⑩ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭61-36170

(1) Int Cl. 4

識別記号

厅内整理番号

匈公開 昭和61年(1986)2月20日

C 04 B 35/46 H 01 B // H 01 G

7412-4G 6794-5E

2112-5E 審查請求 未請求 発明の数 2 (全10頁)

❷発明の名称

誘電体磁器組成物及びその製造法

2)特 額 昭59-157001

(2)H 昭59(1984)7月27日

72発 明 \mathbf{H} 老 dK

雅 昭

東京都中央区日本橋1丁目13番1号 ティーディーケィ株

式会社内

何発 明 者 佐 藤 純

東京都中央区日本橋1丁目13番1号 ティーディーケィ株

式会社内

311 児 何発 明 老 東

東京都中央区日本橋1丁目13番1号 ティーディーケィ株

式会社内

(f))H ティーディーケィ株式 陌

会社

弁理士 山谷 の代 理 人 晧 桀

最終頁に続く

東京都中央区日本橋1丁目13番1号

蚏

1. 発明の名称

誘電体磁器組成物及びその製造法

- 2. 特許請求の範囲
 - 1. 組成式が

(BaO) . TiO, + x (SrO) . TiO, + y MnO で示される組成物において,×,y及びa,bが 下記の範囲にあることを特徴とする非環元性の誘 置体磁器組成物。

 $0.10 \le x \le 30.00 \pmod{\%}$

 $0.010 \le y \le 20.00 \pmod{\%}$

 $0.9 \ 9 \ 0 \le \frac{a + b \cdot x / 100}{(1 + x / 100)} \le 1.0 \ 20$

2. (BaO)。・TiO,と(SrO)。・TiO,を別々に合 成した後、数粉砕し、これ等を用いて所定の組成 物に混合し、所定の形状に成型して中性又は避元 性雰囲気中で焼成するととを特徴とする、組成式 が(BaO)。・TiO;+x(SrO)。・TiO;+yMnOであつ

て,×,y及びa,bが下記の範囲にあることを 特徴とする非遺元性の誘電体磁器組成物の製造法。

 $0.10 \le x \le 30.00 \pmod{\%}$

 $0.010 \le y \le 20.00 \pmod{\%}$

a + b / 100 $\frac{-100}{(1+x/100)} \le 1.020$

3. 発明の詳細な説明・

〔産業上の利用分野〕

本発明は非選元性誘電体磁器組成物に係り、特 に高誘電率でかつ誘電率の温度変化が少く、誘電 体損失が小さく、比抵抗の高い特性を有する誘電 体磁器組成物に係る。

〔従来技術〕

例えばチタン酸パリウムにニオプ酸コパルト。 又はタンタル,サマリウム,又はスメ設ピスマス, ジルコン酸ピスマスとタンタル, ニオブ等を添加 することにより, 高誘電率でかつその誘電率の温 度変化が少く、損失の小さい誘電体磁器組成物が 得られている。とれ等の誘電体材料を使用すると

とにより小型で大容量の積層セラミック・コンデンサを製造することができる。そしてこのようにして製造された積層セラミック・コンデンサは通信機、電子計算機、テレビ受像機等においてIC回路案子等に広く使用されている。

なるが、今度は誘電体材料が避元され、比抵抗が 非常に低いものになつてコンデンサ用誘電体材料 として使用できない。

〔 発明が解決しようとする問題点〕

本発明は、前記の如き、中性あるいは避元性祭田気中で焼成したとき避元されて比抵抗が非常に低いものとなりコンデンサ用の誘電体材料としては使用できないという問題点を解決するものである。

〔問題点を解決するための手段〕

前記の問題点を解決するため、本発明では、組成式が

(BaO) LTiO₁+ x (SnO) LTiO₁+ y MnO で示される組成物において,a,b,及び×,y が次の範囲,すなわち

0.10≤x≤30.00moℓ%, 0.010<y<20.00モル%,
0.990≤(a+b・x/100)/(1+x/100)≤1.020
の範囲にある組成の誘電体磁器組成物を提供する
ものである。

(実施例)

ック・コンデンサを得ていた。

このような問題に対処するために、安価な卑金 風を電極として使用する試みが従来から行われて いる。しかしながら卑金属としてニッケルを使用 すれば、ニッケルは酸化性雰囲気中で加熱された ときに酸化し、誘電体と反応して電福形成が不可 能となる。それ故ニッケルの酸化を防止するため に中性あるいは避元性雰囲気中で焼成することに

本発明の一実施例について説明する。

出発原料として BaCO₃, SrCO₃, TiO₃を用い,仮 焼成後の組成が各々, (BaO)₃TiO₃, (SrO)₅TiO₃ となるように BaCO₃と TiO₃, SrCO₃と TiO₃を別々に 秤量して混合せしめ,脱水乾燥後 1000~1240 で で 2 時間保持して仮焼せしめ,その後の仮焼成体 を 徴粉砕して (BaO)₃TiO₃, (SrO)₅TiO₃の 微粉末 を 得た。 これ等の 微粉末と Mn₃O₄ を 最終的焼結後 に 第 1 表に示す組成になる様に混合せしめ,脱水 乾燥して粉末とした。

このよりにして得られた粉末に適当量の有機パインダーを加え、16.5 Ø \times 0.6 mm の円板に加圧成型した。これをジルコニア板の上にのせ匣鉢の中に入れて500でまで自然雰囲気中で有機パインダーを焼成し、その後 N_2 中で1250で \sim 1350でで2時間焼成した。このよりにして得たサンブルにIn-Ga 電極を塗布して誘電率(ϵ ,)、誘電体損失($tan\delta$ %)(測定周波数1KHz)、絶縁抵抗(IR, Ω ϵ cm) をそれぞれ測定したところ第1 表に示す如き値が

単値群の連結(左沿に数形なし)

# 1 次 - 1 a + b · x / 100		銘格書	H H	ě	良	•	鬘	-124	•	•	•	•	`	•	•	•	•	•	•	•
(モルギ) (モルギ) (モルギ) ((c) ((c) ((d) ((d) ((d		C/C (125℃)			+56.0	+24.0	+60.0	9	1	-10	-18.0	-25.0	-1 2.0	-150	-18.0	+13.0	+4 0.0	-2 0.0	•	+1000
(モルギ) (モルギ) (モルギ) (佐の電瓜 (で ()) () () () () () () () ((255 -)			-36.0	-1 0.0		2	1	-1 3.0	+15.0	+20.0	-1 0.0	- 7.0	- 2.0	-1 4.0	-3 2.0	-2 0.0	+ 5.0	-0.10
x y a+b·x/100 結成配底 * はより (モルち) (モルち) 1+x/100 (で) ** (4) 0 0 1.000 1400 1800 17.7 10 0.5 * 1360 3230 12.3 3.23 0 * 3100 12.3 5.0.0 0.25 * 3000 4.0 8.01 3.00 1.000 * 2700 6.0 8.01 3.00 1.005 * 2500 0.4 8.01 3.00 1.005 * 2500 * * 1.010 * 2500 * * 1.010 * 2500 * * 1.000 * 2100 0.7 * 1.010 * 2100 0.1 * 1.010 * 3500 * * 1.010 * 3500 *		IR(125°)) -	4	0.4×10"	0.3×101°	0.8×1 010	9.8×1 010	1	2.8×1010	0.1×101°	0.5×10°	3.0×101°	2.5×101°	4.0×101°	2.6×1010	0.3×1 010	1.4×10"	1.3×1 0"	0.4×10"
** Y a+b·x/100 (で) (モルル) (モルル) (モルル) (モルル) (モルル) (モルル) (エルル/100 (で) (で) (エルル/100 (で) (エルル/100 (で) (エルル/100 (で) (エルル/100 (で) (エルルル/100 (で) (エルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルルル		IR (25 C)	53×10		0.8×10"	1.0×10°	1.0×1 0"	1.0×1 0"	3.0×10°	1.0×1 011	1.0×1 0 ¹³	0.5×1 012	1.0×1 0"	0.6×101	0.4×10"	1.0×1 011	0.7×10"	5.2×10"	5.0 × 1 011	5.0 × 1 011
x y a+b·x/100 発展部で (モルル) (モルル) 1+x/100 (セルル) 1+x/100 (セルル) 1+x/100 (エルル) 1+x/100 (エルル) 180	¥ - 1	e E	177		1 2.3	1 2.0	4.0	6.0	-	0.5	0.0	,	0.4	•	,	0.7	8.0	0.1	•	0.4
x y a+b·x/100 0 0 1+x/100 0 0 1.000 10 0.5 " 3.23 0 " 50.0 0.25 " 10.0 0.02 0.970 8.01 3.00 1.000 3.00 1.80 " 8.01 3.00 1.005 " 1.010 " 1.010 0.08 0.50 " 2.00 0.25 1.010 2.50 " " 4.00 0.10 "	R K		1800		23	3100	00	2 0 .0 0	1	2700	5.0	1100	20	20	2000	2100	0 0	4000	5 0	2600
x y (モルル) (モルル) (モルル) (モルル) (モルル) (モルル) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		焼成間度(で)	1400		9	•	•	~		`	•	•	•	•	•	•	•	•	,	•
x (モルよ) 0 10 10 50.0 10.0 8.0 1 8.0 1 8.0 1 7 7 7 7 7 7 7 7 8.0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		$ \begin{array}{c} a+b\cdot x/100 \\ 1+x/100 \end{array} $	1.0 0 0			•	1.010	•	0.970	1.000	,	•	1.005	1.010	1.015	1.000	•	1.010	•	•
		· · · · · · · · · · · · · · · · · · ·	0		0.5	0	0	0.2 5	0.02	3.00	1 8.0	2 5.0	3.00	•	•	•	0.50	0.2 5		0.10
双柱名 1 2 2 4 2 0 7 8 6 0 1 1 2 E1 1 2 2 7		× × + + + + + + + + + + + + + + + + + +	0	٩	10	3.2 3	•	5 0.0	1 0.0	8.0 1	3.0 0		8.01			0.15	0.08	2 0.0	2 5.0	4.00
		莱莱克	_	1	7	60	4	က	9	7	8	6	2	=	12	13	7	15	16	17

可倫社の運動(国際に交更なし)

	裳	結結	24	T -	当	6 24	•		•		\	<u> </u>	虚	民	Ī.	<u> </u>	Ţ.	一殿
	2/2 ¢	(125t) (%)	+13.00	+20.00	+7 0.0	1	+2.0		+ 5.0	+1.0		+15.0	+20.0	+18	+14	+20.0	+ 8.0	+ 5.0
	٥/٥	(%) (%)	+ 1.0 0	+20.00	-48.0		-1 3.0	0.6 –	-1 2.0	- 5.0	+4.0	+12.0	+18.0	-15	+ 5	-8.5	0.9 -	+14.0
	IR(125C)	(B.C)	0.6×1 0"	0.8×1 0 ¹¹	1.2×1 0"	1.2×1 0°	0.4×10"	0.3×1 0"	0.5×1 0"	0.8×1 0"	0.6×1 0"	0.4×1 0"	0.2×10"	1.4×1 010	0.9×1 010	0.4×1 010	0.4×10"	0.2×10"
	IR (25 C)	(E.C)	5.2×1 0"	8.0×1 0"	1.0 ×1 0"	1.0×1 0°	4.8×10"	4.2×1 0"	5.3×10"	5.6×10"	4.4×10"	3.2×10"	2.8×1 0"	0.8×1 011	1.0 X 1 0"	2.0×1 011	4.8×1011	1.0 X 1 0"
1 表一 2	• ea	(%)	0.4	0.8	2.0	3.0	9.0	0.5	0.3	,		0.2	,	1.0	0.3	•	0.4	2.3
狱	.,·		2700	2800	3400	•	2300	2600	2500	2700	•	2100	1800	3200	2100	2000	2800	1400
,	焼吹温度	(£)	1320	•	1360	1320	•	•		,	,	1340	1400	1320	,	,	,	1400
	a+b.x/100	1+x/100	1.010		•	0.985	0.990	0.995	1.0 0 0	1.005	1.010	1.015	1.0 2 5	1.000	1.010	•	,	1.0 3 0
	>	(モルな)	0.0 5	0.0 2	0.005	0.20	3.00	,	٠	•	•	•	•		•	7.0 0	0.5	0.2 5
	×	(モルな)	4.0 0	•		•	•	,	•	•		•		0.80	3.2 3	3,0 0	3.2 3	4.0 0
	紅丸	된	18	19	<u>৪</u>	*	22	ឌ	72	દ્ધ	56	22	8 *	8	8	31	32	33

この第1表において*印の付与されているもの は本発明の範囲外のものであり、本発明の実施例 のものと比較のため提示した。

第1 表より明らかな如く、本発明のものは比勝 電率が約1500~4000と高く、125でからっ 55℃における比誘電率の変化率が小さく、 tan 3は0.1~1.0%と小さな値を示している。又、 常温及び125℃における絶縁抵抗も高い値を示している事が分る。

かかる特徴のある誘電体磁器組成物は、組成式 が

(BaO)。・TiO,+ × (SrO)。・TiO,+ y MnO で示される組成物において、a , b 及び× , y が

 $0.10 \le x \le 30.00 \pmod{\%}$

 $0.010 \le y \le 20.00 \pmod{\%}$

0.990≤(a+b·x/100)/(1+x/100)≤1.020 の範囲にある組成により得られる。

なか a と b は 0.990 ≦ a ≦ 1.030 , 0.990 ≦ b ≦ 1.030 の範囲にあることが好適である。

次にこのような本発明の各数値限定の理由につ

10

成しても、誘電率が高く、誘電率の温度変化が少く、誘電体損失が小さく、また絶縁抵抗が高く、 したがつて高信頼性の誘電体磁器組成物を得る事ができる。

4. 図面の簡単な説明

添付図面は本発明における試料 Na 7 , 9 , 1 2 の比誘電率及び誘電体損失の温度特性図である。

特許出願人 ティーディーケイ株式会社 代理人 弁理士 山 谷 晧 榮 いて説明する。 x が 0.1 0 mol % 以下では誘電率の温度変化が大きくなり、焼結性が低下する。 3 0 mol % を超えると、これまた誘電率の温度変化が大きくなる。 y が 0.0 1 0 mol % 以下では tan & が大きくなり、焼結性が低下する。 20 mol % を超えると誘電率が低下し、又、125℃での絶縁抵抗が低くなる。 (a+b・x/100)/(1+x/100) が 0.990以下では絶縁抵抗が低下する。 1.020 を超すと焼結性が悪くなる。

なお上記契施例では Ba , Sr は炭酸塩, Mn は Mn, O., Ti は TiO,を用いたが, もちろん他の形のものでも本発明で使用できることは明らかである。 (効果)

本発明によれば、中性又は避元性劣囲気中で幾

1

第1頁の続き ②発 明 者 佐 藤 博 幸 東京都中央区日本橋1丁目13番1号 ティーディーケィ株 式会社内 ②発 明 者 井 手 ロ 順 ー 東京都中央区日本橋1丁目13番1号 ティーディーケィ株 式会社内

手 統 補 正 窨(方式)

昭和59年12月 4日

特許庁長官 志 賀 学 閲

1. 事件の表示

昭和59年特許願第157001号

2. 発明の名称

誘電体磁器組成物及びその製造法

3. 補正をする者

事件との関係 特許出願入

住所 東京都中央区日本橋一丁目13番1号

名称 (306) ティーディーケイ株式会社

4. 代 理 人

住所 東京都千代田区神田淡路町 1丁目19番 8号

千代田ビル

 氏名
 (8329) 弁理士 山 谷 階 築

 5.補正命令の日付
 昭和59年 7月11日

発送日 昭和59年11月27日

6.補正の対象 明細書の発明の詳細な説明の個

7.補正の内容

願書に最初に添付した明細書第8頁~第95912.5 の浄書・別紙のとおり(内容に変更なし)。 4個

補正の内容

1. 明細 4 第 1 頁 第 5 行 ~ 第 2 頁 第 5 行 の 特 許 請 求 の 範囲 を 下 記 の 通 り 全 文 補 正 す る 。

「1. 組成式が

(BaO)』・<u>TiO:</u> + x(SrO)_b・<u>TiO:</u> + y MnO で示される組成物において、x , y 及び a , b が下記の範囲にあることを特徴とする非選元性 の誘戦体磁器組成物。

> $0.1 \ 0 \le x \le 3 \ 0.0 \ 0 \ (mol\%)$ $0.0 \ 1 \ 0 \le y \le 2 \ 0.0 \ 0 \ (mol\%)$

$$0.990 \le \frac{a+b \cdot x/100}{(1+x/100)} \le 1.020$$

2. (BaO)_a・TiO₂と(SrO)_b・TiO₂を別々に合成した後、微粉砕し、これ等を用いて所定の超成物に混合し、所定の形状に成型して中性又は避元性雰囲気中で焼成することを特徴とする、組成式が(BaO)_a・TiO₂+×(SrO)_b・TiO₂+yMnOであつて、×、y及びa、bが下記の範囲にあることを特徴とする非盈元性の誘覚体磁器組成

手 続 補 正 哲(自発)

昭和60年 3 月25日

特許庁長官 志 賀 等

学 殿

- 1. 事件の表示 昭和59年特許顯第157001号
- 2. 発明の名称 誘電体磁器組成物及びその製造法
- 3. 補正をする者

事件との関係 特許出願人

住 所 東京都中央区日本橋一丁目13番1号

氏 名 ティーディーケイ株式会社

代表者 大 歳 第

4. 代理人

住 所 東京都千代田区神田炎路町1丁目19苗8号

千代田ピル

氏 名 (8329) 弁理士 山 谷 晧 榮

- 5. 補正により増加する発明の数 なし
- 6. 補正の対象 明細中の特許請求の範囲 発明の詳細な説明の各欄
- 7. 補正の内容 別紙の通り

方式 (小)

物の製造法。

 $0.1~0 \leq x \leq 3~0.0~0~(\text{mo}\,\ell\%)$

 $0.010 \le y \le 20.00 \pmod{4}$

$$0.990 \le \frac{a+b/100}{(1+x/100)} \le 1.020$$

- 2. 同第 5 頁第 1 3 行を下記の通り補正する。 「(BaO)_a・TiO₂+x(SrO)_b・TiO₂+yMnO」
- 3. 同第 6 頁第 3 行の「(BaO)。• TiO,, (SrO)。• TiO,」を下記の通り補正する。

[(BaO)a · TiO, , (SrO)b · TiO,]

同頁第7行の「(BaO)」・TiO, (SrO)」・TiO,」
 を下記の通り補正する。

[(BaO), · TiO, (SrO), · TiO,]

5. 同第8頁第1表-1を次頁の通り補正する。

	l	(1.75	<u></u>	., I	. 1													·			
	-	2 #2 3	# E	(2) O	*	F	ě d	4	•	•		\downarrow	•	<u> </u>	`	•	<u> •</u>	<u> </u>	<u> </u>		,
	0/0 <	(125°)	e 1	4	າ ເ	ع ادد	291		011	1 80	200	0.6.2	-1 2.0	-15.0	-18.0	+13.0	+4 0.0	-2 0.0		+1000	2 22 4
	0/0 4	(-55°)	2	-360) -	-5.0	+233	1	-130	+15.0	1000+	0.00	1 0.0	-7.0	-2.0	-1 4.0	-3 2.0	-2 0.0	+ 5.0	-0.10	
	IR (125C)	(B • C)		0.4 × 1 010	0.3 × 1 0*	0.8 × 1 0 1°	9.8 × 1 0 1º	1	2.8 × 1 010	0.1 × 1 010	0.5 × 1.0*	9101	01 0	2.5 × 1.0"	4.0 × 1 0 16	2.6 × 1 010	0.3 × 1 010	1.4 × 1 0"	1.3 × 1 0"	0.4 × 1 0"	
	IR(25c)	(B·C)	5.3 × 1 0*	0.8 × 1 011	1.0 × 1 0*	1.0 × 1 0"	1.0 × 1 0"	3.0 × 1 0³	1.0 × 1 0"	1.0 × 1 0 13	0.5 × 1 0 ¹³	10 × 101	2 2 2 2	0.0 > 1.0	0.4 × 1 0 13	1.0 × 1 0"	0.7 × 1 0"	5.2 × 1 0"	5.0 × 1 0"	5.0 × 1 011	
1 残 一 1	£ 0,	(%)	17.7	1 2.3	1 2.0	4.0	6.0	1	0.5	0.0		0.4			•	0.7	8.0	0.1	,	0.4	
無		<i>-</i>	1800	3230	3100	3000	2000	1	2700	1500	1100	2500	9 0	2 6	2000	2100	3000	4000	3500	2600	
	烧成品度	(£)	1400	1360	•	•	1320			,					•	•	•	•	•	•	
	a+b•x/100	1+x/100	1.0 0 0	•	•	1.0 1 0	•	0.970	1.000	•		1.005	1.010		C 1 0.1	1.000		1.010	`		
	>	(モルな)	0	0.5	0	0	0.2 5	0.0 2	3.00	1 8.0	2 5.0	3.00			•	•	0.50	0.2 5		0.10	
	×	(44%)	0	1.0	3.2 3	•	5 0.0	1 0.0	8.0 1	3.00		8.01	•			0.15	0.0 8	2 0.0	2 5.0	4.0 0	
L	試料	2	-	~	က	4	22	9	7	∞	6	22	Ξ	12	:	2	7	22	9	17	
_			×	*	*	*	*	*			*						X				

-453-

6. 同第10頁第12行を下記の通り全文補正する。

「(BaO)_a • TiO₂+ x(SrO)_b • TiO₂+ y MnO 」

以上