Special Matrices

Diagonally Dominant

A matrix is **diagonally dominant** when

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{ij}|$$

holes for each i = 1, 2, ..., n.

It is strictly diagonally dominant when,

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

Symmetric Positive Definite Matrices (SPD)

A matrix A is symmetric positive definite if it is symmetric and if $x^t Ax > 0$ for every n-dimensional vector $x \neq 0$.

If A is an $n \times n$ SPD matrix, then

- A has an inverse
- $a_{ii} > 0$ for each i = 1, 2, ..., n
- $max_{1 \le k, j \le n} |a_{kj}| \le max_{1 \le i \le n} |a_{ii}|$
- $(a_{ij})^2 < a_{ii}a_{jj}$, for each $i \leq j$

The matrix A is positive definite if and only if A can be factored in the form LDL^t , where L is lower triangular with 1s on its diagonal and D is a diagonal matrix with positive diagonal entries. The matrix A is positive definite if and only if A can be factored in the form LL^t , where L is lower triangular with nonzero diagonal entries.

Cholesky (LL^T)

Tridiagonal LU Factorization

Vector Norms

A vector norm on \mathbb{R}^n is a function, $||\cdot||$, from \mathbb{R}^n into \mathbb{R} with the following properties:

- $||x|| \ge 0$ for all $x \in \mathbb{R}^n$
- ||x|| = 0 if and only if x = 0
- $||\alpha x|| = |\alpha|||x||$ for all $\alpha \in R$, $x \in R^n$
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$

The l_2 norm is defined as such:

$$||x||_2 = \left\{\sum_{i=1}^n x_i^2\right\}^{\frac{1}{2}}$$

The l_{∞} norm is defined as such:

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$