Rešitve nalog: Sistemi linearnih enačb

1. (a) Npr.
$$\{(-7,1,2)\}$$

(c) Npr.
$$\{(1,0,1,0,0),(0,1,2,0,0)\}$$

(b) Npr.
$$\{(1,0,-1,0),(0,1,0,-1)\}$$

2. (a)
$$(1,2,-2) + (0,0,0)$$

(c)
$$(-8,0,0,-3) + t(0,1,2,1), t \in \mathbb{R}$$

(b) Ni rešitve.

3.
$$a = 5$$
, $(x, y, z, u) = (1, 0, -1, 0) + s(-1, 3, 5, 0) + t(-6, -7, 0, 5)$, $s, t \in \mathbb{R}$

4. • Če je
$$a \notin \{0, -2\}$$
, je rešitev $(x, y, z) = (0, 0, 0)$.

• Če je
$$a=0$$
, je rešitev $(x,y,z)=z$ $(3,2,1); z\in\mathbb{R}.$

• Če je
$$a=-2$$
, je rešitev $(x,y,z)=x$ $(1,0,1); x\in\mathbb{R}$.

5. • Če je
$$\lambda \notin \{0,7\}$$
, je rešitev $(x, y, z, u) = (0, 0, 0, 0)$.

• Če je
$$\lambda = 0$$
, je rešitev $(x, y, z, u) = (0, 0, 0, u); u \in \mathbb{R}$.

• Če je
$$\lambda = 7$$
, je rešitev $(x, y, z, u) = y(-2, 1, 0, 0) + u(-7, 0, 0, 1); y, u \in \mathbb{R}$.

6. • Če
$$\lambda = 0$$
: ni rešitve.

• Če
$$\lambda \neq 0$$
: $x_n = \frac{n+1}{2\lambda}$ in $x_i = \frac{i-n}{2}$ za $i = 1, \dots, n-1$.

7. Sistem je enolično rešljiv, če velja
$$\lambda \neq 0$$
 in $|\lambda| \neq \sqrt{\sum_{j=1}^n a_j^2}$. V tem primeru je rešitev $x_{n+1} = \frac{\lambda b_{n+1} - \sum_{j=1}^n a_j b_j}{\lambda^2 - \sum_{j=1}^n a_j^2}$, $x_i = \frac{b_i}{\lambda} - \frac{a_i \left(\lambda b_{n+1} - \sum_{j=1}^n a_j b_j\right)}{\lambda \left(\lambda^2 - \sum_{j=1}^n a_j^2\right)}$ za $i = 1, \ldots, n$.

8.

9. Npr.
$$\begin{array}{rcl} -14x + 2y + 10z + 16u - 6v & = & 0 \\ -14x + 4y - 8z - 11u + 4v & = & 0 \end{array}$$