Flu Shot Learning: Predict Seasonal Flu Vaccines

Main objective of the analysis that specifies whether your model will be focused on prediction or interpretation

The project is focus solely on predicting whether people got seasonal flu vaccines using information they shared about their backgrounds, opinions, and health behaviors.

Brief description of the data set you chose, a summary of its attributes, and an outline of what you are trying to accomplish with this analysis

We will take a look at vaccination, a key public health measure used to fight infectious diseases. Vaccines provide immunization for individuals, and enough immunization in a community can further reduce the spread of diseases through "herd immunity."

The CDC has other ongoing programs for annual phone surveys that continue to monitor seasonal flu vaccination.

The dataset has 31 features. For all binary variables: 0 = No; 1 = Yes.

The aim of this project is to find out based on the survey data collected, we can find out characteristics of people who are willing to get flu vaccine or not.

The features in this dataset:

Field	Description
seasonal_vaccine	Whether respondent received seasonal flu vaccine
respondent_id	a unique and random identifier
behavioral_antiviral_meds	Has taken antiviral medications. (binary)
behavioral_avoidance	Has avoided close contact with others with flu-like symptoms. (binary)
behavioral_face_mask	Has bought a face mask. (binary)
behavioral_wash_hands	Has frequently washed hands or used hand sanitizer. (binary)
behavioral_large_gatherings	Has reduced time at large gatherings. (binary)
behavioral_outside_home	Has reduced contact with people outside of own household. (binary)
behavioral_touch_face	Has avoided touching eyes, nose, or mouth. (binary)
doctor_recc_seasonal	Seasonal flu vaccine was recommended by doctor. (binary)
chronic_med_condition	Has any of the following chronic medical conditions: asthma or an other lung condition, diabetes, a heart condition, a kidney condition, sickle cell anemia or other anemia, a neurological or neuromuscular condition, a liver condition, or a weakened immune system caused by a chronic illness or by medicines taken for a chronic illness. (binary)
child_under_6_months	Has regular close contact with a child under the age of six months. (binary)
health_worker	Is a healthcare worker. (binary)
health_insurance	Has health insurance. (binary)
opinion_seas_vacc_effective	Respondent's opinion about seasonal flu vaccine effectiveness. 1 = Not at all effective; 2 = Not very effective; 3 = Don't know; 4 = Somewhat effective; 5 = Very effective.
opinion_seas_risk	Respondent's opinion about risk of getting sick with seasonal flu without vaccine. 1 = Very Low; 2 = Somewhat low; 3 = Don't know; 4 = Somewhat high; 5 = Very high.
opinion_seas_sick_from_vacc	Respondent's worry of getting sick from taking seasonal flu vaccine. 1 = Not at all worried; 2 = Not very worried; 3 = Don't know; 4 = Somewhat worried; 5 = Very worried.
age_group	Age group of respondent.
education	Self-reported education level.
race	Race of respondent.
sex	Sex of respondent.
income_poverty	Household annual income of respondent with respect to 2008 Census poverty thresholds.
marital_status	Marital status of respondent.
employment_status	Employment status of respondent.
hhs_geo_region	Respondent's residence using a 10-region geographic classification defined by the U.S. Dept. of Health and Human Services. Values are represented as short random character strings.
census_msa	Respondent's residence within metropolitan statistical areas (MSA) as defined by the U.S. Census.
household_adults	Number of other adults in household, top-coded to 3.
household_children	Number of children in household, top-coded to 3.
employment_industry	Type of industry respondent is employed in. Values are represented as short random character strings.
employment_occupation	Type of occupation of respondent. Values are represented as short random character strings.

Brief summary of data exploration and actions taken for data cleaning and feature engineering

Data Exploration includes data summary, statistics, create relevant graphs to find any relationships within.

As for data cleaning, we will check for missing values and decide what imputation method to be used. We also check for data duplicates.

Import Libraries

```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
        from sklearn.model_selection import cross_val_score, train_test_split, GridSearchC
        V, RandomizedSearchCV
        from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler, OneHo
        tEncoder, PolynomialFeatures
        from sklearn.metrics import confusion_matrix, classification_report, mean_absolute_
        error, mean_squared_error,r2_score
        from sklearn.metrics import plot_confusion_matrix, plot_precision_recall_curve, plo
        t_roc_curve, accuracy_score
        from sklearn.metrics import auc, f1_score, precision_score, recall_score, roc_auc_s
        core
        %matplotlib inline
        sns.set_style('dark')
        sns.set(font_scale=1.2)
        import warnings
        warnings.filterwarnings('ignore')
        np.random.seed(123)
        pd.options.display.max_columns= None
        pd.options.display.max_rows = 40
```

In [2]: | df = pd.read_csv("training_set_features.csv")

In [3]: df

Out[3]:

	respondent_id	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_
0	0	0.0	0.0	0.0	
1	1	0.0	1.0	0.0	
2	2	0.0	1.0	0.0	
3	3	0.0	1.0	0.0	
4	4	0.0	1.0	0.0	
26702	26702	0.0	1.0	0.0	
26703	26703	0.0	1.0	0.0	
26704	26704	0.0	1.0	1.0	
26705	26705	0.0	0.0	0.0	
26706	26706	0.0	1.0	0.0	

26707 rows × 31 columns

Dataset has 31 categorical features.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 26707 entries, 0 to 26706 Data columns (total 31 columns):

Data #	Columns (total 31 columns):	Non-Null Count	Dtype
0	respondent_id	26707 non-null	int64
1	behavioral_antiviral_meds	26636 non-null	float64
2	behavioral_avoidance	26499 non-null	float64
3	behavioral_face_mask	26688 non-null	float64
4	behavioral_wash_hands	26665 non-null	float64
5	behavioral_large_gatherings	26620 non-null	float64
6	behavioral_outside_home	26625 non-null	float64
7	behavioral_touch_face	26579 non-null	float64
8	doctor_recc_seasonal	24547 non-null	float64
9	chronic_med_condition	25736 non-null	float64
10	child_under_6_months	25887 non-null	float64
11	health_worker	25903 non-null	float64
12	health_insurance	14433 non-null	float64
13	opinion_seas_vacc_effective	26245 non-null	float64
14	opinion_seas_risk	26193 non-null	float64
15	opinion_seas_sick_from_vacc	26170 non-null	float64
16	age_group	26707 non-null	object
17	education	25300 non-null	object
18	race	26707 non-null	object
19	sex	26707 non-null	object
20	income_poverty	22284 non-null	object
21	marital_status	25299 non-null	object
22	rent_or_own	24665 non-null	object
23	employment_status	25244 non-null	object
24	hhs_geo_region	26707 non-null	object
25	census_msa	26707 non-null	object
26	household_adults	26458 non-null	float64
27	household_children	26458 non-null	float64
28	employment_industry	13377 non-null	object
29	employment_occupation	13237 non-null	object
30	seasonal_vaccine	26707 non-null	int64
dtype	es: float64(17), int64(2), ob	ject (12)	
memoi	ry usage: 6.3+ MB		

memory usage: 6.3+ MB

Summary of statistics below:

Out[5]:

	count	unique	top	freq	mean	std	min	25%	50%	7:
respondent_id	26707	NaN	NaN	NaN	13353	7709.79	0	6676.5	13353	2002
behavioral_antiviral_meds	26636	NaN	NaN	NaN	0.0488437	0.215545	0	0	0	
behavioral_avoidance	26499	NaN	NaN	NaN	0.725612	0.446214	0	0	1	
behavioral_face_mask	26688	NaN	NaN	NaN	0.0689823	0.253429	0	0	0	
behavioral_wash_hands	26665	NaN	NaN	NaN	0.825614	0.379448	0	1	1	
behavioral_large_gatherings	26620	NaN	NaN	NaN	0.35864	0.47961	0	0	0	
behavioral_outside_home	26625	NaN	NaN	NaN	0.337315	0.472802	0	0	0	
behavioral_touch_face	26579	NaN	NaN	NaN	0.677264	0.467531	0	0	1	
doctor_recc_seasonal	24547	NaN	NaN	NaN	0.329735	0.470126	0	0	0	
chronic_med_condition	25736	NaN	NaN	NaN	0.283261	0.450591	0	0	0	
child_under_6_months	25887	NaN	NaN	NaN	0.0825897	0.275266	0	0	0	
health_worker	25903	NaN	NaN	NaN	0.111918	0.315271	0	0	0	
health_insurance	14433	NaN	NaN	NaN	0.87972	0.3253	0	1	1	
opinion_seas_vacc_effective	26245	NaN	NaN	NaN	4.02599	1.08656	1	4	4	
opinion_seas_risk	26193	NaN	NaN	NaN	2.71916	1.38506	1	2	2	
opinion_seas_sick_from_vacc	26170	NaN	NaN	NaN	2.11811	1.33295	1	1	2	
age_group	26707	5	65+ Years	6843	NaN	NaN	NaN	NaN	NaN	N
education	25300	4	College Graduate	10097	NaN	NaN	NaN	NaN	NaN	N
race	26707	4	White	21222	NaN	NaN	NaN	NaN	NaN	N
sex	26707	2	Female	15858	NaN	NaN	NaN	NaN	NaN	N
income_poverty	22284	3	<= \$75,000, Above Poverty	12777	NaN	NaN	NaN	NaN	NaN	N
marital_status	25299	2	Married	13555	NaN	NaN	NaN	NaN	NaN	N
rent_or_own	24665	2	Own	18736	NaN	NaN	NaN	NaN	NaN	Ν
employment_status	25244	3	Employed	13560	NaN	NaN	NaN	NaN	NaN	N
hhs_geo_region	26707	10	Izgpxyit	4297	NaN	NaN	NaN	NaN	NaN	N
census_msa	26707	3	MSA, Not Principle City	11645	NaN	NaN	NaN	NaN	NaN	N
household_adults	26458	NaN	NaN	NaN	0.886499	0.753422	0	0	1	
household_children	26458	NaN	NaN	NaN	0.534583	0.928173	0	0	0	
employment_industry	13377	21	fcxhlnwr	2468	NaN	NaN	NaN	NaN	NaN	N
employment_occupation	13237	23	xtkaffoo	1778	NaN	NaN	NaN	NaN	NaN	N
seasonal_vaccine	26707	NaN	NaN	NaN	0.465608	0.498825	0	0	0	

Shape of dataset:

In [6]: df.shape

Data Exploration and Data Visualization

The dataset is mainly discrete/categorical types. Using Groupby Method to see certain selected categories:

 seasonal_vaccine

 0
 14272
 13407
 11832
 14272
 14272
 7715

 1
 12435
 11893
 10452
 12435
 12435
 5662

age_group education income_poverty hhs_geo_region census_msa employment_industry

```
In [9]: df.groupby(by=["seasonal_vaccine", "age_group"]).count()[["respondent_id"]]
```

Out[9]:

respondent_id

seasonal_vaccine	age_group	
0	18 - 34 Years	3731
	35 - 44 Years	2453
	45 - 54 Years	3136
	55 - 64 Years	2719
	65+ Years	2233
1	18 - 34 Years	1484
	35 - 44 Years	1395
	45 - 54 Years	2102
	55 - 64 Years	2844
	65+ Years	4610

```
In [10]: df.groupby(by=["seasonal_vaccine","education"]).count()[["respondent_id"]]
```

Out[10]:

respondent_id

seasonal_vaccine	education	
0	12 Years	3199
	< 12 Years	1415
	College Graduate	4933
	Some College	3860
1	12 Years	2598
	< 12 Years	948
	College Graduate	5164
	Some College	3183

In [11]: df.groupby(by=["seasonal_vaccine","income_poverty"]).count()[["respondent_id"]]

Out[11]:

respondent_id

seasonal_vaccine	income_poverty	
0	<= \$75,000, Above Poverty	6686
	> \$75,000	3427
	Below Poverty	1719
1	<= \$75,000, Above Poverty	6091
	> \$75,000	3383
	Below Poverty	978

In [12]: df.groupby(by=["seasonal_vaccine","hhs_geo_region"]).count()[["respondent_id"]]

Out[12]:

respondent_id

seasonal_vaccine	hhs_geo_region	
0	atmpeygn	1031
	bhuqouqj	1433
	dqpwygqj	637
	fpwskwrf	1717
	kbazzjca	1482
	Irircsnp	1219
	Izgpxyit	2349
	mlyzmhmf	1235
	oxchjgsf	1520
	qufhixun	1649
1	atmpeygn	1002
	bhuqouqj	1413
	dqpwygqj	489
	fpwskwrf	1548
	kbazzjca	1376
	Irircsnp	859
	Izgpxyit	1948
	mlyzmhmf	1008
	oxchjgsf	1339
	qufhixun	1453

In [13]: df.groupby(by=["seasonal_vaccine","census_msa"]).count()[["respondent_id"]]

Out[13]:

respondent_id

seasonal_vaccine	census_msa	
0	MSA, Not Principle City	6076
	MSA, Principle City	4296
	Non-MSA	3900
1	MSA, Not Principle City	5569
	MSA, Principle City	3568
	Non-MSA	3298

```
In [14]: df.groupby(by=["seasonal_vaccine","employment_industry"]).count()[["respondent_i
d"]]
```

Out[14]:

respondent_id

seasonal_vaccine	employment_industry	
0	arjwrbjb	470
	atmlpfrs	579
	cfqqtusy	207
	dotnnunm	130
	fcxhlnwr	893
1	vjjrobsf	163
	wlfvacwt	84
	wxleyezf	819
	xicduogh	205
	xqicxuve	163

42 rows × 1 columns

In [15]: df.groupby(by=["seasonal_vaccine","employment_occupation"]).count()[["respondent_i
d"]]

Out[15]:

respondent_id

	employment_occupation	seasonal_vaccine
181	bxpfxfdn	0
221	ccgxvspp	
389	cmhcxjea	
23	dcjcmpih	
131	dlvbwzss	
127	vlluhbov	1
364	xgwztkwe	
160	xqwwgdyp	
744	xtkaffoo	
117	xzmlyyjv	

46 rows × 1 columns

```
In [16]: df.hist(bins=50, figsize=(20,20))
    plt.suptitle('Feature Distribution', x=0.5, y=1.02, ha='center', fontsize='large')
    plt.tight_layout()
    plt.show();
```


These are individual countplots, due to height, there will be data analysis made in **three parts** separately.

```
In [17]: | fig = plt.figure(figsize=(20,40))
         plt.subplot (7,2,1)
         plt.title("Has taken antiviral medications")
         sns.countplot(df.behavioral_antiviral_meds, hue=df.seasonal_vaccine)
         plt.subplot (7,2,2)
         plt.title("Has avoided close contact with others with flu-like symptoms")
         sns.countplot(df.behavioral_avoidance, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 3)
         plt.title("Has bought a face mask")
         sns.countplot(df.behavioral_face_mask, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 4)
         plt.title("Has frequently washed hands or used hand sanitizer")
         sns.countplot(df.behavioral_wash_hands, hue=df.seasonal_vaccine)
         plt.subplot(7,2,5)
         plt.title("Has reduced time at large gatherings")
         sns.countplot(df.behavioral_large_gatherings, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 6)
         plt.title("Has reduced contact with people outside of own household")
         sns.countplot(df.behavioral_outside_home, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 7)
         plt.title("Has avoided touching eyes, nose, or mouth")
         sns.countplot(df.behavioral_touch_face, hue=df.seasonal_vaccine)
         plt.subplot (7,2,8)
         plt.title("Seasonal flu vaccine was recommended by doctor")
         sns.countplot(df.doctor_recc_seasonal, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 9)
         plt.title("Has any of the following chronic medical conditions")
         sns.countplot(df.chronic_med_condition, hue=df.seasonal_vaccine)
         plt.subplot(7,2,10)
         plt.title("Has regular close contact with a child under the age of six months")
         sns.countplot(df.child_under_6_months, hue=df.seasonal_vaccine)
         plt.subplot(7,2,11)
         plt.title("Is a healthcare worker")
         sns.countplot(df.health_worker, hue=df.seasonal_vaccine)
         plt.subplot (7,2,12)
         plt.title("Has health insurance")
         sns.countplot(df.health_insurance, hue=df.seasonal_vaccine)
         plt.tight_layout()
         plt.show()
```


Part 1 of Data Analysis:

Those who had vaccine avoided close contacts which is surprising since vaccines are supposed to protect them. But they didn't avoid large gatherings.

As for flu vaccine which doctor recommended, there is such acceptance among people.

Health Care workers are most vulnerable but majority of them do vaccinate.

```
In [18]: fig = plt.figure(figsize=(20,40))
         plt.subplot(7,2,1)
         plt.title("Respondent's opinion about seasonal flu vaccine effectiveness")
         sns.countplot(df.opinion_seas_vacc_effective, hue=df.seasonal_vaccine)
         plt.subplot (7,2,2)
         plt.title("Respondent's opinion about risk of getting sick with seasonal flu withou
         t vaccine")
         sns.countplot(df.opinion_seas_risk, hue=df.seasonal_vaccine)
         plt.subplot(7,2,3)
         plt.title("Respondent's worry of getting sick from taking seasonal flu vaccine")
         sns.countplot(df.opinion_seas_sick_from_vacc, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 4)
         plt.title("Age group of respondent")
         sns.countplot(df.age_group, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 5)
         plt.title("Self-reported education level")
         sns.countplot(df.education, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 6)
         plt.title("Race of respondent")
         sns.countplot(df.race, hue=df.seasonal_vaccine)
         plt.subplot(7,2,7)
         plt.title("Sex of respondent")
         sns.countplot(df.sex, hue=df.seasonal_vaccine)
         plt.subplot (7,2,8)
         plt.title("Household annual income of respondent")
         sns.countplot(df.income_poverty, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 9)
         plt.title("Marital status of respondent")
         sns.countplot(df.marital_status, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 10)
         plt.title("Housing situation of respondent")
         sns.countplot(df.rent_or_own, hue=df.seasonal_vaccine)
         plt.subplot(7,2,11)
         plt.title("Employment status of respondent")
         sns.countplot(df.employment_status, hue=df.seasonal_vaccine)
         plt.subplot(7,2,12)
         plt.title("Respondent's residence using a 10-region")
         sns.countplot(df.hhs_geo_region, hue=df.seasonal_vaccine)
         plt.tight_layout()
         plt.show()
```


Part 2 of Data Analysis:

As for respondents opinion, risks and worry, there are no surprises for those who trust flu vaccines.

Respondents more than age 65 and College Educated are vaccinated.

Mainly whites, female, more than 75k income, married, own a house and employed can afford flu vaccines.

```
In [19]: | fig = plt.figure(figsize=(20,40))
         plt.subplot(7,2,1)
         plt.title("Respondent's residence within metropolitan statistical areas")
         sns.countplot(df.census_msa, hue=df.seasonal_vaccine)
         plt.subplot(7,2,2)
         plt.title("Number of other adults in household")
         sns.countplot(df.household_adults, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 3)
         plt.title("Number of children in household")
         sns.countplot(df.household_children, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 4)
         plt.title("Type of industry respondent is employed in")
         sns.countplot(df.employment_industry, hue=df.seasonal_vaccine)
         plt.subplot(7,2,5)
         plt.title("Type of occupation of respondent")
         sns.countplot(df.employment_occupation, hue=df.seasonal_vaccine)
         plt.subplot (7, 2, 6)
         plt.title("Whether respondent received seasonal flu vaccine")
         sns.countplot(df.seasonal_vaccine)
         plt.tight_layout()
         plt.show()
```


Part 3 of Data Analysis:

City dwellers, one household adults and no children mainly are vaccinated.

Unknown employment industry and occupation type is masked/not revealed to us.

As for seasonal vaccine, both are more or less equal quantity.

Now we check any correlation between features:

```
In [21]: df.corr()
```

O+	$\Gamma \cap 1 1$	-
()11T	1 / 1 1	•

	respondent_id	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_r
respondent_id	1.000000	-0.008475	0.009638	-0.00
behavioral_antiviral_meds	-0.008475	1.000000	0.049247	0.14
behavioral_avoidance	0.009638	0.049247	1.000000	0.06
behavioral_face_mask	-0.006644	0.146261	0.064946	1.00
behavioral_wash_hands	0.011105	0.064119	0.338130	0.08
behavioral_large_gatherings	0.004539	0.106287	0.227675	0.18
behavioral_outside_home	0.009011	0.127679	0.220348	0.16
behavioral_touch_face	0.007575	0.070868	0.335335	0.10
doctor_recc_seasonal	0.001500	0.030909	0.074088	0.06
chronic_med_condition	0.005797	0.008465	0.039435	0.06
child_under_6_months	-0.004839	0.028788	-0.000414	0.03
health_worker	-0.003149	0.009465	0.001180	0.06
health_insurance	-0.012603	-0.063988	0.032662	-0.04
opinion_seas_vacc_effective	0.005935	0.015003	0.119554	0.04
opinion_seas_risk	-0.005291	0.085315	0.129504	0.11
opinion_seas_sick_from_vacc	0.009563	0.084305	0.082942	0.09
household_adults	0.000187	0.044900	0.019122	0.01
household_children	-0.003726	0.084822	0.040328	0.00
seasonal_vaccine	-0.004652	0.006277	0.076395	0.05

Quote:

"Factors that may bias the results of observational studies can be broadly categorized as: selection bias resulting from the way study subjects are recruited or from differing rates of study participation depending on the subjects' cultural background, age, or socioeconomic status, information bias, measurement error, confounders, and further factors."

We will drop a number of features which we think that will make the model biased to a certain group/gender/income/social.

Drop unwanted features

```
df.columns
In [23]:
Out[23]: Index(['respondent_id', 'behavioral_antiviral_meds', 'behavioral_avoidance',
                 'behavioral_face_mask', 'behavioral_wash_hands',
                 'behavioral_large_gatherings', 'behavioral_outside_home',
                 'behavioral_touch_face', 'doctor_recc_seasonal',
                 'chronic_med_condition', 'child_under_6_months', 'health_worker',
                'health_insurance', 'opinion_seas_vacc_effective', 'opinion_seas_risk',
                'opinion_seas_sick_from_vacc', 'age_group', 'education', 'race', 'sex',
                 'income_poverty', 'marital_status', 'rent_or_own', 'employment_status',
                'hhs_geo_region', 'census_msa', 'household_adults',
                 'household_children', 'employment_industry', 'employment_occupation',
                 'seasonal_vaccine'],
               dtype='object')
         df.drop(['respondent_id','health_insurance','age_group', 'education', 'race', 'sex
In [24]:
            'income_poverty', 'marital_status', 'rent_or_own',
                   'employment_status','hhs_geo_region', 'census_msa', 'household_adults', 'h
         ousehold_children', 'employment_industry',
                   'employment_occupation'], axis=1, inplace=True)
```

In [25]: df

Out[25]:

	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_hands	behavio
0	0.0	0.0	0.0	0.0	
1	0.0	1.0	0.0	1.0	
2	0.0	1.0	0.0	0.0	
3	0.0	1.0	0.0	1.0	
4	0.0	1.0	0.0	1.0	
26702	0.0	1.0	0.0	0.0	
26703	0.0	1.0	0.0	1.0	
26704	0.0	1.0	1.0	1.0	
26705	0.0	0.0	0.0	0.0	
26706	0.0	1.0	0.0	0.0	

26707 rows × 15 columns

Treat Missing Values

```
In [27]: df.isnull().sum()
Out[27]: behavioral_antiviral_meds
                                            71
         behavioral_avoidance
                                           208
                                            19
         behavioral_face_mask
         behavioral_wash_hands
                                            42
         behavioral_large_gatherings
                                            87
         behavioral_outside_home
                                            82
         behavioral_touch_face
                                          128
         doctor_recc_seasonal
                                          2160
         chronic_med_condition
                                           971
         child_under_6_months
                                           820
         health_worker
                                          804
         opinion_seas_vacc_effective
                                          462
                                          514
         opinion_seas_risk
         opinion_seas_sick_from_vacc
                                           537
                                             0
         seasonal_vaccine
         dtype: int64
```

```
In [28]: df.dropna(inplace=True)
In [29]: | df.isnull().sum()
Out[29]: behavioral_antiviral_meds
                                              0
          behavioral_avoidance
                                              0
          behavioral_face_mask
                                              0
          behavioral_wash_hands
                                              0
          behavioral_large_gatherings
                                              0
          behavioral_outside_home
                                              0
          behavioral_touch_face
                                              0
          doctor_recc_seasonal
                                              0
          chronic_med_condition
                                              0
          child_under_6_months
          health_worker
                                              0
          opinion_seas_vacc_effective
          opinion_seas_risk
                                              0
                                              0
          opinion_seas_sick_from_vacc
                                              0
          seasonal_vaccine
          dtype: int64
In [30]: | df.reset_index(drop=True,inplace=True)
In [31]:
Out[31]:
                 behavioral antiviral meds behavioral avoidance behavioral face mask behavioral wash hands behavio
               0
                                    0.0
                                                      0.0
                                                                          0.0
                                                                                              0.0
               1
                                    0.0
                                                      1.0
                                                                          0.0
                                                                                              1.0
               2
                                    0.0
                                                       1.0
                                                                          0.0
                                                                                               1.0
               3
                                    0.0
                                                      1.0
                                                                          0.0
                                                                                              1.0
               4
                                    0.0
                                                      1.0
                                                                          0.0
                                                                                              1.0
           23183
                                    0.0
                                                      0.0
                                                                          0.0
                                                                                              1.0
           23184
                                    0.0
                                                      1.0
                                                                          0.0
                                                                                              0.0
           23185
                                    0.0
                                                      1.0
                                                                          0.0
                                                                                              1.0
           23186
                                    0.0
                                                      1.0
                                                                          1.0
                                                                                              1.0
           23187
                                    0.0
                                                                          0.0
                                                                                              0.0
                                                      1.0
          23188 rows × 15 columns
In [32]: df['seasonal_vaccine'].value_counts()
Out[32]: 0
                12111
                11077
```

Data Type change for faster computation

Name: seasonal_vaccine, dtype: int64

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 23188 entries, 0 to 23187
        Data columns (total 15 columns):
            Column
                                       Non-Null Count Dtype
                                       23188 non-null float64
         0
            behavioral_antiviral_meds
            behavioral_avoidance
         1
                                       23188 non-null float64
         4 behavioral_large_gatherings 23188 non-null float64
            behavioral_outside_home 23188 non-null float64
         5
           behavioral_touch_face
         6
                                     23188 non-null float64
         7
                                     23188 non-null float64
            doctor_recc_seasonal
           chronic_med_condition
                                     23188 non-null float64
            child_under_6_months
         9
                                      23188 non-null float64
                                     23188 non-null float64
         10 health_worker
         11 opinion_seas_vacc_effective 23188 non-null float64
         12 opinion_seas_risk 23188 non-null float64
         13 opinion_seas_sick_from_vacc 23188 non-null float64
         14 seasonal_vaccine
                                      23188 non-null int64
        dtypes: float64(14), int64(1)
        memory usage: 2.7 MB
In [34]: | df = df.astype('int8') #Change to integer type
In [35]: df.dtypes
Out[35]: behavioral_antiviral_meds
                                    int8
        behavioral_avoidance
                                    int8
        behavioral_face_mask
                                    int8
        behavioral_wash_hands
                                    int8
        behavioral_large_gatherings
                                    int8
        behavioral_outside_home
                                    int8
        behavioral_touch_face
                                    int8
        doctor_recc_seasonal
                                    int8
        chronic_med_condition
                                    int8
        child_under_6_months
                                    int8
        health_worker
                                    int8
        opinion_seas_vacc_effective
                                    int8
        opinion_seas_risk
                                    int8
        opinion_seas_sick_from_vacc int8
        seasonal_vaccine
                                    int8
        dtype: object
```

In [33]: | df.info()

In [36]: df

Out[36]:

	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_hands	behavio
0	0	0	0	0	
1	0	1	0	1	
2	0	1	0	1	
3	0	1	0	1	
4	0	1	0	1	
23183	0	0	0	1	
23184	0	1	0	0	
23185	0	1	0	1	
23186	0	1	1	1	
23187	0	1	0	0	

23188 rows × 15 columns

In [37]: df.describe()

Out[37]:

	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_hands	behavio
count	23188.000000	23188.000000	23188.000000	23188.000000	
mean	0.049336	0.731197	0.068139	0.829481	
std	0.216573	0.443347	0.251989	0.376096	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	1.000000	
50%	0.000000	1.000000	0.000000	1.000000	
75%	0.000000	1.000000	0.000000	1.000000	
max	1.000000	1.000000	1.000000	1.000000	

```
In [38]: df['opinion_seas_vacc_effective'] = df['opinion_seas_vacc_effective'].astype('objec
t')
```

```
In [39]: df['opinion_seas_risk'] = df['opinion_seas_risk'].astype('object')
```

```
In [40]: df['opinion_seas_sick_from_vacc'] = df['opinion_seas_sick_from_vacc'].astype('objec
t')
```

Create dummy variables

In [41]: df.info()

In [42]:	<pre>df2 = pd.get_dummies(data=df, drop_first=True)</pre>
In [43]:	df2

Out [43]:

	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_hands	behavio
0	0	0	0	0	
1	0	1	0	1	
2	0	1	0	1	
3	0	1	0	1	
4	0	1	0	1	
23183	0	0	0	1	
23184	0	1	0	0	
23185	0	1	0	1	
23186	0	1	1	1	
23187	0	1	0	0	

23188 rows × 24 columns

```
In [44]: df2.columns
Out[44]: Index(['behavioral_antiviral_meds', 'behavioral_avoidance',
                 'behavioral_face_mask', 'behavioral_wash_hands',
                'behavioral_large_gatherings', 'behavioral_outside_home',
                'behavioral_touch_face', 'doctor_recc_seasonal',
                'chronic_med_condition', 'child_under_6_months', 'health_worker',
                 'seasonal_vaccine', 'opinion_seas_vacc_effective_2',
                'opinion_seas_vacc_effective_3', 'opinion_seas_vacc_effective_4',
                'opinion_seas_vacc_effective_5', 'opinion_seas_risk_2',
                'opinion_seas_risk_3', 'opinion_seas_risk_4', 'opinion_seas_risk_5',
                'opinion_seas_sick_from_vacc_2', 'opinion_seas_sick_from_vacc_3',
                 'opinion_seas_sick_from_vacc_4', 'opinion_seas_sick_from_vacc_5'],
               dtype='object')
In [45]: df2 = df2[['behavioral_antiviral_meds', 'behavioral_avoidance',
                'behavioral_face_mask', 'behavioral_wash_hands',
                 'behavioral_large_gatherings', 'behavioral_outside_home',
                 'behavioral_touch_face', 'doctor_recc_seasonal',
                'chronic_med_condition', 'child_under_6_months', 'health_worker',
                 'opinion_seas_vacc_effective_2',
                 'opinion_seas_vacc_effective_3', 'opinion_seas_vacc_effective_4',
                 'opinion_seas_vacc_effective_5', 'opinion_seas_risk_2',
                 'opinion_seas_risk_3', 'opinion_seas_risk_4', 'opinion_seas_risk_5',
                 'opinion_seas_sick_from_vacc_2', 'opinion_seas_sick_from_vacc_3',
                 'opinion_seas_sick_from_vacc_4', 'opinion_seas_sick_from_vacc_5','seasonal_v
         accine' ]]
In [46]: df2
Out [46]:
```

	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_hands	behavio
0	0	0	0	0	
1	0	1	0	1	
2	0	1	0	1	
3	0	1	0	1	
4	0	1	0	1	
23183	0	0	0	1	
23184	0	1	0	0	
23185	0	1	0	1	
23186	0	1	1	1	
23187	0	1	0	0	

23188 rows × 24 columns

Create and save processed dataset

```
In [47]: #df2.to_csv("train.csv",index=False)
```

Load Train Dataset

```
In [48]: df = pd.read_csv("train.csv")
```

```
In [49]: df
Out [49]:
                    behavioral_antiviral_meds behavioral_avoidance behavioral_face_mask behavioral_wash_hands behavio
                 0
                                          0
                                                               0
                                                                                     0
                                                                                                            0
                                          0
                                                                                     0
                 1
                                                               1
                                                                                                            1
                                          0
                                                                                     0
                                                                                                            1
                 3
                                                                                     0
                 4
                                          n
                                                                                     n
             23183
                                          0
                                                               0
                                                                                     0
                                                                                                            1
             23184
                                          0
                                                                                     0
             23185
                                          0
                                                               1
                                                                                     n
                                                                                                            1
             23186
                                          0
                                                                                     1
                                                                                                            1
             23187
            23188 rows × 24 columns
In [50]: df.shape
Out [50]: (23188, 24)
```

Summary of training at least three different classifier models, preferably of different nature in explainability and predictability. For example, you can start with a simple logistic regression as a baseline, adding other models or ensemble models. Preferably, all your models use the same training and test splits, or the same cross-validation method.

The cleaned dataset is split into 80% training set and 20% test set. There will be three models used: Logistic Regression, Random Forest Classifier and Gradient Boosting Classifer. The random state is fixed for consistent results for all models and cross-validation is done for each to ensure that the model can generalize well.

Train Test Split

```
In [55]: X_train
Out[55]: array([[0, 1, 0, ..., 0, 0, 0],
                 [0, 1, 0, \ldots, 0, 0, 0],
                 [0, 1, 0, \ldots, 0, 0, 0],
                 [0, 1, 1, \ldots, 0, 0, 0],
                 [0, 0, 0, \ldots, 0, 0, 0],
                 [0, 1, 0, ..., 0, 0, 0]], dtype=int64)
In [56]: X_test
Out[56]: array([[0, 1, 0, ..., 0, 0, 0],
                 [0, 1, 0, \ldots, 0, 0, 0],
                 [0, 0, 0, \ldots, 0, 0, 0],
                 . . . ,
                 [0, 0, 0, ..., 0, 0, 0],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 [0, 1, 0, ..., 0, 0, 0]], dtype=int64)
In [57]: y_train
Out[57]: array([1, 0, 1, ..., 1, 1], dtype=int64)
```

Logistic Regression

```
In [58]: | lr = LogisticRegression(random_state=123)
In [59]: lr.fit(X_train, y_train)
Out[59]: LogisticRegression(random_state=123)
In [60]: |lr.coef_
Out[60]: array([[-0.23062336, -0.07794305, -0.00527337, 0.09815467, 0.00333909,
                 -0.07933634, 0.27948713, 1.36430408, 0.35155097, -0.16748045,
                 0.79348647, -0.29698112, 0.6244859, 0.75495696, 1.77721418,
                  0.80614637, 1.6792209, 1.70246871, 2.0063813, -0.44950573,
                 -1.62206222, -0.67756796, -1.24302248]])
In [61]: | lr.intercept_
Out [61]: array([-2.63615376])
In [62]: ypred_lr = lr.predict(X_test)
In [63]: y_test[:10]
Out[63]: array([1, 0, 1, 0, 1, 1, 1, 0, 1, 1], dtype=int64)
In [64]: ypred_lr[:10]
Out[64]: array([1, 0, 0, 0, 1, 1, 1, 0, 0, 1], dtype=int64)
```

Logistic Regression Model Evaluation

```
In [65]:
          cm = confusion_matrix(y_test,ypred_lr)
          cm
Out[65]: array([[1935, 487],
                  [ 577, 1639]], dtype=int64)
In [66]: fig , ax = plt.subplots(figsize=(10,5))
          sns.heatmap(cm, annot=True, fmt='.4g', linewidths=2, cmap='viridis')
          plt.ylabel('True label')
          plt.xlabel('Predicted label')
          plt.show()
                                                                                 - 1800
                                                                                 - 1600
                             1935
                                                           487
             0
                                                                                 - 1400
          True label
                                                                                 1200
                                                                                 - 1000
                             577
                                                          1639
                                                                                 - 800
                              0
                                                            1
                                       Predicted label
```

In [67]: print(classification_report(y_test,ypred_lr))

support	f1-score	recall	precision	
2422	0.78	0.80	0.77	0
2216	0.75	0.74	0.77	1
4638	0.77			accuracy
4638	0.77	0.77	0.77	macro avg
4638	0.77	0.77	0.77	weighted avg

```
In [68]: plot_roc_curve(lr,X_test,y_test)
   plt.show()
```



```
In [69]: accuracy_score(y_test,ypred_lr)
Out[69]: 0.7705907718844329
In [70]: #Cross Validation
    cv = cross_val_score(lr,X.values,y.values,cv=5,verbose=1,scoring='accuracy')
        [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
        [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.4s finished
In [71]: cv.mean()
Out[71]: 0.7616874897646776
```

Random Forest Classifier

```
In [72]: rf = RandomForestClassifier(random_state=123)
In [73]: rf.fit(X_train, y_train)
Out[73]: RandomForestClassifier(random_state=123)
In [74]: ypred_rf = rf.predict(X_test)
In [75]: y_test[:10]
Out[75]: array([1, 0, 1, 0, 1, 1, 1, 0, 1, 1], dtype=int64)
In [76]: ypred_rf[:10]
Out[76]: array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1], dtype=int64)
```

Random Forest Model Evaluation

```
In [78]: fig , ax = plt.subplots(figsize=(10,5))
    sns.heatmap(cm, annot=True, fmt='.4g', linewidths=2, cmap='viridis')
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()
```


In [79]: print(classification_report(y_test,ypred_rf))

	precision	recall	f1-score	support
0	0.74	0.75	0.75	2422
1	0.73	0.71	0.72	2216
accuracy			0.73	4638
macro avg	0.73	0.73	0.73	4638
weighted avg	0.73	0.73	0.73	4638

```
In [80]: plot_roc_curve(rf, X_test, y_test)
    plt.show()
```



```
In [81]: accuracy_score(y_test,ypred_rf)
```

Out[81]: 0.7341526520051747

Gradient Boosting Classifer

```
In [84]: gbc = GradientBoostingClassifier(random_state=123)
In [85]: gbc.fit(X_train,y_train)
Out[85]: GradientBoostingClassifier(random_state=123)
In [86]: ypredgbc = gbc.predict(X_test)
In [87]: y_test[:10]
Out[87]: array([1, 0, 1, 0, 1, 1, 1, 0, 1, 1], dtype=int64)
In [88]: ypredgbc[:10]
Out[88]: array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1], dtype=int64)
```

Gradient Boosting Model Evaluation

In [91]: print(classification_report(y_test,ypredgbc))

	precision	recall	f1-score	support
0	0.77	0.79	0.78	2422
1	0.77	0.74	0.75	2216
accuracy			0.77	4638
macro avg	0.77	0.77	0.77	4638
weighted avg	0.77	0.77	0.77	4638

In [92]: plot_roc_curve(gbc, X_test, y_test)
 plt.show()


```
In [93]: accuracy_score(y_test,ypredgbc)
```

Out[93]: 0.7682190599396291

A paragraph explaining which of your classifier models you recommend as a final model that best fits your needs in terms of accuracy and explainability.

Logistic Regression gives us the best accuracy and F1 score. Therefore it is recommended and can be explained.

Summary Key Findings and Insights, which walks your reader through the main drivers of your model and insights from your data derived from your classifier model.

The features we selected gave us a decent accuracy and good result. The result differences for all models are small and we select Logistic Regression because it's a simple model.

Suggestions for next steps in analyzing this data, which may include suggesting revisiting this model adding specific data features to achieve a better explanation or a better prediction.

For features that are biased, we need to gather more data and made equal values for race, sex, income etc. We have to ensure the model we developed stays bias free.

We can also explore other models like decision tree, support vector machine, KNN classifiers model to see if they can able to analyse the data patterns to give better predictions. We also can adjust hyperparameters for each model to get better results.