CSL603-Machine Learning Lab1

Vivek Kumar Verma

2016csb1064

Experiment 1.

- 1000 samples/instances each for Train and Test are randomly selected from labeledBow.feat from respective files.
- 500 are positive instance and other 500 are negative instance.
- After selecting random instance I have saved them in MyTrainData.txt and MyTestData.txt file respecting each containing 1000 instance
- Then I selected features based on expectation value positive polarity >2.2 and negative polarity < -1.2
- Then I selected 5000 randomly from these features with 2500 positive polarity and 2500 negative polarity.
- These features are finally saved in MyVocab.txt using their index of actual vocabulary provided.
- To run experiment1 I have created file named generate.py. This file is executed before running any other file.

Experiment 2

• I used ID3 algorithm to train decision tree.

Original Tree without early stopping

Training Accuracy	92.5%
Test Accuracy	70.1%
Nodes Count	895

Feature Index in Vocabulary	Frequency
3485	3
3533	3
344	4
868	4
427	4
439	6
734	6

(There are many other Features which you will see in the output)

Statistics of early stopping.

I stopped the tree on basis of number of leaf nodes.

Node Restrict Count	Train Accuracy%	Test Accuracy%
500	85.2	72.9
300	83.5	73.9
100	81.5	73.9
50	79.8	73.8

- It was observed that Training accuracy was decreasing on restricting the node in tree.
- Test Accuracy increased. Then on further decreasing the node it gradually fall.
- Conclusion: This is observed because of reduction in over fitting. On further decreasing the node accuracy decreases

Experiment 3Effect of Noise on accuracy of Decision Tree

Noise Percentage Train Accuracy% Test Accuracy% Node

0.5%	90.7	69.3	815
1%	90.3	71.7	817
5%	87.7	70.9	831
10%	86.0	69.9	795
20%	80.5	69.4	827

```
/home/black/PycharmProjects/ML/venv/bin/python /hom
  Noise Result
  Train accuracy when noise is 0.5 % 90.7
  Test accuracy when noise is 0.5 % 69.3
  Nodes count 815
  Train accuracy when noise is 1 % 90.3
  Test accuracy when noise is 1 % 71.7
  Nodes count 817
  Train accuracy when noise is 5 % 87.7
  Test accuracy when noise is 5 % 70.9
  Nodes count 831
  Train accuracy when noise is 10 % 86.0
  Test accuracy when noise is 10 % 69.9
  Nodes count 795
  Train accuracy when noise is 20 % 80.5
  Test accuracy when noise is 20 % 69.4
  Nodes count 827
  Process finished with exit code 0
minal Python Console 🕨 4: Run 🔠 <u>6</u>: TODO
```

Observation:

- It was observed that on increasing the noise Training accuracy decreased rapidly and it reached 80% in case of 20% noise.
- Test accuracy slightly increased but not to large extent.
 Only few ups and downs were shown.
- Number of nodes increased as noise increased i.e height of tree increase.

Conclusion:

- Training accuracy decreased because of large disturbance in data it s clearly shown in image above.
- Test accuracy showed no general trend
- Number of nodes increased as noise increased.

Experiment 4

ID3 with post pruning

Accuracy without pruning on test 69.5% number of nodes 815

Accuracy when pruning on test 72.01% number of nodes 786

Experiment 5

Random Forest Using Feature Bagging

No of Trees	Accuracy on train
1	70.6
5	72.33333
10	75.5
15	74.0
20	76.5
30	75.2

Thus we can infer from this that accuracy increases with increase in number of trees and then become stable.

