Преобразование базиса Грёбнера нульмерного идеала к иному мономиальноальному упорядочению.

Федоров Глеб М33351 $\label{eq: 1.1}$ Октябрь 2020

- 1 Оглавление
- 1.1 Постановка проблемы
- 1.2 Дополнительная теория
- 1.3 Алгоритм FGLM
- 1.4 Примерная архитектура программы
- 1.5 Используемая литература

2 Постановка проблемы

Дан базис Грёбнера нульмерного идеала, построенный на мономиальном упорядочении m_1 . Привести данный базис к иному мономиальному упорядочению m_2 .

3 Дополнительная теория

3.1 Исключающий идеал

Определение: Пусть дан $I = \langle f_1, \dots, f_n \rangle \in F[x_1, \dots, x_n]$. Тогда l-м исключающим идеалом I_l называется идеал в $F[x_{l+1}, \dots, x_n]$, равный $I \cup F[x_{l+1}, \dots, x_n]$.

Теорема(об исключении): Пусть $I \subset F[x_1, x_2, \dots, x_s]$ - идеал и G - его базис Грёбнера по отношению к lex-упорядочению с $x_1 > x_2 > \dots > x_n$. Тогда $\forall l: 0 \leq l \leq n$ множество

$$G_l = G \cap F[x_1, x_2, \dots, x_s]$$

является базисом Грёбнера l-го исключающего идеала I_l .

Доказательство: Зафиксируем l в интервале (0, n). Так как $G_l \in I_l$ по построению, достаточно показать, что

$$< LT(I_l) > = < LT(G_l) >$$

(по определению базиса Грёбнера). Включение в одну сторону очевидно($< LT(G_l) > \in < LT(I_l) >$ по построению). Докажем, что $< LT(I_l) > \in < LT(G_l) >$. Для этого достаточно показать что LT(f), где $f \in I_l$, делится на некоторый $g \in G_l$. Заметим, что $f \in I$, то есть LT(f) делится на LT(g) для некоторго g(т.к. G является базисом Грёбнера иделала I). Так как $f \in I_l$, то LT(g) содержит только переменные x_{l+1}, \ldots, x_n . Так как используется lex-упорядочении с $x_1 > x_2 > \ldots > x_n$, то любой моном, содержащий хотя бы одну из переменных x_1, \ldots, x_l , больше всех мономов из $F[x_{x+1}, \ldots, x_n]$. Значит $g \in G_l$, что и требовалось доказать.

3.2 Соответсвие иделала и многообразия

Определение: Пусть $I \in F[x_1,\ldots,x_n]$ - некоторый идеал. Положим

$$V(I) = (a_1, \dots, a_n) \in F^n : f(a_1, \dots, a_n) = 0 \forall f \in I$$

Теорема: V(I) является аффинным многообразием. В частности, если $I=< f_1,\dots,f_n>$, то $V(I)=V(f_1,\dots,f_n)$

Доказательство: По теореме Гильберта о базисе идеал I конечно порождён, $I=< f_1,\ldots,f_n>$. Покажем, что $V(I)=V(f_1,\ldots,f_n)$. Если $f(a_1,\ldots,a_n)=0$ для всех полиномов $f\in I$, то $f_i(a_1,\ldots,a_n)=0$ (так как $f_i\in I$). Следовательно, $V(I)\in V(f_1,\ldots,f_n)$. С другой стороны, пусть $(a_1,\ldots,a_n)\in V(f_1,\ldots,f_n)$, и пусть $f\in I$. Так как $I=< f_1,\ldots,f_n>$, то

$$f = \sum_{i=1}^{s} h_i f_i$$

для некоторых $h_i \in F[x_1,\ldots,x_n]$. Но тогда

$$f(a_1, \dots, a_n) = \sum_{i=1}^s h_i(a_1, \dots, a_n) f_i(a_1, \dots, a_n) = \sum_{i=1}^s h_i(a_1, \dots, a_n) * 0 = 0$$

Следовательно, $V(f_1,\ldots,f_n)\in V(I)$, а значит эти два идеала равны. Следствие: Многообразия определены идеалами.

3.3 Нульмерный идеал

Теорема: Пусть поле F алгебраически замкнуто и $I \in F[x_1, x_2, \dots, x_n]$. Тогда следующие условия эквивалентны:

- 1. Алгебра $A = F[x_1, x_2, \dots, x_n]$ I конечномерна над F.
- 2. $V(I) \subset F^n$ конечно.
- 3. Если G базис Грёбнера идеала I, то

$$\forall i \exists m_i \ge 0 : x_i^{m_i} = LM(g)$$

для некоторого $g \in G$.

4. Для каждой переменной x_i исключающий идеал $I\cap F[x_1,x_2,\dots,x_n]$ является ненулевым.

Доказательство: Идеал, удовлетворяюзий данной теореме называется нульмерным

4 Алгоритм FGLM

5 Используемая литература

- $1. \ http://halgebra.math.msu.su/groebner.pdf$
- 2. Кокс Д., Литтл Дж., О'Ши Д. Идеалы, многообразия, кольца. Стр. 108. Стр. 153.
- ${\it 3. https://www.math.lsu.edu/system/files/Groeb}_p resentation_final.pdf$