ALGORITMOS Y ESTRUCTURAS DE DATOS III - 1^{er} Recuperatorio Fecha examen: 12-DIC-2014 / Fecha notas: a determinar

	Nº Orden	Apellido y nombre	L.U.	Cant. hojas ¹
Completar:				
	Nota (Nº)	Nota (Letras)	Docente	
No completar:				

1. Sea $v = (v_1, v_2, \dots v_n)$ un vector de números reales. Para cada par de enteros p y q tales que $1 \le p \le q \le n$, definimos suma $(v, p, q) = \sum_{p \le i \le q} v_i$. Diseñar un algoritmo que dado el vector v, lo preprocese adecuadamente de manera tal que luego pueda calcularse suma(v, p, q) en O(1) para cualquier par de enteros p y q válidos. El algoritmo debe tener complejidad temporal y espacial estrictamente mejor que $\Theta(n^2)$. Mostrar que el algoritmo propuesto es correcto y determinar su complejidad (temporal y espacial). Justificar. El mejor algoritmo que conocemos tiene complejidad temporal y espacial O(n), la cual es necesaria para obtener puntaje máximo en este ejercicio.

2 p.

2 p.

1 p

0.5 p.

0.5 p

0.5 p.

0.5 p.

0.3 p

0.3 p.

0.8 p

0.3 p.

0.3 p.

- 2. Diseñar un algoritmo eficiente que dado un grafo G=(V,E), decida si existen subconjuntos V_1 y V_2 de V tales que
 - $V_1 \cup V_2 = V$;
 - $V_1 \cap V_2 = \emptyset$;
 - $V_i \neq \emptyset$ para $i \in \{1, 2\}$; y
 - el subgrafo inducido por V_i es completo para $i \in \{1, 2\}$.

Mostrar que el algoritmo propuesto es correcto y determinar su complejidad. Justificar. El mejor algoritmo que conocemos tiene complejidad $O(n^2)$, donde n = |V|.

- 3. Sea G un grafo de n vértices.
 - (a) Demostrar que G puede obtenerse a partir del grafo trivial repitiendo n-1 veces el siguiente paso: agregar un vértice y cierta cantidad de ejes (eventualmente ninguno) incidentes al vértice agregado.
 - (b) Demostrar que si G es un árbol, lo dicho puede lograrse aún exigiendo que al final de cada paso se obtenga un árbol.

SUGERENCIA: Inducción en n.

- 4. Sea G un grafo o digrafo en el cual cada eje e tiene asociada una longitud no necesariamente positiva $\ell(e) \in \mathbb{R}$. Dada una función $f: \mathbb{R} \to \mathbb{R}$, definimos G_f como el grafo que tiene los mismos vértices y ejes que G, pero en el cual cada eje e tiene asociada la longitud $f(\ell(e))$ en vez de $\ell(e)$. Sea C un camino desde el vértice v hasta el vértice w en G, el cual por definición también existe en G_f , y cuya longitud total en cada grafo es la suma de las longitudes asociadas a sus ejes en ese grafo. ¿Es cierto que...
 - (a) para f(x) = x + b, C es un camino mínimo en G si y sólo si C es un camino mínimo en G_f ?
 - (b) para f(x) = ax con a < 0, C es un camino mínimo en G si y sólo si C es un camino máximo en G_f ?
 - (c) para $f(x) = ax \operatorname{con} a > 0$, C es un camino mínimo en G si y sólo si C es un camino mínimo en G_f ?
 - (d) para $f(x) = ax \operatorname{con} a > 0$, C es un camino $m \acute{a} x i m o$ en G si y sólo si C es un camino $m \acute{a} x i m o$ en G_f ?

En caso afirmativo demostrar; en caso negativo dar un contraejemplo y justificar.

5. Dado un grafo H con pesos asociados a sus ejes, un árbol generador quasi-mínimo de H es un árbol generador de H que tiene peso mínimo entre los árboles generadores de H que no son mínimos.

Sea G un grafo conexo de n vértices y m ejes, con $m \ge n$. Cada eje tiene un peso asociado, y los pesos son todos distintos entre sí.

- (a) ¿Es cierto que G tiene al menos un árbol generador quasi-mínimo? En caso afirmativo demostrar; en caso negativo dar un contraejemplo y justificar.
- (b) ¿Es cierto que G tiene a lo sumo un árbol generador quasi-mínimo? En caso afirmativo demostrar; en caso negativo dar un contraejemplo y justificar.
- (c) Demostrar que si T_1 es un árbol generador mínimo de G, y T_2 es un árbol generador quasi-mínimo de G, entonces T_1 tiene exactamente un eje que no está en T_2 , y viceversa. SUGERENCIA: Considerar el eje de menor peso en la diferencia simétrica entre $E(T_1)$ y $E(T_2)$.
- (d) Repetir los dos primeros puntos sin la restricción $m \ge n$.
- (e) Repetir los dos primeros puntos sin la restricción de que los pesos son todos distintos entre sí.

¹Incluyendo a esta hoja. Entregar esta hoja junto al examen.