Digital Logic Systems – Registers, Counters and Memory Units- II

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

Previously...

- Synchronous sequential circuits for special purposes:
 - Registers
 - Counters
 - Memory Units
- Registers
 - Register with parallel load
 - Shift registers
 - Universal Shift Register

Counters

- Two types of MSI Counters
 - Ripple Counters: a flip-flop output transition serves as a source for triggering other flip-flops.
 - the C input of some or all flip-flops are triggered not by the common clock pulses, but rather by the transition that occurs in other flip-flop outputs.
 - Synchronous Counters: the C input s of all flip -flops receive the common clock.

- A binary ripple counter consists of a series connection of complementing flip-flops with the output of each flip-flop connected to the C input of the next higher order flip-flop.
- The flip-flop holding the least significant bit receives the incoming count pulses
- A complementing flip-flop can be obtained from:
 - JK flip-flops by tieding J and K inputs together.
 - T flip-flops
 - D flip-flop with the complement output connected to the *D* input.

- 4 bit binary ripple counter:
 - JK inputs are 1. What does that mean?
 - Flip-flops will complement each time they are triggered.
 - Circle in the clock input implies that the flip-flop is negative edge triggered.

• Counting sequence:

	Sayma Sırası				
A ₄	A ₃	A ₂	A ₁		
0	0	0	0	Complement of A ₁	
0	0	0	1	Complement of A ₁	$A_1 \rightarrow 0$, A_2 is complemented
0	0	1	0	Complement of A ₁	
0	0	1	1	Complement of A ₁	$A_1 \rightarrow 0$, A_2 is complemented
					$A_2 1 \rightarrow 0$, A_3 is complemented
0	1	0	0	Complement of A ₁	
0	1	0	1	Complement of A ₁	$A_1 \rightarrow 0$, A_2 is complemented
0	1	1	0	Complement of A ₁	
0	1	1	1	Complement of A ₁	$A_1 \rightarrow 0$, A_2 is complemented
					$A_2 1 \rightarrow 0$, A_3 is complemented
					$A_3 \rightarrow 0$, A_4 is complemented
1	0	0	0		

- The flip-flops change one at a time in succession, and the signal propagates through the counter in a ripple fashion from one stage to the next.
- Ripple counters are asynchronous counters.

Ripple Counter

inary Countdown Counter: A binary counter with a everse count.

- the binary count is decremented by I with every input count pulse.
- The count of a four-bit countdown counter starts from binary 15 and continues to binary counts 14,13,12,...,0. and back to 15.
- If the outputs are obtained from Q' instead of Q then a binary countdown counter is obtained.
 - The least significant bit is complemented at each pulse.
 - Other bits are coplemented when a previous bit goes from 0 to 1.
 - Either all flip-flops are positive edge triggered.
 - Or the C inputs of flip-flops are obtained from Q' of the previous flip-flop.

- Decimal Counter 0-1-2-...-9-0
- How many flip-flops are required to represent a decimal?
 - 4
- State diagram?

- Logic circuit:
- What does this circuit tell?
 - When are the each Flip-flop triggered?
 - Do you remember the JK flip-flop characteristic table?

JK Flip-Flop						
J	K	Q(t +	1)			
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
1	1	Q'(t)	Complement			

• It is an asynchronous sequential circuit, can not be designed in the same way as the synchronous sequential circuits.

- State transition conditions for each flip-flop:
 - 1. Q_1 is complemented at each negative edge of the counr signal.
 - 2. If $Q_8=0$ and Q_1 goes from 1 to 0 Q_2 is complemented. If $Q_8=1$ and Q_1 goes from 1 to 0 Q_2 is reset to 0.
 - 3. If Q_2 goes from 1 to 0 Q_4 is complemented.
 - 4. If $Q_4Q_2=11$ and Q_1 goes from 1 to 0 Q_8 is complemented. If either Q_4 or Q_2 is 0 and Q_1 goes from 1 to 0 Q_8 is reset to 0.

- State transition conditions for each flip-flop:
 - 1. Q_1 is complemented at each negative edge of the counr signal.
 - 2. If Q_8 =0 and Q_1 goes from 1 to 0 Q_2 is complemented. If Q_8 =1 and Q_1 goes from 1 to 0 Q_2 is reset to 0.
 - 3. If Q_2 goes from 1 to 0 Q_4 is complemented.
 - 4. If $Q_4Q_2=11$ and Q_1 goes from 1 to 0 Q_8 is complemented. If either Q_4 or Q_2 is 0 and Q_1 goes from 1 to 0 Q_8 is reset to 0.

- The counter counts from 0 to 9.
- How to count from 0 to 99:
 - Need two bcd ripple counters
- How to count from 0 to 999:
 - Need three bcd ripple counters.
- Need as many counters as the number of digits.
- The Q₈ output of the previous counter is applied as the count pulse to the counter at a higher digit.
- When Q₈ goes from 1 to 0 the content of counter goes from 9 to 0 and the counter at the higher order is triggered to start counting. Example: 399→ 400

Problem

- Which states are the unused states in a BCD Ripple Counter? Determine the next state for each of the unused state. Can the counter correct itself?
 - 1. Q_1 is complemented at each negative edge of the count signal.
 - 2. If $Q_8=0$ and Q_1 goes from 1 to 0 Q_2 is complemented. If $Q_8=1$ and Q_1 goes from 1 to 0 Q_2 is reset to 0.
 - 3. If Q_2 goes from 1 to 0 Q_4 is complemented.
 - 4. If Q_4Q_2 =11 and Q_1 goes from 1 to 0 Q_8 is complemented. If either Q_4 or Q_2 is 0 and Q_1 goes from 1 to 0 Q_8 is reset to 0.

Problem..

Unused states:

1010,1011,1100,1101,1110,1111

- Properties of the circuit:
 - 1. Q_1 is complemented at each negative edge of the counr signal.
 - 2. If $Q_8=0$ and Q_1 goes from 1 to 0 Q_2 is complemented. If $Q_8=1$ and Q_1 goes from 1 to 0 Q_2 is reset to 0.
 - 3. If Q_2 goes from 1 to 0 Q_4 is complemented.
 - 4. If $Q_4Q_2=11$ and Q_1 goes from 1 to 0 Q_8 is complemented. If either Q_4 or Q_2 is 0 and Q_1 goes from 1 to 0 Q_8 is reset to 0.

Şimdiki Durum				Sonraki Durum			
Q8	Q4	Q2	Q1	Q8	Q4	Q2	Q1
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Can the counter correct itself?

Present State				Next State			
1	0	1	0	1	0	1	1
1	0	1	1	0	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	0	1	0	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0

References

• Morris Mano, Digital Design, 2nd edition