Степанов Линейная алгебра.

3 февраля 2024 г.

Содержание

1 02.02.24 1 лекция					
	1.1	Ранг Матрицы	1		
		Минор Матрицы			
	1.3	Теорема об инвариантности ранга при элементарных преобразованиях	2		
	1 4	Теорема о базисном миноре	3		

1 02.02.24 1 лекция

1.1 Ранг Матрицы

 $A \in M_{m,n}(\mathbb{R})$. Строки столбы матрицы могут быть ЛЗ, ЛНЗ.

$$a_1,\ldots,a_m$$
 строки ЛЗ \iff $\exists \lambda_1,\ldots,\lambda_m \in \mathbb{R} \ \lambda_1^2+\cdots+\lambda_m^2 \neq 0$ $\lambda_1 a_1 + \cdots + \lambda_m a_m = 0 = \overbrace{(0,\ldots,0)}^m$

 $r_1(A)$ - строчный ранг матрицы A - максимальное количество ЛНЗ строк матрицы A. $0 \leq r_1(A) \leq m$

 $r_2(A)$ - столбчатый ранг матрицы A - максимальное количество ЛНЗ столбцов матрицы A. 0 ≤ $r_1(A) \le n$

1.2 Минор Матрицы

Определение 1. Минором порядка k, где k $1 \le k \le min\{m,n\}$ называется определителем матрицы, образованной элементами стоящими на пересечение некоторых выбранных k строк и k столбцов матрицы A.

$$1 \le i_1 < i_2 < \dots < i_k \le m$$

 $1 \le j_1 < j_2 < \dots < j_k \le n$

 $M^{j_1\dots j_k}_{i_1\dots i_k}$ — минор, обр
зованный строками с номерами i_1,\dots,i_k и столбцами j_1,\dots,j_k

Пример

$$A_{3,4} = \begin{pmatrix} 0 & 2 & 1 & 3 \\ 4 & 5 & 0 & -1 \\ 2 & 2 & 1 & 1 \end{pmatrix}$$

$$M_2^4 = a_{24} = -1$$
 $M_{13}^{24} = \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} = -4$

Ранг матрицы A, r(A) = максимальный порядок не нулевого минора матрицы A. r(A) = $max\{0 \le k \le min\{m,n\}\}|\exists$ ненулевой минор порядка k в A, но миноры большого порядка либо \exists либо все не равны 0.

Пример

$$M_{123}^{123} = \begin{pmatrix} 0 & 2 & 1 \\ 4 & 5 & 0 \\ 2 & 2 & 1 \end{pmatrix} \neq 0 \quad \Rightarrow \quad r(A) = 3$$

1.3 Теорема об инвариантности ранга при элементарных преобразованиях

Если матрица A' получена из матрицы A последовательностью элементарных преобразований строк и столбцов, то $r_1(A')=r_1(A)$ и $r_2(A')=r_2(A)$

Доказательство после теории размерности векторных пространств.

Следствие 1. \forall матрицы $A r_1(A) = r_2(A)$

Доказательство: Приведем матрицу А к ступенчатому виду

$$A' = \begin{pmatrix} 0 & \dots & a_{1j_1} & \dots & a_{1j_{n-1}} & a_{1j_n} \\ 0 & \dots & 0 & a_{2j_2} & \dots & a_{2j_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & 0 & a_{rj_r} \\ 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix} \quad 1 \leq j_1 < j_2 < \dots < j_r \leq n \qquad a_{1j_1}, \dots, a_{rj_r} \neq 0$$

Далее поделим k-ую строку на a_{kj_k} и переместим столбы j_1,\dots,j_r в начало матрицы.

$$A' \Rightarrow A'' = \begin{pmatrix} 1 & a''_{12} & \dots & a''_{1n} \\ 0 & 1 & a''_{23} & \dots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Из второго столбца вычтем первый с коэффициентом a_{12}'' ... из n-го 1-й с коэффициентом a_{1n}'' и т.д для 2-го столбца и 2 строки и т.д.

$$A \sim A''' = \left(\begin{array}{c|c} E_r & 0 \\ \hline 0 & 0 \end{array}\right)$$

$$Teop_1 \Rightarrow r_i(A) = r_i(A'''), i = 1,2$$
 Первые r строк матрицы A''' : $e_1 = (1,0,\ldots,0,\ldots,0)$ $e_2 = (0,1,\ldots,0,\ldots,0)$ \vdots $e_r = (0,0,\ldots,1,\ldots,0)$

Если $\Sigma \lambda_i e_i = 0 = (0, \dots, 0) \Rightarrow (\lambda_1, \dots, \lambda_r, \dots, 0) \Rightarrow \lambda_1 = \dots = \lambda_r = 0 \Rightarrow$ Эти строки ЛНЗ $\Rightarrow r_1(A''') = r$. Аналогично $r_2(A''') = r \Rightarrow r_1(A) = r_2(A)$ Ч.Т.Д.

Замечание Вычисление ранга матрицы методом элементарных преобразований: Нужно привести матрицу A к ступенчатому виду путём преобразований строк. Тогда $r_1(A) = r_2(A) = r$

- количеству ненулевых строк в ступенчатом виде.

Определение 2. Пусть M — некоторый минор матрицы A минор M' матрицы A называется окаймляющим для M если M' получается из M добавлением одной строки и одного столбиа.

Пример:

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 \\ 2 & -1 & 3 & 2 \end{pmatrix} \quad M = M_{13}^{13} = \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = -3$$

Окаймляющие: $M_{123}^{\prime 123}$, $M_{123}^{\prime 134}$

Определение 3 Минор М матрицы А называется базисным если М ≠ 0, а все его окаймляющие миноры либо ∄, либо равны 0. Строки и столбцы входящие в базисные миноры называются базисными.

1.4 Теорема о базисном миноре

Базисные строки (столбцы) любой матрицы ЛНЗ. Остальные строки(столбцы) линейно выражаются через базисные.

Доказательство: Для строк, для столбцов аналогично. Если базисные строки $\Pi 3$, то и строки базисного минора $\Pi 3 \Rightarrow$ он равен 0 – противоречие.

Будем считать, что базисный минор $M=M^{1,\ldots,r}_{1,\ldots,r}$ Рассмотрим определители M', которые получаются добавлением к M i-й строки, i>r и \forall столбцов матрицы A.

Если мы добавим j-й столбце с $j \le r$ то в M'два одинаковых столбца $\Rightarrow M' = 0$.

Если j > r, то M' – окаймлённный минор для $\mathbf{M} \Rightarrow M' = \mathbf{0}$

$$a_{ij} = -\frac{A'_{1j}}{M}a_{1j} - \dots - \frac{A'_{rj}}{M}a_{rj} \quad \forall j = 1,\dots,n$$
 (1)

Формула (1) выражает элемент i - й строки через соответствующие элементы 1-й, ... , r-й строк. Коэффициенты не зависят от $j \Rightarrow i$ -я строка линейно выражается через базисные строки. ЧТД.

Следствие 2(Теорема о ранге матрицы) \forall матриц A $r_1(A) = r_2(A) = r(A)$ и равны порядку любого базисного минора.

Доказательство $r_1(A) = r_2(A)$ — уже доказано. Пусть М — базисный минор матрицы А. $M_{12...r}^{12...r}$. (r+1)—я,...,m—я строки — линейная комбинация базисных строк.

$$A \sim egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rn} \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \end{pmatrix} = A'$$
 из теоремы $1 \Rightarrow r_1(A) = r_1(A')$

Строки (1),...,(r) ЛНЗ $\Rightarrow r_1(A') = r$. r — порядок базисного минора. Если M — максимальный по порядку минор $\neq 0$, то он автоматически базисный $\Rightarrow r(A) = r = r_1(A) = r_2(A)$

Определение 4 Рангом матрицы указанным эквивалентным способом.	A	называется	число	rkA	определённое	любым	выше