# **CAPSTONE PROJECT**

# AI AGENT FOR SMART FARMING ADVICE

Presented By:
Student Name- DILIP RAHUL BUDIMURI
College Name- NIMRA COLLEGE OF ENGINEERING AND TECHNOLOGY
Department – COMPUTER SCIENCE AND ENGINEERING



# **OUTLINE**

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References



# **PROBLEM STATEMENT**

- Small-scale farmers often lack access to timely and localized agricultural advice.
   Unpredictable weather, poor soil management, pest attacks, and fluctuating crop prices lead to reduced yield and income.
- The challenge is to build an AI agent using Retrieval-Augmented Generation (RAG) that provides real-time, region-specific guidance on crops, weather, soil, pest control, and market prices accessible in local languages to empower farmers with data-driven decisions.



# **TECHNOLOGIES AND SERVICES USED**

- IBM Watson / IBM Granite (language generation)
- IBM Cloud Lite (retrieval and hosting)
- Vector Database
- Presto for querying structured Agri-data
- Python, LangChain (for orchestration)
- REST API & RAG workflows



## PROPOSED SOLUTION

- Build an AI agent using IBM Cloud Lite and optionally IBM Granite to retrieve agricultural data and generate contextual responses.
- Features include:
  - 1 Crop suggestions based on region and weather
  - 2 Fertilizer guidance and soil interpretation
  - 3 Pest management tips
  - 4 Real-time mandi (market) price information
- Focus on integrating trusted data sources like meteorological services, e-NAM, and agricultural departments.



## **WOW FACTORS**

#### 1. Real-Time, Contextual Advice via RAG

- It doesn't just give canned responses it retrieves relevant documents and data, then generates customized, meaningful guidance for each farmer's question.
- Example: "Is it good to plant rice in Vijayawada today?" → It checks local weather, soil, season
   and gives a precise answer.

#### 2. End-to-End IBM Cloud Solution

- Entire solution is deployed using IBM Cloud Lite, Granite, Watson ML, Object Storage, Functions, etc.
- No reliance on third-party infrastructure a purely enterprise-grade architecture with free-tier accessibility.

#### 3. Decision-Making, Not Just Information

- It doesn't say "Here is the data", it says "Based on this data, here's what you should do".
- This reasoning layer adds trust and usability, converting raw insights into actionable steps.



## **ALGORITHM & DEPLOYMENT**

#### **Algorithm Selection:**

- Retrieval-Augmented Generation (RAG) + Embedding model (e.g., BAAI/bge)
- Vector index enables semantic search of soil, weather, pest, and mandi data
- IBM Granite or GPT models used for generating the final answer

#### **Deployment Steps:**

- Create cloud functions for retrieval
- Host frontend on IBM Cloud
- Connect tools like Presto/Milvus via REST API
- Deploy agent via web UI / chatbot



# **OVERVIEW**





## **RESULT**





# **RESULT**





#### **RESULT**





#### CONCLUSION

- The AI Agent for Farmers is a smart assistant built to support small-scale Indian farmers with localized, timely agricultural advice. Powered by IBM Cloud Lite and IBM Granite using Retrieval-Augmented Generation (RAG), it helps with crop guidance, soil health, weather forecasts, pest control, and real-time mandi prices. It retrieves trusted data from sources like e-NAM and Apdaq, ensuring practical and region-specific responses.
- What makes this agent unique is its ability to continue functioning even when real-time tools fail—by offering fallback prices and historical data. It's multilingual, simple to use, and provides both technical and economic farming help. Overall, it acts as a reliable digital guide from sowing to market, making farming more informed and efficient.



### REFERENCES

•IBM Cloud Lite – Used for deploying and managing backend services.

https://www.ibm.com/cloud/free

•**IBM Granite Foundation Models** – Used for natural language understanding and generation.

https://www.ibm.com/products/granite

•e-NAM (National Agriculture Market) – Used to access structured crop price data across India.

https://enam.gov.in



## **FUTURE SCOPE**

- In the future, the Al Agent can be enhanced with voice-enabled features and regional language support, allowing farmers to interact through speech in their native language.
   Integrating satellite data and advanced image recognition could help with real-time crop disease detection and soil health monitoring using photos or live drone feeds.
- Additionally, real-time integration with mandi APIs, IoT sensors, and mobile USSD
  access can make the agent usable even in low-internet or remote areas. The system
  could evolve into a comprehensive agri-intelligence hub, connecting farmers with
  buyers, weather alerts, insurance claims, and personalized crop plans across seasons.



# **IBM CERTIFICATIONS**

In recognition of the commitment to achieve professional excellence



# DILIP RAHUL BUDIMURI

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence



Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild







# **IBM CERTIFICATIONS**

Completion Certificate IBM SkillsBuild This certificate is presented to Dilip Rahul Budimuri for the completion of Lab: Retrieval Augmented Generation with LangChain (ALM-COURSE\_3824998) According to the Adobe Learning Manager system of record Completion date: 24 Jul 2025 (GMT) **Learning hours:** 20 mins



# **GITHUB LINK**

GitHub link: https://github.com/diliprahul/Al\_AGENT\_FOR\_FARMERS



# **THANK YOU**

