

Homework Exercises for Chapter 18 Overview of Solution Methods

EXERCISE 18.1

[C:20] Consider the following residual equilibrium equation:

$$r(\psi,\lambda) = \sec(\alpha - \psi) \left(\left(\sec\alpha \left(2 + \lambda \, \sin\psi \right) - 2 \, \sec(\alpha - \psi) \right) \tan(\alpha - \psi) - \lambda \, \cos\psi \, \sec\alpha \right) = 0, \quad \text{(E18.1)}$$

in which α is a problem parameter, λ the control parameter, and ψ the only degree of freedom. This r comes from the 2-bar arch problem already studied in Exercise 6.2. Here α is the initial arch rise angle whereas $\psi = \alpha - \theta$ is the angle change from the reference state, at which $\psi_0 = 0$ and $\lambda_0 = 0$. A plot of the exact $\lambda(\psi)$ for $\psi = [0, 60^\circ] = [0, \pi/3]$ is shown in Figure E18.1(a); the fundamental path ends at limit point L.

FIGURE E18.1. Exact responses for Exercises E18.1 and E18.2.

- (a) Derive the first-order rate form $K \dot{\psi} = q \dot{\lambda}$ by taking $t \equiv \lambda$, and convert to $\dot{\psi} = du/d\lambda = v$. (Recall that $K = \partial r/\partial \psi$, $q = -\partial r/\partial \lambda$, and $v = K^{-1}q$.)
- (b) Integrate numerically the rate equation $\dot{\psi} = v$ found in (a) by the purely incremental, forward-Euler method with load control (FELC) over $\lambda = [0, 0.1]$. Start from $\lambda_0 = 0$ and $\psi_0 = 0$. (All angles should be in radians.) Use $\alpha = 30^\circ = \pi/6$ as arch rise angle and take 10 load increments of $\ell_n = 0.01$ (same for all steps). Are you able to detect and traverse the limit point L?
- (c) Repeat the run twice, each time cutting ℓ_n by 1/4 and quadrupling the number of steps. Is limit point detection and traversal improved?