Core-Maths-C4 - 2008-June

Question 1

Figure 1

Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

x	0	0.4	0.8	1.2	1.6	2
у	e ⁰	e ^{0.08}		e ^{0.72}		e ²

(1)

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

(3)

Question 2

(a) Use integration by parts to find $\int x e^x dx$.

(3)

(b) Hence find $\int x^2 e^x dx$.

(3)

Question 3

Figure 2

Figure 2 shows a right circular cylindrical metal rod which is expanding as it is heated. After t seconds the radius of the rod is x cm and the length of the rod is 5x cm. The cross-sectional area of the rod is increasing at the constant rate of 0.032 cm² s⁻¹.

(a) Find $\frac{dx}{dt}$ when the radius of the rod is 2 cm, giving your answer to 3 significant figures.

(4)

(b) Find the rate of increase of the volume of the rod when x = 2. (4)

Question 4

A curve has equation $3x^2 - y^2 + xy = 4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q.

(a) Use implicit differentiation to show that y - 2x = 0 at P and at Q.

(b) Find the coordinates of P and Q.
(3)

Question 5

- (a) Expand $\frac{1}{\sqrt{(4-3x)}}$, where $|x| < \frac{4}{3}$, in ascending powers of x up to and including the term in x^2 . Simplify each term.
- (b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{(4-3x)}}$ as a series in ascending powers of x.

Question 6

With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1$$
: $\mathbf{r} = (-9\mathbf{i} + 10\mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k})$

$$l_2$$
: $\mathbf{r} = (3\mathbf{i} + \mathbf{j} + 17\mathbf{k}) + \mu(3\mathbf{i} - \mathbf{j} + 5\mathbf{k})$

where λ and μ are scalar parameters.

- (a) Show that l₁ and l₂ meet and find the position vector of their point of intersection.
 (6)
- (b) Show that l₁ and l₂ are perpendicular to each other.
 (2)

The point A has position vector $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$.

(c) Show that A lies on l_1 . (1)

The point B is the image of A after reflection in the line l_2 .

(d) Find the position vector of B. (3)

Question 7

- (a) Express $\frac{2}{4-y^2}$ in partial fractions.
- (b) Hence obtain the solution of

$$2\cot x \, \frac{\mathrm{d}y}{\mathrm{d}x} = (4 - y^2)$$

for which y = 0 at $x = \frac{\pi}{3}$, giving your answer in the form $\sec^2 x = g(y)$.

Question 8

Figure 3

Figure 3 shows the curve C with parametric equations

$$x = 8\cos t$$
, $y = 4\sin 2t$, $0 \le t \le \frac{\pi}{2}$.

The point P lies on C and has coordinates $(4, 2\sqrt{3})$.

(a) Find the value of t at the point P.

(2)

(6)

The line l is a normal to C at P.

(b) Show that an equation for *l* is
$$y = -x\sqrt{3} + 6\sqrt{3}$$
.

The finite region R is enclosed by the curve C, the x-axis and the line x = 4, as shown shaded in Figure 3.

(c) Show that the area of R is given by the integral
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 64 \sin^2 t \cos t \, dt.$$
 (4)

(d) Use this integral to find the area of R, giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(4)