Série 01 : La normalisation des bases de données

Objectifs:

- Comprendre les dépendances fonctionnelles
- Identifier et Éviter les anomalies dans une base de données non normalisée.
- Appliquer les règles de normalisation (1NF, 2NF, 3NF) pour améliorer la structure.

Rappel:

La normalisation permet d'éliminer les anomalies dans les bases de données.

- 1FN : Elimine les valeurs multivaluées.
- 2FN : Elimine les dépendances partielles.
- 3FN: Elimine les dépendances transitives.

Exercice 01: Vérification des Formes Normales (1FN, 2FN, 3FN)

1- Indiquer si les relations suivantes sont en 1NF ou non :

- LIVRAISON (n°fournisseur, ville)
- LIVRAISON (<u>n°fournisseur</u>, listeVilles)
- CLIENT (n°client, nom, numTéléphones)
- CLIENT (n°client, nom, numTéléphone1, numTéléphone2)

2- « 2FN : de toute la clé » : Indiquer si les relations suivantes sont en 2NF ou non :

- PRET (n°isbn, date, n°adherent, nom_adherent, ville_adherent, titre_livre)
- PRET (n°isbn, n°adherent, date, nom_adherent, ville_adherent, titre_livre)

3- « 3FN : rien que de la clé » : Indiquer si les relations suivantes sont en 3NF ou non :

- VOL(n°vol, compagnie, heure, destination, modele_avion, nombre_passagers)
- VOL(<u>n°vol</u>, compagnie, heure, destination, modele_avion, nombre_places)

Exercice 02: Analyse d'une Relation avec Dépendances Fonctionnelles

Dans une entreprise, un employé travaille dans un service donné ; un service ne possède pas des locaux dans plusieurs bâtiments. Soit le schéma relationnel (R) donné ci-dessous :

EMPLOYE (NumE, Nom, Salaire, Département, Bâtiment)

- 1. Identifier les DF présentes dans cette relation.
- 2. Déterminer la clé de cette relation.
- 3. Quelle est la forme normale de la relation R?
- 4. Appliquer la **normalisation** pour obtenir un **modèle en 3FN**.

Exercice 03: Normalisation d'une Table de Commandes

Dans cet exercice, nous avons une **table de commandes** qui peut contenir des anomalies et des dépendances non optimales.

L'objectif est de :

- 1. Identifier la forme normale actuelle de la table.
- 2. Appliquer la **normalisation** pour obtenir un **modèle en 3FN**.

La relation suivante décrit des commandes faites par des clients, avec les produits et quantités commandées par client ;

COMMANDE (NumCom, NumProd, DateCom, NumCli, AdrCli, Prix, Qte)

- 1. Identifier la forme normale actuelle de cette table.
- 2. Appliquer la **normalisation** pour obtenir un **modèle en 3FN**.

Exercice 04: Analyse et Décomposition d'une Table Universelle

Soit la table universelle suivante contenant les informations sur la vente de voiture d'occasion :

N°Vente	Immatricule	Marque	Modèle	Puis.	Coul.	N°Acheteur	Nom	Prénom	Date	Prix
1	45829 B 15	RENAULT	Clio	6	ROUGE	1	MAJD	MOHAMED	10/02/2024	100000
1	9842 A 1	PEUGEOT	2008	8	VERTE	1	MAJD	MOHAMED	11/06/2021	170000
3	32165 A 15	CITROEN	C4	6	BLEUE	3	IDRISSI	Rachid	20/04/2023	130000
2	8712 A 60	CITROEN	C5	8	BLEUE	2	IDRISSI	Rachid	20/08/2022	150000
4	5236 A 15	RENAULT	Clio	6	ROUGE	4	SALHI	Karima	11/09/2023	120000

I- L'objectif est d'analyser les dépendances fonctionnelles (DF) et d'identifier les anomalies d'insertion, de mise à jour et de suppression.

- 1. Discuter les DFs dans cette relation.
- 2. Discuter dans cette table universelle:
 - L'anomalie d'insertion
 - L'anomalie de suppression
 - L'anomalie de mise à jour
- 3. Sous quelle forme normale est cette table?

II- L'objectif est d'appliquer la normalisation pour décomposer cette table en plusieurs relations cohérentes et supprimer les anomalies trouvées.

4. Appliquer la normalisation pour obtenir un modèle en 3FN.

Exercice 05 : Etude de cas : Normalisation d'une Base de Données E-Commerce

Un magasin gère ses commandes, clients, produits et paiements à l'aide d'un fichier Excel.

	Α	В	С	D	Е	F	G	Н
1	ID Cmd	Nom_Client	Email	Produit	Qté	Prix Unitaire	Mode Paiement	Adresse _Livraison
2	1	Ali Hamid	ali@gmail.com	Smartphone	1	5000 MAD	Carte Bancaire	12 Rue Rabat
3	2	Sara Amine	sara@gmail.com	Ordinateur	1	9000 MAD	PayPal	25 Rue Casa-Blanca
4	3	Ali Hamid	ali@gmail.com	Casque Bluetooth	2	500 MAD	Carte Bancaire	12 Rue Rabat
5	4	Sara Amine	sara@gmail.com	Smartphone	1	5000 MAD	PayPal	25 Rue Casa-Blanca

Les règles Métier :

- ✓ Une commande peut contenir plusieurs produits.
- ✓ Un client peut passer plusieurs commandes.
- ✓ Un produit peut être commandé plusieurs fois par différents clients.
- ✓ Une commande est associée à un seul paiement, mais un client peut utiliser plusieurs modes de paiement paiement dans le temps

Travail demandé:

I- Analyse des dépendances fonctionnelles et des anomalies

1. Analyse des dépendances fonctionnelles (DF)

- Identifier les attributs fonctionnellement dépendants les uns des autres.
- Déterminer la clé primaire potentielle de cette table.

2. Identification des anomalies

Discuter les anomalies liées à cette structure de cette table universelle :

- **Anomalie d'insertion** : Existe-t-il des situations où l'on ne peut pas insérer un enregistrement sans créer de données inutiles ?
- **Anomalie de suppression** : Quelles informations risquent d'être **perdues** si l'on supprime une ligne de la table ?
- **Anomalie de mise à jour** : Quelles données peuvent devenir **incohérentes** si une seule valeur change ?

3. Vérification de la forme normale de la table universelle

À quelle **forme normale** appartient cette table ? Justifiez votre réponse

II- Application de la Normalisation jusqu'à la 3NF

1. Normalisation progressive de la base de données

- Appliquer la première forme normale (1NF) :
 Supprimer les attributs multivalués et créer de nouvelles relations.
- Appliquer la deuxième forme normale (2NF) :
 Identifier et supprimer les dépendances fonctionnelles partielles.
- Appliquer la troisième forme normale (3NF) :
 Supprimer les dépendances transitives et proposer une structure optimisée.

2. Modélisation finale en 3FN

- Présenter les nouvelles relations sous forme de Modèle Logique des Données (MLD).
- Identifier les clés primaires et clés étrangères pour assurer l'intégrité référentielle.
- Expliquer les avantages de cette nouvelle structure comparée à la table initiale.