End dem exam ED132028 y Zan Ken & Frank Sant Ketr & Gor & Hocson Forker 2nd 2m Fran # force on spring + Damping forces!+ far 2 (su (Zsst-Zun) Bon == Ks (Zstr-Zust) fight = Ks (Zstr - Zutr) far (Zer - Zydr) fore 2 Rs (Zore - Zure) Fare Sire (Zone - Zuici) For alks (Zorr - Zurr) For = Corr (Zorr Zurr) =) Porces on the time! (v) ten segui mes (v) Fish = Ktg/Zin - Zine) Flor = Ken (Zur - Zvor) I had an the whools to Kera (Zum - Zrre) (dto) 5. Ktrr (Zur - Zur)

Excelied focus on Spring man! ER, = ms z's fact for the for miss (FSFR & FARI) + (FSFR & FLEX) + (FSFR + FARE) + (FSFR + FARE) - MSESSO. # Pitching moment! (Fore + Pone + Form + Form) b - (Fore + Fourt Fort Par) a = Spirit Hrolling moment 1-W (Bort fasi) + (fort fam) - (Fost fam) - (fort fam) # Clerked forces on types () (1) front left! must zine = (Fest fast) - fest (Fest fast) (iii) Real left: mune Zune = (Forktfare) - Fetre @ (iv) Rea elight: mar Eur = (fint fair) - fire \$ Load on the wheels 1-764 = Kin (2000 - 2060) musig tree with a sign

Est = 1395 2 (atto) Park = msga + mierig + fire. For = Msga + Murr g + ferr 2 (adb) (M) - (M) to fast stayours, flere, Iyy " = m, a, h + m, gho + b (But Pane) + (Psrot Fan) -a[(Fyr+Parx)+(fsr+Far)]

(1.0) (V120) 3 my ay (h-hre) cost + my 9 (h-hredita) + W (Bart Patr) + (Fortfar) +- (Foget Boss) - (Foret Fare) = Tout my Change Merch I milt six-6) Hacebook of rehicle >-(was = (wa, o) = Ox = Vx - Vy p. . Congitudhal accidenten ay = vy + Vx P_) latered acceleration. #Yow En of motion: Ize $\varphi = \mathcal{W}\left(f_{rer}\cos\delta - f_{n+1}\cos\delta + f_{n+r} + f_{yezdiho} - f_{yezdiho}\right)$

+ ly freesing + ly Figheliss + ly Anti-Sins+ Le Pythicos - lefyre -lefynt Maret Maret Maret Maret Mare - (1) Jour, Att 2m (2) - 40 2m (2) (Whr-(unt Now, (Coloky a) + Atil me Gway Monte with in some = 0000 (white (mait) + (mait) + (mait)) = 1629.36 Nh (ibbi + 18) / (b-9) = 1629.36 Nh (ibbi + 18) / (b-9) (mi + pro) (mi ni) you + (Part Bur) +- (Partides) - (Partident) = Trad on them (3) - Krz 45tmr (warm (whit) - (con, rs foresteeps of chiles 0-9r- (1.0r = 2-28469.41 N/m. ay = ig + Vx (4.) Cateral conduction restant to the contite Tesp = & (60,006-120,000) = 4.5-130,000) = 4.5-130,000)

ED5220 – Vehicle Dynamics End Sem Exam

ED23S038-Sai Santhosh Rao Kotha

Question 2:

15 DOF Model development and analysis:

In Full_car_end_sem_Norollbar ▶

Behaviour analysis of 15 DOF Model under different conditions:

At a steering angle of 2.6 deg, the lateral acceleration of ay = 4.38 is achieved. The corresponding plots are shown below:

1) Step Steer Conditions : Steering angle vs Time

- 50% steering wheel input = 1.3 deg.
 Time taken to reach 50% steering = 4.06 sec

V_x vs Time:

A_y vs Time:

V_y vs Time:

Yaw rate vs Time

Roll vs Time:

Step Input Response data:

Parameter	Value
Lateral accl response time	4.9-4.06 = 0.84sec
Lateral accl peak response time	5.25-4.06 = 1.19 sec
Lateral accl steady state gain	4.385/2.6 = 1.686
Lateral accl overshoot	(4.45-4.385)/4.385 = 0.015 (1.5%)
Yaw rate response time	4.325-4.06 = 0.274 sec
Yaw rate peak response time	5.15-4.06=1.09 sec
Yaw rate steady state gain	0.262/2.6 = 0.1
Yaw rate overshoot	(0.265 - 0.262)/0.262 = 0.011 (1.1%)
Roll angle response time	4.4-4.06=0.34sec
Roll angle peak response time	5.25-4.06 = 1.19sec
Roll angle steady state gain	1.285/2.6 = 0.494
Roll angle overshoot	(1.308-1.285)/1.285=0.0178 (1.78%)

1) Impulse Steer Conditions:

Steering angle vs Time:

V_x vs Time:

A_y vs Time:

V_y vs Time:

Yaw rate vs Time

Roll vs Time:

Pulse Input Response data:

Expressions for the four parameters are:

$$a_{1} = \frac{v_{x}}{LK_{sr}(1 + Kv_{x}^{2})}$$

$$f_{n} = \frac{L}{\pi v_{x}} \cdot \sqrt{\frac{C_{\alpha f}C_{\alpha r}(1 + Kv_{x}^{2})}{I_{zx}M}}$$

$$\zeta = \frac{I_{zz}(C_{\alpha f} + C_{\alpha r}) + M(I_{f}^{2}C_{\alpha f} + I_{r}^{2}C_{\alpha r})}{2L\sqrt{I_{zx}MC_{\alpha f}C_{\alpha r}(1 + Kv_{x}^{2})}}$$

$$\phi = \tan^{-1}\left(\frac{I_{f}LC_{\alpha r}}{\frac{LC_{\alpha r}v_{x}}{2\pi} - \pi I_{zz}v_{x}}\right) - \tan^{-1}\left(\frac{2\zeta f_{n}}{f_{n}^{2} - 1}\right)$$

Parameter	Value
Steady state gain of Yaw rate response	0.25
Natural frequency of Yaw rate response	0.53
Damping of yaw velocity response	0.99 Hz
Phase delay at 1Hz of lateral acceleration	-71 deg

The Transfer functions required for Mimuro plots are:

$$\left(\frac{a_Y(s)}{\delta_H(s)}\right) = a_1 \frac{1 + b_1 s + b_2 s^2}{1 + 2\zeta \frac{s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$

$$\left(\frac{\dot{\psi}(s)}{\delta_H(s)}\right) = a_2 \frac{1 + b_3 s}{1 + 2\zeta \frac{s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$

Question 3:

Calculation of Understeer Gradient:

Steering angle = Ackerman steering angle + under steer Gradient * Ay Since the vehicle is travelling straight, Ackerman steering angle is = zero. Lateral Acceleration $A_y = F_{YV} / W$ (in g's) = cross slope (for small angles) Therefore, Understeer Gradient (USG) = Steering angle / cross slope. From the above graphs, under steer gradient = 2.6/4.385 = 0.592 deg/g Parameters that affect the understeer gradient:

Mass of the Vehicle (M = 1200 Kg)

Length of Vehicle (1 = 2.6m)

Distance of Vehicle from the Front (a = 1.0m)

Distance of Vehicle from the Rear (b = 1.6m)

Cornering Stiffness of Front and Rear Tires (c (α f), c (α r))