Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de conjunto
- * Subconjunto y subconjunto propio
- * Conjunto potencia
- * Producto cartesiano
- * Operaciones con conjuntos

George Cantor

- Defendió su tesis doctoral en 1867 sobre teoría de números
- Es considerado el fundador de la teoría de conjuntos

(1845-1918)

Noción de conjunto: Definición por extensión

· Conjunto de vocales del alfabeto

$$A = \{a,e,i,o,u\}$$

• Conjunto de enteros positivos menores que 100

Conjunto de números naturales

· Conjunto de operadores aritméticos conmutativos

$$D=\{+,x\}$$

Noción de conjunto: Definición por compresión

· Conjunto de vocales del alfabeto

$$A = \{x : \mathring{A} | Vocal(x)\}$$

• Conjunto de enteros positivos menores que 100

$$B = \{x : \mathbb{Z}^+ \mid x \le 100\}$$

Conjunto de números naturales

$$C = \{x : \mathbb{N}\}$$

Conjunto de operadores aritméticos conmutativos

$$A = \{x : \mathring{A} | OperadorAritmetico(x) \}$$

¿Los conjuntos A y B son iguales?

$$A = \{a,e,i,o,u\}$$

$$B=\{u,o,i,e,a\}$$

¿Los conjuntos A y B son iguales?

$$A = \{a,e,i,o,u\}$$

$$B=\{u,o,i,e,a\}$$

Un conjunto es una colección desordenada de objetos

¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}

¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}

Dos conjuntos son iguales si tienen los mismos elementos sin importar la cantidad

Conjunto vacio

Representa el conjunto que no tiene elementos, se puede expresar de las dos siguientes maneras:

- { }
- Ø

Determine si los siguientes conjuntos son iguales:

- {1,3,3,3,3,3,5,5,5,5} y {5,3,1}
- {{1}} y {1}
- {{1,1,1,1,1},1,1,1,1} y {1,{1}}
- { } y {Ø, { }}
- {∅} y {{ }, ∅}
- $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$

Determine si los siguientes conjuntos son iguales:

- $\{1,3,3,3,3,3,3,5,5,5,5\}$ y $\{5,3,1\}$, si
- {{1}} y {1}, no
- $\{\{1,1,1,1,1\},1,1,1,1,1\}$ y $\{1,\{1\}\}$, si
- { } y {Ø, { }}, no
- {∅} y {{ }, ∅}, si
- $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$, si

Pertenencia sobre conjuntos

- $x \in A$ para indicar que el elemento x pertenece al conjunto A
- x∉A para el caso contrario

- 1 ∈ A
- $\{3,4\} \in A$
- $\emptyset \in A$
- 5 ∈ A
- $\{5\} \in A$
- $\{3,4,5\} \in A$

- $1 \in A$, verdadero
- $\{3,4\} \in A$, verdadero
- $\varnothing \in A$, falso
- $5 \in A$, verdadero
- $\{5\} \in A$, falso
- $\{3,4,5\} \in A$, falso

- $\{1,2\} \in A$
- $\{5,6\} \in A$
- 4 ∈ A
- { } ∈ A

- $\{1,2\} \in A$, falso
- $\{5,6\} \in A$, verdadero
- $4 \in A$, falso
- $\{\} \in A$, falso

Subconjunto ⊆

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

- $\{1,2\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,6\} \subseteq \{1,2,3,4,5\}$

Subconjunto ⊆

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

- $\{1,2\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,6\} \subseteq \{1,2,3,4,5\}$

Para cualquier conjunto S, se cumple que $\varnothing\subseteq S$

Para cualquier conjunto S, se cumple que $S\subseteq S$

Subconjunto propio

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ y $A \neq B$

Subconjunto propio

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ y $A \neq B$

Sean $P=\{1,2\}$, $Q=\{1,2,3\}$, $R=\{1,2,3\}$, se cumple:

- $P \subseteq R$ y $P \subseteq R$
- Q⊆R pero Q⊄R

- $X \in \{X\}$
- $\{x,y\} \subseteq \{x\}$
- $\{x\} \subset \{x\}$
- $\{x\} \in \{x\}$
- $\{x\} \in \{\{x\}, y, z\}$
- $\varnothing \subseteq \{x\}$
- $\varnothing \in \{x\}$
- $\varnothing \subset \{x\}$

- $x \in \{x\}$, verdadero
- $\{x,y\} \subseteq \{x\}$, falso
- $\{x\} \subset \{x\}$, falso
- $\{x\} \in \{x\}$, falso
- $\{x\} \in \{\{x\}, y, z\}$, verdadero
- $\emptyset \subseteq \{x\}$, verdadero
- $\emptyset \in \{x\}$, falso
- $\emptyset \subset \{x\}$, verdadero

- 0∈∅
- ∅∈{0}
- **{0}**⊂∅
- ∅<
- $\{0\} \in \{0, \{0, 0\}\}$
- {0}\_{0}
- {0}<u></u>

- $0 \in \emptyset$, falso
- $\emptyset \in \{0\}$, falso
- $\{0\}$ $\subset \emptyset$, falso
- $\varnothing \subset \{0\}$, verdadero
- $\{0\}\in\{0,\{0,0\}\}\$, verdadero
- $\{0\}\subset\{0\}$, falso
- $\{0\}\subseteq\{0\}$, verdadero

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

- Para A={3,3,3,3,1,1,1,2,2,2}, |A|=?
- Para A={1,2,3,{4,5}}, |A|=?
- Para A=∅, |A|=?

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

- Para $A=\{3,3,3,3,1,1,1,2,2,2\}, |A|=3$
- Para A={1,2,3,{4,5}}, |A|=4
- Para $A=\emptyset$, |A|=0

- $\{x | x \text{ es un entero positivo impar menor que 10}\}$
- {a}
- {{a,b}}
- {a, {a}}
- {a, a, {a,a}, {a,a,a}}

- $\{x \mid x \text{ es un entero positivo impar menor que 10}\}$, 5
- {a}, 1
- {{a,b}}, 1
- {a, {a}}, 2
- {a, a, {a,a}, {a,a,a}}, **2**

- {a, {a}, {a,{a}}}
- **{3**,∅**}**
- {∅}
- $\{\emptyset, \emptyset, \emptyset, \emptyset, \{\}\}$

- {a, {a}, {a,{a}}}, **3**
- {3,Ø}, **2**
- {∅}, **1**
- $\{\emptyset, \emptyset, \emptyset, \{\}\}, 1$

Producto cartesiano AxB

$$AxB = \{(a,b) \mid a \in A \land b \in B\}$$

Producto cartesiano AxB

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = ?$

Producto cartesiano AxB

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$

Producto cartesiano AxB

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $B \times A = ?$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $B \times A = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Dados $A=\{a,b\}$, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule:

- AxB
- AxA
- BxC

Dados
$$A=\{a,b\}$$
, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule:
 $A\times B=\{(a,x),(a,y),(a,z),(b,x),(b,y),(b,z)\}$
 $A\times A=\{(a,a),(a,b),(b,a),(b,b)\}$
 $B\times C=\{(x,0),(x,1),(y,0),(y,1),(z,0),(z,1)\}$

René Descartes

- Estudió matemáticas y leyes
- A los 18 años se desencantó de estudiar y se dedicó a recorrer el mundo
- El servicio militar y cómo decidió su futuro
- Escribió el Discurso del Método (hipótesis del espíritu maligno*)
- Motivación de la duda metódica (niñez y los sueños)

(1596-1650)

Tabla **CAMISAS**:

ID_CAMISA	CAMISA	PESO_GR	
1	lino blanca	210	
2	algodon naranja	290	
3	seda negra	260	

Tabla PANTALONES:

ID_PANTALON	PANTALON	PESO_GR	
1	tela azul marino	470	
2	pana marron claro	730	

Tabla CAMISASxPANTALONES:

ID_CAMISA	CAMISA	PESO_GR	ID_PANTALON	PANTALON	PESO_GR
1	lino blanca	210	1	tela azul marino	470
1	lino blanca	210	2	pana marron claro	730
2	algodon naranja	290	1	tela azul marino	470
2	algodon naranja	290	2	pana marron claro	730
3	seda negra	260	1	tela azul marino	470
3	seda negra	260	2	pana marron claro	730

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Dado A={1,2,3}

$$P(A)=?$$

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

• Dado A={1,2,3}

$$P(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\}$$

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

 En general, dado un conjunto A con n elementos, el conjunto P(A) tiene 2ⁿ elementos

Sea $S=\{1,\{2,3\},4\}$, muestre P(S)

Sea $S=\{1,\{2,3\},4\}$, muestre P(S)

- $P(S)=\{\emptyset, \{1\}, \{\{2,3\}\}, \{4\}, \{1,\{2,3\}\}, \{1,4\}, \{\{2,3\},4\}, \{1,\{2,3\},4\}\}\}$

Sea $S=\emptyset$, muestre P(S)

Sea $S=\emptyset$, muestre P(S)

Encuentre el siguientes conjunto:

• P(P(∅))

Encuentre el siguientes conjunto:

```
    P(P(∅))
    P(∅)={∅}
    P(P(∅))=?
```

Encuentre el siguientes conjunto:

```
    P(P(∅))
    P(∅)={∅}
    P(P(∅))=P({∅})={∅, {∅}}
```

Encuentre los siguientes conjuntos potencia:

- P({{a,c},{a,b}})
- P({1,2,3,4})

Encuentre los siguientes conjuntos potencia:

- P({{a,c},{a,b}})={Ø,{a,c},{a,b},{{a,c},{a,b}}}
- P({1,2,3,4})={Ø,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{2,3,4},{1,3,4},{1,2,3,4}}

Determine si cada una de las siguientes sentencias es falsa o verdadera

- $\{\emptyset\} \subseteq P(\{\emptyset\})$
- $\{\emptyset, \{\emptyset\}\} \subseteq P(P(\{\emptyset\}))$
- $|\{a,b,c\}\times\{1,2\}| < |P(\{a,b\})|$

Determine si cada una de las siguientes sentencias es falsa o verdadera

- $\{\emptyset\} \subset P(\{\emptyset\})$ $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}, \text{ verdadero}$
- $\{\emptyset, \{\emptyset\}\} \subset P(P(\{\emptyset\}))$ $\{\emptyset, \{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, \text{ verdadero}$
- |{a,b,c}x{1,2}| < |P({a,b})|6<4, falso

Operaciones entre conjuntos

- Unión
- · Intersección
- · Diferencia
- Complemento

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$ $A B \neq B A$
- Complemento. $A = \{x \mid x \notin A\}$

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$
- Complemento. $A = \{x \mid x \notin A\}$

$$U=\{1,2,3,4,5,6,7,8,9\} \qquad A \subseteq V$$

$$A=\{1,2,3,5,9\} \qquad B \subseteq V$$

$$B=\{3,7,9\}$$

Operaciones entre conjuntos

• Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$

Cardinalidad de la Unión

En la unión los elementos de la intercepción sólo se toman una vez

Operaciones entre conjuntos

• Unión. $A \cup B \cup C = \{x \mid x \in A \lor x \in B \lor x \in C\}$

Cardinalidad de la Unión

$$|A| + |B| + |C| - |A \cap B| - |B \cap C| + |A \cap B \cap C|$$

Operaciones entre conjuntos

•Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$

Operaciones entre conjuntos

•Diferencia. $A-B=\{x \mid x \in A \land x \notin B\}$

Operaciones entre conjuntos

•Complemento. $A = \{x \mid x \notin A\}$

U

Dados $A=\{1,2,3,5,9\}$, $B=\{3,7,9\}$ y $U=\{1,2,3,4,5,6,7,8,9\}$ indique los resultados de las siguientes operaciones:

•
$$\overline{A \cup B} \cap \overline{B - A}$$

•
$$A \cap \overline{B} \cup B \cap \overline{A}$$

• $\overline{A \cup B} \cap \overline{B - A}$

Dados $A=\{1,2,3,5,9\}$, $B=\{3,7,9\}$ y $U=\{1,2,3,4,5,6,7,8,9\}$ indique los resultados de las siguientes operaciones:

•
$$\overline{A \cup B} \cap \overline{B - A} = \{4,6,8\} \cap \{1,2,3,4,5,6,8,9\} = \{4,6,8\}$$

•
$$A \cap \overline{B} \cup B \cap \overline{A} = \{1,2,5\} \cup \{7\} = \{1,2,5,7\}$$

Dados $A=\{a,b,c,d,e\}$, $B=\{a,b,c,d,e,f,g,h\}$ y $U=\{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

- A∩B
- $\overline{\mathsf{B-A}} \cup (\mathsf{A-B})$
- (A-B) (A∪B)
- $(B \cap A) \cup (B A)$

Dados $A=\{a,b,c,d,e\}$, $B=\{a,b,c,d,e,f,g,h\}$ y $U=\{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

- *A*∩B
- $\overline{\mathsf{B-A}} \cup (\mathsf{A-B})$
- \cdot (A-B) (A \cup B)
- $/ \bullet (\mathsf{B} \cap \mathsf{A}) \cup (\mathsf{B} \cdot \mathsf{A})$

AUB {9,6,0,d,e, F, 3,63

$$A - B = \emptyset$$

Dados $A=\{a,b,c,d,e\}$, $B=\{a,b,c,d,e,f,g,h\}$ y $U=\{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

- *A*∩B={f,g,h,i,j,k}
- B-A \cup (A-B)={a,b,c,d,e,i,j,k} $\cup \emptyset$ ={a,b,c,d,e,i,j,k}
- (A-B) (A \cup B)={a,b,c,d,e,f,g,h,i,j,k}-{a,b,c,d,e,f,g,h}={i,j,k}
- $(B \cap A) \cup (B-A) = \{i,j,k\}$

Dados A={1,3,5,7,8,9}, B={2,4,5,6} y U={1,2,3,4,5,6,7,8,9,10} encuentre:

- **A**-**B** ∩ **A**
- $(B \cap A) \cup (A \cup B)$
- $(A \cap B) \cap (B-A)$

Dados A={1,3,5,7,8,9}, B={2,4,5,6} y U={1,2,3,4,5,6,7,8,9,10} encuentre:

•
$$A-B \cap A = \{2,4,5,6,10\} \cap \{2,4,6,10\} = \{2,4,6,10\}$$

•
$$(B \cap A) \cup (A \cup B) = \{5\} \cup \{10\} = \{5,10\}$$

•
$$(A \cap B) \cap (B-A) = \{1,2,3,4,6,7,8,9,10\} \cap \{2,4,6\} = \{2,4,6\}$$

Dados $A=\{a,b,c\}$, $B=\{b,d\}$, $U=\{a,b,c,d,e,f\}$ encuentre y compare:

- $\overline{A \cup B}$, $\overline{A \cap B}$
- $\overline{A \cap B}$, $\overline{A} \cup \overline{B}$

Dados $A=\{a,b,c\}$, $B=\{b,d\}$, $U=\{a,b,c,d,e,f\}$ encuentre y compare:

- $A \cup B$, $A \cap B$. Ambos son $\{e,f\}$
- $\overline{A \cap B}$, $\overline{A \cup B}$. Ambos son {a,c,d,e,f}

Identidad	Nombre
$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	Leyes de De Morgan
$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	Leyes de absorción
$A \cap (\underline{A \cup B}) = A$	
$A \cup \overline{A} = ?$	Leyes de complemento
$A \cap \overline{A} = ?$	

Identidad	Nombre
$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	Leyes de De Morgan
$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	Leyes de absorción
$A \cap (A \cup B) = A$	
$A \cup \overline{A} = U$	Leyes de complemento
$A \cap \overline{A} = \emptyset$	

Identidad	Nombre
$A \cup \emptyset = ? A$ $A \cap U = ? A$	Leyes de identidad
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Leyes de dominación
$A \cup A = A$ $A \cap A = A$	Leyes de idempotencia
 = A	Ley de complementación

Identidad	Nombre
$A \cup \varnothing = A$	Leyes de
$A \cap U = A$	identidad
<i>A</i> ∪ U = U	Leyes de
$A \cap \emptyset = \emptyset$	dominación
$A \cup A = A$	Leyes de
$A \cap A = A$	idempotencia
	Ley de
$\overline{A} = A$	complementación

Identidad	Nombre
$A \cup B = B \cup A$	Leyes
$A \cap B = B \cap A$	conmutativas
$A \cup (B \cup C) = (A \cup B) \cup C$	Leyes asociativas
$A \cap (B \cap C) = (A \cap B) \cap C$	asociativas
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Leyes
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	distributivas

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- Utilizar la notación de conjuntos y las equivalencias lógicas

Tabla de pertenencia

Se considera cada combinación de conjuntos en los que un elemento puede pertenecer y se verifica que los elementos en la misma combinación de conjuntos pertenecen a ambos conjuntos en la identidad

1 el colomento pertenecs 0 el elemento no pertenec Probar $A \cap B = A \cup B$ B B

Probar $A \cap B = A \cup B$

Α	В	A	B	$A \cap B$	A ∩B	$\overline{A} \cup \overline{B}$
1	1	9	0	1	0	0
1	0	0	1	0	1	1
0	1	()	Ø	0	1	1
0	0	1	1	Ō	1	2

1 representa x∈Conjunto
0 representa x∉Conjunto

Α	В	Ā	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0				
1	0	0				
0	1	1				
0	0	1				

Α	В	Ā	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0			
1	0	0	1			
0	1	1	0			
0	0	1	1			

A	В	A	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1		
1	0	0	1	0		
0	1	1	0	0		
0	0	1	1	0		

A	В	A	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	
1	0	0	1	0	1	
0	1	1	0	0	1	
0	0	1	1	0	1	

Α	В	Ā	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

A	В	Ā	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Probar
$$\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$$

Probar $\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$ $ \bigcirc \rightarrow \bigcirc \land \bigcirc \land \bigcirc \rightarrow \rightarrow \land \bigcirc \rightarrow \rightarrow \rightarrow \rightarrow$								
A	В	A	В	$\overline{A} \cap B$	$A \cup (\overline{A} \cap B)$	$A \cup (A \cap B)$	A∪B	$\overline{A} \cap (A \cup \overline{B})$
1	1	0	0	01	1	0	1	0
1	0	0	۲)	0	7	Q	1	0
0(1	1	0		1	0	0	0
0	0	1	2	0	. 0	1	1	1

Probar $\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$

A	В	A	В	$\overline{A} \cap B$	$A \cup (\overline{A} \cap B)$	$A \cup (A \cap B)$	A∪B	$\overline{A} \cap (A \cup \overline{B})$
1	1	0	0	0	1	0	1	0
1	0	0	1	0	1	0	1	0
0	1	1	0	1	1	0	0	0
0	0	1	1	0	0	1	1	1

Complete la tabla para (A - B)

Α	В	A-B
1	1	. ○
1	0	?_1
0	1	?0
0	0	? 0

Complete la tabla para (A - B)

Α	В	A-B
1	1	0
1	0	
0	1	
0	0	

El mismo elemento está en A y en B. Por To tanto, no estará en A-B

Complete la tabla para (A - B)

Α	В	A-B
1	1	0
1	0	1
0	1	0
0	0	0

- \bigcirc
- 0
- \bigcirc
- 0

Uc touto logía

Probar $A \cap (B - A) = \emptyset$

Α	В	B-A	A∩(B-A)
1	1		
1	0		
0	1		
0	0		

Probar $A \cap (B - A) = \emptyset$

Α	В	B-A	<i>A</i> ∩(B- <i>A</i>)
1	1	0	
1	0	0	
0	1	1	
0	0	0	

Probar $A \cap (B - A) = \emptyset$

Α	В	B-A	<i>A</i> ∩(B- <i>A</i>)
1	1	0	0
1	0	0	0
0	1	1	0
0	0	0	0

Probar $A \cup (B - A) = A \cup B$

Probar $A \cup (B - A) = A \cup B$

A	В	B-A	<i>A</i> ∪(B- <i>A</i>)	$A \cup B$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	0	0	0

Probar $\overline{\overline{A} \cap (\overline{B} - A)} = \overline{\overline{A} \cap \overline{B}}$

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- Utilizar la notación de conjuntos y las equivalencias lógicas

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$\overline{A} = \{x \mid x \notin A\} \qquad \overline{A} = \{x \mid x \notin A\}$$

Probar
$$A \cap B = A \cup B$$

$$\overline{A \cap B} = ?$$

$$\underline{A \cap B} = \{x \mid x \in A \land x \in B\}$$

Probar
$$\overline{A \cap B} = \overline{A \cup B}$$

 $\overline{A \cap B} = \{x \mid x \notin A \cap B\}$

Probar
$$\overline{A \cap B} = \overline{A \cup B}$$

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

$$\overline{A \cap B} = \{x \mid \neg(x \in A \cap B)\}$$

$$\overline{A \cap B} = \{x \mid \neg(x \in A \land x \in B)\}$$

$$\overline{A \cap B} = \{x \mid \neg(x \in A \land x \in B)\}$$

$$\overline{A \cap B} = \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

$$\overline{A \cap B} = \{x \mid (x \notin A) \lor (x \notin B)\}$$

$$\overline{A \cap B} = \{x \mid (x \in \overline{A}) \lor (x \in \overline{B})\}$$

$$\overline{A \cap B} = \{x \mid (x \in \overline{A}) \lor (x \in \overline{B})\}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

$$\{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

Probar
$$\overline{A \cup (B \cap C)} = \overline{A \cap (B \cap C)}$$

$$\overline{A \cup (B \cap C)} = ? \{ x \mid x \in (A \cup (B \cap C)) \}$$

$$\{ x \mid x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

$$\{ x \mid (x \in A \cup (B \cap C)) \}$$

Probar
$$A \cup (B \cap C) = A \cap (B \cap C)$$

$$\overline{A \cup (B \cap C)} = \{x \mid x \notin (A \cup (B \cap C))\}$$

$$\overline{A \cup (B \cap C)} = \{x \mid \neg(x \in (A \cup (B \cap C)))\}$$

$$\overline{A \cup (B \cap C)} = \{x \mid \neg(x \in A) \lor (x \in (B \cap C))\}$$

$$\overline{A \cup (B \cap C)} = \{x \mid \neg(x \in A) \land \neg(x \in (B \cap C))\}$$

$$\overline{A \cup (B \cap C)} = \{x \mid (x \notin A) \land (x \notin (B \cap C))\}$$

$$\overline{A \cup (B \cap C)} = \{x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C}))\}$$

$$\overline{A \cup (B \cap C)} = \{x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C}))\}$$

$$\overline{A \cup (B \cap C)} = \{x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C}))\}$$

Probar
$$A \cap (B - A) = \emptyset$$

 $A \cap (B - A) = ?$

$$x \notin U \equiv x \in \emptyset$$

$$\uparrow(x \in U) \equiv x \in \emptyset$$

$$x \notin \emptyset \equiv x \in \emptyset$$

$$x \notin \emptyset \equiv x \in \emptyset$$

Probar
$$A \cap (B - A) = \emptyset$$

 $A \cap (B - A) = \{x \mid x \in (A \cap (B - A))\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land [x \in (B - A)]\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B \land x \notin A)\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B) \land (x \notin A)\}$
 $A \cap (B - A) = \{x \mid ((x \in A) \land (x \notin A)) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset)\}$
 $A \cap (B - A) = \emptyset$

Probar
$$\overline{A} \cap (\overline{B} - A) = \overline{A} \cap \overline{B}$$

 $\overline{A} \cap (\overline{B} - A) = ?$

Probar
$$A \cap (B - A) = \emptyset$$

 $\overline{A} \cap \overline{(B - A)} = \overline{A} \cap \overline{B}$

Probar
$$\overline{A} \cap (\overline{B} - \overline{A}) = \overline{A} \cap \overline{B}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \cap (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land x \in (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg x \in (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B} \land x \notin \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg x \notin \overline{A}\}\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg (\neg x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

Probar
$$A \cup (B - A) = A \cup B$$

 $A \cup (B - A) = ?$

Probar
$$A \cup (B - A) = A \cup B$$

 $A \cup (B - A) = \{ x \mid x \in (A \cup (B - A)) \}$
 $A \cup (B - A) = \{ x \mid (x \in A) \lor (x \in (B - A)) \}$
 $A \cup (B - A) = \{ x \mid (x \in A) \lor [(x \in B) \land (x \notin A)] \}$
 $A \cup (B - A) = \{ x \mid [(x \in A) \lor (x \in B)] \land [(x \in A) \lor (x \notin A)] \}$
 $A \cup (B - A) = \{ x \mid [(x \in A) \lor (x \in B)] \land (x \in U) \}$
 $A \cup (B - A) = \{ x \mid (x \in A) \lor (x \in B) \}$
 $A \cup (B - A) = A \cup B$

Uniones generalizadas e intercepciones

Unión
$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

Intercepción
$$A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i$$

Representación computacional de conjuntos

- Estas proveen las operaciones de unión, intercepción y resta entre conjuntos
- No se permiten elementos repetidos
- En Java se provee la clase Set<E>
 <u>https://docs.oracle.com/javase/7/docs/api/java/util/Set.</u>
 <u>html</u>
- En C++ se provee set http://www.cplusplus.com/reference/set/set/
- En Python se provee set <u>https://docs.python.org/2/library/sets.html</u>

Representación computacional de conjuntos

- Son muy útiles para resolver problemas que involucran conjuntos
- Internamente se manejan operaciones en representaciones de bits de los elementos de los conjuntos
- Las operaciones son más costosas computacional que los arreglos