Learning Community Embedding with Community Detection and Node Embedding on Graphs

By Cavallari et al.

EGOR DMITRIEV, Utrecht University, The Netherlands

1 GOALS

- Guided by the closed loop insight, we propose ComE, a novel Community Embedding framework that jointly solves community embedding, community detection and node embedding together.
- Propose: a scalable inference algorithm which complexity of O(|V| + |E|), is often lower than the existing higher-order proximity-aware methods

2 PRELIMINARIES

• Graph G = (V, E)

3 CHALLENGES

- Community: Is a group of densely connected nodes
 - Embedding is expected to characterize how its member nodes distribute in the lowdimensional space
 - Define it as a distribution
- Pipeline approach is suboptimal:
 - Because its community detection is independent of its node embedding.
- Most existing node embeddings are not aware of community structure

4 PREVIOUS WORK / CITATIONS

- Don't try to directly detect communities
- Often: don't jointly optimize node embedding and community detection together
- SEA:
 - Construct similarity matrix from spectral GCN embeddings
 - Input it into AE for reconstruction
 - Resulting node embeddings are fed in K-means clustering
 - Shown to perform better than spectral clustering
- M-NMF:
 - Constructs modularity matrix and applies non-negative matrix factorization to learn node embeddings ans community detection together
 - Represents each community as a vector!

• This Work:

- Motivated by Gaussian Mixture Models (GMM)
- Tries to directly detect communities

DEFINITIONS

Notation	Description
G(V,E)	Graph G, nodes V and edges E
l	Length of each random walk path in sampling
γ	Number of random walks for each node in sampling
ζ	Context size
m	Negative context size
$oldsymbol{\phi}_i \in \mathbb{R}^d$	Node embedding of node i
$oldsymbol{\phi}_i' \in \mathbb{R}^d$	Context embedding of node <i>i</i>
$\mathcal{N}\left(\psi_k,\Sigma_k\right)$	Community embedding of community <i>k</i>
$\psi_k \in \mathbb{R}^d$	Community embedding k 's mean vector
$\Sigma_k \in \mathbb{R}^{d \times d}$	Community embedding k 's covariance matrix
$\pi_{ik} \in [0,1]$	Community membership of node i to community k
$P_n(\cdot)$	Negative sampling probability
K	Number of communities on <i>G</i>
α	Trade-off parameter for context embedding
β	Trade-off parameter for community embedding
а	graph's average degree

- Community detection: aims to discover groups of nodes on a graph, such that the intragroup connections are denser than the intergroup ones
 - Desired output:
 - * Node embedding $\Phi_i \quad \forall v_i \in V$
 - * Community membership: $\pi_{ik} \quad \forall v_i \in V$
 - * Community embeddings: (Ψ_k, Σ_k)
- Community embedding: of community k in d-dimensional space
 - is Multivariate Gaussian distribution: $\mathcal{N}(\Psi_k, \Sigma_k)$

6 OUTLINE / STRUCTURE

- Community Detection:
 - Considering v_i and embeddings ϕ_i as generated by multivariate Gaussian distribution from a community $z_i = k$, then for all nodes v we have likelihood:
 - * $\prod_{i=1}^{|V|} \sum_{k=1}^{K} p(z_i = k) p(v_i | z_i = k; \phi_i, \psi_k, \Sigma_k)$ (eq 1) where $p(z_i = k)$: probability of node v_i belonging to community $k(\pi_{ik})$
 - * Rewritten: $p(v_i \mid z_i = k; \phi_i, \psi_k, \Sigma_k) = \mathcal{N}(\phi_i \mid \psi_k, \Sigma_k)$ where · (Ψ_k, Σ_k) are unknown (optimization target)
 - * Optimizing achieves both community detection and embedding
- Node embedding:
 - First Order Proximity: Optimizing for direct distance of two nodes

*
$$O_1 = -\sum_{(v_i, v_j) \in E} \log \sigma \left(\boldsymbol{\phi}_j^T \boldsymbol{\phi}_i \right)$$

- * $O_1 = -\sum_{(v_i, v_j) \in E} \log \sigma \left(\phi_j^T \phi_i \right)$ **Second Order Proximity**: Two nodes sharing many contexts should have similar embedding
 - * Usually through negative sampling

$$\quad \cdot \ \Delta_{ij} = \log \sigma \left(\boldsymbol{\phi}_{j}^{\prime T} \boldsymbol{\phi}_{i} \right) + \textstyle \sum_{t=1}^{m} \mathbb{E}_{v_{l} \sim P_{n}(v_{l})} \left[\log \sigma \left(-\boldsymbol{\phi}_{l}^{\prime T} \boldsymbol{\phi}_{i} \right) \right]$$

- **Higher-order proximity**: (defined for community detection / embeddings task)
 - two nodes sharing a community are likely to have similar embedding

Learning Community Embedding with Community Detection and Node Embedding on Graphs3

$$- O_3 = -\frac{\beta}{K} \sum_{i=1}^{|V|} \log \sum_{k=1}^{K} \pi_{ik} \mathcal{N} \left(\phi_i \mid \psi_k, \Sigma_k \right)$$

- To close the loop the objective is unified:
 - First, second and higher order proximity should be minimized

*
$$\mathcal{L}(\Phi, \Phi', \Pi, \Psi, \Sigma) = O_1(\Phi) + O_2(\Phi, \Phi') + O_3(\Phi, \Pi, \Psi, \Sigma)$$

- Optimization target:
 - $* \ (\Phi^*, \Phi'^z, \Pi^*, \Psi^*, \Sigma^*) \leftarrow \mathop{\arg\min}_{\forall k, \operatorname{diag}(\Sigma_k) > 0} \mathcal{L} \left(\Phi, \Phi', \Pi, \Psi, \Sigma\right)$
 - * Note that Gaussian component can collapse making diag become zero and 0_3 negative infinity
- Inference:
 - Two parts:
 - * Iteratively optimizing (Π, Ψ, Σ) with a constrained minimization given (Φ, Φ')
 - · Constaints: $diag(\Sigma_k) > 0 \quad \forall k \in K$
 - · Expectation Maximization algorithm (iteratively update params)
 - * Optimizing (Φ, Φ') with an unconstrained minimization given (Π, Ψ, Σ) .
 - Initialize (Φ, Φ') with deepwalk results
 - * Optimize $\mathcal{L}(\Phi, \Phi', \Pi, \Psi, \Sigma)$ using SGD

Algorithm 1 Inference algorithm for ComE

Require: graph G = (V, E), #(community) K, #(paths per node) γ , walk length ℓ , context size ζ , embedding dimension d, negative context size m, parameters (α, β) .

Ensure: node embedding Φ , context embedding Φ' , community assignment Π , community embedding (Ψ, Σ) .

```
    P ← SamplePath(G, ℓ);

 Initialize Φ and Φ' by DeepWalk [20] with P;

3: for iter = 1 : T_1 do
      for subiter = 1 : T_2 do
         Update \pi_{ik}, \psi_k and \Sigma_k by Eq. 9, Eq. 10 and Eq. 11;
5:
         for k = 1, ..., K do
6:
            if there exists zero in diag(\Sigma_k) then
7:
               Randomly reset \Sigma_k > 0 and \psi_k \in \mathbb{R}^d;
8:
      for all edge (i, j) \in E do
9:
         SGD on \phi_i and \phi_i by Eq. 14;
10:
      for all path p \in P do
         for all v_i in path p do
12:
            SGD on \phi_i by Eq. 15;
13:
            SGD on its context \phi'_i's within \zeta hops by Eq. 17;
      for all node v_i \in V do
15:
         SGD on \phi_i by Eq. 16;
16:
```

Fig. 1. Screenshot_20211102_150521

7 EVALUATION

 average degree can impact performance due to length and the window size limitation of random walks

8 DISCUSSION

• The part / constraint enforcement for zero checking $diag(\Sigma_k)$ is not really that convincing

9 CODE

• https://github.com/vwz/ComE

10 RESOURCES

• ...

11 NOTES

What is a modularity matrix?