

)第7章 影像特徵的研究

- 7.1 利用影像特徵進行自動識別
- 7.2 二值影像的特徵參數
- 7.3 影像的標籤化
- 7.4 利用特徵參數分割影像
- 7.5 利用特徵參數去除雜訊
- 7.6 特徵參數之進階說明

7.1 利用影像特徵進行自動識別

- ▶ 利用影像特徵進行自動識別的實例:
 - ▶ 鑰匙被電子化,電腦可以識別人臉或聲音、等特徵。
 - ▶ 電腦能自動擷取影像的特徵,透過人體生物特徵進而判斷人的身份。
 - ▶ 自動販賣機已經可以準確地區別1000元或100元的紙幣。
 - ▶ 工廠中,利用攝影機也能自動判別出有瑕疵的產品。
 - ▶ 等等。

表7.1 影像與特徵參數

種類	圓形	正方形	正三角形
圖像			$\frac{\sqrt{3}}{2}r$
面積	πr^2	r^2	$\frac{\sqrt{3}}{4}r^2$
周長	2 π r	4 <i>r</i>	3r
真圓度	1.0	$\frac{\pi}{4} = 0.79$	$\frac{\pi\sqrt{3}}{9} = 0.60$

7.2 二值影像的特徵參數

▶面積

▶ 計算物體所包含的像素數量。

▶周長

▶ 可計算出物體輪廓線上的像素數,但沿著斜線方向,如圖7.2所示, 會產生數位圖形特有的誤差,所以必須利用 $\sqrt{2}$ 等等倍率加以補正。

圖7.2 數位化圖形的誤差

- ▶ 擷取輪廓線後,再按照以下的步驟,追蹤物體的邊界部分, 如圖**7.3**所示。
 - ▶ 掃描影像(依序檢查影像上各個像素的值),尋找出「尚未附上已追蹤標記」的邊界點p。
 - ▶ 當p之所有鄰近點皆為黑(0)時,則p為獨立點,追蹤停止。
 - ► 在步驟2以外的情況下,依圖7.3 的順序,繼續尋找下一個邊界點, 其後動作相同,逐一追蹤邊界點。
 - ▶ 下一個邊界點如果是p,即代表已 繞物體一周,可結束追蹤。

(從8個鄰近點中尋找由0變為1的像素)

▶ 真圓度(Circularity)

- ▶ 它是在面積、周長的基礎上,測量物體形狀複雜程度的一種特徵量。
- ▶ $e = 4\pi$ (面積) / (周長)² ; 即e參數為真圓度。
- ▶ 當一個圓的半徑為 \mathbf{r} ,其周長為 $2\pi r$,面積為 πr^2
 - e = 1.0 °
 - 越接近圓形,其真圓度e值就越大(最大為1.0);而圖形越複雜,其e值越小。

▶ 重心(Centroid)

▶ 白色(1)像素的位置(x_i,y_i)(i=0,....,n-1)的平均值可由下式求出:

$$\left(\frac{1}{n}\sum_{i=0}^{n-1}x_i, \frac{1}{n}\sum_{i=0}^{n-1}y_i\right)$$

- ▶ 利用以上參數可以把香蕉從一堆水果中區分出來,其為三種水果中真圓度最小的一種。
- ▶ 若要將香蕉提取出來,而是要先在整體影像中把所有的水果利用二值化處理,取黑白的部分即可。

圖7.4 把原影像(圖7.1)二 ☑ 值化(臨界值73)後的影像 ☑

7.3 影像的標籤化

- ▶ 標籤化(Labeling)
 - ▶ 在相連的所有像素(連接成分)附加相同的標籤號碼,而不同的連接成分,則給予不同的標籤號碼的一種處理過程。

▶ 標籤化的處理步驟:

- ▶ 先掃描影像,如果發現沒有附加標籤的像素P,就附加新的標籤號碼。
- ▶ 和像素P連接的像素,附加相同的標籤號碼。
- ▶ 對已附加標籤號碼者,將與其連接之所有像素,附加同樣的標籤號碼。
- ▶ 持續以上的操作,一直到再也沒有應當附加標籤的像素為止。這時, 單一連接成分中的所有像素應當都已附加上相同的標籤號碼。
- ▶ 返回到步驟1處,如果還可找到沒有附加標籤號碼的像素,就重複2 ~4處理步驟,貼上新標籤號碼。

步驟①:為沒有附加標籤 的像素P附加新標籤(50)

步驟②:在像素P所連接 的像素上,附加標籤

步驟③:步驟2中已附加標 籤的像素所連接的全部像 素均附加相同的標籤

步驟④: 反覆執行步驟③, 直到已 沒有應附加標籤的像素

圖7.6 單一連接成分附加標籤的過程(標籤號碼為50)

7.4 利用特徵參數分割影像

表7.2 各種物體的特徵參數(原影像為640×400像素)

物體的序號	面積	周長	眞圓度	重心位置
0	15,073	469.4	0.86	(371, 93)
1	7,792	329.7	0.90	(225, 149)
2	11,930	619.8	0.39	(399, 211)
3	8,784	351.5	0.89	(160, 252)
4	13,883	644.3	0.42	(343, 299)

圖**7.8** 顯示出所追蹤輪廓線、重心位 置的影像

圖7.9 由圖7.8分割出真圓度在0.5以下的連接成分之影像

圖7.10 使用圖7.9的影像從圖7.1擷取出香蕉的影像

7.5 利用特徵參數去除雜訊

圖7.11 使用特徵參數除去雜訊的流程圖

(a) 原影像

(b) 微分影像

(c) (b)的二值影像(臨界值50)

(d) 除去雜訊的影像(由(c)擷取面積100 以上連接成分的影像)

7.6 特徵參數之進階說明

圖7.13 利用細線化擷取幾何學的特徵(骨架)

