A Project Report

On

Heart Disease Prediction Based on Self-Interested Test Reports Submitted to

Acharya Nagarjuna University

In Partial Fulfilment of the Requirement for the Award of Bachelor's Degree in Information Technology

by

D. Naga Phanindra Y19AIT428
G. Ramya Y19AIT441
A. Lakshmi Prasanna Y19AIT403
D. Beaula Rani Y19AIT425

Under the guidance of Mr. N. Srinivasa Rao Asst. Prof, IT Dept.

Department of Information Technology Bapatla Engineering College

(Autonomous)

Mahatmaji Puram, Bapatla - 522102 2022-2023

Affiliated to

Acharya Nagarjuna University

A Project Report

Λn

Heart Disease Prediction Based on Self-Interested Test Reports Submitted to Acharya Nagarjuna University

In Partial Fulfilment of the Requirement for the Award of Bachelor's Degree in Information Technology

by

D. Naga Phanindra Y19AIT428
G. Ramya Y19AIT441
A. Lakshmi Prasanna Y19AIT403
D. Beaula Rani Y19AIT425

Under the guidance of Mr. N. Srinivasa Rao Asst. Prof, IT Dept.

Department of Information Technology Bapatla Engineering College (Autonomous)

Mahatmaji Puram, Bapatla -5221022022-2023

Affiliated to

Acharya Nagarjuna University

Bapatla Engineering College(Autonomous)

Department of Information Technology Mahatmaji Puram, Bapatla - 522102

CERTIFICATE

This is to certify that the Project entitled

"Heart Disease Prediction Based on Self-Interested Test Reports"

D. Naga Phanindra Y19AIT428
G. Ramya Y19AIT441
A. Lakshmi Prasanna Y19AIT403
D. Beaula Rani Y19AIT425

is a record of bonafide work carried out by them, in the partial fulfillment of the requirement for the award of Degree of Bachelor of Technology (Information Technology) at BAPATLA ENGINEERING COLLEGE, Bapatla under the Acharya Nagarjuna University. This work is done during the year 2022-2023, under our guidance.

Date: / /

(Asst. Prof. Mr. N. Srinivasa Rao)
Project Guide

(Asst. Prof. Mr. M. Praveen Kumar)

Project Coordinator

(Dr. N. Sivaram Prasad)

H.O.D, I.T Department

Sig. of External Examiner

Acknowledgments

We are profoundly grateful to **Asst. Prof. Mr. N. Srinivasa Rao** for his expert guidance and continuous encouragement throughout to see that this project rights its target since its commencement to its completion.

We would like to express our deepest appreciation towards **Dr. Nazeer Shaik,** Principal, Bapatla Engineering College, **Dr. N. Sivaram Prasad**, Head of the Department of Information Technology and **Mr. M. Praveen Kumar**, Project Coordinator, whose invaluable guidance supported us in completing this project.

At last, we must express our sincere heartfelt gratitude to all the staff members of the Information Technology Department who helped us directly or indirectly during this course of work.

- D. Naga Phanindra
- G. Ramya
- A. Lakshmi Prasanna
- D. Beaula Rani

ABSTRACT

Heart-related diseases or cardiovascular diseases (CVDs) are the main reason for a huge number of deaths in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need for a reliable, accurate, and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the healthcare industry and professionals in the diagnosis of heart-related diseases. Heart is the next major organ compared to the brain which has more priority in the Human body. It pumps the blood and supplies it to all organs of the whole body. Prediction of occurrences of heart diseases in the medical field is significant work. Data analytics is useful for prediction from more information, and it helps the medical center to predict various diseases. A huge amount of patient-related data is maintained monthly. The stored data can be useful for the source of predicting the occurrence of future diseases. Some of the data mining and machine learning techniques are used such as Artificial Neural Network (ANN), Random Forest, and Support Vector Machine (SVM). Prediction and diagnosing of heart disease become a challenging factor faced by doctors and hospitals both in India and abroad. To reduce the large scale of deaths from heart diseases, a quick and efficient detection technique is to be discovered. Data mining techniques and machine learning algorithms are very important in this area. The researchers are accelerating their research work to develop software with the help of machine learning algorithms which can help doctors to decide both prediction and diagnosing of heart disease. The main objective of this research project is to predict a patient's heart disease using machine learning algorithms.

Keywords: Neural Networks, Machine Learning, Supervised learning, Support vector machine, Random Forest.

Contents

1.	Introduction	1
	1.1 Project Scope	1
2.	Literature Survey	2
	2.1 Introduction to Literature Survey	2
	2.2 Existing System	5
3.	Requirement Specifications	6
	3.1 Software Requirement	6
	3.2 Hardware Requirement	6
	3.3 Libraries Requirement	6
4.	Requirement Analysis	8
	4.1 Machine Learning	8
	4.1.1 Supervised Learning	8
	4.1.2 Unsupervised Learning	8
	4.1.3 Reinforcement Learning	8
5.	System Design	9
	5.1 UML Diagrams	9
	5.1.1 Use Case Diagram	9
	5.1.2 Activity Diagram	11
6.	System Testing	12
	6.1 Types of Tests	12
	6.1.1 Unit Testing	12
	6.1.2 Integration Testing	12
	6.1.3 Functional Testing	12

	6.1.4 System Testing	13
	6.1.5 Module Testing	13
	6.1.6 Acceptance Testing	13
7.	Project Planning	14
	7.1 Project Overview	14
	7.2 Proposed System	14
8.	Implementation	15
	8.1 Problem statement	15
	8.2 System Architecture	15
	8.3 System Flow	16
	8.3.1 Collection of datasets	16
	8.3.2 Selection of attributes	16
	8.3.3 Preprocessing of data	16
	8.3.4 Prediction of disease	17
	8.4 Dataset details	17
	8.5 Algorithms	18
	8.5.1 Support Vector Machine	18
	8.5.2 Random Forest	18
	8.5.3 TabNet	22
	8.6 Implementation and Results	25
	8.7 Source code	26
	8.7.1 Input	37
	8.7.2 Output	40
9.	Screenshots of project	41

10.	Conclusion and Future Scope	53
	10.1 Conclusion	53
	10.2 Future Scope	53
References		54

List Of Figures

5.1	Use Case Diagram	10
5.2	Activity Diagram	11
8.1	System Architecture	15
8.2	Preprocessing of data	16
8.3	Dataset	17
8.4	Samples of dataset	18
8.5	Support Vector Machine	21
8.6	Random Forest	21
8.7	Feature Block	22
8.8	Structure of TabNet algorithm	23
8.9	Feature Transformer Layer	23
8.10	Attentive Transformer layer	24
9.1	Types of Anginas	41
9.2	Cholesterol level	42
9.3	Values of the Slope variable	43
9.4	Dataset	44
9.5	First five records of dataset	44
9.6	Last five records of dataset	44
9.7	Attributes and their datatypes	45
9.8	Count of duplicates	45

9.9	Count plot of patients with (1) & without (0) heart disease	46
9.10	Count plot of patients with fbs(1) & without fbs(0)	46
9.11	Count plot for chest pain type	47
9.12	Count plot for Oldpeak	47
9.13	Scatter plot for svm classifier	48
9.14	Confusion matrix for SVM	49
9.15	Classification report for SVM	50
9.16	Confusion matrix for Random Forest	50
9.17	Classification report for Random Forest	51
9.18	Confusion matrix for TabNet	51
9.19	Classification report for TabNet	52