End-Semester Project

Bivariate Analysis on GDP per capita, Sanitation and Life Expectancy across Nations in 2010

Table of contents

_		2
	.1 Overview	
	.2 Data	2
2	Univariate Statistics	3
	.1 Measures of Central Tendency	3
	.2 Measures of Dispersion	4
	.3 Box Plot	6
	.4 Inferences	7
3	catter Plot	7
•	.1 Sanitation vs. GDP per Capita	8
	.2 Life Expectancy vs. GDP per Capita	9
	3 Life Expectation vs. Sanitation	10
	4 Inferences	10
		10
4	Sivariate Statistics	10
	.1 Covariance and Correlation Matrices	
	.2 Other Correlation Coefficients	11
	3 Partial Correlation	12
	.4 Inferences	12
5	inear Regression	12
	.1 Ordinary Least Squares	13
	.2 Least Absolute Deviation	14
	.3 Line fitting	15
	.4 Sanitation vs. GDP per Capita	16
	.5 Life Expectancy vs. GDP per Capita	17
	.6 Life Expectancy vs. Sanitation	18
	.7 Inferences	18
6	Conclusion	18

1 Introduction

1.1 Overview

This presentation demonstrates the capabilities of *Bivariate Analysis* on datasets, to infer relationship between various features of Nations.

- log of GDP per capita: Logarithm (base e) of Gross Domestic Product (in \$) per citizen. Adjusted for Inflation. [lngdp]
- Sanitation Access %: Percentage of people using at least basic Sanitation facilities, not shared with other households. [snt]
- Life Expectancy: The average number of years a newly born child would live, provided current mortality patterns hold. [lfx]

1.2 Data

```
script.dir <- getSrcDirectory(function(x) {x})</pre>
setwd(script.dir)
numerise = function(x){
 x[grepl("k\$", x)] \leftarrow as.numeric(sub("k\$", "", x[grepl("k\$", x)]))*10^3
 x <- as.numeric(x)</pre>
 return(x)
}
d1_raw = read.csv(file.path(".", "Data", "gdp.csv"), fileEncoding = 'UTF-8-BOM')
d2_raw = read.csv(file.path(".","Data","sanitation.csv"), fileEncoding = 'UTF-8-BOM')
d3_raw = read.csv(file.path(".","Data","life_expectancy.csv"), fileEncoding = 'UTF-8-BOM')
yearname = "X2010"
d1 = d1 raw[!is.na(numerise(d1 raw[, yearname])),][,c("country", yearname)]
colnames(d1)[2] = "lngdp"
d2 = d2_raw[!is.na(numerise(d2_raw[, yearname])),][,c("country", yearname)]
colnames(d2)[2] = "snt"
d3 = d3_raw[!is.na(numerise(d3_raw[, yearname])),][,c("country", yearname)]
colnames(d3)[2] = "lfx"
dtemp = merge(x = d1, y = d2, by = "country")
d = merge(x = dtemp, y = d3, by = "country")
d$lngdp = log(numerise(d$lngdp))
write.csv(d, "./Data/assembled.csv")
kable(head(d, 6L))
```

country	lngdp	snt	lfx
Afghanistan	6.265301	34.9	60.5
Albania	8.183118	95.2	78.1
Algeria	8.273847	87.0	74.5
Andorra	10.454495	100.0	81.8
Angola	8.291547	41.1	60.2
Antigua and Barbuda	9.546813	86.3	75.9

2 Univariate Statistics

2.1 Measures of Central Tendency

Mean or Arithmetic Mean \bar{x} , Geometric Mean $\mathrm{GM}(x)$, Harmonic Mean $\mathrm{HM}(x)$, Median $\mathrm{median}(x)$ and Mode $\mathrm{mode}(x)$ are some measures of central tendency in the sample.

WORLD BANK,
WHO, IMHE
VIA GAPMINDER.ORG,
CC-BY
LICENSE.

FREE DATA FROM UN,

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^n (x_i) \quad \text{GM}(x) = \sqrt[n]{\prod_{i=1}^n} a_i \quad \text{HM}(x) = n \sum_{i=1}^n x_i^{-1} \\ \text{median}(x) &= \begin{cases} x_{(n+1)/2} &: n = 1 \mod 2 \\ \frac{x_{(n/2)} + x_{((n/2)+1)}}{2} &: n = 0 \mod 2 \end{cases} \mod (x) = x_{(n)} \end{split}$$

```
getmode <- function(v) {</pre>
uniqv <- unique(v)</pre>
 freq = max(tabulate(match(v, uniqv)))
res = uniqv[which.max(tabulate(match(v, uniqv)))]
 if (freq == 1) res = NULL
 return(res)
}
d_central = data.frame(
 row.names = "Variable",
 Variable = c(
    "*ln(GDP)*",
    "*Sanitation*",
    "*Life Exp.*"
 ),
 Mean = c(
    mean(d$lngdp),
    mean(d$snt),
    mean(d$1fx)
 ),
 GM = c(
```

```
geometric.mean(d$lngdp),
    geometric.mean(d$snt),
    geometric.mean(d$lfx)
  ),
 HM = c(
    harmonic.mean(d$lngdp),
    harmonic.mean(d$snt),
    harmonic.mean(d$lfx)
  ),
  Median = c(
    median(d$lngdp),
    median(d$snt),
    median(d$lfx)
  ),
 Mode = c(
    getmode(d$lngdp),
    getmode(d$snt),
    getmode(d$1fx)
)
kable(
 d_central,
  col.names = c(
    "$\\bar{x}$",
    "$\\operatorname{GM}(x)$",
    "$\\operatorname{HM}(x)$",
    "$\\operatorname{median}(x)$",
    "$\\operatorname{mode}(x)$"
  ),
  digits=5
```

	\bar{x}	GM(x)	HM(x)	median(x)	mode(x)
$\overline{ln(GDP)}$	8.54124	8.42229	8.30248	8.48673	9.23014
Sanitation	72.43857	62.58904	47.61862	85.60000	100.00000
$Life\ Exp.$	70.54603	69.95538	69.28316	72.40000	73.20000

2.2 Measures of Dispersion

Range(x), Semi-int.. SIR(x), Mean Deviation about x' $MD_{(x')}(x)$, Variance s_x^2 , Standard Deviation s_x are some measures of dispersion in the sample.

Note: x_i is the ith observation. $x_{(i)}$ is the ith largest observation.

```
\mathrm{MD}_{(x')}(x) = \frac{\sum_{i=1}^{n} |x_i - x'|}{n} \quad \mathrm{SIR}(x) = \frac{|Q_1 - Q_3|}{2} \quad s_x = \sqrt{\frac{\sum_{i=1}^{n} \left(x_i - \bar{x}\right)^2}{n}} \quad s_x^2 = (s_x)^2
getmd = function(x, center = mean(x)){
  md = mean(
    abs(
       x - rep(center, length(x))
     )
  return(md)
}
d_disp = data.frame(
  row.names = "Variable",
  Variable = c(
     "*ln(GDP)*",
     "*Sanitation*",
    "*Life Exp.*"
  ),
  Range = c(
    max(d$lngdp) - min(d$lngdp),
    max(d$snt) - min(d$snt),
    max(d$lfx) - min(d$lfx)
  ),
  SIR = c(
    IQR(d$lngdp)/2,
     IQR(d\snt)/2,
    IQR(d\$1fx)/2
  ),
  MD = c(
     getmd(d$lngdp),
     getmd(d$snt),
    getmd(d$lfx)
  variance = c(
     (sd(d$lngdp))^2,
     (sd(d$snt))^2,
    (sd(d\$lfx))^2
  ),
  SD = c(
    sd(d$lngdp),
     sd(d$snt),
```

 $\mathrm{Range}(x) = |x_{(n)} - x_{(1)}| \qquad Q_1 = \mathrm{median}(x_{(1)}, \dots, x_{(\lfloor \frac{n+1}{2} \rfloor)}) \qquad Q_3 = \mathrm{median}(x_{(\lfloor \frac{n+2}{2} \rfloor)}, \dots, x_{(n)})$

sd(d\$lfx)

```
kable(
   d_disp,
   col.names = c(
     "$\operatorname{Range}(x)$",
     "$\\operatorname{SIR}(x)$",
     "$\\operatorname{MD}_{(\\bar{x})}(x)$",
     "$\\quad \\quad \\quad \\quad s_x^2$",
     "$\\quad \\quad \\quad \\quad s_x$"
),
   digits=5
)
```

	$\operatorname{Range}(x)$	SIR(x)	$\mathrm{MD}_{(ar{x})}(x)$	s_x^2	s_x
ln(GDP)	6.04435	1.06914	1.17229	2.01791	1.42053
Sanitation	94.03000	24.65000	25.50487	872.29346	29.53461
Life	50.80000	6.00000	6.98712	75.33494	8.67957
Exp.					

2.3 Box Plot

About?

```
labelfunction = function(val1){
 return(list(c(
    "log of GDP per capita",
    "Sanitation Access %",
    "Life Expectancy"
 )))
ggplot(stack(d[2:4]), mapping = aes(y = values))+
geom_boxplot(aes(fill=ind), alpha=0.8, outlier.color = "orange")+
labs(
 x=NULL,
 y=NULL
 )+
mytheme+
mycolor+
facet_wrap(~ind, scales="free", labeller = labelfunction)+
  theme(axis.text.x=element_blank(),
        legend.position="none",
```

```
strip.text.x = element_text(size = rel(1.5)),
panel.grid.minor.x = element_blank(),
panel.grid.major.x = element_blank()
```


2.4 Inferences

3 Scatter Plot

A *Scatter plot* is a type of Plot using Cartesian coordinate system to display values for two variables for a set of data. The data are displayed as a collection of points, each having one variable determining the *abscissa* and the other variable determining the *ordinate*. It helps us:

- take a short glance at effect of two variables.
- suggest kinds of correlations between variables.
- estimate the direction of correlation.

```
sctrplot = function(
   d, x_map, y_map,
   x_lab=waiver(), y_lab=waiver(),
   title=waiver()
){
```

3.1 Sanitation vs. GDP per Capita

3.2 Life Expectancy vs. GDP per Capita

3.3 Life Expectation vs. Sanitation

3.4 Inferences

seems like Linear correlation

4 Bivariate Statistics

4.1 Covariance and Correlation Matrices

Covariance cov(x, y) is a measure of the joint variability of two random variables x, y.

Correlation $r_{x,y}$ is any relationship, causal or spurious, between two random variables x, y. Pearson's r correlation coefficient is considered here.

$$\mathrm{cov}(x,y) = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n} \quad r_{x,y} = \frac{\mathrm{cov}(x,y)}{s_x s_x}$$

```
cov_mat = cov(d[, 2:4])
kable(cov_mat, digits=5)
```

	lngdp	snt	lfx
lngdp snt	2.01791 33.84045 9.52202	33.84045 872.29346 208.54155	9.52202 208.54155 75.33494

$$A_{i,j} = \mathrm{cov}(x_i, x_j)$$

```
cor_mat = cor(d[, 2:4])
kable(cor_mat, digits=5)
```

	lngdp	snt	lfx
lngdp	$ \begin{array}{c} 1.00000 \\ 0.80659 \\ 0.77229 \end{array} $	0.80659	0.77229
snt		1.00000	0.81351
lfx		0.81351	1.00000

$$A_{i,j} = r_{x_i,x_j}$$

4.2 Other Correlation Coefficients

Pearson, Spearman, Kendall #TODO

```
d_cor = data.frame(
 row.names = "Variable",
 Variable = c(
    "*Sanitation vs. ln(GDP)*",
    "*Life Exp. vs. ln(GDP)*",
    "*Life Exp. vs. Sanitation*"
 ),
 Pearson = c(
    cor(d$snt, d$lngdp, method="pearson"),
    cor(d$lfx, d$lngdp, method="pearson"),
    cor(d$lfx, d$snt, method="pearson")
 ),
  Spearman = c(
    cor(d$snt, d$lngdp, method="spearman"),
    cor(d$lfx, d$lngdp, method="spearman"),
    cor(d$lfx, d$snt, method="spearman")
  ),
```

```
Kendall = c(
    cor(d$snt, d$lngdp, method="kendall"),
    cor(d$lfx, d$lngdp, method="kendall"),
    cor(d$lfx, d$snt, method="kendall")
)

kable(
    d_cor,
    digit = 5,
    col.names = c(
        "*Pearson's* $r$",
        "*Spearman's* $r_s$",
        "*Kendall's* $\\tau$"
)
)
```

	Pearson's r	$Spearman's \ r_s$	Kendall's $ au$
Sanitation vs. $ln(GDP)$	0.80659	0.85920	0.67458
Life Exp. vs. $ln(GDP)$	0.77229	0.81639	0.62168
Life Exp. vs. Sanitation	0.81351	0.83513	0.63744

4.3 Partial Correlation

Partial

	Partial Correlation
$\overline{Sanitation \ vs. \ ln(GDP)}$	0.4826925
Life Exp. vs. $ln(GDP)$	0.3377892
Life Exp. vs. Sanitation	0.5075384

4.4 Inferences

Good linear correlation lets try to observe line of best fit.

5 Linear Regression

Simple Univariate Linear Regression is a method for estimating the relationship $y_i = f(x_i)$ of a response variable y with a predictor variable x, as a line that closely fits the y vs. x scatter plot.

$$y_i = \hat{a} + \hat{b}x_i + e_i.$$

Where \hat{a} is the *intercept*, \hat{b} is the *slope*, and e_i is the ith residual *error*. We aim to minimize e_i for better fit.

5.1 Ordinary Least Squares

Ordinary Least squares method reduces e_i by minimizing error sum of squares $\sum e_i^2$.

```
olssmry = function(
   d, x_map, y_map,
    x_lab=waiver(), y_lab=waiver(),
    title=waiver()
){
 model = lm(formula=y_map~x_map)
  smry = summary(model, signif.stars=TRUE)
  smryvec = c(
    as.numeric(model$coefficients["(Intercept)"]),
    as.numeric(model$coefficients["x_map"]),
    smry$r.squared
  return(smryvec)
}
olstab = t(data.frame(
 SvG = olssmry(d, d$lngdp, d$snt),
 LvG = olssmry(d, d$lngdp, d$lfx),
 LvS = olssmry(d, d$snt, d$lfx)
))
row.names(olstab) = c(
  "*Sanitation vs. ln(GDP)*",
 "*Life Exp. vs. ln(GDP)*",
  "*Life Exp. vs. Sanitation*"
kable(
  olstab,
 digit = 5,
 col.names=c(
 "$\\hat{a}$",
  "$\\hat{b}$",
  "$R^2$"
  )
)
```

	\hat{a}	\hat{b}	R^2
Sanitation vs. $ln(GDP)$	-70.79844	16.77006	0.65059
Life Exp. vs. $ln(GDP)$	30.24203	4.71876	0.59643
Life Exp. vs. Sanitation	53.22795	0.23907	0.66180

5.2 Least Absolute Deviation

Least absolute Deviation method reduces e_i by minimizing the sum of absolute deviations $\sum |e_i|$.

```
ladsmry = function(
   d, x_map, y_map,
    x_lab=waiver(), y_lab=waiver(),
    title=waiver()
){
 model = rq(formula=y_map~x_map)
  smry = summary(model)
  smryvec = c(
    as.numeric(model$coefficients[1]),
    as.numeric(model$coefficients[2])
  return(smryvec)
olstab = t(data.frame(
 SvG = ladsmry(d, d$lngdp, d$snt),
 LvG = ladsmry(d, d$lngdp, d$lfx),
 LvS = ladsmry(d, d$snt, d$lfx)
))
row.names(olstab) = c(
  "*Sanitation vs. ln(GDP)*",
  "*Life Exp. vs. ln(GDP)*",
 "*Life Exp. vs. Sanitation*"
kable(
 olstab,
 digit = 5,
  col.names=c(
  "$\\hat{a}$",
```

 R^2 : Coefficient of Determination

```
"$\\hat{b}$"
)
)
```

	\hat{a}	\hat{b}
$\overline{Sanitation \ vs. \ ln(GDP)}$	-71.23153	16.80472
Life Exp. vs. $ln(GDP)$	31.99047	4.61340
Life Exp. vs. Sanitation	53.73041	0.23963

5.3 Line fitting

Plotting the estimated *Linear Model* on the Scatter Plot.

```
linearplot = function(
    d, x_map, y_map,
   x_lab=waiver(), y_lab=waiver(),
   title=waiver()
 plot1 = ggplot(d, mapping = aes(x = x_map, y = y_map))+
    geom_point(
      alpha=0.6
   )+
   mytheme+
   labs(
      x=x_lab,
      y=y_lab,
      title=title
    geom_smooth(
      method="lm",
      formula=y~x,
      se=FALSE,
      aes(color = "Ordinary Least Squares")
    )+
    geom_smooth(
      method="rq",
      formula=y~x,
      se=FALSE,
      aes(color = "Least Absolute Deviation")
   )+
    labs(
      color="Linear Model"
    )+
```

```
mycolor

return(plot1)
}
```

5.4 Sanitation vs. GDP per Capita

5.5 Life Expectancy vs. GDP per Capita

5.6 Life Expectancy vs. Sanitation

5.7 Inferences

6 Conclusion