Discrete Fourier Transform. Requirement: used for signal that are periodic and discrete. in t-domain. In DFT, we have (DFT: DTFs: DT Fourier Series FFT: Fast Fourier Transform. Intuition: The F.S. takes a continuous, periodic & signal and Represents it as a sum of complex sin's & cosine's. $X(t) = \sum_{k=-\infty}^{\infty} X[k] e^{jk \frac{2\pi}{T}t}$ € € [0, T] you need infinitely many are to approximate X/t). $N=6 \leftarrow period$. could we then write: $X(n) = \sum_{k=-\infty}^{\infty} X(k)e^{jk} \frac{2\pi}{N}n$ N = 0, ..., N-1 $e^{jk}\frac{2\pi}{N}(n+N) = e^{jk}\frac{2\pi}{N}(e^{jk2\pi})$ = ejk兴n There are only a complex unique exponentials of period N.

Define the discrete time bouner transform (DFT): $X[k] = \sum_{n=0}^{N-1} X[n] e^{-jk \frac{2\pi}{N} n}$ K = 0, ..., N-1 $X[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{\frac{2\pi}{N}n} \qquad n = 0, ..., N-1$ (*) This here gives us how to go from N number of X[n] to N number of value in DFT. To make notation more easier to write: We say WN = e-jk Nn $W_{N} = e^{-j\frac{2\pi}{N}}$ $U_{N}^{h} = U$ $W_{N}^{h} = U$ $(W_2)^{\frac{1}{2}} = e^{-T} = -1$ Now with the new notation: $X[K] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \qquad (W_2)^2 = e^{-2\pi}$ What about W47

DFT: co-ordinate transformation to f-domain. = X[0] + X[1] + ... 1 basis vectors NXI You can quickly do a Length-4 DFT -> pretty easy matrix. DFTmTx $(2) \rightarrow \Gamma$ Well, we want to simplify this process.... Suy we have a finite length discrete - time signal where How is this Related {x(0], x(1], ..., x [N-1] } ≠ 0 to DTFT? $X(w) = \sum_{n=-\infty}^{\infty} \chi[n] e^{-jw^n} \quad w \in [-\pi, \pi]$ DIFT Continuous. = Zn=0 X[n]e-jwn if I were to evaluate w where $X[k] = \chi\left(\frac{2\pi k}{N}\right)$ DFT If I want to sample the X(W) ... do many N! Insight DFT is the DTFT of the finite length signal evaluated at N equally spaced points w= attk, K=0, ..., N-1

MATLAB Example - Pending ... Example of DFTs: X[n] X[k] = Zn=o X[n] Wnk periodic = | + K S[n] X[K] = \(\sum_{n=0}^{N-1} \) Wn geometriz Sevies. N-1 $= |-W_N|^{K(N)}$ $= |-W_N|^{$ if $k \neq 0$, then $X[k] = \sum_{n=0}^{N-1} (W_n^k)^n = 1 - W_n^{knl} = 1 - U = 0$ And so: X[k] = \ N K=0 N Orthogonaling Property. $\sum_{n=0}^{N-1} W_N = \int N$, M is an integer multiple of N

Another example.

For DFT case:

$$N=10$$
 $N=10$
 $N=1$

$$= \frac{e^{jk4\frac{\pi}{10}} \sin(k\frac{\pi}{10})}{\sin(k\frac{\pi}{10})} \quad \forall \quad K \in [0, ..., 9]$$

 $X[n] (*) h[n] \stackrel{PFT}{\longleftrightarrow} X[k]H[k]$ tength

But, how to get "Regular" Convolution we need for LTI System?

Suppose X and h are length-N signal. What is X (F) h? X[0], X[1], ... X[N-1] 70 x[0] x[1] ... x[N-1] h[0] h[n-1] ... h[1] y [o] 451] h [2] h[i] h[o] ··· h[2] h[1] ... h [3] 4[2] 4[0] = h[0] x[0] + h[N-1] x[1] + ... + h[1] X[N-1] y[1] = h[1] x[0] + h[0] x[1] + ... + h[2] x[N-1] Y[N-1] = h[N-1]x[0] + h[1]x[1] + ... + h[0]x[N-1] Simplify: hII h[o] h[n-1] 4[0] K[0] h[1] h[0] h[2] Y[1] [Lh[n-1] h[n-2] h[o] [x[n-1] 4[N-1] Circulant matrix. NXI This matrix product is calculating the circular Convolution. Consider just Linear Convolution: KEJX ... [0] X h[0] ... \$[3] y[o] = x[o] h[o] y[] = x[0] h[] + x[1]h[0]

m+n-1 :	= 7					
		Think ab	out matrix produ	ct!	7	
		[y[0]	[h[0] 0 0	0 × 7 [X(0)	
			h[1] h[0] o		X(I)	
			h[2] h[1] h[0]	10 /	(12)	
			= ; ; ;	·	((3) J	
	1.		1 1 2	:	4×1	
		,	: : :	:		
	6	Ly [6]	0 0 0	h[3]		
	we like matching dimension and not square					
	we like matching dimension and no.					
	y[0] h[0] 0 0 0 h[3] h[2] h[1] X(0)					
			h[1] h[0] 0	o h[3]	11	(()
		, =	h(a) h(a)	1	- 11	(2)
			hZ3] hZ) 17.7	1.1	(3)
				hto] h[o]		0
			0 0 0 0 1	3]h[2] h[1] h		5
		[y[6]]	0 0 0 h	IJIN(2) h(1) P	ין דרי	
	To I Discount line with DET House's Discouling					
	To do linear Convolution with DFT. Here's procedure					
	1 - at 1 N					
		Length N h[n] → ZERO PAD → N+M-1				
		n Cris	with M-1	DFT		
			ZEROS		(V)->	N+M-I
					$(\times) \rightarrow$	IDFT
		Length M			1	
		$X[u] \rightarrow$	ZERO PAD ->	N+m-1	/	h*x
			N-1 ZEROS	DFT		n n n
					Lin	ear
	100 * 49 Convoilution.					
		4 (49	149.			