

PROGRAMMATION, RÉSEAU & SYSTÈMES

BEN LTAIFA ADAM, PANIAH MARLON-BRADLEY

NOTRE IMPLÉMENTATION

PARAMÈTRES À FAIRE VARIER

- Taille des paquets (Fragmentation Ethernet)
- Taille de la fenêtre
- S'adapter au comportement du client

LA FRAGMENTATION, C'EST LE MAL

LA FRAGMENTATION, C'EST LE MAL

En-tête **UDP** = 8 bytes En-tête **IP** = 20 bytes (En-tête **Ethernet** = 14 bytes)

1500 (data+num_sequence) - 8(udp) - 20(IP) = 1472

FRAGMENTATION - COMPARAISON DES DÉBITS

bytes

FENÊTRE GLISSANTE

ANALYSE DES CLIENTS – CLIENT 1

- Le client 1 simule des pertes (fréquentes) des paquets par le réseau
- Plus avantageux d'avoir un timeout faible ?

ANALYSE DES CLIENTS – CLIENT 2

- Les ACKs du client 2 par le réseau sont perdus par le réseau
- Proposition 1 : Ne plus faire de Fast Retransmit
- Proposition 2 : Tout envoyer d'un coup

ANALYSE DES CLIENTS - MULTICLIENT

- Plusieurs clients 1
- Réseau susceptible d'être congestionné
- Proposition: Lors d'un Fast Retransmit, renvoi du paquet perdu 2 fois

ET LE TEMPS DANS TOUT ÇA?

- Tests de timeouts
- Estimation du RTT

DÉBIT EN IMPLÉMENTANT LE TIMEOUT EN FONCTION DU RTT

CONCLUSION ET COMMENT ALLER PLUS LOIN

- Un réseau difficile Résultats à mettre en perspective
- Envoyer deux paquets après un timeout
- Faire varier la taille de la fenêtre (intéressant en cas de multiclients)