Logique mathématique

Sujet 1

Exercice 1 (2)

Montrer que les deux phrases suivantes veulent dire la même chose :

Phrase 1. S'il fait beau, les routes sont bloquées et s'il ne fait pas beau les routes sont bloquées.

Phrase 2. Qu'il fasse beau ou pas, les routes sont bloquées.

Exercice 2 (2)

Déduire la négation de l'énoncé E₁ à partir des énoncés E₂ et E₃ :

 E_1 : Les plus grands sont devant.

E₂: Si les plus grands sont devant, alors ils sont tous alignés.

E₃: Ils ne sont pas alignés.

Sujet 2

Exercice 1 (2)

Soit Γ un ensemble de formules tel que Γ : $\{ \forall x P(x, y), \exists x \ P(y, x) \}$.

Question 1. Donner, si elle existe, une interprétation qui satisfait Γ .

Question 2. Donner, s'il existe, un modèle de Γ .

Exercice 2 (2)

Ecrire les énoncés suivants dans le langage du premier ordre.

E₁ : Il existe au moins une planète habitée.

E₂ : Il existe exactement une planète habitée.

E₃ : Il existe au plus une planète habitée

E₄ : Tout entier naturel différent de 0 est le suivant d'un autre entier naturel.

Sujet 3

Exercice 1 (2)

Soit L un langage du premier ordre contenant :

- le symbole de prédicat n_aire P;
- le symbole de fonction monaire f.
- les connecteurs logiques : \exists et \rightarrow
- le quantifieur \exists .

Question 1. Définir l'ensemble des termes de L

Question 2. Définir l'ensemble des formules de L

Exercice 2 (2)

On considère la formule α telle que :

 $\boldsymbol{\alpha}: \forall x \forall y (P(x) \vee Q(y)) \wedge (\exists x \mathsf{P}(f(x)) \wedge (\exists x \mathsf{Q}(g(x))) \to (\exists x \exists y P(x) \wedge Q(y))$

Question. Montrer, en utilisant la résolution, que α est valide.