I. Objectifs

- Comparer méthode débruitage :
 - Alternating projection + Hald + Dougherty
 - SLRD
 - EM (dont impact de l'initialisation) + MCMC
- Étudier code MCMC Jérôme
- État de l'art not. débruitage avec mesure de bruit de fond
- Continuer NASA4

II. Distribution des valeurs propres d'une matrice de bruit

Voir l'article ¹ "Eigenvalues of the sample covariance matrix for a towed array" de Gerstoft et al.

Une matrice interspectrale de bruit gaussien a des valeurs propres sont distribuées selon une densité de probabilité de Marcenko-Pastur², si le nombre de snapshot est supérieur au nombre de microphone $(0 \le \nu \le 1)$.

^{2.} https://en.wikipedia.org/wiki/Mar%C4%8Denko%E2%80%93Pastur_distribution

III. Comparaison méthode de débruitage

3 familles de méthodes de débruitage sont comparées sur des matrices interspectrales synthétiques.

Le code permet de faire varier la fréquence pour la matrice de propagation, le nombre de monopole sources N_{src} , le degré de corrélation des sources, le SNR et le nombre de snapshots M_w .

Les spectres de sources sont

$$\mathbf{Q} \sim \mathcal{N}(0, \frac{q_{rms}}{\sqrt{2}})$$

de dimension $(N_{src} \times M_w \times N_{freq})$.

Les sources sont ensuite corrélées :

$$oldsymbol{Q} = oldsymbol{Q}_{corr} oldsymbol{Q}$$

avec Q_{corr} la factorisation de Cholesky de la matrice de covariance des sources.

Les spectres de pression sont générés par une propagation des sources :

$$P = GQ$$

Les spectres de bruits sont

$$\mathbf{N} \sim \mathcal{N}(0, \frac{n_{rms}}{\sqrt{2}})$$

avec $n_{rms}(f) = \text{mean}(|\boldsymbol{P}(f)|) \times 10^{-SNR/20}$. Le bruit est ajouté au signal :

$$Y = P + N$$

. Les interspectres sont calculés :

$$S_q = \frac{1}{M_w} QQ'$$
 (sources) (1)

$$S_p = \frac{1}{M_w} P P'$$
 (signal) (2)

$$S_n = \frac{1}{M_w} N N' \quad \text{(bruit)} \tag{3}$$

$$S_{y} = \frac{1}{M_{vv}} Y Y'$$
 (signal et bruit) (4)

La matrice à débruiter est S_y et l'objectif est de retrouver S_p à partir de S_y .

L'erreur de reconstruction de la diagonale est quantifiée par :

$$err = \frac{||\boldsymbol{d}_{ref} - \hat{\boldsymbol{d}}||}{||\boldsymbol{d}_{ref}||} \tag{5}$$

avec $d_{ref} = \operatorname{diag}(S_p)$.

Pour chaque méthode, on étudie la sensibilité à 4 paramètres :

- le rang de la matrice signal S_p : on fait varier le nombre de sources ou la fréquence
- le rang de la matrice de bruit : on fait varier le nombre de snapshots, pour un bruit diagonal
- le SNR : de -10 à 10 dB
- présence de bruit corrélé ou non
- \times la norme nucléaire de la matrice signal \to revient à faire varier les sources ou lafréquence, donc le rang de la matrice signal

Les paramètres inchangés :

- le nombre de microhpones : 93 (en spirale)
- le propagateur : fonction de Green d'un monopole en champ libre

3.1. Alternating projections

Le principe de ces méthodes est de diminuer le niveau de la diagonale jusqu'à ce que la plus petite valeur propre soit nulle.

— les 3 algos donnent-ils la même solution?

3.1.1 Variation du rang de S_p

Paramètres fixés :

- SNR : 10 dB
- rang de S_n : plein.
- Bruit décorrélé : les éléments extradiagonaux sont annulés (toutes les VP de S_n sont donc égales).

On trace l'erreur en fonction du SNR pour chaque méthode :

$$err = \frac{||\boldsymbol{d}_{ref} - \hat{\boldsymbol{d}}||}{||\boldsymbol{d}_{ref}||} \tag{6}$$

avec $|| \bullet ||$ la norme L2.

hypothèse : les méthode vont être impacté par le spectre en VP plutôt que part le RSB.

3.2. En fonction du rang

Les paramètres qui modifient le rang de la CSM sont :

- la fréquence d'étude,
- le nombre de source
- la corrélation des sources

On choisit donc de fixer la fréquence et la corrélation des sources.

En rang plein, enlever une VP equivaut à Hald and co (puisque le mieux qu'on peut faire c'est de mettre la plus petite VP à 0)?

D'après Hald 2017, CVX fonctionne si le rang R est inférieur à M-sqrt(2.5 M) où M est la taille de de la CSM (ie le nombre de capteurs).

3.3. En fonction du SNR

On fait varier le SNR de -10 à 10 dB.

Paramètres fixes:

-rang : 49 (49 sources décorrélées)

-freq: 3000 Hz

IV. Perspectives

— Prise en main code MCMC