Demostrar que el pro	blema de cuadrados mínimos tiene solución única si y sólo si $Nu(A) = \{0\}$.
QVQ: Ax = y <	$(=> (\times -\hat{X}) \in N_U(A)$
⇒)	
sabemos que	valen ambas igualdades:
$A \times = y$ $A \times = y$	
, A x = Y	
vego Ax = As	
	$\Rightarrow A(x-\hat{x}) = 0$
	⇒ (x-\$) ∈ Nu(A)
(=)	
abemos que (>	$(x-x) \in N_0(A)$
(-\$) ∈ Nu(A)	\Rightarrow A(x- \hat{x}) = ϕ
	$\Rightarrow A \times - A \hat{x} = 0$ $\Rightarrow A \hat{x} = A \times$
	\Rightarrow $A\hat{x} = Y$ $Ax = Y$ por hipótesis

8. Supongamos que Ax = y. Probar que un vector $\hat{x} \in \mathbb{R}^n$ satisface $A\hat{x} = y$ si y sólo si $x - \hat{x} \in Nu(A)$.

Tenemos un problema de cuadrados: min IIAX-bl/2.

Sea y = Ax tq | | Y-b||2 es minimo.

QVQ:]! x +q Ax = y <=> Nu(A) = {0}

Sabenos que x es la única solución al problema de cuadrados mínimos: Ax = y.

Supongamos que Nu(A) ≠ {o}. Luego existe x̂ ∈ Nu(A) no nulo.

$$\Delta(x-\hat{x}) = Ax - A\hat{x} = y - 0 = y$$

Entonces (x-x̂) \(\pi \) x también es solución. Absurdo pues hay una única solución al problema de cuadrados mínimos.

Sabemos que Nu(A) = {0}.

Supongamos que el problema de cuadrados mínimos no tiene solución única. Existen X, \hat{X} distintos to $AX = Y \wedge A\hat{X} = Y$.

Por la deno anterior : $Ax = y \wedge A\hat{x} = y \iff (x - \hat{x}) \in Nu(A)$.

$$\times \neq \hat{x} \Rightarrow \times -\hat{x} \neq 0 \land (x-\hat{x}) \in \text{Nu(A)}$$

 $\Rightarrow \text{Nu(A)} \neq \{0\} \land \text{Absurdo}$