Link-uri utile

- Grup tutoriat
- Cursurile de la Băețica
- Cursurile de an trecut de la Mincu

Exerciții

Exercițiul 1. Scrieți elementele mulțimii $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

Demonstratie.

$$\begin{split} \mathcal{P}(\varnothing) &= \{ \varnothing \} \\ \mathcal{P}(\mathcal{P}(\varnothing)) &= \{ \varnothing, \{ \varnothing \} \} \\ \mathcal{P}(\mathcal{P}(\mathscr{P}(\varnothing))) &= \{ \varnothing, \{ \varnothing \} \}, \{ \{ \varnothing \} \}, \{ \varnothing, \{ \varnothing \} \} \} \end{split}$$

Exercițiul 2. Arătați că relația de congruență modulo n este relație de echivalență, folosind definiția.

Demonstrație. Fie $n\in \mathbb{N}^*$ fixat. Atunci spunem că $a\equiv b \mod n$ dacă $n\mid (a-b).$

Pentru a demonstra că este relație de echivalență, trebuie să demonstrăm că este reflexivă, simetrică și tranzitivă.

- 1. Fie $a \in \mathbb{N}$. Atunci $n \mid (a a) = 0$. Deci $a \equiv a \mod n$. Deci \equiv este reflexivă.
- 2. Fie $a, b \in \mathbb{N}$ cu $a \equiv b \mod n$. Din definiție, $n \mid (a-b)$. Atunci $n \mid -(a-b)$. De unde rezultă că $n \mid (b-a)$. Deci $b \equiv a \mod n$. Deci \equiv este simetrică.
- 3. Fie $a, b, c \in \mathbb{N}$ cu $a \equiv b \mod n$ și $b \equiv c \mod n$. Din definiție avem că $n \mid (a b)$ și $n \mid (b c)$. Atunci facem suma și avem că $n \mid ((a b) + (b c)) \implies n \mid (a c)$. Deci $a \equiv c \mod n$. Deci \equiv este tranzitivă.

Din acestea rezultă că ≡ este relatie de echivalentă.

Exercițiul 3. Demonstrați că relația $x \rho y \iff x^2 + 7x = y^2 + 7y$ este de echivalență.

Demonstrație. Demonstrația este similară cu cea de la exercițiul precedent, iar proprietățile decurg din faptul că egalitatea este reflexivă, simetrică și tranzitivă.

Exercițiul 4. Fie A și A' submulțimi ale lui T. Arătați că:

- 1. $\chi_{A \cap A'} = \chi_A \cdot \chi_{A'}$
- 2. $\chi_{A \cup A'} = \chi_A + \chi_{A'} \chi_A \cdot \chi_{A'}$ În particular, dacă A și A' sunt disjuncte avem că $X_{A \cup A'} = \chi_A + \chi_{A'}$.
- 3. $\chi_{A \setminus A'} = \chi_A \cdot (1 \chi_{A'})$

Demonstrație. Putem demonstra aceste egalități construind tabelul de valori pentru funcțiile χ .

1.

2.

3.

Exercițiul 5. Dați exemplu de funcții $f,g:\mathbb{N}\to\mathbb{N}$ cu proprietatea că $g\circ f=1_{\mathbb{N}},$ dar g nu este injectivă, iar f nu este surjectivă.

Demonstrație. O pereche de funcții care îndeplinesc aceste condiții sunt

$$g(n) = \begin{cases} 0, & \text{dacă } n = 0\\ n - 1, & \text{dacă } n \ge 1 \end{cases}$$

$$f(n) = n + 1, \forall n \in \mathbb{N}$$