	Diplomado en Ciencia de Datos UNAM Modulo 2: Matématica para ciencia de datos
	Dr. Roberto Bárcenas C. Alumno: Ibarra Ramírez Sergio El participante identificará los principios fundamentales necesarios para la resolución de problemas del tema matemáticas para Ciencia de
	Datos. Problema 1:
	Sean los vectores u = (4,-2,-1) , v= (-3, 1, 2) y el escalar k=-2 Calcular: a) u +v b) v + ku c) El producto interno (punto) uv
In [16]:	d) La norma de los vectores u y v a) u +v # importing libraries
	<pre>import numpy as np import matplotlib.pyplot as plt import math u = np.array([4, -2, -1]) v = np.array([-3, 1, 2]) w = u + v print(f"El vector w = u+v es w:{w}")</pre>
In [17]:	El vector w = u+v es w:[1 -1 1] b) v + ku u = np.array([4, -2, -1]) v = np.array([-3, 1, 2])
	<pre>k = -2; p = v + (k*u) print(f"El vector p = v + ku es p:{p}") El vector p = v + ku es p:[-11 5 4] c) El producto interno (punto) uv</pre>
In [18]:	<pre>m = np.dot(u,v) print(f"El producto punto m = u v es m:{m}") El producto punto m = u v es m:-16</pre>
In [19]:	<pre>d) La norma de los vectores u y v norm_u = np.linalg.norm(u) norm_v = np.linalg.norm(v) print("La normal del vector u es:", norm_u)</pre>
	print("La normal del vector v es:", norm_v) La normal del vector u es: 4.58257569495584 La normal del vector v es: 3.7416573867739413 Problema 2: Sean las matrices $A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$ y $B = \begin{bmatrix} -2 & 9 \\ 3 & 5 \end{bmatrix}$ Calcular:
	a) A + B b) 2A - B c) El producto AB d) La matriz transpuesta A a) A + B
In [20]:	<pre>import numpy as np # input two matrices A = ([1, 2],[-1,0]) B = ([-2, 9],[3,5])</pre> C = [[0,0],
	<pre>## Suma de matrices # iterate through rows for i in range(len(A)): # iterate through columns for j in range(len(A[0])): C[i][j] = A[i][j] + B[i][j]</pre>
	<pre># print resulted matrix print(f"La matriz C = A + B es C:{C}") La matriz C = A + B es C:[[-1, 11], [2, 5]] Otra manera más sencilla de hacerlo en Python sería:</pre>
In [21]:	<pre>import numpy as np A = np.array([[1, 2], [-1, 0]]) B = np.array([[-2, 9], [3, 5]])</pre>
	<pre>C = A + B print("Matrix A:") print(A) print("Matrix B:") print(B) print("La matriz C = A + B es:") print(C) Matrix A: [[1 2]</pre>
	[-1 0]] Matrix B: [[-2 9] [3 5]] La matriz C = A + B es: [[-1 11] [2 5]]
In [22]:	
	<pre>D = A2 -B # print resulted matrix print(f"La matriz D = A2 -B es D:{D}") [[-2 -4] [2 0]]</pre>
In [23]:	La matriz D = A2 -B es D:[[0 -13] [-1 -5]] c) El producto AB A = np.array([[1, 2], [-1, 0]]) B = np.array([[-2, 9], [3, 5]])
	<pre>E = [[0 for x in range(len(A))] for y in range(len(B))] # explicit for loops for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)):</pre>
	<pre>E[i][j] += A[i][k] * B[k][j] print(f"El producto de las matrices {A} y {B} es la matriz E {E}") El producto de las matrices [[1 2] [-1 0]] y [[-2 9] [3 5]] es la matriz E [[4, 19], [2, -9]] Otra manera más sencilla de hacerlo en Python sería:</pre>
In [24]:	<pre># This will return dot product E = np.dot(A,B) # print resulted matrix print(f"La matriz E = A B es E:{E}") La matriz E = A B es E:[[4 19] [2 -9]]</pre>
In [25]:	d) La matriz transpuesta A A = np.array([[1, 2], [-1, 0]]) TraA = A.transpose() # print resulted matrix
	print(f"La matriz Transpuesta de A: {A} es T:{TraA}") La matriz Transpuesta de A: [[1 2] [-1 0]] es T:[[1 -1] [2 0]] Problema 3:
	Sea la matriz $A = \begin{bmatrix} 3 & 1 & -1 \\ 6 & 1 & -2 \\ 4 & -3 & 2 \end{bmatrix}$
In [26]:	Calcule su determinante A_1 = np.array([[3, 1, -1], [6, 1, -2], [4, -3, 2]]) det_A_1 = np.linalg.det(A_1)
	print(f"El determinante de la matgriz A_1 :{det_A_1}") El determinante de la matgriz A_1 :-10.00000000000000000000000000000000000
	a) $\lim_{x\to 3}x^3-2x^2+8x-32$ b) $\lim_{x\to 9}\frac{\sqrt{x}-3}{x-9}$ a) $\lim_{x\to 3}x^3-2x^2+8x-32$ from sympy import Symbol, sqrt, limit
	$ \begin{array}{l} x = \operatorname{Symbol}('x') \\ \text{f1} = x^{**}3 - 2^{*}x^{**}2 + 8^{*}x - 32 \\ \text{limitx}_{-3} = \operatorname{limit}(\text{f1}, x, 3) \\ \text{print}(\text{f"El limite de } \text{f(x):}\{\text{f1}\} \text{ en } \text{x=3 es: } \{\text{limitx}_{-3}\}'') \\ \text{El limite de } \text{f(x):}x^{**}3 - 2^{*}x^{**}2 + 8^{*}x - 32 \text{ en } \text{x=3 es: } 1 \\ \text{b)} \lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \\ \end{array} $
In [28]:	from sympy import Symbol, sqrt, limit $ x = \text{Symbol}('x') \\ f2 = (\text{sqrt}(x) - 3)/(x - 9) \\ limitx_9 = limit(f2, x, 9) $
	<pre>print(f"El límite de f(x):{f2} en x=9 es: {limitx_9}") El límite de f(x):(sqrt(x) - 3)/(x - 9) en x=9 es: 1/6 Problema 5: Determinar los siguientes derivadas</pre>
Tn [29]:	a) $(3x^3-2)^2(x^2-4x+4)$ b) $\frac{\sin(x^2-x)}{(x-1)^2}$ a) $(3x^3-2)^2(x^2-4x+4)$ from sympy import symbols, expand
	<pre>x = symbols('x') polinomial_a = (3*x**3 - 2)**2 * (x**2 - 4*x + 4) polinomial_a = expand(polinomial_a) print(polinomial_a) 9*x**8 - 36*x**7 + 36*x**6 - 12*x**5 + 48*x**4 - 48*x**3 + 4*x**2 - 16*x + 16</pre>
In [30]:	<pre>from sympy import diff # calculate the derivative of polinomial_a derivative_a = diff(polinomial_a, x) print(f"La derivada de f(x) = {polinomial_a} es: {derivative_a}") La derivada de f(x) = 9*x**8 - 36*x**7 + 36*x**6 - 12*x**5 + 48*x**4 - 48*x**3 + 4*x**2 - 16*x + 16 es: 72*x**7 - 252*x**6 + 216*x**5 - 60*x**4 + 192*x**3 - 144*x**2 + 8*x - 16</pre>
In [31]:	b) $\frac{\sin(x^2-x)}{(x-1)^2}$ from sympy import symbols, diff, sin # Define the symbol x x = symbols('x')
	# Define the function $f(x)$ $f2 = \sin(x^**2 - x)/(x - 1)^**2$ # Compute the derivative of $f(x)$ with respect to x $dfdx_2 = diff(f2, x)$
	# Print the result print(f"La derivada de f(x) = {f2} es: {dfdx_2 }") La derivada de f(x) = $\sin(x**2 - x)/(x - 1)**2$ es: $(2*x - 1)*\cos(x**2 - x)/(x - 1)**2 - 2*\sin(x**2 - x)/(x - 1)**3$ Problema 6: Calcular la tabla de verdad para la siguiente proposición compuesta: (P->Q) ^ (P ^ ¬Q)
	P Q (P->Q) ^ (P^¬Q) ^ (P^¬Q) ^ ¬Q V V V F F F V F F F F F F V V F F F F F F F F F
In [32]:	Problema 7: Presentar la matriz de adyacencia y de incidencia, respectivamente, para los siguientes grafos: #import image module from IPython.display import Image
Out[32]:	<pre># get the image of graph A Image(url="Modulo2-Actividad3-GRAF0_matriz_incidencia.png", width=200, height=200)</pre>
In [33]:	<pre>import networkx as nx nodes = [1, 2, 3, 4, 5, 6]</pre>
	<pre>edges = [[1, 3], [1, 4], [2, 3], [2, 4], [3, 5], [4, 6], [5, 6]] G_1 = nx.DiGraph() G_1.add_nodes_from(nodes) G_1.add_edges_from(edges) incidence_matrix_G1 = -nx.incidence_matrix(G_1, oriented=True) print(f"La matriz de incidencia de G1 es: {incidence_matrix_G1.toarray()}")</pre>
In [34]:	La matriz de incidencia de G1 es: [[1. 1. 0. 0. 0. 0. 0.] [0. 0. 1. 1. 0. 0. 0.] [-1. 01. 0. 1. 0. 0.] [01. 01. 0. 1. 0.] [0. 0. 0. 01. 0. 1.] [0. 0. 0. 0. 011.]] adj_matrix_G1 = nx.adjacency_matrix(G_1) print(f"La matriz de adyacencia de G_1 es:\n{adj_matrix_G1.toarray()}")
	<pre>print(T"La matriz de adyacencia de G_1 es:\n{adj_matrix_G1.toarray()}") La matriz de adyacencia de G_1 es: [[0 0 1 1 0 0] [0 0 1 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 0 0 0 0]]</pre>
In [35]: Out[35]:	<pre># get the image of graph B Image(url="Modulo2-Actividad3-GRAFO_B_matriz_incidencia.png", width=200, height=200)</pre>
In [36]:	<pre>import networkx as nx nodes2 = [1, 2, 3, 4, 5, 6] edges2 = [[1, 2], [1, 3], [1, 4], [1, 5], [2, 4], [3, 4], [3, 5], [4, 5], [4, 6], [5, 6]] G_2 = nx.DiGraph() C_3 add padge from (padges)</pre>
	<pre>G_2.add_nodes_from(nodes2) G_2.add_edges_from(edges2) incidence_matrix_G2 = -nx.incidence_matrix(G_2, oriented=True) print(f"La matriz de incidencia de G2 es: {incidence_matrix_G2.toarray()}") La matriz de incidencia de G2 es: [[1. 1. 1. 1. 0. 0. 0. 0. 0. 0.</pre>
In [37]:	[-1. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [01. 0. 0. 0. 1. 1. 0. 0. 0.] [0. 01. 011. 0. 1. 1. 0.] [0. 0. 01. 0. 011. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 011.]] adj_matrix_G2 = nx.adjacency_matrix(G_2) print(f"La matriz de adyacencia de G_2 es:\n{adj_matrix_G2.toarray()}")
	La matriz de adyacencia de G_2 es: [[0 1 1 1 1 0] [0 0 0 1 0 0] [0 0 0 1 1 0] [0 0 0 0 1 1] [0 0 0 0 0 0]]