

Data warehouse design

Elena Baralis
Politecnico di Torino

Risk factors

- High user expectation
 - the data warehouse is the solution of the company's problems
- Data and OLTP process quality
 - incomplete or unreliable data
 - non integrated or non optimized business processes
- "Political" management of the project
 - cooperation with "information owners"
 - system acceptance by end users
 - deployment
 - · appropriate training

Data warehouse design

- Top-down approach
 - the data warehouse provides a global and complete representation of business data
 - significant cost and time consuming implementation
 - complex analysis and design tasks
- Bottom-up approach
 - incremental growth of the data warehouse, by adding data marts on specific business areas
 - separately focused on specific business areas
 - limited cost and delivery time
 - easy to perform intermediate checks

Business Dimensional Lifecycle

DATA WAREHOUSE: DESIGN - 4

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

> Elena Baralis Politecnico di Torino

Data mart design

Requirement analysis

Elena Baralis Politecnico di Torino

Requirement analysis

It collects

- data analysis requirements to be supported by the data mart
- implementation constraints due to existing information systems
- Requirement sources
 - business users
 - operational system administrators
- The first selected data mart is
 - crucial for the company
 - feeded by (few) reliable sources

Application requirements

- Description of relevant events (facts)
 - each fact represents a category of events which are relevant for the company
 - examples: (in the CRM domain) complaints, services
 - characterized by descriptive dimensions (setting the granularity), history span, relevant measures
 - informations are gathered in a glossary
- Workload description
 - periodical business reports
 - queries expressed in natural language
 - example: number of complaints for each product in the last month

Structural requirements

- Feeding periodicity
- Available space for
 - data
 - derived data (indices, materialized views)
- System architecture
 - level number
 - dependent or independent data marts
- Deployment planning
 - start up
 - training

Conceptual design

Elena Baralis Politecnico di Torino

Conceptual design

- No currently adopted modeling formalism
 - ER model not adequate
- Dimensional Fact Model (Golfarelli, Rizzi)
 - graphical model supporting conceptual design
 - for a given fact, it defines a fact schema modelling
 - dimensions
 - hierarchies
 - measures
 - it provides design documentation both for requirement review with users, and after deployment

Dimensional Fact Model

Fact

- it models a set of relevant events (sales, shippings, complaints)
- it evolves with time

Dimension

- it describes the analysis coordinates of a fact (e.g., each sale is described by the sale date, the shop and the sold product)
- it is characterized by many, typically categorical, attributes

Measure

- it describes a numerical property of a fact (e.g., each sale is characterized by a sold quantity)
- aggregates are frequently performed on measures

DFM: Hierarchy

- Each dimension can have a set of associated attributes
- The attributes describe the dimension at different abstraction levels and can be structured as a hierarchy
- The hierarchy represents a generalization relationship among a subset of attributes in a dimension (e.g., geografic hierarchy for the shop dimension)
- The hierarchy represents a functional dependency (1:n relationship)

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Comparison with ER

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Elena Baralis Politecnico di Torino

Advanced DFM

Elena Baralis Politecnico di Torino

Aggregation

- Aggregation computes measures with a coarser granularity than those in the original fact schema
 - detail reduction is usually obtained by climbing a hierarchy
 - standard aggregate operators: SUM, MIN, MAX, AVG, COUNT
- Measure characteristics
 - additive
 - not additive: cannot be aggregated along a given hierarchy by means of the SUM operator
 - not aggregable

Measure classification

Stream measures

- can be evaluated cumulatively at the end of a time period
- can be aggregated by means of all standard operators
- examples: sold quantity, sale amount

Level measures

- evaluated at a given time (snapshot)
- not additive along the time dimension
- examples: inventory level, account balance

Unit measures

- evaluated at a given time and expressed in relative terms
- not additive along any dimension
- examples: unit price of a product

Aggregate operators

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Aggregate operators

- Distributive
 - can always compute higher level aggregations from more detailed data
 - examples: sum, min, max

Non distributive operators

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Aggregate operators

Distributive

- can always compute higher level aggregations from more detailed data
- examples: sum, min, max

Algebraic

- can compute higher level aggregations from more detailed data *only* when supplementary support measures are available
- examples: avg (it requires count)

Olistic

- can not compute higher level aggregations from more detailed data
- examples: mode, median

Advanced DFM

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Advanced DFM

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Configuration Attribute

- Multi-valued categorical attribute
 - it can assume several values at the same time
 - characterized by a few distinct values (<=10)
- Representation by enumerating possible values
 - each attribute takes a boolean value (Y/N)
 - easier writing of complex queries

Factless fact schema

- Some events are not characterized by measures
 - empty (i.e., factless) fact schema
 - it records occurrence of an event
- Used for
 - counting occurred events (e.g., course attendance)
 - representing events not occurred (coverage set)

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Representing time

- Data modification over time is explicitly represented by event occurrences
 - time dimension
 - events stored as facts
- Also dimensions may change over time
 - modifications are typically slower
 - slowly changing dimension [Kimball]
 - examples: client demographic data, product description
 - if required, dimension evolution should be explicitly modeled

How to represent time (type I)

- Snapshot of the current value
 - data is overwritten with the current value
 - it overrides the past with the current situation
 - used when an explicit representation of the data change is not needed
 - example
 - customer Mario Rossi changes marital status after marriage
 - all his purchases correspond to the "married" customer

How to represent time (type II)

- Events are related to the temporally corresponding dimension value
 - after each state change in a dimension
 - a new dimension instance is created
 - new events are related to the new dimension instance
 - events are partitioned after the changes in dimensional attributes
 - example
 - customer Mario Rossi changes marital status after marriage
 - his purchases are partitioned in purchases performed by "unmarried" Mario Rossi and purchases performed by "married" Mario Rossi (a new instance of Mario Rossi)

How to represent time (type III)

- All events are mapped to a dimension value sampled at a given time
 - it requires the explicit management of dimension changes during time
 - the dimension schema is modified by introducing
 - two timestamps: validity start and validity end
 - a new attribute which allows identifying the sequence of modifications on a given instance (e.g., a "master" attribute pointing to the root instance)
 - each state change in the dimension requires the creation of a new instance

How to represent time (type III)

Example

- customer Mario Rossi changes marital status after marriage
- validity end timestamp of first Mario Rossi instance is given by the marriage date
- validity start timestamp of the new instance is the same day
- purchases are partitioned as in type II
- a new attribute allows tracking all changes of Mario Rossi instance

Workload

- Workload defined by
 - standard reports
 - approximate estimates discussed with users
- Actual workload difficult to evaluate at design time
 - if the data warehouse succeeds, user and query number may grow
 - query type may vary over time
- Data warehouse tuning
 - performed after system deployment
 - requires monitoring the actual system workload

Data volume

- Estimation of the space required by the data mart
 - for data
 - for derived data (indices, materialized views)
- To be considered
 - event cardinality for each fact
 - domain cardinality (number of distinct values) for hierarchy attributes
 - attribute length
- It depends on the temporal span of data storage
- Sparsity
 - occurred events are not all combinations of the dimension elements
 - example: the percentage of products actually sold in each shop and day is roughly 10% of all combinations

Sparsity

- It decreases with increasing data aggregation level
- May significantly affect the accuracy in estimating aggregated data cardinality

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Logical design

Elena Baralis Politecnico di Torino

Logical design

- We address the relational model (ROLAP)
 - inputs
 - conceptual fact schema
 - workload
 - data volume
 - system constraints
 - output
 - relational logical schema
- Based on different principles with respect to traditional logical design
 - data redundancy
 - table denormalization

Star schema

Dimensions

- one table for each dimension
- surrogate (generated) primary key
- it contains all dimension attributes
- hierarchies are not explicitly represented
 - all attributes in a table are at the same level
- totally denormalized representation
 - it causes data redundancy

Facts

- one fact table for each fact schema
- primary key composed by foreign keys of all dimensions
- measures are attributes of the fact table

Star schema

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

Snowflake schema

- Some functional dependencies are separated, by partitioning dimension data in several tables
 - a new table separates two branches of a dimensional hierarchy (hierarchy is cut on a given attribute)
 - a new foreign key correlates the dimension with the new table
- Decrease in space required for storing the dimension
 - decrease is frequently not significant
- Increase in cost for reading entire dimension
 - one or more joins are needed

Snowflake schema

From Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006 DATA WAREHOUSE: DESIGN - 39

Elena Baralis Politecnico di Torino

Star or snowflake?

- The snowflake schema is usually not recommended
 - storage space decrease is rarely beneficial
 - most storage space is consumed by the fact table (difference with dimensions is several orders of magnitude)
 - cost of join execution may be significant
- The snowflake schema is rarely used in the data mart design

Implementation techniques

- bridge table
 - new table which models many to many relationship
 - new attribute weighting the contribution of tuples in the relationship
- push down
 - multiple edge integrated in the fact table
 - new corresponding dimension in the fact table

Queries

- Weighted query: consider the weight of the multiple edge
 - example: author income
 - by using bridge table:

```
SELECT Author_ID, SUM(Income*Weight)
...
group by Author_ID
```

- Impact query: do not consider the weight of the multiple edge
 - example: book copies sold for each author
 - by using bridge table:

```
SELECT Author_ID, SUM(Quantity)
...
group by Author_ID
```


- Comparison
 - weight is explicited in the bridge table, but wired in the fact table for push down
 - (push down) hard to perform impact queries
 - (push down) weight is computed when feeding the DW
 - (push down) weight modifications are hard
 - push down causes significant redundancy in the fact table
 - query execution cost is lower for push down
 - less joins

Degenerate dimensions

Dimensions with a single attribute

Degenerate dimensions

- Implementations
 - Integration into the fact table
 - for attributes with a (very) small size
 - junk dimension
 - single dimension containing several degenerate dimensions
 - no functional dependencies among attributes in the junk dimension
 - all attribute value combinations are allowed
 - feasible only for attribute domains with small cardinality

Junk dimension

