SINGULAR HOMOLOGY

Simplicial homology is very computable, but:

- O It is not obvious that homeomorphic \triangle -complexes have isomorphic simplicial homology.
- 1 Hard to prove general facts about spaces.

So: Mr A singular n-simplex in X is a map
$$\sigma: \Delta^n \to X$$

Let $C_n(X) = \text{free abelian group on these.}$
 $= \text{group of } n\text{-chains}$
 $= \left\{ \sum_{i=1}^n \sigma_i \mid n_i \in \mathbb{Z}, \sigma_i : \Delta^n \to X \right\}$

Hn(X) = Ker dn / mdn+, homdogy group"

Singular homology hard to compute. For example, not obvious that $(1) H_n(X) = 0$ for n > dim X

@ Hn(x) finitely gen.

On other hand, easy to prove general facts like:

fact: Homeomorphic spaces have isomorphic singular hom. groups.

Will show: singular = simplicial.

Note. Elements of $H_1(X)$ rep. by maps $S^1 \to X$ (easy) $H_2(X)$ rep. by maps $Mg \to X$ (less easy) $H_n(X)$ rep. by maps n-man, fold $\to X$ (only true over $\mathbb O$)

$$\frac{P_{rop}: X = space with path components X_{\alpha}}{\Rightarrow H_n(X) \cong \Phi H_n(X_{\alpha})}$$

Prop:
$$X = nonempty$$
, path conn. $\Rightarrow H_o(X) \cong \mathbb{Z}$
 $X \text{ has } n \text{ path comp.} \Rightarrow H_o(X) \cong \mathbb{Z}^n$

Proof: Say X path conn.

$$C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} O$$
 $H_0(X) = \frac{C_0(X)}{\text{Im} \partial_1}$

Given $v, w \in X$, $v-w \in \text{Im} \partial_1 \implies v = w \text{ in } H_0(X)$.

Also, $nv \neq 0$ in $H_0(X)$ since $\text{Im} \partial_1 \subseteq \text{ker} (C_0(X) \xrightarrow{\mathcal{E}} \mathbb{Z})$

where $\mathcal{E}(\mathcal{E} n_i v_i) = \mathcal{E} n_i$.

Prop:
$$X = pt$$
.

 $\Rightarrow Hi(X) = \begin{cases} 7 & i=0 \\ 0 & i>0 \end{cases}$

$$\underbrace{Pf}: C_n(X) = \mathbb{Z} \quad \forall n.$$

$$\partial(\mathcal{T}_n) = \Sigma(-1)^i \mathcal{T}_{n-1} = \begin{cases} 0 & n \text{ odd} \\ \mathcal{T}_{n-1} & n \text{ even} \end{cases}$$

Reduced Homology
Looking at last Prop, seems more elegant to replace last 0 map with a.

$$\widetilde{H}_n(X) = homology \text{ of } \cdots \to C_i(X) \to C_o(X) \xrightarrow{\varepsilon} \mathbb{Z} \to \mathbb{O}$$
where $\varepsilon (\Xi n_i \tau_i) = \Xi n_i$
= reduced homology of X .

HOMOTOPY INVARIANCE

Goal:
$$f: X \rightarrow Y \longrightarrow f_*: H_n(X) \longrightarrow H_n(Y)$$
 and

College of homotopy equivalence \Rightarrow f_* an isomorphism.

§ First,
$$f \longrightarrow f_{\#}: C_n(X) \longrightarrow C_n(Y)$$

 $\nabla \longmapsto f \sigma$

f# takes cycles to cycles, boundaries to boundaries.

$$\Rightarrow$$
 for induces $f_*: H_n(X) \rightarrow H_n(X)$

$$\frac{\text{Facts}: (fg)_* = f_*g_*}{\text{id}_* = \text{id}}$$

Theorem.
$$f,g: X \rightarrow Y$$
 homotopic $\Rightarrow f_* = g_*$

Cor:
$$f: X \rightarrow Y$$
 homotopy equiv. $\Rightarrow f_*$ an isomorphism.

example.
$$X$$
 contractible $\Rightarrow \hat{H}_i(X) = 0 \ \forall i$.

Proof of Theorem: We will define $P: C_n(X) \to C_{n+1}(Y)$ with $\partial P = g_\# - f_\# - P \partial$ "prism operator" P is the homotopy from for to $q\sigma$.

The theorem follows:

If
$$\alpha \in Cn(Y)$$
 is a cycle, then
$$g_{\#}(\alpha) - f_{\#}(\alpha) = \partial P(\alpha) + P \partial(\alpha) = \partial P(\alpha)$$

$$\Rightarrow (g_{\#} - f_{\#})(\alpha) \quad \text{a boundary}$$

$$\Rightarrow g_{\#}(\alpha) = f_{\#}(\alpha)$$

Remains to define P and check $\partial P = g_{+} - f_{+} - P \partial$.

Main ingredient. Cutting $\Delta^n \times I$ into (n+1)-simplices

Label vertices of $\Delta^n \times O$ by V_0, \ldots, V_n $\Delta^n \times 1$ by W_0, \ldots, W_n . $\Delta^n \times I$ decomposes as sum of $[V_0, \ldots, V_i, W_i, \ldots, W_n]$

Wo W₂

Define $P(T) = \sum_{i=1}^{n} \left[\nabla \cdot (\nabla \times id) \right] \left[\nabla$

exercise: $\partial P = g_{\#} - f_{\#} - P_{\partial}$ (like proof that $\partial_n \circ \partial_{n+1} = 0$).

7

The relationship $\partial P + P \partial = 9 + F + is$ expressed as:

P is a chain homotopy from f# to g#

Prop: Chain homotopic maps between exact sequences irduce the same map on homology.

EXACT SEQUENCES

A sequence of homomorphisms

$$\cdots \longrightarrow A_{n+1} \longrightarrow A_n \longrightarrow A_{n-1} \longrightarrow \cdots$$

is exact if ker & = im &n+1 <u>chain complex</u> if im &n+1 \(\text{ ker } \text{ xn}

(ii)
$$A \stackrel{\times}{\rightarrow} B \rightarrow 0 \iff x \text{ surjective}$$

(iv)
$$O \rightarrow A \rightarrow B \rightarrow C \rightarrow O \iff C \cong B/A$$
 "short sequence"

COLLAPSING A SUBCOMPLEX

Theorem
$$(X, A) = CW - pair.$$

There is an exact sequence

 $H_n(A) \xrightarrow{i_*} \tilde{H}_n(X) \xrightarrow{q_*} \tilde{H}(X/A)$
 $\xrightarrow{\partial} \tilde{H}_{n-1}(A) \xrightarrow{i_*} \tilde{H}_{n-1}(X) \xrightarrow{q_*} \tilde{H}_{n-1}(X/A) \longrightarrow \cdots$
 $H_n(X/A) \xrightarrow{\partial} \tilde{H}_{n-1}(X/A) \longrightarrow \tilde{H}_{n-1}(X/A) \longrightarrow \cdots$
 $H_n(X/A) \longrightarrow \tilde{H}_n(X/A) \longrightarrow$

To prove the Theorem, will do something more general ...

RELATIVE HOMOLOGY

 $A \subseteq X \longrightarrow C_n(X,A) \cong C_n(X)/C_n(A)$

Since ∂ takes Cn(A) to Cn-1(A), have chain complex $\cdots \rightarrow Cn(X,A) \rightarrow Cn-1(X,A) \rightarrow \cdots$

~ relative homology groups I-ln(X,A).

Elements of Hn(X,A) are rep by relative cycles: $x \in Cn(X)$ s.t. $\partial x \in Cn-1(A)$

A relative cycle is trivial in $H_n(X,A)$ iff it is a relative boundary:

K & Cn(X) X = 2B+7 some B& Cn+1(X), J& Cn(A)

Will show: Hn(X,A) = Hn(X/A).

Goal: Long exact sequence: $-\cdots \rightarrow Hn(A) \rightarrow Hn(X) \rightarrow Hn(X,A)$ $\rightarrow Hn-1(A)$

Proof is "diagram chasing".

$$0 \rightarrow C_{n}(A) \xrightarrow{i_{\bullet}} C_{n}(X) \xrightarrow{q_{\bullet}} C_{n}(X,A) \rightarrow 0$$

$$0 \rightarrow C_{n-1}(A) \xrightarrow{i_{\bullet}} C_{n-1}(X) \xrightarrow{q_{\bullet}} C_{n-1}(X,A) \rightarrow 0$$

-> short exact sequence of chain complexes:

$$C_{n+1}(A) \xrightarrow{C} C_{n}(A) \xrightarrow{A} C_{n-1}(A) \xrightarrow{A}$$

$$C_{n+1}(X) \xrightarrow{A} C_{n}(X) \xrightarrow{A} C_{n-1}(X) \xrightarrow{A}$$

$$C_{n}(X) \xrightarrow{A} C_{n}(X) \xrightarrow{A} C_{n-1}(X) \xrightarrow{A}$$

$$C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A} C_{n-1}(X,A) \xrightarrow{A}$$

$$C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A}$$

Commutativity of squares \Rightarrow is, q. chain maps \rightarrow induced maps on homology.

Need to define ∂: Hn(X,A) → Hn-1(A)

Let
$$C \in Cn(X,A)$$
 a cycle.
 $C = q(\tilde{C})$ $\tilde{C} \in Cn(X)$
 $\partial \tilde{C} \in \ker q$ by commutativity.
 $\Rightarrow \tilde{C} = i(a)$ some $a \in Cn-i(A)$ by exactness.
and $\partial a = 0$ by commut: $i\partial(a) = \partial i(a) = \partial \partial(\tilde{C}) = 0$.
 $i \text{ inj.}$
Set $\partial [C] = [a] \in Hn-i(A)$.

Claim: 2: Hn(X,A) -> Hn-1(A) is a well-defined homomorphism.

Well-defined. a determined by $\partial \mathcal{E}$ since i injective i different a choice \mathcal{E}' for \mathcal{E}' would have $i'-\mathcal{E} \in Cn(A)$, i.e. $\mathcal{E}'=\mathcal{E}+i(a')$ \Rightarrow a charges to $a+\partial a'$ since $i(a+\partial a')=i(a)+i(\partial a')=\partial \mathcal{E}+\partial i(a')=\partial \mathcal{E}+i(a')$ i different choice for \mathcal{E}' in [c] is of form $c+\partial \mathbf{b}c'$ Since c'=q(b') some $b' \rightarrow c+\partial c'=c+\partial j(b')$ $=c+q(\partial b')=q(\mathcal{E}+\partial b')$ so \mathcal{E}' replaced by $\mathcal{E}+\partial b'$ $\rightarrow \partial \mathcal{E}'$ uncharged.

Homomorphism. Say $\partial [Ci] = [ai]$, $\partial [Cz] = [az]$ via $\widetilde{C}_1, \widetilde{C}_2$. Then $q(\widetilde{C}_1 + \widetilde{C}_2) = C_1 + C_2$ $i(a_1 + a_2) = \partial(\widetilde{C}_1 + \widetilde{C}_2)$ so $\partial ([ci] + [cz]) = [ai] + [az]$

Proof. More diagram chasing. We'll do 2 of the 6 inclusions needed.

Keri* $\subset \operatorname{Im} \partial$: Say $a \in \operatorname{Cn-1}(A)$, $a \in \ker i_* \Rightarrow i(a) = \partial b \cdot \operatorname{b} \in \operatorname{Cn}(X)$ $\Rightarrow q(b)$ a cycle since $\partial_{a}b = q(a) = 0$. & $\partial \cdot \operatorname{takes} [q(b)]$ to [a].