10.2 Two vehicles are moving along a straight line. For the first vehicle we use the same model as in exercise 10.1:

$$\begin{bmatrix} s_1(t+1) \\ s_2(t+1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0.95 \end{bmatrix} \begin{bmatrix} s_1(t) \\ s_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} u(t), \qquad t = 0, 1, 2, \dots,$$

 $s_1(t)$ is the position at time t, $s_2(t)$ is the velocity at time t, and u(t) is the actuator input. We assume that the vehicle is initially at rest at position 0: $s_1(0) = s_2(0) = 0$. The model for the second vehicle is

$$\begin{bmatrix} p_1(t+1) \\ p_2(t+1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0.8 \end{bmatrix} \begin{bmatrix} p_1(t) \\ p_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0.2 \end{bmatrix} v(t), \qquad t = 0, 1, 2, \dots,$$

 $p_1(t)$ is the position at time t, $p_2(t)$ is the velocity at time t, and v(t) is the actuator input. We assume that the second vehicle is initially at rest at position 1: $p_1(0) = 1$, $p_2(0) = 0$.

Formulate the following problem as a least norm problem, and solve it in MATLAB (see the remark at the end of exercise 10.1). Find the control inputs $u(0), u(1), \ldots, u(19)$ and $v(0), v(1), \ldots, v(19)$ that minimize the total energy

$$\sum_{t=0}^{19} u(t)^2 + \sum_{t=0}^{19} v(t)^2$$

and satisfy the following three conditions:

$$s_1(20) = p_1(20), s_2(20) = 0, p_2(20) = 0.$$
 (37)

In other words, at time t = 20 the two vehicles must have velocity zero, and be at the same position. (The final position itself is not specified, *i.e.*, you are free to choose any value as long as $s_1(20) = p_1(20)$.)

Plot the positions $s_1(t)$ and $p_1(t)$ of the two vehicles, for $t = 1, 2, \dots, 20$.

- 10.3 Explain how you would solve the following problems using the QR factorization.
 - (a) Find the solution of Cx = d with the smallest value of $\sum_{i=1}^{n} w_i x_i^2$:

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^n w_i x_i^2 \\ \text{subject to} & Cx = d. \end{array}$$

The problem data are the $p \times n$ matrix C, the p-vector d, and the n vector w. We assume that A has linearly independent rows, and $w_i > 0$ for all i.

(b) Find the solution of Cx = d with the smallest value of $||x||^2 - c^T x$:

minimize
$$||x||^2 - c^T x$$

subject to $Cx = d$.

The problem data are the *n*-vector c, the $p \times n$ matrix C, and the *p*-vector d. We assume that C has linearly independent rows.

- 10.4 Show how to solve the following problems using the QR factorization of A. In each problem A is an $m \times n$ matrix with linearly independent columns. Clearly state the different steps in your method. Also give the complexity, including all terms that are quadratic (order m^2 , mn, or n^2), or cubic (order m^3 , m^2n , mn^2 , n^3). If you know several methods, give the most efficient one.
 - (a) Solve the set of linear equations

$$\left[\begin{array}{cc} 0 & A^T \\ A & I \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} b \\ c \end{array}\right].$$

The variables are the n-vector x and the m-vector y.