

INTRODUCCIÓN A LA BIOINFORMÁTICA

DE ECOLOGIA

UNAM

JAZMÍN SÁNCHEZ PÉREZ

LICENCIATURA EN CIENCIAS GENÓMICAS

DRA. VALERIA SOUZA

INSTUTO DE ECOLOGÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

CENERACIO EDIT MASTER TITLE

- Introducción al estudio de genomas
- Ensamble de genomas
 Click to edit the outline text format
 Calidad de genomas
 Second Outline Level

 - Anotación outline Level
 - Filogenias decgendm@utline Level
- Unidad V Metagehömi Qutline Level
 - Sixth Outline Level
 Introducción al estudio de metagenómica
- Seventh Outline LevelClick to edit Master text styles Metabarcording (Anotación taxonomica)
 - Second level
 Shotgun metagenomics (Anotación taxónomica y funcional)
 - Third levelIndices de diversidad Fourth level
 - R como herramienta Fifth level

- -OMICS es en sufijo que describe algo grande, y se refiere al campo de estudio de las ciencias de la vida que se enfoca en información a grande escala.
- "The other twist to "omics" may be associated with the "Om" (pronounced "Aum"), an ancient Sanskrit intonation, which, like music, transcends the barriers of age, race, culture, and even species."

¿QUÉ ES GENÓMICAS?

En un McDonald's Raw Bar, con una cerveza en la mano y unos amigos...

Dr. Thomas H. Roderick, en 1986, acuña el termino genomics, como nombre para una revista que tratara de temas del genoma humano.

(Beer, Bethesda, and biology: how "genomics" came into being.)

76 – Viral RNA-genome bacteriofago MS2

95 – El primer genoma eucarionte secuenciado S.cerevisiae

996 – Ciencias de Datos

1016 – Secuencia del Genoma Humano

"In 2012, when Harvard Business Review called it "The Sexiest Job of the 21st Century", the term "data science" became a buzzword."

GENOMICA

TOOLS & GENOME ASSEMBLE

CDATE TRANSFIT WEBSTER TITLE STYLE

4 000 400

Global statistics

Global statistics

Total assurance length

OHCKRIG EDIT MASTER TITLE

chemotaxis protein CheR [Borreliella afzelii]

GenBank: APJ09116.1

GenPept Identical Proteins Graphics

>APJ09116.1 chemotaxis protein CheR [Borreliella afzelii]
MNQNKFNLNINITKDELFRLIKIVYNNFGINLSEKKKMLIESRLSSLLKVKGFKNFTEYIDFLEKSAGNL
QLIELVDKISTNHTYFFRESKHFDFLNNKILPKLAEKILKSENSEIRIWSAGCSSGEEPYTIAMILKEYM
ENNKVNFKVKILATDISISVLHEAYEGIYPEDRTINLPKYLKTKYLNQLKDNKFQVKEILKKMVYFKKLN
LMDEKFPFSKKFDLIFCRNVMIYFDEKTRNDLANKFNYYLKNDSYLLIGHSETIRGNKNLKYIMPATYKK
N

FASTQ FORMAT

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>CCCCCCC65
```


ENSAMBLE DE GENOMAS

ERRAPHE HE GENSHERSTITLE Ensamble de novo incluye dos partes:

- El ensamble de la secuencia de nucleótidos
- La anotación. La descripción de los elementos funcionales y estructurales
 Click to edit the outline text format dentro de la secuencia
 Second Outline Level

Desventajas: Outline Level

- Se necesitatonuch Otienne un genoma de eucarionte el ensamble puede tardar nfifses Ouitir esceptos. Un programa de ensamble o de anotación puede • content de la content de l
- Seve Sehn Englithe murel Chithero edita Master reixcistyles
 - Secnedesited mucho poder computacional
 - Third level
- La pregunta importante es: "¡Realmente necesito un genoma ensamblado y anotado para mi resolver pregunta de investigación?"

CHECKLIST PARA ANTES DE DISENAR TU PROYECTO DE ENSAMBLE DE GENOMA: CELECTION DE LA COMPANION D STYLE Para la extracción de ADN, seleccionar un individuo que sea un buen

- representante de la especie y que pueda proveer suficiente ADN
- Extralerona dix AHD Nudlish que xur forson necesitar.
 - Second Outline Level
- Recordar extraer ARN y secuenciar ARN, esto es muy funcional a la hora de ensamblar transcriptoma y para la anotación de funciones.
- Fifth Outline Level

 Decidir de manera temprana que tecnología de secuenciación se va a

 usar y que herramientas de ensambles. no quieres terminar con
- Savanta Contine her plettes ten attitude Masterutate tiety sograma.
 - Second level
 - Third level
 - Fourth level
 - Fifth level

- Tamaño del Genoma
 - El número de lecturas (reads) depende del tamaño del
- Clighetonedimentine outding the text content to
- Second Outline Level Repeticiones

 - La cantidad y distribución de las repeticiones modifican la calidad del ensamble. Entre más repeticiones es mejor usar Fifth Outline Level lecturas largas.
 - Sixth Outline Level
- Heterocigosidad Seventh Outline LevelClick to edit Master text styles

 - Los programas de ensamble colapsan alelos, si hay alta
 Second level heterocigosidad las regiones homologas serán detectadas combired by the differentes.
- Niveles de ploidia
 Fifth level
 - Mejor usar tejidos haploides
- Contenido de GC
 - Niveles bajos o altos de GC en ciertas regiones causan problemas en ciertos secuenciadores como llumina.

Sequoia sempervirens

II cromosomas Hexaploide

Opuntia ficus-indica

II cromosomasOctoploide

- Tamaño del Genoma
 - El número de lecturas (reads) depende del tamaño del
- Clighetonedimentine outding the text content to
- Second Outline Level Repeticiones

 - La cantidad y distribución de las repeticiones modifican la calidad del ensamble. Entre más repeticiones es mejor usar Fifth Outline Level lecturas largas.
 - Sixth Outline Level
- Heterocigosidad Seventh Outline LevelClick to edit Master text styles

 - Los programas de ensamble colapsan alelos, si hay alta
 Second level heterocigosidad las regiones homologas serán detectadas combired by differentes.
- Niveles de ploidia
 Fifth level
 - Mejor usar tejidos haploides
- Contenido de GC
 - Niveles bajos o altos de GC en ciertas regiones causan problemas en ciertos secuenciadores como llumina.

UTRAS E USAS ATOMARAS GUENTAT LE Sto intentar hacer pool de individuos.

- Esto causa heterozigosidad en las secuencias.

- Whole Genome Amplification.
 Click to edit the outline text format

 Sepueden grear secuencias quiméricas al fusionar secuencias que no están relacionadas.
 Third Outline Level
- Presencia defourtos Contina ilsemols.
 - Puede haber contaminación de otros organismos que se introducen en el laboratorio, ADN humano, etc.
- Seventh Outline LevelClick to edit Master text styles ADN de organelos.

 - Second level
 En ciertas células hay una mayor cantidad de ADN mitocondria o de cloroplastos
 - Fourth level
 - Fifth level

- Tamaño del Genoma
 - El número de lecturas (reads) depende del tamaño del
- Clighetonedimentine outding the text content to
- Second Outline Level Repeticiones

- La cantidad y distribución de las repeticiones modifican la calidad del ensamble. Entre más repeticiones es mejor usar Fifth Outline Level lecturas largas.

Sixth Outline Level

Heterocigosidad Seventh Outline LevelClick to edit Master text styles

 Los programas de ensamble colapsan alelos, si hay alta
 Second level heterocigosidad las regiones homologas serán detectadas combired by differentes.

Niveles de ploidia
 Fifth level

- Mejor usar tejidos haploides
- Contenido de GC
 - Niveles bajos o altos de GC en ciertas regiones causan problemas en ciertos secuenciadores como llumina.

ISENGENTALIMANTER TELEFORE

SECUENCIACIÓN LEVEL

SIXTH OUTLIN E LEVEL

SEVENTH OUTLINE LEVELCLICK TO EDIT MEXICUDIX EXENSERVACEÓN

- •• Iluation to lead it a three rotutline text
- format
 Son mas baratos
 Second Outline Level
- Mayor cobentua Outline Level
- Problemas confedite de GC
 repetidas y confedite de GC
 Fifth Outline
- Lecturas de ~36 bp hasta ~500 bp
 - Sixth
 Outline
 Level
- Seventh Outline LevelClick to edit Master text styles

Sacand laval

SEVENTH OUTLINE LEVELCLICK TO EDIT MENSCIERAT SX IN ISRACESN

- • PacBiok yto Nadio pto ecoutline text
- Son mas caros
 Second Outline Level
- Lecturas de may or tamaño Jo,00 bp hasta 100,000 hph Outline
- Ensamblan mejor zonas repetidas (genomas de eucariontes) Level
- No son accesibles en todas los países Outline
- Mayores requerimientos edella
- **Selventhd Qual Dival** Level Click to edit Master text styles

Socond lovel

2nd Generation Sequencing Overview

- Tamaño del Genoma
 - El número de lecturas (reads) depende del tamaño del
- Clighetonedimentine outding the text content to
- Second Outline Level Repeticiones

- La cantidad y distribución de las repeticiones modifican la calidad del ensamble. Entre más repeticiones es mejor usar Fifth Outline Level lecturas largas.

Sixth Outline Level

Heterocigosidad Seventh Outline LevelClick to edit Master text styles

 Los programas de ensamble colapsan alelos, si hay alta
 Second level heterocigosidad las regiones homologas serán detectadas combired by differentes.

Niveles de ploidia
 Fifth level

- Mejor usar tejidos haploides
- Contenido de GC
 - Niveles bajos o altos de GC en ciertas regiones causan problemas en ciertos secuenciadores como llumina.

CERTABLE DE CHASTESTITLE STYLE

MISIÓN: formar secuencias lo más largas posible con el menor número de gaps.

- Second Outline Level
 - Third Outline Level
 - Fourth Outline Level
 - Fifth Outline Level
 - Sixth Outline Level
- Seventh Outline LevelClick to edit Master text styles
 - Second level
 - Third level
 - Fourth level
 - Fifth level

Figure 2. General steps in a genome assembly workflow. Input and output data are indicated for each step.

ENSAMBLEDIT MASTER TITLE STOOMTROLES DE CALIDAD

- • Baseidaltingeditcthracyutline text format
- Second Outline Level
 Trimming: eliminar adaptadores y eliminar zonas con poca calidad
 Third Outline Level
- FASTQC: https://www.biginfarmatics.babraham.ac.uk/projects/fastqc/
 - Fifth Outline Level
 - Sixth Outline Level
- Seventh Outline LevelClick to edit Master text styles
 - Second level
 - Third level
 - Fourth level
 - Fifth level

№FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

OPER DASE SEQUENCE QUALITY

№FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

OPER DASE SEQUENCE QUALITY

LEVEL

CHSAMBLE DIT MASTER TELEFE

SIXTH

SIXTH

SIXTH

OUTLIN
E LEVEL

SEVENTH OUTLINE LEVELCLICK TO EDIT BIRAS JT EIRGREAKPIHSTYLES

- • Galialdiæedianthequetlimæserat los solorenapamientos entre los elemenes on Outline Level
 - Third Outline Level
- Trabaja con k-meros Fourth Outline
- Menos tiempo lævelputacional
 - Fifth Outline Level
 - Sixth Outline Level
- Seventh Outline LevelClick to edit Master text styles

Cocond loval

SEVENTH OUTLINE LEVELCLICK TO EDIT

LEVEL

 Seventh Outline LevelClick to edit Master text styles

Socond lovel

LEVEL LEVEL

CHSKNEEDIT MASTER TELLE

2. ENSAMBLE DELA SECUENCIA

• SIXTH OUTLIN E LEVEL

SEVENTH OUTLINE LEVELCLICK TO EDIT MASTER TEXT STYLES

- Click to edit the outline text format
 - Second Outline Level
 - Third Outline Level
 - Fourth OutlineLevel
 - Fifth Outline Level
 - Sixth Outline Level
- Seventh Outline LevelClick to edit Master text styles

SEVENTH OUTLINE

DEVERIL CAPIC LA YOUED IT

MANTENS BX (CSITCY)LES

• • SeGlisakntoáseptát a Hecountaisn ea teats

Second level

Second level

LEVEL

CHSAMBLE DIT MASTER TELEFE

SIXTH

SIXTH

SIXTH

OUTLIN
E LEVEL

SEVENTH OUTLINE LEVELCLICK TO EDIT BIRAS JT EIRGREAKPIHSTYLES

- • Galialdiæedianthequetlimæserat los solorenapamientos entre los elemenes on Outline Level
 - Third Outline Level
- Trabaja con k-meros Fourth Outline
- Menos tiempo lævelputacional
 - Fifth Outline Level
 - Sixth Outline Level
- Seventh Outline LevelClick to edit Master text styles

Cocond loval

SEVENTH OUTLINE LEVELCLICK TO EDIT

LEVEL

 Seventh Outline LevelClick to edit Master text styles

Socond lovel

ENSKMELEDIT MASTER TITLE R QUE ESTA LISTO - CALIDAD

- •• Notick to edit the outline text format
 - Metrond and international grande mejor.
 - Third Outline Level

 Es el tamano del scaffold o contig más pequeño que, sumano con los más largos que él, deben cubrir el 50% del genoma
- Usar varios ensambladores y compararlos, correr el mismo ensamblador con Seventh Outline Level Click to edit Master text styles distintos parámetros – Second level

 - Quast para comparar
 Third level
- Determinar quantos genes de proteínas tiene el ensamble
 - herramienta BUSCIO el

WBKATA ENIT MASTER TITLE TACIÓN ESTRUCTURAL

- •¿Dolitekettáne this genesoxualiqué sexparfegen a sobre todo genes que codifican para proteínas
 - Second Outline Level
 - · INTRIBUSER Cevel
- Se centra en la FARSTAN AUSTINE LENGA Fifth Outline Level de la secuencia
 - Sixth Outline Level
- Es intesivo ya que se necesitan crear Zonas que codificiente Dutline LevelClick to edit Master text styles modelos y los software tienen que Sitios de splicing
 - Second level entrenarse y optimizarse.
- Son específicos para cada genoma
 - Fifth level

EXTRÍNSECO

- Utiliza información adicional a la secuencia como lo son:
 - Zonas que codifican para proteínas

 - Transcritos
- Es universal
- Se utilizan bases de datos. usualmente de polipéptidos
- No da información estructural del gen

WBKATA ENIT MASTER TITLE TACIÓN ESTRUCTURAL

- •¿Dolitekettáne this genesoxualiqué sexparfegen a sobre todo genes que codifican para proteínas
 - Second Outline Level
 - · INTRIBUSER Cevel
- Se centra en la FARSTAN AUSTINE LENGA Fifth Outline Level de la secuencia
 - Sixth Outline Level
- Es intesivo ya que se necesitan crear Zonas que codificiente Dutline LevelClick to edit Master text styles modelos y los software tienen que Sitios de splicing
 - Second level entrenarse y optimizarse.
- Son específicos para cada genoma
 - Fifth level

EXTRÍNSECO

- Utiliza información adicional a la secuencia como lo son:
 - Zonas que codifican para proteínas

 - Transcritos
- Es universal
- Se utilizan bases de datos. usualmente de polipéptidos
- No da información estructural del gen

ANGKATA ENIT MASTER TITLE TACIÓN FUNCIONAL

- · Asignar infromación biológica relevante como predicción de polipeptidos y
- Isliedpeateditiehlooytlineetestikamat
- Second Outline Level
 Dos objetivos principales
 Third Outline Level

 - Asignar elementos funcionales a genes
 - Hacer una revisión de calidad percelos genes precedidos
 - Sixth Outline Level
- Seventh Outline LevelClick to edit Master text styles
 - Second level
 - Third level
 - Fourth level
 - Fifth level

