Christian-Albrechts-Universität zu Kiel

03_explorative_statistics-graphical_display

Tables and charts

Loading data for the following steps

Read the data of the Kursteilnehmer:

```
> setwd("--your R-directory--")
> laender<-read.csv2("laenderdaten.csv")</pre>
```

```
> laender[1:3,]
               Name Einwohnerzahl Fläche.in.km.
                                                                                Amtssprache
1 Königreich Dänemark
                      5732173
                                    2244490.0
                                                                                    Dänisch 3.3320e+11
     New Zealand
                        4445000
                                    269652.0 Englisch, Maori, neuseeländische Gebärdensprache 1.6181e+11
         Schweden
                       9644864
                                                                                 Schwedisch 5.3820e+11
 Weltrang.nach.BIP Weltrang.CPI Einlieferer kontinent
                                  breske
                                  breske
                                  breske Europa
```


Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Universität zu Kiel

Cross tables (contingency tables)

For summary of data:

- > tabelle<-table(laender\$einlieferer,laender\$Kontinent)
- > tabelle

	Afrika	Asien	Europa	Mittelamerika	Südamerika
Annalena Bock	0	0	3	0	0
Henry Skorna	0	2	1	0	0
Janna Kordowski	0	0	3	0	0
Saryn Schlotfeldt	0	0	0	2	1
Timo von Holtz	13	0	0	0	0

> addmargins(tabelle)

	Afrika	Asien	Europa	Mittelamerika	Südamerika	Sum
Annalena Bock	0	0	3	0	0	3
Henry Skorna	0	2	1	0	0	3
Janna Kordowski	0	0	3	0	0	3
Saryn Schlotfeldt	0	0	0	2	1	3
Timo von Holtz	13	0	0	0	0	13
Sum	13	2	7	2	1	25

Christian-Albrechts-Universität zu Kiel

Basics about charts

Principles for good charts according to E. Tufte:

(The Visual Display of Quantitative Information. Cheshire/ Connecticut: Graphics Press, 1983)

- "Graphical exellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space."
- Data-ink ratio = "proportion of a graphic's ink devoted to the non-redundant display of data-information" (kein chartjunk!)
- "Graphical excellence is often found in simplicity of design and complexity of data."

after Müller-Scheeßel

Christian-Albrechts-Universität zu Kiel

Plot [1]

Basic drawing function of R:

> plot(laender\$Einwohnerzahl)

options:

- p points (default)
- I solid line
- b line with points for the values
- c line with gaps for the values
- o solid line with points for the values
- h vertical lines up to the values
- s stepped line from value to value
- n empty coordinate system
- > plot(laender\$Einwohnerzahl,type="b")

Intelligent system: automatic determination of variable type, drawing of the appropriate chart

> plot(laender\$kontinent)

Christian-Albrechts-Universität zu Kiel

Plot [2]

Optional components and text:

```
> plot(laender$Fläche,laender$Weltrang.CPI,
    xlim=c(0,2500000), # limits of the x axis
    ylim = c(0,200), # limits of the y axis
    ylab = "rank according to CPI", # label of the x axis
    xlab = "area", # label of the y axis
    main = "area vs. rank according to BPI", # main title
    sub="example plot" # subtitle
)
```


CAU

Christian-Albrechts-Universität zu Kiel

Plot [3]

Plot do a lot for you:

Opens a window for display
Determines the optimal size of the frame of reference
Draws the coordinate system
Draws the values

Gives a "handle" back for further additions to the plot, e.g.:

lines – additional lines to an existing plot points – additional points to an existing plot

abline – additional special lines to an existing plot

text — additional text on choosen position to an existing plot

Additional possiblities for "decorations": ? par

Christian-Albrechts-Universität zu Kiel

Plot [4]

Add additional elements:

Drawing lines

```
> abline(v=mean(laender$Fläch,na.rm=T))
> abline(h=mean(laender$Weltrang.CPI,na.rm=T))
>abline(lm(laender$Weltrang.CPI~laender$Fläche.in.km))
```

Drawing text

```
> text(2000000, mean(laender$Weltrang.CPI), # position at x 20 und y mean
label = paste("MW (CPI)= ", # text is concatenate via paste
round(mean(laender$Weltrang.CPI,na.rm=T))),
pos = 3, # position above
cex = 0.7 # font size 70%
)
```


Christian-Albrechts-Universität zu Kiel

Export the graphics

With the GUI:

File → Save as...

With the commando line:

As vector file

- > dev.copy2eps(file="test.eps")
- > dev.copy2pdf(file="test.pdf")

As bitmap file

> savePlot(filename="test.tif", type="tiff")

Possible are "png", "jpeg", "tiff", "bmp"

SavePlot can save sometimes also vector files (dependent on operation system and installation)

Christian-Albrechts-Universität zu Kiel

Pie chart [1]

The classical one – but also with R not much better...

Used to display proportions, suitable for nominal data

$$a_i = \frac{h_i}{N} \cdot 360^{\circ}$$

Disadvantages:

Color selection can influence the perception (red is seen larger then gray) Small differences are not easy visible

totally No-Go: 3d-pies!!!

Christian-Albrechts-Universität zu Kiel

Pie chart [2]

The pieces »viel zu wenig«, »etwas zu wenig« und »gerade richtig« have exactly the same size, the piece »viel zu viel« is a bit smaller.

Pie chart [3]

Pies in R

Data are a vector of counts

Color palette:

The standard palette is pastel, if you prefer another:

```
> pie(table(laender$kontinent), col=c("red","green","blue","yellow"))
```


Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Universität zu Kiel

Bar plot [1]

Generally the better alternative...

Bar plots are suitable for display of proportions as well as for absolute data. They can be used for every level of measurment.

```
> barplot(table(laender$kontinent))
> windows() # öffnet neues Fenster, unter linux x11(), unter mac quartz ()
> barplot(laender$Fläche.in.km.)
```

With names:

```
> par(las=2)
> barplot(laender$Fläche.in.km., names.arg=laender$Name)
```

With title:

```
> title("Fläche der Sample-Länder")
> par(las=1)
```

Horizontal:

> barplot(table(laender\$kontinent),horiz=T,cex.names=0.5)

Christian-Albrechts-Universität zu Kiel

Bar plot [2]

Display of counts

> tabelle

	Afrika	Asien	Europa	Nordamerika
breske	() () 2	2 0
eberle	1	. 1	. 1	L 0
frank	() 1	. 2	2 0
greve	() () 3	3 0
lublasser	<u> </u>) 3	3 (0
wiese	() () () 1

- > barplot(tabelle)
- > barplot(tabelle, beside=T)
- > barplot(tabelle, beside=T, legend.text=T)
- > barplot(tabelle, beside=T, legend.text=T, ylim=c(0,5))
- > barplot(tabelle, beside=T, legend.text=T, xlim=c(0,36))

Christian-Albrechts-Universität zu Kiel

Bar plot [3]

Display of proportions

xlim=c(0,8))

3)

> tabelle.prop<-prop.table(tabelle,2)</pre>

```
> tabelle.prop
            Afrika Asien Europa Nordamerika
            0.000 0.000 0.250
                                      0.000
 breske
            1.000 0.200 0.125
  eberle
                                      0.000
  frank
            0.000 0.200 0.250
                                      0.000
            0.000 0.000 0.375
                                      0.000
 greve
 lublasser 0.000 0.600 0.000
                                      0.000
            0.000 0.000
                         0.000
                                      1.000
 wiese
> barplot(tabelle.prop)
> tmp<-barplot(tabelle.prop, legend.text=T, col=rainbow(11),</pre>
```

> title("ratio of contributers \n by continent", outer=TRUE, line=-

Christian-Albrechts-Universität zu Kiel

Bar plot [4]

Problems with bar plots – and also with many other charts

Percent vs. count: percents often distort the relations

```
> par(mfrow=c(2,1))
> barplot(tabelle,beside=T)
> barplot(tabelle.prop,beside=T)
```

Scales: the choosen limits of the axes can distort the relations

```
> par(mfrow=c(1,2))
> barplot(laender$Fläche.in.km.[c(2,3)],xpd=F,ylim=c(250000,500000))
> barplot(laender$Fläche.in.km.[c(2,3)],xpd=F)
>par(mfrow=c(1,1))
```


Christian-Albrechts-Universität zu Kiel

Box-plot (Box-and-Whiskers-Plot)

One of the best (my favorite)!

Used to display the distribution of values in a data vector of metrical (interval, ratio) scale

> boxplot(1:9)

Box: the inner both quantiles

Whisker: last value < than 1.5 times the distance of the inner quantile

- > boxplot(laender\$Fläche)
- > boxplot(laender\$Fläche.in.km.~laender\$einlieferer)

More beautiful:

- > par(las=1)
- > boxplot(laender\$Fläche.in.km.~laender\$einlieferer, data = daten, main = "Fläche der Länder \n nach Einlieferer", col="grey", xlab="Einlieferer", ylab= "Fläche")

Christian-Albrechts-Universität zu Kiel

scatterplot

For 2 discrete variables

Used to display a variable in relation to another one. Generally for all scales suitable, but for nominal and ordinal scale other charts are often better.

```
> plot(laender$Weltrang.CPI,laender$Fläche.in.km.)
>
abline(lm(laender$Fläche.in.km.~laender$Weltrang.CPI),
col="red")
```

Call additional libraries:

```
> library(car) # library for regression analysis
> scatterplot(Fläche.in.km.~Weltrang.CPI,data=laender)

> library(ggplot2) # advanced plots library
> b<-
ggplot(laender,aes(x=Weltrang.CPI,y=Fläche.in.km.))
> graph<-b + geom_point()
> show(graph)
```


Christian-Albrechts-Universität zu Kiel

Histogramm

Used for classified display of distributions

Data reduction vs. precision: Display of count values of classes of values

```
> hist(laender$Fläche)
> hist(laender$Fläche, labels=T)
> hist(laender$Fläche, labels=T, breaks=20)
>
More beautiful
> hist(laender$Fläche,breaks=20,labels=T, col="red", xlab="Fläche", main="histogram of area of selected countries")
```

Disadvantages:

Data reduction vs. precision → loss of information Actual display depends strongly on the choosen class width

Christian-Albrechts-Universität zu Kiel

steam-and-leaf chart

An attempt to overcome the disadvantages of a histogram Is not very often used. Scales like histograms.

```
> stem(laender$Fläche.in.km.)
The decimal point is 6 digit(s) to the right of the |
0 | 00000001344467
2 | 2
4 |
6 |
8 | 8
```

Advantage: Information about the distribution inside the classes and the absolute values are (partly) visible.

kernel smoothing (kernel density estimation)

Another attempt to overcome the disadvantages of a histogram

The distribution of the values is

Die Verteilung der Werte wird considered and a distribution curve is calculated. Continuous distributions are better displayed, without artificial breaks. Scales like histograms.

> plot(density(laender\$Fläche))

Histogram and kernel-density-plot together

```
> hist(laender$Fläche,breaks=20,labels=T, col="red",
xlab="Fläche", main="Histogramm der Fläche
ausgewählter Länder",prob=T)
> lines(density(laender$Fläche),lwd=4)
```


Christian-Albrechts-Universität zu Kiel

Shapes of distributions (after Bortz 2006)

Christian-Albrechts-Universität zu Kiel

Culmulative frequency distribution

Display of the proportions of ordinal variables

Example from Shennan: Counts of burials by age

```
Infans I Infans II Juvenil Adult Matur Senil
10 16 10 32 34 4
```

```
> bestattungszahl<-c(10,16,10,32,34,4)
> names(bestattungszahl)<-c("Infans I","Infans
II","Juvenil","Adult","Matur","Senil")
> plot(c(0, cumsum(bestattungszahl)/sum(bestattungszahl)), type="l",
axes="F", xlab="", ylab="Kulmulativer Anteil")
> axis(1,at=1:(length(bestattungszahl)+1),
c(0,names(bestattungszahl)))
> axis(2)
> box()
> title("cumulative ratio of burried by age class")
```


CAU

Christian-Albrechts-Universität zu Kiel

Triplot

Simplest kind of multivariate chart

Used for display of the proportions of 3 exclusive Variables General suitable for all levels of measurement. Datas are converted into percent.

```
> library(ade3)
> test<-matrix(round(abs(rnorm(30)*100)),ncol=3)</pre>
> colnames(test)<-c("cattle", "goat", "pig")</pre>
> test
     cattle
            goat pig
              146 65
 [1,]
        195
             61 76
 [2,]
         96
         36
              127 66
 [3,]
 [4,]
        114
               59 31
        49
             85 152
 [5,]
 [6,]
        168
             78 172
 [7,]
        10
              125
                   80
 [8,]
                 6 49
        151
 [9,]
         23
               77 87
[10,]
              303 263
> test<-as.data.frame(test)
> triangle.plot(test,label=rownames(test), clab =1, show=F,
labeltriangle=T)
```


Simulated triplot of the proportions of animal bones from different settlements

Christian-Albrechts-Universität zu Kiel

Style of charts

Stay honest!

Choice of display has a strong influence on the statement.

CAIU

Christian-Albrechts-Universität zu Kiel

Style of charts

Stay honest!

Choice of display has a strong influence on the statement.

Clear layout!

Minimise Ratio of ink per shown information!

Use the suitable chart for the data!

Consider nominal-ordinal-interval-ratio scale

What to display	suitable	Not suitable
Parts of a whole: few	Pie chart, stacked bar plot	
Parts of a whole: few	Stacked bar plot	
Multiple answers (ties)	Horizontal bar plot	Pie chart, stacked bar plot
Comparison of different values of different variables	Grouped bar plot	
Comparison of parts of a whole	Stacked bar plot	
Comparison of developments	Line chart	
Frequency distribution	Histogram, kernel density plot	
Correlation of two variables	scatterplot	

