Modelización Curso 2024-2025

Ejercicios del Tema 3

Ejercicio 1. Dado un sistema dinámico (J, \mathbb{N}, φ) , donde J es un intervalo de \mathbb{R} , demostrar que existe una única función continua $f: J \to J$ tal que

$$\varphi(n,x) = f^n(x), \qquad x \in J, \ n \in \mathbb{N},$$

siendo f^n la composición de f consigo misma n veces. Probar que la órbita de un estado $x_0 \in J$ es la sucesión definida por

(S)
$$\begin{cases} x_0 \in J, \\ x_{n+1} = f(x_n), & n \ge 0. \end{cases}$$

Solución. Sea $f: J \to \mathbb{R}$ la función definida por $f(x) = \varphi(1, x)$. Se tiene que:

- f es continua, pues φ lo es.
- f(J) = J, pues $\varphi(\mathbb{N} \times J) \subset J$ y por tanto $f(x) = \varphi(1, x) \in J$ para todo $x \in J$.
- $\varphi(n,x) = f^n(x)$ para todo $x \in J$ y todo $n \in \mathbb{N}$. En efecto, para n = 0 es evidente, y si $n \in \mathbb{N}$ es tal que $\varphi(n,x) = f^n(x)$ para todo $x \in J$, entonces

$$\varphi(n+1,x) = \varphi(n,\varphi(1,x)) = f^n(\varphi(1,x)) = f^n(f(x)) = f^{n+1}(x).$$

Es claro que f es la única función verificando estas propiedades, pues si existe $g: J \to J$ continua y tal que $\varphi(n, x) = g^n(x)$ para $x \in J$ y $n \in \mathbb{N}$ cualesquiera, entonces $f(x) = \varphi(1, x) = g(x)$ para todo $x \in J$.

Sea $x_0 \in J$. La órbita de x_0 es $\gamma_{x_0} = \{f^n(x_0) : n \in \mathbb{N}\}$, así que hay que probar que $f^n(x_0) = x_n$ para todo $n \in \mathbb{N}$. Razonando de nuevo por inducción, para n = 0 es evidente, y si $n \in \mathbb{N}$ es tal que $f^n(x_0) = x_n$, entonces

$$f^{n+1}(x_0) = f(f^n(x_0)) = f(x_n) = x_{n+1}.$$

Se concluye que la sucesión dada por (S) coincide con la órbita de x_0 .

Ejercicio 2. Dado un sistema dinámico (J, \mathbb{Z}, φ) , donde J es un intervalo de \mathbb{R} , demostrar que existe una única función continua y biyectiva $f: J \to J$ tal que

$$\varphi(n,x) = f^n(x), \qquad x \in I, \ n \in \mathbb{Z}.$$

Probar que la órbita de un estado $x_0 \in J$ es la doble sucesión definida por

(S)
$$\begin{cases} x_0 \in J, \\ x_{n+1} = f(x_n), & n \in \mathbb{Z}. \end{cases}$$

Solución. Sea $f: J \to \mathbb{R}$ la función definida por $f(x) = \varphi(1, x)$, y sea $g: J \to \mathbb{R}$ la función definida por $g(x) = \varphi(-1, x)$. Para todo $x \in J$,

$$f \circ g(x) = \varphi(1, \varphi(-1, x)) = \varphi(1 - 1, x) = \varphi(0, x) = x,$$

$$g \circ f(x) = \varphi(-1, \varphi(1, x)) = \varphi(-1 + 1, x) = \varphi(0, x) = x.$$

Por tanto, f es biyectiva y $g = f^{-1}$. Razonando como en el ejercicio anterior se prueba que f es continua, que $f(J) \subset J$ y que para todo $x \in J$ y todo $n \in \mathbb{N}$ se tiene que $\varphi(n,x) = f^n(x)$ y $\varphi(-n,x) = g^n(x) = (f^{-1})^n(x) = f^{-n}(x)$. Por tanto,

$$\varphi(n,x) = f^n(x), \qquad x \in J, n \in \mathbb{N}.$$

Lo que queda por probar se razona como en el ejercicio anterior.

Ejercicio 3. Dado un sistema dinámico (S), demostrar que l es un equilibrio si y solo si l es un punto fijo de f, es decir, f(l) = l.

Solución. Dado $x_0 \in J$, la órbita de x_0 es la sucesión $\{x_n\}_{n=0}^{\infty}$ definida en (S). También se sabe que $f^n(x_0) = x_n$ para todo $n \in \mathbb{N}$. Por tanto,

 x_0 es un equilibrio $\iff x_n = x_0$ para todo $n \in \mathbb{N} \iff f^n(x_0) = x_0$ para todo $n \in \mathbb{N}$.

De esto se deduce que si l es un equilibrio, entonces f(l) = l, y si f(l) = l, entonces $f^n(l) = l$ para todo $n \in \mathbb{N}$ y por tanto l es un equilibrio.

Ejercicio 4. Dado un sistema dinámico (S), demostrar que si la órbita de x_0 es p-periódica, entonces x_0 es un punto fijo de f^p , es decir, $f^p(x_0) = x_0$. ¿Es cierto el recíproco? ¿Qué se puede decir en general de un punto fijo de f^p ?

Solución. Supóngase que la órbita de x_0 es p-periódica, es decir, que $x_{n+p}=x_n$ para todo $n \in \mathbb{N}$. En particular, $x_p=x_0$, y como $x_p=f^p(x_0)$, se tiene que $f^p(x_0)=x_0$. Recíprocamente, si $f^p(x_0)=x_0$, entonces para todo $n \in \mathbb{N}$ se tiene que

$$x_{n+p} = f^{n+p}(x_0) = f^n(f^p(x_0)) = f^n(x_0) = x_n,$$

así que la órbita de x_0 es p-periódica. Se concluye x_0 es un punto fijo de f^p si y solo si la órbita de x_0 es p-periódica.

Ejercicio 5. *El modelo discreto* (*S*) *con I* = $[0, \infty)$ *y*

$$f(x) = \frac{\alpha x}{1 + \beta x'}$$

donde α y β son números positivos, aparece en modelos de genes y redes neuronales. Determinar sus equilibrios y analizar su estabilidad en función del valor de los parámetros α y β , en los casos hiperbólicos.

Solución. Se sabe que los equilibrios del sistema dinámico son los puntos fijos de *f* :

$$f(x) = x \iff \alpha x = x(1+\beta x) \iff x \in \left\{0, \frac{\alpha-1}{\beta}\right\}.$$

Por otra parte,

$$f'(x) = \frac{\alpha(1+\beta x) - \alpha\beta x}{(1+\beta x)^2} = \frac{\alpha}{(1+\beta x)^2}.$$

Como $\frac{\alpha-1}{\beta} \ge 0$ si y solo si $\alpha \ge 1$, se distinguen los siguientes casos:

- Si $\alpha \ge 1$, los equilibrios del sistema son $l_1 = 0$ y $l_2 = \frac{\alpha 1}{\beta}$. Se tiene que $|f'(l_1)| = \alpha$ y $|f'(l_2)| = |\frac{\alpha}{\alpha^2}| = \frac{1}{\alpha}$. Por tanto, si $\alpha = 1$, no hay equilibrios hiperbólicos, y si $\alpha > 1$, l_1 es un equilibrio hiperbólico, inestable y repulsor, mientras que l_2 es un equilibrio hiperbólico y asintóticamente estable.
- Si $0 < \alpha < 1$, el único equilibrio del sistema es l = 0. Como $|f'(l)| = \alpha < 1$, se trata de un equilibrio hiperbólico y asintóticamente estable.

Ejercicio 6. El sistema dinámico discreto (S) con I = [0, 1] y

$$f(x) = \begin{cases} 6x - 12x^2 & \text{si } 0 \le x \le 0'5, \\ 12x^2 - 18x + 7 & \text{en otro caso,} \end{cases}$$

ha sido utilizado para simular un oscilador biológico periódicamente estimulado. Estudiar los equilibrios y su estabilidad. ¿Hay alguna órbita 2-periódica?

Solución. Los equilibrios del sistema dinámico son los puntos fijos de f. Si $0 \le x \le 0'5$,

$$f(x) = x \iff 6x - 12x^2 = x \iff 5x = 12x^2 \iff x \in \left\{0, \frac{5}{12}\right\},$$

mientras que si $0'5 < x \le 1$,

$$f(x) = x \iff 12x^2 - 19x + 7 = 0 \iff x = \frac{19 \pm \sqrt{361 - 336}}{24} = \frac{19 \pm 5}{24} \iff x \in x \in \left\{\frac{7}{12}, 1\right\}.$$

Por tanto, los equilibrios de f son $l_1=0$, $l_2=\frac{5}{12}$, $l_3=\frac{7}{12}$ y $l_4=1$. Por otra parte, f' es derivable en $[0,0'5)\cup(0'5,1]$ y

$$f'(x) = \begin{cases} 6 - 24x & \text{si } 0 \le x < 0'5, \\ 24x - 18 & \text{si } 0'5 < x \le 1. \end{cases}$$

Se observa que f también es derivable en 0'5 y f'(0'5) = -6. De hecho, f' es de clase 1, y como $|f'(l_1)| = 6$, $|f'(l_2)| = 4$, $|f'(l_3)| = 4$ y $|f'(l_4)| = 6$, se tiene que todos los equilibrios de f son hiperbólicos, inestables y repulsores. Para estudiar si hay órbitas 2-periódicas, se halla el número de puntos fijos de f y f^2 .

Como f tiene 4 puntos fijos y f^2 tiene 12 puntos fijos, se concluye que hay $\frac{12-4}{2}=4$ órbitas 2-periódicas.

Ejercicio 7. *Se considera el sistema dinámico discreto* (S) *en el que* I = [0, 1] y

$$f(x) = \begin{cases} \frac{3}{2}x & \text{si } 0 \le x < \frac{1}{2}, \\ \frac{3}{2}(1-x) & \text{si } \frac{1}{2} \le x \le 1. \end{cases}$$

Dibujar las gráficas de f, f^2 y f^3 . Deducir qué numero de órbitas estacionarias y periódicas de periodo 2 y 3 hay, así como su estabilidad.

Solución. Las órbitas estacionarias son las formadas por puntos fijos de f. Si $0 \le x < \frac{1}{2}$, se tiene

$$f(x) = x \iff \frac{3}{2}x = x \iff x = 0,$$

mientras que si $\frac{1}{2} \le x \le 1$, se cumple

$$f(x) = x \iff \frac{3}{2}(1-x) = x \iff \frac{5}{2}x = \frac{3}{2} \iff x = \frac{3}{5} = 0'6.$$

Por tanto, las órbitas estacionarias del sistema son $\{l_1\}$ y $\{l_2\}$, donde $l_1=0$ y $l_2=0$ 6. Además, f es clase 1 en $[0,\frac{1}{2}) \cup (\frac{1}{2},1]$ y

$$f'(x) = \begin{cases} \frac{3}{2} & \text{si } 0 \le x < \frac{1}{2}, \\ -\frac{3}{2} & \text{si } \frac{1}{2} < x \le 1. \end{cases}$$

Como $|f'(l_1)| = |f'(l_2)| = \frac{3}{2} > 1$, las dos órbitas estacionarias del sistema son inestables.

Por otra parte, para estudiar si hay órbitas 2-periódicas y 3-periódicas, se halla el número de puntos fijos de f, f^2 y f^3 .

Se observa que f tiene 2 puntos fijos, f^2 tiene 4 puntos fijos y f^3 tiene 2 puntos fijos. Utilizando la fórmula

$$\mathbf{n}^{\circ}$$
 de órbitas p -periódicas = $\frac{1}{p} \Big(\mathbf{n}^{\circ}$ de ptos. fijos de $f^p - \sum_{j|p, j \neq p} j \cdot \mathbf{n}^{\circ}$ de órbitas j -periódicas j ,

se obtiene que el número de órbitas 2-periódicas es $\frac{1}{2}(4-2)=1$, y el número de órbitas 3-periódicas es $\frac{1}{3}(2-2)=0$.

La única órbita 2-periódica es $\{p_1, p_2\}$, siendo p_1 y p_2 puntos fijos de f^2 que no son puntos fijos de f. Se tiene que

$$f^{2}(x) = \begin{cases} \frac{9}{4}x & \text{si } 0 \le x < \frac{1}{3}, \\ \frac{3}{2}(1 - \frac{3}{2}x) & \text{si } \frac{1}{3} \le x < \frac{1}{2}, \\ \frac{3}{2}(1 - \frac{3}{2}(1 - x)) & \text{si } \frac{1}{2} \le x < \frac{2}{3}, \\ \frac{9}{4}(1 - x) & \text{si } \frac{2}{3} \le x \le 1. \end{cases}$$

En la gráfica se observa que $p_1 \in (\frac{1}{3}, \frac{1}{2})$ y $p_2 \in (\frac{2}{3}, 1)$. Como

$$\frac{3}{2}\left(1 - \frac{3}{2}x\right) = x \iff x + \frac{9}{4}x = \frac{3}{2} \iff x = \frac{3}{2} \cdot \frac{4}{13} = \frac{6}{13},$$

entonces $p_1 = \frac{6}{13}$. Y como

$$\frac{9}{4}(1-x) = x \iff x + \frac{9}{4}x = \frac{9}{4} \iff x = \frac{9}{4} \cdot \frac{4}{13} = \frac{9}{13}$$

entonces $p_2 = \frac{9}{13}$. Por otra parte,

$$(f^{2})'(x) = \begin{cases} \frac{9}{4} & \text{si } 0 \le x < \frac{1}{3}, \\ -\frac{9}{4} & \text{si } \frac{1}{3} < x < \frac{1}{2}, \\ \frac{9}{4} & \text{si } \frac{1}{2} < x < \frac{2}{3}, \\ -\frac{9}{4} & \text{si } \frac{2}{3} < x \le 1. \end{cases}$$

Como $|(f^2)'(p_1)| = |(f^2)'(p_2)| = \frac{9}{4} > 1$, la órbita $\{p_1, p_2\}$ es inestable.

Ejercicio 8. *Se considera el sistema dinámico discreto (S).*

- (a) Si la función f es continua, demostrar que entre los dos estados de una órbita 2-periódica hay necesariamente un equilibrio l.
- (b) Mostrar, con un ejemplo, que este resultado no es cierto si f no es continua.

Solución.

- (a) Sea $\{p_1, p_2\}$ una órbita 2-periódica. Supóngase, sin pérdida de generalidad, que $p_1 < p_2$. Sea $g: [p_1, p_2] \to \mathbb{R}$ la función dada por g(x) = f(x) x. Como f es continua, g también lo es. Además, $g(p_1) = f(p_1) p_1 = p_2 p_1$ y $g(p_2) = f(p_2) p_2 = p_1 p_2$, luego $g(p_1)$ y $g(p_2)$ tienen distinto signo. Por el teorema de Bolzano, existe $l \in (p_1, p_2)$ tal que g(l) = 0, es decir, f(l) = l.
- (b) Considérese la función f: [−1,1] $\rightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} 1 & \text{si } 0 \le x < \frac{1}{2}, \\ 0 & \text{si } \frac{1}{2} \le x \le 1. \end{cases}$$

Se tiene que

$$f^{2}(x) = \begin{cases} 1 & \text{si } 0 \le f(x) < \frac{1}{2}, \\ 0 & \text{si } \frac{1}{2} \le f(x) \le 1. \end{cases} = \begin{cases} 0 & \text{si } 0 \le x < \frac{1}{2}, \\ 1 & \text{si } \frac{1}{2} \le x \le 1. \end{cases}$$

Como f no tiene puntos fijos y f^2 tiene dos puntos fijos, 0 y 1, se concluye que solo hay una órbita 2-periódica y entre sus estados no hay ningún punto fijo de f.

Ejercicio 9. Dado c = -1 + i, determinar las órbitas estacionarias y 2-periódicas del sistema dinámico complejo

$$z_{n+1} = z_n^2 + c.$$

Solución. Sea $f: \mathbb{C} \to \mathbb{C}$ la función dada por $f(z) = z^2 + c$. Se trata de hallar los puntos fijos de f y f^2 . Por un lado,

$$f(z) = z \iff z^2 + c = z \iff z^2 - z + c = 0 \iff z = \frac{1 \pm \sqrt{1 - 4c}}{2} = \frac{1 \pm \sqrt{5 - 4i}}{2}$$

Los puntos fijos de f son $l_1=\frac{1+\sqrt{5-4i}}{2}$ y $l_2=\frac{1-\sqrt{5-4i}}{2}$, así que las órbitas estacionarias son $\{l_1\}$ y $\{l_2\}$. Para hallar las órbitas 2-periódicas, se estudian los puntos fijos de f^2 . Se tiene que

$$f^{2}(z) = z \iff (z^{2} + c)^{2} + c = z \iff z^{4} + 2cz^{2} - z + c^{2} + c = 0$$
$$\iff z^{4} + (-2 + 2i)z^{2} - z - 2i - 1 + i = 0 \iff z^{4} + (-2 + 2i)z^{2} - z - (1 + i) = 0.$$

Esta ecuación tiene cuatro soluciones distintas, así que f^2 tiene 4 puntos fijos y por tanto el número de órbitas 2-periódicas es $\frac{1}{2}(4-2)=1$. Esta órbita está formada por puntos fijos de f^2 que no son puntos fijos de f, lo que permite afirmar que los puntos fijos de f son raíces del polinomio $z^4 + (-2+2i)z^2 - z - (1+i) = 0$. En consecuencia, este polinomio es divisible entre $(z-l_1)(z-l_2)$. Una sarta de cuentas que no merece la pena reproducir demuestra que

$$z^4 + (-2+2i)z^2 - z - (1+i) = (z^2 + z + i)(z - l_1)(z - l_2)$$

Como

$$z^2 + z + i = 0 \iff \frac{-1 \pm \sqrt{1 - 4i}}{2},$$

se concluye que la única órbita 2-periódica es $\{p_1,p_2\}$, donde $p_1=\frac{-1+\sqrt{1-4i}}{2}$ y $p_1=\frac{-1-\sqrt{1-4i}}{2}$.

Ejercicio 10. *Se considera el sistema dinámico (S) con I* = \mathbb{R} *y*

$$f_{\mu}(x) = x^2 + \mu.$$

- (a) Estudiar las órbitas estacionarias y 2-periódicas, así como su estabilidad, en los casos $\mu = 1$, $\mu = \frac{1}{8}$, $\mu = -\frac{1}{2}$ y $\mu = -1$. Deducir, en cada uno de los casos, la mayor información posible sobre el comportamiento asintótico de las órbitas.
- (b) Discutir qué tipo de bifurcación ocurre cuando μ pasa por los valores $-\frac{3}{4}$ y $\frac{1}{4}$.
- (c) Con ayuda del diagrama de órbitas, estudiar qué otros tipos de bifurcaciones aparecen cuando varía el parámetro.

Solución.

(a) Se hallan los puntos fijos de f y f^2 . Se tiene

$$f_{\mu}(x) = x \iff x^2 - x + \mu = 0 \iff x = \frac{1 \pm \sqrt{1 - 4\mu}}{2},$$

mientras que

$$f_{\mu}^{2}(x) = x \iff (x^{2} + \mu)^{2} + \mu = x \iff x^{4} + 2\mu x^{2} - x + \mu^{2} + \mu = 0.$$

Por otro lado, $|f'_{\mu}(x)| = 2|x|$ para todo $x \in \mathbb{R}$.

- Para $\mu=1$, f_{μ} no tiene puntos fijos y por tanto no hay órbitas estacionarias. Además, puede comprobarse que el polinomio x^4+2x^2-x+2 no tiene raíces reales, así que f_{μ}^2 no tiene puntos fijos y por tanto tampoco hay órbitas 2-periódicas.
- Para $\mu = \frac{1}{8}$, los puntos fijos de f_{μ} son

$$l_1 = \frac{1 + \sqrt{\frac{1}{2}}}{2} = \frac{\sqrt{2} + 1}{2\sqrt{2}} \approx 0'85355339059, \qquad l_2 = \frac{1 - \sqrt{\frac{1}{2}}}{2} = \frac{\sqrt{2} - 1}{2\sqrt{2}} \approx 0'1464466094.$$

Por tanto, las órbitas estacionarias son $\{l_1\}$ y $\{l_2\}$. Como $|f'_{\mu}(l_1)| = 2l_1 > 1$ y $|f'_{\mu}(l_2)| = 2l_2 < 1$, la primera órbita es inestable y repulsora, mientras que la segunda es asintóticamente estable. Por otra parte, se prueba que las raíces reales del polinomio $x^4 + \frac{1}{4}x^2 - x + \frac{9}{64}$ son l_1 y l_2 , así que no hay órbitas 2-periódicas.

• Para $\mu = -\frac{1}{2}$, los puntos fijos de f_{μ} son

$$l_1 = \frac{1 + \sqrt{3}}{2} \approx 1'36602540378, \qquad l_2 = \frac{1 - \sqrt{3}}{2} \approx -0'36602540378$$

En consecuencia, las órbitas estacionarias son $\{l_1\}$ y $\{l_2\}$. Como $|f'_{\mu}(l_1)|=2l_1>1$ y $|f'_{\mu}(l_2)|=-2l_2<1$, la primera órbita es asintóticamente estable, mientras que la segunda es inestable y repulsora. Por otra parte, se prueba que las raíces reales del polinomio $x^4-x^2-x-\frac{1}{4}$ son l_1 y l_2 , así que no hay órbitas 2-periódicas.

■ Para $\mu = -1$, los puntos fijos de f_{μ} son

$$l_1 = \frac{1+\sqrt{5}}{2} \approx 1'61803398875, \qquad l_2 = \frac{1-\sqrt{5}}{2} \approx -0'61803398875$$

En consecuencia, las órbitas estacionarias son $\{l_1\}$ y $\{l_2\}$. Como $|f'_{\mu}(l_1)| = 2l_1 > 1$ y $|f'_{\mu}(l_2)| = -2l_2 > 1$, ambas órbitas son inestables y repulsoras. Por otra parte, se prueba que las raíces reales del polinomio $x^4 - 2x^2 - x$ son l_1 , l_2 , $p_1 = 0$ y $p_2 = -1$, así que la única órbita 2-periódica es $\{p_1, p_2\}$. Se tiene que $|(f^2_{\mu})'(x)| = 4|x|(x^2 + \mu)$, luego $|(f^2_{\mu})'(p_1)| = 0 < 1$ y por tanto p_1 es un equilibrio asintóticamente estable para f^2 , obteniéndose que la órbita $\{p_1, p_2\}$ es asintóticamente estable.

(b) Se observa que para $\mu > \frac{1}{4}$ no hay puntos de equilibrio, pues $1 - 4\mu < 0$ y por tanto la ecuación $f_{\mu}(x) = x$ no tiene soluciones reales. Para $-\frac{3}{4} < \mu \leq \frac{1}{4}$, hay un equilibrio estable y no hay órbitas 2-periódicas, mientras que $\mu < -\frac{3}{4}$, aparece una órbita 2-periódica asintóticamente estable que acaba siendo inestable.

(c) En el diagrama de bifurcación también se observa que alrededor de $\mu=1'25$, la órbita 2-periódica se vuelve inestable y aparece una órbita 4-periódica asintóticamente estable, mientras que alrededor de $\mu=1'40$, la órbita 4-periódica se torna inestable. Para $\mu<-1'40$, aparecen órbitas de mayor periodo y el sistema entra en un régimen caótico.

7

Ejercicio 11. *Se considera el sistema dinámico* (S) *con* $I = \mathbb{R}$ y

$$f_{\mu}(x) = x^3 - \mu x.$$

- (a) Estudiar las órbitas estacionarias y 2-periódicas, así como su estabilidad, para los valores $\mu=-2$, $\mu=0$, $\mu=1$ y $\mu=\frac{3}{2}$. Deducir, en cada uno de los casos, la mayor información posible sobre el comportamiento asintótico de las órbitas.
- (b) Discutir qué tipo de bifurcación ocurre cuando μ pasa por los valores -1 y 1.
- (c) Con ayuda del diagrama de órbitas, estudiar qué otros tipos de bifurcaciones aparecen cuando varía el parámetro.

Solución.

(a) Se hallan los puntos fijos de f y f^2 . Se tiene que

$$f_{\mu}(x) = x \iff x^3 - (\mu + 1)x = 0 \iff x(x^2 - (\mu + 1)) = 0.$$

Por tanto, $l_1=0$ siempre es un punto fijo de f_{μ} , y si $\mu \geq -1$, entonces $l_2=\sqrt{\mu+1}$ y $l_3=-\sqrt{\mu+1}$ también son puntos fijos de f_{μ} Además,

$$f_{\mu}^{2}(x) = x \iff (x^{3} - \mu x)^{3} - \mu(x^{3} - \mu x) = x \iff x^{3}(x^{2} - \mu)^{3} - \mu x^{3} + (\mu^{2} - 1)x = 0$$
$$\iff x = 0 \text{ 6 } x^{2}(x^{2} - \mu)^{3} - \mu x^{2} + \mu^{2} - 1 = 0.$$

Por otro lado, $|f'_{\mu}(x)| = |3x^2 - \mu|$ para todo $x \in \mathbb{R}$.

- Para $\mu = -2$, $l_1 = 0$ es el único punto fijo de f_{μ} , y es inestable y repulsor porque $|f'_{\mu}(l_1)| = |\mu| = 2 > 1$. Además, puede comprobarse que el polinomio $x^2(x^2+2)^3+2x^2+3$ no tiene raíces reales, así que f^2_{μ} no tiene puntos fijos y por tanto no hay órbitas 2-periódicas.
- Para $\mu = 0$, los puntos fijos de f_{μ} son

$$l_1 = 0,$$
 $l_2 = \sqrt{\mu + 1} = 1,$ $l_3 = -\sqrt{\mu + 1} = -1.$

Por tanto, las órbitas estacionarias son $\{l_1\}$, $\{l_2\}$ y $\{l_3\}$. Como $|f'_{\mu}(l_1)| = 0 < 1$, $|f'_{\mu}(l_2)| = 3 > 1$ y $|f'_{\mu}(l_3)| = 3 > 1$, la primera órbita es asintóticamente estable, mientras que las dos últimas son inestables y repulsoras. Por otra parte, se prueba que las raíces reales del polinomio $x^8 - 1$ son l_2 y l_3 , que también son puntos fijos de f. Por tanto, tampoco hay órbitas 2-periódicas.

• Para $\mu = 1$, los puntos fijos de f_{μ} son

$$l_1 = 0,$$
 $l_2 = \sqrt{\mu + 1} = \sqrt{2},$ $l_3 = -\sqrt{\mu + 1} = -\sqrt{2}.$

En consecuencia, las órbitas estacionarias son $\{l_1\}$, $\{l_2\}$ y $\{l_3\}$. Como $|f'_{\mu}(l_1)| = 0 < 1$, $|f'_{\mu}(l_2)| = 5 > 1$ y $|f'_{\mu}(l_3)| = 5 > 1$, la primera órbita es asintóticamente estable, mientras que las dos últimas son inestables y repulsoras. Por otra parte, se prueba que las raíces reales del polinomio $x^2(x^2-1)^3-x^2$ son l_1 , l_2 y l_3 , que también son puntos fijos de f. Por tanto, tampoco hay órbitas 2-periódicas.

• Para $\mu = \frac{3}{2}$, los puntos fijos de f_{μ} son

$$l_1 = 0$$
, $l_2 = \sqrt{\mu + 1} = \frac{\sqrt{5}}{\sqrt{2}} = \frac{\sqrt{10}}{2}$, $l_3 = -\sqrt{\mu + 1} = -\frac{\sqrt{10}}{2}$.

En consecuencia, las órbitas estacionarias son $\{l_1\}$, $\{l_2\}$ y $\{l_3\}$. Como $|f'_{\mu}(l_1)|=0<1$, $|f'_{\mu}(l_2)|=|3\frac{10}{4}-\frac{3}{2}|=6>1$ y $|f'_{\mu}(l_3)|=6>1$, la primera órbita es asintóticamente estable, mientras que las dos últimas son inestables y repulsoras. Por otra parte, se prueba que las raíces reales del polinomio $x^2(x^2-\frac{3}{2})^3-\frac{3}{2}x^2+\frac{5}{4}$ son l_2 , l_3 , $p_1=\frac{\sqrt{2}}{2}$ y $p_2=-\frac{\sqrt{2}}{2}$. Por tanto, la única órbita 2-periódica es $\{p_1,p_2\}$. Se tiene que

$$|(f_{\mu}^2)'(x)| = 3(3x^2 - \mu)(x^3 - \mu x)^2 - \mu(3x^2 - \mu) = (3x^2 - \mu)(3(x^3 - \mu x)^2 - \mu).$$

Como $3p_1^2 - \frac{3}{2} = 0$, entonces $|(f_\mu^2)'(p_1)| = 0 < 1$ y se concluye que la órbita $\{p_1, p_2\}$ es asintóticamente estable.

(b) Se observa que para $\mu < -1$ no hay puntos de equilibrio, pues $\mu + 1 < 0$ y por tanto la ecuación $f_{\mu}(x) = x$ no tiene soluciones reales. Para $-1 < \mu < 1$, no hay órbitas periódicas de periodo mayor que 1, mientras que para $\mu > 1$, aparece una órbita 2-periódica que se acaba volviendo inestable.

(c) En el diagrama de bifurcación también se observa que para $-0.75 \le \mu \le 1$, hay un equilibrio estable, mientras que alrededor de $\mu = 2.3$, la órbita 2-periódica se torna inestable. Para $\mu > 2.3$, aparecen órbitas de mayor periodo y el sistema entra en un régimen caótico.

Ejercicio 12. *Se considera el sistema dinámico* (S) *con* $I = \mathbb{R}$ y

$$f_{\mu}(x) = \mu \operatorname{sen}(x).$$

- (a) Estudiar las órbitas estacionarias y 2-periódicas, así como su estabilidad, para los valores $\mu = \frac{1}{2}$, $\mu = \frac{3}{2}$ y $\mu = \frac{5}{2}$. Deducir, en cada uno de los casos, la mayor información posible sobre el comportamiento asintótico de las órbitas.
- (b) Discutir qué tipo de bifurcación ocurre cuando μ pasa por los valores $\mu = 1$ y $\mu \approx 2'26$.
- (c) Con ayuda del diagrama de órbitas, estudiar qué otros tipos de bifurcaciones aparecen cuando varía el parámetro.

Solución. Extremadamente similar a los ejercicios anteriores.

Ejercicio 13. *Se considera el sistema dinámico (S) con I* = \mathbb{R} *y*

$$f_{\mu}(x) = \mu e^{x}$$
.

- (a) Estudiar las órbitas estacionarias y 2-periódicas, así como su estabilidad, para los valores $\mu = -3$, $\mu = -e^{-1}$, $\mu = e^{-1}$ y $\mu = 1$. Deducir, en cada uno de los casos, la mayor información posible sobre el comportamiento asintótico de las órbitas.
- (b) Discutir qué tipo de bifurcación ocurre cuando μ pasa por los valores -e, 0 y e^{-1} .
- (c) Con ayuda del diagrama de órbitas, estudiar qué otros tipos de bifurcaciones aparecen cuando varía el parámetro.

Solución. Extremadamente similar a los ejercicios anteriores.

Ejercicio 14. *Se considera el sistema dinámico* (S) *con* $I = \mathbb{R}$ y

$$f_{\mu}(x) = x + x^2 + \mu.$$

- (a) Estudiar las órbitas estacionarias y 2-periódicas, así como su estabilidad, para los valores $\mu = -1'2$, $\mu = -0'5$ y $\mu = 0'5$. Deducir, en cada uno de los casos, la mayor información posible sobre el comportamiento asintótico de las órbitas.
- (b) Discutir qué tipo de bifurcación ocurre cuando μ pasa por los valores -1 y 0.
- (c) Con ayuda del diagrama de órbitas, estudiar qué otros tipos de bifurcaciones aparecen cuando varía el parámetro.

Solución. Extremadamente similar a los ejercicios anteriores.

Ejercicio 15. *Se considera el sistema dinámico* (S) *con* $I = \mathbb{R}$ y

$$f_{\mu}(x) = x + \mu x^2.$$

Estudiar sus equilibrios y sus dominios de atracción y repulsión.

Solución. Se tiene que

$$f_{\mu}(x) = x \iff \mu x^2 = 0 \iff x = 0 \circ \mu = 0.$$

Se barajan los siguientes casos:

(a) Si μ = 0, todos los números reales son equilibrios del sistema dinámico. Sea $l \in \mathbb{R}$. Se trata de estudiar el dominio de atracción y repulsión de l. Para todo $x \in \mathbb{R}$, usando que x es punto fijo de f, se tiene

$$\lim_{n\to\infty}f^n(x)=l\iff\lim_{n\to\infty}x=l\iff\iff x=l.$$

De forma análoga,

$$\lim_{n \to -\infty} f^n(x) = l \iff x = l.$$

Por tanto, $S_l = \{l\}$ y $U_l = \{l\}$.

- (b) Si $\mu \neq 0$, el único equilibrio del sistema dinámico es l = 0. Como $|f'_{\mu}(l)| = |1 + 2\mu l| = 1$, este equilibrio es no hiperbólico, así que se va a recurrir a razonamientos geométricos para determinar los dominios de atracción y de repulsión de l.
 - Supóngase que $\mu > 0$. Entonces

$$f'_{\mu}(x) > 0 \iff 2\mu x > -1 \iff x > -\frac{1}{2\mu}$$

mientras que

$$f'_{\mu}(x) < 0 \iff 2\mu x < -1 \iff x < -\frac{1}{2\mu}.$$

Así, f_{μ} es estricamente creciente en $(-\frac{1}{2\mu}, \infty)$ y estrictamente decreciente en $(-\infty, -\frac{1}{2\mu})$. Los puntos de corte de la gráfica de f con los ejes son (0,0) y $(-\frac{1}{\mu},0)$. Con esta información se puede esbozar la gráfica de f.

Dado $x_0 \in \mathbb{R}$, se observa que la sucesión definida por $x_{n+1} = f(x_n)$ se aleja de 0 cuando $x_0 > 0$ y $x_0 < -\frac{1}{\mu}$, y se acerca a 0 cuando $-\frac{1}{\mu} \le x_0 \le 0$. Por tanto, $S_0 = [-\frac{1}{\mu}, 0]$ y $U_0 = (-\infty, -\frac{1}{\mu}) \cup [0, \infty)$.

• Supóngase que μ < 0. Entonces

$$f_{\mu}'(x)>0\iff 2\mu x>-1\iff x<-\frac{1}{2\mu},$$

mientras que

$$f_{\mu}'(x)<0\iff 2\mu x<-1\iff x>-\frac{1}{2\mu}.$$

Así, f_{μ} es estricamente decreciente en $(-\frac{1}{2\mu}, \infty)$ y estrictamente creciente en $(-\infty, -\frac{1}{2\mu})$. Igual que antes, los puntos de corte de la gráfica de f con los ejes son (0,0) y $(-\frac{1}{\mu},0)$. Con esta información se puede esbozar la gráfica de f.

Dado $x_0 \in \mathbb{R}$, se observa que la sucesión definida por $x_{n+1} = f(x_n)$ se aleja de 0 cuando $x_0 < 0$ y $x_0 > -\frac{1}{\mu}$, y se acerca a 0 cuando $0 \le x_0 \le -\frac{1}{\mu}$. Por tanto, $S_0 = [0, -\frac{1}{\mu}]$ y $U_0 = (-\infty, 0] \cup (-\frac{1}{\mu}, \infty)$.

Ejercicio 16. La población de insectos en un manglar sigue el modelo (S) con $I = [0, \infty)$ y

$$f(x) = \begin{cases} 0'01x^2 & \text{si } 0 \le x \le K, \\ 0'01K^2e^{-r(x-K)} & \text{en otro caso,} \end{cases}$$

siendo $K = 1000 \ y \ r = 1'75 \cdot 10^{-4}$.

(a) Probar que, con un cambio de variables adecuado, el modelo puede escribirse en la forma adimensional

$$u_{n+1} = g(u_n), \qquad n = 0, 1, 2, \dots,$$

siendo

$$g(u) = \begin{cases} \alpha u^2 & \text{si } 0 \le u \le 1, \\ \alpha e^{-\beta(u-1)} & \text{en otro caso,} \end{cases}$$

con α y β dos constantes positivas a determinar. En los siguientes apartados se considerará la forma adimensional del modelo.

- (b) Estudiar los equilibrios y su estabilidad.
- (c) Estudiar el comportamiento asintótico del número de individuos en función del número inicial. Solución. En primer lugar, se observa que f es continua en I y que $f(I) \subset I$, así que el sistema dinámico considerado tiene sentido.
 - (a) Nótese que x y K tienen las mismas unidades porque en la definición de f aparece x K. En consecuencia, el cambio de variables

$$u = \frac{x}{K}$$

es adimensional. Si n = 0, 1, 2, ..., se tiene que

$$u_{n+1} = \frac{x_{n+1}}{K} = \frac{f(x_n)}{K} = \begin{cases} \frac{0'01x_n^2}{K} & \text{si } 0 \le x \le K, \\ 0'01Ke^{-r(x_n - K)} & \text{en otro caso.} \end{cases}$$

$$= \begin{cases} \frac{0'01u_n^2K^2}{K} & \text{si } 0 \le uK \le K, \\ 0'01Ke^{-r(u_nK - K)} & \text{en otro caso.} \end{cases}$$

$$= \begin{cases} 0'01Ku_n^2 & \text{si } 0 \le u \le 1, \\ 0'01Ke^{-rK(u_n - 1)} & \text{en otro caso.} \end{cases}$$

Sea $\alpha = 0'01K = 10$, sea $\beta = rK = 0'175$ y sea $g: I \rightarrow I$ la función dada por

$$g(u) = \begin{cases} \alpha u^2 & \text{si } 0 \le u \le 1, \\ \alpha e^{-\beta(u-1)} & \text{en otro caso.} \end{cases} = \begin{cases} 10u^2 & \text{si } 0 \le u \le 1, \\ 10e^{-0'175(u-1)} & \text{en otro caso.} \end{cases}$$

Los razonamientos anteriores prueban que el modelo se puede escribir como

$$u_{n+1} = g(u_n), \qquad n = 0, 1, 2, \dots$$

(b) Si $0 \le u \le 1$, se tiene

$$g(u) = u \iff \alpha u^2 = u \iff u = 0 \text{ ó } u = \frac{1}{\alpha} = 0'1,$$

mientras que si u > 1,

$$g(u) = u \iff 10e^{-0.175(u-1)} = u.$$

Puede probarse que esta ecuación tiene una única solución, $u \approx 4'98174$. Por otro lado,

$$g'(u) = \begin{cases} 20u & \text{si } 0 \le u < 1, \\ -1'75e^{-0'175(u-1)} & \text{si } u > 1. \end{cases}$$

Los equilibrios del sistema son $l_1=0$, $l_2=0'1$ y $l_3\approx 4'98174$. Se tiene que $|g'(l_1)|=0<1$, $|g'(l_2)|=20\cdot 0'1=2>1$ y $|g'(l_3)|=1'75e^{-0'175(l_3-1)}|=1'75\frac{l_3}{10}=0'175l_3\approx 0'8718045<1$. Por tanto, l_1 y l_3 son asintóticamente estables, meintras que l_2 es inestable y repulsor.

(c) Sea $u_0 \in [0, \infty)$ el número inicial de individuos. Se trata de estudiar geométricamente el comportamiento de la sucesión definida por $u_{n+1} = g(u_n)$, n = 0, 1, 2, ...

Se observa que:

- Si $0 \le u_0 < 0'1$, entonces $\lim_{n \to \infty} u_n = 0$.
- Si $u_0 = 0'1$, entonces $\lim_{n \to \infty} u_n = 0'1$.
- Si $0'1 < u \le l_3$, entonces $\lim_{n\to\infty} u_n = l_3$.
- Si $u > l_3$, entonces $\lim_{n \to \infty} u_n = l_3$.

Ejercicio 17. La población de una especie sigue el modelo

$$\begin{cases} x_0 \in [0, \infty), \\ x_{n+1} = ax_n e^{-x_n}, & n \ge 0, \end{cases}$$

donde a es un número real mayor que 0.

- (a) Determinar los equilibrios y estudiar su estabilidad. ¿Para qué valores de a se extingue la población, sea cual sea la condición inicial?
- (b) Estudiar la existencia de órbitas 2-periódicas para a = 4 y a = 10. En caso de haber alguna, determinar su tipo de estabilidad. ¿Para qué valor de a se produce la primera bifurcación por duplicación del periodo?
- (c) Con ayuda de un diagrama de órbitas, estudiar qué otras bifurcaciones se producen cuando a aumenta.
- (d) Comentar cuál es la evolución esperada de la especie en función del valor de a.

Solución. Sea $f:[0,\infty)\to\mathbb{R}$ la función dada por $f(x)=axe^{-x}$. Es claro que f es continua y que $f([0,\infty))\subset[0,\infty)$, así que el sistema dinámico considerado tiene sentido.

(a) Se tiene que

$$f(x) = x \iff axe^{-x} = x \iff x = 0 \text{ ó } x = \log(a).$$

Por otro lado, $f'(x) = ae^{-x} - axe^{-x} = ae^{-x}(1-x)$ para todo $x \ge 0$. Se distinguen dos casos:

- Si 0 < a < 1, entonces $\log(a) < 0$ y por tanto el único equilibrio es l = 0. Como |f'(l)| = a < 1, dicho equilibrio es asintóticamente estable.
- Si $a \ge 1$, entonces $\log(a) \ge 0$ y por tanto los equilibrios son $l_1 = 0$ y $l_2 = \log(a)$. Además, $|f'(l_1)| = a$ y $|f'(l_2)| = |1 - \log(a)|$. Se distinguen otros cuantos casos:
 - Si a=1, entonces $|f'(l_1)|=1$ y $|f'(l_2)|=0<1$, luego l_1 es un equilibrio no hiperbólico y l_2 es un equilibrio asintóticamente estable. Para estudiar la estabilidad de l_1 , se observa que $f'(x)=ae^{-x}(1-x)>0$ para todo $x\in(l_1,1)$, luego f es estrictamente creciente en $(l_1,1)$. Como además $f(x)=xe^{-x}< x$ para todo $x\in(l_1,1)$, entonces l_1 es un equilibrio asintóticamente estable.
 - Si $1 < a \le e$, entonces $0 < \log(a) \le 1$ y por tanto se tiene $|f'(l_1)| = a > 1$ y $|f'(l_2)| = |1 \log(a)| = 1 \log(a) < 1$. Así, l_1 es un equilibrio inestable y repulsor y l_2 es un equilibrio asintóticamente estable.
 - Si $e < a < e^2$, entonces $1 < \log(a) < 2$ y por tanto se tiene $|f'(l_1)| = a > 1$ y $|f'(l_2)| = |1 \log(a)| = \log(a) 1 < 1$. Así, l_1 es un equilibrio inestable y repulsor y l_2 es un equilibrio asintóticamente estable.
 - Si $a = e^2$, entonces $|f'(l_1)| = e^2 > 1$ y $|f'(l_2)| = |1 \log(e^2)| = 1$, luego l_1 es un equilibrio inestable y repulsor y $l_2 = \log(e^2) = 2$ es un equilibrio no hiperbólico.

Se observa que existe $\varepsilon > 0$ tal que f es decreciente en $(l_2 - \varepsilon, l_2 + \varepsilon)$, $f(x) < 2l_2 - x$ para todo $x \in (l_2 - \varepsilon, l_2)$, y $f(x) > 2l_2 - x$ para todo $x \in (l_2, l_2 + \varepsilon)$. En consecuencia, l_2 es un equilibrio asintóticamente estable.

• Si $a > e^2$, entonces se tiene $\log(a) > 2$ y, consecuentemente, $|f'(l_1)| = a > 1$ y $|f'(l_2)| = |1 - \log(a)| = \log(a) - 1 > 1$. Así, l_1 y l_2 son equilibrios inestables y repulsores.

Si 0 < a < 1, la población siempre se extingue independientemente de la población inicial, pues el único equilibrio es l = 0 y es estable y atractor.

(b) Para estudiar las órbitas 2-periódicas, se hallan los puntos fijos de f^2 :

$$f^{2}(x) = x \iff a(axe^{-x})e^{-(axe^{-x})} = x \iff a^{2}xe^{-x(1+ae^{-x})} = x$$

Se observa que $l_1 = 0$ es un punto fijo de f^2 . Para $x \neq 0$,

$$f^2(x) = x \iff a^2 e^{-x(1+ae^{-x})} = 1 \iff e^{-x(1+ae^{-x})} = a^{-2} \iff -x(1+ae^{-x}) = -2\log(a).$$

15

Para a=4, se prueba que la únuica solución de la ecuación anterior es $l_2=\log(4)$, que es también punto de f. Por tanto, los dos puntos fijos de f^2 son también puntos fijos de f, así que no hay órbitas 2-periódicas.

Para a=10, las soluciones de la ecuación son $l_2=\log(10)$, $p_1\approx 0'934596$ y $p_2\approx 3'67057$. Como hay dos puntos fijos de f^2 que no son puntos fijos de f, la única órbita 2-periódica es $\{p_1,p_2\}$. Se tiene que

$$|f'(p_1)f'(p_2)| = |10e^{-p_1}(1-p_1)| \cdot |10e^{-p_2}(1-p_2)| \approx 0'174667 < 1,$$

así que la órbita es asintóticamente estable.

En el diagrama de bifurcación de f se observa que en $a \approx 7'3$ se produce la primera bifurcación por duplicación del periodo, pues para a < 7'3 no hay órbitas 2-periódicas, mientras que para a > 7'3 sí las hay.

(c) También se observa en el diagrama de bifurcación que en a=1 aparece un equilibrio asintóticamente estable no nulo. Enn $a\approx 12'2$, la órbita 2-periódica se vuelve inestable y aparece una órbita 4-periódica asintóticamente estable. En $a\approx 14'2$, la órbita 4-periódica se vuelve inestable y aparece una órbita 8-perióica asintóticamente estable. Finalmente, para a>14'2 aparecen órbitas estables de cada vez mayor periodo y el sistema transiciona a un régimen caótico.

(d) Si 0 < a < 1, la especie siempre se extingue porque el único equilibrio es l = 0, y es asintóticamente estable. Si $1 \le a < 7'3$, la especie tiende al equilibrio $l = \log(a)$, pues dicho equilibrio es asintóticamente estable. Para $7'3 \le a < 12'2$, la especie sigue un patrón 2-periódico. Para $a \le 12'2 < 14'2$, la especie sigue un patrón 4-periódico. Finalmente, para a > 14'2, la evolución de la población se vuelve impredecible.

Ejercicio 18. El sistema dinámico discreto

$$t_{n+1} = \frac{K}{t_n - 90} + 100, \qquad n = 0, 1, \dots$$

modela el tiempo t_n (medido en microsegundos) que tarda en llegar la señal eléctrica inducida por un marcapasos desde el atria (lugar que se estimula) hasta los ventrículos del corazón, en el n-ésimo latido; K es una constante positiva.

(a) Probar que, usando un cambio de variables adecuado, el modelo puede ser reescrito en la forma adimensional

$$x_{n+1} = \frac{1}{x_n} + \alpha, \qquad n = 0, 1, \dots$$

siendo $\alpha > 0$ un parámetro. Sabiendo que t_n es siempre mayor que 90, ¿en qué intervalo toma valores la variable adimensional x_n ?

- (b) Estudiar los equilibrios y su estabilidad (solo se considerarán los que pertenezcan al intervalo determinado en el apartado anterior).
- (c) Con ayuda del apartado anterior y de los diagramas web, describe el comportamiento esperado de t_n cuando n tiende a infinito.
- (d) ¿Qué ocurre si $\alpha = 0$?

Solución.

(a) Llámese T a la unidad para medir el tiempo (microsegundos, en este caso). Como $[t_n - 90] = T$ y $[\frac{K}{t_n - 90}] = [t_{n+1} - 100] = T$, entonces $[K] = T^2$. Considérese el cambio de variales

$$x = \frac{t - 90}{\sqrt{K}},$$

que es adimensional porque $[\sqrt{K}] = T$ y [t - 90] = T. Se tiene que

$$x_{n+1} = \frac{t_{n+1} - 90}{\sqrt{K}} = \frac{\frac{K}{t_n - 90} + 10}{\sqrt{K}} = \frac{K}{(t_n - 90)\sqrt{K}} + \frac{10}{\sqrt{K}} = \frac{\sqrt{K}}{t_n - 90} + \frac{10}{\sqrt{K}} = \frac{1}{x_n} + \frac{10}{\sqrt{K}}.$$

Por tanto, el modelo se puede escribir en la forma

$$x_{n+1} = \frac{1}{x_n} + \alpha, \qquad n = 0, 1, \ldots,$$

siendo $\alpha = \frac{10}{\sqrt{K}} > 0$. Además,

$$t_n > 90 \iff \sqrt{K}x_n + 90 > 90 \iff \sqrt{K}x_n > 0 \iff x_n > 0$$

así que el intervalo en el que toma valores la nueva variable adimensional es $(0, \infty)$.

(b) Se considera la función $f:(0,\infty)\to\mathbb{R}$ dada por $f(x)=\frac{1}{x}+\alpha$. Nótese que f es continua y verifica $f((0,\infty))\subset(0,\infty)$, así que el sistema dinámico a considerar tiene perfecto sentido. Por otro lado,

$$f(x) = x \iff \frac{1}{x} + \alpha = x \iff x^2 - \alpha x - 1 = 0 \iff x = \frac{\alpha \pm \sqrt{\alpha^2 + 4}}{2}.$$

Ahora bien,

$$\frac{\alpha}{2} - \frac{\sqrt{\alpha^2 + 4}}{2} > 0 \iff \alpha > \sqrt{\alpha^2 + 4} \iff \alpha^2 > \alpha^2 + 4,$$

y esto último es falso. Por tanto, el único equilibrio del sistema dinámico es $l=\frac{\alpha+\sqrt{\alpha^2+4}}{2}$. Como $f'(x)=-\frac{1}{x^2}$, entonces

$$|f'(l_1)| = \frac{1}{l_1^2} = \frac{1}{\frac{\alpha^2}{4} + \frac{\alpha^2 + 4}{4} + \alpha \sqrt{\alpha^2 + 4}} = \frac{1}{\frac{\alpha^2}{2} + \alpha \sqrt{\alpha^2 + 4} + 1} < 1,$$

así que dicho equilibrio es asintóticamente estable.

(c) Tomando $\alpha = 1$ (es decir, K = 100) y representando los primeros términos de la sucesión $\{x_n\}_{n=0}^{\infty}$ para distintos valores de x_0 , se observa que la sucesión converge a $l \approx 1'61803$ para cualquier $x_0 > 0$. Por tanto, la sucesión $\{t_n\}_{n=0}^{\infty}$ convergerá a $\sqrt{K}l + 90 = 10l + 90 \approx 106'18034$ para cualquier $t_0 > 90$.

(d) Si $\alpha=0$, el único equilibrio del sistema es l=1, y es no hiperbólico porque $|f'(l)|=\frac{1}{l^2}=1$. Representando gráficamente f y la recta y=2-x, se observa que f es esctricamente decreciente y f(x)>2-x para todo $x\in(0,\infty)$, así que l es un equilibrio inestable.

También se verifica $f^2(x) = x$ para todo x > 0, así que para $x, y \in (0,1) \cup (1,\infty)$ cualesquiera con $x \neq y$, se tiene que $\{x,y\}$ es una órbita 2-periódica. En consecuencia, todas las sucesiones de la forma

$$\begin{cases} x_0 \in (0,1) \cup (1,\infty), \\ x_{n+1} = f(x_n), & n = 0, 1, 2, \dots, \end{cases}$$

no convergen, pues no son más que $\{x_0, \frac{1}{x_0}, x_0, \frac{1}{x_0}, x_0, \ldots\}$.