Nature Inspired Search and Optimisation Advanced Aspects of Nature Inspired Search and Optimisation

Lecture 6: Selection and reproduction

Shan He

School for Computational Science University of Birmingham

January 30, 2020

Outline of Topics

Selection

- 2 Reproduction
- 3 Conclusion

Generic Evolutionary Algorithm

Generic Evolutionary Algorithm

```
\mathbf{X}_0 := \text{generate initial population of solutions} terminationflag := false t := 0 Evaluate the fitness of each individual in \mathbf{X}_0. while (terminationflag != true) Selection: Select parents from \mathbf{X}_t based on their fitness. Variation: Breed new individuals by applying variation operators to parents Fitness calculation: Evaluate the fitness of new individuals. Reproduction: Generate population \mathbf{X}_{t+1} by replacing least-fit individuals t := t+1 If a termination criterion is met: terminationflag := true
```

Selection

- Selection is not a search operator but influences search performance significantly
- Selection usually is performed before variation operators: selects better fit individuals for breeding
- Selection: emphasises on exploiting better solutions in a population:
 - Select one or more copies of good solutions.
 - Inferior solutions will be selected but with a much less chance
- Question: Why we still select those inferior solutions?

Selection schemes

- Selection schemes:
 - Fitness Proportional Selection
 - Ranking Selection
 - Truncate selection
 - Tournament Selection
 - $(\mu + \lambda)$ and (μ, λ) selection
- Can be grouped based on
 - Relative fitness: fitness proportional selection
 - Ranking: ranking, tournament, truncation, $(\mu + \lambda)$ and (μ, λ)

Fitness Proportional Selection

- Fitness Proportional Selection = roulette wheel selection
- Selecting individual i with a probability:

$$p_i = \frac{f_i}{\sum_{j=1}^M f_j},$$

where f_i is the fitness value of individual i, M is the number of individual

- Does not allow negative fitness value
- Individual with higher fitness values will be more likely to be selected, but still a chance that they may be eliminated
- Individual with low fitness values may survive the selection process: allows some weak individuals who may help escaping from local optima

Fitness Proportional Selection: scaling

- Observation: in early generations, there might be a domination of "super individuals" with very high fitness values
- Question: what problems will "super individuals" cause in EAs?
- Observation: In later generations, there might be no much separation among individuals
- Question: What are the problems in EAs with no much separation among individuals?

Fitness Proportional Selection: scaling

- Problems:
 - Question: what problems will "super individuals" cause in EAs?
 - Answer: Premature convergence to a local optimum
 - **Question**: What problems will caused in EAs with no much separation among individuals?
 - Answer: Slow convergence
- Question: How to maintain the same selection pressure throughout the run
- Solution: replace raw fitness values f_i with a scaled fitness value f_i'
- Linear scaling:

$$f_i' = a + b \cdot f_i$$

where a and b are constants, usually set as $\mathbf{a} = \max(\mathbf{f})$ and $\mathbf{b} = \min(\mathbf{f})/M < 1$, where $\mathbf{f} = f_1, f_2, \dots, M$

Figure: Fitness scaling using linear scaling

Ranking Selection

ullet Sort population size of M from best to worst according to their fitness values:

$$x'_{(M-1)}, x'_{(M-2)}, x'_{(M-3)}, \cdots, x'_{(0)},$$

- Select the top γ -ranked individual x'_{γ} with probability $p(\gamma)$, where γ is the rank and $p(\gamma)$ is a ranking function, e.g.
 - linear ranking
 - exponential ranking
 - power ranking
 - geometric ranking

Linear ranking function

• Linear ranking function:

$$p(\gamma) = \frac{\alpha + (\beta - \alpha) \cdot \frac{\gamma}{M - 1}}{M}$$

where $\sum_{\gamma=0}^{M-1} p(\gamma) = 1$ implies $\alpha + \beta = 2$ and $1 \le \beta \le 2$

- In expectation
 - best individual, i.e., $\gamma=M-1$, reproduced β times: $p(M-1)=\frac{\beta}{M}$
 - worst individual, i.e., $\gamma=0$, reproduced α times: $p(0)=\frac{\alpha}{M}$
- Question: how to set α and β to make EA behave like a random search algorithm?

Other ranking functions

Give you different, usually non-linear relationships between the rank γ and the selection probability $p(\gamma)$:

Power ranking function:

$$p(\gamma) = \frac{\alpha + (\beta - \alpha) \cdot (\frac{\gamma}{M-1})^k}{C}$$

Geometric ranking function:

$$p(\gamma) = \frac{\alpha \cdot (1 - \alpha)^{M - 1 - \gamma}}{C}$$

Exponential ranking function:

$$p(\gamma) = \frac{1 - e^{-\gamma}}{C}$$

where C is a normalising factor and $0 < \alpha < \beta$.

Truncation Selection

- Steps:
 - Rank individuals by fitness values
 - Select some proportion, k, (e.g. $k = \frac{1}{2}$), of the top ranked individuals
- Usually, k = 0.5 (top 50%) or k = 0.3 (top 30%)
- Can be seen as the simplest, deterministic ranking selection

Tournament Selection

- Tournament selection with tournament size k:
 - Step 1: Randomly sample a subset P^\prime of k individuals from population P
 - Step 2: Select the individual in P' with highest fitness
 - Repeat Steps 1 and 2 until enough offspring are created
- One of the most popular selection methods in genetic algorithms.
- Binary tournament selection (k=2) is the most popular one

$$(\mu + \lambda)$$
 and (μ, λ) selection

- First proposed in Evolution Strategies.
- $(\mu + \lambda)$ selection:
 - \bullet Parent population of size μ
 - ullet Generate λ offspring from randomly chosen parents
 - \bullet Select μ best individuals among parents and offspring
- (μ, λ) selection where $\lambda > \mu$
 - \bullet Parent population of size μ
 - ullet Generate λ offspring from randomly chosen parents
 - ullet Select μ best individuals among offspring

Selection pressure

- Selection pressure: degree to which selection emphasises on the better individuals.
- **Question 1:** How does selection pressure affect the balance between exploitation and exploration?
- Question 2: Given an EA with a selection scheme, how will you measure selection pressure?

Selection pressure

• **Question 1:** How does selection pressure affect the balance between exploitation and exploration?

Answer:

- Higher selection pressure \to exploitation \to fast convergence to local optimum, e.g., premature
- Low selection pressure \rightarrow exploration \rightarrow slow convergence

Selection pressure

- Question 2: Given an EA with a selection scheme, how will you measure selection pressure?
- Answer: Take-over time τ^* [1]:
 - \bullet Let's assume population size is M and initial population with one unique fittest individual x^{\ast}
 - Apply selection repeatedly with no other operators.
 - τ^* is number of generations until population consists of x^* only.
- Higher take-over time means lower selection pressure.

^[1] Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms. Morgan Kaufmann.

Selection pressure

Selection function	$ au^* pprox$	Note
Fitness prop.	$\frac{M \ln M}{c}$	Assuming a power law objective
	C	function $f(x) = x^c$
Linear ranking	$\frac{2\ln(M-1)}{\beta-1}$	$1 \le \beta \le 2$
Truncation	$\ln M$	
Tournament	$\frac{\ln M}{\ln k}$	tournament size k
$(\mu + \lambda)$	$\frac{\ln \lambda}{\ln(\lambda/\mu)}$	

Reproduction

- Reproduction: to control how genetic algorithm creates the next generation
- Generational vs Steady state
 - Generational EAs: also called standard EAs, use all new individuals after variations to replace the worse individuals in the old population to create a new population (then selection)
 - Steady state EAs: only use a few or even one single new individual to replace the old population at any one time
- ullet $n ext{-Elitisms: always copy the } n$ best individuals to the next generation
- Generational gap: the overlap (i.e., individuals that did not go through any variation operators) between the old and new generations.

Conclusion

- Selection and reproduction are two important ingredients of EAs
- The major difference between selection methods is based on:
 - Relative fitness: fitness proportional selection
 - \bullet Ranking: ranking, tournament, truncation, $(\mu+\lambda)$ and (μ,λ)
- Takeover time: quantitative measure of selection pressure
- Selection pressure is used to control the balance between exploitation and exploration:
 - Higher selection pressure \rightarrow exploitation \rightarrow fast convergence to local optimum, e.g., premature
 - ullet Low selection pressure o exploration o slow convergence