

1) experience is not iid

2) update non-stationary 3 fredback delaged Function Approximation Aggregation Stochastic Gradient Descent for Value function Approximation $J(w) = E_{\pi} [(V_{\pi}(s) - \hat{V}(s, w_{\parallel})^{2})]$ $\Delta w = -\frac{1}{2} d \nabla_w J(w)$

$$= A \mathbb{E}_{\mathcal{R}} \left[\left(V_{\mathcal{R}}(S) - \hat{V}(S, \omega) \nabla_{\omega} \hat{V}(S, \omega) \right) \right]$$

Sample:

$$\Delta w = \alpha (V_{\kappa}(s) - \hat{V}(s, w)) \nabla_{w} \hat{V}(s, w)$$

Represent state by a feature vector

$$\phi(s) = \phi(s)$$

$$\phi(s) = \phi(s)$$

$$\vdots$$

$$\phi_{t} = \phi(s_{t})$$

$$V_{\theta}(s) = \Theta^{T} \phi(s) = \sum_{j=1}^{n} \phi_{j}(s) \theta_{j}$$

$$V_{\theta}V_{\theta}(S_{t}) = \phi(S_{t}) = \phi_{t}$$

$$\longrightarrow \triangle \Theta = A \left(V_{\chi}(S+) - V_{\theta}(S+) \right) \phi_{+}$$

Incremental President Algorithms

Mc:

$$\triangle \Theta_{+} = \angle (G_{+} - V_{\theta}(S)) \overline{V}_{\theta} V_{\theta}(S)$$

linear TD (0):

Je "TO Error"

 $TD(\lambda)$;

$$\Delta \Theta_{+} = \mathcal{K} \left(G_{+}^{\lambda} - V_{\Theta}(S_{1}) \nabla_{\Theta} V_{\Theta}(S_{+}) \right)$$

linear Mc:

$$\Delta \theta_{t} = \chi(G_{t} - V_{\theta}(S_{t})) \overline{V}_{\theta} V_{\theta}(S_{t})$$

Convergence of Mc

Convergence of TD

TD methol: (faster) (better)

Policy evaluation: prefer (Mc)

Residual Bellman updates
$\overline{\mathcal{T}}$:
$\Delta \theta_{t} = \lambda \delta \overline{V}_{\theta} V_{\theta} (S_{t})$
Jt = Ret + VVOLStal) - VO(St)
Bollman residual gradient update:
loss, E[d+2]
uplate: AO+= Hd+ Vo (Vo (S+1-YVo (S+1)
Work MORSE in practice
[R++++ Y VB (S++1] - Vb(S+)
TensorFlow

$$Q_{\theta}(s, \alpha) \simeq Q_{\pi}(s, \alpha)$$

linear:

$$Q_{\theta}(s,a) = \psi(s,a)^{\mathsf{T}}\theta = \frac{\hat{\Sigma}}{\hat{\gamma}}\phi_{\hat{\gamma}}(s,a)\theta_{\hat{\gamma}}$$

Stochastic Gradient Descent Update.

Incurrental prediction
boot strapping Value-function of policy approximation learning
Tabular control learning algorithms
(D-learning)
Dan (deep a network)

Reinforcement Learning 5: Function Approximation and Deep Reinforcement Learning

Stochastic Gradient Descent with Experience Replay

Given experience consisting of (state, value) pairs

$$\mathcal{D} = \{ \langle S_1, \hat{v}_1^{\pi} \rangle, \langle S_2, \hat{v}_2^{\pi} \rangle, ..., \langle S_T, \hat{v}_T^{\pi} \rangle \}$$

Repeat:

1. Sample state, value from experience

$$\langle s, \hat{v}^{\pi} \rangle \sim \mathcal{D}$$

2. Apply stochastic gradient descent update

$$\Delta\theta = \alpha(\hat{\mathbf{v}}^{\pi} - \mathbf{v}_{\theta}(\mathbf{s}))\nabla_{\theta}\mathbf{v}_{\theta}(\mathbf{s})$$

Converges to least squares solution

$$\theta^{\pi} = \operatorname*{argmin}_{\theta} \ \mathsf{LS}(\theta) = \operatorname*{argmin}_{\theta} \ \mathbb{E}_{\mathcal{D}} \left[(\hat{v}_{i}^{\pi} - v_{\theta}(S_{i}))^{2} \right]$$

Linear Least Squares Prediction (2)

 \blacktriangleright At minimum of LS(θ), the expected update must be zero

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[\Delta\theta\right] &= 0\\ \alpha \sum_{t=1}^{T} \phi_t(\hat{v}_t^{\pi} - \phi_t^{\top}\theta) &= 0\\ \sum_{t=1}^{T} \phi_t \hat{v}_t^{\pi} &= \sum_{t=1}^{T} \phi_t \phi_t^{\top}\theta\\ \theta_t &= \left(\sum_{t=1}^{T} \phi_t \phi_t^{\top}\right)^{-1} \sum_{t=1}^{T} \phi_t \hat{v}_t^{\pi} \end{split}$$

- ▶ For N features, direct solution time is $O(N^3)$
- ▶ Incremental solution time is $O(N^2)$ using Shermann-Morrison

Convergence of Linear Least Squares Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	/	1	1
	LSMC	✓	1	-
	TD	1	1	X
	LSTD	1	1	-
Off-Policy	MC	1	1	/
	LSMC	✓	1	
	TD	1	X	X
	LSTD	1	1	- 1 -

Policy case the cross turns into a check mark for LS

(TD/MC
Double Q-learning Experience reply
Experience raply

Warral O-learning
A network 90: Dt => (9[1], 9[m]) (Mactions)
(IV actions)
An 2-greedy exploration policy
9e => Te => Ae
boss function: Minimite
$I(\Theta) = \frac{1}{2} \left(R_{t+1} + \gamma \left[\max_{\alpha} Q_{\theta}(S_{t+1}, \alpha) \right] - \frac{1}{2} \right)$
Go (St, Atl)
$\nabla_{\theta} T(\theta) = \left(R_{t+1} + \gamma \max_{\alpha} q_{\theta}(S_{t+1}, \alpha) - \alpha \right)$
90 (St, At) Vo 90 (St, At)

Example: TF pseudo-code for Q-learning

```
# Compute Q values Q(S t, .)
q = q net(obs)
# Get action A t
action = epsilon greedy(q)
# Compute Q(S t, A t)
ga = q[action]
# Step in environment
reward, discount, next obs = env.step(action)
# Get max of values at next state
max q next = tf.reduce max(q net(next obs))
# Compute TD-error, do not to propagate into next state value
delta = reward + discount * tf.stop gradient(max q next) - qa
# Define loss
q loss = tf.square(delta)/2
```

Example: DQN

- ▶ DQN (Mnih et al. 2013, 2015) includes:
 - ▶ A network q_θ : $O_t \mapsto (q[1], \dots, q[m])$ (*m* actions)
 - An ϵ -greedy exploration policy: $q_t \mapsto \pi_t \implies A_t$
 - A replay buffer to store and sample past transitions
 - ▶ A target network q_{θ^-} : $O_t \mapsto (q^-[1], \dots, q^-[m])$
 - \triangleright A Q-learning loss function on θ (uses replay and target network)

$$I(\theta) = \frac{1}{2} \left(R_{i+1} + \gamma \llbracket \max_{a} q_{\theta^{-}}(S_{i+1}, a) \rrbracket - q_{\theta}(S_i, A_i) \right)^2$$

- An optimizer to minimize the loss (e.g., SGD, RMSprop, or Adam)
- Replay and target networks make RL look more like supervised learning
- ▶ It is unclear whether they are vital, but they help
- "DL-aware RL"

Multi-step updates

- ▶ When we bootstrap, updates use old estimates
- Information can propagate back quite slowly
- ▶ In MC information propagates faster, but the updates are noisier
- We can go in between TD and MC

case if you do TD with a single step you actually only