TD n°13 : Caractères 12/01/2024

Exercice 1. Quelques tables de caractères

Déterminer la table de caractères des groupes finies suivants. On essaiera dans chaque cas de donner une représentation irréductible qui a ce caractère, soit directement par le morphisme vers GL(V) sous-jacent, soit en la réalisant concrètement.

- 1. Pour un entier $n \geq 2$, le groupe $\mathbb{Z}/n\mathbb{Z}$.
- 2. Le groupe dihédral D₈.
- 3. Pour un premier p, le sous-groupes des bijections de \mathbb{F}_p formé des transformations affines donné par

$$\operatorname{Aff}_{p} = \left\{ x \mapsto ax + b \,|\, a \in \mathbb{F}_{p}^{\times}, \, b \in \mathbb{F}_{p} \right\}.$$

Correction de l'exercice 1 :

- 1. Puisque $\mathbb{Z}/n\mathbb{Z}$ est abélien, ses représentations irréductibles sont de dimension 1. Nous les connaissons : ce sont les $\overline{k} \mapsto \zeta^k$ pour tout choix de racines n-ièmes de l'unité ζ possibles. La table des caractères possède des colonnes indexées par les éléments de $\mathbb{Z}/n\mathbb{Z}$, des lignes indexées par les racines n-ièmes de l'unité, et la valeur dans la case (\overline{k}, ζ) est ζ^k .
- 2. Il est utile dans cette question de pouvoir penser à D_8 soit comme au groupe d'isométries du carré, soit comme au produit semi-direct

$$(\mathbb{Z}/4\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z},$$

via le morphisme $a \mapsto (-1)^a \operatorname{Id}_{\mathbb{Z}/4\mathbb{Z}}$.

Commençons par les représentations que nous connaissons bien. La représentations triviale et le déterminant fournissent des irréduticles de dimension 1. La définition de D_8 comme des matrices de $GL_2(\mathbb{R}) \subset GL_2(\mathbb{C})$ fournit une représentation complexe de dimension 2 qui ne contient pas de droite stable sans quoi les matrices de D_8 seraient codiagonalisables. Nous avons ainsi trouvé une représentation V irréductible de dimension 2 de D_8 . Si l'intuition des représentations manquantes ne vient pas, considérer que

$$8 = \sum_{V \in Irr(D_8)} (\dim V)^2$$

et que nous avons déjà trouvé des termes qui se somment à 6. Ainsi, il manque deux représentations de dimension 1. L'idée vient alors de quotienter D_8 en un groupe abélien. Si l'on quotient par le sous-groupe distingué $\{\pm \mathrm{Id}\}$, le quotient obtenu est isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$. Il est possible d'en tirer 4 caractères de D_8 : l'identité et la projection sur un facteur $\mathbb{Z}/2\mathbb{Z} \cong \{\pm 1\}$, nous appelons χ_v le caractère de la projection parallèlement à v. Il se trouve que $\chi_{(1,0)}$ n'est autre que le déterminant et que les deux autres sont les caractères qu'il nous manquait.

Nous savons donc qu'il existe 5 classes de conjugaisons dans D_8 . Celles contenues dans le sous-groupe distingué des rotations directes d'ordre divisant 4 (le $\mathbb{Z}/4\mathbb{Z}$ du produit semi-direct) sont exactement les orbites dans ce sous-groupe par $\{\pm \mathrm{Id}_{\mathbb{Z}/4\mathbb{Z}}\}$. Elles sont au nombre de 3 : l'identité, son opposé, et l'orbite formée des deux rotations d'ordre exactement 4. En considérant le quotient isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$ qui est abélien, nous savons que l'image par la projection sur ce quotient est invariante par conjugaison. Ceci nous fournit deux dernières classes de conjugaison : l'image réciproque de (0,1) et (1,1), i.e. les symétries par rapport à une diagonale et les symétries par rapport à l'un des axes. Finalement, la table de caractère obtenue est

	Id	−Id	Rotations directes d'ordre 4	Symétries par rap- port à une diagonale	Symétrie par rap- port à un axe
1	1	1	1	1	1
$\det = \chi_{(1,0)}$	1	1	1	-1	-1
$\chi_{(0,1)}$	1	1	-1	1	-1
$\chi_{(1,1)}$	1	1	-1	-1	1
\overline{V}	2	-2	0	0	0

3. Le groupe est engendré par les $h_c: x \mapsto cx$ et les $\tau_d: x \mapsto x + d$. On établit pour davantage de clarté la formule de conjugaison pour ces deux types de tranformations :

$$h_c \circ (x \mapsto ax + b) \circ h_c^{-1} = h_c \circ (x \mapsto ax + b) \circ h_{c^{-1}} = (x \mapsto ax + cb)$$

$$\tau_d \circ (x \mapsto ax + b) \circ \tau_d^{-1} = \tau_d \circ (x \mapsto ax + b) \circ \tau_{-d} = (x \mapsto ax + (1 - a)d + b).$$

Ces deux formules illustrent que, pour $a \neq 1$, $\{ax+b \mid b \in \mathbb{F}_p\}$ est une classe de conjugaison, que Id est une classe de conjugaison et que $\{\tau_b \mid b \in \mathbb{F}_p^\times\}$ est une classe de conjugaison. Nous avons donc p-2+2=p classes de conjugaison dans Aff_p . L'application qui envoie $(x\mapsto ax+b)$ sur son coefficient directeur a est un morphisme de groupes surjectif vers \mathbb{F}_p^\times . Ce dernier étant un groupe cyclique à p-1 éléments, nous obtenons p-1 représentations de dimension 1 non isomorphes de Aff_p . Précisément, pour tout ζ racine (p-1)-ième de l'unité, le morphisme $(x\mapsto ax+b)\mapsto \zeta^a$ fournit un caractère de Aff_p .

Il ne nous reste qu'une représentation irréductible V à trouver. Nous pourrions remplir le tableau de caractères par orthonormalité puis construire à la main la représentation mais ce serait fastidieux. Nous pourrions la sortir du chapeau, mais voyons quelles informations nous pouvons déjà obtenir. Nous savons que

$$(\dim V)^2 = |\operatorname{Aff}_p| - (p-1) = p(p-1) - (p-1) = (p-1)^2.$$

De plus, pour tout caractère ε de dimension 1 de Aff_p , le caractère $\chi_V \varepsilon$ est également irréductible, de même dimension que χ_V , et lui est donc égal. Ceci implique que $\chi_V(g)=0$ dès que g n'est pas dans le noyau de tous les caractères dimension 1, i.e. dès que g n'est pas une translation. Trouver $\chi_V(\{x\mapsto x+b\,|\,b\neq\})$ se fait alors par orthogonalité des colonnes à la première.

Pour réaliser cette représentation, il semble naturel de chercher parmi les représentations de permutations. Il se trouve que Aff_p agit sur \mathbb{F}_p , et que cette action est même 2-transitive puisque (0,1) est envoyé sur (b,c) par $(x\mapsto (c-b)x+b$. L'exercice 1 du présent TD fournit alors une représentation irréductible de dimension p-1 dans $\mathbb{C}(\mathbb{F}_p)$ dont le caractère est $\chi_V(g)=|\operatorname{Fix}(g)|-1$. En particulier, ce caractère vaut

$$\chi_V(\mathrm{Id}) = p - 1, \ \chi_V(\{x \mapsto x + b \mid b \neq 0\}) = -1, \ \mathrm{et} \ \forall a \neq 1, \ \chi_V(\{x \mapsto ax + b\}) = 0.$$

Exercice 2. Représentations de permutation d'un action (édition caractères)

Soit G un groupe fini agissant sur un ensemble fini X de cardinal supérieur à 2. Cet exercice considère la représentation de permutation $\mathbb{C}X$. Nous notons également χ_X le caractère associé. On rappelle qu'il existe une décomposition comme $\mathbb{C}[G]$ -module

$$\mathbb{C}X = \mathbb{C}\left(\sum_{x \in X} x\right) \oplus H$$

où le premier terme est isomorphe à la représentation triviale et où

$$H = \left\{ \sum_{x \in X} \lambda_x x \, \middle| \, \sum_{x \in X} \lambda_x = 0 \right\}.$$

- 1. Soit Y un G-ensemble fini. Démontrer que le nombre d'orbites est égal à $\langle \chi_Y, 1 \rangle$. Nous pourrons réutiliser la question 4 de l'exercice correspondant au dernier TD.
- 2. En déduire que l'action de G sur X est 2-transitive si et seulement si $\langle \chi_{(X\times X)}, 1 \rangle = 2$.
- 3. Démontrer que χ_X est réel, puis que $\chi_{(X\times X)}=\chi_X^2$.
- 4. Conclure que $\langle \chi_{(X \times X)}, 1 \rangle = 2$ si et seulement si $\mathbb{C}X$ est somme de deux représentations irréductibles non isomorphes, i.e. si et seulement si H est irréductible non triviale.

Correction de l'exercice 2 :

1. La question 4) de l'exercice 1 du dernier TD affirme que

$$v = \sum_{y \in Y} \lambda_y y$$

est fixe par G si et seulement si $y \mapsto \lambda_y$ est constante sur les orbites. Ainsi, les indicatrices de orbites forment une base de $(\mathbb{C}Y)^G$. De plus, cet espaces d'invariants $(\mathbb{C}Y)^G$ est la composante isotypiqueu de la représentation triviale 1. Or, nous savons que pour tout $\mathbb{C}[G]$ -module de dimension finie V, de caractère χ , nous avons

$$\dim_{\mathbb{C}}(\mathbb{C}Y[V]) = \langle \chi_Y, \chi \rangle \dim_{\mathbb{C}} V$$

où pour une représentation -[V] désigne la composante isotypique. Ceci implique pour V = 1 que la dimension des vecteurs fixes est exactement le produit scalaire annoncé.

- 2. Sur $X \times X$, nous avons deux sous-ensembles stables par G: la diagonale $\Delta = \{(x,x) \mid x \in X\}$ et son complémentaire. La diagonale est une orbite de $X \times X$ sous G si et seulement si l'action de G sur X est transitive. Le complémentaire $(X \times X) \setminus \Delta$ est une orbite si et seulement si l'action de G sur X est 2-transitive. Ainsi, l'action de G sur X est 2-transitive si et seulement si $X \times X$ possède deux orbites sous G. Nous concluons avec la question précédente.
- 3. Pour tout $g \in G$, nous avons $\chi_X(g) = |\operatorname{Fix}_X(g)|$ qui est réel. De plus, les points fixes par g dans $X \times X$, sont exactement les couples formés de deux points fixes par g dans X. Par conséquent

$$\chi_{(X \times X)}(g) = |\text{Fix}_X(g)|^2 = \chi_X(g)^2.$$

4. Il faut écrire en utilisant que χ_X est réel

$$\langle \chi_{(X \times X)}, 1 \rangle = \langle \chi_X^2, 1 \rangle$$

= $\langle \chi_X, \overline{\chi_X} \rangle$
= $\langle \chi_X, \chi_X \rangle$

et ce dernier vaut la somme des carrés du nombre des multiplicités des représentations irréductibles de G dans $\mathbb{C}X$. Cette somme ne peut valoir deux qui si $\mathbb{C}X$ est somme de deux représentations irréductibles non isomorphes. Puisqu'il se décompose déjà comme $\mathbf{1} \oplus H$, cette condition équivaut au fait que H est irréductible non triviale.

Exercice 3. Représentation de conjugaison

Soit G un groupe fini.

1. On fait agit G sur G par conjugaison et on note V la représentation de permutation associée. Déterminer χ_V .

2. En déduire que la somme de chaque ligne de la table des caractères de G est un entier naturel.

Correction de l'exercice 3:

- 1. Pour tout élément $g \in G$, la valeur $\chi_V(g)$ vaut le nombre de points fixes de G par conjugaison de g, autrement dit le cardinal du centralisateur $|C_G(g)|$.
- 2. Soit W une représentation irréductible de G et χ le caractère associé. Nous cherchons à prouver que le complexe suivant est un entier naturel :

$$\sum_{O \in \operatorname{Conj}(G)} \chi(O)$$

où $\operatorname{Conj}(G)$ est l'ensemble des classes de conjugaison de G. Remarquons que $|\operatorname{C}_G(g)|$ ne dépend que de la classe de conjugaison de g; nous écrirons ainsi sans amibiguïté $|\operatorname{C}_G(G)|$. Nous pouvons écrire

$$\sum_{O \in \text{Conj}(G)} \chi(O) = \frac{1}{|G|} \sum_{O \in \text{Conj}(G)} |G| \chi(O)$$

$$= \frac{1}{|G|} \sum_{O \in \text{Conj}(G)} |O| |C_G|(O) \chi(O)$$

$$= \frac{1}{|G|} \sum_{O \in \text{Conj}(G)} \left(\sum_{g \in O} |C_G(g) \chi(g) \right)$$

$$= \langle \chi_V, \overline{\chi} \rangle$$

et la dernière égalité illustre que notre complexe est un entier naturel.

Exercice 4. Asymptotique de l'apparition des représentations

Soit G un groupe fini. Pour tout $\mathbb{C}[G]$ -module de dimension finie V, nous notons Z_V l'ensemble des éléments de G qui agissent sur V par homothéties et ω_V le caractère

$$\omega_V: Z_V \to \mathbb{C}^{\times}$$

tel que $\forall z \in Z_V \ \rho_V(z) = \omega_V(z) \mathrm{Id}_V$.

1. Soit U, V deux $\mathbb{C}[G]$ -modules de dimension finie. Démontrer que la série entière

$$f = \sum_{n \ge 0} \frac{\langle \chi_U, \chi_V^n \rangle}{\dim U(\dim V)^n} x^n$$

a un rayon de convergence supérieur ou égal à 1, puis que

$$f = \frac{1}{|G|} \sum_{g \in G} \frac{\chi_U(g)/\dim U}{1 - \left(\overline{\chi_V(g)}/\dim V\right)x}.$$

- 2. Supposons que U est irréductible. Démontrer que $\langle \chi_U, \chi_V \rangle = 0$ si Z_V n'agit pas sur U comme $\omega_V \operatorname{Id}_U$.
- 3. Supposons dès à présent que U est irréductible et que V est fidèle (non nulle).
 - i) Montrer que Z_V agit sur U par homothéties. On note ω_U le caractère associé.
 - ii) Démontrer que f a un pôle simple en 1.
 - iii) Notons $\mathcal{E} = \{n \geq 0 \mid \omega_V^n = \omega_U\}$. Démontrer que

 $\langle \chi_U, \chi_V^n \rangle = 0$ sur le complémentaire de \mathcal{E}

$$\langle \chi_U, \chi_V^n \rangle \sim (\dim V)^n \frac{|Z_V| \dim U}{|G|}$$
 sur l'ensemble \mathcal{E} .

4. • Interpréter.

Correction de l'exercice 4:

1. Nous avons pour tout $g \in G$ que $|\chi_U(g)| \le \dim(U)$ et $|\chi_V(g)| \le \dim(V)$. De fait, pour tout entier n, on obtient

$$|\langle \chi_U, \chi_V^n \rangle| = \left| \frac{1}{|G|} \sum_{g \in G} \chi_U(g) \overline{\chi_V(g)}^n \right|$$

$$\leq \frac{1}{|G|} \sum_{g \in G} |\chi_U(g)| |\chi_V(g)|^n$$

$$\leq \dim(U) \dim(V)^n$$

Ainsi, les coefficients de la série entière sont bornés : son rayon de convergence est supérieur ou égal à 1.

Pour |x| < 1, les familles sont sommables et on peut écrire

$$f(x) = \frac{1}{|G|} \sum_{n \ge 0} \left(\sum_{g \in G} \frac{\chi_U(g)}{\dim(U)} \left(\frac{\overline{\chi_V(g)}x}{\dim(V)} \right)^n \right)$$
$$= \frac{1}{|G|} \sum_{g \in G} \frac{\chi_U(g)}{\dim(U)} \left(\sum_{n \ge 0} \left(\overline{\chi_V(g)}x / \dim(V) \right)^n \right)$$

et on reconnaît le développement annoncé.

- 2. Si U est irréductible, alors $\dim(U)\langle \chi_U, \chi_V \rangle$ vaut la dimension de la composante U-isotypique de V. Si cette composante isotypique n'est pas nulle, Z_V y agit comme une restriction depuis V, i.e. comme la multiplication par ω_V . Ainsi Z_V doit agir sur U comme $\omega_V \operatorname{Id}_U$.
- 3. i) Soit $g \in Z_V$. Son image dans $\mathrm{GL}(V)$ commute à l'image de G. Par fidélité de la représentation V, nous en déduisons que $g \in \mathrm{Z}(G)$, i.e. que $Z_V \subseteq \mathrm{Z}(G)$. D'après l'exercice 3 du TD 12, on conclut alors que Z_V agit par homothéties sur U.
 - ii) Au vu de la seconde expression de f démontrée à la question 1, s'il y a un pôle en 1, il est simple et son résidu vaut

$$\frac{1}{|G|} \sum_{g \in G, \ \chi_V(g) = \dim(V)} \frac{\chi_U(g)}{\dim(U)}.$$

La condition $\chi_V(g) = \dim(V)$ équivaut à ce que $g \in \text{Ker}(V)$ ce qui dit g = 1 puisque V est fidèle. Ainsi, le résidu est non nul et f a effectivement un pôle simple en 1.

iii) Le caractère χ_V^n est le caractère de la représentation $V^{\otimes n}$, sur lequel Z_V agit comme la multiplication par ω_V^n . La question 2) appliquée à U et $V^{\otimes n}$ conclut sur le complémentaire de \mathcal{E} .

Pour l'équivalence, on remarque de le cas d'égalité de l'inégalité triangulaire affirme que $|\chi_V(g)| = \dim(V)$ ssi $g \in \mathbb{Z}_V$. Ainsi, le développement

$$\langle \chi_U, \chi_V^n \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_U(g) \overline{\chi_V(g)}^n = \frac{\dim(U) \dim(V)^n}{|G|} \sum_{g \in G} \frac{\chi_U(g)}{\dim(U)} \left(\frac{\chi_V(g)}{\dim(V)}\right)^n.$$

Cette somme est équivalente à celle sur Z_V et pour $g \in Z_V$ le terme de la somme vaut 1 puisque $\omega_U = \omega_V^n$. Nous obtenons le résultat annoncé.

4. Soit d l'ordre de ω_V . Soit également $\operatorname{Irr}(G)$ l'ensemble des classes d'isomorphismes de représentations irréductibles de dimension finie sur $\mathbb C$ du groupe G. En fixant $0 \le k < d$, nous obtenons que

$$1 = \frac{\sum_{[U] \in \operatorname{Irr}(G)} \dim(U) \langle \chi_U, \chi_V^{k+nd} \rangle}{(\dim(V))^n} \sim \frac{|Z_V|}{|G|} \sum_{[U] \in \operatorname{Irr}(G) \text{ telle que } \omega_U = \omega_V^k} \dim(U)^2$$

d'où l'égalité en faisant $n \to +\infty$:

$$[G:Z_V] = \sum_{[U] \in \operatorname{Irr}(G) \text{ telle que } \omega_U = \omega_V^k} \dim(U)^2.$$

De plus, l'équivalence s'interprète en disant que dans les puissances tensorielles $V^{\otimes n}$, les composantes U-isotypiques se répartissent selon les proportions $\dim(U)^2/[G:Z_V]$ en respectant les conditions sur la restriction à Z_V .