Variations of the Turing Machine

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
 - Semi-Infinite Tape
 - · Off-Line
 - Multitape
 - Multidimensional
 - Nondeterministic

The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power as the Standard Model

Same Power of two classes means:

The two classes of Turing machines accept the same languages

Same Power of two classes means:

For any machine $\,M_1\,$ of first class there is a machine $\,M_2\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

And vice-versa

Simulation: a technique to prove same power

Simulate the machine of one class with a machine of the other class

<u>First Class</u> Original Machine

 M_1

Second Class
Simulation Machine

 M_2 M_1

Turing Machines with Stay-Option

The head can stay in the same position

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$$

Left, Right, Stay

L,R,S: moves

Example:

Time 1

Time 2

$$q_1 \xrightarrow{a \to b, S} q_2$$

Theorem:

Stay-Option Machines have the same power as Standard Turing machines

Proof:

Part 1: Stay-Option Machines are at least as powerful as Standard machines

Proof: a Standard machine is also a Stay-Option machine (that never uses the S move)

Proof:

Part 2: Standard Machines are at least as powerful as Stay-Option machines

Proof: a standard machine can simulate a Stay-Option machine

Stay-Option Machine

Simulation in Standard Machine

$$\begin{array}{c}
a \to b, L \\
\hline
q_1 \\
\end{array}$$

Similar for Right moves

Stay-Option Machine

Simulation in Standard Machine

For every symbol X

Example

Stay-Option Machine:

Simulation in Standard Machine:

Standard Machine--Multiple Track Tape

\Diamond	\Diamond	a	b	a	b	\Diamond	track 1
\Diamond	\Diamond	b	a	С	d	\Diamond	track 2

Proof of equivalence?

Standard Machine--Multiple Track Tape

one symbol

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

Semi-Infinite Tape

Proof of equivalence?

Standard Turing machines simulate Semi-infinite tape machines:

Trivial

Semi-infinite tape machines simulate Standard Turing machines:

Semi-infinite tape machine with two tracks

Standard machine

Semi-infinite tape machine

Standard machine

$$\underbrace{q_1} \quad \stackrel{a \to g, R}{\longrightarrow} \underbrace{q_2}$$

Semi-infinite tape machine

Right part

$$\underbrace{q_1^R} \xrightarrow{(a,x) \to (g,x),R} \underbrace{q_2^R}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

For all symbols x

Time 1

Semi-infinite tape machine

Time 2

Semi-infinite tape machine

At the border:

Semi-infinite tape machine

Right part

$$\overbrace{q_1^R} \xrightarrow{(\#,\#) \to (\#,\#), R} \overbrace{q_1^L}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \underbrace{q_1^R}$$

Semi-infinite tape machine

Theorem:

Semi-infinite tape machines have the same power as Standard Turing machines

The Off-Line Machine

Proof of equivalence?

Off-line machines simulate Standard Turing Machines:

Off-line machine:

1. Copy input file to tape

2. Continue computation as in Standard Turing machine

Standard machine

Off-line machine

1. Copy input file to tape

Standard machine

Off-line machine

2. Do computations as in Turing machine

Standard Turing machines simulate Off-line machines:

Use a Standard machine with four track tape to keep track of the Off-line input file and tape contents

Off-line Machine

Four track tape -- Standard Machine

#	а	b	C	d	Input File
#	0	0	1	0	head position
	e	f	g		Tape
	0	1	0		head position
•	↑	1	ı	1	<u> </u>

C. Busch, E. Rich, R. Sproat, G.

Reference point

Input File
head position
Tape
head position

Repeat for each state transition:

- Return to reference point
- Find current input file symbol
- · Find current tape symbol
- Make transition

Theorem:

Off-line machines have the same power as Standard machines

Multitape Turing Machines

$$\delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R\}^n$$

$$\delta(q_0, a, e) = (q_1, x, y, L, R)$$

C. Busch, E. Rich, R. Sproat, G.

Time 2

$$\underbrace{q_1}^{(b,f) \to (g,d),L,R} \underbrace{q_2}$$

Proof of equivalence?

Multitape machines simulate Standard Machines:

Use just one tape

Standard machines simulate Multitape machines:

Standard machine:

· Use a multi-track tape

 A tape of the Multiple tape machine corresponds to a pair of tracks

Multitape Machine

Standard machine with four track tape

а	b	C		Tape 1
0	1	0		head position
e	f	g	h	Tape 2
0	0	1	0	head position
1	1	1	•	

C. Busch, E. Rich, R. Sproat, G.

Reference point

Repeat for each state transition:

- ·Return to reference point
- ·Find current symbol in Tape 1
- ·Find current symbol in Tape 2
- Make transition

C. Busch, E. Rich, R. Sproat, G.

Theorem:

Multi-tape machines have the same power as Standard Turing Machines

Multidimensional Turing Machines

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\},\$$

C. Busch, E. Rich, R. Sproat, G. Taylor and M. Volk

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- · Reprogrammable machine
- · Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

Description of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$

Encoding: 10101101101
separator

Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L) \qquad \delta(q_2, b) = (q_3, c, R)$$

Encoding:

10101101101 00 1101101110111011

separator

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine $_{\it M}$ as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
     00100100101111,
                           (Turing Machine 2)
     111010011110010101,
     ..... }
```