ARTICLE INFO

Article ID: 14-10-01-0007 © 2021 SAE International doi:10.4271/14-10-01-0007

Engine Start-Up Robust Control for a Power-Split Hybrid System Based on μ Synthesis Method

Zhiguo Zhao,¹ Jiaqi Fan,¹ Mengna Li,¹ and Jing Fu¹

¹Tongji University, China

Abstract

Engine starting control is of great importance for the mode transition process from pure electric mode to electronic-Continuously Variable Transmission (e-CVT) mode for an input power-split system. To suppress the impact of engine start-up on the powertrain, and improve the vehicle ride comfort during the mode transition process, this study proposes an engine start-up robust control strategy based on the μ synthesis method. Firstly, the models of powertrain dynamics and the engine ripple torque (ERT) are established, and the mode transition process is analyzed. Secondly, the engine start-up robust control strategy is proposed to distribute the torque of each power source. The optimal engine cranking speed trajectory is designed based on a dynamic programming algorithm aimed at reducing the engine start-up time and improving the vehicle ride comfort. Finally, to track the optimal engine speed trajectory and the desired power output-end speed, a robust controller is developed based on the μ synthesis method, which considers the system's parametric perturbations and external disturbances. Simulation results on the MATLAB/Simulink platform indicate that the proposed approach can effectively reduce the vehicle longitudinal jerk during the engine starting process and possess superior robust performance against parametric perturbations and external disturbances.

History

Received: 26 Apr 2020 Revised: 28 Jul 2020 Accepted: 14 Dec 2020 e-Available: 27 Apr 2021

Keywords

Input power-split system, Engine start-up, Dynamic programming, Robust control, μ synthesis

Citation

Zhao, Z., Fan, J., Li, M., and Fu, J., "Engine Start-Up Robust Control for a Power-Split Hybrid System Based on μ Synthesis Method," *SAE Int. J. Elect. Veh.* 10(1):89–101, 2021, doi:10.4271/14-10-01-0007.

ISSN: 2691-3747 e-ISSN: 2691-3755

TABLE 3 Summary of the results.

Case	Longitudinal jerk (m/s³)	Control deviation (%)
Α	13.99	-
В	13.97	0.1
С	14.23	1.7
D	14.66	4.7

References

- Wu, G., Zhang, X., and Dong, Z., "Powertrain Architectures of Electrified Vehicles: Review, Classification and Comparison," *Journal of the Franklin Institute* 352, no. 2 (2015): 425-448, doi:10.1016/j.jfranklin.2014.04.018.
- Mashadi, B. and Emadi, S.A.M., "Dual-Mode Power-Split Transmission for Hybrid Electric Vehicles," *IEEE* Transactions on Vehicular Technology 59, no. 7 (2010): 3223-3232, doi:10.1109/tvt.2010.2049870.
- Kim, J., Kim, T., Min, B., Hwang, S. et al., "Mode Control Strategy for a Two-Mode Hybrid Electric Vehicle Using Electrically Variable Transmission (EVT) and Fixed-Gear Mode," *IEEE Transactions on Vehicular Technology* 60, no. 3 (2011): 793-803, doi:10.1109/tvt.2011.2107564.
- Hong, S., Kim, H., and Kim, J., "Motor Control Algorithm for an Optimal Engine Operation of Power Split Hybrid Electric Vehicle," *International Journal of Automotive* Technology 16, no. 1 (2015): 97-105, doi:10.1007/s12239-015-0011.8
- Liu, D., Yu, H., and Zhang, J., "Multibody Dynamics Analysis for the Coupled Vibrations of a Power Split Hybrid Electric Vehicle during the Engine Start Transition," Proceedings of the Institution of Mechanical Engineers 230, no. K4 (2016): 527-540, doi:10.1177/1464419315618862.
- Hwang, H.Y., "Minimizing Seat Track Vibration That Is Caused by the Automatic Start/Stop of an Engine in a Power-Split Hybrid Electric Vehicle," *Journal of Vibration and Acoustics* 135, no. 6 (2013): 061007.1-061007.8, doi:10.1115/1.4023954.
- Su, Y., Hu, M., Su, L., Qin, D. et al., "Dynamic Coordinated Control during Mode Transition Process for a Compound Power-Split Hybrid Electric Vehicle," *Mechanical Systems* and Signal Processing 107, no. July (2018): 221-240, doi:10.1016/j.ymssp.2018.01.023.
- Zhuang, W., Kum, D., Peng, H., Wang, L. et al., "Optimal Engine Starts of an Input-Split Hybrid Electric Vehicle,"

- SAE Int. J. Alt. Power. 4, no. 2 (2015): 343-351, doi:https://doi.org/10.4271/2015-01-1227.
- Zhao, Z., Jiang, L., Wang, C., and Li, M., "Engine Start-Up Optimal Control for a Compound Power-Split Hybrid Powertrain," *Mechanical Systems and Signal Processing* 120 (2019): 365-377, doi:10.1016/j.ymssp.2018.10.027.
- Wang, C., Zhao, Z., Zhang, T., and Li, M., "Mode Transition Coordinated Control for a Compound Power-Split Hybrid Car," *Mechanical Systems and Signal Processing* 87 (2017): 192-205, doi:10.1016/j.ymssp.2016.10.021.
- Li, M., Zhao, Z., Jiang, L., and Tang, X., "Subsection Coordinated Control during Mode Transition for a Compound Power-Split System," SAE Technical Paper 2019-01-1214, 2019, doi:https://doi.org/10.4271/2019-01-1214.
- Zeng, X., Yang, N., Wang, J. et al., "Predictive-Model-Based Dynamic Coordination Control Strategy for Power-Split Hybrid Electric Bus," *Mechanical Systems and Signal Processing* 60-61 (2015): 785-798, doi:10.1016/j. ymssp.2014.12.016.
- Zeng, X. and Wang, J., "Dynamic Coordinated Control Method of Planetary Hybrid Power-Split System," in Analysis and Design of the Power-Split Device for Hybrid Systems (Singapore: Springer Singapore, 2018), doi:10.1007/978-981-10-4272-0 5.
- Zeng, X., Cui, H., Song, D. et al., "Jerk Analysis of a Power-Split Hybrid Electric Vehicle Based on a Data-Driven Vehicle Dynamics Model," *Energies* 11, no. 6 (2018): 1537, doi:10.3390/en11061537.
- Lei, W., "Mode Transition Control for Series-Parallel Hybrid Electric Bus Using Fuzzy Adaptive Sliding Mode Approach," *Journal of Mechanical Engineering* 48, no. 14 (2012): 119, doi:10.3901/JME.2012.14.119.
- Yang, C., Li, L., Jiao, X. et al., "Research on Mode Transition Control for Single-Shaft Parallel Hybrid Powertrain," Scientia Sinica Technologica 46, no. 1 (2016): 91-100, doi:10.13140/RG.2.1.4970.6001.
- Yang, C., Jiao, X., Li, L., Zhang, Y. et al., "A Robust H∞ Control-Based Hierarchical Mode Transition Control System for Plug-In Hybrid Electric Vehicle," *Mechanical Systems and Signal Processing* 99 (2018): 326-344, doi:10.1016/j. ymssp.2017.06.023.
- Zhang, H., Wang, C., Zhang, Y., Liang, J. et al.,
 "Drivability Improvements for a Single-Motor Parallel Hybrid Electric Vehicle Using Robust Controls," J. Zhejiang Univ.-Sci. A15, no. 4 (2014): 291-301, doi:10.1631/jzus. A1300356.
- Zhang, H., Zhang, Y., and Yin, C., "Hardware-in-the-Loop Simulation of Robust Mode Transition Control for a Series-

- Parallel Hybrid Electric Vehicle," *IEEE Transactions on Vehicular Technology* 65, no. 3 (2015): 1059-1069, doi:10.1109/TVT.2015.2486558.
- Zhu, D., Pritchard, E.G.D., and Silverberg, L.M., "A New System Development Framework Driven by a Model-Based Testing Approach Bridged by Information Flow," *IEEE* Systems Journal 12, no. 3 (2016): 2917-2924, doi:10.1109/ JSYST.2016.2631142.
- Hang, P., Chen, X., Luo, F., and Fang, S., "Robust Control of a Four-Wheel-Independent-Steering Electric Vehicle for Path Tracking," SAE Int. J. Veh. Dyn., Stab., and NVH 1, no. 2 (2017): 307-316, doi:https://doi.org/10.4271/2017-01-1584.
- Madamedon, M., Gu, F., Aburass, A., and Ball, A.D., "Online Estimation of Engine Driveline Dynamic Response," in 2016 International Conference for Students on Applied Engineering, Tyne, UK, IEEE, 2016, doi:10.1109/ICSAE.2016.7810216.