Probabilidad

Clase 9 Curso Propedéutico 2017/06/26

I. Axiomas de Probabilidad

Eventos

la proba avantifia mostidambre de la asurencie de eventos

d'ônée es un events?

2) Union de eventos son un evento (La unión maternática es un "ó" de la (ogra")

3) Interseenée de courtes debe ser countos: (el "y" légres)

Propiedades de los Eventos

Propletices at 105 Eventos

Domedar
$$P(A \lor B) = P(A) + P(B) - P(A \cap B)$$

Dean

A $V B = (A \cap B^{C}) \cup (A \cap B) \cup (A^{C} \cap B)$

P $(A \cup B) = P(A \cap B^{C}) + P(A \cap B) \cup (A^{C} \cap B)$
 $P(A \cup B) = P(A \cap B^{C}) + P(A \cap B) \cup (A^{C} \cap B)$
 $P(A \cup B) = P(A \cap B^{C}) + P(A \cap B) \cup (A^{C} \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A \cap B^{C}) + P(A \cap B^{C})$
 $P(A) = P(A$

(Kolmoson)

Medidas de probabilidad

Una medida de probabilidad es una función

mediala di probi

Eventos

Valous en [0,1]

1)
$$P(\text{union de todos los eventos}) = P(\Omega) = 1 (normalización)$$

2)
$$P(AUB) = P(A) + P(B)$$
 SI $A \cap B = \emptyset$

$$P(A^c) = 1 - P(A)$$

Ejemplos

Probabilidad Condicional

Conderioner a un exento Bes sustituir el annivoso P por B. "Es persor que Bes el univorso" Notación: Portade A acado B P(A|B) = P(ANB) PCB)

Para que tonge sontido neustramos P(B) \$0

· Se entrevistan 100 prisonas

Ejemplo:

• Fumadores y cáncer

Furner No Furner

Cánur	No Cénur
9	8
3	80

•
$$P(Canur) = \frac{9+3}{100} = \frac{12}{100}$$
• $P(No(Canur)) = \frac{85}{100}$

Independencia

(= Exclusente)

· En el epumplo antinor Fumar y Canar no son molependrates, y unos que P(canar) ≠ P(concr/No timer) Vamos a abstrar la propredad le molependences det (Independeran entre eventus) A indep of B si P(AB) = P(A)P(B)de donde viene la definition?

Plans) = P(AIB) P(B) = P(BIA)P(A) Switzingendo (1): $P(A)P(B) \equiv P(A|B)P(B) \Rightarrow P(A) = P(A|B)$ 1 (2) $P(A)P(B) = P(B|A)P(B) \Rightarrow P(B) = P(B|A)$

saber una no combra el conocimiento de la oria

Ejemplo: experimentos independientes

Monedas

Dado.

[Pababolisa

No independencia

• Fumadores y cáncer nuevamenete....

P(F) = 17/100

P(NF)= 35/100

P(() = 12/100

P (NI) = 08/100

Si fumor y tener cancer fura independicante
$$P(c|F) = P(x) = \frac{12}{100} \text{ y } P(cnF) = \frac{9}{100}$$

$$P(c|F) = P(cnF)/P(F) = \frac{9}{100}$$

Ley de Probabilidad Total

Une portoien de lue virso 2 es une colecerné de viretes { Ei} tel que U.E; = Ny E; n E; = Ø Y itj

LPT:
$$P(A) = \sum_{i} P(A|E_{i})P(E_{i})$$
 para una particuin E_{i}

Ejemplo:

X, Yz, Xz, -- son los estados del mercado en el trempo

E'n el digynma

0.5 m/destros Bri

5 (0.5 0.25 0.25

Ber (005 0.07 (0.9)

En el digyama se muestra $P(X_{t+1}=i)=Pij$

Supresto =
$$P(X_{t+1}=j) (=X_0,...,X_t=X_t)$$

$$= P(X_{t+1}=j)X_t=X_t$$

El futro solo depunde del promite (Markos)

Parba de transcain despur de Zdías Eperirio Z; (Entrya en papel) · Calcular P(X2=Bear | X=Bull) Usar les de probatotal y la patrion es $E_1 = 45$ tognet $E_2 = 2$ Ber $\int E_3 = 2$ Bull \int

••