $f(x) = \frac{x^2}{x-1}$ using both the First Derivative Test ("Increasing/Decreasing") and the Second Berivative Post (Concavity). When do you prefer?

Another may to find local max/min: Find coit pB. Here: x = 0,3 $f''(x) = (2x^2 - 24x = 12x(x-2))^{n/2}$ dug ont pts mto f": f''(0) = 0 no intermation f''(3) = 36 > 0Tso f is concare up Dene so f has
a local min x=3 (1) = O and f"(3) > 0

Method for finds local max min usly concavity: First find coit. pts (where f'=0) tang, line is honzontal Then play cont. pts into f": if f'(c)>0: concave up and tang, line is honz. So it looks like /ocal if f'(c)<0: concave down

and tangline is horiz

so it bots like:

begin wax

MATH 30, 4/7-8/2020: WORKSHEET ON FIRST AND SECOND DERIV.S

(1) Discuss the graph of $f(x) = x^4 - 4x^3$ with respect to concavity, points of inflection, and local maxima and minima. You can use the picture below, but check your answers using calculus.

(2) Sketch the graph of a function satisfying the following conditions:

$$f'(0) = f'(2) = f'(4) = 0,$$

$$f'(x) > 0$$
 if $x < 0$ or $2 < x < 4$,

$$f'(x) < 0 \text{ if } 0 < x < 2 \text{ or } x > 4,$$

$$f''(x) > 0 \text{ if } 1 < x < 3,$$

$$f''(x) < 0 \text{ if } x < 1 \text{ or } x > 3.$$

(3) For the following functions, find the intervals on which f is increasing or decreasing. Find the local maxima and minima of f. Find the intervals of concavity and the inflection points. Then make a rough sketch of the graph.

(a)
$$f(x) = 4x^3 + 3x^2 - 6x + 1$$

(b)
$$g(x) = \sin x + \cos x$$
 for $0 \le x \le 2\pi$.

(c)
$$h(x) = x^4 e^{-x}$$
.

(d)
$$p(x) = 2 + 2x^2 - x^4$$
.

#4,

(4) Find the local maxima and minima of $f(x) = \frac{x^2}{x-1}$ using both the First Derivative Test ("Increasing/Decreasing") and the Second Derivative Test ("Concavity"). Which do you prefer?

#4.
$$f(x) = \frac{x^2}{x-1}$$

Thy stetchis the graph using incr black.

and concernity.

 f' tells us where f is incr. or decy:

 $f'(x) = \frac{2x(x-1)-x^2}{(x-1)^2}$ (Quotient Rule)

 $= \frac{x^2-2x}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}$

note: $\lim_{x\to 1^+} f(x) = \frac{1}{x^2-1} = -\infty$
 $\lim_{x\to 1^+} f(x) = \frac{1}{x^2-1} = -\infty$

$$f'(x) = \frac{x(x-2)}{(x-1)^2} \left(= \frac{x^2-2x}{(x-1)^2} \right)$$
for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x < 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x > 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x > 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x > 0$: $f' > 0$ $\frac{x^2-2x}{(x-1)^2}$

for $x > 0$: $\frac{x^2-2x}{($

$$f(x) = \frac{x}{x-1}$$
we found: $\lim_{x\to 1^-} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = +\infty$

$$f(x) = \frac{x}{x-1}$$

$$f(x) = \frac{x}{x-1}$$

$$f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = +\infty$

$$f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = +\infty$

$$f(x) = \frac{x}{x-1}$$

$$f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = +\infty$

$$f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = +\infty$

$$f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = +\infty$

$$f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = +\infty$

$$f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = +\infty$

$$\lim_{x\to 1^+} f(x) = -\infty$$
, $\lim_{x\to 1^+} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = +\infty$.

Summary
$$f(x) = \frac{x^2}{x-1}$$
we found: $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to 1^+} f(x) = +\infty$

$$f(x) = \frac{x^2}{x-1}$$
we found: $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to 1^+} f(x) = +\infty$

$$f(x) = \frac{x^2}{x-1}$$
we found: $\lim_{x \to 1^-} f(x) = -\infty$, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^-} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^-} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$
, $\lim_{x \to 1^+} f(x) = +\infty$

$$\lim_{x \to 1^+} f(x) = -\infty$$

I did all That with calculus—
no computer.

For fun: compare vo/computer
graph:

Check concavity:

$$f(x) = \frac{x^{2}}{x-1}$$

$$f'(x) = \frac{x^{2}}{(x-1)-x^{2}} = \frac{x^{2}-2x}{(x-1)^{2}}$$

$$f''(x) = \frac{(2x-2)(x-1)^{2}-2(x-1)x(x-2)}{(x-1)^{4}}$$
added
$$= \frac{2(x-1)^{3}-2x(x-1)(x-2)}{(x-1)^{4}}$$
where $f''(x) = \frac{x^{2}-2x}{(x-1)^{2}}$
where $f''(x) = \frac{x^{2}-2x}{(x-1)^{2}}$
where $f''(x) = \frac{x^{2}-2x}{(x-1)^{2}}$
concave down.

Added lotter;
$$f''(x) = 2(x-1)^3 - 2x(x-1)(x-2)$$

$$(x-1)^4$$

$$= \frac{2(x-1)[(x-1)^{2}-x(x-2)]}{(x-1)^{4}}$$

$$= \frac{2(x-1)[x^2-2x+1-x^2+2x]}{(x-1)^{y}}$$

$$= 2(1) = 2 - (x-1)^3$$

That's all for today!

Please him in quiz

Ly 11:59pm

Goodbye!