CO202 – Software Engineering – Algorithms Greedy Algorithms - Solutions

Exercise 1: Implement Fractional Knapsack

FRACTIONAL-KNAPSACK(v,w,K)

i	1	2	3
v_i	60	100	120
$ w_i $	10	20	30
v_i/w_i	6	5	4

Exercise 1: Implement Fractional Knapsack

```
FRACTIONAL-KNAPSACK(v,w,K)
 1: n = v.length
 2: load = 0
 3: value = 0
4: i = 1
 5: while load < K and i \le n
        f = min((K-load)/w[i],1)
6:
        load = load + f * w[i]
7:
8: value = value + f * v[i]
9:
        i = i+1
10: return load and value
```

i	1	2	3
v_i	60	100	120
$ w_i $	10	20	30
v_i/w_i	6	5	4

Exercise 1: Implement Fractional Knapsack

```
FRACTIONAL-KNAPSACK(v,w,K)
 1: n = v.length
 2: load = 0
 3: value = 0
4: i = 1
 5: while load < K and i \le n
        f = min((K-load)/w[i],1)
6:
        load = load + f * w[i]
7:
8: value = value + f * v[i]
9:
        i = i+1
10: return load and value
```

Time to sort $O(n \lg n)$, and then O(n)

i	1	2	3
v_i	60	100	120
$ w_i $	10	20	30
v_i/w_i	6	5	4

Exercise 2: Solving 0-1 Knapsack

```
5: for i = 1 to n
6: c[i,0] = 0
7: for j = 1 to K
8: if w[i] ≤ j
9: c[i,j] = max(v[i] + c[i-1,j-w[i]], c[i-1,j])
10: else
11: c[i,j] = c[i-1,j]
```


j	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

Exercise 2: Solving 0-1 Knapsack

```
5: for i = 1 to n
6: c[i,0] = 0
7: for j = 1 to K
8: if w[i] ≤ j
9: c[i,j] = max(v[i] + c[i-1,j-w[i]], c[i-1,j])
10: else
11: c[i,j] = c[i-1,j]
```


j	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	თ	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Exercise 2: Solving 0-1 Knapsack

```
5: for i = 1 to n
6:    c[i,0] = 0
7:    for j = 1 to K
8:        if w[i] ≤ j
9:             c[i,j] = max(v[i] + c[i-1,j-w[i]], c[i-1,j])
10:        else
11:        c[i,j] = c[i-1,j]
```


j	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	4	4	4
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Exercise 3: Coin Change Problem

Prove that a greedy strategy of picking the highest valued coin which is less or equal than the remaining amount is not guaranteed to produce optimal results.

Exercise 3: Coin Change Problem

Prove that a greedy strategy of picking the highest valued coin which is less or equal than the remaining amount is not guaranteed to produce optimal results.

Counter example: Assuming the amount of money to be 6 and the coin set 1,3,4. The greedy strategy would yield the coin sequence 4,1,1 while the optimal solution with least number of coins is 3,3.

Exercise 4: Planning a Party

Invite as many people as possible from a set of n people, such that

- Every person invited should know at least five other people that are invited
- 2. Every person invited should not know at least five other people that are invited

Hint: Maximizing the number of invitees is the same as minimizing the number of people that are not invited.

Exercise 4: Planning a Party

Invite as many people as possible from a set of n people, such that

- 1. Every person invited should know at least five other people that are invited
- Every person invited should not know at least five other people that are invited
- Label the people that could be invited 1,...n
- For a subset S of $\{1, 2, ..., n\}$, k_i is the number of people in S that the i-th person knows, and d_i is the number of people in S the i-th person does not know.
- Algorithm:
 - Let $P = \{1, 2, ..., n\}$ be the set of potential invitees
 - While there is $i \in P$ such that $k_i < 5$ or $d_i < 5$: $P = P \{i\}$
 - Return P