Дискретная математика

Харитонцев-Беглов Сергей

14 сентября 2021 г.

Содержание

1.	Teop	рия множеств	1
	1.1	Базовые понятия	1
	1.2	Операции с множествами	1
2 .	Kow	ибинаторика	4
	2.1	Сшки	4
	2.2	Биномиальные коэффициенты	5
	2.3	Мультимножество	5

1. Теория множеств

1.1. Базовые понятия

Есть официальный конспект, который будет Здесь.

Onpedenehue 1.1. Множество — набор различимых между собой по какому-то признаку предметов.

Определение 1.2. Предметы входящие в это множество называются его элементами.

Если мы хотим описать множество, то нужно просто описать предметы этого множества. Например, чтобы задать множество студентов необходимо задать просто студентов.

Есть конечные, счетные, несчетные и целый зоопарк множеств разных мощностей. Самое простое множество — \varnothing , множество ничего не содержащее — пустое.

Определение 1.3. X подмножество (\subseteq) $Y \Leftarrow \forall y \in Y : y \in X$. \varnothing и X — тривиальные, остальные — нетривиальные. все подмножества, кроме X — собственные.

1.2. Операции с множествами

Символ	Определение	Словами
Λ	$A \cap B = \dots$	Пересечение множества
U	$A \cup B = \dots$	Объединение множеств
\	$A \setminus B = \dots$	Разность множеств
Δ	$A \triangle B = \dots$	Симметрическая разность множеств

Определение **1.4.** Алгебраическая структура — множество, на котором ввели какую-то операцию.

Пример. Пусть заданы несколько множеств:

- 1. $\exists e: a \cdot e = a \ \forall a \in G$
- 2. $\forall a \in G \ \exists a^{-1} \in G : \ a \cdot a^{-1} = a^{-1} \cdot a = e$
- 3. $\forall a, b, c : (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 4. $\forall a, b \in Ga \cdot b = b \cdot a$

Глава #1

То это абелева группа и это к алгебре.

А дискретная математика не имеет аксиом, то есть мало чего можно использовать из алгебры / матана.

Если задать какое-то надмножество X над A, то появится операция дополнения: $A' = X \setminus A$. Законы Де Моргана:

Теорема 1.1. $(A \cup B)' = A' \cap B'$

Теорема 1.2. $(A \cap B)' = A' \cup B'$

Доказательство смотри в конспекте Омеля, тут мне лень это делать.

Определение 1.5. Система иножеств — множество, элементами которого являются множества.

Определение 1.6. Семейство множеств — упорядоченный набор неких множеств (X_1, X_2, \dots, X_k) . Причем множества в наборе могут повторяться.

Определение 1.7. Некоторое покрытие множества X системой множеств — система множеств, объединение элементов которого равняется X.

Определение 1.8. Разбиение множества X на блоки — система (X_1, X_2, \dots, X_k) , удовлетворяющая неким условиям:

- 1. $X = \bigcup_{i=1}^{k} X_i$
- 2. $\forall i: X_i \neq \emptyset$
- 3. $\forall i, j = 1..k : X_i \cap X_j = \emptyset$

Определение 1.9. Пара элементов (x,y) — упорядоченный набор из двух элементов. То есть для $x \neq y$: $(x,y) \neq (y,x)$

Определение 1.10 (Декартово произведение). $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$

можно ввести понятие «nки» — упорядоченный набор из n элементов. Поэтому можно ввести $A \times B \times C \times \dots$ и A^2, A^n

 $Onpedenehue\ 1.11.$ Отношение между множествами — некое подмножество декартого произведения этих множеств

Пусть ω — отношение между X и Y. Тогда их записывают $X\omega Y$, а отсутствие — $X\omega Y$.

Определение 1.12. Отношение эквивалентности (X, \sim) :

- 1. $x \sim x \ \forall x \in X$
- 2. $x \sim, y \Rightarrow y \sim x \ \forall x, y \in X$
- 3. $x \sim y, y \sim z, \Rightarrow x \sim z \ \forall x, y, z \in X$

Пусть $\widetilde{x} = \{ y \in X \mid y \sim x \}.$

Свойство. пусть $y \in \widetilde{x} \Rightarrow \widetilde{y} = \widetilde{x}$

Теорема 1.3. Разбиение на блоки задает классы эквивалентности.

- $X = \bigcup_{x \in X} \widetilde{x}$
- $\widetilde{x} \neq \emptyset$, т.к. хотя бы $x \in \widetilde{x}$.
- Рассмотрим $\widetilde{x},\widetilde{y}$. Пусть $\exists z:\ z\in\widetilde{x}\cap\widetilde{y}$. Тогда $\begin{array}{c} \widetilde{z}=\widetilde{x}\\ \widetilde{z}=\widetilde{y} \end{array} \}\Rightarrow\widetilde{x}=\widetilde{y}$

Определение 1.13. Мультимножество — $(x; \varphi): \varphi \to \mathbb{Z}_+$

Есть еще несколько базовых понятий: k-перестановки/сочетания из n элементов с/без повторений.

$$|A\cup B|=|A|+|B|$$
, если $A\cap B=\varnothing$. Поэтому, если есть разбиение на блоки, то $X=X_1\cup\ldots\cup X_k\Rightarrow |X|=|X_1|+\ldots+|X_k|$

$$X = X_1 \times \ldots \times X_k$$
, тогда $|X| = |X_1| \cdot \ldots \cdot |X_k|$

$$|A' \cap B'| = |(A \cup B)'| = |X| - |A \cup B| = |X| - |A| - |B| + |A \cap B|$$

2. Комбинаторика

2.1. Сшки

Есть два способа записи цэшек: $C_n^k = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$. Обычно формулы в комбинаторике используются не для подсчетов, а для определения асимптотики/верней оценки и так далее. Например если взять n=100, то уже проблема: 100! — довольно большое число. Но там еще и деление!!! Короче, может получиться небольшое число при больших числах в подсчетах.

Давайте забудем эту дурацкую формулу и будем использовать рекурренты: легко считать, пишется в миг. $\binom{n}{k} = \binom{n-1}{k} + \binom{n}{k-1}, \binom{0}{0} = 1.$

Доказательство. Пусть есть множество из n элементов. Разобьем все k-элементные подмножества на блоки: в одном все без последнего элемента, в другом все с последним. Тогда в первом блоке тогда есть $\binom{n-1}{k}$ элементов. В другом $\binom{n-1}{k-1}$ элементов. А значит $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ \square Есть пара граничных случаев: $\binom{n}{0} = 1$, $\binom{n}{k}(n < k) = 0$. После этого можно сделать треугольник Паскаля:

Рассмотрим решетчатую плоскость (если вы это читаете это и здесь нет картиночки напишите @doktorkrab, чтобы я добавил картиночку). Какое здесь количество путей? Ну $An^k = A_{n-1}^k + A_{n-1}^{k-1}$. А это Сшки.

Теперь посмотрим на сумму на диагонали. Получаем гипотезу: $\sum m = 0^n \binom{m}{k} = \binom{k}{k} + \binom{k+1}{k} + \ldots + \binom{n-1}{k} + \binom{n}{k} = \binom{n+1}{k-1}$.

Доказательство. По основному комбинаторному тождеству: $\binom{m+1}{k+1} = \binom{m}{k+1} \binom{m}{k} \Rightarrow \binom{m}{k} = \binom{m+1}{k+1} - \binom{m}{k+1}$. Тогда:

$$\sum_{m=k}^{n} {m \choose k} = \sum_{m=k}^{n} {m+1 \choose k+1} - \sum_{m=k}^{n} {m \choose k+1}.$$
$${\binom{n+1}{k+1} + \sum_{m=k}^{n-1} {\binom{m+1}{k+1}}} - \sum_{m=k+1}^{n} {m \choose k+1}.$$

Дальше, если, расписать сумму все получится.

Пусть хочу набрать k+1-элементное подмножество из n+1-элементного множества. Пусть мы выбрали последний элемент, тогда у нас есть $\binom{n}{k}$ способов, а если не выбрали, то $\binom{n}{k+1}$ способов. А по индукции $\binom{n}{k+1} = \binom{n-1}{k+1} + \binom{n-1}{k}$. И так далее. \square Рассмотрим $\binom{n+m}{k} = \sum_{i=0}^k \binom{n}{i} \cdot \binom{m}{k-i}$

Доказательство. Рассмотрим два множества: одно n-элементное ("мальчики"), другое m-элементное ("девушки"). Тогда пусть мы выбрали i мальчиков, тогда нам нужно выбрать k-i девушек. \square Мы здесь применили принцип double counting: если мы посчитали что-то двумя способами, то результаты равны.

2.2. Биномиальные коэффициенты

Подробности на втором курсе.

Рассмотрим бином Ньютона: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k \cdot y^{n-k}$

Доказательство. Раскроем скобки в левой части: $(x+y)(x+y)(x+y)\dots$ Когда у нас x^k ? Когда мы ровно в k скобках выбрали x. Сколько способов? Очевидно $\binom{n}{k}$.

Частные случаи:

• x = y = 1. Тогда $2^n = \sum_{k=0}^n \binom{n}{k}$

Рассмотрим множество $\{x_1, x_2, \dots, x_n\}$. Каждому числу можно сопоставить 0/1 — берем/не берем. Тогда количество подмножеств — количество бинарных строчек длины n. Такой метод называется биективным: когда мы доказываем, что один объект является биекцией другого, то их количества равны.

• x = 1, y = -1. Тогда $0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$ — количества способов выбрать подмножество четных длин и нечетных длин равны.

2.3. Мультимножество

Хотим посчитать $\binom{n}{k}$ — количество k-элементных подмультимножеств.

Пусть X=[n]. По принципу биекции найдем сначала $\binom{n}{k}$ для X, а потом найти для произвольного множества.

Пусть есть множество A, заменим его на множество $\{i+A_i\}$. $\binom{n}{k} = \binom{n+k-1}{k}$