Matrix Completion Methods for Causal Panel Data Models

Susan Athey et al. (2021), JASA

Naoki Eguchi

2025.6.25 ミクロ計量経済学

Faculty of Medicine, Kyoto University

Introduction

What is "matrix completion"?

- Matrix completion (MC) is an imputation method for the missing in the matrix.
- In PCA (Principle Compoent Analysis), given M principle components, we approximate a true data matrix $\mathbf{Y} \in \mathbb{R}^{I \times J}$ by $\mathbf{A} \in \mathbb{R}^{I \times M}$ and $\mathbf{B} \in \mathbb{R}^{M \times J}$.

$$\min_{\mathbf{A}, \mathbf{B}} \left\{ \sum_{i=1}^{I} \sum_{j=1}^{J} \left(Y_{ij} - \sum_{m=1}^{M} a_{im} b_{mj} \right)^{2} \right\}$$

• If there is missing in matrix, using only observed data, we can approximate the original matrix, hence we can impute the missing by $\hat{\mathbf{A}}, \hat{\mathbf{B}}$.

$$\min_{\mathbf{A}, \mathbf{B}} \left\{ \sum_{(i,j) \in \mathcal{O}} \left(Y_{ij} - \sum_{m=1}^{M} a_{im} b_{mj} \right)^2 \right\}$$

 Applying this idea to panel data analysis, MC-based panel method is seen to a generalization of many model-based (factor-regression-based) panel methods.

Where to impute

- As many panel data methods, we want to know ATT : $\mathbb{E}[Y_{it}(1) Y_{it}(0)|W_i = 1]$.
- Thus, it boils down to estimate (impute) the counterfactual $Y_{it}(0)$.
 - Horizontal: Under unconfoundedness, we can impute counterfactual PO using observed outcomes for control units.
 - Vertical: By SCM, we can also impute it using weighted average outcomes for control units with most predictive weights trained with pre-treatment datas.

$$\mathbf{Y} = \begin{pmatrix} \checkmark & \checkmark & \checkmark \\ \vdots & \vdots & \vdots \\ \checkmark & \checkmark & \checkmark \\ \vdots & \vdots & \vdots \\ \checkmark & \checkmark & ? \end{pmatrix}.$$

$$\mathbf{Y} = \begin{pmatrix} \checkmark & \checkmark & \dots & \checkmark & \ddots & \ddots \\ \checkmark & \checkmark & \dots & \checkmark & \ddots & \dots & \checkmark \\ \checkmark & \checkmark & \dots & \checkmark & ? & \dots & ? \end{pmatrix}$$

Xu (2024): Counterfactual estimation

- functional form: Y_{it}(0) = f(X_{it}) + h(U_{it}) + ε_{it}
 →No anticipation, carryover, feedback, LDV
- strict exogeneity: $\forall i, j \in \{1, \dots, N\}, \ \forall s, t \in \{1, \dots, T\}, \epsilon_{it} \perp \{D_{js}, \mathbf{X_{js}}, \mathbf{U_{js}}\}$

- low-dimensional decomposition: $h(\mathbf{U_{it}}) = \{L_{it}\}, \operatorname{rank}(\mathbf{L}_{N \times T}) \ll \min\{N, T\}$ \rightarrow The rank (= number of factors) is FIXED!!
- MC panel method is a generalization of Xu's counterfactual estimation.

Set Up

Notation and Estimand

• Consider a setting with N units observed over T periods characterized by a binary treatment W_{it} and hence two POs $Y_{it}(1), Y_{it}(0)$.

• Estimand:
$$\mathbf{Y} = \{Y_{it}(0)^1\} = \begin{pmatrix} Y_{11}(0) & \cdots & Y_{1T}(0) \\ \vdots & \ddots & \vdots \\ Y_{N1}(0) & \cdots & Y_{NT}(0) \end{pmatrix} (\leftarrow \text{Matrix!!})$$

•
$$W_{it} = \begin{cases} 1 & \text{if } (i,t) \in \mathcal{M} : \text{Missing indice} \\ 0 & \text{if } (i,t) \in \mathcal{O} : \text{Observed indice as training data} \end{cases}$$

 $^{^1}$ 以降は簡単のため、 $Y_{it}(0)=Y_{it}$ とし、"(0)" を省略して表記する.

Patterns of data matrix

• Ordinary case (rich data wrt. units and times)

$$\mathbf{Y}_{N\times T} = \begin{pmatrix} \checkmark & \checkmark & \checkmark & \checkmark & \dots & \checkmark \\ \checkmark & \checkmark & \checkmark & \checkmark & \dots & \checkmark \\ \checkmark & \checkmark & \checkmark & \checkmark & \dots & \checkmark \\ \checkmark & \checkmark & \checkmark & ? & \dots & ? \\ \checkmark & \checkmark & \checkmark & ? & \dots & ? \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \checkmark & \checkmark & \checkmark & ? & \dots & ? \end{pmatrix}$$

Staggered adoption

$$\mathbf{Y}_{N \times T} \\ = \begin{pmatrix} \checkmark & \checkmark & \checkmark & \ddots & \checkmark & \dots & \checkmark & \text{(never adopter)} \\ \checkmark & \checkmark & \checkmark & \checkmark & \dots & ? & \text{(late adopter)} \\ \checkmark & \checkmark & ? & ? & \dots & ? & \text{(medium adopter)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \checkmark & ? & ? & ? & \dots & ? & \text{(early adopter)} \end{pmatrix}$$

Horizontal regression and unconfoundedness : thin matrix $(N\gg T)$

$$\mathbf{Y} = \left(\begin{array}{cccc} \checkmark & \checkmark & \checkmark \\ \vdots & \vdots & \vdots \\ \checkmark & \checkmark & \checkmark \\ \checkmark & \checkmark & ? \\ \vdots & \vdots & \vdots \\ \checkmark & \checkmark & ? \end{array} \right).$$

- 1. Regress the last period outcome on the lagged outcomes. (among untreated)
- 2. Predict the missing POs using the estimated regression.

$$\forall (i,T) \in \mathcal{M}, \ \hat{Y}_{iT} = \hat{\beta}_0 + \sum_{t=1}^{T-1} \hat{\beta}_t Y_{it}, \text{ where } \hat{\beta} = \arg\min_{\beta} \sum_{i:(i,T) \in \mathcal{O}} (Y_{iT} - \beta_0 - \sum_{t=1}^{T-1} \beta_t Y_{it})^2.$$

 \rightarrow To make this more flexible and nonparametric, it leads to matching where we find for each treated unit i a corresponding unit j to approximate Y_{it} by Y_{jt} for t = 1, ..., T - 1.

Vertical regression and synthesis control : fat matrix $(T \gg N)$

- 1. Regress the outcomes for treated unit prior to the treatment on the outcomes for the control units in the same periods.
- 2. Predct the missing POs using the estimated regression.

$$\forall (N,t) \in \mathcal{M}, \ \hat{Y}_{Nt} = \hat{\gamma}_0 + \sum_{i=1}^{N-1} \hat{\gamma}_i Y_{it}, \text{ where } \hat{\gamma} = \arg\min_{\gamma} \sum_{t:(N,t) \in \mathcal{O}} (Y_{Nt} - \gamma_0 - \sum_{i=1}^{N-1} \gamma_i Y_{it})^2.$$

- \rightarrow Vertical regression is generalization of ADH(2010) in that it relaxes two restrictions :
 - the coefficients $\hat{\gamma}$ are nonnegative. (Interpretability; What is a negative weight?)
 - the intercept in this regression is 0. (This is seen to be plausible in recent literatures.)

Matrix Completion

Model

• Under no covariates, we model the $N \times T$ matrix of complete matrix $\mathbf Y$ as

$$\mathbf{Y} = \mathbf{L}^* + \epsilon$$
, where $\mathbb{E}[\epsilon | \mathbf{L}^*] = 0$.

Assumption 1

- ϵ is independent of \mathbf{L}^* (strict exogeneity)
- The element of ϵ are $\sigma sub Gaussian$ and independent each other. $\Leftrightarrow \forall t, \ \mathbb{E}[\exp(t\epsilon)] \leq \exp(\frac{\sigma^2 t^2}{2}).$
- The goal is to estimate the matrix L^* . (low-rank assumption)
 - \rightarrow Note that two types² of fixed effects are included.

²これら以外にも Interactive fixed effect といったあらゆる factor を"少数まで"許容する

MC-NNM (Matrix Completion with Nuclear Norm Minimization) estimator

• MC-NNM estimator for \mathbf{L}^* is given by $\hat{\mathbf{L}} + \hat{\Gamma} \mathbf{1}_T^\mathsf{T} + \mathbf{1}_N \hat{\Delta}^\mathsf{T}$

$$(\hat{\mathbf{L}}, \hat{\Gamma}, \hat{\Delta}) = \arg\min_{\mathbf{L}, \Gamma, \Delta} \left\{ \frac{1}{|\mathcal{O}|} ||\mathbf{P}_{\mathcal{O}}(\mathbf{Y} - \mathbf{L} - \Gamma \mathbf{1}_{T}^{\mathsf{T}} - \mathbf{1}_{N} \Delta^{\mathsf{T}})||_{F}^{2} + \lambda ||\mathbf{L}||_{*} \right\}$$

- $\Gamma \in \mathbb{R}^N$: unit-varying (and time-fixed) effect (individual effect)
- $\Delta \in \mathbb{R}^T$: time-varying (and unit-fixed) effect (time effect)
- matrix indicator function : $\mathbf{P}_{\mathcal{O}}(\mathbf{A}) = \begin{cases} A_{it} & \text{if } (i,t) \in \mathcal{O} \\ 0 & \text{if } (i,t) \notin \mathcal{O} \end{cases}$ (NA is regarded as 0)
- Frobenius norm : $||\mathbf{A}||_F^2 = \sum_{i=1}^N \sum_{t=1}^T A_{it}^2$ (行列版の mean squared error を計算している)
- Regularization term $\lambda ||L||_*$ leads to the low rank of $\mathbf L$. \rightarrow minimize $\lambda ||L||_* \Leftrightarrow$ the sparsity of Singular value $\sigma_i(\mathbf L)(>0) \Leftrightarrow$ low rank of $\mathbf L$

• Fact 1. (Singular value decomposition) Every real matrix $L \in \mathbb{R}^N \times \mathbb{R}^T$ can be decomposed using a onthogonal matrix $\mathbf{S} \in \mathbb{R}^N \times \mathbb{R}^{\min(N,T)}$, $\mathbf{R} \in \mathbb{R}^T \times \mathbb{R}^{\min(N,T)}$ by

$$\mathbf{L} = \mathbf{S} \mathbf{\Sigma} \mathbf{R}'$$
, where $\mathbf{\Sigma} = \mathrm{diag}(\sigma_1, \dots \sigma_{\min(N,T)}), \mathbf{S}' \mathbf{S} = \mathbf{I}_{\min(\mathbf{N},\mathbf{T})} = \mathbf{R}' \mathbf{R}$

- Fact 2. The number of non-zero singular value = rank L
 - Nuclear norm : $||L||_* = \sum_{i=1}^{\min(N,T)} \sigma_i(\mathbf{L})$
 - ightarrow minimize $\lambda ||L||_* \Leftrightarrow$ the sparsity of Singular value $\sigma_i(\mathbf{L})(>0) \Leftrightarrow$ low rank of \mathbf{L}
- Since the rank of L corresponds to the number of factor, this assumption of low rank is quite plausible.
- Although the law rank matrix CAN include two fixed effects, these "strong" factors are separately estimated for improving the quality of the practical imputations.

Algorithm for calculating $\hat{\mathbf{L}}$

- For simplicity, assume that there are no fixed effects. (only estimate L)
- Fact 3. For $A = S\Sigma R$, the minimizer is obtained analytically.

$$\mathbf{S}\tilde{\mathbf{\Sigma}}\mathbf{R}^{\mathsf{T}} = \arg\min_{\mathbf{A}} \{\frac{1}{2}||\mathbf{L} - \mathbf{A}||_F^2 + \lambda||\mathbf{A}||_*\}, \text{ where } \tilde{\Sigma} = \operatorname{diag}(\{\max(\sigma_i(\mathbf{A}) - \lambda, 0)\}_i)$$

- → You can see elements with a small singular value (=weak factor) will be vanished.
- We perform this minimization over and over until the matrix converges.
 - Define $\operatorname{shrink}_{\lambda}(\mathbf{A}) = \mathbf{S}\tilde{\boldsymbol{\Sigma}}\mathbf{R}^{\mathsf{T}}$ and start with the initial choice $\mathbf{L}_{1}(\lambda, \mathcal{O}) = \mathbf{P}_{\mathcal{O}}(\mathbf{Y})$ (The missing starts with 0.)

$$\mathbf{L}_{k+1}(\lambda,\mathcal{O}) = \text{shrink}_{\frac{\lambda|\mathcal{O}|}{2}} \{\mathbf{P}_{\mathcal{O}}(\mathbf{Y}) + \mathbf{P}_{\mathcal{O}}^{\mathsf{T}}(\mathbf{L}_{k}(\lambda,\mathcal{O}))\}$$

•
$$\mathbf{P}_{\mathcal{O}}(\mathbf{A}) = \begin{cases} A_{it} & \text{if } (i,t) \in \mathcal{O} \\ 0 & \text{if } (i,t) \notin \mathcal{O} \end{cases}$$
, $\mathbf{P}_{\mathcal{O}}^{\mathsf{T}}(\mathbf{A}) = \begin{cases} 0 & \text{if } (i,t) \in \mathcal{O} \\ A_{it} & \text{if } (i,t) \notin \mathcal{O} \end{cases}$

• The limiting matrix $\hat{\mathbf{L}}(\lambda, \mathcal{O}) = \lim_{k \to \infty} \mathbf{L}_k(\lambda, \mathcal{O})$ is MC-NNM estimator given λ .

- For the case with fixed effects, we replace $\mathbf{P}_{\mathcal{O}}(\mathbf{Y})$ with $\mathbf{P}_{\mathcal{O}}(\mathbf{Y} \Gamma_k \mathbf{1}_T^\mathsf{T} \mathbf{1}_N \Delta_k^\mathsf{T})$
- After each iteration to obtain $\hat{\mathbf{L}}_{k+1}$, we can estimate Γ_{k+1} and Δ_{k+1} by using the first-order conditions.
 - More specifically, after estimating $\hat{\mathbf{L}}_{k+1}$, the objective function is as the quadratic form wrt. Γ_k, Δ_k , so we additionally minimize it and renew $\Gamma_{k+1}, \Delta_{k+1}$.
 - Finally, replace the $\mathbf{P}_{\mathcal{O}}(\mathbf{Y} \Gamma_k \mathbf{1}_T^\mathsf{T} \mathbf{1}_N \Delta_k^\mathsf{T})$ with $\mathbf{P}_{\mathcal{O}}(\mathbf{Y} \Gamma_{k+1} \mathbf{1}_T^\mathsf{T} \mathbf{1}_N \Delta_{k+1}^\mathsf{T})$, then proceed the algorithm to obtain $\hat{\mathbf{L}}_{k+2}$.
- we can interpert the term $\mathbf{P}_{\mathcal{O}}(\mathbf{Y} \Gamma_k \mathbf{1}_T^\mathsf{T} \mathbf{1}_N \Delta_k^\mathsf{T})$ as an invariant (fixed) factor term.
- Actually, this separation of two FEs makes practical imputation greatly improved.

Inference: CV and CI

- The optimal value of λ is selected through cross-validation.
- The theory of asymptotic distribution of $\mathbf{L}^* \hat{\mathbf{L}}$ to construct CI has not yet developed.
- Instead, using resampling method, we see the fluctulation of the imputed matrix and construct CI like premutation methods in ADH-synthetic control method.
 - Randomly select the subset \mathcal{O}_k of \mathcal{O} for k = 1, ..., K.
 - Then, using the sample in \mathcal{O}_k , calculate MC-NNM estimator $\hat{\mathbf{L}}^{(k)}$.
 - Finally, we construct a pointwise CI for $\{\hat{L}_{it}^{(k)}\}$.
- However, according to Choi and Yuan(2024) which is the extended literature of Athey et al.(2021), their debiased estimator for \mathbf{L}^* is asymptotic normal (but pointwisely).

The relationship with horizontal and

vertical regressions

Interpretation as generalization

- For simplicity, we assume when only one missing $Y_{NT}(0)$ exists i.e. $\mathcal{M} = (N,T)$
- Let the estimand \mathbf{Y} partition as $\begin{pmatrix} \mathbf{Y_0} & \mathbf{y_1} \\ \mathbf{y_2}^T & ? \end{pmatrix}$, where $\mathbf{Y_0} \in \mathbb{R}^{N-1} \times \mathbb{R}^{T-1}$, $\mathbf{y_1} \in \mathbb{R}^{N-1}$, $\mathbf{y_2} \in \mathbb{R}^{T-1}$.
- For a given positive integer R, define an $N \times R$ matrix A, an $T \times R$ matrix B, a N-dim. vector γ and a R-dim. vector δ , then, the objective function w.r.t. MSE is

$$Q(\mathbf{Y}; R, \mathbf{A}, \mathbf{B}, \gamma, \delta) = \frac{1}{|\mathcal{O}|} ||\mathbf{P}_{\mathcal{O}}(\mathbb{Y} - \mathbf{A}\mathbf{B}^{\mathsf{T}} - \gamma \mathbf{1}_{T}^{\mathsf{T}} - \mathbf{1}_{N}\delta^{\mathsf{T}})||_{F}^{2}$$

- ullet However, there is no unique solution for ${f A}, {f B}$ unless restrict them.
 - \rightarrow Thus, we compare the restriction of each methods.

MC-NNM estimator

Nuclear norm matrix completion

$$(R_{\lambda}^{\text{mc-nnm}}, \mathbf{A}_{\lambda}^{\text{mc-nnm}}, \mathbf{B}_{\lambda}^{\text{mc-nnm}}, \gamma_{\lambda}^{\text{mc-nnm}}, \delta_{\lambda}^{\text{mc-nnm}})$$

$$= \arg \min_{R,A,B,\gamma,\delta} \left\{ Q(\mathbf{Y}; R, \mathbf{A}, \mathbf{B}, \gamma, \delta) + \frac{\lambda}{2} \|\mathbf{A}\|_F^2 + \frac{\lambda}{2} \|\mathbf{B}\|_F^2 \right\}.$$

- Fact 3. $\|\mathbf{L}\|_* = \min_{\mathbf{A}, \mathbf{B}: \mathbf{L} = \mathbf{A}\mathbf{B}'} \frac{1}{2} (\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2).$
- In second and third terms, we regularize A, B so that the minimization problem has a unique solution.
 - → Compared with other methods, there is a big difference in that MC-NNM does not restrict the form of the matrix but just regularize it in a data-driven manner.

Horizontal regression (thin matrix, N > T)

• Horizontal regression estimator, defined if N > T: thin matrix

$$(R^{hr}, \mathbf{A}^{hr}, \mathbf{B}^{hr}, \gamma^{hr}, \delta^{hr}) = \arg\min_{R,A,B,\gamma,\delta} Q(\mathbf{Y}; R, \mathbf{A}, \mathbf{B}, \gamma, \delta),$$

subject to $R = T - 1$, $\mathbf{A} = \begin{pmatrix} \mathbf{Y}_0 \\ \mathbf{y}_2^{\top} \end{pmatrix}$, $\gamma = 0$, $\delta_1 = \cdots = \delta_{T-1} = 0$.

• The solution for **B** is

$$\mathbf{B}^{hr\top} = \begin{pmatrix} E_{T-1} & \hat{\beta} \end{pmatrix}, \quad (\hat{\beta}, \hat{\delta}_T) = \arg\min_{\beta, \delta_T} \sum_{i=1}^{N-1} (Y_{iT} - \delta_T - \sum_{t=1}^{T-1} \beta_t Y_{it})^2.$$

• Restrict the form of ${\bf A}$ and (of course) assume no individual effect ($\gamma=0$).

Vertical regression (fat matrix, T > N)

• Vertical regression estimator, defined if T > N: fat matrix

$$(R^{vt}, \mathbf{A}^{vt}, \mathbf{B}^{vt}, \gamma^{vt}, \delta^{vt}) = \arg\min_{R, A, B, \gamma, \delta} Q(\mathbf{Y}; R, \mathbf{A}, \mathbf{B}, \gamma, \delta),$$

subject to $R = N - 1$, $\mathbf{B}^{\mathsf{T}} = \begin{pmatrix} \mathbf{Y}_0 & \mathbf{y}_1 \end{pmatrix}$, $\gamma_1 = \dots = \gamma_{N-1} = 0$, $\delta = 0$.

• The solution for **A** is

$$\mathbf{A}^{\text{vt}} = \begin{pmatrix} E_{N-1} \\ \hat{\alpha} \end{pmatrix}, \quad (\hat{\alpha}, \hat{\gamma}_N) = \arg\min_{\alpha, \gamma_N} \sum_{t=1}^{T-1} (Y_{Nt} - \gamma_N - \sum_{i=1}^{N-1} \alpha_i Y_{it})^2.$$

• Restrict the form of B and (of course) assume no time effect ($\delta = 0$).

Another methods

$$\begin{split} \text{(iv)} & \text{ (synthetic control),} \\ & (R^{\text{sc-adh}}, \mathbf{A}^{\text{sc-adh}}, \mathbf{B}^{\text{sc-adh}}, \gamma^{\text{sc-adh}}, \delta^{\text{sc-adh}}) \\ & = \underset{R, \mathbf{A}, \mathbf{B}, \gamma, \delta}{\operatorname{argmin}} \ Q(\mathbf{Y}; R, \mathbf{A}, \mathbf{B}, \gamma, \delta) \ , \\ & \text{subject to} \\ & R = N-1, \quad \mathbf{B} = \left(\begin{array}{c} \mathbf{Y}_0^\top \\ \mathbf{y}_1^\top \end{array} \right), \quad \delta = 0, \quad \gamma = 0, \\ & \forall \, i, A_{iT} \geq 0, \ \sum_{i=1}^{N-1} A_{iT} = 1, \end{split}$$

(v) (vertical regression, elastic net),

$$(R^{\text{vt-en}}, \mathbf{A}^{\text{vt-en}}, \mathbf{B}^{\text{vt-en}}, \gamma^{\text{vt-en}}, \delta^{\text{vt-en}})$$

$$= \underset{R, \mathbf{A}, \mathbf{B}, \gamma, \delta}{\operatorname{argmin}} \left\{ Q(\mathbf{Y}; R, \mathbf{A}, \mathbf{B}, \gamma, \delta) + \lambda \left[\frac{1-\alpha}{2} \left\| \begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \right\|_F^2 + \alpha \left\| \begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \right\|_1 \right] \right\},$$

subject to

$$R = N - 1,$$
 $\mathbf{B} = \begin{pmatrix} \mathbf{Y}_0^{\top} \\ \mathbf{y}_1^{\top} \end{pmatrix},$ $\gamma_1 = \gamma_2 = \dots = \gamma_{N-1} = 0,$ $\delta = 0,$

where A is partitioned as

$$\mathbf{A} = \left(\begin{array}{cc} \tilde{\mathbf{A}} & \mathbf{a}_1 \\ \mathbf{a}_2^\top & \mathbf{a}_3 \end{array} \right),$$

Theoritical Bounds

for the Estimation Error

Estimation error

• Define p_c to be a minimiun expected proportion of control (never-treated) unit.

$$p_c \equiv \min_{1 \leq i \leq N} \pi_T^{(i)}$$
, where $\pi_T^{(i)} = \mathbb{P}(t_i = T)$

Assumption 2

• p_c is sufficiently large even as $N, T \to \infty$ with $N \ge T$. (remained control units)

$$p_c \gtrsim \frac{\log^{3/2}(N+T)}{\sqrt{T}} \vee \frac{\sqrt{T}\log^{3/2}(N+T)}{N}$$

- True matrix L^* is a low rank.
- Under this assumption, $\frac{||\mathbf{L}^* \hat{\mathbf{L}}||_F}{\sqrt{NT}}$ has an upper bound with a high probability $(\mathbb{P} = 1 \frac{2}{(N+T)^2})$, then, MC-NNM estimator has a consistency.

Comparing each method

- In a real data matrix Y where no units is treated, we choose units as "hypothetical treated" units (=regard as missing) and aim to predict (impute) their value.
 - \rightarrow Technically, compare the average root-mean-squared-error(RMSE) to assess which of the algorithm generally perform well.
- The compared estimators (algorithms) are as follows.
 - DiD: 2 回差分により counterfactual を補完する
 - VT-EN : elastics net で vertical regression function を作り、その推定値で補完
 - HR-EN: elastics net で horizontal regression function を作り、その推定値で補完
 - SC-ADH: classical approach to construct "synthetic control".
 - MC-NNM : 本日の主役

ADH(2010): California smoking data

- N = 38, T = 31
 - Simultaneous adoption : Let randomly selected $N_t = 8$ units "treated" in period $T_0 + 1$.
 - Staggered adoption : Let randomly selected $N_t=35$ units "treated" in some periods after period T.

- (a): VT-EN performs well on the whole, DiD is poor.
- (b): MC-NNM is superior (large sample is favorable!), and VT-EN is generally poor.

Final marks

Summary and Conclusion

- Matrix completion is a imputing method for the missing $Y_{it}(0)$ where $(i,t) \in \mathcal{M}$.
- MC-NNM estimator generalizes and nests many estimators such as DiD, ADH-SC, vertical or horizontal (penalized) regression, and interactive fixed effect model.
- The critical difference with previous DiD estimators is that MC-NNM holistically regularizes latent factors through nuclear-norm minimization which induces a low-rank matrix (sparsity).
 - Intrinsic factor vs. Explicitly imposed factor
- Under appropriate conditions (low-rank structure, sufficient number of control units, sufficiently large N,T), the MC-NNM estimator achieves consistency.
- ullet Practically, this estimator performs well with large N and T, and allows for a relatively large number of factors.

Further extensions

- To consider the model with covariates, we can separately include them in $\frac{1}{|\mathcal{O}|}||\mathbf{P}_{\mathcal{O}}(\mathbf{Y}-\mathbf{A}\mathbf{B}^{\mathsf{T}}-\gamma\mathbf{1}_{T}^{\mathsf{T}}-\mathbf{1}_{N}\delta^{\mathsf{T}})||_{F}^{2}.$
- For further advanced developments, a recent study by Choi and Yuan (2024, JASA) proposes a debiased estimator for \mathbf{L}^* with rigorous asymptotic inference (pointwise asymptotic normality).
- They introduce a cross-fitting (sample-splitting) strategy and further propose group-based ATT estimators, extending the matrix completion literature toward causal inference with stronger theoretical guarantees.

References

References

- Susan Athey, Mohsen Bayati, Nikolay Doudchenko, Guido Imbens, and Khashayar Khosravi (2021), *Matrix Completion Methods for Causal Panel Data Models*, Journal of the American Statistical Association.
- Licheng Liu, Ye Wang, and Yiqing Xu (2024), A Practical Guide to Counterfactual Estimators for Causal Inference with Time-Series Cross-Sectional Data, American Journal of Political Science.
- Jungjun Choi and Ming Yuan(2024), *Matrix Completion When Missing Is Not at Random and Its Applications in Causal Panel Data Models*, Journal of the American Statistical Association.
- Martin J. Wainwright (2019), *High-Dimensional Statistics*, Cambridge University Press. (mainly Chapter 10)
- 冨岡亮太 (2015), スパース性に基づく機械学習, 講談社.
- 川口康平,澤田真行 (2024), 因果推論の計量経済学, 日本評論社.