Introduction to Communications and IOT

Praanesh Balakrishnan Nair

February 2, 2025

Contents

1	Intr	roduction	1
	1.1	What a Signal is	1
	1.2	Types of Communication	1
		1.2.1 Wired / Wireless	1
		1.2.2 Unidirectional / Bidirectional	2
		1.2.3 Analogue / Digital	2
		1.2.4 Transmission Technique	2
2	Cha	aracteristics of a Signal	3
	2.1	<u> </u>	3
	2.2		3
	2.3	Frequency	3
	2.4	Phase	3
3	Tin	ne Domain vs Frequency Domain	3
4	Odo	l Signals vs Even Signals	4
5	Ene	rgy and Power of a Signal	4
	5.1		4
	5.2	Energy	4
	5.3	Power	6
1	Τn	troduction	
1	111	ti oduction	
1.	1 \	What a Signal is	
	• It	's a Quantitative Representation of Information	
	• T	he most basic representation of a signal is in the form of a graph (t on X-axis and $f(t)$ on Y-axis)
1.	2]	Types of Communication	
1.	2.1	Wired / Wireless	
	1. W	/ired:	

$2. \ \mathbf{Wireless}:$

• Via Coaxial cables or Fibre-Optic Cables

• Via Electromagnetic waves or rays

1.2.2 Unidirectional / Bidirectional

1. Simplex:

- One-way
- Eg. Broadcast, FM

2. Half-Duplex:

- Two-way, but only one direction at a time
- Eg. walkie-talkie

3. **Duplex**:

• Two-way, and both directions are simultaneously possible

1.2.3 Analogue / Digital

1. Analog:

• Both t and f(t) are continuous

2. Digital:

• Both t and f(t) are discrete

3. Continuous-Time:

• t is continuous, but f(t) is discrete

4. Discrete-Time:

• t is discrete and f(t) is continuous

1.2.4 Transmission Technique

Before knowing this, you must know what bandwidth is:

Bandwidth:

- Range of frequencies a signal operates.
- In other words:

Bandwidth = (Highest Frequency of the Wave/Signal) - (Lowest Frequency of the Wave/Signal)

1. Baseband:

- Digital Signals which are sent via TDM (Time Division Multiplexing)
- One signal uses the entire bandwidth

2. Broadband:

• (I'll add this later)

2 Characteristics of a Signal

2.1 Standard Notation of a Standard Sinusoidal Signal

- For a graph where X-axis = θ and Y-axis = $sin(\theta)$, the measure of input is θ .
- To actually measure a signal against time, X-axis = t (time) and Y-axis = $sin(\theta)$
- Here's what we do for that: $sin(\theta + \phi) = sin(\omega t + \phi)$

2.2 Angular Frequency

- $\omega = \text{Angular Frequency/Velocity}$
- $\bullet = \frac{Angle}{Time}$
- $\bullet = \frac{2\pi}{T}$

2.3 Frequency

- $f = \frac{1}{T}$
- So, $\omega = \frac{2\pi}{T}$ can also be written as $\omega = 2\pi f$

2.4 Phase

- θ or ωt is the X-coordinate.
- Phase ϕ is added to the X-coordinate, so the wave shifts to the left by ϕ
- In a way, it's an offset to a wave. (Check https://www.geogebra.org/m/rzzqtx6q for some Visualization)
- For example, if a sine wave is offset by $\frac{1}{6}th$ of a cycle, then the phase would be $\frac{1}{6}*360^0 \Rightarrow \text{Phase} = 60^0$

3 Time Domain vs Frequency Domain

In both cases, Y-Axis = Amplitude. Only X-Axis changes

Figure 1: Time Domain

Figure 2: Frequency Domain

4 Odd Signals vs Even Signals

• Odd Signals/Functions: y(-x) = y(x)

• Even Signals/Functions: y(-x) = -y(x)

5 Energy and Power of a Signal

5.1 Prerequisite knowledge

• Let's assume we have a sinusoidal voltage and current

$$P = \frac{V^2}{R} = I^2 R$$

• This means that the power of a signal is some **constant** times **voltage squared** or **current squared**

• Let us have a general signal x(t) which can either be sinusoidal voltage or sinusoidal current

$$x(t) = V$$
 or $x(t) = I$

• So Instantaneous Power = $P = (x(t))^2$

5.2 Energy

• Energy = Power * time

• But the above formula is only applicable for discrete values.

• So the energy of a signal would be the area of the Power-Time Graph

Energy =
$$\int Pdt = \int_{-\frac{T}{2}}^{\frac{T}{2}} (x(t))^2 dt$$

• The limits are actually from 0 to T, but having them from $\frac{-T}{2}$ to $\frac{T}{2}$ simplifies calculations.

Figure 3: Green Curve showing V or I and the Red Curve showing P

Figure 4: Area under the Red Curve

5.3 Power

- Power is just $\frac{\text{Energy}}{\text{Time}}$.
- Power = $\frac{\int_{-T}^{\frac{T}{2}} (x(t))^2 dt}{T}$