Discrete Optimization

Local Search: Part III

Goals of the Lecture

- Local search
 - optimization
 - warehouse location
 - -traveling salesman problem

min warehouse setup cost + transport cost

- Given
 - a set of warehouses W, each warehouse with a fixed cost f_w
 - -a set of customers C
 - a transportation cost t_{w,c} from warehouse w to customer c
- ► Find which warehouses to open to minimize the fixed and transportation costs

- ► What are the decision variables?
 - -ow: whether warehouse w is open (0/1)
 - -a[c]: the warehouse assigned to customer c

- What are the decision variables?
 - -ow: whether warehouse w is open (0/1)
 - -a[c]: the warehouse assigned to customer c
- What are the constraints?

- What are the decision variables?
 - -ow: whether warehouse w is open (0/1)
 - -a[c]: the warehouse assigned to customer c
- What are the constraints?
 - no constraints

- What are the decision variables?
 - -ow: whether warehouse w is open (0/1)
 - -a[c]: the warehouse assigned to customer c
- What are the constraints?
 - -no constraints :
- What is the objective?

- What are the decision variables?
 - -ow: whether warehouse w is open (0/1)
 - -a[c]: the warehouse assigned to customer c
- What are the constraints?
 - -no constraints :
- What is the objective?

minimize
$$\sum_{w \in W} f_w o_w + \sum_{c \in C} t_{a[c],c}$$

Key observation

- once the warehouse locations have been chosen, the problem is easy
- it suffices to assign a customer to the open warehouse minimizing its transportation cost

- Key observation
 - once the warehouse locations have been chosen, the problem is easy
 - it suffices to assign a customer to the open warehouse minimizing its transportation cost
- ► What is the objective?

- Key observation
 - once the warehouse locations have been chosen, the problem is easy
 - it suffices to assign a customer to the open warehouse minimizing its transportation cost
- What is the objective?

minimize
$$\sum_{w \in W} f_w o_w + \sum_{c \in C} \min_{w \in W: o_w = 1} t_{w,c}$$

- Neighborhood
 - -many possibilities

- Neighborhood
 - -many possibilities
- Simplest neighborhood
 - open and close warehouses
 - -that is, flip the value of ow

- Neighborhood
 - -many possibilities
- Simplest neighborhood
 - open and close warehouses
 - -that is, flip the value of ow
- Union of neighborhoods
 - -open and close a warehouse
 - -swap two warehouses
 - close one and open the other

11

Given

- -a set C of cities to visit
- a symmetric distance matrix d between every two cities

Given

- -a set C of cities to visit
- a symmetric distance matrix d between every two cities

► Find

a tour of minimal cost visiting each city exactly once

- Given
 - -a set C of cities to visit
 - a symmetric distance matrix d between every two cities
- ► Find
 - a tour of minimal cost visiting each city exactly once
- The traveling salesman problem (TSP) is probably the most studied combinatorial problem

- Decision variables
 - -like in the Euler tour
 - -specify where to go next for every city

```
range Cities = 1..n;
int distance[Cities,Cities] = ...;
var{int} next[Cities] in Cities;
minimize
    sum(c in Cities) d[c,next[c]]
subject to
    circuit(next);
```

- ► 2-OPT neighborhood for the TSP
 - -stay feasible, that is always maintain a tour
 - select two edges and replace them by two other edges

- ► 2-OPT neighborhood for the TSP
 - -stay feasible, that is always maintain a tour
 - select two edges and replace them by two other edges

 $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow h \rightarrow a$

- ► 2-OPT neighborhood for the TSP
 - -stay feasible, that is always maintain a tour
 - select two edges and replace them by two other edges

 $a \rightarrow b \rightarrow c \rightarrow d \not\rightarrow e \rightarrow f \rightarrow g \not\rightarrow h \rightarrow a$

- ► 2-OPT neighborhood for the TSP
 - -stay feasible, that is always maintain a tour
 - select two edges and replace them by two other edges

$$a \rightarrow b \rightarrow c \rightarrow d \not\rightarrow e \rightarrow f \rightarrow g \not\rightarrow h \rightarrow a \qquad a \rightarrow b \rightarrow c \rightarrow d \not\rightarrow g \leftarrow f \leftarrow e \not\rightarrow h \rightarrow a$$

- ► 2-OPT neighborhood for the TSP
 - -stay feasible, that is always maintain a tour
 - select two edges and replace them by two other edges

$$a \rightarrow b \rightarrow c \rightarrow d \not\rightarrow e \rightarrow f \rightarrow g \not\rightarrow h \rightarrow a \qquad a \rightarrow b \rightarrow c \rightarrow d \rightarrow g \rightarrow f \rightarrow e \rightarrow h \rightarrow a$$

► 2-OPT

- the neighborhood is the set of all tours that can be reached by swapping two edges
- select two edges and replace them
 by two other edges

► 2-OPT

- the neighborhood is the set of all tours that can be reached by swapping two edges
- select two edges and replace them by two other edges

► 3-OPT

the neighborhood is the set of all tours that can be reached by swapping three edges

better than 2-OPT in quality expensive in computing

Local Search for the TSP

► 2-OPT

- the neighborhood is the set of all tours that can be reached by swapping two edges
- select two edges and replace them
 by two other edges

Local Search for the TSP

► 2-OPT

- the neighborhood is the set of all tours that can be reached by swapping two edges
- select two edges and replace them by two other edges

► 3-OPT

- the neighborhood is the set of all tours that can be reached by swapping three edges
- much better than 2-OPT in quality but more expensive

- ► 2-OPT
- ► 3-OPT
 - the neighborhood is the set of all tours that can be reached by swapping three edges
 - much better than 2-OPT in quality but more expensive

- ► 2-OPT
- ► 3-OPT
 - the neighborhood is the set of all tours that can be reached by swapping three edges
 - much better than 2-OPT in quality but more expensive
- ► 4-OPT
 - often marginally better but much more expensive

- replace the notion of one favorable swaps by a search of a favorable sequence of swaps
- do not search for the entire set of sequences but build one incrementally

- replace the notion of one favorable swaps by a search of a favorable sequence of swaps
- do not search for the entire set of sequences but build one incrementally

- replace the notion of one favorable swaps by a search of a favorable sequence of swaps
- do not search for the entire set of sequences but build one incrementally

- replace the notion of one favorable swaps by a search of a favorable sequence of swaps
- do not search for the entire set of sequences but build one incrementally

- find a good k dynamically at a fraction of the cost
- explore a sequence of swaps of increasing sizes

- -choose a vertex t_1 and its edge $x_1 = (t_1, t_2)$
- -choose an edge $x_2 = (t_2, t_3)$ with $d(x_2) < d(x_1)$
- if none exist, restart with another vertex
- else we have a solution by removing the edge (t₄,t₃) and connecting (t₁,t₄)

- -choose a vertex t_1 and its edge $x_1 = (t_1, t_2)$
- -choose an edge $x_2 = (t_2, t_3)$ with $d(x_2) < d(x_1)$
- if none exist, restart with another vertex
- else we have a solution by removing the edge (t₄,t₃) and connecting (t₁,t₄)
- compute the cost but do not connect

- -choose a vertex t_1 and its edge $x_1 = (t_1, t_2)$
- -choose an edge $x_2 = (t_2, t_3)$ with $d(x_2) < d(x_1)$
- if none exist, restart with another vertex
- -else we have a solution by removing the edge (t₄,t₃) and connecting (t₁,t₄)
- -compute the cost but do not connect
- instead restart with t₁ and its (pretended)edge (t₁,t₄)

- -choose a vertex t_1 and its edge $y_1 = (t_1, t_4)$
- -choose an edge $x_2 = (t_4, t_5)$ with $d(y_2) < d(y_1)$
- if none exist, restart with another vertex
- -else we have a solution by removing the edge (t₆,t₅) and connecting (t₁,t₆)
- -compute the cost but do not connect
- instead restart with t₁ and its (pretended)edge (t₁,t₆)

Until Next Time