RTCGA.data - The Family of R Packages with Data from The Cancer Genome Atlas Study

by Marcin Kosinski, Przemysław Biecek

Abstract The following article presents RTCGA.data: a family of R packages with data from The Cancer Genome Atlas Project (TCGA) study. TCGA is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing [1]. We converted selected datasets from this study into few separate packages that are hosted on one GitHub repository¹. These R packages make selected datasets easier to access and manage. Data sets in RTCGA.data packages are large and cover complex relations between clinical outcomes and genetic background. These packages will be useful for at least three audiences: biostatisticians that work with cancer data; researchers that are working on large scale algorithms; teachers that are presenting data analysis method on real data problems.

Motivation

The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes [1].

TCGA data is available through Firehose Broad GDAC portal [1]. One can select cancer type (cohort) and data type (e.g. clinical, RNA expression, methylation, ..) and download a tar.gz file with compressed data.

When working with many cancer types we find this approach burdensome:

- If one requires to download datasets containing e.g. information about genes' expressions for all available cohorts types (TCGA collected data for more than 30 various cancer types) one would have to go through the click-to-download process many times, which is inconvenient and time-consuming.
- Clinical datasets from TCGA project are not in a standard tidy data format, which is: one row
 for one observation and one column for one variable. They are transposed which makes work
 with that data burdensome. That becomes more onerous when one would like to investigate
 many clinical datasets.
- Datasets containing information on some data types (e.g. gene's mutations) are not in one
 easy-to-handle file. Every patient has it's own file, what for many potential researchers may be
 an impassable barrier.
- Data governance for many datasets for various cohorts saved in different folders with strange (default after untarring) names may be exhausting and uncomfortable for researchers that are not very skilled in data management or data processing.

For these reasons we prepared selected datasets from the TCGA project in an easy to handle and process way and embed them in 4 separate R packages. All packages can be installed from BioConductor by evaluating the following code:

source("https://bioconductor.org/biocLite.R")
biocLite("RTCGA.clinical")
biocLite("RTCGA.rnaseq")
biocLite("RTCGA.mutations")
biocLite("RTCGA.cnv")

Patient's barcode as a key to merge data

A TCGA barcode is composed of a collection of identifiers. Each specifically identifies a TCGA data element. An illustration on what each part of the patient's barcode can be found on https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode.

¹https://github.com/mi2-warsaw/RTCGA.data

How to work with RTCGA.data family

RTCGA.data family contains 4 packages:

- RTCGA.clinical package containing clinical datasets from TCGA. Each cohort contains one dataset prepared in a tidy format. Each row, marked with patients' barcode, corresponds to one patient. Clinical data format is explained here https://wiki.nci.nih.gov/display/TCGA/Clinical+Data+Overview
- RTCGA. rnaseq package containing genes' expressions datasets from TCGA. Each cohort contains one dataset with over 20 thousand columns corresponding to genes' expression. Rows correspond to patients, that can be matched with the patient's barcode. Genes' expressions data format is explained here https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2
- RTCGA. mutations package containing genes' mutations datsets from TCGA. Each cohort contains one dataset with extra column specifying patient's barcode which enables to distinguish which rows correspond to which patient. Mutations' data format is explained here https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Specification.
- RTCGA.cnv package containing copy number (the number of copies of a given gene per cell) variation datasets from TCGA.

More detailed information about datasets included in **RTCGA.data** family are shown in Table 1 After installation, one can load any package from **RTCGA.data** family with commands

```
library(RTCGA.clinical)
library(RTCGA.rnaseq)
library(RTCGA.mutations)
library(RTCGA.cnv)
```

and one can check what datasets are available (Table 1) with commands

?clinical
?rnaseq
?mutations
?cnv

The data loading proceeds in a regular way. Simply type

data(cohort.package)

where cohort corresponds to a specific Cohort of patients and package corresponds to the one of four packages from **RTCGA.data** family.

Examples of applications

The Kaplan-Meier estimate of the survival curves with the clinical data

RTCGA.data family is excellent when one researches in a field of survival analysis and genomics. Survival times for patients are included in clinical datasets. The following example plots Kaplan-Meier [5] estimates of the survival functions for patients suffering from LUAD cancer, divided into stages of the cancer.

```
library(dplyr)
library(RTCGA.clinical)
#library(devtools);biocLite("mi2-warsaw/RTCGA.tools")
library(RTCGA.tools)
library(survival)
library(survMisc)
LUAD.clinical %>%
  mutate(
      patient.vital_status = ifelse(LUAD.clinical$patient.vital_status %>% as.character() =="dead",1,0),
      barcode = patient.bcr_patient_barcode %>% as.character(),
      times = ifelse( !is.na(patient.days_to_last_followup),
                 patient.days_to_last_followup %>% as.character() %>% as.numeric(),
                 patient.days_to_death %>% as.character() %>% as.numeric() ),
      stage = RTCGA.tools::mergeStages(LUAD.clinical$patient.stage_event.pathologic_stage)
   ) %>%
   rename(
      therapy = patient.drugs.drug.therapy_types.therapy_type
   filter( !is.na(times) ) -> LUAD.clinical.selected
LUAD.clinical.selected %>%
   survfit( Surv(times, patient.vital_status) ~ stage, data = .) %>%
   survMisc:::autoplot.survfit( titleSize=12, type="CI" ) %>%
   .[[2]] -> km_plot_luad
pdf
  2
```


Figure 1: The Kaplan-Meier estimate of the survival curve for the LUAD cancer.

The Cox proportional hazards model with the genes' mutations data

In a simple way one can use previously selected data to merge them with genes' mutations data and to compute Cox proportional hazards model [9]. Moreover, the goodness of fit can be checked with the plot of Martingale Residuals - Figure 2.

```
library(RTCGA.mutations)
library(ggthemes)
LUAD.clinical.selected %>%
     left_join( y = LUAD.mutations %>%
                    filter( Hugo_Symbol == "TP53") %>%
                    mutate( barcode = barcode %>% as.character %>% tolower %>% substr(1,12) ) %>%
                    select( barcode, Variant_Classification),
                 by = "barcode") %>%
                   mutate( Variant_Classification = divideTP53(Variant_Classification) ) ->
  LUAD.clinical.mutations.selected
(coxph(Surv(times, patient.vital_status)~ as.factor(stage)+Variant_Classification,
     data = LUAD.clinical.mutations.selected) -> LUAD.coxph)
coxph(formula = Surv(times, patient.vital_status) ~ as.factor(stage) +
   Variant_Classification, data = LUAD.clinical.mutations.selected)
                               coef exp(coef) se(coef)
as.factor(stage)2
                                       2.2417
                                                0.2328 3.47 0.00053
                             0.8072
as.factor(stage)3
                            1.3804
                                       3.9764
                                                0.2339 5.90 3.6e-09
as.factor(stage)4
                            1.1555
                                       3.1756
                                                0.3414 3.38 0.00071
Variant_ClassificationOther 0.4397
                                       1.5523
                                                0.3284 1.34 0.18058
Variant_ClassificationWILD -0.0365
                                                0.2396 -0.15 0.87890
                                       0.9642
Likelihood ratio test=45.1 on 5 df, p=1.36e-08
n= 508, number of events= 126
   (2 observations deleted due to missingness)
qplot(predict(LUAD.coxph, type="lp"),residuals(LUAD.coxph))+
  theme_tufte(base_size=20)+
  xlab("Linear combinations")+
  ylab("Martingale residuals")+
  geom_hline(yintercept=0, col ="orange", size = 3)
dev.off()
                     _3·
```

Figure 2: Martingale residuals vs. linear combination of the independent variables for the LUAD cancer's Cox proportional hazard model.

0.0 0.5 Linear combinations 1.0

-o.5

The Principal Components Analysis for the rnaseq data

One can also perform a Principal Components Analysis, after binding rnaseq data for few random cancer types like below. It can be seen that genes' expressions amongs those cancers vary and samples group in view of cancer type.

```
rbind(ACC.rnaseq, CHOL.rnaseq, GBM.rnaseq, PCPG.rnaseq, UVM.rnaseq) -> rnaseq_sample
# which columns contain only zeros
rnaseq_sample[,-1] %>% colSums() -> rnaseq_col_sums
which(rnaseq_col_sums == 0) -> columns_with_only0
rnaseq\_sample[, -c(1,columns\_with\_only0+1)] \%>\%
   prcomp( scale = TRUE ) -> PCA
# labels for pca
lapply(list(ACC.rnaseq, CHOL.rnaseq, GBM.rnaseq, PCPG.rnaseq, UVM.rnaseq), nrow) -> rnaseq_nrow
mapply(rep,
       c("ACC.rnaseq", "CHOL.rnaseq", "GBM.rnaseq", "PCPG.rnaseq", "UVM.rnaseq"),
       rnaseq_nrow) %>%
   unlist -> rnaseq_pca_labels
# biplot
#library(devtools);install_github("vqv/ggbiplot")
library(ggbiplot)
rownames(PCA$rotation) <- 1:nrow(PCA$rotation)</pre>
ggbiplot(PCA, obs.scale = 1, var.scale = 1,
  groups = rnaseq_pca_labels, ellipse = TRUE, circle = TRUE, var.axes=FALSE) +
  theme(legend.direction = 'horizontal', legend.position = 'top') -> biplot_rnaseq
```


Figure 3: The biplot for 2 main components of the principal component analysis of genes' expressions data for 5 various cancer types.

- [1] http://cancergenome.nih.gov/
- [2] http://gdac.broadinstitute.org/
- [3] http://cran.r-project.org/bin/windows/Rtools/
- [4] https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode
- [9] Cox D. R., (1972) \textit{Regression models and life-tables (with discussion)}, Journal of the Royal Star
- [5] Kaplan, E. L.; Meier, P. (1958). "Nonparametric estimation from incomplete observations". J. Amer. Stats

\bibliography{RJreferences}

Marcin Kosinski Warsaw University of Technology Faculty of Mathematics and Information Science Koszykowa 75, 00-662 Warsaw, Poland M.P.Kosinski@gmail.com

Przemysław Biecek University of Warsaw Faculty of Mathematics, Informatics, and Mechanics Banacha 2, 02-097 Warsaw, Poland Przemyslaw.Biecek@gmail.com

Table 1: Dimensions of available datasets in RTCGA.family.

	Disease Name	Cohort	Cases	clinical	cnv ^a	mutations	$rnaseq^b$
1	Adrenocortical carcinoma	ACC	92	92 x 1115	21052	20255 x 53	79
2	Bladder urothelial carcinoma	BLCA	412	401 x 2098	105795	39441 x 96	427
3	Breast invasive carcinoma	BRCA	1098	1085 x 3668	284510	91471 x 68	1212
4	Cervical and endocervical cancers	CESC	307	305 x 1674	59450	46740 x 58	309
5	Cholangiocarcinoma	CHOL	36	36 x 846	7570	6789 x 49	45
6	Colon adenocarcinoma	COAD	460	453 x 3149	91166	62683 x 40	328
7	Colorectal adenocarcinoma	COADREAD	631	624 x 3488	126931		
8	Lymphoid Neoplasm Diffuse Large	DLBC	58	47×760	9343		28
9	Esophageal carcinoma	ESCA	185	183 x 1197	60803		196
10	FFPE Pilot Phase II	FPPP	38	38 x 3277			
11	Glioblastoma multiforme	GBM	613	593 x 5379	146852	22362 x 80	166
12	Glioma	GBMLGG	1129	1085 x 5660	226643		
13	Head and Neck squamous cell carcinoma	HNSC	528	523 x 1754	110289	52077 x 90	566
14	Kidney Chromophobe	KICH	113	111 x 907	10164	7624×37	91
15	Pan-kidney cohort (KICH+KIRC+KIRP)	KIPAN	973	917 x 2766	142122	73527 x 36	1020
16	Kidney renal clear cell carcinoma	KIRC	537	533 x 2682	85044	26785 x 36	606
17	Kidney renal papillary cell carcinoma	KIRP	323	273 x 1890	46914	15745 x 53	323
18	Acute Myeloid Leukemia	LAML	200	200 x 1148	28324	2781 x 65	173
19	Brain Lower Grade Glioma	LGG	516	492 x 2127	79791	10170×39	530
20	Liver hepatocellular carcinoma	LIHC	377	364 x 1583	93328	28089 x 49	423
21	Lung adenocarcinoma	LUAD	585	521 x 3009	122927	72770×92	576
22	Lung squamous cell carcinoma	LUSC	504	495 x 2692	134864	65482 x 87	552
23	Mesothelioma	MESO	87	87 x 893	18335		86
24	Ovarian serous cystadenocarcinoma	OV	602	591 x 3626	261680	20534×44	265
25	Pancreatic adenocarcinoma	PAAD	185	185×1248	34808	15779 x 85	183
26	Pheochromocytoma and Paraganglioma	PCPG	179	179 x 1186	31256	4784×91	187
27	Prostate adenocarcinoma	PRAD	499		117345	12679 x 86	550
28	Rectum adenocarcinoma	READ	171	171×2740	35765	22143×40	105
29	Sarcoma	SARC	260		106617	26753×78	
30	Skin Cutaneous Melanoma	SKCM	470	469 x 1875	108084	276271 x 91	472
31	Stomach adenocarcinoma	STAD	443	443 x 1690	118389	148808 x 80	
32	Stomach and Esophageal carcinoma	STES	628	626 x 1828	179192	148808 x 80	196
33	Testicular Germ Cell Tumors	TGCT	150	134 x 983	24952	14826 x 58	156
34	Thyroid carcinoma	THCA	503	502 x 1662	55377	7862 x 91	568
35	Thymoma	THYM	124	123 x 848	15571		122
36	Uterine Corpus Endometrial Carcinoma	UCEC	560	540 x 2180	127430	185108×50	201
37	Uterine Carcinosarcoma	UCS	57	57 x 918	19298	11210 x 91	57
38	Uveal Melanoma	UVM	80	80 x 594	12973	2607 x 91	80

 $[^]a$ The second dimension is always equal to 6. b The second dimension is always equal to 20532.