

AP and GP

Solution

1. Answer: (**A**)

For an AP.

 $a_n = a + (n-1)d$

=28+(7-1)(-4)

= 28+(7-1)(-4)= 28+6(-4)

= 28-24

 $a_n=4$

2. **Answer: (B)**

a = 10, d = 10

 $a_1 = a = 10$

 $a_2 = a_1 + d = 10 + 10 = 20$

 $a_3 = a_2 + d = 20 + 10 = 30$

 $a_4 = a_3 + d = 30 + 10 = 40$

3. Answer: (C)

First term, a = 3

Common difference, d = Second term - First

term

 $\Rightarrow 1 - 3 = -2$

 \Rightarrow d = -2

4. **Answer: (C)**

Given.

 $A.P. = 10, 7, 4, \dots$

First term, a = 10

Common difference, $d = a_2 - a_1 = 7 - 10 = -3$

mock test platform

As we know, for an A.P.,

 $a_n = a + (n-1)d$

Putting the values;

 $a_{30} = 10 + (30 - 1)(-3)$

 $a_{30} = 10 + (29)(-3)$

 $a_{30} = 10 - 87 = -77$

5. Answer: (B)

 $A.P. = -3, -1/2, 2 \dots$

First term a = -3

Common difference, $d = a_2 - a_1 = (-1/2)$ -(-3)

 \Rightarrow (-1/2) + 3 = 5/2

Nth term;

 $a_n = a + (n-1)d$

 $a_{11} = 3 + (11 - 1)(5/2)$

 $a_{11} = 3 + (10)(5/2)$

 $a_{11} = -3 + 25$

 $a_{11} = 22$

6. **Answer: (C)**

 $a_2 = 13 \text{ and }$

 $a_4 = 3$

The nth term of an AP;

 $a_n = a + (n-1) d$

 $a_2 = a + (2-1)d$

13 = a+d(i)

 $a_4 = a + (4-1)d$

3 = a+3d(ii)

Subtracting equation (i) from (ii), we get,

-10 = 2d

d = -5

Now put value of d in equation 1

13 = a + (-5)

a = 18 (first term)

 $a_3 = 18 + (3-1)(-5)$

= 18+2(-5) = 18-10 = 8 (third term).

7. **Answer: (D)**

Given, 3, 8, 13, 18, ... is the AP.

First term, a = 3

Common difference, $d = a_2 - a_1 = 8 - 3 = 5$

Let the nth term of given A.P. be 78. Now as we know,

 $a_n = a + (n-1)d$

Therefore,

78 = 3 + (n-1)5

75 = (n-1)5

(n-1) = 15

n = 16

8. Answer: (B)

First term = -3 and second term = 4

a = -3

d = 4-a = 4-(-3) = 7

 $a_{21}=a+(21-1)d$

=-3+(20)7

=-3+140

=137

9. **Answer: (A)**

Nth term in AP is:

 $a_n = a + (n-1)d$

 $a_{17} = a + (17 - 1)d$

ISO Certified

- $a_{17} = a + 16d$
- In the same way,
- a10 = a + 9d
- Given,
- a17 a10 = 7
- Therefore,
- (a + 16d) (a + 9d) = 7
- 7d = 7
- d = 1

Therefore, the common difference is 1.

- 10. Answer: (C)
 - The multiples of 4 after 10 are:
 - 12, 16, 20, 24, ...
 - So here, a = 12 and d = 4
 - Now, 250/4 gives remainder 2. Hence, 250 2

mock test platform

- = 248 is divisible by 2.
- 12, 16, 20, 24, ..., 248
- So, nth term, $a_n = 248$
- As we know,
- $a_n = a + (n-1)d$
- $248 = 12 + (n-1) \times 4$
- 236/4 = n-1
- 59 = n-1
- n = 60

11. **Answer: (D)**

- Given, A.P. is 3, 8, 13, ..., 253
- Common difference, d=5.
- In reverse order,
- 253, 248, 243, ..., 13, 8, 5
- So.
- a = 253
- d = 248 253 = -5
- n = 20
- By nth term formula,
- $a_{20} = a + (20 1)d$
- $a_{20} = 253 + (19)(-5)$
- $a_{20} = 253 95$
- $a_{20} = 158$

12. Answer: (A)

- The first five multiples of 3 is 3, 6, 9, 12 and 15
 - a=3 and d=3
 - n=5
 - Sum, $S_n = n/2[2a+(n-1)d]$
 - $S_5 = 5/2[2(3)+(5-1)3]$
 - =5/2[6+12]

Keep in touch:

www.mockopedia.com

- =5/2[18]
- $=5 \times 9$
- = 45

13. **Answer: (A)**

- Given AP: 5, 8, 11, 14,....
- First term = a = 5
- Common difference = d = 8 5 = 3
- nth term of an $AP = a_n = a + (n-1)d$
- Now, 10th term = $a_{10} = a + (10 1)d$
- =5+9(3)
- = 5 + 27
- = 32

14. Answer: (D)

- Given,
- d = -4, n = 7, an = 4
- We know that,
- $a_n = a + (n-1)d$
- 4 = a + (7 1)(-4)
- 4 = a + 6(-4)
- 4 = a 24
- \Rightarrow a = 4 + 24 = 28

15. Answer: (B)

- $-10, -6, -2, 2, \dots$
- Let $a_1 = -10$, $a_2 = -6$, $a_3 = -3$, $a_4 = 2$
- $a_2 a_1 = -6 (-10) = 4$
- $a_3 a_2 = -2 (-6) = 4$
- $a_4 a_3 = 2 (-2) = 4$
- The given list of numbers is an AP with d = 4.

16. Answer: (B)

- Given,
- $a_2 = 13$
- a + d = 13
- a = 13 d....(i)
- $a_5 = 25$
- a + 4d = 25....(ii)
- Substituting (i) in (ii),
- 13 d + 4d = 25
- 3d = 12
- d = 4
- So, a = 13 4 = 9
- $a_7 = a + 6d = 9 + 6(4) = 9 + 24 = 33$

17. Answer: (B)

- Given AP:
- 21, 42, 63, 84,...
- a = 21

ISO Certified

$$\begin{aligned} d &= 42 - 21 = 21 \\ a_n &= 210 \\ a + (n-1)d = 210 \\ 21 + (n-1)(21) = 210 \\ 21 + 21n - 21 = 210 \\ 21n = 210 \\ n = 10 \end{aligned}$$

18. Answer: (A)

Given,

$$a_{18} - a_{14} = 32$$

We know that, $a_n = a + (n-1)d$

$$a + 17d - (a + 13d) = 32$$

$$17d - 13d = 32$$

$$4d = 32$$

Keep in touch:

www.mockopedia.com

d = 8

19. **Answer: (C)**

The famous mathematician associated with finding the sum of the first 100 natural numbers is Gauss.

20. Answer: (A)

Given AP: 10, 6, 2,...

Here, a = 10, d = -4

Sum of first n terms = $S_n = (n/2)[2a + (n-1)d]$

The sum of first 16 terms = $S_{16} = (16/2)[2(10) +$

(16-1)(-4)

= 8[20 + 15(-4)]

=8(20-60)

= 8(-40)

= -320

