CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: GAUSSIAN NETWORK MODELS

CHAPTER: 7

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION FOR THIS CHAPTER

- So far, we focused primarily on discrete distributions
- The independence statements made by the structures, both Bayesian network structures and Markov network structures, apply regardless of whether the variables are discrete or real-valued
- In this chapter, we'll focus on one example
 - Gaussian network models

Univariate Gaussian Distribution

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

3

MULTIVARIATE GAUSSIAN DISTRIBUTION

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right]$$

TWO-VARIABLE EXAMPLE

Figure 7.1 Gaussians over two variables X and Y. (a) X and Y uncorrelated. (b) X and Y correlated.

5

THREE-VARIABLE EXAMPLE

$$\mu = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix}$$

Information Matrix J

$$-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T J(\boldsymbol{x} - \boldsymbol{\mu})$$
$$= -\frac{1}{2} \left[\boldsymbol{x}^T J \boldsymbol{x} - 2 \boldsymbol{x}^T J \boldsymbol{\mu} + \boldsymbol{\mu}^T J \boldsymbol{\mu} \right]$$

Theorem: $J_{ik} = 0$ if and only if X_i and X_k are independent given the rest of the variables.

INFERENCE

- Marginalization
 - Compute $p(X_s)$ for $X_s \subseteq X$
 - Use the covariance form
- Conditioning
 - Compute $p(X \mid Z = z)$
 - Use the information form

THREE-VARIABLE EXAMPLE

$$\mu = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix}$$

$$J = \begin{pmatrix} 0.3125 & -0.125 & 0 \\ -0.125 & 0.5833 & 0.3333 \\ 0 & 0.3333 & 0.3333 \end{pmatrix}$$

GAUSSIAN BAYESIAN NETWORK

• Assume Y is a linear Gaussian of its parents $X_1, X_2, ..., X_k$

$$p(Y \mid \boldsymbol{x}) = \mathcal{N}\left(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}; \sigma^2\right)$$

- o If $X_1, X_2, ..., X_k$ are jointly Gaussian, then
 - p(Y) is a Gaussian
 - p(X, Y) is a Gaussian

EXAMPLE

- Structure
 - $X_1 \rightarrow X_2 \rightarrow X_3$
- Parameters
 - $p(X_1) = N(1; 4)$
 - $p(X_2 \mid X_1) = N(-3.5 + 0.5X_1; 4)$
 - $p(X_3 | X_2) = N(1 X_2; 3)$
- What is $p(X_1, X_2, X_3)$?

$$\mu = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix} \quad J = \begin{pmatrix} 0.3125 & -0.125 & 0 \\ -0.125 & 0.5833 & 0.3333 \\ 0 & 0.3333 & 0.3333 \end{pmatrix}$$