Package 'rrepast'

October 14, 2022

Type Package
Title Invoke 'Repast Simphony' Simulation Models
Version 0.8.0
Date 2020-02-18
Encoding UTF-8
Author Antonio Prestes Garcia [aut, cre], Alfonso Rodriguez-Paton [aut, ths]
Maintainer Antonio Prestes Garcia <antonio.pgarcia@alumnos.upm.es></antonio.pgarcia@alumnos.upm.es>
<pre>URL https://github.com/antonio-pgarcia/rrepast</pre>
<pre>BugReports https://github.com/antonio-pgarcia/RRepast/issues</pre>
Description An R and Repast integration tool for running individual-based (IbM) simulation models developed using 'Repast Simphony' Agent-Based framework directly from R code supporting multicore execution. This package integrates 'Repast Simphony' models within R environment, making easier the tasks of running and analyzing model output data for automated parameter calibration and for carrying out uncertainty and sensitivity analysis using the power of R environment.
License MIT + file LICENSE
Imports lhs, sensitivity, ggplot2, digest, xlsx, doSNOW, rJava, gridExtra, parallel, foreach
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-02-19 06:00:05 UTC
R topics documented:
AddFactor

AoE.Base	. 6
AoE.ColumnCoV	. 7
AoE.CoV	. 7
AoE.FullFactorial	. 8
AoE.GetMorrisOutput	. 8
AoE.LatinHypercube	
AoE.MAE	
AoE.Morris	
AoE.NRMSD	
AoE.RandomSampling	. 11
AoE.RMSD	
AoE.Sobol	. 12
AoE.Stability	. 13
ApplyFactorRange	. 13
BuildParameterSet	. 14
Calibration.GetMemberKeys	
Calibration.GetMemberList	
check.integration	
check.scenario	
ClearResults	
col.sum	
config.check	
config.copylib	
config.scenario	
createOutputDir	
lf2matrix	
lffilterby	
lfround	
Ifsumcol	
Easy.Calibration	
Easy.getChart	
Easy.getPlot	
Easy.Morris	
Easy.Run	. 24
Easy.RunExperiment	
Easy.Setup	
Easy.ShowModelParameters	
Easy.Sobol	
Easy.Stability	. 26
Engine	
Engine.endAt	
Engine.Finish	
Engine.getId	
Engine.GetModelOutput	
Engine.getParameter	
Engine.getParameterAsDouble	
Engine.getParameterAsNumber	
Engine.getParameterAsString	

Engine.getParameterNames	1
Engine.getParameterType	
Engine.LoadModel	2
Engine.resetModelOutput	3
Engine.RunModel	
Engine.SetAggregateDataSet	
Engine.setParameter	
enginestats.calls	
enginestats.reset	
getExperimentDataset	
getExperimentOutput	
getExperimentParamSet	
GetFactorLevels	
GetFactorsSize	
getId	
getKeyRandom	
getLogDir	
GetOutput	
getOutputDir	
getpkgcores	
getpkgdefaultcores	
GetResults	
GetResultsParameters	_
GetSimulationParameters	
GetSimulationParameterType	
•	
hybrid.value	
jvm.enablejmx	
jvm.getruntime	
jvm.get_parameters	
jvm.init	
jvm.memory	
jvm.resetOut	_
jvm.runtimegc	
jvm.set_parameters	
lcontains	
lget	
Load	
Logger.setLevelInfo	
Logger.setLevelWarning	
Model	
ParallelClose	
ParallelInit	
	11 12

Index

	71
WrapperRunExperiment	69
WrapperRun	69
UpdateDefaultParameters	68
ShowModelPaths	68
ShowCores	67
ShowClassPath	67
	66
	66
	65
	65
· · · · · · · · · · · · · · · · · · ·	65
· · · · · · · · · · · · · · · · · · ·	64
	64
	64
1	63
	63
<u>r</u>	62
Run	61
	61
	60
	60
Plot.Stability	59
	59
	58
	58
<u> </u>	57
PB.update	57
	56
	56
PB.pset	56
	55
PB.init	55
PB.get	55
PB.enable	54
PB.disable	54
PB.close	54
ParallelRun	53
ParallellRunExperiment	52

AddFactor 5

AddFactor	Adds a paramter to factor collection
-----------	--------------------------------------

Description

Builds up the factor collection.

Usage

```
AddFactor(factors = c(), lambda = "qunif", name, min, max,
  int = FALSE)
```

Arguments

factors	The current factor collection
lambda	The function to apply FUN(p,min,max)
name	The name of factor
min	The minimun of parameter p
max	The maximun of parameter p
int	Boolean for truncating the factor value

Value

The collection of created factors

Examples

```
## Not run:
    f<- AddFactor(name="Age",min=20,max=60)
    f<- AddFactor(factors=f, name="Weight",min=50,max=120)
## End(Not run)</pre>
```

AddFactor0 AddFactor0

Description

Creates or appends the factor collection

Usage

```
AddFactor0(factors = c(), ...)
```

6 AoE.Base

Arguments

factors The current factor collection
... The variadic parameter list

Value

The factor collection

Examples

```
## Not run:
    f<- AddFactor0(name="Age",min=20,max=60)
    f<- AddFactor0(factors=f, name="Weight",min=50,max=120)
## End(Not run)</pre>
```

AddResults

Concatenate results of multiple runs

Description

This function stores the output of the last model execution and it is intended to be used internally.

Usage

```
AddResults(d)
```

Arguments

d

A data frame containing one replication data

AoE.Base

AoE.Base

Description

The Design Of Experiments Base function

Usage

```
AoE.Base(m, factors = c(), fun = NULL)
```

Arguments

m The base design matrix

factors A subset of model parameters

fun The function which will be applied to m

AoE.ColumnCoV 7

Value

The design matrix

AoE.ColumnCoV

AoE.ColumnCoV

Description

This function Calculates the relative squared deviation (RSD or CoV) for an used provided column name key in the parameter dataset.

Usage

```
AoE.ColumnCoV(dataset, key)
```

Arguments

dataset

A model output dataset

key

Column name from output dataset

Value

A data frame with Coefficient of variations

AoE.CoV

AoE.CoV

Description

A simple funcion for calculate the Coefficient of Variation

Usage

AoE.CoV(d)

Arguments

d

The data collection

Value

The coefficient of variation for data

AoE.FullFactorial

AoE.FullFactorial design generator

Description

Generate a Full Factorial sampling for evaluating the parameters of a model.

Usage

```
AoE.FullFactorial(n = 10, factors = c())
```

Arguments

n The number of samples

factors The model's parameters which will be evaluated

Value

The Full Factorial design matrix for provided parameters

Examples

```
## Not run:
    f<- AddFactor(name="cyclePoint",min=40,max=90)
    f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
    d<- AoE.FullFactorial(2,f)
## End(Not run)</pre>
```

AoE.GetMorrisOutput

AoE.GetMorrisOutput

Description

Returns a dataframe holding the Morris result set

Usage

```
AoE.GetMorrisOutput(obj)
```

Arguments

obj

A reference to a morris object instance

Value

The results of Morris method

AoE.LatinHypercube 9

AoE.LatinHypercube AoE

AoE.LatinHypercube

Description

Generate a LHS sample for model parameters

Usage

```
AoE.LatinHypercube(n = 10, factors = c(), convert = TRUE)
```

Arguments

n The number of samples

factors The model's parameters which will be evaluated convert Adjust experiment matrix to parameter scale

Details

Generate the LHS sampling for evaluating the parameters of a model.

Value

The LHS design matrix for provided parameters

Examples

```
## Not run:
    f<- AddFactor(name="cyclePoint",min=40,max=90)
    f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
    d<- AoE.LatinHypercube(2,f)
## End(Not run)</pre>
```

AoE.MAE

AoE.MAE

Description

Calculates the average-error magnitude (MAE)

Usage

```
AoE.MAE(xs, xe)
```

10 AoE.NRMSD

Arguments

XS	The simulated data set
xe	The experimental data set

Value

The MAE value for provided datasets

oE.Morris
(

Description

This is a wrapper for performing Morris's screening method on repast models. We rely on morris method from sensitivity package.

Usage

```
AoE.Morris(k = c(), p = 5, r = 4)
```

Arguments

k The factors for morris screening.

p The number of levels for the model's factors.

r Repetitions. The number of random sampling points of Morris Method.

References

Gilles Pujol, Bertrand Iooss, Alexandre Janon with contributions from Sebastien Da Veiga, Jana Fruth, Laurent Gilquin, Joseph Guillaume, Loic Le Gratiet, Paul Lemaitre, Bernardo Ramos and Taieb Touati (2015). sensitivity: Sensitivity Analysis. R package version 1.11.1. https://CRAN.R-project.org/package=sensitivity

Description

A simple Normalized Root-Mean-Square Deviation calculation using max and min values. NRMSD = RMSD(x) / (max(x) - min(x))

Usage

```
AoE.NRMSD(xs, xe)
```

AoE.RandomSampling 11

Arguments

xs The simulated data set

xe The experimental data set

Value

The NRRMSD value for provided datasets

AoE.RandomSampling

AoE.RandomSampling experiment desing generator

Description

Generate a Simple Random Sampling experiment design matrix.

Usage

```
AoE.RandomSampling(n = 10, factors = c())
```

Arguments

n The number of samples

factors The model's parameters which will be evaluated

Value

The random sampling design matrix

Examples

```
## Not run:
    f<- AddFactor(name="cyclePoint",min=40,max=90)
    f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
    d<- AoE.RandomSampling(2,f)
## End(Not run)</pre>
```

12 AoE.Sobol

AoE.RMSD	AoE.RMSD		

Description

A simple Root-Mean-Square Deviation calculation.

Usage

```
AoE.RMSD(xs, xe)
```

Arguments

XS	The simulated data set
xe	The experimental data set

Value

The RMSD value for provided datasets

Description

This is a wrapper for performing Global Sensitivity Analysis using the Sobol Method provided by sensitivity package.

Usage

```
AoE.Sobol(n = 100, factors = c(), o = 2, nb = 100,
fun.doe = AoE.LatinHypercube, fun.sobol = sobolmartinez)
```

Arguments

n	The number of samples
factors	The model's parameters which will be evaluated
0	Maximum order in the ANOVA decomposition
nb	Number of bootstrap replicates
fun.doe	The sampling function to be used for sobol method
fun.sobol	The sobol implementation

Details

This function is not intended to be used directly from user programs.

AoE.Stability 13

References

Gilles Pujol, Bertrand Iooss, Alexandre Janon with contributions from Sebastien Da Veiga, Jana Fruth, Laurent Gilquin, Joseph Guillaume, Loic Le Gratiet, Paul Lemaitre, Bernardo Ramos and Taieb Touati (2015). sensitivity: Sensitivity Analysis. R package version 1.11.1. https://CRAN.R-project.org/package=sensitivity

AoE.Stability

AoE.Stability

Description

This function verifies the stability of CoV for all columns given by parameter keys or all dataset columns if keys is empty.

Usage

```
AoE.Stability(dataset, keys = c())
```

Arguments

dataset A model output dataset keys A list of column names

Value

A data frame with Coefficient of variations

ApplyFactorRange

Corrects the LHS design matrix

Description

Correct the LHS sampling matrix for a specific range applying the lambda function. The default value of 'lambda' is 'qunif'.

Usage

```
ApplyFactorRange(design, factors)
```

Arguments

design The LHS design matrix factors THe collection of factors

Value

The corrected design matrix

BuildParameterSet

Builds the simulation parameter set

Description

Merges the design matrix with parameters which will be keep fixed along simulation runs.

Usage

```
BuildParameterSet(design, parameters)
```

Arguments

design The experimental desing matrix for at least one factor

parameters All parameters of the repast model.

Value

A data frame holding all parameters required for running the model

Examples

```
## Not run:
    modeldir<- "c:/usr/models/BactoSim(HaldaneEngine-1.0)"
    e<- Model(modeldir=modeldir,dataset="ds::Output")
    Load(e)

    f<- AddFactor(name="cyclePoint",min=40,max=90)

    p<- GetSimulationParameters(e)

    d<- AoE.LatinHypercube(factors=f)

    p1<- BuildParameterSet(d,p)
## End(Not run)</pre>
```

Calibration.GetMemberKeys

Calibration.GetMemberKeys

Description

Gets the list of keys (the factor names)

Calibration.GetMemberList

15

Usage

Calibration.GetMemberKeys(obj)

Arguments

obj

An instance of the object returned by Easy methods

Value

The collection of keys

Calibration.GetMemberList

Calibration.GetMemberList

Description

Gets the member list value

Usage

```
Calibration.GetMemberList(obj, key, name)
```

Arguments

obj An instance of the object returned by Easy methods

key The key value name The column name

Value

The member list

check.integration check.integration

Description

Check if the integration jar library is correctelly installed in the model lib directory

Usage

```
check.integration(modelpath)
```

ClearResults

Arguments

modelpath The path where model is installed

Value

TRUE if the integration code is correctelly deployed

check.scenario

check.scenario

Description

Check if the scenario.xml is configured with the rrepast itegration code

Usage

```
check.scenario(modelpath)
```

Arguments

modelpath

The path where model is installed

Value

TRUE if scenario is properly configured

ClearResults

Clear the results data.frame

Description

This function is called automatically every time Run method is called.

Usage

ClearResults()

col.sum 17

col.sum

col.sum

Description

Sum all columns but one (pset) of a data frame

Usage

```
col.sum(d, skip = c())
```

Arguments

d

The data frame

skip

The columns which should not be included in the sum

Value

The original data frame with a new column (sum) holding the sum

config.check

config.check

Description

Verify if the installed model is correctelly configurated.

Usage

```
config.check(modelpath)
```

Arguments

modelpath

The path where model is installed

Value

TRUE when all requisites are met

18 config.scenario

config.copylib

config.copylib

Description

Install or uninstall the integration jar file. This function manages the installation process of required jars to the model lib dir.

Usage

```
config.copylib(modelpath, uninstall = FALSE)
```

Arguments

modelpath The path where model is installed uninstall If TRUE uninstall integration jar

Value

TRUE if install operation succed

config.scenario

config.scenario

Description

Add the integration library to the model's configuration

Usage

```
config.scenario(modelpath, uninstall = FALSE)
```

Arguments

modelpath The path where model is installed

uninstall If TRUE restore original scenario.xml file

Value

A logical TRUE if the model's scenario file has been modified

createOutputDir 19

createOutputDir

Create output directory

Description

A simple function to make a directory to save the model's data.

Usage

```
createOutputDir()
```

Details

Create the, if required, the directory to save the output data generate by the model. It is intended for internal use.

df2matrix

df2matrix

Description

This function converts data frames to matrix data type.

Usage

```
df2matrix(d, n = c())
```

Arguments

d The data frame

n The column names to be converted. Null for all data frame columns

Value

The data frame converted to a matrix

20 dfround

dffilterby

df filter by

Description

Selects a subset of a data frame, filtering by column values.

Usage

```
dffilterby(d, key, values = c())
```

Arguments

d The data frame holding data to be filtered

key The column name for selection valuas

values The collection of values used to filter the data set

Value

The filtered data set

dfround

dfround

Description

Round all numeric columns of a data frame

Usage

```
dfround(d, p)
```

Arguments

d The data frame

p The number of decimal digits to be keept

Value

A data frame with rounded columns

dfsumcol 21

dfsumcol	dfsumcol
----------	----------

Description

Sum data frame columns but tho

Usage

```
dfsumcol(d, lst = c(), invert = FALSE)
```

Arguments

d The data frame

1st Skip columns included. Sum columns NOT included

invert Sum only the columns included in 1st

Value

The original data frame with a new column (sum) holding the sum

|--|

Description

Search for the best set of parameters trying to minimize the calibration function provided by the user. The function has to operational models, the first based on the experimental setup where all parameters are defined a priori and the second using optimization techniques. Currently the only supported optimization technique is the particle swarm optimization.

Usage

```
Easy.Calibration(m.dir, m.ds, m.time = 300, parameters, exp.n = 100,
    exp.r = 1, smax = 4, design = "lhs", FUN, default = NULL)
```

Arguments

m.dir	The installation directory of some repast model
m.ds	The name of any model aggregate dataset
m.time	The total simulated time
parameters	The input factors
exp.n	The experiment sample size
exp.r	The number of experiment replications

22 Easy.getChart

smax The number of solutions to be generated design The sampling scheme ["lhs"|"mcs"|"ffs"]

FUN The objective or cost function. A function defined over the model output.

default The alternative values for parameters which should be kept fixed

Value

A list with holding experiment, object and charts

Examples

Easy.getChart

Easy.getChart

Description

Returns the chart instance

Usage

```
Easy.getChart(obj, key)
```

Arguments

obj A reference to the output of Easy. Stability

key The param name

Value

The plot instance

Easy.getPlot 23

Description

Returns the chart instance

Usage

```
Easy.getPlot(obj, c, key)
```

Arguments

obj A reference to the output of an "Easy" API method

c The output name key The param name

Value

The plot instance

Easy.Morris 1	Easy API for Morris's screening method
---------------	--

Description

This function wraps all calls to perform Morris method.

Usage

```
Easy.Morris(m.dir, m.ds, m.time = 300, parameters, mo.p, mo.r, exp.r,
   FUN, default = NULL)
```

Arguments

m.dir	The installation directory of some repast model
m.ds	The name of any model aggregate dataset
m.time	The total simulated time
parameters	The factors for morris screening.
mo.p	The number of levels for the model's factors.
mo.r	Repetitions. The number of random sampling points of Morris Method.
exp.r	The number of experiment replications
FUN	The objective or cost function. A function defined over the model output.
default	The alternative values for parameters which should be kept fixed

Value

A list with holding experimnt, object and charts

Easy.Run	Easy API for running a model

Description

This function provides a simple wrapper for performing a single or replicated model execution with a single set of parameters.

Usage

```
Easy.Run(m.dir, m.ds, m.time = 300, r = 1, default = NULL)
```

Arguments

m.dır	The installation directory of some repast model
m.ds	The name of any model aggregate dataset
m.time	The total simulated time
r	The number of replications
default	The alternative values for the default model parameters

Easy.RunExperiment Easy API for Runnning Experiments

Description

This function provides a simple wrapper for performing experimental setups using a design matrix

Usage

```
Easy.RunExperiment(m.dir, m.ds, m.time = 300, r = 1, design, FUN, default = NULL)
```

Arguments

m.dir	The installation directory of some repast model
m.ds	The name of any model aggregate dataset
m.time	The total simulated time
r	The number of replications
design	The design matrix holding parameter sampling
FUN	The objective or cost function. A function defined over the model output.
default	The alternative values for parameters which should be kept fixed

Easy.Setup 25

Value

The experiment results

Easy. Setup Easy. Setup

Description

This function configures the deployment directory where logs and output dataset will be generated. By default the deployment directory will be created under the model installation directory. The output generated by the Repast model will be redirected to the SystemOut.log file.

Usage

```
Easy.Setup(model, multicore = FALSE, deployment = c())
```

Arguments

model The base directory where Repast model is installed.

multicore Bolean flag indicating to use multiplecore. deployment The directory to save the output and logs.

Details

If the deployment directory is empty the installation directory given by the parameter model is used instead as the base directory. The deployment directory is /rrepast-deployment/.

Easy.ShowModelParameters

Easy.ShowModelParameters

Description

Returns the list current model parameters

Usage

```
Easy.ShowModelParameters(v)
```

Arguments

v The installation directory of some repast model

Value

The model parameters

26 Easy.Stability

Easy.Sobol	Easy API for Sobol's SA method

Description

This functions wraps all required calls to perform Sobol method for global sensitivity analysis.

Usage

```
Easy.Sobol(m.dir, m.ds, m.time = 300, parameters, exp.n = 500,
bs.size = 200, exp.r = 1, FUN, default = NULL,
fsobol = sobol2002, fsampl = AoE.LatinHypercube)
```

Arguments

m.dir	The installation directory of some repast model
m.ds	The name of any model aggregate dataset
m.time	The total simulated time
parameters	The input factors
exp.n	The experiment sample size
bs.size	The bootstrap sample size for sobol method
exp.r	The number of experiment replications
FUN	The objective or cost function. A function defined over the model output.
default	The alternative values for parameters which should be kept fixed
fsobol	The alternative function for calculating sobol indices
fsampl	The function for sampling data

Value

A list with holding experimnt, object and charts

Easy.Stability Easy API for output stability		
	Easy.Stability	Easy API for output stability

Description

This functions run model several times in order to determine how many experiment replications are required for model's output being stable (i.e. the convergence of standard deviation)

Usage

```
Easy.Stability(m.dir, m.ds, m.time = 300, parameters, samples = 1,
    tries = 100, vars = c(), FUN, default = NULL)
```

Engine 27

Arguments

m.dir The installation directory of some repast model

m.ds The name of any model aggregate dataset

m. time The total simulated time

parameters The factors or model's parameter list

samples The number of factor samples.

tries The number of experiment replications

vars The model's output variables for compute CoV

FUN The objective or cost function. A function defined over the model output.

default The alternative values for parameters which should be kept fixed

Value

A list with holding experiment, object and charts

Engine	Engine			
--------	--------	--	--	--

Description

Creates an instance of Engine

Usage

Engine()

Details

This function creates an instance of Repast model wrapper class. Before invoking the function Engine, make sure that environment was correctly initialized.

Value

An onject instance of Engine class

28 Engine.getId

Engine.endAt

Engine.endAt

Description

Configure the maximun simulated time for the current model run

Usage

```
Engine.endAt(e, v)
```

Arguments

e An engine object instance

v The number of Repast time ticks

Engine.Finish

Engine.Finish

Description

Performs a cleanup on a engine instance. Finalize and destroy repast controller data.

Usage

```
Engine.Finish(e)
```

Arguments

۵

An engine object instance

Engine.getId

Returns the model id

Description

This function provides a wrapper to the method getId() from repast context. The id is basically a String with the currently instantiated model name.

Usage

```
Engine.getId(e)
```

Arguments

е

An engine object instance

Engine.GetModelOutput Engine.GetModelOutput

Description

Gets the model output data as a CSV String array. Calls the engine method GetModelOutput to drain model output data.

Usage

```
Engine.GetModelOutput(e)
```

Arguments

е

An engine object instance

Value

An array of strings containing the model's output

Examples

```
## Not run:
    d<- "c:/usr/models/your-model-directory"
    m<- Model(d)
    csv<- Engine.GetModelOutput(m)
## End(Not run)</pre>
```

Engine.getParameter

Engine.getParameter

Description

The function gets the value of model parameter k as java.lang.Object

Usage

```
Engine.getParameter(e, k)
```

Arguments

e An engine object instance

k The parameter name

Value

The parameter value

Engine.getParameterAsDouble

Engine.getParameterAsDouble

Description

Get the value of model parameter k as java.lang.Double

Usage

```
Engine.getParameterAsDouble(e, k)
```

Arguments

e An engine object instance

k The parameter name

Value

The parmeter value as double

Engine.getParameterAsNumber

Engine.getParameterAsNumber

Description

Get the value of model parameter k as java.lang.Number

Usage

```
Engine.getParameterAsNumber(e, k)
```

Arguments

e An engine object instance

k The parameter name

Value

The parmeter value as number

Engine.getParameterAsString

Engine.getParameterAsString

Description

Get the value of model parameter k as java.lang.String

Usage

Engine.getParameterAsString(e, k)

Arguments

e An engine object instance

k The parameter name

Value

The parameter value as string

Engine.getParameterNames

Engine.getParameterNames

Description

Get the parameter names

Usage

Engine.getParameterNames(e)

Arguments

e An engine object instance

Details

Returns the names of all declared model's parameters in the parameter.xml file in the scenario directory.

Value

A collection of parameter names

32 Engine.LoadModel

Engine.getParameterType

Engine.getParameterType

Description

Returns the declared type of a Repast model parameter

Usage

```
Engine.getParameterType(e, k)
```

Arguments

e An engine object instance

k The parameter name

Value

The parameter type string

Engine.LoadModel

Engine.LoadModel

Description

Loads the model's scenario files

Usage

```
Engine.LoadModel(e, f)
```

Arguments

e An engine object instance

f The full path of scenario directory

Details

This function loads the scenario of a Repast Model and initialize de model.

Engine.resetModelOutput

Engine.resetModelOutput

Description

Resets the the model output holder

Usage

Engine.resetModelOutput(e)

Arguments

e An engine object instance

Engine.RunModel

Engine.RunModel

Description

Performs the execution of Repast model

Usage

Engine.RunModel(e)

Arguments

е

An engine object instance

 ${\tt Engine.SetAggregateDataSet}$

Engine. Set Aggregate Data Set

Description

Sets the model's dataset

Usage

Engine.SetAggregateDataSet(e, k)

Engine.setParameter

Arguments

e An engine object instance

k The repast model's data set name

Details

Configure a dataset with the desired output values to be "drained" by the function Engine.GetModelOutput.

Examples

```
## Not run:
    d<- "C:/usr/models/your-model-directory"
    m<- Model(d)
    setAggregateDataSet(m,"dataset-name")
## End(Not run)</pre>
```

Engine.setParameter

Engine.setParameter

Description

Set the value of model parameter

Usage

```
Engine.setParameter(e, k, v)
```

Arguments

e An engine object instance

k The parameter name

v The parameter value

enginestats.calls 35

enginestats.calls

enginestats.calls

Description

Return the current calls to the 'Engine.RunModel' function

Usage

```
enginestats.calls(increment = FALSE)
```

Arguments

increment

A flag telling to increment and update the counter

Value

The number of calls to 'Engine.RunModel'

enginestats.reset

enginestats.reset

Description

Reset internal statistics

Usage

```
enginestats.reset()
```

getExperimentDataset Helper function to get experiment dataset

Description

The RunExperiment function returns a list holding the paramset, output and dataset collection. The paramset collection contains the parameters used for running the experimental setup. The output has the results from user provided calibration function. The dataset collection has the raw output of 'Repast' aggregated dataset.

Usage

```
getExperimentDataset(e)
```

Arguments

е

The experiement object returned by RunExperiment

Value

The reference to dataset container.

getExperimentOutput

Helper function to get experiment output

Description

The RunExperiment function returns a list holding the paramset, output and dataset collection. The paramset collection contains the parameters used for running the experimental setup. The output has the results from user provided calibration function. The dataset collection has the raw output of 'Repast' aggregated dataset.

Usage

```
getExperimentOutput(e)
```

Arguments

е

The experiement object returned by RunExperiment

Value

The reference to output container.

getExperimentParamSet Helper function to get experiment paramset

Description

The RunExperiment function returns a list holding the paramset, output and dataset collection. The paramset collection contains the parameters used for running the experimental setup. The output has the results from user provided calibration function. The dataset collection has the raw output of 'Repast' aggregated dataset.

Usage

```
getExperimentParamSet(e)
```

Arguments

е

The experiement object returned by RunExperiment

GetFactorLevels 37

Value

The reference to output container.

Examples

```
## Not run:
    d<- "C:/usr/models/your-model-directory"
    m<- Model(d)
    ...
    e<- RunExperiment(e,r=1,exp.design,my.cost)
    p<- getExperimentParamSet(e)
## End(Not run)</pre>
```

GetFactorLevels

GetFactorLevels

Description

Returns the fator's levels

Usage

```
GetFactorLevels(factors, name)
```

Arguments

factors The current factor collection

name The factor name

Value

Levels

```
## Not run:
    f<- AddFactor0(name="Age",levels=c(25,30,40,65))
    f<- AddFactor0(factors=f, name="Weight",levels=c(60,70,80,90))

GetFactorLevels(factors=f, "Age")
## End(Not run)</pre>
```

38 getKeyRandom

GetFactorsSize

Get the number of factors

Description

Returns the total number of factors

Usage

```
GetFactorsSize(factors)
```

Arguments

factors

A collection of factors created with AddFactor

Value

The number of parameters in factors collection

getId

Gets the model name

Description

Provides the name of the model currently instantiated.

Usage

getId()

getKeyRandom

Gets Repast randomSeed name

Description

Returns the Repast randomSeed parameter name.

Usage

getKeyRandom()

Value

A string value holding the randomSeed name.

getLogDir 39

getLogDir()

Description

Returns the value for log directory

Usage

```
getLogDir()
```

GetOutput

Gets the output

Description

Returns the results of a model a data.frame from the last RUN. Should be used only if model replication is equal to 1, otherwise GetResults must be used.

Usage

```
GetOutput(e)
```

Arguments

е

An engine object instance

Value

Returns a data.frame with output data

```
## Not run:
    d<- "C:/usr/models/your-model-directory"
    m<- Model(d)
    ...
    data<- GetOutput(m)
## End(Not run)</pre>
```

40 getpkgdefaultcores

getOutputDir

Gets output directory

Description

Returns the value of module variable for storing the current output directory.

Usage

```
getOutputDir()
```

getpkgcores

getpkgcores

Description

Returns the maximum number of cores to be used in parallel computations

Usage

```
getpkgcores()
```

Value

The number of cores

getpkgdefaultcores

getpkgdefaultcores

Description

Provides the package default parallelism level which is 80% of total cores available

Usage

```
getpkgdefaultcores()
```

Value

Cores used by R/Repast

GetResults 41

GetResults

Returns the model results

Description

Returns the model results

Usage

```
GetResults()
```

GetResultsParameters Gets the parameters

Description

Returns the current set of paramters used for the last model run.

Usage

```
GetResultsParameters()
```

Value

A data.frame with parameters of the model.

GetSimulationParameters

Gets the simulation parameters

Description

Returns a dataframe with the current set of input parameters for the last model run.

Usage

```
GetSimulationParameters(e)
```

Arguments

е

An engine object instance

Value

A data frame with simulation parameters

42 GoToWorkDir

 ${\tt GetSimulationParameterType}$

GetSimulationParameterType

Description

Returns the declared parameter type.

Usage

```
GetSimulationParameterType(e, k)
```

Arguments

e An instance of 'Engine' object

k The parameter name

Value

The parameter type as string

GoToPreviousDir

 ${\it GoToPreviousDir}$

Description

Returns to the saved work directory

Usage

```
GoToPreviousDir()
```

GoToWorkDir

GoToWorkDir

Description

Changes the current work directory saving the previous one which is used in GoToPreviousDir. This function is called by Easy. Setup

Usage

```
GoToWorkDir()
```

hybrid.distance 43

Description

Calculates the distance between some value a reference target value. It is an hybrid distance because when the value falls whithin a reference range the distance is 0, otherwise the distance between the value and the reference value is calculated using the user provided distance function.

Usage

```
hybrid.distance(value, reference, FUN = AoE.NRMSD)
```

Arguments

value The value which will be compared against the reference

reference The reference value. It should be a list holding the value, the range of values.

FUN The distance function. The default is the NRMSD

Value

The distance metric

hybrid.value	hybrid.value	

Description

A simple helper function for generating the input list for the function 'hybrid.distance'. This list must hold the value and a range centered over the value.

Usage

```
hybrid.value(value, distance)
```

Arguments

value The reference value distance The distance interval.

Value

The list holding the value and the interval 'min — value — max'

jvm.enablejmx

jarfile

jarfile

Description

The jarfile returns the full path to some jar file available inside rrpast package

Usage

```
jarfile(fjar)
```

Arguments

fjar

The name of jar file

Value

The full path to jar file

jvm.enablejmx

jvm.enablejmx

Description

Enable jmx for the current R/rJava session

Usage

```
jvm.enablejmx()
```

Details

Configures the JMX subsystem for the current session of R/rJava. This function must be called before any other function which initializes r/Java such as Easy. Setup or Model otherwise it will have no effect.

```
## Not run:
   jvm.enablejmx()
## End(Not run)
```

jvm.getruntime 45

jvm.getruntime

jvm.getruntime

Description

A wrapper for System.getRuntime()

Usage

```
jvm.getruntime()
```

Details

A simple wrapper for System.getRuntime() java method

jvm.get_parameters

jvm.get_parameters

Description

Returns the current java virtual machine parameters

Usage

```
jvm.get_parameters()
```

Value

A string with JVM parameters.

jvm.init

Init R/JVM environment

Description

Initialize rJava and repast environment with classpath. This function is called internally and it is not meant to be used directlly.

Usage

```
jvm.init()
```

jvm.resetOut

Details

The default parameters can be changed as needed calling the primitive jvm.set_parameters befor instantiating the model engine.

References

[1] rJava: Low-Level R to Java Interface. Low-level interface to Java VM very much like .C/.Call and friends. Allows creation of objects, calling methods and accessing fields.

Examples

```
## Not run:
    jvm.init()
## End(Not run)
```

jvm.memory

jvm.memory

Description

JVM memory state

Usage

```
jvm.memory()
```

Details

Provides information about the memory used by the JVM subsystem

jvm.resetOut

jvm.resetOut

Description

Reset the System.out filed value to console output

Usage

```
jvm.resetOut()
```

```
## Not run:
    jvm.resetOut()
## End(Not run)
```

jvm.runtimegc 47

jvm.runtimegc

jvm.runtimegc

Description

A wrapper for Runntime.gc()

Usage

```
jvm.runtimegc()
```

Details

Forces the execution of the JVM garbage collector

jvm.setOut

jvm.setOut

Description

Set the System.out filed to a file

Usage

```
jvm.setOut(f)
```

Arguments

f

The output file name

```
## Not run:
    jvm.setOut("/tmp/SysteOut.log")
## End(Not run)
```

48 lcontains

jvm.set_parameters

jvm.set_parameters

Description

Configures the jvm parameters

Usage

```
jvm.set_parameters(s)
```

Arguments

ς

The paramter string to be passed to the underlying JVM

Details

Set the underlying parameters for java virtual machine. The default values are "-server -Xms1024m -Xmx1024m". These defaults can be changed to fit the model requirements.

Examples

```
## Not run:
   jvm.set_parameters("-server -Xms512m -Xmx2048m")
## End(Not run)
```

lcontains

lcontains

Description

Cheks if a list contains a name

Usage

```
lcontains(1, n)
```

Arguments

The list objectThe item name

Value

Boolean TRUE if name is found on list

lget 49

lget get

Description

Retrieve the value for a list item

Usage

```
lget(1, n)
```

Arguments

The list objectThe item name

Value

The item value

Load

The Scenario loader

Description

Loads the model's scenario. This function must be called before running the model.

Usage

```
Load(e)
```

Arguments

е

An engine object instance

```
## Not run:
    d<- "C:/usr/models/your-model-directory"
    m<- Model(d)
    Load(m)
## End(Not run)</pre>
```

50 Model

Logger.setLevelInfo

Set the log level to INFO

Description

Configures the underlying logging system

Usage

```
Logger.setLevelInfo()
```

```
Logger.setLevelWarning
```

Set the log level to WARNING

Description

Configures the underlying logging system

Usage

```
Logger.setLevelWarning()
```

Model

The easy API for model initilization

Description

Instantiate a repast model from the model dir without loading the scenario file.

Usage

```
Model(modeldir = "", maxtime = 300, dataset = "none", load = FALSE)
```

Arguments

modeldir	The installation director	ry of some repast model

maxtime The total simulated time

dataset The name of any model aggregate dataset load If true instantiate model and load scenario

ParallelClose 51

Details

This is the entry point for model execution. Typically any model execution will start with this function which encapsulates all low level calls for model initialization. In order to perform simulations with repast from R code only Model and a few more function calls are required: Load, Run. Finally the output of model is managed with functions GetResults and SaveSimulationData.

Value

Returns the instance of repast model

References

[1] North, M.J., N.T. Collier, and J.R. Vos, "Experiences Creating Three Implementations of the Repast Agent Modeling Toolkit," ACM Transactions on Modeling and Computer Simulation, Vol. 16, Issue 1, pp. 1-25, ACM, New York, New York, USA (January 2006).

Examples

```
## Not run:
    d<- "C:/usr/models/your-model-directory"
    m<- Model(d)
## End(Not run)</pre>
```

ParallelClose

ParallelClose

Description

Finalize the parallel execution environment for R/Repast

Usage

ParallelClose()

ParallelInit

ParallelInit

Description

Initialize the parallel execution environment for R/Repast

Usage

```
ParallelInit()
```

parallelize	parallelize
-------------	-------------

Description

Tells R/Repast to use multicore. Default is using just one core.

Usage

```
parallelize(v = NULL)
```

Arguments

v A Bollean value telling if use multiple cores. When null just returns the current

setting

Value

Boolean with current state

```
ParallellRunExperiment
```

ParallellRunExperiment

Description

Run the model multiple times for different parameters given by design matrix function parameter.

Usage

```
ParallellRunExperiment(modeldir, datasource, maxtime, r = 1, design, FUN, default = NULL)
```

Arguments

modeldir	The installation directory of some repast model
datasource	The name of any model aggregate dataset

maxtime The total simulated time

The number of experiment replications

design The desing matrix holding parameter sampling

FUN THe calibration function.

default The alternative values for parameters which should be kept fixed

ParallelRun 53

Details

The FUN function must return zero for perfect fit and values greater than zero otherwise.

Value

A list with output and dataset

Examples

```
## Not run:
    my.cost<- function(params, results) { # your best fit calculation, being 0 the best metric. }
    d<- "/usr/models/your-model-directory"
    f<- AddFactor(name="cyclePoint",min=40,max=90)
    f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
    d<- AoE.LatinHypercube(factors=f)
    v<- ParallellRunExperiment()
## End(Not run)</pre>
```

ParallelRun

ParallelRun

Description

Run simulations in parallel. This function executes the time steps of an instantiated model. The number of replications of model runs can be specified by the function parameter. The seed parameter may be omitted and will be generated internally. If provided, the seed collection, must contain the same number of r parameter.

Usage

```
ParallelRun(modeldir, datasource, maxtime, r = 1, seed = c(), design = NULL, default = NULL)
```

Arguments

modeldir The installation directory of some repast model datasource The name of any model aggregate dataset

maxtime The total simulated time

The number of experiment replications

seed The random seed collection

design The desing matrix holding parameter sampling

Value

The model output dataset

54 PB.enable

Examples

```
## Not run:
    md<- "/usr/models/your-model-directory"
    output<- ParallelRun(modeldir= md, maxtime = 360, dataset= ds, r=4)
## End(Not run)</pre>
```

PB.close

PB.close

Description

Close the progress bar descriptor

Usage

PB.close()

PB.disable

PB.disable

Description

Disable the progress bar visualization

Usage

```
PB.disable()
```

PB.enable

PB.enable

Description

Enables the progress bar visualization

Usage

```
PB.enable()
```

PB.get 55

PB.get

PB.get

Description

Gets the the progress bar descriptor

Usage

```
PB.get()
```

PB.init

PB.init

Description

Initialize progress bar for model execution.

Usage

```
PB.init(psets, replications)
```

Arguments

psets — The total number of paramter sets being simulated replications — The number of replications per simulation round

 ${\tt PB.isEnabled}$

PB.isEnabled

Description

Returns the global value indicating if progress bar is enabled.

Usage

```
PB.isEnabled()
```

Value

Boolean TRUE if progress bar must be shown

56 PB.set

PB.pset

PB.pset

Description

Update pset value

Usage

PB.pset(v)

Arguments

٧

The current parameter set being simulated

PB.rnum

PB.rnum

Description

Update run number value

Usage

PB.rnum(v)

Arguments

v

The current run number

PB.set

PB.set

Description

Ses the progress bar descriptor

Usage

PB.set(obj)

Arguments

obj

- The progress bar descriptor

PB.update 57

PB.update	PB.update
-----------	-----------

Description

Update progress bar

Usage

```
PB.update(r = NULL)
```

Arguments

r The current replication number

```
pick.fittest pick.fittest
```

Description

Choose the best solutions minimizing the objective function

Usage

```
pick.fittest(out, goals = c(), n = 4)
```

Arguments

out	The output data set holding the values of goals
goals	The column names which must be used as goal
n	The number of solutions

Value

The n rows holding the best results

58 Plot.Morris

Plot.Calibration Plot of calibration

Description

Generate plot for parameter sets providing best fit

Usage

```
Plot.Calibration(obj, key, title = NULL)
```

Arguments

obj An instance of calibration Object

key The column name

title Chart title, may be null

Value

The resulting ggplot2 plot object

Plot.Morris Plot of Morris output

Description

Generate plot for Morris's screening method

Usage

```
Plot.Morris(obj, type, title = NULL)
```

Arguments

obj An instance of Morris Object AoE.Morris
type The chart type (mu*sigmalmusigmalmu*mu)

title Chart title, may be null

Value

The resulting ggplot2 plot object

Plot.Sobol 59

Plot.Sobol	
------------	--

Plot of Sobol output

Description

Generate plot for Sobol's GSA

Usage

```
Plot.Sobol(obj, type, title = NULL)
```

Arguments

obj An instance of Sobol Object AoE. Sobol

type The chart type

title Chart title, may be null

Value

The resulting ggplot2 plot object

Plot.Stability

Plot stability of output

Description

Generate plot for visually access the stability of coefficient of variation as function of simulation sample size.

Usage

```
Plot.Stability(obj, title = NULL)
```

Arguments

obj An instance of Morris Object AoE. Morris

title Chart title, may be null

Value

The resulting ggplot2 plot object

Results.GetCharts

Results.GetCharts

Description

Simplify the access to the charts member

Usage

```
Results.GetCharts(obj)
```

Arguments

obj

An instance of the object returned by Easy methods

Value

The charts element inside results

 $Results. Get Experiment \ \textit{Results.GetExperiment}$

Description

Simplify the access to the experiment member

Usage

```
Results.GetExperiment(obj)
```

Arguments

obj

An instance of the object returned by Easy methods

Value

The experiment element inside results

Results.GetObject 61

Results.GetObject

Results.GetObject

Description

Simplify the access to the object member

Usage

```
Results.GetObject(obj)
```

Arguments

obj

An instance of the object returned by Easy methods

Value

The object element inside results

Run

Run simulations

Description

This function executes the time steps of an instantiated model. The number of replications of model runs can be specified by the function parameter. The seed parameter may be omitted and will be generated internally. If provided, the seed collection, must contain the same number of r parameter.

Usage

```
Run(e, r = 1, seed = c())
```

Arguments

e An engine object instance

r The number of experiment replications

seed The random seed collection

Value

The model output dataset

62 RunExperiment

Examples

```
## Not run:
    d<- "C:/usr/models/your-model-directory"
    m<- Model(d)
    Load(m)
    Run(m,r=2) # or Run(m,r=2,seed=c(1,2))
## End(Not run)</pre>
```

RunExperiment

Run an experimental setup

Description

Run the model multiple times for different parameters given by design matrix function parameter.

Usage

```
RunExperiment(e, r = 1, design, FUN)
```

Arguments

e An engine object instance

r The number of experiment replications

design The desing matrix holding parameter sampling

FUN THe calibration function.

Details

The FUN function must return zero for perfect fit and values greater than zero otherwise.

Value

A list with output and dataset

```
## Not run:
    my.cost<- function(params, results) { # your best fit calculation, being 0 the best metric. }
    d<- "c:/usr/models/your-model-directory"
    m<- Model(d,dataset="ds::Output")
    Load(m)
    f<- AddFactor(name="cyclePoint",min=40,max=90)
    f<- AddFactor(factors=f, name="conjugationCost",min=1,max=80)
    d<- LatinHypercube(factors=f)
    p<- GetSimulationParameters(e)
    exp.design<- BuildParameterSet(d,p)
    v<- RunExperiment(e,r=1,exp.design,my.cost)
## End(Not run)</pre>
```

SaveSimulationData 63

SaveSimulationData Saving simulation output

Description

Saves the simulation results of last call to Run(e) function.

Usage

```
SaveSimulationData(as = "csv", experiment = NULL)
```

Arguments

as The desired output type, must be csv or xls

experiment The experiment output

Details

The model must have been initialized or user must call setId explicitelly.

Value

The id of saved data

SequenceItem SequenceItem

Description

Generate a sequence from min to max using an increment based on the number of of elements in v

Usage

```
SequenceItem(v, min, max)
```

Arguments

v A column of n x k design matrixmin The lower boundary of rangemax The uper boundary of range

Value

A sequence between min and max value

setOutputDir

setId

Sets the model name

Description

Set the name of the model currently instantiated.

Usage

```
setId(s)
```

Arguments

s

The model name

setKeyRandom

Sets Repast randomSeed name

Description

Configures a non-default value for Repast randomSeed parameter name.

Usage

```
setKeyRandom(k)
```

Arguments

k

The string with an alternative name for randomSeed

setOutputDir

Sets output directory

Description

Configure the desired directoy to save model output data.

Usage

```
setOutputDir(s)
```

Arguments

s

The full path for output directory

setpkgcores 65

setpkgcores

setpkgcores

Description

Configures the maximum number of cores to be used in parallel computations

Usage

```
setpkgcores(v)
```

Arguments

ν

The number of cores

SetResults

Stores a data.frame

Description

Stores a data.frame

Usage

SetResults(d)

Arguments

d

A data frame containing one replication data

SetResultsParameters Sets the parameters

Description

Save the current set of paramters used for the last model run.

Usage

SetResultsParameters(d)

Arguments

d

A data.frame with parameter values

66 SetSimulationParameters

SetSimulationParameter

Set Simulation Parameter

Description

Modify model's default parameter collection

Usage

```
SetSimulationParameter(e, key, value)
```

Arguments

e An engine object instance

key The paramter name value The parameter value

SetSimulationParameters

Set parameters for running model

Description

Modify the repast model parameters with values provided in parameter 'p' which is a data frame with just one row.

Usage

```
SetSimulationParameters(e, p)
```

Arguments

- e An engine object instance
- p A data frame with simulation parameters

ShowClassPath 67

ShowClassPath

Show Class Path

Description

Shows the current classpath

Usage

```
ShowClassPath()
```

Value

the current setting of JVM classpath

Examples

```
## Not run:
    ShowClassPath()
## End(Not run)
```

ShowCores

ShowUsedCores

Description

Prints the number of cores used

Usage

ShowCores()

ShowModelPaths

ShowModelPaths

Description

Prints the paths. Shows the directories currently used to load model scenario and lib. The output of this function is informational only and can be used to check whether model data is being loaded properly from correct locations.

Usage

```
ShowModelPaths()
```

Examples

```
## Not run:
    ShowModelPaths()
## End(Not run)
```

UpdateDefaultParameters

UpdateDefaultParameters

Description

Modify the value of the default parameters which should be kept fixed

Usage

```
UpdateDefaultParameters(e, p)
```

Arguments

- e An engine object instance
- p The collection of model fixed paramters to change

```
## Not run:
    d<- "C:/usr/models/your-model-directory"
    m<- Model(d)
    Load(m)

p<- c(name1=value1, name2=2)
    UpdateDefaultParameters(m,p)
## End(Not run)</pre>
```

WrapperRun 69

|--|--|--|

Description

Wrapper for the Run and ParallelRun functions

Usage

```
WrapperRun(modeldir, datasource, maxtime, r = 1, seed = c(),
  design = NULL, default = NULL, multi = TRUE)
```

Arguments

modeldir The installation directory of some repast model
datasource The name of any model aggregate dataset
maxtime The total simulated time
r The number of experiment replications
seed The random seed collection
design The desing matrix holding parameter sampling
default The alternative values for parameters which should be kept fixed

Value

multi

The model output dataset

```
WrapperRunExperiment WrapperRunExperiment
```

allows forcing single core execution, default is using multi-core

Description

Wrapper for the RunExperiment and ParallelRunExperiment functions

Usage

```
WrapperRunExperiment(modeldir, datasource, maxtime, r = 1, design, FUN, default = NULL)
```

Arguments

modeldir The installation directory of some repast model

datasource The name of any model aggregate dataset

maxtime The total simulated time

The number of experiment replications

design The desing matrix holding parameter sampling

FUN The objective function.

default The alternative values for parameters which should be kept fixed

Value

The model output dataset

Index

	5 5 24
AddFactor, 5	Easy.Run, 24
AddFactor0, 5	Easy.RunExperiment, 24
AddResults, 6	Easy. Setup, 25, 42, 44
AoE.Base, 6	Easy.ShowModelParameters, 25
AoE.ColumnCoV, 7	Easy.Sobol, 26
AoE.CoV, 7	Easy.Stability, 26
AoE.FullFactorial, 8	Engine, 27
AoE.GetMorrisOutput,8	Engine.endAt, 28
AoE.LatinHypercube, 9	Engine.Finish, 28
AoE.MAE, 9	Engine.getId, 28
AoE.Morris, 10, 58, 59	Engine.GetModelOutput,29
AoE.NRMSD, 10	Engine.getParameter, 29
AoE.RandomSampling, 11	Engine.getParameterAsDouble, 30
AoE.RMSD, 12	Engine.getParameterAsNumber, 30
AoE. Sobol, 12, 59	Engine.getParameterAsString, 31
AoE.Stability, 13	Engine.getParameterNames, 31
ApplyFactorRange, 13	Engine.getParameterType, 32
	Engine.LoadModel, 32
BuildParameterSet, 14	Engine.resetModelOutput, 33
	Engine.RunModel, 33
Calibration.GetMemberKeys, 14	Engine.SetAggregateDataSet, 33
Calibration.GetMemberList, 15	Engine.setParameter, 34
check.integration, 15	enginestats.calls, 35
check.scenario, 16	enginestats.reset, 35
ClearResults, 16	-
col.sum, 17	<pre>getExperimentDataset, 35</pre>
config.check, 17	getExperimentOutput, 36
config.copylib, 18	getExperimentParamSet, 36
config.scenario, 18	GetFactorLevels, 37
createOutputDir, 19	GetFactorsSize, 38
,	getId, 38
df2matrix, 19	getKeyRandom, 38
dffilterby, 20	getLogDir, 39
dfround, 20	GetOutput, 39
dfsumcol, 21	getOutputDir, 40
,	getpkgcores, 40
Easy.Calibration, 21	getpkgdefaultcores, 40
Easy.getChart, 22	GetResults, 41, 51
Easy.getPlot, 23	GetResultsParameters, 41
Easy.Morris, 23	GetSimulationParameters, 41
• • • • • • • • • • • • • • • • • • • •	

72 INDEX

GetSimulationParameterType, 42	Run, <i>51</i> , 61
GoToPreviousDir, 42, 42	RunExperiment, $36,62$
GoToWorkDir, 42	,
	SaveSimulationData, 51, 63
hybrid.distance, 43	SequenceItem, 63
hybrid.value, 43	setId, 64
nybria. varac, 13	setKeyRandom, 64
jarfile, 44	•
jvm.enablejmx,44	setOutputDir, 64
	setpkgcores, 65
jvm.get_parameters, 45	SetResults, 65
jvm.getruntime, 45	SetResultsParameters, 65
jvm.init, 45	SetSimulationParameter, 66
jvm.memory, 46	SetSimulationParameters, 66
jvm.resetOut, 46	ShowClassPath, 67
jvm.runtimegc, 47	ShowCores, 67
jvm.set_parameters, 46,48	ShowModelPaths, 68
jvm.setOut, 47	0.10.11.10.0021 0.01.0, 0.0
,	UpdateDefaultParameters, 68
lcontains, 48	opadeberdalti di dileter 5, 00
lget, 49	WrapperRun, 69
Load, 49, <i>51</i>	WrapperRunExperiment, 69
Logger.setLevelInfo, 50	m apper numexper fillerit, 09
Logger.setLevelWarning, 50	
Logger . SetLeverwarning, 50	
Model, 44, 50	
ParallelClose, 51	
ParallelInit, 51	
parallelize, 52	
ParallellRunExperiment, 52	
ParallelRun, 53	
PB. close, 54	
PB.disable, 54	
PB.enable, 54	
PB.get, 55	
PB.init, 55	
PB.isEnabled, 55	
PB.pset, 56	
PB. rnum, 56	
PB. set, 56	
PB. update, 57	
pick.fittest, 57	
Plot.Calibration, 58	
Plot.Morris, 58	
Plot.Sobol, 59	
Plot.Stability, 59	
Results.GetCharts,60	
Results.GetExperiment, 60	
Results.GetObject.61	