1 Boolean Logic Circuits [45 points]

During your job interview, you are asked to design a combinational circuit with a four-bit input, $\{A, B, C, D\}$ (A is the most significant bit and D is the least significant bit), and two 1-bit outputs, Fib and G3. The value of each output is determined as follows:

- The output Fib is 1 only when the input 4-bit number is a Fibonacci number. You can calculate Fibonacci numbers as follows, f(0) = 0, f(1) = 1, and f(n) = f(n-1) + f(n-2) for $n \ge 2$.
- The output G3 is 1 only when the input 4-bit number is greater than 3.
- Otherwise, the corresponding output is zero.

Please answer the following three questions.

(a) [10 points] Fill in the missing entries in the truth table below for the combinational circuit you are designing and express the output Fib in the sum of products representation.

Inputs				Outputs	
A	В	C	D	Fib	G3
0	0	0	0	1	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1	1
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	0	1
1	1	0	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	1	0	1

 $Fib = (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D) + (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D}) + (\overline{A} \cdot \overline{B} \cdot C \cdot D) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot \overline{C} \cdot D)$

Final Exam Page 2 of 27

(b) [15 points] Simplify the Fib expression using Boolean minimization rules. Show your work stepby-step.

$$Fib = (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D) + (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D}) + (\overline{A} \cdot \overline{B} \cdot C \cdot D) + (\overline{A} \cdot B \cdot \overline{C} \cdot D)$$

$$Fib = (\overline{A} \cdot \overline{B}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot \overline{B} \cdot \overline{D}) + (\overline{A} \cdot B \cdot D))$$

$$Fib = (\overline{A} \cdot \overline{B}) + (\overline{C} \cdot ((\overline{A} \cdot B \cdot D) + (\overline{A} \cdot \overline{B} \cdot \overline{D})))$$

$$Fib = (\overline{A} \cdot \overline{B}) + (\overline{B} \cdot \overline{C} \cdot D) + (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$$

$$Fib = (\overline{A} \cdot \overline{B}) + (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D})$$

$$Fib = (\overline{A} \cdot \overline{B}) + (\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{B} \cdot \overline{C} \cdot D)$$

$$Fib = (\overline{A} \cdot \overline{B}) + (\overline{B} \cdot \overline{C} \cdot \overline{D}) + (\overline{B} \cdot \overline{C} \cdot D)$$

(c) [20 points] Find the simplest representation of the G3 output by using only 2-input NAND gates. Show your work step-by-step.

$$G3 = \overline{(\overline{A \cdot A}) \cdot (\overline{B \cdot B})}$$
Explanation:

Explanation:

Explanation:
$$G3 = (\overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}) + (\overline{A} \cdot B \cdot \overline{C} \cdot D) + (\overline{A} \cdot B \cdot C \cdot \overline{D}) + (\overline{A} \cdot B \cdot C \cdot D) + (A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) + (A \cdot B \cdot C \cdot \overline{D}) + (A \cdot B \cdot C \cdot D) + (C \cdot$$

Final Exam Page 3 of 27