# **Graph Theory Project SNA & Measurement**



## **Submitted by:**

CH Barkaat Ali (2020-cs-619)

Supervised by:

Sir Irfan Yousaf

**Department of Computer Science** 

UNIVERSITY OF ENGINEERING AND TECHNOLOGY, LAHORE (NEW CAMPUS)

Task 1: Network Analysis Metrics of the Graph: Average Degree,
Clustering Coefficient, Path Length, Diameter, Highest/Lowest Degree
Nodes

| SEC | Average<br>Degree | Average Clustering Coefficient | Average Path<br>Length | Diameter | Node with highest degree | Node with lowest degree |
|-----|-------------------|--------------------------------|------------------------|----------|--------------------------|-------------------------|
| A   | 6.42              | 0.57                           | 2.73                   | 6        | 623                      | 693                     |
| В   | 9.27              | 0.60                           | 2.18                   | 4        | 671                      | 694                     |
| AB  | 8.36              | 0.54                           | 2.93                   | 6        | 671                      | 709                     |

The data shows that students in SEC B have the highest average degree, which means they are connected to more edges on average than students in SEC A and SEC AB. This could suggest that they are more likely to collaborate with a larger number of classmates, potentially leading to more diverse and varied learning experiences.

In terms of clustering coefficient, students in SEC A have a slightly lower value compared to students in SEC B and SEC AB, indicating that they are less likely to be connected to each other than students in SEC B. This may suggest a less tightly knit community within the section, but could also foster exposure to a wider range of perspectives and ideas.

However, the data also reveals that students in SEC B have the lowest average path length, indicating that it takes fewer steps on average to travel from one student to another in this section compared to the other two. This may suggest a more homogeneous and less diverse network of connections, which could limit exposure to different perspectives and ideas.

Furthermore, SEC A and SEC AB both have a larger diameter than SEC B, indicating that the longest path between any two students in these sections is six steps. This could suggest a slightly less tightly knit community within these sections, but also potential exposure to a wider range of perspectives and ideas.

Finally, when comparing SEC AB to its constituent sections, the data reveals that students in SEC AB have a higher average degree and diameter than students in SEC A, but a lower clustering coefficient. This suggests that students in SEC AB are more connected overall, but less likely to be connected to each other than the students in SEC AB. This could indicate a more diverse and varied network of connections within SEC AB, which could foster exposure to a wider range of perspectives and ideas.

Task2: Distribution of degree, clustering coefficient and path length of nodes.

#### Sec A:



The degree sequence of a graph represents the number of edges connected to each vertex. The given sequence shows that the highest degree is 16, and there are 20 vertices with degree 8. The distribution of the degree coefficient of the graph indicates that it is a scale-free network, which means that a few vertices have a high degree, and the rest have a relatively low degree. This type of distribution is common in many real-world networks, such as social networks and the internet.

The clustering coefficient of a graph represents the tendency of the vertices to form clusters or communities. The given clustering coefficient sequence indicates that the network has a high tendency to form clusters. The clustering coefficient is maximum (1.0) for the vertices with the highest degree (16, 12, 11), indicating that these vertices are part of tightly-knit communities. The average clustering coefficient of the graph is around 0.6, which is relatively high and indicates that the graph has a significant amount of community structure.

The path length sequence of a graph represents the shortest distance between any two vertices. The given sequence shows that the shortest path between most of the vertices is relatively short, with the maximum path length being 11. The average path length of the graph is around 3.5, which is relatively small and indicates that the graph is well connected. This means that most vertices can be reached from any other vertex in the graph with few hops. The graph has some vertices with a path length of 1, which indicates that there are some isolated vertices that are not connected to the main component of the graph.

#### Sec A&B:



From the degree sequence, we can see that the maximum degree is 18, and there are 11 vertices with degree 13. This suggests that the graph may have a central hub with many edges connecting to a group of peripheral vertices. The degree sequence shows that there are nodes with a wide range of degrees, from 2 to 18. The highest degree is 18, which suggests that there might be one or a few nodes with a high number of connections.

The clustering coefficient sequence is relatively high across the network, with values ranging from 0.181818 to 1.0. This suggests that the nodes are relatively well-connected to each other, forming many triangles and small clusters in the network.

Overall, the degree sequence and clustering coefficient sequence suggest that the network might have a scale-free distribution, meaning that a few nodes have a very high number of connections while the majority of nodes have only a few connections.

### SEC B:



The degree sequence of the graph indicates that there are 20 vertices with degree 8, and the highest degree is 16. The distribution of the degree coefficient suggests that the graph is a scale-free network, which is common in real-world networks.

The clustering coefficient sequence shows that the graph has a high tendency to form clusters or communities, with the maximum clustering coefficient of 1.0 for the vertices with the highest degree. The average clustering coefficient of the graph is around 0.6, indicating a significant amount of community structure.

The path length sequence indicates that the shortest path between most vertices is relatively short, with an average path length of around 3.5. This suggests that the graph is well connected, and most vertices can be reached from any other vertex in the graph with few hops. However, there are some isolated vertices that are not connected to the main component of the graph.

Overall, the given characteristics suggest that the graph has a scale-free structure, a significant amount of community structure, and is well connected.

## Task 3:Centrality Measures

## For Graph A

| Degree Centrality |            | Closeness Centrality |            | Betweenness Centrality |            | Eigenvector Centrality |            | Page Rank Centrality |            |
|-------------------|------------|----------------------|------------|------------------------|------------|------------------------|------------|----------------------|------------|
| Top-10            | Bottom-10  | Top-10               | Bottom-10  | Top-10                 | Bottom-10  | Top-10                 | Bottom-10  | Top-10               | Bottom-10  |
| 623: 0.314        | 637: 0.078 | 623: 0.510           | 628: 0.321 | 623: 0.198             | 612: 0.001 | 623: 0.370             | 649: 0.035 | 623: 0.042           | 704: 0.014 |
| 605: 0.235        | 615: 0.078 | 614: 0.468           | 610: 0.317 | 622: 0.161             | 637: 0.001 | 605: 0.314             | 640: 0.034 | 605: 0.031           | 642: 0.014 |
| 648: 0.216        | 635: 0.078 | 622: 0.455           | 625: 0.311 | 631: 0.110             | 624: 0.001 | 620: 0.242             | 628: 0.030 | 648: 0.031           | 615: 0.013 |
| 622: 0.216        | 609: 0.078 | 605: 0.455           | 630: 0.304 | 648: 0.107             | 606: 0.001 | 619: 0.240             | 610: 0.025 | 622: 0.030           | 612: 0.013 |
| 707: 0.196        | 649: 0.078 | 648: 0.451           | 640: 0.304 | 707: 0.102             | 644: 0.000 | 603: 0.236             | 625: 0.024 | 707: 0.027           | 637: 0.013 |
| 791: 0.176        | 644: 0.059 | 707: 0.447           | 709: 0.297 | 616: 0.099             | 640: 0.000 | 648: 0.232             | 646: 0.022 | 616: 0.025           | 644: 0.012 |
| 619: 0.176        | 640: 0.059 | 631: 0.447           | 646: 0.293 | 633: 0.086             | 642: 0.000 | 707: 0.223             | 644: 0.019 | 791: 0.025           | 604: 0.012 |
| 621: 0.157        | 604: 0.059 | 619: 0.443           | 604: 0.283 | 619: 0.079             | 604: 0.000 | 613: 0.217             | 604: 0.018 | 633: 0.024           | 640: 0.010 |
| 614: 0.157        | 709: 0.039 | 621: 0.440           | 644: 0.277 | 614: 0.079             | 693: 0.000 | 614: 0.197             | 709: 0.018 | 619: 0.024           | 709: 0.008 |
| 638: 0.157        | 693: 0.020 | 634: 0.436           | 693: 0.263 | 621: 0.074             | 709: 0.000 | 634: 0.184             | 693: 0.011 | 631: 0.024           | 693: 0.006 |

## For graph B:

| Degree Centrality |            | Closeness Centrality |            | Betweenness Centrality |            | Eigenvector Centrality |            | Page Rank Centrality |            |
|-------------------|------------|----------------------|------------|------------------------|------------|------------------------|------------|----------------------|------------|
| Top-10            | Bottom-10  | Top-10               | Bottom-10  | Top-10                 | Bottom-10  | Top-10                 | 653: 0.041 | Top-10               | Bottom-10  |
| 671: 0.395        | 687: 0.163 | 671: 0.581           | 657: 0.406 | 692: 0.126             | 690: 0.003 | 671: 0.315             | 688: 0.036 | 671: 0.037           | 669: 0.019 |
| 699: 0.349        | 677: 0.163 | 699: 0.558           | 664: 0.406 | 671: 0.125             | 693: 0.003 | 708: 0.267             | 674: 0.033 | 692: 0.034           | 680: 0.017 |
| 652: 0.326        | 666: 0.140 | 692: 0.544           | 677: 0.394 | 703: 0.115             | 673: 0.002 | 705: 0.265             | 657: 0.028 | 699: 0.034           | 653: 0.017 |
| 692: 0.326        | 653: 0.140 | 651: 0.537           | 683: 0.387 | 699: 0.082             | 687: 0.001 | 652: 0.252             | 654: 0.028 | 652: 0.031           | 675: 0.016 |
| 667: 0.302        | 675: 0.140 | 652: 0.537           | 690: 0.387 | 652: 0.078             | 675: 0.001 | 699: 0.234             | 664: 0.026 | 662: 0.030           | 666: 0.015 |
| 705: 0.302        | 683: 0.116 | 684: 0.531           | 693: 0.387 | 660: 0.060             | 669: 0.001 | 673: 0.230             | 690: 0.021 | 684: 0.030           | 683: 0.014 |
| 708: 0.302        | 688: 0.093 | 703: 0.518           | 670: 0.387 | 662: 0.058             | 793: 0.001 | 667: 0.229             | 693: 0.021 | 667: 0.030           | 688: 0.012 |
| 662: 0.302        | 665: 0.093 | 708: 0.512           | 687: 0.384 | 663: 0.050             | 694: 0.000 | 661: 0.228             | 677: 0.019 | 663: 0.029           | 665: 0.012 |
| 684: 0.302        | 694: 0.070 | 696: 0.512           | 665: 0.374 | 651: 0.050             | 665: 0.000 | 662: 0.219             | 687: 0.019 | 696: 0.028           | 694: 0.009 |
| 663: 0.279        | 670: 0.070 | 667: 0.506           | 694: 0.371 | 667: 0.046             | 670: 0.000 | 700: 0.217             | 653: 0.041 | 705: 0.028           | 670: 0.009 |

## For graph A&B:

| Degree Centrality |            | Closeness Centrality |            | Betweenness Centrality |            | Eigenvector Centrality |            | Page Rank Centrality |            |
|-------------------|------------|----------------------|------------|------------------------|------------|------------------------|------------|----------------------|------------|
| Top-10            | Bottom-10  | Top-10               | Bottom-10  | Top-10                 | Bottom-10  | Top-10                 | Bottom-10  | Top-10               | Bottom-10  |
| 671: 0.191        | 665: 0.043 | 671: 0.425           | 624: 0.295 | 616: 0.085             | 612: 0.000 | 671: 0.315             | 632: 0.004 | 623: 0.020           | 704: 0.007 |
| 623: 0.170        | 635: 0.043 | 703: 0.425           | 627: 0.292 | 674: 0.077             | 624: 0.000 | 708: 0.266             | 624: 0.003 | 671: 0.018           | 683: 0.007 |
| 652: 0.160        | 627: 0.043 | 674: 0.425           | 612: 0.284 | 623: 0.070             | 675: 0.000 | 705: 0.262             | 630: 0.003 | 652: 0.016           | 612: 0.006 |
| 699: 0.160        | 630: 0.043 | 634: 0.410           | 610: 0.281 | 652: 0.070             | 694: 0.000 | 652: 0.253             | 612: 0.003 | 699: 0.016           | 644: 0.006 |
| 708: 0.149        | 612: 0.043 | 652: 0.407           | 665: 0.276 | 692: 0.067             | 665: 0.000 | 699: 0.232             | 610: 0.002 | 692: 0.015           | 635: 0.006 |
| 692: 0.149        | 694: 0.032 | 623: 0.405           | 694: 0.272 | 707: 0.064             | 670: 0.000 | 673: 0.227             | 646: 0.002 | 674: 0.015           | 665: 0.005 |
| 667: 0.138        | 670: 0.032 | 692: 0.400           | 646: 0.270 | 703: 0.064             | 644: 0.000 | 667: 0.226             | 627: 0.002 | 605: 0.015           | 640: 0.005 |
| 705: 0.138        | 644: 0.032 | 621: 0.400           | 644: 0.268 | 622: 0.057             | 640: 0.000 | 661: 0.226             | 640: 0.002 | 648: 0.015           | 694: 0.004 |
| 662: 0.138        | 640: 0.032 | 657: 0.397           | 640: 0.265 | 634: 0.054             | 642: 0.000 | 662: 0.216             | 644: 0.001 | 622: 0.015           | 670: 0.004 |
| 684: 0.138        | 709: 0.021 | 631: 0.395           | 709: 0.253 | 616: 0.085             | 709: 0.000 | 700: 0.214             | 709: 0.001 | 707: 0.015           | 709: 0.004 |

Task 4: Find Communities In Graph Of Sections

#### Communities In Section A:



There are a total of 8 communities in the graph of section A, each represented by a different color.

- "Red" community: Consists of 5 nodes (627, 644, 630, 639, 641)
- "Blue" community: Consists of 13 nodes (609, 614, 648, 616, 649, 631, 636, 604, 641, 630, 639, 644, 627)
- "Green" community: Consists of 7 nodes (707, 643, 624, 601, 701, 606, 642)
- "Orange" community: Consists of 7 nodes (613, 710, 619, 620, 603, 605, 640)
- "Purple" community: Consists of 9 nodes (602, 612, 647, 617, 622, 791, 637, 638, 641)
- "Pink" community: Consists of 6 nodes (611, 709, 618, 621, 629, 633)
- "Brown" community: Consists of 6 nodes (704, 615, 623, 693, 634, 635)
- "Grey" community: Consists of 5 nodes (610, 646, 625, 628, 632)

#### Communities IN SEC B:



There are 4 communities in this graph:

- "Red" community: Consists of 14 nodes (673, 705, 708, 678, 652, 661, 694, 662, 698, 793, 666, 667, 669, 670, 671)
- "Blue" community: Consists of 5 nodes (675, 651, 656, 659, 695)
- "Green" community: Consists of 13 nodes (680, 682, 683, 684, 688, 665, 691, 692, 663, 696, 697, 699, 700)
- "Orange" community: Consists of 11 nodes (674, 677, 653, 654, 687, 657, 690, 660, 693, 664, 703)

It is worth noting that the "Red" community is the largest, consisting of 14 nodes, while the "Blue" community is the smallest, consisting of only 5 nodes.

#### Communities In SEC C:



There are 10 different communities in total, each represented by a different color: red, blue, green, orange, purple, pink, brown, grey, and yellow.

Here's a breakdown of the nodes in each community:

- Red: 12 nodes (673, 705, 708, 678, 652, 661, 694, 662, 793, 698, 667, 669, 670, 671)
- Blue: 13 nodes (680, 682, 683, 684, 688, 665, 691, 692, 663, 696, 697, 666, 699, 700)
- Green: 8 nodes (675, 651, 653, 656, 659, 660, 695, 674)
- Orange: 10 nodes (611, 709, 618, 621, 687, 657, 690, 693, 629, 664, 633, 703)
- Purple: 6 nodes (609, 677, 616, 649, 654, 604)
- Pink: 9 nodes (640, 612, 647, 617, 622, 791, 602, 637, 638)
- Brown: 11 nodes (707, 643, 644, 648, 624, 627, 630, 601, 636, 701, 606, 639)
- Grey: 12 nodes (704, 641, 642, 603, 613, 710, 615, 614, 619, 620, 623, 631, 634, 635, 605)
- Yellow: 5 nodes (610, 646, 625, 628, 632)

## Task 5:Checking Graph Connectivity and Identifying Cut Vertices after Removing Nodes

After removing myself and my friends and friends of friends, the remaining nodes in the connected graph are 640, 612, 647, 617, 791, 602, 637, and 638. Furthermore, this graph has no cut vertices and is bi-connected.

This implies that there are no "isolated" students in this subset who are not connected to any other student. Instead, all of the students in the subset are still connected through their friendships, and no single student is crucial to maintaining that connection. Additionally, the fact that this subset is bi-connected means that there are at least two distinct paths between any pair of students in the subset, further strengthening their connections.

Overall, this connected graph with no cut vertices and bi-connected components represents a tightly knit group of students who are all connected to each other through various friendships, and who are all equally important in maintaining that connection.

