Entendendo Estatística Divertidamente

Profa. Adriana Silva

Seja bem vindX!!!

Câmera ligada e

Microfone mutado sempre
que não estiver falando

• De onde vem o poder extraordinário de generalização?

• TLC = fonte do poder quando se usa uma amostra para inferir

Festival da Salsicha

Maratona na cidade

• Ônibus quebra => peso médio = 95kg

Festival da Salsicha

TLC nos permite fazer as seguintes inferências:

- 1. Se tivermos informações detalhadas sobre alguma população, então podemos fazer inferências poderosas sobre qualquer amostra adequadamente extraída dessa população;
- 2. Se tivermos informações detalhadas sobre uma amostra extraída de modo adequado, podemos fazer inferências surpreendentementes acuradas sobre a população da qual a amostra foi retirada;
- 3. Se tivermos dados que descrevem uma amostra particular e dados sobre uma população particular, podemos inferir se a amostra é consistente ou não com uma amostra com probabilidade de ter sido tirada dessa população;
- 4. Por fim, se soubermos características subjacentes de duas amostras, podemos inferir se ambas foram provavelmente extraídas ou não de uma mesma população;

Festival da Salsicha

Maratona na cidade

• Ônibus quebra => peso médio = 95kg

Outro ônibus quebra => peso médio = 72kg

Festival da Salsicha

De acordo com TLC, as médias das amostras para qualquer população estarão distribuídas aproximadamente como uma distribuição normal em torno da média da população;

População dos Maratonistas

ônibus	ônibus	ônibus	ônibus	ônibus	ônibus
$ar{x}$	$ar{\mathcal{X}}$	$ar{\mathcal{X}}$	\bar{x}	$ar{x}$	\bar{x}

Festival da Salsicha

ônibus	ônibus	ônibus	ônibus	ônibus	ônibus
$ar{\mathcal{X}}$	$ar{x}$	\bar{x}	$ar{x}$	$ar{x}$	$ar{x}$

A maioria destas médias estarão próximas a da população e poucas serão ou mais baixas, ou mais altas.

- O TLC nos diz que as médias das amostras estarão distribuídas em torno da média da população aproximadamente numa distribuição normal;
- Isso é verdadeiro independentemente do aspecto da distribuição da população em questão. A população da qual as amostras estão sendo tiradas não precisa ter uma distribuição normal para que as médias das amostras esteja distribuídas normalmente;

Festival da Salsicha

ônibus	ônibus	ônibus	ônibus	ônibus	ônibus
$\bar{\chi}$	$ar{\mathcal{X}}$	$ar{x}$	$ar{x}$	$ar{\mathcal{X}}$	$ar{\mathcal{X}}$

O desvio padrão das médias é conhecido como ERRO PADRÃO

- O desvio padrão mede a dispersão da população;
 - Quanto os dados estão dispersos da média da população
- O erro padrão mede a dispersão das médias das amostras;
 - Quanto as médias das amostras estão dispersas da média delas

Festival da Salsicha

ERRO PADRÃO é o desvio padrão das médias das amostras!!

$$EP = \frac{\sigma}{\sqrt{n}}$$

- Exemplo do ônibus: são 62 pessoas com média 95kg no ônibus
- Sabendo que a população de maratonistas tem média 74kg com desvio 16kg
- Temos que $EP = 16/\sqrt{62} = 2,03$

Festival da Salsicha

- Exemplo do ônibus: são 62 pessoas com média 95kg no ônibus
- Sabendo que a população de maratonistas tem média 74kg com desvio 16kg
- Temos que $EP = 16/\sqrt{62} = 2,03$
- Lembrando da normal:

Podemos dizer que com 99,74% de confiança o busão perdido (média 95kg) NÃO é dos maratonistas!

FATOS

- Se você obteve amostras grandes, aleatórias, de qualquer população, as médias dessas amostras serão distribuídas normalmente em torno da média da população dela (foda-se a distribuição da população original);
- A maioria das médias de amostras estará razoavelmente perto da média da população; o ERRO PADRÃO quem define o tão perto;
- O TLC nos diz a probabilidade de que a média de uma amostra se situe dentro de certa distância da média da população. É relativamente improvável que uma média de amostra se situe a mais de dois erros padrões em relação à média da população e MUITO improvável que se situe à 3 EP's;

Definição

 O Teorema Central do Limite afirma que independente da distribuição dos dados, a média segue uma distribuição normal quando o n vai para o infinito.

Definição

 A média de uma população é um parâmetro populacional. Quando a média for desconhecida pode ser estimada por meio dos dados de uma amostra. A média populacional, de uma determinada variável, será denotada por μ.

População

Definição

- Exemplos de médias populacionais
 - Idade média
 - Renda média
 - Temperatura média
 - Saldo médio

População

Definição

• Quando deseja-se obter informações sobre a média da população pode-se considerar a média amostral que será denotada por \bar{x} . A <u>média amostral</u> é um <u>estimador da média populacional</u>.

Média Populacional - μ

Média Amostral - \overline{X}

Definição

 Cada amostra extraída de uma população gera um valor para a média amostral.

Definição

 Quando a amostra possuir 30 elementos ou mais a distribuição da média amostral pode ser aproximada por uma Distribuição Normal.

Definição

- Como cada amostra extraída de uma população pode gerar um valor para a média amostral pode-se calcular o desvio padrão e a variância da média amostral.
- A variância da média amostral será denotada por $\frac{\sigma^2}{n}$.

Definição

• A média amostral pode ser aproximada por uma Distribuição Normal com média μ e variância $\frac{\sigma^2}{n}$, sendo σ^2 a variância dos elementos.

Definição

• Sabe-se pelo Teorema do Limite Central que a média amostral possui Distribuição Normal desde que ela seja calculada com mais de 30 elementos. Seja X uma variável aleatória com média μ e variância σ^2

$$E(\overline{X}) = \mu$$

Distribuição de \overline{X}

Definição

$$\bar{X} \sim N \left(\mu, \frac{\sigma^2}{n}\right)$$

Ilustrado

- A estatística não pode provar nada com certeza!!
- O grande poder da inferência estatística está em observar um padrão ou resultado e então usar a probabilidade para determinar a explicação mais provável para aquele resultado.

Drogas!

Droga x Placebo

 $\frac{53}{100}$ $\frac{49}{100}$

Menos provável que a droga ajude

Droga x Placebo

 $\frac{91}{100}$ $\frac{49}{100}$

Mais provável que a droga ajude

- Então:
- 1. Se a droga não tem efeito, raramente veríamos uma variação de resultado dessa dimensão entre quem recebe a droga e quem não recebe;
- 2. No caso 2, portanto, é improvável que a droga não tenha efeito positivo;
- 3. É mais provável que para o padrão dos dados observados é que a droga experimental tenha efeito positivo;

 A estatística sozinha não pode provar nada, mas usamos inferência estatística para aceitar ou rejeitar explicações com base na sua relativa probabilidade.

Exemplos

Doença da Malária

 H_0 : a droga não previne malária H_1 : a droga previne malária

Duas amostras com Malária

Amostra A	Amostra B
Usou Droga	Usou Placebo
20	90
$\overline{100}$	$\overline{100}$

Rejeito H_0

Recuperação de Detentos

 H_0 : sessões de coach não reduziram a reinidência após deixar a prisão H_1 : sessão de coach reduziu a reincidência após deixar a prisão

Dois grupos de detentos

Amostra A	Amostra B	
Sessão Coach	Sem Coach	
50	50	
$\overline{100}$	$\overline{100}$	

Não Rejeito H_0

Exemplos

- Muitas vezes criamos hipóteses que queremos rejeitar;
- Se a hipótese nula for verdadeira, qual a probablidade de observar esse padrão de dados por acaso?
- Se a droga não tem efeito na doença da malária $(H_0: a\ droga\ não\ previne\ malária)$, qual é a probabilidade de 80 indivíduos melhorarem dos 100 que tomaram a droga, contra 10 que melhoraram dos 100 que tomaram placebo?
- Um dos limiares mais comuns utilizados por pesquisadores para rejeitar H_0 é 0,05. Essa probabilidade é conhecida como nível de significância e representa o limite superior para a probabilidade de observação de algum padrão de dados se a H_0 fosse verdadeira.

Exemplos

• Podemos rejeitar H_0 no nível de 0,05 se houver uma chance menor que 5% de obter um resultado no mínimo tão extremo quanto o que observamos na H_0 .

Festival da Salsicha

- Maratona na cidade
- Ônibus quebra => peso médio = 62kg
- Cada ônibus tem 62 passageiros
- Sabendo que a população de maratonistas tem média 74kg com desvio 16kg
- Temos que EP
- $EP = 16/\sqrt{62} = 2,03$

 H_0 : o busão é da maratona H_1 : o busão não é da maratona

Festival da Salsicha

 H_0 : o busão é da maratona H_1 : o busão não é da maratona

•
$$EP = 16/\sqrt{62} = 2,03$$

Se a média do busão é menor que 70 ou maior que 78 você rejeita H_0 (somente 5% de chance de acontecer, então se aconteceu é porque não é da maratona)

70 72 74 76 78

Ou seja, 95% das amostras extraídas terão médias entre 70 e 78kg, apenas 5% estarão fora deste intervalo.

Exemplos

- Se o busão tem média de 62kg, então:
- O peso médio do busão cai em uma faixa que esperaríamos observar apenas 5 vezes em 100 se H_0 for verdadeira (o busão é da maratona);
- Você pode rejeitar H_0 no nível de significância de 0,05;
- Em média 95 vezes em 100 você terá reajustado corretamente H_0 , e somente 5 em 100 você estará errado (ou seja, concluir que o busão não é da maratona, quando ele é da maratona);

Exemplos

• P-valor ou valor-p é a probabilidade específica de obter um resultado no mínimo tão extremo quanto o que você observou na H_0 .

Definição

 A Inferência Estatística tem por objetivo fazer generalizações sobre uma População com base em dados de uma Amostra.

Neste processo dois pontos são fundamentais:

- 1) Estimação de Parâmetros
- 2) Teste de Hipóteses sobre os Parâmetros

Teste de Hipótese

• O objetivo ao se fazer Teste de Hipóteses é decidir se uma afirmação, em geral, sobre Parâmetros de uma ou mais Populações é, ou não, apoiado pela evidência obtida de dados Amostrais.

Teste de Hipótese – Analogia Judicial

Teste de Hipótese – Erros envolvidos no processo de decisão

• Natureza dos erros envolvidos no processo de decisão:

	"Verdade"		
Decisão	H₀ é Verdade	H₀ é Falsa	
Não Rejeitar H ₀	Correto	Erro do Tipo II	
Rejeitar H ₀	Erro do Tipo I	Correto	

Denota-se por:

- α = P (erro tipo I) = P (rejeitar H0/H0 é verdadeira)
- $\beta = P$ (erro tipo II) = P (não rejeitar HO/HO é falsa)
- α é a significância de um teste. Ou seja, é a probabilidade máxima de rejeitar acidentalmente uma hipótese nula verdadeira (erro do tipo I).

Teste de Hipótese – p-valor

 p-Valor ou nível descritivo, é definido como a probabilidade de se obter uma estatística de teste igual ou mais extrema quanto aquela observada em uma amostra, assumindo verdadeira a hipótese nula.

p-Valor e nível de significância **não** são sinônimos.

O p-Valor é sempre obtido de uma amostra, enquanto o nível de significância, α , é geralmente definido antes da coleta dos dados

Teste de Hipótese – Comparação entre α e p-valor

- Em Geral, ao comparar α e p-valor, tem-se:
 - Rejeita-se a Hipótese Nula se p-valor $< \alpha$
 - Não se rejeita a Hipótese Nula se p-valor $\geq \alpha$

Teste de Hipótese – Passo a passo

1. Estabeleça as Hipóteses Nulas e Alternativas

- a) A Hipótese Nula, H_0 , diz que o Parâmetro Populacional é igual ao valor do argumento.
- b) Existem três Hipóteses Alternativas (H_1) possíveis:
 - O Parâmetro Populacional **não é igual** ao número do argumento
 - O Parâmetro Populacional é menor do que o número do argumento
 - O Parâmetro Populacional **é maior** do que o número do argumento

Teste de Hipótese – Passo a passo

- Selecione uma Amostra Aleatória dos Indivíduos da População e calcule a Estatística Amostral.
- 3. Defina a sua disposição ao risco (nível de significância)
- 4. Encontre o p-valor para sua Estatística de Teste.
- 5. Compare o p-valor com o Nível de Significância e tome a decisão.

Teste de Hipótese – Exemplo Moeda

A moeda é honesta?

 $\alpha = 0.05$

Jogar a moeda 100 vezes e anotar os resultados

Se p-valor $< \alpha$, então Rejeita-se H_0

Teste de Hipótese – Exemplo Moeda

- Jogar a moeda 100 vezes e decidir se ela é honesta.
- Então: H_0 : a moeda é honesta e H_1 : a moeda não é honesta

Se p-valor $< \alpha$, então Rejeita-se H_0

Teste de Hipótese

- Teste de Hipótese para Média da População com Desvio Padrão da População Conhecido
- Teste de Hipótese para Média da População com Desvio Padrão da População Desconhecido

- Uma máquina para encher pacotes de café enche-os segundo uma distribuição Normal, com média μ = 500g e desvio padrão σ = 20g.
- Periodicamente é selecionada uma amostra de 30 pacotes e é verificado se a produção está sob controle, ou seja, se μ = 500g ou não.
- Considere 95% de confiança.

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

- Interesse:
 - Verificar se a produção está sob controle.
 - Verificar se a média é 500g ou diferente de 500g.
 - Verificar se $\mu = 500$ g ou $\mu \neq 500$ g.

Então

$$\begin{cases} H_0: \mu = 500g \\ H_1: \mu \neq 500g \end{cases}$$

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

 Para se testar a hipótese de interesse o fabricante retirou uma amostra de 30 pacotes de café e obteve-se o peso médio dos pacotes.

$$\bar{x} = 525,8$$

Distribuições de Probabilidade

Normal

$$P(0 < Z < 1,1) = 0,3643$$

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2518	0,2549
0,7	0,2580	0,2612	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2.3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2.4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2.5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2.6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,496
2.7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,497
2.8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,498
2.9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,498
3.0	0,4986	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,499

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

•
$$\begin{cases} H_0 : \mu = 500g \\ H_1 : \mu \neq 500g \end{cases}$$

• Caso a média da amostra seja superior a \bar{x}_{c_1} ou inferior a \bar{x}_{c_2} pode-se afirmar que **não** há evidência suficientes para aceitar H_0 , sendo assim assumimos que $\mu \neq 500$ g.

Teste de Hipótese para Média da População com desvio padrão populacional conhecido

Deve-se calcular

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}}$$

$$\bar{x}_{c_2} = \mu - Z \frac{\sigma}{\sqrt{n}}$$

em que

 σ é o desvio padrão da população;

n é o tamanho da amostra;

Z é um ponto da Distribuição Normal Padrão;

 μ é o valor associado a hipótese que deseja-se testar;

$$\sigma = 20;$$

 $n = 30;$
 $\mu = 500;$

•
$$\begin{cases} H_0 : \mu = 500g \\ H_1 : \mu \neq 500g \end{cases}$$

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}}$$

$$\bar{x}_{c_2} = \mu - Z \frac{\sigma}{\sqrt{n}}$$

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

•
$$\begin{cases} H_0: \mu = 500g \\ H_1: \mu \neq 500g \end{cases}$$

$$\sigma = 20;$$

 $n = 30;$
 $\mu = 500;$

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}}$$

$$\bar{x}_{c_2} = \mu - Z \frac{\sigma}{\sqrt{n}}$$

Considerando 95% de confiança, temos que Z, dada a Tabela da Normal Padrão, é 1,96

$$\begin{cases} H_0 : \mu = 500g \\ H_1 : \mu \neq 500g \end{cases}$$

$$\sigma = 20;$$

 $n = 30;$
 $\mu = 500;$

$$Z = 1,96;$$

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}}$$

$$\bar{x}_{c_2} = \mu - Z \frac{\sigma}{\sqrt{n}}$$

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}} = 500 + 1,96 \frac{20}{\sqrt{30}} = 500 + 7,15 = 507.15$$

$$\bar{x}_{c_2} = \mu - Z \frac{\sigma}{\sqrt{n}} = 500 - 7,15 = 492,84$$

$$\sigma = 20;$$
 $n = 30;$
 $\mu = 500;$

$$Z = 1,96;$$

- Considere que na amostra de 30 pacotes obteve-se uma média amostral de 525,8 gramas.
- Como a média amostral é maior que 507,15, rejeitamos a hipótese nula, então $\mu \neq 500$ g.

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

•
$$\begin{cases} H_0: \mu = 500g \\ H_1: \mu \neq 500g \end{cases}$$

Calculando o p-valor temos:

$$\sigma = 20;$$

 $n = 30;$
 $\mu = 500;$
 $\bar{x} = 525,8;$
 $\alpha = 0,05;$

$$2 \times P(\bar{X} > 525,8) = 2 \times P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} > \frac{525,8 - 500}{20/\sqrt{30}}\right) =$$

$$Z = 1,96;$$

$$= 2 \times P (Z > 7.88) = 2 \times (0.5 - P (0 < Z < 7.88)) =$$

$$\approx 2x (0.5 - 0.49999) \approx 0.0001$$

Como p-valor menor que ∝ então Rejeito H0.

- Uma instituição financeira deseja saber se o tempo médio dos clientes para serem atendidos em um caixa de uma agência bancária é 8 minutos ou diferente de 8 minutos. Considere uma amostra de 120 clientes. Sabese que o desvio padrão populacional é de 3 minutos e media populacional é de 8.
- Na amostra obteve-se um tempo médio de 9 minutos.
- Considere 99% de confiança.

- Uma máquina para encher pacotes de areia enche-os segundo uma distribuição Normal, com média μ = 20 kg e desvio padrão σ = 2 kg.
- Periodicamente é selecionada uma amostra de 50 pacotes e é verificado se estamos colocando mais areia do que o necessário.
- Considere 99% de confiança.

$$\bar{x} = 21.8$$

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

- Interesse:
 - Verificar se a produção está colocando mais areia que deveria.
 - Verificar se a média é 20 kg ou se maior que 20 kg.
 - Verificar se μ = 20 kg ou μ > 20 kg.

Então

$$\begin{cases} H_0: \mu = 20 \text{ kg} \\ H_1: \mu > 20 \text{ kg} \end{cases}$$

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

 Para se testar a hipótese de interesse o fabricante retirou uma amostra de 50 pacotes de areia e obteve-se o peso médio dos pacotes.

$$\bar{x} = 21.8$$

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

•
$$\begin{cases} H_0: \mu = 20 \text{ kg} \\ H_1: \mu > 20 \text{ kg} \end{cases}$$

• Caso a média da amostra seja superior a \bar{x}_{c_1} pode-se afirmar que **não** há evidência suficientes para aceitar H_0 , sendo assim assumimos que $\mu > 20$ kg.

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

•
$$\begin{cases} H_0 : \mu = 20 \text{ kg} \\ H_1 : \mu > 20 \text{ kg} \end{cases}$$

$$\sigma = 2;$$

 $n = 50;$
 $\mu = 20;$

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}}$$

Considerando 99% de confiança, temos que Z, dada a Tabela da Normal Padrão

•
$$\begin{cases} H_0: \mu = 20 \text{ kg} \\ H_1: \mu > 20 \text{ kg} \end{cases}$$

$$\sigma = 2;$$

 $n = 50;$
 $\mu = 20;$

$$Z = 2,33;$$

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}}$$

$$\bar{x}_{c_1} = \mu + Z \frac{\sigma}{\sqrt{n}} = 20 + 2,33 \frac{2}{\sqrt{50}} = 20 + 0,6590 = 20,6590$$

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

•
$$\begin{cases} H_0: \mu = 20 \text{ kg} \\ H_1: \mu > 20 \text{ kg} \end{cases}$$

$$\sigma = 2;$$
 $n = 50;$
 $\mu = 20;$
 $Z = 2,33;$

Considere que na amostra de 50 pacotes obteve-se uma média amostral de 21,8 kg.

Como a média amostral é maior que 20,659, rejeitamos a hipótese nula, então μ > 20 kg.

Teste de Hipótese para Média da População com desvio padrão populacional conhecido Exercício

$$\begin{cases} \sigma = 2; \\ n = 50; \\ \mu = 20; \end{cases}$$

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$
Calculando o p-valor temos:

$$\bar{x} = 21.8;$$
 $\propto = 0.01;$

$$Z = 2,33;$$

$$P(\bar{X} > 21.8) = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} > \frac{21.8 - 20}{2/\sqrt{50}}\right) = 0$$

$$= P (Z > 6,36) = 0,5 - P (0 < Z < 6,36) =$$

$$\approx 0.5 - 0.49999 \approx 0.0001$$

Como p-valor menor que ∝ então Rejeito H0.

- Uma instituição deseja saber se o tempo médio que os clientes levam para tirar suas dúvidas com o atendimento telefônico é de 15 minutos ou superior a 15 minutos. Considere uma amostra de 300 clientes. Sabese que o desvio padrão populacional é de 5 minutos com média de 15 minutos.
- Na amostra obteve-se um tempo médio de 17 minutos.
- Considere 90% de confiança.

Não esqueça de deixar seu feedback!

=]

Referência

- Moore, D., McCabe, G., Duckworth, W., Sclove, S. *A prática da Estatística Empresarial*. LTC, Rio de Janeiro, 2006.
- Anderson, D., Sweeney, D., Williams, T. *Estatística Aplicada à Administração e Economia*. Segunda Edição. Cengage Learning, São Paulo, 2011.
- www.asn.rocks
- <u>www.curso-r.com</u>

It's kind of fun to do the IMPOSSIBLE

