TOPOLOGICAL MODULAR FORMS AND THE ADAMS SPECTRAL SEQUENCE

WILLIAM BEVINGTON

Abstract

Topological modular forms are... $\,$

CONTENTS page ii

CONTENTS

Introduction																1
The Adams Spectral Sequence																2

Introduction

Desar's chosen field in mathematics was so esoteric that no body in the institute or the Maths Federative could really check his progress \mid The Dispossessed, Ursula K. Le Guin

THE ADAMS SPECTRAL SEQUENCE

This section is a short introduction to the Adams spectral sequence, which is a tool that computes the homotopy groups $\pi_n(X)$ of a spectrum X from its $\mathbb{Z}/p\mathbb{Z}$ -homology for some prime p (usually p=2). The first step is to give an Adam's filtration of our spectrum X, i.e. a sequence

$$X_n \to X_{n-1} \to \cdots \to X_1 \to X_0 := X$$

such that X_n maps onto a space K_n given by the wedge of suspensions of the Eilenberg-MacLane spectrum of the $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ -homology, inducing a surjection on $H\mathbb{F}_p$ -homology and with $X_{n+1} = \mathrm{fib}(X_n \to K_n)$. We will work more generally and replace $H\mathbb{F}_p$ with an arbitrary spectrum \mathcal{E} .