

Revisando os Temas

- ▶ Dados I : obtenção, amostragem, pesquisa, volume, ...
- Dados II: descrição, resumos, gráficos, análises, ...
- ▶ Probabilidades.
- ► Inferência: incerteza, população, amostra, testes, intervalos, ...
- Modelagem e métodos.

Textos de apoio

Capítulos 1 **a** 4

Figura 1. Bussab & Morettin

Cap. 1 e Cap. 4

Figura 2. Magalhães & Lima

Tópicos equivalentes em uma **ENORME** diversidade de materiais.

Material de apoio

Curso de estatística básica (http://www.leg.ufpr.br/estbas)

Estatística descritiva

UFPR

Análise exploratória de dados

- Resumir dados
- ► Apresentar de forma concisa e informativa
- Embasar discussões e argumentações
- Revelar padrões
- Descobrir possíveis anomalias
- ► Guiar modelagem
- . .

Análise descritiva

- Análises univariadas: descrição de perfil
- Análises bivariadas: explorando relações
- ► Análises multivariadas: relações complexas, gerais e confundimentos

Estruturas de dados

- ► Referência: tabela da dados
 - ► linhas: indivíduos
 - colunas: variáveis ou atributos

- Estruturas mais gerais (listas, bancos de dados, etc)
- Dados não estruturados

Resumindo dados

- ► Tabelas
- Gráficos
- ► Medidas estatísticas

Mas ...que tipos de tabelas/gráficos e medida podemos(ou devemos) usar?

Tipos de variáveis

Referência inicial:

- Qualitativas
 - Nominais
 - Ordinais
- Quantitativas
 - Discretas
 - Contínuas

Parte de assunto mais amplo de **visualização de dados** (tema de aula(s))

Tipos de variáveis

Discreta → Finitos va

- → Finitos valores em um intervalo.
- → # produtos vendidos/dia.
- → # gols/partida.
- → # passageiros/vôo.

→ rendimento/mês

→ # ovos quebrados/dúzia.

Continua

- → Infinitos valores em um intervalo.
- de investimento.

 → consumo/mês de energia.
- → teor de argila do solo.

Variável

- → Característica.
- → Atributo.

Nominal

- → Sem ordenação.
- → Rótulo.

Ordinal

- → Com ordenação.
- → Grau ou nível.

- → preferência musical.
- → estado de origem.
- → signo do zoodíaco.
- → grau de CNH.
 → grau de iudô.
- → premiação olímpica.
- → nível de proficiência.

Qualitativa

Quantitativa

→ Expressa em números.
 → Variável métrica.

- → Expressa em rótulos.
- → Variável categórica.

Exemplo 02: Questionário

Tipos de variáveis com diversos resumos, tabelas e gráficos no: Questionário do curso

Tipo	Exemplo	Posição	Dispersão
QL nominal	área de conhecimento	moda	?
QL ordinal	importância est.	moda	?
		mediana	
		quantis	
QT discreta	número de artigos	moda	amplitude, variância,
QT contínua	IMC	mediana	desvio padrão, CV,
		quantis	amplitude interquartílica
		média(s)	desvio médio

Exemplo 02: nominal

Grande área:

Biológicas: 53%, Exatas: 30%, Humanas 17%

Resumo:

moda = biológicas (mais frequente) alguma medida de variabilidade?

Se tivéssemos

Biológicas: 83% , Exatas: 15% , Humanas 12%

A moda (posição) seria a mesma, mas e a variabilidade (dispersão)?

Uma proposta: $V = -\sum_{i} p_{i} \log p_{i}$

Figura 3. Diferentes possíveis proporções de três categorias

Variabilidades (
$$V = -\sum_{i} p_{i} \log p_{i}$$
):

A	В	C	D	E	F	G
0,943	0,639	0,394	0,943	0,819	1,099	0,639

Exemplo 03: Número de artigos

Os indivíduos da amostra publicaram uma média de 1.0 artigos, variando de 0 a 4. Podemos ver o quanto cada um se afasta da média calculando os desvios:

$$1, -1, -1, 2, -1, 0, 0, -1, -1, -1, 0, 3, 1, -1, 0$$

Podemos avaliar se desviam muito ou pouco da média (variabilidade/dispersão) ... e representar isto em um número (medida de dispersão).

A soma dos desvios é sempre zero. (+/- se cancelam)

Podemos então pegar, por exemplo, os quadrados dos desvios

$$1, (-1)^2, (-1)^2, 2^2, (-1)^2, 0^2, 0^2, (-1)^2, (-1)^2, (-1)^2, 0^2, 3^2, 1^2, (-1)^2, 0^2$$

E fazer uma média¹ destes como uma outra medida de dispersão.

Esta é a variância = 1.6 e a sua raiz quadrada é o desvio padrão = 1.3.

O desvio padrão é mais "conveniente" pois possui a mesma unidade dos dados.

Notação

variável: número de artigos

vetor de dados: y

um dado individual:
$$y_i$$
 $(y_1 = 2, y_2 = 0, y_3 = 0, ..., y_{14} = 0, y_{15} = 1)$

$$\text{m\'edia: } \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

um desvio individual:
$$e_i = y_i - \overline{y}$$
 ($e_1 = 1, e_2 = -1, e_3 = -1, \dots, e_{14} = -1, e_{15} = 0$)

variância:
$$S^2 = \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}$$

desvio padrão:
$$S = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}}$$

Uma interpretação da média e variância

Média: Centro de massa ou de gravidade! E a variância/desvio padrão?

Uma interpretação da média e variância

Uma interpretação da média e variância

Média: Centro de massa ou de gravidade! E a variância/desvio padrão?

Exemplo 03: Número de artigos

Mais medidas de posição

Valor	0	1	2	3	4	- - a moda é o.
Frequencia	7	4	2	1	1	- a moda e o.

Ordenando dados: 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4

Metade dos valores estão abaixo e metade acima da mediana 1

1/4 dos dados estão abaixo do 1^{o} quartil = 0 e 1/4 dos dados estão acima do 3^{o} quartil = 1,5

A mediana é o 2º quartil.

Os três quartis dividem os dados em quatro partes.

Os $(n_q - 1)$ quantis dividem os dados em n_q partes.

Decis

Exemplo 03: Número de artigos

Mais medidas de dispersão

dados: 2, 0, 0, 3, 0, 1, 1, 0, 0, 0, 1, 4, 2, 0, 1 dados ordenados: 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4

O menor dado é o e o maior é 4.

Portanto a amplitude é $A = y_n - y_1 = 4 - 0 = 4$.

O primeiro quantil é o e o terceiro é 1,5.

Portanto a amplitude interquartílica é $AI = Q_3 - Q_1 = 1,5 - 0 = 1,5$.

Comparando dispersões

UFPR

A variabilidade é grande ou pequena? Qual varia mais?

Exemplo	média	desvio padrão
teores no lago	31.5	9.9
número de artigos	1.0	1.3

Supondo outros conjuntos de dados:

Exemplo	média	desvio padrão
teores no lago (B)	63.0	9.9
número de artigos (B)	5.0	2.5

A variabilidade é a mesma?

Necessidade de uma medida de dispersão relativa.

Medida de dispersão relativa ou padronizada

A variabilidade é grande ou pequena?

Exemplo	média	desvio padrão	C.V.
teores no lago	31.5	9.9	31.4 %
número de artigos	1.0	1.3	125.4 %
			100 111 111 Nov. 2010 11 100

- Medida adimensional
- Permite comparar variabilidade de grupos com médias diferentes
- Permite comparar variabilidade de variáveis/atributos diferentes

Medidas descritivas

Padronizando dados

Medida de dispersão relativa ou padronizada dos dados

Quanto cada dado se afasta da média?

Exemplo do número de artigos: média = 1.0, d.p. = 1.3

Exemplo do lago: média = 31.5, d.p. = 9.9

dados	27	18,5	46	34	24,5	42,5	28
desvios	-4,5	-13,0	14,5	2,5	-7,0	11,0	-3,5

Padronizando dados

escore =
$$\frac{\text{dado - m\'edia}}{\text{desvio padr\~ao}} \longrightarrow z_i = \frac{y_i - \overline{y}}{S_y}$$

Exemplo: média = 1.0, d.p. = 1.3

dados	2	0	0	3	0	1	1	0	0	0	1	4	2	0	1
desvios	1	-1	-1	2	-1	0	0	-1	-1	-1	0	3	1	-1	0
escores	0,8	-0,8	-0,8	1,6	-0,8	0,0	0,0	-0,8	-0,8	-0,8	0,0	2,4	0,8	-0,8	0,0

Exemplo do lago: média = 31.5, d.p. = 9.9

dados	27	18,5	46	34	24,5	42,5	28
desvios	-4,5	-13,0	14,5	2,5	-7,0	11,0	-3,5
escores	-0,45	-1,31	1,46	0,25	-0,71	1,11	-0,35

Padronizando dados

Escores:

- ► São dados adimensionais.
- ► A média dos scores é o e a variância é 1.
- ▶ Permitem comparar dados de grupos com médias e/ou variabilidades diferentes.
- ► Permitem comparar dados de variáveis/atributos diferentes.

Notação

Expressar idéias e conceitos de forma mais clara, objetiva e sintética.

Y : definição da variável

y: valores de dados tomados da variavel

y_i: o i-ésimo dado

 $y = \{y_1, y_2, y_3, \dots y_n\}$

(y): dados ordenados

 $\{y_{(1)}, y_{(2)}, y_{(3)}, \dots y_{(n)}\}$ mínimo e máximo

a média da variável

a média dos dados

a mediana da variável a mediana dos dados

md(*y*) :

md(Y):

(y) =

 $(y_{(1)},y_{(n)}):$

Notação e Fómulas

Y : Teor do elemento no lago

$$y = \{y_1 = 27, y_2 = 18, 5, y_3 = 46, y_4 = 34, y_5 = 24, 5, y_6 = 42, 5, y_7 = 28\}$$

 $(y) = \{y_{(1)} = 18, 5, y_{(2)} = 24, 5, y_{(3)} = 27, y_{(4)} = 28, y_{(5)} = 34, y_{(6)} = 42, 5, y_{(7)} = 46\}$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = 31.5$$

$$S_y^2 = \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n - 1} = 98.0$$

$$S_y = \sqrt{S_y^2} = 9.9$$

$$CV_y = \frac{S_y}{\overline{u}} = 31.4$$

$$A_y = y_{(n)} - y_{(1)} = 27.5$$
 $Q_{1y} = 25.75$
 $Q_{2y} = med(y) = 28$
 $Q_{3y} = 38.25$
 $Al_y = Q_3 - Q_1 = 12.5$

Médias ...

Diferentes tipos de médias.

- Aritmética: $\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$.
- Ponderada: $\overline{y} = \frac{\sum_{i=1}^{n} w_i \cdot y_i}{\sum_{i=1}^{n} w_i}$.
- ► Geométrica: $\overline{y} = \left(\prod_{i=1}^n y_i\right)^{1/n} = \sqrt[n]{y_1 \cdot y_2 \dots y_n} = \exp\left(\frac{\sum_{i=1}^n \ln y_i}{n}\right) = \exp\left(\overline{\ln y_i}\right)$.
- ► Harmônica: $\overline{y} = \frac{n}{\sum_{i=1}^{n} 1/y_i} = \left(\frac{\sum_{i=1}^{n} y_i^{-1}}{n}\right)^{-1} = \left(\overline{y}^{-1}\right)^{-1}$.
- ► Aparada (trimmed),
- ...
- ► Como resultado de uma *otimização*.
- **.**.

Um exemplo

Foi tomada uma amostra medindo-se o teor de um certo elemento contaminante na água em diferentes pontos de um lago. Deseja-se avaliar a contaminação do lago e ainda decidir se uma intervenção deve ser feita se houver evidências de que o teor ultrapassa 38 un.

Dados obtidos (amostra):

27 18,5 46 34 24,5 42,5 28

Como estimar o teor no lago como um todo? Onde foram coletados os dados

Um exercício

Uma empresa tem 200 funcionários e uma folha de pagamento de R\$ 600.000,00. Os salários pagos variam desde R\$ 900,00 até R\$ 23.000,00. A empresa decidiu dar um aumento para seus funcionários e está para decidir entre duas formas de aumento:

- 1. dar um aumento de 10% para todos os funcionários;
- 2. dar um aumento de R\$ 300,00 para todos os funcionários.

Discuta o(s) impacto(s) de cada proposta e se há diferenças entre elas.

peso dos estudantes

Ilustrando com outros dados

Ilustrando com outros dados

Formalizando

Y: salários
$$Y_1 = Y + k$$
: salários com aumento de valor constante $k > 0$

$$\overline{Y} = \frac{\sum Y_i}{n}$$
 $\overline{Y_1} = \frac{\sum Y_{1i}}{n} = \frac{\sum Y_i + k}{n} = \frac{\sum Y_i}{n} + \frac{kn}{n} = \overline{Y} + k$

$$S_y^2 = \frac{\sum (y_i - \overline{y})^2}{n - 1} \qquad S_{y_1}^2 = \frac{\sum (y_{1i} - \overline{y}_1)^2}{n - 1} = \frac{\sum [(y_i + k) - (\overline{y} + k)]^2}{n - 1} = \frac{\sum (y_i - \overline{y})^2}{n - 1} = S_y^2$$

$$S_y = \sqrt{S_y^2} \qquad S_{y_1} = S_y$$

$$CV_y = 100 \times \frac{S_y}{\overline{Y}}$$
 $CV_{y_1} = 100 \times \frac{S_{y_1}}{\overline{Y}_{y_1}} = 100 \times \frac{S_y}{\overline{Y} + k} < CV_y$

Formalizando

Y : salários
$$Y_2 = kY$$
 : salários com aumento percentual

$$\overline{Y} = \frac{\sum Y_i}{n}$$
 $\overline{Y_2} = \frac{\sum Y_{2i}}{n} = \frac{\sum kY_i}{n} = k\frac{\sum Y_i}{n} = k\overline{Y}$

$$S_y^2 = \frac{\sum (y_i - \overline{y})^2}{n - 1} \qquad S_{y_2}^2 = \frac{\sum (y_{2i} - \overline{y}_2)^2}{n - 1} = \frac{\sum (ky_i - k\overline{y})^2}{n - 1} = k^2 \frac{\sum [(y_i - \overline{y})^2}{n - 1} = k^2 S_y^2$$

$$S_y = \sqrt{S_y^2} \qquad S_{y_2} = kS_y$$

$$CV_y = 100 \times \frac{S_y}{\overline{Y}} \quad CV_{y_2} = 100 \times \frac{S_{y_2}}{\overline{Y}_{y_2}} = 100 \times \frac{kS_y}{k\overline{Y}} = 100 \times \frac{S_y}{\overline{Y}} = CV_y$$

Resumindo com notação

Traduza em palavras ...

$$\overline{Y} \pm k$$

$$S_{y\pm k}=S_y$$

$$S_{y\pm k} = S_y$$
$$CV_{y\pm k} \leq CV_y$$

 $\overline{Y \pm k} = \overline{kY} = k\overline{Y}$

$$S_{ky} = kS_y$$

$$CV_{ky} = CV_y$$

...e interpretamos no contexto do exemplo.

Revisitando um slide

Resumindo variável numérica: Intuição

- Por onde andam os dados? (posição)
- Variam muito ou pouco? (dispersão)
- Como são distribuídos?
- Existem dados atípicos?
- Melhor expressos em outra escala? (transformação)

Comportamentos estilizados de variáveis contínuas

Comportamentos estilizados de variáveis contínuas

Comportamentos estilizados de variáveis contínuas

O gráfico de estimação de densidade Disponível em: (http://shiny.leg.ufpr.br/walmes/density)

Autor: Prof. Walmes Zeviani

Revisitando pesos

Transformando: log(pesos)

- Qual o comportamento estilizado?
- Escala logarítmica ou original?
- Por que log?
- Outra transformação possível?
- ▶ bimodal?

Transformações ("normalizadoras")

Qual adotar?

- ► log(*y*)
- $\rightarrow \sqrt{y}$
- ► 1/y
- $ightharpoonup 1/\sqrt{y}$
- $ightharpoonup \log(\frac{y}{1-y})$
- ► seno(y)
- 10

- Opção pelo contexto.
- Opção pela natureza do dado.
- ► Tentativa e erro
- ► Busca da *melhor* Famílias de transformação:
 - ▶ transformação de Box-Cox,
 - outras famílias de transformações.

Transformação Box-Cox

$$Y^{t} = \begin{cases} \frac{Y^{\lambda} - 1}{\lambda} \text{ se } \lambda \le 0\\ \log(y) \text{ se } \lambda = 0 \end{cases}$$

Encontrar λ define uma transformação "adequada". (Tipicamente $\lambda \in [-2,2]$)

Alguns casos particulares:

$$\lambda = 0 \to \log(y)$$

$$\lambda = 0.5 \rightarrow \sqrt{y}$$

$$\lambda = -1 \to 1/y$$

$$\lambda = -0.5 \to 1/\sqrt{y}$$

Outras transformações:

- ► $log(\frac{y}{1-y})$
- ► seno(y)
- ightharpoonup argtanh(y)
- **.**.

Transformação Box-Cox

Determinando λ :

- Gráfico original em [-2, 2].
- Zoom do gráfico em [-2, 0.5].
- Melhor estimativa $\lambda = -0.89$.
- $\lambda \approx -1$.
- Estimativa aceitável e interpretável.
- $y^* = 1/y$

Dados de pesos e transformações

Dados de pesos e transformações

Box-Cox com covariáveis

Neste exemplo as covariáveis não influiram na escolha transformação. Mas isto nem sempre é o caso.

Transformação Box-Cox: cuidado!

Dados experimentais: absorção de carbono para tipos de plantas e condições. Cuidado com respostas! "Descontar efeito de preditores".

Outro exemplo: dados de salários

Exemplo: dados gapminger - Ano 2000

Referências bibliográficas

- BUSSAB, W. O.; MORETTIN, P. A. **Estatística Básica**. 9. ed. São Paulo: Saraiva, 2017.
- MAGALHÃES, M. N.; LIMA, A. C. P. de. **Noções de Probabilidade e Estatística**. 7. ed. São Paulo: Edusp, 2015.
- TITS, J. M. Seeing Through Statistics. [S.l.: s.n.], 2005.
- WILD, C. J.; SEBER, G. A. F. **Chance Encounters: A First Course in Data Analysis and Inference**. [S.l.: s.n.], 2000.
- WILD, C. J.; SEBER, G. A. F. Encontros Com O Acaso. Primeiro Curso De Análise De Dados e Inferência. [S.l.: s.n.], 2004.
- ZEVIANI, W. et al. EstBas: Um curso em estatística básica. http://www.leg.ufpr.br/estbas>. 2021.