Problem 2

the ans:

$$\frac{d\tilde{x}}{d\tilde{t}} = \frac{\tilde{x}_x + \tilde{\beta}_x S}{1 + s + (\tilde{z}/\tilde{z}_x)^{\eta_{ex}}} - \tilde{S}_x \tilde{x}$$

$$\frac{d\tilde{z}}{d\tilde{t}} = \frac{\tilde{\alpha}_z}{1 + (\tilde{x}/\tilde{x}_z)^{\eta_{ex}}} - \tilde{S}_z \tilde{z}$$

$$t = \tilde{t} \hat{s}_x$$
 should be $t = \tilde{t} \hat{s}_x$

dimensionless:
$$\frac{dt}{sx} = dt$$
, $\frac{\tilde{\alpha}_z}{sx} dx = d\tilde{x}$, $\frac{\tilde{\alpha}_z}{sx} dz = d\tilde{z}$

$$\tilde{\alpha}_{x} = \alpha_{x} \tilde{\alpha}_{z}$$
, $\frac{\tilde{\alpha}_{z}}{\tilde{s}_{x}} \chi = \tilde{\chi}$, $\frac{\tilde{\alpha}_{z}}{\tilde{s}_{x}} z = \tilde{z}$

$$\frac{\ddot{x}_{z}}{\ddot{x}_{x}} \ddot{z}_{x} = \tilde{z}_{x}, \quad \frac{\ddot{\alpha}_{z}}{\ddot{x}_{x}} \chi_{z} = \tilde{\chi}_{z}, \quad \tilde{\zeta}_{z} = \tilde{\zeta}_{x} d_{z}, \quad \tilde{\beta}_{x} = \tilde{\chi}_{z} \beta_{x}$$

$$\frac{d\tilde{x}}{d\tilde{x}} = \frac{\ddot{x}_{x} + \ddot{\beta}_{x} S}{1 + s + (\tilde{x}/\tilde{x}_{x})^{2} x} - \tilde{\zeta}_{x} \tilde{\chi}$$

$$\frac{d\tilde{x}}{d\tilde{\xi}} = \frac{\tilde{x}_x + \tilde{y}_x S}{1 + S + (\tilde{z}/\tilde{z}_x)\tilde{y}_{zx}} - \tilde{S}_x \tilde{x}$$

becomes:
$$\frac{\tilde{\alpha}_z}{\tilde{s}_x} \tilde{s}_x \frac{dx}{dt} = \frac{\alpha_x \tilde{\alpha}_z}{1 + st(\frac{\tilde{\alpha}_z}{\tilde{s}_x} z)^{\frac{1}{8x}}} - \frac{\tilde{\alpha}_z}{\tilde{s}_x} \frac{\tilde{\alpha}_z}{\tilde{s}_x} \times \frac{\tilde{$$

$$\Rightarrow \qquad \tilde{\chi}_{z} \frac{dx}{dt} = \frac{\tilde{\chi}_{z} dx + \tilde{\chi}_{z} \beta_{x} S}{1 + S + (Z/Z_{x})^{n_{zx}}} - \tilde{\chi}_{z} X$$

$$\Rightarrow \frac{dx}{dt} = \frac{(x + \beta_x)^{-1}}{(1 + S + (2/3))^{-1}} - x$$

n & s are dimensionless.

$$\frac{d\tilde{z}}{d\tilde{t}} = \frac{\tilde{z}_z}{1 + (\tilde{z}/\tilde{x}_z)^{n_{ex}}} - \tilde{z}_z \tilde{z}$$

becomes:
$$\frac{\tilde{\chi}_{z}}{\tilde{S}_{x}} \tilde{S}_{x} \frac{dt}{dt} = \frac{1 + (\frac{\tilde{\chi}_{z}}{\tilde{S}_{x}} \times \frac{\tilde{\chi}_{z}}{\tilde{S}_{x}} \times \frac{\tilde{\chi}_{z}}{\tilde{S}_{x}})^{n_{z}x}}{1 + (\frac{\tilde{\chi}_{z}}{\tilde{S}_{x}} \times \frac{\tilde{\chi}_{z}}{\tilde{S}_{x}} \times \frac{\tilde{\chi}_{z}}{\tilde{S}_{x}})^{n_{z}x}} - \tilde{S}_{x} \tilde{S}_{z} \frac{\tilde{\chi}_{z}}{\tilde{\chi}_{z}} \tilde{S}_{x}$$

$$\Rightarrow \tilde{\alpha}_z \frac{d\tilde{z}}{dt} = \frac{\tilde{\alpha}_z}{1 + (x/x_B)^{n_{ZX}}} - \tilde{\zeta}_z \tilde{\zeta}_z \tilde{\zeta}_z$$

$$\Rightarrow \frac{dz}{dt} = \frac{1}{1 + (x/x_2)^{n_{gx}}} - S_z z$$

c). Given Data: 0×1.5 , $0 \times$

Nx2 = 2.7, Sz =1.0

At S.S. $\frac{dx}{dt} = \frac{ds}{dt} = 0$

So: $\frac{\langle x + \beta \times S \rangle}{1 + S + (2/8)^{n_{BX}}} = x$ $\frac{1}{1 + (x/x_2)^{n_{BX}}} = S_2 z$

 $\Rightarrow \frac{1.5 + 55}{1 + 5 + (2/0.4)^{27}} = X \qquad \frac{1}{1 + (x/15)^{27}} = Z$

The input signal is S and output expression is X

To make process easier, we can get a relationship in the

form of S = f(x)

⇒ 15+55 = X.[H S+C2/0.4)27]

let (2/0.4)2.7 = 0

then: 1.5+5S= X[1+S+6]

=> 1.5 + 5S = X + XS + XH

 $\Rightarrow S = \frac{X + X\theta - 1.5}{5 - X}$

The relationship was plotted by Matlab code (attached)

tes, the figure can be reproduced

d). Mortlab code is attached

e) The Hopf bifurcation is a S = 5×10-1-6×10-1
So I choose the value beton the range: 4x10-1
The figures are plotted by Julia code (attached)
and figures are attached as well.
As shown in figure, my s.s. value are:
[Xss, Yss, Zss] = [0.0012, 0.5787, 0.00035]
also attached with figures - more correct of details see Julia.
According to the figures they look like try to get out of phase
So I guess it's incoherant when below the Hopf point
The Saddle bifurcation point occurs @ S=104_17x104
So I choose the value above the range: 3×104
The figures are plotted by Julia code (attached)
and figures are attached as well.
As shown in figure, my s.s. value are:
[Xss, Yss, Zss] = [0.648999,02290179,00025]
also attached with figures - more correct of details see Julia.
According to the figures, they in phase, so I guess
it's coherent, because this oscillator behavior
is from a stable steady state at high signal. At here,
the large limit cycle is presented. Expression of cells passing
through the saddle node is far from the unstable spiral
center near the Hopf birfication point. So it's in phase