	Utech
Name:	
Roll No.:	To Descript Source State State Control
Invigilator's Signature :	

CS/B.TECH(NEW)/SEM-1/ME-101/2011-12 2011

ENGINEERING MECHANICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) Coloumn friction is between
 - a) solids and liquids
 - b) dry surfaces
 - c) between bodies having relative motion
 - d) none of these.
- ii) The velocity of a simple wheel and axle, with D and d as the diameters of effort respectively is
 - a) (D+d)

b) (D-d)

c) $\frac{d}{D}$

d) $\frac{L}{d}$

1215 [Turn over

CS/B.TECH(NEW)/SEM-1/ME-101/2011-12

- iii) For stable equilibrium the potential energy
 - a) maximum
 - b) minimum
 - c) zero
 - d) equal to kinetic energy.
- iv) The centroid of a semicircular area of radius r from the base is
 - a) $\frac{4r}{3\pi}$

b) $\frac{2r}{3\pi}$

c) $\frac{3r}{2\pi}$

- d) r.
- v) Materials having same elastic properties in all directions are called
 - a) Isotropic
- b) Orthotropic
- c) Composite
- d) Elastic.
- vi) The work done against any conservative force is stored in the body in the form of
 - a) energy

- b) potential energy
- c) elastic energy
- d) strain energy.
- vii) A pair of a force and a couple in the same plane upon a rigid body
 - a) balance each other
 - b) cannot modify each other
 - c) produce a moment
 - d) none of these.

of

a) $\frac{r}{2}$

b) $\frac{r}{4}$

c) $\frac{3r}{8}$

- d) none of these.
- ix) Hooke's law is valid up to
 - a) yield point
- b) elastic limit
- c) proportional limit
- d) ultimate stress.
- x) A jet engine works on he principle of conservation of
 - a) energy
 - b) angular momentum
 - c) linear momentum
 - d) none of these.
- xi) Moment of inertia of a triangle of base b and height h about the centroidal axis parallel to base is
 - a) $bh\frac{3}{36}$

b) $\frac{bh^3}{12}$

c) $bh\frac{3}{3}$

d) none of these.

- xii) Couple is a
 - a) bound vector
- b) free vector
- c) sliding vector
- d) none of these.
- xiii) Angle between the vectors (i + j) and (i j) is
 - a) 90°

b) 45°

c) 0°

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. a) Define moment.
 - b) In the given figure 1 weight of the block is 1600N and μ =0.2 . Find the value of *P* for impending motion. 2 + 3

Figure 1

3. The position co-ordinate of a particle which is confined to move in a straight line is given by $S = 2t^3 - 24t + 6$, where S is in m and t is in sec.

Determine,

- a) the time required for the particle to reach a velocity of 72 m/s from its initial condition at t = 0.
- b) the acceleration of the particle when v = 30 m/s.
- c) the net displacement of the particle during the interval from t = 1 sec to t = 4 sec.
- 4. Define (i) Malleability (ii) Resilience (iii) Toughness (iv) Ductility and (v) Proof Resilience.
- 5. A force F = 3i 4j + 12k acts at a point A whose co-ordinates are (1, -2, 3). Compute,

4

- a) moment of force about origin,
- b) moment of force about point (2,1,2)

1215

- 6. a) State & Prove Lame's theorem.
 - b) Two equal loads of 2500 N are supported by a flexible string ABCD at points B and D as shown in figure 2. Find the tensions in the portions AB, BC, CD of the string.

2 + 3

Figure 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) A block of weight $W_1 = 200\,\mathrm{kgf}$ rests on a horizontal surface and supports on top of it another block of weight $W_2 = 50\,\mathrm{kgf}$. The block W_2 is attached to a vertical wall by the inclined string AB. Find the magnitude of the horizontal force P applied to the lower block as shown, that will be necessary to cause slipping to impend. The coefficient of static friction for all contiguous surfaces is $\mu = 0.3$

Figure 3

b) A shot is fired with a bullet with an initial velocity of 40m/s from a point 20m in front of a vertical wall 10m high. Find the angle of projection with horizontal to enable the shot to just clear the wall.

8. a) The bar shown in fig. 5 is subjected to a tensile load 152kN. Find the diameter of the middle portion if the stress there is to be limited to $140 \text{ N/M}\text{ m}^2$. Find also the length of the middle portion of the total elongation of the bar is to be 0.16mm. Take $E = 2 \times 2 \times 10^5 \text{mm}^2$.

Figure 5

b) Determine the co-ordinate of the centroid with respect to the given axis of the shaded area as shown in figure 6.

Figure 6

- 9. a) State principle of transmissibility.
 - b) Given a force F = 10i + 5j + A kN. If this force is to have a rectangular component of 8N along a line having unit vector r = 0.6i + 0.8 k, what should be the value of A? What is the angle between F and r?

Figure 7

- c) Two identical blocks A and B each having weight W are connected by rigid link and supported by a vertical wall and a horizontal plane having same co-efficient of friction (μ) as shown in figure. If sliding impends for θ = 45^0 , calculate μ . 2+5+8
- 10. a) If the string AN is horizontal, find the angle that the string AC makes with the horizontal when the ball is in a position of equilibrium. Also find the pressure R between the ball and the plane.

Figure 8

CS/B.TECH(NEW)/SEM-1/ME-101/2011-12

b) A roller of radius r = 12 cm and Q = 500 kgf is to be rolled over a curb of height h = 6 cm by a horizontal force P applied to the end of a string wound around the circumference of the roller. Find the magnitude of P required to start the roller over the curb. There is sufficient friction between the roller surface and the edge of the curb to prevent slip at A.

Figure 9

7 + 8

- 11. a) State parallel axis and perpendicular axis theorem for moment of inertia.
 - b) Define radius of gyration. How is it related to mass moment of inertia?
 - c) Determine the centre of a quarter circular arc of radius 'r'. (2+2)+(2+1)+8

1215 8