Interpolación Polinomial de Puntos: Vandermonde, Lagrange y Baricéntrica

1. Se registra la altura h(t) de un cohete durante su fase de ascenso en 3 tiempos distintos:

Tiempo t (s)	Altitud $h(t)$ (m)
0	0
5	7.5
10	10

Encuentra el polinomio interpolador P(t) usando la **matriz de Vandermonde** para modelar la altitud del cohete. Luego, responde:

- a) ¿Cuál es la altitud estimada a los 6 segundos?
- b) ¿En qué momento se estima que el cohete volverá a tocar el suelo?
- <u>c</u>) ¿Cuál es la velocidad instantánea estimada $\frac{dh}{dt}$ a los 4 segundos?
- 2. En un laboratorio farmacéutico, se estudia la concentración plasmática C(t) (en mg/L) de un nuevo medicamento en pacientes con el tiempo t en horas):

Tiempo t (h)	Concentración $C(t)$ (mg/L)
1	2
3	5
4	4
6	1
7	0

Usa interpolación de Lagrange para encontrar el polinomio P(t) que ajuste los datos. Luego, responde:

- a) ¿Cuál es la concentración esperada a las 5 horas?
- b) ¿En qué momentos se estima que la concentración fue de 3 mg/L?
- c) Si la dosis es efectiva solo para $C(t) \ge 1.5 \text{ mg/L}$, ¿durante cuánto tiempo el fármaco fue efectivo?
- **3.** En una central nuclear, se midió la temperatura T(x) (en °C) a lo largo de una varilla de combustible (x = distancia en metros):

Posición x (m)	Temperatura $T(x)$ (°C)
0.0	100
0.5	180
1.2	210
2.0	150
2.5	90

Aplica interpolación baricéntrica para encontrar P(x). Luego, responde:

- a) ¿Cuál es la temperatura a x = 1.5 m?
- b) Si la varilla se funde a $T \ge 200$ °C, ¿en qué rango de posiciones hubo riesgo?
- c) ¿En qué posición se alcanzó la temperatura máxima?
- d) ¿Por qué la interpolación baricéntrica es más eficiente que Lagrange para este caso? Considera que se pueden añadir más sensores.