FGI 2 [HA], 18. 11. 2013

Arne Struck, Tronje Krabbe

20. November 2013

5.3 1.

- 2. a) $Sat(\alpha_1) = \{s_0\} \quad |\alpha_1 = \mathbf{EX}b$
 - b) $Sat(\mathbf{AG}\alpha_1) = \emptyset$
 - c) $Sat(\alpha_2) = \{s_1, s_2\} \quad |\alpha_2 = \mathbf{AG} \neg b$
 - d) $Sat(\mathbf{EX}\alpha_2) = \{s_0, s_1, s_2\}$

- 3. a) $\beta_1 = \mathbf{AGEX} b \text{ gilt nicht, da das Ergebnis von 2b) } \emptyset \text{ ist.}$
 - b) $\beta_2 = \mathbf{EXAG} \neg b \text{ gilt, da } s_0 \text{ Element der Ergebnismenge von 2d) ist.}$
- 4. a)

 $\mathbf{AXAG}a$ bedeutet, dass für alle Pfade im nächsten Zustand gelten muss, dass für alle folgenden Pfade der Folge a gilt, also in allen Zuständen (außer dem Root) gilt a.

 $\mathbf{AGAX}a$ bedeutet, dass für alle folgenden Pfade der Folge in allen nächsten Zuständen a gelten muss. Also gilt a auch hier immer, außer im Root. Die beiden Ausdrücke sind also äquivalent.

b) $(\neg b \land \neg g)$ beschreibt den Zustand s_1 aus dem ersten Teil. **EXEG** $(\neg b \land \neg g)$ heißt, dass in einem der nächsten Zustände ein Pfad existiert auf dem $(\neg b \land \neg g)$ gilt. Dies ist im M_{AKW} kein einziges mal der Fall, da nach s_1 zwangsläufig s_2 gilt.

 $\mathbf{EGEX}(\neg b \land \neg g)$ heißt, dass ein Pfad existiert auf dem im folgenden Element $(\neg b \land \neg g)$ der Fall ist, also ein Pfad der als 2. Zustand s_1 eintrifft, dies ist möglich (siehe 1).

Damit sind die Ausdrücke nicht äquivalent.

5. a)

 $\mathbf{AGAX}b$ siehe 4a).

 $\mathbf{GX}b$ bedeutet, dass für allgemein im nächsten Zustand b gelten mussdamit gilt für alle Zustände außerhalb des Roots (rekursiver Aufbau). Also gilt für beide Ausdrücke, dass in jedem Zustand b gilt (außer im Root). Damit sind sie äquivalent.

b) $\mathbf{EG}b$ gilt in M_{AKW} , da vom Root ein Pfad aus existiert in dem b gilt (siehe 1). $\mathbf{G}b$ gilt allerdings nicht, da auch Pfade existieren, auf denen nicht immer b gilt.

5.4 1.

$$\beta_1 = AGEXb = \neg EFEX \neg b$$

$$\beta_2 = EXAG \neg b = EX \neg EF \neg b$$

2.

Teilformel	Zustand s_0	Zustand s_1	Zustand s_2
b	+	-	-
EXb	+	-	-
\overline{AGEXb}	-	-	-
$\neg b$	-	+	+
$AG \neg b$	-	+	+
$EXAG \neg b$	+	+	+

3.

 $M_AKW \models \beta_1$ gilt nicht, wie aus der Tabelle in 5.4.2 sowie dem Ergebnis aus 5.3.2 zu erkennen ist.

Bereits b gilt nicht in jedem Zustand, genausowenig wie EXb, und AGEXb gilt in keinem Zustand mehr, also wird es auch nicht von M_AKW erfüllt.

 $M_AKW \models \beta_2$ hingegen gilt, was ebenfalls aus der Tabelle und dem Ergebnis aus 5.3.2 ablesbar ist.

 $EXAG\neg b$ gilt in jedem Zustand, weshalb es M_AKW erfüllt.

4.

Wir haben die Information zu Kenntnis genommen und gustieren unser neu erworbenes Fachwissen.