

Semi-supervised cluster invariant constraint for network representation learning

Anasua Mitra
Department of CSE
IIT Guwahati

Priyesh Vijayan, Balaraman Ravindran Department of CSE IIT Madras

Abstract

We propose a Semi-Supervised Learning (SSL) approach that explicitly encodes different necessary priors to learn efficient representations for nodes in a network. We introduce a novel semi-supervised cluster invariance constraint that explicitly groups nodes of similar labels together. We show that explicitly encoding this largely ignored clustering constraint allows for learning better clusterable representation with qualitative visualizations and quantifiable evaluations. Further, we show that such semi-supervised clusterable representations provide improved performance for semi-supervised node classification across a variety of datasets.

Network Representation Learning

Network representation learning aims to learn a low dimensional representation of graph structure.

Q. How to learn more informative node representation for graphs?

Symbols used

G	(V, E, Y) Networked data	N = L+U L: #Labelled instances U: #Unlabelled instances	С	Community embedding $\in \mathbb{R}^{\mathbf{k} imes \mathbf{m}}$
Е	(Un)Weighted connection	$\in \mathbb{R}^{(L+U) imes(L+U)}$	В	Modularity (un)directed $\in \mathbb{R}^{ extsf{N} imes extsf{N}}$
V	Vertices	$\{\mathbf v_1,,\mathbf v_N\}$	α	Proximity factorization $\in \mathbb{R}$
Υ	Label matrix	$\in \mathbb{R}^{ extsf{q} imes extsf{N}}$	β	Community factorization $\in \mathbb{R}$
W	Penalty matrix	$\in \mathbb{R}^{ extsf{q} imes extsf{N}}$	θ	Label factorization $\in \mathbb{R}$
S	Proximity matrix (PMI, $1^{st} + 2^{nd}$ order)	$\in \mathbb{R}^{N imes N}$	γ	Modularity maximization $\in \mathbb{R}$
U, U'	Node embedding	$\in \mathbb{R}^{m \times N}, \in \mathbb{R}^{N \times m}$	ϕ	Label similarity based clustering $\in \mathbb{R}$
M, M'	Context/ neighborhood embedding	$\in \mathbb{R}^{m \times N}, \in \mathbb{R}^{N \times m}$	ζ	Non-overlapping communities $\in \mathbb{R}$
Q	Label embedding	$\in \mathbb{R}^{\mathbf{q} imes \mathbf{m}}$	λ	L2 regularisation $\in \mathbb{R}$
H, H'	Community membership	$\in \mathbb{R}^{k \times N}, \in \mathbb{R}^{N \times k}$		N: #Nodes, q: #Labels, k: #Communities m: Dimension of latent space

Semi-Supervised Clusterability Constraint

Similar points (nodes belonging to same clusters) tend to have the same labels.

$$\sum_{i,j} \hat{e}_{i,j} \|h(u_i) - h(u_j)\|^2 = H\mathcal{L}(\hat{\mathcal{E}})H^T$$

 $\hat{E} = (W \odot Y)^T (W \odot Y) \in \mathbb{R}^{N \times N}$ train-label similarity graph/matrix. $\mathcal{L}(\hat{\mathcal{E}}) = D - \hat{E}$ is the unnormalized Laplacian operator on graph \hat{E} . Flow of supervision knowledge from labeled nodes to unlabeled nodes irrespective of their positions in graph!

SS-NMF Framework

Experiment setup

Network info	Label info	Well-separated classes	Label smoothing based clusterability	Cluster/ Community info	Misc.
$\alpha \ \mathbf{S} - \mathbf{U}^{T}\mathbf{M}\ ^2$					
$\alpha \ \mathbf{S} - \mathbf{U}^T \mathbf{M}\ ^2$	$\theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{QU}) \ ^2$				
$\alpha \ \mathbf{S} - \mathbf{U}^T \mathbf{M}\ ^2$	$\theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{QU}) \ ^2$		$\phi \text{Tr}\{\text{UL}((\mathbf{W} \odot \mathbf{Y})^{T}(\mathbf{W} \odot \mathbf{Y}))\text{U}^{T}\}$		
$\alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T}\ ^2$		$\zeta \ \mathbf{H}'^{T}\mathbf{H}' - \mathbf{I}\ ^2$		$\beta \ \mathbf{H}' - \mathbf{U}' \mathbf{C}^T \ ^2$	$\gamma \text{Tr}\{\mathbf{H}'^{T}\mathbf{B}\mathbf{H}'\}$
$\alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T}\ ^2$	$\ \theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{Q} \mathbf{U}'^{T}) \ ^2$	$\zeta \ \mathbf{H}'^{T}\mathbf{H}' - \mathbf{I}\ ^2$		$\beta \ \mathbf{H}' - \mathbf{U}' \mathbf{C}^T \ ^2$	$\gamma Tr \{ H'^T B H' \}$
$\alpha \ \mathbf{S} - \mathbf{U}^T \mathbf{M}\ ^2$	$\ \theta\ \mathbf{W}\odot(\mathbf{Y}-\mathbf{QU})\ ^2$	$\zeta \ \mathbf{H}\mathbf{H}^{T} - \mathbf{I}\ ^2$	$\phi \text{Tr}\{\text{HL}((\mathbf{W}\odot\mathbf{Y})^{T}(\mathbf{W}\odot\mathbf{Y}))\text{H}^{T}\}$	$\beta \ \mathbf{H} - \mathbf{C} \mathbf{U} \ ^2$	
	$\begin{split} &\alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M}\ ^2 \\ &\alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M}\ ^2 \\ &\alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M}\ ^2 \\ &\alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T}\ ^2 \\ &\alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T}\ ^2 \end{split}$	$ \begin{aligned} &\alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M} \ ^2 & \theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{Q} \mathbf{U}) \ ^2 \\ &\alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M} \ ^2 & \theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{Q} \mathbf{U}) \ ^2 \\ &\alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T} \ ^2 & \\ &\alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T} \ ^2 & \theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{Q} \mathbf{U}'^{T}) \ ^2 \end{aligned} $	$\begin{array}{c c} \alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M} \ ^2 \\ \alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M} \ ^2 \\ \alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M} \ ^2 \\ \theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{Q} \mathbf{U}) \ ^2 \\ \alpha \ \mathbf{S} - \mathbf{U}^{T} \mathbf{M} \ ^2 \\ \theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{Q} \mathbf{U}) \ ^2 \\ \alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T} \ ^2 \\ \alpha \ \mathbf{S} - \mathbf{M}' \mathbf{U}'^{T} \ ^2 \\ \theta \ \mathbf{W} \odot (\mathbf{Y} - \mathbf{Q} \mathbf{U}'^{T}) \ ^2 \\ \zeta \ \mathbf{H}'^{T} \mathbf{H}' - \mathbf{I} \ ^2 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Datasets

		[Multi	Min	Max	Avg	Singleton
	V	E		Label	Deg.	Deg.	Deg.	Nodes
Washington	230	596	5	False	2	123	4.88	0
Wisconsin	265	724	5	False	2	123	5.0	0
Texas	186	464	5	False	2	105	4.51	0
Cornell	195	478	5	False	2	9	4.12	0
Cora	2,708	5,278	7	False	0	166	2.00	1143
Citeseer	3,312	4,732	6	False	0	99	1.42	1361
Wiki	2,405	17,981	19	False	0	258	6.87	360
PPI	3,890	76,584	50	True	1	594	19.69	0
Blogcatalog	10,312	3,33,983	39	True	1	3992	64.78	0

Experimental Results

Node Classification Results (10% train data)

		Semi-sup	ervised (N	/ LR Method)	LR Method					
N vs LR			RW Based Approaches							
Train : 10%	Proposed	SoA	Propo	sed Baseline Va	ariants	SoA		SoA	SoA	
Datasets	SS-NMF	MMDW	MFDWL	DWL MF-Planetoid MNM		MNMF	MFDW	DW	N2V	
Cora	77.56	68.27	70.30	76.47	73.43	74.50	74.44	74.79	74.99	
Citeseer	55.59	47.38	49.27	55.54	50.09	54.37	53.43	52.72	54.19	
Wiki	57.74	50.81	56.10	56.19	54.14	56.36	55.50	55.75	56.03	
Washington	56.73	40.79	50.19	52.40	52.60	57.60	53.70	49.52	50.00	
Wisconsin	53.14	30.78	45.21	52.72	48.03	48.03	40.71	38.91	43.10	
Texas	55.86	47.10	53.13	55.38	55.27	55.15	55.03	55.15	55.15	
Cornell	44.63	38.73	36.89	40.95	40.45	43.84	37.20	22.60	25.42	
PPI	14.94	13.85	13.26	14.25	13.96	17.22	16.05	16.20	16.88	
Blogcatalog	28.17	18.59	27.16	27.31	27.57	28.32	27.88	34.92	35.16	
Rank	k 1.88 8.44 7. 3.55		5.55	2.88	5.55	5.55	4.55			
Score	1.1262	10.9094	5.8864	2.5861	4.3281	2.1236	4.5065	5.9937	4.842	
LR vs LR	SS-NMF	MMDW	MFDWL	MF-Planetoid	MNMFL	MNMF	MFDW	DW	N2V	
Rank	1.44	4.88	6.	3.44	3.66	4.77	8.11	7.	5.66	
Score	0.7739	2.9083	3.4598	1.6377	1.982	2.3559	4.7388	6.226	5.0743	

Clustering results (50% train data)

		Semi-supervised (N/ LR Method)					LR Method				
	N vs LR	Matrix Factorization Approaches								RW Based Approaches	
	Train : 50%	Proposed	SoA	Propo	sed Baseline Va	SoA		SoA	SoA		
		SS-NMF	MMDW	MFDWL	MF-Planetoid	MNMF	MFDW	DW	N2V		
Purity	Rank	1.1429	6.2857	5.2857	2.	2.8571	4.8571	8.5714	7.5714	6.4286	
	Score	0.2728	11.9328	9.629	2.9642	7.0497	9.9101	16.6532	14.1462	12.8244	
NMI/ ONMI	Rank	1.2222	6.3333	4.7778	2.6667	3.1111	4.8889	8.	7.8889	6.1111	
	Score	0.0258	17.0103	12.4661	4.1336	7.0906	13.3816	20.077	20.2128	19.2078	
Omega Index	PPI	6.49	4.43	4.12	6.14	5.81	5.20	3.37	6.25	6.90	
	Blogcatalog	4.64	3.67	3.99	4.30	4.07	3.82	2.71	2.06	3.19	

Visualization of the node embeddings in the projected space

Prior Analysis & Parameter Sensitivity Analysis

0 0 0 (FFF) : no cluster H learning 1 0 0 (TFF) : cluster H learns from U

1 1 0 (TTF): cluster H directly learns from CPM and U

 $\beta \phi \zeta$ Meaning

How each cluster related prior information, a) Cluster matrix factorization term: $\beta \|H - CU\|^2$, b) Regularization based cluster learning from Cluster Proximity Matrix(CPM): $\phi Tr\{H\mathcal{L}(\hat{E})H^T\}$, c) Minimum overlapping cluster constraint: $\zeta \|HH^T - I\|^2$: contributes in learning cluster membership matrix H.

Table: Prior experiment settings

References

- ➤ Tu, Cunchao, et al. "Max-Margin DeepWalk: Discriminative Learning of Network Representation." IJCAI. 2016.
- ➤ Yang, Zhilin, William W. Cohen, and Ruslan Salakhutdinov. "Revisiting Semi-Supervised Learning with Graph Embeddings" Journal of Machine Learning Research 9 (2016): 175-180.
- ▶ Wang, Xiao, et al. "Community Preserving Network Embedding." AAAI. 2017.