Compito di Architetture degli Elaboratori

Appello del 23 Settembre 2013

Tempo a disposizione: 3 ore

Esercizio 1

Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. La rete è in grado di riconoscere spike: un bit ricevuto all'istante di tempo t è definito spike se è discorde dai bit ricevuti agli istanti di tempo t-1, t+1 e t+2. La rete restituisce 1 se il numero di spike correntemente ricevuti è dispari, restituisce 0 altrimenti. Si assuma che aver ricevuto 0 spike equivale ad aver ricevuto un numero pari di spike.

Esempio: Si consideri il possibile funzionamento della rete illustrato in basso. La rete riceve il primo spike all'istante di tempo t=7 che viene riconosciuto come tale all'istante t=9. Quindi, a partire dall'istante t=9 la rete restituisce 1. All'istante t=11, la rete riceve un altro spike (riconosciuto all'istante t=13), quindi restituisce nuovamente 0, dato che il numero di spike ricevuti fino all'istante t=13 è pari, e così via.

Γ	t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	\boldsymbol{x}	0	0	1	1	1	1	0	1	0	0	1	0	1	1	0	1	0	1	0	0	1	0	0	0
Ī	z	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	1	1	1	0	0

Esercizio 2

Estendere il set di istruzioni della macchina a registri con l'operazione SCAMB R_i , X. In particolare, si consideri il vettore V di dimensione n pari al valore contenuto in R_i e memorizzato in RAM a partire dall'indirizzo X. L'operazione scambierà ciascun elemento i del vettore con l'elemento n-1-i.

Esempio: Supponiamo che inizialmente V=[12,3,5,7,22,1,1,2,0], dopo SCAMB il vettore sarà V=[0,2,1,1,22,7,5,3,12].

Esercizio 3

Scrivere una programma in Assembly che, dati due vettori V_1 e V_2 di interi a 32 bit ed entrambi di dimensione n, restituisca un terzo array di di interi a 32 bit V_3 anch'esso di taglia n tale che, per ogni indice i:

- $V_3[i] = V_1[n-i-1]$ se $V_1[i] \le V_2[i]$,
- $V_3[i] = V_2[i]$ altrimenti.