It is easy to see that there are no high earners in the <HS category:

```
> table(education, I(wage > 250))
education
                       FALSE TRUE
  1. < HS Grad
                          268
  2. HS Grad
                          966
                                  5
  3. Some College
                                  7
                          643
  4. College Grad
                          663
                                 22
  5. Advanced Degree
                          381
                                45
```

Hence, we fit a logistic regression GAM using all but this category. This provides more sensible results.

```
> gam.lr.s=gam(I(wage>250)~year+s(age,df=5)+education,family=
    binomial,data=Wage,subset=(education!="1. < HS Grad"))
> plot(gam.lr.s,se=T,col="green")
```

7.9 Exercises

Conceptual

1. It was mentioned in the chapter that a cubic regression spline with one knot at ξ can be obtained using a basis of the form x, x^2 , x^3 , $(x-\xi)^3_+$, where $(x-\xi)^3_+ = (x-\xi)^3$ if $x>\xi$ and equals 0 otherwise. We will now show that a function of the form

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)_+^3$$

is indeed a cubic regression spline, regardless of the values of β_0 , β_1 , β_2 , β_3 , β_4 .

(a) Find a cubic polynomial

$$f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3$$

such that $f(x) = f_1(x)$ for all $x \leq \xi$. Express a_1, b_1, c_1, d_1 in terms of $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$.

(b) Find a cubic polynomial

$$f_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3$$

such that $f(x) = f_2(x)$ for all $x > \xi$. Express a_2, b_2, c_2, d_2 in terms of $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$. We have now established that f(x) is a piecewise polynomial.

- (c) Show that $f_1(\xi) = f_2(\xi)$. That is, f(x) is continuous at ξ .
- (d) Show that $f'_1(\xi) = f'_2(\xi)$. That is, f'(x) is continuous at ξ .

(e) Show that $f_1''(\xi) = f_2''(\xi)$. That is, f''(x) is continuous at ξ .

Therefore, f(x) is indeed a cubic spline.

Hint: Parts (d) and (e) of this problem require knowledge of single-variable calculus. As a reminder, given a cubic polynomial

$$f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3,$$

the first derivative takes the form

$$f_1'(x) = b_1 + 2c_1x + 3d_1x^2$$

and the second derivative takes the form

$$f_1''(x) = 2c_1 + 6d_1x.$$

2. Suppose that a curve \hat{g} is computed to smoothly fit a set of n points using the following formula:

$$\hat{g} = \arg\min_{g} \left(\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int \left[g^{(m)}(x) \right]^2 dx \right),$$

where $g^{(m)}$ represents the *m*th derivative of g (and $g^{(0)} = g$). Provide example sketches of \hat{g} in each of the following scenarios.

- (a) $\lambda = \infty, m = 0.$
- (b) $\lambda = \infty, m = 1.$
- (c) $\lambda = \infty, m = 2$.
- (d) $\lambda = \infty, m = 3$.
- (e) $\lambda = 0, m = 3$.
- 3. Suppose we fit a curve with basis functions $b_1(X) = X$, $b_2(X) = (X-1)^2 I(X \ge 1)$. (Note that $I(X \ge 1)$ equals 1 for $X \ge 1$ and 0 otherwise.) We fit the linear regression model

$$Y = \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \epsilon,$$

and obtain coefficient estimates $\hat{\beta}_0 = 1, \hat{\beta}_1 = 1, \hat{\beta}_2 = -2$. Sketch the estimated curve between X = -2 and X = 2. Note the intercepts, slopes, and other relevant information.

4. Suppose we fit a curve with basis functions $b_1(X) = I(0 \le X \le 2) - (X-1)I(1 \le X \le 2), b_2(X) = (X-3)I(3 \le X \le 4) + I(4 < X \le 5).$ We fit the linear regression model

$$Y = \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \epsilon,$$

and obtain coefficient estimates $\hat{\beta}_0 = 1, \hat{\beta}_1 = 1, \hat{\beta}_2 = 3$. Sketch the estimated curve between X = -2 and X = 2. Note the intercepts, slopes, and other relevant information.

5. Consider two curves, \hat{g}_1 and \hat{g}_2 , defined by

$$\hat{g}_1 = \arg\min_{g} \left(\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int \left[g^{(3)}(x) \right]^2 dx \right),$$

$$\hat{g}_2 = \arg\min_{g} \left(\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int \left[g^{(4)}(x) \right]^2 dx \right),$$

where $g^{(m)}$ represents the mth derivative of g.

- (a) As $\lambda \to \infty$, will \hat{g}_1 or \hat{g}_2 have the smaller training RSS?
- (b) As $\lambda \to \infty$, will \hat{g}_1 or \hat{g}_2 have the smaller test RSS?
- (c) For $\lambda = 0$, will \hat{g}_1 or \hat{g}_2 have the smaller training and test RSS?

Applied

- 6. In this exercise, you will further analyze the Wage data set considered throughout this chapter.
 - (a) Perform polynomial regression to predict wage using age. Use cross-validation to select the optimal degree d for the polynomial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.
 - (b) Fit a step function to predict wage using age, and perform cross-validation to choose the optimal number of cuts. Make a plot of the fit obtained.
- 7. The Wage data set contains a number of other features not explored in this chapter, such as marital status (maritl), job class (jobclass), and others. Explore the relationships between some of these other predictors and wage, and use non-linear fitting techniques in order to fit flexible models to the data. Create plots of the results obtained, and write a summary of your findings.
- 8. Fit some of the non-linear models investigated in this chapter to the Auto data set. Is there evidence for non-linear relationships in this data set? Create some informative plots to justify your answer.
- 9. This question uses the variables dis (the weighted mean of distances to five Boston employment centers) and nox (nitrogen oxides concentration in parts per 10 million) from the Boston data. We will treat dis as the predictor and nox as the response.
 - (a) Use the poly() function to fit a cubic polynomial regression to predict nox using dis. Report the regression output, and plot the resulting data and polynomial fits.

- (b) Plot the polynomial fits for a range of different polynomial degrees (say, from 1 to 10), and report the associated residual sum of squares.
- (c) Perform cross-validation or another approach to select the optimal degree for the polynomial, and explain your results.
- (d) Use the bs() function to fit a regression spline to predict nox using dis. Report the output for the fit using four degrees of freedom. How did you choose the knots? Plot the resulting fit.
- (e) Now fit a regression spline for a range of degrees of freedom, and plot the resulting fits and report the resulting RSS. Describe the results obtained.
- (f) Perform cross-validation or another approach in order to select the best degrees of freedom for a regression spline on this data. Describe your results.
- 10. This question relates to the College data set.
 - (a) Split the data into a training set and a test set. Using out-of-state tuition as the response and the other variables as the predictors, perform forward stepwise selection on the training set in order to identify a satisfactory model that uses just a subset of the predictors.
 - (b) Fit a GAM on the training data, using out-of-state tuition as the response and the features selected in the previous step as the predictors. Plot the results, and explain your findings.
 - (c) Evaluate the model obtained on the test set, and explain the results obtained.
 - (d) For which variables, if any, is there evidence of a non-linear relationship with the response?
- 11. In Section 7.7, it was mentioned that GAMs are generally fit using a *backfitting* approach. The idea behind backfitting is actually quite simple. We will now explore backfitting in the context of multiple linear regression.

Suppose that we would like to perform multiple linear regression, but we do not have software to do so. Instead, we only have software to perform simple linear regression. Therefore, we take the following iterative approach: we repeatedly hold all but one coefficient estimate fixed at its current value, and update only that coefficient estimate using a simple linear regression. The process is continued until *convergence*—that is, until the coefficient estimates stop changing.

We now try this out on a toy example.

- (a) Generate a response Y and two predictors X_1 and X_2 , with n = 100.
- (b) Initialize $\hat{\beta}_1$ to take on a value of your choice. It does not matter what value you choose.
- (c) Keeping $\hat{\beta}_1$ fixed, fit the model

$$Y - \hat{\beta}_1 X_1 = \beta_0 + \beta_2 X_2 + \epsilon.$$

You can do this as follows:

- > a=y-beta1*x1> $beta2=lm(a\sim x2)$coef[2]$
- (d) Keeping $\hat{\beta}_2$ fixed, fit the model

$$Y - \hat{\beta}_2 X_2 = \beta_0 + \beta_1 X_1 + \epsilon.$$

You can do this as follows:

- > a=y-beta2*x2> $beta1=lm(a\sim x1)$coef[2]$
- (e) Write a for loop to repeat (c) and (d) 1,000 times. Report the estimates of $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$ at each iteration of the for loop. Create a plot in which each of these values is displayed, with $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$ each shown in a different color.
- (f) Compare your answer in (e) to the results of simply performing multiple linear regression to predict Y using X_1 and X_2 . Use the abline() function to overlay those multiple linear regression coefficient estimates on the plot obtained in (e).
- (g) On this data set, how many backfitting iterations were required in order to obtain a "good" approximation to the multiple regression coefficient estimates?
- 12. This problem is a continuation of the previous exercise. In a toy example with p=100, show that one can approximate the multiple linear regression coefficient estimates by repeatedly performing simple linear regression in a backfitting procedure. How many backfitting iterations are required in order to obtain a "good" approximation to the multiple regression coefficient estimates? Create a plot to justify your answer.