Hieu Pham

Assignment Test_2-3 due 04/27/2014 at 06:09pm MST

Problem 1. 3. (1 pt) Use implicit differentiation to find the slope of the tangent line to the curve

$$2xy^3 + 5xy = 28$$

at the point (4,1).

m =

Answer(s) submitted:

 \bullet - (7/44)

(correct)

Correct Answers:

-0.159090909090909

Problem 2. 13. (1 pt) Consider the function

$$f(x) = -3x^3 - x^2 - x - 4$$

Find the average slope of this function on the interval (3,4).

By the Mean Value Theorem, we know there exists a c in the open interval (3,4) such that f'(c) is equal to this mean slope. Find the value of c in the interval which works _____

Answer(s) submitted:

- −137
- 34/9

(incorrect)

Correct Answers:

- -119
- 3.51152008597802

Problem 3. 12. (1 pt) Use linear approximation, i.e. the tangent line, to approximate $\frac{1}{0.103}$ as follows: Let $f(x) = \frac{1}{x}$ and find the equation of the tangent line to f(x) at a "nice" point near 0.103. Then use this to approximate $\frac{1}{0.103}$.

Answer(s) submitted:

• 9.7

(correct)

Correct Answers:

• 9.7

Problem 4. 5. (1 pt) Suppose xy = 4 and $\frac{dy}{dt} = 1$. Find $\frac{dx}{dt}$

when x = 1.

 $\frac{dx}{dt} = \underline{\hspace{1cm}}$

Answer(s) submitted:

−1/4

(correct)

Correct Answers:

−0.25

Problem 5. 7. (1 pt) Find the most general antiderivative for the function $\left(7x^4 - \frac{5}{x^5} - 3\right)$.

Note: Don't enter the +C. It's included for you.

Antiderivative = \bot + C.

Answer(s) submitted:

• $((7x^5)/5) + (5/(4x^4)) - (3x)$

(correct)

Correct Answers:

• 7*(x**5)/5 - 5*(x**(-5+1))/(-5+1) - 3*x

Problem 6. 2. (1 pt) Find an equation for the line tangent to the graph of

$$f(x) = \frac{\sqrt{x}}{3x + 7}$$

at the point (2, f(2)).

Answer(s) submitted:

• ((25sqrt(2))/(338)) + ((x(sqrt(2)))/(676))

(correct)

Correct Answers:

• sqrt(2)/(7+3*2) + 0.00209203189700162*(x-2)

Problem 7. 1. (1 pt) Suppose that $f(x) = 18e^x - ex^e$. Find f'(3).

f'(3) =_____

Answer(s) submitted:

• ((18e³) - (1/3)((3^e)(e²)))

(correct)

Correct Answers:

• 312.739897915902

f''(x) is	
and $f''(4)$ is	
Answer(s) submitted:	
• $8x(\cos(7x)) - (28(x^2)(\sin(7x)))$	
• 32(cos(28)) - 448(sin(28))	
• $(8 - 196(x^2))\cos(7x) - (112x(\sin(7x)))$	
• -3128(cos(28)) - (448(sin(28)))	
(correct)	
Correct Answers:	
• 2*4*x*cos(7*x) - 4*(x**2)*sin(7*x)*7	
 -152.169180883959 2*4*cos(7*x) - 4*4*x*sin(7*x)*7 - 4*(x**2)*cos(7*x) 	1 * 17
• 2889.66535666691	.) (,
Problem 9. 14. (1 pt) Suppose that	
$f(x) = 9x^2 - x^3 + 3.$	
f(x) = jx - x + 3.	Fi
	Fi
(A) Find all critical numbers of f . If there are no critical	
numbers, enter 'NONE'.	
Critical numbers =	
(B) Use interval notation to indicate where $f(x)$ is increas-	
ing.	
Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the	
union symbol.	-
Tu.,	
Increasing:	dy
(C) Use interval notation to indicate where $f(x)$ is decreasing	$\frac{dy}{dx}$
ing.	
Decreasing: (D) List the x -coordinates of all local maxima of f . If there	
are no local maxima, enter 'NONE'.	
x values of local maxima =	
(E) List the x-coordinates of all local minima of f . If there	
are no local minima, enter 'NONE'.	_
x values of local minima =	lut
(F) Use interval notation to indicate where $f(x)$ is concave	lut
up.	
Concave up:	ov
(G) Use interval notation to indicate where $f(x)$ is concave	
down.	
Concave down:	
(H)List the x values of all inflection points of f . If there are	
no inflection points, enter 'NONE'.	(b)
x values of inflection points =	
(I) Use all of the preceding information to sketch a graph of	
f. When you're finished, enter a "1" in the box below.	
Graph Complete:	(c)
Answer(s) submitted:	
• 3, 9.03674	
	2

Problem 8. 4. (1 pt) Let $f(x) = 4x^2 \cos(7x)$.

Then f'(x) is _____ and f'(4) is _____

•
•
•
•
•
•
(incorrect) Correct Answers:
• 0, 6
• (0,6)
(-infinity,0) U (6,infinity)6
• 0
(7**2) (3,infinity)
• 3
• 1
Problem 10. 11. (1 pt) Let $y = 4x^2 + 5x + 4$.
Find the differential dy when $x = 2$ and $dx = 0.2$
Find the differential dy when $x = 2$ and $dx = 0.4$
Answer(s) submitted:
4.28.4
(correct)
Correct Answers:
• 4.2
• 8.4
Problem 11. 8. (1 pt) Find $\frac{dy}{dx}$ for the function $y = x^{\cos(x)}$.
$\frac{dy}{dx} = \underline{\hspace{1cm}}$
Answer(s) submitted:
• $(x^{(\cos(x))}((1/x)\cos(x) - (\ln(x))\sin(x))$
(incorrect)
Correct Answers: • $x^{(\cos(x))*(\cos(x)/x - \sin(x)*\ln(x))}$
Problem 12. 6. (1 pt) Find the absolute maximum and absolute minimum values of the function
$f(x) = x^3 + 12x^2 - 27x + 5$
over each of the indicated intervals.
(a) Interval = $[-10,0]$.
1. Absolute maximum =
2. Absolute minimum =
(b) Interval = $[-7, 2]$.
1. Absolute maximum =
2. Absolute minimum =

(c) Interval = [-10, 2].

1. Absolute maximum = ______

2. Absolute minimum = _____

Answer(s) submitted:

- •
- •
- •
- .
- •

(incorrect)

Correct Answers:

- 491
- 5
- 439
- −9
- 491
- −9

Problem 13. 9. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x \to 1} \frac{x^{15} - 1}{x^9 - 1}$$

Answer: _____

Answer(s) submitted:

(15/9)

(correct)

Correct Answers:

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

• 15/9

Problem 14. 10. (1 pt) Find two positive numbers whose product is 100 and whose sum is a minimum.

Answer: _____, ____

- $Answer(s)\ submitted:$
 - 10
 - 10

(correct)

Correct Answers:

- 10
- 10

Problem 15. 15. (1 pt) Find the *x*-coordinate of the absolute minimum for the function

$$f(x) = 2x\ln(x) - 7x, \qquad x > 0.$$

x-coordinate of absolute minimum = _____

Answer(s) submitted:

•

(incorrect)

Correct Answers:

• 12.1824939607035