Problem Set 6

Submission:

Thursday, 04/07/2022, until 1 PM, to be uploaded on the NYU Brightspace course homepage.

1. UMVU estimators [4 Points]

- (a) Let $X_1,...,X_n \overset{\text{i.i.d.}}{\sim} Ber(\theta)$, with unknown $\theta \in (0,1)$. We are looking for the UMVU for $f(\theta) = \theta^3$.
 - (i) Verify that

$$\widehat{\gamma}(X_1, ..., X_n) = \mathbb{1}_{\{X_1 = X_2 = X_3 = 1\}}$$

is an unbiased estimator for $f(\theta)$.

- (ii) Explain why $T(X_1,...,X_n)=\sum_{i=1}^n X_i$ is a sufficient and complete statistic for θ . Hint: You can show completeness either directly or use the statement about exponential families from the notes.
- (iii) Calculate the UMVU estimator for $f(\theta)$, using the Lehmann-Scheffé theorem.
- (b) Now let $X_1,...,X_n \overset{\text{i.i.d.}}{\sim} Pois(\theta)$, with unknown $\theta > 0$. An unbiased estimator for $f(\theta) = e^{-\theta}$ is given by $\widehat{\gamma}(X_1,...,X_n) = \mathbbm{1}_{\{X_1=0\}}$, and a sufficient and complete statistic for θ is given by $T(X_1,...,X_n) = \sum_{i=1}^n X_i$. Use the Lehmann-Scheffé theorem to determine the UMVU estimator for $f(\theta)$.

2. The Cramér-Rao lower bound I

[4 Points]

Consider $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} Bin(N, p)$ with known $N \in \mathbb{N}$ and unknown $p \in (0, 1)$.

- (a) Calculate the Maximum-likelihood estimator (MLE) \hat{p}_n for p.
- (b) Determine the Fisher information I(p) in p.
- (c) Check whether the variance of the MLE in (a) saturates the Cramér-Rao lower bound.

3. The Cramér-Rao lower bound II

[4 Points]

Consider $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with unknown $(\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$.

- (a) Determine the Fisher information matrix $I(\mu, \sigma^2)$ in (μ, σ^2) .
- (b) Check whether the covariance matrix of the MLE $(\widehat{\mu}_n,S_n^2)$ for (μ,σ^2) saturates the Cramér-Rao lower bound.

Hint: The MLE was calculated in Problem 1 (a) of Problem set 5.

4. (R exercise) Maximum-Likelihood estimation for an autoregressive process [4 Points]

Note: Please provide your source code and images obtained with your solution.

A Gaussian autoregressive process (more precisely a Gaussian AR(1) process) can be defined by considering random variables $X_0, X_1, X_2, ...$ with

$$X_i = \theta X_{i-1} + \varepsilon_i$$
, for $i = 1, 2, ...$ $X_0 = 0$.

Here $\varepsilon_1, \varepsilon_2, \dots$ are i.i.d. $\mathcal{N}(0, \sigma^2)$ -distributed random variables. We will assume that $\sigma^2 > 0$ is *known* and $\theta \in \mathbb{R}$ is unknown.

(a) The joint probability density function of $X_1, ..., X_n$ is given by

$$f_{X_1,...,X_n;\theta}(x_1,...,x_n) = \prod_{i=1}^n f(x_i - \theta x_{i-1}),$$

- where $x_0:=0$ and f is the density of a $\mathcal{N}(0,\sigma^2)$ -distribution. Determine the Maximum-likelihood estimator $\widehat{\theta}_n$ (MLE) for θ .
- (b) Simulate an autoregressive process with $\sigma^2=1$ and $\theta=0.5$ with n=100 time steps using R, and plot the outcome.
- (c) Plot a histogram of $\widehat{\theta}_k$ for k=10, k=100 and k=1000, k=5000, each with N=500 repetitions. What do you observe?