```
In [39]:
# import

from math import sqrt

import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, plot_confus
ion_matrix
from scipy.spatial import distance
```

In [40]:

```
# load dataset
df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('test.csv')
```

Data Exploration

In [41]:

```
df_train.info()
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): Non-Null Count Dtype # Column _____ PassengerId 891 non-null Survived 891 non-null 0 int64 int64 1 2 Pclass 891 non-null int64 3 Name 891 non-null object 4 Sex 891 non-null object 5 Age 714 non-null float64 6 SibSp 891 non-null int64 7 891 non-null int64 Parch 8 Ticket 891 non-null object float64 9 891 non-null Fare 10 Cabin 204 non-null 11 Embarked 889 non-null object object dtypes: float64(2), int64(5), object(5)

In [42]:

df_train.head()

memory usage: 83.7+ KB

Out[42]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William	male	35.0	0	0	373450	8.0500	NaN	s

```
PassenderId Survived Pclass

Name Sex Age SibSo Parch Ticket Fare Cabin Embarked

In [43]:

df_train.describe()

Out[43]:
```

пенну

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

- Fare ranges between 0 512.3
- Pclass could be modeled as a categorical feature

```
In [44]:
```

```
print(f"Pclass n of unique values: {df_train['Pclass'].nunique()}")
print(f"Pclass unique values: {df_train['Pclass'].unique()}")

Pclass n of unique values: 3
Pclass unique values: [3 1 2]

In [45]:

df_train['Pclass'] = df_train['Pclass'].map({1:'Upper', 2:'Middle', 3:'Lower'})
df_test['Pclass'] = df_test['Pclass'].map({1:'Upper', 2:'Middle', 3:'Lower'})
```

- Pclass has 3 unique values (1: Upper Class, 2: Middle Class, 3: Lower Class)
- Translate it into a categorical feature

```
In [46]:

df_train.select_dtypes(include = 'object').nunique()
```

```
Pclass 3
Name 891
Sex 2
Ticket 681
Cabin 147
Embarked 3
dtype: int64
```

```
In [47]:
```

Out[46]:

```
df_train['Embarked'] = df_train['Embarked'].map({'C':'Cherbourg', 'Q':'Queenstown', 'S':'Southam
pton'})
df_test['Embarked'] = df_test['Embarked'].map({'C':'Cherbourg', 'Q':'Queenstown', 'S':'Southampt
on'})
```

- Sex is defined in the data documentary as female, male
- Embarked can be mapped according to data documentation (C = Cherbourg, Q = Queenstown, S = Southampton)
 for better readablity

```
In [48]:
```

```
df_train['Name'].head()
```

```
Out[48]:
```

```
Braund, Mr. Owen Harris
Cumings, Mrs. John Bradley (Florence Briggs Th...
Heikkinen, Miss. Laina
Futrelle, Mrs. Jacques Heath (Lily May Peel)
Allen, Mr. William Henry
Name: Name, dtype: object

In [49]:
```

```
df_train['Name'].duplicated().any()
```

Out[49]:

False

- · Name is mostly unstructured text
- There are no duplicates in the train set
- The title (Mr., Ms., etc) is contained in the name

In [53]:

```
df_train.isnull().sum().sort_values(ascending = False)
```

Out[53]:

Cabin	687
Age	177
Embarked	2
PassengerId	C
Survived	C
Pclass	C
Name	C
Sex	C
SibSp	C
Parch	C
Ticket	C
Fare	C
dtype: int64	

- Cabin and Age have maximum NaN count
- Cabin should be removed in Pre Processing
- Age should be cleared in Pre Processing, as it important for model building
- Embarked should be cleared in Pre Processing

Data Visualization

In [54]:

```
# survived
sns.countplot(x = df_train['Survived']).set_title('Survived vs. Deceased');
```


Over a third of the people survied

```
# Sex
fig, axes = plt.subplots(1, 2, figsize=(20, 5))
sns.countplot(ax = axes[0], x = df_train['Sex']).set_title('Sex distribution')
sns.barplot(ax = axes[1], data = df_train, x = "Sex", y = "Survived").set_title('Survival rate b y sex');
```


- Most travelers were male
- . The survival rate for females is higher

In [56]:

```
fig, axes = plt.subplots(1, 3, figsize=(20, 5))
pclass_order = ["Upper", "Middle", "Lower"]
sns.countplot(ax = axes[0], x = df_train['Pclass'], order = pclass_order).set_title('Pclass dist ribution')
sns.countplot(ax = axes[1], data = df_train, x = 'Pclass', order = pclass_order, hue = 'Sex').set_title('Pclass count by Sex')
sns.barplot(ax = axes[2], data = df_train, x = "Pclass", y = "Survived", order = pclass_order).set_title('Survival rate by Pclass');
```


- Most travelers were in the lower class
- Chance of survival grows with class

In [57]:

```
# Age
fig, axes = plt.subplots(1, 3, figsize=(20, 5))
sns.histplot(ax = axes[0], data=df_train, x="Age").set_title('Age distribution')
sns.boxplot(ax = axes[1], data=df_train, x="Age", y="Pclass", hue='Sex', order=["Upper", "Middle
", "Lower"]).set_title('Age distribution by Pclass')
#Plot by age group
#Define age limit for groups and their labels
age_groups_thresholds = [0, 9, 19, 29, 39, 49, 59, 69, np.inf]
age_groups = ["0 - 9", "10 - 19", "20 - 29", "30 - 39", "40 - 49", "50 - 59", "60 - 69", "70 and older"]
#Cut Age Series by thresholds and load into new feature
df_train["Age_Group"] = pd.cut(df_train['Age'], age_groups_thresholds, labels=age_groups)
```

```
sns.barplot(ax = axes[2], data=df_train, x="Age_Group", y="Survived", hue="Sex").set_title('Survival rate by age group and sex')
axes[2].set_xticklabels(axes[2].get_xticklabels(), rotation = 40, ha="right");
```


- The Age is normally distributed with a positive skew
- For males, children from 0 9 had the highest chance of surival
- Women in all age groups had high survival rate
- Women of old age had a higher survival rate than girls

Data Pre-processing

- Fill the missing Age values with their mean
- Fill the missing Embarked values with backward fill (gets the last available value)

In [60]:

```
#Train data
age_mean = df_train['Age'].mean()
df_train['Age'].fillna(round(age_mean),inplace=True)
df_train['Embarked'].fillna(method = 'bfill', inplace = True)
```

In [61]:

```
#Test data
age_mean_test = df_test['Age'].mean()
df_test['Age'].fillna(round(age_mean_test),inplace=True)
df_test['Embarked'].fillna(method = 'bfill', inplace = True)
```

Data normalization

- Numeric data standardize it by normalizing the min max to be inbetween 0 and 1
- · Categorical data One Hot Encoding

In [62]:

```
#Scale all numeric features to 0 - 1
def scale(num features):
   min max scaler = MinMaxScaler()
    num features = min max scaler.fit transform(num features)
   return pd.DataFrame (num features)
#One hot encode categorical features
def one_hot_encode(cat_features):
    one_hot_enc = OneHotEncoder(handle_unknown = 'ignore', sparse = False)
    cat_features_one_hot = pd.DataFrame(one_hot_enc.fit_transform(cat features))
    return pd.DataFrame(cat features one hot)
#Normalize data according to data type
def normalize data(df):
   cat features = df.select dtypes(include = 'object')
   num features = df.select dtypes(exclude = 'object')
    cat features = one hot encode (cat features)
    num_features = scale(num_features)
```

```
df = pd.concat([num_features, cat_features], axis = 1)
return df.to_numpy()
```

Splitting the data into training and testing dataset

```
In [63]:
```

```
#Training
X = df_train[['Age', 'Fare', 'SibSp', 'Parch', 'Sex', 'Pclass', 'Embarked']]
X = normalize_data(X)

y = df_train['Survived'].to_numpy()

X_train, X_dev, y_train, y_dev = train_test_split(X, y, train_size = 0.8, test_size = 0.2, rando m_state = 0)
```

In [64]:

```
#Testing
X_test = df_test[['Age', 'Fare', 'SibSp', 'Parch', 'Sex', 'Pclass', 'Embarked']]
X_test = normalize_data(X_test)
```

Model building

```
In [65]:
```

```
class KNearestNeighbourEstimatorVect():
    def __init__(self, k_):
        self.k_ = k_

    def fit(self, X, y):
        self.X_ = X
        self.y_ = y

    def predict(self, X):
        distances = distance.cdist(X, self.X_, 'euclidean')
        i_k_smallest = np.argpartition(distances, self.k_)[:,:self.k_]
        values = self.y_[i_k_smallest]
        predictions = np.average(values, axis=1) > 0.5
        return 1*predictions
```

In [66]:

```
m = len(y_train)

best_accuracy = float('-inf')
best_k = -1
for k in range(1, m):
    knn_estimator = KNearestNeighbourEstimatorVect(k_ = k)
    knn_estimator.fit(X_train, y_train)
    y_pred = knn_estimator.predict(X_dev)
    accuracy = accuracy_score(y_dev, y_pred)

if accuracy > best_accuracy:
    best_accuracy = accuracy
    best_k = k
    best_y_pred = y_pred

print(f'Best k: {best_k}')
print(f'Score: {round(best_accuracy, 2)}')

Best k: 76
```

In [67]:

Score: 0.83

```
confusion_m = confusion_matrix(y_dev, best_y_pred)
confusion_m
```

```
Out[67]:
```

```
array([[108, 2], [28, 41]])
```

In [69]:

