Calcul Numeric – Tema #5

- **Ex.** 1 Să se demonstreze că $det(A) = \lambda_1 \cdot ... \cdot \lambda_n$, unde $\lambda_1, ..., \lambda_n$ sunt valorile proprii ale matricei $A \in \mathcal{M}_n(\mathbb{R})$. Indicație: Se vor folosi relațiile lui Viète pentru polinomul caracteristic $P_n(\lambda) =$ $det(A - \lambda I_n) = (-1)^n \lambda^n + c_{n-1} \lambda^{n-1} + \dots + c_0$ și se va ține cont că $P_n(0) = det(A)$.
- Ex. 2 Să se demonstreze că dacă $A \in \mathcal{M}_n(\mathbb{R})$ este nesingulară, atunci matricea A^TA este pozitiv definită. Indicație: Se va folosi definiția unei matrice pozitiv definite și Ex. 1.
- **Ex.** 3 Fie λ valoare proprie pentru $A \in \mathcal{M}_n(\mathbb{R})$ și $x \neq 0_n$ un vector propriu asocoat valorii proprii λ . Să se arate că:
 - a) λ este valoare proprie și pentru A^T ;
 - b) λ^k este valoare proprie a matricei A^k cu vectorul propriu x. Indicație: Se va folosi o relație asemănătoare cu relația (9) din Cursul #5;
 - c) Dacă A este nesingulară, atunci $\frac{1}{\lambda}$ este valoare proprie a matricei A^{-1} cu vectorul propriu
- Ex. 4 Să se construiască în Matlab procedurile
 - a) $[x_{aprox}, N] = \mathbf{MetJacobi}(A, a, \varepsilon)$
 - b) $[x_{aprox}, N] = \mathbf{MetJacobiDDL}(A, a, \varepsilon)$
 - c) $[x_{aprox}, N] = \mathbf{MetJacobiR}(A, a, \varepsilon, \sigma)$
 - d) $[x_{aprox}^{O}, N_{O}, \sigma_{O}] = \mathbf{MetJacobiRO}(A, a, \varepsilon)$
 - e) $[x_{avrox}, N] = \mathbf{MetGaussSeidelR}(A, a, \varepsilon, \sigma)$
 - f) $[x_{aprox}^O, N_O, \sigma_O] = \mathbf{MetGaussSeideRO}(A, a, \varepsilon)$

conform metodelor: a) Metoda Jacobi, b) Metoda Jacobi pentru matrice diagonal dominante pe linii, c) Metoda Jacobi relaxată, d) Algoritmul de determinare a parametrului optim în cazul Metodei Jacobi relaxată, e) Metoda Gauss - Seidel, f) Algoritmul de determinare numerică a parametrului optim în cazul Metodei Gauss - Seidel relaxată.

- 1) Să se studieze aplicabilitatea metodelor în cazul următoarelor matrice:

 - a) $A=\begin{pmatrix}0,2&0,01&0\\0&1&0,04\\0&0,02&1\end{pmatrix}$ Metoda Jacobi; b) $A=\begin{pmatrix}4&1&2\\0&3&1\\2&4&8\end{pmatrix}$ Metoda Jacobi pentru matrice diagonal dominante; c) $A=\begin{pmatrix}4&2&2\\2&10&4\\2&4&6\end{pmatrix}$ Metodele Jacobi şi Gauss Seidel relaxate.

 - 2) În caz afirmativ să se afle soluția aproximativă a sistemului Ax = a pentru matricele de la
 - a) și b) apelând procedurile **MetJacobi** și respectiv **MetJacobiDDL** pentru $a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ si $\varepsilon = 10^{-5}$.

- 3) În cazul algoritmului de determinare a parametrului optim pentru metoda Jacobi relaxată, să se construiască grafic punctele $(\sigma_s, V_s)_{s=\overline{1,p-1}}, p=10,20,50$, unde $(\sigma_s)_{s=\overline{0,p}}$ reprezintă o discretizare a intervalului $\left[0,\frac{2}{\parallel A\parallel_{\infty}}\right]$, iar $V_s, s=\overline{1,p-1}$ reprezintă numărul de iterații necesar pentru obținerea soluției aproximative prin metoda Jacobi relaxată. Deasemenea, se cere graficul aceluiași set de puncte dacă se consideră intervalul $\left[0,\frac{2}{\rho(A)}\right]$, unde raza spectrală se va calcula cu ajutorul funcției predefinite eigs. Ce observați?
- 4) Să se calculeze soluția aproximativă x_{aprox}^O și numărul de iterații optim N_o apelând procedura **MetJacobiRO**.
- 5) Să se efectueze cerințele de la subpunctele 3) și 4) în cazul metodei Gauss Seidel relaxată.