Multicollinearity Regularization Ridge and Lasso

Introduction

Problem

Detection

Remedy

Introduction

Multicollinearity refers to a situation in which more than two explanatory variables in a multiple regression model are highly linearly related.

Salary =
$$\beta_0 + \beta_1(Age) + \beta_2(Career) + \varepsilon$$

 β_i : The coefficient value signifies how much the mean of the dependent variable changes given a one-unit shift in the independent variable while holding other variables in the model constant.

Problem

Perfect multicollinearity

Consequences of Multicollinearity

$$y_i = \alpha + \beta X_i + \gamma Z_i + u_i$$

Least Squares Estimator for β

$$\hat{\beta} = \frac{S_{zz}S_{xy} - S_{xz}S_{zy}}{S_{xx}S_{zz} - S_{xz}^2}$$

$$Var(\hat{\beta}) = \frac{\sigma^2 S_{zz}}{S_{xx}S_{zz} - S_{xz}^2}$$

where
$$S_{xx} \equiv \sum (X_i - \overline{X})^2$$
, $S_{zz} \equiv \sum (Z_i - \overline{Z})^2$, $S_{xz} \equiv \sum (X_i - \overline{X})(Z_i - \overline{Z})$, $S_{xy} \equiv \sum (X_i - \overline{X})(Y_i - \overline{Y})$, and $S_{zy} \equiv \sum (Z_i - \overline{Z})(y_i - \overline{y})$.

Consequences of Perfect Multicollinearity

Suppose that $Z_i = a + bX_i$. Then,

$$S_{xz} \equiv \sum (X_i - \overline{X})(Z_i - \overline{Z}) = \sum (X_i - \overline{X})(a + bX_i - a - b\overline{X}) = bS_{xx}$$

$$S_{zz} \equiv \sum (Z_i - \overline{Z})^2 = \sum (a + bX_i - a - b\overline{X})^2 = b^2 S_{xx}$$

Thus,

$$\hat{\beta} = \frac{S_{zz}S_{xy} - S_{xz}S_{zy}}{S_{xx}(b^2S_{xx}) - (bS_{xx})^2} = \frac{S_{zz}S_{xy} - S_{xz}S_{zy}}{0} : Not Computable$$

$$Var(\hat{\beta}) = \frac{\sigma^{2}S_{zz}}{S_{xx}S_{zz} - S_{xz}^{2}} = \frac{\sigma^{2}S_{zz}}{S_{xx}(b^{2}S_{xx}) - (bS_{xx})^{2}} = \frac{\sigma^{2}S_{zz}}{0} = \infty$$

Problem

Perfect multicollinearity

$$\hat{\beta} = (X'X)^{-1}X'Y$$

 $(X'X)^{-1}$ incoumputable

Theorem 4.2.7 A Unifying Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent.

- The reduced row echelon form of A is I_n .
- 2 A is expressible as a product of elementary matrices.
- \bullet A is invertible.
- **4** $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **6** $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- **6** $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- \odot The column vectors of A are linearly independent.
- \bullet The row vectors of A are linearly independent.
- \bullet det $(A) \neq 0$.

```
> solve(t(X)%*%X)
Error in solve.default(t(X) %*% X) :
   Lapack routine dgesv: system is exactly singular: U[2,2] = 0
```

Problem

Near multicollinearity

→ Consequences of Near (Imperfect) Multicollinearity

Suppose that $Z_i \approx a + bX_i$. Then,

$$S_{xz} \approx bS_{xx}$$
 and $S_{zz} \approx b^2S_{xx}$

Thus,

$$\hat{\beta} \approx \frac{S_{zz}S_{xy} - S_{xz}S_{zy}}{0}$$

$$\operatorname{Var}(\hat{\beta}) \approx \frac{\sigma^2 S_{zz}}{0} \to \infty$$

• t-test for H_0 : $\beta = 0$

$$t = \frac{\hat{\beta}}{\sqrt{\hat{Var}(\hat{\beta})}} \approx \frac{\hat{\beta}}{\infty} \to 0$$

 $(X'X)^{-1}$ coumputable

$$\det(X'X) \approx 0$$

$$var(\hat{\beta}) = \delta^2 (X'X)^{-1} \approx \infty$$

Unable to reject H₀, not because the variable has no effects but because the sample is not good enough to isolate the effect of the variable.

Problem

Near multicollinearity

Salary =
$$\beta_0 + \beta_1(Age) + \beta_2(Career) + \varepsilon$$

	Coef	S.E	t Stat	P-value
Intercept	19074	51499	0.37	0.72
Age	3886	2093	1.85	0.10
Career	2023	1928	1.04	0.32

Even though \mathbb{R}^2 is high, model reliability is low

Detection

Correlation

	X1	X2	X3
X1	1		
X2	0.91	1	
X3	0.4	-0.2	1

Detection

Condition Number

$$CN(X_1,X_2,...,X_k) = \sqrt{\frac{\lambda_{max}}{\lambda_{min}}}$$

where λ_{max} (λ_{min}) is the maximum (minimum) eigenvalue of (X'X) matrix after normalization which makes $\lambda_{max} = 1$. [CN is sometimes defined without the square root]

- If (X'X) matrix is diagonal (no multicollinearity at all), then $\lambda_{min} = 1$, thus, CN = 1.
- − If (X'X) matrix is singular (perfect multicollinearity), then $\lambda_{min} = 0$, thus, CN → ∞.
- Belsley proposes the following guideline:
 - If CN<10, weak multicollinearity
 - If 10<CN<30, moderate to strong multicollinearity
 - If CN>30, severe multicollinearity
 - ♣ Belsley, D.A. E. Kuh and R.H. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, NY, 1980.

Detection

Theil's m
$$m = R^2 - \sum_{j=1}^{k} (R^2 - R_{-j}^2)$$

where R^2 is from the regression of y on the other explanatory variables $(X_1, X_2, ..., X_k)$, and R_{-i}^2 is from the regression of y on $(X_1, ..., X_{j-1}, X_{j+1}, ... X_k)$.

- If X_j is perfectly collinear with other explanatory variables, $R^2 = R_{-i}^2$.
- \bullet $(R^2 R_{-i}^2)$ is the 'exclusive' explanation of y by X_j (beyond all the other explanatory variables). If there exists no overlapped influence (all the explanatory variables are independent), then $\sum (R^2 - R_{-i}^2) = R^2$ so that m = 0.
- Thus, roughly, $0 \le m \le R^2 \le 1$.

Detection

Variance Inflation Factor

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

1) Create regression models for each X variable

$$X_{1} = \beta_{0}^{*} + \beta_{1}^{*}X_{2} + \beta_{2}^{*}X_{3} + \beta_{3}^{*}X_{4} + \varepsilon^{*}$$

$$X_{2} = \beta_{0}^{**} + \beta_{1}^{**}X_{1} + \beta_{2}^{**}X_{3} + \beta_{3}^{**}X_{4} + \varepsilon^{**}$$

$$\vdots$$

2) Find VIF by R^2 from each regression

$$VIF = \frac{1}{1 - R_k^2}$$

Detection

Variance Inflation Factor

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

$$VIF = \frac{1}{1 - R_k^2}$$

Higher R^2 , Higher VIF

	VIF
X1	3.1
X2	1.42
Х3	12.05
X4	1.91

Remedy

Do nothing

Remove correlated variable

PCA

Regularization

Remedy

Regularization

Ridge(L2) regression

Lasso(L1) regression

Review

What is a good model?

Interpretation

Minimize training error

$$MSE = (Y - \widehat{Y})^2$$

Prediction

Minimize test error

Expected MSE =
$$E[(Y - \hat{Y})^2 | X]$$

= $\sigma^2 + (E[\hat{Y}] - \hat{Y})^2 + E[\hat{Y} - E[\hat{Y}]]^2$
= $\sigma^2 + Bias^2(\hat{Y}) + Var(\hat{Y})$
= Irreducible Error $+Bias^2 + Variance$

Review

What is a good model?

Regularization

Regularization

$$Size = \beta_0 + \beta_1(Weight)$$

SSE
$$+\lambda \times \beta_i^2$$

Ridge

$$L(\beta) = \min_{\beta} \sum_{i=1}^{p} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
(I) Training accuracy (2) Generalization accuracy

$$\hat{\beta}^{ridge} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - x_i \beta)^2$$

$$subject \ to \sum_{j=1}^{p} \beta_j^2 \le t$$

$$= (X'X + \lambda I)^{-1}X'Y$$

Ridge

$$\hat{\beta}^{ridge} = (X'X + \lambda I)^{-1}X'Y$$

```
X1 X2

55 275

275 1375 > solve(t(X)%*%X + 2*diag(2))

X1 X2

X1 0.48079609 -0.09601955

X2 -0.09601955 0.01990223
```

```
> solve(t(X)%*%X)
Error in solve.default(t(X) %*% X) :
   Lapack routine dgesv: system is exactly singular: U[2,2] = 0
```

$$MSE(\beta_{1}, \beta_{2}) = \sum_{i=1}^{n} (y_{i} - \beta_{1}x_{i1} - \beta_{2}x_{i2})^{2}$$

$$= \sum_{i=1}^{n} y_{i}^{2} - 2\sum_{i=1}^{n} y_{i}(\beta_{1}x_{i1} + \beta_{2}x_{i2}) + \sum_{i=1}^{n} (\beta_{1}x_{i1} + \beta_{2}x_{i2})^{2}$$

$$= \sum_{i=1}^{n} y_{i}^{2} - 2\left(\sum_{i=1}^{n} y_{i}x_{i1}\right)\beta_{1} - 2\left(\sum_{i=1}^{n} y_{i}x_{i2}\right)\beta_{2} + \sum_{i=1}^{n} (\beta_{1}^{2}x_{i1}^{2} + \beta_{2}^{2}x_{i2}^{2} + 2\beta_{1}\beta_{2}x_{i1}x_{i2})$$

$$= \left(\sum_{i=1}^{n} x_{i1}^{2}\right)\beta_{1}^{2} + \left(\sum_{i=1}^{n} x_{i2}^{2}\right)\beta_{2}^{2} + \left(2\sum_{i=1}^{n} x_{i1}x_{i2}\right)\beta_{1}\beta_{2}$$

$$-2\left(\sum_{i=1}^{n} y_{i}x_{i1}\right)\beta_{1} - 2\left(\sum_{i=1}^{n} y_{i}x_{i2}\right)\beta_{2} + \sum_{i=1}^{n} y_{i}^{2}$$

 $=A\beta_1^2 + B\beta_1\beta_2 + C\beta_2^2 + D\beta_1 + E\beta_2 + F$ Conic equation (2차원의 경우)

$$A\beta_1^2 + B\beta_1\beta_2 + C\beta_2^2 + D\beta_1 + E\beta_2 + F = 0$$

Discriminant of conic equation (판별식): B2-4AC

$$B^2$$
-4AC = 0 \rightarrow parabola (포물선)

B = 0 and A=C
$$\rightarrow$$
 circle (원)

$$MSE(\beta_1,\beta_2) = \left(\sum_{i=1}^n x_{i1}^2\right)\beta_1^2 + \left(\sum_{i=1}^n x_{i2}^2\right)\beta_2^2 + \left(2\sum_{i=1}^n x_{i1}x_{i2}\right)\beta_1\beta_2 - 2\left(\sum_{i=1}^n y_ix_{i1}\right)\beta_1 - 2\left(\sum_{i=1}^n y_ix_{i2}\right)\beta_2 + \sum_{i=1}^n y_i^2$$

$$B^{2} - 4AC = \left(2\sum_{i=1}^{n} x_{i1}x_{i2}\right)^{2} - 4\sum_{i=1}^{n} x_{i1}^{2}\sum_{i=1}^{n} x_{i2}^{2}$$

$$= 4\left\{\left(\sum_{i=1}^{n} x_{i1}x_{i2}\right)^{2} - \sum_{i=1}^{n} x_{i1}^{2}\sum_{i=1}^{n} x_{i2}^{2}\right\} < 0$$
By Cauchy-Schwartz inequality

Cauchy-Schwartz Inequality

$$X = [x_1, \dots, x_n]$$

$$Y = [y_1, \dots, y_n]$$

$$\sum x_i^2 \sum y_i^2 \ge \left[\sum x_i y_i\right]^2$$

The Cauchy-Schwarz inequality states that for all vectors u and v of an inner product space it is true that

$$\left| \langle \mathbf{u}, \mathbf{v} \rangle \right|^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \cdot \langle \mathbf{v}, \mathbf{v} \rangle,$$

(Cauchy-Schwarz inequality [written using only the inner product])

where $\langle \cdot, \cdot \rangle$ is the inner product. Examples of inner products include the real and complex dot product; see the examples in inner product. Every inner product gives rise to a norm, called the *canonical* or *induced norm,* where the norm of a vector $\mathbf{1}$ is denoted and defined by:

$$\|\mathbf{u}\| := \sqrt{\langle \mathbf{u}, \mathbf{u}
angle}$$

so that this norm and the inner product are related by the defining condition $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$, where $\langle \mathbf{u}, \mathbf{u} \rangle$ is always a non-negative real number (even if the inner product is complex-valued). By taking the square root of both sides of the above inequality, the Cauchy-Schwarz inequality can be written in its more familiar form: [3][4]

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| ||\mathbf{v}||.$$

(Cauchy-Schwarz inequality [written using norm and inner product])

Moreover, the two sides are equal if and only if ${\bf u}$ and ${\bf v}$ are linearly dependent. [5][6]

$$\hat{\beta}^{ridge} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - x_i \beta)^2$$

$$subject \ to \sum_{j=1}^{p} \beta_j^2 \le t$$

Regularization

$$Size = \beta_0 + \beta_1(Weight)$$

SSE
$$+\lambda \times |\beta_i|$$

Lasso

$$\hat{\beta}^{lasso} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

$$\hat{\beta}^{lasso} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - x_i \beta)^2$$

$$subject \ to \sum_{j=1}^{p} |\beta_j| \le t$$

$$\hat{\beta}^{lasso} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\} \qquad \hat{\beta}^{lasso} = \hat{\beta}^$$

Cross-Validation

Cross-Validation

HW ??