Structures algébriques

S'il existe $\psi: X \stackrel{\cong}{\to} Y$, alors il existe $\Psi: \mathfrak{S}X \stackrel{\cong}{\to} \mathfrak{S}Y$.

Preuve

Soient $\psi: X \stackrel{\cong}{\to} Y$, $\sigma \in \mathfrak{S}X$ et $\tau \in \mathfrak{S}Y$.

$$\psi^{-1} \left(\begin{array}{c} X & \xrightarrow{\sigma} X \\ \psi \downarrow & \Phi \downarrow & \psi \\ Y & \xrightarrow{\tau} Y \end{array} \right) \psi^{-1}$$

Soit
$$\Psi : \mathfrak{S}X \to \mathfrak{S}Y$$

 $\sigma \mapsto \psi \circ \sigma \circ \psi^{-1}$.

 $\Psi(\sigma) \in \mathfrak{S}Y$ comme composition de bijections.

$$\Psi(\sigma_1 \circ \sigma_2) = \psi \circ (\sigma_1 \circ \sigma_2) \psi^{-1}$$

$$= \psi \circ \sigma_1 \circ \psi^{-1} \circ \psi \circ \sigma_2 \psi^{-1}$$

$$= \Psi(\sigma_1) \circ \Psi(\sigma_2)$$

Donc, Ψ est un morphisme de groupes.

On pose
$$\Phi: \mathfrak{S}Y \to \mathfrak{S}X$$

 $\tau \mapsto \psi^{-1} \circ$

On pose
$$\tau \mapsto \psi^{-1} \circ \tau \circ \psi$$

$$(\Psi \circ \Phi)(\tau) = \psi \circ \psi^{-1} \circ \tau \circ \psi \circ \psi^{-1} = \tau.$$

Donc, $\Psi \circ \Phi = id$. De même, $\Phi \circ \Psi = id$.

Donc, Ψ est un isomorphisme.

Théorème : Théorème de Cayley

Tout groupe fini est isomorphe à un sous-groupe d'un groupe symétrique.

Preuve : Théorème de Cayley

Soient $g \in G$ et $\varphi_q : x \mapsto gx$.

 φ_q est injective par régularité des éléments de G et bijective car les deux ensembles sont de même cardinal (fini).

Soit
$$n = |G|$$
.

On definit
$$f:(G, \times) \to (\mathfrak{S}G, \circ)$$

 $g \mapsto \varphi_g$
 $f(e) = \varphi_e = \mathrm{id}$

$$f(e) = \varphi_e = id$$

Soit
$$(x, y, z) \in G^3$$
.

$$(f(x \cdot y))(z) = (x \cdot y) \cdot z$$

$$= x \cdot (y \cdot z)$$

$$= (f(x))(y \cdot z)$$

$$= ((f(x)) \circ (f(y)))(z)$$

On a donc bien un morphisme de groupes.

Soit $g \in \ker(f)$. f(g) = id. Donc, pour tout $x \in G$, $g \cdot x = x$. Donc, g = e par régularité des éléments de G.

Donc, $ker(f) = \{e\}$. Donc, f est injective.

Donc, $f^{|\operatorname{im}(f)|}$ est bijective. Donc, $\operatorname{im}(f) = f(G)$ est un sous-groupe de $\mathfrak{S}G$.

De plus, $G \cong \llbracket 1, n \rrbracket \text{ car } |G| = n.$

Donc, d'après le lemme précédent, $(\mathfrak{S}G, \circ) \cong (\mathfrak{S}_n, \circ)$.

Donc, $\Psi(f^{|f(G)}(G)) = (\Psi \circ f^{|f(G)})(G)$ est un sous-groupe de \mathfrak{S}_n .

De plus, $\Psi \circ f^{|f(G)|}$ est un isomorphisme comme composition d'isomorphismes.

Donc, G est isomorphe à un sous-groupe de \mathfrak{S}_n .

Lemme

Si H et K sont deux sous-groupes de G d'ordres finis respectifs a et b tels que $a \wedge b = 1$, alors $H \cap K = \{e\}$.

Preuve

Soit H et K deux sous-groupes de G d'ordres finis a et b.

 $H\cap K$ est un sous-groupe de H et de K. Donc, d'après le théorème de Lagrange, $|H\cap K|\mid a$ et $|H\cap K|\mid b.$

Donc, $|H \cap K|$ | 1. Donc, $|H \cap K| = 1$.

Donc, $H \cap K = \{e\}$.

Propriété : Ordre d'un produit

Soient G un groupe abélien fini et x et y deux éléments de G d'ordres respectifs a et b.

Si $a \wedge b = 1$, alors xy est d'ordre ab.

Preuve : Ordre d'un produit

Soit $(x,y) \in G^2$.

$$(xy)^{ab} = x^{ab}y^{ab} = (x^a)^b (y^b)^a = e.$$

Donc, $\operatorname{ord}(xy) \mid ab$.

Pour tout $n \in \mathbb{N}$, $(xy)^n = e = x^n y^n \Leftrightarrow x^n = y^{-n} \in \langle x \rangle \cap \langle y \rangle$.

Or, $\operatorname{ord}(\langle x \rangle) \wedge \operatorname{ord}(\langle y \rangle) = 1$. Donc, d'après le lemme précédent, $\langle x \rangle \cap \langle y \rangle = \{e\}$.

D'où, $x^n = y^{-n} = e$. Donc, $a \mid n$ et $b \mid n$. Or, $a \wedge b = 1$. Donc, $ab \mid n$.

D'où la minimalité de ab.

Donc, $\operatorname{ord}(xy) = ab$

Lemme

Soit G un groupe fini.

S'il existe un élément x d'ordre a danse G, alors in existe dans G un élément z d'ordre d avec $d \mid a$.

Preuve

Soit x un élément de G d'ordre a. Soit d un diviseur de a.

On pose $z = x^{\frac{a}{d}}$.

 $z^d = x^a = e$. Donc, $\operatorname{ord}(z) \leqslant d$.

Soit $m \in [1, d-1]$. $z^m = x^{\frac{a}{d}m} \neq e \operatorname{car} \frac{a}{d}m \leqslant a \operatorname{et} \operatorname{ord}(x) = a$.

Donc, $\operatorname{ord}(z) = d$.

Lemme: Lemme de Cauchy

Soit G un groupe fini.

Si un nombre premier p divise l'ordre de G, alors il existe dans G un élément d'ordre p.

Preuve : Lemme de Cauchy

Soit G un groupe fini.

Soit p un nombre premier tel que $p \mid |G|$.

Soit $E = \{(x_1, \dots, x_p) \in G^p \mid x_1 \dots x_p = e\}.$

On définit sur E la relation $\sim : (x_1, \dots, x_p) \sim (y_1, \dots, y_p)$ si et seulement si (y_1, \dots, y_p) est obtenu de (x_1, \dots, x_p) par permutation circulaire.

Montrons que \sim est une relation d'équivalence.

Réflexivité : $(x_1, \dots, x_p) \sim (x_1, \dots, x_p)$.

Symétrie : Soit $((x_1, \dots, x_p), (x_1, \dots, x_p)) \in E^2$ tel que $(x_1, \dots, x_p) \sim (y_1, \dots, y_p)$.

Ainsi, il existe $T \in \mathbb{Z}$ tel que pour tout $k \in [1, p]$, $x_k = y_{k+T}$ (indices considérés modulo k).

Ainsi, pour tout $k \in [1, p]$, $y_k = x_{k-T}$.

Donc, $(y_1, \dots, y_p) \sim (x_1, \dots, x_p)$.

Transitivité : Soit $((x_1, \dots, x_p), (y_1, \dots, y_p), (z_1, \dots, z_p)) \in E^3$ tel que $(x_1, \dots, x_p) \sim (y_1, \dots, y_p)$ et $(y_1, \dots, y_p) \sim (z_1, \dots, z_p)$.

Ainsi, il existe $(T_1, T_2) \in \mathbb{Z}^2$ tel que pour tout $k \in [1, p]$, $x_k = y_{k+T_1}$ et $y_k = z_{k+T_2}$ (indices considérés modulo k).

Ainsi, pour tout $k \in [1, p]$, $x_k = z_{k+T_1+T_2}$.

Donc, $(x_1, \dots, x_p) \sim (z_1, \dots, z_p)$.

Donc, \sim est une relation d'équivalence.

Soit $(x_1, \dots, x_p) \in E$.

On prolonge les x_i en une suite $(u_n)_{n\in\mathbb{Z}}$ avec $u_n=x_{n \bmod p}$.

 (u_n) est de période p. Donc la période minimale de (u_n) divise p. C'est donc 1 ou p. Ainsi, les classes d'équivalence de \sim sont soit de cardinal 1 (période minimale égale à 1), soit de cardinal p (période minimale égale à p).

Pour x_1, \dots, x_{p-1} fixés, on a une unique valeur possible pour $x_p = (x_1 \dots x_{p-1})^{-1}$. Donc, $|E| = |G|^{p-1}$. Donc, $p \mid |E|$.

Ainsi, le nombre de classes de cardinal 1 est divisible par p. Cela correspond à l'ensemble de $x \in G$ tel que $x^p = e$. Donc, ces x sont d'ordre 1 ou p et le seul élément d'ordre 1 est e.

Donc, le nombre d'éléments d'ordre p est congru à p-1 modulo p.

Donc, il existe $x \in G$ tel que ord(x) = p.