252-0027 Einführung in die Programmierung

1.0 EBNF

Thomas R. Gross

Department Informatik ETH Zürich

EBNF Regel besteht aus:

 $LHS \leftarrow RHS$

- Linke-Seite (Left-Hand Side, LHS)
- Rechte-Seite (Right-Hand Side, RHS)
- (trennt LHS von RHS, ausgesprochen «ist definiert als»)

LHS

Ein Wort (kursiv, kleingeschrieben) – der Name der EBNF Regel

RHS

- Die genaue Beschreibung für den Namen (d.h., der LHS) durch
 - Zeichen (stellen das Zeichen da, d.h. wir erwarten dieses Zeichen und kein anderes) – nicht kursiv
 - Namen (von EBNF Regeln) kursiv und kleingeschrieben
 - Kombinationen der vier Kontrolelemente («control forms») (auf folgenden Seiten)

Control forms (zum Kombinieren)

- Aufreihung
- Auswahl, Option (Entscheidung)
- Wiederholung (kann auch Option «0 Wiederholungen» sein)
- Rekursion

1.5 Rekursion

Positive (ganze) Zahlen

- EBNF Regel pos_integer soll ganze Zahlen ohne Vorzeichen beschreiben
 - Wir haben eine Regel für Ziffern: digit \leftarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- Erster Versuch

Mehr davon

Positive (ganze) Zahlen

- EBNF Regel pos_integer soll ganze Zahlen ohne Vorzeichen beschreiben
 - Wir haben eine Regel für Ziffern: digit \leftarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- Erster Versuch

```
pos_integer ← digit ......
```

pos_integer ← { digit }
ε ist legale positive Zahl

Einfache Wiederholung nicht was wir wollen

Positive (ganze) Zahlen

- EBNF Regel pos_integer soll positive Zahlen ohne Vorzeichen beschreiben
 - Wir haben eine Regel für Ziffern: digit \leftarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- Erster Versuch

```
pos_integer ← digit ......
```

pos_integer ← { digit }
ε ist legale positive Zahl

- Einfache Wiederholung nicht was wir wollen
 - Aber vielleicht ein Anfang

Option – kann, muss aber nicht dabei sein

- Was wenn wir den Namen einer Regel auf der rechten Seite dieser Regel verwenden?
 - Mit Option können alle ganzen Zahlen ohne Vorzeichen beschreiben

```
pos_integer ← digit [ pos_integer ]
```

pos_integer ← digit [pos_integer]

Beispiele für legale Symbole

Name der LHS auch auf der RHS

 Es muss (mindestens) einen Weg geben, Namen der LHS durch eine RHS ohne diesen Namen zu ersetzen

```
pos_integer ← digit [ pos_integer ]
```

Nicht-Wahl der Option: Nur digit auf der RHS

```
Andere Möglichkeit
```

```
<mark>pos_integer</mark> ← ( <mark>digit</mark> pos_integer ) | ε
```

```
Ohne Klammern: Aufreihung bindet stärker als Auswahl
```

```
digit pos_integer
digit 

pos_integer

digit pos_integer

digit pos_integer

digit digit pos_integer

digit digit $\text{digit}$ $\text{digit}$
```

pos integer

Name der LHS auch auf der RHS

 Es muss (mindestens) einen Weg geben, Namen der LHS durch eine RHS ohne diesen Namen zu ersetzen

```
pos_integer ← digit [ pos_integer ]
```

Nicht-Wahl der Option: Nur digit auf der RHS

Andere Möglichkeit

```
pos_integer ← digit pos_integer | ε

Lässt ε als
«Zahl» zu ...
```

```
digit pos_integer
digit ε
digit

pos_integer
digit pos_integer
digit digit pos_integer
digit digit ε
```

diait diait

12

pos_integer

Rekursive Regel

- Regel ist rekursiv: ihr Name wird in der Definition verwendet pos_integer ← digit [pos_integer]
- Beschreibung ist rekursiv: mindestens eine rekursive Regel

Rekursion

- Rekursive Beschreibung enthält rekursive Regeln
 - Eine Regel ist direkt rekursiv wenn ihr Name in der Definition verwendet wird
 - Also die LHS erscheint auch auf der RHS
 - $r \leftarrow |Ar|$
 - $r \leftarrow | (Ar)$ falls Sie Unklarheit vermeiden wollen
 - $r \leftarrow \varepsilon \mid (Ar)$ falls Sie alle Unklarheiten vermeiden wollen
- EBNF Description r beschreibt Folge von null oder mehr A Zeichen

Aus dem Archiv ...

Rekursive Regel

Regel ist rekursiv: ihr Name wird in der Definition verwendet

```
pos_integer ← digit [pos_integer]
```

Hätten wir auch anders machen können

```
pos_integer ← digit { digit }
```

- Warum der Aufwand?
 - Wären nicht (in den Beispielen)

```
r \Leftarrow \{A\}
pos_number \Leftarrow digit \{ digit \} gut genug?
```

- Kann jede Rekursion durch Wiederholung(en) ausgedrückt werden?
- Kann jede Wiederholung durch Rekursion ausgedrückt werden?

SKUSSION

$$A - A B - B$$
 $A - A B - B$
 $A - A B -$

- Kann jede Rekursion durch Wiederholung(en) ausgedrückt werden?
 - Nein
 - Finden Sie Beschreibung für Aⁿ Bⁿ (n Zahl ≥ 0: also gleiche Anzahl A, B)

EBNF Description balance

```
balance \Leftarrow \varepsilon \mid A \text{ balance } B
```

balance $\Leftarrow \varepsilon \mid (A balance B)$

- Kann jede Wiederholung durch Rekursion ausgedrückt werden?
 - Ja
 - Werden später noch mehr über Rekursion vs. Wiederholung(en) erfahren

Direkte Rekursion

 $r \leftarrow A \mid Ar$

Indirekte Rekursion

• Folge von Regeln N_1 ... N_k so dass N_2 auf der RHS von N_1 , N_3 auf der RHS von N_2 , ... und N_1 auf der RHS von N_k erscheint

```
name2 \Leftarrow (name1 B) | (X B)

name1 \Leftarrow A name2
```

Direkte Rekursion

 $r \leftarrow A \mid Ar$

Indirekte Rekursion

• Folge von Regeln N_1 ... N_k so dass N_2 auf der RHS von N_1 , N_3 auf der RHS von N_2 , ... und N_1 auf der RHS von N_k erscheint

■ Beschreibung von name1: AXB, AAXBB,

Zusammenfassung: Ableitungsbaum, Tabellen, Graphen

- Ein Ableitungsbaum oder eine Tabelle demonstrieren, dass ein Symbol legal gemäss einer EBNF Beschreibung ist.
 - In beiden Fällen kürzen wir die Schritte manchmal ab wenn keine Verwechslungsgefahr besteht.
- Ein (EBNF) Graph ist eine andere Darstellung einer EBNF Beschreibung
 - Ein Pfad durch den Graphen entspricht einem Symbol das legal ist
 - Umgekehrt: um zu zeigen, dass ein Symbol legal ist, finden wir einen Pfad
 - Graph für rekursive Beschreibung: nicht elegant (muss endlich sein!)

$r \Leftarrow B \mid A r$

Ist AAB legal? -- Tabelle

	Regel
r	Anfang jeder Tabelle
B Ar	Ersetzen von r durch RHS (1)
Ar	2. Auswahlmöglichkeit gewählt (2)
A(B Ar)	Ersetzen von r durch RHS (1), () zur Vermeidung von Missverständnissen
AAr	2. Auswahlmöglichkeit gewählt (2)
AA(B Ar)	Ersetzen von r durch RHS (1)
A A B	1. Auswahlmöglichkeit gewählt (2)

$$r \leftarrow B \mid A r$$

Ist AAB legal? -- Ableitungsbaum (Version 1)

In jeder Zeile wird eine EBNF Beschreibung durch eine rechte Seite ersetzt (hier immer A *r*, bis auf den letzten Schritt)

- Ist AAB legal? -- Ableitungsbaum (Version 2)
- Wir fassen Schritt 1 (Ersetzen der RHS) mit Schritt 2 (Auswahl treffen) zusammen
 - Unwichtiges lassen wir weg

$r \leftarrow \varepsilon \mid Ar \quad oder \quad r \leftarrow \mid Ar$

- Ist AA legal? -- Ableitungsbaum (Version 2)
- Wir fassen Schritt 1 (Ersetzen der RHS) mit Schritt 2 (Auswahl treffen) zusammen
 - Unwichtiges lassen wir weg

EBNF Beispiel (i1) nochmal

```
EBNF Description: integer

digit \Leftarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9

integer \Leftarrow [+|-]digit\{digit\}
```

Beispiel

Substitution

- Können einen Syntax Graphen in einen anderen einsetzen
 - «interne» Namen verschwinden
- EBNF Beschreibung

 Alle Graphen für Regeln der Beschreibung zusammen

Eine EBNF Regel zur Beschreibung der Menge der legalen Symbole. $g \Leftarrow ???$

1.

Poll

Poll

EBNF Geschichte

- BNF enthielt erst nur Rekursion und Auswahl
 - Diese sind essential
- Option und Wiederholung von Niklaus Wirth hinzugefügt
 - Daher «E» extended
 - Machen Beschreibung einfacher zu lesen
 - Motivation: Beschreibung von Pascal

Nochmal integer

```
EBNF Description: integer (using BNF not EBNF) sign \iff |+|-digit \iff 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 digits \iff | digit digits integer \iff sign digit digits
```

EBNF

Das war's.