Ćwiczenie B1

Opracował dr hab. inż. Paweł Piotrowski, prof. uczelni, wersja 6.04.2022

SIEĆ NEURONOWA W ZADANIU NAUKI TABLICZKI MNOŻENIA ORAZ APROKSYMACJI KRZYWEJ ŚREDNIEGO MIESIĘCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ W POSZCZEGÓLNYCH MIESIĄCACH ROKU

1. WPROWADZENIE

Zadanie nr 1- nauka tabliczki mnożenia to wykorzystanie sieci neuronowej do zadania "pamięciowego". Wada to brak 100% precyzji, zaleta do elastyczność (uzyskanie wyników dla liczb innych niż całkowite).

Celem zadania jest uzyskanie efektywnie działającej sieci neuronowej znającej tabliczkę mnożenia w zakresie liczb całkowitych.

Zadanie nr 2 aproksymacja funkcji siecia neuronowa

Aproksymację najczęściej rozwiązuje się metodami matematycznymi wykorzystując aproksymację metodą najmniejszych kwadratów, rzadziej aproksymację jednostajną. Sieci neuronowe również z powodzeniem są wykorzystywane do aproksymacji danych, szczególnie gdy kształt aproksymowanej krzywej jest mocno odbiegający od standardowych funkcji matematycznych np. funkcja wykładnicza, wielomianowa, potęgowa, logarytmiczna, liniowa itp. Zadaniem sieci neuronowej jest w tym przypadku nauczenie się kształtu krzywej (funkcji). W przypadku odpytywania nauczonej sieci neuronowej powinna ona efektywnie podawać wartość punktu na krzywej "wyjście" (oś Y) po podaniu dowolnego punktu z zakresu uczonego "wejście" (oś X). Do zadania aproksymacji najczęściej wykorzystuje się sieci neuronowe wielowarstwowe uczone z nauczycielem.

Poniżej przedstawiono rysunki stanowiące przykłady wpływu liczby neuronów w warstwie ukrytej na zdolność sieci neuronowej do aproksymacji funkcji będącej wynikiem pomiarów (znaki x na rysunkach oznaczają dane będące wynikiem pomiarów) [1].

Zbyt mała liczba neuronów - sieć oddaje tylko częściowo zależność, uśredniając przebieg funkcji i równocześnie tracąc zdolność do aproksymacji od pewnej wartości na osi X (zbyt mała pojemność pamięci sieci neuronowej).

Rys. 4.1 Zbyt mała liczba neuronów.

Właściwa liczba neuronów - sieć neuronowa prawidłowo oddaje charakter funkcji korygując błędy wynikające np. z uchybów pomiarowych przy przygotowywaniu danych uczących.

Rys. 4.2 Prawidłowa liczba neuronów.

Zbyt duża liczba neuronów - sieć neuronowa interpretuje błędy pomiarowe jako cechy przebiegu funkcji i wprowadza oscylacje pomiędzy punktami pomiarowymi.

Rys. 4.3 Zbyt duża liczba neuronów (nadinterpetacja).

Istnieją reguły dotyczące właściwego doboru liczby neuronów w warstwie ukrytej. Przyjąć można [3], poniższy wzór do szacowania liczby neuronów ukrytych:

$$U = 2n+1 \tag{4.1}$$

gdzie: U - wystarczająca liczba neuronów ukrytych do rozwiązania problemu, n – liczba neuronów w warstwie wejściowej.

Niestety jest to bardzo mało precyzyjny wzór i dlatego zawsze należy doświadczalnie ustalić optymalną liczbę neuronów w warstwie ukrytej dla każdego przypadku indywidualnie.

Celem zadania nr 2 jest uzyskanie w środowisku Excel optymalnej sieci neuronowej zawierającą jedną warstwę ukrytą, która będzie aproksymować krzywą średniego miesięcznego zużycia energii elektrycznej w spółce dystrybucyjnej.

Rys. 4.4 Budowa sieci neuronowej do zadania aproksymacji.

Wykorzystane zostaną dane historyczne zawierające wartości zużycia energii elektrycznej w poszczególnych miesiącach roku z lat 1990 – 1998. Poniżej komplet danych obejmujących 9 lat.

	Α	В	С	D	E	F	G	Н	- 1	J	K
1	Rok	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
2	Miesiąc	MWh									
3	styczeń	447554	402472	371403	364622	359121	405926	344793	426153	479627	488415
4	luty	384242	382288	391511	394441	426415	382015	395253	421906	477427	482969
5	marzec	398376	383104	371337	388493	416067	392046	442815	416129	471755	482031
6	kwiecień	363971	293814	357254	346306	343952	394763	402854	426182	425593	412568
7	maj	337932	300611	308076	335755	376307	344251	353538	353209	369851	383246
8	czerwiec	320009	306714	325604	307305	332272	334709	336806	347627	328777	347610
9	lipiec	312481	303739	280197	319428	290245	298755	320541	333829	306001	328840
10	sierpień	314582	289351	312897	293296	329238	311724	308308	325922	306591	
11	wrzesień	403866	263538	305050	331978	303258	309161	328816	342391	352442	
12	październik	349072	322515	314665	320929	346322	353604	380312	402519	427476	
13	listopad	374233	355773	352465	342668	347225	385204	392746	434169	461859	
14	grudzień	397386	378283	387345	402942	379959	611535	557809	542223	544538	

Rys. 4.5 Dane historyczne – zużycie energii elektrycznej w poszczególnych miesiącach

Sieć neuronowa w środowisku Excel wykorzystuje do nauki moduł Solver, służący do rozwiązywania zadań maksymalizacji lub minimalizacji funkcji z ograniczeniami. Moduł Solver rozwiązuje dany problem wykorzystując metodę Newtona lub metodę tzw. gradientów sprzężonych. Dane wejściowe sieci neuronowej należy poddać procesowi normalizacji do zakresu od 0 do 1. Normalizację danych dla danego wejścia sieci neuronowej wykonać można wg wzoru poniżej:

$$Y_{N} = \frac{(Y - Y_{MIN})}{(Y_{MAX} - Y_{MIN})} \tag{4.2}$$

gdzie: Y - dana przed normalizacją, Y_{MAX} - maksymalna wartość ze wszystkich danych przed normalizacją, Y_{MIN} - minimalna wartość ze wszystkich danych przed normalizacją.

Powrót do danej rzeczywistej z danej znormalizowanej dla pojedynczego wyjścia sieci neuronowej, umożliwia wzór poniższy:

$$Y = Y_{MIN} + Y_N * (Y_{MAX} - Y_{MIN})$$
 (4.3)

Przed rozpoczęciem nauki wagi początkowe w warstwie ukrytej losujemy z zakresu od -0,5 do +0,5. Wagi początkowe w warstwie wyjściowej mogą mieć wartości równe 0. Dopuszczalny zakres zmian wag w trakcie nauki sieci neuronowej w warstwie ukrytej to wartości od -1 do 1. Wagi warstwy wyjściowej nie mają ograniczeń na zmiany w trakcie nauki sieci neuronowej.

2. ZADANIA DO WYKONANIA

Zadanie nr 1. Na podstawie zakładki "mnozenie_x3" skonstruować w zakładce "cala_tabliczka_mnozenia" sieć neuronową oraz wytrenować ją aby rozsądnie podawała wynik mnożenia.

Zadanie nr 2

- A) Na podstawie zakładki **sprzedaż energii** policzyć w zakładce **krzywa zużycia** średnie miesięczne zużycie energii elektrycznej dla każdego miesiąca w roku. jako średnia z lat 1990 –1999. Wykonać wykres z obliczonych wielkości dla poszczególnych miesięcy w roku.
- **B**) W zakładce **aproksymacja** wykonać ćwiczenie polegające na nauczeniu sieci neuronowej aproksymacji krzywej średniego zużycia energii uzyskanej w zakładce **krzywa zużycia**. Przed rozpoczęciem nauki sieci neuronowej należy zapisać odpowiednie formuły w poszczególnych komórkach arkusza oraz sformułować cel optymalizacyjny w narzędziu **solver**.
- C) Wykonać w zakładce **aproksymacja** analizę statystyczną jakości nauczonej sieci neuronowej obliczając błędy względne pojedyncze procentowe oraz średni błąd względny procentowy MAPE. Następnie porównać wyniki z aproksymacją standardową metodą matematyczną krzywej zużycia energii elektrycznej wielomianem stopnia 2 oraz 3.

Uwaga ogólna: w libre office/nowa wersja excel niektóre pozycje menu mogą się nieznacznie różnić nazwą i położeniem.

3. PRZYKŁADOWY PRZEBIEG ĆWICZENIA

Otwieramy w środowisku arkusza kalkulacyjnego Excel plik **aproksymacja.xls**. Wybieramy zakładkę **mnożenie**. Ustawiamy początkowe wartości wagi w neuronach ukrytych (w komórkach z zakresu F38:H39 wpisujemy ręcznie liczby nie przekraczające wartości maksymalnej dozwolonej czyli komórki D38 oraz większe od wartości minimalnej dozwolonej czyli komórki D39). Ustawiamy początkowe wartości wag w neuronie wyjściowym (w komórkach z zakresu L38:L40 wpisujemy wartości równe zero).

Wagi można wylosować z zakresu od -1 do 1 korzystając z funkcji =los(), przy czym należy zmienić zakres z od 0 do 1 tej funkcji na zakres od -1 do +1.

Wybieramy menu narzędzia, pozycja solver. W przypadku gdy nie ma takiej pozycji w menu, uaktywniamy ją wybierając menu narzędzia, pozycja dodatki i w oknie dialogowym wybieramy uaktywnienie dodatku solver. Po uruchomieniu solver'a pojawi się okno dialogowe solver –parametry. Sprawdzamy czy komórka celu wskazuje komórkę z podaną formułą zawierającą wzór na miarę błędu pomiędzy wartościami rzeczywistymi wyjścia sieci neuronowej a bieżącymi wartościami wyjścia którą oblicza sieć neuronowa (suma kwadratów różnic). Dla pozycji równa sprawdzamy czy ustawiony jest wybór min (minimalizacja funkcji celu). Dla pozycji komórki zmieniane sprawdzamy czy wskazane są wszystkie wagi sieci neuronowej podane jako osobne kolumny komórek (wagi danego neuronu) oddzielone średnikami. Dla pozycji warunki ograniczające sprawdzamy czy podane są ograniczenia (komórki D38 oraz D39) dla każdego neuronu warstwy ukrytej wskazanego jako kolumna komórek.

Rys. 4.6 Okno dialogowe narzędzia solver.

Klikamy w przycisk **rozwiąż** uruchamiając proces minimalizacji funkcji czyli nauki sieci neuronowej. Jeśli uznamy, że nauka powinna być kontynuowana w celu dalszego zmniejszenia minimalizowanej funkcji to możemy ponownie uruchomić **solver** i kliknąć w przycisk **rozwiąż (zachowując dotychczasowe rozwiązanie**). Po zakończeniu nauki w komórce A56 możemy podawać liczby z zakresy 1-10. W komórce P56 obliczony zostanie wynik uzyskany przez wytrenowaną sieć neuronową. Zaobserwujmy, że podając liczby spoza zakresu 1-10 uzyskamy wynik przybliżony gdyż dana wejściowa jest spoza zakresu danych treningowych. Zdolność podania wyniku w takiej sytuacji uznać jednak należy za dużą zaletę sieci neuronowych jako narzędzia do aproksymacji.

Ciekawą opcją jest zignorowanie ograniczeń na wartości wagi i uruchomienie procesu optymalizacji ich wartości przy użyciu narzędzia Solver.

Po zakończeniu ćwiczenia wprowadzającego, wybieramy zakładkę cala_tabliczka_mnozenia i na podstawie analogii budujemy sieć neuronową i trenujemy ją. Następnie wybieramy zakładkę krzywa zużycia. Należy wypełnić formułami zakres komórek C5:C16. Formuły mają obliczać średnie zużycie energii dla każdego miesiąca na podstawie danych z lat 1990-1999 zawartych w zakładce sprzedaż energii. Wykorzystać można do tego celu funkcję =ŚREDNIA(zakres). Następnie wykonujemy w zakładce krzywa zużycia wykres kolumnowy ilustrujący zużycie energii w poszczególnych miesiącach (wybieramy menu wstaw, pozycję wykres, typ wykresu – kolumnowy, klikamy przycisk dalej, pozycja zakres danych – wskazujemy zakres C5:C16, klikamy przycisk dalej, dodajemy opisy i legendę, formatujemy wykres)

Przechodzimy do zakładki **budowa sieci neuronowej**, zapoznając się ze schematem sieci neuronowej, który będzie wykorzystany do zadania aproksymacji. Wejście **MIES** to informacja o miesiącu dla którego sieć neuronowa ma aproksymować zużycie energii elektrycznej. Wejście **BIAS** to wejście z sygnałem o wartości jeden. Sieć ma 3 neurony ukryte z funkcją aktywacji tangens hiperboliczny. Wyjścia 1,2 i 3-ego neuronu ukrytego oznaczone są jako **WY1N**, **WY2N**, **WY3N**. Wyjście sieci neuronowej **WY** to oszacowana przez sieć neuronową wartość zużycia energii elektrycznej w danym miesiącu. Neuron wyjściowy ma liniową funkcję aktywacji Y=X. Poszczególne wejścia sieci neuronowej są znormalizowane do przedziału (0-1) przy użyciu wzoru 4.2. Sygnał wyjściowy sieci neuronowej musi zostać poddany denormalizacji z zakresu (0-1) do zakresu rzeczywistego zmienności zużycia energii elektrycznej przy użyciu wzoru 4.3.

Następnie rozpoczynamy budowę sieci neuronowej wybierając zakładkę aproksymacja.

	А	В	С	D	Е	F	G	Н		J	K	L
1												
2		po normalizacji						po normalizacji				
3	WARSTW	/A WEJŚCIOWA		WARS	WA UK	RYTA	WARSTW	A WYJŚCIOWA	WARTOŚ	Ć RZECZYV	VISTA WY	JŚCIOWA
4	MIESIAC	MIES	BIAS	WY1N	WY2N	MX3N	WY	WYJŚCIE	ZUZYCIE			
5												
6	1											
7	2											
8	3											
9	4											
10	5											
11	6											
12	7											
13	8											
14	9											
15	10											
16	11											
17	12											
18												
19												
20				WAGI	JKRYTE		WAGI WY	JSCIOWE				
21												
22												
23												
24				MAX	1							
22 23 24 25 26				MIN	-1							
					117014		INIIZOTA		ı.	$\sum (x -$	\2	
27				MINIMA	LIZOW	ANA F	JNKCJA>		czyli:	$\sum (x - $	<i>y)</i>	

Rys. 4.7 Arkusz zakładki aproksymacja przed wypełnieniem formułami i danymi

Importujemy z zakładki **krzywa zużycia** dane o zużyciu energii z zakresu C5:C16 do zakresu I6:I17 w zakładce **aproksymacja**. W komórce B6 wpisujemy formułę w oparciu o wzór 4.2, która normalizuje dane z kolumny **MIESIAC** na dane w kolumnie MIES. Formuła może wyglądać następująco:

=(A6-MIN(\$A\$6:\$A\$17))/(MAX(\$A\$6:\$A\$17)-MIN(\$A\$6:\$A\$17)).

Kopiujemy formułę na pozostałe komórki kolumny **MIES**. W kolumnie **BIAS** wpisujemy do komórek wartość równą jeden. W komórce D6 kolumny **WY1N** wpisujemy uniwersalną formułę obliczającą sygnał wyjściowy dla neuronu ukrytego, którą można będzie skopiować poprzez przeciągnięcie myszą za prawy dolny róg komórki z formułą na zakres D6:F17 (kolumny **WY1N**, **WY2N**, **WY3N**) czyli wszystkie komórki obliczające sygnały wyjściowe dla neuronów ukrytych. Konstrukcja formuły jest analogiczna jak formuła w zakładce **mnożenie**. Pamiętajmy o właściwym wykorzystaniu adresów komórek (adresy bezwzględne np.\$A\$1, względne np. A1 i mieszane np. \$A1 lub A\$1). W komórce G6 wpisujemy uniwersalną formułę obliczającą sygnał wyjściowy sieci neuronowej na wyjściu jedynego neuronu wyjściowego. Konstrukcja formuły jest analogiczna jak formuła w zakładce **mnożenie**. Kopiujemy formułę na pozostałe komórki kolumny **WY**. W komórce H6 kolumny **WYJSCIE** wpisujemy formułę, która denormalizuje wartości z kolumny **WY** wykorzystując wzór 4.3. W komórkach D21:D22 (wagi 1 neuronu ukrytego), E21:E22 (wagi 2 neuronu

ukrytego), F21:F22 (wagi 3 neuronu ukrytego) losujemy wagi początkowe z zakresu (-0,5 do 0,5).

Wykorzystać możemy funkcję =LOS(), która losuje wartość z zakresu (0,1) Aby przeskalować losowanie do zakresu (-0,5 do 0,5) należy wykorzystać wzór przeskalowujacy: =LOS()*(K-P)+P, gdzie (P,K) to nowy zakres.

Kopiujemy formułę na pozostałe komórki D21:F22. Losowanie inicjujemy klikając w przycisk **F9** na klawiaturze. Konwersję z formuł na wylosowane wartości wykonujemy zaznaczając obszar D21:F22 myszą a następnie klikamy prawy klawisz myszy, wybieramy z menu pozycja **kopiuj**, następnie znów klikamy prawy klawisz myszy i wybieramy **wklej specjalnie**, w tabeli zaznaczamy **wklej – wartości** i zatwierdzamy przyciskiem **OK**. Formuły zmieniły się na wylosowane liczby. W komórkach z zakresu G21:G23 czyli wagach początkowych neuronu wyjściowego wpisujemy zera. W komórce H27 wpisujemy formułę, która szacować będzie poziom błędu odpowiedzi sieci neuronowej poprzez porównanie wartości z kolumny **WYJSCIE** (odpowiedz sieci neuronowej) oraz **ZUZYCIE** (wartość rzeczywista zużycie energii elektrycznej). Wykorzystać można funkcję, która oblicza sumę kwadratów różnic. Formuła wygląda następująco:

=SUMA.XMY.2(H6:H17;I6:I17). Im mniejsza wartość w komórce H27 (funkcja celu minimalizowana) tym aproksymacja dokładniejsza.

Wybieramy następnie menu **narzędzia**, pozycja **solver**. W oknie dialogowym **solver** - **parametry** podajemy dane do zadania minimalizacji funkcji celu z ograniczeniami nierównościowymi. **Komórka celu** – wskazujemy komórkę H27 z formułą funkcji celu. **Równa:** wybieramy pozycję – **min** ponieważ szukamy minimum funkcji celu. W polu **komórki zmieniane** wskazujemy zakresy wag (np. D21:D22 dla 1 neuronu ukrytego) dla wszystkich neuronów ukrytych oraz neuronu wyjściowego oddzielane znakiem średnika. W polu warunki ograniczające podajemy ograniczenia na zmienność wag dla każdego neuronu z warstwy ukrytej osobno. Przykładowo 1 neuron ukryty ma ograniczenia: D21:D22 <= 1 oraz D21:D22 >= -1. Ograniczenia wprowadzamy klikając w przycisk **dodaj**. Następnie podajemy adres komórek mających ograniczenie, rodzaj ograniczenia oraz warunek ograniczający (komórka E24 z wartością 1 lub E25 z wartością -1). Klikamy na przycisk **OK**. aby zatwierdzić Wprowadzenie warunku ograniczającego.

Rys. 4.8 Menu wprowadzania warunku ograniczajacego.

Powtarzamy czynności wprowadzając kolejne ograniczenia dla wag wszystkich 3 neuronów ukrytych. W sumie powinno być 6 ograniczeń. Aby zmodyfikować czas obliczeń, liczbę itearcji lub wybrać inną metodę optymalizacyjną klikamy w przycisk **opcje**.

Solver - Opcje		? ×
Maksymalny czas: 10	0 sekund(y)	OK
Liczba iteracji: 10	0	Anuluj
Dokładność: 0,0	000001	<u>Z</u> aładuj model
Tol <u>e</u> rancja: 5	%	Zapi <u>s</u> z model
Z <u>bi</u> eżność: 0,0	0001	Pomo <u>c</u>
Przyj <u>mij</u> model linio	owy 🗆 Aut <u>o</u> ma	atyczne skalowanie
Przyjmij nie <u>uj</u> emna	e 🔲 Pokaż v	vyniki ite <u>r</u> acji
Estymaty	Pochodne Szu	ıkanie
St <u>y</u> czna	⊙ <u>W</u> przód	<u>N</u> ewtona
C <u>K</u> wadratowa	C Centralne	Gradient sprzężony

Rys. 4.9 Menu solver – opcje.

Zatwierdzamy zamknięcie menu klikając **OK**. Będąc w oknie **solver** – **parametry** klikamy na przycisk rozwiąż (uwaga: w libre office modele optymalizacyjne są nieco inne: deps, sco ale są skuteczne), rozpoczynając proces minimalizacji. W przypadku gdy jakość rozwiązania nas nie satysfakcjonuje (zbyt duże różnice pomiędzy kształtem krzywej zużycie rzeczywiste i krzywej zużycie aproksymowane widoczne na wykresie) uruchamiamy narzędzie **solver** jeszcze raz, wybierając ponownie przycisk **rozwiąż**. Jeśli i tym razem różnice kształtów krzywych będą zbyt duże, należy ponownie rozpocząć proces nauki od nowa losując jeszcze raz wagi neuronów ukrytych i wstawiając zera dla wag neuronu wyjściowego.

Rys. 4.10 Wykres z krzywą do aproksymacji i wynik aproksymacji po zakończeniu nauki sieci neuronowej

	Α	В	С	D	Е	F	G	Н	1	J	К	I
1		В	, C	U	L		G	II	I	J	N.	L
2		po normalizacji						po normalizacji				
3		A WEJŚCIOWA		WADST	TWA UK	(DVTA	WADSTW	A WYJŚCIOWA	WADTOŚĆ	D7EC7VA	MISTA WV	IŚCIOWA
4	MIESIAC	MIES	BIAS				WY	WYJŚCIE	ZUZYCIE	NZECZIY	VISTA VVI	JSCIOWA
5	MILSIAC	MILS	DIAS	******	**121	WIJN	***	WIJSCIL	ZUZICIL			
6	1	0.000	1	0,762	-0,047	0,262	0,71561	422104	409009			
7	2	0,091	1	0,740					413847			
8	3	0,182	1	0,718	0,038	0,086	<u> </u>		416215			
9	4	0,273	1	0,693	0,030	-0,004	0,399262	372284	376726			
10	5	0,364	1	0,667		-0,095	0,253064	349260	346278			
11	6	0,455	1	0,639		-0,184			328743			
12	7	0,545		0,609	0,206		0,052671	317701	309406			
13	8	0,636		0,578		-0,352	0,043033		310212			
14	9	0,727	1	0,544	0,286		0,116239	327711	326722			
15	10	0,818	1	0,509		-0,500	0,110233	353895	357490			
16	11	0,909	1	0,472					382927			
17	12	1,000	1	0,434			0,908117	452421	466891			
18		1,000		0,101	0,000	0,021	0,000111	102121	100001			
19												
20				WAGI	JKRYTE		WAGI WY	JŚCIOWE				
21				-0.536		-1	-4					
22				1	-0.047	0.268	40,37932					
23							21,55578					
24				MAX	1							
25				MIN	-1							
26												
27				MINIMA	LIZOW	ANA F	JNKCJA>	1147689837	czyli:	$\sum (x-$	$(y)^2$	
28									,	<u>~</u> `		

Rys. 4.11 Zawartość komórek po zakończeniu nauki sieci neuronowej

Przechodzimy następnie do analizy jakości aproksymacji obliczając w komórkach D56:D67 błędy względne pojedyncze procentowe (BW) (na podstawie danych z kolumny **WYJSCIE** i kolumny **ZUZYCIE**) korzystając ze wzoru 2.3 oraz średni błąd względny procentowy (SBW) korzystając ze wzoru 2.2 w komórce D71.

54		WARTOŚĆ RZE	CZYWISTA WY	/JŚCIOWA
55	WYJŚCIE	ZUZYCIE		
56	422104	409009	3,20%	<bledy [%]<="" pojedyncze="" procentowe="" td=""></bledy>
57	412641	413847	0,29%	
58	394775	416215	5,15%	
59	372284	376726	1,18%	
60	349260	346278	0,86%	
61	329801	328743	0,32%	
62	317701	309406	2,68%	
63	316183	310212	1,92%	
64	327711	326722	0,30%	
65	353895	357490	1,01%	
66	395480	382927	3,28%	
67	452421	466891	3,10%	
68				
69				
70			Średni	błąd względny [%]
71			1,94%	

Rys. 4.12 Przykładowe wyniki z fazy analizy jakości sieci neuronowej

Na zakończenie warto porównać jakość sieci neuronowej w zadaniu aproksymacji z jakością aproksymacji metodą matematyczną, która zastępuje krzywą zużycia energii elektrycznej krzywą wielomianu stopnia 2 oraz stopnia 3. Excel samodzielnie potrafi obliczyć wzór matematyczny dla typowych funkcji (wielomianowa, potęgowa, wykładnicza itd.) Klikamy lewym a następnie prawym przyciskiem myszy na krzywą zużycie rzeczywiste. Z menu wybieramy pozycję dodaj linię trendu (uwaga: w libre office: "wstaw krzywą regresji"). Z zakładce typ wybieramy typ trendu: wielomiany, stopień – wybieramy 2. W zakładce opcje zaznaczamy pole wyboru: wyświetl równanie na wykresie. Zatwierdzamy czynności przyciskiem OK. Na wykresie pojawi się nowa krzywa – wielomian stopnia 2 oraz wzór na wielomian stopnia 2.

Rys. 4.13 Wielomian stopnia 2 aproksymujący krzywą zużycia energii.

W komórce D77 wpisujemy formułę: =3880*A77^2-51944*A77+497843, która oblicza wartość zużycia energii na podstawie wielomianu stopnia 2. Kopiujemy formułę do pozostałych komórek kolumny WIELOMIAN STOPNIA 2. Przechodzimy następnie do analizy jakości aproksymacji wielomianem stopnia 2 obliczając w komórkach G77:G88 błędy względne pojedyncze procentowe (BW) (na podstawie danych z kolumny **WIELOMIAN STOPNIA 2** i kolumny **ZUZYCIE**) korzystając ze wzoru 2.3 oraz średni błąd względny procentowy (SBW) korzystając ze wzoru 2.2 w komórce G91.

75	APROKSY	MACJA METOD	A MATEMATYCZNA		
76	MIESIAC	ZUZYCIE	WIELOMIAN STOPNIA		
77	1	409009	449779	9,97%	<bledy [%]<="" pojedyncze="" procentowe="" th=""></bledy>
78	2	413847	409475	1,06%	
79	3	416215	376931	9,44%	
80	4	376726	352147	6,52%	
81	5	346278	335123	3,22%	
82	6	328743	325859	0,88%	
83	7	309406	324355	4,83%	
84	8	310212	330611	6,58%	
85	9	326722	344627	5,48%	
86	10	357490	366403	2,49%	
87	11	382927	395939	3,40%	
88	12	466891	433235	7,21%	
89					
90				Średni błąd względi	ny [%]
91				5,09%	

Rys. 4.14 Przykładowe wyniki z fazy analizy jakości wielomianu stopnia 2

Wykonać w analogiczny sposób aproksymację krzywej zużycie energii elektrycznej dla wielomianu stopnia 3. Obliczyć w komórkach G95:G106 błędy względne pojedyncze procentowe (BW) (na podstawie danych z kolumny **WIELOMIAN STOPNIA 3** i kolumny **ZUZYCIE**) korzystając ze wzoru 2.3 oraz średni błąd względny procentowy (SBW) korzystając ze wzoru 1.2 w komórce G109.

Na koniec należy dodać nową zakładkę pt. "**Wnioski**" i wpisać swoje wnioski i obserwacje z przebiegu ćwiczenia z zadania nr 1 oraz zadania nr 2.

LITERATURA POMOCNICZA

- [1] Helt P., Parol M., Piotrowski P.: Metody sztucznej inteligencji w elektroenergetyce, Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej, 2000.
- [2] Żurada J., Barski M., Jędruch W.: Sztuczne sieci neuronowe, Warszawa, PWN, 1992.
- [3] Osowski S.: Sieci neuronowe w ujęciu algorytmicznym, WNT, Warszawa 1996