ITI105 Final Project Presentation

Financial Fraud Detection using Machine Learning Adelene Ng, Gareth Jonathan Halim

Problem Statement

- Objective: To predict if a financial transaction is fraudulent or not
- Binary Classification problem
- Ideal outcome: To correctly predict a transaction which is fraudulent as actually fraudulent

Datasets

- From Kaggle, generated by the PaySim mobile generator
- Based on a sample of real transactions extracted from one month of financial logs from a mobile money service

Dataset Features

Features	Description			
step	Maps a unit of time in the real world. In this case 1 step is 1 hour of			
	time.			
type	CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER			
amount	Amount of the transaction in local currency			
nameOrig	Customer who started the transaction			
oldbalanceOrg	Initial balance before the transaction			
newbalanceOrig	New balance after the transaction			
nameDest	Customer who is the recipient of the transaction			
oldbalanceDest	Initial balance of recipient before the transaction			
newbalanceDest	New balance of recipient after the transaction			
isFraud	This is the transactions made by the fraudulent agents inside the			
	simulation. In this specific dataset the fraudulent behaviour of the			
	agents aims to profit by taking control or customers' accounts and try to empty the funds by transferring to another account and then			
	cashing out of the system.			
isFlaggedFraud	The business model aims to control massive transfers from one			
	account to another and flags illegal attempts. An illegal attempt in this			
	dataset is an attempt to transfer more than 200.000 in a single			
	transaction.			

Exploratory Data Analysis

Feature Importance

Experiments

Algorithms	recall	precision	f1	balanced
				accuracy
Ir	0.943	0.023	0.044	0.945
xgb	0.996	0.826	0.903	0.998
nb	0.993	0.003	0.006	0.783
dt	0.995	0.975	0.985	0.997
rfc	0.995	0.867	0.927	0.997
cb	0.996	0.984	0.99	0.998
lgbm	0.998	0.808	0.893	0.999
bg	0.995	0.858	0.921	0.997
Maximum	0.998	0.984	0.99	0.999

- LightGBM has a recall of 0.998 compared to CatBoost, whose recall is 0.996.
- CatBoost has a higher precision 0.984 compared to LightGBM 0.808.
- The F1-score for CatBoost is 0.99 whilst that of LightGBM is 0.893.
- We can conclude that <u>CatBoost is the better</u> classifier.

Hyper-parameter Tuning: Important – Controls Overfitting

CatBoost	Values		LightGBM	Values	
Learning Rate (This determines how fast or slow the model will learn. The default is usually 0.03)	0.001, 0.01, 0.5	0.01	Learning Rate (Default: 0.1)	0.001, 0.01, 0.5	0.01
Depth (up to 16) (tree depth)	4, 6, 10	10	Max depth (Controls the max depth of each trained tree; If you use a large value of max_depth, your model will likely be over fit to the train set)	10, 50	10
L2-leaf-reg (Coefficient at the L2 regularization term of the cost function. The default is 3.0)	10, 15, 25	10	Min Data in Leaf: the minimum number of data/sample/count per leaf (default is 20; lower min_data_in_leaf means less conservative/control, potentially overfitting).	500, 1000	1000

Results before/after hyper-parameter tuning

Score Type	CatBoost (Old Hyper Parameters)	CatBoost	Light GBM (Old Hyper Parameters)	Light GBM
Precision Score	0.984	0.993	0.808	0.888
Recall Score	0.996	0.996	0.998	0.997
F1 Score	0.99	0.995	0.893	0.939
Balanced Accuracy	0.998	0.998	0.999	0.998
AUC ROC Score	0.998	0.998	0.999	0.998

- LightGBM has a recall of 0.997 compared to CatBoost, whose recall is 0.996.
- CatBoost has a new higher precision 0.993 compared to LightGBM's new precision score of 0.888.
- The new F1-score for CatBoost is 0.995 whilst the new F1-score for LightGBM is 0.939.
- We conclude that <u>CatBoost is the better classifier</u>.

CatBoost (Before hyper-parameter tuning)

Hyper- parameter	Value
iterations	5
learning_rate	0.1
random_state	88

LightGBM (Before hyper-parameter tuning)

Hyper- parameter	Value
boosting_type	gbdt
learning_rate	0.1
random_state	88

CatBoost and LightGBM Classification Reports

CatBoost

```
precision recall f1-score support
```

```
0 1.00 1.00 1.00 1270881
1 0.99 1.00 0.99 1643
```

accuracy 1.00 1272524 macro avg 1.00 1.00 1.00 1272524 weighted avg 1.00 1.00 1.00 1272524

LightGBM

precision recall f1-score support

0 1.00 1.00 1.00 1270881 1 0.89 1.00 0.94 1643

accuracy 1.00 1272524 macro avg 0.94 1.00 0.97 1272524 weighted avg 1.00 1.00 1.00 1272524

CatBoost (applying new hyper-parameters)

Hyper- parameters	Value
Learning Rate	0.01
Depth	10
L2-leaf-reg	10

LightGBM (applying new hyper-parameters)

Hyper- parameters	Value
Learning Rate	0.01
Max Depth	10
Min Data in leaf	1000

Web Application UI

Fraud Detection Service

Fraud Detection Results

Fraud Detection Results

Verdict: Transaction NORMAL

Verdict: Transaction is FRAUDULENT

