Performance, Portability, and Productivity for Data-Parallel Computations on Multi- and Many-Core Architectures

Ari Rasch, Richard Schulze, and Sergei Gorlatch

Generation

Let T and T' be two arbitrary types. A function $h: T[N_1] \dots [N_d] \to T'$ on d-dimensional arrays is called a Multi-Dimensional Homomorphism (MDH) iff there exist combine $operators <math>\circledast_1, \dots, \circledast_d: T' \times T' \to T'$, such that for each $k \in [1, d]$ and arbitrary, concatenated input MDA $a \leftrightarrow_k b$:

$$h(a + +_k b) = h(a) \circledast_k h(b)$$

MDHs can be represented uniformly via our md_hom parallel pattern:

$$\mathtt{md_hom}(\ f\ ,\ (\circledast_1,\ldots,\circledast_d)\)(\ a[N_1]\ldots[N_d]\) \ = \ \underset{i_1\in[1,N_1]}{\circledast_1}\ldots \ \underset{i_d\in[1,N_d]}{\circledast_d}\ f(\ a[\ i_1\]\ldots[\ i_d\]\)$$

Important computations are MDHs:

Linear Algebra (BLAS)

Data Mining

PRL = md_hom(weight, (++, max)) o view(...)

Machine Learning

 $TC = md_hom(*, (++,...,++ , +,...,+)) o view(...)$

Stencil Computations

Gaussian_2D = $md_hom(G_func, (++,++))$) o view(...) Jacobi_3D = $md_hom(J_func, (++,++, ++))$ o view(...)

Generating OpenCL Code

 $\mathtt{md}\mathtt{hom}(f,(\circledast_1,\ldots,\circledast_k))$ (auto-tunable)

Optimization

Our Auto-Tuning Framework (ATF) is a general-purpose approach that supports auto-tuning of programs written in arbitrary programming languages and that may have interdependent tuning parameters.

We provide a novel

<u>chain-of-trees</u> search space structure
for interdependent tuning parameters.

We extend the traditional definition of *tuning* parameters by a parameter's constraint.

ATF efficiently generates, stores, and explores the spaces of interdependent tuning parameters

2.75x faster than TVIVI

1.37x faster than newest Intel MKL/NVIDIA cuBLAS

Our MDH approach shows often significantly better performance as compared to the currently best-performing performance-portable and hand-optimized approaches.

39x faster than EKR

2x faster than COGENT & Tensor Comprehensions