Basewide Energy Systems Plan for Harry Diamond Laboratories

Volume I
Executive Summary
Final Report

Prepared for:

U.S. Army Corps of Engineers

Norfolk District

19971017 237

Prepared by:

JRB ASSOCIATES

DTIC QUALITY INSPECTABLE &

8400 Westpark Drive

McLean, Virginia 22102

August 1983

BASEWIDE ENERGY SYSTEMS PLAN

FOR

HARRY DIAMOND LABORATORIES

ADDRESSING INCREMENTS A, B, C, F AND G

VOLUME I

EXECUTIVE SUMMARY

PREPARED FOR:

NORFOLK DISTRICT, CORPS OF ENGINEERS 803 FRONT STREET NORFOLK, VIRGINIA 23510

ARMY CONTRACT NO. DACA65-80-C-0015 JRB CONTRACT NO. 2-815-04-198

SUBMITTED BY:

JRB ASSOCIATES 8400 WESTPARK DRIVE McLEAN, VIRGINIA 22102

AUGUST 1983

INDEX OF ENERGY ENGINEERING ANALYSIS

PROGRAM WORK AT HARRY DIAMOND LABORATORIES

Volume I	Executive Summary
Volume II a	Main Report: Increments A, B and G Section 1. Introduction Section 2. Facility Energy Use Section 3. Energy Supply, Distribution, and End-Use Section 4. Energy Conservation Opportunities
Volume II b	Facility Engineers Conservation Measures, Increment F Section 1. Introduction Section 2. Increment F Projects Section 3. Summary of Energy Conservation Projects Section 4. Energy Related Training Appendix A Support Calculations for Increment F Appendix B Scope of Work (Increment F) Appendix C Detailed Description of Training Courses.
Volume II c	Solar Analysis, Increment C Section 1. Introduction Section 2. Procedures Used in Selection and Evaluation of Renewable Systems Section 3. Findings of Solar and Wind Analysis Appendix A Projects Evaluated Appendix B Scope of Work
Volume III - 1	Appendix, ECIP Projects and Submittal Comments Appendix A Current Electrical Rate Schedules Appendix B Monthly Energy Use Appendix C Calculations for Boiler Efficiency Appendix D Calculations for Heating Distribution Line Losses Appendix E Energy Conservation Opportunities Which Did Not Meet ECIP Criteria Appendix F Solar Energy Systems Summary Appendix G Refuse Derived Fuel Analysis Appendix H Scope of Work Appendix I "Energy Conservation Investment Program (ECIP) Guidance", 1 April 1980

INCREMENTS A AND B ECIP PROJECTS

Spot Cooling and Heat Wheel
Dimming System on Fluorescent Lighting
Install HVAC Controls
Replace Mercury Vapor High Bay Lighting System
Site Lighting

SUBMITTAL COMMENTS

VOLUME III-2 INCREMENT G PROJECTS

.

Install Thermostatic Control Valves
Install Ceiling Insulation
Reduce Temperature Stratification in High Bay Areas
Install Automatic Condenser Brush Cleaners

____ JRB Associates _

EXECUTIVE SUMMARY

This report presents the final results of Increments A, B, C, F and G of the Basewide Energy Systems Plan for Harry Diamond Laboratories (HDL), in Adelphi, Maryland prepared by JRB Associates (JRB) under Contract No. DACA65-80-C-0015. The report includes analyses of the energy use patterns at the base and the identification and evaluation of energy conservation opportunities. The obtained results indicate that HDL energy use can potentially be reduced by 29.6 percent by FY 1985, compared to the FY 1978 energy use baseline.

The report is organized into three volumes: Volume I - Executive Summary, Volume II - Main Report, Facilities Engineer Conservation Measures, and Solar Wind Analyses, and Volume III - Appendices and ECIP projects.

The Main Report is organized into four sections:

- Section 1. Describes the HDL facility and discusses the scope of the energy conservation study.
- Section 2. Provides an overview of energy use at HDL for FY 1979 and a fuel use profile for the past three years.
- Section 3. Contains JRB's analyses of the HDL energy supply and distribution systemm.
- Section 4. Contains the results of JRB's analyses of potential energy conservation projects, and discusses the methods employed to determine project costs and energy savings.

Information for the study was obtained during a series of site visits which encompassed the Adelphi, Woodbridge and Blossom Point facilities. A summary of the HDL building inventory is shown in Table 1. The summary of energy use over the past three years in Table 2 indicates that total energy use at HDL has been relatively unchanged from FY 1977. However, the facility has developed considerably since FY 1975 with significant increases in its basic mission. This fact has necessitated the designation of FY 1978 as the baseline year for energy record purposes.

TABLE 1. HARRY DIAMOND LABORATORIES - BUILDING ENERGY USE SUMMARY

BUILDING No. &	TOTAL FLOOR AREA	TOTAL ENERGY USE IN	ENERGY USE IN
FUNCTIONAL USE	SQUARE FEET	FY 1979 - Btu x 10 ⁹	Btu/GSF/YEAR
101 Motor Pool Shop	5,888	4.097	695,822
102 Supply Center	28,835	8,583	297,659
103 Engineering	16,016	6.516	406,843
202 Laboratory	167,220	73.229	437,920
203 Laboratory	181,829	61.721	399,445
204 Office/Laboratory	167,220	124.444	744,282
205 Office/Cafeteria	111,250	53.091	477,222
500 Laboratory	40,850	36.134	884,553

NOTE: The above are the major buildngs at the site.

ENERGY USE AT HARRY DIAMOND LABORATORIES FY 1977 to FY 1982 TABLE 2.

FUEL TYPE	FY 1977 Btu x 10	FY 1978 Btu x 10	FY 1979 ₉ Btu x 10	FY 1980 Btu x 10	FY 1981 Btu x 10	FY 1982 Btu x 10
FUEL OIL	175.717	190.641	165.881	128.973	146.760	108.140
ELECTICITY	290.459	298.627	299.555	300.474	317.840	347.327
TOTAL	466.176	489.268	465.436	429.447	464.600	455.467

Figure 1 illustrates the total energy use in buildings at HDL by fuel type. Fuel oil accounts for approximately 35 percent of the total, while electricity accounts for over 64 percent. The high electrical use reflects the preponderance of energy intensive research and development activities at the facility. Peak fuel oil use occurs during the winter months as a result of the demand for building heat. The demand for electricity peaks during the summer, reflecting the extensive use of electrically-driven air conditioning equipment.

The control heating system was examined in detail. The central plant at the Adelphi site provides high temperature water to the majority of buildings through an underground system of insulated pipes. The Woodbridge site is heated through underground steam lines, many of which were found to be in poor condition. The central plant at Aldelphi also supplies chilled water for cooling purposes which is generated by electrically-driven centrifugal chillers. Boiler inefficiencies and distribution losses account for 30 percent of the total fuel oil use at HDL. A boiler plant modification program planned for FY 1982 will reduce some of these losses. A breakdown of HDL fuel oil energy use is shown in Figure 2.

A similar analysis was performed for the electrical system. The highest electrical energy use is for research and development equipment, amounting to nearly 42 percent of the total. Over 40 percent of the base electrical energy use is accounted for by building cooling requirements, and by the operation of circulating fans and pumps. Losses in the electrical system are only 3 percent. The electrical energy use profile for HDL is shown in Figure 3.

The programmed Energy Conservation Investment Program (ECIP) projects at HDL include the installation of an Energy Management Control System (EMCS) which is to be installed during FY 1984, and modifications to the boiler plant. Additional energy conservation opportunities were developed by JRB Associates, and were analyzed for their engineering and economic feasibility. Table 3 shows the energy conservation measures examined while Table 4 provides the list of recommended ECIP projects. The results of these analyses are presented in Section 4.3 of the Main Report. JRB also identified various

TOTAL ENERGY USE AT HDL FY 1979 - 465.436 Btu x 10^9 per year

NOTE: PROPANE IS NOT SHOWN, SINCE THE AMOUNT USED IS INSIGNIFICANT.

FIGURE 1. TOTAL ENERGY USE IN BUILDINGS BY FUEL TYPE, FY 1979

HARRY DIAMOND LABORATORIES

TOTAL FUEL OIL ENERGY USE - 165.881 Btu \times 10 9 per year

FIGURE 2. FUEL OIL END USE PROFILE, HARRY DIAMOND LABORATORIES (FY 1979)

Figure 3 goes here

TOTAL ON-SITE ELECTRICITY USE FY 1979 - 25,823,675 kWh per year

FIGURE 3. ELECTRICAL ENERGY END USE PROFILE AT HARRY DIAMOND LABORATORIES (FY 1979)

TABLE 3. POTENTIAL ENERGY CONSERVATION OPPORTUNITIES

	1		ENERGY	Γ	ANNUAL	 	
		Ĺ	SAVINGS	CWE	SAVINGS	PAYBACK	
OPTION DESCRIPTION	E/C	B/C	MBtu/Yr	(\$)	(\$)	(YRS)	STATUS
OFIION DESCRIPTION	E/C	B/C	ribcu/11	(4)	(3)	(IKS)	SIATUD
GENERAL HEADING (GOOD TAGE						l	
CENTRAL HEATING/COOLING							
PLANTS							
Boiler Economizer							N/A
Boiler Water Treatment							N/A
Variable Speed Chiller							N/A
Motor					İ		
Return Condensate					İ		N/A
Insulate Pipes						1	N/A
Add Flue Dampers (Oil					ĺ		N/A
Furnaces)							
Automatic Condenser	20.1	1.8	4,594.0	228,865	13,827	7.2	M&0
Cleaning							
Refuse Derived Fuels						l	N/A
EMCS							PROG.
					ļ		
BUILDING SHELL					-		
Reduce Window Openings							N/A
Storm Windows	4.7	1.1	0	0	0	20.4	NO NO
Wall Insulation (interior)			25.5	5,337	261	20.4	NO
Roof Insulation	9.5		188.0	19,769	1,957	3.4	O&M
Loading Dock Door Seals	7.5	2.5	100.0	13,703	1,557	3,4	N/A
Reduce Solar Heat Gain							N/A
Vestibules	0.7	0.1	3.2	4,766	30	156	NO NO
Wall Insulation (exterior)	2.9		255.0	88,805	2,607	34	NO
Reduce Door Size		0.,		00,003	2,007) '	N/A
Loading Dock Strip Doors	21.4	2.0	39.7	1,854	370	5	O&M
Replace Windows	3.7	0.9	0,1,			26	NO
1						Í	
LIGHTING	1					1	
Replace Mercury Vapor in	21 (2 0	2 2/2 0	100 006	1, 105		
Bldg. 203 & 500	21.6	2.9	2,343.0	108,396	14,105	7.2	ECIP
Use Higher Efficient	8.1	0.8	0.6	- 7/	4	17.6	NO
Ballasts	0.1	0.0	0.6	74	4	17.6	NO
Reduce Heat of Luminaires							N/A
Add Switching							N/A
Use Automatic Dimming	16.7	1.7	4,337	258,871	21,448	12.1	ECIP
Controls			7,557	-50,0,1	,		2011
Site Lighting	20.9	2.6	1,901	90,767	11,634	7.8	ECIP
Replace Incandescent	1		.,	1	,		N/A
Exit Lights							N/A
		Į				j	
						İ	
·							

TABLE 3. POTENTIAL ENERGY CONSERVATION OPPORTUNITIES (CONTINUED)

			,	,			
			ENERGY		ANNUAL		İ
			SAVINGS	CWE	SAVINGS	PAYBACK	
OPTION DESCRIPTION	E/C	B/C	MBtu/Yr	(\$)	(\$)	(YRS)	STATUS
BUILDING HEATING AND COOLING							
Eliminate Unnecessary Roof Vents							N/A
Reduce Air Flow Rates Shut Down Ventilation Systems							N/A PROG.
Spot Cooling and Heat Wheels for Recovery	14.7	2.1	4,581.0	311,373	27,965	11.1	ECIP
Temperature Setback Warm-up Cycle Controls							PROG.
Automatic Control Valves for Radiators	59,2		603.0	10,244	6,532	1.6	0&M
HVAC Controls Rezone Heat- ing System	99.6	9.8	24,537.0	246,230	174,994	1.4	ECIP
Economizer Controls VAV Systems Shut Down Air Conditioning Systems			-				N/A N/A PROG.
Air Stratification Temperature Setback EMCS Replace Gas Pilots with/	39.9	6.7	799.7	20,061	9,399	2.1	O&M N/A PROG.
Spark Ignition DOMESTIC HOT WATER Use Local Hot Water Heaters Solar Heating 120 Panel 3 Panel Insulation, Hot Water Tanks Boosting Water Temperature Shutdown	5.61 2.87	0.7 0.4 0.9	14.94	3,090		30.1 58.7 23.7	N/A N/A NO NO NO N/A N/A
		-					

TABLE 4. PRIORITIZED LIST OF RECOMMENDED ECIP PROJECTS

Project Title	E/C Ratio	Annual Energy Savings (MBtu)	CWE (\$)
HVAC Controls	99.65	24,537	245,230
Site Lighting	20.94	1,901	90,767
High Bay Lighting	21.62	2,343	108,396
Dimming System	16.75	4,337	258,871
Spot Cooling and Heat Wheel	14.71	4,581	311,373
TOTAL		37,699	1,015,637

TABLE 5. SUMMARY OF INCREMENT G PROJECTS

				PAYBACK (YRS)		ENERGY SA		ANNUAL ENERGY	ANNUAL COST	·
PROJECT	E C	$\frac{\mathbf{B}}{\mathbf{C}}$	EC CC	PAYI (Y	OIL (10 ⁶ Btu)	GAS (10 ⁶ Btu)	ELECT. (10 ⁶ Btu)	SAVINGS (10 ⁶ Btu)	SAVINGS (\$)	CWE (\$)
Thermostatic Control Valves for Steam Radiators- Woodbridge	85.0	13	19.2	1.1	1,047	-	-	1,047	\$11,333	\$ 12,314
Air Stratification-Adelphi	9.9	1.8	2.6	8.0	278.8	-	-50.1	228.7	2,850	22,917
Install Automatic Brush Cleaners on Water Cooled Condenser-Adelphi*	20.1	1.8	2.7	7.2	-	-	4,598	4,598	31,865	228,864
Roof Insulation-Adelphi and Woodbridge	9.5	2.3	3.4	10.1	140	-	48	188	1,957	19,769
TOTAL					1,465.8		4,595.9	6,061.7	\$48,005	\$283,864

^{*}Projects that qualify for ECIP funding

operation and maintenance procedures and projects that could potentially reduce HDL's fixed facilities energy use. The list of projects developed is shown in Table 5 and is presented in Section 4-6 of the Main Report. The projected future energy costs for Adelphi and Woodbridge are presented in Table 6 and 7.

Increment F of the Basewide Energy Systems Plan for HDL evaluated energy conservation projects that can be done under Facility Engineering programs and presents a summary of projects implemented and planned.

Eleven Facility Engineering energy conservation projects were evaluated and are summarized in Table 8. Seven projects, in whole or in part, are recommended for implementation and can save 30 billion Btu/year, reducing post energy use by approximately seven percent. Part of project 9 (low energy winter cooling for building 500) and project 3 (metering chillers) are not recommended due to poor economics. Installation of a small air compressor (project 11) was deemed inapplicable as peak demands could not be met with a smaller compressor. Two of the cost effective Increment F projects are to be accomplished in the proposed EMCS and therefore, are not recommended.

The work involved in Increment C is addressed in Volume II c, and includes the analysis of renewable energy sources - solar and wind.

Four applications for renewable energy are addressed for HDL located at Adelphi and Woodbridge. The four applications discussed are:

- Solar Domestic Hot Water for Adelphi and Woodbridge
- Solar Applications for Summer Boiler Shutdown, Adelphi
- Solar Project System for the Drying Room, Building 204, Adelphi
- Wind Energy Conversion System at Woodbridge

The analysis discusses the development of energy use profiles, types of systems evaluated, systems performance, wind speed profiles and results of economic analyses.

TABLE 6. FUTURE ENERGY COSTS - ADELPHI SITE

Fuel Type	FY 1980 Average \$/Unit	Btu Per Unit	FY 1980 \$/MBtu	FY 1981 \$/MBtu	FY 1982 \$/MBtu	1
#2 Oil (Gallons)	.91	138,700 Btu/gal	6.56	7.55	8.68	9.98
Electricity (kWh)	.0459	11,600 Btu/kWh	3.96	4.55	5.24	6.02

TABLE 7. FUTURE ENERGY COSTS - WOODBRIDGE SITE

Fuel Type	FY 1980 Average \$/Unit	Btu Per Unit	FY 1980 \$/MBtu	FY 1981 \$/MBtu		FY 1983 \$/MBtu
#2 Oil (Gallons)	.86	138,700 Btu/gal	6.20	7.13	8.20	9.44
Electricity (kWh)	.052	11,600 Btu/kWh	4.48	5.16	5.93	6.81

TABLE 8. HDL INCREMENT F PRIORITIZED PROJECT SUMMARY

	PROJECT	IMPLEMENTATION COSTS	COST SAVINGS	ENERGY SAVINGS MBTU/YEAR	SIR	MANHOURS TO IMPLEMENT
2.6	Install Local Control on Fume Hoods	\$ 400	\$ 23,400	4,360	106	7
2.5	Revise Air Conditioning Systems in New Office Areas	\$ 1,000	\$ 20,000	3,673	258	Air Balance Contractor
2.1	Evaluate Building 204 Exhaust Air System	\$ 11,000	\$ 11,400	2,152	14.0	142
2.4	Use Programmed Chiller Controls	FUNCTION PE	PERFORMED BY EN	EMCS UNDER DESIGN		
2.2	Reduce Domestic Hot Water Temperature, Building 205	\$ 4,400	006 \$	157	3.0	12
2.8	Install Electrical Load Shedding Equipment	FUNCTION PE	RFORMED BY EN	FUNCTION PERFORMED BY EMCS UNDER DESIGN		
2.7	Install Electronic Controller on Large Motors	\$ 537,700	\$ 89,900	17,488	2.1	352
2.10	Steam and Condensate Distribution System - Woodbridge	\$ 3,300	\$ 300	34	1.0	94
2.9	Low Energy Winter Cooling System: Building 106 Building 500	\$ 104,600 \$ 56,400*	\$ 9,200 \$ 2,100*	2,160	1.1	789 436
2.11	Evaluate Smaller Air Compressor	N/A	NOT APPLICABLE	LICABLE		1
2.3	Meter Chillers - Building 106	FUNCTION P	PERFORMED BY E	EMCS UNDER DESIGN		
	TOTALS	\$717,100	\$ 157,200	30,631		

*Not included in totals

As can be seen in Table 9, none of the solar thermal or wind energy applications evaluated under either ECIP criteria or the guidelines in ETL 1110-3-332 for HDL achieved a savings to investment ratio (SIR) greater than 1. The highest SIR (0.83) was obtained for installation of the air preheat to the dry room in Building 204. This system had the lowest cost per square foot of any of the systems considered, primarily because no storage is required, however, solar air preheat was not cost effective because of the high efficiency of the heat recovery system currently in use.

The final results clearly indicate the potential for savings of over 29 percent in total energy use at the base by FY 1985, compared to the FY 1978 energy use baseline. Thus, the goals established in the Army Facilities Energy Plan should be exceeded by a comfortable margin. The magnitude of these potential savings is illustrated graphically in Figure 4, which should be compared with Figure 1 to gain an appreciation of the fuel oil and electricity savings that can be made.

TABLE 9. HDL INCREMENT C PROJECT SUMMARY

	<u> </u>									
Eco- nomic Life	20 15	25	20 20 15	20	20	20	20	20	20	20
SIR	92.	.47	<pre>66 .50</pre>	.08	0>	.18	.10	.21	.10	0>
Total Discounted Saving (\$)	28,349	99,382	-1,843,537 1,556,777 1,183,124	, 348	-172	735	1,126	1,062	1,126	ос 1
Discounted Energy Savings (\$)	30,065	113,974	-1,593,719 1,806,595 1,298,029	793	273	1,180	2,365	1,592	2,364	1,231
System Cost (\$)	35,889	211,680	2,359,054 2,359,054 2,359,054	4,192	4,192	4,192	11,664	5,040	11,644	11,644
% Solar	N/A	N/A	15 15 15	87	100	11	42	59	42	26
Solar Backup	#2 oil	N/A	Electricity #2 oil	Elect.	Elect.	Elect.	Elect.	Elect.	Elect.	Elect.
Existing Fuel	#2 oil	Elec- rticity	#2 oil	Elect.	Elect.	Elect.	#2 oil	#2 oil	#2 oil	#2 oil
Collector Area (Solar) Rotor Dia. (Wind)	1,056 sq. ft.		40,000 8q. ft.	40 sq. ft.	40 sq. ft.	40 8q. ft.	140 sq. ft.	80 sq. ft.	140 sq. ft.	140 sq. ft.
System Type	Solar, air type collectors no storage	50 kW 2 blade upwind with A.C. synchronous generator; pitch control	Two tank closed loop evacuated tube liquid	Drain back, flat plate, liquid	Drain back, flat plate, liquid	Drain back, flat plate, liquid	Closed loop, flat plate, liquid	Drain back, flat plate, liquid	Closed loop, flat plate, liquid	Closed loop, flat plate, liquid
Application	Outside, air preheat	Electrical generation	Reheat & DHW	рни	рнw	рни	DHW	DHW	DHW	DHW
Group	R&D, office	N/A	R&D, office, service	Office, R&D	Office, Shop	Office, R&D	R&D, Office	R&D, Office	R&D, Office	Office Service
Building No.	204	N/A	Adelphi 202,203	101	102	103	Adelphi 202	203	204	205
	Adelphí	Wood- bridge	phi	Wood- bridge			phi			

Figure 4 goes here

TOTAL PROJECTED ENERGY USE FY 1985 - 344.339 Btu x 10⁹ per year

TOTAL PROJECTED ENERGY SAVINGS BY FY 1985 OVER FY 1979 USAGE - 121.097 Btu x 10⁹

TOTAL ENERGY SAVINGS MEASURED FROM FY 1978 BASELINE - 29.6%

NOTE: PERCENTAGES IN THIS FIGURE ARE DIRECTLY COMPARABLE WITH THOSE GIVEN IN FIGURE 1.

FIGURE 4. TOTAL PROJECTED FUEL USE AND SAVINGS, HARRY DIAMOND LABORATORIES (FY 1985)

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering