```
clear
close all
```

Variables and Data

```
% import data from men's 73 kg weight class
data = csvread('class73.csv');
                          = data(:,1); % sex
sex
age
                         = data(:,2); % age
                         = data(:,3); % body weight
bweight
                         = data(:,4); % declared snatch weight
snatch firstAttempt
                        = data(:,5); % first successful snatch weight
= data(:,6); % max snatch weight
snatch firstSuccess
snatch max
= data(:,10); % first successful clean-jerk weight
cj firstSuccess
cj max
                        = data(:,11); % max clean-jerk weight
                         = data(:,12); % delta between max and declared
cj max2declared
cj max2firstSuccess
                         = data(:,13); % delta between first success and max
                         = data(:,14); % total max weight "score"
total
```

Derived Metrics

```
% Snatch to CJ ratio
snatch_ratio = snatch_max./cj_max;
% Sum of deltas between declared and max across both events
total_deltas = cj_max2declared + snatch_max2declared;
```

Initial Model - age, body weight, snatch ratio, deltas

```
dm = [age, bweight, snatch_ratio, total_deltas, total];
labels = {...
    'age',...
    'bweight',...
    'snatch_{max}/cj_{max}',...
    'deltas_{total}',...
    'total'...
    };

% Create the plot matrix
[~,ax] = plotmatrix(dm);
for i = 1:length(labels)
    title(ax(1,i), labels{i})
    yl = ylabel(ax(i,1),labels{i},'fontweight','bold','Rotation', 0);
    yl.Position(1) = yl.Position(1) - 3.0;
end
```


mdl1 = fitlm([age, bweight, snatch_ratio, total_deltas],total,'VarNames',{'age' 'bweight','sna

mdl1 =

Linear regression model:

total ~ 1 + age + bweight + snatch_max/cj_max + total_deltas

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-1173.8	330.19	-3.5551	0.00050869
age	-0.028664	0.73825	-0.038827	0.96908
bweight	15.3	4.3235	3.5388	0.00053846
snatch max/cj max	450	89.965	5.002	1.597e-06
total_deltas	0.064145	0.62528	0.10259	0.91843

Number of observations: 152, Error degrees of freedom: 147

Root Mean Squared Error: 39.7

R-squared: 0.194, Adjusted R-Squared 0.172

F-statistic vs. constant model: 8.85, p-value = 1.99e-06

Initial Findings:

Age and total deltas are not statistically significant. Resvised model will exclude these two variables

Auxiliary Plots

```
% Generate CJ max and snatch max histograms
figure
subplot(1,2,1)
histogram(cj_max,20)
title('CJ Max')
xlabel('Weight (kg)')
subplot(1,2,2)
histogram(snatch_max,20)
title('Snatch Max')
xlabel('Weight (kg)')
```


Revised Model - body weight, snatch ratio

```
mdl2 = fitlm([bweight, snatch_ratio],total,'VarNames',{'bweight','snatch_max/cj_max'},'total'})
mdl2 =
Linear regression model:
    total ~ 1 + bweight + snatch_max/cj_max
Estimated Coefficients:
```

	Estimate	SE	tStat	pValue
(Intercept)	-1167.3	321.28	-3.6333	0.00038446
bweight	15.221	4.2439	3.5866	0.00045363

snatch_max/cj_max 448.81 87.964 5.1022 1.0076e-06

Number of observations: 152, Error degrees of freedom: 149

Root Mean Squared Error: 39.4

R-squared: 0.194, Adjusted R-Squared 0.183

F-statistic vs. constant model: 17.9, p-value = 1.06e-07

% Generate the confidence interterval for the model coefCI(mdl2)

```
ans =

1.0e+03 *
-1.8021 -0.5324
0.0068 0.0236
0.2750 0.6226
```

Revised Model: Residuals

```
% Generate plot raw residuals
r2 = mdl2.Residuals.Raw;
figure
histogram(r2,20)
title('Histogram of Residuals')
```



```
yhat = mdl2.Fitted;
[~,ax] = plotmatrix([bweight, snatch_max./cj_max],r2);
titles = {'Body Weight' 'Snatch Ratio'};
for i = 1:length(titles)
    title(ax(i), titles(i))
    ylabel(ax(i),'Residuals')
end
```



```
% Generate residual plot for output
figure
plotmatrix(yhat,r2)
title('Residual Plot (y)')
ylabel('Residuals')
xlabel('$$\hat{y}$$', 'Interpreter', 'Latex');
```



```
% Generate norm plot of residuals for analyzing
% (Helpful for identifying heavy-tail vs light-tail distributions)
figure
normplot(r2)
title('Normplot of Residuals')
```


figure

Revised Model: Plot

```
% Generate model plot (fitted line) plot(mdl2) title('Model Plot')
```

