```
Notation: let X be a set and let y: \mathbb{R} \to \mathbb{R} then y^{(0)} = y.
```

Notation: let X, Y be sets let $n \in \mathbb{N}_+$ and let $y \in C^n(X, Y)$ then $y^{(n)} = (y^{(n-1)})'$.

Ordinary Differential Equation (ODE): let $n \in \mathbb{N}$ and let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ then $f(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$.

Solution of an Ordinary Differential Equation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ then a function $y \in C^n(\mathcal{U})$ such that $f(x, y(x), \dots, y^{(n)}(x)) = 0$ for all $x \in \mathcal{U}$.

Notation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ then

$$\operatorname{sols}\left(f\left(x,y\left(x\right),y'\left(x\right),\ldots y^{\left(n\right)}\left(x\right)\right)=0\right)=\left\{y\in C^{n}\left(\mathcal{U}\right)\mid f\left(x,y\left(x\right),\ldots ,y^{\left(n\right)}\left(x\right)\right)=0\right\}.$$

First Order Ordinary Differential Equation: let $f: \mathbb{R}^3 \to \mathbb{R}$ then f(x, y, y') = 0.

Separable Ordinary Differential Equation: let $f, g : \mathbb{R} \to \mathbb{R}$ then y' = f(y) g(x).

Claim Separation of Variables: let $f,g:\mathbb{R}\to\mathbb{R}$ such that $f(x)\neq 0$ for all $x\in\mathbb{R}$ then

$$\operatorname{sols}\left(y'=f\left(y\right)g\left(x\right)\right)=\operatorname{sols}\left(\int \frac{1}{f\left(y\right)}\mathrm{d}y=\int g\left(x\right)\mathrm{d}x\right).$$

Corollary: sols $(y = y') = \{Ce^x \mid C \in \mathbb{R}\}.$

Curves that foliate a domain: Let $\Omega \subseteq \mathbb{R}^2$ and let $I \subseteq \mathbb{R}$ then a set of curves $\{\gamma_\alpha\} \subseteq I \to \mathbb{R}$ such that $[+] \gamma_i = \Omega$.

Claim: sols (y = y') foliate the plane.

Remark: let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $g \in \text{sols}(f(x, y, \dots, y^{(n)}))$ such that g is piecewise continuous then each continuous branch of q is a solution of the ODE.

Initial Value Problem (IVP): let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $p \in \mathbb{R}^2$ then $\left\{ egin{array}{l} f\left(x,y',\dots y^{(n)}\right)=0 \\ y(p_1)=p_2 \end{array} \right.$. Theorem Cauchy-Peano: let $I,J\subseteq\mathbb{R}$ be closed intervals let $f\in C^1\left(I\times J\right)$ and let $p\in \operatorname{int}\left(I\times J\right)$ then there exists $\varepsilon>0$ such that $\begin{cases} y'=f(x,y) \\ y(p_1)=p_2 \end{cases}$ has a solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$.

Theorem of Existence and Uniqueness: let $I,J\subseteq\mathbb{R}$ be closed intervals let $f\in C^1\left(I\times J\right)$ and let $p\in\operatorname{int}\left(I\times J\right)$ then there exists $\varepsilon>0$ such that $\left\{ egin{array}{ll} y'=f(x,y) \\ y(p_1)=p_2 \end{array}
ight.$ has a unique solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$.

Corollary: let $I, J \subseteq \mathbb{R}$ be closed intervals and let $f \in C^1(I \times J)$ then sols (y' = f(x, y)) foliates $I \times J$.

Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C(\Omega, \mathbb{R}^2)$.

Integral curve: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then a curve $\gamma:[a,b]\to\Omega$ such that $\frac{\mathrm{d}\gamma}{\mathrm{d}t}(t)=\nu\,(g\,(t))$.

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field such that $v(x)\neq 0$ for all $x\in\Omega$ and let $\gamma:[a,b]\to\Omega$ be a curve such that $v\left(\gamma\left(t\right)\right) \in T_{\gamma\left(t\right)}\left(\operatorname{Im}\left(\gamma\right)\right)$ for all $t \in [a,b]$ then there exists a curve $\eta: [\alpha,\beta] \to [a,b]$ such that $\gamma \circ \eta$ is an integral curve. C^n Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C^n(\Omega, \mathbb{R}^2)$.

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a C^1 vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\land (\gamma \text{ is an integral curve of }\nu)\}$ foliates Ω .

Theorem Peano: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\land (\gamma \text{ is an integral curve of }\nu)\}$ covers Ω .

Lemma: let $\Omega \subseteq \mathbb{R}^2$ be a domain and let $f \in C^1(\Omega)$ then $\binom{1}{f}$ is a vector field.

Theorem of Existence and Uniqueness: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f \in C^1(\Omega)$ and let $g \in C^1(\mathbb{R})$ then $(g' = f(x,g)) \iff ((\frac{x}{g}) \text{ is an integral curve of } (\frac{1}{f})).$

Autonomous Ordinary Differential Equations: let $f: \mathbb{R} \to \mathbb{R}$ then y' = f(y).

Logistic Equation: let L > 0 then $\dot{P}(t) = P(t)(L - P(t))$.

Equilibrium Solution: let $f: \mathbb{R} \to \mathbb{R}$ then a function $g \in \operatorname{sols}(y' = f(y))$ such that f(g(x)) = 0 for all $x \in \mathbb{R}$.

Corollary: let $f \in C(\mathbb{R})$ and let $g : \mathbb{R} \to \mathbb{R}$ be an equilibrium solution then g is constant.

Corollary: let L > 0 then $\{0, L\}$ are the equilibrium solutions of the logistic equation.

Logistic Equation With Harvesting: let L, k > 0 then $\dot{P}(t) = P(t)(L - P(t)) - k$.

Stable Equilibrium Solution: let $f: \mathbb{R} \to \mathbb{R}$ then an equilibrium solution $g: \mathbb{R} \to \mathbb{R}$ such that for all $y \in \text{sols}\,(y' = f(y))$ and for all $\varepsilon > 0$ if there exists $\delta > 0$ and $p \in \mathbb{R}$ for which $|y(p) - g(p)| < \delta$ then $|y(t) - g(t)| < \varepsilon$ for all t > p.

Notation: let X be a set and let $\gamma: \mathbb{R} \to X$ then $\dot{\gamma} = \frac{d\gamma}{dt}$.

Notation: let X be a set and let $\gamma: \mathbb{R} \to X$ then $\ddot{\gamma} = \frac{d}{d}$

Remark: the notation $\dot{\gamma}, \ddot{\gamma}$ is often used when γ is a function of time.

System of Ordinary Differential Equation: let $n \in \mathbb{N}$ let $m \in \mathbb{N}_+$ and let $f : \mathbb{R} \times (\mathbb{R}^m)^n \to \mathbb{R}^m$ then $f(t, y(t), y'(t), \dots y^{(n)}(t)) = 0.$

Remark: all the theory of first order ODEs also applies to vectors of first order ODEs.

Claim: let $\alpha > 0$ then $\{\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\}$ are the equilibrium solutions of the lotka-volterra equation.

Conserved Quantity: let $\mathcal{U}\subseteq\mathbb{R}^n$ and let $f:\mathcal{U}\to\mathbb{R}$ then a function $g\in C^1(\mathcal{U})$ such that $g\circ y$ is constant for all $y \in \text{sols}(y' = f(y)).$

Claim: let $\alpha>0$ and let $\binom{x}{y}\in C^1\left(\mathbb{R}^2\right)$ be a solution to the lotka-volterra equation then $\frac{\mathrm{d}}{\mathrm{d}t}\left(\left(y\left(t\right)-1-\log\left(y\left(t\right)\right)\right)+\alpha\left(x\left(t\right)-1-\log\left(x\left(t\right)\right)\right)\right)=0.$

and $\frac{1}{T} \int_0^T y dt = 1$.

Claim Linear Substitution: let $a,b,c\in\mathbb{R}$ let $f:\mathbb{R}\to\mathbb{R}$ and let $y\in\operatorname{sols}\left(y'=f\left(ax+by+c\right)\right)$ then the function $z:\mathbb{R}\to\mathbb{R}$ which defined by z(x) = ax + by + c satisfies z' = a + bf(z).

Notation: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f:\Omega \to \mathbb{R}$ and let $p \in \mathbb{R}^2$ then (α_-, α_+) is the maximal interval where a solution to $\begin{cases} y'=f(x,y) & \text{is defined.} \\ y(p_1)=p_2 & \end{cases}$

Corollary: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f \in C^1(\Omega)$ and let $p \in \mathbb{R}^2$ then $\alpha_- < p_1 < \alpha_+$.

Theorem: let $f \in C^1(\mathbb{R}^2)$ and let $p \in \mathbb{R}^2$ then

- $(\alpha_+ < \infty) \iff (\lim_{x \to \alpha_+^-} |y(x)| = \infty).$

 $\bullet \ \, \left(-\infty < \alpha_{-}\right) \Longleftrightarrow \left(\lim_{x \to \alpha_{-}^{+}} |y\left(x\right)| = \infty\right).$ Theorem Extensibility of Solutions: let $D \subseteq \mathbb{R}^{n+1}$ be a closed set let $f \in C^{1}\left(D, \mathbb{R}^{n}\right)$ and let $y \in \operatorname{sols}\left(y' = f\left(x, y\right)\right)$ such that $\Gamma_{y}\cap D\neq\varnothing$ then there exists $\psi:\left[a,b\right]\rightarrow\mathbb{R}^{n}$ such that $\psi\in\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ and $\psi\left(x\right)=y\left(x\right)$ for all $x\in\operatorname{Dom}\left(y\right)$ and $\begin{pmatrix} a \\ \psi(a) \end{pmatrix}, \begin{pmatrix} b \\ \psi(b) \end{pmatrix} \in \partial D$.

Corollary: let $D \subseteq \mathbb{R}^{n+1}$ such that for all $\alpha, \beta \in \mathbb{R}$ the set $D \cap \{\alpha \leq x_1 \leq \beta\}$ is bounded let $f \in C^1(D, \mathbb{R}^n)$ and let $y\in\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ such that $\Gamma_{y}\cap D\neq\varnothing$ then one of the next statements is true

- ullet there exists $\psi:\left[a,b
 ight]
 ightarrow \mathbb{R}^{n}$ such that $\psi\in\operatorname{sols}\left(y'=f\left(x,y
 ight)
 ight)$ and $\psi\left(x
 ight)=y\left(x
 ight)$ for all $x\in\operatorname{Dom}\left(y
 ight)$ and $\left(\begin{smallmatrix} a \\ \psi(a) \end{smallmatrix}\right), \left(\begin{smallmatrix} b \\ \psi(b) \end{smallmatrix}\right) \in \partial D.$ • there exists $\psi: \mathbb{R} \to \mathbb{R}^n$ such that $\psi \in \operatorname{sols}\left(y' = f\left(x,y\right)\right)$ and $\psi\left(x\right) = y\left(x\right)$ for all $x \in \operatorname{Dom}\left(y\right)$.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $D \subseteq \mathbb{R}^n$ let $f \in C^1(I \times D, \mathbb{R}^n)$ and let $p, q : \mathbb{R} \to \mathbb{R}$ such that

 $\|f\left(x,y\right)\|\leq p\left(x\right)\|y\|+q\left(x\right)$ then for all $y\in\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ such that $\Gamma_{y}\cap\left(I\times D\right)\neq\varnothing$ there exists $\psi:I\to\mathbb{R}^{n}$ such that $\psi \in \operatorname{sols}(y' = f(x, y))$ and $\psi(x) = y(x)$ for all $x \in \operatorname{Dom}(y)$.

Theorem Continuous Dependence on Initial Conditions: let $\Omega \subseteq \mathbb{R}^2$ let $f \in C^1(\Omega)$ let $a,b,p \in \mathbb{R}$ and let y_p be a solution to $\left\{ \begin{array}{l} y'=f(x,y) \\ y(a)=p \end{array} \right. \text{ such that } y_p \text{ is defined on } [a,b] \text{ then for all } \varepsilon>0 \text{ there exists } \delta>0 \text{ such that for all } q\in\mathbb{R} \text{ for which } |p-q|<\delta \right\}$

if y_q is a solution to $\begin{cases} y'=f(x,y) \\ y(a)=q \end{cases}$ then y_q is defined on [a,b] and $|y_p-y_q|<\varepsilon$.

Theorem: let $\Omega\subseteq\mathbb{R}^2$ let $f\in C^1\left(\Omega\right)$ let $a,b\in\mathbb{R}$ let $g\in C^1\left([a,b]\right)$ and let $\{g_n\}_{n=0}^\infty\subseteq\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ such that g_n is defined on [a,b] for all $n \in \mathbb{N}$ and $g_n \xrightarrow{p.w.} g$ then $g \in \operatorname{sols}(y' = f(x,y))$.

n-th Order Ordinary Differential Equation: let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ then $f(x, y \dots y^{(n)}) = 0$.

Claim: let $n \in \mathbb{N}_+$ let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $g: \mathbb{R} \to \mathbb{R}$ then

$$\left(g \in \operatorname{sols}\left(f\left(t, x\left(t\right) \dots x^{(n)}\left(t\right)\right) = 0\right)\right) \Longleftrightarrow \left(\left(\begin{array}{c} g \\ \vdots \\ g^{(n)} \end{array} \right) \in \operatorname{sols}\left(\left\{ \begin{array}{c} y_1 = \dot{x} \\ \vdots \\ y_{n-1} = y_{n-2} \\ y_{n-1} = f(t, x, y_1 \dots, y_{n-1}) \end{array} \right) \right)$$

Harmonic Oscillator/Spring Position Equation: $\ddot{x} = -x$.

Claim: the function $E\left(x,y\right)=\frac{1}{2}x^2+\frac{1}{2}y^2$ is a conserved quantity of $\left\{ egin{array}{l} \dot{x}=y\\ \dot{y}=-x \end{array} \right.$

Spring with Friction Position Equation: $\ddot{x} = -x - \dot{x}$.

Constant Tension Spring Position Equation: $\ddot{x} = -1$.

Claim: the function $E(x,y) = x + \frac{1}{2}y^2$ is a conserved quantity of $\begin{cases} \dot{x} = y \\ \dot{y} = -1 \end{cases}$. Gravity in One Dimension Equation: $\ddot{x} = -\frac{1}{r^2}$. Claim: the function $E\left(x,y\right)=\frac{1}{x}+\frac{1}{2}y^2$ is a conserved quantity of $\left\{ egin{array}{l} \dot{x}=y\\ \dot{y}=-\frac{1}{x} \end{array}
ight.$ **Pendulum Equation:** $\ddot{x} = -\sin(x)$. Claim: the function $E\left(x,y\right)=\frac{1}{2}y^{2}-\cos\left(x\right)$ is a conserved quantity of $\begin{cases} \dot{x}=y\\ \dot{y}=-\sin\left(x\right) \end{cases}$. **Differential 1-form:** let $P,Q:\mathbb{R}^2\to\mathbb{R}$ then $P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y$. Remark: in this course we won't explain the formal definition of a differential 1-form so we will use it as an object with certain properties. **Integral:** let $\gamma:[a,b]\to\mathbb{R}^2$ be a curve and let $P,Q:\mathbb{R}^2\to\mathbb{R}$ then $\int_{\mathbb{R}} (P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y) = \lim_{\Delta \to 0} \sum_{i=0}^{n-1} (P(x_i,y_i) \, (x_{i+1} - x_i) + Q(x_i,y_i) \, (y_{i+1} - y_i)).$ **Remark:** in the definition above $\lim_{\Delta\to 0}$ is the limit of all partitions of γ to horizontal and vertical segments. Claim: let $\gamma:[a,b]\to\mathbb{R}^n$ be a curve let $\nu:[\alpha,\beta]\to[a,b]$ such that $\gamma\circ\nu$ is a reparameterization of γ and let ω be a differential 1-form then $\int_{\gamma} \omega = \int_{\gamma \circ \nu} \omega$. Claim: let $\gamma:[a,b]\to\mathbb{R}^n$ be a curve and let ω be a differential 1-form then $\int_{\gamma}\omega=-\int_{-\gamma}\omega$. Integral: let $\gamma:[a,b] \to \mathbb{R}^2$ be a curve and let $f,g:\mathbb{R}^2 \to \mathbb{R}$ then $\int_{\gamma} f \mathrm{d}g = \lim_{\Delta \to 0} \sum_{i=0}^{n-1} \left(f\left(x_i,y_i\right) \left(g\left(x_{i+1},y_{i+1}\right) - g\left(x_i,y_i\right) \right) \right)$. Claim: let $g \in C^1(\mathbb{R}^2)$ then $dg = \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy$. Corollary: let $\gamma:[a,b]\to\mathbb{R}^2$ be a curve let $f:\mathbb{R}^2\to\mathbb{R}$ and let $g\in C^1\left(\mathbb{R}^2\right)$ then $\int_{\gamma}f\mathrm{d}g=\int_{\gamma}\Big(f\cdot\frac{\partial g}{\partial x}\mathrm{d}x+f\cdot\frac{\partial g}{\partial y}\mathrm{d}y\Big)$. **Exact Differential 1-form:** a differential **1-form** ω such that there exists $g \in C^1(\mathbb{R}^2)$ for which $\omega = \mathrm{d}g$. **Theorem:** let ω be a differential 1-form then TFAE $\bullet \ \ \text{there exists} \ f:\mathbb{R}\to\mathbb{R} \ \text{such that for all curves} \ \gamma:[a,b]\to\mathbb{R}^2 \ \text{we have} \ \int_{\gamma}\omega=f\left(\gamma\left(b\right)\right)-f\left(\gamma\left(a\right)\right).$ ullet for all closed curves $\gamma:[a,b]\to\mathbb{R}^2$ we have $\int_{\gamma}\omega=0.$ **Primitive/Potential:** let ω be an exact differential **1-**form then $g\in C^1\left(\mathbb{R}^2
ight)$ such that $\omega=\mathrm{d} g$. Claim: let $X:\mathbb{R}\to\mathbb{R}^3$ and let $f:\mathbb{R}^3\to\mathbb{R}$ then $\frac{\mathrm{d}}{\mathrm{d}t}(f\circ X)=(\nabla f)\cdot\dot{X}.$ Conservative Vector Field: a vector field $F: \mathbb{R}^n \to \mathbb{R}^n$ such that there exists $U \in C^1(\mathbb{R}^n)$ for which $F = -\nabla U$. $\text{Kinetic Energy: let } X \in C^{1}\left(\mathbb{R},\mathbb{R}^{n}\right) \text{ then } K:\mathbb{R}^{n} \rightarrow \mathbb{R} \text{ such that } K\left(X\left(t\right)\right) = \frac{\left\|\dot{X}\left(t\right)\right\|^{2}}{2}.$ **Total Energy:** let $U \in C^1(\mathbb{R}^n)$ let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a conservative vector field such that $F = -\nabla U$ let $X \in \text{sols}\left(\ddot{X} = F(X)\right)$ and let $K:\mathbb{R}^n \to \mathbb{R}$ be the kinetic energy of X then $E:\mathbb{R}^n \to \mathbb{R}$ such that E=K+U. **Lemma:** let $U \in C^1(\mathbb{R}^n)$ let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a conservative vector field such that $F = -\nabla U$ let $X \in \operatorname{sols}\left(\ddot{X} = F(X)\right)$ and let $E: \mathbb{R}^n \to \mathbb{R}$ be the total energy of X then $\dot{E}(X(t)) = 0$. Weighted Average/Center of Mass: let $p_1 \dots p_n \in \mathbb{R}^n$ and let $w: \{p_1 \dots p_n\} \to \mathbb{R}_+$ then $\frac{\sum_{i=1}^n w(p_i) \cdot p_i}{\sum_{i=1}^n w(p_i)}$. Center of Mass: let $K \subseteq \mathbb{R}^2$ be compact and let $\rho: K \to \mathbb{R}$ then $\left(\frac{\int_K x \cdot \rho(x,y) \mathrm{d}x \mathrm{d}y}{\int_K \rho(x,y) \mathrm{d}x \mathrm{d}y}, \frac{\int_K y \cdot \rho(x,y) \mathrm{d}x \mathrm{d}y}{\int_K \rho(x,y) \mathrm{d}x \mathrm{d}y}\right)$. Line: let $A, B \in \mathbb{R}^2$ then $L_{A,B} = \{\lambda A + (1 - \lambda) B \mid \lambda \in [0,1]\}.$ **Triangle:** let $A, B, C \in \mathbb{R}^2$ such that $A \notin L_{B,C}$ and $B \notin L_{A,C}$ and $C \notin L_{A,B}$ then $\{A, B, C\}$. Theorem Ceva: let $A,B,C\in\mathbb{R}^2$ such that $\{A,B,C\}$ is a triangle let $A'\in L_{B,C}$ let $B'\in L_{A,C}$ and let $C'\in L_{A,C}$ then $(L_{A,A'}\cap L_{B,B'}\cap L_{C,C'}\neq\varnothing)\Longleftrightarrow \left(\frac{d(A,B')}{d(B',C)}\cdot\frac{d(C,A')}{d(A',B)}\cdot\frac{d(B,C')}{d(C',A)}=1\right)$. Special Orthogonal Group: let $n \in \mathbb{N}$ then SO $(n) = \left\{A \in M_n\left(\mathbb{R}\right) \mid \left(\det\left(A\right) = 1\right) \wedge \left(A^T = A^{-1}\right)\right\}$. Cross Product: let $x, y \in \mathbb{R}^3$ then $x \times y = \begin{pmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_2 - x_2y_1 \end{pmatrix}$. Claim Antisymmetry: let $x, y \in \mathbb{R}^3$ then $x \times y = -y \times x$. Claim Orthogonality: let $x, y \in \mathbb{R}^3$ be linearly independent then $x \times y \perp x$ and $x \times y \perp y$. Claim: let $x, y \in \mathbb{R}^3$ and let θ be the angle between x, y then $||x \times y|| = ||x|| \cdot ||y|| \cdot \cos(\theta)$. **Corollary:** let $x, y \in \mathbb{R}^3$ then $(x \times y = 0) \iff (x, y \text{ are linearly dependent)}$.

Claim: let $x, y, z \in \mathbb{R}^2$ and let $\alpha, \beta \in \mathbb{R}$ then $(\alpha x + \beta y) \times z = \alpha (x \times z) + \beta (y \times z)$.

Claim: let $X, Y \in C^1(\mathbb{R}^3)$ then $\frac{d}{dt}(X \times Y) = \dot{X} \times Y + X \times \dot{Y}$.

Angular Momentum: let $X \in C^1(\mathbb{R}^3)$ then $X \times \dot{X}$.

Lemma: angular momentum is a conserved quantity of $\ddot{X} = -\frac{X}{\|X\|^2}$.

Exact Ordinary Differential Equation: let $\Omega\subseteq\mathbb{R}^2$ and let $F\in C^1\left(\Omega\right)$ then $\frac{\partial F}{\partial x}\left(x,y\right)+y'\cdot\frac{\partial F}{\partial y}\left(x,y\right)=0$.

 $\text{\bf Remark:} \ \ \text{let} \ \Omega \subseteq \mathbb{R}^2 \ \ \text{and let} \ \ F \in C^1\left(\Omega\right) \ \ \text{then} \ \ \frac{\partial F}{\partial x} + y' \cdot \frac{\partial F}{\partial y} = \mathrm{d}F.$

 $\text{Claim: let }\Omega\subseteq\mathbb{R}^{2}\text{ let }F\in C^{1}\left(\Omega\right)\text{ and let }y\in C^{1}\left(\mathbb{R}\right)\text{ then }\frac{\mathrm{d}}{\mathrm{d}t}\left(F\left(x,y\left(x\right)\right)\right)=0.$

Remark: let $\Omega \subseteq \mathbb{R}^2$ let $F \in C^1(\Omega)$ and let $c \in \mathbb{R}$ then $\{F = c\}$ are solutions to $\frac{\partial F}{\partial x}(x,y) + y' \cdot \frac{\partial F}{\partial y}(x,y) = 0$.

Claim: let $\Omega \subseteq \mathbb{R}^2$ be a simply connected domain and let $P,Q \in C^1(\Omega)$ then $(P(x,y) + y' \cdot Q(x,y) = 0$ is an exact ODE) \iff $(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x})$.

Fibonacci Sequence: a sequence $F: \mathbb{N} \to \mathbb{N}$ such that $F_0 = 0$ and $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for $n \in \mathbb{N}$.

Lemma: let $n, m \in \mathbb{N}$ then $F_{m+n+1} = F_m F_n + F_{m+1} F_{n+1}$.

Lemma Cassini Identity: let $n \in \mathbb{N}_+$ then $F_n^2 = F_{n+1}F_{n-1} + (-1)^{n-1}$.

Left Shift Operator: a function LS: $(\mathbb{N} \to \mathbb{C}) \to (\mathbb{N} \to \mathbb{C})$ such that LS $(x) = \lambda n \in \mathbb{N}.x_{n+1}$.

Remark; let $x \in \mathbb{N} \to \mathbb{C}$ then $(\forall n \in \mathbb{N}.x_{n+2} = x_{n+1} + x_n) \iff (x \in \ker(LS^2 - LS - 1))$.

Lemma: let $p,q\in\mathbb{C}\left[x\right]$ then $\left(p\cdot q\right)\left(\mathrm{LS}\right)=p\left(\mathrm{LS}\right)\cdot q\left(\mathrm{LS}\right)$.

Corollary: $LS^2 - LS - 1 = \left(LS - \frac{-1 + \sqrt{5}}{2}\right) \left(LS - \frac{-1 - \sqrt{5}}{2}\right)$.

Homogeneous Linear Ordinary Differential Equation: let $n \in \mathbb{N}$ and let $a_0 \dots a_{n-1} : \mathbb{R} \to \mathbb{R}$ then $y^{(n)} + \sum_{i=0}^{n-1} a_i(x) \cdot y^{(i)} = 0$.

Remark: In this course we will discuss only homogeneous linear ODEs where the coefficients are constant.

Characteristic Polynomial of a Homogeneous Linear Ordinary Differential Equation: let $n \in \mathbb{N}$ and let $a_0 \dots a_{n-1} \in \mathbb{R}$ then $p(x) = x^n + \sum_{i=0}^{n-1} a_i \cdot x^i$.

Claim: let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} \in \mathbb{R}$ and let $f,g \in \operatorname{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right)$ then

 $f + g \in \text{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right).$

Theorem: let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} \in \mathbb{R}$ and let $\alpha \in \mathbb{R}$ be a solution to p(x) with multiplicity ρ then

 $\{x^0 e^{\alpha x}, \dots, x^{\rho-1} e^{\alpha x}\} \subseteq \operatorname{sols} \left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right).$

Claim: let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} \in \mathbb{R}$ and let $f \in \operatorname{sols}\left(y^{\binom{n}{n}} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right)$ then

Re (f), Im $(f) \in \operatorname{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right)$.

Linear System of Ordinary Differential Equation: let $n \in \mathbb{N}$ and let $A \in M_n(\mathbb{R})$ then $y'(x) = A \cdot y(x)$.

Definition: let $A \in M_n(\mathbb{R})$ then $\max(|A|) = \max\{\left|\left|(A)_{i,j}\right| \mid i, j \in [n]\}\right\}$.

Lemma: let $n, k \in \mathbb{N}$ let $A \in M_n(\mathbb{R})$ and let $i, j \in [n]$ then $(A)_{i,j}^k \leq n^{k-1} \cdot \max(|A|)^k$.

Corollary: let $n, k \in \mathbb{N}$ let $A \in M_n(\mathbb{R})$ and let $i, j \in [n]$ then $(A)_{i,j}^k \leq (n \cdot \max(|A|))^k$.

Theorem: let $n \in \mathbb{N}$ and let $A \in M_n(\mathbb{R})$ then $\sum_{k=0}^{\infty} \frac{A^k}{k!} \in M_n(\mathbb{R})$.

Definition: let $n \in \mathbb{N}$ and let $A \in M_n(\mathbb{R})$ then $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$.

Lemma: let $A\in M_n\left(\mathbb{R}\right)$ and let $s,t\in\mathbb{R}$ then $e^{sA}\cdot e^{tA}=e^{(s+t)A}$.

Claim: let $A, B \in C^1(\mathbb{R}, M_n(\mathbb{R}))$ then $\frac{\mathrm{d}}{\mathrm{d}t}(AB) = \dot{A}B + \dot{A}\dot{B}$.

Corollary: let $A\in C^{1}\left(\mathbb{R},M_{n}\left(\mathbb{R}\right)\right)$ and let $v\in C^{1}\left(\mathbb{R},\mathbb{R}^{n}\right)$ then $\frac{\mathrm{d}}{\mathrm{d}t}\left(Av\right)=\dot{A}v+A\dot{v}.$

Lemma: let $A \in M_n\left(\mathbb{R}\right)$ then $\left(\frac{\mathrm{d}}{\mathrm{d}t}\left(e^{tA}\right)\right)\left(0\right) = A$.

Corollary: let $A \in M_n(\mathbb{R})$ and let $\mu \in \mathbb{R}$ then $\left(\frac{\mathrm{d}}{\mathrm{d}t}\left(e^{tA}\right)\right)(\mu) = e^{\mu A}A$.

Theorem: let $n\in\mathbb{N}$ and let $A\in M_n\left(\mathbb{R}\right)$ then $e^{tA}v$ is a solution to $\begin{cases} y'=A\cdot y \\ y(0)=v \end{cases}$

Zeckendorff Representation: let $n \in \mathbb{N}$ let $k \in \mathbb{N}$ and let $c_0 \dots c_k \in \mathbb{N}$ such that $c_0 \geq 2$ and $c_{i+1} > c_i + 1$ for all $i \in \{0 \dots k-1\}$ and $n = \sum_{i=0}^k F_{c_i}$ then $(F_{c_0}, \dots, F_{c_k})$.

Theorem Zeckendorff: let $n \in \mathbb{N}$ then

- ullet Existence: there exists a zeckendorff representation for n.
- Uniqueness: let $(F_{c_0}, \dots, F_{c_k}), (F_{d_0}, \dots, F_{d_m})$ be zeckendorff representations for n then k = m and $c_i = d_i$ for all $i \in \{0 \dots k-1\}$.