COMP2022: Formal Languages and Logic Assignment 1

Due: 23:00pm Sunday 9th September (week 6)

Lists [30%]

Exercise 1.1

Let Q, K, and A be arbitrary expressions. Consider the Church encoding for the list $\{Q, K, A\}$.

- Write the expression needed to construct this list using CONS
- Rewrite the CONS macros to write the expression using the PAIR, TRUE and FALSE macros

Exercise 1.2

Let

Assignment Project Exam Help

and

https://poweoder.com Reduce $(F(\lambda x.SUCC\ x)\ \{2,5,1\})$ to β -normal form.

- You may reduce simple expressions like (SUCC 4) \rightarrow_{β} 5, (TAIL $\{1,2,3\}$) \rightarrow_{β} $\{2,3\}$ directly. However, put a command that the to that when Call to Colonical each time you do this.
- You may do more than one β -reduction on the same line, as long as it's obvious what you've done.
- After working through the first recursive call in detail, you may reduce the subsequent recursive calls on one line each.

Exercise 1.3

Describe what the function F from the previous question does in general (i.e. where the two expressions applied to it are not necessarily the examples above.)

2 Trees [30%]

In this question you will invent an encoding in lambda calculus to represent a binary tree. You may assume that we already have an encoding of integers which supports basic arithmetic, including negative numbers (i.e. -1); addition (+ab); and comparisons (-ab), (-ab);

Exercise 2.1

For each of the following tree operations, invent an expression which encodes it, briefly describe how it works, and β -reduce an example to show it that works.)

- NIL should represent an empty tree.
- $(MAKETREE\ e\ a\ b)$ should make a tree with e at the root, and with the given subtrees a,b attached as the left and right children. Give a couple of examples.
- (ROOT t) should return the element stored at the root of the tree.
- (LEFT t) should return the subtree which is the left child of the root.
- (RIGHT t) should return the subtree which is the right child of the root.
- (ISEMPTY t) should return TRUE if the tree is empty, FALSE otherwise.
- (ISLEAF t) should return TRUE if the tree is just a leaf, FALSE otherwise.

You do not have to include error handling (i.e. it doesn't matter what a ponsense expression like (LEFT NIL) reusellen Project Exam Help

Exercise 2.2

Using the operations you defined above, write recursive expressions for the following, more complex functions. briefly describe how like was but would be the following of the f

- (SUM t) should sum all the values stored in the tree.
- (HEIGHT t) should be well that powcoder
- (ISPROPER t) should return TRUE if t is a proper tree (every position is either a leaf, or it has 2 children).
- (MAKEPROPER t) should return a proper tree, equivalent to the original tree except wherever a position had exactly one child, that child is no longer in the tree (i.e. we return the maximal proper subtree of t.)

3 Sorting [20%]

Exercise 3.1

Suppose we wanted to use our tree as a binary search tree for Church numerals. Write expressions for the following functions. briefly describe how they work, but you do not need to give fully worked examples.

- (INSERT t x) should return a tree which is the same as t, except with x inserted at the correct leaf position (reminder of the basic algorithm: if x is less than the element at the current position, move left, otherwise move right, until you find an empty place to put the element as a new leaf).
- $(SEARCH\ t\ x)$ should return TRUE if x exists in t, or FALSE otherwise.

(note: you don't have to implement a balanced binary search tree. An unbalanced one is fine.)

Exercise 3.2

(INORDER t) should return an inorder traversal of the tree as a list).

Exercise 3.3

(SORT a) should sort a list using the treesort algorithm (make a binary search tree using the elements of the list, then return the inorder traversal of the tree as a list).

Exercise 3.4

Modify your algorithm and data structure so that it accepts an arbitrary comparison function (instead of assuming we're always using numbers).

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

4 LISP [20%]

Implement a binary search tree in LISP, and use it to sort some numbers with treesort. You do *not* need to implement all the methods above, and you can (and probably should!) use a simpler encoding.

The following method signatures are required:

```
(defun insert (tree x)
   ;; inserts x to the binary search tree
)
(defun list-to-tree (mylist & optional tree)
   ;; note: the second argument 'tree' will be nil by default
   ;; inserts every element of the list 'mylist' into the tree
)
(defun inorder (tree)
   ;; list giving the inorder traversal of the tree
)
```

You are not required to implement any of the other methods (but some will be *very* useful). You can (and probably should) use a simpler encoding.

For full marks:

- It should work
- The code should be implemented in a functional style. e.g.
 - Ther Assignment Project Exam Help
 - The body of the functions should not need 'let' statements, 'for' loops etc.
 - However, partial marks will still be awarded for code that uses an imperative style.
- The code should include some short; comments to tell us how it works

```
(print
   (insert nill 1)
);; this will output your representation of a tree containing just 1
(print
   (insert (insert nill 1) 3)
);; this will output your representation of a tree containing just 1 and 3
(print
   (list-to-tree (list 4 6 2 0 2 8 2))
);; this will output your representation of a larger tree
(print
   (inorder (list-to-tree (list 4 6 2 0 2 8 2)))
); this should output (0 2 2 2 4 6 8)
```

5 Submission details

Due 23:00pm Sunday 9th September 2018. I strongly encourage you to submit draft work prior to the deadline. However, TurnItIn only accepts late submissions if a submission has not yet been made, and it's common for students to submit a minute or two late... So I have set the submission deadline on Canvas to 23:59:00 to save myself from a flood of urgent emails at 23:01.

5.1 Late submission

The late submission policy is detailed in the administrivia lecture slides from week 1. I will *not* penalise submissions made in the 59 minute grace period. From 23:59:00 onwards you're very nearly an hour late, so the full 20% penalty is applicable. Please notify me if you intend to make a late submission, or if you believe you will not be able to submit, to make it easier for me to support you.

5.2 Submission format

You must submit a report as a single document (.pdf or .docx) to TurnItIn. The written parts of the report must be *text*, not images of hand-writing. Any diagrams can be images, of course.

Don't forget to include your LISP code and examples.

LATEX is highly recommended for typesetting your formulas (I'll put a template on Ed in a few days). It's acceptable to use a \ to denote a \(\lambda\), if your editor doesn't support it. e.g. $TRUE = (\xspace xy.x)$

5.3 A note on Academic Integrity

I would very med Sist 211100 in thit dour out examples / work found outside the the course, then:

- 1. Cite your sources properly;
- 2. Take care to distinguish clearly between your own work, and the cited work;
- 3. Explain the cited work in your own words, to demonstrate you fully understand it.

Appropriately cited work will Covarded Covarded