Лекция

Законы сохранения (Литература- ссылка **1** (**Рекомендуемая литература**), §6, разделы 6.2 — стр.32-34; §9, разделы 9.1; 9.2.1; 9.2.3 — стр.44-47, вопросы 14-17 - См. *Трофимова Т.И. Курс физики. М.: Высшая школа, 2001*, §14, *стр.29-30*).

Вопросы (Дать письменные ответы на вопросы, оформив конспект в виде таблицы, пример которой см. ниже вопросов)

- 1. Что называют механической системой?
- 2. Какие силы называют внутренними? внешними?
- 3. Какая система называется замкнутой?
- 4. Сформулируйте второй закон Ньютона для системы материальных точек. Запишите уравнение, выражающее этот закон, и поясните смысл обозначений.
- 5. Сформулируйте закон сохранения импульса.
- 6. Укажите частные случаи выполнения закона сохранения импульса.
- 7. В чем заключается закон сохранения механической энергии? Для каких систем он выполняется?
- 8. В чем физическая сущность закона сохранения и превращения энергии? Почему он является фундаментальным законом природы?
- 9. Что понимают под ударом?
- 10. Какой удар называют абсолютно упругим?
- 11. Какие законы сохранения выполняются для абсолютно упругого удара. Запишите уравнения, выражающие эти законы.
- 12. Какой удар называют абсолютно неупругим?
- 13. Какие законы сохранения выполняются для абсолютно неупругого удара. Запишите соответствующие уравнения.
- 14. Что называют потенциальной кривой?
- 15. Что такое потенциальная яма? потенциальный барьер?
- 16. Какие заключения о характере движения можно сделать из анализа потенциальных кривых?
- 17. Как определяется положение устойчивого и неустойчивого равновесия?

Пример оформления конспекта лекции по теме «Работа и энергия» см. на следующей странице.

1	Механическая система	Совокупность материальных точек (тел), выделенных для рассмотрения, называется механической системой.
2	Внутренние и внешние силы	Силы, которые действуют на тела системы, делят на внешние и внутренние. Внутренние силы обусловлены взаимодействием тел, входящих в систему. Внешние силы обусловлены взаимодействием с телами, не входящими в систему
3		
16	Анализ потенциаль- ных кривых	Рассматриваем одномерное движение и консервативную систему. Пусть потенциальная кривая имеет вид, как показано на рисунке. $E = \frac{G}{E}$
		$0 \xrightarrow[x_1 \ x_2 \ x_3 \ x_0 \ x_4 \ x_5 \ x]{} $
		Если E - полная энергия тела (она задается горизонтальной прямой EE), то тело может находиться в тех точках на оси x , где $\Pi(x) < E$, (так как $E=E_{\kappa}+\Pi$, $E_{\kappa} \ge 0$ всегда, то потенциальная энергия Π не может быть больше полной энергии E). Прямая EE пересекает потенциальную кривую в точках A , C , F и H C координа-
		тами x_1 , x_3 , x_4 и x_5 . Следовательно, тело с полной энергией E может двигаться в областях $0 \le x \le x_1$, $x_3 \le x \le x_4$ (область II) и $x \ge x_5$ (область IV).
		II и IV области отделены друг от друга областями I u III которые называют <i>потенциальными барьерами</i> ABC и FGH . Ширина барьеров равна интервалу значе-
		ний х, при которых $E < \Pi$, а его высота определяется
		разностью $\Pi(x)$ - E . Для того чтобы тело смогло преодолеть потенци-
		альный барьер, ему путем совершения работы необхо-
		димо сообщить дополнительную энергию, равную вы-
		соте барьера или превышающую ее. В таком случае

	В области II тело с полной энергией <i>E</i> оказывается «запертым» в <i>потенциальной яме CDF</i> и будет совершать колебания между точками с координатами х ₃ и х ₄ . Анализ потенциальных кривых взаимодействия частиц в твердом теле позволяет установить характер и границы движения частиц, объяснить, например, причины теплового расширения, такие явления, как термоэлектронная эмиссия, возникновение контактной разности потенциалов, термоэлектродвижущей силы.

И так далее.....