P. Maurer

ENS Rennes

Recasages: 123, 125, 141, 144.

Référence : Perrin, Cours d'Algèbre

Polynômes cyclotomiques

Dans ce qui suit, K est un corps et $n \in \mathbb{N}^*$ est un entier tel que $\operatorname{car}(K) \nmid n$.

Definition 1. On appelle groupe des racines $n^{\text{èmes}}$ de l'unité dans K, et on note $\mu_n(K)$ l'ensemble $\{\zeta \in K : \zeta^n = 1\}$. Une racine $n^{\text{ème}}$ de l'unité est dite primitive si de plus, pour tout k divisant n, on a $\zeta^k \neq 1$. On note $\mu_n^*(K)$ l'ensemble des racines primitives $n^{\text{èmes}}$ de l'unité.

Definition 2. Le $n^{\text{ème}}$ polynôme cyclotomique sur K est défini par :

$$\Phi_{n,K}(X) := \prod_{\zeta \in \mu_n^*(K)} X - \zeta.$$

Lemma 3. $\Phi_{n,K}(X)$ est unitaire, de degré $\varphi(n)$, et vérifie $X^n - 1 = \prod_{d|n} \Phi_{d,K}(X)$.

Proof. Le polynôme $\Phi_{n,K}(X)$ est produit de polynômes unitaires de degré 1, et il y a autant de ces polynômes que d'éléments dans $\mu_n^*(K)$. On en déduit que $\Phi_{n,K}(X)$ est unitaire, de degré $|\mu_n^*(K)| = \varphi(n)$.

Pour montrer la dernière égalité, on écrit $X^n-1=\prod_{\zeta\in\mu_n(K)}X-\zeta$. Si d est l'ordre de ζ dans $\mu_n(K)$, alors d|n, et de plus, $\zeta\in\mu_d^*(K)$. Par conséquent, $X-\zeta$ divise Φ_d , donc divise $\prod_{d|n}\Phi_{d,K}(X)$.

Les valeurs de ζ dans $\mu_n(K)$ étant toutes distinctes, les polynômes $X-\zeta$ sont premiers entre eux : ainsi, leur produit divise toujours $\prod_{d\mid n} \Phi_{d,K}(X)$.

Les polynômes X^n-1 et $\prod_{d\mid n}\Phi_{d,K}(X)$ étant tous deux unitaires et de même degré (via la formule $n=\sum_{d\mid n}\varphi(n)$), ils sont égaux.

Theorem 4. (Polynômes cyclotomiques rationnels)

- i. $\Phi_{n,\mathbb{Q}}(X)$ est à coefficients dans \mathbb{Z} .
- ii. $\Phi_{n,\mathbb{Q}}(X)$ est irréductible sur \mathbb{Z} .

Proof.

Pour démontrer le premier point, on raisonne par récurrence forte sur $n \in \mathbb{N}$.

On a $\Phi_{1,\mathbb{Q}}(X) = X - 1$, qui est à coefficients dans \mathbb{Z} . Suposons que pour un certain $n \in \mathbb{N}$, on ait : $\forall k \in [\![0,n-1]\!]$ $\Phi_{k,\mathbb{Q}} \in \mathbb{Z}[X]$. D'après le lemme précédent, on a :

$$X^n-1 = \prod_{d \mid n} \, \Phi_{d,\,\mathbb{Q}}(X) = \Phi_{n,\,\mathbb{Q}}(X) \cdot \prod_{d \mid n,\,d < n} \, \Phi_{d,\,\mathbb{Q}}(X) =: \Phi_{n,\,\mathbb{Q}}(X) \cdot F(X).$$

Par hypothèse de récurrence, $F(X) \in \mathbb{Z}[X]$. On peut donc effectuer la division euclidienne de X^n-1 par F(X): il existe $Q, R \in \mathbb{Z}[X]$ uniques tels que $X^n-1=F(X)Q(X)+R(X)$, avec $\deg(R) < n$. On en déduit que $F(X)Q(X)=F(X)\Phi_{n,\mathbb{Q}}(X)$, donc par intégrité de K[X], $\Phi_{n,\mathbb{Q}}(X)=Q(X)\in \mathbb{Z}[X]$.

Montrons à présent le second point. On va démontrer que $\Phi_{n,\mathbb{Q}}(X)$ est irréductible sur \mathbb{Q} : comme son contenu (pgcd de ses coefficients est 1), on en déduira l'irréductibilité sur \mathbb{Z} .

Soit K un corps de décomposition de $\Phi_n := \Phi_{n,\mathbb{Q}}(X)$. On note ζ une racine primitive $n^{\text{ème}}$ de l'unité (qui est donc racine de Φ_n dans K). Soit p un nombre premier ne divisant pas n, alors ζ^p est encore une racine primitive $n^{\text{ème}}$ de l'unité car $p \wedge n = 1$. On note f (respectivement g) le polynôme minimal de ζ (respectivement de ζ^p) sur \mathbb{Q} .

• **Etape 1**: f et g sont à coefficients entiers.

Pour prouver ce résultat, on utilise la factorialité de l'anneau $\mathbb{Z}[X]$: on écrit $\Phi_n = f_1^{r_1} \cdots f_m^{r_m}$, avec $f_i \in \mathbb{Z}[X]$ irréductibles. Alors ζ est racine de l'un des f_i , qui est irréductible et unitaire (quitte à multiplier par -1): c'est donc que $f_i = f$. De même, ζ^p est racine d'un f_j irréductible et unitaire, donc $f_j = g$. Ceci montre que $f, g \in \mathbb{Z}[X]$, et de plus que f et g divisent Φ_n .

• **Etape 2**: f = g.

On raisonne par l'absurde en supposant $f \neq g$. Comme f et g sont irréductibles, on a dans ce cas $fg|\Phi_n$ dans $\mathbb{Z}[X]$.

Par ailleurs, $g(\zeta^p) = 0$, donc ζ est aussi racine de $g(X^p)$. On en déduit que f divise $g(X^p)$ dans $\mathbb{Q}[X]$: il existe $h \in \mathbb{Q}[X]$ tel que $g(X^p) = f(X)h(X)$. En écrivant $h = \frac{a}{b}h'$ avec $h' \in \mathbb{Z}[X]$, on a $bg(X^p) = af(X)h'(X)$, donc h'(X) divise $g(X^p)$ (puisqu'il ne divise pas b). On a donc $g(X^p) = f(X)h'(X)$ dans $\mathbb{Z}[X]$.

On va projeter cette égalité dans \mathbb{F}_p : remarquons d'abord que $\bar{g}(X^p) = \bar{g}(X)^p$. En effet, si on écrit $g(X) = a_r X^r + \dots + a_0$, alors $\bar{g}(X)^p = (\bar{a_r} X^r + \dots + \bar{a_0})^p = \bar{a_r}^p X^{pr} + \dots + \bar{a_0}^p$ (c'est le morphisme de Frobenius). De plus, dans \mathbb{F}_p , on a $X^p = X$, donc $\bar{a_i}^p = \bar{a_i}$ pour tout i.

La projection donne donc $\bar{g}(X)^p = \bar{f}(X)\bar{h}'(X)$. Soit φ un diviseur irréductible de \bar{f} dans $\mathbb{F}_p[X]$. Alors φ divise $\bar{g}(X)^p$, donc par lemme d'Euclide, φ divise $\bar{g}(X)$. Comme fg divise Φ_n sur \mathbb{Z} , $\bar{f}\bar{g}$ divise $\bar{\Phi}_n$ sur \mathbb{F}_p , donc φ^2 divise $\bar{\Phi}_n$. Mais alors, dans un corps de décomposition, $\bar{\Phi}_n$ a une racine double, ce qui n'est pas possible lorsque la caractéristique p du corps \mathbb{F}_p ne divise pas p.

• **Etape 3** : Φ_n est irréductible sur \mathbb{Q} .

Soit ζ' une autre racine primitive $n^{\text{ème}}$ de Φ_n . Alors $\zeta' = \zeta^m$ avec $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ où p_i ne divise pas n. Par récurrence immédiate avec le résultat de l'étape 2, on en déduit que ζ' et ζ ont même polynôme minimal sur \mathbb{Q} , de sorte que f admet toutes les racines primitives $n^{\text{ème}}$ de l'unité comme zéro : on a donc $f | \Phi_n$ et $\deg(f) \geq \varphi(n)$, ce qui donne $f = \Phi_n$.

Ainsi,
$$\Phi_n = f$$
 est irréductible sur \mathbb{Q} .

Theorem 5. (Cas des corps finis)

Les propositions suivantes sont équivalentes :

- i. Il existe p premier, avec $p \wedge n = 1$, tel que $\Phi_{n,\mathbb{F}_p}(X)$ soit irréductible sur \mathbb{F}_p .
- ii. $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique.