

### Verwerking en afzet van afvalwaterzuiveringsslib

Een inleiding (1)







### Deel 1

- Inleiding
- Slibverwerking (1)

### Deel 2

- Slibverwerking (2)
- Slibafzet
- Innovatieve ontwikkelingen in slibverwerking/slibafzet

# Aquafin

#### **INLEIDING**

- > Afvalstoffen uit waterzuivering
- > Slib: de wet van behoud van ellende
- > Oorsprong en karakterisatie van het slib
- > Slibsamenstelling
- > Slibhoeveelheden
- >Evolutie van de slibafzet
- >Specifieke slibproductie
- **≻Invloed van div. factoren op de slibproductie**



## Aquafin

### Roostergoed

- •Grof materiaal, plastic, takken, haren, ...
- Afvoer naar (huisvuil)verbranding
- •9000 ton/jaar

#### Zand

- Verwijdering van zandfractie (> 0,2 mm)
- •Kleinere fractie (bijv. leem) wordt niet verwijderd
- •Na zandwassing recuperatie als bouwmateriaal e.d.
- •15 000 tot 25 000 ton/jaar

#### Vet

- Bovendrijvend vet
- Afvoer naar gespecialiseerde verwerker of gisting
- •5000 ton/jaar



### Afvalstoffen uit de waterzuivering





### Slib: de wet van behoud van ellende

- •Biologische afvalwaterzuivering ⇒ slibproductie
- •Afvalwater ⇒ vast afval
  - Organische vervuiling ⇒ verrotting
  - Pathogenen
  - •95-99% van het slib bestaat uit water
  - Beperkt aantal afzetwegen
- ⇒ Slibverwerking is verantwoordelijk voor 1/3 van de operationele kosten van afvalwaterzuivering (2009: ± 33 mio €)



### Oorsprong en karakterisatie van het slib

### Primair vs biologisch slib



Bezinking in voorbezinktank:

**Primair slib** 

Overschot slib beluchtingstank:

**Biologisch slib** 



### Oorsprong en karakterisatie van het slib

- Primair slib
  - Bezinkbaar materiaal
  - Samenstelling en hoeveelheid = f(influentkarakteristieken)
  - Niet gestabiliseerd, organisch materiaal
  - Zeer goed vergistbaar
- Secundair (biologisch) slib
  - Aangroei van biomassa in beluchtingsbekken
  - Gestabiliseerd, lager ODS-gehalte
  - Slechte ontwaterbaarheid, vergistbaarheid

VBT wordt op veel RWZI's geëlimineerd ten behoeve van nutriëntverwijdering ⇒ enkel biologisch slib

### Slibsamenstelling



### Water!



A: Cellulair water

**B:** Adsorptie water

C: Capillair water

D: Vrij water

### Slibsamenstelling



- Organisch materiaal
  - Gemiddeld 50 à 70% van DS
  - Energiebron (gisting, verbranding)
- Anorganisch materiaal
  - Zandproblematiek: in bepaalde regio's veel afstroming van weilanden e.d.
  - Leem wordt niet verwijderd via conventionele zandvangers
  - Abrasie
- Organische vervuiling
  - Minerale olieën, concentraties tot 20.000 mg/kg DS
  - Tolueen (tot 500 mg/kg DS)
  - Micropolluenten: persistente gehalogeneerde substanties, LAS, NP, NPEO, PAK's, ftalaten
- Zware metalen
  - •Cd, Ni, Zn, Hg, Cu, Pb, As
  - •Afkomstig van industriële lozingen & huishoudens



### Slibsamenstelling







### Slibhoeveelheden



•Evolutie slibproductie

•1994: 54.013 TDS

•2009: 102.557 TDS

•Geraamde stijging

•2% per jaar vanaf 2009

Verhoging zuiveringsgraad:

Begin 2009: 73% (4,5 miljoen IE)



■ TDS voor gisting

■ TDS afgezet

■ Ton ontwaterd afgezet





### Slibhoeveelheden



- •Specifieke slibproductie
  - •62 g ds/ie<sub>BOD</sub>.d
  - •1,36 g ds/g BOD verwijderd



### Slibhoeveelheden: specifieke slibproductie





### Slibhoeveelheden



- •Slibproductie: invloed div. factoren
  - •Influentkarakteristieken: Zwevende stoffen, COD, N en P
  - •Type zuiveringssysteem:
    - VBT aanwezig?
    - Slibbelasting

### Slibhoeveelheden





#### **SLIBVERWERKING**



- **>**Slibindikking
- **≻**Indiktafel
- ➤ Slibstabilisatie
- ➤ Slibontwatering
- **≻**Centrifuge
- **≻**Kamerfilterpers
- ➤ Cascade (zeefbandpers)
- **>**Slibdroging
- ➤Wervelbeddroger
- **≻**Etagedroger
- ➤ Solidificatie / composteren/ opwerken tot meststof
- ➤ Opwerken tot slecht doorlatend materiaal



### Slibverwerking





### Slibverwerking



### Slibindikking





### Slibindikking

- Verwijdering vrij slibwater
- •Indikking van slib van 0,5 2 % DS tot 5 à 6 % DS
- •Volumereductie van 60 tot 90%
- •Gravitaire slibindikking
- •Verblijftijd: ± 1 à 2 dagen
- Mechanische slibindikking
- •Conditionering m.b.v. PE nodig
- •Hogere DS-gehaltes dan bij gravitaire indikking
  - Decanteercentrifuge
  - Zeef- of indiktrommel
  - Indiktafel









### Slibindikking



### Indiktafel





### Slibverwerkingssystemen





- Afbraak van organisch materiaal
  - •Minder risico op geurhinder
  - •Hygiënisatie, ruw slib: 10<sup>6</sup>/g E Coli, 10<sup>2</sup>-10<sup>3</sup>/g Salmonella
  - Verbeterde ontwaterbaarheid
  - Reductie van slibhoeveelheid
  - •Afbraak van bepaalde polluenten, bijv. tolueen

#### •Aërobe stabilisatie

- Vrij eenvoudige infrastructuur
- •Geschikt voor nutriëntrijke slibs
- •Energie**verbuik** voor beluchting: ± 0.5 kWh/kg DS





- Anaërobe stabilisatie
  - Aanzienlijke investering
  - •Zwaar beladen slibwaters, hoge nutriëntenvracht
  - •Biogasproductie: 600-800 l/kg  $DS_{afgebroken}$ , energie-inhoud 24 MJ/m³ ( ~ 0,8 l benzine)
  - Energieopbrengst uit biogas: ± 0.4 kWh/kg DS
  - Groene Stroom Certificaten





Werkingsprincipe

Onoplosbaar organisch materiaal

Oplosbaar organisch materiaal

• VVZ, CO<sub>2</sub>, H<sub>2</sub>, biomassa

• CH<sub>4</sub>, CO<sub>2</sub>

Extracellulaire enzymes

Acidogene bacteriële flora

Methanogene flora



- Procescondities
  - Verblijftijd:
    - CSTR: HRT=SRT
    - > Snelheid van vermenigvuldiging
      - 2-5 dagen voldoende voor stabiele methanogenese
    - Maximale OS afbraak?
      - > 15 dagen voor secundair slib
  - pH
    - Optima
      - Hydrolyse-Acidogenese: >4,5
      - Methanogenese: 6,8-7,5
    - Schommelingen
    - Buffer:
      - CO<sub>2</sub>/HCO<sub>3</sub> bij pH 7
      - $NH_4$ +/ $NH_3$  bij pH>8



- Temperatuur
  - Optima

Mesofiel: 25-40℃

Thermofiel: 50-55℃

- Schommelingen
- $Q_{10} = 2 \text{ à } 3$
- Trade-off T/HRT





- Inhibitoren
  - NH<sub>3</sub>
    - Hydrolyse/fermentatie van eiwitten
    - Verstoort methanogene activiteit
    - NH<sub>4</sub>+/NH<sub>3</sub> evenwicht bepaald door
      - Temperatuur
      - pH
    - Adaptatie mogelijk
  - SO<sub>4</sub><sup>2-</sup>
    - 1 g COD ≈ 0,5 g SO<sub>4</sub><sup>2</sup>-S
    - Tot 1/3 minder biogas





## Aquafin

#### Slibstabilisatie

#### Rekenvoorbeeld:

• Bereken voor een RWZI van 85 000 IE zonder voorbezinking de slibafzetkosten en de elektriciteitsopbrengst op jaarbasis met en zonder gisting.

#### • Gegevens:

- Slibproductie (S): 62 g DS/IE.dag
- Fractie organisch (OS): 65%
- Afbraak in de gisting: 35 % (van de organische DS)
- Specifieke Biogasproductie: 600 m³ biogas/ton afgebroken OS
- Samenstelling biogas: 65% CH<sub>4</sub> en 35% CO<sub>2</sub>
- Energie-inhoud CH<sub>4</sub> (ΔH<sub>0</sub><sup>c</sup>): 36 MJ/m<sup>3</sup>
- Elektrisch rendement gasmotor (η<sub>elektrisch</sub>): 0,35
- Opex gisting: 37 €/ton DS
- Elektriciteitsprijs: 0,09 €/kWh
- Prijs groene stroom certificaten: 0,112 €/kWh
- Afzetkost: 70 €/ton DS



### Berekening

Slibafbraak:

Slibafbraa 
$$k(ton) = Slibproduc\ tie(ton) \times \frac{OS(\%)}{100} \times \frac{Afbraak(\%)}{100}$$

• Biogasproductie:

 $Biogasprod\ uctie(m^3) = Specifieke\ \_biogasprod\ uctie(m^3/ton) \times Slibafbraa\ k(ton)$ 

• Energie-inhoud biogas:

Energie – inhoud (MJ) = 
$$\Delta H_c^o(kJ/m^3) \times Biogasproductie(m^3)$$

• Elektriciteitsproductie

$$P_{elektrisch}(kWh) = \frac{Energie - inhoud(MJ)}{3.6} \times \eta_{elektrisch}$$



- Uitwerking
  - Slibproductie (ton DS/jaar)
    - = 62 g/IE.dag \* 85000 IE \* 365 / 1000000 g/ton
    - = 1924 ton
  - Slibafbraak (ton ODS/jaar)
    - = 1924 ton \* 65%/100 \* 35%/100
    - = 438 ton ODS/jaar
  - Biogasproductie (m³) =
    - = 438 ton ODS/jaar \* 600 m³/tonODS
    - $= 262 565 \text{ m}^3$
  - Energie-inhoud biogas (MJ)
    - $= 262 565 \text{ m}^3 * 36 \text{ MJ/m}^3$
    - = 6 144 011 MJ
  - Elektriciteitsproductie (kWh)
    - = 6 144 011 MJ / 3,6 \* 0,35
    - = 597 334 kWh



### Uitwerking

- Opex gisting
  - = 1924 ton \* 37 €/ton
  - = 71 171 €
- Slibafzetkost
  - = (1924 438) ton \* 70 €/ton
  - = 104 016 €
- Opbrengst elektriciteit
  - = 597 334 kWh \* 0,09 €/kWh
  - = 53 760 €
- Opbrengst groene stroom certificaten
  - = 597 334 kWh \* 0.112 €/kWh
  - = 66 901 €



### Resultaat

|                          | Met gisting |                         | Zonder gisting |                         |
|--------------------------|-------------|-------------------------|----------------|-------------------------|
| Slibproductie            | 1.924       | ton DS/jaar             | 1.924          | ton DS/jaar             |
| Organische slibproductie | 1.250       | ton ODS/jaar            | 1.250          | ton ODS/jaar            |
| Organische slibafbraak   | 438         | ton ODS afgebroken/jaar | 0              | ton ODS afgebroken/jaar |
| Biogasproductie          | 262.565     | m³/jaar                 | 0              | m³/jaar                 |
| Energie-inhoud biogas    | 6.144.011   | MJ/jaar                 | 0              | MJ/jaar                 |
| Elektriciteit            | 597.334     | kWh                     | 0              | kWh                     |
|                          |             |                         |                |                         |
| Slibafzetkost            | 104.016     | <b>€</b> /jaar          | 134.649        | €/jaar                  |
| Elektriciteit            | -53.760     | <b>€</b> /jaar          | 0              | €/jaar                  |
| Groene stroom            | -66.901     | <b>€</b> /jaar          | 0              | €/jaar                  |
| Opex gisting             | 71.171      | <b>€</b> /jaar          | 0              | €/jaar                  |
|                          |             |                         |                |                         |
| Totaal                   | 54.526      | €/jaar                  | 134.649        | €/jaar                  |
|                          |             |                         |                |                         |



## Slibverwerking



## Slibontwatering



- •Verwijderen van resterend gedeelte vrij slibwater + deel van capillair slibwater
- •Capillair slibwater kan enkel door mechanische krachten verwijderd worden
- Voorafgegaan door chemische conditionering
  - Destabiliseren van colloïden => coagulatie flocculatie
  - •Additieven: Ca(OH)<sub>2</sub> + FeCl<sub>3</sub>
  - •Polyelektrolieten: keuze van juiste PE zeer belangrijk!!
- •Ontwateringstoestellen:
  - Centrifuge
  - Zeefbandpers / cascade
  - Kamerfilterpers
- •Ontwatering tot 25 à 35 % DS
- •DS na ontwatering = f(ODS-gehalte)



# Slibontwatering: poly-electrolieten



#### •Keten van monomeren

- Vertakte structuur: bredere 'bandbreedte', geschikt voor veel toepassingen
- Lineaire structuur: meer specifiek, goedkoper

### Moleculair gewicht

- Maat voor lengte van de keten
- Hoger moleculair gewicht = gevoeliger aan schuifspanningen

### Lading en ladingsdichtheid

- Anionisch: negatief geladen (meest gebruikt in waterzuivering)
- Kationisch: positief geladen (meest gebruikt voor slibconditionering)
- Non-ionisch: geen lading
- Hoog organisch slibgehalte ~hogere ladingsdichtheid nodig

### Vloeibaar vs poeder

- •Vloeibaar: 40-50% aktief bestanddeel, eenvoudiger handelbaar, grotere bandbreedte
- Poeder: 100% aktief bestanddeel, moeilijker handelbaar, specifiekere toepassingen



# Slibontwatering: poly-elektrolieten

### •PE aanmaak

•Delicaat proces: PE ontvouwen ⇒ mengenergie vereist!

•Oplossen in water: 0,1% aktief (indikking) of 0,3-0.4% aktief (ontwatering)

•Verbruik: 3-5 kg<sub>akt</sub> /ton ds (indikking), 10-15 kg<sub>akt</sub>/ton DS (ontwatering)



# Slibontwatering: centrifuge







# Slibontwatering: centrifuge

#### Alfa Laval Slibcentrifuge



# Slibontwatering: kamerfilterpers













- Kamers gevormd door filterplaten
- Filterplaten tegen elkaar geperst (300 bar)
- Slib wordt centraal gevoed
- Koekopbouw tussen platen
- Filtraatafvoer door filterdoek

Process Sequence of a Chamber Filter press









# **Slibontwatering: Cascade (zeefbandpers)**





# Slibontwatering: Cascade (zeefbandpers)

#### BellmerBelt Filtre Press





# Verwerking en afzet van afvalwaterzuiveringsslib

Een inleiding (2)







### Deel 1

- Inleiding
- Slibverwerking (1)

### Deel 2

- Slibverwerking (2)
- Slibafzet
- Innovatieve ontwikkelingen in slibverwerking/slibafzet

### **SLIBVERWERKING**



- **≻**Slibverwerkingssystemen
- **>**Slibindikking
  - ➤Indiktafel
- ➤ Slibstabilisatie
- ➤ Slibontwatering
  - ➤ Centrifuge
  - ➤ Kamerfilterpers
  - Cascade (zeefbandpers)
- **>**Slibdroging
- ➤Wervelbeddroger
- **≻**Etagedroger
- ➤ Solidificatie / composteren/ opwerken tot meststof
- ➤ Opwerken tot slecht doorlatend materiaal
- **≻**Eindafzet



## Slibverwerkingssystemen





### Slibdroging

- •Verwijdering van adsorptie/cellulair water door verdamping
  - •Sterke volumereductie (transportkosten **♥**)
  - Verhoogde calorische waarde
  - •Partiële droging tot 37%: autotherme verbranding mogelijk Volledige droging tot 90%: droog product



- •Glue phase, kleeffase
  - •Bij 40-50% DS wordt het slib een kleverige pasta
  - ⇒ bemoeilijkt drogen
  - Vermijden door terugmenging van gedroogd slib met inkomend

ontwaterd slib



### Slibdroging



### Directe drogers

- •Direct contact tussen slib en warmte dragend medium (bijv. hete lucht) ⇒ niet complex, weinig slijtage, grote hoeveelheid droogdampen
- •Voorbeelden: trommeldroger, wervelbeddroger

### •Indirecte drogers

- •Geen direct contact met warmte-dragend medium (bijv. thermische olie), warmteoverdracht via scheidingswand ⇒ afgassen bestaan uitsluitend uit droogdampen
- Voorbeelden: etagedroger



# Slibdroging: wervelbeddroger CSVI Houthalen (gecombineerd direct/indirect)







- Capaciteit:
  - 10 000 TDS/jaar
  - 3,7 ton H<sub>2</sub>O/uur
- Energie = restwarmte
  - Huisvuilverbrandingsoven Bionerga
  - Stoom: 5000 kg/h (25 bar)
  - Non-condensables: verbrand in de oven







# Slibdroging: etagedroger CSVI Deurne







#### • Deurne:

- 2800 MJ/ton H<sub>2</sub>O, brander: 90% efficiëntie
- Energiekost!!

| 0.000     | TDS/jaar                                                     |  |
|-----------|--------------------------------------------------------------|--|
| 4         | %                                                            |  |
| 0         | %                                                            |  |
| .627.472  | m³/jaar                                                      |  |
| 0.556     | ton                                                          |  |
| 5.061.728 | MJ                                                           |  |
| 0         | %                                                            |  |
| 0         | %                                                            |  |
| .582.747  | m³∕jaar                                                      |  |
| 33.099    | €                                                            |  |
| · ()      | 4<br>0<br>627.472<br>0.556<br>5.061.728<br>0<br>0<br>582.747 |  |



- Energie-recuperatie uit condensaat
  - Verwarming gisting (20 000 000 MJ 35 000 000 MJ/jaar)
  - Warmtepomp voor gebouwenverwarming



# Slibverwerking



### Solidificatie / composteren / opwerken tot meststof



#### Solidificatie

•Toevoegen van toeslagstoffen ⇒ steekvast slib & immobilisatie

### Compostering

- •Ontwaterd slib beluchten bij verhoogde temperatuur (50 60℃)
- •Opvulmateriaal (stro, houtsnippers, ...), beluchting via buizenstelsel & regelmatige kering
- •Biologische afbraak biodegradeerbaar materiaal tot  $CO_2$ ;  $\pm$  50% ODS afbraak Afdoding pathogenen

Waterverdamping ⇒ eindproduct 50 - 60% DS, steekvast

### •Opwerking tot bodemverbeteraar: het Agroviro® proces

- Toevoegen van kalkhoudende toeslagstoffen
- ⇒ pH stijging tot 11 12 : hygiënisatie
- ⇒ temperatuurstijging tot 40°C : brengt composterings reactie op gang
- •Eindproduct 70% DS, geurvrij, pathogeenvrij, kalkhoudende meststof & bron van organisch materiaal en traagwerkende stikstof



# Slibverwerking



# Opwerken tot slecht doorlatend materiaal (Hydrostab<sup>®</sup>)



- •Opwerking tot materiaal met lage permeabiliteit
  - •Afgeleid van de technologie om grond waterdicht te maken d.m.v. waterglas (alkalisilicaten)
  - •binding en opvulling van bodemporiën met silicaatpolymeer
  - immobilisatie van metaalionen
- •Hydrostab®: afvalstoffen i.p.v. natuurlijke bodemmaterialen
  - •korrelfractie (bv verontreinigde grond) 40-50%
  - •vulstoffractie (bv. vliegassen) 10%
  - •slibfractie (bv. zuiveringsslib) 40 45%







# Opwerken tot slecht doorlatend materiaal (Hydrostab<sup>®</sup>)



- •Eindproduct: korrelvormig mengsel, hardt uit in contact met water/ blootstelling aan lucht
- •Toepassing als afdichtlaag op stortplaatsen (Hooge Maey)

### **SLIBAFZET**



- **≻Slibbeleid in Europa:** 
  - **≻**Waste directive
  - > European sludge directive
- >Slibbeleid in Vlaanderen
  - **▶**BBT studie (VITO)
  - **►** Uitvoeringsplan Slib (OVAM)
- **≻**Klimaatbeleid
- ➤ Slibafzet in de landbouw
  - **≻**Voorwaarden
- >Storten van slib

# Aquafin

### **SLIBAFZET**

- **≻**Slibverbranding
  - **≻**Rookgasreiniging
  - **≻**Monoverbranding
  - **▶** Verbranding met andere afvalstoffen
  - >Co-verbranding
- **➤** Natte oxidatie
- **≻Slibafzet in Vlaanderen**
- **≻Slibafzet** in Europa



### Slibbeleid in de EU: Waste directive (2008/98/EC)

- Ladder van Lansink
  - Preventie
  - Hergebruik
  - Recyclage
  - Verbranden met energierecuperatie
  - Storten
- Afval management
  - Self-sufficiency
- Vergunningen en registratie
  - Type, hoeveelheid, manier van verwerken en monitoring worden beschouwd
  - Minimum rendement voor afvalverbrandingsinstallaties (0,65)
- Afvalplannen en preventieprogramma's
- Te implementeren vóór eind 2010



# Slibbeleid in de EU: European sludge directive

- European Sludge directive (86/278/EEC)
  - Gepubliceerd op 18 juni 1986
  - Aanmoedigen afzet naar de landbouw
  - Weinig ambitieus:
    - Enkel landbouw
    - Focus op zware metalen



# Slibbeleid in de EU: European sludge directive

- Anno 2009 hebben verscheidene lidstaten, waaronder Vlaanderen:
  - Lagere maximumnormen voor zware metalen
  - Regulering voor andere polluenten

| Max. concentratie (mg/kg DS) | As  | Cd | Cr  | Cu   | Hg | Pb  | Ni  | Zn   |
|------------------------------|-----|----|-----|------|----|-----|-----|------|
| Vlarea                       | 150 | 6  | 250 | 375  | 5  | 300 | 50  | 900  |
| Sludge directive             |     | 20 | -   | 1000 | 16 | 750 | 300 | 2500 |

- Anno 2010: Impact assessment
  - Evaluatie van hergebruik van slib op het land
  - Strengere normen?



### Slibbeleid in Vlaanderen: Afvalstoffendecreet

- Kaderdecreet Afvalstoffen: 2 juli 1981 (Revisie in 1994)
  - Algemeen kader
- Uitvoeringsbesluit: Vlarea (1 juli 1998)
  - · Verdere bepalingen: o.a.
    - Afvalstoffen als secundaire grondstof: voorwaarden!
      - Landbouw
      - Afdichtingslaag
    - Inzameling, vervoer, verwerking:
      - Identificatieformulier afvalstoffen bij vervoer
      - Registratie afvalverwerkers
    - Registratie en rapportage van afvalstoffengegevens:
      - Slibregisters jaarlijks in integraal milieujaarverslag





- Vertaling van 'voorzichtigheidsprincipe'
  - Basis voor milieuvergunningsvoorwaarden
  - 'Beste Beschikbare Technieken voor de verwerking van RWZI- en gelijkaardig industrieel afvalwaterzuiveringsslib' (2001)
- Slibs conform met de hergebruik voorwaarden uit Vlarea:
  - Afzet in de landbouw
- Slibs niet conform met deze voorwaarden
  - Gebruik in afdichtlagen
  - Verbranding
  - Co-verbranding mits aan bepaalde (milieu)voorwaarden voldaan is!
- Aanbeveling om verwerkingscapaciteit uit te breiden



# Slibbeleid in Vlaanderen: Uitvoeringsplan Slib (OVAM)

Aquafin

- •Kader waarbinnen Vlaamse overheid slibbeleid uitvoert
  - •Alle slibs niet conform hergebruik voorwaarden Vlarea
  - •Diverse sectoren: afvalwaterzuivering, drinkwaterproductie, textielindustrie, voedingsindustrie, papierindustrie
- •Opgesteld in 2002
- •Geheel van maatregelen en streefpunten
- •Hoeveelheid te storten en te verbranden afval verminderen
  - Preventie
  - Recyclage
  - Tegemoet komen aan behoefte voor meer eindverwerkingscapaciteit
- Opvolging via voortgangsrapportage



# Slibbeleid in Vlaanderen: Uitvoeringsplan Slib (OVAM)



- •Doelstellingen voor RWZI slib:
  - Beheersen van de slibproductie
  - Beheersen van slibkwaliteit
  - •Milieuverantwoord vervangen van grondstoffen door slib en/of andere afvalstoffen van rioolwaterzuivering
  - •Milieuverantwoord beperken van de hoeveelheid te verbranden slib
  - •Milieuverantwoord beperken van de hoeveelheid te storten slib

### Klimaatbeleid



- Klimaatbeleid:
  - Europa:
    - EU15: Vermindering van de emissies met 8% voor de periode 2008-2012 (Kyoto)
    - België: 7,5%
  - België
    - Bevoegdheden bij verschillende overheden -> Nationale klimaatcomissie (NKC)
    - Nationaal klimaatplan (2002-2012)
    - Verdeelsleutel tussen gewestelijke en federale niveau's:
      - Vlaanderen: 5,2 % reductie

#### Klimaatbeleid



- Vlaanderen:
  - Wettelijke basis: REG-decreet 2004
  - Taskforce Klimaatbeleid Vlaanderen (werkgroepen)
  - Vlaams klimaatbeleidsplan (2002-2005)
  - Vlaamse klimaatconferentie (juni-september 2005)
    - Maatschappelijk draagvlak voor brede klimaataanpak
    - 12 strategische en verschillende thematische aanbevelingen
  - Vlaams klimaatbeleidsplan (2006-2012)
    - 5 sectorale thema's -> streefdoel
    - O.a. duurzame en koolstofarme energie-voorziening
      - Groene stroom doelstelling (6% in 2010): GSC certificaten
        - Biogas (4600 MWh in 2009)
        - Energierecuperatie bij verbranding slib
      - WKK doelstelling (1832 MW in 2012): WKK certificaten
        - Gasmotoren (15)
  - Beleid na 2012?: Vertaling van de Europese 20-20-20 doelstellingen

## Slibafzet in de landbouw



•Benutten van nutriënten: N, P, Ca, K, Mg

|                                      |          | Nutriënten, % |        |  |
|--------------------------------------|----------|---------------|--------|--|
|                                      | Stikstof | Fosfor        | Kalium |  |
| Meststof voor gebruik in de landbouw | 5        | 10            | 10     |  |
| Gestabiliseerd slib                  | 3,3      | 2,3           | 0,3    |  |

- •Organisch materiaal ⇒ verbeteren van de bodemstructuur
- Goedkope afzetweg
- •Onderworpen aan voorwaarden:
  - Europees niveau : European Sludge Directive (working document)
  - •Vlaanderen: Vlarea (Vlaams reglement voor afvalvoorkoming en beheer)

# Aquafin

#### Slibafzet in de landbouw: voorwaarden

- •Alleen behandeld zuiveringsslib
- •Behandelingen gespecifieerd in Vlarea, met name voor pathogeen reductie
- •Zware metalen
  - •8 zware metalen (As, Cu, Cr, Cd, Hg, Pb, Ni, Zn)
  - Probleemparameters voor RWZI-slib: Cu en Zn
- •38 organische parameters (o.a. PCB's)
  - •M.n. tolueen en minerale olie zijn probleem
  - Nog niet opgenomen: pharmaceuticals, endocrine disruptors, ...
- •Piste verlaten sinds 1 januari 2006



# Storten van slib/Gebruik in afdichtlagen

#### Storten

- Onderaan Ladder van Lansink
- •1 juli 2000: Verbod op storten van brandbaar of recycleerbaar bedrijfsafval

#### •Gebruik in afdichtlagen

- •Opgewerkt tot slecht doorlatend materiaal (bijv. Hydrostab) ter vervanging van klei, zand- en bentonietmengsels en bodemwaterglasmengsels
- Wordt als nuttige toepassing beschouwd in NI (in Vlaanderen niet)



A: Bewortelingslaag

B: Drainagelaag

C: Geotextiel

D: Hydrostab

E: Polderklei



# Slibverbranding

- •Maximale gewichts- en volumereductie door verbranding van het organisch materiaal
  - •Temperaturen van ± 900℃
  - Toegepast op ontwaterd of (partieel) gedroogd slib
  - •Anorganisch materiaal (zand, zw met<sup>n</sup>, ..) wordt geconcentreerd in de assen

## Rookgassen



# Slibverbranding



- Rookgassen
  - Vliegassen
  - •Zware metalen gebonden aan particulaire deeltjes of in gasvorm (Hg, Cd)
  - •Zuurvormende gassen (SO<sub>x</sub>, HCl, HF), NO<sub>x</sub>, CO<sub>2</sub>
  - Organische componenten gebonden aan deeltjes, VOC's
  - •Dioxines/furanen: temperatuur in de slibverbranding is hoog genoeg voor destructie van dioxines/furanen
  - → Rookgasbehandeling nodig!
- •Wetgevend kader: Vlarem II 'Inrichtingen voor de verbranding van afvalstoffen'
- •NIMBY-syndroom



# Slibverbranding: (mono)-verbranding: wervelbedoven

- Verbranding in turbulent zandbed
- Luchtinblazing onderaan zandlaag
- ⇒ fluidized bed
- •Slib wordt ingebracht in de onderste zone
  - snelle temperatuurstijging,
  - •waterverdamping,
  - pyrolyse organisch materiaal
- Luchtinjectie boven het bed
  - •(freeboard)verbranding van gasvormige componenten
- •Bovenaan: uitlaat fijne vliegassen samen met rookgassen
- •Zeer goede warmte-overdracht & uitbrandkwaliteit





# Slibverbranding: (mono)-verbranding: etageoven

- •Verticale oven met horizontale haarden
- •Centrale schacht: voorverwarming verbrandingslucht
- •Rakelarmen: slibverdeling over etages
- •Burners op zijwanden
- Bovenste zone: slibdroging
- •Middenzone: eigenlijke verbranding
- •Onderste zone: afkoelen van de assen



# Slibverbranding: verbranding met andere afvalstoffen



- Roosteroven (klassieke huisvuilverbranding)
  - Injectie van ontwaterd of gedroogd slib boven rooster
  - Voordroging/verbranding door hete rookgassen
  - •IC850 (Degrémont) : injectie via spuitmonden

#### •Roterende wervelbedoven

- SLECO (Indaver + SITA)
- •2006: wervelbedoven operationeel in Doel, Beveren
- •6 wervelbedreactoren
- Verbranding
  - 233.000 ton hoogcalorisch afval
  - 233.000 slib
- Electriciteitsopwekking met hete rookgassen: 34 MW







# Slibverbranding: co-verbranding

- •Verbranding van slib samen met brandstoffen
  - •Calorische waarde: 11 13,5 MJ/kg DS
- •Co-verbranding in electriciteitscentrale
  - Centrales gestookt met vaste brandstoffen (steenkool/poederkool/bruinkool)
  - •Slib vervangt fossiele brandstoffen
  - •Verhoogde uitstoot van SO₂ en zware metalen ⇒ grenswaarden in slib
  - ·Lichte redementsdaling bij bijstook van ontwaterd slib
  - Voorbeeld: steenkoolcentrale van Langerlo
- •Co-verbranding in een cementoven
  - Vervanging van fossiele brandstof èn grondstof (kalksteen)
  - Asresten worden in klinker en cement opgenomen
  - Immobilisatie van metalen in de klinker
  - Negatief effect van P





# Natte oxidatie ('natte verbranding'): ATHOS





#### Natte oxidatie: ATHOS

- •Ingedikt slib wordt met (vloeibare) zuurstof geoxideerd bij verhoogde druk (44-52 bar) en temperatuur (235-250°C)
  - Zuur milieu
  - Autotherm
  - Fase scheiding met lamellen separator
- •Eindprodukten:
  - •Afgassen: catalytische behandeling voor oxidatie van CO en andere polluenten
  - •Vloeibare fractie (VVZ, alcoholen, NH<sub>3</sub> CHECK!!) ⇒ terug naar WZI
  - Vaste fractie (assen): 'technical sand'
- •Eerste full scale toepassing in Brussel Noord 1.100.000 IE



#### Slibafzet in Vlaanderen





## Slibafzet in Vlaanderen





## Slibafzet in de EU

# Slibafzet EU 2005





Figure 6 Main routes for sewage sludge recycling and disposal in the EU





# Innovatieve ontwikkelingen in slibverwerking/afzet

- **≻**Preventie
- **➤**Technieken om slibproduktie te beperken:
- >Technieken ter verbetering van de slibgisting
- **≻**Valorisatie van essentiële nutriënten en energie-waarde
- **>**Pyrolyse

#### Preventie



- Voorbeeld: Biolysis proces (Degrémont)
  - •Slibhydrolyse m.b.v. ozon (Biolysis O) of enzymes (Biolysis E)
  - •Tot 100% reductie van de slibproduktie mogelijk (minder voor RWZI slib)





# Technieken om de slibproductie te beperken

- •Gebruik van ozon, enzymes, ... in de beluchting
- Slibhydrolyse
- •Hydrolyseproducten worden verademd in de beluchting



# Technieken ter verbetering van de slibgisting

- •Voorbeeld: het Cambi proces
  - •Thermische hydrolyse van het slib voor gisting (133-200℃)
  - •Verbeterde ODS-afbraak & hogere biogasproduktie (verdubbeling), verbeterde ontwaterbaarheid, hygiënisatie







#### •Gelijktijdige recovery van N en P uit slibwaters

•Ammonium en fosfaat vormen struviet in de aanwezigheid van magnesium

$$Mg^{+2} + NH_4^{+} + PO_4^{-3} + 6H_2O \rightarrow MgNH_4PO_4 \bullet 6 H_2O_{(solid)}$$

•PO<sub>4</sub> <sup>3-</sup> voorraden: 60 tot 100 jaar



Development of Phosphate Prices to August 2008, based on World Bank Figures





# **Pyrolyse**

# Pyrolyse

- Thermisch proces in afwezigheid van zuurstof
- •Temperaturen van 400 800℃
- Toepasbaar op gedroogd sib
- •Eindproducten:
  - gasvormige producten (syngas)
  - pyrolyse olie
  - •koolrest (bio-fuel)



# •Ultra hoge temperatuur pyrolyse (Vergassing)

- Temperaturen: 1000-1300℃
- Syngas, asrest. Géén olie
- Voordelen:
  - Minder teer in gasfase
  - •Minder zware metalen in asrest (meststof!)

# Einde



