

Numerical Differentiation -List of Some Finite Difference Approximations

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

AE/ME 5830 Spring 2018 1

Table 3.1 Difference approximations using more than three points

Derivative	Finite-difference representation
$\left. \frac{\partial^3 u}{\partial x^3} \right)_{i,j} =$	$\frac{u_{i+2,j}-2u_{i+1,j}+2u_{i-1,j}-u_{i-2,j}}{2h^3}+O(h^2)$
$\left.\frac{\partial^4 u}{\partial x^4}\right)_{i,j} =$	$\frac{u_{i+2,j}-4u_{i+1,j}+6u_{i,j}-4u_{i-1,j}+u_{i-2,j}}{h^4}+O(h^2)$
$\left.\frac{\partial^2 u}{\partial x^2}\right)_{i,j} =$	$\frac{-u_{i+3,j}+4u_{i+2,j}-5u_{i+1,j}+2u_{i,j}}{h^2}+O(h^2)$
$\left.\frac{\partial^3 u}{\partial x^3}\right)_{i,j} =$	$\frac{-3u_{i+4,j}+14u_{i+3,j}-24u_{i+2,j}+18u_{i+1,j}-5u_{i,j}}{2h^3}+O(h^2)$
$\left.\frac{\partial^2 u}{\partial x^2}\right)_{i,j} =$	$\frac{2u_{i,j}-5u_{i-1,j}+4u_{i-2,j}-u_{i-3,j}}{h^2}+O(h^2)$
$\left. \frac{\partial^3 u}{\partial x^3} \right)_{i,j} =$	$\frac{5u_{i,j}-18u_{i-1,j}+24u_{i-2,j}-14u_{i-3,j}+3u_{i-4,j}}{2h^3}+O(h^2)$
$\left(\frac{\partial u}{\partial x}\right)_{i,j} =$	$\frac{-u_{i+2,j}+8u_{i+1,j}-8u_{i-1,j}+u_{i-2,j}}{12h}+O(h^4)$
$\left.\frac{\partial^2 u}{\partial x^2}\right)_{i,j} =$	$\frac{-u_{i+2,j}+16u_{i+1,j}-30u_{i,j}+16u_{i-1,j}-u_{i-2,j}}{12h^2}+O(h^4)$

Spring 2018

Table 3.2 Difference approximations for mixed partial derivatives

Derivative	Finite-difference representation
$\left(\frac{\partial^2 u}{\partial x \partial y}\right)_{i,j} =$	$\frac{1}{\Delta x}\left(\frac{u_{i+1,j}-u_{i+1,j-1}}{\Delta y}-\frac{u_{i,j}-u_{i,j-1}}{\Delta y}\right)+O(\Delta x,\Delta y)$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{\Delta x}\left(\frac{u_{i,j+1}-u_{i,j}}{\Delta y}-\frac{u_{i-1,j+1}-u_{i-1,j}}{\Delta y}\right)+O(\Delta x,\Delta y)$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{\Delta x}\left(\frac{u_{i,j}-u_{i,j-1}}{\Delta y}-\frac{u_{i-1,j}-u_{i-1,j-1}}{\Delta y}\right)+O(\Delta x,\Delta y)$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{\Delta x}\left(\frac{u_{i+1,j+1}-u_{i+1,j}}{\Delta y}-\frac{u_{i,j+1}-u_{i,j}}{\Delta y}\right)+O(\Delta x,\Delta y)$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{\Delta x} \left(\frac{u_{i+1,j+1} - u_{i+1,j-1}}{2 \Delta y} - \frac{u_{i,j+1} - u_{i,j-1}}{2 \Delta y} \right) + O[\Delta x, (\Delta y)^2]$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{\Delta x} \left(\frac{u_{i,j+1} - u_{i,j-1}}{2 \Delta y} - \frac{u_{i-1,j+1} - u_{i-1,j-1}}{2 \Delta y} \right) + O[\Delta x, (\Delta y)^2]$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{2\Delta x} \left(\frac{u_{i+1,j+1} - u_{i+1,j-1}}{2\Delta y} - \frac{u_{i-1,j+1} - u_{i-1,j-1}}{2\Delta y} \right) + O[(\Delta x)^2, (\Delta y)^2]$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{2\Delta x} \left(\frac{u_{i+1,j+1} - u_{i+1,j}}{\Delta y} - \frac{u_{i-1,j+1} - u_{i-1,j}}{\Delta y} \right) + O[(\Delta x)^2, \Delta y]$
$\left. \frac{\partial^2 u}{\partial x \partial y} \right)_{i,j} =$	$\frac{1}{2 \Delta x} \left(\frac{u_{i+1,j} - u_{i+1,j-1}}{\Delta y} - \frac{u_{i-1,j} - u_{i-1,j-1}}{\Delta y} \right) + O[(\Delta x)^2, \Delta y]$

Table 3.3 Some useful results from polynomial fitting

Polynomial degree	Wall value of function or derivative
1	$\left.\frac{\partial T}{\partial y}\right)_{i,j} = \frac{T_{i,j+1} - T_{i,j}}{h} + O(h)$
1	$T_{i,j} = T_{i,j+1} - h \frac{\partial T}{\partial y} \Big _{i=i} + O(h^2)$
2	$\left. \frac{\partial T}{\partial y} \right _{i,j} = \frac{1}{2h} (-3T_{i,j} + 4T_{i,j+1} - T_{i,j+2}) + O(h^2)$
2	$T_{i,j} = \frac{1}{3} \left[4T_{i,j+1} - T_{i,j+2} - 2h \frac{\partial T}{\partial y} \right]_{i,j} + O(h^3)$
3	$\left. \frac{\partial T}{\partial y} \right _{i,j} = \frac{1}{6h} \left(-11T_{i,j} + 18T_{i,j+1} - 9T_{i,j+2} + 2T_{i,j+3} \right) + O(h^3)$
3	$T_{i,j} = \frac{1}{11} \left[18T_{i,j+1} - 9T_{i,j+2} + 2T_{i,j+3} - 6h \frac{\partial T}{\partial y} \right]_{i,j} + O(h^4)$
4	$\left. \frac{\partial T}{\partial y} \right)_{i,j} = \frac{1}{12h} (-25T_{i,j} + 48T_{i,j+1} - 36T_{i,j+2} + 16T_{i,j+3} - 3T_{i,j+4}) + O(h^4)$
4	$T_{i,j} = \frac{1}{25} \left[48T_{i,j+1} - 36T_{i,j+2} + 16T_{i,j+3} - 3T_{i,j+4} - 12h \frac{\partial T}{\partial y} \right)_{i,j} \right]$
	$+O(h^5)$