

MODULE TITLE MODULE CODE	Statistical Inference: Theory and Practice MTH3028		CREDIT VALUE MODULE CONVENER		15 Dr Christopher Ferro (Coordinator)
DURATION: TERM	1	2		3	
DURATION: WEEKS	11 weeks	0		0	
Number of Students Takin	g Module (anticipated)	80			

DESCRIPTION - summary of the module content

Statistical models help us to describe and predict the real world, and are used in sectors as diverse as finance, insurance, economics, marketing, pharmaceuticals, sport, environment and government to name only a few. Statistical inference is the way that we use data and other information to learn about and apply our models. This module introduces you to some of the main approaches to statistical inference and explains their associated procedures. It is designed for students who want to understand the ideas and mathematical theory that lie behind many modern statistical methods. The module establishes key theoretical concepts and results alongside explanations of their practical purpose and application. We will use computer simulations to illustrate basic concepts and as a tool for comparing procedures. You will gain practical experience with the methods through a series of worked examples and exercises.

Prerequisite module: MTH2006 Statistical Modelling and Inference or equivalent

AIMS - intentions of the module

This module aims to help you to develop a thorough understanding of statistical inference from a frequentist perspective. This includes understanding the underlying concepts, the mathematical theory, and how to apply the inferential methods to a range of statistical models. Such understanding is important for any job that involves conducting statistical investigations.

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module, you should be able to:

Module Specific Skills and Knowledge:

- 1 demonstrate an understanding of the purpose of statistical inference, different approaches to statistical inference, and the key theoretical results and inferential procedures associated with these approaches;
- 2 apply these procedures to draw inferences about parametric statistical models, and compare different procedures critically.

Discipline Specific Skills and Knowledge:

- 3 demonstrate an understanding of the ways in which statistical inferential procedures and their performances may differ;
- ${\small 4}\ demonstrate\ an\ understanding\ of\ inferential\ concepts\ integral\ to\ statistical\ science;}$
- 5 progress to study a wider range of statistical inferential approaches in more detail.

Personal and Key Transferable/ Employment Skills and Knowledge:

6 demonstrate an understanding of key mathematical arguments, statistical concepts and practical issues important for advanced study, application and development of statistical science;

7 use the statistical programming environment 'R' to implement generic inferential procedures and to conduct simulation studies.

SYLLABUS PLAN - summary of the structure and academic content of the module

- Classical Inference
- The principles and methods of classical frequentist inference are explained. These include point estimators, bias and efficiency; hypothesis tests, the Neyman-Pearson Theorem and uniformly most powerful tests; confidence sets and their construction from hypothesis tests; prediction intervals and their construction from ancillary statistics.
- 2. Likelihood Inference:
- Inferential approaches based on the likelihood are introduced. These include maximum likelihood estimators and their asymptotic properties; likelihood-based hypothesis tests and confidence sets; and pseudo-likelihoods.
- 3. Computational Inference:
- Inferential approaches based on resampling are introduced. These include Monte Carlo and bootstrap tests; the jackknife and bootstrap estimates of bias and variance; bootstrap confidence sets; and bootstrap prediction intervals.

LEARNING AND TEACHING								
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)								
Scheduled Learning & Teaching Activities	33.00	Guided Independent Study	117.00	Placement / Study Abroad				
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS								
Category		Hours of study time	Description					
Scheduled learning and teaching activities		33	Lectures/example of	classes				
Guided independent study		20	Study of lecture notes					
Guided independent study		50	Unassessed and for	mative exercises				
Guided independent study		27	Revision					
Guided independent study		20	Summative Assessi	ment				

ASSESSMENT						
FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade						
Form of Assessment	Size of Assessment (e.g. duration/length)	ILOs Assessed	Feedback Method			

Form of Assessment	Size of Assessment (e.g. duration/length)	ILOs Assessed	Feedback Method
Coursework - set questions	10 hours (1 hour each week)	All	Oral feedback in tutorial and office hour.

SUMMATIVE ASSESSMENT	(% of credit)
----------------------	---------------

Coursework	20	Written Exams	80	Practical Exams		
DETAILS OF SUMMATIVE ASSESSMENT						
Form of Assessment	% of Credit	Size of Assessment (e.g. duration/length)		ILOs Assessed	Feedback Method	
Written exam - closed book	80	2 hours (summer)		All	Written/verbal on request	

ΑII

Written/verbal on request

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)

20 hours

,							
Original Form of Assessment	Form of Re-assessment	ILOs Re-assessed	Time Scale for Re-reassessment				
Written exam*	Written exam (2 hours) (80%)	AII	August Ref/Def period				
Coursework*	Coursework (20%)	All	August Ref/Def period				

^{*}Please refer to reassessment notes for details on deferral vs. Referral reassessment

20

RE-ASSESSMENT NOTES

Coursework - set questions

Deferrals: Reassessment will be by coursework and/or written exam in the deferred element only. For deferred candidates, the module mark will be uncapped. Referrals: Reassessment will be by a single written exam worth 100% of the module only. As it is a referral, the mark will be capped at 40%.

RESOURCES

INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of information that you are expected to consult. Further guidance will be provided by the Module Convener

ELE - http://vle.exeter.ac.uk

KEY WORDS SEARCH

Reading list for this module:

	nedaling list for this initiation							
Туре	Author	Title		Edition	Publisher	Year	ISBN	Search
Set	Garthwaite, Ph; Jolliffe, IT; Jones, B	Statistical Inference	atistical Inference			2002	978- 0198572268	[Library]
Set	Azzalini, A	Statistical Inference - Based on the Likeli	atistical Inference - Based on the Likelihood			1996	978- 0412606502	[Library]
Set	Cox, D.R.; Hinkley, D.V.	Theoretical Statistics	eoretical Statistics			1974	978- 0412161605	[Library]
Set	Davison, A.C.; Hinkley, D.V.	Bootstrap Methods and their Application	otstrap Methods and their Application			1997	978- 0521574716	[Library]
Set	Efron, B; Tibshirani, R.J.	Introduction to the Bootstrap	roduction to the Bootstrap			1994	978- 0412042317	[Library]
Set	Pawitan Y	In All Likelihood: Statistical Modelling and Likelihood	All Likelihood: Statistical Modelling and Inference Using selihood			2001	978- 0198507659	[Library]
Set	Silvey, S.D.	Statistical Inference	atistical Inference			1975	978- 0412138201	[Library]
CRE	DIT VALUE	15	ECTS VALUE		7.5			
PRE-	-REQUISITE MODULES	MTH2006						
	REQUISITE MODULES							
NQF	LEVEL (FHEQ)	6	AVAILABLE AS D	ISTANCE	E LEARNING No			
-	GIN DATE	Tuesday 10 July 2018	LAST REVISION	DATE	Thursday 1	9 May 2	2022	

Statistics; mathematics; probability; data; analysis; modelling; inference.