Assignment 1

Method

The binomial pricing tree shows the evolution of the stock's price in discretetime for a number of time steps between the valuation and expiration dates. Each node in the tree represents a possible price of the stock at a given time.

index: s15537

Here,
$$p=rac{e^{rt/n}-d}{u-d}$$
, $u=e^{\sigma\sqrt{t/n}}$ and $d=e^{-\sigma\sqrt{t/n}}$

At each step, it is assumed that the underlying instrument will move up or down by a specific factor $(u \ or \ d)$ per step of the tree

(where, by definition, $u \ge 1$ and $0 < d \le 1$). So, if S is the current price, then in the next period the price will either be $S_{up} = SU$ or $S_{down} = Sd$.

The up and down factors are calculated using the underlying volatility, σ , and the time duration of a step,t, measured in years (using the day count convention of the underlying instrument). From the condition that the variance of the log of the price is $\sigma^2 t$, we have:

$$u = e^{\sigma\sqrt{\Delta t}}, d = e^{-\sigma\sqrt{\Delta t}} = \frac{1}{u}$$

Here,

• r: interest rate

• *d*: *down rate*

• *u*: *upper rate*

• p: upper probability

• σ : *volatitlity*

• *t: expiration time* measured in year

• n: number of days

• Δt: time spet