

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07D 213/61, 213/26, 401/12, 213/85, 213/65, A01N 43/40		A1	(11) International Publication Number: WO 99/42447 (43) International Publication Date: 26 August 1999 (26.08.99)
(21) International Application Number: PCT/GB99/00304		(81) Designated States: AU, BR, CA, CN, CZ, HU, ID, IL, IN, JP, KR, KZ, MX, NO, NZ, PL, RO, RU, SI, SK, TR, UA, US, YU, ZW, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 16 February 1999 (16.02.99)			
(30) Priority Data: 9803413.5 19 February 1998 (19.02.98) GB 9813998.3 30 June 1998 (30.06.98) GB 9817353.7 11 August 1998 (11.08.98) GB		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(71) Applicant (for all designated States except US): AGREVO UK LIMITED [GB/GB]; Hauxton, Cambridge CB2 5HU (GB).			
(72) Inventors; and			
(75) Inventors/Applicants (for US only): MOLONEY, Brian, Anthony [GB/GB]; Chesterford Park, Saffron Walden, Essex CB10 1XL (GB). HARDY, David [GB/GB]; Chesterford Park, Saffron Walden, Essex CB10 1XL (GB). SAVILLE-STONES, Elizabeth, Anne [GB/GB]; Chesterford Park, Saffron Walden, Essex CB10 1XL (GB).			
(74) Agent: WALDMAN, Ralph, David; AgrEvo UK Limited, Chesterford Park, Saffron Walden, Essex CB10 1XL (GB).			

(54) Title: 2-PYRIDYLMETHYLAMINE DERIVATIVES USEFUL AS FUNGICIDES

(57) Abstract

Compounds of formula (I) and salts thereof as phytopathogenic fungicides wherein A^1 is substituted 2-pyridyl; A^2 is optionally substituted phenyl; L is $-(C=O)-$, $-SO_2-$ or $-(C=S)-$; R^1 is hydrogen, optionally substituted alkyl or acyl; and R^2 is hydrogen or optionally substituted alkyl are useful phytopathogenic fungicides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

2-PYRIDYLMETHYLAMINE DERIVATIVES USEFUL AS FUNGICIDES

This invention relates to compounds having fungicidal activity, their preparation, and intermediates for their preparation.

5

In a first aspect the invention provides the use of compounds of formula I and salts thereof as phytopathogenic fungicides

wherein

- 10 A^1 is substituted 2-pyridyl;
- A^2 is optionally substituted phenyl;
- L is $-(C=O)-$, $-SO_2-$ or $-(C=S)-$;
- R^1 is hydrogen, optionally substituted alkyl or acyl; and
- R^2 is hydrogen or optionally substituted alkyl.

15

The 2-pyridyl group (A^1) can have up to four substituents, preferably up to two, which may be the same or different to each other. Preferably, the substituents are on the 3 and/or 5 position of the 2-pyridyl group.

- 20 Preferred substituents on the 2-pyridyl group (A^1) are halogen, hydroxy, cyano, nitro, SF_5 , trialkylsilyl, optionally substituted amino, acyl, or a group E, OE or SE, where E is alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, phenyl or heterocyclyl, each of which is optionally substituted, or a group $-C(E)=N-Q$, where Q is E, OE, SE or optionally substituted amino; or two adjacent substituents together with the atoms to which they are attached form an optionally substituted ring which can contain up to 3 hetero atoms. Especially preferred substituents are alkoxy, alkyl, cyano, halogen, nitro, alkoxycarbonyl, alkylsulfinyl, alkylsulfonyl and trifluoromethyl, particularly chlorine and trifluoromethyl.
- 25 The phenyl group, A^2 , may have up to five substituents, preferably up to 3, especially up to two, which may be the same or different to each other. Preferred
- 30 The phenyl group, A^2 , may have up to five substituents, preferably up to 3, especially up to two, which may be the same or different to each other. Preferred

substituents are the same as those defined for A¹ above. Particularly preferred substituents are alkoxy, alkyl, halogen, nitro or trifluoromethyl.

Preferably the linking group L is -(C=O)-.

5

R¹ is preferably hydrogen. When it is not hydrogen, it is preferably alkyl, optionally substituted by phenyl, or alkoxycarbonyl.

Many of the compounds of formula I are novel. Therefore according to a second
10 aspect, the invention provides compounds of formula I where A¹ is a 2-pyridyl group having substituents at the 3 and/or 5 position and no other position, R¹ and R² are hydrogen and A² and L are as defined above.

The invention also includes any of the compounds specifically exemplified
15 hereinafter.

Any alkyl group present in the molecule is preferably of 1 to 10 carbon atoms, especially of 1 to 7 carbon atoms, and particularly of 1 to 5 carbon atoms.

20 Any alkenyl or alkynyl group present in the molecule is preferably of 2 to 7 carbon atoms, for example allyl, vinyl or propargyl.

Any cycloalkyl, cycloalkenyl or cycloalkynyl group present in the molecule is preferably of 3 to 7 carbon atoms, especially cyclopropyl, cyclopentyl, cyclohexyl
25 or cyclohexenyl.

Substituents, when present on any alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl
cycloalkynyl moiety may for example be halogen, cyano, optionally substituted
30 alkoxy, optionally substituted alkylthio, mercapto, hydroxy, nitro, optionally substituted amino, acyl, acyloxy, acylthio, optionally substituted phenyl, optionally substituted heterocyclil, optionally substituted phenylthio, optionally substituted phenoxy, optionally substituted heterocyclloxy or optionally substituted heterocyclthio.

Preferred substituents on any alkyl, alkenyl or alkynyl group are alkoxy, haloalkoxy or alkylthio, each containing 1 to 5 carbon atoms; halogen; or optionally substituted phenyl. An especially preferred group is trifluoromethyl.

5 Cycloalkyl, cycloalkenyl, cycloalkynyl groups may also be substituted by optionally substituted alkyl, alkynyl or alkenyl and *vice versa*.

Substituents when present on any phenyl or heterocyclyl group are preferably as defined above for substituents on A².

10

The term heterocyclyl includes both aromatic and non-aromatic heterocyclyl groups. Heterocyclyl groups are generally 5, 6 or 7-membered rings containing up to 4 hetero atoms selected from nitrogen, oxygen and sulfur. Examples of heterocyclyl groups are furyl, thienyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, dioxolanyl, oxazolyl, thiazolyl, imidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyranyl, pyridyl, piperidinyl, dioxanyl, morpholino, dithianyl, thiomorpholino, pyridazinyl, pyrimidinyl, pyrazinyl, piperazinyl, triazinyl, thiazolinyl, benzimidazolyl, tetrazolyl, benzoxazolyl, imidazopyridinyl, 1,3-benzoxazinyl, 1,3-benzothiazinyl, oxazolopyridinyl, benzofuranyl, quinolinyl, quinazolinyl, quinoxalinyl, sulfolanyl, dihydroquinazolinyl, benzothiazolyl, phthalimido, benzofuranyl, azepinyl, oxazepinyl, thiazepinyl, diazepinyl and benzodiazepinyl.

Amino groups may be substituted for example by one or two E or acyl groups, each of which may be the same or different, or two substituents together with the nitrogen to which they are attached can form a ring, preferably a 5 to 7-membered ring, which may be substituted and may contain other heteroatoms, for example morpholine, thiomorpholine, or piperidine. This ring can be substituted as for A.

25

30 The term acyl includes the residue of sulfur and phosphorus-containing acids as well as carboxylic acids. Examples of acyl groups are thus -COR^{5a}, -COOR^{5a}, -CNR^{5a}R^{6a}, -CON(R^{5a})OR^{6a}, -COONR^{5a}R^{6a}, -CON(R^{5a})NR^{6a}R^{7a}, -COSR^{5a}, -CSSR^{5a}, -S(O)_yR^{5a}, -S(O)₂OR^{5a}, -S(O)_yNR^{5a}R^{6a}, -P(=X)(OR^{5a})(OR^{6a}), -CO-COOR^{5a}, where R^{5a}, R^{6a} and R^{7a}, which may be the same or different, are

hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted cycloalkynyl optionally substituted phenyl or optionally substituted heterocycl, or R^{5a} and R^{6a}, or R^{6a} and R^{7a}, together with
5 the atom(s) to which they are attached can form a ring, y is 1 or 2 and X is O or S.

When substituted, substituents on the phenyl and alkyl groups are as defined above.

10

In preferred compounds of the invention

A¹ is a mono- or disubstituted 2-pyridyl group, substituted by chlorine and/or trifluoromethyl at the 3 and/or 5 position, e.g. 2-(5-chloro-3-trifluoromethyl)pyridyl; X is -C(=O)-; and

15 R¹ is hydrogen or alkyl, e.g. methyl, and especially hydrogen; and R² is hydrogen, alkyl, (e.g. methyl), benzyl or alkoxy carbonyl, (e.g. ethoxycarbonyl) and especially hydrogen.

Particularly preferred substituents on the A² phenyl are halogen.

20

The compounds of the invention have activity as fungicides, especially against fungal diseases of plants, e.g. mildews and particularly cereal powdery mildew (*Erysiphe graminis*) and vine downy mildew (*Plasmopara viticola*), rice blast (*Pyricularia oryzae*), cereal eyespot (*Pseudocercospora herpotrichoides*), rice sheath blight (*Pellicularia sasakii*), grey mould (*Botrytis cinerea*), damping off (*Rhizoctonia solani*), wheat brown rust (*Puccinia recondita*), late tomato or potato blight (*Phytophthora infestans*), apple scab (*Venturia inaequalis*), glume blotch (*Leptosphaeria nodorum*). Other fungi against which the compounds may be active include other powdery mildews, other rusts, and general pathogens of
25 Deuteromycete, Ascomycete, Phycomycete and Basidiomycete origin.

The invention thus also provides a method of combating fungi at a locus infested or liable to be infested therewith, which comprises applying to the locus a compound of formula I.

The invention also provides an agricultural composition comprising a compound of formula I in admixture with an agriculturally acceptable diluent or carrier.

The composition of the invention may of course include more than one compound
5 of the invention.

In addition the composition can comprise one or more additional active ingredients,
for example compounds known to possess plant-growth regulant, herbicidal,
fungicidal, insecticidal or acaricidal properties. Alternatively the compound of the
10 invention can be used in sequence with the other active ingredient.

The diluent or carrier in the composition of the invention can be a solid or a liquid
optionally in association with a surface-active agent, for example a dispersing
agent, emulsifying agent or wetting agent. Suitable surface-active agents include
15 anionic compounds such as a carboxylate, for example a metal carboxylate of a
long chain fatty acid; an N-acylsarcosinate; mono- or di-esters of phosphoric acid
with fatty alcohol ethoxylates or salts of such esters; fatty alcohol sulfates such
as sodium dodecyl sulfate, sodium octadecyl sulfate or sodium cetyl sulfate;
ethoxylated fatty alcohol sulfates; ethoxylated alkylphenol sulfates; lignin
20 sulfonates; petroleum sulfonates; alkyl-aryl sulfonates such as alkyl-benzene
sulfonates or lower alkylnaphthalene sulfonates, e.g. butyl-naphthalene sulfonate;
salts of sulfonated naphthalene-formaldehyde condensates; salts of sulfonated
phenol-formaldehyde condensates; or more complex sulfonates such as the amide
sulfonates, e.g. the sulfonated condensation product of oleic acid and N-methyl
25 taurine or the dialkyl sulfosuccinates, e.g. the sodium sulfonate of dioctyl
succinate. Nonionic agents include condensation products of fatty acid esters,
fatty alcohols, fatty acid amides or fatty-alkyl- or alkenyl-substituted phenols with
ethylene oxide, fatty esters of polyhydric alcohol ethers, e.g. sorbitan fatty acid
esters, condensation products of such esters with ethylene oxide, e.g.
30 polyoxyethylene sorbitan fatty acid esters, block copolymers of ethylene oxide and
propylene oxide, acetylenic glycols such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol,
or ethoxylated acetylenic glycols.

Examples of a cationic surface-active agent include, for instance, an aliphatic
35 mono-, di-, or polyamine as an acetate, naphthenate or oleate; an

oxygen-containing amine such as an amine oxide or polyoxyethylene alkylamine; an amide-linked amine prepared by the condensation of a carboxylic acid with a di- or polyamine; or a quaternary ammonium salt.

- 5 The compositions of the invention can take any form known in the art for the formulation of agrochemicals, for example, a solution, a dispersion, an aqueous emulsion, a dusting powder, a seed dressing, a fumigant, a smoke, a dispersible powder, an emulsifiable concentrate or granules. Moreover it can be in a suitable form for direct application or as a concentrate or primary composition which
- 10 requires dilution with a suitable quantity of water or other diluent before application.

An emulsifiable concentrate comprises a compound of the invention dissolved in a water-immiscible solvent which is formed into an emulsion with water in the presence of an emulsifying agent.

- 15 A dusting powder comprises a compound of the invention intimately mixed and ground with a solid pulverulent diluent, for example, kaolin.
- 20 A granular solid comprises a compound of the invention associated with similar diluents to those which may be employed in dusting powders, but the mixture is granulated by known methods. Alternatively it comprises the active ingredient absorbed or adsorbed on a pre-granular diluent, for example, Fuller's earth, attapulgite or limestone grit.
- 25 Wettable powders, granules or grains usually comprise the active ingredient in admixture with a suitable surfactant and an inert powder diluent such as china clay.
- 30 Another suitable concentrate is a flowable suspension concentrate which is formed by grinding the compound with water or other liquid, a wetting agent and a suspending agent.

The concentration of the active ingredient in the composition of the present invention, as applied to plants is preferably within the range of 0.0001 to 1.0 per

cent by weight, especially 0.0001 to 0.01 per cent by weight. In a primary composition, the amount of active ingredient can vary widely and can be, for example, from 5 to 95 per cent by weight of the composition.

- 5 In the method of the invention the compound is generally applied to seeds, plants or their habitat. Thus, the compound can be applied directly to the soil before, at or after drilling so that the presence of active compound in the soil can control the growth of fungi which may attack seeds. When the soil is treated directly the active compound can be applied in any manner which allows it to be intimately mixed with the soil such as by spraying, by broadcasting a solid form of granules, or by applying the active ingredient at the same time as drilling by inserting it in the same drill as the seeds. A suitable application rate is within the range of from 5 to 1000 g per hectare, more preferably from 10 to 500 g per hectare.
- 10
- 15 Alternatively the active compound can be applied directly to the plant by, for example, spraying or dusting either at the time when the fungus has begun to appear on the plant or before the appearance of fungus as a protective measure. In both such cases the preferred mode of application is by foliar spraying. It is generally important to obtain good control of fungi in the early stages of plant growth as this is the time when the plant can be most severely damaged. The spray or dust can conveniently contain a pre- or post-emergence herbicide if this is thought necessary. Sometimes, it is practicable to treat the roots of a plant before or during planting, for example, by dipping the roots in a suitable liquid or solid composition. When the active compound is applied directly to the plant a suitable rate of application is from 0.025 to 5 kg per hectare, preferably from 0.05 to 1 kg per hectare.
- 20
- 25
- 30

In addition, the compounds of the invention can be applied to plants or parts thereof which have been genetically modified to exhibit a trait such as fungal,

insect, and/or herbicidal resistance.

The compounds of formula I may be obtained by reacting a compound of formula II, or its hydrochloride salt, with a compound of formula III according to Scheme 1, where X is a leaving group such as halogen. When L is -(C=O)- or -SO₂-,

preferred reaction conditions comprise mixing II with the corresponding benzoyl or sulfonyl chloride in the presence of triethylamine.

Scheme 1

Compounds of formula I where R² is optionally substituted alkyl can be prepared by alkylating, in known manner, compounds of formula I where R² is hydrogen.

Compounds of formula III are known or can be obtained in known manner.

10

Certain compounds of intermediate formula IIa below, are known, i.e. compounds of general formula II where R¹ and R² are hydrogen. However the art contains no high-yielding, preparative method for compounds of formula IIa. We have now developed such a method.

15

Therefore, according to a third aspect, the invention provides a process for preparing compounds of formula IIa comprising the steps of:

a) reacting under basic conditions, compounds of formula IV, with compounds of formula V to give intermediates of formula VI.

b) converting intermediates of formula VI to intermediates of formula VII,

(VI)

(VII)

c) converting intermediates of formula VII to compounds of formula IIa,

(VII)

(IIa)

wherein

- 5 R^a and R^b , which may be the same or different, are alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclyl or phenyl, each of which may be substituted (preferably optionally substituted phenyl) or hydrogen;
- 10 E^1 is both an electron withdrawing group and a group which may be replaced by hydrogen using methodology known to the skilled chemist in accordance with step c) (preferably a carboxy group or a carboxy ester group);
- 15 X^1 is a leaving group (preferably halogen); and
- 20 A^1 and R^1 are as defined above for the first aspect of the invention.

Preferred basic conditions for step a) comprise reaction with an alkali metal hydride, alkoxide or carbonate.

Preferred, reaction conditions for step b) comprises treatment with dilute acid, particularly dilute hydrochloric acid.

- 20 When E^1 is a carboxy group or carboxy ester group, suitable reaction conditions for decarboxylation [step c)] will be known to the skilled chemist. Preferred decarboxylation conditions comprise heating VII with dilute aqueous hydrochloric acid.
- 25 Compounds of formula IV are known or can be prepared in known manner,

Intermediates VI and VII may be isolated. Alternatively they may be generated *in situ* and the subsequent reaction step performed without isolation or purification. It is preferred that intermediate VI is generated *in situ*, whereas it is preferred that intermediate VII is isolated.

5

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers, but not the exclusion of any other integer or group of integers, including method steps.

10

The hydrochloride salt of compounds of formula IIb, i.e. compounds of general formula II where R¹ is optionally substituted alkyl and R² is hydrogen, may be prepared according to reaction Scheme 2. X² is a leaving group such as bromine and the base is preferably potassium *tert*-butoxide. Preferred reaction conditions

15 for conversion to the hydrochloride salt of IIb is treatment with dilute hydrochloric acid.

Scheme 2

20

Many of the compounds of formula IIb and their hydrochloride salts are novel. Therefore, according to a fourth aspect the invention provides a compound of formula IIb, and salts thereof,

wherein A¹ is as defined above and R¹ is optionally substituted alkyl.

The 2-pyridyl group (A¹) can have up to four substituents, preferably up to two, which may be the same or different to each other. Preferably, the substituents are
5 on the 3 and/or 5 position of the 2-pyridyl group.

When substituted, preferred substituents on the 2-pyridyl group (A¹) in formula IIb are halogen, hydroxy, cyano, nitro, SF₅, trialkylsilyl, optionally substituted amino, acyl, or a group E, OE or SE, where E is alkyl, alkenyl, alkynyl, cycloalkyl,
10 cycloalkenyl, phenyl or heterocyclyl, each of which is optionally substituted, or a group -C(E)=N-Q, where Q is E, OE, SE or optionally substituted amino; or two adjacent substituents together with the atoms to which they are attached form an optionally substituted ring which can contain up to 3 hetero atoms. Especially preferred substituents are alkoxy, alkyl, halogen, nitro and trifluoromethyl,
15 particularly chlorine and trifluoromethyl.

Preferably, A¹ is a mono- or di-substituted 2-pyridyl group, substituted by chlorine and/or trifluoromethyl.

20 The invention is illustrated in the following Examples. Structures of isolated novel compounds were confirmed by NMR and/or other appropriate analyses.

Example 1

N-[(3-Chloro-5-trifluoromethyl-2-pyridyl)methyl]-α,α,α-trifluoro-o-toluamide

25 (Compound 1)

A solution of (3-chloro-5-trifluoromethyl-2-pyridyl)methylamine (0.35 g) in dry ether (2 ml) was added to a solution of 2-trifluoromethylbenzoyl chloride (0.39 g) and triethylamine (0.27 ml) in dry ether (5 ml) and the mixture stirred overnight. Water (20 ml) and ethyl acetate (10 ml) were added and the organic phase was
30 separated and washed with aqueous sodium hydrogen carbonate, dried and evaporated under reduced pressure. The residue was purified by silica gel chromatography to give the title product, m.p. 127-30°C.

Example 2N-[(3-Chloro-5-trifluoromethyl-2-pyridyl)methyl]-N-methyl-2,6-dichlorobenzamide
(Compound 63)

Sodium hydride (0.077 g of a 60% dispersion in oil) was added, with stirring, to a
5 solution of compound 21 (see in table below) in dry tetrahydrofuran and under
nitrogen at room temperature. The mixture was warmed to 30°C and after 10
minutes was stirred at room temperature for 30 minutes. Methyl iodide (0.12 ml)
was added and the mixture stirred at room temperature overnight. The mixture
was quenched by the addition dropwise of a solution of methanol in
10 tetrahydrofuran followed by water. The tetrahydrofuran was removed by
evaporation under reduced pressure and the residue was partitioned between
water and ether. The aqueous layer was extracted twice with ether and the
combined extracts were washed with water and then brine and dried. The extract
was evaporated under reduced pressure to give the title product, m.p. 83-4°C.

15

Example 3N-[(3,5-dichloro-2-pyridyl)methyl]-2,6-dichlorobenzamide (Compound 59)

To a stirred solution of the product from stage b) (see below) (0.30 g) and
triethylamine (0.4 ml) in tetrahydrofuran (5 ml) was added 2,6-dichlorobenzoyl
20 chloride (0.2 ml) dropwise at room temperature, and stirring was continued for 12
hours. The reaction mixture was concentrated, water was added (10 ml) and the
mixture was stirred for 15 minutes. The mixture was filtered and the resulting
solid washed with water and then with light petroleum (b.p. 40-60°C). The solid
was recrystallised from diisopropyl ether to give the title product, m.p. 161-5°C.

25

Preparation of Starting Materialsa) Ethyl 2-(3,5-dichloro-2-pyridyl)glycinate

To a stirred solution of sodium hydride (0.445 g) in dry dimethylformamide
(4 ml) at 0°C was added ethyl N-(diphenylmethyleneglycinate (1.485 g) in
30 dry dimethylformamide (3 ml) and stirring was continued for 20 minutes.
2,3,5-Trichloropyridine (1.58 g) in dry dimethylformamide (4 ml) was then
added dropwise over 10 mins at 5°C and the reaction mixture was stirred
for 2 hours at room temperature. 2M hydrochloric acid (25 ml) was added
and stirring continued for 2 hours. The solution was washed with diethyl
ether and the layers were separated. The aqueous phase was neutralised

35

with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The combined ethyl acetate layers were washed with brine (x2), dried ($MgSO_4$), filtered and the solvent removed to leave a residue which was purified by silica gel chromatography eluting with ethyl acetate/light petroleum (40-60°C) to give the title product.

5 b) (3,5-Dichloro-2-pyridyl)methylamine hydrochloride

A mixture of the product from stage a) (0.24 g) and 3M hydrochloric acid (20 ml) was heated under reflux for 4 hours. On cooling the mixture was 10 washed with diethyl ether and the layers separated. Water was removed from the aqueous phase by azeotropic evaporation with toluene (x3) to give the title product.

Example 4

15 *N*-(1-(3-Chloro-5-trifluoromethyl-2-pyridyl)-2-phenylethyl)-2,6-dichlorobenzamide
(Compound 83)

To a solution of the product from stage c) (see below) (0.31 g) in dichloromethane (10 ml) was added triethylamine (0.28 ml) followed by 2,6-dichlorobenzoyl chloride (0.15 ml). The mixture was stirred at room temperature for 1.5 hours and 20 then evaporated to dryness. Diethyl ether (20 ml) was added and the solution was washed with 2M hydrochloric acid (10 ml), then water (10 ml), then sodium bicarbonate solution (10 ml) followed by water (10 ml). The organic layer was separated, dried ($MgSO_4$) and the solvent removed. The residue was purified by silica gel chromatography [light petroleum (b.p. 40-60°C):diethyl ether (1:1)] to 25 give the title product as a solid, m.p. 164-8°C.

Preparation of starting materials

a) *N*-[(3-chloro-5-trifluoromethyl-2-pyridyl)methyl]benzophenone imine.

To a solution of benzophenone imine (1.67 ml) in dry dichloromethane (25 ml) at 10°C was added (3-chloro-5-trifluoromethyl-2-pyridyl)methylamine hydrochloride (2.47 g). The solution was stirred at room temperature for 3 hours and then filtered. The filtrate was evaporated to dryness and purified by silica gel chromatography [light petroleum/diethyl ether (4:1)] to give the title product.

b) N-[1-(3-Chloro-5-trifluoromethyl-2-pyridyl)-2-phenylethyl]benzophenone imine

To a solution of potassium *tert*-butoxide (0.33 g) in tetrahydrofuran (5 ml) at -60°C was added the product from stage a) in tetrahydrofuran (10 ml).

5 After stirring at -60°C for 10 minutes, benzyl bromide (0.36 ml) in dry tetrahydrofuran (20 ml) was added dropwise at -50°C. The solution was allowed to slowly attain room temperature and stirring continued overnight. The mixture was evaporated to dryness and diethyl ether (35 ml) and acetic acid (2 ml) were added. The mixture was washed with water (3x10 ml) and 10 the phases were separated. The organic phase was dried ($MgSO_4$) and the solvent removed to give the title product.

c) 1-(3-Chloro-5-trifluoromethyl-2-pyridyl)-2-phenylethylamine hydrochloride

15 To a solution of the product from stage b) (1.29 g) in diethyl ether (5 ml) was added 1M hydrochloric acid (10 ml) at room temperature and the solution was stirred at room temperature for 2 hours. The mixture was filtered to give a solid, which was washed with water (15 ml) then ether (15 ml). Drying *in vacuo* gave the title product. Water was removed from 20 the aqueous phase by azeotropic distillation with toluene (x3), to give further quantities of the title product.

In a similar manner to one of the previous Examples, the following compounds of general formula Ia were obtained. The table includes the compounds described in the previous Examples

Table 1

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
1	H	H	3-Cl, 5-CF ₃	2-CF ₃	127-30
2	H	H	3-Cl, 5-CF ₃	2-succinimido	173-4
3	H	H	3-Cl, 5-CF ₃	3-Br	88
4	H	H	3-Cl, 5-CF ₃	3,5-Cl ₂	138-9
5	H	H	3-Cl, 5-CF ₃	3,4-Cl ₂	147-50
6	H	H	3-Cl, 5-CF ₃	2,5-Cl ₂	123
7	H	H	3-Cl, 5-CF ₃	2,4-Cl ₂	128
8	H	H	3-Cl, 5-CF ₃	2,3-Cl ₂	146-7
9	H	H	3-Cl, 5-CF ₃	2,4-(OMe) ₂	166
10	H	H	3-Cl, 5-CF ₃	3-OPri	98-100
11	H	H	3-Cl, 5-CF ₃	2-OCOMe	100-4
12	H	H	3-Cl, 5-CF ₃	4-But	139-41
13	H	H	3-Cl, 5-CF ₃	2-NO ₂	137-40
14	H	H	3-Cl, 5-CF ₃	2,6-F ₂	152-4
15	H	H	3-Cl, 5-CF ₃	2,4-F ₂	135
16	H	H	3-Cl, 5-CF ₃	4-Cl	108-10
17	H	H	3-Cl, 5-CF ₃	2,3-Me ₂	158

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
18	H	H	3-Cl, 5-CF ₃	2-F	116-7
19	H	H	3-Cl, 5-CF ₃	2-Me	135-6
20	H	H	3-Cl, 5-CF ₃	2-Br	oil
21	H	H	3-Cl, 5-CF ₃	2,6-Cl ₂	130-3
22	H	H	3-Cl, 5-CF ₃	2-OMe	140-4
23	H	H	3-Cl, 5-CF ₃	2-Cl	77-80
24	H	H	3-Cl, 5-CF ₃	-	98-100
25	H	H	5-CF ₃	2,6-Cl ₂	152-3
26	H	H	3-Cl, 5-CF ₃	2,6-Me ₂	123
27	H	H	3-Cl, 5-CF ₃	2,3-F ₂	88-91
28	H	H	3-Cl, 5-CF ₃	2,4,6-Me ₃	146-9
29	H	H	3-Cl, 5-CF ₃	2,3-(CH) ₄ -	138-140
30	H	H	3-Cl, 5-CF ₃	2-Cl-4-F	111-3
31	H	H	3-Cl, 5-CF ₃	2-Cl-6-F	152-3
32	H	H	3-Cl, 5-CF ₃	2,4,6-F ₃	126-8
33	H	H	3-Cl, 5-CF ₃	2,3,6-F ₃	129
34	H	H	3-Cl, 5-CF ₃	2,6-(OMe) ₂	151
35	H	H	3-Cl, 5-CF ₃	2-OCF ₃	89-90
36	H	H	3-Cl, 5-CF ₃	3-CF ₃	133-4
37	H	H	3-Cl, 5-CF ₃	2-Cl, 4-NO ₂	147-9
38	H	H	3-Cl, 5-CF ₃	4-Ph	146-8
39	H	H	3-Cl, 5-CF ₃	2-F, 6-CF ₃	118-120

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
40	H	H	3-Cl, 5-CF ₃	2-F, 3-CF ₃	102-5
41	H	H	3-Cl, 5-CF ₃	3-F, 6-CF ₃	134-6
42	H	H	3-Cl, 5-CF ₃	4-F, 2-CF ₃	100-3
43	H	H	3-Cl, 5-CF ₃	F ₅	99-101
44	H	H	3-Cl, 5-CF ₃	2-I	118-9
45	H	H	3-Cl, 5-CF ₃	2-Br, 5-OMe	122-5
46	H	H	3-Cl, 5-CF ₃	2,6-(CF ₃) ₂	semi-solid
47	H	Me	5-CF ₃	2,6-Cl ₂	89-94
48	H	Et	5-CF ₃	2,6-Cl ₂	82-3
49	H	H	5-CF ₃	2-Cl	91-3
50	H	H	5-CF ₃	2-F	64-6
51	H	H	5-CF ₃	2-OMe	86-9
52	H	H	5-CF ₃	2-CF ₃	128-130
53	H	H	5-CF ₃	2-NO ₂	124-6
54	H	H	5-CF ₃	2,6-F ₂	122-4
55	H	H	5-CF ₃	2,3-Me ₂	103-6
56	H	H	5-CF ₃	4-Cl	107-10
57	H	H	5-CF ₃	2-Br	116-9
58	H	H	3-Cl, 5-CF ₃	2,4,6-Cl ₃	152-3
59	H	H	3,5-Cl ₂	2,6-Cl ₂	161-5
60	H	H	5-Cl	2,6-Cl ₂	129-32
61	H	H	3-Cl, 5-CF ₃	4-NMe ₂	143-4

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
62	H	H	5-Cl	2-NO ₂	129-32
63	H	Me	3-Cl, 5-CF ₃	2,6-Cl ₂	83-4
64	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 4-Me	138-9
65	H	H	3-Cl, 5-CF ₃	2-OPh	97-9
66	H	H	3-Cl, 5-CF ₃	2-Cl, 6-Br	144-6
67	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 3-Cl	118-9
68	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 5-Cl	143-4
69	H	H	3-Cl, 5-CF ₃	2-F, 6-I	133-5
70	H	H	3-Cl, 5-CF ₃	2-SMe	116-7
71	H	H	3-Cl, 5-CF ₃	2,3,5,6-F ₄	112-4
72	H	H	3-Cl, 5-CF ₃	2-Ph	117-8
73	H	H	3-Cl, 5-CF ₃	2-F, 3-Me	120-1
74	H	H	3-Cl, 5-CF ₃	2-Me, 4-Br	107-8
75	H	H	3-Cl, 5-CF ₃	2-Cl, 5-Br	119-20
76	H	H	3-Cl, 5-CF ₃	2-OMe, 5-Cl	181-2
77	H	H	3-Cl, 5-CF ₃	2-Cl, 5-NO ₂	143-4
78	H	H	3-Cl, 5-CF ₃	2-Cl, 5-SMe	94-5
79	H	H	3-Cl, 5-CF ₃	2-OEt	167-8
80	H	H	3-Cl, 5-CF ₃	2-OCH ₂ Ph	134-5
81	H	H	3-Cl, 5-CF ₃	2-OMe, 4-SMe	162-3
82	H	H	3-Cl, 5-CF ₃	2-Me, 5-NO ₂	129-30
83	benzyl	H	3-Cl, 5-CF ₃	2,6-Cl ₂	164-8

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
84	benzyl	H	3-Cl, 5-CF ₃	2-NO ₂	147-9
85	Me	H	3-Cl, 5-CF ₃	2,6-Cl ₂	115-8
86	Me	H	3-Cl, 5-CF ₃	2-NO ₂	oil
87	Me	H	3-Cl, 5-CF ₃	2-Cl, 6-F	112-6
88	H	H	3-Cl, 5-CF ₃	3-Me, 5-NO ₂	oil
89	H	H	3-Cl, 5-CF ₃	4-Me, 5-NO ₂	152
90	H	H	3-Cl, 5-CF ₃	2,5-(OMe) ₂	165
91	H	H	3-Cl, 5-CF ₃	2,3-(OMe) ₂	117
92	H	H	3-Cl, 5-CF ₃	2-OMe, 4-Cl	200
93	H	H	3-Cl, 5-CF ₃	2,4,5-(OMe) ₃	184
94	H	H	3-Cl, 5-CF ₃	2,4-(CF ₃) ₂	101
95	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 4-Cl	116
96	H	H	3-Cl, 5-CF ₃	2,3,4-(OMe) ₃	125
97	H	H	3-Cl, 5-CF ₃	2,5-(CF ₃) ₂	112
98	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 3-OMe	149
99	H	H	3-Cl, 5-CF ₃	2,4-(NO ₂) ₂	152
100	H	H	3-Cl, 5-CF ₃	2,5-Br ₂	136
101	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 5-OMe	oil
102	H	H	3-Cl, 5-CF ₃	2-Br, 3-NO ₂	148
103	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 4-CF ₃	138
104	H	H	3-Cl, 5-CF ₃	2-Br, 5-NO ₂	151
105	H	H	3-Cl, 5-CF ₃	2-OPr	122

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
106	H	H	3-Cl, 5-CF ₃	2-(1-pyrrolyl)	oil
107	H	H	3-Cl, 5-CF ₃	2-Br, 5-Cl	138
108	H	H	3-Cl, 5-CF ₃	2-[(2-CN-phenyl)thio]	oil
109	H	H	3-Cl, 5-CF ₃	2-CN	134
110	H	H	3-Cl, 5-CF ₃	2-NO ₂ , 4,5-(OMe) ₂	143-4
111	H	H	3-Cl, 5-CF ₃	4-Me	137-8
112	H	H	3-Cl, 5-CF ₃	4-OMe	148-9
113	H	H	3-Cl, 5-CF ₃	4-CF ₃	120-1
114	H	H	3-Cl, 5-CF ₃	4-NO ₂	115-6
115	H	H	3-Cl, 5-CF ₃	3-NO ₂	114-5
116	H	H	3-Cl, 5-CF ₃	4-F	78-9
117	H	H	3-Cl, 5-CF ₃	3-NO ₂ , 4-Cl	127-8
118	H	H	3-Cl, 5-CF ₃	3,4-Me ₂	128-9
119	H	H	3-Cl, 5-CF ₃	3-Cl, 4-OMe	122-3
120	H	H	3-Cl, 5-CF ₃	4-CN	108-10
121	H	H	3-Cl, 5-CF ₃	3-CN	122-3
122	H	H	3-Cl, 5-CF ₃	3-CN, 4-OMe	116-7
123	H	H	3-Cl, 5-CF ₃	3-benzylxy	oil
124	H	H	3-Cl, 5-CF ₃	3-phenoxy	71-2
125	H	H	3-Cl, 5-CF ₃	3-F	123-4
126	Me	H	3-Cl, 5-CF ₃	2-Cl	99

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
127	Me	H	3-Cl, 5-CF ₃	2,3-Me ₂	124
128	Me	H	3-Cl, 5-CF ₃	2-Br	113
129	Me	H	3-Cl, 5-CF ₃	3-Br	105
130	Me	H	3-Cl, 5-CF ₃	2-CF ₃	100
131	Me	H	3-Cl, 5-CF ₃	2,4,6-F ₃	121
132	Me	H	3-Cl, 5-CF ₃	2-I	129
133	Me	H	3-Cl, 5-CF ₃	2-F	semi-solid
134	Me	H	3-Cl, 5-CF ₃	2-Cl	136
135	Me	H	3-Cl, 5-CF ₃	2,6-F ₂	111
136	Me	H	3-Cl, 5-CF ₃	2,4-F ₂	102
137	Me	H	3-Cl, 5-CF ₃	2-CF ₃ , 5-F	100
138	Me	H	3-Cl, 5-CF ₃	3-CF ₃ , 2-F	oil
139	Me	H	3-Cl, 5-CF ₃	2-Me	89
140	Me	H	3-Cl, 5-CF ₃	4-NO ₂	133
141	benzyl	H	3-Cl, 5-CF ₃	2-Cl	161
142	benzyl	H	3-Cl, 5-CF ₃	2,3-Me ₂	173
143	benzyl	H	3-Cl, 5-CF ₃	2-Br	157
144	benzyl	H	3-Cl, 5-CF ₃	3-Br	169
145	benzyl	H	3-Cl, 5-CF ₃	2-CF ₃	166
146	benzyl	H	3-Cl, 5-CF ₃	2,4,6-F ₃	154
147	benzyl	H	3-Cl, 5-CF ₃	2-I	174
148	benzyl	H	3-Cl, 5-CF ₃	2-F	127

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
149	benzyl	H	3-Cl, 5-CF ₃	4-Cl	197
150	benzyl	H	3-Cl, 5-CF ₃	2,6-F ₂	153
151	benzyl	H	3-Cl, 5-CF ₃	2,4-F ₂	129
152	benzyl	H	3-Cl, 5-CF ₃	2-F, 3-CF ₃	147
153	benzyl	H	3-Cl, 5-CF ₃	3-F, 6-CF ₃	182
154	benzyl	H	3-Cl, 5-CF ₃	2-Me	176
155	benzyl	H	3-Cl, 5-CF ₃	4-NO ₂	197
156	benzyl	H	3-Cl, 5-CF ₃	-	199
157	benzyl	H	3-Cl, 5-CF ₃	2-Cl, 6-F	189
158	H	H	3-CF ₃	2-NO ₂	129-36
159	H	H	3-CF ₃	2-Br	95-8
160	H	H	3-CF ₃	2-Cl	108-10
161	H	H	3-CF ₃	2-CF ₃	110-15
162	H	H	3-CF ₃	2-I	126-36
163	H	H	3-CF ₃	2-Cl, 6-F	161-2
164	H	H	3-CF ₃	2,6-F ₂	142-6
165	H	H	3-CF ₃	2,6-(OMe) ₂	128-9
166	H	H	3-CF ₃	2-CF ₃ , 5-F	128-9
167	H	H	3-CF ₃	2,4,6-Cl ₃	181-4
168	H	H	3-CF ₃	2,3,6-F ₃	127-9
169	H	H	3-CF ₃	2-Br, 6-Cl	169-70
170	H	H	3-CF ₃	2,6-Cl ₂	169-71

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
171	H	H	3-Cl, 5-CF ₃	2-Me, 6-NO ₂	164-5
172	H	H	3-Cl, 5-CF ₃	2,6-(OMe), 3-Cl	177-8
173	H	H	3-Cl, 5-CF ₃	2,6-(OMe) ₂ , 3-NO ₂	184-5
174	H	H	3-Cl, 5-CF ₃	2,3,5-Cl ₃ , 6-OH	300-10
175	H	H	3-Cl, 5-CF ₃	2,6-Cl ₂ , 3-OH	96-8
176	H	H	3-Cl, 5-CF ₃	2-Cl, 6-OH	116-8
177	Me	H	3-Cl, 5-CF ₃	-	110
178	Me	H	3-Cl, 5-CF ₃	4-MeO	146
179	Me	H	3-Cl, 5-CF ₃	3,5-Cl ₂	157
180	Me	H	3-Cl, 5-CF ₃	2,4-Cl ₂	oil
181	H	H	3-Cl, 5-CF ₃	2-Cl, 6-MeS	139-142
182	H	H	3-Cl, 5-CF ₃	2-CH ₂ Cl	92-3
183	H	H	3-Cl, 5-CF ₃	2-(2-Br-Ph)CH ₂ S	oil
184	Et	H	3-Cl, 5-CF ₃	2,6-Cl ₂	113-6
185	Et	H	3-Cl, 5-CF ₃	2-Cl, 6-F	116-8
186	Et	H	3-Cl, 5-CF ₃	4-Cl	90-2
187	Et	H	3-Cl, 5-CF ₃	4-F	78-80
188	Pr	H	3-Cl, 5-CF ₃	2,6-Cl ₂	121-3
189	Pr	H	3-Cl, 5-CF ₃	2-Cl, 6-F	110-2
190	Pr	H	3-Cl, 5-CF ₃	4-Cl	88-90
191	Pr	H	3-Cl, 5-CF ₃	4-F	113-5
192	Pr	H	3-Cl, 5-CF ₃	2,4-Cl ₂	oil

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
193	Pr ⁱ	H	3-Cl, 5-CF ₃	2,4-Cl ₂	148-52
194	H	H	3-Cl, 5-CF ₃	4-BuO	100-3
195	H	H	5-cyano	2,6-Cl ₂	176-8
196	H	H	5-cyano	2-Cl,6-F	171-3
197	H	H	5-cyano	2-Br,6-Cl	159-61
198	H	H	5-cyano	2-NO ₂	151-3
199	H	H	5-cyano	4-Cl	116-8
200	H	H	3-Cl, 5-CF ₃	2-phthalimido	173-4
201	Me	H	3-Cl, 5-CF ₃	4-BuO	94-5
202	H	H	5-OCOMe	2,6-Cl ₂	153-4
203	H	H	5-OCOMe	2-Cl,6-F	137-8
204	H	H	5-OCOMe	2-Br,6-Cl	158-9
205	H	H	5-OCOMe	2-I	144-5
206	H	H	5-OCOEt	2,6-Cl ₂	98-100
207	H	H	5-OCOEt	2-Br,6-Cl	96-8
208	H	H	5-OCOEt	2-Cl,6-F	97-9
209	H	H	5-OCOEt	4-Cl	112-4
210	H	H	5-OCOEt	2-Cl	84-7
211	H	H	5-OCOEt	2-NO ₂	85-9
212	H	H	5-OSO ₂ Me	2,6-Cl ₂	132-3
213	H	H	6-OH	2,6-Cl ₂	269-70
214	H	H	6-Me- 3-OSO ₂ Me	2,6-Cl ₂	185-6

Cpd	R ¹	R ²	(R ³) _q	(R ⁴) _p	m.p. (°C)
215	H	H	6-Cl	2,6-Cl ₂	139-41
216	H	H	4-Cl	2,6-Cl ₂	156-7
217	Pr ⁱ	H	3-Cl, 5-CF ₃	2,6-Cl ₂	135-7
218	NC-CH ₂	H	3-Cl, 5-CF ₃	2,6-Cl ₂	160-3
219	NC-CH ₂	H	3-Cl, 5-CF ₃	2-Cl, 6-F	155-6
221	NC-CH ₂	H	3-Cl, 5-CF ₃	4-Cl	118-9
222	NC-CH ₂	H	3-Cl, 5-CF ₃	3,5-Cl ₂	122-4
223	NC-CH ₂	H	3-Cl, 5-CF ₃	2,4-Cl ₂	110-2

Example 5

N-[1-(3-Chloro-5-trifluoromethyl-2-pyridyl)-2,4-dichlorobenzenesulfonamide

5 (Compound 501)

Triethylamine (0.28 ml) was added to a suspension of (3-chloro-5-trifluoromethyl-2-pyridyl)methylamine hydrochloride (0.25 g) in tetrahydrofuran (6 ml). After 15 minute, the white suspension was filtered and washed with tetrahydrofuran. The 10 filtrate and washings were added to 2,4-dichlorobenzenesulfonyl chloride (0.25 g) and the mixture stirred overnight at room temperature, water added and stirred for 30 minutes. The white solid, which formed, was collected. This was the title product, m.p. 125-6°C (Compound 501)

15 In a similar manner, the following compounds of general formula Ia were obtained. The table includes the compound described in the previous Example.

Cpd	$(R^4)_p$	m.p. (°C)
501	2,4-Cl ₂	125-6
502	4-Me	113-4
503	2-Cl	114-5
504	2-Cl,4-F	99-101
505	2-F	126-8
506	2,3 -N=CH-CH=CH-	145-6
507	2-CN	154-7
508	2-Br	134-6
509	2,6-Cl ₂	160-1.
510	2,5-(OMe) ₂	119-23
511	2,6-F ₂	141-3
512	2-Cl-6-Me	170-2
513	2-NO ₂	116-8
514	6-Me-3-NO ₂	113-5
515	2,3 -CH=CH-CH=CH-	94-5
516	2,4-F ₂	93-5
517	2,5-Cl ₂	92-3
518	3,4-Cl ₂	117-8
519	5-Cl-2-MeO	94-5
520	2,4,6-Cl ₃	137-9

Cpd	$(R^4)_p$	m.p. (°C)
521	4-Cl-2,5-Me ₂	130-2
522	2,4-Cl ₂ -5-Me	155-7
523	4-Cl	132-3
524	2,3-Cl ₂	104-6
525	2-CF ₃	102-4
526	-	99-100
527	3-PhO	88-9
528	3,4-(OMe) ₂	126-7
529	3,5-Cl ₂	125-7
530	5-F-2-Me	88-9

Example 6

Ethyl 2-(3-chloro-5-trifluoromethyl-2-pyridyl)-N-(3,4-dimethoxybenzoyl)glycinate
(Compound 601)

5

Triethylamine (0.28 ml) was added to a solution of ethyl 2-(3-chloro-5-trifluoromethyl-2-pyridyl)glycinate (1 g; prepared in a similar manner to the starting material for Example 3) in dimethylformamide (10 ml) with stirring followed by 3,4-dimethoxybenzoyl chloride (0.70 g). the mixture was stirred for 45 minutes and

10 evaporated. The residue was extracted with ethyl acetate and the extracts worked up to give the title product, m.p. 40-3°C. (Compound 601)

In a similar manner to one of the previous Examples, the following compounds in Table 3 of general formula Ic were obtained. The table includes the compound 15 described in the previous Example.

Table 3

Cpd	Qz	R2	L	(R4)p	m.p. (°C)
601	H	H	-C(=O)-	3,4-Me2	40-3
602	H	benzyl	-C(=O)-	4-MeO	116-9
603	H	H	-C(=O)-	2,4-Cl2	107-10
604	H	H	-SO2-	3,4-Cl2	89-92
605	H	H	-C(=O)-	-	oil
606	H	H	-C(=O)-	2-Me	oil
607	H	H	-C(=O)-	4-MeO	91-4
608	H	H	-C(=O)-	3-NO2	oil
609	H	H	-C(=O)-	4- <i>tert</i> -butyl	oil
610	H	H	-C(=O)-	2-CF3	oil
611	H	H	-C(=O)-	2,6-Cl2	oil
612	H	H	-SO2-	3-CF3	74-6
613	H	H	-C(=O)-	2-F	oil
614	H	H	-C(=O)-	2-Cl	oil
615	H	H	-C(=O)-	3-Br	62-4
616	H	H	-SO2-	2,5-Cl2	oil
617	H	ethyl	-C(=O)-	-	oil
618	H	ethyl	-C(=O)-	2-Cl	oil
619	H	ethyl	-C(=O)-	3-NO2	oil

Cpd	Qz	R ²	L	(R ⁴) _p	m.p. (°C)
620	H	ethyl	-C(=O)-	4-MeO	oil
621	H	H	-C(=O)-	2-Br	155-6
622	H	H	-C(=O)-	3,4-(OMe) ₂	40-3
623	H	benzyl	-C(=O)-	4-MeO	116-9

Example 7

N-[(3-Chloro-5-trifluoromethyl-2-pyridyl)methyl]-2-chlorobenzenethioamide
(Compound 701)

5

A solution of compound 23, (3.84 g) and Lawesson's reagent (4.45 g) in toluene (50 ml) was heated at 80°C for 1 hour. The mixture was purified by silica gel chromatography to give to give the title compound, m.p. 102-3°C.

10 In a similar manner the following compounds were obtained. The table includes the compound described in the previous Example.

Cpd	R ¹	(R ⁴) _p	m.p. (°C)
701	H	2-Cl	102-5
702	H	4-Me	97-9
703	H	3-Me	72-5
704	H	2-MeO	172-5
705	H	3-MeO	86-8
706	H	4-MeO	107-9
707	H	3-Cl	92-5

Cpd	R ¹	(R ⁴) _p	m.p. (°C)
708	H	4-Cl	123-5
709	H	4-Me ₂ N	145-7
710	H	3-EtO	62-4
711	H	4-EtO	115-8
712	H	3-NO ₂	108-9
713	H	4- <i>tert</i> -butyl	88-91
714	H	4-NO ₂	190-2
715	H	4-PrO	95-8
716	H	4-Pr ⁱ O	86-8
717	H	3-Cl, 4-MeO	147-9
718	H	3-BuO	oil
719	H	3-Cl, 4-Me ₂ N	107-9
720	H	4-Br	122-4
721	H	3,4,5-(OMe) ₃	132-3
722	Me	3-Me	119-21
723	Me	3-MeO	107-8
724	Me	4-MeO	122-3
725	Me	2-Cl	114-5
726	Me	3-Cl	112-5
727	Me	4-Cl	127-9
728	Me	3-EtO	100-1
729	Me	4-EtO	101-4
730	Me	3-NO ₂	117-9
731	Me	4- <i>tert</i> -butyl	112-4

Cpd	R ¹	(R ⁴) _p	m.p. (°C)
732	Me	4-NO ₂	246-8
733	Me	4-PrO	97-8
734	Me	4-Pr ⁱ O-	92-3
735	Me	3-Cl,4-MeO	103-5
736	Me	3-BuO	73-6
737	Me	3-Cl,4-Me ₂ N	85-8
738	Me	4-Br	140-2
739	Me	3,4,5-(OMe) ₃	118-120
740	H	2-Me	101-4
741	H	2,3-CH=CH-CH=CH-	154-6
742	H	4-BuO	76-80
743	H	4-PhCH ₂ O-	110-4
744	Me	4-Me	134-5
745	Me	2-MeO	109-12
746	Me	4-Me ₂ N	177-80
747	Me	2,3-CH=CH-CH=CH-	123-5
748	Me	4-BuO	100-3
749	Me	4-PhCH ₂ O-	132-4

Test Example

Compounds are assessed for activity against one or more of the following:

Phytophthora infestans: late blight

Plasmopara viticola: vine downy mildew

5 *Erysiphe graminis* f. sp. *tritici*: wheat powdery mildew

Pyricularia oryzae: rice blast

Leptosphaeria nodorum: glume blotch

Botrytis cinerea: grey mould

An aqueous solution of the compound at the desired concentration, including a
10 wetting agent, was applied by spray or by drenching the stem base of the test
plants, as appropriate. After a given time, plants or plant parts were inoculated
with appropriate test pathogens before or after application of the compounds as
appropriate, and kept under controlled environmental conditions suitable for
maintaining plant growth and development of the disease. After an appropriate
15 time, the degree of infection of the affected part of the plant was visually
estimated. The compound was assessed on a score of 1 to 3 where 1 is little or
no control, 2 is moderate control and 3 is good to total control. At a concentration
of 500 ppm (w/v) or less, the compound scored 2 or more against the above
fungi.

20 *Phytophthora infestans*

1, 3, 6, 8, 13, 14, 17-21, 22, 23, 25, 27, 29, 31-34, 37-46, 59, 62-64, 66, 68-
71, 85, 87, 95, 98, 101, 107, 110, 122-124, 128, 130, 132, 171, 173, 180
and 701.

Plasmopara viticola

25 1, 3, 13, 14, 15, 17-21, 22, 23, 25, 27, 29, 31-34, 37, 39, 41-46, 59, 63, 64,
66, 69, 71, 84, 86, 87, 102-110, 124, 128, 130, 132, 150 and 171.

Erysiphe graminis f. sp. *tritici*

16, 25, 28, 146, 147, 148, 151, 155, 156, 165, 150 and 151.

Pyricularia oryzae

30 16, 25, 31, 38, 41, 45, 65, 89, 97, 146, 157, 169, 150, 151, 152, 156, 158
and 176.

Leptosphaeria nodorum

15, 16, 18, 22, 33, 34, 92, 63, 128, 130, 143, 149 and 150.

Botrytis cinerea

35 127, 130, 134 and 139

CLAIMS

1 The use of compounds of formula I and salts thereof as phytopathogenic fungicides

wherein

A^1 is substituted 2-pyridyl;

A^2 is optionally substituted phenyl;

L is $-(\text{C}=\text{O})-$, $-\text{SO}_2-$ or $-(\text{C}=\text{S})-$;

10 R^1 is hydrogen, optionally substituted alkyl or acyl; and
 R^2 is hydrogen or optionally substituted alkyl.

2 A compound of formula I as described in claim 1 and salts thereof, in which
 A^1 is a 2-pyridyl group having substituents at the 3 and/or 5 position and
15 no other position, R^1 and R^2 are hydrogen and A^2 and L are as defined in
claim 1.

20 3 A pesticidal composition comprising compounds as defined in claim 1 or
claimed in claim 2 in admixture with an agriculturally acceptable diluent or
carrier.

25 4. A method of combating phytopathogenic fungi, at a locus infested or liable to
be infested therewith, which comprises applying to the locus a compound of
formula I as defined in claim 1 or claimed in claim 2.

5 25 5 A process for preparing intermediate compounds of formula IIa

(IIa)

comprising the steps of:

a) reacting under basic conditions, compounds of formula IV with compounds of formula V to give intermediates of formula VI.

b) converting intermediates of formula VI to intermediates of formula VII,

and

c) converting intermediates of formula VII to compounds of formula IIIa.

wherein

R^a and R^b , which may be the same or different, are alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclyl or phenyl, each of which may be substituted (preferably optionally substituted phenyl);

E^1 is both an electron withdrawing group and a group which may be replaced by hydrogen using methodology known to the skilled chemist in accordance with step c) (preferably a carboxy group or a carboxy ester group);

X^1 is a leaving group; and

A^1 and R^1 are as defined in claim 1.

20

5 As intermediates, compounds of formula IIb and salts thereof,

(IIb)

wherein A^1 is defined in claim 1 and R^1 is optionally substituted alkyl.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 99/00304

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07D213/61 C07D213/26 C07D401/12 C07D213/85 C07D213/65
A01N43/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 262 393 A (SHELL AGRAR GMBH & CO KG) 6 April 1988 see claim 1; examples ---	1-5
A	DE 44 34 637 A (HOECHST SCHERING AGREVO GMBH) 4 April 1996 see claims; table 1 ---	1-5
A	DE 24 17 763 A (BAYER AG) 30 October 1975 see claim 1; example 22 ---	1,2
X	EP 0 356 234 A (FUJISAWA PHARMACEUTICAL CO) 28 February 1990 see preparation 10: 2-(1-aminoethyl)-4-methylpyridine -----	6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

21 May 1999

Date of mailing of the international search report

29/06/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Bosma, P

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No.

PCT/GB 99/00304

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
EP 0262393	A	06-04-1988	DE 3629441 A DE 3702964 A AT 84298 T AU 610079 B AU 7766787 A CA 1311240 A CN 1019485 B DE 3783415 A DK 451887 A EG 18578 A ES 2043625 T GR 3006845 T JP 2632863 B JP 63132867 A JP 9118659 A PT 85616 A,B KR 9611716 B	03-03-1988 11-08-1988 15-01-1993 16-05-1991 03-03-1988 08-12-1992 16-12-1992 18-02-1993 01-03-1988 30-07-1993 01-01-1994 30-06-1993 23-07-1997 04-06-1988 06-05-1997 01-09-1987 30-08-1996
DE 4434637	A	04-04-1996	AU 3607095 A BR 9509083 A WO 9610016 A EP 0784615 A JP 10506115 T US 5852042 A ZA 9508117 A	19-04-1996 21-10-1997 04-04-1996 23-07-1997 16-06-1998 22-12-1998 06-09-1996
DE 2417763	A	30-10-1975	AT 346326 B AT 267775 A BE 827777 A CH 612683 A DK 154675 A FR 2267100 A JP 50137972 A JP 50142738 A LU 72252 A NL 7504234 A US 4006239 A	10-11-1978 15-03-1978 10-10-1975 15-08-1979 12-10-1975 07-11-1975 01-11-1975 17-11-1975 17-03-1976 14-10-1975 01-02-1977
EP 0356234	A	28-02-1990	AT 105554 T DE 68915225 D DE 68915225 T JP 2104578 A US 5047411 A	15-05-1994 16-06-1994 18-08-1994 17-04-1990 10-09-1991

