Linguagens regulares:

```
\mathcal{L}_1 = \{w \in \Sigma^* = \{0,1\}^* \mid \ |w| \geqslant 4 \text{ e o segundo e o penúltimo símbolos de } w \text{ são, ambos, } 1\}.
            Base: 0110, 0111, 1110, 1111 \in \mathcal{L}_1.
     Recursão: Se u = a1v1b \in \mathcal{L}_1, com a, b \in \Sigma e v \in \Sigma^*, então a10v1b, a11v1b \in \mathcal{L}_1.
          Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_1 se pode ser obtida a partir das cadeias
                       básicas, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_2 = \{ w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ \'e par e } w \text{ cont\'em pelo menos um s\'embolo } 0 \}.
            Base: 00, 01, 10 \in \mathcal{L}_2.
     Recursão: Se u \in \mathcal{L}_2, então 0u0, 0u1, 1u0, 1u1 \in \mathcal{L}_2.
          Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_2 se pode ser obtida a partir das cadeias
                       básicas, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_3 = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não termina com a subcadeia } 0011 \}.
            Base : \varepsilon \in \mathcal{L}_3.
     Recursão: Se u \in \mathcal{L}_3, então u0 \in \mathcal{L}_3. Se u \neq v001, v \in \Sigma^*, então u1 \in \mathcal{L}_3.
           Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_3 se pode ser obtida a partir da cadeia
                       básica, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_4 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ termina com } 101 \text{ e contém } 100 \}.
\mathcal{L}_5 = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \neq 2 \}.
            Base : \varepsilon \in \mathcal{L}_5.
     Recursão: Seja u \in \mathcal{L}_5. Se |u| = 1, então u00, u01, u10, 11 \in \mathcal{L}_5; caso contrário,
                       u0, u1 \in \mathcal{L}_5.
          Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_5 se pode ser obtida a partir da cadeia
                       básica, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_6 = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não começa com } 000 \text{ e não termina com } 111 \}.
            Base : \varepsilon \in \mathcal{L}_6.
     Recursão: Seja u \in \mathcal{L}_6. Se (i) u = 00v, v \in \Sigma^*, então 1u \in \mathcal{L}_6; (ii) u = v11, v \in \Sigma^*,
                       então u0 \in \mathcal{L}_6; (iii) caso contrário, 0u, u0, 1u, u1 \in \mathcal{L}_6.
          Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_6 se pode ser obtida a partir da cadeia
                       básica, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_7 = \{w \in \Sigma^* = \{0,1\}^* \mid |w| > 0 \text{ e o primeiro e o penúltimo símbolos de } w \text{ são idênticos}\}.
            Base: 00, 01, 10, 11 \in \mathcal{L}_7.
     Recursão: Se u = avab \in \mathcal{L}_7, com a, b \in \Sigma e v \in \Sigma^*, então au \in \mathcal{L}_7 e (i) se a = b,
                       então ua \in \mathcal{L}_7; (ii) se a \neq b, então bua \in \mathcal{L}_7.
          Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_7 se pode ser obtida a partir da cadeia
                       básica, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_8 = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e impar e } w \text{ começa com } 0 \text{ e termina com } 1 \}.
            Base: 001, 011 \in \mathcal{L}_8.
     Recursão: Se u \in \mathcal{L}_8, então 00u, 01u, 0u1, u01, u11 \in \mathcal{L}_8.
          Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_8 se pode ser obtida a partir das cadeias
                       básicas, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_9 = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém no máximo 4 ocorrências do símbolo 0} \}.
```


Base : $\varepsilon \in \mathcal{L}_9$.

Recursão: Seja $u \in \mathcal{L}_9$. Se $|u|_0 = 4$, então $1u, u1 \in \mathcal{L}_9$; caso contrário, $0u, u0, 1u, u1 \in$

 \mathcal{L}_9 .

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_9$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{10} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ começa com } 0 \text{ e contém quantidade ímpar de 1's} \}.$

Base: $01 \in \mathcal{L}$.

Recursão: Se $u \in \mathcal{L}$, então $0u, u0, 011u, 01u1, u11 \in \mathcal{L}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{10}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{11} = \{ w \in \Sigma^* = \{0, 1\}^* \mid \text{ todo símbolo } 0 \text{ em } w \text{ é seguido de pelo menos dois 1's consecutivos, exceto a última ocorrência de 0 em } w \}.$

 $\mathcal{L}_{12} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ começa com } 0, \text{ não contém } 10 \text{ e termina com } 1 \}.$

Base : $01 \in \mathcal{L}_{12}$.

Recursão : Se $u \in \mathcal{L}_{12}$, então $0u, u1 \in \mathcal{L}_{12}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{12}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{13} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = xyz \in |x| = 2 \}.$

 $\mathcal{L}_{14} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e impar e } w \text{ termina com } 1 \}.$

Base : $1 \in \mathcal{L}_{14}$.

Recursão: Se $u \in \mathcal{L}_{14}$, então 00u, 01u, 10u, $11u \in \mathcal{L}_{14}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{14}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{15} = \{w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ contém quantidade par de 0's ou ímpar de 1's (ou ambos)}\}.$

Base : ε , 1, 01, 10 $\in \mathcal{L}_{15}$.

Recursão: Se $u \in \mathcal{L}_{15}$, então $u00, u11 \in \mathcal{L}_{15}$. Se |u| é par, então $u01, u10 \in \mathcal{L}_{15}$. Se |u| é impar, então $u0, u1 \in \mathcal{L}_{15}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{15}$ se pode ser obtida a partir das cadeias básicas, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{16} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ termina com um } 0 \text{ seguido de uma quantidade ímpar de 1's}\}.$

 $\mathcal{L}_{17} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w|_0 \text{ \'e par e todos os 0's antecedem todos os 1's} \}.$

Base : $\varepsilon \in \mathcal{L}_{17}$.

Recursão : Se $u \in \mathcal{L}_{17}$, então $00u, u1 \in \mathcal{L}_{17}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{17}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{18} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém quantidade par de 01's e impar de 0's} \}.$

Base: $0 \in \mathcal{L}_{18}$.

Recursão: Se $u \in \mathcal{L}_{18}$, então $u00, 00u, 0u0, u0101, 0101u, 01u01 \in \mathcal{L}_{18}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{18}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{19} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ começa com } 0 \text{ e contém } 00 \}.$

Base : $00 \in \mathcal{L}_{19}$.

Recursão: Se $u \in \mathcal{L}_{19}$, então $u0, u1 \in \mathcal{L}_{19}$. Se u = 0v00w, com $v, w \in \Sigma^*$, então

 $0v000w, 0v100w \in \mathcal{L}_{19}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{19}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{20} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ não contém 01 como prefixo} \}.$

Base : $\varepsilon \in \mathcal{L}_{20}$.

Recursão: Seja $u \in \mathcal{L}_{20}$. Se u = 0, então $u0 \in \mathcal{L}_{20}$; caso contrário, $u0, u1 \in \mathcal{L}_{20}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{20}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{21} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_1 \text{ é par e } w \text{ não contém a subcadeia } 11 \}.$

 $\mathcal{L}_{22} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não contém três símbolos idênticos consecutivos} \}.$

Base : $\varepsilon \in \mathcal{L}_{22}$.

Recursão: Se $u \in \mathcal{L}_{22}$. Se u = 00v, $v \in \Sigma^*$, então $1u \in \mathcal{L}_{22}$; se u = 11v, $v \in \Sigma^*$, então $0u \in \mathcal{L}_{22}$; caso contrário, 0u, $1u \in \mathcal{L}_{22}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{22}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{23} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ contém o mesmo símbolo em todas as posições pares} \}.$

Base: $0, 1, 00, 01, 10, 11 \in \mathcal{L}_{23}$.

Recursão: Seja $u \in \mathcal{L}_{23}$. Se |u| é împar: se u = 0v, $v \in \Sigma^*$, então $u00, u10 \in \mathcal{L}_{23}$; senão $u01, u11 \in \mathcal{L}_{23}$. Se |u| é par: se u = 0v, $v \in \Sigma^*$, então $u00, u01 \in \mathcal{L}_{23}$; senão $u10, u11 \in \mathcal{L}_{23}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{23}$ se pode ser obtida a partir das cadeias básicas, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{24} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_{01} = |w|_{10} \}.$

 $\mathcal{L}_{25} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e m\'ultiplo de 3} \}.$

Base : $\varepsilon \in \mathcal{L}_{25}$.

Recursão: Se $u \in \mathcal{L}_{25}$, então $000u, 001u, 010u, 011u, 100u, 101u, 111u, 111u \in \mathcal{L}_{25}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{25}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{26} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e uma sequência de subcadeias 01 ou 10} \}.$

 $\mathcal{L}_{27} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ \'e impar e } w \text{ cont\'em pelo menos uma ocorr\^encia do s\'embolo } 1\}.$

Base: $1 \in \mathcal{L}_{27}$.

Recursão: Se $u \in \mathcal{L}_{27}$, então $0u0, 0u1, 1u0, 1u1 \in \mathcal{L}_{27}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{27}$ se pode ser obtida a partir da cadeia básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{28} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ contém } 00 \text{ e não contém } 11 \}.$

Base : $00 \in \mathcal{L}_{28}$.

Recursão: Se $u \in \mathcal{L}_{28}$, então $0u, u0 \in \mathcal{L}_{28}$; se $u = 0v, v \in \Sigma^+$, então $1u \in \mathcal{L}_{28}$; e se $u = v0, v \in \Sigma^+$, então $u1 \in \mathcal{L}_{28}$.

```
Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_{28} se pode ser obtida a partir da cadeia
                         básica, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_{29} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém pelo menos um } 0 \text{ e contém quantidade par de 1's} \}.
             Base: 0 \in \mathcal{L}.
      Recursão : Se u \in \mathcal{L}, então 0u, u0, 11u, u11, 1u1 \in \mathcal{L}.
            Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_{29} se pode ser obtida a partir da cadeia
                         básica, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_{30} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| \text{ \'e m\'ultiplo de 3 e } w \text{ termina com 11} \}.
             Base: 011, 111 \in \mathcal{L}_{30}.
      Recursão: Se u \in \mathcal{L}_{30}, então 000u, 001u, 010u, 011u, 100u, 101u, 111u, 111u \in \mathcal{L}_{30}.
            Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_{30} se pode ser obtida a partir das cadeias
                         básicas, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_{31} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ não contém a subcadeia 00 ou a subcadeia 11}\}.
\mathcal{L}_{32} = \{w \in \Sigma^* = \{0,1\}^* \mid \text{ todo par de 0's adjacentes ocorre antes de qualquer par de 1's adjacentes}\}.
\mathcal{L}_{33} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ não começa com } 00 \text{ e não termina com } 11 \}.
\mathcal{L}_{34} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ não contém pares de 1's consecutivos} \}.
             Base : \varepsilon, 1 \in \mathcal{L}_{34}.
      Recursão : Se u \in \mathcal{L}_{34}, então u0, u01 \in \mathcal{L}_{34}.
            Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_{34} se pode ser obtida a partir das cadeias
                         básicas, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_{35} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ termina com } 0 \text{ ou com } 11 \}.
               Base: 0, 11 \in \mathcal{L}_{35}.
        Recursão: Se u \in \mathcal{L}_{35}, então 0u, 1u \in \mathcal{L}_{35}.
             Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_{35} se pode ser obtida a partir das cadeias
                         básicas, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_{36} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém quantidade par de 0's seguida de quantidade ímpar de 1's}\}.
\mathcal{L}_{37} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ começa com } 0, \text{ contém exatamente dois 1's e termina com } 00\}.
\mathcal{L}_{38} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0u1 \text{ ou } w = 1u0, \text{ com } u \in \Sigma^* \}.
\mathcal{L}_{39} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém um número ímpar de ocorrências de } 01 \}.
             Base: 01 \in \mathcal{L}_{39}.
      Recursão: Seja u \in \mathcal{L}_{39}. Se u = 0v, v \in \Sigma^+, 0u, 1u \in \mathcal{L}_{39}; se u = 1v, v \in \Sigma^+,
                         1u, 0u01, 010u \in \mathcal{L}_{39}; se u = v0, v \in \Sigma^+, u0, 01u1, u101 \in \mathcal{L}_{39}; se u = v1, v \in \Sigma^+
                         v \in \Sigma^+, u0, u1 \in \mathcal{L}_{39}.
            Fecho: Dada uma cadeia u \in \Sigma^*, u \in \mathcal{L}_{39} se pode ser obtida a partir da cadeia
                         básica, com a aplicação das regras recursivas um número finito de vezes.
\mathcal{L}_{40} = \{ w \in \Sigma^* = \{0, 1\}^* \mid 0^n, n \in \mathbb{N}, e \ n \text{ \'e m\'ultiplo de 2 ou de 3} \}.
\mathcal{L}_{41} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ \'e um n\'umero bin\'ario maior que zero e m\'ultiplo de 3} \}.
             Base: 11,1001 \in \mathcal{L}_{41}.
```

Recursão: Se $u \in \mathcal{L}_{41}$, então $u0, u11, u1001 \in \mathcal{L}_{41}$. Se $u = v01, v \in \Sigma^+, v101, v0001 \in \mathcal{L}_{41}$

 \mathcal{L}_{41} ; se $u = v11, v \in \Sigma^+, v011 \in \mathcal{L}_{41}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{41}$ se pode ser obtida a partir da cadeia

básica, com a aplicação das regras recursivas um número finito de vezes.

 $\mathcal{L}_{42} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ \'e n\'umero bin\'ario, n\~ao negativo, divisível por 4 (sem 0's iniciais redundantes)} \}.$

 $\mathcal{L}_{43} = \{ w \in \Sigma^* = \{0, 1\}^* \mid \text{ toda subcadeia de } w \text{ de comprimento 4 contém exatamente um 1} \}.$

 $\mathcal{L}_{44} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \text{ é par } e |w|_1 \text{ é par.}$

 $\mathcal{L}_{45} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \text{ \'e par e } |w|_1 \text{ \'e impar.}$

 $\mathcal{L}_{46} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \text{ é par } e |w|_1 \text{ é divisível por } 3 \}.$

 $\mathcal{L}_{47} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \text{ \'e impar e } w \text{ começa com 1s.}$

Base: $1 \in \mathcal{L}_{47}$.

Recursão: Se $u \in \mathcal{L}_{47}$, então $u00, u01, u10, u11 \in \mathcal{L}_{47}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{47}$ se pode ser obtida a partir da cadeia básica, com a aplicação da regra recursiva um número finito de vezes.

 $\mathcal{L}_{48} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0u \text{ e } |w| \text{ \'e impar ou } w = 1u \text{ e } |w| \text{ \'e par, com } u \in \Sigma^* \}.$

 $\mathcal{L}_{49} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ termina com } 010 \text{ e contém } 011 \}.$

 $\mathcal{L}_{50} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 1u1, \text{ com } u \in \Sigma^*, \text{ e } w \text{ não contém } 11 \text{ e } 000 \}.$

 $\mathcal{L}_{51} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^{3n+5}, \ n \geqslant 0 \}.$

Base: $00000 \in \mathcal{L}$.

Recursão: Se $u \in \mathcal{L}_{51}$, então $000u \in \mathcal{L}_{51}$.

Fecho: Dada uma cadeia $u \in \Sigma^*$, $u \in \mathcal{L}_{51}$ se pode ser obtida a partir da cadeia básica, com a aplicação da regra recursiva um número finito de vezes.