Fisica 2 – Corso di Laurea Triennale in Ingegneria Industriale 8 gennaio 2019

Seconda Prova Parziale - Compito B

Nome	Cognome
Numero di Matricola	
Numero di Matricola	СГО

ESERCIZI PER TUTTI I CANDIDATI

Esercizio 1. Un filo percorso da una corrente variabile nel tempo secondo la legge $i(t) = i_0 e^{-t/\tau}$, con $i_0 = 12$ A e $\tau = 10$ ms, si trova ad una distanza $x_0 = 12$ cm da una spira conduttrice quadrata di lato a = 10 cm coplanare col filo stesso. Calcolare quanta carica Δq ha attraversato fra gli istanti di tempo $t_1 = 2$ ms e $t_2 = 10$ ms. $(\mu_0 = 4\pi \times 10^{-7} \text{ H/m})$

Esercizio 2. Un oggetto è a 4 cm a sinistra di una lente di focale $f_1 = 12$ cm. Una seconda lente con focale $f_2 = 6$ cm è a D = 12 cm a destra della prima. Trovare la posizione dell'immagine formata dalla combinazione delle due lenti, indicando se è dritta o ribaltata e di quanto è ingrandita.

Solo per i candidati con 6 CFU: Se le lenti sono simmetriche e hanno indice di rifrazione n = 1.55, calcolare il raggio di curvatura delle loro superfici

SOLO PER I CANDIDATI CON 9 CFU

Esercizio 3. Una corda lunga L = 0.8 m, di massa m = 10 g e sottoposta ad una tensione T = 120 N, ha un estremo libero e vibra con la frequenza della sua quarta armonica (n = 4). Supponendo una ampiezza di vibrazione $A_0 = 0.4$ cm, esprimere la funzione d'onda stazionaria del moto della corda nonché la velocità e l'accelerazione massime di un punto posto a $x_0 = 0.5$ cm dall'origine.

Esercizio 4. In un interferometro di Young, dotato di due fenditure distanti d=0.2 mm e di uno schermo posto a D=1.2 m, viene inviata una radiazione di lunghezza $\lambda_1=450$ nm. Una seconda radiazione di lunghezza d'onda incognita λ_2 ha la frangia chiara di ordine m=2 che cade sulla frangia scura successiva all'ordine m=3 della prima radiazione. Calcolare la distanza fra le due frange (m=4 di λ_2 e m=3 di λ_1) nonché il valore di λ_2 .

ATTENZIONE!

- 1) <u>Va consegnato anche il testo stampato.</u>
- 2) Nome e cognome vanno scritti in stampatello maiuscolo.
- 3) Non consegnate la brutta copia.
- 4) E' obbligatorio riportare i passaggi algebrici con una breve descrizione.
- 5) NON PRENDERO' IN CONSIDERAZIONE GLI ESERCIZI SENZA PASSAGGI ALGEBRICI.
- 6) In caso di ritiro va consegnato solo il testo stampato con scritto "Ritirato" e la firma.