Teoremas del módulo máximo y del mapeo abierto

2015-04-06 9:00

1 Teorema del módulo máximo

2 Teorema del mapeo abierto

Teorema (Módulo máximo)

Sean D abierto y $f: D \to \mathbb{C}$ analítica y no constante. Entonces, para cada $z_0 \in D$ y $\delta > 0$, existe $z \in D(z_0, \delta) \cap D$ tal que $|f(z)| > |f(z_0)|$.

• Si no es cierto, existen $z_0 \in D$ y $\delta > 0$ tal que para todo $z \in D(z_0, \delta)$ se tiene que $|f(z)| \leq |f(z_0)|$.

- Si no es cierto, existen $z_0 \in D$ y $\delta > 0$ tal que para todo $z \in D(z_0, \delta)$ se tiene que $|f(z)| \leq |f(z_0)|$.
- Sea $r < \delta$. Tenemos que $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$, de donde se obtiene:

$$|f(z_0)| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})| d\theta.$$

- Si no es cierto, existen $z_0 \in D$ y $\delta > 0$ tal que para todo $z \in D(z_0, \delta)$ se tiene que $|f(z)| \leq |f(z_0)|$.
- Sea $r < \delta$. Tenemos que $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$, de donde se obtiene:

$$|f(z_0)| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})| d\theta.$$

Por lo que:

$$0 \leq \frac{1}{2\pi} \int_0^{2\pi} (|f(z_0 + re^{i\theta})| - |f(z_0)|) d\theta.$$

- Si no es cierto, existen $z_0 \in D$ y $\delta > 0$ tal que para todo $z \in D(z_0, \delta)$ se tiene que $|f(z)| \le |f(z_0)|$.
- Sea $r < \delta$. Tenemos que $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$, de donde se obtiene:

$$|f(z_0)| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})| d\theta.$$

Por lo que:

$$0 \leq \frac{1}{2\pi} \int_0^{2\pi} (|f(z_0 + re^{i\theta})| - |f(z_0)|) d\theta.$$

• Pero por nuestra hipótesis, el integrando es ≤ 0 , por lo que la integral es también ≤ 0 , y por lo tanto, igual a cero. Como el integrando es continuo, se tiene $|f(z_0 + re^{i\theta})| = |f(z_0)|$ para toda θ .

Demostración (continuación)

• Como $r < \delta$ es arbitrario, hemos demostrado entonces que |f| es una función constante en $D(z_0, \delta)$. Pero una de las consecuencias de las ecuaciones de Cauchy-Riemman dice que entonces f es constante en el mismo disco.

Demostración (continuación)

- Como $r < \delta$ es arbitrario, hemos demostrado entonces que |f| es una función constante en $D(z_0, \delta)$. Pero una de las consecuencias de las ecuaciones de Cauchy-Riemman dice que entonces f es constante en el mismo disco.
- Se deduce entonces que f coincide con una constante en el disco, por lo tanto es constante en todo su dominio D, lo cual contradice nuestra hipótesis de que f no es constante.

Un corolario

Corolario

Si f es analítica y no constante en un disco $D(a, \delta)$ y continua en el disco cerrado, entonces |f| alcanza su máximo en la frontera del disco.

Teorema del módulo mínimo

Teorema (Módulo mínimo)

Sean D abierto y $f: D \to \mathbb{C}$ analítica y no constante. Entonces, para cada $z_0 \in D$ y $\delta > 0$, existe $z \in D(z_0, \delta) \cap D$ tal que $|f(z)| < |f(z_0)|$, a menos que $|f(z_0)| = 0$.

Teorema del módulo mínimo

Teorema (Módulo mínimo)

Sean D abierto y $f: D \to \mathbb{C}$ analítica y no constante. Entonces, para cada $z_0 \in D$ y $\delta > 0$, existe $z \in D(z_0, \delta) \cap D$ tal que $|f(z)| < |f(z_0)|$, a menos que $|f(z_0)| = 0$.

Demostración

Si |f| alcanzara un mínimo local en $z_0 \neq 0$, entonces $g=\frac{1}{f}$ sería tal que |g| alcanza un máximo local en z_0 , lo cual contradice que f no es constante.

Lema de Schwarz

Teorema

Lema de Schwarz

Teorema

• Sea f analítica para |z| < 1 tal que: $|f(z)| \le 1$ y f(0) = 0. Entonces se obtiene que $|f(z)| \le |z|$ para toda |z| < 1 y que |f'(0)| < 1.

Lema de Schwarz

Teorema

- Sea f analítica para |z| < 1 tal que: $|f(z)| \le 1$ y f(0) = 0. Entonces se obtiene que $|f(z)| \le |z|$ para toda |z| < 1 y que $|f'(0)| \le 1$.
- Si además se tiene que |f(z)| = |z| para algún $z \neq 0$, o bien que |f'(0)| = 1, entonces f(z) = cz para algún c tal que |c| = 1.

Teorema (Mapeo abierto)

Si $U \subseteq \Omega$ es abierto, y $f: \Omega \to \mathbb{C}$ es analítica y no constante, entonces $f(U) \subseteq \mathbb{C}$ es abierto.

Demostración

• Veremos que si f no es constante, y es analítica en a, la imagen de un disco centrado en a contiene un disco centrado en f(a). Sin perder generalidad, f(a) = 0.

- Veremos que si f no es constante, y es analítica en a, la imagen de un disco centrado en a contiene un disco centrado en f(a). Sin perder generalidad, f(a) = 0.
- Sea C una circunferencia centrada en a tal que $f(z) \neq 0$ para $z \in C$. Sea $\epsilon = \min_{z \in C} \frac{|f(z)|}{2}$.

- Veremos que si f no es constante, y es analítica en a, la imagen de un disco centrado en a contiene un disco centrado en f(a). Sin perder generalidad, f(a) = 0.
- Sea C una circunferencia centrada en a tal que $f(z) \neq 0$ para $z \in C$. Sea $\epsilon = \min_{z \in C} \frac{|f(z)|}{2}$.
- Sean $w \in D(0, \epsilon)$, $z \in C$. Entonces:

$$|f(z) - w| \ge |f(z)| - |w| \ge 2\epsilon - \epsilon = \epsilon$$

mientras que $|f(a) - w| = |-w| < \epsilon$.

- Veremos que si f no es constante, y es analítica en a, la imagen de un disco centrado en a contiene un disco centrado en f(a). Sin perder generalidad, f(a) = 0.
- Sea C una circunferencia centrada en a tal que $f(z) \neq 0$ para $z \in C$. Sea $\epsilon = \min_{z \in C} \frac{|f(z)|}{2}$.
- Sean $w \in D(0, \epsilon)$, $z \in C$. Entonces:

$$|f(z) - w| \ge |f(z)| - |w| \ge 2\epsilon - \epsilon = \epsilon$$

mientras que $|f(a) - w| = |-w| < \epsilon$.

• Por lo tanto, la función |f(z)-w| alcanza su mínimo dentro de C. Por el teorema de módulo mínimo, existe z_0 dentro de C tal que $|f(z_0)-w|=0$, es decir, $f(z_0)=w$.