Biomedical Informatics 260: Computational Methods for Biomedical Image Analysis and Interpretation

Class Introduction and
Biomedical Imaging Modalities
Lecture 1

David Paik, PhD Spring 2017

Class Introduction

Course Learning Objectives

- How images are acquired
- How to extract information from images
- Machine learning over images
- Representation of what we see in images
- Reasoning over images
- Applications of imaging informatics
- Hands on experience!

From Images to Understanding

Audience

- Undergraduates
- Graduate Students
- Postdocs
- Medical Students
- Medical Residents and Fellows
- Auditors welcome as active participants

Course Instructors

David Paik, PhD

- Adjunct Lecturer, Radiology
- Industry research director
- Biomedical imaging informatics researcher
- Research: visualization, image analysis, molecular imaging, image quantitation, cancer modeling

Daniel Rubin, MD, MS

- Assistant Professor of Radiology
- Biomedical imaging informatics researcher and radiologist
- Research: machine processing of image content, image mining, machine learning, decision support with images

Teaching Assistants

Albee Ling

 PhD candidate, Biomedical Informatics

Darvin Yi

- PhD candidate, Biomedical Informatics
- Masters of Medicine program

Pre-requisites

- What you absolutely need to know
 - Programming ability (CS 106A)
 - Basic statistics
 - Basic biology
- Highly recommended
 - Familiarity with Python or Matlab
 - Friday TA-led session on programming in Python

Readings

Articles

- Assigned with each lecture
- Links posted on course website

Books

- Not required
- Supplement required readings
- (see course website)

Coursework

3 Assignments (involving programming)

- Lung Field Segmentation
- Machine Learning with Mammography I
- Machine Learning with Mammography II
- OUT on Friday, DUE on Fridays

Midterm

Open notes, during class, 5/15

Final project presentations

- Project proposal due 4/28
- Milestone write-up due 5/19
- Final write-up due 6/12
- Final presentation on 6/12
- Talking with others acceptable, all work individual
- Submissions on Canvas

Final Project

- A substantive programming project
 - Should utilize both *image analysis* and *image* semantics
- Can be done in groups, up to 4 students
- Written portion
 - Project proposal
 - Milestone write-up
 - Final write-up
- Final presentation
 - Gates B03 June 12 at 3:30-6:30pm

Grading

1 E 0/

Grade Breakdown

	Assignment 1	15%
•	Assignment 2	15%
•	Assignment 3	15%
	Midtorm oxam	15%

- Midterm exam 15%
- Final project 30%
- Participation 10%
- Class participation: There are many different ways to participate, including but not limited to:
 - Attending class
 - Attending TA sections
 - Asking questions

Resources

- Main website (general info)
 - http://bmi260.stanford.edu
- Piazza (discussion, project teams)
 - http://piazza.com/stanford/spring2017/ bmi260rad260
- Canvas (homework submission)
 - http://canvas.stanford.edu

Schedule

Lectures

Mon / Wed 1:30-2:50pm, Gates B03

Section

Friday 1:30-2:50pm, Gates B03

Syllabus

	Rubin			
	Paik			
	TAs			

WEEK	Mon		Wed Guests	
1	4/3	Imaging Modalities	4/5	Visualization
2	4/10	Image Segmentation	4/12	Filtering
3	4/17	Geometric Features	4/19	Texture Analysis
4	4/24	Machine Learning Intro	4/26	Evaluation of Machine Learning
5	5/1	Neural Networks	5/3	Convolutional Neural Networks
6	5/8	Machine Learning Research 1	5/10	Machine Learning Research 2
7	5/15	Midterm	5/17	Image Registration
8	5/15	Semantic Features Intro	5/24	Natural Language Processing
9	5/29	Memorial Day	5/31	Querying Images
10	6/5	Decision Support	6/7	Content Based Image Retrieval
11	6/12	Final Presentations		

Imaging Modalities

Medical images show us different kinds of information about disease

Radiography PET-CT **MRI** PET US **Nuc Med**

Functional information (biological processes)

Spatial resolution (**anatomic information**)

Radiography/Fluoroscopy (X-ray)

Imaging Modalities: Radiography / Fluoroscopy

Radiography Hardware

History of the X-Ray

Wilhelm Röntgen 1895 discovered X-rays 1901 Nobel Prize in Physics (first Nobel Prize!)

Recommended reading on history of medical imaging: Naked to the Bone by Bettyann Kevles

X-Ray Tube

X-Ray Interactions with Matter

- Penetrate (no interaction)
- Scatter
 - Rayleigh scattering
 - Elastic, no energy deposition, <u>low probability in diagnostic imagina</u>
 - Compton scattering
 - Inelastic, valence electron ejected
 - Ionizing radiation
- Absorption
 - Photoelectric absorption
 - Inner electron ejected, photon absorbed, outer electron fills vacancy
 - Ionizing radiation
 - Pair production
 - Photon interacts with nucleus to produce $e^- + e^+$, <u>low probability in</u> diagnostic imaging

X-Ray Contrast

Half photon penetration depth $(\ln(2)/\mu)$ to 0.5 – 5.0 cm depending on X-Ray energy and tissue density

X-Ray pixel value represents μ integrated through the body depends on X-Ray energy, tissue density, **and on thickness of body**

X-Ray Contrast Agents

Iodinated compounds

Barium Sulfate

$$\begin{bmatrix}
O & O \\
O & S & O \\
O & O
\end{bmatrix}^{2-}$$

Air (negative contrast)

(high attenuation sometimes visualized as white, sometimes black)

X-Ray Detection

Some Radiography Variants

- Mammography
 - Highly regulated by Mammography Quality Standards Act (MQSA)
- DXA Dual-energy X-ray Absorptiometry
 - Measures Bone Mineral Density (BMD)
 - Either two different tube voltages are used OR a beam hardener is used between two stacked detectors
- Tomosynthesis
 - Combining views from multiple angles to selectively blur all but one plane

Breast

Detector

Computed Tomography (CT)

Imaging Modality: CT (Computed Tomography)

Tomos – Greek word for cut or slice (e.g., atom, anatomy)

CT Scanner Geometry

wikipedia.org

Patient translated through the scanner during gantry rotations (i.e., helical CT)

Video of Rotating CT Scanner

0.25s rotations typical

Hounsfield Units (HU) provide a quantitative measure from CT

Differences in HU are roughly proportional to differences in material density

Contrast agents generally same as in radiography

Some CT Variants

- MDCT Multi-Detector CT
 - 2D grid of detector elements
- Cone Beam CT
- EBCT Electron Beam
- Cardiac-gated CT
- Tube current modulation

Imaging Modality: MR (Magnetic Resonance)

www.magnet.fsu.edu siemens.com

MR Scanner Hardware

Simple electromagnet

Simple radio receiver

MR Scanner with liquid helium cooled superconducting magnet

1.5 T, 3.0 T magnet strength (100,000x Earth's mag field)

MR Scanner Hardware

Safety demonstration with 4T MRI

MR Physics

- Nuclei with odd number of protons and/or neutrons have a magnetic moment with nonzero quantum mechanical up or down "spin"
 - e.g., ¹H, ¹³C, ¹⁹F, ³¹P
- In a magnetic field, they line up to be parallel or antiparallel with the field with a tiny preference for parallel (lower energy)
 - If "knocked over" they will wobble or precess like a toy top but eventually recover

More MR Physics

 Larmor equation says a specific radiofrequency pulse will "tip" the top

• f is frequency, γ is nucleus gyromagnetic ratio, B is external magnetic field strength

$$f = \frac{\gamma}{2\pi}B$$

• For ¹H,
$$\frac{\gamma}{2\pi} = 42.576 \frac{MHz}{T}$$

For a 90° pulse,

$$M_z(0) = 0$$
 $M_z(t) = M_{z,eq}(1 - e^{-t/T_1})$
 $M_{xy}(t) = M_{xy}(0)e^{-t/T_2}$

 M_{z}

MR Pulse Sequence

Slice selection

• A magnetic field gradient (spatial variation) in Z is used during a radiofrequency (RF) pulse at a single frequency that will only tip the spins in a thin slice tuned in to that particular frequency

Phase encoding

- After RF pulse, a brief gradient in X is used to add a position dependent phase shift in X
- Frequency encoding (readout)
 - After phase encoding, a gradient is applied in Y to encode a position dependent frequency shift in Y
 - The free induction decay is listened for with a quadrature detection coil to determine both phase and frequency

MR Pulse Sequence

MR Contrast Agents

Gadolinium chelates (decrease T1)

Iron oxides (decrease T2)

SPIO Superparamagnetic Iron Oxide 300-3000 nm USPIO
Ultrasmall SPIO
10-50 nm

Manganese chelates (decrease T1)

Some MR Variants

- T1 or T2 Mapping
 - Most MR pixel values are arbitrary units but...
 - Estimate tissue parameters from multiple images
- MR Spectroscopy
 - Uses chemical shift to identify different chemical species
- DCE-MRI
 - Quantify wash-in and wash-out of contrast to infer pharmacokinetics
- Hyperpolarized ¹³C
 - Induce non-equilibrium spins

http://www.radiology.northwestern.edu/research/triog/research/trip/ Beaumont et al, J Cer Bl Flow and Metab 2009 Golman et al, BJR 2003

Nuclear Medicine: Positron Emission Tomography (PET)

Imaging Modalities:

Nuc Med: Scintigraphy, SPECT, PET

- Signal comes from injected radioactively labeled pharmaceuticals rather than external radiation source
 - Radioactivity must be generated locally/regionally or delivered quickly
 - Physiological function is depicted rather than anatomy
- Diagnostic nuclear medicine scans
 - Scintigraphy
 - SPECT
 - PFT

Nuclear Medicine

Gamma Camera (Scintigraphy)

SPECT (Single Photon Emission Computed Tomography)

PET (Positron Emission Tomography)

PET Geometry

Pixel values are counts per unit time per unit volume Can be normalized to injected dose (and body weight) Pharmacokinetic parameters can be modeled and derived

FDG as a PET Radiotracer

2-deoxy-2-(¹⁸F)fluoro-D-glucose "FDG"

¹⁸F half life is 110 minutes

Hoffman and Gambhir, Radiology 2007

FDG is metabolized similarly to glucose

- Transported into cells by glucose transporters
- Trapped in cell after phosphorylation
- But can't enter glycolysis so ¹⁸F doesn't leave cell

Some PET Variants

- 2D vs. 3D PET
 - Remove septa (collimator) to allow full 3D coincidence events
- Time of Flight (TOF) PET
 - 300 ps time resolution of coincidence events to place decay on line of response
- Corrections
 - Dead time correction, detector normalization, scatter correction, attenuation correction

Ultrasound (US)

Imaging Modality:

Ultrasound

Phased Arrays

- Frequencies in 2-20 MHz range
- Speed of sound in water is 1500 m/s (~3000 mph)
- 25 cm round trip takes ~300 μs

Ultrasound Image Formation

Depth of reflecting object depends on echo delay

Strength of signal depends on reflectivity and attenuation

Pixel values have very arbitrary units

Depth Gain Compensation

Ultrasound Contrast

- Inherent contrast
 - Reflections caused by differences in acoustic impedance (a function of density)
- Microbubble contrast agents
 - Injected intravenously
 - Gas bubbles resonate at ultrasonic frequencies increasing reflectivity several thousand fold
 - Bubbles can be destroyed with high intensity signal

Some Ultrasound Variants

- Doppler Ultrasound
 - Frequency shift indicates motion toward/away from transducer

 MHz laser pulses heat tissue and cause expansion leading to ultrasonic vibrations

Optical Imaging

Clinical Imaging Modalities:

http://www.dermatology.ucsf.edu/

http://uti.stanford.edu/

https://e-enm.org

White Light Photography

- Sizing hard due to perspective
- Color important

Endoscopy

- Sizing hard due to perspective
- Color important
- Video analysis

Microscopy

- ex vivo changes in tissue
- Choice of stain important
- Can be very large images (e.g. 50k X 50k)

Pre-clinical Imaging Modalities:

Fluorescence and Bioluminescence Imaging

Gao et al, WMIC 2009

Imaging Probes

Fluorescent Molecules

Quantum Dots

Fluorescent Proteins

Luciferase/Luciferin

Reporter Gene Assay

Some Optical Imaging Variants

- 3D tomography
 - 360 degree views
- Spectral imaging
 - Liquid crystal tunable filter

- Cerenkov Radiation Imaging
 - Emitted positrons traveling faster than speed of light in that medium lose energy as optical photons

What does it mean for you?

- Many different imaging modalities
 - Radiography, fluoroscopy, CT, MR, PET, SPECT, scintigraphy, ultrasound, fluorescence imaging, bioluminescence imaging
 - Almost all modalities have small animal equipment for basic biology and pre-clinical research
- Combined modalities are very useful
 - PET/CT, PET/MR, MR/X-ray, SPECT/CT
- Anatomy vs. Function
- Now you understand what pixel values mean!
- Next: we can start visualizing the images