2017 제 13회 KMAC 경영혁신 연구논문 및 사례연구 - Digital 경영

온라인 쇼핑몰에서의 딥러닝 기반 패션 상품 추천 방식 연구

심현준, 성신웅 한국과학기술원 (KAIST)

flhy5836@kaist.ac.kr

Overview

- 딥러닝 통해 패션 상품 이미지의 유사도를 분석하고,
 이를 패션 기업의 온라인 상품 추천 의사결정에 활용
 - 방법론: 이미지 분석을 위한 딥러닝 기법 (Convolutional Neural Network, CNN)
 및 상품 속성에 대한 분류 기법 (Support Vector Machine, SVM)
- 빅데이터 & 비즈니스 애널리틱스 활용연구
 - 국내 패션 기업 K사와의 산학 협력 과제
 - 패션업계의 현업 운영 문제를 파악하고 구체적인 의사결정 지원을 통해 혁신 도모
 - 현업에서 실제 활용할 수 있는 의사결정 시스템 개발
- 최신 기계학습 기법과 기업 데이터를 융합한 실제 사례 연구

목차

- 1. 연구 배경
- 2. 연구 문제
- 3. 패션 상품 추천 방법론
- 4. 추천 결과 및 실제 적용 효과
- 5. 결론 및 향후 연구

1. 연구 배경

1. 연구 배경: 온라인 패션 시장의 성장

• 국내 온라인 패션 시장의 성장

- 국내 온라인 시장은 2014년 기준 매출액 세계 7위 규모^[1]
- 매년 두 자리의 높은 증가율을 보이며 2016년에는 약 65조 규모로 성장[2]
- 이 중 의류 및 패션 관련 상품은 약 15.7% 으로 여행 서비스에 이어
 두 번째로 큰 비중을 차지^[2]

	2013	2014	2015	2016	2017	2018
1. China*	\$315.75	\$426.26	\$562.66	\$714.58	\$871.79	\$1,011.28
—% change	47.0%	35.0%	32.0%	27.0%	22.0%	16.0%
2. US**	\$264.28	\$305.65	\$349.06	\$394.43	\$442.55	\$493.89
—% change	16.5%	15.7%	14.2%	13.0%	12.2%	11.6%
3. UK**	\$70.39	\$82.00	\$93.89	\$104.22	\$114.64	\$124.96
—% change	17.0%	16.5%	14.5%	11.0%	10.0%	9.0%
4. Japan	\$62.13	\$70.83	\$79.33	\$88.06	\$96.87	\$106.07
—% change	17.9%	14.0%	12.0%	11.0%	10.0%	9.5%
5. Germany	\$51.91	\$63.38	\$73.46	\$82.93	\$91.97	\$99.33
—% change	21.7%	22.1%	15.9%	12.9%	10.9%	8.0%
6. France	\$34.21	\$38.36	\$42.62	\$46.13	\$49.71	\$53.26
—% change	13.2%	12.1%	11.1%	8.2%	7.8%	7.1%
7. South Korea	\$29.30	\$33.11	\$36.76	\$40.43	\$44.07	\$47.82
—% change	12.6%	13.0%	11.0%	10.0%	9.0%	8.5%
8. Canada	\$20.98	\$24.63	\$28.77	\$33.05	\$37.61	\$42.67
—% change	17.7%	17.4%	16.8%	14.9%	13.8%	13.5%
9. Russia	\$15.06	\$17.47	\$20.30	\$23.40	\$26.88	\$30.91
—% change	27.4%	16.0%	16.2%	15.3%	14.9%	15.0%
10. Brazil	\$13.34	\$16.28	\$18.80	\$21.34	\$23.79	\$26.17
—% change	28.0%	22.0%	15.5%	13.5%	11.5%	10.0%

Note: includes products or services ordered using the internet via any device, regardless of the method of payment or fulfillment; excludes travel and event ickets; *excludes Hong Kong; **forecast from Sep 2014 Source: eMarketer, Dec 2014

205 www.eMarketer.com

[1] Top 10 Contries, Ranked by Retail Ecommerce Sales Worldwide, 2013-2018, eMarketer, http://www.emarketer.com/Chart/Top-10-Countries-Ranked-by-Retail-Ecommerce-Sales-Worldwide-2013-2018-billions-change/164369

[2] 2016년 12월 및 연간 온라인쇼핑 동향, 통계청

1. 연구 배경: 패션 상품 이미지 데이터의 증가와 딥러닝의 발달

- 패션 업계의 온라인 채널 강화 → 상품 이미지 데이터 증가
- 인공지능 및 딥러닝의 발달 → 이미지 인식 정확도 인간의 수준 능가

이미지 판별 딥러닝 모델 AlexNet의 결과 예시

1. 연구 배경: 패션 상품 이미지 데이터의 증가와 딥러닝의 발달

- 패션 업계에서의 이미지 인식 인공지능 기술 활용
 - 유럽 최대 온라인 의류업체 **Zalando**
 - 인도 온라인 쇼핑몰 시장 1위 업체 <u>Flipkart</u>
 - 영국 온라인 패션 쇼핑몰 **SNAP FASHION** 등
- 상품 이미지를 활용한 인공지능 기술이 패션 온라인몰 경쟁력에 새로운 핵심

2. 연구 문제

- "이 상품을 본 고객이 본 다른 상품" → 협업 필터링(Collaborative filtering)
 - <u>판매 및 클릭 데이터 기반</u>으로 고객 간/상품 간 유사도 산출하여 상품 추천
 - 전통적으로 사용되어 왔고 다양한 상품군에 적용 가능
 - Cold start issue: 데이터가 충분히 쌓인 후에야 신뢰할 만한 추천 결과 보임
 - → <u>패션 상품의 경우 계절성 및 유행으로 인해 상품 주기가 짧기 때문에</u> 데이터가 충분히 쌓일 때 까지 기다려야 하는 방식은 적합하지 않음
 - Long tail issue: 상품 종류가 많을 경우 일부 상품의 데이터만 쌓이는 쏠림 현상 발생
 - → 패션 상품은 매 시즌 수 백 종류 이상의 상품이 출시 Long tail issue 가능성↑

• "이 상품을 본 고객이 본 다른 상품" → 협업 필터링(Collaborative filtering)

- 콘텐츠 기반 필터링 (Content-based filtering)
 - <u>상품의 속성(e.g. 브랜드, 카테고리, 디자인 등)을 기반</u>으로 상품 간 유사도 산출 & 고객이 선택한 상품과 유사한 상품 추천
 - 패션 상품 특성 상 시각적으로 유사한 상품 추천해 주면 구매로 이어질 확률 높음
 - _ 실 적용 이슈
 - 대부분의 패션 기업에서 관리하는 상품 속성은 상위 레벨 데이터
 - 사람이 수기로 관리하여 속성에 대한 판단이 주관적
 - 속성만으로 상품의 시각적인 차이를 구분하기에 표현력이 충분하지 않음
 - → 현실적으로 잘 사용되지 않음

2. 연구 문제: 딥러닝 기술을 활용한 패션 상품 추천 연구

- 딥러닝 기술을 통해 패션 상품 이미지를 활용하여
 상품의 시각적 정보를 효과적으로 추출 가능
 - → <u>온라인 패션 쇼핑몰</u>에서 고객이 선택한 상품과 시각적으로 유사한 상품을 추천하는 방식 제안
- 본 연구의 차별성
 - 딥러닝을 활용한 직관적인 패션 상품 추천 로직 제시
 - 딥러닝 결과와 함께 패션 상품의 주요 속성을 함께 고려
 - 국내 패션 기업의 자사 온라인 쇼핑몰에 제안 방식을 시범 적용하여 실제 효과 확인

3. 패션 상품 추천 방법론

3. 방법론: 딥러닝 및 패션 상품 이미지를 활용한 상품 추천 프레임

패션 상품 FV 추출

- Pre-trained ResNet
- 상품 이미지 FV (feature vector) 추출

상품 간 유사도 산출

- 패션 상품 FV 간 거리 계산
- 상품 유사도 산출

상품 주요 속성 분류

- Support Vector Machine (SVM)
- FV 활용하여 상품 속성 자동 식별

유사 상품 추천

- 고객이 선택한 상품과 이미지 유사도가 높고 주요 속성이 일치하는 순으로 상품 추천

3. 방법론: 딥러닝을 통한 상품 FV 추출 및 유사도 정량화

- CNN(Convolutional Neural Networks) 기반 이미지 프로세싱
 - 오픈 소스로 활용되는 Pre-trained ResNet* 활용
 - 이미지가 갖는 추상적인 정보를 고차원의 벡터로 저장

• 상품 간 유사도 정량화

- 각 상품들의 FV 사이 L2-distance를 계산
- 유사한 제품 간 거리는 작고,유사하지 않은 제품 간 거리는 큼

*He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016.

3. 방법론: 상품 주요 속성 자동 분류

• Support Vector Machine (SVM) 기법 기반 상품 속성 분류

속성이 기 정의된 상품들의 FV를 학습/검증 데이터로 사용하여
 속성이 정의되지 않은 상품들의 속성 분류

주요 속성 부위가 crop된 이미지의 FV

소매길이: 긴팔 네크형태: 라운드

	Training	Test
티셔츠 (T)		
소매길이	100%	100%
네크형태	100%	100%
스웨터 (W)		
소매길이	100%	96%
네크형태	99%	100%
여밈	100%	100%
셔츠 (S)		
소매길이	99%	100%
네크형태	96%	96%

	Training	Test
바지(P)		
기장	100%	100%
청바지	98%	97%
자켓 (J)		
점퍼풍	100%	100%
점퍼		
소매길이	100%	100%
밴드카라	98%	93%

3. 방법론: 딥러닝 결과와 상품 속성 정보를 결합한 패션 상품 추천 방식

- 1. 고객이 보고 있는 상품 (타깃 상품) 이미지의 FV와 거리가 가까운 k개의 상품 선별
- 2. 선별된 상품들의 속성이 타깃 상품의 속성과 비슷한 순으로 추천
 - 중요한 속성이 같은 상품 우선으로 추천
 ex. 타깃 상품과 모든 속성 동일 → 소매 길이 동일 → 카라 유무 동일 ...

Step 1. 타깃 상품 이미지 FV와 거리가 가장 가까운 k=5개 상품 선별

3. 방법론: 스타일링 상품 추천 방식

• 유사 상품 추천 알고리즘 + 스타일링 데이터

- 브랜드 디자이너가 제안하는 서로 어울리는 제품 리스트 활용
- 시각적으로 비슷한 상품들로 대체하여도 어울린다는 가정

Case 1	고객이 보고 있는 상품이 스타일링 리스트 안에 <u>있는</u> 경우
Case 1.1	스타일링 리스트 안에 한 세트(스타일) 있을 경우
추천 방법	해당 세트 상품들 추천 및 그 상품들과 유사한 N세트 추천
Case 1.2	스타일링 리스트 안에 $1 < n \le N$ 세트 있을 경우
추천 방법	해당 세트 상품들 추천 및 각 세트 상품들과 유사한 $\lceil (N-n+1)/n \rceil$ 세트 추천
Case 1.3	스타일링 리스트 안에 $n>N$ 세트 있을 경우
추천 방법	해당 세트 상품들 모두 추천

Case 2	고객이 보고 있는 상품이 스타일링 리스트 안에 <u>없는</u> 경우
Case 2.1	해당 상품과 가장 유사한 동종 상품 K 개 추출하고, 그 중 스타일링 리스트에 속하는 상품이 k 개 있을 경우
추천 방법	해당 세트 상품들 추천 및 각 세트 상품들과 유사한 $[(N-k+1)/k]$ 세트 추천
Case 2.2	해당 상품과 가장 유사한 동종 상품 K개 추출하고, 그 중 스타일링 리스트에 속하는 상품이 없을 경우
추천 방법	스타일링 상품을 추천하지 않음

타깃 상품	추천 상품		
		2	3
	4	5	6

타깃 상품	추천 상품		
		2	3
	4	5	6

타깃 상품		추천 상품	
	1	2	
	4	5	6

타깃 상품	추천 상품		
\	1	2	3
	4	5	6

타깃 상품	추천 상품		
	1	2	3
	4	5	6

타깃 상품	추천 상품		
	1	2	3
	4	5	6

타깃 상품		추천 상품	
	1	2	3
	4	5	6

타깃 상품	추천 상품			
	1	2	3	
	4	5	6	

타깃 상품	추천 상품		
	1	2	3
	4	5	6

스타일링 상품 추천 결과 ^{스타일북에} 등록된 세트

타깃 상품

스타일링 상품 추천 결과

타깃 상품

스타일링 상품 추천 결과

타깃 상품

국내 패션 기업 K사 온라인 쇼핑몰 시범 적용

- 목적: 기존 추천 방식과의 비교를 통한 효과 검증
 - 기존 추천 방식: 협업 필터링 기반의 현업 자체 개발 방식
- 기간: 2017년 6월 5일 ~ 2017년 7월 2일 (4주)
- 대상 브랜드: 남성 캐주얼 7개 브랜드
- 추천 대상 Pool: 티 495개, 셔츠 572개, 바지 453개 → 총 1,520개 상품
- 타깃 상품: 3개 브랜드 각 품종 별 클릭 수 높은 상위 10개 상품
 - 클릭 수 내림차순으로 홀수 번째 상품을 실험군, 짝수 번째 상품을 대조군으로 선정

• 평가 척도

- _ 추천 상품 방문자 비율
 - = (타깃 상품 페이지에서 추천된 상품 방문자 수) / (타깃 상품 방문자 수) (%)

• 기존 방식과 제안 방식의 추천 상품 방문자 비율의 모평균의 차 통계 검정

- 전체 표본에 대해, 제안 방식을 통한 추천 상품 방문자 비율 개선이 유의
- 특히 <u>바지 품종</u> 및 <u>브랜드 A</u> 상품에 효과적
 - 바지의 경우 고객이 구매하고자 하는 상품이 시각적으로 명확한 편
 - 브랜드 A의 경우 상대적으로 더 실용적인 / 기본적인 디자인의 상품을 선보이는 브랜드

분석 표본		기존 방식 대비 제안 방식 (KAIST) 의 추천 상품 방문자 비율 증가량	귀무가설	P-value
	전체	1.12배	$\mu_0 \geq \mu_{KAST}$	0.175*
	Eļ	1.10배	$\mu_0 \ge \mu_{KABT}$	0.313
품종 별	바지	1.29배	$\mu_0 \geq \mu_{KAST}$	0.133*
	셔츠	0.98배	$\mu_0 \leq \mu_{KAST}$	0.448
	브랜드 A	1.73배	$\mu_0 \geq \mu_{KA\delta T}$	0.003***
브랜드 별	브랜드 B	1.08배	$\mu_0 \ge \mu_{KABT}$	0.362
	브랜드 C	0.68배	$\mu_0 \leq \mu_{KABT}$	0.016**

- 기존 방식과 제안 방식의 추천 상품 방문자 비율의 모평균의 차 통계 검정
 - 방문자 수가 적은 표본들에 대해서 제안 방식이 효과적 → Cold start issue 보완
 - 방문자 수 대비 판매량이 많은 표본들에 대해서 제안 방식이 효과적
 - 노출이 상대적으로 적은 상품에도 효과적 → Long tail issue 보완
 - 구매를 목적으로 상품을 클릭한 고객에게 제안 방식을 통한 추천 활용도 좋음

분석 표본	기존 방식 대비 제안 방식 (KAIST) 의 추천 상품 방문자 비율 증가량	귀무가설	P-value
방문자 수 하위 50%	1.57배	$\mu_0 \ge \mu_{KABT}$	0.008***
방문자 수 대비 판매량 상위 50%	1.33배	$\mu_0 \ge \mu_{KABT}$	0.041**

5. 결론 및 향후 연구

5. 결론 및 향후 연구

- 대표적인 기계학습 방법인 딥러닝을 활용하여, 온라인 패션몰에서 고객이 선택한 상품과 시각적으로 유사한 상품을 추천하는 방식 제안
- 이론적으로 발전된 최신 기법을 실제 현장에 적용한 사례
- 본 연구에서 제안한 추천 방식
 → 기업 내부적으로 실무에 활용될 수 있도록 추가적인 분석 작업 진행 중
- Future research
 - 시각적 유사도 뿐만 아니라 클릭/판매 데이터 함께 고려한 추천 방식 개발
 - 고객이 온라인에서 패션 상품 쇼핑 시 중요하게 생각하는 상품의 주요 속성 검증

