ASSIGNMENT

M Goutham mannemahesh327@gmail.com IITH - Future Wireless Communications (FWC)

27-03-2023

Contents

1	Question	2					
2	Components	2					
3	TruthTable	3					
4	Stages 4.1 Stage 1 4.2 stage 2 4.3 stage 3 4.4 stage 4 4.5 stage 5	3 4 4 5 5					
5	Hardware	6					
6	Implementation						
7	Procedure	6					

1 Question

1. The circuit shown in the figure below uses ideal positive edge-triggered synchronous J-K flip flops with outputs X and Y. If the initial state of the output is X=0 and Y=0 just before the arrival of the first clock pulse, the state of the output just before the arrival of the second clock pulse is

Figure 1

2 Components

Component	values	Qantity
Arduino	UNO	1
Jumperwires	M-M	12
Breadboard		1
LED		2
Resistor	220ohms	2
IC	7476	2

Figure.a

3 TruthTable

CLK	J	K	Q	Q'	State	
1	0	0	Q	Q'	No	
					Change	
1	0	1	0	1	Resets	
					Q to 0	
1	1	0	1	0	Sets Q to 1	
					to 1	
1	1	1	Q'	Q	Toggle	

Truth tabel of JK filp flop

4 Stages

4.1 Stage

1

Figure 2

Initially, let X=0 and Y=0. According to the truth table, when J=1 and K=1, the circuit enters the toggle condition. Given that the previous value of Q1 was 0, toggling it changes Q1 to 1, as illustrated in Figure 2.

4.2 stage

2

Figure 3

After toggling, the value of Q1 is set to be the same as the output value of Y, which is found to be 1. Therefore, both Q1 and Y are equal to 1 after the toggle operation. This behavior occurs due to the specific input conditions (j=1 and k=1) applied to the circuit, as shown in Figure 3

4.3 stage 3

Figure 4

After Q1 and Y are set to 1, the value of X remains 0. At this point, Q1 is connected as the clock input to Flip Flop 2, causing the second Flip Flop to also enter the toggling condition.

4.4 stage 4

Figure 5

Once Q2 is set to 1, it assumes the same value as X, leading X to automatically become 1 as a result.

4.5 stage 5

Figure 6

Thus, the output of the second clock pulse is X=1 and Y=1. This outcome arises as a consequence of the toggling process and the synchronization between the flip flops, which ultimately sets both X and Y to a value of 1. Based on the results obtained, it is evident that option (D) is correct. The analysis of the circuit's behavior demonstrates that the values of X and Y are indeed set to 1 after the second clock pulse.

5 Hardware

The 7476 is a master—slave J-K and the 74LS76 is a negative edge-triggered J-K flip-flop. Both chips have the same pin configuration. Below is the pin diagram of IC7476.

6 Implementation

The connections between Arduino UNO and three IC 7476 is given in below Table

	INPUT		OUTPUT	CLOCK 1	clock 2	Vcc	GND
ARDUINO	D2	D3		13		5V	Gnd
7476	16		15	1	15	5	13
7476		16	15		1	5	13

Table 1: connections

7 Procedure

- 1. Connect the circuit as per the above table.
- 2.connect the output pins to the LED's
- 3. Connect inputs to Vcc for logic 1, ground for logic 0
- 4. Execute the circuit using the below code.

https://github.com/Goutham-patel/ FWC/blob/main/ide/codes/src/In201912.cpp