

IEL – protokol k projektu

Josef Kuchař xkucha28

12. prosince 2021

Obsah

1	Příl	klad 1	2
	1.1	Výpočet odporu R_{ekv}	2
	1.2	Výpočet U_{R7} a I_{R7}	4
	1.3	Dosazení	5
2	Příl	klad 2	6
	2.1	Výpočet R_i	6
	2.2	Výpočet U_i	7
	2.3	Výpočet proudu a napětí na R_1	7
	2.4	Dosazení	8
3	Příl	klad 3	9
	3.1	Převedení zdroje a zvolení proudů	9
	3.2	Vyjádření vodivostí	10
	3.3	V ight)počet napětí	10
	3.4	Výpočet požadovaného napětí a proudu	10
	3.5	Dosazení	11
4	Příl	klad 4	12
	4.1	Zvolení smyček	12
	4.2	Vyjádření impedancí	13
	4.3	Výpočet proudů	13
	4.4	Výpočet napětí a fázového posunu	13
	4.5	Dosazení	14
5	Příl	klad 5	15
6	Shr	mutí výsledků	16

Stanovte napětí U_{R7} a proud I_{R7} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
С	100	80	450	810	190	220	220	720	260	180

\mathbf{V} ýpočet odporu R_{ekv}

Zjednodušení sériově zapojených zdrojů: $\boldsymbol{U} = \boldsymbol{U}_1 + \boldsymbol{U}_2$

Zjednodušení paralelně zapojených rezistorů: $R_{45} = \frac{R_4 \cdot R_5}{R_4 + R_5}$

Zjednodušení sériově zapojených rezistorů: $R_{457} = R_{45} + R_7$

Transfigurace trojúhelník na hvězdu

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3}$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3}$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3}$$

Zjednodušení sériově zapojených rezistorů: $R_{B457}=R_B+R_{457}, R_{C6}=R_C+R_6$

Zjednodušení paralelně zapojených rezistorů: $R_{BC4567} = \frac{R_{B457} \cdot R_{C6}}{R_{B457} + R_{C6}}$

Zjednodušení sériově zapojených rezistorů: $R_{ekv} = R_A + R_{BC4567} + R_8$

Výpočet U_{R7} a I_{R7}

Výpočet celkového proudu v obvodu

$$I = \frac{U}{R_{ekv}}$$

Zpětné dopočítání proudu a napětí na \mathbb{R}_7

Nejprve vypočítáme napětí na U_{BC4567} . Poté proud v horní větvi, využíváme toho, že $U_{B457}=U_{BC4567}$, tento proud se rovná I_{R7} . Jako poslední krok vypočítáme podle ohmova zákona U_{R7} .

$$U_{BC4567} = R_{BC4567}I$$
 $I_{B457} = \frac{U_{BC4567}}{R_{B457}}$
 $I_{R7} = I_{B457}$
 $U_{R7} = R_7I_{R7}$

$$U = U_1 + U_2 = 100 + 80 = 180V$$

$$R_{45} = \frac{R_4 \cdot R_5}{R_4 + R_5} = \frac{220 \cdot 220}{220 + 220} = 110\Omega$$

$$R_{457} = R_{45} + R_7 = 110 + 260 = 370\Omega$$

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} = \frac{450 \cdot 810}{450 + 810 + 190} = \frac{7290}{29}\Omega$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} = \frac{450 \cdot 190}{450 + 810 + 190} = \frac{1710}{29}\Omega$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} = \frac{810 \cdot 190}{450 + 810 + 190} = \frac{3078}{29}\Omega$$

$$R_{B457} = R_B + R_{457} = \frac{1710}{29} + 370 = \frac{12440}{29}\Omega$$

$$R_{C6} = R_C + R_6 = \frac{3078}{29} + 720 = \frac{23958}{29}\Omega$$

$$R_{BC4567} = \frac{R_{B457} \cdot R_{C6}}{R_{B457} + R_{C6}} = \frac{\frac{12440}{29} \cdot \frac{23958}{29}}{\frac{12440}{29} + \frac{23958}{29}} = 282.354\Omega$$

$$R_{ekv} = A + R_{BC4567} + R_8 = \frac{7290}{29} + 282.354 + 180 = 713.7343\Omega$$

$$I = \frac{U}{R_{ekv}} = \frac{180}{713.7343} = 0.2522A$$

$$U_{BC4567} = R_{BC4567}I = 282.354 \cdot 0.2522 = 71.2084V$$

$$I_{R7} = \frac{U_{BC4567}}{R_{B457}} = I_{B457} = \frac{71.2084}{\frac{12440}{29}} = \frac{1.66 \cdot 10^{-1}A}{1.2040}$$

$$U_{R7} = R_7 I_{R7} = 260 * 1.66 \cdot 10^{-1} = 43.1601V$$

Stanovte napětí U_{R1} a proud I_{R1} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
С	200	70	220	630	240	450

$\mathbf{V\acute{y}}\mathbf{po\check{c}et}\ R_{i}$

V obvodu vyzkratujeme zdroj a odstraníme rezistor R_1 . Následně spočítáme odpor mezi svorkami, kde byl resitor R_1 původně.

$$R_{45} = R_4 + R_5$$

$$R_{345} = \frac{R_3 \cdot R_{45}}{R_3 + R_{45}}$$

$$R_i = \frac{R_2 \cdot R_{345}}{R_2 + R_{345}}$$

Výpočet U_i

Z původního obvodu odstraníme rezistor R_2 . Poté spočítáme R_{ekv} , pro zjednodušení můžeme použít R_{345} z předchozího výpočtu. Po spočítání R_{ekv} můžeme spočítat proud I_x a následně U_i , protože $U_i = U_{R2}$.

$$R_{ekv} = R_{345} + R_2$$

$$I_x = \frac{U}{R_{ekv}}$$

$$U_i = R_2 \cdot I_x$$

\mathbf{V} ýpočet proudu a napětí na R_1

Už máme U_i a R_i , takže můžeme podle Ohmova zákona snadno spočítat I_{R1} a U_{R1} .

$$I_{R1} = \frac{U_i}{R_i + R_1}$$
$$U_{R1} = R_1 \cdot I_{R1}$$

$$R_{45} = R_4 + R_5 = 240 + 450 = 690\Omega$$

$$R_{345} = \frac{R_3 \cdot R_{45}}{R_3 + R_{45}} = \frac{630 \cdot 690}{630 + 690} = \frac{7245}{22}\Omega$$

$$R_i = \frac{R_2 \cdot R_{345}}{R_2 + R_{345}} = \frac{220 \cdot \frac{7245}{22}}{220 + \frac{7245}{22}} = 131.8908\Omega$$

$$R_{ekv} = R_{345} + R_2 = \frac{7245}{22} + 220 = 549.3182\Omega$$

$$I_x = \frac{U}{R_{ekv}} = \frac{200}{549.3182} = 0.3641A$$

$$U_i = R_2 \cdot I_x = 220 \cdot 0.3641 = 80.0993V$$

$$I_{R1} = \frac{U_i}{R_i + R_1} = \frac{80.0993}{131.8908 + 70} = \frac{3.9675 \cdot 10^{-1} A}{27.7722V}$$

$$U_{R1} = R_1 \cdot I_{R1} = 70 \cdot 3.9675 \cdot 10^{-1} = \frac{27.7722V}{27.7722V}$$

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

-		-		•			\/	-, -,
$\operatorname{sk}.$	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
G	160	0.65	0.45	46	41	53	33	29

Převedení zdroje a zvolení proudů

Schéma po převedení napěťového zdroje na proudový s vyznačenými zvolenými proudy.

Vyjádření vodivostí

Nejprve převedeme všechny odpory na vodivosti

$$G_1 = \frac{1}{R_1}$$

$$G_2 = \frac{1}{R_2}$$

$$G_3 = \frac{1}{R_3}$$

$$G_4 = \frac{1}{R_4}$$

$$G_5 = \frac{1}{R_5}$$

Výpočet napětí

Sestavené rovnice pro uzly použítím I. Kirchhoffova zákona

$$I_1 - I_{G1} + I_{G4} + I_{G5} + I_Z = 0$$

$$I_2 - I_{G3} - I_{G4} - I_{G5} - I_Z = 0$$

$$I_{G3} - I_{G2} - I_2 = 0$$

Vyjádření neznámých proudů pomocí napětí a vodivostí

$$-G_1U_A + G_4(U_B - U_A) + G_5(U_B - U_A) = -I_1 - I_Z$$

$$-G_3(U_B - U_C) - G_4(U_B - U_A) - G_5(U_B - U_A) = I_Z - I_2$$

$$G_3(U_B - U_C) - G_2U_C = I_2$$

Po vytknutní napětí dostaváme

$$U_A(-G_1 - G_4 - G_5) + U_B(G_4 + G_5) = -I_1 - I_Z$$

$$U_A(G_4 + G_5) + U_B(-G_3 - G_4 - G_5) + U_C(G_3) = I_Z - I_2$$

$$U_B(G_3) + U_C(-G_3 - G_2) = I_2$$

Následně soustavu rovnic převedeme do matice

$$\begin{pmatrix} -G_1 - G_4 - G_5 & G_4 + G_5 & 0 \\ G_4 + G_5 & -G_3 - G_4 - G_5 & G_3 \\ 0 & G_3 & -G_3 - G_2 \end{pmatrix} \cdot \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} -I_1 - I_Z \\ I_Z - I_2 \\ I_2 \end{pmatrix}$$

Výpočet požadovaného napětí a proudu

Po vypočítání matice už snadno vypočítáme napětí U_{R3} a proud I_{R3}

$$U_{R3} = U_B - U_C$$
$$I_{R3} = U_{R3}G_3$$

$$G_{1} = \frac{1}{R_{1}} = \frac{1}{46}S$$

$$G_{2} = \frac{1}{R_{2}} = \frac{1}{41}S$$

$$G_{3} = \frac{1}{R_{2}} = \frac{1}{53}S$$

$$G_{4} = \frac{1}{R_{4}} = \frac{1}{33}S$$

$$G_{5} = \frac{1}{R_{5}} = \frac{1}{29}S$$

$$\begin{pmatrix} -0.086525 & 0.064786 & 0\\ 0.064786 & -0.083654 & 0.018868\\ 0 & 0.018868 & -0.043258 \end{pmatrix} \cdot \begin{pmatrix} U_{A}\\ U_{B}\\ U_{C} \end{pmatrix} = \begin{pmatrix} -6.1672\\ 5.0672\\ 0.4500 \end{pmatrix}$$

$$\begin{pmatrix} U_{A}\\ U_{B}\\ U_{C} \end{pmatrix} = \begin{pmatrix} 53.3124\\ -23.9928\\ -20.8676 \end{pmatrix}$$

$$U_{R3} = U_{B} - U_{C} = -23.9928 - (-20.8676) = \underline{-3.1252V}$$

$$I_{R3} = U_{R3}G_{3} = -3.1252 \cdot \frac{1}{53} = \underline{-5.8965 \cdot 10^{-2}A}$$

Pro napájecí napětí platí: $u_1=U_1\cdot\sin(2\pi ft),\,u_2=U_2\cdot\sin(2\pi ft).$ Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [µF]	f [Hz]
С	3	4	10	13	220	70	230	85	75

Zvolení smyček

Vyjádření impedancí

Nejprve vyjádříme úhlovou frekvenci

$$\omega = 2\pi f$$

Poté vyjádříme impedance kondenzátorů a cívek

$$Z_{L1} = jL_1\omega$$

$$Z_{L2} = jL_2\omega$$

$$Z_{C1} = -j\frac{1}{C_1\omega}$$

$$Z_{C2} = -j\frac{1}{C_2\omega}$$

Výpočet proudů

Sestavené rovnice smyček podle II. Kirchhoffova zákona

$$-U_1 + Z_{L1}I_A + R_1(I_A - I_B) + Z_{C2}(I_A + I_C) = 0$$
$$-U_2 + R_1(I_B - I_A) + Z_{C1}I_B = 0$$
$$-U_2 + Z_{C2}(I_C + I_A) + Z_{L2}I_C + R_2I_C = 0$$

Po vytknutí proudů dostáváme:

$$I_A(Z_{L1} + R_1 + Z_{C2}) + I_B(-R_1) + I_C(Z_{C2}) = U_1$$

$$I_A(-R_1) + I_B(R_1 + Z_{C1}) = U_2$$

$$I_A(Z_{C2}) + I_C(Z_{C2} + Z_{L2} + R_2) = U_2$$

Následně soustavu rovnic převedeme do matice

$$\begin{pmatrix} Z_{L1} + R_1 + Z_{C2} & -R_1 & Z_{C2} \\ -R_1 & R_1 + Z_{C1} & 0 \\ Z_{C2} & 0 & Z_{C2} + Z_{L2} + R_2 \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} U_1 \\ U_2 \\ U_2 \end{pmatrix}$$

Výpočet napětí a fázového posunu

Po vypočítání matice už snadno vypočítáme napětí $|U_{L2}|$ a fázový posun φ_{L2}

$$I_{L2} = I_{C}$$

$$U_{L2} = Z_{L2}I_{L2}$$

$$|U_{L2}| = |Z_{L2}I_{L2}|$$

$$\varphi_{L2} = \tan^{-1}\left(\frac{U_{L2imag}}{U_{L2real}}\right) \cdot \frac{180}{\pi}$$

$$\begin{pmatrix} 10 + 78.7071j & -10 & -24.9655j \\ -10 & 10 - 9.2264j & 0 \\ -24.9655j & 0 & 13 + 8.0212j \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 0.1712 - 0.0356j \\ 0.3263 + 0.2655j \\ 0.4193 + 0.0702j \end{pmatrix}$$

$$I_{L2} = I_C = (0.4193 + 0.0702j)A$$

$$U_{L2} = Z_{L2}I_{L2} = 32.9867j \cdot (0.4193 + 0.0702j) = (-2.3142 + 13.8305j)V$$

$$|U_{L2}| = \underline{14.0228V}$$

$$\tan^{-1} \left(\frac{13.8305}{-2.3142} \right) \cdot \frac{180}{\pi} = \tan^{-1} \left(\frac{U_{L2imag}}{U_{L2real}} \right) \cdot \frac{180}{\pi} = -80.501^{\circ}$$

Úhel fázového posunu vyšel ve špatném kvadrantu, proto je potřeba přičíst 180°

$$\varphi_{L2} = \tan^{-1} \left(\frac{13.8305}{-2.3142} \right) \cdot \frac{180}{\pi} + 180^{\circ} = \underline{99.499^{\circ}}$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	$R [\Omega]$	C[F]	$u_C(0)$ [V]
	С	45	5	30	12
t = 0 s S U + (R	C \	¹ c	

Shrnutí výsledků

Příklad	Skupina	$ m V {y}s$	ledky
1	C	$U_{R7} = 43.1601V$	$I_{R7} = 1.66 \cdot 10^{-1} A$
2	С	$U_{R1} = 27.7722V$	$I_{R1} = 3.9675 \cdot 10^{-1} A$
3	G	$U_{R3} = -3.1252V$	$I_{R3} = -5.8965 \cdot 10^{-2} A$
4	С	$ U_{L_2} = 14.0228V$	$\varphi_{L_2} = 99.499^{\circ}$
5	С	u_{ϵ}	g =