无限可数维线性空间的线性变换环

戚天成 ⋈

复旦大学 数学科学学院

2023年11月25日

这份笔记的目的是记录除环 Δ 上可数无限维线性空间 V 的线性变换环 $R = \text{End}(\Delta V)$ 的环论性质.

Lemma 1. 设 $f, g \in R$ 满足 $\dim_{\Delta} \operatorname{Im} g \leq \dim_{\Delta} \operatorname{Im} f$, 那么存在 $h_1, h_2 \in R$ 使得 $g = h_2 f h_1$.

Proof. 设 Ker f, Ker g 在 V 中的补空间分别为 V_1, V_2 , 则有 $V = Ker f \oplus V_1 = Ker g \oplus V_2$. 那么由第一同构定理知 $V_1 \cong V/Ker f \cong Im f$, $V_2 \cong V/Ker g \cong Im g$. 所以 $\dim_{\Delta} Im g = \dim_{\Delta} V_2$, $\dim_{\Delta} Im f = \dim_{\Delta} V_1$. 如果 f, g 中至少有一个是零映射,结论直接成立,故不妨设 $f, g \neq 0$,于是 V_1, V_2 均是非零线性空间.设 V_1 有基 $\{\alpha_{\lambda} | \lambda \in \Lambda\}$, V_2 有基 $\{\beta_{\lambda} | \lambda \in \Lambda_1\}$,这里 Λ_1 是 Λ 的非空子集.定义线性变换 $h_1: V \to V$ 满足 $h_1(Ker g) = 0$ 且 $h_1(\beta_{\lambda}) = \alpha_{\lambda}, \forall \lambda \in \Lambda_1$,易见 $Im f h_1$ 是以 $\{f(\alpha_{\lambda}) | \lambda \in \Lambda_1\}$ 为基的子空间.定义线性变换 $h_2: V \to V$ 满足 $h_2(f(\alpha_{\lambda})) = g(\beta_{\lambda}), \forall \lambda \in \Lambda_1$,那么对任何 $\lambda \in \Lambda_1$,有 $g(\beta_{\lambda}) = h_2 f h_1(\beta_{\lambda})$,结合 $g = h_2 f h_1$ 在 Ker g 上取值都为零知 $g(v) = (h_2 f h_1)(v), \forall v \in V$.所以 $g = h_2 f h_1$.

Proposition 1. 设 $f \neq 0 \in R$ 满足 $\dim_{\Delta} \operatorname{Im} f < +\infty$, 那么 f 可以写成有限个像空间维数为 1 的线性变换之 和. 特别地, $I = \{ f \in \operatorname{End}(_{\Delta}V) | \dim_{\Delta} \operatorname{Im} f < +\infty \}$ 是 R 唯一的非零真理想.

Proof. 设 Im f 有基 $\beta_1, \beta_2, ..., \beta_m$. 对每个 $\alpha \in V$, 设 $f(\alpha) = f_1(\alpha)\beta_1 + \cdots + f_m(\alpha)\beta_m$, 这里

$$f_1(\alpha), f_2(\alpha), ..., f_m(\alpha) \in \Delta.$$

那么每个 $f_k: V \to \Delta$ 都是 Δ -线性函数. 对每个正整数 $1 \le k \le m$, 定义 $g_k: V \to V, \alpha \to f_k(\alpha)\beta_k$, 则 $g_k \in \operatorname{End}(\Delta V)$ 且像空间维数是 1. 直接验证可知 $f = g_1 + g_2 + \cdots + g_m$, 为有限个像空间维数为 1 的线性变换之和. 下证 $I \in R$ 唯一的非平凡理想. 设 $J \in R$ 的非零真理想, 则 $J \subseteq I = \{f \in \operatorname{End}(\Delta V) | \dim_\Delta \operatorname{Im} f < +\infty \}$ 且由 J 中含非零线性变换知 J 包含所有像空间维数是 1 的线性变换,故由 I 中任一非零线性变换可写成有限个像空间维数为 1 的线性变换之和知 $I \subseteq J$,故 I = J,由此得到唯一性.

Corollary 1. 环 R 的理想集为 $\{0, I, R\}$, 其中 $I = \{f \in \operatorname{End}(\Delta V) | \dim_{\Delta} \operatorname{Im} f < +\infty \}$.

Corollary 2. 环 R 满足只有唯一的极大理想但不是局部环.

Proof. 根据前面的讨论知 $R = \operatorname{End}(\Delta V)$ 只有唯一的极大理想 $I = \{f \in \operatorname{End}(\Delta V) | \dim_{\Delta} \operatorname{Im} f < +\infty \}$. 但 R 的不可逆元全体并不构成理想. 不难构造 R 中两个不可逆元 f,g 满足 f+g=1 可逆.

Corollary 3. 环 R 是本原环, 但不是单环.

Proof. 设 V 有 Δ -基 $\{\alpha_n|n\geq 1\}$. 直接验证可知 $I_k=\{f\in \operatorname{End}(_{\Delta}V)|f(\alpha_k)=0\}, \forall k\geq 1$ 都是 R 的极大左理想. 且每个 I_k 都不包含非零理想. 特别地, R 存在一个极大左理想不含任何非零理想, 所以 R 是本原环. \square

Corollary 4. $\exists I = \{ f \in \operatorname{End}(\Delta V) | \dim_{\Delta} \operatorname{Im} f < +\infty \}, \ \mathbb{M} \ \operatorname{Jac}(R/I) = 0.$

Proposition 2. 记 $I = \{ f \in \text{End}(\Delta V) | \dim_{\Delta} \text{Im} f < +\infty \}$, 那么 R/I 不是左、右 Artin 环.

Proof. 根据 R/I 是半本原环,Wedderburn-Artin 定理表明只需验证 R/I 不是左 Artin 环. 设 V 有 Δ-基 $\{\alpha_n|n\geq 1\}$. 可构造 $\mathbb{Z}_{\geq 1}$ 的非空子集严格升链 $\Lambda_1\subsetneq\Lambda_2\subsetneq\cdots$ 使得每个 $\lambda_{n+1}-\Lambda_n$ 是无限可数集(例如 取 $\Lambda_n=\mathbb{Z}_{\geq 1}-2^n\mathbb{Z}_{\geq 1}$). 记 I_n 是 R 中所有零化 $\{\alpha_k|k\in\Lambda_n\}$ 的线性变换构成的左理想. 则有左理想降链 $I_1+I\supseteq I_2+I\supseteq\cdots$ 下证该左理想降链是严格的. 首先可构造 $h\in R$ 使得对任何 $t\in\Lambda_{n+1}-\Lambda_n$,有 $h(\alpha_t)=\alpha_t$ 并且 $h\in I_n$. 如果有 $I_n+I=I_{n+1}+I$,则存在 $f\in I_{n+1}$ 与 $g\in I$ 使得 h=f+g. 那么 $g(\alpha_t)=h(\alpha_t)=\alpha_t$, $\forall t\in\Lambda_{n+1}-\Lambda_n$. 这和 Img 是有限维空间矛盾. 因此有左理想严格降链 $I_1+I\supsetneq I_2+I\supsetneq\cdots$. □

回忆含幺环 T 被称为 **Dedekind 有限的**, 如果任何 $a,b \in T$ 满足 ab = 1 蕴含 ba = 1.

Proposition 3. 记 $I = \{ f \in \text{End}(\Delta V) | \dim_{\Delta} \text{Im} f < +\infty \}$, 那么 $R \ni R/I$ 都不是 Dedekind 有限环.

Proof. 设 V 有 Δ -基 $\{\alpha_n|n\geq 1\}$. 构造线性变换 $f\in R$ 满足 $f(\alpha_{2n})=\alpha_n, f(\alpha_{2n-1})=0, \forall n\geq 1$. 再构造 $g\in R$ 满足 $g(\alpha_n)=\alpha_{2n}, \forall n\geq 1$. 那么 $fg=\mathrm{id}_V$ 且 $\mathrm{id}_V-gf\notin I$. 故 R 与 R/I 都不是 Dedekind 有限的. \square 因为单边 Noether 环总是 Dedekind 有限环, 因此我们得到:

Corollary 5. 记 $I = \{ f \in \operatorname{End}(\Delta V) | \dim_{\Delta} \operatorname{Im} f < +\infty \}$, 那么 R 与 R/I 均不是左、右 Noether 环.