Simplify a logic expression

... using K-Maps

CSIT

Simplify an expression using K-Maps

Given,

$$X = \overline{ABC} + \overline{AB+BC}$$

Simplify the above expression, using K-Maps.

$$X = \overline{ABC} + \overline{AB+BC}$$

ABC

$$X = \overline{ABC} + \overline{AB+BC}$$

$$ABC + AB$$

$$X = \overline{ABC} + \overline{AB+BC}$$

$$ABC + AB + BC$$

Using Tables A MORE SYSTEMATIC WAY

A more systematic way ...

Second term (ĀB)

$$\overline{A} \overline{B} \overline{C} + \overline{A} B + \overline{B} C$$

A	В	C	A	В	С
0	1	Χ			
0	1	Χ			

Second term (AB)

Third term (BC)

$$\overline{A} \overline{B} \overline{C} + \overline{A} B + \overline{B} C$$

Α	В	C	A	В	С
X	0	1			
Х	0	1			

Third term (BC)

$$\overline{A}\overline{B}\overline{C} + \overline{A}B + \overline{B}C$$

Α	В	C	A	В	C
Χ	0	1	0	0	1
Χ	0	1	1	0	1

Simplification

Simplification

$$X = ?$$

Simplification

$$X = \overline{A} + \overline{BC}$$

Another useful example...

$$X = AB + \overline{AC} + BC$$

Another useful example...

$$X = AB + \overline{AC} + BC$$

Α	В	C	A	В	C
1	1	Χ	1	1	1
1	1	Χ	1	1	0

AB

$$X = AB + \overline{AC} + BC$$

A'C

A	В	C	A	В	C
0	X	1	0	0	1
0	X	1	0	1	1

ĀC

$$X = AB + \overline{AC} + BC$$

Α	В	C	A	В	C
Х	1	1	0	1	1
X	1	1	1	1	1

BC

$$X = AB + \overline{AC} + BC$$

Consensus theorem

Consensus theorem

Consensus Theorem

- AB + A'C + BC
- AB + A'C + 1 BC
- AB + A'C + (A + A') BC
- \bullet AB + A'C + ABC + A'BC
- AB(1+C) + A'C(1+B)
- AB + A'C

• Which is > AB+A'C+BC = AB + A'C

K-Map simplification technique

- Good only for small circuits
- Excellent academic method
- There are better computer-based techniques

Our work on the subject

WWW-based simplification method

Tomaszewski, S.P, I.U. Ilgaz and Antoniou, G.E. (2003). "WWW-Based Boolean function simplification", International Journal of Applied Mathematics and Computer Science, 13 (4), 577-583.

(To download the paper: http://www.researchgate.net/profile/George_Antoniou)

References:

Quine W.V. (1952). The problem of simplifying truth tables, American. Math. Monthly, 59(8), 521-531.

McCluskey E.J. (1956). Minimization of Boolean functions, Bell System Technical Journal, 35(5), 1417-1444.

Sebastian Tomaszewski and I.U. Ilgaz are MSU/CS Alumni (2002)

PDA-based simplification

Journal Publications

Ledion Bitincka, George E. Antoniou, (2004), "PDA-Based Boolean Function Simplification: A Useful Educational Tool", International Journal INFORMATICA, Vol. 15, No. 3, pp. 329-336.

Ledion Bitincka, George E. Antoniou, (2005), "Pocket-PC Boolean Function Simplification", International Journal in Electrical Engineering, Vol. 56, No. 7-8, pp. 1-4.

(To download the papers: http://www.researchgate.net/profile/George Antoniou)

Ledion Bitincka is MSU/CS Alumni (2003)

BFSTool 1.0 (Softpedia)

Incompletely Specified Functions

30

ISF

 In some design problems a number of the inputs never occur, so there is no specified output. Such an output is denoted by (X) and is called Don't Care Condition.

ISF-Example

The output (Z) of a three-input (A,B,C) digital circuit is:

- \gt 0 if The input is: \leq 210
- > 1 if The input is: \geq 5₁₀
- > x otherwise

Set-up the Truth Table

Truth table

The output (Z) of a three-input (A,B,C) digital circuit is:

- \triangleright 0 if The input is: <= 2_{10}
- \gt 1 if The input is: \gt = 510
- > x otherwise

output

	A	В	C	Z
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

In some design problems a number of the inputs never occur, so there is no specified output. Such an output is denoted by (X) and is called don't care condition.

Truth table

The output (Z) of a three-input (A,B,C) digital circuit is:

- \triangleright 0 if The input is: <= 2_{10}
- \gt 1 if The input is: \gt = 510
- > x otherwise

output

	A	В	C	Z
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	X
4	1	0	0	X
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

In some design problems a number of the inputs never occur, so there is no specified output. Such an output is denoted by (X) and is called don't care condition.

Output and don't care equations

$$Z =$$
 and $X =$

Output and don't care equations

$$Z = A \overline{B} C + A B \overline{C} + ABC$$
and
$$X = \overline{A} B C + A \overline{B} \overline{C}$$

	A	В	C	Z
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	X
4	1	0	0	X
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Set-Up the K-Map

Set-up K-Map table - Z

	A	В	С	Z
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	X
4	1	0	0	X
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Set-up K-Map table - Z

	A	В	C	Z
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	X
4	1	0	0	X
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

The x's can be either 1 or 0 as long as the final result has absolutely-minimum number of terms

	A	В	C	Z
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	X
4	1	0	0	X
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

.

Optimal values

Setting the top x=0 and the bottom x=1,...

$$Z = ?$$

.

Result: Z = A

The final result has absolutely-minimum (optimal) number of terms.

$$Z = A$$

