- 1. A glass comprising in % by weight, based on oxide: SiO₂ about 78.5 about 79.5, B₂O₃ about 13.0 about 14.0, Al₂O₃ about 2.0 about 3.0, Na₂O about 4.5 about 5.5, K₂O 0 about 0.6, and optionally at least one fining agent; wherein the glass is colorless.
- 2. The glass according to claim 1 incorporated into a teapot, a coffee machine jug or a baby-milk bottle.
- 3. The glass according to claim 1, further comprising: no more than about 0.5% by weight of a non-interfering oxide.
- 4. The glass according to claim 1, wherein the glass has a coefficient of linear thermal expansion $\alpha_{20/300}$ between about 3.5 and about 3.7 · 10^{-6} /K, a working point V_A of \leq about 1220 °C, a modulus of elasticity of \leq about 65 GPa, a hydrolytic resistance in accordance with DIN ISO 719 in hydrolytic class 1, an acid resistance S in accordance with DIN 12 116 in acid class 1, and a caustic lye resistance L in accordance with DIN ISO 659 in lye class 2.
 - 5. A glass comprising in % by weight, based on oxide: $\sqrt{}$ about 78.5 to about 79.5 SiO₂; about 13.0 to about 14.0 B₂O₃; about 2.0 to about 3.0 Al₂O₃; about 4.5 to about 5.5 Na₂O; and

a decolorant.

6. A process for making glass comprising melting together:

about 78.5 to about 79.5 weight percent based on oxide SiO₂;

3

about 13.0 to about 14.0 weight percent based on oxide B₂O₃;

about 2.0 to about 3.0 Al₂O₃ weight percent based on oxide; and

about 4.5 to about 5.5 Na₂O weight percent based on oxide; wherein the glass is colorless.

- 7. The process according to claim 6 further comprising heating the oxides in a heated melting unit to no more than about 1620 degrees Celsius.
 - 8. A glass consisting essentially of in % by weight, based on oxide:

about 78.5 to about 79.5 SiO₂;

about 13.0 to about 14.0 B₂O₃;

Y

about 2.0 to about 3.0 Al₂O₃;

about 4.5 to about 5.5 Na₂O; and

at least one fining agent.

- 9. A thermal shock-resistant container comprising the glass according to claim 5.
- 10. A glass made by the process according to claim 6.

- 11. A glass according to claim 1, further comprising a decolorant.
- 12. A process according to claim 6, wherein the glass further comprises a decolorant.
- 13. A glass according to claim 5, wherein the decolorant is Er_2O_3 , CoO, or a combination thereof.
- 14. A glass according to claim 11, wherein the decolorant is Er₂O₃, CoO, or a combination thereof.
- 15. A process according to claim 12, wherein the decolorant is Er_2O_3 , CoO, or a combination thereof.
- 16. A glass according to claim 1, wherein the optional fining agent is As_2O_3 , Sb_2O_3 , NaCl, KCl, or a combination thereof.
- 17. A glass according to claim 3, wherein the non-interfering oxide is MgO, CaO, or a combination thereof.

- 19. A glass according to claim 1, consisting essentially of SiO₂ about 78.5 about 79.5, B₂O₃ about 13.0 about 14.0, Al₂O₃ about 2.0 about 3.0, Na₂O about 4.5 about 5.5, K₂O 0 about 0.6, in % by weight based on oxide, and a fining agent.
- 20. A teapot, coffee machine jug or baby milk bottle consisting essentially of a glass according to claim 1.
 - 21. A glass consisting of in % by weight, based on oxide:

 SiO_2 about 78.5 - about 79.5;

5

 B_2O_3 about 13.0 - about 14.0;

 Al_2O_3 about 2.0 - about 3.0;

Na₂O about 4.5 - about 5.5; and

 K_2O 0 - about 0.6.