

Schätzer für den Formparameter ξ

basierend auf "Modelling Extremal Events" von P. Embrechts, C. Klüppelberg, T. Mikosch

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

• Lageparameter μ

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$ (endlicher rechter Rand)

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$ (endlicher rechter Rand)
 - $\xi = 0$: Gumbelvtlg. Λ

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$ (endlicher rechter Rand)
 - $\xi = 0$: Gumbelvtlg. Λ (unbeschränkter Träger)

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$ (endlicher rechter Rand)
 - $\xi = 0$: Gumbelvtlg. Λ (unbeschränkter Träger)
 - $\xi > 0$: Fréchetvtlg. Φ_{α} , $\alpha \coloneqq \frac{1}{\xi}$

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$ (endlicher rechter Rand)
 - $\xi = 0$: Gumbelvtlg. Λ (unbeschränkter Träger)
 - $\xi > 0$: Fréchetvtlg. Φ_{α} , $\alpha \coloneqq \frac{1}{\xi}$ (schwerer Tail)

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Theorem 3.4.5 (Charakterisierung von MDA(H_{ξ})):

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Theorem 3.4.5 (Charakterisierung von MDA(H_{ξ})):

$$F \in \text{MDA}(H_{\xi})$$

$$\Leftrightarrow \lim_{t \to \infty} \frac{U(tx) - U(t)}{U(ty) - U(t)} = \begin{cases} \frac{x^{\xi} - 1}{y^{\xi} - 1}, \xi \neq 0 \\ \frac{\ln x}{\ln y}, \xi = 0 \end{cases}$$
 f. a. $x, y > 0$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Theorem 3.4.5 (Charakterisierung von MDA(H_{ξ})):

$$F \in \mathrm{MDA}\big(H_{\xi}\big)$$
 $\Leftrightarrow \lim_{t \to \infty} \frac{U(tx) - U(t)}{U(ty) - U(t)} = \begin{cases} \frac{x^{\xi} - 1}{y^{\xi} - 1}, \xi \neq 0 \\ \frac{\ln x}{\ln y}, \xi = 0 \end{cases}$ f. a. $x, y > 0$ wobei $U \ t \coloneqq = F^{-}(1 - \frac{1}{t})$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Theorem 3.4.5 (Charakterisierung von MDA(H_{ξ})):

$$F \in \mathrm{MDA}(H_{\xi})$$

$$\Leftrightarrow \lim_{t \to \infty} \frac{U(tx) - U(t)}{U(ty) - U(t)} = \begin{cases} \frac{x^{\xi} - 1}{y^{\xi} - 1}, \xi \neq 0 \\ \frac{\ln x}{\ln y}, \xi = 0 \end{cases}$$
 f. a. $x, y > 0$

wobei $U t := F^{-}(1 - \frac{1}{t})$

Quantil

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Theorem 3.4.5 (Charakterisierung von MDA(H_{ξ})):

$$F \in \mathrm{MDA}(H_{\xi})$$

$$\Leftrightarrow \lim_{t \to \infty} \frac{U(tx) - U(t)}{U(ty) - U(t)} = \begin{cases} \frac{x^{\xi} - 1}{y^{\xi} - 1}, \xi \neq 0 \\ \frac{\ln x}{\ln y}, \xi = 0 \end{cases}$$
f. a. $x, y > 0$
wobei $U \ t \coloneqq := F^{-}(1 - \frac{1}{t})$

Quantil

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Theorem 3.4.5 (Charakterisierung von MDA(H_{ξ})):

$$F \in \mathrm{MDA}\big(H_{\xi}\big)$$
 $\Leftrightarrow \lim_{t \to \infty} \frac{U(tx) - U(t)}{U(ty) - U(t)} = \begin{cases} \frac{x^{\xi} - 1}{y^{\xi} - 1}, \xi \neq 0 \\ \frac{\ln x}{\ln y}, \xi = 0 \end{cases}$ f. a. $x, y > 0$ wobei $U \ t \coloneqq = F^{-}(1 - \frac{1}{t})$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Theorem 3.4.5 (Charakterisierung von MDA(H_{ξ})):

$$F \in \text{MDA}(H_{\xi})$$

$$\Leftrightarrow \lim_{t \to \infty} \frac{U(tx) - U(t)}{U(ty) - U(t)} = \begin{cases} \frac{x^{\xi} - 1}{y^{\xi} - 1}, \xi \neq 0 \\ \frac{\ln x}{\ln y}, \xi = 0 \end{cases} \text{ f. a. } x, y > 0$$

wobei $U t := F^{-}(1 - \frac{1}{t})$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Lemma 4.1.9 (Quantiltransformation):

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Lemma 4.1.9 (Quantiltransformation):

 U_1, U_2, \dots, U_n ui gleichverteilt auf (0,1), dann gelten:

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$
 $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Lemma 4.1.9 (Quantiltransformation):

 U_1, U_2, \dots, U_n ui gleichverteilt auf (0,1), dann gelten:

a)
$$F^{-}(U_1) \stackrel{d}{=} X_1$$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Lemma 4.1.9 (Quantiltransformation):

 U_1, U_2, \dots, U_n ui gleichverteilt auf (0,1), dann gelten:

a)
$$F^{-}(U_{1}) \stackrel{d}{=} X_{1}$$

b)
$$(X_{n,n}, ..., X_{1,n}) \stackrel{d}{=} (F^-(U_{n,n}), ..., F^-(U_{1,n}))$$

1)
$$U(t) \coloneqq F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Lemma 4.1.9 (Quantiltransformation):

 U_1, U_2, \dots, U_n ui gleichverteilt auf (0,1), dann gelten:

a)
$$F^{-}(U_1) \stackrel{d}{=} X_1$$

b)
$$(X_{n,n}, ..., X_{1,n}) \stackrel{d}{=} (F^-(U_{n,n}), ..., F^-(U_{1,n}))$$

 $Y \sim G$ stetig

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$
 $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Lemma 4.1.9 (Quantiltransformation):

 U_1, U_2, \dots, U_n ui gleichverteilt auf (0,1), dann gelten:

a)
$$F^{-}(U_1) \stackrel{d}{=} X_1$$

b)
$$(X_{n,n}, ..., X_{1,n}) \stackrel{d}{=} (F^-(U_{n,n}), ..., F^-(U_{1,n}))$$

 $Y \sim G$ stetig

c) so ist G(Y) gleichverteilt.

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$
 $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\frac{1}{2}}$$

2)
$$Y_i \sim \text{Pareto}$$
:
$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\frac{5}{2}}$$

2)
$$Y_i \sim \text{Pareto}$$
: $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto}$$
: $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\frac{5}{2}}$$

2)
$$Y_i \sim \text{Pareto}$$
: $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\frac{5}{2}}$$

2)
$$Y_i \sim \text{Pareto:}$$
 $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Quantilschätzer:

(n-k) -viele \rightarrow emp. $(1-\frac{k}{n})$ -Quantil

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\frac{5}{5}}$$

2)
$$Y_i \sim \text{Pareto}$$
: $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Quantilschätzer:

(n-k) -viele \rightarrow emp. $(1-\frac{k}{n})$ -Quantil

Quantil der Pareto-Vtlg:

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto}$$
: $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Quantilschätzer:

(n-k) -viele \rightarrow emp. $(1-\frac{k}{n})$ -Quantil

Quantil der Pareto-Vtlg:

$$G^-\left(1-\frac{k}{n}\right) = \frac{n}{k}$$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto}$$
: $U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$

Annahmen: $X_1, X_2, ..., X_n$ uiv gemäß $F \in MDA(H_{\xi})$

Ziel: Schätzer für $\xi \in \mathbb{R}$

Quantilschätzer:

(n-k) -viele \rightarrow emp. $(1-\frac{k}{n})$ -Quantil

Quantil der Pareto-Vtlg:

$$G^-\left(1-\frac{k}{n}\right) = \frac{n}{k}$$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

3)
$$k \xrightarrow{n \to \infty} \infty, \frac{k}{n} \xrightarrow{n \to \infty} 0:$$

$$\frac{k}{n} Y_{k,n} \xrightarrow{n \to \infty} 1$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(H_{\mathcal{E}})$ Annahmen:

Schätzer für $\xi \in \mathbb{R}$ Ziel:

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$
3) $k \stackrel{n \to \infty}{\longrightarrow} \infty, \frac{k}{n} \stackrel{n \to \infty}{\longrightarrow} 0:$

$$\frac{k}{n} Y_{k,n} \stackrel{P}{\longrightarrow} 1$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(H_{\mathcal{E}})$ **Annahmen:**

Schätzer für $\xi \in \mathbb{R}$ Ziel:

Pickands-Schätzer:

$$\hat{\xi}_{k,n}^{(P)} := \log_2 \frac{X_{k,n} - X_{2k,n}}{X_{2k,n} - X_{4k,n}}$$

$$mit \ k \xrightarrow{n \to \infty} \infty, \ \frac{k}{n} \xrightarrow{n \to \infty} 0$$

1)
$$U(t) := F^{-}(1 - \frac{1}{t}),$$

$$c(t) \xrightarrow{n \to \infty} 2:$$

$$\lim_{t \to \infty} \frac{U(c(t) \cdot t) - U(t)}{U(t) - U(\frac{1}{c(t)} \cdot t)} = 2^{\xi}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$

2)
$$Y_i \sim \text{Pareto:}$$

$$U(Y_{k,n}) \stackrel{d}{=} X_{k,n}$$
3) $k \stackrel{n \to \infty}{\longrightarrow} \infty, \frac{k}{n} \stackrel{n \to \infty}{\longrightarrow} 0:$

$$\frac{k}{n} Y_{k,n} \stackrel{P}{\longrightarrow} 1$$

$$X_1, X_2, \dots, X_n$$
 uiv gemäß $F \in \mathrm{MDA}(H_{\xi})$

$$\hat{\xi}_{k,n}^{(P)} := \log_2 \frac{X_{k,n} - X_{2k,n}}{X_{2k,n} - X_{4k,n}}$$

$$X_1, X_2, \dots, X_n$$
 uiv gemäß $F \in \mathrm{MDA}(H_{\xi})$

$$\hat{\xi}_{k,n}^{(P)} := \log_2 \frac{X_{k,n} - X_{2k,n}}{X_{2k,n} - X_{4k,n}}$$

Schwache Konsistenz

Für
$$k \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:

$$\hat{\xi}_{k,n}^{(P)} \stackrel{P}{\longrightarrow} \xi$$

$$X_1, X_2, \dots, X_n$$
 uiv gemäß $F \in \mathrm{MDA}(H_{\xi})$

$$\hat{\xi}_{k,n}^{(P)} := \log_2 \frac{X_{k,n} - X_{2k,n}}{X_{2k,n} - X_{4k,n}}$$

Schwache Konsistenz

Für
$$k \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt

$$\hat{\xi}_{k,n}^{(P)} \stackrel{P}{\longrightarrow} \xi$$

Starke Konsistenz

Für
$$k \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:
$$\hat{\xi}_{k,n}^{(P)} \xrightarrow{P} \xi$$
Für $\frac{k}{\ln \ln n} \xrightarrow{n \to \infty} \infty$, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:
$$\hat{\xi}_{k,n}^{(P)} \xrightarrow{P} \xi$$

$$\hat{\xi}_{k,n}^{(P)} \stackrel{\text{f.s.}}{\longrightarrow} \xi$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(H_{\xi})$

$$\hat{\xi}_{k,n}^{(P)} := \log_2 \frac{X_{k,n} - X_{2k,n}}{X_{2k,n} - X_{4k,n}}$$

Schwache Konsistenz

$$\hat{\xi}_{k,n}^{(P)} \stackrel{P}{\longrightarrow} \hat{\xi}$$

Starke Konsistenz

Für $k \xrightarrow{n \to \infty} \infty$, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt: Für $\frac{k}{\ln \ln n} \xrightarrow{n \to \infty} \infty$, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ mit zusätzlichen Bedingungen an U und k gilt:

$$\hat{\xi}_{k,n}^{(P)} \stackrel{\text{f.s.}}{\longrightarrow} \xi$$

Asymptotische Normalität:

$$\hat{\xi}_{k,n}^{(P)} \stackrel{P}{\longrightarrow} \xi \qquad \qquad \hat{\xi}_{k,n}^{(P)} \stackrel{\text{f.s.}}{\longrightarrow} \xi \qquad \qquad \sqrt{k} \left(\hat{\xi}_{k,n}^{(P)} - \xi \right) \stackrel{d}{\longrightarrow} N \left(0, v(\xi) \right)$$

Die Extremwertverteilung (GEV)

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$ (endlicher rechter Rand)
 - $\xi = 0$: Gumbelvtlg. Λ (unbeschränkter Träger)
 - $\xi > 0$: Fréchetvtlg. Φ_{α} , $\alpha \coloneqq \frac{1}{\xi}$ (schwerer Tail)

Dichte:

Die Fréchetverteilung

Allgemeine Extremwertverteilung (GEV) gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x-\mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

- Lageparameter μ
- Skalierungsparameter ψ
- Formparameter ξ
 - $\xi < 0$: Weibullvtlg. Ψ_{α} , $\alpha \coloneqq -\frac{1}{\xi}$ (endlicher rechter Rand)
 - $\xi = 0$: Gumbelvtlg. Λ (unbeschränkter Träger)
 - $\xi > 0$: Fréchetvtlg. Φ_{α} , $\alpha \coloneqq \frac{1}{\xi}$ (schwerer Tail)

Dichte:

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$

Ziel: Schätzer für $\alpha > 0$

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$

Ziel: Schätzer für $\alpha > 0$

Theorem 3.3.7 (Charakterisierung von MDA(Φ_{α})):

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_\alpha)$

Ziel: Schätzer für $\alpha > 0$

Theorem 3.3.7 (Charakterisierung von MDA(Φ_{α})):

$$F \in \mathrm{MDA}(\Phi_{\alpha}) \iff \overline{F}(x) = x^{-\alpha}L(x), L \text{ langsam}$$
 variierend

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$

Ziel: Schätzer für $\alpha > 0$

Theorem 3.3.7 (Charakterisierung von MDA(Φ_{α})):

$$F \in \mathrm{MDA}(\Phi_{\alpha}) \Leftrightarrow \overline{F}(x) = x^{-\alpha}L(x), L \text{ langsam}$$
 variierend

Erinnerung (Kapitel 1.3 – Langsame Variation):

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$

Ziel: Schätzer für $\alpha > 0$

Theorem 3.3.7 (Charakterisierung von MDA(Φ_{α})):

$$F \in \mathrm{MDA}(\Phi_{\alpha}) \Leftrightarrow \overline{F}(x) = x^{-\alpha}L(x), L \text{ langsam}$$
 variierend

Erinnerung (Kapitel 1.3 – Langsame Variation):

L langsam variierend
$$\Leftrightarrow \lim_{x\to\infty} \frac{L(tx)}{L(x)} = 1$$
 f.a. $t>0$

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$

Ziel: Schätzer für $\alpha > 0$

Theorem 3.3.7 (Charakterisierung von MDA(Φ_{α})):

$$F \in \mathrm{MDA}(\Phi_{\alpha}) \Leftrightarrow \overline{F}(x) = x^{-\alpha}L(x), L \text{ langsam}$$
 variierend

Erinnerung (Kapitel 1.3 – Langsame Variation):

$$L$$
 langsam variierend $\Leftrightarrow \lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1$ f.a. $t > 0$

Schritte

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_\alpha)$

Ziel: Schätzer für $\alpha > 0$

Theorem 3.3.7 (Charakterisierung von MDA(Φ_{α})):

$$F \in \mathrm{MDA}(\Phi_{\alpha}) \Leftrightarrow \overline{F}(x) = x^{-\alpha}L(x), L \text{ langsam}$$
 variierend

Erinnerung (Kapitel 1.3 – Langsame Variation):

L langsam variierend $\Leftrightarrow \lim_{x\to\infty} \frac{L(tx)}{L(x)} = 1$ f.a. t>0

Schritte

1)
$$L \equiv 1 \Rightarrow MLE \text{ für } \alpha$$
:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

Annahmen: X_1 , X_2 , ..., X_n uiv gemäß $F \in MDA(\Phi_\alpha)$

Ziel: Schätzer für $\alpha > 0$

Theorem 3.3.7 (Charakterisierung von MDA(Φ_{α})):

$$F \in \mathrm{MDA}(\Phi_{\alpha}) \Leftrightarrow \overline{F}(x) = x^{-\alpha}L(x), L \text{ langsam}$$
 variierend

Erinnerung (Kapitel 1.3 – Langsame Variation):

L langsam variierend $\Leftrightarrow \lim_{x \to \infty} \frac{L(tx)}{L(x)} = 1$ f.a. t > 0

Schritte

1) $L \equiv 1 \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2) $L \equiv C = u^{\alpha} \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j} - \ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(\Phi_\alpha)$ **Annahmen:**

Schätzer für $\alpha > 0$ Ziel:

Schritte

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2)
$$L \equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha$$
:
$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(\Phi_\alpha)$ **Annahmen:**

Ziel: Schätzer für $\alpha > 0$

Erinnerung (Kapitel 3.3.1):

Schritte

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2)
$$L \equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha$$
:
$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(\Phi_{\alpha})$ **Annahmen:**

Ziel: Schätzer für $\alpha > 0$

Erinnerung (Kapitel 3.3.1):

Funktionen aus MDA(Φ_{α}) sind "Pareto-ähnlich", d.h.:

Schritte

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2)
$$L \equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha$$
:
$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(\Phi_{\alpha})$ **Annahmen:**

Ziel: Schätzer für $\alpha > 0$

Erinnerung (Kapitel 3.3.1):

Funktionen aus MDA(Φ_{α}) sind "Pareto-ähnlich", d.h.:

$$\overline{F}(x) \sim Cx^{-\alpha}$$
, für $x \to \infty$

Schritte

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2)
$$L \equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha$$
:
$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$ **Annahmen:**

Ziel: Schätzer für $\alpha > 0$

Erinnerung (Kapitel 3.3.1):

Funktionen aus $MDA(\Phi_{\alpha})$ sind "Pareto-ähnlich",

d.h.:

$$\overline{F}(x) \sim Cx^{-\alpha}$$
, für $x \to \infty$

Theorem 4.1.3 (gem. Dichte v. oberen Ordnungsstat'en):

Schritte

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

$$L \equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha:$$

$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$ **Annahmen:**

Schätzer für $\alpha > 0$ Ziel:

Erinnerung (Kapitel 3.3.1):

Funktionen aus $MDA(\Phi_{\alpha})$ sind "Pareto-ähnlich", d.h.:

$$\overline{F}(x) \sim Cx^{-\alpha}$$
, für $x \to \infty$

Theorem 4.1.3 (gem. Dichte v. oberen Ordnungsstat'en):

F absolut stetig mit Dichte f, dann gilt:

Schritte

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

L
$$\equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha$$
:
$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$ **Annahmen:**

Schätzer für $\alpha > 0$ Ziel:

Erinnerung (Kapitel 3.3.1):

Funktionen aus MDA(Φ_{α}) sind "Pareto-ähnlich", d.h.:

$$\overline{F}(x) \sim Cx^{-\alpha}$$
, für $x \to \infty$

Theorem 4.1.3 (gem. Dichte v. oberen Ordnungsstat'en):

F absolut stetig mit Dichte
$$f$$
, dann gilt:

$$f_{X_{k,n},...,X_{1,n}}(x) = \frac{n!}{(n-k)!}F^{n-k}(x_k)\prod_{j=1}^k f(x_j), \qquad x_k < \cdots < x_1$$

Schritte

1) $L \equiv 1 \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2) $L \equiv C = u^{\alpha} \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}-\ln u\right)^{-1}$$

 X_1, X_2, \dots, X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$ Annahmen:

Schätzer für $\alpha > 0$ Ziel:

Erinnerung (Kapitel 3.3.1):

Funktionen aus MDA(Φ_{α}) sind "Pareto-ähnlich", d.h.:

$$\overline{F}(x) \sim Cx^{-\alpha}$$
, für $x \to \infty$

Theorem 4.1.3 (gem. Dichte v. oberen Ordnungsstat'en):

F absolut stetig mit Dichte f, dann gilt:

F absolut stetig mit Dichte
$$f$$
, dann gilt:
$$\int_{X_{k,n},\dots,X_{1,n}}^{R} (x) = \frac{n!}{(n-k)!} F^{n-k}(x_k) \prod_{j=1}^{k} f(x_j), \qquad x_k < \dots < x_1$$
 3) \overline{F} wie all \overline{F}

Schritte

1) $L \equiv 1 \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2) $L \equiv C = u^{\alpha} \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}-\ln u\right)^{-1}$$

 \overline{F} wie allg. Pareto ab u

Annahmen: X_1, X_2, \dots, X_n uiv gemäß $F \in \mathrm{MDA}(\Phi_\alpha)$

Ziel: Schätzer für $\alpha > 0$

Schritte

1) $L \equiv 1 \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2)
$$L \equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha$$
:
$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

 \overline{F} wie allg. Pareto ab u

 X_1, X_2, \dots, X_n uiv gemäß $F \in MDA(\Phi_{\alpha})$ **Annahmen:**

Ziel: Schätzer für $\alpha > 0$

Hill-Schätzer:

$$\widehat{\alpha}_{k,n}^{(H)} := \left(\frac{1}{k} \sum_{j=1}^{k} \ln X_{j,n} - \ln X_{k,n}\right)^{-1}$$

$$mit \ k \xrightarrow{n \to \infty} \infty, \ \frac{k}{n} \xrightarrow{n \to \infty} 0$$

Schritte

1) $L \equiv 1 \Rightarrow MLE \text{ für } \alpha$:

$$\left(\frac{1}{n}\sum_{j=1}^{n}\ln X_{j}\right)^{-1}$$

2)
$$L \equiv C = u^{\alpha} \Rightarrow \text{MLE für } \alpha$$
:
$$\left(\frac{1}{n} \sum_{j=1}^{n} \ln X_{j} - \ln u\right)^{-1}$$

3) \overline{F} wie allg. Pareto ab u

 (X_n) strikt stationär mit Randverteilung $F \in \mathrm{MDA}(\Phi_\alpha)$

$$\widehat{\alpha}_{k,n}^{(H)} := \left(\frac{1}{k} \sum_{j=1}^{k} \ln X_{j,n} - \ln X_{k,n}\right)^{-1}$$

 (X_n) strikt stationär mit Randverteilung $F \in \mathrm{MDA}(\Phi_{\alpha})$

$$\widehat{\alpha}_{k,n}^{(H)} \coloneqq \left(\frac{1}{k} \sum_{j=1}^{k} \ln X_{j,n} - \ln X_{k,n}\right)^{-1}$$

Schwache Konsistenz

Für (X_n) uiv, schwach abh. oder linearer Prozess

und
$$k \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:

$$\hat{\alpha}_{k,n}^{(H)} \stackrel{P}{\longrightarrow} \alpha$$

 (X_n) strikt stationär mit Randverteilung $F \in MDA(\Phi_{\alpha})$

$$\widehat{\alpha}_{k,n}^{(H)} := \left(\frac{1}{k} \sum_{j=1}^{k} \ln X_{j,n} - \ln X_{k,n}\right)^{-1}$$

Schwache Konsistenz

Für (X_n) uiv, schwach abh. oder linearer Prozess

und
$$k \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt: $\frac{k}{\ln \ln n} \xrightarrow{n \to \infty} \infty$, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:

$$\hat{\alpha}_{k,n}^{(H)} \stackrel{P}{\longrightarrow} \alpha$$

Starke Konsistenz

Für (X_n) uiv und

$$\frac{k}{\ln \ln n} \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt

$$\hat{\alpha}_{kn}^{(H)} \stackrel{\text{f.s.}}{\longrightarrow} \alpha$$

 (X_n) strikt stationär mit Randverteilung $F \in \mathrm{MDA}(\Phi_{\alpha})$

$$\widehat{\alpha}_{k,n}^{(H)} := \left(\frac{1}{k} \sum_{j=1}^{k} \ln X_{j,n} - \ln X_{k,n}\right)^{-1}$$

Schwache Konsistenz

Für (X_n) uiv, schwach abh. oder linearer Prozess

und
$$k \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:

$$\hat{\alpha}_{k,n}^{(H)} \stackrel{P}{\longrightarrow} \alpha$$

Starke Konsistenz

Für (X_n) uiv und

$$\frac{k}{\ln \ln n} \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:

$$\hat{\alpha}_{k,n}^{(H)} \stackrel{\text{f.s.}}{\longrightarrow} \alpha$$

Asymptotische Normalität:

Für (X_n) uiv und

mit zusätzlichen Bedingungen an F und k gilt:

$$\sqrt{k}\left(\hat{\alpha}_{k,n}^{(H)}-\alpha\right) \xrightarrow{d} N(0,\alpha^2)$$

Quelle

Modelling Extremal Events (Kapitel 6.4.2)
 von P. Embrechts, C. Klüppelberg und T. Mikosch,
 erschienen 1997 im Springer-Verlag