Maxwellove Enačbe

Maxwellova teorija elektromagnetnega polja povezuje električno in magnetno polje $\vec{E}(\vec{r},t)$ in $\vec{B}(\vec{r},t)$, z gostoto naboja in gostoto toka:

$$ho(\vec{r},t)$$
 $\vec{j}(\vec{r},t)$

ki sta **izvira polj**. Zavedajmo se **Helmholtzovega izreka**, ki trdi, da je poljubno vektorsko polje popolnoma določeno, če poznamo njegovo divergenco in rotor.

6.1 Ohranjanje naboja (kontinuitetna enačba) [Glej sliko]

Zanima nas celoten naboj v V_0 :

$$e(t) = \int\limits_{V_0}
ho(ec{r},t) \ d^3ec{r}$$

V splošnem e(t) ni konstantent, ker lahko $ec{j}$ stalno prinaša/odnaša naboj. Torej:

$$rac{de}{dt} = -\int\limits_{\partial V_0} ec{j} \cdot \hat{n} \; dS = -\int
abla \cdot ec{j} \; d^3 ec{r}$$

$$rac{de}{dt} = rac{d}{dt} \int\limits_{V_0}
ho(ec{r},t) \ d^3ec{r} = \int rac{\partial
ho}{\partial t} \ d^3ec{r}$$

Ta dva končna dela enačimo in dobimo kontinuitetno enačbo:

$$abla \cdot ec{j} + rac{\partial
ho}{\partial t} = 0$$

Posledica te enačbe je, da gostota naboja na nekem mestu ni nujno več konstantna v času, saj tok lahko prinaša/odnaša naboje.

6.2 Maxwellov premikalni tok

Osnovne Maxwellove enačbe v kvazistatični sliki smo spoznali malo prej, ampak te enačbe niso popolne. Pride do kršitve kontinuitetne enačbe. Na enačbo:

$$abla imes ec{B} = \mu_0 ec{j}$$

delujemo z divergenco, da dobimo:

$$\mu_0
abla \cdot \vec{j} =
abla (
abla imes \vec{B}) = 0$$

To je kršitev kontinuitetne enačbe. Zagato rešimo tako, da enačbo dopolnimo s **premikalnim tokom**. Popravljena enačba se tako glasi:

$$abla imes ec{B} = \mu_0 ec{J} + \mu_0 arepsilon_0 rac{\partial ec{E}}{\partial t}.$$

Lahko preverimo pravilnost, tako da delujemo nanjo z divergenco:

$$egin{aligned}
abla \cdot (
abla imes ec{B}) &= \mu_o
abla \cdot ec{j} + \mu_0 arepsilon_0 rac{\partial}{\partial t} (
abla \cdot ec{E}) \ 0 &=
abla \cdot ec{j} + rac{\partial
ho}{\partial t} \end{aligned}$$

6.3 Popoln set Maxwellovih enačb

To so enačbe, ki v celoti določajo klasično elektrodinamiko. Prva in četrta enačba podajata povezavo polj z izvori. Drugi in tretji pa pravimo kinetični enačbi.

I. enačba

$$oldsymbol{
abla}\cdotec{\mathbf{E}}=rac{
ho}{arepsilon_{\mathbf{0}}}$$

II. enačba

$$oldsymbol{
abla}\cdotec{\mathbf{B}}=\mathbf{0}$$

III. enačba

$$\mathbf{
abla} imes \mathbf{ec{E}} = -rac{oldsymbol{\partial}\mathbf{ec{E}}}{oldsymbol{\partial}\mathbf{t}}$$

IV. enačba

$$\mathbf{
abla} imes \mathbf{\vec{B}} = \mu_0 \mathbf{ec{j}} + \mu_0 arepsilon_0 rac{oldsymbol{\partial} \mathbf{ec{E}}}{oldsymbol{\partial} \mathbf{t}}$$

Kontinuitetna enačba

$$\mathbf{
abla}\cdot \mathbf{ec{j}} + rac{\partial
ho}{\partial \mathbf{t}} = \mathbf{0}$$

6.5 Ohranitveni zakoni

Maxwellove enačbe ohranjajo naboj, gibalno količino, vrtilno količino in celotno energijo.

6.5.1 Ohranitev energije

Radi bi kontinuitetno enačbo za energijo. Vzamemo tretjo in četrto e načbo in ju križno zmnožimo z polji. Dobimo:

$$ec{B}\cdot
abla imesec{E}=ec{B}\cdotrac{\partialec{B}}{\partial t}$$

$$ec{E}\cdot
abla imesec{B}=ec{E}\cdot\mu_0ec{j}+ec{E}\cdot\mu_0arepsilon_0rac{\partialec{E}}{\partial t}$$

Sedaj enačbi odštejemo eno od druge, da pridemo do:

$$\mu_0 arepsilon_0 ec{E} rac{\partial ec{E}}{\partial t} + ec{B} rac{\partial ec{B}}{\partial t} = ec{E} \cdot (
abla imes ec{B}) - ec{B} (
abla imes ec{E}) - \mu_0 ec{j} \cdot ec{E}$$

Tu potegnemo ven časovni odvod in divergenco vektorskega produkta:

$$rac{\partial}{\partial t}\left(rac{1}{2}arepsilon_0 E^2 + rac{1}{2\mu_0}B^2
ight) = -rac{1}{\mu_0}
abla\cdot(ec{E} imesec{B}) - ec{j}\cdotec{E}$$

Dobimo:

$$rac{\partial \mathbf{w}}{\partial t} + \mathbf{\nabla} \cdot \vec{\mathbf{p}} + \vec{\mathbf{j}} \cdot \vec{\mathbf{E}} = \mathbf{0}$$

kjer je w gostota naboja:

$$w=rac{1}{2}arepsilon_0 E^2+rac{1}{2\mu_0}B^2$$

in \vec{P} Poyntingov vektor:

$$ec{P} = rac{1}{\mu_0} (ec{E} imes ec{B})$$

V integralski obliki lahko ta ohranitveni zakon zapišemo kot:

$$rac{\partial}{\partial t}\int\limits_{V}w\;d^{3}ec{r}=-\int\limits_{\partial V}ec{P}\cdot dec{S}-\int\limits_{V}ec{j}\cdotec{E}\;d^{3}ec{r}$$

Torej celotna energija v nekem volumnu (člen na levi) se lahko spreminja kot posledica odtoka/dotoka energije skozi površino (prvi člen na desni) ali pa na nivoju celega volumna (drugi člen na desni) npr. Ohmske izgube.

6.5.2 Ohranitev gibalne količine (Cauchyjeva enačba)

Kontinuitetna enačba za gibalno količino. Obravnavamo:

$$rac{\partial}{\partial t}(arepsilon_0(ec{E} imesec{B})) = arepsilon_0rac{\partialec{E}}{\partial t} imesec{B} + arepsilon_0ec{E} imesrac{\partialec{B}}{\partial t} =$$

Odvode izrazimo iz Maxwellovih enačb, da dobimo:

$$=arepsilon_0\left[rac{1}{\mu_0arepsilon_0}(
abla imesec{B}) imesec{B}-rac{1}{arepsilon_0}(ec{j} imesec{B})-ec{E} imes(
abla imesec{E})
ight]=\ldots$$

Tu bi sedaj predelali dvojne vektorske produkte da bi dobili na koncu:

$$rac{\partial}{\partial t}(arepsilon_0(ec{E} imesec{B})) =
abla \cdot \left[arepsilon_0ec{E}\otimesec{E} - rac{arepsilon_0}{2}E^2ar{\underline{I}} + rac{1}{\mu_0}ec{B}\otimesec{B} - rac{1}{2\mu_0}B^2ar{\underline{I}}
ight] - [
hoec{E} + ec{j} imesec{B}]$$

Tako dobimo Cauchyjevo kontinuitetno enačbo za gibalno količino:

$$rac{\partial \mathbf{g_i}}{\partial \mathbf{t}} - rac{\partial \mathbf{T_{ik}}}{\partial \mathbf{x_k}} + \mathbf{f_i} = \mathbf{0}$$

kjer je $ec{g}$ gostota gibalne količine, T_{ik} napetostni tenzor elektromagnetnega polja in f Lorentzova gostota sile:

$$egin{align} ec{g} &= arepsilon_0 (ec{E} imes ec{B}) \ T_{ik} &= arepsilon_0 E_i E_k - rac{arepsilon_0}{2} E^2 \delta_{ik} + rac{1}{\mu_0} B_i B_j - rac{1}{2\mu_0} B^2 \delta_{ik} \ ec{f} &=
ho ec{E} + ec{j} imes ec{B} \ \end{align}$$

V integralni obliki se to zapiše kot:

$$rac{\partial}{\partial t}\int\limits_V g_i \; d^3ec r = \int\limits_{\partial V} T_{ik} \; dS_k - \int\limits_V f_i \; d^3ec r$$

V danem volumnu se gibalna kolučina lahko spreminja kot posledica delovanja napetostnega tenzorja na površini telesa ali kot posledica Lorentzove volumske sile.

6.5.4 Ohranjanje vrtilne količine

Vzamemo ogranitev gibalne količione, ki smo jo ravno izpeljali in enačbo pomnožimo z ročico x_j :

$$rac{\partial (x_j g_i)}{\partial t} = x_j rac{\partial T_{ik}}{\partial x_k} - x_j f_i$$

Tu uporabimo zvezo:

$$rac{\partial T_{ik}}{\partial x_k} = rac{\partial (x_j T_{ik})}{\partial x_k} - rac{\partial x_j}{\partial x_k} T_{ik} = rac{\partial (x_j T_{ik})}{\partial x_k} - \delta_{jk} T_{ik}$$

Dobimo:

$$rac{\partial}{\partial t}(x_jg_i) = rac{\partial(x_jT_{ik})}{\partial x_k} - T_{ij} - x_jf_i$$

To sedaj pomnožimo z Levi-Civita tenzorjem ε_{lii} :

$$rac{\partial}{\partial t}(arepsilon_{lji}x_{j}g_{i}) = rac{\partial(arepsilon_{lji}x_{j}T_{ik})}{\partial x_{k}} - arepsilon_{lji}T_{ij} - arepsilon_{lji}x_{j}f_{i}$$

En člen nam zaradi simetrije odpade- Tako ostane:

$$rac{\partial}{\partial t}(arepsilon_{lji}x_jg_i) = rac{\partial(arepsilon_{lji}x_jT_{ik})}{\partial x_k} - arepsilon_{lji}x_jf_i$$

Dobimo kontinuitetno enačbo za gibalno količino:

$$rac{\partial \gamma_l}{\partial t} - rac{\partial (arepsilon_{lji} x_j T_{ik})}{\partial x_k} + m_l = 0$$

kjer je m_l gostota navora in γ_l gostota vrtilne količine:

$$m_l = arepsilon_{lji} x_i f_i$$

$$\gamma_l = arepsilon_{l\,ji} x_j g_i$$

To lahko prepišemo v integralsko obliko:

$$rac{\partial}{\partial t}\int\limits_{V}\gamma_{l}\;d^{3}ec{r}=\int\limits_{\partial V}(arepsilon_{lji}x_{j}T_{ik})n_{k}\;dS-\int\limits_{V}m_{l}\;d^{3}ec{r}$$

Vrtilna količina elektromagnetnega polja se torej spreminja kot posledica delovanja napetostnega tenzorrja na površini in volumskih navorov.