

Tema 3: Métodos numéricos para la resolución de sistemas.

Ejercicio 1 Sean

$$A = \begin{pmatrix} 2 & 8 & 0 \\ 2 & 2 & -3 \\ 1 & 2 & 7 \end{pmatrix}; \quad \vec{b} = \begin{pmatrix} 18 \\ 3 \\ 2 \end{pmatrix}.$$

Calcule una factorización LU de A y utilícela para resolver el sistema $A\vec{x} = \vec{b}$.

Ejercicio 2 Aplique el método de eliminación de Gauss al sistema $A\vec{x} = \vec{b}$, siendo

$$A = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 6 & 15 & 19 & 23 \\ 8 & 42 & 60 & 70 \\ 12 & 60 & 1 & 17 \end{pmatrix} \quad y \quad \vec{b} = \begin{pmatrix} 5 \\ 30 \\ 98 \\ 144 \end{pmatrix}.$$

Calcule la factorización LU de la matriz asociada al sistema y resuelva el sistema usando dicha descomposición.

Ejercicio 3 Se considera el sistema

cuya solución exacta es $x_e = 10$, $y_e = 1$. Resuelva el sistema utilizando aritmética de cuatro dígitos, resolviendo por Gauus sin pivoteo y por Gauss con pivoteo parcial con factor de escala.

Ejercicio 4 Sea

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{array}\right)$$

Halle una matriz de permutación P tal que $P \cdot A$ admita factorización LU y calcule L y U.

Ejercicio 5 Sean

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 20 & 26 \\ 3 & 26 & 70 \end{pmatrix}; \quad \vec{b} = \begin{pmatrix} 3 \\ 22 \\ 29 \end{pmatrix}$$

Resuelva el sistema $A\vec{x} = \vec{b}$ utilizando la factorización de Cholesky.

Ejercicio 6 El sistema

$$\left(\begin{array}{cc} 10^{-5} & 1\\ 1 & 1 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 1\\ 2 \end{array}\right)$$

tiene como solución $x_1 = 1.0000100001$, $x_2 = 0.9999899999$. Utilizando aritmética de cuatro cifras con redondeo y sabiendo que la matriz del sistema está bien condicionada, se pide:

- (a) Resolver dicho sistema mediante eliminación Gaussiana sin pivoteo.
- (b) Explicar las razones de la mala solución obtenida en el caso anterior y proponer un procedimiento que permita obtener (con aritmética de cuatro cifras) una solución con error relativo del orden de 10^{-5} .

Ejercicio 7 Se considera el sistema

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 10^4 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 10^4 \end{array}\right)$$

Utilizando aritmética de tres cifras con redondeo, se pide:

- (a) Resolver dicho sistema mediante eliminación Gaussiana utilizando pivoteo parcial con factor de escala.
- (b) Hallar la descomposición LU de la matriz del sistema obtenido después de realizar el pivoteo.
- (c) Resolver el sistema mediante la factorización de Cholesky.

Ejercicio 8 Calcule, si existe, la factorización de Cholesky de

$$\left(\begin{array}{cccc}
9 & 6 & 3 \\
6 & 8 & 4 \\
3 & 4 & 3
\end{array}\right)$$

Ejercicio 9 Se considera el sistema x + 2y = 3, 3x + 24y = 2 y sea $(x^{(0)}, y^{(0)})$ una solución aproximada del mismo.

- (a) Halle las ecuaciones del método de Jacobi para la resolución de dicho sistema y deduzca de ellas las del método de Gauss-Seidel.
- (b) Estudie la convergencia de los dos métodos anteriores y diga cual tiene mayor velocidad de convergencia.
- (c) Realice dos iteraciones de ambos métodos, tomando como dato inicial el vector $(x^{(0)}, y^{(0)}) = (0,0)$.

Ejercicio 10 Sea $\{\vec{x}^k\}$ la sucesión definida por $\vec{x}^{k+1} = B_{\lambda}\vec{x}^k + \vec{c}$, con $B_{\lambda} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/(1+\lambda^2) \end{pmatrix}$, $\vec{c} = (1,1)$ y \vec{x}^0 dado. Estudie para qué valores de λ y de \vec{x}^0 es convergente la sucesión $\{\vec{x}^k\}$.

Ejercicio 11 Se considera el sistema

$$\left(\begin{array}{cc} 1 & a \\ 2 & 2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} a \\ 4 \end{array}\right)$$

siendo $a \in \mathbb{R}$.

- (a) Resuelva el sistema mediante la factorización de Cholesky para aquellos valores de a en los que este procedimiento tenga sentido.
- (b) Plantee el método de Jacobi y el método de Gauss-Seidel para la resolución de dicho sistema y estudie para qué valores de a son convergentes para cualquier dato inicial.
- (c) Utilizando aritmética de tres dígitos con redondeo y tomando $a=10^4$, resuelva dicho sistema mediante eliminación Gaussiana utilizando pivoteo parcial con factor de escala.

Ejercicio 12 Se considera el sistema 2x + y = 3, 24x + 3y = 2 y sea $(x^{(0)}, y^{(0)})$ una solución aproximada del mismo.

- (a) Halle las ecuaciones del método de Jacobi para la resolución de dicho sistema y deduzca de ellas las del método de Gauss-Seidel.
- (b) Estudie la convergencia de los dos métodos anteriores y diga cual tiene mayor velocidad de convergencia.

Ejercicio 13 *Se considera el sistema lineal* $A\vec{x} = \vec{b}$, *siendo*

$$A = \left(\begin{array}{ccc} 4 & -1 & 1\\ 4 & -8 & 1\\ -2 & 1 & 5 \end{array}\right)$$

 $y \ \vec{b} = (7, -21, 5)$. Realice una iteración del método de Jacobi y otra del método de Gauss-Seidel tomando como dato inicial (1, 2, 2). Analice la convergencia de ambos métodos y diga cual tiene mayor velocidad de convergencia.

Ejercicio 14 Obtenga en función de $a \in \mathbb{R}$, condiciones suficientes para la convergencia de los métodos de Jacobi y Gauss-Seidel cuando se aplican a un sistema cuya matriz de coeficientes es

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 2 & a \\ -1 & 1 & 1 \end{array}\right).$$

Ejercicio 15 Se considera el sistema no lineal: $x^4 + 2y^4 - 9x = 0$, $x^2 + y^2 - 5y = 0$. Se pide:

- (a) Construir un método de punto fijo mediante la técnica de Gauss-Seidel y realizar una iteración del mismo con $(x^{(0)}, y^{(0)}) = (1, 1)$.
- (b) Realizar una iteración del método de Newton en dicho sistema tomando como dato inicial (1,1).

Ejercicio 16 Compruebe que se verifican las hipótesis del teorema de convergencia local del método de Newton en el punto (0,0) para el sistema

$$\begin{cases} x^2 + y^2 - 5x &= 0 \\ 2x^4 + y^4 - 9y &= 0 \end{cases}$$

Ejercicio 17 Se considera el sistema no lineal $x^2 + y^2 - x = 0$, $x^2 - y^2 - y = 0$. Se pide:

- (a) Construir un método de punto fijo mediante la técnica de Gauss-Seidel.
- (b) Razonar que existe un entorno U de (0,0) tal que para todo $(x_0,y_0) \in U$, la sucesión generada por el método de Newton converge a (0,0).
- (c) Realizar una iteración del método de Newton tomando como dato inicial $(x^{(0)}, y^{(0)}) = (0.5, 0.5)$.

Ejercicio 18 Se considera el sistema no lineal

$$\begin{cases}
-e^{-x} + 10x + \cos(y) = 0 \\
x + 3y - 1 = 0
\end{cases}$$

Sabiendo que dicho sistema posee una raíz en $[0,1] \times [0,1]$ se pide:

- (a) Demuestre que se verifican las hipótesis del teorema de convergencia local del método de punto fijo para la función de ieteración **g** que se obtiene al despejar x del 10x de la primera ecuación y la variable y de la segunda
- (b) Realice dos iteraciones del método del punto fijo tomando como dato inicial $(x^{(0)},y^{(0)})=(1,1)$.
- (c) Demuestre que se verifican las hipótesis del teorema de convergencia local del método de Newton.
- (d) Realice dos iteraciones del método de Newton tomando como punto inicial $(x^{(0)}, y^{(0)}) = (0, 0)$.
- (e) Transforme el sistema inicial en una ecuación no lineal en la variable x y realice dos iteraciones del método de Newton para funciones de una variable con $x_0 = 0$.