

Chủ đề 5: Các công cụ toán học để phân tích độ phức tạp thuật toán

Nội dung chủ đề 5

- Tổng quan về các công cụ toán học dùng để phân tích thuật toán
- Phương pháp xác suất
- Phương pháp hàm sinh
- Các kết quả toán học về hoán vị
- Các kết quả toán học hướng bài toán

Công cụ toán học để phân tích thuật toán

- Phân hoạch, phân lớp, đếm, tính tổng, chặt miền giá trị
 - → Đã minh họa một phần (ở chủ đề trước)
- Quy nạp và công thức truy hồi
 - → Từ bản chất lặp của hầu hết các thuật toán
- Áp dụng lý thuyết xác suất
 - → Từ bản chất ngẫu nhiên của dữ liệu
- Phương pháp hàm sinh
 - → Công cụ để đếm, giải công thức truy hồi, tính trung bình và phương sai
- Tính chất của các hoán vị
 - →Bản chất tự nhiên của các thuật toán có thao tác đổi chỗ
- Tính chất toán học hướng bài toán
 - Những thuật toán quá đặc thù, không thể dùng công cụ chung

Thường được áp dụng lồng trong các phương pháp khác

Áp dụng lý thuyết xác suất

- Chỉ dùng cho các thao tác có số lần thực hiện thay đổi ngẫu nhiên theo dữ liệu
- Số lần thực hiện của thao tác (tùy thuộc theo phân bố dữ liệu) được qui về một biến ngẫu nhiên X
- Xác định phạm vi của X: 0 ≤ X < m
 → X là biến ngẫu nhiên rời rạc ∈ {0, 1, ..., m-1}
- Dặt $p_i = \mathbf{P}(X=i)$ thì $p_i = 0$ khi $i \ge m$. Tính và khảo sát các đại lượng:
 - \square Kỳ vọng $\mathbf{E}(X)$ đặc trưng cho số lượng thao tác
 - Phương sai Var(X) đặc trưng cho độ lệch kỳ vọng

Ví dụ minh họa

- Xem minh họa trực tiếp trên bảng...
- Khảo sát các ví dụ, giới hạn số phần tử n của mảng bằng với giá trị cụ thể
 - Ví dụ về thuật toán tìm kiếm tuần tự
 - Ví dụ về thuật toán tìm phần tử lớn nhất
 - Ví dụ về thuật toán kiểm tra dãy tăng
- Nêu vấn đề khó khăn khi khảo sát trường hợp tổng quát...
- Liên hệ với khảo sát thực nghiệm...

Nội dung chủ đề 5

- Tổng quan về các công cụ toán học dùng để phân tích thuật toán
- Phương pháp xác suất
- Phương pháp hàm sinh
 - Các kết quả toán học về hoán vị
 - Các kết quả toán học hướng bài toán

Định nghĩa hàm sinh

Cho dãy số $\{a_n\}$. Nếu chuỗi số $\sum a_n x^n$ luôn hội tụ khi |x| < R, với R là số thực dương thì hàm

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

được gọi là hàm sinh của dãy $\{a_n\}$.

- ☐ Ví dụ:
 - ☐ Hàm f(x) = 1/(1 x) là hàm sinh của dãy 1, 1, 1, ... với bán kính hội tụ là R = 1.
 - □ Hàm sinh của dãy $\{2^n\}$ là g(x) = 1 / (1 2x) với bán kính hội tụ là R = ½.

Xem giải thích và bình luận trên bảng...

Tính chất của hàm sinh (1)

Giả sử f(x), g(x) lần lượt là hàm sinh của các dãy số $\{a_n\}$, $\{b_n\}$ với bán kính hội tụ tương ứng là R_1 , R_2 . Khi đó ta có:

- a) h(x) = f(x) + g(x) là hàm sinh của dãy $\{a_n + b_n\}$ với bán kính hội tụ $R = \min(R_1, R_2)$.
- b) cf(x) (c là hằng số) là hàm sinh của dãy $\{a_n\}$ với cùng một bán kính hội tụ R_1 của hàm f(x).
- c) h(x) = f(x)g(x) là hàm sinh của dãy số $\{c_n\}$ với bán kính hội tụ $R = \min(R_1, R_2)$, trong đó $\{c_n\}$ là dãy nhân định nghĩa như sau:

$$c_0 = a_0 b_0$$
; $c_1 = a_0 b_1 + a_1 b_0$; $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$;
 $c_3 = a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0$; $c_4 = \cdots$

cdio

Tính chất của hàm sinh (2)

d) Hệ quả tính chất trên khi dãy $\{b_n\}$ là 1, 1, ... Hàm h(x) = f(x)/(1 - x) là hàm sinh của dãy:

$$c_0 = a_0$$
; $c_1 = a_0 + a_1$; $c_2 = a_0 + a_1 + a_2$; $c_n = a_0 + a_1 + \dots + a_n$, ...

với bán kính hội tụ $R = \min(R_1, 1)$.

e) Đạo hàm f'(x) là hàm sinh dãy $\{(n+1)a_{n+1}\}$ với cùng bán kính hội R_1 của hàm f(x), tức là

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + \dots$$

Một số hàm sinh đặc biệt

- Một số hàm sinh có sẵn để dùng được thiết lập nhờ vào các tính chất hàm sinh
 - □ Tính chất nhân hàm sinh và hệ quả
 - Tính chất lấy đạo hàm của hàm sinh
 - → Bảng tra cứu các hàm sinh thông dụng...
- ☐ Khi cần phải dùng hàm sinh khác
 - Tra cứu trong các tài liệu giải tích toán học

Ví dụ áp dụng:

Dùng hàm sinh như công cụ đếm

- □ Ví dụ về đếm bộ nghiệm nguyên
 - Bộ nghiệm 2 và 3 ấn, liên hệ với phương pháp sơ cấp
 - Bộ nghiệm k ẩn
- Bài toán tháp Hà nội

Định nghĩa hàm sinh dãy xác suất

Cho dãy số phân bố xác suất $\{p_n\}$, tức là ta có điều kiện $0 \le p_k \le 1$ và $\sum_{k=0}^{\infty} p_k = 1$, khi đó hàm sinh $f(x) = \sum_{n=0}^{+\infty} p_n x^n$ gọi là một hàm sinh dãy xác suất.

Giả sử X là biến ngẫu nhiên rời rạc tương ứng với dãy phân bô xác suất nói trên, nghĩa là ta có $p_k = \mathbf{P}(X = k)$. Về mặt toán học thì hàm f có liên hệ mật thiết với biến ngẫu nhiên X.

cdio

Định lý hàm sinh dãy xác suất

Hai biến ngẫu nhiên X, Y có dãy phân bố xác suất tương ứng là $\{p_n\}$, $\{q_n\}$.

Gọi F, G là hàm sinh tương ứng của $\{p_n\}$, $\{q_n\}$.

- a) Kỳ vọng của X là Mean(X) = Mean(F) = F'(1).
- b) Phương sai của X là $Var(X) = Var(F) = F''(1) + F'(1) [F'(1)]^2$.
- c) Hàm H(x) = F(x)G(x) cũng là hàm sinh của dãy xác suất nhân của $\{p_n\}$ và $\{q_n\}$. Hơn nữa: Mean(FG) = Mean(F) + Mean(G),

$$Var(FG) = Var(F) + Var(G)$$
.

Áp dụng hàm sinh dãy xác suất

- Áp dụng cho các trường hợp thuật toán đơn giản trên mảng với n = 3, 4 phần tử
 - → So sánh với cách tính cụ thể
- Áp dụng cho các trường hợp tổng quát
 - → Những thuật toán tiêu biểu...
- Xem minh họa trực tiếp trên bảng với các ví dụ tiêu biểu...

Nội dung chủ đề 5

- Tổng quan về các công cụ toán học dùng để phân tích thuật toán
- Phương pháp xác suất
- Phương pháp hàm sinh
- Các kết quả toán học về hoán vị
 - Các kết quả toán học hướng bài toán

Định nghĩa hoán vị

- Cho S là một tập hợp gồm n đối tượng phân biệt, một hoán vị của n đối tượng này là một song ánh từ S vào S.
- Xét S={1, 2, 3, 4}. Ánh xạ φ : S → S định nghĩa bởi φ(1)=3, φ(2)=4, φ(3)=1, φ(4)=2 là một hoán vị của S.
- ☐ Ký hiệu
 - Ma trận 2 dòng → Đơn giản hóa thành 1 dòng
 - Ký hiệu chu trình
 - **Lưu** ý việc nhầm ký hiệu

Vài tính chất cơ bản

- \square Nếu S có n phần tử thì có tất cả n! hoán vị. Hàm n! được xác định như sau: 0!=1 và
 - $n! = 1 \times 2 \times 3 \times ... \times n$ nếu n nguyên dương.
- \square Hàm n! tăng rất nhanh, giá trị 10! là 3.628.800 (khoảng 3,6 triệu).
- □ Công thức xấp xỉ Stirling: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ □ Ước lượng: $n! = O(n^n)$ và log(n!) = O(n log(n)).
- \square Dễ dàng lũy thừa μ của mỗi số nguyên tố p trong n! (p^{μ} là ước số của n! nhưng $p^{\mu+1}$ thì không)

$$\mu(p) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots$$

Nghịch thế

Định nghĩa và ví dụ

- Cho $\sigma = a_1 \ a_2 \dots a_n$ là một hoán vị của tập $\Omega = \{1, 2, \dots, n\}$. Một nghịch thế của hoán vị σ là một cặp (a_i, a_j) thỏa điều kiện i < j và $a_i > a_j$.
- □ Ví dụ. Hoán vị 3 1 4 2 của tập {1, 2, 3, 4} có 3 nghịch thế là (3, 1), (3, 2), (4, 2).
- Số lượng nghịch thế của mỗi hoán vị n phần tử liên quan đến nhiều thuật toán trên mảng n phần tử.

Bảng nghịch thế của một hoán vị

- □ Cho $σ = a_1 a_2 ... a_n$ là một hoán vị của tập $Ω = \{1, 2, ..., n\}$. Với mỗi i∈Ω, gọi b_i là số lượng phần tử j ở bên trái i trong σ mà thỏa j > i.
- \square Khi đó dãy $b_1 b_2 \dots b_n$ được gọi là bảng nghịch thế của hoán vị σ .
- Ý nghĩa của bảng nghịch thế
 - → Xem minh họa trực tiếp trên bảng...

Ví dụ về bảng nghịch thế

Với n = 5. Xem hoán vị σ = 5 1 3 2 4 của tập hợp {1, 2, 3, 4, 5}. Ta có:

Left(1) =
$$\{5\}$$
; $b_1=1$
Left(2) = $\{5, 3\}$; $b_2=2$
Left(3) = $\{5\}$; $b_3=1$;
Left(4) = $\{5\}$; $b_4=1$;
Left(5)= \emptyset ; $b_5=0$;

Do đó bảng nghịch thế của hoán vị này là: 1 2 1 1 0.

Tính chất tương ứng song ánh

Mệnh đề:

Có sự tương ứng song ánh giữa tập hợp các bảng nghịch thế và tập hợp các hoán vị.

- a) Với mỗi hoán vị σ và b_i trong bảng nghịch thế của σ , ta có $0 \le b_i \le n$ i. Cụ thể với i = 1 hay i = n ta có: $b_n = 0$ và $b_1 = số$ lượng phần tử bên trái 1 trong σ .
- b) Mỗi hoán vị có một bảng nghịch thế duy nhất và ngược lại bất kỳ dãy $b = b_1 b_2 \dots b_n$ với $0 \le b_i \le n i$, tồn tại duy nhất một hoán vị mà có bảng nghịch thế là b.

Điều nầy có nghĩa là tồn tại phép tương ứng 1-1 giữa tập các hoán vị của tập hợp n phần tử và tập các bảng nghịch thế của các hoán vị đó.

Ví dụ minh họa

- Xem dãy b = 1 2 1 1 0, ta sẽ xây dựng một hoán vị của tập {1, 2, 3, 4, 5} mà có bảng nghịch thế là b.
 - ☐ Viết số 5
 - Do b₄=1 nên số 4 được chèn vào sau số 5: 5 4
 - Do b₃=1 nên số 3 được chèn vào sau số 5: 5 3 4
 - Do b_2 =2 nên số 2 được chèn vào sau số 3: 5 3 2 4
 - □ Do b₁=1 nên số 1 được chèn vào sau số 5: 5 1 3 2 4

Số nghịch thế trung bình của một hoán vị

- \square Xét một hoán vị σ có bảng nghịch thế là $b_1\,b_2\,\ldots\,b_n$, số các nghịch thế có trong σ là $b_1+b_2+\ldots+b_n$. Giá trị nầy thay đổi tùy theo hoán vị σ .
- ☐ **Mệnh đề**: Giá trị trung bình của số lượng các nghịch thế của một hoán vị n phần tử là n(n-1)/4.
- □ Diễn giải về ý nghĩa...

Ví dụ

- □ với n=3, ta có 6 hoán vị sau đây:
 - 1 2 3: 0 nghịch thế
 - 1 3 2: 1 nghịch thế
 - 2 1 3: 1 nghịch thế
 - 2 3 1: 2 nghịch thế
 - 3 1 2: 2 nghịch thế
 - 3 2 1: 3 nghịch thế
- ☐ Giá trị trung bình: (0+1+1+2+2+3)/6 = 9/6 = 3/2.

Chứng minh mệnh đề về số nghịch thế trung bình

Xem minh họa trực tiếp trên bảng...

- Áp dụng phương pháp hàm sinh
 - → Bài toán đếm bộ nghiệm của hệ
- Bình luận về cách chứng minh
- ☐ Có thể dùng phương pháp sơ cấp?

CÂU HÒI

&

THẢO LUẬN