Solving Linear and Integer Programs

Robert E. Bixby ILOG, Inc. and Rice University

Ed Rothberg ILOG, Inc.

Outline

- ☐ Linear Programming: Bob Bixby
 - □ Example and introduction to basic LP, including duality
 - □ Primal and dual simplex algorithms
 - □ Computational progress in linear programming
 - ☐ Implementing the dual simplex algorithm
- ☐ Mixed-Integer Programming: Ed Rothberg

An Example

3

Diet Problem*

Bob wants to plan a nutritious diet, but he is on a limited budget, so he wants to spend as little money as possible. His nutritional requirements are as follows:

- 1. 2000 kcal
- 2. 55 g protein
- 3. 800 mg calcium

4

^{*} From Linear Programming, by Vaŝek Chvátal

Diet Problem

Nutritional values

Bob is considering the following foods:

Food	Serving Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price per serving
Oatmeal	28 g	110	4	2	\$0.30
Chicken	100 g	205	32	12	\$2.40
Eggs	2 large	160	13	54	\$1.30
Whole milk	237 сс	160	8	285	\$0.90
Cherry pie	170 g	420	4	22	\$0.20
Pork and beans	260 g	260	14	80	\$1.90

5

Diet Problem

Variables

We can represent the number of servings of each type of food in the diet by the variables:

 x_1 servings of oatmeal

 x_2 servings of chicken

 x_3 servings of eggs

 x_4 servings of milk

 x_5 servings of cherry pie

 x_6 servings of pork and beans

6

Diet Problem

Nutritional values

Bob is considering the following foods:

Food	Serving Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price per serving
Oatmeal	28 g	110	4	2	\$0.30
Chicken	100 g	205	32	12	\$2.40
Eggs	2 large	160	13	54	\$1.30
Whole milk	237 cc	160	8	285	\$0.90
Cherry pie	170 g	420	4	22	\$2.00
Pork and beans	260 g	260	14	80	\$1.90

KCAL constraint:

$$110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$$

(110x₁ = kcals in oatmeal)

7

Diet Problem

LP formulation

Minimize Cost

$$0.3x_1 + 2.40x_2 + 1.30x_3 + 0.90x_4 + 2.0x_5 + 1.9x_6$$

subject to: Nutritional requirements

$$110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$$

$$4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$$

$$2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$$

Bounds

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

8

Diet Problem

Solution

When we solve the preceding LP (using CPLEX, of course) we get a solution value of \$6.71, which is achieved with the following menu:

- 14.24 servings of oatmeal
 - 0 servings of chicken
 - 0 servings of eggs
- 2.71 servings of milk
 - 0 servings of cherry pie
 - 0 servings of pork and beans

ć

Some Basic Theory