Os 7 Sistemas Cristalinos

Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic		$\alpha = \beta = \gamma = 90^{\circ}$	a
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	
Rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	c B a

As 14 Redes de Bravais

Impossibilidade da Simetria da 5-a Ordem nos Cristais. Quasicristais

A simetria de rotação de 5-a ordem não é compatível com a simetria de translação.

No entanto, podem existir objectos aperiódicos com ordem de longo alcance. [Dan Shechtman "Metallic Phase with Long-Range Orientational Order and No Translational Symmetry" (Prémio Nobel de Química de 2011)]

Grupos Pontuais de Simetria Cúbica

THE NONCUBIC CRYSTALLOGRAPHIC POINT GROUPS^a

SCHOEN- FLIES	HEXAGONAL	TETRAGONAL	TRIGONAL	ORTHO- RHOMBIC	MONOCLINIC	TRICLINIC	INTER- NATIONAL
C_n	6	C ₄	C ₃		C ₂		n
C_{nv}	C _{6 v} 6mm	C _{4v} 4mm	C _{3v} 3m	C _{2 v} 2mm			nmm (n even) nm (n odd)
C_{nh}	C _{6h} 6/m	C _{4h}	*	,	C _{2h} 2/m		n/m
~nh	C _{3h}				C_{1h} $(\overline{2})$		_
S_n		S ₄	C_{3i} $\overline{3}$			S_2 (C_i) $\overline{1}$	n n

THE NONCUBIC CRYSTALLOGRAPHIC POINT GROUPS (continued)

D_n	622	D ₄	D ₃	(V) 222		n22 (n even) n2 (n odd)
D_{nh}	D_{6h} $6/mmm$ D_{3h}	D _{4h} 4/mmm	~	D_{2h} (mmm) (V_h) $2/mmm$		$\frac{n}{m} \frac{2}{m} \frac{2}{m}$ (n/mmm)
	<u>62</u> m					<i>n</i> 2 <i>m</i> (<i>n</i> even)
D_{nd}		(V_d) $\overline{4}2m$	$\overline{3} \frac{2}{m}$			$ \overline{n} \frac{2}{m} $ (n odd)

Indices de Miller

 $x_0=3a, y_0=2b, z_0=2c \rightarrow l=2, m=3, n=3;$

vector normal a um plano cristalino com os índices de Miller (hkl):

$$\vec{n}_{hkl} = h\vec{a}_1 + k\vec{a}_2 + l\vec{a}_3$$

distância entre os planos equivalentes:

$$d_{hkl} = a / \sqrt{h^2 + k^2 + l^2}$$

(100)

(010)

Algumas Redes com Base

Estrutura	de CsCl	Estrutura (sal)	de NaCl	Estrutura de ZnS (blenda)		
Cs OCL			Na O Cl	Zn OS		
Substância	a, \mathbf{A}°	Substância	a, \mathbf{A}°	Substância	a, \mathbf{A}°	
CsCl	4.12	LiF	4.02	CuCl	5.41	
CsBr	4.29	NaCl	5.64	ZnS	5.41	
CsI	4.57	KCl	6.20	GaAs	5.65	
TlCl	3.83	AgCl	5.55	SiC	4.35	

Difração de Raios X nos Cristais

Difractogramas de Raios X dos Cristais de KCl e KBr

A Célula de Wigner-Seitz E a 1-a Zona de Brillouin das Redes de Bravais Cúbicas

As Primeiras Zonas de Brillouin para Uma Rede Quadrada

Planos de Bragg

A 1-a zona de Brillouin (BZ) é construída usando o algoritmo de Wigner-Seitz. É um conjunto de pontos dos quais é possível passar para a origem não atravessando nenhum plano de Bragg.

A 2-a BZ é constituída pelos pontos separados da origem por exactamente 1 plano de Bragg. È o conjunto de 4 triângulos definidos pelos planos de Bragg.

A BZ número n é constituída pelos pontos separados da origem por exactamente (n-1) planos de Bragg. É preciso ter o cuidado de desenhar todos os planos de Bragg que possam interferir.

Deslocações em Cristais

Em cima: Deslocação de bordo; Deslocação helicoidal **Em baixo**: Fronteira de grãos acompanhada por deslocações de bordo