Ciberseguridad Grado en Ingeniería Informática

M2 - Criptografía, Identificación y Control de Accesos

Oscar Delgado oscar.delgado@uam.es

Álvaro Ortigosa (Coord.) alvaro.ortigosa@uam.es

"Verificación de la identidad de otra parte"

- La "otra parte" puede ser una persona, aplicación, máquina, etc...
- Identificación: autenticación específica de personas
- Autorización: gestión de los permisos de una parte ya autenticada

Algo que sabemos

- Contraseñas
- PINs
- Claves criptográficas

Algo que tenemos

- DNIe
- Tarjetas de coordenadas
- Tokens OTPs
- Teléfonos móviles

Algo que somos

- Firma manuscrita
- Huellas dactilares
- Voz
- Retina

Autenticación: fortaleza

Contraseñas

 Ambas partes, y sólo ellas, conocen un secreto compartido

 Primer método, y aún el más utilizado de largo

Contraseñas

Sistemas 2F

• El usuario debe demostrar, además del conocimiento de un secreto, la posesión de un **token**

Sistemas 2F

Sistemas biométricos

 Utilizan un rasgo biométrico para la identificación del usuario

Sistemas biométricos

Sistemas de doble factor

Algo que sabemos

- Contraseñas
- · PINs
- Claves criptográficas

Algo que tenemos

- DNIe
- Tarjetas de coordenadas
- · Tokens OTPs
- Teléfonos móviles

Algo que somos

- Firma manuscrita
- Huellas dactilares
- Voz
- Retina

Doble factor

- Pretenden superar los problemas de las contraseñas
- Se introduce un nuevo "secreto" fuera de banda (del mundo digital), típicamente un objeto físico

Tarjetas de coordenadas

Los delincuentes se adaptan a todo: piden una serie de coordenadas futuras

Tokens OTP

- ✓ Buen nivel de seguridad
- □ Incómodo (pérdidas)
- □ Coste elevado

¿Y el DNIe?

SMS

Canal fuera de banda

- □ Incómodo (retrasos)
- Coste
- Vulnerable a ataques

Tarjetas criptográficas

- Vulnerables a ataques de MITM en tiempo real
 - Un troyano puede capturar el PIN de acceso a la clave privada o cambiar el texto a firmar
 - Ataques de análisis de potencia (PAA)
 ¡Muy comunes!
 Trabajos de Ross Anderson
 - Ataques lógicos a la API de acceso

Doble factor en banca online

Esquema	Técnica	Ventajas	Inconvenientes
Algo que sabes	Contraseñas	Fáciles de utilizar	Pueden ser capturadas
Algo que posees	Tarjeta de coordenadas	Barata y relativamente sencilla de utilizar	Puede perderse u olvidarseDifícil de compartir
	Token hardware	Difícil manipulación	CaroPuede perderse u olvidarseDifícil de compartir
	Teléfono móvil	No requiere hardware adicional	 Puede agotarse la batería o no tener cobertura Coste de la comunicación para el cliente y el banco
Algo que eres	Ritmo de tecleo	No requiere hardware adicionalAlta aceptabilidad	No es fiableTiempo de registro elevado

Doble factor Ataques

Ataques al doble factor

Terceras partes

- Los tokens OTPs dependen principalmente de terceras partes
- En 2011 RSA sufrió una gravísima vulnerabilidad en su SecurID:
 - Accedieron a la clave maestra que permitía generar nuevos tokens

Ataques al doble factor

Ataques SMS

Ataques SMS

Spolier

Es "sencillo" interceptar llamadas y SMS

Ataque al sistema de señalización SS7

Diseño de los OTPs

- En ocasiones, los OTPs son:
 - Predecibles
 - Reset de la pérdida de un token con un mecanismo mucho más débil: correo
 - Fallos de implementación: permiten reusar el token de un usuario con otro

MITB: seguridad del navegador

Ataques

Malware

- El perfil de ataque ha cambiado radicalmente:
 - Más del 80% de las intrusiones con éxito son vía Web
 - Se escribe malware específico y con un objetivo claro: robar credenciales
- La seguridad de una aplicación Web NO se puede separar de la del navegador del cliente

Troyanos

- Los troyanos no son, desde luego, nada nuevo:
 - En los 70's aparecieron los primeros troyanos que imitaban la pantalla de login del SO
- La profesionalización del crimen online los ha hecho resurgir como herramienta de fraude

Troyanos

 Los métodos tradicionales de phishing (SPAM, similitud y ofuscación de dominios) han ido dejando de funcionar paulatinamente

 Consecuencia: los phishers han buscado nuevas técnicas más sofisticadas: los troyanos especializados

Troyanos bancarios

- Un troyano especializado en banca electrónica captura las credenciales y las envía a un "repositorio" central controlado por el atacante
- Las credenciales capturadas incluyen el usuario, la contraseña y la 'firma electrónica', necesaria para realizar transferencias y otras operaciones importantes

Ataques Man-in-the-Browser

- Sin duda, la GRAN amenaza para la seguridad Web
- Malware que realiza un ataque MITM al navegador:
 - Tiene acceso al DOM de la página en claro (incluso con SSL)
 - Puede realizar cualquier modificación ANTES del envío al servidor

Ataque genérico al doble factor

Atacando un banco

Vectores de infección

Web

- Explotando vulnerabilidades en los navegadores
- Vía más común

Unidades USB y discos duros

- Unidades de red
- Dropbox

Correo electrónico

•PDFs, .zip

Redes P2P

 Más del 80% de los ejecutables contienen algún tipo de malware

Infección vía Web

- 1. Comprometen sitios Web e instalan en ellos el código exploit del navegador
- 2. Utilizan vulnerabilidades de los navegadores más utilizados
- 3. El usuario, al visitar la página, provoca la ejecución del *dropper*
- 4. Éste descarga el código del troyano en sí y lo ejecuta.

Infección vía Web

- Una de las técnicas más comunes de los troyanos MITB
- Consiste en manipular el código HTML de la página Web del banco antes de que ésta sea presentada al usuario

```
Clave de acceso
 <input NAME="USER" TYPE="text" SIZE="10" MAXLENGTH="10" value="" tabindex="1"> 
<td value="" tabindex="1" value="" tabindex="2" value="1" tabindex="1" value="1" tabindex="1" value="1" tabindex="1" value="1" tabindex="1" value="1" tabindex="1" value="1" tabindex="1" value="1"
```

Firma

- ¡Indetectable para un usuario no experto!
- El 'candadito' está perfectamente cerrado:
 - El certificado presentado por el banco es legítimo
 - La URL del servidor es correcta
 - El origen de los datos no ha sido manipulado, sólo su presentación al usuario

- ¿Dónde reside el problema?
 - Los navegadores no son confiables
 - Los datos se manipulan en capa de aplicación: una sesión SSL no es garantía de seguridad

Contramedidas actuales

- Los consejos habituales a los usuarios ya no son garantía de seguridad:
 - "Compruebe el candado del navegador"
 - "No pinche en ningún enlace, escriba directamente la URL en el navegador"
 - "Mantenga su antivirus actualizado"
- Aunque, por supuesto, no deben dejar de darse ni de seguirse

Ataques al doble factor: versión 2.0

Troyanos vs tarjetas criptográficas

- Un troyano puede capturar el PIN de la tarjeta antes de que se realice la correspondiente llamada al API
- Si queremos firmar un texto (¿declaración de la renta?)
 - ¿Cómo sabemos que el texto que se nos presenta para firmar es el que realmente se entrega a la tarjeta para su firma?

Malware y seguridad del navegador

Ataques al doble factor

- Este ataque es perfectamente posible contra la práctica totalidad de la banca electrónica española.
- El problema radica en que el reto no es generado utilizando la información que se pretende autenticar:
 - Número de cuenta de destino
 - Importe de la transacción

Método	Descripción	¿Efectivo contra MITB?	¿Por qué?	
Usuario/ Contraseña	Incluso contraseñas fuertes, KDFs	No	Malware puede interceptar,	
Tarjeta de coordenadas	Tanto en papel como electrónicas	No	modificar o esperar hasta que el usuario se haya autenticado correctamente	
Token OTPs	Tanto hardware dedicado como SMS o apps en el móvil	No		

Método	Descripción	¿Efectivo contra MITB?	¿Por qué?
EMV-CAP OTP	Tarjeta bancaria con chip	No	Malware puede interceptar, modificar o esperar
Tarjeta inteligente (DNIe)	Certificado digital almacenado en un tarjeta criptográfica	No	hasta que el usuario se haya autenticado correctamente
Anti-virus	-	A veces	La tasa de mutación de este malware es altísima: siempre hay una variante indetectable

Método	Descripción	¿Efectivo contra MITB?	¿Por qué?
Ordenador aislado, usado únicamente para banca online	Teóricamente seguro, pero no realista en la mayoría de entornos	Sí, pero muy incómodo	
Navegador securizado que arranca desde un USB	Un navegador securizado, con la URL del banco hard-codeada	Sí, pero muy incómodo	Problemas en entornos corporativos que tienen USB y CD-ROM desactivados
EMV-CAP OTP	Con un lector especial, el cliente recibe los detalles de la transacción fuera de banda, en una pantalla	Sí, pero muy incómodo	Aún así, es fácil no ver que el último dígito de la cuenta es diferente, por ejemplo

Malware y seguridad del navegador

Método	Descripción	¿Efectivo contra MITB?	¿Por qué?
EMV-CAP OTP	Con un lector especial, el cliente recibe los detalles de la transacción fuera de banda, en una pantalla	Sí, pero muy incómodo	Aún así, es fácil no ver que el último dígito de la cuenta es diferente, por ejemplo

Doble factor Resumen

Malware y seguridad del navegador

Navegadores

- Tengamos en cuenta que trabajamos con hardware, SO y software (navegador) de propósito general
- Con esos requisitos, es imposible_implementar un sistema seguro
- El mejor método posible: OTP fuera de banda con vinculación de datos

Malware y seguridad del navegador

Resumen

- Las defensas exclusivamente preventivas no dan mucho más de sí (dado el entorno operativo de los usuarios)
- A largo plazo, la solución tendría que venir por aumentar la resistencia del sistema frente a su integridad:
 - Detección temprana del fraude, estudios de riesgo en tiempo real, retardar las transferencias a ciertos países)

Futuro del doble factor

- Generar modelos de comportamiento del usuario:
 - Los seres humanos somos bastante predecibles
 - Todo lo que se salga de lo "habitual" se confirma manualmente, en base a una puntuación de riesgo
- Utilizar técnicas de IA para autenticar al usuario, incluyendo datos del GPS, micrófono o acelerómetro:
 - El móvil del usuario está en Madrid, ¿por qué está intentando ordenar una transferencia desde Rusia?

Malware y seguridad del navegador

Futuro del doble factor

- Los wereables jugarán también un papel importante:
 - Si un usuario no tiene cerca de su teléfono o PC una pulsera "autenticadora" la transacción no puede llevarse a cabo

API REST Introducción

Cambio de paradigma

- Las API REST no son ya soluciones de "startup"
- El futuro es interoperación, y esto solo es posible con estándares sencillos

Basadas en HTTP

Basadas en HTTP

API REST

Características

Propiedad	Descripción	
Sin estado	Cada petición contiene toda la información necesaria para su ejecución: • Algunas peticiones se pueden cachear • ¿Cómo mantenemos el estado? • ¿Y la autenticación y/o autorización?	
Verbos estándar	POST (crear), GET (leer), PUT (editar) y DELETE (eliminar)	
Separación cliente/servidor	· · · · · · · · · · · · · · · · · · ·	

Ejemplo: el futuro de la banca

API REST

Autenticación y autorización

Autenticación y autorización

- Un protocolo puro sin estado evita accesos a la BD: esencial en aplicaciones de alta carga
- Sin embargo, el estado es necesario en la mayoría de las situaciones
 - Realizar y mantener la autenticación
 - Otros aspectos: roles, datos internos de la app, etc.

Autenticación y autorización

	Método	
HTTP	HTTP Basic	Inseguro. Usuario + contraseñas codificados en B64
	HTTP Digest	Inseguro. Utiliza MD5
Cookies	Session IDs /Cookies	Stateful: el servidor necesita mantener sesiones activas en BD, y el cliente una cookie
Basados en tokens	Tokens "propios"	Probablemente inseguro. NO inventes tu propio esquema, confía en los estándares
	OAuth2	Sin estado. Complejo
	JWT	Sin estado. Sencillo,

Cookies vs Tokens

- Aplicaciones SPA, APIs REST, IoT no pueden utilizar el esquema tradicional de sesiones y cookies:
 - No es posible acceder a la BD en cada petición

Autenticación y autorización

IDs de sesión y cookies

- 1. Usuario introduce sus credenciales
- 2. El servidor las verifica y crea una sesión en la BD
- 3. El cliente guarda una cookie en su navegador con el ID de sesión
- 4. Esta cookie se envía en cada petición posterior y se verifica contra la BD
- 5. Cuando el usuario hace logout, se destruye la sesión en cliente y servidor

Tokens de autenticación

- Completamente sin estado: el servidor no mantiene registro de sesiones ni tokens emitidos
- Cada token está firmado, lo que permite comprobar su validez sin más información
- Se envía como una cabecera

Authorization: Bearer {Token}

Tokens

JSON Web Tokens (JWT)

Fuente: https://jwt.io/introduction/

Tokens

JSON Web Tokens (JWT)

```
Header
                                         Payload
                                                                              Signature
base64enc(f
                                base64enc({
                                                                      HMACSHA256(
   "alg": "HS256",
                                    "iss": "toptal.com",
                                                                       base64enc(header)
                                    "exp": 1426420800,
                                                                       + !! +,
  "typ": "JWT"
                                    "company": "Toptal",
                                                                       base64enc(payload)
                                    "awesome": true
                                                                       , secretKey)
```

```
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJpc3MiOiJ0b3B0YWwuY29tIiwiZXhwIjoxNDI2...29tZSI6dHJ1ZX0
yRQYnWzskCZUxPwaQupWkiUzKELZ49eM7oWxAQK ZXw
```

Tokens

JSON Web Tokens (JWT)

EJERCICIO

- Conéctate a <u>www.jwt.io</u>
 - Crea, modifica y verifica distintos tokens
 - ¿Cómo podrías codificar el hecho de que el usuario pertenece a los roles RRHH y ADMIN?
 - Conéctate ahora a <u>www.samtool.io</u> y compara un mismo token. ¿Qué diferencias encuentras?

Sin estado, escalables, desacoplados

- No hay accesos a la BD:
 - Se simplifica mucho el desarrollo de las apps
- Pueden utilizarse servicios de terceras partes:
 - Autho

CORS: Cross-Origin Resource Sharing

- Por defecto, la política de "mismo origen" limita a los navegadores las peticiones a otros dominios
- JWT, a diferencia del basado en cookies tradicional, no tiene problemas con estas restricciones

Almacenamiento de datos

- Las cookies suelen almacenar el ID de sesión, fecha de expiración y poco más
- Los tokens pueden almacenar cualquier meta-dato en JSON

Ventajas tokens JWT

Rendimiento

- Los tokens son auto-contenidos:
 - Se cambia I/O (acceso a BD, lenta) por CPU (cálculo de un HMAC, rápido)
- Ejemplo: API con llamada a /api/orders

Tradicional

- · Verificar que la sesión es válida
 - ·Obtener datos del usuario y verificar que es admin
 - ·Obtener datos finales

JWT

- · Verificación token (CPU)
- Un único acceso a BD para recuperar datos finales

Aplicaciones móviles

- Las aplicaciones móviles nativas y las cookies tienen algunos problemas
- Es mucho más sencillo utilizar tokens en estas plataformas

Tamaño

- Dependiendo del uso, el tamaño de un token puede crecer rápidamente
- El token debe incluirse en CADA petición al servidor

¿Dónde almacenar los tokens?

Almacenamiento local del navegador

- Sandboxed y no puede ser accedido por otros dominios
- No vulnerable a CSRF

Cookies

- ✓ No tienen la limitación del mismo dominio
- ☐ Limitadas a 4Kb
- Vulnerables a CSRF

Revocación de tokens

Un inconveniente MUY serio

 No hay forma de invalidar un token individual sin introducir esquemas con estado, como listas negras

Firmados, no cifrados

- Recuerda, ¡los tokens JWT están firmados, y no cifrados!
- No se puede almacenar ningún dato secreto en ellos

• Si es necesario, utilizar JSON Web Encryption (JWE)