

- (1) This PDF is part of YouTube tutorials. This PDF is for individual, personal usage only. Method 1: https://youtu.be/p2XbncjiA6k Method 2: https://youtu.be/mlif-lCF52Y
- (2) The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

Content of This Video

- Method 1:
 - Basic idea of mediation analysis
 - Baron & Kenny (1986) 3 regressions
 - Use mediate() in mediation package for 95% CI
- Method 2:
 - Bootstrapping mediation from scratch
 - Write our own mediation function

Mediation Analysis in R Method - 1

Definition of Mediation

Mediation:

- An observed relationship between an independent variable (IV, or X) and a dependent variable (DV, or Y).
- The name of the mechanism is called mediator (M).

⁽¹⁾ This PDF is part of YouTube tutorials. This PDF is for individual, personal usage only. Method 1: https://youtu.be/p2XbncjiA6k Method 2: https://youtu.be/MIIF-ICF52Y

⁽²⁾ The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

Conditions of Mediation

- Based on Baron & Kenny (1986), there are three sets of regression:
- (1) $X \rightarrow Y$ (c needs to be significant, generally speaking.)

$$Y = cX$$

• (2) $X \rightarrow M$ (a needs to be significant.)

$$M = a X$$

• (3) $X + M \rightarrow Y$ (b needs to be significant.)

$$Y = c'X + bM$$

Example of Mediation

- The following is a hypothetical study.
 - Higher temperatures increase an ice cream store's sales.
 - This is because higher temperatures make people want to have frozen desserts, making them more likely to buy ice cream from the store

⁽¹⁾ This PDF is part of YouTube tutorials. This PDF is for individual, personal usage only. Method 1: https://youtu.be/p2XbncjiA6k Method 2: https://youtu.be/MIIF-ICF52Y

⁽²⁾ The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

• (1) X → Y (c needs to be significant, generally speaking.)

$$Y = cX$$

Sales = $b_0 + c$ Temperature

• (2) $X \rightarrow M$ (a needs to be significant.)

$$M = a X$$

NFD =
$$b_0 + a$$
 Temperature

• (3) $X + M \rightarrow Y$ (b needs to be significant.)

$$Y = c'X + bM$$

Sales =
$$c'$$
Temperature + b NFD

- (1) This PDF is part of YouTube tutorials. This PDF is for individual, personal usage only. Method 1: https://youtu.be/p2XbncjiA6k Method 2: https://youtu.be/MIIF-ICF52Y
- (2) The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

Hypothetical Data

• Note: This data is generated via R programming (i.e., not real data). Please do not interpret the findings from a theoretical perspective.

- IV = Temperature
- DV = Sales
- Mediator = Need for Frozen Desserts (NFD)
 - How much do you want to have frozen desserts?
 - 0 = Not at all, 6 = Very much

- (1) This PDF is part of YouTube tutorials. This PDF is for individual, personal usage only. Method 1: https://youtu.be/p2XbncjiA6k Method 2: https://youtu.be/MIF-ICF52Y
- (2) The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

Test Indirect effect a*b

Bootstrapping

- Bootstrapping is a non-parametric method based on resampling with replacement which is done many times, e.g., 5000 times.
 - From each of these samples the indirect effect is computed and a sampling distribution can be empirically generated.

Mediation Analysis in R Method - 2

Mediation Analysis in R from Scratch

Topics in this video

•1. What is bootstrapping?

• 2. How to write the R program?

• 3. Standard Error (SE) and Standard Deviation (SD) in bootstrapping

4. Bias in bootstrapping

What is bootstrapping?

Test Indirect effect a*b

Bootstrapping

- Bootstrapping is a non-parametric method based on resampling with replacement which is done many times, e.g., 5000 times.
 - From each of these samples the indirect effect is computed and a sampling distribution can be empirically generated.

Use R to test Indirect effect a*b

Sample a data to calculate a and b path and indirect effect (i.e., a*b)

Use boot() to bootstrap it (e.g., 5000 times). Thus, 5000 indirect effects.

95% Confidence Interval for Indirect Effect

- Normal distribution assumption:
 - •95% CI =
 - (indirect effect -bias 1.69*SE, indirect effect -bias + 1.69*SE)

- Percentile:
 - •95% CI =(2.5% pt, 97.5% pt)