Topic 9.2 Discrete Random Variables and Distributions

TMA1201 Discrete Structures & Probability Faculty of Computing & Informatics Multimedia University

What you will learn in this lecture:

- What is a random variable?
- What is a discrete random variable?
- What is a continuous random variable?
- Probability distribution function of discrete random variable
- Cumulative distribution function of discrete random variable
- Expected value of discrete random variable
- Variance of discrete random variable

Random Variables

• A random variable (rv) is a function from sample space of an experiment to the set of real numbers. That is a random variable assigns a real numbers to each possible outcome.

Note:

- Random variable is a function. It is not a variable and it is not random.
- It can be categorized into:
 - Discrete random variable and Continuous random variable

Definition of Discrete and Continuous Random Variables

 A discrete random variable is an rv whose possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on ("countably" infinite).

- A random variable is continuous if both of the following apply:
 - 1. Its set of possible values consists either of all numbers in a single interval on the number line (possibly infinite in extent, e.g., from $-\infty$ to ∞) or all numbers in a disjoint union of such intervals (e.g., $[0, 10] \cup [20, 30]$).
 - 2. No possible value of the variable has positive probability, that is, for any possible value c. P(X = c) = 0 for any possible value c.

 Suppose that a coin is flipped three times. Let X(t) be the random variable that equals to the number of heads appear when t is the outcome.

• The experiment has the sample space

 X(t) is the function that maps each of the outcome to a numeric value as follows:

Random Variables

Question	Random Variable x	Type
Family size	x = Number of dependents in family reported on tax return	Discrete
Distance from home to store	x = Distance in miles from home to the store site	Continuous
Own dog or cat	x = 1 if own no pet; = 2 if own dog(s) only; = 3 if own cat(s) only; = 4 if own dog(s) and cat(s)	Discrete

Discrete Random Variables

 Probabilities assigned to various outcomes in S in turn determine probabilities associated with the values of any particular rv X. The probability distribution of X illustrates how the total probability of 1 is distributed among (allocated to) the various possible X values.

• The **probability distribution** or **probability mass function** (pmf) of a discrete rv is defined for every number x by

$$p(x) = P(X = x) = P(all \ s \in S: X(s) = x).$$

Example 1 (Continue)

 From Example 1 suppose that the coin used in the experiment is a fair coin. As X(t) denotes the rv of number of head occurred in flipping of the coin three times, we have the probability mass function p(x):

$$p(0) = P(X=0) = P(\{TTT\}) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$p(1) = P(X=1) = P(\{HTT, THT, TTH\}) = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

$$p(2) = P(X=2) = P(\{HHT, HTH, THH\}) = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

$$p(3) = P(X=3) = P(\{HHH\}) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

Tossing a balance die

Cumulative Distribution Function

 The cumulative distribution function (cdf), F(x) of a discrete random variable X with probability mass function p(x) is defined by

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$$

and
$$p(x_i) = F(x_i) - F(x_{i-1})$$

• Consider a discrete random variable *X* with the following pmf. Find the corresponding cdf.

X	0	1	2	3
p(x) or $f(x)$	1/8	3/8	3/8	1/8
F(x)	1/8	4/8	7/8	1

X	0	1	2	3
p(x) or $f(x)$	1/8	3/8	3/8	1/8
F(x)	1/8	4/8	7/8	1

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ 1/8 & ; & 0 \le x < 1 \\ 4/8 & ; & 1 \le x < 2 \\ 7/8 & ; & 2 \le x < 3 \\ 1 & ; & 3 \le x \end{cases}$$

The pmf and cdf for the previous random variable are:

From a box containing four 10 cents and two 5 cents, three coins are selected at random without replacement. Let X be random variable indicate the sum of three selected coins. Find the probability distribution and the cumulative distribution of X.

\mathcal{X}	20	25	30
p(x) or $f(x)$	1/5	3/5	1/5
F(x)	1/5	4/5	1

Expected Value of a Discrete Random Variable

Let X be a discrete random variable with the set of possible values x and probability mass function p(x).

• The expected value (mean) of X denoted by E(X) or μ_X is

$$E(X) = \mu_X = \sum_{x} x_i \cdot p(x_i)$$

Find the expected value for the following random variable.

X	-1	1	2	3	4
f(x)	1/10	3/10	3/10	2/10	1/10

Solution:

$$= (-1)\left(\frac{1}{10}\right) + (1)\left(\frac{3}{10}\right) + (2)\left(\frac{3}{10}\right) + (3)\left(\frac{2}{10}\right) + (4)\left(\frac{1}{10}\right)$$

=

Expected Value of a Function of Discrete Random Variable

Let X be a discrete random variable with the set of possible values x and pmf p(x), the expected value of any function of X, h(X), is given by

$$E[h(X)] = \sum_{x} h(x_i) \cdot p(x_i)$$

Let X denotes the number of computer sold per day in an IT shop, and suppose that p(x) is the pmf:

$$p(0) = 0.1, p(1) = 0.2, p(2) = 0.3, p(3) = 0.4$$

If the profit function is h(X)=800X-900.

$$E[h(X)] = \sum_{x} h(x_i) \cdot p(x_i)$$

The mean profit is

$$E[h(X)] = h(0)p(0) + h(1)p(1) + h(2)p(2) + h(3)p(3)$$

$$= (-900)(0.1) + (-100)(0.2) + (700)(0.3) + (1500)(0.4)$$

$$= $700$$

Properties of Expected Value

- 1. E(a) = a, where a is any constant
- 2. E(aX) = aE(X), where a is any constant
- 3. E(aX + b) = aE(X) + b, where a, b are any constants

Example 7:

Given
$$E(X) = 5$$

a)
$$E(3X) = 3E(X) = 15$$

b)
$$E(X - 6) = E(X) - E(6)$$

= 5 - 6 = -1

Variance of a Discrete Random Variable

Let X be a discrete random variable with the set of possible values x and probability mass function p(x)

• The variance of X, denoted by V(X) or σ_X^2 , or just σ^2 , is

$$V(X) = \sigma^{2} = \sum_{x} (x_{i} - \mu)^{2} \cdot p(x_{i})$$
$$= E[(X - \mu)^{2}] = E(X^{2}) - [E(X)]^{2}$$

Find the variance for the following random variable.

χ	-1	1	2	3	4
p(x)	1/10	3/10	3/10	2/10	1/10

Solution:

We know that E(X) =_____ from Example 4, slide #16. Thus,

$$V(X) = \sum_{x} (x_i - \mu)^2 \cdot p(x_i) =$$

OR

$$V(X) = E(X^{2}) - [E(X)]^{2}$$
$$= \sum_{x} x_{i}^{2} p(x_{i}) - [E(X)]^{2} =$$

Properties of Variance

- 1. V(a) = 0, where a is any constant
- 2. $V(aX) = a^2V(X)$, where a is any constant
- 3. $V(aX + b) = a^2V(X) + 0$, where a, b are any constants

Example 9:

Given
$$V(X) = 2$$

a)
$$V(3X) = 3^2V(X) = 18$$

b)
$$V(3X - 4) = 9V(X)$$

Summary

Materials covered in this lecture?

- Random variables (discrete/continuous)
- Probability distribution function (probability mass function) of a discrete random variable
- Cumulative distribution function of a discrete random variable
- Expected value (mean) of a discrete random variable
- Properties of expected value
- Variance of a discrete random variable
- Properties of variance

Exercise 1

Let X be the outcome of rolling a die where the odd numbers has twice the probability to appear compared to the even numbers.

- 1) Construct the pmf and cdf of X.
- 2) Find the expected value of X.
- 3) Find the variance of X.
- 4) Find E(-2X + 4) and V(-2X + 4).

Exercise 2

A certain gas station has six pumps. Let *X* denote the number of pumps that are In use at a particular time of day. Suppose that the probability distribution of *X* is as given in the following table; the first row of the table lists the possible *X* values and the second row gives the probability of each such value.

X	0	1	2	3	4	5	6	
P(x)	0.05	0.10	0.15	а	0.20	0.15	0.10	

Find

- (a) the value of a.
- (b) the cumulative distribution function, F(x).
- (c) the probability that at most 2 pumps are in use.
- (d) the expected value of X.
- (e) the variance value of *X*.

Exercise 3

Suppose a bookstore purchases ten copies of a book at RM6 each to sell at RM12 with the understanding that at the end of a 3-month period any unsold copies can be redeemed for RM2. Let X = the number of copies sold, find the expected net revenue, h(x).

