

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университетимени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Моделирование распространения частиц короновирусной инфекции в помещении

Студент: Татаринова Д.А.

Руководитель курсовой работы: Степанов В.П.

Цель и задачи

Цель работы - разработать программу с пользовательским интерфейсом, которая предоставит функционал для моделирования броуновского движения частиц короновирусной инфекции в помещении с учетом скорости их распространения и времени жизни на разных поверхностях.

Задачи:

- изучить алгоритмы удаления невидимых линий и поверхностей и методы закраски;
- проанализировать алгоритмы моделирования броуновского движения;
- выбрать подходящие для решения поставленной задачи алгоритмы и реализовать их;
- формализовать модель и описать выбранные типы и структуры данных;
- выявить зависимость времени отрисовки кадра от количества частиц вируса, находящихся на сцене.

Объекты сцены

- Стены
- Пол
- Абстрактная фигура человека
- Частицы вируса

Выбор алгоритмов удаления невидимых линий и закраски

Критерий: произвольная сложность сцены

• Алгоритм Z-буфера

Критерий: реалистичность изображения и скорость работы

• Закраска по Гуро

Броуновское движение

Броуновское движение - беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием молекул окружающей среды.

Алгоритмы моделирования броуновского движения:

- Классическое броуновское движение
- Алгоритм срединных смещений
- Фрактальное броуновское движение

Выбор алгоритма моделирования броуновского движения

Алгоритм	Скорость	Реалистичность	Затраты по памяти
Классическое броуновское движение	Высокая	Низкая	Низкие
Алгоритм срединных смещений	Высокая	Высокая	Высокие
Фрактальное броуновское движение	Низкая	Высокая	Высокие

Алгоритм срединных смещений

```
1: X(0) \leftarrow 0

2: X(1) \leftarrow \sigma g \ / \ g - случайная величина, распределенная нормально с параметрами N(0,1)

3: for j=1,...,N do

4: for i=1,...,2^{N-1} do

5: X((2i-1)2^{N-j}) \leftarrow X((i-1)2^{N-j+1}) + X(i2^{N-j+1}) + \frac{1}{2^{(j+1)/2}}\sigma g

6: end for

7: end for
```

Диаграмма классов

Средства реализации

- Язык программирования С++
- Среда разработки Qt Creator

Интерфейс программы

Демонстрация работы программы

Эксперимент

Цель эксперимента - выявить зависимость времени отрисовки кадра от количества частиц вируса, находящихся на сцене.

Измерения проводятся при одной скорости движения частиц. Каждый замер производится 30 раз, а затем время усредняется.

При замерах камера не будет передвигаться и поворачиваться, не будет изменяться положение объектов на сцене.

Результаты эксперимента

Количество частиц вируса	Время отрисовки сцены (в миллисекундах)		
1	235.0		
10	255.0		
20	265.0		
40	295.0		
60	330.0		
100	390.0		
150	460.0		
200	550.0		
250	620.0		
300	680.0		
400	830.0		
500	1000.0		
600	1130.0		

Заключение

В результате выполнения курсовой работы была разработана программа с пользовательским интерфейсом, которая предоставляет функционал для моделирования броуновского движения частиц короновирусной инфекции в помещении с учетом скорости их распространения и времени жизни на разных поверхностях.

Были решены следующие задачи:

- рассмотрены алгоритмы удаления невидимых линий и поверхностей и методы закраски;
- проанализированы алгоритмы моделирования броуновского движения;
- выбраны и реализованы подходящие для решения поставленной задачи алгоритмы;
- формализована модель, представлена диаграмма классов;
- выявлена зависимость времени отрисовки кадра от количества частиц вируса, находящихся на сцене.

В ходе замеров было выявлено, что скорость отрисовки сцены линейно зависит от количества частиц вируса.