FLEA

first order proving with equality master project

Alexander Maringele Supervisor: Georg Moser

Sep 2016 - Obergurgl

Project overview

Goals and requirements

- Goals
 - ATP for FOL with equality
 - Master thesis
- Requirements
 - Input: problems in clausal normal form
 - Data: clauses, literals, terms, indices, etc.
 - Algorithms: substitution, unification, etc.
 - Proof search (strategies)
- Non-Goals and Non-Requirements
 - CASC
 - FOF ≈ CNF

Alexander Maringele FLEA Sep 2016 - Obergurgl 2 / 12

Clausal normal form

TPTP Syntax

```
. . .
cnf(same_hates, hypothesis, ( ~hates(agatha, X) | hates(butler, X) )).
. . .
                      \{\ldots, \neg \mathsf{hates}(\mathsf{agatha}, x) \lor \mathsf{hates}(\mathsf{butler}, x), \ldots\}
                \dots \wedge \forall x \ (\neg \mathsf{hates}(\mathsf{agatha}, x) \vee \mathsf{hates}(\mathsf{butler}, x)) \wedge \dots
```


G. Sutcliffe, The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0, Journal of Automated Reasoning 43 (2009), no. 4, 337–362.

Refutation

Proof search

Alexander Maringele FLEA Sep 2016 - Obergurgl 4 / 12

Ordered Resolution

$$\frac{L \vee C \quad \neg L' \vee D}{(C \vee D)\sigma}$$

where

 $L\sigma$ strictly maximal in $C\sigma$, $\neg L'\sigma$ maximal in $D\sigma$, $\sigma = \text{mgu}(L, L')$.

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y) \quad \neg \mathsf{P}(\mathsf{a})}{\frac{\neg \mathsf{P}(y)}{\Box}} \; x \mapsto \mathsf{a} \quad \mathsf{P}(\mathsf{b}) \; y \mapsto \mathsf{b}$$

 $S = \{ \mathsf{P}(x) \vee \neg \mathsf{P}(y), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}) \}$

Inst-Gen

$$\frac{L \vee C \quad \neg L' \vee D}{(L \vee C)\sigma \quad (\neg L' \vee D)\sigma}$$

where

$$\operatorname{sel}(L \vee C) = L$$
 $\operatorname{sel}(\neg L' \vee D) = \neg L'$ $\sigma = \operatorname{mgu}(L, L')$

Selection

$$S = \{ \mathsf{P}(x) \vee \neg \mathsf{P}(y), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}) \}$$
 unsatisfiable
$$P = (p_* \vee \neg p_*) \wedge \neg \underline{p_a} \wedge p_b$$
 satisfiable

Alexander Maringele

FLEA

$$S_0 = \{\mathsf{P}(x) \vee \neg \mathsf{P}(y), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b})\} \qquad \text{unsatisfiable}$$

$$P_0 = (p_* \vee \neg p_*) \wedge \neg p_a \wedge p_b \qquad \text{satisfiable}$$

$$\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y)) \quad \neg \mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)} \quad x \mapsto \mathsf{a}$$

$$P_1 = (p_* \vee \neg p_*) \wedge \neg p_a \wedge p_b \wedge (p_a \vee \neg p_*) \qquad \text{satisfiable}$$

$$\frac{\mathsf{P}(\mathsf{b}) \quad \mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(y)}{\mathsf{P}(\mathsf{a}) \vee \neg \mathsf{P}(\mathsf{b})} \quad y \mapsto \mathsf{b}$$

$$P_2 = (p_* \vee \neg p_*) \wedge \neg p_a \wedge p_b \wedge (p_a \vee \neg p_*) \wedge (p_a \vee \neg p_b) \qquad \text{unsatisfiable}$$

Equality as predicate

$$S=\{^{1:}\mathsf{P(a)},^{2:}\neg\mathsf{P(f(x,b))},^{3:}\mathsf{f(x,b)}=x\}$$
 saturated
$$P=p_1\wedge\neg p_2\wedge e_3$$
 satisfiable

Alexander Maringele

FLEA

Sep 2016 - Obergurgl

Equality

$$\frac{x=x \quad s\neq s\vee\mathcal{C}}{s=s} \quad x\mapsto s \qquad \text{reflexivity}$$

$$\frac{x\neq y\vee y=x \quad s\neq t\vee\mathcal{C}}{t\neq s\vee s=t} \quad x\mapsto t, y\mapsto s \qquad \text{symmetry}$$

$$\frac{x\neq y\vee y\neq z\vee x=z \quad s\neq t\vee\mathcal{C}}{s\neq y\vee y\neq t\vee s=t} \quad x\mapsto s, y\mapsto t \qquad \text{transitivity}$$

$$\frac{x\neq y\vee f(x)=f(y) \quad f(s)\neq f(t)}{s\neq t\vee f(s)=f(t)} \quad x\mapsto s, y\mapsto t \qquad \text{f-congruence}$$

$$\frac{x\neq y\vee \neg P(x)\vee P(y) \quad P(s)\vee\mathcal{C}}{s\neq y\vee \neg P(s)\vee P(y)} \quad x\mapsto s \qquad P_+\text{-congruence}$$

$$\frac{x\neq y\vee \neg P(x)\vee P(y) \quad \neg P(s)\vee\mathcal{C}}{x\neq s\vee \neg P(x)\vee P(y)} \quad y\mapsto s \qquad P_-\text{-congruence}$$

$$S_0 = \{^{1:}\mathsf{P}(\mathsf{a}),^{2:} \neg \mathsf{P}(\mathsf{f}(x,\mathsf{b})),^{3:} \mathsf{f}(x,\mathsf{b}) = x\} \qquad \text{unsatisfiable}$$

$$P_0 = p_1 \land \neg p_2 \land e_3 \qquad \text{satisfiable}$$

$$^{4:}x \neq \mathsf{f}(x,\mathsf{b}) \lor \neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}(x,\mathsf{b})) \qquad ^{2:1}\mathsf{P}_\neg\text{-congruence}$$

$$P_1 = P_0 \land (\neg e_4 \lor \neg p_* \lor p_2) \qquad ^{4:1}\text{symmetry}$$

$$P_2 = P_0 \land (\neg e_4 \lor \neg p_* \lor p_2) \land (\neg e_3 \lor e_4) \qquad ^{4:1}\text{symmetry}$$

$$P_2 = P_0 \land (\neg e_4 \lor \neg p_* \lor p_2) \land (\neg e_3 \lor e_4) \qquad ^{4:1,1:1} x \mapsto \mathsf{a}$$

$$^{6:}\mathsf{a} \neq \mathsf{f}(\mathsf{a},\mathsf{b}) \lor \neg \mathsf{P}(\mathsf{a}) \lor \mathsf{P}(\mathsf{f}(\mathsf{a},\mathsf{b})) \qquad ^{4:1,1:1} x \mapsto \mathsf{a}$$

$$^{7:}\neg \mathsf{P}(\mathsf{f}(\mathsf{a},\mathsf{b})) \qquad ^{2:1,6:1} x \mapsto \mathsf{a}$$

$$^{7:}\neg \mathsf{P}(\mathsf{f}(\mathsf{a},\mathsf{b})) \qquad ^{2:1,6:1} x \mapsto \mathsf{a}$$

$$^{9:}\mathsf{f}(\mathsf{a},\mathsf{b}) \neq \mathsf{a} \lor \mathsf{a} = \mathsf{f}(\mathsf{a},\mathsf{b}) \qquad ^{1:1}\text{-symmetry}$$

$$^{9:}\mathsf{f}(\mathsf{a},\mathsf{b}) = \mathsf{a}) \qquad ^{3:1,8:1} x \mapsto \mathsf{a}$$

$$P_4 = P_3 \land (\neg e_8 \lor e_6) \land e_8 \qquad \text{unsatisfiable}$$

- requirements
 - Linux, macOS
 - Flex, Bison, Clang, Swift 3
 - Yices
- structure
 - wrapper for yices, parsing, syslog, and some POSIX APIs
 - data and algorithms
 - strategy: sequential processing of growing list of clauses
- optimizations
 - indexing of selected literals
 - indexing of clauses
 - sharing of terms
- in progress = missing
 - alternative procedure for equality
 - experiments
 - written thesis

Lemma

Symmetry and transitivity are consequences of reflexivity and congruence.

Symmetry.

$$\frac{\overline{x_1 = y_1 \land x_2 = y_2 \land x_1 = x_2 \rightarrow y_1 = y_2}}{x = y \land x = x \land x = x \rightarrow y = x} \xrightarrow{\text{reflexivity}} = -\text{congruence}$$

$$\frac{x = y \land x = x \land x = x \rightarrow y = x}{x = y \rightarrow y = x} \text{ reflexivity}$$

Transitivity.