ACKNOWLEDGMENT

The successful completion of any task would not be possible without the people who made it possible. So it is with gratitude that we acknowledge the help that crowned our efforts with success.

We are profoundly indebted to our project guide, **Dr. Anil S. Pol,** Assistant Professor in the Dept. of Mechanical Engineering, VTU Belagavi. His precious guidance, inspiring discussions, and constant supervision throughout the course of this work have been instrumental. His timely help, constructive criticism, and conscientious efforts have enabled us to present the work contained in this thesis.

We express our deepest thanks to **Dr. Ravindra R. Malagi,** Professor and Chairperson, Department of Mechanical Engineering, V.T.U. Belagavi for providing all the support for the completion of this Project.

We would like to extend our thanks to **Dr. V. M. Kulkarni.** Professor in the Department of Mechanical Engineering, VTU Belagavi For guiding and encouraging us throughout the effort.

We would like to extend our thanks to **Mr. Santosh Ittanagi.** VRIF, VTU Belagavi For guiding and encouraging and providing the workplace for the project work.

Finally, I extend my special thanks to my parents and friends and all Faculty staffs for their all-out support and for boosting us up with their best wishes.

Abstract

The rapid advancements in robotics and artificial intelligence have spurred the development of humanoid service robots, poised to revolutionize various sectors of society. Humanoid service robots are designed to mimic the appearance and movements of humans, enabling them to interact with people more intuitively and naturally. These robots are equipped with a wide range of sensors, and actuators, enabling them to perceive and understand their environment, learn from interactions, and perform various tasks autonomously.

CONTENTS

TITLE		Page no
ACKNOWLEDGEMENT		i
ABSTRACT		
CONTENTS		
LIST OF FIGU	URES	vi
LIST OF TABI	LES	X
NOMENCLAT	TURE	xi
CHAPTER 1	INTRODUCTION	01
1.1	About Robots	01
1.2	Evaluation of Robots	02
	1.2.1 Present Day Robot	04
1.3	Types of Robots	04
	1.3.1 industrial Robots	05
	1.3.2 Service robots	05
	1.3.3 Autonomous Mobile Robots	05
	1.3.4 Surgical Robots	06
	1.3.5 Educational Robots	06
1.4	Service robots	07
	1.4.1 Types of Service robots	08
	1.4.1.1 Humanoid Service Robot	09
1.5	Literature Survey	10
	1.5.1 Summary of literature survey	15
1.6	Problem Statement	15
1.7	Objective of work	15
CHAPTER 2	DESIGN AND DEVELOPMENT	17
2.1	Methodology	17
	2.1.1 Body Development	18
	2.1.2 Software Development	19
2.2	Design of Robot	20
2.3	Development of Humanoid robot body and mechanism	21
	2.3.1 Head part	21

	2.3.2 Eye part	23
	2.3.3 Chest parts	23
2.4	Mechanism of the Humanoid Robot	24
	2.4.1 Eye Mechanism	24
	2.4.2 Head (Neck) Mechanism	25
	2.4.3 Hand mechanism	25
	2.4.4 Lower Body	26
2.5	Movement of complete robots	27
CHAPTER 3	DESIGN AND CALCULATION OF HUMANOID	28
	ROBOT	
3.1	Anthropometric data for the human body	28
3.2	Diagram of the robot	28
3.3	Head dimensions	29
3.4	Anthropometric data of mid-body (Shoulder, Arms,	30
	Forearm, Sleeve)	
3.5	Manufacturing	32
	3.5.1 3D printing	32
	3.5.2 Head	33
	3.5.3 Arm	35
	3.5.4 Torso	36
	3.5.5 Lower Body	37
3.6	Structural Design of Lower Half	37
	3.6.1 Calculations: CAD data	38
CHAPTER 4	MECHANISM IMPLEMENTATION AND TESTING	40
4.1	Mechanism	40
	4.1.1 Eye Mechanism	40
	4.1.1.1 Calibration	42
	4.1.1.2 Eye mechanism program testing	42
	4.1.2 Hand Mechanism	43
	4.1.2.1 Technical specification	44
	4.1.2.2 Discussion of DOF	45
	4.1.2.3Controller: Arduino nano	45
	4.1.3Forward Motion	46
	4.1.3.1Motor's used	46
	4.1.4 Direction Control of The Robot	48

	4.1.4.1 Forward Direction Motion	48
	4.1.4.2 Backward Direction Motion	48
	4.1.4.2 Left Direction Motion	49
	4.1.4.2 Right Direction Motion	49
	4.1.5 Face Recognition	50
	4.1.6 Line following	54
	4.1.6.1 Turning in Line Following	54
CHAPTER 5	APPLICATION DEVELOPMENT	57
5.1	Overview of The Mobile Application	57
5.2	Mobile Application Development	58
5.3	MIT App Inventor	58
	5.3.1 Motion Control	59
	5.3.2 Eye Movement	61
	5.3.3 Arm Movement	62
CHAPTER 6	RESULT AND DISCUSSION	64
6.1	Eye Mechanism	64
6.2	Hand Mechanism	65
6.3	Forward motion	66
6.4	Face Recognition and Tracking	67
6.5	Line following	68
6.6	Text-to-speech	69
CHAPTER 7	CONCLUSION AND FUTURE SCOPE	71
7.1	Conclusion	71
	7.1.1 Outcome of The Project	73
	7.1.2 Funding	73
7.2	Future scope	73
7.3	Bill of Material	74
	REFERENCES	75

LIST OF FIGURES

FIG NO	TITLE	PG NO
Fig 1.1	Ideal Robot For The AI Task Performing	01
Fig 1.2	VersaTran Robot	02
Fig 1.3	Unimate Robot	02
Fig 1.4	SCARA Robot	03
Fig 1.5	Robotic Arms	03
Fig 1.6	Types Of Robots	05
Fig 1.7	Industrial Robot	06
Fig 1.8	Service Robot	06
Fig 1.9	Amr Robot	07
Fig 1.10	Surgical Robot	07
Fig 1.11	Educational Robot	07
Fig 1.12	Retail Service Robot	08
Fig 1.13	Customer Service	09
Fig 1.14	Healthcare	09
Fig 1.15	Cleaning	09
Fig 1.16	Companionship	09
Fig 2.1	Flow-Chart Of Robot Development	17
Fig.2.2	Flow Chart of Body Development	18
Fig. 2.3	Flow Chart of Software Development	19
Fig 2.4	Front View of The Robot	20
Fig 2.5	Side View of The Robot	20
Fig 2.6	Top View of The Robot	20
Fig 2.7	Isometric View of The Robot	21
Fig 2.8	Head Of the Robot	22
Fig 2.9	Eye And Cheek	23
Fig 2.10	Middle Part of The Robot Body	24

Fig 2.11	Eye Mechanism	24
Fig 2.12	Head Mechanism	25
Fig 2.13	Model For the Arm to Get the Trajectory	26
Fig 2.14	Lower Body Frame	27
Fig 3.1	CAD Model of Robot	28
Fig 3.2	Anthropometric Measurements of Human Head	29
Fig 3.3	Robot Head Dimension	29
Fig 3.4	Forearm-Forearm Breadth	31
Fig 3.5	Forearm-Hand Length	31
Fig 3.6	Elbow-Wrist Length	31
Fig 3.7	Lower Arm Length	31
Fig 3.8	Upper Arm Length	31
Fig 3.9	Shoulder-Waist Length	31
Fig 3.10	Sleeve Inseam	31
Fig 3.11	3D Printing	33
Fig 3.12	Creality 3 3D Printer	33
Fig 3.13	Parts Of Face	34
Fig 3.14	Parts Of Head	34
Fig 3.15	Parts Of the Eye	35
Fig 3.16	Parts Of Hand	35
Fig 3.17	Mid-Body of The Robot	36
Fig 3.18	Lower Body	37
Fig 4.1	SG90 Servo Motor	40
Fig 4.2	Back View of Eyes with Servo	41
Fig 4.3	Eye Mechanism Parts Used	41
Fig 4.4	Arduino Interface With Servo	42
Fig 4.5	Python Algorithm for Face Tracking	42
Fig 4.6	CAD Image Of Hand	43

Fig 4.7	Arduino Nano	46
Fig 4.8	Forward Direction Motion	48
Fig 4.9	Backward Direction Motion	49
Fig 4.10	Left Direction Motion	49
Fig 4.11	Right Direction Motion	50
Fig 4.12	Flowchart Of the Facial Recognition	51
Fig 4.13	OpenCV Library	51
Fig 4.14	Code To Install to OpenCV (PyCharm)	52
Fig 4.15	Install Extra Modules (PyCharm)	52
Fig 4.16	Machine Learning Mode	52
Fig 4.17	Face Recognition	53
Fig 4.18	Face Recognition Before	53
Fig 4.19	Face Recognition After	53
Fig 4.20	Robot Turning Right	55
Fig 4.21	Robot Turning Left	55
Fig 4.22	Robot Turning Forward	56
Fig 5.1	Describes The Block Coding Part of The Motion Control	60
118 3.11	Application	
Fig 5.2	Shows The Application Layout for The Motion Control	60
Fig 5.3	Shows The Layout Preparation in MIT App Inventor	61
Fig 5.4	Shows The Block Coding of The Eye Movement Application	61
Fig 5.5	Describes The Arm Servo Motion and Movement	62
Fig 5.6	Describes The Block Coding for The Arm Motion In MIT App	63
_	Inventor	
Fig 6.1	Eye Movement Before	64
Fig 6.2	Eye Movement After	64
Fig 6.3	Hand Mechanism Before	65
Fig 6.4	Hand Mechanism After	65
Fig 6.5	Forward Motion Before	66
Fig 6.6	Forward Motion After	66
Fig 6.7	Face Recognition Before	67
·		

Fig 6.8	Face Recognition After	67
Fig 6.9	Face Tracking Before	68
Fig 6.10	Face Tracking After	68
Fig 6.11	Text To Speech Code	70
Fig 7.1	Assembly Of Robot	71

LIST OF TABLES

Table no	Title	Pg no
Table 2.1	Table of body robot body components	21
Table 3.1	Table of anthropometric data dimensions of the Human Head	30
Table 3.2	Table of anthropometric data dimensions Mid Body (Shoulder, Arms, Forearm, and Sleeve)	32
Table 4.1	Servo Motor Specification	44

NOMENCLATURE

CAD - Computer Aided Design

FRP - Fiber Reinforced polymer

PLA - Polylactic acid

DOF - Degrees of Freedom

SG90 - It is a small and light weight digital servomotor with high output

power

MIT - The Massachusetts Institute of Technology (MIT)

OpenCV - OpenCV (Open-Source Computer Vision Library)

MS - Mild steel

PID - Proportional, integral, Derivative type.

F - "F" refers to the command to move forward.

R - "R" command to make the robot turn to right direction.

L - "L" command moves the robot to left.

B - "B" command moves the robot backwards.

S - The command "S" stops the robot motion.

H - The "H" Handshake.

N - The command "N" namaste (greeting) gesture.

Hi - Hi gesture by raising its hand.

Home - The "Home" command is for returning to the main home

Amp - (Ampere) a unit of electric current