SÉRIES NUMÉRICAS

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \dots$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \frac{1}{512} + \dots$$
?

Definição 1:

Seja a_n uma sucessão de números reais. Chama-se série numérica de termo geral a_n à sucessão de termo geral $S_n = a_1 + a_2 + a_3 + ... + a_n = \sum_{k=1}^n a_k$. Representa-se por $\sum_{n=1}^{+\infty} a_n$.

Dizemos que uma série numérica $\sum_{n=1}^{+\infty} a_n$ é **convergente** quando a sucessão S_n das somas parciais for convergente para limite finito. Caso contrário diz-se **divergente**.

Designa-se por S a soma da série quando é convergente. $S = \lim_{n \to +\infty} S_n = \sum_{n=0}^{+\infty} a_n$.

EXEMPLO 1:

$$1-1+1-1+1-1+1-1+1-1+1-1+...$$

$$S_{n+1} = S_n + a_{n+1} = \begin{cases} 1 & \text{se n par} \\ 0 & \text{se n impar} \end{cases}$$

Logo a sucessão S_n é divergente.

EXEMPLO 2:

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \frac{1}{512} + \dots = \sum_{n=0}^{+\infty} \frac{1}{2^n}$$

$$S_n = \sum_{k=0}^n \frac{1}{2^k}$$

$$= 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots + \frac{1}{2^n}$$

$$= \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}}$$

$$= 2 - \left(\frac{1}{2}\right)^{n-1}$$

$$\lim_{n \to +\infty} S_n = 2$$

PROPRIEDADES

À série $\sum_{n=1}^{+\infty}ba^n$ chamamos série geométrica de primeiro termo b e razão

r = a. A sucessão associada é $S_n = b + ba + ba^2 + ba^3 + ... + ba^n$. Assim, $S_n = \frac{a_1 - a_{n+1}}{1 - r}$.

$$S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} b \frac{1 - a^n}{1 - a}:$$

$$S = \frac{b}{1-a} \quad \text{se } |a| < 1$$

$$S = \infty$$
 se $|a| > 1$

A série diverge se |a| = 1.

Logo, a série é convergente apenas se -1 < a < 1, e a sua soma será $\frac{b}{1-a}$.

EXEMPLO 3: Discuta a convergência da série

(a)
$$a+1+\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^n}+...$$
 com $a \in \mathbb{R} \setminus \{0,1\}$.

(b)
$$\sum_{n=0}^{+\infty} \frac{8^n}{(a+1)^{3n}}$$

EXEMPLO 4: Calcule as somas parciais das seguintes séries e a soma das que são convergentes:

(a)
$$\sum_{n=0}^{+\infty} 2^{-2n}$$

(b)
$$\sum_{n=0}^{+\infty} \frac{2}{7^n}$$

Consideremos a série numérica do tipo:

$$\sum_{n=0}^{+\infty} (a_{n+1} - a_n) = (a_1 - a_0) + (a_2 - a_1) + (a_3 - a_2) + (a_4 - a_3) + \dots$$

A uma série destas chama-se **série de Mengoli** ou série telescópica. A sucessão associada correspondente é $(a_1-a_0)+(a_2-a_1)+...+(a_n-a_{n-1})=a_n-a_0$. Logo a série é convergente se e só se existir $\lim_{n\to+\infty}a_n$, e a soma da série será dada por $S=\sum_{n=0}^{+\infty}(a_{n+1}-a_n)=\lim_{n\to+\infty}a_n-a_0$.

TEOREMA 1: Se as séries numéricas $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são convergentes então:

(a) a série
$$\sum_{n=1}^{+\infty} (a_n + b_n)$$
 é convergente e tem-se $\sum_{n=1}^{+\infty} (a_n + b_n) = \sum_{n=1}^{+\infty} a_n + \sum_{n=1}^{+\infty} b_n$;

(b) a série
$$\sum_{n=1}^{+\infty} \lambda a_n$$
 é convergente e tem-se $\sum_{n=1}^{+\infty} \lambda a_n = \lambda \sum_{n=1}^{+\infty} a_n$, $\lambda \in \mathbb{R}$.

EXEMPLO 5: Discuta a convergência da série:

(a)
$$\sum_{n=0}^{+\infty} \frac{2}{n(n+1)(n+3)}$$

(b)
$$\sum_{n=0}^{+\infty} \frac{3 \times 2^n + n(n+1)}{2^n n(n+1)}$$

EXEMPLO 6: Calcule a soma da série $\sum_{n=0}^{+\infty} \frac{2}{4n^2-1}$.

CRITÉRIOS DE CONVERGÊNCIA

CRITÉRIO GERAL DE CAUCHY:

Seja $\sum_{n=1}^{+\infty} a_n$ uma série de números reais. É condição necessária e suficiente para que $\sum_{n=1}^{+\infty} a_n \text{ seja convergente que: } \forall \delta > 0 \ \exists p \in \mathbb{N} : \left(n \geq p, \ n, k \in \mathbb{N}\right) \Rightarrow \left|S_{n+k} - S_n\right| < \delta \ .$

EXEMPLO 7: A série $\sum_{n=1}^{+\infty} \frac{1}{n}$ é divergente.

Repare que
$$|S_{2n} - S_n| = |a_{n+1} + ... + a_{2n}| = \frac{1}{n+1} + ... + \frac{1}{2n} \ge \frac{1}{2n} + ... + \frac{1}{2n} = \frac{1}{2}$$
.

TEOREMA 2: Se a série $\sum_{n=1}^{+\infty} a_n$ é convergente, então $\lim_{n\to +\infty} a_n = 0$ (condição necessária).

COROLÁRIO: Se $\lim_{n\to +\infty} a_n$ não existe, ou, existindo, $\lim_{n\to +\infty} a_n \neq 0$, então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.

EXEMPLO 8: A série $\sum_{n=1}^{+\infty} \left(\frac{n+3}{n+7} \right)^{n-7}$ é divergente.

Porque
$$\lim_{n \to +\infty} \left(\frac{n+3}{n+7} \right)^{n-7} = \lim_{n \to +\infty} \left(\left(1 + \frac{-4}{n+7} \right)^{n+7} \right)^{(n-7)/(n+7)} = e^{-4} \neq 0$$

TEOREMA 3: Se $a_n \ge 0$ então a série $\sum_{n=1}^{+\infty} a_n$ é convergente se e só se S_n é uma sucessão limitada superiormente.

TEOREMA 4 (1º CRITÉRIO DE COMPARAÇÃO):

Se $a_n \ge 0$, $b_n \ge 0$ e $a_n \le b_n$, $\forall n \in \mathbb{N}$ então:

- (i) se a série $\sum_{n=1}^{+\infty} a_n$ é divergente então a série $\sum_{n=1}^{+\infty} b_n$ é divergente.
- (ii) se a série $\sum_{n=1}^{+\infty} b_n$ é convergente então a série $\sum_{n=1}^{+\infty} a_n$ é convergente.

EXEMPLO 9: Estude a natureza da série $\sum_{n=1}^{+\infty} \frac{n}{n^2+1}$.

Repare que $\frac{n}{n^2+1} \ge \frac{1}{n+1}$ e $\sum_{n=1}^{+\infty} \frac{1}{n+1} = \sum_{n=1}^{+\infty} \frac{1}{n}$ que é divergente. Logo a série dada é divergente.

TEOREMA 5 (2º CRITÉRIO DE COMPARAÇÃO):

Se
$$a_n \ge 0$$
, $b_n > 0$ e $\lim_{n \to +\infty} \frac{a_n}{b_n} = \lambda \in \mathbb{R}$, então:

- (i) se $\lambda \neq 0$, então as séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são da mesma natureza.
- (ii) se $\lambda = 0$, então
 - (a) se a série $\sum_{n=1}^{+\infty} a_n$ é divergente então a série $\sum_{n=1}^{+\infty} b_n$ é divergente.
 - (b) se a série $\sum_{n=1}^{+\infty} b_n$ é convergente então a série $\sum_{n=1}^{+\infty} a_n$ é convergente.

Se
$$a_n \ge 0$$
, $b_n > 0$ e $\lim_{n \to +\infty} \frac{a_n}{b_n} = +\infty$, então:

- (i) se a série $\sum_{n=1}^{+\infty} b_n$ é divergente então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- (ii) se a série $\sum_{n=1}^{+\infty} a_n$ é convergente então a série $\sum_{n=1}^{+\infty} b_n$ é convergente.

TEOREMA 6 (CRITÉRIO DE CAUCHY OU DA RAIZ):

Se $a_n \ge 0$ e $\lim_{n \to +\infty} \sqrt[n]{a_n} = \lambda \in \mathbb{R}$, então:

- (i) se $\lambda < 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é convergente.
- (ii) se $\lambda > 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- (iii) se $\lambda=1$, nada se pode concluir excepto quando, a partir de certa ordem, $\sqrt[n]{a_n} \ge 1$ caso em que a série $\sum_{n=1}^{+\infty} a_n$ é divergente.

EXEMPLO 10: A série $\sum_{n=1}^{+\infty} \left(\frac{n+1}{3n} \right)^n$ é convergente.

TEOREMA 7 (CRITÉRIO DE D'ALEMBERT OU DA RAZÃO):

Se
$$a_n \ge 0$$
 e $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lambda \in \mathbb{R}$, então:

- (i) se $\lambda < 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é convergente.
- (ii) se $\lambda > 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- (iii) se $\lambda=1$, nada se pode concluir excepto quando, a partir de certa ordem, $\frac{a_{n+1}}{a_n} \ge 1$ caso em que a série $\sum_{n=1}^{+\infty} a_n$ é divergente.

EXEMPLO 11: A série $\sum_{n=1}^{+\infty} \frac{2^n}{n! n^n}$ é convergente.

TEOREMA 8 (CRITÉRIO DE RAABE):

Se
$$a_n \ge 0$$
 e $\lim_{n \to +\infty} n \left[\frac{a_{n+1}}{a_n} - 1 \right] = \lambda \in \mathbb{R}$

- (i) se $\lambda > 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é convergente.
- (ii) se $\lambda < 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- (iii) se $\lambda = 1$, nada se pode concluir excepto quando, a partir de certa ordem, $n \left[\frac{a_{n+1}}{a_n} 1 \right] < 1 \text{ caso em que a série } \sum_{n=1}^{+\infty} a_n \text{ é divergente.}$

TEOREMA 9 (DE CUNHA-BOLZANO-CAUCHY):

A série $\sum_{n=1}^{+\infty} a_n$ é convergente se e somente se para todo o ε positivo existir uma ordem n_0 tal que para quaisquer m superior a n_0 e p natural se tenha $\left|a_m+a_{m+1}+...+a_{m+p}\right|<\varepsilon$.

TEOREMA 10:

Se a série $\sum_{n=1}^{+\infty} \left| a_n \right|$ é convergente então a série $\sum_{n=1}^{+\infty} a_n$ é convergente.