

Support Vector Machines (SVMs)

Cleber Zanchettin
UFPE - Universidade Federal de Pernambuco
CIn - Centro de Informática

Introdução

- 1968: base matemática
 - Teoria de Lagrange
- [Vapnik et al, 1992] Primeiro artigo
- [Vapnik et al, 1998] Definição detalhada
- Última década
 - Série de artigos com aplicações de SVM
 - Série de artigos com otimizações de SVM

Motivação

Considere um conjunto de n pontos x_i (i=1,...,n) pertencentes a duas classes $\{+1, -1\}$ linearmente separáveis

$$y_i = +1$$

Um classificador pode ser construído a partir de um hiperplano de separação x.w + b = 0

$$x.w + b = 0$$

Se
$$x_i$$
.w + b > 0
Então $y_i = +1$

Se
$$x_i$$
.w + b < 0
Então y_i = -1

Ou
$$y_i = sign(x_i.w + b)$$

$$y_i = -1$$

Existem infinitos hiperplanos que separam dois conjuntos de pontos linearmente separáveis. Assim, qual o melhor?

Hiperplano ótimo é equidistante às classes e maximiza a margem de separação (2d)

Comparação

Rede Neural Linear

SVM Linear

Pontos mais próximos do hiperplano ótimo são chamados

Hiperplanos superior e inferior podem ser reescalonados para:

$$xw + b = +1 e xw + b = -1$$

Margem 2d é calculada como: | | w||

Considerando:

- Dados de treinamento
 - Tuplas no formato $(x_1, x_2, ..., x_n, y)$
 - Atributos X_i
 - Classe Y (+1, -1)
- Conjunto dito linearmente separável, se existir um hiperplano H (no espaço de entrada) que separe as tuplas de classes diferentes
- Determinar os vetores de suporte
- Encontrar o hiperplano ótimo
 - Com maior margem

Considerando os vetores de suporte x₁ e x₂ temos que a distância entre um hiperplano que toca todos os vetores de suporte do lado de x₁ respeitando:

$$\mathbf{w} \cdot \mathbf{x}_1 + b = +1$$

Enquanto todos os vetores de suporte do lado de X₂ respeitam:

$$\mathbf{w} \cdot \mathbf{x}_2 + b = -1$$

Assim, a diferença entre ambas as funções define a *margem*:

$$\mathbf{w} \cdot (\mathbf{x}_1 - \mathbf{x}_2) = 2$$

Logo, a diferença entre X 1 e X 2 é dada por:

$$\mathbf{x_1} - \mathbf{x_2} = rac{\mathbf{2}}{\mathbf{w}}$$
 cin.ufpe.br

Como buscamos pela máxima margem ou distância projetada entre x e x , buscamos maximizar:

$$d = \mathbf{x_1} - \mathbf{x_2} = \frac{2}{\parallel \mathbf{w} \parallel}$$

Sendo a *distância mínima* entre o hiperplano separador e os dados de treinamento dada por:

$$\frac{1}{\mid\mid\mathbf{w}\mid\mid}$$

Logo podemos maximizar esse termo acima ou minimizar o termo abaixo:

 $||\mathbf{w}||$

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$

$$x = 2, y = 1$$

- Many separating perceptrons, T[ax+b]
 - Anything with ax+b = 0 between -1 and 2

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$

$$x = 2, y = 1$$

- Many separating perceptrons, T[ax+b]
 - Anything with ax+b = 0 between -1 and 2
- We can write the margin constraints

$$a(-3) + b < -1 => b < 3a - 1$$

$$a(-1) + b < -1 => b < a - 1$$

$$a(2) + b > +1 => b > -2a + 1$$

· Suppose we have three data points

- Many separating perceptrons, T[ax+b]
 - Anything with ax+b = 0 between -1 and 2
- We can write the margin constraints

$$a (-3) + b < -1 => b < 3a - 1$$

 $a (-1) + b < -1 => b < a - 1$
 $a (2) + b > +1 => b > -2a + 1$

• Ex: a = 1, b = 0

Suppose we have three data points

$$x = -3, y = -1$$

 $x = -1, y = -1$

$$x = 1, y = 1$$

We can write the margin constraints

$$a(-1) + b < -1 => b < a - 1$$

$$a(2) + b > +1 => b > -2a + 1$$

- Ex: a = 1, b = 0
- Minimize | | a | | => a = .66, b = -.33
 - Two data on the margin; constraints "tight"

Hiperplano ótimo

$$Margem = 2 / ||w||$$

- É aquele que possui maior margem
- É aquele que possui menor ||w||
- Determinação do hiperplano
 - Problema de otimização restrita
 - Minimizar uma função de custo (produto interno) sujeito a restrições
 - Multiplicadores de Lagrange

Problema

Maximizar:
$$\frac{2}{\|\mathbf{w}\|}$$

$$x_i$$
.w + b >= +1 se y_i = +1

Sujeito a:

$$x_i$$
.w + b <= -1 se y_i = -1

Ou de forma mais conveniente:

Minimizar:
$$\frac{||\mathbf{w}||^2}{2}$$

Sujeito a:
$$y_i (x_i.w + b) - 1 >= 0$$

- **-** -1, 0, -1
- , -1, -1
- , 1, -1
- , 0, -1
- , -1, +1
- , 1, +1
- , -1, +1
- , 1, +1

$$H_1$$
: $w \cdot x + b = 1$
 H_2 : $w \cdot x + b = -1$

$$w_1x_1 + w_2x_2 + b = -1$$

 $1w_1 + 0w_2 + b = -1$
 $\Rightarrow b = -1 - w_1$

$$w_1x_1 + w_2x_2 + b = 1$$

$$3w_1 - 1w_2 + b = 1$$

$$\rightarrow$$
 $W_2 = 3W_1 - 1 - W_1 - 1$

$$\rightarrow$$
 $W_2 = 2W_1 - 2$

$$3w_1 + 1w_2 + b = 1$$

$$\rightarrow$$
 3w₁ + 2w₁ -2 -1 -w₁ = 1

$$\rightarrow$$
 W₁ = 1

$$\rightarrow$$
 b = -2

$$\rightarrow$$
 $W_2 = 0$

$$(1,0) \cdot x - 2 = 0$$

$$X_1 = 2$$

(1,	0) → -1
(3,	-1) → + 1
_	1) → +1
(-,	.,

H:
$$(1, 0) \cdot x - 2 = 0$$

$$H: x_1 - 2 = 0$$

Dados de Teste

$$(4, 2), (1.5, 0.5), (0, -2)$$

$$1.5 - 2 = -0.5 [-1]$$

$$0 - 2 = -2[-1]$$

Como encontrar os vetores de suporte?

Multiplicadores de Lagrange

Minimizar:
$$\frac{||\mathbf{w}||^2}{2}$$

Sujeito a:
$$y_i (x_i.w + b) - 1 >= 0$$

Minimizar:
$$L_P = \frac{1}{2} ||w||^2 - \sum_i \alpha_i * [y_i (x_i.w + b) - 1]$$

Multiplicador de Langrange α i >= 0 (pode ser visto como a "força" da i-ésima restrição)

- Método dos Multiplicadores de Lagrange: Empregado para resolver problemas de extremos sujeitos a restrições de igualdade.
- Seja o problema a seguir:

$$\max (\min) f(\mathbf{x})$$

s.a.
$$g_i(\mathbf{x}) = 0$$
, $i = 1,...,N$

onde $f \in g_i$ (i=1,...,N) são funções reais de n (n > N) variáveis que se assumem duas vezes diferenciáveis num determinado conjunto D.

• Chama-se função de Lagrange ou lagrangiano à função:

$$L(\mathbf{x},?) = f(\mathbf{x}) + \sum_{i=1}^{N} \lambda_i g_i(\mathbf{x})$$

Max/Min
$$f(x,y)=z$$

s.a. $g(x,y)=k$

$$\overrightarrow{\nabla} f = \lambda \overrightarrow{\nabla} g$$

Minimizar:
$$L_P = \frac{1}{2} ||w||^2 - \sum_i \alpha_i^* [y_i (x_i \cdot w + b) - 1]$$

 L_P deve ser minimizada com respeito a w e b, e maximizada com respeito a α_i , ou seja:

$$\max_{\alpha} \left\{ \min_{\mathsf{w},\mathsf{b}} \left\{ \mathsf{L}_{\mathsf{P}}(\mathsf{w},\!\mathsf{b},\!\alpha) \right\} \right\}$$

$$\max_{\alpha} \left\{ \min_{w,b} \left\{ L_{P}(w,b,\alpha) \right\} \right\}$$

$$\frac{\partial L_P}{\partial w} = 0 \qquad w = \sum_i \alpha_i x_i y_i \qquad \text{(1)}$$

$$\longrightarrow \frac{\partial L_P}{\partial h} = 0 \quad \longrightarrow \quad \sum_i \alpha_i y_i = 0$$
 (2)

Substituindo (1) e (2) em L_P, teremos um novo problema de otimização (ver próximo slide)

Substituindo (1) e (2) no problema: $\max_{\alpha} \left\{ \min_{w,b} \left\{ L_{P}(w,b,\alpha) \right\} \right\}$

- Os vetores x_i e x_j são o vetor de entrada e o padrão de entrada pertencente ao j-ésimo exemplo.
- Problema resolvido comumente por métodos de otimização quadrática
- Sequential Minimal Optimization (Algoritmo SMO)
- Solução única e ótima!!!

Maximizar:
$$L_D = \sum_i \alpha_i - \sum_{i,j} \alpha_i \cdot \alpha_j \cdot x_i \cdot x_j \cdot y_i \cdot y_j$$

Observações importantes:

- Existe um $\alpha_{\rm i}$ para cada exemplo de treinamento.
- Na solução ótima de L_D , $\alpha_i > 0$ para os vetores suporte e $\alpha_i = 0$ para os outros exemplos !!!
- Intuição: O hiperplano ótimo depende apenas dos vetores suporte.

Maximizar:
$$L_D = \sum_i \alpha_i - \sum_{i,j} \alpha_i \cdot \alpha_j \cdot x_i x_j \cdot y_i y_j$$

Observações importantes:

Maximizando L_D, o hiperplano ótimo é obtido diretamente:

$$w = \sum_{i} \alpha_{i} x_{i} y_{i}$$

 $b = 1 - w. x_{(s)}$, onde $x_{(s)}$ é um vetor suporte no hiperplano superior

SVM – Soft Margin

- Formulação anterior definida para conjuntos linearmente separáveis
 - Hard Margin SVM
- Para conjuntos não-linearmente separáveis pequenos erros pode ser tolerados

Minimizar:
$$\frac{||\mathbf{w}||^2}{2} + C \sum_i \xi_i$$

Sujeito a:
$$y_i (x_i.w + b) - 1 + \xi i >= 0$$

SVM – Soft Margin

 A derivação do Lagrangiano introduz apenas uma restrição para α_i

$$\text{Maximizar: } L_{\text{D}} = \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \cdot \alpha_{j} \cdot x_{i} \cdot x_{j} \cdot y_{i} \cdot y_{j}$$

$$0 \le \alpha i \le C$$

Valores de α_i limitados pelo parâmetro de complexidade C

SVM Não-Linear

- SVM linear ainda é muito limitado mesmo com margens flexíveis
- Generalização não-linear de SVM
 - Mapear espaço original para espaço não-linear de maior dimensão onde exemplos sejam linearmente separáveis;
 - Construir hiperplano ótimo no novo espaço.

SVM Não-Linear

SVM Não-Linear

Como separar as duas classes com apenas um ponto?

X ₁	Class
0	+1
1	-1
2	-1
3	+1

SVM usa uma função não linear sobre os atributos do espaço de características inicial

X ₁	Class
0	+1
1	-1
2	-1
3	+1

$$\Phi(X_1) = (X_1, X_1^2)$$

Esta função torna o problema bidimensional

SVM usa uma função não linear sobre os atributos do espaço de características inicial

X ₁	X ₁ ²	Class
0	0	+1
1	1	-1
2	4	-1
3	9	+1

$$\Phi(X_1) = (X_1, X_1^2)$$

Esta função torna o problema bidimensional e os dados linearmente separáveis

1D example:

■
$$\mathbf{W} \cdot \mathbf{X} + \mathbf{b} = +1$$

 $\mathbf{W}_1 \mathbf{X}_1 + \mathbf{W}_2 \mathbf{X}_2 + \mathbf{b} = +1$
 $\mathbf{0} \mathbf{W}_1 + \mathbf{0} \mathbf{W}_2 + \mathbf{b} = +1$
 $\mathbf{3} \mathbf{W}_1 + \mathbf{9} \mathbf{W}_2 + \mathbf{b} = +1$

X ₁	X ₁ ²	Class
0	0	+1
1	1	-1
2	4	-1
3	9	+1

•
$$w \cdot x + b = -1$$

$$W_1X_1 + W_2X_2 + b = -1$$

substituindo b e após w₁

$$1w_1 + 1w_2 + b = -1 \rightarrow w_1 = -2 - w_2$$

$$2w_1 + 4w_2 + b = -1 \rightarrow -4 - 2w_2 + 4w_2 + 1 = -1$$

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$$

$$W_2 = 1 e W_1 = -3$$

$$W_1X_1 + W_2X_2 + b = 0$$

$$\rightarrow$$
 -3x₁ + x₂ + 1 = 0

H:
$$-3x_1 + x_2 + 1 = 0$$

Dados de Teste (1.5), (-1), (4)

$$-3.1.5 + 2.25 + 1 = -1.15 [-1]$$

$$-3 \cdot -1 + 1 + 1 = 5 [+1]$$

$$-3.4 + 16 + 1 = 5[+1]$$

Como separar as duas classes com apenas uma reta?

X ₁	X ₂	Class
1	1	-1
-1	1	-1
1	-1	-1
-1	-1	-1
2	2	+1
-2	2	+1
2	-2	+1
-2	-2	+1

$$\Phi(x_1, x_2) = \begin{cases} (4-x_2+|x_1-x_2|, 4-x_1+|x_1-x_2|), & \sqrt{(x_1^2+x_2^2)} > 2\\ (x_1, x_2) & \end{cases}$$

Esta função mantém o problema bidimensional

Vetores de Suporte

X ₁	X ₂	Class
1	1	-1
-1	1	-1
1	-1	-1
-1	-1	-1
2	2	+1
6	6	+1
10	6	+1
6	10	+1

$$H_1$$
: w · x + b = 1
 H_2 : w · x + b = -1

Vetores de Suporte

X ₁	X ₂	Class
1	1	-1
2	2	+1

$$w_1x_1 + w_2x_2 + b = -1$$

 $1w_1 + 1w_2 + b = -1$
 $\rightarrow w_1 = -1 - b - w_2$

$$w_1x_1 + w_2x_2 + b = 1$$

2(-1 -b -w₂) + 2w2 + b = 1
-2 -2b -2w2 +2w2 + b = 1
 \Rightarrow b = -3

$$(2-1)^{2} x_{2} = (2-1)^{2} x_{1}$$

 $2x_{2} - x_{2} = 2x_{1} - x_{1}$
 $x_{2} = x_{1}$
 $x_{1} = x_{2} = 1$

$$H_0$$
: $(1,1) \cdot x - 3 = 0$
 $x1 + x2 - 3 = 0$

Equação da reta

$$\Phi(x_1, x_2) = \begin{cases} (4-x_2+|x_1-x_2|, \ 4-x_1+|x_1-x_2|), & \sqrt{(x_1^2+x_2^2)} > 2\\ (x_1, x_2) & \end{cases}$$

Esta função realmente separa o espaço original de forma linear?

$$\Phi(5,5) = (-1, -1)$$

$$\Phi(4,4) = (0,0)$$

Dados de teste (5,5) $\Phi(5,5) = (-1, -1)$ Dados de teste (4,4) $\Phi(4,4) = (0, 0)$ **Erros de classificação!**

Função de mapeamento não é ideal

Problema

- Como escolher a função Φ(x) tal que o espaço de características transformado seja eficiente para classificação e não possua custo computacional alto demais?
 - Com uma função especial, chamada **função kernel** é possível calcular o produto escalar $\Phi(x_i)$. $\Phi(x_j)$ sem mesmo conhecer o mapeamento Φ!

SVM (Kernels)

 Em SVMs não-lineares, pontos são mapeados implicitamente através da função de Kernel

- Propriedade básica:
 - Kernel é um produto de vetores em algum espaço
 - $K(x_i, x_j) = \Phi(x_i). \Phi(x_j)$

Produto Interno

$$\mathbf{w} \cdot \mathbf{x} = (\mathbf{w}_1 \cdot \mathbf{x}_1 + \mathbf{w}_2 \cdot \mathbf{x}_2)$$

= $(1.0 \cdot 2.4 + 1.0 \cdot 1.5)$
= $(2.4 + 1.5)$
 $\mathbf{w} \cdot \mathbf{x} = 3.9$

Note que o resultado de um Produto Interno é um valor escalar e não um vetor!

- Parece ingênuo mas pode transformar quaisquer algoritmos lineares que possam ser expressos em termos de produtos internos em algoritmos não-lineares.
- Incrementar o número de dimensões do espaço
- E incrementar muito! mover seu problema para um espaço em que exista uma dimensão independente para cada uma das possíveis entradas de sua função!

https://www.youtube.com/watch?v=3liCbRZPrZA

 O classificador linear depende do produto interno entre exemplos

$$K(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$$

Se cada ponto for mapeado para a um espaço de alta dimensão através de uma transformação Φ: x → φ(x), o produto interno fica:

$$K(\mathbf{x}_i,\mathbf{x}_i) = \mathbf{\varphi}(\mathbf{x}_i)^{\mathsf{T}}\mathbf{\varphi}(\mathbf{x}_i)$$

 Uma função de kernel é uma função que é equivalente a um produto interno em um espaço de maior dimensionalidade

Exemplo:

Vetores de 2 dimensões $\mathbf{x}=[x_1 \ x_2]$; seja $K(\mathbf{x}_i,\mathbf{x}_j)=(1+\mathbf{x}_i^\mathsf{T}\mathbf{x}_j)^2$

Precisamos mostrar que $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\phi}(\mathbf{x}_i)^T \mathbf{\phi}(\mathbf{x}_j)$:

$$K(\mathbf{x}_{i},\mathbf{x}_{j})=(1+\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j})^{2}=1+x_{i1}^{2}x_{j1}^{2}+2x_{i1}x_{j1}x_{i2}x_{j2}+x_{i2}^{2}x_{j2}^{2}+2x_{i1}x_{j1}+2x_{i2}x_{j2}$$

$$= [1 \ x_{i1}^2 \sqrt{2} \ x_{i1} x_{i2} \ x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2}]^T [1 \ x_{j1}^2 \sqrt{2} \ x_{j1} x_{j2} \ x_{j2}^2 \sqrt{2} x_{j1} \sqrt{2} x_{j2}]$$

=
$$\varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$$
, onde $\varphi(\mathbf{x}) = [1 \ x_1^2 \ \sqrt{2} \ x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2]$

Não precisamos calcular φ(x) explicitamente

- Para algumas funções $K(\mathbf{x}_i, \mathbf{x}_j)$ checar que $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^\mathsf{T} \phi(\mathbf{x}_i)$ pode ser difícil
- Como provar que o espaço de transformação existe?
- Por construção
- Propriedades matemáticas (Teorema de Mercer)
 - Toda função simétrica definida semi-positiva é um kernel
- Quem se importa? @

Porque usar Kernels?

Lembrando:

Maximizar:
$$L_D = \sum_i \alpha_i - \sum_{i,j} \alpha_i \cdot \alpha_j \cdot x_i \cdot x_j \cdot y_i \cdot y_j$$

Fazendo mapeamento Φ:

Maximizar:
$$L_D = \sum_i \alpha_i - \sum_{i,j} \alpha_i \cdot \alpha_j \cdot \Phi(x_i) \Phi(x_j) \cdot y_i y_j$$

Porque usar Kernels?

Maximizar:
$$L_D = \sum_i \alpha_i - \sum_{i,j} \alpha_i \cdot \alpha_j \cdot \Phi(x_i) \Phi(x_j) \cdot y_i y_j$$

$$K(x_i, x_j) = \Phi(x_i). \Phi(x_j)$$

Maximizar:
$$L_D = \sum_i \alpha_i - \sum_{i,j} \alpha_i \cdot \alpha_j \cdot K(x_i, x_j) \cdot y_i y_j$$

Porque usar Kernels?

Hiperplano ótimo é definido por:

$$xw + b = \phi(x) \cdot \sum_{i} \alpha_{i} \phi(x_{i}) y_{i} + b =$$

$$= \sum_{i} \alpha_{i} \phi(x_{i}) \phi(x) y_{i} + b =$$

$$= \sum_{i} \alpha_{i} y_{i} K(x_{i}, x) + b$$

• O parâmetro $b = 1 - wx_{(s)}$ é definido por:

$$b = 1 - \phi(x_{(s)}) \sum_{i} \alpha_{i} \phi(x_{i}) y_{i} = 1 - \sum_{i} \alpha_{i} \phi(x_{i}) \phi(x_{(s)}) y_{i}$$
$$= 1 - \sum_{i} \alpha_{i} y_{i} K(x_{i}, x_{(s)})$$

Porque usar Kernels

- Não é necessário definir explicitamente o mapeamento Φ
 - Em alguns casos, é impossível definir Ф

 Todo o treinamento e uso do modelo são realizados apenas usando o Kernel

- · Some commonly used kernel functions & their shape:
- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$

- · Some commonly used kernel functions & their shape:
- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$

Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

- · Some commonly used kernel functions & their shape:
- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$
- Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

Saturating, sigmoid-like:

$$K(a,b) = \tanh(ca^T b + h)$$

- Some commonly used kernel functions & their shape:
- Polynomial $K(a,b) = (1 + \sum_{j} a_j b_j)^d$

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

Saturating, sigmoid-like:

$$K(a,b) = \tanh(ca^T b + h)$$

- Many for special data types:
 - String similarity for text, genetics
- In practice, may not even be Mercer kernels...

SVMs para múltiplas classes

One-versus-all

- Train n binary classifiers, one for each class against all other classes.
- Predicted class is the class of the most confident classifier

One-versus-one

- Train n(n-1)/2 classifiers, each discriminating between a pair of classes
- Several strategies for selecting the final classification based on the output of the binary SVMs

Truly MultiClass SVMs

Generalize the SVM formulation to multiple categories

- A escolha do Kernel é importante para o desempenho das SVMs
- Dependendo do Kernel utilizado alguns parâmetros devem ser definidos
- Parâmetro de complexidade C é outro aspecto importante

- Kernel RBF é mais flexível que o polinomial
- Kernel RBF depende de parâmetro gamma (γ)
 - Valores altos d\u00e3o maior flexibilidade ao modelo mas tamb\u00e9m aumentam risco de overfitting

- Sobre parâmetro C:
 - Valores muito altos propiciam a geração de modelos mais complexos (risco de overfitting)
 - Valores muito baixos podem aumentar risco de underfitting

- Grid-Search (Hsu et al. 2007)
 - Separe conjunto de treinamento e teste
 - Com o conjunto de treinamento, realize validação cruzada para encontrar melhores parâmetros C e γ
 - $C = 2^{-5}, ..., 2^{+15}$
 - $\gamma = 2^{15}, ..., 2^{+3}$
 - Use o melhor par de C e γ e treine a SVM com o conjunto todo de treinamento
 - Teste SVM treinada

SVM - Comentários

- SVM se situa dentre as técnicas de aprendizado mais poderosas
- Baseada em uma teoria matemática forte
- Ou seja, justificável teoricamente e com bom desempenho empírico

SVM - Comentários

- Apesar de ter poucos parâmetros para selecionar (e.g., função de kernel), escolha adequada é importante
- Maior desvantagem é o tempo de treinamento e uso (dependendo da quantidade de classes)

Demo

MLP

Applet: http://lcn.epfl.ch/tutorial/english/mlp/html/index.html http://freeisms.com/MLPAppletItself.html

RBF

Applet: http://lcn.epfl.ch/tutorial/english/rbf/html/index.html http://www.cvlibs.net/projects/gausspro.html

SVM

Applet: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ http://www.cs.jhu.edu/~jason/tutorials/SVMApplet/

Vários classificadores

Applet: http://www.cs.technion.ac.il/~rani/LocBoost/

Bibiografia básica

C. BURGES, A Tutorial on Support Vector Machines for Pattern Recognition.

S. GUNN, Support Vector Machines for Classification and Regression.

Fonte

Site do Prof. Ricardo Prudêncio / CIN - UFPE:

http://www.cin.ufpe.br/~rbcp

Site do Prof. Luis Alvares / UFRGS:

http://http://www.inf.ufrgs.br/~alvares/

Applet de simulação

http://cs.stanford.edu/people/karpathy/svmjs/demo/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.cs.jhu.edu/~jason/tutorials/SVMApplet/