The Amalgamation Number of Graphs Involving Wheels and Fans*

Thelma C. Montero-Galliguez
Department of Mathematics
Caraga State University
Butuan City

Abstract

Let G = (V(G), E(G)) and H = (V(H), E(H)) be finite, connected, simple graphs, such that V(G) and V(H) are disjoint sets. A **k-amalgamation** of G and G, denoted by $G \star^k H$, is the graph obtained by identifying $G \star^k H$, is the graph obtained by identifying $G \star^k H$, is the graph obtained by identifying $G \star^k H$, is the other. The **amalgamation number** of $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible. Let a wheel and a fan be denoted by $G \star^k H$ is possible.

*Research is supported by the National Research Council of the Philippines (Research Report 1, NRCP-Assisted Research Project B-104)

The Amalgamation Number of Graphs Involving Wheels and Fans*

Thelma C. Montero-Galliguez
Department of Mathematics
Caraga State University
Butuan City

1. Introduction

This study includes only graphs which are simple, connected and finite. Graph-theoretic terms which are used but not explicitly defined here are adopted from [1] and [4].

Definition 1.1. ([5]) Let G = (V(G), E(G)) and H = (V(H), E(H)) be finite, connected, simple graphs such that V(G) and V(H) are disjoint, and let $k \le \min\{|V(G)|, |V(H)|\}$. A **k-amalgamation** of G and H, denoted by $G \star^k H$, is the graph obtained by identifying k distinct vertices of G with K distinct vertices of G such that no adjacent vertices of one graph are identified with adjacent vertices of the other. When $G \star^k H$ results through the identification of the vertices in the ordered set $U = \{u_1, u_2, u_3, \cdots, u_k\}$, where $U \subseteq V(G)$, with the vertices in the ordered set $W = \{w_1, w_2, w_3, \cdots, w_k\}$, where $W \subseteq V(H)$, and $U_i = w_i$ for each $i = 1, 2, 3, \cdots, k$, the K-amalgamation is indicated by K = K (K). In the case when K = K and K and K and K = K and K

Example 1.1. Let G and H be two paths of order 4, where $G = P_4 = (1,2,3,4)$ and $H = P_4 = (a,b,c,d)$. Figure 1.1(a) and Figure 1.1(b) show two non-isomorphic 2-amalgamations, and Figure 1.1(c) shows a 4-amalgamation of P_4 with itself.

Figure 1.1 Some non-isomorphic k-amalgamations of P_4 with itself

- **Definition 1.2.** The *amalgamation number* of G and H, denoted by a(G,H), is the maximum k such that a k-amalgamation $G \star^k H$ is possible.
- **Example 1.2.** Figure 1.1 shows that $a(P_4, P_4) = 4$.
- **Remark 1.** If $G \star^k H$ exists with $\star^k = (U, W)$, then $H \star^k G$ exists with $\star^k = (W, U)$; thus, $G \star^k H = H \star^k G$.
- **Remark 2**. Let |V(G)| and |V(H)| be the order (*i.e.* the number of vertices) of the graphs G and H, respectively. Then, the amalgamation number is bounded by the orders of G and H, that is

$$1 \le a(G, H) \le \min\{|V(G)|, |V(H)|\}.$$

- Let G be a connected graph. The **distance** between the vertices v and w in G, denoted by d(v, w) or d(v, w; G), is the length of a shortest path in G between v and w.
- **Theorem 1.1.** Let G and H be connected finite simple graphs. Suppose there are vertices v in G and w in H such that d(x,v;G)=1 for any vertex $x \neq v$ in G and d(y,w;H)=1 for any vertex $y \neq w$ in H. If $G \star^k H$ is a k-amalgamation which is obtained through $\star^k = (U, W)$, where $v \in U$, $w \in W$, and v = w, then k = 1.
- *Proof.* Suppose $v \in U$ and $w \in W$, and $G \star^k H$ is a k-amalgamation which is obtained through $\star^k = (U, W)$, with v = w. Any other vertex x in G cannot be identified with another vertex y in H since d(x, v; G) = 1 and d(y, w; H) = 1. Therefore, $x \notin U$ and $y \notin V$ for any vertex $x \neq v$ in G and for any vertex $y \neq w$ in H. Thus, |U| = |V| = 1, and k = 1.
- **Corollary 1.2.** If G and H are complete graphs, then a(G,H) = 1.
- **Definition 1.3.** Let G and H be two graphs such that V(G) and V(H) are disjoint sets. The **sum** or **join** of G and H, denoted by G + H, consists of the graphs G and H together with the edges between every vertex of G and every vertex of H.
- **Definition 1.4.** A *wheel* of order n+1 is the graph $W_n = K_1 + C_n$, $n \ge 3$, where C_n is a cycle of order n.
- **Definition 1.5.** A *fan* of order n+1 is the graph $F_n = K_1 + P_n$, $n \ge 2$, where P_n is a path of order n.
- **Example 1.3.** A wheel $W_5 = K_1 + C_5$ and a fan $F_5 = K_1 + P_5$ are shown in Figure 1.2(a) and Figure 1.2(b), respectively.

Figure 1.2 A wheel W_5 and a fan F_5

This study establishes the amalgamation numbers $a(W_m, F_n)$, for $m \ge 3$ and $n \ge 2$, and $a(W_m, W_n)$, for $n \ge m \ge 3$. The investigation can be extended to the study of the amalgamation of other special graphs. The amalgamation of graphs involving paths and cycles was studied in [2] and [3].

2. The Amalgamation Number of a Wheel and a Fan

Let $W_m = K_1 + C_m$ be a wheel, with $K_1 = \{a_0\}$ and $C_m = [a_1, a_2, \cdots, a_m]$, and edges $[a_0, a_i]$, $i = 1, 2, 3, \cdots, m$, $[a_1, a_m]$, and $[a_i, a_{i+1}]$, $i = 1, 2, 3, \cdots, m-1$. Let $F_n = K_1 + P_n$ be a fan, with $K_1 = \{0\}$ and $P_n = (1, 2, 3, \cdots, n)$, and edges [0, i], for $i = 1, 2, 3, \cdots, n$, and [i, i+1], for $i = 1, 2, 3, \cdots, n-1$.

The following result is a corollary of Theorem 1.1.

Lemma 2.1. If $W_m \star^k F_n$ is obtained through $\star^k = (U, W)$, with $a_0 \in U$, $0 \in W$, and $a_0 = 0$, then k = 1.

Theorem 2.2. For $n \ge 7$, $a(W_3, F_n) = 4$.

Proof. Let $n \ge 7$. As shown in Figure 2.1, we obtain a 4-amalgamation of W_3 and F_n through $\star^4 = (U, W)$, with $U = \{a_1, a_2, a_3, a_0\}$ and $W = \{1, 3, 5, 7\}$. Thus, $a(W_3, F_n) \ge 4$. By Remark 2, $a(W_3, F_n) \le \min\{V(W_3), |V(F_n)|\} = \min\{4, n+1\} = 4$. Therefore, $a(W_3, F_n) = 4$.

Figure 2.1 $\star^4 = (U, W)$ in $W_3 \star^4 F_n$, $n \ge 7$

Since W_3 is a complete graph, Theorem 2.2 holds when W_3 is replaced with a connected graph of order 4 with fewer edges. The following result is a corollary of Theorem 2.2.

Corollary 2.3. If $n \ge 7$ and G is a connected graph of order 4, then $a(G, F_n) = 4$.

Theorem 2.4.

i. $a(W_3, F_2) = 1$ ii. $a(W_3, F_n) = 2$ if n = 3 or 4 iii. $a(W_3, F_n) = 3$ if n = 5 or 6

Proof. Since W_3 is the complete graph of order 4, we may assume without loss of generality that $a_1 \in U$ for any k-amalgamation $W_3 \star^k F_n$ with $\star^k = (U, W)$.

- (i) Since W_3 and F_2 are both complete graphs, so $a(W_3, F_2) = 1$.
- (ii) Let n=3 or 4. A 2-amalgamation of W_3 and F_n is isomorphic to one of the following graphs: G_1 which is obtained through $\star^2 = (U,W)$ with $U = \{a_1,a_2\}$ and $W = \{1,3\}$; G_2 which is obtained through $\star^2 = (U,W)$, with $U = \{a_1,a_2\}$ and $W = \{1,4\}$; or G_3 which is obtained through $\star^2 = (U,W)$ with $U = \{a_2,a_3\}$ and $W = \{1,3\}$. Thus, $a(W_3,F_n) \geq 2$. For each of G_1 , G_2 , and G_3 , $d(a_k,j) \leq 2$ for all $a_k \in W_3$ and $j \in F_n$, hence the number of amalgamation vertices cannot be increased. Therefore, $a(W_3,F_n) = 2$ if n=3 or 4.
- (iii) Let n = 5 or 6. A 3-amalgamation of W₃ and F_n is isomorphic to G which is obtained through $\star^3 = (U, W)$, with $U = \{a_1, a_2, a_3\}$ and $W = \{1, 3, 5\}$ or $W = \{1, 3, 6\}$. Thus, $a(W_3, F_n) \ge 3$. By a similar argument in (ii), $a(W_3, F_n) = 3$ if n = 5 or 6.

Theorem 2.5. For $n \ge 7$, $a(W_4, F_n) = 5$.

Proof. Let $n \ge 7$. As shown in Figure 2.2, we obtain a 5-amalgamation of W_4 and F_n through $\star^5 = (U, W)$, with $U = \{a_1, a_3, a_2, a_4, a_0\}$ and $W = \{1, 2, 4, 5, 7\}$. By Remark 2, $a(W_4, F_n) \le \min\{|V(W_4)|, |V(F_n)|\} = \min\{5, n+1\} = 5$. Thus, $a(W_4, F_n) = 5$ if $n \ge 7$.

Figure 2.2 $\star^5 = (U, W)$ in $W_4 \star^5 F_n$, $n \ge 7$

Theorem 2.6.

- i. $a(W_4, F_n) = 2$ if n = 2 or 3
- ii. $a(W_4, F_4) = 3$
- iii. $a(W_4, F_n) = 4$ if n = 5 or 6

Proof. (i) F_2 is the complete graph of order 3. Without loss of generality, we may assume that $a_1 \in U$ for any k-amalgamation $W_4 \star^k F_2$ with $\star^k = (U, W)$. A 2-amalgamation of W_4 and F_2 is isomorphic to $G = W_4 \star^2 F_2$ which is obtained through $\star^2 = (U, W)$, with $U = \{a_1, a_3\}$ and $W = \{1, 2\}$. Thus, $a(W_4, F_2) \ge 2$. Since $d(a_k, j; G) \le 2$ for all $a_k \in W_4$ and $j \in F_2$, so the number of amalgamation vertices cannot be increased. Therefore, $a(W_4, F_2) = 2$.

A 2-amalgamation of W_4 and F_3 is isomorphic to $G = W_4 \star^2 F_3$ which is obtained through $\star^2 = (U, W)$, with $U = \{a_1, a_3\}$ and $W = \{1, 2\}$, $W = \{1, 3\}$ or $W = \{0, 1\}$, $U = \{a_1, a_2\}$ and $W = \{1, 3\}$, $U = \{a_2, a_4\}$ and $W = \{1, 2\}$ or $W = \{0, 1\}$, or $U = \{a_1, a_4\}$ and $W = \{1, 3\}$. Since $d(a_k, j; G) \le 2$ for all $a_k \in W_4$ and $j \in F_3$, so the number of amalgamation vertices cannot be increased. Thus, $a(W_4, F_3) = 2$.

(ii) A 3-amalgamation of W_4 and F_4 is isomorphic to $G = W_4 \star^3 F_4$ which is obtained through $\star^3 = (U, W)$, with $U = \{a_1, a_3, a_2\}$ and $W = \{1, 2, 4\}$, or $U = \{a_1, a_2, a_4\}$ and $W = \{1, 3, 4\}$. Since $d(a_k, j; G) \le 2$ for all $a_k \in W_4$ and $j \in F_4$, so the number of amalgamation vertices cannot be increased. Thus, $a(W_4, F_4) = 3$.

(iii) Let n=5 or 6. A 4-amalgamation of W_4 and F_n is isomorphic to $G=W_4 \star^4 F_n$ which is obtained through $\star^4=(U,W)$, with $U=\{a_1,a_3,a_2,a_4\}$ and $W=\{1,2,4,5\}$, or $U=\{a_1,a_3,a_4,a_2\}$ and $W=\{1,2,4,5\}$. Since $d(a_k,j;G)\leq 2$ for all $a_k\in W_4$ and $j\in F_n$, so the number of amalgamation vertices cannot be increased. Thus, $a(W_4,F_n)=4$.

Theorem 2.7. If $m \ge 5$ and $n \ge m+2$, then $a(W_m, F_n) = m+1$.

Proof. Let $m \ge 5$ and $n \ge m + 2$. By Lemma 2.1 we may not identify the vertices a_0 and 0. We consider two cases (see Figure 2.3 for m even, and Figure 2.4 for m odd). When m is even, we obtain an (m+1)-amalgamation of W_m and F_n with $\star^{m+1} = (U, W)$, $U = \{a_1, a_3, a_5, \cdots, a_{m-1}, a_2, a_4, \cdots, a_m, a_0\}$ and $W = \{1, 2, 3, 4, \cdots, m, m+2\}$. When m is odd, we obtain an (m+1)-amalgamation of W_m and F_n with $\star^{m+1} = (U, W)$, $U = \{a_1, a_3, a_5, \cdots, a_m, a_2, a_4, \cdots, a_{m-1}, a_0\}$ and $W = \{1, 2, 3, 4, \cdots, m, m+2\}$. In both cases, $|U| = |V(W_m)| = m+1$; hence, $a(W_m, F_n) \ge m+1$. By Remark 2,

 $a(W_m, F_n) \le \min \{V(W_m), |V(F_n)|\} = \min \{m+1, n+1\} = m+1.$

Thus, $a(W_m, F_n) = m+1$ if $m \ge 5$ and $n \ge m+2$.

Figure 2.3 $\star^{m+1} = (U, W)$ in $W_m \star^{m+1} F_n$ for m even, $m \ge 5$ and $n \ge m+2$

Figure 2.4 $\star^{m+1} = (U, W)$ in $W_m \star^{m+1} F_n$ for m odd, $m \ge 5$ and $n \ge m+2$

Theorem 2.8. If $m \ge 5$ and $m \le n \le m+1$, then $a(W_m, F_n) = m$.

Proof. Let $m \ge 5$ and $m \le n \le m+1$. By Lemma 2.1 identifying the vertices $a_0 \in W_m$ and $0 \in F_n$ will not yield a maximum number of amalgamation vertices, thus, $a_0 \ne 0$. When m is even, we obtain an m-amalgamation of W_m and F_n , with $\star^m = (U, W)$, $U = \{a_1, a_3, a_5, \cdots, a_{m-1}, a_2, a_4, \cdots, a_m\}$ and $W = \{1, 2, 3, 4, \cdots, m\}$. When m is odd, we obtain an m-amalgamation of W_m and F_n , with $\star^m = (U, W)$, $U = \{a_1, a_3, a_5, \cdots, a_m, a_2, a_4, \cdots, a_{m-1}\}$ and $W = \{1, 2, 3, 4, \cdots, m\}$. Thus, $a(W_m, F_n) \ge m$. By Remark 2, $m \le a(W_m, F_n) \le m+1$. Suppose that $W_m \star^{m+1} F_n$ exists, with $\star^{m+1} = (U, W)$ and $|U| = |V(W_m)| = m+1$. Since $a_0 \ne 0$, so a_0 is identified with a vertex w in $\{1, 2, 3, \cdots, n\} = V(F_n) - \{0\}$. Thus, $n \ge m+1$. Therefore, $W_m \star^{m+1} F_n$ is not possible if n = m; hence, $a(W_m, F_m) = m$. Let n = m+1. Without loss of generality, let $a_0 = w$, where $w \in \{1, 2, 3, \cdots, m+1\}$. Note that the vertices $a_1, a_2, a_3, a_4, \cdots, a_m$ are identified with the vertices in $\{1, 2, 3, \cdots, m+1\} - \{w\}$. Thus, there are vertices a_k and a_j , $k \ne 0$ and $j \ne 0$, which are identified with w-1 and w+1, that is, $a_k = w-1$ and $a_j = w+1$. However, $a_0 = w, a_k = w-1$ and $a_0 = w, a_1 = w+1$ are edges in $a_0 = w, a_1 = w+1$ are edges in $a_0 = w, a_1 = w+1$ are edges in $a_0 = w, a_1 = w+1$ and $a_0 = w, a_1 = w+1$ are edges in $a_0 = w, a_1 = w+1$ are edges occur. Therefore, $a_0 = w, a_1 = w+1$ are edges in $a_0 = w, a_1 = w+1$ and $a_0 = w, a_1 = w+1$ are edges occur. Therefore, $a_0 = w, a_1 = w+1$ are edges in $a_0 = w, a_1 = w+1$ and $a_0 = w, a_1 = w+1$ are edges occur.

3. The Amalgamation Number of Two Wheels

Let $W_m = K_1 + C_m$ be a wheel with $K_1 = \{a_0\}$ and $C_m = [a_1, a_2, a_3, \cdots, a_m]$ and edges $[a_0, a_i]$, $i = 1, 2, 3, \cdots, m$, and $[a_1, a_m]$, $[a_i, a_{i+1}]$, $i = 1, 2, 3, \cdots, m-1$. Let $W_n = K_1 + C_n$ be a second wheel with $K_1 = \{0\}$ and the cycle $C_n = [1, 2, 3, \ldots, n]$ and edges [0,i], $i = 1, 2, 3, \cdots, n$, and [1, n], [i, i+1], $i = 1, 2, 3, \cdots, n-1$. By Remark 1, $G \star^n H = H \star^n G$, thus we will consider only $a(W_m, W_n)$ with $m \le n$.

The following result is a corollary of Theorem 1.1.

Lemma 3.1. If $W_m \star^k W_n$ is obtained through $\star^k = (U, W)$, with $a_0 \in U$, $0 \in W$, and $a_0 = 0$, then k = 1.

Theorem 3.2. For $n \ge 8$, $a(W_3, W_n) = 4$.

Proof. Refer to Figure 3.1. We obtain a 4-amalgamation of W_3 and W_n through $\star^4 = (U, W)$, with $U = \{a_1, a_2, a_3, a_0\}$ and $W = \{1, 3, 5, 7\}$. Therefore, $a(W_3, W_n) \ge 4$. By Remark 2, $a(W_3, W_n) \le \min \{V(W_3), |V(W_n)|\} = \min \{4, n+1\} = 4$. Thus, $a(W_3, W_n) = 4$ if $n \ge 8$.

Figure 3.1 $\star^4 = (U, W)$ in $W_3 \star^4 W_n$ for $n \ge 8$

Theorem 3.3.

i.
$$a(W_3, W_3) = 1$$

ii.
$$a(W_3, W_n) = 2$$
 if $n = 4$ or 5

iii.
$$a(W_3, W_n) = 3$$
 if $n = 6$ or 7

Proof. Note that W_3 is the complete graph of order 4. Without loss of generality, we may assume that $a_1 \in U$ for any k-amalgamation $W_3 \star^k W_n$ with $\star^k = (U, W)$.

- (i) By Corollary 1.2, $a(W_3, W_3) = 1$.
- (ii) Let n=4 or 5. A 2-amalgamation of W_3 and either a W_4 or a W_5 is isomorphic to $G=W_3 \star^2 W_n$ which is obtained through $\star^2=(U,W)$ where $U=\{a_1,a_2\}$ and $W=\{1,3\}$ when n=4, and $U=\{a_1,a_2\}$ and $W=\{1,3\}$ or $W=\{1,4\}$ when n=5. Thus, $a(W_3,W_n)\geq 2$. Since $d(a_k,j;G)\leq 2$ for all $a_k\in W_3$ and $j\in W_n$, so the number of amalgamation vertices cannot be increased. Therefore, $a(W_3,W_n)=2$.
- (iii) Let n=6 or 7. A 3-amalgamation of W_3 and W_n is isomorphic to $G=W_3\star^3W_n$ which is obtained through $\star^3=(U,W)$ where $U=\{a_1,a_2,a_3\}$ and $W=\{1,3,5\}$ when n=6, and $U=\{a_1,a_2,a_3\}$ and $W=\{1,3,5\}$, $W=\{1,4,6\}$ or $W=\{1,3,6\}$ when n=7. Thus, $a(W_3,W_n)\geq 3$. Since $d(a_k,j;G)\leq 2$ for all $a_k\in W_3$ and $j\in W_n$, so the number of amalgamation vertices cannot be increased. Therefore, $a(W_3,W_n)=3$.

Theorem 3.4. For $n \ge 8$, $a(W_4, W_n) = 5$.

Proof. Refer to Figure 3.2. For $n \ge 8$, we obtain a 5-amalgamation of W_4 and W_n through $\star^5 = (U, W)$, with $U = \{a_1, a_3, a_2, a_4, a_0\}$ and $W = \{1, 2, 4, 5, 7\}$. By Remark 2, $a(W_4, W_n) \le \min\{V(W_4), |V(W_n)|\} = \min\{5, n+1\} = 5$. Thus, $a(W_4, W_n) = 5$ if $n \ge 8$.

Figure 3.2
$$\star^5 = (U, W)$$
 in $W_4 \star^5 W_n$, $n \ge 8$

Theorem 3.5.

- i. $a(W_4, W_4) = 2$
- ii. $a(W_4, W_5) = 3$
- iii. $a(W_4, W_n) = 4$ if n = 6 or 7
- *Proof.* (i) A 2-amalgamation of W_4 and W_4 is isomorphic to $G = W_4 \star^2 W_4$ which is obtained through $\star^2 = (U, W)$, with $U = \{a_1, a_3\}$ and $W = \{1, 2\}$, $W = \{1, 3\}$ or $W = \{1, 4\}$, or $U = \{a_1, a_2\}$ and $W = \{1, 3\}$. Thus, $a(W_4, W_4) \ge 2$. Since $d(a_k, j; G) \le 2$ for all $a_k \in W_4$ and $j \in W_4$, so the number of amalgamation vertices cannot be increased. Therefore, $a(W_4, W_4) = 2$.
- (ii) A 3-amalgamation of W_4 and W_5 is isomorphic to $G = W_4 \star^2 W_5$ which is obtained through $\star^3 = (U,W)$, with $U = \{a_1,a_2,a_3\}$ and $W = \{1,3,5\}$, $U = \{a_1,a_2,a_4\}$ and $W = \{1,3,4\}$, $U = \{a_1,a_3,a_2\}$ and $W = \{1,2,4\}$, $U = \{a_1,a_3,a_4\}$ and $W = \{1,2,4\}$, or $U = \{a_2,a_4,a_3\}$ and $W = \{1,2,4\}$. (Refer to Figure 3.3 for $W_4 \star^3 W_5$ with $U = \{a_1,a_3,a_2\}$ and $W = \{1,2,4\}$.) Thus, $a(W_4,W_5) \geq 3$. Since $d(a_k,j;G) \leq 2$ for all $a_k \in W_4$ and $j \in W_5$, so the number of amalgamation vertices cannot be increased. Therefore, $a(W_4,W_5) = 3$.

Figure 3.3 $W_4 \star^3 W_5$, with $\star^3 = (U, W)$, $U = \{a_1, a_3, a_2\}$ and $W = \{1, 2, 4\}$

(iii) Let n = 6 or 7. A 4-amalgamation of W_4 and either a W_6 or a W_7 is isomorphic to $G = W_4 \star^2 W_n$ which is obtained through $\star^4 = (U, W)$ with $U = \{a_1, a_3, a_4, a_2\}$ and $W = \{1, 2, 4, 5\}$, $U = \{a_1, a_3, a_2, a_4\}$ and $W = \{1, 2, 4, 5\}$, or $U = \{a_1, a_2, a_4, a_3\}$ and $W = \{1, 3, 4, 6\}$. Thus, $a(W_4, W_n) \ge 4$. Since $d(a_k, j; G) \le 2$ for all

 $a_k \in W_4$ and $j \in W_n$, so the number of amalgamation vertices cannot be increased. Therefore, $a(W_4, W_n) = 4$ for n = 6 or 7..

Theorem 3.6. If $m \ge 5$ and $n \ge m+3$, then $a(W_m, W_n) = m+1$.

Proof. Let $m \ge 5$ and $n \ge m+3$. By Lemma 3.1 we may not identify the vertices a_0 and 0. We consider two cases (see Figure 3.4 when m is even, and Figure 3.5 when m is odd). When m is even, we obtain an (m+1)-amalgamation of W_m and W_n through $\star^{m+1} = (U,W)$, with $U = \{a_1,a_3,a_5,\cdots,a_{m-1},a_2,a_4,a_6,\cdots,a_m,a_0\}$ and $W = \{1,2,3,\cdots,m,m+2\}$. When m is odd, we obtain an (m+1)-amalgamation of W_m and W_n through $\star^{m+1} = (U,W)$, with $U = \{a_1,a_3,a_5,\cdots,a_m,a_2,a_4,a_6,\cdots,a_{m-1},a_0\}$ and $W = \{1,2,3,\cdots,m,m+2\}$. In both cases, $|U| = |V(W_m)| = m+1$ and |W| = m+1. Hence, $a(W_m,W_n) \ge m+1$. By Remark 2, $a(W_m,W_n) \le \min\{|V(W_m)|,|V(W_n)|\} = \min\{m+1,n+1\} = m+1$. Thus, $a(W_m,W_n) = m+1$ if $m \ge 5$ and $n \ge m+3$.

Figure 3.4 $\star^{m+1} = (U, W)$ in $W_m \star^{m+1} W_n$, m even, $m \ge 5$ and $n \ge m+3$

Figure 3.5 $\star^{m+1} = (U, W)$ in $W_m \star^{m+1} W_n$, m odd, $m \ge 5$ and $n \ge m+3$

Theorem 3.7. If $m \ge 5$ and $m \le n \le m+2$, then $a(W_m, W_n) = m$.

Proof. Let $m \ge 5$ and $m \le n \le m+2$. By Lemma 3.1 we may not identify the vertices $a_0 \in W_m$ and $0 \in W_n$ in order to maximize the number of vertices of amalgamation , that is, $a_0 \ne 0$. When m is even, we obtain an m-amalgamation of W_m and W_n through $\star^m = (U, W)$, with $U = \{a_1, a_3, a_5, \cdots, a_{m-1}, a_2, a_m, a_4, a_6, \cdots, a_{m-2}\}$ and $W = \{1, 2, 3, \cdots, m\}$. When m is odd, we obtain an m-amalgamation of W_m and W_n through $\star^m = (U, W)$, with $U = \{a_1, a_3, a_5, \cdots, a_m, a_2, a_4, a_6, \cdots, a_{m-1}\}$ and $W = \{1, 2, 3, \cdots, n\}$. Hence, $a(W_m, W_n) \ge m$. By Remark 2, $a(W_m, W_n) \le m+1$. Suppose that a $W_m \star^{m+1} W_n$ exists, with $\star^{m+1} = (U, W)$. Then, $U = V(W_m)$. Since $a_0 \ne 0$, so a_0 is identified with a vertex $w \in \{1, 2, 3, \cdots, n\}$. Therefore, $n \ge m+1$. Hence, $W_m \star^{m+1} W_n$ does not exist if n = m, and therefore, $a(W_m, W_m) = m$. Let n = m+1 or m+2. Without loss of generality, let $a_0 = w$, where $w \in \{1, 2, 3, \cdots, m, m+1, m+2\}$. The m vertices $a_1, a_2, a_3, a_4, \cdots, a_m$ of W_m are identified with m vertices from $\{1, 2, 3, \cdots, m, m+1, m+2\} = V(W_n) - \{0\}$. We consider two cases. Case (1). Let $w \in \{1, 2, 3, \cdots, m+1\}$. Then, there is a vertex a_k , $k \ne 0$, which is identified with w-1 or w+1, that is, $a_k = w-1$ or $a_k = w+1$. Thus, either $\{a_0, a_k = w-1\}$ or $\{a_0, a_k = w+1\}$ or both, are edges in W_m , and $\{a_0 = w, w-1\}$ and

 $(a_0 = w, w+1)$ are edges in W_n . In this case, multiple edges occur. Case (2). Let w = n = m+2. Then, either there is a vertex a_k , $k \neq 0$, which is identified with w-1=m+1, or not. If $a_k = w-1$, then $(a_0, a_k = w-1)$ is an edge in W_m and $(a_0 = w, w-1)$ is an edge in W_n ; hence, multiple edges occur. If $a_k \neq w-1$, then $1 = a_k$ for some $k \neq 0$. Then, $(a_0 = m+2, a_k = 1)$ is an edge in W_m and $(a_0 = m+2, a_k = 1)$ is an edge in W_n ; hence, multiple edges occur. Thus, a $W_m \not \sim^{m+1} W_n$ does not exist, and $a(W_m, W_{m+2}) = m$ if n = m+1 or m+2. This completes the proof of the theorem.

Example 3.1. A 5-amalgamation $W_5 \star^5 W_5$ which is obtained through $\star^5 = (U, W)$, with $U = \{a_1, a_3, a_5, a_2, a_4\}$ and $W = \{1, 2, 3, 4, 5\}$, and a 6-amalgamation $W_6 \star^6 W_6$ which is obtained through $\star^6 = (U, W)$, with $U = \{a_1, a_3, a_5, a_2, a_6, a_4\}$ and $W = \{1, 2, 3, 4, 5, 6\}$ are shown in Figure 3.6. By Theorem 3.7, $a(W_5, W_5) = 5$ and $a(W_6, W_6) = 6$.

Figure 3.6 Some *m*-amalgamations $W_m \star^m W_m$, $m \ge 5$

The author acknowledges the comments and suggestions from the referees.

References Cited

- [1] Bondy, J. A. and U.S.R. Murty, **Graph Theory with Applications**. London, Unwin Brothers Ltd., 1977.
- [2] Chua, Elvira and Thelma C. Montero-Galliguez, "Graphs as n-amalgamation of connected subgraphs". **Journal of Research in Science, Computing and Engineering**, Vol. 2 No. 1 (Feb. 2005), pp. 8-15.
- [3] Chua, Elvira and Thelma C. Montero-Galliguez, "Amalgamation numbers of cycles and paths". **Journal of Research in Science, Computing and Engineering**, Vol.2 No. 4 (Nov. 2005), pp. 11-17.
- [4] Harary, Frank, **Graph Theory**. Reading, Massachusetts: Addison-Wesley Publishing Co., 1972.
- [5] Montero-Galliguez, Thelma C. "A study on n-amalgamation of graphs, Part I". NRCP Research Project B-82, 1997.