· · · · · · · · · · · · · · · · · · ·
A7/a/a
07/12/15 ALSM I
CHAPTER 3 REGRESSION DIAGNOSTIC
Formulae Rollon
Assumptions (
Estimation Protection (Olaymotics)
LS/Method of Moment/MLE
12-10 (n- 1) 521 - 12-1/5 5 2 1/2-02/ - 2 0
Parameter Eximates
Confidence Intervals Fentative - Conclusions
STAR END + STEEL HARVE
3-1 LACH OF FIT AND PURE ERROR
MSE is an unbiased estimator of or IF the model is correctly specified otherwise
it is biased and an and a series of the seri
If we report observations of y at each value of x (or multiple vanubles) then
we can use these to get on estimate of or that does not depend
on the model
and the first of the state of t
Suppose there are in different values of x: Xy. , Xn say at each xi we
measure 9 Ni times so there are Ni observations i.e.
9.1 9.2 9.N. X
yn, yn yn yn yn yn yn yn yn yn haif nahm A
ym, ym yman xmin x
$N = \sum_{i=1}^{m} N_i$ Let $\overline{y}_i = \frac{1}{N_i} \sum_{j=1}^{m} y_j$
121

The first = $\frac{1}{4}$ Varful = $\frac{1}{4}$ 1		5
We (2) = $\frac{1}{4}$, Vac(3) = $\frac{1}{4}$ =		34
Let $w = [V^*]$ frink of D^* Let $w = [V^*]$ $w = [V$	4	i
Let $w = [V^*]$ frink of D^* Let $w = [V^*]$ $w = [V$		
Let $w = [V^*]$ frink of D^* Let $w = [V^*]$ $w = [V$	1 - 1 - 1/2 [4] = 41 = 012	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Vor L2: 1 = a. vac bas	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Let w = (V") invide of root	
2 = w_3 $y = x_0 + c$ $z = w_1 + c$ $z = w_2 $	W = \(\frac{1}{2} \text{0} \)	
	0 1/0	
$Z' = x' \beta + 5'$ $-where x' = wx \qquad E' = wE$ $-where x' = wx \qquad E' = wE$ $-here x' = wx \qquad E' = wx ww^{T} = \sigma^{2} v^{m} v^{m} = \sigma^{2} I$ $-here x' = wx x \qquad E' = wx ww^{T} = \sigma^{2} v^{m} v^{m} = \sigma^{2} I$ $-here x' = wx x x ww^{T} = \sigma^{2} v^{m} v^{m} = \sigma^{2} I$ $-here x' = wx x x ww^{T} = \sigma^{2} v^{m} v^{m} = \sigma^{2} I$ $-here x' = wx x x ww^{T} = \sigma^{2} v^{m} v^{m} = \sigma^{2} I$ $-here x' = wx x x ww^{T} = \sigma^{2} v^{m} v^{m} = \sigma^{2} I$ $-here x' = wx x x ww^{T} = \sigma^{2} I$ $-here x' = wx x x x ww^{T} = \sigma^{2} I$ $-here x' = wx x x x x x x x x x x x x x x x x x $	2 - WX W = X8 + S	
- When $X' = \omega X$ $E' = \omega E$ - Then $E[E'] = 0$ $Va EF] = a^{-1}WVW^{-1} = a^{-1}V^{-1}VV^{-1} = a^{-1}I$ - Ordinary level Squares can be used an $Z = \alpha V X^{-1}$ - The weighted level Squares elaparter is: $ \beta = (X^{-1}X^{-1})X^{-1}Z^{-1} = (X^{-1}W^{-1})^{-1}X^{-1}V^{-1}X^{-1}X^{-1}Y^{-1}X^{-1$		
Then REst 3=0 Vales 1= e-WVW = o' v' v' = 0 I Ordinary least squares can be used an z and x' The varyonal least square example is: $ \beta = (x^Tx')x'^T z $ $ = (x^Tw'wx)^2 x^Tw'wy $ $ = (x^Tv'x)^2 x^Tv'y $ $ Elis 3 = \beta $ $ Vales 1 = o'^2 (x^Ty')^2 = o'^2 (x^Tv'x)^2 $ Finance $ y_1 = \beta + \beta_1 \lambda_1 + \beta_1 $ $ y_2 = y_1/\alpha_1 - \beta_2/\alpha_1 + \beta_3/\alpha_1 $ $ Elis 3 = \beta_1/\alpha_1 + \beta_3/\alpha_1 $ $ Elis 4 = \beta_1/\alpha_1 + \beta_3/\alpha_1 $ $ Elis 5 = \beta_1/\alpha_1 + \beta_3/\alpha_1 $ $ Elis 6 = \beta_1/\alpha_1 + \beta_3/\alpha_1 $ $ Elis 7 = \beta_1/\alpha_1 + \beta_3/\alpha_1 $ $ Elis 8 = \beta_1/\alpha_1 + \beta_3/\alpha_1 $ $ Elis 9 = \beta_1/\alpha_1 + \beta_3$	2° = x'8 + 8'	-
Ordinary least Squares can be used an $2 \text{ and } x^{-1}$ The weighted least Square example is: $f = (x^{-1}x^{-1})x^{-1} = (x^{-1}x^{-1})x^{-1} = (x^{-1}x^{-1})x^{-1}x^{-1}$ $f = (x^{-1}x^{-1})x^{-1}x^{-1}x^{-1}$ $f = (x^{-1}x^{-1})x^{-1}x^{-1}x^{-1}x^{-1}$ $f = (x^{-1}x^{-1})x^{-1}x^{-1}x^{-1}x^{-1}x^{-1}$ $f = (x^{-1}x^{-1})x^{-1}x^$	- Where X' = WX & = WE	450
The weight least Squar example is: $ \beta = (x^{T}x^{2})x^{2} = \frac{1}{2} = (x^{T}x^{2})^{2} = \frac{1}{2} = (x^{T}x^{2})^{2} = \frac{1}{2} = (x^{T}x^{2})^{2} = \frac{1}{2} = \frac{1}{2$	- Ten Elsy3=0 Vale 1= 0= WVW = 0 V VV = 0	1
The weight least Squar example is: $ \beta = (x^{T}x^{2})x^{T} \ge \frac{1}{2} = (x^{T}x^{2})^{2}x^{T} = \frac{1}{2} = (x^{T}x^{2})^{2}x^{T} = \frac{1}{2} = (x^{T}x^{2})^{2}x^{T} = \frac{1}{2} = (x^{T}x^{2})^{2} = \frac{1}{2} = \frac{1}{2$	- Outlines Limit Sources can be ideal on 2 and xx	- 11
$ \beta = (x^{T}x^{2})x^{T} = \frac{1}{2} (x^{T}x^{2})^{T} = (x^{T}x^{2})^{T}$	- De weighted least Sucret elapsity is:	
$= (x^{T} W^{T} W^{T})^{T} x^{T} W^{T} Y^{T} W^{T} Y^{T} W^{T} Y^{T} W^{T} Y^{T} Y^{T} W^{T} Y^{T} Y^$	$\theta = (x^{r}x^{s})x^{rT} = 0$	
FIG. 3 = β Vir $C\beta$ 3 = $\sigma^{2}(x^{T}x^{T})^{2}$ = $\sigma^{2}(x^{T}x^{T}x^{T})^{2}$ Example: $y_{1} = \beta_{0} + \beta_{1}k_{1} + \epsilon_{1}$ $y_{2} = \beta_{1}(a_{1} - \beta_{1}a_{2}) + \epsilon_{2}(a_{2} + \epsilon_{2})a_{3}$ $y_{3} = \beta_{1}(a_{1} - \beta_{1}a_{2}) + \epsilon_{2}(a_{1} + \epsilon_{2})a_{3}$ Example: $y_{1} = \beta_{2} + \beta_{1}k_{1} + \epsilon_{2}$ $y_{2} = y_{3}(a_{1} + \beta_{2})a_{3}$ $y_{3} = \beta_{2}(a_{1} + \beta_{2})a_{3}$ $y_{4} = \beta_{2}(a_{1} - \beta_{2})a_{3}$	= (xtm,mx),xtm,mã	
Var $\mathbb{E}\beta^{2} = \sigma^{2}(x^{2}x^{2})^{-1} = \sigma^{2}(x^{2}x^{2}x^{2})^{-1}$ Example: $y_{1} = \beta_{0} + \beta_{1}\lambda_{1} + \xi_{2}$ $y_{1} = \beta_{1} + \beta_{1}\lambda_{1} + \xi_{2}$ $y_{2} = y_{1}/\alpha_{1} - \beta_{1}/\alpha_{1} + \beta_{2}\lambda_{1}/\alpha_{2}$ $y_{3} = y_{1}/\alpha_{1} - \beta_{1}/\alpha_{1} + \beta_{2}\lambda_{1}/\alpha_{2}$ $y_{4} = \beta_{1}/\alpha_{1} + \beta_{2}/\alpha_{1} + \beta_{2}/\alpha_{2}$ $y_{5} = \frac{y_{5}}{2}(y_{5} - y_{5})^{2}$ y	- (x' v'x)" x T v'y	
Example: $ y_1 = \beta_0 + \beta_1 \lambda_1 + \xi_1 \forall \alpha \in \xi_1 : = \alpha_1^2 e^{-2} $ $ z_1 = y_1/\alpha_1 - \beta_2/\alpha_1 + \beta_3/\alpha_1 + \xi_1/\alpha_2 $ Effect $= \beta_1/\alpha_1 + \beta_3/\alpha_1$ SSE = $\frac{\kappa}{2} (z_1 - \overline{z}_1)^2 = \frac{2}{2} (y_1/\alpha_1 - \beta_2/\alpha_1 - \overline{z}_3/\alpha_1)^2$ $= \frac{\kappa}{2} (y_1 - \beta_1)^2$ $= \frac{\kappa}{2} (y_1 - \beta_2)^2$ Merght \Rightarrow contribution for each i.	ECE3 = P	
$ \frac{y_1 = \beta_0 + \beta_1 \lambda_1 + \varsigma_1}{z_1 = \frac{\beta_1 \lambda_2}{2}} = \frac{\alpha_1^2 \sigma^2}{z_1^2} $ $ \frac{z_1 = \frac{y_1}{\alpha_1} - \frac{\beta_1 \lambda_2}{\alpha_1} + \frac{\beta_1 \lambda_2}{\alpha_2}}{ \xi_1 ^2} = \frac{z_1}{2} \frac{(y_1 - \beta_1 - \beta_1 \lambda_2)^2}{ \xi_1 ^2} $ $ \frac{z_1}{\alpha_1} \frac{y_2}{\alpha_2} \frac{(y_1 - \beta_1 - \beta_1 \lambda_2)^2}{ \xi_1 ^2} $ $ = \frac{z_1}{\alpha_1} \frac{y_2}{\alpha_2} \frac{(y_1 - \beta_1 - \beta_1 \lambda_2)^2}{ \xi_1 ^2} $ $ = \frac{z_1}{\alpha_2} \frac{y_2}{(y_1 - \beta_1)^2} $ $ = \frac{z_1}{\alpha_2} \frac{y_2}{(y_1 - \beta_1)^2} $ Weight \Rightarrow continuous for each i .	- Vu [p] = 02 (x x) = 02(x v x)	
$ \frac{y_1 = \beta_0 + \beta_1 \lambda_1 + \varsigma_1}{z_1 = \frac{\beta_1 \lambda_2}{2}} = \frac{\alpha_1^2 \sigma^2}{z_1^2} $ $ \frac{z_1 = \frac{y_1}{\alpha_1} - \frac{\beta_1 \lambda_2}{\alpha_1} + \frac{\beta_1 \lambda_2}{\alpha_2}}{ \xi_1 ^2} = \frac{z_1}{2} \frac{(y_1 - \beta_1 - \beta_1 \lambda_2)^2}{ \xi_1 ^2} $ $ \frac{z_1}{\alpha_1} \frac{y_2}{\alpha_2} \frac{(y_1 - \beta_1 - \beta_1 \lambda_2)^2}{ \xi_1 ^2} $ $ = \frac{z_1}{\alpha_1} \frac{y_2}{\alpha_2} \frac{(y_1 - \beta_1 - \beta_1 \lambda_2)^2}{ \xi_1 ^2} $ $ = \frac{z_1}{\alpha_2} \frac{y_2}{(y_1 - \beta_1)^2} $ $ = \frac{z_1}{\alpha_2} \frac{y_2}{(y_1 - \beta_1)^2} $ Weight \Rightarrow continuous for each i .		9
$Z_{i} = \frac{9i/\alpha_{i}}{-\beta_{i}} - \frac{\beta_{i}}{\alpha_{i}} + \frac{\beta_{i}}{\beta_{i}} $		
$E[2] = \beta / \alpha_1 + \beta \cdot \frac{1}{2} \alpha_1$ $SSE = \frac{2}{5} (2i - \frac{1}{2})^2 = \frac{2}{5} (\frac{1}{2} \alpha_1 - \frac{1}{6} \alpha_1 - \frac{1}{6} \frac{1}{6} \alpha_1)^2$ $= \frac{2}{5} \frac{1}{6} (4i - \frac{1}{6} - \frac{1}{6} \frac{1}{6})^2$ $= \frac{1}{5} \frac{1}{6} (4i - \frac{1}{6})^2$ $= \frac{1}{5} \frac{1}{6} (4i - \frac{1}{6})^2$ $= \frac{1}{5} \frac{1}{6} (4i - \frac{1}{6})^2$ $= \frac{1}{5} \frac{1}{6} $		
SSE = $\frac{2}{5}(2i-\frac{2}{5})^2 = \frac{2}{5}(\frac{9}{6}i-\frac{2}{5}\frac{16}{6}i)^2$ = $\frac{2}{5}\frac{1}{6}\frac{1}{5}(9i-\frac{2}{5}-\frac{2}{5}\frac{1}{6}i)^2$ = $\frac{2}{5}\frac{1}{6}\frac{1}{5}(9i-\frac{2}{5})^2$ = $\frac{2}{5}\frac{1}{6}\frac{1}{5}(9i-\frac{2}{5})^2$		
$= \frac{\sum_{i=1}^{N} \frac{1}{2} (4i - 6i - 6 \times 1)^{2}}{\sum_{i=1}^{N} (4i - 9_{i})^{2}}$ $= \frac{1}{2} \frac{1}{2} (4i - 9_{i})^{2}$ $= \frac{1}{2} \frac{1}{2$	$\pm 12i1 = \beta/\alpha_1 + \beta/\alpha_2$	
$= \frac{\sum_{i=1}^{N} \frac{1}{2} (4i - 6i - 6 \times 1)^{2}}{\sum_{i=1}^{N} (4i - 9i)^{2}}$ $= \frac{1}{2} \frac{1}{2} (4i - 9i)^{2}$ $= \frac{1}{2} \frac{1}$	(G- N - 2 - 2 - 14 - 2 - 12	
$= \frac{1}{2} \frac{1}{4} \frac{1}{9} \frac{1}{9} $ weight) \Rightarrow contribution for each i	$SE = \sum_{i=1}^{n} (Z_{i} - Z_{i})^{2} = \sum_{i=1}^{n} (Z_{i} - P_{i}/Q_{i} - P_{i}/Q_{i})^{2}$	
weight) > contribution for each i	= 2 211 /612 (91-B-BX)2	
	weight) > contribution for each i	
Commo with a 1) Small/lage and how reliable collected data are in these cases		
THE DOWN OF THE WORK	with a 1) Smull/lage and how reliable collected along are in their con	1
	THE COLUMN THE WAY	

11 11	NAIN WEREKEIT	
14 ln	lis ALSM 1	
	9i is large variance > unreliable > small weight 9i is small variance > reliable → large weight	
	Let wi = 1/ait be the weights SSE = Ew: 19: -G:) Weighted least Squares WLS	
	3.8 GENERALISED LEAST SQUARES -In the general cuke, Vig [s] = 0° V whole V is not recessorily diagonal - Since V is positive definite mutans, there exist a new non singular mutans T, - Such that TT' = V T-culled choleshy brangle	
	y = x β + ε	
	- Use ordinary least squares on z and x. - If V is diagonal, 7'=W - ivis is a special case of generalisal least squares.	
	3.9 VARIABLE SELECTION Have andidate regressor-want subjet to use in model If we we all the regressors: *Unbiased estimates *Large variance of parameter estimates and predicted value *More costly (more calculations) *Cost of investing non sympton matrix scales cubically with a Calculations)	
	If we use a subject: Reduced cont Possibly biased parameter estimates. Reduced vaniance of the parameter estimates and predicted values.	

How difficult to those a subst? HE p possible predictors /regressions (f) + (f) + + (f) = 2° posite miles Begin with 4: = B+BXXXI+Ei where XXIS the X which gives the lungest R2 on its own Then add x2 to the made S.T. Y:= B=+ BUXAN + BOXSI + EI X5 LICH that the largest increde in R2 is ownieved Report until some Stopping witerin is soltisfied e.g. the F-best For each of the uniques that Not yet entered is less than some one-determined value Stepwise Regission - Beglin as fur forward selection, then at each step remove one of the variables in the current model if has F < predetomnal value (partal F-test) - Similarly add a variable not included in the movel if F 7 pre-determined value - 1 berate under no further additions or remuals All Ribble Regression Fit all possible muders. any an option if you have a small number of variables (21 models) We can carbide som statistic for each eg. (hieldow control, AIC, BIC) Mux highbod - penitry funtary -depends on # variable in madel - paralises complex models. Lots of possible Statistics e-g Mullians Suggested Statistic for model with P predictors (p = SSE (P) - n+2p One con grow parallel with AIL & BIC Con Show F. E.G.] = P