AM243x OSPI PSRAM

Sitara MPU Demand Create Applications

Exported on 10/14/2024

Table of Contents

No headings included in this document

Lead customer: ABB

JIRA: [MCUREQ-3663] Peripheral Support: OSPI for PSRAM - Texas Instruments JIRA (ti.com)¹

Motivation:

- 1. DDR is not a preferred solution due to:
 - a. PCB layout & timing challenges
 - b. Unpredictability
 - c. Cost
- 2. Flash is also not a good solution due to:
 - a. Less throughput (MB/s) than PSRAM
 - b. Accessing flash memory devices is serial in nature.

Note: related backup option is GPMC based PSRAM MCUREQ-295 Tanmay Deshpande (looks like no Confluence ID ?) is working on this.

EVM Modification Schematic:

PROC101E1_OSPI_SCH_AM243x.pdf²

High Speed Switch:

SOC OSPI INTERFACE

IO Expander used to set OSPI_SW_SEL:

¹ https://jira.itg.ti.com/browse/MCUREQ-3663

² https://confluence.itg.ti.com/download/attachments/946946418/PROC101E1_OSPI_SCH_AM243x.pdf? api=v2&modificationDate=1712771067000&version=1

Note: There is a 10K pull-down on OSPI_SW_SEL to default to OSPI FLASH

PSRAM datasheet:

APM_PSRAM_OPI_Xccela_APS6408L_30BMx_v3_5b_PKG-1954852.pdf³

SOFTWARE:

- Created MCU-SDK: CCS project Skeleton AM243x OSPI PSRAM
 - · ospi_psram_io_am243x-lp_r5fss0-0_nortos_ti-arm-clang
 - Added PSRAM to board lib (don't forget to rebuild lib)
 - C: \ti\mcu_plus_sdk_am243x_09_01_00_41\source\board\makefile.a m243x.r5f.ti-arm-clang

³ https://confluence.itg.ti.com/download/attachments/946946418/ APM_PSRAM_OPI_Xccela_APS6408L_30BMx_v3_5b_PKG-1954852.pdf?api=v2&modificationDate=1712891858000&version=1

- · Libs rebuild ex:
 - cd C:\ti\mcu_plus_sdk_am243x_09_02_00_50
 - · gmake libs PROFILE=debug
 - Don't forget to update CCS version and other tools in imports.mak
- · Fix for undeclared NULL error. Add in psram.c
 - #include <stddef.h
- Taking care of redundancies from SysConfig by adding additional ti_board* and ti_drivers* files
 - > le ti_board_config_2.c
 > le ti_board_config_2.h
 > le ti_board_open_close_2.c
 > le ti_board_open_close_2.h
 > le ti_board_open_close_2.h
- · Sysconfig
 - · I2C1 instance used.
 - · Other params as default
- Added "io_expander.c" to CCS project to configure IO expander by using TCA6424 APIs (ioexp_tca6424.h).
 - Used TCA6424_Params_init() which sets I2C address to 0x22
 - "ioIndex=19" which correspond to Pin23 (20) → OSPI_SW_SEL.
 - LOW → OSPI FLASH
 - HIGH → OSPI_RAM
- Added header file for PSRAM configuration (aps6408.h)
- Added "psram_ospi.c"
 - · Implemented functions to read Device ID / Manufacture ID
 - Underneath OSPI APIs are called (ex: OSPI_readCmd())
 - Implemented Psram_ospiRead(), Psram_ospiWrite(), Psram_ospiOpen(), Psram_ospiClose()
 - These functions call:
 - OSPI_Transaction_init(), OSPI_readDirect(), OSPI_writeDirect(), OSPI_getHandle(), OSPI_enablePhy(), and OSPI_disablePhy()
- ToDo: Need to confirm if APP_OSPI_PSRAM_OFFSET_BASE can be 0x0

PROPOSED TEST

- 1. OSPI Flash a "Hello world" and confirm new board works OK
- 2. Flash "ospi_psram_io_am243x-lp_r5fss0-0_nortos_ti-arm-clang.out" and check if there is any error

- a. Can it boot?
- b. Can we correctly print DeviceID?. This will ensure basic communication is OK
 - i. If not correct DeviceID read, then change (increase) RD delay (OSPI_setRdDataCaptureDelay())
- 3. If 2. works, then we can run "ospi_psram_io_main()" instead of "ospi_psram_basic_init_main()".
 - a. "ospi_psram_io_main" fills a buffer, then write it to PSRAM and read it back to compare. If comparison is OK, then prints "All tests have passed!!"

CODE UPDATES (based on AM261 SoC verification test)

- · OSPI configuration:
 - · From APS6808L datasheet we have:
 - · Interface: Octal SPI with DDR Xccela mode.
 - · Only 8D-8D-8D supported
 - · Other params:
 - · Address 4bytes
 - Read dummy cycles 7 (should be 6, but for AVV test 7 was needed)
 - · For simplicity, poll and PHY disabled
 - Clk 192MHz, DIV=8
 - OSPI read/write direct (DAC enabled)
 - · Initial test will use memcpy, no DMA
- · PSRAM configuration
 - Configuring for Fixed Latency, using Write Latency Code of 4Cycles (109Mhz from datasheet), and 16Byte Burst length
 - · Read and Write: Linear Burst

CODE - DRAFT (untested)

Unzip below inside C:\ti\mcu_plus_sdk_am243x_09_01_00_41\examples\drivers\ospi

ospi_psram_io.zip4

Unzip below inside C:\ti\mcu_plus_sdk_am243x_09_02_00_50\examples\drivers\ospi

ospi_psram_io_v2.zip5

SoC Verification setup for AM261: APM SRAM TEST.zip⁶

BOARD BRING UP (08/2024)

· SBL OSPI Test

⁴ https://confluence.itg.ti.com/download/attachments/946946418/ospi_psram_io.zip? api=v2&modificationDate=1713389005000&version=2

⁵ https://confluence.itg.ti.com/download/attachments/946946418/ospi_psram_io_v2.zip? api=v2&modificationDate=1715880135000&version=1

⁶ https://confluence.itg.ti.com/download/attachments/946946418/APM%20SRAM%20TEST.zip? api=v2&modificationDate=1715880345000&version=1

- Flash/Run "hello_world", "ospi_flash_io", and "ospi_psram_io" tests: PASS with below workarounds
 - · UART Uniflash modifications, to fix "magic number error":
 - In SysConfig Memory regions changed .bss.filebuf location from DDR to a new added MSRAM2
 - Changed BOOTLOADER_UNIFLASH_MAX_FILE_SIZE to 0x60000 in main.c to match the size of MSRAM_2 section in linker.cmd
 - OSPI known issues for AM243x EVM: [MCUSDK-12960] DAC is not enabled before Bootloader_getMsgLen leading to data abort - Texas Instruments JIRA (ti.com)⁷
 - Workarounds
 - sbl_ospi_am243x-evm_r5fss0-0_nortos_ti-arm-clang:
 - In SysConfig: OSPI keeps "PHY enabled mode"
 - In SysConfig: BOOTLOADER select "Disable Auth Application Image"
 - in main.c: DAC mode enabled before Bootloader_parseMultiCoreAppImage() workaround
 - OSPI_Handle ospi_handle =
 OSPI_getHandle(CONFIG_OSPI0);
 OSPI_enableDacMode(ospi_handle);
 status =
 Bootloader_parseMultiCoreAppImage(bootHandle,
 &bootImageInfo);
- Unzip below inside C:\ti\mcu_plus_sdk_am243x_09_02_00_50\examples\drivers\ospi
 - ospi_psram_io_v3_mistral_changes.zip⁸
 - Additional OSPI's driver changes: ospi_v0.c⁹
 - · Don't forget rebuild libs
 - cd C:\ti\mcu_plus_sdk_am243x_09_02_00_50
 - gmake libs PROFILE=debug
- · Results:

[BOOTLOADER_PROFILE] Boot Media : NOR SPI FLASH
 KPI_DATA: [BOOTLOADER_PROFILE] Boot Media Clock: 166.667 MHz
 KPI_DATA: [BOOTLOADER_PROFILE] Boot Image Size: 0 KB
 [BOOTLOADER_PROFILE] Cores present: r5f0-0

KPI_DATA: [BOOTLOADER PROFILE] SYSFW init : 11802us

⁷ https://jira.itg.ti.com/browse/MCUSDK-12960

⁸ https://confluence.itg.ti.com/download/attachments/946946418/ospi_psram_io_v3_mistral_changes.zip? api=v2&modificationDate=1724084170000&version=1

⁹ https://confluence.itg.ti.com/download/attachments/946946418/ospi_v0.c?api=v2&modificationDate=1724084259000&version=1

KPI_DATA: [BOOTLOADER PROFILE] System_init : 364869us KPI_DATA: [BOOTLOADER PROFILE] Drivers_open : 89us

KPI_DATA: [BOOTLOADER PROFILE] Board_driversOpen
 KPI_DATA: [BOOTLOADER PROFILE] Sciclient Get Version
 13928us
 KPI_DATA: [BOOTLOADER PROFILE] CPU load
 64385us

KPI_DATA: [BOOTLOADER_PROFILE] SBL Total Time Taken : 2985155us

Image loading done, switching to application ...

before SemaphoreP_pend ... After SemaphoreP_pend ... before I2C_transfer ... after I2C_transfer ...

PSRAM Manufacturer ID: 0xD

PSRAM Device ID: 0x2 All tests have passed!!

OSPI PSRAM test:

• PSRAM WR/RD. Below combinations tested OK for 4KBytes

WRITE=INDAC; READ=DAC
 WRITE=DAC; READ=DAC
 WRITE=INDAC; READ=INDAC

· Latency / BW Benchmark: Currently in progress