STATS 331

Introduction to Bayesian Statistics Semester 2, 2016

Today's Lecture

Midterm test comments

Multiple linear regression

Nonlinear regression

Simple Linear Regression

"Fitting a straight line"

Least squares == posterior mode (with specific assumptions)

We developed a JAGS model which can give us the full posterior distribution

Multiple Linear Regression!

Just like simple linear regression, but with more than one "input variable"

Output = linear combination of inputs + scatter

Fitting a straight plane (-:

Regression Examples

```
(height, weight) → (age at death)
(team height, distance from home city) → (basketball score)
(number of mentions of Nigeria, number of mentions of Viagra) → (spam or not-spam)
```

. . .

Models like this are very important! There are whole courses about them (e.g. STATS 330)

Example: Really Important Science

How does the age of a grandfather clock, and the number of bidders, affect the sale price?

Modelling the relationship

 y_i = output/response (sale price of clock)

 $x_{i,1}$ = input 1 (age of clock)

 $x_{i,2}$ = input 2 (number of bidders)

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \epsilon_i$$

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

What is the Question?

Want to infer β_0 , β_1 and β_2 Will need prior for these!

From data $y_1, y_2, ..., y_N$.

Prior info $x_{1,1}$, ..., $x_{N,1}$ (ages), $x_{2,2}$, ..., $x_{N,2}$, (number of bidders), N

Code Up Likelihood in JAGS

```
for(i in 1:N)
{
    mu[i] <- beta0 + beta1*age[i] +
        beta2*num_bidders[i]
    y[i] ~ dnorm(mu[i], 1/sigma^2)
}</pre>
```

Vague Priors

```
beta0 ~ dnorm(0, 1/1000^2)
beta1 ~ dnorm(0, 1/1000^2)
beta2 ~ dnorm(0, 1/1000^2)

log_sigma ~ dunif(-10, 10)
sigma <- exp(log_sigma)</pre>
```

Over to Rstudio

Warnings about priors

 If the number of input variables is large, you need a prior for a large number of coefficients

 Vague priors can become more dodgy as the number of parameters increases!

 "Hierarchical priors" often needed – first example tomorrow.

Interaction Term

Something might happen only if both predictors are "switched on"

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,1} x_{i,2} + \epsilon_i$$

Interaction Term

Not fitting a plane anymore...the surface can curve

Interaction Term: Changes

```
beta3 ~ dnorm(0, 1/1000^2)
for(i in 1:N)
{
    mu[i] <- beta0 + beta1*age[i] +
    beta2*num_bidders[i] +
    beta3*age[i]*num_bidders[i]
}</pre>
```

Results with interaction term...

 Check out the trace plots. Things are starting to get unhappy due to a very strong correlation in the posterior

• For now, brute force (more steps) will work...

beta1 is now practically zero and beta2 negative!
 Everything has gone into the interaction term.

Trick to improve MCMC efficiency

In regression models, centering the variables can help.

Note: meaning of beta0 changes.

```
mu[i] <- 1327 + beta0 + beta1*(age[i] - 145) +
  beta2*(num_bidders[i] - 9.5) + beta3*(age[i] -
  145)*(num_bidders[i] - 9.5)</pre>
```

145 is the mean age

9.5 is the mean number of bidders

1327 is the mean sale price

Can we do model selection?

$$H_0: \beta_3 > 0$$

$$H_1: \beta_3 < 0$$

Why? Prior prob of exactly zero is either 1 (in the first model) or 0 (in the second model)

$$H_0: \beta_3 = 0$$

$$H_1: \beta_3 \neq 0$$

Could use marginal likelihoods, but JAGS can't calculate them!

Ideas

Look at marginalised posterior - is there significant probability *density* at 0?

If yes, the model without the term would probably be fine.

Another idea: testing prior in JAGS

Can we make a prior with which allows beta3 to be either zero (with, say, 50% prior probability) or non-zero?

Yes!

We'll do this next week during the "t-test" section.

See You Tomorrow!

See you tomorrow!