1

NCERT-10.4.3.3.1

S. Sai Akshita - EE24BTECH11054

Question: Find the roots of the following Equation:

$$x - \frac{1}{x} = 3, x \neq 0 \tag{1}$$

Theoretical Solution: To eliminate the fraction, multiply 1 through by x (valid because $x \neq 0$):

$$x^2 - 1 = 3x. (2)$$

Rearranging terms gives the quadratic equation:

$$f(x) = x^2 - 3x - 1 = 0. (3)$$

Comparing this with the following equation:

$$ax^2 + bx + c = 0 \tag{4}$$

We get a = 1, b = -3, c = -1.

We solve this quadratic equation using the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},\tag{5}$$

Substituting the values:

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-1)}}{2(1)}. (6)$$

Simplify the expression:

$$x = \frac{3 \pm \sqrt{9 + 4}}{2} \tag{7}$$

$$x = \frac{3 \pm \sqrt{13}}{2}. (8)$$

Thus, the solutions are:

$$\alpha = \frac{3 + \sqrt{13}}{2} \approx 3.3028 \text{ and } \beta = \frac{3 - \sqrt{13}}{2} \approx -0.3028.$$
 (9)

Since $x \neq 0$, both solutions are valid.

Solution by using Newton-Raphson method: To apply the Newton-Raphson method, we use the iterative formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},\tag{10}$$

where f'(x) is the derivative of f(x). The derivative of f(x) is:

$$f'(x) = 2x - 3. (11)$$

Substituting in 10, The iterative formula becomes:

$$x_{n+1} = x_n - \frac{{x_n}^2 - 3x_n - 1}{2x_n - 3}. (12)$$

For the iterative process, choose an initial guess x_0 . Then substitute it in 12 to obtain x_1, x_2 , and so on until the value of ϵ is greater than that of $|x_{n+1} - x_n|$. Here, ϵ should be allotted a smaller value for better precision of the roots.

The Newton-Raphson method provides an efficient way to numerically approximate the solution. Iterative computation can be performed using a program to find the root up to the desired precision. For the graph obtained, initial guess are 4 and 0.5, and $\epsilon = 0.000001$. Roots obtained through iteration are $\alpha = 3.3027756377328092$, $\beta = -0.30277563792072887$.

Fixed Point Iteration: The given equation is 1

To apply the Fixed-Point Iteration Method, we rewrite the equation in the form:

$$x = g(x). (13)$$

Possible rearrangements are:

$$x = \frac{1}{x} + 3. {(14)}$$

$$x = \frac{x^2 - 1}{3} \tag{15}$$

The iterative formulas are:

$$x_{(n+1)1} = \frac{1}{x_n} + 3 \tag{16}$$

$$x_{(n+1)2} = \frac{x_n^2 - 1}{3}. (17)$$

Choose an initial guess x_0 . Continue the process until the difference between consecutive approximations $|x_{n+1} - x_n|$ is smaller than the desired tolerance ϵ . The convergence of the Fixed-Point Iteration depends on the choice of g(x).

Steffensen's Method (Quadratic Convergence): Steffensen's method accelerates the convergence of fixed-point iteration. If g(x) is the iteration function derived from the fixed-point form of f(x), Steffensen's iterative formula is:

$$x_{n+1} = x_n - \frac{g(x_n)}{\frac{g(x_n + g(x_n))}{g(x_n)} - 1}$$
(18)

This eliminates the need to compute derivatives and achieves quadratic convergence.

Rewrite the equation in the fixed-point form, i.e., 13.

For this problem, they are:

$$g_1(x_n) = \frac{1}{x_n} + 3. (19)$$

$$g_2(x_n) = \frac{x_n^2 - 1}{3}. (20)$$

Substitute in 18

$$x_{(n+1)1} = x_n^2 + 4x_n + 1 (21)$$

$$x_{(n+1)2} = x_n - \frac{\left(x_n^2 - 1\right)^2}{\left(x_n^2 + 3x_n - 1\right)^2 - 9x_n^2}$$
(22)

Continue iterating until $|x_{n+1} - x_n| < \epsilon$, where ϵ is the desired accuracy. Steffensen's method converges quadratically under suitable conditions, making it significantly faster than standard fixed-point iteration. **Solution using QR Algorithm:** A quadratic equation is given by:

$$ax^2 + bx + c = 0 \tag{23}$$

To construct the companion matrix, normalize the equation $(a \neq 0)$ by dividing through by a:

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0 (24)$$

The companion matrix for the quadratic equation is:

$$C = \begin{bmatrix} 0 & -\frac{c}{q} \\ 1 & -\frac{b}{a} \end{bmatrix} \tag{25}$$

For 3, it is:

$$C = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \tag{26}$$

The eigenvalues of the companion matrix C are the roots of the quadratic equation. The goal is to use the QR algorithm to approximate the eigenvalues of C. The steps are as follows:

1) Start with the matrix C:

$$C = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}. \tag{27}$$

2) Perform QR decomposition: Factor C into:

$$C = QR, (28)$$

where:

- Q is an orthogonal matrix $(Q^TQ = I)$,
- R is an upper triangular matrix.
- 3) Update the matrix: Compute:

$$C_{k+1} = RQ. (29)$$

4) Iterate: Repeat the QR decomposition and update step until C_k converges to an upper triangular matrix. The diagonal entries of the resulting matrix are the eigenvalues of C.

By using the QR Decomposition, the eigenvalues, i.e., the roots obtained are

$$\alpha = 3.30277564 \tag{30}$$

$$\beta = -0.30277564\tag{31}$$

