TensorBoard Team 15

Members:

Battipaglia Valerio Caso Antonio Dell'Orto Giuseppe Maria

Introduction

Real Time Fire Detection

Lightweight

Processing Framerate

Fire detection accuracy

Memory Usage

Precision

Normalized processing framerate

Recall

Normalized memory usage framerate

Normalized Average notification delay

Fire detection score

SqueezeNet

(with the last 2 layers modified)

LSTM

Example fold

training accuracy

validation accuracy

Selected fold

training accuracy

validation accuracy

TensorBoard

Example fold

0.55
0.50
0.50
1,000
1,500
2,000
2,500
3,000

validation loss

Selected fold

Loss

training loss

validation loss

- From the **selected fold**, we can notice that the **accuracy** values **steadily increase** during the **training** process; this behavior is also observable during the **validation** phase
- In the **selected fold**, the **loss function** values converge gradually towards a certain value, **without significant oscillations**; that indicates the network's robustness

• Furthermore, during the **testing** phase, the **selected fold** proved to be one of the **best** in recognizing **positive samples** and the best in terms of **false positives**

Example fold

Positives: 14 / 15

False positives: 18 / 28

Selected fold

Positives: 15 / 15

False positives: 8 / 28

