Emmanuel Filiot
Nicolas Mazzocchi
Jean-François Raskin

Université libre de Bruxelles Highlights 2017 - London

Decidable Weighted **Expressions** with Presburger **Combinators**

Boolean vs Quantitative Languages

$$L:\Sigma^* \rightarrow \{0,1\}$$

Classical decision problems

Boolean vs Quantitative Languages

$$L: \Sigma^* \to \{0,1\} \mathbb{Z} \cup \{-\infty\}$$

Classical quantitative decision problems

Emptiness	$\exists u.t(u) \geq \not\perp \nu$
Universality	$\forall u.f(u) \geq 1 \nu$
Inclusion	$\forall u.f(u) \geq g(u)$
Equivalence	$\forall u.f(u) = g(u)$

for some threshold ν for some threshold ν

Classical Model: Weighted Automata

(max,+) WA

Classical Model: Weighted Automata

(max,+) WA

Transition sequence

Undecidability [Krob 1994]

Quantitative language-inclusion is undecidable for (max,+) WA

▶ Even for linearly ambiguous automata [Colcombet 2010]

Decidable Formalisms: Restriction

Finitely ambiguous (max,+) WA [Filiot et al. 2012]

Define functions of the form,

$$u \mapsto \max\{A_1(u), \ldots, A_k(u)\}$$

 A_i : Unambiguous WA

- © Quantitative decision problems are DECIDABLE
- © Closed under max and sum
- © Limited expressive power (min, minus, ...)

Decidable Formalisms: New model

Mean-payoff expressions [Chatterjee et al. 2010]

$$E ::= A \mid \max(E, E) \mid \min(E, E) \mid E + E \mid -E$$

 \mathcal{A} : Deterministic WA

- © Quantitative decision problems are PSPACE-COMPLETE [Velner 2012]
- © Closed under max, min, sum and minus
- Determinism (define Lipschitz continuous functions)
- ② Does **not** contain all finitely ambiguous (max,+) WA
- Monolithism (apply on the whole word)

Contributions

1 Simple expressions

$$E ::= \mathcal{A} \mid \phi(E, E)$$

- \mathcal{A} : Unambiguous WA
- ϕ : $\exists FO[\leq,+,0,1]$ formula defining function with arity two
- igoplus Quantitative decision problems are PSPACE-COMPLETE
- © Closed under Presburger definable functions
- © Contain all finitely ambiguous (max,+) WA
- Monolithism (apply on the whole word)

Contributions

2 Iterable expressions

$$E ::= \mathcal{A} \mid \phi(E, E) \mid E^{\circledast}$$

- Sum arbitrarily many factors
- Unique decomposition required

Contributions

2 Iterable expressions

$$E ::= \mathcal{A} \mid \phi(E, E) \mid E^{\circledast}$$

- Sum arbitrarily many factors
- Unique decomposition required

Remark

$$u_1 \mathbf{\nabla} u_2 \mathbf{\nabla} \dots u_n \mathbf{\nabla} \mapsto \sum_{i=1}^n \mathbf{E}(u_i \mathbf{\nabla})$$

$$F^{\circledast} \rightsquigarrow \clubsuit$$

$$u_1 \clubsuit u_2 \clubsuit \dots u_m \clubsuit \mapsto \sum_{i=1}^m \mathsf{F}(u_i \clubsuit)$$

Theorem (Iterable Expressions)

Quantitative decision problems are UNDECIDABLE

Theorem (Iterable Expressions)

Quantitative decision problems are UNDECIDABLE

Theorem (Iterable Expressions)

Quantitative decision problems are UNDECIDABLE

Theorem (Synchronised Iterable Expressions)

Synchronisation property is PTIME

Theorem (Iterable Expressions)

Quantitative decision problems are UNDECIDABLE

Theorem (Synchronised Iterable Expressions)

Synchronisation property is PTIME Quantitative decision problems are DECIDABLE

Weighted Chop Automaton

Regular language

Presburger formula use sub-WCA

Theorem (Iterable Expressions)

Quantitative decision problems are UNDECIDABLE

Theorem (Synchronised Iterable Expressions)

Synchronisation property is PTIME Quantitative decision problems are DECIDABLE

Weighted Chop Automaton

Theorem (Simple Expressions)

Quantitative decision problems are PSPACE-COMPLETE

Reversal bounded counter machines

Thanks!