Statistica - 9^a lezione

8 aprile 2021

PROBLEMA: anche se $\hat{\Theta}$ è un buono stimatore di θ , può capitare che $\mathbb{P}\left(\hat{\Theta}=\theta\right)=0$

PROBLEMA: anche se $\hat{\Theta}$ è un buono stimatore di θ , può capitare che

$$\mathbb{P}\left(\hat{\Theta} = \theta\right) = \mathbf{0}$$

SOLUZIONE: costruire un intervallo in cui siamo (relativamente)

sicuri di trovare il parametro θ

Definizione

Siano
$$L = \ell(X_1, \dots, X_n)$$
 e $U = u(X_1, \dots, X_n)$ due statistiche tali che
$$\mathbb{P}(L < \theta < U) = \gamma \qquad \text{(con } \gamma \in (0, 1) \text{ fissato)}$$

Definizione

Siano
$$L = \ell(X_1, ..., X_n)$$
 e $U = u(X_1, ..., X_n)$ due statistiche tali che $\mathbb{P}(L < \theta < U) = \gamma$ (con $\gamma \in (0, 1)$ fissato)

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si dice che $(\ell(x_1, \ldots, x_n), u(x_1, \ldots, x_n))$

è un *intervallo di confidenza* di livello γ per il parametro θ ($IC_{\theta}(\gamma)$)

Definizione

Siano
$$L = \ell(X_1, ..., X_n)$$
 e $U = u(X_1, ..., X_n)$ due statistiche tali che
$$\mathbb{P}(L < \theta < U) = \gamma \qquad \text{(con } \gamma \in (0, 1) \text{ fissato)}$$

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si dice che $(\ell(x_1,\ldots,x_n), u(x_1,\ldots,x_n))$

è un intervallo di confidenza di livello γ per il parametro θ ($IC_{\theta}(\gamma)$)

TIPICAMENTE: $\gamma = 90\%$ o 95% o 99%

Inferenza statistica

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili aleatorie i.i.d.	$X_1 = \sum_{\substack{i \in \mathcal{I}_2 \\ i \neq i}} x_i$	\rightarrow	$x_1 = 1.2$	
	$X_2 = \left(\begin{array}{c} 0.6 \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right)$	\rightarrow	$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow	• • •	
densità {	$igg(X_i \sim f_ heta$	\rightarrow	*	
	$ heta \in \mathbb{R}$ $ heta ext{ oppure } heta \in \mathbb{R}^k$			
stimatore {	$\hat{\Theta}=h(X_1,X_2,\ldots)$	\rightarrow	$\hat{\theta}=h(1.2,0.6,\ldots)$	} stima

Inferenza statistica

	PRIMA dell'esperimento		DOPO l'esperimento		_
variabili	$X_1 = \begin{pmatrix} 0.6 & 2 \\ 2 & 3 & 2 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$		
aleatorie - i.i.d.	$X_2 = \sum_{i=1,\dots,n} \sum_{j=1}^{n} i^{j}$	\rightarrow	$x_2 = 0.6$	}	realizzazioni (dati)
		\rightarrow			(====)
densità	$\Big\{ \qquad X_i \sim f_{ heta}$	\rightarrow	*		
parametri	$\begin{cases} & \theta \in \mathbb{R} \\ & \text{oppure } \theta \in \mathbb{R}^k \end{cases}$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	}	parametri
stimatore	$\left\{ \hat{\Theta} = h(X_1, X_2, \ldots) \right.$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	}	stima
probabilità	$\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$,			

Inferenza statistica

	PRIMA dell'esperimento		DOPO l'esperimento		_
variabili aleatorie i.i.d.	$X_1 = \begin{pmatrix} 0.6 & 0.6 \\ 0.6 & 0.6 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$		
	$\left\langle X_2 = \left(\begin{array}{c} 0.6 \text{ Te} \\ \begin{array}{c} 0.6 \text{ Te} \\ \begin{array}{c} 0.6 \text{ Te} \end{array} \right) \right\rangle$	\rightarrow	$x_2 = 0.6$	}	realizzazioni (dati)
		\rightarrow			()
densità	$\left\{ \qquad X_i \sim f_{ heta} ight.$	\rightarrow	*		
parametri	$\begin{cases} & \theta \in \mathbb{R} \\ & \text{oppure } \theta \in \mathbb{R}^k \end{cases}$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	}	parametri
stimatore	$\left\{ \hat{\Theta} = h(X_1, X_2, \ldots) \right.$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	}	stima
probabilità	$\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$	\rightarrow	ℓ (1.2, 0.6,) < θ < u (1.2, 0.6,)	}	IC

Definizione (IC unilateri)

Sia
$$L = \ell(X_1, \dots, X_n)$$
 una statistica tale che

$$\mathbb{P}(\theta > L) = \gamma \qquad (con \ \gamma \in (0,1) \ fissato)$$

Definizione (IC unilateri)

Sia $L = \ell(X_1, ..., X_n)$ una statistica tale che

$$\mathbb{P}(\theta > L) = \gamma$$
 (con $\gamma \in (0,1)$ fissato)

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si dice che

$$(\ell(x_1,\ldots,x_n),+\infty)$$

è un *intervallo di confidenza* di livello γ per il parametro θ ($IC_{\theta}(\gamma)$)

Definizione (IC unilateri)

Sia
$$U = u(X_1, \dots, X_n)$$
 una statistica tale che

$$\mathbb{P}\left(\theta < U\right) = \gamma \qquad \qquad \text{(con } \gamma \in (0,1) \text{ fissato)}$$

Definizione (IC unilateri)

Sia $U = u(X_1, ..., X_n)$ una statistica tale che

$$\mathbb{P}\left(\theta < U\right) = \gamma$$
 (con $\gamma \in (0, 1)$ fissato)

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si dice che

$$(-\infty, u(x_1,\ldots,x_n))$$

è un *intervallo di confidenza* di livello γ per il parametro θ ($IC_{\theta}(\gamma)$)

Definizione (IC unilateri)

Sia $U = u(X_1, ..., X_n)$ una statistica tale che

$$\mathbb{P}\left(\theta < U\right) = \gamma$$
 (con $\gamma \in (0,1)$ fissato)

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si dice che

$$(-\infty, u(x_1,\ldots,x_n))$$

è un intervallo di confidenza di livello γ per il parametro θ ($IC_{\theta}(\gamma)$)

SPESSO: $L = \hat{\Theta} - E$, $U = \hat{\Theta} + E$ con

- $-\hat{\Theta} = \text{stimatore di } \theta$
- E = errore (costante o aleatorio)

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

DIMOSTRAZIONE: Dobbiamo verificare che

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \gamma$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < Z_{\frac{1+\gamma}{2}}\right)$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \Rightarrow_{\text{riprod. di } N} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\begin{split} \mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) &= \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\sqrt{n}}}_{N(0,1)} < z_{\frac{1+\gamma}{2}}\right) \end{split}$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\begin{split} \mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) &= \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) &= \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right) \end{split}$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right)$$

$$= \frac{1+\gamma}{2} - \left[1 - \Phi\left(z_{\frac{1+\gamma}{2}}\right)\right]$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right)$$

$$= \frac{1+\gamma}{2} - \left[1 - \Phi\left(z_{\frac{1+\gamma}{2}}\right)\right] = \frac{1+\gamma}{2} - \left[1 - \frac{1+\gamma}{2}\right]$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right)$$

$$= \frac{1+\gamma}{2} - \left[1 - \Phi\left(z_{\frac{1+\gamma}{2}}\right)\right] = \frac{1+\gamma}{2} - \left[1 - \frac{1+\gamma}{2}\right] = \gamma$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right)$$

$$= \frac{1+\gamma}{2} - \left[1 - \Phi\left(z_{\frac{1+\gamma}{2}}\right)\right] = \frac{1+\gamma}{2} - \left[1 - \frac{1+\gamma}{2}\right] = \gamma$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\sim N(0,1)} < z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \underbrace{\begin{pmatrix} \mu - \overline{X} \\ \frac{\sigma}{\sqrt{n}} \end{pmatrix}}_{\sim N(0,1)} \underbrace{z_{\frac{1+\gamma}{2}}}_{\downarrow \downarrow}\right) = \dots = \gamma$$
STATISTICA PIVOT

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI:
$$X_1, ..., X_n$$
 i.i.d. con n grande $\Rightarrow \overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$ approssimato

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\sqrt{n}}}_{\approx N(0,1)} < z_{\frac{1+\gamma}{2}}\right) \simeq \dots \simeq \gamma$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande o $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande o $X_i \sim N(\mu, \sigma^2)$

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, \, +\infty\right) \\ \\ \left(-\infty, \, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right) \end{array} \right\} \quad \text{sono} \quad IC_{\mu}(\gamma)$$

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande o $X_i \sim N(\mu, \sigma^2)$

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, \, +\infty\right) \\ \\ \left(-\infty, \, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right) \end{array} \right) \quad \text{sono} \quad IC_{\mu}(\gamma)$$

- \overline{X} stimatore di μ
- $e = z_{...} \frac{\sigma}{\sqrt{n}}$ errore <u>costante</u>

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande o $X_i \sim N(\mu, \sigma^2)$

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, \, +\infty\right) \\ \\ \left(-\infty, \, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right) \end{array} \right) \quad \text{sono} \quad \textit{IC}_{\mu}(\gamma)$$

- \overline{X} stimatore di μ
- $-e = z_{...} \frac{\sigma}{\sqrt{n}}$ errore <u>costante</u> \longrightarrow 0 se $n \to \infty$ (più misure)

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande o $X_i \sim N(\mu, \sigma^2)$

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} \,,\, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} \right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}} \,,\, +\infty \right) \\ \\ \left(-\infty \,,\, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}} \right) \end{array} \right) \quad \text{sono} \quad IC_{\mu}(\gamma)$$

- \overline{X} stimatore di μ
- $e=z_{...}\frac{\sigma}{\sqrt{n}}$ errore <u>costante</u> \longrightarrow 0 se $n\to\infty$ (più misure) o $\sigma\to0$ (più precisione)

SIMBOLO: $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande o $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$\left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, +\infty\right)$$
Ma se non so quanto vale σ ?
$$\left(-\infty, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right)$$

- \overline{X} stimatore di μ
- e=z... $\frac{\sigma}{\sqrt{n}}$ errore costante \longrightarrow 0 se $n\to\infty$ (più misure) o $\sigma\to0$ (più precisione)

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

ha densità t di Student con n-1 gradi di libertà (t(n-1)).

• t(k) è simmetrica

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

n	Valore della funzione di ripartizione							
	0.75	8.0	0.85	0.9	0.95	0.975	0.99	0.995
1	1.0000	1.3764	1.9626	3.0777	6.3137	12.7062	31.8210	63.655
2	0.8165	1.0607	1 3862	1.8856	2.9200	4.3027	6.9645	9.925
3	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.840
4	0.7407	0.9410	1.1896	1.5332	2.1318	2.7765	3.7469	4.604
5	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.032
6	0.7176	0.0057	1 13/12	1./308	1 0.132	2 4460	3 1/197	3.703

- t(k) è simmetrica
- i quantili $t_{\gamma}(k)$ sono tabulati

$$t_{0.85}(3) = 1.2498$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

- t(k) è simmetrica
- i quantili $t_{\gamma}(k)$ sono tabulati

$$egin{aligned} ullet t_\gamma(k) > z_\gamma \ ullet t_\gamma(k) \downarrow z_\gamma ext{ per } k o \infty \end{aligned} egin{cases} \mathsf{se} \ \gamma > \mathsf{50\%} \end{aligned}$$

•
$$t_{\gamma}(k)\downarrow z_{\gamma} \ {\sf per} \ k o \infty iggr\} \gamma > 50\%$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

- t(k) è simmetrica
- i quantili $t_{\gamma}(k)$ sono tabulati

$$ullet t_{\gamma}(k) > z_{\gamma} \ ullet t_{\gamma}(k) \downarrow z_{\gamma} ext{ per } k
ightarrow \infty iggr\} egin{align*} ext{se} \ \gamma > 50\% \ \end{array}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

- t(k) è simmetrica
- i quantili $t_{\gamma}(k)$ sono tabulati

•
$$t_{\gamma}(k) > z_{\gamma}$$

$$egin{aligned} ullet t_\gamma(k) > z_\gamma \ ullet t_\gamma(k) \downarrow z_\gamma ext{ per } k o \infty \end{aligned} egin{cases} ext{se} \ \gamma > 50\% \end{aligned}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

- t(k) è simmetrica
- i quantili $t_{\gamma}(k)$ sono tabulati

•
$$t_{\gamma}(k) > z_{\gamma}$$

$$egin{aligned} \bullet & t_\gamma(k) > z_\gamma \ \bullet & t_\gamma(k) \downarrow z_\gamma ext{ per } k o \infty \end{aligned} egin{cases} ext{se} \ \gamma > 50\% \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{x} - \frac{t_{\frac{1+\gamma}{2}}}{(n-1)} \frac{s}{\sqrt{n}}, \overline{x} + \frac{t_{\frac{1+\gamma}{2}}}{(n-1)} \frac{s}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}, \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-t_{\frac{1+\gamma}{2}}(n-1) < \underbrace{\frac{\mu - \overline{X}}{S}}_{\sim t(n-1)} < t_{\frac{1+\gamma}{2}}(n-1)\right) = \dots = \gamma$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}, \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right)$$
 è un $C_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-t_{\frac{1+\gamma}{2}}(n-1) < \underbrace{\frac{\mu - \overline{X}}{S}}_{\sim t(n-1)} < t_{\frac{1+\gamma}{2}}(n-1)\right) = \dots = \gamma$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}, \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-t_{\frac{1+\gamma}{2}}(n-1) < \underbrace{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}}_{\sim t(n-1)} < t_{\frac{1+\gamma}{2}}(n-1)\right) = \dots = \gamma$$
STATISTICA PIVOT

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\,,\,\,\overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\,,\,\,+\infty\right) \\ & \left(-\infty\,,\,\,\overline{x} + t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\right) \end{array} \right\} \quad \text{sono} \quad IC_{\mu}(\gamma)$$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}} \,,\; \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - t_{\gamma}(n-1)\frac{s}{\sqrt{n}} \,,\; +\infty\right) \\ & \left(-\infty \,,\; \overline{x} + t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\right) \end{array} \right\} \quad \text{sono} \quad IC_{\mu}(\gamma)$$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ cor

- \overline{X} stimatore di μ
- $E = t_{...}(n-1)\frac{S}{\sqrt{n}}$ errore <u>aleatorio</u>

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}} \; , \; \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - t_{\gamma}(n-1)\frac{s}{\sqrt{n}} \; , \; +\infty\right) \\ & \left(-\infty \; , \; \overline{x} + t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\right) \end{array} \right) \\ & \left(-\infty \; , \; \overline{x} + t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\right)$$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ con

- \overline{X} stimatore di μ
- $E = t_{...}(n-1)\frac{S}{\sqrt{n}}$ errore <u>aleatorio</u> non riducibile a priori

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - \frac{\mathbf{Z}_{\frac{1+\gamma}{2}}}{\sqrt{n}}, \overline{X} + \frac{\mathbf{Z}_{\frac{1+\gamma}{2}}}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} \left\{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}\right\} Z_{\frac{1+\gamma}{2}}\right)$$
STATISTICA PIVOT

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\sigma}{S}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\sigma}{S} \qquad \text{con} \qquad \begin{cases} \frac{\mu - X}{\frac{\sigma}{\sqrt{n}}} \approx N(0, 1) \\ \frac{\sigma}{\sqrt{n}} = \frac{N(0, 1)}{\sqrt{n}} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\sigma}{S} \qquad \text{con} \qquad \begin{cases} \frac{\mu - X}{\frac{\sigma}{\sqrt{n}}} \underset{\text{TLC}}{\approx} N(0, 1) \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \sigma^2 \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{I}}{\mathscr{I}}}_{\approx 1} \qquad \text{con} \qquad \begin{cases} \frac{\mu - X}{\frac{\sigma}{\sqrt{n}}} \underset{\text{TLC}}{\approx} N(0,1) \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \sigma^2 \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{I}}{\mathscr{S}}}_{\simeq 1} \approx N(0,1) \quad \text{con} \quad \begin{cases} \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \underset{n \to \infty}{\approx} N(0,1) \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{R}} \sigma^2 \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

DIMOSTRAZIONE:

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}}_{\approx N(0,1)} < z_{\frac{1+\gamma}{2}}\right)$$

$$\underbrace{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}}_{\approx N(0,1)} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\sigma}{S}}_{\approx N(0,1)} \approx N(0,1)$$

$$S_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \sigma^2$$

8/8

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{I}}{S}}_{\approx N(0,1)} \approx N(0,1) \quad \text{con} \quad \begin{cases} \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \underset{n \to \infty}{\approx} N(0,1) \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \\ \xrightarrow{n \to \infty} \sigma^2 \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $C_{\mu}(\gamma)$

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}}_{\approx N(0,1)} < z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{I}}{S}}_{\approx N(0,1)} \approx N(0,1) \quad \text{con} \quad \begin{cases} \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} & \approx N(0,1) \\ S_n^2 & \xrightarrow{n \to \infty} \sigma^2 \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim$ qualsiasi e n grande

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} \,,\; \overline{x} + z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - z_{\gamma} \frac{s}{\sqrt{n}} \,,\; +\infty\right) \\ & \left(-\infty \,,\; \overline{x} + z_{\gamma} \frac{s}{\sqrt{n}}\right) \end{array} \right\} \text{ sono } \textit{IC}_{\mu}(\gamma)$$