Name: Akhilesh Yadav

SR.no: 17410

No	cross_prob	mut_prob	Output
1	0	0	1.25898E+30
2	0	0.111	1.26764E+30
3	0	0.222	1.26753E+30
4	0	0.333	1.26765E+30
5	0	0.444	1.26765E+30
6	0	0.556	1.26765E+30
7	0	0.667	1.26765E+30
8	0	0.778	1.26765E+30
9	0	0.889	1.26765E+30
10	0	1	1.26765E+30
11	0.111	0	1.2597E+30
12	0.111	0.111	1.26765E+30
13	0.111	0.222	1.26765E+30
14	0.111	0.333	1.26765E+30
15	0.111	0.444	1.26765E+30
16	0.111	0.556	1.26765E+30
17	0.111	0.667	1.26765E+30
18	0.111	0.778	1.26765E+30
19	0.111	0.889	1.26765E+30
20	0.111	1	1.26765E+30
21	0.222	0	1.26715E+30
22	0.222	0.111	1.26765E+30
23	0.222	0.222	1.26765E+30
24	0.222	0.333	1.2676E+30
25	0.222	0.444	1.26765E+30
26	0.222	0.556	1.26765E+30
27	0.222	0.667	1.26765E+30
28	0.222	0.778	1.26765E+30
29	0.222	0.889	1.26765E+30
30	0.222	1	1.26765E+30
31	0.333	0	1.23606E+30
32	0.333	0.111	1.26764E+30
33	0.333	0.222	1.26761E+30
34	0.333	0.333	1.26757E+30
35	0.333	0.444	1.26765E+30
36	0.333	0.556	1.26765E+30
37	0.333	0.667	1.26765E+30
38	0.333	0.778	1.26765E+30
39	0.333	0.889	1.26765E+30
40	0.333	1	1.26765E+30
41	0.444	0	1.24707E+30
42	0.444	0.111	1.26749E+30
43	0.444	0.222	1.26765E+30
44	0.444	0.333	1.26765E+30

45	0.444	0.444	1.26765E+30
46	0.444	0.556	1.26763E+30
47	0.444	0.667	1.26765E+30
48	0.444	0.778	1.26765E+30
49	0.444	0.889	1.26765E+30
50	0.444	1	1.26765E+30
51	0.556	0	1.26583E+30
52	0.556	0.111	1.26638E+30
53	0.556	0.222	1.26765E+30
54	0.556	0.333	1.26765E+30
55	0.556	0.444	1.26765E+30
56	0.556	0.556	1.26765E+30
57	0.556	0.667	1.26765E+30
58	0.556	0.778	1.26765E+30
59	0.556	0.889	1.26765E+30
60	0.556	1	1.26765E+30
61	0.667	0	1.24566E+30
62	0.667	0.111	1.2676E+30
63	0.667	0.222	1.26763E+30
64	0.667	0.333	1.26764E+30
65	0.667	0.444	1.26765E+30
66	0.667	0.556	1.26761E+30
67	0.667	0.667	1.26765E+30
68	0.667	0.778	1.26765E+30
69	0.667	0.889	1.26765E+30
70	0.667	1	1.26765E+30
71	0.778	0	1.26624E+30
72	0.778	0.111	1.26502E+30
73	0.778	0.222	1.26455E+30
74	0.778	0.333	1.26765E+30
75	0.778	0.444	1.26764E+30
76	0.778	0.556	1.26703E+30
77	0.778	0.667	1.26765E+30
78	0.778	0.778	1.26765E+30
79	0.778	0.889	1.26765E+30
80	0.778	1	1.26765E+30
81	0.889	0	1.26716E+30
82	0.889	0.111	1.25651E+30
83	0.889	0.222	1.2675E+30
84	0.889	0.333	1.26757E+30
85	0.889	0.444	1.26687E+30
86	0.889	0.556	1.2664E+30
87	0.889	0.667	1.26765E+30
88	0.889	0.778	1.26765E+30
89	0.889	0.889	1.26757E+30
90	0.889	1	1.26765E+30
91	1	0	1.26736E+30
92	1	0.111	1.25865E+30
93	1	0.222	1.25613E+30
94	1	0.333	1.2579E+30
95	1	0.444	1.26178E+30

96	1	0.556	1.26088E+30
97	1	0.667	1.2664E+30
98	1	0.778	1.26695E+30
99	1	0.889	1.26729E+30
100	1	1	1.26448E+30
101		best is	
102	0.778	1	1.26765E+30