

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses I

Testes para uma amostra

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Testes de Hipóteses

- Podemos tomar decisões baseado nos dados de um experimento (amostra).
- Para isto, precisamos de um critério sistemático e rigoroso que possa aferir o quanto os dados suportam esta decisão.
- Usando os conceitos de probabilidades, poderemos ainda calcular a probabilidade de que esta decisão esteja errada.

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Testes de

Sumário

Testes de Hipóteses I

> Felipe Figueiredo

Testes de Hipóteses

- Hipóteses
- Significância
- Região crítica
- Testes de Hipóteses para proporções
 - Estatística de teste
 - Exemplos
- Testes de Hipóteses para a média
 - Estatística de teste
 - Exemplos
- Resumo

Testes de Hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses

Hipóteses

Definition

Em Estatística, uma hipótese é uma afirmação sobre uma característica de uma população, tipicamente o valor de um parâmetro.

Definition

Um teste de hipótese (ou teste de significância) é um procedimento sistemático para testar uma afirmação sobre uma característica de uma população.

Componentes de um testes de hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses

Hipóteses Significância Região crítica

Testes de Hipóteses para proporções

Testes de Hipóteses para a média

Resumo

São necessários para um teste de hipóteses:

- As hipóteses nula e alternativa
- O nível de significância
- A estatística de teste
- A região crítica

Identificando hipóteses

- Para efetuar um teste de hipóteses é necessária a formulação de uma hipótese nula e uma hipótese alternativa.
- A hipótese nula (H₀) é uma hipótese que contém uma afirmação de igualdade.
- A hipótese alternativa (H₁ ou H_a) é o complementar da hipótese nula.

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância
Região crítica

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Identificando hipóteses

atravessa o sinal vermelho.

Testes de Hipóteses I

Felipe Figueiredo

lestes de Hipóteses Hipóteses Significância

Testes de Hipóteses para

Testes de Hipóteses

Resumo

Identificando hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses Significância Região crítica

Testes de Hipóteses para

Testes de Hipóteses

_

Atenção

Example

Example

A lógica do teste de hipóteses é o inverso do que se esperaria, ou seja, ao invés de testar a hipótese de interesse, vamos *testar a hipótese nula* – e tentar rejeitá-la.

Uma hipótese estatística deve ser testável frente a

Um jornalista alega que a maior parte dos motoristas

Pesquisadores afirmam que a temperatura corporal média

dados obtidos de um experimento.

de adultos sadios não ultrapassa 37°C.

Mantenha isso em mente daqui a para a frente.

Identificando hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses

Testes de

Testes de

Identificando hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses

Roteiro

- Identificar a afirmação a ser testada e expressá-la em forma simbólica
- 2 Expressar em forma simbólica a afirmação que deve ser verdadeira, caso a afirmação de interesse seja falsa
- 3 Das duas expressões obtidas, a hipótese H_0 será a que contém igualdade =, enquanto a H_1 será a que contém um sinal de <, > ou \neq .

Example

Formulação verbal:

A proporção de motoristas que admitem atravessar o sinal vermelho é maior que 50%.

Formulação matemática:

 $H_0: p = 0.5$

 $H_1: p > 0.5$

Identificando hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses

Testes de

Identificando hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses

Example

Formulação verbal:

A altura média de jogadores profissionais de basquete é de no máximo 2.20m.

Formulação matemática:

 $H_0: \mu = 2.20$

 $H_1: \mu < 2.20$

Example

Formulação verbal:

A dose média contida em um comprimido de paracetamol é de 750mg.

Formulação matemática:

 $H_0: \mu = 750$

 $H_1: \mu \neq 750$

Protótipo

Considere o seguinte exemplo:

Example

Uma empresa oferece um produto que afirma que "ser capaz de aumentar as chances de que o sexo do bebê de um casal seja um menino em até 85%, e uma menina em até 80%". Você resolve testar o produto que confere maior chance de nascimento de meninas em 100 casais.

Há evidências para aceitar a alegação do produto, se forem observadas (em 100 nascimentos):

- 52 meninas?
- 2 97 meninas?

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância

Testes de Hipóteses para

Testes de Hipóteses

7.....

Protótipo

- No primeiro caso, dizemos que n\u00e3o h\u00e1 evid\u00e9ncia de que o produto seja eficaz, e que no segundo caso h\u00e1.
- Isso vale, mesmo considerando que em ambos os casos o resultado é acima da média.
- A diferença é que no segundo caso, o resultado é significativamente maior que o esperado ao acaso.

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses
Hipóteses
Significância

Testes de Hipóteses para

Testes de Hipóteses para a média

lesumo

Protótipo

Example

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Testes de Hipóteses

Testes de Hipóteses

Resumo

Protótipo

Esperamos cerca de 50 meninas em 100 nascimentos

 (H_0) . Como 52 é próximo de 50, não deveríamos

2 É muito pouco provável o nascimento de 97 meninas

1 um evento extremamente raro ocorrer ao acaso ou

em 100. Isso poderia ser explicado como

concluir que o produto é eficaz.

o produto é eficaz.

INTO

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses Hipóteses Significância Região crítica

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Rejeitar hipóteses

- INTO
- Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Significância Região crítica

Hipóteses para proporções

Testes de Hipóteses

Resumo

Ao executar um teste de hipóteses observamos se os dados indicam que se deve rejeitar a hipótese H₀.

- H₀ representa a possibilidade de observarmos o resultado ao acaso.
- Caso haja evidências para que H₀ seja rejeitada, "assumimos" que a H₁ deve ser verdadeira.
- Mas isso n\u00e3o significa que H₀ seja falsa e H₁ seja verdadeira!

Tipos de erros em testes de hipóteses

Um erro do tipo I ocorre se a hipótese nula for rejeitada

Um erro do tipo II ocorre se a hipótese não for rejeitada

Observe que o teste de hipótese nunca deve aceitar uma

hipótese nula, apenas rejeitá-la ou deixar de rejeitá-la.

Testes de Hipóteses I

> Felipe Figueiredo

Testes de Hipóteses

Significância

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Tipos de erros em testes de hipóteses

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses Significância Região crítica

Testes de Hipóteses para

Testes de Hipóteses para a média

Resumo

Rejeitar hipóteses

Importante

Definition

Definition

quando é verdadeira.

quando for falsa.

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses Significância

Testes de Hipóteses para

proporções
Testes de
Hipóteses

Daarraa

Nível de significância

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses

Significância Região crítica

Testes de Hipóteses para proporções

Testes de Hipóteses

Resumo

Definition

O nível de significância de um teste de hipótese é sua probabilidade máxima admissível para cometer um erro do tipo I. Ele é denotado por α .

Definition

A probabilidade de se cometer um erro do tipo II é denotada por β .

Identificando a região crítica

esquerda ou à direita) ou bicaudal.

Para identificar a região crítica (ou região de rejeição)

Se H₁ é do tipo ≠, o teste é bicaudal (ou bilateral).
Se H₁ é do tipo <, o teste é unicaudal (ou unilateral) à

• Se H_1 é do tipo >, o teste é unicaudal à direita.

Veremos a seguir uma estatística de teste para cada

Calculamos a estatística de teste e verificamos se esta

• Se a estatística de teste estiver dentro da região crítica,

do teste, devemos observar se o teste é unicaudal (à

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses

Significância Região crítica

Hipóteses
para
proporções

Testes de Hipóteses para a média

Resumo

Identificando a região crítica

Testes de Hipóteses I

Felipe Figueiredo

Hipóteses Hipóteses Significância

Significância Região crítica

Hipóteses para

Testes de Hipóteses para a média

Resumo

Decisão

tipo de teste.

está dentro da região crítica

• Caso contrário, não devemos rejeitar H_0 .

devemos rejeitar H_0

esquerda.

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses Hipóteses Significância

Região crítica
Testes de
Hipóteses
para

proporções
Testes de

Hipóteses para a méd

Resumo

Estatística de teste

Testes de

Felipe Figueiredo

Estatística de teste

Testes de

Hipóteses I

Felipe

Figueiredo

Exemplos

Em um teste de proporções, devemos considerar:

- n = tamanho da amostra
- \hat{p} = proporção na amostra
- p = proporção na população
- q = 1 p
- A estatística de teste para uma proporção é

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Exemplo

Solução

Hipóteses

$$H_0: p = 0.04$$

$$H_1: p > 0.04$$

- Região crítica: à direita de $z_{0.05} = 1.645$ (ou seja, qualquer $z > z_{0.05}$).
- Dados

$$n = 1000, \hat{p} = 0,06$$

Estatística de teste

$$z = \frac{0.06 - 0.04}{\sqrt{\frac{0.04 \times (1 - 0.04)}{1000}}} = 3.32$$

Hipóteses I

Estudos sobre mortalidade de homens com idade superior

a 65 anos de uma cidade mostram que 4% deles morrem

selecionados dessa população, 60 morreram no período de

dentro de um ano. Num grupo de 1000 indivíduos

um ano. Suspeita-se de que houve um aumento da

mortalidade anual nessa população.

- Como a estatística de teste está dentro da região crítica, rejeitamos H_0 ao nível de significância de 5%.
- Conclusão: rejeitamos a hipótese de que a proporção de idosos que morrem por ano nessa cidade é igual a 4%, em favor da hipótese de que essa proporção é maior 4%, ao nível de significância de 5%

Exemplo

Example

Hipóteses I

Felipe Figueiredo

Exemplos

Exemplo

Testes de Hipóteses I

> Felipe Figueiredo

Testes de Exemplos

Estatística de teste

- Testes de Hipóteses I
- Felipe Figueiredo

- Estatística de teste

- Em um teste para a média μ, devemos observar o tamanho da amostra.
- Se a amostra é grande, fazemos o teste Z (valor crítico z_c) com a estatística de teste:

$$z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

 Se a amostra for pequena, fazemos o teste t (valor crítico $t_{(al,\alpha)}$) com a estatística de teste:

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

Exemplo 1

- Para testar essa hipótese usaremos o teste t pois a amostra é pequena (n = 18) com gl = 17 graus de liberdade.
- Como o teste é unicaudal (à esquerda), consultamos a tabela para a significância $\alpha = 0.05$.
- Consultando a tabela t, encontramos o valor crítico $t_{(17,0.05)} = 1.74$
- Após calcular a estatística de teste, devemos comparar com o valor crítico t_c para verificar se ela está contida na região de rejeição.

Testes de Hipóteses I

Felipe Figueiredo

Testes de

Exemplo 1

Example

Hipóteses I

Felipe Figueiredo

Exemplo 1

Solução

Hipóteses

$$H_0$$
: $\mu = 40.5$

$$H_1: \mu < 40.5$$

• Região crítica: $t < -t_{(17.0.05)}$ (ou seja, qualquer t < -1.74).

Um método padrão para identificação de bactérias em

A nova técnica foi aplicada em uma amostra de 18

padrão amostral foi 1,96 horas.

hemoculturas e para cada uma mediu-se o tempo de execução. A média amostral foi 39.42 horas e o desvio

hemoculturas vem sendo utilizado há muitos anos e seu tempo médio de execução (desde a etapa de preparo das

amostras até a identificação do gênero e espécie) é de 40.5 horas. Um microbiologista propôs uma nova técnica que ele afirma ter menor tempo de execução que o método padrão.

Dados

$$n = 18, \bar{x} = 39.42, s = 1.96$$

Estatística de teste

$$t = \frac{39.42 - 40.5}{\frac{1.96}{\sqrt{18}}} = -2.34$$

Hipóteses I

Felipe Figueiredo

Exemplo:

Exemplo 1

- ONTO
- Testes de Hipóteses I

Felipe Figueiredo

- Testes de Hipóteses
- Testes de Hipóteses para
- Testes de Hipóteses para a média
- Resumo

Exemplo 2

 Para testar essa hipótese usaremos o teste Z pois a amostra é grande (n = 40).

• O valor t = -2.34 está dentro da região crítica

Como a estatística de teste está dentro da região

Conclusão: Rejeita-se a hipótese de que o tempo

40.5 horas, ao nível de significância de 5%

médio de execução do novo método é igual a 40.5

crítica, rejeitamos H_0 ao nível de significância de 5%.

horas, em favor da hipótese de que ele é menor do que

(t = -2.34 < -1.74).

- O teste é bicaudal, portanto consultamos a significância $\frac{\alpha}{2} = 0.025$.
- Consultando a tabela Z, encontramos o valor crítico $z_{0.025} = 1.96$.
- Após calcular a estatística de teste, devemos comparar com o valor crítico z_c para verificar se ela está contida na região de rejeição.

Testes de Hipóteses I

Felipe Figueiredo

Testes de

Testes de Hipóteses para

Testes de Hipóteses para a média Estatística de teste

Exemplos

Exemplo 2

Example

Testes de Hipóteses I

Felipe Figueiredo

Testes de Hipóteses

Testes de Hipóteses para

Testes de Hipóteses para a média Estatística de teste

Resumo

Exemplo 2

Solução

Hipóteses

$$H_0: \mu = 5.5$$

$$H_1: \mu \neq 5.5$$

• Região crítica: $z < -z_{0.025}$ ou $z > z_{0.025}$ (ou seja, z < -1.96 ou z > 1.96).

Uma indústria farmacêutica especifica que em certo

analgésico a quantidade média de ácido acetil salicílico deve ser 5.5 gramas por comprimido. A indústria suspeita

que houve problemas na produção de um determinado lote

está diferente da especificada. Para verificar essa suspeita,

e que, nesse lote, a quantidade média dessa substância

a indústria selecionou uma amostra aleatória de 40

desvio padrão de 0.7 gramas.

comprimidos desse lote, observando uma quantidade

média de ácido acetil salicílico igual a 5.2 gramas e um

Dados

$$n = 40, \bar{x} = 5.2, s = 0.7$$

Estatística de teste

$$z = \frac{5.2 - 5.5}{\frac{0.7}{\sqrt{1000}}} = -2.71$$

Testes de Hipóteses

Felipe Figueiredo

Hipóteses Testes de

Hipóteses para proporções

Testes de Hipóteses para a média Estatística de teste Exemplos

Posumo

Exemplo 2

- Testes de Hipóteses I
- Felipe Figueiredo

• O valor z = -2.71 está dentro da região crítica (z = -2.71 < -1.96).

 Como a estatística de teste está dentro da região crítica, rejeitamos H_0 ao nível de significância de 5%.

 Conclusão: rejeitamos a hipótese de que a quantidade média de ácido acetil salicílico (gramas por comprimido) de certo analgésico é igual a 5.5 gramas ao nível de significância de 5%

Bônus: Intervalo de Confiança

alternativa é bilateral.

Nessa situação, podemos usar o intervalo de confiança

calcularemos um intervalo de 95% de confiança para a

para realizar o teste de hipóteses, pois a hipótese

• Como queremos um teste a 5% de significância,

quantidade média de ácido acetil salicílico, por

Hipóteses I

Felipe Figueiredo

Exemplo 2 (a revanche)

•
$$1 - \alpha = 0.95$$

• $\alpha = 0.05$

$$\bullet \ \frac{\alpha}{2} = 0.025$$

• $z_c = z_{0.025} = 1.96$

• $IC_{0.95} = (5.2 \pm 1.96 \times \frac{0.7}{\sqrt{40}})$

• $IC_{0.95} = (5.2 \pm 0.2)$

• $IC_{0.95} = (5.0, 5.4)$

Lembrete da margem de erro: $E = z_c \times \frac{s}{\sqrt{n}}$

Testes de Hipóteses I

Felipe Figueiredo

Exemplos

Interpretação do IC

comprimido.

Interpretação

A quantidade média de ácido acetil salicílico, por comprimido, está entre 5,0 e 5,4 gramas, com 95% de confiança.

- Teste de hipóteses baseado no intervalo de confiança: o valor 5.5 não pertence ao intervalo de 95% de confiança para a quantidade média de ácido acetil salicílico, por comprimido.
- Conclusão: rejeitamos a hipótese de que a quantidade média de ácido acetil salicílico de certo analgésico é igual a 5.5 gramas ao nível de significância de 5%.

Hipóteses I

Felipe Figueiredo

Exemplos

Resumo

Para executar um teste de hipóteses, é necessário:

- Formular a hipótese a ser testada e a hipótese nula, e escrevê-las em linguagem simbólica (H₀ e H₁)
- ② Decidir qual o tipo de teste (unicaudal à esquerda, unicaudal à direita ou bicaudal)
- 3 Determinar a distribuição a ser usada e calcular a estatística de teste
- Verificar se esta está contida na região de rejeição e decidir se há evidências para rejeitar a hippótese H₀.

Testes de Hipóteses I

Felipe Figueiredo

Testes de

Testes de Hipóteses para

Testes de Hipóteses

Resumo