4.1 Definitions, Diagrams, and Inverses

4.1.1 Function Terminology

Question 1

Given the function:

$$g: \mathbb{Z} \to \mathbb{N}$$
 ...with the rule... $g(x) = x^2$

- a. What is the function name? g
- b. What is the domain? Z
- c. What is the codomain? \mathbb{N}
- d. Is 2 a valid domain value? Yes
- e. Is -2 a valid domain value? Yes
- f. Is 4 a valid codomain value? Yes
- g. Is -4 a valid codomain value? No

Question 2

a. Define a function where the inputs and outputs are integers, and the relationship is that the output is the *square* of the input provided to the function.

$$f: \mathbb{Z} \to \mathbb{Z}$$
, with $f(x) = x^2$

b. Draw a diagram of the function. Include 5 values in the domain and in the co-domain.

4.1.2 Binary Relations

Question 3

Finish the arrow diagram for the following Binary Relation.

Domain: $\{1, 2, 3, 4, 5\}$ Codomain: $\{1, 2, 3, 4, 5\}$

Rule: $\{ (1,5), (2,3), (3,3), (4,2), (5,1) \}$

Question 4

Finish the arrow diagram for the following Binary Relation.

Domain: $\wp(\{1,2,3\})$, the Power Set of $\{1,2,3\}$.

Codomain: The set $B = \{0, 1, 2, 3, 4, 5, 6, 7\}.$

Rule: $(S, n) \in \mathbb{R}$

This means that n is the **sum** of elements in the set S given as an input. For example, with the input set $\{1, 2\}$, the output will be 1 + 2, or 3.

Question 5

Identify which of the following relations are also functions. Explain why not, if the relation is not a function. Also complete the diagrams given.

a. Relation R_1

Domain: The set $\mathbb S$ of all students at your college this semester.

Codomain: The set $\mathbb C$ of all classes offered at your college this semester.

Rule: (x, y) is in R_1 if student x is enrolled in class y this semester.

Let's use a small sample set. Fill it out to help you figure out if this is a function. Not a function; a student can take more than 1 class.

•ENGL 108
•MATH 241
•CS 210
•CS 200

Codomain

b. Relation R_2

Domain: The set $A = \{1, 2, 3\}$. Codomain: The set $B = \{2, 4, 6\}$. Rule: (x, y) is in R_2 if 2x = y. This is a function

Question 6

Identify which of the following relations are also functions. Explain why not, if the relation is not a function. Also complete the diagrams given.

a. Relation R_3

Domain: The set $A = \{1, 2, 3\}$. Codomain: The set $B = \{2, 4, 6\}$. Rule: $\{ (1,6), (2,2), (3,4) \}$

Let's use a small sample set. Fill it out to help you figure out if this is a function. This is a function.

b. Relation R_4

Domain: The set $A = \{1, 2, 3, 4, 5, 6\}.$ Codomain: The same set A. Rule: (x, y) is in R_3 if x - 1 = y. This is not a function; 1 doesn't point to anything, and 6 isn't pointed to by anything.

4.1.3 **Inverse Relations**

Question 7

Draw the inverse of each diagram. Identify if the original, and/or the inverse, are functions.

Both are functions.

Domain

b.

The original is a function, but the inverse is not a function.