Combinational Design

ELEC 311 Digital Logic and Circuits Dr. Ron Hayne

Images Courtesy of Cengage Learning

Combinational Circuit Design

- The three main steps in designing a single-output combinational switching circuit are:
 - Find a switching function that specifies the desired behavior of the circuit.
 - Find a simplified algebraic expression for the function.
 - Realize the simplified function using available logic elements.

Example 1

Mary watches TV if it is Monday night and she has finished her homework.

F

B

Define a two-valued variable to indicate whether each phrase is true or false:

F = 1 if "Mary watches TV" is true; otherwise F = 0.

A

A = 1 if "it is Monday night" is true; otherwise A = 0.

B = 1 if "she has finished her homework" is true; otherwise B = 0.

Because F is "true" if A and B are both "true", we can represent the sentence by $F = A \cdot B$

Example 2

• The alarm will ring iff the alarm switch is turned on and the door is not closed, or it is after 6 P.M. and the window is not closed.

Minterms and Maxterms

Row No.	ABC	Minterms	Maxterms
0	0 0 0	$A'B'C'=m_0$	$A + B + C = M_0$
1	0 0 1	$A'B'C = m_1$	$A + B + C' = M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	1 0 0	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$

Minterm Expansion

Find the minterm expansion of f(a,b,c,d) = a'(b' + d) + acd'

$$f = a'b' + a'd + acd'$$

$$= a'b'(c + c')(d + d') + a'd(b + b')(c + c') + acd'(b + b')$$

$$= a'b'c'd' + a'b'c'd + a'b'cd' + a'b'cd + a'b'c'd + a'b'cd$$

$$+ a'bc'd + a'bcd + abcd' + ab'cd'$$
(4-9)

311_04

Design Example

• Design an adder which adds two 2-bit binary numbers to give a 3-bit binary sum.

Truth Table

N_1	N_2	N ₃	N_1	N_2	N_3
AB	\widehat{CD}	$\widetilde{X} \widetilde{Y} Z$	AB	\widetilde{CD}	$\widetilde{X} \widetilde{Y} Z$
0 0	0 0	0 0 0	1 0	0 0	0 1 0
0 0	0 1	0 0 1	1 0	0 1	0 1 1
0 0	1 0	0 1 0	1 0	1 0	1 0 0
0 0	1 1	0 1 1	1 0	1 1	1 0 1
0 1	0 0	0 0 1	1 1	0 0	0 1 1
0 1	0 1	0 1 0	1 1	0 1	1 0 0
0 1	1 0	0 1 1	1 1	1 0	1 0 1
0 1	1 1	1 0 0	1 1	1 1	1 1 0

Incompletely Specified Functions

ABC	F	
0 0 0	1	don't-cares
0 0 1	X	$F = \sum m(0, 3, 7) + \sum d(1, 6)$
0 1 0	0	
0 1 1	1	
100	0	$F = \prod M(2, 4, 5) \bullet \prod D(1, 6)$
1 0 1	0	
1 1 0	X	
1 1 1	1	

Design Example

• Design a circuit so that the output (Z) is 1 iff the decimal number represented in BCD is exactly divisible by 3.

Binary Adder Design

