Tìm hiếu Neural Network, ANN, CNN, RNN & Một số ứng dụng tiêu biểu dùng Neural Network

<u>GVHD</u>: Cô Trần Lê Minh Sang SVTH:

Nguyễn Xuân Hùng - 15110059 Tôn Nữ Minh Châu - 15110019

Nội Dung

- Giới thiệu đề tài và Động cơ thực hiện
- Mục tiêu và Phạm vi đề tài
- Tổng quan về Neural Network
- Artificial Neural Networks
- Convolutional neural network
- Recurrent neural network
- So sánh
- Tổng kết TLCN
- Hướng phát triển trong tương lai

Giới thiệu – Động cơ thực hiện đề tài

- Tìm hiểu Neural Network, ANN, RNN, CNN và một số ứng dụng tiêu biểu dùng Neural Network
- Động cơ thực hiện đề tài
 - Muốn có hiểu biết nhiều hơn về Machine Learning, Deep Learning.
 - > Muốn thử sức mình.

Mục Tiêu

Có cái nhìn tổng quan về AI, Machine Learning và đặc biệt là Deep Learning.

Phạm Vi

Tìm hiểu về định nghĩa và cách hoạt động của

- Artificial Neural Network.
- Convolutional Neural Network.
- Recurrent Neural Network.

Tổng Quan Về Neural Network

Neural Network là mô hình xử lý thông tin được mô phỏng dựa trên hoạt động của hệ thống thần kinh của sinh vật.

Artificial Neural Network

Định nghĩa

Artificial Neural Networks là các mô phỏng lấy cảm hứng từ sinh học được thực hiện trên máy tính để thực hiện các nhiệm

vụ cụ thể.

Artificial Neural Network

Cách hoạt động

Artificial Neural Network

Định nghĩa

- CNN là một dạng cụ thể của ANN
- CNN là sử dụng trong các bài toán liên quan tới hình ảnh.

Cách hoạt động - Convolution Layer

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Input

Filter / Kernel

Input x Filter

Feature Map

Cách hoạt động - Stride

Cách hoạt động - Stride

Cách hoạt động - Pooling Layer

1	1	2	4	may pool with 2v2		
5	6	7	8	max pool with 2x2 window and stride 2	6	8
3	2	1	0		3	4
1	2	3	4	•		

Cách hoạt động - Fully-Connected Layer

Ứng dụng

We Start With Good
Because all businesses should
be doing something good.

ứng dụng

Định nghĩa

- Recurrent Neural Network là một biến thể khác của ANN
- Kết nối giữa các nút tạo thành một đồ thị có hướng dọc theo một trình tự. Điều này cho phép nó thể hiện hành vi, động thái, thời gian trong một chuỗi thời.

Định nghĩa

Sequence data

- Âm thanh
- Văn bản
- **.** . . .

Định nghĩa

Time Step

Trong RNN, Time Step là số lần lặp của mạng. Khi mạng nhận vào một input thì mạng đã bước sang một Time Step.

Định nghĩa one-hot vector

- one-hot vector là một ma trận 1xN
- bao gồm toàn giá trị 0 ngoại trừ một giá trị 1
- Ví dụ: : "Have a good day"
- danh sách từ vựng {Have, a, good, day}
 - Have: [1 0 0 0]
 - > a: [0 1 0 0]
 - > good: [0 0 1 0]
 - > day: [0 0 0 1]

Cách hoạt động

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

ANN	CNN	RNN	
Không có Hidden State	Không có Hidden State	Có Hidden State	
Mỗi lần train chỉ đưa	Mỗi lần train chỉ đưa vào	Mỗi lần train sẽ đưa vào	
vào từng input một	từng input một	input mới và thông tin	
		của các input trước đó	
Không nhớ được thông	Không nhớ được thông	Lưu thông tin của những	
tin của những input	tin của những input trước	input trước đó trong	
trước đó	đó	Hidden State	

ANN	CNN	RNN
Không nhớ được	Không nhớ được	Lưu thông tin của
thông tin của những	thông tin của những	những input trước đó
input trước đó	input trước đó	trong Hidden State

ANN	CNN	RNN	
Mỗi output của mỗi	Mỗi output của mỗi	Output của Time Step	
input không làm ảnh	input không làm ảnh	trước sẽ làm ảnh hưởng	
hưởng tới việc tính	hưởng tới việc tính toán	tới tính toán của Output	
toán của nhau	của nhau	của Time Step sau nó	

ANN	CNN	RNN	
Được sử dụng cho các	Được sử dụng cho các	Được sử dụng cho các	
bài toán phân lớp,	bài toán phân lớp (đặc	bài toán có dữ liệu trình	
regression	biệt là các bài toán nhận	tự như: dự đoán từ tiếp	
	diện vật thể trong hình	theo của một câu, phân	
	ảnh)	tích cảm xúc.	

Tổng kết TLCN

- Đã đạt được
 - Nắm được các khái niệm liên quan đến ANN, CNN, RNN.
 - Hiểu được luồng hoạt động bên trong của các thuật toán.
 - Liên kết với các kiến thức đã học được trong môn Machine Learning.
 - Hiểu và áp dụng được mô hình xử lý bài toán trong Machine Learning
- Chưa đạt được.
 - Chưa áp dụng được vào thực tế.
 - Đối với RNN, có rất nhiều khái niệm, kiến trúc nổi trội nhưng nhóm vẫn chưa nắm bắt được.

Hướng phát triển trong tương lai

- Tiếp tục tìm hiểu sâu hơn và hoàn chỉnh hơn về các lý thuyết về Neural Network như: Autoencoder, các mở rộng của ANN, CNN và RNN.
- Áp dụng các kiến thức lý thuyết đã học vào việc thực hành nhiều hơn. Từ đó đúc kết được kinh nghiệm để có thể xây dựng ứng dụng có ích, hữu dụng trong thực tế.

Chân thành cảm ơn quý Thầy Cô đã lắng nghe!