

Software Engineering Bachelor in Informatics Engineering, 2nd Course

Software Engineering

Course 2022-2023

Miguel Sánchez-Puebla Eduardo Cibrián Jose María Alvarez Rodríguez [Coordinator]

Overview

- Teachers
 - Jose María Alvarez (<u>josemaria.Alvarez@uc3m.es</u> COORDINATOR
 - Miguel Ángel Sánchez Puebla (<u>masrodri@inf.uc3m.es</u>)
 - Eduardo Cibrián (<u>ecibrian@inf.uc3m.es</u>)

Aula Global (web site)

"A practical course on software engineering (analysis and design)"

The course in context of other degree courses (SEBoK)

Course	PDD	IS	DPDS	TADS	DSIC	MDV
Type (semester)	OB-2-2	OB-3-1	OB-3-2	ES-3-2	ES-4-1	ES-4-1
Software Requirements	i	р	u	u	u	u
Software Design	i	р	u	u	u	р
Software Construction	р			р	р	р
Software Testing	р	u	u	р		р
Software Maintenance			р	р		
Software Configuration Management			р	р		
Software Engineering Management			р	р	р	
Software Engineering Process	i	i	р			
Software Engineering Models and Methods		р	u	u		р
Software Quality			р		р	u
Software Engineering Professional Practice	i		р			
Software Engineering Economics			р			
Computing Foundations						
Mathematical Foundations						
Engineering Foundations						

i = introduction; p = deepening; u = application & use

Objectives

- High-level analysis and design of software-based systems:
 - Requirements that must be satisfied by the system
 - Conceptual model (relevant domain knowledge and information)
 - Software architecture (structure and components of the system)
- We will learn to...
 - Write analysis and design specifications
 - Use standards for project documentations
 - Apply object-oriented techniques and requirements engineering
- General competences:
 - Abstraction and complex problem solving
 - Critical and reflective reading
 - Team working
 - Oral presentations
 - Error-based learning

Syllabus

- Block I. Requirements engineering
 - Unit 1. Introduction to requirements engineering
 - Unit 2. Elicitation, description and management of requirements
 - Unit 3. Properties, attributes and organization of requirements
 - Unit 4. Types of requirements
- Block II. Conceptual modeling with UML
 - Unit 5. Introduction to conceptual modeling
 - Unit 6. Conceptual modeling: classes and objects
 - Unit 7. Conceptual modeling: associations
 - Unit 8. Conceptual modeling: hierarchies
- Block III. Architectural modeling with UML
 - Unit 9. Introduction to architectural modeling
 - Unit 10. Architectural modeling: components
 - Unit 11. Architectural modeling: interfaces
 - Unit 12. Architectural modeling: design by contracts

Course schedule and contents (tentative)

Week	Reference	Unit and main milestones	
1	Thursday, September 8, 2022	Course introduction. Software Engineering Introduction.	
2	Thursday, September 15, 2022	Jnit 1. Introduction to requirements engineering.	
		Unit 2. Elicitation, description and management of requirements.	
3	Thursday, September 22, 2022	Teams created and project proposal.	
4	Thursday, September 29, 2022	Unit 3. Properties, attributes and organization of requirements. Unit 4. Types of requirements.	
5		Unit 5. Introduction to conceptual modeling.	
	Thursday, October 6, 2022	Unit 6. Conceptual modeling: classes and objects	
6*	Thursday, October 13, 2022	Mid-term exam-I: Requirements Engineering.	
		Unit 7. Conceptual modeling: associations.	
7 *	Thursday, October 20, 2022	1 st final project delivery. Presentation of the 1 st final project delivery.	
8	Thursday, October 27, 2022	Unit 8. Conceptual modeling: hierarchies.	
		Unit 9. Introduction to architectural modeling.	
9	Thursday, November 3, 2022	Unit 10. Architectural modeling: components	
10*	Thursday, November 10, 2022	Mid-term exam-II: Conceptual Modelling	
11	Thursday, November 17, 2022	Unit 11. Architectural modeling: interface	
12	Thursday, November 24, 2022	Unit 12. Architectural modeling: design by contract	
	·	Mid-term exam-III: Architectural Modelling.	
13	Thursday, December 1, 2022	2 nd final project delivery. Presentation of the 2 nd final project delivery.	
14*	Thursday, December 8, 2022	Question proposal preparation. Delivery of individual exercises.	
15	Thursday, December 15, 2022		

Practical Lectures

- Team: 4 members
- Two-phase work: requirements + models
- Activities:
 - Development and documentation of the project following the guidelines
 - Hours-counting method as a measurement of effort
 - In the beginning of the document
 - Send by email according to the templates for hours management
 - Mentoring sessions (attendance is not compulsory)
 - Teams can present their work to receive feedback and advise
 - Peer-review
 - Review reports following the guidelines
 - Oral presentations and project viva
 - Individual presentations (just a part)
 - Quality and clarity of responses to teachers' questions

Project statement 2022-2023

- Brainstorming for getting project ideas (one per team)
 - Once an idea is selected it will be published in AulaGlobal
- Building blocks to develop the project
 - Requirements that must be satisfied by the system
 - Conceptual model (relevant domain knowledge and information)
 - Software architecture (structure and components of the system)
- An essential part of the work lies on the proper definition of a domain vocabulary to define the system.

Deliverables

- Please pay attention to filenames and deadlines
- Two draft documents (v1 and v2)
 - E.g. ProjectSE-M05.doc: team M05, etc.
 - Submit via a task in Aulaglobal
- Final project (see guidelines):
 - Final document + presentations + hours
 - Reviews+responses+reviews sent to other teams
 - E.g. ProjectSE-M05.doc + etc.
 - Submit via a task in Aulaglobal
- Proposal of questions for the final exam.

Document Formatting

- Word, Times New Roman 12 or Arial 10, singled-spaced.
 - Two-sided printed
 - Optionally, PDF (read and copy permissions).
- Length (looking for quality, no quantity):
 - Each delivery is very much half part of the final document
 - Final extension: 30 pages (without annexes)
 - Penalty depending on the number of pages.

Team working and effort

- 45-60 hours/student are expected (and reasonable).
 - 1 hour lecture -> 1 hour of personal work
- Ratio between individual work and team work shall be 4/1 or 3/1.
 - Need of coordination to assign tasks
 - All team members with the same number of hours is suspicious (it is not part of the mark!)

Name	-	Т	TOTAL
Ana García	25	35	60
Juan Gómez	25	35	60
Isabel López	25	35	60
Pedro Fernández	25	35	60
TOTAL	100	140	240

Name	I	Т	TOTAL
Ana García	40	15	55
Juan Gómez	43	11	54
Isabel López	47	16	63
Pedro Fernández	50	18	68
TOTAL	180	60	240

BAD OK

Course Activities

Theory

- Attendance is not compulsory (no attendance control) but VERY recommendable
- Open discussion about relevant and hot topics
- Quick questions in Aulaglobal at the end of the lecture/unit
- Lectures are very relevant that's why their weight in the final mark

Lab sessions

Demonstration and learning of tools and exercises

Group mentoring

- Attendance is not compulsory
- The teacher can have a real measure of progress (and effort)
- Take advantage of these sessions to take the most of the teacher. Work hard (before).

Presentations/Reviews

- Attendance IS COMPULSORY TO ALL PRESENTATIONS*.
- For each team, two members will make the presentation and the others will answer questions
- Max. time: 10 min/team (presentation + Q&A).
- The official schedule is available at AulaGlobal

Building a "dynamic" and enriched learning experience

Assessment System (70% continuous + 30% final-in bold)

	Individual work (50%)	Team work (50%)
Theory (50%)	Mid-term exam-I (10%)	Question proposal (10%)
	Mid-term exam-II (10%)	
	Mid-term exam-III (10%)	
	1 minute quizzes (10%)	
Practice (50%)	Individual exercises (10%)	1st final project delivery (10%)
		2nd final project delivery (10%)
		Final project delivery (20%)

Theory is passed iif	Practice is passed iif
 All mid-term exams (mte-I, mte-II, mte-III) are >=4.5 and the average (mte-I, mte-II, mte-III) is >=5. Otherwise, you will go to the final exam with the pending parts (<=5). The final exam or a part of the final exam is passed <i>iif</i> the grade is >=5. 	 The final project delivery is >= 5. Otherwise, the final exam will include a part to evaluate the practice.

Bibliography

- Requirements Engineering
 - Eric Braude. Software Engineering. An Object-Oriented Perspective. John Wiley & Sons, 2001.
 - lan Sommerville. Ingeniería del Software. Pearson-Addison Wesley, 2005.
 - lan Sommerville & Pete Sawyer. Requirements Engineering: A Good Practice Guide. John Wiley & Sons. 1997.
 - Roger Pressman. Ingeniería del software: un enfoque práctico, 6ª ed. McGraw-Hill.
 - Ian F. Alexander & Richard Stevens. Writing better requirements. Addison-Wesley, 2002.
- UML Modelling
 - Martin Fowler, Kendall Scott. UML Distilled. A Brief Guide to the Standard Object Modeling Language. Addison-Wesley, 2004.
 - Jim Arlow, Ila Neustadt. UML and the Unified Process. Practical Object-Oriented Analysis & Design. Addison-Wesley, 2002.
 - Perdita Stevens, Rob Pooley. Using UML. Software Engineering with Objects and Components. Addison-Wesley, 2000.
 - Craig Larman. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and Design and the Unified Process. Prentice Hall. 1998.