Testing for Compositeness

Miguel Amezola

Department of Mathematics Pacific Lutheran University

April 21, 2017

Overview

• Miller-Rabin vs Support Vector Machine Classification

Prime and Composite Numbers

Definition (Prime)

Let $p \in \mathbb{Z}$, p > 1. Then p is prime if and only if for every $a, b \in \mathbb{Z}$, p = ab implies a = 1 or b = 1. [?]

Definition (Composite)

Let $n \in \mathbb{Z}$, n > 1. Then n is composite if and only if there exists $a, b \in \mathbb{Z}$ such that n = ab, 1 < a, b < n. [?]

Divisibility

Definition (Divide [?])

Let $a, d \in \mathbb{Z}$. We say that d divides a if there exists $q \in \mathbb{Z}$ such that a = qd. We express this in symbols as $d \mid a$ (which is read "d divides a").

The Set of All Congruence Classes I

Definition (Congruent [?])

Let $a, b, n \in \mathbb{Z}$ with n > 0. We say that a is congruent to b modulo n if $n \mid (a - b)$, denoted $a \equiv b \pmod{n}$.

Example

Is it true that 34 is congruent to 144 modulo 10? Subtracting 144 from 34, we have 34-144=-110. Now, does 10 divide this difference? Yes, since $-110=-11\cdot 10$. Thus, $34\equiv 144\pmod {10}$.

The Set of All Congruence Classes II

Definition (Congruence Class)

Let $a, n \in \mathbb{Z}$ with n > 0. We define the congruence class of a modulo n as the set of all integers congruent to a modulo n; that is,

$$\bar{a} := \{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$$

Definition (\mathbb{Z}_n)

Let n > 0 be any integer. We define \mathbb{Z}_n to be the set of all congruence classes modulo n, i.e.

$$\mathbb{Z}_n := \{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}.$$

Algebraic Structures I

Definition (Binary operation)

Let S be a set. We define a binary operation on S to be a function $f: S \times S \to S$ that assigns to each pair $(a, b) \in S \times S$ a unique element $a \circ b \in S$.

A binary operation \circ with the property that $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a,b,c \in S$ is called associative.

	Associative	Identity	Inverses	Commutative	
Magma	Unneeded	Unneeded	Unneeded	Unneeded	
Semigroup	Required	Unneeded	Unneeded	Unneeded	
Monoid	Required	Required	Unneeded	Unneeded	
Group	Required	Required	Required	Unneeded	

Algebraic Structures II

Definition (Ring)

Let R be an abelian group. Then R is a ring if it satisfies the following axioms:

- R forms a monoid under a second binary operation of that distributes over the group operation, and
- 2 the additive identity $0 \in R$ satisfies $0 \circ a = 0$ for all $a \in R$.

Definition (Field)

Let F be a ring under two commutative binary operations. If every nonzero element in R has a multiplicative inverse, then we say F is a field.

The Structure of \mathbb{Z}_n I

Table: Multiplication in \mathbb{Z}_7

	ō	ī	2	3	4	5	<u></u> 6
Ō	ō	Ō	Ō	Ō	Ō	Ō	ō
ī	ō	ī	2	3	4	5	<u></u> 6
2	ō	2	4	<u></u> 6	ī	3	5
3	Ō	3	<u></u> 6	2	5	ī	4
4	ō	4	ī	5	2	<u></u> 6	3
5	Ō	5	3	ī	<u>6</u>	4	2
<u></u> 6	ō	<u></u> 6	5	4	3	2	ī

Table: Multiplication in \mathbb{Z}_8

	Ō	ī	2	3	4	5	<u></u> 6	7
ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
ī	Ō	ī	2	3	4	5	<u></u> 6	7
2	Ō	2	4	<u></u> 6	Ō	2	4	<u></u> 6
3	Ō	3	<u></u> 6	ī	4	7	2	5
4	ō	4	ō	4	ō	4	ō	4
5	Ō	5	2	7	4	ī	<u></u> 6	3
<u></u> 6	ō	<u></u> 6	4	2	ō	<u></u> 6	4	2
7	ō	7	<u></u> 6	5	4	3	2	ī

Fermat's Little Theorem I

Theorem (Fermat's Little Theorem [?])

Let p be prime, and let $\bar{a} \in \mathbb{Z}_p, \bar{a} \neq \bar{0}$. Then

$$\bar{a}^{p-1} = \bar{1}.$$

Fermat's Little Theorem II

Proof.

Let p be prime, and let $\bar{a} \in \mathbb{Z}_p$, $\bar{a} \neq \bar{0}$. By $\ref{1}$, we know that \mathbb{Z}_p contains a unique inverse for each of its elements. Furthermore, $\bar{1}^{-1} = \bar{1}$ and $\overline{p-1}^{-1} = \overline{p-1}$ by $\ref{1}$. Thus, $\bar{1} \cdot \bar{2} \cdot \bar{3} \cdots \overline{p-1} = \bar{1} \cdot \overline{p-1} = \overline{p-1}$. Then

$$(\bar{a} \cdot \bar{1})(\bar{a} \cdot \bar{2}) \cdots (\bar{a} \cdot \overline{p-1}) = \underbrace{\bar{a} \cdot \bar{a} \cdots \bar{a}}_{p-1 \text{ times}} \cdot \bar{1} \cdot \bar{2} \cdots \bar{a} \cdots \bar{a}^{-1} \cdots \overline{p-1}$$

$$= \bar{a}^{p-1} \cdot \overline{p-1}.$$

Moreover, since this multiplication is a binary operation, we know that each product is equal to a unique element in \mathbb{Z}_p . Thus, $(\bar{a} \cdot \bar{1})(\bar{a} \cdot \bar{2}) \cdots (\bar{a} \cdot \overline{p-1}) = \bar{1} \cdot \bar{2} \cdots \overline{p-1}$, where the right-hand side is some permutation of the elements in \mathbb{Z}_p .

Fermat's Little Theorem III

Proof (Cont.)

Hence,

$$\bar{a}^{p-1} \cdot \overline{p-1} = \bar{1} \cdot \bar{2} \cdots \overline{p-1}$$
$$\bar{a}^{p-1} \cdot \overline{p-1} = \overline{p-1}$$
$$\bar{a}^{p-1} \cdot \overline{p-1} \cdot \overline{p-1} = \overline{p-1} \cdot \overline{p-1}$$
$$\bar{a}^{p-1} \cdot \bar{1} = \bar{1}$$
$$\bar{a}^{p-1} = \bar{1}.$$

Therefore, if p is prime, then $\bar{a}^{p-1} = \bar{1}$ for all $\bar{a} \in \mathbb{Z}_p$, $\bar{a} \neq \bar{0}$.

Miller-Rabin Test for Compositeness I

Algorithm (Miller-Rabin Test for Compositeness)

Let n > 0 be any odd integer. Then there exists an integer k > 0 such that 2^k is that largest power of two that divides n - 1. If there exists $\bar{a} \in \mathbb{Z}_n$ such that

$$\bar{a}^{\frac{n-1}{2^k}} \neq \bar{1}$$

and

$$\bar{a}^{\frac{n-1}{2^h}} \neq -\bar{1},$$

for all $h \in \mathbb{Z}$: $1 \le h \le k$, then n is composite. In this case, the integer a is called a Miller-Rabin witness to the compositeness of n.

Miller-Rabin Test for Compositeness II

Example

We would like to test the compositeness of 169. Since 2^3 is the largest power of two that divides 168, we must find an $\bar{a} \in \mathbb{Z}_{169}$ such that $\bar{a}^{\frac{168}{2^3}} \neq \bar{1}$ and $\bar{a}^{\frac{168}{2^h}} \neq -\bar{1}$ for all h, h=1,2,3. So, we randomly choose $\bar{19} \in \mathbb{Z}_{169}$ and find that

$$\overline{19}^{\frac{168}{2^3}} = \overline{70}$$

$$\overline{19}^{\frac{168}{2^2}} = -\overline{1}$$

$$\overline{19}^{\frac{168}{2^1}} = \overline{1}.$$

Miller-Rabin Test for Compositeness III

Example

Because $\overline{19}^{\frac{168}{22}}=-\overline{1}$, we cannot conclude that 169 is composite. So we randomly select a different $\overline{a}\in\mathbb{Z}_{169}$, namely $\overline{a}=\overline{145}$, and this time discover that

$$\overline{145}^{\frac{168}{2^3}} = \overline{18}$$

$$\overline{145}^{\frac{168}{2^2}} = \overline{155}$$

$$\overline{145}^{\frac{168}{2^1}} = \overline{27}.$$

Hence, 145 is a Miller-Rabin witness to the compositeness of 169 and we conclude that 169 is not prime.

Effectiveness of the Miller-Rabin Test

Machine Learning Algorithms

- Target function underlying function that maps inputs to outputs (if it exists)
- Solution estimate of the target function by learning algorithm (also called the decision function in classification algorithms)
- Hypothesis space a set or class of candidate solutions (known as hypotheses)
- Learning algorithm uses training data to select a hypothesis
- Features the quantities used to describe the data
- Attributes original quantities from data

Linear Classification

Support Vector Machine

Feature Space

Let $b \in \mathbb{Z}$: $b \ge 2$. Then every $N \in \mathbb{Z}$: N > 0 can be expressed uniquely in the form $N = a_k b^k + a_{k-1} b^{b-1} + \cdots + a_1 b + a_0$, where a_0, a_1, \ldots, a_k are nonnegative integers less than $b, a_k \ne 0$, and $k \ge 0$. [?]

Training Methodology

Definition (Training Set)

A **training set** is a collection of training examples, which are also called training data. It is usually denoted by

 $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subset X \times Y$, where n is the number of examples. We refer to x_i as examples or instances and y_i as their labels.[?]

Comparison

References

Acknowledgements