

Option "Structures et Matériaux"

Fatigue TD Fissuration

On considère l'endommagement à l'intérieur de la zone plastifiée cyclique (ZPC) à la tête d'une fissure de fatigue. Le processus d'endommagement cyclique conduit à la rupture d'une petite zone de taille r appelée zone d'endommagement maximal ("process zone").

On considère que la déformation plastique au sein de cette zone est donnée par : $\epsilon_p = \epsilon_e \left(\frac{R_{ZPC}}{x+c} - 1 \right)$

 $_{où}$: $\epsilon_{e} = \frac{\sigma_{y}}{E}$ et $_{RZPC}$ représente le rayon de la $_{ZPC}$.

1°) En considérant que dans le cas limite x=0 on a $\epsilon_p = \epsilon_f$, déterminer l'expression de c.

2°) Calculer la déformation plastique moyenne dans la "process zone" en faisant l'approximation $\frac{\rho}{c} \cong 1$.

3°) On suppose que la rupture du matériau obéit à une loi du type Manson-Coffin de la forme : $\frac{\Delta \epsilon_p}{2} = \epsilon_f' \left(N_f \right)^{\beta}$. En considérant la déformation moyenne en déduire l'expression de la loi de propagation dans le cas β =- 0.5.

4°) Application numérique. On reprend le cas de l'acier 35NiCrMo16 traité à 1900MPa. On conduit un essai de fissuration sur éprouvette CT sous vide pour ΔK =10MPa \sqrt{m} . La vitesse mesurée est : da / dN = 1,2×10 $^{-9}$ m / cycle

On a par ailleurs: $R'_{e_{0.2\%}}=1415 MPa$; $\epsilon'_f=0.58$; E=191 GPa. On considère que la taille de la zone en

déformation plane est donnée par : $R=0.15 \left(\frac{K}{\sigma_v}\right)^2$. Estimer la valeur de ρ .