Claims

1. Compounds of general formula I

in which

В

A stands for C_3 - C_{12} -arylene or C_3 - C_{18} -heteroarylene,

stands for a bond or for C₁-C₁₂-alkylene, C₂-C₁₂-alkenylene, C₂-C₁₂-alkinylene, C₃-C₈-cycloalkylene, C₃-C₁₂-heterocycloalkylene, C₃-C₁₂-arylene or C₃-C₁₈-heteroarylene that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, cyano, nitro, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl, -(CH₂)_p-C₃-C₁₂-aryl, -(CH₂)_p-C₃-C₁₈-heteroaryl, phenyl-(CH₂)_p-R¹⁰, -(CH₂)_pPO₃(R¹⁰)₂, -(CH₂)_pSO₃R⁸, or with the group -NR⁸R⁹, -NR⁸COR⁹, -NR⁸CSR⁹, -NR⁸COR⁹, -NR

 $-S(O)_2NR^8R^9$, $-SO_3R^8$, $-CO_2R^8$, $-CONR^8R^9$, $-CSNR^8R^9$, $-SR^8$ or $-CR^8(OH)-R^9$,

X and Y, in each case independently of one another, stand for oxygen, sulfur or for the group =NR¹¹-, -NR¹¹(CH₂)-, -NR¹¹O-, -ONR¹¹-, =CR⁶R⁷, =C=O, =C=S, =SO, =SO₂, -C(O)O-, -OC(O)-, -S(O)O-, -OS(O)-, -S(O)₂O-, -OS(O)₂-, -CONR⁸-, -N(COR⁸)-, -N(COOR⁸)-, -N(CONR⁸R⁹)-, -NR⁸CO-, -OCONR⁸-, -NR⁸C(O)O-, -CSNR⁸-, -NR⁸CS-, -OCSNR⁸-, -NR⁸CSO-, -SONR⁸-, -NR⁸SO-, -SO₂NR⁸-, -S(O)₂N(COR⁸)-, -NR⁸SO₂-, -NR⁸CONR⁹-, -NR⁸CSNR⁹-, -NR⁸SONR⁹-, -NR⁸SO₂NR⁹-, -NR⁸CONR⁹-, -NR⁸C(O)NR⁹-, -NR⁸C(S)NR⁹-.

R¹ and R⁵, in each case independently of one another, stand for hydrogen, hydroxy, halogen, nitro, cyano, C₁-C₆-alkyl, C₁-C₆-alkenyl, C₁-C₆-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl or for the group -C₁-C₆-alkyloxy-C₁-C₆-alkyloxy, -(CH₂)_p-C₃-C₁₂-aryl, -(CH₂)_p-C₃-C₁₈-heteroaryl, phenyl-(CH₂)_p-R¹⁰, -(CH₂)_pPO₃(R¹⁰)₂, -NR⁸R⁹, -NR⁸COR⁹, -NR⁸CSR⁹, -NR⁸SOR⁹, -NR⁸SO₂R⁹, -NR⁸CONR⁹R¹⁰, -NR⁸SONR⁹R¹⁰, -NR⁸SO₂NR⁹R¹⁰, -NR⁸SO₂NR⁹R¹⁰, -NR⁸SO₂NR⁹R¹⁰, -COR⁸, -CSR⁸, -S(O)R⁸, -S(O)(NH)R⁸, -S(O)₂R⁸, -S(O)₂NR⁸R⁹, -CSNR⁸R⁹, S(O)₂N=CH-NR⁸R⁹, -SO₃R⁸, -CO₂H, -CO₂R⁸, -CONR⁸R⁹, -CSNR⁸R⁹, -SR⁸ or -CR⁸(OH)-R⁹, or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈-heteroaryl that is substituted in one or more places in the same way or differently with hydroxy, C₁-C₆-

alkoxy, halogen, phenyl or with the group -NR 3 R 4 , and the phenyl, C $_3$ -C $_{10}$ -cycloalkyl, C $_3$ -C $_{12}$ -aryl, C $_3$ -C $_{18}$ -heteroaryl, -(CH $_2$) $_p$ -C $_3$ -C $_{12}$ -aryl and -(CH $_2$) $_p$ -C $_3$ -C $_{18}$ -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C $_1$ -C $_6$ -alkyl, C $_1$ -C $_6$ -alkoxy, or with the group -CF $_3$ or -OCF $_3$, and the ring of the C $_3$ -C $_10$ -cycloalkyl and the C $_1$ -C $_10$ -alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

R² stands for hydrogen or C₁-C₁₀-alkyl,

stands for hydrogen, halogen, nitro, cyano, C₁-C₁₀-alkyl, halo-C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkylthio, amino, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, -NHC₁-C₆-alkyl, -N(C₁-C₆-alkyl)₂, -SO(C₁-C₆-alkyl)₁-SO₂(C₁-C₆-alkyl), C₁-C₆-alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl, -(CH₂)_p-C₃-C₁₂-aryl, -(CH₂)_p-C₃-C₁₈-heteroaryl, phenyl-(CH₂)_p-R¹⁰, -(CH₂)_pPO₃(R¹⁰)₂ or for the group -NR⁸R⁹, or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈-heteroaryl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C₁-C₆-alkoxy, C₁-C₆-alkylthio, amino, cyano, C₁-C₆-alkyl, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₂-C₆-alkenyl, C₂-C

alkinyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -NHC₁- C_6 -alkyl, -N(C_1 - C_6 -alkyl)₂, -SO(C_1 - C_6 -alkyl), -SO₂(C_1 - C_6 -alkyl), C_1 - C_6 -alkanoyl, -CONR⁸R⁹, -COR¹⁰, C_1 - C_6 -alkylOAc, carboxy, C_3 - C_{12} -aryl, C_3 - C_{18} -heteroaryl, -(CH₂)_p- C_3 - C_{12} -aryl, -(CH₂)_p- C_3 - C_{18} -heteroaryl, phenyl-(CH₂)_p- R^{10} , -(CH₂)_pPO₃(R^{10})₂ or with the group -NR⁸R⁹, and the phenyl, C_3 - C_{10} -cycloalkyl, C_3 - C_{12} -aryl, C_3 - C_{18} -heteroaryl, -(CH₂)_p- C_3 - C_{12} -aryl and -(CH₂)_p- C_3 - C_{18} -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, or with the group -CF₃ or -OCF₃, and the ring of the C_3 - C_{10} -cycloalkyl and the C_1 - C_{10} -alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

 R^4 stands for hydrogen, halogen or C_1 - C_4 -alkyl, R^6 , R^7 , R^8 , R^{9} . R^{10}

and R¹¹, in each case independently of one another, stand for hydrogen or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈-heteroaryl that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C₁-C₁₂-alkoxy, C₁-C₆-alkylthio, amino, cyano, C₁-C₆-alkyl, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₂-C₆-alkenyl, C₃-C₆-alkenyl, C₄-C₆-alkenyl, C₄-C₆-alkenyl, C₄-C₆-alkenyl, C₅-C₆-alkenyl, C₆-C₆-alkenyl, C₆

alkinyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, -NHC₁- C_6 -alkyl, -N(C_1 - C_6 -alkyl)₂, -SO(C_1 - C_6 -alkyl), -SO₂(C_1 - C_6 -alkyl), C_1 - C_6 -alkyl, -CONR⁸R⁹, -COR¹⁰, C_1 - C_6 -alkylOAc, carboxy, C_3 - C_{12} -aryl, C_3 - C_8 -heteroaryl, -(CH₂)_p- C_3 - C_{12} -aryl, -(CH₂)_p- C_3 - C_{18} -heteroaryl, phenyl-(CH₂)_p- R^{10} , -(CH₂)_pPO₃(R^{10})₂ or with the group -NR⁸R⁹, and the phenyl, C_3 - C_{10} -cycloalkyl, C_3 - C_{12} -aryl, C_3 - C_{18} -heteroaryl, -(CH₂)_p- C_3 - C_{12} -aryl and -(CH₂)_p- C_3 - C_{18} -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, or with the group -CF₃ or -OCF₃, and the ring of the C_3 - C_{10} -cycloalkyl and the C_1 - C_{10} -alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

- m stands for 0 to 8, and
 n and p stand for 0 to 6, as well as isomers, diastereomers, enantiomers and salts
- 2. Compounds of general formula (I), according to claim 1, in which
 - A stands for phenylene or thiophenylene,

thereof.

B stands for a bond or for C₁-C₁₂-alkylene, C₂-C₁₂-alkenylene, C₂-C₁₂-alkinylene, C₃-C₈-cycloalkylene, C₃-C₁₂-heterocycloalkylene, C₃-C₁₂-arylene or C₃-C₁₈-heteroarylene that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, cyano,

```
nitro, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkinyl, C<sub>3</sub>-C<sub>10</sub>-cycloalkyl, C<sub>1</sub>-C<sub>6</sub>-hydroxyalkyl, C<sub>3</sub>-C<sub>12</sub>-aryl, C<sub>3</sub>-C<sub>18</sub>-heteroaryl, -(CH<sub>2</sub>)<sub>p</sub>-C<sub>3</sub>-C<sub>12</sub>-aryl,
-(CH<sub>2</sub>)<sub>p</sub>-C<sub>3</sub>-C<sub>18</sub>-heteroaryl, phenyl-(CH<sub>2</sub>)<sub>p</sub>-R<sup>10</sup>, -(CH<sub>2</sub>)<sub>p</sub>PO<sub>3</sub>(R<sup>10</sup>)<sub>2</sub>,
-(CH<sub>2</sub>)<sub>p</sub>SO<sub>3</sub>R<sup>8</sup> or with the group–NR<sup>8</sup>R<sup>9</sup>, -NR<sup>8</sup>COR<sup>9</sup>,
-NR<sup>8</sup>CSR<sup>9</sup>, -NR<sup>8</sup>SOR<sup>9</sup>, -NR<sup>8</sup>SO<sub>2</sub>R<sup>9</sup>, -NR<sup>8</sup>CONR<sup>8</sup>R<sup>9</sup>, -NR<sup>8</sup>COOR<sup>9</sup>,
-NR<sup>8</sup>C(NH)NR<sup>9</sup>R<sup>10</sup>, -NR<sup>8</sup>CSNR<sup>9</sup>R<sup>10</sup>, -NR<sup>8</sup>SONR<sup>9</sup>R<sup>10</sup>,
-NR<sup>8</sup>SO<sub>2</sub>NR<sup>9</sup>R<sup>10</sup>, -COR<sup>8</sup>, -CSR<sup>8</sup>, -S(O)<sub>2</sub>R<sup>8</sup>, -S(O)<sub>2</sub>NR<sup>8</sup>R<sup>9</sup>,
-SO<sub>3</sub>R<sup>8</sup>, -CO<sub>2</sub>R<sup>8</sup>, -CONR<sup>8</sup>R<sup>9</sup>, -CSNR<sup>8</sup>R<sup>9</sup>, -SR<sup>8</sup> or -CR<sup>8</sup>(OH)-R<sup>9</sup>,
```

X and Y, in each case independently of one another, stand for oxygen, sulfur or for the group -NR¹¹-, -NR¹¹(CH₂)-, -NR¹¹O-, -ONR¹¹-, =CR⁶R⁷, =C=O, =C=S, =SO, =SO₂, -C(O)O-, -OC(O)-, -S(O)O-, -OS(O)-, -S(O)₂O-, -OS(O)₂-, -CONR⁸-, -N(COR⁸)-, -N(COOR⁸)-, -N(CONR⁸R⁹)-, -NR⁸CO-, -OCONR⁸-, -NR⁸C(O)O-, -CSNR⁸-, -NR⁸CS-, -OCSNR⁸-, -NR⁸CSO -, -SONR⁸-, -NR⁸SO-, -SO₂NR⁸-, -S(O)₂N(COR⁸)-, -NR⁸SO₂-, -NR⁸CONR⁹-, -NR⁸CSNR⁹-, -NR⁸SONR⁹-, -NR⁸SO₂NR⁹-, -NR⁸C(O)NR⁹- or -NR⁸C(S)NR⁹-,

R¹ and R⁵, in each case independently of one another, stand for hydrogen, hydroxy, halogen, nitro, cyano, C₁-C₆-alkyl, C₁-C₆-alkenyl, C₁-C₆-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl or for the group -C₁-C₆-alkyloxy- C₁-C₆-alkyloxy, -(CH₂)_p-C₃-C₁₂-aryl, -(CH₂)_p-C₃-C₁₈-heteroaryl, phenyl-(CH₂)_p-R¹⁰, -(CH₂)_pPO₃(R¹⁰)₂, -NR⁸R⁹, -NR⁸COR⁹, -NR⁸COR⁹, -NR⁸COR⁹, -NR⁸CONR⁹R¹⁰, -NR⁸COOR⁹, -NR⁸CONR⁹R¹⁰, -NR⁸COOR⁹, -NR⁸CONR⁹R¹⁰, -NR⁸COOR⁹, -NR⁸CONR⁹R¹⁰, -NR⁸COOR⁹,

 $-NR^8SO_2NR^9R^{10}$, $-COR^8$, $-CSR^8$, $-S(O)R^8$, $-S(O)(NH)R^8$, $-S(O)_7R^8$. $-S(O)_2NR^8R^9$, $-S(O)_2N=CH-NR^8R^9$, $-SO_3R^8$, $-CO_2H$, $-CO_2R^8$. -CONR⁸R⁹, -CSNR⁸R⁹, -SR⁸ or -CR⁸(OH)-R⁹, or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈heteroaryl that is substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkoxy, halogen, phenyl or with the group -NR 3 R 4 , and the phenyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl, -(CH₂)_p- C₃-C₁₂-aryl and -(CH₂)_p- C₃-C₁₈-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C₁-C₆-alkyl, C₁-C₆-alkoxy, or with the group -CF₃ or -OCF₃, and the ring of C_3 - C_{10} -cycloalkyl and the C_1 - C_{10} -alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more double bonds can be contained in the ring,

 R^2 stands for hydrogen or C₁-C₁₀-alkyl,

 R^3

stands for hydrogen, halogen, nitro, cyano, C₁-C₁₀-alkyl, halo-C₁-C₁₀alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, hydroxy, C₁-C₆alkoxy, C₁-C₆-alkylthio, amino, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁- C_6 -alkyl, -NHC₁- C_6 -alkyl, -N(C_1 - C_6 -alkyl)₂, -SO(C_1 - C_6 -alkyl)₃ -SO₂(C_1 -C₆-alkyl), C₁-C₆-alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, C_3 - C_{12} -aryl, C_3 - C_{18} -heteroaryl, -(CH₂)_p- C_3 - C_{12} -aryl, -(CH₂)_p- C_3 - C_{18} heteroaryl, phenyl- $(CH_2)_p$ - R^{10} , - $(CH_2)_p$ PO₃ $(R^{10})_2$ or for the group -NR⁸R⁹,

or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈-heteroaryl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C₁-C₆-alkoxy, C₁-C₆alkylthio, amino, cyano, C₁-C₆-alkyl, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆alkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, -NHC₁-C₆alkyl, $-N(C_1-C_6-alkyl)_2$, $-SO(C_1-C_6-alkyl)_1$, $-SO_2(C_1-C_6-alkyl)_1$, $C_1-C_6-alkyl)_2$ alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, C₃-C₁₂-aryl, C_3-C_{18} -heteroaryl, - $(CH_2)_p$ - C_3-C_{12} -aryl, - $(CH_2)_p$ - C_3-C_{18} -heteroaryl, phenyl- $(CH_2)_p$ - R^{10} , - $(CH_2)_p$ PO₃ $(R^{10})_2$ or with the group -NR⁸R⁹; and the phenyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl, -(CH₂)_p-C₃- C_{12} -aryl and $-(CH_2)_p$ - C_3 - C_{18} -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C₁-C₆-alkyl, C₁-C₆-alkoxy, or with the group -CF₃ or -OCF₃, and the ring of the C₃-C₁₀-cycloalkyl and the C₁-C₁₀-alkyl optionally can be interrupted by one or more nitrogen, oxygen, and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

 R^4 stands for hydrogen, halogen or C_1 - C_4 -alkyl,

 $R^6, R^7, R^8,$

 R^9, R^{10}

and R¹¹, in each case independently of one another, stand for hydrogen or for

 C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, C_3 - C_{10} -cycloalkyl, C_3 - C_{12} aryl or C₃-C₁₈-heteroaryl that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C₁-C₁₂alkoxy, C₁-C₆-alkylthio, amino, cyano, C₁-C₆-alkyl, -NH-(CH₂)_p-C₃-C₁₀cycloalkyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₂-C₆-alkenyl, C₂-C₆alkinyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆alkyl, $-NHC_1-C_6-$ alkyl, $-N(C_1-C_6-$ alkyl)₂, $-SO(C_1-C_6-$ alkyl)₂ $-SO_2(C_1-C_6$ alkyl), C₁-C₆-alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, C_3-C_{12} -aryl, C_3-C_8 -heteroaryl, $-(CH_2)_p-C_3-C_{12}$ -aryl, $-(CH_2)_p-C_3-C_{18}$ heteroaryl, phenyl-(CH₂)_p-R¹⁰, -(CH₂)_pPO₃(R¹⁰)₂ or with the group $-NR^8R^9$, and the phenyl, C_3-C_{10} -cycloalkyl, C_3-C_{12} -aryl, C_3-C_{18} heteroaryl, $-(CH_2)_p$ -C₃-C₁₂-aryl and $-(CH_2)_p$ -C₃-C₁₈-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C₁-C₆-alkyl, C₁-C₆-alkoxy, or with the group -CF₃ or -OCF₃, and the ring of C₃-C₁₀-cycloalkyl and the C₁-C₁₀alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms, and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

m stands for 0 to 8, and

n and p stand for 0 to 6,

as well as isomers, diastereomers, enantiomers and salts thereof..

3. Compounds of general formula (I), according to claims 1 and 2, in which

- A stands for phenylene or thiophenylene,
- stands for a bond or for C_1 - C_{12} -alkylene, C_3 - C_8 -cycloalkylene or C_3 - C_{12} arylene that is optionally substituted in one or more places in the same
 way or differently with hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -hydroxyalkyl or
 - $(CH_2)_pSO_3R^8$,

X and Y, in each case independently of one another, stand for oxygen or for the group -NR¹¹-, -NR¹¹(CH₂)-, -CONR⁸-, -SO₂NR⁸- or -NR⁸CONR⁹-,

- R^1 and R^5 , in each case independently of one another, stand for hydrogen, halogen, nitro, C_1 - C_6 -alkyl, or for $-NR^8R^9$, $-C_1$ - C_6 -alkyloxy or $-S(O)_2NR^8R^9$,
- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl or -CONR⁸R⁹,
- R⁴ stands for hydrogen,

R8,

 R^9

- and R^{11} , in each case independently of one another, stand for hydrogen or for $C_1\text{-}C_{10}\text{-}alkyl$,
- m stands for 0 to 4, and
- p stands for 0 to 6,

as well as isomers, diastereomers, enantiomers and salts thereof.

- 4. Compounds of general formula (I), according to claims 1 to 3, in which
- A stands for phenylene,
- B stands for a bond or for C_1 - C_{12} -alkylene, cyclohexylene or phenylene that

is optionally substituted in one or more places in the same way or differently with hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -hydroxyalkyl or -(CH₂)SO₃R⁸,

- X stands for oxygen or for the group -CONR⁸-, -SO₂NR⁸- or -NR⁸CONR⁹-,
- Y stands for oxygen or for the group -NR¹¹-,
- R^1 and R^5 , in each case independently of one another, stand for hydrogen, amino, halogen, nitro, C_1 - C_6 -alkyl, or for the group $-NR^8R^9$, $-C_1$ - C_6 -alkyloxy or $-S(O)_2NR^8R^9$,
- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl, or -CONR⁸R⁹,
- R⁴ stands for hydrogen,
- R⁸, R⁹ and R¹¹, in each case independently of one another, stand for hydrogen or for methyl or isobutyl,
- m stands for 0 to 4, and
- p stands for 0 to 6,

as well as isomers, diastereomers, enantiomers, and salts thereof.

- 5. Compounds of general formula (I), according to claims 1 to 4, in which
- A stands for phenylene,
- B stands for a bond or for C_1 - C_{12} -alkylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C_1 - C_6 -hydroxyalkyl or -(CH₂)SO₃R⁸,
- X stands for oxygen or for the group -SO₂NR⁸- or -NR⁸CONR⁹-,

- Y stands for the group -NR¹¹-,
- R¹ and R⁵, in each case independently of one another, stand for hydrogen, amino, halogen, nitro or for the group -S(O)₂NR⁸R⁹,
- R² stands for hydrogen,
- R³ stands for halogen or cyano,
- R⁴ stands for hydrogen,
- R⁸, R⁹ and R¹¹ in each case stand for hydrogen, and
- m stands for 0 to 4,

as well as isomers, diastereomers, enantiomers and salts thereof.

- 6. Compounds of general formula (I), according to claims 1 to 3, in which
- A stands for thiophenylene,
- B stands for a bond or for C_1 - C_{12} -alkylene,
- X stands for the group -SO₂NR⁸-,
- Y stands for the group -NR¹¹-,
- R³ stands for halogen,
- R^1 , R^2 , R^4 , R^5 ,
- R⁸, R⁹ and R¹¹ in each case stand for hydrogen,
- m stands for 0 to 2,

as well as isomers, diastereomers, enantiomers and salts thereof.

7. Compounds of general formula I

(I),

in which

- A stands for C_3 - C_{12} -arylene or C_3 - C_{18} -heteroarylene,
- stands for a bond or for C₁-C₁₂-alkylene, C₂-C₁₂-alkenylene, C₂-C₁₂-alkinylene, C₃-C₈-cycloalkylene, C₃-C₁₂-heterocycloalkylene, C₃-C₁₂-arylene or C₃-C₁₈-heteroarylene that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, cyano, nitro, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl, -(CH₂)_p-C₃-C₁₂-aryl, -(CH₂)_p-C₃-C₁₂-aryl, phenyl-(CH₂)_p-R¹⁰, -(CH₂)_pPO₃(R¹⁰)₂ or with the group–NR⁸R⁹, –NR⁸COR⁹, –NR⁸CSR⁹, –NR⁸SOR⁹, –NR⁸SO₂R⁹, -NR⁸SO₂R⁹, -NR⁸CONR⁸R⁹, -NR⁸COOR⁹, -NR⁸C(NH)NR⁹R¹⁰, -NR⁸CSNR⁹R¹⁰, -NR⁸SONR⁹R¹⁰, -NR⁸SO₂NR⁹R¹⁰, -COR⁸, -CSR⁸, -S(O)R⁸, -S(O)₂R⁸, -S(O)₂R⁸, -S(O)₂NR⁸R⁹, -SO₃R⁸, -CO₂R⁸, -CONR⁸R⁹, -CSNR⁸R⁹, -SR⁸ or -CR⁸(OH)-R⁹,

X and Y, in each case independently of one another, stand for oxygen, sulfur or

```
for the group =NR<sup>11</sup>, -NR<sup>11</sup>O-, -ONR<sup>11</sup>-, =CR<sup>6</sup>R<sup>7</sup>, =C=O, =C=S, =SO, =SO<sub>2</sub>, -C(O)O-, -OC(O)-, -S(O)O-, -OS(O)-, -S(O)<sub>2</sub>O-, -OS(O)<sub>2</sub>-, -CONR<sup>8</sup>-, -NR<sup>8</sup>CO-, -OCONR<sup>8</sup>-, -NR<sup>8</sup>C(O)O-, -CSNR<sup>8</sup>-, -NR<sup>8</sup>CS-, -OCSNR<sup>8</sup>-, -NR<sup>8</sup>CSO -, -SONR<sup>8</sup>-, -NR<sup>8</sup>SO-, -SO<sub>2</sub>NR<sup>8</sup>-, -NR<sup>8</sup>SO<sub>2</sub>-, -NR<sup>8</sup>CONR<sup>9</sup>-, -NR<sup>8</sup>CSNR<sup>9</sup>-, -NR<sup>8</sup>SONR<sup>9</sup>-, -NR<sup>8</sup>SO<sub>2</sub>NR<sup>9</sup>-, -NR<sup>8</sup>CONR<sup>9</sup>-, -NR<sup>8</sup>CSNR<sup>9</sup>-, -NR<sup>8</sup>SONR<sup>9</sup>-, -NR<sup>8</sup>SO<sub>2</sub>NR<sup>9</sup>-, -NR<sup>8</sup>C(O)NR<sup>9</sup>- or -NR<sup>8</sup>C(S)NR<sup>9</sup>-,
```

R¹ and R⁵, in each case independently of one another, stand for hydrogen, hydroxy, halogen, nitro, cyano, C₁-C₆-alkyl, C₁-C₆-alkenyl, C₁-C₆-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl, C₃-C₁₈-heteroaryl or for the group -(CH₂)_p- C_3-C_{12} -aryl, $-(CH_2)_p-C_3-C_{18}$ -heteroaryl, phenyl- $(CH_2)_p-R^{10}$, $-(CH_2)_{D}PO_3(R^{10})_2$, $-NR^8R^9$, $-NR^8COR^9$, $-NR^8CSR^9$, -NR⁸SOR⁹, -NR⁸SO₂R⁹, -NR⁸CONR⁹R¹⁰, -NR⁸COOR⁹. -NR8C(NH)NR9R10, -NR8CSNR9R10, -NR8SONR9R10, $-NR^8SO_2NR^9R^{10}$, $-COR^8$ $-CSR^8$ $-S(O)R^8$, $-S(O)_7R^8$. $-S(O)_2NR^8R^9$, $-SO_3R^8$, $-CO_2H$, $-CO_2R^8$, $-CONR^8R^9$, $-CSNR^8R^9$, $-SR^8$ or $-CR^8(OH)-R^9$, or for C_1-C_{10} -alkyl, C_2-C_{10} -alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈-heteroaryl that is substituted in one or more places in the same way or differently with hydroxy, C₁-C₆-alkoxy, halogen, phenyl or with the group -NR³R⁴, and the phenyl, C_3 - C_{10} -cycloalkyl, C_3 - C_{12} -aryl, C_3 - C_{18} -heteroaryl, -(CH₂)_p- C_3 - C_{12} aryl and $-(CH_2)_p$ - C_3 - C_{18} -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C₁-C₆-alkyl, C₁-C₆-alkoxy, or with the group -CF₃ or -OCF₃, and the ring

of the C_3 - C_{10} -cycloalkyl and the C_1 - C_{10} -alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

R² stands for hydrogen or C₁-C₁₀-alkyl,

 R^3 stands for hydrogen, halogen, nitro, cyano, C₁-C₁₀-alkyl, halo-C₁-C₁₀alkyl, C2-C10-alkenyl, C2-C10-alkinyl, C3-C10-cycloalkyl, hydroxy, C1-C6alkoxy, C₁-C₆-alkylthio, amino, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁- C_6 -alkyl, -NHC₁- C_6 -alkyl, -N(C_1 - C_6 -alkyl)₂, -SO(C_1 - C_6 -alkyl)₂ -SO₂(C_1 -C₆-alkyl), C₁-C₆-alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, C_3-C_{12} -aryl, C_3-C_{18} -heteroaryl, $-(CH_2)_p-C_3-C_{12}$ -aryl, $-(CH_2)_p-C_3-C_{18}$ heteroaryl, phenyl- $(CH_2)_p$ - R^{10} , - $(CH_2)_p$ PO₃ $(R^{10})_2$ or for the group -NR⁸R⁹, or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈-heteroaryl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C₁-C₆-alkoxy, C₁-C₆alkylthio, amino, cyano, C₁-C₆-alkyl, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆alkoxy-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, -NHC₁-C₆alkyl, $-N(C_1-C_6-alkyl)_2$, $-SO(C_1-C_6-alkyl)_1$, $-SO_2(C_1-C_6-alkyl)_2$, $-SO_2(C_1-C_6-alkyl)_2$ alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, C₃-C₁₂-aryl, C₃- C_{18} -heteroaryl, -(CH₂)_p- C_3 - C_{12} -aryl, -(CH₂)_p- C_3 - C_{18} -heteroaryl, phenyl- $(CH_2)_p$ - R^{10} , - $(CH_2)_p$ PO₃ $(R^{10})_2$ or with the group -NR⁸R⁹, and the phenyl.

 C_3 - C_{10} -cycloalkyl, C_3 - C_{12} -aryl, C_3 - C_{18} -heteroaryl, - $(CH_2)_p$ - C_3 - C_{12} -aryl and - $(CH_2)_p$ - C_3 - C_{18} -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, or with the group - CF_3 or - OCF_3 , and the ring of the C_3 - C_{10} -cycloalkyl and the C_1 - C_{10} -alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

R⁴ stands for hydrogen, halogen or C₁-C₄-alkyl,

 $R^6, R^7, R^8,$

R9, R10

and R¹¹, in each case independently of one another, stand for hydrogen or for C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkinyl, C₃-C₁₀-cycloalkyl, C₃-C₁₂-aryl or C₃-C₁₈-heteroaryl that is optionally substituted in one or more places in the same way or differently with hydroxy, halogen, C₁-C₁₂-alkoxy, C₁-C₆-alkylthio, amino, cyano, C₁-C₆-alkyl, -NH-(CH₂)_p-C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkyl, C₁-C₆-hydroxyalkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy-C₁-C₆-alkyl, -NHC₁-C₆-alkyl, -N(C₁-C₆-alkyl)₂, -SO(C₁-C₆-alkyl)₁, -SO₂(C₁-C₆-alkyl)₂, C₁-C₆-alkyl)₁, C₁-C₆-alkanoyl, -CONR⁸R⁹, -COR¹⁰, C₁-C₆-alkylOAc, carboxy, C₃-C₁₂-aryl, C₃-C₈-heteroaryl, -(CH₂)_p-C₃-C₁₂-aryl, -(CH₂)_p-C₃-C₁₈-heteroaryl, phenyl-(CH₂)_p-R¹⁰, -(CH₂)_pPO₃(R¹⁰)₂ or with the group

 $-NR^8R^9$, and the phenyl, C_3 - C_{10} -cycloalkyl, C_3 - C_{12} -aryl, C_3 - C_{18} -heteroaryl, $-(CH_2)_p$ - C_3 - C_{12} -aryl and $-(CH_2)_p$ - C_3 - C_{18} -heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, or with the group $-CF_3$ or $-OCF_3$, and the ring of the C_3 - C_{10} -cycloalkyl and the C_1 - C_{10} -alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms, and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,

m stands for 0 to 8, and

n and p stand for 0 to 6,

as well as isomers, diastereomers, enantiomers and salts thereof.

- 8. Compounds of general formula (I), according to claim 7, in which
- A stands for phenylene or thiophenylene,
- B stands for C_1 - C_{12} -alkylene that is optionally substituted in one or more places in the same way or differently with hydroxy, C_1 - C_6 -alkyl or C_1 - C_6 -hydroxyalkyl,
- X and Y, in each case independently of one another, stand for oxygen or for the group =NR¹¹, -NR⁸CO-, -CONR⁸-, -SO₂NR⁸- or -NR⁸SO₂-,
- R^1 and R^5 , in each case independently of one another, stand for hydrogen or for the group $-SO_2NR^8R^9$,
- R² stands for hydrogen,
- R³ stands for hydrogen, halogen, cyano, C₁-C₁₀-alkyl or for the group

-CONR⁸R⁹,

R⁴ stands for hydrogen,

R⁸ and R¹¹ stand for hydrogen,

R⁹ stands for hydrogen or C₁-C₆-alkyl,

m stands for 0 to 8, and

n stands for 0 to 6,

as well as isomers, diastereomers, enantiomers and salts thereof.

- 9. Process for the production of the compounds of general formula I according to the invention, wherein either
 - a) compounds of general formula VIII

$$R^{2}$$
 A
 $(X)_{n}$
 R^{4}
 $(Y)_{n}$
 $(Y)_{n}$
 $(Y)_{n}$

in which R¹, R², R³, R⁴, R⁵, X, Y, A, B, m and n have the meanings that are indicated in general formula I, and L stands for a leaving group, are cyclized with a suitable acid to compounds of general formula I, or

b) the acyclic precursors of general formula (IX)

$$O_2N$$
 A
 $(R^5)_m$
 $(R^1)_m$
 $(X)_n$
 R^4
 (IX)

in which R¹, R³, R⁴, R⁵, X, Y, A, B, m and n have the meanings that are indicated in general formula I, and L stands for a leaving group, are first reduced to amine in a suitable solvent and a suitable reducing agent at 0°C until reflux takes place and then the intermediately formed amine is cyclized to the compounds of general formula I.

10. Compounds of general formula (II), (III), (IV), (V), (VI) or (VII)

$$(R^{5})_{m} \xrightarrow{O} S = O \xrightarrow{R^{4}} R^{4}$$

$$(II)$$

$$(R^{5})_{m} \xrightarrow{O} S = O \xrightarrow{R^{4}} R^{4}$$

$$(IV)$$

$$(R^{5})_{m}$$
 $(R^{1})_{m}$
 A
 B
 R^{1}
 R^{3}

(V)

$$(R^{1})_{m} \xrightarrow{(R^{5})_{m}} O \xrightarrow{R^{8}} B \xrightarrow{N} R^{11} \xrightarrow{R^{3}} R^{4}$$

$$(VI)$$

$$(R^{1})_{m} \xrightarrow{A} \xrightarrow{N} \xrightarrow{R^{8}} \xrightarrow{B} \xrightarrow{N} \xrightarrow{R^{11}} \xrightarrow{R^{3}}$$
oder (VII)
$$[or]$$

in which R¹, R², R³, R⁴, R⁵, R⁸, R¹¹, A, B and m have the meanings that are indicated in general formula I and D stands for –NH₂, NAc or –NO₂, q stands for 1 to 12, U stands for group –OH, -CO₂H, -CO₂-C1-C₆-alkyl, -SO₂Cl, -SO₂F, -SO₃H or

and W stands for the group –OH –OH, -CO₂H, -CO₂-C1-C₆-alkyl, -SO₂Cl, -SO₂F or -SO₃H,

as well as isomers, diastereomers, enantiomers and salts thereof.

11. Compounds of general formula (II), (III), (IV), (V), (VI) or (VII) according to claim 10, in which

A stands for phenylene or thiophenylene, and

R¹, R², R³, R⁴, R⁵, R⁸, R¹¹ and m have the meanings that are indicated in general formula I, and D stands for -NH₂, -NAc or -NO₂, q stands for 1 to 12,

U stands for the group –OH, -CO₂H, -CO₂-C1-C₆-Alkyl, -SO₂Cl, -SO₂F, -SO₃H or

$$-\frac{H}{N}$$
 (= -NHZ) and

W stands for the group -OH -OH, -CO₂H, -CO₂-C1-C₆-alkyl, -SO₂Cl, -SO₂F or -SO₃H,

as well as isomers, diastereomers, enantiomers and salts thereof.

12. Use of the compounds of general formula I, according to claims 1 to 8, for the production of a pharmaceutical agent for the treatment of cancer, angiofibroma, arthritis, eye diseases, autoimmune diseases, chemotherapy agent-induced alopecia and mucositis, Crohn's disease, endometriosis, fibrotic diseases, hemangioma, cardiovascular diseases, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases, as well as injuries to nerve tissue, viral infections, for inhibiting reocclusion of vessels after balloon catheter treatment, in vascular prosthetics or after mechanical devices are used to keep vessels open, such as, e.g., stents, as immunosuppressive agents, for supporting scar-free healing, in the case of senile keratosis and contact dermatitis.

13. Use according to claim 12, wherein

cancer is defined as solid tumors, tumor or metastasis growth, Kaposi's sarcoma, Hodgkin's disease, and leukemia;

arthritis is defined as rheumatoid arthritis;

eye diseases are defined as diabetic retinopathy, and neovascular glaucoma; auto-immune diseases are defined as psoriasis, alopecia and multiple sclerosis; fibrotic diseases are defined as cirrhosis of the liver, mesangial cell proliferative diseases, and arteriosclerosis;

infectious diseases are defined as diseases that are caused by unicellular parasites; cardiovascular diseases are defined as stenoses, such as, e.g., stent-induced restenoses, arterioscleroses, and restenoses;

nephrological diseases are defined as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplant rejections and glomerulopathy;

chronic neurodegenerative diseases are defined as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease;

acute neurodegenerative diseases are defined as ischemias of the brain and neurotraumas;

and viral infections are defined as cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.

- 14. Pharmaceutical agents that contain at least one compound according to one of claims 1 to 8.
- 15. Pharmaceutical agents according to claim 14 for treating cancer, angiofibroma, arthritis, eye diseases, autoimmune diseases, chemotherapy agent-induced alopecia and mucositis, Crohn's disease, endometriosis, fibrotic diseases, hemangioma,

cardiovascular diseases, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases, as well as injuries to nerve tissue, and viral infections, and for inhibiting reocclusion of vessels after balloon catheter treatment, in vascular prosthetics or after mechanical devices are used to keep vessels open, such as, e.g., stents, and as immunosuppressive agents, and for supporting scar-free healing, and in the case of senile keratosis and contact dermatitis.

16. Pharmaceutical agent for use according to claim 15, whereby cancer is defined as solid tumors, tumor or metastasis growth, Kaposi's sarcoma, Hodgkin's disease, and leukemia;

arthritis is defined as rheumatoid arthritis;

diseases, and arteriosclerosis;

eye diseases are defined as diabetic retinopathy, and neovascular glaucoma; auto-immune diseases are defined as psoriasis, alopecia and multiple sclerosis; fibrotic diseases are defined as cirrhosis of the liver, mesangial cell proliferative

infectious diseases are defined as diseases that are caused by unicellular parasites; cardiovascular diseases are defined as stenoses, such as, e.g., stent-induced restenoses, arterioscleroses, and restenoses;

nephrological diseases are defined as glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplant rejections and glomerulopathy;

chronic neurodegenerative diseases are defined as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease;

acute neurodegenerative diseases are defined as ischemias of the brain and neurotraumas;

and viral infections are defined as cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.

- 17. Compounds according to claims 1 to 8 and pharmaceutical agents according to one of claims 14 to 16 with suitable formulation substances and vehicles.
- 18. Use of the compounds of general formula I and the pharmaceutical agents, according to one of claims 1 to 8 and 14, as inhibitors of the cyclin-dependent kinases.
- Use according to claim 17, wherein the kinase is CDK1, CDK2, CDK3,
 CDK4, CDK5, CDK6, CDK7, CDK8 or CDK9.
- 20. Use of the compounds of general formula I and the pharmaceutical agents, according to one of claims 1 to 8 and 14, as inhibitors of the glycogen-synthase-kinase (GSK-3ß).
- 21. Use of the compounds of general formula I and the pharmaceutical agents, according to one of claims 1 to 8 and 14, as inhibitors of the VEGF-receptor tyrosine kinases.
- 22. Use of the compounds of general formula I and the pharmaceutical agents, according to one of claims 1 to 8 and 14, as inhibitors of the cyclin-dependent kinases and the VEGF-receptor tyrosine kinases.
- 23. Use of the compounds of general formula I, according to one of claims 1 to 8, in the form of a pharmaceutical preparation for enteral, parenteral and oral administration.