

planetmath.org

Math for the people, by the people.

quadratic closure

Canonical name QuadraticClosure
Date of creation 2013-03-22 15:42:43
Last modified on 2013-03-22 15:42:43

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification msc 12F05

Defines quadratically closed

A field K is said to be *quadratically closed* if it has no quadratic extensions. In other words, every element of K is a square. Two obvious examples are \mathbb{C} and \mathbb{F}_2 .

A field K is said to be a quadratic closure of another field k if

- 1. K is quadratically closed, and
- 2. among all quadratically closed subfields of the algebraic closure \overline{k} of k, K is the smallest one.

By the second condition, a quadratic closure of a field is unique up to field isomorphism. So we say *the* quadratic closure of a field k, and we denote it by \widetilde{k} Alternatively, the second condition on K can be replaced by the following:

K is the smallest field extension over k such that, if L is any field extension over k obtained by a finite number of quadratic extensions starting with k, then L is a subfield of K.

Examples.

- $\mathbb{C} = \widetilde{\mathbb{R}}$.
- If \mathbb{E} is the Euclidean field in \mathbb{R} , then the quadratic extension $\mathbb{E}(\sqrt{-1})$ is the quadratic closure $\widetilde{\mathbb{Q}}$ of the rational numbers \mathbb{Q} .
- If $k = \mathbb{F}_5$, consider the chain of fields

$$k \le k(\sqrt{2}) \le k(\sqrt[4]{2}) \le \dots \le k(\sqrt[2^n]{2}) \le \dots$$

Take the union of all these fields to obtain a field K. Then it can be shown that $K = \widetilde{k}$.