Assignment No: 2

Title: Decision trèce classifier

Problem statement: A dataset collected in cosmetic shop showing altails of customers or whether or not they responded to a special offer to buy a new lip stick is shown in face below. Use the dataset to build a decision tree, with buys as a target variable, to help in buying clip sticks in future.

- Find root node of decision tree

- According to the decision tree you have made previous training dulaset what is decision tree for test data.

[Age <2T, Income = low, Gender = Female, Marital status]

= Married]

learning objective: i) learn how to apply decision tree class to find root node of decision tree.

ii) Make decisions based on decision tree.

Learning outcome: i) After completion of assignment, steedents

are able to implement code for creating decision

tree for given dataset.

Software requirement: Arraconda 3, python 3.7

concept related theory:

- Decision tree: A decision tree is a flow chart like structure in which each internal node represents a "test" on an attribute, each branch represents a class label i.e. outcome of test. The path from root to leaf represents classification rules -
- A decision tree consists of 3 types of nodes
 - i) Decision nodes: Commonly represented as squares
 ii) Chance nodes: Represented by circles.
 iii) End nodes: Represented by triangles-

Algorithm used: ID3 (Iterative dichotoniser 3) is an act algorithm invented by ROSS Quinlan used to generate decision tree from dalaset.

Steps:

- 1. Calculate entropy of every attribute using the dataset.
 2. Split set into subsets using attributes from which estropy is minimum.
- 3. Make decision tree node outaining hat attribute. 4. Remove on subset using remaining attributes.

B) Input data set:

P	ge	Income	Gerder	Manifal status	Buye
	≤21	High	M	Single	N
(21	High	M	readred	N
2	1-35	High	М	Single	7
	>35	Medium	M	Single	Y
	735	low	CF 8	Single	7
	> 35	low	F	married	N
2	1-35	bio	o F	Married	Y
	<21	Medium	M	Single	N
	C21	لهما	F	married	1
	>35	Medium	F	Single	Y
<	(21	medium	F	Married	<u>j</u>
21	-35	medium	M	Married	Ý
	- 35	High	F	Single	Y
	35	nedium	Μ	narried	N

Step 1: Calculate class entropy

$$=\frac{-9}{14}\log_2\left(\frac{9}{14}\right)-\frac{5}{14}\log_2\left(\frac{5}{14}\right)$$

$$= 0.409 + 0.530$$
 $= 0.940$

Step 2: Calculaté gain for each attribute.

For age:

Eatropy = 0.970 x s + 0 + 0.970 x 5

= 0.692

Gain = Entropy (Buys) - Entropy

= 0.990 - 0.692

= 0.248

Similarly,
For 'income': Gain = 0.940 - 0.910
= 0.030

For 'gender': gain = 0.940 - 0.7875 = 0.1525

For 'marifial status': gain = 0.940 - 0.923 = 0.017

Highest information gain for attribute: Age.

The partial decision tree -

Fox wery branch, take out subset and repeat step () & step (2)

After traversing cour branch, final decision tree becomes -

Conclusion: Thus, we have build decision tree for given data.