BALKAN OLYMPIAD IN INFORMATICS

Udine, 29 September 2025

tiling • EN

Tiling Madness (tiling)

Треба да покриете $N \times N$ мрежа со N идентични 2N-мина кои не се преклопуваат.

2N-мината не мора да бидат целосно во рамките на $N \times N$ мрежата.

Поформално, секое решение на овој проблем мора да фиксира едно 2N-мино, а потоа да постави N копии од него на мрежа (без ротирање или рефлектирање) така што:

- \bullet секоја ќелија од мрежата е дел од најмногу едно од 2N-мината.
- постои $N \times N$ подмрежа која е целосно покриена со 2N-мината.

2N-мино е поврзано множество од 2N квадрати; можете да видите пример за валидно и невалидно 2N-мино на Figure 1.

Figure 1: Сликата лево е валидно 14-мино. Таа десно не е, бидејќи не е поврзано.

Сакаме да знаеме на колку начини може да се поплочи мрежата, каде секој начин користи **уникатно** 2N-мино; вашиот резултат ќе зависи од тоа колку валидни 2N-мина кои го поплочуваат квадратот $N \times N$ ќе доставите.

Имајте предвид дека 2N-мината кои можат да се добијат едни од други со ротација или рефлексија се сметаат за **различни**.

Implementation

Ова е задача од типот output-only. Ќе треба да предадете точно една излезна датотека.

Влезен формат

Единствената влезна датотека се состои од една линија, која го содржи целиот број N.

Излезен формат

Единствената излезна датотека треба да биде во следниов формат:

- Првата линија треба да содржи еден цел број C $(0 \le C \le 16000)$: бројот на различни решенија содржани во вашиот излез.
- Потоа треба да следат C блокови со решенија. Секој блок треба да биде во следниов формат:
 - Првата линија треба да содржи два цели броја h и w $(0 \le h, w \le 5N)$: висината и ширината на мрежата каде што ќе ги поставите 2N-мината.
 - Следните h линии треба да содржат стринг со должина w, составен од првите N големи букви од латинската азбука и знакот точка (.). i-тата буква од азбуката

tiling Page 1 of 3

означува дека ќелијата е зафатена од i-тата копија на 2N-миното, додека точката означува дека ќелијата е празна.

За секој блок со решение, мрежата мора да содржи $N \times N$ подмрежа која не содржи ниеден знак . . . Сите N копии на 2N-миното мора да бидат идентични.

Scoring

Оваа задача има точно 1 тест случај, каде N=7. Резултатот S за вашето решение се одредува според следнава табела. Помеѓу вредностите наведени во табелата, резултатот ќе се додели со линеарна интерполација. Малформиран излез секогаш добива нула поени.

Решенија	Поени
0	0
4	10
30	30
250	50
2000	70
16000	100

Examples

input	output
3	2
	5 6
	.AAA
	.AAA
	BBBCCC
	BBBCCC
	5 7
	BB
	.BBB
	CCBAA
	. CCCAAA
	CA.

Explanation

Во **пример-случајот** од нас се бара да користиме 6-мина за да покриеме квадрат 3×3 : забележете дека ова не е валиден влез, бидејќи во единствениот влез N=7. Излезот прикажува две од многуте можни решенија, кои се прикажани на сликата подолу.

tiling Page 2 of 3

И во двата случаи, можеме да видиме дека има 3 идентични 6-мина кои не се преклопуваат и дека е покриен квадрат 3×3 .

tiling Page 3 of 3