STAT 7200

Introduction to Advanced Probability
Lecture 9

Taylor R. Brown

- Foundations of Probability
 - Expectations of Simple Random Variable
 - Expectations of Non-Negative Random Variables

"A First Look at Rigorous Probability Theory" (Jeffrey Rosenthal) Sections 4.1 and 4.2

Expectations of Simple Random Variable

- Over a probability triple $(\Omega, \mathcal{F}, \mathbf{P})$, if we have an indicator random variable $\mathbf{1}_A$ on $A \in \mathcal{F}$, so that $\mathbf{1}_A = 1$ when $\omega \in A$, and $\mathbf{1}_A = 0$ when $\omega \notin A$. Then we can define expectation of this indicator random variable as: $\mathbf{E}(\mathbf{1}_A) = \mathbf{P}(A)$.
- Similarly, we can extend this definition to *simple random variables*. A random variable X is simple if it only takes a finite number of values. If we list the possible values that X may take as x_1, x_2, \dots, x_n , we should be able to represent X as: $X = \sum_{i=1}^n x_i \mathbf{1}_{A_i}$, where A_1, A_2, \dots, A_n forms a partition of Ω .
- Then we define the expectation of simple random variable as: $\mathbf{E}(X) = \sum_{i=1}^{n} x_i \mathbf{P}(A_i)$.

Property of Expectations: Linearity

- **Linearity** The expectation of a simple random variable is linear. That is, for two simple random variables X, Y and $a, b \in \mathbf{R}$, we have $\mathbf{E}(aX + bY) = a\mathbf{E}(X) + b\mathbf{E}(Y)$.
- **Proof**: Let us denote $X = \sum_{i=1}^{n} x_i \mathbf{1}_{A_i}$ and $Y = \sum_{j=1}^{m} y_j \mathbf{1}_{B_j}$. Since $\{A_i\}$ forms a partition of Ω , $\{B_i\}$ forms a partition of Ω , $\{A_i \cap B_j\}$ also forms a partition of Ω . Then $aX + bY = \sum_{i=1}^{n} ax_i \mathbf{1}_{A_i} + \sum_{j=1}^{m} by_j \mathbf{1}_{B_j} = \sum_{i=1}^{n} \sum_{j=1}^{m} (ax_i + by_j) \mathbf{1}_{A_i \cap B_j}$.

- So

$$\mathbf{E}(aX + bY) = \sum_{i=1}^{n} \sum_{j=1}^{m} (ax_i + by_j) \mathbf{P}(A_i \cap B_j)$$

$$= \sum_{i=1}^{n} ax_i \left[\sum_{j=1}^{m} \mathbf{P}(A_i \cap B_j) \right] + \sum_{j=1}^{m} by_j \left[\sum_{i=1}^{n} \mathbf{P}(A_i \cap B_j) \right]$$

$$= \sum_{i=1}^{n} ax_i \mathbf{P}(A_i) + \sum_{i=1}^{m} by_i \mathbf{P}(B_j) = a\mathbf{E}(X) + b\mathbf{E}(Y)$$

Property of Expectations: Others

- Consequence of Linearity By linearity of expectation, for $X = \sum_{i=1}^{n} x_i \mathbf{1}_{A_i}$ where $A_1, \dots A_n$ may not form a partition of Ω , we still have $\mathbf{E}(X) = \sum_{i=1}^{n} x_i \mathbf{P}(A_i)$.
- Order Preserving The expectation of simple random variable preserves the order, that is, for simple random variables X, Y, if $X \leq Y$ for every ω , then we have $\mathbf{E}(X) \leq \mathbf{E}(Y)$.
- **Proof**: This property is quite obvious since $X \le Y$ implies $Y X \ge 0$, then $\mathbf{E}(Y X) \ge 0$ and we have $\mathbf{E}(X) \le \mathbf{E}(Y)$.
- A direct consequence of order preservation is the **triangle inequality**: since $-|X| \le X \le |X|$, we have $|\mathbf{E}(X)| \le \mathbf{E}(|X|)$.
- Functions of Simple Random Variables Suppose X is simple random variable $X = \sum_{i=1}^n x_i \mathbf{1}_{A_i}$. Given any function $f : \mathbf{R} \to \mathbf{R}$, $f(X) = \sum_{i=1}^n f(x_i) \mathbf{1}_{A_i}$ is also a simple random variable and $\mathbf{E}(f(X)) = \sum_{i=1}^n f(x_i) \mathbf{P}(A_i)$.

Expectation and Independence

- Expectation and Independence If X, Y are simple random variables and $X \perp Y$, then $\mathbf{E}(XY) = \mathbf{E}(X)\mathbf{E}(Y)$.
- **Proof**: Denote $X = \sum_{i=1}^{n} x_i \mathbf{1}_{A_i}$ and $Y = \sum_{j=1}^{m} y_j \mathbf{1}_{B_j}$, and without loss of generality, suppose $\{x_i\}$ are distinct and $\{y_j\}$ are distinct.
- Since $X \perp Y$, $\mathbf{P}(X = x_i, Y = y_j) = \mathbf{P}(X = x_i)\mathbf{P}(Y = y_j)$, then we have $\mathbf{P}(A_i \cap B_j) = \mathbf{P}(A_i)\mathbf{P}(B_j)$
- $XY = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j \mathbf{1}_{A_i \cap B_i}$ is a simple random variable and

$$\mathbf{E}(XY) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j \mathbf{P}(A_i \cap B_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j \mathbf{P}(A_i) \mathbf{P}(B_j)$$

$$= \left[\sum_{i=1}^{n} x_i \mathbf{P}(A_i) \right] \left[\sum_{j=1}^{m} y_j \mathbf{P}(B_j) \right] = \mathbf{E}(X) \mathbf{E}(Y)$$

Expectations of Non-Negative Random Variables

• For a non-negative random variable X, we define its expectation as the supremum of all the expectations of the simple random variables Y not greater than X. That is:

$$\mathbf{E}(X) = \sup{\{\mathbf{E}(Y) : Y \text{ is simple, } Y \leq X\}}$$

Expectations of Non-Negative Random Variables

$$\mathbf{E}(X) = \sup{\{\mathbf{E}(Y) : Y \text{ is simple, } Y \leq X\}}$$

- First, this definition does not contradict the definition for simple random variables since $\mathbf{E}(X) = \sup\{\mathbf{E}(Y) : Y \text{ simple}, Y \leq X\}$ if X is simple.
- Second, this definition still preserves orderings: If X_1 and X_2 are two non-negative random variables so that $X_1 \leq X_2$, then $\mathbf{E}(X_1) \leq \mathbf{E}(X_2)$.
- Example: $E[X^k] < \infty \implies E[X^{k-1}] < \infty$ because $x^{k-1} \le \max(x^k, 1) \le 1 + x^k$
- Third, the expectation might be infinite. Example: $X(\omega) = \sum_{n=1}^{\infty} 2^n 1(2^{-n} \le \omega < 2^{-(n-1)})$ on $([0,1], \mathcal{F}, \mathbf{P})$
- Proving linearity requires another result...

The Monotone Convergence Theorem

Theorem 1 (The Monotone Convergence Theorem)

If X_1, X_2, \ldots are non-negative random variables such that $\{X_n\} \nearrow X$. Then X is a random variable and $\lim_{n\to\infty} \mathbf{E}(X_n) = \mathbf{E}(X)$.

$$\{X_n\} \nearrow X$$
 means $X_1 \leq X_2 \leq \dots$ and $\lim_{n \to \infty} X_n(\omega) = X(\omega)$.

Proof on next slide...

The Monotone Convergence Theorem

Proof.

For any real x, $\{X \le x\} = \bigcap_n \{X_n \le x\}$, so the limit of random variables is still a rv.

By monotonicity, $\mathbf{E}[X_n] \leq \mathbf{E}[X]$ for all. Taking the limit yields $\lim_{n \to \infty} \mathbf{E}[X_n] \leq \mathbf{E}[X]$. The limit exists because it is a monotonic sequence, and it may be infinite.

Last, pick $Y = \sum_{i=1}^m y_i 1_{A_i}$ be a simple rv such that $Y \leq X$ and such that $\{A_i\}$ partitions Ω . Pick an $0 < \epsilon$, and for each i, define $A_{in} = \{\omega \in A_i : X_n(\omega) \geq y_i - \epsilon\}$ (not a partition). Clearly $\{A_{in}\} \nearrow A_i$ for any i. For a fixed n,

 $\mathbf{E}[X_n] \geq \sum_{i=1}^m (y_i - \epsilon) \mathbf{P}(A_{in}) = \sum_{i=1}^m y_i \mathbf{P}(A_{in}) - \epsilon \mathbf{P}(\bigcup_{i=1}^m A_{in})$. Taking the limit: $\lim_{n \to \infty} \mathbf{E}[X_n] \geq \sum_{i=1}^m y_i \mathbf{P}(A_i) - \epsilon$. This is true for any epsilon, and any simple random variable $Y \leq X$, and so the result holds.

The Monotone Convergence Theorem

You can't always move the limit inside and outside of the expectation operator.

Example, on $([0,1], \mathcal{F}, \mathbf{P})$ consider $X_n(\omega) = n1_{(0,n^{-1})}$.

Non-Negative Random Variables as a Limit of Simple Random Variables

- Given any non-negative random variable X, we will construct a sequence of simple random variable $\Psi_n(X)$, such that the expectation of $\Psi_n(X)$ would approach the expectation of X.
- To construct $\Psi_n(X)$, for each n:
- If $X \geq n$, $\Psi_n(X) = n$.
- When X < n, we divide the region [0, n) evenly into $n2^n$ intervals.
 - For instance, if n = 1, we will divide [0, 1) into [0, 1/2), [1/2, 1);
 - ▶ If n = 2, we divide [0, 2) into $[0, 1/4), [1/4, 1/2), \dots, [7/4, 2)$.
- If $k/2^n \le X < (k+1)/2^n$ $(0 \le k \le n2^n 1)$, $\Psi_n(X) = k/2^n$.
- This definition ensures that 1) $\Psi_n(X)$ is simple, as it only takes at most $n2^n+1$ different values; 2) $\Psi_n(X) \leq X$; 3) $\Psi_n(X)$ forms a sequence of increasing random variables, and 4.) $\Psi_n(x) \to x$ as $n \to \infty$.

Property of Expectations of Non-Negative Random Variables

- As $\Psi_n(X) \to X$ as $n \to \infty$, by the monotone convergence theorem, we have $\lim_{n \to \infty} \mathbf{E}(\Psi_n(X)) = \mathbf{E}(X)$. Then we may prove the following properties for non-negative random variables based on the similar properties for simple random variables.
- **Linearity** For non-negative random variables X, Y, and a, b > 0, we have $\mathbf{E}(aX + bY) = a\mathbf{E}(X) + b\mathbf{E}(Y)$.

Proof We may construct $\Psi_n(X) \to X$ and $\Psi_n(Y) \to Y$, then $a\Psi_n(X) + b\Psi_n(Y)$ are an increasing sequence of non-negative random variables that converge to aX + bY. By the monotone convergence theorem:

$$\mathbf{E}(aX + bY) = \lim_{n \to \infty} \mathbf{E}(a\Psi_n(X) + b\Psi_n(Y))$$
$$= \lim_{n \to \infty} [a\mathbf{E}(\Psi_n(X)) + b\mathbf{E}(\Psi_n(Y))] = a\mathbf{E}(X) + b\mathbf{E}(Y)$$

Property of Expectations of Non-Negative Random Variables

- Expectation and Independence For non-negative random variables $X \perp Y$, we have $\mathbf{E}(XY) = \mathbf{E}(X)\mathbf{E}(Y)$. ($\Psi_n(X)$ is a function of X, $\Psi_n(Y)$ is a function of Y, then if $X \perp Y$, $\Psi_n(X) \perp \Psi_n(Y)$)
- **Proof** We may construct $\Psi_n(X) \to X$ and $\Psi_n(Y) \to Y$, then $\Psi_n(X)\Psi_n(Y)$ are an increasing sequence of non-negative random variables that converge to aX + bY. Furthermore, as $\Psi_n(X)$ is a function of X, $\Psi_n(Y)$ is a function of Y, then if $X \perp Y$, $\Psi_n(X) \perp \Psi_n(Y)$.
- By the monotone convergence theorem:

$$\mathbf{E}(XY) = \lim_{n \to \infty} \mathbf{E}(\Psi_n(X)\Psi_n(Y))$$
$$= \lim_{n \to \infty} [\mathbf{E}(\Psi_n(X))\mathbf{E}(\Psi_n(Y))] = \mathbf{E}(X)\mathbf{E}(Y)$$