MODELAGEM DE PROBLEMAS USANDO PROGRAMAÇÃO LINEAR DCE692 - Pesquisa Operacional

Atualizado em: 27 de julho de 2021

Iago Carvalho

Departamento de Ciência da Computação

MODELAGEM DE PROBLEMAS

É a *arte* de descrever um problema de otimização como um conjunto de equações

- Função objetivo
- Variáveis
- Restrições

Como estamos trabalhando com Programação Linear, então temos que garantir que

- \bigcirc Variáveis pertencem ao domínio dos reais (\mathbb{R})
- Função objetivo e restrições são lineares

MODELAGEM DE PROBLEMAS

Como toda arte, a modelagem de problemas é muito difícil de ser ensinada

 A maneira mais simples é através da prática, de exemplos e de observação

Deste modo, vamos tentar aprender modelagem através de exemplos!

- Problema da dieta
- Problema de corte
- Problema do transporte

- Linha de produção
- Escala de funcionários

Este foi um dos primeiros problemas de Otimização Linear estudados Plink

- Segunda guerra mundial
- Criar um conjunto de refeições baratas
- Requisitos nutricionais eram atendidos

Alimento	Porção	Calorias (kcal)	Proteínas (g)	Calcio (mg)	Preço (\$)	Limite
Nozes	28 g	110	4	2	30	4
Frango	100 g	205	32	12	240	3
Ovos	2 (grandes)	160	13	54	130	2
Leite	237 ml	160	8	285	90	8
Bolo	170 g	420	4	22	200	2
Feijão	260 g	260	14	80	60	2

Conjuntos:

- F Conjunto de alimentos
- N Conjunto de nutrientes

Parâmetros:

```
egin{aligned} a_{ij} & \text{Quantidade do nutriente } j \text{ no alimento } i, & \forall i \in F, j \in N \\ c_i & \text{Custo de uma porção do alimento } i, & \forall i \in F \\ m_j & \text{Requisito mínimo do nutriente } j, & \forall j \in N \end{aligned}
```

Variáveis:

 $x_i \ge 0$ Quantidade servida do alimento i, $\forall i \in F$

min
$$\sum_{i \in F} x_i c_i$$

 $\sum_{i \in F} x_i a_{ij} \ge m_j, \quad \forall j \in N$
 $x_i \ge 0 \quad \forall i \in F$

Problema do corte de produtos teve suas origens na indústria de papéis

- Rolos de papel muito grandes, de dimensões fixas
- O Deve-se cortar estes rolos em itens menores
 - Diferentes tamanhos
 - 1D
- O objetivo é cortar todos os itens pedidos
 - Minimizar a quantidade de perda de papel

9

Conjuntos:

- I Conjunto de tamanho dos pedidos
- J Conjunto de padrões de corte

Parâmetros:

```
a_{ij} Número de itens de tamanho i no padrão j, \forall i \in I, j \in J b_i Demanda por itens de tamanho i, \forall i \in I
```

Variáveis:

 $x_j \in \mathbb{I}_{\geq 0}$ Número de padrões de corte j utilizados, $\forall j \in J$

$$\min \quad \sum_{j \in J} x_j$$

$$\sum_{j \in J} x_j a_{ij} \geq b_i, \quad \forall i \in I$$

$$x_j \geq 0 \quad \forall j \in J$$

Uma empresa produz um produto em diversas fábricas Link

Diferentes clientes demandam os produtos

O objetivo é entregar os produtos a todos os clientes

- Atender a todas as demandas
- Minimizar os custos de entrega
 - Dependentes da distância entre a fábrica e o cliente

Conjuntos:

- F Conjunto de fábricas
- C Conjunto de clientes

Parâmetros:

```
a_i Produção disponível na fábrica i, \forall i \in F b_j Demanda do cliente j, \forall j \in C c_{ij} Custo de entrega entre a fábrica i e o cliente j, \forall i \in F, j \in C
```

Variáveis:

 $x_{ij} \ge 0$ Volume de entregas da fábrica i para o cliente j, $\forall i \in F, j \in C$

$$\min \quad \sum_{i \in F} \sum_{j \in C} c_{ij} x_{ij}$$

$$\sum_{j \in C} x_{ij} \leq a_i, \quad \forall i \in I$$

$$\sum_{i \in F} x_{ij} \geq b_j \quad \forall j \in J$$

$$x_{ij} \geq 0 \quad \forall i \in F, j \in C$$

ESCALA DE FUNCIONÁRIOS

Uma companhia aérea deseja abrir novas rotas

Origem ou destino em seu aeroporto base

Para isto, é necessário contratar mais funcionários

- Alocar funcionários nas novas rotas
 - Dependente do horário das rotas

Vamos fazer um pouco diferente desta vez...

O Vamos mostrar um caso numérico!

ESCALA DE FUNCIONÁRIOS

			Turno			
Horários	1	2	3	4	5	Funcionários necessários
6-8	Х					48
8-10	Χ	Χ				79
10-12	Χ	Χ				65
12-14	Χ	Χ	Χ			87
14-16		Χ	Χ			64
16-18			Χ	Χ		73
18-20			Χ	Χ		82
20-22				Χ		43
22-24				Χ	Χ	52
24-06					Χ	15
Custo	170	160	175	180	195	

ESCALA DE FUNCIONÁRIOS

Considere a variável

 $x_i \ge 0$ Número de funcionários alocados no turno $i, i \in \{1,2,3,4,5\}$

OUTROS PROBLEMAS

Problema de atribuição de tarefas

Resolvido como um problema de transporte

Problema do máximo fluxo em redes

O Um caso mais específico (e difícil) do problema de transporte