1 Wiener filter

$$\mathbf{v}_n * [h_0, h_1] = v(n) \cdot h_0 + v(n-1) \cdot h_1 = \mathbf{v}_n^t(n) \cdot \mathbf{h}$$

We want to minimize: $\min_h E||\mathbf{w}_n - \mathbf{v}_n^t \cdot \mathbf{h}||^2$ in other words find the filter \mathbf{h} , so that the convolution with \mathbf{v}_n will give \mathbf{w}_n $E||\mathbf{w}_n - \mathbf{v}_n^t \cdot \mathbf{h}||^2 =$

$$E[\mathbf{h}^{t}\mathbf{w}_{n}^{t}\mathbf{w}_{n}\mathbf{h} + \mathbf{w}_{n}^{2} - 2\mathbf{w}_{n}\mathbf{v}_{n}^{t}\mathbf{h}] = \mathbf{h}^{t}E[\mathbf{v}_{n}^{t}\mathbf{v}_{n}^{t}]\mathbf{h} + E[\mathbf{w}_{n}^{2}] - 2E[\mathbf{w}_{n}\mathbf{v}_{n}^{t}]\mathbf{h} =$$
(1)

However, $E[\mathbf{w}_n^2]$ does not depend on \mathbf{h} .

Then $\min_h E||\mathbf{w}_n - \mathbf{x}_n^t \cdot \mathbf{h}||^2$ is equal to:

$$\min_{h} [\mathbf{h}^t r_{vv} \mathbf{h} - 2r_{wv} \mathbf{h}]$$

We differentiate for ${\bf h}$ and we get:

differentiate for
$$\mathbf{h}$$
 and we get:
$$\frac{d}{d\mathbf{h}}[\mathbf{h}^t r_{vv}\mathbf{h} - 2r_{wv}\mathbf{h}] = 2\mathbf{h}^t \cdot r_{vv} - 2r_{wv}^t = 0 \Rightarrow \mathbf{h}^t = r_{wv}^t \cdot r_{vv}^{-1}$$