

DATASCIENCEGO HACKATHON

Thanks to our Partners!

Welcome to the Hackathon!

Goals:

- Practice your skills and learn from others
- Expand your network while collaborating with peers
- Have fun!

General Rules:

- Be respectful and collaborative
- Submit ONLY the work you produce during the Hackathon
- Be honest and ethical. Cheating is easy and will ruin your experience

Event Opening: 8:30 AM - 9:00 AM

Working Block #1: 9:00 AM - 12:00 PM

Break: 12:00 PM - 1:30 PM

Working Block #2 & Mentoring Sessions: 1:30 PM - 4:15 PM

SUBMISSION OF RESULTS: 4:15 PM

Team Presentations: 4:30 PM - 5:30 PM

Break: 5:30 PM - 6:00 PM

Prize Awarding and Event Closing: 6:00 PM - 6:30 PM

Organizing Team & Communication

Moderating Team:

Isabella MindiolaMarketing Strategist @DSGO

Dianella PesqueraEvent Coordinator @DSGO

Paulo Realpe Event Manager @DSGO

Our Facilitator:

Jonathan MuchaExperienced Solutions Engineer

Communication:

The Challenge

Meat consumption is related to living standards, diet, livestock production and consumer prices, as well as macroeconomic uncertainty and shocks to GDP. Compared to other commodities, meat is characterized by high production costs and high output prices. Meat demand is associated with higher incomes and a shift - due to urbanization - to food consumption changes that favors increased proteins from animal sources in diets. While the global meat industry provides food and a livelihood for billions of people, it also has significant environmental and health consequences for the planet.

Build a model to extrapolate Meat Consumption in New Zealand (NZL), Great Britain (GBR), and Argentina (ARG) for the period 2010-2019.

A model that predicts meat consumption across different countries and regions may be able to help build strategies to reduce meat overproduction and mitigate the negative impact on the environment.

The goal of this task is to build a model that predicts meat consumption in three specific and culturally different countries that can be accurately applied to other scenarios.

OCATION	SUBJECT	MEASURE	TIME	VALUE	LOCATION	INDICATO	MEASURE	TIME	VALUE	LOCATION
AUS	BEEF	KG_CAP	1990	0	AUS	GDP	MLN_USD	1990	303558.1	AUS
AUS	BEEF	KG_CAP	1991	27.942	AUS	GDP	MLN_USD	1991	313289.6	AUS
AUS	BEEF	KG_CAP	1992	26.405	AUS	GDP	MLN_USD	1992	333775.5	AUS
AUS	BEEF	KG_CAP	1993	26.37	AUS	GDP	MLN_USD	1993	354812.1	AUS
AUS	BEEF	KG_CAP	1994	25.662	AUS	GDP	MLN_USD	1994	380163	AUS
AUS	BEEF	KG_CAP	1995	25.526	AUS	GDP	MLN_USD	1995	402520.1	AUS
AUS	BEEF	KG_CAP	1996	27.453	AUS	GDP	MLN_USD	1996	423165.1	AUS
AUS	BEEF	KG_CAP	1997	29	AUS	GDP	MLN_USD	1997	449579.6	AUS
AUS	BEEF	KG_CAP	1998	26.765	AUS	GDP	MLN_USD	1998	476939.5	AUS
AUS	BEEF	KG_CAP	1999	28.095	AUS	GDP	MLN_USD	1999	509779.9	AUS
AUS	BEEF	KG_CAP	2000	26.515	AUS	GDP	MLN_USD	2000	537551.8	AUS
AUS	BEEF	KG_CAP	2001	24.606	AUS	GDP	MLN_USD	2001	568121.3	AUS
AUS	BEEF	KG_CAP	2002	25.263	AUS	GDP	MLN_USD	2002	599301.2	AUS
AUS	BEEF	KG_CAP	2003	25.958	AUS	GDP	MLN_USD	2003	635902.8	AUS
AUS	BEEF	KG_CAP	2004	28.719	AUS	GDP	MLN_USD	2004	674858.5	AUS
AUS	BEEF	KG_CAP	2005	27.19	AUS	GDP	MLN_USD	2005	717705.1	AUS
AUS	BEEF	KG_CAP	2006	27.03	AUS	GDP	MLN_USD	2006	773963.6	AUS
AUS	BEEF	KG_CAP	2007	24.166	AUS	GDP	MLN_USD	2007	824726	AUS
AUS	BEEF	KG_CAP	2008	23.343	AUS	GDP	MLN_USD	2008	851983.1	AUS
				20 454				***		

- Meat Consumption
- GDP
- Crop Production
- Investment Gross fixed capital formation (GFCF)
- Population
- Fertility Rate
- Poverty Rate
- Income
- Pollution
- Built-up Area
- Land Cover Change
- Water Withdrawals
- Obesity
- Unemployment
- Average Wages
- General Government Revenue
- General Government Spending
- General Government Production Costs

Expected Submission and Deadline

Submission is expected to be made by 4:15 PM PT to support@datasciencego.com

Your Submission has 3 components:

- Submission can be a Webapp or a GitHub repository, including the notebook that implements the full lifecycle of data preparation, source code, model creation and evaluation.
- Results Table in CSV format.
- PDF presentation (5 slides max) with your observations, predictions, and conclusions. At the end of the activity, your team will have 5 minutes to present the results.

Judging Criteria and Prizes

Criteria for Best Model and Best Presentation:

- 1. Relevance & Innovation:
 - Mean Absolute Error.
 - Creative new ideas or methods used.
- **2. Assumptions and model-building process:** Assumptions taken into consideration to build the model and data management.
- 3. Presentation:
 - Time management (20%)
 - Visual Aids (30%)
 - Communication (50%)

Criteria for Most Helpful Person: Collaborate with others and receive points from the participants. Each participant has 3 votes to assign to one person or multiple people. You CANNOT vote for someone inside your team.

Judging Criteria and Prizes

BEST MODEL (Group - up to 5 people)

SuperDataScience Memberships (5) and E-Books from Packt (5)

BEST PRESENTATION (Group - up to 5 people)

ArtofVisualization Tableau Certification Courses (5) and E-Books from Packt (5)

MOST HELPFUL PERSON (1 participant)

DSGO Virtual Premium Ticket

EVERYONE (50 participants)

1 Udemy course for each participant from SDS Club and a participation certificate from DSGO

DATASCIENCEGO HACKATHON