Logic Gates

NOT	 $\begin{array}{c c} a & \overline{a} \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
OR	$\begin{array}{c cccc} a & b & a+b \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
AND	$\begin{array}{c cccc} a & b & a \cdot b \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
NOR	$\begin{array}{c c c c} a & b & \hline (a+b) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$
NAND	$\begin{array}{c cccc} a & b & \overline{(a \cdot b)} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
XOR	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

a	b	$a\odot b$
0	0	1
0	1	0
1	0	0
1	1	1