Package

 $_{\rm DS} = 1700 \, \rm V$

 $R_{DS(on)} = 650 \text{ m}\Omega$

 $I_D@25^{\circ}C = 7.0 A$

Features

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitance
- Easy to Parallel and Simple to Drive
- Ultra-low Drain-gate capacitance

Benefits

- Higher System Efficiency
- Reduced Cooling Requirements
- Increased System Reliability
- Increased System Switching Frequency

Applications

- Auxiliary Power Supplies
- Switch Mode Power Supplies
- High-voltage Capacitive

Maximum Ratings (T_c=25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{DSmax}	Drain-Source Voltage	1700	V	V _{GS} =0V, I _D =100μA	
V _{GSmax}	Gate-Source Voltage	-10/+25	V	Absolute maximum values	
V_{GSop}	Gate-Source Voltage	-5/+20	V	Recommended operational values	
	Continuous Drain Current	7.0		V _{GS} =20V, T _c =25°C	
I _D		4.5	Α	V _{GS} =20V, T _c =100°C	
I _{D(pulse)}	Pulsed Drain Current	9.0	Α	Pulse width t _p limited by T _{Jmax}	
P _D	Power Dissipation	62	w	T _c =25°C, T _J =150°C	
T _J , T _{STG}	Operating Junction and Storage Temperature	-55 to +150	°C		

Electrical Characteristics (T_c =25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
V _{(BR)DSS}	Drain-Source Breakdown Voltage	1700	/	/	V	V _{GS} =0V, I _D =100μA	
V	Cata Thursday I day the ca	2.0	2.6	4.0	٧	V _{DS} =V _{GS} , I _D =1.0mA	Fig. 11
$V_{GS(th)}$	Gate Threshold Voltage	/	1.8	/	V	V _{DS} =V _{GS} , I _D =1.0mA, T _J =150°C	
I _{DSS}	Zero Gate Voltage Drain Current	/	1	100	μΑ	V _{DS} =1700V, V _{GS} =0V	
I _{GSS+}	Gate-Source Leakage Current	/	10	250	nA	V _{DS} =0V, V _{GS} =25V	
I _{GSS-}	Gate-Source Leakage Current	/	10	250	nA	V _{DS} =0V, V _{GS} =-10V	
D	Drain-Source On-State Resistance	/	650	850	mΩ	V _{GS} =20V, I _D =2.0A	
R _{DS(on)}	Diam-Source On-State Resistance	/	1300	/	11152	V _{GS} =20V, I _D =2.0A, T _J =150°C	
a	Transconductance	/	1.06	/	S	V _{DS} =20 V, I _D =2.0 A	Fig.
g fs	Hansconductance	/	1.14	/	,	V _{DS} =20V, I _D =2.0A, T _J =150°C	4,5,6
C _{iss}	Input Capacitance	/	194	/		V _{GS} = 0 V	Eia
C _{oss}	Output Capacitance	/	13	/	рF	V _{DS} =1000V	Fig. 15,16
C _{rss}	Reverse Transfer Capacitance	/	1.8	/		f=1MHz	13,10
E _{oss}	C _{oss} Stored Energy	/	6.6	/	μͿ	V _{AC} =25mV	
E _{ON}	Turn-On Switching Energy	/	5	/	mJ	V _{DS} =1200V, V _{GS} =-5V/20V	
E _{OFF}	Turn-Off Switching Energy	/	9.2	/	1113	$I_D=2.0A$, $R_{G(ext)}=2.5\Omega$, $L=100\mu H$	
t _{d(on)}	Turn-On Delay Time	/	13.8	/			
t _r	Rise Time	/	22.8	/	ns	V_{DS} =1200V, V_{GS} =-5V/20V, I_{D} =2.0A $R_{G(ext)}$ =2.5 Ω , R_{L} =20 Ω	
t _{d(off)}	Turn-Off Delay Time	/	38	/	115		
t _f	Fall Time	/	14	/			
R _{G(int)}	Internal Gate Resistance	/	18	/	Ω	f=1MHz, V _{AC} =25mV	
\mathbf{Q}_{GS}	Gate to Source Charge	/	5.4	/		V _{DS} =1200V	
\mathbf{Q}_{GD}	Gate to Drain Charge	/	7.6	/	nC	V _{GS} =-5V/20V	
Q _G	Total Gate Charge	/	23	/		I _D =2.0A	

Reverse Diode Characteristics

TOTOLOG BIOMO GITALINGTO						
Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V	Diada Famusud Valtaga	4.2	/	.,	V _{GS} =-5V, I _{SD} =25A	Fig.
V_{SD}	Diode Forward Voltage	3.9	/	V	V _{GS} =-5V, I _{SD} =25A, T _J =150°C	8,9,10
Is	Continuous Diode Forward Current	/	7.0	Α	T _c =25°C	
t _{rr}	Reverse Recover Time	25	/	ns		
Q_{rr}	Reverse Recovery Charge	15	/	nC	V _R =1200V, I _{SD} =2.0A	
I _{rrm}	Peak Reverse Recovery Current	2.8	/	Α		

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$R_{\theta JC}$	Thermal Resistance from Junction to Case	1.8	/	°C/W		
$R_{\theta JA}$	Thermal Resistance from Junction to Ambient	/	40	C/W		

Typical Performance

Figure 1. Output Characteristics T_J = -55 °C

Figure 2. Output Characteristics T_J = 25 °C

Figure 3. Output Characteristics T_J = 150 °C

Figure 4. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage

Typical Performance

Figure 7. Transfer Characteristic for Various Junction Temperatures

Figure 8. Body Diode Characteristic at -55 °C

Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 150 °C

Figure 11. Threshold Voltage vs. Temperature

Figure 12. 3rd Quadrant Characteristic at -55 °C

Typical Performance

Figure 13. 3rd Quadrant Characteristic at 25 °C

Figure 15. Capacitances vs. Drain-Source Voltage (0 - 200V)

Figure 16. Capacitances vs. Drain-Source Voltage (0 - 1000V)

Figure 17. Gate Charge Characteristic

Figure 18. Output Capacitor Stored Energy

Package Dimensions

Package TO-247-3

Unit: mm					
Symbol	Min.	Max.			
Α	15. 95	16. 25			
В	20.85	21. 25			
C	20.95	21.35			
D	40.5	40. 9			
E	1.9	2. 1			
F	2.1	2. 25			
G	3. 1	3. 25			
Н	1.1	1.3			
I	5. 40	5. 50			

Unit: mm					
Symbol	Min.	Max.			
K	2.90	3. 10			
L	4. 90	5. 30			
M	1.90	2.10			
N	4. 50	4. 70			
0	5. 40	5. 60			
Р	2. 29	2. 49			
Q	0. 51	0. 71			
R	ф 3. 5	ф 3. 7			
S	ф 7. 1	ф 7. 3			