Hardware Characterization

Required measurements

http://ra.ziti.uni-heidelberg.de/pages/student_work/seminar/ws0304/richard_sohnius/praesentation.pdf

Transition times. Characterized and measured between 30 % and 70 %. Standardized reporting between 10 % and 90 %.

- area
- power
- timing contstraints (setup/Hold time, recovery/removal time)
- propagation delay time
- input capacitance

Power:

- Dynamic power (switching power)
- Static power (leakage power)
- Passive power (internal power. power used by sequential cells when inputs change without output change)

Delay:

https://www.csee.umbc.edu/~cpatel2/links/641/slides/lect05_LIB.pdf

- sum of intrinsic delay, slope delay, transition delay and connect delay
- intrinsic delay is fixed value independent of surroundings
- slope delay is produced by the slew of the input signal
- transition delay is the time required to change the capacitance of the next stage input pins
- connect delay is delay caused by the wire between output and next input pins

Delay model of Liberate (.lib) is the CMOS Non-Linear Delay Model.

- Delay and transition time are modeled as function of Input slew and Output load
- Data is stored in a 2D LUT (look-up table)
- Intermediate values are interpolated
- Data points are usually not equidistant

solutions

feedback loop with a counter?

Solutions

Figure 1: math

$$t_{meas} = \frac{1}{acc_{\%}} \cdot T = \frac{1}{acc_{\%}} \cdot (noC \cdot \tau_C + \tau_x)$$

$$t_{meas} = \frac{\tau_C}{acc_t} \cdot T = \frac{\tau_C}{acc_t} \cdot (noC \cdot \tau_C + \tau_x)$$

Count = 200 for
$$t_{meas} = 1 \,\mu s$$

$$T = \frac{t_{meas}}{\text{Count}} = 5 \, ns$$

$$\tau_C = \frac{T - \tau_x}{noC} = 37.5 \, ps$$
 for $tau_x = 200 \, ps, noC = 128$

Table 1: Requirements for 1 ps resolution

ring size	1	1	8	8	64	64	512	512
component delay	50ps	100ps	50 ps	100ps	50ps	100ps	50ps	100ps
Period (T)	50 ps	100ps	400ps	800ps	3.2ns	6.4ns	25.6ns	51.2ns
max counts	50	100	50	100	50	100	50	100
measurement time (t_{meas})	2.5ns	10ns	20ns	80ns	160ns	640ns	$1.28\mu s$	$5.12\mu s$

for N the number of elements in the Ring Oscillator

$$\begin{split} \Delta t_c &= \mathcal{N}(\mu_c, \sigma_c^2) \\ \Delta t_{RO} &= \mathcal{N}(N\mu_c, \sqrt{N}\sigma_c^2) \\ \frac{\Delta t_{RO}}{N} &= \mathcal{N}(\mu_c, \frac{\sigma_c^2}{\sqrt{N}}) \end{split}$$

for ${\cal N}$ the number of elements in the Ring Oscillator for ${\cal C}$ the number of counts

$$\begin{aligned} t_c &= \mathcal{N}(\Delta t_c, \sigma_d^2) \\ t_{RO} &= \mathcal{N}(C\Delta t_{RO}, \sqrt{NC}\sigma_d^2) \\ \frac{t_{RO}}{NC} &= \mathcal{N}(\frac{\Delta t_{RO}}{N}, \frac{\sigma_d^2}{\sqrt{NC}}) \end{aligned}$$

Testbenches

Numerically Controlled Oscillator

Control when the accumulator flows over. Needs a very fast counter. Overflow amount gets carried over to next cycle.

Figure 2: NCO

Time to Digital Converter (TDC)

Figure 3: TDC

Phase Detector

The phase detector produces a 1 between the time the reference signal switches to a one, and the divider switches to a one.

Figure 4: Phase detector

Digitally controlled oscillator

Uses digitally controlled switches to change the output load

Grey Counter

8-bit grey counter designed with Alex

Digital Divider

Figure 5: Digital divider

4-bit Multiplexer and Demultiplexer

Figure 6: MUX

Changable Ring Oscillator

Figure 7: Changable Ring Oscillator

Figure 8: Changable Ring Oscillator 2

Figure 9: critical path of dynamic ring oscillator

counter with scan chain

Figure 10: Scan Flipflop (SFF)

Figure 11: Symbol Scan Flipflop (SFF)

Figure 12: Symbol JK-Flipflop (JKFF)

Figure 13: Counter with Shift register

SFF = 10 gatesJKFF = 10 gates

example: 16 gates + swappable ring oscillator, 1 ps resolution

ring size =
$$16 + 8 = 24$$
gates (1)

$$T = 1.2 \, ns \tag{2}$$

$$counts = 1200 (3)$$

$$t_{meas} = 1.44 \,\mu s \tag{4}$$

$$bits = 11 (5)$$

$$gates = 11 \cdot 20 + 41 + 16 \cdot 16 = 517 \tag{6}$$

separate rings

Figure 14: solution with multiple rings and a single counter

Optimized seperate ring design

Figure 15: optimized seperate ring design

Sequential characterization

Figure 16: sequential characyterization design

Scan asynchronous counter

Figure 17: Block of a scan asynchronous counter

Examples of ring components

Figure 18: examples of ring components

Elaborated sequential characterization design Indian concept for setup/hold time characterization

Figure 19: Setup/hold time characterization concept

Sequential characterization proposal

DPDE

