Naval Research Laboratory

Washington, DC 20375-5320

NRL/MR/6170--97-8103

Vanadate-sulfate Melt Thermochemistry Relating to Hot Corrosion of Thermal Barrier Coatings

ROBERT L. JONES

Surface Chemistry Branch Chemistry Division

October 30, 1997

Approved for public release; distribution is unlimited.

19980105 061

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 222	02-4302, and to the Office of Management and	Budget, Paperwork Heduction Project (0704-	0188), wasnington, DC 20503.	
. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED			RED	
	October 30, 1997	Final Report		
4. TITLE AND SUBTITLE Vandate-sulfate Melt Thermoo	5. FUNDING NUMBERS PE - 61153N PE - 62234N			
6. AUTHOR(S)			1 1 0 1 1 1 1	
Robert L. Jones				
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Naval Research Laboratory Washington, DC 20375-5320	NRL/MR/617097-8103			
9. SPONSORING/MONITORING AGEN	ICY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING	
Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5660	AGENCY REPORT NUMBER			
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STA	ATEMENT		12b. DISTRIBUTION CODE	
Approved for public release;	distribution unlimited.			
13. ABSTRACT (Maximum 200 words)				
blades to increase engine efficemay be corroded by molten thermochemistry relating to T The interactions of Na ₂ O, V ₂ were examined and clarified. past literature—and, for melt depending on the SO ₃ overprethat the Na/V ratio is relative	is moving strongly toward the use of sciency and durability. In some application was addeduced as the sciency and summarizes of the sciency and SO ₃ , the melt components where the science of Na/V = 1, to have a V_2O_5 actives sure. Different NaVO ₃ /Na ₂ SO ₄ milely unimportant, for melts equilibrating (gO, CeO ₂ , Sc ₂ O ₃ , In ₂ O ₃ , SnO ₂) with	ations (e.g., ship propulsion or elec- impurities. This Report provides a esearch conducted on this topic at the hich determine the composition of the be nonideal rather than ideal—a party coefficient (γ) that ranges from actures gave a detectable but small of ted with SO ₃ , in determining γ(V)	tricity generation), such TBCs a synopsis of vanadate-sulfate he Naval Research Laboratory. the vanadate-sulfate deposits, with the vanadate-sulfate deposits, with of some contention in the 1.5×10^{-4} up to essentially 1, change in $\gamma(V_2O_5)$, suggesting O_5 . The reactions of several	
			Les MUNICIPALISMOS	
14. SUBJECT TERMS Hot corrosion Thermal barrier coatings Thermochemistry Vanadate sulfate melts Gas turbines			15. NUMBER OF PAGES 23	
			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT	
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED		UL		

CONTENTS

INTRODUCTION	1
GAS TURBINE VANE/BLADE TBCs	1
COMBINED CYCLE GAS TURBINES FOR ELECTRICITY GENERATION	1
VANADIUM IN PETROLEUM	2
PREVIOUS STUDIES OF VANADATE HOT CORROSION OF TBCs	2
THERMOCHEMISTRY OF VANADATE-SULFATE MELTS: REVIEW AND DISCUSSION	3
MECHANISM OF VANADATE HOT CORROSION OF Y2O3-ZrO2 TBCs	3
LEWIS ACID/BASE REACTION OF CERAMIC OXIDES WITH SODIUM VANADATES	4
PREVIOUS STUDIES OF VANADATE-SULFATE THERMOCHEMISTRY	5
QUESTION OF V4+/V5+ IN VANADATE-SULFATE MELTS	5
THERMODYNAMIC MODELING OF ACID-BASE MELTS	6
STUDY OF Na ₂ O-V ₂ O ₅ MELTS BY MITTAL AND ELLIOTT	7
THERMOGRAVIMETRIC EQUILIBRIUM OF SO ₃ WITH NaVO ₃ MELTS	9
THERMODYNAMIC ANALYSIS OF SO ₃ -NaVO ₃ EQUILIBRIUM DATA	10
REACTION OF CANDIDATE STABILIZING OXIDES WITH SO ₃ -NaVO ₃	12
DETERMINING ACT.(V ₂ O ₅) WITHOUT ASSUMPTION AS TO ACT.(Na ₂ SO ₄)	14
V_2O_5 TITRATION USING CeVO $_4$ FORMATION AS "INDICATOR" TO DETERMINE $\gamma(V_2O_5)$	15
SUMMARY AND CONCLUSIONS	17
COMPARISON WITH V ₂ O ₅ ACTIVITY COEFFICIENTS FROM THE LITERATURE	17
OTHER CONSIDERATIONS	18
ACKNOWLEDGEMENTS	18
REFERENCES	18

VANADATE-SULFATE MELT THERMOCHEMISTRY RELATING TO HOT CORROSION OF THERMAL BARRIER COATINGS

INTRODUCTION

The purpose of this Report is to draw together the knowledge of vanadate-sulfate thermochemistry relating to TBC hot corrosion, including that obtained in work done over several years in Code 6170 of the U.S. Naval Research Laboratory, and to present the total in reviewed form. This is important for several reasons. First, gas turbine technology is now moving toward the wide-spread use of TBCs on the 1st stage turbine vanes/blades (i.e., highly critical components), with many such TBC-fitted engines likely to be used for electricity-generation or other industrial/marine applications where V,S-containing fuels are possible. The hot corrosion of TBCs, and therefore the thermochemistry of vanadate-sulfate melts, may become of concern in these cases. Second, although there have been many thermodynamic studies of metallurgical slags, fused salts, silicate glasses, etc., surprisingly few investigations of vanadate-sulfate melts have been made, despite the long history of vanadate-sulfate hot corrosion (1). And third, among even these few studies, significant differences in findings have been reported. By defining these differences, it may be possible to identify areas in vanadate-sulfate thermochemistry where new research is needed.

Gas Turbine Vane/Blade TBCs

Zirconia is a high temperature thermal insulator, and a ZrO2 "thermal barrier coating" as thin as 0.010" (0.25 mm) can reduce the temperature between the engine gas and component metal by 100-200°C. Many problems have had to be solved to make TBCs viable (2,3), especially for 1st stage turbine vanes (stationary) and blades (rotating) where large-scale TBC failure could jeopardize engine life. The TBC structure now commonly used for vane/blade applications (Fig. 1) consists of an 0.003-0.005" oxidationresistant metallic "bond coat" of MCrAIY (where M = Co, Ni, or NiCo) or Pt-aluminide under a ~0.010" layer of Y2O3(8-wt%)-ZrO2 having a columnar, carpet pile-like physical structure. This columnar structure is produced by electron beam-physical vapor deposition (EB-PVD), and is thought to be essential for relieving thermal stress within the TBC, and so yielding long service life.

0.25 mm

THERMALLY
GROWN
OXIDE

0.12 mm

GAS TURBINE
BLADE
SUPERALLOY

Fig. 1 Schematic drawing of EB-PVD thermal barrier coating.

Significant advantages are claimed for TBCs on vanes/blades, including improved power (up to 20%), fuel economy (several percent), a

(up to 20%), fuel economy (several percent), and/or component life (up to 3X improvement). For example, in land-based gas turbines, an increase of 55°C in turbine gas temperature is expected to provide an 8 to 13 percent gain in power, and a 1 to 4 percent increase in simple cycle efficiency (4). The faith of the gas turbine industry in TBC technology is shown by the fact that many \$10s of millions of dollars have been spent by such companies as United Technologies (Pratt & Whitney Aircraft Engines), General Electric Aircraft Engine Company, Chromalloy Corp., and Praxair Surface Technologies to purchase production-scale, EB-PVD coaters for application of TBCs to aviation and industrial gas turbine vanes/blades.

Combined Cycle Gas Turbines for Electricity Generation

A world-wide movement is underway, as exemplified in the U.S. Dept. of Energy 8-year, \$700M Advanced Turbine Systems (ATS) Program (5), to use high efficiency gas turbines in combined cycle with bottoming steam turbines to produce electricity with up to 60% thermal efficiency. Such plants would require approximately 50% less fuel than present-day fired boiler plants which have 35-42% thermal efficiency. Moreover, since these plants are intended mostly to burn natural gas, which normally consists of 90% or more of methane (CH₄), there would be proportionately less CO₂ released to the environment than with fuels of higher C/H ratio.

To achieve high fuel efficiency, the massive electricity-generating gas turbines (with power in ranges of up to 250-300 MW) will employ the latest gas turbine technology, with many using single crystal blades (despite their large size) and TBC coated vanes/blades. Because of the possibility of future high prices, or shortages, in natural gas, these engines must have the back-up capability for firing with industrial-grade petroleum fuel. The vane/blade TBCs must therefore have the ability to withstand at least certain levels of vanadium and sulfur fuel impurities, even though the high surface temperatures for TBCs may tend to reduce deposit accumulation. Also, it is common in less developed countries to burn locally-produced industrial or crude oils that may contain significant vanadium or sulfur, and engine manufacturers are seeking vane/blade TBCs that can be used, with economic advantage, even in these circumstances.

Vanadium in Petroleum

Vanadium occurs in most crude oils, and in some cases, at levels up to 500 ppm (6). The vanadium is mostly complexed as heavy metalloporphyrin molecules, and tends to remain in the residual during refining; however, since metalloporphyrins are slightly volatile at higher temperatures, some vanadium may also be found in the higher-boiling distillate fuels.

Vanadium (as V_2O_6) accumulates on, and deactivates, the catalysts used in the fluid catalyst cracking of petroleum. Much effort has been spent to alleviate this problem, which is now mostly approached by catalyst modification, or metals passivation where certain metals such as Sb or Sn are added to the feedstock to "passivate" the catalyst against V_2O_6 attack (6,7). Vanadium also interferes with the hydrogen-desulfurization (HDS) of high-sulfur crudes by depositing on the catalyst. To remove vanadium itself, refiners can use an aggressive hydrogen treatment over catalysts (hydrodemetallization or HDM), as well as coking or other means (6). Approximately 2,650 metric tons of vanadium were recovered and marketed in the US from petroleum residues in 1996 (8). The treatments for removing vanadium are sophisticated and expensive, however, and may not be routinely performed in refining, especially in less developed countries.

Previous Studies of Vanadate Hot Corrosion of TBCs

During the fuel crises of the 1970s, the U.S. Dept. of Energy investigated alternative sources of liquid fossil fuel (coal liquefaction, etc.), as well as means for improving engine fuel economy (e.g., thermal barrier coatings). The possible corrosive attack of TBCs by low-quality alternate fuel containing vanadium, phosphorus, sulfur, etc. was investigated under DOE contract by several engine companies including Westinghouse, General Electric, Solar Turbines and others. The results from these studies were primarily published in two Conference Proceedings (9,10) jointly sponsored by DOE and EPRI (Electric Power Research Institute).

The DOE-sponsored studies focused essentially on MgO(20-25wt%)-ZrO₂ (MSZ) and Y₂O₃(8-20wt%)-ZrO₂ (YSZ) thermal barrier coatings. MSZ was found to lack high temperature phase stability, and to be destabilized simply by thermal cycling to 1000°C. The MgO stabilizer, although somewhat

more resistant to reaction with V_2O_5 than Y_2O_3 , reacted readily with SO₃ to form MgSO₄, and was strongly leached from MSZ by the SO₃ in burner rigs burning 1wt%-S fuel. YSZ was clearly superior, and exhibited good 1000°C phase stability, as well as resistance to reaction with Na₂SO₄-SO₃ at the SO₃ partial pressures found in engines burning fuel of 1-2% S levels. However, Y_2O_3 was confirmed by many as being highly reactive with V_2O_5 , even when the Y_2O_3 was at reduced activity as 8-wt% (4.5 mol%) Y_2O_3 in solid solution in ZrO₂.

Building upon the original DOE-funded work, the U.S. Naval Sea Systems Command sponsored research to explore the potential of TBCs for vane/blade use in the General Electric LM2500 gas turbine which powers several important classes of Navy ships. Burner rig tests, along with one limited engine test, indicated that coatings of Y₂O₃(8-wt%)-ZrO₂ in fact resisted NaSO₄-SO₃ hot corrosion better than the metallic MCrAIY or Pt-aluminide coatings normally used for corrosion protection (11). There was also no evidence of molten salt penetration into the intergranular spacings of the EB-PVD prepared thermal barrier coatings. The relative performance of MgO-, CeO₂-, and Y₂O₃-stabilized ZrO₂ TBCs was evaluated in another burner rig test series, which used fuel contaminated with vanadium (up to ~90 ppm), sea salt, and sulfur (12). MgO-ZrO₂ was judged to be by far the most reactive, whereas CeO₂-ZrO₂ and Y₂O₃-ZrO₂ were judged to perform moderately well (in terms of the TBC not spalling). All showed chemical reactivity, however, with MgO forming large amounts of MgSO₄, and CeO₂ and Y₂O₃ each forming vanadates, although with some sulfate. The formation of cerium vanadate (CeVO₄) was somewhat unexpected, since CeO₂ shows some resistance to V₂O₅ reaction (see below), but this may have resulted because of the relatively high concentrations of vanadium and sulfur used.

THERMOCHEMISTRY OF VANADATE-SULFATE MELTS: REVIEW AND DISCUSSION

The principal driving force for the degradation of TBCs by hot corrosion is chemical reaction between the stabilizing oxides (e.g., Y_2O_3 , CeO_2 , etc.) and the molten vanadate-sulfate engine deposits, or essentially vanadate-sulfate melts. Vanadium-containing melts of relatively low V_2O_5 activity (e.g., $NaVO_3$) can cause phase reversion in CeO_2 - ZrO_2 TBCs (and possibly In_2O_3 - ZrO_2 TBCs) by a "mineralization" effect where no chemical reaction of the CeO_2 can be detected (13). However, this is of second magnitude compared to hot corrosion chemical reaction. The thermochemistry of the vanadate-sulfate melt determines whether chemical reaction, or corrosion, of the TBC components will occur, and it is thus the ultimate factor in deciding TBC life in corrosive environments.

Mechanism of Vanadate Hot Corrosion of Y2O3-ZrO2 TBCs

As established in DOE-sponsored research (9), and since verified by others, the attack of vanadium on yttria-stabilized zirconia (YSZ) thermal barrier coatings occurs by:

$$Y_2O_3$$
 (in solid soln in ZrO_2) + V_2O_6 (I) = 2 YVO₄ (s) + ZrO_2 (s, monoclinic) [1]

where Y_2O_3 in solid solution in the ZrO_2 matrix reacts with the V_2O_6 (I) component of the vanadate-sulfate engine deposit to produce highly stable, solid YVO₄ (mp 1810°C) and solid ZrO_2 , but with the ZrO_2 being destabilized and in the monoclinic phase structure. No chemical reaction of V_2O_6 with ZrO_2 is normally detected. Reaction [1] can be confirmed by heating thin deposits of NaVO₃ on sintered YSZ pellets, where one then sees masses of acicular YVO₄ crystals formed on the YSZ surface by outward diffusion of Y_2O_3 , while destabilized monoclinic ZrO_2 is left below (14). Specific details of the crystallographic orientation of YVO_4 growing on YSZ have been revealed by thin film TEM (15), while the diffusion of V_2O_6 and Y_2O_3 within YSZ has been studied by Rutherford back-scattering (16).

The activity of V_2O_6 (I) determines whether reaction [1] will occur, since YVO₄ and ZrO₂ are pure solids (activity = 1), and although Y₂O₃ is in solid solution in ZrO₂ (act. < 1), its activity is fixed until reaction [1] actually commences. It is important therefore to know the V₂O₆ activity in vanadate-

sulfate engine deposits to predict when reaction [1] is possible, and to evaluate alternative stabilizers for improving the hot corrosion resistance of TBCs. As an example, the activity coefficient (γ) for 0.045 mol-fraction (8-wt%) of Y_2O_3 in ZrO_2 at 2500°C has been measured as ~0.1 (17), and is probably lower at 800-900°C (assume 0.01), since negative deviation from ideal solution behavior normally increases with decreasing temperature. Using the assumed $\gamma(V_2O_6)$ of 0.01, one can obtain an approximation of the act.(V_2O_6) at which reaction [1] should commence by thermodynamic calculation using Gibbs energy data provided by Yokokawa et al (18), viz.,

$$\Delta G^{\circ}_{800C} = \sum \Delta_{f} G^{\circ}_{pdts} - \sum \Delta_{f} G^{\circ}_{reagents} = -RT \ln K$$

$$K = \frac{(act.YVO_{4})^{2} \times (act. ZrO_{2})}{(act.V_{2}O_{6}) \times (act.Y_{2}O_{3})} = 1.803 \times 10^{11} = \frac{1}{(4.5 \times 10^{4}) \times (act.V_{2}O_{6})}$$

or, therefore act.(V_2O_6) $\geq 1.2 \times 10^{-8}$ for reaction [1] to occur

This value of act.(V_2O_6) is exceeded by the act.(V_2O_6) of ~10⁻⁴ found for NaVO₃ at 850°C (see below), and therefore it is consistent that YSZ reacts readily with molten NaVO₃ (Na₂O.V₂O₆), but not with the more basic Na₃VO₄ (3Na₂O.V₂O₆), as found in the next section.

Lewis Acid/Base Reaction of Ceramic Oxides with Sodium Vanadates

Fig. 2 shows the reaction behavior of a number of oxides of increasing acidity as these are heated at 700-900°C with vanadium compounds of increasing acidity; i.e., Na_3VO_4 ($3Na_2O.V_2O_6$), $NaVO_3$ ($Na_2O.V_2O_6$), and pure V_2O_6 (19). Two important aspects of Fig. 2 should be noted. First, the reactions are primarily controlled by the Lewis acid/base nature of the oxide, with no reaction occurring when the Lewis basicities are approximately equal. A compound such as $NaVO_3$ can react as an acid, providing V_2O_6 , with an oxide of the basicity of Y_2O_3 , but as a base, providing Na_2O , with oxides of the acidity of GeO_2 or Ta_2O_6 .

Second, the ceramic oxides react with either the Na_2O or V_2O_5 component of the sodium vanadate compounds, and not with the compounds themselves. The role of the sodium vanadate compound is only to make Na_2O or V_2O_5 available at some certain level of activity. The reaction products consist of multiples of

		—INCREASING ACIDITY →			
		Na ₃ VO ₄	NaVO ₃	V_2O_5	
NG	$\underline{Y_2O_3}$	NR	YVO4	YVO ₄	
	CeO ₂	NR	NR	CeVO ₄	
INCREASING ACIDITY	ZrO ₂	NR	NR	ZrV_2O_7	
ACE!			(1	BUT SLOWLY)	
2	GeO ₂	$Na_4Ge_9O_{20}$	Na ₄ Ge ₉ O ₂₀ ^(*)	NR	
1	Ta_2O_6	NaTaO ₃	Na ₂ Ta ₄ O ₁₁	α -TaVO ₅	
NR = NO REACTION					
(*) AS PPT FROM H ₂ O SOL'N					

Fig. 2 Lewis acid/base reaction of selected oxides with sodium vanadates and V_2O_6 .

 Na_2O or V_2O_5 with the various oxides, as for example, $2Na_2O.9GeO_2$, $Na_2O.2Ta_2O_6$, $Y_2O_3.V_2O_6$ (i.e., $2\ YVO_4$), etc. An exception to this rule was found in later experiments with Sc_2O_3 , which reacts with $NaVO_3$ to form $3NaVO_3.Sc_2O_3$ at temperatures below $880^{\circ}C$ (20). The oxidation state of the different cations does not change, except for the case of CeO_2 where Ce^{4+} goes to Ce^{3+} during the formation of $CeVO_4$ (see below).

Previous Studies of Vanadate-Sulfate Thermochemistry

Although numerous publications on vanadate-sulfate hot corrosion can be found in the literature, only four pertain to the actual thermochemistry of vanadate-sulfate deposits. These are listed in Table 1.

TABLE 1

Past Studies of the Thermochemistry of Vanadate-Sulfate Melts

<u>Year</u>	Authors/Reference	Topic/Conclusions
1982	Luthra & Spacil, Ref. 21	Thermodynamic calculation of Na,V,S deposition in gas turbines; found $\gamma(V_2O_6)$ of 0.18 and 0.08 at 750° and 900°C for Na/V = 2 and 8.7 x 10 ⁻⁴ and 3.6 x 10 ⁻⁴ p(SO ₃), resp.
1984	Mittal & Elliott, Ref. 22	Electrochemical study of $Na_2O-V_2O_6$ melts, with Na_2O activity by electrode EMF, V_2O_6 activity by Gibbs-Duhem integration; melts found to be highly nonideal
1989	Hwang & Rapp, Ref. 23	Calculation of Na ₃ VO ₄ , NaVO ₃ and V ₂ O ₅ concentrations in melts; vanadate-sulfate melts assumed to be ideal; predicted $\sim 20\%$ V ⁴⁺ in Na-V melts at 900°C and -log Na ₂ O of 15.3 ~ 18.7
1995	Reidy & Jones, Ref. 24	TGA study of SO ₃ equilibrium with NaVO ₃ at 800°C, and reaction of melt with CeO ₂ ; for lowest V_2O_6 levels, found $\gamma(V_2O_6) \sim 0.01$

Question of V4+/V5+ in Vanadate-Sulfate Melts

In the older boiler corrosion research (1), it was postulated by many that vanadium-rich deposits contained V^{4+}/V^{5+} couples which transported oxygen by reactions of the type:

$$Na_2O.V_2O_4.5V_2O_5 + 1/2 O_2 \rightleftharpoons Na_2O.6V_2O_6$$
 (3)

where one could have

$$Na_2O.V_2O_4.5V_2O_6 + SO_3 \rightarrow Na_2O.6V_2O_6 + SO_2$$
 (4)

which might then be followed by

$$Na_2O.6V_2O_6 + Fe \rightarrow Na_2O.V_2O_4.5V_2O_6 + FeO$$
 (5)

One solution proposed for vanadate-induced corrosion by heavy oils in boilers was the use of "low excess air", or LEA. In pilot boiler tests (25) using low-quality oil containing 2.57 wt% S, 53 ppm Na, and 350 ppm V, the vanadium in boiler-tube deposits forming at 1300°F (704°C) was 91% V_2O_6 , 9% V_2O_3 and/or V_2O_4 with 15% excess air, but only 24% V_2O_6 with 76% V_2O_3 and/or V_2O_4 at 1% excess air. In the latter instance, there was significantly lower deposit formation and boiler-tube corrosion, presumably because of the higher melting points and physical nature of V_2O_3 and V_2O_4 . These data therefore indicate that V_2O_3 or V_2O_4 can be found in boiler deposits. However, this occurs under nearly reducing combustion conditions, and also where there is the possibility of V_2O_6 reduction by tube metal oxidation (the 1300°F tube deposits in fact consisted of about 75% corrosion product).

Whether V⁴⁺ would occur in significant amounts in vanadate-sulfate melts on TBCs in gas turbines operating at high air/fuel ratios, or in laboratory studies of vanadate-sulfate melts under ambient O_2 partial pressures, is another question. In these cases, the conditions are oxidizing, and the ceramic oxides involved (ZrO₂, Y₂O₃, etc.) are stable to very low p(O₂), except for CeO₂ which, as the pure oxide at 1000°C, begins to be reduced to CeO_{1.83} at ~10⁻¹² atm of O₂. Calculations by Hwang and Rapp (23) indicate that Na₂SO₄-30 mol% NaVO₃ melts at 900°C and ambient p(O₂) should contain ~20% V⁴⁺ over the log act.(Na₂O) range of -15.3 to -18.7. However, this contradicts the findings of Mittal and Elliott (22) who conclude that vanadium in liquid Na₂O-V₂O₆ exists only as V⁶⁺ over the measured log act.(Na₂O) range of -13 to -20 at 852°C (see below). They support their conclusion by citing Block-Bolton and Sadoway (26) who found no V⁴⁺ in liquid V₂O₆ at 1200K (927°C) for p(O₂) > 0.06 atm. Also, it appears that Na₂O stabilizes V⁵⁺ in V₂O₆, as proposed by Mittelstadt and Schwerdtfeger (27) who observed that whereas Na₂O.5V₂O₆ begins to reduce to V⁴⁺ at 10⁻² atm p(O₂) at 1000°C, Na₂O.V₂O₆ is stable down to 10⁻⁶ atm p(O₂).

As another consideration, when CeO_2 reacts with the V_2O_5 component of vanadate-sulfate melts (see below), the reaction goes as,

$$2 \text{ CeO}_2 \text{ (s)} + V_2O_6 \text{ (l)} \rightarrow 2 \text{ CeVO}_4 \text{ (s)} + 1/2 O_2 \text{ (g)}$$
 [6]

A reduction occurs in reaction [6], but one can not be certain, a priori, whether it is the cerium cation $(4^+ \text{ to } 3^+)$ or the vanadium cation $(5^+ \text{ to } 4^+)$ that is reduced. To answer this question, Reidy and Swider (28) examined CeVO₄ by X-ray absorption spectroscopy (XAS) and showed that cerium is in the Ce³⁺ state in CeVO₄, and vanadium thus in the V⁵⁺ state. Taken overall, the literature data indicate that, for the oxidizing conditions postulated, V⁴⁺ is unlikely to be significant in the thermochemistry of vanadate-sulfate melts relating to TBC ceramic hot corrosion.

Thermodynamic Modeling of Acid-Base Melts

The activity of a component of a solution or melt is defined according to

act. =
$$\gamma \times X$$
 [7]

where act. is the component activity, γ is the activity coefficient, and X is the mol-fraction of the component. For ideal solutions, the activity coefficient is unity, and the activity of a component is simply equal to its mol-fraction. Almost all melt solutions are nonideal, however, and in that case, γ changes with the overall composition of the solution. To describe how γ varies with melt composition, solution scientists often adopt "solution models" which, following theoretical or empirical reasoning, are intended to predict the dependence of γ on melt composition.

Many solution models have been developed since, in different types of melts, the melt components interact in different ways, which must be taken into account. For oxide systems which involve strong acid-base chemical interactions (such as at present), the best model appears to be the Ideal Mixing of Complex Components (IMCC) model developed by Bonnell and Hastie (29). This model is capable of describing the very large changes in the ratio of formal concentration to thermodynamic activity (10¹⁰ or more) that can occur in strong acid-base reactions, as demonstrated by Bonnell and Hastie for complex slags containing such components as Na₂O, SiO₂, K₂O, and Al₂O₃.

The IMCC model uses Gibbs-energy-minimization by computer to determine the "free" molfraction, as opposed to the nominal mol-fraction, of a component such as K_2O , when that component exists in the melt in competing equilibria with other components by reactions such as,

$$K_2O + SiO_2 \neq K_2SiO_3$$
 [8]

$$K_2SiO_3 + SiO_2 \rightleftharpoons K_2Si_2O_6$$
 [9]
 $K_2Si_2O_6 + 2SiO_2 \rightleftharpoons K_2Si_4O_8$ [10]

It is thus akin to the NASA-developed computer calculation of the equilibria of molecular species in high temperature gases, and also to the calculations made for the Na₂O-V₂O₅-SO₃ system by Luthra and Spacil (21). The IMCC model assumes ideal mixing of the various "product molecules" once they have been formed by the <u>chemical</u> reactions indicated; that is, there is assumed to be no other type of interaction between the product molecules, after they are formed, that would yield significant additional Gibbs energy of solution for the melt.

This raises the question of whether such "product molecules" actually exist in melts. For gases, techniques such as high temperature mass spectrometry, infrared spectroscopy or gas chromatography can be used to identify gas phase molecules, and, if conditions are such that kinetics do not interfere, the thermodynamically-predicted gaseous species generally are found, and in the approximate quantities calculated. With melts, however, it is not possible to make an equivalent molecular identification of melt species. About the best information available is obtained with binary metal melts such as Sb-Mg, where plotting the excess solution stability $(d^2G^E/dx_1^2$, where G^E is the excess integral molar free energy of a solution) against melt composition may reveal peaks at certain stoichiometries which indicate the formation of melt complexes such as Mg_3Sb_2 (30). Bonnell and Hastie (29) approach this problem by considering that "— the liquid components are not necessarily independent molecular or ionic species, but serve to represent the local associative order." The goodness of fit between solution model prediction and experimental results obtained by Bonnell and Hastie appears to justify their hypothesis, although it remains difficult to envision the arrangement of atoms in the melt that this would imply.

For the purposes of the present Report, the discussion in this section has mostly only philosophical implications, since no solution model for the $Na_2O-V_2O_6-SO_3$ system is proposed from our NRL research. The NRL results do contain, however, substantial experimental data (see below) that could be used in the development of such a

solution model.

Study of Na₂O-V₂O₅ Melts by Mittal and Elliott

Mittal and Elliott (22) consider sodium vanadate deposits to be mixtures of vanadium oxide (V_2O_6) and sodium oxide (Na_2O) produced by oxidation of Na,V-impurities in fuel during combustion. Our NRL research has taken the same approach, but with the effect of engine gas SO_3 added in. Since the Mittal and Elliott paper in some ways represents the "starting point" for our NRL work, their paper will be discussed in detail here.

Mittal and Elliott made electrochemical measurements at 757-937°C of the activity of Na₂O in melts having a V₂O₅ mol-fraction range of 0.5 to 0.9; that is, totally molten mixes from Na₂O.V₂O₅ (i.e., NaVO₃) up to Na₂O.9V₂O₅ in the V₂O₅-rich half of the Na₂O-V₂O₅ phase diagram (Fig. 3). These composition and temperature

Fig. 3 Phase diagram for V_2O_6 -Na₂CO₃ (Na₂O). Ref. 31.

ranges are generally thought to be among the most corrosive in terms of vanadate hot corrosion. The corresponding activities for V_2O_6 were calculated by integration of the Gibbs-Duhem equation.

The activities of Na_2O and V_2O_6 found by Mittal and Elliott for molten $Na_2O-V_2O_6$ mixes at 852°C (1125K) are plotted in Fig. 4. At 0.5 molfraction of V_2O_6 (that is, for $Na_2O.V_2O_6$ or $NaVO_3$), the log of Na_2O activity is -13.13, and that of V_2O_6 is -3.62, giving a log activity product of -16.75. This value can be compared with thermodynamic calculation for the reaction,

$$2 \text{ NaVO}_3 (I) \rightleftarrows \text{ Na}_2 O (I) + \text{V}_2 O_6 (I)$$
 [11]

where the log activity product of Na_2O and V_2O_5 is found to be -16.93, using thermodynamic data by Yokokawa et al (18) and Barin (32). This is good agreement which supports the Mittal and Elliott results as being correct.

Fig. 4 Log act.(Na₂O) and log act.(V₂O₆) in the Na₂O-V₂O₆ binary system at 1125 K (852°C). From Ref. 22.

The data of Mittal and Elliott are plotted in Fig. 5 with Na₂O and V₂O₆ as the melt components. This plotting shows V₂O₆ to have a strong negative deviation from ideal solution behavior. The V₂O₆ activity coefficient for $X(V_2O_6) = 0.5$ (i.e., in molten NaVO₃) is ~4.8 x 10⁴, as obtained by dividing the V₂O₆ activity, log -3.62, by the V₂O₆ molfraction concentration, 0.5. The Mittal and Elliott data can also be recalculated and plotted to reflect NaVO₃ and V₂O₆ as being the melt components. This yields Fig. 6, where V₂O₆ continues to exhibit a negative deviation from ideal solution behavior. Fig. 6 indicates therefore that NaVO₃ and V₂O₆ do not mix in a totally ideal fashion, as assumed in the calculations by Hwang and Rapp (23). As a final

Fig. 5 Solution behavior of $Na_2O-V_2O_6$ at 852°C, taking Na_2O and V_2O_6 as the melt components.

Fig. 6 Solution behavior of $Na_2O-V_2O_6$ at 852°C, with $NaVO_3$ and V_2O_6 as the melt components.

side point, notice that there are no obvious inflections in the experimental log act.(Na₂O) curve of Mittal and Elliott (Fig. 4) such as might reflect any influence in the melt behavior resulting from the compounds, Na₂O.3V₂O₅ (NaV₃O₈) and Na₂O.6V₂O₅ (Na₂V₁₂O₃₁), which occur within the Na₂O-V₂O₅ composition range studied (Fig. 3).

Thermogravimetric Equilibrium of SO, with NaVO, Melts

The mutual interaction between Na_2O , V_2O_6 and SO_3 , as occurs in engine vanadatesulfate deposits, was investigated by a thermogravimetric technique in which SO_3 at increasing partial pressures was equilibrated with molten $NaVO_3$ at $800^{\circ}C$. The reaction is described by,

2 NaVO₃ (I) + SO₃ (g)

$$\rightleftharpoons V_2O_5$$
 (I) + Na₂SO₄ (I) [12]

Reaction [12] was identified by Luthra and Spacil (21) as being the major reaction in determining the composition of vanadate-sulfate engine deposits under marine gas turbine conditions. Also, we have shown earlier that whereas CeO_2 does not react chemically with pure molten $NaVO_3$, an overpressure of SO_3 yields V_2O_6 by reaction [12], with $CeVO_4$ then forming by reaction between CeO_2 and V_2O_6 (19). Note that one starts with pure $NaVO_3$ in reaction [12] and then essentially adds, by using initially very low partial pressures of SO_3 , small increments of V_2O_6 and Na_2SO_4 to the original $NaVO_3$. The

Fig. 7 Arrangement of specimen melt planchet (Pt) within furnace.

thermochemical behavior of the resultant melts would therefore be expected to show a smooth transition from the thermochemical properties found by Mittal and Luthra for 0.5 mol-fraction $Na_2O-V_2O_6$ ($NaVO_3$), at least for the initial low V_2O_6 - and Na_2SO_4 -content mixes.

Our thermogravimetric analysis (TGA) furnace system used a two-stage gas dilution arrangement which employed electronic mass flow gas controllers to give SO_2 partial pressures of down to 10^{-8} bar in the furnace input air (33). The SO_2 /air input mixture was equilibrated over Pt at temperature in the furnace (Fig. 7), with the SO_3 - SO_2 -air mixture then passing over the NaVO₃ melt (50 mg) which was contained in a shallow, balance-suspended Pt planchet. After an initial weight loss of $\sim 2\%$ (the NaVO₃ contained about 2% water), the system showed negligible weight change (< 0.2 mg) for periods in excess of 50 hrs under slowly flowing (50 ml/min) air dried over DrieriteTM.

Attainment of SO_3 equilibrium. As the $p(SO_3)$ was lowered, the time required to reach equilibrium became progressively longer, so that for $p(SO_3) \le 10^4$, 100 hrs or more would be needed for equilibrium by simple exposure to the test $p(SO_3)$. Our procedure therefore was to bring the NaVO₃ to both above and below equilibrium weight (in separate measurements) at a higher $p(SO_3)$, and then return the system to the test $p(SO_3)$ and monitor the wgt gain vs. time slopes (positive or negative), which were back-extrapolated to identify the true equilibrium weight (33). The time for equilibrium also was found to be proportional to the weight of NaVO₃, taking approximately twice as long for 100 mg as 50 mg NaVO₃. This experience raises the question, at least in the author's mind, of how massive amounts of melt (up to 25 gms) in a narrow electrochemical cell could become equilibrated with low $p(SO_3)$'s ($\le 10^4$ atm) in a reasonable time. Two possible answers come to mind: first, many

of the electrochemical experiments were at 900°C rather than 800°C as here, and the 100°C higher temperature may significantly speed up SO_3 diffusion; second, our melt is, at least initially, pure $NaVO_3$, whereas most electrochemical experiments involving SO_3 equilibrium use melts consisting mostly of sulfates, and it may be that SO_3 , perhaps as $S_2O_7^-$, diffuses more rapidly through sulfate-based melts than vanadate-based melts.

Thermodynamic Analysis of SO₃-NaVO₃ Equilibrium Data

The equilibrium weight gain data for 50 mg (0.41 mmols) of dried NaVO₃ under different p(SO₃) at 800°C are presented in Fig. 8. The weight gain behavior was reversible and reproducible (to within ± 0.2 mg), which confirms that SO₃ is absorbed, or given off, without any permanent change in the NaVO₃ melt. Conversion of the NaVO₃ completely to Na₂SO₄ and V₂O₅ by reaction [12] would yield an equilibrium weight gain of 16.4 mg.

From the weight gain and stoichiometry of reaction [12], one can calculate the molfraction of V_2O_6 experimentally formed at each $p(SO_3)$, as listed in Table 2. And, since the activity coefficient equals unity for ideal solutions and therefore act. = X, the "ideal" mol-fraction can be calculated from thermodynamic data following the procedure outlined in reaction [2]. Using the thermodynamic data provided by Luthra and Spacil (21) for the reagents and products in reaction [12], one obtains,

Fig. 8 Weight gain behavior of NaVO₃ equilibrated at 800°C with the indicated SO₃ partial pressures.

$$K = 91.61166 = \frac{\text{act.}(V_2O_6) \times \text{act.}(Na_2SO_4)}{\text{act.}(NaVO_3)^2 \times p(SO_3)}$$
[13]

which, by transposing $p(SO_3)$ and setting act. = X, reduces to a quadratic equation in the unknown, x, that can be solved by numerical approximation on the computer for each $p(SO_3)$,

$$91.61166 \times p(SO_3) = \frac{x^2}{(1-2x)^2}$$
 [14]

The "ideal" mol-fractions (or "ideal" activities) for V_2O_5 so obtained are listed in Table 2. Division of the ideal V_2O_6 mol-fraction by the experimental V_2O_6 mol-fraction then yields an approximate $\gamma(V_2O_6)$, listed in Table 2 as " $\gamma(V_2O_6)$ -Approx. 1" for each p(SO₃), or alternatively, for each melt composition.

However, approximation 1 for $\gamma(V_2O_6)$ is not correct since the actual value for act.(V_2O_6) has not been determined. Approximation 1 treats NaVO₃, Na₂SO₄ and V₂O₆ as all behaving ideally, which is almost certainly not true. Luthra and Spacil (21), for example, considered NaVO₃ and Na₂SO₄ to be ideal, but V₂O₆ to be nonideal because of its stronger interactions with the melt. If V₂O₆ is assumed nonideal, while NaVO₃ and Na₂SO₄ are ideal, then equation [14] can be modified to give, using the experimentally-determined mol-fractions, a second approximation for $\gamma(V_2O_6)$ according to,

$$y(V_2O_6)$$
-Approx. 2 =
$$\frac{91.61166 \times p(SO_3) \times X(NaVO_3)^2}{X(Na_2SO_4) \times X(V_2O_6)}$$
 [15]

The values for $\gamma(V_2O_5)$ -Approx. 2 are listed in Table 2, with both approximations being plotted in Fig. 9. Inspection of Fig. 9 suggests that y(V2O5)-1 is probably closer to correct at the higher p(SO₃), while y(V₂O₆)-2 is more nearly correct at the lower p(SO₃) values. This may be partially explained along the following lines. Note in equation [13] that at the lowest p(SO₃), NaVO₃ is almost pure, and its activity thus essentially 1. Under these circumstances, K x p(SO₃), a known value, becomes equal to the activity product, i.e., act.(V₂O₅) x act.(Na₂SO₄). Determining act.(V₂O₆) is then a matter of correctly apportioning the activity product. In Approx. 1, all species are treated as ideal, and $act.(V_2O_5) = act.(Na_2SO_4)$, with act.(V_2O_5) being therefore simply 1/2 of the activity product. In Approx. 2, where Na₂SO₄ (I) but not V₂O₅ (I) is assumed ideal, act.(Na₂SO₄) = $X(Na_2SO_4)$, and division of the activity product by X(Na₂SO₄) from Table 2 yields a lower activity for the "nonideal" V2O5 Species. In actuality, Na2SO4 (I) is probably not totally ideal, and act.(V2O6)

Fig. 9 Values for $\gamma(V_2O_6)$, Approxs. 1 and 2, and $\gamma(V_2O_6)$ -Avg. plotted against p(SO₃).

should fall somewhere between the Approx. 1 and Approx. 2 values. One might expect also that, as their mol-fraction concentration increases at high $p(SO_3)$, V_2O_6 and Na_2SO_4 would exhibit activity coefficients closer to unity (cf. Fig. 5), making Approx. 1 more nearly correct. Therefore, for purposes of a later comparison (see below), an averaged $\gamma(V_2O_6)$ was calculated, which is shown as $\gamma(V_2O_6)$ -Avg in Fig. 9. The calculated average is weighed toward $\gamma(V_2O_6)$ -2 at the lower $p(SO_3)$, and $\gamma(V_2O_6)$ -1 at the higher $p(SO_3)$.

TABLE 2 Experimental Results and Calculated Approximations for $y(V_2O_6)$ in NaVO $_3$ Equilibrated with SO $_3$ at 800°C

p(SO ₃) in bar	Wgt. gain in mg	Exptl. $X(V_2O_6)$	"Ideal" <u>X(V₂O₅)</u>	$\gamma(V_2O_6)$ - Approx. 1	$\gamma(V_2O_6)$ - Approx. 2	γ(V ₂ O ₅)- <u>Ανα.</u>
5.6 x 10 ⁻⁸ 4.1 x 10 ⁻⁷	2.2 2.8	0.0670 0.0853	0.00225 0.00603	0.0336 0.0707 0.144	8.6 x 10 ⁻⁴ 3.6 x 10 ⁻³ 1.3 x 10 ⁻²	0.0055 0.023 0.069
3.3 x 10 ⁻⁶ 2.0 x 10 ⁻⁶ 1.0 x 10 ⁻⁴	3.8 5.8 7.6	0.116 0.177 0.232	0.0167 0.0392 0.0799	0.144 0.221 0.344	2.5 x 10 ⁻² 4.9 x 10 ⁻²	0.14 0.26
5.8 x 10 ⁻⁴ 9.9 x 10 ⁻⁴	11.0 12.5	0.335 0.381	0.157 0.186	0.469 0.488	5.1×10^{-2} 3.6×10^{-2}	0.41 0.49

Note that the $\gamma(V_2O_6)$ values in Table 2 depend, of course, upon the thermochemical data selected. If data incorporating values provided more recently by Yokokawa et al (18) are used, the value of K is raised from 91.61166 to 168.8 which, for example at $p(SO_3) = 5.6 \times 10^8$ bar, changes $\gamma(V_2O_6)$ -Approx. 2 for from 8.6 x 10⁻⁴ to 1.6 x 10⁻³.

Reaction of Candidate Stabilizing Oxides with SO3-NaVO3

The equilibrated SO_3 -NaVO $_3$ TGA technique was used to investigate the reaction of MgO, Y_2O_3 , Sc_2O_3 and In_2O_3 (33), Cr_2O_3 and SnO_2 (34), and CeO_2 (24) with the $Na_2O-V_2O_6$ -SO $_3$ melt system, with the mix ratio of 0.41 mmols NaVO $_3$ and 0.1 mmols of oxide normally being employed. As summarized in Fig. 10a-10g, the results serve to rank the potential vanadate-sulfate hot corrosion resistance of candidate stabilizing oxides for ZrO_2 . They also provide information about the nature of the different reactions that the various oxides undergo with vanadate-sulfate melts. These can be broken down into categories as described below:

Fig. 10 (a-g) Weight gain vs. $p(SO_3)$ at 800° C for NaVO₃ (0.41 mmols) plus various candidate ZrO_2 -stabilizing oxides (0.10 mmols).

Formation of soluble product. This is exemplified by MgO (Fig. 10a), where even at a p(SO₃) of 10^{-7} bar, the MgO-NaVO₃ mix shows a higher weight gain than for pure NaVO₃, even though the amount of NaVO₃ is the same in each case. The additional weight gain must come from the uptake of SO₃ by either MgO or Na₂O, since vanadyl sulfate is ruled out at such low p(SO₃). Low melting mixtures of V₂O₅-(2MgO.Na₂O) or V₂O₅-(MgO.Na₂O) can form (35), but these would yield no change in weight. Also, thermodynamic calculations indicate that the displacement of Na₂O by MgO by, e.g.,

MgO + Na₂O.V₂O₆ \rightarrow Na₂O + MgO.V₂O₆, is highly unfavored. Solid MgSO₄ also appears not to be possible, since a critical p(SO₃) of 1.6 x 10⁻⁶ bar is indicated for MgO (s) + SO₃ \rightarrow MgSO₄ (s) at 800°C. However, if soluble MgSO₄ is formed, then appreciable MgSO₄ could be produced even at p(SO₃) \sim 10⁻⁷ bar. Moreover, since such a system would have two degrees of freedom by the phase rule, some MgSO₄ (I) can be formed no matter how low the p(SO₃); i.e., there will be no one critical p(SO₃) for onset of reaction. The hypothesis of a soluble MgSO₄ product is consistent also with the MgO-ZrO₂ TBC burner rig tests (12) burning Na,V,S-containing fuel, where major amounts of MgSO₄ but only minor amounts of Mg vanadate were found on the TBC surface. At the higher p(SO₃) values in Fig. 10a, there is an upturn in weight gain which presumably reflects the onset of magnesium vanadate formation, since the reaction, 2MgO + V₂O₆ = 2MgO.V₂O₆ is thermodynamically predicted to be possible at 800°C at act.(V₂O₆) = 8 x 10⁻⁶ bar. This could not be confirmed unequivocally by x-ray diffraction, however, which in this case gave complex and diffuse patterns (common for Na/Mg vanadate-sulfate phases from melts). Nonetheless, taken overall, the weight gain behavior in Fig. 10a indicates that melt-soluble MgSO₄ is formed at low p(SO₃) in the MgO-NaVO₃-SO₃ system, but that Mg vanadate may be produced at high p(SO₃) (i.e., at high V₂O₆ melt activities).

Metal vanadate formation once critical V_2O_6 activity reached. This behavior is shown by CeO₂ (Fig. 10b), \ln_2O_3 (Fig. 10c), and Sc₂O₃ (Fig. 10d), although the case for Sc₂O₃ is complicated by the occurrence of $3\text{NaVO}_3.\text{Sc}_2O_3$. With CeO₂ and \ln_2O_3 , the weight gain curve is just the same as pure NaVO_3 (in other words, the oxide is as chemically inert as the Pt planchet itself) up to a critical $p(SO_3)$, where the melt V_2O_6 activity is raised (via reaction 12) sufficiently that the oxide begins to react with V_2O_6 to form the vanadate. The weight gain for CeO₂ and \ln_2O_3 is then almost vertical, reflecting the insolubility of the vanadate product. Since the rare earth oxides and their vanadates are high-melting compounds with excellent x-ray diffraction patterns, one can show by x-ray, as for CeO₂ and CeVO₄ (see below), that only oxide exists below, and only vanadate above, the critical $p(SO_3)$, or actually V_2O_6 activity.

With Sc_2O_3 , the weight gain curve for Sc_2O_3 -NaVO₃ is <u>below</u> that of NaVO₃ up to the critical p(SO₃). Although not originally understood (32), this behavior results because, at temperatures below 880°C (20), Sc_2O_3 reacts with NaVO₃ to give the weak compound, $3NaVO_3.Sc_2O_3$. This compound reduces the activity of Na_2O , and therefore less SO_3 is taken up than with pure $NaVO_3$ of equivalent weight. The weight gain rise leans somewhat from the vertical in this case, which possibly reflects the "breaking" of the $3NaVO_3.Sc_2O_3$ compound as $p(SO_3)$ increases. Also, our initial X-ray analysis was in error, with $ScVO_4$ being correctly identified as the only scandium compound above the critical $p(SO_3)$, but Sc_2O_3 as the compound below, when in fact it was $3NaVO_3.Sc_2O_3$. The difficulty in distinguishing between Sc_2O_3 mixed with $NaVO_3$ and $3NaVO_3.Sc_2O_3$ arises because all of the strong peaks for Sc_2O_3 (x-ray standard pattern JCPDS 42-1463) are also contained in the $3NaVO_3.Sc_2O_3$ x-ray pattern (JCPDS 30-1241).

Direct reaction with pure NaVO₃. In Fig. 10e, Y_2O_3 is sufficiently basic that it reacts directly with molten NaVO₃ to produce YVO₄, which leaves the melt enriched in Na₂O. Therefore, when this system is equilibrated with even very low $p(SO_3)$, there is a high weight gain because of the pre-existing "reservoir" of Na₂O.

Another type of direct reaction occurs with Cr_2O_3 (Fig. 10f) which reacts with pure NaVO₃ and reduces the activity of Na₂O, probably by Na₂CrO₄ formation. This then yields less uptake of SO₃ than would be found with pure NaVO₃ alone, and over a wide p(SO₃) range.

Inert to the NaVO₃-SO₃ system. Finally, SnO₂ (Fig. 10g) is chemically inert to the NaVO₃-SO₃ system, with the weight gain being essentially identical to that for NaVO₃ alone up to at least 1 x 10^{-3} bar of SO₃. The resistance of SnO₂ to reaction with V₂O₆ may be one reason for its effectiveness in passivating fluid cracking catalysts against deactivation by vanadium impurities in crude oil (7).

Determining Act.(V,Os) without Assumption as to Act.(Na,SOs)

In calculating act.(V_2O_6) from the NaVO₃-SO₃ equilibrium weight gain data via equation [13], one is ultimately dealing with the activity product, act.(V_2O_6) x act.(Na₂SO₄), and an assumption concerning the Na₂SO₄ solution behavior (ideal or nonideal, and what activity coefficient?) must be made to obtain act.(V_2O_6). However, an alternative derivation of act.(V_2O_6), or more specifically, of $\gamma(V_2O_6)$, that is not dependent upon act.(Na₂SO₄) can be made on the basis of reaction [6],

$$2 \text{ CeO}_2 \text{ (s)} + V_2O_5 \text{ (l)} \rightarrow 2 \text{ CeVO}_4 \text{ (s)} + 1/2 O_2 \text{ (g)}$$
 [6]

In this case, CeO_2 and $CeVO_4$ are pure solids of low solubility (24), and $p(O_2)$ is the atmospheric oxygen pressure of 0.21 bar so, at 800°C, the activity of $V_2O_6(I)$ is fixed. Using the thermodynamic data for $CeO_2(s)$, $CeVO_4(s)$ and $V_2O_6(I)$ provided by Yokokawa et al (18), the critical V_2O_6 activity necessary for reaction [6] can be calculated to be 6.2 x 10^{-4} .

The problem is to identify the V_2O_6 concentration at which reaction [6] just begins. This can be done by examination of Fig. 11, which shows that the weight gain step-up resulting from reaction [6] commences at a $p(SO_3)$ of 3 x 10^{-6} bar, where the melt weight gain is 3.0 mg, corresponding to formation of 0.091 mol-fraction of V_2O_6 (and Na_2SO_4). If the theoretical V_2O_6 activity for Reaction [6] of 6.2 x 10^{-4} is divided by the experimental V_2O_6 molfraction of 0.091 from Fig. 11, a V_2O_6 activity coefficient of 7 x 10^{-3} results. This $\gamma(V_2O_6)$ agrees well with the $\gamma(V_2O_6)$ -Avg. of ~0.01 indicated in Fig. 9 for $p(SO_3)$ = 4 x 10^{-7} bar,

Fig. 11 Weight gain behavior for CeO_2 -NaVO₃ defining critical p(SO₃) for $CeO_2 \rightarrow CeVO_4$ reaction.

even though $\gamma(V_2O_6)$, in the present case, is determined on the basis of a different experimental reaction, and without regard to the Na₂SO₄ or NaVO₃ solution behavior.

As is well known, calculations such as above depend critically upon the accuracy of the thermodynamic data. Assuming an accumulated ± 10 kJ error in ΔG° for reaction [6] causes the derived $\gamma(V_2O_6)$ to vary from 2.1 x 10^{-2} to 2.2 x 10^{-3} . This error bar is shown for the datum point of $\gamma(V_2O_6) = 7 \times 10^{-3}$, $\chi(V_2O_6) = 0.091$ which has been included as representative of the present experiment for the $\gamma(V_2O_6)$ comparison in Fig. 14 below. It is not an insignificant error, but fits well within the data band. Good agreement is thus seen between two independent sets of experiments (i.e., SO_3 -NaVO3 equilibrium, and $CeO_2 \rightarrow CeVO_4$ reaction), in which two different sets of thermodynamic data (Luthra & Spacil, and Yokokawa et al) were used. Error in the thermodynamic data is therefore unlikely to seriously invalidate the present results, especially in their role of serving to indicate the general range of V_2O_6 nonideality in vanadate-sulfate melts.

V₂O₅ Titration using CeVO₄ Formation as "Indicator" to Determine y(V₂O₅)

Reaction [6] is analogous to the metallurgical reaction,

$$M(s) + 1/2 O_2(g) \rightleftharpoons MO(s)$$

which has great significance in metallurgy. By reaction [16], one can, for a given temperature, determine either $\Delta_t G^\circ$ for MO, or the critical $p(O_2)$ for metal oxidation/reduction, provided that the other is known. Moreover, reaction [16] is totally independent of the gaseous environment. Large quantities of inert gases such as nitrogen or argon can be present, and there can be other reactions in which O_2 engages (e.g., CO + 1/2 O2 = CO_2) but, if obeyed as written, reaction [16] will nonetheless remain independent.

For the case of reaction [6], a critical V_2O_6 (I) activity of 6.2 x 10^4 is required at 800°C, according to calculations based on the thermodynamic data of Yokokawa et al (18), for the reaction to proceed,

2 CeO₂ (s) +
$$V_2O_6$$
 (l)
 \rightleftarrows 2 CeVO₄ (s) + 1/2 O₂ (g) [6]

If obeyed as written, reaction [6] is independent of the melt composition, and the V_2O_6 (I) activity required for reaction [6] will always, at 800°C, be 6.2×10^{-4} regardless of melt composition. However, the V_2O_6 activity coefficient can, and most probably will, change with melt composition. Therefore, by finding the molfraction of V_2O_6 at which reaction [6] commences, one can potentially determine $\gamma(V_2O_6)$ for virtually any melt system in which an appropriate V_2O_6 activity for reaction [6] to proceed can be attained.

Fig. 12 Mmols V₂O₅ required for CeVO₄ formation at 800°C vs. NaVO₃-Na₂SO₄ melt composition.

This idea was tested using melts consisting of 1 mmol of CeO_2 mixed with 4 mmol blends of vanadate-sulfate of four different compositions, viz., 100% NaVO₃-(10 mol%)Na₂SO₄, NaVO₃-(25 mol%)Na₂SO₄, and NaVO₃-(50 mol%)Na₂SO₄. A series of varying amounts of V₂O₆ were added to the melt mixes, which were then heated at 800° C for 2 hrs in quiescent air and x-rayed to determine the amount of $CeVO_4$ formed. The relative amount of $CeVO_4$ produced was determined via the expression,

%
$$CeVO_4 = 100 \times \frac{[CeVO_4(200) Peak Hgt.]}{[CeVO_4(200) Peak Hgt.] + [CeO_2(111) Peak Hgt.]}$$
 [17]

which is an approximation of the integrated intensity ratio formulation commonly used to determine the relative amounts of crystal phases by x-ray diffraction (36). By extrapolation of the percent of CeVO₄ formation to zero (Fig. 13), one can ascertain the mmols of V_2O_6 that must be added to raise the melt V_2O_6 activity to the point at which CeVO₄ formation begins, and CeO₂(s), CeVO₄(s), $V_2O_6(l)$, and atmospheric O_2 are all in equilibrium; that is, when reaction [6] is obeyed.

The results yielded from Fig. 12 are tabulated in Table 3, where the calculated $\gamma(V_2O_6)$ is 6 x 10^3 for NaVO₃-(10 mol%)Na₂SO₄ to which 0.1031 X(V₂O₆) had been added. This X(V₂O₆) is near the 0.0853 X(V₂O₆) obtained by equilibrating NaVO₃ under 4.1 x 10^{-7} bar of SO₃ (cf. Table 2), and where $\gamma(V_2O_6)$ -Approx.2 was 3.6 x 10^{-3} . To obtain a better comparison, the data in Table 2 were linearly interpolated to 0.1031 X(V₂O₆), which yielded a value for $\gamma(V_2O_6)$ -Approx.2 of 9.1 x 10^{-3} . This latter $\gamma(V_2O_6)$ of 9.1 x 10^{-3} agrees well the $\gamma(V_2O_6)$ of 6 x 10^{-3} from Table 3, especially considering that a

linear interpolation was applied to the Table 2 data. A datum point of $\gamma(V_2O_6)=6\times 10^{-3}$, $\chi(V_2O_6)=0.1031$ with an error bar corresponding to ± 10 kJ error in $\Delta G^{\circ}_{reaction}$, which is still the largest likely error, is included in Fig. 14 as representative of this experiment. As shown in the drawn square in Fig. 14, the three independent experimental techniques all give essentially the same $\gamma(V_2O_6)$ for V_2O_6 in the 0.1 mol-fraction concentration range.

TABLE 3

Millimoles of V₂O₅ Required for CeVO₄ Formation as a Function of Na₂SO₄ Content of the Melt at 800°C

Nominal melt composition	Mmols V₂O ₆ for CeVO₄ formation	Mol-fraction of V ₂ O ₅	Final mol-fraction of Na₂SO₄	Act. Coeff.¹
100% NaVO₃	0.51	0.1131	0.0	0.0055
NaVO₃-(10 mol%)Na₂SO₄	0.46	0.1031	0.0897	0.0060
NaVO₃-(25 mol%)Na₂SO₄	0.38	0.0868	0.2283	0.0071
NaVO₃-(50 mol%)Na₂SO₄	0.29	0.0676	0.4662	0.0092

¹ Calculated for act.(V_2O_6) = 6.2 x 10⁻⁴

When V₂O₆ is added to melts containing significant Na₂SO₄, the back-reaction of Reaction [12] can occur, with NaVO₃ produced in the melt and SO₃ evolved. In a flowing air stream, where SO₃ is continually removed, there can be a major extent of back-reaction, with 50 mol% Na2SO4-NaVO₃ being converted ~80% to NaVO₃ in 24 hrs at 750°C [19]. In quiescent furnace air, the degree of back-reaction is much less. Also the reaction kinetics are slow in comparison to most chemical reactions. In the present case, the CeO₂ is finely ground together and thoroughly mixed with the NaVO₃-Na₂SO₄-V₂O₅ blend before firing. Upon coming to temperature, there is rapid reaction to form stable CeVO4, and since the CeO₂ is in excess of V₂O₆, no residual V₂O₆ is left to undergo reaction with Na2SO4 in the melt (which is heated only 2 hrs). Error because of Na₂SO₄ reaction with residual V₂O₅ should therefore be negligible.

Fig. 13 Activity coefficient of V₂O₆ vs. molfraction of Na₂SO₄ at 800°C.

When the V_2O_6 activity coefficients from Table 3 are plotted against the mol-fraction of

 Na_2SO_4 , an essentially straight line is obtained (Fig. 13). Theoretical reasons as to why the line should be straight have not been developed. However, Figs. 12 and 13 contain two points which have not been explicitly shown before, and which are perhaps not intuitive. First, increasing the Na_2SO_4 content of the melt causes $\gamma(V_2O_6)$ to increase; that is, V_2O_6 reaction with CeO_2 (and presumably other ceramic oxides) occurs with less V_2O_6 required in the melt (or vanadium in the fuel). Second, small differences in the V_2O_6 activity coefficients are not negligible. A change in $\gamma(V_2O_6)$ of from 5.5 x 10⁻³ to 9.2 x ⁻³, although at first sight insignificant, in fact corresponds to a nearly 2X decrease from 0.51 mmols to

0.29 mmols in the amount of V_2O_6 required to reach the melt V_2O_6 activity at which CeO_2 will react or "corrode". In the service world, this could mean having to buy a fuel of half the vanadium content at considerably more expense.

SUMMARY AND CONCLUSIONS

Comparison with V₂O₅ Activity Coefficients from the Literature

The known V₂O₅ activity coefficients that have been reported for sodium vanadate, and sodium vanadate-sulfate mixtures, are shown in Fig. 14. The comparison is only qualitative, since the activity coefficients were measured with different melt conditions and temperatures. The Mittal and Elliott data point is calculated from their measurement of the activity of V₂O₅ in 0.5 mol-fraction Na₂O.V₂O₆ (i.e., NaVO₂) at 850°C. The two Luthra and Spacil data points were reported for melts having a Na/V ratio of 2, and equilibrated under p(SO₂)'s of approximately 9 x 10⁻⁴ and 4 x 10⁻⁴ atm at 750°C and 900°C, respectively. Although Hwang and Rapp (23) originally postulated sodium sulfate-vanadate solutions to be ideal, a later paper by Rapp and Zhang (37) describes the equilibration of Na₂SO₄-V₂O₅ melts of varying Na/V ratio under a fixed p(SO₃) of 2.2 x 10⁻³ bar at 900°C, and concludes that the melts are "-close to an ideal salt solution although a small deviation seems to be present." No activity coefficient for V₂O₅ is given in their paper, but in a review of an NRL manuscript on vanadate-

Fig. 14 Comparison of V_2O_6 activity coefficients from various works as plotted vs. mol-fraction of melt V_2O_6 .

sulfates, a reviewer who seemed quite knowledgeable about the work stated that a V_2O_6 activity coefficient of 0.79 was indicated by the Rapp and Zhang results. So, despite its unusual derivation, this $\gamma(V_2O_6)$ is plotted in Fig. 14 for completeness of the comparison.

Although somewhat scattered, the data in Fig. 14 exhibit a general trend of increase in $\gamma(V_2O_6)$ as the mol-fraction of V_2O_6 increases. Despite the difference in temperature, there is an essentially smooth transition between the $\gamma(V_2O_6)$ of $\sim 5 \times 10^4$ (or $10^{-3.3}$) indicated by the Mittal and Elliott data for pure NaVO3 at 850°C, and the $\gamma(V_2O_6)$ of $\sim 5 \times 10^{-3}$ determined from NRL results for an 800°C NaVO3 melt containing 0.067 mol-fraction each of Na2SO4 and V_2O_6 . This is consistent with our expectations, considering that at this point only small increments of V_2O_6 have been added to pure NaVO3. There is also reasonably good agreement with the Luthra and Spacil V_2O_6 activity coefficients of 0.08 and 0.18 in the middle regions of the plot, and with the 0.79 V_2O_6 activity coefficient of Rapp and Zhang for Na/V melts under high SO3 partial pressures.

The three datum points within the drawn square are of particular importance. As described above, these points were determined by three independent experimental techniques, viz., simple equilibrium of NaVO₃ under SO₃; the reaction CeO₂ + V₂O₆ \rightarrow CeVO₄ + 1/2 O₂ where the V₂O₆ melt activity was increased by raising p(SO₃); and the same reaction where V₂O₆ was simply "titrated" into the melt. Two different sets of thermodynamic data were also employed. Good agreement is seen

between the three values for $\gamma(V_2O_6)$ so obtained, which gives confidence that our experiments and data are essentially correct.

Other considerations

Effect of Na/V ratio in melt or engine deposit. In addition to $p(SO_3)$, the other principal variable in the Na₂O-V₂O₆-SO₃ system is the Na/V ratio. Information on the effect of the Na/V ratio is contained in our V₂O₆ "titration" experiments where blends of different NaVO₃-Na₂SO₄ ratios were investigated. For example, NaVO₃-(50 mol%)Na₂SO₄ has a Na/V ratio of 3, and could be considered as approximating a melt that was originally Na₂O-(50 mol%)NaVO₃ (or Na₃VO₄), but in which the Na₂O component has been sulfated. Such an assumption is not unreasonable, since Na₂O has a considerably higher affinity for SO₃ than for V₂O₆, as evidenced by the fact that the 800°C Na₂SO₄ dissociation activity product, act.(Na₂O) x act.(SO₃), is 9.8 x 10⁻²¹, whereas the equivalent activity product for NaVO₃, act.(Na₂O) x act.(V₂O₆), is 1.7 x 10⁻¹⁸. Taking this model to be indicative even if not totally correct, one can interpret the data in Fig. 13 as being for melts of Na/V ratios of 1, 1.22, 1.67 and 3.0, respectively, wherein $p(V_2O_6)$ is found to progressively increase from 5.5 x 10⁻³ to 9.2 x 10⁻³, or by 67%. Compared to the large changes in $p(V_2O_6)$ produced by increasing $p(SO_3)$, this is relatively small, which suggests that $p(V_2O_6)$ is not highly dependent upon the melt Na/V ratio, at least over the concentration ranges covered.

Vanadate-sulfate melts, ideal or nonideal? The data in Fig. 14 demonstrate that vanadate-sulfate melts are nonideal, and in fact follow a very common solution behavior wherein the melt components, when present in high concentration, behave as "nearly ideal", but when in dilute concentration, exhibit large negative deviations from ideal behavior, and have small activity coefficients.

ACKNOWLEDGEMENTS

The majority of our work was sponsored by the Office of Naval Research, with Dr. A. J. Sedriks as Scientific Officer. The financial support and intellectual encouragement that has been given in conjunction with this effort is gratefully acknowledged.

REFERENCES

- W. T. Reid, External Corrosion and Deposits: Boilers and Gas Turbines, pgs. 134-138, American Elsevier, New York, 1971.
- 2. R. A. Miller, Surf. Coat. Technol. 30[1], 1 (1987).
- R. L. Jones, "Thermal Barrier Coatings", in Metallurgical and Ceramic Protective Coatings, (ed. K. H. Stern), Chapman & Hall, New York, 1996.
- W. P. Parks, E. E. Hoffman, W. Y. Lee and I. G. Wright, "Thermal Barrier Coatings Issues in Advanced Land-Based Gas Turbines," in *Proc. of Thermal Barrier Coating Workshop*, pg. 35-47, NASA Conf. Publ. 3312, NASA Lewis Research Center, OH (1995).
- Proc. of the Advanced Turbine Systems Annual Program Review Meeting, DOE/OR-2048, (eds. A. Layne and P. Hoffman) U.S. Dept. of Energy, Washington DC, Nov., 1996.

- J. F. Branthaver, "Influence of Metal Complexes in Fossil Fuels on Industrial Operations," in Metal Complexes in Fossil Fuels: Geochemistry, Characterization and Processing, pgs. 188-204 (eds. R. H. Filby and J. F. Branthaver) ACS Symp. Series 344, American Chemical Society, Washington, DC, 1987
- 7. R. L. Jones, J. of Catalysis, 129, 269 (1991).
- 8. H. E. Hilliard, "Vanadium", in *Mineral Commodity Summaries*, 1997, U.S. Dept. of Interior, U. S. Geological Survey, Reston, VA, 1997.
- 9. Proc. of 1st Conf. on Advanced Materials for Alternative Fuel Capable Directly Fired Heat Engines, (eds. J. W. Fairbanks and J. Stringer), CONF-790749, U.S. Dept. of Energy, Washington, DC, 1979.
- Proc. of the 2nd Conf. on Advanced Materials for Alternative-Fuel-Capable Heat Engines, (eds. J. W. Fairbanks and J. Stringer), RD-2369-SR, Electric Power Research Institute, Palo Alto, CA, 1982.
- 11. B. A. Nagaraj, A. F. Maricocchi, D. J. Wortman, J. S. Patton and R. L. Clarke, *ASME Paper 92-GT-44*, American Society of Mechanical Engineers, New York, 1992.
- 12. B. A. Nagaraj and D. W. Wortman, *Trans. ASME, J. Engr. for Gas Turbines and Power*, 112, 536 (1990).
- 13. R. L. Jones, J. Thermal Spray Technol., 6[1], 77 (1997).
- 14. R. L. Jones, Surf. Coat. Technol., 39/40, 89 (1989).
- 15. D. W. Susnitzky, W. Hertl and C. B. Carter, J. Am. Ceram. Soc., 71[11], 992 (1988).
- 16. W. Hertl, J. Appl. Phys., 63[11], 5514 (1988).
- 17. A. N. Belov and G. A. Semenov, Russ. J. Physical Chemistry, 59[3], 342 (1985).
- 18. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, J. Am. Ceram. Soc., 73[3], 649 (1990).
- 19. R. L. Jones, C. E. Williams and S. R. Jones, J. Electrochem. Soc., 133[1], 227 (1986).
- 20. V. H. Schwarz and L. Schmidt, Z. anorg. allg. Chem., 413, 150 (1975).
- 21. K. L. Luthra and H. S. Spacil, J. Electrochem. Soc., 129(3), 649 (1982).
- 22. S. K. Mittal and J. F. Elliott, J. Electrochem. Soc., 131[5], 1194 (1984).
- 23. Y.-S. Hwang and R. A. Rapp, Corrosion, 45[11], 933 (1989).
- 24. R. F. Reidy and R. L. Jones, J. Electrochem. Soc., 142[4], 1353 (1995).
- 25. M. Chaikivsky and C. W. Siegmund, ASME Trans., J. Engr. for Power, 87, Series A, 379 (1965).
- 26. A. Block-Bolton and D. R. Sadoway, Metall. Trans. B, 14, 231 (1983).

- 27. R. Mittelstadt and K. Schwerdtfeger, Metall. Trans., 21B, 111 (1990).
- 28. R. F. Reidy and K. E. Swider, J. Am. Ceram. Soc., 78[4], 1121 (1995).
- 29. D. W. Bonnell and J. W. Hastie, High Temp. Science, 26, 313 (1990).
- 30. Y. K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes, pg. 825, Cambridge University Press, Cambridge, 1985.
- "Phase diagram for V₂O₆-Na₂O System", Fig. 5126, *Phase Diagrams for Ceramists, Vol. IV*, (ed. G. Smith), The American Ceramic Society, Columbus, OH, 1981.
- 32. I. Barin, *Thermochemical Data of Pure Substances*, VCH Verlags Gesellschaft, Weinheim, 1989. As given in the commercial computer program, HSC Chemistry for Windows (Version 2.03)[™].
- 33. R. L. Jones, J. Electrochem. Soc., 139[10], 2794 (1992).
- 34. R. L. Jones, J. Am. Ceram. Soc., 76[6], 1635 (1993).
- 35. R. C. Kerby and J. R. Wilson, Can. J. Chem., 51, 1032 (1973).
- 36. H. K. Schmidt, J. Am. Ceram. Soc., 70[5], 367 (1987).
- 37. R. A. Rapp and Y. S. Zhang, "Electrochemical Studies of Hot Corrosion of Materials," in *Proc. of 1st Mexican Symp. on Metallic Corrosion*, Paper 12, pgs. 90-99, Meridan, Mexico, 7-11 March, 1994.