6.002 CIRCUITS AND ELECTRONICS

The Digital Abstraction

Review

 Discretize matter by agreeing to observe the lumped matter discipline

Lumped Circuit Abstraction

 Analysis tool kit: KVL/KCL, node method, superposition, Thévenin, Norton (remember superposition, Thévenin, Norton apply only for linear circuits)

Today

Discretize value --> Digital abstraction

Interestingly, we will see shortly that the tools learned in the previous three lectures are sufficient to analyze simple digital circuits

Reading: Chapter 5 of Agarwal & Lang

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

But first, why digital? In the past ...

Analog signal processing

By superposition,

$$V_0 = \frac{R_2}{R_1 + R_2} V_1 + \frac{R_1}{R_1 + R_2} V_2$$

If
$$R_1=R_2$$
,
$$V_0=\frac{V_1+V_2}{2}$$

The above is an "adder" circuit.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Noise Problem

... noise hampers our ability to distinguish between small differences in value — e.g. between 3.1V and 3.2V.

Value Discretization

Restrict values to be one of two

HIGH LOW
5V OV
TRUE FALSE
1 0

...like two digits 0 and 1

Why is this discretization useful?

(Remember, numbers larger than 1 can be represented using multiple binary digits and coding, much like using multiple decimal digits to represent numbers greater than 9. E.g., the binary number 101 has decimal value 5.)

Digital System

With noise

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Digital System

Better noise immunity Lots of "noise margin"

For "1": noise margin 5V to 2.5V = 2.5V

For "0": noise margin θV to 2.5V = 2.5V

Voltage Thresholds and Logic Values

But, but, but ... What about 2.5V?

Hmmm... create "no man's land" or forbidden region

For example,

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

But, but, but ... Where's the noise margin? What if the sender sent 1: $V_{\rm H}$?

Hold the sender to tougher standards!

But, but, but ... Where's the noise margin? What if the sender sent 1: V_H ?

Hold the sender to tougher standards!

"1" noise margin: V_{IH} - V_{OH}

"0" noise margin: $V_{IL} - V_{OL}$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

inputs to the digital system meet valid input thresholds, then the system guarantees its outputs will meet valid output thresholds.

Processing digital signals

Recall, we have only two values —

 $1,0 \Longrightarrow Map$ naturally to logic: T, F

⇒ Can also represent numbers

Processing digital signals

Boolean Logic

 \implies If X is true and Y is true

Then Z is true else Z is false.

$$\Rightarrow \quad \stackrel{X}{y} = - Z \qquad \text{AND gate}$$

□ Truth table representation:

_X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

Enumerate all input combinations

Combinational gate abstraction

- Adheres to static discipline
- Outputs are a function of inputs alone.

Digital logic designers do not have to care about what is inside a gate.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Examples for recitation

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

In recitation...

Another example of a gate

If (A is true) OR (B is true)

then C is true

else C is false

$$\Rightarrow C = A + B \quad \text{Boolean equation}$$

$$OR$$

$$\Rightarrow A \quad D \quad C$$

$$OR \quad gate$$

More gates
$$B \longrightarrow \overline{B} \qquad \stackrel{\times}{y} \longrightarrow \overline{D} \longrightarrow Z$$
Inverter
$$7 - \overline{X} \cdot \overline{V}$$

Boolean Identities

$$X \cdot 1 = X$$

$$X \cdot 0 = X$$

$$X + 1 = 1$$

$$X + 0 = X$$

$$\frac{1}{0} = 0$$

$$0 = 1$$

$$AB + AC = A \cdot (B + C)$$

Digital Circuits

Implement: output = $A + \overline{B \cdot C}$

