ASTRONOMY 101 QUIZ 6 RETAKE FORM A

Name:			
Lab sec	tion num	ıber:	

Instructions:

- Quiz time: 25 minutes
- If you do not speak English as a first language, you may use a translation device to translate things into your native language. If this device is a cellphone app, please let one of the instructors know ahead of time.
- Please put bags under your seats to allow proctors to move around the room.
- There is a reference sheet included behind this page which you will need.
- You may use notes that you handwrote yourself, or wrote with a stylus and printed, along with your exercises and homework. No electronic devices or things written by others are allowed.
- If you have a question, raise your hand, and a proctor will assist you.
- Do not attempt to communicate with anyone other than teaching staff during the quiz.
- Circle your answers on this paper as well as completing the Scantron. Turn both in to us at the end of class.
- Put your name as "Last First" on your Scantron as well as entering your SUID.

Good luck!

Lab Schedule

Section	Instructor	${f Time}$
M024	Sierra Thomas	Monday 8:00 AM-9:20 AM
M003	Sierra Thomas	Monday 9:30 AM-10:50 AM
M004	Kishan Sankharva	Monday 11:00 AM-12:20 PM
M005	Kishan Sankharva	Monday 12:45 PM-2:05 PM
M006	Chad Skerbec	Monday 2:15 PM-3:35 PM
M007	Chad Skerbec	Monday 3:45 PM-5:05 PM
M008	Tyler Hain	Monday 5:15 PM-6:35 PM
M009	Tyler Hain	Monday 6:45 PM-8:05 PM
M010	Vidyesh Rao	Monday 8:15 PM-9:35 PM
M027	Tyler Hain	Tuesday 3:30 PM-4:50 PM
M028	Tyler Hain	Tuesday 5:00 PM-6:20 PM
M029	Vidyesh Rao	Tuesday 6:30 PM-7:50 PM
M030	Vidyesh Rao	Tuesday 8:00 PM-9:20 PM
M025	Sierra Thomas	Wednesday 8:00 AM-9:20 AM
M011	Sierra Thomas	Wednesday 9:30 AM-10:50 AM
M012	Chad Skerbec	Wednesday 11:00 AM-12:20 PM
M013	Chad Skerbec	Wednesday $12:45$ PM- $2:05$ PM
M014	Byron Sleight	Wednesday 2:15 PM-3:35 PM
M015	Byron Sleight	Wednesday 3:45 PM-5:05 PM
M016	Byron Sleight	Wednesday 5:15 PM-6:35 PM
M017	Patrick Adams	Wednesday 6:45 PM-8:05 PM
M018	Patrick Adams	Wednesday 8:15 PM-9:35 PM
M019	Byron Sleight	Thursday 5:00 PM-6:20 PM
M020	Patrick Adams	Thursday 6:30 PM-7:50 PM
M031	Vincent Musso	Thursday 8:00 PM-9:20 PM
M026	Vidyesh Rao	Friday 8:00 AM-9:20 AM
M021	Kishan Sankharva	Friday 9:30 AM-10:50 AM
M022	Vincent Musso	Friday 11:00 AM-12:20 PM
M023	Vincent Musso	Friday 12:45 PM-2:05 PM

REFERENCE

© 2013 Pearson Education, Inc.

Visible light

v ·	,	
(A) Form A		
(B) Form B		
(C) Form C		
(D) Form D		
(E) Form E		
		s shown below. You shine a beam of 4 eV
photons on these atoms. W	nat win nappen:	
		n=3; energy=5 eV
		n=2; energy=3 eV
		n=1; energy=0 eV
(A) Electrons in the atom	a will jump to the n = 2 low	l but not amit any light
•	s will jump to the $n=2$ leve	
(B) The beam of light wil	l not interact at all with the	atoms.
(C) Electrons in the atom	s will jump to the space bety	ween the $n=2$ and $n=3$ levels
(D) Electrons in the atom	as will jump from the $n = \frac{1}{2}$	1 level to the $n-2$ level emitting a 1 eV

- (D) Electrons in the atoms will jump from the n=1 level to the n=2 level, emitting a 1 eV photon to carry the leftover energy
- (E) More than one of the above is possible.

1. What form is your exam? (Your exam is form A.)

3. A lighthouse is built out of a very hot object at the top of a tall building; the light the object produces shines out to sea.

Viewed from many miles out to sea, what would the spectrum of the lighthouse look like?

- (A) None of the above
- (B) A continuous band of color with some bright lines on top of it
- (C) Thin bright lines
- (D) A continuous band of color with some dark lines on top of it
- (E) A continuous band of color

- 4. If somehow all of the hydrogen vanished from the Sun, what would the most noticeable change be?
 - (A) Some of the bright lines would disappear from its spectrum
 - (B) The Sun would stop shining, since hydrogen is essential to stars
 - (C) The peak wavelength at which it emitted light would become shorter
 - (D) Some of the dark lines would disappear from its spectrum
 - (E) None of the above would happen
- 5. Where do the elements like carbon, oxygen, iron, and silicon around us come from?
 - (A) They are created when the solar wind interacts with Earth's atmosphere
 - (B) They were created in the core of a star which has since exploded in a supernova
 - (C) They were created in the Big Bang
 - (D) They are created in the core of the Sun
 - (E) None of the above
- 6. Which of the following is **not** something we can learn directly from the Sun's spectrum?
 - (A) The age of the Sun
 - (B) The elements contained in the Sun's atmosphere
 - (C) We can learn all of these directly
 - (D) The Sun's temperature
- 7. If you put a small amount of neon gas in a tube and run an electric current through it, it glows red.

Likewise, if you put a small amount of mercury gas in a tube and run an electric current through it, it glows blue.

What can you conclude about the temperatures of the neon gas and the mercury gas?

- (A) They are the same temperature
- (B) The mercury is cooler than the neon
- (C) The mercury is hotter than the neon
- (D) You cannot conclude anything about their temperatures from this experiment

- 8. Suppose that a new kind of atom has energy levels as follows:
 - n = 1: 0 eV
 - n = 2: 2.5 eV
 - n = 3: 4.5 eV
 - n = 4: 6.3 eV

If you added a large number of atoms of this type to the atmosphere of the Sun, how would the Sun's spectrum change?

- (A) New bright lines would appear at 6.3 eV, 4.5 eV, 3.8 eV, 2.5 eV, 2 eV, and 1.8 eV
- (B) New dark lines would appear at 6.3 eV, 4.5 eV, 3.8 eV, 2.5 eV, 2 eV, and 1.8 eV
- (C) New dark lines would appear at 2.5 eV, 4.5 eV, and 6.3 eV
- (D) New bright lines would appear at 2.5 eV, 4.5 eV, and 6.3 eV
- (E) The peak emission wavelength of the Sun would shift shorter.

9. A certain type of atom has a very simple energy level diagram, as shown below.					
		n=3; energy=3 eV			
		n=2; energy=2.5 eV			

n=1; energy=0 eV

You would like to detect whether or not a sample contains atoms of this type. This sample is at low temperature, so all of the atoms are initially in the ground (n = 1) state.

What could you do?

- (A) Shine a laser that produces 3 eV photons on it, and see if you can detect 2.5 eV photons coming from it
- (B) Shine a laser that produces 2.5 eV photons on it, and see if you can detect 0.5 eV photons coming from it
- (C) Shine a laser that produces 2.5 eV photons on it, and see if you can detect 3 eV photons coming from it
- (D) Shine a laser that produces $0.5~\mathrm{eV}$ photons on it, and see if you can detect $3~\mathrm{eV}$ photons coming from it
- (E) Shine a laser that produces 0.5 eV photons on it, and see if you can detect 2.5 eV photons coming from it
- 10. If an electron in an atom moves from an energy level of 4 eV to a higher energy level of 6 eV, then:
 - (A) It emits a photon with 10 eV of energy
 - (B) It absorbs a photon with 10 eV of energy
 - (C) It absorbs a photon with 2 eV of energy
 - (D) It emits a photon with 2 eV of energy

- 11. Suppose that a new kind of atom has energy levels as follows:
 - n = 1: 0 eV
 - n = 2: 2.5 eV
 - n = 3: 4.5 eV
 - n = 4: 6.3 eV

If you added a large number of atoms of this type to the atmosphere of the Sun, how would the Sun's spectrum change?

- (A) New bright lines would appear at 6.3 eV, 4.5 eV, 3.8 eV, 2.5 eV, 2 eV, and 1.8 eV
- (B) New dark lines would appear at 6.3 eV, 4.5 eV, 3.8 eV, 2.5 eV, 2 eV, and 1.8 eV
- (C) The peak emission wavelength of the Sun would shift shorter.
- (D) New dark lines would appear at 2.5 eV, 4.5 eV, and 6.3 eV
- (E) New bright lines would appear at 2.5 eV, 4.5 eV, and 6.3 eV