# Chemomile: An Explainable Multi-Level GNN Model for Combustion Property Prediction

Beomgyu Kang and Bong June Sung\*

Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea

E-mail: bjsung@sogang.ac.kr

# Can you *read* it?



1-propanol (C<sub>3</sub>H<sub>8</sub>O)

• density: 0.803 g mL<sup>-1</sup>

• *log P* : 0.329

Flash Point: 295 K



2-propanol (C<sub>3</sub>H<sub>8</sub>O)

• density: 0.786 g mL<sup>-1</sup>

• *log P* : -0.16

Flash Point: 284 K



## Molecule as a Graph

- ✓ We can think of a molecular graph  $G = \{V, E\}$ : a node(V) → an atom & an edge(E) → a bond
- However, a simple graph representation is not enough

#### Chemomile



: CHEMical Oriented Machine Intelligence Learning Engine

- √ 3D Geometry + Fragmentation
- ✓ Multi-Level Graph Representation
- Explainability via atom-wise contribution

# **Fragmentation**



### **Chemomile Network**



#### **AttentiveFP**

✓ AttentiveFP is based on Graph Attention Network (GAT)



Alignment:

$$e_{vu} = leaky\_relu(W \cdot [h_v, h_u])$$

Weighting:

$$a_{vu} = softmax(e_{vu})$$

Context Generation:

$$C_v = elu\left(\sum_{u \in N(v)} a_{vu} \cdot W \cdot h_u\right)$$

State Update:

$$h_v^k = GRU^{k-1}(C_v^{k-1}, h_v^{k-1})$$

Xiong, Z.; Wang, D.; Liu, X.; Zhong, F.; Wan, X.; Li, X.; Li, Z.; Luo, X.; Chen, K.; Jiang, H.; others Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. Journal of medicinal chemistry 2019, 63, 8749–8760.

# Particle Swarm Optimization (PSO)



- ✓ PSO mimics the social behavior of animals
- ✓ Each "agent" decides its next move considering

Personal Best, Social Best, and Inertia

Miranda, L. J. V. PySwarms, a research-toolkit for Particle Swarm Optimization in Python. Journal of Open Source Software 2018, 3.

#### **Dataset**

- ✓ DIPPR\* 801 is managed by AIChE\*\*
  - \* Design Institute for Physical Properties
  - \*\* American Institute of Chemical Engineers
- ✓ Combustion Properties
  - Flash Point (FP)
  - Autoignition Temperature (AIT)
  - Heat of Combustion (HCOM)
  - Lower/Upper Flammability Limit (FLVL/FLVU)
- √ Chemomile predicts Z-score

$$Z = \frac{X - \bar{X}}{S}$$

- Error Metrics
  - MAE : Mean Absolute Error
  - RMSE: Root Mean Squared Error
  - MAPE: Mean Absolute Percentage Error
  - R<sup>2</sup>



## Results



| Target | Total                           |                                 |        |                | Test                            |                                 |        |                |  |
|--------|---------------------------------|---------------------------------|--------|----------------|---------------------------------|---------------------------------|--------|----------------|--|
|        | MAE                             | RMSE                            | MAPE   | R <sup>2</sup> | MAE                             | RMSE                            | MAPE   | R <sup>2</sup> |  |
| FP     | 13.427 (K)                      | 18.915 (K)                      | 3.993  | 0.895          | 14.482 (K)                      | 20.797 (K)                      | 4.165  | 0.844          |  |
| AIT    | 51.557 (K)                      | 72.567 (K)                      | 8.461  | 0.639          | 60.359 (K)                      | 87.288 (K)                      | 9.781  | 0.320          |  |
| HCOM   | 366.398 (kJ mol <sup>-1</sup> ) | 486.062 (kJ mol <sup>-1</sup> ) | 19.085 | 0.957          | 386.363 (kJ mol <sup>-1</sup> ) | 529.136 (kJ mol <sup>-1</sup> ) | 19.827 | 0.951          |  |
| FLVL   | 0.446 (%)                       | 0.895 (%)                       | 21.025 | 0.826          | 0.226 (%)                       | 0.409 (%)                       | 13.280 | 0.913          |  |
| FLVU   | 3.375 (%)                       | 6.705 (%)                       | 26.936 | 0.824          | 4.419 (%)                       | 7.509 (%)                       | 36.236 | -0.246         |  |

## Perturbation-based Explanation

$$Contrib.(0) = Pred.(000000) - Pred.(000000)$$



- Atom-wise contribution can be quantified
- ✓ Different contribution for different properties
- Explanation relies on model's performance
- Explanation agrees with existing chemical knowledge (Functional Groups)

#### Conclusion

- ✓ Inaccurate prediction of combustion properties may lead to hazards
  - ✓ A molecule can be represented as a graph form.
  - ✓ Chemomile utilizes multi-level graph representation combined with 3D geometry of a molecule
- ✓ Chemomile shows compatible performance to existing GNN models
  - ✓ Atom-wise contribution can be quantified, providing an explanation of predicted value
- ✓ This knowledge can be a valuable tool for researchers and engineers.