(Re)Introduction to High-Performance Computing (HPC)

HPC cluster structure

HPC cluster components

Nodes: Individual computers in the cluster

Cores (threads): individual processing units available within each CPU of each Node

e.g. a "Node" with eight "quad"-core CPUs = 32 cores for that node.

Shared disk: storage that can be shared (and accessed) by all nodes

For 3 samples

High-Performance Computing

Introduction to High Performance Computing and O2 for New Users

HMS Research Computing

(Slides courtesy of Kris Holton at HMS-RC)

O2 Tech Specs

- 11000 cores
- 32, 28, or 20 cores per node
- 256-160GB RAM (memory) per node (8-9GB/core)
- 756GB RAM (high memory nodes)
- 40 GPUs (V100, K80, M40)
- CentOS 7 Linux
- SLURM job scheduler

2-Factor Authentication

- For logins using WiFi networks other than HMS Private/ Harvard Secure
- Easiest: download Duo app to phone
- Similar to the setup for Harvard Key logins
- Setup details at:

https://wiki.rc.hms.harvard.edu:8443/display/O2/

Two+Factor+Authentication+on+O2

The Job Scheduler, SLURM

Choosing the proper resources for your job with the appropriate Slurm arguments

Submitting Jobs

In an "interactive session", programs can be run directly, however your computer will have to remain connected to the cluster for the duration of this run.

```
mfk8@login-1:~$ srun --pty -p interactive -t 0-8:00
-mem 6G /bin/bash
```

```
mfk8@compute-a:~$ bowtie2 -c 4 hg19 file1_1.fq
```

Submitting Jobs

What if you wanted to run the program, close your computer and come back later to check on it?

A script with the required commands can be submitted to O2 (SLURM) using the sbatch command.

```
mfk8@login-1:~$ sbatch mybowtiejob.sh
OR
```

mfk8@compute-a:~\$ sbatch mybowtiejob.sh

Creating a job submission script

```
#! /bin/sh
#SBATCH -p short
#SBATCH -t 0-03:00
                      #aim for 125% over
#SBATCH —c 4
                      #number of cores/threads, match with what is used in script
#SBATCH --mem=8G
#SBATCH —o %j.out
#SBATCH —e %j.err
                           #job name
#SBATCH -J bowtie2 run1
#SBATCH -mail-type=ALL
                           #notify about job completion or errors
#SBATCH --mail-user=mfk8@med.harvard.edu
module load gcc/6.2.0
module load bowtie2/2.2.9
bowtie -c 4 hg19 file1_1.fq
```

Save script as myJobScript.run and run it as follows from login or compute node:

\$ sbatch myJobScript.run

Partitions -p

Partition	Priority	Max Runtime	Max Cores	Limits
short	12	12 hours	20	
medium	6	5 days	20	
long	4	30 days	20	
interactive	14	12 hours	20	2 job limit
priority	14	30 days	20	2 job limit
mpi	12	5 days	640	20 core min
highmem	12	5 days	8	750G
gpu		120 GPU hours	20 cpu	
transfer		5 days	4	

Job Priority

- Dynamically assigned
- Factors contributing: Age, Fairshare, Partition, QOS, Nice
- Fairshare: 0-1 scale

Managing jobs and getting information about submitted/running jobs

Job Monitoring

- \$ O2squeue #HMS wrapper
- \$ squeue —u eCommons

Detailed job info:

\$ scontrol show jobid <jobid>

Completed job statistics:

• \$ O2sacct #HMS wrapper

Cancelling Jobs

- \$ scancel <jobid>
- \$ scancel --name JOBNAME

Filesystems and storage

Filesystems and storage

O2 Primary Storage

O2 Cluster

- · 11000+ cores
- SLURM batch system

Your computer

/home

- /home/user_id
- quota: 100GB per user
- Backup: extra copy & snapshots:
- daily to 14 days, weekly up to 60 days

/n/data1, /n/data2, /n/groups

- /n/data1/institution/dept/lab/ your_dir
- quota: expandable
- Backup: extra copy & snapshots:
- daily to 14 days, weekly up to 60 days

Temporary "Scratch" storage

- /n/scratch2
- For data only needed temporarily during analyses.
- Each account can use up to 10 TB and 1 million files/directories
 - Lustre --> a high-performance parallel file system running on DDN Storage.
 - More than 1 PB of total shared disk space.
 - No backups! Files are automatically deleted after unaccessed for 30 days, to save space.
 - More info at: http://hmsrc.me/O2docs

Checking storage usage

- For /n/data1, /n/data2, /n/groups
 - > \$ quota
 - Breaks down per user, directory
- For /n/scratch2
 - > \$ 1fs quota -h /n/scratch2
 - 1 million files/folders, 10TB limit

For more direction

- http://hmsrc.me/O2docs
- http://rc.hms.harvard.edu
- RC Office Hours: Wed 1-3p Gordon Hall 500
- rchelp@hms.harvard.edu