Total No. of Questions: 8]		SEAT No. :
P470	[6002] \577	[Total No. of Pages : 3

[6003] - 577 T.E. (Computer Engineering) (Honors) ARTIFICIAL INTELLIGENCE AND MACHINE (2019 Pattern) (Semester - II) (310303)

TII 0	Ok of the		
	½ Hours]	[Max. Marks: 70	
	ions to the cardidates.	7. 00	
1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, and Q		
2)	Neat diagrams must be drawn whenever necessary.		
3)	Figures to the right indicate full marks.	o.j.	
Q1) a)	Explain Unification algorithm with suitable e	xample. [9]	
b)	What is knowledge representation in propositional logic. Compare propositional logic and predicate logic. [8]		
Q2) a)	Represent the following sentences into formulas in predicate logic, [9]		
	i) John likes all kinds of food.	_ N	
	ii) Apples are food.iii) Chicken are food.		
	iv) Anything anyone eats and isn't killed b	by is food.	
	v) Bill eats peanuts and is still alive.	3	
	vi) Sue eats. everything Bill eats.	No.	
b)	Explain various operators used in propositional logic for knowledge babuilding.		
	<u> </u>		

P.T.O.

- **Q3)** a) What is Artificial Neural Network? Give two applications of artificial neural networks in detail. [6]
 - b) Explain how Decision Trees are used in Learning. [6]
 - c) Explain how Support Vector Machines are used for classification with suitable example. [6]

OR

Q4) a) Explain

[6]

- i) Supervised learning.
- ii) Unsupervised Learning.
- b) Explain the architecture of Artificial Neural Network. [6]
- c) With the help of an architecture diagram explain multilayer feed forward artificial neural network. [6]
- Q5) a) Illustrate Mini-Max search for the tic-tac-toe game. [9]
 - b) Solve given two player search tree using Alpha-beta pruning. [8]

Q6) a) Write a note on [9]

- Types of Games in AI. i)
- ii) State-of-the-art Game Programs.
- Solve the given game tree using min max algorithm. b)

[8]

- **Q**7) a) Represent the architecture of an expert system. label the various components in the diagram and explain. [9]
 - What is NLP. Explain all five phases of NLP. b)

[9]

Explain the applications of Natural Language Processing. **Q8)** a)

[9]

a simple a Explain forward chaining and backward chaining for a simple example.[9] b)

[6003] - 577