

United International **University** School of Science and Engineering

Mid-term Examination Trimester: Summer-2023

Course Title: Calculus and Linear Algebra

Course Code: MATH 2183 Marks: 30 Time: 1 Hour 45 Minutes

Answer all the questions.

1.	a)	Consider the function	$f(x) = x^4 - 8x^2 + 5$, find	[5]
	••,	Complact the fametion	(10) 10 010 1 0)11114	L-1

- The intervals on which f(x) is increasing and decreasing. (i)
- The intervals on which f(x) is concave up and down. (ii)
- **b)** Find the maximum and minimum value(s) of the function using both first and second derivative test.

$$y = 8x^3 - 24x.$$
 [3]

[2]

[6]

c) Draw a graph of polynomial function y = f(x) with degree 4 by using the following information

Increasing	Decreasing	<i>y</i> –intercepts	x —intercepts	Critical
Interval	Interval		_	Points
$(-\infty, -5]$	[-5,2]	(0,4)	(-7,0),(6,0)	(-5, 6)
[2, 10]	[10, +∞)		(1,0),(15,0)	(2, -8)
				(10.1)

2.

a) Consider the function
$$f(x, y) = \sin(2x^2y^2 + 6x^3y) + 10$$
, [5] Show that $f_{xy}(x, y) = f_{yx}(x, y)$.

b) Using chain rule find
$$\frac{\partial T}{\partial x}$$
, where
$$T(p,q,r) = p^3 q r + \sqrt{pqr},$$
 [3]

$$p = sin(xy)$$
, $q = ln(2x^2 + 2y^3)$, $r = y - x$

$$p = sin(xy), \quad q = ln(2x^2 + 2y^3), \quad r = y - x$$
c) Use implicit differentiation to find $\frac{dy}{dx}$, where
$$x^3 + 5x^2y = 5$$
 [2]

i)
$$t^2y' + 4ty = t^2$$
, $y(1) = \frac{1}{2}$
ii) $y' = \frac{2xy^3}{5+x^2}$, $y(0) = 1$