Whiting School of Engineering Department of Computer Science Johns Hopkins University

CS.605.441.31
Principles of Database Systems

Database Project:
Design of a Database for a Record Shop

Darrell Nabors

Professor: Dar-Ning Kung, Ph.D.

December 1, 2010

Table of Contents

List Of Figures	4
1. Introduction	5
1.1. Scope and Purpose of Document	5
1.2. Project Objective	5
2. System Requirements	6
2.1. Hardware Requirements	6
2.2. Software Requirements	6
2.3. Functional Requirements	7
3. Database Design Description	8
3.1. Design Rationale	8
3.2. E/R Model	9
3.2.1. Entities	9
3.2.2. Relationships	10
3.2.3. E/R Diagram	11
3.3. Relational Model	12
3.3.1. Data Dictionary	12
3.4. Using MySQL and Sequel Pro	15
4. Implementation Description	16
4.1. Data Dictionary	16
4.2. Queries	19
4.2.1. Checking Inventory	19
4.2.2. Checking Titles for a Particular Artist	20
4.2.3. List of Sales for Second Half of Year	20
4.2.4. Checking a Customer's Wish List	21
4.2.5. Checking Sales for a single customer	21
5. CRUD Matrix	22
5.1. List of Entity Types	22

Table of Contents

5.2. List of Functions	23
5.3. CRUD Matrix	24
6. Conclusion	25
Appendices	26
A. Test Data	26
References	34

List of Figures

1. Figure 3.1	ER Diagram for a Record Shop1	1
2. Figure 4.1	Inventory Query1	9
3. Figure 4.2	Artist Query20	C
4. Figure 4.3	Second Half of Year Revenue2	0
5. Figure 4.4	Checking Wish List2	1
6. Figure 4.5	Query for Single Customer Sales2	

1. INTRODUCTION

1.1. SCOPE AND PURPOSE

The purpose of this document is to illustrate the different phases that went into designing a database project for a retail record store. The scope of this project includes the basic design of a database that will used in the assistance of managing the basic operations of a record store.

1.2. PROJECT OBJECTIVE

The goal of this project is to design and implement a database, using a relational and SQL-based DBMS, that captures all informational aspects of a record store. The will encompass the typical operations of a record store, including maintaining inventory, supporting the ordering process, gathering customer information, and customer service.

2. SYSTEM REQUIREMENTS

2.1. Hardware

System: Apple MacBook Pro

Processor: 2.4 GHz Intel Core 2 Duo

Memory: 2GB 1067 MHz DDR3

2.2. Software

Mac OS X, version 10.6.5 MySQL Community Server Edition, version 5.1.53 MySQL Workbench, version 5.2.28, revision 6725

2. SYSTEM REQUIREMENTS

2.3 FUNCTIONAL REQUIREMENTS

- Track the current inventory of records using the Universal Product Code(UPC)
- Add or edit records by record store employees
- Place of one or more selected items in the customer's shopping cart
- Enable customers to view items in their shopping carts
- Login for existing customers or register new customers who decide to place an order
- Gather information from the customer needed to complete the order (e.g., payment and delivery methods, etc.)
- Issue an order confirmation for each order
- Keep track of shipments and charges by shipping invoice
- Enable the staffs to generate ordering statistics for internal research, including monthly, quarter and annual sales
- Enables the staffs to pull out the order with customer's last name
- Acquire of information for establishing a customer profile (name, address, phone, etc.) when customers create a customer account
- Collect customer's credit card information either at the time they establish their account, or when placing their order
- Allow customers to update their own account information (name, address, phone, credit card, etc.)
- Collect customer's comments by providing a form with a multiple choice section (unsatisfied, fair, good or excellent)
- Generate reports:
 - Annual, Monthly, and Quarterly Sales Report
 - Artist, Label, and Album Information
 - Reorder Report
 - Customer Expenditure Report
 - Customer/Number of Orders
 - Albums Returned within the past 30 days
 - Unsatisfied Customers Information

3.1. DESIGN RATIONALE

In designing the Entity-Relationship Model for the record store, two major things had to be taken into consideration. The first thing was the process of the release of an album and how it travels to the shelves at the record store. The second point was the process of the transaction of purchasing the record. Research was done to determine the best model that would resemble the operations of a record store. Models that was found to closely resemble the operations of a record store were the models for online bookstores. These basic principles were implemented in the designing the ER model for a record store.

In tracking the albums in the record store, it was decided to use the Universal Product Code (UPC). In retail operations, many of the world's items are tracked by their UPC code. This was also observed in retail record shops across the country. Therefore, the UPC code will be the primary key for identifying and tracking the albums (in the Album table).

The tables that were chosen for the database (listed in section 3.2.1) were chosen for the fact that those basic tables are used in many online retail databases.

The primary keys for the tables (Artist, Label, Customer, Order, Payment Method, Employee and other) are used to reference each other within the database. Initially, the data type for the primary keys were integers. However, in trying to insert data into the primary key fields, a problem was encountered in which the maximum for the integer value was reached. The maximum value for the 2147483647. However, most of the UPC codes will have a numeric value higher than the max value allowed by the DBMS. Therefore, all of the data variables that are numeric but are not used in any calculations are of the character type. This change in the design will be reflected in section 4.1 (data dictionary).

3.2. Entity Relationship Model

3.2.1 List of Entities

Entity	Description
CUSTOMER	contains customer information
ALBUM	holds information on recording being sold
LABEL	contains information on record label of album
ARTIST	information on recording artist
DISTRIBUTOR	information on distributor (warehouse)
EMPLOYEE	information on store employees
ORDER	information on customer order
PAYMENT METHOD	holds credit card information on customer
PAYMENT	information on the actual payment of an order
INVOICE	information on an order invoice
WISH LIST	holds albums for customers for possible purchase
SHIPPING	holds shipping information for store
ORDER_ALBUM	holds the album being ordered by customer

3.2. Entity Relationship Model

3.2.2 Relationships

The following are the relationships that take place between the entities in the ER diagram.

Entity	Relationships	Entity	Cardinality	Type
Customer	creates	Order	1:M	identifying
Customer	creates	Wish List	1:1	non-identifying
Customer	creates	Payment Method	1:M	non-identifying
Wish Lists	holds	Albums	M:M	identifying
Label	releases	Album	1:M	non-identifying
Distributors	sell	Albums	M:M	identifying
Artist	records	Album	1:M	non-identifying
Employee	processes	Order	1:M	non-identifying
Orders	contain	Albums	M:M	identifying
Payment Method	is used for	Payments	1:M	non-identifying
Payment	is applied to	Order	1:1	non-identifying

3.2. Entity Relationship Model

3.2.3 Entity Relationship Diagram

Figure 3.1 ER Diagram for a Record Shop

3.3. Relational Model

3.3.1 Database Dictionary

TABLE	Field Name	Data Type/Size	Key/Value
CUSTOMER	custEmail	VARCHAR(45)	PK/ NOT NULL
	lastName	VARCHAR(45)	NOT NULL
	firstName	VARCHAR(45)	
	address	VARCHAR(45)	
	city	VARCHAR(45)	
	state	VARCHAR(2)	
	zip	INT(5)	
	country	VARCHAR(45)	
	phone	INT(10)	
	favArtist	VARCHAR(45)	
	favGenre	VARCHAR(45)	
ALBUM	UPCnum	INT(10)	PK/ NOT NULL
	title	VARCHAR(45)	NOT NULL
	year	YEAR	NOT NULL
	price	DECIMAL(2)	NOT NULL
	format	VARCHAR(2)	NOT NULL
	quantityC	INT(3)	NOT NULL
	quantityD	INT(3)	NOT NULL
	artistID	INT(7)	FK/NOT NULL
	labelID	INT(7)	FK/NOT NULL
LABEL	labelID	INT(7)	PK/ NOT NULL
	labelName	VARCHAR(45)	NOT NULL
	URL	VARCHAR(45)	
	city	VARCHAR(45)	
	state	INT(5)	
	zip	VARCHAR(2)	
	country	VARCHAR(45)	
	phone	INT(10)	
ADTIOT	artictID	INIT/7\	PK/ NOT NULL
ARTIST	artistID	INT(7)	
	name	VARCHAR(45)	NOT NULL
	phone	INT(5)	
	URL	VARCHAR(45)	

3.3. Relational Model

3.3.1 Database Dictionary

TABLE	Field Name	Data Type/Size	Key/Value
DISTRIBUTOR	distributorID	INT(7)	PK/ NOT NULL
	name	VARCHAR(45)	
	city	VARCHAR(45)	
	state	VARCHAR(2)	
	zip	INT(5)	
	country	VARCHAR(45)	
	phone	INT(10)	NOT NULL
EMPLOYEE	employeeID	INT(7)	PK/ NOT NULL
	lastName	VARCHAR(45)	NOT NULL
	firstName	VARCHAR(45)	NOT NULL
	address	VARCHAR(45)	
	city	VARCHAR(45)	
	state	VARCHAR(2)	
	zip	INT(5)	
	phone	INT(10)	NOT NULL
ORDER	OrderID	INT(7)	PK/ NOT NULL
	orderStatus	VARCHAR(20)	NOT NULL
	orderDate	DATETIME	NOT NULL
	orderShipDate	DATETIME	
	custEmail	VARCHAR(45)	PK/NOT NULL
	employeeID	INT(7)	FK/NOT NULL
PAYMENT METHOD	pmID	INT(7)	PK/ NOT NULL
	ccNUM	INT(16)	NOT NULL
	cardHolder	VARCHAR(45)	NOT NULL
	expDate	DATE	NOT NULL
	cardType	VARCHAR(4)	NOT NULL
	custEmail	VARCHAR(45)	NOT NULL
PAYMENT	paymentID	INT(7)	PK/ NOT NULL
	name	VARCHAR(45)	NOT NULL
	amount	DECIMAL(2)	NOT NULL
	pmID	INT(5)	FK/NOT NULL
	OrderID	INT(7)	FK/NOT NULL
	custEmail	VARCHAR(45)	FK/NOT NULL

3.3. Relational Model

3.3.1 Database Dictionary

TABLE	Field Name	Data Type/Size	Key/Value
INVOICE	invoiceID	INT(7)	PK/ NOT NULL
	invoiceDate	DATETIME	NOT NULL
WISHLIST	basketID	INT(7)	PK/ NOT NULL
	CustEmail	VARCHAR(45)	FK/NOT NULL
SHIPPING	abinainaID	INIT/7\	PK/ NOT NULL
Shipping	shippingID	INT(7)	PK/ NOT NULL
	description	VARCHAR(45)	NOT NULL
	shippingCost	DEMICAL(2)	NOT NULL
ALBUM_DISTRIBUTOR	UPCnum	INT(10)	PK/ NOT NULL
	distributorID	INT(7)	PK/ NOT NULL
WISHLIST_ALBUM	UPCnum	INT(10)	PK/ NOT NULL
WIGHEIGT_XEBOW	cartID	INT(7)	PK/ NOT NULL
ORDER_ALBUM	UPCnum	INT(5)	PK/ NOT NULL
	OrderID	INT(5)	PK/ NOT NULL
	custEmail	VARCHAR(45)	PK/ NOT NULL
	quantity	INT(2)	NOT NULL

3.4. Using MySQL and Sequel Pro

In creating the database for the record store, MySQL, MySQL Workbench and Sequel Prowere implemented.

MySQL Workbench was used in designing the ER diagram for the database as well as entering the test data and running queries against the data. MySQL proved to be a great tool in implementing a database. The tool makes running queries very simple. It has a great user interface that is also simple to use. MySQL was also great in allowing the user to add, edit and update the data seamlessly by implementing a "worksheet" in which the user can enter data without worrying about the syntax of an SQL command.

The only drawback of using MySQL Workbench was in the error messages. For example, if there is a limit on a datatype, it will set the value of the data being entered in a particular field. to the datatype's limit. An error may be encountered when trying to enter data in that particular field if that data is at the maximum value. Usually if this occurs, the system will generate an error message that states there is a duplicate message. Therefore, the error messages do not always reflect what need to be corrected.

Sequel Pro was used very little in the implementation of this project. It was used for a few queries. However, it was determined that MySQL Workbench handled the queries better. So, the use of Sequel Pro was terminated.

The following pages are the actual data definitions that were implemented in the database as well as the sample queries that were used to test the database. For readability, another copy of the data dictionary was included with this report (dbDictionary.xls).

4.1. Database Dictionary

TABLE		Data Type/Size	Key/Value	DESCRIPTION
		٠,	,	
CUSTOMER	custEmail	VARCHAR(45)	PK/ NOT NULL	PRIMARY KEY - a unique identifier for the cus
	lastName	VARCHAR(45)	NOT NULL	the surname of the customer
	firstName	VARCHAR(45)		the first name of the customer
	address	VARCHAR(45)		the street address of the customer
	city	VARCHAR(45)		the residing city of the customer
	state	VARCHAR(2)		the residing state of the customer (2 letter abb
	zip	VARCHAR(5)		the customer's zip code
	country	VARCHAR(45)		the residing country of the customer
	phone	VARCHAR(10)		the phone contact information of the custome
	favArtist	VARCHAR(45)		the customer has a choice to list his favorite a
	favGenre	VARCHAR(45)		the customer has a choice to list his favorite g
ALBUM	UPCnum	VARCHAR(10)	PK/ NOT NULL	PRIMARY KEY - the universal product code/ v
	title	VARCHAR(45)	NOT NULL	the title of the album
	year	YEAR	NOT NULL	the year the album was released
	price	DECIMAL(5,2)	NOT NULL	retail price of the album
	format	VARCHAR(2)	NOT NULL	the media format of the album (LP, CD, etc)
	quantityC	INT(3)	NOT NULL	quantity of the particular album in stock
	quantityD	INT(3)	NOT NULL	quantity of the particular album in the distribut
	artistID	VARCHAR(7)	FK/NOT NULL	FOREIGN KEY - a unique identifier for the albu
	labelID	VARCHAR(7)	FK/NOT NULL	FOREIGN KEY - a unique identifier for the albu
LABEL	labelID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - the unique identifier for a reco
		VARCHAR(45)	NOT NULL	the name of the record label
	URL	VARCHAR(45)		the web address of the record label on the inte
	city	VARCHAR(45)		the city in which the record label is based
	state	VARCHAR(5)		the state in which the record label is based
	zip	VARCHAR(2)		the zip code in which the record label is based
	country	VARCHAR(45)		the country in which the record label is based
	phone	VARCHAR(10)		the phone contact for the label
ARTIST	artistID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - the unique identifier for an ar
	name	VARCHAR(45)	NOT NULL	the name of the artist
	phone	VARCHAR(5)		the phone contact for the artist
	URL	VARCHAR(45)		the web address of the artist on the internet

4.1. Database Dictionary

TABLE	Field Name	Data Type/Size	Key/Value	DESCRIPTION
DISTRIBUTOR	distributorID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - the unique identifier
	name	VARCHAR(45)		the name of the distributor
	city	VARCHAR(45)		the city in which the distributor is bas
	state	VARCHAR(2)		the state in which the distributor is ba
	zip	VARCHAR(5)		the zip code in which the distributor is
	country	VARCHAR(45)		the country in which the distributor is
	phone	VARCHAR(10)	NOT NULL	the phone contact for the distributor
EMPLOYEE	employeeID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - the unique identifier
	lastName	VARCHAR(45)	NOT NULL	the surname of an employee
	firstName	VARCHAR(45)	NOT NULL	the first name of an employee
	address	VARCHAR(45)		the street address of an employee
	city	VARCHAR(45)		the residing city of the customer
	state	VARCHAR(2)		the residing state of the customer (2 I
	zip	VARCHAR(5)		the zip code in which an employee re
	phone	VARCHAR(10)	NOT NULL	the phone contact information of an ϵ
ORDER	OrderID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - a unique identifier fo
	orderStatus	VARCHAR(20)	NOT NULL	the stats of an order (SHIPPED, PRO
	orderDate	DATETIME	NOT NULL	the date on which the customer place
	orderShipDate	DATETIME		the date on which the order was ship
	custEmail	VARCHAR(45)	PK/NOT NULL	PRIMARY KEY - a unique identifier fo
	employeeID	VARCHAR(7)	FK/NOT NULL	FOREIGN KEY - a unique identifier fo
PAYMENTMETHO	pmID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - a unique identifier fo
	ccNUM	VARCHAR(16)	NOT NULL	the customer's credit card number
	cardHolder	VARCHAR(45)	NOT NULL	the name to which the credit card is i
	expDate	DATE	NOT NULL	the expiration date of the credit card
	cardType	VARCHAR(4)	NOT NULL	the type of credit card being used (M
	custEmail	VARCHAR(45)	NOT NULL	FOREIGN KEY - a unique identifier fo
PAYMENT	paymentID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - a unique identifier fo
	name	VARCHAR(45)	NOT NULL	the name of the customer who issued
	amount	DECIMAL(5,2)	NOT NULL	the amount issued for payment of an
	pmID	VARCHAR(5)	FK/NOT NULL	FOREIGN KEY - a unique identifier fo
	OrderID	VARCHAR(7)	FK/NOT NULL	FOREIGN KEY - a unique identifier fo
	custEmail	VARCHAR(45)	FK/NOT NULL	FOREIGN KEY - a unique identifier fo

4.1. Database Dictionary

TABLE	Field Name	Data Type/Size	Key/Value	DESCRIPTION
INVOICE	invoiceID	VARCHAR(7)	PK/ NOT NULL	the identification number for the
	invoiceDate	DATETIME	NOT NULL	The date and time that the part
WISHLIST	basketID	VARCHAR(7)	PK/ NOT NULL	PRIMARY KEY - a unique ident
	CustEmail	VARCHAR(45)	FK/NOT NULL	FOREIGN KEY - a unique ident
SHIPPING	shippingID	VARCHAR(7)	PK/ NOT NULL	
	description	VARCHAR(45)	NOT NULL	describes the shipping method
	shippingCost	DEMICAL(5,2)	NOT NULL	the cost of the shipping method
ALBUM_DISTRIBUTOF	UPCnum	VARCHAR(10)	PK/ NOT NULL	"this is part of an intersection e
	distributorID	VARCHAR(7)	PK/ NOT NULL	to show a many-to-many relation
WISHLIST_ALBUM	UPCnum	VARCHAR(10)	PK/ NOT NULL	"this is part of an intersection e
	cartID	VARCHAR(7)	PK/ NOT NULL	to show a many-to-many relation
ORDER_ALBUM	UPCnum	VARCHAR5)	PK/ NOT NULL	"this is part of an intersection e
	OrderID	VARCHAR(5)	PK/ NOT NULL	to show a many-to-many relation
	custEmail	VARCHAR(45)	PK/ NOT NULL	album to be ordered"
	quantity	INT(2)	NOT NULL	quantity of the album ordered

4.2. Queries of Sample Data

The following queries represent simulations of some basic operations that may take place in gathering data for a record store. The SQL commands for the queries appear at the top of the figures.

4.2.1. Checking Inventory

Figure 4.1 Inventory Query

4.2.2. Checking Titles for a Particular Artist

Figure 4.2 Artist Query

4.2.3. List of Sales for 2nd Half of Year

Figure 4.3 Second Half of Year Revenue

4.2.4. Checking a Customer's Wish List

Figure 4.4 Checking Wish List

4.2.5. Checking sales for a single customer

Figure 4.5 Query for Single Customer Sales

5. CRUD Matrix

Included in this section are the entities and functions that help construct the CRUD Matrix.

5.1. Entity Types

Entity	Description
E1	CUSTOMER : information for customer
E2	ALBUM : information on recording being sold
E 3	LABEL : information on record label of recording
E 4	ARTIST : information on recording artist
E 5	DISTRIBUTOR: information on distributor (warehouse)
E 6	EMPLOYEE : information on store employees
E 7	ORDER : information on customer order
E 8	PAYMENTMETHOD : holds credit card information on customer
E 9	PAYMENT: information on the actual payment of an order
E10	INVOICE : information on an order invoice
E11	WISHLIST: holds albums for customers for possible purchase
E12	SHIPPING : holds shipping information for store
E13	ORDER_ALBUM : holds the album being ordered by customer

5. CRUD Matrix

5.2. Functions

Function	Description
F1	Create/Update/Delete/Retrieve a customer record
F2	Create/Update/Delete/Retrieve an album
F 3	Create/Update/Delete/Retrieve a record label
F4	Create/Update/Delete/Retrieve an artist
F5	Create/Update/Delete/Retrieve a distributor
F6	Create/Update/Delete/Retrieve an employee
F 7	Create/Update/Retrieve an Order
F8	Create/Retrieve an Invoice
F9	Accept Payment
F10	Retrieve/Update information about shipping options
F11	Create/Update/Retrieve/Delete customer's method of payment
F12	Create/Retrieve payment information
F13	Create/Update/Delete/Retrieve a customer's wish list

5. CRUD Matrix

5.3. CRUD Matrix

	E1	E2	E3	E4	E 5	E 6	E7	E8	E9	E10	E11	E12	E13
F1	CR UD												
F2		CR UD											
F3			CR UD										
F4				CR UD									
F5					CR UD								
F6						CR UD							
F7	R	R				R	CR U	R	CR	С		R	R
F8	R	R				R	R		R	R		R	R
F9	R						R	R	С	С		R	
F10												RU	
F11								CR UD					
F12									CR				
F13											CR UD		

6. Conclusion

Overall, the implementation of the the database for Illsound Record Store was successful. The data in the tables satisfies all of the data type constraints placed on them. Successful queries were able to be executed to display various reports for items such and inventory and quarterly sales.

Some of the problems encountered involved limits on certain numeric data types. These errors were corrected by researching the data types and implementing the necessary changes.

MySQL proved to be a valuable tool in designing and implementing the database. The only problem encountered were the cryptic error messages during implementation.

Finally, the database project was a fantastic way to gain further education on the design and implementation of a database.

A. Test Data

Album Data

A. Test Data

Artist Data

A. Test Data

Customer Data

Label Data

A. Test Data

Employee Data

Order Data

A. Test Data

Payment Method Data

Payment Data

A. Test Data

Shipping Data

Wish List Data

A. Test Data

Order_Album Data

WishList_Album Data

A. Test Data

Distributor Data

REFERENCES

- 1. R. Elmasri, S. B. Navathe, "Fundamentals of Database Systems", Sixth Edition, Addison-Wesley, 2009
- 2. "E-R Diagram for Online Bookstore", http://www.docstoc.com/docs/4199320/E-R-Diagram-for-Online-Bookstore
- 3. "CRUD Matrices", http://www.saintmarys.edu/~psmith/417act14.html
- 4. "A Simple Data Dictionary", http://www.bcarter.com/tip039.htm
- 5. "bookstoreEnglishPic_2.jpg", http://www.4shared.com/photo/1cRz2E9N/bookstoreEnglishPic_2.html
- 6. "MySQL 5.1 Reference Manual", http://dev.mysql.com/doc/refman/5.1/en/