CS4102 Algorithms

Nate Brunelle

Fall 2017

What is an algorithm?

- In mathematics and computer science, an algorithm is a self-contained sequence of actions to be performed. Algorithms can perform calculation, data processing and automated reasoning tasks. [wikipedia]
- Motivating example

Need an accurate approximation —

How much concrete do I need?

4.3km (2.7mi) diameter

 $\pi = 3.14159265359...$

Circumference = 2π

 $\pi = 3.14159265359...$

 2π > Perimeter = 6

$$\pi = 3.14159265359...$$
 ^{1 digit correct}

Solve for x

$$x = \frac{2}{\sqrt{3}}$$

$$\frac{12}{\sqrt{3}} = \text{Perimeter} > 2\pi > \text{Perimeter} = 6$$
$$3.46 > \pi > 3$$

 $\pi = 3.14159265359...$ 3 digits correct

$$6 + \frac{20}{70} = \frac{20}{3.14285} > \frac{2\pi}{70} > \frac{20}{71}$$

$$3.14285 > \pi > 3.14084$$

How to analyze this approach?

- How fast do we "converge"?
- How much work is needed to do better?

Better π Approximation (Ramanujan)

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! (1103 + 26390k)}{(k!)^4 396^{4k}}$$

$$\pi = 3.14159265358979323846264338327950288419716939$$

$$k = 0$$

 $\pi \approx 3.1415927$

8 digits per iteration!

$$k = 1$$

 $\pi \approx 3.1415926535897938$

Goals

- Create an awesome learning experience
- Instill enthusiasm for problem solving
- Give broad perspective on Computer Science
- Have fun!

Warning

- This will be a very difficult class
 - Hard material
 - "Holy Grail" of computer science
 - Useful in practice
 - Job Interviews

Lots of opportunities to succeed!

Hopefully not you...

- He is very reasonable in what he expects from students and makes the course appropriately hard and time consuming.
- The professor was extremely helpful both in and out of class and does not appear to give hard homework for the sake of defeating his students.
- The vast majority of the time he was able to explain the hard concepts effectively and made me more motivated and confident about the rigorous topics during the semester.
- The class is very difficult. It's not easy, but it's important material.
- The homework felt brutally difficult compared to the lecture and midterm, but was probably so for a reason.
- This class was the perfect balance of being true to the difficult course material but entirely fair
- The class was pretty difficult, but I felt like I was given more than enough resources to succeed (and do better than I actually did lol)
- He was also incredibly flexible with his assignments knowing full well that his assignments were incredibly difficult
- The homework was very difficult and I think a little too hard to get an A in
- GETTING AN A IN THIS CLASS IS HARDER THAN SNEAKING INTO THE BASE OF NSA WITH OR WITHOUT GETTING SHO

Fall 2017 Final Grade Distribution

Requirements

- Discrete Math (CS 2102)
- Data Structures (CS 2150)
- Derivatives (Calc I)
- Tenacity
- Inquisitiveness
- Creativity

Text

- No textbook required
- Highly recommended:

Cormen et al. (CLRS) Introduction to Algorithms.

Third Edition.

Polya. How to Solve It.

Homework

- ~10 assignments total
- Mix of written and programming assignments
- Written:
 - 2/3 of all assignments
 - Must be typeset in LaTeX (tutorial is HW0)
 - Submit as zip folder containing tex file and pdf
- Programming:
 - 1/3 of all assignments
 - Must implement in Python

Collaboration

- Encouraged!
- Groups of up to 6 per assignment
- List your collaborators
- Write-ups/code written independently
- Be able to explain any solution you submit!
- Open to change! Let's discuss!

Late Policy

- $grade = grade_{earned}e^{-\frac{1}{\phi}days}$
- Exponential decay
- Extra credit for the radioactive substance with half-life closest to your homework's
- Accepted until solutions posted

Exams

- Midterm
 - Est. Oct 12
 - Take home / in-class hybrid?
- Final
 - Registrar's official date/time
 - Saturday May 5 (2pm section)
 - Tuesday May 8 (3:30pm section)

Office Hours

- Mine
 - Rice 209
 - M/W 5pm-7pm
 - By appointment
- TA
 - TBD

Grade breakdown

- 60% homework
- 20% Midterm
- 20% Final
- 10% Extra Credit

Regrades

- Conducted in person
 - Thursday 4pm-6pm

Extra credit

- Given for extraordinary acts of engagement
 - Good questions/comments
 - Quality discussions
 - Problem solving session attendance
 - Analysis of current events
 - References to arts
 - Extra credit projects
 - Slide corrections
 - Etc. Just ask!

Feedback

- I am not a course dictator, I am a civil servant
- I'm open to any suggestion to help you learn
- Let me know!
 - In person
 - Email
 - @ProfNateB >
 - Anonymous feedback

Anonymous Feedback (Feedforward?)

- "god bless your soul"
- "Thank you for teaching Algo"

Enrollment

- 2pm section: will add 25 students off of waiting list
- 3:30pm section: room capacity is 100 students, I'm unable to enroll more than that many

Attendance

- How many people are here today?
- Naïve algorithm
 - 1. Everyone stand
 - 2. Nate walks around counting people
 - 3. When counted, sit down
- Run time?
 - Class of n students
 - O(n)
- Other suggestions?

Better Attendance

- 1. Everyone Stand
- 2. Initialize your "count" to 1
- Greet a neighbor who is standing: share your name, full date of birth(pause if odd one out)
- 4. If you are older: give "count" to younger and sit. Else if you are younger: add your "count" with older's
- 5. If you are standing and have a standing neighbor, go to 3