Master M2 MVA 2017/2018 - Graphical models

Homework 2 due November 10th 2017.

SOLUTIONS

1 Entropy and Mutual Information

- 1. (a) We have $H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$. Since $p(x) \leq 1$, all the terms in the sum are nonpositive, which proves that $H(X) \geq 0$. We have H(X) = 0 if and only if, for all x, $p(x) \log p(x) = 0$, which entails $p(x) \in \{0, 1\}$ for all x. This is possible only if p puts all its mass on a single element $x_0 \in \mathcal{X}$.
- (b),(c) Since $q(x) = \frac{1}{k}$ for all $x \in \mathcal{X}$, $D(p||q) = -H(X) \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{k}$. But we have proved in class that $D(p||q) \geq 0$ with equality if and only if p = q so that $H(X) \leq \log(k)$ with equality if and only if p is the uniform distribution on \mathcal{X} .
- 2. (a) The mutual information is exactly equal to the Kullback-Leibler divergence between $p_{1,2}(\cdot,\cdot)$ and $p_1(\cdot)p_2(\cdot)$ that is $D(p_{1,2}(\cdot,\cdot)||p_1(\cdot)p_2(\cdot))$. It is therefore nonnegative and equal to 0 if and only if $X_1 \perp \!\!\! \perp X_2$.
 - (b) We have

$$I(X_1, X_2) = -H(X_1, X_2) - \sum_{(x_1, x_2) \in \mathcal{X}_1 \times \mathcal{X}_2} p_{1,2}(x_1, x_2) (\log p_1(x_1) + \log p_2(x_2))$$

$$= -H(X_1, X_2) - \sum_{x_1 \in \mathcal{X}_1} p_1(x_1) \log p_1(x_1) - \sum_{x_2 \in \mathcal{X}_2} p_2(x_2) \log p_2(x_2)$$

$$= -H(X_1, X_2) + H(X_1) + H(X_2),$$

which proves that $H(X_1, X_2) \leq H(X_1) + H(X_2)$ with equality if and only if $I(X_1, X_2) = 0$, that is when $X_1 \perp \!\!\! \perp X_2$.

(c) As a consequence the distribution with maximal entropy and given marginal distributions p_1 and p_2 is the distribution $p_{1,2}(\cdot,\cdot) = p_1(\cdot)p_2(\cdot)$.

2 Conditional Independence and factorizations

1. Suppose that $X \perp \!\!\!\perp Y \mid Z$. Then for (y, z) such that p(x, z) > 0, we have $p(z) \neq 0$ and $p(y|z) \neq 0$. Then

$$p(x|y,z) = \frac{p(x,y,z)}{p(y,z)} \stackrel{\text{chain rule}}{=} \frac{p(x,y|z)p(z)}{p(y|z)p(z)} \stackrel{\text{factorization form}}{=} \frac{p(x|z)p(y|z)}{p(y|z)} = p(x|z).$$

For the "if" part, let z be such that p(z) > 0. If p(y, z) = 0, then p(y|z) = 0 and p(x, y, z) = 0 for any x, and thus p(x, y|z) = 0 = p(x|z)p(y|z) trivially. If p(y, z) > 0, then we have:

$$p(x,y|z) \stackrel{\text{chain rule}}{=} p(x|y,z)p(y|z) \stackrel{\text{assumption}}{=} p(x|z)p(y|z),$$

showing the factorization form of the conditional independence.

2. For $p \in \mathcal{L}(G)$, the factorization is: p(x,y,z,t) = p(t|z)p(z|x,y)p(x)p(y). The answer is no, X and Y have in general no reason to be independent given T: take X and Y i.i.d., Z = 1 if X < Y, Z = 0 else, and set T = Z. Then clearly X and Y are dependent given T. Now, even if T is not deterministic given Z the same problem persists: as a concrete example consider the case of binary variables with Z = 1 if and only if X = Y and $p(Z = 1|T = t) = \pi(t)$. Then

$$p(x,y|t) = \sum_{z \in \{0,1\}} \frac{p(x,y,z,t)}{p(t)} = \sum_{z \in \{0,1\}} p(x,y|z)p(z|t).$$

We therefore have $\mathbb{P}(X=1,Y=1|T=t) = \mathbb{P}(X=0,Y=0|T=t) = \pi(t)$ and $\mathbb{P}(X=0,Y=1|T=t) = \mathbb{P}(X=1,Y=0|T=t) = 1-\pi(t)$. This conditional distribution of (X,Y) can written as a two-by-two table, and conditional independence would mean that this two-by-two table viewed as a matrix is of rank 1, which entails that its determinant is 0. But this is only true if $\pi(t) = 0.5$ which would force T to be independent from Z.

3. (a) If Z is binary, the statement is true. Let's prove it. If Y is a constant r.v. (i.e. $\exists y_0$ s.t. $\mathbb{P}(Y=y_0)=1$), then Y is trivially independent with any r.v. (verify it!), and so $Y \perp \!\!\! \perp Z$. So we now assume that Y takes at least two distinct values with non-zero probability. For any y such that $p(y) \neq 0$, we have

$$p(x) \stackrel{X \perp \!\!\! \perp}{=} \stackrel{Y}{=} \frac{p(x,y)}{p(y)} = \frac{1}{p(y)} \sum_{z} p(x,y|z) p(z)$$

$$\stackrel{X \perp \!\!\! \perp}{=} \stackrel{Y|Z}{=} \frac{1}{p(y)} \sum_{z} p(x|z) p(y|z) p(z) = \sum_{z} p(x|z) p(z|y).$$

Since Z is binary, we thus have for any j such that $\mathbb{P}(Y=j) \neq 0$,

$$\mathbb{P}(X=i)\mathbb{P}(X=i|Z=1)\mathbb{P}(Z=1|Y=j) + \mathbb{P}(X=i|Z=0)\mathbb{P}(Z=0|Y=j).$$

Let $u^{(k)}$ be the vector such that $u_i^{(k)} = \mathbb{P}(X = i | Z = k)$ and $v^{(k)}$ be the vector such that $v_j^{(k)} = \mathbb{P}(Z = k | Y = j)$ then

$$A = u^{(0)}v^{(0)^{\top}} + u^{(1)}v^{(1)^{\top}}$$

is the matrix such that $A_{ij} = \mathbb{P}(X = i)$. The columns of A are thus all equal, which means that $u^{(0)}v_j^{(0)} + u^{(1)}v_j^{(1)} = u^{(0)}v_{j'}^{(0)} + u^{(1)}v_{j'}^{(1)}$ for any j, j' such that $\mathbb{P}(Y = j) \neq 0$ and $\mathbb{P}(Y = j') \neq 0$. Since we assume that Y must take at least two different values with non-zero probability, we have that

$$u^{(0)}(v_j^{(0)} - v_{j'}^{(0)}) + u^{(1)}(v_j^{(1)} - v_{j'}^{(1)}) = 0,$$

and so either $u^{(0)}$ and $u^{(1)}$ are collinear or we have both $v_j^{(0)} = v_{j'}^{(0)}$ and $v_j^{(1)} = v_{j'}^{(1)}$.

- In the first case $u^{(0)} = \gamma u^{(1)}$, but we must have $\gamma = 1$ because the entries in $u^{(k)}$ must sum to 1 (it is a probability distribution). So $\mathbb{P}(X|Z=0) = \mathbb{P}(X|Z=1)$, implying that $X \perp \!\!\! \perp Z$ (fill in the last details!).
- In the second case, $v_j^{(0)} = v_{j'}^{(0)}$ and $v_j^{(1)} = v_{j'}^{(1)}$ for all pairs (j, j') such that $\mathbb{P}(Y = j) \neq 0$ and $\mathbb{P}(Y = j') \neq 0$. But this means that $\mathbb{P}(Z = 1|Y = j)$ and $\mathbb{P}(Z = 0|Y = j)$ do not depend on j for any j (note in particular that if $\mathbb{P}(Y = j) = 0$ we can set $\mathbb{P}(Z = 1|Y = j) = \mathbb{P}(Z = 1)$ and $\mathbb{P}(Z = 0|Y = j) = \mathbb{P}(Z = 0)$ because on an event of probability 0 the conditional probability can be defined arbitrarily), which means that $Y \perp \!\!\! \perp Z$.
- (b) The statement is not true in general. Take (X, Z_1) dependent and (Y, Z_2) dependent such that $(X, Z_1) \perp \!\!\! \perp (Y, Z_2)$. Then define $Z = (Z_1, Z_2)$. We clearly have $X \perp \!\!\! \perp Y$. For the conditional independence, note that $p(x, z) = p(x, z_1)p(z_2)$ and that $p(z) = p(z_1)p(z_2)$ so that $p(x|z) = p(x|z_1)$. Symmetrically $p(y|z) = p(y|z_2)$. Thus

$$p(x,y|z) = \frac{p(x,y,z_1,z_2)}{p(z_1,z_2)} = \frac{p(x,z_1)p(y,z_2)}{p(z_1)p(z_2)} = p(x|z_1)p(y|z_2) = p(x|z)p(y|z),$$

so that $X \perp \!\!\!\perp Y \mid Z$, which completes the proof.

Note that a particular instance of the situation above is the case, where $Z_1 = X$ and $Z_2 = Y$, in which case Z = (X, Y), which provides a simple counterexample, because, conditionally on Z, then X and Y are determined and thus independent.

3 Distributions factorizing in a graph

1. Let $p \in \mathcal{L}(G)$. We thus have $p(x) = \prod_{k=1}^{n} p(x_k \mid x_{\pi_k})$, where π_k denotes the parents of k in G. Consider any x_i, x_j, x_{π_i} such that $p(x_i, x_j, x_{\pi_i}) \neq 0$. Then by the chain rule (valid for any distribution), we have

$$p(x_i \mid x_{\pi_i})p(x_j \mid x_i, x_{\pi_i}) = p(x_i, x_j \mid x_{\pi_i}) = p(x_j \mid x_{\pi_i})p(x_i \mid x_j, x_{\pi_i}).$$
(1)

As (i, j) is a covered edge, we have $\pi_j = \pi_i \cup \{j\}$. Moreover, by definition of E', we have $\pi'_j = \pi_i$ and $\pi'_i = \pi_j \cup \{j\}$ with π'_i the parents of i in G'. So note that equation (1) can be interpreted as:

$$p(x_i \mid x_{\pi_i})p(x_j \mid x_{\pi_j}) = p(x_j \mid x_{\pi'_i})p(x_i \mid x_{\pi'_i}).$$

As $\pi'_k = \pi_k$ for any $k \neq i, j$, we can simply swap the two terms for i and j in the product factorization of p:

$$p(x) = p(x_i \mid x_{\pi_i})p(x_j \mid x_{\pi_j}) \prod_{k \neq i,j} p(x_k \mid x_{\pi_k}) = p(x_j \mid x_{\pi'_j})p(x_i \mid x_{\pi'_i}) \prod_{k \neq i,j} p(x_k \mid x_{\pi'_k}).$$

If $p(x_i, x_j, x_{\pi_i}) = 0$, then both the LHS and RHS above are equal to zero and so are still equal. We thus have $p \in \mathcal{L}(G')$. By symmetry, we can reverse the argument, and thus $\mathcal{L}(G) = \mathcal{L}(G')$.

2. If $p \in \mathcal{L}(G)$, then $p(x) = \prod_{j=1}^{n} p(x_j|x_{\pi_j})$ where $|\pi_j| \leq 1$ as G is a directed tree (has no v-structure). Thus denoting $\psi_j(x_j, x_{\pi_j}) = p(x_j|x_{\pi_j})$, p may be written as the Gibbs model $p(x) = \prod_{j=1}^{n} \psi_j(x_j, x_{\pi_j})$ and thus $p \in \mathcal{L}(G')$.

For the other direction, we show the result by induction on the size of undirected trees. That is, our induction hypothesis is that for any undirected tree G' = (V, E') with $|V| \leq n$, then $p \in \mathcal{L}(G') \implies p \in \mathcal{L}(G)$ for any directed tree G which is an orientation of G'.

The case n = 1 is trivial $(\mathcal{L}(G'))$ = all distributions on one node = $\mathcal{L}(G)$).

So now consider an undirected tree G' = (V, E') with n > 1 nodes, and G = (V, E) some directed tree version of G'. Let's index the nodes of V from 1 to n so that node n is a leaf which is not the root of the directed tree G and its unique parent is the node n-1. For n>1, there exists such a leaf distinct from the root, and for this leaf, we have $(n-1,n) \in E$. Let $p \in \mathcal{L}(G')$, and so we have $p(x) = \frac{1}{Z} \prod_{\{i,j\} \in E'} \psi_{ij}(x_i, x_j)$.

Let \tilde{p} be the marginal of p on $x_{1:(n-1)}$. Then we have:

$$\tilde{p}(x_{1:(n-1)}) = \frac{1}{Z} \tilde{\psi}(x_{n-1}) \prod_{\{i,j\} \in E' \setminus \{n-1,n\}} \psi_{ij}(x_i, x_j) \quad \text{where} \quad \tilde{\psi}(x_{n-1}) := \sum_{x_n} \psi(x_{n-1}, x_n).$$

Let \tilde{G} be the subtree of size n-1 obtained from G by removing the leaf n, and \tilde{G}' its undirected version. From the form above, we see that $\tilde{p} \in \mathcal{L}(\tilde{G}')$. Thus by the induction hypothesis, $\tilde{p} \in \mathcal{L}(\tilde{G})$ and so factorizes as: $\tilde{p}(x_1, \ldots, x_{n-1}) = \prod_{i=1}^{n-1} \tilde{p}(x_i|x_{\pi_i})$. Note that in G, $\pi_n = \{n-1\}$; we thus define $f(x_n, x_{\pi_n})$ through

$$f_n(x_n, x_{\pi_n}) := \begin{cases} \psi_{n-1,n}(x_{n-1}, x_n) / \tilde{\psi}(x_{n-1}) & \text{if } \tilde{\psi}(x_{n-1}) \neq 0 \\ 1 / K_n & \text{otherwise} \end{cases}$$

with K_n the number of possible values for X_n . We then have, valid for all x:

$$p(x) = \tilde{p}(x_1, \dots, x_{n-1}) f_n(x_n, x_{\pi_n}) = f_n(x_n, x_{\pi_n}) \prod_{i=1}^{n-1} \tilde{p}(x_i | x_{\pi_i}).$$

Now since $\sum_{x_n} f_n(x_n, x_{\pi_n}) = 1$, we have that p satisfies the conditions in the definition of $\mathcal{L}(G)$, and thus $p \in \mathcal{L}(G)$, completing the induction step and the proof.

We have just shown that oriented and non-oriented trees are Markov-equivalent.

4 Mixtures of Gaussians

- (a) When initializing the centroids of K-means with K random points from the dataset, we obtain in general different results. Most of them are close to the minimum, but some of them may be quite far (see histogram).
- (b) The result is close to K-means since we do not take into accounts correlations between variables. The isotropic covariance matrix estimator is (and following the course notations)

$$\Sigma_i^{(t+1)} = \frac{1}{d} \frac{\sum_n \tau_n^{i(t)} ||x_n - \mu_i^{(t+1)}||^2}{\sum_n \tau_n^{i(t)}}$$

(NB: don't forget to divide by d). The other parameters estimate ($\mu_i^{(t+1)}$ and $\pi_i^{(t+1)}$) during the M-step are the same as seen in class.

A reasonable estimate for the value of the latent variable for each n can be made by maximizing the a posteriori probability $p(z_n|x_n)$, i.e., through $\underset{1 \leq i \leq K}{\operatorname{arg max}} \tau_n^i$.

For a standard multivariate Gaussian, i.e., so that $\mu = 0$ et $\Sigma = I_d$, the disk corresponding to 90% of the mass is centered at zero and has radius R so that $P(r^2 \leq R^2) = .9$, r^2 being the sum of the d squares of independent standard univariate Gaussians. This is by definition a variable with a χ^2 -distribution with d degrees of freedom. In the general case, the ellipse is obtained through an affine transformation (see code).

(c) The covariance matrix estimator is (and following the course notations)

$$\Sigma_i^{(t+1)} = \frac{\sum_n \tau_n^{i(t)} (x_n - \mu_i^{(t+1)}) (x_n - \mu_i^{(t+1)})^\top}{\sum_n \tau_n^{i(t)}}$$

(d) We show below the log-likelihood divided by N_{train} and N_{test} respectively (we normalize to obtain values which remain small when the number of data points increases and to be able to compare "test" and "train"):

	Train	Test
Isotropic	-5.2910	-5.3882
General	-4.6554	-4.8180

Unnormalized log-likelihoods:

	Train	Test
Isotropic	-2.6455×10^3	-2.6941×10^3
General	-2.3277×10^3	-2.4090×10^3

The training log-likelihoods are always greater for more flexible models (the situation may be different for the testing log-likelihoods as the model may be too flexible and we have overfitting). The test log-likelihoods are on average lower than the train ones.

