Notes of "Basic Lemmas Connected with the Completeness of the Real Numbers"

Jinxin Wang

1 Overview

- The Nested Interval Lemma
 - Definition: A sequence of elements of a set
 - Definition: A sequence of nested intervals
 - Lemma: The Nested Interval Lemma
- The Finite Covering Lemma
 - Definition: A cover of a set
 - Lemma: The Finite Covering Lemma
- The Limit Point Lemma
 - Definition: A limit point of a set
 - Lemma: The Limit Point Lemma

2 The Nested Interval Lemma (Cauchy-Cantor Principle)

Definition 1 (A Sequence of Elements of a Set). A function $f : \mathbb{N} \to X$ of a natural-number argument is called a sequence or, more fully, a sequence of elements of X.

Definition 2 (A Sequence of Nested Intervals). Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of sets. If $X_1 \supset X_2 \supset \cdots \supset X_n \supset \cdots$, that is $X_n \supset X_{n+1}$ for all $n \in \mathbb{N}$, we say the sequence is nested.

Lemma 1 (The Nested Interval Lemma, or Cauchy-Cantor Principle). For any nested sequence $I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$ of closed intervals, there exists a point $c \in \mathbb{R}$ belonging to all of these intervals.

If in addition it is known that for any $\epsilon > 0$ there is an interval I_k whose length $|I_k|$ is less than ϵ , then c is the unique point common to all the intervals.

证明. Hint: By the least upper bound principle.

• Let $I_i = [a_i, b_i], i \in \mathbb{N}^+$. Since $I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$, we have

$$a_1 \le a_2 \le \dots \le a_n \le \dots$$

$$b_1 \ge b_2 \ge \cdots \ge b_n \ge \cdots$$

- Let $A = \{a_i \mid i \in \mathbb{N}^+\}$, and $B = \{b_i \mid i \in \mathbb{N}^+\}$. $\forall i \in \mathbb{N}^+$, a_i is a lower bound of B, and b_i is an upper bound of A. According to the least upper bound principle, there exist $s = \sup A$ and $i = \inf B$.
- We claim that $s \leq i$. Suppose that s > i, then there exists $j, k \in \mathbb{N}^+$ such that $a_j > b_k$, which is contradictory to our condition about the order between elements of A and B. Therefore, $C = \{c \mid \sup A \leq c \leq \inf B\}$ contains the only real numbers that belong to all intervals.
- If for any $\epsilon > 0$ there is an interval I_k whose length $|I_k|$ is less than ϵ , then we claim that s = i. If s < i, then let d = i s > 0, and for all intervals their lengths should be greater than or equal to d, which is contradictory to that there exists I_k whose length $|I_k| < d$. Hence C contains only one element, which is $\sup A(\inf B)$.

Remark 1. Notice the sequence of nested intervals are closed intervals. From the proof we can see, if the sequence of nested intervals are open intervals, the unique point $\sup A(\inf B)$ might be one of the endpoints of all intervals and thus is not included in the sequence of intervals. Example: $\{I_n\}$ where $I_n = (0, \frac{1}{n})$.

3 The Finite Covering Lemma (Borel-Lebesgue Principle)

Definition 3 (A Cover of a Set). A system $S = \{X\}$ of sets X is said to cover a set Y if $Y \subset \bigcup_{X \in S} X$, that is, if every element $y \in Y$ belongs to at least one of the sets X in the system S.

Lemma 2 (The Finite Covering Lemma, or Borel-Lebesgue Principle). Every system of open intervals covering a closed interval containing a finite subsystem that covers the closed interval.

4 The Limit Point Lemma (Bolzano-Weierstrass Principle)

Definition 4 (A Limit Point of a Set). A point $p \in \mathbb{R}$ is a limit point of the set $X \subset \mathbb{R}$ if every neighborhood of the point contains an infinite subset of X.

Remark 2. An equivalent condition is that every neighborhood of p contains at least one point of X different from p itself.

Remark 3. The concept of a limit point is 相对的. It is clear from the definition that we must specify the set of a limit point. A limit point of a set $X_1 \subset \mathbb{R}$ might not be a limit point in terms of another set $X_2 \subset \mathbb{R}$. For example, a finite point set $X \subset \mathbb{R}$ can never have a limit point since it does not have any infinite subset.

Lemma 3 (The Limit Point Principle, or Bolzano-Weierstrass Principle). Every bounded infinite set of real numbers has at least one limit point.

证明. Hint: By the finite covering lemma and proof by contradiction.

- Let $X \subset \mathbb{R}$ be the bounded infinite set of real numbers. Since it is bounded, there exists a closed interval I such that $X \subset I$.
- Assume that $\forall p \in \mathbb{R}$ is not a limit point of X, and hence there exists a neighborhood U(p) of p that contains only a finite subset of X.

证明. Hint: By the nested interval lemma.