UNIT1. VECTORS AND MATRICES

-Dot Product

$$\text{Def: } \overrightarrow{A} \cdot \overrightarrow{B} = \sum a_i b_i = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\overrightarrow{A}| |\overrightarrow{B}| \cos \theta$$

-Determinant 行列式

Def:
$$det(\overrightarrow{A}, \overrightarrow{B}) = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 = \pm \text{ area of parallelogram}$$

-Cross-product

Def:
$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{\mathbf{i}} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} + \hat{\mathbf{j}} \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

-Triple product

$$volume = \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = \det(\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C})$$

-Equations of planes

plane through $P_0 = (2,1,-1)$ with normal vector $N = \langle 1,5,10 \rangle$

$$N \cdot \overrightarrow{P_0 P} = 0 \Leftrightarrow (x - 2) + 5(y - 1) + 10(z + 1) = 0,$$

$$x + 5y + 10z = -3$$

(coefficients: normal vector, -3: plugin P_0)

-Matrix Product (Square systems)

$$AX = B$$
 \rightarrow $A^{-1}(AX) = A^{-1}B$ \rightarrow $X = A^{-1}B$

(see lecture notes)

UNIT2. PARTIAL DERIVATIVES

-Partial Derivatives

$$f_x = \frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

-Gradient 梯度

$$\nabla w = \langle w_x, w_y, w_z \rangle$$

++ w 增长速度最快的方向

-Theorem: ∇w is perpendicular to the level surfaces/curves w = constant

e.g.
$$w = ax + by + cz$$

w = constant are planes with normal vector $\nabla w = \langle a, b, c \rangle$

-Directional Derivatives

$$\frac{dw}{ds}_{|\hat{u}} = \nabla w \cdot \frac{d\vec{r}}{ds} = \nabla w \cdot \hat{u}$$

-implicit differentiation 隐函数微分

$$f = f(x, y, z) \rightarrow df = f_x dx + f_y dy + f_z dz.$$
$$= \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

-Chain Rule

$$x = x(t), y = y(t), z = z(t)$$

$$\frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt}$$

-More Variables

$$w = f(x, y), x = x(u, v), y = y(u, v)$$

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \qquad \frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

-Linear Approximation

$$\Delta f \approx f_x \Delta x + f_y \Delta y$$

-the equation of the tangent plane to the graph:

$$z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

-Min/Max Problems

-Critical Point:
$$(x_0, y_0)$$
 where $f_x = 0$ and $f_y = 0$

-Second Derivative Test

$$A = f_{xx}(x_0, y_0), B = f_{xy}(x_0, y_0), C = f_{yy}(x_0, y_0)$$

- if $AC B^2 > 0$ then: if A > 0 (or C), local min; if A < 0, local max.
- if $AC B^2 < 0$ then saddle.
- if $AC B^2 = 0$ then can't conclude.

NOTE: the global min/max of a function is not necessarily at a critical point! Need to check boundary / infinity.

-Quadratic Approximation

$$\Delta f \simeq f_x \left(x - x_0 \right) + f_y \left(y - y_0 \right) + \frac{1}{2} f_{xx} \left(x - x_0 \right)^2 + f_{xy} \left(x - x_0 \right) \left(y - y_0 \right)$$
$$+ \frac{1}{2} f_{yy} \left(y - y_0 \right)^2$$

-Least-Squares Interpolation (fit data points to an interpolation line)

-data points:
$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

-interpolation line: y = ax + b (least-squares line or the regression line)

-sum of squares of deviations:
$$D = \sum_{i=1}^{n} \left(y_i - \left(a x_i + b \right) \right)^2$$

(assumed Gaussian error distribution)

(sum only positive quantities)

(weights more heavily the larger deviations)

-make D a minimum:
$$\frac{\partial D}{\partial a} = \sum_{i=1}^{n} 2 \left(y_i - a x_i - b \right) \left(-x_i \right) = 0$$

$$\frac{\partial D}{\partial b} = \sum_{i=1}^{n} 2(y_i - ax_i - b)(-1) = 0$$

-linear equations
$$\left(\sum x_i^2\right)a + \left(\sum x_i\right)b = \sum x_i y_i$$

$$\left(\sum x_i\right)a+nb=\sum y_i$$

or
$$\bar{s}a + \bar{x}b = \frac{1}{n} \sum x_i y_i$$

$$\bar{x}a + b = \bar{y}$$

-Lagrange multipliers

-Problem: f(x,y,z) min/max when variables are constrained by an equation g(x,y,z)=c

the normal vectors ∇f and ∇g are parallel

$$\nabla f = \lambda \, \nabla g \qquad \rightarrow \qquad \begin{cases} f_x = \lambda \, g_x \\ f_y = \lambda \, g_y \\ g = c \end{cases} \qquad \text{(λ: multiplier)}$$

++ g = c 投影到f上的几何形的最小值

-Non-independent variables

-Problem: f(x, y, z) where g(x, y, z) = c

-Notation:

$$\left(\frac{\partial f}{\partial u}\right)_v = deriv./u$$
 with v held fixed

$$\left(\frac{\partial f}{\partial x}\right)_{y} = A_{x} \left(\frac{\partial x}{\partial x}\right)_{y} + A_{y} \left(\frac{\partial y}{\partial x}\right)_{y} + A_{z} \left(\frac{\partial z}{\partial x}\right)_{y}$$
$$= A_{x} + A_{z} \left(\frac{\partial z}{\partial x}\right)_{y}$$

UNIT3. DOUBLE INTEGRALS AND LINE INTEGRALS IN THE PLANE

-Double integrals (Iterated Integral)

$$\iint_{R} f(x, y) dA = \int_{x_{\min}}^{x_{\max}} \left[\int_{y_{\min}(x)}^{y_{\max}(x)} f(x, y) dy \right] dx$$

-Work and line integrals

$$W = \int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{t_{1}}^{t_{2}} \left(\overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} \right) dt$$

-Notation:
$$\overrightarrow{F} = \langle M, N \rangle$$
, and $d\overrightarrow{r} = \langle dx, dy \rangle$

$$= \int_C Mdx + Ndy$$

-Fundamental theorem of calculus for line integrals

If \overrightarrow{F} is a gradient field, $\overrightarrow{F} = \nabla f = f_x \hat{\pmb{\imath}} + f_y \hat{\pmb{\jmath}}$ (f: "potential function")

$$\int_{C} \nabla f \cdot d\vec{r} = f(P_1) - f(P_0)$$

-Test for Gradient Field

if
$$\overrightarrow{F} = M\hat{\imath} + N\hat{\jmath}$$
 is a gradient field, $M = f_x$, $N = f_y$, $soN_x = f_{yx} = f_{xy} = M_y$

-Green's Theorem

-Curl

Failure of conservativeness is given by the curl of \overrightarrow{F} :

Definition:
$$\operatorname{curl}(\overrightarrow{F}) = N_{x} - M_{y}$$

++ =
$$Y_{x}-X_{y}$$
 场的 Y项 随 x 的变化速率和 X项 随 y 的变化速率的差值

If C is a positively oriented closed curve enclosing a region R,

and \overrightarrow{F} defined and differentiable in R:

$$\oint_C \overrightarrow{F} \cdot d\overrightarrow{r} = \iint_R \operatorname{curl} \overrightarrow{F} dA$$

-Flux (another line integral)

$$\int_{C} \vec{F} \cdot \hat{\boldsymbol{n}} \, ds$$

 \hat{n} = normal vector to C, rotated 90° clockwise from \hat{T}

-Green's theorem for flux (Green's theorem in normal form (vs. tangential))

-Divergence

$$\operatorname{div}(\overrightarrow{F}) = P_x + Q_y$$
 is the divergence of \overrightarrow{F}

- 1. measures how much the flow is "expanding"
- 2. "source rate": amount of fluid added to the system per unit time and per unit area

$$++ = X_x + Y_y$$
 场的 X项 随 x 的变化速率和 Y项 随 y 的变化速率的和

If C encloses R counterclockwise, and $\overrightarrow{F} = P\hat{\imath} + Q\hat{\jmath}$

$$\oint_C \overrightarrow{F} \cdot \hat{\boldsymbol{n}} ds = \iint_R \operatorname{div}(\overrightarrow{F}) dA$$

-Integration in Polar Coordinates ($x = r \cos \theta$, $y = r \sin \theta$)

-Area Element: $dA = dl \ dr = r \ d\theta \ dr$ (dl: differential of circumference)

e.g.
$$\iint_{x^2+y^2 \le 1, x > 0, y \ge 0} \left(1 - x^2 - y^2\right) dx dy = \int_0^{\pi/2} \int_0^1 \left(1 - r^2\right) r dr d\theta$$

-Change of Variables

Motivation: to simplify either integrand or bounds of integration

e.g. area of ellipse with semiaxes a and b: setting u = x/a, v = y/b

$$\iint_{(x/a)^2 + (y/b)^2 < 1} dx dy = \iint_{u^2 + v^2 < 1} ab \ du dv = ab \iint_{u^2 + v^2 < 1} du dv = \pi ab$$

-Scale Factor (Jacobian)

approximation formula $\Delta u \approx u_x \Delta x + u_y \Delta y, \Delta v \approx v_x \Delta x + v_y \Delta y$

$$\begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} \approx \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

-Definition

Jacobian:
$$J = \frac{\partial(u, v)}{\partial(x, y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix}$$

$$dudv = |J| dxdy$$

-Exchanging order of Integration

e.g.
$$\int_{0}^{1} \int_{x}^{\sqrt{x}} \frac{e^{y}}{y} dy dx = \int_{0}^{1} \int_{y^{2}}^{y} \frac{e^{y}}{y} dx dy$$
 (region: $x < y < \sqrt{x}$ for $0 \le x \le 1$)

-Potential Function *f*

-Method 1: line integrals

e.g.
$$f(x_1, y_1) - f(0,0) = \int_C \vec{F} \cdot d\vec{r}$$
 independent of path
$$\int_{(0,0)}^{(x_1, y_1)} = \int_{(0,0)}^{(x_1, y_1)} + \int_{(x_1, 0)}^{(x_1, y_1)}$$

-Method 2: antiderivatives

e.g.
$$f_x$$
, f_y
$$f = \int f_x dx + g(y) \equiv f^{(x)} + g(y) \quad \Rightarrow \quad f_y = f_y^{(x)} + g'(y)$$
 compare $f_y^{(x)} + g'(y)$ with f_y to get $g'(y)$ thus $g(y)$

UNIT4. TRIPLE INTEGRALS AND SURFACE INTEGRALS IN 3-SPACE

-Triple integrals

e.g.
$$z = x^2 + y^2$$
 and $z = 4 - x^2 - y^2$

$$V = \int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \int_{x^2+y^2}^{4-x^2-y^2} dz dy dx$$

-Vector fields in space

$$\overrightarrow{F} = P\hat{\imath} + Q\hat{\jmath} + R\hat{k}$$
, where P, Q, R are functions of x, y, z

-Del operator

$$\nabla = \langle \partial/\partial x, \partial/\partial y, \partial/\partial z \rangle$$

$$\nabla f = \langle \partial f / \partial x, \partial f / \partial y, \partial f / \partial z \rangle = \text{gradient}$$

$$\nabla \cdot \mathbf{F} = \langle \partial/\partial x, \partial/\partial y, \partial/\partial z \rangle \cdot \langle P, Q, R \rangle = P_x + Q_y + R_z = \text{ divergence}$$

-Flux

Flux =
$$\iint \vec{F} \cdot \hat{\boldsymbol{n}} dS = \iint \vec{F} \cdot d\vec{S}$$

-Divergence Theorem (Gauss-Green Theorem)

If S is $\underline{\textit{a closed surface}}$ bounding a region D, with normal pointing outwards,

and \overrightarrow{F} vector field defined and differentiable over all of D, then

$$\iint_{S} \overrightarrow{F} \cdot d\overrightarrow{S} = \iiint_{D} \operatorname{div} \overrightarrow{F} dV, \quad \text{where } \operatorname{div}(P\hat{\imath} + Q\hat{\jmath} + R\hat{k}) = P_{x} + Q_{y} + R_{z}$$

$$\nabla \cdot \mathbf{F} = \langle \partial/\partial x, \partial/\partial y, \partial/\partial z \rangle \cdot \langle P, Q, R \rangle = P_x + Q_y + R_z = \text{div } \mathbf{F}$$

 $\overrightarrow{div} \overrightarrow{F}$ = source rate = flux generated per unit volume

-Line integrals in space

Force field
$$\mathbf{F} = \langle P, Q, R \rangle$$
, curve C in space, $d\vec{r} = \langle dx, dy, dz \rangle$

Work =
$$\int_{C} \mathbf{F} \cdot d\vec{r} = \int_{C} Pdx + Qdy + Rdz$$

-Gradient fields

$$\mathbf{F} = \langle P, Q, R \rangle = \left\langle f_x, f_y, f_z \right\rangle$$

$$\Rightarrow f_{xy} = f_{yx}, f_{xz} = f_{zx}, f_{yz} = f_{zy} \Rightarrow P_y = Q_x, P_z = R_x, Q_z = R_y$$

-Curl: encodes by how much F fails to be conservative

$$\operatorname{curl}\langle P, Q, R \rangle = \left(R_y - Q_z \right) \hat{\imath} + \left(P_z - R_x \right) \hat{\jmath} + \left(Q_x - P_y \right) \hat{k}$$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \operatorname{curl} \mathbf{F}$$

curl measures the rotation component of a complex motion

-Stokes' Theorem

if C is a closed curve, and S any surface bounded by C

$$\oint_C \mathbf{F} \cdot d\vec{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} dS = \iint_S \text{curl } \mathbf{F} d\overrightarrow{S}$$

Remark: In Stokes' theorem we are free to choose any surface S bounded by C

-Spherical Coordinates (ρ, ϕ, θ)

 ρ = radius, ϕ = angle down from z-axis

-Formulas

$$z = \rho \cos \phi, r = \rho \sin \phi, x = \rho \sin \phi \cos \theta, y = \rho \sin \phi \sin \theta$$
$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}$$

-Volume element

$$dV = \rho^2 \sin \phi d\rho d\phi d\theta$$

-Flux: Setup of dS and selection of two variables to describe the surface

1.
$$z = a$$
: $\hat{\mathbf{n}} = \pm \hat{\mathbf{k}}, dS = dxdy$

2. sphere:
$$\hat{\mathbf{n}} = \frac{1}{a} \langle x, y, z \rangle, dS = a^2 \sin \phi d\phi d\theta$$

3. cylinder:
$$\hat{\mathbf{n}} = \frac{1}{a} \langle x, y, 0 \rangle, dS = a dz d\theta$$

4.
$$z = f(x, y)$$
: $\overrightarrow{S} = \hat{\boldsymbol{n}} dS = \left\langle -f_x, -f_y, 1 \right\rangle dx dy$

5.
$$\vec{r} = \vec{r}(u, v)$$
: $d\vec{S} = \pm \left(\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right) du dv$

6.
$$g(x, y, z) = 0$$
: $\mathbf{N} = \nabla g \quad \hat{\mathbf{n}} dS = \pm \frac{\mathbf{N}}{\mathbf{N} \cdot \hat{\mathbf{k}}} dx dy$

-Potential function

e.g.
$$f_x = 2xy$$
, $f_y = x^2 + z^3$, $f_z = 3yz^2 - 4z^3$

$$f_x = 2xy \Rightarrow f(x, y, z) = x^2y + g(y, z)$$

$$f_{y} = x^{2} + g_{y} = x^{2} + z^{3} \Rightarrow g_{y} = z^{3} \Rightarrow g(y, z) = yz^{3} + h(z)$$

$$\Rightarrow$$
 $f = x^2y + yz^3 + h(z)$

$$f_z = 3yz^2 + h'(z) = 3yz^2 - 4z^3 \Rightarrow h'(z) = -4z^3 \Rightarrow h(z) = -z^4 + c$$

$$\Rightarrow \quad f = x^2y + yz^3 - z^4 + c$$