

Applied Optimization Exercise 1 - Convex Sets

V. Carrel & J. Fontana & A. Schaller Prof.: Prof. David Bommes

October 5, 2021

1 Convex Sets

1. Example sets

Sketch the following sets in R2

- 1. SPAN
- 2. SPAN
- 3. AFF
- 4. CONV

2. Convexity

Let $C \in \mathbb{R}^n$ be a convex set, with $x_1, ..., x_k \in C$, and let $\theta_1, ..., \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0, \theta_1 + ... + \theta_k = 1$. Show that $\theta_1 x_1 + ... + \theta_k x_k \in C$. (The definition of convexity is that this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.

3. Linear Equations

Show that the solution set of linear equations $\{x|Ax=b\}$ with $x\in R^n$, $A\in R^{m\times n}$ and $b\in R^m$ is an affine set.

4. Linear Inequations

- 1. Show that the solution set of linear inequations $\{x|Ax \leq b, Cx = d\}$ with $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, $C \in \mathbb{R}^{k \times n}$ and $d \in \mathbb{R}^k$ is a convex set. Here \leq means componentwise less or equal.
- 2. Is it an affine set?

5. Voronoi description of halfspace

Let a and b be distinct points in \mathbb{R}^n . Show that the set of all points that are closer (in Euclidean norm) to a than b, i.e., $\{x | \|x - a\|^2 \le \|x - b\|^2\}$, is a halfspace. Describe it explicitly as an inequality of the form $c^T x \le d$. Draw a picture.

2 Convex Illumination Problem

Show that the solution $p^* = (p_1^*, p_2^*, ..., p_*^n)^T \in \mathbb{R}^n$ of the non-convex illumination problem from the lecture

minimize
$$\max_{k=1...m} |\log I_k - \log I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1...n$

with $I_k = \sum_{j=1}^n a_{kj} p_j$ for geometric constants $a_{jk} \in R$, a constant desired illumination $I_{des} \in R$ and an upper bound $p_{max} \in R$ on the lamp power, is identical to the solution of the following equivalent (convex) problem

minimize
$$\max_{k=1...m} h(I_k/I_{des})$$

subject to $0 \le p_j \le p_{max}, \quad j = 1...n$

with $h(u) = max\{u, \frac{1}{u}\}.$