	 Dataset" analysis discuessed in the "Applied Al Course (AAIC)": Import Libraries Load Dataset Data Insights (i.e. number of points, numer of features, number of classes, data-points per class) Data Visualization for better understanding of the Dataset Perform Univaraite analysis (PDF, CDF, Boxplot, Voilin plots) to understand which features are useful in classification Perform Bi-variate analysis (Scatter plots, Pair-plots) to see if combinations of features are useful in classification
	6. Perform Bi-variate analysis (Scatter plots, Pair-plots) to see if combinations of features are useful in classfication 7. Perform Multi-variate analysis (Contour-plot) to see if combinations of features are useful in classfication 8. Additional statistics on independent variables (i.w. mean, std, percentiles, median, IDR, MAD, Quantiles) 9. Colclusions 10. References Kaggle Dataset: https://www.kaggle.com/gilsousa/habermans-survival-data-set/code
1]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore")</pre>
2]: 3]:	<pre>Loading the Dataset #Load haberman.csv into a pandas dataFrame haberman = pd.read_csv("haberman.csv") # shows the top 5 records of the dataset haberman.head() age year nodes status</pre>
4]:	0 30 64 1 1 1 30 62 3 1 2 30 65 0 1 3 31 59 2 1 4 31 65 4 1
4]:	haberman.tail() age year nodes status 301 75 62 1 1 302 76 67 0 1 303 77 65 3 1 304 78 65 1 2
5]: 5]:	# shows the top 5 records and bottom 5 records of the dataset haberman age year nodes status
6]:	2 30 65 0 1 3 31 59 2 1 4 31 65 4 1 301 75 62 1 1 302 76 67 0 1 303 77 65 3 1 304 78 65 1 2 305 83 58 2 2 306 rows × 4 columns # NOTE: If the original dataset did not have any headers/column-name, then we can update the respective column-name, then we can update the respective column-name, then we can update the respective column-name.
7]:	<pre># haberman.columns = ['age', 'operation_year', 'axil_nodes', 'survival_status'] # haberman.columns Data Insights # (Q) how many number of data-points (i.e. vector/observation) and number of features (i.e variables/input haberman.shape (306, 4)</pre>
8]:	 Observations: Dataset comprises of 306 observations and 4 characteristics. Out of which 1 is dependent variable and rest 3 are independent variables. # (Q) What are the column names (i.e. features/variables/etc) in our dataset? haberman.columns Index(['age', 'year', 'nodes', 'status'], dtype='object')
9]: 9]:	Observations: • Out of the 4 characteristics / features / variables, the "Dependent" variable is "Status". • The "Independent" variables are "Age", "Year", "Nodes". # (Q) How many data points for each class (i.e. class-label/output-variable/dependent-variable/response label # The value_counts() function tells how many data points for each class are present. Here, it tells how many haberman['status'].value_counts() 1
0]:	# How many number of class-label in the dataset (i.e. unique values of target variable)? # https://www.geeksforgeeks.org/python-pandas-series-unique/ # https://pandas.pydata.org/docs/reference/api/pandas.Series.unique.html print (haberman['status'].unique()) [1 2] Observations: • Similar to the previous code, we can find the number of class-labels in a given dataset by using the Pandas unique() function. • Here we can see that there are 2 class-labels for the "Haberman's Survival DataSet" which are 1 and 2.
1]:	# Pandas describe() is used to view some basic statistical details like percentile, mean, std etc. of a detail and the haberman.describe() age year nodes status
2]:	 Age: The age of the patients vary from the minimum age of 30 to maximum age of 83 with a mean value of 52.457516 and median value (i.e. 50%) of 52. Year: Oldest patient to have the surgery was 69 years old and the youngest was 58 years old with a mean of age 62 and median value (i.e 50%) of 63. Nodes: 75% of data points have less than 5 detected axilary nodes and nearly 25% have no detected nodes. Status: More than 50% of the patients survived 5 years or more. # Gaining information about a DataFrame including the index dtype and column dtypes, non-null values and makerman.info()
	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 306 entries, 0 to 305 Data columns (total 4 columns): # Column Non-Null Count Dtype</class></pre>
	 Observations: Data has only integer values for all the features No variable column has null/missing values. The Class-label (i.e. status) is Integer and needs to converted to valid Categirical datatype. We need to map the target values to 'survived' (patient survived after 5 years) and 'not-survived' (patient died within 5 years) for meaningful classification.
3]:	haberman['status'] = haberman['status'].map({1:'survived', 2:'not-survived'}) haberman age year nodes status 0 30 64 1 survived 1 30 62 3 survived 2 30 65 0 survived 3 31 59 2 survived
	3 31 59 2 survived 4 31 65 4 survived 301 75 62 1 survived 302 76 67 0 survived 303 77 65 3 survived 304 78 65 1 not-survived
	 305 83 58 2 not-survived 306 rows × 4 columns Observations: Now the target values have been mapped to 'survived' (patient survived after 5 years) and 'not-survived' (patient died within years) for meaningful classification.
4]: 4]:	
	Status Count The status Count
	Observations: • This histogram provides a more visual pattern of the 2 class-lables namely, "survived" & "not-survived" in which we can notice the dataset is "imbalanced".
5]: 5]:	<pre># percentage of classes in the dataset # https://towardsdatascience.com/getting-more-value-from-the-pandas-value-counts-aa17230907a6 haberman['status'].value_counts(normalize=True)</pre>
6]: 6]:	• We can see that the target column is imbalanced with 74% people who have survived 5 years or more (i.e. Status = survived) and 2 of people did not survive and died within 5 years (i.e. Status = not-survived). # Correlation between variables haberman.corr() age year nodes age 1.000000 0.089529 -0.063176
7]:	<pre>age 1.000000 0.089529 -0.063176 year 0.089529 1.000000 -0.003764 nodes -0.063176 -0.003764 1.000000 # We can visulize this Correlation using a Heatmap # https://seaborn.pydata.org/generated/seaborn.heatmap.html fig = plt.figure(figsize = (10,6)) sns.heatmap(haberman.corr(), cmap='Blues', annot = True)</pre>
7]:	
	-0.6 -0.4 -0.038 -0.063 -0.063 -0.0038 1 -0.0038 -0.0038
	haberman_survived = haberman.loc[haberman["status"] == "survived"]; haberman_not_survived = haberman.loc[haberman["status"] == "not-survived"]; plt.plot(haberman_survived["age"], np.zeros_like(haberman_survived["age"]), 'o') plt.plot(haberman_not_survived["age"], np.zeros_like(haberman_not_survived["age"]), 'o') plt.xlabel("Age", fontsize=15) plt.show()
	0.02 -0.02 -0.04 30 40 50 60 70 80
9]:	 Observations: Uable to make sense as points as they are overlapping a lot. To covercome this issue of 1D Scatter-plot, we can use "Smoothed-Histogram" with "Probability Density Function (PDF)".
	<pre>plt.figure(figsize=(12,10)) plt.subplot(2,2,1) plt.hist(haberman_survived["age"], bins=25, alpha=0.7) plt.xlabel("Age", fontsize=15) plt.ylabel("Frequency", fontsize=12) plt.subplot(2,2,2) plt.hist(haberman_survived["year"], bins=25, alpha=0.7) plt.xlabel("Year", fontsize=15) plt.ylabel("Frequency", fontsize=12) plt.figure(figsize=(12,10)) plt.subplot(2,1,1) plt.hist(haberman_survived["nodes"], bins=25, alpha=0.7) plt.xlabel("Nodes", fontsize=15) plt.ylabel("Frequency", fontsize=12) plt.show()</pre> 25 20 12.5
	140 120 100 80 60
	Observations: • The histogram is used for variables whose values are numerical and measured on an interval scale. In this case we can see the differ numerical values of the "age", "year", and "nodes" variables.
0]:	1. "Probability Density Function (PDF)" with "Smoothed-Histogram"
	<pre># plt.show() # sns.FacetGrid(haberman, hue="status", size=5) \ # .map(sns.distplot, "nodes") \ # .add_legend() # plt.show() #NOTE: Instead of creating PDF's for separate features, we can combine them using "for-loop" function # http://seaborn.pydata.org/tutorial/axis_grids.html?highlight=map for column in haberman.columns[:-1]: sns.FacetGrid(haberman, hue="status", height=5) \</pre>
	0.035 0.025 0.020 0.015 0.010
	0.000 20 30 40 50 60 70 80 90 PDF for feature label year 0.12
	0.10 0.08 0.06 status survived not-survived
	0.02 0.00 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 PDF for feature label nodes
	0.4 0.3 status survived not-survived
	0.1 0.0 -10 0 10 20 30 40 50 60 nodes
	 Observations: We can see that there is a massive overlap in the distribution of target class-label for all the features considered individually. Hence, we can see that the Cumulative Distribution Function (CDF) is helpful in obtaining more meaningful insights. 2. Cumulative Distribution Function (CDF) # https://numpy.org/doc/stable/reference/generated/numpy.histogram.html for column in haberman.columns[:-1]:
	<pre>counts, bins_edges = np.histogram(haberman[column], bins=10, density=True) pdf = counts/sum(counts) cdf = np.cumsum(pdf) print("Bins_Edges: ", bins_edges) print("PDF: ", pdf) print("CDF: ", cdf) plt.plot(bins_edges[1:],pdf, 'r-',label='PDF') plt.plot(bins_edges[1:],cdf, 'b-',label='CDF')</pre>
	<pre>plt.xlabel(column) plt.ylabel('% of patients') plt.legend(('PDF','CDF')) plt.title('PDF & CDF for feature label ' + column) plt.show() print(" ") print('-'*70) Bins_Edges: [30. 35.3 40.6 45.9 51.2 56.5 61.8 67.1 72.4 77.7 83.] PDF: [0.05228758 0.08823529 0.1503268 0.17320261 0.17973856 0.13398693 0.13398693 0.05882353 0.02287582 0.00653595]</pre>
	0.0 40 50 60 70 80 Bins_Edges: [58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.] PDF: [0.20588235 0.09150327 0.08496732 0.0751634 0.09803922 0.10130719
	PDF: [0.20588235 0.09150327 0.08496732 0.0751634 0.09803922 0.10130719 0.09150327 0.09150327 0.08169935 0.07843137] CDF: [0.20588235 0.29738562 0.38235294 0.45751634 0.55555556 0.65686275 0.74836601 0.83986928 0.92156863 1.] PDF & CDF for feature label year 1.0 PDF & CDF for feature label year
	Bins Edges: [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.]
	PDF: [0.77124183 0.09803922 0.05882353 0.02614379 0.02941176 0.00653595 0.00326797 0. 0.00326797 0.00326797] CDF: [0.77124183 0.86928105 0.92810458 0.95424837 0.98366013 0.99019608 0.99346405 0.99346405 0.99673203 1.] PDF & CDF for feature label nodes 1.0
	0.0 PDF CDF 0.0 0.1 0.2 0.3 30 40 50 nodes
2]:	Observations: • 90% of non-survived patients were above the age of 65. # Alternative approach of displaying the "Cumulative Distribution Function (CDF)" plt.figure(figsize=(12,10)) plt.subplot(2,2,1) counts, bin edges= np.histogram(haberman['age'],density=True)
	<pre>counts, bin_edges= np.histogram(haberman['age'],density=True) pdf= counts/sum(counts) cdf= np.cumsum(pdf) plt.plot(bins_edges[1:],pdf,'r-',label='PDF') plt.plot(bins_edges[1:],cdf,'b-',label='CDF') plt.xlabel('Age') plt.title('PDF & CDF for feature label Age') plt.legend() print('AGE>', bins_edges, pdf, cdf, sep='\n') plt.subplot(2,2,2) counts, bin_edges= np.histogram(haberman['year'],density=True)</pre>
	<pre>counts, bin_edges= np.histogram(haberman['year'],density=True) pdf= counts/sum(counts) cdf= np.cumsum(pdf) plt.plot(bins_edges[1:],pdf,'r-',label='PDF') plt.plot(bins_edges[1:],cdf,'b-',label='CDF') plt.title('PDF & CDF for feature label Year') plt.xlabel('Year') plt.legend() print('YEAR>', bins_edges, pdf, cdf, sep='\n') plt.figure(figsize=(12,10))</pre> plt.subplot(2,1,1)
	AGE> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.05228758 0.08823529 0.1503268 0.17320261 0.17973856 0.13398693 0.13398693 0.05882353 0.02287582 0.00653595] [0.05228758 0.14052288 0.29084967 0.46405229 0.64379085 0.77777778
	0.91176471 0.97058824 0.99346405 1.] YEAR> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.20588235 0.09150327 0.08496732 0.0751634 0.09803922 0.10130719
	0.91176471 0.97058824 0.99346405 1.] YEAR> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.20588235 0.09150327 0.08496732 0.0751634 0.09803922 0.10130719 0.09150327 0.09150327 0.08169935 0.07843137] [0.20588235 0.29738562 0.38235294 0.45751634 0.55555556 0.65686275
	0.91176471 0.97058824 0.99346405 1.] YEAR-> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.20588235 0.09150327 0.08496732 0.0751634 0.09803922 0.10130719 0.09150327 0.09150327 0.08169935 0.07843137] [0.20588235 0.29738562 0.38235294 0.45751634 0.55555556 0.65686275 0.74836601 0.83986928 0.92156863 1.] Nodes-> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.77124183 0.09803922 0.05882353 0.02614379 0.02241176 0.00653595 0.00326797 0. 0.00326797] [0.77124183 0.86928105 0.92810458 0.95424837 0.98366013 0.99019608 0.99346405 0.99346405 0.993673203 1.] PDF & CDF for feature label Age PDF & CDF for feature label Year
	0. 91176471 0.97058824 0.99346405 1.] YEAR-> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.20588235 0.09150327 0.08496732 0.0751634 0.09803922 0.10130719 0.09150327 0.09150327 0.08496732 0.07843137] [0.20588235 0.29738562 0.38235294 0.45751634 0.55555556 0.65686275 0.74836601 0.83986928 0.92156863 1.] Nodes-> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.77124183 0.09803922 0.05882353 0.02614379 0.02941176 0.00653595 0.00326797 0. 0.00326797 0.00326797] [0.77124183 0.86928105 0.92810458 0.95424837 0.98366013 0.99019608 0.99346405 0.99346405 0.99673203 1.] PDF & CDF for feature label Age PDF & CDF for feature label Age 10
	0.91176471 0.9105824 0.99346405 1.] YERR—> [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.2058235 0.09150327 0.081696732 0.0751634 0.09863922 0.10130719 0.09150327 0.09150327 0.08169695 1.07843137] [0.2058235 0.29738676 2.382359 4.045731634 0.55555556 0.65866275 0.74636601 0.83966922 0.92156883 1.] Nocies—> [0. 77721818 0.93803922 0.05882353 0.02614379 0.02347176 0.08653595 0.09326787 0.09346405 0.99346405 0.99673203 1.] PDF & CDF for feature label Age PDF & CDF for feature label Nodes PDF & CDF for feature label Nodes PDF & CDF for feature label Nodes 10 PDF & CDF for feature label Nodes
	D. \$176472 (\$ Visibalization 1\$ VISIAN-> (0. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (1. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (1. 5.2 10.4 15.6 20.8 26. 21.3 36.4 41.6 46.8 52.] (2. 5.2 10.4 15.6 20.8 26. 21.3 36.4 41.6 46.8 52.] (3. 5.2 10.4 15.6 20.8 26. 21.3 36.4 41.6 46.8 52.] (1. 5.2 10.4 15.6 20.8 26. 21.3 36.4 41.6 46.8 52.] (2. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (3. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (3. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (3. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (4. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (5. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (6. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (7. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (8. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 21.2 36.4 41.6 46.8 52.] (9. 5.2 10.4 15.6 20.8 26. 20.8 26.2 26.2 26.2 26.2 26.2 26.2 26.2 26
	D. 5.2 10.4 15.8 20.8 26. 31.2 36.4 41.6 46.8 52.
	C.
	2. SELECTORY OF CONTROLLED CONTRO
3]:	2. SELECT OF CONTROLLED STREETS OF THE STREETS OF T

