

Probability Theory School of Mathematics Faculty of Science National University of Engineering

List 3

Topic: Kolmogorov's 0-1 law Period: 2016.1

Throughout this list $(\Omega, \mathcal{A}, \mathbf{P})$ is a probability space $(\Omega \text{ is a nonempty set})$ and I is an index set.

- 1. Let $X_1, X_2, ...$ be independent real random variables with $X_n \sim \mathcal{U}_{\{1,...,n\}}$. Compute $\mathbf{P}[X_n = 5 \text{ i.o.}]$.
- 2. Let X_1, X_2, \ldots be i.i.d real random variables with $X_1 \sim \operatorname{Rad}_{1/2}$, i.e., $\mathbf{P}[X_1 = -1] = \mathbf{P}[X_1 = 1] = 1/2$, and let $S_n = X_1 + \ldots + X_n$ for any $n \in \mathbb{N}$. Show that $\mathbf{P}[S^* = \infty] = 1$.
- 3. Let A_1, A_2, \ldots be events such that
 - (a) $A_{i_1}, A_{i_2}, \ldots, A_{i_k}$ are independents whenever $i_{j+1} \geq i_j + 2$ for $j = 1, \ldots, k-1$, and
 - (b) $\sum_{n=1}^{+\infty} \mathbf{P}[A_n] = +\infty.$

Prove that $\mathbf{P}[A^*] = 1$.

- 4. Consider infinite, independent, fair coin tossing, and let H_n be the event that the nth coin is heads. Determine the following probabilities.
 - (a) $\mathbf{P}[H_{n+1} \cap H_{n+2} \cap \ldots \cap H_{n+9}]$ i.o.].
 - (b) $\mathbf{P}[H_{n+1} \cap H_{n+2} \cap \ldots \cap H_{2^n} \text{ i.o.}].$
 - (c) $\mathbf{P}[H_{n+1} \cap H_{n+2} \cap ... \cap H_{n+|2\log_2 n|}]$ i.o.] must equal 0 or 1.
 - (d) Prove that $\mathbf{P}[H_{n+1} \cap H_{n+2} \cap \ldots \cap H_{n+\lfloor \log_2 n \rfloor} \text{ i.o.}].$
- 5. Let A_1, A_2, \ldots be independent events, let $x \in \mathbb{R}$, and let

$$S_x = \left[\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{A_i} \le x \right].$$

Prove that $\mathbf{P}[S_x]$ must equal 0 or 1.

6. Let A_1, A_2, \ldots be independent events. Let Y be a real random variable which is measurable with respect to $\sigma(A_n, A_{n+1}, \ldots, M)$ for each $n \in \mathbb{N}$. Prove that Y is deterministic.