Lecture 5: Concentration of Measure and Isoperimetry

Tianpei Xie

Jan. 19th., 2023

Contents

1	The	e Classic Isoperimetry Inequalities	2
	1.1	Brunn-Minkowski Inequality	2
	1.2	The Classical Isoperimetry Theorem	
2	Con	ncentration via Isoperimetry	
	2.1	Levy's Inequalities and Concentration Function	
	2.2	Isoperimetric Inequalities on the Unit Sphere	
	2.3	Gaussian Isoperimetric Inequalities and Concentration of Gaussian Measure	6
	2.4	Edge Isoperimetric Inequality on the Binary Hypercube	6
	2.5	Vertex Isoperimetric Inequality on the Binary Hypercube	6
	2.6	Convex Distance Inequality	6

1 The Classic Isoperimetry Inequalities

1.1 Brunn-Minkowski Inequality

• Definition (Minkowski Sum of Sets)

Consider sets $A, B \subseteq \mathbb{R}^n$ and define <u>the Minkowski sum</u> of A and B as the set of all vectors in \mathbb{R}^n formed by sums of elements of A and B:

$$A + B := \{x + y : x \in A, y \in B\}$$

Similarly, for $c \in \mathbb{R}$, let $cA = \{cx : x \in A\}$. Denote by Vol(A) the **Lebesgue measure** of a (measurable) set $A \subset \mathbb{R}^n$.

• Theorem 1.1 (Brunn-Minkowski Inequality) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B)^{\frac{1}{n}} \ge \lambda Vol(A)^{\frac{1}{n}} + (1 - \lambda) Vol(B)^{\frac{1}{n}}.$$
 (1)

Note: a convex body in \mathbb{R}^n is closed and compact set.

Proof: (*Part 1*, n = 1)

Note that if $A \subset \mathbb{R}$, and $c \geq 0$ then Vol(cA) = cVol(A). Thus it suffice to prove

$$Vol(A + B) \ge Vol(A) + Vol(B)$$
.

To see this, observe that none of the three volumes involved changes if the sets A and B are **translated** arbitrarily. Since A, B are compact subsets in \mathbb{R} , it is closed and bounded. Let $a = \max\{a' : a' \in A\}$ and $b = \min\{b' : b' \in B\}$. Let $A' = A + \{-a\}$ and $B' = B + \{-b\}$ so that $A' \subset (-\infty, 0]$ and $B' \subset [0, +\infty)$. Also $\operatorname{Vol}(A') = \operatorname{Vol}(A)$ and $\operatorname{Vol}(B') = \operatorname{Vol}(B)$. However,

$$A' \cup B' \subset A' + B'$$

$$\Rightarrow \operatorname{Vol}(A') + \operatorname{Vol}(B') = \operatorname{Vol}(A' \cup B') \le \operatorname{Vol}(A' + B')$$

This prove the 1-dimensional case for the Brunn-Minkowski inequality.

To prove n > 1 case, we need the following inequalities:

• Theorem 1.2 (The Prékopa-Leindler Inequality). [Boucheron et al., 2013, Wainwright, 2019]

Let $\lambda \in (0,1)$, and let $f,g,h:\mathbb{R}^n \to [0,\infty)$ be non-negative measurable functions such that for all $x,y\in\mathbb{R}^n$,

$$h(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} g(y)^{1-\lambda}.$$

Then

$$\int_{\mathbb{R}^n} h(x)dx \ge \left(\int_{\mathbb{R}^n} f(x)dx\right)^{\lambda} \left(\int_{\mathbb{R}^n} g(x)dx\right)^{1-\lambda}.$$
 (2)

Proof: The proof goes by induction with respect to the dimension n.

1. $(n = 1 \ case)$. Consider measurable non-negative functions f, g, h satisfying the condition of the theorem. By the monotone convergence theorem, it suffices to prove the statement for **bounded functions** f and g. Without loss of generality, assume that $\sup_{x \in \mathbb{R}^n} f(x) = \sup_{x \in \mathbb{R}^n} g(x) = 1$. Then

$$\int_{\mathbb{R}} f(x)dx = \int_{0}^{1} \operatorname{Vol}\left\{x : f(x) \ge t\right\} dt$$
$$\int_{\mathbb{R}} g(x)dx = \int_{0}^{1} \operatorname{Vol}\left\{x : g(x) \ge t\right\} dt.$$

For any fixed $t \in [0, 1]$, if $f(x) \ge t$ and $g(y) \ge t$, then by the hypothesis of the theorem, $h(\lambda x + (1 - \lambda)y) \ge t$. This implication may be re-written as

$$\lambda \{x : f(x) \ge t\} + (1 - \lambda) \{x : g(x) \ge t\} \subset \{x : h(x) \ge t\}.$$

Thus

$$\int_{\mathbb{R}} h(x)dx = \int_{0}^{\infty} \operatorname{Vol}\left\{x:h(x) \geq t\right\} dt$$

$$\geq \int_{0}^{1} \operatorname{Vol}\left\{x:h(x) \geq t\right\} dt$$

$$\geq \int_{0}^{1} \operatorname{Vol}\left(\lambda\left\{x:f(x) \geq t\right\}\right) + \operatorname{Vol}\left((1-\lambda)\left\{x:g(x) \geq t\right\}\right) dt$$
(by 1-dimensional Brunn-Minkowski inequality)
$$\geq \lambda \int_{0}^{1} \operatorname{Vol}\left(\left\{x:f(x) \geq t\right\}\right) dt + (1-\lambda) \int_{0}^{1} \operatorname{Vol}\left(\left\{x:g(x) \geq t\right\}\right) dt$$

$$= \lambda \int_{\mathbb{R}} f(x) dx + (1-\lambda) \int_{\mathbb{R}} g(x) dx$$

$$\geq \left(\int_{\mathbb{R}} f(x) dx\right)^{\lambda} \left(\int_{\mathbb{R}} g(x) dx\right)^{1-\lambda} \text{ (by the arithmetic-geometric mean inequality)}$$

2. For the induction step, assume that the theorem holds for all dimensions $1, \ldots, n-1$ and let $f, g, h : \mathbb{R}^n \to [0, \infty), \ \lambda \in (0, 1)$ be such that they satisfy the assumption of the theorem. Now let $x, y \in \mathbb{R}^{n-1}$ and $a, b \in \mathbb{R}$. Then

$$h\left(\lambda\left(x,a\right)+\left(1-\lambda\right)\left(y,b\right)\right)\geq f\left(\left(x,a\right)\right)^{\lambda}g(\left(y,b\right))^{1-\lambda},$$

so by the inductive hypothesis

$$\int_{\mathbb{R}^{n-1}} h\left((x, \lambda a + (1-\lambda)b)\right) dx \ge \left(\int_{\mathbb{R}^{n-1}} f\left((x, a)\right) dx\right)^{\lambda} \left(\int_{\mathbb{R}^{n-1}} g((x, b)) dx\right)^{1-\lambda}$$

In other words, introducing

$$F(a) := \int_{\mathbb{R}^{n-1}} f((x,a)) \, dx, \quad G(b) := \int_{\mathbb{R}^{n-1}} g((x,b)) dx$$
$$H((\lambda a + (1-\lambda)b)) := \int_{\mathbb{R}^{n-1}} h((x,\lambda a + (1-\lambda)b)) \, dx.$$

We have

$$H((\lambda a + (1 - \lambda)b)) \ge (F(a))^{\lambda} (G(b))^{1-\lambda}$$

so by Fubini's theorem and the one-dimensional inequality, we have

$$\int_{\mathbb{R}^n} h(x)dx = \int_{\mathbb{R}} H(a)da \ge \left(\int_{\mathbb{R}} F(a)da\right)^{\lambda} \left(\int_{\mathbb{R}} G(a)da\right)^{1-\lambda}$$
$$= \left(\int_{\mathbb{R}^n} f(x)dx\right)^{\lambda} \left(\int_{\mathbb{R}^n} g(x)dx\right)^{1-\lambda}. \quad \blacksquare$$

• Corollary 1.3 (Weaker Brunn-Minkowski Inequality) [Boucheron et al., 2013, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B) \ge Vol(A)^{\lambda} Vol(B)^{1-\lambda}.$$
 (3)

Proof: We apply the Prékopa-Leindler inequality with $f(x) = 1 \{x \in A\}$, $g(x) = 1 \{x \in B\}$ and $h(x) = 1 \{x \in A + (1 - \lambda)B\}$. We see that

$$h(\lambda x + (1 - \lambda)y) = \mathbb{1}\{\lambda x + (1 - \lambda)y \in \lambda A + (1 - \lambda)B\} \ge \mathbb{1}\{x \in A, y \in B\} = f(x)^{\lambda}g(y)^{1 - \lambda}.$$

Thus the hypothesis of the Prékopa-Leindler inequality holds.

• **Proof:** (n > 1 case for Brunn-Minkowski Inequality). First observe that it suffices to prove that for all nonempty compact sets A and B,

$$\operatorname{Vol}(A+B)^{\frac{1}{n}} \ge \operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}$$

since $\operatorname{Vol}(cA)^{1/n} = c\operatorname{Vol}(A)^{1/n}$ for any $c \in \mathbb{R}$ and $A \subset \mathbb{R}^n$. Also notice that we may assume that $\operatorname{Vol}(A), \operatorname{Vol}(B) > 0$ because otherwise the inequality holds trivially. Defining $A' = \operatorname{Vol}(A)^{-\frac{1}{n}}A$ and $B' = \operatorname{Vol}(B)^{-\frac{1}{n}}B$, we have $\operatorname{Vol}(A') = \operatorname{Vol}(B') = 1$. By weaker Brunn-Minkowski inequality, for $\lambda \in (0,1)$,

$$\operatorname{Vol}\left(\lambda A' + (1-\lambda)B'\right) \ge 1.$$

Finally, we apply this *inequality* with the choice

$$\lambda = \frac{\operatorname{Vol}(A)^{\frac{1}{n}}}{\operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}}$$

obtaining

$$\operatorname{Vol}\left(\frac{\operatorname{Vol}(A)^{\frac{1}{n}}A'}{\operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}} + \frac{\operatorname{Vol}(B)^{\frac{1}{n}}B'}{\operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}}\right) \ge 1$$

$$\Rightarrow \operatorname{Vol}\left(\frac{A}{\operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}} + \frac{B}{\operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}}\right) \ge 1$$

$$\Rightarrow \operatorname{Vol}\left(\frac{A + B}{\operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}}\right) \ge 1$$

$$\Rightarrow \frac{\operatorname{Vol}(A + B)}{\left(\operatorname{Vol}(A)^{\frac{1}{n}} + \operatorname{Vol}(B)^{\frac{1}{n}}\right)^n} \ge 1$$

which proves the theorem.

1.2 The Classical Isoperimetry Theorem

• Definition (Blowup of Sets)

For any t > 0, and any (measurable) sets $A \subset \mathbb{R}^n$, the t-blowup of A is defined by

$$A_t := \{x \in \mathbb{R}^n : d(x, A) < t\} = A + t B$$

where $B = \{x \in \mathbb{R}^n : d(0,x) < 1\}$ is an open unit ball and $d(x,A) = \inf_{y \in A} d(x,y)$.

• Definition (Surface Area of Sets)

let $A \subset \mathbb{R}^n$ be a measurable set and denote by Vol(A) its Lebesgue measure. The <u>surface area</u> of A is defined by

$$\operatorname{Vol}(\partial A) = \lim_{t \to 0} \frac{\operatorname{Vol}(A_t) - \operatorname{Vol}(A)}{t}.$$

provided that the limit exists. Here A_t denotes the t-blowup of A.

• Theorem 1.4 (Isoperimetry Theorem) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let $A \subset \mathbb{R}^n$ be such that Vol(A) = Vol(B) where $B := \{x \in \mathbb{R}^n : d(0,x) < 1\}$ is unit ball. Then for any t > 0,

$$Vol(A_t) \ge Vol(B_t)$$
 (4)

Moreover, if $Vol(\partial A)$ exists, then

$$Vol(\partial A) \ge Vol(\partial B).$$
 (5)

Proof: By the Brunn-Minkowski inequality,

$$Vol(A_t)^{1/n} = Vol(A + tB)^{1/n} \ge Vol(A)^{1/n} + tVol(B)^{1/n}$$
$$= (1 + t)Vol(B)^{1/n}$$
$$= Vol(B_t)^{1/n},$$

establishing the first statement. The second follows simply because

$$Vol(A_t) - Vol(A) > Vol(B)((1+t)^n - 1) > ntVol(B)$$

where $(1+t)^n \ge 1 + nt$ for $t \ge 0$. Thus $\operatorname{Vol}(\partial A) \ge n\operatorname{Vol}(B)$. The isoperimetric theorem now follows from the fact that $\operatorname{Vol}(\partial B) = n\operatorname{Vol}(B)$.

• Remark (*Isoperimetry Theorem*)

The classical isoperimetric theorem in \mathbb{R}^n states that, among all sets with a given volume, the Euclidean unit ball minimizes the surface area.

2 Concentration via Isoperimetry

- 2.1 Levy's Inequalities and Concentration Function
- 2.2 Isoperimetric Inequalities on the Unit Sphere
 - Remark (Volume Ratio of Unit Balls and its Interior) [Vershynin, 2018] Let $B(0,1) := \{x \in \mathbb{R}^n : ||x|| \le 1\}$ be the unit ball in \mathbb{R}^n . The volume ratio between B(0,1)

and its ϵ -interior $B(0, 1 - \epsilon)$ is

$$\frac{\operatorname{Vol}(B(0, 1 - \epsilon))}{\operatorname{Vol}(B(0, 1))} = (1 - \epsilon)^n \le \exp(-n\epsilon)$$

The inequality is due to $1 - x \le e^{-x}$.

As $n \to \infty$, the above ratio goes to 0. In other words, most of volume in B(0,1) is **concentrated** in the **boundary** $\partial B = \mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x|| = 1\}$. This phenomenon is called "**the curse of dimensionality**".

- Definition
- 2.3 Gaussian Isoperimetric Inequalities and Concentration of Gaussian Measure
- 2.4 Edge Isoperimetric Inequality on the Binary Hypercube
- 2.5 Vertex Isoperimetric Inequality on the Binary Hypercube
- 2.6 Convex Distance Inequality

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.

Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.