Optimisation Assignment

Adarsh Kumar (FWC22068)

1

1

CONTENTS

Ι **Problem** II **Solution**

I. PROBLEM

If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum at p and q respectively. Such that $p^2 = q$, then a equals? A) $\frac{1}{2}$ B) 3 C) 1 D) 2

II. SOLUTION

Given that Maxima and Minima lie at P and Q respectively.

which means $\frac{\mathrm{d}f(x)}{\mathrm{d}x} = 0$ at P and Q. which means P and Q will be the roots of f'(x). So Now,

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = f'(x) = 6x^2 - 18ax + 12a^2 = 0 \qquad (1)$$

$$f'(x) = x^2 - 3ax + 2a^2 = 0 \qquad (2)$$

$$f'(x) = x^2 - 2ax - ax + 2a^2 = 0 \qquad (3)$$

$$\Rightarrow x(x - 2a) - a(x - 2a) = 0 \qquad (4)$$

$$\Rightarrow (x - a)(x - 2a) = 0 \qquad (5)$$

$$\Rightarrow x = 2a, a \qquad (6)$$

$$(7)$$

So, the roots are 2a, a.

Now, Case 1: When P = 2a and Q = a. As $p^2 = q$, $\Rightarrow 4a^2 = a$ so, a = 1/4Now, Case 2: When P = a and Q = 2a. As $p^2 = q$,

$$\Rightarrow a^2 = 2a$$

so,
$$a=2$$

Finally a = 1/4, 2

Hence we can conclude from the given options that a=2, i.e Option D is the correct option.