Lemma 1. Suppose $\lfloor x \rfloor = \lfloor n + \psi \rfloor$ where $n \in \mathbb{Z}$ such that $n \leq x < n+1$, and $\psi \in \mathbb{R}$ such that $0 \leq \psi < 1$. Then $\lfloor x \rfloor = n + \lfloor \psi \rfloor = n + 0 = n$.

Theorem 1. Let x be a real number. Then $\lfloor 3x \rfloor = \lfloor x \rfloor + \left \lfloor x + \frac{1}{3} \right \rfloor + \left \lfloor x + \frac{2}{3} \right \rfloor$.

Proof. There are three cases under consideration for this proof.

$$(i): 0 \le \psi < \frac{1}{3}.$$

In this case we find that $0 \leq 3\psi < 1$, $\frac{1}{3} \leq \psi + \frac{1}{3} < \frac{2}{3}$, and $\frac{2}{3} \leq \psi + \frac{2}{3} < 1$. Thus, $\lfloor 3\psi \rfloor = 0$, $\lfloor \psi + \frac{1}{3} \rfloor = 0$, and $\lfloor \psi + \frac{2}{3} \rfloor = 0$. Consequently, $\lfloor 3x \rfloor = 3n + 0$, $\lfloor x + \frac{1}{3} \rfloor = n + 0$, and $\lfloor x + \frac{2}{3} \rfloor = n + 0$. By Lemma 1, $\lfloor x \rfloor = n$. Since 3n + 0 = n + (n + 0) + (n + 0), it follows that $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$, if $0 \leq \psi < \frac{1}{3}$.

$$(ii): \frac{1}{3} \le \psi < \frac{2}{3}$$
.

In this case we find that $1 \leq 3\psi < 2$, $\frac{2}{3} \leq \psi + \frac{1}{3} < 1$, and $1 \leq \psi + \frac{2}{3} < 1\frac{1}{3}$. Thus, $\left\lfloor 3\psi \right\rfloor = 1$, $\left\lfloor \psi + \frac{1}{3} \right\rfloor = 0$, and $\left\lfloor \psi + \frac{2}{3} \right\rfloor = 1$. Consequently, $\left\lfloor 3x \right\rfloor = 3n+1$, $\left\lfloor x + \frac{1}{3} \right\rfloor = n+0$, and $\left\lfloor x + \frac{2}{3} \right\rfloor = n+1$. By Lemma 1, $\left\lfloor x \right\rfloor = n$. Since 3n+1=n+(n+0)+(n+1), it follows that $\left\lfloor 3x \right\rfloor = \left\lfloor x \right\rfloor + \left\lfloor x + \frac{1}{3} \right\rfloor + \left\lfloor x + \frac{2}{3} \right\rfloor$, if $\frac{1}{3} \leq \psi < \frac{2}{3}$.

$$(iii): \frac{2}{3} \le \psi < 1$$
.

In this case we find that $2 \leq 3\psi < 3$, $1 \leq \psi + \frac{1}{3} < 1\frac{1}{3}$, and $1\frac{1}{3} \leq \psi + \frac{2}{3} < 1\frac{2}{3}$. Thus, $\lfloor 3\psi \rfloor = 2$, $\lfloor \psi + \frac{1}{3} \rfloor = 1$, and $\lfloor \psi + \frac{2}{3} \rfloor = 1$. Consequently, $\lfloor 3x \rfloor = 3n+2$, $\lfloor x + \frac{1}{3} \rfloor = n+1$, and $\lfloor x + \frac{2}{3} \rfloor = n+1$. By Lemma 1, $\lfloor x \rfloor = n$. Since 3n+2=n+(n+1)+(n+1), it follows that $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$, if $\frac{2}{3} \leq \psi < 1$.

The theorem is true $\forall \psi \in [0,1)$ \therefore If $x=n+\psi \in \mathbb{R}$, then $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$.