O'REILLY®

Velocity

CONFERENCE

BUILD RESILIENT SYSTEMS AT SCALE

Percentages are not People

velocityconf.com #velocityconf

Quality of Service

Availability

the service must be accessible to your users

Correctness

the service must perform the function expected

Performance

the service must satisfy a user's productivity goals

Let's focus on how to measure these things

- Always measure latency in seconds (ms, µs, ns)
 not hours, days or years.
- Always measure throughput in units per second
 if the number is very small, annotate per day or per year.

Measure synthetically

Perform synthetic measurements (automated use) to measure

Correctness

Availability

Measure passively

Passively observe real transactions to measure

Performance

Availbility

Tactical differences between synthetic & passive measurement

 Synthetic measurements tend to have highly consistent latency at a fixed arrival rate.

Passive measurements represent reality and include

 Highly variable rates (no fixed period, yet often Poisson distributed arrival rates)

Complex and variable distributions of latency

When you have a lot of data, what question should you ask?

- Assume 10,000 measurements over a minute... Should you consider:
 - The average?
 - The variance?
 - The median?
 - Minimum? Maximum?
 - 95th Percentile? 99th? 99.9th? 75th? 25th? 99.5th? ...

Stop... why?

Why do we measure?

- We measure to understand improvement (and degradation)
 - Did we release bad code?
 - Did we fix a latency issue?
 - Are things slower today than yesterday?

- We measure to discern success
 - Are we fast enough?
 - Are our users happy?

What does observed latency actually look like?

What are all these things?

The "shape" of the histogram indicates a workload

What's a quantile (or percentile)

- p(99) is the same as q(0.99)
 - Both short for q(SAMPLES, 0.99) as q applies to a set

- Given a set of samples N and a desired quantile Q
- $q(N,Q) \rightarrow r$
 - $\ge Q|N|$ samples of N are < r and
 - $\ge (1 Q)|N|$ samples of N are > r
 - any number of samples may be = r

We use quantiles

To describe generalized behavior

To measure the experience of "most" of our audience.

- To set service level objectives:
 - For N API request latencies, q(N, 0.99) should be less 1ms

The problem

For N API request latencies

q(N, 0.99) should be less 1ms

Is our service level objective

-q(N,0.99) < 1ms

- The method for selecting N must
 - be consistent and
 - result in a sufficiently sized N
 - (e.g. N < 100 would result in some unintuitive results)
- 0.99 is very different for an N of 10 vs an N of 10,000,000 you might decide a different quantile is more appropriate later

 1ms should researched well you might decide a different threshold is more appropriate later

Introducing an inverse quantile

$$q(N, v) = r$$

$$q^{-1}(N, r) = v$$

Service Latency q(0.99) vs requests

1.5k

SLA at 1.5s

Percentage of violations: (1 - q⁻¹(1500ms))*100

Percentage to actual (pct * requests)

Actual users effected over time (integral)

O'REILLY®

Velocity

CONFERENCE

BUILD RESILIENT SYSTEMS AT SCALE

velocityconf.com #velocityconf

Thank You

Think about

"how many users have a bad experience" Instead of

"how bad an experience are a few users having"