훈련 세트와 테스트 세트

비타민 2주차 세션1

10기 교육부 이소현, 유근태

01 지난 시간 내용 복습

- 인공지능, 머신러닝, 딥러닝
- 데이터 분석을 위한 3종 패키지
- 복습 과제 풀이 예시

Turing Test

기계에도 지능이 있는가?

Testee Machine Human B B C Tester

1950년 Alan Turing이 제시한 인공지능 판별법. 인공지능(Al)의 우수성을 측정하기 위해 사용. 기계에 지능이 있다고 말하기 위해서는, 질문자가 상대와 여러 질의응답을 한 후, 어느 쪽이 사람 or 컴퓨터인지 판별 불가능한 경우

>>> 강인공지능(Strong AI)

인간과 동일한 지능이 구현된 인공지능 사람과 구별이 어려운 지능을 가진 컴퓨터 시스템

Turing Test

기계에도 지능이 있는가?

Testee Machine Human B B C Tester

1950년 Alan Turing이 제시한 인공지능 판별법. 인공지능(Al)의 우수성을 측정하기 위해 사용. 기계에 지능이 있다고 말하기 위해서는, 질문자가 상대와 여러 질의응답을 한 후, 어느 쪽이 사람 or 컴퓨터인지 판별 불가능한 경우

약인공지능(Strong AI)

인간의 지능으로 가능한 작업의 일부를 컴퓨터로 수행하게 하는 것.

사람의 일을 도와주는 보조적인 역할 수행.

1차 AI 붐: 추론과 탐색

"지능이란 곧 기호 처리이다."

컴퓨터상에서 기호 처리를 통해 퍼즐과 미로를 풀고 간단한 수학의 정리를 증명하거나 체스를 두는 등 지적 활동을 배울 수 있는 단계

Ex) 컴퓨터가 미로를 푸는 경우

1) 모든 길을 샅샅이 조사해 갈 수 있는 길의 패턴 탐색

+

- 2) 목적지에 도착하는 경로를 예측하는 추론
- ⇒ AI는 "추론과 탐색"의 조합으로 미로를 풀 때, 가능한 모든 선택지를 탐색하여 목표에 도달하는 방법 찾아냄.

1차 AI 붐: 추론과 탐색

"지능이란 곧 기호 처리이다."

컴퓨터상에서 기호 처리를 통해 퍼즐과 미로를 풀고 간단한 수학의 정리를 증명하거나 체스를 두는 등 지적 활동을 배울 수 있는 단계

* 한계점

규칙과 목표가 명확하게 정해져 있는 문제에 적용이 한정됨.

규칙과 목표가 복잡하고 모호한 실제 현실의 문제 해결 불가.

⇒ 계산을 효율화 하는 이론의 부족 및 컴퓨터 처리 능력의 부족

2차 AI 붐: 전문가 시스템

"지능이란 곧 지식이다."

컴퓨터가 스스로 현실 세계에 대해 고려하기는 힘들다는 것이 판명되었으니, 인간이 컴퓨터를 가르쳐서 똑똑하게 만들자!

⇒ 전문가의 지식을 컴퓨터에 집어넣은 뒤, 그 지식에 기초하여 판단을 내리는 프로그램 설계

Ex) 의사가 환자를 진찰할 때, 여러가지 증상을 관찰 후 적절한 약물과 치료법을 판단함.

⇒ 이때, 의사가 사용하는 지식을 컴퓨터에 입력하여 컴퓨터가 마치 의사처럼 판단을 내리게 하는 것.

2차 AI 붐: 전문가 시스템

"지능이란 곧 지식이다."

컴퓨터가 스스로 현실 세계에 대해 고려하기는 힘들다는 것이 판명되었으니, 인간이 컴퓨터를 가르쳐서 똑똑하게 만들자!

⇒ 전문가의 지식을 컴퓨터에 집어넣은 뒤, 그 지식에 기초하여 판단을 내리는 프로그램 설계

* 한계점

지식 병목 현상(Knowledge acquisition bottleneck)

: 예를 들어, 생산 공장 현장에서는 단순한 지식보다 오랜 경험과 직감이 중 요한 경우가 많음. 인간이 가진 전문 지식을 적절히 표현하여 시스템에 입력 하는 것의 어려움. => 노력 대비 가치가 있는 것인가?

3차 AI 붐: 머신러닝, 딥러닝

"지능이란 곧 학습이다."

- 머신러닝의 방법 중 하나인 딥러닝은, 머신러닝의 정밀도를 비약적으로 증가시킴.
- 딥러닝은 인간이 존재하지 않아도 입력 데이터에서 스스로 특징을 판별하고, 특정 지식이나 패턴을 기억시키지 않아도 학습이 가능함.

Ex) IBM의 Waston, Google의 AplhaGo, Facebook의 DeepFace

2. 데이터 분석 3종 패키지

Numpy

import numpy as np

파이썬에서 배열을 사용하기 위한 표준 패키지.

수치 해석용 파이썬 패키지로, 벡터/행렬 사용하는 선형대수 계산에 주로 사용.

Pandas import pandas as pd

고수준의 자료 구조와 빠르고 쉬운 데이터 분석 도구를 제공하는 파이썬 라이브러리.

Pandas의 자료 구조에는 series, dataframe이 있음.

matplotlib import matplotlib.pyplot as plt

파이썬에서 자료를 차트나 플롯으로 시각화하는 패키지

3. 복습 과제 풀이 예시

문제 1

place라는 새로운 데이터 프레임 생성 후, place 데이터를 출력하세요. 이 데이터 프레임은 지역, 인구라는 두 열을 가지고 있습니다.

- 지역이 서울이면 인구는 9904312
- 지역이 부산이면 인구는 3448737
- 지역이 인천이면 인구는 2890451
- 지역이 대구이면 인구는 2466052

```
import pandas as pd
place=pd.DataFrame({'지역': ['서울','부산','인천','대구'], '인구':['9904312','3448737','2890451','2466052']})
place
```


Dataframe 생성

1) 하나의 열 데이터를 일차원 배열(리스트)로 준비

지역 열에 해당하는 데이터: ['서울', '부산',' 인천', '대구']

인구 열에 해당하는 데이터: ['9904312', '3448737', '2890451', '2466052']

2) 각 열에 대한 이름을 키로 가지는 딕셔너리 생성

{'지역': ['서울','부산','인천','대구'], '인구':['9904312','3448737','2890451','2466052']}

3) dataframe 생성자에 데이터 넣기

pd.DataFrame({'지역': ['서울','부산','인천','대구'], '인구':['9904312','3448737','2890451','2466052']})

02

훈련 세트와 테스트 세트

- 지도 학습, 비지도 학습
- 지도 학습에서의 훈련 세트 & 테스트 세트

머신러닝

인공지능의 한 분야로, 컴퓨터가 스스로 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification) 예측 (regression)

- 2) 비지도 학습(unsupervised learning)
- 정답(target)없이 입력 데이터만 사용
- 정답을 사용하지 않기 때문에, 무언가를 맞출 수는 없음.
- 데이터를 잘 파악하거나 변형하는데 도움.

이상값 감지 (Anomaly Detection)

그룹화 (clustering)

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification) (re

예측 (regression)

* 분류란?

레이블이 달린 학습 데이터로 학습한 후에 새로 입력된 데이터가 학습했던 레이블 중 어떤 그룹에 속하는 지를 찾아냄.

* 예시

손글씨 이미지 분류

스팸 메일 분류

그림 1-5 지도 학습에서 레이블된 후련 세트(예를 들면 스팽 분류

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification) 예측 (regression)

* 분류란?

레이블이 달린 학습 데이터로 학습한 후에 새로 입력된 데이터가 학습했던 레이블 중 어떤 그룹에 속하는 지를 찾아냄.

* 알고리즘

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification) 예측 (regression) * 알고리즘: KNN(K-최근접 이웃: Chapter 3)

- 어떤 데이터가 주어지면 그 주변의 데이터를 살펴본 뒤 더 많은 데이터가 포함되는 범주로 분류
- K값에 따라 살펴보는 주변의 데이터 수 달라짐.
- 위의 그림에서, 빨간 점을 분류하고자 할 때, k=3인 경우 보라색 점 (class B), k=6인 경우 노란색 점(class A)로 분류됨.

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification) 예측 (regression) * 알고리즘: Decision Tree(의사결정트리: Chapter5)

- 예/아니오로 대답할 수 있는 질문을 이어 나가며 학습
- 특정 기준(질문)에 따라 데이터를 구분하는 모델
- 불순도(ex. gini, entropy)를 기준으로 정보 이득(information gain)이 최대가 되도록 노드를 분할

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification) 예측 (regression) * 알고리즘: Logistic regression(로지스틱 회귀: Chapter4)

- 시그모이드 함수를 사용해 함수가 0과 1사이의 값을 가지도록 함.
- Z가 무한하게 큰 음수일 경우 0에, 무한하게 큰 양수일 경우 1에 가까워짐.
- 이진 분류의 경우, Sigmoid 함수의 출력이 0.5보다 크면 양성 클래스,
 0.5보다 작으면 음성 클래스

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification)

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification)

* 예측이란?

레이블이 달린 학습 데이터로 학습한 후에 특징(feature)과 레이블 사이의 상관 관계가 함수식으로 나타남.

⇒ 연속적인 범위 내의 값에서 그 결과값을 예측하는 문제에 활용.

* 예시

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification)

* 예측이란?

레이블이 달린 학습 데이터로 학습한 후에 특징(feature)과 레이블 사이의 상관 관계가 함수식으로 나타남.

⇒ 연속적인 범위 내의 값에서 그 결과값을 예측하는 문제에 활용.

* 알고리즘

Linear Regression(선형 회귀)

머신러닝으로 해결할 수 있는 문제

- 1) 지도 학습(supervised learning)
- 훈련하기 위한 데이터(input)와 정답(target)이 필요
 - => 입력과 타깃을 합쳐 훈련 데이터(training data)라고 함.
- 정답이 있기 때문에 알고리즘이 정답을 맞히는 것을 학습함.

분류 (classification)

* 알고리즘: Linear Regression(선형 회귀, Chapter3)

- 데이터를 가장 잘 설명할 수 있는 직선식 (y=mx+b) 찾기
- ⇒ 모든 데이터로부터 나타나는 오차의 평균을 최소화할 수 있는 최적의 기울기와 절편 찾기

머신러닝으로 해결할 수 있는 문제

- 2) 비지도 학습(unsupervised learning)
- 정답(target)없이 입력 데이터만 사용
- 정답을 사용하지 않기 때문에, 무언가를 맞출 수는 없음.
- 데이터를 잘 파악하거나 변형하는데 도움.

이상값 감지 (Anomaly Detection)

그룹화 (clustering) * 이상값 감지란?

정상 데이터를 학습하여 비정상 데이터를 감지함.

*예시

제조 라인에서 결함 제품 감지

* 알고리즘

GMM, PCA, isolation forest

머신러닝으로 해결할 수 있는 문제

- 2) 비지도 학습(unsupervised learning)
- 정답(target)없이 입력 데이터만 사용
- 정답을 사용하지 않기 때문에, 무언가를 맞출 수는 없음.
- 데이터를 잘 파악하거나 변형하는데 도움.

이상값 감지 (Anomaly Detection)

* 그룹화란?

라벨링이 되어 있지 않은 데이터들 내에서 비슷한 특징이나 패턴을 가진 데이터들끼리 그룹화한 후, 새로운 데이터가 어떤 그룹에 속하는지 판단.

*예시

카드사에서 고객 정보와 카드 결제 내역을 바탕으로 고객 유형 분류

* 알고리즘

머신러닝으로 해결할 수 있는 문제

- 2) 비지도 학습(unsupervised learning)
- 정답(target)없이 입력 데이터만 사용
- 정답을 사용하지 않기 때문에, 무언가를 맞출 수는 없음.
- 데이터를 잘 파악하거나 변형하는데 도움.

이상값 감지 (Anomaly Detection)

* 알고리즘: K-means clustering(K-평균, Chapter6)

- 각 데이터로부터 그 데이터가 속한 클러스터 중심까지의 평균 거리 최소화
- 1) K개의 임의의 중심점(centroid) 배치
- 2) 각 데이터를 가장 가까운 중심점으로 할당
- 3) 군집에 속한 샘플의 평균값으로 클러스터의 중심점 업데이트
- 4) 2,3번 단계를 수렴이 될 때까지(중심점이 업데이트 되지 않을 때까지) 반복

머신러닝으로 해결할 수 있는 문제

- 2) 비지도 학습(unsupervised learning)
- 정답(target)없이 입력 데이터만 사용
- 정답을 사용하지 않기 때문에, 무언가를 맞출 수는 없음.
- 데이터를 잘 파악하거나 변형하는데 도움.

이상값 감지 (Anomaly Detection)

* 알고리즘: K-means clustering(K-평균, Chapter6)

- 각 데이터로부터 그 데이터가 속한 클러스터 중심까지의 평균 거리 최소화
- 1) K개의 임의의 중심점(centroid) 배치
- 2) 각 데이터를 가장 가까운 중심점으로 할당
- 3) 군집에 속한 샘플의 평균값으로 클러스터의 중심점 업데이트
- 4) 2,3번 단계를 수렴이 될 때까지(중심점이 업데이트 되지 않을 때까지) 반복

* 알고리즘: DBSCAN clustering(교재에 없음)

minPts(반경 내 최소 point 수), Core: 중심점(minPts를 만족할 경우),

Border: 경계점(minPts를 만족하진 않지만, 어느 core 반경에 속한 경우),

Noise: 어느 군집에도 속하지 않은 점

- 1) 하나의 점(파란색)을 중심으로 반경 내에 최소 점이 4개(minPts=4)이상 있으면 하나의 군집으로 판단하고, 해당 점(파란색)은 core가 된다.
- 2) 회색 점은 반경 내에 점이 3개 뿐이므로 core가 되지는 못하지만, core1의 군집에 포함된 점이므로 border가 된다.
- 3) 파란색 점은 반경 내에 최소 점이 4개 이상이기 때문에 core가 된다.
- 4) 그러나, 반경 내의 점 중에 core1이 포함되어 있으므로 두 군집은 연결되어 하나의 군집으로 묶인다.

=> 이와 같은 방식으로 군집의 확산을 반복하면서, 자동으로 최적의 군집수가 도출.

알고리즘의 성능을 제대로 평가하려면 훈련 데이터와 평가에 사용할 데이터가 달라야 함.

- 1) 훈련 세트(train set)
- 모델을 훈련할 때 사용하는 데이터(입력 + 정답(target, label))
- 훈련 세트는 클수록 좋음.
- 2) 테스트 세트(test set)
- 훈련 세트로 학습시킨 모델의 성능 평가에 사용되는 데이터
- 주로 훈련 데이터에서 일부를 떼어 내어 테스트 세트로 활용.

훈련 세트 & 테스트 세트를 나눌 때 주의 사항

- 1) 훈련 세트의 데이터가 테스트 세트의 데이터보다 많아야 함.
- 2) 훈련 세트와 테스트 세트에 중복되는 데이터가 최대한 없어야 함.
- 3) 샘플링 편향(sampling bias)

잘못된 훈련 데이터

- 훈련 세트에는 도미 데이터만, 테스트 세트에는 빙어 데이터만 들어있음.
- 빙어 데이터 없이 모델을 훈련하면 빙어 올바르게 분류 불가.
- => 샘플링 편향

올바른 훈련 데이터

- 훈련 세트에 도미와 빙어 데이터가 골고루 섞여 있음.
- 도미와 빙어 모두 올바르게 분류 가능

훈련 세트와 테스트 세트로 나누는 법

1) Numpy 배열의 인덱스 섞기

```
[] 1 # 도미 데이터

2 bream_length = [25.4, 26.3, 26.5, 29.0, 29.0, 29.7, 30.0, 30.0, 30.7, 31.0, 31.0, 31.5, 32.0, 32.0, 32.0]

3 bream_weight = [242.0, 290.0, 340.0, 363.0, 430.0, 450.0, 500.0, 390.0, 450.0, 500.0, 475.0, 500.0, 500.0, 340.0, 600.0]

4

5 # 빙어 데이터

6 smelt_length = [9.8, 10.5, 10.6, 11.0, 11.2, 11.3, 11.8, 11.8, 12.0, 12.2, 12.4, 13.0, 14.3, 15.0]

7 smelt_weight = [6.7, 7.5, 7.0, 9.7, 9.8, 8.7, 10.0, 9.9, 9.8, 12.2, 13.4, 12.2, 19.7, 19.9]

8

9 # 도미와 빙어 데이터를 하나의 데이터로 합침

10 length = bream_length + smelt_weight

11 weight = bream_weight + smelt_weight

12

13 fish_data = [[],w] for ],w in zip(length, weight)]

14 fish_target = [1]*15 + [0]*14
```

- 도미 데이터 15개, 빙어 데이터 14개 선언.
- 도미 데이터와 빙어 데이터를 각각 length와 weight로 합침.
- zip 함수를 사용해 생선의 길이와 무게를 하나의 리스트로 담은 2차원 리스트 fish_data를 만들고, 이에 해당하는 정답값 fish_target을 생성.

훈련 세트와 테스트 세트로 나누는 법

1) Numpy 배열의 인덱스 섞기

```
[] 1#넘파이 사용하기
2import numpy as np
3
4input_arr = np.array(fish_data)
5target_arr = np.array(fish_target)
6
7 print(input_arr)
```

출력 결과

```
[[ 25.4 242. ]
  [ 26.3 290. ]
  [ 26.5 340. ]
  [ 29. 363. ]
  [ 29. 430. ]
  [ 29.7 450. ]
  [ 30. 500. ]
  [ 30. 390. ]
  [ 30.7 450. ]
  [ 31. 500. ]
  [ 31. 500. ]
  [ 31. 500. ]
  [ 31. 500. ]
```

- 넘파이 array() 함수에 파이썬 리스트를 전달하여, 파이썬 리스트를 넘파이 배열로 바꿈.

훈련 세트와 테스트 세트로 나누는 법

1) Numpy 배열의 인덱스 섞기

```
[] 1#데이터 섞기
2 index = np.arange(29) #인덱스 생성
3 np.random.shuffle(index)
4 print(index)
5
6 train_input = input_arr[index[:15]]
7 train_target = target_arr[index[:15]]
8 test_input = input_arr[index[15:]]
9 test_target = target_arr[index[15:]]
```

- 넘파이 arrange() 함수를 사용해 0부터 28까지 1씩 증가하는 인덱스 만듬.
- shuffle() 함수를 사용해 주어진 배열을 무작위로 섞음.
- 앞서 만든 인덱스 배열의 처음 15개를 train_input과 train_target에 전달하여 랜덤하게 15개의 샘플을 훈련 세트로 만듬.
- 나머지 14개의 데이터를 테스트 세트로 만듬.

훈련 세트와 테스트 세트로 나누는 법

1) Numpy 배열의 인덱스 섞기

```
[] 1#데이터 나누고 확인하기
2 import matplotlib.pyplot as plt
3
4 plt.scatter(train_input[:,0], train_input[:,1])
5 plt.scatter(test_input[:,0], test_input[:,1])
6 plt.xlabel('length')
7 plt.ylabel('weight')
8 plt.show()
```

- 마지막으로 훈련 세트와 테스트 세트에 도미와 빙어가 잘 섞여 있는지 확인!

파란색이 훈련 세트이고 주황색이 테스트 세트

훈련 세트와 테스트 세트로 나누는 법

2) 사이킷런 패키지의 train_test_split() 함수 이용

```
from sklearn.model_selection import train_test_split
train_input, test_input, train_target, test_target = train_test_split(fish_data, fish_target, startify=fish_target, random_state=42)
```

- train_test_split() 함수는 사이킷런의 model_selection 모듈 안에 있으므로 import.
- 위와 같이 훈련 세트와 테스트 세트로 나눔.
- fish_data와 fish_target이라는 두 개의 배열을 전달했으므로 2개씩 나뉘어 총 4개의 배열이 반환됨.

훈련 세트와 테스트 세트로 나누는 법

2) 사이킷런 패키지의 train_test_split() 함수 이용

```
from sklearn.model_selection import train_test_split
train_input, test_input, train_target, test_target = train_test_split(fish_data, fish_target, startify=fish_target, random_state=42)
```

- train_test_split() 함수는 사이킷런의 model_selection 모듈 안에 있으므로 import
- 위와 같이 훈련 세트와 테스트 세트로 나눔.
- fish_data와 fish_target이라는 두 개의 배열을 전달했으므로 2개씩 나뉘어 총 4개의 배열이 반환됨.
- test size 매개 변수 지정 가능(기본값은 0.25) => 전체 데이터의 25%를 test set으로 지정
- stratify 매개변수를 target 데이터로 지정 시, 클래스 비율에 맞게 훈련 세트와 테스트 세트를 나눔.

Using Google Colab

실습

- 1) 카페에서 실습 파일 및 csv 파일 다운 받아 코랩에 세팅!
- 2) 코랩 오른쪽 상단에 있는 '공유' 누르고, '엑세스 권한 링크가 있는 모든 사용자/편집자'로 변경 후 링크 복사 누르기

실습

1) 카페에서 실습 코드 및 csv 파일 다운 받아 코랩에 세팅!

2) 코랩 오른쪽 상단에 있는 '공유' 누르고, '엑세스 권한 링크가 있는 모든 사용자/편집자'로 변경 후 링크 복사 누르기

- 3) https://forms.gle/KtVMEk6YverxSPkc9
- =〉 위의 구글폼 링크에 복사한 링크 붙여 넣어 제출

정답 여부를 보는 것이 아닌, 실습에 잘 참여하고 계신지 확인하기 위한 용도이므로 답을 맞춰야 한다는 부담 없이 편하게 제출해주시면 좋을 것 같습니다:)