Chapitre 2: Diagrammes potentiel-pH (ou diagrammes de Pourbaix)

I Principe

A) Domaine de prédominance acido-basique

Pour un couple AH/A⁻,
$$K_a = \frac{h[A^-]}{[AH]}$$
, donc $pH = pK_a + \log \frac{[A^-]}{[AH]}$

AH

A-

 pK
 pH

B) Domaines de prédominance redox

Pour le couple Fe³⁺ / Fe²⁺, $E = E^0 + 0.06 \log \frac{\text{Fe}^{3+}}{\text{Fe}^{2+}}$ A la limite quand $[Fe^{3+}] = [Fe^{2+}]$, $E = E^0$.

$$E
 Fe^{3+}$$

$$Fe^{2+}$$

C) Domaine mixte

Pour le couple MnO_4^-/Mn^{2+} :

$$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$

MnO₄⁻ + 8H⁺ + 5e⁻ = Mn²⁺ + 4H₂O
Et
$$E = E^0 + \frac{0.06}{5} \log \frac{[\text{MnO}_4^-]h^8}{[\text{Mn}^{2+}]}$$

A la limite quand $[MnO_4^-] = [Mn^{2+}], E = E^0 - \frac{0.06 \times 8}{5} pH$

$$E \uparrow MnO_4^ Mn^{2+} \rightarrow pH$$

II Conventions

A) Limite entre deux solutés

1) Problème

Pour le couple I_2/I^- , on a la ½ équation $I_2 + 2e^- = 2I^-$

Donc
$$E = E^0 + 0.03 \log \frac{[I_2]}{[I^-]^2}$$

A la limite quand
$$[I_2] = [I^-], E = E^0 + 0.03 \log \frac{1}{[I^-]}$$

Donc E limite dépend toujours de la concentration en ions iodure. On doit donc fixer des conventions.

2) Conventions

• Convention 1 :

On fixe
$$[I_2] = [I^-] = c_0$$
 (souvent 1 ou $10^{-1}...$)

• Convention 2:

On fixe la concentration totale en élément iode :

$$[I] = c_0$$

On a alors
$$[I] = [I^-] + 2[I_2] = c_0$$

Donc quand
$$[I^-] = [I_2], [I^-] = c_0/3$$

B) Limite entre un soluté et un solide

1) Problème

Pour la réaction $Fe(OH)_3 + e^- = Fe^{2+} + 3OH^-$

On a
$$E = E^0 + 0.06 \log \frac{1}{[Fe^{2+}]\omega^3}$$
 où $\omega = [OH^-]$

Que doit-on prendre comme limite?

2) Convention

On prend
$$[Fe^{2+}] = c_0$$

3) Interprétation

Hypothèse:

On suppose qu'il y a c_0 mol.L⁻¹ de fer sous toutes ses formes $(\frac{n_{\text{Fe}}}{V} = c_0)$

- Si $E > E_{\text{lim}}$, $\left[\text{Fe}^{2+} \right] < c_0$
- Si $E < E_{\text{lim}}$, $[\text{Fe}^{2+}] = c_0$ (on ne peut pas avoir $[\text{Fe}^{2+}] > c_0$); on ne peut pas appliquer ici la formule de Nernst, puisqu'il n'y a plus de solide.

Le domaine au dessus de $E_{\rm lim}$ correspond donc au domaine d'existence de ${\rm Fe}({\rm OH})_3$.

C) Limite entre deux solides

Fe(OH)₃ +
$$e^-$$
 = Fe(OH)₂ + OH⁻

On a $E = E^0 + 0.06 \log \frac{1}{\omega} = E^0 + 0.06 pK_e - 0.06 pH$

$$E \uparrow Fe(OH)_3 Fe(OH)_2 \xrightarrow{E_{lim}} pH$$

On ne peut écrire la formule de Nernst que sur $E_{\rm lim}$, puisqu'il n'y a que là que les deux espèces coexistent.

D) Obtention de la limite

- Ecrire la ½ équation redox
- Ecrire la formule de Nernst
- Calculer E_{lim} avec la formule de Nernst et les conventions

III Diagramme du fer

A) Espèces étudiées (prises en compte)

Espèces: Fe | Fe²⁺ | Fe³⁺ | Fe(OH)₂ | Fe(OH)₃ 0 +II +III Données: $E_1^0 = -0.44\text{V}$: Fe²⁺ / Fe $E_2^0 = 0.77\text{V}$: Fe³⁺ / Fe²⁺ Fe(OH)₃: $K_{s,1} = 10^{-38}$ Fe(OH)₂: $K_{s,2} = 10^{-15}$ Convention: $C_0 = 1$

B) Equilibres de précipitation

(Intérêt de commencer par là : indépendant de E car c'est le même degré d'oxydation)

1) Pour Fe(OH)₃.

Réaction : Fe(OH)₃ = Fe³⁺ + 3OH⁻
A l'équilibre chimique,
$$[Fe^{3+}]\omega^3 = K_{s,1}$$

Donc $[Fe^{3+}]\frac{K_e^3}{h^3} = K_{s,1}$
A la limite, $[Fe^{3+}] = c_0$

Donc $h^3 = \frac{K_e^3}{K_{s,1}}$, $pH = pK_e - \frac{1}{3}pK_{s,1} = 1,3$
 Fe^{3+}
 $Fe(OH)_3$
 pH

2) Pour Fe(OH)₂.

On aura de la même manière $pH = pK_e - \frac{1}{2}K_{s,2} = 6.5$

$$\begin{array}{c|c}
 & \text{Fe(OH)}_2 \\
\hline
 & 6,5 & pH
\end{array}$$

C) Equilibre redox 1) Pour pH < 1,3.

On a les espèces Fe, Fe²⁺, Fe³⁺

• Pour le couple Fe²⁺ / Fe :

Fe²⁺ + 2e⁻ = Fe

$$E = E_1^0 + 0.03 \log[\text{Fe}^{2+}]$$
. Donc $E_{\text{lim}} = E_1^0$

$$\begin{array}{c|c}
 & E \\
\hline
 & 1,3 \\
\hline
 & Fe^{2+} \\
\hline
 & PH
\end{array}$$
-0,44V

• Pour le couple Fe³⁺ / Fe²⁺

$$Fe^{3+} + e^{-} = Fe^{2+}$$

$$E = E_2^0 + 0.06 \log \frac{\left[Fe^{3+} \right]}{\left[Fe^{2+} \right]}$$
. Donc $E_{\text{lim}} = E_2^0$

$$\begin{array}{c|c}
E \\
\hline
Fe^{3+}
\end{array}
Fe(OH)_{2}$$

$$\begin{array}{c|c}
Fe^{2+}
\end{array}$$

$$\begin{array}{c|c}
\hline
1,3 & pH
\end{array}$$

2) Pour 1.3 < pH < 6.5

On a les espèces Fe, Fe²⁺, Fe(OH)₃

- Pour Fe²⁺ / Fe, c'est toujours pareil.
- Pour $Fe(OH)_3 / Fe^{2+}$:
- Méthode 1 :

$$Fe(OH)_3 + e^- = Fe^{2+} + 3OH^-$$

Et
$$E = E_3^0 + 0.06 \log \frac{1}{[Fe^{2+}]\omega^3}$$

Avec
$$[Fe^{2+}] = c_0$$
, $E_{lim} = E_3^0 + 0.06 \log \frac{h^3}{K_e^3}$

Il faut calculer E_3^0 : on a $E_3^0 = E_2^0 - 0.06 pK_{s,1}$

- Méthode 2 :

$$E = E_2^0 + 0.06 \log \frac{\left[\text{Fe}^{3+} \right]}{\left[\text{Fe}^{2+} \right]} \left(\left[\text{Fe}^{3+} \right] \text{ est toujours présent en solution} \right)$$

A la limite,
$$[Fe^{2+}] = c_0$$
 et $[Fe^{3+}]\omega^3 = K_{s,1}$

Donc
$$\left[\operatorname{Fe}^{3+} \right] = \frac{K_{s,1}}{\omega^3}$$
.

3) Pour pH > 6.5.

On a les espèces Fe, Fe(OH)₂, Fe(OH)₃ (majoritairement)

• Pour Fe(OH)₂/Fe:

On a
$$E = E_1^0 + 0.03 \log[\text{Fe}^{2+}]$$

Et
$$[Fe^{2+}] = \frac{K_{s,2}}{m^2}$$

$$\begin{array}{c|c}
Fe^{3+} & Fe(OH)_3 \\
\hline
Fe^{2+} & Fe(OH)_2 & pH \\
\hline
Fe
\end{array}$$

• Pour Fe(OH)₃ / Fe(OH)₂:

On a
$$E = E_2^0 + 0.06 \log \frac{[Fe^{3+}]}{[Fe^{2+}]}$$
 et $[Fe^{2+}] = \frac{K_{s,2}}{\omega^2}$, $[Fe^{3+}] = \frac{K_{s,1}}{\omega^3}$

On a donc le diagramme final:

IV Propriétés des diagrammes E-pH

A) Limites

1) Limites verticales

Elles correspondent à la limite entre deux éléments de même degré d'oxydation :

 $Cr_2O_7^{2-} + H_2O = 2CrO_4^{2-} + 2H^+$ (ions dichromate, orange et chromate, jaune ; le degré d'oxydation de Cr est VI dans les deux cas)

2) Limites horizontales

Elles correspondent à des espèces ayant des nombres d'oxydation différents mais dont la réaction ne fait pas intervenir H^+ ou OH^- .

Exemple :
$$Fe^{2+} + 2e^{-} = Fe$$

3) Limites obliques

Les degrés d'oxydation sont différents mais les ions H⁺ interviennent dans l'équation :

 $Ox + mH^+ + ne^- = Red$ (*m* peut être positif ou négatif)

On a alors
$$E = E^0 + \frac{0.06}{n} \log \left(\frac{a_{\text{Ox}}}{a_{\text{Red}}} h^m \right) = \text{cte} - 0.06 \frac{m}{n} pH$$

Remarque

En général, les pentes sont descendantes (c'est-à-dire que m est positif)

4) Position de l'oxydant et du réducteur

L'oxydant est toujours situé au dessus, et le réducteur en dessous.

5) Jonction des limites

Si deux limites se rejoignent, alors une troisième va partir du point d'intersection

De plus, la pente de la troisième vérifie une relation barycentrique à coefficients positifs, c'est-à-dire sur le dessin qu'elle sera dans le domaine en pointillés :

6) Limites

La donnée d'une limite A/B est équivalente à la donnée d'une constante thermodynamique (E^0, K_s, K_a)

(En connaissant bien sur la convention utilisée)

B) Domaines

- A une espèce correspond *au plus* un domaine.
- Certaines espèces n'ont pas de domaine.

V Utilisation des diagrammes

A) Principe

$$Ox_1 + Red_2 = Red_1 + Ox_2$$

On trace le diagramme pour les deux couples :

Si $pH > pH_1$, la réaction sera quantitative; on ne peut pas avoir Ox_2 et Red_1 ensembles (quel que soit E)

Si $pH < pH_1$, c'est le contraire.

B) Exemples

On prend comme convention que les concentrations sont égales à 1.

1) Oxydation du Fe(II) par le diiode

• On a un domaine où I_2 et Fe^{2+} coexistent, pour pH < 2,2On a donc principalement la réaction $Fe(III) + 2I^- \rightarrow I_2 + Fe(II)$ Ou, selon le pH:

Si
$$pH < 1,3$$
, $Fe^{3+} + I^{-} \rightarrow \frac{1}{2}I_2 + Fe^{2+}$

Si
$$1,3 < pH < 2,2$$
, $Fe(OH)_3 + I^- + 3H^+ \rightarrow \frac{1}{2}I_2 + Fe^{2+} + 3H_2O$

• Pour pH > 2,2, on a une réaction quasi-totale :

$$Fe(II) + I_2 \rightarrow Fe(III) + I^-$$

Soit, pour
$$2.2 < pH < 6.5$$
, $Fe^{2+} + \frac{1}{2}I_2 \rightarrow Fe(OH)_3 + I^- + 3H^+$

Et pour
$$pH > 6.5$$
, $Fe(OH)_2 + \frac{1}{2}I_2 + H_2O \rightarrow Fe(OH)_3 + I^- + H^+$

2) Oxydation de Fe(0) par le diiode

• Pour 1 mole de diiode et 2 moles de fer (dans 1 litre) On a une oxydation totale à tout *pH*.

De plus, le fer est en excès, donc il s'est oxydé, sous forme Fe^{2+} ou $Fe(OH)_2$ selon le pH.

• Pour 1 mole de fer et 2 moles de diiode (dans 1 litre)

L'oxydation est toujours totale

Mais si pH < 2,2, le fer est oxydé à l'état Fe²⁺

Si pH > 2,2, il est oxydé à l'état Fe(III), donc il a été deux fois oxydé.

C) Déplacement d'une réaction par variation du pH.

1) Problème

La constante de réaction K^0 ne dépend que de la température. Comment donc la réaction peut dépendre du pH de la solution ?

2) Exemple

Pour les couples IO_3^-/I_2 et I_2/I^- (IO_3^- : ion iodate)

On a la réaction $IO_3^- + 5I^- + 6H^+ = 3I_2 + 3H_2O$

Et
$$K^0 = \frac{[I_2]^3}{[IO_3^-][I^-]^5 h^6} = 10^{54}$$

Donc la réaction devrait « se faire bien »

Mais on raisonne en fait uniquement sur $[I_2]$, $[IO_3^-]$, $[I^-]$:

$$Q' = \frac{[I_2]^3}{[IO_3^-][I^-]^5} = K_0 h^6$$
, qui dépend du pH .

Si
$$pH = 0$$
, on a $Q' = 10^{54}$

Si
$$pH = 14$$
, $Q' = 10^{-30}$

VI Exemples de diagrammes

A) Diagramme de l'eau

1) H₂O oxydant

• Pour le couple $H_2O/H_{2(g)}$:

-
$$H_2O + e^- = \frac{1}{2}H_2 + HO^-$$

- Formule de Nernst:

$$E = E_1^0 + 0.06 \log \frac{1}{\sqrt{\frac{P_{\text{H}_2}}{P^0}} \omega}$$
; E_1^0 : pour le couple $H_2\text{O}/H_{2(g)}$ à $pH = 14$

$$E = E_1^0 + 0.06 p K_e - 0.03 \log \frac{P_{\text{H}_2}}{P^0} - 0.06 p H$$

On va voir dans le cas suivant que $E_1^0 = -0.06 pK_e$

Donc
$$E = -0.03 \log \frac{P_{\text{H}_2}}{P^0} - 0.06 pH$$

- Limite:
$$P_{\rm H_2} = P^0$$

$$\begin{array}{c|c}
 & 14 \\
 & H_2O
\end{array}$$

$$\begin{array}{c|c}
 & H_2O
\end{array}$$

$$\begin{array}{c|c}
 & -0.84
\end{array}$$

• Pour le couple $H_3O^+/H_{2(g)}$:

-
$$H_3O^+ + e^- = \frac{1}{2}H_2 + H_2O$$

- Formule de Nernst :

$$E = E_2^0 + 0.06 \log \frac{h}{\sqrt{\frac{P_{\text{H}_2}}{P^0}}}$$
, et par définition $E_2^0 = 0$ donc $E_1^0 = -0.06 pK_e$

2) H₂O réducteur

Pour le couple O_2/H_2O :

• ½ équation redox :

$$\frac{1}{2}O_2 + 2H^+ + 2e^- = H_2O$$

• Formule de Nernst:

$$E = E_3^0 + 0.03 \log h^2 \sqrt{\frac{P_{O_2}}{P^0}}$$

Et
$$E_3^0 = 1,23$$
V

• Limite:

$$P_{\mathcal{O}_2} = P^0$$

On a alors E = 1,23 - 0,06 pH:

3) Analyse

- H₂O ne se dismute pas (!)
- H₂ et O₂ ne peuvent pas coexister.

A un couple (E, pH) potentiel–pH correspond un point M sur le diagramme Si on ne fait rien, on aura $M \in D(H_2O)$

Lorsqu'on impose à l'électrode un potentiel :

- Si $M \in D(O_2)$, on a la réaction $H_2O \rightarrow O_2$ qui se fait
- Si $M \in D(H_2)$, c'est la réaction $H_2O \rightarrow H_2$ qui se fait.

Remarque:

Pour le couple $\rm\,H_2O/H_2$, c'est H qui change de degré d'oxydation, alors que pour le couple $\rm\,O_2/H_2O$, c'est O.

B) Diagramme du cuivre (simplifié)

1) Préliminaire

• Données:

Cu⁺/Cu : $E_1^0 = 0.52$ V Cu²⁺/Cu⁺ : $E_2^0 = 0.16$ V Cu₂O + H₂O = 2Cu⁺ + 2HO⁻ : $K_{S_1} = 10^{-28}$ Cu(OH)₂ = Cu²⁺ + 2HO⁻ : $K_{S_2} = 10^{-19}$

• Convention:

On prend les concentrations égales à 10^{-1} mol.L⁻¹.

2) Limites de *pH*.

• Pour Cu⁺/Cu₂O:

On a à l'équilibre chimique $\left[Cu^+ \right] \omega^2 = K_{S_1}$

Donc avec la convention:

$$\begin{array}{c|c} Cu^+ & Cu_2O \\ \hline & 1 & pH \end{array}$$

• Pour $Cu^{2+}/Cu(OH)_2$:

A l'équilibre, $\left[\operatorname{Cu}^{2+}\right]\omega^2 = K_{S_2}$.

$$\begin{array}{c|c}
Cu^{2+} & Cu(OH)_2 \\
\hline
5 & pH
\end{array}$$

3) Limite entre le cuivre I et le cuivre 0

• Pour pH < 1:

Le couple dominant est Cu^+/Cu On a $E = E_1^0 + 0.06 \log[Cu^+] = 0.52 - 0.06 = 0.46 V$

• Pour pH > 1:

On a ici le couple Cu₂O/Cu

Il y a toujours des ions $\mathrm{Cu}^+,$ donc on peut encore écrire la formule de Nernst :

$$E = E_1^0 + 0.06 \log[\text{Cu}^+], \text{ avec ici } [\text{Cu}^+] = \frac{\sqrt{K_{S_1}}}{\omega} = \frac{h\sqrt{K_{S_1}}}{K_1}$$

Donc $E = 0.52 - 0.06 \, pH$

4) Limite entre le cuivre II et le cuivre I

• Pour pH < 1:

On prend le couple Cu^{2+}/Cu^{+} .

On a la ½ équation $Cu^{2+} + e^{-} = Cu^{+}$

Et à la limite,
$$E = E_2^0 + 0.06 \log \frac{\left[\text{Cu}^{2+}\right]}{\left[\text{Cu}^{+}\right]} = E_2^0 = 0.16 \text{V}$$

• Pour 1 < pH < 5:

On a le couple Cu²⁺/Cu₂O

Mais il y a toujours des ions Cu⁺ en solution, donc on peut encore écrire

$$E = E_2^0 + 0.06 \log \frac{\left[\text{Cu}^{2+} \right]}{\left[\text{Cu}^+ \right]}$$

Mais avec
$$\left[Cu^+ \right] = \frac{\sqrt{K_{S_1}}}{\omega} = \frac{h\sqrt{K_{S_1}}}{K_e}$$

Donc $E = 0.10 + 0.06 \, pH$

• Pour pH > 5, on a le couple $Cu(OH)_2 / Cu_2O$

Mais on peut toujours écrire la formule de Nernst pour les ions Cu^+ et Cu^{2+} :

$$E = E_2^0 + 0.06 \log \frac{\left[\text{Cu}^{2+} \right]}{\left[\text{Cu}^{+} \right]}$$

Avec ici
$$[Cu^+] = \frac{\sqrt{K_{S_1}h}}{K_e}$$
 et $[Cu^{2+}] = \frac{K_{S_2}}{\omega^2} = \frac{K_{S_2}h^2}{K_e^2}$

Donc $E = 0.70 - 0.06 \, pH$

5) Dismutation de Cu⁺.

On a en superposant les deux diagrammes :

Les courbes se croisent à $pH_0 = 3.5$

- Pour pH < 3.5:
- Le degré 1 n'est pas stable :
- (1) Si pH < 1, on a la réaction quasi-totale $2Cu^+ \rightarrow Cu + Cu^{2+}$
- (2) Si 1 < pH < 3.5, on a $Cu_2O + 2H^+ \rightarrow Cu + Cu^{2+} + 2H_2O$
- Limite Cu²⁺/Cu:

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

On a
$$E = E_3^0 + 0.03 \log[\text{Cu}^{2+}]$$
 avec $E_3^0 = \frac{1}{2}(E_2^0 + E_1^0) = 0.34\text{V}$

Donc à la limite E = 0.31V

On a ainsi le nouveau diagramme :

