ACCELEROMETERS IN THE CONTEXT OF INTAKE-BALANCE ASSESSMENTS

FINDINGS, STRATEGIES, AND RESOURCES

Paul R. Hibbing, PhD University of Illinois Chicago

WHAT'S AHEAD

- Overview of the intake-balance method
- Intro to accelerometer-based intake-balance methods
 - Validation methods
 - Prior findings
- Strategies and resources for implementing accelerometerbased intake-balance methods

OVERVIEW OF THE INTAKE-BALANCE METHOD

INTRO TO ACCELEROMETER-BASED INTAKE-BALANCE ASSESSMENTS

ACCELEROMETRY FOR INTAKE-BALANCE

British Journal of Nutrition (2023), 130, 344-352

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

doi:10.1017/S0007114522003312

Predicting energy intake with an accelerometer-based intake-balance method

Paul R. Hibbing^{1*}, Robin P. Shook^{1,2}, Satchidananda Panda³, Emily N. C. Manoogian³, Douglas G. Mashek⁴ and Lisa S. Chow⁴

DOI: 10.1017/S0007114522003312

International Journal of Behavioral Nutrition and Physical Activity

METHODOLOGY

Open Access

Paul R. Hibbing^{1,2*}, Gregory J. Welk³, Daniel Ries⁴, Hung-Wen Yeh^{5,6} and Robin P. Shook^{2,6}

BIGGER PICTURE

- Accelerometer methods can be improved over time
- Accelerometers can measure and record continuously

RESEARCH-GRADE (ACCELEROMETER) TECHNOLOGY: ROADMAP

- (Choose a device and protocol; collect data)
- Pick and apply an EE algorithm
 - https://sites.google.com/view/accelerometerrepository
- Account for non-wear time (and sleep?)
- Determine final EE
- Then proceed to ES data and calculation of EI

TWO VIGNETTES

- paulhibbing.com/TREaccel (basic)
- paulhibbing.com/IntakeBalance (enhanced)

APPLYING EE ALGORITHMS

- Read files into R
 - Helpful packages: read.qt3x, GENEAread, GGIRread, AGread
- Pre-process data (format it according to algorithm's demands), apply the algorithm, and (if applicable) post-process the data, e.g., by averaging estimates every minute
 - For a number of algorithms, this can be done in one big step using the accelEE package

ACCOUNTING FOR NON-WEAR

- Run a non-wear detection algorithm
 - Useful packages are Physical Activity (Choi algorithm) and GGIR
 - Ahmadi et al. have also tested some useful algorithms for raw acceleration
- Overlay non-wear data on EE data, and exclude EE estimates from non-wear periods
- If desired, use imputation to compensate for the lost data (e.g., by assigning resting EE to non-wear periods as a conservative measure)
 - The <u>PAutilities</u> package has functions to estimate basal/resting EE using, e.g., Harris-Benedict and Schofield equations, etc.

DETERMINE FINAL EE

Date	total_minutes	total_hildebrand_linear	total_is_Sleep	total_is_NonWear
9/18/2019	1440	2.536927	828	490
9/19/2019	1440	2.512302	816	500

ZOOMING BACK OUT

- (Choose a device and protocol; collect data)
- Pick and apply an EE algorithm
 - https://sites.google.com/view/accelerometerrepository
- Account for non-wear time
- Determine final EE
- Then proceed to ES data and calculation of EI

CONCLUSION

- Accelerometer-based intake-balance methods are one of several ways to assess EI, and suitability may vary by study
- Limitations apply
- Teamwork advised
- Lots of questions still to be answered!

PRECISION OF MEASUREMENT

Calculated
$$EI = 1020 \frac{\Delta FFM}{\Delta t} + 9500 \frac{\Delta FM}{\Delta t} + EE$$

DOI 10.1093/jn/nxx029

PRECISION OF MEASUREMENT

$$Calculated \; EI = \; 1020 \frac{\Delta FFM}{\Delta t} + 9500 \frac{\Delta FM}{\Delta t} + EE$$

DOI 10.1093/jn/nxx029

Table 1. Participant characteristics and sample descriptives. Accelerometer-derived variables are grand averages across participants

		Control (n 8)*				TRE (n 11)†	
	Pr	Pre Post		Pre)	Post		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Body mass (kg)	103.6	26.8	102.7	25.8	94-0	21.6	90.9	21.3
Fat mass (kg)	48.8	19.7	48.1	19-4	41.1	16.8	39.4	16-4
Fat-free mass (kg)	54.9	9.3	54.6	8.4	52.9	10.3	51.5	10.3

DOI 10.1017/S0007114522003312

PRECISION: VARIOUS METHODS

TABLE 2 Absolute and relative test-retest reliability of the three body composition measurement devices

	Absolute reliability		Relative reliability		
Measurement device	%BF Mean differences (Trial 1-Trial 2) [95% CI]	p-value ^a	SEM (%BF)	MD (%BF)	ICC _{2,1} [95% CI]
Skinfold callipers	0.54 [0.22, 0.87]	< 0.001	0.63	1.74	0.991 [0.979, 0.995]
Ultrasound	0.17 [-0.25, 0.58]	0.43	0.78	2.16	0.988 [0.979, 0.993]
3DPS	-0.01 [-0.43, 0.40]	0.96	0.67	1.84	0.983 [0.968, 0.991]

DOI 10.1111/cpf.12716

PRECISION: BIOELECTRICAL IMPEDANCE ANALYSIS

TABLE 3 Test-retest reliability and variability of key bioelectrical impedance analysis (BIA) measurements.

			Variab	lity between			
Measurement	Mean	SD	Participant	Day	Test	Range	ICC
Body fat (% body mass)	17.6	7.4	7.3	0.6	0.3	1.9 ± 0.9	0.998

DOI 10.3389/fnut.2024.1491931

PRECISION: AIR DISPLACEMENT PLETHYSMOGRAPHY

Table 4. Statistical measures of test–retest reliability of %BF and FFM measurements.

	D . 1	%BF (%)				FFM (kg)			
	Protocol	TEM ¹	SEM	MDC	ICC(2,1) ²	TEM	SEM	MDC	ICC(2,1)
	Single	1.00	1.00	2.77	0.9914	0.675	0.673	1.867	0.9974
4.11	Collins	0.69	0.69	1.91	0.9960	0.507	0.506	1.403	0.9985
All	Tucker	0.70	0.70	1.93	0.9959	0.515	0.513	1.422	0.9985
	Median	0.62	0.62	1.72	0.9967	0.457	0.456	1.264	0.9988
	Single	0.88	0.88	2.44	0.9898	0.683	0.679	1.883	0.9934
	Collins	0.66	0.66	1.82	0.9944	0.552	0.549	1.522	0.9957
Men	Tucker	0.69	0.69	1.91	0.9938	0.576	0.573	1.588	0.9953
	Median	0.60	0.60	1.67	0.9953	0.510	0.508	1.407	0.9963
	Single	1.11	1.10	3.05	0.9866	0.668	0.664	1.840	0.9885
TA7	Collins	0.72	0.71	1.98	0.9944	0.457	0.455	1.261	0.9948
Women	Tucker	0.71	0.71	1.96	0.9945	0.444	0.442	1.225	0.9951
	Median	0.64	0.63	1.76	0.9956	0.397	0.395	1.095	0.9961

DOI 10.3390/ijerph182010693

PRECISION: DXA

Table 2. Mean (±SD) weight and precision (% CV) of whole-body bone mineral, lean tissue, and fat tissue

Measurement site	BMC		Lean		Fat		
	g	% CV	g	% CV	g	% CV	
Month 0							
Arms	254 ± 80	1.7 ± 0.7	$3,837 \pm 605$	3.7 ± 1.7	$2,421 \pm 1,040$	6.7 ± 1.7	
Legs	783 ± 197	1.1 ± 0.5	$13,675 \pm 2,313$	1.5 ± 0.6	$8,460 \pm 1,689$	2.5 ± 1.2	
Trunk	624 ± 202	2.4 ± 0.9	$18,451 \pm 2,380$	1.3 ± 0.4	$7,423 \pm 2,603$	4.1 ± 1.1	
Total body	$2,132 \pm 522$	0.8 ± 0.4	$38,372 \pm 5,213$	1.1 ± 0.5	$19,723 \pm 5,497$	2.7 ± 0.8	
Month 9							
Arms	265 ± 85	2.0 ± 0.8	$3,862 \pm 721$	2.9 ± 1.3	$2,570 \pm 1,010$	4.3 ± 1.6	
Legs	799 ± 193	1.2 ± 0.7	$12,977 \pm 2,249$	1.7 ± 0.6	$8,322 \pm 1,217$	2.4 ± 1.0	
Trunk	653 ± 203	2.8 ± 1.2	$17,380 \pm 2,627$	1.4 ± 0.2	$7,634 \pm 2,014$	2.8 ± 0.6	
Total body	2.184 ± 520	1.2 ± 0.6	$36,570 \pm 5,593$	1.0 ± 0.5	19.981 ± 4.394	1.7 ± 0.5	

DOI: 10.1007/BF02556113

PRECISION: DXA

	Table 2		
Total Body and Regional	Body Precision	Acquired by	Lunar iDXA

Region	Variables	Mean (range)	RMS-SD	CV (%)	LSC
Total body	BMC (g)	2622 (1595–3766)	12.2	0.5	33.9
•	Fat mass (kg)	17.3 (7.9–36.7)	0.18	1.0	0.49
	Lean mass (kg)	45.92 (32.60-72.70)	0.22	0.5	0.61
	Region % fat	27.2 (13.1–45.3)	0.25	_	0.68
	Tissue % fat	28.3 (13.7–46.6)	0.26	_	0.72

DOI: 10.1016/j.jocd.2012.02.009

PRECISION: ENERGY EXPENDITURE

- DLW generally ~6% (± ~2%), based on mean absolute errors from DOI 10.1038/s41430-019-0492-z
- For accelerometer-based measures, depends on the specific method, monitor, and population
 - Values of 10% to ≥30% are common (e.g., DOIs 10.1038/s41598-021-97299-z and 10.1016/j.jsams.2014.10.002)
 - Repeatability is not an issue; given the same data, the algorithms will produce the same output

