

Amendments to the Claims

Please amend the claims preliminarily as follows:

1. (canceled)

1 2. (currently amended) Assembly according to claim ~~4~~6, characterized in that the
2 deliquidizer ~~(1)~~ is arranged within the ~~further~~ additional separation equipment and has a main
3 flow direction vertically upwards.

1 3. (currently amended) Assembly according to claim ~~4~~6, characterized in that the
2 deliquidizer ~~(1)~~ is arranged within the ~~further~~ additional separation equipment and has main
3 flow direction vertically downwards.

1 4. (currently amended) Assembly according to claim ~~4~~6, characterized in that the
2 deliquidizer ~~(1)~~ is arranged horizontally and is placed within the ~~further~~ additional separation
3 equipment and constitutes an extension of the inlet thereto.

5. (canceled)

1 6. (new) An assembly for separating out liquid from a multiphase fluid flow,
2 comprising:
3 an outer wall;
4 a scrubber;
5 a column;
6 a fluid inlet;
7 a deliquidizer that is connected as a preseparator to the fluid inlet, that has a substantially
8 pipe-shaped casing that forms part of an inlet arrangement, and that operates on the principle of a
9 cyclone;

10 a spin element, for rotation of the fluid flow, that is located at an upstream end of the
11 casing, that has a central void space and that is provided with at least one opening for outflow of
12 recirculated gas from the void space;
13 a separation apparatus that is combined with the deliquidizer, fluid flow in the
14 deliquidizer thereby rotating so as to be separated in a central zone along a longitudinal axis;
15 an annular outer zone against the inside of the outer wall;
16 a gas outlet from the central zone;
17 a liquid outlet from the annular outer zone;
18 a gas outlet arrangement that has
19 an outlet element that is located at a downstream end of the casing and that has a
20 liquid barrier,
21 a central, axial gas passageway,
22 an outer surface that, together with an inner surface of the casing forms an
23 annulus for inflow of liquid,
24 a liquid outlet arrangement comprising an upwardly open vessel;
25 a line connecting an upper part of the outlet vessel and a central section of the inlet spin
26 element for recirculation of gas entrained by liquid that enters the vessel;
27 in which:
28 the central zone primarily contains gas;
29 the annular outer zone primarily contains liquid;
30 the liquid outlet arrangement is provided for up liquid that flows into the annular outer
31 zone and partly flows down into the vessel from a bottom region of the casing at an opening in
32 the vessel and that partly falls down into the vessel from the vicinity of the barrier; and
33 the deliquidizer is placed within additional separation equipment and forms an extension
34 of the fluid inlet.

1 7. (new) An assembly as in claim 6, further comprising an antispin element arranged at
2 the downstream end of the gas outlet arrangement.

1 8. (new) An assembly as in claim 6, in which the liquid outlet arrangement is located at
2 the downstream end of the casing.

1 9. (new) An assembly as in claim 6, in which a main flow direction is vertically upward

2 and the liquid outlet arrangement is located at the upstream end of the casing.

1 10. (new) An arrangement for separating out liquid from a multiphase fluid flow,

2 comprising:

3 a scrubber;

4 a column;

5 a fluid inlet;

6 an outer wall;

7 a deliquidizer in which a fluid flow rotates such that it is separated in a central zone along
8 a longitudinal axis, said central zone primarily containing gas, said deliquidizer operating on the
9 principle of a cyclone, being placed within additional separation equipment;

10 a separation apparatus that is combined with the deliquidizer and that is connected as a
11 pre-separator to the fluid inlet;

12 an outer annular zone against an inside surface of the outer wall, said outer zone
13 primarily containing liquid;

14 a gas outlet arrangement leading from the central zone;

15 an outer cone for the gas outlet arrangement urging the fluid flow to turn approximately
16 180⁰ relative to a main flow direction; and

17 a liquid outlet arrangement leading from the outer annular zone;

18 in which:

19 the deliquidizer is arranged with the main flow direction vertically upwards; and

20 the deliquidizer comprises an outer casing to collect separated liquid.