Lemma. Let $n_1, n_2, ..., n_k$ be natural numbers. If $(n_i, n_j) = 1$ such that $i \neq j$ and $1 \leq i, j, \leq k$, then $(n_1 n_2 ... n_{k-1}, n_k) = 1$.

Proof. Let k=3 be our base case. By Theorem 2.29, $(n_1n_2, n_3)=1$. Suppose all k is true where $1 \le k \le t$. We want to show $(n_1n_2...n_t, n_{t+1})=1$. Since we know up to t is true, by Theorem 2.29, $(n_1n_2...n_t, n_{t+1})=1$. Thus, if $(n_i, n_j)=1$ such that $i \ne j$ and $1 \le i, j, \le k$, then $(n_1n_2...n_{k-1}, n_k)=1$. \square

3.29 Theorem. (Chinese Remainder Theorem). Suppose $n_1, n_2, ..., n_L$ are positive integers that are pairwise relatively prime, that is, $(n_i, n_j) = 1$ for $i \neq j, 1 \leq i, j \leq L$. Then the system of L congruences

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_L \pmod{n_L}$

has a unique solution modulo the product $n_1 n_2 ... n_L$.

Proof. Let L=2. Consider this the base case. Thus,

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$.

Since $(n_1, n_2) = 1$, by Theorem 3.28, $x \equiv x' \pmod{n_1 n_2}$. Thus, the base case is true. Suppose this is true for all L where $1 \leq L \leq K$. By induction, we want to show

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_L \pmod{n_K}$
 $x \equiv a_L \pmod{n_{K+1}}$

also has a unique solution modulo the product $n_1 n_2 ... n_K n_{K+1}$. Thus, the system of congruences is

$$x \equiv a_1 \pmod{n_1}$$

$$x \equiv a_2 \pmod{n_2}$$

$$\vdots$$

$$x \equiv a_K \pmod{n_K}$$

$$x \equiv a_{K+1} \pmod{n_{K+1}}.$$

By our induction hypothesis and Theorem 3.28, we know up to K is $x \equiv x' \pmod{n_1 n_2 ... n_K}$. Thus,

$$x \equiv x' \pmod{n_1 n_2 ... n_K}$$
$$x \equiv a_{K+1} \pmod{n_{K+1}}.$$

By Theorem 3.28, since $(n_1n_2...n_K, n_{K+1}) = 1$ by the Lemma and Theorem 2.29, and solution x satisfies

$$x \equiv x'' \pmod{n_1 n_2 \dots n_K n_{K+1}},$$

for $x'' \in \mathbb{Z}$. Thus, the system of L congruences has a unique solution modulo the product $n_1 n_2 ... n_L$.