

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re patent application of: Yuri Gulevich et al.)	
Serial No.: 10/577,694)	
Filed: April 28, 2006)	Examiner: Ling Siu Choi
For: COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINS)	Group Art Unit: 1713
Mail Stop Amendment Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450		October //, 2007

REQUEST FOR RECONSIDERATION

This is in response to the Office Action dated July 25, 2007 in the above-identified application. This response is being timely filed on October 10, 2007. Included with this response is a Supplemental Information Disclosure Statement.

Summarized below is a current listing of the claims:

AMENDMENTS TO THE CLAIMS

1. (previously presented) A solid catalyst component for the polymerization of olefins comprising Mg, Ti, halogen and an electron donor selected from thiophene derivatives of formula (I):

$$R_2$$
 COOR R_3 R_1 (I)

wherein R is a branched alkyl group, R_1 , R_2 and R_3 , same or different, are hydrogen, halogen, R^4 , OR^4 , $COOR^4$, SR^4 , NR^4 ₂ or PR^4 ₂, wherein R^4 is a linear or branched C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl group, optionally containing at least one heteroatom, and at least two of said R_1 - R_3 groups can also be joined to form a cycle, with the proviso that at least one of R_1 and R_2 is $COOR^4$ and that when R_2 is COO-i-octyl and R is i-octyl, at least one of R_1 and R_3 are different from hydrogen.

- 2. (previously presented) The catalyst component according to claim 1 in which in the thiophene derivatives of formula (I), R is a primary branched alkyl having from 4 to 15 carbon atoms.
- 3. (previously presented) The catalyst component according to claim 1 in which in the thiophene derivatives of formula (I), R₂ is a COOR group.
- 4. (previously presented) The catalyst component according to claim 3 in which at least one of R₁ and R₃ is a C1-C20 alkyl group.
- 5. (previously presented) The catalyst component according to claim 1 in which in the thiophene derivatives of formula (I), R₁ is a COOR group.
- 6. (previously presented) The catalyst component according to claim 5 in which one of R₂ and R₃ of formula (I) are different from hydrogen.
- 7. (original) The catalyst component of claim 1 comprising a titanium compound having at least a Ti-halogen bond and the thiophene derivatives of formula (I) supported on a Mg halide in active form.
- 8. (previously presented) A catalyst for the polymerization of olefins comprising the product of the reaction between:

- a solid catalyst component comprising Mg, Ti, halogen and an electron donor selected from thiophene derivatives of formula (I):

$$R_2$$
 COOR R_3 S R_1 (I)

wherein R is a branched alkyl group, R_1 , R_2 and R_3 , same or different, are hydrogen, halogen, R^4 , OR^4 , $COOR^4$, SR^4 , NR^4 ₂ or PR^4 ₂, wherein R^4 is a linear or branched C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl group, optionally containing at least one heteroatom, and at least two of said R_1 - R_3 groups can also be joined to form a cycle, with the proviso that at least one of R_1 and R_2 is $COOR^4$ and that when R_2 is COO-i-octyl and R is i-octyl, at least one of R_1 and R_3 are different from hydrogen;

- an alkylaluminum compound; and optionally,
- at least one electron-donor compound (external donor).
- 9. (previously presented) The catalyst according to claim 8 in which the alkylaluminum compound is a trialkyl aluminum compound.
- 10. (previously presented) A process comprising (co)polymerizing olefins, the (co)polymerization being carried out in the presence of a catalyst comprising the product of the reaction between:
 - a solid catalyst component comprising Mg, Ti, halogen and an electron donor selected from thiophene derivatives of formula (I):

$$R_2$$
 COOR R_3 S R_1 (I)

wherein R is a branched alkyl group, R_1 , R_2 and R_3 , same or different, are hydrogen, halogen, R^4 , OR^4 , $COOR^4$, SR^4 , NR^4 ₂ or PR^4 ₂, wherein R^4 is a linear or branched C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl group, optionally containing at least one heteroatom, and at least two of said R_1 - R_3 groups can also be joined to

form a cycle, with the proviso that at least one of R_1 and R_2 is $COOR^4$ and that when R_2 is COO-i-octyl and R is i-octyl, at least one of R_1 and R_3 are different from hydrogen;

- an alkylaluminum compound; and optionally,
- at least one electron-donor compound (external donor).