LISTA DE EXERCICIOS – LINGUAGENS REGULARES

- 1- Descreva a definição formal de AFD, AFN e Expressões regulares.
- 2- Dado o alfabeto $\Sigma = \{a,b\}$, construa AFDs para as seguintes linguagens:
- a) $\{b(ab)^nb \mid n\geq 0\}$
- b) { baⁿba | n≥0}
- c) $\{a^mb^n \mid m+n \in par\}$
- d) $\{ab^mba(ab)^n \mid m, n \ge 0\}$
- 3- Seja $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, construa AFDs para as seguintes linguagens:
 - a) $\{x \in \Sigma^+ \mid a \text{ seqüência descrita por } x \text{ corresponda a um valor inteiro par} \}$
 - b) $\{x \in \Sigma^+ \mid a \text{ sequência descrita por } x \text{ corresponda a um valor inteiro divisível por 5} \}$
 - c) $\{x \in \Sigma^+ \mid a \text{ seqüência descrita por } x \text{ corresponda a um valor inteiro impar} \}$
- 4- Descreva a expressão regular definida pelo seguinte autômato.

- 5- Projete AFNs que reconheçam as seguintes linguagens.
- a. $\{w \in \{a, b\}^* \mid aaa \in subpalavra de w\}$
- b. $\{w \in \{a, b\}^* \mid o \text{ sufixo de } w \in aa\}$
- c. $\{w \in \{a, b\}^* \mid w \text{ uma quantidade impar de a e de b}\}$
- d. {w ∈ {a, b}* | w possui uma quantidade par de a e ímpar de b ou uma quantidade ímpar de a e par de b}
- e. $\{w \in \{a, b\}^* \mid o \text{ quinto símbolo da direita para a esquerda de } w \in a\}$

6- Descreva Expressões Regulares equivalentes aos autômatos representados pelos diagramas descritos a seguir:

a.

b.

7. Construa AFDs para as seguintes Expressões Regulares:

 Descreva a linguagem associada ao autômato descrito pela seguinte tabela de transição:

$$A_1 = \langle \{a, b\}, \{S_0, S_1, S_2, S_3\}, S_0, \delta, \{S_0, S_2\} \rangle$$

Com δ dada pela seguinte tabela:

	a	b
S ₀	S ₁	S ₃
S ₁	S ₂	S ₀
S ₀ S ₁ S ₂ S ₃	S ₁ S ₂ S ₃ S ₀	S ₃ S ₀ S ₁ S ₂
S ₃	S ₀	S ₂

9.

Dada a seguinte tabela de transição, encontre uma Expressão Regular equivalente e descreva um Autômato Finito Determinístico equivalente:

$$A_2 = \langle \{0,1\}, \{S_0, S_1, S_2, S_3\}, S_0, \delta, \{S_3\} \rangle$$

Com δ dada pela seguinte tabela:

3				
	0	1		
S ₀	$\{S_0, S_1\}$	$\{S_0\}$		
S ₀ S ₁ S ₂	{S ₂ }	{S ₂ }		
S ₂	{S ₂ } {S ₃ }	Ø		
S ₃	{S ₃ }	{S ₃ }		