CS332 Mod02 HW3

1. (10 pts) Let $\Sigma = \{a, b\}$. Draw the FSM, M, for L = $(aba)^* + (bab)^*$

2. (6 pts) Represent M as the 5-tuple M = {Q, Σ , q_0 , F, δ }.

$$\begin{split} M &= \{\;Q\;, \Sigma\;, q_0\,, F\;, \delta\;\}\\ Q &= \{\;q_0\,, q_1\,, q_2\,, q_3\,, q_4\,, q_5\,, q_6\,, q_7\;\;\}\\ \Sigma &= \{\;a\;, b\;\}\\ q_0 &= q_0\\ F &= \{\;q_0\,, q_4\,, q_7\;\}\\ \delta &= \end{split}$$

	a	b
0	1	b 5 2 2 2 2
1	2	3
2	2 2 4	2
3	4	2
4	1	2
5	6	2
1 2 3 4 5 6 7	6 2 2	7
7	2	5

3. (3 pts) List the states that are visited when the string u = abaaba is processed. Is the string accepted or rejected?

$$u \rightarrow q_0, q_1, q_3, q_4, q_1, q_3, q_4$$

The string is accepted.

4. (3 pts) List the state that are visited when the string v = baba is processed. Is the string accepted or rejected?

$$v \rightarrow q_0, q_5, q_6, q_7, q_2$$

The string is rejected.

5. (8 pts) There are four things wrong with the following 5-tuple for some machine, M. What are they?

$$Q = \{ q_0, q_1, q_2, q_3, q_4, q_5 \}$$

$$\Sigma = \{ a, b \}$$

$$q_0 = q_7$$

$$F = q_4$$

$$\delta =$$

- q_7 doesn't exist in Q so the statement $q_0 = q_7$ must be an error.
- $F = q_4$ is incorrect notation and should be $F = \{q_4\}$
- $\delta(b, q_4) = \text{``n/a''}$ is not acceptable. It must produce an existing state. Every input must produce a valid output.
- $\delta(a, q_1) = \text{``0 or 1''}$ is not acceptable as that implies it is a non-deterministic situation. Every state must always have exactly ONE state for every possible input in the Σ .

	a	b
0	1	2
1	0 or 1	2
2	3	4
3	3	5
4	5	n/a
5	5	5