Trade-Offs Between Ranking Objectives: Reduced-Form Evidence and Structural Estimation

DSE2025: Expectations and Learning in Dynamic Structural Models

Rafael P. Greminger

University College London, School of Management

Ranked Product Lists

Introduction

Research Questions

- Ranking algorithms can serve different objectives.
 - Maximize platform revenues/profits (=share of total revenues across products).
 - Maximize consumer welfare.
- 1. What determines the trade-offs between objectives?
- 2. How can we quantify these trade-offs?
- Focus: revenue and consumer welfare effects through influencing consumers' choices.
 - Relatively involved model of consumer search.
 - Taking supply side as given (other than ranking).

Research Questions

- Ranking algorithms can serve different objectives.
 - Maximize platform revenues/profits (=share of total revenues across products).
 - Maximize consumer welfare.
- 1. What determines the trade-offs between objectives?
- 2. How can we quantify these trade-offs?
- Focus: revenue and consumer welfare effects through influencing consumers' choices.
 - Relatively involved model of consumer search.
 - Taking supply side as given (other than ranking).

- Large literature empirically studying various aspects of rankings:
 - Ursu (2018); Choi and Mela (2019); Donnelly, Kanodia, and Morozov (2023); Compiani et al. (2024)
 - And more...
- So what exactly is new here?
 - 1. Reduced-form evidence for **heterogeneous position effects** (= key factor shaping trade-offs).
 - Position effect: increase in searches/purchases for an alternative moving up.
 - 2. Novel structural model with **product discovery** as mechanism for position effects.
 - Matters for model fit and quantifying trade-offs.
- Today: focus on structural model.

- Large literature empirically studying various aspects of rankings:
 - Ursu (2018); Choi and Mela (2019); Donnelly, Kanodia, and Morozov (2023); Compiani et al. (2024)
 - And more...
- So what exactly is new here?
 - 1. Reduced-form evidence for **heterogeneous position effects** (= key factor shaping trade-offs).
 - Position effect: increase in searches/purchases for an alternative moving up.
 - 2. Novel structural model with **product discovery** as mechanism for position effects.
 - Matters for model fit and quantifying trade-offs.
- Today: focus on structural model.

- Large literature empirically studying various aspects of rankings:
 - Ursu (2018); Choi and Mela (2019); Donnelly, Kanodia, and Morozov (2023); Compiani et al. (2024)
 - And more...
- So what exactly is new here?
 - 1. Reduced-form evidence for **heterogeneous position effects** (= key factor shaping trade-offs).
 - Position effect: increase in searches/purchases for an alternative moving up.
 - 2. Novel structural model with **product discovery** as mechanism for position effects.
 - Matters for model fit and quantifying trade-offs.
- Today: focus on structural model.

- Large literature empirically studying various aspects of rankings:
 - Ursu (2018); Choi and Mela (2019); Donnelly, Kanodia, and Morozov (2023); Compiani et al. (2024)
 - And more...
- So what exactly is new here?
 - 1. Reduced-form evidence for **heterogeneous position effects** (= key factor shaping trade-offs).
 - Position effect: increase in searches/purchases for an alternative moving up.
 - 2. Novel structural model with **product discovery** as mechanism for position effects.
 - Matters for model fit and quantifying trade-offs.
- Today: focus on structural model.

Expedia Data

- Background: competition on Kaggle.com, first used by Ursu (2018).
- Click-stream data of hotel search sessions on Expedia.com.
 - 166,039 search sessions, 788 (overlapping) destinations, 55 countries.
- Main feature: subsample of $\approx 30\%$ sessions with a randomized ranking.
 - ⇒ Allows identifying position effects separately from consumers' preferences.
- Data contains information on:
 - Clicks and bookings (but not search order).
 - Positions.
 - Hotel & query characteristics.
- Only sessions that did not sort results.

Search and Discovery Model: Overview

- Quantifying the effects of different (counterfactual) rankings requires a model that captures how consumers interact with a ranked product list.
- I develop an empirical implementation of the search and discovery model of Greminger (2022).

Model: Decision Process

Scroll & discover

Model: Decision Process

Scroll & discover

Model: Decision Process

Model: Specification

- Utility of consumer i when booking hotel j:

$$u_{ij} = \underbrace{x_j^l \beta + \nu_{ij}}_{u_{ij}^l : \text{ list page}} + \underbrace{x_j^d \kappa + \delta_j + \varepsilon_{ij}}_{u_{ij}^d : \text{ detail page}}$$

- x_i^l, x_i^d : observed hotel attributes.
- δ_i : fixed effect for hotel j (estimated only for frequent hotels).
- $\varepsilon_{ij} \sim \text{Normal}(0,1)$
- $\nu_{ij} \sim \text{Normal}(0, 1)$
- Utility of outside option : $u_{i0} = \beta_0 + \eta_i$, $\eta_i \sim \text{Uniform}(0, 1)$.

Model: Specification

- Actions are costly:
 - Discovery costs: c^d
 - Search costs (product-specific): c_i^s
- Free recall: no cost to go back.
- Precedence constraints:
 - Searching a hotel requires it to have been revealed.
 - Choosing a hotel requires it to have been searched.

Model: Beliefs About Detail Page Utility

- Initially, consumers only observe list page utility \boldsymbol{u}_{ij}^l of first alternative j on list.
- Based on x_j^l , consumers have belief about the utility of the detail page U_{ij}^d .
 - $E[U_{ij}^d | x_j^l] = x_j^l \gamma.$
 - (unconditional) U_{ij}^d follows empirical distribution.
 - γ is estimated (captures perceived correlation between x_j^l and U_{ij}^d).

Model: Beliefs About Detail Page Utility

- Initially, consumers only observe list page utility u_{ij}^l of first alternative j on list.
- Based on x_j^l , consumers have belief about the utility of the detail page U_{ij}^d .
 - $E[U_{ij}^d | x_j^l] = x_j^l \gamma.$
 - (unconditional) U_{ij}^d follows empirical distribution.
 - γ is estimated (captures perceived correlation between x_j^l and U_{ij}^d).

Model: Beliefs About Alternatives to Be Revealed

- Consumers believe they are randomly sampling from the joint distribution of $(x_j^l, x_j^d, c_j^s, \nu_{ij}, \varepsilon_{ij})$.
- Equivalent to consumers believing that they sample from a distribution of *effective values*.
 - Expected benefit of revealing alternative depends only on distribution of effective values (Greminger (2022)).
 - Effective value combines $(x_j^l, x_j^d, c_j^s, \nu_{ij}, \varepsilon_{ij})$ in a way that accounts for search behavior.

Model: Beliefs About Alternatives to Be Revealed

- Belief about ranking: changes distribution of effective values across positions h.
 - To simplify, assume only mean $\mu(h)$ of the distribution changes and specify functional form.

$$\mu(h) = \overline{\mu} + \rho \log(h+1)$$

- $-\rho$ is estimated and captures beliefs about ranking algorithm.
- ρ < 0 means consumers expect alternatives further down to be worse *on average*.
- $-\overline{\mu}$ is determined by assumption that consumers know the overall distribution across positions.
- Agnostic as to why distribution changes across positions.

Model: Consumer Decision Problem

- Rational consumers sequentially choose one of the available actions.
- Greminger (2022): the optimal policy is based on reservation values.
 - ⇒ Always optimal to choose the action with the highest reservation value.
- Three reservation values:
 - 1. Purchasing: $z_{ij}^p = u_{ij}$
 - 2. Searching / clicking: $z_{ij}^s = x_j^l \beta + \nu_{ij} + x_j^l \gamma + \xi(c_j^s)$
 - 3. Discovering / scrolling: $z^d(h) = \mu(h) + \Xi(c^d)$
- $\xi(c_i^s)$ and $\Xi(c^d)$ capture respective net benefits.

Estimation Approach: Main Innovation

- Simulated maximum likelihood estimation approach:
 - Parameters to estimate: $\theta = (\beta_0, \beta, \kappa, \gamma, c^d, c^s_j, \delta_j, \rho)$.
 - Optimal policy implies inequalities for reservation values given observed actions.
 - Maximize likelihood of all inequalities holding given observed actions.
 - Example: i searching but not choosing hotel j requires $z_{ij}^s \ge u_{i0}$ and $u_{ij} \le u_{i0}$ (and more).
- Resulting likelihood function can be difficult to compute, even in simpler search models.
 - High-dimensional integral over shocks of many alternatives.
 - See Ursu, Seiler, and Honka (2024).

Estimation Approach: Main Innovation

- Simulated maximum likelihood estimation approach:
 - Parameters to estimate: $\theta = (\beta_0, \beta, \kappa, \gamma, c^d, c^s_i, \delta_i, \rho)$.
 - Optimal policy implies inequalities for reservation values given observed actions.
 - Maximize likelihood of all inequalities holding given observed actions.
 - Example: i searching but not choosing hotel j requires $z_{ij}^s \ge u_{i0}$ and $u_{ij} \le u_{i0}$ (and more).
- Resulting likelihood function can be difficult to compute, even in simpler search models.
 - High-dimensional integral over shocks of many alternatives.
 - See Ursu, Seiler, and Honka (2024).

Estimation Approach: Main Innovation

- New result simplifying simulating the likelihood function.
- Main idea: inequalities can be expressed relative to the effective value \tilde{w}_{ij} of the chosen option j.

$$\begin{split} \tilde{w}_{ij} &= x_j^l \beta + \nu_{ij} + \min\{x_j^l \gamma + \xi(c_j^s), x_j^d \kappa + \varepsilon_{ij}\} \\ \tilde{w}_{i0} &= u_{i0} \end{split}$$

- Probability of all inequalities holding given \tilde{w}_{ij} has closed form (after another result).
- Only requires numerically integrating over \tilde{w}_{ij} .

Estimation Approach: Two More Innovations

- 1. Partition probability space to obtain likelihood function that is smooth in all parameters.
 - Depending on \tilde{w}_{ij} , consumers discover different number of alternatives and inequalities change.
 - \tilde{w}_{ij} has kink at $x_j^l \gamma + \xi(c_j^s) = x_j^d \kappa + \varepsilon_{ij}$.
- 2. Estimate $\xi(c_j^s)$ and $\Xi(c_d)$ and back out costs (c_j^s, c^d) post-estimation.
 - Works because only these values enter consumer decisions through reservation values.
 - Avoids costly computation of $\xi(c_i^s)$ and $\Xi(c^d)$ during estimation.
 - Allows demand predictions with few assumptions on beliefs.
- Julia and Python packages coming in the near future!

Identification

- Standard arguments for identification of parameters governing search (conditional on discovery).
- Discovery process is latent, but position effects only explained through discovery.
 - Ranking is randomized.
 - Only change in discovery value $z^d(h) = \mu(h) + \Xi(c^d)$ across positions h explains position effects.
 - $z^d(h)$ and consequently stopping probabilities are identified from the data.

- Search and discovery model: **product discovery** explains position effects.
 - Consumers leave list page before reaching the end.
- Classic Weitzman model: position-specific search costs explain position effects.
 - Consumers observe the entire list page (all x_j^l and ν_{ij}).
 - It is more costly to search products in lower positions $(c_i^s(h))$ depends on position h).
- Can we differentiate the two mechanisms for position effects?

- Search and discovery model: **product discovery** explains position effects.
 - Consumers leave list page before reaching the end.
- Classic Weitzman model: position-specific search costs explain position effects.
 - Consumers observe the entire list page (all x_j^l and ν_{ij}).
 - It is more costly to search products in lower positions ($c_i^s(h)$ depends on position h).
- Can we differentiate the two mechanisms for position effects?

- Search and discovery model: **product discovery** explains position effects.
 - Consumers leave list page before reaching the end.
- Classic Weitzman model: position-specific search costs explain position effects.
 - Consumers observe the entire list page (all x_j^l and ν_{ij}).
 - It is more costly to search products in lower positions ($c_i^s(h)$ depends on position h).
- Can we differentiate the two mechanisms for position effects?

- A Weitzman model predicts the following:
 - Searches in lower positions are more likely to convert to a purchase.
 - (except without position effects).
- Rationale:
 - Searching in a lower position is more costly.
 - \Rightarrow Only happens when list utility $x_j^l \beta + \nu_{ij}$ is already large.
- No similar prediction from search and discovery model (costs do not depend on position).
- Prediction is not supported by the Expedia data \Rightarrow suggests product discovery mechanism.
 - Ursu (2018): conditional on search, the purchase probability is constant across positions.

Details

- A Weitzman model predicts the following:
 - Searches in lower positions are more likely to convert to a purchase.
 - (except without position effects).
- Rationale:
 - Searching in a lower position is more costly.
 - \Rightarrow Only happens when list utility $x_j^l \beta + \nu_{ij}$ is already large.
- No similar prediction from search and discovery model (costs do not depend on position).
- Prediction is not supported by the Expedia data \Rightarrow suggests product discovery mechanism.
 - Ursu (2018): conditional on search, the purchase probability is constant across positions.

Details

- A Weitzman model predicts the following:
 - Searches in lower positions are more likely to convert to a purchase.
 - (except without position effects).
- Rationale:
 - Searching in a lower position is more costly.
 - \Rightarrow Only happens when list utility $x_j^l \beta + \nu_{ij}$ is already large.
- No similar prediction from search and discovery model (costs do not depend on position).
- Prediction is not supported by the Expedia data \Rightarrow suggests product discovery mechanism.
 - Ursu (2018): conditional on search, the purchase probability is constant across positions.

Details

Model Fit Comparison

- Quantifying trade-offs between ranking objectives requires optimal rankings for each objective.
 - Difficult combinatorial optimization problem.
- 1. New heuristic for maximizing revenues: **Bottom Up Ranking**.
 - Rationale: ordering of alternatives on top does not matter for demand at bottom.
- 2. New heuristic for maximizing consumer welfare: Effective Value Ranking.
 - Rationale: alternatives on top should be sufficiently good to be searched and chosen.
- Focus on case where all products are displayed and consumers update beliefs about the ranking.
- Estimate model and run counterfactuals on pooled sample.

- Quantifying trade-offs between ranking objectives requires optimal rankings for each objective.
 - Difficult combinatorial optimization problem.
- 1. New heuristic for maximizing revenues: **Bottom Up Ranking**.
 - Rationale: ordering of alternatives on top does not matter for demand at bottom.
- 2. New heuristic for maximizing consumer welfare: Effective Value Ranking.
 - Rationale: alternatives on top should be sufficiently good to be searched and chosen.
- Focus on case where all products are displayed and consumers update beliefs about the ranking.
- Estimate model and run counterfactuals on pooled sample.

- Quantifying trade-offs between ranking objectives requires optimal rankings for each objective.
 - Difficult combinatorial optimization problem.
- 1. New heuristic for maximizing revenues: **Bottom Up Ranking**.
 - Rationale: ordering of alternatives on top does not matter for demand at bottom.
- 2. New heuristic for maximizing consumer welfare: Effective Value Ranking.
 - Rationale: alternatives on top should be sufficiently good to be searched and chosen.
- Focus on case where all products are displayed and consumers update beliefs about the ranking.
- Estimate model and run counterfactuals on pooled sample.

- Quantifying trade-offs between ranking objectives requires optimal rankings for each objective.
 - Difficult combinatorial optimization problem.
- 1. New heuristic for maximizing revenues: **Bottom Up Ranking**.
 - Rationale: ordering of alternatives on top does not matter for demand at bottom.
- 2. New heuristic for maximizing consumer welfare: Effective Value Ranking.
 - Rationale: alternatives on top should be sufficiently good to be searched and chosen.
- Focus on case where all products are displayed and consumers update beliefs about the ranking.
- Estimate model and run counterfactuals on pooled sample.

Counterfactual Results

Changes relative to Expedia Ranking

	Eff. Value	Bottom Up Ranking
Expedia		
Total revenues (%)	10.99	12.93
Number of transactions (%)	17.08	11.06
Avg. price of booking (%)	-5.20	1.67
Consumers		
Consumer welfare (\$, per consumer)	0.06	0.04
Consumer welfare (\$, per booking)	13.58	7.73
Discovery costs (\$, per booking)	-0.14	-0.10

- Trade-offs are smaller than prior work suggests:
 - Ursu (2018) and Compiani et al. (2024) also use Expedia data and find larger trade-offs.
 - Main difference: modeling position effects through product discovery.

Counterfactual Results

Changes relative to Expedia Ranking

	Eff. Value	Bottom Up Ranking
Expedia		
Total revenues (%)	10.99	12.93
Number of transactions (%)	17.08	11.06
Avg. price of booking (%)	-5.20	1.67
Consumers		
Consumer welfare (\$, per consumer)	0.06	0.04
Consumer welfare (\$, per booking)	13.58	7.73
Discovery costs (\$, per booking)	-0.14	-0.10

- Trade-offs are smaller than prior work suggests:
 - Ursu (2018) and Compiani et al. (2024) also use Expedia data and find larger trade-offs.
 - Main difference: modeling position effects through product discovery.

Reduced-Form Evidence: Summary

- Heterogeneity in position effects shapes trade-offs between ranking objectives.
 - Ranking products with large position effect higher increases transactions.

$$\Delta_{\mathrm{Switch}} \ \mathrm{Demand} = \Delta_{\mathrm{Up}} \mathrm{Demand}_B + \Delta_{\mathrm{Down}} \mathrm{Demand}_A$$

- ⇒ Heterogeneity in position effects determines transactions and revenues under different rankings.
- Using simple reduced-form model (LPM), I find that:
- 1. Cheaper hotels tend to have larger positions effects (conditional on other attributes).
- 2. "Desirable" hotels tend to have larger position effects (desirable = more clicks/bookings).
 - ⇒ Moving cheaper/desirable hotels up can increase revenues through more transactions.

Reduced-Form Evidence: Summary

- Heterogeneity in position effects shapes trade-offs between ranking objectives.
 - Ranking products with large position effect higher increases transactions.

$$\Delta_{\text{Switch}} \text{ Demand} = \Delta_{\text{Up}} \text{Demand}_B + \Delta_{\text{Down}} \text{Demand}_A$$

- ⇒ Heterogeneity in position effects determines transactions and revenues under different rankings.
- Using simple reduced-form model (LPM), I find that:
- 1. Cheaper hotels tend to have larger positions effects (conditional on other attributes).
- 2. "Desirable" hotels tend to have larger position effects (desirable = more clicks/bookings).
 - ⇒ Moving cheaper/desirable hotels up can increase revenues through more transactions.

Conclusion

- Novel structural model with product discovery mechanism for position effects.
 - Mechanism matters for model fit and counterfactual results.
- Trade-offs between ranking objectives are limited.

Thank You!

Working paper: https://arxiv.org/abs/2210.16408

Email: r.greminger@ucl.ac.uk

References

- Choi, Hana, and Carl F. Mela. 2019. "Monetizing Online Marketplaces". *Marketing Science* 38 (6): 948–72.
- Compiani, Giovanni, Gregory Lewis, Sida Peng, and Peichun Wang. 2024. "Online Search and Optimal Product Rankings: An Empirical Framework". *Marketing Science* 43 (3): 615–36.
- Donnelly, Robert, Ayush Kanodia, and Ilya Morozov. 2023. "Welfare Effects of Personalized Rankings". *Marketing Science* 43 (1): 92–113.
- Greminger, Rafael P. 2022. "Optimal Search and Discovery". *Management Science* 68 (5): 3904–24.
- Ursu, Raluca M. 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions". *Marketing Science* 37 (4): 530–52.
- Ursu, Raluca, Stephan Seiler, and Elisabeth Honka. 2024. "The Sequential Search Model: A Framework for Empirical Research". *Quantitative Marketing and Economics* 23:165–213.

- Probability to book a hotel conditional on having clicked on it:

$$P(\text{choose } j \mid \text{search } j) = P(U_{ij}^l + U_{ij}^d \ge \overline{w}_{-j} \mid U_{ij}^l + \xi(h) \ge \overline{w}_{-j})$$

- U_{ij}^l : part of utility from list page.
- U_{ij}^d : part of utility from detail page.
- $\xi(h)$: part of search value that is not part of utility.
- \overline{w}_{-i} : maximum effective value of alternatives other than j.

– Pattern first highlighted by Ursu (2018): conditional on search, the purchase probability is constant across positions.

Model Fit Comparison

Position effect in booking probability at different prices.

Back