

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра цифровой трансформации (ЦТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ

по дисциплине «Разработка баз данных»

Практическое занятие № 1

Студенты группы	ИКБО-42-23 Голев С.С.		
	•	(подпись)	
Ассистент	Морозов Д.В.		
		(подпись)	
Отчет представлен	«»2025 г.		

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	2
ПОСТАНОВКА ЗАДАЧИ	3
ХОД ВЫПОЛНЕНИЯ РАБОТЫ	4
Создание структуры данных	4
Элементы списка выборки – SELECT	6
Составление запросов на выборку	9

ПОСТАНОВКА ЗАДАЧИ

Для выполнения практической работы необходимо последовательно выполнить следующие шаги, основываясь на логической модели данных, которая была спроектирована в рамках курса «Проектирование баз данных» в предыдущем семестре:

- 1. На основе логической модели данных, созданной в прошлом семестре, письменно описать не менее 5 различных бизнес-правил и не менее 3 ограничений целостности для таблиц. Выбор бизнес-правил и ограничений целостности производится на усмотрение студента. Результаты представить в виде таблицы.
- 2. С использованием DDL-оператора CREATE TABLE создать все необходимые таблицы (согласно созданной в прошлом семестре логической модели данных) в СУБД Postgres Pro, корректно реализовав все описанные ограничения целостности.
- 3. Заполнить созданные таблицы согласованными тестовыми данными (не менее 5-7 записей на таблицу, где это применимо) с помощью оператора INSERT INTO.
- 4. Составить и выполнить не менее 6 SQL-запросов к таблицам, иллюстрирующих использование различных операторов SELECT и WHERE, согласно перечню, указанному в задании (см. Ход выполнения работы). В составленных запросах должны быть использованы все приведённые примеры .
- 5. Составить и выполнить по два SQL-запроса к таблицам для демонстрации работы предложений ORDER BY, GROUP BY и HAVING.
- 6. Каждый SQL-запрос сопроводить комментарием, объясняющим его назначение и логику работы.

ХОД ВЫПОЛНЕНИЯ РАБОТЫ

Для таблицы ordering из логической модели, составим описание атрибутов и ограничений.

Таблица 1 – Onucaние ограничений для таблицы ordering

Название	Тип данных	Ограничение	Бизнес-правило
id	INT	PRIMARY	Уникальный идентификатор заказа
total	TEXT	NOT NULL, CHECK (>0)	Обязательная цена не равная нулю
date	INT	NOT NULL, CHECK (date >= CURRENT_DATE)	Дата доставки продукта, не может быть в прошлом
status	TEXT	NOT NULL	Обязательное наличие статуса заказа
delivery_method	INT	NOT NULL	Обязательный метод заказа

Создание структуры данных

С помощью оператора CREATE TABLE создадим таблицу основываясь на логической модели.

```
G-postgres> _ X G-postgres> L G-postgres> S. G-postgres> S. G-postgres> S. G-postgres> C G-postgres> L G-postgres> H. G-postgr
```

Рисунок 1 — Скрипт для создания таблиц
Заполним эту таблицу данными с помощью оператора INSERT INTO.

```
| Pubsiti INTO postgress L x | Postgress L x | Postgress L | Postgress L x | P
```

Рисунок 2 – Скрипт для заполнения таблиц

Элементы списка выборки – SELECT

Напишем скрипты с помощью оператора SELECT для разных сценариев.

Рисунок 3 – SELECT скрипт для вывода всего содержимого таблицы.

Рисунок 4 – SELECT скрипт для вывода конкретных полей таблицы.

Рисунок 5 – SELECT скрипт для вывода конкретных полей таблицы с использованием математических операций.

Рисунок 6 – SELECT скрипт для вывода уникальных полей таблицы.

Рисунок 7 – SELECT скрипт для вывода полей таблицы в которых присутствует 'er.

Рисунок 8 – SELECT скрипт для вывода полей таблицы соответствующих выбранному диапазону.

Рисунок 8.1 – SELECT скрипт для вывода полей таблицы с помощью операторов LIKE и IS NULL.

Составление запросов на выборку

Напишем скрипты используя операторы ий ORDER BY, GROUP BY и HAVING.

Рисунок 9 – ORDER BY скрипт с использованием оператора ASC.

Pисунок 10 – ORDER BY скрипт с использованием оператора DESC.

Рисунок 11 – GROUP BY скрипт с использованием оператора COUNT.

Рисунок 11 – GROUP BY скрипт с использованием оператора AVG.

Рисунок 12 – HAVING скрипт с использованием оператора AVG.

Рисунок 13 – HAVING скрипт с использованием оператора COUNT.