Vorlesung Kap. 2

Automatentheorie und Formale Sprachen

- LV 4110 -

Reguläre Sprachen und Mengen

Kapitel 2

Lernziele

• Kennenlernen der Begriffe: Reguläre Sprachen und reguläre Ausdrücke

- Definition der Operationen, die angewandt auf reguläre Sprachen wieder reguläre Sprachen erzeugen
- Definition einer Operations-Hierarchie
- Elementarautomaten für die Verkettung, die Potenz und für die Iteration
- Kennenlernen der Vorgehensweise bei der Zusammenführung von Elementarautomaten
- Entwicklung und Anwendung von Suchalgorithmen und Texterkennungsprozeduren: Skelettautomaten, goto- und failure-Funktion

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem
 - 3.3 Gleichzeitiges Suchen nach mehreren Schlüsselworten

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Die Menge aller Sprachen, die von einem <u>endlichen</u> <u>Automaten</u> akzeptiert werden, nennt man auch die Familie der <u>regulären Sprachen</u>.

Fragestellungen:

- Welche Operationen auf reguläre Sprachen erzeugen wieder reguläre Sprachen?
- 2. Wie findet man zu einer regulären Sprache den "einfachsten" deterministischen Automaten?
- 3. Welche Probleme sind für reguläre Sprachen algorithmisch lösbar?

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Definition:

Ein *regulärer Ausdruck* besteht aus Zeichen eines Alphabets und/ oder anderen regulären Ausdrücken, die durch die <u>Operationen</u> *Iteration* (*), *Verkettung* (...) oder *Wahlmöglichkeit* (|) miteinander verbunden sind. Jedem regulären Ausdruck α entspricht eine Wortmenge $L(\alpha)$ aus Σ^* , die als *reguläre Menge oder reguläre Sprache* bezeichnet wird.

Interpretation:

Ein regulärer Ausdruck kann also verstanden werden als *Formel*, die beschreibt, wie die Wörter einer Sprache, d. h. einer gewissen Untermenge von Σ^* aus den Zeichen des Alphabets Σ , anderen Formeln und den genannten Operationen zu bilden sind.

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Operations-Hierarchie:

Ähnlich wie bei algebraischen Formeln gibt es eine Operationen-Hierarchie:

- 1. Iteration (*)
- 2. Verkettung (...)
- 3. Wahlmöglichkeiten (|)

Den Operationen Iteration, Verkettung und Auswahl zur Verknüpfung von regulären Ausdrücken entsprechen im Bereich der zugehörigen regulären Mengen aus Σ^* die *Mengenoperationen*:

Iteration, Mengenprodukt und Vereinigung.

Regulärer Ausdruck α vs. Endlicher Automat **A**:

$$\Sigma = \{a, b\}$$

Regulärer Ausdruck: $\alpha = a*ba$

Anmerkung: Der Stern bedeutet in diesem Zusammen-

hang die Hintereinanderreihung von a.

Wortmenge $L(\alpha)$:

Automatenmodell A:

A:
$$(S_0)$$
 b (S_1) a (S_2)

DFA A := $(\Sigma = \{a, b\}, S = \{S_0, S_1, S_2\}, S_0, \delta, F = \{S_2\})$

Definitionen:

Seien L₁, L₂ Mengen von Wörtern über dem Alphabet Σ .

1. Verkettung oder Mengenprodukt

Man definiert als Mengenprodukt von L₁ und L₂ die Menge L₁L₂ durch:

$$L_1L_2 = \{ w_1w_2 \in \Sigma^* \mid w_1 \in L_1 \text{ und } w_2 \in L_2 \}$$

Definitionen:

Sei L eine Menge von Wörtern über dem Alphabet Σ . Ferner sei ε das leere Eingabewort.

2. Potenz

Man definiert die Potenz L⁽ⁱ⁾ von L für $i \ge 0$ durch:

$$L^{(0)} = \{ \epsilon \} ;$$
 $L^{(1)} = L ;$
 $L^{(i+1)} = L^{(i)} L .$

Definitionen:

Sei L eine Menge von Wörtern über dem Alphabet Σ . Ferner sei ε das leere Eingabewort.

3. Iteration

∪ = Vereinigungsmenge

Man definiert die Iteration L* von L als:

$$\begin{split} L^* &= \{\,\epsilon\,\} \cup \{\,w_1w_2\,...\,\,w_n\,\}\,I\,\,w_i \in L \\ &\quad \text{für} \quad i = 1,\,2,\,...,\,n\,\,; \quad n = 1,\,2,\,...,\,\infty \\ &= \{\,\epsilon\,\} \cup L \cup LL \cup LLL \cup \ldots \\ &= \{\,\epsilon\,\} \cup L^{(1)} \cup L^{(2)} \cup L^{(3)} \cup \ldots = \bigcup_{i \,=\, 0}^\infty L^{(i)} \\ &\quad = 0 \end{split}$$

Definition:

Nun können wir die Begriffe "regulärer Ausdruck" und "reguläre Sprache" **induktiv** wie folgt definieren. Es sei dabei Σ ein endliches Alphabet; dann gilt vereinbarungsgemäß:

- (1) ε ist ein regulärer Ausdruck über Σ mit der Sprache $L(\varepsilon) = \{\varepsilon\}$.
- (2) Jedes $a \in \Sigma$ ist ein regulärer Ausdruck über Σ mit der Sprache $L(a) = \{a\}.$
- (3) Sind α und β reguläre Ausdrücke über Σ , so sind auch α^* , $\alpha\beta$ und $\alpha\beta$ reguläre Ausdrücke und die zugehörigen Sprachen sind:

$$L(\alpha^*) = (L(\alpha))^*$$
; $L(\alpha\beta) = L(\alpha)L(\beta)$ und $L(\alpha|\beta) = L(\alpha) \cup L(\beta)$.

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie

2. Endliche Automaten und reguläre Sprachen

- 2.1 Elementarautomaten
- 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Satz:

Zu jedem regulären Ausdruck α gibt es einen Automaten A (mit genau einem Anfangs- und einem Endzustand), dessen Sprache $\mathbf{T}(A)$ identisch ist mit der regulären Sprache $\mathbf{L}(\alpha)$, d. h.

$$T(A) = L(\alpha)$$

und dessen Zustandszahl von der Länge des Ausdrucks α abhängt.

Beweis:

Der Beweis erfolgt durch Angabe von Elementarautomaten für (1) und (2) in der Definition und die Konstruktion entsprechend zusammengesetzter Automaten gemäß Regel (3):

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Elementarautomat für (1) \rightarrow A ϵ :

Elementarautomat für $(2) \rightarrow Aa$:

Elementarautomat für (3) mit $L(\alpha) = T(A)$ sowie $L(\beta) = T(B)$:

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Vorgehensweise:

- 1. Mit Hilfe der Elementarautomaten für α^* , α β und α | β lassen sich durch sukzessive Anwendung Zustandsautomaten mit **spontanen \epsilon-Übergängen** rekonstruieren.
- Aus diesen sog. ε-Automaten können wir dann nicht-deterministische Automaten ohne ε-Übergänge ableiten, die dieselben Mengen von Worten akzeptieren.
- Schließlich lassen sich die NFA in deterministische Automaten (DFA) überführen (Teilmengenverfahren) und letztere ggf. noch optimieren (Zusammenlegen äquivalenter Zustände → Minimalautomat).

Aufgabe:

Gesucht ist der Zustandsautomat für folgenden regulären Ausdruck:

$$\alpha$$
 = a (a | bb)*

Interpretation:

Alle Wörter, die mit a beginnen, gefolgt von Teilwörtern, die nur aus Zeichen der Form bb oder a bestehen.

Lösungsidee:

Konstruktion des gesuchten Automaten A aus **drei** Teilautomaten A_{a1}, A_{a2} und A_b in Verbindung mit spontanen ε-Übergängen.

Komposition:

<u>Umwandlung in Automaten ohne ε-Übergänge</u>:

1. Schritt: Übertragen der Zustände

2. Schritt: S₁ und S₃ zu einem Endzustand machen, da man von S₁ bzw. S₃ durch ε-Übergänge in den Endzustand des ε-Automaten kommt.

3. Schritt: Ersetzen der ε-Übergänge durch Nicht-ε-Übergänge.

4. Schritt: Entfernen des Zustands S₂, weil dieser nicht erreichbar.

Ergebnis: A:

 $\rightarrow \Sigma = \{a, b\}, S = \{S_0, S_1, S_2, S_3, S_4\} \text{ und } F = \{S_1, S_2, S_4\}$

5. Schritt: Reduzierung zum Minimalautomaten A'.

Endergebnis: A':

$$\rightarrow \Sigma = \{a, b\}, S = \{S_0, S_1, S_2\} \text{ und } F = \{S_1\}$$

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Ziel:

Umsetzung eines deterministischen endlichen Automaten (DFA) in ein Programm.

Idee:

Zustände des Automaten als Sprungmarken ansehen.

- {neue Sprungmarke mit neuem Zeichen}
 = g(aktuelle Sprungmarke mit aktuellem Zeichen).
- Delimiterzeichen zur Kennzeichnung des Wortendes.
- Unterfunktion FAIL(.), die zur Anwendung kommt, wenn eingelesenes Zeichen im aktuellen Zustand nicht erlaubt ist.

```
procedure numbertest(.);
DIGIT := { '0', ..., '9'}
SIGN := {'+','-'}
Label: 0,1,2,3,4,5,6,7;
0: a := NEXTCHAR(.);
 if a in SIGN then goto 1
 else if a in DIGIT then goto 2 else FAIL(.);
1: a := NEXTCHAR(.);
 if a in DIGIT then goto 2 else FAIL(.);
2: a := NEXTCHAR(.);
7: a := NEXTCHAR(.);
 if a in DIGIT then goto 7
 else if a in DELIMITER then write ("Zahldarstellung o.k.")
       else FAIL(.)
```

```
Es seien:
          a = Eingabezeichen
          Zustand_neu = g(Zustand_aktuell, a)
                      procedure numbertest(.);
                          << Wenn Eingabezeichen im aktuellen
 Zustand:=0;
                          << Zustand nicht erlaubt ist, liefert g
                                                               >>
 repeat
                          << den Wert FAII
                                                               >>
   a := NEXTCHAR(.)
   if a not in DELIMITER then Zustand := g(Zustand,a)
 until (Zustand = FAIL) or (a in DELIMITER)
 if a in DELIMITER then write ("Zahldarstellung o.k.")
 else ...
```

II. Reguläre Sprachen und Mengen

- 1. Reguläre Ausdrücke
 - 1.1 Mengenoperatoren
 - 1.2 Operations-Hierarchie
- 2. Endliche Automaten und reguläre Sprachen
 - 2.1 Elementarautomaten
 - 2.2 Zusammenführung von Teilautomaten
- 3. Anwendungen in der Texterkennung
 - 3.1 Deterministische Automaten und einfache Algorithmen
 - 3.2 Ein einfaches pattern-matching Problem

Es seien gegeben: ein Text $X = x_1x_2...x_n$

eine Zeichenkette $\mathbf{Y} = y_1y_2...y_m$

mit n >> m.

Ziel: Jedes Vorkommen von Y in X soll festgestellt

werden.

Erster Lösungsansatz:

i = Laufindex über den Text \mathbf{X} : $i = 0 \dots n-m$

j = Laufindex über die Zeichenkette Y: j = 1 ... m

found = logische Variable := true, wenn Y in X gefunden

false, sonst (nicht gefunden)

```
i = 0;
repeat
                                  << über gesamten Text X >>
 found := TRUE;
 j:= 1;
 while (j <= m) and found do << über ges. Zeichenkette Y >>
   if x(i+j) <> y(j) then found = FALSE;
   j:=j+1;
 endwhile
 if found then write (,Y kommt vor in X an der Position', i+1)
 i:=i+1;
until i > n-m
```

Anzahl der Such-Schritte: Suchschritte ≈ (n - m) q mit 1 < q < m.

q = durchschnittliche Anzahl der Durchläufe der while-Schleife (abhängig von m und der Art der Zeichenkette)

Anmerkung: Überraschenderweise kann man jedoch einen Algorithmus angeben, der die Frage, ob Y Teilwort von X ist, in

$$\approx$$
 n + m \approx n; da m << n

Schritten beantwortet.

<u>Idee</u>:

Wir konstruieren zur Zeichenkette **Y** einen deterministischen endlichen Automaten, der auf die Eingabe des Textes **X** genau dann in einen Endzustand übergeht, wenn **Y** in **X** entdeckt wurde. Ein anderer Lösungsweg besteht darin, den deterministischen "Skelettautomaten" zu verwenden, dessen goto-Funktion g eindeutig ist. Übergangsgraph des Skelettautomaten:

Es sei:
$$X \in \Sigma^* = \{ \text{ gesamte Alphabet } \}$$

 $Y = y1y2...y5 = "gegen" (Schlüsselwort)$

⇒ deterministischer Automat ohne Endzustand

Eigenschaften:

- Der Skelettautomat ist im Zustand Sj (1 ≤ j ≤ 5) genau dann, wenn die letzen j gelesenen Buchstaben des Wortes X mit den ersten j Buchstaben von Y (hier: Y = y1y2...y5 = "gegen") übereinstimmen.
- Beim Lesen des nächsten Zeichens von X sind also zwei Fälle möglich:
 - Das nächste Zeichen von X entspricht dem nächsten Zeichen von Y ⇒ Automat geht in den Zustand S_{j+1} über
 - Oder das n\u00e4chste Zeichen a ist verschieden ⇒ Automat geht in den Zustand Sk mit k ≤ j zur\u00fcck, wobei k = gr\u00f6\u00d8te Zahl derart, dass y1y2...yk Endst\u00fcck von y1y2...yja ist

Goto-Funktion g:

Mit der aus dem Zustandsgraphen ablesbaren goto-Funktion g erhält man als Texterkennungsprozedur:

endwhile

Failure-Funktion f:

Um das "Zurückgehen" im 2. Fall zu bewerkstelligen, definiert man die sog. *failure-*Funktion f, die für unser Beispiel wie folgt dargestellt werden kann:

d. h. die *failure-*Funktion f bildet Zustände auf Zustände ab. Der failure-Funktion muss man immer dann folgen, wenn die *goto-*Funktion g den Wert FAIL liefert.

<u>Anmerkung zur Failure-Funktion f</u>:

Die *failure*-Funktion **f**: **S** → **S** gibt an, in welchen Zustand man zurückzugehen hat, wenn nach dem Einlesen eines Zeichens xi die *goto*-Funktion **g** des Skelettautomaten nicht definiert ist. Dabei wird der Failure-Zustand so gewählt, dass ein möglichst großes Ende des bis dahin eingelesenen **X**-Textes (außer xi!) wieder mit dem Anfang von **Y** übereinstimmt. Paßt auch da das eingelesene Zeichen xi nicht, geht man gemäß der failure-Funktion weiter zurück. Spätestens im Anfangszustand endet der Prozeß, weil dort die *goto*-Funktion **g** für alle Zeichen definiert ist.

oxtimes B. Geib Kap. II Seite 41 von 44

Algorithmus:

Mit Hilfe der *goto*- und der *failure*-Funktion lautet der Algorithmus:

Algorithmus:

Als Algorithmus für die Funktion **f** ergibt sich also:

```
f(1) := 0;
For s = 2,3,...,m do
    t := s-1;
    repeat
       t := f(t);
    until g(t, y_S) \neq FAIL
    f(s) := g(t, y_s);
enddo;
```

Der Rechenaufwand hierfür hat die Größenordnung m.

Beispiel:

Die Berechnung der failure-Funktion f(t) liefert für eine Suche nach dem Wort "sesel" gemäß vorstehenden Algorithmus folgendes Ergebnis:

$$f: S \rightarrow S$$

$$f(1) = 0$$
 (per Def.)

$$f(2) = g(0, e) = 0$$

$$f(3) = g(0, s) = 1$$

$$f(4) = g(0, s) = 1$$

$$f(5) = g(1, e) = 2$$

$$f(6) = g(0, 1) = 0$$

