Selection - Pior caso: $O(n^2)$ - elementos ordenados em ordem inversa

Código	Custo
long int min, tmp	2
for(long int i = 0; i < size - 1; i++)	$\sum_{i=0}^{n-2}$
min = i	1
for(long int j = i + 1; j < size; j++)	$\sum_{j=i+1}^{n-1}$
<pre>if(vector[j] < vector[min])</pre>	1
min = j	1
<pre>tmp = vector[min]</pre>	1
<pre>vector[min] = vector[i]</pre>	1
<pre>vector[i] = tmp</pre>	1

Cálculo da função T(n) $T(n) = 2 + \sum_{i=0}^{n-2} \left(1 + \sum_{j=i+1}^{n-1} 2 + 1 + 1 + 1 \right)$ $=2+\sum_{i=0}^{n-2}\left(4+\sum_{j=i+1}^{n-1}2\right)$ $= 2 + \sum_{i=0}^{n-2} 4 + \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 2^{-j}$ $= 2 + 4n - 4 + \sum_{i=0}^{n-2} 2(n-2)$ $= 2 + 4n - 4 + 2n^2 - 4n$ $=2n^2-2\Rightarrow O(n^2)$

Selection - Melhor caso: $O(n^2)$ - elementos ordenados

Código	Custo
long int min, tmp	2
for(long int i = 0; i < size - 1; i++)	$\sum_{i=0}^{n-2}$
min = i	1
for(long int j = i + 1; j < size; j++)	$\sum_{j=i+1}^{n-1}$
<pre>if(vector[j] < vector[min])</pre>	1
min = j	0
<pre>tmp = vector[min]</pre>	1
<pre>vector[min] = vector[i]</pre>	1
<pre>vector[i] = tmp</pre>	1

Cálculo da função T(n)

$$T(n) = 2 + \sum_{i=0}^{n-2} \left(1 + \sum_{j=i+1}^{n-1} 1 + 1 + 1 + 1 \right)$$

$$= 2 + \sum_{i=0}^{n-2} \left(4 + \sum_{j=i+1}^{n-1} 1 \right)$$

$$= 2 + \sum_{i=0}^{n-2} 4 + \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

$$= 2 + 4n - 4 + \sum_{i=0}^{n-2} n - 2$$

$$= 2 + 4n - 4 + n^2 - 2n$$

$$= n^2 + 2n - 2 \Rightarrow O(n^2)$$

Insertion - Pior caso: $O\!\left(n^2\right)$ - elementos ordenados em ordem inversa

Código	Custo
long int tmp, i	2
for(long int j = 1; j < size; j++){	$\sum_{j=1}^{n-1}$
<pre>tmp = vector[j]</pre>	1
for(i = j - 1; (i >= 0) && (vector[i] > tmp); i)	$\sum_{i=0}^{j-1}$
<pre>vector[i + 1] = vector[i]</pre>	1
<pre>vector[i + 1] = tmp</pre>	1

Cálculo da função T(n)

$$T(n) = 2 + \sum_{j=1}^{n-1} \left(1 + \sum_{i=0}^{j-1} 1 + 1 \right)$$

$$= 2 + \sum_{j=1}^{n-1} \left(2 + \sum_{i=0}^{j-1} 1 \right)$$

$$= 2 + \sum_{j=1}^{n-1} 2 + \sum_{j=1}^{n-1} \sum_{i=0}^{j-1} 1$$

$$= 2 + 2(n-1) + \sum_{j=1}^{n-1} j$$

$$= 2 + 2n - 2 + \frac{n(n-1)}{2}$$

$$= \frac{n^2 + 5n}{2} \Rightarrow O(n^2)$$

Insertion - Melhor caso: O(n) - elementos ordenados

Código	Custo
long int tmp, i	2
for(long int j = 1; j < size; j++){	$\sum_{j=1}^{n-1}$
<pre>tmp = vector[j]</pre>	1
for(i = j - 1; (i >= 0) && (vector[i] > tmp); i)	1
<pre>vector[i + 1] = vector[i]</pre>	0
<pre>vector[i + 1] = tmp</pre>	1

Cálculo da função T(n)

$$T(n) = 2 + \sum_{j=1}^{n-1} (1+1+1)$$

$$= 2 + \sum_{j=1}^{n-1} 3$$

$$= 2 + 3(n-1)$$

$$= 2 + 3n - 3$$

$$= 3n - 1 \Rightarrow O(n)$$