Молекулярная физика и термодинамика

ФТШ, 2015б

20 февраля 2014 г.

ПРЕДИСЛОВИЕ

В данной брошюре приведены конспекты лекций, читаемых А. М. Минарским в десятых классах. В составлении и подборе конспектов принимали участие ученики 2015б: Н. Сторожилова, А. Яценко, Е. Смирнова, А. Шалагин и др.

Компьютерный вариант сборника подготовлен И. Цюцюрупой и А. Шалагиным.

Оглавление

0.1	Микро- и макрохарактеристики. Соотношения между	
	ними	3
0.2	Термодинамическое равновесие	4

0.1 Микро- и макрохарактеристики. Соотношения между ними

Молекулярная физика — раздел физики, изучающий молекулярное строение вещества.

Макрохарактеристики — параметры тела, не требующие знаний о молекулярном строении вещества для своего описания.

Микрохарактеристики — параметры тела, существенно использующие молекулярную структуру для своего описания.

Основные постулаты молекулярно-кинетической теории (МКТ):

- 1. В большинстве случаев вещество состоит из огромного числа микроскопических структурных частиц молекул или атомов (в условиях, не сильно отличающихся от нормальных).
- 2. Все частицы находятся в непрерывном хаотическом движении.

Макро	Микро	Соотношения
масса тела M	масса частицы m_0	$M = m_0 N$
объем V	число частиц N	$n = \frac{N}{V}$
плотность $ ho$	концентрация п	$\rho = \frac{M}{V} = \frac{m_0 N}{V} = m_0 n$
	молярная масса μ	$\mu=m_0N_A$

Нагретость — свойство тела создавать тепло.

Макроскопическая температура $T_{\text{макро}}$ — мера нагретости тела.

Микроскопическая температура $T_{\text{микро}}$ — мера средней кинетической энергии поступательного движения молекул.

0.2 Термодинамическое равновесие

В механике состояние системы в момент времени определяется заданием координат и импульсов всех входящих в нее частиц. Понимаемое в таком смысле состояние мы будем называть микроскопическим состоянием системы или ее микросостоянием.