1. W populacji B natężenie wymierania jest w każdej kategorii wieku o 20% większe niż w populacji A, tzn.

$$\mu_x^{(B)} = 1.2 \mu_x^{(A)}$$
.

Oblicz prawdopodobieństwo, że (x) wybrany losowo z populacji A będzie żył nie krócej niż (x) wybrany losowo z populacji B.

- (A) 0.55
- (B) 0.60
- (C) 0.65
- (D) 0.70

(E) 0,75

2. Rozważamy dwa 10-letnie ubezpieczenia na życie dla (40), wypłacające świadczenie w momencie śmierci. Polisa *Ros* wypłaca 10 000 · t , jeśli ubezpieczony umrze w wieku 40 +t oraz t<10. Polisa *Mal* wypłaca 10 000 · (10 – t) , jeśli ubezpieczony umrze w wieku 40+t oraz t<10.

Oblicz jednorazową składkę netto za polisę Ros, jeśli wiadomo, że jest ona 11 razy większa niż odpowiednia składka za polisę Mal oraz $\overline{A}^1_{40:\overline{10}}=0.05$.

Podaj najbliższą wartość.

- (A) 4 490
- (B) 4 520
- (C) 4 550
- (D) 4 580

(E) 4 610

3. Rozważamy 20-letnie ubezpieczenie na życie i dożycie dla osoby 30-letniej, wypłacające świadczenie śmiertelne na koniec roku śmierci, ze stała składką płatną na początku roku przez cały okres ubezpieczenia.

W ubezpieczeniu tym możliwy jest podział sumy ubezpieczenia między ochronę ubezpieczeniową i element oszczędnościowy. Dla każdej liczby a z przedziału [1,100] niech Pol(a) oznacza polisę, która wypłaca a% umówionej sumy ubezpieczenia w przypadku dożycia wieku 50 lat, natomiast wypłaca (100-a)% sumy ubezpieczenia w przypadku śmierci w ciągu najbliższych 20 lat. Niech ponadto P(a) oznacza odpowiedni poziom rocznej składki za 1000 zł sumy ubezpieczenia. Dane są: P(30)=8,85 oraz P(80)=21,10.

Oblicz P(55). Podaj najbliższą wartość.

(A) 14

(B) 14.50

(C) 15

(D) 15.50

(E) 16

4. Rozważamy bezterminowe ubezpieczenie na życie dla (x) z sumą ubezpieczenia 10 000 zł wypłacaną na koniec roku śmierci, opłacane za pomocą corocznych składek netto w wysokości 100 zł, płatnych aż do śmierci na początku roku. Wiemy ponadto, że w 21-szej płatności składka oszczędnościowa zrównuje się z ryzykoskładką. Oblicz rezerwę składki netto po 20 latach, jeśli dane są:

$$i = 5\%$$
 oraz $q_{x+20} = 0.01$

- (A) 4 454
- (B) 4 464
- (C) 4 474
- (D) 4 484

(E) 4 494

5. Dla bezterminowego, ciągłego ubezpieczenia na życie dla (x) z sumą ubezpieczenia 1 zł dane są:

$$_{10}\overline{V}_x = 0.3$$
 $\mu_x = 0.01$ $\mu_{x+10} = 0.015$ $\overline{a}_x = 11$

Oblicz przybliżoną wartość

$$10 \ \overline{V}_{x+\frac{1}{12}}$$
.

- (A) 0.301
- (B) 0.302
- (C) 0.303
- (D) 0.304

(E) 0.305

6. W bezterminowym ubezpieczeniu na życie 50 letniej osoby świadczenie śmiertelne jest wypłacane na koniec roku śmierci, a składka płacona jest na początku roku w stałej wysokości przez pierwszych 20 lat ubezpieczenia. Suma ubezpieczenia w pierwszym roku wynosi 10 000 zł i rośnie o 1 000 zł w każdym kolejnym roku ubezpieczenia aż do maksymalnego poziomu 20 000.

Wyznacz rezerwę składek netto na koniec 10 roku ubezpieczenia. Dane są:

Wiek x	D_x	$M_{\scriptscriptstyle X}$	N_x	R_x
50	7 653	2 832	101 237	49 627
60	3 995	1 970	42 506	25 054
70	1 730	1 076	13 730	9 442

Podaj najbliższą wartość.

- (A) 5 580
- (B) 6 620
- (C) 7 760
- (D) 8 840

(E) 9 900

7. Rozważamy terminowe ubezpieczenie na życie i dożycie z sumą ubezpieczenia 15 000 zł, płatną w przypadku śmierci na koniec roku śmierci. Przez cały okres ubezpieczenia, na początku roku, płacona jest składka brutto w stałej wysokości P^{br}.

Wiadomo, że wszystkie narzuty w składce brutto stanowią 40% składki netto.

Część narzutów tworzą prowizje agencyjne: agenci uzyskują kwotową prowizję w momencie wystawienia polisy oraz stałą, procentową prowizję od każdej zainkasowanej składki.

Okazuje się, że jeśli zmniejszeniu o 1 punkt prowizji procentowej towarzyszy wzrost prowizji kwotowej o 100 zł, to – przy pozostałych elementach niezmienionych – nie zmienia się również wysokość składki brutto.

Wyznacz składkę brutto P^{br} , jeśli v=0.95. Podaj najbliższą wartość.

- (A) 875 (
- (B) 895
- (C) 915
- (D) 935

(E) 955

- **8.** W bezterminowym ubezpieczeniu na życie dla osoby 45-letniejświadczenie śmiertelne jest wypłacane w momencie śmierci, a składka jest płacona w formie renty ciągłej ze stałą roczną intensywnością przez pierwszych 20 lat ubezpieczenia. Ubezpieczenie to wypłaca:
 - 30 000 zł w przypadku śmierci poprzedzonej długą, ciężką chorobą (CH),
 - 20 000 zł w przypadku śmierci wywołanej nieszczęśliwym wypadkiem (NW),
 - 10 000 zł w pozostałych przypadkach (INNE).

Wiadomo, że dla osobnika w wieku $x \ge 45$ zachodzi $\mu_{x+t}^{(CH)} = \mu_{x+t}^{(NW)} = \mu_{x+t}^{(INNE)}$, a ponadto $p_x = (0.97)^t$.

Wyznacz roczną intensywność składki w tym ubezpieczeniu, jeżeli i=6%. Podaj najbliższą wartość.

- (A) 735
- (B) 765
- (C) 795
- (D) 825

(E) 855

9. Mąż (x) rozważa wybór renty dla żony (y). Są do wyboru dwie renty, obydwie płacące 1000 zł na początku roku, odpowiednio do warunków ubezpieczenia.

Pierwsza renta, ze składką SJN_I , jest rentą wdowią wypłacającą nie dłużej niż przez 10 lat od zawarcia ubezpieczenia.

Druga renta, ze składką SJN_2 , wypłaca rentę dożywotnią wdowie, lub gdy (x) przeżyje 10 lat od 11 roku ubezpieczenia rentę dożywotnią (y).

Wyznacz SJN₂ - SJN₁, jeśli dane są:

$$\ddot{a}_x = 9.293$$

$$\ddot{a}_{y} = 14.053$$

$$\ddot{a}_{x:\overline{10}|} = 6.847$$

$$\ddot{a}_{y:\overline{10}|} = 7.855$$

$$\ddot{a}_{x:y} = 8.657$$
.

Podaj najbliższą wartość.

- (A) 3 200
- (B) 4200
- (C) 5200
- (D) 6 200

(E) 7 200

10. Wszyscy uczestnicy planu emerytalnego przystępują do planu w wieku 25 lat i przechodzą na emeryturę (jeśli utrzymają się w planie) w wieku 65 lat. Plan wypłaca emeryturę z roczną intensywnością równą 2% sumy wynagrodzeń z całego okresu uczestnictwa. Roczna intensywność wynagrodzeń rośnie w sposób ciągły w stałym tempie 3% na rok, począwszy od wyjściowego poziomu 10000 zł w momencie przystąpienia do planu.

Zobowiązania emerytalne są kapitalizowane z intensywnością równą kosztowi normalnemu zgodnie z właściwą dla tego planu intensywnością kumulacji uprawnień emerytalnych m(x), $25 \le x \le 65$ (pension accrual density function)

Wyznacz wartość m(x) w momencie gdy aktywny uczestnik planu osiąga 50 lat. Podaj najbliższą wartość.

(A) 0.02512

(B) 0.02736

(C) 0.03120

(D) 0.03462

(E) 0.03788

Egzamin dla Aktuariuszy z 17 czerwcaa 2000 r.

Matematyka ubezpieczeń życiowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	Klucz odpowiedzi
Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	D	
3	С	
4	С	
5	В	
6	A	
7	Е	
8	A	
9	D	
10	В	

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.