ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

KHOA CÔNG NGHỆ THÔNG TIN

BỘ MÔN CÔNG NGHỆ TRI THỨC

Bài tập 1

Đề tài: Số phức và vector, ma trận phức

Môn học: Nhập môn Tính toán lượng tử

Sinh viên thực hiện:

Giáo viên hướng dẫn:

Lưu Thượng Hồng (23122006)

ThS. Vũ Quốc Hoàng

Ngày 15 tháng 10 năm 2025

Mục lục

1	Bài 1	1													
	1.1 (a)	1													
	1.2 (b)	1													
	1.3 (c)	2													
	1.4 (d)	2													
	1.5 (e)	2													
	1.6 (f)	3													
	1.7 (g)	3													
2	Bài 2														
	2.1 (a)	3													
	2.2 (b)	3													
	2.3 (c)	3													
	2.4 (d)	4													
3	Bài 3	4													
	3.1 (a)	4													
	3.2 (b)	4													
	3.3 (c)	4													
	3.4 (d)	5													
	3.5 (e)	5													
	3.6 (f)	5													
	3.7 (g)	5													
	3.8 (h)	5													
	3.9 (i)	6													
	3.10 (j)	6													
4	Bài 4	6													
	4.1 (a)	6													
	4.2 (b)	6													
	4.3 (c)	6													

	4.4	(d)						•			 	 •										 				6
	4.5	(e)									 											 				6
	4.6	(f)									 											 				7
	4.7	(g)	•	•		•	•		•		 		•	•	•	•	•	•		•		 	 •		•	7
5	Bài	5																								7
	5.1	(a)									 											 				7
	5.2	(b)		•							 							•				 				7
6	Bài	6																								7
	6.1	(a)									 											 				7
	6.2	(b)									 											 			•	7
	6.3	(c)	•	•		•	•		•		 		•		•	•		•		•		 	 •		•	8
7	Bài	7																								8
	7.1	(a)									 											 				8
	7.2	(b)									 											 				8
	7.3	(c)									 											 				8
	7.4	(d)	٠						•		 				•						•	 	 •	•	٠	8
8	Bài	8																								8
	8.1	(a)									 											 				8
	Q 9	(b)																								C

1 Bài 1

Cho $x = e^{i\frac{\pi}{3}}$ và $y = 2e^{i\frac{\pi}{6}}$.

1.1 (a)

 \mathbf{D} ề bài: Vẽ minh họa x,y trên mặt phẳng phức.

Bài làm:

1.2 (b)

Đề bài: Tìm dạng đại số và dạng cực của x, y.

- Dạng cực (Đã cho): $x=e^{i\frac{\pi}{3}} \ y=2e^{i\frac{\pi}{6}}$
- Dạng đại số: $x = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \dots \quad y = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) = \dots$

1.3 (c)

Đề bài: Tính Re(x), Im(x), |x|, arg(x).

Bài làm:

- $\operatorname{Re}(x) = \dots$
- $\operatorname{Im}(x) = \dots$
- $|x| = \dots$
- $arg(x) = \dots$

1.4 (d)

Đề bài: Tính $\overline{x}, -x, x^{-1}$.

Bài làm:

- $\overline{x} = \dots$
- \bullet $-x = \dots$
- $x^{-1} = \dots$

1.5 (e)

Đề bài: Tính $x+y,x-y,xy,yx,\frac{x}{y},\frac{y}{x}.$

- $x + y = \dots$
- $\bullet \ x y = \dots$
- $xy = \dots$
- $\bullet \ \ \frac{x}{y} = \dots$
- $\bullet \ \ \frac{y}{x} = \dots$

1.6 (f)

Đề bài: Tính x^4 và x^n , $n \in \mathbb{Z}$.

Bài làm:

- $x^4 = ...$
- $x^n = \dots$

1.7 (g)

Đề bài: Tính $\sqrt[4]{x}$ và $\sqrt[n]{x}$ $n \in \mathbb{N}^+$.

Bài làm:

- $\sqrt[4]{x} = \dots$ (Liệt kê các nghiệm)
- $\sqrt[n]{x} = \dots$ (Công thức tổng quát cho n nghiệm)

2 Bài 2

Cho $x,y\in\mathbb{C}$ chứng minh

2.1 (a)

Đề bài: $x\overline{x} = \overline{x}x = |x|^2$.

Bài làm:

2.2 (b)

Đề bài: $\overline{x^{-1}} = (\overline{x})^{-1} (x \neq 0)$.

Bài làm:

2.3 (c)

Đề bài: |xy| = |x||y|.

2.4 (d)

Đề bài: $|x + y| \le |x| + |y|$.

Bài làm: (Bất đẳng thức tam giác)

3 Bài 3

Cho $|\phi\rangle = \frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$, $|\psi\rangle = \frac{2}{3}|0\rangle + \frac{1-2i}{3}|1\rangle$.

3.1 (a)

Đề bài: Tính $\langle \phi |$ và $\langle \psi |$.

Bài làm:

- $\langle \phi | = \dots$
- $\langle \psi | = \dots$

3.2 (b)

Đề bài: Tính $\langle \phi | \psi \rangle$ và $\langle \psi | \phi \rangle$.

Bài làm:

- $\langle \phi | \psi \rangle = \dots$
- $\langle \psi | \phi \rangle = \dots$

3.3 (c)

Đề bài: Tính $|\phi\rangle\langle\phi|$ và $|\psi\rangle\langle\phi|$.

- $|\phi\rangle\langle\phi| = \dots$
- $|\psi\rangle\langle\phi|=\dots$

3.4 (d)

Đề bài: Tính $|\phi\rangle|\psi\rangle$ và $|\psi\rangle|\phi\rangle$.

Bài làm: (Tensor product)

- $|\phi\rangle|\psi\rangle = \dots$
- $|\psi\rangle|\phi\rangle = \dots$

3.5 (e)

Đề bài: Tính $||\phi||$ và $||\psi||$.

Bài làm:

- $||\phi|| = \dots$
- $||\psi|| = \dots$

3.6 (f)

Đề bài: Tính góc giữa $|\phi\rangle$ và $|\psi\rangle$.

Bài làm:

$3.7 \quad (g)$

Đề bài: Tính $\mathrm{proj}_{|\psi\rangle}|\phi\rangle$ và $\mathrm{proj}_{|\phi\rangle}|\psi\rangle.$

Bài làm:

- $\operatorname{proj}_{|\psi\rangle}|\phi\rangle = \dots$
- $\operatorname{proj}_{|\phi\rangle}|\psi\rangle = \dots$

3.8 (h)

Đề bài: Chuẩn hóa $\operatorname{proj}_{|\psi\rangle}|\phi\rangle$ và $\operatorname{proj}_{|\phi\rangle}|\psi\rangle$.

- Chuẩn hóa $\mathrm{proj}_{|\psi\rangle}|\phi\rangle=\dots$
- Chuẩn hóa $\mathrm{proj}_{|\phi\rangle}|\psi\rangle=\dots$

3.9 (i)

Đề bài: Tìm tọa độ của $|\phi\rangle$ và $|\psi\rangle$ trong các cơ sở $B_Z=\{|0\rangle,|1\rangle\},\ B_X=\{|+\rangle,|-\rangle\},\ B_Y=\{|i\rangle,|-i\rangle\}.$

Bài làm:

3.10 (j)

Đề bài: Cho $|a\rangle = \frac{\sqrt{3}}{2}|0\rangle + \frac{i}{2}|1\rangle$, $|b\rangle = \frac{i}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$, chứng minh $B = \{a,b\}$ là một cơ sở trực chuẩn của \mathbb{C}^2 và tìm tọa độ của $|\phi\rangle$, $|\psi\rangle$ theo B. **Bài làm:**

4 Bài 4

Cho
$$U$$
 là toán tử trên \mathbb{C}^2 với $U|0\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-i\end{pmatrix}$ và $U|1\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}-i\\1\end{pmatrix}$.

4.1 (a)

Đề bài: Tìm biểu diễn của U trong cơ sở chính tắc $B_Z = \{|0\rangle, |1\rangle\}$. **Bài làm:**

4.2 (b)

Đề bài: Cho
$$|\phi\rangle=egin{pmatrix}\alpha\\\beta\end{pmatrix}\in\mathbb{C}^2, \ {\rm tìm}\ U|\phi\rangle.$$
 Bài làm:

4.3 (c)

 \mathbf{D} ề bài: U có unita không? Bài làm:

4.4 (d)

 $\mathbf{D}\mathbf{\hat{e}}$ bài: U có Hermite không? Bài làm:

4.5 (e)

Đề bài: Tìm U^{\dagger}, U^{-1} . Bài làm:

- $U^{\dagger} = \dots$
- $\bullet \ U^{-1} = \dots$

4.6 (f)

 \mathbf{D} ề bài: Tìm $HUH|0\rangle$, $HUH|1\rangle$ và HUH (H là ma trận Hadamard). Bài làm:

4.7 (g)

Đề bài: Tìm $UHU|0\rangle$, $UHU|1\rangle$ và UHU. Bài làm:

5 Bài 5

Chứng minh XY = iZ bằng cách

5.1 (a)

Đề bài: Nhân ma trận. Bài làm:

5.2 (b)

Đề bài: Xét tác động của các toán tử trên $|0\rangle$, $|1\rangle$. Bài làm:

6 Bài 6

Cho
$$|\phi\rangle = \frac{1}{2}|00\rangle + \frac{i}{\sqrt{2}}|10\rangle + \frac{\sqrt{3}+i}{4}|11\rangle.$$

6.1 (a)

Đề bài: Cho thấy $|\phi\rangle$ là vector đơn vị. Bài làm:

6.2 (b)

Đề bài: Tính $\operatorname{proj}_{|+-\rangle}|\phi\rangle$ và chuẩn hóa $\operatorname{proj}_{|+-\rangle}|\phi\rangle$. Bài làm:

- $\operatorname{proj}_{|+-\rangle}|\phi\rangle = \dots$
- Chuẩn hóa $\mathrm{proj}_{|+-\rangle}|\phi\rangle=\dots$

6.3 (c)

 $\mathbf{D}\hat{\mathbf{e}}$ bài: Tính tọa độ của $|\phi\rangle$ theo cơ sở Bell. Bài làm:

7 Bài 7

Kiểm tra các vector sau có phân tách được (separable)

7.1 (a)

Đề bài: $|\phi_1\rangle=\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle).$ Bài làm:

7.2 (b)

Đề bài: $|\phi_2\rangle=\frac{1}{2\sqrt{2}}(\sqrt{3}|00\rangle-\sqrt{3}|01\rangle+|10\rangle-|11\rangle)$. Bài làm:

7.3 (c)

Đề bài: $|\phi_3\rangle=\frac{1}{\sqrt{2}}(|10\rangle+i|11\rangle)$. Bài làm:

7.4 (d)

Đề bài: $|\phi_4\rangle=\frac{1}{\sqrt{3}}|0+\rangle+\sqrt{\frac{2}{3}}|1-\rangle$. Bài làm:

8 Bài 8

Cho
$$|\phi\rangle = \frac{1}{4}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle + \frac{\sqrt{3}}{4}|11\rangle.$$

8.1 (a)

Đề bài: Tính $(H \otimes X)|\phi\rangle$. Bài làm:

8.2 (b)

Đề bài: Tính CNOT $|\phi\rangle$. Bài làm: