Partiel S2 Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (5 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour le montage ci-dessous.

Partiel S2 1/5

Exercice 3 (6 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Sur le <u>document réponse</u>, donnez les expressions les plus simplifiées des entrées J et K de chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : J0 = 1, $K1 = \overline{Q2}$).

Exercice 4 (4 points)

On souhaite réaliser une mémoire RAM d'une capacité de 2 Mio (que l'on notera *M*) à l'aide de plusieurs mémoires RAM d'une capacité de 16 Kio (que l'on notera *m*). La mémoire *M* possède un bus de donnée de 16 bits et la mémoire *m* un bus de donnée de 8 bits. Répondez aux questions sur le <u>document réponse</u>.

Partiel S2 2/5

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	E	M
-146,3125			
0,34375			

2.

Représentation IEEE 754	Représentation associée		
24680000000000016			
7FFF00000000000 ₁₆			
00068000000000_{16}			

Exercice 3

Q2	Q1	Q0	J2	K 2	J1	K1	J0	K0
1	1	1						
1	0	0						
1	0	1						
1	1	0						
0	1	1						
0	0	1						
0	0	0						

Utilisez les tableaux de Karnaugh uniquement pour les solutions qui ne sont pas évidentes.

J1 =

$$K0 =$$

	Q1 Q0				
	K1	00	01	11	10
03	0				
Q2	1				

	_	Q1 Q0				
	K2	00	01	11	10	
Q2	0					
	1					

$$K2 =$$

Exercice 4

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	
Quelle est la profondeur de la mémoire <i>M</i> ?	
Donnez le nombre de fils du bus d'adresse de la mémoire <i>m</i> .	
Donnez le nombre de fils du bus d'adresse de la mémoire M .	
Combien de mémoires doit-on assembler en parallèle ?	
Combien de mémoires doit-on assembler en série ?	
Combien de bits d'adresse vont servir à déterminer les entrées <i>CS</i> des mémoires ?	
Quand la mémoire M est active, combien de mémoires m sont actives simultanément ?	