Minimum Spanning Trees

(CLRS 23)

- Problem: Given connected, undirected graph G = (V, E) where each edge (u, v) has weight w(u, v). Find acyclic set $T \subseteq E$ connecting all vertices in V with minimal weight $w(T) = \sum_{(u,v) \in T} w(u,v)$.
- An acyclic set connecting all vertices is called a *spanning tree*. We want to find a spanning tree of *minimal weight*. We use *minimum spanning tree* as short for *minimum weight spanning tree*).
- MST problem has many applications
 - For example, think about connecting cities with minimal amount of wire or roads (cities are vertices, weight of edges are distances between city pairs).
- Example:

- Weight of MST is 4+8+7+9+2+4+1+2=37
- MST is not unique: e.g. (b,c) can be exchanged with (a,h)

1 PRIM's algorithm

- Greedy algorithm for computing MST:
 - Start with spanning tree containing arbitrary vertex r and no edges
 - Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current spanning tree with a vertex not in the tree
- Implementation:
 - To find minimal edge connected to current tree we maintain a priority queue on vertices not in the tree. The key/priority of a vertex is the weight of minimal weight edge connecting it to the tree. (We maintain pointer from adjacency list entry of v to v in the priority queue).

- For each node u maintain visit(u) ((u, visit(u)) is the currently best edge connecting it to the tree.)

```
\begin{aligned} & \text{PRIM(r)} \\ & \text{For each } v \in V \text{ DO} \\ & \text{Insert}(PQ, v, \infty) \\ & \text{Decrease-Key}(PQ, r, 0) \\ & \text{WHILE } PQ \text{ not empty DO} \\ & u = \text{Deletemin}(PQ) \\ & \text{(output edge } (u, visit(u)) \text{ as part of MST)} \\ & \text{For each } (u, v) \in E \text{ DO} \\ & \text{If } v \in PQ \text{ and } w(u, v) < \text{key}(v) \text{ THEN} \\ & \text{visit}[v] = u \\ & \text{Decrease-Key}(PQ, v, w(u, v)) \end{aligned}
```

• On the example graph, the greedy algorithm would work as follows (starting at vertex a):

mst_prim_1-eps-converted-to.pdf

• Analysis:

- While loop runs |V| times \Rightarrow we perform |V| Deletemin's
- We perform at most one Decrease-Key for each of the |E| edges \Downarrow $O((|V|+|E|)\log |V|) = O(|E|\log |V|)$ running time.

• Correctness:

- When designing a greedy algorithm the hard part is to prove that it works correctly.
- We will prove a Theorem that allows us to prove the correctness of a general class of greedy MST algorithms:

Some definitions

- * A $cut(S, V \setminus S)$ is a partition of V into sets S and $V \setminus S$
- * A edge (u, v) crosses a cut S if $u \in S$ and $v \in V \setminus S$ or $v \in S$ and $u \in V \setminus S$
- * A cut S respects a set $T \subseteq E$ if no edge in T crosses the cut

Example: Cut S respects T

cut_example-eps-converted-to.pdf

- Theorem: If G = (V, E) is a graph such that $T \subseteq E$ is subset of some MST of G, and S is a cut respecting T then there is a MST for G containing T and the minimum weight edge e = (u, v) crossing S.
- Note: Correctness of Prim's algorithm follows from the Theorem by induction—cut consist of current spanning tree.
- Proof:
 - Let T^* be MST containing T
 - If $e \in T^*$ we are done
 - If $e \notin T^*$:
 - * There must be (at least) one other edge $(x, y) \in T^*$ crossing the cut S such that there is a unique path from u to v in T^* (T^* is spanning tree)

- * This path together with e forms a cycle
- * If we remove edge (x, y) from T^* and add e instead, we still have spanning tree
- * New spanning tree must have same weight as T^* since $w(u,v) \leq w(x,y)$ \Downarrow

There is a MST containing T and e.

• The Theorem allows us to describe a very abstract greedy algorithm for MST:

$$T = \emptyset$$
 While $|T| \le |V| - 1$ DO Find cut S respecting T Find minimal edge e crossing S
$$T = T \cup \{e\}$$

- Prim's algorithm follows this abstract algorithm.
- Kruskal's algorithm is another implementation of the abstract algorithm.

2 Kruskal's Algorithm

• Kruskal's algorithm is another i	mplementation of the abstract algorithm.
• Idea in Kruskal's algorithm:	
 Start with V trees (one for a consider edges E in increase) Example: 	or each vertex) using order; add edge if it connects two tre

mst_kruskal_2-eps-converted-to.pdf

• Implementation:

We need (Union-Find) data structure that supports:

- Make-set(v): Create set consisting of v
- Union-set(u, v): Unite set containing u and set containing v
- FIND-SET(u): Return unique representative for set containing u

```
T = \emptyset FOR each vertex v \in V Make-Set(v) Sort edges of E in increasing order by weight FOR each edge e = (u, v) \in E in order DO IF FIND-Set(u) \neq FIND-Set(v) THEN T = T \cup \{e\} Union-Set(u, v)
```

• Analysis:

- We use $O(|E|\log |E|)$ time to sort edges and we perform |V| MAKE-SET, |V|-1 UNION-SET, and 2|E| FIND-SET operations.
- We will discuss a simple solution to the *Union-Find problem* such that Make-Set and Find-Set take O(1) time and Union-Set takes $O(\log V)$ time amortized.

Kruskal's algorithm runs in time $O(|E|\log|E|+|V|\log|V|)=O((|E|+|V|)\log|E|)=O(|E|\log|V|)$ like Prim's algorithm.

• Correctness

- follows from Theorem above: If minimal edge connects two trees then there exists a cut respecting the current set of edges (cut consisting of vertices in one of the trees)

3 Union-Find

- The *Union-Find problem*: Maintain a set system under:
 - Make-set(v): Create set consisting of v
 - Union-set (u, v): Unite set containing u and set containing v
 - FIND-SET(u): Return unique representative for set containing u

• Simple solution:

- Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)

Example:

union-find_linked-eps-converted-to.pdf

- Make-Set(v): Make a list with one element $\Rightarrow O(1)$ time
- FIND-Set(u): Follow pointer and return unique representative $\Rightarrow O(1)$ time
- Union-Set(u, v): Link first element in list with unique representative Find-Set(u) after last element in list with unique representative Find-Set(v) $\Rightarrow O(|V|)$ time (as we have to update all unique representative pointers in list containing u)
- With this simple solution the |V|-1 Union-Set operations in Kruskal's algorithm may take $O(|V|^2)$ time.
- We can improve the performance of Union-Set with a very simple modification: Always link the smaller list after the longer list (⇒ update the pointers of the smaller list)
 - One Union-Set operation can still take O(|V|) time, but the |V|-1 Union-Set operations takes $O(|V|\log |V|)$ time altogether (one Union-Set takes $O(\log |V|)$ time amortized):
 - * Total time is proportional to number of unique representative pointer changes
 - * Consider element u:

After pointer for u is updated, u belongs to a list of size at least double the size of the list it was in before

 \Downarrow

After k pointer changes, u is in list of size at least 2^k

Pointer can be changed at most $\log |V|$ times.

• With improvement, Kruskal's algorithm runs in time $O(|E| \log |E| + |V| \log |V|) = O((|E| + |V|) \log |E|) = O(|E| \log |V|)$ like Prim's algorithm.