1. Choose the correct answer

1. Choose the correct answer and explain your answer A. In kitcher applications a piezoelectric crystal is used for
a) Skimming milk
b) Lighting a gas stove
c) Grinding
d) Mixing B.
2. A piezoelectric transducer is used as an ignition source for a cigarette.
a) True
b) False
3. A quartz crystal is
a) A chemical transducer
b) A photoelectric transducer
c) Not a self-generating transducer
d) A self-generating transducer

- 2. Imagine that you are going to build an innovative prototype idea based on the Piezoelectricity /pyroelectric phenomenon. What would be your idea and how are you going to develop it?
- 3. Explain in details three applications of your choice that use Ferroelectric materials?
- 4. Compare between the supercapacitors and the batteries?

Consider the parallel plate capacitor equation

$$C = \frac{\varepsilon_o \varepsilon_r xy}{z}$$

where ε_r is the relative permittivity (or ε_r), x and y are the side lengths of the dielectric so that xy is the area A, and z is the thickness of the dielectric. The quantities ε_r , x, y and z change with temperature. By differentiating this equation with respect to temperature, show that the temperature coefficient of capacitance (TCC) is

$$TCC = \frac{1}{C} \frac{dC}{dT} = \frac{1}{\varepsilon_r} \frac{d\varepsilon_r}{dT} + \lambda$$
 Temperature coefficient of capacitance

where λ is the linear expansion coefficient defined by

$$\lambda = \frac{1}{L} \frac{dL}{dT}$$

where L stands for any length of the material (x, y or z).