Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display 1520 mmHg -760 mmHg Gas 100 mL Hg (c) (a) (b)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

© The McGraw-Hill Companies, Inc./Ken Karp, Photographer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Volume and temperature are constant

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 5.3

van der Waals Constants of Some Common Gases

Gas	$\binom{a}{\frac{\operatorname{atm} \cdot L^2}{\operatorname{mol}^2}}$	$\left(\frac{L}{mol}\right)$
Не	0.034	0.0237
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0266
H_2	0.244	0.0266
N_2	1.39	0.0391
O_2	1.36	0.0318
Cl_2	6.49	0.0562
CO_2	3.59	0.0427
CH_4	2.25	0.0428
CCl ₄	20.4	0.138
NH_3	4.17	0.0371
H_2O	5.46	0.0305