Boletín de Problemas 3: FUENTES REALES DE CORRIENTE CONTINUA

Problema 1. El circuito C de la figura es una fuente real de tensión, se sabe que la lectura del amperímetro es de 2 A, que la resistencia absorbe 100 W y que la eficiencia del circuito C en esta situación es del 50 %. Determinar las características del circuito Thévenin equivalente a C desde los terminales a y b.

Solución: $E_{Th} = 100 \text{ V}$; $R_{eq} = 25 \Omega$

Problema 2. Calcular la potencia cedida por la fuente real de tensión de continua, así como su rendimiento. Datos: $V_g = 2 \text{ V}, R_g = 1\Omega, R = 1\Omega$ e $I_g = 1 \text{ A}$.

Solución: P = 0.75 W; $\eta = 75 \%$

Problema 3. Determinar el valor de la resistencia R para que la fuente real de intensidad trabaje con un rendimiento del 80%. Datos: $R_q = 4 \text{ k}\Omega$.

Solución: $R = 600 \,\Omega$

Problema 4. En una determinada fuente real de tensión de continua, sólo se conoce su resistencia interna R_g . ¿Cuál es la resistencia R distinta de cero que hay que conectar entre sus terminales, para que el rendimiento de la fuente sea igual a $\frac{P}{P_{max}}$? P_{max} es la potencia máxima que puede ceder esta fuente y P la potencia cedida por la fuente cuando se conecta a su salida la resistencia buscada.

Solución: $R = 3 R_q$

Problema 5. Con el interruptor en la posición a, la intensidad I vale 3 A y con el interruptor en b vale 5 A. Sabiendo que el circuito A es puramente resistivo, encontrar el valor de R. Datos: $V_g = 30$ V, $I_g = 5$ A.

Solución: $R=10\,\Omega$

Problema 6. Calcular el equivalente Thévenin del circuito de la figura visto desde los terminales A y B. Datos: $R_1=2$ Ω , $R_2=1$ Ω , $R_3=2$ Ω , $R_4=4$ Ω , $R_5=5$ Ω , $R_6=3$ Ω e $I_g=3$ A.

Solución: $V_{ca}=2$ V; $R_{th}=10{,}22\,\Omega$

Problema 7. Calcular el equivalente Norton entre los terminales A y B del circuito de continua de la figura. Datos: $I_g = 10$ A, $R_1 = 1\Omega$, $R_2 = 2\Omega$, $R_3 = 3\Omega$, $R_4 = 4\Omega$.

Solución: $R_e = 2.1 \Omega$; $I_{cc} = 0.95 \text{ A}$

Problema 8. Sabiendo que la fuente real de tensión trabaja con un rendimiento del 50%, determinar: a) La resistencia equivalente del circuito resistivo. b) Tensión interna de la fuente, V_g . Dato: V=10 V.

Solución: $R_{eq} = 1.5 \Omega$; $V_g = 20 \text{ V}$

Problema 9. Si la tensión de la fuente de intensidad, constante en el tiempo, es V_f con el interruptor cerrado, calcular dicha tensión con el interruptor abierto. Datos: $R_1 = R_2 = R$, $R_3 = 2R$, con R conocido.

Solución: $V = 1,5 V_f$

Problema 10. El circuito R de la figura es puramente resistivo. Se sabe que con el interruptor cerrado la intensidad I vale 5/2 A, y que al abrirse el interruptor la bombilla consume 121 W. La tensión nominal de la bombilla es 220 V y la potencia nominal es 100 W. Determinar la resistencia R_{ab} del equivalente Thévenin del circuito a la izquierda de los terminales a-b.

Solución: $R_{ab}=121\,\Omega$

Problema 11. Obtener el equivalente Thèvenin entre A y B

Solución: V_{CA} =0 V; R_{eq} =6 Ω .