

where e is some low Hamming weight noise term

m

 $\mathbb{F}_{\mathsf{q}}^{\;k}$

message vector

$$\mathbb{F}_q^{k}$$
 $\mathbb{F}_q^{k \times n}$

message vector

generator matrix

message vector codeword generator matrix

the possible codewords form a subspace of $\mathbb{F}_{\mathfrak{q}}^{\ n}$

 c_0

C₁

 c_2

C₃

C₄

C₅

c₆

c₇

Cg

2 important parameters

R = k/n D = d/n

information rate minimum distance

2 important parameters

2 important parameters

D = d/n
minimum distance

Singleton bound

$$d \le n - k + 1$$

pros: cons:

MDS code d = n - k + 1

pros:

cons:

MDS code d = n - k + 1

linear code, easy en/decode

1 g g² g³ g⁴ ...
1 g² g⁴ g⁶ g⁸ ...

1 g³ g⁶ g⁹ g¹² ...

Vandermonde matrix

pros:

cons:

MDS code d = n - k + 1

$$d = n - k + 1$$

n (#evaluation points) < q (#field elements)

linear code, easy en/decode

1 g g² g³ g⁴ ...
1 g² g⁴ g⁶ g⁸ ...

1 g³ g⁶ g⁹ g¹² ...

Vandermonde matrix

pros:

MDS code
$$d = n - k + 1$$

linear code, easy en/decode

Vandermonde matrix

cons:

n (#evaluation points) < q (#field elements)

no asymptotically good family of codes as $n \rightarrow \infty$

projective curve \mathbb{X} over \mathbb{F}_{q}

projective curve \mathbb{X} over \mathbb{F}_q

Reed-Solomon $\mathbb{F}_q[x] \xrightarrow{\text{ambient function field}} \mathbb{F}(\mathbb{X}) \sim \mathbb{F}(\mathbb{X}) \sim \mathbb{F}(\mathbb{X})/(\mathbb{X})$

Reed-Solomon $\mathbb{F}_q[x] \xrightarrow{\text{ambient function field}} \mathbb{F}(\mathbb{X}) \sim \mathbb{F}(\mathbb{X}) \sim \mathbb{F}(\mathbb{X})/(\mathbb{X})$

$$\mathbb{F}_{q}[x]_{\leq k} \xrightarrow{\text{space of messages}} \mathcal{L}(D) \qquad \text{Riemann-Roch space of } D$$

elements of $\mathbb{F}_{\mathfrak{q}}$

$\mathbb{F}_q[x] \xrightarrow{\text{ambient function field}} \mathbb{F}_q[x] \times \mathbb{F}_q[x]_{< k} \xrightarrow{\text{space of messages}} \mathcal{L}(\mathbb{D}) \text{ Riemann-Roch space of } \mathbb{D}$

 $(P_1, P_2, ..., P_n)$

Reed-Solomon AG

hard problem: decoding a linear code, where G is random

hard problem: decoding a linear code, where G is random

idea: create a G' that looks random, but we can decode

keygen:

- 1. generate randomly a structured G that we can decode
- 2. publish the masked G' := SGP
- 3. hope G' looks random to others

keygen:

- 1. generate randomly a structured G that we can decode
- 2. publish the masked G' := SGP
- 3. hope G' looks random to others

encryption:

1. encode the message and add noise: c = mG' + e

keygen:

- 1. generate randomly a structured G that we can decode
- 2. publish the masked G' := SGP
- 3. hope G' looks random to others

encryption:

1. encode the message and add noise: c = mG' + e

decryption:

- 1. permute back: $c' = c*P^{-1} = mSG + eP^{-1}$
- 2. decode: dec(c') = mS
- 3. multiply by S inverse: $m = mS*S^{-1}$

keygen:

- 1. generate randomly a structured G that we can decode
- 2. publish the masked G' := SGP
- 3. hope G' looks random to others

encryption:

1. encode the message and add noise: c = mG' + e

decryption:

- 1. permute back: $c' = c*P^{-1} = mSG + eP^{-1}$
- 2. decode: dec(c') = mS
- 3. multiply by S inverse: $m = mS*S^{-1}$

only known secure instantiation uses AG codes, binary Goppa codes specifically