Втора домашна задача – Група 4

Задача 1:

(a)

3Д – Логична случајна променлива која е точна кога има забрана за движење.

СТ – Логична случајна променлива која го означува процентот од семејства во кои има член кој е во тинејџерски години.

НКП – Логична случајна променлива која е точна кога комуналните претпријатија се ажурни.

НП — Логична случајна променлива која означува колкав процент од граѓаните нарачуваат пица за достава на домашна адреса.

XO – Логична случајна променлива која е точна кога контејнерите за хартиен отпад се преполни.

(B)

- -Маргиналната веројатност за ЗД, СТ и НКП, односно 6.
- -Условна веројатност за НП и ХО, односно 16.
- -Ако ги дефинираме сите веројатности потребни се 22 параметри.

-Ако земеме дека важи P(X=1)=1-P(X=0) тогаш може бројот на потребни параметри да се намали на 11.

(r)

СТ	P(CT)
0	0.7
1	0.3

3Д	Р(3Д)
0	0.4
1	0.6

нкп	Р(НПК)
0	0.5
1	0.5

P ($H\Pi = 1 \mid 3Д = 1$, CT = 1) = 0.1

	I	I	
3Д	СТ	НΠ	Р (НП ЗД, СТ)
0	0	0	0.8
0	0	1	0.2
0	1	0	0.7
0	1	1	0.3
1	0	0	0.95
1	0	1	0.05
1	1	0	0.9
1	1	1	0.1

P (XO = 1 | H Π = 1, HK Π = 1) = 0.25

НП	нкп	XO	Р (ХО НП, НКП)
0	0	0	0.7
0	0	1	0.3
0	1	0	0.95
0	1	1	0.05
1	0	0	0.15
1	0	1	0.85
1	1	0	0.75
1	1	1	0.25

$P(3Д, CT, HK\Pi, H\Pi, XO) = P(3Д) P(CT) P(HK\Pi) P(H\Pi|3Д, CT) P(XO|HK\Pi, H\Pi)$

(ŕ)

-Идентификуваме тројка заедничка последица ЗД, НП и СТ. Причините се независни и во графот нема друга патека која ги поврзува ЗД и СТ па затоа:

ЗД ⊥ СТ (Заедничка последица)

-Идентификуваме четворка заедничка последица СТ, НП, XO и НКП. Причините се независни и во графот нема друга патека која ги поврзува СТ и НКП па затоа:

СТ ⊥ НКП (Заедничка последица)

-Идентификуваме четворка заедничка последица ЗД, НП, XO и НКП. Причините се независни и во графот нема друга патека која ги поврзува ЗД и НКП па затоа:

ЗД 11 НКП (Заедничка последица)

-Каузалниот синџир СТ, НП и XO. XO и СТ се условно независни меѓусебе при дадено НП и нема други патеки во графот кои ги поврзува па затоа:

ХО Д СТ | НП (Каузален синџир)

- Каузалниот синџир ЗД, НП и XO. XO и ЗД се условно независни меѓусебе при дадено НП и нема други патеки во графот кои ги поврзува па затоа:

ХО ⊥ ЗД | НП (Каузален синџир)

-Идентификуваме тројка заедничка последица НП, XO и НКП. Причините се независни и во графот нема друга патека која ги поврзува НП и НКП па затоа:

НП ⊥ НКП (Заедничка последица)

(e)

3Д	СТ	НКП	НΠ	XO	Р(ЗД) Р(СТ) Р(НКП) Р(НП ЗД, СТ) Р(ХО НКП, НП)
0	0	0	0	1	0.4 * 0.7 * 0.5 *0.8 *0.3 = 0.0336
0	0	0	1	1	0.4 * 0.7 * 0.5 * 0.2 * 0.85 = 0.0238
0	0	1	0	1	0.4 * 0.7 * 0.5 * 0.8 * 0.05 = 0.0056
0	0	1	1	1	0.4 * 0.7 * 0.5 * 0.2 * 0.25 = 0.007
0	1	0	0	1	0.4 * 0.3 * 0.5 * 0.7 * 0.3 = 0.0126
0	1	0	1	1	0.4 * 0.3 * 0.5 * 0.3 * 0.85 = 0.0153
0	1	1	0	1	0.4 * 0.3 * 0.5 * 0.7 * 0.05 = 0.0021
0	1	1	1	1	0.4 * 0.3 * 0.5 * 0.3 * 0.25 = 0.0045
1	0	0	0	1	0.6 * 0.7 * 0.5 * 0.95 * 0.3 = 0.05985
1	0	0	1	1	0.6 * 0.7 * 0.5 * 0.05 * 0.85 = 0.008925
1	0	1	0	1	0.6 * 0.7 * 0.5 * 0.95 * 0.05 = 0.009975
1	0	1	1	1	0.6 * 0.7 * 0.5 * 0.05 * 0.25 = 0.002625
1	1	0	0	1	0.6 * 0.3 * 0.5 *0.9 * 0.3 = 0.0243
1	1	0	1	1	0.6 * 0.3 * 0.5 * 0.1 * 0.85 = 0.00765
1	1	1	0	1	0.6 * 0.3 * 0.5 *0.9 * 0.05 = 0.00405
1	1	1	1	1	0.6 * 0.3 * 0.5 *0.1 * 0.25 = 0.00225

$$\begin{split} &\text{P (XO = 1) = } \sum_{33\text{D}} \sum_{\text{CT}} \sum_{\text{HKII}} \sum_{\text{HII}} P \text{ (XO = 1) = P(} 3\text{D = 1, CT = 1, HK\Pi = 1, H\Pi = 1, XO = 1) + P(} 3\text{D = 1, CT = 1, HK\Pi = 0, H\Pi = 1, XO = 1) + P(} 3\text{D = 1, CT = 1, HK\Pi = 0, H\Pi = 0, XO = 1) + P(} 3\text{D = 1, CT = 1, HK\Pi = 0, H\Pi = 0, XO = 1) + ... + P(} 3\text{D = 0, CT = 0, HK\Pi = 0, H\Pi = 0, XO = 1) \\ &= P(3\text{D = 1}) P(\text{CT = 1}) P(\text{HK\Pi = 1}) P(\text{HR = 1 | 3D = 1, CT = 1)} P(\text{XO = 1 | HK\Pi = 1, H\Pi = 1) + ... + P(3\text{D = 0, CT = 0}) P(\text{HR = 0 | 3D = 0, CT = 0)} P(\text{XO = 1 | HK\Pi = 0, H\Pi = 0}) = \\ &0.0336 + 0.0238 + 0.0056 + 0.007 + 0.0126 + 0.0153 + 0.0021 + 0.0045 + 0.05985 + 0.008925 + 0.009975 + \\ &0.002625 + 0.002625 + 0.0243 + 0.00765 + 0.00405 + 0.00225 = \textbf{0.22675} \end{split}$$

(ж)

P(XO = 1) = 0.22675

$$P(HK\Pi = 0 \mid XO = 1) = \frac{\sum_{3A} \sum_{CT} \sum_{H\Pi} P (HK\Pi = 0, XO = 1)}{\sum_{3A} \sum_{CT} \sum_{HK\Pi} \sum_{H\Pi} P (XO = 1)}$$

P (HKП = 0, XO = 1) =
$$\sum_{3/\!\!\!/} \sum_{\rm CT} \sum_{\rm H\Pi} P$$
 (HKП = 0, XO = 1) = 0.152075

$$P(HK\Pi = 0 \mid XO = 1) = \frac{0.152075}{0.22675} = 0.6706$$

Задача 2:

А. Наивен Баесов класификатор

(a)

R – Ризик на болест:

- 0 низок
- 1 висок

S – Пушење:

- 0 малку
- 1 средно
- 2 − многу

Н – Радиоактивен:

- 0 не
- 1 да

W – Вежбање:

- 0 повремено
- 1 редовно

R	P(R)	Л.П. k=2
0	1/2	1/2
1	1/2	1/2

R	S	P(S R)	Л.П. k=2
0	0	6/10	8/16 = 1/2
0	1	2/10	4/16 = 1/4
0	2	2/10	4/16 = 1/4
1	0	0	2/16 = 1/8
1	1	6/10	8/16 = 1/2
1	2	4/10	6/16 = 3/8

R	Н	P(H R)	Л.П. k=2
0	0	8/10	10/14
0	1	2/10	4/14
1	0	4/10	6/14
1	1	6/10	8/14

R	W	P(W R)	Л.П. k=2
0	0	2/10	4/14
0	1	8/10	10/14
1	0	6/10	8/14
1	1	4/10	6/14

(б)

P(R=0 | S=2, H=0, W=0) =
$$\frac{P(R=0, S=2, H=0, W=0)}{P(S=2, H=0, W=0)}$$

P(R=0, S=2, H=0, W=0) = P(R=0) P(S=2 | R=0) P(H=0 | R=0) P(W=0 | R=0) =

$$\frac{1}{2} \frac{1}{4} \frac{10}{14} \frac{4}{14} = \frac{5}{196}$$

P(R=1, S=2, H=0, W=0) = P(R=1) P(S=2 | R=1) P(H=0 | R=1) P(W=0 | R=1) =
$$\frac{1}{2} \frac{3}{8} \frac{6}{14} \frac{8}{14} = \frac{9}{196}$$

P(S=2, H=0, W=0) = P(R=0, S=2, H=0, W=0) + P(R=1, S=2, H=0, W=0) =
$$\frac{5}{196} + \frac{9}{196} = \frac{14}{196} = \frac{1}{14}$$

P(**R=0** | S=2, H=0, W=0) =
$$\frac{\frac{5}{196}}{\frac{1}{14}} = \frac{5}{14}$$

$$P(R=1 \mid S=2, H=0, W=0) = 1 - P(R=0 \mid S=2, H=0, W=0) = \frac{9}{14}$$

Пациентот ќе биде класифициран како: Висок ризик на болест

(B)

P(R=1 | S=2, W=1) = ?

P(R=1 | S=2, W=1) =
$$\frac{P(R=1, S=2, W=1)}{P(S=2, W=1)}$$

$$P(S=2, W=1) = P(R=0, S=2, H=0, W=1) + P(R=0, S=2, H=1, W=1) +$$

P(R=1, S=2, H=0, W=1) + P(R=1, S=2, H=1, W=1) =
$$\frac{25}{392} + \frac{5}{280} + \frac{27}{784} + \frac{9}{196} = \frac{127}{784}$$

P(R=1,S=2,W=1) = P(R=1,S=2,H=0,W=1) + P(R=1,S=2,H=1,W=1) =
$$\frac{27}{784} + \frac{9}{196} = \frac{63}{784}$$

P(R=1 | S=2, W=1) =
$$\frac{P(R=1, S=2, W=1)}{P(S=2, W=1)} = \frac{\frac{63}{784}}{\frac{127}{784}} = \frac{63}{127}$$

Веројатноста за пациент кој редовно вежба и многу пуши да има висок ризик за болест е $\frac{63}{127}$

Б. Перцептрон

(a)

R – Ризик на болест:

- Позитивна класа низок
- Негативна класа висок

S – Пушење:

- 0 малку
- 1 средно
- 2 − mhory

Н – Радиоактивен:

- 0 не
- 1 да

V – Вежбање:

- 0 повремено
- 1 редовно

BIAS = 1

f(x) = [BIAS, S, H, V]

$$W = [W_{higs}, W_s, W_h, W_v] = [1, -3, -1, 3]$$

-Иницијаланата вредност на векторот на тежина w_s ја имам одбрано негативна бидејќи негативната класа ми е висок ризик на болест а пушењето на цигари има големо влијание врз здравјето.

А пак радиоактивноста w_h ја иницијализирав со мала негативна вредност бидејќи според дадените податоци (пациенти) не ми се гледа дека има голема влијание врз здравјето а негативна бидејќи радиоактивноста го зголемува ризикот на болест.

Од друга страна векторот на тежина w_v ја иницијализирав со позитивна вредност бидејќи вежбањето го намалува ризикот на заболување.

-Кога векторот на тежини ќе биде иницијализиран со 0, тогаш влијание ќе има само BIASот и ќе ја стреми кон позитивната класа, односно кон низок ризик на болест:

$$W = [W_{bias}, W_s, W_h, W_v] = [1, 0, 0, 0] => W f(x) = 1 > 0$$

(б)

#пациент	Пушење	Радиоактивност	Вежбање	Ризик за болест
1	0	1	1	≥ 0
2	0	0	0	≥ 0
3	0	0	1	≥ 0
4	1	1	0	< 0
5	1	0	1	< 0
6	1	0	1	≥ 0
7	2	0	0	< 0
8	2	1	0	< 0
9	2	0	1	≥ 0
10	2	1	1	< 0

-Пациент #1: f(x) = [1, 0, 1, 1]

$$w = [1, -3, -1, 3]$$

Точна класа: +(низок ризик на болест): у* = 1

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 + 0 – 1 + 3 = 3 > 0; y = 1

Предвидената класа се совпаѓа со точната и нема промена на векторот на тежини.

-Пациент #2: f(x) = [1, 0, 0, 0]

$$w = [1, -3, -1, 3]$$

Точна класа: +(низок ризик на болест): $y^* = 1$

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 + 0 + 0 + 0 = 1 > 0; y = 1

Предвидената класа се совпаѓа со точната и нема промена на векторот на тежини

-Пациент #3: f(x) = [1, 0, 0, 1]

$$w = [1, -3, -1, 3]$$

Точна класа: +(низок ризик на болест): $y^* = 1$

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 + 0 + 0 + 3 = 1 > 0; y = 1

Предвидената класа се совпаѓа со точната и нема промена на векторот на тежини

-Пациент #4: f(x) = [1, 1, 1, 0]

$$w = [1, -3, -1, 3]$$

Точна класа: -(висок ризик на болест): $y^* = -1$

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 - 3 - 1 + 0 = -3 < 0; y = -1

Предвидената класа се совпаѓа со точната и нема промена на векторот на тежини

-Пациент #5: f(x) = [1, 1, 0, 1]

$$w = [1, -3, -1, 3]$$

Точна класа: -(висок ризик на болест): $y^* = -1$

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 - 3 + 0 + 3 = 1 > 0; y = 1

Предвидената класа не се совпаѓа со точната и ќе има промена на векторот на тежини:

$$W = W + y^* f = W - f = [1, -3, -1, 3] - [1, 1, 0, 1] = [0, -2, -1, 2]$$

Новиот вектор на тежини e: w = [0, -2, -1, 2]

-Пациент #6: f(x) = [1, 1, 1, 0]

$$w = [0, -2, -1, 2]$$

Точна класа: +(низок ризик на болест): y* = 1

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 0 - 2 - 1 + 0 = -3 < 0; y = -1

Предвидената класа не се совпаѓа со точната и ќе има промена на векторот на тежини:

$$W = W + y^* f = W + f = [0, -2, -1, 2] + [1, 1, 1, 0] = [1, -1, 0, 2]$$

Новиот вектор на тежини e: w = [1, -1, 0, 2]

-Пациент #7: f(x) = [1, 2, 0, 0]

$$w = [1, -1, 0, 2]$$

Точна класа: -(висок ризик на болест): $y^* = -1$

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 - 2 + 0 + 0 = -1 < 0; y = -1

Предвидената класа се совпаѓа со точната и нема промена на векторот на тежини

-Пациент #8: f(x) = [1, 2, 1, 0]

$$w = [1, -1, 0, 2]$$

Точна класа: -(висок ризик на болест): $y^* = -1$

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 - 2 + 0 + 0 = -1 < 0; y = -1

Предвидената класа се совпаѓа со точната и нема промена на векторот на тежини

-Пациент #9: f(x) = [1, 2, 0, 1]

w = = [1, -1, 0, 2]

Точна класа: +(низок ризик на болест): y* = 1

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 - 2 + 0 + 2 = 1 > 0; y = 1

Предвидената класа се совпаѓа со точната и нема промена на векторот на тежини

-Пациент #10: f(x) = [1, 2, 1, 1]

w = [1, -1, 0, 2]

Точна класа: -(висок ризик на болест): $y^* = -1$

Предвидена класа: w f(x) = w_{bias} BIAS + w_s S + w_h H + w_v V = 1 - 2 + 0 + 2 = 1 > 0 ; y= 1

Предвидената класа не се совпаѓа со точната и ќе има промена на векторот на тежини:

 $W = W + y^* f = W - f = [1, -1, 0, 2] - [1, 2, 1, 1] = [0, -3, -1, 1]$

Новиот вектор на тежини e: w = [0, -3, -1, 1]

Со поминување на сите пациенти еднаш, завршува епохата и финалниот вектор на тежини е [0, -3, -1, 1].

(B)

-Ако знаеме дека податоците се линерано сепарабилни, односно може да се постави хипер-рамнина помеѓу позитивната и негативната класа на координатниот систем, тогаш со сигурност постои гаранција дека алгоритамот за учење на перцептронот ќе конвергира.

В. Дрво на одлучување

Default класа: Низок (Ризик на болест)

(a)

S = [низок: 5; висок: 5]

$$H = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$

#пациент	Пушење	Ризик за болест
1	малку	Низок
2	малку	Низок
3	малку	Низок
4	многу	Висок
5	многу	Висок
6	многу	Низок
7	средно	Висок
8	средно	Висок
9	средно	Низок
10	средно	Висок

H(малку) = 0

H(средно) =
$$-\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4} = 0.811$$

H(многу) =
$$-\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.918$$

G(S, пушење) =
$$1 - \frac{3}{10} \cdot 0 - \frac{4}{10} \cdot 0.811 - \frac{3}{10} \cdot 0.918 = 0.4002 \approx 0.4$$

#пациент Радиоактивно Ризик за болест
1 да Низок
2 не Низок (Радиоактив
3 не Низок
4 да Висок
5 не Висок
6 не Низок Да
7 не Висок
8 да Висок
9 не Низок Низок: 1
10 да Висок Висок: 3

H(да) =
$$-\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4} = 0.811$$

H(He) =
$$-\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}\log_2\frac{2}{6} = 0.918$$

G(S, радиоактивно) = 1 -
$$\frac{4}{10}$$
 0.811 - $\frac{6}{10}$ 0.918 = 0.124

#пациент	Вежбање	Ризик за болест		
1	редовно	Низок		
2	повремено	Низок		(Вежбање)
3	редовно	Низок		
4	повремено	Висок	_	
5	редовно	Висок		
6	редовно	Низок	Редовно	Повремено
7	повремено	Висок		
8	повремено	Висок		
9	редовно	Низок	Низок: 4	Низок: 1
10	редовно	Висок	Висок: 2	Висок: 3

H(редовно) =
$$-\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}\log_2\frac{2}{6} = 0.918$$

H(повремено) =
$$-\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4} = 0.811$$

G(S, вежбање) = 1 -
$$\frac{6}{10}$$
 0.918 - $\frac{4}{10}$ 0.811 = 0.124

G(S, пушење) > G(S, вежбање) = G(S, радиоактивно); 0.4 > 0.124

Избор на корен: G(S, пушење) = 0.4

-Поддрво: средно

#пациент	Пушење	Радиоактивно	Вежбање	Ризик за болест
7	средно	не	повремено	Висок
8	средно	да	повремено	Висок
9	средно	не	редовно	Низок
10	средно	да	редовно	Висок

S = [низок: 1; висок: 3]

$$H = -\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4} = 0.811$$

H(редовно) = 1

H(nospemeno) = 0

G(S, вежбање, пушење) =
$$0.811 - \frac{2}{4}1 - \frac{2}{4}0 = 0.311$$

$$H = -\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4} = 0.811$$

$$H(Да) = 0$$

$$H(He) = 1$$

G(S, радиоактивност, пушење) = 0.811 -
$$\frac{2}{4}$$
 0 - $\frac{2}{4}$ 1 = 0.311

-Бидејќи имаат иста информациска добивка се одбира произволно поддрво (одбрав поддрво:Вежбање)

-Моментален изглед на дрвото:

#пациент	Пушење	Радиоактивно	Вежбање	Ризик за болест
9	средно	не	редовно	Низок
10	средно	да	редовно	Висок

#пациент	Радиоактивно	Ризик за болест
9	не	Низок
10	да	Висок

⁻Бидејќи Радиоактивен има поголема информациска добивка, тоа поддрво се одбира.

-Моментален изглед на дрвото:

#пациент	Пушење	Радиоактивно	Вежбање	Ризик за болест
4	многу	да	повремено	Висок
5	многу	не	редовно	Висок
6	многу	не	редовно	Низок

S = [низок: 1; висок: 2]

$$H = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.918$$

H(Редовно) = 1

Н(Повремено) = 0

G(S, радиоактивност, пушење) = 0.918 -
$$\frac{1}{2}$$
1 - $\frac{1}{2}$ 0 = 0.418

S = [низок: 1; висок: 2]

$$H = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.918$$

$$H(Да) = 0$$

$$H(He) = 1$$

G(S, радиоактивност, пушење) = 0.918 -
$$\frac{1}{2}$$
0 - $\frac{1}{2}$ 1 = 0.418

-Бидејќи имаат иста информациска добивка се одбира произволно поддрво (одбрав поддрво:Вежбање)

-Моментален изглед на дрвото:

#пациент	Пушење	Радиоактивно	Вежбање	Ризик за болест
5	многу	не	редовно	Висок
6	многу	не	редовно	Низок

⁻Бидејќи нема доминантни класи и не може да се донесе мнозинска одлука, според дефинираната default класа, листов ќе се смени во Низок.

-Бидејќи листот има совршена класификација, има теоретска максимална добивка и се трансформира во: низок (Ризик на болест)

Најголема информациска добивка кај листот "средно", има јазелот "Вежбање".

-Бидејќи листот има совршена класификација, има теоретска максимална добивка и се трансформира во: висок (Ризик на болест)

-Бидејќи листот нема совршена класификација и останува само уште еден јазел, листот се трансформира во јазелот "Радиоактивен".

-А пак неговите два листа имаат совршена класификација па на листовите ќе им се донесе одлука.

Најголема информациска добивка кај листот "многу", има јазелот "Вежбање".

-Бидејќи листот има совршена класификација, има теоретска максимална добивка и се трансформира во: висок (Ризик на болест)

-Бидејќи нема доминантни класи и не може да се донесе мнозинска одлука, според дефинираната default класа, листов ќе се смени во Низок.

Со тоа завршува алгоритмот.

