Metody probabilistyczne

6. Momenty zmiennych losowych

Wojciech Kotłowski

Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/

14.11.2017

Funkcje zmiennych losowych

Mierzalna funkcja Y = f(X) zmiennej losowej X o wartościach rzeczywistych jest również zmienną losową.

Rozkład zmiennej losowej Y definiujemy poprzez przeciwobraz jako:

$$P_Y(A) = P_X(f^{-1}(A)),$$

lub w uproszczonej notacji:

$$P(Y \in A) = P(X \in f^{-1}(A))$$

Przykład

Rzucamy dwoma kostkami:

X określa sumaryczną liczbę oczek na obu kostkach

$$Y = f(X) = \begin{cases} 0 & \text{jeśli } X < 5 \\ 1 & \text{jeśli } 5 \leqslant X \leqslant 8 \\ 2 & \text{jeśli } 9 \leqslant X \leqslant 11 \\ 3 & \text{jeśli } X = 12 \end{cases}$$

Przykład

Rzucamy dwoma kostkami:

• X określa sumaryczną liczbę oczek na obu kostkach

$$Y = f(X) = \begin{cases} 0 & \text{jeśli } X < 5 \\ 1 & \text{jeśli } 5 \leqslant X \leqslant 8 \\ 2 & \text{jeśli } 9 \leqslant X \leqslant 11 \\ 3 & \text{jeśli } X = 12 \end{cases}$$

X	2	3	4	5	6	7	8	9	10	11	12
P(X = x)	<u>1</u> 36	$\frac{2}{36}$	$\frac{3}{36}$	4 36	<u>5</u> 36	$\frac{6}{36}$	<u>5</u> 36	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
У	0			1				2			3
P(Y = y)	<u>6</u> 36			<u>20</u> 36				<u>9</u> 36			<u>1</u> 36

Przykład

Rzucamy dwoma kostkami:

• X określa sumaryczną liczbę oczek na obu kostkach

$$Y = f(X) = \begin{cases} 0 & \text{jeśli } X < 5 \\ 1 & \text{jeśli } 5 \leqslant X \leqslant 8 \\ 2 & \text{jeśli } 9 \leqslant X \leqslant 11 \\ 3 & \text{jeśli } X = 12 \end{cases}$$

X	2	3	4	5	6	7	8	9	10	11	12
P(X = x)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	4 36	<u>5</u> 36	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	<u>2</u> 36	$\frac{1}{36}$
У	0			1				2			3
P(Y = y)	<u>6</u> 36			<u>20</u> 36				9/36			<u>1</u> 36

Przykład:

$$P(Y = 2) = P(X \in f^{-1}(2))$$

= $P(X \in \{x : f(x) = 2\}) = P(X \in \{9, 10, 11\})$

Funkcje dyskretnych zmiennych losowych

Jeśli $X \in \{x_1, x_2, ...\}$ oraz $Y = f(X) \in \{y_1, y_2, ...\}$ są dyskretnymi zmiennymi losowymi to:

$$P(Y = y) = \sum_{x: f(x)=y} P(X = x)$$

Czyli aby policzyć prawdopodobieństwo P(Y=y) sumujemy prawdopodobieństwa P(X=x) dla wszystkich x które prowadzą do wyniku f(x)=y.

Wartość oczekiwana: motywacja

- Rzucamy uczciwą monetą. W przypadku orła przegrywamy 1zł, w przypadku reszki wygrywamy 2zł. Czy warto brać udział w takiej grze?
- Wygrywamy a zł z prawdopodobieństwem p i przegrywamy b zł z prawdopodobieństwem 1-p. Ile wynosi średnia wygrana?
- Rzucamy kostką, jaka jest średnia liczba oczek której można się spodziewać?
- Gramy w totolotka aż do trafienia "szóstki". Ile średnio gier musielibyśmy zagrać?
- Jaka jest średnia liczba sukcesów w n próbach w schemacie Bernoulliego?

Wartość oczekiwana

Definicja

Niech $X \in \{x_1, x_2, \ldots\}$ będzie zmienną dyskretną. Wartością oczekiwaną (wartością przeciętną, wartością średnią) zmiennej losowej X nazywamy liczbę:

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Wartość oczekiwana jest średnią ważoną po zbiorze $\{x_1, x_2, ...\}$ z wagami $P(X = x_i)$.

Uwaga: wartość oczekiwana jest deterministyczną liczbą!

Uwaga: Często będziemy opuszczali nawiasy i zapisywali E(X) jako EX

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Przykład: Rzucamy kostką, jaka jest wartość oczekiwana liczby oczek?

$$X \in \{1, 2, 3, 4, 5, 6\}, P(X = i) = \frac{1}{6}$$

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Przykład: Rzucamy kostką, jaka jest wartość oczekiwana liczby oczek?

$$X \in \{1, 2, 3, 4, 5, 6\}, P(X = i) = \frac{1}{6}$$

$$EX = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Przykład: Rzucamy kostką, jaka jest wartość oczekiwana liczby oczek?

$$X \in \{1, 2, 3, 4, 5, 6\}, P(X = i) = \frac{1}{6}$$

$$EX = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

Przykład: Podobnie, ale rzucamy dwoma kostkami i sumujemy wynik

Х	2	3	4	5	6	7	8	9	10	11	12
P(X = x)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	4 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	4 36	$\frac{3}{36}$	<u>2</u> 36	$\frac{1}{36}$

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Przykład: Rzucamy kostką, jaka jest wartość oczekiwana liczby oczek?

$$X \in \{1, 2, 3, 4, 5, 6\}, P(X = i) = \frac{1}{6}$$

$$EX = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

Przykład: Podobnie, ale rzucamy dwoma kostkami i sumujemy wynik

X	2	3	4	5	6	7	8	9	10	11	12
P(X=x)	$\frac{1}{36}$	<u>2</u> 36	3 36	<u>4</u> 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	<u>4</u> 36	$\frac{3}{36}$	<u>2</u> 36	$\frac{1}{36}$

$$EX = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \ldots + 12 \cdot \frac{1}{36} = \frac{252}{36} = 7$$

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Przykład: Rzucamy uczciwą monetą. W przypadku orła przegrywamy 1zł, w przypadku reszki wygrywamy 2zł. Czy warto brać udział w takiej grze?

$$X \in \{-1, 2\}, P(X = -1) = P(X = 2) = \frac{1}{2}$$

$$E(X) = \sum_{i} x_{i} P(X = x_{i})$$

Przykład: Rzucamy uczciwą monetą. W przypadku orła przegrywamy 1zł, w przypadku reszki wygrywamy 2zł. Czy warto brać udział w takiej grze?

$$X \in \{-1,2\}, P(X = -1) = P(X = 2) = \frac{1}{2}$$

$$EX = -1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{1}{2}$$
 (warto!)

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Przykład: Rzucamy uczciwą monetą. W przypadku orła przegrywamy 1zł, w przypadku reszki wygrywamy 2zł. Czy warto brać udział w takiej grze?

$$X \in \{-1,2\}, P(X = -1) = P(X = 2) = \frac{1}{2}$$

$$EX = -1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{1}{2}$$
 (warto!)

Przykład: Wygrywamy a zł z prawdopodobieństwem p i przegrywamy b zł z prawdopodobieństwem 1-p. Ile wynosi średnia wygrana?

$$X \in \{a, -b\}, P(X = a) = p, P(X = -b) = 1 - p$$

$$E(X) = \sum_{i} x_i P(X = x_i)$$

Przykład: Rzucamy uczciwą monetą. W przypadku orła przegrywamy 1zł, w przypadku reszki wygrywamy 2zł. Czy warto brać udział w takiej grze?

$$X \in \{-1,2\}, P(X = -1) = P(X = 2) = \frac{1}{2}$$

$$EX = -1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{1}{2}$$
 (warto!)

Przykład: Wygrywamy a zł z prawdopodobieństwem p i przegrywamy b zł z prawdopodobieństwem 1-p. Ile wynosi średnia wygrana?

$$X \in \{a, -b\}, P(X = a) = p, P(X = -b) = 1 - p$$

$$EX = ap - b(1-p)$$

Warto grać, jeśli ap - b(1 - p) > 0.

Po obstawieniu a zł wygrywamy dodatkowe a zł z prawdopodobieństwem 1-p lub tracimy obstawione a zł z prawdopodobieństwem p.

Rozważmy strategię, w której gramy do momentu wygranej w ten sposób: obstawiamy 1zł; jeśli przegramy, obstawiamy 2zł; jeśli przegramy, obstawiamy 4zł, itp. (przy każdej przegranej podwajamy stawkę). Robimy tak, dopóki nie wygramy lub nie stracimy całego kapitału.

W przypadku wygranej zawsze jesteśmy do przodu 1zł, ponieważ następne zakłady kompensują poprzednie przegrane!

Jaka jest wartość oczekiwana wygranej?

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

Niech X określa wartość wygranej pod koniec gry

• Jeśli przegramy n razy z rzędu, tracimy kapitał, czyli $X=-(2^n-1)$

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

Niech X określa wartość wygranej pod koniec gry

• Jeśli przegramy n razy z rzędu, tracimy kapitał, czyli $X = -(2^n - 1)$ Prawdopodobieństwo tej sytuacji wynosi p^n

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

- Jeśli przegramy n razy z rzędu, tracimy kapitał, czyli $X=-(2^n-1)$ Prawdopodobieństwo tej sytuacji wynosi p^n
- Jeśli nie przegramy n razy z rzędu, zyskujemy 1zł, czyli X=1

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

- Jeśli przegramy n razy z rzędu, tracimy kapitał, czyli $X=-(2^n-1)$ Prawdopodobieństwo tej sytuacji wynosi p^n
- Jeśli nie przegramy n razy z rzędu, zyskujemy 1zł, czyli X=1Prawdopodobieństwo tej sytuacji wynosi $1-p^n$

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

- Jeśli przegramy n razy z rzędu, tracimy kapitał, czyli $X = -(2^n 1)$ Prawdopodobieństwo tej sytuacji wynosi p^n
- Jeśli nie przegramy n razy z rzędu, zyskujemy 1zł, czyli X=1Prawdopodobieństwo tej sytuacji wynosi $1-p^n$

$$EX = 1 \cdot (1 - p^n) - (2^n - 1)p^n$$

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

- Jeśli przegramy n razy z rzędu, tracimy kapitał, czyli $X = -(2^n 1)$ Prawdopodobieństwo tej sytuacji wynosi p^n
- Jeśli nie przegramy n razy z rzędu, zyskujemy 1zł, czyli X=1Prawdopodobieństwo tej sytuacji wynosi $1-p^n$

$$EX = 1 \cdot (1 - p^n) - (2^n - 1)p^n = 1 - 2^n p^n = 1 - (2p)^n$$

Załóżmy, że początkowy kapitał jest postaci $2^n - 1$ zł, czyli po przegranej n razy z rzędu tracimy cały kapitał.

- Jeśli przegramy n razy z rzędu, tracimy kapitał, czyli $X = -(2^n 1)$ Prawdopodobieństwo tej sytuacji wynosi p^n
- Jeśli nie przegramy n razy z rzędu, zyskujemy 1zł, czyli X=1Prawdopodobieństwo tej sytuacji wynosi $1-p^n$

$$EX = 1 \cdot (1 - p^n) - (2^n - 1)p^n = 1 - 2^n p^n = 1 - (2p)^n$$

- Jeśli $p = \frac{1}{2}$ to EX = 0
- Jeśli $p>\frac{1}{2}$ (np. w ruletce), to EX<0 Mimo, że przegrana jest bardzo mało prawdopodobna, to generuje bardzo dużą stratę, stąd średnio przegrywamy

Zmienna X ma rozkład dwupunktowy B(p) jeśli $X \in \{0,1\}$

$$p = P(X = 1),$$
 $P(X = 0) = 1 - p$

Zmienna X ma rozkład dwupunktowy B(p) jeśli $X \in \{0,1\}$

$$p = P(X = 1), \qquad P(X = 0) = 1 - p$$

$$EX = 1 \cdot p + 0 \cdot (1-p) = p$$

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, ..., n$$

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n - k}, \qquad k = 0, 1, \dots, n$$

$$EX = \sum_{k=0}^{n} k \cdot P(X = k) = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1 - p)^{n - k}$$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \qquad k = 0, 1, ..., n$$

$$EX = \sum_{k=0}^{n} k \cdot P(X = k) = \sum_{k=1}^{n} k \binom{n}{k} p^k (1 - p)^{n - k}$$

$$= \sum_{k=1}^{n} k \frac{n!}{k!(n - k)!} p^k (1 - p)^{n - k}$$

$$P(X = k) = \binom{n}{k} p^{k} (1-p)^{n-k}, \qquad k = 0, 1, \dots, n$$

$$EX = \sum_{k=0}^{n} k \cdot P(X = k) = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} n \frac{(n-1)!}{(k-1)!(n-k)!} p \cdot p^{k-1} (1-p)^{n-k}$$

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n - k}, \qquad k = 0, 1, \dots, n$$

$$EX = \sum_{k=0}^{n} k \cdot P(X = k) = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1 - p)^{n - k}$$

$$= \sum_{k=1}^{n} k \frac{n!}{k!(n - k)!} p^{k} (1 - p)^{n - k}$$

$$= \sum_{k=1}^{n} n \frac{(n - 1)!}{(k - 1)!(n - k)!} p \cdot p^{k - 1} (1 - p)^{n - k}$$

$$= np \sum_{k=1}^{n} \binom{n - 1}{k - 1} p^{k - 1} (1 - p)^{n - k}$$

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n - k}, \qquad k = 0, 1, \dots, n$$

$$EX = \sum_{k=0}^{n} k \cdot P(X = k) = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1 - p)^{n - k}$$

$$= \sum_{k=1}^{n} k \frac{n!}{k! (n - k)!} p^{k} (1 - p)^{n - k}$$

$$= \sum_{k=1}^{n} n \frac{(n - 1)!}{(k - 1)! (n - k)!} p \cdot p^{k - 1} (1 - p)^{n - k}$$

$$= np \sum_{k=1}^{n} \binom{n - 1}{k - 1} p^{k - 1} (1 - p)^{n - k}$$

$$= np \sum_{k=0}^{n-1} \binom{n - 1}{k} p^{k} (1 - p)^{n - 1 - k} = np$$

Rozkład dwumianowy

Alternatywny wzór wartość oczekiwaną

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

Alternatywny wzór wartość oczekiwaną

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

Dowód:

$$EX = \sum_{k=1}^{\infty} kP(X=k) = P(X=1) + 2P(X=2) + 3P(X=3) + \dots$$

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = P(X=1) + 2P(X=2) + 3P(X=3) + \dots$$

$$= P(X = 1) + 2P(X = 2) + 3P(X = 3) + 4P(X = 4) + 5P(X = 5) + \dots$$

P(X=1)	P(X=2)	P(X = 3)	P(X = 4)	P(X = 5)	
	P(X=2)	P(X = 3)	P(X=4)	P(X=5)	
		P(X = 3)	P(X=4)	P(X = 5)	
			P(X=4)	P(X=5)	
				P(X = 5)	

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = P(X=1) + 2P(X=2) + 3P(X=3) + \dots$$

$$= P(X = 1) +2P(X = 2) +3P(X = 3) +4P(X = 4) +5P(X = 5) + \dots$$

$$= P(X \ge 1) P(X = 1) P(X = 2) P(X = 3) P(X = 4) P(X = 5) \dots$$

$$P(X = 2) P(X = 3) P(X = 4) P(X = 5) \dots$$

$$P(X = 3) P(X = 4) P(X = 5) \dots$$

$$P(X = 4) P(X = 5) \dots$$

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = P(X=1) + 2P(X=2) + 3P(X=3) + \dots$$

$$= P(X = 1) + 2P(X = 2) + 3P(X = 3) + 4P(X = 4) + 5P(X = 5) + \dots$$

$$= P(X \ge 1) P(X = 1) P(X = 2) P(X = 3) P(X = 4) P(X = 5) \dots$$

$$+ P(X \ge 2) P(X = 2) P(X = 3) P(X = 4) P(X = 5) \dots$$

$$= P(X = 2) P(X = 3) P(X = 4) P(X = 5) \dots$$

$$= P(X = 4) P(X = 5) \dots$$

$$= P(X = 5) \dots$$

$$= P(X = 5) \dots$$

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = P(X=1) + 2P(X=2) + 3P(X=3) + \dots$$

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = P(X=1) + 2P(X=2) + 3P(X=3) + \dots$$

Niech X jest zmienną losową przyjmującą tylko wartości całkowite nieujemne ($X \in \{0,1,2,\ldots\}$). Wtedy:

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = P(X=1) + 2P(X=2) + 3P(X=3) + \dots$$

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

Nowy wzór działa również gdy $X \in \{i, \ldots, j\}$

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

Nowy wzór działa również gdy $X \in \{i, \dots, j\}$ Po prostu przyjmujemy P(X = k) = 0 dla k < i lub k > j

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

Nowy wzór działa również gdy $X \in \{i, ..., j\}$ Po prostu przyjmujemy P(X = k) = 0 dla k < i lub k > j

Przykład Rzut kostką: $X \in \{1, 2, 3, 4, 5, 6\}$, $P(X = k) = \frac{1}{6}$

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

Nowy wzór działa również gdy $X \in \{i, \ldots, j\}$

Po prostu przyjmujemy P(X = k) = 0 dla k < i lub k > j

Przykład Rzut kostką:
$$X \in \{1, 2, 3, 4, 5, 6\}$$
, $P(X = k) = \frac{1}{6}$

$$EX = P(X \ge 1) + P(X \ge 2) + P(X \ge 3) + \ldots + P(X \ge 6)$$

$$EX = \sum_{k=1}^{\infty} P(X \geqslant k)$$

Nowy wzór działa również gdy $X \in \{i, \ldots, j\}$

Po prostu przyjmujemy P(X = k) = 0 dla k < i lub k > j

Przykład Rzut kostką:
$$X \in \{1, 2, 3, 4, 5, 6\}$$
, $P(X = k) = \frac{1}{6}$

$$EX = P(X \ge 1) + P(X \ge 2) + P(X \ge 3) + \dots + P(X \ge 6)$$
$$= 1 + \frac{5}{6} + \frac{4}{6} + \dots + \frac{1}{6} = \frac{21}{6} = 3.5$$

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = \sum_{k=1}^{\infty} P(X \ge k)$$

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = \sum_{k=1}^{\infty} P(X \ge k)$$
$$= \sum_{k=1}^{\infty} \underbrace{P(X > k-1)}_{=(1-p)^{k-1}}$$

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

$$EX = \sum_{k=1}^{\infty} kP(X=k) = \sum_{k=1}^{\infty} P(X \ge k)$$

$$= \sum_{k=1}^{\infty} \underbrace{P(X > k-1)}_{=(1-p)^{k-1}}$$

$$= 1 + (1-p) + (1-p)^2 + \dots = \frac{1}{1-(1-p)} = \frac{1}{p}$$

Rozkład geometryczny: przykład

Gramy w totolotka aż do trafienia "szóstki". Ile średnio gier musielibyśmy zagrać?

Rozkład geometryczny: przykład

Gramy w totolotka aż do trafienia "szóstki". Ile średnio gier musielibyśmy zagrać?

X – liczba gier (prób) do trafienia "szóstki" (sukcesu)

p – prawdopodobieństwo sukcesu, $p = \frac{1}{\binom{49}{6}}$

X ma rozkład $G_1(p)$

Rozkład geometryczny: przykład

Gramy w totolotka aż do trafienia "szóstki". Ile średnio gier musielibyśmy zagrać?

X – liczba gier (prób) do trafienia "szóstki" (sukcesu)

$$p$$
 – prawdopodobieństwo sukcesu, $p=rac{1}{{49 \choose 6}}$

X ma rozkład $G_1(p)$

$$EX = \frac{1}{p} = \binom{49}{6} = 13\ 983\ 816$$

Rozkład ujemny dwumianowy (Pascala)

Zmienna $X \in \{0, 1, ...\}$ ma rozkład ujemny dwumianowy NB(r, p) jeśli:

$$P(X = k) = {r+k-1 \choose r-1} (1-p)^r p^k$$

Zadanie 1

Pokaż, że jeśli X ma rozkład NB(r, p) to:

$$EX = \frac{rp}{1-p}$$

Rozkład Poissona

Zmienna $X \in \{0, 1, ...\}$ ma rozkład Poissona $Pois(\lambda)$ jeśli:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Zadanie 2

Pokaż, że jeśli X ma rozkład $Pois(\lambda)$ to:

$$EX = \lambda$$

Uwaga: Ponieważ rozkład Poissona jest przybliżeniem rozkładu dwumianowego przy $\lambda = np$, takiego wyniku należało oczekiwać!

•
$$Y = f(X) = \begin{cases} 1 & \text{jeśli } X \in \{1, 2, 3\} \\ 2 & \text{jeśli } X \in \{4, 5\} \\ 3 & \text{jeśli } X = 6 \end{cases}$$

•
$$Y = f(X) = \begin{cases} 1 & \text{jeśli } X \in \{1, 2, 3\} \\ 2 & \text{jeśli } X \in \{4, 5\} \\ 3 & \text{jeśli } X = 6 \end{cases}$$

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6
У		1	1	2	3	
P(Y = y)		1/2		1,	1/6	

•
$$Y = f(X) = \begin{cases} 1 & \text{jeśli } X \in \{1, 2, 3\} \\ 2 & \text{jeśli } X \in \{4, 5\} \\ 3 & \text{jeśli } X = 6 \end{cases}$$

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6
У		1		2	3	
P(Y = y)		1/2		1,	1/6	

$$EY = 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$$
$$= \frac{1}{2} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{6} = \frac{5}{3}$$

•
$$Y = f(X) = \begin{cases} 1 & \text{jeśli } X \in \{1, 2, 3\} \\ 2 & \text{jeśli } X \in \{4, 5\} \\ 3 & \text{jeśli } X = 6 \end{cases}$$

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6
У		1		2	3	
P(Y = y)		1/2		1,	1/6	

$$EY = 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$$

•
$$Y = f(X) = \begin{cases} 1 & \text{jeśli } X \in \{1, 2, 3\} \\ 2 & \text{jeśli } X \in \{4, 5\} \\ 3 & \text{jeśli } X = 6 \end{cases}$$

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6
У		1		2	3	
P(Y = y)		1/2		1,	1/6	

$$EY = 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$$

$$= 1 \cdot (P(X = 1) + P(X = 2) + P(X = 3))$$

$$+ 2 \cdot (P(X = 4) + P(X = 5)) + 3 \cdot P(X = 6)$$

•
$$Y = f(X) = \begin{cases} 1 & \text{jeśli } X \in \{1, 2, 3\} \\ 2 & \text{jeśli } X \in \{4, 5\} \\ 3 & \text{jeśli } X = 6 \end{cases}$$

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6
У		1		2	3	
P(Y = y)		1/2		1,	1/6	

$$EY = 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$$

$$= 1 \cdot (P(X = 1) + P(X = 2) + P(X = 3))$$

$$+ 2 \cdot (P(X = 4) + P(X = 5)) + 3 \cdot P(X = 6)$$

$$= \sum_{k=1}^{6} f(k)P(X = k)$$

•
$$Y = f(X) = \begin{cases} 1 & \text{jeśli } X \in \{1, 2, 3\} \\ 2 & \text{jeśli } X \in \{4, 5\} \\ 3 & \text{jeśli } X = 6 \end{cases}$$

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/6	1/6	1/6	1/6
У		1		2	3	
P(Y = y)		1/2		1,	1/6	

$$EY = 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$$

$$= 1 \cdot (P(X = 1) + P(X = 2) + P(X = 3))$$

$$+ 2 \cdot (P(X = 4) + P(X = 5)) + 3 \cdot P(X = 6)$$

$$= \sum_{k=1}^{6} f(k)P(X = k) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{2}{6} + \frac{2}{6} + \frac{3}{6} = \frac{10}{6} = \frac{5}{3}$$

X	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	 Xn
P(X = x)	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆	 p _n
y = f(x)			<i>y</i> ₂	<i>y</i> ₃			 Уn
P(Y = y)	$p_1 + p_2$		<i>p</i> ₃	$p_4 + p_5 + p_6$			 p _n

$$EY = \sum_{y} y \cdot P(Y = y) = \sum_{x} f(x) \cdot P(X = x)$$

X	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	 Xn
P(X = x)	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆	 p _n
y = f(x)	<i>y</i> ₁		<i>y</i> ₂				 Уn
P(Y = y)	$p_1 + p_2$		<i>p</i> ₃	$p_4 + p_5 + p_6$			 p_n

$$EY = \sum_{y} y \cdot P(Y = y) = \sum_{x} f(x) \cdot P(X = x)$$

Aby policzyć EY nie musimy wyznaczać rozkładu zmiennej Y, wystarczy rozkład zmiennej X

Twierdzenie

Niech $Y = f(X) \in \mathcal{Y}$ będzie funkcją dyskretnej zmiennej losowej $X \in \mathcal{X}$. Zachodzi:

$$E(Y) = \sum_{y \in \mathcal{Y}} y P(Y = y) = \sum_{x \in \mathcal{X}} f(x) P(X = x)$$

Twierdzenie

Niech $Y = f(X) \in \mathcal{Y}$ będzie funkcją dyskretnej zmiennej losowej $X \in \mathcal{X}$. Zachodzi:

$$E(Y) = \sum_{y \in \mathcal{Y}} y P(Y = y) = \sum_{x \in \mathcal{X}} f(x) P(X = x)$$

Dowód: Ponieważ $P(Y = y) = \sum_{x: f(x)=y} P(X = x)$, to:

$$E(Y) = \sum_{y \in \mathcal{Y}} y P(Y = y) = \sum_{y \in \mathcal{Y}} y \left(\sum_{x: f(x) = y} P(X = x) \right)$$

Twierdzenie

Niech $Y = f(X) \in \mathcal{Y}$ będzie funkcją dyskretnej zmiennej losowej $X \in \mathcal{X}$. Zachodzi:

$$E(Y) = \sum_{y \in \mathcal{Y}} y P(Y = y) = \sum_{x \in \mathcal{X}} f(x) P(X = x)$$

Dowód: Ponieważ $P(Y = y) = \sum_{x: f(x)=y} P(X = x)$, to:

$$E(Y) = \sum_{y \in \mathcal{Y}} y P(Y = y) = \sum_{y \in \mathcal{Y}} y \Big(\sum_{x: f(x) = y} P(X = x) \Big)$$
$$= \sum_{y \in \mathcal{Y}} \sum_{x: f(x) = y} f(x) P(X = x)$$

Twierdzenie

Niech $Y = f(X) \in \mathcal{Y}$ będzie funkcją dyskretnej zmiennej losowej $X \in \mathcal{X}$. Zachodzi:

$$E(Y) = \sum_{y \in \mathcal{Y}} y P(Y = y) = \sum_{x \in \mathcal{X}} f(x) P(X = x)$$

Dowód: Ponieważ $P(Y = y) = \sum_{x: f(x)=y} P(X = x)$, to:

$$E(Y) = \sum_{y \in \mathcal{Y}} y P(Y = y) = \sum_{y \in \mathcal{Y}} y \Big(\sum_{x: f(x) = y} P(X = x) \Big)$$
$$= \sum_{y \in \mathcal{Y}} \sum_{x: f(x) = y} f(x) P(X = x)$$
$$= \sum_{x \in \mathcal{X}} f(x) P(X = x)$$

Liniowość wartości oczekiwanej

$$E(aX + b) = aE(X) + b$$

W szczególności:

- Wartość oczekiwana stałej b jest równa b: E(b) = b
- Tym samym np. E(EX) = EX
- Stałą przemnażającą X można wyjąć przed wartość oczekiwaną: E(aX) = a EX

Liniowość wartości oczekiwanej

$$E(aX + b) = aE(X) + b$$

W szczególności:

- Wartość oczekiwana stałej b jest równa b: E(b) = b
- Tym samym np. E(EX) = EX
- Stałą przemnażającą X można wyjąć przed wartość oczekiwaną: E(aX) = a EX

Dowód: Rozważmy
$$Y = f(X)$$
 gdzie $f(X) = aX + b$

Liniowość wartości oczekiwanej

$$E(aX+b) = aE(X)+b$$

W szczególności:

- Wartość oczekiwana stałej b jest równa b: E(b) = b
- Tym samym np. E(EX) = EX
- Stałą przemnażającą X można wyjąć przed wartość oczekiwaną:
 E(aX) = a EX

Dowód: Rozważmy
$$Y = f(X)$$
 gdzie $f(X) = aX + b$

$$E(aX + b) = EY = \sum_{x} f(x) P(X = x)$$

$$E(aX + b) = aE(X) + b$$

W szczególności:

- Wartość oczekiwana stałej b jest równa b: E(b) = b
- Tym samym np. E(EX) = EX
- Stałą przemnażającą X można wyjąć przed wartość oczekiwaną: E(aX) = a EX

Dowód: Rozważmy
$$Y = f(X)$$
 gdzie $f(X) = aX + b$

$$E(aX + b) = EY = \sum_{x} f(x) P(X = x)$$

$$= \sum_{x} (ax + b) P(X = x)$$

$$E(aX + b) = aE(X) + b$$

W szczególności:

- Wartość oczekiwana stałej b jest równa b: E(b) = b
- Tym samym np. E(EX) = EX
- Stałą przemnażającą X można wyjąć przed wartość oczekiwaną: E(aX) = a EX

Dowód: Rozważmy
$$Y = f(X)$$
 gdzie $f(X) = aX + b$

$$E(aX + b) = EY = \sum_{x} f(x) P(X = x)$$

$$= \sum_{x} (ax + b) P(X = x)$$

$$= a\left(\underbrace{\sum_{x} x P(X = x)}\right) + b\left(\underbrace{\sum_{x} P(X = x)}\right)$$

$$= EX$$

$$E(f_1(X) + ... + f_n(X)) = E(f_1(X)) + ... + E(f_n(X))$$

$$E(f_1(X) + \ldots + f_n(X)) = E(f_1(X)) + \ldots + E(f_n(X))$$

$$E(f_1(X) + ... + f_n(X)) = E(f_1(X)) + ... + E(f_n(X))$$

$$E(f_1(X) + \ldots + f_n(X)) = E(f(X)) = \sum_{X} f(X) P(X = X)$$

$$E(f_1(X) + ... + f_n(X)) = E(f_1(X)) + ... + E(f_n(X))$$

$$E(f_1(X) + \dots + f_n(X)) = E(f(X)) = \sum_{x} f(x) P(X = x)$$
$$= \sum_{x} (f_1(x) + \dots + f_n(x)) P(X = x)$$

$$E(f_1(X) + ... + f_n(X)) = E(f_1(X)) + ... + E(f_n(X))$$

$$E(f_{1}(X) + ... + f_{n}(X)) = E(f(X)) = \sum_{x} f(x) P(X = x)$$

$$= \sum_{x} (f_{1}(x) + ... + f_{n}(x)) P(X = x)$$

$$= \sum_{x} f_{1}(x) P(X = x) + ... + \sum_{x} f_{n}(x) P(X = x)$$

$$E(f_1(X) + ... + f_n(X)) = E(f_1(X)) + ... + E(f_n(X))$$

$$E(f_{1}(X) + ... + f_{n}(X)) = E(f(X)) = \sum_{x} f(x) P(X = x)$$

$$= \sum_{x} (f_{1}(x) + ... + f_{n}(x)) P(X = x)$$

$$= \sum_{x} f_{1}(x) P(X = x) + ... + \sum_{x} f_{n}(x) P(X = x)$$

$$= E(f_{1}(X)) + ... + E(f_{n}(X))$$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1-p)^k p, \qquad k = 0, 1, 2, ...$$

Zauważmy, że X = Y + 1.

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1-p)^k p, \qquad k = 0, 1, 2, ...$$

Zauważmy, że X = Y + 1.

Z jednej strony:

$$EX = E(Y+1) = EY+1$$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1-p)^{k} p, \qquad k = 0, 1, 2, ...$$

Zauważmy, że X = Y + 1.

Z jednej strony:

$$EX = E(Y+1) = EY+1$$

Z drugiej strony:

$$EY = \sum_{k=1}^{\infty} k(1-p)^k p = (1-p) \underbrace{\sum_{k=1}^{\infty} k(1-p)^{k-1} p}_{=EX}$$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1-p)^{k} p, \qquad k = 0, 1, 2, ...$$

Zauważmy, że X = Y + 1.

Z jednej strony:

$$EX = E(Y+1) = EY+1$$

Z drugiej strony:

$$EY = \sum_{k=1}^{\infty} k(1-p)^k p = (1-p) \underbrace{\sum_{k=1}^{\infty} k(1-p)^{k-1} p}_{=EX}$$

Czyli:

$$EX = EY + 1 = (1 - p)EX + 1 \implies EX = \frac{1}{p}$$

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów.

- Jeśli orzeł wypadnie w 1. rzucie wygrywamy 2 zł
- Jeśli orzeł wypadnie w 2. rzucie wygrywamy 4 zł
- Jeśli orzeł wypadnie w 3. rzucie wygrywamy 8 zł
- itd.

Ile warto zapłacić "wpisowego", aby przystąpić do takiej gry?

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. lle warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła,

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. Ile warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła, X ma rozkład $G_1(\frac{1}{2})$:

$$P(X = k) = (1-p)^{k-1}p = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, \dots$$

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. lle warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła, X ma rozkład $G_1(\frac{1}{2})$:

$$P(X = k) = (1-p)^{k-1}p = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, ...$$

$$Y = f(X) = 2^X - \text{wygrana}$$

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. lle warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła, X ma rozkład $G_1(\frac{1}{2})$:

$$P(X = k) = (1-p)^{k-1}p = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, ...$$

$$Y = f(X) = 2^X - \text{wygrana}$$

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. lle warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła, X ma rozkład $G_1(\frac{1}{2})$:

$$P(X = k) = (1-p)^{k-1}p = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, ...$$

$$Y = f(X) = 2^X - \text{wygrana}$$

$$EY = \sum_{k=1}^{\infty} f(k)P(X=k)$$

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. lle warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła, X ma rozkład $G_1(\frac{1}{2})$:

$$P(X = k) = (1-p)^{k-1}p = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, \dots$$

$$Y = f(X) = 2^X - \text{wygrana}$$

$$EY = \sum_{k=1}^{\infty} f(k)P(X=k) = \sum_{k=1}^{\infty} 2^{k} \left(\frac{1}{2}\right)^{k} =$$

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. lle warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła, X ma rozkład $G_1(\frac{1}{2})$:

$$P(X = k) = (1-p)^{k-1}p = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, \dots$$

$$Y = f(X) = 2^X - \text{wygrana}$$

$$EY = \sum_{k=1}^{\infty} f(k)P(X=k) = \sum_{k=1}^{\infty} 2^k \left(\frac{1}{2}\right)^k = 1 + 1 + 1 + \dots = \infty$$

Rozważmy grę w której rzucamy uczciwą monetą aż do wyrzucenia orła. Wygrana w grze to 2^k zł, gdzie k – liczba rzutów. lle warto zapłacić "wpisowego", aby przystąpić do takiej gry?

X – liczba rzutów do pierwszego orła, X ma rozkład $G_1(\frac{1}{2})$:

$$P(X = k) = (1-p)^{k-1}p = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, ...$$

$$Y = f(X) = 2^X - \text{wygrana}$$

Warto zapłacić a zł wpisowego jeśli EY - a > 0

$$EY = \sum_{k=1}^{\infty} f(k)P(X=k) = \sum_{k=1}^{\infty} 2^k \left(\frac{1}{2}\right)^k = 1 + 1 + 1 + \dots = \infty$$

Warto zapłacić każdą kwotę "wpisowego"??? A za ile byście przystąpili do takiej gry?

Zachowanie ludzi w tego typu grach wyjaśnia teorii użyteczności

- Ludzie nie kierują się oczekiwaną wartością wygranej, ale oczekiwaną użytecznością wygranej
- Użyteczność ta rośnie znacznie wolniej niż sama wygrana ("prawo malejącej użyteczności krańcowej")

Zachowanie ludzi w tego typu grach wyjaśnia teorii użyteczności

- Ludzie nie kierują się oczekiwaną wartością wygranej, ale oczekiwaną użytecznością wygranej
- Użyteczność ta rośnie znacznie wolniej niż sama wygrana ("prawo malejącej użyteczności krańcowej")

Przykład: weźmy grę, w której z prawdopodobieństwem 20% wygrywamy 10-krotność zakładu, a z prawdopodobieństwem 80% przegrywamy zakład. Jeśli obstawimy *a* zł, to średnia wygrana wynosi:

$$0.2 \cdot 10a - 0.8 \cdot a = 1.2a$$

Zachowanie ludzi w tego typu grach wyjaśnia teorii użyteczności

- Ludzie nie kierują się oczekiwaną wartością wygranej, ale oczekiwaną użytecznością wygranej
- Użyteczność ta rośnie znacznie wolniej niż sama wygrana ("prawo malejącej użyteczności krańcowej")

Przykład: weźmy grę, w której z prawdopodobieństwem 20% wygrywamy 10-krotność zakładu, a z prawdopodobieństwem 80% przegrywamy zakład. Jeśli obstawimy *a* zł, to średnia wygrana wynosi:

$$0.2 \cdot 10a - 0.8 \cdot a = 1.2a$$

• Czy obstawilibyście w tej grze a = 10 zł?

Zachowanie ludzi w tego typu grach wyjaśnia teorii użyteczności

- Ludzie nie kierują się oczekiwaną wartością wygranej, ale oczekiwaną użytecznością wygranej
- Użyteczność ta rośnie znacznie wolniej niż sama wygrana ("prawo malejącej użyteczności krańcowej")

Przykład: weźmy grę, w której z prawdopodobieństwem 20% wygrywamy 10-krotność zakładu, a z prawdopodobieństwem 80% przegrywamy zakład. Jeśli obstawimy *a* zł, to średnia wygrana wynosi:

$$0.2 \cdot 10a - 0.8 \cdot a = 1.2a$$

- Czy obstawilibyście w tej grze a = 10 zł?
- Czy obstawilibyście w tej grze całe oszczędności życia, powiedzmy a = 100 tys. zł?

Często rozważa się użyteczność logarytmiczną jako funkcję kapitału y:

$$U(y) = C \log_2(y)$$
, gdzie C jest tylko jednostką (C=1)

("dwukrotne zwiększenie kapitału zwiększa użyteczność o jednostkę")

Często rozważa się użyteczność logarytmiczną jako funkcję kapitału y:

$$U(y) = C \log_2(y)$$
, gdzie C jest tylko jednostką (C=1)

("dwukrotne zwiększenie kapitału zwiększa użyteczność o jednostkę")

W poprzednim przykładzie, mając początkowy kapitał y₀ zł i obstawiając a zł, oczekiwana użyteczność wynosi:

$$EU = 0.2 \cdot U(y_0 + 10a) + 0.8 \cdot U(y_0 - a) = 0.2 \log_2(y_0 + 10a) + 0.8 \log_2(y_0 - a),$$

Często rozważa się użyteczność logarytmiczną jako funkcję kapitału y:

$$U(y) = C \log_2(y)$$
, gdzie C jest tylko jednostką (C=1)

("dwukrotne zwiększenie kapitału zwiększa użyteczność o jednostkę")

W poprzednim przykładzie, mając początkowy kapitał y_0 zł i obstawiając a zł, oczekiwana użyteczność wynosi:

$$EU = 0.2 \cdot U(y_0 + 10a) + 0.8 \cdot U(y_0 - a) = 0.2 \log_2(y_0 + 10a) + 0.8 \log_2(y_0 - a),$$

stąd oczekiwany przyrost użyteczności wynosi:

$$\Delta U = EU - U(y_0) = 0.2 \log_2(y_0 + 10a) + 0.8 \log_2(y_0 - a) - \log_2(y_0)$$

Często rozważa się użyteczność logarytmiczną jako funkcję kapitału y:

$$U(y) = C \log_2(y)$$
, gdzie C jest tylko jednostką (C=1)

("dwukrotne zwiększenie kapitału zwiększa użyteczność o jednostkę")

W poprzednim przykładzie, mając początkowy kapitał y_0 zł i obstawiając a zł, oczekiwana użyteczność wynosi:

$$EU = 0.2 \cdot U(y_0 + 10a) + 0.8 \cdot U(y_0 - a) = 0.2 \log_2(y_0 + 10a) + 0.8 \log_2(y_0 - a),$$

stąd oczekiwany przyrost użyteczności wynosi:

$$\Delta U = EU - U(y_0) = 0.2 \log_2(y_0 + 10a) + 0.8 \log_2(y_0 - a) - \log_2(y_0)$$

- Jeśli $y_0=1000$ zł i a=10 zł, to $\Delta U \simeq 0.02$
- Jeśli $y_0 = 105~000$ zł i a = 100~000 zł, to $\Delta U \simeq -2.83$

$$U(y) = \log_2(y)$$

Mając początkowy kapitał y_0 zł i płacąc wpisowe a zł, oczekiwany przyrost użyteczności wynosi:

$$EU - U(y_0) = \sum_{k=1}^{\infty} U(y_0 - a + 2^k) P(X = k) - U(y_0)$$
$$= \sum_{k=1}^{\infty} \log_2(y_0 - a + 2^k) \left(\frac{1}{2}\right)^k - \log_2(y_0)$$

$$U(y) = \log_2(y)$$

Mając początkowy kapitał y_0 zł i płacąc wpisowe a zł, oczekiwany przyrost użyteczności wynosi:

$$EU - U(y_0) = \sum_{k=1}^{\infty} U(y_0 - a + 2^k) P(X = k) - U(y_0)$$
$$= \sum_{k=1}^{\infty} \log_2(y_0 - a + 2^k) \left(\frac{1}{2}\right)^k - \log_2(y_0)$$

Kiedy przyrost użyteczności jest dodatni?

$$U(y) = \log_2(y)$$

Mając początkowy kapitał y_0 zł i płacąc wpisowe a zł, oczekiwany przyrost użyteczności wynosi:

$$EU - U(y_0) = \sum_{k=1}^{\infty} U(y_0 - a + 2^k) P(X = k) - U(y_0)$$
$$= \sum_{k=1}^{\infty} \log_2(y_0 - a + 2^k) \left(\frac{1}{2}\right)^k - \log_2(y_0)$$

Kiedy przyrost użyteczności jest dodatni?

• Mając $y_0 = 1~000~000$ zł kapitału, przyrost użyteczności staje się dodatni dla a < 20.88 zł

$$U(y) = \log_2(y)$$

Mając początkowy kapitał y_0 zł i płacąc wpisowe a zł, oczekiwany przyrost użyteczności wynosi:

$$EU - U(y_0) = \sum_{k=1}^{\infty} U(y_0 - a + 2^k) P(X = k) - U(y_0)$$
$$= \sum_{k=1}^{\infty} \log_2(y_0 - a + 2^k) \left(\frac{1}{2}\right)^k - \log_2(y_0)$$

Kiedy przyrost użyteczności jest dodatni?

- Mając y₀ = 1 000 000 zł kapitału, przyrost użyteczności staje się dodatni dla a < 20.88 zł
- Mając $y_0 = 1~000$ zł kapitału, przyrost użyteczności staje się dodatni dla a < 10.96 zł

$$U(y) = \log_2(y)$$

Mając początkowy kapitał y_0 zł i płacąc wpisowe a zł, oczekiwany przyrost użyteczności wynosi:

$$EU - U(y_0) = \sum_{k=1}^{\infty} U(y_0 - a + 2^k) P(X = k) - U(y_0)$$
$$= \sum_{k=1}^{\infty} \log_2(y_0 - a + 2^k) \left(\frac{1}{2}\right)^k - \log_2(y_0)$$

Kiedy przyrost użyteczności jest dodatni?

- Mając $y_0 = 1~000~000$ zł kapitału, przyrost użyteczności staje się dodatni dla a < 20.88 zł
- Mając $y_0 = 1~000$ zł kapitału, przyrost użyteczności staje się dodatni dla a < 10.96 zł
- Mając y = 1 zł kapitału, przyrost użyteczności staje się dodatni dla a < 2.82 zł

Wariancja: motywacja

Wszystkie zmienne losowe mają tę samą wartość oczekiwaną równą 5 Jak mocno rozkład jest skoncentrowany wokół tej wartości?

Wariancja zmiennej losowej

Definicja

Wariancją zmiennej losowej X nazywamy liczbę określającą średni kwadrat odchylenia od wartości średniej:

$$D^{2}(X) = E((X - EX)^{2}) = \sum_{X} (x - EX)^{2} P(X = X),$$

Wariancja zmiennej losowej

Definicja

Wariancją zmiennej losowej X nazywamy liczbę określającą średni kwadrat odchylenia od wartości średniej:

$$D^{2}(X) = E((X - EX)^{2}) = \sum_{x} (x - EX)^{2} P(X = x),$$

- Wariancja określa koncentrację rozkładu wokół swojej wartości oczekiwanej (średniej)
- Kwadrat w definicji wariancji używany jest do tego, żeby poszczególne odchyłki się nie znosiły

Wariancja zmiennej losowej

Definicja

Wariancją zmiennej losowej X nazywamy liczbę określającą średni kwadrat odchylenia od wartości średniej:

$$D^{2}(X) = E((X - EX)^{2}) = \sum_{x} (x - EX)^{2} P(X = x),$$

- Wariancja określa koncentrację rozkładu wokół swojej wartości oczekiwanej (średniej)
- Kwadrat w definicji wariancji używany jest do tego, żeby poszczególne odchyłki się nie znosiły

$$E(X - EX) = EX - EX = 0$$

Wykorzystujemy wzór
$$E(aX + b) = aE(X) + b$$

dla $a = 1$ i $b = -EX$

$$EX = 3.5$$

$$EX = 3.5$$

$$D^2(X) = E((X - EX)^2)$$

$$EX = 3.5$$

$$D^{2}(X) = E((X - EX)^{2})$$
$$= \sum_{k=1}^{6} (k - EX)^{2} P(X = k)$$

$$EX = 3.5$$

$$D^{2}(X) = E((X - EX)^{2})$$

$$= \sum_{k=1}^{6} (k - EX)^{2} P(X = k)$$

$$= \sum_{k=1}^{6} (k - 3.5)^{2} \cdot \frac{1}{6}$$

$$EX = 3.5$$

$$D^{2}(X) = E((X - EX)^{2})$$

$$= \sum_{k=1}^{6} (k - EX)^{2} P(X = k)$$

$$= \sum_{k=1}^{6} (k - 3.5)^{2} \cdot \frac{1}{6}$$

$$= \frac{1}{6} ((1 - 3.5)^{2} + (2 - 3.5)^{2} + \dots + (6 - 3.5)^{2}) = \frac{35}{12}$$

$$X \in \{0,1\},$$
 $p = P(X = 1),$ $P(X = 0) = 1 - p$
 $EX = p$

$$X \in \{0,1\},$$
 $p = P(X = 1),$ $P(X = 0) = 1 - p$
 $EX = p$

$$D^{2}(X) = (0 - EX)^{2}P(X = 0) + (1 - EX)^{2}P(X = 1)$$

$$X \in \{0,1\},$$
 $p = P(X = 1),$ $P(X = 0) = 1 - p$
 $EX = p$

$$D^{2}(X) = (0 - EX)^{2}P(X = 0) + (1 - EX)^{2}P(X = 1)$$

= $p^{2}(1 - p) + (1 - p)^{2}p$

$$X \in \{0,1\},$$
 $p = P(X = 1),$ $P(X = 0) = 1 - p$
 $EX = p$

$$D^{2}(X) = (0 - EX)^{2} P(X = 0) + (1 - EX)^{2} P(X = 1)$$

$$= p^{2}(1 - p) + (1 - p)^{2} p$$

$$= p(1 - p)(\underbrace{p + (1 - p)}_{-1}) = p(1 - p)$$

Twierdzenie

$$D^{2}(X) = E(X^{2}) - (EX)^{2}$$

Twierdzenie

$$D^{2}(X) = E(X^{2}) - (EX)^{2}$$

$$D^2(X) = E((X - EX)^2)$$

Twierdzenie

$$D^{2}(X) = E(X^{2}) - (EX)^{2}$$

$$D^{2}(X) = E((X - EX)^{2})$$
$$= E(X^{2} - 2(EX)X + (EX)^{2})$$

Twierdzenie

$$D^{2}(X) = E(X^{2}) - (EX)^{2}$$

$$D^{2}(X) = E((X - EX)^{2})$$

$$= E(X^{2} - 2(EX)X + (EX)^{2})$$

$$= E(X^{2}) - E(\underbrace{2(EX)}_{\text{stata}}X) + E(\underbrace{(EX)^{2}}_{\text{stata}})$$

Twierdzenie

$$D^{2}(X) = E(X^{2}) - (EX)^{2}$$

$$D^{2}(X) = E((X - EX)^{2})$$

$$= E(X^{2} - 2(EX)X + (EX)^{2})$$

$$= E(X^{2}) - E(\underbrace{2(EX)X}) + E(\underbrace{(EX)^{2}})$$

$$= E(X^{2}) - 2(EX)(EX) + (EX)^{2}$$

Twierdzenie

$$D^{2}(X) = E(X^{2}) - (EX)^{2}$$

$$D^{2}(X) = E((X - EX)^{2})$$

$$= E(X^{2} - 2(EX)X + (EX)^{2})$$

$$= E(X^{2}) - E(\underbrace{2(EX)}_{\text{stafa}}X) + E(\underbrace{(EX)^{2}}_{\text{stafa}})$$

$$= E(X^{2}) - 2(EX)(EX) + (EX)^{2}$$

$$= E(X^{2}) - (EX)^{2}$$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad X \in \{0, 1, \ldots\}, \qquad EX = \lambda$$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad X \in \{0, 1, \ldots\}, \qquad EX = \lambda$$

Ponieważ:

$$D^{2}(X) = E(X^{2}) - (EX)^{2} = E(X^{2}) - \lambda^{2}$$

Musimy więc tylko policzyć $E(X^2)$

$$E(X^2) = \sum_{k=0}^{\infty} k^2 P(X=k)$$

$$E(X^2) = \sum_{k=0}^{\infty} k^2 P(X=k) = \sum_{k=1}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda}$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X=k) = \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$
$$= \sum_{k=1}^{\infty} \underbrace{\left(k(k-1)+k\right)}_{-k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \underbrace{\left(k(k-1) + k\right)}_{=k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda} + \underbrace{\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=k^{2}}$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \underbrace{\left(k(k-1) + k\right)}_{=k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda} + \underbrace{\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=EX}$$

$$= \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!} e^{-\lambda} + \lambda$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \underbrace{(k(k-1)+k)}_{=k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda} + \underbrace{\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=EX}$$

$$= \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!} e^{-\lambda} + \lambda = \lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} e^{-\lambda} + \lambda$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \underbrace{(k(k-1)+k)}_{=k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda} + \underbrace{\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=EX}$$

$$= \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!} e^{-\lambda} + \lambda = \lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} e^{-\lambda} + \lambda$$

$$= \lambda^{2} \underbrace{\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda}}_{1} + \lambda$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \underbrace{(k(k-1)+k)}_{=k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda} + \underbrace{\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=EX}$$

$$= \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!} e^{-\lambda} + \lambda = \lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} e^{-\lambda} + \lambda$$

$$= \lambda^{2} \underbrace{\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda}}_{1} + \lambda = \lambda^{2} + \lambda$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \underbrace{(k(k-1)+k)}_{=k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda} + \underbrace{\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=EX}$$

$$= \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!} e^{-\lambda} + \lambda = \lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} e^{-\lambda} + \lambda$$

$$= \lambda^{2} \underbrace{\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=1} + \lambda = \lambda^{2} + \lambda$$

Stąd
$$D^2(X) = E(X^2) - \lambda^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Wariancja rozkładu geometrycznego i dwumianowego

Zadanie 3

Pokaż, że dla rozkładu geometrycznego:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

wariancja wynosi $D^2(X) = \frac{1-p}{p^2}$

(krótszy sposób pokazany na następnym slajdzie)

Zadanie 4

Pokaż, że dla rozkładu dwumianowego:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, ..., n$$

wariancja wynosi $D^2(X) = np(1-p)$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad EX = \frac{1}{p}, \qquad k = 1, 2, ...$$

• G₀(p): Liczba porażek do sukcesu:

$$P(Y = k) = (1 - p)^{k} p, \qquad k = 0, 1, 2, ...$$

Ponieważ
$$X = Y + 1$$
, czyli $EY = EX - 1 = \frac{1}{p} - 1$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad EX = \frac{1}{p}, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1 - p)^{k} p, \qquad k = 0, 1, 2, ...$$

Ponieważ X = Y + 1, czyli $EY = EX - 1 = \frac{1}{p} - 1$

Z jednej strony:

$$E(X^2) = E((Y+1)^2) = E(Y^2) + 2E(Y) + 1 = E(Y^2) + \frac{2}{p} - 1$$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad EX = \frac{1}{p}, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1 - p)^{k} p, \qquad k = 0, 1, 2, ...$$

Ponieważ
$$X = Y + 1$$
, czyli $EY = EX - 1 = \frac{1}{p} - 1$

Z jednej strony:

$$E(X^2) = E((Y+1)^2) = E(Y^2) + 2E(Y) + 1 = E(Y^2) + \frac{2}{p} - 1$$

Z drugiej strony:

$$E(Y^{2}) = \sum_{k=1}^{\infty} k^{2} (1-p)^{k} p = (1-p) \underbrace{\sum_{k=1}^{\infty} k^{2} (1-p)^{k-1} p}_{=E(X^{2})}$$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad EX = \frac{1}{p}, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1-p)^k p, \qquad k = 0, 1, 2, ...$$

Ponieważ X=Y+1, czyli $EY=EX-1=\frac{1}{p}-1$

Czyli:

$$E(X^2) = E(Y^2) + \frac{2}{p} - 1$$
 oraz $E(Y^2) = (1-p)E(X^2)$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad EX = \frac{1}{p}, \qquad k = 1, 2, ...$$

• $G_0(p)$: Liczba porażek do sukcesu:

$$P(Y = k) = (1-p)^{k} p, \qquad k = 0, 1, 2, ...$$

Ponieważ X=Y+1, czyli $EY=EX-1=\frac{1}{p}-1$

Czyli:

$$E(X^2) = E(Y^2) + \frac{2}{p} - 1$$
 oraz $E(Y^2) = (1-p)E(X^2)$

Stąd:

$$E(X^2) = (1-p)E(X^2) + \frac{2}{p} - 1 \implies E(X^2) = \frac{2}{p^2} - \frac{1}{p}$$

• $G_1(p)$: liczba prób do sukcesu:

$$P(X = k) = (1 - p)^{k-1}p, \qquad EX = \frac{1}{p}, \qquad k = 1, 2, ...$$

• G₀(p): Liczba porażek do sukcesu:

$$P(Y = k) = (1-p)^{k} p, \qquad k = 0, 1, 2, ...$$

Ponieważ X=Y+1, czyli $EY=EX-1=\frac{1}{p}-1$

$$E(X^2) = E(Y^2) + \frac{2}{p} - 1$$
 oraz $E(Y^2) = (1-p)E(X^2)$

Stąd:

$$E(X^2) = (1-p)E(X^2) + \frac{2}{p} - 1 \implies E(X^2) = \frac{2}{p^2} - \frac{1}{p}$$

$$D^2(X) = E(X^2) - (EX)^2 = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p} = \frac{1-p}{p^2}$$

- 1. $D^2(X) \ge 0$
- 2. $D^2(X)=0$ wtedy i tylko wtedy gdy P(X=x)=1 dla pewnego $x\in\mathbb{R}$

- 1. $D^2(X) \ge 0$
- 2. $D^2(X)=0$ wtedy i tylko wtedy gdy P(X=x)=1 dla pewnego $x\in\mathbb{R}$

$$D^{2}(X) = \sum_{x} (x - EX)^{2} P(X = x)$$

- 1. $D^2(X) \ge 0$
- 2. $D^2(X)=0$ wtedy i tylko wtedy gdy P(X=x)=1 dla pewnego $x\in\mathbb{R}$

Dowód:

$$D^{2}(X) = \sum_{x} (x - EX)^{2} P(X = x)$$

Własność 1: oczywista, bo wszystkie wyrazy sumy są nieujemne

- 1. $D^2(X) \ge 0$
- 2. $D^2(X)=0$ wtedy i tylko wtedy gdy P(X=x)=1 dla pewnego $x\in\mathbb{R}$

Dowód:

$$D^{2}(X) = \sum_{x} (x - EX)^{2} P(X = x)$$

Własność 1: oczywista, bo wszystkie wyrazy sumy są nieujemne

Własność 2: jeśli $D^2(X) = 0$, to wszystkie wyrazy sumy muszą być = 0

- 1. $D^2(X) \ge 0$
- 2. $D^2(X)=0$ wtedy i tylko wtedy gdy P(X=x)=1 dla pewnego $x\in\mathbb{R}$

Dowód:

$$D^{2}(X) = \sum_{x} (x - EX)^{2} P(X = x)$$

Własność 1: oczywista, bo wszystkie wyrazy sumy są nieujemne

Własność 2: jeśli $D^2(X)=0$, to wszystkie wyrazy sumy muszą być =0

A więc jeśli P(X = x) > 0, to x = EX dla wszystkich takich x!

- 1. $D^2(X) \ge 0$
- 2. $D^2(X)=0$ wtedy i tylko wtedy gdy P(X=x)=1 dla pewnego $x\in\mathbb{R}$

Dowód:

$$D^{2}(X) = \sum_{x} (x - EX)^{2} P(X = x)$$

Własność 1: oczywista, bo wszystkie wyrazy sumy są nieujemne

Własność 2: jeśli $D^2(X)=0$, to wszystkie wyrazy sumy muszą być =0

A więc jeśli P(X = x) > 0, to x = EX dla wszystkich takich x!

Czyli jest tylko jeden taki x równy EX dla którego P(X = x) > 0

- 1. $D^2(X) \ge 0$
- 2. $D^2(X)=0$ wtedy i tylko wtedy gdy P(X=x)=1 dla pewnego $x\in\mathbb{R}$

Dowód:

$$D^{2}(X) = \sum_{x} (x - EX)^{2} P(X = x)$$

Własność 1: oczywista, bo wszystkie wyrazy sumy są nieujemne

Własność 2: jeśli $D^2(X)=0$, to wszystkie wyrazy sumy muszą być =0

A więc jeśli P(X = x) > 0, to x = EX dla wszystkich takich x!

Czyli jest tylko jeden taki x równy EX dla którego P(X=x)>0

Z normalizacji sumarycznego prawdopodobieństwa P(X = x) = 1

$$D^2(aX+b) = a^2D^2(X)$$

Wariancja nie zmienia się przy translacji o stałą i przemnaża się przez a^2 przy przemnożeniu zmiennej przez a.

$$D^2(aX+b) = a^2D^2(X)$$

Wariancja nie zmienia się przy translacji o stałą i przemnaża się przez a^2 przy przemnożeniu zmiennej przez a.

$$D^2(Y) = a^2 D^2(X)$$

$$D^2(aX+b) = a^2D^2(X)$$

Wariancja nie zmienia się przy translacji o stałą i przemnaża się przez a^2 przy przemnożeniu zmiennej przez a.

$$D^2(Y) = a^2 D^2(X)$$

$$Y - EY = aX + b - \underbrace{E(aX + b)}_{=aEX + b} = aX - aEX = a(X - EX)$$

$$D^2(aX+b) = a^2D^2(X)$$

Wariancja nie zmienia się przy translacji o stałą i przemnaża się przez a^2 przy przemnożeniu zmiennej przez a.

$$D^2(Y) = a^2 D^2(X)$$

$$Y - EY = aX + b - \underbrace{E(aX + b)}_{=aEX + b} = aX - aEX = a(X - EX)$$
$$(Y - EY)^2 = a^2(X - EX)^2$$

$$D^2(aX+b) = a^2D^2(X)$$

Wariancja nie zmienia się przy translacji o stałą i przemnaża się przez a^2 przy przemnożeniu zmiennej przez a.

$$D^2(Y) = a^2 D^2(X)$$

$$Y - EY = aX + b - \underbrace{E(aX + b)}_{=aEX + b} = aX - aEX = a(X - EX)$$

 $(Y - EY)^2 = a^2(X - EX)^2$
 $E((Y - EY)^2) = E(a^2(X - EX)^2) = a^2E((X - EX)^2)$

$$D^2(aX+b) = a^2D^2(X)$$

Wariancja nie zmienia się przy translacji o stałą i przemnaża się przez a^2 przy przemnożeniu zmiennej przez a.

Dowód: Zdefiniujmy zmienną
$$Y=aX+b$$
. Musimy pokazać, że $D^2(Y)=a^2D^2(X)$

$$Y - EY = aX + b - \underbrace{E(aX + b)}_{=aEX + b} = aX - aEX = a(X - EX)$$

$$(Y - EY)^2 = a^2(X - EX)^2$$

$$\underbrace{E((Y - EY)^2)}_{D^2(Y)} = E(a^2(X - EX)^2) = a^2\underbrace{E((X - EX)^2)}_{=D^2(X)}$$

Odchylenie standardowe

Wariancja ma inną "skalę" niż zmienna losowa

 Jeśli wartości X byłyby wyrażone np. w zł, to jaka jest jednostka wariancji?

Odchylenie standardowe

Wariancja ma inną "skalę" niż zmienna losowa

 Jeśli wartości X byłyby wyrażone np. w zł, to jaka jest jednostka wariancji?

Odchylenie standardowe

$$D(X) = \sqrt{D^2(X)}$$

Odchylenie standardowe

Wariancja ma inną "skalę" niż zmienna losowa

 Jeśli wartości X byłyby wyrażone np. w zł, to jaka jest jednostka wariancji?

Odchylenie standardowe

$$D(X) = \sqrt{D^2(X)}$$

O ile wariancją łatwiej operuje się w wyprowadzeniach wzorów, to odchylenie standardowe jest miarą rozkładu podawaną w statystykach

Odchylenie często (szczególnie w statystyce) oznacza się za pomocą symbolu σ , stąd wariancja oznaczana jest przez σ^2

Momenty zmiennej losowej

Definicja

Liczbę:

$$m_k = E(X^k)$$

nazywamy momentem rzędu k zmiennej losowej X

Momenty zmiennej losowej

Definicja

Liczbę:

$$m_k = E(X^k)$$

nazywamy momentem rzędu k zmiennej losowej X

- \bullet $m_1 = EX$
- $m_2 = E(X^2)$
- $\bullet m_3 = E(X^3)$
- . . .

Momenty centralne zmiennej losowej

Definicja

Liczbę:

$$\mu_k = E((X - EX)^k)$$

nazywamy momentem centralnym rzędu k zmiennej losowej X

Momenty centralne zmiennej losowej

Definicja

Liczbę:

$$\mu_k = E((X - EX)^k)$$

nazywamy momentem centralnym rzędu k zmiennej losowej X

- $\mu_1 = E(X EX) = EX EX = 0$
- $\mu_2 = E((X EX)^2) = D^2(X)$
- $\mu_3 = E((X EX)^3)$
- . .

Niech X będzie nieujemną zmienną losową. Dla dowolnego a > 0:

$$P(X \geqslant a) \leqslant \frac{EX}{a}$$

Niech X będzie nieujemną zmienną losową. Dla dowolnego a > 0:

$$P(X \geqslant a) \leqslant \frac{EX}{a}$$

$$EX = \sum_{x} x P(X = x)$$

Niech X będzie nieujemną zmienną losową. Dla dowolnego a > 0:

$$P(X \geqslant a) \leqslant \frac{EX}{a}$$

$$EX = \sum_{x} x P(X = x)$$

$$= \sum_{x < a} x P(X = x) + \sum_{x \geqslant a} x P(X = x)$$

$$\geqslant 0$$

Niech X będzie nieujemną zmienną losową. Dla dowolnego a > 0:

$$P(X \geqslant a) \leqslant \frac{EX}{a}$$

$$EX = \sum_{x} x P(X = x)$$

$$= \sum_{x < a} x P(X = x) + \sum_{x \geqslant a} x P(X = x)$$

$$\geqslant 0 + \sum_{x \geqslant a} a P(X = x)$$

Niech X będzie nieujemną zmienną losową. Dla dowolnego a > 0:

$$P(X \geqslant a) \leqslant \frac{EX}{a}$$

$$EX = \sum_{x} x P(X = x)$$

$$= \sum_{x \le a} x P(X = x) + \sum_{x \ge a} x P(X = x)$$

$$\geqslant 0 + \sum_{x \ge a} a P(X = x)$$

$$= a \sum_{x \ge a} P(X = x) = aP(X \geqslant a)$$

Niech X będzie nieujemną zmienną losową. Dla dowolnego a > 0:

$$P(X \geqslant a) \leqslant \frac{EX}{a}$$

Dowód:

$$EX = \sum_{x} x P(X = x)$$

$$= \sum_{x \le a} x P(X = x) + \sum_{x \ge a} x P(X = x)$$

$$\geqslant 0 + \sum_{x \ge a} a P(X = x)$$

$$= a \sum_{x \ge a} P(X = x) = aP(X \ge a)$$

Dzieląc obustronnie przez a kończymy dowód.

Dla zmiennej losowej o skończonej wartości oczekiwanej i wariancji:

$$P(|X - EX| > \epsilon) \leqslant \frac{D^2(X)}{\epsilon^2}$$

Prawdopodobieństwo znacznego odchylenia się od wartości oczekiwanej jest niewielkie.

Dla zmiennej losowej o skończonej wartości oczekiwanej i wariancji:

$$P(|X - EX| > \epsilon) \leqslant \frac{D^2(X)}{\epsilon^2}$$

Prawdopodobieństwo znacznego odchylenia się od wartości oczekiwanej jest niewielkie.

Dowód: Weźmy nieujemną zmienną losową $Y = (X - EX)^2$

$$P(|X - EX| \ge \epsilon) = P((X - EX)^2 \ge \epsilon^2) = P(Y \ge \epsilon^2)$$

Dla zmiennej losowej o skończonej wartości oczekiwanej i wariancji:

$$P(|X - EX| > \epsilon) \leqslant \frac{D^2(X)}{\epsilon^2}$$

Prawdopodobieństwo znacznego odchylenia się od wartości oczekiwanej jest niewielkie.

Dowód: Weźmy nieujemną zmienną losową $Y = (X - EX)^2$

$$\begin{array}{ccc} P(|X-EX|\geqslant\epsilon) & = & P((X-EX)^2\geqslant\epsilon^2) & = & P(Y\geqslant\epsilon^2) \\ &\stackrel{(*)}{\leqslant} & \frac{EY}{\epsilon^2} & = & \frac{D^2(X)}{\epsilon^2}, \end{array}$$

gdzie w (*) skorzystaliśmy z nierówności Markowa

$$P(|X - EX| > \epsilon) \le \frac{D^2(X)}{\epsilon^2}$$

Wniosek: Jeśli weźmiemy $\epsilon = kD(X)$ dla pewnego k > 0 to:

$$P(|X - EX| > kD(X)) \le \frac{D^2(X)}{k^2 D^2(X)} = \frac{1}{k^2}$$

Prawdopodobieństwo odchylenia się zmiennej losowej od swojej wartości oczekiwanej o więcej niż k odchyleń standardowych jest co najwyżej $\frac{1}{k^2}$

$$P(|X - EX| > \epsilon) \le \frac{D^2(X)}{\epsilon^2}$$

Wniosek: Jeśli weźmiemy $\epsilon = kD(X)$ dla pewnego k > 0 to:

$$P(|X - EX| > kD(X)) \le \frac{D^2(X)}{k^2 D^2(X)} = \frac{1}{k^2}$$

Prawdopodobieństwo odchylenia się zmiennej losowej od swojej wartości oczekiwanej o więcej niż k odchyleń standardowych jest co najwyżej $\frac{1}{k^2}$

Przykład: Zmienna X ma wartość oczekiwaną 0 i odchylenie standardowe σ . Jakie jest prawdopodobieństwo otrzymania wartości $|X| \geqslant 3\sigma$?

$$P(|X - EX| > \epsilon) \leqslant \frac{D^2(X)}{\epsilon^2}$$

Wniosek: Jeśli weźmiemy $\epsilon = kD(X)$ dla pewnego k > 0 to:

$$P(|X - EX| > kD(X)) \le \frac{D^2(X)}{k^2 D^2(X)} = \frac{1}{k^2}$$

Prawdopodobieństwo odchylenia się zmiennej losowej od swojej wartości oczekiwanej o więcej niż k odchyleń standardowych jest co najwyżej $\frac{1}{k^2}$

Przykład: Zmienna X ma wartość oczekiwaną 0 i odchylenie standardowe σ . Jakie jest prawdopodobieństwo otrzymania wartości $|X| \geqslant 3\sigma$? $\leqslant \frac{1}{9}$

$$P(|X - EX| > \epsilon) \le \frac{D^2(X)}{\epsilon^2}$$

Wniosek: Jeśli weźmiemy $\epsilon = kD(X)$ dla pewnego k > 0 to:

$$P(|X - EX| > kD(X)) \le \frac{D^2(X)}{k^2 D^2(X)} = \frac{1}{k^2}$$

Prawdopodobieństwo odchylenia się zmiennej losowej od swojej wartości oczekiwanej o więcej niż k odchyleń standardowych jest co najwyżej $\frac{1}{k^2}$

Przykład: Zmienna X ma wartość oczekiwaną 0 i odchylenie standardowe σ . Jakie jest prawdopodobieństwo otrzymania wartości $|X|\geqslant 3\sigma?\leqslant \frac{1}{9}$

Uwaga: Nierówność Czebyszewa działa dla dowolnego rozkładu, przez co może być dość słaba. W szczególnych przypadkach napotkamy na znacznie lepsze nierówności.