ΕΠΑΝΑΛΗΨΗ

8 Μαΐου 2015

ΑΛΓΕΒΡΑ

ΑΣΚΗΣΕΙΣ

1. Να βρεθούν τα αναπτύγματα από τις παρακάτω ταυτότητες.

i.
$$(x+3)^2$$

v.
$$\left(\frac{x}{2} - 1\right)^2$$

viii.
$$(3x + 4)^3$$

ix. $(4x - y)^3$

ii.
$$(x + 2y)^2$$

vi.
$$\left(\frac{3}{x} - \frac{x}{3}\right)^2$$

$$x. (x+5)(x-5)$$

iii.
$$(4x + 3y)^2$$

iv. $(x^2 - 4x)^2$

vii.
$$(x + 2)^3$$

xi.
$$(7x + 2y)(7x - 2y)$$

xii. $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$

2. Να παραγοντοποιηθούν οι παρακάτω παραστάσεις

i.
$$3x^2 - 6x$$

v.
$$y^2 - 49$$

ix.
$$-4 + 4x^2 - 3y + 3x^2y$$

x. $9 - 9x^2 - y^2 + x^2y^2$

i.
$$3x^2 - 6x$$
 v. $y^2 - 49$
ii. $24x^2y - 8x^4y^3z - 8x^2y^2$ vi. $9y^2 - 36z^2$

vi.
$$9v^2 - 36z^2$$

vii
$$x^2 + 2x + 1$$

iii.
$$x^2 - ax + 4x - 4a$$
 vii. $x^2 + 2x + 1$ iv. $-xy - 2x + 4y + 8$ viii. $y^2 - 6y + 9$

viii.
$$v^2 - 6v + 9$$

3. Να αποδειχθούν οι παρακάτω ισότητες.

i.
$$\sqrt{32} + 2\sqrt{72} - \sqrt{50} = 11\sqrt{2}$$

ii.
$$\sqrt{27} - 2\sqrt{75} + \sqrt{48} + \sqrt{147} = 3\sqrt{3}$$

4. Να λυθούν οι παρακάτω εξισώσεις 2^{ου} βαθμού με τη βοήθεια του τύπου.

i.
$$x^2 - 3x + 2 = 0$$

iv.
$$y^2 - y - 2 = 0$$

vii.
$$3x^2 - 5x + 1 = (x-1)^2 + 2$$

ii.
$$x^2 - 4x + 3 = 0$$

v.
$$x^2 - 4x + 5 = 2x^2 - 7$$
 viii. $(2x - 1)^2 = 2x - 1$

viii.
$$(2x-1)^2 = 2x - 1$$

iii.
$$z^2 - 8z + 7 = 0$$

vi.
$$2z^2 - 5z - 6 = z^2 - 10$$

vi.
$$2z^2 - 5z - 6 = z^2 - 10$$
 ix. $(x+3)^2 + 4x = 2x + 2$

5. Να λυθούν οι παρακάτω εξισώσεις.

i.
$$\frac{x}{x+3} + \frac{x-2}{x-3} = 2$$

ii.
$$\frac{2}{x-2} = \frac{1-3x}{x} - \frac{4-x}{x^2}$$

iii.
$$\frac{4}{x-1} = \frac{5}{(x-1)^2} - 1$$

iv.
$$\frac{1}{x-3} - \frac{2x+1}{x^2-3x} = \frac{3}{x}$$

v.
$$\frac{1-x}{x^2-2x+1} + \frac{1}{x-1} = \frac{3}{x^2-x}$$

vi.
$$\frac{x-2}{x+4} + \frac{2}{x} = \frac{1-x}{x^2+4x}$$

6. Δίνονται οι σχέσεις 2 < x < 4 και 4 < y < 5. Με τη βοήθεια αυτών να βρεθεί μεταξύ ποιών αριθμών βρίσκονται οι παρακάτω παραστάσεις.

iii.
$$x + y$$

v.
$$x - y$$

vii.
$$x \cdot y$$

iv.
$$2x + 3y$$

vi.
$$x - 4y$$

iv.
$$2x + 3y$$
 vi. $x - 4y$ viii. $2x \cdot y + 1$

7. Να λυθούν τα παρακάτω γραμμικά συστήματα

i.
$$\begin{cases} x + 4y = 5 \\ 2x - 3y = -1 \end{cases}$$

iii.
$$\begin{cases} (2x-1)(y+1) - (x+4)(2y-3) = 1\\ (1-x)(3y+1) + (x+2)(3y+4) = 2 \end{cases}$$

ii.
$$\begin{cases} 4x - 5y = 3\\ 3x + 7y = 10 \end{cases}$$

iv.
$$\begin{cases} \frac{x-1}{2} + \frac{x-y}{3} = 1 - 2x \\ \frac{3y-x}{4} - \frac{3(y-2x)}{2} = \frac{1}{8} \end{cases}$$

ΓΕΩΜΕΤΡΙΑ

ΑΣΚΗΣΕΙΣ

- **1.** Το τρίγωνο $AB\Gamma$ του διπλανού σχήματος είναι ισοσκελές. Αν γνωρίζουμε οτι η $A\Delta$ είναι η διχοτόμος της γωνίας \hat{A} τότε
 - i. Να δειχθεί οτι $\hat{B} = \hat{\Gamma}$.
 - ii. Να δειχθεί οτι το ευθύγραμμο τμήμα $A\Delta$ είναι διάμεσος και ύψος του τριγώνου ΑΒΓ.

- **2.** Δίνεται κύκλος (O, ρ) και τέσσερα σημεία του A, B, Γ, Δ ώστε να σχηματιστούν τα τρίγωνα του διπλανού σχήματος. Αν γνωρίζουμε οτι $AB = A\Delta$ τότε
 - i. Να δειχθεί οτι $B\Gamma = \Delta\Gamma$
 - ii. Το σημείο O έχει ίσες αποστάσεις από τις πλευρές $A\Delta$ και AB.
 - iii. $A\Gamma \perp B\Delta$

- **3.** Τα τρίγωνα $AB\Gamma$ και $A'B'\Gamma'$ του παρακάτω σχήματος έχουν $\hat{A}=\hat{A}$ και AB=A'B'. Αν τα ύψη $A\Delta$ και $A'\Delta'$ είναι ίσα τότε
 - i. Να δειχθεί οτι $\hat{B} = \hat{B}'$
 - ii. Τα τρίγωνα $AB\Gamma$ και $A'B'\Gamma'$ είναι ίσα.

- **4.** Να υπολογιστούν οι τριγωνομετρικοί αριθμοί της γωνίας $x\hat{O}M$ όταν
 - i. M(3,4)
- ii. M(5, 12)
- iii. M(-8, 15)

5. Να αποδείχθεί οτι

i.
$$\eta\mu107^{\circ}+\sigma\text{un}85^{\circ}-\eta\mu73^{\circ}+\sigma\text{un}95^{\circ}=0$$

ii.
$$\eta \mu 54^{\circ} + \sigma v v^2 45^{\circ} - \eta \mu 126^{\circ} = \frac{1}{2}$$

iii.
$$\epsilon \varphi 70^{\circ} - \epsilon \varphi 110^{\circ} \cdot \epsilon \varphi 135^{\circ} = 0$$

- **6.** Δίνεται οτι ημ $\omega=\frac{3}{5}$ όπου η γωνία ω είναι αμβλεία. Να υπολογιστούν οι υπόλοιποι τριγωνομετρικοί αριθμοί της γωνίας ω .
- **7.** Δίνεται οτι εφ $\omega=3$ όπου η γωνία ω είναι οξεία. Να υπολογιστούν οι υπόλοιποι τριγωνομετρικοί αριθμοί της γωνίας ω .
- 8. Να αποδειχθούν οι παρακάτω τριγωνομετρικές ταυτότητες.

i.
$$\frac{\eta \mu x}{1 - \sigma v v x} + \frac{\eta \mu x}{1 + \sigma v v x} = \frac{2}{\eta \mu x}$$

ii.
$$(\sigma v v x + \eta \mu x)^2 + (\sigma v v x - \eta \mu x)^2 = 2$$