Primer control acerca de cálculo matricial y vectorial 4-noviembre-2019

Nombre:

- 1. Demuestra que en un \mathbb{F} -espacio vectorial V el número de elementos de un conjunto libre nunca supera al de un conjunto generador. (2 ptos.)
- 2. Encuentra A^k donde $A = \begin{pmatrix} -5 & 3 \\ -6 & 4 \end{pmatrix} \tag{1.5 ptos.}$
- 3. Sea $V=\mathbb{R}[x]_{\leq 2}$ el espacio vectorial de polinomios de grado ≤ 2 con coeficientes reales.
 - a) Demuestra que $\mathcal{B} = \{1, 1 x, 1 x + x^2\}$ y $\mathcal{B}' = \{1, 1 x, x x^2\}$ (0.5 ptos.)
 - b) Calcula las matriz de cambio de coordenadas de la base \mathcal{B}' a la base (1 pto.) \mathcal{B} .
 - c) Comprueba que $c_{\mathcal{B}}(v) = c_{\mathcal{B},\mathcal{B}'} c_{\mathcal{B}'}(v)$ para $v = (1-x)^2$. (0.5 ptos.)
 - d) Prueba que para todo $n \ge 0$ el conjunto $\{1, x, \cdots, x^n, e^x\}$ es linealmente independiente. Concluye que la función e^x no puede ser un polinomio.
- 4. Considera $V=\{p(x)\in\mathbb{R}[x]_{\leq 4}\mid p(1)=0\}$ y encuentra subespacios $S_2\neq S_3$ de modo que $V=S_1\oplus S_2=S_1\oplus S_3$ donde

$$S_1 = \text{Gen}\{(x-1), (x-1)^2\}.$$

5. Calcula la dimensión de la imagen de $f: \mathbb{R}^3 \to \mathbb{R}^4$ dada por (1.5 ptos.)

$$f(x, y, z) = (x + y - z, x - y + z, 2x - 2y + 2z, -2x - 2y + 2z).$$

Ej. 2 El polinomio característico es

$$\det(xI_2 - A) = \det\begin{pmatrix} x+5 & -3 \\ 6 & x-4 \end{pmatrix} = \det\begin{pmatrix} x-1 & 1-x \\ 6 & x-4 \end{pmatrix}$$
$$= (x-1)\det\begin{pmatrix} 1 & -1 \\ 6 & x-4 \end{pmatrix} = (x-1)(x+2)$$

Los valores propios son 1 y -2.

Resolvemos el sistema homogéneo $(1I_2-A)X=\mathbf{0}$. Como $I_2-A=\begin{pmatrix} 6 & -3 \\ 6 & -3 \end{pmatrix}$, las soluciones son $\{x_2(1,2)\mid x_2\in\mathbb{R}\}$. Por tanto, nos quedamos con la acompañante (1,2). El sistema para el valor propio -2 es $(-2I_2-A)X=\mathbf{0}$. Como $-2I_2-A=\begin{pmatrix} 3 & -3 \\ 6 & -6 \end{pmatrix}$, las soluciones son $\{x_2(1,1)\mid x_2\in\mathbb{R}\}$ y podemos tomar como acompañante (1,1).

Formamos la matriz $P=\begin{pmatrix}1&1\\2&1\end{pmatrix}$ cuyas columnas son las acompañantes. La inversa de P es $P^{-1}=\begin{pmatrix}-1&1\\2&-1\end{pmatrix}$. Tenemos que

$$A^{k} = P \begin{pmatrix} 1 & 0 \\ 0 & (-2)^{k} \end{pmatrix} P^{-1} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & (-2)^{k} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & (-2)^{k} \\ 2 & (-2)^{k} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -1 + 2(-2)^{k} & 1 - (-2)^{k} \\ -2 + 2(-2)^{k} & 2 - (-2)^{k} \end{pmatrix}$$

Ej. 3

- a) Claramente si $\alpha_1 1 + \alpha_2 (1 x) + \alpha_3 (1 x + x^2) = 0$ entonces $\alpha_3 = \alpha_2 = \alpha_1 = 0$, por lo que \mathcal{B} es libre y, al tener V dimensión 3, es una base. Del mismo modo se comprueba que \mathcal{B}' es base.
- b) Se pide $c_{\mathcal{B},\mathcal{B}'}$. Debemos escribir las coordenadas de los elementos de la base \mathcal{B}' con respecto de la base \mathcal{B} . Claramente se tiene

$$1 \equiv (1,0,0)^T$$
, $1-x \equiv (0,1,0)^T$ y $x-x^2 \equiv (1,0,-1)^T$

por lo que

$$c_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

c) $v=(1-x)^2=1-2x+x^2$. Claramente $c_{\mathcal{B}'}(v)=(0,1,-1)^T$ y $c_{\mathcal{B}}(v)=(-1,1,1)$. Comprobamos que efectivamente

$$\begin{pmatrix} -1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1\\0 & 1 & 0\\0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$

d) Si $\alpha_0 1 + \alpha_1 x + \dots + \alpha_n x^n + \alpha_{n+1} e^x = 0$ entonces, derivando esta expresión n+1 tenemos $\alpha_{n+1} e^x = 0$ por lo que $\alpha_{n+1} = 0$. Esto implica $\alpha_0 1 + \alpha_1 x + \dots + \alpha_n x^n = 0$ y, por lo tanto, $\alpha_0 = \dots = \alpha_n = 0$.

Ej. 4 Para encontrar S tal que $V = S_1 \oplus S$ basta completar $\{(x-1), (x-1)^2\}$ hasta una base de V y tomar como S la clausura de los elementos usados para completar. Como $V = \{\alpha_0 + \alpha_1 x + \dots + \alpha_4 x^4 \mid \alpha_0 + \dots + \alpha_4 = 0\}$, dim V = 4. Así que hay que usar dos elementos para completar $\{(x-1), (x-1)^2\}$. Una elección sería $S_2 = \text{Gen}\{(x-1)^3, (x-1)^4\}$. Otra elección sería $S_3 = \text{Gen}\{(x-1)x^2, (x-1)x^3\}$. Claramente $(x-1)x^2 \notin S_2$ ya que los polinomios en S_2 son múltiplos de $(x-1)^3$. Así que $S_2 \neq S_3$.

 $\mathbf{Ej.}~\mathbf{5}$ La imagen es

$$f(\mathbb{R}^3) = \text{Gen}\{(1, 1, 2, -2), (1, -1, -2, -2), (-1, 1, 2, 2)\}$$

= Gen\{(1, 1, 2, -2), (1, -1, -2, -2)\}

que tiene dimensión 2.