Constructive Computer Architecture
Tutorial 8:
FPGA Synthesis

Andy Wright 6.S195 TA

### Lab Update

- FPGAs are working again
  - If you have any problems with them, let me know

November 8, 2013 http://csg.csail.mit.edu/6.s195 T08-2









### mkBridge.srp

- Search for: "Low Level Synthesis"
  - You'll see some optimizations performed such as removing constant value registers.
  - This portion removes unwanted overhead of EHRs

### Low Level Optimizations



## Low Level Optimizations



# Low Level Optimizations



No overhead from using an EHR

### mkBridge.srp

- Search for: "current\_clk1"
  - This will show up in a few places, but the interesting one is in a line starting with "Timing constraint"
  - You'll find the max clock period and the critical path for the clock.
  - You will also find information about other clocks.

Why is there more than 1 clock?

### Different Clocks



November 8, 2013 http://csg.csail.mit.edu/6.s195 T08-12

November 8, 2013

Critical path example: m is mkProc Timing constraint: Default period analysis for Clock 'scemi clk port clkgen/current clk1' Clock period: 9.874ns (frequency: 101.277MHz) Total number of paths / destination ports: 114672315 / 13117 9.874ns (Levels of Logic = ❤️) Delay: scemi\_dut\_dutIfc m dut/m/rf2eFifo data 1 96 (FF) Source: scemi\_dut\_dut\_fc\_m\_dut/m/brpred/arr/Mram\_arr1 (RAM) Destination: scemi\_clk\_port\_clkgen/current clk1 rising Source Clock: Destination Clock: scemi clk port clkgen/current clk1 rising Data Path: scemi\_dut\_dutIfc\_m\_dut/m/rf2eFifo\_data\_1\_96 to scemi dut dutIfc m dut/m/brpred/arr/Mram arr1 rf2eFifo brpred

http://csg.csail.mit.edu/6.s195

T08-13

```
Gate
                        Net
                                Delay Logical Name (Net Name)
Cell:in->out
                fanout
                        Delay
FDE:C->0
                        0.471
                                                                    a 1 96)
                              Branch Target Calculation
                        0.094
                                                                    702<31>)
LUT3:10->0
                    55
begin scope: 'instance exec 1'
begin scope: 'instance aluBr 0'
INV:I->O
                     2 0.238
                                0.581 Mmux aluBr not00011 INV 0 (...)
                        0.094
                                0.000 Mcompar_aluBr_a_SLE_0__d6_lut<6> (...)
LUT2:I0->0
MUXCY:S->0
                   1 0.600
                                0.576 Mcompar_aluBr_a_SLE_0__d6_cy<6> (...)
LUT6: I4->0
                        0.094
                                0.607 Mmux aluBr61 (aluBr)
                    28
end scope: 'instance aluBr 0'
begin scope: 'instance brAddrCalc 2'
LUT5:I4->0
                        0.094 0.737 brAddrCalc<0>11 (N01)
LUT5:I2->0
                                0.715 brAddrCalc<27> (brAddrCalc<27>)
                        0.094
end scope: 'instance brAddrCalc 2'
```



November 8, 2013

http://csg.csail.mit.edu/6.s195

|   | Cell:in->out                 | Gate<br>fanout | Net<br>Delay   | Delay | Logical Name (Net Name)                                                             |
|---|------------------------------|----------------|----------------|-------|-------------------------------------------------------------------------------------|
|   | LUT6:I3->0<br>MUXCY:S->0     | 1              | 0.094<br>0.372 | 0.000 | Mcompar_IFd32_cmp_ne0000_lut<9> () Mcompar_IF                                       |
|   | MUXCY:CI->O<br>end scope: 'i | 3              | 0.254          | 0.491 | Mco Redirect Fifo 1000_cy<10> ()                                                    |
|   | LUT6:I5->0<br>LUT6:I5->0     | 196<br>65      | 0.094<br>0.094 |       | <pre>redirectFifo_data_0_lat_0_whas11 () CASE_y5239_0_IF_redirectFifo_data ()</pre> |
| , | begin scope:<br>LUT2:I1->0   | 'brpred'       | 0.094          |       | arr_WE1 (tagArr_WE)                                                                 |
|   | begin scope:<br>RAM64M:WE    | 'arr'          | 0.490          |       | Mram_arr1                                                                           |

9.874ns (3.271ns logic, 6.603ns route) Branch Predictor Total (33.1% logic, 66.9% route)



November 8, 2013

http://csg.csail.mit.edu/6.s195

T08-15

|   |                                         | Gate        | Net     |                         |                                           |
|---|-----------------------------------------|-------------|---------|-------------------------|-------------------------------------------|
|   | Cell:in->out                            | fanout      | Delay   | Delay                   | Logical Name (Net Name)                   |
|   | LUT6:I3->0<br>MUXCY:S->0<br>MUXCY:CI->0 | 1<br>1<br>3 | 7,77    | 0.000<br>0.000<br>0.491 | Mcompar_IFd32_cmp_ne0000_lut<9> () Mco    |
|   | end scope: 'ins                         | stance_exec | _1'     |                         |                                           |
|   | LUT6:I5->0                              | 196         | 0.094   | 0.638                   | redirectFifo_data_0_lat_0_whas11 ()       |
| } | LUT6:I5->0                              | 65          | 0.094   | 0.613                   | CASE_y5239_0_IF_redirectFifo_data ()      |
|   | begin scope: 't<br>LUT2:I1->0           | 56          | 0.094   | 0.468                   | arr_WE1 (tagArr_WE)                       |
|   | begin scope: 'a<br>RAM64M:WE            | arr'        | 0.490   |                         | Mram_arr1                                 |
|   | Total                                   |             | 9.874ns |                         | ns logic, 6.603ns route) Branch Predictor |



T08-16

# Splitting Critical Paths



# Splitting Critical Paths



After splitting the critical path with way 1:

```
Timing constraint: Default period analysis for Clock
         'scemi clk port clkgen/current clk1'
           Clock period: 8.749ns (frequency: 114.294MHz)
           Total number of paths / destination ports: 38299383 / 13320
         Delay:
                               8.749ns (Levels of Logic = 19)
                               scemi_dut_dutIfc_m dut/m/rf2eFifo data 1 96 (FF)
           Source:
           Destination:
                               scemi dut dut dutIfc m dut/m/rf2eFifo engEn rl (FF)
           Source Clock:
                               scemi clk port clkgen/current clk1 rising
           Destination Clock: scemi clk port clkgen/current_clk1 rising
         Data Path: scemi_dut_dutIfc_m_dut/m/rf2eFifo_data_1_96 to scemi_dut_dutIfc_m_dut/m/rf2eFifo+enqEn+rl
                                                                           brpred
           rf2eFifo
                                                  redirectFifo
                                branch
                                target
                              calculation
                                                     CF Fifo
November 8, 2013
                                     http://csg.csail.mit.edu/6.s195
                                                                                           T08-19
```



### mkBridge\_map.mrp

- Search for: "Design Summary"
  - You'll see how much of the FPGAs resources are being used by your designs.
  - This information reveals how big your design is and how much routing congestion to expect.

#### LUT-FF Pair



This is a simplified version of LUT-FF Pairs

November 8, 2013 http://csg.csail.mit.edu/6.s195 T08-22

Design Summary
Total number Total number

| Slice Logic Utilization:             | used       | OI   | n FPGA          |     |
|--------------------------------------|------------|------|-----------------|-----|
| Number of Slice Registers:           | 11,697 out | of 6 | 59,120          | 16% |
| Number used as Flip Flops:           | 11,693     |      |                 |     |
| Number used as Latches:              | 1          |      |                 |     |
| Number used as Latch-thrus:          | 3          |      |                 |     |
| Number of Slice LUTs:                | 17,958 out | of 6 | 59,120          | 25% |
| Number used as logic:                | 17,392 out | of 6 | 59,120          | 25% |
| Number using O6 output only:         | 16,372     |      |                 |     |
| Number using O5 output only:         | 613        |      |                 |     |
| Number using 05 and 06:              | 407        |      |                 |     |
| Number used as Memory:               | 520 out    | of 1 | L7 <b>,</b> 920 | 2%  |
| Number used as Dual Port RAM:        | 376        |      |                 |     |
| Number using O6 output only:         | 136        |      |                 |     |
| Number using O5 output only:         | 3          |      |                 |     |
| Number using O5 and O6:              | 237        |      |                 |     |
| Number used as Shift Register:       | 144        |      |                 |     |
| Number using O6 output only:         | 144        |      |                 |     |
| Number used as exclusive route-thru: | 46         |      |                 |     |
| Number of route-thrus:               | 715        |      |                 |     |
| Number using O6 output only:         | 653        |      |                 |     |
| Number using O5 output only:         | 57         |      |                 |     |
| Number using O5 and O6:              | 5          |      |                 |     |
|                                      |            |      |                 |     |

Using about the quarter of the chip's resources

### FPGA Slice



LUT-FF Pair

November 8, 2013 http://csg.csail.mit.edu/6.s195 T08-24

# Design Summary

| 7,385  | out                                                                | of                                                                                                  | 17,280                                                                                                                   | 42%                                                                                                                           |                                                                                                                                                                                          |
|--------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21,432 |                                                                    |                                                                                                     |                                                                                                                          |                                                                                                                               |                                                                                                                                                                                          |
| 9,735  | out                                                                | of                                                                                                  | 21,432                                                                                                                   | 45%                                                                                                                           |                                                                                                                                                                                          |
| 3,474  | out                                                                | of                                                                                                  | 21,432                                                                                                                   | 16%                                                                                                                           |                                                                                                                                                                                          |
| 8,223  | out                                                                | of                                                                                                  | 21,432                                                                                                                   | 38%                                                                                                                           |                                                                                                                                                                                          |
| 881    |                                                                    |                                                                                                     |                                                                                                                          |                                                                                                                               |                                                                                                                                                                                          |
|        |                                                                    |                                                                                                     |                                                                                                                          |                                                                                                                               |                                                                                                                                                                                          |
| 1,953  | out                                                                | of                                                                                                  | 69,120                                                                                                                   | 2%                                                                                                                            |                                                                                                                                                                                          |
|        |                                                                    |                                                                                                     |                                                                                                                          |                                                                                                                               |                                                                                                                                                                                          |
| 11     | out                                                                | of                                                                                                  | 640                                                                                                                      | 1%                                                                                                                            |                                                                                                                                                                                          |
| 11     | out                                                                | of                                                                                                  | 11                                                                                                                       | 100%                                                                                                                          |                                                                                                                                                                                          |
| 4      |                                                                    |                                                                                                     |                                                                                                                          |                                                                                                                               |                                                                                                                                                                                          |
| 2      | out                                                                | of                                                                                                  | 4                                                                                                                        | 50%                                                                                                                           |                                                                                                                                                                                          |
| 2      |                                                                    |                                                                                                     |                                                                                                                          |                                                                                                                               |                                                                                                                                                                                          |
|        | 21,432<br>9,735<br>3,474<br>8,223<br>881<br>1,953<br>11<br>11<br>4 | 21,432<br>9,735 out<br>3,474 out<br>8,223 out<br>881<br>1,953 out<br>11 out<br>11 out<br>4<br>2 out | 21,432<br>9,735 out of<br>3,474 out of<br>8,223 out of<br>881<br>1,953 out of<br>11 out of<br>11 out of<br>4<br>2 out of | 9,735 out of 21,432 3,474 out of 21,432 8,223 out of 21,432 881  1,953 out of 69,120  11 out of 640 11 out of 11 4 2 out of 4 | 21,432<br>9,735 out of 21,432 45%<br>3,474 out of 21,432 16%<br>8,223 out of 21,432 38%<br>881<br>1,953 out of 69,120 2%<br>11 out of 640 1%<br>11 out of 11 100%<br>4<br>2 out of 4 50% |

Using about half of the chip's area

# Design Summary

| Specific              | Feature    | Utilization |  |
|-----------------------|------------|-------------|--|
| ) - P - P - 1 - 1 - 1 | 7 01 0 01, | 9           |  |

| Number of BlockRAM/FIFO:     | 140   | out | of | 148   | 94%  |
|------------------------------|-------|-----|----|-------|------|
| Number using BlockRAM only:  | 140   |     |    |       |      |
| Total primitives used:       |       |     |    |       |      |
| Number of 36k BlockRAM used: | 140   |     |    |       |      |
| Total Memory used (KB):      | 5,040 | out | of | 5,328 | 94%  |
| Number of BUFG/BUFGCTRLs:    | 8     | out | of | 32    | 25%  |
| Number used as BUFGs:        | 8     |     |    |       |      |
| Number of BUFDSs:            | 1     | out | of | 8     | 12%  |
| Number of LOCed BUFDSs:      | 1     | out | of | 1     | 100% |
| Number of GTP_DUALs:         | 1     | out | of | 8     | 12%  |
| Number of LOCed GTP_DUALs:   | 1     | out | of | 1     | 100% |
| Number of PCIEs:             | 1     | out | of | 1     | 100% |
| Number of LOCed PCIEs:       | 1     | out | of | 1     | 100% |
| Number of PLL_ADVs:          | 2     | out | of | 6     | 33%  |
|                              |       |     |    |       |      |

Using almost all of the chip's BRAM

This could be a problem

#### Block Ram

- Dedicated memory slices on FPGA
- Can contain 32Kb of data per BRAM
- Evenly distributed across FPGA fabric

We have 2048 Kb of instruction and data memory. How does this fit on 32 Kb blocks?

## Single Block Ram



Registers on input so more combinational delay for output than input

# Large Block Ram: Reading



November 8, 2013

T08-29

# Large Block Ram: Writing





### mkBridge.par

- Search for: "Deive Utilization Summary"
  - You'll see a more accurate report of resource utilization

### mkBridge\_map.mrp

- Search for: "Generating Clock Report"
  - You'll see some information about clock timing constraints
  - All of these constraints relate to internal SceMi clocks

## Clock Report

#### This report shows internal SceMi timing errors

| Constraint                                                                                                                                                              | Check               | Worst Case  <br>  Slack         | Best Case  <br>Achievable                       | Timing  <br>Errors | Timing<br>Score |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|-------------------------------------------------|--------------------|-----------------|
| * Tb_scemi_pcie_ep_pcie_ep0_pcie_blk_clocki ng_i_clkout1_1 = PERIOD TIMEGRP " scemi_pcie_ep0_pcie_blk_clocking_ i_clkout1_1" TS_MGTCLK * 0.625 HI GH 50%                | HOLD                | -0.047ns<br>  0.031ns           | 16.188ns                                        | 1  0               | 47<br>0         |
| TS_scemi_pcie_ep_pcie_ep0_pcie_blk_clocki ng_i_clkout0_1 = PERIOD TIMEGRP " scemi_pcie_ep_pcie_ep0_pcie_blk_clocking_ i_clkout0_1" TS_MGTCLK * 2.5 HIGH 50%             | HOLD<br>  MINPERIOD | 0.045ns <br>0.418ns <br>0.000ns | 3.955ns <br> <br> <br> <br> <br> <br> <br> <br> | 0 <br>0 <br>0      | 0<br>0<br>0     |
| TS_scemi_pcie_ep_pcie_ep0_pcie_blk_clocki<br>ng_i_clkout0_0 = PERIOD TIMEGRP "<br>scemi_pcie_ep_pcie_ep0_pcie_blk_clocking_<br>i_clkout0_0" TS_SYSCLK * 2.5 HIGH<br>50% |                     | 0.000ns <br> <br> <br>          | 4.000ns <br> <br>                               | Ø <br> <br>        | 0               |
| ·<br>Asterisk (*)                                                                                                                                                       | Negat               | ı<br>ive slack                  |                                                 |                    |                 |

# Setup and Hold



November 8, 2013 http://csg.csail.mit.edu/6.s195

## Setup and Hold



November 8, 2013

## Setup and Hold



November 8, 2013



### mkBridge.twr

- More timing information
  - All about internal SceMi Clocks
  - No information about current\_clk1

November 8, 2013 http://csg.csail.mit.edu/6.s195 T08-39

### Conclusion

Any Questions?

November 8, 2013 http://csg.csail.mit.edu/6.s195 T08-40

### 'build' utility

- Automates the Xilinx tool flow
- See `build --doc` for more information

# 'build' utility

- Performs the following stages in order:
  - 1. delete\_build\_dirs
  - 2. make\_build\_dirs
  - compile\_for\_verilog (bsc -verilog)
  - 4. generate\_scemi\_parameters
  - 5. xilinx\_cleanup
  - 6. make\_xilinx\_directory
    7. create ucf file
  - 8. create xcf file
  - 9. create scr file
  - 10. prepare\_project\_files
  - xst\_compile
  - 12. translate\_and\_build
  - map\_to\_device
  - place\_and\_route timing analysis
  - 16. gen bit file
  - 17. timing\_check
  - gen\_ace\_file

### 'build' utility

- Major stages
  - compile\_for\_verilog
  - xst\_compile
  - translate\_and\_build
  - map\_to\_device
  - place\_and\_route
  - timing\_analysis
  - gen\_bit\_file
  - timing\_check