Chance Errors in Sampling

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Sample surveys involve chance error.

How to find the likely size of the chance error in a proportion for SRS?

Example: FPP page 359

Simple Random Sample of size 100 from a population of size 6672 individuals

Expected Value (for sum and percentage) of box

$$# of draws = 100$$

Avg of box =
$${3581(0) + 3091(1)} / 6672 = 0.4632$$

$$EV(sum) = (100) \times (0.4632) = 46.32 men$$

$$EV(percent) = EV(sum) / 100 = 46.32\% men$$

With a SRS, the expected value for the sample percentage equals the population percentage

Example page 359

$$\frac{\text{SE for sum}}{\text{percentage}} = \frac{\text{SE for sum}}{\text{Size of sample}} \times 100\%$$

SE for number, and SD of box with 2 numbers

$$SE = \sqrt{\# draws}$$
 (SD of box)

When a box has only two different numbers ("big" and "small"), the SD can be computed as:

7

Example page 359

$$\frac{\text{SE for sum}}{\text{percentage}} = \frac{\text{SE for sum}}{\text{Size of sample}} \times 100\%$$

SE for percentage

$$SD(box) = (1 - 0)\sqrt{0.46 \times 0.54} = 0.50$$

$$SE(sum) = \sqrt{100} (0.50) = 5$$

$$SE(percentage) = (5 / 100) \times 100\% = 5\%$$

What happens when the sample gets bigger?

SE for percentage

$$SD(box) = (1 - 0)\sqrt{0.46 \times 0.54} = 0.50$$

$$SE(sum) = \sqrt{400} (0.50) = 10$$

$$SE(percentage) = (10 / 400) \times 100\% = 2.5\%$$

Example page 359

SE for percentage =
$$(5 / 100) \times (100\%) = 5\%$$

Sampling men demo

More Normal Approximations

EV and SE for a sample percentage and how to use the normal curve to compute chances

SRS of 400 from census data with

20,000 over \$50k

What's the estimate percentage of "over \$50k"?

400 draws

of draws = 400

Average of box = (20,000) / 100,000 = 0.2

$$EV sum = (400) \times (0.2) = 80$$

$$# of draws = 400$$

SD box =
$$(1 - 0)\sqrt{(2/10) \times (8/10)} = 0.4$$

SE sum =
$$\sqrt{400}$$
 x (0.4) = 8

400 draws

$$EV sum = 80$$
 $SE sum = 8$

$$EV \% = (80 / 400) \times 100\% = 20\%$$

$$SE\% = (8/400) \times 100\% = 2\%$$

When drawing at random from a box of 0's and 1's, the percentage of 1's among the draws is likely to be around EV of %, give or take SE of % or so.

Example page 364

Estimate the chance that between 18% and 22% of the persons in the sample earn more then \$50,000 a year

$$SU_1 = \frac{18 - 20}{2} = -1$$

$$SU_2 = \frac{22 - 20}{2} = 1$$

$$P(-1 < Z < 1) = 68\%$$

Correction Factor

When estimating percentages, it is the absolute size of the sample which determines accuracy

What's more accurate?

Sampling with replacement?

Sampling without replacement?

Small chance error

Number of Stat 2 students born in California

When drawing without replacement, the variability in the box is slightly reduced.

Finite Population Correction Factor

Another way to express the Correction Factor

Number of tickets in box - number of draws

Number of tickets in box - one

400 tickets in a box; EV and SE of sum?

300 0 1 100

100 draws, w/o replacement

Avg of box =
$$(300x0 + 100x1) / 400 = 1 / 4$$

SD of box =
$$(1-0)\sqrt{(300/400)(100/400)} \approx 0.433$$

$$EV = 100 (1/4) = 25$$

$$SE = \sqrt{100} (0.433) = 4.33$$
 (with replacement)

SE =
$$(4.33)\sqrt{(400 - 100) / (400 - 1)}$$
 = 3.75 (w/o replacement)

Special Cases for Correction Factor

Sample size = Population size *then* **C.F.** = 0

Sample size = 1 then C.F. = 1

 $0 \le C.F. \le 1$

Correction Factor with number of draws = 2500

Number of tickets in the box	Correction factor (to 5 decimal digits)
5,000	0.70718
10,000	0.86607
100,000	0.98743
500,000	0.99750
1,500,000	0.99917
15,000,000	0.99992

About Correction Factor

Correction Factor can be used whenever draws are made without replacement, for any **SE** (sum's, %'s, averages)

Use **C.F.** whenever sample size is at least 10% of population size

Less than 10% pop size, implies that the chance of asking the same person twice is small