PES UNIVERSITY 3rd SEMESTER

Errata for DIGITAL DESIGN AND COMPUTER ORGANISATION Slides Uploaded to PESU ACADEMY Portal

Errata Last updated 20th November 2020

This list is a work in progress. Some of the following corrections may be revised, and additional corrections will probably be added.

SI. No	Lecture Number	Content in the slide	To be Corrected as			
1.	UNIT5 Lecture 53 Slide 10	Systolic Array Example: 3x3 Systolic Array Matrix Multiplication • Processors arranged in a 2-D grid • Each processor accumulates one element of the product Alignments in time Alignments in time T = 6 Example source: http://www.c.hmc.edu/cource/2001/pgring/c1256/	The total time needed for computation (of the matrix C) with the systolic array will be equal to 3n-2 clock cycles to perform nxn matrix multiplication.			
2.	UNIT4 Lecture 38 Slide 18	WALLACE TREE MULTIPLIER Logic to Add Three Numbers • What logic is required to add three numbers? • One n-bit adder • One (n+1)-bit adder • How long does it take? • n-bit ripple carry adder takes nt _{FA} • So (2n+1)t _{FA} time for ripple carry adders • Even if parallel prefix adder used, factor of two remains	The time required to add three Numbers using ripple carry Adders is incorrectly mentioned as (2n + 1)tFA The correct time using ripple carry Adders is (n + 2) tFA			

3.	UNIT3 Lecture 34 Slide 16	CARRY-LOOKAHEAD AND PREFIX ADDERS - 4 Associative Ripple Carry? Ripple Carry Adder • $c_{i+1} = ab + bc_i + c_i a$ • Generate and Propagate: • g_i carry generated in position i • p_i carry propagated in positions 0 to i • $p_{0:i}$ carry propagated in positions 0 to i • $p_{0:i}$ carry propagated in positions 0 to i	In the figure the labels p0: i and g0:1 need to be interchanged.
4.	UNIT3 Lecture 31 Slide 5	 Time requirements: For an n-bit ripple carry adder, critical path delay is composed of: ▶ Propagation delay from c₀ to c_{n-1} ★ Signal passes through two gates in each of the n - 1 stages ★ 2(n - 1)t_g time required ▶ Sum computation ★ 2t_g time required for three input XOR gate • An n-bit ripple carry adder thus occupies 2nt_g time 	Propagation delay from c0 to c(n-1) should be 3(n-1)tg instead of 2(n-1) tg because although the carry signal passes through two gates in each stage, one of the gates has three inputs which counts as two 2 input gates
5.	UNIT3 Lecture 31 Slide 34,35	CARRY-LOOKAHEAD AND PREFIX ADDERS - 1 Performance Comparison • Area and time estimates for n-bit adders: Area Time Time Time Time Time Carry-lookahead (n²+5n)ag 2[log2(n-1)] tg+3tg Carry-lookahead adder delay increase with size, the carry-lookahead adder delay increase only logarithmically, resulting in dramatically faster adders However, the area of the carry-lookahead adder increase qudratically with size Is there an adder design that retains the carry-lookahead adder's speed but has significantly lesser area?	log2(n-1) should be replaced by log2(n).

9.	UNIT1,	а	Ь	С	У		а	b	С	Y	
	Lecture 3,	O	0	0	0		0	0	0	0	
	Slide 12	O	O	1	0		0	0	1	0	
		O	1	O	O		0	1	0	0	
		O	1	1	1		0	1	1	1	
		1	O	O	O		1	0	0	1	
		1	0	1	1		1	0	1	0	
		1	1	O	1		1	1	0	1	
		1	1	1	1		1	1	1	1	
			Truth	n tabl	e		1	1	1	•	
10.	UNIT1, Lecture 4, Slide 13	Boolear	n Algebr	a			Set f0; 1g				
		○ Set {0,1}					Operations AND, OR, NOT				
		Operations AND, OR, NOT					Identity elements 1 (for AND),				
		@ Ide	entity el	ements ()	(for AND)	0 (for OR)				
			Identity elements 0 (for AND), 1 (for OR)				Laws/Identities Commutative,				
	1 (for OR)						associative, distributive:				
		Q Lav	Laws/Identities Commutative,				associative, distributive.				
		ass	sociative	, distribut	ive						
		aoc	, o oraci v c	, 410211041							
11.	UNIT1,	а	Ь	c d	У						
	Lecture 8	0		0 0	1		0 0	b 0		у 1	
	Slide 4 till Slide	0		0 0	0		0	0 0		0	
	16,Also same error in Slide 40	0		1 0	1		0	0 1		1	
		0		1 0 0 0	0		0	0 1		0	
		0		0 0	1		0	1 (0	
		0		1 1	0		0	1 (1	
		0	1	1 1	1		0	1 1 1 1		1	
		1	0	0 1	1		1	0 0		1	
		1		0 1	0		1	0 (0	
		1		1 0	1		1	0 1		1	
		1		1 0	0		1	0 1		0	
		1 1		$ \begin{array}{ccc} 0 & 1 \\ 0 & 1 \end{array} $	0		1	1 (0	
		1		$egin{array}{ccc} 0 & 1 \ 1 & 1 \end{array}$	0		1	1 (1	
		1		1 1	1		1	1 1		0	
							1	1 1	l 1	1	
	Four Input Truth Table The min terms to								re F(a ,b, c, d)=2	E(0,2,5,7,8,10,13,15)	