CS3236 AY22/23 SEM 1

github/jovyntls

00. INTRODUCTION

data compression

- · types of compression
 - · lossless compression can recover the contents
 - lossy compression lose some quality cannot convert back to the higher-quality version
- · examples
 - sparse binary string storing positions of 1s
 - equal number of 0/1s $L \ge \log_2\binom{64}{32} \approx 60.7$
 - · english text using relative frequency
 - morse code is NOT binary (contains spaces)
- info theory uses probabilistic models (letter frequency, sequence probabilities)
- 2 distinct approaches to compression:
 - variable length map more probable sequences to shorter binary strings
 - fixed length map most probable sequences to strings of a given length
 - insufficient strings for low-probability sequences
 - · tradeoff between length/failure probability

information theory concepts

- speed: $\frac{k}{n}$ (mapping k bits to n bits)
- reliability: $\mathbb{P}[error] = \mathbb{P}[estimated msg \neq true msg]$
- source coding theorem
 inimit is given by a source-dependent quantity known as the (Shannon) entropy H. The (average) storage length can be arbitrarily close to H, but can never be any lower than H.
 - *H* is a property of the *probability distribution*
- channel coding theorem → there exists a channel-dependent quantity called the (Shannon) capacity C such that arbitrarily small error probability can be achieved only for rates < C
 - can achieve $\mathbb{P}[error] \leq \epsilon \iff \mathsf{rate} < C$

data communication example

- a "transmitter" sends a sequence of 0s and 1s
- a "receiver" sends a sequence with some corruptions

channel transition diagram

- each bit is flipped independently with probability $\delta \in (0,\frac{1}{2})$

naive

- uncoded communication $\mathbb{P}[correct] = (1 \delta)^N$
- repetition code transmit "000" for "0", "111" for "1"
 - $\mathbb{P}[correct] = [(1-\delta)^3 + 3\delta(1-\delta)^2]^N$
 - · more reliable but 3x slower!

Hamming code

- · able to correct one bit flip
- maps binary string of length 4 to binary string of length 7

• fill in $b_1b_2b_3b_4$ and assign $c_1c_2c_3$ such that the sum of bits in each circle is even

- $\mathbb{P}[correct] \ge \mathbb{P}[\le 1 \text{bit flips}] = (1 \delta)^7 + 7\delta(1 \delta)^6$
- with $\delta=1$: Shannon capacity $C\approx 0.531$