

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Geometría Descriptiva		

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo semestre	035022	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Concebir e interpretar planos y volúmenes geométricos por medio de diferentes sistemas de representación paralela, aplicando conceptos geométricos que ayuden a la construcción de volúmenes en el ambiente del diseño, explorando y generando diferentes puntos de vista a partir de los modelos de proyección para llegar a soluciones geométricas.

TEMAS Y SUBTEMAS

1. Introducción a la geometría descriptiva.

- 1.1 Definiciones
- 1.2 Nomenclatura y Simbología
- 1.3 Revisión de aplicaciones

2. Conceptos geométricos.

- 2.1 Punto, Recta, plano y volumen proyecciones, paralelismo y perpendicularidad
- 2.2 Espacio tridimensional y superficie bidimensional
- 2.3 Formas Geométricas y su clasificación

3. Sistemas de proyecciones.

- 3.1 Principios de la proyección
- 3.2 Planos de proyección
- 3.3 Proyección Ortogonal
- 3.4 Proyección Axonométrica

4. Conceptos de perspectivas

- 4.1 Tipos de Perspectiva
- 4.2 Proyección de sombras

5. Teoría de superficies.

- 5.1 Superficies Alabeadas o desarrollables
- 5.2 Superficies no desarrollables
- 5.3 Superficies de revolución
- 5.4 Superficies de transición
- 5.5 Aplicación de las superficies en el diseño

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, con explicación oral y visual sobre cada tema, utilizando medios didácticos de apoyo. Dirigir actividades de análisis y síntesis de información reflejados en ejercicios prácticos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación, que deberá comprender, evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%.

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso. El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1. I. Fernández González, Mario, Pérez Sosa. Geometría Descriptiva. Sistema Diédrico Ed. UPC SL. España, 2015.
- 2. Gómez Jiménez Francisco, Fernández González, Mario. *Geometría Descriptiva. Sistema Diédrico y Acotado.* Ed. Universidad Politécnica de Catalunya. España, 2006.
- 3. Fernández Calvo, Silvestre. La Geometría descriptiva aplicada al Dibujo Técnico Arquitectónico. Ed. Trillas. México, 2007

4. Izquierdo Asensi, Fernando. Geometría Descriptiva I. Sistema. Ed. Paraninfo. México, 2004.

De consulta:

- 1. Uddin, M. Saleh. *Axonometric and oblicue Drawin: A 3D Construction. Rendering and desing Guide.* Mc Graw Hill, New York, 1997.
- 2. De la Torre Carbó, Miguel. *Geometría Descriptiva*. UNAM, México, 1993.
- 3. Perspectiva para Arquitectos. Ed. Gustavo Gili. México, 1990.

PERFIL PROFESIONAL DEL DOCENTE

Arquitecto, Ingeniero en Diseño, Diseñador industrial, con maestría en Diseño o áreas afines.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico