Notations de cinématique

(Version du 02/07/16)

1 Packages requis

- Raf_Notations_Torseurs : Package de mise en forme des torseurs
- Raf_Notations_Maths : Package de mise en forme mathématique
- tikz : Package pour faire des dessins (avec library calc)

2 Appel du package

Le package est appelé en début de document par la commande :

\usepackage{Raf_Notations_Cinematique}

Par défaut, ce package utilise un certain nombre de notations raccourcies, susceptibles de rentrer en conflit avec d'autres packages (mais tellement plus rapide à taper !). De plus, certaines commandes ont été rebaptisées. Ces raccourcis et renommages seront cités ((Raccourci) ou (Renommé)) dans les tableaux suivants. Pour ne pas créer ces raccourcis/renommage, il faut rentre l'option noRaccourci à l'appel du package.

usepackage[noRaccourci]{Raf_Notations_Cinematique}

3 Simplification écriture

Commandes	Rendus	Commentaires
\CIR	centre instantané de ro-	CIR (Raccourci)
	tation	
\cir	centre instantané de ro-	idem (Raccourci)
	tation	
\Cir	Centre instantané de ro-	idem avec 1er lettre ma-
	tation	juscule (Raccourci)

4 Degrés de liberté

Commandes	Rendus	Commentaires
\Rx	R_x	Rotation autour de x
		(Raccourci)
\Ry	R_y	Rotation autour de y
		(Raccourci)
\Rz	R_z	Rotation autour de z
		(Raccourci)
\Tx	T_x	Translation autour de x
		(Raccourci)
\Ty	T_y	Translation autour de y
		(Raccourci)
\Tz	T_z	Translation autour de z
		(Raccourci)

5 Géométrie

Commandes	Rendus	Commentaires
\solide{X}	(X)	Notation d'un solide X
	(S)	Solide S (Raccourci)
\sS{1}	(S_1)	solide (Raccourci)
\sS2	(S_2)	solide (Raccourci)

6 paramétrage

Commandes	Rendus	Commentaires
	$\overrightarrow{y_1}$ $\overrightarrow{\theta}$ $\overrightarrow{x_1}$	
<pre>\parametrageAngulaire {\theta}{\vx0}{\vy0} {\vz0}{\vx1}{\vy1}</pre>	$\overrightarrow{z_0}$ $\overrightarrow{x_0}$	Figure plane de paramétrage angulaire
<pre>\parametrageAngulaire {\theta}{\vx0}{\vy0} {\vz0}{\vx1}{\vy1}[\vz1]</pre>	$\overrightarrow{y_1} \stackrel{\downarrow}{\searrow} 0$ $\overrightarrow{z_0} = \overrightarrow{z_1} \qquad \overrightarrow{x_1}$ $\overrightarrow{x_1}$ $\overrightarrow{x_2}$	idem avec 3 ^{ème} vecteur de la base tournante.
\parametrageAngulaire {\theta}[60]{\vx0}{\vy0} {\vz0}{\vx1}{\vy1}	$\overrightarrow{y_1} \xrightarrow{\theta} \overrightarrow{x_1}$ θ $\overrightarrow{z_0} \xrightarrow{\theta} \overrightarrow{x_1}$	idem avec un angle différent.

Commandes	Rendus	Commentaires
\parametrageLineaire {\lambda}{A}{\vx0}{\vy0} {\vz0}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Figure plane de paramétrage linéaire
\parametrageLineaire {\lambda}{A}{\vx0}{\vy0} {\vz0}{B}[\vy1][\vz1]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	idem en changeant le nom des deux axes orthogonaux d'un repère à l'autre. (Note : impossible de changer le nom du troisième axe – Nombre de paramètres limités par xarg.)
\parametrageLineaire[7] {\lambda}{A}{\vx0}{\vy0} {\vz0}{B}[\vy1][\vz1]	$ \begin{array}{ccccc} & & & & \downarrow \\ & & & & \downarrow \\ & & \downarrow $	Idem avec changement d'écartement.

7 Vecteurs de la base tournante (en coordonnées sphériques)

Commandes	Rendus	Commentaires
\vutheta	$\overrightarrow{u}(\theta)$	
\vvtheta	$\overrightarrow{v}(\theta)$	
\vwthetaphi	$\overrightarrow{w}(\theta)$	
\vwthetaphibis	$\overrightarrow{w'}(\theta)$	

8 Coordonnées variables dans le temps

Commandes	Rendus	Commentaires
<pre>\xt,\yt,\zt,\rt,\alphat,</pre>	$x(t),y(t),z(t),r(t),\alpha(t),$	Variables dépendant du
\betat,\gammat,	$\beta(t), \gamma(t), \psi(t), \theta(t)$	temps (Raccourci)
\psit,\thetat		
<pre>\xtp,\ytp,\ztp,\rtp,</pre>	$\dot{x}(t), \dot{y}(t), \dot{z}(t), \dot{r}(t), \dot{\alpha}(t),$	Dérivée de variables
\alphatp,\betatp,	$\dot{\beta}(t), \dot{\gamma}(t), \dot{\phi}(t), \dot{\psi}(t), \dot{\theta}(t)$	dépendant du temps
\gammatp,\phitp,\psitp,		(Raccourci)
\thetatp		
<pre>\xp,\yp,\zp,\rp,\alphap,</pre>	$\dot{x},\dot{y},\dot{z},\dot{r},\dot{lpha},\ \dot{eta},\dot{\gamma},\dot{\phi},\dot{\psi},\dot{ heta}$	Identique à
\betap,\gammap,\phip,		précédemment sans
\psip,\thetap		la dépendance tem-
		porelle.
<pre>\xtpp,\ytpp,\ztpp,\rtpp,</pre>	$\ddot{x}(t), \ddot{y}(t), \ddot{z}(t), \ddot{r}(t), \ddot{\alpha}(t),$	Dérivée seconde de
\alphatpp,\betatpp,	$\ddot{\beta}(t), \ddot{\gamma}(t), \ddot{\phi}(t), \ddot{\psi}(t), \ddot{\theta}(t)$	variables dépendant du
\gammatpp,\phitpp,		temps (Raccourci)
\psitpp,\thetatpp		
\xpp,\ypp,\zpp,\rpp,	$\ddot{x}, \ddot{y}, \ddot{z}, \ddot{r}, \ddot{lpha}, \ \ddot{eta}, \ddot{\gamma}, \ddot{\phi}, \ddot{\psi}, \ddot{ heta}$	Identique à
\alphapp,\betapp,		précédemment sans
\gammapp,\phip,		la dépendance tem-
\psipp,\thetapp		porelle.

9 Vitesses

Commandes	Rendus	Commentaires
\vVitesse{A}{S_1} {S_2}	$\overrightarrow{V_{(A \in S_1/S_2)}}$	Vecteur vitesse
\vVitesse{A}{} {S_2}	$\overrightarrow{V_{(A/S_2)}}$	Vecteur vitesse (sans appartenance à un solide)
\vAcceleration{A} {S_1}{S_2}	$\Gamma_{(A \in S_1/S_2)}$	Vecteur accélération
\vAcceleration{A} {}{S_2}	$\Gamma_{(A/S_2)}$	Vecteur accélération (sans appartenance à un solide)
\vRotation{S_1}{S_2}	$\overrightarrow{\Omega_{(S_1/S_2)}}$	Vecteur vitesse de rotation
\vPivotement{S_1}{S_2}	$\overrightarrow{\Omega^p_{(S_1/S_2)}}$	Vitesse vitesse de piv- otement
\vRoulement{S_1}{S_2}	$\overrightarrow{\Omega^r_{(S_1/S_2)}}$	Vitesse vitesse de roule- ment

10 Champ de moment

Commandes	Rendus	Commentaires
\deplaceVitesse{S_1} {S_2}{B}{A}	$ \frac{\overrightarrow{V_{(B \in S_1/S_2)}}}{\Omega_{(S_1/S_2)}} + \overrightarrow{AB} \wedge $	Formule du champ de moment pour déplacer une vitesse (de B vers A)

11 Déplacements - Petits déplacements

Commandes	Rendus	Commentaires
\vDeplacement{A} {S_1}{S_2}	$\overrightarrow{U_{(A \in S_1/S_2)}}$	Vecteur déplacement
\vDeplacement{A} {}{S_2}	$\overrightarrow{U_{(A/S_2)}}$	Vecteur déplacement (sans appartenance à un solide)
\vDep{A} {S_1}{S_2}	$\overrightarrow{U_{(A \in S_1/S_2)}}$	raccourci direct de \vDeplacement (Raccourci)
\vPetitDeplacement {A}{S_1}{S_2}	$\overrightarrow{dU_{(A \in S_1/S_2)}}$	Vecteur-petit déplacement
\vPetitDep{A}{S_1} {S_2}	$\overrightarrow{dU_{(A \in S_1/S_2)}}$	Raccourci direct de \vPetitDeplacement
\vPetiteRotation {S_1}{S_2}	$\overrightarrow{d\theta}_{(S_1/S_2)}$	Vecteur petite-rotation
\vPetiteRot{S_1} {S_2}	$\overrightarrow{d\theta}_{(S_1/S_2)}$	Raccourci direct de \vPetiteRotation

12 Torseurs cinématique – Torseurs de petits déplacement

Commandes	Rendus	Commentaires
\VCallig	V	"V" calligraphié
\tCinematique{S_1} {S_2}	$\left\{ \mathscr{V}_{\left(S_{1}/S_{2}\right)} ight\}$	Torseur cinématique
\tCinematique[2]{S_1} {S_2}	$\left \left\{ \mathscr{V}^2_{(S_1/S_2)} \right\} \right $	Idem avec un exposant (pour différencier plusieurs torseurs)
\tV{S_1}{S_2}	$\left \left\{\mathscr{V}_{(S_1/S_2)}\right\}\right $	Raccourci direct de \tCinematique (Raccourci)
\DCallig	2	"D" calligraphié
\tPetitDeplacement {S_1}{S_2}	$\left\{\mathscr{D}_{(S_1/S_2)}\right\}$	Torseur de petits- déplacements
\tPetitDeplacement [2]{S_1}{S_2}	$\left \left\{\mathscr{D}^2_{(S_1/S_2)}\right\}\right $	Idem avec un exposant (pour différencier plusieurs torseurs)
\tPetitDep{S_1}{S_2}	$\left\{\mathscr{D}_{(S_1/S_2)}\right\}$	Raccourci direct de \tPetitDeplacement
\tD{S_1}{S_2}	$\left \left\{\mathscr{D}_{(S_1/S_2)}\right\}\right $	Raccourci direct de \tPetitDeplacement (Raccourci)