

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 172010					
2.0	Matemática-Geometria		1.a Série	М	27/06/2017						
Questões	Testes	Páginas	Professor(es)								
10		8	Fábio Cáceres / Oliveira / Rosana Alves								
Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.											
Aluno(a)			Turma	N.o							
Nota Professor				Assinatura do Professor							

Instruções:

- 1. A prova pode ser resolvida a lápis. Respostas devem ser escritas com esferográfica azul ou preta.
- 2. Respostas sem a devida resolução não serão consideradas.
- 3. Únicos materiais permitidos: caneta, lapiseira, régua, borracha e compasso.

Informações úteis

1. Tabela de valores notáveis.

	30°	45°	60°	120°	135°	150°
seno	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
cosseno	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
tangente	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$

2. Nas figuras em que aparecem, os pontos O e P são centros de circunferências.

Boa prova! Boas férias! 01. (valor: 1,0) Calcule o valor de x nos itens abaixo

a.

Resposta: x =

Rascunho

b.

Resposta: x =

C.

Resposta: x =_____

d.

Resposta: x =

02

a. (valor: 0,5) Sabendo que tg $\alpha = \frac{1}{3}$, calcule a medida da hipotenusa do triângulo maior.

Rascunho

Resposta: x =

b. (valor: 0,5) Calcule x:

Resposta: x =

03. (valor: 1,0) Na figura abaixo, a circunferência maior tem diâmetro AB e as duas menores têm raio de 6 cm. Calcule x.

Resposta: x =

04. (valor: 1,0) Sendo S, T e V pontos de tangência, calcule x.

Resposta: x =

A área (A) de um triângulo pode ser determinada pela metade do produto de dois lados pelo seno do ângulo formado por eles. Observe:

Rascunho

05. (valor: 1,0) Calcule x e a área do $\triangle ABC$.

Resposta: x =; área (ABC) =

06. (valor: 1,0) Calcule o raio da circunferência mostrada abaixo.

Resposta:

07. (valor: 1,0) Na figura, a circunferência é tangente aos lados do triângulo nos pontos S, T e V. Calcule o raio da circunferência, dados BV = 5 cm e CV = 36 cm.

Resposta: raio = _____

08. (valor: 1,0) Calcule a área do trapézio ABCD.

Resposta: área (ABCD) =

09. Na figura abaixo, \overline{BS} e \overline{CD} são, respectivamente, bissetrizes interna e externa do triângulo ABC.

Rascunho

Sabendo que AS = 3 cm e AB = 6 cm, calcule:

a. (valor: 0,5) as medidas de \overline{BC} e \overline{CS} .

Resposta: x =_____; y =______

b. (valor: 0,5) Calcule a medida de CD.

10. (valor: 1,0) Na figura, \overline{AD} é bissetriz externa relativa ao vértice A do triângulo OAB, T é ponto de tangência e o arco tem centro em O. Sendo AB = 10 cm, OA = 6 cm e BT = 8 cm, calcule CT.

Resposta:

P 172010G 1.a Série Matemática – Geometria Fábio Cáceres/Oliveira/Rosana Alves 27/06/2017

01. (valor: 1,0) Calcule o valor de x nos itens abaixo

a.

Lei dos cossenos:

$$x^{2} = (\sqrt{2})^{2} + 3^{2} - 2 \cdot \sqrt{2} \cdot 3 \cdot \cos 135^{\circ}$$

$$x^{2} = 2 + 9 - 2 \cdot \sqrt{2} \cdot 3 \cdot \left(-\frac{\sqrt{2}}{2}\right)$$

$$x^{2} = 11 + 6$$

$$x = \pm \sqrt{17}$$

Resposta: $x = \sqrt{17}$ cm

b.

Por Pitágoras:

$$x^{2} + 24^{2} = 25^{2}$$

$$x^{2} = 25^{2} - 24^{2}$$

$$x^{2} = (25 + 24) \cdot (25 - 24)$$

$$x^{2} = 49$$

$$x = \pm 7$$

Resposta: x = 7 cm

C.

$$\mathrm{sen}60^\circ = \frac{x\sqrt{3} + 2\sqrt{3}}{10}$$

$$\frac{\sqrt{3}}{2} = \frac{\sqrt{3} \cdot (x+2)}{10}$$

$$x = 3$$

Resposta: 3 cm

d.

Pelo teorema da bissetriz interna:

$$\frac{7t}{x} = \frac{3t}{6} \Rightarrow x = 14$$

Resposta: x = 14 cm

02. (valor: 0,5) Sabendo que $tg\alpha = \frac{1}{3}$, calcule a medida da hipotenusa do triângulo maior.

(1)
$$tg\alpha = \frac{1}{3} \Rightarrow \frac{y}{z} = \frac{1}{3} \Rightarrow z = 3y$$

(2) Por Pitágoras:
$$y^2 + z^2 = (5\sqrt{10})^2$$

(1) em (2)
$$\Rightarrow$$
 $y^2 + (3y)^2 = 25 \cdot 10 \Rightarrow 10y^2 = 25 \cdot 10 \Rightarrow$
 \Rightarrow $y = 5 \Rightarrow$ $z = 15$

$$x^{2} = (3 + y)^{2} + z^{2} \Rightarrow x^{2} = (3 + 5)^{2} + 15^{2} \Rightarrow x = \sqrt{289} \Rightarrow x = \pm 17$$

Resposta: x = 17 cm

b. (valor: 0,5) Calcule *x*:

80 cm

30°

30°

45°

1.o modo:

(1) Pela lei dos senos:

$$\frac{y}{\sin 30^{\circ}} = \frac{80}{\sin 45^{\circ}} \Rightarrow \frac{y}{\frac{1}{2}} = \frac{80}{\frac{\sqrt{2}}{2}} \Rightarrow y = 40\sqrt{2}$$

(2)
$$\cos 30^\circ = \frac{x}{y} \Rightarrow \frac{\sqrt{3}}{2} = \frac{x}{40\sqrt{2}} \Rightarrow x = 20\sqrt{6}$$

(1)
$$\operatorname{sen} 30^{\circ} = \frac{y}{80} \Rightarrow \frac{1}{2} = \frac{y}{80} \Rightarrow y = 40$$

(2)
$$\operatorname{sen45^{\circ}} = \frac{y}{z} \Rightarrow \frac{\sqrt{2}}{2} = \frac{40}{z} \Rightarrow z = 40\sqrt{2}$$

(3)
$$\cos 30^\circ = \frac{x}{z} \Rightarrow \frac{\sqrt{3}}{2} = \frac{x}{40\sqrt{2}} \Rightarrow x = 20\sqrt{6}$$

Resposta: $x = 20\sqrt{6}$ cm

03. (valor: 1,0) Na figura abaixo, a circunferência maior tem diâmetro AB e as duas menores têm raio de 6 cm. Calcule x.

Por Pitágoras:

$$(2x-6)^2 + x^2 = (x+6)^2$$

$$5x^2 - 24x + 36 = x^2 + 12x + 36$$

$$4x^2 - 36x = 0 \Rightarrow 4x (x-9) = 0 \Rightarrow x = 0 \text{ ou } x = 9$$

Resposta: 9 cm

04. (valor: 1,0) Sendo S, T e V pontos de tangência, calcule x:

De acordo com as medidas indicadas e o teorema de Pitágoras, temos:

$$(x-5)^{2} + (x-12)^{2} = 17^{2}$$

$$2x^{2} - 34x + 169 = 289$$

$$x^{2} - 17x - 60 = 0$$

$$(x-20)(x+3) = 0$$

$$x = 20 \text{ ou } x = -3$$

Resposta: x = 20 cm

05. (valor: 1,0) Calcule x e a área do $\triangle ABC$.

 $4\sqrt{7}$ cm.

1.o modo:

(1) Pela lei dos cossenos:

$$(4\sqrt{7})^2 = x^2 + 4^2 - 2 \cdot x \cdot 4 \cdot \cos 120^{\circ}$$

$$16 \cdot 7 = x^2 + 16 - 2 \cdot x \cdot 4 \cdot \left(-\frac{1}{2}\right)$$

$$112 = x^2 + 16 + 4x$$

$$(x+12)(x-8) = 0$$

$$\therefore x = 8$$

(2) área (ABC) = $\frac{1}{2} \cdot 4 \cdot 8 \cdot \text{sen} 120^{\circ}$ área (ABC) = $\frac{1}{2} \cdot 4 \cdot 8 \cdot \frac{\sqrt{3}}{2}$ área (ABC) = $8\sqrt{3}$

2.o modo:

(1) Pela lei dos cossenos:

$$(4\sqrt{7})^2 = x^2 + 4^2 - 2 \cdot x \cdot 4 \cdot \cos 120^\circ$$

$$16 \cdot 7 = x^2 + 16 + 4x$$

$$x^2 + 4x - 96 = 0$$

$$(x+12)(x-8) = 0$$

$$\therefore x = 8$$

(2)
$$\operatorname{sen}60^\circ = \frac{h}{x} \Rightarrow \frac{\sqrt{3}}{2} = \frac{h}{8} \Rightarrow h = 4\sqrt{3}$$

(3) área (ABC) =
$$\frac{\text{(base)} \cdot \text{(altura)}}{2} = \frac{4 \cdot 4\sqrt{3}}{2} = 8\sqrt{3}$$

Resposta: $x = 8 \text{ cm}$; área (ABC) = $8\sqrt{3} \text{ cm}^2$

06. (valor: 1.0) Calcule o raio da circunferência mostrada abaixo.

1.o modo (por Pitágoras):

no
$$\triangle OBM$$
: $x^2 + 5^2 = r^2 \Rightarrow x^2 = r^2 - 25$ (1)

no
$$\triangle ABM$$
: $x^2 + (r+5)^2 = (6\sqrt{13})^2$ (2)

Substituindo (1) em (2)

$$r^2 - 25 + (r+5)^2 = 36 \cdot 13 \Leftrightarrow 2r^2 + 10r - 468 = 0 \Leftrightarrow$$

$$\Leftrightarrow r^2 + 5r - 234 = 0 \Leftrightarrow (r+18)(r-13) = 0 \Leftrightarrow$$

$$\Leftrightarrow r = -18$$
 ou $r = 13$

2.o modo (pela Lei dos Senos):

- no ΔABM: senα = $\frac{r+5}{6\sqrt{13}}$
- no ΔABC: $\frac{6\sqrt{13}}{\text{sen}\alpha} = 2r$

Substituindo (1) em (2)

$$2r \cdot \operatorname{sen}\alpha = 6\sqrt{13} \Leftrightarrow 2r \cdot \frac{(r+5)}{6\sqrt{13}} = 6\sqrt{13} \Leftrightarrow$$

$$\Leftrightarrow r^2 + 5r - 234 = 0 \Leftrightarrow r = -18 \text{ ou } r = 13$$

$$\Leftrightarrow r^2 + 5r - 234 = 0 \Leftrightarrow r = -18 \text{ ou } r = 13$$

Resposta: 13 cm

07. (valor: 1,0) Na figura, a circunferência é tangente aos lados do triângulo nos pontos S, T e V. Calcule o raio da circunferência, dados BV = 5 cm e CV = 36 cm.

Por Pitágoras:

$$(x+5)^2 + (x+36)^2 = 41^2$$

$$2x^2 + 82x + 1321 = 1681$$

$$2x^2 + 82x - 360 = 0$$

$$x^{2} + 41x - 180 = 0 \Rightarrow (x + 45)(x - 4) = 0 \Leftrightarrow$$

$$\Leftrightarrow x = -45 \text{ ou } x = 4$$

Resposta: 4 cm

08. (valor: 1,0) Calcule a área do trapézio ABCD.

ABCD é circunscrito
$$\Rightarrow y + 24 = 30 + x \Rightarrow y = 6 + x$$
 (1)

Por Pitágoras:
$$y^2 = (30 - x)^2 + 24^2$$
 (2)

Substituindo (1) em (2):

$$(6+x)^2 = (30-x)^2 + 24^2 \Rightarrow$$

$$\Rightarrow 36 + 12x + x^2 = 30^2 - 60x + x^2 + 24^2 \Rightarrow$$

$$\Rightarrow 72x = 30^2 + 24^2 - 36 \Rightarrow \frac{72x}{36} = \frac{30 \cdot 30}{6 \cdot 6} + \frac{24 \cdot 24}{6 \cdot 6} - \frac{36}{36} \Rightarrow$$

$$\Rightarrow 2x = 25 + 16 - 1 \Rightarrow x = 20$$

Área do trapézio =
$$\frac{(30+x)\cdot 24}{2}$$
 = $(30+20)\cdot 12 = 600$

Resposta: 600 cm²

09. (valor: 1,0) Na figura abaixo, \overline{BS} e \overline{CD} são, respectivamente, bissetrizes interna e externa do triângulo ABC.

Sabendo que AS = 3 cm e AB = 6 cm, calcule:

a. (valor: 0,5) as medidas de \overline{BC} e \overline{CS} .

- (1) Pelo teorema da bissetriz interna: $\frac{x}{y} = \frac{6}{3} \Rightarrow x = 2y$
- (2) Por Pitágoras: $x^2 = (3+y)^2 + 6^2 \Longrightarrow (2y)^2 = (3+y)^2 + 6^2 \Longrightarrow 4y^2 = y^2 + 6y + 9 + 36 \Longrightarrow 3y^2 6y 45 = 0 \Longrightarrow y^2 2y 15 = 0 \Longrightarrow (y-5)(y+3) = 0 \Longrightarrow y = 5 \Longrightarrow x = 10$

Resposta: x = 10 cm; y = 5 cm

b. (valor: 0,5) Calcule a medida de CD.

- (1) Pelo teorema da bissetriz externa: $\frac{10}{6+w} = \frac{8}{w} \Rightarrow \frac{5}{6+w} = \frac{4}{w} \Rightarrow 5w = 24 + 4w \Rightarrow w = 24$
- (2) Por Pitágoras no $\triangle ACD$: $z^2 = w^2 + 8^2 \Longrightarrow z^2 = 24^2 + 8^2 \Longrightarrow z^2 = (3 \cdot 8)^2 + 8^2 \Longrightarrow z^2 = 9 \cdot 8^2 + 8^2 \Longrightarrow z^2 = 10 \cdot 8^2 \Longrightarrow z = \pm 8\sqrt{10}$

Resposta: $z = 8\sqrt{10}$ cm

10. (valor: 1,0) Na figura, \overline{AD} é bissetriz externa relativa ao vértice A do triângulo OAB, T é ponto de tangência e o arco desenhado tem centro em O. Sendo AB=10 cm, OA=6 cm e BT=8 cm, calcule CT.

- (1) Pelo teorema da bissetriz externa: $\frac{10}{BD} = \frac{6}{OD} \Rightarrow \frac{10}{6} = \frac{BD}{OD}$
- (2) Note que OT // CD. Pelo teorema de Tales: $\frac{8+x}{BD} = \frac{x}{OD} \Rightarrow \frac{8+x}{x} = \frac{BD}{OD}$

Portanto:
$$\frac{8+x}{x} = \frac{10}{6} \Rightarrow \frac{8+x}{x} = \frac{5}{3} \Rightarrow 5x = 24 + 3x \Rightarrow x = 12$$

Resposta: 12 cm