Exploring
Effective
Fuzzing
Strategies to
Analyze Com
munication
Protocols

Yurong Chen, Tian Lan and Guru Venkatara-

Contont

Background and Goal

Design and Implementa

Evaluatior

Thought

Exploring Effective Fuzzing Strategies to Analyze Communication Protocols

Yurong Chen, Tian Lan and Guru Venkataramani

ACM FEAST workshop colocated with CCS 2019

October 16, 2019

Contents

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru Venkatara-

Content

Background and Goal

Design and Implementation

Evaluation

Γhought

- Background and Goal
- Design and Implementation
- 3 Evaluation
- 4 Thought

What's communication protocol fuzzing?

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru Venkatara

Venkatara mani

Content

Background and Goal

Design and Implementation

Evaluation

Chough

- Stateful
- Dependent packages
- Multiple formats

Limitation

Yurong Chen, Tian Lan and Venkatara-

Background and Goal

- Blind Fuzzing
- Fuzzing the first packet
- Rely on well-constructed test program

Limitation

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru

Venkatara-

Content

Background and Goal

Design and Implementa tion

Evaluatior

Though

Fork to keep status

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru Venkatara-

Contents

Background and Goal

Design and Implementation

Evaluation

Thought

Figure 2: Simplified AFL forking workflow. FS: forkserver, TC/TC': testcase, TP: testing program

Fork to keep status

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru Venkatara-

Contents

Background and Goal

Design and Implementation

Evaluation

Thought

Figure 3: System Overview of our Stateful Fuzzer Design. FS: forkserver, multiQ: queues for storing different types of testcases, TP: testing program

Fork to keep status

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru Venkatara-

Background and Goal

Design and Implementa-

Evaluation

Thought

How to choose the status to fuzz?

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru Venkataramani

Content

Backgroun and Goal

Design and Implementation

Evaluation

Though

- During the profiling stage, each packet is fuzzed for a fixed amount of time(one hour)
- Provide an overview of code coverage and fuzzing queue related to each packet
- Higher code coverage and more queue entries will be assign more fuzzing time
- Higher code coverage and more queue entries will have a larger probability to be progressed

OpenSSL v101

Exploring
Effective
Fuzzing
Strategies to
Analyze Com
munication
Protocols

Yurong Chen, Tian Lan and Guru Venkataramani

Contents

Background and Goal

Design and Implementa tion

Evaluation

hought

Table 1: Statistics of fuzzing single packet (OpenSSL v101) at four different stages using default AFL for 6 and 24 hours.

Ī	Code Coverage(%)	Unique Crashes	Cycles Done	Total # of Executions(M)	Time (hours)
p1	9.51	1	4	7.87	6
p2	10.18	9	0	12.68	6
p3	5.56	9	15	12.21	6
p4	2.61	6	157	12.43	6
	Code	Unique	Cycles	Total # of	Time

	Code Coverage(%)	Unique Crashes	Cycles Done	Total # of Executions(M)	Time (hours)
p1	9.64	11	30	42.05	24
p2	11.16	9	6	49.58	24
p3	5.6	14	410	66.20	24
p4	2.61	9	1308	54.80	24

Improved coverage: 19.27%(24hour)

Thought

Exploring
Effective
Fuzzing
Strategies to
Analyze Communication
Protocols

Yurong Chen, Tian Lan and Guru Venkatara-

Contents

Background and Goal

Design and Implementa tion

Evaluation

Γhought

Packet type, Packet field value, Packet queue \rightarrow Crash or not?

Machine learning

Filter test cases

Speed up!