

Genotype-environment associations

E. Anne Chambers March 21, 2024 eachambers@berkeley.edu

Genotype-environment association (GEA) methods

Genotype-environment association (GEA) methods

Genotype-environment association (GEA) methods

Bay et al. (2018) Science; Capblancq & Forester (2021) Methods Ecol. Evol.

Different types of GEA

- BayEnv/BayPASS/BayeScEnv
- Redundancy analysis (RDA)
- Latent factor mixed models (LFMM)
- GLMM
- Gradient forest
- SAM/SamBada
- Weighted Z-analysis (WZA)

Different types of GEA

Method	Spatially explicit?	Accounts for neutral structure?	Individual- or population-based sampling?	Other tags
BayEnv/BayPASS	No	Yes	Population	Slow, Bayesian, linear
RDA	Optional	Optional	Both	Fast, ordination, linear
LFMM	No	Optional	Both	Fast, linear
GLMM	No	Optional	Both	Slow, linear
GF	Yes	No	Both	Nonlinear, map, machine learning
SAM/SamBada	No	No	Individual	Logistic

Table: Anusha P. Bishop

GEA: the logistics

Some considerations:

- May want to minimize missing data so as not to bias results; if lots of data are imputed double-check the relationship between the strength of the association and % missingness (per site)
- Prune out sites that are in linkage disequilibrium
- Set a reasonable MAF threshold
- **Environmental data**: use realistic layers that you think are affecting your study species!

Today's methods

Redundancy analysis (RDA)

Outlier detection: RDadapt or Z-scores

Today's methods

Redundancy analysis (RDA)

Latent factor mixed models (LFMM)

Capblancq & Forester (2021) Methods Ecol. Evol.; Frichot et al. (2013) Mol. Biol. Evol.

Redundancy analysis (RDA)

Latent factor mixed models (LFMM)

These methods can't accept missing data! Two choices with different tradeoffs...

GEA: the logistics

Steps to perform GEA:

- 1. Gather genetic data
- 2. Prune out sites that are in linkage disequilibrium
- 3. Convert to dosage matrix
- 4. Impute missing values
- 5. Gather environmental data (or harvest from online given your sampling)
- 6. Extract environmental data for each sampling locality
- 7. Decide on model (and covariables)
- 8. Run the GEA method!

Enviro data layers

Extract enviro vars at coordinates

These methods can't accept missing data! Two choices with different tradeoffs...

Imputation for GEA methods

Median-based

Present Absent

Structure-based

EXERCISE 1

Example dataset: Bouzid et al. (2022)

Example dataset: Bouzid et al. (2022)

Genetic data:

53 individuals (53 localities) Individual-based sampling 1,000 SNPs (ddRAD data)

Environmental data:

We're going to gather some for this dataset!

?vcf_to_dosage

?vcf_to_dosage

vcf_to_dosage {algatr}

Convert a vcf to a dosage matrix

Description

Convert a vcf to a dosage matrix

Usage

vcf_to_dosage(x)

Arguments

x can either be an object of class 'vcfR' or a path to a .vcf file

?vcf_to_dosage

```
vcf_to_dosage {algatr}

Convert a vcf to a dosage matrix

Description

Convert a vcf to a dosage matrix

Usage

vcf_to_dosage(x)

Arguments

v can either be an object of class 'vcfR' or a path to a .vcf file
```

```
# (2) Process genetic data ------
# Convert the loaded vcf to a dosage matrix using `vcf_to_dosage()`.
###### * YOUR CODE HERE * ######
###### *Q2a*: Do your genetic data have missing values? How do you know?
###### * YOUR ANSWER/CODE HERE * ######
```

?vcf_to_dosage

```
vcf_to_dosage {algatr}

Convert a vcf to a dosage matrix

Description

Convert a vcf to a dosage matrix

Usage

vcf_to_dosage(x)

Arguments

x can either be an object of class 'vcfR' or a path to a .vcf file
```

- 1. Load the example dataset
- 2. Process genetic data:
 - a. Convert vcf to dosage using vcf_to_dosage()
 - b. Impute missing values using structure-based imputation using str_impute()
- 3. Process environmental data:
 - a. Extract environmental values using coordinates using raster::extract()
- 4. Run simple RDA using rda_run()
- 5. Run partial RDA, correcting for geodist using four PCs using rda_run()
- 6. Get outliers using rda_getoutliers()
- 7. Build a Manhattan plot and an RDA biplot of results using rda_plot()

EXERCISE 2

Example dataset: Keller et al. (2023)

Multi-locus genomic signatures of local adaptation to snow across the landscape in California populations of a willow leaf beetle

Abigail G. Keller¹, Elizabeth P. Dahlhoff², Ryan Bracewell³, Kamalakar Chatla¹, Doris Bachtrog¹, Nathan E. Rank⁴ and Caroline M. Williams¹

Example dataset: Keller et al. (2023)

Genetic data:

175 individuals (12 populations)
Site-based sampling
22,323 SNPs (WGS data)

Environmental data:

Point data for each population

Example dataset: Keller et al. (2023)

https://github.com/eachambers/GEA_tutorial/tree/main/Data

Genetic data:

175 individuals (12 populations)
Site-based sampling
22,323 SNPs (WGS data)

Environmental data:

Point data for each population

- 1. Import and process data using the tidyverse
- 2. Impute missing genetic data using the median using simple_impute()
- 3. Perform two types of *K* selection to determine how many latent factors you want to use with select_K()
- 4. Run LFMM using lfmm_run()
- 5. Get summary statistics with lfmm_table()
- 6. Make a Manhattan plot of the results using lfmm_manhattanplot()