0.1. **Setup.** In order to construct an abstract version of the Adams spectral sequence, we need to work in some axiomatic version of a stable homotopy category \mathcal{SH} which acts like the familiar classical stable homotopy category \mathbf{hoSp} (??) or the motivic stable homotopy category $\mathbf{SH}_{\mathscr{S}}$ over some base scheme \mathscr{S} (??).

Definition 0.1. Let \mathcal{C} be an additive category with arbitrary (small) coproducts. Then an object X in \mathcal{C} is *compact* if, for any collection of objects Y_i in \mathcal{C} indexed by some (small) set I, the canonical map

$$\coprod_{i} \mathcal{C}(X, Y_{i}) \to \mathcal{C}(X, \coprod_{i} Y_{i})$$

is an isomorphism of abelian groups. (Explicitly, the above map takes a generator $x \in \mathcal{C}(X, Y_i)$ to the composition $X \xrightarrow{x} Y_i \hookrightarrow \coprod_i Y_i$.)

Definition 0.2. Given a tensor triangulated category $(\mathcal{C}, \otimes, S, \Sigma, e, \mathcal{D})$ (??), a *sub-Picard grading* on \mathcal{C} is the following data:

- A pointed abelian group $(A, \mathbf{1})$ along with a homomorphism of pointed groups $h : (A, \mathbf{1}) \to (\text{Pic } \mathcal{C}, \Sigma S)$, where Pic \mathcal{C} is the *Picard group* of isomorphism classes of invertible objects in \mathcal{C} .
- For each $a \in A$, a chosen representative S^a in the isomorphism class h(a) such that each S^a is a compact object (Definition 0.1) and $S^0 = S$.
- A chosen isomorphism $\nu: \Sigma S \xrightarrow{\cong} S^1$.
- For each $a, b \in A$, an isomorphism $\phi_{a,b}: S^{a+b} \to S^a \otimes S^b$. This family of isomorphisms is required to be *coherent*, in the following sense:
 - For all $a \in A$, we must have that $\phi_{a,0}$ coincides with the right unitor $S^a \xrightarrow{\cong} S^a \otimes S$ and $\phi_{0,a}$ coincides the left unitor $S^a \xrightarrow{\cong} S \otimes S^a$.
 - For all $a, b, c \in A$, the following "associativity diagram" must commute:

$$S^{a+b} \otimes S^{c} \xleftarrow{\phi_{a+b,c}} S^{a+b+c} \xrightarrow{\phi_{a,b+c}} S^{a} \otimes S^{b+c}$$

$$\downarrow^{S^{a} \otimes \phi_{b,c}}$$

$$(S^{a} \otimes S^{b}) \otimes S^{c} \xrightarrow{\cong} S^{a} \otimes (S^{b} \otimes S^{c})$$

Remark 0.3. Note that by induction the coherence conditions for the $\phi_{a,b}$'s in the above definition say that given any $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_m \in A$ such that $a_1 + \cdots + a_n = b_1 + \cdots + b_m$ and any fixed parenthesizations of $X = S^{a_1} \otimes \cdots \otimes S^{a_b}$ and $Y = S^{b_1} \otimes \cdots \otimes S^{b_m}$, there is a unique isomorphism $X \to Y$ that can be obtained by forming formal compositions of products of $\phi_{a,b}$, identities, associators, unitors, and their inverses.

From now on we fix a monoidal closed tensor triangulated category $(\mathfrak{SH}, \otimes, S, \Sigma, e, \mathcal{D})$ with arbitrary (small) (co)products and sub-Picard grading $(A, \mathbf{1}, h, \{S^a\}, \nu, \{\phi_{a,b}\})$. We establish some conventions. First of all, given an object X and a natural number n > 0, we write

$$X^n := \overbrace{X \otimes \cdots \otimes X}^{n \text{ times}}$$
 and $X^0 := S$.

We denote the associator, symmetry, left unitor, and right unitor isomorphisms in SH by

¹Recall an object X is a symmetric monoidal category is *invertible* if there exists some object Y and an isomorphism $S \cong X \otimes Y$.

Often we will drop the subscripts. Furthermore, by the coherence theorem for symmetric monoidal categories, we will often assume α , ρ , and λ are actual equalities. Given some inte, there exists some isomorphismger $n \in \mathbb{Z}$, we will write a bold \mathbf{n} to denote the element $n \cdot \mathbf{1}$ in A. Note that we can use the isomorphism $\nu : S^1 \otimes - \cong \Sigma$ to construct a natural isomorphism $S^1 \otimes - \cong \Sigma$:

$$S^{1} \otimes X \xrightarrow{\nu \otimes X} \Sigma S \otimes X \xrightarrow{e_{S,X}} \Sigma (S \otimes X) \xrightarrow{\Sigma \lambda_{X}} \Sigma X.$$

The last two arrows are natural in X by definition. The first arrow is natural in X by functoriality of $-\otimes -$. By abuse of notation, we will also use ν to denote this natural isomorphism. Furthermore, under this isomorphism, $e_{X,Y}: \Sigma X \otimes Y \xrightarrow{\cong} \Sigma(X \otimes Y)$ corresponds to the associator, by commutativity of the following diagram:

The left square commutes by naturality of α . Commutativity of the middle square is axiom TT4 for a tensor triangulated category. Commutativity of the right trapezoid is naturality of e. Finally the bottom triangle commutes by coherence for monoidal categories and functoriality of Σ .

Given some $a \in A$, we define $\Sigma^a := S^a \otimes -$ and $\Omega^a := \Sigma^{-a} = S^{-a} \otimes -$. We specifically define $\Omega := \Omega^1$. We will see later that for each $a \in A$, Σ^a and Ω^a form an adjoint equivalence of \mathcal{SH} (Proposition 0.5), so that in particular since Ω forms an adjoint equivalence with $\Sigma^1 \cong \Sigma$, \mathcal{SH} is canonically an adjointly triangulated category (??).

Given two objects X and Y in SH, we will denote the hom-abelian group of morphisms from X to Y in SH by [X,Y], and the internal hom object by F(X,Y). We can extend the abelian group [X,Y] into an A-graded abelian group $[X,Y]_*$ by defining $[X,Y]_a := [S^a \otimes X,Y]$. Given an object X in SH and some $a \in A$, we can define the abelian group

$$\pi_a(X) := [S^a, X],$$

which we call the a^{th} stable homotopy group of X. We write $\pi_*(X)$ for the A-graded abelian group $\bigoplus_{a \in A} \pi_a(X)$, so that in particular we have a canonical isomorphism

$$\pi_*(X) = [S^*, X] \cong [S, X]_*.$$

Given some other object E, we can define the A-graded abelian groups $E_*(X)$ and $E^*(X)$ by the formulas

$$E_a(X) := \pi_a(E \otimes X) = [S^a, E \otimes X]$$
 and $E^a(X) := [X, S^a \otimes E].$

We refer to the functor $E_*(-)$ as the homology theory represented by E, or just E-homology, and we refer to $E^*(-)$ as the cohomology theory represented by E, or just E-cohomology. Finally, we state the following definition in $S\mathcal{H}$:

Definition 0.4. Define the class of *cellular* objects in SH to be the smallest class of objects such that:

- (1) For all $a \in A$, S^a is cellular.
- (2) If we have a distinguished triangle

$$X \to Y \to Z \to \Sigma X$$

such that two of the three objects X, Y, and Z are cellular, than the third object is also cellular.

what do I call this subsec-

tion?

(3) Given a collection of cellular objects X_i indexed by some (small) set I, the object $\coprod_{i \in I} X_i$ is cellular (recall we have chosen $S\mathcal{H}$ to have arbitrary (co)products).

0.2. Miscellaneous facts about SH.

Proposition 0.5. For each $a \in A$, the isomorphisms

$$\eta_X^a: X \xrightarrow{\lambda_X^{-1}} S \otimes X \xrightarrow{\Phi_{a,-a} \otimes X} (S^a \otimes S^{-a}) \otimes X \xrightarrow{\alpha} S^a \otimes (S^{-a} \otimes X) = \Sigma^a \Omega^a X$$

and

$$\varepsilon_X^a:\Omega^a\Sigma^aX=S^{-a}\otimes (S^a\otimes X)\xrightarrow{\alpha^{-1}}(S^{-a}\otimes S^a)\otimes X\xrightarrow{\phi_{-a,a}^{-1}\otimes X}S\otimes X\xrightarrow{\lambda_X}X$$

are natural in X, and furthermore, they are the unit and counit respectively of the adjoint autoequivalence $(\Omega^a, \Sigma^a, \eta^a, \varepsilon^a)$ of SH. In particular, since $\Sigma \cong \Sigma^1$, $\Omega := \Omega^1$ is a left adjoint for Σ , so that $(SH, \Omega, \Sigma, \eta, \varepsilon, D)$ is an adjointly triangulated category (??), where η and ε are the compositions

$$\eta: \mathrm{Id}_{\mathbb{SH}} \xrightarrow{\eta^{1}} \Sigma^{1}\Omega \xrightarrow{\nu\Omega} \Sigma\Omega \quad and \quad \varepsilon: \Omega\Sigma \xrightarrow{\Omega\nu^{-1}} \Omega\Sigma^{1} \xrightarrow{\varepsilon^{1}} \mathrm{Id}_{\mathbb{SH}}.$$

Proof. In this proof, we will freely employ the coherence theorem for monoidal categories (see [1]), which essentially tells us that we may assume we are working in a strict monoidal category (i.e., that the associators and unitors and are identities). Then η_X^a and ε_X^a become simply the maps

$$\eta_X^a: X \xrightarrow{\phi_{a,-a} \otimes X} S^a \otimes S^{-a} \otimes X$$
 and $\varepsilon_X^a: S^{-a} \otimes S^a \otimes X \xrightarrow{\phi_{-a,a}^{-1} \otimes X} X$.

That these maps are natural in X follows by functoriality of $-\otimes -$. Now, recall that in order to show that these natural isomorphisms form an adjoint equivalence, it suffices to show that the natural isomorphisms $\eta^a: \mathrm{Id}_{\mathcal{SH}} \Rightarrow \Omega^a \Sigma^a$ and $\varepsilon^a: \Sigma^a \Omega^a \Rightarrow \mathrm{Id}_{\mathcal{SH}}$ satisfy one of the two zig-zag identities:

$$\Omega^{a} \xrightarrow{\Omega^{a} \eta^{a}} \Omega^{a} \Sigma^{a} \Omega^{a} \qquad \qquad \Sigma^{a} \Omega^{a} \Sigma^{a} \xleftarrow{\eta^{a} \Sigma^{a}} \Sigma^{a}$$

$$\downarrow^{\varepsilon^{a} \Omega^{a}} \qquad \qquad \Sigma^{a} \varepsilon^{a} \downarrow$$

$$\Omega^{a} \qquad \qquad \Sigma^{a} \varepsilon^{a}$$

(that it suffices to show only one is [2, Lemma 3.2]). We will show that the left is satisfied. Unravelling definitions, we simply wish to show that the following diagram commutes for all X in $S\mathcal{H}$:

$$S^{-a} \otimes X \xrightarrow{S^{-a} \otimes \phi_{a,-a} \otimes X} S^{\underline{A}_{a}} \otimes S^{a} \otimes S^{-a} \otimes X$$

$$\downarrow^{\phi^{-1}_{-a,a} \otimes S^{-a} \otimes X}$$

$$S^{-a} \otimes X$$

Yet this is simply the diagram obtained by applying $-\otimes X$ to the associativity coherence diagram for the $\phi_{a,b}$'s (since $\phi_{a,0}$ and $\phi_{0,a}$ coincide with the unitors, and here we are taking the unitors and associators to be equalities), so it does commute, as desired.

0.3. Monoid objects in SH.

Proposition 0.6. Let (E, μ, e) be a monoid object in SH (???). Then $\pi_*(E)$ is canonically an A-graded ring via the assignment $\pi_*(E) \times \pi_*(E) \to \pi_*(E)$ which takes classes $x : S^a \to E$ and $y : S^b \to E$ to the composition

$$S^{a+b} \xrightarrow{\phi}_{a,b} S^a \otimes S^b \xrightarrow{x \otimes y} E \otimes E \xrightarrow{\mu} E$$

In particular, the unit for this ring is the element $e \in [S, E] = \pi_0(E)$.

Proof. See
$$\ref{eq:proof.}$$

Proposition 0.7. Let (E, μ, e) be a monoid object in SH. Then $E_*(-)$ is a functor from SH to left A-graded $\pi_*(E)$ -modules, where given some X in SH, $E_*(X)$ may be endowed with the structure of a left A-graded $\pi_*(E)$ -module via the map

$$\pi_*(E) \times E_*(X) \to E_*(X)$$

which given $a, b \in A$, sends $x : S^a \to E$ and $y : S^b \to E \otimes X$ to the composition

$$x\cdot y:S^{a+b}\cong S^a\otimes S^b\xrightarrow{x\otimes y}E\otimes (E\otimes X)\cong (E\otimes E)\otimes X\xrightarrow{\mu\otimes X}E\otimes X.$$

Similarly, the assignment $X \mapsto X_*(E)$ is a functor from SH to right A-graded $\pi_*(E)$ -modules, where the structure map

$$X_*(E) \times \pi_*(E) \to X_*(E)$$

sends $x: S^a \to X \otimes E$ and $y: S^b \to E$ to the composition

$$x\cdot y:S^{a+b}\cong S^a\otimes S^b\xrightarrow{x\otimes y}(X\otimes E)\otimes E\cong X\otimes (E\otimes E)\xrightarrow{X\otimes \mu}X\otimes E.$$

Finally, $E_*(E)$ is a $\pi_*(E)$ -bimodule, in the sense that the left and right actions of $\pi_*(E)$ are compatible, so that given $y, z \in \pi_*(E)$ and $x \in E_*(E)$, $y \cdot (x \cdot z) = (y \cdot x) \cdot z$.

Definition 0.8. Given a monoid object E in $S\mathcal{H}$, we say E is flat if the canonical right $\pi_*(E)$ -module structure on $E_*(E)$ (see the above proposition) is that of a flat module.