

REALISASI SISTEM KOMUNIKASI SUARA JARAK DEKAT DALAM AIR MENGGUNAKAN CAHAYA INFRA MERAH TERMODULASI LEBAR PULSA UNTUK APLIKASI KOMUNIKASI ANTAR PENYELAM

PROPOSAL PENGAJUAN TUGAS AKHIR PROGRAM STUDI D-III TEKNIK TELEKOMUNIKASI

Diusulkan Oleh:

Firdha Rachmadhani; 161331045; 2016

POLITEKNIK NEGERI BANDUNG BANDUNG

2019

PENGESAHAN PKM PENELITIAN

1. Judul Kegiatan : Realisasi Sistem Komunikasi Suara

Jarak Dekat Dalam Air Menggunakan Cahaya Infra Merah Termodulasi Lebar Pulsa Untuk Aplikasi Komunikasi Antar

Penyelam

2.Pengusul

a.Nama Lengkap : Firdha Rachmadhani

b.NIM : 161331045 c.Jurusan Teknik Elektro

d.Univ/Institut/Politeknik : Politeknik Negeri Bandung

e.Alamat Rumah : Komp.Graha Padalarang Indah, Jl.

Safir 1 no 2, 40553, Padalarang

Bandung Barat

f. Email/ No Hp : firdharachma35@gmail.com/

08112160130

3.Dosen Pembimbing

a.Nama Lengkap dan Gelar : DR. Eril Mozef, MS., DEA

b.NIDN : 0004046504

c.Alamat Rumah dan No Hp/Telp : Jalan Mars Utara 1 No II Rt 02 Rw

02, Margahayu Raya, Bandung

40286 / 08122269339

4. Biaya Kegiatan Total

7. Jangka Waktu Pelaksanaan : 5 Bulan

Mengetahui, Bandung, 1 Februari 2019

Dosen Pendamping, Pengusul,

(DR. Eril Mozef, MS., DEA) Firdha Rachmadhani NIDN.0004046504 NIM.161331045

DAFTAR ISI

HALAMAN SAMPUL	i
LEMBAR PENGESAHAN TUGAS AKHIR	ii
DAFTAR ISI	iii
DAFTAR TABEL	iv
ABSTRAK	v
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Luaran yang Diharapkan	1
1.3 Manfaat	1
BAB II TINJAUAN PUSTAKA	2
BAB III METODE PELAKSANAAN	4
3.1 Perancangan	4
3.2 Realisasi	7
3.3 Pengujian	7
3.4 Analisis	7
3.5 Evaluasi	7
BAB IV BIAYA DAN JADWAL KEGIATAN	9
4.1 Anggaran Biaya	9
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	. 10
LAMPIRAN-LAMPIRAN	. 11
Lampiran 1. Biodata Pengusul dan Dosen Pembimbing	. 11
Lampiran 2. Justifikasi Anggaran Kegiatan	. 20
Lampiran 3. Jadwal Kegiatan	. 23
Lampiran 4. Surat Pernyataan Pengusul	. 24
Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan	. 25

DAFTAR TABEL

Tabel 4.1 Anggaran Biaya	9
Tabel 4.2 Jadwal Kegiatan	9

ABSTRAK

Komunikasi di dalam air menjadi kebutuhan komunikasi modern yang mendunia. Seperti komunikasi antar kapal selam, pengaplikasian eksplorasi minyak dan gas, pengawasan pada lingkungan, navigasi, mengontrol polusi di laut. Selain itu dapat digunakan untuk mendeteksi dan peringatan awal bencana di dalam laut serta untuk kepentingan keamanan dan pertahanan nasional selain itu diminati oleh industri dan komunitas yang bergerak pada bidang ilmu pengetahuan, eksplorasi lepas pantai, dapat pula diaplikasikan untuk mengamati perubahan iklim, dan penelitian pada bidang oseanografi.

Ada beberapa sistem komunikasi dalam air seperti sistem komunikasi RF (Radio Frekuensi), sistem komunikasi gelombang akustik, dan sistem komunikasi cahaya.

Dalam tugas akhir ini, saya akan mengangkat topik tentang sistem komunikasi suara di dalam air menggunakan cahaya infra merah. Cahaya infra merah ini merupakan cahaya tak tampak yang harus di uji dan dianalisis pengaruhnya terhadap cahaya lingkungan. Adapun teknik modulasi yang dipilih adalah *Pulse Width Modulation* (PWM). Penggunaan sistem komunikasi suara ini akan digunakan oleh penyelam pada jarak dekat yaitu kurang lebih 3 meter. Penyelam di dalam danau berkomunikasi secara berdampingan dan dapat mengirim pesan suara sacara dua arah.

BAB I PENDAHULUAN

1.1 Latar Belakang

Komunikasi di dalam air menjadi kebutuhan komunikasi modern yang mendunia. Seperti komunikasi antar kapal selam, satelit dengan kapal selam, kapal biasa dengan kapal selam (Vikrant,dkk.,2012,h.1). Komunikasi dalam air memiliki peran penting dalam pengaplikasian eksplorasi minyak dan gas, pengawasan pada lingkungan, navigasi, mengontrol polusi di laut (Camila, dkk., 2016, h.1). Selain itu dapat digunakan untuk mendeteksi dan peringatan awal bencana di dalam laut serta untuk kepentingan keamanan dan pertahanan nasional (Xi, dkk., 2015, h.1). Sistem komunikasi ini juga diminati oleh industri dan komunitas yang bergerak pada bidang ilmu pengetahuan, eksplorasi lepas pantai, dapat pula diaplikasikan untuk mengamati perubahan iklim, dan penelitian pada bidang oseanografi (Hemani dan George, 2016, h.1).

Ada beberapa media komunikasi di dalam air yaitu gelombang akustik, Radio Frekuensi (RF) dan cahaya. Gelombang akustik merambat dengan baik di dalam air dan dapat mencapai jarak yang sangat jauh (Goh, 2009, h.1). Kekurangannya adalah bandwidth yang terbatas dan kecepatan transmisi datanya sangat rendah di dalam air yaitu dalam beberapa bps (Vikrant, 2012, h.1). Selain itu radio frekuensi yang memiliki rentang frekuensi tinggi yaitu dalam MHz hingga Ghz (Goh, 2009, h.1). Namun radio frekuensi (gelombang radio) memiliki redaman yang sangat besar di dalam air (Anguita, 2009, h.1). Selanjutnya adalah cahaya infra merah. Dibandingkan dengan Radio Frekuensi (RF) transmisi infra merah tidak dikendalikan oleh peraturan komunikasi federal. Proyek ini juga dapat membangun privasi untuk mengirim dan menerima data (Mohamad, 2013, h.65). Namun jarak transmisinya pendek. Berdasarkan sumber yang telah kami dapatkan, jarak transmisi komunikasi di dalam air menggunakan media sinar infra merah adalah kurang lebih 3 meter (Menying, dkk., 2012, h.1).

Berdasarkan uraian paragraf sebelumnya, kami memutuskan untuk memilih media komunikasi cahaya atau sinar infra merah di dalam air. Adapun teknik modulasi yang kami pilih adalah *Pulse Width Modulation* (PWM). Teknik modulasi PWM ini sebagai pengatur intensitas cahaya LED IR yang akan kami gunakan.

Teknik modulasi ini juga dapat disebut sebagai teknik modulasi lebar pulsa yang merupakan sebuah cara memanipulasi lebar sinyal yang dinyatakan dengan pulsa dalam satu perioda untuk mendapatkan tegangan rata — rata yang berbeda. Pengontrolan intensitas cahaya tersebut berguna untuk mengatur nyala terang LED IR dengan cara mengatur lebar pulsa. Lebar pulsa dalam modulasi PWM bervariasi. Namun, memiliki amplitudo dan frekuensi dasar yang tetap (Andri, 2016, h.1). Variasi tersebut didapat dari perubahan panjang pulsa dalam satu periode dan

dilakukan berulang – ulang (Toni, 2016, para.3). Dengan pengaplikasian teknik modulasi PWM, besar kecilnya intensitas cahaya LED IR akan ditentukan sesuai kebutuhan. Sehingga meminimalisir jumlah daya yang hilang pada LED IR. Intensitas cahaya akan diperbesar seiring bertambahnya jarak transmisi pada komunikasi suara dalam air.

Kami akan mensimulasikan baik *software* maupun *hardware* dalam penelitian yang berjudul "Pengiriman dan Penerimaan Informasi Suara Dalam Air Menggunakan Sinar Infra Merah dengan Teknik Modulasi Lebar Pulsa" sesuai dengan teknik atau metode yang telah kami pilih.

Rencana kami, penggunaan sistem ini akan digunakan oleh penyelam untuk melakukan komunikasi suara dilakukan dengan cara mengirim data audio (sinyal suara) menggunakan IR LED Illuminator (pengirim) yang pancarannya akan diterima oleh sensor cahaya (penerima). Sistem yang akan kami kembangkan ini menggunakan perangkat *earphone* yang telah memiliki *microphone* sehingga komunikasi menjadi lebih ringkas. Hasil yang ingin dicapai adalah penyelam dapat mengirim pesan suara dari pengirim kepada penerima dan penerima berhasil medapatkan pesan suara dalam bentuk audio (didengarkan dengan *earphone*) dari pengirim.

1.2 Perumusan Masalah

Berdasarkan uraian latar belakang tersebut, adapun rumusan pertanyaan ilmiah sebagai berikut:

- 1. Bagaimana cara mengirim sinyal informasi suara melalui cahaya tak tampak inframerah di dalam air?
- 2. Bagamana cara mengaplikasikan teknik modulasi *Pulse Width Modulation* (PWM) dalam system komunikasi suara dalam air?
- 3. Bagaimana cara agar pengirim dan penerima dapat berkomunikasi dua arah tanpa terganggu cahaya lingkungan atau cahaya tampak dalam air pada jarak 3 meter?
- 4. Bagaimana cara mengirimkan informasi suara secara berulang dan seluruh informasi dapat diterima di *earphone* penerima?

1.3 Tujuan

- 1. Merealisasikan sistem komunikasi suara dalam air untuk penyelam dengan teknik modulasi *Pulse Width Modulation* (PWM).
- 2. Membuat sistem komunikasi suara dua arah di dalam air.
- 3. Menguji kehandalan alat terhadap gangguan cahaya lain.

1.4 Kegunaan Produk

Perangkat yang diusulkan berguna bagi penyelam untuk berkomunikasi di dalam air.

1.5 Luaran yang Diharapkan

Target luaran yang diharapkan dalam program ini :

- a. Metode / teknik modulasi *Pulse Width Modulation* (PWM) untuk komunikasi dalam air
- b. Cahaya inframerah sebagai media transmisi dapat menghasilkan kualitas komunikasi yang baik dan tahan dari lingkungan cahaya sekitar serta dapat direalisasikan ke dalam bentuk *prototype*.
- c. Sepasang transceiver yang diperuntukkan untuk 2 penyelam dikemas dalam kotak kedap air lengkap dengan baterai dan earphone dan siap dipakai di dalam air.
- d. Publikasi dalam prosiding seminar nasional

BAB II TINJAUAN PUSTAKA

2.1 Tinjauan Pustaka

Permasalahan pada komunikasi didalam air adalah *distance error, time error, speed error* (Menying, dkk., 2011, h.1). Hal ini disebabkan karena komunikasi di air dan di udara sangatlah berbeda. Komunikasi di dalam air sangatlah dipengaruhi oleh konsentrasi air, tekanan, suhu, kuantitas cahaya, angin, dan gelombang air (Camila, dkk., 2016, h.1).

Ada beberapa media komunikasi di dalam air yaitu gelombang akustik, Radio Frekuensi (RF) dan cahaya. Gelombang akustik merambat dengan baik di dalam air dan dapat mencapai jarak yang sangat jauh (Goh, 2009, h.1). Kekurangannya adalah bandwidth yang terbatas dan kecepatan transmisi datanya sangat rendah di dalam air yaitu dalam beberapa bps (Vikrant, 2012, h.1). Selain itu radio frekuensi yang memiliki rentang frekuensi tinggi yaitu dalam MHz hingga Ghz (Goh, 2009, h.1). Namun radio frekuensi (gelombang radio) memiliki redaman yang sangat besar di dalam air (Anguita, 2009, h.1). Selanjutnya adalah cahaya infra merah. Dibandingkan dengan Radio Frekuensi (RF) transmisi infra merah tidak dikendalikan oleh peraturan komunikasi federal. Proyek ini juga dapat membangun privasi untuk mengirim dan menerima data (Mohamad, 2013, h.65). Namun jarak transmisinya pendek. Berdasarkan sumber yang telah kami dapatkan, jarak transmisi komunikasi di dalam air menggunakan media sinar infra merah adalah kurang lebih 3 meter (Menying, dkk., 2012, h.1).

Berdasarkan informasi tersebut kami akan melakukan simulasi *software* dan *hardware* untuk membuktikan metode yang akan diterapkan dalam komunikasi suara menggunakan media sinar infra merah. Adapun *hardware* yang akan digunakan berbentuk silinder yang panjangnya 2 hingga 3 meter yang berisi air. Di ujung – ujung *hardware* tersebut terdapat rangkaian pengirim dan penerima. Lalu uji coba akan dilakukan di ruangan laboratorium dengan mensimulasikan keadaan danau atau laut. Keadaan tersebut akan menjadi acuan untuk metode yang akan diterapkan pada pengirim dan penerima. Targetnya, pengirim dapat mengirim suara yang dapat diterima oleh penerima. Pada uji coba akan ditemukan gangguan cahaya sekeliling.

Sinar matahari memancarkan radiasi gelombang elektromagnetik (Randy, 2007, para.7). Pada komunikasi suara dengan media sinar infra merah, penerima menerima sinyal cahaya inframerah dari pengirim. Dari teori sebelumnya yang telah dibahas dapat disimpulkan, jika penerima bekerja dibawah sinar matahari yang juga memancarkan gelombang sinar infra merah (karena infra merah termasuk kedalam spektrum elektromagnetik), maka penerima tersebut juga menerima sinar inframerah dari cahaya matahari. Hal tersebut akan menyebabkan adanya kesalahan

saat penerima bekerja untuk menerima sinyal inframerah. Karena penerima menerima banyak sumber cahaya, yaitu cahaya dari pengirim dan dari cahaya tampak (cahaya sekeliling). Dengan demikian, komunikasi antara pengirim dan penerima akan terganggu.

Untuk itu perlu dilakukan uji coba untuk mengetahui karakteristik rambatan sinar inframerah di dalam air pada 3 keadaan yang berbeda berdasarkan intensitas cahaya (pada satuan lux) yaitu 0 lux (gelap), \pm 100 lux (di dalam ruangan), \pm 10000 lux (dibawah sinar matahari). Untuk mengetahui intensitas cahaya lingkungan adalah dengan aplikasi luxmeter pada *smartphone*. Pada saat komunikasi terjadi antara pengirim dan penerima di ruangan gelap yaitu 0 lux (tidak ada cahaya dari luar ruangan masuk) penerima menerima sinar infra merah dengan optimal. Saat komunikasi pengirim dan penerima dilakukan pada \pm 100 lux (di dalam ruangan) dan \pm 10000 lux (dibawah sinar matahari) komunikasi tidak akan seoptimal seperti di ruangan gelap, karena terdapat cahaya tampak di lingkungan sekeliling yang menghambat kinerja penerima

Selain itu yang perlu di uji bagaimana perambatan sinar infra merah di dalam air dengan beberapa macam jenis air. Karena semakin tinggi tingkat kekeruhan air dan konsentrasi air laut, semakin menghambat komunikasi antara pengirim dan penerima. Karena setiap jenis air memiliki sifat yang berbeda.

Solusi dari permasalahan sistem komunikasi suara di dalam air dengan media sinar infra merah adalah dengan diberinya suatu rangkaian penguat. Rangkaian penguat tersebut di maksudkan untuk memberi daya maksimum kepada beban. Input dari sistem penguat berupa sinyal kecil yang kemudian dikuatkan oleh beberapa penguat tegangan dan akhirnya diumpankan ke penguat daya untuk memperoleh daya yang besar (Herman, 2008, h.99). Rangkaian penguat ini menjadi solusi terhadap gangguan cahaya tampak / cahaya sekeliling pada saat simulasi. Dengan demikian, komunikasi antara pengirim dan penerima di dalam air dapat dilakukan tanpa adanya gangguan dari cahaya tampak dan jarak transmisi akan lebih jauh dibandingkan tanpa menggunakan rangkaian penguat.

Berdasarkan referensi yang telah kami dapat sistem komunikasi cahaya dengan menggunakan sinar infra merah dapat dilakukan pada jarak transmisi \pm 3 meter (Menying, dkk., 2012, h.1).

BAB III METODE PELAKSANAAN

3.1 Perancangan

Gambar 3.1 Blok diagram komunikasi suara dalam air menggunakan sinar infra merah dengan teknik modulasi PWM

Berdasarkan blok diagram yang ditampilkan pada gambar 3.1, skema perancangan komunikasi suara ini terbagi menjadi dua bagian yaitu pengirim dan penerima. Pada sisi pengirim, suara akan diterima oleh *microphone* lalu dikuatkan di rangkaian penguat sebelum masuk ke rangkaian modulator PWM. Sinyal yang telah dikuatkan selanjutnya di modulasi menggunakan teknik modulasi PWM. Sinyal sinusoidal yang bersifat analog diubah menjadi sinyal digital yang bertujuan untuk menstabilkan intensitas cahaya LED IR dan menghindari gangguan cahaya lingkungan atau cahaya tampak. Kemudian terdapat osilator gelombang gergaji yang masuk ke rangkaian modulator PWM yang merupakan frekuensi pembawa. Setelah melewati rangkaian modulator PWM, sinyal sinusoidal yang bersifat digital akan dikirim ke LED IR yang memancarkan cahaya IR di dalam air.

Pada sisi penerima, terdapat sensor cahaya yang digunakan untuk menangkap cahaya infra merah didalam air yang kemudian dikirimkan ke rangkaian penguat 1. Setelah dikuatkan, sinyal digital didemodulasi di demodulator PWM. Dalam tahap ini, sinyal digital tersebut diubah lagi ke sinyal analog yang akhirnya dikuatkan kembali pada rangakian penguat 2, setelah itu sinyal tersebut akan diterima oleh *earphone* yang akan diubah menjadi sinyal keluaran berupa sinyal suara. Dengan demikian sinyal masukan dan keluaran adalah sinyal informasi (suara).

3.2 Realisasi

Berdasarkan perancangan blok diagram yang telah diusulkan akan dibuat desain skema dan direalisasikan pada sebuah PCB dengan menggunakan bantuan aplikasi Eagle dan TinyCAD. Skema yang dibuat meliputi bagian rangkaian pengirim dan penerima. Dalam pembuatan desain PCB tersebut setiap komponen yang ada pada blok pengirim dan penerima disesuaikan dengan jenis komponen yang digunakan dengan membuat jalur serta besar jalur yang di sesuaikan dengan kebutuhan desain. Kemudian alat yang akan diaplikasikan dengan *microphone* pada bagian pengirim dan *earphone* pada bagian penerima.

3.3 Pengujian

Pengujian ini dilakukan didalam air dengan dua jenis pengukuran yang berbeda. Berikut teknik pengukuran yang diuji di dalam pipa akrilik diameter ± 6 cm dengan panjang 2 meter berisi air:

1. Pengukuran dengan parameter konstan

Gambar 3.3.1 Pengukuran dengan parameter konstan

Pada sisi led infra merah di pasang power supply 12 V. Sedangkan pada sisi fototransistor (sensor cahaya) di pasang Multimeter digital. Awalnya LED IR dan fototransistor di posisikan pada jarak 0 cm. Kemudian di jauhkan perlahan – lahan hingga 200 cm. Pengambilan data dilakukan setiap 10 cm dan dicatat besar redaman air yang diukur dengan multimeter digital. Dalam pengukuran ini, dianalisis kuat sinyal yang diterima di berbagai kondisi lingkungan air, lalu mengamati apa yang mempengaruhi kuat sinyal sinar infra merah yang dikirim.

Signal Generator Rabel isi 2 Rabel isi 2 Panjang (2 s'd 4 kp) Planjang (2 s'd 4 kp)

2. Pengukuran dengan Parameter Dinamis

Gambar 3.3.2 Pengukuran dengan Parameter Dinamis

Pada sisi led infra merah, di pasang signal generator. Sedangkan pada sisi fototransistor di pasang osiloskop/spektrum analyzer. Awalnya LED IR dan fototransistor di posisikan pada jarak 0 cm. Kemudian di jauhkan perlahan – lahan hingga 200 cm. Pengambilan data dilakukan setiap 10 cm dan dilihat bentuk gelombangnya di osiloskop. Bentuk gelombang tersebut merupakan gelombang sinar infra merah yang diterima oleh sensor cahaya (fototransistor) yang dikirim oleh LED IR. Dalam pengukuran ini, diamati apakah sinyal informasi (suara) yang dikirim sama dengan sinyal informasi (suara) yang diterima.

Pengukuran dengan parameter konstan dan dinamis ini dilakukan pada air jernih, air garam dan air keruh, dengan intensitas cahaya (lux) yang berbeda yaitu 0 lux (gelap), \pm 100 lux (cahaya ruangan) dan \pm 10.000 lux (dibawah sinar matahari). Hasil dari pengukuran tersebut bertujuan untuk mendapatkan besar intensitas cahaya yang dikirim dan diterima terhadap jarak.

3.4 Analisis

Berdasarkan pengujian yang akan dilakukan maka analisis sistem meliputi sinyal *output* dari setiap rangkaian, pengaruh sumber cahaya eksternal, pengukuran sinyal pada titik *poin*t dari *output* stiap rangkaian, ketahanan daya sistem, dan keseluruhan *respons* hasil dari sistem keseluruhan. Hasil analisis akan direpresentasikan dalam bentuk grafik.

Grafik tersebut untuk memudahkan dalam menganalisis data uji yang didapatkan. Grafik tersebut adalah kurva redaman cahaya dalam air. Kurva yang diharapkan tidak berbentuk kurva linier melainkan kurva ekponensial selain itu adalah grafik hubungan antara daya pancar cahaya dan jarak transmisi dalam air.

Dibawah ini adalah grafik yang akan didapatkan:

Gambar 3.4 Kurva intensitas cahaya terhadap jarak (Scott, 2019)

Gambar di atas merupakan grafik hubungan antara daya pancar cahaya (intensitas cahaya) terhadap jarak (cm). Grafik ini menjadi acuan untuk didapatkan hasil pengukuran dari hubungan daya pancar terhadap jarak. Grafik tersebut tidak bersifat linier melainkan eksponensial. Dari grafik tersebut dapat di analisis bahwa semakin jauh jarak transmisi, semakin kecil intensitas cahaya yang diterima.

3.5 Evaluasi

Diharapkan alat ini dapat berfungsi dengan baik untuk digunakan dalam mengirim sinyal *audio* mengenai informasi dari penyelam satu ke penyelam lain dengan baik sehingga informasi suara dapat diterima sepenuhnya di *earphone* penerima sebaik mungkin.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Untuk Pembuatan sistem komunikasi suara dua arah ini,di perlukan :

No	Pengeluaran	Harga (Rp)
1	Peralatan Penunjang	500.000
2	Bahan Habis Pakai	1.377000
3	Perjalanan	155.000
4	Lain-Lain	155.000
	Total Keseluruhan(Rp)	2.187.000

4 Tabel 4.1 Anggaran Biaya

4.2 Jadwal Kegiatan

	T 1 TT 1	Bulan				
No	Jenis Kegiatan		2	3	4	5
1	Perancangan					
2	Menguji karakteristik air dan mendapatkan kurva					
	redaman cahaya di dalam air .					
3	Mendapatkan hubungan daya pancar cahaya infra					
3	merah terhadap jarak transmisi.					
	Menginventarisir / mendapatkan daftar cahaya –					
4	cahaya pengganggu dalam air dan menentukan					
	teknik modulasi protokol					
5	Membuat komunikasi suara satu arah					
6	Membuat komunikasi suara dua arah					
7	Merancang pengemasan sistem kedap air					
6	Melakukan uji coba kinerja sistem beserta analisis					
0	dan pemecahan masalah					
7	Penulisan laporan					

Tabel 4.2 Jadwal Kegiatan

DAFTAR PUSTAKA

- Anguita, Brizzolara, dan Parodi. 2009. "Building an Underwater Wireless Sensor Network based on Optical Communication: Research Challenges and Current Results". IEEE Xplore. Diakses pada 3 Januari 2019. http://www.ieeexplore.ieee.org/document/5210866
- Camila, dkk. 2016. "A survey of underwater wireless communication technologies". Journal of Communication and Information Systems, vol. 31, no.1, h. 4.
- Goh, J.H. 2009. "Underwater Wireless Communication System", Journal of Physics: Conference Series, vol.178, no.1, h.1.
- Haryanto, Toni. 2016. "Analog Output pada Arduino Menggunakan PWM (*Pulse Width Modulation*)". Diakses 15 Januari 2019. https://www.codepolitan.com/tutorial/analog-output-arduino-menggunakan-pwm-pulse-width-modulation#
- Kaushal, Hemani dan Kaddoum, Georges. 2016. "Underwater Optical Wireless Communication". Digital Object Identifier 10, vol.4, no.1109, h.1-2.
- Marzuki, Andri. 2016. "Pulse Width Modulation (PWM)". Diakses 13 Januari 2019. http://andri_mz.staff.ipb.ac.id/pulse-width-modulation-pwm/
- Menying, dkk. 2011. "Simple Underwater wireless communication system sciverse science direct". Procedia Engineering, no.15, h.2460 2462.
- Mohamad, dkk. 2013. "Development of Optical Wireless Audio System Using Infrared Light Communications". IOSR Journal of Electronics and Communication Engineering. vol.8, h.65.
- Nelson,Scott. 2019. "Infrared Heat Lamps vs. LED Light Theraphy Devices".

 Diakses 16 Januari 2019.

 https://cdn.shopify.com/s/files/1/1155/1380/files/chart-2_629b8f24-916d-4704-9e90-2993ed2c9d81.png?v=1529368198
- Russel, Randy. 2007. "The Multispectral Sun". Windows To The Universe.

 Diakses 3 Januari 2019.

 https://www.windows2universe.org/sun/spectrum/multispectral_sun_overview.html
- Surjono, Herman Dwi. 2008. Elektronika Analog. Jember: Cerdas ulet kreatif.
- Vikrant, Anjesh, dan Jha. 2012. "Comparison of Underwater Laser Communication Cystem with Underwater Acoustic Sensor Network". International Journal of Scientific & Engineering Research, vol.3, no.10, h.1 4.
- Zhang, XI., Cui, Jun-Hong., Das, Santanu, Gerla, Mario., Chitre, Mandar. 2015. "Underwater Wireless Communication and Network Theory and Application Part 1". IEEE Communication Magazine. November 2015, h.1.

LAMPIRAN-LAMPIRAN

Lampiran 1. Pengusul dan Dosen Pembimbing

1. Identitas Diri

1	Nama Lengkap	Firdha Rachmadhani
2	Jenis Kelamin	Perempuan
3	Program Studi	D3 Teknik Telekomunikasi
4	NIM	161331045
5	Tempat dan Tanggal Lahir	Malang,30 Januari 1997
6	E-mail	firdharachma35@gmail.com
7	Nomor Telepon/HP	+6281221755154

2. Kegiatan Kemahasiswaan Yang Sedang /Pernah Diikuti

No	Nama Kegiatan	Status Dalam	Waktu dan
		Kegiatan	Tempat
1	Latihan Kepemimpinan		Politeknik Negeri
	Manajerial Mahasiswa Tingkat	Peserta	Bandung, November
	Dasar		2016
2	Seminar Beasiswa	Peserta	Politeknik Negeri
		reserta	Bandung,2017
3	Android Basic User Interface		SMAN 1 Batujajar,
	& Android Basic: User Input	Peserta pelatihan	Oktober –
			Desember 2017
4	kegiatan Kontes Robot	Tim Support	Universitas
	Indonesia	Tim Support Robotika Polban	Tarumanegara,Mei
		Kobolika Folbali	2018
5	Workshop 5G		Politeknik Negeri
		Peserta Seminar	Bandung,
			Desember 2018

3. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Peserta Indonesia Android Kejar 3.0	Google Developer	2017
2	Juara 1 Polban Mencari Bakat	Politeknik Negeri Bandung	2017
3	2 nd Expectable champion of singing contest west java level 2014	SMAN 1 Cisarua	2014

4	Juara 1 Solo Pop Indonesia	SMAN 1 Cimahi	2014
5	Juara 1 Solo Vokal FLS2N	Dinas Pendidikan Kota Cimahi	2010

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Tugas Akhir Politeknik Negeri Bandung .

Bandung, 1 Februari 2019 Pengusul,

Firdha Rachmadhani

Biodata Dosen Pendamping

A. Identitas Diri

1.	Nama Lengkap	DR. Eril Mozef, MS, DEA.
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Telekomunikasi
4.	NIP / NIDN	196504042000021000 / 0004046504
5.	Tempat dan Tanggal Lahir	Padang, 04 April 1965
6.	Alamat E-mail	erilmozef@gmail.com
7.	Nomor Telepon/Hp	08122269339

B. Riwayat Pendidikan

Gelar Akademik	Akademik Sarjana S2/Magister		S3/Doktor
	Universite Henry	Universite Henry	Universite
Nama Institusi	Poincare, Nancy	Poincare, Nancy	Henry Poincare,
	Perancis	Perancis	Nancy Perancis
Jurusan/Prodi	Teknik Elektro	Teknik Elektro	Teknik Elektro
Tahun Masuk-			
Lulus	1989-1992	1992-1994	1994-1997

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Elekronika Analog (Teori/Praktek)	Wajib	3
2	Elekronika Digital (Teori/Praktek)	Wajib	3
3	Alat Ukur dan Pengukuran (Teori/Praktek)	Wajib	3
4	Aplikasi Mikrokontroler (Teori/Praktek)	Wajib	3
5	Manajemen Proyek (Teori/Praktek)	Wajib	2
6	Seminar (Teori/Praktek)	Wajib	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Linear Array Processors with Multiple		2003
	Access Modes for Real-Time Image		
	Processing		
2	Real-time Connected Component Labeling		
	on One-dimensional Array Processors Based		1006
	on Content-Addressable		1996
	Memory:Optimization and Implementation		
3	Design of Linear Array Processors with		
	Content-Addressable Memory for		1996
	Intermediate Level Vision		
4	Parallel Architecture Dedicated to		1006
	Connected Component Analysis		1996
5	LAPCAM, Linear Array of Processors		
	Using Content-addressable Memories:A		1996
	New Design of Machine Vision for Parallel		1990
	Image Computation		
6	Parallel Architecture Dedicated to		
	Connected Component Labelling in O(n log		1996
	n): FPGA Implementation		
7	Architecture dediee a l'algorithme parallel		
	O(n log n) d'etiquetage de composantes		1996
	connexes		
8	Architecture electronique de traitements		
	d'images binaires:etiquetage et mesures		1995
	pour le controle en temps reel video		
9	Circuit configurables dans le traitement		
	d'images:etiquetage et mesures en temps		1995
	reel video		
10	Ammeloration de l'Architecture Parallele		1998
	pour le Traitement d'image LAPCAM		1990
11	Design and Simulation of High Speed		
	Interconnection Network:Orthogonal		2002
	Addressable Crossbar for LAPCAM Parallel		2002
	Architecture for Image Processing		
12	VHDL Design and Simulation of MAM		
	Memory for LAPCAM Parallel Architecure		2002
	for Image Processing		

13	Linear Array Processors with Multiple			
	Access Modes Memory for Real-Time	20	002	
	Image Processing			
14	Penghitung Jumlah Objek Bergerak Pada	20	002	
	Citra Videio Secara Waktu-nyata	20	JU2	
15	Disain dan Simulasi Control Unit dengan			
	VHDL untuk Prosesor Element RISC	20	202	
	Arsitektur Paralel Pengolahan Citra	20	002	
	LAPCAM			
16	Disain dan Simulasi Arithmetic Logic Unit			
	dan File Register untuk Prosesor Element	20	002	
	RISC LAPCAM dengan VHDL			
17	LAPCAM : An Optimal Parallel			
	Architecture for Image Processing	20	001	
	Realization and Evaluation			
18	Perancangan dan Simulasi Protokol dan			
	Penerima Serial Untuk Konfigurasi Jaringan	200	2006	
	Interkoneksi Berkecepatan Tinggi,	20	2006	
	Orthogonal Addressable Crossbar			
19	Implementasi Paralel dan Waktu-nyata			
	Beberapa Algoritma Prapengolangan Citra	200		
	dengan Multi-mikrokontroler RISC			
20	Sistem Pengolahan Citra Stand-Alone	200	202	
	Ekonomis Berbasis Mikrokontroler	20	002	
21	Memory MAM (Multi-mode Memory)			
	untuk Pengolahan Citra Paralel Prinsip,	-		
	Aplikasi dan Performansi			
22	Algoritma Labeling Citra Biner Dengan	200	202	
	Performansi Optimal Processor-Time	20	002	
23	Perancangan Pra-Pengolahan Citra Filtering			
	dan Binerisasi Secara Waktu-Nyata dengan	20	002	
	Virtual Peripheral			

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Robot Sumo (Pembimbing)		2013
	International Islamic School Robot		
	Olympiad, Bandung		

2	Technical Award, Robot Sumo		2013
	(Pembimbing) International Islamic		
	School Robot Olympiad, Bandung		
3	5 Technical Award, Kategori Robot		2012
	Prison Break (Pembimbing)		
	International Robot Olympiad 14th,		
	GwangJu, KoreaSelatan		
4	1 Special Award, Robot		2012
	Shove(Pembimbing) International		
	Robot Olympiad 14th, GwangJu,		
	KoreaSelatan		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Tugas Akhir Politeknik Negeri Bandung.

Bandung, 1 Februari 2019 Dosen Pendamping,

DR. Eril Mozef, MS, DEA

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Peralatan Penunjang

No	Komponen	Volume	Harga Satuan(Rp)	Harga Total (Rp)
1	Multimeter Digital	1 buah	200.000	200.000
2	Alat Pengering Komponen (Hairdryer)	1 buah	50.000	50.000
3	Adaptor 12 Volt	2 buah	50.000	100.000
4	Glue Gun	1 buah	50.000	50.000
5	Solder	1 buah	100.000	100.000
Sub Total (Rp)				500.000

2. Bahan Habis Pakai

No	Bahan Habis	Volume	Harga	Harga
140	Danan Habis		Satuan(Rp)	Total(Rp)
1	Protoboard	1 buah	20.000	20.000
2	Transistor daya	5 buah	15.000	75.000
3	Earphone dan	2 set	25.000	50.000
	microphone		23.000	30.000
4	IR LED Illuminator	2 buah	150.000	300.000
6	Plastik bening	1 box	5.000	5.000
7	Lem Waterproof	1 kaleng	20.000	20.000
8	garam	500 gram	10.000	50.000
9	timah	2 roll	20.000	40.000
10	Perekat casing ir led	6 buah	15.000	90.000
	(isolasi)		13.000	70.000
11	Perekat casing ir led	6 buah	15.000	90.000
	(lakban)		13.000	70.000
12	Refill glue Gun	20 buah	3.000	60.000
13	Busa aquarium	4 buah	5.000	20.000
14	Foto transistor	3 buah	25.000	75.000
15	Resistor (Varian)	20 buah	100	2.000
16	Waterproof case for	2 buah		
	IR LED dan casing		100.000	200.000
	keseluruhan			
17	Male 3.5mm Stereo	2 buah	20.000	40.000
	Jack		20.000	40.000
18	Female 3.5mm	2 buah	20.000	40.000
	Stereo Jack		20.000	40.000
19	Kabel bakar	20 meter	1.000	20.000
20	PCB	3 buah	20.000	60.000
21	Kapasitor (Varian)	10 varian	3.000	30.000
22	Dioda	10 buah	1.000	10.000
23	Kabel Tembaga	10 meter	2.000	20.000
24	Kabel pelangi	3 set	10.000	30.000
	(male-to-male)	3 301	10.000	30.000
25	Kabel pelangi	3 set	10.000	30.000
	(female-to-female)	Jack	10.000	30.000
Sub T	Total (Rp)			1.377.000

3. Perjalanan

No.	Perjalanan	Volume	Harga satuan	Harga (Rp)
	Bahan bakar		10.000	50.000
	kendaraan untuk	5 liter		
1	Perjalanan ke			
1	toko Elektronik			
	di Bandung dan			
	Workshop Kreasi			
2	Ongkos kirim	5 kali	15.000	75.000
2	barang online			
3	Biaya Parkir	15 kali	2.000	30.000
	Sub Total (Rp)			

4. Lain-lain

No	Lain - lain	Volume	Harga satuan (Rp)	Harga (Rp)	
1	Pembuatan Casing	2 set	50.000	100.000	
1	Sistem				
2	Spidol Permanent	1 buah	10.000	10.000	
3	Pulpen	3 buah	10.000	30.000	
4	Sticky notes	1 paket	15.000	15.000	
	Sub Total (Rp) 155.000				
	Total Keseluruhan(Rp) 2.187.000				
	(Terbilang Dua Juta Seratus Delapan Puluh Tujuh Ribu Rupiah)				

SURAT PERNYATAAN KETUA PELAKSANA

Saya yang menandatangani Surat Pernyataan ini:

Nama : Firdha Rachmadhani

NIM : 161331045

Program Studi : D3-Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal Tugas Akhir saya dengan judul :

"Realisasi Sistem Komunikasi Suara Jarak Dekat Dalam Air Menggunakan Cahaya Infra Merah Termodulasi Lebar Pulsa Untuk Aplikasi Komunikasi Antar Penyelam" yang diusulkan untuk tahun anggaran 2019 bersifat orisinal dan belum pernah dibiayai oleh lembaga atau sumber lain.

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 1 Februari 2019

Yang menyatakan,

Firdha Rachmadhani

NIM. 161331045

Lampiran 5 Gambaran Teknologi yang Hendak Diterapkembangkan

5.1 Gambaran umum sistem

Gambar 1 Ilustrasi penggunaan alat pada air tawar yang dilakukan oleh 2 penyelam

Pada ilustrasi diatas, kedua penyelam memegang prototype yang telah jadi dari penelitian ini dan menggunakan earphone ntuk mendengarkan audio yang telah di terima dari pengirim ke penerima setelah transmisi pengiriman data audio berhasil. inframerah adalah media transmisi dalam komunikasi dua penyelam diatas. Dalam kehidupan nyata, inframerah tidak terlihat dengan kasat mata, namun dengan ilustrasi tersebut, kami berusaha menunjukan bahwa komunikasi tersebut menggunakan bantuan inframerah. LED IR Illuminator tersebut dipasang di kepala penyelam sehingga saat dua penyelam berhadapan, komunikasi suara dapat diterapkan.