BOOSTING

1. ADABOOST

- Classes should be +1 and -1
- Train N weak learners
- Build 1st weak learner
 - o get misclassified points
 - o increase the weight of these points
 - weight increasing helps in increasing the probability of getting picked for building the model
- Build 2nd weak learner
 - o Hope the above misclassified points get classified correctly
 - o get misclassified points
 - o increase the weight of these points
 - weight increasing helps in increasing the probability of getting picked for building the model
- and so on
- Build Nth weak learner
 - o Hope the above misclassified points get classified correctly
 - o get misclassified points
 - o increase the weight of these points
 - weight increasing helps in increasing the probability of getting picked for building the model
- Ensemble them.

• Formulae:

$$\alpha_t = \frac{1}{2} \log_e \left(\frac{1 - error_t}{error_t} \right); Where, error_t = 1 - accuracy_t$$

Weights Updation:

$$D(t+1) = D(t) * e^{(-\alpha_t * Y * h_t(x))}$$

$$D(t+1) = \frac{D(t+1)}{\sum D(t+1)}$$

Final model:

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t * h_t(x))$$

Where,

 $\alpha_t = Weight of the model_t$

 $h_t(x) = model_t Predictions$

T = number of learners

• Algorithm:

Initialize mean weights to each point

i.e. $\frac{1}{N}$ for all the N points in the sample data

For i in [T] Trees

Build i^{th} Tree on the weighted data points

Calculate
$$accuracy_i = \frac{(TP+FP)}{(TP+FP+TN+FN)}$$

Calculate $error_i = 1 - accuracy_i$

Calculate
$$alpha_i = \frac{1}{2} log_e \left(\frac{(1 - error_i)}{error_i} \right)$$

Update Weights

$$D(t+1) = D(t) * e^{(-\alpha_t * Y * h_t(x))}$$

$$D(t+1) = \frac{D(t+1)}{\sum D(t+1)}$$

End For Loop

Final Model

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t * h_t(x))$$

• Note:

- α_t is +ve for a good classifier (more the better)
- α_t is 0 for 50% accurate classifier
- α_t is -ve for bad classifier (less the weaker)
- If α_t is -ve (weak learner):
 - if a point is wrongly classified: D(t) decreases by little
 - if a point is correctly classified: D(t) increases a lot
- If α_t is +ve (strong learner):
 - if a point is wrongly classified: D(t) increases a lot
 - if a point is correctly classified: D(t) decreases by little

2. GRADIENT BOOSTING

Original: Y

Base model: *Yhat (for each class)*

• for each class

o As our base model is a weak learner:

- Y not equal to Yhat
- i.e. Y = Yhat + error
 i.e. error = Y − Yhat
- i.e. residual = Y Yhat

 \circ Now, we try building a regressor model to predict residuals, Say $h_1(x)$

•
$$Y = Yhat + h_1(x) + residual$$

 \circ Then try building one more model to predict the new residuals, Say $h_2(x)$

•
$$Y = Yhat + h_1(x) + h_2(x) + residual$$

Now, for n estimators

•
$$Y = Yhat + h_1(x) + h_2(x) + \dots + h_n(x)$$

Here the loss function we use is Huber Loss. Because, Huber loss handles outliers whereas squared error penalizes the outliers at huge cost

$$L = \frac{1}{2}(Y - Yhat)^2$$

$$\frac{\partial L}{\partial Yhat} = -(Y - Yhat)$$

Mapping Gradient Descent to the Boosting Algorithm

•
$$Y = Yhat + h_1(x)$$

$$Y = Yhat + (Y - Yhat)$$

•
$$Y = Yhat + (Y - Yhat)$$

• $Y = Yhat - 1(\frac{\partial L}{\partial Yhat})$

• where *learning rate* = 1

• Prediction

- o for each class
 - Apply first model on the new data and predict the gradient
 - $Yhat = -h_1(x)$
 - Apply the second model and predict the next gradient
 - $Yhat = -h_1(x) h_2(x)$
 - For n estimators
 - $Yhat = -h_1(x) h_2(x) \dots h_n(x)$
- O Apply Soft max $\frac{e^x}{\sum e^x}$ on each row so that we will have probabilities summed up to '1' for all the classes

• Link

 https://github.com/kartheekpnsn/machine-learning-from-scratch/blob/master/R/gradientboosting.R

3. GBM vs ADABOOST

- In GBM, first learner to classify the points then Calculates loss then Builds second to predict the loss after first step then Adjusts predictions, Builds loss after second step... and so on...
- If a learner misclassifies a sample, the weight of the learner is reduced and the weight of the sample point increases. It will repeat such process until converge.

4. GBM vs XGBOOST

- parallelized inside each tree
- handles missing values
- regularization
- tree pruned from maximum *depth*