

High-resolution mapping of nitrogen oxides emissions in US large cities from TROPOMI retrievals of tropospheric nitrogen dioxide columns

Fei Liu^{1,2}, Steffen Beirle³, Joanna Joiner², Sungyeon Choi^{2,4}, Zhining Tao^{1,2}, K. Emma Knowland^{1,2}, Steven J. Smith⁵, Daniel Q. Tong⁶, Thomas Wagner³

¹Morgan State University, Goddard Earth Sciences Technology and Research (GESTAR) II, Baltimore, MD 21251, USA

²NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

³Max-Planck-Institut für Chemie, Mainz, 55128, Germany

⁴Science Systems and Applications Inc., Lanham, MD, 20706, USA

⁵Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, 20740, USA

⁶Center for Spatial Information Science and Systems, George Mason University, Fairfax, 22030, Virginia, USA

Contact: fei.liu@nasa.gov

\$\$\$ funded by NASA through the Aura project data analysis program and through the Atmospheric Composition Modeling and Analysis Program (ACMAP) program

continuity equation

$$\frac{\partial V}{\partial t} = E - S - D$$

$$E = D + S = \nabla \cdot \vec{F} + S$$

$$= \nabla \cdot \vec{w}V + V/\tau$$

$$\begin{aligned} \text{mean}(E) &= \text{mean}(D) + \text{mean}(S) \\ &= \nabla \cdot \text{mean}(\vec{F}) + \text{mean}(S) \\ &= \nabla \cdot \text{mean}(\vec{w})\text{mean}(V) + \text{mean}(V)/\tau \end{aligned}$$

Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., Wang, Y., and Wagner, T.: Pinpointing nitrogen oxide emissions from space, *Science Advances*, 5, eaax9800, <https://doi.org/10.1126/sciadv.aax9800>, 2019.

Continuity equation of NO₂ columns

$$\frac{\partial V}{\partial t} = E - S - D$$

assuming steady state: $0 = E - S - D$

$$E = D + S = \nabla \cdot \vec{F} + S \\ = \nabla \cdot \vec{w}V + V/\tau$$

anthropogenic

$$\text{mean}(E_{ant}) = \text{mean}(D_{ant}) + \text{mean}(S_{ant}) \\ = \nabla \cdot \text{mean}(\vec{w}) \text{mean}(V - b) + \text{mean}(V - b)/\tau$$

b : lowest 1th percentile of tropospheric NO₂ vertical column densities under calm wind condition over the study area (150km*150 km)

Fitting function for lifetime

Perform a **nonlinear least-squares fit** of $f(x)$ to the observed line densities under windy conditions $LD_{windy}(x)$ with τ as the fitting parameter

- Assuming each grid cell releases a constant NO_x emission rate $E(x)$
- Wind is blowing continuously in a direction x with a speed w $\frac{E(x)}{ratio \times w}$
- NO_x reactions follow exponential decay $e^{-\frac{x}{w \times \tau}}$

$$f(x) = \frac{E(x)}{ratio \times w} * e^{-\frac{x}{w \times \tau}} + b'$$
$$= \frac{[LD_{calm}(x) - b]}{w \times \tau} * e^{-\frac{x}{w \times \tau}} + b'$$

Liu, F., Tao, Z., Beirle, S., Joiner, J., Yoshida, Y., Smith, S. J., Knowland, K. E., and Wagner, T.: A new method for inferring city emissions and lifetimes of nitrogen oxides from high-resolution nitrogen dioxide observations: a model study, *Atmos. Chem. Phys.*, 22, 1333–1349, <https://doi.org/10.5194/acp-22-1333-2022>, 2022.

Case study: New York

$$\text{mean}(E_{ant}) = \nabla \cdot \text{mean}(\vec{w}) \text{mean}(V - b) + \text{mean}(V - b)/\tau$$

trop. column V : TROPOMI GSFC NO₂ retrieval (May - September, 2019); qa > 0.75

wind field \vec{w} : GEOS FP-IT reanalysis wind; Interpolated to orbit timestamp; Averaged at 1000 m above ground

Fitted lifetime τ : fit based on TROPOMI GSFC NO₂ retrieval (May - September, 2018-2021)

$$[\text{NO}_x]/[\text{NO}_2] = 1.32$$

Validation using model data

- Model: NU-WRF generates synthetic satellite observations
- Time: May to September, 2016
- Spatial resolution: 4 km (comparable to TROPOMI and TEMPO)
- Select all US major cities with population > 200,000

Improved intracity spatial correlation

Jacksonville

(a) NO₂ VCD

(b) NO₂ VCD under calm wind

(c) derived NO_x emission E

(d) NU-WRF given NO_x emission E_{NU-WRF}

R: 0.75

0.80

0.92

Validation results

- Fit of lifetime works for 41 out of 70 US large cities with $R > 0.9$, root-mean-square deviation (RMSD) $< 10\%$, fitted error of $\tau < 10\%$
 - Only keep background (i.e., 1 percentile of calm-wind NO₂ in the 300 * 300 km domain) / averaged (i.e., average calm-wind NO₂ over the urban area) $< 50\%$, which left 33 cities
 - urban areas used for calculation emission in scatter plot: New York, Chicago, Los Angeles and Houston: 100*100 km Other cities: 70*70 km
 - the differences between fitted and given emissions: $-8 \pm 18\%$
- For 150*150 km² domain around city center:
- correlation coefficient of given emissions vs fitted emissions: 0.88 ± 0.06
 - correlation coefficient of given emissions vs VCD: 0.78 ± 0.09
 - correlation coefficient of given emissions vs calm-wind VCD: 0.80 ± 0.08

Spatial distribution of investigated cities

- Fit of lifetime works for 53 out of 70 US large cities: $R > 0.9$, root-mean-square deviation (RMSD) < 10%, fitted error of $\tau < 10\%$
- Discard cities with background b / averaged $\text{NO}_2 > 50\%$, which left 39 cities

Annual variation of emissions

result incl. background: $mean(E) = \nabla \cdot mean(\vec{w}) mean(V) + mean(V)/\tau$

result excl. background: $mean(E_{ant}) = \nabla \cdot mean(\vec{w}) mean(V - b) + mean(V - b)/\tau$

lifetime τ : multiple-year averaged
value based on 2018-2021 TROPOMI
GSFC NO₂ retrieval (May - September)

Annual variation of emissions

2018

2019

2021

lifetime τ : multiple-year averaged value based on 2018-2021 TROPOMI GSFC NO₂ retrieval (May - September)

Compare with NEI

(a) derived emission E

(b) upscaled derived emission

(c) NEI emission E_{NEI}

NEI E_{NEI} : year 2019; spatial resolution of 12 km

TROPOMI-based E : year 2019; spatial resolution of 0.05 degree

Compare with NEI

- Urban areas used to calculate total emission in scatter plot:
New York, Chicago, Los Angeles and Houston: 100×100 km
other cities: 70×70 km
- the differences between fitted and given emissions:
 $3 \pm 32\%$
- correlation coefficient of given emissions vs fitted emissions:
 0.59 ± 0.15

fusion emission inventory

Propose:
a fusion emission inventory reconciling satellite-derived NO_x emissions with
CEDS to provide long-term, global anthropogenic **spatiotemporally-resolved**
emissions of NO_x and co-emitted air pollutants updated to the most recent
year to support fine-resolution simulations of tropospheric composition

\$\$\$ funded by ACMAP
program

- Combine **Satellite**-derived SO_2 emissions for large **point sources** with a bottom-up inventory **CEDS** derived from reported fossil fuel combustion for smaller sources, to construct a new inventory **CEDS-SatEm**
- Data has been released: <https://zenodo.org/record/6964915#.YzOmhOxq30o>
- Spatial resolution of 0.1/0.5 degree

Take home message

We develop a new dataset of gridded NO_x emissions for major US cities, which is:

- High spatial resolution of 0.05 degree
- Chemical transport model-independent
- Annually updated
- Extended globally