

Prototipação Digital

Prof. Ms. Bruna Fernandes Flesch

Logisim

Disponível a partir do link:

https://sourceforge.net/projects/circuit/

Números sinalizados

Representação sinal-magnitude

- Utilizado para representarmos números com sinal;
- Geralmente, o bit mais significativo (MSB) é utilizado para representar o sinal (positivo ou negativo);
- Os demais bits representam a magnitude do número.

Inteiro	Sinal-magnitude	Complemento de 1 (Complemento de cada um dos bits do número	Complemento de 2 (Some 1 ao complemento de 1)	1 + 1 = 10 1 + 1 + 1 = 11 Carry = bit de transporte
_	-	positivo)		_
7	<u>0</u> 111	0111	0111	
6	<u>0</u> 110	0110	0110	_
5	<mark>0</mark> 101	0101	0101	
4	0100	0100	0100	
3	<mark>0</mark> 011	0011	0011	
2	0010	0010	0010	
1	0001	0001	0001	
0	0000	0000	0000	
-1	1001	1110	1111	
-2	1010	1101	1110	
-3	<mark>1</mark> 011	1100	1101	
-4	1010	1011	1100	
-5	1101	1010	1011	
-6	1110	1001	1010	
-7	1 111	1000	1001] ([
-8	-		1000	
-0	1010	-	-	

- Na representação em complemento de 1 invertem-se todos os bits de um número para representar o seu complementar: assim, se converte um valor positivo para um negativo, e vice-versa. Quando o bit mais à esquerda é 0, esse valor é positivo; se for 1, então é negativo.
- O problema desta representação é que existem 2 padrões de bits para o 0, havendo assim desperdício de representação.

```
100_{10} = \frac{01100100}{2} (com 8 bits)
```

 $O_{10} = 000000000_2 = 111111111_2$

- A solução encontrada consiste em representar os números em complemento de 2. Para determinar o negativo de um número, inverte-se todos os seus bits e soma-se uma unidade;
- O bit da esquerda indica o sinal;
- Possui processo para converter um número de positivo para negativo e de negativo para positivo;
- 0 tem uma representação única: todos os bits a 0;
- A gama de valores que é possível representar com n bits é -2ⁿ⁻¹ ... 2ⁿ⁻¹-1.

```
101_{10} = 01100101_{2} \text{ (com 8 bits)}
\frac{10011010_{2}}{10011010_{2}} + 1 = 10011011_{2} = -101_{10}
```


Ex.: Qual o número representado por 11100100₂ (com 8 bits)?

int de parde

Exercício 1:

Seja o número **Q**1010110₂ na representação em complemento de 2 (com 8 bits). Obtenha seu valor em decimal bem como o seu complemento de 2

Exercício 1:

Seja o número 010101102 na representação em complemento de 2 (com 8 bits). Obtenha seu valor em decimal bem como o seu complemento de 2

```
01010110_2 = +86_{10}
2^6 + 2^4 + 2^2 + 2^1 = 64 + 16 + 4 + 2 = +86_{10}
10101010_2 = -86_{10}
-2^7 + 2^5 + 2^3 + 2^1 = -128 + 32 + 8 + 2 = -86_{10}
```

```
01010110_2 = +86_{10}
10101001_2 (VALOR INVERTIDO)
1_2 (SOMA 1)

10101010<sub>2</sub> = -86<sub>10</sub>
```


I) Dois números positivos: A adição de dois números positivos e direta.

+9	0	1001			
+4	0	0100			
+13	0	1101			

II) Um número positivo e um outro menor e negativo: o número negativo deve estar na forma de complemento a 2. A soma é feita sobre todos os bits, inclusive os bits de sinal. O carry (vai um) gerado na última posição (MSB) é sempre descartado.

III) Um número positivo e um outro maior e negativo:

-9	1	0111
+4	0	0100
-5	1	1011

IV) Dois números negativos:

$$4 = \frac{100}{2}$$

$$0 11$$

$$-4 = \frac{1}{0}$$

$$-13 = 1 = 1$$

$$0 10$$

$$-13 = 1 = 1$$

$$0 10$$

$$0 11$$

$$0 10$$

$$0 11$$

$$0 00$$

$$0 00$$

$$0 00$$

Para gonanti que es openandos têm e mesmo tamanto

V) Dois números iguais em magnitude mas de sinais contrários:

Projeto de um somador completo (full-adder)

a) Defina a tabela verdade;

Identifique os termos que atuarão cada bit de saída e represente sua expressão lógica (uma para cada bit);

c) d)	Simplifique a expressão; Represente o circuito.	Augend bit input	Addend bit input	Carry bit input		Sum bit output	Carry bit output		В	
		Α	В	CIN		S	Cout		1	
		0	0	0		0	0		*	
		0	0	1		1	0			100
		0	1	0		1	0			→ S
		0	1	1		0	1			
		1	0	0		1	0	C _{IN} —	FA	
		1	0	1		0	1			
		1	1	0		0	1			C _{OUT}
		1	1	1		1	1			
			1		Self)				↑ A	

Projeto de um somador completo (full-adder)

- a) Defina a tabela verdade;
- b) Identifique os termos que atuarão cada bit de saída e represente sua expressão lógica (uma para cada bit);
- c) Simplifique a expressão;
- d) Represente o circuito.

$$S = \overline{A} \, \overline{B} C_{\text{IN}} + \overline{A} \overline{B} \overline{C}_{\text{IN}} + A \overline{B} \overline{C}_{\text{IN}} + A B C_{\text{IN}}$$

$$C_{\text{OUT}} = \overline{A} B C_{\text{IN}} + A \overline{B} \overline{C}_{\text{IN}} + A B C_{\text{IN}}$$

$$S = \overline{A} (\overline{B} C_{\text{IN}} + B \overline{C}_{\text{IN}}) + A (\overline{B} \, \overline{C}_{\text{IN}} + B C_{\text{IN}})$$

$$C_{\text{OUT}} = B C_{\text{IN}} (\overline{A} + A) + A C_{\text{IN}} (\overline{B} + B) + A B (\overline{C}_{\text{IN}} + C_{\text{IN}})$$

$$S = \overline{A} (B \oplus C_{\text{IN}}) + A (\overline{B} \oplus C_{\text{IN}})$$

$$= B C_{\text{IN}} + A C_{\text{IN}} + A B$$

$$S = \overline{A} \cdot X + A \cdot \overline{X} = A \oplus X$$

Projeto de um somador completo (full-adder)

- a) Defina a tabela verdade;
- b) Identifique os termos que atuarão cada bit de saída e represente sua expressão lógica (uma para cada bit);
- c) Simplifique a expressão;
- d) Represente o circuito.

pede-re utilisee um half-adder, mer qual er carrel é despropede.

Prototipação Digital

Prof. Ms. Bruna Fernandes Flesch

UNISINOS DESAFIE O AMANH

Multiplexadores

- São circuitos combinacionais utilizados para fazermos a seleção de dados;
- Também conhecidos como "data selectors";
- Possui diversas entradas e, a partir de uma entrada de controle (geralmente chamada seletor) realiza o roteamento da entrada selecionada para a saída.

UNISINOS

O AMANHÃ.

Multiplexador de duas entradas

Multiplexador de quatro entradas

Prototipação Digital

Discussão

Podemos desenvolver um circuito subtrator com uso do circuito de full adder. Isto significa que, com o mesmo circuito, pode-se tanto a operação soma, quanto a de subtração.

O circuito para subtrair A - B consiste em um somador com inversores colocados entre cada entrada de dados B e a entrada correspondente do somador completo.

O carry in (transporte de entrada) C0 deve ser igual a 1 quando a subtração é realizada.

A operação assim realizada torna-se A mais o complemento de 1 de B mais 1.

Isso é igual a A mais o complemento de 2 de B.

Subtrator

Projeto de GA

Referências Bibliográficas

- Notas de aula Prototipação Digital Rodrigo Marques de Figueiredo Unisinos.
- Notas de aula Prototipação Digital Eduardo Rhod Unisinos.
- Notas de aula Prototipação Digital Sandro Binsfeld Ferreira Unisinos.
- VHDL Descrição e Síntese de Circuitos Digitais, 2ª Edição, Roberto D´Amore, Editora LTC, 2015.

OBRIGADO.

