Recommender Systems:

In this module, you will learn about recommender systems. You will be introduced to the main idea behind recommendation engines, then you will gain an understanding of two main types of recommendation engines, namely, content-based and collaborative filtering.

Intro to Recommender Systems

Recommender systems capture the pattern of peoples' behavior and use it **to predict what else they might want or like.**

Applications

- What to buy?
 - o E-commerce, books, movies, beer, shoes
- Where to eat?
- Which job to apply to?
- Who you should be friends with?
 - LinkedIn, Facebook...
- Personalize your experience on the web
 - News platforms, news personalization

Advantages of recommender systems

- Broader exposure
- Possibility of continual usage or purchase of products
- Provides better experience

Implementing recommender systems

Memory-based

- · Uses the entire user-item dataset to generate a recommendation
- Uses statistical techniques to approximate users or items
 e.g., Pearson Correlation, Cosine Similarity, Euclidean Distance, etc.

Model-based

- Develops a model of users in an attempt to learn their preferences
- Models can be created using Machine Learning techniques like regression, clustering, classification, etc.

Content-based Recommender Systems

Content-based recommender systems

Weighing the genres

Weighted Genre Matrix

					•			Comedy	Adventure	Super Hero	Sci-Fi
2 X 10 X ut User Ratings		Comedy	0 1 1 0		(0	2	2	0		
		1	1	1	1	=	and any	10	10 10	10	
		1 0 1 0						8	0	8	0
								Comedy	Adventure	Super Hero	Sci-Fi
	User Profile								12	20	10

Weighing the genres

Weighted Genre Matrix

		<i>.</i>							Comedy	Adventure	Super Hero	Sci-Fi
2 10 8 ut User Ratings		**	Comedy	1	Super Hero	Sci-Ri		5	0	2	2	0
	X		1	1	1	1	=		10	10	10	10
			1 Mov	1 0 1 Movies Matrix		0		8	0	8	0	
									Comedy	Adventure	Super Hero	Sci-Fi
User Profile							rofile	2	0.3	0.2	0.33	0.16

Candidate movies for recommendation

	Comedy	Adventure	Super Hero	Sci-Fi
2	1	23	0	1
2	0	0	1	0
	1	0	1	0

Finding the recommendation

Content-based recommender systems

Problem: This can be solved with collaborative-filtering

Collaborative-filtering

Collaborative filtering

Learning the similarity weights

Creating the weighted ratings matrix

Collaborative filtering

Challenges of collaborative filtering

- Data sparsity
 - Users in general rate only a limited number of items
- Cold start
 - o Difficult in recommendation to new users or new items
- Scalability
 - o Increase in number of users or items