Zadanie 4 z listy 6 - "Kompresja Danych"

Łukasz Klasiński

10 maja 2020

Zadanie 4

Pokaż, że dla słów postaci $(a_1 a_2 \dots a_m)^*$ algorytm Sequitur wykona $\Omega(n)$ operacji dodania nowej produkcji i $\Omega(n)$ operacji usunięcia produkcji (gdzie n to długość słowa).

Rozwiązanie

1. $\Omega(n)$ operacji dodania nowej produkcji: Zauważmy, że na początku po wczytaniu pojedyńczego $(a_1 a_2 \dots a_m)$, będziemy mieli pojedyńczą produkcję:

$$S \to a_1 a_2 \dots a_m$$

Po wczytaniu kolejnego znaku a_1 , nic się nie stanie. Z kolei po dodaniu symbolu a_2 , dostaniemy powtórzenie:

$$S \to a_1 a_2 \dots a_m a_1 a_2$$

Zatem wyrzucimy je i dodamy nową produkcję:

$$S \to Aa_3 \dots a_m A$$

$$A \rightarrow a_1 a_2$$

Następnie po dodaniu a_3 algorytm zauważy powtórzenie $Aa_3 \dots a_m Aa_3$, zatem stworzy nową produkcję:

$$S \to Ba_4 \dots a_m B$$

$$A \rightarrow a_1 a_2$$

$$B \rightarrow Aa_3$$

Ale teraz mamy kolejne załamanie niezmiennika - produkcja A występuje tylko raz. Zatem usunie się, i zostaną produkcje

$$S \to Ba_4 \dots a_m B$$

$$B \rightarrow a_1 a_2 a_3$$

Dodajemy a_4 - dostajemy produkcję

$$S \to Ca_5 \dots a_m C$$

$$B \to a_1 a_2 a_3$$

$$C \to Ba_4$$

I znowu B jest użyte tylko raz, więc zostanie usunięte.

Sytuacja powtarza się aż do dojścia do zakodowania słowa $a_1 \dots a_m a_1 \dots a_m$.

Zobaczmy teraz co się stanie gdy mamy już produkcję S i dodajemy kolejne słowa z cyklu.

Wiemy że poza S mamy jeszcze produkcję $G \to a_1 a_2 \dots a_m$. Zatem widać że po dodaniu do S a_1 nic się nie stanie, ponieważ aby coś zmieniać musimy mieć dopasowanie wielkości 2.

Dodajmy a_k . Mamy dwa przypadki:

- 1. Mamy tylko jedną produkcję $G \to a_1 a_2 \dots a_m$. Wtedy możemy zmachować $a_{k-1} a_k$ z G i stworzyć nową produkcję. Zatem wykonujemy jedną operację dodania produkcji.
- 2. Mamy produkcję $G \to a_1 \dots Ka_k a_{k+1} \dots a_m$ oraz $K \to a_i \dots a_{k-1}$. Wtedy możemy stworzyć nową produkcję $X \to Ka_k$, po czym zastąpić w Ka_k w G na X i usunąć K, zamieniając $X \to Ka_k$ na to co miało K. Zatem usuwamy i dodajemy po jednej produkcji.
- 3. Dodajemy ostatnie słowo z cyklu a_m . Wtedy $G \to Ka_m$ oraz $K \to a_1 a_2 \dots a_{m-1}$, zatem po zastąpieniu Ka_m poprzez nową produkcję $X \to Ka_m$, będziemy mogli usnąć produkcję K oraz X i otrzymamy $G \to a_1 a_2 \dots a_m$, czyli wrócimy do punktu 1). Łącznie dodajemy produkcję, po czym usuwamy dwie.

Widać zatem, że wykonujemy zamortyzowanie dokładnie jedną operację dodania predykatu oraz jedną operację usunięcia podczas dodawania wszystkich znaków z alfabetu poza a_1 . Poza tymi operacjami mamy także dodatkowe operacje dodania predykatu w ramach zawijania produkcji $S \to XXXX$ na nowy predykat (jest logn takich operacji). Zatem ostatecznie w algorytmie wykonamy O(n) yoperacji dodawania i usuwania, więc dla odpowiednio dużego n, $\Omega(n)$ jest prawdziwa.