

Exploring the applications of dissipative coupling in microwave frequencies

Yutong Zhao

Department of Physics and Astronomy

University of Manitoba

Program: Master of Science

Supervisor: Dr. Can-Ming Hu

Committee: Dr. Gregory Bridges

Dr. Jacob Burgess

Table of Content

Exploring the applications of dissipative coupling in microwave frequencies

Research and academic progress

Course Work:

PHYS 7510

Condensed Matter Physics 2 (A)

PHYS 7590

Electromagnetic Theory Quantum Mechanics 1 (A+) (A+) Course Work:

ECE 7440

Microwave Materials

Measurement Techniques (A+)

2019.04 1st Progress meeting + Thesis proposal 2020

2018

2020.06 2nd Progress meeting + Thesis submission 2020.07 Published 1st paper

2020.08 Thesis defense + Finial submission

Publications

2018.09 Start of the program

Course Work:

PHYS 7720

First authored

[1]. Zhao, Y. T., et al. "Broadband nonreciprocity realized by locally controlling the magnon's radiation." Physical Review Applied, 2020, 14(1): 014035.

2019

Co-authored

- [2]. Rao, J. W., et al. "Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device." Nature communications 10.1 (2019): 1-7.
- [3]. Yao, B.M., et al. "Coherent control of magnon radiative damping with local photon states", Communications Physics (2019):0482
- [4]. Rao, J. W., et al. "Level attraction and level repulsion of magnon coupled with a cavity anti-resonance." New Journal of Physics 21.6 (2019): 065001.

Introduction to cavity-magnon-polariton (CMP)

Coupling Mechanics of CMP

Coherent coupling

Physical review letters 113.15 (2014): 156401.

Level repulsion has been widely studied in CMP

Dissipative coupling

Discovery of level attraction in CMP

My research is focused on dissipative coupling.

What we can make use of dissipative coupling?

On-chip level attraction with planar YIG

On-chip device utilizing level attraction

Physical Review Applied 11.5 (2019): 054023.

Physical Review Research 2.1 (2020): 013154.

Linewidth control use level merging

Nonreciprocal microwave transmission

Physical review letters 123.12 (2019): 127202.

How do we understand CMP?

• Coupled photon and magnon

Standing wave

Ferromagnetic resonance

Photon cavity resonance

→ Periodic motion

Complex frequency

$$\widetilde{\omega}_1 = \omega_1 - i\Delta\omega_1$$

Resonance (real) + damping (imaginary)

2. Introduction to dissipative coupling

Time-domain response

Coherent coupled pendulums

Schematic – Spring

Equation of motion:

$$\ddot{\varphi}_1 + 2\lambda_1 \dot{\varphi}_1 + \omega_1^2 \, \varphi_1 \, - 2\omega_1 J(\varphi_2 - \varphi_1) = 0$$

$$\ddot{\varphi}_2 + 2\lambda_2 \dot{\varphi}_2 + \omega_2^2 \, \varphi_2 \, - 2\omega_2 J(\varphi_1 - \varphi_2) = 0$$

Matrix form

$$\begin{bmatrix} \omega - \widetilde{\omega}_1 - J & J \\ J & \omega - \widetilde{\omega}_2 - J \end{bmatrix} \begin{bmatrix} |\varphi_1| \\ |\varphi_2| \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

coupling = Real

→ Conservative force

- → Level repulsion
- → Linewidth exchange

Dissipative coupled pendulums

Schematic-Dashpot

Matrix form

$$\begin{bmatrix} \omega - \widetilde{\omega}_1 - i\Gamma & i\Gamma \\ i\Gamma & \omega - \widetilde{\omega}_2 - i\Gamma \end{bmatrix} \begin{bmatrix} |\varphi_1| \\ |\varphi_2| \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

coupling = imaginary

→ Nonconservative force

Green arrow → zero damping

Shade area → negative damping

- → Level attraction
- → Linewidth "repulsion"

Numerical methods for time domain analysis

Equation of motion:

$$\dot{\varphi}(t) = f(\varphi(t), t)$$

→ Ordinary Differential Equations (ODEs)

Next moment

This moment (initial conditions)

$$\varphi(t_{n+1}) = \varphi(t_n) + \int_{t_n}^{t_{n+1}} f(\varphi(t), t) dt$$

Numerical approximation

$$f(\varphi(t),t) \sim \text{constant}$$

$$\varphi(t_{n+1}) = \varphi(t_n) + f(\varphi(t), t)(t_{n+1} - t_n)$$

Coherent coupling - Rabi Oscillation like

Dissipative coupling - Synchronization like

Dissipative coupling in metamaterials

Transmission transition from 0 to 1

Asymmetry resonance is a typical Fano resonance

We have observed a transition from 0 to 1 in transmission.

$$1 \rightarrow on$$

$$0 \rightarrow \text{off}$$

Potential to design switching device.

Smaller window → high performance

Voltage-controlled level attraction

Varactor loaded split-ring resonator

Ultra-high Quality factor → sensitive detection / sensor design

Nonreciprocity in cavity magnon polariton

Wang, Yi-Pu, et al. "Nonreciprocity and unidirectional invisibility in cavity magnonics." Physical review letters 123.12 (2019): 127202.

Unidirectional transmission

Iso. (dB)= $|S_{21}-S_{12}|$

For Iso. >20db

Bandwidth ~ 0.5 MHz

~ magnon linewidth

Local control of magnon damping

Broadband nonreciprocal device

Summary of Contribution

- 1. We proposal a numerical method to analysis time-domain signal and have potential to study non-linear and chaotic effects in dissipative coupling.
- 2. Dissipatively coupled metamaterials for sensitive detectors, switching device.
- 3. Broadband nonreciprocal device by locally control magnon damping in CMP.

6. Conclusion

Additional Information for Clarification

- 1. Level attraction in Simulation
- 2. Magnetic Resonance of Split-ring Resonator
- 3. Classical circuit model for level attraction
- 4. Negative damping/resistance
- 5. Negative damping coherent coupling calculation result
- 6. Negative damping dissipative coupling calculation result
- 7. Relation between damping rates and quality factors
- 8. Linewidth evolution for dissipative coupling (negative damping)
- 9. Fano Resonance
- 10. Fano Resonance (2)
- 11. Fano Resonance for designing switching devices
- 12. <u>Fano Resonance for designing sensors</u>
- 13. Rabi Oscillation
- 14. Rabi oscillation for coherent coupling time domain

- 15. Faraday Rotation
- 16. Why do people need nonreciprocal devices?
- 17. Between oscillators and polaritons
- 18. Damping control by Inverse-square law
- 19. Antiresonance
- 20. ODEs solvers for nonlinear / chaotic analysis (1-3)

Level attraction in Simulation

Level attraction in Simulation (2)

Magnetic Resonance of Split-ring Resonator

 ∞

Three ways to excite resonance of an SRR.

- (i) Electric coupling to magnetic resonance
- (ii) Magnetic coupling to magnetic resonance
- (iii) Electric coupling to electric resonance

- (i) + (ii) → magnetic dipole in z-direction
- (iii) → electric dipole in y-direction

Classical circuit model for level attraction

Impedance Z \rightarrow transmission matrix (ABCD) \rightarrow Scattering matrix (S₂₁ & S₁₁)

$$S_{21} \approx 1 + \frac{\kappa}{i(\omega - \omega_1) - (\beta + \kappa) + \frac{\kappa \gamma e^{i(2kl + \pi)}}{i(\omega - \omega_m) + \alpha + \gamma}}$$

Equivalent to Hamiltonian model

Two classical RLC oscillator coupled with a transmission line.

This model confirms the importance of travelling wave in this system.

Negative damping/resistance

$$\omega_1 = 1/\sqrt{LC}$$
 – resonance frequency $\kappa = Z_0/4L$ – external damping $\gamma = R/2L$ – intrinsic damping

Single RLC resonator in a Two-port Network

Negative damping/resistance (2)

Coherent coupling case

The S21 trajectory always exclude origin, showing the damping is always positive

Negative damping/resistance (3)

Dissipative coupling case The S21 trajectory sometimes include origin, showing the damping could be zero/negative!

Relation between damping rates and quality factors

Determination of Loaded, Unloaded, and External Quality Factors of a Dielectric Resonator Coupled to a Microstrip Line

APS KHANNA AND Y. GARAULT

External Q factor \rightarrow intrinsic + external damping

Unloaded Q factor \rightarrow intrinsic damping $\propto R$

Loaded Q factor → external damping

$$Q = \frac{\omega_1}{\Delta \omega}$$

Khanna, A. P. S., and Y. Garault. IEEE Transactions on Microwave Theory and Techniques 31.3 (1983): 261-264.

Linewidth evolution for dissipative coupling

Fano Resonance

In 1961, Ugo Fano discovered a distinctly <u>asymmetric</u> shape while studying the autoionizing states of atoms.

Characteristic: One discrete state and one continuum

$$I \propto \frac{(F\gamma + \omega - \omega_0)^2}{(\omega - \omega_0)^2 + \gamma^2}$$

Fano, Ugo. "Effects of configuration interaction on intensities and phase shifts." *Physical Review* 124.6 (1961): 1866.

In our case:

travelling wave → continuum states SRR → discrete state

Yao, Bimu, et al. "The microscopic origin of magnon-photon level attraction by traveling waves: Theory and experiment." *Physical Review B* 100.21 (2019): 214426.

Fano Resonance (2)

Miroshnichenko, Andrey E., Sergej Flach, and Yuri S. Kivshar.

"Fano resonances in nanoscale structures." *Reviews of Modern Physics* 82.3 (2010): 2257.

"Such waveguide-cavity systems can naturally exhibit Fano resonances with <u>high quality factors</u>, and they can be used for optical modulations and switching."

"Therefore, the Fano resonance can be considered as a precursor of BICs, with unique properties that may lead to applications including <u>optical sensors</u>, filters and waveguides, as well as low-loss fibres and large-area lasers."

Fano Resonance for designing switching devices

Nozaki, Kengo, et al. "Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities." *Optics express* 21.10 (2013): 11877-11888.

Yanik, Mehmet Fatih, Shanhui Fan, and Marin Soljačić. "High-contrast all-optical bistable switching in photonic crystal microcavities." *Applied Physics Letters* 83.14 (2003): 2739-2741.

Fano Resonance for designing sensors

Yellow material: Dielectric material under test

Hao, Feng, et al. "Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance." *Nano letters* 8.11 (2008): 3983-3988.

Singh, Ranjan, et al. "Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces." *Applied Physics Letters* 105.17 (2014): 171101.

Rabi Oscillation

A Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity. In this process, atom alternately emits photons into a single-mode electromagnetic cavity and reabsorbs them.

Schematic for a two-level system

Typical frequency-domain observation

Rabi oscillation for coherent coupling – time domain

Zhang, Xufeng, et al. "Strongly coupled magnons and cavity microwave photons." *Physical review letters* 113.15 (2014): 156401.

Match, Christophe, et al. "Transient response of the cavity magnon-polariton." *Physical Review B* 99.13 (2019): 134445.

FIG. 17. Typical resonant structures. Schematic setup for (a) a waveguide directly coupled to a cavity and (b) a waveguide side-coupled to a cavity.

Faraday Rotation

 ∞

The Faraday effect causes a <u>rotation of the plane of polarization</u> which is linearly proportional to the component of the magnetic field in the direction of propagation.

Non-reciprocity can be generated by inserting a polarizer.

Why do people need nonreciprocal devices?

- 1. invisible sensing or cloaking
- 2. noise-free information processing
- 3. qubit shield / protection
- 4. Other circuit design

Optical invisibility of a human hand

Shielding qubits from environmental noise

He, Cheng, et al. "One-way cloak based on nonreciprocal photonic crystal." *Applied Physics Letters* 99.15 (2011): 151112.

Between oscillators and polaritons

Simplified model to explain the behavior of polariton and pendulums

$$\begin{bmatrix} \omega - \widetilde{\omega}_1 - i\Gamma & i\Gamma \\ i\Gamma & \omega - \widetilde{\omega}_2 - i\Gamma \end{bmatrix} \begin{bmatrix} |\varphi_1| \\ |\varphi_2| \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \omega - \widetilde{\omega}_1 & i\Gamma \\ i\Gamma & \omega - \widetilde{\omega}_2 \end{bmatrix} \begin{bmatrix} |\varphi_1| \\ |\varphi_2| \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Mechanical oscillators

Polaritons

Damping control by Inverse-square law

Suppose the magnetic loop antenna introduce an anisotropic environment with certain area around magnon.

This area influence the environment would decay with the inverse-square law

Calculation parameter for ODEs solvers

Coherent coupling - Rabi Oscillation like

$$J = 0.5 Hz$$

Dissipative coupling - Synchronization like

$$\omega_1 = \omega_2 = 10 \, Hz$$

$$\Delta\omega_1 = \Delta\omega_2 = 0.01 \, Hz$$

$$\Gamma = 0.5 Hz$$

Antiresonance

Journal of Electrical Engineering & Technology 12.2 (2017): 846-851.

→ Minimum response to external driving

Antiresonance (2) video demonstration

Minimum response to external driving

Modulation depth

A relative modulation amplitude, or the maximum change in transmission.

Switching window

The frequency window between the transmission 1 to zero

Application: Ultrafast switch

Srivastava, Yogesh Kumar, et al. "A Superconducting Dual-Channel Photonic Switch." *Advanced materials* 30.29 (2018): 1801257.

ODEs solvers for nonlinear / chaotic analysis (1)

For a linear oscillator with driving force, we can calculate the trajectory.

ODEs solvers for nonlinear / chaotic analysis (2)

For a **nonlinear** oscillator with driving force, we can calculate the trajectory.

ODEs solvers for nonlinear / chaotic analysis (1)

For a **chaotic** oscillator with driving force, we can calculate the trajectory that depends on initial conditions.

