Math 113 — Problem Set 11 — William Guss

(P189. 1) We will see later that the multiplicative group of nonzero elements of a finite field is cyclic. Find a generator for this group for the finite field \mathbb{Z}_7 .

Proof. The multiplicitive group of nonzero elements of \mathbb{Z}_7 is $G = \langle \{1, \dots, 6\}, \cdot_7 \rangle$. If an element a generates G for every coprime of 6, (there must be 6 elements) Then a^5 must also generate the group. Thus the generators are $\{5\}$ and by $\{3\}$ because

$$\begin{split} [5^n]_{n=0}^{20} &= [1,5,4,6,2,3,1,5,4,6,2,3,1,5,4,6,2,3,1,5] \\ [3^n]_{n=0}^{20} &= [1,3,2,6,4,5,1,3,2,6,4,5,1,3,2,6,4,5,1,3] \end{split}$$

(P189. 4) Using Fermat's theorem compute the remainder of 3⁴⁷ when it is divided by 23.

Proof. Although a is not divisible by 23, Fermat's theorem says that if 3 is not divisible by 23, then $3^{22}=1 \mod 23$. Thus $3^{22\times 2+3}=3^{22}\times 3^{22}\times 3^3 \mod 23=1\times 1\times 3^3 \mod 23$. Computing $3^3=27=4 \mod 23$ we get $3^{47}=4 \mod 23$.

1