

Software Design and Construction 159.251

Software Configuration Management

Amjed Tahir

a.tahir@massey.ac.nz

Daily issues in software development...

- Common scenarios:
 - Oops, I've just found a bug, should I report it or just ignore it?
 - **Reporting**: I've never seen something similar to this before, what **bug type** is this? And where is it coming from? Is it the code I wrote or is it coming from someone's else code?
 - This bug has been fixed before, why it has reappeared again?

Have you heard of theses stories before?

- I cannot find the latest version of this program or document?
- A disaster: the latest version of the code was overwritten by an old version!!
 - I've lost all my latest changes two days of work!!!
- Nobody knows which version of the program is final.

Have you heard of theses stories before?

 Design document is out of sync with programs.

 I don't know if all the changes that were suggested have been incorporated

What's needed?

-a mechanism to handle these issues.
- Change is inevitable when software systems are built.
 - changes is a daily routine.
- Bugs are part of the development cycle- you first find (detect) them, and then try to fix them.
 - And it would be even better if you can *predict* them before they happen!
- Not only bugs, all issues should be managed and tracked.

What is Software Configuration Management (SCM)?

- Process of identifying and linking the components that make up the product
 - Examples: source code files, database files...etc
- Configuration Management help in
 - Controlling changes throughout the development life cycle.
 - Maintain multiple versions of single application that is developed by multiple people/teams.
 - Can roll back to previous versions, when necessary.
 - Maintain links (relationships) between various items (i.e. notify when a change has been made to a dependent item).

"Software configuration management is the art of identifying, organizing, and controlling modifications to the software being built by a programming team. The goal is to maximize productivity by minimizing mistakes"

Babich, W.A. (1986). Software Configuration Management, Coordination for Team Productivity. 1st edition. Boston: Addison-Wesley

Misconception about SCM

SCM is not only version control

SCM is not only source code management

 SCM is not only for the coding stage of development

Configuration Management Process

- Identification of configuration items
 - Written code & derived (using external libraries), design doc, manual, ...
- Set up the environment (i.e., tools)
- Record all changes and requests in a CM database.
- Change control policy
 - formally defined policy e.g., who is allowed to change what?
- Status accounting
 - management checks progress

Typical Software Configuration Items

- Requirement specifications
- Design specifications
- Source code
- Test cases, test data, and recorded results
- User guides and installation manuals
- Executable programs
- Standards and procedures
 - (e.g. Java design guidelines)

Three important concepts in SCM

Version:

 A well-defined state of a configuration item at a given point of time.

Revision:

 Change to a version that corrects only errors in the design/code, but does not affect the documented functionality.

Release:

The formal distribution to users of an approved version.

Configuration Management Process

- Identify a tool for SCM
- Identify configurable software items
- Identify baselines
- Define and assign roles
- Define change criteria
 - Consider Issue Based Information System (IBIS) technique

Define release criteria

Change Management

- Change management: handling of change requests.
 - A change request leads to the creation of a new release.
- General change process
 - 1. The change is *requested* (this can be done by anyone, including users and developers).
 - 2. The change request is *assessed* against project goals.
 - 3. Following assessment, the change is accepted or rejected.
 - 4. If accepted, the change is assigned to a developer and implemented.
 - 5. The implemented change is audited.
- Complexity of change management process varies with size of project.
 - Small projects can perform change requests informally and fast,
 while complex projects require detailed change request forms and
 the official approval of one or more managers.

Version Control

- Version control combines procedures and tools to manage different versions of the software, while production.
- A version control system records changes to a file or set of files over time so that you can recall specific milestone later.

See the previous Lecture on VC!

Baseline

- A baseline is a *snapshot* of the system that has been formally reviewed and agreed upon (approved).
- It is an approved revision of a document or source code file from which subsequent changes can be made.
- It serves as the basis for further development and be changed only through a formal change control procedure.
- In many cases, a Baseline represents the most stable version of the software.

Baselines

Baselines in an iterative process

BASE LINES

Change control

- Change control is vital in any software development.
- One of the most effective ways to control changes is through change requests.
- A change request is submitted and evaluated to assess technical merit, potential side effects, overall impact on other configuration objects and system functions, and the projected cost of the change.

Issues and Bugs Tracking and Control

- Similar to *Change Management*, *issues* and *bugs* should be managed.
- Otherwise,
 - they will be reported multiple times
 - they will be reported in the wrong places
 - And they will be reported but will not be fixed!!
- All issues and bugs should be reported, reviewed and fixed (if approved).
- Different types, similar structure:
 - Also known as issue tracker, bugs tracker or faults management system.

Bugs Management

- What's a software bug?
 - A software bug is an error, failure or fault in a software program that causes it to produce an *incorrect* or *unexpected* result, or to behave in unintended ways.

- Bugs are reported by either developers or endusers.
- A bug report provides details of reported bugs in a program.

Types of Bugs

- Some bugs types
 - Logic bugs
 - Infinite loop
 - Syntax bugs
 - E.g., using x=y instead of x==y
 - Resource bugs
 - Stack or buffer overflow.
 - Memory leaks
 - Performance bugs
 - Processor not able to handle computational tasks

Read: a list of well-know software bugs:

https://en.wikipedia.org/wiki/List_of_software_bugs

Examples

Well-known bugs

- Y2K bug time tracking
- A bug that have caused problems when dealing with dates beyond December 31, 1999

An electronic sign displaying the year incorrectly as 1900 on 3 January 2000 in France - Wikipedia

- Therac-25 Radiation therapy
- A software bug that resulted in a massive overdoses of radiation that killed and injured several people.

Ariane 5 - the most expensive bug in history!

- A bug caused a data conversion from a 64-bit floating point number to a 16-bit signed integer value to overflow and cause a hardware exception
- Cost over US\$370 million!

And while I was preparing this material....

This happened!

Bug Report

- A **bug report** is a document that include the list of issues and bugs in a software system.
- Most widely used as a software package.
- Details can be part of a bug tracker
- A typical issues/bugs tracker will provide details of the reported issue such as the title, name of the person reported the issue,

Issues tracker

What can you report?

- Many issues can be tracked:
 - Bugs: error or failure in the software.
 - Improvement: a request or suggestion...
 - Wish: of a developer or user.
 - Test: test of an issue.

This usually done by developers or users.

Issues Management in Software Development

- A developer should report all issues and bugs found.
- Several vital information should be included:
 - Automatically generated:
 - Bugs ID, name of developer, time, version number, repository number etc...
 - Manually entered info:
 - Type of bug, impact (if known), circumstances etc...
 - Bugs are then categorised based on:
 - Class Severity Priority

Issues tracker What can you report?

Cont'd.

- You can also mark the statues of the reported issue:
 - Open: has not been addressed yet.
 - In progress: currently under development.
 - Resolved: the issue has been resolved, but still open for discussion.
 - Closed: it has been resolved and discussion has been concluded.
 - Reopened: especially when an issue was marked as closed or resolved, but someone noticed that the issue still exist (e.g., bug reappeared).
- These options are monitored by a senior developer, team leader or quality assurance personal.

Bug Management in Software Development

- A developer should report all issues and bugs found.
- Several vital information should be included:
 - Automatically generated:
 - Generated number, name of developer, time, version number, repository number etc...
 - Manually entered info:
 - Type of bug, impact (if known), circumstances etc...
 - Bugs are then categorised:
 - Class Severity Priority

After they are reported....

- Once reported, bugs get reviewed by team leaders, senior developers or quality assurance team.
- Each issue will be evaluated, and it's impact will be rated.
 - Some bugs will be prioritized based on their immediate impact or the severity of their impact (minor of major).
 - Some tracking systems use a scale of 1-5 to rate bugs/issues.
- Then someone (or a team, depending on the bug) will be assigned to work on fixing the bug.

Bugs fixing workflow

Bug Tracking Systems

- A bug tracking system is a software application that keeps track of reported software bugs.
 - Usually comes as a part of the issue tracking system
- Allows developers to report and locate bugs that they need to resolve.
- Some software project management tools provide this as one of their functionalities.
- Several version control systems also provide bug tracking system.
- Example of bug tracking system: Bugzilla and JIRA

Bugzilla

- Open source bugs tracker.
- Originally designed by Netscape in 1998.
- Some of the open-source projects that uses bugzilla:

```
Mozilla.org projects,
Linux kernel,
Eclipse,
FreeBSD,
Apache (some projects!),
Red had,
LiborOffice
```

The "zarro Boogs found" expression!

To operate Bugzilla...

- To use Bugzilla for your project, you'll need the following:
 - A compatible database management system
 - Such as MySQL, SQLite, Oracle or PostgreSQL,
 - A compatible web server
 - A suitable release of Perl 5
 - A suitable mail transfer agent, or any SMTP server

Bugs Tracking System

Example 1- Mozilla Firefox

Reported in <u>Bugzilla</u>

JIRA

- JIRA issue tracker is part of the JIRA software
- JIRA is an industrial-based tools from Atlassian, Inc.
- Integrates well with other JIRA software such as Bitbucket.
- Some of the projects/organisations that uses JIRA:
 - Open-source: JBoss, Fedora Commons, Spring Framework and several Apache projects (such as Commons libraries)
 - Industry: NASA JPL and Audi...

Bugs Tracking System

Example 2- Apache Hadoop

Reported in <u>JIRA</u>

