1

```
#For ignoring warning
import warnings
warnings.filterwarnings("ignore")
df=pd.read_csv('/content/cancer patient data sets.csv')
```

df

4

Accuracy: 0.87

	index	Age	Gender	Air Pollution			OccuPational Hazards	Genetic Risk	chroni Lui Diseas
0	0	33	1	2	4	5	4	3	
1	1	17	1	3	1	5	3	4	
2	2	35	1	4	5	6	5	5	
3	3	37	1	7	7	7	7	6	
4	4	46	1	6	8	7	7	7	
995	995	44	1	6	7	7	7	7	
996	996	37	2	6	8	7	7	7	
997	997	25	2	4	5	6	5	5	
998	998	18	2	6	8	7	7	7	
999	999	47	1	6	5	6	5	5	
1000 ו	rows × 2	4 colu	mns						
7									

```
import pandas as pd
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
df = pd.read_csv('/content/cancer patient data sets.csv')
X = df.drop('Chest Pain', axis=1) # Features
y = df['Chest Pain'] # Target variable
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
gnb = GaussianNB()
gnb.fit(X_train, y_train)
y_pred = gnb.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```

2)a) Perform Regression analysis for a given data set using Seaborn Visualisation with Pandas and Matplotlib.(Individual Data Set)-regression Plot, Multiple plot, scatter plot, correlation coeeficient and all Categorical plots.

```
#Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
#For ignoring warning
import warnings
warnings.filterwarnings("ignore")
df=pd.read_csv('/content/cancer patient data sets.csv')
df
```

	index	Age	Gender	Air Pollution	Alcohol use	Dust Allergy	OccuPational Hazards	Genetic Risk	chronic Lung Disease	Balanced Diet	•••	Coughing of Blood	Fatigue	Weight Loss	Shortness of Breath	Wheezing
0	0	33	1	2	4	5	4	3	2	2		4	3	4	2	2
1	1	17	1	3	1	5	3	4	2	2		3	1	3	7	8
2	2	35	1	4	5	6	5	5	4	6		8	8	7	9	2
3	3	37	1	7	7	7	7	6	7	7		8	4	2	3	1
4	4	46	1	6	8	7	7	7	6	7		9	3	2	4	1
995	995	44	1	6	7	7	7	7	6	7		7	5	3	2	7
996	996	37	2	6	8	7	7	7	6	7		7	9	6	5	7
997	997	25	2	4	5	6	5	5	4	6		8	8	7	9	2
998	998	18	2	6	8	7	7	7	6	7		9	3	2	4	1

df.shape

(1000, 24)

+...

#Checking for Duplicates
df.duplicated().sum()

0

#Removing Duplicates
df=df.drop_duplicates()

#Checking for null values
df.isnull().sum()

index Age 0 Gender Air Pollution Alcohol use Dust Allergy OccuPational Hazards Genetic Risk chronic Lung Disease Balanced Diet Obesity Smoking 0 0 Passive Smoker Chest Pain Coughing of Blood 0 0 Fatigue Weight Loss Shortness of Breath 0 Wheezing 0 Swallowing Difficulty Clubbing of Finger Nails Frequent Cold Dry Cough 0 Snoring 0 dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000 entries, 0 to 999
Data columns (total 24 columns):

Data	columns (total 24 columns):	
#	Column	Non-Null Count	Dtype
0	index	1000 non-null	int64
1	Age	1000 non-null	int64
2	Gender	1000 non-null	int64
3	Air Pollution	1000 non-null	int64
4	Alcohol use	1000 non-null	int64
5	Dust Allergy	1000 non-null	int64
6	OccuPational Hazards	1000 non-null	int64
7	Genetic Risk	1000 non-null	int64
8	chronic Lung Disease	1000 non-null	int64
9	Balanced Diet	1000 non-null	int64
10	Obesity	1000 non-null	int64
11	Smoking	1000 non-null	int64
12	Passive Smoker	1000 non-null	int64
13	Chest Pain	1000 non-null	int64

14	Coughing of Blood	1000	non-null	int64
15	Fatigue	1000	non-null	int64
16	Weight Loss	1000	non-null	int64
17	Shortness of Breath	1000	non-null	int64
18	Wheezing	1000	non-null	int64
19	Swallowing Difficulty	1000	non-null	int64
20	Clubbing of Finger Nails	1000	non-null	int64
21	Frequent Cold	1000	non-null	int64
22	Dry Cough	1000	non-null	int64
23	Snoring	1000	non-null	int64
dtyp	es: int64(24)			
memo	ry usage: 195.3 KB			

df.describe()

	index	Age	Gender	Air Pollution	Alcohol use	Dust Allergy	OccuPational Hazards	Genetic Risk	chronic Lung Disease	Balanced Diet	•••	Coughing of Bloom
count	1000.000000	1000.000000	1000.000000	1000.0000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000		1000.00000
mean	499.500000	37.174000	1.402000	3.8400	4.563000	5.165000	4.840000	4.580000	4.380000	4.491000		4.85900
std	288.819436	12.005493	0.490547	2.0304	2.620477	1.980833	2.107805	2.126999	1.848518	2.135528		2.42796
min	0.000000	14.000000	1.000000	1.0000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000		1.00000
25%	249.750000	27.750000	1.000000	2.0000	2.000000	4.000000	3.000000	2.000000	3.000000	2.000000		3.00000
50%	499.500000	36.000000	1.000000	3.0000	5.000000	6.000000	5.000000	5.000000	4.000000	4.000000		4.00000
75%	749.250000	45.000000	2.000000	6.0000	7.000000	7.000000	7.000000	7.000000	6.000000	7.000000		7.00000
max	999.000000	73.000000	2.000000	8.0000	8.000000	8.000000	8.000000	7.000000	7.000000	7.000000		9.00000

8 rows × 24 columns

from sklearn import preprocessing
le=preprocessing.LabelEncoder()
df['Gender']=le.fit_transform(df['Gender'])
df['Dust Allergy']=le.fit_transform(df['Dust Allergy'])
df['Genetic Risk']=le.fit_transform(df['Genetic Risk'])

df

	index	Age	Gender	Air Pollution		Dust Allergy	OccuPational Hazards	Genetic Risk	chronic Lung Disease	Balanced Diet	•••	Coughing of Blood	Fatigue		Shortness of Breath	Wheezing
0	0	33	0	2	4	4	4	2	2	2		4	3	4	2	2
1	1	17	0	3	1	4	3	3	2	2		3	1	3	7	8
2	2	35	0	4	5	5	5	4	4	6		8	8	7	9	2
3	3	37	0	7	7	6	7	5	7	7		8	4	2	3	1
4	4	46	0	6	8	6	7	6	6	7		9	3	2	4	1
				•••												
995	995	44	0	6	7	6	7	6	6	7		7	5	3	2	7
996	996	37	1	6	8	6	7	6	6	7		7	9	6	5	7
997	997	25	1	4	5	5	5	4	4	6		8	8	7	9	2
998	998	18	1	6	8	6	7	6	6	7		9	3	2	4	1
999	999	47	0	6	5	5	5	4	4	6		8	8	7	9	2
	_															

1000 rows × 24 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000 entries, 0 to 999
Data columns (total 24 columns):

Column Non-Null Count Dtype

```
0
    index
                               1000 non-null
                                               int64
                               1000 non-null
                                               int64
    Age
2
    Gender
                               1000 non-null
                                               int64
    Air Pollution
                               1000 non-null
                                               int64
    Alcohol use
                               1000 non-null
                                               int64
    Dust Allergy
                               1000 non-null
                                               int64
    OccuPational Hazards
                               1000 non-null
6
                                               int64
    Genetic Risk
                               1000 non-null
                                               int64
    chronic Lung Disease
                               1000 non-null
                                               int64
9
    Balanced Diet
                               1000 non-null
                                               int64
10 Obesity
                               1000 non-null
                                               int64
11
    Smoking
                               1000 non-null
                                               int64
12 Passive Smoker
                               1000 non-null
                                               int64
                               1000 non-null
13 Chest Pain
                                               int64
14
    Coughing of Blood
                               1000 non-null
                                               int64
                               1000 non-null
15 Fatigue
                                               int64
16 Weight Loss
                               1000 non-null
                                               int64
17 Shortness of Breath
                               1000 non-null
                                               int64
18 Wheezing
                               1000 non-null
                                               int64
19
    Swallowing Difficulty
                               1000 non-null
                                               int64
20 Clubbing of Finger Nails
                              1000 non-null
                                               int64
21 Frequent Cold
                               1000 non-null
                                               int64
22 Dry Cough
                               1000 non-null
                                               int64
23 Snoring
                               1000 non-null
                                               int64
dtypes: int64(24)
memory usage: 195.3 KB
```

```
#Let's check the distributaion of Target variable.
sns.countplot(x='Fatigue', data=df,)
plt.title('Target Distribution');
```



```
df['Dry Cough'].value_counts()
          251
     7
          168
     4
          141
          131
     1
          119
     3
          101
           89
     Name: Dry Cough, dtype: int64
# function for plotting
def plot(col, df=df):
    return df.groupby(col)['Dry Cough'].value_counts(normalize=True).unstack().plot(kind='bar', figsize=(5,5))
plot('Gender')
```


<Axes: xlabel='Age'>

plot('Weight Loss')

<Axes: xlabel='Weight Loss'>

plot('Wheezing')

df_new=df.drop(columns=['Gender','Age', 'Weight Loss', 'Wheezing'])
df_new

	index	Air Pollution	Alcohol use		OccuPational Hazards	Genetic Risk	chronic Lung Disease	Balanced Diet		Smoking	Passive Smoker		Coughing of Blood	Fatigue	Shortness of Breath	
0	0	2	4	4	4	2	2	2	4	3	2	2	4	3	2	
1	1	3	1	4	3	3	2	2	2	2	4	2	3	1	7	
2	2	4	5	5	5	4	4	6	7	2	3	4	8	8	9	
3	3	7	7	6	7	5	7	7	7	7	7	7	8	4	3	
4	4	6	8	6	7	6	6	7	7	8	7	7	9	3	4	
995	995	6	7	6	7	6	6	7	7	7	8	7	7	5	2	
996	996	6	8	6	7	6	6	7	7	7	8	7	7	9	5	
997	997	4	5	5	5	4	4	6	7	2	3	4	8	8	9	
998	998	6	8	6	7	6	6	7	7	8	7	7	9	3	4	
999	999	6	5	5	5	4	4	6	7	2	3	4	8	8	9	

1000 rows × 20 columns

4

cn

#Finding Correlation
cn=df_new.corr()

•

	index	Air Pollution	Alcohol use	Dust Allergy	OccuPational Hazards	Genetic Risk	Lung Disease	Balanced Diet	Obesity	Smoking	Passive Smoker	Chest Pain	Coughing of Blood
index	1.000000	0.053307	0.041374	0.037960	0.032355	0.030725	0.025177	0.030743	0.050584	0.018407	0.019517	0.022210	0.049401
Air Pollution	0.053307	1.000000	0.747293	0.637503	0.608924	0.705276	0.626701	0.524873	0.601468	0.481902	0.606764	0.585734	0.607829
Alcohol use	0.041374	0.747293	1.000000	0.818644	0.878786	0.877210	0.763576	0.653352	0.669312	0.547035	0.592576	0.717242	0.667612
Dust Allergy	0.037960	0.637503	0.818644	1.000000	0.835860	0.787904	0.619556	0.647197	0.700676	0.358691	0.560002	0.639983	0.625291
OccuPational Hazards	0.032355	0.608924	0.878786	0.835860	1.000000	0.893049	0.858284	0.691509	0.722191	0.497693	0.555311	0.775619	0.645947
Genetic Risk	0.030725	0.705276	0.877210	0.787904	0.893049	1.000000	0.836231	0.679905	0.729826	0.543259	0.609071	0.831751	0.632236
chronic Lung Disease	0.025177	0.626701	0.763576	0.619556	0.858284	0.836231	1.000000	0.622632	0.601754	0.578585	0.572698	0.782646	0.602987
Balanced	0.000740	0.504070	0.050050	0 0 1 7 1 0 7	0.004500	0.070005	0.00000	4 000000	0.700000	0.045000	0.705400	0.700007	0.745054

chnonic

#Correlation
cmap=sns.diverging_palette(260,-10,s=10, l=10, n=6,
as_cmap=True)
plt.subplots(figsize=(10,10))
sns.heatmap(cn,cmap=cmap,annot=True, square=True)
plt.show()


```
sns.set_style('whitegrid')
sns.lmplot(x ='Dry Cough', y ='Snoring', data =df)
```

<seaborn.axisgrid.FacetGrid at 0x7fee251dcf70>


```
import math
plot1 = plt.subplot2grid((3, 3), (0, 0), colspan=2)
plot2 = plt.subplot2grid((3, 3), (0, 2), rowspan=3, colspan=2)
plot3 = plt.subplot2grid((3, 3), (1, 0), rowspan=2)
x = np.arange(1, 10)
plot2.plot(x, x**0.5)
plot2.set_title('Alcohol use')
plot1.plot(x, np.exp(x))
plot1.set_title('chronic Lung Disease')
plot3.plot(x, x*x)
plt.tight_layout()
plt.show()
```

₽


```
x =['Dust Allergy']
y =['Gender']
plt.scatter(x, y, c ="blue")
plt.show()
```


3)b) Perform t test for the sample you have analysed

p-value: 0.001052825793366539

```
import numpy as np
from scipy import stats

# Example data
group1 = np.array([1, 2, 3, 4, 5])
group2 = np.array([6, 7, 8, 9, 10])

# Calculate t statistic and p-value
t, p = stats.ttest_ind(group1, group2)

# Print results
print('t statistic:', t)
print('p-value:', p)

t statistic: -5.0
```

• ×