NectarCam: MC - Data Comparison

Thomas Tavernier

7 octobre 2019

thomas.tavernier@cea.fr

1/17

Overview

- 🚺 Flat field
- 2 single/multi photoelectron spectrum
- NSB runs
- Camera Layout

2/17

New pulse shape in the MC

old pulse shape

- from Flat field run at \sim 30 p.e.
- fadc_amplitude=14.0
- reconstructed pulse from MC is smaller and wider than from the data

new pulse shape

- from internal trigger run in the dark
- fadc_amplitude=16.2
- keeping events > 30 p.e.
- mostly muons and some afterpulses
- good agreement with the data!

New pulse shape in the MC

old pulse Amplitude / p.e.

- fadc_amplitude=14.0
- reconstructed Amplitude/p.e.: 12.5

new pulse Amplitude / p.e.

- fadc_amplitude=16.2
- reconstructed Amplitude/p.e.: 13.9

Charge resolution

- ullet MC distribution of $rac{Q_{
 m reco}}{< Q_{
 m sim}>_{
 m mean}}$
- ullet Data distribution of $rac{Q_{
 m reco}}{< Q_{
 m reco}>_{
 m mean}}$

$$Q_{\rm reco} = \sum_{t_{\rm max}-6}^{t_{\rm max}+10} {\rm smpl-pedestal}$$

Thomas Tavernier PBH 7 octobre 2019 5 / 17

MC Flat Field

photo_electron_image:

Broken or non illuminated pixels in the MC?

multi electron spectrum

mes spectrum

- Wider pedestals in the Data
 - electronic noise isn't
 Gaussian and uncorrelated
- Illumination is not the same

spe pdf

- good agreement
- dispersion is higher in the MC

7 / 17

Thomas Tavernier PBH 7 octobre 2019

Gain reconstruction

Gain estimation

- Wider distribution in the MC
- Very good agreement for the mean value

Gain estimation resolution

- precision of $\sim 5.7\%$
 - assuming I understand well the dc_to_pe parameter in the MC files.
 - only 10k events

NSB noise

Samples st.d. evolution with the NSB level :

- Non negligible mismatch between the MC and the data.
- Updated pulse shape & pulse amplitude did not solve the issue
- this is not understand yet

NSB noise

Samples distribution

max sample in wf

min sample in wf

NSB noise (integrated distribution)

Integrated pedestal st.d. evolution with the NSB level :

• Things goes better looking at the integrated distribution.

Camera Layout

One want to be sure we use the same layout for MC production and data analysis in ctapipe.

Summary

- Model have been updated :
 - New pulse shape.
 - New value for parameters fadc_amplitude & fadc_lg_amplitude
- The agreement is much better since the update.
- Disagreements remain with the samples distribution in the waveform with NSB
- Also :
 - Afterpulse spectrum cutoff in MC (max sample distribution)
 - 64 samples in the MC vs 60 in the data
 - Pixel with no charge in the MC?

Bonus plots

pedestal sd.d. Vs number of integrated pixels (NSB \sim 500 MHz)

pedestal sd.d. Vs number of integrated pixels (NSB = 0 MHz)

$\text{NSB} \sim 500 \text{ MHz}$

