GPTIPS pareto front report

01-May-2019 00:03:02

Config file: Y10_config.m

Number of models on front: 5

Total models: 100

This report shows the expressional complexity/performance characteristics (on training data) of symbolic models on the pareto front.

Numerical precision is reduced for display purposes.

Click on column headers to sort models by expressional complexity and goodness of fit (R²).

Model ID	Goodness of fit (R ²)	Model complexity	Model
3	0.985	288	$\begin{array}{c} 2.01\ x_1 + 0.0332\ x_2 + 0.748\ x_3 - 0.262\ x_4 - 0.817\ x_5 - \\ 0.00493\ x_1\ x_2 + 0.148\ x_1\ x_3 + 0.0102\ x_2\ x_3 - 0.165\ x_1\ x_5 + \\ 0.0077\ x_2\ x_4 - 0.00493\ x_2\ x_5 + 0.00498\ x_3\ x_4 + 8.9e-4\ x_3\ x_5 - \\ 0.0242\ x_4\ x_5 - 0.001\ x_2\ x_3^2 + 4.37e-5\ x_3\ x_4^2 - 1.49e-5\ x_3\ x_4^3 - \\ 4.48e-5\ x_4^2 - 4.37e-5\ x_4^3 + 0.037\ x_5^2 + 1.49e-5\ x_4^4 + \\ 0.00153\ x_1\ x_2\ x_3 - 4.02e-4\ x_2\ x_3\ x_4 + 10.8 \end{array}$
8	0.983	270	$\begin{array}{l} 3.38 \; x_1 + 0.0532 \; x_2 - 0.0608 \; x_3 - 0.218 \; x_4 - 0.00577 \; x_1 \; x_2 + \\ 0.152 \; x_1 \; x_3 + 0.0128 \; x_2 \; x_3 - 0.157 \; x_1 \; x_5 + 0.00733 \; x_2 \; x_4 - \\ 0.00577 \; x_2 \; x_5 + 0.00581 \; x_3 \; x_4 + 0.0146 \; x_3 \; x_5 - 0.0253 \; x_4 \; x_5 - \\ 6.61e-4 \; x_2 \; x_3^2 + 4.01e-5 \; x_3 \; x_4^2 - 1.37e-5 \; x_3 \; x_4^3 - 4.11e-5 \; x_4^2 - 4.01e-5 \; x_4^3 + 0.0242 \; x_5^2 + 1.37e-5 \; x_4^4 - 0.00135 \; x_1 \; x_2 \; x_3 - \\ 3.24e-4 \; x_2 \; x_3 \; x_4 - 2.09 \end{array}$
46	0.977	231	$4.8 \ x_1 + 0.0195 \ x_2 - 0.695 \ x_3 + 3.07e - 4 \ x_4 + 0.695 \ x_5 + \\ 0.158 \ x_1 \ x_3 + 0.00417 \ x_2 \ x_3 - 0.144 \ x_1 \ x_5 + 2.72e - 5 \ x_3 \ x_4 + \\ 0.0332 \ x_3 \ x_5 - 0.014 \ x_4 \ x_5 + 5.26e - 5 \ x_2 \ x_3^2 + 2.65e - 5 \ x_3 \ x_4^2 - \\ 9.05e - 6 \ x_3 \ x_4^3 - 2.72e - 5 \ x_4^2 - 2.65e - 5 \ x_4^3 + 9.05e - 6 \ x_4^4 - \\ 0.00492 \ x_1 \ x_2 \ x_3 + 5.26e - 5 \ x_2 \ x_3 \ x_4 - 11.8$
54	0.966	201	$\begin{array}{l} 0.313\ x_4 - 0.0379\ x_2 - 0.0709\ x_3 - 0.0159\ x_1 + 0.102\ x_5 + \\ 0.00491\ x_1\ x_2 + 0.0834\ x_1\ x_3 - 0.00641\ x_2\ x_3 - 0.0721\ x_1\ x_5 - \\ 0.00491\ x_2\ x_4 + 0.00491\ x_2\ x_5 - 0.00491\ x_3\ x_4 + 0.0209\ x_3\ x_5 \\ - 0.00641\ x_4\ x_5 + 1.77e-4\ x_2\ x_3^2 + 4.7e-4\ x_1\ x_2\ x_3 + 1.77e-4 \\ x_2\ x_3\ x_4 - 0.0303 \end{array}$
82	0.985	280	$\begin{array}{c} 2.07\ x_1 + 0.042\ x_2 + 0.747\ x_3 - 0.278\ x_4 - 0.799\ x_5 - 0.00526\\ x_1\ x_2 + 0.15\ x_1\ x_3 + 0.00954\ x_2\ x_3 - 0.168\ x_1\ x_5 + 0.00788\ x_2\\ x_4 - 0.00526\ x_2\ x_5 + 0.00526\ x_3\ x_4 + 0.00107\ x_3\ x_5 - 0.0248\\ x_4\ x_5 - 9.61e-4\ x_2\ x_3^2 - 1.33e-5\ x_3\ x_4^2 - 1.33e-5\ x_3\ x_4^3 + \\ 1.33e-5\ x_4^3 + 0.0373\ x_5^2 + 1.33e-5\ x_4^4 + 0.00158\ x_1\ x_2\ x_3 - \\ 3.97e-4\ x_2\ x_3\ x_4 + 10.3 \end{array}$

GPTIPS - the symbolic data mining platform for MATLAB

© Dominic Searson 2009-2015