Определение

Функция y = f(x) равномерно непрерывна на множестве $X \subseteq D(f)$ если:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall (x', x'', x', x'' \in X, |x' - x''| < \delta) \Rightarrow |f(x') - f(x'')| < \varepsilon$$

Отрицание

f(x) не является равномерно непрерывной на X, если

$$\exists \varepsilon > 0 : \forall \delta = \delta(\varepsilon) > 0 \exists (x', x'', x', x'' \in X, |x' - x''| < \delta) \Rightarrow |f(x') - f(x'')| \ge \varepsilon$$

Замечание

Если в определении равномерной непрерывности фиксировать точку x'' = a, то получим определение непрерывности функции f(x) в точке x'' = a. Т.е. всякая равномерная непрерывная на X функция непрерывна на этом множестве

Теорема Кантора

Функция, непрерывная на замкнутом ограниченном множестве (в частности — на отрезке) равномерно непрерывна на этом множестве.

Доказательство

Пусть X — замкнутое ограниченное множество и f(x) непрерывна на X

От противного.

Предположим, что f(x) не является равномерно непрерывной на этом множестве. Напишем отрицание:

$$\exists \varepsilon_0 > 0 : \forall \delta = \delta(\varepsilon_0) > 0 \ \exists (x', x'', x', x', x'' \in X, \ |x' - x''| < \delta) \ \Rightarrow |f(x') - f(x'')| \ge \varepsilon_0$$

Возьмем $\delta_n = \frac{1}{n}$ тогда по отрицанию $\exists (x'_n, x''_n, x'_n, x''_n \in X, |x'_n - x''_n| < \delta_n = \frac{1}{n}) \Rightarrow |f(x'_n) - f(x_n'')| \ge \varepsilon_0 \star$

Таким образом, получили последовательности $\{x_n'\}$ и $\{x_n''\}$, для них выполняется соотношение \star .

Поскольку $\{x_{n'}\}\in X$, а X — ограниченное (по условию), то $\{x_{n'}\}$ — ограниченная последовательность. По теореме Больцана-Вейерштрасса, из нее можно выделить сходящуюся подпоследовательность, т.е. $\exists \{x_{n_k'}\}\subseteq \{x_{n'}\}: x_{n_k'}\to a$. $\{x_{n_k'}\}$ подпослкдоваткльность. Поскольку X — замкнутое (по условию), $a\in X$. Из условия $\star |x_{n_k'}-x_{n_k''}|<\frac{1}{n_k}\Leftrightarrow x_{n_k'}-\frac{1}{n_k}< x_{n_k''}+\frac{1}{n_k}k\to\infty$. По теореме о трех последовательнотях $\exists \lim_{k\to\infty} x_{n_k''}$

=a, r.e.
$$x_{n_k}" \to a, k \to \infty$$

В силу непрерывности f(x) и $f(x_{n_k}') \to f(a)$ и $f(x_{n_k}') \to f(a)$ тогда $|f(x_{n_k}') - f(x_{n_k}'')| \to |f(a) - f(a)| = 0$

Но по условию $\star |f(x_{n_k}') - f(x_{n_k}'')| \ge \varepsilon_0 > 0$. Полученное противоречие доказывает теорему.