Регулярные грамматики и выражения. Теорема Клини

Теория формальных языков $2023 \ z$.

Грамматики

Определение

Грамматика — это четвёрка $G = \langle N, \Sigma, P, S \rangle$, где:

- N алфавит нетерминалов;
- Σ алфавит терминалов;
- Р множество правил переписывания $\alpha \to \beta$ типа $\langle (\mathsf{N} \cup \Sigma)^+ \times (\mathsf{N} \cup \Sigma)^* \rangle;$
- $S \in N$ начальный символ.

$$\alpha \to \beta$$
, если $\alpha = \gamma_1 \alpha' \gamma_2$, $\beta = \gamma_1 \beta' \gamma_2$, и $\alpha' \to \beta' \in P$. \to^* — рефлексивное транзитивное замыкание \to .

Язык $\mathscr{L}(G)$, порождаемый G — множество $\{u \mid u \in \Sigma^* \& S \Rightarrow^* u\}$. Сентенциальная форма — элемент множества $\{u \mid u \in (N \cup \Sigma)^* \& S \Rightarrow^* u\}$.

Регулярные грамматики и НКА

Регулярная (праволинейная) грамматика G содержит правила вида $S \to \epsilon$ (причём S не встречается в правых частях никаких правил), $T_i \to \alpha_i$, $T_i \to \alpha_i$ T_j .

То есть во всех сентенциальных формах либо нет нетерминалов, либо он единствен и расположен строго справа от терминальных символов.

Каждый нетерминал N описывает собственный язык $\mathcal{L}(N)$ относительно G — язык слов, которые выводятся из N за конечное число применений правил грамматики G.

Регулярные грамматики и НКА

Регулярная (праволинейная) грамматика G содержит правила вида $S \to \epsilon$ (причём S не встречается в правых частях никаких правил), $T_i \to \alpha_i$, $T_i \to \alpha_i$ T_j .

То есть во всех сентенциальных формах либо нет нетерминалов, либо он единствен и расположен строго справа от терминальных символов.

НКА (неформально) определяется списком правил перехода и финальными состояниями.

- $T_i \to a_i T_j$ соответствует переходу $\langle T_i, a_i, T_j \rangle$;
- $T_i \to \alpha_i$ соответствует переходу $\langle T_i, \alpha_i, F \rangle$, где F уникальное финальное состояние;
- $S \to \epsilon$ соответствует объявлению S финальным.

Операции в регулярных грамматиках

Объединение

Дано: G_1 и G_2 — праволинейные. Построить $G: \mathcal{L}(G) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α -преобразование). Применить переименовку к правилам G_1 и G_2 .
- Объявить стартовым символом свежий нетерминал S и для всех правил G_1 вида $S_1 \to \alpha$ и правил G_2 вида $S_2 \to \beta$, добавить правила $S \to \alpha$, $S \to \beta$ в правила S.
- **3** Добавить в правила G остальные правила из G₁ и G₂.

4/22

Операции в регулярных грамматиках

Конкатенация

Дано: G_1 и G_2 — праволинейные. Построить $G: \mathcal{L}(G) = \mathcal{L}(G_1) \mathcal{L}(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α-преобразование).
- **2** Построить из G_1 её вариант без ϵ -правил (см. ниже).
- **3** По всякому правилу из G_1 вида $A \to \alpha$ строим правило G вида $A \to \alpha S_2$, где S_2 стартовый нетерминал G_2 .
- Добавить в правила G остальные правила из G_1 и G_2 . Объявить S_1 стартовым.
- **§** Если $\varepsilon \in \mathscr{L}(\mathsf{G}_1)$ (до шага 2), то по всем $\mathsf{S}_2 \to \beta$ добавить правило $\mathsf{S}_1 \to \beta$.

Операции в регулярных грамматиках

Положительная итерация Клини

Дано: G_1 — праволинейная. Построить

 $G: \mathscr{L}(G) = \mathscr{L}(G_1)^+.$

- \bullet Построить из G_1 её вариант без ϵ -правил.
- По всякому правилу из G_1 вида $A \to \mathfrak{a}$ строим правило G вида $A \to \mathfrak{a} S_1$, где S_1 стартовый нетерминал G_1 .
- **3** Добавить в правила G все (включая вида $A \to a$) правила из G_1 . Объявить S_1 стартовым.
- $oldsymbol{\epsilon}$ Если $oldsymbol{\epsilon} \in \mathscr{L}(\mathsf{G}_1)$ (до шага 2), добавить правило $\mathsf{S}_1 o oldsymbol{\epsilon}$ и вывести S_1 из рекурсии.

Построение грамматики без ε-правил

Дано: G — праволинейная. Построить G' без правил вида $\mathsf{A} \to \varepsilon$ такую, что $\mathscr{L}(\mathsf{G}') = \mathscr{L}(\mathsf{G})$ или $\mathscr{L}(\mathsf{G}') \cup \{\varepsilon\} = \mathscr{L}(\mathsf{G}).$

- $oldsymbol{0}$ Перенести в G' все правила G, не имеющие вид $A \to \varepsilon$.
- $oldsymbol{2}$ Если существует правило $A o \epsilon$, то по всем правилам вида $B o \alpha A$ дополнительно строим правила $B o \alpha$.

Пересечение регулярных грамматик

Дано: G_1 , G_2 — праволинейные. Построить G' такую, что $\mathscr{L}(G') = \mathscr{L}(G_1) \cap \mathscr{L}(G_2)$.

- **①** Построить стартовый символ G' пару $\langle S_1, S_2 \rangle$, где S_i стартовый символ грамматики G_i .
- **②** Поместить $\langle S_1, S_2 \rangle$ в множество U неразобранных нетерминалов. Множество T разобранных нетерминалов объявить пустым.
- **③** Для каждого очередного нетерминала $\langle A_1, A_2 \rangle \in U$:
 - lacktriangle если $A_1 o a \in G_1$, $A_2 o a \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o a$;
 - lacktriangledown если $A_1 o aA_3 \in G_1, A_2 o aA_4 \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle o a\langle A_3, A_4 \rangle$, а в U нетерминал $\langle A_3, A_4 \rangle$, если его ещё нет в множестве T:
 - \odot если все пары правил, указанные выше, были обработаны, тогда переместить $\langle A_1, A_2 \rangle$ из U в T.
- **1** Повторять шаг 3, пока множество U не пусто.
- $oldsymbol{\S}$ Если $\epsilon \in \mathscr{L}(\mathsf{G}_1)$ & $\epsilon \in \mathscr{L}(\mathsf{G}_2)$, тогда добавить в G' правило $\langle \mathsf{S}_1, \mathsf{S}_2 \rangle \to \epsilon.$

Лемма о накачке

Пусть п — число нетерминалов в регулярной грамматике G для языка \mathscr{L} .

Рассмотрим слово $w \in \mathcal{L}(\mathsf{G}), |w| \geqslant n+1$. Оно получается применением цепочки из n+1 правил \Rightarrow после применения хотя бы двух из них нетерминал в сентенциальной форме результата повторится.

$$\underbrace{S \to \cdots \to \Phi \ A \to \cdots \to \Phi \ \Psi \ A}_{\text{не больше } n+1 \text{ шага}} \to \cdots \to \Phi \ \Psi \ \Theta$$

По построению, $\Theta \in \mathscr{L}(A)$ (поскольку A в конечном счёте раскрывается в Θ), и также $\Psi\Theta \in \mathscr{L}(A)$, причём $|\Psi| > 0$. Кроме того, $\Phi\mathscr{L}(A) \subseteq \mathscr{L}(G)$, поскольку $S \to^* \Phi A$.

Лемма о накачке

Рассмотрим слово $w \in \mathcal{L}(\mathsf{G}), |w| \geqslant n+1$. Оно получается применением цепочки из n+1 правил \Rightarrow после применения хотя бы двух из них нетерминал в сентенциальной форме результата повторится.

Известно, что $|\Phi| + |\Psi| \le n + 1$.

$$S \longrightarrow \cdots \longrightarrow \Phi$$
 $A \longrightarrow \cdots \longrightarrow \Phi$ $Y A \longrightarrow \cdots \longrightarrow \Phi$ $Y \longrightarrow \Phi$

Поскольку $A \to^* \Psi A$, то $\forall k (A \to^* \Psi^k A)$ (достаточно повторить k раз вывод ρ_2). Значит, $\forall k (\Phi \Psi^k \Theta \in \mathscr{L}(\mathsf{G}))$.

Лемма о накачке

Утверждение

Если G — регулярная, то существует такое $n \in \mathbb{N}$, что $\forall w \big(w \in \mathcal{L}(\mathsf{G}) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathcal{L}(\mathsf{G})) \big) \big).$

Известно, что $|\Phi| + |\Psi| \le n + 1$.

$$\underbrace{S \longrightarrow \cdots \longrightarrow \Phi}_{\rho_1: \text{ вывод } \Phi \text{ A из } S}^{\rho_2: \text{ вывод } \Psi \text{ A из } A} \underbrace{\Phi \Psi}_{\rho_3: \text{ вывод } \Theta \text{ из } A}^{\rho_3: \text{ вывод } \Theta \text{ из } A}$$

Поскольку $A \to^* \Psi A$, то $\forall k (A \to^* \Psi^k A)$ (достаточно повторить k раз вывод ρ_2). Значит, $\forall k (\Phi \Psi^k \Theta \in \mathscr{L}(\mathsf{G}))$.

Ещё раз о структуре накачек

Утверждение

Если G — регулярная, то существует такое $n \in \mathbb{N}$, что $\forall w \big(w \in \mathscr{L}(\mathsf{G}) \ \& \ |w| > n \Rightarrow \exists \Phi, \Psi, \Theta \big(|\Psi| > 0 \ \& \ |\Phi| + |\Psi| \leqslant n \ \& \ w = \Phi \Psi \Theta \ \& \ \forall k (k \geqslant 0 \Rightarrow \Phi \Psi^k \Theta \in \mathscr{L}(\mathsf{G})) \big) \big).$

- n длина накачки;
- Ф префикс накачки;
- У накачиваемый фрагмент (или просто «накачка»);
- Θ суффикс накачки;
- ФУ область накачки;
- слово $\Phi\Theta$ (случай k=0) результат «пустой накачки» или «отрицательной накачки»;
- слова $\Phi \Psi^k \Theta$, где $k \geqslant 2$ результаты «положительной накачки».

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $\mathscr{L} = \{w \, w^R \mid w \in \Sigma^+\}$.

Пусть длина накачки — n. Рассмотрим слово $b^{n+1}a$ а $b^{n+1}\in \mathscr{L}$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=b^k$, $k\geqslant 1$. Но b^ma а $b^n\notin \mathscr{L}$, если $m\neq n$. Поэтому \mathscr{L} — не регулярный.

Примеры применения леммы о накачке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $\mathscr{L} = \{w \, w^R \mid w \in \Sigma^+\}$.

Пусть длина накачки — n. Рассмотрим слово $b^{n+1}a$ а $b^{n+1}\in \mathscr{L}$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=b^k$, $k\geqslant 1$. Но b^ma а $b^n\notin \mathscr{L}$, если $m\neq n$. Поэтому \mathscr{L} — не регулярный.

Рассмотрим язык $\mathscr{L}' = \{\mathfrak{a}^{\mathfrak{n}}\mathfrak{b}^{\mathfrak{m}} \mid \mathfrak{n} \neq \mathfrak{m}\}.$

Пусть длина накачки — п. Рассмотрим множество слов $\mathfrak{a}^n \mathfrak{b}^{n+n!} \in \mathscr{L}'$. Поскольку $|\Phi| + |\Psi| \leqslant n$, то $\Psi = \mathfrak{a}^k$, $k \geqslant 1$. Но для всех $k \leqslant n \; \exists \nu (n+k \cdot \nu = n+n!)$. Поэтому слово вида $\mathfrak{a}^{n+n!} \mathfrak{b}^{n+n!} \in \mathscr{L}'$, что абсурдно. Следовательно, \mathscr{L}' не является регулярным.

Нерегулярные языки

Пусть $\mathscr{L} = \{ w \mid |w|_{\mathfrak{a}} = |w|_{\mathfrak{b}} \}$. Все слова вида $\mathfrak{a}^k \mathfrak{b}^k$ принадлежат \mathscr{L} . Пусть длина накачки равна \mathfrak{n} . Рассмотрим слово $\mathfrak{a}^n \mathfrak{b}^n$. Поскольку $|\Phi| + |\Psi| \leq \mathfrak{n}$, то $\Psi = \mathfrak{a}^k$, k > 0. Но слова $\mathfrak{a}^{n+k \cdot i} \mathfrak{b}^n$ не принадлежат \mathscr{L} .

12 / 22

Анализ на достаточность

Является ли лемма о накачке достаточной характеристикой регулярных языков? Существуют ли языки, которые «накачиваются» согласно её формулировке, но не регулярны?

Гипотеза

$$\begin{split} \mathsf{G} & \longrightarrow \mathsf{perулярная} \overset{???}{\Longleftrightarrow} \mathsf{cyществует} \ \mathsf{такоe} \ \mathsf{n} \in \mathbb{N}, \, \mathsf{что} \ \forall w \big(w \in \\ \mathscr{L}(\mathsf{G}) \ \& \ |w| > \mathsf{n} \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \ \& \ |w_1| + |w_2| \leqslant \\ \mathsf{n} \ \& \ w = w_1 \ w_2 \ w_3 \ \& \ \forall \mathsf{k} (\mathsf{k} \geqslant 0 \Rightarrow w_1 \ w_2^{\mathsf{k}} \ w_3 \in \mathscr{L}(\mathsf{G})) \big) \big). \end{split}$$

Анализ на достаточность

Гипотеза

G — регулярная $\stackrel{???}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w (w \in \mathcal{L}(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 (|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathcal{L}(G)))).$

Рассмотрим язык $\mathscr{L}=\left\{w\,w^{\mathsf{R}}\,z\,|\,w\in\Sigma^{+}\,\&\,z\in\Sigma^{+}\right\}$ и $\mathsf{n}=\mathsf{4}.$

- Если |w|=1, тогда можно разбить слово $w\,w^R\,z$ так: $\Phi=w\,w^R,\,\Psi=z[1],\,\Theta=z\big[2..|z|\big].$ Тогда для всех $\Phi\,\Psi^k\,\Theta\in\mathscr{L}.$
- Если $|w| \geqslant 2$, тогда разбиваем так: $\Phi = \varepsilon$, $\Psi = w[1]$, $\Theta = w[2..|w|] \ w^R z$. Слова $w[2..|w|] \ w^R z$ и $w[1]^k \ w[2..|w|] \ w^R z$ при $k \geqslant 2$ также принадлежат \mathscr{L} .

Анализ на достаточность

Гипотеза

G — регулярная $\stackrel{???}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w \big(w \in \mathscr{L}(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3 \big(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k (k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in \mathscr{L}(G)) \big) \big).$

Мы нашли длину накачки для $\left\{ w\,w^{\mathsf{R}}\,z\,|\,w\in\Sigma^{+}\,\&\,z\in\Sigma^{+}\right\}$ (она равна 4), но язык регулярным не является. Следовательно, лемма о накачке — только необходимое, но не достаточное условие регулярности.

Смысл леммы о накачке

Структура доказательства указывает, что длина накачки п регулярного языка $\mathcal L$ не больше (возможно, меньше) числа нетерминалов в минимальной грамматике для $\mathcal L$.

Покажем, что у некоторых регулярных языков длина накачки действительно меньше, чем размер минимального НКА (или минимальной регулярной грамматики).

Смысл леммы о накачке

Рассмотрим $\mathscr{L}=\mathfrak{a}\mid \mathfrak{b}\mid (\mathfrak{a}\mid \mathfrak{a}\mid \mathfrak{b}\}^*\mathfrak{a})|(\mathfrak{b}\mid \mathfrak{a}\mid \mathfrak{b}\}^*\mathfrak{b}).$ Если выбрать длину накачки $\mathfrak{n}=2$, то в качестве «накачки» Ψ можно взять вторую букву слова из $\mathscr{L}.$ Пусть G имеет два нетерминала S, T и распознаёт $\mathscr{L}.$ Если G содержит правила $S\to\mathfrak{a}T$ и $S\to\mathfrak{b}T$ (или $S\to\mathfrak{a}S, S\to\mathfrak{b}S$), то для некоторого непустого z слова вида $\mathfrak{a}z$ и $\mathfrak{b}z$ будут либо оба принадлежать $\mathscr{L},$ либо нет, чего не может быть. Значит, G содержит либо пару $S\to\mathfrak{a}T, S\to\mathfrak{b}S,$ либо пару $S\to\mathfrak{b}T, S\to\mathfrak{a}S.$ Рассмотрим первый случай. Тогда для некоторого непустого z имеем $\mathfrak{a}z\in\mathscr{L}\Leftrightarrow\mathfrak{b}^+\mathfrak{a}z\in\mathscr{L},$ что абсурдно.

Таким образом, в грамматике для \mathscr{L} должно быть больше двух нетерминалов (можно обойтись тремя).

Достаточный вариант леммы о накачке

Видно, что проблемы с языком $\{w \, w^{\mathsf{R}} \, z \, | \, w \in \Sigma^+ \, \& \, z \in \Sigma^+ \}$ возникают из-за того, что у него очень удачный префикс: любая степень буквы, большая первой, начинается с палиндрома. Однако, если бы мы потребовали, чтобы слово из $\mathscr L$ начиналось с палиндрома хотя бы длины 4, подобное рассуждение уже не привело бы к успеху.

Достаточный вариант леммы о накачке

Мы можем искать не первый повтор нетерминала в пути разбора по грамматике, а любой, если осталось разобрать ещё достаточно длинный суффикс.

$$S \twoheadrightarrow \cdots \twoheadrightarrow \Phi \ A_0 \twoheadrightarrow \Phi \ \Psi' \ A \twoheadrightarrow \cdots \twoheadrightarrow \Phi \ \Psi' \ \Psi \ A \twoheadrightarrow \cdots \twoheadrightarrow \Phi \ \Psi' \ \Psi \ \Theta$$

Произвольное число шагов

Не более m шагов до повтора нетерминала

 \mathscr{L} регулярный \Leftrightarrow существует универсальная длина накачки m такая, что $w \in \mathscr{L}(|w| \geqslant m)$ для любого $i \leqslant |w| - m$ может быть представлено как $\Phi \Psi' \Psi \Theta$, где $|\Phi| = i$, $1 \geqslant |\Psi| \leqslant m$, $|\Psi'| + |\Psi| \leqslant m$, причём $\forall k (\Phi \Psi' \Psi^k \Theta \in \mathscr{L})$.

Академические регулярные выражения $\mathcal{R}\mathcal{E}$

- А | В альтернатива (вхождение слова или из А, или из В);
- A В конкатенация (множество слов с префиксами из А и суффиксами из В);
- А* итерация Клини (0 или более конкатенаций А с собой).
- A^+ положительная итерация (синтаксический сахар для выражения $A A^*$);
- A? опция (синтаксический сахар для выражения $(A \mid \epsilon)$).

И менее очевидные синтаксические конструкции, такие как отрицание, положительные и отрицательные «ретроспективные» и «опережающие» проверки (моделирующие в т.ч. пересечения), сохраняющие выразительную силу регулярных языков.

Академические регулярные выражения $\Re \mathcal{E}$

- А | В альтернатива (вхождение слова или из А, или из В);
- A B конкатенация (множество слов с префиксами из A и суффиксами из B);
- А* итерация Клини (0 или более конкатенаций А с собой).

Приоритет операций: итерация > конкатенация > альтернатива, то есть $ab^* \mid c^*d$ — то же, что $\left(a(b^*)\right) \mid \left((c^*)d\right)$.

Определим $\mathbf{r}_1=\mathbf{r}_2 \Leftrightarrow \mathscr{L}(\mathbf{r}_1)=\mathscr{L}(\mathbf{r}_2)$. Для всех $\mathbf{r}_1,\,\mathbf{r}_2,\,\mathbf{r}_3\in\mathcal{R}\mathcal{E}$:

- операции конкатенации и альтернативы ассоциативны;
- $\mathbf{r}_1 \mid \mathbf{r}_2 = \mathbf{r}_2 \mid \mathbf{r}_1;$
- $r_1(r_2 | r_3) = r_1r_2 | r_1r_3;$
- $(r_1 | r_2)r_3 = r_1r_3 | r_2r_3$.

Как описать все возможные тождества регулярных выражений?

Полукольца

Полукольцо $S=\langle \mathcal{A}, \oplus, \otimes, 0 \rangle$ над носителем \mathcal{A} — это алгебраическая структура такая, что:

- S коммутативный моноид по \oplus ;
- S полугруппа по \otimes ;
- 0 это id по сложению и ноль по умножению;
- выполнены левая и правая дистрибутивности.
- Регулярные выражения идемпотентное по \oplus полукольцо с единицей (ε) относительно | и \cdot . Нуль пустое выражение \varnothing , не распознающее никакую строку.
- Натуральные числа с +, · коммутативное полукольцо с 1.
- Если М множество, то $\langle 2^M, \cup, \cap, \varnothing \rangle$ идемпотентное коммутативное полукольцо с единицей, равной М.
- $\langle \mathbb{N} \cup \{\infty\}$, min, +, $\infty \rangle$ тропическое полукольцо.

Алгебра Клини

Для полной формализации алгебры регулярных выражений требуется ввести аксиомы для *. Конечной аксиоматизации для неё не существует, но можно построить полную схему аксиом.

Алгебра Клини $\langle \Sigma, |, \cdot, *, \varnothing, \varepsilon \rangle$ — идемпотентное полукольцо с единицей, удовлетворяющее следующим аксиомам:

- $x^*x + 1 = x^* = 1 + xx^*$ (аксиома развёртки)
- (формализация Саломаа, **Sal**): $\forall p, q, x ((p \mid qx = x \Rightarrow x = q^*p) \& (p \mid xq = x \Rightarrow x = pq^*))$, где q не распознаёт ε левая и правая леммы Ардена;
- (формализация Козена, **Koz**): $\forall p, q, x ((q \mid px \leqslant x \Rightarrow p^*q \leqslant x) \& (q \mid xp \leqslant x \Rightarrow qp^* \leqslant x))$, где $x \leqslant y \Leftrightarrow x \mid y = y, x = y \Leftrightarrow x \leqslant y \& y \leqslant x$.

Полнота аксиоматики

Теорема о полноте Sal и Koz

Любое равенство регулярных выражений выводимо из аксиоматики **Sal** и аксиоматики **Koz**.

Пример вывода в системе Кох:

(0)
$$x^* = xx^* \mid \varepsilon = xx^* \mid xx^* \mid \varepsilon = xx^* \mid x^*$$
 (Unfold + Idm)
(1) $x \mid yx = x \Rightarrow x \mid y^*x = x$ (Koz, $p = y$, $q = x$)
(2) $x^*x^* \mid x^* = x^*$ (0 + 1)

(2)
$$x \times |x| = x$$
 $(0+1)$
(3) $x^*x^* = (\varepsilon | xx^*)(\varepsilon | xx^*)$ (Unfold)

(4)
$$(\varepsilon \mid xx^*)(\varepsilon \mid xx^*) = (\varepsilon \mid xx^* \mid xx^*) \mid xxx^*$$
 (Dstr + 3)

(5)
$$(\varepsilon \mid xx^* \mid xx^*) \mid xxx^* = x^* \mid xxx^*$$
 (Idm + Unfold + 4)

(6)
$$x^* \mid xxx^* = x^* \mid (x^* \mid xxx^*)$$
 (Idm + 5)
(7) $x^* \mid (x^* \mid xxx^*) = x^* \mid x^*x^*$ (4 + 5)

(8)
$$x^*x^* \le x^* \& x^* \le x^*x^*$$
 (2+7)

$$(6) \quad x \quad x \leq x \quad \alpha \quad x \leq x \quad x$$

$$(9) \quad x^* x^* = x^*$$

$$(8)$$

19/22

Неподвижная точка $\mathcal{R}\mathcal{E}$

Неподвижная точка функции f(x) — такое x, что f(x) = x.

Лемма Ардена

Пусть $X = (AX) \mid B$, где X — неизвестное $\Re \mathcal{E}$, а A, B — известные, причём $\mathcal{E} \notin \mathcal{L}(A)$. Тогда $X = (A)^*B$.

Рассмотрим систему уравнений:

$$X_1 = (A_{11}X_1) | (A_{12}X_2) | \dots | B_1$$

 $X_2 = (A_{21}X_1) | (A_{22}X_2) | \dots | B_2$

. .

$$X_n = (A_{n1}X_1) | (A_{n2}X_2) | \dots | B_n$$

Положим $\varepsilon \notin A_{ij}$. Будем последовательно выражать X_1 через X_2, \ldots, X_n , X_2 через $X_3, \ldots X_n$ и т.д. Получим регулярное выражение для X_n .

От грамматики и НКА к ЯЕ

Теорема Клини

По каждому НКА можно построить $\Re \mathcal{E}$, распознающую тот же язык. Верно и обратное.

Здесь считаем, что в НКА нет ε-переходов.

- Объявляем каждый нетерминал (или состояние НКА) переменной и строим для него уравнение:
 - По правилу A → аВ (или для стрелки из A в B) добавляем альтернативу аВ;
 - По правилу $A \to b$ (или для стрелки в финальное состояние) добавляем альтернативу без переменных.
 - Правило $S \to \varepsilon$ обрабатываем отдельно, не внося в уравнение: добавляем в язык альтернативу ($\Re E \mid \varepsilon$).
- Решаем систему относительно S.

От грамматики к ЯЕ

Пример

Построим $\Re \mathcal{E}$ по грамматике:

$$S \to \alpha T \quad S \to \alpha b S$$

$$T \rightarrow aT \quad T \rightarrow bT \quad T \rightarrow b$$

Строим по правилам грамматики систему: $S = (abS) \mid (aT)$

$$T = ((a \mid b)T) \mid b$$

Решаем второе уравнение:

$$T = (\alpha \mid b)^*b$$

Подставляем в первое:

$$S = (abS) \mid (a(a \mid b)^*b)$$

Получаем ответ:

$$S = (ab)^* a(a \mid b)^* b$$