Algorithm basis 1

Consider a HMM where $(X_t)_t$ represents the hidden variables and $(Y_t)_t$ the observed ones. Let's consider a sequence (\mathbf{x}, \mathbf{y}) of length T of this model. The joint probability is: $P(\mathbf{x}, \mathbf{y}) = P(x_1) \prod_{t=2}^{T} P(x_t|x_{t-1}) \prod_{t=1}^{T} P(y_t|x_t)$. We will see that all what the information we need to solve our problem is

encapsulated in the functions defined below.

$$\forall t \in [1, T-1] : f_{t,t+1}(s, s') = \max_{\{\mathbf{X} \mid (x_t, x_{t+1}) = (s, s')\}} P(\mathbf{x}, \mathbf{y})$$

To compute these functions we use the Max Product algorithm, it is based on the computation of two functions sequences α_t and β_t defined recursively by:

$$\alpha_t(s) = P(Y_t = y_t | X_t = s) \max_{s'} \{ (P(X_t = s | X_{t-1} = s') \alpha_{t-1}(s')) \} \forall t \in [2, T]$$

$$\beta_t(s) = \max_{s'} \{ P(X_{t+1} = s' | X_t = s) P(Y_{t+1} = y_{t+1} | X_{t+1} = s) \beta_{t+1}(s') \} \forall t \in [1, T-1]$$

$$\alpha_0(s) = P(Y_0 = y_0 | X_0 = s) P(X_0 = s)$$

 $\beta_T(s) = 1$