Satellite Communications - RRY100 -

2024 Study Period 1 Lecturer: Rüdiger Haas

Lecture-6: Signal propagation

Signal propagation:

- Satellite communication signals pass through the Earth's atmosphere
- effects in ionosphere:
 - attenuation
 - depolarization
- effects in troposphere:
 - rain attenuation and
 - depolarization
- frequency dependent

- Electromagnetic wave is a transverse wave and consists of
 - electric field (E) and
 - magnetic field (H)
- Field strength E and H are perpendicular to each other
- Propagation direction:
 - vector product of E and H vector => Poynting vector, direction of energy flow
- Polarization direction: direction of E field vector
- Plane of polarization: made by E field vector and propagation direction
- Electric field vector can be split up into two components:

$$E_{x} = E_{1} \times \sin(W \times t - k \times z)$$

$$E_{y} = E_{2} \times \sin(W \times t - k \times z + O)$$

circular frequency:

$$\omega = 2 \cdot \pi \cdot f$$

phase difference: δ

wave constant
$$k$$
: $k = \frac{2 \cdot \pi}{\lambda}$

Different polarization states of an approaching wave:

Polarization	Radiowaves	Classical physics
Right-hand Left-hand	wave receeding clockwise wave receeding counterclockwise	wave approaching counterclockwise wave approaching clockwise

Electric (E) and Magnetic (H) Field

Dipole

Dipole

Electric (E) and Magnetic (H) Field

Circular loop

Circular loop

Helix (end-fire mode)

Helix (end-fire mode)

Helix (end-fire mode)

- Two sets to describe state of polarization
 - Using γ and δ , i.e. based on the amplitudes and the phase difference
 - Using ϵ and τ , i.e. based on the semi-major and semi-minor axes and the tilt angle
- Visualization with Poincarés sphere:
 - Expressing a point on the sphere with either γ and δ or ϵ and τ
 - Orthogonal polarization states are on opposite sides of the Poincaré sphere
 - Equator represents linear polarization
 - Poles represent circular polarization
 - Latitude represents axial ratio
 - Longitude represents tilt angle

Polarization description with γ and δ :

$$\gamma = \arctan\left(\frac{E_2}{E_1}\right)$$

$$0^{\circ} < g < 90^{\circ}$$

$$-180^{\circ} < d < +180^{\circ}$$

Polarization description with ϵ and τ :

$$\varepsilon = \arctan\left(\frac{b}{a}\right)$$

$$-45^{\circ} \, \text{feftage} + 45^{\circ}$$

$$-90^{\circ} < t < +90^{\circ}$$

Conversion formulas:

$$\cos(2g) = \cos(2e) \times \cos(2t)$$

$$\tan(2t) = \tan(2g) \times \cos(2t)$$

$$\tan(2t) = \tan(2g) \times \sin(2t)$$

$$\sin(2e) = \sin(2g) \times \sin(2t)$$

right-hand sense

Right Hand Circular Polarized

RHC

Poles represent

circular polarizations

Upper hemisphere

Linear

45 deg

Longitude represents

 $e = -45^{\circ}, t = 90^{\circ}$

45° linear

tilt angle

Polarized

 $e = 0^{\circ}, t = 45^{\circ}$

left-hand sense

- Antenna signal for an arbitrarily polarized wave:
 - Example linear polarized antenna
 - Output voltage is:

$$V = \vec{E} \cdot \vec{l} = E \cdot l \cdot \cos \theta$$

 Can be described with great circle distances between polarization states on Poincaré's sphere:

$$V = E \cdot l \cdot \cos\left(\frac{M_W M_A}{2}\right)$$

- Matched antenna and wave: $=> M_W M_A = 0^\circ => V = E I$
- Orthogonal circular polarizations: => $M_W M_A = 180^\circ$ => V = 0
- Orthogonal linear polarizations: $=> M_W M_A = 180^\circ => V = 0$

Polarization states:

- Complete polarization: => E_1 , E_2 and δ are constants
- Random polarization: => sum of many independent waves with different polarization (e.g. atmospheric emission), also called unpolarized: => no preferred direction of oscillation when averaged over time

$$E_x = E_1(t) \times \sin(W \times t)$$

$$E_y = E_2(t) \times \sin(W \times t + O(t))$$

 Partial polarization: mix of complete and random polarization, is the most common case

- Stokes parameters for a completely polarized wave
 - Magnitude of Poynting vector (Flux density):

$$S = S_x + S_y = \frac{E_1^2 + E_2^2}{Z} = \frac{E_0^2}{Z}$$

Definition of four Stokes parameters:

$$\begin{array}{ll} \text{total power} & I = S = S_x + S_y \\ \text{Difference between Lin. H-V} & Q = S_x - S_y \\ \text{Difference between Lin. tilted} & U = (S_x - S_y) \times \tan(2\,t) = S \times \cos(2\,\theta) \times \cos(2\,t) \\ \text{Difference between circular} & V = (S_x - S_y) \times \frac{\tan(2\,\theta)}{\cos(2\,t)} = S \times \sin(2\,\theta) \\ & \frac{U}{Q} = \tan(2\,t) \\ & \frac{V}{S} = \sin(2\,\theta) \end{array}$$

22

- Six special cases of completely polarized waves:
 - 1) Linear polarization, τ =0°

• Sx=S, Sy=0, a/b=
$$\infty$$
, => ϵ = 0° IQUV = [S S 0 0]

$$IQUV = [S S 0 0]$$

– 2) Linear polarization, τ =90°

$$IQUV = [S - S 0 0]$$

- 3) Linear polarization, τ =45°

•
$$Sx=Sy=S/2$$
, $a/b=\infty$, $=> \epsilon= 0^{\circ}$ $IQUV = [S \ 0 \ S \ 0]$

$$IQUV = [S 0 S 0]$$

- 4) Linear polarization, τ =-135°

•
$$Sx=Sy=S/2$$
, $a/b=\infty$, $=> \epsilon= 0^{\circ}$ $IQUV = [S 0 -S 0]$

$$IQUV = [S 0 -S 0]$$

- 5) Left circular polarization, τ =0°

• Sx=Sy=S/2, a/b+=1, =>
$$\varepsilon$$
= 45° IQUV = [S 0 0 S]

- 6) Right circular polarization, τ = +90°

• Sx=Sy=S/2, a/b= -1, =>
$$\varepsilon$$
= -45° IQUV = [S 0 0 -S]

Consequences:

- Two waves with identical Stokes parameters => identical
- Superposition of two waves that propagate in same directionadd Stokes parameters
- Randomly polarized waves => [S 0 0 0]
- Degree of polarization:

$$d = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}$$

Normalizing Stokes parameters:

$$s_0 = I/S = 1$$

$$s_1 = Q/S$$

$$s_2 = U/S$$

$$s_3 = V/S$$

Splitting up in polarized and non-polarized part:

$$S[s_i] = S \times \begin{vmatrix} 1 - d \\ 0 \\ 0 \end{vmatrix} + S \times \begin{vmatrix} d \\ d \times \cos(2e) \times \cos(2t) \\ d \times \cos(2e) \times \sin(2t) \end{vmatrix}$$

$$d \times \cos(2e) \times \sin(2t)$$

$$d \times \sin(2e)$$

Antenna aperture can be described in a similar way:

$$A_e[a_i] = A_e \times \begin{vmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{vmatrix}$$

Available power from the antenna:

$$P = \frac{1}{2} S \times A_e \times \mathop{a}_{i=0}^{3} a_i \times s_i$$

Polarization measurements:

- Many methods possible
- E.g. With six antennas: two pairs of linearly polarized (dipoles) and one pair of circular polarized antennas (helix)
- Stokes parameters can be derived from power levels

- Changing polarization:
 - E.g. to generate circular polarization
 - Using polarization rotators
 - Natural phenomea (e.g. ionosphere, rain)

Experiment with polarizer

- Using a standard satellite TV set
- "watching" a horizontally polarized TV-channel
- Rotating a polarizer in front of the LNB
 - 0 degree orientation: no change, original polarization
 - 45 degree orientation: generating circular polarization
 - 90 degree orientation: reaching opposite polarization

Experimental setup

Polarizer orientation 0 degree

Polarizer orientation 45 degree

Polarizer orientation 90 degree

Short summary of today's topics

- Earth's atmosphere
- Polarization definition
- Polarization of antennas
- Poincaré sphere
- Polarization state
- Stokes parameters
- Measuring polarization