Spectral Components

Nuclear Continuum

$$F_{\lambda,\mathrm{PL}} = F_{\mathrm{PL},0} \ (\frac{\lambda}{\lambda_0})^{\alpha} \tag{1}$$

where $F_{\text{PL},0}$ is the power-law normalization, α is the power-law slope and λ_0 is the median wavelength of the data wavelength range.

Priors

Balmer Continuum

If we assume gas clouds with uniform temperature T_e , that are partially optically thick, for wavelengths bluer than the Balmer edge ($\lambda_{BE} = 3646$ Å, rest frame), the Balmer spectrum can be parameterized as (Grandi et al., 1982):

$$F_{\lambda, BC} = F_{BE} B_{\lambda}(T_e) \left(1 - e^{-\tau_{BE} \left(\frac{\lambda}{\lambda_{BE}}\right)^3}\right), \ \lambda < \lambda_{BE}$$
 (2)

where $B_{\lambda}(T_{\rm e})$ is the Planck function at the electron temperature $T_{\rm e}$, $\tau_{\rm BE}$ is the optical depth at the Balmer edge, and $F_{\rm BE}$ is the normalized flux density at the Balmer edge.

Priors

FeII & FeIII

Linear combination of N broadened and scaled iron templates:

$$F_{\lambda,\text{Fe}} = \sum_{i=1...N} F_{\text{Fe},0,i} \text{ FeTempl}_{\lambda,i}(\sigma_i)$$
 (3)

where FeTempl_{λ ,i} is the iron template, $F_{\text{Fe},0,i}$ is the template normalization, and σ_i is the width of the broadening kernel.

Priors

Host Galaxy

Linear combination of N galaxy templates:

$$F_{\lambda, \text{Host}} = \sum_{i=1,..N} F_{\text{Host}, 0, i} \text{ HostTempl}_{\lambda, i}$$
 (4)

where $\text{HostTempl}_{\lambda,i}$ is the host galaxy template, and $F_{\text{Host},0,i}$ is the template normalization.

Priors

Host Galaxy Reddening

Priors

Nuclear Reddening

Priors

Emission lines

Priors