27.12.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項はト記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年12月25日

出 願 番 号

特願2003-430939

Application Number: [ST. 10/C]:

[JP2003-430939]

出 願 人
Applicant(s):

エーザイ株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月10日

BEST AVAILABLE C


```
【書類名】
             特許願
【整理番号】
             EP03EE1201
【提出日】
             平成15年12月25日
【あて先】
             特許庁長官殿
【国際特許分類】
             C07D473/00
             A61K 31/522
【発明者】
  【住所又は居所】
             茨城県牛久市田宮2-10-2
  【氏名】
             松嶋 知広
【発明者】
             茨城県鹿島郡神栖町大野原1-10-5-204
  【住所又は居所】
  【氏名】
             中村 太樹
【発明者】
  【住所又は居所】
             茨城県鹿島郡神栖町神栖2-13-6-101
             吉澤 一洋
  【氏名】
【発明者】
  【住所又は居所】
             茨城県牛久市神谷2-7-30
             鎌田 厚
  【氏名】
【発明者】
  【住所又は居所】
             茨城県鹿島郡神栖町知手中央3-4-10
  【氏名】
             綾田 雄輔
【発明者】
  【住所又は居所】
             茨城県牛久市栄町1-56-107
  【氏名】
             鈴木 直子
【発明者】
  【住所又は居所】
             東京都文京区小石川3-34-6-405
  【氏名】
             有本 達
【発明者】
  【住所又は居所】
             茨城県つくば市稲荷前9-7-405
  【氏名】
             坂口 貴久
【特許出願人】
  【識別番号】
             000000217
             東京都文京区小石川4丁目6番10号
  【住所又は居所】
  【氏名又は名称】
             エーザイ株式会社
  【代表者】
             内藤 晴夫
【手数料の表示】
  【予納台帳番号】
             004983
  【納付金額】
             21,000円
【提出物件の目録】
  【物件名】
             特許請求の範囲 1
  【物件名】
             明細書 1
  【物件名】
             図面 1
  【物件名】
             要約書 1
```


4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドの塩酸塩、臭化水素酸塩、p-トルエンスルホン酸塩、硫酸塩、メタンスルホン酸塩もしくはエタンスルホン酸塩またはそれらの溶媒和物の結晶。

【請求項2】

4- (3-クロロー4- (シクロプロピルアミノカルボニル) アミノフェノキシ) - 7- メトキシ-6-キノリンカルボキサミドのメタンスルホン酸塩またはその溶媒和物の結晶

【請求項3】

4- (3-クロロ-4- (シクロプロピルアミノカルボニル) アミノフェノキシ) -7- メトキシ-6-キノリンカルボキサミドのエタンスルホン酸塩またはその溶媒和物の結晶

【請求項4】

4 - (3 - クロロ - 4 - (シクロプロピルアミノカルボニル)アミノフェノキシ)- 7 -メトキシ-6-キノリンカルボキサミドのメタンスルホン酸塩の結晶。

【請求項5】

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドのメタンスルホン酸塩の水和物の結晶。

【請求項6】

4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドのメタンスルホン酸塩のジメチルスルホキシド和物の結晶。

【請求項7】

4-(3-0)00-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドのメタンスルホン酸塩の酢酸和物の結晶。

【請求項8】

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドのエタンスルホン酸塩の結晶。

【請求項9】

4-(3-)クロロー4-(シクロプロピルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミドのエタンスルホン酸塩のジメチルスルホキシド和物の結晶。

【請求項10】

粉末 X 線回折において、回折角度($2\theta \pm 0$. 2°) 9. 65° および 18. 37° に回折ピークを有する、請求項 4 記載の結晶(A)。

【請求項11】

粉末 X線回折において、回折角度($2\theta\pm0$. 2°) 5. 72° および 13. 84° に回折ピークを有する、請求項 4 記載の結晶(B)。

【請求項12】

粉末X線回折において、回折角度($2\theta\pm0$. 2°) 14. 20° および17. 59° に回折ピークを有する、請求項4記載の結晶(C)。

【請求項13】

粉末X線回折において、回折角度($2\theta \pm 0$. 2°) 8. 0.2° および 1.8. 1.4° に回 折ピークを有する、請求項 5 記載の結晶(F)。

【請求項14】

粉末X線回折において、回折角度($2\theta\pm0$. 2°) 9. 36° および 12. 40° に回折ピークを有する、請求項7記載の結晶(I)。

【請求項15】

【請求項16】

粉末 X 線回折において、回折角度($2\theta\pm0$. 2°) 6. 48° および 9. 58° に回折 ℓ^{\prime} ークを有する、請求項 8 記載の結晶 (β)。

【請求項17】

4-(3-0)000-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、溶媒およびメタンスルホン酸を混合し、溶解させることを特徴とする、4-(3-0)000-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド メタンスルホン酸の結晶(A)の製造方法。

【請求項18】

【請求項19】

4-(3-0)00-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド メタンスルホン酸の酢酸和物の結晶(I)を乾燥させて、酢酸を除去することを特徴とする、4-(3-0)00-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドメタンスルホン酸の結晶(B)の製造方法。

【請求項20】

 $4-(3-\rho - 4-(2\rho - 4$

【請求項21】

4-(3-0) ロロー 4-(20) ロプロピルアミノカルボニル)アミノフェノキシ) -7-(3) トキシー 6-(3) トキシー 6-(3) トキシー 6-(3) で溶媒を混合することを特徴とする、4-(3) クロロー 4-(20) ロプロピルアミノカルボニル)アミノフェノキシ) -7-(3) トキシー 6-(3) ルホン酸の結晶(C)の製造方法。

【請求項22】

4-(3-0) ロロー 4-(20) ロプロピルアミノカルボニル)アミノフェノキシ)-7-(3-0) アキシー6-1 キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解させることを特徴とする、4-(3-0) ロロー4-(20) ロプロピルアミノカルボニル)アミノフェノキシ)-7-(3-0) オンカルボキサミド メタンスルホン酸の結晶 (C) の製造方法。

【請求項23】

4-(3-)000-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド メタンスルホン酸の結晶(B)を加湿することを特徴とする、4-(3-)000-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド メタンスルホン酸の結晶(C)の製造方法。

【請求項24】

4-(3-0) ロロー 4-(200) ロプロピルアミノカルボニル) アミノフェノキシ) -7-(3-0) メトキシー6-4 リンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解さ

【請求項25】

【請求項26】

4-(3-0)000-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、溶媒およびエタンスルホン酸を混合し、溶解させることを特徴とする、4-(3-0)00-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド エタンスルホン酸塩の結晶 (α)の製造方法。

【請求項27】

 $4-(3-\rho - 4-(2\rho -$

【請求項28】

【書類名】明細書

【発明の名称】 4-(3-クロロー4-(シクロプロピルアミノカルボニル) アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドの塩またはその溶媒和物の結晶およびそれらの製造方法

【技術分野】

[0001]

本発明は、4-(3-0)ロロー4-(0)0ロプロピルアミノカルボニル)アミノフェノキシ)-7-3トキシー6-41リンカルボキサミドの塩またはその溶媒和物の結晶およびそれらの製造方法に関する。

【背景技術】

[0002]

特許文献1の実施例368に記載されている、 $4-(3-\rho uu-4-(シ \rhouu)uu$ ルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド(別名: $4-[3-\rho uu-4-(N'-)\nu uu)uu$ ルウレイド)フェノキシ]-7-メトキシキノリン-6-カルボキサミド)は、遊離体として、優れた血管新生阻害作用を示すことが知られている。

しかしながら、4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドの遊離体と比較して、物性面および動態面において、より優れた性質を有しており、医薬品としての有用性が高い血管新生阻害剤の提供が切望されている。

【特許文献1】国際公開第02/32872号パンフレット

【発明の開示】

【発明が解決しようとする課題】

[0003]

本発明の目的は、医薬品としての有用性が高い4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドの塩またはその溶媒和物の結晶およびそれらの製造方法を提供することにある。

【課題を解決するための手段】

[0004]

上記目的を達成するために、本発明は

<1> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6ーキノリンカルボキサミドの塩酸塩、臭化水素酸塩、pートルエンスルホン酸塩、硫酸塩、メタンスルホン酸塩もしくはエタンスルホン酸塩またはそれらの溶媒和物の結晶;

<2> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドのメタンスルホン酸塩またはその溶媒和物の結晶:

<4> 4-(3-)000-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドのメタンスルホン酸塩の結晶;

<7> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドのメタンスルホン酸塩の酢酸和物の結晶

<8> 4ー(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ) - 7 - メトキシ-6 - キノリンカルボキサミドのエタンスルホン酸塩の結晶; <9> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドのエタンスルホン酸塩のジメチルスルホ キシド和物の結晶: < 10> 粉末 X 線回折において、回折角度(2θ±0.2°)9.65°および18. 37° に回折ピークを有する、<4>記載の結晶(A): <11> 粉末 X 線回折において、回折角度 (2 θ ± 0.2°) 5.72° および 13. 8 4° に回折ピークを有する、<4>記載の結晶(B); < 12> 粉末X線回折において、回折角度 (2 θ ± 0. 2°) 14. 20° および 17 . 59° に回折ピークを有する、<4>記載の結晶(C); < 13> 粉末X線回折において、回折角度 (2 θ ± 0. 2°) 8. 0 2° および 18. 14°に回折ピークを有する、<5>記載の結晶(F); < 1 4 > 粉末 X 線回折において、回折角度 (2 θ ± 0 . 2°) 9 . 3 6° および 1 2 . 40°に回折ピークを有する、<7>記載の結晶(I); < 1 5 > 粉末 X 線回折において、回折角度(2 θ ± 0 . 2°) 1 5 . 7 0° および 1 7 . 18° に回折ピークを有する、<8>記載の結晶(α); <16> 粉末 X 線回折において、回折角度 (2 θ ± 0. 2°) 6. 4 8° および 9. 5 8° に回折ピークを有する、< 8 >記載の結晶 (β): <17> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキ シ)-7-メトキシ-6-キノリンカルボキサミド、溶媒およびメタンスルホン酸を混合 し、溶解させることを特徴とする、4-(3-クロロ-4-(シクロプロピルアミノカル ボニル)アミノフェノキシ) - 7 - メトキシ-6 - キノリンカルボキサミド メタンスル ホン酸の結晶(A)の製造方法; <17-1> 溶媒がメタノール、エタノールまたは2-プロパノールである<17> 記載の製造方法; <18> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキ シ)-7-メトキシ-6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合 し、溶解させることを特徴とする、4-(3-クロロー4-(シクロプロピルアミノカル ボニル)アミノフェノキシ) - 7 - メトキシ-6 - キノリンカルボキサミド メタンスル ホン酸の結晶(A)の製造方法。 <18-1> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェ ノキシ) - 7-メトキシー6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を 混合し、溶解させた後、貧溶媒を加えることを特徴とする、<18>記載の製造方法; <18-2> 貧溶媒がメタノールまたはエタノールである<18-1>記載の製造方法 <19> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキ シ)-7-メトキシ-6-キノリンカルボキサミド メタンスルホン酸の酢酸和物の結晶 (I)を乾燥させて、酢酸を除去することを特徴とする、4-(3-クロロー4-(シク ロプロピルアミノカルボニル)アミノフェノキシ)ー7ーメトキシー6ーキノリンカルボ キサミド メタンスルホン酸の結晶(B)の製造方法: <20> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキ シ) - 7 - メトキシ-6 - キノリンカルボキサミド メタンスルホン酸塩のジメチルスル ホキシド和物の結晶を加熱することを特徴とする、4-(3-クロロー4-(シクロプロ ピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミ ド メタンスルホン酸の結晶(C)の製造方法; <21> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキ シ)-7-メトキシ-6-キノリンカルボキサミド メタンスルホン酸の酢酸和物の結晶 (I) および溶媒を混合することを特徴とする、4-(3-クロロ-4-(シクロプロピ

ルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド

メタンスルホン酸の結晶(C)の製造方法;

<21-1> 溶媒がメタノール、エタノールまたは2-プロパノールである<21>記載の製造方法;

<22> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解させることを特徴とする、4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド メタンスルホン酸の結晶(C)の製造方法;

<22-1> 4-(3-クロロ-4-(シクロプロピルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解させた後、貧溶媒を加えることを特徴とする、<22>記載の製造方法;

<22-2> 貧溶媒が2-プロパノールである<22-1>記載の製造方法;

<2.4> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解させることを特徴とする、4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド メタンスルホン酸の水和物の結晶(F)の製造方法:

<24-1> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解させた後、貧溶媒を加えることを特徴とする、<24>記載の製造方法;<24-2> 貧溶媒が酢酸エチルまたは酢酸イソプロピルである<24-1>記載の製造方法;

<25-1> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解させた後、貧溶媒を加えることを特徴とする、<25>記載の製造方法;

<25-2> 資溶媒が1-プロパノール、1-プタノールまたは t e r t - プタノール である <25-1>記載の製造方法:

<26> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6ーキノリンカルボキサミド、溶媒およびエタンスルホン酸を混合し、溶解させることを特徴とする、4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6ーキノリンカルボキサミド エタンスルホン酸塩の結晶(α)の製造方法;

< 2 6 - 1 > 溶媒がジメチルスルホキシドである< 2 6 > 記載の製造方法;

<27-1> 溶媒がメタノール、エタノールまたは2-プロパノールである<27>記載の製造方法;

<28> 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6ーキノリンカルボキサミド、酢酸およびエタンスルホン酸を混合し、溶解させることを特徴とする、4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6ーキノリンカルボキサミド エタンスルホン酸塩の結晶(β)の製造方法;

<28-1> 4-(3-クロロ-4-(シクロプロピルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、酢酸およびメタンスルホン酸を混合し、溶解させた後、貧溶媒および水を加えることを特徴とする、<28>記載の製造方法;

<28-2> 貧溶媒がエタノールまたは2-プロパノールである<28-1>記載の製造方法:

<29> <1>~<16>いずれか1記載の結晶を含有する医薬組成物;

<30> <1>~<16>いずれか1記載の結晶を含有する、血管新生阻害作用が有効な疾患に対する予防または治療剤;

- <31> <1>~<16>いずれか1記載の結晶を含有する血管新生阻害剤;
- < 3 2 > < 1 > ~< 1 6 > いずれか 1 記載の結晶を含有する抗腫瘍剤;
- <33> 腫瘍が膵臓癌、胃癌、大腸癌、乳癌、前立腺癌、肺癌、腎癌、脳腫瘍、血液癌 または卵巣癌である<32>記載の抗腫瘍剤;
- <34> <1>~<16>いずれか1記載の結晶を含有する血管腫治療剤;
- <35> <1>~<16>いずれか1記載の結晶を含有する癌転移抑制剤;
- <36> <1>~<16>いずれか1記載の結晶を含有する網膜血管新生症治療剤;
- <37> <1>~<16>いずれか1記載の結晶を含有する糖尿病性網膜症治療剤;
- <38> <1>~<16>いずれか1記載の結晶を含有する炎症性疾患治療剤;
- <39> 炎症性疾患が変形性関節炎、リューマチ性関節炎、乾癬または遅延性過敏反応である<38>記載の炎症性疾患治療剤;
- < 40> <1>~<16>いずれか1記載の結晶を含有するアテローム性動脈硬化治療剤;
- < 41> <1>~<16>いずれか1記載の結晶の薬理学的有効量を患者に投与して、 血管新生阻害作用が有効な疾患を予防または治療する方法および
- < 4 2 >血管新生阻害作用が有効な疾患に対する予防または治療剤の製造のための< 1 > ~< 1 6 > いずれか1記載の結晶の使用; を提供する。

【発明の効果】

[0005]

本発明に係る、4-(3-0)ロロー4-(20)ロプロピルアミノカルボニル)アミノフェノキシ)-7-3トキシー6-4ノリンカルボキサミド (以下、カルボキサミド) の塩またはその溶媒和物の結晶は、物性面(特に溶解速度)および動態面(特にバイオアベイラビリティ(BA))において優れた性質を有し、血管新生阻害剤として極めて有用である。

[0006]

試験例1. 溶解速度測定試験

L方法.

カルボキサミドの遊離体の結晶(以下の製造例 1 で得られたもの)、カルボキサミドの塩酸塩の結晶(以下の実施例 1 で得られたもの)、カルボキサミドの臭化水素酸塩の結晶(以下の実施例 2 で得られたもの)、カルボキサミドのメタンスルホン酸塩(以下、メシル酸塩)の結晶(A)(以下の実施例 5 で得られたもの)、カルボキサミドのメシル酸塩の結晶(C)(以下の実施例 7 で得られたもの)およびエタンスルホン酸塩(以下、エシル酸塩)の結晶(β)(以下の実施例 1 2 で得られたもの)の溶解速度を、回転ディスク法(J.H. Woodら、J. Pharm. Soc., 54, 1068(1955)を参照)により以下の条件にて測定した。なお、溶解速度は溶解初期における時間と濃度との

関係に直線性が保たれている範囲に基いて算出した。

(回転ディスク法の条件)

溶媒:第14改正日本薬局方の一般試験法(崩壊試験法)に記載された第2液(pH6

. 8, 500mL)

温度:37℃

ディスクの回転速度:50rpm

ディスクにおける溶媒と接する粉体の面積:1 c m²

サンプリング量:約1mL

(HPLCの条件)

カラム:Cadenza CD-18 (インタクト株式会社製;内径4.6mm、カラ

ム長100mm、粒子径3μm)

カラム温度:40℃ 流速:1.0mL/分

移動相:

A液 $H_2 O: CH_3 CN: HClO_4 = 990:10:1 (v/v/v)$

B液 CH₃ CN: H₂ O: HClO₄ = 900:100:1 (v/v/v)

B液の濃度:20% 注入量:100μL

検出:紫外吸収光度計(測定波長:252 n m)

オートサンプラー温度:25℃

[結果]

溶解速度を表1に示す。

[0007]

【表1】

	溶解速度
	(μg/分/cm²)
遊離体	0.8
塩酸塩	4.7
臭化水素酸塩	8.7
メシル酸(A)	11.8
メシル酸(C)	15.5
エシル酸(β)	18.5

いずれの塩の結晶においても、遊離体の結晶と比較して溶解速度が大きく上昇した。特に、メシル酸塩の結晶およびエシル酸塩の結晶については、溶解速度の増加が顕著であった。

[0008]

試験例2.ビーグル犬における薬物動態試験

[方法]

カルボキサミドの遊離体の結晶(以下の製造例1で得られたもの)、カルボキサミドの 臭化水素酸塩の結晶(以下の実施例2で得られたもの)およびカルボキサミドのメシル酸 塩の結晶(A)(以下の実施例5で得られたもの)を乳鉢内で粉砕した後、ゼラチンカプ セルに封入し、ビーグル犬に経口投与した(n=3)。投与後、10mLの水をさらに経 口投与した。なお、投与量は、遊離体として3mg/kgとなるように設定し、ビーグル 犬は投与前日から絶食とし、投与8時間後から給餌を再開した。

また、バイオアベイラビリティ(BA)を算出するため、単回静脈内投与試験を行った

具体的には、カルボキサミドの遊離体の結晶を10%ジメチルスルホキシド/50%ポリエチレングリコール400/40%塩酸水溶液に溶解させ、前腕橈側皮静脈より静脈内投与した。

· 血中におけるカルボキサミドの濃度は、前腕橈側皮静脈より血液を採取し、HPLC-UV法により測定した。また、前記濃度をもとに、モーメント法により薬物動態パラメー ターを各個体ごとに算出した。さらに、算出されたパラメーターをもとに、その平均値お よび標準誤差を算出した。

「結果〕

薬物動態の各パラメータを表2に、時間と血中濃度の関係を図1に示す。

[0009]

【表2】

		遊離体	臭化水素酸塩	メシル酸塩(A)
最大血中濃度到達時間(T _{mex})	(hr)	1. 17±0. 4	2. 67±0. 7	1. 67±0. 3
最大血中濃度(C _{max})	(ng∕mL)	53.3±9.9	480.4±31.4	397. 1±100. 1
24時間後の血中濃度(C _{24h})	(ng/mL)	24.0±9.0	100.5±81.7	17.1±2.5
AUC _{0-24h}	(μg hr/mL)	0.6±0.0	4.8±0.2	3.0 ± 0.4
BA	(%)	9. 1±0. 4	73.5±2.3	46. 2±5. 9

いずれの塩の結晶においても、遊離体の結晶と比較して最大血中濃度およびBAが大き く上昇した。

[0010]

試験例3. 吸湿性評価および固体安定性評価

[方法]

カルボキサミドのメシル酸塩の結晶 (A) (以下の実施例5で得られたもの)、カルボ キサミドのメシル酸塩の結晶 (C) (以下の実施例 7 で得られたもの)、カルボキサミド のメシル酸塩の酢酸和物の結晶(I)(以下の実施例10で得られたもの)およびカルボ キサミドのエシル酸塩の結晶 (β) (以下の実施例12で得られたもの)の吸湿性および 固体安定性を、以下の保存条件にて測定した。

- 1. 吸湿性保存条件(期間:1週間)
 - a-1.25℃、相対湿度75%
 - b-1. 25℃、相対湿度93%
- 2. 固体安定性保存条件(期間:2週間)
 - a-2.-20℃ (密閉)
 - b-2. 25℃、光照射(1000ルクス;ただしアルミ箔で遮光、密閉)
 - c-2.25℃、光照射(1000ルクス、密閉)
 - d-2. 40℃、相対湿度75%
- e-2.60℃(密閉;ただし、メシル酸塩の酢酸和物の結晶(I)についてはわずか に開放)
- 3. HPLCによる不純物量の測定法

保存後、各結晶に水およびメタノールの混液 (3:1) を加えて最終濃度が0.1mg /mLになるように調製し、試料溶液とした。

試料溶液について、以下に示す測定条件でHPLC法により試験を行い、溶出されるピ ーク面積を測定し、相対面積法により総不純物量を求めた。(0.05%以上の不純物を カウントした。)

(総不純物量の算出式)

個々の不純物量(%)=(個々の不純物のピーク面積)×100/ }(結晶のピーク面積) +(個々の不純物のピーク面積の合計)}

総不純物量(%)=個々の不純物量の合計

(HPLC測定条件)

カラム:Mightysil RP-18GP (関東化学株式会社製:内径4.6mm 、カラム長150mm、粒子径3μm)

カラム温度:40℃付近の一定温度

流速: 1. 0 m L / 分

移動相:

A液 H₂O:CH₃CN:HClO₄=990:10:1(v/v/v) B液 CH₃CN:H₂O:HClO₄=900:100:1(v/v/v) グラジエント条件

[0011]

【表3】

時間(分)	B液の濃度(%)
Û	5
3	20
15	20
30	100
30.01	5
35	5

注入量:10μL

検出:紫外吸収光度計(測定波長:252nm) オートサンプラー温度:10℃付近の一定温度

4. 粉末 X 線回折

第14改正日本薬局方の一般試験法に記載された粉末X線回折測定法(B-614~6

19)に従い、以下の測定条件で行った。

使用装置: MDA-5016-02 (理学電気株式会社製)

使用X線:CuKα線

モノクロメーター:湾曲結晶モノクロメーター

ゴニオメーター:縦型ゴニオメーター

カウンター:シンチレーションカウンター

管電圧: 40 k V 管電流: 200mA

スキャンスピード:5°/分

走査軸: 2 θ / θ

走査範囲: $2\theta=5^{\circ}\sim40^{\circ}$

発散スリット: 0.5° 散乱スリット: 0.5° 受光スリット: 0.3 mm

5. 水分含量測定

第14改正日本薬局方の一般試験法に記載された水分測定法(B-318~331)に 従い、各結晶6~10mgを用いて行った。

「結果」

吸湿性評価の結果を表4~表7に示す。

[0012]

【表4】

メシル酸塩の結晶(A)の吸湿性評価

条件	水分含量(%)	結晶形
初期状態	0.3	Α
a-1	0.5	Α
b-1	0.7	Α

[0013]

【表5】

メシル酸塩の結晶(C)の吸湿性評価

条件	水分含量	結晶形
初期状態	0.7	С
a-1	0.6	С
b-1	0.7	С

【0014】 【表6】

メシル酸塩の酢酸和物の結晶(I)の吸湿性評価

条件	水分含量	結晶形
初期状態	2.9	I
a-1	0.6	С
b-1	0.8	C

【0015】 【表7】

エシル酸塩の結晶(β)の吸湿性評価

条件	水分含量	結晶形
初期状態	1.7	β
a-1	1.7	β
b-1	1.4	β

メシル酸塩の結晶(A)、メシル酸塩の結晶(C)およびエシル酸塩の結晶(β)に関しては、水分含量に顕著な変化はなく、吸湿性は認められなかった。また、外観の顕著な変化および結晶転移は認められなかった。

一方、メシル酸塩の酢酸和物の結晶(I)に関しては、水分含量の減少が認められるとともに、メシル酸塩の結晶(C)への転移が認められた。

固体安定性評価の結果を表8~表11に示す。

【0016】 【表8】

メシル酸塩の結晶(A)の固体安定性評価

条件	総不純物量(%)	水分含量(%)	結晶形
初期状態	4.02	0.3	Α
a-2	3.90	0.0	Α
b-2	3.95	0.0	Α
c-2	4.23	0.1	Α
d-2	3.90	0.2	Α
e-2	3.97	0.2	Α

[0017]

【表9】

メシル酸塩の結晶(C)の固体安定性評価

プラブロス・皿マグル日間(ビグマン 日下下)の 大口 上口 一回							
条件	総不純物量(%)	水分含量(%)	結晶形				
初期状態	2.11	0.7	O				
a-2	2.10	0.7	С				
b-2	2.09	0.8	С				
c-2	2.22	0.7	C				
d-2	2.06	0.6	С				
e-2	2.18	0.5	С				

【0018】 【表10】

メシル酸塩の酢酸和物の結晶(I)の固体安定性評価

条件	総不純物量(%)	水分含量(%)	結晶形
初期状態	0.62	2.9	I
a-2	0.67	3.1	I
b-2	0.66	3.1	I
c-2	0.87	2.9	I
d-2	0.61	0.9	C
e-2	0.84	0.3	В

【0019】 【表11】

エシル酸塩の結晶(β)の固体安定性評価

条件	総不純物量(%)	水分含量(%)	結晶形
初期状態	0.55	1.7	β
a-2	0.48	2.0	β
b-2	0.46	2.5	β
c-2	0.49	2.1	β
d-2	0.48	2.0	β
e-2	0.51	2.2	β

メシル酸塩の結晶(A)、メシル酸塩の結晶(C)およびエシル酸塩の結晶(β)に関しては、水分含量および外観の顕著な変化および結晶転移は認められなかった。

一方、メシル酸塩の結晶(I)に関しては、密閉条件下では総不純物量、水分含量および外観の顕著な変化および結晶転移は見られなかった。しかしながら、40%、相対湿度 75%条件下で保存した試料では水分含量の減少が認められるとともに、メシル酸塩の結晶 (C) への転移が認められた。また、60%でわずかに開放させた試料では水分含量の減少が認められるとともに、メシル酸塩の結晶 (B) への転移が認められた。

[0020]

試験例4.メシル酸塩の結晶 (B) (以下の実施例6で得られたもの) の調湿粉末X線回 折

[方法]

粉末 X 線回折は試験例 3 の 4. (粉末 X 線回折)と同様の測定条件で行った。なお、調湿は湿度発生装置 H U M − 1 A (理学電機株式会社製)を用いて、室温下において、順次3%、30%、50%、60%、70%、75%、80%および85%に調整した。
[結果]

相対湿度3%~70%ではメシル酸塩の結晶(B)の状態で結晶転移は認められなかったが、相対湿度75%および80%でメシル酸塩の結晶(B)およびメシル酸塩の結晶(C)の混合物となり、メシル酸塩の結晶(C)への転移が観測された。相対湿度85%で

[0021]

試験例 5. メシル酸塩のジメチルスルホキシド和物(以下の実施例 8 の(製法 1)で得られたもの)結晶の昇温粉末 X 線回折

[方法]

粉末 X 線回折は試験例 3 の 4. (粉末 X 線回折)と同様の測定条件で行った。なお、昇温は以下の条件で行った。

温度コントローラー:PCT-20 (理学電機株式会社製)

昇温速度:2℃/分

測定温度:30℃、40℃、60℃、80℃、120℃、140℃、180℃、200℃、205℃、210℃および215℃

「結果]

30 \mathbb{C} ~80 \mathbb{C} では結晶転移は認められなかったが、120 \mathbb{C} 以上の温度でメシル酸塩の結晶(\mathbb{C})への転移が認められた。

[0022]

本発明の結晶を医薬として使用する場合、通常、本発明の結晶と適当な添加剤とを混和し、製剤化したものを使用する。ただし、前記は、本発明の結晶を原体のまま医薬として使用することを否定するものではない。

上記添加剤としては、一般に医薬に使用される、賦形剤、結合剤、滑沢剤、崩壊剤、着色剤、矯味矯臭剤、乳化剤、界面活性剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、防腐剤、抗酸化剤、安定化剤、吸収促進剤等を挙げることができ、所望により、これらを適宜組み合わせて使用することもできる。

上記賦形剤としては、例えば乳糖、白糖、ブドウ糖、コーンスターチ、マンニトール、 ソルピトール、デンプン、α化デンプン、デキストリン、結晶セルロース、軽質無水ケイ 酸、ケイ酸アルミニウム、ケイ酸カルシウム、メタケイ酸アルミン酸マグネシウム、リン 酸水素カルシウム等を挙げることができ、

上記結合剤としては、例えばポリビニルアルコール、メチルセルロース、エチルセルロース、アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、ポリビニルピロリドン、マクロゴール等を挙げることができ、

上記滑沢剤としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、フマル酸ステアリルナトリウム、タルク、ポリエチレングリコール、コロイドシリカ等を挙げることができ、

上記崩壊剤としては、例えば結晶セルロース、寒天、ゼラチン、炭酸カルシウム、炭酸水素ナトリウム、クエン酸カルシウム、デキストリン、ペクチン、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチ、カルボキシメチルスターチナトリウム等を挙げることができる。

上記着色剤としては、三二酸化鉄、黄色三二酸化鉄、カルミン、カラメル、βーカロチン、酸化チタン、タルク、リン酸リボフラビンナトリウム、黄色アルミニウムレーキ等、 医薬品に添加することが許可されているものを挙げることができ、

上記矯味矯臭剤としては、ココア末、ハッカ脳、芳香散、ハッカ油、竜脳、桂皮末等を 挙げることができ、

上記乳化剤または界面活性剤としては、ステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、モノステアリン酸グリセリン、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル等を挙げることができ、

上記溶解補助剤としては、ポリエチレングリコール、プロピレングリコール、安息香酸ベンジル、エタノール、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム、ポリソルベート80、ニコチン酸アミド等を挙げることができ、

上記懸濁化剤としては、前記界面活性剤のほか、ポリビニルアルコール、ポリビニルピ

ロリドン、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の親水性高分子を挙げることができ、

上記等張化剤としては、ブドウ糖、塩化ナトリウム、マンニトール、ソルビトール等を 挙げることができ、

上記緩衝剤としては、リン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液を挙げることができ、

上記防腐剤としては、メチルパラベン、プロピルパラベン、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等を挙げることができ

上記抗酸化剤としては、亜硫酸塩、アスコルビン酸、 α ートコフェロール等を挙げることができる。

また、上記製剤としては、錠剤、散剤、顆粒剤、カプセル剤、シロップ剤、トローチ剤、吸入剤のような経口剤;坐剤、軟膏剤、眼軟膏剤、テープ剤、点眼剤、点鼻剤、点耳剤、パップ剤、ローション剤のような外用剤または注射剤を挙げることができる。

上記経口剤は、上記添加剤を適宜組み合わせて製剤化する。なお、必要に応じてこれら の表面をコーティングしてもよい。

上記外用剤は、上記添加剤のうち、特に賦形剤、結合剤、矯味矯臭剤、乳化剤、界面活性剤、溶解補助剤、懸濁化剤、等張化剤、防腐剤、抗酸化剤、安定化剤、吸収促進剤を適宜組み合わせて製剤化する。

上記注射剤は、上記添加剤のうち、特に乳化剤、界面活性剤、溶解補助剤、懸濁化剤、 等張化剤、緩衝剤、防腐剤、抗酸化剤、安定化剤、吸収促進剤を適宜組み合わせて製剤化 する。

[0023]

本発明の結晶を医薬として使用する場合、その使用量は症状、年齢、投与形態により異なるが、通常成人に、100μg乃至10gを1日に1回投与または数回に分けて使用する。

[0024]

本発明の結晶は、血管新生阻害剤として極めて有用であり、血管新生阻害作用が有効な疾患に対する予防または治療剤、血管新生阻害剤、抗腫瘍剤、血管腫治療剤、癌転移抑制剤、網膜血管新生症治療剤、糖尿病性網膜症治療剤、炎症性疾患治療剤、変形性関節炎、リューマチ性関節炎、乾癬または遅延性過敏反応からなる炎症性疾患治療剤、アテローム性動脈硬化症治療剤として有用である。

[0025]

なお、本発明の結晶を抗腫瘍剤として用いる場合、腫瘍として、例えば膵臓癌、胃癌、 大腸癌、乳癌、前立腺癌、肺癌、腎癌、脳腫瘍、血液癌または卵巣癌が挙げられ、特に胃 癌、大腸癌、前立腺癌または腎癌が好ましい。

【発明を実施するための最良の形態】

[0026]

以下に、本発明の内容について詳細に説明する。

[0027]

本発明に係る、4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド(以下、カルボキサミド)の塩としては、例えばメタンスルホン酸塩、エタンスルホン酸塩、p-トルエンスルホン酸塩、塩酸塩、臭化水素酸塩、硫酸塩、酒石酸塩、リン酸塩等が挙げられる。

[0028]

本発明に係る、カルボキサミドの塩は、常法 (例えば、カルボキサミドおよび対応する酸を、溶媒の存在下または非存在下、適当な比率で混合すること) により製造することができる。

[0029]

なお、カルボキサミドは、国際公開第02/32872号パンフレットに記載の方法の

[0030]

本発明に係る、カルボキサミドの塩の溶媒和物としては、例えば水和物、ジメチルスルホキシド和物、酢酸和物、N, N-ジメチルホルムアミド和物等が挙げられる。

[0031]

本発明に係る、カルボキサミドの塩またはその溶媒和物の結晶の製造方法を以下に詳述する。

[0032]

1. 塩酸塩または臭化水素酸塩の結晶の製造方法

カルボキサミドおよび溶媒を混合し、カルボキサミドを溶解させた後、塩酸または臭化 水素酸を加えることで、塩酸塩または臭化水素酸塩の結晶を製造することができる。

より詳細には、例えば、カルボキサミドおよび溶媒を混合し、加熱してカルボキサミド を溶解させた後、塩酸または臭化水素酸を加え、この溶液を室温まで徐冷することで、塩 酸塩または臭化水素酸塩の結晶を製造することができる。

溶媒としては、メタノール、エタノール、1ープロパノール、2ープロパノール等のアルコール類を用いることができ、好ましくはエタノールである。また、場合によりアルコール類に水を添加して用いてもよい。

溶媒量は特に制限されないが、好ましくは基質の10~30倍量、より好ましくは20 倍量用いる。

塩酸または臭化水素酸の量は、基質に対して1.0当量~1.5当量用いることができ、好ましくは1.1当量用いる。

加熱温度は特に制限されないが、好ましくは60℃~還流温度であり、より好ましくは 還流温度である。

加熱温度から室温までの徐冷は、10分~24時間で行うことができる。

[0033]

2. pートルエンスルホン酸塩または硫酸塩の結晶の製造方法

カルボキサミド、溶媒およびp-トルエンスルホン酸または硫酸を混合し、カルボキサミドを溶解させることで、p-トルエンスルホン酸塩または硫酸塩の結晶を製造することができる。

より詳細には、例えば、カルボキサミド、溶媒およびpートルエンスルホン酸または硫酸を混合し、加熱してカルボキサミドを溶解させた後、この溶液を室温まで徐冷することで、pートルエンスルホン酸塩または硫酸塩の結晶を製造することができる。

溶媒としては、例えばジメチルスルホキシド、N, N — ジメチルホルムアミド、N, N — ジメチルアセトアミド等を用いることができ、好ましくはジメチルスルホキシドである

溶媒量は特に制限されないが、好ましくは基質の10~30倍量、より好ましくは20倍量用いる。

p-トルエンスルホン酸または硫酸の量は、基質に対して 1. 0 当量 \sim 1. 5 当量用いることができ、好ましくは 1. 2 当量用いる。

加熱温度は特に制限されないが、好ましくは60 \mathbb{C} \mathbb

加熱温度から室温までの徐冷は、10分~24時間で行うことができる。

[0034]

3. メタンスルホン酸塩の結晶 (A) の製造方法

(製法 1)

カルボキサミド、溶媒およびメタンスルホン酸を混合し、カルボキサミドを溶解させることで、メタンスルホン酸塩の結晶(A)を製造することができる。

より詳細には、例えば、カルボキサミド、溶媒およびメタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、この溶液を室温まで徐冷することで、メタンスルホン酸塩の結晶(A)を製造することができる。

溶媒としては、例えばメタノール、エタノール、2-プロパノール等を用いることができ、好ましくはメタノールである。

溶媒量は特に制限されないが、好ましくは基質の10~30倍量、より好ましくは20 倍量用いる。

メタンスルホン酸の量は、基質に対して1.0当量~1.5当量用いることができ、好ましくは1.2当量用いる。

加熱温度は特に制限されないが、好ましくは60℃~還流温度であり、より好ましくは70℃~80℃である。

加熱温度から室温までの徐冷は、1時間~24時間で行うことができ、好ましくは3時間から12時間である。

(製法2)

カルボキサミド、酢酸およびメタンスルホン酸を混合し、カルボキサミドを溶解させることで、メタンスルホン酸塩の結晶(A)を製造することができる。

より詳細には、例えば、カルボキサミド、酢酸およびメタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、貧溶媒を加え、この溶液を室温まで徐冷することで、メタンスルホン酸塩の結晶(A)を製造することができる。なお、貧溶媒とともにメタンスルホン酸塩の結晶(A)の種結晶を添加するのが好ましい。

酢酸の量は特に制限されないが、好ましくは基質の5~20倍量、より好ましくは10倍量用いる。

メタンスルホン酸の量は、基質に対して1.0当量~2.5当量用いることができ、好ましくは1.4当量~2.2当量用いる。

賃溶媒としては、例えばメタノール、エタノール等を用いることができ、好ましくはエタノールである。

資溶媒の量は特に制限されないが、好ましくは基質の10~30倍量、より好ましくは20倍量用いる。また、貧溶媒は一度に、または2~4回に分けて加えることもでき、好ましくは2回に分けて加える。この場合、初回に加える溶媒量および2回目に加える溶媒量の容積比としては、1:1~3:1であり、好ましくは3:2である。

加熱温度は特に制限されないが、好ましくは50℃~還流温度であり、より好ましくは50℃である。

加熱温度から室温までの徐冷は、10分~6時間で行うことができ、好ましくは1時間から2時間である。

[0035]

4. メタンスルホン酸塩の結晶 (B) の製造方法

メタンスルホン酸塩の酢酸和物の結晶 (I) を通風乾燥させること等の方法で酢酸を除去することで、メタンスルホン酸塩の結晶 (B) を製造することができる。

[0036]

5. メタンスルホン酸塩の結晶 (C) の製造方法

(製法1)

メタンスルホン酸塩のジメチルスルホキシド和物の結晶を加熱し、室温まで徐冷することで、メタンスルホン酸塩の結晶(C)を製造することができる。

本製法は、溶媒存在下または非存在下で実施することができる。

溶媒を用いる場合、該溶媒としては、例えば酢酸エチル、酢酸イソプロピル、酢酸 n ー ブチル等を用いることができ、好ましくは酢酸 n ーブチルである。

加熱温度は特に制限されないが、好ましくは70℃~還流温度であり、より好ましくは 還流温度である。

(製法2)

メタンスルホン酸塩の酢酸和物の結晶(I)および溶媒を混合し、攪拌することで、メタンスルホン酸塩の結晶(C)を製造することができる。

溶媒としては、例えばメタノール、エタノール、2-プロパノール等のアルコール類を 用いることができ、好ましくはエタノールである。

(製法3)

カルボキサミド、酢酸およびメタンスルホン酸を混合し、カルボキサミドを溶解させることで、メタンスルホン酸塩の結晶(C)を製造することができる。

より詳細には、例えば、カルボキサミド、酢酸およびメタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、貧溶媒として2-プロパノールを加え、この溶液を15℃付近まで徐冷することで、メタンスルホン酸塩の結晶(C)を製造することができる。なお、貧溶媒とともにメタンスルホン酸塩の結晶(C)の種結晶を添加し、さらに析出速度を速めるため、酢酸イソプロピルを添加するのが好ましい。

酢酸の量は特に制限されないが、好ましくは基質の5~10倍量、より好ましくは7~8倍量用いる。

メタンスルホン酸の量は、基質に対して1.0 当量 \sim 1.5 当量用いることができ、好ましくは1.2 当量用いる。

資溶媒の量は特に制限されないが、好ましくは基質の $2 \sim 10$ 倍量、より好ましくは $4 \sim 5$ 倍量用いる。

酢酸イソプロピルを添加する場合、その量は特に限定されないが、好ましくは基質の2~10倍量、より好ましくは5倍量用いる。

加熱温度は特に制限されないが、好ましくは40℃である。

加熱温度から室温までの徐冷は、10分~6時間で行うことができ、好ましくは1時間から2時間である。

(製法4)

メタンスルホン酸の結晶(B)を加湿することで、メタンスルホン酸の結晶(C)を製造することができる。

[0037]

6. メタンスルホン酸塩のジメチルスルホキシド和物の結晶の製造方法

カルボキサミド、ジメチルスルホキシドおよびメタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、貧溶媒を加え、この溶液を15℃付近まで冷却することで、メタンスルホン酸塩のジメチルスルホキシド和物の結晶を製造することができる。なお、貧溶媒とともにメタンスルホン酸塩の結晶(A)の種結晶を添加するのが好ましい。

ジメチルスルホキシドの量は特に制限されないが、好ましくは基質の5~20倍量、より好ましくは8~10倍量用いる。

メタンスルホン酸の量は、基質に対して1.0当量~4.0当量用いることができ、好ましくは1.2当量~3.5当量用いる。

資溶媒としては、例えば酢酸エチル、酢酸イソプロピル、1-プロパノール、2-プロパノール等を用いることができ、好ましくは酢酸エチル、2-プロパノールである。

資溶媒の量は特に制限されないが、好ましくは基質の10~30倍量、より好ましくは 20倍量用いる。また、貧溶媒は一度に、または2~4回に分けて加えることもでき、好ましくは 2回に分けて加える。この場合、初回に加える溶媒量および 2回目に加える溶媒量の容積比としては、1:1~1:5であり、好ましくは 1:4 である。

加熱温度は特に制限されないが、好ましくは50℃~100℃であり、より好ましくは60℃~80℃である。

加熱温度から15℃付近までの冷却は、10分~6時間で行うことができ、好ましくは 1時間から2時間である。

[0038]

7. メタンスルホン酸塩の水和物の結晶(F)の製造方法

カルボキサミド、酢酸およびメタンスルホン酸を混合し、カルボキサミドを溶解させる ことで、メタンスルホン酸塩の水和物の結晶(F)を製造することができる。

より詳細には、例えば、カルボキサミド、酢酸およびメタンスルホン酸を混合し、加熱 してカルボキサミドを溶解させた後、貧溶媒を加え、この溶液を室温まで徐冷することで 、メタンスルホン酸塩の水和物の結晶(F)を製造することができる。なお、貧溶媒とともにメタンスルホン酸塩の結晶(A)の種結晶を添加するのが好ましい。

酢酸の量は特に制限されないが、好ましくは基質の5~20倍量、より好ましくは10 倍量用いる。

メタンスルホン酸の量は、基質に対して1.0 当量 \sim 2.0 当量用いることができ、好ましくは1.3 当量 \sim 1.6 当量用いる。

貧溶媒としては、例えば酢酸エチル、酢酸イソプロピルを用いることができ、好ましく は酢酸エチルである。

資溶媒の量は特に制限されないが、好ましくは基質の10~30倍量、より好ましくは 20倍量用いる。また、貧溶媒は一度に、または2~4回に分けて加えることもでき、好ましくは2回に分けて加える。この場合、初回に加える溶媒量および2回目に加える溶媒量の容積比としては、1:1~1:5であり、好ましくは1:3である。

加熱温度は特に制限されないが、好ましくは40℃~60℃であり、より好ましくは5 0℃である。

加熱温度から室温までの徐冷は、10分~6時間で行うことができ、好ましくは2時間から4時間である。

[0039]

8. メタンスルホン酸塩の酢酸和物の結晶 (I) の製造方法

カルボキサミド、酢酸およびメタンスルホン酸を混合し、カルボキサミドを溶解させることで、メタンスルホン酸塩の水和物の結晶(I)を製造することができる。

より詳細には、例えば、カルボキサミド、酢酸およびメタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、貧溶媒を加え、この溶液を室温まで徐冷することで、メタンスルホン酸塩の水和物の結晶(I)を製造することができる。なお、貧溶媒とともにメタンスルホン酸塩の結晶(C)の種結晶を添加し、さらに析出速度を速めるため、酢酸イソプロピルを添加するのが好ましい。

酢酸の量は特に制限されないが、好ましくは基質の5~10倍量、より好ましくは7~8倍量用いる。

メタンスルホン酸の量は、基質に対して 1.0 当量 \sim 1.5 当量用いることができ、好ましくは 1.2 当量用いる。

貧溶媒としては、例えば1ープロパノール、1ーブタノール、tertーブタノール等を用いることができ、好ましくは1ープロパノールである。

資溶媒の量は特に制限されないが、好ましくは基質の $5\sim20$ 倍量、より好ましくは $8\sim10$ 倍量用いる。また、貧溶媒は一度に、または $2\sim4$ 回に分けて加えることもでき、好ましくは2回に分けて加える。この場合、初回に加える溶媒量および2回目に加える溶媒量の容積比としては、 $1:1\sim1:5$ であり、好ましくは1:3.5である。

酢酸イソプロピルを添加する場合、その量は特に限定されないが、好ましくは基質の2~10倍量、より好ましくは5倍量用いる。

加熱温度は特に制限されないが、好ましくは40℃である。

加熱温度から室温までの徐冷は、10分~6時間で行うことができ、好ましくは1時間から2時間である。

[0040]

9. エタンスルホン酸塩の結晶 (α) の製造方法

カルボキサミド、溶媒およびエタンスルホン酸を混合し、カルボキサミドを溶解させる ことで、エタンスルホン酸塩の結晶 (α) を製造することができる。

より詳細には、例えば、カルボキサミド、溶媒およびエタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、貧溶媒を加え、この溶液を室温まで徐冷することで、エタンスルホン酸塩の結晶 (α) を製造することができる。

溶媒としては、例えばジメチルスルホキシド等を用いることができる。

溶媒量は特に制限されないが、好ましくは基質の $5\sim20$ 倍量、より好ましくは 10 倍量用いる。

エタンスルホン酸の量は、基質に対して1.0当量~1.5当量用いることができ、好ましくは1.2当量用いる。

貧溶媒としては、例えば酢酸エチル等を用いることができる。

資溶媒の量は特に制限されないが、好ましくは基質の5~20倍量、より好ましくは10倍量用いる。

加熱温度は特に制限されないが、好ましくは50℃~70℃であり、より好ましくは60℃である。

加熱温度から室温までの徐冷は、10分~24時間で行うことができ、好ましくは1時間から2時間である。

[0041]

10. エタンスルホン酸塩の結晶 (β) の製造方法

(製法1)

エタンスルホン酸塩の結晶(α)に溶媒および水を加え、室温で攪拌させることで、エタンスルホン酸塩の結晶(β)を製造することができる。

溶媒としては、例えばメタノール、エタノール、2ープロパノール等を用いることができ、好ましくはエタノールである。

溶媒量は特に制限されないが、好ましくは基質の $5\sim20$ 倍量、より好ましくは10倍量用いる。

水の量は特に制限されないが、好ましくはエタノールの1/10~1/2、より好ましくは1/6用いる。

(製法2)

カルボキサミド、酢酸およびエタンスルホン酸を混合し、カルボキサミドを溶解させる ことで、エタンスルホン酸塩の水和物の結晶 (β) を製造することができる。

より詳細には、例えば、カルボキサミド、酢酸およびエタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、貧溶媒および水を加え、この溶液を0 $\mathbb C$ まで冷却することで、エタンスルホン酸塩の水和物の結晶 (β) を製造することができる。なお、貧溶媒とともにエタンスルホン酸塩の結晶 (β) の種結晶を添加するのが好ましい。

酢酸の量は特に制限されないが、好ましくは基質の $2.5 \sim 10$ 倍量、より好ましくは 5 倍量用いる。

エタンスルホン酸の量は、基質に対して1.0 当量 \sim 1.5 当量用いることができ、好ましくは1.2 当量用いる。

資溶媒としては、例えばエタノール、2-プロパノール等を用いることができ、好ましくは2-プロパノールである。

資溶媒の量は特に制限されないが、好ましくは基質の10~40倍量、より好ましくは30倍量用いる。また、資溶媒は一度に、または2~4回に分けて加えることもでき、好ましくは2回に分けて加える。この場合、初回に加える溶媒量および2回目に加える溶媒量の容積比としては、1:1~1:5であり、好ましくは1:1.5~1:2である。

水の量は特に制限されないが、好ましくは貧溶媒の $1/10\sim1/30$ 、より好ましくは1/20用いる。

加熱温度は特に制限されないが、好ましくは50℃~70℃であり、より好ましくは6 0℃である。

加熱温度から0 でまでの冷却は、10 分 ~ 6 時間で行うことができ、好ましくは2 時間から4 時間である。

[0042]

11. エタンスルホン酸塩のジメチルスルホキシド和物の結晶の製造方法

カルボキサミド、ジメチルスルホキシドおよびエタンスルホン酸を混合し、加熱してカルボキサミドを溶解させた後、貧溶媒を加え、この溶液を0℃まで冷却することで、エタンスルホン酸塩のジメチルスルホキシド和物の結晶を製造することができる。なお、貧溶媒とともにエタンスルホン酸塩の結晶(β)の種結晶を添加するのが好ましい。

ジメチルスルホキシドの量は特に制限されないが、好ましくは基質の5~20倍量、よ

り好ましくは10倍量用いる。

エタンスルホン酸の量は、基質に対して1.0当量~1.5当量用いることができ、好ましくは1.2当量用いる。

貧溶媒としては、例えば酢酸エチル等を用いることができる。

資溶媒の量は特に制限されないが、好ましくは基質の $5\sim20$ 倍量、より好ましくは10倍量用いる。また、資溶媒は一度に、または $2\sim4$ 回に分けて加えることもでき、好ましくは2回に分けて加える。この場合、初回に加える溶媒量および2回目に加える溶媒量の容積比としては、 $1:1\sim3:1$ であり、好ましくは3:2である。

加熱温度は特に制限されないが、好ましくは 50 \mathbb{C} \sim 70 \mathbb{C} であり、より好ましくは 6 0 \mathbb{C} である。

加熱温度から0 でまでの冷却は、10 分~6時間で行うことができ、好ましくは1 時間から2 時間である。

【実施例】

[0043]

以下に本発明の理解を更に容易にするために実施例を掲げるが、本発明はこれに限定されるものでないことは言うまでもない。

[0044]

<u>製造例1.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキ</u>シ)-7-メトキシ-6-キノリンカルボキサミドの製造(1)

国際公開第02/32872号パンフレットに記載の、フェニル N-(4-(6-カルバモイルー7-メトキシー4ーキノリル)オキシー2ークロロフェニル)カルバメート (17.5 g、37.7 mmol)をN,N-ジメチルホルムアミド (350 mL)に溶解し、窒素雰囲気下にて反応液にシクロプロピルアミン(6.5 3 mL、94.25 mmol)を加え、室温で一晩攪拌した。反応液を水 (1.75L)に加え、攪拌した。析出した粗結晶を濾取して、水洗後、70℃で50分間乾燥した。得られた粗結晶にエタノール (300 mL)を加え、約30分間加熱還流して溶解させ、その後、攪拌下にて一晩かけて室温まで徐冷した。析出した結晶を濾取した後、吸引乾燥し、さらに70℃で8時間乾燥して、標記結晶 (12.91 g、80.2%)を得た。

[0045]

<u>製造例2.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキ</u>シ)-7-メトキシ-6-キノリンカルボキサミドの製造(2)

[0046]

(1) フェニル N-(2-クロロ-4-ヒドロキシフェニル) カーバメートの製造

[0047]

【化1】

4-アミノ-3-クロロフェノール(23.7 g)をN, N-ジメチルホルムアミド(100 mL) に懸濁し、氷冷下ピリジン(23.4 mL)を加えた後、<math>20^{\circ} C以下でクロロギ酸フェニル(23.2 mL)を滴下した。室温にて30分間攪拌の後、水(400 mL)、酢酸エチル(300 mL)、6N-HC1(48 mL)を加え攪拌の後、有機層を分離した。有機層を10%食塩水(200 mL)で2回洗浄の後、硫酸マグネシウムで乾燥した。溶媒を留去することにより標記化合物46 g を固体として得た。

¹H-NMR Spectrum (CDCl₃) δ (ppm): 5.12 (1h, br s), 6.75 (1H, dd, J=9.2, 2.8 Hz), 6.92 (1H, d, J=2.8 Hz), 7.18-7.28 (4H, m), 7.37-7.43 (2H, m), 7.94 (1H, br s)

[0048]

(2) 1-(2-クロロー4-ヒドロキシフェニル)-3-シクロプロピルウレアの製造 【0049】

フェニル N- (2-クロロ-4-ヒドロキシフェニル) カーバメートを、N, N-ジメチルホルムアミド (100 mL) に溶解し、氷冷下シクロプロピルアミン (22.7 mL)を加え、室温にて終夜攪拌した。水 (400 mL)、酢酸エチル (300 mL)、6N-HC1 (55 mL)を加えて 攪拌の後、有機層を分離した。有機層を10%食塩水 (200 mL)で2回洗浄の後、硫酸マグネシウムで乾燥した。溶媒を濃縮して得られるプリズム晶をヘプタンで洗浄濾過し、標記化合物22.8gを得た。 (4-アミノー3-クロロフェノールからの収率77%) 1 H-NMR Spectrum (CDCl₃) δ (ppm): 0.72-0.77 (2H, m), 0.87-0.95 (2H, m), 2.60-2.6 5 (1H, m), 4.89 (1H, br s), 5.60 (1H, br s), 6.71 (1H, dd, J=8.8, 2.8 Hz), 6.88

[0050]

(1H, d, J=2.8 Hz), 7.24-7.30 (1H, br s), 7.90 (1H, d, J=8.8 H)

ジメチルスルホキシド (20 瓜) に、7-メトキシ-4-クロロキノリン-6-カルボキサミド (0.983 g) 、<math>1-(2-クロロ-4-ヒドロキシフェニル) -3-シクロプロピルウレア (1.13 g) および炭酸セシウム (2.71 g) を加え、<math>7.0 でにて 2.3 時間加熱攪拌した。反応液を室温に戻した後、水 (50 瓜) を加え、生じた結晶を濾取することで標記化合物1.56 g を得た。 (収率88%)

[0051]

<u>製造例3.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキ</u>シ)-7-メトキシ-6-キノリンカルボキサミドの製造(3)

窒素雰囲気下、反応容器に7-メトキシー4-クロロキノリン-6-カルボキサミド($5.00 \, \mathrm{kg}$ 、 $21.13 \, \mathrm{mol}$)、ジメチルスルホキシド($55.05 \, \mathrm{kg}$)、1-(2-クロロ-4-ヒドロキシフェニル)-3-シクロプロピルウレア($5.75 \, \mathrm{kg}$ 、 $25.35 \, \mathrm{mol}$) およびカリウム 1- ブトキシド($1.85 \, \mathrm{kg}$ 、 $1.85 \, \mathrm{kg}$ $1.85 \, \mathrm{kg$

[0052]

なお、上記製造例 $1 \sim 3$ で得られた 4 - (3-) ロロー 4 - (2) ロプロピルアミノカルボニル)アミノフェノキシ)-7 - 3 トキシー6 - 4 ノリンカルボキサミドの 1 H-NMRの化学シフト値は、いずれも国際公開第 1 1 2 1 3 1 3 1 4 1

[0053]

<u>実施例1.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド</u>塩酸塩の結晶

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド(854mg, 2.0mmol)をエタノール(17mL)に懸濁させて攪拌し、外温100℃の油浴を用いて還流下、2N塩酸(1.1mL, 2.2mmol)を反応液に滴下した。懸濁液が溶液に変化したことを確認後、油浴の加熱を止め、室温まで油浴につけた状態で徐冷し、反応液を一晩攪拌した。反応液にエタノール(8.6mL)を加えた

後、結晶をろ取し、エタノール(4.3mLx2)で洗浄し、ろ紙上で通気乾燥(1:5時間)後、 70℃にて温風乾燥(23時間)し、標記結晶(786.1mg, 85%)を得た。

 $^1\text{H-NMR}$ Spectrum (DMSO-d₆) & (ppm): 0.30-0.50 (2H, m), 0.60-0.70 (2H, m), 2.56 (1H, m), 4.06 (3H, s), 6.86 (1H, d, J=6.4Hz), 7.29-7.35 (2H, m), 7.60 (1H, d, J=2.8 Hz), 7.64 (1H, s), 7.88 (1H, s), 7.95 (1H, s), 8.07 (1H, s), 8.34 (1H, d, J=9.2Hz), 8.70 (1H, s), 8.91 (1H, d, J=6.4Hz).

[0054]

<u>実施例2.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド 臭化水素酸塩の結晶</u>

 $4-(3-\rho \Box \Box -4-(9\rho \Box \Box \Box \Box \Box \Box \Box \Box D)$ アミノフェノキシ) -7 -メトキシー6-キノリンカルボキサミド (500mg, 1.17mmol) をエタノール (10mL) に 懸濁させて攪拌し、外温100 での油浴を用いて還流下、1 N臭化水素酸水溶液(1.3mL, 1.3mmol) を反応液に滴下した。反応液に水(2.0mL)を徐々に加えて溶液とした後、油浴の加熱を止め、室温まで油浴につけた状態で徐冷し、反応液を一晩攪拌した。析出した結晶をろ取し、エタノール(2.5mLx2)で洗浄し、ろ紙上で通気乾燥(15分間)後、100 でにて 温風乾燥(22時間)し、標記結晶(483.7mg, 81%)を得た。

¹H-NMR Spectrum (DMSO-d₆) δ (ppm): 0.40-0.50 (2H, m), 0.60-0.70 (2H, m), 2.58 (1H, m), 4.09 (3H, s), 6.89 (1H, d, J=6.4Hz), 7.26 (1H, d, J=2.8Hz), 7.33 (1H, dd, J=2.8, 9.2Hz), 7.59 (1H, s), 7.62 (1H, d, J=2.8Hz), 7.90 (1H, s), 7.96 (1H, s), 8.06 (1H, s), 8.36 (1H, d, J=9.2Hz), 8.72 (1H, s), 8.93 (1H, d, J=6.4Hz).

[0055]

実施例 3. 4-(3-0) ロロー 4-(20) ロプロピルアミノカルボニル)アミノフェノキシ)-7- メトキシー6- キノリンカルボキサミド p- トルエンスルホン酸塩の結晶 4-(3-0) ロロー 4-(20) ロプロピルアミノカルボニル)アミノフェノキシ)-7- メトキシー6- キノリンカルボキサミド(150 mg, 0.351 mm mol)に、室温でジメチルスルホキシド(1.5 mL)および p- トルエンスルホン酸一水和物(80 mg, 0.422 mm ol)を加えた。一旦溶液となったが、すぐに結晶が析出したため、80 で反応液にジメチルスルホキシド(2.2 mL)を加え、結晶を溶解させた。この溶液を室温まで徐冷し、そのまま14時間攪拌した。析出した結晶を濾取した後、60 で乾燥し、標記結晶(177 mg)を得た。

¹H-NMR Spectrum (400MHz, DMSO-d₆) δ (ppm): 0.39 (2H, m), 0.63 (2H, m), 2.24 (3H, s), 2.54 (1H, m), 4.04 (3H, s), 6.88 (1H, d, J=6.4 Hz), 7.05 (1H, s), 7.07 (1H, s), 7.21 (1H, d, J=2.8 Hz), 7.31 (1H, dd, J=2.6, 9.3 Hz), 7.41 (1H, s), 7.43 (1H, s), 7.59 (1H, d, J=2.8 Hz), 7.86 (1H, s), 7.92 (1H, s), 8.02 (1H, s), 8.32 (1H, d, J=9.6 Hz), 8.68 (1H, s), 8.91 (1H, d, J=6.4 Hz)

[0056]

実施例 4.4-(3-0) ロロー4-(20) ロプロピルアミノカルボニル) アミノフェノキシ) -7- メトキシー6- キノリンカルボキサミド 硫酸塩の結晶

¹H-NMR Spectrum (400MHz, DMSO-d₆) δ (ppm): 0.39 (2H, m), 0.63 (2H, m), 2.46 (2H, d, J=1.2 Hz), 2.52 (1H, m), 4.04 (3H, s), 6.88 (1H, d, J=5.8Hz), 7.21 (1H, s), 7.31 (1H, d, J=8.2Hz), 7.56 (1H, s), 7.59 (1H, s), 7.86 (1H, s), 7.93 (1H, s), 8.02 (1H, s), 8.33 (1H, d, J=8.2Hz), 8.68 (1H, s), 8.91 (1H, d, J=5.8Hz)

[0057]

(製法1)

 $4-(3-\rho -4-(2\rho -4-(2\rho -2\rho -2\rho -2\rho -4-(2\rho -4-(2\rho$

(製法2)

 $4-(3-\rho -4-(2\rho -4-(2\rho -2\rho -2\rho -2\rho -4-(2\rho -4-(2\rho -4\rho -4-(2\rho -2\rho -2\rho -4-(2\rho -4))))))$

[0058]

実施例 6.4-(3-2) ロロー4-(2) ロプロピルアミノカルボニル)アミノフェノキシ)-7- メトキシー6- キノリンカルボキサミド メタンスルホン酸塩の結晶 (B) 実施例 10 で得られた 4-(3-2) ロロー4-(2) ロプロピルアミノカルボニル)アミノフェノキシ)-7- メトキシー6- キノリンカルボキサミド メタンスルホン酸塩酢酸和物の結晶 (I) (250mg) を30 で3 時間、40 で16 時間通風乾燥し、標記結晶(240 0mg)を得た。

[0059]

<u>実施例7.4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド メタンスルホン酸塩の結晶(C)</u>(製法1)

実施例8の(製法1)で得られた4ー(3ークロロー4ー(シクロプロピルアミノカルボニル)アミノフェノキシ)ー7-メトキシー6-キノリンカルボキサミド メタンスルホン酸塩 ジメチルスルホキシド和物の結晶(600mg, 1.15mmol)に、酢酸n-ブチル(12mL)を加え、反応液を115℃で10時間攪拌し、さらに室温で1.5時間攪拌後、結晶を濾取した。60℃で乾燥後、標記結晶(503mg)を得た。

(製法2)

(製法3)

 晶(2.22g)を得た。

[0060]

<u>実施例 8. 4 - (3 - クロロー4 - (シクロプロピルアミノカルボニル) アミノフェノキシ) - 7 - メトキシー6 - キノリンカルボキサミド メタンスルホン酸塩 ジメチルスル</u>ホキシド和物の結晶

(製法1)

4-(3-0) ロロー4-(20 ロプロピルアミノカルボニル)アミノフェノキシ)-7ーメトキシー6ーキノリンカルボキサミド(854mg, 2mmo1)に、室温でジメチルスルホキシド(6.8mL)を加え、60℃で溶解させた。同温度でメタンスルホン酸(389 μ L, 6mmo1)および4-(3-0) ロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7ーメトキシー6ーキノリンカルボキサミド メタンスルホン酸塩の種結晶(A)を反応液に順次加え、2ープロパノール(6.8mL)を30分かけて滴下した。2ープロパノールの滴下終了後、反応液を2時間かけて15℃まで冷却し、同温度で30分攪拌した。析出した結晶を濾取した後、60℃で乾燥し、標記結晶(1095mg)を得た。

(製法3)

[0061]

<u>実施例9.4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド メタンスルホン酸塩 水和物の結晶 (F)</u>

[0062]

<u>実施例10.4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド メタンスルホン酸塩 酢酸和物の結晶(Ⅰ)</u>

4- (3-クロロ-4- (シクロプロピルアミノカルボニル) アミノフェノキシ) -7

ーメトキシー 6 ーキノリンカルボキサミド (2.00g, 4.69 mmol) を、酢酸 (14 mL) およびメタンスルホン酸 (0.36 mL, 5.62 mmol) の混合溶液に40 C で溶解させた。溶解を確認した後、1 ープロパノール (4 mL) および 4 ー (3 ークロロー 4 ー (2 クロプロピルアミノカルボニル) アミノフェノキシ) ー 7 ーメトキシー 6 ーキノリンカルボキサミド メタンスルホン酸塩の種結晶 (C) (100 mg) を反応液に順次加え、さらに 1 ープロパノール (14 mL) および酢酸イソプロピル (10 mL) を1時間かけて滴下した。滴下終了後、反応液を40 C で 1 時間攪拌し、さらに25 C で 40 C 攪拌した。析出した結晶を濾取し、標記結晶 (2.61 g) を得た。

[0063]

なお、メタンスルホン酸塩の 1 H-NMRの化学シフト値は以下のとおりである。 1 H-NMR Spectrum (DMSO-d₆) δ (ppm): 0.44 (2H, m), 0.67 (2H, m), 2.36 (3H, s), 2.59 (1H, m), 4.09 (3H, s), 6.95 (1H, d, J=7 Hz), 7.25 (1H, d, J=2 Hz), 7.36 (1H, dd, J=3, 9 Hz), 7.63 (1H, d, J=3 Hz), 7.65 (1H, s), 7.88 (1H, brs), 7.95 (1H, brs), 8.06 (1H, s), 8.37 (1H, d, J=9 Hz), 8.73 (1H, s), 8.97 (1H, d, J= 7 Hz)

[0064]

<u>実施例11.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド エタンスルホン酸塩の結晶 (α)4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド(150mg, 0.351mmol)に、室温でジメチルスルホキシド(1.5mL)およびエタンスルホン酸(34 μ L, 0.422mmol)を加え溶解させた。60 で、反応液に酢酸エチル(1.5mL)を1.5時間かけて滴下し、酢酸エチルの滴下を終了して30分経過後から、1.5時間かけて反応液を室温まで冷却し、さらに室温で7時間攪拌した。析出した結晶を濾取した後、60 で乾燥し、標記結晶(176mg)を得た。</u>

[0065]

<u>実施例12.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド エタンスルホン酸塩の結晶(β)</u> (製法1)

実施例 1 1 で得られた 4 - (3 - 0

[0066]

<u>実施例13.4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド エタンスルホン酸塩 ジメチルス</u>ルホキシド和物の結晶

4 - (3 - クロロー4 - (シクロプロピルアミノカルボニル) アミノフェノキシ) - 7 - メトキシー6 - キノリンカルボキサミド(400mg, 0.937mmo1)に、室温でジメチルスルホキシド(4mL)を加え、60℃で溶解させた。エタンスルホン酸(92 μ L, 1.124mmo1)、酢酸エチル(2.4mL)および実施例 1 2 の (製法 1) で得られた 4 - (3 - クロロー4 - (シクロプロピルアミノカルボニル) アミノフェノキシ) - 7 - メトキシー6 - キノリンカルボキサミド エタンスルホン酸塩の結晶 (β) を反応液に順次加え、60℃で20分攪拌した。さらに反応液に酢酸エチル(1.6mL)を加え、反応液を一旦80℃に加熱し、1.5時間かけて0

[0067]

なお、エタンスルホン酸塩の 1 H-NMRの化学シフト値は以下のとおりである。 1 H-NMR Spectrum (DMSO-d₆) δ (ppm): 0.43 (2H, m), 0.66 (2H, m), 1.05 (3H, t, J=7.4 Hz), 2.38 (2H, q, J=7.4 Hz), 2.58 (1H, m), 4.08 (3H, s), 6.88 (1H, s), 7.24 (1H, s), 7.34 (1H, d, J=9.0 Hz). 7.60 (1H, s). 7.61 (1H, s). 7.88 (1H, s), 7.94 (1H, s), 8.05 (1H, s), 8.36 (1H, d, J=9.0 Hz), 8.72 (1H, s), 8.92 (1H, s)

[0068]

(粉末 X 線回折測定)

使用装置:MDA-5016-02 (理学電気株式会社製)

使用X線:CuKα線

モノクロメーター:湾曲結晶モノクロメーター

ゴニオメーター:縦型ゴニオメーター

カウンター:シンチレーションカウンター

管電圧: 40kV 管電流: 200mA

スキャンスピード:5°/分(製造例1で得られた遊離体の結晶、実施例1で得られた 塩酸塩の結晶、実施例2で得られた臭化水素酸塩の結晶および実施例10で得られたメシ ル酸塩の酢酸和物の結晶(I)については、2°/分)

走査軸: 2 θ / θ

走査範囲: $2\theta = 5$ ° ~ 40 °

発散スリット: 0.5°

散乱スリット: 0.5°

受光スリット: 0.3 mm

[0069]

[0070]

【表12】

1 9 语号	2 0	半倍包	d (dt	勃赛	机对链皮	E .9 日 日	2 0	华征福	d (%	极度	相対独自
1 1	7, 210	0.165	12.2505	1593	7	31	27.710	0.116	3. 2167	2077	Ð
(1)	8.260	0.153	10.7084	4113	18	32	28.010	0. 147	3.1829	1190	5
`a´	8.910	0.176	9.8944	1680	7	33	28.560	0.188	3.1228	4867	72
اة	9, 200	0.141	9.6046	1710	8	34	28.850	0.165	3.0911	3810	17
5	9. 910	0.165	8.9180	3680	16	85	29.400	0.212	8.0855	2050	9
8	10.480	0.188	8.4745	1220	10	38	80. 490	0.188	2.9294	6207	28
7	10.930	0.153	8.0880	4197	19	87	30.880	0.247	2.8933	2867	13
8	12.240	0.188	7. 2251	1853	8	88	31.280	0.188	2.8572	1397	6
9	13.720	0.165	5.4489	6133	27	39	31.760	0.259	2.8151	3050	14
10	15.090	0.165	5.8664	2283	10	40	32.100	0.176	2. 1861	1447	6
is İ	15, 370	0.141	5.7601	2553	11	0 1	32.920	0.119	2.7185	1310	6
12	15.700	0.176	6.6398	7390	33	42	33.120	0.212	2. 1026	1597	7
13	18.560	0.188	5.3620	1293	6	43	33.710	0.141	2. 6586	1837	5
i. I	18.680	0.178	4. 7716	9897	44	44	34.790	0.259	2.5130	1163	5
3 6	19.230	0.188	4.6117	15977	71	45	34.640	0.165	2.5874	1223	5
16 .	19.930	0.165	4. 4518	4683	21	46	34.940	0.188	1.5658	1350	6
17	20. 330	0, 188	4.3646	13577	60	47	36.080	6. 176	2.4873	1117	5
18	20.970	0.176	4. 2328	3610	16	48	36.730	0.176	2.4448	2140	10
19	22.010	0.176	4. 0351	3160	14	49	37.600	0.235	2.3902	1677	7
20	22.410	0. 259	3.9840	5203	23	50	38.140	0. 188	1.3576	1500	7
21	22.970	0.165	3. 8686	2593	12	51	38.600	0. 212	2,3306	1200	5
, 22	23.440	0.188	8.7921	22513	100	5.2	39. 400	0.271	2.2851	1650	7
23	24.110	0.176	3,5882	5120	23						
24	24.540	0.176	3.6245	5353	24	1					
25	24.990	0.188	3. 5603	5263	23						
26	25.520	0.188	3.4875	1857	8						
27	25.790	0.141	3.4516	1370	6	1 1					
.28	25. 250	0.188	3.3884	8420	37	l J					
29	26. 880	0.188	3.3141	4030	18] [
30	27.400	0.178	3. 2574	2080	8	!!			_		

【0071】 【表13】

1. 9 日 日	2 0	华佰福	d (#	59 SE	相対強度	t'-9 御司	2 0	华伍福	d (d)	知 度	相対論の
1 1	6.540	0.188	13.5039	1954	10	31	26.740	0.188	3. 2311	3558	19
2	9.660	0.141	9.1483	9646	52	32	27.060	0.141	3.2924	1192	6
3	10.840	0.188	8. 3078	2562	14	33	27.640	0-212	3.2247	2842	15
4	11.380	0.141	7. 7692	3025	16	34	28.320	0.212	3.1488	1812	10
5	12.220	0.212	7. 2369	1592	9	35	28.600	0.141	2, 1186	1892	10
6	12.640	0.141	6. 9974	1808	10	36	29. 220	0.165	3.0538	1746	9
7	13.100	0.165	8. 7527	1917	10	37	29.580	0.141	3.0075	3)64	17
	14.480	0.141	6. 1121	1904	10	38	29.980	0.188	2.9800	5300	2 8
ě	15.020	0.165	5. 8935	1304	7	39	30. 300	0.165	2.9474	1846	10
10	15.420	0.212	5. 7415	1600	9	40	31.800	0.118	2.8117	1412	8
11	18.740	0.165	6, 2917	3446	18	41	32.660	0.212	2.7396	2133	11
iz	17.020	0, 155	6. 2052	1704	9	42	32.940	0.148	2.7169	L 5 6 7	8
13	17.300	0.141	5.1216	2119	11	43	33.360	0.259	2.6837	1312	7
14	17.700	0.165	5. 0068	2829	12	44	35.400	0.141	2.5335	1867	10
15	18.380	0. 165	4. 8230	3825	20	45	38.660	0. 235	2.4493	1167	8
16	18.880	0.165	4.0954	3479	19	45	37. 240	0.259	2.4125	1412	8
17	19.400	0. 235	4.5717	2800	15	47	38.320	0.165	2.3489	1876	8
18	19.960	0. 165	4.4447	4054	22	48	38.700	0.11B	2.3248	1425	8
19	20.340	0.141	4.3625	4183	22						
20	20.820	0. 235	4. 2630	10558	56	1					
21	21.380	0.165	4. 1626	5504	29						
22	22.180	881.0	4.0048	4988	27	1 1					
23	22.900	0.165	3.8805	5158	2.8	1 1					
24	23.180	0.141	3. 2340	9502	51	1 1					
25	23.420	0.165	3. 7983	18721	100						
26	24.080	0.141	3. 6927	2438	13						
27	24.830	0.188	3.8843	2908	21	1 1					
28	25.480	0.212	3.4929	3183	37	1					
28	15.880	0.212	3.4398	2012	11	1					_
30	26.400	0.141	3, 3732	2288	12	l					

[0072]

【表14】

七.夕禄号	2 0	क धासा	d fix	St et	相对性权	L* + 9 (5) 43	2 0	中個個	d (#	效度	相对链度
1	5.720	0.141	15.4378	3079	45	31	33. 560	0.118	1.6681	1671	24
2	9.540	0.165	9.1672	2229	33	82	84.440	0.141	2.6019	1267	19
8	10.140	0.188	8.7163	2788	41						
4	10.500	0. 235	8.4182	2458	36	} [
6	11.320	0. 212	7.8102	4175	61						
6	11.480	0-141	7.7017	4042	5.9						
7	13.260	0.118	6.8716	1550	23	1 1					
8	13.840	0. 212	6.3933	3233	49	1 1					
9	16.380	0.165	5.7938	1862	87	1 I					
10	15.620	0.188	5.8685	1508	22	[[
11	16.440	0.212	5.3870	1488	22	1 1					
12 }	17.060	0.166	6.1931	2154	32	i 1					
15	17.620	0.259	5.0293	4746	69	1					
14	19.160	0.212	4.6284	6829	100	1 1					
15	19.800	0. 235	4.48D2	2890	42						
10	10. 340	0.282	4.3615	2279	33	1 1					
17	20.760	0, 212	4-2752	2079	30						
18	21.460	0.188	4.1873	2558	37	1					
18	22.080	9. 259	4.0226	1871	27	1 [
20	22.660	0.118	3.9380	2291	34	l 1					
21	23.140	0.141	3. 8408	3012	44						
22	23.840	Q. 306	3.7293	3167	45	1 1					
23	24.940	0.353	3.5673	3968	5 8	1 1					
2.4	25, 780	0.212	3.4529	3571	5 2	1 1					
25	26.800	0.118	3.3238	1458	21						
26	28.300	0.118	3.1509	2029	30						
27	19.900	0. 165	2.9859	1683	25	1 1					
28	31.040	0.118	2.8788	1467	21	1					
28	31.160	0.118	2.8679	1379	20	1 1					
80	31.760	0.165	2.7314	1429	21	1 1					

【0073】 【表15】

'-9 母母	2 0	半领债	d 依	\$4 EX	相対強展	t'-9 母 母	2 0	卡负贷	d da	独民	相对独立
L	6.160	0.141	14.3361	3760	37	31	26.020	0.141	3.4216	2278	23
2	9.840	0. 165	0.9813	3062	31	32	26. 220	0.118	3.396D	1422	14
3	1D. 160	0.165	8.6992	3238	32	33	26.980	0.212	3.2020	. 2438	24
4	10.580	0.141	8. 3547	7715	77	34	27.600	G. 155	3.2408	1085	11
5	12.300	0.141	7.1900	1923	19	35	27.980	9. 235	8.1862	1798	1.8
6	12.540	0.118	7.0530	1783	18	36	28. 400	0.212	3.1401	2785	28
7	12.960	0.141	6. 8253	1912	19	37	28.760	0.141	3.1016	1137	11
8	13.400	0.141	6.6022	1655	16	38	29. 220	0. 212	3.0538	1517	3 5
9	14.220	0.212	6.2233	3978	40	39	29.500	0.118	3.0254	1727	17
10	14.860	0.188	9.9506	1905	19	40	29.620	0.166	3.0134	1818	18
11	15.200	0.165	5.8241	3047	30	41	29. 840	0.118	2.9917	1643	16
12	15.960	Q. 255	5.5485	1282	14	42	30.640	0.876	2.9154	2890	24
13	16.360	0.212	5.4187	. 1267	13	48	81.280	0. 259	2.4572	1123	11
14	17.160	Q. 143	5.1631	1783	18	44	31.500	0.118	2.8878	1062	11
15	17.600	0.282	5.0860	4173	42	45	32.440	0.141	2.7576	1100	11
16	19.080	0.165	4.6478	6007	60	46	33.640	0.118	2.6620	1208	12
17	19.280	0.165	4. 5999	5716	67	47	34.500	0. 165	2.5975	1862	14
18	19.960	0.) 88	4.4447	4740	47	48	36.040	0.118	2.5587	1297	13
19	20.420	0.165	4.3456	2607	26	49	36.100	0.188	2.4860	1246	12
20	20.820	0.212	4. 2630	3305	33	80	37.640	0.306	2.3878	1865	16
21	21.280	0.188	4.1718	3210	32	51	38. 940	0.141	2.3110	1427	14
22	21.740	0. 225	4.0846	4487	45	52	39.480	0.118	2.2806	1215	12
2.3	22.660	0.282	3.9380	8627	36						
24	23.140	0.188	3.8406	2402	24						
28	28.560	0.188	3.7730	10033	100						
26	23.720	0.118	3. 7479	6733	67						
27	24.020	0.141	3.7018	5015	50						
28	24.320	0.259	3.6588	4275	43	1					
29	24.760	0. 159	3.5928	2563	26						
30	25.540	0. 282	3.4848	8082	81	i j					-

[0074]

【表16】

£. ·0 四 ·	2 0	平伍机	वे श्र	约虫	相対強度	t'-) 即母	1 0	华色镇	d CI	独庭	相対效度
1	5.700	0.212	15.4919	1821	25	31	34.840	0.259	2. 5730	1 100	23
2	6.100	0.188	14.4770	1946	26	82	36.280	0.829	2.4741	1888	26
3	8.020	0.212	11.0149	4092	56	23	37. 940	0.165	3.3696	1400	19
	9.640	0.212	9.1672	2379	32	1					
5	10.540	0.165	8.3864	2021	21						
6	11.280	0.259	7.8378	3871	53						
7	12.680	0. 235	6.9754	2129	29	1					
8	14.140	0.259	6. 2583	1358	18	} }					
9	15.120	0. 212	5.4938	1529	21	1					
10	17.290	0.259	5. 1612	2258	81						
11	18.140	0. 235	4.8863	6121	70						
12	19.620	0. 235	4.5209	3671	50	i i					
13	20. 240	0.165	4.3838	1921	2.5	1					
14	20.700	0.329	4.2874	2962	40	1 1					
16	21.310	0.235	4.1641	1525	21						
16	22.120	0.212	4.0153	2558	35						
17	22.000	0.282	. 3.8803	5721	78	1 1					
18	23.400	0.188	3.7985	4458	61	!!					
19	23.740	0.259	3.7448	8093	69	1					
50	24.280	0.769	3.6628	3029	83						
21	24.760	0.188	3.5928	1971	27						
2.2	25.080	0. 235	3. 6505	2154	29	1 1					
23	25.500	0. 282	3.4902	2454	33	1 1					
24	26.300	0.282	3.3858	2083	28	1 1					
28	26.960	0.329	3.3044	7362	190						
26	28.300	0. 212	3.1609	1921	26						
27	28.810	0. 205	8.0953	1850	25	1					
28	79.480	0. 329	3.0274	2371	32						
29	29.920	0. 165	2.9839	1854	21	1					
30	31,660	0.253	2. 2232	1321	18	[

【0075】 【表17】

・- 2 数 号	2 θ	华価額	d 僚	独成	相対性度	ピータ番号	2 0	半個報	d 63	独 庻	相対独自
1	9.360	0. 188	9.4408	6027	100	31	31.640	0.118	2.8255	980	16
2	10.200	0.165	8.6651	2107	35	82	32.520	0.141	2.7510	1057	18
3	10.460	0.185	8.4603	8191	5.6	33	33.340	0.212	2.6882	1740	29
4	12.400	6.185	7. 1323	2693	45	34	35. 120	0.118	2.5831	985	16
5	13.380	0.188	6. 6120	1382	23	35	35.440	0.141	2.5308	953	16
6	13.880	0.235	6. 3749	1450	24	36	25.860	0.166	2. 5021	937	16
7	14.400	0.155	6.1459	1482	74	37	37.360	0.259	2.4050	1443	24
8	18.640	0.282	5. 6613	3673	61	88	39. 550	0.141	2.2761	1212	20
9	16.840	0.165	5. Z405	1560	26						
10	17.260	0.118	5. 1334	2426	40						
11	17.460	0.168	5.0760	4166	69						
12	18.860	0.212	4.7014	2442	40	1 1					
13	19.420	0.212	4.5670	1697	26	l i					
14	20.040	0.212	4. 4271	2845	47	1					
15	20. 760	0.213	4. 2762	3693	61						
16	21.100	0.212	4.2070	2805	46						
17	21.760	0.188	4.0809	8035	100	l i					
18	22.660	0.212	3,9208	3982	66						
19	23.200	0.188	3.8308	1322	22						
20	23.660	Q. 212	3. 7573	4177	69						
21	25.180	0.329	3. 6338	4802	80	l [
22	25. 550	0.188	3.4688	3078	51	1 1					
23	25.840	0.141	3.4451	2603	43	f 1					
24	25.480	0.188	3. 3622	1992	3\$	1					
26	26.980	0. 235	8, 2020	2142	35	l i					
26	28.040	0.329	3. 1796	2292	38						
27	28.480	0.118	3.1314	995	1.5						
28	29.740	0.282	3.0016	1248	21	1					
29	30.360	0. 282	2.9417	1915	31						
80	31, 200	0.188	2.8644	1075	18	1					•

[0076]

【表18】

t°·2部号	2 0	半価協	d 位	sh ex	相対強度
3	6.000	0.188	14.7180	2058	37
2	9.200	0.447	9.6046	2108	38
3	10.640	0.235	8.3078	5392	96
4	13.480	0.185	6.5632	1862	33
5	13.620	0.165	6.4960	1783	32
6	14.520	0.212	6.0953	1946	35
7	15.700	0.259	5.6398	2775	49
8	17.180	0.282	5.1571	2608	45
9	17 890	U 566	1.0722	2573	÷÷
10	18.380	. 0. 259	4.8230	2571	46
11	19.880	0.306	4.4624	4421	79
12	20.720	0.259	4.2833	2712	48
13	21.460	0.518	4.1373	2692	48
14	22.200	0.259	4.0010	3658	6 5
15	22.820	0.471	3. 8937	5621	100
16	24.160	0.165	3.6807	2438	43
17	24.600	0.282	3.6158	2842	5 2
18	25.560	0.306	3.4822	4200	75
19	26.200	0.188	3.3985	1667	30
20	26.900	0.353	3.3117	2196	39
21	27.180	0.165	3. 2782	1854	33
2 2	28.220	0.358	3.1597	2212	39
23	29.320	0.353	3.0436	1698	30
24	30.260	0.212	2.9512	1721	31

【0077】 【表19】

・ク部号	2 0	华価額	d (4)	領度	相対強度	t'·夕母号	2 0	华価級	d (A	独区	相对数数曲
,	6.480	0.165	(3.6288	2662	20	31	28.740	0.188	2. 2311	3650	27
2	9.040	0.141	8, 7743	6921	38	32	27. 250	0.188	3. 2687	5421	41
3	9_560	Q. 141	9. 2245	10036	76	53	27.480	0.141	3. 2431	3008	23
4	10.500	0.118	8.3390	2671	20	34	28.860	0.165	3.1444	1767	13
5	12.500	0.141	7.0754	2096	16	35	18. 580	0.141	3. 1207	1267	10
6	13.880	0. 141	6. 4771	1558	12	36	29.300	0.143	3.0456	1404	11
7	14.640	0. 212	5.0456	1712	13	37	29.560	0.212	5.0194	2117	14
8	15.080	0.143	5.8702	7054	6.3	28	30.340	0.212	2.9417	1275	13
9	17.740	0.235	4.9956	2675	20	39	80.860	0.188	2.8951	2250	17
10	18.140	0.165	4. 8863	4188	32	40	81.850	0.141	1.8065	1393	10
11	19.100	0. 141	4.6428	3083	23	41	37.140	0.118	2.7827	1204	9
12	19.400	0.212	4.6717	6019	46	42	38.600	0. 289	2.6650	1779	1.3
18	19. 700	0.141	4.5017	2796	21	43	35. 380	0.141	2.6363	1200	14
14	20.080	0,141	4.4184	2862	22	44	35.580	0.141	2.5211	1408	11
15	20.380	0.141	4.3540	3278	25	45	36. 380	9. 141	2. 4588	1895	14
16	20.660	0.166	4. 2956	10933	82	46	35.740	0.118	2.4442	1650	12
17	20.920	0.141	4. 2428	2729	21	47	37. 520	0.235	2. 3951	1650	12
18	21.280	0.118	4.1719	2771	21	48	38. 180	0.225	2.3652	1471	11
19	21.520	0.165	4.1259	6142	46	49	38. 900	0.235	2.2133	2038	15
20	21.740	0.141	4.0846	4908	37	50	39.640	0.118	2. 2118	1500	11
21	22.140	0.165	4.0117	3754	28						
22	22.680	0. 165	3.9174	13275	100	1 1					
23	28. 220	0. 165	3.8276	2008	1.5	1 1					
24	23.640	0.188	3. 7604	8564	49	1 1					
25	24.260	0.165	3.6657	6350	40	1					
26	24.880	0.166	3.5758	3129	24						
27	25.160	0.141	3.5366	2350	2.8	i l					
2.6	25,320	0.11#	3.5146	1879	14	1 1					
29	25.100	0.168	3.4118	4004	30	1 1		*			
80	25. 260	0.141	3. 3909	3846	27	1 1					

【産業上の利用可能性】

[0078]

本発明に係る、4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドの塩およびその溶媒和物ならびにそれらの結晶は、物性面および体内動態面において優れた性質を有し、血管新生阻害剤として極めて有用である。

【図面の簡単な説明】

[0079]

【図1】ビーグル犬における薬物動態試験において、カルボキサミドの遊離体の結晶 、カルボキサミドの臭化水素酸塩の結晶およびカルボキサミドのメタンスルホン酸塩

- 【図2】製造例1で得られたカルボキサミドの遊離体の結晶の粉末X線回折パターンを表す図である。
- 【図3】実施例1で得られたカルボキサミドの塩酸塩の結晶の粉末X線回折パターンを表す図である。
- 【図4】実施例2で得られたカルボキサミドの臭化水素酸塩の結晶の粉末X線回折パターンを表す図である。
- 【図5】実施例3で得られたカルボキサミドのpートルエンスルホン酸塩の結晶の粉末X線回折パターンを表す図である。
- 【図6】実施例4で得られたカルボキサミドの硫酸塩の結晶の粉末X線回折パターンを表す図である。
- 【図7】実施例5で得られたカルボキサミドのメタンスルホン酸塩の結晶(A)の粉末X線回折パターンを表す図である。
- 【図8】実施例6で得られたカルボキサミドのメタンスルホン酸塩の結晶(B)の粉末X線回折パターンを表す図である。
- 【図9】実施例7で得られたカルボキサミドのメタンスルホン酸塩の結晶(C)の粉末X線回折パターンを表す図である。
- 【図10】実施例9で得られたカルボキサミドのメタンスルホン酸塩の結晶(F)の 粉末X線回折パターンを表す図である。
- 【図11】実施例10で得られたカルボキサミドのメタンスルホン酸塩の結晶(I)の粉末X線回折パターンを表す図である。
- 【図12】実施例11で得られたカルボキサミドのエタンスルホン酸塩の結晶 (α) の粉末X線回折パターンを表す図である。
- 【図13】実施例12で得られたカルボキサミドのエタンスルホン酸塩の結晶(β)の粉末X線回折パターンを表す図である。

【図10】

強度 [cps]

【図11】

37.360

【図12】

【要約】

【課題】 4-(3-)00-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドの塩またはその溶媒和物の結晶およびそれらの製造方法を提供する。

【解決手段】4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドの塩酸塩、臭化水素酸塩、ロートルエンスルホン酸塩、硫酸塩、メタンスルホン酸塩もしくはエタンスルホン酸塩またはそれらの溶媒和物の結晶。

【選択図】

なし

特願2003-430939

出願人履歴情報

識別番号

[000000217]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住所

東京都文京区小石川4丁目6番10号

氏 名

エーザイ株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019223

International filing date: 22 December 2004 (22.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-430939

Filing date: 25 December 2003 (25.12.2003)

Date of receipt at the International Bureau: 24 February 2005 (24.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потупр

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.