Practice-1

Machine Learning Techniques

Karthik Thiagarajan

- Logistic Regression
- \bullet Threshold for prediction is ${\cal T}$
- Find the decision boundary

- Logistic Regression
- \bullet Threshold for prediction is ${\cal T}$
- Find the decision boundary

- Logistic Regression
- \bullet Threshold for prediction is ${\cal T}$
- Find the decision boundary

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

- Logistic Regression
- \bullet Threshold for prediction is ${\cal T}$
- Find the decision boundary

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y = 1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

$$\rightarrow P(y=1 \mid \mathbf{x}) = T$$

 $\sigma(\mathbf{w}^T\mathbf{x}) = T$

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

 $\rightarrow P(y=1 \mid \mathbf{x}) = T$

- Logistic Regression
- \bullet Threshold for prediction is ${\cal T}$
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y = 1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression
- ullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

$$\sigma(\mathbf{w}^T \mathbf{x}) = T$$

$$\frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = T$$

$$1 + e^{-\mathbf{w}^T \mathbf{x}} = \frac{1}{T}$$

$$e^{-\mathbf{w}^T \mathbf{x}} = \frac{1}{T} - 1$$

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

$$\sigma(\mathbf{w}^T \mathbf{x}) = T$$

$$\frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = T$$

$$1 + e^{-\mathbf{w}^T \mathbf{x}} = \frac{1}{T}$$

$$e^{-\mathbf{w}^T \mathbf{x}} = \frac{1}{T} - 1$$

$$-\mathbf{w}^T \mathbf{x} = \ln\left(\frac{1}{T} - 1\right)$$

- Logistic Regression
- \bullet Threshold for prediction is ${\cal T}$
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

$$\sigma(\mathbf{w}^{T}\mathbf{x}) = T$$

$$\frac{1}{1 + e^{-\mathbf{w}^{T}\mathbf{x}}} = T$$

$$1 + e^{-\mathbf{w}^{T}\mathbf{x}} = \frac{1}{T}$$

$$e^{-\mathbf{w}^{T}\mathbf{x}} = \frac{1}{T} - 1$$

$$-\mathbf{w}^{T}\mathbf{x} = \ln\left(\frac{1}{T} - 1\right)$$

$$\mathbf{w}^{T}\mathbf{x} = -\ln\left(\frac{1}{T} - 1\right)$$

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

$$P(y=1\mid \mathbf{x})\geqslant T$$
 otherwise
$$1+e^{-\mathbf{x}}$$

$$P(y=1\mid \mathbf{x})=T$$

$$-\mathbf{w}$$

$$T = 0.5$$

$$\mathbf{w}^T \mathbf{x} = 0$$

$$\sigma(\mathbf{w}^T \mathbf{x}) = T$$

$$\frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = T$$

$$1 + e^{-\mathbf{w}^T \mathbf{x}} = \frac{1}{T}$$

$$e^{-\mathbf{w}^T \mathbf{x}} = \frac{1}{T} - 1$$

$$-\mathbf{w}^T \mathbf{x} = \ln\left(\frac{1}{T} - 1\right)$$

$$\mathbf{w}^T \mathbf{x} = -\ln\left(\frac{1}{T} - 1\right)$$

- Logistic Regression
- \bullet Threshold for prediction is T

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

$$\sigma(\mathbf{w}^{T}\mathbf{x}) = T$$

$$\frac{1}{1 + e^{-\mathbf{w}^{T}\mathbf{x}}} = T$$

$$1 + e^{-\mathbf{w}^{T}\mathbf{x}} = \frac{1}{T}$$

$$e^{-\mathbf{w}^{T}\mathbf{x}} = \frac{1}{T} - 1$$

$$-\mathbf{w}^{T}\mathbf{x} = \ln\left(\frac{1}{T} - 1\right)$$

$$\mathbf{w}^{T}\mathbf{x} = -\ln\left(\frac{1}{T} - 1\right)$$

- Logistic Regression
- \bullet Threshold for prediction is T
- Find the decision boundary

$$\widehat{y} = \begin{cases} 1, & P(y=1 \mid \mathbf{x}) \geqslant T \\ 0, & \text{otherwise} \end{cases}$$

- Soft-margin, Linear-SVM
- $\mathbf{w} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ Hinge loss

	x_1	x_2	y
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{x}_{\mathbf{y}}^{T}\mathbf{y}_{\mathbf$	2	1	1
	-2	1	1
	-1	2	1
	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
	2	1	1
	-2	1	1
T F	-1	2	1
$\mathbf{X}, \mathbf{y} =$	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{x}_{\mathbf{y}}^{T}\mathbf{y}_{\mathbf$	2	1	1
	-2	1	1
	-1	2	1
	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1		
-2	1	1		
-1	2	1		
0	2	-1		
1	-1	-1		
2	-2	-1		
-2	0	-1		

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{x}_{\mathbf{y}}^{T}\mathbf{y}_{\mathbf$	2	1	1
	-2	1	1
	-1	2	1
	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1		
-1	2	1		
0	2	-1		
1	-1	-1		
2	-2	-1		
-2	0	-1		

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
	2	1	1
	-2	1	1
T F	-1	2	1
$\mathbf{X}, \mathbf{y} =$	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1		
0	2	-1		
1	-1	-1		
2	-2	-1		
-2	0	-1		·

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{x}_{\mathbf{y}}^{T}\mathbf{y}_{\mathbf$	2	1	1
	-2	1	1
	-1	2	1
	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1	-1	0
0	2	-1		
1	-1	-1		
2	-2	-1		
-2	0	-1		

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{x}_{\mathbf{y}}^{T}\mathbf{y}_{\mathbf$	2	1	1
	-2	1	1
	-1	2	1
	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1	-1	0
0	2	-1	3	3
1	-1	-1		
2	-2	-1		
-2	0	-1		

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
	2	1	1
	-2	1	1
37	-1	2	1
$\mathbf{X}, \mathbf{y} =$	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1	-1	0
0	2	-1	3	3
1	-1	-1	0	0
2	-2	-1		
-2	0	-1		

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
	2	1	1
	-2	1	1
37	-1	2	1
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{y}$	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1	-1	0
0	2	-1	3	3
1	-1	-1	0	0
2	-2	-1	-1	0
-2	0	-1		

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
	2	1	1
	-2	1	1
37	-1	2	1
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{y}$	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1	-1	0
0	2	-1	3	3
1	-1	-1	0	0
2	-2	-1	-1	0
-2	0	-1	1	1

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}$	2	1	1
	-2	1	1
	-1	2	1
	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1	-1	0
0	2	-1	3	3
1	-1	-1	0	0
2	-2	-1	-1	0
-2	0	-1	1	1

- Soft-margin, Linear-SVM
- $\mathbf{w} = [0 \ 1]^T$
- Hinge loss

	x_1	x_2	y
$\mathbf{X},\mathbf{y}=% \mathbf{X}_{\mathbf{y}}^{T}\mathbf{x}_{\mathbf{y}}^{T}\mathbf{y}_{\mathbf$	2	1	1
	-2	1	1
	-1	2	1
	0	2	-1
	1	-1	-1
	2	-2	-1
	-2	0	-1

$$L(\mathbf{X}, \mathbf{y}, \mathbf{w}) = \sum_{i=1}^n \max \Bigl[1 - \bigl(\mathbf{w}^T \mathbf{x}_i \bigr) y_i, 0 \Bigr]$$

x_1	x_2	y	$1 - (\mathbf{w}^T \mathbf{x}) y$	L
2	1	1	0	0
-2	1	1	0	0
-1	2	1	-1	0
0	2	-1	3	3
1	-1	-1	0	0
2	-2	-1	-1	0
-2	0	-1	1	1

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C} = rac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C} = rac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C} = rac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^T = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_i \mathbf{x}_i^T \right)^T$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T}\right)^{T} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = rac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$
 $\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \ 4 & 3 & 0 \ 1 & 9 & 2 \end{bmatrix}$ $\mathbf{C}^T = rac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_i \mathbf{x}_i^T
ight)^T$

$$\mathbf{C} = rac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$

$$\mathbf{C}^T = \frac{1}{n} \cdot \sum_{i=1}^n \left(\mathbf{x}_i \mathbf{x}_i^T \right)^T$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T}\right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$$

$$= \mathbf{C}$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$|\mathbf{C} - \lambda \mathbf{I}|$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad |\mathbf{C} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} |\mathbf{C} - \lambda \mathbf{I}| &= \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix} \\ &= (1 - \lambda)(1 - \lambda)(-\lambda) - (1 - \lambda) \end{aligned}$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad |\mathbf{C} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix} \\ = (1 - \lambda)(1 - \lambda)(-\lambda) - (1 - \lambda) \\ = -(1 - \lambda)[\lambda(1 - \lambda) + 1]$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad |\mathbf{C} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix}$$

$$= (1 - \lambda)(1 - \lambda)(-\lambda) - (1 - \lambda)$$

$$= -(1 - \lambda)[\lambda(1 - \lambda) + 1]$$

$$= (1 - \lambda)(\lambda^2 - \lambda - 1)$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\lambda_1 = \frac{1 + \sqrt{5}}{2},$$

$$\lambda_2 = 1$$

$$\lambda_3 = \frac{1 - \sqrt{5}}{2}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad |\mathbf{C} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix}$$

$$= (1 - \lambda)(1 - \lambda)(-\lambda) - (1 - \lambda)$$

$$= -(1 - \lambda)[\lambda(1 - \lambda) + 1]$$

$$= (1 - \lambda)(\lambda^2 - \lambda - 1)$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\lambda_1 = \frac{1 + \sqrt{5}}{2},$$

$$\lambda_2 = 1$$

$$\lambda_3 = \frac{1 - \sqrt{5}}{2}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad |\mathbf{C} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix}$$

$$= (1 - \lambda)(1 - \lambda)(-\lambda) - (1 - \lambda)$$

$$= -(1 - \lambda)[\lambda(1 - \lambda) + 1]$$

$$= (1 - \lambda)(\lambda^2 - \lambda - 1)$$

$$\lambda_1 = \frac{1 + \sqrt{5}}{2},$$

$$\lambda_2 = 1 \qquad \lambda_3 < 0$$

$$\lambda_3 = \frac{1 - \sqrt{5}}{2}$$

$$\mathbf{C} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 9 & 2 \end{bmatrix}$$

$$\mathbf{C}^{T} = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \right)^{T} \mathbf{x}_{i}^{T}$$

$$= \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$$

$$= \mathbf{C}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} |\mathbf{C} - \lambda \mathbf{I}| &= \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix} \\ &= (1 - \lambda)(1 - \lambda)(-\lambda) - (1 - \lambda) \\ &= -(1 - \lambda)[\lambda(1 - \lambda) + 1] \\ &= (1 - \lambda)(\lambda^2 - \lambda - 1) \end{aligned}$$

$$\lambda_1 = \frac{1 + \sqrt{5}}{2},$$

$$\lambda_2 = 1$$

$$\lambda_3 < 0$$

$$\mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^T \\ &= \mathbf{Q} \mathbf{D}^{1/2} \mathbf{D}^{1/2} \mathbf{Q}^T \\ &= \mathbf{B} \mathbf{B}^T \end{aligned}$$

 $\lambda_3 = \frac{1 - \sqrt{5}}{2}$

Find the principal components

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

Find the principal components

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \mathbf{X} \mathbf{X}^T$$

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

Find the principal components
$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ 2 & -2 & 4 & -4 \\ 2 & -2 & 2 \\ -2 & 4 & 4 \end{bmatrix}$$

$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \mathbf{X} \mathbf{X}^{T}$$

$$= \frac{1}{8} \cdot \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

Find the principal components
$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ 2 & -2 & 4 & -4 \\ 2 & -2 & 2 \\ -2 & 2 \\ 4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \mathbf{X} \mathbf{X}^{T}$$

$$= \frac{1}{8} \cdot \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

Find the principal components
$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ 2 & 2 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \mathbf{X} \mathbf{X}^{T}$$

$$= \frac{1}{8} \cdot \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \qquad \mathbf{w}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{w}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

Find the principal components
$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ 2 & -2 & 4 & -4 \\ 2 & -2 & 2 & -4 & 4 \end{bmatrix}$$

$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \mathbf{XX}^{T}$$

$$= \frac{1}{8} \cdot \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \qquad \mathbf{w}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{w}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

Find the principal components
$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ 2 & -2 & 4 & -4 \\ 2 & -2 & 2 \\ -2 & 2 \\ 4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \mathbf{X} \mathbf{X}^{T}$$

$$= \frac{1}{8} \cdot \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \qquad \mathbf{w}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{w}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix}$$

Find the principal components
$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ 2 & -2 & 4 & -4 & 2 \\ 2 & -2 & 2 & -4 & 4 \end{bmatrix}$$

$$\mathbf{X}^T = \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \frac{1}{n} \cdot \mathbf{X} \mathbf{X}^{T}$$

$$= \frac{1}{8} \cdot \begin{bmatrix} 2 & -2 & 4 & -4 & 2 & -2 & 4 & -4 \\ 2 & -2 & 4 & -4 & -2 & 2 & -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -2 & -2 \\ 4 & 4 \\ -4 & -4 \\ 2 & -2 \\ -2 & 2 \\ 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \qquad \mathbf{w}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- $D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^n c_i \cdot y_i = 20$, $\sum_{i=1}^n c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

- $D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^{n} c_i \cdot y_i = 20$, $\sum_{i=1}^{n} c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w},D) = \sum_{i=1}^n {(\mathbf{w}^T\mathbf{x}_i - y_i)^2}$$

•
$$D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$$

- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^{n} c_i \cdot y_i = 20$, $\sum_{i=1}^{n} c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w}, D) = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

 $\nabla L(\mathbf{w}, D)$

- $D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^{n} c_i \cdot y_i = 20$, $\sum_{i=1}^{n} c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w}, D) = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

$$\nabla L(\mathbf{w}, D) = 2 \cdot \sum_{i=1}^{n} \left(\mathbf{w}^T \mathbf{x}_i - y_i \right) \mathbf{x}_i$$

- $D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^{n} c_i \cdot y_i = 20$, $\sum_{i=1}^{n} c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w}, D) = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

$$\begin{split} \nabla L(\mathbf{w}, D) &= 2 \cdot \sum_{i=1}^n \left(\mathbf{w}^T \mathbf{x}_i - y_i \right) \mathbf{x}_i \\ &= 2 \cdot \sum_{i=1}^n \left[(\mathbf{w}^T \mathbf{u}) c_i^2 - c_i y_i \right] \mathbf{u} \end{split}$$

- $D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^{n} c_i \cdot y_i = 20$, $\sum_{i=1}^{n} c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w}, D) = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

$$\begin{split} \nabla L(\mathbf{w}, D) &= 2 \cdot \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i \\ &= 2 \cdot \sum_{i=1}^{n} [(\mathbf{w}^T \mathbf{u}) c_i^2 - c_i y_i] \mathbf{u} \\ &= 0 \end{split}$$

- $D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^{n} c_i \cdot y_i = 20$, $\sum_{i=1}^{n} c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w},D) = \sum_{i=1}^n \left(\mathbf{w}^T\mathbf{x}_i - y_i\right)^2$$

$$\begin{split} \nabla L(\mathbf{w}, D) &= 2 \cdot \sum_{i=1}^{n} \left(\mathbf{w}^{T} \mathbf{x}_{i} - y_{i} \right) \mathbf{x}_{i} \\ &= 2 \cdot \sum_{i=1}^{n} \left[\left(\mathbf{w}^{T} \mathbf{u} \right) c_{i}^{2} - c_{i} y_{i} \right] \mathbf{u} \\ &= 0 \end{split}$$

 $\Longrightarrow \mathbf{w}^T \mathbf{u}$

•
$$D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$$

- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i

•
$$\sum_{i=1}^{n} c_i \cdot y_i = 20$$
, $\sum_{i=1}^{n} c_i^2 = 100$

• $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w}, D) = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

$$\begin{split} \nabla L(\mathbf{w}, D) &= 2 \cdot \sum_{i=1}^n {(\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i} \\ &= 2 \cdot \sum_{i=1}^n {[(\mathbf{w}^T \mathbf{u}) c_i^2 - c_i y_i] \mathbf{u}} \\ &= 0 \end{split}$$

$$\Rightarrow \mathbf{w}^T \mathbf{u} = rac{\displaystyle\sum_{i=1}^n c_i y_i}{\displaystyle\sum_{i=1}^n c_i^2}$$

$$= 0.2$$

- $D = \{(c_1 \cdot \mathbf{u}, y_1), \dots, (c_n \cdot \mathbf{u}, y_n)\}$
- $\mathbf{u} \in \mathbb{R}^d$ and $\mathbf{u} \neq 0$
- $c_i \neq 0$ for some i
- $\sum_{i=1}^{n} c_i \cdot y_i = 20$, $\sum_{i=1}^{n} c_i^2 = 100$
- $\mathbf{x}_{\text{test}} = 5 \cdot \mathbf{u}$

$$L(\mathbf{w}, D) = \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

$$\begin{split} \nabla L(\mathbf{w}, D) &= 2 \cdot \sum_{i=1}^{n} {(\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i} \\ &= 2 \cdot \sum_{i=1}^{n} {[(\mathbf{w}^T \mathbf{u}) c_i^2 - c_i y_i] \mathbf{u}} \\ &= 0 \end{split}$$

$$\Rightarrow \mathbf{w}^T \mathbf{u} = rac{\displaystyle\sum_{i=1}^n c_i y_i}{\displaystyle\sum_{i=1}^n c_i^2}$$
 $= 0.2$

$$\mathbf{w}^T \mathbf{x}_{\text{test}} = \mathbf{w}^T (5 \cdot \mathbf{u})$$
$$= 5 \cdot (\mathbf{w}^T \mathbf{u})$$
$$= 1$$

- Hard-margin, linear-SVM
- Add 10 new + data-points
 - correct side of margin
 - very far away from it
- Retrain the classifier
- Comment on decision boundary

- Hard-margin, linear-SVM
- ullet Add 10 new + data-points
 - correct side of margin
 - very far away from it
- Retrain the classifier
- Comment on decision boundary

- Hard-margin, linear-SVM
- ullet Add 10 new + data-points
 - correct side of margin
 - very far away from it
- Retrain the classifier
- Comment on decision boundary

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

d =

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

$$d = \frac{1}{||\mathbf{w}^*||} = \frac{1}{\sqrt{1^2 + 2^2 + 3^2}} = \frac{1}{\sqrt{14}}$$

- Hard-margin, linear-SVM
- Optimal weight vector $\mathbf{w}^* = [1 \quad 2 \quad 3]^T$
- Distance of the closest point from the boundary

Geometric margin

$$d = \frac{1}{||\mathbf{w}^*||} = \frac{1}{\sqrt{1^2 + 2^2 + 3^2}} = \frac{1}{\sqrt{14}}$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \mathrm{diag}(r_1, \ \cdots \ . \ r_n)$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \mathrm{diag}(r_1, \ \cdots \ . \ r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big)^2$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \mathrm{diag}(r_1, \ \cdots \ . \ r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big)^2$$

 $\nabla L(\mathbf{w})$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \operatorname{diag}(r_1, \dots, r_n)$

$$\nabla L(\mathbf{w}) = \sum_{i=1}^{n} r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big) \mathbf{x}_i$$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^{n} r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big)^2$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \operatorname{diag}(r_1, \dots, r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^{n} r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big)^2$$

$$\begin{split} \nabla L(\mathbf{w}) &= \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big) \mathbf{x}_i \\ &= \sum_{i=1}^n \left(r_i \mathbf{x}_i \right) \mathbf{x}_i^T \mathbf{w} - \sum_{i=1}^n r_i y_i \mathbf{x}_i \end{split}$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \operatorname{diag}(r_1, \dots, r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^{n} r_i \left(\mathbf{w}^T \mathbf{x}_i - y_i \right)^2$$

$$\begin{split} \nabla L(\mathbf{w}) &= \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big) \mathbf{x}_i \\ &= \sum_{i=1}^n (r_i \mathbf{x}_i) \mathbf{x}_i^T \mathbf{w} - \sum_{i=1}^n r_i y_i \mathbf{x}_i \end{split}$$

$$\mathbf{X} = egin{bmatrix} | & & & | \ \mathbf{x}_1 & \cdots & \mathbf{x}_n \ | & & | \end{bmatrix}, \ \mathbf{y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix}$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \mathrm{diag}(r_1, \cdots, r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^{n} r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big)^2$$

$$\mathbf{X} = egin{bmatrix} | & \mathbf{x} & | \ \mathbf{x}_1 & \cdots & \mathbf{x}_n \ | & | \end{bmatrix}, \ \mathbf{y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix}$$

$$\begin{split} \nabla L(\mathbf{w}) &= \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big) \mathbf{x}_i \\ &= \sum_{i=1}^n \left(r_i \mathbf{x}_i \right) \mathbf{x}_i^T \mathbf{w} - \sum_{i=1}^n r_i y_i \mathbf{x}_i \end{split}$$

$$\mathbf{X}\mathbf{R} = egin{bmatrix} |& & & | \ \mathbf{x}_1 & \cdots & \mathbf{x}_n \ | & & | \end{bmatrix} egin{bmatrix} r_1 & & & \ & \ddots & & \ & & r_n \end{bmatrix}$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \operatorname{diag}(r_1, \dots, r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^{n} r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big)^2$$

$$\mathbf{X} = \begin{bmatrix} 1 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$\begin{aligned} \nabla L(\mathbf{w}) &= \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big) \mathbf{x}_i \\ &= \sum_{i=1}^n \left(r_i \mathbf{x}_i \right) \mathbf{x}_i^T \mathbf{w} - \sum_{i=1}^n r_i y_i \mathbf{x}_i \\ &= \begin{bmatrix} | & | & | \\ | & | & | \end{bmatrix} \begin{bmatrix} r_1 & | & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \\ &= \begin{bmatrix} | & | & | \\ | & | & | \end{bmatrix} \end{aligned}$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \mathrm{diag}(r_1, \ \cdots \ . \ r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^{n} r_i \left(\mathbf{w}^T \mathbf{x}_i - y_i \right)^2$$

$$\mathbf{X} = egin{bmatrix} ert & \mathbf{x}_1 & \cdots & \mathbf{x}_n \ ert & & ert \end{bmatrix}\!, \ \mathbf{y} = egin{bmatrix} y_1 \ dravert \ y_n \end{bmatrix}$$

$$\begin{split} \nabla L(\mathbf{w}) &= \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big) \mathbf{x}_i \\ &= \sum_{i=1}^n (r_i \mathbf{x}_i) \mathbf{x}_i^T \mathbf{w} - \sum_{i=1}^n r_i y_i \mathbf{x}_i \end{split}$$

$$\mathbf{X}\mathbf{R} = egin{bmatrix} | & & | & | & r_1 & & & \\ | & \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} egin{bmatrix} r_1 & & & & \\ | & & | & | & & \\ | & & & | & & \\ r_1 \mathbf{x}_1 & \cdots & r_n \mathbf{x}_n \end{bmatrix}$$

$$\mathbf{X}\mathbf{R}\mathbf{X}^T\mathbf{w} = \mathbf{X}\mathbf{R}\mathbf{y}$$

- Weighted linear regression
- Weight for each data-point in the loss function
- $\mathbf{R} = \mathrm{diag}(r_1, \cdots, r_n)$

$$L(\mathbf{w}) = \frac{1}{2} \cdot \sum_{i=1}^{n} r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big)^2$$

$$\mathbf{X} = egin{bmatrix} ert & \mathbf{x}_1 & \cdots & \mathbf{x}_n \ ert & & ert \end{bmatrix}\!, \ \mathbf{y} = egin{bmatrix} y_1 \ dravers \ y_n \end{bmatrix}$$

$$\begin{split} \nabla L(\mathbf{w}) &= \sum_{i=1}^n r_i \big(\mathbf{w}^T \mathbf{x}_i - y_i \big) \mathbf{x}_i \\ &= \sum_{i=1}^n \left(r_i \mathbf{x}_i \right) \mathbf{x}_i^T \mathbf{w} - \sum_{i=1}^n r_i y_i \mathbf{x}_i \end{split}$$

$$\mathbf{X}\mathbf{R}\mathbf{X}^T\mathbf{w} = \mathbf{X}\mathbf{R}\mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}\mathbf{R}\mathbf{X}^T)^{-1} \mathbf{X}\mathbf{R}\mathbf{y}$$

- Hard-margin, linear-SVM
- $\mathbf{w}^* = [2 \quad -1]^T$
- Unit square (0,0), (1, 0), (0, 1), (1, 1)
- Probability that a point picked at random from the unit square is is predicted as 1

- Hard-margin, linear-SVM
- $\mathbf{w}^* = [2 \quad -1]^T$
- Unit square (0,0), (1, 0), (0, 1), (1, 1)
- Probability that a point picked at random from the unit square is is predicted as 1

- Hard-margin, linear-SVM
- $\mathbf{w}^* = [2 \quad -1]^T$
- Unit square (0,0), (1, 0), (0, 1), (1, 1)
- Probability that a point picked at random from the unit square is is predicted as 1

- Hard-margin, linear-SVM
- $\mathbf{w}^* = [2 \quad -1]^T$
- Unit square (0,0), (1, 0), (0, 1), (1, 1)
- Probability that a point picked at random from the unit square is is predicted as 1

- Hard-margin, linear-SVM
- $\mathbf{w}^* = [2 \quad -1]^T$
- Unit square (0,0), (1, 0), (0, 1), (1, 1)
- Probability that a point picked at random from the unit square is is predicted as 1

- Hard-margin, linear-SVM
- $\mathbf{w}^* = [2 \quad -1]^T$
- Unit square (0,0), (1, 0), (0, 1), (1, 1)
- Probability that a point picked at random from the unit square is is predicted as 1

$$P(y = 1 \mid \mathbf{x}) = 1 - \frac{1}{2} \cdot 1 \cdot \frac{1}{2}$$

$$= 1 - 0.25$$

$$= 0.75$$

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\geqslant1\Longrightarrow1-\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\leqslant0$$

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\geqslant1\Longrightarrow1-\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\leqslant0$$

$$\alpha_i^* \cdot \left[1 - \left(\mathbf{w}^*^T \mathbf{x}_i\right) y_i\right] = 0$$

Select all true statements regarding a hard-margin SVM:

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\geqslant1\Longrightarrow1-\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\leqslant0$$

$$\alpha_i^* \cdot \left[1 - \left(\mathbf{w}^*^T \mathbf{x}_i\right) y_i\right] = 0$$

Support vector \Longrightarrow

Select all true statements regarding a hard-margin SVM:

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\geqslant1\Longrightarrow1-\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\leqslant0$$

$$\alpha_i^* \cdot \left[1 - \left(\mathbf{w}^*^T \mathbf{x}_i\right) y_i\right] = 0$$

Support vector $\implies \alpha_i^* > 0 \implies$

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

$$\left(\mathbf{w}^{*^{T}}\mathbf{x}_{i}\right)y_{i}\geqslant1\Longrightarrow1-\left(\mathbf{w}^{*^{T}}\mathbf{x}_{i}\right)y_{i}\leqslant0$$

$$\alpha_i^* \cdot \left[1 - \left(\mathbf{w}^*^T \mathbf{x}_i\right) y_i\right] = 0$$

Support vector
$$\implies \alpha_i^* > 0 \implies \left(\mathbf{w}^*^T \mathbf{x}_i \right) y_i = 1$$

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\geqslant1\Longrightarrow1-\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\leqslant0$$

$$\alpha_i^* \cdot \left[1 - \left(\mathbf{w}^*^T \mathbf{x}_i\right) y_i\right] = 0$$

Support vector
$$\implies \alpha_i^* > 0 \implies \left(\mathbf{w}^*^T \mathbf{x}_i \right) y_i = 1$$

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}=1$$

- (1) Every support vector lies on one of the two supporting hyperplanes.
- (2) Every point on one of the two supporting hyperplanes is a support vector.

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\geqslant1\Longrightarrow1-\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}\leqslant0$$

$$\alpha_i^* \cdot \left[1 - \left(\mathbf{w}^*^T \mathbf{x}_i \right) y_i \right] = 0$$

Support vector
$$\implies \alpha_i^* > 0 \implies \left(\mathbf{w}^*^T \mathbf{x}_i \right) y_i = 1$$

$$\left(\mathbf{w}^{*T}\mathbf{x}_{i}\right)y_{i}=1 \implies \alpha_{i}^{*}>0$$