Zusammenfassung Stochastik 3

© M Tim Baumann, http://timbaumann.info/uni-spicker

Hypothesentests mittels Stichprobenfktn

Modell. Gegeben sei ein parametrisches Modell, d. h.eine Zufallsgröße X, deren Verteilungsfunktion $P_X \in \{P_{\vartheta} \mid \vartheta \in \Theta \subset \mathbb{R}^n\}$ von einem Parameter ϑ abhängt.

Problem. Anhand einer **Stichprobe** $x_1, \ldots, x_n \in \mathbb{R}^1$ von X (d. h. x_1, \ldots, x_n sind Realisierung von iid ZGen $X_1, \ldots, X_n \sim P_X$) ist zu entscheiden, ob die sogenannte **Nullhypothese** $H_0: \vartheta \in \Theta_0 \subset \Theta$ oder eine **Gegenhypothese** $H_1: \vartheta \in \Theta_1 = \Theta \setminus \Theta_0$ angenommen oder abgelehnt werden soll.

Def. Der **Stichprobenraum** ist $(\mathbb{R}^n, \mathfrak{B}(\mathbb{R}^n), P_{\vartheta} \times \ldots \times P_{\vartheta})$

Terminologie. Die Hypothese H_i heißt einfach, falls $|\Theta_i| = 1$, andernfalls zusammengesetzt.

Def. Ein (nichtrandomisierter) **Test** für H_0 gegen H_1 ist eine Entscheidungsregel über die Annahme von H_0 basierend auf einer Stichprobe, die durch eine messbare Abbildung $\varphi : \mathbb{R}^n \to \{0,1\}$ augedrückt wird und zwar durch

$$\varphi(x_1, \dots, x_n) = \begin{cases} 0 & \text{bei Annahme von } H_0, \\ 1 & \text{bei Ablehung von } H_0. \end{cases}$$

Def. Der Ablehungsbereich oder kritische Bereich von φ ist

$$K_n := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \varphi(x_1, \dots, x_n) = 1\}$$

Bem. Es gilt $\varphi = \mathbb{1}_{K_n}$.

Def. Ein **Fehler 1. Art** ist eine Ablehnung der Nullhypothese H_0 , obwohl H_0 richtig ist; ein **Fehler 2. Art** ist eine Annahme von H_0 , obwohl H_0 falsch ist.

Def. Die Güte- oder Machtfunktion des Tests φ ist

$$m_{\varphi}: \Theta \to [0,1], m_{\varphi}(\vartheta) := \mathbb{E}_{\vartheta} \varphi(X_1, \dots, X_n)$$

= $\mathbb{P}_{\vartheta}((X_1, \dots, X_n) \in K_n)$
= $(P_{\vartheta} \times \dots \times P_{\vartheta})(K_n)$

Die Gegenwsk. $(1-m_{\varphi}(\vartheta))$ heißt Operationscharakteristik von φ .

Bem. Es gilt
$$\mathbb{P}_{\vartheta}(\text{Fehler 1. Art}) = m_{\varphi}(\vartheta)$$
 für $\vartheta \in \Theta_0$, $\mathbb{P}_{\vartheta}(\text{Fehler 2. Art}) = 1 - m_{\varphi}(\vartheta)$ für $\vartheta \in \Theta_1$.

Def. Ein Test $\varphi: \mathbb{R}^n \to \{0,1\}$ mit

$$\sup_{\vartheta \in \Theta_0} m_{\varphi}(\vartheta) \le \alpha$$

heißt α -Test o. Signifikanztest zum Signifikanzniveau $\alpha \in (0,1)$. Ein α -Test φ heißt unverfälscht (erwartungstreu, unbiased), falls

$$\inf_{\vartheta \in \Theta_1} m_{\varphi}(\vartheta) \ge \alpha.$$

Situation. Sei nun eine Stichprobenfunktion oder Teststatistik $T: \mathbb{R}^n \to \mathbb{R}^1$ gegeben. Wir wollen einen Test der einfachen Nullhypothese $H_0: \vartheta \in \Theta_0 = \{\vartheta_0\}$ entwickeln.

Def. $K_n^T \subset \mathbb{R}^1$ heißt kritischer Bereich der Teststatistik, falls

$$K_n = T^{-1}(K_n^T).$$

Bem. Es gilt

$$m_{\varphi}(\vartheta_0) = \mathbb{P}_{\vartheta_0} ((X_1, \dots, X_n) \in K_n) =$$

$$= \mathbb{P}_{\vartheta_0} ((T(X_1), \dots, T(X_n)) \in K_n^T) = \int_{K_n^T} f_T(x) \, \mathrm{d}x \le \alpha,$$

wobei f_T die Dichte von $T(X_1, \ldots, X_n)$ unter H_0 ist.

Bsp. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$, σ bekannt und $\alpha \in (0, 1)$ vorgegeben. Zum Test von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ wählen wir als Statistik

$$T(X_1,\ldots,X_n) := \frac{\sqrt{n}}{\sigma} (\overline{X}_n - \mu_0) \text{ mit } \overline{X}_n := \frac{1}{n} (X_1 + \ldots + X_n).$$

Unter Annahme von H_0 gilt $T(X_1, \ldots, X_n) \sim \mathcal{N}(0, 1)$. Der Ablehnungsbereich der Statistik ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > z_{1-\alpha/2} \} \text{ mit } z_{1-\alpha/2} := \Phi^{-1}(1-\alpha/2).$$

Für $\alpha = 0,5$ gilt beispielsweise $z_{1-\alpha/2} \approx 1,96$.

Bem. Es gilt

$$\begin{split} t \in (K_n^T)^c &\iff |t| \le z_{1-\alpha/2} &\iff |\overline{X}_n - \mu_0| \le \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \\ &\iff \mu_0 \in \left[\overline{X}_n - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \overline{X}_n + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right]. \end{split}$$

Letzteres Intervall wird Konfidenzintervall für μ_0 zum Konfidenzniveau $1-\alpha$ genannt.

Bsp. Sei wieder $X \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 aber diesmal unbekannt. Zum Testen von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ verwenden wir

$$\hat{T}(X_1,...,X_n) = \frac{\sqrt{n}}{S_n} (\overline{X}_n - \mu_0), \quad S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Dabei ist S_n die (korrigierte) Stichprobenvarianz. Man kann zeigen, dass $\hat{T}(X_1,\ldots,X_n)\sim t_{n-1}$ unter H_0 . Dabei ist t_m die Student'sche t-Verteilung mit m Freiheitsgraden.

Der Ablehnungsbereich ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > t_{n-1,1-\alpha/2} \}.$$

Bem. S_n^2 und \overline{X}_n sind unabhängig für $n \geq 2$.

Diskussion. • Je kleiner α ist, desto "nullhypothesenfreundlicher" ist der Test. Häufig verwendet wird $\alpha \in \{10\%, 5\%, 1\%, 0, 5\%\}$.

• Einseitige Tests: Die Gegenhypothese zu $H_0: \mu = \mu_0$ ist $H_1: \mu > \mu_0$. Die Nullhypothese wird nur abgelehnt, falls zu große Stichprobenmittelwerte \overline{x}_n vorliegen. Es ist dann $K_n^T = (z_{1-\alpha}, \infty)$.

Def. Es seien $X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$. Dann heißt die Summe $X_1^2 + \ldots + X_n^2 \sim \chi_n^2$ **Chi-Quadrat-verteilt** mit n Freiheitsgraden.

Def. Falls $X \sim \mathcal{N}(0,1)$ und $Y_n \sim \chi_n^2$ unabhängig sind, so heißt

$$\frac{X}{\sqrt{\frac{Y_n}{n}}} \sim t_n$$

t-verteilt mit n-Freiheitsgraden.

Lem.
$$\frac{n-1}{\sigma^2} S_n^2 \sim \chi_{n-1}^2$$

Kor. \hat{T} aus dem zweiten obigen Bsp ist tatsächlich t-verteilt.

Def. Seien $Y_{n_i} \sim \chi_{n_i}^2$, i = 1, 2 zwei unabhängige ZGen. Dann heißt

$$\frac{Y_{n_1}/n_1}{Y_{n_2}/n_2} \sim F_{n_1,n_2}$$

F-verteilt (wie Fisher) mit (n_1, n_2) Freiheitsgraden.

Bsp. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit μ unbekannt. Wir testen $H_0: \sigma = \sigma_0$ vs. $H_1: \sigma \neq \sigma_0$ mit

$$T := \frac{n-1}{\sigma_0^2} S_n^2$$

Unter Annahme von H_0 gilt $T \chi_{n-1}^2$. Falls μ bekannt ist, muss man

$$\widetilde{T} := \frac{n}{\sigma_0^2} \widetilde{S}_n^2, \quad \widetilde{S}_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

als Statistik wählen. Unter Annahme von H_0 ist $\widetilde{T} \sim \chi_n^2$.

Bsp. Seien Stichproben $X_1^{(1)}, \ldots, X_{n_1}^{(1)} \sim \mathcal{N}(\mu_1, \sigma_1^2)$ und $X_1^{(2)}, \ldots, X_{n_2}^{(2)} \sim \mathcal{N}(\mu_2, \sigma_2^2)$ gegeben. Wir wollen $H_0: \sigma_1 = \sigma_2$ gegen $H_1: \sigma_1 \neq \sigma_2$ testen. Dazu verwenden wir

$$T = \frac{S_{X^{(1)}}^2}{S_{X^{(2)}}^2}, \quad S_{X^{(j)}}^2 \coloneqq \frac{1}{n-1} \sum_{i=1}^{n_j} \left(X_i^{(j)} - \overline{X}_n^{(j)} \right)^n.$$

Falls H_0 gilt, so ist $T \sim F_{n_1-1,n_2-1}$.

Bsp. Situation wie im letzten Beispiel mit $\sigma_1 = \sigma_2$. Wir testen $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$ mit

$$T = \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}} \cdot \frac{\overline{X}_{n_1}^{(1)} - \overline{X}_{n_2}^{(2)}}{S_{n_1, n_2}}, \quad S_{n_1, n_2}^2 = \frac{(n_1 - 1)S_{X^{(1)}}^2 + (n_2 - 1)S_{X^{(2)}}^2}{n_1 + n_2 - 2}$$

Unter H_0 gilt $T \sim t_{n_1+n_2-2}$.

Bsp. Seien
$$\binom{X_1}{Y_1}, \dots, \binom{X_n}{Y_n} \sim \mathcal{N}\left(\binom{\mu_1}{\mu_2}, \binom{\sigma_1^2 \quad \sigma_1 \sigma_2 \rho}{\sigma_1 \sigma_2 \rho \quad \sigma_2^2}\right)$$
.

Wir testen $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$ mit

$$T := \frac{\sqrt{n-2} \cdot \hat{\rho}_n}{\sqrt{1-\hat{\rho}_n^2}}, \quad \hat{\rho}_n := \frac{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)(Y_i - \overline{Y}_n)}{S_{X,n} \cdot S_{Y,n}}.$$

Falls H_0 richtig ist, so gilt $T \sim t_{n-2}$.

Um $H_0: \rho = \rho_0 \in (0,1)$ vs. $H_1: \rho \neq \rho_0$ zu testen, kann man

$$T = \frac{\sqrt{n-3}}{2} \left(\log \frac{1+\hat{\rho}_n}{1-\hat{\rho}_n} - \log \frac{1+\rho_0}{1-\rho_0} \right)$$

verwenden. Für n groß gilt $T \sim \mathcal{N}(0,1)$ unter H_0 .

Lem (Slutzky). Seien (X_n) , (Y_n) Folgen von ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$ mit $X_n \xrightarrow{\mathbb{P}} c = \text{const}$ (d. h. $\forall \epsilon > 0 : \mathbb{P}(|X_n - c| > \epsilon) \to 0)$ und $Y_n \xrightarrow{d} Y$ (d. h. $\mathbb{P}(Y_n \leq y) \to \mathbb{P}(Y \leq y)$ für alle Stetigkeitspunkte y der VF $y \mapsto \mathbb{P}(Y \leq y)$). Dann gilt:

$$X_n + Y_n \xrightarrow{d} c + Y$$
, $X_n \cdot Y_n \xrightarrow{d} c \cdot Y$, $Y_n / X_n \xrightarrow{d} Y / c$ (falls $c \neq 0$) und allgemeiner $f(X_n, Y_n) \xrightarrow{d} f(c, Y)$ für jede Fkt $f \in \mathcal{C}(\mathbb{R}^2, \mathbb{R})$.

Bem. Unabhängigkeit von (X_n) und (Y_n) wird nicht vorausgesetzt!

Situation. Sei $T_n = T(X_1, \dots, X_n)$ eine Statistik. Falls der ZGWS für T_n die Form

$$\sqrt{n}(T_n - \vartheta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, g(\vartheta))$$

besitzt, so benötigen wir für Hypothesentests eine Möglichkeit, die Abhängigkeit der Varianz von Parameter ϑ zu beseitigen. Man sagt, man führt eine **varianzstabilisierende Transformation** durch. Wir suchen dazu eine stetig diff'bare Funktion $f: \Theta \to \mathbb{R}^1$, sodass

$$\sqrt{n}(f(T_n) - f(\vartheta)) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1).$$

Man zeigt, dass dafür gelten muss:

$$f'(\vartheta) = \frac{1}{\sqrt{g(\vartheta)}},$$
 also $f(\theta) = \int \frac{d\vartheta}{\sqrt{g(\vartheta)}}.$

Bspe. • Sei $X \sim \text{Exp}(\mu), \, \hat{\mu}_n := \frac{1}{\overline{X}_n}$. Dann gilt

$$\begin{split} & \sqrt{n}(\overline{X}_n - \frac{1}{\mu}) \xrightarrow{d} \mathcal{N}(0, g(\frac{1}{\mu})) \quad \text{mit} \quad g(\vartheta) \coloneqq \vartheta^2. \\ & \leadsto \text{Mit } f(\theta) \coloneqq \int \frac{\mathrm{d}\vartheta}{\sqrt{g(\vartheta)}} = \int \frac{\mathrm{d}\vartheta}{\vartheta} = \log \theta \\ & \text{gilt } \sqrt{n}(\log(\overline{X}_n - \log(\frac{1}{\mu}))) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1). \end{split}$$

 Wir wollen eine unbek. Wahrscheinlichkeit p schätzen, etwa durch Wurf einer Münze. Der ZGWS von de-Moirre-Laplace besagt

$$\sqrt{n}(\hat{p}_n - p) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, p(1-p)),$$

wobei \hat{p}_n die relative Häufigkeit ist. Zur Stabilisierung der Varianz verwenden wir nun

$$f(\theta) := \int \frac{\mathrm{d}p}{\sqrt{p(1-p)}} = 2\arcsin(\sqrt{\theta}).$$

Def. Die k-dim (Gaußsche) Normalverteilung $\mathcal{N}_k(m, C)$ mit EW $m \in \mathbb{R}^k$ und einer nichtnegativ-definiten, symmetrischen Kovarianzmatrix $C \in \mathbb{R}^{k \times k}$ ist gegeben durch die Dichte

$$f_{\mathcal{N}_k(m,C)}(x) := ((2\pi)^{k/2} \sqrt{\det(C)})^{-1} \exp(-\frac{1}{2}(x-m)C^{-1}(x-m)^T)$$

Bem. Bei k=2 schreibt man oft

$$C = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix} \quad \text{mit} \quad \rho := \text{Cor}(X_1, X_2).$$

 $\textbf{Def.}\;\; \text{Die } \textbf{charakteristische}\;\; \textbf{Fkt} \; \text{eines} \; \text{ZV}\; X = (X_1, \dots, X_k)^T \; \text{ist}$

$$\varphi: \mathbb{R}^k \to \mathbb{R}, \ t \mapsto \mathbb{E}e^{i(t \nmid X)} = \int_{\mathbb{R}^k} e^{i(t_1 x_1 + \dots + t_k x_k)} \, \mathrm{d}F_X(x_1, \dots, x_k).$$

Bem. Die charakteristische Funktion von $\mathcal{N}_k(m,C)$ ist

$$\varphi_{\mathcal{N}_k(m,C)}(t) = \exp\left(i\sum_{i=1}^k t_i m_i - \frac{1}{2}\sum_{i,j=1}^k t_i c_{ij} t_j\right).$$

Satz. Für $A \in \mathbb{R}^{k \times l}$ gilt $\mathcal{N}_k(m, C) \cdot A = \mathcal{N}_l(m \cdot A, A^T C A)$

Chi-Quadrat-Anpassungstest

Aufgabe. Prüfe, ob eine vorliegende Stichprobe x_1, \ldots, x_n aus einer bestimmten (stetig oder diskret verteilten) Grundgesamtheit gezogen wurde. Wir testen also $H_0: F = F_0$ vs. $H_1: F \neq F_0$.

Verfahren. Wir teilen zunächst \mathbb{R} in Klassen ein,

$$\mathbb{R} = \bigcup_{i=1}^{s+1} I_j \quad \text{mit} \quad I_j := (y_{j-1}, y_j], \quad \text{wobei}$$
$$-\infty = y_0 < y_1 < \dots < y_s < y_{s+1} = +\infty.$$

Wir setzen

$$\begin{split} h_{n_j} &:= |\{k \in \{1,\dots,n\} \,|\, X_k \in I_j\}| \quad \text{(absolute Klassenhäufigkeit)} \\ p_j^{(0)} &:= \mathbb{P}(X \in I_j) = F_0(y_j) - F_0(y_{j-1}) \quad \text{(Klassenwktn unter H_0)} \end{split}$$

Die Klassenhäufigkeiten sind nun multinomialverteilt:

$$\mathbb{P}(h_{n_1} = n_1, \dots, h_{n_{s+1}} = n_{s+1}) = \binom{n}{n_1, \dots, n_{s+1}} (p_1^{(0)})^{n_1} \cdots (p_{s+1}^{(0)})^{n_{s+1}}.$$
 Wir wollen nun die Nullhypothese $H_0 : \forall (i, j) : p_{ij} = p_{i\bullet} \cdot p_{\bullet j}$ gegen

Als (näherungsweises) Maß für die Abweichung einer empirischen Verteilung von F_0 bei gegebener Klasseneinteilung dient

$$T_{n,s+1} := \sum_{j=1}^{s+1} \frac{(h_{n_j} - np_j^{(0)})^2}{np_j^{(0)}}.$$

Satz. $T_{n,s+1} \xrightarrow[n\to\infty]{d} \chi_s^2$

Faustregel. Für $np_j^{(0)} \ge 5$, j = 1, ..., s+1 ist $T_{n,s+1}$ mit guter Näherung χ_s^2 -verteilt.

Entscheidungsregel (χ^2 -Anpassungstest). Die Nullhypothese $H_0: F = F_0$ wird genau dann verworfen, wenn $T_{n,s+1} > \chi^2_{s,1-\alpha}$.

Bemn. • $T_{n,s+1}$ misst eigentlich nicht die Abweichung von der VF F_0 , sondern von der Multinomialverteilung $\mathcal{M}(n,p^{(0)})$.

• Der χ^2 -Anpassungstest gilt als hypothesenfreundlich.

• Es ist üblich, zunächst die Parameter $\vartheta = (\vartheta_1, \dots, \vartheta_r)$ der VF F_0 durch MLE zu schätzen, also durch

$$\begin{split} \hat{\vartheta}_n &\coloneqq \arg\max L(h_{n_1},\dots,h_{n_{s+1}};\vartheta), \quad \text{wobei} \\ L(h_{n_1},\dots,h_{n_{s+1}};\vartheta) &\coloneqq \prod_{i=1}^{s+1} \left(p_j^{(0)}\right)^{h_{n_j}}. \end{split}$$

Es kann (unter "natürlichen" Bedingungen) gezeigt werden, dass

$$T_{n,s+1}(\hat{\vartheta}_n) = \sum_{j=1}^{s+1} \frac{(h_{n_j} - np_j^{(0)}(\hat{\vartheta}_n))^2}{np_s^{(0)}(\hat{\vartheta}_n)} \xrightarrow[n \to \infty]{d} \chi_{s-r}^2,$$

wobei r die Anzahl der geschätzten Parameter ist.

• Manchmal wird die Parameter-Schätzung auch direkt aus der SP x_1, \ldots, x_n ermittelt (z. B. $\tilde{\mu}_n := \frac{1}{n}(x_1 + \ldots + x_n)$ für den MW einer Normalverteilung). In manchen Fällen kann dann auf die Reduktion der Freiheitsgrade von s auf s-r verzichtet werden.

Ziel. Überprüfen, ob die Komponenten X und Y eines zweidim. Zufallsvektors $(X,Y)^T$ unabhängig sind.

Verfahren. Seien $I_1, \ldots, I_k \subset \mathbb{R}^{n_1}$ und $J_1, \ldots, J_l \subset \mathbb{R}^{n_2}$ jeweils Familien paarweise disjunkter Mengen mit $\mathbb{P}(X \in I_1 \cup \ldots \cup I_k) = 1$ bzw. $\mathbb{P}(Y \in J_1 \cup \ldots \cup J_l) = 1$. Wir setzen

$$p_{ij} := \mathbb{P}((X, Y) \in I_i \times J_j) = \mathbb{P}(\{X \in I_i\} \cap \{X_j \in J_j\}),$$

$$p_{i\bullet} := \sum_{j=1}^{l} p_{ij} = \mathbb{P}(X \in I_i), \quad p_{\bullet j} := \sum_{i=1}^{k} p_{ij} = \mathbb{P}(Y \in J_j).$$

Wir wollen nun die Nullhypothese $H_0: \forall (i,j): p_{ij} = p_{i\bullet} \cdot p_{\bullet j}$ gegen $H_1: \exists (i,j): p_{ij} \neq p_{i\bullet} \cdot p_{\bullet j}$ testen. Wir zählen dazu die Häufigkeiten einer Stichprobe $(X_1,Y_1),\ldots,(X_n,Y_n)$:

$$h_{ij}^{(n)} := |\{m \in \{1, \dots, n\} \mid (X_m, Y_m) \in I_i \times J_j\}|,$$

$$h_{i\bullet} := \sum_{i=1}^l h_{ij}, \quad h_{\bullet j} := \sum_{i=1}^k h_{ij}.$$

Diese Häufigkeiten werden in einer Kontingenztafel dargestellt:

Wir können den Test nun wie folgt als Spezialfall des χ^2 -Anpassungstests verstehen: Die Nullhypothese ist, dass die Verteilung von (X,Y) das Produkt der Verteilungen von X und Y ist. Dabei schätzen wir zunächst die Verteilungen von X und Y mit

$$L(h_{1\bullet}^{(n)}, \dots, h_{k\bullet}^{(n)}, h_{\bullet 1}^{(n)}, \dots, h_{\bullet l}^{(n)}; p_{1\bullet}, \dots p_{k-1, \bullet}, p_{\bullet 1}, \dots, p_{\bullet, l-1})$$

$$:= \prod_{i=1}^{k} (p_{i\bullet})^{h_{i\bullet}^{(n)}} \cdot \prod_{j=1}^{l} (p_{\bullet j})^{h_{\bullet j}^{(n)}}.$$

Diese Funktion wird maximal bei $\hat{p}_{i\bullet} = h_{i\bullet}^{(n)}/n$ und $\hat{p}_{\bullet j}^{(n)} = h_{\bullet j}^{(n)}/n$. Als Test-Statistik verwenden wir

$$\hat{T}_{k,l}^{(n)} := \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij}^{(n)} - n\hat{p}_{i\bullet}\hat{p}_{\bullet j})^{2}}{n \cdot \hat{p}_{i\bullet}\hat{p}_{\bullet j}} = n \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij}^{(n)} - h_{i\bullet}^{(n)} \cdot h_{\bullet j}^{(n)})^{2}}{h_{i\bullet}^{(n)} \cdot h_{\bullet j}^{(n)}}$$

$$\frac{d}{n \to \infty} \chi_{kl-1-(k-1)-(l-1)}^{2} = \chi_{(k-1)(l-1)}^{2}$$

Testregel: Die Nullhypothese wird genau dann abgelehnt, falls

$$\hat{T}_{k,l}^{(n)} > \chi_{(k-1)(l-1),1-\alpha}^2.$$

Bemn. \bullet Zum Testen eines höherdim. ZV (X_1,\ldots,X_r) auf Unabhängigkeit aller Komponenten untersuchen wir die Ereignisse

$$(X_1, \dots, X_r) \in I_{i_1}^{(1)} \times \dots \times I_{i_r}^{(r)}$$
 für $(i_1, \dots, i_r) \in \sum_{j=1}^r \{1, \dots, k_j\}$

für eine passende Intervalleinteilung. Wir verwenden dann

$$\hat{T}_{k_{1},...,k_{r}}^{(n)} := n^{r-1} \sum_{i_{1}=1}^{k_{1}} \cdots \sum_{i_{r}=1}^{k_{r}} \frac{\left(h_{i_{1}\cdots i_{r}}^{(n)} - n^{-r+1} \prod_{s=1}^{r} h_{\bullet \cdots i_{j}\cdots \bullet}^{(n)}\right)^{2}}{\prod_{s=1}^{r} h_{\bullet \cdots i_{j}\cdots \bullet}}$$

$$\xrightarrow[n \to \infty]{d} \chi_{k_{1}\cdots k_{s}-k_{1}-\cdots -k_{r}+r-1}^{2}$$

 \bullet Im Spezialfall k=l=2 (Vierfeldertafel) hat die Statistik die Form

$$\hat{T}_{2,2}^{(n)} = n \cdot \frac{\left(h_{11}^{(n)} \cdot h_{22}^{(n)} - h_{12}^{(n)} \cdot h_{21}^{(n)}\right)^2}{h_{\bullet 1}^{(n)} \cdot h_{\bullet 2}^{(n)} \cdot h_{1\bullet}^{(n)} \cdot h_{2\bullet}^{(n)}} \xrightarrow[n \to \infty]{d} \chi_n^2 = \mathcal{N}^2(0,1)$$

und wir lehnen H_0 genau dann ab, wenn $\hat{T}_{2,2}^{(n)} > \chi_{1,1-\alpha}^2 = z_{1-\alpha/2}^2$.

Ein- und Zwei-SP-Tests für VFen

Situation. Sei $X_1, \ldots, X_n \sim F$ eine math. SP. Wir sortieren die dabei gezogenen Werte aufsteigend: $X_{1:n} \leq X_{2:n} \leq \ldots \leq X_{n:n}$. Dann heißt $\hat{F}_n(x) := 1/n \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_{i:n})$ empirische VF.

Satz (Gliwenko, Hauptsatz der math. Statistik).

$$\sup_{x \in \mathbb{R}^1} |\hat{F}_n(x) - F(x)| \xrightarrow[n \to \infty]{\mathbb{P}\text{-f. s.}} 0$$

Lem. Sei F stetig. Dann ist die Verteilung von $\sup_{x} |\hat{F}_{n}(x) - F(x)|$ nicht von der VF F abhängig. Genauer:

$$\sup_{x} |\hat{F}_{n}(x) - F(x)| \stackrel{d}{=} \sup_{0 \le y \le 1} |\hat{G}_{n}(y) - G(y)|,$$

wobei
$$\hat{G}_n(y) := 1/n \sum_{i=1}^n \mathbbm{1}_{[0,y]}(U_i)$$
 für $U_1,\ldots,U_n \sim \mathcal{R}\left[0,1\right]$ i. i. d.

Kor. Sei F stetig, $n \ge 1$. Dann ist die VF

$$K_n(z) := \mathbb{P}(\sqrt{n} \cdot \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \le z)$$

unabhängig von F.

Satz. Falls F stetig ist, gilt

$$K_n(z) \xrightarrow[n \to \infty]{} K(z) := \sum_{k=-\infty}^{\infty} (-1)^k \exp(-2k^2 z^2).$$

Def. Dabei ist K die VF der Kolmogorow-Verteilung.

Bem. Man zeigt dazu, dass die Folge $X_n: y \mapsto \sqrt{n} \cdot (\hat{G}_n(x) - x)$ gegen die Brownsche Brücke \dot{B} konvergiert. Für diese gilt

$$\sup_{0 \le x \le 1} |\dot{B}(x)| \sim K$$

Entscheidungsregel (Kolmogorow(-Smirnow)-1SP-Test). Wir testen $H_0: F = F_0$ gegen $H_1: F \neq F_1$. Dabei muss F_0 eine stetige VF sein. Wir verwenden dazu

$$T_n := \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|.$$

Wir lehnen H_0 genau dann ab, wenn $T_n > K_{1-\alpha}$.

Bemn. • Für kleine $n \in \mathbb{N}$ sollte man $K_{n,1-\alpha}$ verwenden.

- Für große z ist $K(z) \approx 1 2\exp(-2z^2)$, also $K_{1-\alpha} \approx \sqrt{-1/2 \cdot \log(\alpha/2)}$ für α klein.
- Das Supremum in T_n liegt bei einer Sprungstelle von \hat{F}_n .

Entscheidungsregel. Um $H_0: F = F_0$ gegen $H_1: F > F_0$ mit

$$T_n^+ \coloneqq \sqrt{n} \cdot \sup_{x \in \mathbb{R}} (\hat{F}_n(x) - F(x)).$$

Es gilt

$$K_n^+(z) := \mathbb{P}(T_n^+ \le z) \xrightarrow[n \to \infty]{} K^+(z) := 1 - \exp(-2\max(0, z)^2)$$

Wir lehnen H_0 ab, falls $T_n^+ > K_{1-\alpha}^+$.

Achtung. Der Kolmogorow-Test kann nicht verwendet werden, wenn die Parameter von F_0 aus der Stichprobe geschätzt werden.

Def.
$$\omega_n^2(g) = n \int_{\mathbb{R}^1} g(F(x)) (\hat{F}_n(x) - F(x))^2 dF(x)$$

heißt gewichtete Cramér-von-Mises-Statistik oder ω^2 -Statistik. Dabei ist $g:[0,1]\to [0,\infty]$ eine Gewichtsfktn. Häufig verwendet wird g(x):=1 und die Anderson-Darling-Statistik $g(x):=\frac{1}{x(1-x)}$.

 \mathbf{Satz} . Sei F stetig. Dann ist

$$\omega_n^2(g) \stackrel{\mathrm{d}}{=} n \int_0^1 g(u) \left(\hat{G}_n(u) - u \right)^2 du \xrightarrow[n \to \infty]{d} \int_0^1 g(u) (\dot{B}(u))^2 du =: \omega^2(g).$$

Entscheidungsregel (CvM-Test). Wir testen $H_0: F = F_0$ vs. $H_1: F \neq F_0$ anhand der CvM-Statistik. Wir lehnen H_0 genau dann ab, wenn $\omega_n^2(g) > \omega_{1-\alpha}^2(g)$.

Bem. Der rechte Wert ist tabelliert für wichtige Funktionen qu

Situation. Gegeben seien zwei unabhängige SPn $X_1, \ldots, X_n \sim F$ i.i.d. und $X_1^*, \ldots, X_m^* \sim F^*$ i.i.d., wobei F und F^* stetig sind. Wir wollen testen, ob $H_0: F = F^*$ oder $H_1: F \neq F^*$ gilt, indem wir die empirischen VFen \hat{F}_n und \hat{F}_m^* vergleichen. Dazu verwenden wir

$$T_{m,n} \coloneqq \sqrt{\frac{m \cdot n}{m+n}} \sup_{x \in \mathbb{R}^1} |\hat{F}_n(x) - \hat{F}_n^*(x)|$$

Satz. Falls $F = F^*$ stetig ist, so gilt

$$T_{m,n} \stackrel{\mathrm{d}}{=} \sqrt{\frac{m \cdot n}{m+n}} \sup_{0 \le u \le 1} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[0,u]}(U_i) - \frac{1}{m} \sum_{j=1}^{m} \mathbb{1}_{[0,u]}(U_j^*) \right|,$$

wobei $X_i \stackrel{d}{=} F^-(U_i), i = 1, ..., n, X_i^* \stackrel{d}{=} F^{*,-}(U_i^*), j = 1, ..., m$ und

$$F^{-}(t) := \begin{cases} \min\{x \in \mathbb{R}^1 \mid F(x) \ge t\} & 0 < t \le 1, \\ \lim_{t \downarrow 0} F^{-}(t) & t = 0. \end{cases}$$
 (Quantilfunktion)

Lem. $T_{m,n} \xrightarrow[n \to \infty]{d} \sup_{0 < u < 1} |\dot{B}(u)| \sim K$

Entscheidungsregel (Kolmogorow(-Smirnow)-2SP-Test). $H_0: F = F^*$ wird genau dann abgelehnt, falls $T_{m,n} > K_{1-\alpha}$.

Situation (2-SP-Test von Wilcoxon-Mann-Whitney, U-Test). Gegeben seien zwei unabhängige SPn $X_1, \ldots, X_n \sim F$ und $X_1^*, \ldots, X_m^* \sim F^*$, wobei F und F^* stetig sind. Ziel: Prüfen von $H_0: F = F^*$ vs. $H_1: F \neq F^*$. Konstruktion einer Rangstatistik für konkrete SPn x_1, \ldots, x_n und x_1^*, \ldots, x_m^* .

- 1. Ordnen: $x_{1:n} < \ldots < x_{n:n}$ und $x_{1:m}^* < \ldots < x_{m:m}^*$
- 2. $\nu_1,\ldots,\nu_m\in\{1,\ldots,m+n\}$ seien die Ränge der Werte $x_{i:m}^*$ innerhalb der Gesamt-SP:

$$x_{1:n} < \ldots < x_{\nu_1 - 1:n} < x_1^* < x_{\nu_1 : n} < \ldots < x_{\nu_2 - 2:n} < x_{2:m}^* < x_{\nu_2 - 1:n}$$

$$< \ldots < x_{\nu_m - m : n} < x_{m:m}^* < x_{\nu_m - m + 1:n} < \ldots < x_{n:n}$$

Heuristik: H_0 wird angenommen, falls sich die x- und x^* -Werte "gut durchmischen", d. h. die Anzahl der x-Werte, die vor bzw. nach den x^* -Werten liegen, darf nicht zu groß werden. Testgröße:

$$W_{m,n} := \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{1}_{\{X_i < X_j^*\}} = |\{(i,j) \mid X_i < X_j^*\}| = \sum_{j=1}^{m} |\{i \mid X_i < X_{j:m}^*\}|$$
$$= \sum_{j=1}^{m} (\nu_j - j) = \nu_1 + \dots + \nu_m - \frac{m}{2}(m+1)$$

Unter H_0 gilt $\mathbb{E}W_{m,n} = \frac{m \cdot n}{2}$, $\operatorname{Var} W_{m,n} = \frac{m \cdot n}{12}(m+n+1)$.

Lem. Unter $H_0: F = F^*$ stetig gilt

$$g_{m,n}(z) := \sum_{k=0}^{n \cdot m} \mathbb{P}(W_{m,n} = k) \cdot z^k = \frac{z^{-m(m+1)/2}}{\binom{m+n}{m}} \sum_{1 \le \nu_1 < \dots < \nu_m \le m+n} z^{\nu_1 + \dots + \nu_m}$$
$$= \frac{1}{\binom{m+n}{m}} \prod_{k=1}^{m} \frac{1 - z^{n+k}}{1 - z^k}$$

Entscheidungsregel. Ablehnung von H_0 , falls $w_{m,n} \le c_{\alpha/2}$ oder $w_{m,n} \ge m \cdot n - c_{\alpha/2}$, wobei

$$c_{\alpha/2} = \min\{k \ge 0 \mid \mathbb{P}(W_{m,n} \le k) = \mathbb{P}(W_{m,n} \ge m \cdot n - k) \ge \alpha/2\}$$

Annahme von H_0 genau dann, wenn $|w_{m,n}-\frac{m\cdot n}{2}|<\frac{m\cdot n}{2}-c_{\alpha/2}$

Satz. Unter $H_0: F = F^*$ stetig gilt

$$T_{m,n} := \frac{W_{m,n} - \frac{m \cdot n}{2}}{\sqrt{\frac{m \cdot n}{2}(m+n+1)}} \xrightarrow{m,n \to \infty} \mathcal{N}(0,1)$$

Bem (Kruskal-Wallis-Test). Gegeben seien k Messreihen $X_{i,1}, \ldots, X_{i,n_i} \sim F_i, i = 1, \ldots, k$ unabhängige SPn, F_i stetig. Ziel: Testen von $H_0: F_1 = \ldots = F_k$. Vorgehen:

- 1. Ordnen der Beobachtungen der Größe nach
- 2. $\nu_{i,1} < \ldots < \nu_{i,n_i}$ Platznummern der n_i Beobachtungen der i-ten Messreihe in der Gesamt-SP

3.
$$\overline{\nu}_i := \frac{1}{n_i} (\nu_{i,1} + \ldots + \nu_{i,n_i}), \overline{\nu} := \frac{1}{n} \sum_{i=1}^k n_i \overline{\nu}_i \text{ mit } n := n_1 + \ldots + n_k.$$

Heuristik: H_0 ist richtig, falls $\overline{\nu}_i \approx \overline{\nu}$ für alle i. Testgröße:

$$\frac{12}{n(n+1)} \sum_{i=1}^{k} n_i (\overline{\nu}_i - \frac{n+1}{2})^2 \xrightarrow[n_i \to \infty]{d} \chi_{k-1}^2$$

Theorie der U-Statistiken

Situation. Sei $n \ge m, X_1, \ldots, X_n \sim F$ i. i. d., $h : \mathbb{R}^m \to \mathbb{R}^1$ Borel-messbar und symmetrisch, d. h.

$$h(x_1,\ldots,x_n)=h(x_{\sigma(1)},\ldots,x_{\sigma(n)}) \quad \forall \, \sigma \in S_n.$$

Gelte $\mathbb{E}|h(X_1,\ldots,X_m)|<\infty$.

Def. Die U-Statistik der Ordnung m mit Kernfunktion h ist

$$U_n^{(m)} := \frac{1}{\binom{n}{m}} \sum_{1 \le i_1 < \dots < i_m \le n} h(X_{i_1}, \dots, X_{i_m}).$$

Bem. Offenbar: $\mathbb{E}U_n^{(m)} = \mathbb{E}h(X_1, \dots, X_m)$

Bsp. Für m=2 gilt $\sigma^2=\operatorname{Var}(X_1)=\frac{1}{2}\mathbb{E}(X_1-X_2)^2$. Davon inspiriert setzen wir $h(x_1,x_2)\coloneqq\frac{1}{2}(x_1-x_2)^2$. Damit haben wir

$$U_n^{(2)} = \frac{2}{n(n-1)} \sum_{1 \le i \le n} \frac{1}{2} (X_i - X_j)^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = S_n^2$$

Ziel. Wir würden gerne den ZGWS auf $U_n^{(m)}$ anwenden. Problem dabei: Die Summanden in der Def. von $U_n^{(m)}$ sind nicht unabhängig. Wir approximieren deshalb $U_n^{(m)}$ mit einer Summe von i. i. d. ZGn.

Lem. Sei $\tilde{U}_n^{(m)} = \theta + \sum_{i=1}^n (\underbrace{\mathbb{E}(U_n^{(m)}|X_i)}_{\text{i. i. d.}} - \theta)$ mit $\theta := \mathbb{E}U_n^{(m)}$ und

$$g(x) = \mathbb{E}[h(X_1, \dots, X_n)|X_1 = x] = \mathbb{E}h(x, X_2, \dots, X_m)$$
$$= \int \dots \int h(x, x_2, \dots, x_n) \, \mathrm{d}F(x_2) \dots \, \mathrm{d}F(x_n).$$

Falls $\mathbb{E}h^2(X_1,\ldots,X_m)<\infty$, so gilt

(1)
$$\operatorname{Var}(U_n^{(m)} - \tilde{U}_n^{(m)}) = \operatorname{Var}(U_n^{(m)}) - \operatorname{Var}(\tilde{U}_n^{(m)})$$

(2)
$$\mathbb{E}(U_n^{(m)}|X_i = x) = \theta + \frac{m}{n}(g(x) - \theta)$$

Lem. (2) $\operatorname{Var}(\tilde{U}_n^{(m)}) = \frac{m^2}{n} \cdot \operatorname{Var}(g(X_1)) = \frac{m^2}{2} (\mathbb{E}g^2(X_1) - \theta^2)$ (3) Falls $\mathbb{E}|h(X_1, \dots, X_m)| < \infty$, so gilt

$$\begin{aligned} \operatorname{Var}(U_n^{(m)}) &= \frac{1}{\binom{n}{m}} \sum_{k=1}^m \binom{m}{k} \binom{n-m}{m-k} \cdot \zeta_k \quad \text{mit} \\ h_k(x_1, \dots, x_k) &\coloneqq \mathbb{E}(h(x_1, \dots, x_k, X_{k+1}, \dots, X_m) \\ \zeta_k &\coloneqq \operatorname{Var}(h_k(X_1, \dots, X_k)) \\ &= \mathbb{E}[h(X_1, \dots, X_k, X_{k+1}, \dots, X_m) \cdot \\ h(X_1, \dots, X_k, X_{m+1}, \dots, X_{2m-k})] - \theta^2 \end{aligned}$$

Kor. Aus (1), (3) und (4) folgt für m=2:

$$\operatorname{Var}(U_n - \tilde{U}_n) = \operatorname{Var}(U_n) - \operatorname{Var}(\tilde{U}_n) = \dots = -\frac{4}{n(n-1)} \operatorname{Var}(g(X_1))$$

Für $m \geq 2$ gilt $\operatorname{Var}(U_n^{(m)} - \tilde{U}_n^{(m)}) \leq \frac{c(m)}{n^2} \operatorname{Var}(h(X_1, \dots, X_m)).$

Satz (Hoeffding). Sei $U_n^{(m)}$ eine U-Statistik mit Kern $h: \mathbb{R}^m \to \mathbb{R}$, sodass $\mathbb{E}h^2(X_1,\ldots,X_m) < \infty$ und $\sigma_g^2 \coloneqq \operatorname{Var}(g(X_1)) > 0$. Dann gilt

$$\sqrt{n}(U_n^{(m)} - \theta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \sigma_g^2)$$

- $\mathbb{E}g^2(X_1) < \infty$ ist schwächer als $\mathbb{E}h^2(X_1, \dots, X_m) < \infty$.
- Aus $E|h(X_1, \ldots, X_m)|^{1+q} < \infty$ für $0 < q \le 1$ folgt

$$\mathbb{E}|\sqrt{n}(U_n^{(m)} - \tilde{U}_n^{(m)})|^{1+q} \le \frac{c(q,m)}{n^{2q}} \mathbb{E}|h(X_1, \dots, X_m)|^{1+q}.$$

Mit einer Abschneidetechnik zeigt man, dass $\mathbb{E}g^2(X^1) < \infty$ und $\mathbb{E}|h(X_1,\ldots,X_m)|^{\frac{4}{3}} < \infty$ schon für $\mathbb{P}(\sqrt{n}|U_n^{(m)} - \tilde{U}_n^{(m)}| < \epsilon) \to 0$ für alle $\epsilon > 0$ ausreichen und damit für den Satz von Hoeffding.

 U-Statistiken erweisen sich (unter gewissen Bedingungen) als suffiziente Schätzer mit minimaler Varianz. **Bsp.** Wir betrachten die U-Statistik $S_n^2 = \binom{n}{2}^{-1} \sum_{i < j} \frac{1}{2} (X_i - X_j)^2$. Dann ist $g(x) = \frac{1}{2} (x - \mathbb{E}X_1)^2 + \frac{1}{2} \sigma^2$ mit $\sigma^2 := \text{Var}(X_1)$. Es gilt

$$\sqrt{n}(S_n^2 - \sigma^2) \xrightarrow{d} \mathcal{N}(0, 4\sigma_q^2)$$

mit
$$\sigma_g^2 = \mathbb{E}g^2(X_2) - (\mathbb{E}g(X_2))^2 = \frac{1}{4}\mu_4 - \frac{1}{4}\sigma^4, \ \mu_4 := \mathbb{E}(X_1 - \mathbb{E}X_2)^4.$$

Spezialfall: Ist $X_i \sim \mathcal{N}(\mu, \sigma^2)$, so gilt $\mu_4 = 3\sigma^4$.

Dann gilt $\sqrt{n}(S_n^2 - \sigma^2) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 2\sigma^4)$. Es folgt

$$\frac{\sqrt{n}(S_n^2 - \sigma^2)}{\sqrt{2(S_n^2)^2}} = \sqrt{n/2} \left(1 - \frac{\sigma^2}{S_n^2} \right) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1).$$

Alternativ erhält man durch Anwenden einer varianzstab. Trafo:

$$\sqrt{n/2}(\log S_n^2 - \log \sigma^2) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$$

Def. Die Kumulante oder Semi-Invariante m-ter Ordnung ist

$$\operatorname{Cum}_m(X) = \frac{1}{m!2^m} \frac{\partial^m}{\partial t^m}|_{t=0} \log \mathbb{E}e^{itX}.$$

Bem. Falls X_1, \ldots, X_n unabhängig sind, so gilt

$$\operatorname{Cum}_m(X_1 + \ldots + X_n) = \operatorname{Cum}_m(X_1) + \ldots + \operatorname{Cum}_m(X_n).$$

Für m = 3 gilt $\operatorname{Cum}_3(X) = \mathbb{E}X^3 - 3\mathbb{E}X \cdot \mathbb{E}X^2 + 2(\mathbb{E}X)^3$.

Bsp. Schätzung der Kumulante m-ter Ord. mit der SP X_1, \ldots, X_n :

$$(\widehat{\text{Cum}_3(X)})_n := \frac{1}{n(n-1)(n-2)} (n^2 \hat{M}_3^{(n)} - 3n \hat{M}_1^{(n)} \hat{M}_2^{(n)} - 2(\hat{M}_1^{(n)})^3)$$
$$= \frac{1}{\binom{n}{3}} \sum_{1 \le i < j < j \le n} h(X_i, X_j, X_k)$$

mit
$$h(x, y, z) := -\frac{1}{2}(xy^2 + x^2y + xz^2 + x^2z + yz^2 + x^2z + yz^2 + y^2z) + \frac{1}{3}(x^3 + y^3 + z^3) + 2xyz$$

wobei
$$\hat{M}_{j}^{(n)} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}$$

Def. Eine VF F heißt symmetrisch bzgl. $\vartheta_0 \in \mathbb{R}^1$, falls

$$F(\vartheta_0 - x) = 1 - F(\vartheta_0 + x) \quad \forall x \in \mathbb{R}^1.$$

Bsp (Wilcoxon-1-SP-Test auf Symmetrie). Sei $X_1, \ldots, X_n \sim F$ eine math. SP mit F stetig. Angenommen, F ist symmetrisch bzgl. $\vartheta_0 \in \mathbb{R}^1$. Dann sind $Z_i = X_i - \vartheta_0$ symmetrisch bzgl. 0. Seien ν_1^+, \ldots, ν_n^+ die Ränge der ZGn $|Z_1|, \ldots, |Z_n|$. Setze

$$T_n^+ = \sum_{i=1}^n \mathbb{1}_{\{Z_i > 0\}} \nu_i^+.$$

Unter $H_0: F$ ist symmetrisch bzgl. ϑ_0 gilt

$$\mathbb{E}T_n^+ = \frac{1}{2} \sum_{i=1}^n \mathbb{E}\nu_i^+ = \frac{n(n+1)}{4}, \quad \text{Var}(T_n^+) = \frac{n}{24}(n+1)(2n+1).$$

Bsp. Alternativ können wir die U-Statistik

$$U_n = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} \mathbb{1}_{\{Z_i + Z_j > 0\}}.$$

zum Test auf Symmetrie betrachten. Unter \mathcal{H}_0 gilt

$$\mathbb{E}1_{\{Z_i + Z_j > 0\}} = \mathbb{P}(Z_1 > -Z_2) = \int (1 - F(-z)) \, \mathrm{d}F(z)$$
$$= \int F(z) \, \mathrm{d}F(z) = \frac{1}{2}.$$

Aus dem ZGWS für U-Statistiken folgt

$$\sqrt{n}(U_n - \frac{1}{2}) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \frac{1}{3}).$$

Testregel: Wir lehnen H_0 genau dann ab, wenn $|U_n - \frac{1}{2}| > \frac{z_{1-\alpha/2}}{\sqrt{3n}}$.

Def. Sei $h: \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \to \mathbb{R}^1$ Borel-messbar, symmetrisch in den ersten m_1 und den letzten m_2 Argumenten. Seien $X_1, \ldots, X_{n_1} \sim F$ und $X_1^*, \ldots, X_{n_2}^* \sim F^*$ zwei unabh. math. SPn. Dann heißt

$$U_{n_1,n_2}^{(m_1,m_2)} \coloneqq \binom{\binom{n_1}{m_1}\binom{n_2}{m_2}}{1 \le i_1 < \ldots < i_{m_1} \le n_1 \atop 1 \le j_1 < \ldots < j_{m_2} < n_2} h(X_{i_1},...,X_{i_{m_1}},X_{j_1}^*,...,X_{j_{m_2}}^*)$$

(verallg.) **U-Statistik** der Ordnung (m_1, m_2) mit Kernfunktion h.

Notation. Sei $m_1 = m_2 = 1$. Wir setzen

$$\begin{split} \theta &\coloneqq \mathbb{E}h(X_1, X_1^*) = \mathbb{E}U_{n_1, n_2}^{(1, 1)} \\ g_1(x) &\coloneqq \mathbb{E}(h(X_1, X_1^*) \mid X_1 = x), \quad \sigma_1^2 \coloneqq \operatorname{Var}g(X_1), \\ g_2(y) &\coloneqq \mathbb{E}(h(X_1, X_1^*) \mid X_1^* = y), \quad \sigma_2^2 \coloneqq \operatorname{Var}g(X_1^*), \\ \tilde{U}_{n_1, n_2}^{(1, 1)} &\coloneqq \frac{1}{n_1} \sum_{i=1}^{n_1} g_1(X_i) + \frac{1}{n_2} \sum_{j=1}^{n_2} g_2(X_j^*) - \theta \end{split}$$

Lem. Es seien $\mathbb{E}h^2(X_1,X_1^*)<\infty$ und $\sigma_1^2,\sigma_2^2\in(0,\infty)$. Dann gilt

$$\sqrt{\frac{n_1 n_2}{n_2 \sigma_1^2 + n_1 \sigma_2^2}} \cdot (U_{n_1, n_2} - \theta) \xrightarrow[n_1, n_2 \to \infty]{d} \mathcal{N}(0, 1).$$

Bsp. Die Wilcoxon-2-SP-Statistik ist eine U-Statistik mit

$$h(x,y) := |\{ \heartsuit \mid x < y \}|.$$

Das allgemeine lineare Modell

Modell (allgemein). Für Zufallsgrößen X und Y gilt $Y = g(X) + \epsilon$ mit einer Funktion g, wobei $\mathbb{E}\epsilon = 0$ und $\sigma^2 := \text{Var}(Y - g(X)) = \mathbb{E}\epsilon^2$.

Modell (Lineare Regression). $Y = X\beta + \epsilon$, wobei

$$Y = (Y_1, \dots, Y_n)^T$$
 Beobachtungsvektor,
 $X = (x_{ij}) \in \mathbb{R}^{n \times p}$ Einstellgrößen-, Versuchsplanmatrix,
 $\beta = (\beta_1, \dots, \beta_p)^T$ (unbek.) Parametervektor, Regressionskoeff.
 $\epsilon = (\epsilon_1, \dots, \epsilon_n)^T$ (nicht beobachtbarer) Fehlervektor heißt.

Wir nehmen an, dass $Cov(Y_i, Y_j) = Cov(\epsilon_i, \epsilon_j) = \sigma^2 \delta_{ij}$ und n > p. Dabei heißt σ Modellstreuung.

Bem. Falls Y eine bekannte Kovarianzmatrix $K \in \mathbb{R}^{n \times n}$ besitzt, so können wir $X^* \coloneqq K^{-1/2}X$, $Y^* \coloneqq K^{-1/2}Y$, $\epsilon^* \coloneqq K^{-1/2}\epsilon$ setzen und erhalten $Y^* = X^*\beta + \epsilon^*$ und $\text{Cov}(Y^*) = I_n$.

Problem. Gegeben seien $[Y, X\beta, \sigma^2 I_n]$. Gesucht sind Schätzungen $\hat{\beta}(y) = (\hat{\beta}_1(y), \dots, \hat{\beta}_p(y))^T$ für β .

Def. Eine Schätzfunktion $\hat{\beta}(y)$ heißt MkQ-Schätzung (Methode der kleinsten Quadrate) für β , falls

$$S(y, \hat{\beta}) = \min_{\beta \in \mathbb{R}^p} S(y, \beta)$$

wobei
$$S(y,\beta) := ||y - X\beta||^2 = \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} x_{ij}\beta_j)^2$$
.

Bem. $S(y,\beta)$ besitzt lokale Minima, da

$$\tfrac{\partial}{\partial \beta} S(y,\beta) = -2X^T y + 2X^T X \beta, \quad \tfrac{\partial^2}{\partial \beta^2} S(y,\beta) = 2X^T X.$$

Für die Minima gelten die Normalengleichungen

$$X^T X \beta = X^T Y \iff \sum_{j=1}^p \xi_{ij} \beta_j = \sum_{j=1}^n x_{ji} y_j \text{ mit } (\xi_{ij}) = X^T X. \text{ (N)}$$

Satz. (N) ist stets lösbar und jede Lsg ist eine MkQ-Schätzung. Falls rk X=p, so ist $\hat{\beta}$ eind. bestimmt durch $\hat{\beta}=(X^TX)^{-1}X^Ty$.

Bsp (Einfache lineare Regression).

Annahme: $Y_i = \beta_1 + \beta_2 x_i + \epsilon_i$, i = 1, ..., n. Dann ist

$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \qquad \begin{array}{l} X^{\hat{T}}X = n\sum x_i^2 - (\sum x_i)^2 = n \cdot \sum (x_i - \overline{x_n})^2 > 0 \\ \hat{\beta} = \det(XX^T)^{-1} \begin{pmatrix} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{pmatrix} \begin{pmatrix} \sum Y_i \\ \sum x_i Y_i \end{pmatrix} \end{array}$$

Bsp (Multiple lineare Regression).

$$Y_i = \beta_0 + \beta_1 X_1^{(i)} + \ldots + \beta_m X_m^{(i)} + \epsilon_i$$

Bsp (Quasilineare (multiple) Regression).

$$Y_i = \beta_0^{(i)} + \beta_1 f_1(X_1^{(i)}) + \ldots + \beta_m f_m(X_m^{(i)}) + \epsilon_i$$

mit (nichtlinearen) Funktionen f_1, \ldots, f_m

Def. Eine Matrix $A^- \in \mathbb{R}^{n \times m}$ heißt **g-Inverse** (g = generalized) von $A \in \mathbb{R}^{m \times n}$, wenn für jedes $y \in \mathbb{R}^m$, für welches Ax = y lösbar ist, auch $x = A^-y$ eine Lösung ist.

Satz. A^- ist eine g-Inverse von $A \iff AA^-A = A$

Bem. • Falls n = m und A^{-1} existiert, so ist $A^{-} = A^{-1}$ eindeutig.

 A⁻ ist im Allgemeinen nicht eindeutig. Man erhält Eindeutigkeit durch Zusatzforderungen:

Def. Eine Moore-Penrose-Inverse A^+ ist eine g-Inverse, welche folgende Bedingungen erfüllt:

$$A^{+}AA^{+} = A^{+}, \quad (AA^{+})^{T} = AA^{+}, \quad (A^{+}A)^{T} = A^{+}A.$$

Satz. Die allgemeine Lösung von (N) lautet mit $S := X^T X$:

$$\beta = S^- X^T y + (S^- S - I_p) z$$
, wobei $z \in \mathbb{R}^p$.

Für die spezielle L
sgz=0gilt $\hat{\beta}=S^-X^TY$ für die MkQ-Schätzung für
 $\beta.$ Es gilt

$$\mathbb{E}\hat{\beta} = S^- S \beta$$
 und $\operatorname{Cov}(\hat{\beta}) = \sigma^2 S^- S S^-$.

Bem. Bei Nichteindeutigkeit der Lsg von (N) gilt i. A. $S^-S\neq I_p.$ Falls rk $X=\operatorname{rk} S=p,$ so gilt $\mathbb{E}\hat{\beta}=\beta$ und Cov $\hat{\beta}=\sigma^2S^{-1}$

Def. Eine Linearkombination $l(\beta) = c^T \beta$ mit $c \in \mathbb{R}^p$, $\beta \in \mathbb{R}^p$ heißt bzgl. des linearen Modells $[Y, X\beta, \sigma^2 I_n]$ schätzbare Funktion, falls ein $a \in \mathbb{R}^n$ mit $c = X^T a$ existiert.

Satz. Es sind äquivalent:

- $l(\beta) = c^T \beta$ ist eine schätzbare Funktion
- $\hat{l} \coloneqq l(\hat{\beta}) \coloneqq c^T \hat{\beta}$ (wobe
i $\hat{\beta}$ MkQ-Schätzung) ist eine lin. Funktion von Y und eine erwartungstreue Schätzung für
 $l(\beta)$
- $c \in \operatorname{im}(X^T) = \operatorname{im}(X^T X)$
- $l(\hat{\beta}) = c^T \hat{\beta}$ ist konstant für alle $\hat{\beta}$, die Lösung von (N) sind, d. h. $X^T X \hat{\beta} = X^T y$.
- Es existiert ein $a \in \mathbb{R}^n$ mit $\mathbb{E}(a^T Y) = c^T \beta$.

Satz (Gauß-Markov). In einem lin. Modell $[Y, X\beta, \sigma^2 I_n]$ ex. für jede schätzbare (lin.) Funktion $l(\beta) = c^T\beta$ eine eindeutig bestimmte, in Y lin. erwartungstreue Schätzung $\hat{l} = a_*^T Y$ (für genau ein $a_* \in \operatorname{im}(X) \subseteq \mathbb{R}^n$) und diese hat die Gestalt $\hat{l} = l(\hat{\beta}) = c^T \hat{\beta}$, wobei $\hat{\beta}$ eine MkQ-Schätzung ist. Außerdem besitzt \hat{l} minimale Varianz in der Klasse aller linearen erwartungstreuen Schätzungen $\hat{l} = a^T Y$.

Konstr. $a_* = X(X^TX)^-c$

Def. Der Schätzer heißt Best Linear Unbiased Estimation (BLUE).

Bem. Es gilt

$$S(Y, \hat{\beta}) = \min_{\beta \in \mathbb{R}^p} ||Y - X\beta||^2 = ||Y - X\hat{\beta}||^2 = (Y - X\hat{\beta})^T (Y - X\hat{\beta}) =$$

$$= Y^T Y - \underbrace{Y^T X \hat{\beta}}_{=(X\hat{\beta})^T X \hat{\beta}} - (X\hat{\beta})^T Y + \underbrace{(X\hat{\beta})^T X \hat{\beta}}_{=\hat{\beta}^T X^T X \hat{\beta} = \beta^T X^T Y} = ||Y||^2 - ||X\hat{\beta}||^2.$$

Def. $(Y - X\hat{\beta})$ heißt **Restvektor** oder **Residuum**.

Lem. Falls $\hat{\beta}$ MkQ-Schätzung, so gilt

- $\mathbb{E}(Y X\hat{\beta}) = 0$
- $c^T \beta$ ist eine schätzbare Funktion und $\mathbb{E}(c^T \hat{\beta}(Y X \hat{\beta})) = 0$
- $Cov(Y X\hat{\beta}) = Cov(Y) Cov(X\hat{\beta})$.

Orthogonale Transformation von $[Y, X\beta, \sigma^2 I_n]$

$$X = (\tilde{x}_1 \cdots \tilde{x}_p) \text{ mit } \tilde{x}_i \in \mathbb{R}^p, \text{ rk } X = r \leq p.$$

Es existiert eine orthonormale Basis o_1, \ldots, o_r von $\operatorname{im}(X)$ und $\sigma_{r+1}, \ldots, \sigma_n \in \operatorname{im}(X)^{\perp}$.

$$Y = \sum_{i=1}^{n} o_i Z_i, Z = (Z_1 \cdots Z_n)^T, \text{ d. h. } Y = OZ, \text{ wobei } O(o_1 \cdots o_n),$$
$$O_1 = (a_1 \cdots a_r)^T, O_2 = (a_{r+1} \cdots a_n)^T$$

$$Z = O^{-1}Z = O^TY$$

$$\mathbb{E}Z = O^T \mathbb{E}Y = O^T X \beta = \begin{pmatrix} O_1^T \\ O_2^T \end{pmatrix} X \beta$$

$$\mathbb{E}Z_i = o_i^T X \beta = \begin{cases} o_i^T X \beta & \text{für } i = 1, \dots, r, \\ 0 & \text{für } i = r + 1, \dots, n. \end{cases}$$

$$\mathbb{E}Z = \begin{pmatrix} O_1^T X \beta \\ 0 \end{pmatrix}, \operatorname{Cov}(Z) = \operatorname{Cov}(O^T Y) = O^T \operatorname{Cov}(Y)O = \sigma^2 I$$

Transformation:
$$[Y, X\beta, \sigma^2 I_n] \leadsto [Z, O^T X\beta, \sigma^2 I_n]$$
 mit $Z = O^T Y$

Satz. In einem linearen Modell $[Y, X\beta, \sigma^2 I_n]$ mit rk $X = r \leq p$ und einer MkQ-Schätzung $\hat{\beta}$ ist

$$\sigma^2 = \frac{1}{n-r} S(Y, \hat{\beta}) = \frac{1}{n-r} ||Y - X\hat{\beta}||^2 = \frac{1}{n-r} \sum_{i=1}^n (Y_i - \sum_{j=1}^p x_{ij} \hat{\beta}_r)^2$$

eine erwartungstreue Schätzung für σ^2 .

Satz. Für ein normalverteiltes lineares Modell $[Y, \mathcal{N}_n(X\beta, \sigma^2 I_n)]$ mit rk $X = r \leq p$ gilt:

- Die ML-Schätzung für $\beta \in \mathbb{R}^p$ stimmt mit der MkQ-Schätzung $\hat{\beta}$ überein und es gilt $\hat{\beta} \sim \mathcal{N}_p(\mathbb{E}\hat{\beta}, \text{Cov}(\hat{\beta}))$.
- Die ML-Schätzung für σ^2 lautet $\hat{\sigma}_n^2 = \frac{S(Y,\hat{\beta})}{n} = \frac{n-r}{n}\hat{\sigma}^2$ mit $\mathbb{E}\hat{\sigma}_n^2 = \frac{n-r}{n}\sigma^2 \xrightarrow[n \to \infty]{} \sigma^2 \text{ (asympt. erw.-treu) und } \frac{S(Y,\hat{\beta})}{\sigma^2} \sim \chi_{n-r}^2$
- Für einen Vektor $l^T(\beta) = (l_1(\beta), \dots, l_q(\beta))$ von $q \leq r$ linear unabhängigen schätzbaren Funktionen $l_i(\beta) = c_i^T \beta, c_i \in \mathbb{R}^p$ gilt $\hat{l} := l(\hat{\beta}) \sim \mathcal{N}_q(l(\beta), \sigma^2 A_* A_*^T)$ mit rk $A_* = q$, wobei

$$A_* = (a_{*,1},\dots,a_{*,q})^T \quad \text{mit } a_{*,i} \in L(X)$$
optimal gemäß Gauß-Markov-Theorem

Satz. In einem linearen Modell $[Y, X\beta, \sigma^2 I_n]$ mit rk $X = r \le p$ und \bullet Die Schätzungen $\hat{l} = l(\hat{\beta})$ und $\hat{\sigma}^2$ (bzw. $\hat{\sigma}_n^2$) sind unabhängig.

Kor. Für rk X = p gilt $\hat{\beta} \sim \mathcal{N}_p(\beta, \sigma^2(X^TX)^{-1})$ und $\hat{\beta}$ und $\hat{\sigma}^2$ sind unabhängig. (Grund: $\beta_i = e_i^T \beta$ sind schätzbare Funktionen)

Test
$$(\sigma^2$$
-Streuungstest im Modell $(Y, \mathcal{N}_n(X\beta, \sigma^2 I_n)))$.
 $H_0: \sigma^2 = \sigma_0^2, \ \alpha > 0$ vorgegeben, rk $X = r \leq p$
 $T := \frac{\|Y - X\beta\|^2}{\sigma_0^2} \sim \chi_{n-r}^2$ (unter H_0) Kritischer Berech für T :
 $K^* = [0, \chi_{n-r, \alpha/2^2}, \cup] [\chi_{n-r, 1-\alpha/2}, \infty)$

Konfidenzschätzung für den Vektor der schätzbaren Funktionen

$$l(\beta) = (l_1(\beta), \dots, l_q(\beta))^T, \ 1 \le q \le r \le p < n, \ l_1(\beta), \dots, l_q(\beta) \text{ lin. unabh.}$$

$$\mathbb{P}((l(\hat{\beta}) - l(\beta))^T (A_* A_*^T)^{-1} (l(\hat{\beta}) - l(\beta)) \le \frac{q}{n-r} \|Y - X\hat{\beta}\|^2 \cdot F_{q,n-r,1-\alpha}) = 1 - \alpha.$$