

GANPAT UNIVERSITY

U. V. Patel College of Engineering

Practical:2

2CEIT6PE4: Data Science / Machine Learning

B.Tech Semester: VI

Computer Engineering/Information Technology

Enrolment No: 19012012009 Name: Priyank Bhavsar

Aim:

1. Understanding of Data Pre-processing for given dataset 1 using Spyder (Python)

Solution:

import pandas as pd
 import numpy as np
 df=pd.read_csv("dataset1.csv")

df.shape

```
In [5]: df.shape
Out[5]: (10, 4)
```

• df.info()

```
In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
    Column
               Non-Null Count Dtype
0
    Country
               10 non-null
                                object
               9 non-null
                                float64
    Salary
               9 non-null
                                float64
    Purchased 10 non-null
                                object
dtypes: float64(2), object(2)
memory usage: 448.0+ bytes
```

x =df.iloc[:,:-1].valuesy=df.iloc[:,-1].values

#simpleImputer to fill nan

#Mean

from sklearn.impute import SimpleImputer
 imputer = SimpleImputer(missing_values = np.nan,strategy='mean')
 imputer = imputer.fit(x[:,1:3])
 x[:,1:3] = imputer.transform(x[:,1:3])

#Most Frequent

from sklearn.impute import SimpleImputer
 imputer = SimpleImputer(missing_values = np.nan,strategy='most_frequent')
 imputer = imputer.fit(x[:,1:3])
 x[:,1:3] = imputer.transform(x[:,1:3])

#Median

• from sklearn.impute import SimpleImputer

```
imputer = SimpleImputer(missing_values = np.nan,strategy='median')
imputer = imputer.fit(x[:,1:3])
x[:,1:3] = imputer.transform(x[:,1:3])
```

#Constant

from sklearn.impute import SimpleImputer
 imputer = SimpleImputer(missing_values = np.nan,strategy=constant)
 imputer = imputer.fit(x[:,1:3])

x[:,1:3] = imputer.transform(x[:,1:3])

3. Understanding of categorical data.

Solution:

There are many ways to convert categorical values into numerical values. Each approach has its own trade-offs and impact on the feature set.

1)LabelEncoder

Label Encoding refers to converting the labels into numeric form so as to convert it into the machine-readable form. Machine learning algorithms can then decide in a better way on how those labels must be operated. It is an important pre-processing step for the structured dataset in supervised learning.

2)OnehotEncoder

Label Encoding refers to converting the labels into numeric form so as to convert it into the machine-readable form. Machine learning algorithms can then decide in a better way on how those labels must be operated. It is an important pre-processing step for the structured dataset in supervised learning.

3)CountVectorizer

CountVectorizer is used to convert a collection of text documents to a vector of term/token counts. It also enables the pre-processing of text data prior to generating the vector representation. This functionality makes it a highly flexible feature representation module for text.

4. Replace Country Attribute for given dataset 1 by fit_transform method

Solution:

#labelEncoder

• from sklearn.preprocessing import LabelEncoder

```
label\_x{=}LabelEncoder()
```

```
x[:,0]=label_x.fit_transform(x[:,0])
```

5. Replace categorical and numerical Attributes for given dataset 2 by OneHotEncoder Class.

Solution:

#OneHotEncoder

```
df1=pd.read_csv('dataset2.csv')

X=df1.iloc[:,:].values
from sklearn.preprocessing import LabelEncoder , OneHotEncoder
from sklearn.compose import ColumnTransformer

transform = ColumnTransformer([("Col 0",OneHotEncoder(),[0])], remainder = 'passthrough')

X = transform.fit_transform(X)

transform = ColumnTransformer([("Column 4
converted",OneHotEncoder(),[4])],remainder = 'passthrough')

X = transform.fit_transform(X)

transform =
ColumnTransformer([("Outlook_OL0_OL1",OneHotEncoder(),[6])],remainder = 'passthrough')

X = transform.fit_transform(X)
print(X.astype(int))
```

EXERCISE

• from sklearn.preprocessing import MinMaxScaler

```
sc_X = MinMaxScaler()
```

```
X_train = sc_X.fit_transform(X_train)
```

 $X_{test} = sc_X.transform(X_{test})$

X_train

```
array([[0.5] , 0.61904762, 0.50896057],
        [0. , 0.47619048, 0.61290323],
        [1. , 0. , 0. ],
        [1. , 0.56084656, 0.12903226],
        [0. , 1. ],
        [1. , 0.52380952, 0.41935484],
        [0. , 0.80952381, 0.77419355],
        [0. , 0.38095238, 0.32258065]])
```

X_test

• Calculate a feature scaling by using Standard Scaler and MinMax Scaler both Mathematically.

1> Min Max Scaler

Country	x-min(x)/max(x)-min(x)	
0	0	
2	1	
1	1/2	
2	1	
1	1/2	
0	0	
2	1	
0	0	
1	1/2	
0	0	
Age	x-min(x)/max(x)-min(x)	
44	0.739130435	

27	0
30	0.130434783
38	0.47826087
40	0.565217391
35	0.347826087
38.7778	0.512078261
48	0.913043478
50	1
37	0.434782609

Salary	x-min(x)/max(x)-min(x)		
72000	-0.314285714		
48000	-1		
54000	-0.828571429		
61000	-0.628571429		
63777.7778	-0.549206349		
58000	-0.714285714		
52000	-0.885714286		
79000	-0.114285714		
83000	0		
67000	-0.457142857		

2>Standard Scaler

Country	xi-x'	(xi-x')2	Value
0	-0.90000	0.81	-1.027872433
2	1.10000	1.21	1.256288529
1	0.10000	0.01	0.114208048
2	1.10000	1.21	1.256288529
1	0.10000	0.01	0.114208048
0	-0.90000	0.81	-1.027872433

2	1.10000	1.21	1.256288529
0	-0.90000	0.81	-1.027872433
1	0.10000	0.01	0.114208048
0	-0.90000	0.81	-1.027872433
Mean=	0.90		
		6.9	0.76666667
standard daviation	0.875595036		

Age	xi-x'	(xi-x')2		Value
44	5.22222	27.27158173		0.719625078
27	-11.77778	138.7161017		-1.623981499
30	-8.77778	77.04942173		-1.210403867
38	-0.77778	0.604941728		-0.107530184
40	1.22222	1.493821728		0.168188237
35	-3.77778	14.27162173		-0.521107815
38.7778	0.00002	4E-10		-0.00030329
48	9.22222	85.04934173		1.27106192
50	11.22222	125.9382217		1.546780341
37	-1.77778	3.160501728		-0.245389395
		473.555556	52.61728395	
Mean=	38.78			
standard daviation	7.25377722			

Salary1	xi-x'	(xi-x')2		Value
72000	-9777.77778	67604938.24		0.711012566
48000	-2777.77778	248938271.7		-1.364376026
54000	0.00002	95604938.32		-0.845528878
61000	-5777.77778	7716049.395		-0.240207205
63777.7778	0.77778	4E-10		-1.90244E-07
58000	-11777.77778	33382716.08		-0.499630779
52000	15222.22222	138716049.4		-1.018477927
79000	19222.22222	231716049.3		1.316334239
83000	3222.22222	369493827.1		1.662232338
67000	0.00002	10382716.04		0.278639943
		120355556	133728395.1	133728395.1
Mean=	63777.78			
standard daviation	11564.09941			