9.4: P-Values

Taylor

University of Virginia

Definition

The **p-value** is the probability of obtaining a value of another test statistic at least as contradictory to H_0 as the value you just calculated from the available sample; this probability is calculated under the assumption that H_0 is true.

This should seem sort of complicated. We are comparing a hypothetical, unobserved test statistic, Z, and comparing it to our now nonrandom test statistic we just calculated, z.

Taylor (UVA) "9.4" 2/

Definition

Say you had the setup: $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$, with σ^2 known. And $H_0: \mu = \mu_0$ versus $H_a: \mu > \mu_0$.

And say you calculated your test statistic $z=\frac{(\bar{x}-\mu_0)}{\sqrt{\sigma^2/n}}$ (now lowercase).

Then

$$\mathsf{p\text{-}value} = P(Z > z | \mu = \mu_0)$$

Taylor (UVA) "9.4" 3,

Example 9.14 on page 456

We're doing a large-sample hypothesis test here for the population mean μ . $H_0: \mu=2.0$ versus $H_a: \mu>2$. They tell us that $z=\frac{\bar{x}-2.0}{s/\sqrt{n}}=3.04$. If this was a question in one of the previous sections, we would find z_α and reject if $z>z_\alpha$.

But let's do it with a p-value now. The values that are at least as contradictory to H_0 as the test statistic is are all the numbers to the right of our test statistic. This is because H_a : $\mu > 2$.

P-Value =
$$P(Z > 3.04 \text{ when } \mu = 2) = .0012$$

Taylor (UVA) "9.4"

Decision Rule

A small p-value (near 0) indicates rare-ness. Either your assumption of H_0 is absurd, or you just observed some very rare data.

If α is our pre-selected probability of type 1 error, the decision rule tells us to reject H_0 if and only if our p-value is less than α .

Taylor (UVA) "9.4" 5/

Summary

Old decision rule: compare z with z_{α} . Or compare t with $t_{n-1,\alpha}$.

New decision rule: compare p-value with α .

The p-value is based on the percentile associated with your test statistic. All of this is just two sides of the same coin. The upshot of p-values is that they're more "report-able."

People looking at a statistical analysis can just trust you on your methodology and glance at the p-value; they don't need to know about statistical distributions.

Also, if $\alpha=.1$, then a p-value of .000000001 seems to say a bit more than .08.

Taylor (UVA) "9.4" 6/

Summary

How to calculate p-values:

- For an upper-tailed test: $P(Z \ge z)$ OR $P(T_{n-1} \ge t)$
- ② For a lower-tailed test: $P(Z \le z)$ OR $P(T_{n-1} \le t)$
- **3** For a two-tailed test: $2 \times P(Z \le -|z|)$ OR $2 \times P(T_{n-1} \le -|t|)$

Taylor (UVA) "9.4"