## PENCARIAN MAXIMUM CLIQUE MENGGUNAKAN ALGORITMA IMPROVED ANT COLONY OPTIMIZATION DAN PARTICLE SWARM OPTIMIZATION PADA JARINGAN SOSIAL

#### **TUGAS AKHIR**

Oleh:

ALEXANDER YAP

NIM. 121110341

**JEFFRY OWEN** 

NIM. 121110227



PROGRAM STUDI TEKNIK INFORMATIKA
SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER
MIKROSKIL
MEDAN
2016

# FINDING MAXIMUM CLIQUE USING IMPROVED ANT COLONY OPTIMIZATION AND PARTICLE SWARM OPTIMIZATION ALGORITHM IN SOCIAL NETWORKS

#### FINAL RESEARCH

By:

**ALEXANDER YAP** 

ID. 121110341

**JEFFRY OWEN** 

ID. 121110227



STUDY PROGRAM OF INFORMATICS ENGINEERING SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MIKROSKIL MEDAN 2016

#### LEMBARAN PENGESAHAN

## PENCARIAN MAXIMUM CLIQUE MENGGUNAKAN ALGORITMA IMPROVED ANT COLONY OPTIMIZATION DAN PARTICLE SWARM OPTIMIZATION PADA JARINGAN SOSIAL

#### **TUGAS AKHIR**

Diajukan untuk Melengkapi Persyaratan Guna Mendapatkan Gelar Sarjana Strata Satu Program Studi Teknik Informatika

Oleh:

ALEXANDER YAP NIM. 121110341

JEFFRY OWEN NIM. 121110227

Disetujui Oleh:

Dosen Pembimbing II,

Dosen Pembimbing III,

Medan, 11 Juli 2016 Diketahui dan Disahkan Oleh:

> Ketua Program Studi Teknik Informatika,

#### **ABSTRAK**

Pada teori kompleksitas komputasi, pencarian maksimum *clique* merupakan permasalahan yang dikategorikan *Nondeterministic-Polinomial* (NP)-*Hard* dan digunakan sebagai alat untuk menganalisis interaksi antar aktor pada jaringan sosial. Untuk menyelesaikan permasalahan ini, pendekatan optimalisasi dapat diaplikasikan seperti *Ant Colony Optimization* (ACO), *Improved Ant Colony Optimization* (IACO), dan *Ant Colony Optimization* ditambah *Particle Swarm Optimization* (ACOPSO). Agar mendapatkan hasil yang lebih baik, algoritma IACO dengan penemuan hasil yang lebih tinggi dari ACO digabungkan dengan ACOPSO dengan waktu pencarian yang rendah dibandingkan dengan ACO menjadi *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* (IACOPSO). Pengujian dilakukan pada graf jaringan sosial dan DIMACS dimana pada graf DIMACS, dilakukan pembagian menjadi 3 bagian berdasarkan jumlah simpul. Hasil penelitian menunjukkan algoritma IACOPSO mampu memberikan hasil yang lebih baik dengan waktu yang relatif lebih singkat.

Kata Kunci : *Improved Ant Colony Optimization*, Maksimum *clique*, Jaringan Sosial, ACO, PSO

#### **KATA PENGANTAR**

Ucapan syukur penulis panjatkan Tuhan Yang Maha Esa karena berkat Rahmat dan Karunia-Nya penulis dapat menyelesaikan Tugas Akhir yang berjudul "Pencarian *Maximum Clique* Menggunakan Algoritma *Improved Ant Colony Optimization* dan *Particle Swarm Optimization* Pada Jaringan Sosial".

Penulisan Tugas Akhir ini diajukan untuk memenuhi salah satu syarat kelulusan dalam jenjang perkuliahan Strata I Sekolah Tinggi Manajemen Informatika Dan Komputer.

Dalam kesempatan ini penulis ingin mengucapkan terima kasih kepada :

- 1. Bapak Arwin Halim, S.Kom., M.Kom., selaku Pembimbing I yang telah membimbing penulis mengerjakan Tugas Akhir ini.
- 2. Bapak Irpan Adiputra Pardosi, S.Kom., M.TI, selaku Pembimbing II yang telah membimbing penulis mengerjakan Tugas Akhir ini.
- 3. Bapak Dr. Mimpin Ginting, M.S., selaku Ketua STMIK Mikroskil Medan
- 4. Bapak Djoni, S.Kom., M.T.I., selaku Wakil Ketua I STMIK Mikroskil Medan.
- 5. Bapak Hardy, S.Kom., M.Sc., selaku Ketua Program Studi Teknik Informatika STMIK Mikroskil Medan.
- 6. Bapak dan Ibu Dosen yang telah mendidik dan membimbing penulis dalam mengerjakan Tugas Akhir ini.
- 7. Orang tua dan teman-teman kami yang selama ini telah men-*support* penulis tetap semangat untuk menyelesaikan Tugas Akhir ini.

Penulis menyadari bahwa penelitian Tugas Akhir ini masih jauh dari sempurna sehingga penulis membutuhkan kritik dan saran yang bersifat membangun untuk kemajuan pendidikan di masa yang akan datang.

Akhir kata, semoga penelitian Tugas Akhir ini memberikan manfaat, khususnya bagi penulis dan umumnya bagi semua orang dalam rangka menambah wawasan pengetahuan.

Medan, Agustus 2016

### Penulis

# **DAFTAR ISI**

| ABSTRA | AK                                                          | i      |
|--------|-------------------------------------------------------------|--------|
| KATA P | PENGANTAR                                                   | ii     |
| DAFTAl | R ISI                                                       | iii    |
| DAFTAI | R GAMBAR                                                    | V      |
| DAFTAl | R TABEL                                                     | vii    |
| DAFTAl | R LAMPIRAN                                                  | viii   |
| BAB I  | PENDAHULUAN                                                 | 1      |
|        | 1.1 Latar Belakang                                          | 1      |
|        | 1.2 Rumusan Masalah                                         | 2      |
|        | 1.3 Tujuan dan Manfaat                                      | 2      |
|        | 1.4 Batasan Masalah                                         | 3      |
|        | 1.5 Metodologi Penelitian                                   | 4      |
| BAB II | TINJAUAN PUSTAKA                                            | 6      |
|        | 2.1 Teori Graf                                              | 6      |
|        | 2.2 Jaringan                                                | 6      |
|        | 2.2.1 Jaringan Sosial                                       | 7      |
|        | 2.2.1.1 <i>Clique</i>                                       | 8      |
|        | 2.3 Artificial Intelligence                                 | 9      |
|        | 2.3.1 Pencarian Heuristik                                   | 9      |
|        | 2.3.2 Pencarian Metaheuristik                               | 10     |
|        | 2.3.2.1 Particle Swarm Optimization                         | 11     |
|        | 2.3.2.2 Ant Colony Optimization                             | 12     |
|        | 2.4 Improved Ant Colony Optimization                        | 15     |
|        | 2.5 Ant Colony Optimization Ditambah Particle Swarm Optimi. | zation |
|        |                                                             | 17     |
|        | 2.6 Improved Ant Colony Optimization ditambah Particle Swar | m      |
|        | Optimization                                                | 18     |

| BAB III | METODOLOGI PENELITIAN                     | 19 |
|---------|-------------------------------------------|----|
|         | 3.1 Pengumpulan Referensi                 | 19 |
|         | 3.2 Pengumpulan data                      | 19 |
|         | 3.3 Analisis                              | 21 |
|         | 3.3.1 Analisis Proses                     | 21 |
|         | 3.3.1 Analisis Kebutuhan Fungsional       | 29 |
|         | 3.3.2 Analisis Kebutuhan Non - Fungsional | 31 |
|         | 3.4 Perancangan                           | 32 |
|         | 3.4.1 Perancangan Tampilan                | 32 |
|         | 3.5 Pengkodean                            | 35 |
|         | 3.6 Pengujian                             | 35 |
|         | 3.7 Menarik Kesimpulan                    | 36 |
| BAB IV  | HASIL DAN PEMBAHASAN                      | 37 |
|         | 4.1 Hasil                                 | 37 |
|         | 4.2 Pembahasan                            | 40 |
|         | 4.2.1 Pengujian Tingkat Evaporasi         | 41 |
|         | 4.2.2 Hasil Pengujian pada <i>Dataset</i> | 42 |
| BAB V   | KESIMPULAN DAN SARAN                      | 53 |
|         | 5.1 Kesimpulan                            | 53 |
|         | 5.2 Saran                                 | 53 |
| DAFTAF  | RPUSTAKA                                  | 54 |

# **DAFTAR GAMBAR**

| Gambar 2.1 Graf                                                        | 6          |
|------------------------------------------------------------------------|------------|
| Gambar 2.2 Jaringan Pertemanan Antara 34 Orang pada Klub Karate        | 7          |
| Gambar 2.3 Jaringan Sosial Hijacker's Network Neighborhood             | 8          |
| Gambar 2.4 Contoh Clique pada Graf                                     | 9          |
| Gambar 2.5 Pemilihan Rute Terpendek oleh Koloni Semut                  | 12         |
| Gambar 2.6 Algoritma Ant-Clique                                        | 14         |
| Gambar 2.7 Algorimta Ant-Clique dalam Membentuk Clique                 | 15         |
| Gambar 3.1 Format Dataset                                              | 19         |
| Gambar 3.2 Activity Diagram Pencarian Maximum Clique dengan Algoritma  |            |
| Improved Ant Colony Optimization Ditambah Particle Swarm Optimization  | 22         |
| Gambar 3.3 Subactivity Diagram Maximum Clique dalam Melakukan Pencaria | <u>.n_</u> |
| <u>Clique</u>                                                          | 23         |
| Gambar 3.4 Contoh Graf                                                 | 25         |
| Gambar 3.5 USE CASE Diagram Pencarian Maximum Clique dengan Algorita   | <u>na</u>  |
| Improved Ant Colony Optimization Ditambah Particle Swarm Optimization  | 29         |
| Gambar 3.6 Tampilan Form Pencarian Maximum Clique                      | 32         |
| Gambar 3.7 Tampilan Form Pengujian Dataset                             | 33         |
| Gambar 3.8 Tampilan Form Pengujian Tabel                               | 34         |
| Gambar 3.9 Tampilan Form Gambar                                        | 35         |
| Gambar 4.1 Tampilan Awal Program                                       | 37         |
| Gambar 4.2 Tampilan Form Pengujian Dataset                             | 37         |
| Gambar 4.3 Tampilan Hasil Form Pengujian Dataset                       | 38         |
| Gambar 4.4 Tampilan Form Pengujian Tabel                               | 38         |
| Gambar 4.5 Tampilan Form Pengujian Tabel ketika Memasukkan Data        | 39         |
| Gambar 4.6 Tampilan Hasil Keluaran Form Pengujian Tabel                | 39         |
| Gambar 4.7 Tampilan Form Gambar                                        | 40         |
| Gambar 4.8 Pengujian Rho Masing-masing Algoritma                       | 42         |

| Gambar 4.9 Rata-rata Hasil Penemuan <i>Maximum Clique</i> pada Setiap Kelompok | <u>C</u> |
|--------------------------------------------------------------------------------|----------|
| <u>Dataset</u>                                                                 | 45       |
| Gambar 4.10 Rata-rata Waktu Penemuan <i>Maximum Clique</i> pada Setiap Kelomp  | ok       |
| <u>Dataset</u>                                                                 | 46       |
| Gambar 4.11 Rata-rata Hasil Pencarian Maximum Clique dengan 4 Algoritma        | 46       |
| Gambar 4.12 Rata-rata Waktu Pencarian Maximum Clique dengan 4 Algoritma        | 47       |
| Gambar 4.13 Standar Deviasi Hasil pada Graf Jaringan Sosial                    | 48       |
| Gambar 4.14 Standar Deviasi Hasil pada Graf DIMACS Kecil                       | 48       |
| Gambar 4.15 Standar Deviasi Hasil pada Graf DIMACS Sedang                      | 49       |
| Gambar 4.16 Standar Deviasi Hasil pada Graf DIMACS Besar                       | 49       |
| Gambar 4.17 Standar Deviasi Waktu pada Graf Jaringan Sosial                    | 50       |
| Gambar 4.18 Standar Deviasi Waktu pada Graf DIMACS Kecil                       | 51       |
| Gambar 4.19 Standar Deviasi Waktu pada Graf DIMACS Sedang                      | 51       |
| Gambar 4.20 Standar Deviasi Waktu pada Graf DIMACS Besar                       | 52       |
|                                                                                |          |

# **DAFTAR TABEL**

| Tabel 3.1 Jaringan Sosial                                                | 20 |
|--------------------------------------------------------------------------|----|
| Tabel 3.2 DIMACS Dengan Graf Kecil                                       | 20 |
| Tabel 3.3 DIMACS Dengan Graf Sedang                                      | 21 |
| Tabel 3.4 DIMACS Dengan Graf Besar                                       | 21 |
| Tabel 3.5 Skenario USE CASE Memasukan Dataset                            | 30 |
| Tabel 3.6 Skenario USE CASE Mencari Maximum Clique                       | 30 |
| Tabel 3.7 Skenario USE CASE Menampilkan Gambar Graf                      | 31 |
|                                                                          |    |
| Tabel 4.1 Dataset yang Diuji                                             | 40 |
| Tabel 4.2 Hasil Pengujian IACOPSO pada Dataset Jaringan Sosial           | 43 |
| Tabel 4.3 Hasil Pengujian IACOPSO pada Dataset DIMACS Graf Kecil         | 43 |
| Tabel 4.4 Hasil Pengujian IACOPSO pada <i>Dataset</i> DIMACS Graf Sedang | 44 |
| Tabel 4.5 Hasil Penguijan IACOPSO pada <i>Dataset</i> DIMACS Graf Besar  | 44 |

# DAFTAR LAMPIRAN

| Lampiran 1 Listing Program                                          | 57 |
|---------------------------------------------------------------------|----|
| Lampiran 2 Hasil Lengkap Pencarian Maximum Clique Dengan ACO, IACO, |    |
| ACOPSO & IACOPSO                                                    | 76 |
| Lampiran 3 Hasil Lengkap Pencarian Best Known Maximum Clique Dengan |    |
| ACO, IACO, ACOPSO & IACOPSO                                         | 78 |
| Daftar Riwayat Hidup                                                |    |

#### **BABI**

#### **PENDAHULUAN**

#### 1.1 Latar Belakang

Jaringan sosial merupakan suatu konsep yang digunakan untuk merepresentasikan dan menganalisis data yang berhubungan dengan interaksi sosial (Baglioni et al., 2014). Terkadang interaksi sosial dapat membentuk graf sempurna yang dikenal dengan *clique*<sup>1</sup>. Terdapat beberapa permasalahan yang berkaitan dengan *clique* salah satunya adalah pencarian maksimum *clique*<sup>2</sup>. Pencarian maksimum *clique* merupakan permasalahan yang dikategorikan kedalam *Nondeterministic-Polynomial (NP)-Hard* dalam teori kompleksitas komputasi (Solnon & Fenet, 2006), karena waktu yang dibutuhkan untuk mendapatkan hasil akan meningkat secara eksponensial berdasarkan jumlah simpul yang ada pada graf (Bomze et al., 1999).

Terdapat beberapa permasalahan yang mengimplementasikan pencarian maksimum *clique* seperti menganalisis pola pada lalu lintas telekomunikasi, mendiagnosis kesalahan, pendeteksi pola (Bomze et al., 1999), dan analisis jaringan sosial (Yan et al., 2011) seperti mendeteksi komunitas dan analisis jaringan teroris pada penyerangan *World Trade Center* (Krebs, 2002). Tujuan dasar dari menganalisis jaringan sosial adalah memberikan pemahaman tentang hubungan sosial antar aktor dan mencegah terjadinya hal yang tidak diinginkan (Pattilo et al., 2012).

Banyak penelitian dilakukan untuk mendapatkan algoritma paling efisien dalam menemukan maksimum *clique* terutama dari segi waktu. Beberapa algoritma yang telah diuji yaitu algoritma *Ant Colony Optimization* (Solnon & Fenet, 2006), *Improved Ant Colony Optimization* (Xu et al., 2007), *Reactive local search* (RLS) (Battiti & Protasi, 1995), algoritma *Intelligent Waterdrop* (Taani & Nemrawi, 2012), dan pengabungan antara algoritma *Ant Colony Optimization* (ACO) dengan *Particle Swarm Optimization* (PSO) atau dikenal dengan algoritma

<sup>&</sup>lt;sup>1</sup>Setiap aktor memiliki hubungan satu dengan yang lainnya. (Easley & Kleinberg, 2010). <sup>2</sup>*clique* dengan jumlah simpul terbanyak.

hibrida (Pouri et al., 2012). Hasil penelitian menunjukkan algoritma *Ant Colony Optimization* mampu memberikan hasil yang baik dibandingkan dengan algoritma lainnya. Oleh karena itu, muncul penelitian yang bertujuan untuk meningkatkan kinerja dari *Ant Colony Optimization* dalam mencari maksimum *clique* seperti yang dilakukan oleh Xu dan Pouri.

Penelitian Xu dkk. (2007), memperkenalkan *Improved Ant Colony Optimization* yang merubah algoritma *Ant Colony Optimization* dan ditambahkan dengan metode *simulated annealing* dalam penentuan jalur. Penelitian Pouri dkk. (2012), memperkenalkan algoritma hibrida dengan menggabungkan algoritma *Ant Colony Optimization dan Particle Swarm Optimization* pada penambahan *pheromone*. Hasil penelitian menunjukkan algoritma *Improved Ant Colony Optimization* memberikan hasil yang lebih baik dari *Ant Colony Optimization* (Xu et al., 2007) dan algoritma hibrida antara *Ant Colony Optimization* dan *Particle Swarm Optimization* memberikan hasil pencarian dengan waktu yang lebih cepat dibandingkan dengan *Ant Colony Optimization* (Pouri et al., 2012). Dalam tugas akhir ini, dibangun program yang menggabungkan algoritma *Improved ant colony Optimization* dan *Particle Swarm Optimization (IACOPSO)* untuk menemukan maksimum *clique* pada graf jaringan sosial.

#### 1.2 Rumusan Masalah

Berdasarkan latar belakang masalah di atas, dapat ditarik rumusan permasalahan yang akan dibahas yaitu bagaimana kemampuan *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* dibandingkan dengan algoritma sebelumnya dalam mencari maksimum *clique* pada jaringan sosial.

#### 1.3 Tujuan dan Manfaat

Adapun tujuan dari tugas akhir ini adalah membangun aplikasi untuk mencari maksimum *clique* dengan menggunakan algoritma *Improved Ant Colony Optimization* digabung dengan *Particle Swarm Optimization*.

Manfaatnya yaitu:

- 1. Sebagai pembelajaran lebih lanjut mengenai maksimum *clique*.
- 2. Sebagai bahan referensi untuk penelitian selanjutnya.
- 3. Membantu dalam analisis jaringan sosial yang berhubungan dengan maksimum *clique*.

#### 1.4 Batasan Masalah

Batasan masalah dari tugas akhir ini adalah:

- 1. Graf yang digunakan adalah graf tak berarah.
- 2. Jumlah simpul yang digunakan maksimal sebanyak 4.500.
- 3. Penempatan *pheromone* dilakukan pada sisi.
- 4. *Dataset* yang digunakan terdiri dari:
  - a. Graf jaringan sosial dimana graf yang akan diuji terdiri dari:
    - i. Zachary's Karate Club3 dengan 34 simpul dan 78 sisi.
    - ii. Social Network of dolphins dengan 62 simpul dan 159 sisi.
    - iii. Facebook Social Circle<sup>4</sup> dengan 4.039 simpul dan 88.234 sisi.
    - iv. Erdos Collaboration Network 991<sup>5</sup> dengan 492 simpul dan 1417 sisi.
    - v. Erdos Collaboration Network 971 dengan 472 simpul dan 1314 sisi.
    - vi. Co-Authorship of Science in Network Theory ant Experiment dengan 1589 dan 1190 sisi.
    - vii. Email Interchange Network, University of Rovia I Virgili, Tarragona dengan 1133 simpul dan 5451 sisi.
  - b. Graf dari DIMACS<sup>6</sup> dimana graf yang akan diuji berkategori graf kecil, graf, dan graf besar. Pembagian kategori akan dijelaskan pada Bab 3 Sub-bab 3.2.

³http://www-personal.umich.edu/~mejn/netdata/

<sup>4</sup>http://snap.stanford.edu/data/

<sup>&</sup>lt;sup>5</sup>http://vlado.fmf.uni-lj.si/pub/networks/data/

<sup>6</sup>http://iridia.ulb.ac.be/~fmascia/maximum\_clique/DIMACS-benchmark

#### 1.5 Metodologi Penelitian

Dalam pelaksanaan tugas akhir ini, langkah-langkahnya sebagai berikut:

- 1. Pengumpulan referensi yang berhubungan dengan pencarian maksimum *clique*, penjelasan tentang algoritma *Ant Colony Optimization* dan *Particle Swarm Optimization*, serta referensi-referensi lain yang berhubungan dengan tugas akhir ini.
- 2. Pengembangan sistem yang mengacu pada metode *waterfall*. Adapun tahapan-tahapan dalam metode *waterfall* adalah:

#### a. Analisis

Pada tahap ini mencakup analisis proses, pemodelan sistem, identifikasi persyaratan fungsional dan non-fungsional dari sistem yang akan dirancang. Analisis proses sistem akan digambarkan dalam bentuk UML activity diagram untuk algoritma Improved Ant Colony Optimization digabung dengan Particle Swarm Optimization. Analisis kebutuhan fungsional akan digambarkan dengan diagram use case.

#### b. Perancangan

Pada tahap ini akan menerjemahkan syarat kebutuhan fungsional yang sebelumnya telah digambarkan dengan diagram *use case* kedalam perancangan perangkat lunak. Tahapan proses ini berfokus pada tampilan aplikasi yang dibangun. Rancangan awal akan digambarkan dengan *mockup* kemudian rancangan akhir akan dibangun dengan *windows form*.

#### c. Pengkodean

Pada tahap ini akan dilakukan implementasi dari analisis dan desain dengan menggunakan bahasa pemrograman C#.

#### d. Pengujian

Proses pengujian akan dilakukan sebagai berikut:

i. Pengujian awal dilakukan dengan mencari nilai rho (tingkat evaporasi) untuk algoritma *Improved Ant colony Optimization* ditambah *Particle Swarm Optimization* (IACOPSO) dimana

nilai yang diuji terdiri dari 0.1, 0.3, 0.5, 0.7, 0.9 dan 1 ( ). *Dataset* yang digunakan adalah *dataset* jaringan sosial dan *dataset* DIMACS <sup>7</sup>. Untuk mempermudah pengujian dan analisis hasil maka graf DIMACS akan dibagi menjadi 3 kelompok yaitu graf kecil, graf sedang, dan graf besar. Tabel dari kelompok *dataset* DIMACS dapat dilihat pada bab 3 *subbab* 3.2 Pengumpulan data.

- ii. Setelah menemukan nilai rho yang sesuai, maka parameter rho akan ditetapkan untuk algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* (IACOPSO) dalam mencari maksimum *clique* pada *dataset* jaringan sosial dan DIMACS. Sedangkan parameter lain akan disamakan dengan penelitian sebelumnya.
- iii. Untuk mengetahui performansi dari algoritma IACOPSO, maka hasil dari algoritma IACOPSO akan dibandingkan dengan hasil dari algoritma ACO, *Improved* ACO (IACO), dan ACO gabung PSO (ACOPSO) dengan menggunakan *dataset* yang sama.
- 3. Menarik kesimpulan bedasarkan hasil pengujian terhadap program dan menyusun laporan tugas akhir.

\_

<sup>&</sup>lt;sup>7</sup> Center for Discrete Mathematics and Theoretical Computer Science.

#### **BAB II**

#### TINJAUAN PUSTAKA

#### 2.1 Teori Graf

Teori graf menjadi alat matematika yang sangat penting dalam berbagai bidang (Wilson, 1996) dan salah satu contoh penggunaanya yaitu skema jalan dimana kota dapat diibaratkan sebagai simpul sedangkan jalan dapat diibaratkan sebagai sisi. Sisi akan menghubungkan kota yang satu dengan kota yang lain sehingga membentuk suatu relasi antar kota.



Gambar 2.1 Graf Sumber : (Wilson, 1996).

Titik P,Q,R,S,T pada Gambar 2.1 dikenal dengan simpul sedangkan garis yang menghubungkan antar simpul disebut sebagai sisi. Derajat atau *degree* dari suatu simpul menyatakan jumlah sisi yang berhubungan dengan simpul tersebut. Misalkan simpul Q memiliki derajat 4, simpul P memiliki derajat 3, dan simpul R memiliki derajat 2 (Wilson, 1996).

#### 2.2 Jaringan

Jaringan merupakan kumpulan dari objek yang memiliki keterkaitan satu sama lain (Easley & Kleinberg, 2010). Perkembangan teknologi dan komunikasi global telah meningkatkan kompleksitas dari jaringan terutama jaringan sosial. Jaringan dapat digunakan untuk mempelajari dan memahami hubungan suatu objek dan pengaruhnya terhadap objek lainnya.

#### 2.2.1 Jaringan Sosial

Manusia sebagai mahluk sosial akan bersosialisasi dengan manusia lainnya. Tingkat sosialisasi manusia berbeda-beda, ada yang memiliki tingkat sosialisasi yang tinggi dan ada yang rendah (Christakis & Fowler, 2009). Untuk dapat memahami dan mempelajari lebih lanjut tentang hubungan antar manusia, maka hubungan tersebut digambarkan kedalam bentuk jaringan yang dikenal dengan jaringan sosial. Jaringan sosial merupakan suatu konsep yang digunakan untuk merepresentasikan data yang berhubungan dengan interaksi sosial (Baglioni et al., 2014). Jaringan sosial kemudian dianalisis untuk mendapatkan informasi-informasi penting yang berhubungan dengan kebiasaan sosial dari setiap aktor (Wasserman & Faust, 1994). Semakin tinggi tingkat sosialisasi seseorang, maka orang tersebut akan tersentralisasi pada jaringan sosial yang dikenal dengan istilah *central* (Christakis & Fowler, 2009).



Gambar 2.2 Jaringan Pertemanan Antara 34 Orang pada Klub Karate Sumber: (Easley & Kleinberg, 2010)

Gambar 2.2 merupakan bentuk jaringan sosial pertemanan pada klub karate di sebuah universitas. Jaringan tersebut terbagi menjadi 2 kelompok kecil dimana simpul nomor 1 dan 34 sebagai *central*. Hal ini dapat dilihat dari hubungan antar simpul yang terkoneksi dengan kelompoknya sendiri dan hanya sedikit dari simpul yang berhubungan antar kelompok. Ini menunjukkan adanya konflik pada jaringan tersebut (Easley & Kleinberg, 2010).



Gambar 2.3 Jaringan Sosial *Hijacker's Network Neighborhood* Sumber: (Krebs, 2002).

Gambar 2.3 memperlihatkan jaringan terorisme yang dibentuk oleh Krebs bedasarkan penyerangan *World Trade Center* pada 11 September 2001 (Krebs, 2002). Terdapat 19 teroris yang terlibat dalam penyerangan dan beberapa aktor yang memiliki kemungkinan membantu penyerangan tersebut (Krebs, 2002).

#### 2.2.1.1 Clique

Pada jaringan sosial, *Clique* atau graf sempurna diartikan sebagai sekelompok orang yang saling mengenal satu sama lain (Easley & Kleinberg, 2010). *Clique* juga dapat diartikan sebagai hubungan antara sekelompok aktor yang memiliki tujuan yang sama (Pattilo et al., 2012).

Salah satu masalah berkaitan dengan *clique* adalah mencari *clique* maksimum dan dikategorikan sebagai permasalahan NP-*Hard*. Ide utama dalam permasalahan maksimum *clique* adalah mencari *clique* dengan jumlah simpul paling besar dalam graf G (Solnon & Fenet, 2006).



Gambar 2.4 Contoh *Clique* pada Graf Sumber: (Roberts & Hennesy, 2003)

Graf pada Gambar 2.4(a) termasuk *clique* maksimum dimana setiap simpul 2,3,4,5 saling terhubung satu sama lain dengan ukuran 4. Gambar 2.3(b) dan 2.3(c) termasuk *clique* tetapi tidak termasuk sebagai *clique* maksimum. Sedangkan pada gambar 2.3(d) bukan sebuah *clique* karena simpul 0 dan 5 tidak saling berhubungan.

#### 2.3 Artificial Intelligence

Artificial intelligence (AI) merupakan salah satu pembelajaran yang mempelajari dan membentuk teknologi yang dapat mengambil tindakan dengan cerdas (Brownlee, 2011). Menurut Russel dan Norvig, AI didefinisikan menjadi empat kategori (Russel & Norvig, 1995)

- 1. Sistem yang berpikir layaknya manusia
- 2. Sistem yang bertindak layaknya manusia
- 3. Sistem yang berpikir rasional
- 4. Sistem yang bertindak secara rasional

Terdapat dua jenis pencarian yang dikenal pada AI dalam mencari solusi yaitu pencarian secara heuristik dan pencarian secara metaheuristik.

#### 2.3.1 Pencarian Heuristik

Menurut Luger (2005), Penyelesaian AI dilakukan secara heuristik dengan dua situasi dasar yaitu:

 Permasalahan tidak memiliki solusi yang tepat karena adanya ambiguitas pada data. Contohnya pada diagnosis medis. Sebuah penyakit terkadang memiliki banyak gejala sehingga dokter menggunakan pendekatan heuristik untuk mendapatkan solusi yang mendekati kebenaran. 2. Permasalahan memiliki solusi yang tepat, akan tetapi membutuhkan waktu lama untuk mendapatkan solusi. Contohnya pada permasalahan catur.

Pencarian Heuristik biasanya bersifat *problem dependent* dimana pencarian heuristik menggunakan pengetahuan khusus dari suatu masalah untuk dapat menyelesaikannya (Russel & Norvig, 1995). Pencarian heuristik juga sering memberikan hasil yang *sub-optimal* atau bahkan gagal dalam menemukan solusi (Luger, 2005) dikarenakan pencarian heuristik tidak mencari semua kemungkinan yang ada untuk mendapatkan hasil yang lebih baik (Li et al., 2007). Untuk mengatasi masalah dari pencarian heuristik, muncul pencarian metaheuristik.

#### 2.3.2 Pencarian Metaheuristik

Dikarenakan pencarian heuristik sering terjebak pada hasil yang bersifat lokal, maka dilakukan pengembangan lanjutan dari pendekatan heuristik untuk meningkatkan hasil yang didapatkan (Yang, 2014). Peningkatan kinerja dari pencarian heuristik dilakukan dengan menggabungkan beberapa metode dari pendekatan heuristik dan terdapat beberapa sifat dari pencarian metaheuristik yaitu:

- 1. Pencarian metaheuristik merupakan strategi-strategi yang memandu pencarian.
- 2. Tujuan pencarian metaheuristik adalah mengefisiensikan pencarian untuk mendapatkan solusi yang optimal atau mendekati optimal.
- 3. Teknik pada algoritma metaheuristik dapat berupa pencarian simpel sampai proses pembelajaran yang rumit.
- 4. Algoritma metaheuristik bersifat *non-deterministic* dimana inputan sama dapat memberikan jalan yang berbeda.
- 5. Terdapat penambahan mekanisme pada algoritma untuk menghindari terjebaknya algoritma pada hasil lokal optimal. (Brownlee, 2011).

Selain meningkatkan hasil, penggabungan dari beberapa pendekatan heuristik bertujuan agar dapat diaplikasikan kedalam banyak permasalahan yang berbeda dengan perubahan struktur algoritma yang lebih sedikit (Dorigo & Stutzle, 2004). Setiap agen dari algoritma metaheuristik menyimpan hasil yang

didapatkan dalam penelusuran dan akan dibandingkan satu sama lain untuk menghasilkan hasil yang terbaik (Dorigo & Stutzle, 2004).

#### 2.3.2.1 Particle Swarm Optimization

Particle Swarm Optimalization (PSO) merupakan algoritma yang diciptakan bedasarkan observasi tingkah laku mahluk hidup dimana mahluk hidup tersebut membentuk suatu koloni atau kelompok untuk mencari makanan ataupun bertahan hidup seperti kelompok burung ataupun sekawanan ikan (Kennedy & Eberhart, 1995). Pada dasarnya, sekelompok burung akan bertengger di atas pohon ataupun pada kabel telepon, namun alasan utama sekelompok burung bertengger karena adanya makanan. Setiap anggota akan mengingat hasil terbaik dan posisi dimana hasil terbaik itu dihasilkan. Hasil terbaik dinamakan pbest[] sedangkan posisinya dikenal dengan pbestx[] dan pbesty[]. Setiap agen akan mengetahui posisi terbaik secara global yang pernah ditemukan oleh salah satu anggota dalam kelompok yang dikenal dengan gbest. Jadi, pbestx[gbest] merupakan posisi X terbaik yang pernah ditemukan dan pbesty[gbest] merupakan posisi Y terbaik yang pernah ditemukan oleh kelompok burung tersebut (Kennedy & Eberhart, 1995).

Dalam algoritma, setiap solusi yang dikenal dengan istilah *particle* akan dibentuk secara acak pada awal pengeksekusian dan akan terus diperbaharui pada tiap langkah untuk mendapatkan solusi yang optimal (Pouri et al., 2012). Kecepatan dan lokasi dari tiap *particle* akan diperbaharui menggunakan Persamaan 1:

(1)

Dimana:

pbest = Posisi terbaik yang pernah dicapai oleh partikel.

gbest = Posisi terbaik yang pernah dicapai oleh kumpulan partikel.

pada iterasi ke t

- = Nilai random dengan jarak (0,1)
- = Parameter pembelajaran yang diasumsikan sama ().
- = Berat inersia yang dianggap bernilai konstan atau acak.

#### 2.3.2.2 Ant Colony Optimization

Algoritma semut atau dikenal dengan algoritma *Ant Colony Optimization* (ACO) merupakan algoritma pencarian metaheuristik yang dibuat bedasarkan observasi dari tingkah laku koloni semut dan digunakan untuk menyelesaikan masalah optimalisasi. (Dorigo & Stutzle, 2004). Di dunia nyata, koloni semut akan keluar dari sarang untuk mencari makanan. Rute yang dilalui semut-semut untuk mencari makanan akan dilakukan secara acak dan pada saat semut tersebut menemukan makanan dan kembali ke sarang, maka semut tersebut akan meninggalkan sebuah tanda yang dikenal dengan *pheromone* (Dorigo & Stutzle, 2004).

Jumlah *pheromone* yang ditinggalkan tergantung pada kualitas dan ukuran dari makanan yang ditemukan. *Pheromone* yang ditinggalkan tidak akan bertahan lama dan akan menguap sehingga jumlah *pheromone* paling sedikit akan hilang sedangkan yang paling banyak akan bertahan. Sisa *pheromone* yang tertinggal akan menarik semut-semut lain untuk mengikuti jalur tersebut (Pouri et al., 2012).

Ide awal algoritma *Ant Colony Optimization* yaitu untuk mencari jalan dengan nilai minimum pada suatu graf (Dorigo & Stutzle, 2004). Hal ini diketahui melalui percobaan kedua yang dilakukan oleh Deneubourg dkk. bedasarkan pengamatan semut *Iridomyrmex humilis* (Deneubourg et al., 1989). Dari percobaan kedua yang dilakukan, dapat dilihat bahwa, koloni semut *Iridomyrmex humilis* akan memilih jalan terpendek untuk mencapai tujuan (Deneubourg et al., 1989) karena jumlah *pheromone* akan terkumpul lebih cepat pada jalan yang pendek dibanding jalan yang panjang.



Gambar 2.5 Pemilihan Rute Terpendek oleh Koloni Semut Sumber: (Xu et al., 2007).

Cara kerja algoritma *Ant Colony Optimization* berawal dari menentukan solusi berbeda secara *random*, kemudian solusi tersebut akan ditingkatkan dengan mengupdate *pheromone*. Berdasarkan masalah pencarian *clique*, *pheromone* dapat diletakkan pada titik atau sisi pada graf. Perpindahan semut pada titik i ke j dapat dirumuskan dengan Persamaan 3:

**(3)** 

#### Dimana:

- = Probabilitas perpindahan dari titik i ke titik j oleh semut k.
- = Jumlah *pheromone* yang ada pada sisi dari i dan j yang akan dilalui.
  - = Faktor *pheromone*.

Pemilihan probabilitas jalan dilakukan secara *incremental* dimana saat simpul pertama ditentukan secara acak () dan kandidat yang berhubungan dengan (), maka faktor *pheromone* dari simpul antara dan ()) diinisialisasikan dengan . Kemudian, saat setiap simpul dimasukan kedalam *clique* () dan berhubungan dengan , maka ) akan di*increment* dengan (Solnon & Fenet, 2006).

Metode untuk melakukan update *pheromone* dapat dituliskan dengan Persamaan 4 dan Persamaan 5:

**(4)** 

(5)

#### Dimana:

- = Tingkat penguapan dari *Pheromone*(antara 0 dan 1).
- = Jumlah *pheromone* baru pada sisi antara titik i dan j.
- = Jumlah *pheromone* saat ini pada sisi antara titik i dan j.
- = Jumlah *pheromone* yang ditambahkan untuk solusi yang diinginkan.

Tahap awal dalam melakukan update *pheromone* yaitu melakukan evaporasi pada setiap *pheromone* yang ada menggunakan Persamaan 4. Kemudian penambahan *pheromone* dilakukan pada solusi yang diinginkan menggunakan Persamaan 5.

Jumlah *pheromone* yang ditambahkan () dapat dihitung sesuai Persamaan 6.

(6)

#### Dimana:

 $G_{best}$  = Hasil yang paling baik yang pernah ditemukan

Best tour = Hasil terbaik yang ditemukan dalam iterasi.

Algoritma *Ant Colony Optimization* yang dibuat oleh Fennet dan Solnon yang disebut dengan *Ant-Clique* untuk menyelesaikan permasalahan *clique* maksimum dapat dilihat pada Gambar 2.6.

```
procedure Ant-Clique
Initialize pheromone trails
repeat
for k in 1..nb Ants do: construct a clique Ck
Update pheromone trails w.r.t. {C1, . . . , CnbAnts}
until max cycles reached or optimal solution found.
```

# Gambar 2.6 Algoritma *Ant-Clique* Sumber: (Solnon & Fenet, 2006)

Tahap awal algoritma *Ant-Clique* dimulai dari inisialisasi jejak *pheromone* pada sisi. Kemudian setiap semut akan mulai membentuk *clique* dengan cara memilih simpul awal secara acak, kemudian memilih simpul lainnya yang akan dimasukkan kedalam C<sub>k</sub>. Algoritma untuk membentuk *clique* dapat dilihat pada Gambar 2.7 (Solnon & Fenet, 2006).

```
Choose randomly a first vertex vf \in V C \leftarrow \{vf \} Candidates \leftarrow \{vi/(vf, vi) \in E\} while Candidates \_= \varnothing do

Choose a vertex vi \in Candidates with probability p(vi) = C \leftarrow C \ U\{vi\} Candidates \leftarrow Candidates \ \cap \{vj/(vi, vj) \in E\} end while return C
```

Gambar 2.7 Algorimta *Ant-Clique* dalam Membentuk *Clique* Sumber : (Solnon & Fenet, 2006)

Sesudah tiap semut selesai membentuk *clique*, maka jejak *pheromone* akan diperbaharui sesuai dengan Persamaan 4 dan Persamaan 5. *Pheromone* akan dikurangi untuk mensimulasikan penguapan *pheromone* di dunia nyata. Kemudian *pheromone* akan ditambahkan berdasarkan Persamaan 6. Nilai dari alpha ( dan tingkat penguapan atau evaporasi atau rho ( merupakan parameter yang paling penting dalam menemukan hasil oleh algoritma *Ant Colony Optimization*. Nilai alpha berpengaruh terhadap sensitivitas dari semut terhadap jejak *pheromone* dan tingkat penguapan berpengaruh terhadap kecepatan penguapan dari *pheromone*.

#### 2.4 Improved Ant Colony Optimization

Menurut Xu dkk. (2007), simpul yang dimasukkan ke C<sub>k</sub> pada algoritma *Ant Colony Optimization* Fennet dan Solnon hanya bergantung pada jejak *pheromone*. Akan tetapi, jumlah derajat pada simpul dapat menjadi pertimbangan

dalam memilih simpul yang akan dilalui oleh semut sehingga dapat meningkatkan peformansi dari algoritma *Ant Colony Optimization*. *Improved Ant Colony Optimization* (IACO) menggunakan algoritma *ant-clique* dari Fennet dan Solnon dan dilakukan perubahan dalam pemilihan simpul kandidat dimana pemilihannya dilakukan dengan Persamaan 7. IACO juga menambahkan metode *annealing* untuk meningkatkan hasil yang didapat. Proses *annealing* dapat dilihat pada Persamaan 8.

**(7)** 

Dimana:

Degree = Derajat ke pada simpul (degree(i) = dimana = 1 jika . Jika tidak, = 0).

EdgeNum = Jumlah sisi pada graf G (EdgeNum = dimana = 1 jika . Jika tidak, = 0).

T(t) = Variabel temperatur (sebagai faktor penurunan eksponensial agar semut dapat mencapai tingkat stabil).

Pembaharuan T(t) dilakukan dengan Persamaan 8

(8)

Dimana:

T(t+1) = Pembaharuan dari T(t).

= Faktor pengurangan.

Dengan perubahan pada Persamaan 7, maka probabilitas pemilihan simpul kandidat akan berfokus pada jumlah derajat yang besar pada graf sehingga dapat membantu semut dalam menemukan solusi optimal dengan lebih baik dan cepat. Persamaan 8 bertujuan agar semut dapat mencapai kondisi stabil.

Untuk meningkatkan kecepatan dari pencarian, IACO merubah parameter alpha dan rho yang statis dari penelitian sebelumnya dengan parameter yang dinamis dimana perubahan nilai alpha dan rho dapat dilihat pada Persamaan 9 dan perubahan nilai rho dapat dilihat pada Persamaan 10.

(9)

(10)

#### Dimana:

t = Jumlah iterasi

= Konstanta kecil yang bernilai positif

#### 2.5 Ant Colony Optimization Ditambah Particle Swarm Optimization

Menurut Pouri dkk. (2012), kelemahan dari penambahan pheromone dari pendekatan heuristik sebelumnya adalah terjadi peningkatan dalam jumlah perhitungan pada perhitungan penambahan *pheromone* (seperti pada Persamaan 6). Untuk mengurangi peningkatan perhitungan *pheromone*, maka dilakukan penggabungan antara ACO dan PSO untuk mencari *clique* maksimum pada graf. ACO digunakan untuk menelusuri graf dan memberi *pheromone*, sedangkan PSO digunakan untuk menghitung peningkatan *pheromone*. Prosedur ini akan terus berulang sampai menemukan *clique* maksimum. pada *pheromone* yang telah diperkuat untuk *clique* yang diinginkan akan dihitung dengan algoritma PSO menggunakan Persamaan 11:

(11)

#### Dimana:

- = Jumlah penambahan *pheromone* saat ini pada simpul i dan j.
- = Jumlah penambahan *pheromone* baru pada simpul i dan j dan pada iterasi ke t+1.

= Nilai penambahan pada iterasi t.

Nilai dapat ditentukan menggunakan Persamaan 12:

(12)

#### Dimana:

- = Nilai baru dari pada iterasi ke t+1.
- = Dua nilai acak diantara 0 sampai 1.
- = Parameter pembelajaran. ()
- Jumlah simpul *clique* terbaik sekarang dan jumlah simpul *clique* terbaik yang telah ditemukan sampai saat ini.

# 2.6 Improved Ant Colony Optimization ditambah Particle Swarm Optimization

Dari penelitian Xu, dkk. (2007), *Improved Ant Colony Optimization* dapat memberikan hasil yang baik dibandingkan dengan *Ant Colony Optimization*. Sedangkan pada penelitian Pouri, dkk. (2012), *Ant Colony Optimization*.yang ditambah dengan *Particle Swarm Optimization* pada proses penambahan *pheromone* dapat memberikan hasil yang lebih baik dengan waktu yang lebih singkat dibandingkan dengan *Ant Colony Optimization*. Maka *Improved Ant Colony Optimization* akan digabung dengan *Ant Colony Optimization* ditambah *Particle Swarm Optimization* agar dapat meningkatkan hasil pencarian. Pemilihan kandidat menggunakan Persamaan 7 dan 8. Penggunaan parameter alpha dan rho dilakukan secara dinamis dengan menggunkan Persamaan 9 dan 10, sedangkan penambahan *pheromone* pada solusi yang terbaik akan ditambahkan menggunakan Persamaan 11 dan 12. Untuk Persamaan 10, penentuan tingkat evaporasi akan disesuaikan dengan hasil pengujian yang akan dilakukan pada Bab 4.

#### **BAB III**

#### **METODOLOGI PENELITIAN**

#### 3.1 Pengumpulan Referensi

Referensi awal yang dikumpulkan adalah referensi-referensi mengenai Permasalahan maksimum *clique* dan referensi penelitian algoritma-algoritma yang digunakan untuk menyelesaikan permasalahan maksimum *clique*. Dari hasil pengumpulan referensi didapat dasar utama untuk menggabungkan algoritma *Improved Ant Colony Optimization*, dan *Ant Colony Optimization* ditambah *Particle Swarm Optimization* menjadi algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization*.

#### 3.2 Pengumpulan Dataset

Terdapat dua jenis *dataset* yang digunakan yaitu *dataset* jaringan sosial dan *dataset* DIMACS. Format data yang digunakan mengikuti format dari DIMACS dimana terdapat kolom komentar, inisialisasi permasalahan dan hubungan antar simpul. Bentuk format *dataset* yang digunakan dapat dilihat pada Gambar 3.1

```
c FILE: C125.9.clq
c SOURCE: Generated by Michael Trick using
           ggen, a program by Craig Morgenstern
c DESCRIPTION: Cx.y is a random graph on x vertices c with edge probability .y
c G(n,p) graph
c graph gen seed : 7432
c number of vertices : 125
                        : 74328432
                                                                       - 1
c max number of edges: 20000
c edge probability : 0.900000
                        : dense
c data structure
              Graph Stats
c number of vertices : 125
c nonisolated vertices: 125
c number of edges
                          : 6963
c edge density
                          : 0.898452
c max degree
                          : 119
c avg degree
                          : 111.41
<u>c min degree</u>
                            102
                                                                        2
p col 125 6963
e 2 1
e 3 1
e 4 1
                                                                       .3
e 4 2
  4 3
```

#### Gambar 3.1 Format Dataset

#### Keterangan Gambar 3.1:

- 1. Kolom komentar : Biasa ditandai dengan c, %, atau \*. Berisi penjelasan tentang *dataset*.
- 2. Kolom inisialisasi permasalahan : berisi jumlah simpul dan jumlah sisi pada dataset.
- Kolom hubungan simpul : Berisi hubungan antar simpul. Pada Gambar 3.1, dapat dilihat simpul 2 terhubung dengan simpul 1.
   Simpul 3 terhubung dengan simpul 1.

Untuk *dataset* jaringan sosial yang digunakan dapat dilihat pada Tabel 3.1.

**Tabel 3.1 Jaringan Sosial** 

| Dataset                                                             | Max Clique | Simpul | Sisi  |
|---------------------------------------------------------------------|------------|--------|-------|
| Zachary's karate club                                               | -          | 34     | 78    |
| Social network of dolphins                                          | -          | 62     | 159   |
| Facebook Social circle                                              | -          | 4039   | 88234 |
| Erdos Collaboration Network 991                                     | -          | 492    | 1417  |
| Erdos Collaboration Network 971                                     | -          | 472    | 1314  |
| Co-Authorship of Science in Network Theory ant Experiment           | -          | 1589   | 1190  |
| Email Interchange Network, University of Rovia I Virgili, Tarragona | -          | 1133   | 5451  |

Untuk *dataset* DIMACS, dilakukan pembagian menjadi 3 bagian berdasarkan jumlah simpul. Hal ini bertujuan untuk mempermudah pengujian dan analisis. Pembagian *dataset* DIMACS dapat dilihat pada Tabel 3.2, 3.3, dan 3.4.

**Tabel 3.2 DIMACS Dengan Graf Kecil** 

| Dataset    | Max Clique | Simpul | Sisi  |
|------------|------------|--------|-------|
| p_hat300-1 | 8,00       | 300    | 10933 |
| brock200_2 | 12,00      | 200    | 9876  |
| hamming8-4 | 16,00      | 256    | 20864 |
| brock200_4 | 17,00      | 200    | 13089 |
| brock400_2 | 29,00      | 400    | 59786 |
| brock400_4 | 33,00      | 400    | 59765 |

| gen200_p0.9_44 | 44,00 | 200 | 17910 |
|----------------|-------|-----|-------|
| gen200_p0.9_55 | 55,00 | 200 | 17910 |
| gen400_p0.9_55 | 55,00 | 400 | 71820 |
| gen400_p0.9_65 | 65,00 | 400 | 71820 |
| gen400_p0.9_75 | 75,00 | 400 | 71820 |
| p_hat300-2     | 25,00 | 300 | 21928 |
| p_hat300-3     | 36,00 | 300 | 33390 |
| C250.9         | 44,00 | 250 | 27984 |
| C125.9         | 34,00 | 125 | 6963  |

**Tabel 3.3 DIMACS Dengan Graf Sedang** 

| Dataset    | Max Clique | Simpul | Sisi   |
|------------|------------|--------|--------|
| DSJC500_5  | 13,00      | 500    | 112332 |
| C500.9     | 57,00      | 500    | 112332 |
| brock800_2 | 29,00      | 800    | 208166 |
| brock800_4 | 33,00      | 800    | 207643 |
| keller5    | 27,00      | 776    | 225990 |
| p_hat700-1 | 11,00      | 700    | 60999  |
| p_hat700-2 | 44,00      | 700    | 121728 |
| p_hat700-3 | 62,00      | 700    | 183010 |

**Tabel 3.4 DIMACS Dengan Graf Besar** 

| Dataset     | Max Clique | Simpul | Sisi   |
|-------------|------------|--------|--------|
| MANN_a45    | 345,00     | 1035   | 533115 |
| p_hat1500-2 | 65,00      | 1500   | 568960 |
| p_hat1500-3 | 94,00      | 1500   | 847244 |
| DSJC1000_5  | 15,00      | 1000   | 499652 |

#### 3.3 Analisis

#### 3.1.1 Analisis Proses

Tahap pertama dalam proses pencarian *clique* oleh algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* adalah inisialisasi parameter awal. Parameter awal dapat mempengaruhi efektivitas algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* dalam mencari *maximum clique*. Setelah parameter awal telah diinisialisasi, maka algortima akan mulai mencari *clique* yang ada pada graf.

Pencarian setiap semut akan dibandingkan untuk mendapatkan jumlah *clique* terbesar yang pernah ditemukan oleh semut (local best) dan kemudian dibandingkan dengan jumlah simpul terbanyak yang pernah ditemukan pada setiap iterasi ( $G_{best}$ ). Proses algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* dapat dilihat pada Gambar 3.2. sedangkan Gambar 3.3. merupakan *subactivit y* untuk mencari *clique* yang dilakukan oleh setiap semut.



Gambar 3.2 Activity Diagram Pencarian Maximum Clique dengan Algoritma
Improved Ant Colony Optimization Ditambah Particle Swarm Optimization



Gambar 3.3 Subactivity Diagram Maximum Clique dalam Melakukan Pencarian Clique

Dalam mencari *maximum clique*, algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* akan menggunakan Persamaan 7 untuk menentukan simpul kandidat yang akan dilalui, Persamaan 4 untuk proses evaporasi, dan Persamaan 10 untuk membarui *pheromone* yang telah ada.

Bentuk Persamaan 7 yang digunakan dalam penentuan kandidat yang akan dilalui

#### Keterangan:

- = Kemungkinan perpindahan antar simpul.
- = Jumlah *pheromone* yang ada pada sisi yang akan dilalui.
- = Total *pheromone* yang ada pada kandidat.
- = Variabel temperatur agar semut dapat mencapai posisi stabil

*Degree* = Jumlah sisi yang menghubungkan simpul kandidat.

EdgeNum = Jumlah sisi yang ada pada graf.

= Faktor pengurangan

Perhitungan probabilitas jalan yang akan dipilih oleh semut akan dilakukan secara *incremental* seperti yang telah dijelaskan pada bab 2 sebelumnya.

Bentuk Persamaan 10 dalam membarui pheromone.

#### Keterangan:

- = Jumlah penambahan *pheromone* baru.
- = Jumlah penambahan *pheromone* saat ini.
- = Jumlah *pheromone* baru pada sisi antara titik i dan j.
- = Jumlah *pheromone* saat ini pada sisi antara titik i dan j.
- = Penambahan *pheromone*.
- = Penambahan *pheromone* baru.
- = Parameter pembelajaran.
- = Nilai acak antara 0 1.
- = Jumlah simpul *clique* terbesar yang ditemukan oleh semut.
- = Jumlah simpul *clique* terbesar yang ditemukan pada iterasi.

Proses perhitungan *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization*:

1. Misalkan graf yang akan dilakukan pencarian *maximum clique* ditunjukkan dengan Gambar 3.3



Gambar 3.4 Contoh Graf

- a. Bentuk matriks dari Gambar 3.4
- b. Matriks *pheromone* awal dianggap sama. Misalkan nilai awal = 1.
- c. Jumlah semut = 3
- d. = 1
- e. = 0.05

```
f. = 0.95
g. = 1.0
```

h. 
$$V=0$$

$$i. = 0$$

$$j. = 0.3$$

$$k. = 0.7$$

1.

$$m. Local best = 0$$

$$n. = 0.0002$$

2. Tentukan jumlah derajat untuk setiap simpul dengan menghitung jumlah angka satu pada matriks dan tentukan jumlah semua sisi yang ada pada graf dengan menjumlahkan semua derajat pada setiap simpul kemudian dibagi .

$$A = 2$$

$$B = 5$$

$$C = 4$$

$$D = 4$$

$$E = 5$$

$$F = 4$$

Total semua simpul : = 12

- 3. Jalankan semut pertama.
- 4. Lakukan pencarian *clique* dengan menentukan simpul awal secara acak. Misalkan simpul awal yang terpilih adalah simpul A.
- 5. Masukan simpul A kedalam C1

$$C1 = \{A\}$$

6. Pilih kandidat yang berhubungan dengan simpul A.

$$Kandidat = \{B,E\}$$

7. Hitung probabilitas untuk dilalui oleh semut 1. Perhitungan awal dilakukan secara *incremental*. Kemudian hasil perhitungan *incremental* akan dibagi dengan total *pheromone* pada kandidat.

Perhitungan awal

$$P(B) = 1$$

$$P(E) = 2$$

Pembagian dengan total pheromone kandidat

$$P(B) = \frac{1}{2} = 0.5 + = 0.917$$

$$P(E) = 2/2 = 1 + = 1.417$$

- Hasilkan nilai acak r untuk menentukan simpul yang akan dipilih. Misalkan nilai r = 0.875 maka, bandingkan nilai r dengan probabilitas yang ada. Misalkan hasil pemilihan didapat nilai B.
- 9. Perbarui nilai

$$= 0.95$$

10. Jalankan semut ke simpul B. Masukan simpul B ke C1.

$$C1 = \{A,B\}$$

11. Keluarkan simpul B dari kandidat.

$$Kandidat = \{E\}$$

12. Cek hubungan antar simpul B dengan simpul E. Jika berhubungan, hitung kemungkinan untuk simpul yang bersangkutan. Jika tidak, keluarkan simpul dari kandidat.

$$\{B,E\} = 1 (Ya)$$

- 13. Hitung kemungkinan simpul dalam kandidat
- 14. Hitung kemungkinan dipilihnya setiap simpul dalam kandidat

$$P(E) = 1.396$$

15. Perbarui nilai

$$= 0.903$$

- 16. Hasilkan nilai acak r. Misalkan r = 0.640. maka semut memilih simpul E.
- 17. Perbarui nilai
- 18. Masukan E kedalam C1.

$$C1 = \{A, B, E\}$$

19. Keluarkan E dari kandidat

$$Kandidat = \{ \}$$

20. Kandidat kosong, pencarian semut pertama selesai. Bandingkan hasil yang ditemukan semut pertama dengan local best.

C1 berisi 3 simpul, sedangkan *local best* masih 0. Perbarui nilai *local best* dengan jumlah C1. Sehingga *local best* = 3.

- 21. Lakukan langkah yang sama untuk semut 2 dan 3.
- 22. Misalkan setiap semut telah melakukan penelusuran dan hasil *local best* yang didapat adalah 5 dan simpul yang termasuk *local best*

Simpul local best = (C-D-F-E-B)

23. Bandingkan nilai *global best* dengan *local best*.

$$(Local\ best > Global\ best) \Longrightarrow (5 > 0)$$
 ya

Perbarui nilai *global best* dengan *local best* sehingga nilai *global best* sekarang adalah 5.

- 24. Lakukan perbaruan *pheromone*. Misalkan nilai  $r_1 = 0.255$  dan  $r_2 = 0.871$ 
  - a. Lakukan evaporasi untuk semua sisi

= 0.05

b. Perbaruan *pheromone* untuk setiap sisi yang menghubungkan simpul *local best* (C-D-F-E-B)

= 0.03431

Jumlah pheromone baru adalah

- c. Perbarui nilai alpha dengan mengecek jumlah iterasi sesuai dengan ketentuan pada Persamaan 9.
- d. Perbarui nilai rho

$$= (1-0.0002)0.95 = 0.94981$$

Nilai rho yang akan digunakan untuk evaporasi pada iterasi selajutnya adalah 0.94981.

25. Lakukan langkah awal sampai iterasi maksimum. Setelah iterasi maksimum, tampilkan *global best* yang telah didapat. Dalam kasus ini jumlah *global best* adalah 5.

## 3.3.1 Analisis Kebutuhan Fungsional

Analisis kebutuhan fungsional digambarkan dengan menggunakan *use case diagram*.



Gambar 3.5 USE CASE Diagram Pencarian Maximum Clique dengan Algoritma Improved Ant Colony Optimization Ditambah Particle Swarm Optimization

Skenario dari *use case* pada Gambar 3.5 akan ditunjukan pada Tabel 3.5, Tabel 3.6, dan Tabel 3.7.

Tabel 3.5 Skenario USE CASE Memasukan Dataset

| Nama Use Case   | Memasukan dataset                                                  |                                                    |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Aktor           | Pengguna                                                           |                                                    |  |  |  |  |  |
| Deskripsi       | Use case ini untuk menginpi<br>pencarian                           | ut graf yang akan dilakukan                        |  |  |  |  |  |
| Prakondisi      | Tidak ada graf yang terinput                                       | t                                                  |  |  |  |  |  |
| Pemicu Use Case | Use case akan bekerja setela                                       | ah memilih tombol masukan                          |  |  |  |  |  |
|                 | graf.                                                              |                                                    |  |  |  |  |  |
| Event utama     | Aksi Aktor                                                         | Respon sistem                                      |  |  |  |  |  |
|                 | 1. Pengguna                                                        | 3. Sistem memunculkan                              |  |  |  |  |  |
|                 | memasukan jumlah<br>simpul dari graf                               | tabel sesuai dengan jumlah simpul.                 |  |  |  |  |  |
|                 | 2. Pengguna memilih tombol bentuk tabel                            | 6. Sistem <i>mengenerate</i> hubungan antar simpul |  |  |  |  |  |
|                 | 4. Pengguna menginput hubungan antar simpul yang ditandai dengan 0 |                                                    |  |  |  |  |  |

|                  | dan 1.                                               |  |  |  |  |  |
|------------------|------------------------------------------------------|--|--|--|--|--|
|                  |                                                      |  |  |  |  |  |
|                  | 5. Pengguna menekan                                  |  |  |  |  |  |
|                  | tombol <i>generate</i>                               |  |  |  |  |  |
|                  | matriks                                              |  |  |  |  |  |
|                  | Alt 4: Pengguna memasukan hubungan lebih dari 1 atau |  |  |  |  |  |
| Event alternatif | kurang dari 0. Sistem akan memberikan pemberitahuan  |  |  |  |  |  |
| Event atternatif | dan meminta kembali pengguna untuk memasukan         |  |  |  |  |  |
|                  | hubungan antar simpul.                               |  |  |  |  |  |
| Vasimpulan       | Graf yang digunakan adalah graf hasil penginputan    |  |  |  |  |  |
| Kesimpulan       | pengguna                                             |  |  |  |  |  |
| Pascakondisi     | Graf telah dimasukan                                 |  |  |  |  |  |

# Tabel 3.6 Skenario USE CASE Mencari Maximum Clique

| Nama Use Case          | Mencari Maximum Clique                                        |                               |  |  |  |  |  |  |
|------------------------|---------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|
| Aktor                  | Pengguna                                                      |                               |  |  |  |  |  |  |
| Deskripsi              | Use case ini untuk mencari maximum clique dari graf           |                               |  |  |  |  |  |  |
| Prakondisi             | Maximum clique dari graf belum ditemukan                      |                               |  |  |  |  |  |  |
|                        | <i>Use case</i> akan bekerja setelah pengguna selesai memilih |                               |  |  |  |  |  |  |
| Pemicu <i>Use Case</i> | dataset, menentukan parameter,                                | dan menekan tombol            |  |  |  |  |  |  |
|                        | mulai.                                                        |                               |  |  |  |  |  |  |
|                        | Aksi actor                                                    | Respon sistem                 |  |  |  |  |  |  |
|                        | 1. Pengguna memilih <i>dataset</i>                            | 4. Sistem melakukan           |  |  |  |  |  |  |
|                        | yang akan digunakan                                           | penelusuran graf              |  |  |  |  |  |  |
| Event utama            | 5. Pengguna memasukan                                         | untuk mencari                 |  |  |  |  |  |  |
|                        | parameter awal                                                | maximum clique                |  |  |  |  |  |  |
|                        | 6. Pengguna menekan tombol                                    |                               |  |  |  |  |  |  |
|                        | mulai                                                         |                               |  |  |  |  |  |  |
|                        | Alt 1: Pengguna belum mem                                     | ilih <i>dataset</i> yang akan |  |  |  |  |  |  |
|                        | digunakan, maka sistem akar                                   |                               |  |  |  |  |  |  |
| Event alternatif       | notifikasi untuk memasukan data                               | aset.                         |  |  |  |  |  |  |
| Event atternatif       | Alt 2: Parameter awal yang dimasukan tidak sesuai.            |                               |  |  |  |  |  |  |
|                        | Sistem akan memberitahukan pengguna untuk mengisi             |                               |  |  |  |  |  |  |
|                        | kembali parameter awal.                                       |                               |  |  |  |  |  |  |
| Kesimpulan             | Sistem akan mulai mencari maximum clique saat dataset         |                               |  |  |  |  |  |  |
| Kesimpulan             | dan parameter awal telah ditetap                              | kan                           |  |  |  |  |  |  |
| Pascakondisi           | Jumlah maximum clique ditemul                                 | kan                           |  |  |  |  |  |  |

# Tabel 3.7 Skenario USE CASE Menampilkan Gambar Graf

| Nama Use Case | Menampilkan gambar graf                                                |  |  |  |  |  |
|---------------|------------------------------------------------------------------------|--|--|--|--|--|
| Aktor         | Pengguna                                                               |  |  |  |  |  |
| Deskripsi     | Use case ini untuk menampilkan gambar graf dari hasil masukan pengguna |  |  |  |  |  |
| Prakondisi    | Gambar graf belum ditampilkan, dataset telah                           |  |  |  |  |  |

|                  | dimasukan                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Pemicu Use Case  | <i>Use case</i> akan bekerja se tombol tampilkan gamb dimasukan.                        | 1 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                  | Aksi aktor Respon sistem                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Event utama      | 1. Pengguna menekan 2. Sistem tombol tampilkan graf menampilkan graf                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Event alternatif | Alt 1: Pengguna belum m<br>sistem akan memberikan no<br>dataset terlebih dahulu.        | The state of the s |  |  |  |  |  |
| Kesimpulan       | Sistem akan menampilkan gambar dari graf jika pengguna telah memasukan <i>dataset</i> . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Pascakondisi     | Gambar graf dari dataset di                                                             | tampikan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

## 3.3.2 Analisis Kebutuhan Non-Fungsional

Persyaratan analisis Non-fungsional dari sistem pencarian *maximum clique* yang dilakukan dengan algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* adalah sebagai berikut:

- a. Sistem dapat memberikan pemberitahuan jika proses yang dikerjakan sudah selesai.
- b. Sistem dapat memberikan informasi maksimum clique yang ada pada *dataset* berupa gambar.
- c. Aplikasi akan menampilkan peringatan ketika terjadi kesalahan pada pemasukan data.
- d. Aplikasi akan menampilkan peringatan ketika *dataset* yang dimasukan tidak sesuai dengan format yang telah ditentukan.

### 3.4 Perancangan

## 3.4.1 Perancangan Tampilan

Perancangan pada tugas akhir ini adalah sebagai berikut:



Gambar 3.6 Tampilan Form Pencarian Maximum Clique

Keterangan Gambar 3.6:

1. Tombol Pengujian *Dataset* : Menampilkan *form* pengujian *dataset* 

2. Tombol Pengujian Tabel : Menampilkan *form* pengujian tabel



Gambar 3.7 Tampilan Form Pengujian Dataset

Keterangan Gambar 3.7:

1. Open Dataset : Memulih dataset yang akan diuji

2. Checked Listbox : Berisi dataset yang akan diuji

3. Clear List : Menghapus isi dari checked listbox

4. Datagridview : Menampilkan hasil dari pengujian

5. Jumlah Iterasi : Menentukan jumlah iterasi

6. Jumlah Semut : Menentukan jumlah semut

7. Alpha : Menentukan nilai alpha

8. Rho : Menentukan nilai rho

9. *Edit* : Merubah nilai dari iterasi, semut, alpha, dan rho

10. Apply : Menetapkan perubahan nilai dari iterasi, semut, alpha,

dan rho.

11. Mulai : Menjalankan pencarian *maximum clique*.



Gambar 3.8 Tampilan Form Pengujian Tabel

## Keterangan Gambar 3.8:

1. Batal : Membatalkan hasil masukan pengguna

2. Selesai : Menetapkan hasil masukan pengguna

3. Create Table : Menampilkan datagridview sesuai dengan jumlah simpul

4. Algoritma : Memilih jenis algoritma

5. Jumlah *node* : menentukan jumlah simpul dari graf yang akan diuji

6. Datagridview hub : memasukan hubungan antar graf

7. Mulai : menjalankan pencarian

8. Ulang : memulai kembali pengimputan dari awal

9. Datagridview hasil : Menampilkan hasil dari pencarian

10. Proses Perhitungan: Tempat menampilkan proses perhitungan

11. Jumlah iterasi : Menetapkan jumlah iterasi.12. Jumlah semut : Menentapkan jumlah semut

13. Alpha : Menetapkan nilai Alpha14. Rho : Menetapkan nilai rho

15. *Edit* : Merubah nilai dari jumlah iterasi, semut, alpha, dan rho.

16. *Apply* : Menetapkan hasil perubahan

17. Tampilkan gambar : Menampilkan form gambar



Gambar 3.9 Tampilan Form Gambar

Form pada gambar 3.9 bertujuan untuk menampilkan gambar dari dataset berupa graf.

### 3.5 Pengkodean

Pengkodean akan dilakukan dengan bahasa *C#* dengan menggunakan plat *form windows form*.

## 3.6 Pengujian

Proses pengujian akan dilakukan sebagai berikut:

- a. Pengujian awal dilakukan dengan mencari nilai rho (tingkat evaporasi) untuk algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* (IACOPSO) dimana nilai yang diuji terdiri dari 0.1, 0.3, 0.5, 0.7, 0.9 dan 1 ( ). *Dataset* yang digunakan adalah *dataset* jaringan sosial dan *dataset* DIMACS. Untuk mempermudah pengujian dan analisis hasil maka graf DIMACS akan dibagi menjadi 3 kelompok yaitu graf kecil, graf sedang, dan graf besar. Tabel dari kelompok *dataset* DIMACS dapat dilihat pada bab 3 subbab 3.2 Pengumpulan data.
- b. Setelah menemukan nilai rho yang sesuai, maka parameter rho akan ditetapkan untuk algoritma *Improved Ant Colony Optimization* ditambah *Particle Swarm Optimization* (IACOPSO) dalam mencari maksimum *clique* pada *dataset* jaringan sosial dan DIMACS.
- c. Untuk mengetahui peformansi dari algoritma IACOPSO, maka hasil dari algoritma IACOPSO akan dibandingkan dengan hasil dari algoritma ACO, *improved* ACO (IACO), dan ACO gabung PSO (ACOPSO) dengan menggunakan *dataset* yang sama.

#### 3.7 Menarik Kesimpulan

Kesimpulan akan diambil berdasarkan hasil dari pengujian yang telah dilakukan.

# BAB IV HASIL DAN PEMBAHASAN

#### 4.1 Hasil

Pada aplikasi TA ini terdapat dua mode, yaitu mode pengujian *dataset* dan mode pengujian dengan tabel.



Gambar 4.1 Tampilan Awal Program

Pada gambar 4.1, pengguna dapat memilih mode pengujian dengan *dataset* ataupun mode pengujian dengan tabel.



Gambar 4.2 Tampilan Form Pengujian Dataset

Form pengujian dataset digunakan untuk melakukan pengujian dengan dataset dimana dataset dapat berupa ekstensi .txt dan .clq



Gambar 4.3 Tampilan Hasil Form Pengujian Dataset

Gambar 4.3 memperlihatkan hasil yang ditampilkan oleh *Form* Pengujian *Dataset*. Tampilan hasil terdiri dari nama *dataset* yang diuji, jumlah simpul, jumlah sisi, algoritma, maksimum *clique* yang ditemukan, dan waktu yang dibutuhkan untuk menemukan maksimum *clique*.



Gambar 4.4 Tampilan Form Pengujian Tabel

Form pengujian tabel digunakan untuk melakukan pencarian dari hasil masukan pengguna yang berupa tabel.



Gambar 4.5 Tampilan Form Pengujian Tabel ketika Memasukkan Data

Gambar 4.5 memperlihatkan data dimasukkan di dalam tabel dimana nilai 0 menandakan tidak ada hubungan antar simpul dan nilai 1 menandakan terdapat hubungan antar simpul.



Gambar 4.6 Tampilan Hasil Keluaran Form Pengujian Tabel

Setelah pencarian maksimum *clique* selesai maka hasil keluarannya dapat dilihat pada Gambar 4.6.



Gambar 4.7 Tampilan Form Gambar

Setelah hasil keluaran pada *Form* Tabel ditampilkan, pengguna dapat menekan tombol tampilkan gambar. *Form* Tampilan gambar dapat dilihat pada Gambar 4.7

### 4.2 Pembahasan

Spesifikasi perangkat keras yang digunakan dalam pengujian adalah sebagai berikut:

- a. AMD FX(tm) -8350 Eight-Core Processor 4.00Ghz
- b. RAM 16.0 GB

Sedangkan spesifikasi perangkat lunak yang digunakan adalah:

- a. Windows 7 Ultimate 64-bit
- b. Microsoft Visual Studio 2010

Dataset yang akan diuji dapat dilihat pada Tabel 4.1

Tabel 4.1 Dataset yang Diuji

| Kategori Dataset                        | Nama Dataset                                                           | Max<br>Clique | Simpul | Sisi   |
|-----------------------------------------|------------------------------------------------------------------------|---------------|--------|--------|
|                                         | Zachary's karate club                                                  | =             | 34     | 78     |
|                                         | Social network of dolphins                                             | -             | 62     | 159    |
|                                         | Facebook Social circle                                                 | -             | 4.039  | 88.234 |
| Social Network                          | Erdos Collaboration Network 991                                        | -             | 492    | 1417   |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Erdos Collaboration Network 971                                        | -             | 472    | 1314   |
|                                         | Co-authorship of scientist in network theory and experiment            | -             | 1589   | 1190   |
|                                         | Email Interchange Network, University of Rovia<br>I Virgili, Tarragona | -             | 1133   | 5451   |

|             | p_hat300-1     | 8   | 300   | 10 933  |
|-------------|----------------|-----|-------|---------|
|             | brock200_2     | 12  | 200   | 9 876   |
|             | hamming8-4     | 16  | 256   | 20 864  |
|             | brock200_4     | 17  | 200   | 13 089  |
|             | brock400_2     | 29  | 400   | 59 786  |
|             | brock400_4     | 33  | 400   | 59 765  |
|             | gen200_p0.9_44 | 44  | 200   | 17 910  |
| Graf Kecil  | gen200_p0.9_55 | 55  | 200   | 17 910  |
|             | gen400_p0.9_55 | 55  | 400   | 71 820  |
|             | gen400_p0.9_65 | 65  | 400   | 71 820  |
|             | gen400_p0.9_75 | 75  | 400   | 71 820  |
|             | p_hat300-2     | 25  | 300   | 21 928  |
|             | p_hat300-3     | 36  | 300   | 33 390  |
|             | C250.9         | 44* | 250   | 27 984  |
|             | C125.9         | 34* | 125   | 6 963   |
|             | brock800_2     | 24  | 800   | 208 166 |
|             | brock800_4     | 26  | 800   | 207 643 |
|             | keller5        | 27  | 776   | 225 990 |
| Graf Sedang | p_hat700-1     | 11  | 700   | 60 999  |
|             | p_hat700-2     | 44  | 700   | 121 728 |
|             | p_hat700-3     | 62* | 700   | 183 010 |
|             | DSJC500_5      | 13  | 500   | 125248  |
|             | MANN_a45       | 345 | 1 035 | 533 115 |
| Graf Besar  | hamming10-4    | 40  | 1 024 | 434 176 |
| Grai Desar  | p_hat1500-2    | 65* | 1 500 | 568 960 |
|             | p_hat1500-3    | 94* | 1 500 | 847 244 |

## 4.2.1 Pengujian Tingkat Evaporasi

Pengujian awal dilakukan dengan menentukan tingkat evaporasi yang akan digunakan. Tingkat evaporasi yang akan diuji terdiri dari 0.1, 0.3, 0.5, 0.7, 0.9, dan 1 ( ). Pengujian dilakukan sebanyak 10 dengan jumlah iterasi 1000, jumlah semut 30, dan alpha 1. Hasil pengujian dapat dilihat pada Gambar 4.8(a) untuk algoritma ACO, 4.8(b) untuk algoritma IACO, 4.8(c) untuk algoritma ACOPSO, dan 4.8(d) untuk algoritma IACOPSO.



Gambar 4.8 Pengujian Rho Masing-masing Algoritma

Berdasarkan Gambar 4.8(a), 4.8(b), 4.8(c), dan 4.8(d), tingkat evaporasi yang semakin rendah dapat menemukan maksimum *clique* yang lebih besar.

## 4.2.2 Hasil Pengujian pada Dataset

Pengujian akan dilakukan dengan menggunakan parameter sebagai berikut:

- a. Alpha awal 1 dengan peningkatan sesuai Persamaan 9.
- b. Rho 0.1 dengan perubahan nilai sesuai Persamaan 10

Nilai rho ditentukan bedasarkan hasil pengujian yang telah dilakukan pada *subbab* sebelumnya.

c.

- d. Iterasi 1000
- e. Jumlah semut 30
- f. = 6
- g. = 0.01
- h. = 0.05
- i. = 1.0
- j. = 0.0002
- k = 0
- 1. = 0
- m. = 0.3
- n. = 1-

Hasil pengujian dapat dilihat pada Tabel 4.2, 4.3, 4.4 dan 4.5.

Tabel 4.2 Hasil Pengujian IACOPSO pada Dataset Jaringan Sosial

|                                                             | Best  |          |         | IACOPSO |             |               |  |  |  |
|-------------------------------------------------------------|-------|----------|---------|---------|-------------|---------------|--|--|--|
| Hasil                                                       | Known | Bes<br>t | Mi<br>n | Stddev  | Avgbes<br>t | Avgtime       |  |  |  |
| Co-authorship of scientist in network theory and experiment | 20,00 | 20       | 20      | 0       | 20,00       | 00:00,62<br>1 |  |  |  |
| Dolphin network                                             | 5,00  | 5        | 5       | 0       | 5,00        | 00:00,05<br>9 |  |  |  |
| Email interchange network univ of rovia i virgili tarragon  | 12,00 | 12       | 12      | 0       | 12,00       | 00:00,87<br>0 |  |  |  |
| Erdos991                                                    | 7,00  | 7        | 7       | 0       | 7,00        | 00:00,21<br>9 |  |  |  |
| Facebook_combined                                           | 69,00 | 69       | 69      | 0       | 69,00       | 00:12,34<br>1 |  |  |  |
| Pajek network Erdos collaboration network 971               | 7,00  | 7        | 7       | 0       | 7,00        | 00:00,20<br>4 |  |  |  |
| Zachary's karate club                                       | 5,00  | 5        | 5       | 0       | 5,00        | 00:00,04<br>7 |  |  |  |

Pada Tabel 4.2 IACOPSO dapat menemukan maksimum *clique* pada jaringan sosial dengan standard deviasi 0 dimana pengujian yang dilakukan sebanyak 10 kali memberikan hasil yang sama.

Tabel 4.3 Hasil Pengujian IACOPSO pada Dataset DIMACS Graf Kecil

|            | Best  |          |         | IACC             | PSO     |          |
|------------|-------|----------|---------|------------------|---------|----------|
| Hasil      | Known | Bes<br>t | Mi<br>n | Stddev Avgbest A | Avgtime |          |
| p_hat300-1 | 8,00  | 8        | 8       | 0                | 8,00    | 00:01,43 |

| brock200_2     | 12,00 | 12 | 12 | 0    | 12,00 | 00:01,63      |
|----------------|-------|----|----|------|-------|---------------|
| hamming8-4     | 16,00 | 16 | 16 | 0    | 16,00 | 00:03,42<br>9 |
| brock200_4     | 17,00 | 17 | 15 | 0,67 | 16,30 | 00:02,59<br>9 |
| brock400_2     | 29,00 | 23 | 22 | 0,52 | 22,40 | 00:09,37<br>5 |
| brock400_4     | 33,00 | 25 | 22 | 0,97 | 22,60 | 00:09,48<br>4 |
| gen200_p0.9_44 | 44,00 | 44 | 39 | 1,89 | 43,00 | 00:05,76      |
| gen200_p0.9_55 | 55,00 | 55 | 55 | 0    | 55,00 | 00:06,04      |
| gen400_p0.9_55 | 55,00 | 52 | 49 | 0,97 | 50,40 | 00:15,45<br>7 |
| gen400_p0.9_65 | 65,00 | 65 | 59 | 1,90 | 64,40 | 00:15,47<br>5 |
| gen400_p0.9_75 | 75,00 | 75 | 75 | 0    | 75,00 | 00:16,08<br>7 |
| p_hat300-2     | 25,00 | 25 | 25 | 0    | 25,00 | 00:04,11<br>9 |
| p_hat300-3     | 36,00 | 36 | 34 | 0,97 | 35,40 | 00:06,75<br>9 |
| C250.9         | 44,00 | 44 | 42 | 0,70 | 43,60 | 00:08,08      |
| C125.9         | 34,00 | 34 | 34 | 0    | 34,00 | 00:03,16<br>4 |

Pada Tabel 4.3 IACOPSO mampu menemukan maksimum *clique* pada beberapa *dataset* dengan standar deviasi 0 akan tetapi terdapat beberapa *dataset* yang masih belum mendapatkan hasil maksimum.

Tabel 4.4 Hasil Pengujian IACOPSO pada Dataset DIMACS Graf Sedang

|            | Best      | IACOPSO  |         |        |             |               |
|------------|-----------|----------|---------|--------|-------------|---------------|
| Hasil      | Know<br>n | Bes<br>t | Mi<br>n | Stddev | Avgbes<br>t | Avgtime       |
| DSJC500_5  | 13,00     | 13       | 12      | 0,52   | 12,60       | 00:08,03<br>4 |
| C500.9     | 57,00     | 55       | 47      | 3,03   | 51,50       | 00:22,66<br>8 |
| brock800_2 | 29,00     | 19       | 18      | 0,52   | 18,60       | 00:27,36      |
| brock800_4 | 33,00     | 20       | 18      | 0,67   | 18,70       | 00:26,30<br>5 |
| keller5    | 27,00     | 27       | 24      | 0,88   | 25,10       | 00:30,07<br>6 |
| p_hat700-1 | 11,00     | 10       | 9       | 0,48   | 9,70        | 00:07,13<br>8 |
| p_hat700-2 | 44,00     | 44       | 44      | 0      | 44,00       | 00:16,38<br>2 |
| p_hat700-3 | 62,00     | 62       | 61      | 0,32   | 61,90       | 00:29,17<br>8 |

Pada Tabel 4.4 IACOPSO mampu menemukan maksimum *clique* setara dengan maksimum *clique* yang pernah ditemukan pada sebagian *dataset* sedang

dengan standar deviasi yang tidak mencapai angka 0. Sedangkan dari segi waktu, IACOPSO membutuhkan waktu lebih lama dalam mencari maksimum *clique* pada graf sedang jika dibandingkan dengan graf kecil.

Tabel 4.5 Hasil Pengujian IACOPSO pada *Dataset* DIMACS Graf Besar

|             | Best      | IACOPSO  |         |        |             |               |
|-------------|-----------|----------|---------|--------|-------------|---------------|
| Hasil       | Know<br>n | Bes<br>t | Mi<br>n | Stddev | Avgbes<br>t | Avgtime       |
| MANN_a45    | 345,00    | 344      | 341     | 0,95   | 341,70      | 06:26,05<br>8 |
| p_hat1500-2 | 65,00     | 65       | 65      | 0      | 65,00       | 01:12,95<br>0 |
| p_hat1500-3 | 94,00     | 94       | 93      | 0,48   | 93,30       | 02:01,32      |
| DSJC1000_5  | 15,00     | 14       | 13      | 0,53   | 13,50       | 00:31,96      |

Pada Tabel 4.5 IACOPSO mampu menemukan maksimum *clique* setara dengan maksimum *clique* yang pernah ditemukan pada sebagian *dataset* besar dengan waktu yang lebih lama jika dibandingkan dengan mencari maksimum *clique* pada graf kecil dan sedang.

Untuk mengetahui kemampuan IACOPSO dalam mencari maksimum *clique*, maka hasil pencarian maksimum *clique* dan waktu yang dibutuhkan untuk mencari maksimum *clique* pada *dataset* akan dibandingkan dengan hasil yang didapat oleh algoritma lain.



Gambar 4.9 Rata-rata Hasil Penemuan *Maximum Clique* pada Setiap Kelompok *Dataset* 

Pada Gambar 4.9, dapat dilihat IACO menemukan rata-rata maksimum *clique* yang lebih tinggi dibandingkan dengan algoritma lain pada *dataset* graf sedang. Sedangkan IACOPSO menemukan rata-rata maksimum *clique* yang lebih tinggi pada graf kecil dan besar.



Gambar 4.10 Rata-rata Waktu Penemuan *Maximum Clique* pada Setiap Kelompok *Dataset* 

Seperti yang dapat dilihat pada Gambar 4.10, waktu yang dibutuhkan oleh IACOPSO dalam mencari maksimum *clique* pada graf jaringan sosial, graf kecil, dan graf sedang lebih cepat dibandingkan dengan ACOPSO namun, lebih lambat jika dibandingkan dengan IACO. Untuk graf besar, IACOPSO lebih lambat jika dibandingkan dengan IACO dan ACOPSO.



Gambar 4.11 Rata-rata Hasil Pencarian *Maximum Clique* dengan 4 Algoritma

Gambar 4.11 merupakan hasil rata-rata dari maksimum *clique* yang ditemukan pada semua *dataset*. Dari Gambar 4.11 dapat dilihat IACOPSO menemukan maksimum *clique* lebih besar jika dibandingkan dengan algoritma lain sedangkan dari sisi waktu dapat dilihat pada Gambar 4.12.



Gambar 4.12 Rata-rata Waktu Pencarian *Maximum Clique* dengan 4 Algoritma

Gambar 4.12 merupakan rata-rata waktu yang dibutuhkan untuk mencari maksimum *clique* pada semua *dataset* yang diuji. Dari Gambar 4.12 dapat dilihat IACOPSO membutuhkan waktu lebih lama dibandingkan dengan algoritma ACOPSO dan IACO akan tetapi lebih baik jika dibandingkan dengan ACO.



Gambar 4.13 Standar Deviasi Hasil pada Graf Jaringan Sosial

Dari Gambar 4.13, empat algoritma memiliki standar deviasi yang sama pada jaringan sosial yaitu 0.



Gambar 4.14 Standar Deviasi Hasil pada Graf DIMACS Kecil

Dari Gambar 4.14, keempat algoritma memiliki standar deviasi 0 pada 4 *dataset*, namun standar deviasi IACOPSO lebih rendah dibandingkan dengan algoritma lain pada *dataset* gen200\_p0.9\_44, gen400\_p0.9\_55, gen400\_p0.9\_65, dan C250.9.



Gambar 4.15 Standar Deviasi Hasil pada Graf DIMACS Sedang

Dari Gambar 4.15, standar deviasi dari IACOPSO mencapai angka yang tinggi pada *dataset* C500.9, namun memiliki standar deviasi yang relatif lebih rendah pada beberapa *dataset* lain.



Gambar 4.16 Standar Deviasi Hasil pada Graf DIMACS Besar

Pada Gambar 4.16, IACOPSO memiliki standar deviasi yang lebih tinggi jika dibandingkan dengan algoritma ACOPSO, tetapi standar deviasi IACOPSO mencapai angka 0 pada *dataset* p\_hat1500-2.



## Gambar 4.17 Standar Deviasi Waktu pada Graf Jaringan Sosial

Pada Gambar 4.17, IACO memiliki standar deviasi waktu yang relatif rendah dibandingkan dengan algoritma lain.



Gambar 4.18 Standar Deviasi Waktu pada Graf DIMACS Kecil

Pada Gambar 4.18, standar deviasi IACOPSO lebih rendah dibandingkan dengan ACO kecuali pada 4 *dataset* awal.



Gambar 4.19 Standar Deviasi Waktu pada Graf DIMACS Sedang

Pada Gambar 4.19, standar deviasi IACOPSO lebih tinggi jika dibandingkan dengan algoritma IACO dan ACOPSO, namun relatif lebih rendah jika dibandingkan dengan ACO.



Gambar 4.20 Standar Deviasi Waktu pada Graf DIMACS Besar

Pada Gambar 4.20, IACOPSO memiliki standar deviasi yang rendah dibandingkan dengan algoritma lain pada 2 *dataset* awal akan tetapi, lebih tinggi dibandingkan dengan IACO dan ACOPSO pada *dataset* p\_hat1500-3 dan DSJC1000\_5.

IACOPSO membutuhkan jumlah iterasi yang relatif lebih banyak untuk mendapatkan maksimum *clique* dibangingkan dengan algoritma IACO dan ACOPSO Namun, masih lebih baik jika dibandingkan dengan ACO. Tabel lengkap dapat dilihat pada Lampiran 3. Walaupun IACOPSO lebih lambat penemuan *clique* dalam hal waktu, masih terbayarkan dengan hasil maksimum *clique* yang lebih baik dan standar deviasi yang relatif lebih rendah dibandingkan dengan ACO, ACOPSO dan IACO.

#### **BAB V**

### KESIMPULAN DAN SARAN

## 5.1 Kesimpulan

Berdasarkan hasil pengujian yang telah dilakukan dapat ditarik kesimpulan sebagai berikut:

- 1. IACOPSO dapat menemukan maksimum *clique* yang lebih tinggi dibandingkan dengan algoritma lain dengan rata-rata hasil 40,42 untuk IACOPSO, 40,33 untuk ACOPSO, dan 40,06 untuk IACO. Sedangkan dari segi waktu, IACO lebih unggul dengan rata-rata waktu 25,557 detik untuk IACO, 25,797 detik untuk ACOPSO, dan 25,842 detik untuk IACOPSO.
- 2. IACOPSO dapat menemukan maksimum *clique* yang lebih konsisten dengan standar deviasi yang lebih rendah dibandingkan dengan algoritma ACO, IACO, dan ACOPSO. Akan tetapi, waktu yang dibutuhkan oleh IACOPSO untuk menemukan maksimum *clique* tidak konsisten jika dibandingkan dengan algoritma IACO dan ACOPSO. Hal ini ditunjukkan dengan standar deviasi waktu yang tinggi.
- IACOPSO membutuhkan jumlah iterasi yang relatif lebih banyak namun hasil yang ditemukan masih lebih baik dibandingkan dengan algoritma ACO, IACO, dan ACOPSO.

#### 5.2 Saran

Saran yang dapat diberikan untuk pengembangan selanjutnya adalah

- 1. Untuk mendapatkan hasil yang lebih baik, algoritma IACOPSO dapat ditambahkan dengan *local search* atau *pheromone* dapat ditempatkan di simpul untuk menurunkan waktu yang dibutuhkan dalam mencari maksimum *clique*.
- 2. Menggunakan metode lain untuk membantu IACOPSO agar tidak terjebak pada *local optimum* seperti metode yang dilakukan oleh Zhang pada pemilihan simpul kandidat. Zhang membuat tabel yang akan mencatat kemunculan setiap

simpul pada *clique*. Simpul yang terpilih adalah simpul dengan kemunculan terendah (Zhang et al., 2015).

#### DAFTAR PUSTAKA

- Baglioni, M., Geraci, F., Pellegrini, M. & Lastres, E., 2014. Fast Exact and Approximate Computation. In Can, F., Özyer, T. & Polat, F. State of the Art Applications of Social Network Analysis. Springer International Publishing Switzerland. p.54.
- Batagelj, V. & Mrvar, A., 2006. *Pajek Dataset*. [Online] Available at: <a href="http://vlado.fmf.uni-lj.si/pub/networks/data/">http://vlado.fmf.uni-lj.si/pub/networks/data/</a> [Accessed 18 December 2015].
- Battiti, R. & Protasi, M., 1995. Reactive Local Search for the Maximum Clique Problem. *International Computer Science Institute*.
- Bomze, M.I., Budinich, M., Pardalos, M.P. & Pellio, M., 1999. The Maximum Clique Problem. In D.-Z. Du & M.P. Pardalos, eds. *Handbook of Combinatorial Optimization*. Volume A ed. Kluwer Academic Publisher. pp.41 47.
- Brownlee, J., 2011. Clever Algorithms: Nature-Inspired Programming Recipes. 1st ed. Lulu.
- Christakis, N.A. & Fowler, J.H., 2009. Connected: The Amazing Power of Social Network and how They Shape Our Lives. Hachette Book Group.
- Deneubourg, J.L., Aron, S., Goss, S. & Pasteels, J.M., 1989. The Self-Organizing Exploratory Pattern of the Argentine Ant. *Journal of Insect Behavior*, III.
- Dorigo, M. & Stutzle, T., 2004. Ant Colony Optimization. The MIT Press.
- Easley, D. & Kleinberg, J., 2010. Network, Crowds, and Markets: Reasoning about a Highly Connected World.
- Kennedy, J. & Eberhart, R., 1995. Particle Swarm Optimization. *Institute of Electrical and Electronics Engineers*.
- Kleinberg, J. & Tardos, E., 2006. *Algorithm Design*. Pearson Addison Wesley.

- Krebs, E.V., 2002. Mapping Networks of Terrorist Cell. INSNA.
- Leskovec, J., 2009. *Stanford Large Network Dataset Collection*. [Online] Available at: <a href="http://snap.stanford.edu/data/">http://snap.stanford.edu/data/</a> [Accessed 18 December 2015].
- Li, j. et al., 2007. A Multi-Stage Negotiation Mechanism with Service Oriented Implementation. In B. Akhgar, ed. *Proceedings of the 15th International Workshops on Conceptual Structures*. Springer. p.137.
- Luger, G.F., 2005. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 5th ed. Pearson Education Limited.
- Mascia, F., 1993. *dimacs benchmark set*. [Online] Available at: <a href="http://iridia.ulb.ac.be/~fmascia/maximum\_clique/DIMACS-benchmark">http://iridia.ulb.ac.be/~fmascia/maximum\_clique/DIMACS-benchmark</a> [Accessed 18 December 2015].
- Newman, M., 2013. *Network Data*. [Online] Available at: <a href="http://www-personal.umich.edu/~mejn/netdata/">http://www-personal.umich.edu/~mejn/netdata/</a> [Accessed 18 December 2015].
- Pattilo, J., Youssef, N. & Butenko, S., 2012. Clique Relaxation Models in Social Network Analysis. In M.P. Pardalos & M.T. Thai, eds. *Handbook of Optimization in Complex Networks : Communication and Social Networks*. 58th ed. Springer Science+ Business Media, LLC. pp.143 144.
- Pouri, M.S., Rezvanian, A. & Meybodi, M.R., 2012. Finding a Maximum Clique Using Ant Colony Optimization and Particle Swarm Optimization in Social Media. In ASONAM '12 Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012)., 2012. ACM Digital Library.
- Roberts, E. & Hennesy, J., 2003. *DNA Computing*. [Online] Available at: <a href="http://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/dna-computing/clique.htm">http://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/dna-computing/clique.htm</a> [Accessed 22 Desember 2015].
- Russel, S. & Norvig, P., 1995. *Artificial Intelligence a Modern Approach*. 2nd ed. Pearson Education.
- Solnon, C. & Fenet, S., 2006. A study of ACO capabilities for solving the maximum. *Springer Science+Business Media*.

- Taani, A.-T.A. & Nemrawi, M.K., 2012. Solving the Maximum Clique Problem Using Intelligent Water Drops Algorithm. In *The International Conference on Computing, Networking and Digital Technologies (ICCNDT2012*)., 2012.
- Wasserman, S. & Faust, K., 1994. Social Network Analysis: Methods and Applications. Cambridge University Press.
- Wiil, U.K., Gniadek, J. & Memon, N., 2010. Measuring Link Importance in Terrorist Networks. *IEEE Computer Society*.
- Wilson, R.J., 1996. *Introduction to Graph Theory*. 4th ed. Addison Wesley Longman Limited.
- Xu, S., Ma, J. & Lei, J., 2007. An Improved Ant Colony Optimization for the Maximum Clique Problem. In *Third International Conference on Natural Computation.*, 2007. IEEE.
- Yan, F. et al., 2011. A Clique-Superstition Model for Social Network. *Science China Press*.
- Yang, S.S., 2014. Nature Inspired Optimization Algorithms. 1st ed. Elsevier.
- Zhang, S., Dong, Y., Yin, J. & Guo, J., 2015. Improved Ant Colony Algorithm for Finding the Maximum Clique in Social Network. In *IEEE 2nd International Conference on Cyber Security and Cloud Computing.*, 2015. Institute of Electrical and Electronics Engineers.

## Lampiran 1 Listing Program

#### Main.cs

```
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace Gabung_tugas_TA
    public partial class Main :
Form
        public Main()
            InitializeComponent();
        private void
button1_Click(object sender,
EventArgs e)
        {
            Form1 f1 = new
Form1();
            f1.ShowDialog();
        }
        private void
button2 Click(object sender,
EventArgs e)
        {
            Form2 f2 = new
Form2();
            f2.ShowDialog();
        }
    }
}
```

#### Form 1.cs

```
using System; using System.IO;
using System.Collections.Generic; using System.Diagnostics;
using System.ComponentModel;
using System.Data; namespace Gabung_tugas_TA
using System.Drawing; {
    using System.Linq; public partial class Form1:
    using System.Windows.Forms; {
```

```
enum algomode
                                                   }
                                                   private void
        {
            ACO,
                                           Form1_Load(object sender,
            IACO,
                                           EventArgs e)
            ACOPSO,
            IACOPSO,
                                                       maxcycles =
                                           int.Parse(iterasinum.Text);
        };
        public static int
                                                       nbants =
pengujian;
                                           int.Parse(semutnum.Text);
        public static List<string>
                                                       alpha =
filename = new List<string>();
                                           int.Parse(alphanum.Text);
        public static List<string>
                                                       rho =
filepath = new List<string>();
                                           double.Parse(rhonum.Text);
        public Stopwatch watch =
                                                       rhot = rho;
new Stopwatch();
                                                       pengujian =
        public static int iseed =
                                           int.Parse(pengujiannum.Text);
3;
                                                   }
        public static int
bestcliquesize = 0;
                                                   public void runants(int
        public static int alpha;
                                           nbcycles, int algo, double qty)
        public static double beta
= 0.05;
                                                       for (nbcycles = 0;
                                           ((nbcycles < maxcycles) &&
        public static List<int>
bestcliquecycle = new List<int>();
                                           (bestcliquesize != best));
        public static List<int>
                                           nbcycles++)
bestclique = new List<int>();
        public static List<int>
                                           bestcliquecyclesize = 0;
                                                           for (int i = 0;
currentclique = new List<int>();
        public static int
                                           ((i < nbants) && (bestcliquesize
currentcliquesize;
                                           != best)); i++)
        public static int
bestcliquecyclesize = 0;
                                                                if (algo == 1
        public static int best =
                                           || algo == 2 || algo == 3)
0;
        public static double rho;
                                           currentcliquesize =
        public static double rhot;
                                           Ants.walkE(alpha,
        public static int
                                           rand.getnextrand(graph.nbvertices)
maxcycles;
                                           , algo, 1);
        public static int nbants;
        public static double
                                                               else
taumin = 0.01;
        public static double
                                           currentcliquesize =
taumax = 6;
                                           Ants.walkE(alpha,
        public static int mode =
                                           rand.getnextrand(graph.nbvertices)
4;
                                           , algo, 1);
        public bool check = false;
        public int countopen = 0;
        public Random rnd = new
                                           (currentcliquesize >
Random();
                                           bestcliquecyclesize)
        public static double T =
1.0;
                                           bestcliquecycle.Clear();
        public static double
                                                                    for (int j
constpositive = 0.0002;
                                           = 0; j < currentcliquesize; j++)</pre>
        public Form1()
                                           bestcliquecycle.Add(currentclique[
                                           j]);
            InitializeComponent();
                                                                    }
```

```
bestcliquecyclesize =
                                                                qty = 1.0 /
currentcliquesize;
                                           (double)(1 + bestcliquesize -
                                           bestcliquecyclesize);
                if
                                           graph.reinforcement(bestcliquecycl
(bestcliquecyclesize >
                                           esize, taumax, qty, algo, 1);
bestcliquesize)
                    bestcliquesize
= bestcliquecyclesize;
                                                   public void runpengujian()
bestclique.Clear();
                     for (int j =
                                                        DateTime dt =
0; j < bestcliquesize; j++)
                                           DateTime.Now;
bestclique.Add(bestcliquecycle[j])
                                                        currentcliquesize = 0;
                                                        double qty = 0;
;
                                                        int nbcycles = 0;
                    if
(bestcliquesize >= best)
                                                        int progress = 1;
                                                        foreach (int item in
bestcliquesize = best;
                                           checkedListBox1.CheckedIndices)
                                                            DataGridView
                graph.evaporate(1
                                           dataGridView1 = new
- rho, taumin);
                                           DataGridView();
                                                            TabPage tabpage =
                if (nbcycles <=</pre>
100)
                                           new TabPage();
                                                            tabpage.Text =
                                           Path.GetFileNameWithoutExtension(f
                    alpha = 1;
                                           ilename[item]);
                else if (nbcycles
                                           graph.succ.Clear();
> 100 && nbcycles <= 400)
                                           graph.readfiles(filepath[item]);
                                                            rand.seed(iseed);
                    alpha = 2;
                                           graph.creategraph();
                                                            if (graph.cek ==
                else if (nbcycles
                                           false)
> 400 && nbcycles <= 800)
                                           MessageBox.Show("Kesalahan dalam
                    alpha = 3;
                                           pembacaan data. mohon cek data
                }
                                           apakah sesuai dengan format
                                           DIMACS? atau simpul dimulai dari
                else
                                           1? jika tidak mohon untuk
                                           mengganti formatnya" +
                    alpha = 4;
                                           filename[item]);
                                                                return;
                if (rho <= 1)
                                           graph.initpheromone(taumax,1);
                    rho = (1 -
                                                            best =
constpositive) * rho;
                                           graph.nbvertices;
                                                            for (int algo = 0;
                else if (rho <= 0)</pre>
                                           algo < mode; algo++)
                    rho = 0.001;
                                                                algomode value
                                           = new algomode();
                                                                if (algo == 0)
                if (algo == 0 ||
                                                                    value =
algo == 1)
                                           algomode.ACO;
                                                                else if (algo
                {
                                           == 1)
```

```
value =
                                           dataGridView1.Columns[5].Name =
algomode.IACO;
                                           "Time";
                    else if (algo
                                           dataGridView1.Rows.Add(Path.GetFil
                                           eNameWithoutExtension(filename[ite
== 2)
                        value =
                                           m]), graph.nbvertices,
algomode.ACOPSO;
                                           graph.nbedge, value,
                                           Convert.ToString(bestcliquesize),
                    else if (algo
== 3)
                                           watch.Elapsed);
                        value =
                                           dataGridView1.ReadOnly = true;
algomode. IACOPSO;
                                           dataGridView1.AllowUserToAddRows =
                    for (int k =
                                           false:
                                           dataGridView1.Refresh();
0; k < pengujian; k++)
                                                                    using
backgroundWorker1.ReportProgress(p
                                           (FileStream fs = new
                                           FileStream("Hasil_Pengujian.txt",
rogress);
                                           FileMode.Append,
progress++;
bestcliquesize = 0;
                                           FileAccess.Write))
                        T = 1.0;
                                                                    using
graph.deltatau = 0;
                                           (StreamWriter w = new
                        graph.v =
                                           StreamWriter(fs))
0;
                        qty = 0;
                                           w.WriteLine(dt.ToShortDateString()
                        rho =
rhot;
                                           Path.GetFileNameWithoutExtension(f
                                           ilename[item]) + ";" +
bestclique.Clear();
                                           graph.nbvertices + ";" +
bestcliquecycle.Clear();
                                           graph.nbedge + ";" + alpha + ";" +
Ants.p.Clear();
                                           rho + ";" + value + ";" +
currentclique.Clear();
                                           Convert.ToString(bestcliquesize) +
watch.Reset();
                                           ";" + watch.Elapsed);
GC.Collect();
watch.Start();
runants(nbcycles, algo, qty);
                                           graph.refreshtaue();
watch.Stop();
                                           GC.Collect();
                        if
(bestcliquesize <= 2)
                                                               GC.Collect();
                        {
bestcliquesize = 0;
                                           Array.Clear(graph.matrix, 0,
bestclique.Clear();
                                           graph.nbvertices);
                        }
                                           Array.Clear(graph.tauE, 0,
                                           graph.nbvertices);
dataGridView1.Dock =
DockStyle.Fill;
                                           Array.Clear(graph.tauEinitial, 0,
dataGridView1.ColumnCount = 6;
                                           graph.nbvertices);
dataGridView1.Columns[0].Name =
                                           tabpage.Controls.Add(dataGridView1
"Nama Dataset";
                                           );
dataGridView1.Columns[1].Name =
                                           Addtabpage(tabpage);
"Simpul";
                                                           using (FileStream
dataGridView1.Columns[1].Width =
                                           fs = new
                                           FileStream("Hasil_Pengujian.txt",
dataGridView1.Columns[2].Name =
                                           FileMode.Append,
                                           FileAccess.Write))
dataGridView1.Columns[2].Width =
                                                           using
                                           (StreamWriter w = new
dataGridView1.Columns[3].Name =
                                           StreamWriter(fs))
"Algoritma";
dataGridView1.Columns[4].Name =
                                                               w.WriteLine();
"Best";
                                                           }
                                                       }
```

```
}
                                                        iterasinum.Enabled =
                                           true;
        private void
                                                        semutnum.Enabled =
open_Click(object sender,
                                           true;
EventArgs e)
                                                        alphanum.Enabled =
                                           true;
            OpenFileDialog
                                                        rhonum.Enabled = true;
openfile = new OpenFileDialog();
            openfile.Filter =
                                                    private void
"Text Files (.txt)|*.txt|DIMACS
                                           okpara_Click(object sender,
                                           EventArgs e)
Benchmark (.clq)|*.clq|All
Files(*.*)|*.*";
                                                        iterasinum.Enabled =
            openfile.FilterIndex =
1;
                                           false;
            openfile.Multiselect =
                                                        semutnum.Enabled =
true;
                                           false;
                                                        alphanum.Enabled =
(openfile.ShowDialog() ==
                                           false;
DialogResult.OK)
                                                        rhonum.Enabled =
                                           false;
                foreach (string
                                                        pengujiannum.Enabled =
var in openfile.SafeFileNames)
                                           false;
                                                        try
checkedListBox1.Items.Add(var,
CheckState.Checked);
filename.Add(var);
                                           (int.Parse(iterasinum.Text) < 1 | |</pre>
                                           int.Parse(semutnum.Text) < 1 ||</pre>
                                           int.Parse(pengujiannum.Text) < 1)</pre>
                foreach (string
var in openfile.FileNames)
                                           MessageBox.Show("Jumlah iterasi
filepath.Add(var);
                                           atau jumlah semut atau jumlah
                                           pengujian minimal 1 ");
                Mulai.Enabled =
true;
                                                            else if
                Clear.Enabled =
                                           (double.Parse(alphanum.Text) < 0</pre>
                                           | double.Parse(rhonum.Text) < 0)</pre>
true;
                Mulai.BackColor =
                                           MessageBox.Show("Jumlah iterasi
Color.LimeGreen;
                Clear.Enabled =
                                           atau jumlah semut atau jumlah
                                           pengujian minimal 0 ");
true;
                check = true;
                                                            else
            }
                                                                maxcycles =
                                           int.Parse(iterasinum.Text);
        private void
Editpara_Click(object sender,
                                                                nbants =
EventArgs e)
                                           int.Parse(semutnum.Text);
                                                                alpha =
            Editpara.Enabled =
                                           int.Parse(alphanum.Text);
false;
            Mulai.Enabled = false;
                                           double.Parse(rhonum.Text);
            Mulai.BackColor =
                                                                rhot = rho;
SystemColors.Control;
                                                                pengujian =
            okpara.Enabled = true;
                                           int.Parse(pengujiannum.Text);
            pengujiannum.Enabled =
                                           Editpara.Enabled = true;
true;
```

```
catch (Exception)
                                                      Mulai.Enabled = false;
                                                      Mulai.BackColor =
MessageBox.Show("Parameter yang
                                          SystemColors.Control;
dimasukan harus berupa angka atau
                                                      Clear.Enabled = false;
ada parameter yang tidak sesuai
                                                  }
(jumlah iterasi, jumlah semut, dan
                                                  private void
jumlah pengujian tidak boleh angka
                                          backgroundWorker1 DoWork(object
KOMA!");
                                          sender, DoWorkEventArgs e)
                Editpara.Enabled =
true;
                                                      runpengujian();
            }
            if (check == true)
                                                  private void
                                          backgroundWorker1 ProgressChanged(
                Mulai.Enabled =
                                          object sender,
                                          ProgressChangedEventArgs e)
true;
                Mulai.BackColor =
Color.LimeGreen;
                                                       progressBar1.Value =
                                          e.ProgressPercentage;
            okpara.Enabled =
                                                  }
false:
                                                  private void
                                          backgroundWorker1 RunWorkerComplet
        private void
                                          ed(object sender,
Mulai Click(object sender,
                                          RunWorkerCompletedEventArgs e)
EventArgs e)
                                          MessageBox.Show("Proses Selesai");
            countopen =
                                                      Editpara.Enabled =
checkedListBox1.CheckedIndices.Cou
                                          true;
                                                       open.Enabled = true;
nt;
            progressBar1.Maximum =
                                          checkedListBox1.Enabled = true;
(countopen* 4* pengujian);
                                                      Mulai.Enabled = true;
            Mulai.Enabled = false;
                                                      Mulai.BackColor =
            Clear.Enabled = false;
                                          Color.LimeGreen;
            Mulai.BackColor =
                                                      Clear.Enabled = true;
SystemColors.Control;
            open.Enabled = false;
                                                  public void
checkedListBox1.Enabled = false;
                                          Addtabpage(TabPage tab)
            Clear.Enabled = false;
            Editpara.Enabled =
                                                       if
false;
                                          (tabControl1.InvokeRequired)
tabControl1.TabPages.Clear();
                                          tabControl1.Invoke(new
            List<string> rows =
new List<string>();
                                          Action<TabPage>(Addtabpage), tab);
            bestclique.Clear();
                                                           return;
bestcliquecycle.Clear();
                                          tabControl1.Controls.Add(tab);
            graph.succ.Clear();
            Ants.p.Clear();
                                                  }
            currentclique.Clear();
                                              }
backgroundWorker1.RunWorkerAsync()
                                          }
;
        private void
Clear Click(object sender,
EventArgs e)
checkedListBox1.Items.Clear();
            filename.Clear();
            filepath.Clear();
```

#### Form 2.cs

```
public static int table =
using System;
using System.Collections.Generic;
                                           0;
using System.ComponentModel;
                                                   public static int count =
using System.Data;
                                           0;
using System.Drawing;
                                                   public static string
                                           algoritma;
using System.Windows.Forms;
using System.Diagnostics;
                                                   public static int
                                           editcount = 0;
                                                   public static double T =
namespace Gabung_tugas_TA
                                           1.0;
    public partial class Form2 :
                                                   public static double
Form
                                           constpositive = 0.0002;
                                                   public Form2()
        enum algomode
                                                   {
                                                        InitializeComponent();
        {
            ACO,
            IACO,
                                                   private void
            ACOPSO.
                                           Form1_Load(object sender,
            IACOPSO,
                                           EventArgs e)
        };
        public Stopwatch watch =
                                           comboBox1.Items.Add("Ant Colony
                                           Optimization");
new Stopwatch();
        public static int iseed =
                                           comboBox1.Items.Add("Improved Ant
                                           Colony Optimization");
comboBox1.Items.Add("Ant Colony
3;
        public static int
bestcliquesize = 0;
                                           Optimization + Particle Swarm
        public static Random rnd =
                                           Optimization");
new Random();
                                           comboBox1.Items.Add("Improved Ant
        public static int alpha;
                                           Colony Optimization + Particle
        public static double beta
                                           Swarm Optimization");
= 0.05;
                                                       maxcycles =
        public static List<int>
                                           int.Parse(iterasinum.Text);
bestcliquecycle = new List<int>();
                                                       nbants =
        public static List<int>
                                           int.Parse(semutnum.Text);
bestclique = new List<int>();
                                                        alpha =
        public static List<int>
                                           int.Parse(alphanum.Text);
currentclique = new List<int>();
                                                       rho =
//{ get; set; }
                                           double.Parse(rhonum.Text);
        public List<List<object>>
                                           dataGridView1.ColumnCount = 5;
Matriks;
                                           dataGridView1.Columns[0].Name =
        public static int best =
                                           "Simpul";
                                           dataGridView1.Columns[1].Name =
0;
        public static double rho;
                                           "Sisi";
        public static int
                                           dataGridView1.Columns[2].Name =
                                           "Algoritma";
maxcycles;
        public static int nbants;
                                           dataGridView1.Columns[3].Name =
        public static double
                                           "Best";
taumin = 0.01;
                                           dataGridView1.Columns[4].Name =
        public static double
                                           "Time";
taumax = 6;
        public int selectedindex =
-1;
```

```
private void
                                           bestcliquecycle.Clear();
Editpara_Click(object sender,
                                                       graph.succ.Clear();
EventArgs e)
                                                       Ants.p.Clear();
                                                       currentclique.Clear();
            Editpara.Enabled =
                                                       bestcliquesize = 0;
false;
                                                       bestclique.Clear();
            Mulai.Enabled = false;
                                           bestcliquecycle.Clear();
            Mulai.BackColor =
                                                       graph.succ.Clear();
                                                       Ants.p.Clear();
Color. Empty;
                                                       currentclique.Clear();
            okpara.Enabled = true;
            iterasinum.Enabled =
                                                       bestcliquesize = 0;
true;
                                                       rand.seed(iseed);
            semutnum.Enabled =
                                           graph.creategraphtable(table);
                                           graph.initpheromone(taumax,2);
true;
            alphanum.Enabled =
                                           graph.nbvertices;
true;
            rhonum.Enabled = true;
                                                       algomode value = new
                                           algomode();
        private void
                                                       if (selectedindex ==
okpara Click(object sender,
                                           0)
EventArgs e)
                                                           value =
            if(editcount==1)
                                           algomode.ACO;
                                                           algoritma = "Ant
                                           Colony Optimization";
                Mulai.Enabled =
true;
                                                       else if (selectedindex
            Editpara.Enabled =
                                           == 1)
true;
            okpara.Enabled =
                                                           value =
false;
                                           algomode.IACO;
            iterasinum.Enabled =
                                                           algoritma =
                                           "Improved Ant Colony
false;
                                           Optimization";
            semutnum.Enabled =
false;
            alphanum.Enabled =
                                                       else if (selectedindex
false;
                                           == 2)
            rhonum.Enabled =
false;
                                                           value =
                                           algomode.ACOPSO;
                                                           algoritma = "Ant
                                           Colony Optimization + Particle
        private void
                                          Swarm Optimization";
Mulai_Click(object sender,
EventArgs e)
                                                       else if (selectedindex
        {
            double qty;
                                           == 3)
            int i, j;
            int nbcycles;
                                                           value =
            int nbiter = 0;
                                           algomode.IACOPSO;
            int currentcliquesize;
                                                           algoritma =
                                           "Improved Ant Colony Optimization
bestcliquecyclesize = 0;
                                           + Particle Swarm Optimization";
            List<string> rows =
new List<string>();
                                                       watch.Reset();
dataGridView1.Rows.Clear();
                                                       watch.Start();
dataGridView1.Refresh();
                                                       for (nbcycles = 0;
            bestclique.Clear();
                                           ((nbcycles < maxcycles) &&
```

```
(bestcliquesize < best));</pre>
                                                            else if (nbcycles
nbcycles++)
                                           > 400 && nbcycles <= 800)
bestcliquecyclesize = 0;
                                                            {
                                                                 alpha = 3;
                for (i = 0; ((i <
nbants) && (bestcliquesize <
                                                            }
best)); i++)
                                                            else
                                                            {
currentcliquesize =
                                                                 alpha = 4;
Ants.walkE(alpha,
rand.getnextrand(graph.nbvertices)
, selectedindex,2);
                                                            if (rho <= 1)
                     nbiter =
currentcliquesize;
                                                                 rho = (1 -
                                           constpositive) * rho;
(currentcliquesize >
bestcliquecyclesize)
                                                            else if (rho <= 0)</pre>
                                                            {
                                                                 rho = 0.001;
bestcliquecycle.Clear();
                         for (j =
0; j < currentcliquesize; j++)
                                                            qty = 1.0 /
                                            (double)(bestcliquesize + 1 -
bestcliquecycle.Add(currentclique[
                                           bestcliquecyclesize);
j1);
                                           graph.reinforcement(bestcliquecycl
                                           esize, taumax, qty,
bestcliquecyclesize =
                                           selectedindex,2);
currentcliquesize;
                                                        watch.Stop();
                                                        if (bestcliquesize <=</pre>
                if
                                           2)
(bestcliquecyclesize >
bestcliquesize)
                                                            bestcliquesize =
                                           0;
                     bestcliquesize
                                           bestclique.Clear();
= bestcliquecyclesize;
                                           dataGridView1.Rows.Add(graph.nbver
bestclique.Clear();
                     for (j = 0; j
                                           tices, graph.nbedgep, value,
< bestcliquesize; j++)</pre>
                                           Convert.ToString(bestcliquesize),
bestclique.Add(bestcliquecycle[j])
                                           watch.Elapsed);
                                           dataGridView1.Refresh();
                                           Array.Clear(graph.tauE, 0,
(bestcliquesize >= best)
                                           graph.nbvertices);
                                                        Ulang.Enabled = true;
bestcliquesize = best;
                                                        T_gmbar.Enabled =
                                           true;
                                                        Editpara.Enabled =
                graph.evaporate(1
                                           false;
- rho, taumin);
                                                        Mulai.Enabled = false;
                if (nbcycles <=</pre>
100)
                                                    private void
                                           comboBox1 SelectedIndexChanged(obj
                     alpha = 1;
                                           ect sender, EventArgs e)
                else if (nbcycles
                                                        Pilih.Enabled = true;
> 100 && nbcycles <= 400)
                                                    }
                     alpha = 2;
```

```
for (int j = 0; j
        private void
Pilih_Click(object sender,
                                          < table; j++)
EventArgs e)
                                          Table_grid.Columns[j].HeaderText =
            selectedindex =
                                          (j).ToString();
comboBox1.SelectedIndex;
                                          Table_grid.Rows[i].HeaderCell.Valu
                                          e = (i).ToString();
            J node.Enabled = true;
            b node.Enabled = true;
                                          Table_grid.Rows[i].Cells[j].ReadOn
                                          ly = true;
            Pilih.Enabled = false;
        }
                                          Table_grid.Rows[i].Cells[j].Value
        private void
                                                               if (i == j)
button1_Click(object sender,
                                          Table_grid.Rows[i].Cells[j].Style.
EventArgs e)
                                          BackColor = Color.Red;
        {
            comboBox1.Enabled =
false;
            b node.Enabled =
                                                       }
false;
                                                   }
            J node.Enabled =
false;
                                                   private void
                                          Table grid CellClick(object
            S button.Enabled =
                                          sender, DataGridViewCellEventArgs
true;
            B button.Enabled =
                                          e)
true:
Table_grid.Rows.Clear();
                                                       try {
Table_grid.Columns.Clear();
                                                           int value =
            DataGridViewRow rows =
                                          int.Parse(Table_grid.Rows[e.RowInd
new DataGridViewRow();
                                          ex].Cells[e.ColumnIndex].Value.ToS
            DataGridViewColumn
                                          tring());
columns = new
                                                           if (e.RowIndex !=
DataGridViewColumn();
                                          e.ColumnIndex)
            table =
Convert.ToInt32(J_node.Text);
                                                               if (value ==
            Table grid.ColumnCount
                                          0)
= table;
                                          Table_grid.Rows[e.RowIndex].Cells[
            Table_grid.RowCount =
table:
                                          e.ColumnIndex].Value = 1;
Table_grid.RowHeadersWidthSizeMode
                                          Table_grid.Rows[e.ColumnIndex].Cel
                                          ls[e.RowIndex].Value = 1;
DataGridViewRowHeadersWidthSizeMod
e.DisableResizing;
                                                               else
Table_grid.ColumnHeadersHeightSize
                                          Table_grid.Rows[e.RowIndex].Cells[
DataGridViewColumnHeadersHeightSiz
                                          e.ColumnIndex].Value = 0;
eMode.DisableResizing;
                                          Table_grid.Rows[e.ColumnIndex].Cel
            for (int i = 0; i <
                                          ls[e.RowIndex].Value = 0;
table; i++)
                rows =
                                                       }
Table grid.Rows[i];
                                                       catch
                rows.Height = 25;
                                          MessageBox.Show("Jangan Klik
                columns =
                                          Header Table");
Table grid.Columns[i];
                columns.Width =
                                                       }
25;
                                                   }
```

```
private void
                                                   private void
                                           Ulang_Click(object sender,
S_button_Click(object sender,
EventArgs e)
                                           EventArgs e)
            Matriks = new
                                                       comboBox1.Enabled =
List<List<object>>();
                                           true;
            for (int k = 0; k <
                                                       Table_grid.Enabled =
table; k++)
                                           true;
                                                       Ulang.Enabled = false;
                                                       Editpara.Enabled =
                List<object>
submatrix = new List<object>();
                                           true;
                for (int 1 = 0; 1
                                                       T gmbar.Enabled =
< table; 1++)
                                           false;
                                                       editcount = 0;
submatrix.Add(Table_grid.Rows[k].C
                                           Table_grid.Rows.Clear();
ells[1].Value);
                                           Table_grid.Columns.Clear();
                                                       Table grid.Refresh();
graph.matrixp.Add(submatrix);
                                           dataGridView1.Rows.Clear();
Gambar.matp.Add(submatrix);
                                           dataGridView1.Refresh();
                                                       graph.matrixp.Clear();
Matriks.Add(submatrix);
                                                       Gambar.matp.Clear();
            S button.Enabled =
                                                       table = 0;
false;
                                           bestcliquecycle.Clear();
            B button.Enabled =
                                                       bestcliquesize = 0;
                                           Form2.currentclique.Clear();
false;
            Mulai.Enabled = true;
                                                       count = 0;
            Table_grid.Enabled =
                                                       Matriks.Clear();
false;
                                                   }
            editcount = 1;
                                               }
                                           }
        private void
B_button_Click(object sender,
EventArgs e)
        {
            comboBox1.Enabled =
true;
            B_button.Enabled =
false;
            S_button.Enabled =
false;
            selectedindex = -1;
Table grid.Rows.Clear();
Table_grid.Columns.Clear();
        }
        private void
T_gmbar_Click(object sender,
EventArgs e)
            Gambar gmbr = new
Gambar();
            gmbr.Show();
```

#### Ants.cs

```
using System;
                                                        while (left < right)</pre>
using System.Collections.Generic;
                                                             k = (left + right)
using System.Linq;
using System.Text;
                                            + 1) / 2;
                                                             if (algo == 0 ||
namespace Gabung_tugas_TA
                                            algo == 2)
{
    class Ants
                                                                 if (f < p[k -
                                            1] / total)
        public static List<double>
                                                                     right = k
p = new List<double>();
                                            - 1;
        public static Random rnd =
                                                                 else if (f >
new Random();
                                            p[k] / total)
        public static double
                                                                     left = k +
mypow(double x,int y)
                                            1;
                                                                 else
        {
            double P;
                                                                     return k;
            if (y == 0)
                                                             else if (algo == 1
                 return 1;
                                            || algo == 3)
            else if (y == 1)
                 return x;
            else if (y == 2)
                                                                 if (cek == 1)
                 return x * x;
                                                                     if (f <</pre>
            else
                                            (p[k - 1] / total) + (Form1.T *
                 if (y \% 2 == 0)
                                            (graph.degree[k - 1] /
                                            graph.nbedge)))
                     P = mypow(x, y)
                                                                         right
/ 2);
                                            = k - 1;
                     return P * P;
                                                                     else if (f
                 }
                                            > (p[k] / total) + (Form1.T *
                 else
                                            (graph.degree[k] / graph.nbedge)))
                 {
                                                                         left =
                     P = mypow(x,
                                            k + 1;
(y - 1) / 2);
                                                                     else
                     return P * P *
                                                                         return
х;
                                            k;
                 }
                                                                     Form1.T =
                                            Form1.T * (1 - Form1.beta);
            }
        }
                                                                 }
                                                                 else
        public static int
choose(int nbcand, int algo,int
                                            (p[k - 1] / total) + (Form2.T *
cek)
                                            (graph.degree[k - 1] /
            double f =
                                            graph.nbedgep)))
rnd.NextDouble();
                                                                         right
            int left = 0;
                                            = k - 1;
                                                                     else if (f
            int right = nbcand -
                                            > (p[k] / total) + (Form2.T *
1;
            int k = 0;
                                            (graph.degree[k] /
            double total =
                                            graph.nbedgep)))
p[nbcand - 1];
                                                                         left =
                                            k + 1;
```

```
else
                                           graph.tauE[firstvertex,
                             return
                                           candidates[i]];
k;
                                           p.Add(mypow(taoclique[candidates[i
                        Form2.T =
                                           ]], alpha)+total);
Form2.T * (1 - Form2.beta);
                                                           total = p[i];
                    }
                }
                                                       while (nbcandidates >
                                           0)
            if (left >= 0 && left
< nbcand)
                                                           i =
                return left;
                                           choose(nbcandidates, algo, cek);
            else
                                                           v = candidates[i];
                return k;
                                                           if (cek == 1)
        public static int
                                           Form1.currentclique.Add(v);
walkE(int alpha, int firstvertex,
                                                           }
int algo, int cek)
                                                           else
                                                           {
            int i, v;
                                           Form2.currentclique.Add(v);
            List<int> candidates =
new List<int>();
                                                           cliquesize++;
            if (cek == 1)
                                           candidates.Remove(candidates[i]);
                                                           nbcandidates--;
Form1.currentclique = new
                                                           p.Clear();
List<int>();
                                                           i = 0;
                                                           total = 0;
                                                           while (i <
            else
                                           nbcandidates)
Form2.currentclique = new
List<int>();
                                                                if
                                           (graph.tauE[v, candidates[i]] > 0)
            int nbcandidates;
            double total;
                                           taoclique[candidates[i]] =
                                           graph.tauE[firstvertex,
            double[] taoclique =
                                           candidates[i]];
new double[graph.nbvertices];
                                           p.Add(mypow(taoclique[candidates[i
            int cliquesize = 1;
            if (cek == 1)
                                           ]], alpha) + total);
                                                                    total =
Form1.currentclique.Add(firstverte
                                           p[i];
x);
                                                                    i++;
            }
                                                                }
            else
                                                               else
Form2.currentclique.Add(firstverte
                                           nbcandidates--;
                                           candidates.Remove(candidates[i]);
x);
                                                                }
            nbcandidates =
graph.degree[firstvertex];
                                                       Array.Clear(taoclique,
            p.Clear();
            total = 0;
                                           0, graph.nbvertices);
            for (i = 0; i <
                                                       return cliquesize;
nbcandidates; i++)
                                                   }
                                               }
candidates.Add(graph.succ[firstver
                                           }
tex][i]);
taoclique[candidates[i]] =
```

### **Graph.cs**

```
using System;
                                                       StreamReader sr = new
using System.Collections.Generic;
                                          StreamReader(ifs);
                                                       string line = "";
using System.ComponentModel;
using System.Data;
                                                       string[] tokens =
using System.Linq;
                                          null;
                                                       line = sr.ReadLine();
using System.Text;
using System.IO;
                                                       line = line.Trim();
                                                       try
namespace Gabung_tugas_TA
                                                           while (line !=
                                          null && line.StartsWith("p") ==
    class graph
                                          false)
        public static int
                                                           {
nbvertices;
                                                               line =
        public static int nbedge;
                                          sr.ReadLine();
        public static int nbedgep;
                                                               line =
        public static double[,]
                                          line.Trim();
tauE;
        public static double[,]
                                                           tokens =
                                          line.Split(' ');
tauEinitial;
        public static int[]
                                                           nbvertices =
                                          int.Parse(tokens[2]);
degree;
        public static
                                                           nbedge =
                                          int.Parse(tokens[3]);
List<List<int>> succ = new
List<List<int>>();
                                                           matrix = new
                                          int[nbvertices, nbvertices];
        public static int[,]
matrix:
                                                           while ((line =
        public static
                                          sr.ReadLine()) != null)
List<List<object>> matrixp = new
List<List<object>>();
                                                               line =
        public static bool cek =
                                          line.Trim(' ');
true;
                                                               if
        public static int cekgraph
                                          (line.StartsWith("e") == true)
= 0;
        public static int cekE =
                                                                   tokens =
                                          line.Split(' ');
0;
        public static double v =
                                                                   int nodeA
0;
                                          = int.Parse(tokens[1]) - 1;
        public static double
                                                                    int nodeB
deltatau = 0;
                                          = int.Parse(tokens[2]) - 1;
        public static double c1 =
                                          matrix[nodeA, nodeB] = 1;
0.3, c2 = 1-c1, c3 = 0.3;
                                          matrix[nodeB, nodeA] = 1;
                                                                   cekE = 1;
        public static Random rnd =
new Random();
                                                               else if
                                           (line.StartsWith("c")
        public static void
readfiles(string graphfile)
                                          line.StartsWith("#") ||
                                          line.StartsWith("*") == true)
            cekE = 0;
            cekgraph = 0;
            FileStream ifs = new
                                                               else if
                                          (line.StartsWith("0") == true &&
FileStream(graphfile,
FileMode.Open);
                                          cekE != 1)
```

```
tokens =
                                                        ifs.Close();
line.Split(' ');
                         int nodeA
= int.Parse(tokens[0]);
                                                    public static void
                         int nodeB
                                            refreshtaue()
= int.Parse(tokens[1]);
                                                        for (int i = 0; i <</pre>
matrix[nodeA, nodeB] = 1;
matrix[nodeB, nodeA] = 1;
                                            nbvertices; i++)
                         cekgraph =
1;
                                                             for (int j = 0; j
                                            < nbvertices; j++)</pre>
                     else if
(cekgraph == 1 && cekE != 1)
                                                                 tauE[i, j] =
                                            tauEinitial[i, j];
                                                                 tauE[j, i] =
((Convert.ToInt32(line.StartsWith(
                                            tauEinitial[j, i];
"1")) >= 49 ||
Convert.ToInt32(line.StartsWith("9
")) <= 57) == true)
                                                    public static void
                              tokens
                                            creategraph()
= line.Split(' ');
                              int
                                                        tauE = new
nodeA = int.Parse(tokens[0]);
                                            double[nbvertices, nbvertices];
                                                        tauEinitial = new
nodeB = int.Parse(tokens[1]);
                                            double[nbvertices, nbvertices];
matrix[nodeA, nodeB] = 1;
                                                        degree = new
matrix[nodeB, nodeA] = 1;
                                            int[nbvertices];
                                                        List<double> subtauE =
                                            new List<double>();
                                                        int nbsucc;
                     else if
(cekgraph == 0 && cekE == 0)
                                                        for (int i = 0; i <
                                            nbvertices; i++)
((Convert.ToInt32(line.StartsWith(
                                                            for (int j = 0; j
"1")) >= 48 ||
                                            < nbvertices; j++)</pre>
Convert.ToInt32(line.StartsWith("9
")) <= 57) == true)
                                                                 if
                                            (matrix[i,j] == 1)
                             tokens
= line.Split(' ');
                                                                     tauE[i, j]
                              int
                                            = 1.0;
nodeA = int.Parse(tokens[0]) - 1;
                                                                     tauE[j, i]
                                            = 1.0;
nodeB = int.Parse(tokens[1]) - 1;
                                            tauEinitial[i, j] = 1.0;
matrix[nodeA, nodeB] = 1;
                                            tauEinitial[j, i] = 1.0;
matrix[nodeB, nodeA] = 1;
                                            degree[i]++;
                     }
                                                        for (int i = 0; i <</pre>
                 }
                                            nbvertices; i++)
            catch (Exception)
                                                             List<int> subsucc
                 cek = false;
                                            = new List<int>();
                                                            nbsucc = 0;
                                                            int j = 0;
            sr.Close();
```

```
for (j = 0; j <
                                            subsucc.Add(j);
nbvertices; j++)
                                                                     nbsucc++;
                     if (tauE[i, j]
> 0)
                                                             succ.Add(subsucc);
subsucc.Add(j);
                                                         }
                         nbsucc++;
                                                    }
                                                    public static void
                 }
                                            initpheromone(double taumax, int
                 succ.Add(subsucc);
                                            cek)
                                                         int i, j;
        public static void
                                                         for (i = 0; i <
creategraphtable(int row)
                                            nbvertices; i++)
            nbvertices =
                                                             for (j = 0; j <
Form2.table;
                                            degree[i]; j++)
            tauE = new
double[nbvertices, nbvertices];
                                                                 tauE[i,
            degree = new
                                            succ[i][j]] = taumax;
int[nbvertices];
                                                                 if (cek == 1)
            List<double> subtauE =
                                            tauEinitial[i, succ[i][j]] =
new List<double>();
            int nbsucc;
                                            taumax;
            for (int i = 0; i <
nbvertices; i++)
                 for (int j = 0; j
< nbvertices; j++)</pre>
                                                    public static void
                                            evaporate(double rho, double
                     if
                                            taumin)
(Convert.ToInt32(matrixp[i][j]) ==
1)
                                                         for (int i = 0; i <</pre>
                                            nbvertices; i++)
                         tauE[i, j]
= 1.0;
                                                             for (int j = 0; j
                         tauE[j, i]
                                            < degree[i]; j++)</pre>
= 1.0;
degree[i]++;
                                                                 tauE[i,
                         nbedgep++;
                                            succ[i][j]] *= rho;
                     }
                                                                 if (tauE[i,
                 }
                                            succ[i][j]] < taumin)</pre>
            nbedgep = nbedgep / 2;
                                                                     tauE[i,
            for (int i = 0; i <
                                            succ[i][j]] = taumin;
nbvertices; i++)
                                                             }
                 List<int> subsucc
= new List<int>();
                 nbsucc = 0;
                                                    public static void
                 int j = 0;
                                            reinforcement(int cliquesize,
                 for (j = 0; j <
                                            double taumax, double qty, int
nbvertices; j++)
                                            algo, int cek)
                     if (tauE[i, j]
                                                         for (int i = 0; i <
> 0)
                                            cliquesize; i++)
```

```
(tauE[Form1.bestcliquecycle[i],
                for (int j = i +
1; j < cliquesize; j++)
                                           Form1.bestcliquecycle[j]] >
                                           taumax)
                    if (algo == 0
                                           tauE[Form1.bestcliquecycle[i],
                                           Form1.bestcliquecycle[j]] =
|| algo == 1)
                                           taumax;
                         if (cek ==
                                           tauE[Form1.bestcliquecycle[j],
1)
                                           Form1.bestcliquecycle[i]] =
                                           tauE[Form1.bestcliquecycle[i],
tauE[Form1.bestcliquecycle[i],
                                           Form1.bestcliquecycle[j]];
Form1.bestcliquecycle[j]] += qty;
                                                               }
                                                               else
                        else
tauE[Form2.bestcliquecycle[i],
                                           (tauE[Form2.bestcliquecycle[i],
Form2.bestcliquecycle[j]] += qty;
                                           Form2.bestcliquecycle[j]] >
                                           taumax)
                                           tauE[Form2.bestcliquecycle[i],
                    else if (algo
                                           Form2.bestcliquecycle[j]] =
== 2 || algo == 3)
                                           taumax;
                                           tauE[Form2.bestcliquecycle[j],
                    {
                         if (cek ==
                                           Form2.bestcliquecycle[i]] =
1)
                                           tauE[Form2.bestcliquecycle[i],
                                           Form2.bestcliquecycle[j]];
                        {
                             v = c1
* rnd.NextDouble() *
(tauE[Form1.bestcliquecycle[i],
                                                       }
Form1.bestcliquecycle[j]] -
                                                   }
deltatau) + c2 * rnd.NextDouble()
                                               }
* (tauE[Form1.bestclique[i],
                                           }
Form1.bestclique[j]] - deltatau) +
c3 * v;
deltatau += v;
tauE[Form1.bestcliquecycle[i],
Form1.bestcliquecycle[j]] +=
deltatau;
                        else
                             v = c1
* rnd.NextDouble() *
(tauE[Form2.bestcliquecycle[i],
Form2.bestcliquecycle[j]] -
deltatau) + c2 * rnd.NextDouble()
* (tauE[Form2.bestclique[i],
Form2.bestclique[j]] - deltatau) +
c3 * v;
deltatau += v;
tauE[Form2.bestcliquecycle[i],
Form2.bestcliquecycle[j]] +=
deltatau;
                    if (cek == 1)
```

### Rand.cs

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Gabung_tugas_TA
{
   class rand
       public static int iseed;
       public static double
randfloat()
        {
            const int ia = 16807,
ic = 2147483647, iq = 127773, ir =
2836;
            int il, ih, it;
            double rc;
            ih = iseed / iq;
            il = iseed % iq;
            it = ia * il - ir *
ih;
            if (it > 0)
                iseed = it;
            else
                iseed = ic + it;
            rc = ic;
            return (iseed / rc);
        public static int
getnextrand(int limit)
return(int)(100000*randfloat())%li
mit;
        public static void
seed(int seed)
        {
            iseed = seed;
        }
   }
}
                                 Program.cs
using System;
using System.Collections.Generic;
                                              static class Program
using System.Linq;
using System.Windows.Forms;
                                                   [STAThread]
                                                  static void Main()
namespace Gabung_tugas_TA
                                                   {
```

# Lampiran 2 Hasil Lengkap Pencarian Maximum Clique Dengan ACO, IACO, ACOPSO & IACOPSO

| ***                                                           | Best  |      |     | ACC        | )           |           |      |     | IACO       | )           |           |      |     | ACOP       | rso         |           | IACOPSO |     |            |             |           |
|---------------------------------------------------------------|-------|------|-----|------------|-------------|-----------|------|-----|------------|-------------|-----------|------|-----|------------|-------------|-----------|---------|-----|------------|-------------|-----------|
| Hasil                                                         | Known | Best | Min | Std<br>dev | Avg<br>best | Avgtime   | Best | Min | Std<br>dev | Avg<br>best | Avgtime   | Best | Min | Std<br>dev | Avg<br>best | Avgtime   | Best    | Min | Std<br>dev | Avg<br>best | Avgtime   |
| Co-authorship of scientist in network theory and experiment   | 20,00 | 20   | 20  | 0          | 20,00       | 00:00,618 | 20   | 20  | 0          | 20,00       | 00:00,598 | 20   | 20  | 0          | 20,00       | 00:00,609 | 20      | 20  | 0          | 20,00       | 00:00,621 |
| Dolphin network                                               | 5,00  | 5    | 5   | 0          | 5,00        | 00:00,070 | 5    | 5   | 0          | 5,00        | 00:00,058 | 5    | 5   | 0          | 5,00        | 00:00,059 | 5       | 5   | 0          | 5,00        | 00:00,059 |
| email interchange network<br>univ of rovia i virgili tarragon | 12,00 | 12   | 12  | 0          | 12,00       | 00:00,886 | 12   | 12  | 0          | 12,00       | 00:00,865 | 12   | 12  | 0          | 12,00       | 00:00,864 | 12      | 12  | 0          | 12,00       | 00:00,870 |
| Erdos991                                                      | 7,00  | 7    | 7   | 0          | 7,00        | 00:00,228 | 7    | 7   | 0          | 7,00        | 00:00,215 | 7    | 7   | 0          | 7,00        | 00:00,217 | 7       | 7   | 0          | 7,00        | 00:00,219 |
| Facebook_combined                                             | 69,00 | 69   | 69  | 0          | 69,00       | 00:11,955 | 69   | 69  | 0          | 69,00       | 00:12,050 | 69   | 69  | 0          | 69,00       | 00:12,535 | 69      | 69  | 0          | 69,00       | 00:12,341 |
| Pajek network Erdos<br>collaboration network 971              | 7,00  | 7    | 7   | 0          | 7,00        | 00:00,215 | 7    | 7   | 0          | 7,00        | 00:00,202 | 7    | 7   | 0          | 7,00        | 00:00,203 | 7       | 7   | 0          | 7,00        | 00:00,204 |
| Zachary's karate club                                         | 5,00  | 5    | 5   | 0          | 5,00        | 00:00,057 | 5    | 5   | 0          | 5,00        | 00:00,050 | 5    | 5   | 0          | 5,00        | 00:00,047 | 5       | 5   | 0          | 5,00        | 00:00,047 |
| p_hat300-1                                                    | 8,00  | 8    | 8   | 0          | 8,00        | 00:01,554 | 8    | 8   | 0          | 8,00        | 00:01,431 | 8    | 8   | 0          | 8,00        | 00:01,446 | 8       | 8   | 0          | 8,00        | 00:01,432 |
| brock200_2                                                    | 12,00 | 12   | 12  | 0          | 12,00       | 00:01,802 | 12   | 12  | 0          | 12,00       | 00:01,622 | 12   | 12  | 0          | 12,00       | 00:01,799 | 12      | 12  | 0          | 12,00       | 00:01,635 |
| hamming8-4                                                    | 16,00 | 16   | 16  | 0          | 16,00       | 00:03,837 | 16   | 16  | 0          | 16,00       | 00:03,403 | 16   | 16  | 0          | 16,00       | 00:03,266 | 16      | 16  | 0          | 16,00       | 00:03,429 |
| brock200_4                                                    | 17,00 | 17   | 15  | 0,67       | 16,30       | 00:02,962 | 17   | 15  | 0,70       | 16,40       | 00:02,635 | 17   | 15  | 0,82       | 16,30       | 00:02,549 | 17      | 15  | 0,67       | 16,30       | 00:02,599 |
| brock400_2                                                    | 29,00 | 24   | 22  | 0,70       | 22,40       | 00:10,555 | 25   | 23  | 0,70       | 23,40       | 00:09,203 | 23   | 22  | 0,52       | 22,40       | 00:09,195 | 23      | 22  | 0,52       | 22,40       | 00:09,375 |
| brock400_4                                                    | 33,00 | 25   | 22  | 0,82       | 23,00       | 00:11,310 | 33   | 23  | 4,03       | 25,40       | 00:09,567 | 23   | 22  | 0,48       | 22,30       | 00:09,639 | 25      | 22  | 0,97       | 22,60       | 00:09,484 |
| gen200_p0.9_44                                                | 44,00 | 44   | 38  | 2,88       | 41,10       | 00:07,111 | 44   | 38  | 2,63       | 41,60       | 00:05,721 | 44   | 39  | 2,35       | 41,80       | 00:05,721 | 44      | 39  | 1,89       | 43,00       | 00:05,763 |
| gen200_p0.9_55                                                | 55,00 | 55   | 55  | 0          | 55,00       | 00:07,823 | 55   | 55  | 0          | 55,00       | 00:05,774 | 55   | 55  | 0          | 55,00       | 00:05,883 | 55      | 55  | 0          | 55,00       | 00:06,042 |
| gen400_p0.9_55                                                | 55,00 | 51   | 46  | 1,43       | 48,40       | 00:19,885 | 52   | 48  | 1,07       | 49,60       | 00:15,205 | 52   | 49  | 1,06       | 50,70       | 00:15,602 | 52      | 49  | 0,97       | 50,40       | 00:15,457 |
| gen400_p0.9_65                                                | 65,00 | 63   | 47  | 4,85       | 51,20       | 00:20,296 | 65   | 47  | 6,41       | 54,00       | 00:15,920 | 65   | 52  | 4,16       | 63,30       | 00:15,653 | 65      | 59  | 1,90       | 64,40       | 00:15,475 |
| gen400_p0.9_75                                                | 75,00 | 75   | 71  | 1,65       | 73,50       | 00:20,561 | 75   | 75  | 0          | 75,00       | 00:16,235 | 75   | 75  | 0          | 75,00       | 00:16,248 | 75      | 75  | 0          | 75,00       | 00:16,087 |
| p_hat300-2                                                    | 25,00 | 25   | 25  | 0          | 25,00       | 00:04,466 | 25   | 25  | 0          | 25,00       | 00:03,954 | 25   | 25  | 0          | 25,00       | 00:04,105 | 25      | 25  | 0          | 25,00       | 00:04,119 |
| p_hat300-3                                                    | 36,00 | 36   | 34  | 0,95       | 34,70       | 00:07,911 | 36   | 34  | 1,05       | 35,00       | 00:06,752 | 36   | 34  | 0,97       | 35,40       | 00:06,771 | 36      | 34  | 0,97       | 35,40       | 00:06,759 |
| C250.9                                                        | 44,00 | 44   | 41  | 1,03       | 42,20       | 00:10,093 | 44   | 42  | 0,82       | 43,00       | 00:07,561 | 44   | 41  | 0,95       | 42,70       | 00:07,921 | 44      | 42  | 0,70       | 43,60       | 00:08,082 |

| C125.9      | 34,00  | 34  | 34  | 0    | 34,00      | 00:04,046 | 34  | 34  | 0    | 34,00 | 00:03,093 | 34  | 34  | 0    | 34,00      | 00:03,144 | 34  | 34  | 0    | 34,00  | 00:03,164 |
|-------------|--------|-----|-----|------|------------|-----------|-----|-----|------|-------|-----------|-----|-----|------|------------|-----------|-----|-----|------|--------|-----------|
| DSJC500_5   | 13,00  | 13  | 12  | 0,53 | 12,50      | 00:08,865 | 13  | 12  | 0,48 | 12,70 | 00:08,085 | 13  | 12  | 0,53 | 12,50      | 00:08,090 | 13  | 12  | 0,52 | 12,60  | 00:08,034 |
| C500.9      | 57,00  | 54  | 49  | 1,43 | 51,60      | 00:28,402 | 54  | 50  | 1,42 | 51,30 | 00:21,910 | 55  | 49  | 1,75 | 52,80      | 00:23,216 | 55  | 47  | 3,03 | 51,50  | 00:22,668 |
| brock800_2  | 29,00  | 20  | 18  | 0,63 | 18,80      | 00:27,341 | 20  | 18  | 0,47 | 19,00 | 00:27,400 | 19  | 18  | 0,32 | 18,10      | 00:27,277 | 19  | 18  | 0,52 | 18,60  | 00:27,360 |
| brock800_4  | 33,00  | 19  | 18  | 0,52 | 18,40      | 00:28,054 | 20  | 18  | 0,67 | 19,30 | 00:27,008 | 19  | 18  | 0,52 | 18,60      | 00:26,219 | 20  | 18  | 0,67 | 18,70  | 00:26,305 |
| keller5     | 27,00  | 27  | 24  | 0,92 | 25,20      | 00:33,436 | 27  | 25  | 0,82 | 25,70 | 00:29,722 | 25  | 24  | 0,48 | 24,70      | 00:30,002 | 27  | 24  | 0,88 | 25,10  | 00:30,076 |
| p_hat700-1  | 11,00  | 11  | 9   | 0,67 | 9,70       | 00:07,802 | 11  | 9   | 0,79 | 10,20 | 00:07,019 | 11  | 9   | 0,67 | 9,70       | 00:07,039 | 10  | 9   | 0,48 | 9,70   | 00:07,138 |
| p_hat700-2  | 44,00  | 43  | 42  | 0,42 | 42,80      | 00:18,218 | 44  | 42  | 0,70 | 43,40 | 00:16,113 | 44  | 44  | 0    | 44,00      | 00:16,635 | 44  | 44  | 0    | 44,00  | 00:16,382 |
| p_hat700-3  | 62,00  | 61  | 59  | 0,82 | 60,30      | 00:31,241 | 62  | 59  | 1,03 | 60,80 | 00:29,231 | 62  | 61  | 0,32 | 61,90      | 00:29,083 | 62  | 61  | 0,32 | 61,90  | 00:29,178 |
| MANN_a45    | 345,00 | 339 | 338 | 0,52 | 338,4<br>4 | 08:12,914 | 343 | 341 | 0,57 | 342,1 | 06:21,278 | 343 | 340 | 0,82 | 342,0<br>0 | 06:25,792 | 344 | 341 | 0,95 | 341,70 | 06:26,058 |
| p_hat1500-2 | 65,00  | 63  | 60  | 0,95 | 61,70      | 01:11,268 | 65  | 62  | 1,03 | 63,2  | 01:12,092 | 65  | 64  | 0,48 | 64,70      | 01:12,239 | 65  | 65  | 0    | 65,00  | 01:12,950 |
| p_hat1500-3 | 94,00  | 89  | 81  | 2,30 | 86,20      | 02:01,631 | 93  | 89  | 1,72 | 91,5  | 01:59,722 | 94  | 93  | 0,42 | 93,20      | 02:00,529 | 94  | 93  | 0,48 | 93,30  | 02:01,322 |
| DSJC1000_5  | 15,00  | 14  | 13  | 0,48 | 13,30      | 00:30,734 | 14  | 13  | 0,52 | 13,6  | 00:31,037 | 14  | 13  | 0,48 | 13,30      | 00:31,519 | 14  | 13  | 0,53 | 13,50  | 00:31,960 |

# Lampiran 3 Hasil Lengkap Pencarian Best Known Maximum Clique Dengan ACO, IACO, ACOPSO & IACOPSO

|                                                             | Best      |     |             |             | ACO           |             |             | IACO          |     |             |             |               |             |             |               |  |
|-------------------------------------------------------------|-----------|-----|-------------|-------------|---------------|-------------|-------------|---------------|-----|-------------|-------------|---------------|-------------|-------------|---------------|--|
| Dataset                                                     | Know<br>n | Max | Max<br>Iter | Avg<br>Iter | Stdev<br>Iter | Max<br>Time | Avg<br>Time | Stdev<br>Time | Max | Max<br>Iter | Avg<br>Iter | Stdev<br>Iter | Max<br>Time | Avg<br>Time | Stdev<br>Time |  |
| co-authorship of scientist in network theory and experiment | 20.00     | 20  | 5           | 2.8         | 1,64          | 00:00,051   | 00:00.025   | 00:00,01<br>6 | 20  | 5           | 2.8         | 1,64          | 00:00,048   | 00:00.020   | 00:00,017     |  |
| Dolphin network                                             | 5.00      | 5   | 2           | 1.2         | 0,45          | 00:00,017   | 00:00.011   | 00:00,00      | 5   | 1           | 1           | 0,00          | 00:00,005   | 00:00.003   | 00:00,002     |  |
| email interchange network univ of rovia i virgili tarragon  | 12.00     | 12  | 15          | 5.2         | 5,63          | 00:00,136   | 00:00.051   | 00:00,05      | 12  | 15          | 5.2         | 5,63          | 00:00,128   | 00:00.042   | 00:00,050     |  |
| Erdos991                                                    | 7.00      | 7   | 12          | 5.4         | 5,18          | 00:00,086   | 00:00.043   | 00:00,03<br>7 | 7   | 12          | 6           | 4,90          | 00:00,087   | 00:00.041   | 00:00,035     |  |
| facebook_combined                                           | 69.00     | 69  | 217         | 84.6        | 74,77         | 00:04,191   | 00:01.512   | 00:01,50<br>7 | 69  | 190         | 87          | 58,47         | 00:03,327   | 00:01.469   | 00:01,049     |  |
| Pajek network Erdos collaboration<br>network 971            | 7.00      | 7   | 24          | 10.8        | 9,20          | 00:00,212   | 00:00.082   | 00:00,07<br>8 | 7   | 17          | 6           | 6,56          | 00:00,090   | 00:00.036   | 00:00,036     |  |
| Zachary's karate club                                       | 5.00      | 5   | 1           | 1           | 0,00          | 00:00,013   | 00:00.008   | 00:00,00      | 5   | 1           | 1           | 0,00          | 00:00,021   | 00:00.007   | 00:00,008     |  |
| p_hat300-1                                                  | 8.00      | 8   | 298         | 102.8       | 113,21        | 00:02,602   | 00:00.886   | 00:01,00      | 8   | 38          | 20.4        | 11,10         | 00:00,346   | 00:00.199   | 00:00,124     |  |
| brock200_2                                                  | 12.00     | 12  | 100         | 32          | 42,04         | 00:00,958   | 00:00.285   | 00:00,40      | 12  | 323         | 107.8       | 127,00        | 00:02,578   | 00:00.960   | 00:01,036     |  |
| hamming8-4                                                  | 16.00     | 16  | 46          | 39          | 8,72          | 00:00,418   | 00:00.347   | 00:00,08      | 16  | 41          | 23.8        | 15,71         | 00:00,392   | 00:00.220   | 00:00,154     |  |
| brock200_4                                                  | 17.00     | 17  | 3526        | 1122.8      | 1396,56       | 00:42,349   | 00:13.306   | 00:16,86      | 17  | 4630        | 1510.6      | 1880,36       | 00:59,914   | 00:19.035   | 00:24,444     |  |
| brock400_2                                                  | 29.00     | 29  | 1611        | 435.2       | 665,36        | 00:34,575   | 00:09.265   | 00:14,32      | 29  | 5191        | 1834.4      | 2065,56       | 02:04,482   | 00:43.038   | 00:49,798     |  |
| brock400_4                                                  | 33.00     | 33  | 5898        | 2885.4      | 2549,37       | 02:35,925   | 01:10.863   | 01:05,12<br>7 | 33  | 9320        | 5606.8      | 3443,23       | 03:36,631   | 02:07.523   | 01:19,104     |  |
| gen200_p0.9_44                                              | 44.00     | 43  | 1352        | 313.8       | 580,41        | 00:24,020   | 00:05.484   | 00:10,36      | 44  | 67          | 52          | 13,13         | 00:01,230   | 00:00.919   | 00:00,259     |  |
| gen200_p0.9_55                                              | 55.00     | 55  | 32          | 30.8        | 1,64          | 00:00,531   | 00:00.458   | 00:00,05      | 55  | 41          | 31          | 8,37          | 00:00,700   | 00:00.551   | 00:00,163     |  |
| gen400_p0.9_55                                              | 55.00     | 50  | 93          | 68.6        | 15,52         | 00:02,288   | 00:01.512   | 00:00,45      | 50  | 139         | 91.2        | 29,24         | 00:03,527   | 00:02.232   | 00:00,821     |  |
| gen400_p0.9_65                                              | 65.00     | 55  | 5369        | 1431        | 2291,78       | 02:16,430   | 00:40.269   | 00:58,69      | 59  | 3426        | 908.4       | 1450,52       | 01:37,663   | 00:27.971   | 00:41,357     |  |
| gen400_p0.9_75                                              | 75.00     | 75  | 87          | 64.8        | 19,49         | 00:02,445   | 00:01.570   | 00:00,51      | 75  | 87          | 66.4        | 16,83         | 00:02,476   | 00:01.785   | 00:00,465     |  |
| p_hat300-2                                                  | 25.00     | 25  | 60          | 48.8        | 8,26          | 00:00,745   | 00:00.602   | 00:00,09      | 25  | 65          | 51.6        | 10,38         | 00:00,795   | 00:00.674   | 00:00,131     |  |
| p_hat300-3                                                  | 36.00     | 36  | 63          | 54.2        | 6,80          | 00:01,168   | 00:00.884   | 00:00,19      | 36  | 9861        | 2447.2      | 4242,72       | 03:15,096   | 00:48.241   | 01:23,987     |  |

| C250.9      | 44.00  | 43  | 60  | 53.6    | 6,02    | 00:01,402 | 00:01.112 | 00:00,27      | 44  | 88   | 55.6    | 18,94   | 00:01,610 | 00:01.127 | 00:00,366 |
|-------------|--------|-----|-----|---------|---------|-----------|-----------|---------------|-----|------|---------|---------|-----------|-----------|-----------|
| C125.9      | 34.00  | 34  | 34  | 29.4    | 4,34    | 00:00,320 | 00:00.291 | 00:00,03      | 34  | 34   | 28      | 5,15    | 00:00,514 | 00:00.341 | 00:00,102 |
| DSJC500_5   | 13.00  | 13  | 13  | 743     | 627,92  | 00:39,946 | 00:17.392 | 00:14,65<br>7 | 13  | 3803 | 1884.4  | 1227,36 | 01:32,740 | 00:45.427 | 00:30,175 |
| C500.9      | 57.00  | 52  | 50  | 1588.4  | 3318,38 | 04:55,929 | 01:02.056 | 02:10,74<br>6 | 51  | 95   | 79.4    | 14,88   | 00:03,558 | 00:02.783 | 00:00,699 |
| brock800_2  | 29.00  | 20  | 19  | 2888.2  | 2337,48 | 05:17,044 | 02:15.673 | 01:50,99<br>4 | 24  | 4581 | 2107.8  | 1851,02 | 03:54,629 | 01:39.470 | 01:30,947 |
| brock800_4  | 33.00  | 20  | 19  | 2590.2  | 2227,82 | 04:12,069 | 01:48.938 | 01:29,93<br>5 | 20  | 4743 | 1555.2  | 1866,43 | 04:00,304 | 01:13.903 | 01:36,139 |
| keller5     | 27.00  | 27  | 26  | 4910.6  | 3623,21 | 06:59,815 | 03:48.435 | 02:50,49<br>6 | 27  | 8565 | 4788.8  | 3381,84 | 06:45,288 | 03:45.114 | 02:41,520 |
| p_hat700-1  | 11.00  | 11  | 10  | 1433.2  | 994,38  | 01:00,902 | 00:33.437 | 00:25,47<br>0 | 11  | 3882 | 1743    | 1298,38 | 01:28,550 | 00:40.804 | 00:29,802 |
| p_hat700-2  | 44.00  | 44  | 44  | 1097.4  | 1817,87 | 02:01,492 | 00:34.524 | 00:51,83<br>4 | 44  | 7753 | 1611.4  | 3433,27 | 05:01,303 | 01:01.975 | 02:13,790 |
| p_hat700-3  | 62.00  | 62  | 60  | 72.8    | 6,22    | 00:04,566 | 00:03.482 | 00:00,95<br>0 | 61  | 8126 | 1683.6  | 3601,45 | 06:56,099 | 01:25.930 | 03:04,572 |
| MANN_a45    | 345.00 | 340 | 339 | 1239.75 | 841,97  | 18:09,595 | 11:54.430 | 07:53,72<br>4 | 343 | 4583 | 2148    | 1850,19 | 45:05,697 | 20:10.719 | 18:14,441 |
| p_hat1500-2 | 65.00  | 64  | 63  | 7216.4  | 1140,75 | 19:38,662 | 15:17.445 | 02:46,90<br>6 | 65  | 8719 | 7064    | 1998,23 | 19:19,347 | 15:33.180 | 04:48,631 |
| p_hat1500-3 | 94.00  | 91  | 86  | 2317    | 4450,01 | 28:54,652 | 07:24.123 | 14:20,35<br>4 | 92  | 8660 | 2233.5  | 4284,34 | 23:23,085 | 06:00.964 | 11:34,748 |
| DSJC1000_5  | 15.00  | 14  | 14  | 1367.75 | 941,92  | 01:44,971 | 00:55.288 | 00:40,74<br>1 | 14  | 9899 | 2922.25 | 4666,96 | 07:45,343 | 02:20.635 | 03:37,562 |

| •                                                             | Best  |     |             |             | ACO           | PSO         |             |               | IACOPSO |             |             |               |             |             |               |  |  |
|---------------------------------------------------------------|-------|-----|-------------|-------------|---------------|-------------|-------------|---------------|---------|-------------|-------------|---------------|-------------|-------------|---------------|--|--|
| Dataset                                                       | Known | Max | Max<br>Iter | Avg<br>Iter | Stdev<br>Iter | Max<br>Time | Avg<br>Time | Stdev<br>Time | Max     | Max<br>Iter | Avg<br>Iter | Stdev<br>Iter | Max<br>Time | Avg<br>Time | Stdev<br>Time |  |  |
| co-authorship of scientist in network theory and experiment   | 20.00 | 20  | 5           | 2.8         | 1,64          | 00:00,046   | 00:00.019   | 00:00,017     | 20      | 5           | 2.8         | 1,64          | 00:00,046   | 00:00.019   | 00:00,018     |  |  |
| Dolphin network                                               | 5.00  | 5   | 1           | 1           | 0,00          | 00:00,003   | 00:00.001   | 00:00,001     | 5       | 1           | 1           | 0,00          | 00:00,006   | 00:00.003   | 00:00,003     |  |  |
| email interchange network univ of<br>rovia i virgili tarragon | 12.00 | 12  | 15          | 5.2         | 5,63          | 00:00,097   | 00:00.034   | 00:00,036     | 12      | 15          | 5.2         | 5,63          | 00:00,115   | 00:00.037   | 00:00,044     |  |  |
| Erdos991                                                      | 7.00  | 7   | 12          | 7.4         | 3,44          | 00:00,067   | 00:00.044   | 00:00,018     | 7       | 12          | 5.6         | 4,72          | 00:00,067   | 00:00.033   | 00:00,028     |  |  |
| facebook_combined                                             | 69.00 | 69  | 102         | 50          | 29,25         | 00:01,934   | 00:00.866   | 00:00,599     | 69      | 110         | 70.8        | 31,19         | 00:02,106   | 00:01.238   | 00:00,612     |  |  |
| Pajek network Erdos collaboration network 971                 | 7.00  | 7   | 53          | 16.8        | 20,98         | 00:00,359   | 00:00.108   | 00:00,143     | 7       | 22          | 14          | 6,67          | 00:00,146   | 00:00.091   | 00:00,047     |  |  |
| Zachary's karate club                                         | 5.00  | 5   | 1           | 1           | 0,00          | 00:00,004   | 00:00.003   | 00:00,001     | 5       | 1           | 1           | 0,00          | 00:00,004   | 00:00.003   | 00:00,001     |  |  |
| p_hat300-1                                                    | 8.00  | 8   | 76          | 41.6        | 22,72         | 00:00,525   | 00:00.309   | 00:00,153     | 8       | 249         | 91.6        | 100,98        | 00:02,568   | 00:00.834   | 00:01,040     |  |  |
| brock200_2                                                    | 12.00 | 12  | 318         | 108.6       | 127,01        | 00:03,145   | 00:01.055   | 00:01,269     | 12      | 85          | 55.8        | 27,51         | 00:00,816   | 00:00.475   | 00:00,269     |  |  |
| hamming8-4                                                    | 16.00 | 16  | 57          | 36          | 21,62         | 00:00,652   | 00:00.344   | 00:00,239     | 16      | 62          | 31.8        | 20,54         | 00:00,782   | 00:00.364   | 00:00,289     |  |  |
| brock200_4                                                    | 17.00 | 17  | 3827        | 1940.4      | 1608,31       | 00:45,597   | 00:22.771   | 00:18,937     | 17      | 7622        | 3156.4      | 2656,68       | 01:32,717   | 00:38.727   | 00:32,345     |  |  |
| brock400_2                                                    | 29.00 | 24  | 8663        | 3908.6      | 3290,84       | 03:17,023   | 01:26.563   | 01:14,553     | 29      | 5437        | 3017.2      | 2312,58       | 02:09,143   | 01:08.439   | 00:52,984     |  |  |
| brock400_4                                                    | 33.00 | 33  | 2221        | 1118.2      | 704,38        | 00:49,797   | 00:24.114   | 00:16,271     | 33      | 6944        | 5028.6      | 2123,58       | 02:51,875   | 01:56.991   | 00:51,690     |  |  |
| gen200_p0.9_44                                                | 44.00 | 44  | 9334        | 3213.8      | 4431,46       | 02:57,467   | 01:00.752   | 01:24,057     | 44      | 4783        | 1643.4      | 2084,00       | 01:35,144   | 00:32.102   | 00:41,157     |  |  |
| gen200_p0.9_55                                                | 55.00 | 55  | 34          | 27.8        | 4,32          | 00:00,688   | 00:00.451   | 00:00,148     | 55      | 28          | 21.8        | 5,36          | 00:00,467   | 00:00.367   | 00:00,111     |  |  |
| gen400_p0.9_55                                                | 55.00 | 51  | 4737        | 1762        | 2322,44       | 02:12,335   | 00:46.535   | 01:02,556     | 52      | 6632        | 1388        | 2931,53       | 02:55,349   | 00:36.676   | 01:17,522     |  |  |
| gen400_p0.9_65                                                | 65.00 | 65  | 5470        | 1158        | 2410,52       | 03:25,672   | 00:43.310   | 01:30,764     | 65      | 7133        | 2876.8      | 3234,69       | 04:56,502   | 01:57.100   | 02:13,377     |  |  |
| gen400_p0.9_75                                                | 75.00 | 75  | 5529        | 1151.8      | 2446,93       | 02:57,138   | 00:36.670   | 01:18,524     | 75      | 111         | 68.6        | 30,66         | 00:03,306   | 00:01.988   | 00:00,924     |  |  |
| p_hat300-2                                                    | 25.00 | 25  | 37          | 33.8        | 4,87          | 00:00,600   | 00:00.444   | 00:00,113     | 25      | 43          | 39.8        | 3,42          | 00:00,665   | 00:00.577   | 00:00,069     |  |  |
| p_hat300-3                                                    | 36.00 | 36  | 3787        | 1196.8      | 1597,43       | 01:12,358   | 00:22.745   | 00:30,580     | 36      | 89          | 69.2        | 19,36         | 00:01,687   | 00:01.257   | 00:00,384     |  |  |
| C250.9                                                        | 44.00 | 44  | 86          | 62.6        | 15,79         | 00:01,609   | 00:01.242   | 00:00,320     | 44      | 683         | 175.6       | 283,75        | 00:17,840   | 00:04.377   | 00:07,532     |  |  |
| C125.9                                                        | 34.00 | 34  | 28          | 23          | 3,81          | 00:00,282   | 00:00.226   | 00:00,047     | 34      | 40          | 26.6        | 9,91          | 00:00,390   | 00:00.284   | 00:00,070     |  |  |

| DSJC500_5   | 13.00  | 13  | 3045 | 1287.8 | 1102,59 | 01:13,159 | 00:32.092 | 00:26,113 | 13  | 2513 | 1294.2  | 864,01  | 01:14,525 | 00:34.061 | 00:26,083 |
|-------------|--------|-----|------|--------|---------|-----------|-----------|-----------|-----|------|---------|---------|-----------|-----------|-----------|
| C500.9      | 57.00  | 55  | 9031 | 5255.6 | 3687,60 | 05:19,316 | 03:26.462 | 02:22,968 | 55  | 9220 | 6252.6  | 3306,80 | 05:42,836 | 04:03.455 | 02:06,567 |
| brock800_2  | 29.00  | 19  | 1352 | 635    | 460,64  | 00:55,472 | 00:27.762 | 00:18,628 | 24  | 7838 | 3276.4  | 3078,87 | 07:21,438 | 03:14.026 | 03:05,704 |
| brock800_4  | 33.00  | 20  | 9845 | 5891.6 | 3771,69 | 06:57,065 | 04:16.666 | 02:33,302 | 20  | 8441 | 3385.2  | 3268,53 | 05:58,850 | 02:30.845 | 02:15,351 |
| keller5     | 27.00  | 27  | 9375 | 3527.8 | 3694,34 | 07:19,362 | 02:43.810 | 02:53,484 | 27  | 9568 | 6222.6  | 2265,63 | 07:27,527 | 04:51.893 | 01:45,046 |
| p_hat700-1  | 11.00  | 11  | 4151 | 2569   | 1446,99 | 01:36,975 | 00:56.892 | 00:35,201 | 11  | 4762 | 2678.6  | 1854,89 | 01:59,130 | 01:02.645 | 00:47,688 |
| p_hat700-2  | 44.00  | 44  | 121  | 81.2   | 25,00   | 00:03,208 | 00:02.382 | 00:00,896 | 44  | 2628 | 1035.4  | 1083,93 | 01:19,147 | 00:34.829 | 00:34,140 |
| p_hat700-3  | 62.00  | 62  | 114  | 105.2  | 9,44    | 00:06,086 | 00:05.264 | 00:00,761 | 62  | 9675 | 2650.4  | 4163,36 | 09:04,113 | 02:34.634 | 03:56,168 |
| MANN_a45    | 345.00 | 343 | 7216 | 2542.5 | 3162,72 | 44:31,902 | 32:41.226 | 48:07,870 | 344 | 4408 | 1957    | 1721,47 | 01:00,366 | 23:55.941 | 25:23,819 |
| p_hat1500-2 | 65.00  | 65  | 1977 | 858.6  | 997,02  | 04:23,732 | 01:52.085 | 02:13,081 | 65  | 3150 | 1001.8  | 1236,76 | 07:08,340 | 02:14.057 | 02:49,480 |
| p_hat1500-3 | 94.00  | 94  | 8832 | 5493.5 | 3446,97 | 28:56,386 | 16:33.742 | 10:58,950 | 94  | 9503 | 5250.5  | 3124,92 | 24:33,664 | 15:13.454 | 07:43,939 |
| DSJC1000_5  | 15.00  | 14  | 9123 | 3573.5 | 4024,57 | 08:01,316 | 03:12.115 | 03:33,519 | 14  | 2684 | 1514.25 | 1098,82 | 02:36,897 | 01:28.154 | 01:05,117 |

## **DAFTAR RIWAYAT HIDUP**

Nama : Alexander Yap

Umur : 22 tahun

Tempat / Tanggal Lahir : Binjai / 17 Agustus 1994

Jenis Kelamin : Pria

Agama : Buddha

Tempat Tinggal : Jl. Pajak Tavip No. 29 Blok B, Binjai

### Pendidikan

- 1. Tamatan SD Perguruan Kristen Methodist Indonesia-Binjai tahun 2006
- 2. Tamatan SMP Perguruan Kristen Methodist Indonesia-Binjai tahun 2009
- 3. Tamatan SMA Perguruan Kristen Methodist Indonesia-Binjai tahun 2012

Demikian daftar riwayat hidup ini saya perbuat dengan sesungguhnya.

Hormat Saya,

## **DAFTAR RIWAYAT HIDUP**

Nama : Jeffry Owen

Umur : 22 tahun

Tempat / Tanggal Lahir : Binjai / 31 Agustus 1994

Jenis Kelamin : Pria

Agama : Buddha

Tempat Tinggal : Jl. Jendral Ahmad Yani no 316/12, Binjai

### Pendidikan

1. Tamatan SD Perguruan Kristen Methodist Indonesia-Binjai tahun 2006

2. Tamatan SMP Perguruan Kristen Methodist Indonesia-Binjai tahun 2009

3. Tamatan SMA Perguruan Kristen Methodist Indonesia-Binjai tahun 2012

Demikian daftar riwayat hidup ini saya perbuat dengan sesungguhnya.

Hormat Saya,