10 - Policy Iteration & Policy Gradients

知识点 & 题目

Policy Evaluation

Input:
$$\pi$$
 the policy for evaluation, V^π value function, and MDP $M=\langle S,s_0,A,P_a(s'\mid s),r(s,a,s')\rangle$ Output: Value function V^π Repeat
$$\Delta \leftarrow 0 \\ \text{For each } s \in S \\ \underbrace{V'^\pi(s) \leftarrow \sum_{s' \in S} P_{\pi(s)}(s'\mid s) \left[r(s,a,s') + \gamma \, V^\pi(s')\right]}_{\text{Policy evaluation equation}} \\ \Delta \leftarrow \max(\Delta,|V'^\pi(s)-V^\pi(s)|)$$
 Until $\Delta \leq \theta$

Policy Improvement

$$Q^{\pi}(s,a) = \sum_{s'\in s} P_{\alpha}(s'|s) \left[r + \gamma V^{\pi}(s')\right]$$

$$If \quad Q^{\pi}(s,a) = Q^{\pi}(s,\pi(s))$$

$$\Pi(s) \leftarrow \alpha$$

Policy Iteration

Input: MDP $M = \langle S, s_0, A, P_a(s' \mid s), r(s, a, s') \rangle$

Output: Policy π

Set V^{π} to arbitrary value function; e.g., $V^{\pi}(s)=0$ for all s.

Set π to arbitrary policy; e.g. $\pi(s)=a$ for all s, where $a\in A$ is an arbitrary action.

Repeat

Compute $V^\pi(s)$ for all s using policy evaluation

For each
$$s \in S$$
 $\bigcirc \left(\left| \left| \right| \right|^2 \cdot \left| A \right| \right)$
 $\pi(s) \leftarrow \operatorname{argmax}_{a \in A(s)} Q^{\pi}(s, a)$

Until π does not change

POLICY ITERATION: EXAMPLE

$$V^{\pi}(s) = \sum_{s' \in S} P_{\pi(s)}(s' \mid s) \left[r(s, a, s') + \gamma V^{\pi}(s') \right]$$

$$\pi(2,2) = up$$

$$V^{\pi}(3,2) = 1$$

$$V^{\pi}(2,2) = 0.8 \left[0 + 0.9 0 \right] + 0.09$$

$$0.1 \left[0 + 0.9 1 \right]$$

$$Q^{\pi}(2,2, \Omega_{1}ght) = 0.8 \left[0 + 0.9 1 \right] + 0.09$$

$$0.1 \left[0 + 0.9 1 \right] + 0.09$$

$$0.1 \left[0 + 0.9 0 \right] + 0.09$$

$$0.1 \left[0 + 0.9 0 \right] + 0.09$$

$$0.1 \left[0 + 0.9 0 \right] + 0.09$$

$$0.1 \left[0 + 0.9 0 \right] + 0.09$$

$$0.1 \left[0 + 0.9 0 \right] + 0.09$$

Policy Gradients

Algorithm - REINFORCE

Input: A differentiable policy $\pi_{\theta}(s, a)$, an MDP $M = \langle S, s_0, A, P_a(s' \mid s), r(s, a, s') \rangle$ **Output:** Policy $\pi_{\theta}(s, a)$

Repeat

Generate episode $(s_0, a_0, r_1, \ldots s_{T-1}, a_{T-1}, r_T)$ by following $\pi_{ heta}$

For each (s_t, a_t) in the episode

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} r_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi_{\theta}(s, a)$$

Until some time limit or until $\pi_{ heta}$ converges

- Continuous action space
- G: estimate of Q(s,a)
 - Instability
- Generally converge to local optima

Q Actor Critic

Input: An MDP $M = \langle S, s_0, A, P_a(s' \mid s), r(s, a, s') \rangle$

Input: A differentiable actor policy $\pi_{\theta}(s, a)$

Input: A differentiable critic Q-function Q(s,a)

Output: Policy $\pi_{\theta}(s,a)$

Initialise actor π parameters heta and critic parameters w arbitrarily

Repeat (for each episode)

 $s \leftarrow$ the first state in episode e

Select action $a \sim \pi_{\theta}(s)$

Repeat (for each step in episode e)

Execute action a in state s

Observe reward r and new state s'

Select action $a' \sim \pi_{\theta}(s')$

$$\delta \leftarrow r + \gamma \cdot Q_w(s', a') - Q_w(s', a')$$

$$w \leftarrow w + \alpha_w \cdot \delta \cdot \nabla Q_w(s, a)$$

$$\theta \leftarrow \theta + \alpha_{\theta} \cdot \delta \cdot \nabla \ln \pi_{\theta}(s, a)$$

$$s \leftarrow s'; a \leftarrow a'$$

- Replace G with TD estimate -> more stable -> converge
- Critic: feedback on actions

题目