ΓΡΑΜΜΑΤΙΚΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ

ΓΛΩΣΣΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ www.psounis.gr

Ιδιότητα

Ισότητα

 $\{0^n 1^n \mid n \ge 0\}$

 $\{0^{2n}1^{3n} \mid n > 0\}$

Παλινδρομ/τα

 $\{wcw^R \mid w \in \{a, b\}^*\}$

Ανισότητα

Συμμετρία στο

 $\{a^nb^mc^md^n|n,m\geq 0\}$

 $\{a^i b^j c^k | i = j + k\}$

 $\{a^i b^j c^k | i > j + k\}$

Κέντρο

Αναλονία

Ορισμός: Μία γραμματική Χωρίς Συμφραζόμενα είναι μια τετράδα: $G = (V, \Sigma, S, P)$:

- *V* το σύνολο των μεταβλητών
- Σ το σύνολο των τερματικών συμβόλων ($V \cap \Sigma = \emptyset$)
- $S \in V$ είναι η αρχική μεταβλητή
 - P το σύνολο κανόνων με κάθε κανόνα να είναι της μορφής $W \to w$ με
 - $W \in V$ (είναι μία μεταβλητή) και
 - $w \in (V \cup \Sigma)^*$ (παράθεση μεταβλητών και μη τερματικών

συμβόλων)

Παράδειγμα 1: Η Γραμματική Ανεξάρτητη Συμφραζομένων για την γλώσσα L=

 $\{0^n 1^n \mid n \ge 0\}$

 $\begin{cases} S \to 0S1 \\ S \to \varepsilon \end{cases}$ Τα παραπάνω λέγονται κανόνες της γραμματικής διότι ξεκινώντας από την

μεταβλητή S μπορούμε να παράγουμε με διαδοχική χρήση των κανόνων οποιαδήποτε συμβολοσειρά της γλώσσας. Ο $1^{\circ\varsigma}$ κανόνας $S \to 0S1$ λέγεται και αναδρομικός κανόνας διότι επανεμφανίζει την

μεταβλητή S

Ο $2^{o\varsigma}$ κανόνας $S \to \varepsilon$ λέγεται και τερματικός κανόνας διότι σταματά τις εμφανίζεις Παράθεση μεταβλητών. $\{a^nb^nc^md^m|n,m\geq 0\}$

Σχόλια:

Παραδείγματα Παραγωγών: S S $\Rightarrow \varepsilon$ $\Rightarrow 0S1$

 $\Rightarrow 0\varepsilon 1 = 01$

S $\Rightarrow 0S1$

 $\Rightarrow 00S11$

 $\Rightarrow 00\varepsilon 11 = 0011$

0S1 \Rightarrow 00S11 $\Rightarrow 000S111$ $\Rightarrow 000 \epsilon 111 = 000111$

S

S 0S100S11 000S111 $\Rightarrow 0000S1111$ $\Rightarrow 0000 \epsilon 1111 = 00001111$

Διάζευξη Συμβ/ρών

Κανονικές $\{a^n | n \ge 0\}$

 ${a^n | n > 0}$

 $Y \rightarrow bYc \mid \varepsilon$ $S \rightarrow S_1 \mid S_2$

 $S \rightarrow XY$

 $Y \rightarrow aY \mid a$

 $S_1 \to X_1 X_2 \quad X_1 \to a X_1 b | \varepsilon \quad X_2 \to c X_2 | \varepsilon$

 $\overline{\{a^ib^jc^k|i=j\,\eta\,j=k\}} \quad S_2 \to Y_1Y_2 \qquad Y_1 \to \alpha Y_1|\varepsilon \qquad Y_2 \to bY_2c|\varepsilon$

Παράδειγμα 2: Η Γραμματική για την γλώσσα $L = \{0^n 1^m 0^m 1^n | n, m \ge 0\}$ $S \rightarrow 0S1 \mid X$ $X \rightarrow 1X0 \mid \varepsilon$ Σχόλια: Το | διαβάζεται ή (ή διαζευκτικό)

 $\{a^i b^j c^k | j = i + k\}$

 $\{a^nb^{n+m}c^n|n,m\geq 0\}$

 $X \to aXb \mid \varepsilon$

 $\{a^{n+m}b^mc^n|n,m\geq 0\}$ $S\to aSc\mid X,X\to aXb\mid \varepsilon$

 $S \rightarrow aSd \mid X, X \rightarrow bXc \mid \varepsilon$

 $S \rightarrow 0S1 \mid \varepsilon$

 $S \rightarrow 00S111 \mid \varepsilon$

 $S \rightarrow aSa \mid bSb \mid c$

 $\{a^nb^m \mid n > m\}$ $S \rightarrow aSb \mid X, X \rightarrow aX \mid a$

 $\overline{\{a^n b^m \mid n \le m\}} \quad S \to aSb \mid X, X \to bX \mid \varepsilon$ $\{a^n b^m \mid n < m\} \ S \rightarrow aSb \mid X, X \rightarrow bX \mid b\}$

Γραμματική Χωρίς

Συμφραζόμενα

 $S \rightarrow XY$ $X \rightarrow aXb \mid \varepsilon$

 $S \rightarrow aSc \mid X, X \rightarrow aXb \mid Y$

 $Y \rightarrow cYd \mid \varepsilon$

 $S \rightarrow aS \mid a$

KANONIKH FPAMMATIKH

ΓΛΩΣΣΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ www.psounis.gr

Ορισμός Κανονικής Γραμματικής:

Μία γραμματική χωρίς συμφραζόμενα θα λέγεται Κανονική Γραμματική αν και μόνο αν οι κανόνες της έχουν αποκλειστικά και μόνο τη μορφή:

$$X \to \sigma$$
 ή $X \to \sigma \Upsilon$

- όπου
 - $X, Y \in V$ (είναι μεταβλητές)
 - $\sigma \in \Sigma$ (είναι τερματικά σύμβολα, δηλαδή σύμβολα του αλφαβήτου ή η κενή συμβολοσειρά)

Λήμμα: Κάθε Κανονική Γραμματική είναι και Γραμματική Χωρίς Συμφραζόμενα

Κανόνες Μετατροπής ΜΠΑε,ΜΠΑ,ΝΠΑ σε Κανονική Γραμματική

- Κάθε κατάσταση γίνεται μεταβλητή. Ειδικά την αρχική κατάσταση την ονομάζουμε S.
- Βάζουμε τον κανόνα $X \to \sigma Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με το σύμβολο σ
- Βάζουμε τον κανόνα $X \to Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με ε-κίνηση
- Βάζουμε τον κανόνα $X \to \varepsilon$ αν η X είναι τελική κατάσταση.

Παράδεινμα: Στο ακόλουθο ΜΠΑ-ε

αντιστοιχεί η κανονική γραμματική

$$\begin{cases} S \to A \mid 0B \\ A \to 1\Gamma \\ B \to 0S \\ \Gamma \to B \mid \epsilon \end{cases}$$

Παράδεινμα: Στο ακόλουθο ΜΠΑ

αντιστοιχεί η κανονική γραμματική

$$\begin{cases} S \to 1\Gamma | 1\Delta | \varepsilon \\ \Gamma \to 0S \\ \Delta \to 1E \\ E \to 0S | \varepsilon \end{cases}$$

Παράδεινμα: Στο ακόλουθο ΝΠΑ

αντιστοιχεί η κανονική γραμματική

$$\begin{cases}
S \to 0B \mid 1S \\
B \to 0\Gamma \mid 1S \\
\Gamma \to 0\Gamma \mid 1\Gamma \mid \varepsilon
\end{cases}$$