

Ano Letivo 2021/2022

# Gráficos de funções e pesquisa de zeros



UC Tópicos de Matemática I LDC Licenciatura em Ciência dos Dados Grupo 2, CDA1

# Docente

Abdul Kadir Suleman

André Silvestre N°104532 | Diogo Catarino N°104745 Eduardo Silva N°104943 | Francisco Gomes N°104944

# Trabalho de Tópicos de Matemática I

### Grupo I

**Grupo 2**  $\rightarrow$  Função atribuída:  $f(x) = \frac{3x-x^3}{(x-2)^2}$ 



**Domínio:**  $\mathbb{D}_f = \mathbb{R} \setminus \{2\}$ 

Zeros:

$$f(x) = 0 \Leftrightarrow$$

$$\Leftrightarrow 3x - x^3 = 0 \Leftrightarrow$$

$$\Leftrightarrow x(3 - x^2) = 0 \Leftrightarrow$$

$$x = -\sqrt{3} \quad \forall x = 0 \quad \forall x = \sqrt{3}$$

### **Paridade**

$$Se f(x) = f(-x) \text{ \'e par}$$

$$f(-x) = \frac{3(-x)-(-x)^3}{((-x)-2)^2} \neq f(x) \qquad \therefore \text{ Logo não \'e par}$$

$$Se - f(x) = f(-x)$$
 é impar

$$Se - f(x) = f(-x)$$
 é impar  $-f(x) = -\left(\frac{3x - x^3}{(x - 2)^2}\right) \neq f(-x)$  : Logo não é impar

# **Limites Importantes e Assíntotas**

### Assíntotas verticais

$$\lim_{x \to 2^{-}} \left( \frac{3x - x^{3}}{(x - 2)^{2}} \right) = -\infty$$

 $\lim_{x \to 2^{-}} \left( \frac{3x - x^3}{(x - 2)^2} \right) = -\infty$  . Como a função f resulta de operações entre funções continuas, é continua no seu domínio, e como o seu domínio é  $\mathbb{R}\setminus\{2\}$ , então a única reta que pode ser assíntota vertical do gráfico de f(x) é a reta de equação x=2, o que se confirma,

$$\lim_{x \to 2^+} \left( \frac{3x - x^3}{(x - 2)^2} \right) = -\infty \quad \text{gratico de } f(x) \text{ e a reta de equação } x = 2, \text{ o pois o } \lim_{x \to 2^-} f(x) = -\infty \text{ e } \lim_{x \to 2^+} f(x) = -\infty$$

### Assíntotas não verticais

$$m = \lim_{x \to -\infty} \left( \frac{f(x)}{x} \right) = \lim_{x \to -\infty} \left( \frac{\frac{3x - x^3}{(x - 2)^2}}{x} \right) = -1 \qquad b = \lim_{x \to -\infty} \left( f(x) - mx \right) = \lim_{x \to -\infty} \left( \frac{3x - x^3}{(x - 2)^2} - x \right) = -4$$

$$m = \lim_{x \to +\infty} \left( \frac{f(x)}{x} \right) = \lim_{x \to +\infty} \left( \frac{\frac{3x - x^3}{(x - 2)^2}}{x} \right) = -1 \qquad b = \lim_{x \to +\infty} \left( f(x) - mx \right) = \lim_{x \to +\infty} \left( \frac{3x - x^3}{(x - 2)^2} - x \right) = -4$$

∴ A reta de equação y = -x - 4 é assíntota oblíqua ao gráfico de f quando  $x \to \pm \infty$ .

## 1ª Derivada | Monotonia e Extremos

$$f'(x) = \frac{-x^3 + 6x^2 - 3x - 6}{(x - 2)^3}$$



**Zeros:** Com recurso à ferramenta *MatLab*.

$$f'(x)=0 \Leftrightarrow$$

$$x = -0.7466 \ \lor$$

$$x = 1.5451 \vee$$

$$x = 5.2015$$

| M=MetNR(f,fl,1,0.001,0.001,50) |        |         |        |        | M=MetNR(f,f1,1.5,0.001,0.001,50) |        |        |         |           | M=MetNR(f,f1,3,0.001,0.001,50) |        |        |         |          |        |
|--------------------------------|--------|---------|--------|--------|----------------------------------|--------|--------|---------|-----------|--------------------------------|--------|--------|---------|----------|--------|
|                                |        |         |        |        |                                  |        |        |         |           |                                | 0      | 3.0000 | 12.0000 | -30.0000 | NaN    |
|                                | 0      | 1.0000  | 4.0000 | 6.0000 | NaN                              | M =    |        |         |           |                                | 1.0000 | 3.4000 | 5.0496  | -9.6835  | 0.4000 |
|                                | 1.0000 | 0.3333  | 1.3760 | 2.3328 | 0.6667                           |        |        |         |           |                                | 2.0000 | 3.9215 | 2.0015  | -3.4177  | 0.5215 |
|                                | 2.0000 | -0.2565 | 0.4194 | 1.1038 | 0.5898                           | 0      | 1.5000 | 3.0000  | -48.0000  | NaN                            | 3.0000 | 4.5071 | 0.6857  | -1.4460  | 0.5856 |
|                                | 3.0000 | -0.6365 | 0.0765 | 0.7338 | 0.3800                           | 1.0000 | 1.5625 | -1.7464 | -112.5931 | 0.0625                         | 4.0000 | 4.9813 | 0.1635  | -0.8312  | 0.4742 |
|                                | 4.0000 | -0.7407 | 0.0038 | 0.6616 | 0.1043                           | 2.0000 | 1.5470 | -0.1707 | -91.3179  | 0.0155                         | 5.0000 | 5.1781 | 0.0157  | -0.6784  | 0.1967 |
|                                | 5.0000 | -0.7466 | 0.0000 | 0.6579 | 0.0058                           | 3.0000 | 1.5451 | -0.0021 | -89.0396  | 0.0019                         | 6.0000 | 5.2012 | 0.0002  | -0.6630  | 0.0231 |
|                                | 6.0000 | -0.7466 | 0.0000 | 0.6579 | 0.0000                           | 4.0000 | 1.5451 | -0.0000 | -89.0107  | 0.0000                         | 7.0000 | 5.2015 | 0.0000  | -0.6628  | 0.0003 |

Fig.1 - Descoberta dos zeros através do método da bisseção, com recurso à ferramenta MatLab.

Pode-se observar que os valores convergem para -0.7466, 1.5451 e 5.2015.

|       | -∞ | -0.7466 |   | 1.5451 |   | 2   |   | 5.2015 | +∞ |
|-------|----|---------|---|--------|---|-----|---|--------|----|
| f'(x) | -  | 0       | + | 0      | - | n.d | + | 0      | -  |
| f(x)  | >  | mín     | 7 | máx    | ٧ | n.d | 7 | máx    | 7  |

### $\therefore$ Monotonia de f(x):

**Fig. 2 -** Quadro de Sinal da 1º Derivada de f(x).

- f(x) é crescente no intervalo [ -0.7466; 1.5451 ]  $\cup$  (2; 5.2015).
- f(x) é decrescente no intervalo  $(-\infty; -0.7466] \cup [1.5451; 2) \cup [5.2015; +\infty)$ .
  - : Máximos relativos (locais): x = 1.5451 e f(1.5451) = 4.5746

$$x = 5.2015 e f(5.2015) = -12.2078$$

: Mínimo relativo (local): x = -0.7466 e f'(-0.7466) = -0.2417

# 2ª Derivada | Concavidade e Pontos de Inflexão

$$f''(x) = \frac{-18x + 24}{(x-2)^4}$$



Zeros:

$$f''(x) = 0 \Leftrightarrow$$

$$-18x + 24 = 0 \Leftrightarrow$$

$$24 = 18x \Leftrightarrow$$

$$x = \frac{24}{18} \Leftrightarrow$$

$$x = \frac{4}{3}$$

|         | $-\infty$ | $\frac{4}{3}$ |   | 2   | +∞ |
|---------|-----------|---------------|---|-----|----|
| f ''(x) | +         | 0             | - | n.d | -  |
| f(x)    | U         | P.I.          | Ω | n.d | Λ  |

**Fig.3** - Quadro de Sinal da  $2^{\circ}$  Derivada de f(x).

### $\therefore$ Concavidades de f(x):

- f(x) tem concavidade voltada para cima em  $(-\infty; \frac{4}{3}]$ .
- f(x) tem concavidade voltada para baixo em  $\left[\frac{4}{3}; 2\right) \cup \left(2; +\infty\right)$ .

$$\therefore$$
 Ponto de inflexão:  $x = \frac{4}{3}$ ,  $f''(\frac{4}{3}) = \frac{23}{4}$ 

### Grupo II

$$f(x) = \sqrt{3 - x + \sqrt{x}}$$

$$\mathbf{a)}\,f(x) = \sqrt{3 - x + \sqrt{x}}$$

$$f(1) = \sqrt{3 - 1 + \sqrt{1}} \approx 1.73 (\sqrt{3})$$

$$f(2) = \sqrt{3 - 2 + \sqrt{2}} \approx 1.55$$

• 
$$f'(x) = \left(\sqrt{3 - x + \sqrt{x}}\right)' = \frac{-2\sqrt{x} + 1}{4\sqrt{3 - x^2 + \sqrt{x}x}}$$

$$f'(1) = \frac{-2\sqrt{1} + 1}{4\sqrt{3 - 1^2 + \sqrt{1} 1}} = -\frac{\sqrt{3}}{12}$$
$$\approx -0.144$$

$$f'(2) = \frac{-2\sqrt{2} + 1}{4\sqrt{3 - 2^2 + \sqrt{2} 2}} \approx -0.338$$



**Fig.4** - Representação da função f(x) e respetivo *Ponto Fixo*.

∴ Verifica-se que  $f([1,2]) = [1.55; 1.73] \subset [1,2]$  e que  $|f'(x)| < 1, \forall x \in [1,2]$ , o que o coloca nas condições de aplicação do *Corolário do Teorema de Lagrange*.

Se  $f \in C^1([a, b])$ ,  $f([a, b]) \subset [a, b]$  e  $\max_{x \in [1, 2]} |f'(x)| < 1$ , f tem um e só um ponto fixo  $c \in [a, b]$ .

c. q. d.

b)

G =

| 0      | 0      | 1.7321 | NaN    |
|--------|--------|--------|--------|
| 1.0000 | 1.7321 | 1.6075 | 1.7321 |
| 2.0000 | 1.6075 | 1.6311 | 0.1246 |
| 3.0000 | 1.6311 | 1.6267 | 0.0236 |
| 4.0000 | 1.6267 | 1.6275 | 0.0044 |
| 5.0000 | 1.6275 | 1.6273 | 0.0008 |

Fig.5 - Descoberta do ponto fixo através do *Método* do *Ponto Fixo*, recurso à ferramenta *MatLab*.

Pode-se observar que os valores convergem para **1.6275** ao final da 5ª iteração, o que corresponde ao *Ponto Fixo* como vemos na **Fig.5**.

c) 
$$f(x) = \sqrt{(3 - x + \sqrt{x})} \qquad f'(x) = \frac{-2\sqrt{x} + 1}{4\sqrt{3x - x^2 + \sqrt{x}x}}$$
$$h(x) = f(x) - x \qquad h(x) = 0$$

```
>> x=sym('x');

h=@(x)((3-x+(x)^(1/2))^(1/2))-x

h=@(x)(-2*((x)^(1/2))+1)/(4*((3*(x)-((x)^(2))+((x)^(1/2))*(x))^(1/2)))-1

m=Metnr(h,hl,1.5,0.001,0.001,100)
```

| 0      | 1.5000 | 0.1507  | -1.1792 | NaN    |
|--------|--------|---------|---------|--------|
| 1.0000 | 1.6278 | -0.0005 | -1.1868 | 0.1278 |
| 2.0000 | 1.6274 | -0.0000 | -1.1868 | 0.0004 |

**Fig.6** - Descoberta do ponto fixo através do *Método de Newton-Raphson*, com recurso à ferramenta *MatLab*.

Pode-se observar que os valores convergem para **1.6274** ao fim da 2 ª iteração, o que corresponde ao ponto fixo como vemos na **Fig.6**.

**d)** Em ambas as alíneas, o ciclo parou ao fim de n iterações, 5 na alínea b) e 2 na alínea c), convergindo ambos para um mesmo valor aproximado de 1.627, uma vez que o erro é menor que o erro absoluto definido, 0.001. Este valor corresponde, em ambos, ao ponto fixo de f(x) que provámos existir na alínea a).

No *Método do Ponto Fixo* (Fig.5), com recurso à ferramenta *MatLab*, iniciamos a pesquisa no ponto  $x_0 = 0$  (escolha arbitrária), definimos o  $\varepsilon_{passo} = 0.001$  e limitámos o número de iterações a 100, onde obtivemos como resultado para o ponto fixo no intervalo [1,2] de **1.6275** com erro de **0.0008**.

No *Método de Newton-Raphson* (Fig.6), igualou-se a expressão f(x) = x a 0 ( $h(x) = f(x) - x = 0 \Leftrightarrow h(x) = 0$ ), com o objetivo de procurar os zeros desta equação, de forma a obter o ponto fixo no intervalo definido. Para tal determinamos a função derivada de f(x) - x para aplicar o *Método de Newton-Raphson* (h'(x)); escolhemos o  $x_0 = 1.5$  (ponto médio do intervalo), definimos o  $\varepsilon_{passo} = 0.001$  e  $\varepsilon_{abs} = 0.001$  com um limite máximo de 100 iterações (niter = 100), onde obtivemos como resultado para o ponto fixo no intervalo [1,2] de **1.6274** com erro de **0.0004**.

Assim, é possível concluir que o *Método de Newton-Raphson* é mais eficaz do que o *Método do Ponto Fixo*, uma vez que obtivemos um zero com menor erro (0,004), sendo este um valor mais próximo do zero da função.