Give a recursive definition of the sequence $\{a_n\}$, n =1, 2, 3, ... if

a)
$$a_n = 6n$$

a)
$$a_n = 6n$$
. **b**) $a_n = 2n + 1$.

c)
$$a_n = 10^n$$
.

d)
$$a_n = 5$$
.

- a) $a_{n+1} = a_n + 6$ for $n \ge 1$ and $a_1 = 6$
- **b) b)** $a_{n+1}=a_n+2$ for $n \ge 1$ and $a_1=3$
- c) c) $a_{n+1}=10a_n$ for $n\ge 1$ and $a_1=10$
- **d) d)** $a_{n+1} = a_n$ for $n \ge 1$ and $a_1 = 5$

- 2. Give a recursive definition of
 - a) the set of even integers.
 - b) the set of positive integers congruent to 2 modulo 3.
 - c) the set of positive integers not divisible by 5.
 - a) $0 \in S$, and if $x \in S$, then $x+2 \in S$ and $x-2 \in S$.
 - **b)** $2 \in S$, and if $x \in S$, then $x+3 \in S$.
 - c) $1 \in S$, $2 \in S$, $3 \in S$, $4 \in S$, and if $x \in S$, then $x+5 \in S$.

3. Let S be the set of positive integers defined by

Basis step: $5 \in S$.

Recursive step: If $n \in S$, then $3n \in S$ and $n^2 \in S$.

- a) Show that if $n \in S$, then $n \equiv 5 \pmod{10}$.
- **b)** Show that there exists an integer $m \equiv 5 \pmod{10}$ that does not belong to S.
- a) Basisstep: $5 \equiv 5 \pmod{10}$. Inductive step: If $n \equiv 5 \pmod{10}$, then $3n \equiv 3.5 = 15 \equiv 5 \pmod{10}$ and $n^2 \equiv 5^2 = 25 \equiv 5 \pmod{10}$.
- b) $35 \notin S$ because 35 is not a multiple of 3 nor a perfect square.
- 4. Give a recursive algorithm for computing nx whenever n is a positive integer and x is an integer, using just addition.

```
procedure mult(n): positive integer, x: integer)
if n = 1 then return x
else return x + mult(n - 1, x)
```

5. Devise a recursive algorithm for computing the greatest common divisor of two nonnegative integers a and b with a < b using the fact that gcd(a, b) = gcd(a, b - a).

```
procedure gcd(a, b): nonnegative integers) \{a < b \text{ assumed to hold}\}

if a = 0 then return b

else if a = b - a then return a

else if a < b - a then return gcd(a, b - a)

else return gcd(b - a, a)
```