ANNEAUX ET CORPS

Anneau

Soit A un ensemble et + et \times deux lois de composition interne sur A. On dit que $(A, +, \times)$ a une structure d'anneau lorsque :

- (A, +) est un groupe abélien d'élément neutre 0_A ; dit le neutre de A
- × est associative, distributive par rapport à + et elle admet un élément neutre 1_A ; dit l'unité de A

Si de plus \times est commutative, on dit que $(A, +, \times)$ est un anneau commutatif.

Anneau intègre

Un anneau $(A, +, \times)$ est dit intègre s'il est commutatif et

$$\forall a, b \in A, \quad a \times b = 0 \Rightarrow a = 0 \text{ ou } b = 0$$

Formules importantes

Soit a,b deux éléments d'un anneau A tels que ab=ba. Alors pour tout $n\in\mathbb{N}$

- Formule de binôme de Newton: $(a+b)^n = \sum_{n=0}^{\infty} C_n^k a^k b^{n-k}$
- Formule de factorisation: $a^{n+1} b^{n+1} = (a-b) \sum a^k b^{n-k}$

Groupes des unités

Soit $(A, +, \times)$ un anneau. $\mathbb{U}(A)$ l'ensemble des éléments inversibles muni de × est un groupe appelé groupe des inversibles.

Corps

 $(\mathbb{K}, +, \times)$ est corps si, et seulement, si :

- $(\mathbb{K}, +, \times)$ est un anneau commutatif;
- $\bullet \ \mathbb{U}\left(\mathbb{K}\right) = \mathbb{K}^* = \mathbb{K} \setminus \{0\}$
- Tout corps est un anneau intègre

\mathscr{A} L'ensemble $\mathbb{Z}/n\mathbb{Z}$

- $\left(\mathbb{Z}/_{n\mathbb{Z}},+,\times\right)$ est un anneau commutatif.
- $\mathbb{U}\left(\mathbb{Z}/n\mathbb{Z}\right) = \{\overline{x}, x \in [0, n-1] \text{ et } x \wedge n = 1\}$
- $\left(\mathbb{Z}/_{n\mathbb{Z}},+,\times\right)$ est un corps si et seulement si n est premier;

Sous-anneau

Soit $(A, +, \times)$ un anneau. Un sous-ensemble B de A est dit sous-anneau de Asi, et seulement, si

- $1_A \in B$
- Pour $x, y \in B$, $x y \in B$ et $x \times y \in B$

Auquel cas B muni des lois restreintes est un anneau

Sous-corps

Soient $(\mathbb{K}, +, \times)$ un corps. On dit qu'une partie \mathbb{L} de \mathbb{K} est un sous-corps de \mathbb{K} si et seulement si:

- $1_{\mathbb{K}} \in \mathbb{L}$
- Pour $x, y \in \mathbb{L}$, $x y \in \mathbb{L}$ et $x \times y \in \mathbb{L}$
- $\forall x \in \mathbb{L} \setminus \{0\}, x^{-1} \in \mathbb{L}$

Auquel cas L muni des lois restreintes est un corps

MORPHISME D'ANNEAUX

Morphisme d'anneaux

Soient A,A' deux anneaux. Une application $f:A\to A'$ est dite morphisme d'anneaux si:

- $f(1_A) = 1_{A'}$;
- $\forall (x,y) \in A^2$: f(x+y) = f(x) + f(y) et f(xy) = f(x)f(y).

Si de plus f est bijective, on parle d'isomorphisme d'anneaux

- Même définition que morphisme de corps.
- $\operatorname{Ker} f = f^{-1}(\{0_{A'}\}) \text{ et } \operatorname{Im}(f) = f(A).$
- f est injective ssi $Ker f = \{0_A\}$

Lemme de Chinois

Soit $m,n\in\mathbb{N}^*$ tels que $m\wedge n=1$, alors $\mathbb{Z}\Big/\!\!\!/mn\mathbb{Z}\simeq\mathbb{Z}\Big/\!\!\!/m\mathbb{Z}\times\mathbb{Z}\Big/\!\!\!/n\mathbb{Z}$

Propriété

Les images, directe et réciproque, d'un sous-anneau par un morphisme d'anneaux est un sous-anneau

IDÉAUX D'UN ANNEAU COMMUTATIF

<u>Idéal</u>

On appelle idéal d'un anneau commutatif A tout sous-groupe additif I de Avérifiant la propriété d'absorption : $\forall (a,b) \in A \times I, \quad ab \in I$

Propriété

Soit I un idéal de A. Alors $I = A \iff 1_A \in I \iff \mathbb{U}(A) \cap I \neq \emptyset$

Les seuls idéaux d'un corps \mathbb{K} sont \mathbb{K} et $\{0\}$.

Images d'un idéal

- L'image réciproque (directe) d'un idéal par un morphisme d'anneaux (surjectif) est un idéal
- Le noyau d'un morphisme d'anneaux est un idéal

Idéal engendré par une partie

Soit S une partie d'un anneau A. On appelle idéal engendré par Sl'intersection de tous les idéaux de A contenant S: c'est donc le plus petit idéal (au sens de l'inclusion) de A contenant S.

Idéal principal

L'idéal qui engendré par un singleton $\{a\}$ est dit principal: $aA = \{ab \mid b \in A\}$

Les idéaux de $\mathbb Z$

Soit I un idéal de \mathbb{Z} , alors il existe un unique $n \in \mathbb{N}$ tel que $I = n\mathbb{Z}$. En conséquence pour tous $a, b \in \mathbb{Z}$, alors

- $a\mathbb{Z} + b\mathbb{Z} = \mathbf{pgcd}(a, b)\mathbb{Z}$.
- $a\mathbb{Z} \cap b\mathbb{Z} = \mathbf{ppcm}(a, b)\mathbb{Z}$.

Les idéaux de $\mathbb{K}[X]$

Tout idéal I de $\mathbb{K}[X]$ peut s'écrire de façon unique sous la forme : $P\mathbb{K}[X]$ avec $P \in \mathbb{K}[X]$ normalisé. En conséquence pour tous $P,Q \in \mathbb{K}[X]$

- $P\mathbb{K}[X] + Q\mathbb{K}[X] = \mathbf{pgcd}(P, Q)\mathbb{K}[X];$
- $P\mathbb{K}[X] \cap Q\mathbb{K}[X] = \mathbf{ppcm}(P, Q) \mathbb{K}[X].$

INDICATEUR D'EULER

Indicateur d'Euler

Soit $n \in \mathbb{N}^*$, on note $\varphi(n) = \operatorname{Card}\left(\mathbb{U}\left(\mathbb{Z}/n\mathbb{Z}\right)\right)$. L'application φ est appelée l'indicateur d'Euler

\mathcal{A} Calcul de φ

- 1. Si $m \wedge n = 1$, alors $\varphi(mn) = \varphi(m)\varphi(n)$
- 2. Soit p un nombre premier et $k \in \mathbb{N}^*$, alors

$$\varphi(p^k) = p^k - p^{k-1}$$

3. Si $n = \prod p_i^{k_i}$ est la décomposition en facteurs premiers de l'entier n. Alors

$$\varphi(n) = \prod_{i=1}^{r} \left(p_i^{k_i} - p_i^{k_i - 1} \right) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

Théorème d'Euler

Soit n un entier strictement positif et a un entier premier avec n, alors $a^{\varphi(n)} \equiv 1$

 $\overline{0}$ Si n est premier on retrouve le théorème de Fermat

ALGÈBRES

Algèbre

Soit un corps commutatif \mathbb{K} et un ensemble \mathbb{A} muni de deux lois de composition interne +, \times et d'une loi de composition externe ".". On dit que $(\mathbb{A}, +, \times, .)$ est une algèbre sur K si et seulement si :

- 1. $(\mathbb{A}, +, .)$ est un \mathbb{K} -espace vectoriel;
- 2. $(\mathbb{A}, +, \times)$ est un anneau;
- 3. $\forall x, y \in \mathbb{A}, \ \forall \alpha \in \mathbb{K}, \alpha.(x \times y) = (\alpha.x) \times y = x \times (\alpha.y)$

Sous-algèbre

Soit $(\mathbb{A}, +, \times, .)$ une \mathbb{K} -algèbre et $\mathbb{B} \subset \mathbb{A}$. On dit \mathbb{B} est une sous-algèbre de \mathbb{A} si, et seulement, si

- 1. $1_{\mathbb{A}} \in \mathbb{B}$
- 2. $\forall x, y \in \mathbb{B}, \forall \alpha, \beta \in \mathbb{K} \quad \alpha x + \beta y \in \mathbb{B}$
- 3. $\forall x, y \in B, \quad x \times y \in \mathbb{B}$

Alors munie des lois restreintes, \mathbb{B} est une \mathbb{K} -algèbre.

Morphisme d'algèbres

Soient $(\mathbb{A}, +, \times, .)$ et $(\mathbb{A}', +, \times, .)$ deux \mathbb{K} -algèbres. On dit $f : \mathbb{A} \to \mathbb{A}'$ est un morphisme d'algèbres si et seulement si:

- 1. $f(1_{\mathbb{A}}) = 1_{\mathbb{A}'}$
- 2. $\forall x, y \in \mathbb{A}, \forall \alpha, \beta \in \mathbb{K}, \quad f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$
- 3. $\forall x, y \in \mathbb{A}$, $f(x \times y) = f(x) \times f(y)$

Un morphisme d'algèbres est à la fois une application linéaire et un morphisme d'anneaux

CONTACT INFORMATION

Web www.elamdaoui.com

Email elamdaoui@gmail.com

Phone 06 62 30 38 81

Page: 02