Input normalization

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Input normalization

- Input: X_i
- Apply affine $\hat{\mathbf{x}}_i = \alpha \mathbf{x}_i + \beta$ transformation $\hat{\mathbf{x}}_i = \alpha \mathbf{x}_i + \beta$

Gradients of uncentered inputs: A simple example

- Input vector X
- Output scalar o
- $\frac{\partial \ell(o)}{\partial \mathbf{w}} = v \mathbf{x}^{\mathsf{T}}$

Mean subtraction

- Input: \mathbf{x}_i
- Apply affine transformation $\hat{\mathbf{x}}_i = \mathbf{x}_i \mu_{\mathbf{x}}$

Gradients of unnormalized inputs: A simple example

- Output scalar o
- $\frac{\partial \ell(o)}{\partial \mathbf{w}} = v \mathbf{x}^{\mathsf{T}}$

 $|\mathbf{x}[0]| \ll |\mathbf{x}[1]|$

Gradients of unnormalized inputs: A simple example

Input normalization

- Input: X_i
- Apply affine transformation $\hat{\mathbf{x}}_i = (\mathbf{x}_i \mu_\mathbf{x})/\sigma_\mathbf{x}$