Nom: Prénom:

Interrogation 1 - S3 - sujet a

Question:	1	2	3	Total
Points:	2	2	6	10
Note:				

Durée: 45 minutes.

1. (2 points) Soit f la fonction de $\mathbb R$ dans $\mathbb R$ définie par

$$f(x) = \begin{cases} \frac{\sin x - x}{2x^3} & x \neq 0\\ -1/12 & x = 0. \end{cases}$$

Montrer que f est continue sur son ensemble de définition.

Solution : Déjà, f est continue sur \mathbb{R} privé de $\{0\}$ en tant que quotient de fonctions continues, le dénominateur ne s'annulant pas sur cet ensemble. Pour établir la continuité en 0, effectuons un DL_3 de sin en 0: $\sin x = x - x^3/6 + \epsilon(x)x^3$. Ceci nous dit que, pour $x \neq 0$ au voisinage de 0,

$$f(x) = \frac{x - x^3/6 - x + \epsilon(x)x^3}{2x^3} = -1/12 + \epsilon(x),$$

avec $\lim_{x\to 0} \epsilon(x) = 0$. Donc f est continue en 0.

2. (2 points) Soit f la fonction de $[2, +\infty[$ dans $\mathbb R$ définie par

$$f(x) = \sqrt{2x - 3} \cdot (\sin(1/x^3)) \cdot (\sqrt{2}x^5 - 4x + e^{-x}).$$

Donner un équivalent simple de f au voisinage de $+\infty$.

Solution : Cherchons un équivalent au voisinage de $+\infty$ pour chaque facteur :

- $\sqrt{2x 3} \sim \sqrt{2x}.$
- D'après le DL $_1$ de sin en 0, et puisque $\lim{_{x\to +\infty}}1/x^3=0,$ sin $(1/x^3)\sim 1/x^3.$
- Le terme dominant de $(\sqrt{2}x^5 4x + e^{-x})$ est $\sqrt{2}x^5$, et

$$\lim{}_{x\rightarrow+\infty}\frac{\sqrt{2}x^5-4x+e^{-x}}{\sqrt{2}x^5}=1.$$

Donc $\sqrt{2}x^5-4x+e^{-x}\sim\sqrt{2}x^5$ au voisinage de $+\infty$. D'après le cours sur les produits d'équivalents,

$$f(x) \sim \sqrt{2x} \cdot \frac{1}{x^3} \cdot (\sqrt{2}x^5) = \sqrt{2}x^2 \sqrt{2x} = 2x^{5/2}.$$

3. (6 points) Déterminer la nature des intégrales généralisées suivantes :

$$I_1=\int_e^{+\infty}\frac{dx}{x(\ln x)\sqrt{x-1}},\quad I_2=\int_0^{+\infty}\frac{\cos t}{\ln{(1+e^t)^4}}dt,\quad I_3=\int_0^{+\infty}\frac{\cos x}{\sqrt{x}}dx.$$

Solution:

1. Posons $f_1(x) = \frac{1}{x(\ln x)\sqrt{x-1}}$ pour $x \in [e, +\infty[$, et montrons que I_1 est convergente. f_1 est positive, et pour tout $x \in [e, +\infty[$, $\ln x \geqslant 1$ donc $f_1(x) \leqslant \frac{1}{x\sqrt{x-1}} = g_1(x)$. D'après le cours page 4, il suffit de montrer que l'intégrale $\int_e^{+\infty} g_1(x) dx$ converge. D'après le cours page 2 sur les opérations (ici le produit) sur les équivalents,

$$g_1(x) = \frac{1}{x\sqrt{x-1}} \sim \frac{1}{x\sqrt{x}}$$

au voisinage de $+\infty$, et $\int_1^+ \infty dx/(x\sqrt{x})$ est convergente d'après le critère de Riemann. Puisque g_1 est positive et d'après le cours, $\int_1^{+\infty} g_1(x)dx$ est de même nature que $\int_1^{+\infty} h_1(x)dx$. Conclusion, I_1 est convergente.

2. Posons $f_2(t) = \frac{\cos t}{\ln{(1+e^t)^4}}$ pour $t \in [0, +\infty[$, et montrons que I_2 est convergente. Déjà f_2 est continue sur [0, 1], ce qui permet de reléguer l'étude de la nature de l'intégrale à $[1, +\infty[$. f_2 est de signe variable; d'après le cours page 5 il suffit de montrer que f_2 est (absolument) intégrable sur $[1, +\infty[$, c'est-à-dire que

$$J_2 := \int_1^{+\infty} \frac{|\cos t|}{\ln{(1+e^t)^4}} dt \text{ converge}.$$

Puisque J_2 est l'intégrale d'une fonction positive, et étant donné que pour tout $t \in \mathbb{R}$, $|\cos t| \leq 1$ et $\ln (1+e^t)^4 \geqslant (\ln (e^t)^4) = t^4$, d'après le cours page 4 il suffit d'avoir que l'intégrale généralisée $\int_1^{+\infty} dt/t^4$ converge. C'est bien le cas d'après le critère de Riemann en $+\infty$, car 4 > 1. Conclusion, I_2 est convergente.

3. Posons $f_3(x) = \frac{\cos x}{\sqrt{x}}$ pour $x \in]0, +\infty[$, et montrons que I_3 est convergente. Déjà $f_3(x) \sim x^{-1/2}$ au voisinage de 0, donc l'intégrale de f_3 entre 0 et π est convergente d'après les propriétés du cours pré-citées et le critère de Riemann en 0. Ensuite, pour tout $X \geqslant \pi$, par intégration par parties

$$\int_{\pi}^{X} \frac{\cos x}{\sqrt{x}} dx = \left[\frac{\sin x}{\sqrt{x}} \right]_{\pi}^{X} - \int_{\pi}^{X} \frac{\sin x}{2x\sqrt{x}} dx = \frac{\sin X}{\sqrt{X}} - \int_{\pi}^{X} \frac{\sin x}{2x\sqrt{x}} dx.$$

Or $\frac{\sin X}{\sqrt{X}}$ a pour limite 0 quand $X\to +\infty$, tandis que l'intégrale de droite est absolument convergente d'après le critère de Riemann. Conclusion, I_3 est convergente.