SEP-15-06

AMENDMENTS TO THE CLAIMS

- Please amend the claims as follows:
- 1. (cancelled)
- 2. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation generate encrypted data that is indistinguishable from Gaussian white noise.
- 3. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation comprises normalizing the measurements.
- 4. (currently amended): The method of claim 3 wherein the normalizing step comprises centering and scale-transforming the measurements so that the mean is zero and the standard deviation is 1 are fixed.
- 5. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation comprises permuting the measurements.
- 6. (original): The method of claim 5 wherein permuting comprises employing an item of secret information.
- 7. (original): The method of claim 6 wherein permuting comprises employing a passcode.
- 8. (original): The method of claim 7 wherein permuting additionally comprises employing the results of a hash function of the passcode.
- 9. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation comprises employing a linear transformation.

Page 2 of 10

- 10. (currently amended): The method of claim 9 wherein employing a linear transformation comprises employing a $\underline{n \times m}$ linear transformation matrix, $\underline{\mathbf{W}}$, with orthonormal columns, where $\underline{n \leq m}$.
- 11. (original): The method of claim 10 wherein employing a linear transformation comprises employing a normalized Hadamard matrix.
- 12. (original): The method of claim 10 wherein employing a linear transformation comprises employing a normalized matrix comprising Fourier coefficients with a cosine / sine basis.
- 13. (currently amended): The method of claim 9 wherein the employing a linear transformation comprises permuting the linearly transformed data.
- 14. (original): The method of claim 13 wherein permuting the linearly transformed data comprises employing an item of secret information.
- 15. (original): The method of claim 14 wherein permuting the linearly transformed data comprises employing a passcode.
- 16. (original): The method of claim 15 wherein permuting the linearly transformed data additionally comprises employing the results of a hash function of the passcode.
- 17. (currently amended): The method of claim [[1]] 42, wherein the measurements comprise biometric data.
- 18. (original): The method of claim 17 wherein the measurements comprise measurements selected from the group consisting of fingerprints, retinal scans, facial scans, hand geometry, spectral data, and voice data.

Page 3 of 10

- 19. (currently amended): The method of claim 17, additionally comprising the step of placing the reference template biometric data on a smart card to be carried by an individual from whom the biometric data was taken.
- 20. (currently amended): The method of claim [[1]] 42, wherein the measurements comprise spectral data.
- 21. (original): The method of claim 20 wherein the measurements comprise weapons spectra.
- 22. (currently amended): The method of claim [[1]] 42, additionally comprising the step of adding pseudo-dimensions to the measurements to enhance concealment.

23-41. (Cancelled)

- 42. (New): A method of authenticating an item, the method comprising:
 - a) acquiring an unencrypted reference signal, Y_{ref} , of an item; where Y_{ref} is an n-dimensional row vector $\{Y_1(ref), Y_2(ref), ..., Y_n(ref)\}$ of unencrypted reference measurements subject to measurement error;
 - b) applying a transformation to the unencrypted reference signal, Y_{ref} , to generate an encrypted reference signal, U_{ref} of the item; where U_{ref} is an n-dimensional row vector $\{U_1(ref), U_2(ref), ..., U_n(ref)\}$ of encrypted reference measurements;
 - c) acquiring an unencrypted new signal, Y_{new} , of the item, where Y_{new} is an n-dimensional row vector $\{Y_1(new), Y_2(new), ..., Y_n(new)\}$ of unencrypted new measurements subject to measurement error;

Page 4 of 10

- d) applying the transformation to the unencrypted new signal, Y_{new} , to generate an encrypted new signal, U_{new} , of the item; where U_{new} is an n-dimensional row vector $\{U_1(new), U_2(new), ..., U_n(new)\}$ of encrypted new measurements;
- e) calculating an unencrypted Euclidean distance metric, E, between the unencrypted new and reference signals, Y_{new} and Y_{ref} ;
- f) calculating an encrypted Euclidean distance metric, D, between the encrypted new and reference measurements, U_{new} and U_{ref} ;
- g) comparing the encrypted Euclidean distance metric, D, to a critical value, D_{crit} and;
- e) if $D < D_{crit}$, then deciding that the item is authentic; wherein the transformation has the property that the unencrypted Euclidean distance metric, E, is equal to the encrypted Euclidean distance metric, D.
- 43. (new) The method of claim 42, wherein:

$$E = \sum_{j=1}^{n} \left(Y_{j}(\text{new}) - Y_{j}(\text{reference}) \right)^{2};$$

and

$$D = \sum_{j=1}^{m} \left(U_{j}(\text{new}) - U_{j}(\text{reference}) \right)^{2};$$

wherein $m \leq n$.

44. (new) The method of claim 42, wherein:

$$E = \sum_{j=1}^{n} \frac{\left(Y_{j}(\text{new}) - Y_{j}(\text{reference})\right)^{2}}{Y_{j}};$$

and

$$D = \sum_{j=1}^{m} \frac{\left(U_{j}(\text{new}) - U_{j}(\text{reference})\right)^{2}}{Y_{j}}$$

wherein $m \le n$; and the denominator can be either $Y_j(new)$ or $Y_j(reference)$.

45. (new) The method of claim 42, wherein:

$$E = \sum_{j=1}^{n} \left(\sqrt{Y_{j}} (\text{new}) - \sqrt{Y_{j}} (\text{reference}) \right)^{2};$$

$$D = \sum_{j=1}^{m} \left(\sqrt{U_{j}} (\text{new}) - \sqrt{U_{j}} (\text{reference}) \right)^{2};$$

and

$$D = \sum_{j=1}^{m} \left(\sqrt{U_j} (\text{new}) - \sqrt{U_j} (\text{reference}) \right)^2$$

wherein $m \leq n$.

46. (new) The method of claim 10, wherein the elements, w_{ij} , of the transformation matrix, W, have the following properties:

$$\sum_{i=1}^n w_{ij}^2 = 1, \forall j ;$$

Page 6 of 10

$$w_{i1} = \frac{1}{\sqrt{n}}, \forall i$$
; and

$$\sum_{i=1}^{n} w_{ij} = 0, \forall j \text{ with } w_{i1} = K, \forall j$$

47. (new) The method of claim 42, wherein applying the transformation to the unencrypted signal, Y, comprises:

$$Y \to Y_{\pi} \to Y_{\pi} \cdot W \to (Y_{\pi} \cdot W)_{\sigma}$$

wherein:

 π is a *permutation* of the integers from 1:n that is unique to a particular verification class;

W is an $n \times m$ transformation matrix with orthonormal columns that transforms the vector, \mathbf{Y} , of measurements to $m \le n$ latent variables; and

 σ is a *permutation* of the integers from 1:m that is unique to the particular verification class; and

wherein the verification class comprises one or more physical units, items, or individuals.