

企业级网络架构

NSD NETWORK

DAY03

内容

上午	09:00 ~ 09:30	作业讲解和回顾	
	09:30 ~ 10:20		
	10:30 ~ 11:20	OSPF	
	11:30 ~ 12:00		
下午	14:00 ~ 14:50	传输层	
	1 5:00 ~ 1 5:50	ACL	
	16:10 ~ 17:00		
	17:10 ~ 18:00	总结和答疑	

动态路由

Tedu.cn 达内教育

动态路由概述

- 动态路由
 - 基于某种路由协议实现
- 动态路由特点
 - 减少了管理任务
 - 占用了网络带宽

Tedu.cn 达内教育

动态路由概述(续1)

配置接口IP地址后 路由表中生成直连路由

Routing Table				
	NET	Metric		
С	20.0.0.0	0		
С	30.0.0.0	0		

知识讲解

动态路由概述(续2)

知识讲解

动态路由不需要手工写路由,路由器之间能够自己互相学习!

Tedu.cn 达内教育 动态路由概述(续3) 我的路由表是: 20.0.0.0和30.0.0.0 知 识 R₁ R3 讲 40.0.0.0 10.0.0.0 30.0.0.0 20.0.0.0 我的路由表是: 我的路由表是: Routing Table 10.0.0.0和20.0.0 30. 0. 0. 0和40. 0. 0. 0 NET Metric C 0 20.0.0.0 C 30.0.0.0 0 ? ? 10.0.0.0 ? 40.0.0.0 ?

动态路由协议OSPF

- 全称为Open Shortest Path First (开放式最短路径 优先)
- 适合大中型网络使用

动态路由协议OSPF(续1)

- OSPF区域
 - 为了适应大型的网络, OSPF在网络内部划分多个区域
 - 每个OSPF路由器只维护所在区域的完整链路状态信息
- 区域ID
 - 区域ID可以表示成一个十进制的数字
 - 也可以表示成一个IP
- 骨干区域Area 0
 - 负责区域间路由信息传播

OSPF基本配置

• 启动OSPF路由进程并进入首个区域

[Huawei]ospf 1

[Huawei-ospf-1]area 0

宣告所在的网段

[Huawei-ospf-1-area-0.0.0.0]network 192.168.0.0 0.0.0.255

案例1:使用动态路由连接网络

• 配置动态路由协议ospf使全网互通

课堂练习

SVI地址: VLAN1 192.168.1.254/24 G0/0/2 G0/0/1 VLAN2 192.168.2.254/24 192.168.4.1/24 192.168.5.254/24 VLAN3 192.168.3.254/24 S5700 Vlan 1 G0/0/0 E0/0/1 G0/0/1 192.168.1.1/24 192.168.5.1/24 192.168.4.2/24 Vlan 2 E0/0/22 E0/0/2 192.168.2.1/24 S3700 Vlan 3 E0/0/3 192.168.3.1/24

传输层概述

传输层的作用

- 网络层提供点到点的连接
- 传输层提供端到端的连接

传输层的协议

- TCP (Transmission Control Protocol)
 - 传输控制协议
 - 可靠的、面向连接的协议
 - 传输效率低

- UDP (User Datagram Protocol)
 - 用户数据报协议
 - 不可靠的、无连接的服务
 - 传输效率高

TCP协议

TCP的封装格式

0 4							15	16 ← 31	
源端口号								目标端口号	\bigcap
32位序列号									
	32位确认号						Ţ		
4位 首部 长度	保留 (6 位)	U R G	A C K	P S H	R S T	S Y N	F I N	16位窗口大小	20 字 节
16位校验和					1			16位紧急指针	\downarrow
可选项									

TCP的应用

知识讲解

端口	协议	说明
21	FTP	文件传输协议,用于上传、下载
23	Telnet	用于远程登录,通过连接目标计算机的这一端口,得到验证后 可以远程控制管理目标计算机
25	SMTP	简单邮件传输协议,用于发送邮件
53	DNS	域名服务,当用户输入网站的名称后,由DNS负责将它解析成IP地址,这个过程中用到的端口号是53
80	HTTP	超文本传输协议,通过HTTP实现网络上超文本的传输

UDP协议

UDP的封装格式

知识讲解

0 15	16 31				
16位源端口号	16位目标端口号				
16位UDP长度	16位UDP校验和				
数据					

UDP的应用

端口	协议	说 明
69	TFTP	简单文件传输协议
53	DNS	域名服务
123	NTP	网络时间协议

UDP的流控和差错控制

- UDP缺乏可靠机制
- · UDP只有校验和来提供差错控制
 - 需要上层协议来提供差错控制:例如TFTP协议

访问控制列表概述

Tedu.cn 达内教育

ACL的作用

• 访问控制列表(Access Control List, ACL)是应用在路由器接口的指令列表(即规则)

ACL的作用(续1)

- 读取第三层、第四层报文头信息
- 根据预先定义好的规则对报文进行过滤

知识讲解

ACL的主要类型

分类	编号范围	参数
基本ACL	2000-2999	源IP地址
高级ACL	3000-3999	源IP地址、目的IP地址、 源端口、目的端口、协议

ACL规则

· 每个ACL可以包含多个规则,路由器根据规则对数据流

基本ACL

知识讲解

Tedu.cn 达内教育

基本ACL概述

- · 华为基本ACL
 - 基于源IP地址过滤数据包
 - 列表号是2000~2999

基本ACL的配置案例

- 禁止PC1网络访问服务器Server1
- 允许其他所有的访问流量

192.168.1.0/24

192.168.2.0/24

知识讲解

++

基本ACL的配置案例(续1)

- 需求描述
 - 禁止PC1访问服务器Server1
 - 允许其他所有的访问流量

[Huawei]acl 2000

[Huawei-acl-basic-2000]rule 5 deny source 192.168.1.10

[Huawei-acl-basic-2000]rule 10 permit source any

[Huawei-acl-basic-2000]quit

[Huawei]int g0/0/1

[Huawei-GigabitEthernet0/0/1]traffic-filter inbound acl 2000

基本ACL的配置案例(续2)

- 需求描述
 - 禁止PC1访问服务器Server1
 - 允许其他所有的访问流量

知识讲解

查看ACL

[Huawei] display acl 2000 或

[Huawei] display acl all

基本ACL的配置案例(续3)

- 需求描述
 - 禁止PC1访问服务器Server1
 - 允许其他所有的访问流量

Ethernet 0/0/1 PC1

GE 0/0/1

Server1

AR1

Ethernet 0/0/1

GE 0/0/2

AR1

Ethernet 0/0/1

FC2

192.16

测试

- PC1不能ping通Server1
- PC2可以ping通Server1

++

案例2:基本ACL的配置(1)

- 需求描述
 - 禁止主机PC2与PC1通信,而允许所有其他的流量

案例3:基本ACL的配置(2)

- 需求描述
 - 允许主机pc2与pc1互通,而禁止其他设备访问pc1

高级ACL

高级ACL概述

- 华为高级ACL
 - 基于源IP地址、目的IP地址、源端口、目的端口、协议 过滤数据包
 - 列表号是3000~3999

高级ACL的配置案例

- 需求描述
 - 允许Client1访问Server1的Web服务
 - 允许Client1访问网络192.168.2.0/24
 - 禁止Client1访问其它网络

192.168.2.0/24

192.168.1.0/24

高级ACL的配置案例(续1)

• 需求描述

- 允许Client1访问Server1的Web服务
- 允许Client1访问网络192.168.2.0/24
- 禁止Client1访问其它网络

[AR1]acl 3000

[AR1-acl-adv-3000]rule 5 permit tcp source 192.168.1.1 0 destination 192.168.3.1 0 destination-port eq 80

[AR1-acl-adv-3000]rule 10 permit ip source 192.168.1.1 0 destination 192.168.2.0 0.0.0.255

[AR1-acl-adv-3000]rule 15 deny ip source any

[AR1-acl-adv-3000]quit

[AR1]int g0/0/2

[AR1-GigabitEthernet0/0/2]traffic-filter inbound acl 3000

高级ACL的配置案例(续2)

需求描述

- 允许Client1访问Server1的Web服务
- 允许Client1访问网络192.168.2.0/24
- 禁止Client1访问其它网络

知识讲解

查看ACL [AR1] display acl 3000 或 [AR1] display acl all

高级ACL的配置案例(续3)

需求描述

- 允许Client1访问Server1的Web服务
- 允许Client1访问网络192.168.2.0/24
- 禁止Client1访问其它网络

[AR1]ip route-static 0.0.0.0 0.0.0.0 192.168.12.2 [AR3]ip route-static 0.0.0.0 0.0.0.0 192.168.23.2 [AR2]ip route-static 192.168.1.0 255.255.255.0 192.168.12.1 [AR2]ip route-static 192.168.3.0 255.255.255.0 192.168.23.3

知识

讲解

1edu.cn 达内教育

高级ACL的配置案例(续4)

需求描述

- 允许Client1访问Server1的Web服务
- 允许Client1访问网络192.168.2.0/24
- 禁止Client1访问其它网络

测试

- Client1可以访问Server1的Web服务
- Client1可以ping通网络192.168.2.0/24
- Client1不能ping通网络192.168.3.0/24

案例4:高级ACL的配置

• 通过配置高级acl禁止pc2访问pc1的ftp服务,禁止pc3 访问pc1的www服务器,所有主机的其他服务不受限制

总结和答疑

