Définition 12.1 - intégrale impropre

Soit $f \in \mathcal{CM}([a; b[, \mathbb{K}])$. On dit que *l'intégrale impropre* $\int_a^b f(t) dt$ converge lorsque la fonction $x \mapsto \int_a^x f(t) dt$ possède une limite finie en b.

Autrement, on dit que l'intégrale impropre $\int_a^b f(t) dt$ diverge.

Définition 12.5 - reste d'une intégrale impropre convergente

Soit $f \in \mathcal{CM}\Big([a;\,b[,\mathbb{K}\Big)$ telle que l'intégrale $\int_a^b f(t)\,\mathrm{d}t$ converge. L'application :

$$R: [a; b[\longrightarrow \mathbb{K}]$$
$$x \longmapsto \int_{a}^{b} f(t) dt$$

est appelée reste de l'intégrale impropre convergente.

Théorème 12.6 - de la limite monotone

Soit $f: I \to \mathbb{R}$ une fonction croissante. Quand x tend vers la borne supérieure de I (au sens large), f(x) tend vers la borne supérieure (au sens large) de f sur I:

$$\lim_{x \to \sup I} f(x) = \sup\{f(x), x \in I\}$$

Proposition 12.8 - caractérisation de la convergence d'une intégrale impropre

Soit $f \in \mathcal{CM}([a; b[, \mathbb{R}_+)])$. L'intégrale $\int_a^b f(t) dt$ converge si et seulement si la fonction $x \mapsto \int_a^x f(t) dt$ est majorée sur [a; b[.

Définition 12.14 - fonction intégrable

Soit $f:[a;b]\to\mathbb{C}$ un fonction continue par morceaux. On dit que f est intégrable lorsque l'intégrale impropre $\int_a^b |f|(t)\,\mathrm{d}t$ est convergente. Le cas échéant on dit aussi que l'intégrale impropre $\int_a^b f(t)\,\mathrm{d}t$ est absolument convergente.

Théorème 12.16 - convergence absolue implique convergence

Soit $f:[a;b]\to\mathbb{C}$ un fonction continue par morceaux. Si f est intégrable sur [a;b[, alors l'intégrale impropre $\int_a^b f(t) dt$ est convergente.

Théorème 12.19 - fonction de Riemann

Soit $\alpha \in \mathbb{R}$. La fonction de Riemann $x \mapsto \frac{1}{r^{\alpha}}$ définie sur $]0; +\infty[$ est :

- 1. intégrable en 0 si et seulement si $\alpha < 1$
- 2. intégrable en $+\infty$ si et seulement si $\alpha > 1$

Théorème 12.20 - fonction de référence

Soit $\alpha \in \mathbb{R}$. La fonction $x \mapsto e^{-\alpha x}$ est intégrable sur $[0; +\infty[$ si et seulement si $\alpha > 0$. Le cas échéant :

$$\int_0^{+\infty} e^{-\alpha t} \, \mathrm{d}t = \frac{1}{\alpha}$$

Théorème 12.55 - de convergence dominée pour une suite de fonctions définies sur un intervalle

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$. Sous réserve des hypothèses suivantes,

- 1. $\forall n \in \mathbb{N}, f_n \in \mathcal{CM}(I, \mathbb{K}).$
- 2. $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I et sa limite y est continue par morceaux.
- **3.** hypothèse de domination : il existe $\varphi \in \mathcal{CM}(I, \mathbb{R}_+)$ une fonction intégrable telle que pour tout $n \in \mathbb{N}$, $|f_n| \leq \varphi$

les fonctions f_n sont intégrables, ainsi que leur limite simple et on peut échanger les symboles "lim" et " \int ":

$$\lim_{n \to +\infty} \int_{I} f_n = \int_{I} \lim_{n \to +\infty} f_n$$

Théorème 12.59 - de convergence dominée pour une série de fonctions définies sur un intervalle

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$. Sous réserve des hypothèses suivantes,

- 1. $\forall n \in \mathbb{N}, f_n \in \mathcal{CM}(I, \mathbb{K}) \text{ et } f_n \text{ est intégrable.}$
- 2. $\sum_n f_n$ converge simplement sur I et sa somme y est continue par morceaux.
- 3. la série $\sum_n \int_I |f_n(t)|$ converge.

la fonction $\sum_{n=0}^{+\infty} f_n$ est intégrable sur I et on peut échanger les symboles " \sum " et " \int ":

$$\sum_{n=0}^{+\infty} \int_{I} f_n = \int_{I} \sum_{n=0}^{+\infty} f_n$$

Théorème 12.61 - théorème de convergence dominée à paramètre continu

Soit $A \subset \mathbb{R}^m$, I un intervalle de \mathbb{R} et $f \in \mathcal{F}(A \times I, \mathbb{K})$. Sous réserve des hypothèses suivantes :

- 1. $\forall x \in A, f(x, \cdot) \in \mathcal{CM}(I, \mathbb{K}) \text{ où } f(x, \cdot) : t \mapsto f(x, t).$
- **2.** Pour un certain $x_0 \in \overline{A}$ la fonction $\lim_{x \to x_0} f(x,\cdot)$ est continue par morceaux sur I.
- **3.** hypothèse de domination : il existe $\varphi \in \mathcal{CM}(I, \mathbb{R}_+)$ intégrable, majorant $f(x, \cdot)$ pour tout $x \in A$.

Pour tout $x \in A$ la fonction $f(x, \cdot)$ est intégrable sur I, de même pour $\lim_{x \to x_0} f(x, \cdot)$, et on peut échanger les symboles "lim" et " \int ":

$$\int_I \lim_{x \to x_0} f(x, \cdot) = \lim_{x \to x_0} \int_I f(x, \cdot)$$

Théorème 12.63 - théorème de continuité sous le signe s

Soit $A \subset \mathbb{R}^m$, I un intervalle de \mathbb{R} et $f \in \mathcal{F}(A \times I, \mathbb{K})$. Sous réserve des hypothèses suivantes :

- **1.** $\forall x \in A, f(x, \cdot) \in \mathcal{CM}(I, \mathbb{K}) \text{ où } f(x, \cdot) : t \mapsto f(x, t)$
- **2.** $\forall t \in I, f(\cdot,t) \in \mathcal{C}^0(A,\mathbb{K}) \text{ où } f(\cdot,t) : x \mapsto f(x,t)$
- **3.** hypothèse de domination : il existe $\varphi \in \mathcal{CM}(I, \mathbb{R}_+)$ intégrable, majorant $f(x, \cdot)$ pour tout $x \in A$.

Pour tout $x \in A$ la fonction $f(x, \cdot)$ est intégrable sur I, et la fonction $x \mapsto \int_I f(x, t) dt$ est continue sur A.

Théorème 12.69 - de classe C^1 sous le signe \int

Soit A et I deux intervalle de \mathbb{R} et $f \in \mathcal{F}(A \times I, \mathbb{K})$. Sous réserve des hypothèses suivantes :

- 1. $\forall t \in I, f(\cdot, t) \in \mathcal{C}^1(A, \mathbb{K}).$
- **2.** $\forall x \in A, f(x, \cdot) \in \mathcal{CM}(I, K)$ et est intégrable.
- 3. $\forall x \in A, \frac{\partial f}{\partial x}(x, \cdot) \in \mathcal{CM}(I, \mathbb{K})$
- **4.** hypothèse de domination : il existe $\varphi \in \mathcal{CM}(I, \mathbb{R}_+)$ intégrable, majorant $\left| \frac{\partial f}{\partial x}(x, \cdot) \right|$ pour tout $x \in A$.

pour tout $x \in A$, la fonction $\frac{\partial f}{\partial x}(x,\cdot)$ est intégrable sur I et la fonction $F: x \mapsto \int_I f(x,t) \, \mathrm{d}t$ est de classe \mathcal{C}^1 sur A avec :

$$F^{(k)}: x \mapsto \int_I \frac{\partial f}{\partial x}(x,t) dt$$

Théorème 12.74 - de classe C^k sous le signe \int , avec hypothèses minimales

Soit A et I deux intervalle de $\mathbb R$ et $f \in \mathcal F(A \times I, \mathbb K)$. Sous réserve des hypothèses suivantes :

- 1. $\forall t \in I, f(\cdot, t) \in \mathcal{C}^k(A, \mathbb{K})$
- **2.** $\forall i \in [0, k-1], \forall x \in A, \frac{\partial^i f}{\partial x^i}(x, \cdot) \in \mathcal{CM}(I, K)$ et est intégrable.
- **3.** $\forall x \in A, \ \frac{\partial^k f}{\partial x^k}(x, \cdot) \in \mathcal{CM}(I, \mathbb{K})$
- **4.** hypothèse de domination : il existe $\varphi \in \mathcal{CM}(I, \mathbb{R}_+)$ intégrable, majorant $\left| \frac{\partial^k f}{\partial x^k}(x, \cdot) \right|$ pour tout $x \in A$.

pour tout $x \in A$, la fonction $\frac{\partial^k f}{\partial x^k}(x,\cdot)$ est intégrable sur I et la fonction $F: x \mapsto \int_I f(x,t) \, \mathrm{d}t$ est de classe \mathcal{C}^k sur A avec :

$$F^{(k)}: x \mapsto \int_{I} \frac{\partial^{k} f}{\partial x^{k}}(x, t) dt$$