Data Structure

Lecturer: Dr. Salwa Osama AVL

Balanced BST

- The disadvantage of a binary search tree is that its height can be as large as N-1 where N is the number of nodes in the tree.
- Thus, our goal is to keep the height of a binary search tree to be as small as we can.
- Such trees are called balanced binary search trees. Examples are <u>AVL tree</u> and red-black tree.

AVL Trees

- An AVL tree is a binary search tree with a balance condition, which approximates the ideal tree (completely balanced tree).
- AVL Tree maintains a height close to the minimum.
- An AVL tree is a binary search tree such that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.
- An AVL tree could has balance factor calculated at every node, which is the difference between left subtree height and right subtree height

AVLTrees

AVLTrees

The height of a leaf is 0. The height of a NULL pointer is -1. The height of an internal node is the maximum height of its children plus 1

AVL Tree Implementation

```
typedef struct {
                   info;
  EntryType
  NodeType
                   *right;
                   *left;
  NodeType
                   height;
  int
} AVLNodeType;
typedef NodeType * TreeType
```

Node Heights

Now: Insert 7

Node Heights after Insert 7

Insert and Deletion in AVL Trees

- Since an insertion/deletion involves adding/deleting a single node, this can only increase/decrease the height of some subtree by 1
- Thus, if the AVL tree property is violated at a node x, it means that the heights of left(x) and right(x) differ by exactly 2.
- If a balance factor (the difference h_{left} - h_{right}) become 2 or -2, adjust tree by *rotation* around the node

- First, insert the new key as a new leaf just as in ordinary binary search tree
- Then trace the path from the new leaf towards the root. For each node x encountered, update its height.
- check if heights of left(x) and right(x) differ by at most 1. If yes, proceed to parent(x). If not, restructure by doing either a single rotation or a double rotation.
- For insertion, once we perform a rotation at a node x, we won't need to perform any rotation at any ancestor of x.

Let the node that needs rotation be x.

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of X.
- 2. Insertion into right subtree of right child of X.

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of X.
- 4. Insertion into left subtree of right child of X.

Single rotation

Rotate with left child

Single rotation

Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

Single rotation

```
RotateRight(AVLTree *n) {
AVLTreeNode p= (*n)->left;
(*n)->left= p->right;
(*n)-> height = p->right->height + 1;
P->right= *n;
p->height = p->left ->height +1
*n = p
                                                     h
                             h+1
```

Single rotation

AVL property has been restored

Double rotate with right child

Double Rotation

```
DoubleRotateFromRight(AVLTree *n) {
RotateRight(&(*n)->right);
RotateLeft(n);
}
```


Double rotation

Now insert 12

Now insert 8

Now insert 8

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Single left rotation is required

Single left rotation is required

Double rotation is required

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Rebalancing costs time.

Exercises

Build an AVL tree with the following values:
 15, 20, 24, 10, 13, 7, 30, 36, 25

