Условия за колинеарност и компланарност на вектори чрез линейна зависимост

Определение 1 1. Казваме, че векторът v е *колинеарен* с правата l, и пишем $v \parallel l$, ако v има представител, лежащ на l.

Еквивалентна дефиниция е всеки представител на v да е успореден на l.

- 2. Казваме, че векторите v_1, \ldots, v_k са *колинеарни*, ако съществува права l, такава че v_1, \ldots, v_k са колинеарни с l. При два вектора пишем $v_1 \parallel v_2$.
- 3. Казваме, че векторът v е *компланарен* с равнината π , и пишем $v \parallel \pi$, ако v има представител, лежащ в π .

Еквивалентна дефиниция е всеки представител на v да е успореден на π .

4. Казваме, че векторите v_1, \ldots, v_k са *компланарни*, ако съществува равнина π , такава че v_1, \ldots, v_k са компланарни с π .

Забележка 1 Ако някакви вектори са колинеарни, то те очевидно са компланарни. Също така, ако към тях се добави какъвто и да е вектор, то получените вектори са компланарни.

Теорема 1 Нека $u\ u\ v$ са вектори $u\ u \neq 0$. Тогава $u\ u\ v$ са колинеарни \Leftrightarrow съществува $\lambda \in \mathbb{R}$, така че $v = \lambda u$.

Числото λ в това равенство е единствено.

Следствие 1 (условие за колинеарност на два вектора)

Два вектора са колинеарни \Leftrightarrow са линейно зависими.

Следствие 2 Векторите, колинеарни с дадена права, образуват едномерно реално линейно пространство.

Теорема 2 Нека u, v, w са вектори, като u u v не са колинеарни. Тогава u, v, w са компланарни \Leftrightarrow съществуват $\lambda, \mu \in \mathbb{R}$, така че $w = \lambda u + \mu v$.

Следствие 3 (условие за компланарност на три вектора)

Tри вектора са компланарни \Leftrightarrow са линейно зависими.

Следствие 4 Векторите, компланарни с дадена равнина, образуват двумерно реално линейно пространство.

Теорема 3 Нека u, v, w са некомпланарни вектори. Тогава за всеки вектор t съществуват единствени $\lambda, \mu, \nu \in \mathbb{R}$, така че $t = \lambda u + \mu v + \nu w$.

Следствие 5 Всеки четири вектора в пространството са линейно зависими.

Следствие 6 Векторите в пространството образуват тримерно реално линейно пространство.