SI252 Reinforcement Learning

2025/04/03

Homework 4

Professor: Ziyu Shao Due: 2025/04/20 11:59pm

• Part I: Analysis of Bandit Algorithms

- (1) Reproduce the proof for Regret Decomposition Lemma
- (2) Given k actions, we define a preference function $H(\cdot): \{1, \ldots, k\} \to \mathcal{R}$. Then for actions $x \in \{1, \ldots, k\}$ and $y \in \{1, \ldots, k\}$, we define a soft-max function

$$\pi(x) = \frac{e^{H(x)}}{\sum_{y=1}^{k} e^{H(y)}}.$$

Please show the following result: for any action $a \in \{1, ..., k\}$, we have

$$\frac{\partial \pi(x)}{\partial H(a)} = \pi(x) \left(1_{\{x=a\}} - \pi(a) \right),\,$$

where 1_A is an index function of events, being 1 when event A is true and being 0 otherwise.

- (3) Reproduce the proof for gradient bandit algorithm.
- (4) (Bonus): show the proof for the regret upper bound of UCB1 algorithm
- (5) (Bonus): show the proof for the regret upper bound of Thompson sampling algorithm (Beta-Bernoulli bandit only)

• Part II: Performance Evaluation of Classical Bandit Algorithms

You are required to use the Jupyter Notebook (Formerly known as the IPython Notebook) to submit your work.

• Basic Setting

We consider a time-slotted bandit system (t = 0, 1, 2, ...) with three arms. We denote the arm set as $\{1, 2, 3\}$. Pulling each arm j $(j \in \{1, 2, 3\})$ will obtain a reward r_j , which satisfies a Bernoulli distribution with mean θ_j (Bern (θ_j)), *i.e.*,

$$r_j = \begin{cases} 1, & w.p. \ \theta_j, \\ 0, & w.p. \ 1 - \theta_j, \end{cases}$$

where θ_j are parameters within (0,1) for $j \in \{1,2,3\}$.

Now we run this bandit system for N ($N \gg 3$) time slots. At each time slot t, we choose one and only one arm from these three arms, which we denote as $I(t) \in \{1, 2, 3\}$. Then we pull the arm I(t) and obtain a reward $r_{I(t)}$. Our objective is to find an optimal policy to choose an arm I(t) at each time slot t such that the expectation of the aggregated reward is maximized, i.e.,

$$\max_{I(t),t=1,\dots,N} \mathbb{E}\left[\sum_{t=1}^{N} r_{I(t)}\right].$$

If we know the values of θ_j , $j \in \{1, 2, 3\}$, this problem is trivial. Since $r_{I(t)} \sim \text{Bern}(\theta_{I(t)})$,

$$\mathbb{E}\left[\sum_{t=1}^{N} r_{I(t)}\right] = \sum_{t=1}^{N} \mathbb{E}[r_{I(t)}] = \sum_{t=1}^{N} \theta_{I(t)}.$$

Let $I(t) = I^* = \underset{j \in \{1,2,3\}}{\operatorname{arg max}} \ \theta_j \text{ for } t = 1, 2, \dots, N, \text{ then}$

$$\max_{I(t),t=1,\dots,N} \mathbb{E}\left[\sum_{t=1}^{N} r_{I(t)}\right] = N \cdot \theta_{I^*}.$$

However, in reality, we do not know the values of $\theta_j, j \in \{1, 2, 3\}$. We need to estimate the values θ_i via empirical samples, and then make the decisions at each time slot.

Next we introduce three classical bandit algorithms: ϵ -greedy, UCB and Thompson sampling.

• Bandit Algorithms

1. ϵ -greedy Algorithm $(0 \le \epsilon \le 1)$

Algorithm 1 ϵ -greedy Algorithm

Initialize $\hat{\theta}(j) = 0$, count $(j) = 0, j \in \{1, 2, 3\}$

1: **for**
$$t = 1, 2 \dots, N$$
 do

2:

$$I(t) \leftarrow \begin{cases} \underset{j \in \{1,2,3\}}{\arg\max} \ \hat{\theta}(j) & w.p. \ 1 - \epsilon \\ \\ \text{randomly chosen from} \{1,2,3\} & w.p. \ \epsilon \end{cases}$$

3:
$$\operatorname{count}(I(t)) \leftarrow \operatorname{count}(I(t)) + 1$$

4:
$$\hat{\theta}(I(t)) \leftarrow \hat{\theta}(I(t)) + \frac{1}{\text{count}(I(t))} \left[r_{I(t)} - \hat{\theta}(I(t)) \right]$$

5: end for

2. UCB (Upper Confidence Bound) Algorithm

Algorithm 2 UCB Algorithm

- 1: **for** t = 1, 2, 3 **do**
- 2: $I(t) \leftarrow t$
- 3: $\operatorname{count}(I(t)) \leftarrow 1$
- 4: $\hat{\theta}(I(t)) \leftarrow r_{I(t)}$
- 5: end for
- 6: **for** t = 4, ..., N **do**

7.

$$I(t) \leftarrow \underset{j \in \{1,2,3\}}{\operatorname{arg\,max}} \left(\hat{\theta}(j) + c \cdot \sqrt{\frac{2 \log t}{\operatorname{count}(j)}} \right)$$

- 8: $\operatorname{count}(I(t)) \leftarrow \operatorname{count}(I(t)) + 1$
- 9: $\hat{\theta}(I(t)) \leftarrow \hat{\theta}(I(t)) + \frac{1}{\operatorname{count}(I(t))} \left[r_{I(t)} \hat{\theta}(I(t)) \right]$
- 10: end for

Note: c is a positive constant with a default value of 1.

3. Thompson sampling (TS) Algorithm

Recall that $\theta_j, j \in \{1, 2, 3\}$, are unknown parameters over (0, 1). From the Bayesian perspective, we assume their priors are Beta distributions with given parameters (α_j, β_j) .

Algorithm 3 Thompson sampling Algorithm

Initialize Beta parameter $(\alpha_j, \beta_j), j \in \{1, 2, 3\}$

- 1: **for** $t = 1, 2 \dots, N$ **do**
- 2: # Sample model
- 3: **for** $j \in \{1, 2, 3\}$ **do**
- 4: Sample $\theta(j) \sim \text{Beta}(\alpha_i, \beta_i)$
- 5: end for
- 6: # Select and pull the arm

$$I(t) \leftarrow \underset{j \in \{1,2,3\}}{\operatorname{arg max}} \hat{\theta}(j)$$

7: # Update the distribution

$$\alpha_{I(t)} \leftarrow \alpha_{I(t)} + r_{I(t)}$$

$$\beta_{I(t)} \leftarrow \beta_{I(t)} + 1 - r_{I(t)}$$

8: end for

• Simulation

(1) Now suppose we obtain the Bernoulli distribution parameters from an oracle, which are shown in the following table below. Choose N = 10000 and compute the theoretically maximized expectation of aggregate rewards over N time slots. We call it the oracle value. Note that these parameters θ_j , j = 1, 2, 3 and oracle values are unknown to all bandit algorithms.

$\overline{\text{Arm } j}$	1	2	3
θ_{j}	0.9	0.8	0.7

- (2) Implement classical bandit algorithms with following settings:
 - -N = 5000
 - ϵ -greedy with $\epsilon = 0.1, 0.5, 0.9$.
 - UCB with c = 1, 5, 10.
 - Thompson Sampling with $\{(\alpha_1, \beta_1) = (1, 1), (\alpha_2, \beta_2) = (1, 1), (\alpha_3, \beta_3) = (1, 1)\}$ and
 - $\{(\alpha_1, \beta_1) = (601, 401), (\alpha_2, \beta_2) = (401, 601), (\alpha_3, \beta_3) = (2, 3)\}$
 - Gradient bandit with baseline b = 0, 0.8, 5, 20.
 - Parameterized gradient bandit with constant parameter $\beta = 0.2, 1, 2, 5$
 - Parameterized gradient bandit with time-varying parameters (you need to design a time-varying rule)
- (3) Each experiment lasts for N = 5000 turns, and we run each experiment 1000 times. Results are averaged over these 1000 independent runs.
- (4) Please report three performance metrics
 - The total regret accumulated over the experiment.
 - The regret as a function of time.
 - The percentage of plays in which the optimal arm is pulled.
- (5) Compute the gaps between the algorithm outputs and the oracle value. Compare the numerical results of ϵ -greedy, UCB, Thompson Sampling and gradient bandit. Which one is the best? Then discuss the impacts of ϵ , C, and α_j , β_j , b, and β respectively.
- (6) What is the role of baseline in gradient bandit algorithm? Show your answer with simulation result.
- (7) Give your understanding of the exploration-exploitation trade-off in bandit algorithms.
- (8) Give your understanding of the adoption of sublinear regret as the performance threshold between good bandit algorithms and bad bandit algorithms.

• Part III: Design for Modern Bandit Algorithms

Read papers from the selective reading list, then

- (1) design a UCB style algorithm for graph bandits in the format of pseudocode, and explain how you utilize the additional structure information.
- (2) design a UCB style algorithm for dueling bandits in the format of pseudocode, and explain how you utilize the additional structure information.
- (3) design a UCB style algorithm for combinatorial bandits in the format of pseudocode, and explain how you utilize the additional structure information.
- (4) design a UCB style algorithm for neural bandits in the format of pseudocode, and explain how you utilize the additional structure information.