CONSIDER DATA POINTS  $f_1, ..., f_N$ . THE ARITHMETIC AVERAGE  $f_1$  is ave  $f_2$  and  $f_3$  are  $f_4$ .

NOW SUPPOSE WE WANT TO DEFINE THE "A VERACE" OF A FUNCTION f(x) on  $a \le x \le b$ . WE PARTITION x-axii into N equal secment  $[x_{i-1}, x_i]$  with  $x_i$  and  $x_i$  and  $x_i$  be and  $x_i$  be and  $x_i$  be and  $x_i$ .

THEN THE AVERAGE OF  $f(x_1^x)$ , ...,  $f(x_N^x)$  is simply ave N  $f(x_1^x)$  ...  $f(x_N^x)$  =  $\frac{1}{N} \sum_{i=1}^{N} f(x_i^x)$ .

MULTIPLY BY b-a TO 1 AND BOTTOM AND USE  $\Delta x$ :  $\frac{b-a}{N}$ .

So  $f = \frac{1}{ave} \sum_{b-a} f(x_i^x) \Delta x$ .

NOW LET  $N \to \omega$ ,  $\Delta X \to 0$  AND OBJERVING THAT WE HAVE A RIEMANN SUM WE DEFINE

$$\overline{f} \equiv \frac{1}{b \cdot a} \int_{a}^{b} f(x) dx. \qquad (1)$$

FOR A POJITIVE FUNCTION FIX) THIS YIELDS THE CEOMETRIC INTERPRETATION:



AREA OF RECTANCE  $\overline{F}(b-a)$ IJ AREA  $\int_{a}^{b} f(x) dx$  so -, +

LOBEJ CAN (EL IN AREA.

PROBLEM I FIND THE AVERAGE OF  $f(x) = x^2$  on  $0 \le x \le 3$ . USING (1)

WE GET  $f = \frac{1}{3} \int_{0}^{3} x^2 dx = \frac{1}{4} x^3 \Big|_{0}^{3} = 3$ .

SHADED AREAS ARE THE JAME.

PROBLEM 2 LET V(t) BE THE SPEED OF A PARTICLE ON A

TIME INTERVAL OSTST. WHAT IN THE AVERACE JPERD?

$$\frac{SOL'N}{T-Q}$$
 Vave =  $\frac{1}{T-Q}$   $\int_{0}^{T}$  V(t) dt.

BUT VItI: 
$$\frac{dx}{dt}$$
 so that  $V_{ave} = \frac{1}{T} \int_{0}^{T} \frac{dx}{dt} dt = \frac{1}{T} X(t) \int_{0}^{T} .$ 

PROBLEM 3 IF A CUP OF COFFEE HAJ TEMPERATURE  $95^{\circ}$ C IN A ROOM WHERE THE TEMPERATURE IS  $20^{\circ}$ C, THEN FROM NEWTON'S LAW OF COOLING THE TEMPERATURE OF THE COFFEE AFTER t MINUTES IS  $T(t) = 20 + 75 e^{-t/50}$ .

WHAT IS THE AVERACE TEMPERATURE OF THE COFFEE DURING THE FIRST HALF HOUR?

OPTIONAL (MEAN. VALUE THEOREM FOR INTECRALS)

INTERPRETATION  $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$ , i.e. if f(x) is A continuous

FUNCTION THEN SOMEWHERE IN [ a, b] THE FUNCTION WILL TAKE ON ITS A VERACE VALUE.

INTEGRALY IS SATISFIED FOR  $f(x) = x^2 + 3x + 2$  on  $f(x) = x^2 + 3x +$ 

IF YOU JUPPORT A BODY AT ITS CENTER OF MASS (IN LINIFORM GRANITY) IT BALANCES PERFECTLY. CONSIDER A 1-D PROBLEM OF POINT MALLEL M; AT POLITION X; THE CENTER OF MALL

IS DEFINED AS
$$\overline{X} = \sum_{i=1}^{N} X_i m_i$$

$$\frac{j=1}{N} m_i$$



THINK OF THIS IS TO IDENTIFY FROM BALANCING FORCES THAT WAY  $\sum_{i=1}^{N} M_{i} \left( \overline{X} - X_{i} \right) = 0 \qquad \text{IJ} \quad \text{(OND IT ION FOR CENTER OF MA JJ.}$   $\overline{X} = \sum_{i=1}^{N} M_{i} \times X_{i} \times$ 

THE JAITEM BEHAVES LIKE A POINT MAJOR "JITE" > M; T HU)

CENTERED AT X

NOW IN A 2-D S CENARIO WITH POINT MASSES MI, --, MN CENTERED AT (X,, Y,), (X2, Y2), -- (XN, YN) THE X AND Y (O ORD IN ATE) 10 YO HAVID BAA LIAM 10 ABTABD y = \frac{r}{2} \ Y; \mathread \frac{1}{2} \ \mathread \mathread \frac{1}{2} \ \mathread \mathread \frac{1}{2} \ \mathread \fr  $\overline{X} = \sum_{i=1}^{N} X_i M_i / \sum_{i=1}^{N} M_i$ 

$$m_3$$
 •  $m_4$ 

The plants and the definition (x) (x) (x) y and the definition and the definition of x is x and y are the definition of the definitio

REMARK FROM THE DIJCRETE MAJJ CAJE WE CAN WRITE



THE MAJJ IN CHUNN  $X_{3-1} \times X \times X_{3}$ IJ  $M_{1} = p(X_{1}^{*}) \Delta X_{1}$  JO IN DIJ(ARTE

CAJE WE HAVE WITH  $\Delta X = (b-q)/N$   $\overline{X} = \sum_{i=1}^{b} X_{i}^{*} p(X_{i}^{*}) \Delta X_{2} \longrightarrow \int_{a}^{b} x_{i} p(X_{i}) dX_{3}$   $\frac{1}{a} = \sum_{i=1}^{b} p(X_{i}^{*}) \Delta X_{3} \longrightarrow \int_{a}^{b} p(X_{i}^{*}) dX_{4}$ 

 $\frac{(OPTIONAL)}{EXAMPLE} A METAL ROD IJ 50 CM LONG. ITJ LINEAR DENJITY AT THE POINT X CM FROM LEFT END IJ <math>P(X) = \frac{1}{100-X} \left( \frac{9m}{cm} \right)$ . FIND THE

MAIN AND THE CENTER OF MAIN FOR THE ROD.

SOLUTION MAIN =  $\int_{0}^{50} p(x) dx = \int_{0}^{50} \frac{1}{100-x} dx = -\log(100-x) \Big|_{0}^{50} = \log(100) - \log(150)$ 

NOW THE MOMENT ABOUT X=0 IJ  $\int_{0}^{50} X P(X) dX = \int_{0}^{50} \frac{X}{100 - X} dX$ MOMENT =  $\int_{0}^{50} \left( \frac{X - 100}{100 - X} + \frac{100}{100 - X} \right) dX = -50 - 100 \log \left( \frac{100 - X}{100} \right) dX$ = -50 - 100  $\left( \frac{100}{100} + \frac{100}{100} \right) = -50 + 100 \log 2$ THUJ  $X = \frac{100 \log 2 - 50}{\log 2} = 100 - \frac{50}{\log 2} = 28.06 \text{ cm}$ .

LAMINA IS A THIN "PLATE", WHICH OCCUPIES SOME AREA IN THE X,4 PLANE.



WE WILL ALLUME THAT THE DENJITY PIL CONTANT IN THE LAMINA AND WANT TO CALCULATE THE X,Y COORDINATE, LABELLED BY  $\overline{X}$  AND  $\overline{Y}$  OF THE CENTER OF MASS, I.e. THE CENTROID.

CASE I CONSIDER A LAMINA WITH CONSTANT DENSITY P WHOSE LOWER BOUNDARY II THE X-AXII AND UPPER BOUNDARY II Y= FIX) AI J HOWN



WE MUIT FIRST FIND MOMENT ABOUT Y-AXIS.

WE TAKE A CHUNN DX AT A SIGNED DISTANCE X

FROM WERTICAL AXIS. THE AREA OF THE STAIP IS AREA =  $(f(x) \Delta x)$ 

JO MAJJ OF JTRIP IS MAJJ = (F (X) AX) P

THE MOMENT OF THE STRIP IS, ABOUT Y-AXIS, LABELIED BY AMY ΔMy = X [ F(x) Δx p] INTECRATING OVER ALL JUCH STRIPS THEN  $\overline{X} = \frac{M_1}{M} = \frac{\int_a^b x f(x) p dx}{\int_a^b f(x) p dx}$  where  $M = \int_a^b f(x) p dx$  is

SINCE DENJITY I) CONITANT, IT CANCEU AND  $\overline{X} = \frac{M_Y}{M} = \frac{\int_a^b x f(x) dx}{\int_a^b f(x) dx}.$ (1)

TO FIND THE MOMENT ABOUT THE X-AXIS. THE CENTER OF MASS MON THE STRIP OF WIDTH AX II AT  $\frac{y}{2} = f(x)$  AND ITI MAJI CAN 10 BE THOUGHT OF A) CONCENTRATED AT THE POINT (X, 1/2). THU FIX)  $\gamma$  (0 ORD IN AT E)  $(X, Y/2) = (X, \frac{f(X)}{2})$ 15 (fixiAx p) MAJJ

THUS 
$$M_{\chi} = \int_{a}^{b} \left(\frac{f(x)}{2}\right) (f(x)) p(x)$$
MASS IN SLICE

THE CENTER OF MAJJ IN LAMINA IS 
$$y = \frac{M_X}{M}$$
 OR  $y = \frac{1}{2} \int_a^b (f(x))^2 dx$ 

$$\int_a^b f(x) dx$$

EXAMPLE FIND THE CENTER OF MAJJ OF A PARABOLIC PLATE Y: 1- X2 ABOVE Y: O AND - I & X & I. A JU LIME CONTANT DEN JOTY.

BY SYMMETRY WE SHOULD MAVE 
$$\bar{X} = 0$$
.

CHECH  $f(x) = 1 - x^2$  so  $\bar{X} = \frac{\int_{-1}^{1} x (1 - x^2) dx}{\int_{-1}^{1} (1 - x^2) dx} = 0$ .

$$\frac{1}{1} = \frac{1}{2} \int_{-1}^{1} \frac{(1-x^{2})^{2} dx}{(1-x^{2})^{3} dx} = \frac{1}{2} \int_{0}^{1} \frac{(1-x^{2})^{2} dx}{(1-x^{2})^{3} dx} = \frac{1}{2} \frac{\int_{0}^{1} \frac{(1-2x^{2}+x^{4}) dx}{(1-1/3)}}{(1-1/3)}$$

$$\frac{1}{4} \int_{0}^{1} \frac{(1-2x^{2}+x^{4}) dx}{(1-2x^{2}+x^{4}) dx} = \frac{3}{4} \left(\frac{1-\frac{1}{3}+\frac{1}{5}}{\frac{1}{5}}\right) = \frac{3}{4} \left(\frac{15-10+3}{15}\right) = \frac{3}{4} \left(\frac{8}{15}\right)$$

 $\overline{Y} = \frac{2}{5}.$ 

NEXT, WE DEVELOP A FORMULA FOR THE CENTROID OF THE LAMINA DEFINED BY a & X & b , B IX) & Y & T (X) AU JHOWN.



AJJUME CONITANT DENSITY P.

THE TOTAL MAIL M I M: p [ T(x) - B(x)] dx.

THE MAIL IN SLICE DX IS DMAIL = (T(X)-B(X))DX P. NOW MOMENT ABOUT Y-AXI II  $\Delta M_y = X (T(x) - B(x)) \Delta X p$ . TAR

THE TOTAL MOMENT ABOUT Y- AXII II 10  $M_{\gamma} = \int_{a}^{b} x \left[ T(x) - B(x) \right] p dx$ 

THIS YIELDS 
$$\bar{X} = \frac{M_y}{M} = \frac{\int_a^b x [T(x) - B(x)] dx}{\int_a^b [T(x) - B(x)] dx} \leftarrow AREA$$
 (3).

P CANCELL OLLT. NOW TO FIND MOMENT ABOLLT Y- AXIS WE OBSERVE THAT CENTER OF MAJJ OF SLICE IS  $\frac{T(X)+B(X)}{2}$  AND WE PUT ALL MAN IN SLICE CENTERED AT THIS POINT CAN



SO MOMENT IS ABO UT X-AXIJ:  $\frac{T+B}{2}=y$   $\Delta M_{X}=\left(\frac{T(X)+B(X)}{2}\right)\left[T(X)-B(X)\right]p\Delta X$ 

JUMM ING OVER JLICEJ AND CANCELLING P

$$\overline{Y} = \frac{M_X}{M} = \frac{1}{2} \frac{\int_a^b \left[ \left( T(x) \right)^2 - \left( B(x) \right)^2 \right] dx}{\int_a^b \left( T(x) - B(x) \right) dx}$$
(4).

FORMULA) (3) AND (4) ARE OUR LTJ LIA PAN

EXAMPLE I FIND THE CENTROID OF A REGION CONJUSTING OF A RECTANGLE WIDTH 2R AND HEIGHT H WHICH HAS A SEMICIRCLE OF RADIUS R ON ONE END. THE PICTURE IS



 $Y: \sqrt{R^2 - X^2}$ NOW BY JYMMETRY X = 0, CENTROID MUJT

LIE ON Y-AXIS.

H

AREA =  $\frac{1}{2}\pi R^2 + 2RH$ 

semi-circle Treitangle

NOW 
$$T(X) = \sqrt{R^2 - X^2}$$
 AND  $B(X) = -H$ .

WE HAVE  $\overline{Y} = \frac{1}{2 \text{ AREA}} \int_{-R}^{R} (T^2 - B^2) dX = \frac{1}{2 \text{ AREA}} \int_{-R}^{R} (R^2 - X^2 - H^2) dX = \frac{1}{4 \text{ AREA}} \int_{0}^{R} (R^2 - H^2 - X^2) dX$ .

So  $\overline{Y} = \frac{1}{4 \text{ REA}} \left[ (R^2 - H^2) R - \frac{R^3}{3} \right] = \frac{1}{4 \text{ AREA}} \left[ \frac{2R^3}{3} - HR^2 \right] = \frac{1}{\frac{1}{2} \text{ Tr} R^2 + 2RH} \left( \frac{2R^3}{3} - HR^2 \right)$ .

NOW MULTIPLYING TOP AND BOTTOM BY 6, WE CET

$$\overline{y} = \frac{4 R^{2} - 6 H^{2}}{3 \pi R + 12 H}$$

NOTICE: (i) IF 
$$R \ll H$$
,  $\longrightarrow \overline{Y} \approx -H/2$  AT EXPECTED

(ii) IF  $H \ll R$ ,  $\longrightarrow \overline{Y} \cong \frac{4R}{3\pi}$  (JEMI-CIRCLE).

EXAMPLE 2 FIND CENTROID OF THE REGION IN THE FIRST QUADRANT BOUNDED

By y = x ? AND Y = 6 - X.



INTERJECTION POINT 
$$6-X=X^2$$
 JD  $X^2+X=6=0$ 

OR  $(X+3)(X-2)=0$  JO  $X=2$ ,  $X=-3$ .

IF  $X=2$ ,  $Y=4$ .

NOW AREA = 
$$\int_{0}^{2} (6-x-x^{2}) dx = 12 - (\frac{x^{2}}{2} + \frac{x^{3}}{3}) \int_{0}^{2} = 12 - (2+\frac{8}{3}) = 10 - \frac{8}{3} = \frac{22}{3}$$

AREA = 22/3

NOW

$$\bar{X} = \frac{1}{AREA} \int_{0}^{2} X(T(X) - B(X)) dX = \frac{3}{22} \int_{0}^{2} x(6 - X - X^{2}) dX = \frac{3}{22} \int_{0}^{2} (6x - X^{2} - X^{3}) dx$$

$$\vec{X} = \frac{3}{22} \left[ 3x^2 - \frac{x^3}{3} - \frac{x^4}{4} \right]_0^2 = \frac{3}{22} \left[ 12 - \frac{8}{3} - 4 \right] = \frac{3}{22} \left( \frac{16}{3} \right) = \frac{8}{11} \Rightarrow \vec{X} : \frac{8}{11}$$

NOW  $\tilde{Y} = \frac{1}{2 \text{ AREA}} \int_{0}^{2} (T^2 - B^2) dx = \frac{3}{44} \int_{0}^{2} ((6-X)^2 - X^4) dx = \frac{3}{44} \int_{0}^{2} (36 - 12X + X^2 - X^4) dx$ 

$$\overline{y} = \frac{3}{44} \left[ 72 - 6(4) + \frac{2^3}{3} - \frac{2^5}{5} \right] = \frac{3}{44} \left[ 48 + \frac{8}{3} - \frac{32}{5} \right] = \frac{3}{44} \left( \frac{664}{15} \right) = \frac{166}{55}$$

$$\sqrt{\frac{1}{55}} = \frac{166}{55}$$
 AND  $\sqrt{\frac{8}{11}}$ .

EXAMPLE 3 FIND CENTROID OF A SEMI-CIRCLE OF RADIUS R AS SHOWN.

$$\frac{1}{\sqrt{R^2 \cdot \chi^2}} = \sqrt{\chi} (\chi)$$

$$\frac{1}{100} = \frac{1}{100} \left[ \frac{R}{R} \left( \frac{1}{R} (X) \right) dX + \frac{1}{100} \frac{1}{R} \left( \frac{R}{R} - \frac{1}{R} \right) dX + \frac{1}{100} \left( \frac{R}{R} - \frac{1}{R} \right) dX \right]$$

$$JO \qquad \overline{\gamma} = \frac{2}{\pi R^3} \left( \frac{2}{3} R^3 \right) = \frac{4 R}{3 \pi} .$$

## SEPARABLE DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS MODEL MANY PHYSICAL PROCESSES AND YOU WILL LEARN ABOUT THESES IN MATH 215. SEPARABLE ODES ARE ONES THAT HAVE THE FORM

(x) 
$$\frac{dy}{dx} = \frac{F(x)}{g(y)}$$
 (i.e. Right side i) A Function of X TIMES A FUNCTION OF Y).

FOR INJTANCE, EACH OF THE FOLLOWING ARE JEPARABLE EQUATIONS:

THAT JARHALLE ODE'S LINE (X) WE WANT TO FIND THE SOLUTION  $\gamma(X)$  THAT LART UTAL TANT  $\gamma(X_0) = \gamma_0$ , WHERE X0,  $\gamma(X_0) = \gamma_0$  ARE GIVEN.

WE MILITIPLY BY gly) TO GET

$$\frac{dy}{dx} = f(x). \qquad (1)$$
NOW DEFINE  $G(y) = \int_{y_0}^{y} g(y) dy$ . THEN BY FTC I AND CHAIN RULE,
$$\frac{d}{dx} G[y(x)] = G'(y) \frac{dy}{dx} = g(y) \frac{dy}{dx} = f(x) \quad By \quad (1)$$

INTECRATING WAT X WE GET ALSING YIXOJ = YO THAT  $G(y) = \int_{x}^{x} f(y) dy$ THIS GIVES IN g (N) dn = \ T (N) dn AN AN IMPLICIT SOLUTION FOR Y IX). MEMORY AID: WE WRITE (\*) AS 914) dy = fix) dx CALLS (3015 H TOB SUITARS) STUL L'Y ONE X "SOLTARA 9 3 CT H ] giy) dy = | f(x) dx (+) WHICH WILL THEN HAVE AN ARBITRARY CONITANT C'' so A) TO SATURY THE CONTRAINT 4 (Xo) = Yo. EXAMPLE FIND THE JOLUTION TO  $\frac{\partial y}{\partial y} = \frac{y}{x^2}$  with y(1) = 1. SOLUTION SEPARATE VARIABLES AND LIST (+) AS MEMORY ATD:  $\frac{dy}{dx} = \frac{dx}{\sqrt{2}} \quad \text{SINCE } y(1) = 1 \quad \text{AND} \quad dy/dx > 0 \implies y > 0$ INTECRATE BOTH JIDES INY = QICTANX + C. BUT YII)= I AND WING IN 1=0 AND ARCTAN (1) = 17/4 GIVEJ 17/4 = ORCTAN X - 17/4 . SO Y = e -17/4 + ORCTAN X EXAMPLE 2 FIND THE JOLUTION TO  $\frac{dy}{dx} = -x(y-1)^2$  WITH y(1)=2. SOLUTION SEPARATE VARIABLES TO GET  $\frac{dy}{(y-1)^2} = -x dx \implies -\frac{1}{2} = -\frac{x^2}{2} + C. \text{ NOW } y(1) = 2 \text{ GIVEJ} - 1 = -\frac{1}{2} + C$  $50 \quad C : -\frac{1}{2} \cdot \uparrow \text{ MUJ} \quad \frac{-1}{(4.1)} = -\frac{1}{2} \left( \chi^{2}+1 \right) \quad OR \quad \frac{1}{4-1} = \frac{\chi^{2}+1}{2} \quad \Rightarrow \quad 4-1 = \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{\chi^{2}+1} \cdot \uparrow \text{ MUJ}, \quad \gamma = 1 + \frac{2}{$ EXAMPLE 3 SOLVE dy = -X ey WITH Y (0) = 0. WE JEPARATE VARIABLE DY = -X dx. THUS e-Y dy = - x dx. INTEGRATE BOTH SIDED TO GET - e-Y - - x7/2 + C.

NOW  $y(0): 0 \rightarrow -1: C$  10  $-e^{-y} = -x^2/2 - 1 \rightarrow e^{-y} = 1 + x^2/2 \rightarrow y = -y \log(1 + x^2/2)$