Pattern Recognition

HW1: Regression

Part 1, Coding

Learning curve of the training with both losses

Error between predictions and the ground truths on the testing data

Mean square error

0.4917001061329206

Mean absolute error

0.56824647542189

Weights (β1) and intercepts (β0)

Mean square error

 $\beta 1 = 0.4434104122525014$

 $\beta 0 = -0.0016105435982399672$

Mean absolute error

 $\beta 1 = 0.3874517678316522$ $\beta 0 = -0.026438438438438714$

Gradient descent, mini-batch gradient descent, and stochastic gradient descent

Gradient descent

Calculate the gradients on each observation one by one

Mini-batch gradient descent

Calculate the gradients for a group of observations rather than for each observation which results in a faster optimization

Stochastic gradient descent

Chose the random observations randomly and calculate the gradients

Part 2, Questions

Question 1

P(selecting a gnava)

= 0.2 × 0.3 + 0.4 × 0.5 + 0.4 × 0.2

= 0.34 *

P(from Box B| selected apple)

=
$$\frac{0.4 \times 0.5}{0.2 \times 0.3 + 0.4 \times 0.5 + 0.4 \times 0.6}$$

= 0.4 *

Question 2

$$var[f] = E[(f(x) - E[f(x)])^{2}]$$

$$= E[f(x)^{2} - 2f(x) E[f(x)] + E[f(x)]^{2}]$$

$$= \int [f(x)^{2} - 2f(x) E[f(x)] + E[f(x)]^{2}] p(x) dx$$

$$= \int f(x)^{2} p(x) dx - \int 2f(x) E[f(x)] p(x) dx + \int E[f(x)]^{2} p(x) d(x)$$

$$= E[f(x)]^{2} p(x) d(x)$$

$$= E[f(x)^{2}] - 2E[f(x)] E[f(x)] + E[f(x)]^{2}$$

$$= E[f(x)^{2}] - E[f(x)]^{2}$$

Question 3

$$E_{y}[\bar{E}_{x}[x|y]]$$

$$= \int \bar{E}_{x}(x|y) f_{y}(y) dy$$

$$= \int (\int x f_{x|y}(x|y) dx) f_{y}(y) dx$$

$$= \int \int x f_{x|y}(x|y) f_{y}(y) dx dy$$

$$= \int \int x f_{x,y}(x,y) dx dy$$

$$= \int \int x f_{x,y}(x,y) dy dx$$

$$= \int x (\int f_{x,y}(x,y) dy) dx$$

$$= \int x f_{x}(x) dx$$

$$= \int x f_{x}(x) dx$$

$$= \bar{E}[x]$$