

# Objectifs

Seattle ville neutre en 2050, pour cela il faut anticiper la consommation d'énergie totale et les émissions en CO2 des bâtiments non destinés à l'habitation

Evaluer l'intérêt de l'ENERGY STAR Score sur la prédiction



## Jeu de données

- Le jeu de données présente 3376 lignes et 46 colonnes

Soit 3376 bâtiments et 46 variables qui contiennent des informations sur les bâtiments:

- Variables d'identification et de localisation
- Variables de dimensions et d'utilisation
- Variables de consommations et d'émissions



# Nettoyage des données

Sélection des variables d'intérêts

Filtrage des types de bâtiments

Traitement des valeurs manquantes présentes dans les targets

- Les variables d'identification et localisation
- Les types d'utilisation
- Surface totale et pour différente utilisation
- Les variables cibles, la consommation totale et les émissions de CO2

 Suppressions des bâtiments destinées à l'habitation tels que les logements.

- Suppressions des valeurs manquantes pour les targets et imputation par une variable 'NotOtherUse' pour les variables catégorielles

3376 lignes 46 Colonnes 1618 lignes 32 colonnes



#### Création de variables





# Analyse

## Répartition de la catégorie 'PrimaryPropertyType'





#### • Corrélation de Pearson entre les variables quantitatives

| Tableau de corrélation de Pearson |                 |                     |                   |          |                   |                |                  | - 1.00     |                |               |              |              |             |  |                |
|-----------------------------------|-----------------|---------------------|-------------------|----------|-------------------|----------------|------------------|------------|----------------|---------------|--------------|--------------|-------------|--|----------------|
| ENERGYSTARScore                   | 1               | -0.08               | -0.11             | 0.04     | -0.04             | 0.12           | 0.13             | 0.04       | 0.06           | 0.02          | -0.08        | 0.01         | -0.01       |  | - 1.00         |
| SiteEnergyUse(kBtu)               | -0.08           | 1                   | 0.86              | -0.06    | 0.71              | 0.22           | 0.81             | 0.08       | 0.02           | 0.12          | 0.15         | -0.05        | 0.05        |  | - 0.75         |
| TotalGHGEmissions                 | -0.11           | 0.86                | 1                 | -0.05    | 0.42              | 0.13           | 0.53             | 0.05       | 0.07           | 0.13          | 0.21         | -0           | 0           |  |                |
| YearsOld                          | 0.04            | -0.06               | -0.05             | 1        | 0.03              | -0.09          | -0.1             | -0.05      | 0.01           | -0.1          | 0.04         | 0.34         | -0.34       |  | - 0.50         |
| NumberofBuildings                 | -0.04           | 0.71                | 0.42              | 0.03     | 1                 | -0.02          | 0.74             | -0.04      | 0.04           | -0.03         | -0.02        | 0.02         | -0.02       |  | - 0.25         |
| NumberofFloors                    | 0.12            | 0.22                | 0.13              | -0.09    | -0.02             | 1              | 0.4              | 0.22       | -0.07          | 0.09          | 0.02         | -0.19        | 0.19        |  | 0.20           |
| PropertyGFATotal                  | 0.13            | 0.81                | 0.53              | -0.1     | 0.74              | 0.4            | 1                | 0.13       | -0.05          | 0.08          | 0.03         | -0.13        | 0.13        |  | - 0.00         |
| NumberUses                        | 0.04            | 0.08                | 0.05              | -0.05    | -0.04             | 0.22           | 0.13             | 1          | -0.47          | 0.66          | 0.55         | -0.24        | 0.24        |  |                |
| %LargestUseGFA                    | 0.06            | 0.02                | 0.07              | 0.01     | 0.04              | -0.07          | -0.05            | -0.47      | 1              | -0.4          | -0.31        | 0.27         | -0.27       |  | 0.25           |
| %SecondUseGFA                     | 0.02            | 0.12                | 0.13              | -0.1     | -0.03             | 0.09           | 0.08             | 0.66       | -0.4           | 1             | 0.41         | -0.26        | 0.26        |  | <b>-</b> -0.50 |
| %ThirdUseGFA                      | -0.08           | 0.15                | 0.21              | 0.04     | -0.02             | 0.02           | 0.03             | 0.55       | -0.31          | 0.41          | 1            | -0.05        | 0.05        |  |                |
| %BuildingGFA                      | 0.01            | -0.05               |                   | 0.34     | 0.02              | -0.19          | -0.13            | -0.24      | 0.27           | -0.26         | -0.05        | 1            | -1          |  | <b>-</b> -0.75 |
| %ParkingGFA                       | -0.01           | 0.05                | 0                 | -0.34    | -0.02             | 0.19           | 0.13             | 0.24       | -0.27          | 0.26          | 0.05         | -1           | 1           |  |                |
|                                   | ENERGYSTARScore | SiteEnergyUse(kBtu) | TotalGHGEmissions | YearsOld | NumberofBuildings | NumberofFloors | PropertyGFATotal | NumberUses | %LargestUseGFA | %SecondUseGFA | %ThirdUseGFA | %BuildingGFA | %ParkingGFA |  | <b>-</b> -1.00 |





# Méthodologie





# Pré-traitement des variables

## Transformation log pour les valeurs cibles





# Normalisation et encodage

Normalisation avec Standard Scaler

Permet de réaliser une mise à l'échelle afin que les données soient centrées à 0 avec un écart type de 1





• Encodage avec One Hot Encoder

| PrimaryPropertyType |  |  |  |  |
|---------------------|--|--|--|--|
| Warehouse           |  |  |  |  |
| Other               |  |  |  |  |
| Hotel               |  |  |  |  |
| Large Office        |  |  |  |  |
|                     |  |  |  |  |

One Hot Encoder

| Warehouse | Other | Hotel | Large Office |  |
|-----------|-------|-------|--------------|--|
| 1         | 0     | 0     | 0            |  |
| 0         | 1     | 0     | 0            |  |
| 0         | 0     | 1     | 0            |  |
| 0         | 0     | 0     | 1            |  |



# MSE, RMSE et R<sup>2</sup>

#### - MSE:

Moyenne des distances euclidiennes entre les valeurs réelles et les valeurs prédites.

#### - RMSE:

Racine carrée de la moyenne des distances euclidiennes entre les valeurs réelles et les valeurs prédites.

L'erreur moyenne sur le log de la valeur cible

#### - R<sup>2</sup> (Coefficient de Corrélation):

somme des distances euclidiennes entre valeurs prédites et valeurs réelles divisé par la somme des distances euclidiennes entre valeurs réelles et moyenne.

La capacité de la prédiction à expliquer la variance réelle (sur le log).



# Test des différents modèles

- Les modèles qui vont être tester:
  - Régression Ridge
  - Régression Lasso
  - Régression Elastic Net
  - kNN Regressor
  - Suport Vector Regressor
  - XGBoost Regressor
  - LightGBM Regressor
  - Random Forest Regressor





# **Cross Validation**





## Comparaison des modèles pour la consommation d'énergie





## Comparaison des modèles pour l'émission de CO2





#### Consommation d'énergie

|                | R² Train | R² Test   |
|----------------|----------|-----------|
| Ridge          | 0.303815 | -0.728460 |
| Lasso          | 0.304169 | -0.700649 |
| Elastic Net    | 0.303641 | -0.735701 |
| kNN Regressor  | 0.422469 | 0.362411  |
| SVR            | 0.360211 | 0.322745  |
| XGB Regressor  | 0.445751 | 0.373037  |
| LGBM Regressor | 0.405397 | 0.354933  |
| RF Regressor   | 0.592719 | 0.297099  |

- Problème d'overfitting pour certains modèles
- Comportement sur le test set

#### Emission C02

|                | R² Train | R² Test  |
|----------------|----------|----------|
| Ridge          | 0.402866 | 0.361437 |
| Lasso          | 0.078094 | 0.061417 |
| Elastic Net    | 0.010933 | 0.007445 |
| kNN Regressor  | 0.479059 | 0.412488 |
| SVR            | 0.593057 | 0.524511 |
| XGB Regressor  | 0.585509 | 0.538961 |
| LGBM Regressor | 0.594466 | 0.508146 |
| RF Regressor   | 0.734652 | 0.476599 |

- Pas d'overfitting
- Comportement sur le test set



# Nouveaux tests avec l'ENERGYSTAR Score



## **Consommation énergie**





## **Emission CO2**





#### Consommation d'énergie

|                | R² Train | R² Test  |
|----------------|----------|----------|
| Ridge          | 0.303395 | 0.244833 |
| Lasso          | 0.153382 | 0.141042 |
| Elastic Net    | 0.209925 | 0.172316 |
| kNN Regressor  | 0.635795 | 0.658304 |
| SVR            | 0.390350 | 0.410527 |
| XGB Regressor  | 0.967926 | 0.823031 |
| LGBM Regressor | 0.814276 | 0.761886 |
| RF Regressor   | 0.884349 | 0.847370 |

- Pas d'overfitting
- Comportement sur le test set

#### Emission C02

|                | R² Train | R² Test  |
|----------------|----------|----------|
| Ridge          | 0.423086 | 0.372486 |
| Lasso          | 0.066071 | 0.046992 |
| Elastic Net    | 0.014402 | 0.008995 |
| kNN Regressor  | 0.530612 | 0.403665 |
| SVR            | 0.649610 | 0.535243 |
| XGB Regressor  | 0.635468 | 0.557803 |
| LGBM Regressor | 0.631510 | 0.533800 |
| RF Regressor   | 0.754852 | 0.533090 |

- Pas d'overfitting
- Comportement sur le test set



# Choix du modèle

Pour la prédiction de la consommation d'énergie: Random Forest Regressor

Pour la prédiction de l'émission de C02: XGB Regressor



# Validation et Prédictions

**XGB** Regressor

 $R^2 = 0.56$ 

MSE = 1,01

RMSE = 1



**Random Forest Regressor** 

 $R^2 = 0.84$ 

MSE = 0.48

RMSE = 0,69





# FEATURES IMPORTANCES

**Consommation énergie** 











### **Emission CO2**











# Conclusion

- Prédiction satisfaisante mais lente pour la consommation d'énergie
- Prédiction décevante concernant l'émissions CO2
- L'ENERGYSTAR Score améliore les prédictions

MERCI DE VOTRE ATTENTION

