BVM College of Management Education, Gwalior

Question Bank

MCA 304

Theory of Computationn

Unit I & II

- Q Question : Attempt very short notes
- (a) Define Pushdown Automata
- (b) Define Turing Machine
- (c) Define Chomsky Normal Form
- (d) Define Greibach Normal Form.

Question: Attempt short notes

- (a) Explain the Ambiguity in Context free Grammars.
- (b) What do you mean by the Derivation Tree? Explain with example.
- (c) Explain the Elimination of Null production with example.

Question : Attempt Long Answer type Question

- Construct a reduced grammar equivalent to the grammar S→ aAa, A→ Sb/bCC/DaA. C → abb /DD, E → ac, D→ aDA
- 2 Let G be S→ AB
 A→ a. B → C Ib
 C→ D
 D→ E and E → a. Eliminate
 unit productions and get an equivalent grammar.
- 3 Let G be S \rightarrow AB, A \rightarrow a. B \rightarrow C /b, C \rightarrow D, D \rightarrow E and E \rightarrow a. Eliminate unit productions and get an equivalent gramm
- 4. Reduce the following grammar G to CNF. G is $S\rightarrow aAD$, $A\rightarrow aB/bAB$, $B\rightarrow b$. $D\rightarrow d$.

5. Construct a grammar in Greibach normal form equivalent to the grammar $S \rightarrow t AA / a$. $A \rightarrow SS/b$.

Convert the grammar $S \rightarrow AB$, $A \rightarrow BS/b$, $B \rightarrow SA/a$ into GNF.

- 6. Construct a pda A accepting $L = \{wew^T, w\xi\{a. b\} *\}$ by final state.
- 7. Construct a pda A equivalent to the following context-free grammar: $S \rightarrow OBB$. $B \rightarrow 0S/1S/O$. Test whether 010^4 is in N(A).
- 8 Design a Turing machine M to recognize the language $\{1"2"3"\}$ where $n \ge I$.
- 9. What do you mean by linear bounded automata?