

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER POR PATENTS PO Box 1450 grains 22313-1450 www.nepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/799,660	03/15/2004	Ryan D. Bruneau	IMMR-0101A (034701-559)	8598
60140 7590 0825/2008 IMMERSION -THELEN REID BROWN RAYSMAN & STEINER LLP P.O. BOX 640640			EXAMINER	
			DINH, DUC Q	
SAN JOSE, CA 95164-0640		ART UNIT	PAPER NUMBER	
			2629	
			MAIL DATE	DELIVERY MODE
			08/25/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/799 660 BRUNEAU ET AL. Office Action Summary Examiner Art Unit DUC Q. DINH 2629 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 30 June 2008. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 28-48 and 50-62 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 28-48 and 50-62 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date. Notice of Draftsperson's Patent Drawing Review (PTO-948)

Imformation Disclosure Statement(s) (PTC/G5/08)
 Paper No(s)/Mail Date ______.

Notice of Informal Patent Application

6) Other:

Page 2

Application/Control Number: 10/799,660

Art Unit: 2629

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on June 30, 2008 has been entered.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (e) the invention was described in (1) an application for patent, published under section 122(b), by another filled in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filled in the United States before the invention by the applicant for patent, except that an international application filled under the treaty defined in section 35(1a) shall have the effects for purposes of this subsection of an application filled in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.
- Claims 28-33, 37-43, 46-49, 50-54 and 58-62 are rejected under 35
 U.S.C. 102(e) as being anticipated by Engel et al (U.S Patent No. 5781,172) hereinafter Engel.

In reference to claim 28. Engel discloses an apparatus, comprising:

a housing; (housing of the trackball shown in Fig. 2)

a sphere (30) positioned in the housing:

Art Unit: 2629

the sphere (30) being rotatable in at least one rotary degree of freedom without requiring movement of the housing, wherein the sphere rotates in response to a user's digit directly contacting and manipulating the sphere (Engel discloses the rotationally sphere 10 is a trackball device; col. 8, line 46-47);

a sensor (13 and 14) coupled to the housing and configured to output sensor signals associated with a movement of the sphere in the at least one rotary degree of freedom; and

an actuator (35, 36 45, 46) coupled to the housing and configured to output haptic feedback to the sphere (30), the haptic feedback being based on the sensor signals (see col. 4, lines 4, lines 50-68).

In reference to claim 29, Engle discloses an inertial mass coupled to the actuator, the actuator and the inertial mass collectively configured to output the haptic feedback, the haptic feedback being an inertial haptic feedback (col. 3, lines 19-29).

In reference to claim 30, Engel discloses wherein the haptic feedback is associated with a graphical representation displayed by a graphical user interface, a position of the sphere in the at least one rotary degree of freedom being associated with data values of a position of a cursor displayed in the graphical user interface the sphere in the at least one rotary degree of freedom being associated with data values of a position of a cursor displayed in the graphical user interface (see Fig. 5 and col. 36-56).

Art Unit: 2629

In reference to claim 31, Engel discloses the haptic feedback is associated with a simulated interaction of a cursor and a simulated graphical object in a graphical user interface (see Fig. 5 and col. 36-56).

In reference to claim 32, Engle discloses wherein the haptic feedback is associated with data values associated with movement of a cursor between menu items (P1-P5) in a displayed graphical menu (see Fig. 5).

In reference to claim 33, Engel discloses wherein the haptic feedback includes a force sensation, the force sensation being at least one of a pulse, a vibration, and a texture (col. 3, lines 30-38).

In reference to claim 37, Engel discloses a microprocessor (37) coupled to the sensor and the actuator, the microprocessor being configured to send haptic feedback signals to the actuator based on host commands received from a host computer, the microprocessor further configured to send locative data to the host computer, the locative data being associated with the sensor signals and the movement of the sphere (col. 4, line 50 - col. 5, lines 5).

In reference to claim 38, Engel discloses the actuator is configured to output the haptic feedback, the haptic feedback being associated with a command received from a host computer (see col. 6, lines 36-56).

In reference to claim 39, Engel disclose an apparatus, comprising:

a housing;

a sphere positioned in the housing, the sphere being rotatable in at least one rotary degree of freedom without requiring movement of the housing, wherein the

Art Unit: 2629

sphere rotates in response to a user's digit directly contacting and manipulating the sphere:

a sensor coupled to the housing and configured to output sensor signals associated with a movement rotation of the sphere in the at least one rotary degree of freedom by the user's direct contact: and an actuator coupled to the housing, the actuator being configured to output haptic feedback to the sphere; and

at least one compliant element (X ACC 45) coupled to the housing and the actuator (X brake 35), the at least one compliant element being configured to amplify the haptic feedback. (see col. 4, line 57 – col. 5, line 5)

In reference to claim 40, Engel discloses wherein the at least one compliant element includes a compliant coupling between the housing and a support for the housing (X ACC 45 is coupled to the housing including a support for the housing, i.e. the bottom case of the housing).

In reference to claim 41, Engel discloses wherein at least a portion of the sphere extends from the housing (trackball 30 has a portion of the sphere extends from the housing, the haptic feedback being output approximately along an axis substantially normal to a point of the sphere (see Fig. 2).

In reference to claim 42, wherein the haptic feedback is associated with a simulated interaction of a cursor with a simulated graphical object displayed in a graphical environment (see rejection of claim 31).

Art Unit: 2629

In reference to claim 43, Engel discloses an inertial mass coupled to the actuator, the actuator and the inertial mass collectively configured to output the haptic feedback, the haptic feedback being an inertial haptic feedback. (see rejection of claim 29)

In reference to claim 46, Engel discloses a microprocessor coupled to the sensor and the actuator, the microprocessor being configured to output haptic feedback signals to the actuator based on host commands received from a host computer microprocessor further being configured to send locative data to the host computer, the locative data being associated with the sensor signals and the movement of the sphere. (see rejection of claim 37).

In reference to claim 47, Engel discloses the actuator being a first actuator, the apparatus further comprising a second actuator configured to output a second haptic feedback in the at least one rotary degree of freedom (see second actuator 36 and 36 of Fig. 2).

In reference to claim 48, Engel discloses wherein said second actuator is a passive brake configured to provide a resistance to rotation of the sphere (35 and 36 are X and Y brake for the sphere 30).

In reference to claim 50, Engel discloses wherein the haptic feedback is output in response to a movement of an inertial mass coupled to an actuator (see rejection of claim 29).

In reference to claim 51, Engel discloses an apparatus, comprising: a sphere positioned within a housing:

Art Unit: 2629

a sensor configured to output sensor signals associated with a movement of the sphere in the rotary degree of freedom by directly contacting the sphere via a user's digit, wherein rotation of the sphere occurs without movement of the housing; and

an actuator configured to output haptic feedback to the sphere, approximately along an axis that is substantially linear to an extended portion of the sphere, the haptic feedback being based on the sensor signals (see rejection of claim 28 and see Fig. 2).

In reference to claim 52, Engel discloses an inertial mass coupled to the actuator, the actuator and the inertial mass collectively configured to output the haptic feedback, the haptic feedback being an inertial haptic feedback (see rejection of claim 29).

In reference to claim 53, Engel discloses, wherein the haptic feedback is associated with a graphical representation displayed by a graphical user interface, a position of the sphere in the at least one rotary degree of freedom being associated with data values of a position of a cursor displayed in the graphical user interface (see Fig. 5 and col. 6, lines 21-55).

In reference to claim 54, Engel discloses wherein the haptic feedback is associated with a simulated interaction of a cursor and a simulated graphical object in a graphical user interface. (see Fig. 5 and col. 6, lines 21-55)

In reference to claim 55, Engel discloses wherein the haptic feedback is associated with data values associated with movement of a cursor between menu items in a displayed graphical menu. (see rejection of claim 32).

In reference to claim 60, refer to the rejection of claim 37.

In reference to claim 61, refer to the rejection of claim 38.

Art Unit: 2629

In reference to claim 62, Engel discloses a method, comprising:

selecting a housing having a sphere therein (trackball in Fig. 2), wherein the sphere is partially exposed from the housing:

rotating the sphere by directly contacting the sphere using a digit, wherein rotation of the sphere does not cause movement of the housing; (trackball device using the sphere to move the cursor without moving the housing)

generating a sensor signal via a sensor wherein the sensor signal causes a simulated interaction or event in a graphical environment on a display in response to said rotation; and

outputting a haptic feedback force onto the sphere from an actuator in response to said simulated interaction or event in said graphical environment. (see user interface in Fig. 5 and col. 6, lines 22-56).

Claim Rejections - 35 USC § 103

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

 Claims 34-36, 44-45, 56-57 are rejected under 35 U.S.C. 103(a) as being unpatentable over Engel as applied to claims 28-33 above, and further in view of Shalit (U.S Patent No. 7,024,625).

In reference to claims 34-35, Engel does not discloses wherein the haptic feedback is a vibrotactile haptic feedback that is provided by a moving element, and

Art Unit: 2629

wherein the moving element is a cover portion of the housing, the cover portion being movably coupled to a remaining portion of the housing.

Shalit discloses a vibro-tactile feedback for a computer tracking device 10 (such as trackball; see col. 3, lines 1-3) as shown in Fig. 2-5 wherein the haptic feedback is a vibrotactile haptic feedback that is provided by a moving element (20), and wherein the moving element is a cover portion of the housing of the mouse 10, the cover portion being movably coupled to a remaining portion of the housing.

It would have been obvious for one of ordinary skill in the art at the time of the invention to provide the vibrotactile haptic feedback in the device of Engel as taught by Shalit to provide additional feedback for the system in different applications (col. 2,lines 10-21 of Shalit).

In reference to claim 36, Shalit discloses wherein the moving element is a button, the button being configured to provide input to a host computer (the cover portion 20 of Shalit includes button as shown in Figs. 2-3).

In reference to claim 44, Shalit discloses a flexure member (58), the flexure member being configured to provide a centering spring force to the inertial mass (see Fig. 4 of Shalit).

In reference to claim 45, Shalit discloses wherein the haptic feedback is a vibrotactile force, the actuator being configured to drive a moving element. (see rejection of claim 34-35).

In reference to claims 56-57 and 58, refer to the rejection of claims 34-36.

Art Unit: 2629

Response to Arguments

Applicant's arguments with respect to claims 28-48 and 50-62 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

 Any inquiry concerning this communication or earlier communications from the examiner should be directed to DUC Q. DINH whose telephone number is (571)272-7686. The examiner can normally be reached on Mon-Fri from 8:00.AM-4:00.PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, RICHARD HJERPE can be reached on (571)272-7691. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Duc Q Dinh/

Examiner, Art Unit 2629

Application/Control Number: 10/799,660 Page 11

Art Unit: 2629