

SILABO

HIDRÁULICA ÁREA CURRICULAR: TECNOLOGÍA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico: 2019-I1.3 Código de la asignatura: 09030909040

1.4 Ciclo: IX1.5 Créditos: 041.6 Horas semanales totales: 10

1.6.1 Horas lectivas (Teoría, Práctica, Laboratorio) : 5 (T=3, P=0, L=2))

1.6.2 Horas no lectivas: : 5

1.7 Condición del curso : Obligatorio

1.8 Requisito(s) : 09059608030 Hidrología 1.9 Docentes : Ing. Gonzalo Fano Miranda

II. SUMILLA

El curso está ubicado en el IX Ciclo, es de naturaleza teórica y práctica. Su propósito es brindar al estudiante los conceptos teórico – prácticos para diseñar soluciones de ingeniería a los problemas de los recursos hídricos superficiales, subterráneos y marítimos que se presentan cuando se quiere: captar, conducir, proteger o regular dichos recurso mediante obras de infraestructura hidráulica.

La asignatura comprende las siguientes unidades de aprendizaje: I. Obras de Arte en canales. II. Obras de captación – Diseño de Bocatoma. III. Diseño de Centrales Hidroeléctricas. IV. Diseño de Sistema de Riego.

III. COMPETENCIAS Y SUS COMPONENTESCOMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Desempeña criterios de aplicación de la hidráulica de tuberías y canales en el campo laboral de la ingeniería civil
- Elabora estudios de flujo para los canales de conducción y distribución
- Reconoce la hidráulica en los estudios para edificaciones de gran envergadura en los cauces de ríos y canales.

3.2 Componentes

Capacidades

- Reconoce los principios de las obras de arte en canales
- Reconoce de bocatoma y su aplicación en la construcción de canales
- Estudia el diseño de centrales
- Aplica al diseño de sistemas de riego

Contenidos actitudinales

- Trabaja, en equipo, los proyectos de obras hidráulicas.
- Considera que un estudio de hidráulica se puede trabajar en equipo multidisciplinario
- Colabora con la Gerencia de operaciones de una empresa
- Adopta los criterios desarrollados en las aplicaciones de la hidráulica

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : OBRAS DE ARTE EN CANALES

CAPACIDAD: Reconoce los principios de las obras de arte en canales						
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS T.I.	
1	Primera sesión: Clasificación de las Obras Hidráulicas. Obra de conducción: Trazo de Canales, radios mínimos, elementos de curva, rasante de canal. Diseño de Sección hidráulica óptima. Perfil longitudinal, pendiente del canal, velocidades. Segunda sesión: Canales: diseño Sección hidráulica óptima, criterios de espesor de revestimiento. Ejemplos de aplicación	 Comenta la clasificación de las Obras Hidráulicas: propósito y función. Debate obra de conducción: Trazo de Canales, radios mínimos, elementos de curva, rasante de canal. Diseña Sección hidráulica óptima, criterios de espesor de revestimiento. Perfil longitudinal, pendiente del canal, velocidades permisibles. Aplica el cálculo de canales: diseño de sección hidráulica óptima, criterios de espesor de revestimiento. Ejemplos de aplicación: Máxima eficiencia, mínima 	Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3 h Ejercicios en aula – 1 h De trabajo Independiente (T.I):	5	5	
'			Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal - 2 h			
2	Primera sesión: Obras de protección: transiciones, Obras de conducción: caídas y rápidas Segunda sesión: Ejemplos de aplicación: Transición de entrada, sección de control, cuerpo, transición de salida. Proyecto #1: Trazo de Canal con obras de arte	 Diseña las obras de protección: transiciones, obras de conducción: caídas y rápidas Realiza un ejemplo de aplicación: transición de entrada, sección de control, cuerpo, transición de salida. 	Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3 h Ejercicios en aula – 1 h De trabajo Independiente (T.I): Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal - 2 h	- 5	5	
3	Primera sesión: Obras de conducción: Alcantarillas, Tipos por el flujo a la entrada y a la salida, criterios de diseño, Tipos de alcantarilla por su capacidad. Segunda sesión: Ejemplos de aplicación: diseño de alcantarilla con flujo ahogado y con flujo libre	 Diseña las Obras de conducción: Alcantarillas, Tipos de alcantarilla por el flujo a la entrada y a la salida, criterios de diseño, Tipos de alcantarilla por su capacidad. Realiza ejemplos de aplicación: diseño de alcantarilla con flujo ahogado y con flujo libre 	Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3 h Ejercicios en aula – 1 h De trabajo Independiente (T.I): Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal - 2 h	- 5	5	
4	Primera sesión: Diseño de Sifón invertido, cálculo hidráulico: entrada y salida de sifón, diámetro de tubería, pérdidas hidráulicas. Segunda sesión: Ejemplo de aplicación: diseño de Sifón invertido	 Aplica los cálculos para el diseño de sifón invertido, cálculo hidráulico: entrada y salida de sifón, diámetro de tubería, pérdidas hidráulicas. Realiza un ejemplo de aplicación: diseño de sifón invertido 	Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3 h Ejercicios en aula – 1 h De trabajo Independiente (T.I): Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal: 2 H	5	5	

UNIDAD II: OBRAS DE CAPTACIÓN – DISEÑO DE BOCATOMA

CAPACIDAD: Reconoce los criterios del diseño de Bocatomas

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HC L	DRAS T.I.
	Primera sesión: Práctica Calificada #1 – Obras de Arte en Canales Segunda sesión: Introducción, Clasificación, Generalidades sobre ríos, Clases y partes que componen el Barraje, Avenida y Caudal de diseño, Características hidráulicas del río. Obras de desvío, Ubicación óptima, Ancho de encauzamiento.	 Comenta las obras de arte en canales Comenta la Introducción, clasificación, generalidades sobre ríos, clases y partes que componen el Barraje, avenida y caudal de diseño, características hidráulicas del río obras de desvío, ubicación óptima, ancho de encauzamiento. 	Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3 h Ejercicios en aula – 1 h De trabajo Independiente (T.I): Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal - 2 h	- 5	5
6	Primera sesión: Ventana de captación: dimensionamiento, enrejado, perdidas de carga. Barraje: Determinación del azud, altura, carga hidráulica, clases de cimacios de cresta libre, longitud efectiva de la cresta. Segunda sesión: Ejemplo de aplicación: diseño de Ventana de captación, perdida de carga en enrejado. Calculo de distribución de caudal máximo de avenida en: Barraje, Ventana de captación y Aliviadero de Demasías.	 Aplica los criterios de cálculo de la Ventana de captación: dimensionamiento, enrejado, pérdidas de carga. Aplica Barraje: Determinación del azud, altura, carga hidráulica, clases de cimacios de cresta libre, longitud efectiva de la cresta. Realiza un ejemplo de aplicación: diseño de ventana de captación, pérdida de carga en enrejado. Realiza cálculo de distribución de caudal máximo de avenida en: Barraje, Ventana de captación y Aliviadero de demasías. 	Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3h Ejercicios en aula – 1 h De trabajo Independiente (T.I): Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal - 2 h	5	5
7	Primera sesión: Barraje tipo Creager, perfil del cimacio, Segunda sesión: Ejemplo de aplicación: Diseño de Barraje tipo Creager, cálculo de distribución de caudal máximo de avenida en: Barraje, Compuerta de limpia y Aliviadero de Demasías Entrega de Proyecto # 1 – Trazo de Canales	 Aplica los criterios de cálculo del Barraje tipo Creager, perfil del cimacio. Realiza un Ejemplo de aplicación: Diseño de Barraje tipo Creager, Calculo de distribución de caudal máximo de avenida en: Barraje, Compuerta de limpia y Aliviadero de Demasías 	Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3 h Ejercicios en aula – 1 h De trabajo Independiente (T.I): Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal - 2 h	- 5	5
8	Examen parcial			_	

UNIDAD III: DISEÑO DE CENTRALES HIDROELÉCTRICAS

CAPACIDAD: Estudia el diseño de centrales

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS T.I.
9	Primera sesión: Canal de limpia, pendiente crítica, Velocidad de arrastre, criterio de decisión de poza o Canal de Limpia. Colchón disipador. Segunda sesión: Ejemplo de aplicación: <i>Diseño</i> de Canal de limpia y Colchón disipador		Lectivas(L): Introducción al tema – 1 h Desarrollo del tema – 3 h Ejercicios en aula – 1 h De trabajo Independiente (T.I): Resolución tareas – 1 h Trabajo de investigación – 2 h Trabajo grupal - 2 h	- 5	5
10	Primera sesión: Canal de limpia, pendiente crítica, Velocidad de arrastre, criterio de decisión de poza o Canal de Limpia. Colchón disipador. Segunda sesión: Ejemplo de aplicación: <i>Diseño</i> de Canal de limpia y Colchón disipador		Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula -1 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 5	5
11	Primera sesión: Desarenador: Función, clases y partes— Partículas que se van a sedimentar — Determinación de naves, longitud y sección del desarenador. Purga: volumen y operación — canal de purga — compuerta de purga — Umbral de salida. Transiciones de entrada y de salida. Segunda sesión: Ejemplo de aplicación: Diseño de desarenador	componen el desarenador – Partículas que se van a sedimentar – Determinación de naves, longitud y sección del desarenador. Partículas que se van a sedimentar – Determinación de naves, longitud y sección del desarenador.	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 1 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación -2 h Trabajo grupal - 2 h	5	5
12	Primera sesión: Clasificación, Obras y Equipos requeridos. Potencia instalada, Caudal de instalación, Energía Firme, Energía Secundaria, Centrales Hidroeléctricas. Segunda sesión: Práctica Calificada # 2 – Bocatomas y Desarenador		Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 1 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 5	5

UNIDAD IV: DISEÑO DE SISTEMA DE RIEGO

CAPACIDAD: Aplica al diseño de sistemas de riego

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
13	Primera sesión: Dimensionamiento de reservorios en ríos regulados y determinación de Caudal de Diseño en ríos no regulados con fines de generar energía eléctrica. Aplicación de Software HIDROESTA. Cálculo de Aliviadero de demasías. Segunda sesión: Aplicación de Software HIDROESTA. Para dimensionar reservorios regulados y Caudal de Diseño en ríos no regulados y Calculo de Aliviadero de demasías	 Debate los criterios del dimensionamiento de reservorios en ríos regulados y determinación de caudal de diseño en ríos no regulados con fines de generar energía eléctrica. Aplica Software HIDROESTA. Cálculo de Aliviadero de demasías. Aplica Software HIDROESTA. para dimensionar reservorios regulados y caudal de diseño en ríos no regulados y cálculo de Aliviadero de demasías 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 1 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	5	5
14	Primera sesión: Cálculo del espesor del conducto forzado, influencia del golpe de ariete, cálculo de tramos de tubería forzada. Dimensionamiento de Cámara de carga. Selección de turbinas, tipos de turbinas Segunda sesión: Generalidades, factores de la producción agrícola: suelo, clima y agua	 Aplica los criterios para el cálculo del espesor del conducto forzado, influencia del golpe de ariete, cálculo de tramos de tubería forzada. Dimensiona la cámara de carga y selecciona de turbinas Comenta los criterios y generalidades, factores de la producción agrícola: suelo, clima y agua 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 1 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	5	5
15	Primera sesión: El riego: clases, eficiencia, cálculo de demandas. Segunda sesión: Método de Hargraves, demandas finales. Entrega de Proyecto # 2 – Diseño de Bocatoma. Práctica Calificada # 3 – C.H.	 Comenta los criterios del riego: clases, eficiencia, cálculo de demandas. Comenta los criterios el Método de Hargraves, demandas finales. Entrega de Proyecto # 2 – Diseño de Bocatoma. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 1 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	5	5
16	Examen Final				<u> </u>
17	Entrega de promedios finales y acta del curso				

V. ESTRATEGIAS METODOLÓGICAS

- · Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- · Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF = (2*PE + EP + EF) / 4 PE = ((P1 + P2 + P3 + P4 - MN) /3 + W1 + PL)/3. PL = (Lb1 + Lb2 + Lb3 + Lb4) /4

Donde:

PF = Promedio final.

P3 = Práctica calificada 3

EP = Examen Parcial

P4 = Práctica calificada 4

EF = Examen Final MN = Menor nota de Prácticas calificadas

PE = Promedio de Evaluaciones W1 = Trabajo 1

P1 = Práctica calificada 1 PL = Promedio de laboratorios P2 = Práctica calificada 2 Lb1...Lb4: Notas de laboratorio

VIII. FUENTES DE CONSULTA.

8.1 Bibliográficas

- . Autoridad Nacional del Agua. (2014). Manual: Criterios de Diseño de Obras Hidráulicas para la Formulación de
- . Proyectos Hidráulicos Multisectoriales y de Afianzamiento Hídrico. Min. Agricultura, Lima-Perú.
- . French, R. (2013). Hidráulica de Canales Abiertos. Mc Graw Hill, México.
- . Juárez, B. (2010). Mecánica de Suelos. Tomo III. Ed. México: ISBN 9681801288.
- . Novak (2014). Estructuras Hidráulicas. 4ta edición, México.
- . USBR. (2010). Diseño de Presas pequeñas. Traducción 3ra edición, Madrid: España, actualizado.
- . Villón, M. (2013). Diseño de Estructuras Hidráulicas. Editorial Villón. Costa Ric

 \mathbf{R} = relacionado

. Ven Te Chow. (2012). Hidráulica de los canales abiertos. Editorial: Mc Graw Hill, Santa Fe Colombia.

Electrónicas

 $\mathbf{K} = clave$

. Santos S. (2013). Hidráulica. Aula Virtual, Perú: Facultad de Ingeniería y Arquitectura, Universidad de San Martín de Porres. http://campusvirtual.usmp.edu.pe/

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

	K = clave K = relacionado Recuadro vacio = no aprica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería.	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.	R
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas.	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario.	K
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería.	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional.	
(g)	Habilidad para comunicarse con efectividad.	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro o un contexto social y global.	e
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida.	
(j)	Conocimiento de los principales temas contemporáneos.	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería.	K

Recuedro vacío - no anlica