ECE 161A: Discrete Time Fourier Transform

Florian Meyer University of California, San Diego Email: flmeyer@ucsd.edu

Discrete Time Fourier Transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Will use the notation $X(e^{j\omega}) = \mathcal{F}(x[n])$. $X(e^{j\omega})$ is periodic with periodicity 2π , $X(e^{j\omega}) = X(e^{j(\omega+2\pi)})$.

Some Observations

- $ightharpoonup \omega$ is referred to as the normalized frequency.
- Definition consistent with the definition of the continuous time Fourier transform and related through the sampling theorem.
- \triangleright x[n] can be viewed as the Fourier series coefficients.

Fourier Series Connection

DTFT

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Fourier Series

$$x_c(t) = x_c(t+T_0) = \sum_{k=-\infty}^{\infty} c_k e^{jk\Omega_0 t}$$
, where $\Omega_0 = \frac{2\pi}{T_0}$ $c_k = \frac{1}{T_0} \int_0^{T_0} x_c(t) e^{-jk\Omega_0 t} dt$

Connection $X(e^{j\omega}) \leftrightarrow x_c(t)$ and $x[n] \leftrightarrow c_k$.

At a variable level we have $t \leftrightarrow \omega$, $T_0 \leftrightarrow 2\pi$, and $\Omega_0 \leftrightarrow 1$.

Magnitude and Phase

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j\angle X(e^{j\omega})} = X_R(e^{j\omega}) + jX_I(e^{j\omega})$$
$$|X(e^{j\omega})| = \sqrt{X_R^2(e^{j\omega}) + X_I^2(e^{j\omega})} \text{ and } \angle X(e^{j\omega}) = \arctan\frac{X_I(e^{j\omega})}{X_R(e^{j\omega})}$$

- Magnitude is usually plotted in db scale, i.e. $20 \log_{10} |X(e^{j\omega})|$.
- Phase: there are two popular options
 - ▶ ARG($X(e^{j\omega})$) is $\angle X(e^{j\omega})$ limited to the range $[-\pi,\pi]$.
 - ▶ $\arg(X(e^{j\omega}))$ is $\angle X(e^{j\omega})$ computed as a continuous function of ω (unwrapped phase).

Table 2.3 FOURIER TRANSFORM PAIRS

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
 δ[n] 	Ī
2. $\delta[n-n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (a < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^nu[n]$ $(a < 1)$	$\frac{1}{(1 - ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_C n}{\pi n}$	$X\left(e^{j\omega}\right) = \begin{cases} 1, & \omega < \omega_{c}, \\ 0, & \omega_{c} < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)\right]$

Examples

Delta function:

$$x[n] = \delta[n] \leftrightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n]e^{-j\omega n} = 1.$$

Delayed Delta function:

$$x[n] = \delta[n-n_0] \leftrightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n-n_0]e^{-j\omega n} = e^{-j\omega n_0}.$$

Exponential sequence: $x[n] = a^n u[n], |a| < 1$, has DTFT

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} a^n u[n] e^{-j\omega n} = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}$$

Figure 2.22 Frequency response for a system with impulse response $h[n] = a^o u[n]$. (a) Real part. a > 0; a = 0.75 (solid curve) and a = 0.5 (dashed curve). (b) Imaginary part. (c) Magnitude. a > 0; a = 0.75 (solid curve) and a = 0.5 (dashed curve). (d) Phase.

Table 2.2 FOURIER TRANSFORM THEOREMS

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence	Fourier Transform
x[n]	$X(e^{j\omega})$
y[n]	$Y(e^{j\omega})$
$1. \ ax[n] + by[n]$	$aX(e^{j\omega})+bY(e^{j\omega})$
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$
3. $e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
4. x[-n]	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. nx[n]	$j\frac{dX\left(e^{j\omega}\right)}{d\omega}$
$6. \ x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Parseval's theorem:	
8. $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	

Time Shifting

Time Shifting: $x[n-n_d]\leftrightarrow e^{-j\omega n_d}X(e^{j\omega})$

Proof:

$$\mathcal{F}(x[n-n_d]) = \sum_{n=-\infty}^{\infty} x[n-n_d]e^{-j\omega n}$$

$$= \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega(m+n_d)} \text{ (Change of variables } m=n-n_d\text{)}$$

$$= e^{-j\omega n_d} \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m} = e^{-j\omega n_d}X(e^{j\omega})$$

Modulation

Modulation: $e^{j\omega_0 n}x[n] \leftrightarrow X(e^{j(\omega-\omega_0)})$

Proof:

$$\mathcal{F}(e^{j\omega_0 n}x[n]) = \sum_{n=-\infty}^{\infty} e^{j\omega_0 n}x[n]e^{-j\omega n}$$
$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega-\omega_0)n}$$
$$= X(e^{j(\omega-\omega_0)})$$

Convolution

$$x[n] * y[n] \leftrightarrow X(e^{j\omega})Y(e^{j\omega})$$

Proof:
$$\mathcal{F}(x[n] * y[n]) = \mathcal{F}(\sum_{k=-\infty}^{\infty} x[k]y[n-k])$$

$$= \sum_{k=-\infty}^{\infty} x[k]\mathcal{F}(y[n-k]) \text{ (Linearity)}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}Y(e^{j\omega}) \text{ (Time Shifting)}$$

 $= X(e^{j\omega})Y(e^{j\omega})$

LTI Systems and Convolutions

$$y[n] = h[n] * x[n] \leftrightarrow Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

 $h[n] \leftrightarrow H(e^{j\omega})$ and $H(e^{j\omega})$ is the frequency response (transfer function) of the LTI system.

LTI systems and complex exponential inputs: Consider input $x[n] = e^{j\omega_0 n}$.

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = \sum_{k=-\infty}^{\infty} h[k]e^{j\omega_0(n-k)}$$
$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega_0 k} = e^{j\omega_0 n} H(e^{j\omega_0})$$

Complex exponential input leads to a scaled complex exponential at the output with the scaling determined by the Transfer function. They are referred as eigenfunctions of LTI systems.

Input: $x[n] = \sum_k c_k e^{j\omega_k n}$. Output: By the linearity property $y[n] = \sum_k c_k H(e^{j\omega_k}) e^{j\omega_k n}$

Parseval's Theorem

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

$$X(e^{j\omega}) = \left\{ \begin{array}{ll} 1, & -\omega_c \leq \omega \leq \omega_c \\ 0, & \text{Otherwise} \end{array} \right. \text{ and } x[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega n} d\omega = \frac{\sin \omega_c n}{\pi n}$$

 ω_c

(1)

 $-\omega_c$

From Parseval's Theorem

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=-\infty}^{\infty} \left(\frac{\sin \omega_c n}{\pi n}\right)^2 = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} d\omega = \frac{\omega_c}{\pi}$$

Table 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence $x[n]$	Fourier Transform $X\left(e^{j\omega} ight)$
1. x*[n]	$X^*(e^{-j\omega})$
2. $x^*[-n]$	$X^*(e^{j\omega})$
3. $\mathcal{R}e\{x[n]\}$	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
4. $j\mathcal{I}m\{x[n]\}$	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)
5. $x_e[n]$ (conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}\$
6. $x_o[n]$ (conjugate-antisymmetric part of $x[n]$)	$jX_I(e^{j\omega})=j\mathcal{I}m\{X\left(e^{j\omega}\right)\}$
The following p	properties apply only when $x[n]$ is real:
7. Any real $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)
8. Any real $x[n]$	$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)
9. Any real $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
10. Any real $x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
11. Any real x[n]	$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)
12. $x_e[n]$ (even part of $x[n]$)	$X_R(e^{j\omega})$
13. $x_o[n]$ (odd part of $x[n]$)	$jX_I(e^{j\omega})$

Property 1: $x^*[n] \leftrightarrow X^*(e^{-J\omega})$.

$$x[n] = x_R[n] + jx_I[n] \leftrightarrow X(e^{j\omega}) = X_R(e^{j\omega}) + jX_I(e^{j\omega}), \text{ then }$$

$$x^*[n] = x_R[n] - jx_I[n] \leftrightarrow X^*(e^{-j\omega}) = X_R(e^{-j\omega}) - jX_I(e^{-j\omega}).$$

Note: $x_R[n]$ and $X_R(e^{j\omega})$ are not Fourier transform pairs, i.e.

Note:
$$x_R[n]$$
 and $X_R(e^{j\omega})$ are not Fourier transform pairs, i.e. $x_R[n] \not \mapsto X_R(e^{j\omega})$.
Proof:

Proof:
$$\mathcal{F}(x^*[n]) = \sum_{n=-\infty}^{\infty} x^*[n] e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x^*[n] (e^{j\omega n})^* = \sum_{n=-\infty}^{\infty} (x[n] e^{j\omega n})^*$$
$$= \left(\sum_{n=-\infty}^{\infty} (x[n] e^{j\omega n})\right)^* = \left(\sum_{n=-\infty}^{\infty} (x[n] e^{-j(-\omega)n})\right)^*$$

$$\mathcal{F}(x^*[n]) = \sum_{n=-\infty} x^*[n]e^{-j\omega n} = \sum_{n=-\infty} x^*[n](e^{j\omega n})^* = \sum_{n=-\infty} (x[n]e^{j\omega n})^*$$
$$= \left(\sum_{n=-\infty}^{\infty} (x[n]e^{j\omega n})\right)^* = \left(\sum_{n=-\infty}^{\infty} (x[n]e^{-j(-\omega)n})\right)^*$$

$$= (X(e^{-j\omega}))^* = X^*(e^{-j\omega})$$

Property 3: $Re(x[n]) = x_R[n] = \frac{x[n] + x^*[n]}{2} \leftrightarrow X_c(e^{j\omega}) = \frac{X(e^{j\omega}) + X^*(e^{-j\omega})}{2}$. $X_c(e^{j\omega}) = X_c^*(e^{-j\omega})$ (Conjugate-Symmetric part of $X(e^{j\omega})$.)

Property 4: $jIm(x[n]) = jx_I[n] = \frac{x[n]-x^*[n]}{2} \leftrightarrow X_o(e^{j\omega}) = \frac{X(e^{j\omega})-X^*(e^{-j\omega})}{2}$. $X_o(e^{j\omega}) = -X_o^*(e^{-j\omega})$ (Conjugate-Antisymmetric part of $X(e^{j\omega})$.)

$$X_c$$

Real Sequences

For a real sequence $x[n] = x^*[n]$. Hence $X(e^{j\omega}) = X^*(e^{-j\omega})$.

Implications:

 $|X(e^{j\omega})|=|X^*(e^{-j\omega})|=|X(e^{-j\omega})|.$ The magnitude of the DTFT is an even function. Sufficient to plot $[0,\pi].$

 $\angle X(e^{j\omega}) = \angle X^*(e^{-j\omega}) = -\angle X(e^{-j\omega})$ |. The phase of the DTFT is an odd function. Sufficient to plot $[0,\pi]$.

$$X(e^{j\omega}) = X^*(e^{-j\omega}) \to X_R(e^{j\omega}) + jX_I(e^{j\omega}) = X_R(e^{-j\omega}) - jX_I(e^{-j\omega}).$$

Hence $X_R(e^{j\omega}) = X_R(e^{-j\omega})$ and $X_I(e^{j\omega}) = -X_I(e^{-j\omega}).$

Convergence of the Fourier Transform

 $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$. Infinite sum and so may not exist for a given x[n].

$$X_M(e^{j\omega}) = \sum_{n=-M}^M x[n]e^{-j\omega n} \xrightarrow[M \to \infty]{} X(e^{j\omega})$$

Complicated because it involves a sequence of functions. Behavior may vary with ω .

Pointwise Convergence: $\lim_{M\to\infty} X_M(e^{j\omega}) = X(e^{j\omega}) \ \forall \omega.$

Uniform Convergence: $\{X_M(e^{j\omega})\}$ converges uniformly to $X(e^{j\omega})$ if given any $\epsilon>0$, there exists a natural number $N=N(\epsilon)$ such that

$$|X_M(e^{j\omega})-X(e^{j\omega})|<\epsilon, ext{for every } M>N ext{ and } orall \omega.$$

Uniform convergence implies pointwise convergence but not the other way around.

The limit of a sequence of continuous functions converging uniformly is also continuous.

Absolute Summability and Convergence

If the sequence is absolutely summable, the Fourier transform exists.

$$|X(e^{j\omega})| = |\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}| \le \sum_{n=-\infty}^{\infty} |x[n]e^{-j\omega n}| \le \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

Can show: Converges uniformly to a continuous function.

For stable LTI systems, the Fourier transform always exists.

Reason: Stable LTI systems have an impulse response that is absolutely summable.

Convergence Issues with Low Pass Filters

$$H(e^{j\omega}) = \left\{ egin{array}{ll} 1, & -\omega_c \leq \omega \leq \omega_c \ 0, & ext{Otherwise} \end{array}
ight. ext{ and } h[n] = rac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega n} d\omega = rac{\sin \omega_c n}{\pi n}
ight.$$

Challenges:

- Non-causal and infinite in duration
- ▶ $H_M(e^{j\omega}) = \sum_{n=-M}^M h[n]e^{-j\omega n}$ does not converge uniformly. Note that $H_M(e^{j\omega}) = \sum_{n=-M}^M h[n]e^{-j\omega n}$ is a continuous function of ω but the ideal lowpass filter is not
- The ideal impulse response is not absolutely summable

Consequence: Gibbs Phenomenon

Gibbs Phenomenon

Figure 2.21 Convergence of the Fourier transform. The oscillatory behavior at $\omega = \omega_c$ is often called the Gibbs phenomenon.

