Docket No. 219922US0CONT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Takashi OKAZOE, et al.

SERIAL NO: NEW APPLICATION

FILED:

HEREWITH

FOR:

PROCESS FOR PRODUCING A VIC-DICHLORO ACID FLUORIDE

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

will be submitted prior to payment of the Final Fee

WASHINGTON, D.C. 20231						
SIR:						
	Full benefit of the filing date of U.S. Application Serial Number PCT/JP00/05888, filed August 30, 2000, is claimed pursuant to the provisions of 35 U.S.C. §120.					
Full benefit of the filing date of U.S. I the provisions of 35 U.S.C. §119(e).	Provisional Application Serial Number	, filed , is claimed pursuant to				
Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.						
In the matter of the above-identified applied	cation for patent, notice is hereby given th	at the applicants claim as priority:				
COUNTRY Japan	<u>APPLICATION NUMBER</u> 11-246154	MONTH/DAY/YEAR August 31, 1999				
Japan	2000-211722	July 12, 2000				
Certified copies of the corresponding Con	vention Application(s)					
□ are submitted herewith						
will be submitted prior to payment of the Final Fee						
were filed in prior application Ser	were filed in prior application Serial No. filed					
were submitted to the International Bureau in PCT Application Number Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.						
☐ (A) Application Serial No.(s) were	e filed in prior application Serial No.	filed; and				
☐ (B) Application Serial No.(s)						
are submitted herewith	,					

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Norman F. Oblon

Registration No. 24,618

J. Derek Mason, Ph.D. Registration No. 35,270

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98)

Docket No.

219922US0CONT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

INVENTOR(S) Takashi OKAZOE, et al.

SERIAL NO:

New Application

FILING DATE: Herewith

FOR:

PROCESS FOR PRODUCING A VIC-DICHLORO ACID FLUORIDE

FEE TRANSMITTAL

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

FOR	NUMBER FILED	NUMBER EXTRA	RATE	CALCULATIONS
TOTAL CLAIMS	11 - 20 =	0	× \$18 =	\$0.00
INDEPENDENT CLAIMS	2 - 3 =	0	× \$84 =	\$0.00
☐ MULTIPLE DEPENDENT	\$0.00			
☐ LATE FILING OF DECL	+ \$130 =	\$0.00		
	\$740.00			
	\$740.00			
☐ REDUCTION BY 50% FO	\$0.00			
☐ FILING IN NON-ENGLISH LANGUAGE			+ \$130 =	\$0.00
□ RECORDATION OF ASSIGNMENT			+ \$40 =	\$40.00
			TOTAL	\$780.00

Please charge Deposit Account No. 15-0030 in the amount of	\$0.00	A duplicate copy of this sheet is enclosed.

A check in the amount of

\$780.00 to cover the filing fee is enclosed.

Mark The Commissioner is hereby authorized to charge any additional fees which may be required for the papers being filed herewith and for which no check is enclosed herewith, or credit any overpayment to Deposit Account No. 15-0030. A duplicate copy of this sheet is enclosed.

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Registration No. 24,618

J. Derek Mason, Ph.D.

Registration No. 35,270

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/01)

45 AB-220-PG US-I 2/2

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 7月12日

出 願 番 号 Application Number:

特願2000-211722

出 願 人
Applicant(s):

旭硝子株式会社

2001年10月26日

特 許 庁 長 官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 20000277

【提出日】 平成12年 7月12日

【あて先】 特許庁長官殿

【国際特許分類】 C07C 51/58

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株

式会社内

【氏名】 岡添 隆

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株

式会社内

【氏名】 渡邊 邦夫

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株

式会社内

【氏名】 伊藤 昌宏

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株

式会社内

【氏名】 白川 大祐

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株

式会社内

【氏名】 立松 伸

【特許出願人】

【識別番号】 000000044

【氏名又は名称】 旭硝子株式会社

【代理人】

【識別番号】

100090918

【弁理士】

【氏名又は名称】

泉名 謙治

【選任した代理人】

【識別番号】

100082887

【弁理士】

【氏名又は名称】 小川 利春

【選任した代理人】

【識別番号】 100072774

【弁理士】

【氏名又は名称】 山本 量三

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第246154号

【出願日】

平成11年 8月31日

【手数料の表示】

【予納台帳番号】

102809

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

【書類名】明細書

【発明の名称】 v i c - ジクロロ酸フルオリド化合物の製造方法

【特許請求の範囲】

【請求項1】

下記化合物(I)を液相中でフッ素化して下記化合物(II)に変換し、該化合物(II)のエステル結合を分解して下記化合物(III)、または、下記化合物(II)および下記化合物(IV)に変換することを特徴とするvicージクロロ酸フルオリド化合物の製造方法。

【化1】

 $(R^{H_1}-E^{H_1}-)CR^{H_2}R^{H_3}CH_2-OCOR^{H_B}(I)$ $(CF_2CICFCI-E^{F_1}-)CR^{F_2}R^{F_3}CF_2-OCOR^{F_B}(II)$ $(CF_2CICFCI-E^{F_1}-)CR^{F_2}R^{F_3}COF(III)$ $FCOR^{F_B}(IV)$

ただし、

 $R^{H1}: CX^1X^2C1CX^3C1-$ または $CC1X^4=CC1-$ 。ただし、 $X^1\sim X^4$ は、それぞれ独立して水素原子またはフッ素原子。

R^{H2}、R^{H3}:それぞれ独立して、水素原子、フッ素原子、1価飽和炭化水素基 、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、またはハ ロゲノ(ヘテロ原子含有1価飽和炭化水素)基。

E^{H1}: 2 価連結基または単結合。

 $E^{F1}: E^{H1}$ に対応する基であり、 E^{H1} が単結合である場合は単結合、 E^{H1} が2 価連結基である場合には、該2価連結基中に水素原子が存在する場合は該水素原子の1個以上がフッ素化された基であり、該2価連結基中に水素原子が存在しない場合には E^{H1} と同一の基。

R HB: 1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、またはハロゲノ(ヘテロ原子含有1価飽和炭化水素)基。

 R^{F2} 、 R^{F3} 、 R^{HB} : R^{F2} は R^{H2} がフッ素化された基、 R^{F3} は R^{H3} がフッ素化された基、 R^{FB} は、 R^{HB} がフッ素化された基であり、 R^{H2} 、 R^{H3} 、 R^{HB} 中に水素原子が存在する場合は、該水素原子の1個以上がフッ素化された基であり、 R^{H2} 、

 R^{H3} 、 R^{HB} 中に水素原子が存在しない場合には、 R^{H2} 、 R^{H3} 、 R^{HB} と同一の基。 【請求項2】

化合物(I)の分子量が200~1000であり、かつ、フッ素含量が30~86質量%である請求項1に記載の製造方法。

【請求項3】

化合物(I)中の水素原子に対して過剰当量のフッ素を液相中に供給しながら 反応させて、液相中で化合物(I)から化合物(II)に変換する請求項1または 2に記載の製造方法。

【請求項4】

液相中でのフッ素化の反応系中にC-H結合含有化合物を存在させるか、または紫外線照射しながら反応を行なう請求項1、2または3に記載の製造方法。

【請求項5】

化合物(I)が、下記化合物(A 1)と下記化合物(A 2)とを反応させることによって製造した化合物である請求項 $1 \sim 4$ のいずれか一つに記載の製造方法。ただし、X はハロゲン原子を示し、 R^{H1} 、 E^{H1} 、 R^{H2} 、 R^{H3} は、上記と同じ意味を示す。

【化2】

 $(R^{H_1}-E^{H_1}-)CR^{H_2}R^{H_3}CH_2-OH(A1)$ $XCOR^{H_5}(A2)$

【請求項6】

化合物(I)中のR $^{\rm H1}$ がCX $^{\rm 1}$ X $^{\rm 2}$ C1CX $^{\rm 3}$ C1ーである化合物(Ia)が、下記化合物(B1)に下記化合物(B2)を反応させて下記化合物(B3)とし、次に該化合物(B3)に塩素化剤と反応させることによって製造した化合物である請求項1~4のいずれか一つに記載の製造方法。ただし、X $^{\rm 1}$ 、X $^{\rm 2}$ 、X $^{\rm 3}$ 、R $^{\rm H2}$ 、R $^{\rm H3}$ 、およびR $^{\rm H8}$ は、上記と同じ意味を示す。

【化3】

 $(CX^{1}X^{2} = CX^{3} - E^{H_{1}} -) CR^{H_{2}}R^{H_{3}}CH_{2} - OH (B 1)$ $XCOR^{HB} (B 2)$

(CX'X'=CX'-E''-) CR''2R''3CH2-OCOR''B (B3) (CX'X'C1CX''C1-E''-) CR''2R''3CH2-OCOR''B (Ia) 【請求項7】

塩素化剤が塩素である請求項6に記載の製造方法。

【請求項8】

化合物(IV)と化合物(B2)とが同一化合物である請求項6または7に記載の製造方法。

【請求項9】

化合物(IV) と化合物(B2) とが同一化合物であり、生成した化合物(IV) の一部または全部を再び化合物(A1) または化合物(B1) との反応に用いる請求項項5、6または7に記載の製造方法。

【請求項10】

化合物(III)と化合物(IV)とが同一化合物である請求項1~9のいずれか一つに記載の製造方法。

【請求項11】

下記に示す各式のいずれか一つで表される新規化合物。

【化4】

CHC1=CC10 (CH₂) OH

CH₂=CH(CH₂) OCH₂CH₂CH₂CH

CH₂=CH(CH₂) OCOCF₂CFC1CF₂C1

CH₂=CH(CH₂) OCH(CH₃) CH₂CCCF₁CF₂CF₃

CC1H=CC10 (CH₂) OCOCF (CF₃) OCF₂CF₂CF₃

CC1F₂CC1F0 (CF₂) OCOCF (CF₃) OCF₂CF₂CF₃

CH₂=CH(CH₂) O(CH₂) OCOCF (CF₃) OCF₂CF₂CF₃

CH₂CH(CH₂) O(CH₂) OCOCF (CF₃) OCF₂CF₂CF₃

CH₂C1CFC1 (CF₂) O(CF₂) OCOCF (CF₃) OCF₂CF₂CF₃

CC1F₂CC1F0 (CF₂) OCF

CF₂C1CFC1 (CF₂) O(CF₂) COF

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、フッ素樹脂原料モノマーの製造中間体として有用な v i c - ジクロロ構造を有する酸フルオリド化合物の新規な製造方法に関する。

[0002]

【従来の技術】

[0003]

例えば、上記のフッ素樹脂のうち、ペルフルオロ(3 ーブテニルビニルエーテル) $[CF_2=CFCF_2CF_2CF=CF_2]$ の単独重合体は、透明なフッ素樹脂として種々の用途に用いられている。かかるフッ素樹脂のモノマーである、ペルフルオロ(3 ーブテニルビニルエーテル)は、従来、次の製造ルートで合成されている。

[0004]

【化5】

 $CF_{\epsilon} \!\!=\!\! CFC1 \ + \ IC1 \ \rightarrow \ CF_{\epsilon}C1CFC1I(\texttt{A}) \ \rightarrow \ CF_{\epsilon}C1CFC1CF_{\epsilon}CF_{\epsilon}I(\texttt{B})$

CF,=CF,

(B) + 発煙硫酸→CF,C1CFC1CF,COF(C) → CF,C1CFC1CF,CF,OCF(CF,1)COF(D)

KF, HFPO

(D) +ソーダ灰/ガラスビーズ → CF_ClCFClCF_CF_OCF=CF_(E)

250℃以上

(E) + 亜鉛 → CFz=CFCFzCFzOCF=CFz

[0005]

すなわち、CF₂=CFC1と塩化ヨウ素とを反応させて化合物(A)とし、 化合物(A)とテトラフルオロエチレンとを反応させて化合物(B)とし、該化 合物(B)と発煙硫酸とを反応させて化合物(C)とする。さらに化合物(C) をKF等のフッ化アルカリの存在下にヘキサフルオロプロピレンオキシド(HF PO)と反応させて化合物(D)とし、さらに化合物(D)をソーダ灰またはガ ラスビーズの存在下、250℃以上に加熱して化合物(E)とし、さらに化合物 (E)を亜鉛と反応させて脱塩素化することにより、ペルフルオロ(3ーブテニ ルビニルエーテル)を得る方法である。

[0006]

しかし、従来のペルフルオロ(3 ーブテニルビニルエーテル)などの製造方法は、化合物(A)を製造する工程において、化合物(A)とともに、その異性体であるCF₂ICFCl₂が副生する問題があった。そして該異性体量を制御することが困難であった。また、これら従来の製造方法は、反応工程が多く、原料の価格も高く、経済的に不利であった。また、塩化ヨウ素や発煙硫酸等を使用する

ことから、装置が腐食する問題や、反応試薬の取り扱いが難しい問題があった。

[0007]

一方、炭化水素系化合物中のC-H部分の全てをC-Fにフッ素化する方法としては、フッ素(elemental fluorine)を用いて直接フッ素化する方法(以下、直接フッ素化法という。)、または、電解槽中でフッ化水素を電気分解し、発生する生成物を用いてフッ素化反応を行う方法(いわゆる電解フッ素化反応)が知られている。そして、直接フッ素化反応には、気相中でフッ素化する反応(以下、気相反応という。)と、液相中でフッ素化する反応(以下、液相反応という。)が知られている。

[0008]

また、炭素数16以上のペルフルオロ化されたエステル化合物を熱分解して酸フルオリド化合物を得る方法も知られており、該化合物は、対応する炭素骨格を有する炭化水素系のエステル化合物を原料とし、これをフッ素を用いて液相で直接フッ素化することにより入手できると記載されている(J. Am. Chem. Soc., 120, 7117 (1998))。

[0009]

また、塩素原子を有しないペルフルオロアルキルエステルを、求核剤と溶媒の 存在下に反応させてペルフルオロ酸フルオリドに変換する方法が提案されている 。(米国特許5466877号)

しかし、これらの直接フッ素化法や電解フッ素化反応などにより、ペルフルオロ(3-ブテニルビニルエーテル)などのvic-ジクロロ構造を有する酸フルオリド化合物(1)を製造しようとすることは、従来、考えられてもいしないし、また提案されてもいない。

[0010]

【発明が解決しようとする課題】

かくして、本発明の目的は、反応工程が多く、原料の価格も高く、経済的に不利であり、また、塩化ヨウ素や発煙硫酸等を使用することから、装置が腐食する問題や、反応試薬の取り扱いが難しい問題を含んでいた、ペルフルオロ (3 - ブテニルビニルエーテル) などの v i c - ジクロロ構造を有する酸フルオリド化

合物(1)を、安価で入手容易な原料化合物から短工程で製造しうる方法を提供 することにある。

[0011]

【課題を解決するための手段】

本発明は、下記化合物(I)を液相中でフッ素化して下記化合物(II)に変換し、該化合物(II)のエステル結合を分解して下記化合物(III)、または、下記化合物(III)および下記化合物(IV)に変換することを特徴とするvicージクロロ酸フルオリド化合物の製造方法を提供する。

[0012]

【化6】

 $(R^{H_1}-E^{H_1}-)CR^{H_2}R^{H_3}CH_2-OCOR^{H_B}(I)$ $(CF_2ClCFCl-E^{F_1}-)CR^{F_2}R^{F_3}CF_2-OCOR^{F_B}(II)$ $(CF_2ClCFCl-E^{F_1}-)CR^{F_2}R^{F_3}COF(III)$ $FCOR^{F_B}(IV)$

[0013]

ただし、

 $R^{H1}: CX^1X^2C1CX^3C1-$ または $CC1X^4=CC1-$ 。ただし、 $X^1\sim X^4$ は、それぞれ独立して水素原子またはフッ素原子。

R^{H2}、R^{H3}: それぞれ独立して、水素原子、フッ素原子、1価飽和炭化水素基、ハロゲノ1価飽和炭化水素基、ヘテロ原子含有1価飽和炭化水素基、またはハロゲノ(ヘテロ原子含有1価飽和炭化水素)基。

E^{H1}: 2 価連結基または単結合。

 $E^{F1}: E^{H1}$ に対応する基であり、 E^{H1} が単結合である場合は単結合、 E^{H1} が2価連結基である場合には、該2価連結基中に水素原子が存在する場合は該水素原子の1個以上がフッ素化された基であり、該2価連結基中に水素原子が存在しない場合には E^{H1} と同一の基。

[0014]

R HB: 1 価飽和炭化水素基、ハロゲノ1 価飽和炭化水素基、ヘテロ原子含有1 価

飽和炭化水素基、またはハロゲノ(ヘテロ原子含有1価飽和炭化水素)基。

 R^{F2} 、 R^{F3} 、 R^{HB} : R^{F2} は R^{H2} がフッ素化された基、 R^{F3} は R^{H3} がフッ素フッ素化された基、 R^{FB} は R^{HB} がフッ素化された基であり、 R^{H2} 、 R^{H3} 、 R^{HB} 中に水素原子が存在する場合は、該水素原子の1個以上がフッ素化された基であり、 R^{H2} 、 R^{H3} 、 R^{HB} 中に水素原子が存在しない場合には、 R^{H2} 、 R^{H3} 、 R^{HB} と同一の基。

[0015]

本発明によれば、後に詳記されるように、安価で入手が容易な化合物(I)を用いて、短い工程かつ高い収率でvicージクロロ構造を有する酸フルオリド化合物(III)が製造できる。また、塩化ヨウ素や発煙硫酸等を使用しないことから、装置が腐食する問題や、反応試薬の取り扱いが難しい問題もない。さらに、vicージクロロ構造を有する酸フルオリド化合物(III)とともに得られる化合物(IV)を再び原料製造工程にリサイクルすることによる化合物(III)の連続製造方法も提供される。

さらに、本発明では、上記反応工程を通じて従来にない新規な化合物も提供される。

[0016]

【発明の実施の形態】

[本発明で使用される用語の説明]

本明細書における1価飽和炭化水素基としては、直鎖構造、分岐構造、環構造(すなわちシクロアルキル基)、または部分的に環構造を有する構造の基が挙げられる。1価飽和炭化水素基の炭素数は1~20が好ましく、特に1~10が好ましい。

[0017]

本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、またはヨウ素原子であり、フッ素原子、塩素原子、または臭素原子が好ましい。

また、本明細書における「ハロゲノ」とは、フッ素原子、塩素原子、臭素原子 、およびヨウ素原子から選ばれる少なくとも1種のハロゲン原子により、基中に 存在する水素原子の1個以上が置換されたことをいう。ハロゲノ基の基中には、

水素原子が存在していても、存在しなくてもよい。なお、「フルオロ」などの用 語の意味も同様である。

[0018]

「部分ハロゲノ」とは、ハロゲノ基の基中にハロゲン原子に非置換水素原子が存在することをいう。「ペルハロゲノ」とは、ハロゲノ基の基中に水素原子が存在しないことをいう。なお、「部分フルオロ」、「ペルフルオロ」などの用語の意味も同様である。

本明細書におけるハロゲノ1価飽和炭化水素基としては、前記1価飽和炭化水素基中の水素原子の1個以上がハロゲン原子に置換された基である。ハロゲノ1価飽和炭化水素基中のハロゲン原子としては、フッ素原子、塩素原子、または臭素原子が好ましい。特に、ペルハロゲノ1価飽和炭化水素基中のハロゲン原子としては、フッ素原子のみであるか、フッ素原子とフッ素原子以外のハロゲン原子からなるのが好ましい。なお、これらの基の具体例は、下記化合物の例示中に記載する基が挙げられる。

[0019]

本明細書におけるヘテロ原子含有1価飽和炭化水素基としては、前記1価飽和炭化水素基中にフッ素化反応により変化しないヘテロ原子またはフッ素化反応により変化しないヘテロ原子団を含む基が挙げられ、特に1価飽和炭化水素基中に、フッ素化反応により変化しない2価ヘテロ原子または2価ヘテロ原子団を含む基、が好ましい。

ここで、フッ素化反応により変化しない2価ヘテロ原子としては、エーテル性酸素原子が好ましく、フッ素化反応により変化しない2価ヘテロ原子団としては、-C(=O)-、-SO₂-等が挙げられる。

[0020]

ヘテロ原子含有1価飽和炭化水素基としては、エーテル性酸素原子を含むアルキル基、または、シクロアルキル基の炭素ー炭素原子間にエーテル性酸素原子が 挿入された基、またはシクロアルキル部分を有する1価飽和炭化水素基の炭素ー 炭素原子間にエーテル性酸素原子が挿入された基が好ましい。

また、ハロゲノ(ヘテロ原子含有1価飽和炭化水素)基としては、前記ヘテロ

原子含有1価飽和炭化水素基中の水素原子の1個以上がハロゲン原子に置換された基であり、ハロゲノ(アルコキシアルキル)基、またはハロゲノアルコキシ基などが挙げられる。

[0021]

[化合物(I)の説明]

化合物 (I) 中の R^{H1} は、 $CX^1X^2C1CX^3C1$ - または $CC1X^4$ = CC1 - (ただし、 X^1 ~ X^4 は、それぞれ独立して水素原子またはフッ素原子を示す。) であり、原料の入手しやすさ、および、本製造方法の経済性等を考慮すると X^1 ~ X^4 の全てが水素原子であるのが好ましい。

[0022]

E^{H1}が単結合であるとは、R^{H1}と、R^{H2}とR^{H3}とが結合する炭素原子とが直接 結合することをいう。E^{H1}が2価連結基である場合、2価飽和炭化水素基、2価 ハロゲノ飽和炭化水素基、2価(ヘテロ原子含有飽和炭化水素基)、2価ハロゲ ノ(ヘテロ原子含有飽和炭化水素基)基が好ましい。2価連結基は、直鎖構造で あっても、分岐構造であっても、環構造を含む構造であってもよい。

R^{H2}およびR^{H3}の構造は、目的化合物の構造に応じて適宜変更すればよく、入手しやすさの点から水素原子、アルキル基、ハロゲノアルキル基、ヘテロ原子含有アルキル基、ヘテロ原子含有ハロゲノアルキル基が好ましい。また、後述するフッ素化反応によりR^{H2}およびR^{H3}中にフッ素原子が導入されうることから、R^{H2}およびR^{H3}がハロゲノ基である場合には、フッ素原子以外のハロゲン原子を含む基であるのが経済性の点から好ましい。

[0023]

 E^{H1} 、 R^{H2} 、および R^{H3} はそれぞれ、目的化合物(III)に対応する構造のものを適宜選択すればよく、入手しやすさ、および、製造方法の経済性等を考慮すると、フッ素原子を含まない基が好ましい。さらに、 E^{H1} は、アルキレン基またはヘテロ原子含有アルキレン基が好ましく、 R^{H2} および R^{H3} は、水素原子、アルキル基、またはヘテロ原子含有アルキル基が好ましい。

[0024]

R^{HB}は、化合物(I)がフッ素化時に用いる液相に溶解しやすいように、その

構造を調節するのが好ましい。R^{HB}は、ハロゲノアルキル基またはハロゲノ(ヘテロ原子含有アルキル)基であるのが好ましく、フッ素原子を必須とするこれらの基が特に好ましく、とりわけペルフルオロアルキル基、ペルフルオロ(部分クロロアルキル)基、ペルフルオロ(ヘテロ原子含有アルキル)基、またはペルフルオロ(部分クロロ(ヘテロ原子含有アルキル))基が好ましい。R^{HB}がフッ素原子を必須とする基である場合には、化合物(I)を次に液相中でフッ素化する際に、液相中への溶解性が良好になり、フッ素化反応を均一な系で実施しうることから特に好ましい。

[0025]

さらに、化合物 (I) 中のフッ素含量 (分子中のフッ素原子の割合) は、フッ素 化反応に用いる液相の種類に応じて適宜変更するのが好ましく、通常はフッ素含量 (化合物の分子量に対するフッ素原子の割合)の下限は10質量%以上が好ましく、特に30質量%以上が好ましい。また、上限は86質量%以下が好ましく、特に80質量%以下が好ましい。さらに、化合物 (I) の分子量は300~1000であるのが、液相中でのフッ素化反応時に、気相中での反応が起こることを防止でき、反応を円滑に実施できる点で好ましい。分子量が小さすぎると化合物 (I) が気化しやすくなるため、フッ素化反応時に気相中で分解反応が起こるおそれがある。一方、分子量が大きすぎると化合物 (I) の精製が困難になるおそれがある。

化合物(I)としては、公知の化合物および下記に示す新規化合物が挙げられる

[0026]

【化7】

CC1H=CC10 (CH₂) OCOCF (CF₃) OCF₂CF₂CF₃
CH₂=CH(CH₂) O(CH₂) OCOCF (CF₃) OCF₂CF₂CF₃
CH₂C1CHC1 (CH₂) O(CH₂) OCOCF (CF₃) OCF₂CF₂CF₃

[0027]

[化合物(I)から化合物(II)への変換]

本発明においては、化合物(I)を液相中でフッ素化する。液相中でのフッ素化は、化合物(I)を溶媒中でフッ素 (elemental fluorine)と反応させてフッ素化する方法(フッ素化法-1)、または、電解フッ素化 (electrochemical fluorination、フッ素化法-2)が挙げられ、なかでもフッ素化法-1が好ましい

[0028]

フッ素化法-2でフッ素化を行う場合には、無水フッ化水素酸に化合物(I)を溶解して溶液とし、この溶液を電解槽中で電解することにより化合物(I)をフッ素化して化合物(II)とするのが好ましい。

フッ素化法-1でフッ素化を行う場合には、化合物(I)とフッ素ガスとを溶媒(以下、溶媒1という。)中で反応させて、化合物(II)とするのが好ましい。フッ素ガスは、100%のフッ素ガスを用いても、不活性ガスで希釈したフッ素ガスを用いてもよい。不活性ガスとしては、窒素ガス、ヘリウムガスが好ましく、経済的な理由から窒素ガスが特に好ましい。不活性ガスとフッ素ガスの混合ガス中のフッ素ガス量は、5 v o 1%以上とするのが効率の点で好ましく、なかでも5~30 v o 1%とするのが塩素の引き抜きや塩素のマイグレーションを防ぐ点で特に好ましい。

[0029]

フッ素化法-1に用いる溶媒1としては、C-H結合を含まずC-F結合を必須とする溶媒が好ましい。さらに、ペルフルオロアルカン類、または、塩素原子、窒素原子、および酸素原子から選ばれる1種以上の原子を構造中に有する公知の有機溶剤をペルフルオロ化した有機溶剤が好ましい。さらに溶媒1としては、化合物(I)の溶解性が高い溶媒を用いるのが好ましく、特に、溶媒と化合物(I)との総量に対して、化合物(I)を1質量%以上溶解しうる溶媒、特には5質量%以上溶解しうる溶媒を用いるのが好ましい。

[0030]

溶媒 1 の例としては、後述する化合物(II)、化合物(III),化合物(IV)、ペルフルオロアルカン類(FC-72・等)、ペルフルオロエーテル類(FC

Congt &

-75、FC-77等)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等。)、クロロフルオロカーボン類(商品名:フロンルーブ)、クロロフルオロポリエーテル類、ペルフルオロアルキルアミン [たとえば、ペルフルオロトリアルキルアミン等]、不活性流体(商品名:フロリナート)等が挙げられる。このうち、溶媒1としては、ペルフルオロトリアルキルアミン、または化合物(II)が好ましい。特に、化合物(II)を用いた場合には反応後の後処理が容易になる利点がある。溶媒1の量は、化合物(I)に対して、5倍質量以上が好ましく、特に10~100倍質量が好ましい。

フッ素化法1のフッ素化反応の反応形式は、バッチ方式または連続方式が好ましく、特に、反応収率と選択率の点から、以下に説明する連続方式が好ましく、なかでも連続方式(その2)が好ましい。またフッ素ガスは、バッチ方式で実施する場合においても、連続方式で実施する場合においても、窒素ガス等の不活性ガスで希釈したものを使用してもよい。

[0031]

[連続方式(その1)] 反応器に、化合物(I) と溶媒1とを仕込み、撹拌を開始する。所定の反応温度と反応圧力下で、フッ素ガスを、溶媒1中に連続的に供給しながら反応させる方法である。

[連続方式(その2)] 反応器に溶媒1を仕込み、撹拌を開始する。所定の反応温度と反応圧力下で、化合物(I)と溶媒1とフッ素ガスとを所定のモル比で連続的かつ同時に供給する方法である。

[0032]

連続方式(その2)において化合物(I)を供給する際には、溶媒1で希釈してもしなくてもよい。また、連続方式(その2)において化合物(I)を溶媒で希釈する際には、化合物(I)に対する溶媒1の量を、5倍質量以上とするのが好ましく、特に10倍質量以上とするのが好ましい。

[0033]

バッチ方式で反応を実施する場合には、化合物(I)中の水素原子に対して、フッ素の量が常に過剰当量となるようにフッ素ガスを仕込むのが好ましく、特に1.5倍当量以上となるようにフッ素ガスを仕込むのが選択率の点から好ましい

。また、連続プロセスで反応を実施する場合には、化合物(I)中の水素原子に対して、フッ素量が過剰当量となるようにフッ素ガスを供給し続けるのが好ましく、特に、化合物(I)中の水素原子に対して1.5倍当量以上(1.5モル倍以上)となるようにフッ素ガスを供給し続けることが、選択率の点から好ましい

[0034]

フッ素化法-1のフッ素化反応の反応温度は、E^{H1}の構造により変更されうるが、E^{H1}が上記の好ましい基である場合、-60℃以上かつ化合物(I)の沸点以下が好ましく、反応収率、選択率、および工業的実施のしやすさの点から-50℃~+100℃が特に好ましく、-20℃~+50℃が塩素の引き抜きや塩素のマイグレーションを防ぐ点でとりわけ好ましい。フッ素化反応の反応圧力は特に限定されず、常圧~2MPaが、反応収率、選択率、工業的な実施のしやすさの観点から特に好ましい。

[0035]

さらに、フッ素化法-1を効率的に進行させるためには、反応系中にC-H結合含有化合物を存在させるか、または、紫外線照射を行う、のが好ましい。たとえば、フッ素化反応後期にC-H結合含有化合物を反応系中に添加する、または、紫外線照射を行うのが好ましい。これにより、フッ素化されにくい水素原子を効率的にフッ素化でき、反応率を飛躍的に向上させうる。紫外線照射時間は、0.1~3時間であるのが好ましい。

[0036]

C-H結合含有化合物としては、化合物(I)以外の有機化合物であり、特に 芳香族炭化水素が好ましく、とりわけベンゼン、トルエン等が好ましい。該C-H結合含有化合物の添加量は、化合物(I)中の水素原子に対して0.1~10 モル%であるのが好ましく、特に0.1~5モル%であるのが好ましい。

C-H結合含有化合物は、反応系中にフッ素が存在する状態で添加するのが好ましい。さらに、C-H結合含有化合物を加えた場合には、反応系を加圧するのが好ましい。加圧時の圧力としては、0.01~5MPa(ゲージ圧、以下も同じ)が好ましい。

[0037]

[化合物(II)についての説明]

[0038]

 E^{F1} は、 E^{H1} が単結合である場合は単結合、 E^{H1} が水素原子を含まない2価連結基である場合には該2価連結基と同一の基、 E^{H1} が水素原子を含む2価連結基である場合には、該水素原子の1個以上がフッ素化された基である。たとえば、 E^{H1} がペルハロゲノ基である場合の E^{F1} は E^{H1} と同一基である。 E^{H1} がアルキレン基またはアルキレン基の炭素-炭素結合間にエーテル性酸素原子が挿入された基である場合には、これらの基中の水素原子の1個以上がフッ素原子に置換された基である。 E^{F1} はペルフルオロアルキレン基またはペルフルオロ(ヘテロ原子含有)アルキレン基であるのが好ましい。

[0039]

 R^{F2} 、 R^{F3} は、それぞれ独立に、フッ素原子、部分ハロゲノ若しくはペルハロゲノ(ハロゲノ(1価飽和炭化水素)基、または部分ハロゲノ若しくはペルハロゲノ(ハテロ原子含有1価飽和炭化水素)基が好ましい。 R^{H2} および R^{H3} 中に水素原子が存在しないときはフッ素化により変化しないことから、 R^{F2} および R^{F3} は、それぞれ R^{H2} および R^{H3} と同一である。 R^{H2} および R^{H3} が水素原子を含む基である場合(たとえば、 R^{H2} および R^{H3} がそれぞれ部分フルオロ1価飽和炭化水素基である場合)には、 R^{F2} および R^{F3} はそれぞれ該水素原子の1個以上がフッ素化された基であり、ペルフルオロ1価飽和炭化水素基が好ましい。また、 R^{H2} および R^{H3} がそれぞれ部分クロロ1価飽和炭化水素基である場合には、 R^{F2} および R^{H3} がそれぞれ部分クロロ1価飽和炭化水素基である場合には、 R^{F2} および R^{F3} はそれぞれ、基中の水素原子の1個以上がフッ素化されたフルオロ(部分クロロ1価飽和炭化水素基)であり、ペルフルオロ(部分クロロアルキル)基が特に好ましい。

[0040]

 R^{F2} および R^{F3} はフッ素原子、ペルフルオロ1価飽和炭化水素基またはペルフルオロアルコキシ基であるのが好ましい。

 R^{FB} は、 R^{HB} に対応する基であり、 R^{HB} がペルハロゲノ基である場合には R^{HB} と同一基、 R^{HB} が水素含有基である場合には、該水素がフッ素化された基である。 R^{FB} はペルフルオロアルキル基またはペルフルオロ(アルコキシアルキル)基であるのが好ましい。

[0041]

化合物(I)を液相中でフッ素化する反応では、HFが副生する。副生したHFを除去するには、反応系中にHFの捕捉剤を共存させる、または反応器ガス出口でHF捕捉剤と出口ガスを接触させるのが好ましい。該HF捕捉剤としては、アルカリ金属フッ化物(たとえばフッ化ナトリウム等)などの塩基が好ましく、該塩基は反応系中に存在させてもよい。HFの捕捉剤としてアルカリ金属フッ化物が好ましく、NaFが特に好ましい。

反応系中にHF捕捉剤を共存させる場合の量は、化合物(I)中に存在する全水素原子量に対して1~20倍モルが好ましく、1~5倍モルが好ましい。反応器ガス出口にHF捕捉剤をおく場合には、(1)冷却器(10℃~室温に保持するのが好ましく、特には約20℃に保持するのが好ましい。)(2)NaFペレットなどのHF捕捉剤の充填層、および(3)冷却器(-78℃~+10℃に保持するのが好ましく、-30℃~0℃に保持するのが好ましい)を(1)-(2)-(3)の順に直列に設置するのが好ましい。なお、(3)の冷却器からは凝集した液を反応器に戻すための液体返送ラインを設置してもよい。

フッ素化反応で得た化合物(II)を含む粗生成物は、そのまま次の工程に用いてもよく、精製して高純度のものにしてもよい。精製方法としては、粗生成物をそのまま常圧または減圧下に蒸留する方法等が挙げられる。

[0042]

[化合物(II)から化合物(III)/化合物(IV)への変換]

次に本発明においては、化合物(II)のエステル結合の分解により化合物(III)および/または化合物(IV)を得る。本発明の製造方法による目的化合物は、化合物(III)であっても、また、化合物(IV)であっても、化合物(III)と化合

物(IV)の両方であってもよい。

[0043]

化合物(II)のエステル結合を分解する反応は、-CF₂OCO-を切断して 2つの-COF基を形成する反応である。該反応は、熱分解反応または求核剤も しくは求電子剤の存在下に行なう分解反応により実施するのが好ましい。

熱分解反応は、化合物(II)を加熱することにより実施できる。熱分解反応の 反応形式としては、化合物(II)の沸点とその安定性により選択するのが好まし い。たとえば、気化しやすい化合物(II)を熱分解する場合には、気相で連続的 に分解させて、得られた化合物(III)を含む出口ガスを凝縮し、回収する気相熱 分解法を採用しうる。

[0044]

気相熱分解法の反応温度は50~350℃が好ましく、50~300℃が特に好ましく、とりわけ150~250℃が好ましい。また、反応系中に、反応には直接関与しない不活性ガスを共存させてもよい。不活性ガスとしては、窒素、二酸化炭素等が挙げられる。不活性ガスは化合物(II)に対して0.01~50体積%程度を添加するのが好ましい。不活性ガスの添加量が多いと、生成物回収量が低減することがある。

[0045]

一方、化合物(II)が気化しにくい化合物である場合の熱分解反応は、反応器内で液のまま加熱する液相熱分解法を採用するのが好ましい。この場合の反応圧力は限定されない。通常の場合、エステル分解の生成物は、より低沸点であることから、該反応は蒸留塔を付けた反応器を用いて低沸点の生成物を連続的に抜き出しながら行なうのが好ましい。また加熱終了後に反応器中から一括して生成物を抜き出す方法であってもよい。この液相熱分解法の反応温度は50~300℃が好ましく、特に100~250℃が好ましい。

[0046]

液相熱分解法で熱分解を行う場合には、無溶媒で行っても、溶媒(以下、溶媒 2という。)の存在下に行ってもよい。溶媒2としては、化合物(II)と反応せ ず、かつ化合物(II)と相溶性のあるもので、生成物と反応しないものであれば

1 7

特に限定されない。また、溶媒2としては、生成物の精製時に分離しやすいものを選定するのが好ましい。溶媒2の具体例としては、ペルフルオロトリアルキルアミン、ペルフルオロナフタレンなどの不活性溶媒、クロロフルオロカーボン類等のなかでも高沸点であるクロロトリフルオロエチレンオリゴマー(たとえば、旭硝子社商品名:フロンルーブ)、が好ましい。また、溶媒2の量は化合物(II)に対して10~1000質量%が好ましい。

[0047]

また、化合物(II)を液相中で求核剤または求電子剤と反応させてエステル結合を分解させる場合、該反応は、無溶媒で行っても、溶媒(以下、溶媒3という。)の存在下に行ってもよい。溶媒3としては、溶媒2と同様のものがよい。求核剤としてはフッ素イオン(F⁻)が好ましく、特にアルカリ金属のフッ化物由来のフッ素イオンが好ましい。アルカリ金属のフッ化物としては、NaF、NaHF₂、KF、CsFがよく、これらのうち経済性の面からNaFが特に好ましい。

[0048]

求核剤(たとえばF⁻)を用いた場合には、化合物(II)のエステル結合中に存在するカルボニル基にF $^-$ が求核的に付加し、 $^-$ CF $_2$ C1CFC1E F1 CR F2 RF 3 CF $_2$ O $^-$ が脱離するとともに酸フルオリド [化合物(IV)]が生成する。 $^-$ RAFCF $_2$ O $^-$ からはさらにF $^-$ が脱離して酸フルオリド [化合物(III)]が生成する。脱離したF $^-$ は別の化合物(II)分子と同様に反応する。したがって、反応の最初に用いる求核剤は触媒量であるのが好ましいが、過剰に用いてもよい。すなわちF $^-$ 等の求核剤の量は化合物(II)に対して1 $^-$ 500モル%が好ましく、10 $^-$ 100モル%が特に好ましく、とりわけ5 $^-$ 50モル%が好ましい。反応温度の下限は、 $^-$ 30℃以上であるのが好ましく、上限は、溶媒3または化合物(II)の沸点のうち低い温度が好ましく、通常は $^-$ 20℃ $^-$ 250℃が特に好ましい。この方法も、蒸留塔を付けた反応器を用いて実施するのが好ましい。

化合物(II)としては、下記の新規化合物が挙げられる。下記化合物は、実施 例中に示す反応により対応するvic-ジクロロ酸フルオリド化合物に導かれる [0049]

【化8】

CC1F,CC1F0 (CF,);OCOCF (CF,)OCF,CF,CF, CF;C1CFC1 (CF,);O(CF,);OCOCF (CF,)OCF;CF;CF,

[0050]

エステル結合の分解反応は、NaFの存在下に実施するのが好ましい。NaFの存在下で熱分解反応を実施することにより、熱分解反応を低い温度で実施でき、 化合物の分解反応を防止できる。

化合物(III)としては、実施例中に示す化合物、および下記の新規化合物が挙げられる。

[0051]

【化9】

CC1F₂CC1FO (CF₂) ₄COF CF₂C1CFC1 (CF₂) ₂O (CF₂) ₂COF

[0052]

[原料化合物(I)の入手方法]

化合物(I)の入手方法は特に限定されず、公知の化合物(I)を用いてもよく、また、公知の化合物から製造してもよい。化合物(I)としては、目的とする化合物に対応する種々の構造のものが容易に入手できる。また、次のような原料製造ルート1により入手できる。また化合物(I)のうち \mathbf{R}^{H1} -が $\mathbf{C}\mathbf{X}^{1}\mathbf{X}^{2}$ = $\mathbf{C}\mathbf{X}^{3}$ -である化合物(B 1)は原料製造ルート2の方法によっても入手できる

[0053]

原料製造ルート1では、下記化合物(A 1)と下記化合物(A 2)とを反応させることにより化合物(I)を製造する方法である。ただし、Xはハロゲン原子を示し、 R^{H1} 、 E^{H1} 、 R^{H2} 、および R^{H3} は、上記と同じ意味を示す。

[0054]

【化10】

$$(R^{H_1}-E^{H_1}-)CR^{H_2}R^{H_3}CH_2-OH(A1)$$

 $XCOR^{HB}(A2)$

[0055]

一方、原料製造ルート 2 では、下記化合物(B 1)に下記化合物(B 2)を反応させて下記化合物(B 3)とし、次に該化合物(B 3)を塩素化剤と反応させて、化合物(I)中の R^{H1} が $CX^1X^2C1CX^3C1$ ーである化合物(IB)を製造する方法である。ただし、下式中の記号は、上記と同じ意味を示し、 X^{10} は、ハロゲン原子、または水酸基を示す。

[0056]

【化11】

$$(CX^{1}X^{2}=CX^{3}-E^{H_{1}}-)CR^{H_{2}}R^{H_{3}}CH_{2}-OH(B1)$$
 $X^{10}COR^{HB}(B2)$
 $(CX^{1}X^{2}=CX^{3}-E^{H_{1}}-)CR^{H_{2}}R^{H_{3}}CH_{2}-OCOR^{HB}(B3)$
 $(CX^{1}X^{2}CICX^{3}CI-E^{H_{1}}-)CR^{H_{2}}R^{H_{3}}CH_{2}-OCOR^{HB}(IB)$

[0057]

上記の原料製造ルート1および2において、化合物(A1)と化合物(A2)との反応、化合物(B1)と化合物(B2)との反応は、通常のエステル化反応の条件が採用できる。該反応は、溶媒(以下、溶媒4という。)の存在下に実施してもよいが、溶媒4の不存在下に実施するのが容積効率の点から好ましい。溶媒4としては、ハロゲン化炭化水素系溶媒が好ましく、たとえば、ジクロロメタン、クロロホルム等が挙げられる。溶媒4の使用量は、化合物(A1)と化合物(A2)(または化合物(B1)と化合物(B2)の総質量に対して0.5~5倍量とするのが好ましい。

原料製造ルートの具体例は実施例中に示される。該実施例に記載した化合物のうち、下記化合物は新規化合物である。

[0058]

【化12】

CHC 1 = CC 10 (CH₂)₅OH CH₂ = CH (CH₂)₂OCH₂CH₂CH₂OH CH₂ = CH (CH₂)₂OCOCF₂CFC 1 CF₂C 1 CH₂ = CH (CH₂)₂OCH (CH₃) CH₂OCOCF (CF₃) O CF₂CF₂CF₃

[0059]

上記エステル化反応では、H X が副生する。 X がフッ素原子である化合物(A 2)または化合物(B 2)を用いた場合には、H F が発生するため、H F の捕捉剤として、アルカリ金属フッ化物(たとえばフッ化ナトリウム等)や、トリアルキルアミン、ピリジン等の塩基を反応系中に存在させてもよい。 H F 捕捉剤を用いる場合の量は、化合物(A 2)または化合物(B 2)に対して1~10倍モルとするのが好ましい。 H F の捕捉剤を使用しない場合には、H F を窒素気流に同伴させて反応系外に排出するのが好ましい。

[0060]

該エステル化反応の下限温度は、通常の場合、-50℃以上が好ましく、上限は、+100℃または溶媒4の沸点のうち、低い温度が好ましい。また、反応時間は、原料の供給速度と反応に用いる化合物量に応じて適宜変更され、反応圧力は0~2MPaが好ましい。

[0061]

化合物(B1)と化合物(B2)との反応により生成した化合物(B3)は、次に塩素化剤を反応させて、化合物(IB)とする。該反応は通常の塩素化反応の操作および反応条件で実施できる。塩素化剤としては、塩素(C12)が好ましい。塩素を使用する場合の量は、化合物(B3)に対して1~10倍モルが好ましく、1~5倍モルが特に好ましい。化合物(B3)と塩素化剤との反応は、溶媒(以下、溶媒5という。)の存在下に実施してもよいが、溶媒5の不存在下に実施するのが容積効率の点から好ましい。溶媒5を用いる場合には、ハロゲン化炭化水素系溶媒を用いるのが好ましい。ハロゲン化炭化水素系溶媒としては、ジ

[0062]

上記の方法で製造された化合物(I)を含む反応粗生成物は、目的に応じて精製を行い高純度のものとしても、そのまま、次の反応に用いてもよい。化合物(I)を含む粗生成物を精製する方法としては、粗生成物をそのまま蒸留する方法、粗生成物を希アルカリ水などで処理して分液する方法、粗生成物を適当な有機溶媒で抽出した後に蒸留する方法、等が挙げられる。

[0063]

さらに、本発明の製造方法においては、化合物(I)~(IV)における各置換基の種類を選択をすることにより、生成物の分離工程を省略したり、また製造方法を連続方法とせしめることにより、さらに効率的な下記プロセス1~3となしうる。なお、以下において定義を記さない基は、上記した定義と同じ意味を示す。

[0064]

「プロセス1]

化合物(III)と化合物(IV)とが同一化合物になるように基を選択したプロセスである。該プロセスでは、生成物を分離する工程を省略できる。該プロセス1は、下記のプロセス3と部分的に共通であり、プロセス3において説明される

[0065]

[プロセス2]

生成する化合物(IV)が化合物(A2)または化合物(B2)と同一構造となるようにR^{HB}を選択したプロセスである。該プロセスによれば、生成した化合物(IV)を再び化合物(A1)または(B1)との反応に用いることができ、本発明の製造方法を連続製造方法にできる。

プロセス2の具体例としては、化合物(A2)または化合物(B2)中のR^{HB}としてペルハロゲノ基を採用した例が挙げられる。たとえば、化合物(A2)と

して化合物(A 2 - 1)を用いた場合には、以下の製造プロセスとなしうる。 たとえば、化合物(A 1 - 1)と化合物(A 2 - 1)を用いた下記製造ルートにおい て、生成した化合物(A 2 - 1)を再び化合物(A 1 - 1)との反応に用いることによ る連続製造方法である。

[0066]

【化13】

(CH₂) (CH₂C1CHC1 (CH₂) ₂O) CHCH₂OH (A1-1)

- + FCOCF(CF₃)(OCF₂CF₂CF₃) (A2-1)
- \rightarrow (CH₂) (CH₂C1CHC1 (CH₂)₂O) CHCH₂OCOCF (CF₃) (OCF₂CF₂CF₃) (I-1)
- \rightarrow (CF₂)(CF₂C1CFC1CF₂CF₂O)CFCF₂OCOCF(CF₃)(OCF₂CF₂CF₃)(II-1)
- →(CF_x)(CF_xC1CFC1CF_xCF_xO)CFCOF(III-1) + 化合物(A2-1)

[0067]

 $(CF_3)(CF_2CICFCICF_2CF_20)CFCOF$ は、公知の方法によりフッ素樹脂の原料 [CF2=CFCF2CF2OCF=CF2] に導かれる。

また、同様に化合物(A 1 -2)と化合物(A 2-2)を用いた下記製造ルートにおいて、生成した化合物(A 2-2)を再び化合物(A 1 -2)との反応に用いることにより連続製造方法とできる。

[0068]

【化14】

 $CH_2C1CHC1(CH_2)_2OH(A1-2) + FCOCF_2CF_3(A2-2)$

- \rightarrow CH₂C1CHC1 (CH₂) ₂OCOCF₂CF₃ (I-2)
- \rightarrow CF_C1CFC1CF_CF_OCOCF_CF_ (II-2)
- →CF-C1CFC1CF-COF (III-2) + 化合物 (A2-2)

[0069]

「プロセス31

生成する化合物(III)と化合物(IV)が同一構造であり、かつ、化合物(A2)または化合物(B2)とも同一構造となるように基を選択して実施するプロセ

スである。該プロセスにおいては、生成物を分離する必要がなく、かつ生成した 化合物の一部または全部を再び化合物(A2)または化合物(B2)との反応に用 いて連続製造方法となしうることから特に好ましい。

たとえば、化合物(A1-2)と化合物(A2-3)を用いた下記製造ルートによる化合物(A2-3)の連続製造方法がある。

[0070]

【化15】

CH₂C1CHC1 (CH₂)₂OH (A1-2) + FCOCF₂CFC1CF₂C1 (A2-3)

- \rightarrow CH,C1CHC1 (CH₂),OCOCF,CFC1CF,C1 (I-3)
- . →CF,C1CFC1CF,CF,OCOCF,CFC1CF,C1 (II-3)
- →化合物 (A2-3)

[0071]

【実施例】

以下に実施例を挙げて本発明を具体的に説明するが、これらによって本発明は限定されない。なお、以下においてガスクロマトグラフィをGC、核磁気共鳴スペクトル分析をNMR、ガスクロマトグラフィ質量分析をGC-MS、テトラメチルシランをTMS、N、NージメチルホルムアミドをDMF、ジクロロペンタフルオロプロパンをAK-225、1、1、2-トリクロロ-1、2、2-トリフルオロエタンをR113、リットルはLで記す。また、GC純度とはガスクロマトグラフィによるピーク面積比から求めた純度をいう。

[0072]

<例1-1>CH $_3$ CH $_3$ CH $_2$ O $_2$ CH $_3$ CH $_3$ CH $_4$ O

 $CH_3CHC1COOH$ (50g) $ECH_2=CH$ (CH_2) $_2OH$ (75mL) をフラスコに入れ、濃硫酸10mLを滴下し室温で10分撹拌した。反応液を飽和炭酸ナトリウム水250mLに注いだ。水150mLとtert

ルエーテル150 m L を加え分液し、 t e r t ーブチルメチルエーテル層を有機層として得た。有機層を水150 m L で洗浄し、硫酸マグネシウムで乾燥した後、 ろ過し、粗液を得た。粗液を濃縮して CH_3 CHC1COO(CH_2) $_2$ CH= CH_2 を得た。

[0073]

 CH_2 =CH(CH_2) $_2$ OH(16.6g)とDMF(120mL)とを別のフラスコに入れ、内温が8~9℃に保たれるように冷却した。水素化ナトリウム(10g)を30分かけて添加し、室温で30分撹拌した後、再び冷却した。次に先に得た CH_3 CHC1COO(CH_2) $_2$ CH= CH_2 (50g)をDMF30mLに溶かし、1.5時間かけて滴下した。滴下後、内温を80~85℃に保ちながら3時間加熱した。室温(25℃)に戻し、2mo1/Lの塩酸200mLを加えた。ヘキサン/酢酸エチル=2/1の溶液400mLで4回抽出して有機層を得た。有機層を濃縮後、水500mLで2回洗浄し、硫酸マグネシウムで乾燥した後、ろ過し、再度濃縮し、36gの CH_3 CH(O(CH_2) $_2$ CH= CH_2 0)COO(CH_2 0) $_2$ CH= CH_2 0 を得た。GC純度は83%であった。NMRスペクトルデータは以下のとおりであった。

[0074]

 1 H-NMR (399.8MHz、溶媒:CDC1₃、基準:TMS) δ (ppm):1.39 (d, J=7.0Hz, 3H), 2.33-2.45 (m, 4H), 3.41 (dt, J=7.0, 9.1Hz, 1H), 3.63 (dt, J=7.0, 9.1Hz, 1H), 3.96 (q, J=7.0Hz, 1H), 4.15-4.27 (m, 2H), 5.02-5.14 (m, 4H), 5.73-5.88 (m, 2H)。

[0075]

<例 1-2>CH $_3$ CH(O(CH $_2$) $_2$ CH=CH $_2$)CH $_2$ OHの製造 アルゴン雰囲気下、水素化リチウムアルミニウム 6. 9 gと脱水ジエチルエーテル 2 4 0 m Lをフラスコに入れ、氷浴下で撹拌した。ここに例 1-1 で得た G C純度 8 3 %のCH $_3$ CH(O(CH $_2$) $_2$ CH=CH $_2$)COO(CH $_2$) $_2$ CH=CH $_2$ (3 6 g)を 4 5 分かけて滴下した後、室温(2 5 $\mathbb C$)で 3 . 5 時間撹拌

した。氷浴下で氷水100mLを滴下し、さらに水100mLを加えて室温(25℃)にした後、ろ過した。ジエチルエーテル450mLで洗浄し、ろ液を分液した。水層をさらにジエチルエーテル200mLで2回抽出し、集めたジエチルエーテル層を有機層として得た。有機層を硫酸マグネシウムで乾燥した後、ろ過し、粗液を得た。粗液を35gまで濃縮した後、減圧蒸留で28~49℃/9.33kPaの留分6.6gを取り除き、残った留分から19.2gの CH_3CH ($O(CH_2)_2CH=CH_2$) CH_2OH を得た。GC純度は98%であった。NMRスペクトルデータは以下のとおりであった。

[0076]

 1 H-NMR (399.8MHz、溶媒:CDCl₃、基準:TMS) δ (ppm):1.12(d, J=6.2Hz, 3H), 2.35(tq, J=1.3, 6.7Hz, 2H), 3.42-3.48(m, 2H), 3.51-3.59(m, 2H), 3.64-3.69(m, 1H), 5.04-5.15(m, 2H), 5.79-5.89(m, 1H).

[0077]

 $< M_1 - 3 > CH_3CH (O (CH_2)_2CH = CH_2) CH_2OCOCF (CF_3)$ OCF $_2$ CF $_2$ CF $_3$ の製造

例 1-2 で得たG C 純度 9.8% の C H $_3$ C H (O (C H $_2$) $_2$ C H = C H $_2$) C H $_2$ O H (1.9.2g) をフラスコに入れ、窒素ガスをバブリングさせながら撹拌 した。F C O C F (C F $_3$) O C F $_2$ C F $_2$ C F $_3$ (5.0g) を、内温を $2.5\sim30$ C に保ちながら 1 時間かけて滴下した。滴下終了後、室温で 3 時間撹拌し、飽和 炭酸水素ナトリウム水 8.0m L を内温 1.5 C 以下で加えた。

[0078]

水 $50\,\mathrm{mL}$ とクロロホルム $100\,\mathrm{mL}$ とを加え、分液し、クロロホルム層を有機層として得た。さらに有機層を水 $100\,\mathrm{mL}$ で 20 回洗浄し、硫酸マグネシウムで乾燥した後、ろ過し、粗液を得た。粗液を濃縮後、シリカゲルカラムクロマトグラフィ(展開溶媒:ヘキサン/酢酸エチル=40/1)で精製した後、再度シリカゲルカラムクロマトグラフィ(展開溶媒: $4\,\mathrm{K}-225$)で精製して $37\,\mathrm{g}$ の $2\,\mathrm{CH}$ $2\,\mathrm{CH}$ 2

 F_2 C F_3 を得た。GC純度は99%であった。NMRスペクトルデータは以下のとおりであった。

[0079]

 1 H-NMR (399.8MHz、溶媒:CDC1₃、基準:TMS) δ (ppm):1.2 (dd, J=1.2, 6.4 Hz, 3 H), 2.29 (q, J=6.7 Hz, 2 H), 3.45-3.51 (m, 1 H), 3.53-3.59 (m, 1 H), 3.67-3.73 (m, 1 H), 4.25-4.29 (m, 1 H), 4.35-4.41 (m, 1 H), 5.01-5.10 (m, 2 H), 5.75-5.85 (m, 1 H).

¹⁹F-NMR (376. 2MHz、溶媒CDCl₃、基準:CFCl₃) δ (ppm):-80.5 (1F), -81.9 (3F), -82.7 (3F), -86.9 (1F), -130.3 (2F), -132.2 (1F)。

[0080]

<例1-4>CH $_3$ CH $_3$ CH $_2$ CHClCH $_2$ Cl) CH $_2$ OCOCF $_3$ CF $_3$ OCF $_2$ CF $_3$ の製造

[0081]

 1 H-NMR(399.8MHz、溶媒:CDCl $_{3}$ 、基準:TMS) δ (ppm):1.21(dd,J=1.3,6.3Hz,3H),1.81-1.93(m,1H),2.19-2.26(m,1H),3.59-3.65(m,1H),3.68-3.80(m,4H),4.20-4.46(m,3H)。 19 F-NMR(376.2MHz、溶媒CDCl $_{3}$ 、基準:CFCl $_{3}$) δ (ppm):-80.3(1F),-81.6(3F),-82.4(3F),-8

6. 7 (1F), -130. 0 (2F), -132. 0 (1F). [0082]

<例1-5>CF $_2$ ClCFClCF $_2$ CF $_2$ OCF $_3$ OCF $_4$ CF $_3$ OCOCF $_5$ OCF $_5$ CF $_5$ CF $_5$ OUP $_5$ CF $_5$ CF $_5$ OUP $_5$ CF $_5$ CF $_5$ OUP $_5$ CF $_5$

[0083]

次に、窒素ガスで20%に希釈したフッ素ガスを同じ流速で吹き込みながら、ベンゼン濃度が0.01g/mLであるR-113溶液を25Cから40Cにまで昇温しながら6mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入口バルブを閉めて、1時間撹拌を続けた。次に圧力を常圧にし、反応器内温度を40Cに保ちながら、上記のベンゼン溶液を3mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入口バルブを閉めて、1時間撹拌を続けた。

[0084]

さらに、同様の操作を 7 回くり返した。ベンゼンの注入総量は 0. 288 g、 R - 113 の注入総量は 29 m L であった。さらに、窒素ガスを 1. 5 時間吹き込んだ。目的物を 19 F - N M R で定量したところ、標記化合物の収率は 63%であった。

[0085]

 19 F-NMR (376.0MHz、溶媒:CDCl₃、基準:CFCl₃) δ (ppm):-64.7(2F),-76.5~-80.0(1F),-80.0~-81.0(4F),-82.2(3F),-82.5(3F),-82.0~-82.9(1F),-86.4~88.1(3F),-117.0~-119.7(2F),-130.4(2F),-131.9(1F),-132.3(1F),-145.9(1F)。

[0086]

<例1-6> $CF_2C1CFC1CF_2CF_2OCF$ (CF_3) COFおよびFC OCF (CF_3) $OCF_2CF_2CF_3$ の製造

例1-5で得た $CF_2C1CFC1CF_2CF_2OCF$ (CF_3) CF_2OCOCF (CF_3) $OCF_2CF_2CF_3$ (1.2g) をNaF粉末 (0.01g) と共に フラスコに仕込み、激しく撹拌しながらオイルバス中で120で 5 時間加熱した。 フラスコ上部には20 でに温度調節した還流器を設置した。 冷却後、液状サンプル (1.2g) を回収した。 GC-MSにより標記化合物が主生成物であることを確認した。 標記化合物のNMR収率は72.3%であった。

[0087]

<例2>CC1 F_2 CC1 F_0 (CF $_2$) $_4$ COFと F_0 CF $_3$ OCF $_2$ CF $_3$ の製造

<例2-1>CHCl=CClO(CH₂)₅OHの製造

500 mLの4つロフラスコにテトラヒドロフラン(THF、160 mL)、水素化ナトリウム(60%、24g)を仕込み撹拌し、氷冷下、HO(CH_2)5 OH(260g)を滴下した。滴下終了後、室温で1時間撹拌した。次に、CH $C1=CC1_2$ (66g)を5 分間かけて滴下した。滴下終了後、浴温70%で 2.5 時間撹拌した。放冷後、氷冷下、水(400 mL)、塩化メチレン(40 O mL)を加え、分液し、塩化メチレン層を有機層として得た。さらに有機層を水(400 mL)で洗浄し、MS4Aで乾燥した後、粗生成物をそのまま例2-2 の工程に使用した。

[0088]

¹H-NMR (300.4MHz、溶媒:CDCl₃、基準:TMS) δ (ppm):1.37~1.79 (m,6H)、3.64 (t,J=6.3Hz,2H)、4.00 (t,J=6.5Hz,2H)、5.47 (s,1H)。

[0089]

<例2-2>CHC1=CC1O(CH₂) $_5$ OCOCF(CF₃)OCF₂CF₂CF₂CF₃の製造

例 2-1 で得た CHC 1= CC 1 O(CH $_2$) $_5$ OH(1 3 g)とトリエチルアミン(2 5 g)をフラスコに入れ、氷浴下撹拌した。FCOCF(CF $_3$)OC F_2 CF $_2$ CF $_3$ (4 1 g)を内温を 1 O C以下に保ちながら 1 時間かけて滴下した。滴下終了後、室温で 2 時間撹拌し、水 3 O m L を内温 1 5 C以下で加えた。

得られた粗液を分液し、下層を水 $50\,\mathrm{mL}$ で $2\,\mathrm{回洗浄し}$ 、硫酸マグネシウムで乾燥した後、ろ過し、粗液を得た。減圧蒸留で $\mathrm{CHC1} = \mathrm{CC1O}\left(\mathrm{CH}_2\right)_5\mathrm{O}$ $\mathrm{COCF}\left(\mathrm{CF}_3\right)\,\mathrm{OCF}_2\mathrm{CF}_2\mathrm{CF}_3\left(19\,\mathrm{g}\right)\,$ を $118\sim120\,\mathrm{C}/0.5\,\mathrm{k}$ PaO の GC か GC が GC が GC が GC が GC が GC を GC が GC を GC が GC を GC が GC を GC GC

[0090]

 1 H-NMR(300.4MHz、溶媒:CDCl₃、基準:TMS) δ (ppm):1.41~1.83(m,6H)、4.00(t,J=6.0Hz,2H)、4.29~4.45(m,2H)、5.48(s,1H)。

¹⁹F-NMR (282.7MHz、溶媒:CDCl₃、基準:CFCl₃) δ (ppm):-79.9 (1F), -81.4 (3F), -82.2 (3F), -86.5 (1F), -129.5 (2F), -131.5 (1F)。

[0091]

<例2-3>CC1F $_2$ CC1FO (CF $_2$) $_5$ OCOCF (CF $_3$) OCF $_2$ CF $_2$ CF $_3$ の製造

500mLのニッケル製オートクレーブに、R-113 (312g)を加えて 撹拌し、25℃に保った。オートクレーブガス出口には、20℃に保持した冷却 器、NaFペレット充填層、および-10℃に保持した冷却器を直列に設置した 。なお、-10℃に保持した冷却器からは凝集した液をオートクレーブに戻すた めの液体返送ラインを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガス で20%に希釈したフッ素ガスを、流速7.40L/hで1時間吹き込んだ。次に、窒素ガスで20%に希釈したフッ素ガスを同じ流速で吹き込みながら、例2-2で得たCC1H=CC1O(CH $_2$) $_5$ OCOCF(CF $_3$)OCF $_2$ CF $_2$ CF $_3$ (3.37g)をR-113(100g)に溶解した溶液を5.3時間かけて注入した。

[0092]

次に、窒素ガスで20%に希釈したフッ素ガスを同じ流速で吹き込みながら、ベンゼン濃度が0.01g/mLであるR-113溶液を25℃から40℃にまで昇温しながら6mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入口バルブを閉めて、0.9時間撹拌を続けた。次に圧力を常圧にし、反応器内温度を40℃に保ちながら、上記のベンゼン溶液を3mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入口バルブを閉めて、0.9時間撹拌を続けた。

[0093]

さらに、同様の操作を1回くり返した。ベンゼンの注入総量は0.192g、R-113の注入総量は18mLであった。さらに、窒素ガスを1.5時間吹き込んだ。目的物を19F-NMRで定量したところ、標記化合物の収率は73%であった。

[0094]

 19 F-NMR (376.0MHz、溶媒:CDC1₃、基準:CFC1₃) δ (Ppm):-71.5 (2F), -77.3 (1F), -80.1 (1F), -82.1 (3F), -82.3 (3F), -83.4 (1F), -85.1 (1F), -87.2 (2F), -87.3 (1F), -123.2 (2F), -126.2 (2F), -126.3 (2F), -130.4 (2F), -132.4 (1F)。

[0095]

<例2-4>CC1F₂CC1FO(CF₂)₄COFの製造

3 1

例 2-3 で得たCC1 F_2 CC1 F_2 CC1 F_3 OCOCF (CF3) OCF2 CF2 CF3 (0.8 g) をNaF粉末 (0.01 g) と共にフラスコに仕込み、激しく撹拌しながらオイルバス中で120℃で4時間、140℃で12.3時間加熱した。フラスコ上部には20℃に温度調節した還流器を設置した。冷却後、液状サンプル (0.7 g) を回収した。GC-MSにより、CF3 CF (OCF2 CF2 CF3) COFおよび標記化合物が主生成物であることを確認した。NMRで求めた標記化合物の収率は54.9%であった。

[0096]

19F-NMR (376.0MHz、溶媒:CDC1₃、基準:CFC1₃)δ(ppm):24.9(1F),-71.3(2F),-77.1(1F),-83.1(1F),-84.9(1F),-118.8(2F),-123.1(2F),-125.6(2F)。

[0097]

[例3] $CF_2C1CFC1$ $(CF_2)_2O$ $(CF_2)_2COFとFCOCF$ $(CF_3)_2CF_2CF_3O$ 製造

<例3-1>C $H_2=$ C H_2 C H_2 C H_3 C H_3 C H_3 C H_3 C H_4 C H_4 C H_5 C H_5 C H_5 C H_5 C H_5 C H_5 C H_6 C H_7 C $H_$

反応器に3-7テン-1-4ール(33.2g)、ピリジン(230mL)を 仕込み、氷浴で冷却して内温を5 $\mathbb C$ 以下に保ちながら塩化p-1トルエンスルホニ ル(96.7g)を3.5時間かけて加えた。30分間攪拌した後、反応混合物 を水(250mL)に加えた。ジクロロメタン(250mL)を加え、分液した 。下層に飽和炭酸ナトリウム水溶液(250mL)と水(200mL)を加えて 洗浄し、分液した後、さらに水(200mL)で2回洗浄し、硫酸マグネシウム で乾燥した。濾過後、溶媒を留去して、 $CH_2=CH$ (CH_2)2OTs E98. 1 g得た。

[0098]

 1 H-NMR (300. 4MHz、溶媒:CDC1₃、基準:TMS) δ (ppm):2.36~2.43 (m, 2H)、2.43 (s, 3H)、4.06 (t, J=6.6Hz, 2H)、5.04~5.11 (m, 2H)、5.60~5.

66 (m, 1 H), 7. 34 (d, J = 8.4 Hz, 2 H), 7. 77 (d, J = 8.1 Hz, 2 H)

[0099]

<例3-2>C $H_2=$ C H_2 C H_2) $_2$ O(C H_2) $_3$ OHの製造

反応器に1,3-プロパンジオール(46.7g)、水酸化カリウム(34.5g)を仕込んで攪拌し、内温75℃で30分間加熱した。内温80℃で、例3-1で得た CH_2 =CH(CH_2) $_2$ OTs(69.5g)を3時間かけて加え、1時間攪拌した後、放冷した。反応混合物を水(250mL)に加え、塩酸を加えて中和した。濾過し、濾液からt-ブチルメチルエーテル(300mL)で4回抽出した。併せた有機層を硫酸マグネシウムで乾燥し、濾過後、溶媒を留去して、 CH_2 =CH(CH_2) $_2$ O(CH_2) $_3$ OHを15.5g得た。

[0100]

¹H-NMR (300. 4MHz、溶媒:CDCl₃、基準:TMS) δ (ppm) : 1.83 (dt, J=5.4Hz, 11Hz, 2H)、2.34 (m, 2H)、2.6 (bs, 1H)、3.50 (t, J=6.6Hz, 2H)、3.63 (t, J=6.0Hz, 2H)、3.77 (t, J=5.4Hz, 2H)、5.03~5.13 (m, 2H)、5.81 (ddt, J=6.6, 11, 17Hz, 1H)。

[0101]

<例3-3>C $H_2=$ C H_2 C H_2 OC H_2 C H_2 C H_2 C H_2 OCF (CF $_3$) OCF $_2$ C H_3 OUF $_3$ OUF

例 3-2 で得たG C 純度 9.8% の C H_2 = C H (C H_2) $_2$ O (C H_2) $_3$ O H (8.3 g) と トリエチルアミン(1.3.6 g) を フラスコに入れ、 氷浴下撹拌した。 F C O C F (C F_3) O C F_2 C F_2 C F_3 (3.0 g) を 内温を 1.0 C 以下に保 ちながら 1 時間かけて 滴下した。 滴下終了後、室温で 2 時間撹拌し、 水 5.0 m L を 内温 1.5 C 以下で加えた。

[0102]

得られた粗液を分液し、下層を水50mLで2回洗浄し、硫酸マグネシウムで 乾燥した後、ろ過し、粗液を得た。粗液をシリカゲルカラムクロマトグラフィ(展開溶媒:ジクロロペンタフルオロプロパン(商品名: AK-225))で精製 $UTCH_2 = CHCH_2CH_2OCH_2CH_2CH_2OCF (CF_3) OCF_2CF_2C$ $F_3 (18.5g)$ を得た。GC純度は97%であった。

[0103]

 1 H-NMR (300. 4MHz、溶媒: CDC1₃、基準: TMS) δ (ppm): 1. 93~2. 01 (m、2H)、2. 26~2. 34 (m、2H)、3. 42~3. 49 (m、4H)、4. 41~4. 54 (m、2H)、5. 02 (d, J=10、3Hz, 1H)、5. 07 (d, J=17、1H)、5. 72~5. 85 (m、1H)。

¹⁹F-NMR (282. 7MHz、溶媒:CDC1₃、基準:CFC1₃) δ (ppm):-79.9 (1F)、-81.4 (3F), -82.2 (3F), -86.6 (1F), -129.6 (2F), -131.5 (1F)。

[0104]

<例3-4> $CH_2C1CHC1CH_2CH_2OCH_2CH_2CH_2OCF$ (CF₃) OCF₂CF₂CF₃の製造

例 3-3 で得たGC純度 9.7%のCH $_2$ =CHCH $_2$ CH $_2$ OCH $_2$ CH $_2$ CH $_2$ OCH $_2$ CH $_2$ OCH $_2$ CH $_2$ OCH $_2$ CH $_2$ OCH $_3$ OCF $_2$ CF $_2$ CF $_3$ (1.8.4g)をフラスコに入れ浴温-1.0Cで撹拌した。塩素ガス 4.4g を内温を 0 C以下に保ちながら 1 時間かけて吹き込んだ。室温にして窒素ガスをバブリングさせながら 1 時間撹拌し、GC純度 8.5%のCH $_2$ C1CHC1CH $_2$ CH $_2$ OCH $_2$ CH $_2$ CH $_2$ CH $_2$ OCF $_3$ OCF $_2$ CF $_3$ CF $_3$ (1.9.8)を得た。得られた粗生成物をそのまま例 3-5の工程に使用した。

[0105]

 1 H-NMR (300. 4MHz、溶媒:CDCl₃、基準:TMS) δ (ppm):1. 93~2. 01 (m、2H)、2. 26~2. 34 (m、2H)、3. 44 (t, J=6. 6Hz, 2H)、3. 47 (t, J=6. 0Hz、2H)、4. 41~4. 54 (m、2H)、4. 99~5. 10 (m、2H)、5. 71~5. 85 (m、1H)。

¹⁹F-NMR (282. 7MHz、溶媒:CDC1₃、基準:CFC1₃)δ(

ppm): -79. 9 (1 F), -81. 3 (3 F), -82. 2 (3 F), -86. 6 (1 F), -129. 5 (2 F), -131. 5 (1 F).

[0106]

<例3-5>CF $_2$ C1CFC1 (CF $_2$) $_2$ O (CF $_2$) $_3$ OCOCF (CF $_3$) O CF $_2$ CF $_2$ CF $_3$ の製造

500 m L のニッケル製オートクレーブに、R-113 (312g) を加えて撹拌し、25 C に保った。オートクレーブガス出口には、20 C に保持した冷却器、Na F ペレット充填層、および-10 C に保持した冷却器を直列に設置した。なお、-10 C に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで 20 %に希釈したフッ素ガスを、流速 8.04 L / h で 1.5 時間吹き込んだ。 次に、窒素ガスで 20 %に希釈したフッ素ガスを、流速 8.04 L / h で 1.5 時間吹き込んだ。 次に、窒素ガスで 20 %に希釈したフッ素ガスを同じ流速で吹き込みながら、例 3-4 で 得た C H $_2$ C $_1$ C H C $_1$ (C H $_2$) $_2$ O (C H $_2$) $_3$ O C O C F (C F $_3$) O C F $_2$ C F $_2$ C F $_3$ (4.44g) を R-113 (100g) に溶解した溶液を 5.3 時間かけて 注入した。

[0107]

次に、窒素ガスで20%に希釈したフッ素ガスを同じ流速で吹き込みながら、ベンゼン濃度が0.01g/mLであるR-113溶液を25℃から40℃にまで昇温しながら6mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入口バルブを閉めて、0.4時間撹拌を続けた。次に圧力を常圧にし、反応器内温度を40℃に保ちながら、上記のベンゼン溶液を3mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入口バルブを閉めて、0.4時間撹拌を続けた。

さらに、同様の操作を7回くり返した。ベンゼンの注入総量は0.303g、R-113の注入総量は30mLであった。さらに、窒素ガスを1.5時間吹き込んだ。目的物を19F-NMRで定量したところ、標記化合物の収率は45%であった。

[0108]

 19 F-NMR (376.0MHz、溶媒:CDC1₃、基準:CFC1₃) δ (ppm):-64.4 (2F), -80.0 (1F), -81.3 (2F), -81.9 (3F), -82.1 (3F), -84.0 (2F), -87.1 (1F), -87.3 (2F), -117.2~-119.4 (2F), -129.4 (2F), -130.3 (2F), -131.8 (1F), -132.3 (1F)。

[0109]

<例3-6>CF $_2$ C1CFC1 (CF $_2$) $_2$ O (CF $_2$) $_2$ COFの製造 例3-5で得たCF $_2$ C1CFC1 (CF $_2$) $_2$ O (CF $_2$) $_3$ OCOCF (CF $_3$) OCF $_2$ CF $_2$ CF $_3$ (3.0g) をNaF粉末(0.06g) と共にフラスコに 仕込み、激しく撹拌しながらオイルバス中で120℃で3.7時間、140℃で12時間加熱した。フラスコ上部には20℃に温度調節した還流器を設置した。 冷却後、液状サンプル(2.9g)を回収した。GC $_1$ MSにより、FCOCF (CF $_3$) OCF $_2$ CF $_2$ CF $_3$ および標記化合物が主生成物であることを確認した。 NMRで求めた標記化合物の収率は73.0%であった。

[0110]

19F-NMR (376. 0MHz、溶媒:CDC1₃、基準:CFC1₃) δ (ppm):24.3 (1F), -64.8 (2F), -81.7 (2F), -86.4 (2F), -118.8~-120.0 (2F), -122.1 (2F), -131.9 (1F)。

[0111]

<例4>FCOCF $_2$ CFC1CF $_2$ C1とCF $_3$ CF $_2$ COFとの製造 <例4-1>CF $_3$ CF $_2$ COO (CH $_2$) $_2$ CHC1CH $_2$ C1の製造

 $CH_2C1CHC1$ (CH_2) $_2OH$ (3Og)をフラスコに入れ、窒素ガスをバブリングさせながら撹拌した。 CF_3CF_2COF (31Og)を内温を25C ~30Cを保ちながら 3 時間かけてフィードした。フィード終了後、飽和炭酸水素ナトリウム水 5OmLを内温を15C以下で加えた。クロロホルム 5OmLを加えて分液し、クロロホルム層を有機層として得た。さらに有機層を水 2OOm

Lで2回洗浄し、硫酸マグネシウムで乾燥した後、ろ過し、粗液を得た。粗液をエバポレーターで濃縮し、次いで減圧蒸留して、73~75℃/0.9 k P a の留分(24g)を得た。これをシリカゲルカラムクロマトグラフィ(展開溶媒は、ヘキサン:酢酸エチル=20:1)で精製して精製物(18.8g)を得た。G C純度は98%であった。NMRスペクトルから標記化合物が主成分であることを確認した。

[0112]

¹H-NMR (399.8MHz、溶媒CDC1₃、基準:TMS) δ (ppm):2.11 (m, 1H), 2.52 (m, 1H), 3.69 (dd, J=7.9, 11.4Hz, 1H), 3.84 (dd, J=4.7, 11.4Hz, 1H), 4.15 (m, 1H), 4.60 (m, 2H).

¹⁹F-NMR (376. 2MHz、溶媒CDCl₃、基準:CFCl₃)δ(ppm):-83.8(3F),-122.5(2F)。

[0113]

<例4-2>CF₃CF₂COOCF₂CF₂CFC1-CF₂C1の製造

[0114]

次に、窒素ガスで20%に希釈したフッ素ガスを同じ流速で吹き込みながら、ベンゼンのR-113溶液(0.01g/mL)を注入し、オートクレーブの出口バルブを閉め、圧力が0.12MPaになったところでオートクレーブの入口バルブを閉めて、1時間撹拌を続けた。さらに、ベンゼンを注入する同様の操作を-10℃から40℃にまで昇温しながら1回、次に40℃で8回くり返した。ベンゼンの注入総量は0.330g、R-113の注入総量は<math>33mLであった。さらに、窒素ガスを2時間吹き込んだ。生成物を19F-NMRで定量したとこ

ろ、標記化合物の収率は51%であった。

[0115]

¹⁹F-NMR (376. 2MHz、溶媒CDCl₃、基準:CFCl₃) δ (ppm):-65. 4 (2F), -84. 2 (3F), -85. 4 (2F), -119. 1 (2F), -123. 1 (2F), -132. 5 (1F)。

<例4-3>FCOCF₂CFC1CF₂C1の製造

例4-2で得た $CF_3CF_2COOCF_2CF_2CFC1CF_2C1$ (1.5g)をNaF粉末(0.03g)と共にフラスコに仕込み、激しく撹拌しながらオイルバス中で120℃で5時間加熱した。フラスコ上部には20℃に温度調節した 還流器を設置した。冷却後、液状サンプル(0.8g)、ガス状サンプル(0.6g)を回収した。GC-MSにより、 CF_3CF_2COF および標記化合物が主生成物であることを確認した。NMRで求めた標記化合物の収率は75.1%であった。

[0116]

[例5]CF₂C1CFC1CF₂COFとCF₂C1-CF₂CFC1COFの混合物の製造

<例5-1>CF $_2$ C1CFC1CF $_2$ COO (CH $_2$) $_2$ CHC1CH $_2$ C1とCF $_2$ C1CF $_2$ CFC1COO (CH $_2$) $_2$ CHC1CH $_2$ C1の混合物の製造

 $CH_2C1CHC1$ (CH_2) $_2OH$ (49.5g)をフラスコに入れ、窒素ガスをバブリングさせながら撹拌した。 $CF_2C1CFC1CF_2COF$ と CF_2C 1 $CF_2CFC1COF$ の89:11 (モル比)の混合物(86.1g)を、内温を25~30℃に保ちながら、1時間40分で滴下した。滴下終了後、室温で2時間45分撹拌し、飽和炭酸水素ナトリウム水(100mL)を内温を15℃を超えないようにしながら添加した。クロロホルム150mLを加えて分液し、クロロホルム層を得た。さらにクロロホルム層を水200mLで2回洗浄し、硫酸マグネシウムで乾燥した後、ろ過し、粗液を得た。粗液をエバポレーターで濃縮し、次いで減圧蒸留して、99~106℃/0.48kPaの留分(1)(55.4g)、100~109℃/0.47kPaの留分(2)(7.9g)を得た。上記混合物としてのGC純度は、留分(1)が85%、留分(2)が84%

であった。

[0117]

留分(1)(9.4g)をシリカゲルカラムクロマトグラフィ(展開溶媒はヘキサン:酢酸エチル=20:1)で精製して精製物(7.5g)を得た。精製物のGC純度は98%であった。精製物のNMRスペクトルから、CF2C1CFC1CF2COO(CH2)2CHC1CH2C1とCF2C1CF2CFC1COO(CH2)2CHC1CH2C1の混合物が主成分であり、それらの比が87:13(モル比)であることを確認した。

[0118]

CF,C1CFC1CF,COO (CH2) 2CHC1CH2C1:

¹H-NMR (399.8MHz、溶媒CDC1₃、基準:TMS)δ(ppm

): 2. 09 (m, 1H), 2. 52 (m, 1H), 3. 69 (dd, J=7)

6, 11. 4 Hz, 1H), 3. 84 (dd, J=4.7, 11. 4 Hz, 1H

), 4. 17 (m, 1H), 4. 58 (m, 2H).

¹⁹F-NMR (376. 2MHz、溶媒CDCl₃、基準:CFCl₃) δ (ppm):-63. 6 (1F), -64. 8 (1F), -110. 9 (1F), -114. 0 (1F), -131 (1F).

[0119]

CF2C1CF2CFC1COO(CH2)2CHC1CH2C1:

¹H-NMR (399.8MHz、溶媒CDCl₃、基準:TMS) δ (ppm

): 2. 09 (m, 1H), 2. 52 (m, 1H), 3. 69 (dd, J=7.

6, 11. 4 Hz, 1H), 3. 84 (dd, J=4.7, 11. 4 Hz, 1H

), 4. 17 (m, 1H), 4. 58 (m, 2H).

¹⁹F-NMR (376. 2MHz、溶媒CDCl₃、基準:CFCl₃) δ (ppm):-66. 9 (1F), -67. 0 (1F), -113. 4 (1F), -117. 6 (1F), -129. 0 (1F)。

[0120]

<例5-2>CF $_2$ C1CFC1CF $_2$ COOCF $_2$ CF $_2$ CFC1CF $_2$ C1とCF $_2$ C1CF $_2$ CFC1COOCF $_2$ CFC1CF $_2$ CFC1の混合物の製造

500mLのニッケル製オートクレーブに、R-113(200g)を加えて 撹拌し、窒素ガスを室温で1時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガスを、室温で、流速5.66L/hで1時間吹き込んだ。

[0121]

次に、窒素ガスで20%に希釈したフッ素ガスを同じ流速で吹き込みながら、例5-1で得た $\mathrm{CF_2C1CFC1CF_2COO}$ ($\mathrm{CH_2}$) $_2\mathrm{CHC1CH_2C1}$ と $\mathrm{CF_2C1CF_2CFC1COO}$ ($\mathrm{CH_2}$) $_2\mathrm{CHC1CH_2C1}$ の87:13(モル比)の混合物(12g)をR-113(243g)に溶解した溶液を11.5時間かけて注入した。

[0122]

次に、窒素ガスで20%に希釈したフッ素ガスを同じ流速で吹き込みながら、ベンゼンのR-113溶液(0.01g/mL)を注入し、オートクレーブの出口バルブを閉め、圧力が0.12MPaになったところでオートクレーブの入口バルブを閉めて、1時間撹拌を続けた。さらに、ベンゼンを注入する同様の操作を室温から40℃にまで昇温しながら1回、次に40℃で8回くり返した。ベンゼンの注入総量は0.342g、R-113の注入総量は03mLであった。さらに、窒素ガスを2時間吹き込んだ。生成物の09F-NMRスペクトル(内部標準:<math>06F6)から求まる標記混合物の収率は08F0%であった。

[0123]

 $CF_2C1CFC1CF_2COOCF_2CF_2CFC1CF_2C1:$

 19 F-NMR (564.6MHz、溶媒CDC1₃、基準:CFC1₃) δ (ppm):-64.4~-65.9 (2F), -65.4 (2F), -85.5~-86.3 (2F), -111.1~-115.1 (2F), -118.7~-120.1 (2F), -132.0 (1F), -132.5 (1F)。

¹³C-NMR (150.8MHz、溶媒CDCl₃、基準:CDCl₃) δ (ppm):104.4,104.5,109.4,110.8,116.6,124.3,124.6,152.0。

[0124]

 $\texttt{CF}_2 \texttt{ClCF}_2 \texttt{CFClCOOCF}_2 \texttt{CF}_2 \texttt{CFClCF}_2 \texttt{Cl}:$

 19 F-NMR (564.6MHz、溶媒CDCl₃、基準:CFCl₃) δ (ppm):-64.4~-66.0(2F), -68.0(2F), -85.5~-86.3(2F), -113.7~-115.3(2F), -118.7~-120.1(2F), -130.0(1F), -132.5(1F)。

13_{C-NMR} (150.8MHz、溶媒CDCl₃、基準:CDCl₃) δ (ppm):99.0,104.4,110.2,110.8,116.6,122.8,124.6,153.2。

[0125]

<0.05-3 CF $_2$ C1CFC1CF $_2$ COFとCF $_2$ C1CF $_2$ CFC1COFの混合物の製造

[0126]

[例6] CF₂C1CFC1CF₂COFの製造

<例 6 - 1 >CH₂=CHCH₂CH₂OCOCF₂CFC1CF₂Clの製造例

あった。

[0127]

 1 H-NMR(300.4MHz、溶媒CDCl₃、基準:TMS) δ (ppm):2.46~2.50(m,2H),4.41(t,J=6.6Hz,1H),5.11~5.21(m,2H),5.70~5.84(m,1H)。

¹⁹F-NMR(282.7MHz、溶媒CDCl₃、基準:CFCl₃)δ(ppm):-62.9(1F),-64.1(1F),-11 0.1(1F),-113.1(1F),-130.4(1F)。

[0128]

<例6-2>CH2ClCHClCH2CH2OCOCF2CFClCF2Clの製造例

例 6-1 で得たG C 純度 9 6%の CH_2 =CHCH $_2$ CH $_2$ OCOCF $_2$ CFC I CF $_2$ C I (80.0 g) をフラスコに入れ浴温-1 0 $\mathbb C$ で撹拌した。塩素ガス (24.5 g) を内温を 0 $\mathbb C$ 以下に保ちながら 1.5 時間かけて吹き込んだ。室温にして窒素ガスをバブリングさせながら 1 時間撹拌し、得られた粗液をシリカゲルカラムクロマトグラフィ(展開溶媒:ジクロロペンタフルオロプロパン(商品名:A K -2 2 5))で精製してG C 純度 8 5%の CH_2 C I CHC I CH $_2$ CH $_2$ OCOCF $_2$ CFC I CF $_2$ C I (93.0 g) を得た。

[0129]

<例 6 - 3 >CF₂C1CFC1CF₂CF₂OCOCF₂CFC1CF₂C1の製造例

例 5-2 における混合物 $1\ 2$. 0 g を例 6-2 で得た純度 $8\ 5$ %の CH_2 C1CHC1C H_2 CH $_2$ 0C0CF $_2$ CFC1CF $_2$ C1 (93.0g) に変え、他の試薬を 7. 7倍量にして同様の条件で反応を行い、標記化合物を収率 $8\ 0$ %で得た。

[0130]

<例 6 - 4 >CF₂C1CFC1CF₂COFの製造例

例 5-3 における混合物 5. 6 g を例 6-3 で得た $\mathrm{CF_2CICFC1CF_2CF_20C00CF_2CFC}$ $\mathrm{ICF_2CI}$ (4 3. 4 g) に変え、他の試薬を 7. 7 倍量にして同様の条件で反応を 行い、標記化合物を収率 8 4 % で得た。

<例 6 - 5 > CF₂C1CFC1CF₂C0Fの連続製造例

例 6-1 における混合物の代わりに例 6-4 で得た CF_2 CICFCICF $_2$ COFを用いて

、例6-1~例6-4と同様の反応を順に行い、 CF_2 C1CFC1CF $_2$ COFを得た。

[0131]

[例7]

<例7-1>CH₃CH(O(CH₂)₂CH=CH₂)CH₂OHの連続製造。

例 1-2 において得た、 $28\sim49$ ℃ /9. 33 k P a の留分は、NMRスペクトルにより、 $CH_2=CH$ (CH_2) $_2OH$ であることを確認した。該留分(75 m L)を用いて例 $1-1\sim1-2$ と同様の反応を行い、 CH_3CH (O (CH_2) $_2CH=CH_2$ を得た。

[0132]

<例7-2>CF₂C1CFC1CF₂CF₂O (CF₂)₂COFの連続的製造。

例3-6の反応生成物を常圧で蒸留精製し、55℃の留分を分取することにより、FCOCF(CF3)OCF2CF2CF3(0.8g)を得た。残った高沸分は保存した。得られたFCOCF(CF3)OCF2CF2CF3を用いて、例3-3~例3-6の反応を同様に行ったあと、常圧で蒸留精製し、55℃の留分を分取してFCOCF(CF3)OCF2CF2CF3(0.7g)を得た。残った高沸分を、先の保存しておいた高沸分と併せ、常圧で蒸留精製して138~139℃の留分を分取することにより、CF2C1CFC1CF2CF2O(CF2)2COF(2.0g)を得た。

[0133]

【発明の効果】

本発明の製造方法によれば、安価で、容易に入手できる化合物(I)から、短い工程かつ高い収率でvicージクロロ酸フルオリド化合物が製造できる。特に、本発明では、従来の方法では入手が困難であった低分子のvicージクロロ酸フルオリド化合物や、複雑な構造のvicージクロロ酸フルオリド化合物を容易に製造できる。

[0134]

また本発明の製造方法は、上記に具体例として記載した化合物に限定されず、種々の化合物に使用でき、汎用性に優れた方法であることから、好みの骨格を有する vic - ジクロロ酸フルオリド化合物を自由に製造できる。また、置換基の構造を選択することにより、本発明の方法は連続プロセスとなりうる。

[0135]

さらに、本発明の方法により生成する化合物(III)は、末端に $CF_2C1CFC1-m$ 分を有する。該部分は公知の方法により重合性の炭素-炭素二重結合に導きうる。たとえば本発明の製造方法により得られるvic-ジクロロ酸フルオリド化合物($CF_2C1CFC1CF_2COF$)は、前述の公知の方法により、フッ素樹脂のモノマーであるペルフルオロ(3-ブテニルビニルエーテル)に導かれうる。該ペルフルオロ(3-ブテニルビニルエーテル)を重合させたフッ素樹脂

は、耐熱性と耐薬品性に優れ、かつ透明である有用なフッ素樹脂である。

[0136]

また本発明の方法で得た化合物(III)および/または化合物(IV)のうち、分子末端に「 C^1F-C^2-COF 」なる部分構造を必須とする化合物は、公知の反応(Methods of Organic Chemistry,4,Vol.10b,Part 1,p.703等)により分子末端を「 $C^1=C^2$ 」に変換しできる。該化合物もまた、フッ素樹脂原料として有用であり。すなわち、本発明の製造方法における化合物(III)および/または化合物(IV)は、フッ素樹脂原料の前駆体として有用な化合物である。また、本発明により提供される新規な化合物は、該前駆体の中間体として有用な化合物である。

【書類名】要約書

【要約】

【課題】安価で入手が容易な原料から、短工程かつ高い収率のvic-ジクロロ 構造を有する酸フルオリド化合物の製造方法の提供。

【解決手段】($R^{H1}-E^{H1}-$) $CR^{H2}R^{H3}CH_2-OCOR^{HB}$ (I)を液相中でフッ素化し、($CF_2C1CFC1-E^{F1}-$) $CR^{F2}R^{F3}CF_2-OCOR^{FB}$ (II)に変換し、このエステル結合を分解し、($CF_2C1CFC1-E^{F1}-$) $CR^{F2}R^{F3}COF$ (III)又は該化合物と $FCOR^{FB}$ (IV)に変換する。

【選択図】なし

出願 人履 歷情報

識別番号

[000000044]

1. 変更年月日 1999年12月14日

[変更理由] 住所変更

住 所 東京都千代田区有楽町一丁目12番1号

氏 名 旭硝子株式会社