APA-Scan User Manual

Naima Ahmed Fahmi, Jae-Woong Chang, Heba Nassereddeen, Deliang Fan, Jeongsik Yong and Wei Zhang

1. Download

APA-Scan is downloadable directly from <u>github</u>. Users need to have python (version 3.0 or higher) installed in their machine.

2. Required Softwares

- a. Python (v3.0 or higher)
- b. <u>Samtools (v 0.1.8)</u>* [This specific version is mandatory]

3. Required python packages

- a. Pandas
- b. Bio
- c. Scipy
- d. Numpy
- e. Peakutils

4. Running APA-Scan

APA-Scan can handle both human and mouse data for detecting potential APA truncation sites. The tool is designed to follow the format of <u>Refseq annotation</u> and genome file from <u>UCSC Genome Browser</u>. Users need to have the following two files in the parent directory in order to run APA-Scan:

- Refseq annotation (.txt format)
- Genome fasta file (downloaded from UCSC genome browser)

APA-Scan comprises of two python scripts:

- APA-scan.py
- Make-plots.py

Run APA-scan.py

\$ python3 APA-scan.py annotation ref_genome input_dir1 input_dir2 -o output_dir -p pas_dir1 pas_dir2

Example:

\$ python3 APA-scan.py annotation.txt genome.fa D://S1.bam D://S2.bam -o Results -p D://P1.bamD://P2.bam

Options: (*denotes mandatory fields)

input1_dir*	Required field, directory of input1 RNA-seq data				
input2_dir*	Required field, directory of input2 RNA-seq data				
-o/-O	Denotes output directory. It is an optional field. If -o is not specified, the results will be generated inside of 'Output' folder.				
-p/-P	P denotes whether the user gives the 3'end-seq data or not. If -p is introduced, the next two fields after -p will be the directories of 3'end data for two samples. If -p is not specified, APA-Scan will automatically determine APA events.				

5. APA-Scan.py Results

APA-Scan will generate few spreadsheets in the output directory, where the following two spreadsheets are the result files:

- Result_PAS.csv [if user provides the PAS data]
- Result.csv [if only RNA-seq input is provided]

, which will contain the potential transcript splice site for each region. APA-Scan will also generate some intermediary files in the output directory for reference purpose to the users.

The Result.csv [or Result_PAS.csv] file will contain the following fields (see image below) as well as other information necessary to compute the association among two samples. This image shows the first few fields generated by APA-Scan.

Chrom	Gene Name	strand	Start	End	Position	p-value	Ratio Difference	Absolute ratio different
chr4	Rpl22	+	152332259	152334082	152332467	3.09775986595814E-56	0.2362757567	0.2362757567
chr14	Rpl15	-	18267822	18269316	18268977	5.22975131345554E-36	1.0027674111	1.0027674111
chr8	Prdx2	+	84973999	84974811	84974300	6.82889421184664E-26	0.0588257008	0.0588257008
chr3	Snapin	-	90488025	90489593	90488393	2.50609740693199E-21	-1.2134012625	1.2134012625
chr11	Ddx5	-	106780355	106782256	106781593	6.12179599813088E-16	0.2211554595	0.2211554595
chr13	Pfkp	-	6579873	6581592	6581192	1.62554956833935E-15	0.8694145767	0.8694145767
chr14	Ctsb	+	63142231	63145923	63143116	5.05835989509607E-15	0.0343892621	0.0343892621
chr8	Ctu2	+	122481595	122483092	122481730	6.04869792645979E-15	19.83490098	19.83490098
chr17	Srsf7	-	80200079	80201602	80201326	8.71701484186316E-14	0.3596757621	0.3596757621
chr5	Ran	+	129022773	129024321	129023145	1.71410278709392E-13	0.4464617484	0.4464617484
chr6	Col1a2	+	4540515	4541543	4540970	9.76968485518211E-13	-0.116948271	0.116948271
chr17	Tubb5	-	35833919	35836039	35834607	1.70443287105602E-12	0.0625506786	0.0625506786
chr11	Hspa4	-	53259813	53261815	53261590	1.18930518861983E-11	0.2871386226	0.2871386226
chr8	Tomm20	-	126930663	126935059	126934582	3.02988643014452E-11	0.4033119395	0.4033119395
chr5	Polr2b	+	77349079	77349328	77349234	9.36919003553619E-11	0.8166819469	0.8166819469
chr9	Arpp19	+	75056634	75060313	75056811	1.73579471911654E-10	0.2040989466	0.2040989466
chr12	Calm1	+	100206399	100209824	100207298	3.6125085748732E-10	0.0846824617	0.0846824617
chr6	Hnrnpa2b1	-	51460433	51463493	51462777	3.8837266242032E-09	0.121322706	0.121322706
chr4	Tardbp	-	148612381	148618791	148616742	5.47582783374111E-09	0.1373292505	0.1373292505
chr11	Timp2	-	118301060	118303896	118303605	3.65534355325947E-08	0.2084772755	0.2084772755

6. Run Make-plots.py

Command 1: \$ python3 Make-plots.py annotation ref_genome input_dir1 input_dir2 -o output_dir -p pas_dir1 pas_dir2

Example:

\$ python3 Make-plots py annotation.txt genome.fa D://S1.bam D://S2.bam -o Results -p D://P1.bam D://P2.bam

Command 2: Chrom:GeneName:RegionStart-RegionEnd

After executing the first command for a few seconds, **Make-plots.py** will ask the user to insert the region of interest in a specific format:

Chrom:GeneName:RegionStart-RegionEnd

Parameters Explanation:

Chrom:	Chromosome Name. Example: chr1
GeneName:	denotes the gene ID or gene Name. Example: Tceb1
RegionStart:	Start of the untranslated region
RegionEnd:	End of the untranslated region

Example:

chr1:Tceb1:16641724-16643478

7. Make-plots.py Results

Make-Plots.py will generate a visual representation of the results shown in step 5, for each of the regions entered. The plot will illustrate the most significant transcript cleavage site with a red vertical bar on top of RNA-seq read data (and 3'end-seq if available). If the input parameters have 3'end-seq information along with the RNA-seq, then it will generate plots for both cases (See figure below). It will also show the UTR truncation point (annotated and un-annotated) at the bottom panel.

