# Некоторые вопросы, рассмотренные на практических занятиях

#### 1 Лемма о накачке

**Теорема 1** («Лемма о накачке» / «Лемма о разрастании»). Пусть L — регулярный язык. Тогда существует такая константа  $n \in \mathbb{N}$ , что для любого слова  $w \in L$ , такого что  $|w| \geqslant n$ , существует такое разбиение w = xyz слова w, что:

- (1)  $y \neq \varepsilon$ ;
- (2)  $|xy| \leqslant n$ ;
- (3)  $\{xy^kz \mid k \geqslant 0\} \subset L$ .

Доказательство. Так как L регулярный язык, то существует детерминированный конечный автомат  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$  с |Q| = N состояниями, распознающий язык L. Пусть  $w \in L$  и |w| = N + 1. Подадим на вход автомату  $\mathcal{A}$  слово w. Очевидно, существует состояние  $q \in Q$ , в котором автомат окажется дважды, читая это слово (принцип Дирихле / принцип голубятни). Разобьём слово w на три части w = xyz, так что:

$$(q_0, xyz) \vdash^* (q, yz) \stackrel{\triangle}{\vdash^*} (q, z) \vdash^* (q_F, \varepsilon),$$

где  $q_F \in F$ . Покажем, что для любого целого  $k \geqslant 0$  автомат распознает слово  $xy^kz$ . Действительно, последовательность переходов при чтении цепочек x и z остаётся такой же, как для слова w. Часть  $y^k$  читается k-кратным повтором последовательности переходов  $\triangle$ . Таким образом,  $\{xy^kz \mid k \geqslant 0\} \subset L$  и выполнено условие (3).

Части x, y слова w удовлетворяют условиям (1)–(2) по построению. Полагая n = N + 1, получаем выполненными все условия теоремы.

#### 2 Удаление бесполезных символов

**Определение.** Пусть дана КС-грамматика  $G=(\Sigma,N,\mathcal{P},S\in N)$ . Говорят, что символ  $X\in\Sigma\cup N$ 

(1) полезный в G, если

$$\exists \alpha, \beta \in (\Sigma \cup N)^* \ \exists w \in \Sigma^* \colon \quad S \Rightarrow_G^* \alpha X \beta \Rightarrow_G^* w.$$

(2) порожедающий в G, если

$$\exists w \in \Sigma^* \colon X \Rightarrow_G^* w$$

(3) достижимый в G, если

$$\exists \alpha, \beta \in (\Sigma \cup N)^*$$
:  $S \Rightarrow_G^* \alpha X \beta$ 

*Бесполезным* называется любой символ, не являющийся полезным.

**Теорема 1.** Если к КС-грамматике G, такой что  $L(G) \neq \emptyset$ , последовательно применить два преобразования:

- (1) удалить символы, не являющиеся порождающими,
- (2) удалить символы, не являющиеся достижимыми,

то будет получена грамматика, не содержащая бесполезных символов.

Доказательство. Обозначим грамматику, получившуюся после первого шага,  $G_1 = (N_1, \Sigma_1, \mathcal{P}_1, S)$  и грамматику, получившуюся после второго шага,  $G_2 = (N_2, \Sigma_2, \mathcal{P}_2, S)$  (символ S не будет удалён из грамматики после первого шага благодаря требованию  $L(G) \neq \emptyset$  и после второго шага — по определению достижимого символа). Пусть  $X \in N_2 \cup \Sigma_2$ . Покажем, что X — полезный в  $G_2$  символ. Для этого необходимо найти  $\alpha, \beta \in (N_2 \cup \Sigma_2)^*$  и  $w' \in \Sigma_2^*$ , такие что

$$S \Rightarrow_{G_2}^* \alpha X \beta \Rightarrow_{G_2}^* w'. \tag{1}$$

Так как X не был удалён после первого шага, то он является порождающим в исходной грамматике G, то есть существует вывод  $X \Rightarrow_G^* w$  для некоторого  $w \in \Sigma^*$ . Очевидно, что каждый символ этого вывода рано или поздно переходит в один из символов w или в  $\varepsilon$ , то есть также является порождающим в G, а значит, попадает в  $G_1$ . Потому этот вывод можно целиком перенести в  $G_1$ :

$$X \Rightarrow_{G_1}^* w, \tag{2}$$

где  $w \in \Sigma_1^*$ .

Так как X не был удалён после второго шага, то он достижим в грамматике  $G_1$ , то есть существует вывод  $S \Rightarrow_{G_1}^* \alpha X \beta$  для некоторых  $\alpha, \beta \in (N_1 \cup \Sigma_1)^*$ . Очевидно, что каждый символ в этом выводе получен из S применением правил грамматики  $G_1$ , то есть является достижимым в  $G_1$ , а значит, попадает в  $G_2$ . Потому этот вывод можно целиком перенести в  $G_2$ :

$$S \Rightarrow_{G_2}^* \alpha X \beta, \tag{3}$$

где  $\alpha, \beta \in (N_2 \cup \Sigma_2)^*$ .

Так как X достижим в  $G_1$ , то и каждый символ вывода (2) достижим в  $G_1$ , а значит, этот вывод целиком переносится в  $G_2$ :

$$X \Rightarrow_{G_2}^* w, \tag{4}$$

где  $w \in \Sigma_2^*$ .

Так как  $\alpha, \beta \in (N_2 \cup \Sigma_2)^*$ , то к цепочкам  $\alpha$  и  $\beta$  применимы те же рассуждения, что к символу X, то есть можно получить результат, аналогичный (4):

$$\exists u \in \Sigma_2^* \colon \alpha \Rightarrow_{G_2}^* u, \tag{5}$$

$$\exists v \in \Sigma_2^* \colon \beta \Rightarrow_{G_2}^* v. \tag{6}$$

Объединяя результаты (3)-(6), получаем:

$$S \Rightarrow_{G_2}^* \alpha X \beta \Rightarrow_{G_2}^* uwv,$$

то есть выполнено (1).

## 3 Нахождение языка конечного автомата методом исключения состояний

Метод исключения состояний подразумевает последовательное удаление вершин графа переходов автомата, которое протоколируется с помощью записи на оставшихся дугах регулярных выражений (можно считать, что в изначальном графе на дугах простейшие регулярные выражения — однобуквенные или пустые множества для отсутствующих дуг). Процедура исключения состояния s: для каждых двух (необязательно различных, но несовпадающих c s) состояний p и q, таких что существует фрагмент графа переходов автомата p  $\xrightarrow{R_1}$  s  $\xrightarrow{R_2}$  q, где  $R_1$ ,  $R_2$  — некоторые регулярные выражения (метки дуг переходов), прибавить к метке дуги p  $\xrightarrow{R_3}$  q выражение  $R_1R^*R_2$ , где R это метка петли на вершине s (если петля на s и/или дуга  $p \to q$  отсутствовали в исходном графе, то можно считать, что их метки равны  $\varnothing$ ) — таким образом получена дуга с меткой: p  $\xrightarrow{R_3+R_1R^*R_2}$  q. Удалить все просмотренные дуги  $p \to s$  и  $s \to q$ , инцидентные вершине s. После этого s стала изолированной или (неориентированно) висячей и её можно удалить (с входящими или выходящими из неё дугами, если таковые имеются).

**Алгоритм** (нахождение языка автомата методом исключения состояний). Вход: Конечный автомат  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ , заданный графом переходов. Выход: Регулярное выражение, описывающее язык автомата.

Шаг 1. Для каждого финального состояния  $q \in F$ , отличного от начального  $q_0$ , применять процедуру исключения состояний до тех пор, пока не останутся две вершины:  $q_0$  и q. В результате получится подобный автомат:



Допускаемый им язык описывается так:

$$(R + SU^*T)^*SU^*.$$

Шаг 2. Если начальное состояние  $q_0$  является финальным  $(q_0 \in F)$ , применять процедуру исключения состояний, пока не останется единственная вершина  $q_0$ . В результате получится подобный автомат:



Допускаемый им язык описывается так:  $R^*$ .

Шаг 3. Язык исходного автомата определяется как сумма всех регулярных выражений, полученных на шагах (1)–(2).

### 4 Свойства замкнутости класса регулярных языков

**Теорема 1.** Класс регулярных языков замкнут относительно операций: объединения, конкатенации, итерации, дополнения, пересечения, разности.

Доказательство. Для регулярных языков  $L_1$ ,  $L_2$  рассмотрим описывающие их регулярные выражения  $RE(L_1)$ ,  $RE(L_2)$ . Язык объединения (соответственно, конкатенации, итерации) описывается выражением  $RE(L_1)+RE(L_2)$  (соответственно,  $RE(L_1)$   $RE(L_2)$ ,  $RE(L_1)^*$ ), а значит, регулярен.

Для регулярного языка L построим распознающий его детерминированный конечный автомат  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$  ( $L = L(\mathcal{A})$ ). Легко видеть, что автомат  $\widetilde{\mathcal{A}} = (Q, \Sigma, \delta, q_0, Q \setminus F)$  допускает дополнение  $\overline{L} = \Sigma^* \setminus L$  языка L, которое является, таким образом, регулярным языком.

Поскольку справедливо  $L_1 \cap L_2 = \overline{L_1 \cup L_2}$ , язык  $L_1 \cap L_2$  регулярен по доказанному выше. Аналогичное можно заключить из равенства  $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ .

 $\Theta\Phi$ У, Мехмат, ИТ — 4 —