Numerične metode 1 - definicije, trditve in izreki $\frac{\rm Oskar\ Vavtar}{2020/21}$

Kazalo

1	NU	MERIČNO RAČUNANJE	3
	1.1	Uvod	3
	1.2	Premična pika	3
	1.3	Občutljivost problema	4
	1.4	Vrste napak pri numeričnem računanju	4
	1.5	Stabilnost metode	5
	1.6	Analiza zaokrožitvenih napak	5
		1.6.1 Produkt $n+1$ predstavljivih števil	5
		1.6.2 Skalarni produkt vektorjev dolžine n	6
2	NELINEARNE ENAČBE		
	2.1	Uvod	7
	2.2	Bisekcija	7
	2.3	Navadna iteracija	8
	2.4	Tangentna metoda	9
	2.5		10
3	SIS	TEMI LINEARNIH ENAČB	11
	3.1	Oznake in definicije	11
	3.2		12
	3.3		14
	3.4		$\frac{14}{14}$

1 NUMERIČNO RAČUNANJE

1.1 Uvod

Definicija 1.1 (Napaka). Pri numeričnem računanju izračunamo numerični približek za točno rešitev. Razlika med približkom in točno vrednostjo je napaka približka. Ločimo absolutno in relativno napako.

- absolutna napaka = približek točna vrednost
- relativna napaka = $\frac{\text{absolutna napaka}}{\text{točna vrednost}}$

Naj bo x točna vrednost, \hat{x} pa približek za x.

- Če je $\hat{x} = x + d_a$, potem je $d_a = \hat{x} x$ absolutna napaka.
- Če je $\hat{x} = x(1+d_r)$, potem je $d_r = \frac{\hat{x}-x}{x}$ relativna napaka.

1.2 Premična pika

Definicija 1.2. Velja fl $(x) = x(1 + \delta)$ za $|\delta| \le u$, kjer je

$$u = \frac{1}{2}b^{1-t}$$

osnovna zaokrožitvena napaka:

- single: $u = 2^{-24} = 6 \times 10^{-8}$
- double: $u = 2^{-53} = 1 \times 10^{-16}$

Izrek 1. Če za število x velja, da |x| leži na intervalu med najmanjšim in največjim pozitivnim predstavljivim normaliziranim številom, potem velja

$$\frac{|\mathrm{fl}(x) - x|}{|x|} \le u.$$

1.3 Občutljivost problema

Definicija 1.3 (Občutljivost). Če se rezultat pri majhni spremembi argumentov (*motnji* oz. *perturbaciji*) ne spremeni veliko, je problem *neobčutljiv*, sicer pa je *občutljiv*.

1.4 Vrste napak pri numeričnem računanju

Definicija 1.4. Pri numeričnem računanje se pojavijo 3 vrste napak:

1. Neodstranljive napake: Npr. ko podatek ni predstavljivo število. Namesto y = f(x) lahko v najboljšem primeru izračunamo $\overline{y} = f(\overline{x})$, kjer je \overline{x} najbližje predstavljivo število.

$$D_n = y - \overline{y} = f(x) - f(\overline{x})$$

2. Napaka metode: Npr. ko na voljo nimamo željene operacije. Namesto $f(\overline{x})$ potem izračunamo $\widetilde{y} = g(\overline{x})$, kjer je g(x) približek za f(x), kjer znamo vrednost g izračunati s končnim številom operacij.

$$D_m = \overline{y} - \widetilde{y} = f(\overline{x}) - g(\overline{x})$$

3. Zaokrožitvene napake: Pri izračunu $\widetilde{y}=g(\overline{x})$ lahko pri vsaki osnovni operaciji pride do zaokrožitvene napake, zato na koncu kot numeričen rezultat dobimo \widehat{y} .

$$D_z = \widetilde{y} - \widehat{y}$$

Skupna napaka:

$$D = D_n + D_m + D_z$$

V splošnem lahko ocenimo:

$$|D| \le |D_n| + |D_m| + |D_z|$$

1.5 Stabilnost metode

Definicija 1.5. Če metoda za $\forall x$ vrne \hat{y} , ki je *absolutno (relativno)* blizu točnemu y, je metoda $direktno \ stabilna$.

Če metoda za $\forall x$ vrne tak \widehat{y} , da $\exists \widehat{x}$ absolutno (relativno) blizu x, da je $\widehat{y} = f(\widehat{x})$ (točno), je metoda obratno stabilna.

V splošnem:

 $|direktna napaka| \le |občutljivost| \cdot |obratna napaka|$

1.6 Analiza zaokrožitvenih napak

1.6.1 Produkt n+1 predstavljivih števil

Algoritem. Dana so predstavljiva števila x_0, x_1, \ldots, x_n ; računamo $p = x_0 \cdot x_1 \cdot \ldots \cdot x_n$.

Točno:

$$p_0 = x_0$$
 $i = 1, ..., n$
 $p_i = p_{i-1} \cdot x_i$
 $p = p_n$

Numerično:

$$\begin{array}{lll} \widehat{p}_0 &=& x_0 \\ i &=& 1 \text{,...,n} \\ && \widehat{p}_i &=& \widehat{p}_{i-1} \cdot x_i \cdot (1 \text{ + } \delta_i) && \left| \delta_i \right| \leq \text{ u} \\ \widehat{p} &=& \widehat{p}_n \end{array}$$

1.6.2 Skalarni produkt vektorjev dolžine n

Algoritem. Imamo vektorje *predstavljivih* števil $a = [a_1, \ldots, a_n]^T$, $b = [b_1, \ldots, b_n]^T$. Računamo $s = \langle b^T, a \rangle = \sum_{i=1}^n a_i b_i$.

Točno:

$$s_0 = 0$$

 $i = 1, ..., n$
 $p_i = a_i \cdot b_i$
 $s_i = s_{i-1} + p_i$
 $s = s_n$

Numerično:

$$\begin{array}{lll} \widehat{\mathbf{s}}_0 &=& 0 \\ \mathbf{i} &=& 1 \text{ , . . . , n} \\ & & \widehat{\mathbf{p}}_{\mathbf{i}} &=& \mathbf{a}_{\mathbf{i}} \cdot \mathbf{b}_{\mathbf{i}} \cdot (\mathbf{1} \ + \ \alpha_i) & |\alpha_i| \leq u \\ & & \widehat{\mathbf{s}}_{\mathbf{i}} &=& (\widehat{\mathbf{s}}_{\mathbf{i}-1} \ + \ \widehat{\mathbf{p}}_{\mathbf{i}}) \cdot (\mathbf{1} \ + \ \beta_i) & |\beta_i| \leq u \\ \widehat{\mathbf{s}} &=& \widehat{\mathbf{s}}_{\mathbf{n}} \end{array}$$

Trditev 1. Računanje skalarnega produkta je *obratno* stabilno, ni pa *direktno* stabilno.

2 NELINEARNE ENAČBE

2.1 Uvod

Definicija 2.1. Naj bo α ničla funkcije f,ki je zvezno odvedljiva v okolici α

- $f'(\alpha) \neq 0$: α je enostavna ničla
- $f'(\alpha) = 0$: α je $ve\check{c}kratna$ ničla

Če je f m-krat zvezno odveljiva in

$$f'(\alpha) = f''(\alpha) = \dots = f^{(m-1)}(\alpha) = 0, \quad f^{(m)} \neq 0,$$

je α $m\text{-}\mathrm{kratna}$ ničla.

Trditev 2 (Občutljivost ničel). Naj bo α enostavna ničla. Če v okolici $x=\alpha$ obstaja inverzna funkcija $\alpha=f^{-1}(0)$ v bistvu "računamo" vrednost inverzne funkcije. Občutljivost je enaka absolutni vrednosti odvoda inverzna funkcije:

$$|(f^{-1})'(0)| = \frac{1}{|f'(f^{-1}(0))|} = \frac{1}{|f'(\alpha)|}.$$

Večkratno ničlo lahko izračunamo le z natančnostjo $u^{\frac{1}{m}}$, kjer je m večkratnost ničle (za dvojno ničlo dobimo le polovico točnih decimalk, za trojno le tretjino...).

2.2 Bisekcija

Izrek 2. Če je f realna zvezna funkcija na [a, b] in je $f(a) \cdot f(b) < 0$, potem $\exists \xi \in (a, b)$, da je $f(\xi) = 0$.

Algoritem (Bisekcija). Naj velja $f(a) \cdot f(b) < 0$ in a < b:

2.3 Navadna iteracija

Algoritem (Navadna iteracija).

izberi
$$x_0$$

 $r = 0, 1, 2, ...$
 $x_{r+1} = g(x_r)$

Ustavitveni kriterij:

- a) $r > r_{max}$ (prekoračeno število korakov)
- b) $|r_{x+1} r_x| < \varepsilon$

Izrek 3. Naj bo $\alpha=g(\alpha)$ in naj iteracijska funkcija g na intervalu $I=[\alpha-\delta,\alpha+\delta]$ za nek $\delta>0$ zadošča Lipschitzovem pogoju

$$|g(x) - g(y)| \le m|x - y|$$
 za $x, y \in I, 0 \le m < 1$.

Potem za $\forall x_0 \in I$ zaporedje $x_{r+1} = g(x_r), r = 0, 1, \dots$ konvergira k α in velja

•
$$|x_r - \alpha| \leq m^r \cdot |x_0 - \alpha|$$

$$\bullet ||x_{r+1} - \alpha|| \le \frac{m}{1 - m} \cdot |x_{r+1} - x_r|$$

Posledica. Naj bo $\alpha = g(\alpha)$, g zvezno odvedljiva in $|g'(\alpha)| < 1$. Potem $\exists \delta > 0$, da za $\forall x_0 \in [\alpha - \delta, \alpha + \delta]$ zaporedje $x_{r+1} = g(x_r)$ konvergira k α .

Definicija 2.2. Naj zaporedje $\{x_r\}$ konvergira proti α ($\lim_{r\to\infty} x_r = \alpha$). Pravimo, da zaporedje konvergira z redom konvergence p, če obstaja limita

$$\lim_{r \to \infty} \frac{|x_{r+1} - \alpha|}{|x_r - \alpha|^p} = C > 0.$$

Izrek 4. Naj bo iteracijska funkcija g p-krat zvezno odvedljiva v okolici negibne točke α . Če velja $g'(\alpha) = \ldots = g^{(p-1)}(\alpha) = 0$ in $g^{(p)}(\alpha) \neq 0$, potem zaporedje $x_{r+1} = g(x_r), r = 0, 1, \ldots,$ v okolici α konvergira z redom p. V primeru p = 1 mora za konvergenco veljati še $|g'(\alpha)| < 1$.

2.4 Tangentna metoda

Metoda.

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$$

Konvergenca:

$$|e_{r+1}| \approx C \cdot |e_r|^2$$

Posledica. Če je f dvakrat zvezno odvedljiva v okolici ničle α , potem tangentna metoda za dovolj dober začetni približek x_0 vedno konvergira k α .

Izrek 5. Naj bo funkcija f na $I = [a, \infty)$ dvakrat zvezno odvedljiva, naraščajoča in ima ničlo na $\alpha \in I$. Potem je α edina ničla na I in za $\forall x_0 \in I$ tangentna metoda konvergira le k α .

2.5 Metode brez f'

Metoda (Sekantna metoda).

$$x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}$$

Konvergenca:

$$|e_{r+1}| \approx C \cdot |e_r| \cdot |e_{r-1}|$$

Metoda (Mullerjeva metoda). Skozi točke $(x_r, f(x_r)), (x_{r-1}, f(x_{r-1})), (x_{r-2}, f(x_{r-2}))$ potegnemo kvadratni polinom y = p(x) in za x_{r+1} vzamemo tisto ničlo polinoma p, ki je bližje x_r .

Konvergenca:

$$|e_{r+1}| \approx C \cdot |e_r| \cdot |e_{r-1}| \cdot |e_{r-2}|$$

Metoda (Inverzna interpolacija). Zamenjamo vlogi x in y in vzamemo kvadratni polinom $x = \mathcal{L}(y)$, ki gre skozi točke $(x_r, f(x_r)), (x_{r-1}, f(x_{r-1})), (x_{r-2}, f(x_{r-2}))$. Za x_{r+1} vzamemo

$$x_{r+1} = \mathcal{L}(0).$$

Red konvergence je enak kot pri Mullerjevi metodi.

3 SISTEMI LINEARNIH ENAČB

3.1 Oznake in definicije

Definicija 3.1. Sistem n linearnih enačb z n neznankami pišemo v obliki

$$Ax = b, A \in \mathbb{R}^{n \times n} (\mathbb{C}^{n \times n}), x, b \in \mathbb{R}^n (\mathbb{C}^n).$$

Definicija 3.2. Skalarni produkt vektorjev x in y je enaka

a) $x, y \in \mathbb{R}^n$:

$$y^T x = \sum_{i=1}^n x_i y_i = \langle x, y \rangle = \langle y, x \rangle$$

b) $x, y \in \mathbb{C}^n$:

$$y^H x = \sum_{i=1}^n x_i \overline{y_i} = \langle x, y, \rangle = \overline{\langle y, x \rangle}$$

Definicija 3.3. Množenje vektorja x z matriko A:

a)

$$y_i = \sum_{k=1}^n a_{ik} x_k = \alpha_i^T x$$

b)

$$y = \sum_{i=1}^{n} x_i a_i$$

Definicija 3.4. $A \in \mathbb{R}^{n \times n}$ je *nesingularna*, če (ekvivalentno):

- a) $det(A) \neq 0$
- b) obstaja inverz A^{-1} , da je $A^{-1}A = AA^{-1} = I$
- c) rang(A) = n

d) za
$$\forall x \neq 0$$
 je $Ax \neq 0$

e)
$$\ker(A) = \{x \mid Ax = 0\} = \{0\}$$

Definicija 3.5. Matrika je simetrično pozitivno definitna, če $A = A^T$ in $x^T A x > 0$ za $x \neq 0$.

Definicija 3.6. Če za $x\neq 0$ velja $Ax=\lambda x$, je λ lastna vrednost in x lastni vektor. Vsaka matrika ima n lastnih vrednosti, ki so ničle karakterističnega polinoma

$$p(\lambda) := \det(A - \lambda I).$$

3.2 Vektorske in matrične norme

Definicija 3.7. Vektorska norma je preslikava $\|.\|:\mathbb{C}^n\to\mathbb{R}$, da velja:

1) Nenegativnost:

$$||x|| \ge 0$$
, $||x|| = 0 \Leftrightarrow x = 0$

2) Homogenost:

$$\|\alpha x\| = |\alpha| \cdot \|x\|$$

3) Trikotniška neenakost:

$$||x + y|| \le ||x|| + ||y||$$

Definicija 3.8. Matrična norma je preslikava $\|.\|:\mathbb{C}^{n\times n}\to\mathbb{R},$ da velja:

1) $||A|| \ge 0, \quad ||A|| = 0 \Leftrightarrow A = 0$

$$\|\alpha A\| = |\alpha| \cdot \|A\|$$

3)
$$||A + B|| \le ||A|| + ||B||$$

4) Submultiplikativnost:

$$||A \cdot B|| \le ||A|| \cdot ||B||$$

za $\forall A, B \in \mathbb{C}^{n \times n}$ in $\forall \alpha \in \mathbb{C}$.

Lema 1 (Operatorska norma). Če je za poljubno vektorsko normo $\|.\|_v$ definiramo

$$||A|| := \max_{x \neq 0} \frac{||Ax||_v}{||x||_v},$$

je to matrična norma.

Lema 2.

$$||A||_1 = \max_{j=1,\dots,n} ||a_j||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|$$

Lema 3 (Spektralna norma).

$$||A||_2 = \sigma_1(A) = \max_{i=1,\dots,n} \sqrt{\lambda_i(A^H A)}$$

Lema 4. Za vsako matrično normo $\|.\|_m$ obstaja taka vektorska norma $\|.\|_v$, ki je z njo usklajena, kar pomeni, da za vse pare A, x velja

$$||Ax||_v \le ||A||_m \cdot ||x||_v.$$

Lema 5. Za vsako lastno vrednost λ in poljubno matrično normo ||A|| velja:

$$|\lambda| \leq ||A||$$
.

3.3 Občutljivost sistemov linearnih enačb

Lema 6. Če je ||X|| < 1, potem velja:

a) I - X je nesingularna

b)
$$(I - X)^{-1} = \sum_{i=0}^{\infty} x^i = I + X + X^2 + \dots$$

c) Če je
$$||I|| = 1$$
, je $||(I - X)^{-1}|| \le \frac{1}{1 - ||x||}$

Izrek 6. Naj bo A nesingularna in ΔA taka motnja, da je $\|\Delta A\| < \frac{1}{\|A^{-1}\|}$. Če je Ax = b in $(A + \Delta A)(x + \Delta x) = b + \Delta b$, potem velja:

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{K(A)}{1 - K(A) \frac{\|\Delta A\|}{\|A\|}} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|} \right),$$

kjer je $K(A) = ||A|| \cdot ||A^{-1}||$.

3.4 LU razcep

Izrek 7. Za matriko A je ekvivalentno:

- 1) Obstaja enoličen razcep A = LU
- 2) Vse vodilne podmatrike $A_k = A(1:k,1:k)$ so nesingularne

Algoritem (LU Razcep).

$$j = 1, ..., n-1$$

$$i = j+1, ..., n$$

$$l_{ij} = \frac{a_{ij}}{a_{jj}}$$

$$k = j+1, ..., n$$

$$a_{ik} = a_{ik} - l_{ij}a_{jk}$$

Zahtevnost algoritma je odvisna od števila operacij. Preštejmo osnovne računske operacije:

$$\sum_{j=1}^{n-1} \left(\sum_{i=j+1}^{n} \left(1 + \sum_{k=j+1}^{n} 2 \right) \right) = \frac{(n-1)n}{2} + 2\frac{(n-1)n(2n-1)}{6} = \frac{2}{3}n^3 + \sigma(n^2)$$

Algoritem (Prema substitucija).

Sistem Ly = b rešujemo s premo substitucijo:

$$i = 1, ..., n$$

$$y_i = b_i - \sum_{j=1}^{i-1} l_{ij} y_j$$

Število operacij:

$$\sum_{i=1}^{n} (1 + 2(i-1)) = n + 2\frac{(n-1)n}{2} = n^{2}$$

Algoritem.

$$i = n, n-1, ..., 1$$

$$x_i = \frac{1}{u_{ii}}(y_i - \sum_{j=i+1}^{n} u_{ij}x_j)$$

Število opracij:

$$n^2 + n$$