Info

x means destination register, sr means source register in a register–register operand, pr means register in a register–pointer operand. n means constant number, nb means constant byte number. * means pointer.

For arguments, R means register, Rax means any ax register (ax, eax, rax), K means a constant of any size, KB means a constant where $0 \le K \le 127$, P means memory address.

Destination Registers (x)

```
\mathtt{ax} \to \mathtt{0}
```

 $\mathtt{cx} \to \mathtt{1}$

 $\mathtt{dx} \to \mathtt{2}$

 $\mathtt{bx}\to \mathtt{3}$

 $\mathtt{sp} \to \mathtt{4}$

 $\mathtt{bp} \to \mathtt{5}$

 $\mathtt{si} \to 6$

 $\mathtt{di} \to 7$

Source Registers (sr)

```
\mathtt{ax} \to \mathtt{Cx}
```

 $cx \rightarrow C(x+8)$

 $\mathtt{d}\mathtt{x}\to\mathtt{D}\mathtt{x}$

 $bx \rightarrow D(x+8)$

 $\mathtt{sp} \to \mathtt{Ex}$

 $bp \rightarrow E(x+8)$

 $\mathtt{si} \to \mathtt{Fx}$

 $di \rightarrow F(x+8)$

Register in a Register-Pointer Op (pr)

```
\mathtt{ax} \to \mathtt{04}
```

 $\mathtt{bx} \to \mathtt{1C}$

 $\mathtt{cx} \to \mathtt{0C}$

 ${\rm dx} \to 14$

 $\mathtt{si} o \mathtt{34}$

 $\mathtt{di} \to \mathtt{3C}$

Size

```
Goes before every opcode. byte \to Special case. No size op, but you must subtract 1 from the opcode word \to 66 dword \to [none] qword \to 48
```

1 mov

1.1 mov

1.1.1 register

```
mov R R \Rightarrow 89 sr
mov R K \Rightarrow C7 Cx n
mov R P \Rightarrow 8B pr 25 *
```

1.1.2 pointer

```
mov P R \Rightarrow 89 pr 25 * mov P K \Rightarrow C7 04 25 * n
```

1.2 movsx

```
movsx R byte P \Rightarrow OF BE pr 25 * movsx R word P \Rightarrow OF BF pr 25 * movsxd R P \Rightarrow 63 pr 25 *
```

1.3 movzx

```
movzx R byte P \Rightarrow 0F B6 pr 25 * movzx R word P \Rightarrow 0F B7 pr 25 *
```

1.4 cmov

```
cmovz R R \Rightarrow 0F 44 sr cmovs R R \Rightarrow 0F 48 sr
```

2 push/pop

2.1 push

Note: In the case of registers and pointers, push cannot push bytes, nor dwords. It must push either a qword or a word. It does not require a size, in the case of qwords, but does in the case of a word.

```
push R \Rightarrow 5x push P \Rightarrow FF 34 25 * push KB \Rightarrow 6A nB push K \Rightarrow 68 n
```

2.2 pop

Same restrictions apply as in push. pop R \Rightarrow 5(x+8) pop P \Rightarrow 8F 04 25 *

3 arithmetic

3.1 add

3.1.1 register

add R R \Rightarrow 01 sr add R KB \Rightarrow 83 Cx nb add Rax K \Rightarrow 05 n add R K \Rightarrow 81 Cx n add R P \Rightarrow 01 pr 25 *

3.1.2 pointer

add P R \Rightarrow 03 pr 25 * add P KB \Rightarrow 83 04 25 * nb add P K \Rightarrow 81 04 25 * n

3.2 sub

3.2.1 register

sub R S \Rightarrow 29 sr sub R KB \Rightarrow 83 C(x+8) nb sub rax K \Rightarrow 2D n sub R K \Rightarrow 81 E(x+8) n sub R P \Rightarrow 29 pr 25 *

3.2.2 pointer

sub P R \Rightarrow 2B pr 25 * sub P KB \Rightarrow 83 2C 25 * nb sub P K \Rightarrow 81 2C 25 * nb

3.3 mul

 $\begin{array}{l} \text{mul } R \Rightarrow F7 \text{ Ex} \\ \text{mul } P \Rightarrow F7 \text{ 24 25 *} \end{array}$

3.4 imul

imul R \Rightarrow F7 E(x+8) imul P \Rightarrow F7 2C 25 * imul R R \Rightarrow OF AF sr

3.5 div

div R \Rightarrow F7 Fx div P \Rightarrow F7 34 25 *

3.6 idiv

idiv R \Rightarrow F7 F(x+8) idiv P \Rightarrow F7 3C 25 *

3.7 neg

 $\begin{array}{l} \text{neg R} \Rightarrow \text{F7 D(x+8)} \\ \text{neg P} \Rightarrow \text{F7 1C 25 *} \end{array}$

4 Shift

4.1 shr

shr R 1 \Rightarrow D1 E(x+8) shr R KB \Rightarrow C1 E(x+8) nb shr P 1 \Rightarrow D1 2C 25 * shr P KB \Rightarrow C1 2C 25 * nb

4.2 sar

sar R 1 \Rightarrow D1 F(x+8) sar R KB \Rightarrow C1 F(x+8) nb sar P 1 \Rightarrow D1 3C 25 * sar P KB \Rightarrow C1 3C 25 * nb

4.3 shl

shl R 1 \Rightarrow D1 Ex shl R KB \Rightarrow C1 Ex nb shl R 1 \Rightarrow D1 24 25 * shl R KB \Rightarrow C1 24 25 * nb

4.4 ror

ror R 1 \Rightarrow D1 C(x+8) ror R KB \Rightarrow C1 C(x+8) nb ror P 1 \Rightarrow D1 OC 25 * ror P KB \Rightarrow C1 OC 25 * nb

4.5 rol

rol R 1 \Rightarrow D1 Cx rol R KB \Rightarrow C1 Cx nb rol P 1 \Rightarrow D1 O4 25 * rol P KB \Rightarrow C1 O4 25 * nb

5 Bitwise Logic

5.1 not

 $\begin{array}{l} \text{not } R \Rightarrow F7 \text{ Dx} \\ \text{not } P \Rightarrow F7 \text{ 14 25 *} \end{array}$

5.2 or

5.2.1 register

or R R \Rightarrow 09 sr or R KB \Rightarrow 83 C(x+8) nb or rax K \Rightarrow 0D n or R K \Rightarrow 81 C(x+8) n or R P \Rightarrow 09 pr 25 *

5.2.2 pointer

or P R \Rightarrow 0B pr 25 * or P KB \Rightarrow 83 0C 25 * nb or P K \Rightarrow 81 0C 25 * n

5.3 xor

5.3.1 register

xor R R \Rightarrow 31 sr xor R KB \Rightarrow 83 Fx nb xor rax K \Rightarrow 35 n xor R K \Rightarrow 81 Fx n xor R P \Rightarrow 33 pr 25 *

5.3.2 pointer

xor P R \Rightarrow 31 pr 25 * xor P KB \Rightarrow 83 34 25 * nb xor P K \Rightarrow 81 34 25 * n

5.4 and

5.4.1 register

and R R \Rightarrow 21 sr and R KB \Rightarrow 83 Ex nb and rax K \Rightarrow 25 n and R K \Rightarrow 81 Ex n and R P \Rightarrow 23 pr *

5.4.2 pointer

and P R \Rightarrow 21 pr 25 * and P KB \Rightarrow 83 24 25 * nb and P K \Rightarrow 81 24 25 * n

5.5 test

5.5.1 register

test R R \Rightarrow 85 sr test rax K \Rightarrow A9 n test R K \Rightarrow F7 Cx n test R P \Rightarrow 85 pr 25 *

5.5.2 pointer

test P R \Rightarrow 85 pr 25 * test P K \Rightarrow F7 04 25 * n

6 jmp

6.1 byte-length

jns KB \Rightarrow 79 nb jnz KB \Rightarrow 75 nb jmp KB \Rightarrow EB nb

7 Miscellaneous

Always 32-bits (dword) (meaning no size code). nop \Rightarrow 90 syscall \Rightarrow 0F 05