(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 7 June 2001 (07.06.2001)

PCT

(10) International Publication Number WO 01/40340 A2

(51) International Patent Classification?: C08G

C08G 18/00 Mile

(21) International Application Number: PCT/US00/30062

(22) International Filing Date:

1 November 2000 (01.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/450,569

30 November 1999 (30.11.1999) U

(71) Applicant: CROMPTON CORPORATION [US/US]; 199 Benson Road, Middlebury, CT 06749 (US).

(72) Inventors: XIE, Rui; 18 Melissa Lane, Prospect, CT 06712 (US). ROSENBERG, Ronald, Owen; 781 Quarter

Mile Road, Orange, CT 06477 (US). SINGH, Ajaib; 58 Autumn Ridge Road, Huntington, CT 06484 (US).

- (74) Agent: REITENBACH, Daniel, Crompton Corporation, 199 Benson Road, Middlebury, CT 06749 (US).
- (81) Designated States (national): AU, CA, JP, KR.
- (84) Designated States (regional): European patent (AT. BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

V

(54) Title: HIGH PERFORMANCE POLYURETHANE ELASTOMERS FROM MDI PREPOLYMERS WITH REDUCED CONTENT OF FREE MDI MONOMER

(57) Abstract: Polyurethane prepolymers having a reduced amount of unreacted monomeric diisocyanate, particularly diphenylmethane dissocyanate (MDI), prepared by distilling the prepolymer reaction product in the presence of a least one inert solvent whose boiling point is slightly below that of the monomeric diisocyanate; and to high performance cast polyurethane elastomers from the thus obtained prepolymers using diamine and/or diol chain extenders.

- 1 -

HIGH PERFORMANCE POLYURETHANE ELASTOMERS FROM MDI PREPOLYMERS WITH REDUCED CONTENT OF FREE MDI MONOMER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to preparing castable polyurethane prepolymers containing reduced levels of unreacted diphenylmethane disocyanate (MDI)

monomer: In particular, this invention relates to producing high performance MDI-based cast polyurethane elastomers chain extended with diols and diamines, especially the FDA approved trimethylene glycol di-p-aminobenzoate. These systems provide improved industrial hygiene, easier easting, and improved mechanical properties.

2. MucDescription of Related Art Corper sanger licale for the

Industrial polyurethane elastomers are most commonly based on either MDI or toluene diisocyanate (TDI) prepolymers. Polyurethane prepolymers for elastomers are normally made by reacting polyols with excess molar amounts of diisocyanate monomers. The use of excess diisocyanate monomer leaves residual unreacted monomer, resulting in potential industrial hygiene issues.

It is well known that both skin contact and inhalation of disocyanate monomers must be carefully avoided. Much attention has been given to removal of unreacted TDI from prepolymers. Various methods to reduce the unreacted TDI levels in prepolymers are known and disclosed in, for example, U.S. Patent Nos. 3,248,372; 3,384,624; and 4,061,662. Commercial TDI prepolymers with below 0.1% residual monomer are available.

However, much less attention has been given to removal of unreacted MDI from prepolymers owing to the greater difficulty of removing this higher boiling monomer from prepolymers. While MDI has a low vapor pressure, which limits its inhalation hazard, its hazard for skin contact is increasingly recognized. Once on the skin, MDI is very difficult to remove. See Wester, R. et al., Toxicol, Sci. 48(1):1-4 (1999) and Klinger, T., Controlling Dermal Exposure to Isocyanate: Maintaining the

20

5

30 -

25

PMA's Leadership in Health and Safety, a paper presented at the Polyurethane Manufacturer Association Meeting, Baltimore, MD, October, 1998. Unfortunately, commercial MDI prepolymers for castable elastomers typically contain at least 5% residual MDI monomer by Weight

Among the various processes that have been developed in attempts to reduce the quantity of unreacted monomeric diisocyanate levels in prepolymers are processes or methods that use falling film evaporators, wiped film evaporators, distillation techniques, solvent extraction, and molecular sieves. For example, U.S. Patent No. 4,182,825 describes a process to reduce the amount of disocyanate (TDI) by distilling a prepolymer reaction product under vacuum conditions. U.S. Patent No. 4,385,171 describes a method for the removal of unreacted diisocyanate monomer (TDI) from prepolymers by codistilling the prepolymer reaction product with a compound that boils at a temperature greater than the boiling point of the disocyanate. U.S. Patent No. 5,703,193 describes a process for reducing the amount of residual organic diisocyanate monomer, para-phenylene, diisocyanate (RPDI), in prepolymers by codistilling the reaction product in the presence of a combination of two inert solvents, with the first inert solvent having a boiling point below the boiling point of the diisocyanate monomer and the second inert solvent having a boiling point above the boiling point of the dijsocyanate monomer.

20

15

U.S. Patent No., 4,061,662 describes a process for the removal of unreacted toluene diisocyanate from prepolymers by passing the prepolymer reaction product through a column containing molecular sieves () () (2) (2)

U.S. Patent No. 4,288,577 describes the removal of unreacted methylene bis(4-phenyl isocyanate) (MDI) via solvent extraction with hexane.

25

U.S. Patent No. 4,888;442 is directed to a process for reducing the free monomer content of polyisocyanate adduct mixtures wherein the adduct has an average isocyanate functionality of greater than about 1.8 which comprises treating the polyisocyanate adduct mixture in the presence of 2 to about 30 percent by weight of an inert solvent, based on the weight of the polyisocyanate mixture, in an agitated 30 states thin-layer evaporator under conditions sufficient to reduce the free monomer content

of the polyisocyanate adduct mixture below that level which is obtainable in the absence of a solvent. By this process, polyurethane prepolymers of aliphatic diisocyanate monomer with 11-12% free monomer were reduced to 3.6-6.3% free monomer. Residual solvent levels were not disclosed.

5

Of these processes, distillation is much simpler and more economical than solvent extraction or molecular sieve adsorption. There is no need subsequently to separate the monomer from either (flammable) hexane solvent or molecular sieves. However, in the distillation of diisocyanate monomers from polyurethane prepolymers, high temperatures must be avoided to prevent decomposition reactions in the prepolymer. The distillation processes described above relate to removal of low boiling point disocyanates, such as TDI and PPDI. MDI has not been easily removed by distillation owing to its much higher boiling point and the thermal sensitivity of ALL MDI-based prepolymers. The trip terror to bide lieve- (1. * 1000) in

15

20

Polyurethane prepolymers of both aromatic and aliphatic diisocyanates are heat-sensitive; however, prepolymers from aromatic diisocyanates are much more thermally unstable than prepolymers from aliphatic dissocyanates. Typical aliphatic diisocyanates include 1,6-hexane diisocyanate (HDI), isophorone diisocyanate (IPDI). and methylene bis (p-cyclohexyl isocyanate) (H12MDI). Prepolymers made from aromatic isocyanates are much less resistant to thermal degradation than those made from aliphatic diisocyanates, making femoval of aromatic monomeric diisocyanate by distillation much more difficult, especially for monomers having a high boiling point, such as MDI. Distillation of common aliphatic diisocyanate monomers from prepolymers is much easier owing to their lower boiling points and much greater heat stability. However, polyurethanes based on afiphatic dilsocyanates are generally accompanied by a decrease in mechanical properties. The presence of an aromatic isocyanate in the hard segment produces a stiffer polymer chain with a higher melting point (See Lamba, N. et al., Polyurethanes in Biomedical Applications, CRC Press LLC (1998), page 14). Thus, polyurethanes made from aromatic diisocyanates are more desirable in certain circumstances.

30

The two most commonly used aromatic diisocyanates are TDI and MDI. Other aromatic diisocyanates, such as naphthalene diisocyanate (NDI), 3,3'-bitoluene diisocyanate (TODI), and PPDI can also result in high-performance polymers, but at a higher cost than materials based on TDI or MDI. Aliphatic diisocyanates are also significantly more costly than TDI and MDI.

TDI-based solid polyurethane elastomers are most commonly made by

10.

15

20

Mair.

reacting the liquid prepolymers with aromatic diamines, especially 4,4'-methylene-bis(2-chloroaniline) (MBCA) to give satisfactory properties. Diol curatives give generally inferior properties with TDI prepolymer. MBCA is suspected of being a carcinogen and thus requires careful attention to industrial hygiene during casting. It is unacceptable for biomedical and food industry applications.

For industrial safety, it would be particularly desirable to have prepolymers that are both (a) low in monomeric disocyanate level and (b) eapable of being used with diol chain extenders or aromatic amine chain extenders that are not suspected of causing cancer, for example, trimethylene glycol di-p-aminobenzoate. This aromatic amine has FDA approval for use in polyurethanes that are to be brought into contact with dry food and, unlike many other aromatic diamines, is noticonsidered a suspect carcinogen. (C.F.R. 177,1680)

While currently-available commercial MDI-based prepolymers are most commonly chain-extended by industrially safe diols, such as 1,4-butanediol or hydroquinone bis(2-hydroxyethyl) ether, they contain a significant amount of monomeric MDI (typically at least 5%)—an industrial safety concern. Moreover, the high reactivity of the known MDI-based prepolymers makes it impractical to cast the prepolymers with diamine chain extenders, such as the FDA approved trimethylene glycol di-p-aminobenzoate. Thus, the known MDI-based prepolymers cannot provide the particular desirable casting elastomers discussed above.

For many applications aromatic amine chain extenders are preferred to diol (glycol) chain extenders— "Glycol extended polyurethanes are more flexible and less strong than the amine-extended analogo" (Lamba, N., et.al., supra, page 17) – and give generally higher hysteresis. Consequently, amine-extended polyurethanes are generally used in applications such as tires and rolls, which are subject to failure from overheating by hysteresis. Thus, it would be highly desirable to have MDI-based prepolymers that are capable to being chain-extended by a diamine curative, such as trimethylene glycol di-p-aminobenzoate, that is not a suspect carcinogen.

on the Committee of the second for the Second State of the Second State of the Second Second

But the second of the second of the second of

Die Gert Witcher was berriebe auch in jaman frie

renzi di dabindi

wealth surface in the surface

SUMMARY OF THE INVENTION

It has now been found that unreacted MDI monomers can be removed from MDI-based prepolymers, whereby they are rendered capable of being chain-extended by a diamine curative, such as trimethylene glycol di-p-aminobenzoate.

It is an object of this invention to provide a new distillation method for removing disocyanate monomers of high boiling point, particularly MDI, from a prepolymer reaction product mixture prepared by the reaction of an organic aromatic disocyanate monomer with a polyol.

It is a further object to provide castable polyurethane systems that are hygienically safe, that can be cast without difficulty, and that provide elastomers having excellent mechanical properties.

The present invention relates to reducing the content of unreacted aromatic diisocyanate monomer (particularly MDI) in a prepolymer reaction product by distilling the reaction product in the presence of at least one inert solvent with a boiling point below that of the monomeric diisocyanate.

The ratio of the diisocyanate monomer, such as MDI, to the solvent can be from 10/90 to 90/10. The combination of the solvent and the monomeric diisocyanate represents about 15% to 85% of the total weight of the prepolymer reaction product mixture plus solvent.

In a preferred embodiment, three or more distillation stages are employed in series with successively more powerful vacuums to successively reduce the content of monomer and solvent in the prepolymer to below 0.1% by weight.

The present invention also relates to a process for the preparation of polyurethane elastomers by extending the chain lengths of prepolymers containing low concentrations of monomeric MDI. The chain extenders can be diols or diamines. The extender/prepolymer stoichiometry can range from about 75% to about 120% by weight, preferably from about 90% to about 105%. Extender/prepolymer stoichiometry means the ratio of available -OH and/or -NH₂ groups to -NCO groups.

More particularly, the present invention is directed to a process for reducing the amount of residual aromatic diisocyanate monomer in a polyurethane prepolymer reaction product comprising distilling the product in the presence of at least one inert solvent having a boiling point about 1°C to about 100°C, preferably about 20°C to about 80°C, below the boiling point of the diisocyanate monomer at a pressure of 10 torr, wherein the aromatic diisocyanate monomer has a boiling point above about

10

5

15

20

25

30

ALC DY

20

25

200°C at 10 torr, the weight ratio of the inert solvent to the residual aromatic diisocyanate monomer ranges from about 90:10 to about 10:90, and the inert solvent comprises about 5% to about 85% by weight, preferably about 30% to about 75% by weight, of the total weight of the combination of the prepolymer reaction product mixture plus solvents.

In another aspect, the present invention is directed to a prepolymer comprising the reaction product of a polyol and a stoichiometric excess of diphenylmethane diisocyanate monomer at an NCO:OH ratio in the range of from about 2:1 to about 20:1, wherein the unreacted diisocyanate monomer is removed by a process comprising distilling the reaction product in the presence of at least one inert solvent having a boiling point about 1°C to about 100°C below the boiling point of the diphenylmethane diisocyanate monomer at a pressure of 10 torr, wherein the weight ratio of the inert solvent to the residual diphenylmethane diisocyanate monomer ranges from about 90:10 to about 10:90, and the inert solvent comprises about 5% to about 85% by weight of the total weight of the combination of the prepolymer reaction product mixture plus solvents.

reaction product mixture plus solvents.

In still another aspect, the present invention is directed to a polyurethane elastomer comprising the reaction product of i) a prepolymer terminated with diphenylmethane diisocyanate, said prepolymer comprising no more than about 0.3% free diphenylmethane diisocyanate and at least about 80% of theoretical NCO content for pure ABA structure with ii) a chain extender selected from the group consisting of 1,4-butanediol; 1,3-propanediol; ethylene glycol; 1,6-hexanediol; hydroquinone-bis-hydroxyethyl ether; resorcinol di(beta-hydroxyethyl) ether; resorcinol di(beta-hydroxyethyl) ether; resorcinol di(beta-hydroxypropyl) ether; 1,4-cyclobexane dimethanol; an aliphatic triol; an aliphatic tetrol; 4,4'-methylene-bis(2-chloroaniline); 4,4'-methylene-bis(3-chloro-2,6-diethylaniline); diethyl toluene diamine; t-butyl toluene diamine; dimethylthio-toluene diamine; trimethylene glycol di-p-amino-benzoate; methylenedianiline; methylenedianiline-sodium chloride complex; and mixtures thereof; wherein the equivalent ratio of chain extender to prepolymer is in the range of from about 0.7:1 to about 1.2:1.

In a preferred embodiment, the present invention is directed to a polyurethane elastomer comprising the reaction product of:

- A) a diphenylmethane diisocyanate-terminated prepolymer comprising the reaction product of:
- i) a first polyol comprising at least one component having a low

5.

1,0

15

20 ...

25

30

35

molecular weight in the range of from about 62 to about 400, and selected from the group consisting of ethylene glycol, isomers of propylene glycol, isomers of butane diol, trimethylolpropane, pentaerythritol, poly (tetramethylene ether) glycol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, and mixtures thereof;

- from about 400 to about 5000; and careful manage of
- monomer at an NCO:OH ratio in the range of from about 2:1 to about 20:1; wherein unreacted diphenylmethane diisocyanate monomer is removed from said reaction product by a process comprising distilling the reaction product in the presence of at least one inert solvent having a boiling point about 1°C to about 100°C below the boiling point of the diphenylmethane diisocyanate monomer at a pressure of 10 torr, wherein the weight ratio of the inert solvent to the residual diphenylmethane diisocyanate monomer ranges from about 90;10 to about 10:90, and the inert solvent comprises about 5% to about 85% by weight of the total weight of the combination of the prepolymer reaction product mixture plus solvents: with
- B) a chain extender selected from the group consisting of 1,4-butanediol; 1,3-propanediol; ethylene glycol; 1,6-hexanediol; hydroquinone-bis-hydroxyethyl ether; resorcinol di(beta-hydroxyethyl) ether; resorcinol di(beta-hydroxypropyl) ether; 1,4-cyclohexane dimethanol; aliphatic triols; aliphatic tetrols; 4,4'-methylene-bis(2-chloroaniline); 4,4'-methylene-bis(3-chloro-2,6-diethylaniline); diethyl toluene diamine; t-butyl toluene diamine; dimethylthio-toluene diamine; trimethylene glycol di-p-amino-benzoate; methylenedianiline; methylenedianiline-sodium chloride complex; and mixtures thereof; (1,2-1) (1,3-1

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

i da seculo 🦟 E apponibali maggio maggio de con

maken a constitution of

thistory in a new modern all

The present invention is directed to the removal of monomeric diisocyanates, especially diisocyanates having high boiling points, e.g., MDI, from prepolymer reaction products. As employed herein, the term "prepolymer reaction product" means the product of the reaction of at least one polyol with at least one diisocyanate.

1.

20 %

25

30

35 -

Polyurethane prepolymers can be obtained by feacting the polyol with the disocyanate monomer by procedures known in the art. According to the present invention, a prepolymer is made by the reaction of a polyol, such as a polyether or a polyester, with a large excess of a disocyanate monomer, such as methylene bis (4-phenyldiisocyanate) (MDI) and/or its isomers. An inert solvent is used to facilitate removal of the monomeric diisocyanate(s) from the prepolymer.

The inert solvent should have a boiling point lower than that of the diisocyanate monomer(s) under vacuum conditions. For purposes of the present invention, the inert solvent should have a boiling point (bp) of from about 1°C to about 100°C, preferably about 20°C to about 80°C, below that of the diisocyanate at a vacuum of 10 torr. As employed herein, a described bp is at 10 torr unless otherwise specified. For MDI (bp 21°S°), examples of suitable inert solvents include dimethyl phthalate (DMP) (bp 147°C) diethyl phthalate (bp 158°C), diisobutyl adipate (bp 158°C), and dibutyl phthalate (DBP) (bp 192°C). The preferred inert solvents are those that do not react with the prepolymers, do not decompose, and have good miscibility with the diisocyani lessand prepolymers.

Solvents have previously only been applied to lower boiling, more easily distilled, aromatic dissocyanates. For aromatic dissocyanates, such as TDI and PPDI, a solvent with a higher Boiling point was always required, as disclosed in U.S. Patent Nos. 4,385,174 and 5,703,193. Solvents with lower boiling points were only used for aliphatic dissocyanates that generally have low boiling points and provide prepolymers having greater thermal stability than those provided by aromatic dissocyanates.

U.S. Patent No. 4,888,442 discloses removing the low boiling, aliphatic monomers 4,4'-methylene bis(cyclohexyldiisocyanate) and 1,6-diisocyanatohexane from mixtures of polyurethane prepolymer reaction products and solvents of lower boiling point by distillation. According to that process, the prepolymer reaction product was prepared without solvent. Unreacted diisocyanate level was first reduced by distilling the reaction product without solvent once, and further reduced by distilling the treated reaction product in the presence of 2 to 30% of an inert solvent. The process required separating the inert solvent from the diisocyanates if the solvent and/or the diisocyanates were to be reused, resulting in additional cost.

According to the present invention, it is practical to dissolve MDI in the inert solvent, such as DMP or DBP, at a temperature of about 50°C before charging the polyol, although the inert solvent could be blended in after the prepolymer is made,

according to techniques well known in the art for the preparation of urethanes.

The weight ratio of MDI to solvent can range from about 10:90 to about 90:10; an MDI/solvent weight ratio from about 25:75 to about 65:35 is preferred. At higher ratios, the MDI may form crystals and precipitate out at room temperature, while at significantly lower ratios, the cost of removing the solvent during distillation may be unnecessarily high.

The polyurethane prepolymers can be made by reacting the disocyanate monomers with high molecular weight polyols. The disocyanate monomers are most typically TDI or MDI. MDI is commercially available as the pure 4,4'-diphenylmethane disocyanate isomer (e.g., Mondur MP, Bayer) and as a mixture of isomers (e.g., Mondur ML, Bayer and Lupranate MI, BASF). As employed herein, "MDI" or "diphenylmethane disocyanate" means all isomeric forms of diphenylmethane disocyanate. The most preferred form is the pure 4,4'-isomer. Other aromatic disocyanate monomers usefuls in the practice of the present invention include PPDI, tolidene diisocyanate (TODI), nephthalene-1, 5-diisocyanate (NDI); diphenyl-4, 4'-diisocyanate, stilbene-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, and mixtures thereof. Aliphatic diisocyanate monomers include dibenzyl-4,4'-diisocyanate, isophorone diisocyanate (IPDI), 1,3 and 1,4-xylene diisocyanates, 1,6-hexamethylene diisocyanate; 1,3-cyclohexyl diisocyanate, 1,4-cyclohexyl diisocyanate (CHDI), the three geometric isomers of 1,1'-methylene-bis(4-isocyanatocyclohexane) (H₁₂MDI), and mixtures thereof.

The polyols are typically polyether, polyester, and polycarbonate or hydrocarbon polyols having molecular weights runging from about 250 to about 6000. Polyols having molecular weights in the renge of from about 400 to about 3000 are normally used to prepare prepolymers, although glycols or triols having molecular weights of from about 62 to about 400 can be included under certain circumstances.

A mole ratio in the range from about 3 leto about 20:1, preferably 5:1 to 10:1, MDI:polyol is recommended for use in the practice of the present invention. Reaction temperatures ranging from about 30°C to about 120°C are practical. Maintaining the reaction at a temperature in the range of from about 50°C to about 110°C with agitation is preferred.

When the preferred mole ratios of MDI to polyol and the weight ratios of MDI to solvent are observed, the reaction product can be transparent at room temperature, and primarily comprises an adduct having the "MDI-polyol-MDI" structure (here termed "ABA" structure, where A denotes MDI and B denotes a polyol). Higher

• •

15

_ _

25

35

30

molecular weight adducts containing two or more polyol moieties (here termed "oligomers" of structure "ABABA", "ABABABABA", retail are usually less desirable.

Each ABA and ABABA adduct has two unreacted NCO groups, one on each to the of the terminal A moieties: The internal A moiety in the ABABA adduct has no 15 remaining unreacted NCO group. Therefore, the ABABA adduct has a lower weight percentage NCO content than does the ABA adduct. Thus, in a prepolymer reaction product mixture substantially free of unreacted A, the relative content of ABA to higher molecular weight adducts can be determined by the percent NCO content of the mixture. A large molar excess of MDI over polyol minimizes oligomer formation.

10- An MDI:polyel molecration of at least about 5.4 or greater favors formation of a final mens is prepolymer (after removal of solvent and free MDI monomer) with NCO content at least about 80% of the theoretical NGO content for a pure ABA structure.

As an illustration, consider a difunctional polyol of number average molecular weight (mw) 1000. MDI has mw 2500 Thus, the ABA adduct would have an mw of 15 250+1900+250, or 4500 ultrwould also have two NCO end groups, of 42 daltons each. Thus, the NGO content would be 2(42)/4500=5.6% by weight for the ABA structure. By a similar calculation it is seen that the ABABA structure would have an NCO content of 2(42)/2750=B-05% bytweightingon is the public of a language file

The crude reaction product prepared in accordance with the present invention contains a large amount of unreacted MDI and solvent, which are removed by distillation. Any distillation equipment that can be efficiently operated at deep -vacuum, moderate temperature, and short residence time can be used in this step. For example, one can use an agitated filmidistillation system commercialized by Pope Scientific, Inc., Attisantindustries, They GEA Canzler GmbH & Co.; Pfaudler-U.S.,

25 Inc.; InCon Technologies, L.L.C.; Luwa Corp.; UIC Inc.; or Buss-SMS GmbH for this purpose. Continuous units with internal condensers are preferred because they can Here preach lower operating vacuums of 0.001 to 1 form that here

10.04 A DE TO LITE practical to strip the excess MDI and solvent at a pressure around 0.04 Torr and at a temperature between about 120°C and about 175°C, although stripping at 0.02 torr or below and 440°C or below may generate the best results. importance of minimizing high temperature degradation of prepolymers from aromatic diisocyanate monomers is described in U.K. Patent No. 1,101,410, which recommends that distillation be conducted under vacuum with an evaporative temperature preferably under 175°C./U.S. Patent No. 4,182,825 describes the use of evaporative jacket temperatures of 150-160° C for TDI prepolymers. U.S. Patent No. 5,703,193 recommends a jacket temperature of 120°C.

As a rule of thumb, it is desirable that, in the operation of agitated film distillation equipment, the condenser temperature for the distillate be at least about 100°C below the evaporative temperature. This provides a driving force for the rapid and efficient evaporation, then condensation, of the distillate. Thus, to distill off MDI monomer at an evaporator temperature of 140°C or lower (to avoid thermal decomposition of the prepolymer), a condenser temperature of 40°C or below is desirable. Since neat MDI has a melting point of about 40°C, a higher condenser temperature is required to prevent solidification of the MDI in the condenser. The use of a solvent permits condensation at lower temperatures, e.g., 30°C or lower. Thus, the use of a solvent makes possible the use of lower evaporator temperatures, thereby avoiding thermal decomposition of the prepolymer.

If the recommended stripping conditions are observed, the residue (prepolymer) can contain less than 0.1% solvent and about 0.1 to about 0.3% MDI after one pass, and the distillate can come out clean and remain transparent at room temperature. The distillate can then be reused to produce more prepolymer. Monomeric MDI level can drop down to less than 0.1% after two or three passes. This is in sharp contrast to the non-solvent process described in U.S. Patent No. 5,703,193, in which the free MDI level is reduced from an estimated starting level of about 57% to 21%, 3.0%, and 0.7% after the first, second, and third passes, respectively, when carried out under similar conditions.

Generally, the prepolymers obtained by the process of the present invention can have low viscosities, low monomeric MDI levels, and high NCO contents, e.g., 80% or more of the theoretical NCO content for the ABA structure. The prepolymers can be easily chain-extended by various chain extenders at moderate processing temperatures, even with neat diamines that are not practical for hot-casting of conventional MDI-based prepolymers. The chain extenders can, for example, be water, aliphatic diols, aromatic diamines, or their mixtures.

Representative preferred chain extenders include aliphatic diols, such as 1,4-butanediol (BDO), resorcinol di (beta-hydroxyethyl) ether (HER), resorcinol di (beta-hydroxypropyl) ether (HPR), hydroquinone-bis-hydroxyethyl ether (HQEE), 1,3-propanediol, ethylene glycol, 1,6-hexanediol, and 1,4-cyclohexane dimethanol (CHDM); aliphatic triols and tetrols, such as trimethylol propane; and adducts of propylene oxide and/or ethylene oxide having molecular weights in the range of from about 190 to about 500, such as various grades of Voranol (Dow Chemical), Pluracol

10

5

15

20

25

30

35

(BASF Corp.) and Quadrol (BASF Corp.)

Preferred diamine chain extenders include 4,4'-methylene-bis(2-chloroaniline) (MBCA); 4,4'-methylene-bis(3-chloro-2,6-diethylaniline (MCDEA); diethyl toluene diamine (DETDA, EthacureTM †00-from Albemarle Corporation); tertiary butyl toluene diamine (TBTDA); dimethylthio-toluene diamine (EthacureTM 300 from Albemarle Corporation); trimethylene glycol di-p-amino-benzoate (Vibracure® A157 from Uniroyal, Chemical Company, Inc. or Versalink 740M from Air Products and Chemicals); methylenedianiline (MDA); and methylenedianiline-sodium chloride complex (Caytur® 21 and 31 from Uniroyal Chemical Company, Inc.).

The most preferred chain extenders are BDO, HQEE, MBCA, Vibracure A157, MCDEA, Ethacure 300, and DETDAMAGE.

Polyurethane elastomers can be made by extending the chains of the prepolymers having low monomeric MDI content with the above chain extenders by methods known in the art. The amine or diol chain extender and the prepolymer are mixed together to polymerize. The chain extension temperature will typically be within the range of about 20°C to about 150°C. The specimens so obtained are normally aged for about 4 weeks at room temperature before being submitted for standard tests of mechanical properties to a second seco

For industrial casting operations, a working life (pour life) of at least sixty seconds is typically required to mix the prepolymer and the chain extender and to pour the mixture into molds without bubbles. In many cases, a working life of 5 to 10 minutes is preferred. For purposes of the present invention, "working life" (or "pour life") means the time required for the mixture of prepolymer and chain extender to reach a Brookfield viscometer viscosity of 200 poise when each component is "preheated" to a temperature at which the viscosity is 15 poise or lower, preferably 10 poise or lower, except where stated otherwise. Some less common industrial casting operations for simple articles permit the use of higher viscosity and shorter pour life.

The advantages and the important features of the present invention will be more apparent from the following examples.

and the state of t

and great, the second is set to account the second section of

in with the company to the company of the company o

the common of the test will absorbe by the figure page and designed

in the second of the second second

35

The state of the context of EXAMPLES.

The following materials were used in the examples:

of the statement begann worse

production of the control of the con Acclaim[™] 4220: mw=4037, Lyondell Chemical Company, PPG diol polymer from 5 propylene oxide ("PPG 4000") Acclaim[™] 3201: mw=3074, Lyondell Chemical Company, PPG-EO diol (copolymer from propylene oxide and ethylene oxide) ("PPG-EO 3000") Adiprene® LF 1800A: Prepolymer consisting essentially of PEAG 2000 and TDI with below 0.1% monomeric TDI Arcol R-2744: mw=2240, Lyondell Chemical Company, PPG diol ("PPG 2000") Diethylene glycol: mw=106, Aldrich Chemical Company, Inc. Eastman® DMP: mw=194, dimethyl phthalate (DMP), Eastman Chemical Company Mondur MP: mw=250, methylene bis (4-phenyldiisocyanate) (MDI), Bayer Corporation (2) 1 27 37 5 87 8 72 4 00 8 15 Nuoplaz DOA: mw=371, dioctyl adipate. Nuodex Inc. PEAG 1000: mw=980, Witco Chemical Corporation, PEAG diol PEAG 2000: mw=1990, Witco Chemical Corporation, PEAG diel. PEAG 2500: mw=2592, Ruco Polymer Corp., PEAG diol Terathane 1000: mw=994, Du'Pont, PTMEG diol ("PTMEG 1000") 20 Terathane 2000: mw=2040, Du Pont, PTMEG diol ("PTMEG 2000") Tripropylene glycol: mw=192, Aldrich Chemical Company, Inc. 5000 Uniplex 150: mw=278, dibutyl phthalate, Unitex Chemical Corporation ("DBP") Vibrathane 8585: Prepolymer consisting essentially of PEAG, 2000 and MDI with call 10-13% monomeric MDI. Uniroyal Chemical Company, Inc. 25 Vibrathane® 8086: Prepolymer consisting essentially of PEAG 2000 and TDI with ca. 2% monomeric TDI

The low monomeric MDI content prepolymers of the present invention were prepared according to the following general prepolymer synthesis procedure.

Examples 1-10

Preparation of Prepolymer Reaction Mixtures

Examples 1-10, shown in Table 1, were prepared by reacting the polyol with excess MDI at temperatures in the range of from 60°C to 85°C. The MDI was first

dissolved in DMP to make a 50/50 solution and then preheated to the reaction temperature before the polyol was charged. The reaction mixture was held at the reaction temperature for at least 4-6 hours under dry nitrogen and with agitation. The reaction mixture was then pre-degassed at about 1-10 torr. Unreacted MDI and solvent were then removed by a wiped film evaporator.

		(1.)0		P ^O C 1	Tab	le i	· · · · ·				
	Examples	1	2	3	4	5	6	7	8	9	- 10
10	Polyols	A	В .) isolo		br.Ev.	F	G. L.	Hį	, Į	J
Magen.	NCO:OH Reaction Ratio	10:1	1	lsoige.		5:A 60 6:1	10:1		10:1	10:1	10:1
.5	NCO Content (Prepolymer)	5.25	(2.02115) 3,20	4.97	£) 2≀0 S 3.18 ⊇egiési	മാഴ്വമ 2.38 1 മാല	2.98	2.31	71.740	10.8	12.4
	% MDI Monomer (Prepolymer)	0.012		೦೦ಥ೦೦ 610.0 ೦೨ಥ೦	descine	ill No anii	<0.J	<0.1	<0.1	<0 ₋ 3	<0.3
20.	% MDI (Distillate)	45		lorg., I :E ¹ 5	45 45	41	45	45	45	.45	45

in the first program of the part before the second

A is PTMEG:1000 and DiscinstOnfaithA F is PPG 2000

B is PTMEG 2000 oir sile teile United to G is PPG-EO 3000

25

C is PEAG 1000 a Half to villatinesse antistance Half PPG 4000 18 17

D is PEAG 2000 A Casagno Display Disports is Tripropylene Glycol

E is PEAG 3000 East a sentence of the Land of is Diethylene Glycol

nav o ling in the later in the rewrything the later in the Bernell of the majorism floogening in the great

Example 11

Preparation of Purified MDI/ Solvent Solution by Distillation MDI was first dissolved in dibutyl phthalate to make a 50/50 solution at about 50°C. The solution was slightly cloudy when cooled down to 25°C, reflecting the presence of insoluble impurities, such as MDI dimer or MDI reaction product with trace water in the solvent. The solution was purified by distillation according to the procedure described in Example 14. The collected distillate was transparent and colorless and contained about 48% MDI by weight, having an NCO content of 16% (48% of the NCO content of 33.6% for pure MDI).

10

15

o ides 2289 Example 12 Comment of the

Te that was passed though a win

A prepolymer was prepared by reacting PEAG 2500 with excess MDI at a molar ratio of 1:6 using the purified MDI/DBP solution described in Example 11. The reaction was conducted according to the general procedure described for Examples 1-10. The unreacted MDI and DBP were then removed by distillation according to general conditions described below. The NCO content of the prepolymer was 2.23% and the MDI level of the distillate was 39%.

20

Removal of Unreacted MDI from Prepolymers ()

with Solvent of Higher Holist, Catholica as an

Comparative Example A

Inefficient Removal of Unreacted MDI Monomer Without Solvents at Extreme Conditions (High Facket Temperature and Vacuum)

30

35

25

U.S. Patent No. 5,703,193 describes the incomplete removal of monomeric MDI from a commercial prepolymer (Vibrathane B635) consisting essentially of the reaction product of PTMEG 1009, trace trimethylol propane, and MDI with about 14% by weight monomeric MDI. The prepolymer was passed through a conventional vertical glass wiped film evaporator with an internal condenser and a heated jacket. An evaporative surface of 0.6 square foot was used. The prepolymer was fed by gravity as it was wiped as a heated film on the inside wall of the jacket. Volatile monomer evaporated from the film and condensed to a liquid on the internal condenser. The distillate and residue flowed down to discharge pumps and receiver vessels. It was reported that the monomeric MDI level dropped from 14% to 0.35% by weight after the prepolymer passed through the apparatus once under conditions of

15 s

20

25

30

35 .

jacket temperature 161°C, internal condenser temperature 65°C, and vacuum 0.004 torr.

ti sun ilian ken ere mila atroibur berinda ilian ilian (ilian ilian ilia

Comparative Example B

Inefficient Removal of High Levels of Unreacted MDI Monomer Without Solvents by Using Multiple Passes

U.S. Patent No. 5,703,193 describes an inefficient removal of high levels of unreacted MDI monomer without solvents by using multiple passes. The prepolymer reaction mixture was prepared by reacting PTMEG 1000 with MDI in a 1:10 molar ratio at 60°C. The mixture was passed though a wiped film evaporator three times at a jacket temperature of 140°C for the first pass and 160°C for the next two passes. The internal condenser temperature was 43°C and the vacuum ranged from 0.02 to 0.06 torr for each pass. Under these conditions, monomeric MDI level was reduced from 57% to 21%, 3.0%, and 0.7% after the first second, and third passes. respectively. The final prepolymer had an NCO content of 5.54%.

mark refer to the control of the effective formatative Example Contacting of guide rebe

wings, plife "Free structive" and DRP were there and the contactions of

Deficiency of Removing Unreacted MDL Monomer with Solvent of Higher Boiling Temperature

U.S. Patent No. 4.385 171 describes a method for removing unreacted monomeric diisocyanate by co-distilling the prepolymer reaction product with a compound having a higher holling point than that of the diisocyanate. This technique, however, cannot easily be applied to MDI parameters.

Vibrathane® B. 635 containing about 14% free MDI monomer was blended with dioctyl adipate (Nuoplaz DOA, Nuodex Inc.) in 85/15 wt/wt ratio to form a solution containing about 12% free MDI and 15% DOA. The boiling points at 10 torr of MDI and DOA are, respectively, 215°C and 224°C. Thus, the DQA has a slightly higher boiling point. The mixture was then processed on the same wiped film evaporator as above. The jacket temperature was 160°C, the condenser temperature was 40°C (this low temperature was possible because the DOA prevented the MDI from freezing), and the vacuum was 0.003 torr. Thus, all process conditions favored thorough removal of MDI and DOA from the prepolymer. Under these conditions, free MDI in the prepolymer was reduced to 0.04% by weight in one pass. However, DOA level was reduced only from 15% to 7.6% in one pass. Thus, while relatively low boiling diisocyanate monomers such as TDI (bp 120°C) or PPDI (bp 110°C) may

benefit from inclusion of a higher-boiling solvent such as DMP (bp 147°C), this technique is much less beneficial for a higher-boiling diisocyanate monomer, such as MDI (bp 215°C). A solvent with a higher boiling temperature than MDI (such as DOA, bp 224°C) is apt to be difficult to remove at temperatures low enough to prevent thermal degradation of the prepolymer.

Comparative Examples A through C indicate that the prior art has deficiencies in removing MDI or solvents of higher boiling point temperature than that of MDI at the moderate temperatures (\leq 160°C) that are required to prevent thermal degradation of the prepolymer. In sharp contrast, removal of MDI became more efficient when a solvent of slightly lower boiling point temperature than that of MDI was employed.

perdictions from an order care by manifered Example 13staneous access for committee

Control of the first or 14000. Or not the souther passing the south first or set of the control of the

Removal of Unreacted MDI Monomer and Solvent of Lower Boiling Point A prepolymer having a high-fevel of monomeric MDI was prepared by reacting PTMEG 1000 (497 equival tiweight) with MDI in a 1:10 molar ratio at 70° C for 6 hours. The reaction mixture was then blended with dimethyl phthalate (bp 147°C at 10 terr). The amount of DMP was about the same as the initial MDI weight. The mixture (prepolymer, MDI, and DMP) was then passed through the wiped film evaporator used in Comparative Example B. The jacket temperature was 160°C, the internal condenser temperature was 1890, and the vacuum ranged from 0.02 to 0.03 torr. Under these conditions, after two passes, the prepolymer contained less than 0.1% monomeric MDI, 0.02% DMP, and had ar NCO content of 5.25% (93% of the theoretical value of 5,63% for pure MDI-polyol-MDI adduct).

25

en in die er baden in die die

20

5

10

and the Texamples 4.0 reweather of the oreset

Removal of Large Excess of Unreacted MDI Monomer and Solvent of Lower Boiling Point 100 h 100 m 100 m

A large amount of volatile material can be removed efficiently from prepolymer by distillation if a solvent of lower boiling point temperature is used. 30 Vibrathane® 8585 (an MDI prepolymer, Uniroyal Chemical Co.) was blended with an MDI/DMP (50/50) solution to form a mixture containing about 10% weight of Vibrathane 8585. The starting Vibrathane 8585 contained about 10% monomeric MDI. The mixture thus contained about 46% MDI, 45% DMP, and 9% nonvolatile polymer. The mixture was then passed once thorough the wiped film evaporator at a 35 jacket temperature of 160°C and a vacuum of 0.04 torr. The residue thus obtained

Course the present Askeding rate of 150cm and the course of the course o

was about 10% by weight of the starting mixture and the distillate was about 90% by weight of the starting mixture. Thus, one pass successfully removed about 99% (90/91=98.9%) of the volatiles in the starting mixture.

5 .

Example 15 roll dar que de most as sorte

now at the manifest flat flat of the Oct

Removal of Unreacted MDI Monomer and DMP at Moderate Temperature A prepolymer was made by reacting PEAG 2500 with MDEat an NCO OH ratio of 6.0. The MDI was pre-dissolved in DMP to form a 50/50 (wt/wt) solution. The reaction was conducted at 80%C for 6 hours to The reaction mixture was then passed though a glass wiped film evaporator at a jacket temperature of 140°C, and a vacuum of 0.4 torr for the first pass; 140°C, 0.1 torr for the second pass; and 140°C, 0.04 torr for the third pass. An almost constant feeding rate of about 550 mL/hour was used for all three passes. The internal condenser temperature was kept at 35°C during the process. The prepolymers contained 8.05%, 0.39%; and 0.05% unreacted MDI after the first, second, 15 - and third passes, respectively. DMP conceit dropped to 1% by weight after the first pass, and could not be detected (below 200 ppm) after the prepolymer passed the second and third passes. The NCO content of the prepolymer after the third pass was 2:38%, and was about 86% of the theoretical NCO content for the ABA structure.

25

in. e na) cela e bace de e crasa a la significa de de caracter racyre i de con lettere

tipm for used to contratative livample R. The jack termiquerome was a co

Removal of Unreacted MDb Monomer and DBP at Moderate Temperature The reaction mixture of Example 12 was passed through the evaporator three times. The jacket temperature was 140°C, and the internal condenser was kept at 30°C for all three passes. A feeding rate of 550 mL/hour was used for each of the passes. The vacuum was 0.4 for for the first pass, 0.1 torr for the second pass, and 0.04 torr for the third pass. Both the residue and distillate were found to be substantially colorless and chear. The prepolymer NCO content dropped to 5.07%, 2.62% and 2.23% after the first, second, and third passes, respectively. The prepolymer achieved an NGO content of 82% of theoretical for an ABA structure after 30 the third pass. Monomeric MDI level was reduced to 12%, 0.9%, and 0.09% after the first, second, and third passes, respectively. The DBP content was reduced to 3.6%, 0.1% and 0.04% after the first, second, and third passes, respectively.

Preparation of Polyurethane Elastomers

A I got route in the work of the sign

prepolymers of TDI and MDI. All are based on the common polyol PEAG 2000 for 2018 - Commente office of section with comparison. GOODE TO NOT THE MENUTY OF THE CONTROL OF THE

Comparative Example D

-Unsuccessful Cast Molding of Conventional MDI Prepolymer with Vibracure®-A157 A quantity of 250.0 grams of Vibrathane 8585 (PEAG based MDI prepolymer containing ca. 10% monomeric MDI. NCO:6.63%) was added to a dry. clean pint metal can and preheated to 90° C (viscosity ea. 10 poise). The prepolymer was then mixed with 58.8 grams of Vibracure A157 pre-melted at 145°C. The material gelled out in the metal can in 30 seconds, well before the minimum 60 second pour life property needed for typical casting operations, appropriate the property of the control of the c

or who was a secretary unless a Comparative Example E section of the grand princip

de marce an et el escripope descripopent requires con alla effection de la contra a collar e

Difficult Cast Molding of Conventional TDP Prepolymer with Vibracure® A157 15 A 234.0 gram sample of Vibrathane 8086 (PEAG 2000 based TDI prepolymer containing a significant amount of monomeric TDF NCO 3.91%), preheated to 85°C (viscosity 19 poise), and 32.5 grams of Vibracure A157, pre-melted at 145°C, were reacted according to the general technique described above. The material exhibited ca. 2 minutes pour life, sufficiently long for casting. At 30 minutes, it was readily demoldable without distortion. However, during casting, the prepolymer emitted strong TDI vapor, which is hazardous to health. The final specimen had 92 Shore A y hardness and 33% Bashore rebounding-relocities, maste editionary of order of the company.

Comparative Example F

Manager of the contents, were then so,

Deficiencies of Prepolymer of Low Monomeric FDI Content Cured by the distribution of the divibracure® A457 min to the little of

A 233.0 gram sample of Adiprene LF 1800A (substantially PEAG 2000 based TDI prepolymer containing less than 0.1% monomeric TDI. NCO 3.20%) and a 26.5 gram sample of Vibracure A157 were reacted using the technique described above. Samples were cured at 100°C for 24 hours and conditioned for testing. Demold time was very long (>3 hours). The material was cured soft (ca. 67 Shore A) and had low resilience (Bashore Rebound 10%). Thus, although the issue of TDI vapor was eliminated by use of a prepolymer of low monomeric TDI content, the elastomer required a long time before demolding and had very poor properties.

20 ~

25

30

re included the

20

25

35

Comparative Example G

Deficiencies of Prepolymer of Low Monomeric TDI Content Cured by MBCA A 234.5 gram sample of Adiprene LF 1800A (PEAG 2000 based TDI prepolymer containing less than 0.1% monomeric TDI. NCO:3.20%) and a 22.7 gram sample of MBCA were reacted using the technique described above. The samples were cured at 100°C for 24 hours and conditioned for testing. In contrast with Comparative Example F above, the sample reached demolding strength in under one hour, hardness was 82 Shore A, and Bashore rebound was 31%. The low monomeric TDI content prepolymer/MBCA system is one of the most popular systems in the casting elastomer industry today. However, although the use of prepolymers of low monomeric TDI content sharply reduces the issue of TDI exposure, the use of MBCA diamine curative (a suspect carcinogen) requires careful attention to industrial hygiene during casting and eliminates applications of the elastomer in areas such as the dry food handling industry. Furthermore, when compared to PEAG 2000 based low free MDI prepolymer cured by Vibracure (Example 17), the TDI/MBCA material is much softer and has generally inferior properties, as shown in Table 2.

and surject to make bedicemparative Example H or green door land as

(riseased in the line), and 32 Sterense of Vibraoure Alf.), year

Difficult Cast Molding of Conventional MDI Prepolymer with HQEE Diol Curative A 235.0 gram quantity of Vibrathane 8585 (NCO 6.63%) preheated to 100° C and 35.0 grams HQEE (Eastman Kodak Company) preheated to 130°C were mixed, degassed and poured into clean, silicone-greased molds preheated to 100°C. The molds, together with the contents, were then moved to a 100°C oven and kept in the oven for 24 hours. The samples when removed from the molds, appeared cheesy with small cracks ("starring"). Mold temperatures of at least 120°C or higher are generally required for minimizing starring with HQEE, thereby increasing energy costs and the risk of thermal burns to workers.

Comparative Examples D through H indicate that prepolymers known in the art, such as conventional MDI prepolymers, TDI prepolymers, and even TDI prepolymers containing a low monomeric TDI content exhibit difficulties in either processing, industrial hygiene, or significant deficiencies in properties. Conventional MDI prepolymers even exhibited difficulties when cured by HQEE. In sharp contrast to the known prepolymers, the MDI prepolymers of the present invention, containing low monomeric MDI content, demonstrate unique properties when cured by Vibracure A157, HQEE, or other existing chain extenders, as shown in the following examples.

- 21 --

harmer of the course the Example 17

Low Monomeric MDI Content Prepolymer

Cured with Vibracure A157 Diamine Curative

A sample of 230.7 grams of the product of Example 4 in a dry pint metal can
was heated to 85° C (viscosity 15 poise) and degassed. Then, a 26.0 gram sample of
Vibracure A157, pre-melted at 145°C, was added to the prepolymer at atmospheric
pressure. The material was mixed, degassed, and then poured into clean, siliconegreased molds preheated to 100°C. Under these conditions, the pour life of the system
was ca. 5 minutes. The molds and their contents were then placed in a 100°C oven.
The elastomers reached demolding strength in about 45 minutes. The test samples
were removed from the oven after being post-cured for 24 hours and placed in an open
jar. No starring was observed. After aging at foom temperature for about 4 weeks,
samples were submitted for ASTM tests.

15

20

25

30

Comparative Example I

Unsuccessful Casting of Conventional Ester-MDI Prepolymer with Vibracure® A157

en in ed at 100°C for 24 nours, the benuit

A 2238 gram sample of PEAG 2000 was reacted with 553 grams of MDI at 85°C for 4.5 hours to make a prepolymer of the same NCO content (3.18%) as Example 4 that was used in Example 17. The reaction product appeared transparent and was very viscous at 85°C, making degassing very difficult. The final product had an NCO content of 3.22% and viscosity of 32 poise at 85°C.

A 107 gram sample of the reaction product preheated to 85° C and a 12.2 gram sample of A157 preheated to 145° C were mixed. The mixture solidified in about 55 seconds with numerous bubbles trapped mside. Thus, though pour life could be extended to about one minute by using low temperature (85°C), casting was very difficult because of the high viscosity.

To lower the viscosity to 15 poise, the prepolymer had to be heated to 115°C. A 109 gram sample of the reaction product preheated to 115°C and a 12.6 gram sample of A157 preheated to 145°C were mixed. The mixture was solidified in about 35 seconds after mixing. Casting was impossible because of the short pour life.

Example 18

Same Action to All Control

Low Monomeric Content MDI Polyester Prepolymer Cured with HQEE Diol A 16.0 gram sample of HQEE melted at 130°C and 223.5 grams of the product

of Example 4 at 100°C were reacted using the general techniques described in Comparative Example H. The molds and the contents were then moved to a 70°C oven and cured for 24 hours. Samples were then removed from the molds and aged for testing as described above. Despite the low curing temperature (70°C), elastomers were found to have no starring, in sharp contrast to the behavior of conventional MDI prepolymers, which generally exhibit starring when cured by HQEE at low temperatures.

at freed notificially manage Example 19 to a confirmation of the c

Low Monomeric MDI Containing Polyester Prepolymer Cured with MBCA Diamine

A 22.1 gram sample of MBCA melted at 110°C and 230.5 grams of the
product of Example 4 at 90°C were reacted according to techniques described above.

Pour life was about 6 minutes. Samples were demolded after being cured at 100°C for 45 minutes, post-cured at 100°C for 24 hours, and conditioned for testing as
described above.

Francis Comment of the Comment of the Comment of the Comment

Example 20

et Lesschi Lord v. 17 versuland Ester-MDI Preschau

Low Monomeric MDI Containing Polyester Prepolymer Cured with 1.4-Butanediol A sample of 238.0 grams of the product of Example 4 preheated to 90°C and 7.9 grams of dry 1.4-butanediol were reacted using techniques described above.

Samples were cured at 100°C for 24 hours and conditioned for testing.

can (Viel) i beassierg buborq Example-21

COM one produity of 32 poise at 95 %

Low Monomeric MDI Containing Polyether Prepolymer Cured with Vibracure A157

A 225.5 gram sample of the product of Example 1 was added to a pint metal can, preheated to 65°C (viscosity 10 poise), and degassed. Then, 42.0 grams of Vibracure A157 melted at 145°C was added to the prepolymer. The material was then mixed, degassed, and poured into molds preheated to 100° C. The molds and their contents were then heated to 100° C. Pour life was about 2 to 3 minutes under these conditions and the material could be demolded in 45 minutes. Testing samples were removed from the oven after being post-cured for 24 hours. After aging in an open jar at room temperature for about 4 weeks, samples were submitted for tests.

GROSS CONTRACTOR SERVICES

30

20

- 23 -

and the state of the Example 22

Low Monomeric MDI Containing Polyether Prepolymer Cured with 1,4-Butanediol 235.0 A 12.9 gram sample of dry 1,4-butanediol was added from a syringe to a 235.0 gram sample of the product of Example 1 preheated to 70°C. The material was poured into molds preheated to 100°C after being mixed and degassed. The molds and the contents were then heated to 100°C and held there for 24 hours. Samples were then aged at room temperature for about 4 weeks before testing.

Comparative Example J

In a North NEW Chart Condition of

Deficiency in Casting of Conventional Ether-MDI Prepolymer with 1,4-Butanediol at Room Temperature

A 229.0 gram sample of Vibrathane B635 and an 18.8 gram sample of dry 1,4-butanediol were mixed and degassed at room temperature for 5-10 minutes. The mixture was then poured into a clean, silicone greased (Stoner urethane mold release E236) mold at room temperature and kept at room temperature for 24 hours. The samples, which were 1" in diameter, 1/2" in thickness buttons and 7"×5"×1/8" sheets, were then removed from the molds. Both the cured buttons and the sheets were full of bubbles.

20

25 ---

15

10

Example 23

de i de adiamentaminament

1, -

Room Temperature System—Low Monomeric MDI-Containing Polyether

Prepolymer Cured with the Butanediol Containing Polyether

A 222.3 gram sample of the product of Example 1, a 12.1 gram sample of dry 1,4-butanediol, and a 0.06 gram sample of TEDA-E33 (from Tosoh USA, INC.) were mixed and degassed at room temperature. The material was then poured into the same clean, silicone-greased molds as used in Example 22-at room temperature and kept at room temperature for 24 hours. The samples were then removed from the molds and conditioned as described above before testing. Under the above casting conditions, the samples were bubble-free.

30

35

Comparative Example K

Unsuccessful Casting of Conventional Ether-MDI Prepolymer with Ethacure™ 100 LC

A 500 gram sample of Acclaim[™] 3201 (PPG-EO 3000) was reacted with 82.8 grams of MDI at 90°C for 3.5 hours. The reaction product had an NCO content of

2.39%, and appeared transparent. A:173 gram sample of the reaction product and an 8.3 gram sample of Ethacure™ 100 LC were mixed at room temperature. The mixture solidified in about 55 seconds in the metal can. Casting was impossible because of the short pour life. The solid elastomer in the mix can was opaque and full of trapped air bubbles.

qui est en lon alger / - ille re Example 24 et al million e

esta la place de las complés la magnética de transcención de la final la magnética.

Low Monomeric MDI-Containing Polyether Prepolymer

A 3.79 gram sample of Ethacure TM 100 LC (from Albemarle Corporation) was added via a syringe to an \$1.5 gram sample of the product of Example 7 and mixed at room temperature. The viscosity of the prepolymer was \$4 poise at 25° C, which is much lower than that obtained in Comparative Example K. The material was degassed and poured into molds preheated to 100° C. The contents and the molds were then moved to a 100° C oven and cured at that temperature for 24 hours. Samples were then conditioned as described above for testing. Under the above casting conditions, the pour life was slightly over 1 minute and the elastomer was ready to be demolded in less than 10 minutes. The sample was clear and low in color and had excellent resilience.

20

E2 stymatic Not gar that DealMonament Manample 25 of the word recon-

Low Monomeric MDI-Containing Polyether Prepolymer Blend Cured with MBCA

A 25.0 gram sample of the product of Example 9 and a 75.0 gram sample of
the product of Example 6 were mixed and degassed. The material was reacted with a

14.9 gram sample of MBCA using the procedure described in Example 22. Samples
were cured at 100°C for 24 hours and conditioned for testing as described above. The
pour life was 5 minutes. Test results for Examples 17 through 25 and Comparative
Examples F and G are summarized in Tables 2 and 3.

. The second of the second second is

Darwin Barran (1986)

aran in Europe Marie I recording was

30 -

•		7. 7.	Table 2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	Polyurethan	e Elastomer	s from PE	AG 2000 B	ased Prej	polymer	
	Example	1:7	18	19:	<u>~ 20</u>	'F	G
	Curative	A157	HQEE	MBCA	BDO	A157	MBCA
5	Hardness	95A	190A	90A	76A	67A	82A
w seed o	100% Modulus, psi	1450	993	1160	500	280	700
en so	300% Modulus, psi	3.050	2091	2600	930	460	1400
	Elongation at Break, %	550 atc	640	530	620	620	600
	Tensile Strength, psi	735.:	7928	9450	8800	1040	7100
0	Tear Strength			<u> In some de acomitan las control control de l'incomp</u>	Tail The		Ú.
	Split, pli @ 25°C	150	137	125	113	38	125
} > 1	@ 70°C	85.	85	67	50	29	
None of	Trouser,pli@25°C	340	0.250	224 in	⇒152	100	250
	Compression Set, %	1.2		K Water			
5	22 hour @ 70°C	41-	22	3° 28200°	A 35 Z	48	35
	Bashore Rebound, %	43	45	34	42	10	31
	Tan 8 grade finition of the second	ราบ หลับ อก แบบ	ushiya vi 1	(215.1)	Familia.		
	30°C			ami jan	9 100 17	0.141 c	0.075
Ten er 🗽	50°C	0.037	1	idxz(ê di	n vili i	0.047	0.039
0	70°C	- 0.026	atives, es	ยว อดเกน	Loiser s	0.028	0.026
	140°C	0.015		ia raibilitin s	ા પ્રાપ્તિ આ	0.047	0.015
	geles of the world of	. ex mileda	mance as	ding just for	artur.		

The second of the secure OALSF is size of the second to the second in the

or on the TI, succeiving propalymers ourse on Eq. (1), in

House of the American States of American States and the same of the American

Frames C. F. will His Table 2. It exhibits grant for the

25

30

a Laborate Committee Esanger to

ा । कुलक्षामुक्त कुल्डर्स हार्डा इत्तर क्रांक्सिका San - The second second second second

25

30

35

					• • •			
			estal Ta	able 3				
1	797	Polyurethane Elastomers from Polyether Based Prepolymer						
		Example	21 22		23	24	25	
i. vir.	•	Curative	A 157	BDO	BDO	DETDA	MBCA	
5	*	, Hardness)	1-56D	47D	'44D	78A	95A	
1		100% Modulus, psi	2970	1/6/80	1370	e. u [3	N A F	
gan a samula da		300% Modulus, psi	5590	2340	1830	M.E. Will or	The same of the sa	
	Ž.	Elongation at Break, %	360	460	460	. 1 4.	30 %	
		Tensile Strength, psi	67280	920	4330	rif _e	. 4.1	
10		Tear Strength	·		4 <u></u>	.Eg:	75.2	
TILL T	~~~	Split, pli @ 25°C	7.150	98	130		2 =	
		(? @ 70°C	ċ870	35	45			
T. 7082	00	Trouser,pli@25°C	0280	DF0.	170	25 of "888"		
		Compression Sct. %	37	35	43		GENO.	
15		Bashore Rebound, %	ु51 ।	48	53	72 0	32	
1 75		1		<u> </u>		9 15 3	C	

From Tables 2 and 3, it is evident that by simply changing chain extenders, prepolymers containing low monomeric content, such as the PEAG 2000 based prepolymer (Example 4) exhibit sound properties in a wide hardness range. Among the chain extenders, amine curatives, especially the Vibracure A157, give higher hardness, modulus, and tear strength.

The outstanding performance of the low monomeric MDI-containing prepolymer cured by Vibracure® A157 is in sharp contrast to that of the low monomeric TDI containing prepolymers cured by A157 or MBCA, as illustrated by Example 17, F, and G in Table 2. It exhibits generally better properties in hardness, resilience, tear strength, and dynamics. A157 (trimethylene glycol di-paminobenzoate) has been approved by the FDA for use in polyurethanes contacting dry food. Low monomeric MDI-containing prepolymer and A157 thus provide one of the safest cast urethane systems. Further, the system improves the properties of urethane elastomers, as opposed to the prepolymers containing low monomeric TDI content cured with A157.

It is remarkable that the PTMEG 1000 based prepolymer can be cured at room temperature by 1,4-butanediol without bubbles and without sacrificing properties. Except for a slightly lower hardness, modulus, and tensile strength, the product of Example 23 exhibits better tear strength and resilience as compared to the product of

10

Example 22. Even with low cost polyols, such as PPG, low monomeric content prepolymers can give excellent properties. Example 24 indicates that when a PPG/EO 3000 based MDI prepolymer was cured by EthacureTM 100, the material gave a very high Bashore rebound of 72%. The elastomer was highly transparent and low in color. This kind of material is well suited for applications where high resilience and transparency may be required, such as recreational skate wheels and golf ball-covers.

As demonstrated by Example 25, the prepolymer can be adjusted by adding short MDI-glycol adducts (or short MDI-triol adducts).

In view of the many changes and modifications that can be made without departing from principles underlying the invention, reference should be made to the appended claims for an understanding of the scope of the protection to be afforded; the invention.

Lower of the constant wherein the man, which is evenue.

The entropy of the figure sylmethane dispersionale.

the garmey of received are mismore plus so one;

on the second of the provide of claim 2 viberein the inem socient less contest, then the second of the contest of the second of

ได้ ได้ เป็นสาร ของการที่ เป็นของส่วนสัติ <mark>ของสราจส่</mark>งกร้องสราจส่งกรี การคือสัตร์ และจ

e e l'appearant de la company de la métrophe de la company de la company

de de yerethane prode, mer com et de die des et e a de

and raise that the encess of alpha is recibed a discount of the contract of

and the second s

and with street our color of

(:

v obcůné sou k ří

en aje i ki dieselikur i ki die die die die

> in gradeni bil Januardania di

10

15

20

-72.

- 28 -

with a state of the commence o

our le la moi l'Ogit de abase diovice et le 1916 de l'el Fill L'Ober de l'él

The Homeston of the Commercial Control of the Commercial Control of the Control o

What is claimed is:

- A process for reducing the amount of residual aromatic disse vanate monomer in a polyurethane prepolymer reaction product comprising distilling the product in the presence of at least one mert solvent having a boiling point about 1°C to about 100°C below the boiling point of the dissocyanate monomer at a pressure of 10 torr, wherein the aromatic diffsocyanate monomer has a boiling point above about 200°C at 10'torr, the weight ratio of the inert-solvent to the residual aromatic diisocyanate monomer ranges from about 90:10 to about 10:90, and the inert solvent comprises about 5% to about 85% by weight of the total weight of the combination of the prepolymer reaction product mixture plus solvents.
- The process of claim 1 wherein the monomeric diisocyanate comprises at least one isomer of diphenylmethane diisocyanate.
- 3. The process of claim 2 wherein the inert solvent is selected from the group consisting of organic aromatic esters, aliphatic esters, and mixtures thereof, having boiling points in the range of from about 115°C to about 214°C at 10 torr.
- The process of claim 2 wherein the distillation step comprises at least 4. three agitated film vacuum distillation stages in series, each at an evaporative temperature of up to about 150°C.
- 25 A polyurethane prepolymer comprising the reaction product of a polyol and a stoichiometric excess of diphenylmethane diisocyanate monomer at an NCO:OH ratio in the range of from about 2:1 to about 20:1, wherein the unreacted diisocyanate monomer is removed by a process comprising distilling the reaction product in the presence of at least one inert solvent having a boiling point about 1°C to about 100°C below the boiling point of the diphenylmethane diisocyanate monomer 30 at a pressure of 10 torr, wherein the weight ratio of the inert solvent to the residual diphenylmethane diisocyanate monomer ranges from about 90:10 to about 10:90, and the inert solvent comprises about 5% to about 85% by weight of the total weight of the combination of the prepolymer reaction product mixture plus solvents.

25

35

6. The prepolymer of claim 5 containing less than 0.3% by weight of unreacted diphenylmethane diisocyanate monomer.

U. T. Black in W. F. & Alleg Magazine & Miles S

The prepolymer of claim 6 containing less than 0.1% by weight of unreacted diphenylmethane diisocyanate monomer.

ි සැට යා ලකින් පොමෙබ්ට අතුන් මින්සේ යා මුද මින්ස් ලෙනු ගැනීම

8. The prepolymer of claim 6 containing at least about 80% of the theoretical NCO content for a pure ABA structure.

a leaf to the remark to expect to be the carried of the carried

9. The prepolymer of claim 6 wherein the polyol is selected from the group consisting of a polyester of adipic acid; a polyether of ethylene oxide, propylene oxide, or tetrahydrofuran, a polycaprolactone; a polycarbonate; a 'hydrocarbon polyol: and mixtures thereof; said polyol having a molecular weight in the range of from about 400 to about 5000.

or a samper of plaint is wherein release and a renew or in

- The prepolymer of claim 5 wherein the polyol comprises at least one component having a low molecular weight in the range of from about 62 to about 400, and selected from the group consisting of ethylene glycol, isomers of propylene glycol, isomers of butane diol, hexanediol, trimethylolpropane, pentaerythritol, poly(tetramethylene ether) glycol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, and mixtures thereof.
 - 11. The prepolymer of claim 10 further comprising at least one polyol having a high molecular weight in the range of from about 400 to about 5000.
 - 12. The prepolymer of claim 11 wherein the molar ratio of the low molecular weight polyol to the high molecular polyol is in the range of from about 0.25 to about 2.5:1.
- 13. A polyurethane prepolymer terminated with diphenylmethane diisocyanate, said prepolymer comprising no more than about 0.3% free diphenylmethane diisocyanate and having at least about 80% of the theoretical NCO content for pure ABA structure.
 - 14. A polyurethane elastomer comprising the reaction product of i) a

10

25

30

35

prepolymer terminated with diphenylmethane dissocyanate, said prepolymer comprising no more than about 0.3% free diphenylmethane dissocyanate and having at least about 80% of theoretical NCO content for pure ABA structure with ii) a chain extender selected from the group consisting of 1,4-butanediol; 1,3-propanediol; ethylene glycol; 1,6-hexanediol; hydroquinone-bis-hydroxyethyl ether; resorcinol di(beta-hydroxyethyl) ether; resorcinol di(beta-hydroxyethyl) ether; resorcinol di(beta-hydroxyethyl) ether; resorcinol di(beta-hydroxypropyl) ether; 1,4-cyclohexane dimethanol; an aliphatic triol; an aliphatic tetrol; 4,4'-methylene-bis(2-chloroaniline); 4,4'-methylene-bis(3-chloro-2,6-diethylaniline); diethyl toluene diamine; t-butyl toluene diamine; dimethylthio-toluene diamine; trimethylene glycol di-p-amino-benzoate; methylenediamilime; methylenediamilime; sodium chloride complex; and mixtures thereof; and sibos signs to recorder to the range of from wherein the equivalent ratio of prepolymento chain extender is in the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range of from 1000 toods to the content of the range o

15. The elastomer of claim 14 wherein at least one chain extender is selected from the group consisting of trimethylene glycol di-p-amino-benzoate; 4,4'-methylene-bis(2-chloroanilize); 4,4'-methylene-bis(3-chloro-2,6-diethylaniline); diethyl toluene diamine; and dimethylthio-toluene diamine.

glycol di-p-amino-benzoate. Rosterin granding in the chain extender is trimethylene

glyce is contained in the cital hemanedicl, aimethylaifungar in per copil;

methylene-bis(2-chloroaniline) to egger ediction to be the chain extender is 4,4'-

18. The elastomer of claim 14 wherein the chain extender is diethyl toluene diamine.

19. A polyurethane elastomer comprising the reaction product of:

A) a diphenylmethane diisocyanate-terminated prepolymer comprising the reaction product of:

i) a first polyol comprising at least one component having a low molecular weight in the range of from about 62 to about 400, and selected from the group consisting of ethylene glycol, isomers of propylene glycol, isomers of butane diol, hexanediol, trimethylolpropane, pentaerythritol, poly(tetramethylene ether)

Early Method on Me

glycol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, and mixtures thereof;

- from about 400-to about 5000; and the range of the second polyol having a high molecular weight in the range of
- monomer at an NCO:OH ratio in the range of from about 2:1 to about 20:1; wherein unreacted diphenylmethane diisocyanate monomer is removed from said reaction product by a process comprising distilling the reaction product in the presence of at least one inert solvent having a boiling point about 1°C to about 100°C below the boiling point of the diphenylmethane diisocyanate monomer at a pressure of 10 torr, wherein the weight ratio of the inert solvent to the residual diphenylmethane diisocyanate monomer ranges from about 90:10 to about 10:90, and the inert solvent comprises about 5% to about 85% by weight of the total weight of the combination of the prepolymer reaction product mixture plus solvents; with
- 15 a. chain extender selected from the group consisting of 1,4-butanediol; 1,3-propanediol; ethylene glycol, 1,6-hexanediol; hydroquinone-bis-hydroxyethyl ether; resorcinol di(beta-hydroxyethyl) ether; resorcinol di(beta-hydroxypropyl) ether; 1,4-cyclohexane dimethanol; aliphatic triols; aliphatic tetrols; 4,4'-methylene-bis(2-chloroaniline); 4,4'-methylene-bis(3-chloro-2,6-diethylaniline); diethyl toluene diamine; t-butyl toluene diamine; dimethylthio-toluene diamine; trimethylene glycol di-p-amino-benzoate; methylenedianiline; methylenedianiline-sodium chloride complex; and mixtures thereof; wherein the equivalent ratio of chain extender to prepolymer is in the range of from about 0.7:1 to about 1.2:1.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 June 2001 (07 06 2001)

(10) International Publication Number

(51)	International Patent Classification?: C08G 18/10. Mile Road, Orange, CT 06477 (US). SINGH, Ajaib: 58 18/76. 18/48 Autumn Ridge Road, Huntington, CT 06484 (US).
	International Application Number: PCT/US00/30062 5(74) Agent: REFFENBACH, Daniel: Crompton Corporation 199 Benson Road, Middlebury, CT 06749 (US). International Filing Date: 1 November 2000 (01. F120(8)) 5 (81) Designated States (national): AU, CA, JP, KR.
(26)	Filing Language: English (84) Designated States (regional): European patent (AT, BE ALLO TOUCHER OF GRANDER PROPERTY OF CHACY: DE, DK, ES, FLOFER GB, GR, IE, IT, LU, MC NL. PT, SE, TR). Publication Language: 10 1716 1 griffed 2 [Foreign 1997] 1717 1
	Priority Data: O9/450,569 30 November 1999 (30,116,1999) : US To O1557 International search report
to ac	Applicant: CROMPTON CORPORATION [US/US]: 488} Date of publication of the international search report: 199 Benson Road. Middlebury. CT-06749 (US): 24 January 2002
(72)	Inventors: XIE, Rui; 18 Melissa Lane, Prospect. CT ance Notes on Codes and Abbreviations, refer to the "Guid- 06712 (US). ROSENBERG, Ronald, Quent 781 Quarter of thing of each regular issue of the PCT Gazette.
	September of the control of the control of the same digit hydrology of the control of the contro
	ethe cresorcing (diparta-by thoughthy) ether resorcine dishours and a specific
15	ही.सन्दूरले विकास के ancib until, aliphatic triols; aliphatic triola, वर्ष के विकास के
	liferein lines, 4.4° paet plene-jui3-chloro-2,6-diethyinn liny liffektil to' me
,":	and the control of th
	ej er el mestre a nost e e ded jeder el lamiline, methylenedianskiet er femel eg eg.
	ikursi talif dan ke un d
	na in the activities of the second of the second or report the second of
•	

(54) Title: HIGH PERFORMANCE POLYURETHANE ELASTOMERS FROM MDI PREPOLYMERS WITH REDUCED CON-TENT OF FREE MDI MONOMER

(57) Abstract: Polyurethane prepolymers having a reduced amount of unreacted monomeric diisocyanate, particularly diphenylmethane dissocyanate (MDI), prepared by distilling the prepolymer reaction product in the presence of a least one inert solvent whose boiling point is slightly below that of the monomeric diisocyanate; and to high performance cast polyurethane elastomers from the thus obtained prepolymers using diamine and/or diol chain extenders.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/30062

A. CLASSIFICATION OF SUBJECT MATTER.

IPC 7 C08G18/10 C08G18/76 C08G18/48

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C086

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

n in a vigalina in summed

Electronic data base consulted during the international search (name of data base and, where practical; search terms used)

EPO-Internal, WPI Data, PAJ

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α -	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 11, 29 November 1996 (1996-11-29) & JP 08 176252 A (MITSUI TOATSU CHEM INC), 9 July 1996 (1996-07-09) abstract	5,13,14, 19
A	PATENT ABSTRACTS OF JAPAN vol. 018, no. 222 (C-1193), 21 April 1994 (1994-04-21) & JP 06 016767 A (SANYO CHEM IND LTD;OTHERS: 01), 25 January 1994 (1994-01-25) abstract	5,14,19
	 -/	

X	Further documents are listed in the	continuation of box C.

Patent family members are listed in annex.

- * Special categories of cited documents:
- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Date of mailing of the international search report

'&' document member of the same patent family

Date of the actual completion of the international search

28/02/2001

20 February 2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2

NL – 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Fax: (+31-70) 340-3016

Authorized officer

Neugebauer, U

Catalogory Cutation of occument, with indication, where appropriate, of the Geodesia State Color	-C:(Continu	ATTION DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 00/30062
cited in the application column 5, Time 3 examples 12-15,19; tables 3,4 A US 4 288 577 A (MCSHAME JR, HERBERT F) 8 September 1981 (1981-09-08) 119 cited in the application column 4, Time 48 -column 5, Time 64 199 (1981-09-18) 12 column 5, Time 64 199 (1981-09-18) 12 column 6, Time 78 -column 5, Time 64 199 (1981-09-18) 12 column 6, Time 78 -column 6, Time 78 -column 79, Time 79,	<u> </u>		Relevant to claim No.
3 September 1981 (1981-09-08) cited in the application column 4, Time 48 -column 5, line 64 cm. Annual column 5 column 5, line 64 cm. Annual column 5 column	Α	cited in the application column 2, line 32 -column 6, Time 3	1-4 Francis
Comparison	A	8 September 1981 (1981-09-08)	19
### Comparison of the Company of the		*	
20 MAY 197 12 (1986 - 1994) 21	parties of the		
10 10 10 10 10 10 10 10	, Walter	II. 6 (1996-10-49) 7. MITCUL TOATSU CHEM INC.)	10:
The control of the		02 × 6+10939, 1 1914+04+21)	2 A COMMUNICATION 2 A COMMUNIC
Hall with the control of the product promotion of the control of t		(53-53.54)	
Hall with the control of the product promotion of the control of t			
## 1		6 18 68 8 68 Weile 4 1/3 10 to 17 50 x 3 x	The second of th
Agency and the property of the	300 3 12 12	a duri en empleo a promein construction and construction of the second o	the decrease of the second of
	- 44.	Height and an official in the first linear and an analysis of the second	FUNDS CONTROL BOOK CONTROL CON
		And the second of the second o	
	• • • • • • • • • • • • • • • • • • • •	Almost t	

INTERNATIONAL SEARCH REPORT

Total matter on patent family members PCT/IIS 00/30062

In-rnational Application No

	locument arch report		Publication 7	Pa	tent (amily ember(s)		Publication C date	
-JP 08,1	76252	А	09-07-1996	NONE			<i>h</i> ,	*
JP: 060	16767	A	25-01-1994	JP JP ³³ 	2051847 7072223		10-05-1996 02-08-1995	
US 570	3193	Α	30-12-1997	AU EP JP WO	3002297 0902801 11511801 9746603	A T	05-01-1998 24-03-1999 12-10-1999 11-12-1997	
<u>US</u> 428	38577	A	08-09-1981	NONE				- No. of 1 (1987)

59 PE 000 000 000

स्था ५०**० अ**, भारते 🛴

orlar amida

31 42

ป กละเกลง และ และเกลง เกลง กษา ปกเลลเปลา เกลง กรณ์ Here you Domble her

"EG Hinbled P

ru, reuns palies in earbein fir met auto in him to bil especial in agreement of the single expects राजार होते । ते एक एक एक रेडिंग में के ब्रोह्म के ब्रोह्म के कार्य

> tshevoorid netwo with those and City makegaru 068 ku ti kiriki ili ku ugi ku kiriki ili kali ili. Ran, tabih sebibiki biti yapit su efili kure ili kelimit mes

> longs bee byly teep to twee 13 Governor Boundton soviale in those engineers that the time to see with the

The state of the service of the serv

Conception and the Control of American

and the office and a solution of the plant of the