# 제5장 동적 계획 알고리즘 (1)

과 목 명 정 보 처 리 알 고 리 증 담당교수 김 성 훈 경북대학교 과학기술대학 소프트웨어학과

### 이 장에서 배울 내용

- 1. 동적 계획 알고리즘의 기본개념
- 2. 모든 쌍 최단 경로(All Pairs Shortest Path)
- 3. 연속 행렬 곱셈(Chained Matrix Multiplication)
- 4. 동전 거스름돈 문제(Coin Change)
- 5. 편집 거리 문제(Edit Distance Problem)
- 6. 배낭문제(Knapsack Problem)

# 사고의 전환: 동적계획 유사 전략(Analogy)

- 동물들의 헌팅 전략들:
  - 낚시 전략: 먹이사슬을 활용하여 미끼작전, 생존본능 활용
  - 물소 사냥: 사자의 물소 떼 사냥 전략, 이동 및 무리본능 활용
  - 연어낚시: 연어 알을 계속에서 산란시켜 방사, 회귀본능 활용
  - 헌팅전략: 새끼를 이용한 유인 함정만들기, 포유류의 모성본능 활용
- 마케팅 전략: 미끼상품, 쿠폰, 사은품, 상품권 당첨 등, 고객의 공짜심리 활용
- 도미노 게임: 말 하나로 전체의 말을 쓰러뜨리도록 치밀하게 계획
- 핵 폭탄의 연쇄 반응: 작은 핵 융합 반응의 연쇄작용으로 큰 폭발을 야기
- 인류의 농업 발명: 씨앗을 먹지 않고 땅에 뿌려두면,

이것이 자라서 더 큰 수확을 거둔다. 식물의 성장원리를 활용

→ Bottom-UP Approach

# 동적 계획 알고리즘 기본 개념

- 동적 계획 (Dynamic Programming) 알고리즘은
   그리디 알고리즘과 같이 최적화 문제를 해결하는 알고리즘이다.
- 동적 계획 알고리즘은,
  - ▶ 먼저 입력 크기가 작은 부분 문제들을 모두 해결한 후에
  - 그 해들을 이용하여 보다 큰 크기의 부분 문제들을 해결하여,
  - ▶ 최종적으로 원래 주어진 입력의 문제를 해결하는 알고리즘이다.

## 동적 계획 알고리즘 기본 개념(2)

• 분할 정복 알고리즘과 동적 계획 알고리즘의 전형적인 부분문제들 사이의 관계



#### 분할 정복 알고리즘의 부분문제들 사이의 관계:

- A는 B와 C로 분할되고, B는 D와 E로 분할되는데, D와 E의 해를 취합하여 B의 해를 구한다. 단, D,
   E, F, G는 각각 더 이상 분할할 수 없는 (또는 가장 작은 크기의) 부분문제들이다.
- ▶ 마찬가지로 F와 G의 해를 취합하여 C의 해를 구하고, 마지막으로 B와 C의 해를 취합하여 A의 해를 구한다.

## 동적 계획 알고리즘 기본 개념(3)

#### • 동적 계획 알고리즘은

먼저 최소 단위의 부분 문제 D, E, F, G의 해를 각각 구한다. 그 다음에,

- D, E, F의 해를 이용하여 B의 해를 구한다.
- ▶ E, F, G의 해를 이용하여 C의 해를 구한다.
- B와 C의 해를 구하는데 E와 F의 해 모두를 이용한다.
- ▶ 분할 정복은 부분문제의 해를 중복 사용하지 않지만, 동적 계획은 중복 사용한다.



### 동적 계획 알고리즘 기본 개념(4)

- 동적 계획 알고리즘에는 부분문제들 사이에 의존적 관계가 존재한다.
  - ▶ 예를 들면, D, E, F의 해가 B를 해결하는데 사용되는 관계가 있다.
- 이러한 관계는 문제 또는 입력에 따라 다르고, 대부분의 경우 뚜렷이 보이지 않아서 '함축적인 순서' (implicit order)라고 한다.

# 5.1 모든 쌍 최단 경로

• 모든 쌍 최단 경로 (All Pairs Shortest Paths) 문제는 각 쌍의 점 사이의 최단 경로를 찾는 문제이다.

|                  | 서 올<br>Seoul | 인 천<br>Incheon | 수 원<br>Suwon | 대 전<br>Daejeon | 전 주<br>Jeonju | 광주<br>Gwangju | 대 구<br>Daegu | 을 산<br>Ulsan | 부 산<br>Busan ) |
|------------------|--------------|----------------|--------------|----------------|---------------|---------------|--------------|--------------|----------------|
| 서 을<br>Seoul     |              | 40.2           | 41.3         | 154            | 232.1         | 320.4         | 297          | 407.5        | 432            |
| 인 천<br>Incheon   |              |                | 54.5         | 174            | 253.3         | 351.6         | 317.6        | 447          | 453            |
| 수 원<br>Suwon     |              |                |              | 132.6          | 189.4         | 299.6         | 268.1        | 356          | 390.7          |
| 대 전<br>Daejeon   |              |                |              |                | 96.9          | 185,2         | 148.7        | 259.1        | 283.4          |
| 전 주<br>Jeonju    |              |                |              |                |               | 105.9         | 219.7        | 331.1        | 322.9          |
| 광 주<br>Gwangju   |              |                |              |                |               |               | 219.3        | 329.9        | 268            |
| 됐 <sub>e</sub> 굷 |              |                |              |                |               |               |              | 111.1        | 135.5          |
| 을 산<br>Ulsan     |              |                |              |                |               |               |              |              | 52.9           |
| 부 산<br>Busan     |              |                |              |                |               |               |              |              |                |

### 플로이드-워샬 알고리즘 소개

- 이 문제를 해결하려면, 각 점을 시작점으로 정하여
   다익스트라(Dijkstra)의 최단 경로 알고리즘을 수행하면 된다.
  - 이때의 시간복잡도는 배열을 사용하면 (n-1)xO(n²) = O(n³)이다.
     단, n은 점의 수이다.
- 따라서, 모든 쌍 최단 경로를 찾는 동적 계획 알고리즘을
   플로이드-워샬 알고리즘이라 한다. (간략히 플로이드 알고리즘이라함.)

### 플로이드-워샬 알고리즘 소개(2)

• 플로이드 알고리즘이 다익스트라 알고리즘보다 나은가?

- 결론적으로 말하면, 플로이드 알고리즘의 시간복잡도는 O(n³)으로 다익스트라 알고리즘을 사용하는 것과 시간복잡도는 동일하다.
- 그러나 플로이드 알고리즘은 매우 간단하여
   다익스트라 알고리즘을 사용하는 것보다 좀 더 효율적이다.
- <mark>와</mark> 일까?

### 부분 문제의 정의

- 동적 계획 알고리즘으로 모든 쌍 최단 경로 문제를 해결하려면 먼저 부분문제들을 찾아야 한다.
- 이를 위해 일단 그래프의 점의 수가 적을 때를 생각해보자.
  - 그래프에 3개의 점이 있는 경우,점 i에서 점 j까지의 최단 경로를 찾으려면 2가지 경로,
    - 즉, 점 i에서 점 j로 직접 가는 경로와 점 1을 경유하는 경로 중에서 짧은 것을 선택하면 된다.

### 부분 문제의 정의(2)

- 또 하나의 중요한 아이디어는 경유 가능한 점들을
  - ▶ 점 1로부터 시작하여,

점 1과 2,

그 다음엔 점 1, 2, 3으로 하나씩 추가하여,

마지막에는 점 1~n까지의 모든 점을 경유 가능한 점들로 고려하면서,

모든 쌍의 최단 경로의 거리를 계산한다.

• 부분문제 정의:

입력 그래프의 점을 각각 1, 2, 3, ···, n이라 하자. 이때,

 $D_{ij}^{k}$  = 점  $\{1, 2, \dots, k\}$ 만을 경유 가능한 점들로 고려하여,

점 i로부터 점 j까지의 모든 경로 중에서

<u>가장 짧은</u> 경로의 거리

### 부분 문제의 초기화

- 여기서 주의할 것은, 점 {1, 2, ···, k}만을 고려한다는 것은
   점 1에서 점 k까지의 모든 점들을 반드시 경유하는 경로를 의미하는 것이 아니다.
- 심지어는  $D_{ij}$ 는 이 점들을 하나도 경유하지 않으면서 점 i에서 점 j에 도달하는 경로, 즉 선분 (i,j)가 최단 경로가 될 수도 있다.
- 여기서 k≠i, k≠j이고, k=0인 경우, 점 0은 그래프에 없으므로 어떤 점도 경유하지 않는다는 것을 의미한다.
  - 따라서  $D_{ij}$   $^{\circ}$ 은 입력으로 주어지는 선분 (i,j)의 가중치이다.

### 부분문제들 사이의 의존적 관계

- D<sub>ij</sub>¹은 i에서 점1을 경유하여 j로 가는 경로와,
   i에서 j로 직접 가는 경로, 즉 선분 (i, j)중에서 짧은 거리이다.
- 따라서, 모든 쌍 i와 j에 대하여,
   D<sub>ij</sub>¹를 계산하는 것이 가장 작은 부분문제들이다.
   단, i≠1, j≠1 이다.



# 부분문제들 사이의 의존적 관계(2)

- 그 다음엔 i에서 점 2를 경유하여 j로 가는 경로의 거리와  $D_{ij}^{1}$ 중에서 짧은 거리를  $D_{ij}^{2}$ 로 정한다. 단, 점 2를 경유하는 경로의 거리는  $D_{i2}^{1}+D_{2j}^{1}$ 이다.
- 모든 쌍 i와 j에 대하여 D<sub>ij</sub>²를 계산하는 것이
   그 다음으로 큰 부분 문제들이다. 단, i≠2, j≠2이다.



# 부분문제들 사이의 의존적 관계(3)

• 점 i에서 점 k를 경유하여 j로 가는 경로의 거리와  $D_{ii}^{k-1}$  중에서 짧은 것을 로 정한다.

단, 점 k를 경유하는 경로의 거리는  $D_{ik}^{k-1} + D_{ki}^{k-1}$  이고,  $i \neq k$ ,  $j \neq k$ 이다.



### 부분문제들 사이의 의존적 관계(4) → 함축적인 순서

• 이런 방식으로 k가 1에서 n이 될 때까지  $D_{ij}^{k}$ 를 계산해서,

 $D_{ij}^{n}$ , 즉, 모든 점을 경유 가능한 점들로 고려된

모든 쌍 i와 j의 최단 경로의 거리를 찾는 방식이

플로이드의 모든 쌍 최단 경로 알고리즘이다.

## 모든 쌍 최단 경로알고리즘

#### **AllPairsShortest**

```
입력: 2차원 배열 D, 단, D[i,j]=선분 (i,j)의 가중치,
만일 선분 (i,j)이 존재하지 않으면 D[i,j]=∞,
모든 i에 대하여 D[i,i]=0이다.
```

출력: 모든 쌍 최단 경로의 거리를 저장한 2-d 배열 D

- 1. for k = 1 to n
- 2. for i = 1 to n (단, i≠k)
- 3. for j = 1 to n (단,  $j \neq k$ ,  $j \neq i$ )
- 4.  $D[i,j] = min \{ D[i,k] + D[k,j], D[i,j] \}$

### 음수 사이클 제약

• AllPairsShortest 알고리즘의 입력 그래프에는

사이클 상의 선분들의 가중치 합이 음수가 되는 사이클은 없어야 한다.

• 이러한 사이클을 음수 사이클 (negative cycle)이라 하는데,

최단 경로를 찾는데 음수 사이클이 있으면,

이 사이클을 반복하여 돌아 나올 때마다 경로의 거리가 감소되기 때문이다.

## AllPairsShortest 알고리즘 수행 과정



| D | 1  | 2  | 3 | 4 | 5 |
|---|----|----|---|---|---|
| 1 | 0  | 4  | 2 | 5 | 8 |
| 2 | 8  | 0  | 1 | ∞ | 4 |
| 3 | 1  | 3  | 0 | 1 | 2 |
| 4 | -2 | 8  | ∞ | 0 | 2 |
| 5 | 8  | -3 | 3 | 1 | 0 |

 배열 D의 원소들이 k가 1부터 5까지 증가함에 따라서 갱신되는 것을 살펴보자.

### AllPairsShortest 알고리즘 수행 과정(2)

#### • k=1일 때:

```
- D[2,3] = min{D[2,3], D[2,1]+D[1,3]} = min{1, ∞+2} = 1
```

- D[2,4] = min{D[2,4], D[2,1]+D[1,4]} = min{
$$\infty$$
,  $\infty$ +5} =  $\infty$ 

- D[2,5] = min{D[2,5], D[2,1]+D[1,5]} = min{4, 
$$\infty$$
+ $\infty$ } = 4

$$-$$
 D[3,2] = min{D[3,2], D[3,1]+D[1,2]} = min{3, 1+4} = 3

$$-$$
 D[3,4] = min{D[3,4], D[3,1]+D[1,4]} = min{1, 1+5} = 1

- D[3,5] = min{D[3,5], D[3,1]+D[1,5]} = min{2, 
$$1+\infty$$
} = 2

- 
$$D[4,2] = min\{D[4,2], D[4,1]+D[1,2]\} = min\{\infty, -2+4\} = 2$$

// 갱신됨



### AllPairsShortest 알고리즘 수행 과정(3)

-  $D[4,3] = min\{D[4,3], D[4,1]+D[1,3]\} = min\{\infty, -2+2\} = 0$ 



- $D[4,5] = min\{D[4,5], D[4,1]+D[1,5]\} = min\{2, -2+\infty\} = 2$
- $D[5,2] = min\{D[5,2], D[5,1]+D[1,2]\} = min\{-3, \infty+4\} = -3$
- D[5,3] = min{D[5,3], D[5,1]+D[1,3]} = min{3, ∞+2} = 3
- D[5,4] = min{D[5,4], D[5,1]+D[1,4]} = min{1, ∞+5} = 1

### AllPairsShortest 알고리즘 수행 과정(4) (빠른 계산법)

• k=1일 때 D[4,2], D[4,3]이 각각 2, 0으로 갱신된다. 다른 원소들은 변하지 않았다.

| D | 1        | 2        | 3 | 4        | 5        |
|---|----------|----------|---|----------|----------|
| 1 | 0        | 4        | 2 | 5        | $\infty$ |
| 2 | $\infty$ | 0        | 1 | $\infty$ | 4        |
| 3 | 1        | 3        | 0 | 1        | 2        |
| 4 | -2       | $\infty$ | 8 | 0        | 2        |
| 5 | $\infty$ | -3       | 3 | 1        | 0        |

| D | 1        | 2  | 3 | 4        | 5 |
|---|----------|----|---|----------|---|
| 1 | 0        | 4  | 2 | 5        | 8 |
| 2 | $\infty$ | 0  | 1 | $\infty$ | 4 |
| 3 | 1        | 3  | 0 | 1        | 2 |
| 4 | -2       | 2  | 0 | 0        | 2 |
| 5 | $\infty$ | -3 | 3 | 1        | 0 |

### AllPairsShortest 알고리즘 수행 과정(5) (빠른 계산법)

- k=2일 때:
  - D[1,5]가 1 → 2 → 5의 거리인 8로 갱신된다.
  - D[5,3]이 5 → 2 → 3의 거리인 -2로 갱신된다.

| D | 1        | 2  | 3 | 4        | 5        |
|---|----------|----|---|----------|----------|
| 1 | 0        | 4  | 2 | 5        | $\infty$ |
| 2 | $\infty$ | 0  | 1 | $\infty$ | 4        |
| 3 | 1        | 3  | 0 | 1        | 2        |
| 4 | -2       | 2  | 0 | 0        | 2        |
| 5 | $\infty$ | -3 | 3 | 1        | 0        |

| D | 1        | 2  | 3           | 4        | 5 |
|---|----------|----|-------------|----------|---|
| 1 | 0        | 4  | 2           | 5        | 8 |
| 2 | $\infty$ | 0  | 1           | $\infty$ | 4 |
| 3 | 1        | 3  | 0           | 1        | 2 |
| 4 | -2       | 2  | 0           | 0        | 2 |
| 5 | $\infty$ | -3 | <b>(-2)</b> | 1        | 0 |

### AllPairsShortest 알고리즘 수행 과정(6) (빠른 계산법)

• k=3일 때 총 7개의 원소가 갱신된다.

| D | 1        | 2  | 3  | 4        | 5 |
|---|----------|----|----|----------|---|
| 1 | 0        | 4  | 2  | 5        | 8 |
| 2 | $\infty$ | 0  | 1  | $\infty$ | 4 |
| 3 | 1        | 3  | 0  | 1        | 2 |
| 4 | -2       | 2  | 0  | 0        | 2 |
| 5 | $\infty$ | -3 | -2 | 1        | 0 |

| D | 1           | 2                 | 3  | 4          | 5          |
|---|-------------|-------------------|----|------------|------------|
| 1 | 0           | 2                 | 2  | 3          | <b>4</b> ) |
| 2 | 2           | 0<br>3<br>2<br>-3 | 1  | <b>(2)</b> | (3)        |
| 3 | 1           | 3                 | 0  | 1          | 2 2        |
| 4 | -2          | 2                 | 0  | 0          | 2          |
| 5 | <b>(-1)</b> | -3                | -2 | (-1)       | 0          |

### AllPairsShortest 알고리즘 수행 과정(7) (빠른 계산법)

• k=4일 때 총 3개의 원소가 갱신된다.

| D | 1  | 2  | 3  | 4  | 5          |
|---|----|----|----|----|------------|
| 1 | 0  | 4  | 2  | 3  | 4          |
| 2 | 2  | 0  | 1  | 2  | <b>3</b> 2 |
| 3 | 1  | 3  | 0  | 1  | 2          |
| 4 | -2 | 2  | 0  | 0  | 2          |
| 5 | -1 | -3 | -2 | -1 | 0          |

| D | 1           | 2   | 3  | 4  | 5 |
|---|-------------|-----|----|----|---|
| 1 | 0           | 4   | 2  | 3  | 4 |
| 2 | 0           | 0   | 1  | 2  | 3 |
| 3 | <b>(-1)</b> | 3   | 0  | 1  | 2 |
| 4 | -2          | 3 2 | 0  | 0  | 2 |
| 5 | (-3)        | -3  | -2 | -1 | 0 |

### AllPairsShortest 알고리즘 수행 과정(8) (빠른 계산법)

• k=5일 때 총 3개의 원소가 갱신되고, 이것이 주어진 입력에 대한 최종해이다.

| D | 1  | 2  | 3  | 4  | 5 |
|---|----|----|----|----|---|
| 1 | 0  | 4  | 2  | 3  | 4 |
| 2 | 0  | 0  | 1  | 2  | 3 |
| 3 | -1 | 3  | 0  | 1  | 2 |
| 4 | -2 | 2  | 0  | 0  | 2 |
| 5 | -3 | -3 | -2 | -1 | 0 |

| D | 1        | 2           | 3            | 4  | 5 |
|---|----------|-------------|--------------|----|---|
| 1 | 0        | 1           | 2            | 3  | 4 |
| 2 | 0 -1     | 0           |              | 2  | 3 |
| 3 | -1       | (-1)        | 0            | 1  | 2 |
| 4 | -2<br>-3 | <b>(-1)</b> | 0<br>0<br>-2 | 0  | 2 |
| 5 | -3       | -3          | -2           | -1 | 0 |

### 시간복잡도

 AllPairsShortest의 시간복잡도는 위의 예제에서 보았듯이 각 k에 대해서 모든 i, j 쌍에 대해 계산되므로,
 총 nxnxn = n³회 계산이 이루어지고,
 각 계산은 O(1) 시간이 걸린다.

• 따라서 AllPairsShortest의 시간복잡도는 O(n³)이다.

### 응용

- 맵퀘스트 (Mapquest)와 구글 (Google) 웹사이트의 지도 서비스
- 자동차 네비게이션 서비스
- 지리 정보 시스템 (GIS)에서의 네트워크 분석
- 통신 네트워크와 모바일 통신 분야
- 게임
- 산업 공학, 경영 공학의 OR(Operations Research) 문제
- 로봇 공학
- 교통 공학
- VLSI 디자인 분야 등

### Summary

- 동적 계획알고리즘은 최적화 문제를 해결하는 알고리즘으로서,
  - 입력 크기가 작은 부분문제들을 모두 해결한 후에 그 해들을 이용하여,
     보다 큰 크기의 부분문제들을 해결해 나가는 과정을 거치면서, 최종적으로
     원래 주어진 입력의 문제를 해결하는 알고리즘이다.
  - 동적 계획 알고리즘에는 부분문제들 사이에 의존적 관계가 존재한다.
- 모든쌍 최단경로 문제의 Floyd-Warshall 알고리즘은 O(n³) 시간에 해를 찾는다.
  - 핵심 아이디어는 경유 가능한 점들을 점 1로부터 시작하여, 점 1과 2, 그 다음엔 점 1,
     2, 3으로 하나씩 추가하여, 마지막에는 점 1에서 점 n까지의 모든 점을 경유 가능한 점들로 고려하면서, 모든 쌍의 최단 경로의 거리를 계산하는 것이다.

## 동적 계획의 핵심

- 문제의 본질을 꿰뚫어보는 통찰력(insight)으로,
  - ▶ 문제 자체에 내재되어 있는 원리을 발견하고,
  - ▶ 가장 작은 부분문제(elementary subproblem)을 찾아서,
  - > 이들간의 의존적인 관계를 바탕으로 하여,
  - ➤ 전체 문제를 재구성하는 **함축적인 순서** 규칙를 찾는다.

## 실 습

실습1: 모든쌍 최단경로 문제를 플로이드 알고리즘으로 해결한 파이선 프로그램 작성하기

### 숙제:

1. 모든 쌍 최단 경로 문제를 다익스트라 알고리즘으로 구현하고, 플로이드 알고리즘과의 성능 비교실험하기.

# Q&A









