PL1 TD fonctions et variations 2013-2014 durée 45mn.

Documents non autorisés, aucun appareil électronique n'est autorisé y compris la calculatrice.

Toute question dont le numéro aura été changé ne sera pas corrigée.

Soit la suite de terme général $U_n = \frac{1}{2} + \frac{(-1)^n}{n}$

 $\sqrt{1}$) montrer à l'aide du théorème des gendarmes que la limite de U_n est $\frac{1}{2}$.

Soit f définie par $f(x) = \frac{4}{(2x+5)^3}$

- √2) écrire f avec un exposant négatif.
- √3) calculer f'(x).

On donne la décomposition en éléments simples suivante: $h(x) = \frac{2x+5}{(x+1)^2} = \frac{2}{x+1} + \frac{3}{(x+1)^2}$

- 4) donner une primitive de h sur $]-1, +\infty [$.
- 5) donner une primitive de h sur $]-\infty$, -1 [.

Démonstration d'une inégalité triangulaire.

- 6) montrer que pour tous réels a et b on a: $|a+b| \le |a| + |b|$. Vous ferez l'hypothèse $\underline{b \ne 0}$ (le cas b=0 est évident) puis vous suivrez la démarche suivante:
 - diviser par |b|.
 - poser $|u| = \left| \frac{a}{b} \right|$.
 - élever au carré et raisonner sur |u|.

Soit f définie sur \mathbb{R} par $f(x) = \frac{x}{\sqrt{x^2 + 1}}$

- \mathcal{I}) écrire f(x) à l'aide d'une puissance fractionnaire.
- (8) calculer une primitive de f sur \mathbb{R} .