Recap: Monotone Sequences of Sets

lacktriangle A sequence, A_1,A_2,\cdots , is said to be monotone decreasing if

$$A_{n+1} \subset A_n, \ \forall n \pmod{as} \ A_n \downarrow$$

▶ Limit of a monotone decreasing sequence is

$$A_n \downarrow$$
: $\lim_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} A_k$

A sequence, A_1, A_2, \cdots , is said to be monotone increasing if

$$A_n \subset A_{n+1}, \ \forall n \pmod{as} \ A_n \uparrow$$

▶ Limit of monotone increasing sequence is

$$A_n \uparrow: \lim_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} A_k$$

Recap: Monotone Sequential Continuity

▶ We showed that

$$P\left(\lim_{n\to\infty} A_n\right) = \lim_{n\to\infty} P(A_n)$$

when $A_n \downarrow$ or $A_n \uparrow$

Recap: Probability Models

- Everything in probability theory is with reference to an underlying probability space: (Ω, \mathcal{F}, P) .
- ▶ For a given Ω , \mathcal{F} , there can be different P
- We can say that different P correspond to different models.
- ▶ Theory does not tell you how to get the *P*.
- The theory allows one to derive consequences or properties of the model.
- ► The random variables provide a convenient language to describe different probability models.

Recap: Random Variable

- ▶ A random variable is a real-valued function on Ω: $X: Ω → \Re$
- For example, $\Omega = \{H, T\}$, X(H) = 1, X(T) = 0.
- ▶ This random variable results in a new probability space:

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where \Re is the new sample space and $\mathcal{B} \subset 2^{\Re}$ is the new set of events and P_X (which depends on P and X) is a probability defined on \mathcal{B} .

For now we will assume that any set of \Re that we want would be in \mathcal{B} and hence is an event.

• Given a probability space (Ω, \mathcal{F}, P) , a random variable X

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

 \blacktriangleright We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

• Given a probability space (Ω, \mathcal{F}, P) , a random variable X $(\Omega, \mathcal{F}, P) \stackrel{X}{\rightarrow} (\Re, \mathcal{B}, P_{\mathbf{Y}})$

 \blacktriangleright We define P_X :

$$P_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}), B \in \mathcal{B}$$

We use the notation

$$[X \in B] = \{ \omega \in \Omega : X(\omega) \in B \}$$

So, now we can write

$$P_X(B) = P([X \in B]) = P[X \in B]$$

 \blacktriangleright For the definition of P_X to be proper, for each $B \in \mathcal{B}$, we must have $[X \in B] \in \mathcal{F}$. We will assume that. (This is trivially true if $\mathcal{F}=2^{\Omega}$).

 \triangleright We can easily verify P_X is a probability measure. It satisfies the axioms.

- Given a probability space (Ω, \mathcal{F}, P) , a random variable X
- \blacktriangleright We define P_X :

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

- ▶ Easy to see: $P_X(B) \ge 0$, $\forall B$ and $P_X(\Re) = 1$
- ▶ If $B_1 \cap B_2 = \phi$ then $P_X(B_1 \cup B_2) = P[X \in B_1 \cup B_2] = ?$

$$P[X \in B_1 \cup B_2] = P[X \in B_1] + P[X \in B_2] = P_X(B_1) + P_X(B_2)$$

- Let us look at a couple of simple examples.
- Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

$$[X \in (0.62, 15.5)] = \{\omega : 0.62 < X(\omega) < 15.5\} = \{H\}$$

$$[X \in [-2, 2)] = \Omega$$

► Hence we get

$$P_X({0}) = (1 - p) = P_X([-3.14, 0.552])$$

$$P_X((0.6237, 15.5)) = p; P_X([-2, 2)) = 1$$

- Let us look at a couple of simple examples.
- ► Let $\Omega = \{H, T\}$ and P(H) = p. Let X(H) = 1; X(T) = 0.

$$[X \in \{0\}] = \{\omega : X(\omega) = 0\} = \{T\}$$

$$[X \in [-3.14, 0.552]] = \{\omega : -3.14 \le X(\omega) \le 0.552\} = \{T\}$$

$$[X \in (0.62, 15.5)] = \{\omega : 0.62 < X(\omega) < 15.5\} = \{H\}$$

$$[X \in [-2, 2)] = \Omega$$

► Hence we get

$$P_X(\{0\}) = (1-p) = P_X([-3.14, 0.552])$$

 $P_X((0.6237, 15.5)) = p; P_X([-2, 2)) = 1$

- Let $\Omega = \{H, T\}^3 = \{HHH, HHT, \cdots, TTT\}$. Let P be specified through 'equally likely' assignment. Let $X(\omega)$ be number of H's in ω . Thus, X(THT) = 1. (X takes one of the values: 0, 1, 2, or 3)
- ▶ We can once again write down $[X \in B]$ for different $B \subset \Re$

$$[X \in (0,1]] = \{HTT, THT, TTH\};$$

$$[X \in (-1.2, 2.78)] = \Omega - \{HHH\}$$

► Hence

$$P_X((0,1]) = \frac{3}{8}; \ P_X((-1.2,2.78)) = \frac{7}{8}$$

- A random variable defined on (Ω, \mathcal{F}, P) results in a new or induced probability space (\Re, \mathcal{B}, P_X) .
- The Ω may be countable or uncountable (even though we looked at only examples of finite Ω).
- ▶ Thus, we can study probability models by taking \Re as sample space through the use of random variables.
- ► However there are some technical issues regarding what B we should consider.
- ► We briefly consider this and then move on to studying random variables.

- ▶ We want to look at the probability space (\Re, \mathcal{B}, P_X) .
- If we could take $\mathcal{B}=2^{\Re}$ then everything would be simple. But that is not feasible.
- ▶ What this means is the following.
- Suppose $\Omega = \Re$. If we want every subset of real line to be an event, we cannot construct a probability measure (to satisfy the axioms).

- ▶ Let us consider $\Omega = [0, 1]$.
- \blacktriangleright This is the simplest example of uncountable Ω we considered.
- ▶ We also saw that this sample space comes up when we consider infinite tosses of a coin.
- The simplest extension of the idea of 'equally likely' is to say probability of an event (subset of Ω) is the length of the event (subset).
- ightharpoonup But not all subsets of [0,1] are intervals and length is defined only for intervals.
- ► We can define length of countable union of disjoint intervals to be sum of the lengths of individual intervals.
- ▶ But what about subsets that may not be countable unions of disjoint intervals ?
- ▶ Well, we say those can be assigned probability by using the axioms.

- ► Thus the question is the following:
- Can we construct a function $m: 2^{[0,1]} \rightarrow [0,1]$ such that
 - 1. m(A) = length(A) if $A \subset [0,1]$ is an interval
 - 2. $m(\bigcup_i A_i) = \sum_i m(A_i)$ where $A_i \cap A_j = \phi$ whenever $i \neq j, \ (A_1, A_2, \dots \subset [0, 1])$
- ► The surprising answer is 'NO'
- ► This is a fundamental result in real analysis.
- ▶ Hence for the probability space (\Re, \mathcal{B}, P_X) we cannot take $\mathcal{B} = 2^{\Re}$.
 - (Recall that for countable Ω we can take $\mathcal{F}=2^{\Omega}$).
- Now the question is what is the best \mathcal{B} we can have?

σ -algebra

- ▶ Consider a set of subsets of Ω : $\mathcal{F} \subset 2^{\Omega}$
- ▶ An $\mathcal{F} \subset 2^{\Omega}$ is called a σ -algebra (also called σ -field) on Ω if it satisfies the following:
 - 1. $\Omega \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \cup_i A_i \in \mathcal{F}$
- ► Thus a σ -algebra is a collection of subsets of Ω that is closed under complements and countable unions (and hence countable intersections because $\cap_i A_i = (\cup_i A_i^c)^c$).
- Note that 2^{Ω} is obviously a σ -algebra
- In a Probability space (Ω, \mathcal{F}, P) , if $\mathcal{F} \neq 2^{\Omega}$ then we want it to be a σ -algebra. (Why?)

► Easy to construct examples of σ -algebras Let $A \subset \Omega$.

$$\mathcal{F} = \{\Omega, \phi, A, A^c\}$$
 is a σ -algebra

► For example, with $\Omega = \{1, 2, 3, 4, 5, 6\}$,

$$\mathcal{F} = \{\Omega, \phi, \{1, 3, 5\}, \{2, 4, 6\}\}$$
 is a σ -algebra

- ► There can be many other σ -algebras on the Ω .
- ▶ Suppose on this Ω we want to make a σ -algebra containing $\{1,2\}$ and $\{3,4\}$.

$$\{\Omega, \phi, \{1, 2\}, \{3, 4\}, \{3, 4, 5, 6\}, \{1, 2, 5, 6\}, \{1, 2, 3, 4\}, \{5, 6\}\}$$

 \blacktriangleright This is the 'smallest' $\sigma\text{-algebra}$ containing $\{1,2\},\ \{3,4\}$

- ▶ Let $\mathcal{F}_1, \mathcal{F}_2$ be σ -algebras on Ω .
- ▶ Then, so is $\mathcal{F}_1 \cap \mathcal{F}_2$.
- ▶ It is simple to show.

(E.g.,
$$A \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow A \in \mathcal{F}_1, A \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1, A^c \in \mathcal{F}_2 \Rightarrow A^c \in \mathcal{F}_1 \cap \mathcal{F}_2$$
)

- ▶ Let $G \subset 2^{\Omega}$. We denote by $\sigma(G)$ the smallest σ -algebra containing G.
- It is defined as the intersection of all σ -algebras containing G (and hence is well defined).

- Let us get back to the question we started with.
- ▶ In the probability space (\Re, \mathcal{B}, P) what is the \mathcal{B} we should choose.
- We can choose it to be the smallest σ -algebra containing all intervals
- ▶ That is called Borel σ -algebra, \mathcal{B} .
- ▶ It contains all intervals, all complements, countable unions and intersections of intervals and all sets that can be obtained through complements, countable unions and/or intersections of such sets and so on.

Borel σ -algebra

- ▶ Let $G = \{(-\infty, x] : x \in \Re\}$
- We can define the Borel σ -algebra, \mathcal{B} , as the smallest σ -algebra containing G.
- \blacktriangleright We can see that ${\cal B}$ would contain all intervals.
 - 1. $(-\infty, x) \in \mathcal{B}$ because $(-\infty, x) = \bigcup_n (-\infty, x \frac{1}{n}]$
 - 2. $(x, \infty) \in \mathcal{B}$ because $(x, \infty) = (-\infty, x]^c$
 - 3. $[x, \infty) \in \mathcal{B}$ because $[x, \infty) = \bigcap_n (x \frac{1}{n}, \infty)$
 - 4. $(x, y] \in \mathcal{B}$ because $(x, y] = (-\infty, y] \cap (x, \infty)$
 - 5. $[x, y] \in \mathcal{B}$ because $[x, y] = \bigcap_n (x \frac{1}{n}, y]$
 - 6. $[x, y), (x, y) \in \mathcal{B}$, similarly
- ▶ Thus, $\sigma(G)$ is also the smallest σ -algebra containing all intervals.

Borel σ -algebra

 \triangleright We have defined \mathcal{B} as

$$\mathcal{B} = \sigma\left(\left\{\left(-\infty, x\right] : x \in \Re\right\}\right)$$

- ▶ It is also the smallest σ -algebra containing all intervals.
- \triangleright Elements of \mathcal{B} are called Borel sets
- Intervals (including singleton sets), complements of intervals, countable unions and intersections of intervals, countable unions and intersections of such sets and so on are all Borel sets.
- **ightharpoonup** Borel σ -algebra contains enough sets for our purposes.
- ▶ Are there any subsets of real line that are not Borel?
- YES!! Infinitely many non-Borel sets exist!

Random Variables

- ▶ Given a probability space (Ω, \mathcal{F}, P) , a random variable is a real-valued function on Ω .
- ▶ It essentially results in an induced probability space

$$(\Omega, \mathcal{F}, P) \stackrel{X}{\to} (\Re, \mathcal{B}, P_X)$$

where ${\cal B}$ is the Borel σ -algebra.

- $m{\mathcal{B}}$ contains all subsets of \Re that are intervals, and complements of intervals, and countable unions and intersections of such sets, and \cdots
- ▶ We define P_X : for all Borel sets, $B \subset \Re$,

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

lackbox For X to be a random variable, the following should also hold

$$[X \in B] = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}, \forall B \in \mathcal{B}$$

► We always assume this.

- Let X be a random variable.
- It represents a probability model with \Re as the sample space.
- ▶ The probability assigned to different events (Borel subsets of \Re) is

$$P_X(B) = P[X \in B] = P(\{\omega \in \Omega : X(\omega) \in B\})$$

▶ How does one represent this probability measure

Distribution function of a random variable

Let X be a random variable on (Ω, \mathcal{F}, P) . The distribution function of X is:

 $F_X:\Re\to\Re$ defined by

of this course)

$$F_X(x) = P[X \in (-\infty, x]] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- We write the event $\{\omega: X(\omega) \leq x\}$ as $[X \leq x]$. We follow this notation with any such relation statement involving X
- e.g., $[X \neq 3]$ represents the event $\{\omega \in \Omega : X(\omega) \neq 3\}$. Thus we have

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\}) = P_X((-\infty, x])$$

▶ The distribution function, F_X completely specifies the probability measure, P_X . (The proof of this important theorem is beyond the scope

► The distribution function of *X* is given by

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega : X(\omega) \le x\})$$

- ► This is also sometimes called the cumulative distribution function.
- $ightharpoonup F_X$ is a real-valued function of a real variable.
- Let us look at a simple example.

- ► Consider tossing of a fair coin: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ Let X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ For this we want the event $[X \le x]$, for different x
- Let us first look at some examples:

$$[X \le -0.5] = \{\omega : X(\omega) \le -0.5\} = \phi$$
$$[X \le 0.25] = \{\omega : X(\omega) \le 0.25\} = \{T\}$$
$$[X \le 1.3] = \{\omega : X(\omega) \le 1.3\} = \Omega$$

► Thus we get

$$[X \le x] = \{\omega : X(\omega) \le x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \Omega & \text{if } x \ge 1 \\ \{T\} & \text{if } 0 \le x < 1 \end{cases}$$

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ X(T) = 0 and X(H) = 1. We want to calculate F_X
- ▶ We showed

$$[X \le x] = \{\omega : X(\omega) \le x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \le x < 1 \\ \Omega & \text{if } x \ge 1 \end{cases}$$

▶ Hence $F_X(x) = P[X \le x]$ is given by

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0\\ 0.5 & \text{if } 0 \le x < 1\\ 1 & \text{if } x > 1 \end{cases}$$

Please note that x is a 'dummy variable'

- We are considering: $\Omega = \{T, H\}$, $P(\{T\}) = P(\{H\}) = 0.5$.
- ▶ X(T) = 0 and X(H) = 1. We want to calculate F_X
- We showed

$$[X \le x] = \{\omega : X(\omega) \le x\}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \le x < 1 \\ \Omega & \text{if } x \ge 1 \end{cases}$$

▶ Hence $F_X(y) = P[X \le y]$ is given by

$$F_X(y) = \begin{cases} 0 & \text{if } y < 0\\ 0.5 & \text{if } 0 \le y < 1\\ 1 & \text{if } y \ge 1 \end{cases}$$

► A plot of this distribution function:

- Let us look at another example.
- Let $\Omega = [0, 1]$ and take events to be Borel subsets of [0, 1]. (That is, $\mathcal{F} = \{B \cap [0, 1] : B \in \mathcal{B}\}$).
- ▶ We take *P* to be such that probability of an interval is its length.
- This is the 'usual' probability space whenever we take $\Omega = [0, 1]$.
- ightharpoonup Let $X(\omega) = \omega$.
- ▶ We want to find the distribution function of X.

- ▶ Once again we need to find the event $[X \le x]$ for different values of x.
- Note that the function X takes values in [0, 1] and $X(\omega) = \omega$.

$$[X \le x] = \{ \omega \in \Omega : X(\omega) \le x \} = \{ \omega \in [0, 1] : \omega \le x \}$$

$$= \begin{cases} \phi & \text{if } x < 0 \\ \Omega & \text{if } x \ge 1 \\ [0, x] & \text{if } 0 \le x < 1 \end{cases}$$

▶ Hence $F_X(x) = P[X \le x]$ is given by

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x < 1 \\ 1 & \text{if } x > 1 \end{cases}$$

► The plot of this distribution function:

Properties of Distribution Functions

▶ The distribution function of random variable *X* is given by

$$F_X(x) = P[X \le x] = P(\{\omega : X(\omega) \le x\}) = P_X((-\infty, x])$$

- Any distribution function should satisfy the following:
 - 1. $0 < F_X(x) < 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \le x_2 \Rightarrow F_X(x_1) \le F_X(x_2)$ (Why?)

$$x_1 \le x_2 \Rightarrow (-\infty, x_1] \subset (-\infty, x_2]$$

\Rightarrow P_X(\((-\infty, x_1\)) \leq P_X(\((-\infty, x_2\)))

- $\Rightarrow F_X(x_1) \leq F_X(x_2)$
- 4. F_X is right continuous and has left-hand limits.

- Right continuity of F_X : $x_n \downarrow x \Rightarrow F_X(x_n) \to F_X(x)$
- $ightharpoonup x_n \downarrow x$ implies the sequence of events $(-\infty, x_n]$ is monotone decreasing.

- Also, $\lim_{n}(-\infty, x_n] = \cap_n(-\infty, x_n] = (-\infty, x]$
- ► This implies

This in turn implies

$$\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$$

 $\lim P_X((-\infty, x_n]) = P_X(\lim(-\infty, x_n]) = P_X((-\infty, x])$

Using the usual notation for right limit of a function, we can write $F_X(x^+) = F_X(x), \forall x$.

- $ightharpoonup F_X$ is right-continuous at all x.
- ▶ Next, let us look at the lefthand limits: $\lim_{x_n \uparrow x} F_X(x_n)$
- When $x_n \uparrow x$, the sequence of events $(-\infty, x_n]$ is

$$\frac{\text{monotone increasing}}{\underset{x_1}{\downarrow} \underset{x_2}{\downarrow} \dots} \longrightarrow$$

$$\lim_n (-\infty, \ x_n] = \cup_n (-\infty, \ x_n] = (-\infty, \ x)$$

 By sequential continuity of probability, we have

$$\lim_{n} P_X((-\infty, x_n]) = P_X(\lim_{n} (-\infty, x_n]) = P_X((-\infty, x))$$

► Hence we get

$$F_X(x^-) = \lim_{x_n \uparrow x} F_X(x_n) = \lim_n P_X((-\infty, x_n]) = P_X((-\infty, x))$$

▶ Thus, at every x the left limit of F_X exists.

- $ightharpoonup F_X$ is right-continuous:
- $F_X(x^+) = F_X(x) = P_X((-\infty, x])$
- ▶ It has left limits: $F_X(x^-) = P_X(\ (-\infty,\ x)\)$
- ▶ If $A \subset B$ then P(B A) = P(B) P(A)
- ▶ We have $(-\infty, x] (-\infty, x) = \{x\}$. Hence

$$P_X((-\infty, x]) - P_X((-\infty, x)) = P_X(\{x\}) = P(\{\omega : X(\omega) = x\})$$

► Thus we get

$$F_X(x^+) - F_X(x^-) = P(\{\omega : X(\omega) = x\}) = P[X = x]$$

- When F_X is discontinuous at x the height of discontinuity is the probability that X takes that value.
- ▶ And, if F_X is continuous at x then P[X = x] = 0

Distribution Functions

- Let X be a random variable.
- ▶ Its distribution function, $F_X: \Re \to \Re$ is given by $F_X(x) = P[X \le x]$
- ► The distribution function satisfies
 - 1. $0 \le F_X(x) \le 1, \ \forall x$
 - 2. $F_X(-\infty) = 0$; $F_X(\infty) = 1$
 - 3. F_X is non-decreasing: $x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$
 - 4. F_X is right continuous and has left-hand limits.
- ▶ We also have $F_X(x^+) F_X(x^-) = P[X = x]$
- Any real-valued function of a real variable satisfying the above four properties would be a distribution function of some random variable.

- ► $F_X(x) = P[X \le x] = P[X \in (-\infty, x]]$
- ▶ Given F_X , we can, in principle, find $P[X \in B]$ for all Borel sets.
- ▶ In particular, for a < b,

$$P[a < X \le b] = P[X \in (a, b]]$$

$$= P[X \in ((-\infty, b] - (-\infty, a])]$$

$$= P[X \in (-\infty, b]] - P[X \in (-\infty, a]]$$

$$= F_X(b) - F_X(a)$$

- There are two classes of random variables that we would study here.
- These are called discrete and continuous random variables.
- There can be random variables that are neither discrete nor continuous.
- ▶ But these two are important classes of random variables that we deal with in this course.
- Note that the distribution function is defined for all random variables.