		-	**********	a minor man	eponentino de	 -	-	and a second	-
USN									1
	-		1						-

MCE301A1

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU, Belagavi)

I Semester Master of Technology (Computer Science and Engineering)
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Time: 03 Hours
Instructions to candidates:

Maximum Marks: 100

- 1. Answer FIVE full questions selecting one from each unit.
- 2. Each unit consisting of two questions of 20 marks each.

UNIT-1

M BT CO

1	a b	Differentiate Model-based reflex agents and Goal-based agents with pseudocodes and diagrams. List the properties of task environments and explain.	10 10	3 2	2 2
		OR			
2	а	Identify the task environments that can be categorized along with the appropriate agent design and applicability for agent implementation.		0	3
	b	Agent programs are described as components, whose function is to	10	2	3
		answer questions, illustrate the working of agent programs.	10	2	3

UNIT-2

3	а	Perform the alpha-beta pruning for the fig 3a tree. Demonstrate the step-by step result.			
		MAX MIN MAX 24			
		4 3 6 2 2 1 9 5 3 1 5 4 7 5			
		Fig 3a	10	3	3
	b	Discuss the working of A *algorithm used in path finding and graph			
		traversals.	10	2	2
		OR			
4	a	With a neat diagram, describe the conceptual components of a learning agent.	10	2	0
	b	Discuss the Minimum description length principle and Maximum	10	2	2
		likelihood Estimation methods with suitable examples.	10	2	2

UNIT-3

5 a	Draw a Decision Tree for the following data shown in table 1 using Information gain. Training set: 3 features and 2 classes (I, II represent classes). Estimate the information gain in the following cases	
-----	---	--

		i) Split on features xii) Split on features yiii) Split on features z			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$\begin{bmatrix} 1 & 1 & 1 & I \\ 1 & 1 & 0 & I \end{bmatrix}$			
		$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & II \end{bmatrix}$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Table 1	10	3	4
	b	Compare both decision tree classification with logistic regression in			
		Machine learning.	10	3	4
		OR			
1					
6	a	Discuss the implementation steps used in <i>ID3</i> algorithm with an		•	
		example.	10	3	4
	b	Discuss the issues and challenges in concept learning.	10	2	2

UNIT - 4

7	a	Consider the given data	in tab	le 2, a	pply N	aïve Ba	aye's algorithm			
		and predict fruit has the	followin	ng prop	erties 1	then wh	nich type of the			
		fruit it is Fruit = {Yellow, Sweet, Long}								
			Freque	ency Ta	ble					
		Fruit	Yellow	Sweet	Long	Total				
		Mango	350	450	0	650				
		Banana	400	300	350	400				
		Others	50	100	50	150				
		Total	800	850	400	1200				
			Ta	able 2		and the second		10	4	4
	b	Illustrate bayes theorem	n and	also d	iscuss	its us	sage in Bayes			
		classifiers.						10	3	4
				OR						
8	a	Illustrate Bayesian belief	networ	k with a	an exa	mple.		10	3	3
	b	Discuss the salient featur					schematic and			
		applications.						10	3	3

UNIT - 5

9	a	Write and discuss the k-Nearest Neighbor algorithm for approximating a discrete – valued function.			
		$F: K^n \to V$	10	3	3
	b	Discuss the role of re-enforcement learning. Also give the working principle of Q-learning with an example.	10	2	2
		OR			
10	a	Write an algorithm for learning Q. Discuss in detail Temporal difference learning.	10	2	2
	b	Discuss the concept of instant based learning with an example.	10	2	2