List of Errata to

Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency

Updated: October 12, 2018.

This documents lists typos detected in the published manuscript of:

Emil Björnson, Jakob Hoydis and Luca Sanguinetti (2017), "Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency", Foundations and Trends® in Signal Processing: Vol. 11: No. 3-4, pp 154-655. http://dx.doi.org/10.1561/2000000093

This document will be updated if further typos are discovered and the latest version is available at: https://massivemimobook.com

All the typos listed in this document have been corrected in the authors' version of the manuscript, which you can download as a free PDF from https://massivemimobook.com.

If you discover a potential typo that is not listed in the latest version of this document, we appreciate if you report it to us. You can send an email to emil.bjornson@liu.se

List of Errata

- 1. In the paragraph before Eq. (1.23), "horizontal ULA with antenna spacing $d_{\rm H}$ " should be "horizontal ULA with antenna spacing $d_{\rm H} \in (0, 0.5]$ ".
- 2. In Section 1.3.5, the statement "the same as that of sending M additional UL pilot signals" is only true if $M \geq K$. To make it more accurate, the statement should instead be "the same as that of sending $\max(M,K)$ additional UL pilot signals" and the following sentence should be added to the footnote on the same page: "More precisely, with the multiplexing gain $\min(M,K)$ of SDMA, we need $\max(M,K)$ symbol transmissions to feed back the MK channel coefficients."

Consequently, the average pilot overhead of the FDD protocol is $\frac{M+K+\max(M,K)}{2}$ and not $M+\frac{K}{2}$ (which is only correct for $M \geq K$). This error is found at several places in this section. Moreover, Figure 1.22 is shown as

but should be

- 3. In Eq. (2.17), the final expression $\frac{\operatorname{tr}\left(\left(\mathbf{R}_{jk}^{j}\right)^{2}\right)}{(M_{j}\beta_{lk}^{j})^{2}}$ should be $\frac{\operatorname{tr}\left(\left(\mathbf{R}_{jk}^{j}\right)^{2}\right)}{(M_{j}\beta_{jk}^{j})^{2}}$.
- 4. Figure 2.6 is shown as

but should be

This error was a consequence of insufficient accuracy in the computation of the covariance matrices. The related sentence

"In fact, a uniform angular distribution makes 66% of the eigenvalues $50\,\mathrm{dB}$ smaller than in the reference case, while this happens for around 40% of the eigenvalues with Gaussian and Laplace distributions."

should read as

"In fact, a uniform angular distribution makes 68% of the eigenvalues $30\,\mathrm{dB}$ smaller than in the reference case, while this happens for 40% of the eigenvalues with Gaussian distribution and 19% with Laplace distribution."

- 5. In the first paragraph of Section 3.3.3, $\mathbf{h}_{li}^{j} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}_{M}, \mathbf{R}_{li}^{j})$ should be $\mathbf{h}_{li}^{j} \sim \mathcal{N}_{\mathbb{C}}(\mathbf{0}_{M_{j}}, \mathbf{R}_{li}^{j})$.
- 6. In Eq. (3.36), I_M should be I_{M_i} . This typo also appears on the row right above Eq. (3.37).

7. In Eq. (3.38),
$$\frac{1}{p_{li}} \left(\mathbf{\Psi}_{li}^j \right)^{-1}$$
 should be $\frac{1}{p_{li}\tau_p} \left(\mathbf{\Psi}_{li}^j \right)^{-1}$.

- 8. In Eq. (4.29), $\sigma_{\rm UL}^2$ should be $\sigma_{\rm DL}^2$.
- 9. In Section 6.1.2, after Eq. (6.7), the statement "LTE only requires $\mathsf{EVM} \leq 0.0175$ " should be "LTE only requires $\mathsf{EVM} \leq 0.175$ "
- 10. The subsection title "7.4.1 Physical Array Size and Antenna Spacing" should be "7.4.1 Preliminaries on Physical Array Size".
- 11. Figure 7.26 is shown as

12. Figure 7.27 is shown as

but should be

In the paragraph that describes this figure, the sentence "However, going from S=1 to S=16 improves the median of β by around 9 dB; increasing this number to S=256 adds another 5 dB." should read as: "However, going from S=1 to S=16 improves the median of β by around 12.5 dB; increasing this number to S=256 adds another 9.5 dB."

13. In the paragraph after (C.63), $\mathbf{A} = \tau_p \mathbf{\Psi}_{jk}^j$ should be $\mathbf{A} = \tau_p (\mathbf{\Psi}_{jk}^j)^{-1}$.