

Data:	
Nota:	
Valor: 30 pontos	

CURSO: Disciplina: Professor(a):	Engenharia de Controle e Automação Algoritmos e Estruturas de Dados Carlos Jones Rebello Junior	Turma: Ano/Sem:	2021-1
Aluno(a):			

Trabalho 1 – Conversão de Níveis

1 – Objetivo

Implementar um programa para codificação e decodificação entre arquivos textos e números binários utilizando como referência alguns caracteres alfanuméricos da tabela ASCII.

Não utilizaremos todos os caracteres, visto que, se funcionar com apenas alguns caracteres certamente funcionará para todos os outros.

2 – Implementação

O programa possuirá como entrada um arquivo texto chamado "entrada.dat", que será lido por uma função chamada lerArquivo, já implementada, onde o aluno deverá perguntar ao usuário se o arquivo de entrada é do tipo texto ou binário, de posse dessa informação o programa deverá converter automaticamente ou texto binário ou binário texto.

Para fins de simplificação serão usados os caracteres da tabela ASCII da Figura 1.

dec.	hex.	octal	ASCII	dec.	hex.	octal	ASCII	dec.	hex.	octal	ASCII
32	20	040		64	40	100	@	96	60	140	•
33	21	041	į.	65	41	101	Α	97	61	141	а
34	22	042	"	66	42	102	В	98	62	142	b
35	23	043	#	67	43	103	С	99	63	143	С
36	24	044	\$	68	44	104	D	100	64	144	d
37	25	045	%	69	45	105	E	101	65	145	е
38	26	046	&	70	46	106	F	102	66	146	f
39	27	047	•	71	47	107	G	103	67	147	g
40	28	050	(72	48	110	Н	104	68	150	h
41	29	051)	73	49	111	- 1	105	69	151	i
42	2A	052	*	74	4A	112	J	106	6A	152	j
43	2B	053	+	75	4B	113	K	107	6B	153	k
44	2C	054	,	76	4C	114	L	108	6C	154	1
45	2D	055	-	77	4D	115	M	109	6D	155	m
46	2E	056		78	4E	116	N	110	6E	156	n
47	2F	057	1	79	4F	117	0	111	6F	157	0
48	30	060	0	80	50	120	Р	112	70	160	р
49	31	061	1	81	51	121	Q	113	71	161	q
50	32	062	2	82	52	122	R	114	72	162	Γ
51	33	063	3	83	53	123	S	115	73	163	s
52	34	064	4	84	54	124	Т	116	74	164	t
53	35	065	5	85	55	125	U	117	75	165	u
54	36	066	6	86	56	126	V	118	76	166	v
55	37	067	7	87	57	127	W	119	77	167	W
56	38	070	8	88	58	130	X	120	78	170	X
57	39	071	9	89	59	131	Υ	121	79	171	У
58	3A	072	:	90	5A	132	Z	122	7A	172	Z
59	3B	073	;	91	5B	133	[123	7B	173	{
60	3C	074	<	92	5C	134	\	124	7C	174	
61	3D	075	=	93	5D	135]	125	7D	175	}
62	3E	076	>	94	5E	136	٨	126	7E	176	~
63	3F	077	?	95	5F	137	_				

Figura 1: tabela ASCII segmentada.

O reconhecimento de cada caractere será feito através de um programa que trabalhe com 8 bits para codificar um caractere e vice-versa, com as seguinte regras de sintaxe:

Caracteres não numéricos serão convertidos para binário com o seu número correspondente ao seu código ASCII como na Figura 2 e na Figura 3.
 Obs: o espaço entre as letras nas tabelas também é considerado um caractere que é exatamente o nosso primeiro caractere da Figura 1 que é representado pela número binário 00100000.

Figura 2: exemplo de letras maiúsculas convertidas para binário.

Figura 3: exemplo de letras minúsculas convertidas para binário.

• Caracteres **numéricos** serão convertidos para binário não de forma direta e sim número a número de acordo com a tabela ASCII, exemplo:

65 em binário é 01000001, porém ele será trabalhado como 6 e 5, correspondentes na tabela ASCII, onde 5 é o número 53 que é 00110101 em binário e 6 é o número 54 que é 00110110 em binário, logo, 65 seria representado por 6 e 5 que juntos formariam em binário 0011011000110101.

• Como referência para testar e/ou conferir os caracteres que utilizaremos no programa e até mesmo o trabalho final, pode ser utilizado o software que funciona online pelo link http://nickciske.com/tools/binary.php.

Anexo a esse arquivo está sendo enviado um *Template* (modelo), como sugestão para a implementação usando um padrão comum para todos os alunos com o nome **codificador.c**.

3 – Resultados e Testes

Os testes deverão ser executados da seguinte forma:

Aluno 1 deverá codificar uma determinada mensagem, que ficará ao seu critério, enviar via e-mail para o Aluno 2, onde o Aluno 2 decodificará a mensagem e a responderá, também via e-mail, codificando a sua resposta e reenviando para que o Aluno 1 também decodifique e leia a resposta.

Usar o link http://nickciske.com/tools/binary.php para comparar os resultados.

Fazer o mesmo teste escrevendo uma mensagem em binário e convertendo para texto para envio.

Obs.: A mensagem a ser enviada de estar diretamente escrita no arquivo "entrada.dat", para isso basta abrir um documento do bloco de notas digitar o texto e salvar como entrada.dat.

Obs2.: o arquivo não pode ser escrito no Word e nem WordPad pois eles têm um codificação própria diferente do ASCII.

Regras para Entrega de Trabalhos Professor Carlos Jones

- Os trabalhos deverão ser enviados para meu e-mail: logicadeprogramacao@hotmail.com.br.
- Zipar todos os arquivos em um único arquivo e nomeá-lo ou renomeá-lo com os nomes dos alunos do grupo, por exemplo, "fulano_e_ciclano.zip", arquivos enviados separadamente acarretarão em perda de 20% da nota, o professor não é obrigado a baixar vários arquivos sendo que pode baixar apenas um compactado.
- A data limite de entrega é ate as 23h59min59s do dia marcado para a entrega, é de inteira responsabilidade do aluno atrasos de horários decorrentes do servidor de e-mail e até mesmo de problemas com o relógio do computador.
- Será considerado apenas o primeiro arquivo enviado para o e-mail, portanto, tenha certeza de que esteja mandando o arquivo correto.
- A cada dia de atraso será descontado 10% do valor total da nota, até o 9 dia, não sendo necessária a entrega depois dessa data.
- Qualquer mudança nas regras será notificada.

Bom trabalho a todos!