INFRARED AND ULTRAVIOLET ABSORBING GLASS

Publication number: JP4310539 Publication date: 1992-11-02

Inventor: KAMEI FUMIO; KUDO TORU; ARAI NAOKI

Applicant: ASAHI GLASS CO LTD

Classification:

- international: C03C3/087; C03C3/095; C03C4/08; C03C3/076;

C03C4/00; (IPC1-7): C03C3/087; C03C3/095; C03C4/08

- european: C03C3/095

Application number: JP19910100345 19910405 Priority number(s): JP19910100345 19910405

Report a data error here

Abstract of JP4310539

PURPOSE:To provide a plate glass having high infrared absorption and ultraviolet absorption characteristics and sufficiently high visible light transmittance. CONSTITUTION:The objective infrared and ultraviolet absorbing glass is essentially composed of 65-75wt.% of SiO2, 0.1-5wt.% of Al2O3, 10-18wt.% of Na2O, 0-5wt.% of K2O, 5-15-wt.% of CaO, 1-6wt.% of MgO, 0.1-3.0wt.% of CeO2, 0.5-1.2wt.% of Fe2o3, 0.05-1.0wt.% of SO3 and 0-1.0wt.% of TiO2 (in terms of oxides), wherein ferrous oxide (FeO) accounts for 20-40wt.% of the total iron content expressed by Fe2O3.

Data supplied from the esp@cenet database - Worldwide

JP4310539

Publication Title:

INFRARED AND ULTRAVIOLET ABSORBING GLASS

Abstract:

Abstract of JP4310539

PURPOSE:To provide a plate glass having high infrared absorption and ultraviolet absorption characteristics and sufficiently high visible light transmittance. CONSTITUTION:The objective infrared and ultraviolet absorbing glass is essentially composed of 65-75wt.% of SiO2, 0.1-5wt.% of Al2O3, 10-18wt.% of Na2O, 0-5wt.% of K2O, 5-15-wt.% of CaO, 1-6wt.% of MgO, 0.1-3.0wt.% of CeO2, 0.5-1.2wt.% of Fe2o3, 0.05-1.0wt.% of SO3 and 0-1.0wt.% of TiO2 (in terms of oxides), wherein ferrous oxide (FeO) accounts for 20-40wt.% of the total iron content expressed by Fe2O3. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-310539

(43)公開日 平成4年(1992)11月2日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
C 0 3 C	4/08		6971-4G		
	3/087		6971-4G		
	3/095		6971-4G		

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号	特顯平3-100345	(71) 出願人 000000044
		旭硝子株式会社
(22)出顧日	平成3年(1991)4月5日	東京都千代田区丸の内2丁目1番2号
		(72)発明者 亀井 文夫
		神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内
		(72) 発明者 工藤 透
		神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内
		(72) 発明者 新井 直樹
		神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内
		(74)代理人 弁理士 泉名 謙治
		i

(54) 【発明の名称】 赤外線・紫外線吸収ガラス

(57)【要約】

【目的】高い赤外線吸収特性及び紫外線吸収特性を有し、かつ充分な可視光線透過率も併せ持つ板ガラスを提供する。

1

【特許請求の範囲】

【請求項1】下記酸化物換算で

SiO ₂	65 ~75	重量%
Al 2 03	0.1 ~ 5	重量%
Na ₂ O	10 ~18	重量%
K₂ 0	0 ~ 5	重量%
Ca0	5 ~15	重量%
Mg0	1 ~ 6	重量%
CeO₂	0.1~ 3.0	重量%
Fe ₂ O ₃	$0.5 \sim 1.2$	重量%
SO ₃	$0.05 \sim 1.0$	重量%
TiO₂	0 ~ 1.0	重量%

から本質的になり、かつ、Fe2O2 として表わされた全鉄 分含有量のうち、重量で20~40%が酸化第一鉄 (FeO) であることを特徴とする赤外線・紫外線吸収ガラス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、赤外線の吸収が高く、 且つ自動車用のガラスとして使用できる高い可視光線透 過率を有する赤外線・紫外線吸収ガラスの組成に関す 20 る。

[0002]

【従来の技術】従来、Ce3+で紫外線を、Fe2+で赤外線を 吸収することからなる紫外線・赤外線吸収ガラスは知ら れている (特公昭52-49010号公報)。 しかし、この公報 記載の発明では、中灰色の熱線吸収ガラスを目的として いるため、赤外線・紫外線の吸収が不十分であった。

【0003】これらイオンの組み合わせでガラスに、更 に大きな紫外線・赤外線吸収性能を高めようとする場合 れを防ぐための還元剤の使用が不可欠である。この還元 剤として、一般的に炭素、金属粉、有機物等が用いられ る。例えば、特開昭64-18938号では、石炭等の炭素含有 物を用いている。

【0004】しかし、これら還元剤により、通常ソーダ ・ライム・シリカ系のガラスで清澄剤として用いられて いる芒硝(Na₂ SO₄)は、原料が粉末状態の比較的低温度の 時に還元され分解するため、清澄剤としての効果が失わ れる。即ち、気泡のないガラスを得ることが非常に困難 であった。このため、前述の特許では減圧下で気泡を除 去する方法を提案している。しかし、減圧下で脱泡する には特殊な設備が必要となること、また理由は不明であ るが、ガラスの酸化・選元度(Redox) が変化するため、 色調及び赤外線吸収能を安定化することが困難であっ た。

【0005】また、紫外線の吸収を高めるためにTiO2を 添加し、また全鉄分中のFeO の割合を高めるための還元 剤としてSnO2を用いた紫外線・赤外線吸収を持つガラス が提示されている(米国特許第 4,701,425号)。しか め、ガラスのコストが高くなるという問題点があった。

【発明が解決しようとする課題】本発明は、上記従来技 術の問題点を除去するためになされたものであり、通常 のフロート・ガラス製造設備と、芒硝等の通常の清澄剤 を使用でき、且つ優れた赤外吸収性能と紫外吸収性能 を、更に自動車のガラスとして充分な可視光線透過率を 有する赤外線・紫外線吸収ガラスを提供するものであ る。

10 [0007]

【課題を解決するための手段】本発明は、前述の課題を 達成すべくなされたものであり、下記酸化物換算で、か つ重量%で表わして

SiO ₂	65 ~75%、好ましくは 68 ~73%
Al 2 03	0.1 ~ 5%、好ましくは 1.0 ~ 5%
Na ₂ 0	10 ~18%、好ましくは 12 ~15%
K2 0	0 ~ 5%、好ましくは 0 ~ 3%
Ca0	5 ~15%、好ましくは 7 ~12%
Mg0	1 ~ 6%、好ましくは 2 ~ 5%
CeO ₂	0.1 ~ 3.0%、好ましくは 0.3~2.0 %
Fe ₂ O ₃	0.5 ~ 1.2%、好ましくは0.7 ~1.0 %
S0 ₃	0.05~ 1.0%、好ましくは0.05~0.50%
TiO	$0 \sim 1.0\%$

から本質的になり、かつ、FezO3 として表わされた全鉄 分含有量のうち、重量で20~ 40 %が酸化第一鉄 (FeO) であることを特徴とする赤外線・紫外線吸収ガラス を提供するものである。

【0008】次に、本発明の赤外線・紫外線吸収ガラス の組成を構成する各成分の限定理由を以下に述べる。Si には、Ce⁴⁺がFe²⁺を酸化してFe³⁺としてしまうため、こ 30 02の割合が、65重量%より少ないと耐候性が悪くなり、 また75重量%より多いと失透し易く、いずれも好ましく ない。Al203 の割合が、0.1 重量%より少ないと耐水性 を低下して好ましくなく、またその含有量が5重量%を 越えると溶解性が低下するので好ましくない。

> 【0009】Na20、K20 は原料の溶解を促進する成分で あるが、Na20が10重量%より少ないとその効果が小さく 好ましくなく、また18重量%より多いと耐候性が悪くな るので好ましくない。なお、私0 は少し添加することに より、上述の効果以外に失透を抑制する効果があるが、 5 重量%より多いとガラスの高温における粘度が高くな り、泡が脱けにくくなるので好ましくない。

> 【0010】Ca0、MgO も原料の溶解を促進し、耐候性を 改善する成分であるが、CaO が5重量%より少ないと上 述の効果が小さく、また15重量%よりも多くなると失透 し易くなり、いずれも好ましくない。なお、MgO も少量 添加すると上述の効果が増大するが、6 重量%より多い と失透し易くなるので好ましくない。

【0011】また、硫黄含有量は、SOa として表わして 0.05~1.0 重量%が好ましい。SO3が0.05重量%より少 し、このガラスは、還元剤としてSnO₂を用いているた 50 なくするためには、清澄化剤としての硫黄化合物の量を

3

少なくしなければならず、清澄が不充分となり、残存気 泡の数が増加して好ましくなく、また 1.0重量%より多 くするためには、同様の硫黄化合物の量が多くなってし まって、硫黄がガラス中の成分と反応し、褐色またはこ はく色が濃くなって望ましい可視光透過率が得られない ので好ましくない。

【0012】酸化セリウムは、Ce3+、Ce4+ともに紫外線を吸収する効果がある成分であるがCeO2に換算して、0.1重量%より少ないとその効果が小さく、また3重量%より多いとその効果が飽和するので、0.1 重量%~3 重 10量%の範囲が好ましい。また、紫外線を吸収する効果がある成分として、TiO2、またはV2Os、MoO3をO~1.0重量%の範囲で加えても良い。

【0013】本発明におけるガラス組成中の鉄の全量は、Fez Os として表わして重量で0.5~1.2%の範囲であるのが好ましい。そして、Fez Os として表わした全鉄分含有量のうち、Fez Os に換算した重量で20~40%が酸化第一鉄の状態として(FeO として)存在しているのが好ましい。

【0014】鉄は、Fe²*、Fe³+の状態でガラス中に存 20 在するが、Fe²+の状態で存在するものは赤外線に吸収帯を持ち、赤外線を吸収する成分である。全鉄含有量のうち、Fe0 が、Fe₂03 に換算して20重量%より少ないとその効果は小さく、また、Fe₂03 に換算して40重量%より多くなるとガラスの均質な溶解が困難となるとともに、ガラスの色がアンバーとなるので、いずれも好ましくない。

【0015】また上述の組成範囲のガラスに着色剤として、 $Ni0.Co0,Mn0.V_2O_5,MoO_3$ 等を1種類または2種類以上の合計量が $0\sim1.5$ 重量%の範囲で添加しても良い。更に、紫外線による色調の変化(solarization) やアンパーの発色を防止するため、必要に応じZn0 を $0\sim3$ 重量%添加しても良い。

[0016]

【作用】本発明のガラスにおいては、全鉄中の FeOの割合、即ち還元割合を通常のフロートガラス板の還元割合とほぼ同程度に維持したままではあるが、ガラス組成中の鉄の全量を、Fe2O3 として表わして重量で0.5~1.2%の範囲と通常のガラスにおける鉄の含有量よりも多くすることによって、赤外線の吸収性能が高い酸化第一鉄 40

(PeO) の絶対量を増やして赤外線の吸収性能を高めることができる。

【0017】従って、全鉄中での酸化第一鉄 (Fe0)の割合を、例えば50%以上というような選元割合を通常よりも高めるための特別な還元条件とすることなく、赤外線の吸収性能の高いガラスを得ることができる。従って、常法フロートガラス製造プロセスにより、通常の板ガラス溶解条件で、通常の芒硝などの清澄剤用いて板ガラスを製造することができる。

【0018】また、上記した様に還元割合が低いので、特に強い還元条件とすることがなく、そのため鉄成分と硫黄成分との反応によるこはく色または褐色の発生、これに伴う透過率の低下を防ぐことができる。従って、溶解時の硫黄成分を特に低く維持する必要がなく、溶解時の気泡の除去に効果的な芒硝(Naz SO4)を清澄剤として有効に使うことができる。

[0019]

【実施例】珪砂、長石、石灰石、苦灰石、水酸化マグネシウム、ソーダ灰、芒硝を主原料とし、酸化第二鉄粉末、酸化セリウム粉末、酸化チタン粉末、還元材としてカーポン粉末、更に着色剤としてNi、Co.Mn、V.Mo の酸化物粉を用いた。なお、原料として、例えば芒硝を他の硫酸化合物等の複合化合物に置き換えて使用してもよいし、また芒硝と上記複合化合物と併用してもよい。上記原料を目標の組成となるよう調合した混合物(パッチ)500gを電気炉を用いて、1500℃で3時間溶解し、型に流し、徐冷した。この様にして得られた板ガラスのサンプルの光学的特性及び残存気泡数を測定した結果を表1に示す。

30 【0020】また、比較例として同様に調合し、溶融した板ガラスのサンプルの光学的特性及び残存気泡数も表1にまとめて示す。なお、光学特性は厚さ5mmの試料で測定された値であり、表中の記号TVaは可視透過率(380~780nm)、TEは太陽放射透過率(340~1800nm)、Dwは主波長、Peは色純度をそれぞれ表わす。また、FeO/Fe20は試料中の全鉄分含有量をFe20sに換算した値に対する、試料中のFe0をFe20sに換算した値の割合を示す。

[0021]

【表1】

-					t. aut
	本発明の	ガラス板(st 	比較例		
No.	1	2	3	4	5
組成		· · · · · · · · · · · · · · · · · · ·			
SiO ₂	71.0	71.0	71.3	72. 3	71.8
Al 2 O8	1.8	1.74	1.70	0.4	0.1
Ca0	7.8	7.79	7.8	8. 6	8.4
MgO	4.0	3.9	3.9	3. 7	3.9
Na ₂ O	13.1	13.1	12.8	14.0	13. 3
K ₂ 0	0.7	0.7	0.6	0.1	0.1
Fe ₂ O ₃	0.81	0.82	0.77	0.45	0. 35
CeO₂	0.77	0.80	0.96	0.48	_
TiO ₂	0.01	0.01	0.04	-	0.92
SO ₃	0.10	0.09	0.09	0.01	_
(SnO ₂)	-	-	-	_	0.92
Fe0/Fe ₂ O ₂	24. 2%	23. 7%	28.6%	48. 0	50. 5
残存気泡(個/kg)	5~10	5~10	5~10	>500	>150
可視透過率 TVa(%)	66. 8	66.1	66.7	71	72
太陽熱透過率 TE(%)	38. 4	37.7	38.4	39	39
主波長 D _r (nm)	503	503	501	488	541
	(緑色)	(緑色)	(緑色)	(背色)	(黄緑)
色純度 Pe(%)	3. 7	3.8	4.1	10.1	5.0

[0022]

ため運転者の視界を損なうことなく、赤外線を吸収する ので冷暖房効果を高め、また紫外線も吸収するので、紫 外線による自動車の内装材やシート、搭乗者の皮膚への 悪影響を軽減することから、建築用、車両用の窓ガラス 等として特に有用である。

【0023】また、本発明の赤外線・紫外線吸収ガラス は、赤外線をFe²⁺で、また紫外線をCe³⁺, Ce⁴⁺ で吸収さ

せる一方、全鉄分含有量のうち酸化第一鉄の割合が20重 【発明の効果】本発明のガラスは、可視光透過率が高い 30 量%~40重量%となるように還元条件を低めに抑えたこ とにより、緑色系の板ガラス、例えば主波長 490nm~53 Onm を持つ緑色の板ガラスが容易に得られ、また清澄剤 として芒硝が使用可能となり、また清澄剤として芒硝が 使用できるので、特殊な装置を使用することなく、従来 のガラス溶解装置、例えばフロートガラス製造設備が使 用でき、従って容易にそして安価に、生産効率良く、泡 のないガラス板を製造可能である。