

### INSTRUCTION DIVISION FIRST SEMESTER Course Handout Part II

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. :

Course Title : Cyber Physical Systems and Security

Instructor-in-Charge : Dr. Rajib Ranjan Maiti

#### 1. Scope and Objectives

Upon successful completion, you should be able to:

- 1. Describe the basic concepts of cryptography are used for ensuring security of cyberphysical systems
- 2. Describe the basic design, architecture and design principles of cyber physical systems
- **3.** Design CPS, identify safety requirements, understand asynchronous model of CPS, identify sensors and actuators in CPS, learn the dynamics in the systems and create model of CPS using timed automata
- **4.** Identify the sources of vulnerability in a cyber physical system systematically via attack surfaces
- **5.** Determine how security is incorporated at different abstractions and at different components of cyber physical systems
- **2. Pre requisites:** Programming in Python.

#### 3.a. Text Book

- T1: Rajeev Alur, "Principles of Cyber-Physical Systems", MIT Press
- T2: Edward A. Lee and Sanjit A. Seshia, "Introduction to Embedded Systems, A Cyber-Physical Systems Approach", Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017, available for download [http://leeseshia.org/]

### 3.b. Reference Books

- R1: Derek Molloy, "Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux", Wiley, ISBN 978-1-119-18868-1, 2016
- R2: Danda B. Rawat, Joel J.P.C. Rodrigues, Ivan Stojmenovic, "Cyber-Physical Systems: From Theory to Practice", CRC Press

### 4. Course Plan

| Lec.<br>No. | Learning Outcomes               | Topics to be covered                                                                                                   | Chapter in the Text Book |
|-------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1           | To introduce CPS                | Features of CPS, Overview of the Topics in CPS                                                                         | T1: Ch1                  |
| 2-5         | To understand the design of CPS | Basics of synchronous model, reactive components, extended state machine, components and their properties, integrating | T1: Ch2                  |

|           |                                        | components, Synchronous Designs and                                         |          |
|-----------|----------------------------------------|-----------------------------------------------------------------------------|----------|
|           |                                        | examples,                                                                   |          |
| 6-9       | To learn safety                        | Fundamentals of safety requirements, safety                                 | T1: Ch3  |
|           | requirements                           | specification, role of requirements in system                               |          |
|           |                                        | design, system invariants and verification of                               |          |
|           |                                        | invariants, enumerative search for property                                 |          |
|           |                                        | verification, symbolic search for property                                  |          |
|           |                                        | verification: DFS and BFS, Reduced Ordered                                  |          |
| 0.10      | 7D 1 1                                 | Binary Decision Diagrams,                                                   | TC1 C1 4 |
| 9-12      |                                        |                                                                             | T1: Ch4  |
|           | model of CFS                           | process, extended state machine, asynchronous design primitives, deadlock   |          |
|           |                                        | handling mechanisms, asynchronous                                           |          |
|           |                                        | coordination protocols: leader election,                                    |          |
|           |                                        | reliable transmission, wait-free consensus                                  |          |
| 12-       | To understand                          | Basics of liveliness requirements, temporal                                 | T1: Ch5  |
| 15        | liveliness                             | logic, LTL specifications, LTL specification                                |          |
|           | requirements                           | for asynchronous process, model checking,                                   |          |
|           |                                        | Buchi automata, nested symbolic search,                                     |          |
|           |                                        | proving liveliness,                                                         |          |
| 16-       | To know sensors and                    | Models of sensors and actuators, common                                     | T2: Ch7  |
| 17        | actuators                              | sensors and common actuators, Measuring                                     |          |
|           |                                        | Tilt and Acceleration, Measuring Position and                               |          |
|           |                                        | Velocity, Measuring Rotation, Light-Emitting                                |          |
| 18-       | Case study on real CPS                 | Diodes, Motor Control  Physical structure and communication                 | Lecture  |
| 21        | Case study off feat CFS                | protocols in water treatment and distribution                               | Notes    |
| 21        |                                        | systems                                                                     | Tioles   |
| 22-       | To understand                          | Continuous time models: evolving inputs and                                 | T1: Ch6  |
| 24        | dynamical systems                      | outputs, models with disturbance, stability,                                |          |
|           |                                        | linear systems: linearity, solutions to linear                              |          |
|           |                                        | differential equations, designing controllers:                              |          |
|           |                                        | Open-Loop vs. Feedback Controller,                                          |          |
|           |                                        | Stabilizing Controller, PID Controllers,                                    |          |
|           |                                        | analysis techniques: numerical simulations,                                 |          |
| 25        | To understand Real-                    | Barrier Certificates  Paging of Bool Time Schoduling, schoduler             | T1, C1-0 |
| 25-<br>27 | To understand Real-<br>Time Scheduling | Basics of Real-Time Scheduling, scheduler architecture, periodic job model, | T1: Ch8  |
| 21        | Time Selicutiling                      | schedulability, EDF scheduling, Utilization-                                |          |
|           |                                        | Based Schedulability Test, Fixed-Priority                                   |          |
|           |                                        | Scheduling, Schedulability Test for Rate-                                   |          |
|           |                                        | Monotonic Policy                                                            |          |
| 28-       | To learn attack                        | Physics-Based Attack Detection                                              | Lecture  |
| 32        | detection in CPS                       | in Cyber-Physical Systems, Formal Security                                  | notes    |
|           |                                        | Analysis of Industrial Control                                              |          |
|           |                                        | Systems                                                                     |          |
| 33-       | To learn real world                    | Rule-based and axiomatic invariants for                                     | Lecture  |
| 39        | CPS systems                            | securing a water treatment and distribution                                 | notes    |
| 40        | To domesticate ODG                     | systems                                                                     | Lacture  |
| 40        | To demonstrate CPS                     | Project showcasing                                                          | Lecture  |
| L         | projects                               |                                                                             | notes    |

# 5. Evaluation Scheme

### **5.a Major Components**

| Component                   | Duration | Weightage | Date&Time | Mode       |
|-----------------------------|----------|-----------|-----------|------------|
| Projects and<br>Assignments | -        | 30%       |           | Open Book  |
| Mid-Term exam               | 90 mins  | 25%       |           | Close Book |
| Comprehensive               | 3 hours  | 45%       |           | Close Book |

# 6. Chamber Consultation:

## 7. Notices:

## 8. Make-up Policy:

**9.Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge