Show that any open subset of a metric space (X, d) can be written as the union of open balls. [Hint: if U is open, then for each $x \in U$ there exists r(x) > 0 such that $x \in B(x, r(x)) \subseteq U$.]

Given any open subset U of (X,d), then for $\forall x \in U$, $\exists x_n > 0$ sit. $B(x, x_n) \subset U$. Then we have $\bigcup_{x \in U} B(x, x_n) \subset U$. On the other hand, for $\forall y \in U$, $y \in B(y, x_y) \subset \bigcup_{x \in U} B(x, x_n)$ thus $U \subset \bigcup_{x \in U} B(x, x_n)$. Therefore $U = \bigcup_{x \in U} B(x, x_n)$, which is the union of some open balls.

Show that if (X, d_X) and (Y, d_Y) are separable, then $(X \times Y, \varrho_p)$ is separable, where ϱ_p is any one of the metrics from Exercise 2.2.

Suppose $A \subset X$, $B \subset Y$ where $A \cdot B$ are both courtable and $\overline{A} = X$, $\overline{B} = Y$. Consider $A \times B$ in $(X \times Y, P_P)$, which is also countable.

Given $\forall (x,y) \in X \times Y$, we have $x \in X = \overline{A}$, $y \in Y = \overline{B}$. Then there exist fan $\} \subset A$, $\{bn\} \subset B$ s.t. $an \to x$, $bn \to y$. That is, $d_X(an, x) \to 0$ $d_Y(bn, x) \to 0$

USO. 3, N \in N s.t. $d_X(a_n.x) < \mathcal{E}$ whenever $n > N_1$; $\exists N_2 \in \mathbb{N}$ s.t. $d_Y(b_n.x) < \mathcal{E}$ whenever $n > N_2$. Take $N = \max\{N_1, N_2\}$, then for n > N.

1° 15 p < ∞ $P_{\ell}((can.bn), (x.y)) = (d_{x}(can.x)^{\ell} + d_{y}(cbn.y)^{\ell})^{\frac{1}{\ell}} < (\xi^{\ell} + \xi^{\ell})^{\frac{1}{\ell}} = 2^{\frac{1}{\ell}} \xi$

 $\begin{array}{l} p_{P}((an.bn).(x,y)) = \max \left\{ d_{X}(a_{n}.x), d_{Y}(b_{n}.y) \right\} < \varepsilon \\ \\ Both implies that <math display="block"> p_{P}((an.bn),(x,y)) \rightarrow 0 \text{ thus } (x,y) \in \overline{A \times B} \\ \\ Since (x,y) \in X \times Y \text{ is arbitary. } \overline{A \times B} = X \times Y \\ \\ \\ Hence. (X \times Y, P_{P}) \text{ is separable.} \end{array}$

2.10 Suppose that $\{F_{\alpha}\}_{{\alpha}\in\mathbb{A}}$ are a family of closed subsets of a compact metric space (X,d) with the property that the intersection of any finite number of the sets has non-empty intersection. Show that $\cap_{{\alpha}\in\mathbb{A}}F_{\alpha}$ is non-empty.

If $\bigcap_{\alpha \in A} F_{\alpha} = \emptyset$, then $X = \bigcup_{\alpha \in A} F_{\alpha}^{c}$. Notice that $[F_{\alpha}^{c}]_{\alpha \in A}$ is an open covering of X, since X is compact, there exists a finite subcovering, denoted by $[F_{\alpha i}]_{i=1}^{N}$. That is, $X = \bigcup_{i=1}^{C} F_{\alpha i}^{c}$. This implies that $\bigcap_{i=1}^{N} F_{\alpha i} = \emptyset$, contradicting with the property that the intersection of finitely many sets of $[F_{\alpha}]_{\alpha \in A}$ is nonempty. Hence, $\bigcap_{\alpha \in A} F_{\alpha}$ is nonempty. \square

2.1) Suppose that (F_j) is a decreasing sequence $[F_{j+1} \subseteq F_j]$ of non-empty closed subsets of a compact metric space (X, d). Use the result of the previous exercise to show that $\bigcap_{i=1}^{\infty} F_j \neq \emptyset$.

For any finitely many sets of (F_j) , denoted by $F_{i,...}F_{in}$, where $i_1 < i_2 < ... < i_n$, since (F_j) is decreasing, $\bigcap_{j=1}^n F_{ij} = F_{in} \neq \emptyset$, thus (F_j) has the property as in the previous exercise. Hence, $\bigcap_{j=1}^n F_j \neq \emptyset$.

2.12) Show that if S is a closed subset of \mathbb{R} , then $\sup(S) \in S$.

We first show $\sup S \in S$ if S is bounded. If S is bounded, then S is compact, consider $f:S \to \mathbb{R}$ by setting f(s) = s ($\forall s \in S$) It is obvious that f is continuous, thus f attains its supremum.

That is, $\sup f(s) \in f(s)$. Since f(s) = S. $\sup S \in S$.

1° S is upper bounded.

Take $s \in S$, and define $S = S \in S$: $s \ge s \ge s$.

Thun $S = S \setminus (-\infty, s_0)$ which is closed and bounded.

From 1° we know $\sup S \in S$. Thus $\sup S = \sup S \in S \in S$.

2° S is not upper bounded.

Then $\sup S = \infty \in S$.

Hence $\sup S \in S$ whenever S is closed.

2.13) Show that if $f: (X, d_X) \to (Y, d_Y)$ is a continuous bijection and X is compact, then f^{-1} is also continuous (i.e. f is a homeomorphism). For any closed subset F of X, since X is compact, F is also $(0-1)^{-1}(F) = P(F) = 2e^{-1}(F) = e^{-1}(F) = e^{-1}(F)$

For any closed subset F of X, since X is compact, F is compact. Then $(f^{-1})^{-1}(F) = f(F)$ is also compact (since f is a bijection). Then f(F) is closed. Hence, f^{-1} is continuous. [

2.14 Any compact metric space (X, d) is separable. Prove the stronger result that in any compact metric space there exists a countable subset $(x_j)_{j=1}^{\infty}$ with the following property: for any $\varepsilon > 0$ there is an $M(\varepsilon)$ such that for every $x \in X$ we have

 $d(x_j, x) < \varepsilon$ for some $1 \le j \le M(\varepsilon)$.

For each $n \in \mathbb{N}$, the collection $\{B(x, \frac{1}{n})\}_{eX}$ is an open covering of X. Since X is compact, it has a finite subcovering $\{B(x_i^{(n)}, \frac{1}{n})\}_{i=1}^{N_n}$.

Set S=0 $S_n=\sum\limits_{k=1}^nN_i$ $(n\geqslant 1)$. We choose a couplable sequence as $x_j=x_j^{(n)}$ $(s_{n-1}< i \le s_n)$. Then for $\forall \ge >0$, choose $n\in \mathbb{N}$ $s:t:n< \ge s_n$ and set $M(\$)=S_n$. For $\forall x\in X$, since $\{B(x_i^{(n)}, \frac{1}{n})\}_{i=1}^n$ covers X, $\exists \ 1\le i \le N_n$ s:t. $d(x,x_i^{(n)})< n$. That is, $d(x,x_{i+s_{n-1}})< n< \infty$ and $1\le i+s_{n-1} \le N_n+s_{n-1} = S_n=M(\$)$.