Introduction aux méthodes de Monte Carlo par dynamique Hamiltonienne

Shmuel RAKOTONIRINA-RICQUEBOURG, Amaury DURAND

9 décembre 2017

Plan

- Introduction
- 2 Dynamique hamiltonienne
- Mamiltonian Monte-Carlo
- Simulations

- Introduction
 - Algorithmes MCMC
 - Algorithme de Metropolis (Random Walk Metropolis)
- 2 Dynamique hamiltonienne
- Hamiltonian Monte-Carlo
- 4 Simulations

Principe des MCMC

- Objectif : pour π à densité h_{π} simuler π ou approcher πf
- Idée : trouver une chaîne de Markov X admettant π comme loi invariante et convergeant vers π

Théorème (Théorème ergodique)

Soit $(X_k)_{k\in\mathbb{N}}$ une chaîne de Markov de noyau P sur (\mathbb{X},\mathcal{X}) admettant une unique loi invariante π . Alors pour tout $f \in \mathbb{F}_+(\mathbb{X},\mathcal{X}) \cup \mathbb{F}_b(\mathbb{X},\mathcal{X})$ et pour π -presque tout $x \in \mathbb{X}$,

$$\frac{1}{n}\sum_{k=0}^{n-1}f(X_k)\xrightarrow[n\to+\infty]{\mathbb{P}_{x^-}\text{ p.s.}}\pi f$$

Algorithme Random-walk Metropolis

Algorithme 1.1: Random Walk Metropolis

jusqu'à une condition d'arrêt;

retourner $(X_k)_k$

- Introduction
- 2 Dynamique hamiltonienne
 - Définition
 - Propriétés
 - Discrétisation
- Hamiltonian Monte-Carlo
- 4 Simulations

Dynamique hamiltonienne

Définition

(Dynamique hamiltonienne) Soit $H: \begin{array}{ccc} \mathbb{R}^d \times \mathbb{R}^d & \to & \mathbb{R} \\ (x,p) & \mapsto & H(x,p) \end{array}$. Deux

fonctions de position $x: \mathbb{R}_+ \to \mathbb{R}^d$ et de quantité de mouvement $p: \mathbb{R}_+ \to \mathbb{R}^d$ sont dites solutions du hamiltonien H (ou suivant la dynamique hamiltonienne de H) si

$$x'(t) = \frac{\partial H}{\partial p}(x(t), p(t))$$

$$p'(t) = -\frac{\partial H}{\partial x}(x(t), p(t))$$

Pour T > 0, H peut être associée à la densité (sur \mathbb{R}^{2d})

$$h(z) \propto \exp\left(-\frac{H(z)}{T}\right)$$

Hamiltonien pour l'algorithme HMC

Pour avoir $X \sim \pi$, on cherche à simuler $(X,P) \sim \widetilde{\pi} = \pi \otimes \nu$ pour une loi ν choisie. Dans toute la suite, on fera les hypothèses suivantes :

Hypothèses (H)

- π et u sont à densité h_{π} et $h_{
 u}$ strictement positives sur \mathbb{R}^d
- $\exists k \geq 1, \ln(h_{\pi})$ et $\ln(h_{\nu})$ sont de classe \mathcal{C}^k sur \mathbb{R}^d
- h_{ν} est paire
- ullet $H:(x,p)\mapsto U(x)+K(p)$ avec $U=-T\ln(h_\pi), K=-T\ln(h_
 u)$

Ainsi, la densité $h \propto e^{H/T}$ est la densité jointe $h = h_{\pi} \otimes h_{\nu} = h_{\widetilde{\pi}}$.

Flot de l'équation différentielle

En notant
$$z=(x,p)$$
, les équations $x'=\frac{\partial H}{\partial p}, p'=-\frac{\partial H}{\partial x}$ se réécrivent $z'=F(z)$ où $F=J\nabla H$ et $J=\begin{bmatrix}0_d&I_d\\-I_d&0_d\end{bmatrix}$.

Proposition (conservation du hamiltonien)

Le hamiltonien est conservé le long des trajectoires : si z' = F(z), alors $H \circ z$ est constant.

Définition (flot hamiltonien)

Pour $t \in \mathbb{R}$, on définit le flot ϕ_t de sorte que pour tout $z_0 \in \mathbb{R}^{2d}$, $t \mapsto \phi_t(z_0)$ soit l'unique solution du hamiltonien avec condition initiale $z(0) = z_0$.

Proposition (conservation du volume)

La solution du hamiltonien conserve le volume : $\det\left(\frac{d\phi_t}{dz}\left(z\right)\right)=1.$

Réversibilité du flot

Lemme (réversibilité du temps)

Soit z=(x,p) une solution du hamiltonien H. On définit $\bar{z}=(\bar{x},\bar{p})$ par $\bar{z}(t)=(x(-t),-p(-t))$. Alors

- \bullet \bar{z} est solution du hamiltonien H (avec d'autres conditions initiales).
- $\forall t \in \mathbb{R}_+, \phi_t(\bar{z}(-t)) = \bar{z}(0)$

Proposition (réversibilité du flot)

 ϕ_t est un \mathcal{C}^k -difféomorphisme d'inverse

$$\phi_t^{-1}: (x,p) \mapsto (\phi_t^{(1)}(x,-p), -\phi_t^{(2)}(x,-p)).$$

Preuve de la réversibilité du temps.

On définit la symétrie s(x,p)=(x,-p). Par définition, $\bar{z}(t)=s\circ z(-t)$ et par hypothèse de parité de h_{ν} , $H=H\circ s$.

Notons
$$S \doteq \frac{ds}{dz}(z) = \begin{bmatrix} I_d & 0_d \\ 0_d & -I_d \end{bmatrix}$$
 (et ce pour tout z). Ainsi,

 $\nabla H = S \nabla H \circ s$. On remarque que SJ = -JS et $s^{-1} = s$.

$$\bar{z}'(t) = -Sz'(-t) = -SJ\nabla H(z(-t)) = JS\nabla H(z(-t))$$

donc

$$\bar{z}'(t) = J\nabla H(s^{-1}(z(-t))) = J\nabla H(\bar{z}(t))$$

Preuve de la réversibilité du flot.

Il suffit de prouver la formule de l'inverse. On pose $\bar{\phi}_t(x,p)=(\phi_t^{(1)}(x,-p),-\phi_t^{(2)}(x,-p))$. On fixe $z_0=(x_0,p_0)$ et on note z la solution du hamiltonien avec $z(0)=z_0$.

D'une part,

$$\bar{\phi}_t(\phi_t(x_0, p_0)) = \bar{\phi}_t(z(t)) = (\phi_t^{(1)}(\bar{z}(-t)), -\phi_t^{(2)}(\bar{z}(-t))) = (x_0, p_0)$$

$$\operatorname{car} \bar{z}(0) = (x_0, -p_0).$$

D'autre part,

$$\bar{\phi}_t(x_0, -p_0) = (\phi_t^{(1)}(x_0, p_0), -\phi_t^{(2)}(x_0, p_0)) = (x(t), -p(t)) = \bar{z}(-t)$$

donc

$$\phi_t(\bar{\phi}_t(x_0,-p_0)) = \phi_t(\bar{z}(-t)) = \bar{z}(0) = (x_0,-p_0).$$

Algorithme du leapfrog

Variante de la méthode d'Euler : on discrétise $x' = \nabla K(p), p' = -\nabla U(x)$ en

- ① $p_{t+\epsilon/2} = p_t \frac{\epsilon}{2} \nabla U(x_t)$ (demi-pas en p).
- ② $x_{t+\epsilon} = p_t + \epsilon \nabla K(p_{t+\epsilon/2})$ (pas en x).

Algorithme 2.1 : Discrétisation de l'évolution par saute-mouton (*leap-frog*)

Données : pas ϵ , nombre de pas L, état initial (x_0, p_0) **pour** $k \in [0, L-1]$ **faire** // Saute-mouton $| x_{k+1} \leftarrow x_k + \epsilon \nabla K \left(p_k - \frac{\epsilon}{2} \nabla U(x_k) \right);$

$$p_{k+1} \leftarrow p_k - \frac{\epsilon}{2} \nabla U(x_k) - \frac{\epsilon}{2} \nabla U(x_{k+1});$$

retourner (x_L, p_L)

Flot approché

Définition (flot approché)

On fixe $\epsilon>0$. Pour $L\in\mathbb{N}^*$, on définit le flot approché du hamiltonien par L itérations de l'algorithme leapfrog par $\hat{\phi}_L=\hat{\phi}^L$ où $\hat{\phi}$ est défini par

$$\hat{\phi}^{(1)}: (x, p) \mapsto x + \epsilon \nabla K \left(p - \frac{\epsilon}{2} \nabla U(x) \right)
\hat{\phi}^{(2)}: (x, p) \mapsto p - \frac{\epsilon}{2} \nabla U(x) - \frac{\epsilon}{2} \nabla U(\hat{\phi}^{(1)}(x, p))$$

Propriétés du flot approché

Proposition (conservation du volume)

On suppose $k \geq 2$ (U et K de classe C^2). La solution approchée du hamiltonien par le leapfrog conserve le volume : $\det\left(\frac{d\hat{\phi}}{dz}(z)\right) = 1$.

Proposition (réversibilité du flot approché)

 $\hat{\phi}$ est inversible d'inverse $\phi^{-1} = s \circ \hat{\phi} \circ s : (x,p) \mapsto (\hat{\phi}^{(1)}(x,-p), -\hat{\phi}^{(2)}(x,-p)).$

- Introduction
- 2 Dynamique hamiltonienne
- Mamiltonian Monte-Carlo
 - Cas idéal
 - Cas réel
- 4 Simulations

Algorithme HMC idéal

Algorithme 3.1 : Hamiltonian Monte-Carlo, cas idéal

Données : h_{π} proportionnel à la densité cible, t une durée sur laquelle suivre la dynamique

 $X_0 \leftarrow x \in \mathbb{X}$ arbitraire;

répéter

$$ilde{\mathcal{P}}_k \sim
u$$
 et $ilde{\mathcal{P}}_k \perp \!\!\! \perp (Z_0, \cdots, Z_k)$; // Tirer la quantité de mouvement

$$\tilde{Z}_k \leftarrow (X_k, \tilde{P}_k)$$
;

$$Z_{k+1} = (X_{k+1}, P_{k+1}) \leftarrow \phi_t(ilde{Z}_k)$$
 ; // Suivre la dynamique

jusqu'à une condition d'arrêt;

retourner
$$(X_k)_k$$

Invariance de $\widetilde{\pi}$

Proposition

Pour $t \in \mathbb{R}_+$, le processus $(Z_k)_{k \in \mathbb{N}}$ défini par l'algorithme 3.1 est une chaîne de Markov homogène de noyau QP_t sur \mathbb{R}^{2d} avec

$$Q((x,p),\cdot) = \delta_x \otimes \nu \text{ et } P_t((x,p),\cdot) = \delta_{\phi_t(z)}.$$

De plus, $\widetilde{\pi}$ est Q et P_t -invariante.

Preuve de la P_t -invariance.

$$\widetilde{\pi}P_t(A) = \int \widetilde{\pi}(dz)P_t(z,A) = c \int \exp\left(-\frac{H(z)}{T}\right) \mathbb{1}_A(\phi_t(z))dz$$

$$= c \int \exp\left(-\frac{H \circ \phi_t^{-1}(y)}{T}\right) \mathbb{1}_A(y)dy = c \int \exp\left(-\frac{H(y)}{T}\right) \mathbb{1}_A(y)dy$$

$$= \widetilde{\pi}(A).$$

Modification du HMC pour la discrétisation

Contrairement à ϕ_t , $\hat{\phi}_L$ ne conserve pas le hamiltonien. Idée : remplacer ϕ_t par $g\circ\hat{\phi}_L$ pour g une fonction à déterminer, i.e. remplacer P_t par

$$\hat{P}_L: \begin{array}{ccc} \mathbb{R}^{2d} \times \mathcal{B}(\mathbb{R}^{2d}) & \to & [0,1] \\ (z,A) & \mapsto & \delta_{g \circ \hat{\phi}_L(z)}(A) \end{array}$$

Proposition (réversibilité)

On suppose $k \geq 2$ (U et K de classe C^2). On prend g = s et

$$\alpha:(z_0,z_1)\mapsto 1\wedge \frac{h_{\widetilde{\pi}}(z_1)}{h_{\widetilde{\pi}}(z_0)}=1\wedge \exp(\frac{-H(z_1)+H(z_0)}{T}).$$

Si \hat{P}_L^{α} est le noyau de Metropolis-Hasting associé au noyau instrumental \hat{P}_L et à la fonction de rejet α , alors $\widetilde{\pi}$ est \hat{P}_L^{α} -réversible (et donc \hat{P}_L^{α} -invariant).

Démonstration.

Notons $\psi_L = s \circ \hat{\phi}_L$, de sorte que $\hat{P}_L(z, \cdot) = \delta_{\psi_L(z)}$. Ainsi,

$$\hat{P}_L^{\alpha}(z,A) = \alpha(z,\psi_L(z))\mathbb{1}_A(\psi_L(z)) + (1-\alpha(z,\psi_L(z)))\mathbb{1}_A(z)$$

donc

$$\widetilde{\pi}\otimes\widehat{\mathcal{P}}_{L}^{\alpha}(A\times B)=\Lambda_{1}(A,B)+\Lambda_{2}(A,B)$$

οù

$$\Lambda_2(A,B) = \int \mathbb{1}_A(z) \mathbb{1}_B(z) (1 - \alpha(z,\psi_L(z))) e^{-H(z)/T} dz \text{ est symétrique}$$

et

$$\begin{split} \Lambda_1(A,B) &= \int \mathbb{1}_A(z) \mathbb{1}_B(\psi_L(z)) \alpha(z,\psi_L(z)) \mathrm{e}^{-H(z)/T} dz \\ &= \int \mathbb{1}_A(z) \mathbb{1}_B(\psi_L(z)) \left(\mathrm{e}^{-H(z)/T} \wedge \mathrm{e}^{-H(\psi_L(z))/T} \right) dz. \end{split}$$

 $\psi_L^{-1} = \psi_L$ (réversibilité de $\hat{\phi}_L$) et det $\left(\frac{d\psi_L}{dz}(z)\right) = -1$ (conservation du volume) donc le changement de variable $z \mapsto \psi_L(z)$ donne que Λ_1 est symétrique.

Algorithme HMC réel

Algorithme 3.2: Hamiltonian Monte-Carlo

Données : h_{π} proportionnel à la densité cible, ϵ pas du saute-mouton, L nombre de pas du saute-mouton $X_0 \leftarrow x \in \mathbb{X}$ arbitraire:

répéter

```
\begin{split} P_k &\sim \mathcal{N}(0,1); \text{ // Tirer la quantit\'e de mouvement} \\ (X_{prop}, P_{prop}) &\leftarrow \text{leapfrog}(X_k, P_k); \text{ // Proposer un mouvement} \\ U_k &\leftarrow U(X_k); K_k \leftarrow \|P_k\|^2/2; \\ U_{prop} &\leftarrow U(X_{prop}); K_{prop} \leftarrow \|P_{prop}\|^2/2; \\ \text{si } \mathcal{U}([0,1]) &< \exp(U_k - U_{prop} + K_k - K_{prop}) \text{ alors} \\ &\mid X_{k+1} \leftarrow X_{prop}; \text{ // Accepter} \\ \text{sinon} \\ &\mid X_{k+1} \leftarrow X_k; \text{ // Rejeter} \end{split}
```

jusqu'à une condition d'arrêt; retourner $(X_k)_k$

- Introduction
- 2 Dynamique hamiltonienne
- 3 Hamiltonian Monte-Carlo
- 4 Simulations