Fondamenti di Algebra e Geometria

GRIGLIA DI VALUTAZIONE

Esercizio	1	2	3	4	5	TOTALE
Punteggio						

TEMPO A DISPOSIZIONE: 2 ore

1. Determinare, in funzione del parametro reale k, la dimensione del sottospazio vettoriale di \mathbb{R}^3 generato dai vettori

$$v_1 = {}^t \left(\ln(k^2), 1, \frac{\sqrt{3k^2}}{k} \right), \quad v_2 = {}^t (3, 0, 2), \quad v_3 = {}^t \left(\frac{1}{2} \ln(k^4), 1, -\sqrt{3} \right).$$

2. Calcolare il determinante di ordine n

$$D_n = \begin{vmatrix} -1 & 1 & 1 & \dots & 1 \\ 1 & -1 & 1 & \dots & 1 \\ 1 & 1 & -1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & -1 \end{vmatrix}$$

3. Calcolare il rango della seguente matrice in funzione di $k \in \mathbb{R}$

$$\mathcal{A} = \begin{pmatrix} k+5 & 1 & 1 & 1\\ 2k+10 & k+5 & 3 & k+5\\ k+5 & 1 & k+3 & k^2-3 \end{pmatrix}$$

4. Stabilire se la seguente matrice è diagonalizzabile in $\mathbb R$

$$\mathcal{A} = \begin{pmatrix} \sqrt{3} - 1 & 1 & 0 \\ \sqrt{2} + \sqrt{3} & -\sqrt{2} & 0 \\ 0 & 0 & \sqrt{3} \end{pmatrix}$$

5. Determinare una possibile forma canonica di Jordan di una matrice $A \in M_{15}(\mathbb{C})$ sapendo che ha un solo autovalore distinto $\lambda = 1$, rk(A - I) = 8, $rk(A - I)^2 = 3$ e $rk(A - I)^3 = 2$.

Ogni esercizio vale 6 punti