Global Methane Genetics: a global initiative to accelerate genetic progress for reduced methane emission

Roel Veerkamp and Birgit Gredler-Grandl

Global

2021 FAO Livestock e-Methane (kt)

Tier 1 emissions

> Total enteric methane emissions from 5 major livestock species was 97,384 (kt) in 2021.

Species	E-Methane Emissions (kt)
Beef cattle	54,973
Dairy cattle	18,550
Buffalo	11,217
Sheep	7,088
Goats	5,556

Outline

- Animal breeding as methane mitigation tool
- Steps taken in the Netherlands since 2008 to come to a breeding value in April 2025
- Expanding to the worldwide Global Methane Genetics initiative

Animal Breeding as mitigation tool

Recording techniques

Heritability in dairy cattle

Genetic correlations between CH₄ and other traits

	Breed	CH4 trait	MKG	DMI	BW
Bakke et al. 2024	Norwegian Red	GF g/d	-	0.29 (0.05)	0.50 (0.09)
Lopes et al. 2023	HOL	GF g/d	0.33 (0.12)	0.83 (0.11)	0.68 (0.10)
Gonzalez-Recio, 2024	HOL	ppm	-0.05	0.27	-
Van Breukelen et. al. 2024	HOL	ppm	0.03 (0.06)	0.09 (0.10)	0.06 (0.06)

Impact of genetic selection – genetic progress

- Selection index calculations for Dutch NVI
- Goal: methane production g/d (GF trait and sniffer trait, r_q 0.76)
- Desired gain: -12.75 methane trait
- Desired gains
 All weight on methane

• • • • • Current trend

Are we ready for implementation?

- Indirect selection: We have already been doing it!
 - e.g. Carbon sub index (ICBF), Sustainability index (AUS)
- Published breeding values for lower methane emission
 - CAN & ESP (2023)
 - NLD, DK, NO (and others?) 2025

Industry presentations on Thursday this week!

- Direct selection: sustainable balanced breeding goals:
 - Production
 - Health, fitness, welfare
 - Environment

Outline

- Animal breeding as methane mitigation tool
- Steps taken in the Netherlands since 2008 to come to a breeding value in April 2025
- Expanding to the worldwide Global Methane Genetics initiative

How it all started?

■ First project 2008-2010 (de Haas et al): Project of 80k funded by Productschap Zuivel and SenterNovem (AgentschapNL)

How it continued...

- GreenHouseMilk Marie Curie ITN with 6 PhD candidates 2009-2013
- METHAGENE COST Action with partners from 21 countries 2013-2017

Climate envelope

- Data collection with sniffers and GreenFeed
- Preliminary genetic parameters

Current Projects

- **PPS Climate Smart Cattle Breeding**
- Goal is to have breeding values available for selection
- Recording methane on 100 farms
- **KE From Breeding Values to Bull** Selection
- Validation study, breeding program, Kringloopwijzer

EU-project

Anouk van Breukelen

- 31th of March 2015 launch of national methane breeding values for cows and bulls with CRV and RFC using genomics
- June testrun inclusion in kringloopwijzer

How many cows with phenotypes do we need?

Gonzalez-Recio et. al. (2014)

Number of CH₄ phenotyped Holstein cattle (Sept. 2024)

28,114 Holstein cattle

■ Spain ■ UK ■ USA

International across-country collaboration needed

Net Zero Dairy Genome Project

NDGP -> 20,000 CH₄ cows

Global Methane Genetics (GMG)

Accelerating Genetic Progress to reduce methane in ruminants

Coordinator: Roel Veerkamp & Birgit Gredler-Grandl

Program for 5 years Budget: US\$ 5 million

Close collaboration with Global Methane Hub

Why? How? What?

- Genetic progress can make a permanent and impressive contribution to reducing methane output from livestock systems globally
- we aim to accelerate genetic progress and to implement breeding strategies for reduced methane emissions in Ruminants in the global North and South
- To support
 - sharing of protocols and data,
 - to expand phenotyping, breeding program design
 - genetic evaluations
 - development of Global Livestock Genetics and Genomics Programs

Protocols & network building

Data & phenotyping

Implementation: genetic evaluation & breeding program

1) Working Groups

WG1: Dairy global North

WG2: Small ruminants

WG3: Beef global North +

WG4: Asia

WG5: Africa

WG6: South America

WG7: Buffalo & ruminants

Research & Phenotyping proposals

- 2) Database
- legal
- technical
- organisation

3) Animal breeding research

Comparison of e-Methane per group

Livestock Segment	Enteric methane Emissions (kt)		
Dairy GN Intensive	5,565		
Dairy GN Pastoral	928		
Dairy GS with GN Influence	2,783		
Dairy GS	9,275		
Beef Taurus GN	9,776		
Beef Taurus GS	9,888		
Beef Tropical semi-intensive	13,548		
Beef Indigenous	21,761		
Small Ruminants GN meat	2,604		
Small ruminants GN other	1,027		
Small ruminants GS	11,056		
Buffalo	11,217		

AbacusBio: Impact – Ease Matrix

Genetic improvement potential (Impact) versus Opportunity for trait development (Ease)

Impact Criteria

- Structure, alignment and coordination of genetic improvement sector
- Scale of addressable market
- · Potential rate of genetic gain

Ease Criteria

- Industry complexity for methane trait development
- Access to infrastructure, research capability and resources
- Capacity to measure and incentivise emission reductions

GMG: expand methane phenotyping ~110k cattle & sheep

- 25 countries, 50 partners, 25 breeds, investment 27 mil US\$

Dairy program:

Holstein (~42k)
Jersey (~8k)
(Nordic) Red
Breeds(~7.3k)
Brown Swiss (~3.3k)

Beef:

North America (~6k) Australia, Ireland, UK, NZ (~18.5k) World-wide sharing
Develop protocols
Phenotyping for
reference populations

Sheep: global reference population

Australia & New Zealand
UK & Ireland
Uruguay (~ 17k)

Africa

Dairy & crosses (~1.5k)

South America

Beef & indigenous (~7k)

Microbiome:

Build Global reference population (~20k samples)

GMG - Database

- Business requirement phase collaboration ICAR,
 Interbull, Lactanet, and others
- Fair share policy
- Methane phenotypes (any method), pedigree, genotypes
- Cow equivalents established by the effective number of records (rel) in genetic evaluation
- microbiome
- All data paid by GMG background data welcome
- ...

Workshops – working groups - webinars

- ICAR Feed&Gas → icar.org
- Genetic progress in farm- and national credit analysis
- Webinar for policy makers about impact genetic progress
- Recording pasture based systems
- SOP sniffer/GreenFeed -> DAIRY CAMPUS/Air Quality Lab
- SOP PAC
- Recording methane emission in sheep
- Microbiome platform/network global collaboration
- **...**

Challenges and needs

Large reference populations

International harmonisation & standardisation in trait definition

Breeding indices

Adoption of genetics as mitigation tool:

- Farmers & Dairy industry
- Stakeholder & policy maker
- Incentive systems

Feed additives: Genotype by environment interaction

- Animal breeding is one of the important mitigation tools
- Cumulative and permanent
- Large reductions are possible
- Support farmers in reducing the environmental footprint of their farm with effective mitigation tools

GMG newsletter

Sign up to our mailing list!

https://www.wur.nl/en/project/global-methanegenetics-program.htm

Acknowledgements

Andy Jarvis

Hayden Montgomery Rob Banks

