

Hyperspectral Image Reconstruction from RGB images

Presented by: Shanu Tyagi Guid

Guided by: Ms. Navya Singh

Nikhil Gangwar

Param Teraiya

Namrata Shrilekha

Introduction

- What is Hyperspectral Imaging?
- Hyperspectral imaging, like other spectral imaging, collects and processes information from across the electromagnetic spectrum.
- Why do we need it?
- The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes.

Dataset Used

- The BGU Natural Hyperspectral Database
- The database images were acquired using a Specim PS Kappa DX4

hyperspectral camera and a rotary stage for spatial scanning.

- 256 images
- Images were collected at 1392 X 1300 spatial resolution
- Link to the database

Methodology / Model Used

UCNN-D Model

Experiments

- 1. HS-ResidualNet
- 2. Attention HS-ResidualNet
- 3. Advanced CNN-Dense Net Model
- 4. UCNN-D
- 5. DUCNN

Results Achieved

Conclusion

1.HS-ResidualNet-

Batch Size	loss	mae	mse	Val_loss	Val_mae	Val_mse
64	0.1678	0.1678	0.0587	0.2111	0.2111	0.6159
64	0.1122	0.1122	0.0343	0.1321	0.1321	0.0458
	Size 64	Size 64 0.1678	Size 64 0.1678 0.1678	Size 0.1678 0.1678 0.0587	Size 0.1678 0.1678 0.0587 0.2111	Size 0.1678 0.1678 0.0587 0.2111 0.2111

2.Attention HS-ResNet Model

Epochs	Batch Size	loss	mae	mse	Val_loss	Val_mae	Val_mse
100	64	0.2729	0.2729	0.1791	0.1234	0.1234	0.0321
200	64	0.1003	0.1003	0.0241	0.1046	0.1046	0.0286

3.Advanced CNN-Dense Net Model

Epochs	Batch Size	loss	mae	mse	Val_loss	Val_mae	Val_mse
100	64	0.111	0.111	4.21e-03	0.126	0.0126	4.98e-03
200	64	0.0776	0.776	2.44e-03	0.0798	0.0798	2.098e-0 3

4.UCNN-D(preferred model)

b	Start neuron	epoch	Batch Size	loss	mae	mse	Val loss	Val mae	Val mse
3	64	100	64	0.1883	0.1883	0.0823	0.1500	01500	0.0459
3	64	200	64	0.1639	0.1639	0.0773	0.1348	0.1348	0.0406

5. DUCNN

b	Start neuron	epoch	Batch Size	loss	mae	mse	Val loss	Val mae	Val mse
3	128	100	64	0.1687	0.1687	0.0620	0.1117	0.1117	0.024

References

- NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images

 [Link]
- HSCNN+: Advanced CNN-Based Hyperspectral Recovery from RGB Images [Link]

Thank You

