Nama : Vilda Azizah Wiguna

Nim : 1217070085

Tugas Praktikum 7 Pengolahan Citra digital

1. Tranformasi Twirl

v Vilda Azizah Wiguna (1217070085)

Transformasi twirl merupakan salah satu jenis transformasi geometris yang menghasilkan efek "berputar" pada suatu gambar. Transformasi ini sering digunakan dalam pengolahan gambar untuk menghasilkan efek artistic.

2. Translation

3. Rotation

```
#Rotation
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
image = cv.imread("kucing.jpeg")
h, w = image.shape(:2)
rotation_matrix = cv.getRotationMatrix20((w/2,h/2), -180, 0.5)
rotated_image = cv.warpAffine(image, rotation_matrix, (w, h))
plt.imshow(cv.cvtColor(rotated_image, cv.COLOR_BGR2RGE))
plt.title("Rotation")
plt.show()
```


4. Interpolation

Collecting mahotas

Downloading mahotas-1.4.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)

Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from mahotas) (1.25.2)

Installing collected packages: mahotas

Successfully installed mahotas-1.4.15


```
# Install mahotas jika belum terpasang | pip install mahotas as mh import mambotas as mh import mambotas as mh import numpy as mp from pylab import inshow, show 
# Membuat array axd dengan tipe data boolean regions = np.zeros((s, a), bool)
# Mengisi beberapa elemen dengan milai True regions(; s, i] = 1 regions(s; s, i] - 1 melbel (regions)
# Menamplikan hasil label menggumakan interpolasi 'nearest' inshow(labeled, interpolation='nearest')
# Melabeli objek dengan struktur yang lebih besar labeled, np.dojects = mh.label(regions, np.ones((3,3), bool))
# sizes = mh.labeled.jabeled.jize(labeled)
# print('Background size:', sizes(e))
# membuat array acak dengan ukuran yang sama dengan regions
# array = np.random.random_sample(regions.shape)
# Menghitung jumlah nilai pada region tertentu dalam array
# sum = mh.labeled.sum(array, labeled)
# print('Sum of first region:', sizes(i))
# Rembuat array acak dengan ukuran yang sama dengan regions
# array = np.random.random_sample(regions.shape)

# Menghitung jumlah nilai pada region tertentu dalam array
# sum = mh.labeled.sum(array, labeled)
# print('Sum of first region:', sizes(i))
# Rempistung jumlah nilai pada region tertentu dalam array
# sum = mh.labeled.sum(array, labeled)
# Print('Sum of first region:', sizes(i))
# Rempistung jumlah nilai pada region tertentu dalam array
# sum = mh.labeled.sum(array, labeled)
# Print('Sum of first region:', sums(i))

# Rempistung jumlah nilai pada region tertentu dalam array
# sum = mh.labeled.sum(array, labeled)
# Print('Sum of first region:', sums(i))

# Rempistung jumlah nilai pada region tertentu dalam array
# sum = mh.labeled.sum(array, labeled)
# Print('Sum of first region:', sums(i))

# Rempistung jumlah nilai pada region tertentu dalam array
# sum = mh.labeled.sum(array, labeled)
# Print('Sum of first region:', sums(i))

# Rempistung jumlah nilai pada region tertentu dalam array
# sum of first region:', sums(i)
```

0 1 2 3 4 5
Background size: 51
Size of first region: 9
Sum of first region: 4.490559240029162

5. Skala Interpolasi Miring

✓ Terhubung ke backend Google Compute Engine Python 3