JHD161A SERIES

CHARACTERISTICS:

DISPLAY CONTENT: 16CHAR x 1ROW

Char. dots: 5×8 driving mode: 1/16D

AVAILABLE TYPES:

TN , $STN(\mbox{yellow green},\mbox{ grey},\mbox{ b/w})$ reflective, with elor led backlight

EL/100VAC, 400HZ

LED/4.2VDC

PARAMETER $(V_{DD}=5.0V \pm 10\%, V_{SS}=0V, T_{a}=25)$

Parameter		Testing	Stan	dard Va	lues	
	Symbol	Criteria	Min.	Тур.	Max	Unit
Supply voltage	V _{DD} -V _{SS}	-	4.5	5.0	5.5	V
Input high voltage	V _{IH}	-	2.2	-	V_{DD}	V
Input low voltage	VIL	-	-0.3	-	0.6	V
Output high voltage	Voh	-Iон=02mA	2.4	-	-	V
Output low voltage	Vol	IoL=1.2mA	-	-	0.4	V
Operating voltage	Idd	V _{DD} =5.0V	-	1.3	3.0	mA

APPLICATION CIRCUIT

DIMENSIONS/DISPLAY CONTENT

www.DataSheetAll.com

PIN CONFIGURATION

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
VSS	VCC	VEE	RS	R/W	Е	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	LED+	LED-

■ AC Characteristics Read Mode Timing Diagram

Table 12. AC Characteristics (V_{DD} = 4.5V ~ 5.5V, Ta = -30 ~ +85°C)

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit
	E Cycle Time	tc	500	5#		
	E Rise / Fall Time	t_R, t_F	7-4	-	20	
	E Pulse Width (High, Low)	tw	230	-	-	
Write Mode (Refer to Fig-6)	R/W and RS Setup Time	tsu1	40	-	-	ns
(receiver to rig-o)	R/W and RS Hold Time	t _{H1}	10	-	-	
	Data Setup Time	tsu2	80	-	-	
	Data Hold Time	t _{H2}	10	:: <u>-</u>	i i	
	E Cycle Time	tc	500	-	-	
	E Rise / Fall Time	t_R, t_F	-	-	20	
	E Pulse Width (High, Low)	tw	230	-	(-	
Read Mode (Refer to Fig-7)	R/W and RS Setup Time	tsu	40	-	-	ns
(Refer to Fig-1)	R/W and RS Hold Time	t _H	10	100		
	Data Output Delay Time	t _D	-	-	120	
	Data Hold Time	t _{DH}	5	-	16	

Table 13. AC Characteristics (V_{DD} =2.7V \sim 4.5V, Ta = -30 \sim +85°C)

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit
	E Cycle Time	tc	1000			
	E Rise / Fall Time	$t_R t_F$	-	-	25	
	E Pulse Width (High, Low)	tw	450	-	-	
Write Mode (Refer to Fig-6)	R/W and RS Setup Time	tsu1	60	-	-	ns
(Neier to Fig-o)	R/W and RS Hold Time	t _{H1}	20		- ns	
	Data Setup Time	tsu2	195	- 25 ns		
	Data Hold Time	t _{H2}	10		(*)	
	E Cycle Time	tc	1000	-	-	
	E Rise / Fall Time	t_R, t_F	-	-	25	
	E Pulse Width (High, Low)	tw	450	-	-	
Read Mode	R/W and RS Setup Time	tsu	60	1000 25 450 60 n 20 1000 1000 25 450 25 450 10	ns	
(Refer to Fig-7)	R/W and RS Hold Time	t _H	20			
	Data Output Delay Time	t _D	-	-	360	
	Data Hold Time	t _{DH}	5		•	

Write Mode Timing Diagram

Timing

Interface with 8-bit MPU When interfacing data length are 8-bit, transfer is performed at a time through 8 ports, from DB0 to DB7. Example of timing sequence is shown below.

Connection

CGROM

Table 5. Relationship between Character Code (DDRAM) and Character Pattern (CGRAM)

Pattern	CGRAM Data								CGRAM Address						Character Code (DDRAM data)							
number	P0	P1	P2	P3	P4	P5	P6	Р7	A0	A1	A2	A 3	A4	A 5	D0	D1	D2	D3	D4	D5	D6	D7
pattern 1	0	1	1	1	0	×	×	×	0	0	0	0	0	0	0	0	0	×	0	0	0	0
	1	0	0	0	1				1	О	0											
	1	0	0	0	1				0	1	0											
	1	1	1	1	1				1	1	0		10									
	1	0	0	0	1				0	C	1		9									
	1	0	0	0	1		40		1	С	1											
	1	0	0	0	1		•		0	1	1											
	0	0	0	0	0				1	1	1											
				· -	700						-	7							· .			
12												1										
pattern 8	1	0	0	0	1	×	×	×	0	С	0	0	0	0	1	1	1	×	0	0	0	0
	1	0	0	0	1				1	О	0											
	1	0	0	0	1		253		0	1	0											
	1	1	1	1	1				1	1	0		i.									
	1	0	0	0	1				0	а	1								- 1			
	1	0	0	0	1				1	С	1		12									
	1	0	0	0	1				0	1	1											
	0	0	0	0	0				1	1	1											

```
Operation Example
#include < reg51.h>
#include <intrins.h>
                           LCD's
                    /*P2.0
sbit dc=0xa0;
                                    21*/
                           RS
sbit rw=0xa1;
                    /*P2.1
                           LCD's R/W 22*/
                            LCD's
sbit cs=0xa4;
                    /*P2.4
                                    25*/
                              Ε
sfr lcdbus=0x80;
                  /*p0LCD data D0=P0.0*/
unsigned int sys10mscounter;
unsigned char syslimit counter;
char path1[8]={0x00,0x1f,0x00,0x1f,0x00,0x1f,0x00,0x1f};/*自定义符号
                                                                  横1*/
                                                                     横
char path2[8]={0x1f,0x00,0x1f,0x00,0x1f,0x00,0x1f,0x00};/*自定义符号
                                                                    2*/
char pats1[8]={0x15,0x15,0x15,0x15,0x15,0x15,0x15,0x15};/*自定义符号
                                                                   竖1*/
                                                                     꾚
2*/
void soft_nop(){}
void soft_10ms()/**********12MHZ 提供10MS 软件延时**********/
   register int i;
for(i=0;i<711;i++);
```

```
}
void soft_20ms()/*********12MHZ 提供20MS 软件延时*********/
   soft_10ms();
soft_10ms();
}
void hard_10ms(unsigned int delaytime) /*基于10MS 的硬件延时*/
   sys10mscounter=delaytime;
while(sys10mscounter);
unsigned char data lcdcounter;
bit lcdusing1,lcdusing2;
bit lcd_checkbusy()/*检查LCD 忙*/
   register lcdstate;
                         /*dc=1为数据,=0 为命令.*/
   dc=0;
                        /*rw=1为读,=0 为写.*/
   rw=1;
                        /*cs=1选通.*/
   cs=1;
soft_nop();
lcdstate=lcdbus;
cs=0;
return((bit)(lcdstate&0x80));
void lcd_wrcmd(unsigned char lcdcmd) /*写LCD 命令*/
   lcdusing1=1;
while(lcd_checkbusy());
lcdbus=lcdcmd;
                 /*dc=1为数据,=0 为命令.*/
     dc=0:
                /*rw=1为读,=0 为写.*/
     rw=0;
     cs=1;
                 /*cs=1选通.*/
soft_nop();
    cs=0;
    lcdbus=0xff;
    lcdusing1=0;
}
           void lcd_moveto(char position) /*移动光标到指定位.0-79*/
           { register cmd=0x80;
     lcdcounter=position;
          if (position > 59)
          position += 0x18;
          else
```

```
{ if (position > 39)position - = 0x14;
            else
                        if (position > 19)position += 0x2c;
        }
    cmd=cmd|position;
    lcdusing2=1;
    while(lcd_checkbusy());
    if(lcdcounter==20){
        lcd_moveto(20);
        while(lcd_checkbusy());
        }
    if(lcdcounter==40){
        lcd_moveto(40);
        while(lcd_checkbusy());
        }
    if(lcdcounter==60){
        lcd_moveto(60);
        while(lcd_checkbusy());
        }
    if(lcdcounter==80){
        lcd_moveto(0);
        while(lcd_checkbusy());
        lcdcounter=0;
        }/*为通用而如此*/
    lcdcounter++;
    lcdbus=lcddata;
    dc=1; /*dc=1为数据,=0 为命令.*/
    rw=0; /*rw=1为读,=0 为写.*/
    cs=1; /*cs=1选通.*/
    soft_nop();
    cs=0;
    lcdbus=0xff;
    |lcdusing2=0; | void lcd_string(char *strpoint) /*在当前显示位置显示LCD 字符串*/
{ register i=0;
    while(strpoint[i]!=0){
```

```
lcd_wrdata(strpoint[i]);
        i++;
        }
} void lcd_init()/*初始化*/
{ lcd_wrcmd(0x38);
                        /*设置8 位格式,2 行,5*7*/
                        /*整体显示,关光标,不闪烁*/
  lcd_wrcmd(0x0c);
  lcd_wrcmd(0x06);
                        /*设定输入方式,增量不移位*/
  lcd_wrcmd(0x01);
                        /*清除显示*/
  lcdcounter=0;
}
void lcd_cls()/*清除显示*/ { lcd_wrcmd(0x01);
    lcdcounter=0; } void timer0(void) interrupt 1 /*T0 中断*/ { TH0=0xd8; /*12M,10ms*/
    TL0=0xf6;
    TR0=1;
    if(sys10mscounter!=0)sys10mscounter - -; /*定时器10ms*/
    if(syslimitcounter!=0)syslimitcounter - -; /*定时器10ms*/
}
           main()
           unsigned char j;
           IE=0;P0=0xff;P1=0xff;P2=0xff;P3=0xff; /*初始化T*/
           lcd_init();soft_20ms();
           TMOD=0x51;
           TH0=0xd8; /*12M,10ms*/
           TL0=0xf6;
           TR0=1;ET0=1;EA=1;
    while(1)
    /*全黑横一横二竖一竖二U Q ABCD... */
    lcd init(); /*全黑*/
    for(j=0;j<80;j++)\{lcd_wrdata(0xff);\}
    hard_10ms(50);
    lcd_init(); /*横一可参考自行设计符号*/
    lcd_wrcmd(0x40);
    for(j=0; j<8; j++)lcd_wrdata(path1[j]);
    for(j=0; j<100; j++)lcd_wrdata(0);
    hard_10ms(50);
    lcd_init(); /*横二*/
```

```
lcd_wrcmd(0x40);
   for(j=0;j<8;j++)lcd_wrdata(path2[j]);
   for(j=0;j<100;j++)lcd_wrdata(0);
   hard_10ms(50);
   lcd_init(); /*竖一*/
   lcd_wrcmd(0x40);
   for(j=0;j<8;j++)lcd_wrdata(pats1[j]);
   for(j=0; j < 100; j++)lcd_wrdata(0);
   hard_10ms(50);
   lcd_init(); /*竖二*/
   lcd_wrcmd(0x40);
   for(j=0;j<8;j++)lcd_wrdata(pats2[j]);
   for(j=0; j < 100; j++)lcd_wrdata(0);
   hard_10ms(50);
   lcd_init();
   UUUUU"); hard_10ms(50); lcd_init();
   QQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQ"); hard_10ms(50); lcd_init();
   lcd_string("ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwx
   yz0123456789+ -!
#$%&?"); hard_10ms(50); }
}
```