26 - Lo spazio L^{∞}

₩ Definizione: Funzione essenzialmente limitata

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$.

f si dice **essenzialmente limitata** quando:

- f è fortemente μ -misurabile;
- Esiste $T_0 \subseteq T$ misurabile con $\mu(T_0) = 0$, tale che $f(T \setminus T_0)$ sia un insieme limitato in X.

Proposizione 26.1: Estremi superiori di norme di funzioni essenzialmente limitate

Sia $T \in \mathscr{L}_p$.

Sia $\mathcal{F}_0 = \{S \subseteq T_0 : \mu(S) = 0\}$

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:T o X una funzione essenzialmente limitata.

Esiste $T_0 \in \mathcal{F}_0$ tale che $\sup_{t \in T \setminus T_0} \|f(t)\| = \inf_{S \in \mathcal{F}_0} \sup_{t \in T \setminus S} \|f(t)\|.$

Dimostrazione

Sia $\{S_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}_0$ una successione tale che $\lim_n\sup_{t\in T\smallsetminus S_n}\|f(t)\|=\inf_{S\in\mathcal{F}_0}\sup_{t\in T\smallsetminus S}\|f(t)\|$, che esiste per le proprietà dell'estremo

inferiore.

Sia $T_0=\bigcup_{n\in\mathbb{N}}S_n$; esso ha misura nulla per numerabile subadditività di μ ed essendo $\mu(S_n)=0$ per ogni $n\in\mathbb{N}$ per costruzione.

Si provi che
$$\sup_{t \in T \smallsetminus T_0} \|f(t)\| = \inf_{S \in \mathcal{F}_0} \sup_{t \in T \smallsetminus S} \|f(t)\|.$$

Evidentemente, vale $\sup_{t \in T \setminus T_0} \|f(t)\| \ge \inf_{S \in \mathcal{F}_0} \sup_{t \in T \setminus S} \|f(t)\|$ in quanto $T_0 \in \mathcal{F}_0$.

Si fissi ora $t' \in T \setminus T_0$; si ha

$$t' \in T \setminus S_n$$
 per ogni $n \in \mathbb{N}$ Essendo $T \setminus T_0 = \bigcap_{n \in \mathbb{N}} (T \setminus S_n)$

$$\implies \|f(t')\| \leq \sup_{t \in T \smallsetminus S_n} \|f(t)\|$$
 per ogni $n \in \mathbb{N}$ - Per definizione di $\sup_{t \in T \smallsetminus S_n} \|f(t)\|$

$$\implies \|f(t')\| \leq \lim_n \sup_{t \in T \setminus S_n} \|f(t)\|$$
 Per confronto

$$=\inf_{S\in\mathcal{F}_0}\sup_{t\in T\smallsetminus S}\|f(t)\|$$
 Per costruzione di $\{S_n\}_{n\in\mathbb{N}}$

Ne viene allora che $\sup_{t \in T \setminus T_0} \|f(t)\| \le \inf_{S \in \mathcal{F}_0} \sup_{t \in T \setminus S} \|f(t)\|$, e l'uguaglianza è dunque acquisita.

\mathbb{H} Notazione: $L^{\infty}(T,X)$

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Si denota con $L^{\infty}(T,X)$ l'insieme quoziente delle funzioni essenzialmente limitate, modulo la relazione di uguaglianza quasi ovunque.

Q Osservazione

 $L^1(T,X)$ è uno spazio vettoriale, con le operazioni indotte da quelle tra funzioni essenzialmente limitate.

[prop] Proposizione 26.2: Norma su $L^{\infty}(T,X)$

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $\|\cdot\|_{L^\infty(T,X)}:L^\infty(T,X) o\mathbb{R}$ la mappa definita ponendo

 $f\mapsto \|f\|_{L^\infty(T,X)}:=\inf_{S\in\mathcal{F}_0}\sup_{t\in T\smallsetminus S}\|f(t)\|$, per ogni $f\in L^1(T,X)$.

 $\|\cdot\|_{L^\infty(T,X)}$ è una norma su $L^\infty(T,X)$.

Dimostrazione

lacksquare Proposizione 26.3: Completezza di $\left(L^{\infty}(T,X),\|\cdot\|_{L^{\infty}(T,X)} ight)$

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Lo spazio normato $\left(L^{\infty}(T,X),\|\cdot\|_{L^{\infty}(T,X)}\right)$ è di Banach.

Dimostrazione