2.5. Funções Exponenciais

Definição:

Dada um número real a (a > 0 e a ≠ 1), denomina-se função exponencial de base **a** função f: $IR \rightarrow IR_{+}^{*}$ definida por $f(x) = a^{x}$.

Exemplos:

a)
$$f(x) = 4^x$$

b)
$$f(x) = \left(\frac{1}{2}\right)^x$$
 c) $f(x) = 10^x$ d) $f(x) = \left(\sqrt{2}\right)^x$

c)
$$f(x) = 10^x$$

d)
$$f(x) = \left(\sqrt{2}\right)$$

As restrições a > 0 e a ≠ 1 dadas na definição são necessárias, pois:

★ Para a = 0 e x negativo, não existiria a^x (Não teríamos uma função definida em IR); Observe:

a)
$$0^2 = 0$$

b)
$$0^{-2} = \frac{1}{0^2} = \frac{1}{0}$$
 (Não existe divisão por zero)

★ Para a < 0 e x = $\frac{1}{2}$, por exemplo, não haveria a^x (Não teríamos uma função em IR);

Observe:

a)
$$(-9)^{\frac{1}{2}} = \sqrt{-9} \notin IR$$

★ Para a = 1 e x qualquer número real, a^x = 1 (Função constante); Observe:

a)
$$1^5 = 1$$

Exemplos:

1) Dada a função exponencial $f(x) = 4^x$, determine:

b)
$$f(-1) =$$

c)
$$f\left(\frac{1}{2}\right) =$$

d)
$$f\left(-\frac{1}{2}\right) =$$

e)
$$f(0,5) =$$

$$f) f(-0,5) =$$

Gráfico da função exponencial

Função exponencial: $f(x) = a^x$

- f(x) é crescente, pois a > 1;
- O gráfico não toca o eixo x e não tem pontos nos quadrantes III e IV;

0 < a < 1 (função decrescente)

- f(x) é de crescente, pois 0 < a < 1;
- O gráfico não toca o eixo x e não tem pontos nos quadrantes III e IV;

Equações Exponenciais:

Equações exponenciais são aquelas em que as variáveis aparecem nos expoentes. Veja alguns exemplos:

a)
$$2^x = 16$$

b)
$$2^{2x} = 64^{x-2}$$

c)
$$3.5^{x} = 75$$

$$d) \left(\frac{3}{2}\right)^x = \frac{8}{27}$$

e)
$$2^{x^2-3x-4}=1$$

f)
$$3^{2x} - 6.3^x - 27 = 0$$
 (Equações exponenciais que exigem transformações e artifícios)

O número irracional e e a função exponencial e^{x} .

Atribui-se a John Napier a descoberta do número de Neper. É um importante número irracional, que é estudado em Cálculo Diferencial e Integral, e surge como limite, para valores muito grandes de n, da sucessão $\left(1+\frac{1}{n}\right)^n$.

Vamos considerar a expressão $\left(1+\frac{1}{n}\right)^n$ com $\mathbf{n} \in \{1, 2, 3, 4, 5, 6, ...\}$:

$$\left(1+\frac{1}{1}\right)^{1}, \left(1+\frac{1}{2}\right)^{2}, \left(1+\frac{1}{3}\right)^{3}, \left(1+\frac{1}{4}\right)^{4}, \cdots, \left(1+\frac{1}{10}\right)^{10}, \cdots, \left(1+\frac{1}{100}\right)^{100}, \cdots, \left(1+\frac{1}{1000}\right)^{1000}, \cdots \right)$$

2,000; 2,250; 2,370; 2,441; ...; 2,594; ...; 2,705; ...; 2,715; ...

Quando **n** aumenta indefinidamente, a expressão $\left(1+\frac{1}{n}\right)^n$ tende ao número irracional e = 2,7182818284...

Uma função exponencial muito importante em matemática é aquela cuja base é e:

$$\begin{cases} f(2) = e^2 = 7,39 \\ f(5) = e^5 = 148,41 \\ f(-1) = e^{-1} = 0,37 \end{cases}$$

\angle Gráfico da função exponencial $f(x) = e^x$

Exercicios – Função exponencial

- 1) Resolva as equações exponenciais:
- a) $2^x = 32$ b) $10^{3x} = 1000$

c) $25^{x} = 125$

d)
$$9^x = 243$$

$$e) \left(\frac{1}{2}\right)^x = \frac{1}{32}$$

$$f) \left(\frac{3}{5}\right)^{2x} = \frac{125}{27}$$

g)
$$4^x = \frac{1}{64}$$

h)
$$2^{x-3} = \frac{1}{8}$$

i)
$$3^{x^2-5} = 8$$

i)
$$3^{x^2-5} = 81$$

j) $2^{3x+1} = 4^{x-2}$

$$1) 25^{x-1} = 125^{x+3}$$

n)
$$2^x = \frac{1}{16}$$

o)
$$2^x = \sqrt[3]{4}$$

o)
$$2^x = \sqrt[3]{4}$$

p) $125^{x+2} = 1$

$$q) \left(\frac{1}{2}\right)^x = \sqrt[3]{4}$$

$$r) \left(\sqrt{2}\right)^x = 4$$

s)
$$\sqrt[5]{2^x} = \frac{1}{32}$$

t)
$$9^{x-2} = \sqrt{27}$$

u)
$$(0.25)^{2x} = \sqrt{32}$$

v)
$$2^{x-4} + 2^x = 34$$

$$x) 3^{x} + 3^{x-1} - 3^{x-2} = 11$$

- 2) Qual é o ponto comum aos gráficos de $f(x) = 4^{x-1} e g(x) = 2^x$?
- 3) Dada a função exponencial $f(x) = 4^x$, determine:
- a) f(3)

c) f(-1/2)

d) f(x) = 1024

- e) $f(x) = \sqrt[3]{32}$
- 4) Resolva a equação $(0,25)^{x-1} = \left(\frac{1}{8}\right)^{1-x}$.
- **5)** Resolva a equação $\left(\frac{1}{2}\right)^{x^2-4} = 8^{x+2}$.
- 6) Observe o gráfico da função definida de IR em IR, que esta ao lado e responda:
- a) A função é crescente ou decrescente?
- b) Qual é Im(f) e D(f)?
- c) Em que ponto a função corta o eixo y?
- d) Em que ponto a função corta o eixo x?
- e) Determine a imagem para x = -1
- f) Determine x de modo que f(x) = 5.
- 7) Calcule o valor de $y = [3^{-1} (-3)^{-1}]^{-1}$.

8) Supondo $a \neq 0$ e $b \neq 0$, vamos simplificar a expressão $E = (-a^{-1})^2 + (b^2)^{-1} + 2(ab)^{-1}$.

- **9)** Qual é o valor de $y = \left[\frac{4 \left(-\frac{1}{2} \right)^2}{3 + \left(-\frac{3}{2} \right)^2} \right]^{-1}$?
- 10) Calcular o valor de cada uma das seguintes expressões:

a)
$$\left[\frac{2^{-1} - (-2)^{-1}}{\left(\frac{1}{2}\right)^{-1}} \right]^{-2}$$

b)
$$\frac{3.2^{-2} - 2.3^{-2}}{(3.2)^{-2}}$$

- **11)** Simplifique $\frac{3^{x+2}-3^{x+1}}{3^x}$.
- **12)** Calcule o valor de y = $8^{\frac{2}{3}} + 81^{\frac{1}{4}}$.
- **13)** Efetue:

a)
$$\frac{2^{\frac{3}{2}} \cdot 4^{\frac{1}{2}}}{8^{\frac{5}{6}}}$$

b)
$$\frac{\left(\frac{1}{4}\right)^{\frac{1}{2}} \cdot 4^{\frac{3}{2}} \cdot 36^{\frac{-1}{2}}}{10000^{-\frac{1}{4}}}$$

14) Resolva, em IR, as seguintes equações exponenciais:

a)
$$2^{3x+2} = 32$$

f)
$$(\sqrt{2})^{3x-1} = (\sqrt[3]{16})^{2x-1}$$

b)
$$2^{x^2-x-16} = 16$$

g)
$$\frac{1}{7} = \sqrt[7]{49^{x-1}}$$

c)
$$81^{1-3x} = 27$$

h)
$$4^x - 2^x - 2 = 0$$

d)
$$5^{2x^2+3x-2} = 1$$

i)
$$9^x + 3^{x+1} = 4$$

e)
$$\frac{1}{e^2} = e^{x-3}$$

- **15)** Simplifique a expressão $\frac{2^{n+4} + 2^{n+2} + 2^{n-1}}{2^{n-2} + 2^{n-1}}.$
- **16)** Resolva as equações: (a) $4^{x^2+1} 15.2^{x^2+2} = 64$ e (b) $5^{10x} 10.5^{5x} 5 = -30$

Respostas:

- **1)** a. S={5} b. S={1} c. $S={3/2}$ d. $S=\{5/2\}$ e. S={5} f. $S=\{-3/2\}$ $g. S={-3}$ n. S={-4} u. S={-5/8} j. S={-5} h. $S=\{0\}$ i. $S=\{-3,+3\}$ I. S={-11} m. S={4} o. $S=\{2/3\}$ r. S={4} p. $S=\{-2\}$ q. $S=\{-2/3\}$ s. $S=\{-25\}$ t. $S=\{11/4\}$
- v. S={ 5 } x. S={ 2 }
- **2)** S = (2,4)
- d. 5 e. 5/6 4) {1} **3)** a. 64 b. ¼ C. ½ 5) {-2, -1}
- **6)** a. crescente b. Im = $]0, +\infty]$ c. y = 2 d. Nunca corta e. f(-1) = $\frac{5}{4}$ f. x = 1
- 7) $y = \frac{3}{2}$
- 8) $E = \left(\frac{a+b}{ab}\right)^2$ 9) $y = \frac{7}{5}$ 10) a. 4 b. 19

11) 6

- 12) 7 13) a. 1 b. $\frac{20}{3}$
- 14) a. {1} b. {5, -4} c. $\left\{\frac{1}{12}\right\}$ d. $\left\{-2, \frac{1}{2}\right\}$ e. {1} f. $\left\{\frac{5}{7}\right\}$ g. $\left\{-\frac{5}{2}\right\}$ h. {1} i. {0} 15) $\frac{82}{3}$
- 16) a) (-2,2) b) $\frac{1}{5}$

Aos interessados:

- Matemática, contexto & aplicações. Luiz Roberto Dante, Volume 1. - Cálculo, Função de uma e várias variáveis. Pedro A. Morrettin. Editora Saraiva.
 - Pré-Cálculo. Valéria Zuma Medeiros, et al.
 - Pré-Cálculo. Franklin D. Demana, et al..