Shoot for the Stats, Alm for the Moon:

Developing a pixel Almbot

Alessio Barboni - Francesco Redaelli

Project aim

Developing an AI agent able to play a FPS Aim Trainer game

The agent would exploit only **visual information** (i.e., screen pixels color values) in order to properly **move the mouse pointer** live, in a **human-mimicking** fashion

The game level

- Goal:
 Chase the target
- Duration:60 seconds
- Score:
 # target hits

Interlude: mouse position on the screen

Data Collection

We played the target level multiple times and collected a data point every 1/20th of a second

Data Point (time t)

Mouse Movement on the X axis: X_t - X_{t-1}
 o Int (ρx) ∈ [-1920,1920]

Mouse Movement on the Y axis: Y_t - Y_{t-1}
 □ Int (ρx) ∈ [-1080,1080]

 $Screenshot_{t-1}$ (1920x1080)

Data Collection "Hack"

Although we aimed at training a model that would reproduce our far-from-being-perfect playstyle, we nonetheless laid down some data collecting rules in an attempt to improve the quality of the input data:

- Do not miss!
 - Only 100% shooting accuracy levels data saved

- Move!
 - No standing still data point (0,0) movement vector allowed

Data preprocessing

Data preprocessing - Masking

BGR Boundaries

Original Screenshot

Masked Screenshot

Data preprocessing - From BRG to Grayscale

$$Y = 0.299 R + 0.587 G + 0.114 B$$

Masked Screenshot

Grayscale Screenshot

Data preprocessing - Removing clock & time

Blackened the corresponding pixel (set their value to 0)

Grayscale Screenshot

Preprocessed Screenshot

Mouse movement: regression model

Data preprocessing - Regression: resizing

New size: (6x6) - Grid search approach

Algorithm: INTER_AREA (resampling using pixel area relation)

Preprocessed Screenshot (1920x1080)

Resized Screenshot (6x6)

Data augmentation - Regression

Original (X_vec, Y_vec)

 $(X_{vec}, -Y_{vec})$

Flip around Y-axis (-X_vec, Y_vec)

Flip around both axis (-X_vec, -Y_vec)

Rotate 90° CounterClock (Y_vec, -X_vec)

Rotate 90° Clock (-Y_vec, X_vec)

Flip around X-axis & Rotate 90° CounterClock (-Y_vec, -X_vec)

Flip around X-axis & Rotate 90° Clock (Y_vec, X_vec)

Data preprocessing - Regression: flattening & scaling

0	1	2	3	4	5
6	7	8	9	10	11
12	13	14	15	16	17
18	19	20	21	22	23
24	25	26	27	28	29
30	31	32	33	34	35

Pixels value **€** [0,255]

Pixels value \in [0,1]

Target variables description

	x_mov	y_mov
count	20398.000	20398.000
mean	0.323	-0.208
std	59.260	50.298
min	-272.000	-170.000
25%	-25.000	-20.000
50%	0.000	0.000
75%	24.000	16.000
max	326.000	298.000

	x_mov	y_mov
count	163184.000	163184.000
mean	0.000	0.000
std	54.962	54.962
min	-326.000	-326.000
25%	-22.000	-22.000
50%	0.000	0.000
75%	22.000	22.000
max	326.000	326.000

Before data augmentation

After data augmentation

Model Training: Train/Test Split

75% Train - 25% Test Size

Mouse movement model: Random Forest regression

INPUT: 36 pixel values

OUTPUT: Two-dimensional vector (X_mov, Y_mov)

Multi-Output Strategy:

Fitting one regressor per target (sharing the same parameters, each one having as target a different output component. X_mov and Y_mov)

Score the model according to the arithmetic average of the individual regressor scores (different scoring strategies might be possible)

Random Forest Fitting: 5-Fold CV

Parameters: n estimators = 100

Scoring Metric:
$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Mouse movement model: grid search approach

Input screenshot size	RMSE score
4,4	35.1
5,4	37.7
4,5	36.2
5,5	38.2
6,6	33.0
7,7	35.2
8,8	34.4
10,10	35.8

Best Model

Input size = (6x6)

5-Fold CV RMSE = 33.0

Qualitative model assessment - Live Action!

Interpretable Machine Learning (IML)

"Why Should I Trust You?"

An analysis based on the work and paper by *Marco Tulio Ribeiro et al.* (2016)

Local Interpretable Model-agnostic Explanations (LIME)

Goal: identify an interpretable model over the interpretable representation that is locally faithful to the classifier/regressor

Unfaithfulness Complexity as opposed to local fidelity)

(as opposed to interpretability)

LIME in action

RF Prediction: (-28.56, 1.54)

Actual Response: (-84, 0)

LIME in action: X-axis

LIME in action: X-axis

Input Image

LIME Explanation

LIME in action: Y-axis

LIME in action: Y-axis

Input Image

LIME Explanation

Submodular Pick method for explaining models

Goal: pick a *diverse, representative* set of non-redundant explanations that represent how the model behaves globally

$$Pick(W, I) = \underset{V,|V| \le B}{\operatorname{argmax}} c(V, W, I)$$

NP hard problem!

Greedy approach

Explanation matrix W: represents the local importance of the interpretable components for each instance

I knew I should not have trusted you...

Model issues:

- LIME explanations showed that the model at times failed in discerning whether
 a grey pixel in input corresponded to a target or to one of the corners
- Qualitative assessment highlighted some difficulties in reaching the actual target when the cursor was in its neighborhood right above or below it

Our implemented preprocessing solution:

- Double Masking + Binary Pixel Color Conversion
- Higher resolution input image

Data preprocessing - Double masking + BPCC

Original Screenshot

Binary Pixel Color Conversion

$$y = \begin{cases} 255 & if \ x > 0 \\ 0 & if \ x = 0 \end{cases}$$

BGR Boundaries

Upper = [0,0,252] Lower = [255,255,255]

Binary Pixel Color Conversion

Upper = [240,100,0] Lower = [255,255,255]

Binary Pixel Color Conversion

Target

Corners

Data preprocessing: Double Masking

Formula:
$$Target + Corners * \frac{k}{255}$$

$$k = 100 \rightarrow$$

Final Screenshot

Data preprocessing - Regression: resizing

New size: (14x14) - Grid search approach

Algorithm: INTER_AREA (resampling using pixel area relation)

Preprocessed Screenshot (1920x1080)

Resized Screenshot (14x14)

Mouse movement model: grid search approach

Input screenshot size	RMSE score
10,10	30.1
12,12	29.3
14,14	28.8
16,16	29.0
20,20	29.4
24,24	29.7

Best Model

Input size = (14x14)

5-Fold CV RMSE = 28.8

Qualitative model assessment - Live Action!

LIME in action

RF Prediction: (-2.91, -19.96)

Actual Response: (-10, -31)

LIME in action: X-axis

LIME in action: X-axis

Input Image

```
o -3.5 3 0.364.1 1.60.02 \( \frac{3}{2} \).9-2.1-0.52.6-2.1-1.6-1.8 1.1
-0.381.9 1.5 0.5 1.8 -4.3 5.7 3.4 3.9 -2.9-1.4-1.20.723.5
~ -3.73.1 2.50.873.40.454.5-1.8-1.3-2.13.4 1 2.20.28
m -0.34 1 -2.2 3.4 3.1 6.20.0663.2-5.10.540.86.0171.1 1
+ -3.3 4.6 3.3 7.2 7.5 -1.2 2 -0.41 -3 -3 -6.5-2.3-1.9-6.7
ω - 6 5.7 7.9 9.6 27 20 4 -4 -22 -24 -7.8 -5 -5.3 -3
φ - 1.5 7.8 6.7 40 21 53 -5.5 4.4 -52 -35 -30 -8.2-8.4 -8
~ -8.2 12 15 32 41 48 5.2 -4.6 -57 -21 -32 -9.3-2.5-8.6
ω - 3.3 4.8 5.4 9.7 21 19 2.5-7.1-17 -23 -8.7-5.3-2.6-1.9
o - 1.80.93 4 1.1 8.6 6.8 2.6 - 7.20.39 - 2 - 1.6 - 8.30.883.5
9 -3.6 3.6 1.7 2.7 -2.3 5.5 1.6 -1.8 -1 -0.120.610.481.8 -1
<u>--2.5 0.7-0.190.76 2 -3.9 -1 -3.10.42-2.6 3.3-0.94-2 3</u>
m --4.30.382.3 5 -2.50.88 3 3.1 -3.80.450.781.30.350.22
```

LIME Explanation

Conclusion

By analysing the **explanations** provided by the **LIME IML** algorithm and applying **domain specific knowledge** to modify the data preprocessing pipeline, we obtained:

- Better quantitative performance
 - Lower RF RMSE
- Better qualitative performance
 - Smoother playstyle
- Less of a "black box" and more trustworthy model
 - \circ Greater explainability and higher R^2 score of LIME model