Investigación bibliográfica 1:

Estructuras de datos para gráficos en tres dimensiones, con énfasis en algoritmos de comparación.

Jean Carlos Chavarría Hughes

Universdad de Costa Rica jeancarlos.chavarria@ucr.ac.cr

30 de septiembre de 2014

Objetivos Específicos

- Omparar las características de los formatos de gráficos en 3D.
- Presentar un análisis de representaciones de mallas poligonales.
- Oescribir los tipos de visualización científica de conjuntos de datos:

Justificación

Why 3D objects?

- Vivimos en un mundo 3D.
- Análisis científico e industrial.
- Implementación de algebra lineal a aplicaciones reales.

Introducción

- Relación entre figuras, imagenes, objetos 3D y estructuras de datos.
- Visualización científica.

Visualización Científica. Qué es y para que sirve

El mapeo de representaciones hechas por la computadora a representaciones preceptúales, con técnicas de codificación para maximixar el entendimiento con los seres humanos.

Campos Escalares

Se refiere a conjuntos de datos que se pueden distribuir en el tiempo o en posiciones del espacio. Temperatura, presión, resistencia, reflectividad, densidad.

Campos Vectoriales

Posee 3 valores escalares, uno para cada posición del espacio y una forma de representarlos es por medio de flechas que indiquen la magnitud y dirección.

Qué es y para que sirve

Campos Tensoriales

Posee 9 componentes y se representa con una matriz 3x3. Ejemplos puedes ser el tensor de presión de materiales anisotrópicos.

Formatos: BVH

- Desarrollado por BioVision y enfocado en movimientos humanos.
- Dos partes principales, el encabezado HIERARCHY y el MOTION.
- La primera define los segmentos: OFFSET, CHANNELS y JOINT.
- La segunda define el número de *frames*, el *frame time*, y la información capturada de movimiento.

Formatos: C3D

- Doctor Andrew Dainis en 1987, consiguión aceptación en laboratorios de biomedicina en Bethesda, Maryland.
- Preserva información que describe el tipo de diseño físico utilizado del laboratorio, tal como posiciones de platos, conjunto de marcas y tipos de canales empleados y EMG.
- Alamacena información del paciente como nombre, edad, peso, longitud de piernas, etc.

Formatos: FBX

- Desarrollado por Kaydara. Ahora dueño Autodesk desde 2006.
- Similar al BVH en tanto que tiene dos secciones importantes: el ROOT y los Hijos.
- Dirigido a las aplicaciones de simulación de objetos y animación en 3D, debido a que trabaja con muchas propiedades que sirven para caracterizar los objetos físicos.
- Datos: Límites de transformaciones, espacios y herencia, luz, cámara, null data, mesh data, armadura, textura, etc.

Formatos: POV

- Vigente desde el año 1993.
- Utiliza la técnica llamada Ray Tracing.
- Permite la descripción de escenas de manera matemática y utiliza efectos como la reflexión, transparencia y luminosidad.
 Además, tiene la capacidad de crear imagenes muy realistas utilizando esta técnica y generar imagenes tipo TGA o GIF.
- La información almacenada en un POV es un conjunto de descriptores de escenas: cámaras, objetos y fuentes de luces.

Ray Tracing

Polygon Mesh: Elementos

Caras

Se refiere a un conjunto cercano de bordes que conforman un polígono establecido, generalmente un triángulo pero tambien puede ser un cuadrilátero u otro.

Vértices

Contiene coordenadas en 3D de cada uno de los vértices que conforman los polígonos limitadores de la superficie. Puede conterner información como color, vector normal y textura.

Bordes

Contiene definiciones de la conexión de cada borde en términos de índices de nodos y especifíca las conexiones de vértices.

Polygon Mesh: Representaciones

Cara Vértice

Representa un conjunto de caras y vértices y típicamente es aceptado por los hardwards de procesamiento gráfico actual debido a su gran presición y redimiento.

Face-Vertex Meshes

Polygon Mesh: Representaciones

Vértice Vértice

Represeta a objetos conjuntos de vértices conectados con vértices y es la manera más simple y ligera, pero no la más precisa.

Vertex-Vertex Meshes (VV)

vertex List		
v0	0,0,0	v1 v5 v4 v3 v9
v1	1,0,0	v2 v6 v5 v0 v9
v2	1,1,0	v3 v7 v6 v1 v9
v3	0,1,0	v2 v6 v7 v4 v9
v4	0,0,1	v5 v0 v3 v7 v8
v5	1,0,1	v6 v1 v0 v4 v8
v6	1,1,1	v7 v2 v1 v5 v8
v7	0,1,1	v4 v3 v2 v6 v8
_	F F 4	4 5 6 7

Polygon Mesh: Representaciones

Eje alado

Baumgart en 1975. Provee información sobre los tres elementos fundamentales: caras, bordes y vértices.

Referencias

- Foundations of Computer Graphics: Berkeley.
- Geometric Modeling for Computer Graphics: Princeton.
- Computer Graphics: MIT.
- Solid Modeling: Berkeley.

Thanks!