# Arquitectura do Computador





Bus de Sistema

#### Conceito de programa

- Sistemas Hardwired são inflexiveis
- Hardware de utilização geral podem desempenhar diferentes tarefas com os sinais correctos
- Fornecer sinais de controle em vez de efectuar ligações

### Programação Hardwired



#### Programa

- Conjunto de passos
- Em cada passo, uma operação aritmética ou lógica é realizada
- Para cada operação, é necessário um conjunto diferente de sinais.

### Função da Unidade de Controle

- Para cada operação é fornecido uma instrução
  - ex. ADD, MOVE
- Um componente de hardware recebe o código e executa os sinais de controle

#### Componentes

- A Control Unit e a Arithmetic and Logic Unit(ALU) constituem a Central Processing Unit(CPU)
- Dados e instruções necessitam de aceder ao sistema e a resultados
  - Input/output
- O armazenamento temporário dos dados é realizado na memória principal

# Componentes do Computador:





### Ciclo das instruções

- Dois passos:
  - Fetch
  - Execute



#### Ciclo de Fetch



- Program Counter (PC) armazena o endereço para próxima instrução
- O processador vai "buscar" uma instrução da memória referenciada pelo PC
- Incrementa o PC
- Instrução carregada no Instruction Register (IR)
- O Processador interpreta a instrução e toma as acções necessárias

### Ciclo de Execução

- Processador-memória
  - Transferência de dados entre CPU e memória principal
- Processador I/O
  - Dados transferidos entre a CPU e o módulo de I/O
- Processamento de dados
  - Algumas operações aritméticas e lógicas nos dados
- Controle
  - Alteração da sequência das operações
  - Ex. Jump
- Combinação das anteriores



### Ciclo de Instruções -Diagrama de estado



#### Interrupts

- Mecanismo pelo qual outros modulos (ex. I/O) podem interromper a sequência normal de processamento
- Programa
  - e.g. overflow, division by zero
- Temporizador
  - Gerado por um temporizador interno do processador
  - Utilizado por pre-emptive multi-tasking
- I/O
  - A partir de um controlador I/O
- Falha de Hardware
  - e.g. Erro paridade de memória

# Controle do fluxo do programa



#### Ciclo de interrupção

- Adicionado ao ciclo de instruções
- Processador verifica a existência de um interrupt
  - Indicado por um sinal de interrupt
- Se não existir um interrupt é feito o fetch da próxima instrução
- Se existir um interrupt pendente:
  - Suspender a execução do programa actual
  - Gravar o contexto
  - Colocar no PC o endereço inícial da rotina do interrupt handler
  - Processar o interrupt
  - Restaurar o contexto e continuar o programa interrompido

### Transferência de controle através dos Interrupts



### Ciclo de Instrução com Interrupts



### Temporização do Programa "Short I/O Wait"



# Temporização do do Programa

"Long I/O Wait"



### Ciclo de Instruções (com Interrupts) -Diagrama de Estado



#### Vários Interrupts

- Desactivar interrupts
  - Ignorar interrupts até terminar o processamento do interrupt actual
  - Interrupts ficam pendentes e são verificados depois do interrupt ser processad
  - Interrupts tratados na sequência em que ocorrem
- Definir prioridades
  - Interrupts com prioridades mais baixas são interrompidos por interrupts de prioridades mais altas
  - Depois do interrupt ser tratado, volta-se ao interrupt anterior

### Vários Interrupts -Sequencial



# Vários Interrupts – "Nested"



# Sequência temporal de vários Interrupts



#### Conexão

- Todos os elementos têm de estar interligados
- Diferentes tipos de conexões para elementos de diferentes tipos
  - Memória
  - Input/Output
  - CPU

### Módulos do Computador



#### Conexão à memória

- Envia e recebe dados
- Recebe endereços
- Recebe sinais de controle
  - Read
  - Write
  - Timing

# Conexão de Input/Output (1)

- Similar à memória na perspectiva do computador
- Output
  - Receber dados do computador
  - Enviar os dados a um periférico
- Input
  - Receber dados de um periférico
  - Enviar os dados para um computador

# Conexão de Input/Output (2)

- Receber sinais de controle do computador
- Enviar sinais de controle para periféricos
  - ex. girar o disco
- Receber endereços do computador
  - ex.número da porta para identificar o periférico
- Enviar sinais de interrupt para controle

#### Conexão da CPU

- Lê as instruções e dados
- Escreve os dados (depois de processar)
- Envia sinais de controle para outros elementos
- Recebe interrupts

#### Buses



- Diferentes possibilidade de interconexões
- Utilização de Buses únicos e multiplos
  - ex. Control/Address/Data bus (PC)
  - ex. Unibus (DEC-PDP)



#### O que é um Bus?

- Um caminho de comunicação entre um ou mais dispositivos
- Baseia-se normalmente em broadcast
- Normalmente agrupados
  - Vários canais num bus
  - ex. 32 bit bus de dados são 32 canais de um bit

#### **Bus de Dados**

- Transporta dados
  - A este nível não existe uma diferença entre dados e instruções
- Largura é um factor determinante para a performance
  - 8, 16, 32, 64 bit

#### Bus de Endereço

- Identificar a origem e destino dos dados
  - ex. CPU necessita de ler uma instrução(dados) de uma localização da memória
- Largura do Bus determina a memória máxima
  - ex. 8080 tem 16 bit de endereço o que permite uma capacidade de endereçamento de 64k

#### **Bus de Controle**

- Informação de controle e temporização
  - Sinal para read/write
  - Pedidos de Interrupt
  - Sinais de relógio

### Esquema de Interconexão do Bus



#### Aspecto do Bus

- Linhas paralelas em boards
- flat cables
- connectores em mother boards
  - ex. PCI
- Conjunto de fios



# Cabos do UNIBUS e terminadores



#### Problemas de um único Bus

- Diversos dispositivos num bus provocam:
  - Atrasos de propagação:
    - Caminhos de dados Longos necessitam da coordenação do bus
    - Atingir a capacidade do Bus
- Normalmente utiliza-se vários buses para soluccionar o problema

# Tradicional (ISA) (com cache)



### Bus de elevada performance



#### Tipos de Bus

- Dedicados
  - dados & linhas de endereço separadas
- Multiplexados
  - Linhas partilhadas
  - Address valid ou data valid linha de controle
  - Vantagem poucas linhas
  - desvantagem
    - Controles mais complexos
    - Maior Performace

#### Administração do Bus

- Mais de que um módulo a controlar o Bus
  - ex. Controlador da CPU e DMA
- Apenas um dispositivo pode controlar o bus Centralizada
- Administração distribuída

#### Administração Centralizada

- Um único dispositivo de hardware a controlar o acesso ao bus access
  - Ex. Bus Controller
- Inserido na CPU ou separado

### Administração Distribuída

Cada dispositivo pode reclamar o Bus

#### Temporização

- Co-ordenação de events no bus
- Sincronização
  - Eventos determinados por sinais de relógio
  - Bus de Control Bus incluí linhas de relógio
  - 1-0 é um ciclo do bus
  - Todos os dispositivos podem ler a linha do relógio

#### **Bus PCI**

- Peripheral Component Interconnection
- Desenvolvido e disponibilizado pela Intel
  - 32 ou 64 bit
  - 50 linhas