MAT551

Devoir maison 2

Exercice 1:

On considère le système dynamique $(\mathbf{T}^1,\mathcal{B},f,Leb)$ où f est le doublement de l'angle. Pour $\phi:\mathbf{T}^1\longmapsto\mathbf{R}$ continue avec $\phi(0)\neq\frac{1}{2}(\phi(\frac{1}{3})+\phi(\frac{2}{3}))$, la moyenne temporelle $\frac{1}{n}\sum_{k=0}^{n-1}U_f^k\phi$ ne converge pas dans $L^\infty(Leb)$.

Démonstration. Soit f le doublement de l'angle donné par

$$f: \mathbf{T}^1 \longmapsto \mathbf{T}^1$$
$$x \longmapsto 2x,$$

f est en particulier continue sur le cercle. Ainsi la n-ème somme

$$U_{n,f} := \frac{1}{n} \sum_{k=0}^{n-1} U_f^k \phi$$

est continue sur le cercle comme somme de compositions de fonctions continues.

On montre que le système étudié est ergodique. On considère le π -système des intervalles ouverts de \mathbf{T}^1 . Soit (a,b) un tel ouvert, on a d'une part Leb(a,b)=b-a et d'autre part

$$Leb(f^{-1}(a,b)) = Leb((\frac{a}{2}, \frac{b}{2}) \cup (\frac{a}{2} + \frac{1}{2}, \frac{b}{2} + \frac{1}{2})) = b - a$$

comme ces deux ensembles sont disjoints. La mesure de Lebesgue sur T^1 est donc f invariante. De plus pour $\phi: T^1 \longmapsto R$ mesurable satisfaisant $\phi \circ f = \phi$, Leb p.p. on a

$$\phi(x) = \phi(2x)$$
 pour presque tout $x \in \mathbf{T}^1$,

soit donc pour $n \in N$ quelconque

$$\phi[0,\frac{1}{2^n})=\phi[0,\frac{1}{2^{n+1}}).$$

On en déduit que ϕ est constante pour presque tout $x \in \mathbf{T}^1$. Le système est donc ergodique.

Comme ϕ est continue sur \mathbf{T}^1 compact elle est bornée donc en particulier L^∞ et

$$\int_{\mathbf{T}^1} |\phi|^2 \mathrm{d}Leb \leq \|\phi\|_{L^{\infty}}^2 \int_{\mathbf{T}^1} 1 \mathrm{d}Leb < \infty.$$

On en déduit que ϕ est L^2 . Par le même raisonnement on obtient directement que ϕ est L^1 .

Par le théorème ergodique en moyenne on a alors dans L^2

$$U_{n,f}\phi \underset{n\to\infty}{\rightarrow} E[\phi|\mathcal{J}] = \int_{\mathbf{T}^1} \phi dLeb.$$

Ainsi $U_{n,f}\phi$ converge dans L^2 vers une constante $c \in \mathbf{R}$.

Supposons par l'absurde que $U_{n,f}\phi$ converge également dans L^{∞} . La limite uniforme d'une fonction continue est continue, ainsi $U_{n,f}\phi$ converge vers une fonction continue g. De plus

$$\int_{\mathbf{T}^1} |U_{n,f}\phi - g|^2 dLeb \leq \|U_{n,f}\phi - g\|_{L^{\infty}}^2 \int_{\mathbf{T}^1} 1 dLeb \underset{n \to \infty}{\to} 0.$$

Ainsi $U_{n,f}\phi \to g$ dans L^2 et donc g est constante égale à c par unicité de la limite.

Remarquons que $U_{n,f}\phi(0)=\phi(0)$ comme 0 est un point fixe de f. De plus comme $f(\frac{1}{3})=\frac{2}{3}$ et $f(\frac{2}{3})=\frac{1}{3}$ on obtient

$$U_{n,f}\phi(\frac{1}{3}) = \frac{1}{n} \sum_{k=1}^{n-1} U_f^k \phi(\frac{1}{3}) = \begin{cases} \frac{1}{2}(\phi(\frac{1}{3}) + \phi(\frac{2}{3})) & \text{si } n \text{ est pair} \\ \frac{n-1}{2n}(\phi(\frac{1}{3}) + \phi(\frac{2}{3})) + \frac{1}{n}\phi(\frac{1}{3}) & \text{sinon} \end{cases}$$

Ceci implique par passage à la limite en se souvenant que g est continue partout

$$g(0) = \phi(0) = \frac{1}{2}(\phi(\frac{1}{3}) + \phi(\frac{2}{3})) = g(\frac{1}{3}),$$

une contradiction.

Exercice 2:

On étudie la capacité orbitale d'un borélien \mathcal{A} d'un espace métrisable compact X pour une application continue $T: X \longmapsto X$.

1. Dans un premier temps on montre que la limite

$$\lim_{n \to \infty} \frac{1}{n} \sup_{x \in X} \# \{ 0 \le k < n, \ T^k x \in \mathcal{A} \}$$

existe et ainsi que la capacité orbitale de A est bien définie. On se propose pour cela d'appliquer le lemme de Fekete, il faut donc montrer qu'il existe un rang $N \in \mathbb{N}$ à partir duquel la suite $(u_n)_n$ définie par

$$u_n := \frac{1}{n} \sup_{x \in X} \#\{0 \le k < n, \ T^k x \in A\}, \ n \in \mathbb{N}$$

devient sous additive.

Si pour aucun $N \in \mathbb{N}$ on a $u_N > 0$ le résultat est évident. Remarquons qu'en vertu du théorème de récurrence de Poincaré cela n'est possible que si $\mu(A) = 0$.

S'il existe en revanche un $N \in \mathbb{N}$ tel que $u_N > 0$ prenons N minimal avec cette propriété et pour $n, m \geq N$ avec sans perte de généralité $m \geq n$ on a

$$\begin{split} u_{n+m} &= \frac{1}{m+n} \sup_{x \in X} \#\{0 \le k < n+m, \ T^k x \in \mathcal{A}\} \\ &\le \frac{1}{m+n} \sup_{x \in X} \#\{0 \le k < n, \ T^k x \in \mathcal{A}\} + \frac{1}{m+n} \sup_{x \in X} \#\{n \le k < n+m, \ T^k x \in \mathcal{A}\} \\ &\le \frac{n}{m+n} u_n + \frac{1}{m+n} \sup_{x \in X} \#\{n \le k < n+m, \ T^k x \in \mathcal{A}\}. \end{split}$$

On procède par récurrence sur $m \ge n$ pour conclure.

2. On considère le système probabiliste (X, \mathcal{B}, T, μ) . Grâce aux hypothèses on peut définir une mesure de probabilité et $\mathbf{1}_{\mathcal{A}}$ est intégrable. Supposons μ T-invariante ergodique, on a alors par le théorème ergodique ponctuel, en utilisant les notations de l'exercice 1

$$U_{n,T}\mathbf{1}_{\mathcal{A}} \underset{n\to\infty}{\longrightarrow} E[\mathbf{1}_{\mathcal{A}}|\mathcal{J}] = \int_X \mathbf{1}_{\mathcal{A}} d\mu = \mu(A).$$

Aussi on peut remarquer que

$$U_{n,T}\mathbf{1}_{\mathcal{A}}(x) = \frac{1}{n}\#\{0 \le k < n, \ T^k x \in \mathcal{A}\}.$$

On en conclut que

$$\operatorname{ocap}(\mathcal{A}) := \lim_{n \to \infty} \frac{1}{n} \sup_{x \in X} \# \{ 0 \le k < n, \ T^k x \in \mathcal{A} \} \ge \mu(\mathcal{A}).$$