MEEN 621 Notes

Shivanand P

November 16, 2022

Contents

1	Vort	ticity Dynamics
2	Pote	ential Flow
	2.1	$Stream \ Function \Leftrightarrow Potential \ Function \Leftrightarrow Velocities \ \dots $
		$Cartesian \Leftrightarrow Polar \ Velocities \qquad . \qquad \qquad 2$
		Complex Potentials
		2.3.1 Legend
		Infinite Series Expansions
	2.5	Bernoulli's Equation (Irrotational)
	2.6	Forces on a 2D Body
	2.7	Residue Theorem

1. Vorticity Dynamics

Circulation
$$\Gamma = \oint_C \vec{v} \cdot \vec{dl} = \int_S \vec{\omega} \cdot \hat{n} \ dA$$
 (Flux of Vorticity across surface S) Average angular velocity $\bar{\Omega} = \frac{\vec{u}_\theta}{a} = \frac{\oint_C \vec{v} \cdot \vec{dl}}{2\pi a^2} = \frac{\Gamma}{2\pi a^2}$ (On a circle of radius a) $= \frac{\omega_j n_j}{2}$ For Irrotational Flow, $\Gamma = 0$, $\vec{\omega} = 0$

2. Potential Flow

$$i = \sqrt{-1}$$

$$z = x + iy = re^{i\theta} = r(\cos\theta + i\sin\theta)$$

$$\bar{z} = x - iy = re^{-i\theta} = r(\cos\theta - i\sin\theta)$$

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$r = \sqrt{x^2 + y^2} = |z| = |z\bar{z}|^{\frac{1}{2}}$$

$$\theta = \arctan\frac{y}{x}$$

2D Incompressible Potential Flow
$$\nabla^2\phi=0=\nabla^2\psi$$

Complex Potential
$$F(z) = \phi(z) + i\psi(z)$$

Complex Velocity
$$w(z) = u - iv = (v_r - iv_\theta)e^{-i\theta} = \frac{dF(z)}{dz}$$

$$\bar{w}(z) = u + iv = (v_r + iv_\theta)e^{i\theta}$$

2.1. Stream Function ⇔ Potential Function ⇔ Velocities

Also called Cauchy Reimann Equations

$$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$$
$$v = \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

$$v_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
$$v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\partial \psi}{\partial r}$$

2.2. Cartesian ⇔ Polar Velocities

$$u = v_r \cos \theta - v_\theta \sin \theta$$

$$v = v_r \sin \theta + v_\theta \cos \theta$$

$$v_r = u\cos\theta + v\sin\theta$$

$$v_{\theta} = -u\sin\theta + v\cos\theta$$

2.3. Complex Potentials

	F(z)	φ	ψ	W(Z)	u and v _r	v and $v_{ heta}$
Uniform	Ue ^{−iα} z	$U(x\cos\alpha+y\sin\alpha)$	$U(y\cos\alpha-x\sin\alpha)$	$Ue^{-i\alpha}$	$U\cos\alpha$	$U\sin\alpha$
Ormonn		$Ur\cos(\theta-\alpha)$	$Ur\sin(\theta-\alpha)$		$U\cos(\theta-\alpha)$	$-U\sin(\theta-\alpha)$
Corner	Cz ⁿ			nCz^{n-1}		
Conner	C2	$Cr^n\cos n\theta$	Cr ⁿ sin nθ		$nCr^{n-1}\cos[(n-1)\theta]$	$-nCr^{n-1}\sin[(n-1)\theta]$
Source/Sink	$\frac{m}{2\pi}\ln(z-z_0)$	$\frac{m}{4\pi} \ln[(x-x_0)^2 + (y-y_0)^2]$	$\frac{m}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$\frac{m}{2\pi(z-z_0)}$	$\frac{m}{2\pi} \frac{x - x_0}{(x - x_0)^2 + (y - y_0)^2}$	$\frac{m}{2\pi} \frac{y - y_0}{(x - x_0)^2 + (y - y_0)^2}$
JOGICC/JIIIK		$\frac{m}{2\pi} \ln r$	$rac{m}{2\pi} heta$		$\frac{m}{2\pi r}$	0
Free Vortex	$-\frac{i\Gamma}{2\pi}\ln(z-z_0)$	$\frac{\Gamma}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$-\frac{\Gamma}{2\pi} \ln \sqrt{(x-x_0)^2 + (y-y_0)^2}$	$-\frac{i\Gamma}{2\pi(z-z_0)}$	$-\frac{\Gamma}{2\pi} \frac{y - y_0}{(x - x_0)^2 + (y - y_0)^2}$	$\frac{\Gamma}{2\pi} \frac{x - x_0}{(x - x_0)^2 + (y - y_0)^2}$
TICC VOITCX		$rac{\Gamma}{2\pi} heta$	$-\frac{\Gamma}{2\pi} \ln r$		0	$\frac{\Gamma}{2\pi r}$
Dipole	$\frac{\mu}{\pi z}$	$\frac{\mu}{\pi} \frac{x}{x^2 + y^2}$	$-\frac{\mu}{\pi}\frac{y}{x^2+y^2}$	$-\frac{\mu}{\pi z^2}$	$\frac{\mu}{\pi} \frac{y^2 - x^2}{(x^2 + y^2)^2}$	$-\frac{\mu}{\pi} \frac{2xy}{(x^2+y^2)^2}$
Dipole		$\frac{\mu}{\pi r}\cos\theta$	$-\frac{\mu}{\pi r}\sin\theta$		$-\frac{\mu}{\pi r^2}\cos\theta$	$-\frac{\mu}{\pi r^2}\sin\theta$

Legend

- Uniform
 - U: Uniform velocity magnitude
 - $-\alpha$: Angle of attack the angle at which the direction of the uniform velocity is oriented with respect to the horizontal
- Corner
 - C: Indicates the direction. C>0 always
 - n: $\frac{\pi}{\text{angle of the corner}}$
- Source/Sink
 - m: Volume flow rate per unit dimension normal to the page. For source, m > 0, whereas for sink, m < 0
- Dipole/Doublet
 - a: Half distance between the source and sink

- Q: Volume flow rate per unit dimension normal to the page

2.4. Infinite Series Expansions

•
$$\ln(1+\epsilon) = \epsilon - \frac{\epsilon^2}{2} + \frac{\epsilon^3}{3} - \dots$$
 when $|\epsilon| \leq 1$

•
$$(1+\epsilon)^{-1} = 1 - \epsilon + \epsilon^2 - \epsilon^3 + \dots$$
 when $|\epsilon| \le 1$

•
$$(1+\epsilon)^{\frac{1}{2}} = 1 + \frac{1}{2}\epsilon - \frac{1}{8}\epsilon^2 + \frac{1}{16}\epsilon^3 - \frac{5}{128}\epsilon^4 + \frac{7}{256}\epsilon^5 - \dots$$
 when $|\epsilon| \le 1$

•
$$(1+\epsilon)^{-\frac{1}{2}} = 1 - \frac{1}{2}\epsilon + \frac{3}{8}\epsilon^2 - \frac{5}{16}\epsilon^3 + \frac{35}{128}\epsilon^4 - \frac{63}{256}\epsilon^5 + \dots$$
 when $|\epsilon| \le 1$

•
$$e^{\epsilon} = 1 - \frac{\epsilon^2}{2!} + \frac{\epsilon^4}{4!} - \dots$$

•
$$\sin(\epsilon) = \epsilon - \frac{\epsilon^3}{3!} + \frac{\epsilon^5}{5!} - \frac{\epsilon^7}{7!} + \dots$$

2.5. Bernoulli's Equation (Irrotational)

$$p_{\infty} + \frac{\rho v_{\infty}^2}{2} = p + \frac{\rho |v^2|}{2}$$

2.6. Forces on a 2D Body

All the below forces have the units of Force per unit length normal to the sheet of paper

Drag Force
$$= -\int_C (p - p_\infty) \cos \theta \ ds$$

Lift Force $= -\int_C (p - p_\infty) \sin \theta \ ds$
Complex Force $G = D - iL = -i \oint_C p d\bar{z} = -i \oint_C \left[p_\infty + \frac{\rho v_\infty^2}{2} - \frac{\rho |v^2|}{2} \right] d\bar{z}$
 $= \frac{i\rho}{2} \oint_C |v^2| d\bar{z} = \frac{i\rho}{2} \oint_C w \bar{w} d\bar{z}$
 $= \frac{i\rho}{2} \oint_C [w(z)]^2 dz$ (First Blasius Integral Law)

2.7. Residue Theorem

If
$$F(z) = \sum_{i} \frac{R_{i}}{z - z_{i}}$$

$$\oint_{C} F(z)dz = 2\pi i \sum_{i} R_{i}$$