16:47

L5.8. 1 punkt Zaproponuj numeryczną metodę wyznaczania wykładnika zbieżności jedno- $\overline{\text{krokowej}}$ metody iteracyjnej (por. zadanie L5.5) rozwiązywania równania nieliniowego

 $\lim_{n\to\infty}\frac{|x_n+-x|}{|x_n-x|^p}=C$ by e^{-1} e^{-1} $|\mathcal{E}_n| \approx c \cdot |\mathcal{E}_{n-1}|^{\epsilon}$

$$c \approx \frac{|\mathcal{E}_{n+1}|}{|\mathcal{E}_{n}|^{p}} = \frac{|\mathcal{E}_{n}|}{|\mathcal{E}_{n-1}|^{p}}$$

$$\frac{\log \frac{|E_{n+1}|}{|E_{n}|} = |OOC| = \frac{\log \frac{|E_{n}|}{|E_{n-1}|^{2}}}{\log \frac{|E_{n-1}|}{|E_{n-1}|}}$$

 $(1-l_2=0)$ wordstany ze wzorów z liceum $|og||E_{n+d}|-p\cdot|og||E_n|+p\cdot|og||E_{n-d}|-|og||E_n|=0$

Wykładnik zbieżności

- Określa szybkość zbieżności metod iteracyjnych
- Metoda jest rzędu p, jeżeli istnieje stała c taka, że dla dwóch kolejnych przybliżeń x_k i x_{k+1} zachodzi

$$\lim_{k \to \infty} \frac{\left| \mathcal{E}_{k+1} \right|}{\left| \mathcal{E}_{k} \right|^{p}} = c$$

gdzie
$$\varepsilon_k = x_{k+1} - x_k$$
.

Przypadki specjalne

p=1 (metoda liniowa), p>1 & p<2 (metoda superliniowa) p=2 (metoda kwadratowa),

p=3 (metoda kubiczna)

Zbieżność

- **●** 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} ... liniowa z C = 10^{-1}
- 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} ... liniowa z C = 10^{-2}
- 10⁻², 10⁻³, 10⁻⁵, 10⁻⁸... superliniowa
- 10⁻², 10⁻⁴, 10⁻⁸, 10⁻¹⁶... kwadratowa