中学生でも解ける東大大学院入試問題(130)

2015-03-04 11:43:05

こんにちは。東久留米市の学習塾塾長です。

まだ少し曇っていますが、今の気温が13°Cで、これからさらに上がって17°Cになるようです。春らしくなってきましたが、まだ寒い日も来るようなので体調に気を付けてお過ごしください。

さて、今回は平成26年度東大大学院工学系研究科システム創成学の入試問題です。

問題は、

「毎年、A国ではその人口の α (0 < α < 1) の割合の人がB国に移り、B国ではその人口の β (0 < β < 1) の割合の人がA国に移る。なお、人口の増減はこの移動のみによって起こり、A国の人口とB国の人口の和は常に一定であるとする。

「(1) ある時点で Λ 国の人口と B国の人口はそれぞれ X0と Y0であった。その時点から 10年後の Λ 国の人口を X0、Y0、 α と B6を用いて表せ。

(2) β = 2α のとき、無限年後における A国と B国の人口比率を求めよ。」です。

漸化式の問題です。

まず、 n 年後の A国の人口を X(n)、 B国の人口を Y(n)として n + 1 年後の A国の人口(X(n+1))を考えると、 A国から B国に αX (n)だけ出ていって、 B国から A国に βY (n)だけ入ってくるので、 X(n+1)= (1 - α) X(n) + βY (n) (1)

という関係式が成り立ちます。

一方、A国の人口とB国の人口の和は一定なので、 X(n) + Y(n) = X0 + Y0 (2) が成り立ちます。

(1) と (2) からY(n)を消去すると、 $X(n+1)=(1-\alpha)~X(n)+\beta~(X0+Y0-X(n))=(1-\alpha-\beta)~X(n)+\beta~(X0+Y0)$ となります。

ここで (3) の特性方程式 p = (1- α- β) p +β (X0+Y0) から、

 $p = \beta (X0 + Y0) / (\alpha + \beta)$ とすると、 (3) は、

 $X(n+1) - \beta (X0 + Y0) / (\alpha + \beta) = (1 - \alpha - \beta) (X(n) - \beta (X0 + Y0) / (\alpha + \beta))$ (4)

と変形でき、

X(n+1)- β (X0+Y0) / $(\alpha+\beta)$ = $(1-\alpha-\beta)$ ^(n+1) (X(0)- β (X0+Y0) / $(\alpha+\beta)$) (5) となります。 $((1-\alpha-\beta)$ ^(n+1)は、 $(1-\alpha-\beta)$ の n+1 乗を表します)

ここで、 $n+1 \rightarrow n$ 、X(0) = X0とすると、 $X(n) = (1-\alpha-\beta) ^n \cdot (\alpha X0 - \beta Y0) / (\alpha+\beta) + \beta (X0+Y0) / (\alpha+\beta)$ となり、n 年後の Λ 国の人口が判りました。 (6)

最後に(6)にn=10を代入して、

 $X(10) = (1 - \alpha - \beta)^{10} \cdot (\alpha X 0 - \beta Y 0) / (\alpha + \beta) + \beta (X 0 + Y 0) / (\alpha + \beta)$ が 1 0 年後の A 国の A ログない これが笑きです

が10年後のA国の人口になり、これが答えです。

次に (2) ですが、 $\beta = 2\alpha \epsilon$ (6) に代入すると、 $X(n) = (1 - 3\alpha) ^n \cdot (\alpha X 0 - 2\alpha Y 0) / (\alpha + 2\alpha) + 2\alpha (X 0 + Y 0) / (\alpha + 2\alpha) = (1 - 3\alpha) ^n \cdot (X 0 - 2 Y 0) / 3 + 2 (X 0 + Y 0) / 3$ となります。

ここで、 β の変域は、 $0<\beta<1$ なので、 β = $2\,\alpha$ から、 $0<2\,\alpha<1$ 、つまり、 $0<\alpha<1/2$ です。

すると、

- 1/2 < 1 - $3\alpha < 1$ なので、 $(1 - 3\alpha)^n$ は、nを大きくすると $(n \to \infty)$ 、 $(1 - 3\alpha)^n \to 0$ になります。

したがって、 $X(\infty) \rightarrow 2 (X0+Y0)/3$ (8) です。

また、 $X(\infty) + Y(\infty) = X0 + Y0$ なので、

 $Y(\infty) = X0 + Y0$ - $X(\infty)$ で、これと(8)から、 $Y(\infty) \rightarrow X0 + Y0$ - 2(X0 + Y0)/3 = (X0 + Y0)/3 となり、無限年後における A 国と B 国の人口比率 $X(\infty)$: $Y(\infty)$ は、 $X(\infty)$: $Y(\infty) = 2(X0 + Y0)/3$: (X0 + Y0)/3 = 2:1となり、これが答えになります。

(2)は極限がでてきましたが、ここでは絶対値が 1 より小さい数を繰り返し掛けていくと 0 に近づいていくことです。電卓でやったことのある人も多いと思います。高校で勉強するので楽しみにしていてください。

東久留米の学習塾 学研CAIスクール 東久留米滝山校

http://caitakiyama.jimdo.com/

TEL 042-472-5533