# 第三章 二维随机变量及其分布

第一节 二维随机变量及其分布函数



第五节 二维随机变量函数的分布



# §1 二维随机变量及其分布函数

## 一、二维随机变量的概念

定义1 设随机试验E的样本空间  $\Omega = \{\omega\}, X = X(\omega), Y = Y(\omega)$  分别为定义在  $\Omega$ 上的随机变量,就称 (X,Y)为二维随机变量. 例如,着弹点 (X,Y) 为二维随机变量.

## 二、二维随机变量的联合分布函数

定义2 设(X,Y)为二维随机变量,称

$$F(x, y) = P\{X \le x, Y \le y\}, -\infty < x < +\infty, -\infty < y < +\infty$$

为 (X,Y) 的分布函数或称为X和Y的联合分布函数.



F(x,y)在点(x,y)处的取值为二维随机变量(X,Y)落入平面区域  $(-\infty,x]\times(-\infty,y]$  上的概率(见图1).



左图称为F(x,y)的原理图

- ·一般地,X与Y是同种类型(离散或者连续)。
- •但联合分布函数的上述公式也适合不同类型的。(了解)



## 二维随机变量的分布函数具有下列性质

性质1 设 F(x,y) 为二维随机变量 (X,Y) 的分布函数,则

- (1)  $0 \le F(x, y) \le 1$ ; (可略)
- (2) F(x,y)分别关于变量 x和y 为单调不减函数;
- (3)  $F(+\infty, +\infty) = 1, F(x, -\infty) = F(-\infty, y) = F(-\infty, -\infty) = 0,$ 其中  $-\infty < x < +\infty, -\infty < y < +\infty;$
- (4) F(x,y)分别关于变量 x和y 处处右连续;
- (5)  $P\{x_1 < X \le x_2, y_1 < Y \le y_2\}$ =  $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$  $\sharp \Rightarrow x_1 < x_2, y_1 < y_2.$





$$P\{x_1 < X \le x_2, y_1 < Y \le y_2\} = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1)$$



### 例1 设二维随机变量 (X,Y) 的分布函数为

$$F(x, y) = a(b + \arctan x)(c + \arctan y), (x, y) \in \mathbb{R}^2,$$

- (1) 求常数 a,b,c;
- (2) 分别计算概率 $P\{X \le 1, Y \le 1\}$  和  $P\{X > 1, Y > 1\}$ .

解 (1) 由 
$$F(+\infty, +\infty) = 1$$
知  $a(b + \frac{\pi}{2})(c + \frac{\pi}{2}) = 1$ , (#) 由  $F(x, -\infty) = 0$ 知. 对任意的  $x \in R$ , 有

$$a(b + \arctan x)(c - \frac{\pi}{2}) = 0$$
,  $to c = \frac{\pi}{2}$ .

同理, 对任意的  $y \in R$ , 有  $a(b-\frac{\pi}{2})(c+\arctan y)=0$ , 故  $b=\frac{\pi}{2}$ , 将 a,b 取值代入(#)式有  $a=\frac{1}{\pi^2}$ .



## 续解 (2) 由 (1) 知

$$F(x,y) = \frac{1}{\pi^2} (\frac{\pi}{2} + \arctan x)(\frac{\pi}{2} + \arctan y),$$
$$-\infty < x < +\infty, -\infty < y < +\infty$$

所以 
$$P\{X \le 1, Y \le 1\} = F(1,1) = \frac{1}{\pi^2} (\frac{\pi}{2} + \frac{\pi}{4}) (\frac{\pi}{2} + \frac{\pi}{4}) = \frac{9}{16}.$$

$$P\{X > 1, Y > 1\} = P\{1 < X < +\infty, 1 < Y < +\infty, \}$$

$$= F(+\infty, +\infty) - F(+\infty, 1) - F(1, +\infty) + F(1, 1)$$

$$= 1 - \frac{3}{4} - \frac{3}{4} + \frac{9}{16} = \frac{1}{16}.$$



## 三、二维离散型随机变量及其分布律的概念

定义3 如果二维随机变量 (X,Y) 的所有可能取值为有限对或可列对,就称 (X,Y) 为二维离散型随机变量.

定义**4** 设 (X,Y) 为二维离散型随机变量,其所有可能的取值为( $x_i,y_j$ ),其中 $i=1,2,\cdots,j=1,2,\cdots$ ,且

$$P\{X = x_i, Y = y_j\} = p_{ij}, i = 1, 2, \dots, j = 1, 2, \dots,$$

就称上式为二维离散型随机变量(X,Y)的分布律或X和Y的<mark>联</mark>合分布律.



#### 二维离散型随机变量的分布律也记列表为

| Y       | $\mathcal{Y}_1$                                  | ${\mathcal Y}_2$         | $\cdots {oldsymbol{\mathcal{Y}}}_j$ | • • • |
|---------|--------------------------------------------------|--------------------------|-------------------------------------|-------|
| $x_1$   | $p_{11}$                                         | $p_{12}$                 | $\cdots p_{1j}$                     | • • • |
| $x_2$   | $p_{21}$                                         | $p_{22}$                 | $\cdots p_{2j}$                     | • • • |
| :       | •                                                |                          |                                     | •     |
| $x_i$ : | $\begin{vmatrix} p_{i1} \\ \vdots \end{vmatrix}$ | <i>p</i> <sub>i2</sub> : | $p_{ij}$ :                          | • • • |

此时,分布律有哪些性质?分布函数怎么计算?



性质2 设二维离散型随机变量(X,Y)的分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, i = 1, 2, \dots, j = 1, 2, \dots,$$

则有 (1) 
$$p_{ij} \ge 0, i = 1, 2, \dots, j = 1, 2, \dots;$$
 (2)  $\sum_{i} \sum_{j} p_{ij} = 1.$ 

【注】 如果  $p_{ij}(i=1,2,\dots,j=1,2,\dots)$  满足性质1中的(1)和

(2) ,则  $p_{ij}$  ( $i = 1, 2, \dots, j = 1, 2, \dots$ ) 必能构成某二维离散型随机变量 (X,Y) 的分布律.



#### 设二维离散型随机变量(X,Y)的分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i = 1, 2, \dots, j = 1, 2, \dots,$$

则 (X,Y) 具有下列结论

结论1 (X,Y) 的分布函数为

$$F(x,y) = P\{X \le x, Y \le y\} = \sum_{x_i \le x} \sum_{y_j \le y} p_{ij},$$
  
$$-\infty < x < +\infty, -\infty < y < +\infty.$$

结论2  $P\{(X,Y)\in D\} = \sum_{(x_i,y_j)\in D} p_{ij},$ 

其中D为任一平面区域.



例2 设同一品种的5个产品中,有2个次品,每次从中取一个检验,连续两次. 设X表示第一次取到的次品个数; Y表示第二次取到的次品个数. 试分别就(1)不放回; (2)有放回两种情况,求出(X,Y)的概率分布.

#### 解(1)不放回的情况:利用乘法公式可计算得

$$P\{X=0,Y=0\} = P\{X=0\}P\{Y=0 | X=0\} = \frac{3}{5} \times \frac{2}{4} = \frac{3}{10};$$
同理可求得 $P\{X=0,Y=1\} = \frac{3}{10}$ ,

同理可求得
$$P{X = 0, Y = 1} = \frac{3}{10}$$
,  
 $P{X = 1, Y = 0} = \frac{3}{10}$ ,  $P{X = 1, Y = 1} = \frac{1}{10}$ ,

所以(X,Y)的分布律为

| X | 0 1                                |
|---|------------------------------------|
| 0 | $\frac{3}{10} \qquad \frac{3}{10}$ |
| 1 | $\frac{3}{10}$ $\frac{1}{10}$      |



## 续解(2)有放回的情况:与(1)相仿,利用乘法公式可计算得

$$P{X = 0, Y = 0} = P{X = 0}P{Y = 0 | X = 0} = \frac{3}{5} \times \frac{3}{5} = \frac{9}{25};$$

同理可求得
$$P{X = 0, Y = 1} = \frac{6}{25}, P{X = 1, Y = 0} = \frac{6}{25},$$

 $P{X = 1, Y = 1} = \frac{4}{25}$ , 故在有放回情况下, (X,Y) 的分布律为

| X | 0 1                                |
|---|------------------------------------|
| 0 | $\frac{9}{25} \qquad \frac{6}{25}$ |
| 1 | $\frac{6}{25} \qquad \frac{4}{25}$ |



#### 例3 已知二维随机变量(X,Y)

的分布律如图,且F(0,1.5) = 0.5.

- (1) 求常数 a,b 的值;
- **(2)** 计算*P*{*X* = *Y*}.

| X | -1  | 0   | 1   |
|---|-----|-----|-----|
| 0 | 0.2 | a   | 0.3 |
| 1 | 0.1 | 0.1 | b   |

解 (1) 由 
$$F(0,1.5) = P\{X \le 0, Y \le 1.5\} = 0.5$$
, 得  $0.4 + a = 0.5$ ,

故 
$$a = 0.1$$
. 又由  $\sum_{i} \sum_{j} p_{ij} = 1$ 知,  $0.7 + a + b = 1$ , 所以  $b = 0.2$ .

(2)由(1)得(X,Y)的分布律为

故 
$$P{X = Y} = P{X = 0, Y = 0} + P{X = 1, Y = 1} = 0.1 + 0.2 = 0.3.$$

| X | -1  | 0   | 1   |
|---|-----|-----|-----|
| 0 | 0.2 | 0.1 | 0.3 |
| 1 | 0.1 | 0.1 | 0.2 |

思考:  $P(X \le Y) = ?$ 





# 四、二维连续型随机变量及其密度函数的概念

定义5 设二维随机变量 (X,Y) 的分布函数为 F(x,y), 如果存在二元非负可积函数 f(x,y),使得对任意实数 x,y,均有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv,$$

就称 (X,Y) 为二维连续型随机变量,f(x,y)为 (X,Y) 的密度 函数或 X和Y 的联合密度函数。

#### 性质3 (二维连续型随机变量密度函数的性质)

设二维连续型随机变量(X,Y)的密度函数为f(x,y),则

(1) 
$$f(x, y) \ge 0, -\infty < x < +\infty, -\infty < y < +\infty;$$

$$(2) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1.$$





结论1 设二维连续型随机变量 (X,Y) 的密度函数为 f(x,y), 则

(1) 在 
$$f(x,y)$$
 的连续点( $x,y$ )处, $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$ ;

(2) 对平面上任一区域 D,有P{ $(X,Y) \in D$ } =  $\iint f(x,y) dx dy$ . •记忆: 哪里求概率,哪里去积分。 $^{D}$ 

【注】 概率  $P\{(X,Y) \in D\}$  的数值等于以 D 为底,曲面 z = f(x,y) 为顶的曲顶柱体的体积.

结论2 如果 L 为平面上任一曲线,则  $P\{(X,Y) \in L\} = 0$ .

例4 设 
$$(X,Y)$$
 的密度函数为  $f(x,y) = \begin{cases} ke^{-x}, & 0 < y < x, \\ 0, & other. \end{cases}$ 

典型题

- (1) 求常数 k; (2) 计算概率  $P{X+Y<2}$ ;
- (3) 求 (X,Y) 的分布函数 F(x,y).

解 (1) 由 
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$
知,  $\int_{0}^{+\infty} dx \int_{0}^{x} ke^{-x} dy = 1$ ,

经计算得 
$$k = 1$$
. 从而  $f(x,y) = \begin{cases} e^{-x}, \ 0 < y < x, \\ 0, \ other. \end{cases}$ 

(2) 
$$P{X + Y < 2} = \iint_{x+y<2} f(x,y) dx dy$$
  
=  $\int_0^1 dy \int_y^{2-y} e^{-x} dx = (1 - e^{-1})^2$ .



续解 (3)分布函数  $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv, (x,y) \in \mathbb{R}^{2}$ , 且

$$f(x,y) = \begin{cases} e^{-x}, & 0 < y < x, \\ 0, & other. \end{cases}$$

所以整个平面划分为三块分别计算.





$$= \int_0^y (e^{-v} - e^{-x}) dv = 1 - e^{-y} - y e^{-x}.$$



(b)



## 续解 ③ 当 $0 < x \le y$ 时(图 (c)):

$$F(x,y) = \int_0^x dv \int_v^x e^{-u} du$$

$$= \int_0^x (e^{-v} - e^{-x}) dv = 1 - (1+x)e^{-x}.$$



#### 故(X,Y)的分布函数为

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ or } y < 0, \\ 1 - e^{-y} - ye^{-x}, & 0 < y < x, \\ 1 - (1+x)e^{-x}, & 0 < x \le y. \end{cases}$$

- •注: 1.积分变量u,v。
- •2. 对(x,y), 即x,y讨论范围,确定积分区域。
- •3. 等号放在哪?





求(X,Y)的分布函数 F(x,y) 的过程较为复杂. 一般地,如果(X,Y)的密度函数 f(x,y) 在平面某区域 D上(内)为正,而其余处均为零(见下图),即 $f(x,y) = \begin{cases} \text{正值}, & (x,y) \in D, \\ 0, & (x,y) \notin D. \end{cases}$ 



不妨称左图为密度函数 f(x,y)的特征图,因此计算 (X,Y) 的分布函数 F(x,y) 时,应将 F(x,y) 的原理图和 f(x,y) 的特征图结合起来,综合考察,以解决分块计算问题(参见例4).

## 五、几种常见的二维连续型随机变量的概率分布

#### 1. 二维均匀分布

定义6 设平面有界区域 D 的面积为  $S_D$ ,如果二维随机变量

$$(X,Y)$$
 的密度函数为 $f(x,y) = \begin{cases} \frac{1}{S_D}, & (x,y) \in D, \\ 0, & (x,y) \notin D. \end{cases}$  就称  $(X,Y)$ 

服从区域 D上(内)的均匀分布,记为(X,Y)  $\square$  U(D).

【1】 (X,Y) 落入某平面区域 G 内(上)的概率为

$$P\{(X,Y) \in G\} = P\{(X,Y) \in G \cap D\} = \frac{S_{G \cap D}}{S_D}$$
 几何概型



【2】  $(X,Y) \in U(D)$ ,区域 G 为 D 的任意子区域,则  $P\{(X,Y) \in G\}$  与 G 的面积成正比,比例系数为  $\frac{1}{S_D}$ ,而与 G 的位置和形状无关.

例5 设 (X,Y) 服从区域  $D:0 \le x \le 1,0 \le y \le 1$  上的均匀分布, 求  $P\{|X-Y| \le \frac{1}{2}\}$ .

解 由题意知,区域 D 的面积 A=1. 由不等式  $|x-y| \le \frac{1}{2}$  确 定的平面区域 G 如下图的阴影部分,G 的面积为

$$1-(\frac{1}{2})^2 = \frac{3}{4}$$
, 所以所求的概率为

$$P\{|X-Y| \le \frac{1}{2}\} = \frac{S_G}{S_D} = \frac{\frac{3}{4}}{1} = \frac{3}{4}.$$



#### 2. 二维正态分布

#### 定义7 如果二维随机变量(X,Y)的密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

$$-\infty < x < +\infty, -\infty < y < +\infty,$$

$$(#)$$

其中  $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$  均为常数,且满足:

$$-\infty < \mu_1 < +\infty, -\infty < \mu_2 < +\infty, \sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1.$$

就称 (X,Y) 服从参数为  $\mu_1,\mu_2,\sigma_1,\sigma_2,\rho$  的二维正态分布,

记为 
$$(X,Y)$$
  $\square$   $N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$ .



#### 例6 设二维随机变量(X,Y)的密度函数为

$$f(x,y) = ke^{-\frac{1}{2}x^2 - \frac{1}{8}y^2}, -\infty < x < +\infty, -\infty < x < +\infty.$$

指出(X,Y) 所服从的分布,并求出常数 k.

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}$$

$$f(x,y) = ke^{-\frac{1}{2}x^2 - \frac{1}{8}y^2} = ke^{-\frac{1}{2}[x^2 + \frac{y^2}{2^2}]}$$



对比(#)不难发现,

$$\mu_1 = 0, \mu_2 = 0, \rho = 0, \quad \sigma_1 = 1, \sigma_2 = 2,$$

所以 
$$(X,Y)$$
  $\square$   $N(0,0,1,4,0)$ , 且  $k=\frac{1}{4\pi}$ .



# § 3.2 边缘分布

## 一、边缘分布函数

定义1 设 (X,Y) 为二维随机变量,分别称 X 和 Y 的分布函数为 (X,Y) 关于 X 和关于 Y 的边缘分布函数,记为  $F_X(x)$  和  $F_Y(y)$ .

定理1设二维随机变量 (X,Y) 的分布函数为 F(x,y), 则有

$$F_X(x) = F(x, +\infty), -\infty < x < +\infty;$$

$$F_{Y}(y) = F(+\infty, y), -\infty < y < +\infty;$$

记忆:联合分布求单个变量极限得到边缘分布

证: 由于 $\{Y < +\infty\} = \Omega$ ,故

$$F_X(x) = P\{X \le x\} = P\{X \le x, Y \le +\infty\} = F(x, +\infty), -\infty < x < +\infty;$$

同理可证  $F_Y(y) = F(+\infty, y), -\infty < y < +\infty.$ 



#### 例1 设二维随机变量 (X,Y) 的分布函数为

$$F(x,y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan x\right) \left(\frac{\pi}{2} + \arctan y\right), -\infty < x, y < +\infty,$$

试求出 $F_X(x)$ 和 $F_Y(y)$ ,并问是否有 $F(x,y) = F_X(x) \cdot F_Y(y)$ ?

解 
$$F_X(x) = F(x, +\infty) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan x), -\infty < x < +\infty;$$

$$F_Y(y) = F(+\infty, y) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan y), -\infty < y < +\infty.$$
并易得, $F(x, y) = F_X(x) \cdot F_Y(y).$ 

## 二、边缘分布律(离散型)

定义2 设 (X,Y) 为二维离散型随机变量,分别称 X 和 Y 的的分布律为 (X,Y) 关于 X 和关于 Y 的边缘分布律.

定理1设二维离散型随机变量(X,Y)的分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i = 1, 2, \dots, j = 1, 2, \dots,$$

则(X,Y)关于 X 和关于 Y 的边缘分布律分别为

$$P\{X = x_{i}\} = \sum_{j} p_{ij} \square p_{i}, i = 1, 2, \dots;$$

$$P\{Y = y_{j}\} = \sum_{i} p_{ij} \square p_{i}, j = 1, 2, \dots.$$



仅证 
$$P{X = x_i} = \sum_{j} p_{ij} = p_{i.}, i = 1, 2, \dots$$

同理可证 
$$P{Y = y_j} = \sum_i p_{ij} \square p_{ij}, j = 1, 2, \dots$$

(X,Y) 关于 X 和关于 Y 的边缘分布律分别为



## 将 X 和 Y 的边缘分布律添加到 (X,Y) 分布律的列表得

| Х               | $\mathcal{Y}_1$ | $y_2$         | • • • | $y_i$           | • • • | $p_{i\bullet}$ |
|-----------------|-----------------|---------------|-------|-----------------|-------|----------------|
| $x_1$           | $p_{11}$        | $p_{12}^{-}$  |       | $p_{1j}$        | • • • | $p_{1ullet}$   |
| $x_2$           | $p_{21}$        | $p_{22}$      | • • • | $p_{2j}$        | • • • | $p_{2ullet}$   |
| •               | •               |               |       |                 | •     | •              |
| $X_i$           | $p_{i1}$        | $p_{i2}$      | • • • | $p_{\it ij}$    | • • • | $p_{i\bullet}$ |
| •               | •               | •             | • • • |                 | • •   | •              |
| $p_{\bullet j}$ | $p_{ullet 1}$   | $p_{ullet 2}$ | • • • | $p_{ullet j}$ . | • •   | 1              |

- X的边缘分布律可对表中的 $P_{ij}$  进行行和即得;
- Y的边缘分布律可对表中的 $P_{ij}$ 进行列和即得;



或者: X和 Y的边缘分布律添到 (X,Y) 分布律的列表:

| Y              | $x_1$          | $x_2$          | •••   | $X_{i}$        | •••   | $p_{\bullet j}$ |
|----------------|----------------|----------------|-------|----------------|-------|-----------------|
| $y_1$          | $p_{11}$       | $p_{21}$       | • • • | $p_{i1}$       | • • • | $p_{ullet 1}$   |
| $y_2$          | $p_{12}$       | $p_{22}$       | • • • | $p_{i2}$       | • • • | $p_{ullet 2}$   |
| •              | •              | •              | •     | •              | • • • |                 |
| $y_j$          | $p_{1j}$       | $p_{2j}$       | • • • | $p_{ij}$       | • • • | $p_{ullet j}$   |
| •              | •              | •              | •     | •              | •     | •               |
| $p_{i\bullet}$ | $p_{1\bullet}$ | $p_{2\bullet}$ | •••   | $p_{i\bullet}$ | •••   | 1               |

#### (注)

- X的边缘分布律可对表中的 $P_{ij}$ 进行纵向求和即得;
- Y的边缘分布律可对表中的 $P_{ij}$ 进行横向求和即得;



例3(1)

) 已知随机变量 $X_1$ 和 $X_2$ 的概率分布为 $X_1$   $\begin{bmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$ 

$$X_2 \square \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
, 且  $P\{X_1X_2 = 0\} = 1$ , 求  $X_1$ 和  $X_2$ 的联合分布律.

即

| $X_1$ $X_2$  | -1            | 0             | 1   | $p_{ullet j}$ |
|--------------|---------------|---------------|-----|---------------|
| 0            |               |               |     | $\frac{1}{2}$ |
| 1            |               |               |     | $\frac{1}{2}$ |
| $p_{iullet}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | 1/4 | 1             |



解 由  $P\{X_1X_2=0\}=1$ 知,  $P\{X_1X_2\neq 0\}=0$ , 所以

$$P{X_1 = -1, X_2 = 1} = P{X_1 = 1, X_2 = 1} = 0,$$

根据XI的分布律得

$$P\{X_1 = -1, X_2 = 0\} = P\{X_1 = 1, X_2 = 0\} = \frac{1}{4}.$$

根据X2的分布律得

$$P\{X_1 = 0, X_2 = 0\} = 0, P\{X_1 = 0, X_2 = 1\} = \frac{1}{4}.$$



续解 综上, $X_1$ 和  $X_2$ 的联合分布律为

| $X_1$ $X_2$    | -1            | 0 1                         | $p_{\bullet j}$ |
|----------------|---------------|-----------------------------|-----------------|
| 0              | $\frac{1}{4}$ | $0 \frac{1}{4}$             | $\frac{1}{2}$   |
| 1              | 0             | $\frac{1}{2}$ 0             | $\frac{1}{2}$   |
| $p_{i\bullet}$ | $\frac{1}{4}$ | $\frac{1}{2}$ $\frac{1}{4}$ | 1               |

# 例3(2)6个球,1红球,2个黑球,3个白球,取两次(每次一个,放回)

. 设X表示两次取到的红球个数,Y表示两次取到的黑球个数. 求出(X,Y)关于 X和关于 Y的边缘分布律.

| Y     | $y_1$    | $\mathcal{Y}_2$ | $\cdots y_j  \cdots$       |
|-------|----------|-----------------|----------------------------|
| $x_1$ | $p_{11}$ | $p_{12}$        | $\cdots$ $p_{1j}$ $\cdots$ |
| $x_2$ | $p_{21}$ | $p_{22}$        | $\cdots p_{2j} \cdots$     |
| •     | :        |                 | •                          |
| $X_i$ | $p_{i1}$ | $p_{i2}$        | $\cdots p_{ij} \cdots$     |
| •     | :        | •               | •••                        |



## 三、边缘密度函数(连续型)

如果 (X,Y) 为二维连续型随机变量,则可证明X和Y也 均为连续型随机变量. 此时X或Y的概率分布可用密度函数 来描述.

定义3 设(X,Y)为二维连续型随机变量,分别称X和Y的密度函数为(X,Y)关于X和关于Y的边缘密度函数,记为 $f_X(x)$ 和 $f_Y(y)$ .

定理3 设二维连续型随机变量 (X,Y) 的密度函数为f(x,y),则X和Y也均为连续型随机变量,且

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, \ f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx, -\infty < x, y < +\infty.$$



记忆: 求x干掉y, 求y干掉x。



证明 由于
$$F_X(x) = F(x, +\infty) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, v) du dv$$
$$= \int_{-\infty}^x \left[ \int_{-\infty}^{+\infty} f(u, v) dv \right] du, \quad -\infty < x < +\infty,$$

所以X为连续型随机变量,其密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, -\infty < x < +\infty.$$

同理可证,  $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx, -\infty < y < +\infty$ .

•注: 
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, -\infty < x < +\infty.$$



•通常先要对x讨论范围,再对y积分。



### 设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} e^{-x}, & 0 < y < x, \\ 0, & other. \end{cases}$$

试分别计算 $f_X(x)$  和  $f_Y(y)$ .

解 先求  $f_X(x)$  当  $x \le 0$  时,对任意的  $y \in (-\infty, +\infty)$ ,有 f(x,y) = 0,

进而 
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = 0$$
. (见右图)

当 x > 0 时,对任意的  $y \in (-\infty, 0] \cup [x, +\infty)$ ,

有 
$$f(x,y) = 0$$
,故  $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$ 

$$= \int_0^x e^{-x} dy = xe^{-x}, \text{ fill } f_X(x) = \begin{cases} xe^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$







续解 同理, 当 $y \le 0$ 时, 对任意的 $x \in (-\infty, +\infty)$ , 有f(x, y) = 0,

得 
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = 0.$$
 (见右图)

当 y > 0时, 对任意的  $x \in (-\infty, y]$ , 有 f(x, y) = 0, 得

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{+\infty} e^{-x} dx = e^{-y}$$

所以 
$$f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$



【注1】  $f_X(x)$  可通过在给定点 x 处, f(x,y) 的对 y 从  $-\infty$  到  $+\infty$  (纵向)积分求得;  $f_Y(y)$  可通过在给定点 y 处, f(x,y) 的对 x 从  $-\infty$  到  $+\infty$  (横向)积分求得.

【注2】 由于 f(x,y) 通常以分块函数的形式给出,因此经常需要对 x 或 y 进行分段讨论,以计算  $f_X(x)$  或  $f_Y(y)$ .



定理**4** 设二维随机变量
$$(X,Y)$$
  $\square$   $N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$ ,则  $X$   $\square$   $N(\mu_1,\sigma_1^2)$ , $Y$   $\square$   $N(\mu_2,\sigma_2^2)$ .

定理4表明二维正态分布的边缘分布为一维正态分布,且其边缘分布只分别依赖于 $\mu_1$ , $\sigma_1$  和 $\mu_2$ , $\sigma_2$ , 而不依赖于参数  $\rho(-1<\rho<1)$ . 因此对于给定的 $\mu_1$ , $\mu_2$ , $\sigma_1$ , $\sigma_2$ ,不同的 $\rho$  对应了不同的二维正态分布 $N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$ ,所以边缘密度函数不能惟一地确定联合密度函数.



#### 2011数三

设二维随机变量 (X,Y) 服从区域G上的均匀分布,其中 G是有 x-y=0, x+y=2, y=0 所围成的三角形区域.

- (1) 求X的概率密度  $f_X(x)$ ,
- (2) 求条件概率密度 $f_{X|Y}(x|y)$ . (下节后练习)

#### 解 (X,Y)的概率密度为

$$f(x,y) = \begin{cases} 1, & (x,y) \in G, \\ 0, & other. \end{cases}$$

X的边缘概率密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$



当 x < 0 or x > 2 时  $f_X(x) = 0$ ; 当  $0 \le x \le 1$  时  $f_X(x) = \int_0^x 1 dy = x$ ; 当  $1 < x \le 2$  时  $f_X(x) = \int_0^{2-x} 1 dy = 2 - x$ ; 综上所述,X 的概率密度为



$$f_X(x) = \begin{cases} x, & 0 \le x \le 1, \\ 2 - x, & 1 < x \le 2, \\ 0, & other. \end{cases}$$

# § 3 条件分布

### 一、条件分布函数

条件分布刻画了两个随机变量之间的依赖关系。

定义**1** 设(X,Y)为二维随机变量,已知随机变量 Y 的取值为 Y=y,且对于任意给定的正数  $\varepsilon,P\{y-\varepsilon < Y \leq y+\varepsilon\}>0$ ,如果对于任意给定的 $x \in (-\infty,+\infty)$ ,极限

$$\lim_{\varepsilon \to 0^+} P\{X \le x \, \big| \, y - \varepsilon < Y \le y + \varepsilon\} = \lim_{\varepsilon \to 0^+} \frac{P\{X \le x, y - \varepsilon < Y \le y + \varepsilon\}}{P\{y - \varepsilon < Y \le y + \varepsilon\}}$$

均存在,就称此极限所得函数为在条件Y=y下,X的条件分布函数,记为 $F_{X|Y}(x|y)$  或  $P\{X \le x | Y = y\}$ . (了解)



# 同理可定义在条件 X = x下,Y 的条件分布函数 $F_{Y|X}(y|x)$

或 $P{Y \le y \mid X = x}$ .因此

$$F_{X|Y}(x|y) = P\{X \le x | Y = y\} = \lim_{\varepsilon \to 0^+} \frac{P\{X \le x, y - \varepsilon < Y \le y + \varepsilon\}}{P\{y - \varepsilon < Y \le y + \varepsilon\}}$$
$$-\infty < x < +\infty;$$

$$F_{Y|X}(y|x) = P\{Y \le y \mid X = x\} = \lim_{\varepsilon \to 0^+} \frac{P\{Y \le y, x - \varepsilon < X \le x + \varepsilon\}}{P\{x - \varepsilon < X \le x + \varepsilon\}}$$
$$-\infty < y < +\infty.$$

•为了更方便表示条件分布,

条件分布:

(离散情况,用联合分布律与边缘分布律商表示条件分布律;

连续情况, 用联合概率密度与边缘概率密度商表示条件分布密度函数。





# 二、条件分布律

定义2 设(X,Y)为二维离散型随机变量,其分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i = 1, 2, \dots, j = 1, 2, \dots,$$

如果已知 Y 的取值为  $Y = y_j$ ,且  $P\{Y = y_i\} = p_{ij} > 0$ ,就称

$$P\{X = x_i | Y = y_j\} = \frac{p_{ij}}{p_{.j}}, i = 1, 2, \dots$$

为在条件 $Y = y_i$ 下,X的条件分布律.

如果已知X的取值为 $X = x_i$ ,且 $P\{X = x_i\} = p_i > 0$ ,就称

$$P\{Y = y_j | X = x_i\} = \frac{p_{ij}}{p_{i}}, j = 1, 2, \dots$$

为在条件 $X = x_i$ 下,Y的条件分布律.



#### 条件分布律可从下表得到:

| Х                     | $\mathcal{Y}_1$ | $y_2$         | • • • | $y_i$           | • • • | $p_{i\bullet}$ |
|-----------------------|-----------------|---------------|-------|-----------------|-------|----------------|
| $x_1$                 | $p_{11}$        | $p_{12}^{-}$  | • • • | $p_{1j}$        | • • • | $p_{1ullet}$   |
| $x_2$                 | $p_{21}$        | $p_{22}$      | • • • | $p_{2j}$        | • • • | $p_{2ullet}$   |
| •                     | •               |               |       |                 | •     | •              |
| $X_i$                 | $p_{i1}$        | $p_{i2}$      | • • • | $p_{ij}$        | • • • | $p_{i\bullet}$ |
| •                     | •               | •             | • • • | • •             | • •   | •              |
| $\dot{p}_{\bullet j}$ | $p_{ullet 1}$   | $p_{ullet 2}$ | • • • | $p_{ullet j}$ . | • •   | 1              |

$$P\{Y = y_{j} | X = x_{i}\} = \frac{p_{ij}}{p_{i}}, j = 1, 2, \dots$$

$$P\{X = x_{i} | Y = y_{j}\} = \frac{p_{ij}}{p_{ij}}, i = 1, 2, \dots$$

$$p_{\cdot j}$$



非负性

规范性

当 
$$Y = y_j$$
 时  $(\frac{p_{ij}}{p_{.j}} \ge 0, i = 1, 2, \dots);$   $(\sum_{i} \frac{p_{ij}}{p_{j}} = \frac{\sum_{i} p_{ij}}{p_{j}} = \frac{p_{.j}}{p_{.j}} = 1.$ 

当
$$X = x_i$$
时, $\frac{p_{ij}}{p_{i\cdot}} \ge 0, j = 1, 2, \dots; \sum_j \frac{p_{ij}}{p_{i\cdot}} = \frac{\sum_j p_{ij}}{p_{i\cdot}} = \frac{p_{i\cdot}}{p_{i\cdot}} = 1.$ 

#### 条件分布律均满足分布律的性质.

#### 条件分布律的表格形式

$$(Y | X = x_i) \square \begin{pmatrix} y_1 & y_2 & \cdots & y_i & \cdots \\ \frac{p_{i1}}{p_{i}} & \frac{p_{i2}}{p_{i}} & \cdots & \frac{p_{ij}}{p_{i}} & \cdots \\ x_1 & x_2 & \cdots & x_i & \cdots \\ (X | Y = y_j) \square \begin{pmatrix} x_1 & x_2 & \cdots & x_i & \cdots \\ \frac{p_{1j}}{p_{ij}} & \frac{p_{2j}}{p_{ij}} & \cdots & \frac{p_{ij}}{p_{ij}} & \cdots \\ \frac{p_{ij}}{p_{ij}} & p_{ij} & \cdots & p_{ij} \end{pmatrix}$$

例1 设同一品种的5个产品中,有2个次品,每次从中取一个检验,连续两次. 设X表示第一次取到的次品个数; Y表示第二次取到的次品个数. 试分别就(1)不放回; (2)有放回两种情况,求出在条件 Y=1下,X的条件分布律.

解(X,Y)的联合分布律和边缘分布律如下(前一节的例题)

| Y              | 0              | 1              | $p_{ullet j}$ |
|----------------|----------------|----------------|---------------|
| 0              | $\frac{3}{10}$ | $\frac{3}{10}$ | $\frac{3}{5}$ |
| 1              | $\frac{3}{10}$ | $\frac{1}{10}$ | $\frac{2}{5}$ |
| $p_{i\bullet}$ | $\frac{3}{5}$  | $\frac{2}{5}$  | 1             |

| Y              | 0              | 1              | $p_{ullet j}$ |
|----------------|----------------|----------------|---------------|
| 0              | $\frac{9}{25}$ | $\frac{6}{25}$ | $\frac{3}{5}$ |
| 1              | $\frac{6}{25}$ | $\frac{4}{25}$ | $\frac{2}{5}$ |
| $p_{i\bullet}$ | $\frac{3}{5}$  | $\frac{2}{5}$  | 1             |



#### 不放回

| Y              | 0              | 1              | $p_{ullet j}$ |
|----------------|----------------|----------------|---------------|
| 0              | $\frac{3}{10}$ | $\frac{3}{10}$ | $\frac{3}{5}$ |
| 1              | $\frac{3}{10}$ | $\frac{1}{10}$ | $\frac{2}{5}$ |
| $p_{i\bullet}$ | <u>3</u> 5     | <u>2</u><br>5  | 1             |

$$P\{X=0|Y=1\} = \frac{P\{X=0,Y=1\}}{P\{Y=1\}}$$

$$= \frac{3/10}{2/5} = \frac{3}{4},$$
同理 $P\{X=1|Y=1\} = 1/4.$ 
当 $Y=1$ 时, $X$ 的条件分布律为
$$(X|Y=1) \square \begin{pmatrix} 0 & 1 \\ 3/4 & 1/4 \end{pmatrix}.$$

同理, 在有放回的情况下, 可求得当Y=1时, X的条件分布律为

$$(X|Y=1) \square \begin{pmatrix} 0 & 1 \\ 3/5 & 2/5 \end{pmatrix}.$$



# 三、条件密度函数 • (必考)

定义3 设 (X,Y) 为二维连续型随机变量,其密度函数为 f(x,y),如果已知 Y 的取值为 Y=y,且  $f_Y(y)>0$ ,就称

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, -\infty < x < +\infty$$
 注意y 范围

为在条件 Y = y下,X的条件密度函数.

如果已知X的取值为X=x,且 $f_X(x)>0$ ,就称

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}, -\infty < y < +\infty$$
 注意X 范围

为在条件 X=x下, Y的条件密度函数.

•注意:条件密度函数也是一种密度函数,即满足:非负性和规范性。



### 定理1 设二维随机变量 (X,Y) 的其密度函数为f(x,y),如果

$$f_Y(y_0) > 0$$
,  $\mathbb{M} P\{a \le X \le b | Y = y_0\} = \int_a^b f_{X|Y}(x|y_0) dx$ .

如果
$$f_X(x_0) > 0$$
,则  $P\{c \le Y \le d \mid X = x_0\} = \int_c^d f_{Y|X}(y \mid x_0) dy$ .

•根据(条件)密度函数易得条件分布函数公式:

$$F_{X|Y}(x \mid y) = \int_{-\infty}^{x} f_{X|Y}(u \mid y) du;$$
  $F_{Y|X}(y \mid x) = \int_{-\infty}^{y} f_{Y|X}(x \mid y) dv$ 

•条件密度对x积分 •条件密度对y积分

【注】
$$P\{c \le Y \le d \mid a < X \le b\} = \frac{P\{c < Y \le d, a < X \le b\}}{P\{a < X \le b\}}$$



#### 例2 设二维随机变量(X,Y) 的密度函数为

$$f(x,y) = \begin{cases} e^{-x}, & 0 < y < x, \\ 0, & other. \end{cases}$$

(1) 试求 $f_{Y|X}(y|x)$ ; (2) 计算 $P\{Y > 1 | X = 2\}$ .

#### 解 在上节例4中,已经求得(X,Y) 关于X的边缘密度为

$$f_X(x) = \begin{cases} xe^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

当 x > 0 时,

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{x}, & 0 < y < x, \\ 0, & other. \end{cases}$$
 在条件 $X = x$ 下, $Y$ 的条件分布为均匀分布。





### 续解(2) 由(1)知,在条件X=2下

$$f_{Y|X}(y|2) = \begin{cases} \frac{1}{2}, & 0 < y < 2, \\ 0, & other. \end{cases}$$

利用定理**1**得 
$$P{Y > 1 | X = 2} = \int_{1}^{+\infty} f_{Y|X}(y|2) dy = \int_{1}^{2} \frac{1}{2} dy = \frac{1}{2}.$$



#### 2011数三

设二维随机变量 (X,Y) 服从区域G上的均匀分布,其中 G是有 x-y=0, x+y=2, y=0 所围成的三角形区域.

成败

- (1) 求X的概率密度  $f_X(x)$ ,
- (2) 求条件概率密度 $f_{X|Y}(x|y)$ . (下节后练习)

### 解 (X,Y)的概率密度为

$$f(x,y) = \begin{cases} 1, & (x,y) \in G, & \text{细节} \\ 0, & \text{other.} \end{cases}$$

类似(1)求Y的边缘概率密度函数,  $f_Y(y)$ 

从而求出条件概率密度  $f_{X|Y}(x|y)$ .



$$G = \{(x, y) \mid y \le x \le 2 - y,$$

 $0 \le y \le 1$  (Y型区域)



例3 设随机变量 X 的密度函数为  $f_X(x) = \begin{cases} 6x(1-x), & 0 < x < 1, \\ 0, & other. \end{cases}$ 

且当
$$0 < x < 1$$
时,  $f_{Y|X}(y|x) = \begin{cases} \frac{1}{x(1-x)}, & x^2 < y < x, \\ 0, & other. \end{cases}$  (1) 求 $X$ 

和 Y 的联合密度函数 f(x,y); (2) 求 Y 的概率密度  $f_Y(y)$ .

解 (1) 
$$f(x,y) = f_X(x) \cdot f_{Y|X}(y|x) = \begin{cases} 6, & 0 < x < 1, x^2 < y < x. \\ 0, & other. \end{cases}$$
•注意: 验证:  $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dy dx = \int_{0}^{1} \int_{x^2}^{x} f(x,y) dy dx = 1.$ 
(2)  $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$ 

$$= \begin{cases} \int_{y}^{\sqrt{y}} 6 dx = 6(\sqrt{y} - y), & 0 < y < 1, \\ 0, & other. \end{cases}$$



#### 2013数一

设随机变量Y服从参数为1的指数分布,a为常数且大于零,

则 
$$P{Y \le a+1 | Y>a} =$$
\_\_\_\_\_.

解 
$$P{Y > a} = \int_{a}^{+\infty} e^{-y} dy = e^{-a} ( 或=1-F(a) )$$

$$P{a < Y \le 1+a} = \int_{a}^{a+1} e^{-y} dy = e^{-a} - e^{-a-1} ( 或=F(a+1)-F(a) )$$

$$P{Y \le a+1 | Y > a} = \frac{P{a < Y \le a+1}}{P{Y > a}} = 1-e^{-1}.$$

#### 或由指数分布的"无记忆性"得

$$P\{Y \le a+1 | Y > a\} = P\{Y \le 1\} = F(1) = 1 - e^{-1}.$$



# § 4 随机变量的独立性

# 一、随机变量相互独立的概念

【回顾】随机事件A和B相互独立是指A和B各自发生与否没有任何关系. ( $P(AB) = P(A) \cdot P(B)$ )

通俗地讲,随机变量 X 和 Y 相互独立是指 X 和 Y 的各自取值情况没有任何关系.

一般地,将随机变量 X 和 Y 的各种取值情况通过随机事事 $\{X \le x\}$  和  $\{Y \le y\}$  来实现, 其中 x, y 均为任意实数.

即对于任意的实数 x, y, 随机事件 $\{X \le x\}$ 和  $\{Y \le y\}$ 相互独立,从而有 $P\{X \le x, Y \le y\} = P\{X \le x\}P\{Y \le y\}$ , 即  $F(x,y) = F_X(x) \cdot F_Y(y).$ 



定义1 设(X,Y)为二维随机变量,其分布函数为F(x,y),

(X,Y) 关于 X 和关于 Y 的边缘分布函数分别为  $F_X(x)$  和

 $F_Y(y)$ . 如果对于任意的实数 x, y,均有

$$F(x,y) = F_X(x) \cdot F_Y(y),$$

就称随机变量 X 与 Y 相互独立.

•为了更方便表示独立性,

两个随机变量独立性:

阁散情况,用联合分布律等于两种边缘分布律乘积表示;

连续情况,用联合概率密度等于两种边缘概率密度乘积表示。



### 例1 设二维随机变量 (X,Y) 的分布函数为

$$F(x,y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan x\right) \left(\frac{\pi}{2} + \arctan y\right), -\infty < x, y < +\infty,$$

#### 问 X 与 Y 是否相互独立?

**M** 
$$F_X(x) = F(x, +\infty) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan x), -\infty < x < +\infty;$$
  
 $F_Y(y) = F(+\infty, y) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan y), -\infty < y < +\infty.$ 

且对于任意的实数 x, y, 满足 $F(x, y) = F_X(x) \cdot F_Y(y)$ ,

所以X与Y相互独立.



# 二、离散型随机变量的独立性

定理1设(X,Y)为二维离散型随机变量,其分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i = 1, 2, \dots, j = 1, 2, \dots, j$$

则 X 和 Y 相互独立的充要条件为

$$p_{ij} = p_{i} \cdot p_{ij}, \quad i = 1, 2, \dots, j = 1, 2, \dots$$

【注】由定理**1**知,如果存在一对 i,j,使得  $p_{ij} \neq p_{i\cdot}p_{\cdot j}$ ,则 X和 Y不相互独立.



例2 设随机变量
$$X \square \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}, Y \square \begin{pmatrix} 0 & 1 \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}, 且 X 和 Y 相$$

互独立.(1) 求 X 和 Y 的联合分布律; (2) 计算  $P\{X = Y\}$ .

解 (1)

| X | -1             | 0             | 1              |
|---|----------------|---------------|----------------|
| 0 | $\frac{1}{16}$ | $\frac{1}{8}$ | $\frac{1}{16}$ |
| 1 | $\frac{3}{16}$ | $\frac{3}{8}$ | $\frac{3}{16}$ |

(2) 
$$P{X = Y} = P{X = 0, Y = 0} + P{X = 1, Y = 1}$$
  
=  $\frac{1}{8} + \frac{3}{16} = \frac{5}{16}$ .



例3 设同一品种的5个产品中,有2个次品,每次从中取一个检验,连续两次. 设X表示第一次取到的次品个数; Y表示第二次取到的次品个数. 试分别就(1)不放回; (2)有放回两种情况判断 X 和 Y 的独立性?

| Y              | 0              | 1              | $p_{ullet j}$ |
|----------------|----------------|----------------|---------------|
| 0              | $\frac{3}{10}$ | $\frac{3}{10}$ | $\frac{3}{5}$ |
| 1              | $\frac{3}{10}$ | $\frac{1}{10}$ | $\frac{2}{5}$ |
| $p_{i\bullet}$ | $\frac{3}{5}$  | $\frac{2}{5}$  | 1             |

| Y              | 0              | 1              | $p_{ullet j}$ |
|----------------|----------------|----------------|---------------|
| 0              | $\frac{9}{25}$ | $\frac{6}{25}$ | $\frac{3}{5}$ |
| 1              | $\frac{6}{25}$ | $\frac{4}{25}$ | $\frac{2}{5}$ |
| $p_{i\bullet}$ | $\frac{3}{5}$  | $\frac{2}{5}$  | 1             |

【解】不放回:不独立

有放回: 独立



### 三、连续型随机变量的独立性

定理2 设 (X,Y) 为二维连续型随机变量,其密度函数为 f(x,y),则 X和 Y相互独立的充要条件为对平面上几乎所有的点 (x,y),有  $f(x,y) = f_X(x)f_Y(y)$ .

•记忆:联合密度等于边缘密度的乘积。

【注1】如果存在平面区域 D  $(S_D \neq 0)$  当 $(x,y) \in D$ 时,  $f(x,y) \neq f_X(x)f_Y(y)$ ,则 X与 Y不相互独立.

【注2】本定理的条件为"对平面上几乎所有的点(x,y),有  $f(x,y) = f_x(x)f_y(y)$ ."



证 为了证明方便,不妨设 f(x,y) 在平面上连续.

必要性 设 X和 Y相互独立,则有定义**1**知,对任意的实数 x,y,均有  $F(x,y) = F_X(x)F_Y(y)$ ,又由于 f(x,y) 在平面上连续,故对应的分布函数连续且可导,两边同时求混合偏导数得  $\frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{dF_X(x)}{dx} \cdot \frac{dF_Y(y)}{dy}, \quad \text{即有 } f(x,y) = f_X(x)f_Y(y).$ 

充分性 设对任意的实数 x, y,均有  $f(x, y) = f_X(x) f_Y(y)$ ,则将上式两边同时在平面区域 $(-\infty, x] \times (-\infty, y]$ 上进行二重积分,得  $\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv = \int_{-\infty}^{x} f_X(u) du \int_{-\infty}^{y} f_Y(v) dv$ ,即有对任意的实数  $x, y, F(x, y) = F_X(x) F_Y(y)$ ,所以X和Y相互独立.



#### 例4 设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} e^{-x}, & 0 < y < x, \\ 0, & other. \end{cases}$$

问 X 和 Y 是否相互独立?

解 在§3.2例4中,已得
$$f_X(x) = \begin{cases} xe^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$
  $f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0. \end{cases}$ 

$$f(x,y) = \begin{cases} e^{-yx}, & 0 < y < x, \\ 0, & other. \end{cases} \neq f_X(x)f_Y(y) = \begin{cases} xe^{-x-y}, & x > 0, y > 0, \\ 0, & other. \end{cases}$$

所以 X和 Y不相互独立.



#### 例5 设二维随机变量 (X,Y) 的密度函数为

$$f(x,y) = \begin{cases} kg(x)h(y), & a \le x \le b, c \le y \le d, \\ 0, & other. \end{cases}$$

其中 g, h 均为正值连续函数, k > 0. 则 X 和 Y 相互独立.

证 
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = k \int_{a}^{b} g(x) dx \int_{c}^{d} h(y) dy = k I_{1} I_{2} = 1,$$
其中 
$$I_{1} = \int_{a}^{b} g(x) dx, I_{2} = \int_{c}^{d} h(y) dy, \quad I_{1} > 0, I_{2} > 0,$$
得 
$$k = \frac{1}{I_{1}I_{2}}, \quad \text{所以}$$

$$f(x,y) = \begin{cases} \frac{1}{I_{1}I_{2}} g(x)h(y), & a \le x \le b, c \le y \le d, \\ 0, & other. \end{cases}$$



#### 续解 进而可得

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \frac{1}{I_1} g(x), & a \le x \le b, \\ 0, & other. \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \frac{1}{I_{2}} h(y), & c \le y \le d, \\ 0, & other. \end{cases}$$

故对任意的实数 x, y,均有 $f(x, y) = f_X(x) f_Y(y)$ ,所以 X和 Y相互独立.



#### 例6 设随机变量 $X \square U[0,1], Y \square E(1), 且 X 和 Y 相互独立,$

**求** $P{X+Y≤1}.$  (加上**特殊条件**边缘分布可确定联合分布)

#### 解 由题意知, X和 Y的密度函数分别为

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & other. \end{cases} \quad f_Y(y) = \begin{cases} e^{-y}, & y \ge 0, \\ 0, & other. \end{cases}$$

#### 又由于X和Y相互独立,所以

$$f(x,y) = f_X(x)f_Y(y) = \begin{cases} e^{-y}, & 0 \le x \le 1, y \ge 0, \\ 0, & other. \end{cases}$$

故 
$$P\{X + Y \le 1\} = \iint_{x+y\le 1} f(x,y) dx dy = \int_0^1 dx \int_0^{1-x} e^{-y} dy$$

$$= \int_0^1 (1 - e^{x-1}) dx = e^{-1}.$$



# 四、随机变量独立性的有关结论

#### 定理3 设随机变量X与Y相互独立,则对任意实数集合



$$L_1, L_2, \not \exists P\{X \in L_1, Y \in L_2\} = P\{X \in L_1\}P\{Y \in L_2\}.$$

例7 设随机变量X与Y相互独立,且 $X \square B(1,\frac{1}{2}),Y \square E(1),求 <math>P\{Y-X>1\}.$ 

$$P\{Y-X>1\} = P\{X=0, Y-X>1\} + P\{X=1, Y-X>1\}$$

X与Y的随机变 量类型可以不

$$= P\{X = 0\}P\{Y > 1\} + P\{X = 1\}P\{Y > 2\}$$

 $= P\{X = 0, Y > 1\} + P\{X = 1, Y > 2\}$ 

$$=\frac{1}{2}\int_{1}^{+\infty}e^{-x}dx+\frac{1}{2}\int_{2}^{+\infty}e^{-x}dx=\frac{1}{2}(e^{-1}+e^{-2}).$$



定理4 设随机变量 X 与 Y 相互独立, g(x), h(y) 是连续函数,

则随机变量 g(X) 与 h(Y) 也相互独立.

【注】定理4的逆命题不成立, 即随机变量 g(X) 与 h(Y)

相互独立,不能推得随机变量 X 与 Y 相互独立.

#### 【反例如下见例8】

例8 设二维随机变量(X,Y)的 分布律以及边缘分布律为

可见 X 与 Y 不相互独立

| Y  | -1   | 0    | 1    |      |
|----|------|------|------|------|
| -1 | 0.25 | 0    | 0    | 0.25 |
| 0  | 0    | 0.25 | 0.25 | 0.5  |
| 1  | 0    | 0.25 | 0    | 0.25 |
|    | 0.25 | 0.5  | 0.25 | 1    |



# 可求得(X2,Y2)的分布律和边缘分布律为

| $Y^2$ $Y^2$ | 0    | 1    |     |
|-------------|------|------|-----|
| 0           | 0.25 | 0.25 | 0.5 |
| 1           | 0.25 | 0.25 | 0.5 |
|             | 0.5  | 0.5  | 1   |

易知  $X^2$ 与  $Y^2$ 相互独立.

此例表明,虽然  $X^2$  与  $Y^2$  相互独立, 但X 与 Y 不相互独立.



定理5 设二维随机变量 (X,Y)  $\square$   $N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$ ,则 X 和 Y 相互独立的充要条件为  $\rho=0$ .

证 由定义知 (X,Y) 的密度函数为,对任意  $-\infty < x,y < +\infty$ ,

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[ \frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]}$$

又由§3.2定理4得, $X \square N(\mu_1, \sigma_1^2), Y \square N(\mu_2, \sigma_2^2)$ . 从而 X

和 Y 的密度函数分别为  $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, -\infty < x < +\infty,$ 

和 
$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}, -\infty < y < +\infty.$$



续解 所以 
$$f_X(x)f_Y(y) = \frac{1}{2\pi\sigma_1\sigma_2}e^{-\frac{1}{2}\left(\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right)}, (x,y) \in \mathbb{R}^2.$$

不难发现,  $f(x,y) = f_X(x)f_Y(y)$ , 即

$$\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}=$$

$$=\frac{1}{2\pi\sigma_{1}\sigma_{2}}e^{-\frac{1}{2}\left(\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right)}$$
的充要条件为 $\rho=0$ ,

即 X和 Y相互独立的充要条件为  $\rho = 0$ .



定理**5** 设二维随机变量 (X,Y)  $\square$   $N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$ ,则 X 和 Y 相互独立的充要条件为  $\rho=0$ .

定理6 设随机变量 X和 Y相互独立,且  $X \square N(\mu_1, \sigma_1^2)$ ,

$$Y \square N(\mu_2, \sigma_2^2)$$
,则

$$(X,Y) \square N(\mu), \mu_2, \sigma_1^2, \sigma_2^2, 0).$$

(注) 由§3.2定理4知,联合分布为正态分布可得 边缘分布为正态分布;



若随机变量 X 和 Y 分别均为正态分布,不能推断



(*X*,*Y*) 是否服从二维正态分布. 【反例见教材P109第25题】 此处例外的原因为: **X**与**Y**附加了条件。



例9 设随机变量 X和 Y相互独立,且均服从 N(0,1),求  $P\{X^2 + Y^2 \le 1\}$ .

解 由于 X 和 Y 相互独立,由定理**6**知,(X,Y)的密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2+y^2)}, -\infty < x, y < +\infty,$$

所以 
$$P\{X^2 + Y^2 \le 1\} = \iint_{x^2 + y^2 \le 1} \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 + y^2)} dxdy$$
$$= \frac{1}{2\pi} \int_0^{2\pi} d\theta \int_0^1 e^{-\frac{1}{2}r^2} \cdot rdr = 1 - e^{-\frac{1}{2}}.$$

注意:  $P\{G(X,Y) \in 某范围\}$ ,必须先求出X与Y的联合分布。



#### 2015数一

设二维随机变量(X,Y) 服从正态分布N(1,0;1,1;0),

则 
$$P{XY-Y<0}=$$
\_\_\_\_\_.

解 由正态分布的性质知  $X \square N(1,1), X \square N(0,1), X, Y$ 相互独立,所以

$$\begin{split} P\{XY-Y<0\} &= P\{(X-1)Y<0\} \\ &= P\{(X-1)<0,Y>0\} + P\{(X-1)>0,Y<0\} \\ &= P\{X<1\}P\{Y>0\} + P\{X>1\}P\{Y<0\} \\ &= \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}. \quad \text{$\bullet$ xb. $d$ in $\underline{n}$ is $\underline{n$$





## § 5 二维随机变量函数的分布

必考

- 1、二维离散型随机变量的函数 Z = g(X,Y)
- Z = g(X,Y) 2、二维连续型随机变量的函数 Z = g(X,Y)

做题常(针对1、2)讨论几种具体函数类型:

$$Z = X + Y$$
  $Z = \frac{X}{Y}$ 

 $Z = \max(X, Y), Z = \min(X, Y)$  的分布

3、二维混合型随机变量的函数 Z = g(X,Y)

注意:积累三种情况对应的处理方法。

•分布函数法,卷积公式法。



#### 一、二维离散型随机变量函数 Z=g(X,Y) 的概率分布

例1 设二维随机变量 (X, Y) 的分布律为 试分别求  $Z_1 = X + Y, Z_2 = XY,$   $Z_3 = \max\{X, Y\}$ 的分布律.

| Y | 0   | 1   |
|---|-----|-----|
| 0 | 0.2 | 0.4 |
| 1 | 0.1 | 0.3 |

解

| (X,Y) | (0,0) | (0,1) | (1,0) | (1,1) |
|-------|-------|-------|-------|-------|
| P     | 0.2   | 0.1   | 0.4   | 0.3   |
| $Z_1$ | 0     | 1     | 1     | 2     |
| $Z_2$ | 0     | 0     | 0     | 1     |
| $Z_3$ | 0     | 1     | 1     | 1     |

$$Z_1 \square \begin{pmatrix} 0 & 1 & 2 \\ 0.2 & 0.5 & 0.3 \end{pmatrix}$$

$$Z_2 \square \begin{pmatrix} 0 & 1 \\ 0.7 & 0.3 \end{pmatrix}$$

$$Z_3 \square \begin{pmatrix} 0 & 1 \\ 0.2 & 0.8 \end{pmatrix}$$





设(X,Y)为二维离散型随机变量,且其分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \dots$$

将(X,Y)的分布律写为

$$(X,Y)$$
  $(x_1,y_1)$   $(x_1,y_2)$   $\cdots$   $(x_i,y_j)$   $\cdots$   $p_{ij}$   $\cdots$ 

则求Z = g(X,Y) 的分布律的步骤为:

第一步: 在(*X*,*Y*)的分布律中添加一行Z = g(X,Y),并将计算  $z_i = g(x_i, y_j)(i, j = 1, 2, \cdots)$  的值对应填入该行中.

第二步: 对其中Z取值相同的项适当进行概率合并,即得Z的分布律.



结论1 设随机变量
$$X \square P(\lambda_1), Y \square P(\lambda_2)$$
,且 $X$ 和 $Y$ 相互独立,则 $X+Y \square P(\lambda_1+\lambda_2)$ .

再生性或可加性

结论2 设随机变量  $X \square B(n,p), Y \square B(m,p), \mathbb{L}X$ 和 Y相互独立,则  $X+Y \square B(n+m,p)$ . P93例2(自学)

分解为完备事件组

证 对任意的非负整数 k, 有

$$P\{X+Y=k\} = \sum_{i=0}^{k} P\{X=i, Y=k-i\} = \sum_{i=0}^{k} P\{X=i\} P\{Y=k-i\}$$

$$= \sum_{i=0}^{k} \frac{\lambda_{1}^{i}}{i!} e^{-\lambda_{1}} \frac{\lambda_{2}^{k-i}}{(k-i)!} e^{-\lambda_{2}} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_{1}^{i} \lambda_{2}^{k-i}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{k!} \sum_{i=0}^{k} C_{k}^{i} \lambda_{1}^{i} \lambda_{2}^{k-i} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{k!} (\lambda_{1}+\lambda_{2})^{k} = \frac{(\lambda_{1}+\lambda_{2})^{k}}{k!} e^{-(\lambda_{1}+\lambda_{2})}.$$

注意: 结论1,2可以推广为n个相互独立的随机变量。

81

#### 二、二维连续型随机变量的函数 Z=g(X,Y) 的概率分布

如果 (X,Y) 为二维连续型随机变量,且 (X,Y) 的密度函数为 f(x,y),则二维随机变量函数 Z=g(X,Y) 出现的情况比较复杂,此时Z=g(X,Y)可能为离散型随机变量,也可能为连续型随机变量,甚至为非离散型,也非连续型随机变量.





#### 例2 设二维随机变量(X,Y) $\square$ U(D), 其中平面区域

$$D = \{(x,y) \mid x^2 + y^2 \le 1\}, \diamondsuit Z = \begin{cases} 0, & XY > 0, \\ 1, & XY \le 0. \end{cases}$$
 求Z的概率分布.

由于Z的取值仅为0和1,所以Z为离散型随机变量,

$$P\{Z=0\} = P\{XY>0\}$$

$$= P\{X>0, Y>0\} + P\{X<0, Y<0\} = \frac{1}{2}$$

$$P\{Z=1\} = 1 - P\{Z=0\} = \frac{1}{2}.$$



故 
$$Z \square \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

当Z = g(X,Y)为连续型随机变量,(或部分既非离散型,也非连

续型随机变量),通常用下列分布函数法,求出Z的分布函数

$$F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\}$$

如果Z为连续型随机变量,则其分布函数为

$$= \iint_{g(x,y) \le z} f(x,y) dx dy, \quad -\infty < z < +\infty.$$

其密度函数为  $f_Z(z) = F_Z'(z), -\infty < z < +\infty.$ 

【注】 分布函数法的难点在于: 在计算 $F_z(z)$  的过程中, 经常需要对变量 z 进行分段讨论.



### 例3 设二维随机变量 (X,Y) 在矩形 $G = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀分布, 试求 S=XY 的概率密度 $f_s(s)$ .

#### 由题意知,S=XY其分布函数为

$$F_S(s) = P(S \le s) = P(XY \le s)$$

当  $s \le 0$  时,  $F_s(s) = 0$ ; 当  $s \ge 2$  时,  $F_s(s) = 1$ ;

当 0 < s < 2 时,利用几何概型得



$$F_{S}(s) = 1 - P\{XY > s\} = 1 - \frac{\int_{s}^{2} (1 - \frac{s}{x}) dx}{2} = \frac{1}{2}s + \frac{1}{2}s \ln \frac{2}{s}.$$

所以S的概率密度为
$$f_S(s) = F_S'(s) = \begin{cases} \frac{1}{2} \ln \frac{2}{s}, & 0 < s < 2, \\ 0, & s \in other \end{cases}$$



定理1 设二维随机变量(X,Y) 的密度函数为f(x,y),则 Z=X+Y的密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx \quad \text{if} \quad f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

如果 X和Y 相互独立,则Z=X+Y的密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z - x) dx$$
或
$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z - y) \cdot f_Y(y) dy$$

其中  $f_X(x)$ ,  $f_Y(y)$  分别为X和Y的密度函数,此公式称为 关于Z=X+Y的卷积公式。 注意记忆解题方法以及结论。

注意定理1的适用范围:已知什么?求什么?

以及特别情况。

【只证
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$
,另一种形式同理可证】

证 
$$Z = X + Y$$
 的分布函数为  $F_Z(z) = P\{Z \le z\} = P\{X + Y \le z\}$   
=  $\iint_{x+y \le z} f(x,y) dx dy = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} f(x,y) dy$ ,

令y = t - x,并交换积分次序,得

$$F_{Z}(z) = \int_{-\infty}^{+\infty} \left[ \int_{-\infty}^{z} f(x, t - x) dt \right] dx = \int_{-\infty}^{z} \left[ \int_{-\infty}^{+\infty} f(x, t - x) dx \right] dt,$$

由此可知,Z = X + Y为连续型随机变量,且其密度函数为  $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$ 



注: 类似定理1, Z = X - Y,  $\Rightarrow f_Z(z) = \int_{-\infty}^{+\infty} f(x, x - z) dx$ .

Z = aX + bY, ⇒ 类似求解:  $f_Z(z)$ 。





例4 设随机变量X和Y相互独立,且 $X \square N(0,1), Y \square N(0,1),$ 求 Z=X+Y的密度函数 $f_Z(z)$ .  $X+Y \square N(0,2)$ 

#### 解 由定理1知,Z=X+Y的密度函数为

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f_{X}(x) \cdot f_{Y}(z - x) dx$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - x)^{2}}{2}} dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}[x^{2} + (z - x)^{2}]} dx$$

$$= \frac{1}{2\pi} e^{-\frac{z^{2}}{4}} \int_{-\infty}^{+\infty} e^{-(x - \frac{z}{2})^{2}} dx = \frac{1}{2\pi} e^{-\frac{z^{2}}{4}} \int_{-\infty}^{+\infty} e^{-t^{2}} dt$$

$$= \frac{1}{2\pi} e^{-\frac{z^{2}}{4}} \times \sqrt{\pi} = \frac{1}{\sqrt{2}\sqrt{2\pi}} \exp\left\{-\frac{z^{2}}{2(\sqrt{2})^{2}}\right\}, -\infty < z < +\infty$$



#### 一般地,对于正态分布,有下列结论

#### 再生性或可加性

结论3(1)设随机变量X和Y相互独立,且 $X \square N(\mu_1, \sigma_1^2)$ ,

$$Y \square N(\mu_2, \sigma_2^2), \text{ If } Z = X + Y \square N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

即:独立正态分布之和仍为正态分布

(2) 设二维随机变量(X,Y)  $\square$   $N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$ , 则  $Z = X + Y \square N(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2)$ .

即:二维正态分布中两个随机变量之和仍为正态分布

注意:结论3(1)可以推广为n个相互独立的随机变量变量之和。 P113



【注】 如果随机变量 $X \square N(\mu_1, \sigma_1^2), Y \square N(\mu_2, \sigma_2^2),$  则未必有  $Z = X + Y \square N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$  也未必有  $(X,Y) \square N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho),$ 

【反例】  $\Diamond X \square N(\mu, \sigma^2)$ ,取 $Y = -X \square N(-\mu, \sigma^2)$ , 则有X + Y = 0. 显然 X + Y 不服从正态分布, (X,Y) 也不服从二维正态分布(反证法).

结论4 设二维随机变量(X,Y)服从二维正态分布

$$\begin{cases} U = aX + bY, \\ V = cX + dY, \end{cases} \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0,$$

则(U,V)也服从二维正态分布.



例5 设X,Y是两个相互独立的随机变量, $X \square U[0,1],Y \square e(1)$ . 求 Z=X+Y 的概率密度.

解 由于  $X \square U[0,1], Y \square e(1)$ ,其密度函数分别为

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & x \in other. \end{cases} \quad f_Y(y) = \begin{cases} e^{-y}, & y \ge 0, \\ 0, & y \in other. \end{cases}$$

由定理**1**,  $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$   $= \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z - x) dx$   $0 \le x \le 1,$ 





$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

$$= \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z - x) dx$$

$$0 \le x \le 1,$$
  
$$z - x \ge 0.$$

$$0 \le x \le 1, z - x \ge 0.$$

$$= \begin{cases} 0, & z \le 0, \\ \int_0^z 1 \cdot e^{-(z-x)} dx, & 0 < z < 1, \\ \int_0^1 1 \cdot e^{-(z-x)} dx, & z \ge 1. \end{cases}$$



$$= \begin{cases} 0, & z \le 0, \\ 1 - e^{-z}, & 0 < z < 1, \\ e^{-z} (e - 1), & z \ge 1. \end{cases}$$



#### 例6 设随机变量(X,Y) 的概率密度为

$$f(x,y) = \begin{cases} 3x, & 0 < x < 1, 0 < y < x, \\ 0, & (x,y) \in other. \end{cases}$$

#### 求 Z=X-Y 的概率密度函数.

解

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, x - z) \cdot \left| -1 \right| dx$$

$$0 < x < 1$$
,

$$0 < x - z < x.$$

$$\begin{array}{l}
 0 < x < 1, \\
 0 < x - z < x.
 \end{array} = \begin{cases}
 \int_{z}^{1} 3x dx, & 0 < z < 1, \\
 0, & z \in other.
 \end{array}$$



$$0 < x < 1$$
,

$$0 < z < x.$$

$$= \begin{cases} \frac{3}{2}(1-z^2), & 0 < z < 1, \\ 0, & z \in other. \end{cases}$$



方法二: 分布函数法





#### 厂分布及其可加性

先介绍两类函数:

(1) 
$$\Gamma$$
函数:  $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$   $(\alpha > 0)$ .

(2) *B*函数: 
$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$$
  $(p,q>0)$ . 两者关系为 $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$ .

Γ分布:

$$X$$
 服从 $Ga(\alpha,\lambda)$ : 概率密度为 $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} I_{\{x \geq 0\}};$ 

则可以证明: Γ分布有可加性.

即: X 服从 $Ga(\alpha_1,\lambda)$ , Y 服从 $Ga(\alpha_2,\lambda)$ , X 与Y 独立,

则
$$Z = X + Y$$
服从 $Ga(\alpha_1 + \alpha_2, \lambda)$ .

注: 
$$\lambda = \frac{1}{2}, \alpha = \frac{n}{2} \Rightarrow \chi^2$$
分布.



定理2

设二维随机变量(X,Y) 的密度函数为f(x,y),

则 
$$Z = \frac{X}{Y}$$
 的密度函数为 $f_Z(z) = \int_{-\infty}^{+\infty} f(yz, y) |y| dy$ .

如果 X和 Y 相互独立,则  $Z = \frac{X}{Y}$  的密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(yz) \cdot f_Y(y) \cdot |y| dy$$

其中 $f_X(x), f_Y(y)$  分别为X和Y的密度函数.

注: 类似定理2, 
$$Z = \frac{Y}{X}$$
,  $\Rightarrow f_Z(z) = \int_{-\infty}^{+\infty} f(x, xz) |x| dx$ .



#### 例7 设X,Y是两个独立同分布的随机变量,其密度函数为

$$f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000, \\ 0, & x \in other. \end{cases}$$

求 
$$Z = \frac{X}{Y}$$
 的概率密度.

$$\mathbf{f}_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(yz) \cdot f_{Y}(y) \cdot |y| dy$$

$$yz > 1000, y > 1000.$$

$$= \begin{cases} 0, & z = 0, \\ 1000 \int_{\frac{1000}{z}}^{+\infty} \frac{1}{y} \cdot \frac{1000}{y^2 z^2} dy, & 0 < z < 1, \\ 1000 \int_{1000}^{+\infty} \frac{1}{y} \cdot \frac{1000}{y^2 z^2} dy, & z \ge 1 \end{cases}$$



定理**3** 设随机变量X和Y相互独立,X的分布函数为 $F_X(x)$ ,Y的分布函数为 $F_Y(y)$ .

 $M = \max\{X,Y\}, N = \min\{X,Y\},$ 则 M和N的分布函数

分别为: 
$$F_M(z) = F_X(z)F_Y(z)$$
;

$$F_N(z) = 1 - [1 - F_X(z)][1 - F_Y(z)];$$

若随机变量 X和Y独立同分布F(x)(i.i.d.-

Independent and identically distributed)

$$F_M(z) = [F(z)]^2$$
,  
 $F_N(z) = 1 - [1 - F(z)]^2$ ;  
亦可推广到多个独立同分布的情形.



$$\begin{split} & \text{iff } F_M(x) = P\{M \leq x\} = P\{\max\{X,Y\} \leq x\} = P\{X \leq x,Y \leq x\} \\ & = P\{X \leq x\} P\{Y \leq x\} = F_X(x) F_Y(x); \\ & F_N(x) = P\{N \leq x\} = P\{\min\{X,Y\} \leq x\} = 1 - P\{\min\{X,Y\} > x\} \\ & = 1 - P\{X > x,Y > x\} = 1 - P\{X > x\} P\{Y > x\} \\ & = 1 - [1 - P\{X \leq x\}][1 - P\{Y \leq x\}] = 1 - [1 - F_X(x)][1 - F_Y(x)] \\ & = 1 - [1 - F_X(x)][1 - F_Y(x)] \end{split}$$



例8 设 $F_1(x), F_2(x)$ 是两个分布函数,其相应的密度函数

 $f_1(x), f_2(x)$ 连续,则必为密度函数的是(

$$(A) f_1(x) f_2(x)$$

$$(B)2f_1(x)F_2(x)$$

$$(C)F_1(x)f_2(x)$$

$$(D)f_1(x)F_2(x) + F_1(x)f_2(x)$$

例9 设随机变量 X,Y 独立同分布,且X的分布函数为F(x),

则 $Z = \max\{X,Y\}$  的分布函数为()

$$(A) H^2(x)$$

(B) 
$$F(x)F(y)$$

$$(C) 1 - [1 - F(x)]^2$$

(C) 
$$1-[1-F(x)]^2$$
 (D)  $[1-F(x)][1-F(y)]$ 





例10 设随机变量 X和Y相互独立,且  $X \square e(\lambda_1), Y \square e(\lambda_2),$  求  $Z = \min\{X,Y\}$ 的密度函数  $f_{7}(z)$ .

解 由于  $X \square e(\lambda_1), Y \square e(\lambda_2)$ ,有

$$F_X(x) = \begin{cases} 1 - e^{-\lambda_1 x}, & x \ge 0, \\ 0, & x < 0. \end{cases} \quad F_Y(y) = \begin{cases} 1 - e^{-\lambda_2 y}, & y \ge 0, \\ 0, & y < 0. \end{cases}$$

由定理3,  $Z = \min\{X, Y\}$  的分布函数为

$$F_{Z}(z) = 1 - [1 - F_{X}(z)][1 - F_{Y}(z)] = \begin{cases} 1 - e^{-(\lambda_{1} + \lambda_{2})z}, & z \ge 0, \\ 0, & z < 0. \end{cases}$$

$$Z = \min\{X, Y\} \square e(\lambda_1 + \lambda_2)$$



# 例**11**设X与Y相互独立,X的密度函数为f(x), $Y \square \begin{pmatrix} a & b \\ p & 1-p \end{pmatrix}$ 求 Z=X+Y的密度函数为 $f_Z(z)$ .

$$\begin{split} \text{\textit{fi}} & F_Z(z) = P\{Z \leq z\} = P\{X + Y \leq z\} \\ & = P\{Y = a, X \leq z - a\} + P\{Y = b, X \leq z - b\} \\ & = P\{Y = a\}P\{X \leq z - a\} + P\{Y = b\}P\{X \leq z - b\} \\ & = p\int_{-\infty}^{z - a} f(t)dt + (1 - p)\int_{-\infty}^{z - b} f(t)dt \end{split}$$

#### 求导可得Z的密度函数为

$$f_Z(z) = F_Z'(z) = pf(z-a) + (1-p)f(z-b).$$



#### 2016数学一,三

设二维随机变量 (X,Y) 在区域  $D=\{(x,y) \ | \ 0 < x < 1, x^2 < y < \sqrt{x}\}$  上服从均匀分布,令  $U=\begin{cases} 1, \ X \leq Y, \\ 0, \ X > Y. \end{cases}$ 

- (1) 写出 (X,Y) 的概率密度;
- (2) 问U与X是否相互独立?并说明理由;
- (3) 求Z=U+X的分布函数 $F_Z(z)$ .

解 (1) 
$$S_D = \iint_D dx dy = \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy = \frac{1}{3}.$$
 故  $(X,Y)$  的概率密度为  $f(x,y) = \begin{cases} 3, & (x,y) \in D, \\ 0, & other. \end{cases}$ 



#### (2) 方法一(举反例)

$$P\{U=1\} = P\{X \le Y\} = \frac{1}{2}; \ P\{X \le \frac{1}{4}\} = \int_0^{\frac{1}{4}} dx \int_{x^2}^{\sqrt{x}} 3 dy = \frac{15}{64};$$

$$P\{U=1, X \le \frac{1}{4}\} = P\{X \le Y, X \le \frac{1}{4}\} = \int_0^{\frac{1}{4}} dx \int_x^{\sqrt{x}} 3 dy = \frac{5}{32}.$$
因为 
$$P\{U=1, X \le \frac{1}{4}\} \neq P\{U=1\} \cdot P\{X \le \frac{1}{4}\}$$
故 X和 U不独立.

方法二  $E(XU) \neq EX \cdot EU$ .

(3) 
$$F_Z(z) = P\{Z \le z\} = P\{X + U \le z\}$$
  
 $\exists z < 0, \ F_Z(z) = 0; \quad \exists z \ge 2, \ F_Z(z) = 1;$   
 $\exists 0 \le z < 1, \ F_Z(z) = P\{U + X \le z\}$   
 $= P\{U = 1, U + X \le z\} + P\{U = 0, U + X \le z\}$   
 $= P\{X \le Y, X \le z - 1\} + P\{X > Y, X \le z\}$   
 $= 0 + \int_0^z dx \int_{x^2}^x 3dy = \frac{3}{2}z^2 - z^3.$ 

当 
$$1 \le z < 2$$
,  $F_Z(z) = P\{U + X \le z\}$   
 $= P\{X \le Y, X \le z - 1\} + P\{X > Y, X \le z\}$   
 $= \int_0^{z-1} dx \int_x^{\sqrt{x}} 3dy + \frac{1}{2} = 2(z-1)^{\frac{3}{2}} - \frac{3}{2}(z-1)^2 + \frac{1}{2}.$ 

