Bachelor of Software Engineering - Game Programming

GD2P02 – Physics Programming

Introduction to Physics

Overview

- Introduction to Physics
- Terminology and Core Concepts
- Physics Engine Overview

Where are we today? Why physics?

Introduction to Physics

- Physics is a natural science.
 - Study the rules that govern the natural world...
 - Through scientific methods.
- Physics involves the study of matter and its motion through space and time.
 - Matter: A substance that has mass and volume.
 - Motion: A change in position with respect to time.
 - Space: 3D extent in which objects and events have position and direction
 - Time: A dimension in which events can be ordered.

- Some definitions to remember
 - Natural World: The phenomena of the physical world, ranging in scale from sub-atomic to cosmic!
 - Scientific Methods: The techniques for investigating phenomena.
 - Scientific inquiry: No theory can ever be considered completely certain since it always remains subject to falsification.
 - Empirical Evidence: Knowledge acquired by observation or experimentation.
 - Measurable Evidence: measurable results from replicable experiments: quantitative over qualitative
 - » Standardized measurement: SI system
 - » Fundamental units: kilogram, meter, candela, secono ampere, kelvin, mole...

- Some definitions to remember
 - Mass: A coherent, typically large body of matter with no definite shape.
 - Inertial Mass: A quantitative measure of an object's resistance to acceleration.
 - Volume: A quantity of three-dimensional space enclosed by a closed boundary.
 - Position: Spatial location of an entity or object.
 - Direction: Information regarding the relative position of a point with regards to another point.

- Balance, Force and Energy
 - Balance: State of rest
 - Force: An influence that causes an object to undergo a certain change.
 - Energy: The ability of a physics system to do work.
- Scientists study physics in order to understand how the universe behaves...
 - General analysis of nature!
- We, as game programmers, study physics to employ realistic gameplay.

- Physics programming is not easy...
 - Many different ways to solve problems!
 - Lots of "complicated" techniques...
 - For the same problem!
 - There is no one-size-fits-all approach!
 - Some solutions are very heavy on mathematics...
 - Patience!
 - Good to keep in mind: "Start simple"
- The First Law of Video Game Physics:
 - Reality is overrated.
 - Fake reality

Physics in Games

- Why use physics in a game?
 - Dynamic
 - Interactive
 - Responsive
 - Realistic
 - Life-like
 - Flexible
 - •
- Interesting and exciting effects!
 - Games can seem really alive with physics effects!

Physics in Games: Challenges

- Mathematics and Programming
 - Pencil and paper solutions...
 - Long and complicated methods...
 - The more you work at it… the better you will get!
- Computing Power
 - Simulation complexity...
 - Range of hardware: Mobile, Console, PC...
- Applications of fundamental principle
 - We will learn principles as the course progresses

Where is Physics Used in Games?

- Collisions
 - Resting
 - Dynamic
- Bridges
 - Springs
 - Cranks
 - Levers
- Joints
 - Hinges
 - Doors

Fig 1: Bridge Project (Chronic Logic, 2002-2009)

Where is Physics Used in Games?

- Animation
 - Ragdolls
 - Characters
 - Kinematic behaviour
- Car and Vehicles
 - Wheels
 - Bodies
 - Springs
- Hair
- Cloth
- Water

Fig 2: Truck Dismount (Jetro Lauha, 2003)

What is a Rigid Body?

- Rigid Body
 - Solid object of finite size which cannot deform.
 - The distance between two points on a rigid body will always remain constant regardless of any actions exerted on the body.
 - In the real world, do rigid bodies exist?
 - No... even though some matter seem rigid...
 - But we can assume they do for our simulations.
 - Unless things move near the speed of light...

Simulating Rigid Body Systems

Penalty Methods

- A class of algorithm for solving constrained optimisation problems:
 - Constraint: A condition to be satisfied towards a solution of the problem.
 - Optimisation: Selecting the best element from a set of available alternatives...
 - For example: Maximisation or Minimisation of a function!
- Springs and dampers
 - Lots of springs and forces are combined with dampers and limiting factors to achieve the desired effects and try to improve stability...

Simulating Rigid Body Systems continued...

Impulses

- Instantaneous velocity changes
 - Multiple iterations to settle and converge on a solution
 - Additional "tricks" to ensure stacks of objects settle...
 - Objects should use a restitution coefficient...
 - "Bounciness"
 - Bias can be added to penetration problems
 - Shock propagation

Simulating Rigid Body Systems continued...

Solvers

- Lagrange Methods
 - Global analytical analysis of a system to determine the exact forces to produce the desired effect
- Various methods:
 - Featherstone's method
 - Linear algebra methods

Speed vs Accuracy vs Reliability

- Make the technology work...
 - Before optimising!
 - Keep it simple!
 - Now is not the time to try "fancy" programming techniques!
- Make it stable...
 - Then try to speed it up...
- Use sanity checks...
 - Usual good programming techniques!
- Do not assume anything...
 - Use good debugging techniques!

Test Cases

- Create test scenarios to trial physics code...
- If we built a rigid body simulator:
 - Example test cases:
 - See-saws
 - Stacks of blocks
 - Objects on slopes
 - Resting objects
 - Interaction of objects of different shapes
 - Dealing with intersecting objects
 - Walls
 - Chains of objects
 - Etc...

- High-level view:
 - Collision Detection:
 - Broad to Narrow
 - Pairs of objects that are intersecting...
 - Clusters:
 - Islands
 - Groups of objects intersecting...
 - Solvers:
 - Work on a cluster to resolve collision response and constraints
 - Integrators:
 - Moving the system forward in time...
 - Discrete time-step.

- Core:
 - Soft bodies
 - Rigid bodies
 - Particles
 - Cloth, Hair, Fur...
- Solution:
 - Penalty
 - Springs
 - Impulses
 - Constraint Solvers
 - Iterative, Gaussian Elimination, Matrices...

- Movement:
 - Linear Motion
 - Angular Motion
- TimeStep:
 - Fixed (Frequency? 100hz, 30hz?)
 - Variable
- Integrators:
 - Euler
 - Midway
 - RK4
 - Verlet

- Goals:
 - Accuracy
 - Stability
 - Speed
- Shapes:
 - Points
 - Convex:
 - Spheres
 - Basic Shapes:
 - » Cubes, Capsules, Hexagons...
 - Concave:
 - Complex Methods...

- Enforcement:
 - Collisions:
 - Dynamic collisions
 - Static contacts
 - Constraints:
 - Contacts
 - Joints:
 - Angular
 - Linear
- Complexity:
 - Simple
 - Complex

- Problems:
 - Jitter
 - Stability
 - Handle Penetration
 - Stacking
 - Large number of active bodies...
- Lifetime of Objects:
 - Short
 - Long

- What about the target platform?
 - PC, Console, Mobile
 - CPU or GPU
 - Memory Usage
 - Architecture
 - Low Level Access
- No one-size-fits-all solution!

High Level Overview

Pseudo Code:

```
Gameloop
Setup()
while (!gameover)
    simPrePhysics();
    physicsEngine->Update();
    simPostPhysics();
    Render();
```


Preparation

- Need a basic renderer to...
 - DrawPoints(Vertices, Count, Colour)
 - DrawPolygon(Vertices, Count, Colour)
 - DrawCircle(Center, Radius, Color)
 - DrawDebugText(Text, Color)
 - SetOrtho(…)
 - Parallel Projection...

Summary

- Introduction to Physics
- Terminology and Core Concepts
- Physics Engine Overview

