争取未来开挖掘机

姜圣的追随者 2024.7.12

摘要

沉迷游戏的我无意间看见关于姜圣的新闻。深感愧疚,幼儿班的我就已经熟练的掌握 了的九九乘法表。而现在我却每天沉迷于提瓦特大陆,天天只知道打丘丘人。

从今天开始我也要努力学习数学,希望姜圣以后当上院士的时候能带我一起开发挖掘机。

(本书内容: 仅有公式, 定理及证明)

(作者文凭:中专学历,混的文凭,简单理解就是初中学历(-。-)!)

(公式及证明出处:公式及证明都是在别的书里参考过来的,极个别公式证明是我自己瞎写的。)

本书的 pdf, 及 latex 源码地址: https://github.com/daidongchuixue/jiangping.git 2024.7.31: 本书几乎是跟着 B 站高数视频记录的。记录完,会作为第一版。(预计时间几个月) 然后参考数学分析书籍重新整理,为第二版。

2024.8.5: 联系方式,姜萍吧,姜圣的追随者,

目录

1	三角	函数	7
	1.1	三角恒等式	7
		1.1.1 和差化积	7
		1.1.2 积化和差	7
		1.1.3 倍角公式	8
		1.1.4 反三角函数	8
		1.1.5 三角函数其他等式	8
	1.2	双曲函数	8
		1.2.1 定义	8
		1.2.2 反双曲函数	8
		1.2.3 恒等式	9
2	不等	式	10
3	排列	组合	11
	3.1	· 	11
	3.2	运算	11
4	区间	与映射	12
	4.1	区间定义	12
	4.2	领域定义	12
	4.3	映射定义	12
5	函数	与图像	14
	5.1	函数的定义	14
	5.2	函数的性质	14
		5.2.1 函数的有界性	14
		5.2.2 函数的单调性	14
		5.2.3 函数的奇偶性	14
		5.2.4 周期性	15
	5.3	函数图像	15
6		, , , , , , , , , , , , , , , , , , , ,	16
	6.1	定义	16
	6.2	运算	16

	6.3	性质 .		16
	6.4	gustus	De Morgan 定理	17
	6.5	德摩根	l律 定理	17
7	群,	环,域		18
	7.1	群		18
		7.1.1	$M1 \ldots \ldots \ldots \ldots \ldots \ldots$	18
		7.1.2	M2	18
		7.1.3	M3	18
		7.1.4	$M4 \ldots \ldots$	18
		7.1.5	sdas	18
	7.2	环		18
	7.3	域		18
8	极限			19
_	8.1		· i限	
		8.1.1	数列的定义	
		8.1.2	数列极限的定义	19
		8.1.3	极限的唯一性	19
		8.1.4	有界数列	19
		8.1.5	收敛数列与有界性	19
		8.1.6	收敛数列的保号性	19
		8.1.7	收敛数列和子数列	20
	8.2	函数极	限	20
		8.2.1	极限的定义	20
		8.2.2	极限的性质	20
	8.3	无穷小	- 与无穷大	21
		8.3.1	无穷小定义	21
		8.3.2	函数极限与无穷小的关系	21
		8.3.3	无穷大与无穷小的关系	21
		8.3.4	无穷大定义	22
	8.4	运算 .		22
		8.4.1	有限个无穷小的和仍为无穷小	22
		8.4.2	有界函数与无穷小的乘积仍为无穷小	23
		8.4.3	极限的四则运算	23

		8.4.4	夹逼定	理 (三明	治	定	理)) .												24
		8.4.5	重要极	限																	24
		8.4.6	无穷小	比较																	25
		8.4.7	等价无	穷小	代抄	奂,	因	子	代	换	•									•	25
9	连续	与间断。	点																		26
	9.1	定义 .																			26
		9.1.1	点连续																		26
		9.1.2	区间连	续																	26
		9.1.3	间断点																		27
	9.2	连续函	数的运	算.																	27
10	导数																				29
		定义 .																			
		/ /	导数定																		
			导函数																		29
			闭区间																		30
			导数与																		30
	10.2	幂数,	指数,	对数																	30
	10.3	三角函	数																		31
	10.4	导数运	算																		31
	10.5	反函数	求导 .																		32
	10.6	复合函	数求导																		32
	10.7	高阶求	导																		32
	10.8	高阶求	导公式																		33
	10.9	高阶求	导运算	法则																	33
	10.10)隐函数	求导 .																		33
	10.11	参数方	程求导								•									•	33
11	微分																				3 4
	11.1	定义 .																			34
	11.2	微分法	则																		34
		11.2.1	核心根	.本																	34
		11.2.2	四则运	算																	34
		11.2.3	复合运	算																	35
		11.2.4	近似计	算公	式															•	35

		11.2.5 奇偶函数导数	35
		11.2.6 区间恒为 0	35
	11.3	中值定理	35
		11.3.1 费马引理	35
		11.3.2 罗尔定理	36
		11.3.3 拉格朗日定理 (微分中值定理)	36
		11.3.4 柯西定理	37
		11.3.5 三个定理关系	37
	11.4	洛必达法则	38
	11.5	泰勒公式	38
		11.5.1 泰勒多项式	38
		11.5.2 泰勒中值定理	39
	11.6	麦克劳林公式	39
		11.6.1 常用的麦克劳林展开	39
12	积分		40
	12.1	幂数,指数,对数	40
			40
	12.3	积分运算	40
13	零散	的一些	41
14	证明		43
	14.1	第 1章	43
	14.2	第 8章	44
	14.3	第 10章	50

1 三角函数

1.1 三角恒等式

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \tag{1.1.1}$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B \tag{1.1.2}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B \tag{1.1.3}$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B \tag{1.1.4}$$

1.1.1 和差化积

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) \tag{1.1.5}$$

$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) \tag{1.1.6}$$

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \tag{1.1.7}$$

$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)$$
 (1.1.8)

1.1.2 积化和差

$$\cos(A)\sin(B) = \frac{1}{2}\left[\sin(A+B) - \sin(A-B)\right]$$
 (1.1.9)

$$\sin(A)\cos(B) = \frac{1}{2}\left[\sin(A+B) + \sin(A-B)\right]$$
 (1.1.10)

$$\sin(A)\sin(B) = \frac{1}{2}\left[\cos(A - B) - \cos(A + B)\right] \tag{1.1.11}$$

$$\cos(A)\cos(B) = \frac{1}{2}\left[\cos(A+B) + \cos(A-B)\right]$$
 (1.1.12)

1.1.3 倍角公式

$$\sin(2x) = 2\sin x \cos x$$
$$\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x$$
$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

1.1.4 反三角函数

$$\arcsin x + \arccos x = \frac{\pi}{2} \tag{1.1.13}$$

$$\arctan x + \operatorname{arccot} x = \frac{\pi}{2} \tag{1.1.14}$$

1.1.5 三角函数其他等式

$$\sin^2 x + \cos^2 = 1\tag{1.1.15}$$

$$1 + \tan^2 x = \sec^2 \tag{1.1.16}$$

$$1 + \cot^2 x = \csc^2 \tag{1.1.17}$$

1.2 双曲函数

1.2.1 定义

$$\sinh x = \frac{e^x - e^{-x}}{2} \qquad \cosh x = \frac{e^x + e^{-x}}{2}$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

1.2.2 反双曲函数

$$\operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1}) \tag{1.2.1}$$

$$\operatorname{arcosh} x = \ln(x + \sqrt{x^2 + 1}) \tag{1.2.2}$$

$$\operatorname{artanh} x = \frac{1}{2} \ln(\frac{1+x}{1-x}) \tag{1.2.3}$$

1.2.3 恒等式

$$\sinh(2x) = 2\sinh x \cosh x \tag{1.2.4}$$

$$\cosh^2 x - \sinh^2 x = 1 \tag{1.2.5}$$

$$\cosh^2 x + \sinh^2 x = \cosh(2x) \tag{1.2.6}$$

$$\cosh x = 1 + 2\sinh^2 \frac{x}{2} \tag{1.2.7}$$

2 不等式

$$\frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \sqrt[n]{x_1 + x_2 + \dots + x_n}$$
 (2.0.1)

$$|x+y| \leqslant |x| + |y| \tag{2.0.2}$$

$$\sin x \leqslant x \leqslant \tan x \tag{2.0.3}$$

伯努利不等式

$$(1+x)^n \leqslant 1 + nx \tag{2.0.4}$$

3 排列组合

3.1 定义

$$\mathbb{A}_{n}^{k} = \frac{n!}{(n-k)!} = n(n-1)(n-2)\cdots(n-k+1)$$
(3.1.1)

$$\mathbb{C}_n^k = \frac{\mathbb{A}_n^k}{k!} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$$
(3.1.2)

3.2 运算

4 区间与映射

4.1 区间定义

区间定义
$$\left\{ \begin{array}{l} (a,b) = \{x|a < x < b\} \\ [a,b] = \{x|a \leqslant x \leqslant b\} \\ (a,b] = \{x|a < x \leqslant b\} \\ (a,+\infty) = \{x|a < x\} \end{array} \right.$$

4.2 领域定义

点a的领域

$$U(a,\delta) = \begin{cases} \{x|a-\delta < x < a+\delta\} & a \\ \{x|\ |x-a| < \delta\} & \bullet & U \xrightarrow{a-\delta} U \xrightarrow{a+\delta} \end{cases}$$

点 a 的去心领域

$$\mathring{U}(a,\delta) = \begin{cases} \{x|a-\delta < x < a+\delta \land x \neq 0\} & a \\ \{x|0 < |x-a| < \delta\} & \longleftarrow a-\delta \xrightarrow{\square} a+\delta \xrightarrow{\square} U \end{cases}$$

点 a 的左领域
$$(a - \delta, a)$$

点 a 的右领域 $(a, a + \delta)$

4.3 映射定义

定义:X 与 Y 是两个非空集合, 如果存在一个法则对任一 $x \in X$, 都有确定的 y 与之对应。则称 f 为从 X 到 Y 的一个映射。

5 函数与图像

5.1 函数的定义

设数集 $D \in R$ 的映射

$$f:D\to R$$

称 f 为定义在 D 上的函数, 记为

$$y = f(x) \ \{x \in D\}$$

5.2 函数的性质

5.2.1 函数的有界性

$$f: D \to R\{D \subset R\} \begin{cases} f = x \\ f = x \\ f = x \end{cases} \begin{cases} f = x \\ f = x \\ f = x \end{cases} \begin{cases} f(x) \leq x_1, \forall x \in D \\ f = x \\ f = x \end{cases} \end{cases}$$

$$\begin{cases} f(x) \leq x_1, \forall x \in D \\ f = x \\ f = x \end{cases} \begin{cases} f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \end{cases} \end{cases}$$

$$\begin{cases} f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \end{cases} \end{cases}$$

$$\begin{cases} f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \end{cases} \end{cases}$$

$$\begin{cases} f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \end{cases} \end{cases}$$

$$\begin{cases} f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \\ f(x) \leq x_1, \forall x \in D \end{cases} \end{cases}$$

5.2.2 函数的单调性

单调增加 若
$$\{x_1, x_2 \in D\}$$
 $x_1 < x_2 \Rightarrow$
$$\begin{cases} f(x_1) < f(x_2) \% f(x) \text{在 D 上单调增加} \\ f(x_1) > f(x_2) \% f(x) \text{在 D 上单调减少} \\ f(x_1) \leqslant f(x_2) \% f(x) \text{在 D 上单调非降} \\ f(x_1) \geqslant f(x_2) \% f(x) \text{在 D 上单调非增} \end{cases}$$

5.2.3 函数的奇偶性

定义域

$$\forall x \in D$$
 $f(-x) = \begin{cases} f(x) &$ 偶函数
$$-f(x) &$$
 奇函数

奇偶性运算

奇函数
$$\times$$
 奇函数 = 偶函数 (5.2.1)

奇函数
$$\times$$
 偶函数 $=$ 奇函数 (5.2.2)

偶函数
$$\times$$
 偶函数 = 偶函数 $(5.2.3)$

5.2.4周期性

Def: $f(x+L) = f(x)\{L > 0$ 常数, $\forall x \in D\} \Rightarrow f(x)$ 为 L 的周期函数

5.3 函数图像

$$f(x) = sgn \ x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

$$|x| = x \cdot sgnx$$

6 并集,交集

6.1 定义

$$(\lor 或, \land 与)$$
$$A \cup B = \{x \in A \lor x \in B\}$$
$$A \cap B = \{x \in A \land x \in B\}$$

6.2 运算

性质

性质 1.

6.3

$$A \subset (A \cup B)$$
 $A \supset (A \cap B)$ (6.3.1)

性质 2.

$$A \cup B = B \Leftrightarrow A \subset B \tag{6.3.2}$$

性质 3.

$$A \cap B = A \Leftrightarrow A \subset B \tag{6.3.3}$$

性质 $4.(n \in N)$

$$A \cup (B_1 \cap B_2 \cap \dots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \dots \cap (A \cup B_n)$$

(6.3.4)

性质 $5. (n \in N)$

$$A \cap (B_1 \cup B_2 \cup \dots \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_n)$$

(6.3.5)

6.4 gustus De Morgan 定理

$$\neg (A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$$

$$\neg(A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$$

6.5 德摩根律 定理

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{C} = \bigcap_{\alpha} (E_{\alpha}^{C})$$

$$\left(\bigcap_{\alpha} E_{\alpha}\right)^{C} = \bigcup_{\alpha} (E_{\alpha}^{C})$$

7 群,环,域

- 7.1 群
- 7.1.1 M1
- 7.1.2 M2
- 7.1.3 M3
- 7.1.4 M4
- 7.1.5 sdas
- 7.2 琢
- 7.3 域

8 极限

8.1 数列极限

8.1.1 数列的定义

$$Def: \{x_n\}, x_n = f(n), n \in \mathbb{N}^+ \to \mathbb{R}$$

8.1.2 数列极限的定义

$$Def: \{x_n\}, n \in N^+, \exists a, \forall \varepsilon > 0, \exists N, n > N \Rightarrow |x_n - a| < \varepsilon \lim_{n \to \infty} x_n = a$$
 极限存在,为收敛,不存在为发散

8.1.3 极限的唯一性

数列收敛,极限的唯一性 (8.1.1)

8.1.4 有界数列

8.1.5 收敛数列与有界性

(8.1.2)

(8.1.3)

8.1.6 收敛数列的保号性

$$\lim_{n\to\infty} x_n = a$$
 存在,且 $a > 0$,则 $\exists N > 0, \{N \in N^+\} \, \, \text{当} \, \, n > N \, \, \text{时} \, \Leftrightarrow x_n > 0$ (8.1.4)

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} b_n = b, a < b, \ \exists N, n > N, a_n < b_n$$
(8.1.5)

8.1.7 收敛数列和子数列

$$\begin{split} \{x_n\}, & \lim_{n \to \infty} x_n = a, \ \{x_{n_k}\} \subset \{x_n\} \Rightarrow \lim_{n \to \infty} x_{n_k} = a \\ \text{证明 } K = N \ k > K \\ n_k > n_K \geqslant N \\ |x_{n_k} - a| < \varepsilon \\ \lim_{n \to \infty} x_{n_k} = a \end{split}$$

8.2 函数极限

8.2.1 极限的定义

$$Def: \forall \varepsilon > 0 \begin{cases} \exists x > X & \text{时都有} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to +\infty} f(x) = A \\ \exists x < -X & \text{时都有} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to -\infty} f(x) = A \\ \exists |x| > X & \text{时都有} \quad |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to \infty} f(x) = A \end{cases}$$
$$\exists \delta > 0 \begin{cases} \exists x_0 < x < x_0 + \delta, \text{ product} |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0^+} f(x) = A \\ \exists x_0 < x < x_0 + \delta, \text{ product} |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0^-} f(x) = A \end{cases}$$
$$\exists \delta > 0 \begin{cases} \exists x_0 < x < x_0 + \delta, \text{ product} |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0^-} f(x) = A \\ \exists 0 < |x - x_0| < \delta, \text{ product} |f(x) - A| < \varepsilon \Leftrightarrow \lim_{x \to x_0} f(x) = A \end{cases}$$

注意 1

定义中 $0 < |x - x_0|$ 表示 $x \neq x_0$ 讨论 $x \rightarrow x_0$, 只考虑 $x \neq x_0$ 注意 2

 $\lim_{x\to x_0} f(x)$ 是否存在与 $f(x_0)$ 是否有定义取什么值无关。

$$\lim_{x \to x_0} f(x) \overline{f} \stackrel{\cdot}{\alpha} \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$
 (8.2.1)

图

8.2.2 极限的性质

1函数的极限的唯一性

如果 $\lim f(x)$ 存在必唯一。

2 局部有界性

$$\lim_{x \to x_0} f(x) = A, \exists M > 0, \delta > 0 使 0 < |x - x_0| < \delta, |f(x)| \leqslant M$$
 3 保号性

$$\lim_{x \to x_0} f(x) = A, \ A > 0, \exists \delta > 0, \underline{+}, 0 < |x - x_0| < \delta \Rightarrow f(x) > 0 \\ f(x) > 0, \exists \delta > 0, \underline{+}, 0 < |x - x_0| < \delta \Rightarrow \lim_{x \to x_0} f(x) = A, \ A > 0 \\ 4 \ 保序性$$

$$f(x)\geqslant g(x),\ \lim f(x)=a,\ \lim g(x)=b,\ 则 a\geqslant b$$
 5 函数极限与数列极限的关系

如果 $\lim_{x\to x_0}f(x)$ 存在, $\{x_n\}$ 为 f(x) 定义域的任一收敛于 x_0 的数列,则满足 $x_n\neq x_0$ 则 $\lim_{n\to\infty}f(x_n)=0=\lim_{x\to x_0}f(x),\ x_n\to x_0$

无穷小与无穷大 8.3

8.3.1 无穷小定义

$$Def:$$
 如果 $\lim_{x\to x_0} f(x) = 0$ 则称 $f(x)$ 为 $x\to x_0$ 时的无穷小

$$Def: 如果 \lim_{x \to x_0} f(x) = 0 则称 f(x) 为 x \to x_0 时的无穷小$$

$$\exists X > 0 \begin{cases} \exists x > X & \text{时 } |f(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to +\infty} f(x) = 0 \\ \exists x < -X & \text{时 } |f(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to -\infty} f(x) = 0 \end{cases}$$

$$\exists |x| > X \quad \text{How } |f(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to -\infty} f(x) = 0$$

$$\exists |x| > X \quad \text{How } |f(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to x_0^+} f(x) = 0$$

$$\exists \delta > 0 \begin{cases} \exists x_0 < x < x_0 + \delta, \text{How } |f(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to x_0^+} f(x) = 0 \end{cases}$$

$$\exists \delta > 0 \begin{cases} \exists x_0 < x < x_0 + \delta, \text{How } |f(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to x_0^-} f(x) = 0 \end{cases}$$

$$\exists \delta > 0 \begin{cases} \exists x > 0 & \text{How } |f(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to x_0^-} f(x) = 0 \end{cases}$$

函数极限与无穷小的关系 8.3.2

在自变量的同一变化中。
$$\alpha$$
 为无穷小。 $\lim f(x) = A \Leftrightarrow f(x) = A + \alpha$ (8.3.1)

无穷大与无穷小的关系 8.3.3

在自变量同一变化过程中

如果
$$f(x)$$
 为无穷大,则 $\frac{1}{f(x)}$ 为无穷小。 (8.3.2)

如果
$$f(x)$$
 为无穷小,切 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 为无穷小。 (8.3.3)

8.4 运算

无穷大定义 8.3.4

8.3.4 无穷大定义
$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to +\infty} f(x) = +\infty \\ f(x) < -M \Leftrightarrow \lim_{x \to +\infty} f(x) = -\infty \\ |f(x)| > M \Leftrightarrow \lim_{x \to +\infty} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to +\infty} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to -\infty} f(x) = +\infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to -\infty} f(x) = +\infty \\ f(x) < M \Leftrightarrow \lim_{x \to \infty} f(x) = -\infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to \infty} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \\ f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M \Leftrightarrow \lim_{x \to x_0} f(x) = \infty \end{cases}$$

$$\begin{cases} f(x) > M$$

 $\lim f(x) = \infty$,直线 $x = x_0$ 是y = f(x)垂直渐进线

8.4 运算

有限个无穷小的和仍为无穷小 8.4.1

8.4 运算

8.4.2 有界函数与无穷小的乘积仍为无穷小

推论 1. 常数与无穷小的乘积为无穷小

推论 2. 有限个无穷小的乘积为无穷小

8.4.3 极限的四则运算

 $\lim f(x) = A, \lim g(x) = B$

$$\lim (f(x) \pm g(x)) = \lim f(x) \pm \lim g(x) \tag{8.4.1}$$

$$\lim (f(x)g(x)) = \lim f(x) \lim g(x) \tag{8.4.2}$$

$$\lim \left(\frac{f(x)}{g(x)}\right) = \frac{\lim f(x)}{\lim g(x)} \tag{8.4.3}$$

$$\lim \left[Cf(x) \right] = C\lim f(x) \tag{8.4.4}$$

$$\lim [f(x)]^n = [\lim f(x)]^n \tag{8.4.5}$$

运	笪
- X	ナー

8.4

极限

(8.4.8)

(8.4.9)

(8.4.10)

(8.4.11)

(8.4.12)

(8.4.13)

(8.4.14)

(8.4.15)

(8.4.16)

(8.4.17)

(8.4.18)

(8.4.19)

(8.4.20)

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{a_0 x^n + a_1 x^{n-1} + \dots + a_n} = \begin{cases} \frac{a}{b} & m = n \\ \infty & m > n \\ 0 & m < n \end{cases}$$

$$\lim_{x \to x_0} g(x) = u_0, \lim_{u \to u_0} f(x) = A$$

$$\exists \delta_0 > 0, \ x \in \mathring{U}(x_0, \delta_0), \ g(x) \neq u_0$$

$$\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = A$$

$$(8.4.6)$$

夹逼定理(三明治定理) 8.4.4

$$x_n \leqslant z_n \leqslant y_n$$
 $\forall n > N_0$ 若 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$ 則 $\lim_{n \to \infty} z_n = a$

8.4.5重要极限

 $x \to x_0$

 $\lim \sin x = \sin x_0$

 $x \rightarrow x_0$

 $\lim \cos x = \cos x_0$ $x \rightarrow x_0$

 $x \to 0$

 $\lim_{x \to 0} \frac{\sin x}{r} = 1$

 $\lim \cos x = 1$

 $\lim_{x \to 0} \frac{\tan x}{x} = 1$

 $\lim_{x \to 0} \frac{1 - \cos x}{\frac{1}{2}x^2} = 1$

 $\lim_{x \to 0} \frac{\arcsin x}{x} = 1$ $\lim_{x \to 0} \frac{\arctan x}{x} = 1$

 $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$ $\lim_{x \to 0} \frac{e^x - 1}{r} = 1$

 $\lim_{x \to 0} \frac{(1+x)^n - 1}{nx} = 1$

 $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$

24

$$x \to \infty$$

$$\{x_n\} \qquad \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \tag{8.4.21}$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \tag{8.4.22}$$

8.4.6 无穷小比较

₽ 型未定式

 $Def: \alpha, \beta$ 是同一极限过程的无穷小。

- (1) 如果 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 0$ 则称 β 是 α 的高阶无穷小,记作 $\beta = \circ(\alpha)$
- (2) 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = \infty$ 则称 β 是 α 的底阶无穷小。
- (3) 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = C$ 则称 β 是 α 的同阶无穷小。
- (4) 如果 $\lim \frac{\beta}{\alpha^k} = C, k > 0$ 则称 β 是 α 的 k 阶无穷小。
- (5) 如果 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 1$ 则称 β 是 α 的等价阶无穷小。

8.4.7 等价无穷小代换,因子代换

$$\beta$$
与 α 是等价无穷小 $\Leftrightarrow \beta = \alpha + \circ (\alpha)$

设
$$\alpha \sim \alpha'$$
, $\beta \sim \beta'$, 且 $\lim \frac{\beta'}{\alpha'}$ 存在, 则 $\lim \frac{\beta}{\alpha} = \lim \frac{\beta'}{\alpha'}$

$$\lim \alpha f(x) = \lim \alpha' f(x)$$

$$\lim \frac{f(x)}{\alpha} = \lim \frac{f(x)}{\alpha'}$$

连续与间断点 9

9.1定义

点连续 9.1.1

Def1:设f(x)在 x_0 的某邻域内有定义,如果 $\lim_{x\to x_0} = f(x_0)$

则称f(x)在 x_0 处连续

$$\begin{cases} \triangle x = x - x_0 \\ \triangle y = \begin{cases} f(x) - f(x_0) \\ f(x_0 + \triangle x) - f(x_0) \end{cases} \end{cases}$$

$$Def2:$$
 如果 $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$ 则称 $f(x)$ 在 x_0 处连续

9.1.2 区间连续

9.1.2 医间接续
$$\forall x_0 \in [a,b] \begin{cases} \lim_{x \to x_0} f(x) = f(x_0) & x_0 \in (a,b) \Leftrightarrow f(x_0) = \begin{cases} \lim_{x \to x_0^-} f(x) = f(x_0^-) \\ \lim_{x \to x_0^+} f(x) = f(x_0^+) \end{cases} \\ \lim_{x \to x_0^+} f(x) = f(x_0^+) & x_0 = a \text{ (右连续)} \\ \lim_{x \to x_0^-} f(x) = f(x_0^-) & x_0 = b \text{ (左连续)} \end{cases}$$
 称在 $[a,b]$ 内连续

称在 [a,b] 内连约

有界: $\exists M > 0, x \in [a, b]$ 时, $|f(x)| \ge M$

最大值: $\exists x_0 \in [a,b]$ 时, $\forall x \in [a,b]$, $f(x) \leqslant f(x_0)$ 称 $f(x_0)$ 为 f(x) 在 [a,b] 上的最大值 最小值: $\exists x_0 \in [a,b]$ 时, $\forall x \in [a,b]$, $f(x) \ge f(x_0)$ 称 $f(x_0)$ 为 f(x) 在 [a,b] 上的最小值 1, 闭区间 [a,b] 上的连续函数 f(x) 有界, 一定取得最大值与最小值。

零点定理

2, 设 f(x) 在 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$ 则至少存在一点 $\xi \in (a,b)$ 使 $f(\xi) = 0$

介质定理

设
$$f(x)$$
 在 $[a,b]$ 上连续,且 $f(a) = A, f(b) = B$ $\forall C \in (A,B),$ 至少有一点 $\xi, f(\xi) = C$

9.1.3 间断点

- 1,f(x) 无定义
- $2, \lim_{x \to x_0} f(x)$ 不存在
- 3. $\lim_{x \to x_0} f(x)$ 存在, 但 $\lim_{x \to x_0} f(x) \neq f(x_0)$

第一类间断点:
$$f(x_0^+) = \lim_{x \to x_0^+} f(x)$$
 与 $f(x_0^-) = \lim_{x \to x_0^-} f(x)$

第二类间断点:不是第一类的。

9.2 连续函数的运算

函数 f(x), g(x) 在 $x = x_0$ 连续。

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = f(x_0) \pm g(x_0)$$

$$\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0)$$

$$\lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)} \qquad (g(x_0) \neq 0)$$

反函数的连续性

若 y = f(x) 在区间 I_x 上单调增加,且连续。

则 $y = f^{-1}(x)$ 在 $I_y = \{y | y = f(x), x \in I_x\}$ 上也为单调增加,连续

10 导数

10.1 定义

导数的概念从物理发展出来的。

$$v(t_0) = \lim_{\Delta t \to 0} \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t}$$

$$NM斜率 = \tan \beta = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\Delta y}{\Delta x}$$

斜率 $k = \tan \alpha = \lim_{\Delta x \to 0} \tan \beta = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$

10.1.1 导数定义

y = f(x) 在 x_0 的某邻域内有定义

给自变量的增量 $\triangle x$, $(x_0 + \triangle x)$ 仍在定义域内

函数得到了相应增量 $\triangle y, \triangle y = f(x_0 + \triangle x)$

如果 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 存在, 称 y = f(x) 在 $x = x_0$ 处可导

(极限值为y = f(x)在 $x = x_0$ 处导数)

$$i \exists y'|_{x=x_0} = f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \Leftrightarrow \lim_{\Delta x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

10.1.2 导函数定义

f(x) 在区间 I 内任意一点均可导。

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 称 $f'(x)$ 为 $y = f(x)$ 在区间 I 上的导函数

10.1.3 闭区间可导定义

10.1.4 导数与连续

$$f'(x)$$
存在 $\Rightarrow f(x)$ 在 $x = x_0$ 处连续 (10.1.1)

10.2 幂数,指数,对数

$$(C)' = 0 (10.2.1)$$

$$(x^a)' = ax^{a-1} (10.2.2)$$

$$(a^x)' = a^x \ln a \tag{10.2.3}$$

$$(e^x)' = e^x (10.2.4)$$

$$(\log_a^x)' = \frac{1}{x \ln a} \tag{10.2.5}$$

$$(\ln x)' = \frac{1}{x} \tag{10.2.6}$$

10.3 三角函数

$$(\sin x)' = \cos x \tag{10.3.1}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 (10.3.2)

$$(\csc x)' = -\csc x \cot x \tag{10.3.3}$$

$$(\cos x)' = -\sin x \tag{10.3.4}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
 (10.3.5)

$$(\sec x)' = \sec x \tan x \tag{10.3.6}$$

$$(\operatorname{arcsec} x)' = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 (10.3.7)

$$(\tan x)' = \sec^2 x \tag{10.3.8}$$

$$(\arctan)' = \frac{1}{1+x^2}$$
 (10.3.9)

$$(\cot x)' = -\csc^2 x \tag{10.3.10}$$

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$
 (10.3.11)

$$(\sinh x)' = \cosh x \tag{10.3.12}$$

$$(\cosh x)' = \sinh x \tag{10.3.13}$$

$$(\tanh x)' = \frac{1}{\cosh^2 x} = 1 - \tanh^2 x$$
 (10.3.14)

$$(\arcsin x)' = \frac{1}{\sqrt{x^2 + 1}}$$
 (10.3.15)

$$(\operatorname{arccosh} x)' = \frac{1}{\sqrt{x^2 - 1}}$$
 (10.3.16)

$$(\operatorname{arctanh} x)' = \frac{1}{1 - x^2}$$
 (10.3.17)

10.4 导数运算

u = u(x), v = v(x),均在x点可导,C为常数

(10.4.2)

(10.4.3)

$$(Cu(x))' = Cu'(x)$$
 (10.4.1)

$$(u(x) \pm v(x))' = u'(x) \pm v'(x)$$

$$(u(x)\cdot v(x))' = u'(x)v(x) + v'(x)u(x)$$

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - v'(x)u(x)}{[v(x)]^2}$$
(10.4.4)

10.5 反函数求导

如果函数
$$y = f(x)$$
 在区间 (a,b) 内单调可导,且 $f'(y) \neq 0$
$$\begin{cases} \alpha = \min\{f(a) + 0, f(b-0)\} \\ \beta = \max\{f(a) + 0, f(b-0)\} \end{cases}$$
则它的反函数 $x = f^{-1}(y)$ 在区间 (α, β) 内也可导

$$\left[f^{-1}(y)\right]' = \frac{1}{f'(x)} \Leftrightarrow \frac{dy}{\mathrm{d}x} = \frac{1}{\frac{dx}{dx}} \tag{10.5.1}$$

10.6 复合函数求导

设函数
$$\begin{cases} y = f(u) \triangle U(u_0, \delta_0) \triangle f$$
定义
$$u = g(x) \triangle U(x_0, \eta_0) \triangle f$$
定义
$$u_0 = g(x_0), \exists f'(u) \land g'(x) \land f$$
 可导,且

$$F'(x_0) = f'\left[g(x_0)\right]g'(x_0) \Leftrightarrow \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
 (10.6.1)

10.7 高阶求导

$$Def: \begin{cases} -\text{阶导数} & y' \Leftrightarrow \frac{dy}{dx} \\ \text{二阶导数} & y'' \Leftrightarrow \frac{d^2y}{dx^2} \\ \text{三阶导数} & y''' \Leftrightarrow \frac{d^3y}{dx^3} \\ \text{三阶以上 n 阶导数} & y^{(n)} \Leftrightarrow \frac{d^ny}{dx^n} \end{cases}$$

10.8 高阶求导公式

$$(e^x)^{(n)} = e^x (10.8.1)$$

$$(a^x)^{(n)} = a^x (lna)^n (10.8.2)$$

$$(x^{\mu})^{(n)} = A^n_{\mu} x^{\mu - n} \tag{10.8.3}$$

$$\left(\frac{1}{x+a}\right)^{(n)} = \frac{(-1)^n n!}{(x+a)^{n+1}} \tag{10.8.4}$$

$$\left[\ln(x+a)\right]^{(n)} = \frac{(-1)^{n-1}(n-1)!}{(x+a)^n}$$
(10.8.5)

$$(\sin x)^{(n)} = \sin(x + n\frac{\pi}{2}) \tag{10.8.6}$$

$$(\cos x)^{(n)} = \cos(x + n\frac{\pi}{2}) \tag{10.8.7}$$

$$[f(ax+b)]^{(n)} = a^n \cdot f^{(n)}(ax+b)$$
(10.8.8)

10.9 高阶求导运算法则

$$(u(x) \pm v(x))^{(n)} = u^{(n)}(x) \pm v^{(n)}(x)$$
(10.9.1)

莱布紫泥公式
$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} \cdot v^k(k)$$
 (10.9.2)

10.10 隐函数求导

$$F(x,y)=0,y=f(x)$$

$$F(x,f(x))\equiv 0 \qquad$$
可以同时对两面求导

10.11 参数方程求导

$$x = x(t), y = y(t)$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

$$\frac{d^2y}{dx} = \frac{d\frac{dy}{dx}}{dx} = \frac{d}{dt} \left(\frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}\right) \cdot \frac{dt}{dx} = \frac{\frac{d^2y}{dt} \cdot \frac{dx}{dt} - \frac{d^2x}{dt} \cdot \frac{dy}{dt}}{\left(\frac{dx}{dt}\right)^2} \cdot \frac{dt}{dx} = \frac{\frac{d^2y}{dt} \cdot \frac{dx}{dt} - \frac{d^2x}{dt} \cdot \frac{dy}{dt}}{\left(\frac{dx}{dt}\right)^3}$$

11 微分

11.1 定义

设函数 f(x) 在点 x_0 的一个邻域内有定义。 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ 如果 Δy 可以表示为 $\Delta y = A \Delta x + \circ (\Delta x)$ 其中 A 为与 Δx 无关的常数则称 f(x) 在点 x_0 可微, $A \Delta x$ 称为 f(x) 在点 x_0 处的微分。记作: $dy = A \Delta x$

可微
$$\Rightarrow$$
 可导 (11.1.1)

可导
$$\Rightarrow$$
 可微 (11.1.2)

11.2 微分法则

11.2.1 核心根本

$$dy = f'(x) d x$$
 求导

11.2.2 四则运算

$$d(u \pm v) = du \pm dv \tag{11.2.1}$$

$$d(uv) = vdu + udv (11.2.2)$$

$$d\left(\frac{u}{v}\right) = \frac{vdu + udv}{v^2} \tag{11.2.3}$$

11.2.3 复合运算

可微
$$\begin{cases} y = f(u) \\ u = g(x) \end{cases} \Rightarrow \begin{cases} dy = f'(u)du \\ du = g'(x)dx \end{cases} \quad \text{则 } y = f(g(x)) \text{ 也可微}$$

$$\text{且 } dy = f'(u)du = f'(u)g(x)dx$$

$$u \text{ 是否为中间变量都成立,微分的不变性。}$$

11.2.4 近似计算公式

$$\triangle x \to 0, dy \approx \triangle y \begin{cases} dy = f'(x_0) \triangle x \\ \Delta y = f(x_0 + \triangle x) - f(x_0) \end{cases} \begin{cases} f(x_0 + \triangle x) \approx f(x_0) + f'(x_0) \triangle x \\ f(x) \approx f(x_0) + f'(x_0)(x - x_0) \end{cases}$$

$$\begin{cases} f(x) \approx f(x_0) + f'(x_0)(x - x_0) \\ \sqrt{n} \approx 1 + \frac{1}{n}x \\ \sin x \approx x \\ \tan x \approx x \\ e^x \approx 1 + x \\ \ln(1 + n) \approx x \end{cases}$$

11.2.5 奇偶函数导数

偶函数导数为奇函数
$$f(x) = f(-x) \Leftrightarrow f'(x) = -f'(-x)$$
 奇函数导数为偶函数 $f(x) = -f(-x) \Leftrightarrow f'(x) = f'(-x)$

11.2.6 区间恒为 0

若f'(x)在区间恒为零,则f(x)在区间I上为一常数

设
$$x_1, x_2$$
为区间 I 内任意两点 $x_1 < x_2$
 $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \equiv 0$
 $f(x_2) \equiv f(x_1) = C$

11.3 中值定理

11.3.1 费马引理

$$f(x) \qquad \forall x \in \mathring{U}(x_0) \left\{ \begin{array}{ll} f(x) \leqslant f(x_0) & \quad f(x) \\ f(x) \geqslant f(x_0) & \quad f(x) \\ \end{array} \right.$$
在 x_0 处取极小值

(11.3.1)

如果可导函数y = f(x)在 x_0 取极值,则 $f'(x_0) = 0$

11.3.2 罗尔定理

如果函数
$$f(x)$$
满
$$\begin{cases} 在闭区间 [a,b] 上连续 \\ 在开区间 (a,b) 可导 \\ f(a) = f(b) \end{cases}$$

则至少有一点
$$\xi \in (a,b), f'(\xi) = 0$$
 (11.3.2)

11.3.3 拉格朗日定理(微分中值定理)

如果函数
$$f(x)$$
满 $\begin{cases} 在闭区间 [a,b] 上连续 \\ 在开区间 (a,b) 可导 \\ 则至少有一点 $\xi \in (a,b) \end{cases}$$

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} \Leftrightarrow f(b) - f(a) = f'(x)(b - a)$$
在区间 $[x, x + \Delta x]$ 用拉格朗日定理。
$$f(x + \Delta x) - f(x) = f'(\xi) \Delta x$$

$$\xi \in (x, x + \Delta x)$$
 记作: $\xi = x + \theta \Delta x \qquad 0 < \theta < 1$

$$f(x + \Delta x) - f(x) = f(x + \theta \Delta x) \Delta x$$

$$\Delta y = f(x + \theta \Delta x) \Delta x$$

11.3.4 柯西定理

如果函数
$$f(x)$$
满 $\begin{cases} 在闭区间 [a,b] 上连续 \\ 在开区间 (a,b) 可导 \end{cases}$ 参数方程 $(a \leqslant x \leqslant b)$ $\begin{cases} X = F(x) \\ Y = f(x) \end{cases}$ \qquad 至少有一点, ξ $\qquad \frac{f'(\xi)}{F'(\xi)} = \frac{f(b) - f(a)}{F(b) - F(a)}$ (11.3.4) 切线斜率 $= \frac{dY}{dX} = \frac{df(x)}{dF(x)} = \frac{f'(x)}{F'(x)} \Rightarrow x = \xi$ 时斜率 $= \frac{f'(\xi)}{F'(\xi)}$ \qquad AB 的斜率 $= \frac{f(b) - f(a)}{F(b) - F(a)}$

11.3.5 三个定理关系

$$\frac{f'(\xi)}{F'(\xi)} = \frac{f(b) - f(a)}{F(b) - F(a)}, (F(x) = x) \Rightarrow f'(\xi) = \frac{f(b) - f(a)}{b - a}, (f(b) = f(a)) \Rightarrow f'(\xi) = 0$$

11.4 洛必达法则 11 微分

11.4 洛必达法则

未定型,
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, 0^{0} , 1^{∞} , ∞^{0} , $\infty - \infty$

$$\lim_{x \to x_{0}} \frac{f(x)}{F(x)} = \lim_{x \to x_{0}} \frac{f'(x)}{F'(x)} \begin{cases} \lim_{x \to x_{0}} f(x) = 0, \lim_{x \to x_{0}} F(x) = 0 \\ f(x), F(x) \in x_{0} \text{ 的某去心邻域内可导, } \mathbb{E}F'(x) \neq 0 \end{cases}$$

$$\lim_{x \to x_{0}} \frac{f'(x)}{F(x)} \stackrel{}{f(x)} = \lim_{x \to x_{0}} \frac{f'(x)}{F'(x)} \qquad (11.4.1)$$

$$\lim_{x \to \infty} \frac{f(x)}{F(x)} = \lim_{x \to \infty} \frac{f'(x)}{F'(x)} \qquad (11.4.1)$$

$$\lim_{x \to \infty} \frac{f(x)}{F(x)} = \lim_{x \to \infty} \frac{f'(x)}{F'(x)} \qquad (11.4.1)$$

$$\lim_{x \to \infty} \frac{f(x)}{F(x)} = \lim_{x \to \infty} \frac{f'(x)}{F'(x)} \qquad (11.4.1)$$

$$\lim_{x \to x_{0}} \frac{f'(x)}{F'(x)} = 0, \lim_{x \to x_{0}} F(x) = 0$$

$$\exists N \stackrel{}{\to} |x| > N, \quad \text{If } f'(x), F'(x) \stackrel{}{\to} \text{ fersion } f'(x) \neq 0$$

$$\lim_{x \to x_{0}} \frac{f'(x)}{F'(x)} \stackrel{}{\to} \text{ fersion } f'(x) \stackrel{}{\to} \text{ fersion } f'$$

11.5 泰勒公式

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + \circ(\Delta x)$$

$$x_0 + \Delta = x \qquad \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \circ(\Delta x)$$

$$f(x) = f'(x_0)(x - x_0) + f(x_0) + \circ(\Delta x)$$

$$f(x) \approx f'(x_0)(x - x_0) + f(x_0)$$

$$P(x_0) = f(x_0)$$

$$P'(x_0) = f'(x_0)$$

11.5.1 泰勒多项式

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$
去近似某个多项式
$$\begin{cases}
P_n(x_0) &= f(x_0) = a_0 \\
P'_n(x_0) &= f'(x_0) = a_1 \\
P''_n(x_0) &= f''(x_0) = a_2 \cdot 2! \\
\vdots \\
P_n^{(n-1)}(x_0) &= f^{(n-1)}(x_0) = a_{n-1} \cdot (n-1)! \\
P_n^{(n)}(x_0) &= f^{(n)}(x_0) = a_n \cdot n! \end{cases} \Rightarrow \begin{cases}
a_0 &= f_n(x_0) \\
a_1 &= f'_n(x_0) \\
a_2 &= \frac{f''_n(x_0)}{2!} \\
\vdots \\
a_{n-1} &= \frac{f_n^{(n-1)}(x_0)}{(n-1)!} \\
a_n &= \frac{f_n^{(n)}(x_0)}{n!} \end{cases}$$

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 \cdots \frac{f^{(n-1)}(x_0)}{(n-1)!}(x - x_0)^{n-1} + \frac{f^n(x_0)}{n!}(x - x_0)^n$$

$$f(x) \approx P_n(x)$$

11.5.2 泰勒中值定理

如果 $f(x)|x_0 \in (a,b)$ 内有(n+1)阶导则

$$f(x) = P_n(x) + R_n(x)$$

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!}(x - x_0)^n + R_n(x)$$
拉格朗日余项

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \qquad \{\xi \in (x, x_0)\}$$
 (11.5.1)

皮亚诺于项

$$R_n(x) = o(|x - x_0|^n)$$
 (11.5.2)

$$f(x) \approx P_n(x)$$
 误差为 $R_n(x)$

11.6 麦克劳林公式

$$x_0 = 0$$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^n(0)}{n!}x^n + \begin{cases} \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} \cdot 0 < \theta < 1 \\ \circ (|x|^n) \end{cases}$$

11.6.1 常用的麦克劳林展开

$$e^{x} = 1 + 1x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} \begin{cases} \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} \cdot 0 < \theta < 1 \\ \circ (|x|^{n}) \end{cases}$$

$$\sin x = 1x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \frac{1}{7!}x^{7} + \dots + (-1)^{n-1}\frac{1}{(2n-1)!}x^{2n-1} + R_{n}(x)$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} - \frac{1}{6!}x^{6} + \dots + (-1)^{n}\frac{1}{(2n)!}x^{2n} + R_{n}(x)$$

$$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \frac{1}{4}x^{4} + \dots + (-1)^{n-1}\frac{1}{n}x^{n} + R_{n}(x)$$

$$\ln(1-x) = -x - \frac{1}{2}x^{2} - \frac{1}{3}x^{3} - \frac{1}{4}x^{4} + \dots + \frac{1}{n}x^{n} + R_{n}(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + \dots + \frac{A_{\alpha}^{n}}{n!}x^{n} + R_{n}(x)$$

12 积分

12.1 幂数,指数,对数

$$\int x^{a} dx = \frac{1}{a-1} x^{a-1} + C$$

$$\int b^{x} dx = \frac{b^{x}}{\ln b} + C$$

$$\int e^{x} dx = e^{x} + C$$
(12.1.1)
$$(12.1.2)$$

$$\int \frac{1}{x} \mathrm{d}x = \ln x + C \tag{12.1.4}$$

12.2 三角函数

$$\int \sin x dx = -\cos x + C \qquad (12.2.1)$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C \qquad (12.2.2)$$

$$\int \csc x \cot x dx = -\csc x + C \qquad (12.2.3)$$

$$\int \cos x dx = \sin x + C \qquad (12.2.4)$$

$$\int \sec x \tan x dx = \sec x + C \qquad (12.2.5)$$

$$\int \sec^2 x dx = \tan x + C \qquad (12.2.6)$$

$$\int \csc^2 x dx = -\cot x + C \qquad (12.2.7)$$

$$\int \frac{1}{|x| \sqrt{x^2 - 1}} dx = \operatorname{arcsec} x + C \qquad (12.2.8)$$

$$\int \frac{1}{1 + x^2} dx = \tan x + C \qquad (12.2.9)$$

$$\int \sinh x dx = \cosh x + C \qquad (12.2.10)$$

$$\int \cosh x dx = \sinh x + C \qquad (12.2.11)$$

12.3 积分运算

13 零散的一些

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \tag{13.0.1}$$

$$A_N = \sum_{k=0}^n q^k \qquad qA_N = \sum_{k=1}^{n+1} q^k$$

$$A_N - qA_N = \sum_{k=0}^n q^k - \sum_{k=1}^{n+1} q^k = 1 - q^{n+1}$$

$$A_N = \frac{1 - q^{n+1}}{1 - q}$$

$$\log_{10} x = \lg_x$$
 (13.0.2)

$$\log_e x = \ln_x$$
 (13.0.3)

$$\log_b xy = \log_b x + \log_b y \tag{13.0.4}$$

$$1 \qquad \qquad 1$$

$$\log_{(b^n)} x = \frac{1}{n} \log_b x \tag{13.0.5}$$

$$\log_b x^n = n \log_b x \tag{13.0.6}$$

$$\log_b x = \frac{\log_c x}{\log b} \tag{13.0.7}$$

$$b^n = x$$
 $b^m = y$

$$b^{n+m} = xu$$

 $\log_b xy = n + m = \log_b x + \log_b y$

$$b^n = x$$

$$\log_b x = n$$

$$\frac{1}{n}\log_b x = 1 = \log_{(b^n)} x$$

$$b^{1} = x^{n} \qquad b^{\frac{1}{n}} = x$$
$$n \log_{b} x = 1 = \log_{b} x^{n}$$

$$\log_b x = \log_{c^{(\log_c b)}} c^{(\log_c x)} = \frac{\log_c x}{\log_c b}$$

$$(a+b)^n = \sum_{m=0}^n C_n^m a^{n-m} b^m$$

$$a^{2} - b^{2} = (a - b) (1 + b)$$

$$a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})$$

$$a^{n} - b^{n} = (a - b) \sum_{m=0}^{n-1} (a^{n-m}b^{m}) = (a - b) (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

14 证明

14.1 第 1章

1.2.4

$$\sinh x \cosh x = \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^x + e^{-x}}{2}\right)$$
$$= \left(\frac{1}{2}\right) \left(\frac{e^{2x} - e^{-2x}}{2}\right)$$
$$= \frac{1}{2} \sinh(2x)$$
$$\sinh(2x) = 2 \sinh x \cosh x$$

1.2.5

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2}\right) \left(\frac{e^{x} + e^{-x}}{2} - \frac{e^{x} - e^{-x}}{2}\right)$$

$$= e^{x} \times e^{-x}$$

$$= 1$$

1.2.6

$$\cosh^{2} x + \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} + \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

$$= \frac{2e^{2x} + 2e^{-2x}}{4}$$

$$= \frac{e^{2x} + e^{-2x}}{2}$$

$$= \cosh(2x)$$

1.2.7

$$\cosh(2x) = \cosh^2 x + \sinh^2 x$$

$$= \sinh^2 x + 1 + \sinh^2 x$$

$$= 2\sinh^2 x + 1$$

$$\cosh x = 2\sinh^2 \frac{x}{2} + 1$$

14.2 第 8章

8.1.1

反设
$$\lim_{n \to \infty} x_n = a$$
, $\lim_{n \to \infty} x_n = b$, $\exists a < b$

$$\varepsilon = \frac{b-a}{3} \begin{cases} \exists N_1, \ n > N_1, \ |x_n - a| < \frac{b-a}{3} \\ \exists N_2, \ n > N_2, \ |x_n - b| < \frac{b-a}{3} \end{cases}$$

$$N = \max\{N_1, N_2\}, \ n > N \Rightarrow \begin{cases} n > N_1 \\ n > N_2 \end{cases}$$

$$b - a = |(x_n - a) - (x_n - b)|$$

$$\leqslant |x_n - a| + |x_n - b|$$

$$< \frac{b-a}{3} + \frac{b-a}{3}$$

$$< \frac{2(b-a)}{3}$$

8.1.2

8.1.4

1

由于
$$\lim_{n \to \infty} x_n = a$$
, 且 $a > 0$
 $\varepsilon = \frac{a}{2}$, $\exists N > 0$, $n > N$
 $|x_n - a| < \varepsilon$
 $|x_n - a| < \frac{a}{2}$
 $-\frac{a}{2} < x_n - a < \frac{a}{2}$
 $\frac{a}{2} < x_n < 1$

用反证法,反设 a < 0. 从某项起 $x_n < 0$ 矛盾

8.1.5

$$x_n = b_n - a_n$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} x_n = b - a > 0$$

$$\lim_{n \to \infty} x_n > 0$$

$$b_n - a_n = x_n > 0$$

8.2.1
$$\lim_{x \to x_0} f(x)$$
存在 $\Rightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$

$$\lim_{x \to x_0} f(x) \overline{f} = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

$$A = \begin{cases} \lim_{x \to x_o^+}, \forall \varepsilon > 0, \exists \delta_1 > 0, x_0 < x < x_0 + \delta_1, |f(x) - A| < \varepsilon \\ \lim_{x \to x_o^-}, \forall \varepsilon > 0, \exists \delta_2 > 0, x_0 - \delta_2 < x < x_0, |f(x) - A| < \varepsilon \\ \delta = \min\{\delta_1, \delta_2\} \end{cases}$$

$$0 < |x - x_0| < \delta \begin{cases} x > x_0, x_0 < x < x_0 + \delta \leqslant x_0 + \delta_1, |f(x) - A| < \varepsilon \\ x < x_0, x_0 - \delta_2 \leqslant x_0 + \delta < x < x_0, |f(x) - A| < \varepsilon \\ \lim_{x \to x_0} f(x) = A \end{cases}$$

$$\lim_{x \to x_0} f(x) = A \Rightarrow \begin{cases} \alpha \exists x \to x_0 \text{时的无穷小} \\ f(x) = \alpha + A \end{cases}$$
设
$$\lim_{x \to x_0} f(x) = A, \ \Box f(x) - A = \alpha$$
只需证 α 为无穷小。

设
$$\lim_{x \to x_0} f(x) = \infty$$
 对 $f(x)$ 为 $x \to$ 时无穷大 对于 $M = \frac{1}{\varepsilon}$. 存在 $\delta > 0$ 当 $0 < |x - x_0| < \delta$ 时 $|f(x)| > M = \frac{1}{\varepsilon}$ $\left|\frac{1}{f(x)}\right| < \varepsilon$ $\frac{1}{f(x)}$ 为 $x \to x_0$ 时的无穷小

8.4.2

$$f(x)g(x) = [A + \alpha] [B + \beta]$$

$$= AB + A\beta + B\alpha + \beta\alpha$$

$$= AB + \gamma \qquad (\gamma为无穷小)$$

$$\lim [f(x)g(x)] = AB + \gamma = \lim f(x) \lim g(x)$$

$$\begin{split} |f(x)-\sin x_0| &= |\sin x - \sin x_0| \\ &= \left| 2\cos(\frac{x+x_0}{2})\sin(\frac{x-x_0}{2}) \right| \\ &\leqslant 2 \left| \sin(\frac{x-x_0}{2}) \right| \\ &\leqslant 2 \frac{|x-x_0|}{2} = |x-x_0| \\ \forall \varepsilon, \exists \delta = \varepsilon, \, \underline{} \pm 0 < |x-x_0| < \delta \mathbb{H} \\ |\sin x - \sin x_0| \leqslant |x-x_0| < \varepsilon \end{split}$$

8.4.10

$$\begin{split} |f(x) - \cos x_0| &= |\cos x - \cos x_0| \\ &= \left| -2\sin(\frac{x + x_0}{2})\sin(\frac{x - x_0}{2}) \right| \\ &\leqslant 2 \left| \sin(\frac{x - x_0}{2}) \right| \\ &\leqslant 2 \frac{|x - x_0|}{2} = |x - x_0| \\ \forall \varepsilon, \exists \delta = \varepsilon, \ \ \underline{\exists} \ 0 < |x - x_0| < \delta \mathbb{H} \\ &|\cos x - \cos x_0| \leqslant |x - x_0| < \varepsilon \end{split}$$

$$OB = OA = 1$$

$$\triangle AOB \leqslant 扇形面积 \leqslant \triangle AOD$$

$$\frac{1}{2}\sin x \leqslant \frac{1}{2}x \leqslant \frac{1}{2}\tan x$$

$$\sin x \leqslant x \leqslant \tan$$

$$1 \geqslant \frac{\sin x}{x} \geqslant \cos x$$

$$\lim_{x \to 0} 1 \geqslant \lim_{x \to 0} \frac{\sin x}{x} \geqslant \lim_{x \to 0} \cos x$$

$$1 \geqslant \lim_{x \to 0} \frac{\sin x}{x} \geqslant 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\begin{aligned} |1-\cos x| &= 1-\cos x = 2\sin^2\frac{x}{2} \\ &\leqslant 2\left(\frac{x}{2}\right)^2 \\ 0 &\leqslant 1-\cos x \leqslant \frac{x^2}{2} \\ \lim_{x\to 0} 0 &\leqslant \lim_{x\to 0} (1-\cos x) \leqslant \lim_{x\to 0} \frac{x^2}{2} \\ 0 &\leqslant \lim_{x\to 0} (1-\cos x) \leqslant 0 \\ \lim_{x\to 0} (1-\cos x) &= 0 \\ \lim_{x\to 0} \cos x &= 1 \end{aligned}$$

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1}{\cos x}$$
$$= \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{\cos x}$$
$$= 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{1}{2}x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{\frac{1}{2}x^2}$$
$$= \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2$$
$$= 1$$

8.4.15

$$x = \sin t, \ t = \arcsin x$$

$$x \to 0, \ t \to 0$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{t}{\sin t} = 1$$

8.4.16

$$x = \tan t, \ t = \arctan x$$

$$x \to 0, \ t \to 0$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{t \to 0} \frac{t}{\tan t} = 1$$

8.4.17

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1$$

8.4.18

$$e^{x} - 1 = t, \ x = \ln(t+1)$$

$$x \to 0, \ t \to 0$$

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(t+1)} = 1$$

$$\lim_{x \to 0} \frac{\left(1+x\right)^n - 1}{nx} = \lim_{x \to 0} \left(\frac{e^{n\ln(1+x)} - 1}{n\ln\left(1+x\right)} \cdot \frac{\ln\left(1+x\right)}{x}\right) = 1$$

$$x_{n} = \left(1 + \frac{1}{n}\right)^{n} = \sum_{m=0}^{n} C_{n}^{m} 1^{n-m} \left(\frac{1}{n}\right)^{m} = \sum_{m=0}^{n} C_{n}^{m} \left(\frac{1}{n}\right)^{m}$$

$$= C_{n}^{0} \left(\frac{1}{n}\right)^{0} + C_{n}^{1} \left(\frac{1}{n}\right)^{1} + \sum_{m=2}^{n} C_{n}^{m} \left(\frac{1}{n}\right)^{m}$$

$$= 1 + 1 + \sum_{m=2}^{n} \frac{n!}{m! (n-m)!} \left(\frac{1}{n}\right)^{m}$$

$$= 1 + 1 + \sum_{m=2}^{n} \frac{(n)(n-1)\cdots(n-m+1)}{m!} \left(\frac{1}{n}\right)^{m}$$

$$= 1 + 1 + \sum_{m=2}^{n} \frac{1}{m!} \left(\frac{n}{n}\right) \left(\frac{n-1}{n}\right) \cdots \left(\frac{n-m+1}{n}\right)$$

$$= 1 + 1 + \sum_{m=2}^{n} \frac{1}{m!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right)$$

$$x_{n+1} = 1 + 1 + \sum_{m=2}^{n+1} \frac{1}{m!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \cdots \left(1 - \frac{m-1}{n+1}\right)$$

$$x_{n} < x_{n+1} \qquad \text{ \mathered{Pillipsi}} \text{ \mathered{H}} \text{in} \text{if} \tex$$

14.3 第 10章

10.1.1

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 因为极限存在与无穷小的关系
$$\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha \qquad \alpha 为 \Delta x \to 0$$
时的无穷小
$$\Delta y = f'(x_0) \Delta x + \alpha \Delta x$$

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f'(x_0) \Delta x + \alpha \Delta x] = 0$$

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0) = 0] \Leftrightarrow \lim_{\Delta x \to 0} \Delta y = 0$$

10.2.1

$$(C)' = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{C - C}{\Delta x}$$
$$= 0$$

10.2.2

$$(x^{a})' = \lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{x - x_{0}}$$

$$= \frac{x^{a} - x_{0}^{a}}{x - x_{0}}$$

$$= \frac{(x - x_{0})(x^{a-1} + x^{a-2}x_{0} + \dots + xx_{0}^{a-2} + x_{0}^{a-1})}{x - x_{0}}$$

$$= ax_{0}^{a-1}$$

10.2.3

$$(a^{x})' = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^{x}}{\Delta x}$$

$$= a^{x} \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x}$$

$$= a^{x} \lim_{\Delta x \to 0} \frac{e^{\Delta x \ln a} - 1}{\Delta x}$$

$$= a^{x} \ln a$$

10.2.4

$$(e^x)' = e^x \ln e = e^x$$

10.2.5

$$(\log_a^x)' = \lim_{\Delta x \to 0} \frac{\log_a^{x + \Delta x} - \log_a^x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\log_a^{1 + \frac{\Delta x}{x}}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\ln 1 + \frac{\Delta x}{x}}{\ln a \Delta x}$$

$$= \frac{1}{\ln a} \lim_{\Delta x \to 0} \frac{\frac{\Delta x}{x}}{\Delta x}$$

$$= \frac{1}{x \ln a}$$

10.2.6

$$(\ln^x)' = \frac{1}{x \ln e}$$
$$= \frac{1}{x}$$

10.3.1

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x_0 + \Delta x) - \sin x_0}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2\cos(x_0 + \frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \cos(x_0 + \frac{\Delta x}{2}) \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$

$$= \cos x_0$$

10.3.2

$$(\arcsin x)' = \frac{1}{\frac{dx}{dy}} = \frac{1}{\frac{d\sin y}{dy}}$$
$$= \frac{1}{\cos y}$$
$$= \frac{1}{\sqrt{1 - \sin^2 y}}$$
$$= \frac{1}{\sqrt{1 - x^2}}$$

10.3.3

$$(\csc x)' = \left(\frac{1}{\sin x}\right)' = \frac{(1)' \cdot \sin x - (\sin x)' \cdot 1}{\sin^2 x}$$
$$= \frac{-\cos x}{\sin^2 x}$$
$$= -\csc x \cdot \cot x$$

$$(\cos x)' = \lim_{\Delta x \to 0} \frac{\cos(x_0 + \Delta x) - \cos(x_0)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{-2\sin\left(x_0 + \frac{\Delta x}{2}\right)\sin\frac{\Delta x}{2}}{\Delta x}$$
$$= \lim_{\Delta x \to 0} -\sin\left(x_0 + \frac{\Delta x}{2}\right)\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$
$$= -\sin x$$

$$(\arccos x)' = \frac{1}{\frac{dx}{dy}} = \frac{1}{\frac{d\cos y}{dy}}$$
$$= \frac{1}{-\sin y}$$
$$= -\frac{1}{\sqrt{1 - \cos^2 y}}$$
$$= -\frac{1}{\sqrt{1 - x^2}}$$

10.3.6

$$(\sec x)' = \left(\frac{1}{\cos x}\right)' = \frac{(1)' \cdot \cos x - (\cos x)' \cdot 1}{\cos^2 x}$$
$$= \frac{\sin x}{\cos^2 x}$$
$$= \sec x \cdot \tan x$$

10.3.8

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x - (\cos x)' \sin x}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \sec^2 x$$

10.3.9

$$(\arctan x)' = \frac{1}{\frac{dx}{dy}} = \frac{1}{\frac{d \tan y}{dy}}$$
$$= \frac{1}{\sec y}$$
$$= \frac{1}{1 + \tan^2 y}$$
$$= \frac{1}{1 + x^2}$$

$$(\cot x)' = \left(\frac{\cos x}{\sin x}\right)' = \frac{(\cos x)' \sin x - (\sin x)' \cos x}{\sin^2 x}$$
$$= -\frac{\sin^2 x + \cos^2 x}{\cos^2 x}$$
$$= -\csc^2 x$$

$$(\operatorname{arccot} x)' = \frac{1}{\frac{dx}{dy}} = \frac{1}{\frac{d \cot y}{dy}}$$
$$= \frac{1}{-\csc^2 y}$$
$$= -\frac{1}{1 + \cot^2 y}$$
$$= -\frac{1}{1 + x^2}$$

10.3.12

$$(\sinh x)' = \left(\frac{e^x - e^{-x}}{2}\right)'$$
$$= \frac{e^x + e^{-x}}{2}$$
$$= \cosh x$$

10.3.13

$$(\cosh x)' = \left(\frac{e^x + e^{-x}}{2}\right)'$$
$$= \frac{e^x - e^{-x}}{2}$$
$$= \sinh x$$

$$(\tanh x)' = \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)'$$

$$= \frac{\frac{d(e^x - e^{-x})}{dx}(e^x + e^{-x}) - \frac{d(e^x + e^{-x})}{dx}(e^x - e^{-x})}{(e^x + e^{-x})^2}$$

$$= \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2}$$

$$= \frac{2^2}{(e^x + e^{-x})^2}$$

$$= \frac{1}{\cosh^2 x}$$

$$(\arcsin x)' = \left[\ln(x + \sqrt{x^2 + 1})\right]'$$

$$= \frac{d \ln(x + \sqrt{x^2 + 1})}{d(x + \sqrt{x^2 + 1})} \cdot \frac{d (x + \sqrt{x^2 + 1})}{dx}$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \cdot \left(\frac{dx}{dx} + \frac{d (\sqrt{x^2 + 1})}{d(x^2 + 1)} \cdot \frac{d(x^2 + 1)}{dx}\right)$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x\right)$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \cdot \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$$

$$= \frac{1}{\sqrt{x^2 + 1}}$$

$$(\operatorname{arccosh} x)' = \left[\ln(x + \sqrt{x^2 - 1})\right]'$$

$$= \frac{d \ln(x + \sqrt{x^2 - 1})}{d(x + \sqrt{x^2 - 1})} \cdot \frac{d(x + \sqrt{x^2 - 1})}{dx}$$

$$= \frac{1}{x + \sqrt{x^2 - 1}} \cdot \left(\frac{dx}{dx} + \frac{d(\sqrt{x^2 - 1})}{d(x^2 - 1)} \cdot \frac{d(x^2 - 1)}{dx}\right)$$

$$= \frac{1}{x + \sqrt{x^2 - 1}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 - 1}} \cdot 2x\right)$$

$$= \frac{1}{x + \sqrt{x^2 - 1}} \cdot \frac{x + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}}$$

$$= \frac{1}{\sqrt{x^2 - 1}}$$

$$(\operatorname{arctanh} x)' = \left[\frac{1}{2}\ln(\frac{1+x}{1-x})\right]'$$

$$= \frac{1}{2} \cdot \frac{d\left[\ln(\frac{1+x}{1-x})\right]}{d\left(\frac{1+x}{1-x}\right)} \cdot \frac{d\left(\frac{1+x}{1-x}\right)}{dx}$$

$$= \frac{1}{2} \cdot \frac{1}{\left(\frac{1+x}{1-x}\right)} \cdot \frac{\frac{d(1+x)}{dx}(1-x) - \frac{d(1-x)}{dx}(1+x)}{(1-x)^2}$$

$$= \frac{1}{2} \cdot \frac{1-x}{1+x} \cdot \frac{(1-x) + (1+x)}{(1-x)^2}$$

$$= \frac{1}{(1+x)(1-x)}$$

$$= \frac{1}{1-x^2}$$

10.4.1

$$[Cu(x)]' = \lim_{\Delta x \to 0} \frac{Cu(x+\Delta x) - Cu(x)}{\Delta x}$$
$$= C \lim_{\Delta x \to 0} \frac{u(x+\Delta x) - u(x)}{\Delta x}$$
$$= Cu'(x)$$

10.4.2

$$(u(x) \pm v(x))' = \lim_{\Delta x \to 0} \frac{u(x+\Delta x) - u(x) \pm v(x+\Delta x) - v(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{u(x+\Delta x) - u(x)}{\Delta x} \pm \lim_{\Delta x \to 0} \frac{v(x+\Delta x) - v(x)}{\Delta x}$$
$$= u'(x) \pm v'(x)$$

$$[u(x) \cdot v(x)]' = \lim_{\Delta x \to 0} \frac{u(x+\Delta x)v(x+\Delta x) - u(x)v(x) - u(x)v(x+\Delta x) + u(x)v(x+\Delta x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{[u(x+\Delta x) - u(x)]v(x+\Delta x) + u(x)[v(x+\Delta x) - v(x)]}{\Delta x}$$

$$= u'(x) \lim_{\Delta x \to 0} v(x+\Delta x) + u(x)v'(x)$$

$$= u'(x)v(x) + v'(x)u(x)$$

10.5.1

$$[f^{-1}(y)]'|_{y=y_0} = \lim_{y \to y_o} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$

$$= \lim_{y \to y_o} \frac{x - x_0}{y - y_0}$$

$$= \lim_{x \to x_o} \frac{x - x_0}{f(x) - f(x_0)}$$

$$= \lim_{x \to x_o} \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}}$$

$$= \frac{1}{f'(x)}$$

10.6.1

定义函数
$$A(u) = \begin{cases} \frac{f(u) - f(u_0)}{u - u_0}. & u \neq u_0 \\ f'(u_0), & u = u_0 \end{cases}$$

$$A(u) \underbrace{A(u)}_{u \to u_0} \underbrace{A(u)}_{u \to u_0} \underbrace{B(u)}_{u \to u_0}$$

14.4 第 11章

11.1.1

$$\Delta y = A \Delta x + o(\Delta x)$$

$$\frac{\Delta y}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[A + \frac{o(\Delta x)}{\Delta x} \right]$$

$$f'(x_0) = A + 0$$

$$f'(x_0) = A$$

11.1.2

设
$$f(x)$$
在 x_0 点可导, $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ 存在
(极限与无穷小的关系: $\lim f(x) = A \Leftrightarrow f(x) = A + \alpha$)
$$\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha$$

$$\Delta y = f'(x_0) \Delta x + \alpha \Delta x$$
其中 α 为 $\Delta x \to 0$ 时的无穷小。
$$\lim_{\Delta x \to 0} \frac{\alpha \Delta x}{\Delta x} = \lim_{\vartheta x \to 0} \alpha = 0$$

$$\alpha \Delta x = \circ(\Delta x)$$

$$\Delta y = f'(x_0) \Delta x + \circ(\Delta x)$$

11.2.1

$$d(u \pm v) = (u \pm v)'dx$$
$$= (u)'dx \pm (v')dx$$
$$= du + dv$$

11.2.2

$$d(u \cdot v) = (u \cdot v)'dx$$
$$= (u)'vdx - (v')udx$$
$$= vdu - udv$$

11.2.3

$$d\left(\frac{u}{v}\right) = \left(\frac{u}{v}\right)' dx$$
$$= \frac{(u)'v - (v')u}{v^2} dx$$
$$= \frac{vdu - udv}{v^2}$$

11.3.1

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)}{\Delta x} = f'(x_0)$$

$$f(x_0 + \Delta x) - f(x_0) \leqslant 0$$

$$\begin{cases} \Delta x > 0 \begin{cases} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \leqslant 0 \Rightarrow f'(x_0^+) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \leqslant 0 \end{cases}$$

$$\Delta x < 0 \begin{cases} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geqslant 0 \Rightarrow f'(x_0^-) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geqslant 0 \end{cases}$$

$$f'(x_0) = f'(x_0^+) = f'(x_0^-) \Rightarrow f'(x_0) = 0$$

$$M = \max\{f(x)|x \in [a,b]\}, m = \min\{f(x)|x \in [a,b]\}$$

$$\begin{cases} M = m \Rightarrow M = m = f(a) = f(b), \text{此时}f(x)$$
为常数, $\forall \xi \in (a,b), f'(\xi) = 0 \\ M > m \end{cases}$
$$\begin{cases} f(a) > m \Rightarrow \exists \xi \in (a,b), f(\xi) = m, \text{根据费马引理}, f'(\xi) = 0 \\ f(a) < M5 \Rightarrow \exists \xi \in (a,b), f(\xi) = M, \text{根据费马引理}, f'(\xi) = 0 \end{cases}$$

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$$

$$\varphi(a) = f(a) - \frac{f(b) - f(a)}{b - a}a = \frac{bf(a) - af(b)}{b - a}$$

$$\varphi(b) = f(b) - \frac{f(b) - f(a)}{b - a}b = \frac{bf(a) - af(b)}{b - a}$$

$$\varphi(a) = \varphi(b), \exists \xi \in (a, b), \varphi'(\xi) = 0$$

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

$$f'(\xi)(b - a)7 = f(b) - f(a)$$

11.3.4

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{F(b) - F(a)} [F(x) - F(a)]$$

$$\varphi(a) = \varphi(b) = f(a)$$

$$\varphi'(\xi) = 0$$

$$f'(\xi) = \frac{f(b) - f(a)}{F(b) - F(a)} F'(\xi)$$

$$\frac{f'(\xi)}{F'(\xi)} = \frac{f(b) - f(a)}{F(b) - F(a)}$$

11.5.1

$$\frac{R_n(x)}{(x-x_0)^{n+1}} = \frac{R_n(x) - R_n(x_0)}{(x-x_0)^{n+1} - (x_0 - x_0)^{n+1}} = \frac{R'_n(\xi_1)}{(n+1)(\xi_1 - x_0)^n}$$

$$\frac{1}{n+1} \cdot \frac{R'_n(\xi_1)}{(\xi_2 - x_0)^n} = \frac{1}{n+1} \cdot \frac{R'_n(\xi_1) - R'_n(x_0)}{(\xi_1 - x_0)^n - (x_0 - x_0)^n} = \frac{1}{n+1} \cdot \frac{R''_n(\xi_2)}{(n)(\xi_2 - x_0)^{n-1}}$$

$$\vdots$$

$$\frac{R_n^{(n)}(\xi_n)}{(n+1)!(\xi_n - x_0)} = \frac{R_n^{(n)}(\xi_n) - R_n^{(n)}(x_0)}{(n+1)!(\xi_n - x_0) - 0} = \frac{R_n^{(n+1)}(\xi)}{(n+1)!}$$

$$\frac{R_n^{(n+1)}(\xi)}{(n+1)!} = \frac{f^{(n+1)}(\xi) - P_n^{(n+1)}(\xi)}{(n+1)!} = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

$$\xi_1 \in (x, x_0), \xi_2 \in (\xi_1, x_0), \xi_n \in (\xi_{n-1}, x_0), \xi \in (\xi_n, x_0)$$

11.5.2

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{R'_n(x)}{n(x - x_0)^{n-1}}$$

$$= \lim_{x \to x_0} \frac{R''_n(x)}{n(n-1)(x - x_0)^{n-2}}$$

$$= \lim_{x \to x_0} \frac{R_n^{(n)}(x)}{n!}$$

$$= \frac{1}{n} \cdot 0$$

$$= 0$$