1.1 Интерполяционный полином Лагранжа

Пусть на отрезке [a,b] заданы точки $x_1,x_2,\ldots,x_n\in[a,b]$. Предполагаем, что $x_k\neq x_j$ при $k\neq j$. Для непрерывной функции f будем рассматривать следующую задачу.

Задача. Найти алгебраический полином $L_n(f;x)$ наименьшей степени и такой, что

$$L_n(f; x_j) = f(x_j), \quad j = 1, 2, \dots, n.$$

 $L_n(f;x)$ называют интерполяционным полиномом Лагранжа, а точки x_j ($j=1,\ldots n$) — узлами интерполяционного полинома Лагранжа или узлами интерполирования.

Теорема 1. Для любой функции $f \in C[a,b]$ и заданных узлов x_1, x_2, \ldots, x_n интерполяционный полином $L_n(f;x)$ степени не выше n-1 существует и определяется единственным образом.

Далее приведем основное представление для полинома Лагранжа в виде явной формулы, включающей узлы интерполирования x_1, x_2, \ldots, x_n и значения интерполируемой функции в этих точках. Основное представление интерполяционного полинома Лагранжа имеет вид

$$L_n(f;x) = \sum_{k=1}^n f(x_k)l_k(x),$$

где

$$l_k(x) = \prod_{j=1, j \neq k}^n \frac{(x - x_j)}{\prod_{j=1, j \neq k}^n (x_k - x_j)} = \frac{(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}.$$

Отметим, что $l_k(x)$ называются фундаментальными полиномами Лагранжа. В узлах интерполирования получаем $l_k(x_j) = \delta_{k_j} = egin{cases} 1, & ext{если } k = j \ 0, & ext{если } k
et j \end{cases}.$

Часто удобнее пользоваться другой записью основного представления. Рассмотрим произведение

$$\omega_n(x) = (x - x_1)(x - x_2) \dots (x - x_n) = \prod_{j=1}^n (x - x_j).$$

Легко видеть, что

$$l_k(x) = \frac{A}{B},$$

где

$$A = \frac{\omega_n(x)}{x - x_k}, \qquad B = \omega'_n(x_k) = \prod_{j=1, j \neq k}^n (x_k - x_j),$$

так как

$$\omega'_n(x) = (x - x_2) \dots (x - x_n) + (x - x_1)(x - x_3) \dots (x - x_n) +$$

$$\ldots + (x-x_1)(x-x_2)\ldots(x-x_{n-1}).$$

Таким образом, получаем следующее, равносильное основному, представление

$$L_n(f;x) = \sum_{k=1}^n f(x_k) \frac{\omega_n(x)}{(x-x_k)\omega'_n(x_k)}.$$
 (1.1)

Пример 1. Построить интерполяционный полином Лагранэна для функции $f(x) = x^2$ по узлам

(1.1)

$$x_1 = -1, \quad x_2 = 0, \quad x_3 = 1.$$