MAT 4410 Solutions

December 21, 2015

Problem 1.

(a) Let λ be Lebesgue measure on the σ -algebra \mathcal{B} of all Borel measurable sets on the half open interval (0,1]. We define a signed measure α on \mathcal{B} by

$$\alpha(E) = \int_E \cos(2\pi x) \,d\lambda(x), \quad E \in \mathcal{B}.$$

Find a Hahn-decomposition for α in (0,1] and determine the positive and negative variations α^+ and α^- of α .

Solution:

Set $f(x) = \cos(2\pi x)$, $x \in (0,1]$. Let $A = (0,\frac{1}{4}] \cup [\frac{3}{4},1]$, $B = (\frac{1}{4},\frac{3}{4})$. Then $A = \{x : f(x) \ge 0\}$ and $B = \{x : f(x) < 0\}$. Hence A, B forms a Hahn-decomposition for the signed measure α and

$$\alpha^{+}(E) = \alpha(E \cap A) = \int_{A \cap E} \cos(2\pi x) \, d\lambda(x),$$

$$\alpha^{-}(E) = -\alpha(E \cap B) = -\int_{B \cap E} \cos(2\pi x) \, d\lambda(x), \quad E \in \mathcal{B}.$$

A measure β is given by

$$\beta(E) = \int_E \frac{1}{x} d\lambda(x), \quad E \in \mathcal{B}.$$

(b) Explain that $\lambda << \beta$, $|\alpha| << \beta$, and find the Radon-Nikodym derivatives $\frac{\mathrm{d}\lambda}{\mathrm{d}\beta} \quad \text{and} \quad \frac{\mathrm{d}|\alpha|}{\mathrm{d}\beta}.$

Solution:

 $\beta(E) = \int_E \frac{1}{x} d\lambda(x), \quad E \in \mathcal{B}, \text{ yields } \lambda(E) = \int_E x \cdot \frac{1}{x} d\lambda(x) = \int_E x d\beta(x),$ hence $\lambda << \beta \text{ with } \frac{d\lambda}{d\beta}(x) = x \text{ ae. Furthermore,}$

$$|\alpha|(E) = \int_{E} |\cos(2\pi x)| \,\mathrm{d}\lambda(x),$$

so that $|\alpha| << \lambda$ and $\frac{d|\alpha|}{d\lambda} = |\cos(2\pi x)|$. Since $|\alpha| << \lambda$ and $\lambda << \beta$, we have $|\alpha| \ll \beta$ and

$$|\alpha|(E) = \int_{E} |\cos(2\pi x)| \,d\lambda(x) = \int_{E} |\cos(2\pi x)| x \,d\beta(x)$$

Hence $\frac{\mathrm{d}|\alpha|}{\mathrm{d}\beta} = |\cos(2\pi x)|x$ $(=\frac{|\alpha|}{\mathrm{d}\lambda}\frac{\mathrm{d}\lambda}{\mathrm{d}\beta})$. Above we have used that if $\nu << \mu$ and $\frac{\mathrm{d}\nu}{\mathrm{d}\mu} = f$, then $\int g \,\mathrm{d}\nu = \int g f \,\mathrm{d}\mu$. (This should be known from the course, and can readily be verified for simple functions g. Then one may apply the MCT.)

(c) Let μ be counting measure on \mathcal{B} (that is, $\mu(E)$ = the number of elements of E if E is finite, $\mu(E) = +\infty$ if E is infinite). Show that $\lambda \ll \mu$. Prove that there is no \mathcal{B} -measurable function f on (0,1] such that

$$\lambda(E) = \int_{E} f \, d\mu, \quad E \in \mathcal{B}.$$

Explain why this does not contradict the Radon-Nikodym Theorem.

Solution:

If $E \in \mathcal{B}$, $\mu(E) = 0 \Leftrightarrow E = \emptyset \Rightarrow$ any measure on \mathcal{B} is absolutely continuous with respect μ .

Suppose next f is \mathcal{B} -measurable on (0,1] and $\lambda(E) = \int_E f \, d\mu$, $E \in \mathcal{B}$. Then $f \neq 0$ so there is $x \in (0,1]$ such that $f(x) \neq 0$. Hence

$$\lambda\{x\} = 0 \neq f(x) = \int_{\{x\}} f \,\mathrm{d}\mu,$$

a contradiction.

Since (0,1] is uncountable, μ is not σ -finite. Therefore, the hypothesis of the Radon-Nikodym Theorem is not satisfied and the theorem does not apply.

Problem 2

Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space (that is, $\mu(\Omega) < \infty$). Suppose that

- (i) V is a closed subspace of $\mathcal{L}^p(\mu)$ for some $p, 1 \leq p < \infty$, and
 - (ii) V is contained in $\mathcal{L}^{\infty}(\mu)$.

In other words, V is a subspace of $\mathcal{L}^p(\mu) \cap \mathcal{L}^{\infty}(\mu)$, for some $p, 1 \leq p < \infty$, that is closed in the p-norm.

(a) Show that $V \subset \mathcal{L}^2(\mu)$ and that there is a constant C such that

(1)
$$||f||_2 \le C||f||_{\infty}$$
 whenever $f \in V$.

Solution:

Let $f \in V$. Then $f \in \mathcal{L}^{\infty}(\mu)$ by (ii). Hence

$$||f||_2^2 = \int_{\Omega} |f|^2 d\mu \le \int_{\Omega} ||f||_{\infty}^2 d\mu = ||f||_{\infty}^2 \mu(\Omega)$$

Thus

$$||f||_2 \le C||f||_{\infty}, \quad C = \mu(\Omega)^{\frac{1}{2}}$$

In particular, $f \in \mathcal{L}^2(\mu)$.

Below we shall see that the inequality in (1) can be reversed.

(b) What do we mean by a closed linear map between two linear normed spaces? Show that the identity map

$$I: f \mapsto f, \ (V, ||\cdot||_p) \to (V, ||\cdot||_{\infty})$$

is a closed map. Explain that there is an M > 0 such that

(2)
$$||f||_{\infty} \leq M||f||_{p}, \quad \text{for all } f \in V.$$

Solution:

Let $T:V\to W$ be a linear map between two normed linear spaces V and W. We say that T is closed if

$$x_n \xrightarrow[n \to \infty]{} x$$
 in V and $Tx_n \xrightarrow[n \to \infty]{} y$ in $W \Longrightarrow y = tx$.

Suppose $f_n \xrightarrow[n \to \infty]{} f$ in p-norm and $I(f_n) \xrightarrow[n \to \infty]{} g$ in ∞ -norm. There is a subsequence (f_{n_k}) of (f_n) that converges pointwise ae to f on Ω . In addition,

$$||f_{n_k}-g||_{\infty} \xrightarrow[n\to\infty]{} 0$$
, so $f_{n_k} \xrightarrow[n\to\infty]{} g$ pointwise ae on Ω .

Hence f=g ae. This means that I is a closed map. Observe that V is also closed in $\mathcal{L}^{\infty}(\mu)$ since $||f||_p \leq \mu(\Omega)^{\frac{1}{p}}||f||_{\infty}$. This follows as in (a). Hence $(V,||\cdot||_{\infty})$ is a complete normed space. By the Closed Graph Theorem the map $I:(V,||\cdot||_p)\to\mathcal{L}^{\infty}(\mu)$ is continuous. Hence there is a constant M>0 such that

$$||f||_{\infty} \le M||f||_p$$
 for all $f \in V$.

(c) Assume next that 2 in (i) and (ii). Show that there is an <math>A > 0 so that

$$||f||_{\infty} \le A||f||_2$$
 whenever $f \in V$.

Hint: $|f(x)|^p \le ||f||_{\infty}^{p-2}|f(x)|^2$, $f \in V$.

Solution:

Suppose $2 in (i) and (ii). Let <math>f \in V$. Then $f \in \mathcal{L}^{\infty}(\mu)$ so that

$$|f(x)|^p \le ||f||_{\infty}^{p-2}|f(x)|^2$$
 for almost all $x \in \Omega$.

Integration of the last inequality yields

(*)
$$||f||_p^p \le ||f||_{\infty}^{p-2} \int |f(x)|^2 d\mu = ||f||_{\infty}^{p-2} ||f||_2^2$$

We may assume that $||f||_{\infty} > 0$, otherwise the inequality is obvious. By (*) and (2) in (b),

$$||f||_{\infty}^{p} \le M^{p}||f||_{p}^{p} \le M^{p}||f||_{\infty}^{p-2}||f||_{2}^{2}$$

Dividing the above inequalities by $||f||_{\infty}^{p-2}$, we deduce $||f||_{\infty}^{2} \leq M^{p}||f||_{2}^{2}$ which yields the desired result.

(d) Suppose that $1 \le p \le 2$ in (i) and (ii). Show that there exists B > 0 such that

$$||f||_{\infty} \leq B||f||_2$$

Hint: Consider $r = \frac{2}{p}$ and $s = \frac{2}{2-p}$. Then apply Hölder's inequality.

Solution:

Suppose $1 \le p \le 2$ in (i) and (ii). Now $r = 2/p (\ge 1)$ and $s = 2/(2-p) (\le \infty)$ are conjugate exponents, $\frac{1}{r} + \frac{1}{s} = 1$. By Hölder's inequality, using that $|f|^p \in \mathcal{L}^{2/p}(\mu)$, $1 \in \mathcal{L}^s(\mu)$, we deduce that

$$\int_{\Omega} |f|^p \cdot 1 \, \mathrm{d}\mu \le \left(\int_{\Omega} |f|^2 \, \mathrm{d}\mu \right)^{p/2} \cdot \left(\int_{\Omega} 1^s \, \mathrm{d}\mu \right)^{\frac{1}{s}} = ||f||_2^p M^p, \quad M^p = \mu(\Omega)^{\frac{1}{s}}.$$
By (b) , $||f||_{\infty} \le B||f||_2$ $(B = MC)$.

Problem 3. Let \mathcal{M} be the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} , λ be Lebesgue measure on \mathcal{M} . Assume that f is a continuous map from [0,1] into \mathbb{R} and consider the condition

(N)
$$\lambda(f(E)) = 0$$
 whenever $\lambda(E) = 0$ and $E \subset [0, 1]$.

(a) Suppose f satisfies (N). Show that $f(E) \in \mathcal{M}$ whenever $E \in \mathcal{M}$ and $E \subset [0,1]$.

Solution:

Let $E \subset (0,1)$ be Lebesgue measurable. Lebesgue measure λ is regular so there are sequences of compact sets $\{K_n\}$ and of open sets $\{O_n\}$ such that

$$K_n \subset E \subset O_n \subset (0,1)$$
 and $\lambda(O_n \setminus K_n) < \frac{1}{n}, \quad n = 1, 2, \dots$

Hence $\lambda^*(\bigcap_{n=1}^{\infty} O_n \setminus \bigcup_{n=1}^{\infty} K_n) = 0$. Set $N = E \setminus \bigcup_{n=1}^{\infty} K_n$. Then

$$N \subset \bigcup_n O_n \setminus \bigcup_n K_n = B$$
, where $\lambda(B) = 0$.

Therefore, as λ is a complete measure, N is Lebesgue measurable and $\lambda(N) = 0$. Clearly $F = \bigcup_n K_n$ is measurable (it is even a Borel set) and $E = N \cup F$ where $E \cup N = \emptyset$. Since f is continuous and satisfies (N), it follows that $f(K_n)$ is compact $(n \in \mathbb{N})$ and

$$f(E) = f(N) \cup f(F) = f(N) \cup (\bigcup_{n=1}^{\infty} f(K_n))$$

is Lebesgue measurable.

(b) Show that if $f(E) \in \mathcal{M}$ whenever $E \in \mathcal{M}$ and $E \subset [0, 1]$, then f satisfies (N). You can use (without proof) the fact that every $A \in \mathcal{M}$ for which $\lambda(A) > 0$ contains a nonmeasurable subset D with positive outer Lebesgue measure $(\lambda^*(D) > 0)$.

Solution:

Assume that

 $E \subset [0,1]$ is Lebesgue measurable $\Rightarrow f(E)$ is Lebesgue measurable.

Further assume that $\lambda(N) = 0$, $N \subset [0,1]$. If $\lambda(f(N)) > 0$, there is a nonmeasurable subset D of f(N) with $\lambda^*(D) > 0$. Then D = f(A) for some $A \subset N$. Hence, λ being a complete measure on \mathcal{M} , we have $\lambda(A) = 0$ so that A is Lebesgue measurable and D = f(A) is Lebesgue measurable, a contradiction. Consequently, $\lambda(f(N)) = 0$, and the condition (N) follows.

THE END