CHAPITRE OS1 – DOCUMENTS Modèle de l'optique géométrique

FIGURE 1: Fibre optique

FIGURE 2 : Principe de fonctionnement d'un laser

FIGURE 3 : Spectre d'une source laser

FIGURE 4 : Spectres d'une lampe à vapeur de mercure (à gauche) et d'une lampe à vapeur de sodium (à droite)

FIGURE 5 : Spectre d'une lampe à incandescence

FIGURE 6: Propagation d'une onde électromagnétique

FIGURE 7 : Position du spectre de la lumière visible dans le spectre des ondes électromagnétiques

FIGURE 8 : Dispersion de la lumière par un prisme

FIGURE 9: Notion de rayons lumineux

FIGURE 10 : Fibre optique à saut d'indice

FIGURE 11 : Différents types de fibre optique

Exercice d'application 1 : angle d'acceptance et ouverture numérique d'une fibre optique

L'axe (Ox) de la fibre est normal au dioptre air-cœur. En raison de la symétrie de révolution de la fibre autour de l'axe (Ox), on se restreint à une étude dans le plan (xOy). On considère que l'indice de l'air est $n_{air}=1$.

Un rayon lumineux monochromatique se propageant dans l'air, situé dans le plan (xOy), pénètre dans le cœur de la fibre en O avec un angle d'incidence θ .

- 1. Représenter le trajet du rayon lumineux issu de O qui se propage en restant confiné dans le cœur.
- 2. Montrer que le rayon reste dans le cœur si l'angle θ est inférieur à un angle limite θ_L , appelé <u>angle d'acceptance</u> de la fibre optique, avec $\theta_L = \sin^{-1}\left(\sqrt{n_c^2 n_g^2}\right)$. Calculer la valeur de θ_L pour $n_c = 1,500$ et $n_g = 1,485$.
- 3. Exprimer et calculer <u>l'ouverture numérique</u> de cette fibre définie par $ON = n_{air} \sin(\theta_L)$.

Exercice d'application 2 : dispersion intermodale d'une fibre optique

On considère maintenant que la fibre optique utilisée dans l'exercice d'application 1 est de longueur L. Le rayon entre dans la fibre avec un angle d'incidence θ variable compris entre 0 et θ_L .

- 1. Pour quelle valeur de θ le rayon traverse-t-il le plus rapidement la fibre ? Exprimer, en fonction de L, c et n_c , la durée de parcours T_1 de ce rayon.
- 2. Pour quelle valeur de θ le rayon met-il le plus de temps à traverser la fibre ? Exprimer, en fonction de L, c, n_g et n_c la durée de parcours T_2 de ce rayon.
- 3. Cette différence de durée de parcours entre les différents modes s'appelle la <u>dispersion</u> intermodale. Exprimer l'intervalle de temps $\delta T = T_2 T_1$ en fonction de L, c, n_g et n_c . On

posera
$$2\Delta = 1 - \left(\frac{n_g}{n_c}\right)^2$$
 avec $\Delta << 1$. Dans ces conditions, montrer que δT s'écrit $\delta T = \frac{n_c L \Delta}{c}$.

Calculer la valeur de δT pour $L=10~{\rm km}$.

<u>Rappel mathématique</u>: $(1-x)^{\alpha} \simeq 1-\alpha x$ pour $x \ll 1$