Assignment 3

- 1. Assuming all the random variables are discrete, show the following statements are true.
 - (a) $(2 \text{ pts}) X_1 \perp \!\!\! \perp (X_2, X_3) | X_4$, then $X_1 \perp \!\!\! \perp X_2 | X_4$.
 - (b) (2 pts) Suppose that for (X_1, X_2, X_3) , the joint PMF $p(x_1, x_2, x_3) > 0$ for any set of possible values (x_1, x_2, x_3) . Then $X_1 \perp \!\!\! \perp X_2 | X_3$ together with $X_1 \perp \!\!\! \perp X_3 | X_2$ imply $X_1 \perp \!\!\! \perp (X_2, X_3)$.
- **2.** For i = 1, 2, 3, let X_i be an indicator variable for the event that a coin toss comes up heads (which occurs with probability q). That is, $X_i = 1$ with probability q and $X_i = 0$ with probability 1 q. Assuming that the X_i 's are independent, define $X_4 = X_1 \oplus X_2$, $X_5 = X_2 \oplus X_3$, where \oplus denotes addition in modulo two arithmetic.
 - (a) (2 pt) Compute the conditional PMF of (X_2, X_3) given $X_5 = 0$ and $X_5 = 1$ respectively.
 - (b) (2 pts) Draw a directed graphical model (including the graph and conditional probability tables) for these five random variables. List at least five conditional independence relations implied by the graph.
 - (c) (2 pts) Under what conditions on q do we have $X_3 \perp \!\!\! \perp X_5$ and $X_1 \perp \!\!\! \perp X_4$? Is either of these marginal independence assertions implied by the graph in (b)?
- **3.** Consider the following directed graph.

- (a) (1 pt) What is the corresponding moral graph?
- (b) (2 pts) Sketch the sequence of graphs obtained by running the graph elimination algorithm on the moral graph following the ordering
 - (i) $\{8, 7, 2, 4, 6, 5, 3, 1\}$
 - (ii) $\{8, 5, 6, 7, 4, 3, 2, 1\}$
- (c) (2 pts) Suppose we want to calculate $p(x_1|x_8)$, which of the orderings listed in (b) is preferable? Why?