Neural Regression with Embeddings for Numeric Attribute Prediction in Knowledge Graphs -Appendix

No Author Given

No Institute Given

1 Experiment Details

All embedding models for link prediction tasks are trained with embedding dimension 32, for 256 epochs, using a learning rate of 0.05 and a mini-batch size of 1024 using the KvsAll scoring technique for standard as well as combined training with Litem. Similarly, the Litem is trained with the same embedding dimension as KGE models. We use a dropout of 0.3, and a learning rate of 0.01 and train the Litem for 200 epochs for literal-prediction tasks using pre-trained embeddings.

2 Literal Embedding Model

Algorithm 1 Literal Embedding Model

```
Input: Attribute triples \{(e,a,v)\} \in \mathcal{G}, Learning rate \alpha, Number of epochs n, Pre-trained entity embeddings \mathbf{E} \in \mathbb{R}^{|\mathcal{A}| \times d},

Initialize \theta = \{ attribute embeddings \mathbf{A} \in \mathbb{R}^{|\mathcal{A}| \times d}, weight matrices \mathbf{W}_1, \mathbf{W}_2, and biases \mathbf{b}_1, \mathbf{b}_2 \} \triangleright All learnable parameters are part of \theta Output: Trained parameters \theta for epoch = 1 to \mathbf{n} do \hat{y} = \mathbf{W}_2 \cdot (\mathbf{f}(\mathbf{W}_1 \cdot [\mathbf{e}, \mathbf{a}] + \mathbf{b}_1) + [\mathbf{e}, \mathbf{a}]) + \mathbf{b}_2

Compute the MAE loss: \mathcal{L} = \frac{1}{N} \sum (|\hat{y} - v|)
Compute the gradient \nabla_{\theta} L of the loss with respect to \theta Update the parameters: \theta \leftarrow \theta - \alpha \nabla_{\theta} L end for return \theta
```

3 Literal Prediction

Table 1. Numeric Attribute Prediction performance of different embedding models with standard training on FB15k-237, YAGO15K and DB15K evaluated using Mean Absolute Error (MAE) Metric. All the embedding models are trained for 256 epochs, with a learning rate of 0.05 and 32-dimensional real-valued vectors with the KvsAll Scoring technique.

relation	CmplEx	DeCaL	DistMlt	Keci	MuRE	OMult	QMult	TransE	
FB15k-237									
release_date	5.317	5.333	5.070	5.022	5.062	5.461	5.140	4.813	
loc.date_founded	185.434	183.784	182.430	174.937	178.819	182.161	183.216	169.235	
latitude	9.276	9.351	8.379	8.959	7.573	8.763	9.578	6.420	
longitude	22.550	22.843	20.609	21.226	20.439	24.194	23.402	15.935	
loc.area	1.67e6	1.68e6	1.67e6	1.68e6	1.64e6	1.70e6	1.67e6	1.64e6	
org.date_founded	58.269	61.449	63.043	64.214	61.223	60.434	63.648	56.818	
$date_of_death$	40.127	40.118	44.889	41.223	38.519	37.994	39.873	35.760	
$date_of_birth$	22.860	23.716	24.065	22.837	21.428	22.923	22.906	20.675	
$height_meters$	0.066	0.067	0.066	0.067	0.066	0.068	0.069	0.074	
$weight_kg$	12.246	11.389	12.980	11.290	12.932	11.713	10.650	12.659	
popnumber	5.09e6	5.44e6	4.79e6	5.03e6	4.46e6	5.57e6	4.79e6	4.39e6	
			YAGO	15K					
diedOnDate	48.445	47.529	48.797	46.645	46.045	47.261	48.379	44.932	
happenedOnDate	41.277	42.306	42.882	44.801	36.921	39.471	39.587	29.847	
Latitude	7.416	7.216	6.972	6.939	6.189	7.245	6.815	4.652	
Longitude	30.081	27.004	30.644	31.004	26.406	36.895	32.239	17.490	
BornOnDate	20.690	19.798	20.525	20.776	18.999	20.061	20.516	17.458	
${\bf Created On Date}$	67.496	67.581	67.695	70.348	62.844	68.904	68.421	62.785	
${\bf Destroyed On Date}$	27.670	28.214	29.231	27.093	27.899	27.564	27.649	23.658	
DB15K									
birthDate	18.318	18.598	18.306	17.619	15.973	18.943	17.691	14.403	
completionDate	8.275	8.377	8.180	7.259	8.016	8.059	8.426	5.854	
deathDate	20.115	21.330	21.550	20.036	20.876	21.349	18.595	19.432	
formationDate	43.400	37.897	39.715	43.236	39.298	37.228	38.110	39.945	
foundingDate	39.780	40.739	42.937	43.307	43.092	44.545	40.878	37.933	
height	1.798	1.869	2.280	2.163	1.663	2.528	2.189	2.271	
releaseDate	11.319	12.818	12.839	12.035	11.728	12.982	12.721	9.218	
latitude	8.077	8.352	8.928	8.201	8.105	9.474	9.105	5.944	
longitude	30.947	29.970	30.662	32.365	29.804	34.371	31.704	21.737	

 $\begin{tabular}{ll} \textbf{Table 2.} Literal Prediction performance of different numeric attribute propagation approaches on FB15k-237 and YAGO15K compared with LitEm on Mean Absolute Error (values for KGA, NAP++ and MrAP) (Values taken from [1]) \\ \end{tabular}$

Relation	KGA	NAP++	MrAP	LitEm					
FB15k-237									
date_of_birth	18.900	22.100	15.000	18.824					
$date_of_death$	20.600	52.300	16.300	32.620					
$release_date$	4.000	9.900	6.300	4.258					
org.date_founded	49.000	59.300	58.300	46.741					
loc.date_founded	76.000	92.100	98.800	150.873					
latitude	2.100	11.800	1.500	5.221					
longitude	7.100	54.700	4.000	11.325					
area	6.10e4	4.40e5	4.40e5	1.65e6					
population number	4.00e6	7.50e6	2.10e7	4.87e6					
height_meters	0.077	0.080	0.086	0.074					
$weight_kg$	11.600	15.300	12.900	12.653					
YAGO15K									
BornOnDate	16.300	23.200	19.700	15.586					
diedOnDate	30.800	45.700	34.000	40.515					
CreatedOnDate	58.200	83.500	70.400	57.081					
DestroyedOnDate	23.300	38.200	34.600	21.436					
happenedOnDate	29.900	73.700	54.100	26.064					
Latitude	3.400	8.700	2.800	3.090					
Longitude	7.200	43.100	5.700	11.506					

4 Link Prediction

Link prediction performances of KGE models with and without combined training with the LitEm model on Mutag and FB15k-237 datasets.

4

Table 3. Link prediction performance of different embedding models with 32-dimensional real-valued vectors on the FB15k-237 dataset without and with combined training with LitEm, Each model's results on training, test, and validation sets are shown in three rows; bold marks the best per-metric value for each model.

\mathbf{Models}	\mathbf{KGE}				$\mathbf{KGE}+\mathbf{LitEm}$			
	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
ComplEx	0.458	0.352	0.512	0.662	0.415	0.312	0.465	0.616
	0.247	0.174	0.270	0.393	0.234	0.165	0.253	0.372
	0.247	0.174	0.269	0.393	0.237	0.168	0.256	0.372
DeCaL	0.513	0.413	0.565	0.706	0.496	0.393	0.549	0.695
	0.262	0.186	0.286	0.415	0.260	0.183	0.283	0.413
	0.264	0.187	0.288	0.418	0.260	0.184	0.284	0.413
DistMult	0.475	0.372	0.529	0.676	0.454	0.347	0.509	0.660
	0.245	0.170	0.268	0.396	0.243	0.170	0.266	0.389
	0.247	0.173	0.270	0.394	0.243	0.170	0.265	0.388
Keci	0.543	0.438	0.602	0.744	0.519	0.415	0.576	0.718
	0.260	0.182	0.284	0.417	0.268	0.190	0.290	0.426
	0.264	0.186	0.289	0.420	0.270	0.191	0.296	0.427
OMult	0.530	0.431	0.584	0.721	0.468	0.366	0.518	0.665
	0.230	0.156	0.253	0.376	0.230	0.158	0.251	0.371
	0.233	0.160	0.255	0.378	0.231	0.159	0.252	0.374
QMult	0.544	0.443	0.598	0.736	0.535	0.434	0.589	0.728
	0.255	0.179	0.276	0.410	0.260	0.182	0.282	0.416
	0.261	0.184	0.283	0.413	0.262	0.185	0.283	0.417
TransE	0.429	0.306	0.499	0.660	0.409	0.287	0.476	0.638
	0.307	0.217	0.341	0.481	0.301	0.213	0.335	0.473
	0.311	0.222	0.345	0.484	0.306	0.219	0.341	0.480
MuRE	0.493	0.388	0.549	0.693	0.485	0.381	0.539	0.686
	0.267	0.191	0.289	0.420	0.270	0.194	0.292	0.424
	0.272	0.195	0.295	0.426	0.274	0.198	0.294	0.429

Table 4. Link prediction performance of different embedding models with 32-dimensional real-valued vectors on the Mutagenesis dataset without and with combined training with LitEm, Each model's results on training, test, and validation sets are shown in three rows; bold marks the best per-metric value for each model.

Models		K	GE		$\mathbf{KGE} + \mathbf{LitEm}$				
	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	
ComplEx	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	0.226	0.158	0.249	0.357	0.174	0.109	0.187	0.315	
	0.218	0.149	0.240	0.345	0.172	0.107	0.186	0.314	
DeCaL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	0.130	0.077	0.131	0.241	0.154	0.093	0.160	0.280	
	0.128	0.073	0.134	0.244	0.152	0.089	0.160	0.280	
DistMult	1.000	1.000	1.000	1.000	0.997	0.995	1.000	1.000	
	0.177	0.095	0.206	0.322	0.239	0.161	0.269	0.372	
	0.181	0.098	0.210	0.324	0.243	0.165	0.272	0.377	
Keci	1.000	1.000	1.000	1.000	0.933	0.875	1.000	1.000	
	0.103	0.059	0.105	0.174	0.158	0.109	0.162	0.246	
	0.095	0.054	0.094	0.166	0.159	0.109	0.162	0.252	
OMult	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	0.070	0.030	0.061	0.149	0.202	0.102	0.283	0.389	
	0.071	0.031	0.065	0.145	0.199	0.102	0.278	0.379	
QMult	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	0.224	0.147	0.256	0.359	0.263	0.189	0.289	0.389	
	0.217	0.138	0.252	0.351	0.254	0.183	0.279	0.379	
TransE	0.779	0.721	0.817	0.882	0.769	0.710	0.806	0.877	
	0.563	0.473	0.620	0.713	0.568	0.483	0.624	0.704	
	0.548	0.459	0.599	0.696	0.555	0.475	0.602	0.687	
MuRE	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	
	0.541	0.461	0.554	0.758	0.532	0.470	0.547	0.626	
	0.518	0.435	0.533	0.742	0.511	0.450	0.526	0.602	

6 No Author Given

References

1. Wang, J., Ilievski, F., Szekely, P., Yao, K.T.: Augmenting knowledge graphs for better link prediction. arXiv preprint arXiv:2203.13965 (2022)