Analiza matematyczna ISIM II

$\mathbf{Ryszard~Szwarc^*}$

Spis treści

1	Cał	ki niewłaściwe	3
	1.1	Całki niewłaściwe z funkcji nieujemnych	6
	1.2	Całki i szeregi	12
	1.3	Całki niewłaściwe z osobliwością w kilku punktach	16
2	Fun	ıkcje wielu zmiennych	18
		2.0.1 Granica funkcji wielu zmiennych	20
3	Pod	chodne cząstkowe	22
	3.1	Wyższe pochodne cząstkowe	25
	3.2	Reguła łańcucha	26
	3.3	Różniczkowalność funkcji wielu zmiennych	28
		3.3.1 Interpretacja geometryczna różniczkowalności	30
	3.4	Geometria odwzorowań z \mathbb{R}^n w \mathbb{R}^m	40
	3.5	Gradient i poziomice funkcji	41
	3.6	Ekstrema funkcji wielu zmiennych	45
	3.7	Ekstrema warunkowe-metoda mnożników Lagrange'a	48
		3.7.1 Stosowanie metody Lagrange'a	50
		3.7.2 Procedura znajdowania wartości największej i najmniej-	
		szej funkcji na zbiorze zwartym	52
		3.7.3 Metoda mnożników Lagrange'a przy kilku warunkach .	53
	3.8	Twierdzenie o funkcji uwikłanej	54
	3.9	Różniczka	66

 $^{^*}$ Wykład prowadzony w semestrze letnim 2014 na podstawie notatek Magdaleny Świczewskiej z 2005-2006, opracowany na podstawie notatek Mateusza Wasylkiewicza

4	Cał	ki podwójne	67
	4.1	Zasada Cavalieriego	67
	4.2	Ścisłe określenie całki podwójnej Riemanna	68
		4.2.1 Obliczanie pól	76
		4.2.2 Zmiana kolejności całkowania	78
		4.2.3 Geometria odwzorowań z \mathbb{R}^2 w \mathbb{R}^2	79
	4.3	Twierdzenie o zamianie zmiennych	80
5	Cał	ki potrójne i wielokrotne	83
		5.0.1 Środek masy	89
		5.0.2 Moment bezwładności	90
		5.0.3 Potencjał grawitacyjny	90
6	Cał	ki krzywoliniowe i powierzchniowe	92
	6.1	Całka krzywoliniowa niezorientowana	92
		6.1.1 Interpretacja całki	92
	6.2	Całka krzywoliniowa zorientowana	94
7	Cał	ki powierzchniowe	99
	7.1	Powierzchnie w \mathbb{R}^3	99
	7.2	Płaszczyzna styczna do powierzchni	99
	7.3	Pole powierzchni w \mathbb{R}^3	103
	7.4	Całki powierzchniowe funkcji skalarnych (niezorientowane)	105
		7.4.1 Interpretacja całki powierzchniowej	106
	7.5	Całki powierzchniowe pól wektorowych (zorientowane)	109
		7.5.1 Interpretacja fizyczna całki powierzchniowej zoriento-	
		wanej	
		7.5.2 Całka powierzchniowa dla wykresów funkcji	114
8	$\mathbf{W}\mathbf{z}$		114
	8.1	Rotacja	118
9	Tw^{i}		118
	9.1	Interpretacja rotacji curl F	
	9.2	Interpretacja całki $\int\limits_C (F\circ T)ds$ dla krzywej zamkniętej C	122

10	Wzór Gaussa-Ostrogradskiego	12:	3
	10.1 Interpretacja fizyczna dywergencji	. 120	6
	10.2 Potencjały i funkcje harmoniczne	. 12'	7
	10.3 Inny zapis całki $\iint_{S} F \circ dS$. 13	0

1 Całki niewłaściwe

Przykład.

(a)
$$f(x) = \frac{1}{x}$$
, $0 < x \le 1$. Dla $o < a < 1$ mamy

$$\int_{a}^{1} \frac{1}{x} dx = \log x \Big|_{a}^{1} = -\log a \underset{a \to 0^{+}}{\longrightarrow} \infty.$$

To oznacza, że pole obszaru pod wykresem funkcji $y=1/x,\, 0 < x \leqslant 1,$ jest nieskończone.

(b) $f(x) = 1/\sqrt{x}$, $0 < x \le 1$. Wtedy dla 0 < a < 1 mamy

$$\int_{a}^{1} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{a}^{1} = 2 - 2\sqrt{a} \underset{a \to 0^{+}}{\longrightarrow} 2.$$

Pole pod wykresem $y=1/\sqrt{x},\,0< x\leqslant 1,$ jest skończone i równe 2 pomimo tego, że obszar pod wykresem jest nieograniczony.

(c) $f(x) = 1/x^2$, $x \ge 1$. Dla b > 1 mamy

$$\int_{1}^{b} \frac{1}{x^{2}} dx = -\frac{1}{x} \Big|_{1}^{b} = 1 - \frac{1}{b} \underset{b \to \infty}{\longrightarrow} 1.$$

Definicja 1.1. Mówimy, że całka $\int_a^b f(x) dx$ jest niewłaściwa z osobliwością w punkcie b jeśli

1. Funkcja f(x) jest określona i ciągła w przedziale [a,b).

2. $b = \infty$ lub $b < \infty$ i f(x) jest nieograniczona w pobliżu b.

Podobnie określa się całkę niewłaściwą $\int_a^b f(x) dx$ z osobliwością w dolnej granicy całkowania a.

Przykłady.

Całka Punkt osobliwy
$$\int_{1}^{\infty} \frac{1}{x} dx \qquad \infty$$

$$\int_{0}^{1} \frac{1}{\sqrt{1-x}} dx \qquad 1$$

$$\int_{0}^{\pi} \frac{\sin x}{x} dx \qquad \text{nie ma osobliwości}$$

$$\int_{0}^{\pi} \frac{\sin x}{x^2} dx \qquad 0$$

Definicja 1.2. Załóżmy, że dla całki $\int_a^b f(x) dx$ z osobliwością w punkcie b istnieje granica $\lim_{b'\to b^-} \int_a^{b'} f(x) dx$. Mówimy wtedy, że całka $\int_a^b f(x) dx$ jest zbieżna i piszemy

$$\int_{a}^{b} f(x) \, dx = \lim_{b' \to b^{-}} \int_{a}^{b'} f(x) \, dx.$$

Podobnie określamy zbieżność całki z osobliwością w punkcie a. W przeciwnym wypadku, gdy granica nie istnieje, mówimy, że całka jest rozbieżna.

Przykład.

$$\int_{0}^{1} \log x \, dx = \lim_{a \to 0^{+}} \int_{a}^{1} \log x \, dx = \lim_{a \to 0^{+}} (x \log x - x) \Big|_{a}^{1}$$
$$= \lim_{a \to 0^{+}} (-1 - a \log a + a) = -1,$$

bo $\lim_{a \to 0^+} a \log a = 0.$

Twierdzenie 1.3 (warunek Cauchy'ego zbieżności całki). Załóżmy, $\dot{z}e$ całka $\int_a^b f(x) \, dx$ ma osobliwość w punkcie b. Całka ta jest zbieżna wtedy i tylko wtedy, gdy dla dowolnej dodatniej liczby ε istnieje liczba $a < b_0 < b$ taka, $\dot{z}e$ dla dowolnych b' i b'' z warunku $b_0 < b' < b'' < b$ wynika

$$\left| \int_{b'}^{b''} f(x) \, dx \right| < \varepsilon.$$

Dowód. Zbieżność całki oznacza z definicji istnienie granicy $\lim_{b'\to b^-} F(b')$, gdzie $F(b')=\int\limits_a^{b'} f(x)\,dx$. Z kolei granica ta istnieje wtedy i tylko wtedy, gdy spełniony jest warunek Cauchy'ego, czyli w zapisie kwantyfikatorowym

$$\forall \varepsilon > 0 \ \exists b_0 < b \ \forall b', b'' \ [b_0 < b' < b'' < b] \implies |F(b'') - F(b')| < \varepsilon.$$

Ale

$$F(b'') - F(b') = \int_{a}^{b''} f(x) dx - \int_{a}^{b'} f(x) dx = \int_{b'}^{b''} f(x) dx.$$

Przykład. Sprawdzamy zbieżność całki $\int_{0}^{\infty} \frac{\sin x}{x} dx$. Dla 0 < b' < b'' mamy*

$$\left| \int_{b'}^{b''} \frac{\sin x}{x} \, dx \right| \leqslant \frac{2}{b'}.$$

Dla $\varepsilon > 0$ przyjmijmy $b_0 = 2/\varepsilon$. Wtedy dla $b'' > b' > \frac{2}{\varepsilon}$ mamy

$$\left| \int_{b'}^{b''} \frac{\sin x}{x} \, dx \right| < \varepsilon.$$

^{*}Z twierdzenia 6.20 z I semestru mamy $\int\limits_{b'}^{b''} \frac{\sin x}{x} \, dx = \frac{1}{b'} \int\limits_{b'}^{\xi} \sin x \, dx = \frac{\cos b' - \cos \xi}{b'}, \text{ dla pewnego } \xi, \, b' < \xi < b''.$

Można udowodnić, że

$$\int_{0}^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

Przypuśćmy, że całka $\int_a^b f(x) \, dx$ ma osobliwość w b. Dla a < c < b całki $\int_a^b f(x) \, dx$ i $\int_a^b f(x) \, dx$ są jednocześnie zbieżne lub jednocześnie rozbieżne. Ponadto w przypadku zbieżności mamy

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_a^b f(x) dx.$$

Ostatni wzór otrzymujemy przez przejście graniczne $b' \to b^-$ w równości

$$\int_{a}^{b'} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b'} f(x) \, dx.$$

Definicja 1.4. Mówimy, że całka $\int_a^b f(x) dx$ z osobliwością w b jest bezwzględnie zbieżna, jeśli zbieżna jest całka $\int_a^b |f(x)| dx$.

Twierdzenie 1.5. Całka bezwzględnie zbieżna jest zbieżna.

 $Dow \acute{o}d$. Dla b' < b'' < b mamy

$$\left| \int_{b'}^{b''} f(x) \, dx \right| \leqslant \int_{b'}^{b''} |f(x)| \, dx.$$

Zatem z warunku Cauchy'ego dla całki $\int_a^{b'} |f(x)| dx$ wynika ten warunek dla całki $\int_a^{b'} f(x) dx$.

Przykład. $\int_{\pi}^{\infty} \frac{\sin x}{x^2} dx$. Sprawdzamy warunek Cauchy'ego dla całki $\int_{\pi}^{\infty} \frac{|\sin x|}{x^2} dx$.

$$\int_{b'}^{b''} \frac{|\sin x|}{x^2} \, dx \leqslant \int_{b'}^{b''} \frac{1}{x^2} \, dx = \frac{1}{b'} - \frac{1}{b''} < \frac{1}{b'}.$$

Twierdzenie 1.6 (kryterium porównawcze). Niech $0 \le f(x) \le g(x)$ dla $a \le x < b$.

(i) Ze zbieżności całki $\int\limits_a^b g(x)\,dx$ wynika zbieżność $\int\limits_a^b f(x)\,dx$. Ponadto

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx.$$

(ii) Z rozbieżności całki $\int\limits_a^b f(x)\,dx$ wynika rozbieżność $\int\limits_a^b g(x)\,dx.$

 $Dow \acute{o}d.$ (i) Dla a < b' < b'' < b mamy

$$0 \leqslant \int_{b'}^{b''} f(x) \, dx \leqslant \int_{b'}^{b''} g(x) \, dx.$$

Stąd otrzymujemy zbieżność całki. Przechodzimy do granicy $b' \to b^-$ w nierówności

$$\int_{a}^{b'} f(x) \, dx \leqslant \int_{a}^{b'} g(x) \, dx$$

aby otrzymać drugą część tezy.

Uwaga. Jeśli całka $\int_a^b f(x) dx$ z osobliwością w b jest bezwzględnie zbieżna, to

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx.$$

Rzeczywiście, mamy $-|f(x)| \le f(x) \le |f(x)|$. Po scałkowaniu otrzymujemy

$$-\int_{a}^{b'} |f(x)| \, dx \le \int_{a}^{b'} f(x) \, dx \le \int_{a}^{b'} |f(x)| \, dx.$$

Przechodzimy do granicy $b' \to b^-$ i otrzymujemy

$$-\int_{a}^{b} |f(x)| dx \leqslant \int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} |f(x)| dx.$$

Przykład. Czy całka $\int\limits_{\pi}^{\infty} \frac{\sin x}{x} \, dx$ jest bezw
ględnie zbieżna ? Mamy

$$\int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} \, dx \geqslant \frac{1}{(n+1)\pi} \int_{n\pi}^{(n+1)\pi} |\sin x| \, dx$$

$$= \frac{1}{(n+1)\pi} \int_{0}^{\pi} |\sin x| \, dx = \frac{2}{(n+1)\pi}.$$

Zatem

$$\int_{\pi}^{n\pi} \frac{|\sin x|}{x} \, dx \geqslant \frac{2}{\pi} \sum_{k=2}^{n} \frac{1}{k} \xrightarrow{n} \infty.$$

Twierdzenie 1.7. Jeśli funkcja F(x) jest ciągła w przedziale [a,b] i różniczkowalna w sposób ciągły w [a,b) oraz F'(x) = f(x) dla $a \le x < b$, to

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Dowód.

$$\int_{a}^{b'} f(x) dx = F(b') - F(a) \underset{b' \to b^{-}}{\longrightarrow} F(b) - F(a).$$

Twierdzenie 1.8. Przy założeniach poprzedniego twierdzenia z $b=\infty$ i dodatkowym założeniu, że $L=\lim_{x\to\infty}F(x)$ mamy

$$\int_{a}^{b} f(x) dx = L - F(a).$$

П

Przykłady.

(a)
$$\int_0^1 \log x \, dx = (x \log x - x) \Big|_0^1 = -1. \text{ Rolę funkcji } F(x) \text{ spełnia}$$

$$F(x) = \begin{cases} x \log x - x & 0 < x \leqslant 1, \\ 0 & x = 0. \end{cases}$$

(b)
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x}} = -\frac{2}{\sqrt{x}} \Big|_{1}^{\infty} = 2.$$

1.1 Całki niewłaściwe z funkcji nieujemnych

Przypuśćmy, że całka $\int_a^b f(x) dx$ ma osobliwość w punkcie b oraz $f(x) \ge 0$ dla $a \le x < b$. Wtedy funkcja $F(b') = \int_a^{b'} f(x) dx$ jest rosnąca. Zatem całka $\int_a^b f(x) dx$ jest zbieżna albo rozbieżna do ∞ .

Przykłady.

(a)
$$\int_{0}^{1} \frac{dx}{\sqrt{x+x^4}}$$
. Mamy

$$0 < \frac{1}{\sqrt{x+x^4}} \le \frac{1}{\sqrt{x}}, \qquad \int_0^1 \frac{dx}{\sqrt{x}} = 2\sqrt{x} \Big|_0^1 = 2.$$

Zatem rozważana całka jest zbieżna.

(b)
$$\int_{1}^{\infty} \frac{dx}{x + \sqrt{x}}$$
. Dla $x \ge 1$ mamy

$$\frac{1}{x+\sqrt{x}} \geqslant \frac{1}{2x}, \qquad \int\limits_{1}^{\infty} \frac{dx}{2x} = \log x \Big|_{1}^{\infty} = \infty.$$

Zatem
$$\int_{1}^{\infty} \frac{dx}{x + \sqrt{x}} = \infty$$
.

Uwaga. W kryterium porównawczym wystarczy, aby $0 \le f(x) \le g(x)$ dla $c \le x < b$ dla pewnego punktu c, a < c < b. Rzeczywiście, całki $\int\limits_{c}^{b} f(x) \, dx$ oraz $\int\limits_{a}^{b} f(x) \, dx$ są jednocześnie zbieżne lub jednocześnie rozbieżne.

Twierdzenie 1.9 (kryterium graniczne). Załóżmy, że funkcje ciągłe f(x) i g(x) są określone i dodatnie na przedziale [a,b) oraz

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = A > 0.$$

Wtedy całki $\int_a^b f(x) dx$ oraz $\int_a^b g(x) dx$ są jednocześnie zbieżne lub jednocześnie rozbieżne.

 $Dow \acute{o}d.$ Z założenia można znaleźć punkt $a \leqslant c < b$ taki, że dla $c \leqslant x < b$ mamy

$$\frac{1}{2}A < \frac{f(x)}{g(x)} < \frac{3}{2}A.$$

Wtedy

$$\frac{1}{2}Af(x) < g(x) < \frac{3}{2}Af(x), \qquad c \leqslant x < b.$$

Z kryterium porównawczego i z poprzedniej Uwagi otrzymujemy tezę twierdzenia. $\hfill\Box$

Przykłady.

(a)
$$\int_{0}^{1} \frac{dx}{x - \log(1+x)}$$
. Mamy

$$\lim_{x \to 0^+} \frac{\frac{1}{x - \log(1+x)}}{\frac{1}{x^2}} = \lim_{x \to 0^+} \frac{x^2}{x - \log(1+x)}$$

$$= \lim_{x \to 0^+} \frac{2x}{1 - \frac{1}{1+x}} = \lim_{x \to 0^+} 2(1+x) = 2.$$

$$\int_0^1 \frac{dx}{x^2} = -\frac{1}{x} \Big|_0^1 = \infty.$$

(b)
$$\int_{0}^{1} \frac{dx}{\log(1+\sqrt{x})}.$$

$$\lim_{x \to 0^{+}} \frac{\frac{1}{\log(1+\sqrt{x})}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{\log(1+\sqrt{x})} = \lim_{y \to 1+\sqrt{x}} \lim_{y \to 1^{+}} \frac{y-1}{\log y}$$
$$= \frac{1}{\lim_{y \to 1^{+}} \frac{\log y}{y-1}} = \frac{1}{(\log y)'}\Big|_{y=1} = 1.$$

$$\int_{0}^{1} \frac{dx}{\sqrt{x}} = 2\sqrt{x} \Big|_{0}^{1} = 2.$$

Uwaga. Jeśli w założeniach twierdzenia A=0, to ze zbieżności $\int_a^b g(x) dx$ wynika zbieżność $\int_a^b f(x) dx$. Jeśli $A=\infty$, to z rozbieżności $\int_a^b g(x) dx$ wynika rozbieżność $\int_a^b f(x) dx$.

Przykłady.

(a) Dla $\alpha, \beta > 0$ rozważamy całkę $\int_1^\infty x^\alpha e^{-x^\beta} dx$. Przyjmijmy $f(x) = x^\alpha e^{-x^\beta}$ oraz $g(x) = x^{-2}$. Wtedy

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^{\alpha+2}}{e^{x^{\beta}}} = \lim_{y \to \infty} \frac{y^{\gamma}}{e^{y}},$$

dla $\gamma = \frac{\alpha + 2}{\beta}.$ Niech $n = [\gamma] + 1.$ Wtedy

$$0 \leqslant \frac{y^{\gamma}}{e^y} \leqslant \frac{y^n}{e^y} \leqslant \frac{y^n}{\frac{y^{n+1}}{(n+1)!}} = \frac{(n+1)!}{y}.$$

Zatem $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$. Całka funkcji $g(x)=x^{-2}$ jest zbieżna na półprostej $[1,\infty)$, zatem zbieżna jest też całka $\int\limits_1^\infty x^\alpha e^{-x^\beta}\,dx$.

(b) Obracamy wykres funkcji $y = x^{-1}$ dla $x \ge 1$ wokół osi OX. Otrzymujemy tzw. trąbę Gabriela. Obliczamy objętość obszaru ograniczonego przez trąbę przyjmując, że x jest liczone w metrach.

$$V = \pi \int_{1}^{\infty} \frac{dx}{x^2} = -\frac{\pi}{x} \Big|_{1}^{\infty} = \pi \, (\text{m}^3).$$

Obliczamy pole powierzchni[†].

$$S = 2\pi \int_{1}^{\infty} \frac{1}{x} \sqrt{1 + \frac{1}{x^4}} \, dx \geqslant 2\pi \int_{1}^{\infty} \frac{dx}{x} = 2\pi \log x \Big|_{1}^{\infty} = \infty.$$

Zagadka. Wyobraźmy sobie, że trąba wykonana jest z wsiąkliwej białej bibuły. Nalewamy do trąby π metrów sześciennych czarnego atramentu. Następnie wylewamy atrament. Wewnętrzna strona trąby zostanie zabarwiona na czarno. Czyli za pomocą skończonej ilości atramentu zabarwiliśmy nieskończoną powierzchnię. Jak wyjaśnić ten paradoks?

1.2 Całki i szeregi

Rozważamy całkę niewłaściwą $\int_a^b f(x) dx$ z osobliwością w $b \leq \infty$. Niech $a = b_0 < b_1 < b_2 < \ldots < b_n \ldots$, oraz $b_n \xrightarrow{n} b$.

Twierdzenie 1.10.

- (i) Jeśli całka $\int_a^b f(x) dx$ jest zbieżna, to zbieżny jest szereg całek właściwych $\sum_{n=1}^{\infty} \int_{b_{n-1}}^{b_n} f(x) dx.$
- (ii) Jeśli $f(x) \ge 0$, to implikacja odwrotna jest również prawdziwa.

Dowód. (i) Obliczamy sumę częściową szeregu.

$$S_n = \sum_{k=1}^n \int_{b_{k-1}}^{b_k} f(x) \, dx = \int_a^{b_n} f(x) \, dx \xrightarrow{n} \int_a^b f(x) \, dx.$$

$$^{\dagger}S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + f'(x)^2} \, dx$$

(ii) Niech $f(x) \ge 0$. Dla zbieżności całki $\int_a^b f(x) dx$ wystarczy pokazać, że całki $\int_a^{b'} f(x) dx$ są wspólnie ograniczone, niezależnie od b' < b. Niech b' < b. Ponieważ $b_n \to b$, to $b_{n_0} > b'$ dla pewnego wskaźnika n_0 . Wtedy

$$\int_{a}^{b'} f(x) dx \leqslant \int_{a}^{b_{n_0}} f(x) dx = \sum_{k=1}^{n_0} \int_{b_{k-1}}^{b_k} f(x) dx \leqslant \sum_{k=1}^{\infty} \int_{b_{k-1}}^{b_k} f(x) dx.$$

Twierdzenie 1.11. Załóżmy, że f(x) jest dodatnią funkcją malejącą na przedziale $[1,\infty)$. Wtedy zbieżność całki $\int\limits_{1}^{\infty} f(x) \, dx$ jest równoważna zbieżno-

ści szeregu $\sum_{n=1}^{\infty} f(n)$. Ponadto dla $I_n = \int_1^n f(x) dx$ oraz $S_n = \sum_{i=1}^{n-1} f(n)$ ciąg liczb $S_n - I_n$ jest zbieżny.

Dowód. Z nierówności

$$f(k) \leqslant \int_{k-1}^{k} f(x) dx \leqslant f(k-1)$$
 (1.1)

otrzymujemy, że zbieżność szeregu $\sum_{k=1}^{\infty} f(k)$ jest równoważna ze zbieżnością szeregu $\sum_{k=1}^{\infty} \int\limits_{k-1}^{k} f(x)\,dx$. Z kolei zbieżność szeregu całek jest równoważna ze zbieżnością całki $\int\limits_{1}^{\infty} f(x)\,dx$.

Zsumujmy (1.1) dla $k = 2, 3, \dots, n$. Wtedy

$$\underbrace{f(2) + f(3) + \ldots + f(n)}_{S_n - f(1) + f(n)} \leqslant \int_{1}^{n} f(x) \, dx \leqslant \underbrace{f(1) + f(2) + \ldots + f(n-1)}_{S_n}.$$

Otrzymujemy więc $0 \leqslant S_n - I_n \leqslant f(1) - f(n) \leqslant f(1)$. Ciąg $S_n - I_n$ jest rosnący. Rzeczywiście, mamy $f(n) > \int\limits_n^{n+1} f(x) \, dx$. To oznacza, że $S_{n+1} - S_n > I_{n+1} - I_n$, czyli $S_{n+1} - I_{n+1} > S_n - I_n$. Ciąg $S_n - I_n$ jest zatem zbieżny. \square

Przykłady.

(a) $f(x) = x^{-\alpha}$, $\alpha > 0$. Mamy

$$\int_{1}^{\infty} \frac{dx}{x^{\alpha}} = \begin{cases} \log x & \alpha = 1, \\ \frac{1}{1-\alpha} x^{1-\alpha} & \alpha \neq 1 \end{cases} = \begin{cases} \infty & 0 < \alpha \leqslant 1, \\ \frac{1}{\alpha-1} & \alpha > 1. \end{cases}$$

Zatem szereg $\sum \frac{1}{n^{\alpha}}$ jest zbieżny tylko dla $\alpha>1.$

(b)
$$f(x) = \frac{1}{x \log^{\alpha} x}, \ \alpha > 0, \ x \ge 2.$$
 Mamy

$$\int_{2}^{\infty} \frac{dx}{x \log^{\alpha} x} = \begin{cases} \log \log x & \alpha = 1, \\ \frac{1}{1 - \alpha} (\log x)^{1 - \alpha} & \alpha \neq 1 \end{cases} \Big|_{2}^{\infty} = \begin{cases} \infty & 0 < \alpha \leqslant 1, \\ \frac{1}{\alpha - 1} (\log 2)^{1 - \alpha} & \alpha > 1. \end{cases}$$

(c) $f(x) = \frac{1}{x}$. Mamy

$$S_n - I_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \int_1^n \frac{1}{x} dx$$
$$= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \log n \xrightarrow{n} c,$$

gdzie c jest stałą Eulera (c = 0, 57721...).

Twierdzenie 1.12. Jeśli funkcja g(x) jest nieujemna i malejąca w przedziale [a,b) oraz $\lim_{x\to b^-}g(x)=0$, natomiast dla $a\leqslant b'< b$ całki $\int\limits_a^b f(x)\,dx$ są wspólnie ograniczone, to całka $\int\limits_a^b f(x)g(x)\,dx$ jest zbieżna.

 $Dow \acute{o}d$. Z założenia $\left|\int\limits_a^{b'} f(x)\,dx\right| \leqslant M$ dla pewnej stałej Mi wszystkich $a \leqslant b' < b$. Sprawdzamy warunek Cauchy'ego zbieżności całki $\int\limits_a^b f(x)g(x)\,dx$. Dla $a \leqslant b' < b'' < b$, na podstawie twierdzenia o wartości średniej, mamy

$$\int_{b'}^{b''} f(x)g(x) \, dx = g(b') \int_{b'}^{\xi} f(x) \, dx$$

15

dla pewnej wartości $\xi,\,b'<\xi< b''.$ Zatem

$$\left| \int_{b'}^{b''} f(x)g(x) \, dx \right| = g(b') \left| \int_{a}^{\xi} f(x) \, dx - \int_{a}^{b'} f(x) \, dx \right|$$

$$\leqslant g(b') \left\{ \left| \int_{a}^{\xi} f(x) \, dx \right| + \left| \int_{a}^{b'} f(x) \, dx \right| \right\} \leqslant 2Mg(b').$$

Przykłady.

(a) Badamy zbieżność całki Dirichleta $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$. Wystarczy zbadać zbież-

ność całki $\int_{\pi/2}^{\infty} \frac{\sin x}{x} dx$. Przyjmijmy $g(x) = \frac{1}{x}$ oraz $f(x) = \sin x$. Wtedy

$$\left| \int_{\pi/2}^{b} \sin x \, dx \right| = \left| \cos(\pi/2) - \cos b \right| \leqslant 1.$$

Zatem całka $\int\limits_0^\infty \frac{\sin x}{x}\,dx$ jest zbieżna. Można udowodnić, że wartość całki wynosi $\pi/2$.

(b) $\int\limits_0^\infty \sin(x^2)\,dx$ nosi nazwę całki Fresnela. Zbadamy zbieżność całki $\int\limits_{\sqrt{\pi/2}}^\infty \sin(x^2)\,dx$.

Przyjmujemy $f(x) = 2x \sin(x^2)$ oraz $g(x) = \frac{1}{2x}$. Wtedy

$$\left| \int_{\sqrt{\pi/2}}^{b} 2x \sin(x^2) \, dx \right| = \left| -\cos(x^2) \right|_{\sqrt{\pi/2}}^{b} = |\cos(b^2)| \leqslant 1.$$

1.3 Całki niewłaściwe z osobliwością w kilku punktach

Definicja 1.13. Mówimy, że całka $\int_a^b f(x) dx$ ma osobliwość w punktach a i b, jeśli całki $\int_a^c f(x) dx$ i $\int_c^b f(x) dx$ mają osobliwości w punktach a i b, odpowiednio, dla a < c < b. Mówimy, że całka $\int_a^b f(x) dx$ jest zbieżna, jeśli zbieżne są całki $\int_a^c f(x) dx$ i $\int_c^b f(x) dx$. Określamy wtedy

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Wartość całki po lewej stronie nie zależy od wyboru punktu c.

Przykład. $\int_{0}^{\infty} \frac{dx}{x^5 + x^2 + \sqrt{x}}$. Badamy całki $\int_{0}^{1} \frac{dx}{x^5 + x^2 + \sqrt{x}}$ oraz $\int_{1}^{\infty} \frac{dx}{x^5 + x^2 + \sqrt{x}}$. Mamy

$$0 < \frac{1}{x^5 + x^2 + \sqrt{x}} < \frac{1}{\sqrt{x}}, \qquad 0 < \frac{1}{x^5 + x^2 + \sqrt{x}} < \frac{1}{x^5}$$

oraz

$$\int_{0}^{1} \frac{dx}{\sqrt{x}} = 2, \qquad \int_{1}^{\infty} \frac{dx}{x^5} = \frac{1}{4}.$$

Definicja 1.14. Mówimy, że całka $\int_a^b f(x) dx$ ma osobliwość w punktach a, b $i \ c, \ a < c < b \ jeśli całki <math>\int_a^c f(x) dx \ i \int_c^c f(x) dx$ mają osobliwości w punktach a $i \ c \ oraz \ w \ c \ i \ b, \ odpowiednio.$ Jeśli obie całki są zbieżne, to określamy

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Przykład. $\int_{-\infty}^{\infty} \frac{dx}{\sqrt[3]{x^2}(x^2+1)}$. Mamy trzy punkty osobliwe $-\infty$, 0 oraz ∞ .

Funkcja podcałkowa jest parzysta, więc wystarczy zbadać całkę $\int_{0}^{\infty} \frac{dx}{\sqrt[3]{x^2}(x^2+1)}$.

Mamy

$$0 < x \le 1, \qquad \frac{1}{\sqrt[3]{x^2}(x^2 + 1)} \le \frac{1}{\sqrt[3]{x^2}}, \qquad \int_0^1 \frac{dx}{\sqrt[3]{x^2}} = 3;$$
$$x \ge 1, \qquad \frac{1}{\sqrt[3]{x^2}(x^2 + 1)} \le \frac{1}{x^2}, \qquad \int_1^\infty \frac{dx}{x^2} = 1.$$

Uwaga. Mamy $\int_{-a}^{a} \sin x \, dx = 0$. Ale granica całek $\int_{a}^{b} \sin x \, dx$, gdy $a \to -\infty$, $b \to \infty$ nie istnieje, bo

$$\int_{a}^{b} \sin x \, dx = \cos a - \cos b.$$

Określa się słabszą zbieżność całki $\int\limits_{-\infty}^{\infty} f(x)\,dx$ w sensie wartości głównej. Mówimy, że pv $\int\limits_{-\infty}^{\infty} f(x)\,dx$ jest zbieżna, jeśli istnieje granica $\lim\limits_{a\to\infty}\int\limits_{-a}^{a} f(x)\,dx$. Dla porównania, zbieżność całki w zwykłym sensie oznacza istnienie granicy $\lim\limits_{b\to\infty}\int\limits_{-a}^{b} f(x)\,dx$.

Rozważmy całkę $\int_{-1}^1 f(x) dx$ z osobliwością w punkcie 0. Mówimy, że całka pv $\int_{1}^1 f(x) dx$ jest zbieżna, jeśli istnieje granica

$$\lim_{\varepsilon \to 0^+} \left[\int_{-1}^{-\varepsilon} f(x) \, dx + \int_{\varepsilon}^{1} f(x) \, dx \right].$$

Zwykła zbieżność tej całki oznaczałaby istnienie granicy

$$\lim_{\stackrel{\varepsilon \to 0^+}{\eta \to 0^+}} \left[\int_{-1}^{-\eta} f(x) \, dx + \int_{\varepsilon}^{1} f(x) \, dx \right].$$

Przykład. pv $\int_{-1}^{1} \frac{dx}{x} = 0$, bo $\int_{-1}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^{1} \frac{dx}{x} = 0$. Całka nie jest zbieżna w

zwykłym sensie, bo całki $\int_{0}^{1} \frac{dx}{x}$ i $\int_{-1}^{0} \frac{dx}{x}$ nie są zbieżne.

2 Funkcje wielu zmiennych

Będziemy rozważać funkcje określone na podzbiorze $A \subseteq \mathbb{R}^n$ o wartościach rzeczywistych. Większość teorii dotyczy n=2 lub n=3. Punkty w \mathbb{R}^2 , \mathbb{R}^3 lub \mathbb{R}^n będziemy oznaczać odpowiednio przez

$$(x,y), (x,y,z), x = (x_1, x_2, \dots, x_n).$$

Przykłady.

$$f(x,y)=xy$$
 pole prostokąta o bokach $x,y>0,$ $f(x,y,z)=xyz$ objętość prostopadłościanu, $f(x,y,z)=rac{c}{\sqrt{x^2+y^2+z^2}},$ potencjał grawitacyjny, $(x,y,z)\neq 0.$

W przestrzeni \mathbb{R}^n rozważamy metrykę

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2} = ||x - y||, \text{ gdzie } ||x|| = \sqrt{\sum_{k=1}^{n} x_k^2}.$$

Twierdzenie 2.1. $||x + y|| \le ||x|| + ||y||$.

Dowód. Mamy

$$||x+y||^2 = \sum_{k=1}^n (x_k + y_k)^2 = \sum_{k=1}^n x_k^2 + \sum_{k=1}^n y_k^2 + 2\sum_{k=1}^n x_k y_k,$$

$$(||x|| + ||y||)^2 = ||x||^2 + ||y||^2 + 2||x|| ||y|| = \sum_{k=1}^n x_k^2 + \sum_{k=1}^n y_k^2 + 2||x|| ||y||.$$

Wystarczy udowodnić, że

$$\sum_{k=1}^{n} x_k y_k \leqslant \sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} y_k^2}.$$
 (2.1)

W tym celu rozważamy funkcję

$$f(\lambda) = \frac{1}{2} \sum_{k=1}^{n} (x_k + \lambda y_k)^2.$$

Funkcja ta jest nieujemnym trójmianem kwadratowym

$$f(\lambda) = \frac{1}{2} \left(\sum_{k=1}^{n} y_k^2 \right) \lambda^2 + \left(\sum_{k=1}^{n} x_k y_k \right) \lambda + \frac{1}{2} \sum_{k=1}^{n} y_k^2.$$

Zatem wyróżnik Δ tego trójmianu jest niedodatni. Ale

$$\Delta = \left(\sum_{k=1}^{n} x_k y_k\right)^2 - \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right) \le 0.$$

Stąd otrzymujemy (2.1).

Wniosek 2.2 (Nierówność trójkata).

$$d(x,z) \leqslant d(x,y) + d(y,z).$$

Dowód.

$$d(x,z) = \|x-z\| = \|(x-y) + (y-z)\| \leqslant \|x-y\| + \|y-z\| = d(x,y) + d(y,z).$$

Uwaga. Z wniosku wynika, że

$$|d(x,z) - d(y,z)| \leqslant d(x,y). \tag{2.2}$$

Rzeczywiście, mamy

$$d(x,z) \leqslant d(x,y) + d(y,z), \qquad d(y,z) \leqslant d(y,x) + d(x,z).$$

Zatem

$$d(x,z) - d(y,z) \leqslant d(x,y), \qquad d(y,z) - d(x,z) \leqslant d(x,y).$$

Stąd otrzymujemy (2.2).

Definicja 2.3. Podzbiór $A \subseteq \mathbb{R}^2$ nazywamy otwartym, jeśli dla każdego punktu (x_0, y_0) w A można znaleźć liczbę $\delta > 0$ taką, że jeśli $d((x, y), (x_0, y_0)) < \delta$, to (x, y) leży w A. Warunek $d((x, y), (x_0, y_0)) < \delta$, oznacza, że

$$(x - x_0)^2 + (y - y_0)^2 < \delta^2.$$

Czyli koło otwarte o środku w (x_0, y_0) i promieniu δ leży w A.

Przykład. Zbiory $A = \{(x,y): x^2 + y^2 < 1\}, B = \{(x,y): x^2 + y^2 > 1\}$ są otwarte. Rzeczywiście, jeśli $x_0^2 + y_0^2 < 1$, to możemy przyjąć $\delta = 1 - \sqrt{x_0^2 + y_0^2}$. Dla $x_0^2 + y^2 > 1$ przyjmujemy $\delta = \sqrt{x_0^2 + y_0^2} - 1$.

2.0.1 Granica funkcji wielu zmiennych

Przypuśćmy, że funkcja f(x,y) jest określona w kole otwartym o środku w (x_0, y_0) , być może z wyłączeniem punktu (x_0, y_0) . Mówimy, że funkcja f(x, y) ma granicę L w punkcie (x_0, y_0) jeśli wartości f(x, y) leżą blisko wartości L, gdy punkt (x, y) leży blisko (x_0, y_0) , ale $(x, y) \neq (x_0, y_0)$. Tzn.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \ \{ d((x, y), (x_0, y_0)) < \delta \implies |f(x, y) - L| < \varepsilon \}$$

Piszemy wtedy $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L.$

Przykłady.

- (a) $\lim_{(x,y)\to(x_0,y_0)} x = x_0$, $\lim_{(x,y)\to(x_0,y_0)} y = y_0$.
- (b) $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$. Oznaczmy $f(x,y)=\frac{x^2-y^2}{x^2+y^2}$. Wtedy f(x,0)=1, oraz f(0,y)=-1. Zatem granica nie istnieje.
- (c) Niech $g(x,y) = [f(x,y)]^2$, dla f(x,y) z przykładu (b). Wtedy g(x,0) = g(0,y) = 1, ale g(x,x) = 0. Stąd granica $\lim_{(x,y)\to(0,0)} g(x,y)$ nie istnieje.
- (d) $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$. Mamy $|x^3+y^3| \leq |x|x^2+|y|y^2 \leq (|x|+|y|)(x^2+y^2).$

Zatem

$$\frac{|x^3 + y^3|}{x^2 + y^2} \leqslant x^2 + y^2 \underset{(x,y) \to (0,0)}{\longrightarrow} 0.$$

Można też przeprowadzić rozumowanie z użyciem współrzędnych biegunowych. Dla $x=r\cos\theta$ i $y=r\sin\theta$ warunek $(x,y)\to(0,0)$ jest równoważny warunkowi $r\to0^+$. Wtedy

$$\frac{x^3 + y^3}{x^2 + y^2} = \frac{r^3(\cos^3 \theta + \sin^3 \theta)}{r^2} = r(\cos^3 \theta + \sin^3 \theta) \xrightarrow[r \to 0^+]{} 0,$$

bo $|\cos^3 \theta + \sin^3 \theta| \le 2$.

Zadanie. Wskazać funkcję f(x,y) taką, że $\lim_{t\to 0^+} f(ta,tb)=0$ dla dowolnego wektora $(a,b)\neq (0,0)$, ale granica funkcji f(x,y) w punkcie (0,0) nie istnieje.

Działania arytmetyczne na granicach są spełnione tak jak dla funkcji jednej zmiennej. Na przykład poniżej korzystamy ze wszystkich takich działań.

$$\lim_{(x,y)\to(-1,3)}\frac{x^3+y^3}{x^2+y^2} = \frac{(-1)^3+3^3}{(-1)^2+3^2} = 2, 6.$$

Prawdziwe jest też twierdzenie o podstawianiu.

Twierdzenie 2.4. Jeśli $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ oraz funkcja g(t) jest ciągła w punkcie L, to

$$\lim_{(x,y)\to(x_0,y_0)} g(f(x,y)) = g(L) = g\left(\lim_{(x,y)\to(x_0,y_0)} f(x,y)\right).$$

Przykład.

$$\lim_{(x,y)\to(e,1)} \log \frac{y}{x} = \lim_{t=\frac{y}{x}} \log t = \log \frac{1}{e} = -1.$$

Definicja 2.5. Mówimy, że funkcja f(x,y) jest ciągła w (x_0,y_0) jeśli jest określona w pewnym kole wokół (x_0,y_0) oraz $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$.

Przykład. Funkcja $f(x,y)=\sin\frac{xy}{1+x^2+y^2}$ jest ciągła w każdym punkcie. Dla zbioru $A\subseteq\mathbb{R}^2$ i punktu p mogą zdarzyć się dwa przypadki.

- (1) p leży w A z pewnym kołem wokół siebie. Tzn. p należy do wnętrza zbioru A.
- (2) Każde koło o środku w p zawiera punkty ze zbioru A i spoza zbioru A. Tzn. p leży na brzegu zbioru A.

Wnętrze i brzeg zbioru A oznaczamy symbolami int A oraz bd A, odpowiednio.

Przykład. $A = \{(x, y) : |x| + |y| \le 1\}$. Wtedy int $A = \{(x, y) : |x| + |y| < 1\}$ oraz bd $A = \{(x, y) : |x| + |y| = 1\}$.

Mówimy, że funkcja f(x,y) jest ciągła na zbiorze A jeśli f jest określona na A, ciągła w każdym punkcie wewnętrznym oraz dla punktów brzegowych (x_0,y_0) spełnia

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in A}} f(x,y) = f(x_0,y_0).$$

Przykład. $A = [0,1] \times [0,2]$ oraz

$$f(x,y) = \begin{cases} 4 - x - y & (x,y) \in A, \\ 0 & (x,y) \notin A. \end{cases}$$

Funkcja f jest ciągła na A, tzn. gdy rozważamy ją tylko na zbiorze A. Ale f nie jest ciągła na \mathbb{R}^2 .

3 Pochodne cząstkowe

Definicja 3.1. Załóżmy, że funkcja f(x,y) jest określona w otoczeniu punktu (x_0, y_0) . Pochodną cząstkową względem x funkcji f w punkcie (x_0, y_0) określamy wzorem

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}.$$

Podobnie określamy pochodną cząstkową względem y

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Aby obliczyć $\frac{\partial f}{\partial x}(x_0, y_0)$ i $\frac{\partial f}{\partial y}(x_0, y_0)$ wystarczy znać wartości f(x, y) na fragmentach dwu prostych przechodzących przez punkt (x_0, y_0) .

Uwaga.

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{d}{dx} f(x, y_0) \Big|_{x=x_0}, \qquad \frac{\partial f}{\partial y}(x_0, y_0) = \frac{d}{dy} f(x_0, y) \Big|_{y=y_0}.$$

Przykład. $f(x,y) = 24xy - 5x^2y$. Chcemy obliczyć obie pochodne cząstkowe w punkcie (1,2). Możemy to zrobić na dwa sposoby.

(a) Obliczamy $\frac{\partial f}{\partial x}$ i $\frac{\partial f}{\partial y}$ w dowolnym punkcie i po wykonaniu obliczeń podstawiamy (1,2). Mamy

$$\frac{\partial f}{\partial x} = 24y - 10xy, \qquad \frac{\partial f}{\partial y} = 24x - 5x^2.$$

Zatem

$$\frac{\partial f}{\partial x}(1,2) = 24 \cdot 2 - 10 \cdot 2 = 28, \qquad \frac{\partial f}{\partial y}(1,2) = 24 \cdot 1 - 5 \cdot 1^2 = 19.$$

(b) Obliczamy f(x,2) oraz f(1,y).

$$f(x,2) = 48x - 10x^2$$
, $f(1,y) = 24y - 5y = 19y$.

Dalej

$$\frac{\partial f}{\partial x}(1,2) = \frac{d}{dx}f(x,2)\Big|_{x=1} = \frac{d}{dx}(48x - 10x^2)\Big|_{x=1} = (48 - 20x)\Big|_{x=1} = 28,$$

$$\frac{\partial f}{\partial y}(1,2) = \frac{d}{dy}f(1,y)\Big|_{y=2} = \frac{d}{dy}(19y)\Big|_{y=2} = 19.$$

Przykład.

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & x = y = 0. \end{cases}$$
(3.1)

Dla $(x, y) \neq (0, 0)$ obliczamy $\frac{\partial f}{\partial x}$.

$$\frac{\partial f}{\partial x} = \frac{(3x^2y - y^3)(x^2 + y^2) - (x^3y - xy^3)2x}{(x^2 + y^2)^2} = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}.$$
 (3.2)

Ze wzoru f(y,x) = -f(x,y) otrzymujemy

$$\frac{\partial f}{\partial y} = -\frac{xy^4 + 4x^3y^2 - x^5}{(x^2 + y^2)^2}. (3.3)$$

Ponieważ wartość f(0,0) jest określona osobno pochodne cząstkowe w punkcie (0,0) musimy obliczyć inaczej. Mamy f(x,0) = 0 oraz f(0,y) = 0. Zatem

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0. \tag{3.4}$$

Twierdzenie 3.2. Załóżmy, że funkcja f(x,y) ma pochodną cząstkową względem x w prostokącie $(a,b) \times (c,d)$. Wtedy dla punktów (x_1,y) i (x_2,y) z tego prostokąta mamy

$$f(x_2, y) - f(x_1, y) = \frac{\partial f}{\partial x}(\zeta, y) (x_2 - x_1),$$

dla pewnej liczby ζ leżącej pomiędzy x_1 i x_2 .

Podobnie jeśli funkcja f(x,y) ma pochodną cząstkową względem y, to

$$f(x, y_2) - f(x, y_1) = \frac{\partial f}{\partial y}(\eta, y) (y_2 - y_1),$$

dla pewnej liczby η leżącej pomiędzy y_1 i y_2 .

 $Dow \acute{o}d$. Rozważamy funkcję jednej zmiennej $x\mapsto f(x,y)$ na przedziale (a,b). Z twierdzenia Lagrange'a otrzymujemy

$$f(x_2, y) - f(x_1, y) = \frac{d}{dx} f(x, y) \Big|_{x=\zeta} (x_2 - x_1) = \frac{\partial f}{\partial x} (\zeta, y) (x_2 - x_1).$$

3.1 Wyższe pochodne cząstkowe

Dla funkcji f(x,y) pochodne cząstkowe $\frac{\partial f}{\partial x}$ i $\frac{\partial f}{\partial y}$ są znowu funkcjami dwu zmiennych. Możemy więc obliczać pochodne cząstkowe tych funkcji. Następne pochodne cząstkowe oznaczamy symbolami

$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y^2}$,

przy czym w pochodnych mieszanych wykonujemy różniczkowanie w kolejności od prawej do lewej strony

Przykład. $f(x,y) = \sin(xy^2)$.

$$\frac{\partial f}{\partial x} = y^2 \cos(xy^2), \qquad \frac{\partial f}{\partial y} = 2xy \cos(xy^2),$$

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= -y^4 \sin(xy^2), & \frac{\partial^2 f}{\partial y \partial x} &= 2y \cos(xy^2) - 2xy^3 \sin(xy^2), \\ \frac{\partial^2 f}{\partial x \partial y} &= 2y \cos(xy^2) - 2xy^3 \sin(xy^2), & \frac{\partial^2 f}{\partial y^2} &= 2x \cos(xy^2) - 4x^2y^2 \sin(xy^2). \end{split}$$

Zauważmy, że pochodne mieszane są w tym przypadku równe.

Przykład. Rozważmy ponownie funkcję f(x, y) z (3.1). Obliczymy pochodne mieszane w (0,0). Ze wzorów (3.2), (3.3) i (3.4) mamy

$$\frac{\partial f}{\partial x}(0,y) = -y, \qquad \frac{\partial f}{\partial y}(x,0) = x.$$

Zatem

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1, \qquad \frac{\partial^2 f}{\partial x \partial y}(0,0) = 1.$$

Uwaga. Z przykładu wynika, że pochodne mieszane nie muszą być sobie równe. Niedługo udowodnimy, że jeśli pochodne te są ciągłe w danym punkcie, to są w tym punkcie równe sobie.

3.2 Reguła łańcucha

Dla funkcji jednej zmiennej jeśli y = g(u) oraz u = f(x), to

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Dla funkcji wielu zmiennych jest wiele możliwości złożenia funkcji.

(a) Niech z = f(x,y) oraz $x = g_1(t)$, $y = g_2(t)$. Otrzymujemy $z = f(g_1(t), g_2(t))$. Wtedy

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt},$$

gdzie $\frac{\partial z}{\partial x}$ i $\frac{\partial z}{\partial y}$ są obliczane w x i y a $\frac{dx}{dt}$, $\frac{dy}{dt}$ i $\frac{dz}{dt}$ są obliczane w t. Po wykonaniu obliczeń trzeba podstawić $x=g_1(t)$ oraz $y=g_2(t)$, tzn. wynik ma być zapisany w języku zmiennej t.

(b) z = f(x, y) oraz $x = g_1(u, v), y = g_2(u, v)$. Tzn. $z = f(g_1(u, v), g_2(u, v))$. Wtedy

$$\begin{split} \frac{\partial z}{\partial u} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}, \\ \frac{\partial z}{\partial v} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}. \end{split}$$

Pochodne $\frac{\partial z}{\partial x}$ i $\frac{\partial z}{\partial y}$ są obliczane w (x,y) a pozostałe w (u,v). Wynik ma być zapisany w języku zmiennych u i v.

Przykład. $z = x \log y, \ x = u^2 - v^2, \ y = u^2 + v^2.$

$$\begin{split} \frac{\partial z}{\partial u} &= \log y \cdot 2u + \frac{x}{y} \cdot 2u = 2u \log(u^2 + v^2) + 2u \frac{u^2 - v^2}{u^2 + v^2}, \\ \frac{\partial z}{\partial v} &= \log y \cdot (-2v) + \frac{x}{y} \cdot 2v = -2v \log(u^2 + v^2) + 2v \frac{u^2 - v^2}{u^2 + v^2}. \end{split}$$

 $Dowód\ reguly\ (b)$. Zakładamy, że funkcje $\frac{\partial f}{\partial x}$ oraz $\frac{\partial f}{\partial y}$ są ciągłe. Mamy $z(u,v)=f(g_1(u,v),g_2(u,v))$. Przyjmujemy oznaczenia

$$x = g_1(u, v)$$
 $y = g_2(u, v),$
 $s = g_1(u + h, v) - g_1(u, v),$ $t = g_2(u + h, v) - g_2(u, v).$

Wielkości s i t zależą od h.

$$\frac{\partial z}{\partial u}(u,v) = \lim_{h \to 0} \frac{f(g_1(u+h,v), g_2(u+h,v)) - f(g_1(u,v), g_2(u,v))}{h}$$
$$\lim_{h \to 0} \frac{f(x+s,y+t) - f(x,y+t) + f(x,y+t) - f(x,y)}{h}$$

Z Twierdzenia 3.2 mamy

$$f(x+s,y+t) - f(x,y+t) = \frac{\partial f}{\partial x}(x+\theta_1 s, y+t) s,$$

$$f(x,y+t) - f(x,y) = \frac{\partial f}{\partial y}(x,y+\theta_2 t) t,$$

dla pewnych $0 < \theta_1, \theta_2 < 1$. Gdy $h \to 0$, to $s \to 0$ oraz $t \to 0$. Zatem

$$\frac{\partial f}{\partial x}(x+\theta_1 s, y+t) \xrightarrow[h\to 0]{} \frac{\partial f}{\partial x}(x,y) = \frac{\partial z}{\partial x},$$
$$\frac{\partial f}{\partial y}(x, y+\theta_2 t) \xrightarrow[h\to 0]{} \frac{\partial f}{\partial y}(x,y) = \frac{\partial z}{\partial y}.$$

Dalej

$$\frac{s}{h} = \frac{g_1(u+h,v,) - g(u,v)}{h} \xrightarrow[h \to 0]{} \frac{\partial g_1}{\partial u}(u,v) = \frac{\partial x}{\partial u},$$

$$\frac{t}{h} = \frac{g_2(u+h,v,) - g(u,v)}{h} \xrightarrow[h \to 0]{} \frac{\partial g_2}{\partial u}(u,v) = \frac{\partial y}{\partial u}.$$

Reasumując, w granicy otrzymamy $\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$

Przykład. $w = \cos(xyz^2)$ oraz $x = \sin t, y = t^2, z = e^t$.

$$\begin{split} \frac{dw}{dt} &= \frac{\partial w}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dt} \\ &= -\sin(xyz^2)yz^2\cos t - \sin(xyz^2)xz^2\,2t - -\sin(xyz^2)2xyz\,e^t \\ &= -\sin(t^2e^{2t}\sin t)\,[t^2e^{2t}\cos t + 2te^{2t}\sin t + 2t^2e^{2t}\sin t]. \end{split}$$

Przykład. Góra piasku w kształcie stożka rosnie w tempie 4 litry na sekundę, a promień podstawy r rośnie w tempie e^{-r} decymetrów na sekundę. W jakim tempie rośnie wysokość w momencie, gdy V=601 oraz r=6 dcm?

Mamy $V = \frac{1}{3}\pi r^2 h$. Zatem

$$h = \frac{3}{\pi} \frac{V}{r^2}.$$

Wielkości h, V i r są funkcjami czasu t. Otrzymujemy

$$\frac{dh}{dt} = \frac{\partial h}{\partial V} \frac{dV}{dt} + \frac{\partial h}{\partial r} \frac{dr}{dt} = \frac{3}{\pi} \frac{1}{r^2} \cdot 4 - \frac{3}{\pi} \frac{2V}{r^3} \cdot e^{-r}.$$

Niech t_0 oznacza moment czasu, gdy $V = 60 \,\mathrm{l}$ oraz $r = 6 \,\mathrm{dcm}$. Wtedy

$$\frac{dh}{dt}\Big|_{t=t_0} = \frac{3}{\pi} \frac{1}{6^2} \cdot 4 - \frac{3}{\pi} \frac{2 \cdot 60}{6^3} \cdot e^{-6} \text{ (dcm/sek)}.$$

Ile wynosi r jeśli $\frac{dr}{dt} = e^{-r}$?

3.3 Różniczkowalność funkcji wielu zmiennych

Definicja 3.3. Mówimy, że funkcja f(x,y) jest różniczkowalna w punkcie (x_0,y_0) , jeśli istnieją pochodne cząstkowe $a=\frac{\partial f}{\partial x}(x_0,y_0)$, $b=\frac{\partial f}{\partial y}(x_0,y_0)$ oraz

$$\lim_{(h_1,h_2)\to(0,0)} \frac{|f(x_0+h_1,y_0+h_2)-f(x_0,y_0)-ah_1-bh_2|}{\sqrt{h_1^2+h_2^2}} = 0.$$

Uwagi.

- (a) Przyrost argumentu od (x_0, y_0) do $(x_0 + h_1, y_0 + h_2)$ wynosi (h_1, h_2) . Wielkość $\sqrt{h_1^2 + h_2^2}$ jest więc długością tego przyrostu.
- (b) Dla funkcji jednej zmiennej różniczkowalność oznacza, że

$$\frac{f(x_0+h)-f(x_0)}{h} \xrightarrow[h\to 0]{} f'(x_0) =: a.$$

Tzn.

$$\lim_{h \to 0} \frac{|f(x_0 + h) - f(x_0) - ah|}{|h|} = 0.$$

Twierdzenie 3.4. Załóżmy, że dla funkcji f(x,y) pochodne cząstkowe $\frac{\partial f}{\partial x}$ i $\frac{\partial f}{\partial y}$ są ciągłe w punkcie (x_0, y_0) . Wtedy funkcja f(x,y) jest różniczkowalna w punkcie (x_0, y_0) .

Dowód.

$$f(x_{0} + h_{1}, y + h_{2}) - f(x_{0}, y_{0}) - ah_{1} - bh_{2}$$

$$= f(x_{0} + h_{1}, y) - f(x_{0}, y_{0}) - ah_{1} + f(x_{0} + h_{1}, y + h_{2}) - f(x_{0} + h_{1}, y) - bh_{2}$$

$$= \frac{\partial f}{\partial x}(x_{0} + \theta_{1}h_{1}, y_{0})h_{1} - \frac{\partial f}{\partial x}(x_{0}, y_{0})h_{1} + \frac{\partial f}{\partial y}(x_{0} + h_{1}, y_{0} + \theta_{2}h_{2})h_{2} - \frac{\partial f}{\partial y}(x_{0}, y_{0})h_{2}$$

$$= \underbrace{\left[\frac{\partial f}{\partial x}(x_{0} + \theta_{1}h_{1}, y_{0}) - \frac{\partial f}{\partial x}(x_{0}, y_{0})\right]}_{A} h_{1} + \underbrace{\left[\frac{\partial f}{\partial y}(x_{0} + h_{1}, y_{0} + \theta_{2}h_{2}) - \frac{\partial f}{\partial y}(x_{0}, y_{0})\right]}_{B} h_{2}$$

Mamy

$$|Ah_1 + Bh_2| \le |A||h_1| + |B||h_2| \le |A|\sqrt{h_1^2 + h_2^2} + |B|\sqrt{h_1^2 + h_2^2}$$

= $(|A| + |B|)\sqrt{h_1^2 + h_2^2}$.

Zatem

$$\frac{|f(x_0 + h_1, y + h_2) - f(x_0, y_0) - ah_1 - bh_2|}{\sqrt{h_1^2 + h_2^2}} \leqslant |A| + |B| \xrightarrow[(h_1, h_2) \to (0, 0)]{} 0.$$

Przykład. $f(x,y) = \sin(xy)$. Mamy

$$\frac{\partial f}{\partial x} = y \cos(xy), \qquad \frac{\partial f}{\partial y} = x \cos(xy).$$

Pochodne cząstkowe są ciągłe. Zatem f(x,y) jest różniczkowalna w każdym punkcie. W punkcie (0,0) pochodne cząstkowe zerują się. Różniczkowalność oznacza więc, że

$$\frac{|\sin(xy)|}{\sqrt{x^2 + y^2}} \xrightarrow[(x,y) \to (0,0)]{} 0.$$

3.3.1 Interpretacja geometryczna różniczkowalności

Wykres funkcji z = f(x,y) jest podzbiorem przestrzeni \mathbb{R}^3 . Rozważamy obraz prostej $y = y_0$ przez funkcję f(x,y), czyli krzywą $x \mapsto f(x,y_0)$. Ta krzywa znajduje się w płaszczyźnie pionowej $y = y_0$. Chcemy znaleźć styczną do tej krzywej. Gdyby funkcja f zależała tylko od zmiennej x, to styczna do krzywej miałaby równanie $z-z_0 = f'(x_0)(x-x_0)$. Ale rozważamy $x \mapsto f(x,y_0)$. Zatem równanie stycznej ma postać

$$\begin{cases} z - z_0 = \frac{\partial f}{\partial x}(x_0, y_0) (x - x_0) \\ y = y_0 \end{cases}$$

Przy oznaczeniu $a = \frac{\partial f}{\partial x}(x_0, y_0)$ równanie stycznej, to

$$\begin{cases} z - z_0 = a(x - x_0) \\ y = y_0 \end{cases}$$

Podobnie, rozważamy obraz prostej $x=x_0$ czyli funkcję $y\mapsto f(x_0,y)$. Równanie stycznej ma postać

$$\begin{cases} z - z_0 = b(y - y_0) \\ x = x_0 \end{cases}$$

gdzie $b = \frac{\partial f}{\partial x}(x_0, y_0)$. Te dwie styczne rozpinają płaszczyznę o równaniu

$$z - z_0 = a(x - x_0) + b(y - y_0).$$

Niech (x, y, z) oznacza punkt na płaszczyźnie odpowiadający punktowi (x, y), w zamyśle położonym blisko punktu (x_0, y_0) . Zatem

$$z = z_0 + a(x - x_0) + b(y - y_0) = f(x_0, y_0) + ah_1 + bh_2$$

przy oznaczeniach $h_1 = x - x_0$ i $h_2 = y - y_0$. Wtedy

$$|f(x,y)-z| = |f(x_0+h_1,y_0+h_2)-f(x_0,y_0)-ah_1-bh_2|.$$

Reasumując, różniczkowalność oznacza, że iloraz odległości punktu wykresu (x, y, f(x, y)) i odpowiadającego punktu (x, y, z) na płaszczyźnie, przez odległość pomiędzy (x_0, y_0) i (x, y), jest mały, gdy $(x, y) \rightarrow (x_0, y_0)$. W takim

wypadku mówimy, że płaszczyzna $z - z_0 = a(x - x_0) + b(y - y_0)$ jest styczna do wykresu w punkcie (x_0, y_0, z_0) , gdzie $z_0 = f(x_0, y_0)$.

Podobnie określamy różniczkowalność funkcji wielu zmiennych. Funkcja n zmiennych $f(x_1, \ldots, x_n)$ jest różniczkowalna w punkcie (x_1, \ldots, x_n) , jeśli

$$\lim_{(h_1,\dots,h_n)\to 0} \frac{|f(x_1+h_1,\dots,x_n+h_n)-f(x_1,\dots,x_n)-a_1h_1-\dots-a_nh_n|}{\sqrt{h_1^2+\dots+h_n^2}} = 0,$$

gdzie

$$a_1 = \frac{\partial f}{\partial x_1}(x_1, \dots, x_n), \dots, a_n = \frac{\partial f}{\partial x_n}(x_1, \dots, x_n).$$

Wygodnie będzie zastosować zapis wektorowy

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad h = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}, \quad A = (a_1, \dots, a_n).$$

Wtedy

$$a_j = \lim_{t \to 0} \frac{f(x + te_j) - f(x)}{t} = \frac{\partial f}{\partial x_j}(x),$$

gdzie \boldsymbol{e}_j jest j-tymwektorem bazowym. Warunek różniczkowalności ma postać

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - Ah|}{\|h\|} = 0, \text{ gdzie } \|h\| = \sqrt{h_1^2 + \ldots + h_n^2}.$$

Rozważmy m funkcji f_1, \ldots, f_m , każda zależna od n zmiennych x_1, \ldots, x_n . Możemy utworzyć jedną funkcję f(x), ale o wartościach wektorowych wzorem

$$\mathbb{R}^n \ni x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longmapsto f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix} \in \mathbb{R}^m.$$

Odwrotnie, każda funkcja $f:\mathbb{R}^n\to\mathbb{R}^m$ składa się z rodziny m funkcji o wartościach rzeczywistych.

Przykład. Rozważmy odwzorowanie

$$\mathbb{R}^2 \ni \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longmapsto \begin{pmatrix} x_1^2 + x_2^2 \\ x_1 x_2 \\ x_1 \sin x_2 \end{pmatrix} \in \mathbb{R}^3.$$

Wtedy $f_1(x_1, x_2) = x_1^2 + x_2^2$.

Mówimy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}^m$ jest różniczkowalna w punkcie x, jeśli każda z funkcji f_1, \ldots, f_m jest różniczkowalna w x. Tzn. dla $i=1,2,\ldots,m$ mamy

$$\lim_{h \to 0} \frac{|f_i(x+h) - f_i(x) - A_i h|}{\|h\|} = 0,$$

gdzie

$$A_i = (a_{i1}, \dots, a_{in}), \quad a_{ij} = \frac{\partial f_i}{\partial x_j}(x).$$

Czy można to objąć jednym zapisem dla funkcji f(x)?

Definicja 3.5. Mówimy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}^m$ jest różniczkowalna w punkcie x, jeśli

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0, \quad \text{gdzie } A = (a_{ij}).$$

Sprawdzimy, że faktycznie warunek w definicji oznacza, że każda z funkcji f_i jest różniczkowalna. Skorzystamy z nierówności

$$|c_i| \leqslant \left(\sum_{j=1}^m c_j^2\right)^{1/2} \leqslant \sum_{j=1}^m |c_j|, \quad i = 1, 2, \dots, m.$$

Otrzymujemy

$$|f_i(x+h)-f_i(x)-A_ih| \le ||f(x+h)-f(x)-A_ih|| \le \sum_{j=1}^m |f_j(x+h)-f_j(x)-A_jh|.$$

Z pierwszej nierówności wynika, że jeśli f jest różniczkowalna w punkcie x według Definicji 3.5, to każda z funkcji f_i jest różniczkowalna w x. Z kolei z drugiej nierówności wynika, że jeśli każda z funkcji f_i jest różniczkowalna w x, to f jest różniczkowalna w punkcie x według Definicji 3.5.

Stosujemy oznaczenie A=Df(x), tzn. Df(x) jest macierzą wymiaru $m\times n$ złożoną z pochodnych cząstkowych. Numer wiersza odpowiada numerowi funkcji składowej, natomiast numer kolumny odpowiada numerowi zmiennej, względem której obliczana jest pochodna cząstkowa.

Przykład.

$$\mathbb{R}^2 \ni \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longmapsto \begin{pmatrix} x_1 - x_2 \\ x_1 x_2 \\ x_1^2 + x_2^2 \end{pmatrix} \in \mathbb{R}^3.$$

Wtedy

$$Df(x) = \begin{pmatrix} 1 & -1 \\ x_2 & x_1 \\ 2x_1 & 2x_2 \end{pmatrix}, \qquad Df(1,2) = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 2 & 4 \end{pmatrix}.$$

Lemat 3.6. Załóżmy, że dla pewnej macierzy B wymiaru $m \times n$ mamy

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Bh\|}{\|h\|} = 0.$$

Wtedy B = Df(x).

Dowód. Mamy

$$|f_i(x+h) - f_i(x) - B_i h| \le ||f(x+h) - f(x) - Bh||,$$

gdzie B_i oznacza *i*-ty wiersz macierzy B. Zatem

$$\lim_{h \to 0} \frac{|f_i(x+h) - f_i(x) - B_i h|}{\|h\|} = 0.$$

Niech $h = te_i$. Wtedy

$$0 = \lim_{t \to 0} \frac{|f_i(x + te_j) - f_i(x) - tb_{ij}|}{|t|} = \lim_{t \to 0} \left| \frac{f_i(x + te_j) - f_i(x)}{t} - b_{ij} \right|.$$

Stąd otrzymujemy $b_{ij} = \frac{\partial f_i}{\partial x_i}(x)$.

Lemat 3.7 (nierówność Schwarza).

$$(a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2 \leqslant (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2).$$

Równość zachodzi tylko wtedy, gdy wektory $a = (a_1, a_2, \dots, a_n)$ i $b = (b_1, b_2, \dots, b_n)$ są równoległe.

Dowód.

$$(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2) - (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2$$

$$= \sum_{i \neq j} a_i^2 b_j^2 - 2\sum_{i < j} a_i b_i a_j b_j = \sum_{i < j} (a_i^2 b_j^2 + a_j^2 b_i^2) - 2\sum_{i < j} a_i b_i a_j b_j$$

$$= \sum_{i < j} (a_i b_j - a_j b_i)^2 \geqslant 0.$$

Przypuśćmy, że w nierówności Schwarza mamy równość oraz, że $a_{i_0} \neq 0$. Wtedy $a_{i_0}b_j=a_jb_{i_0}$, czyli wektor b jest wielokrotnością wektora a ze współczynnikiem b_{i_0}/a_{i_0} .

Lemat 3.8. Dla macierzy A wymiaru $m \times n$ oraz wektora $h \in \mathbb{R}^n$ mamy

$$||Ah|| \le ||A||_{HS} ||h||, \quad \text{gdzie } ||A||_{HS} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}.$$

Wielkość $||A||_{HS}$ nazywamy normą Hilberta-Schmidta macierzy A.

Dowód. Oznaczmy

$$Ah = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Wtedy $||Ah||^2 = \sum_{i=1}^m y_i^2$. Ale $y_i = \sum_{j=1}^n a_{ij}h_j$. Z nierówności Schwarza mamy

$$y_i^2 = \left(\sum_{j=1}^n a_{ij}h_j\right)^2 \leqslant \sum_{j=1}^n a_{ij}^2 \sum_{j=1}^n h_j^2 = \sum_{j=1}^n a_{ij}^2 \|h\|^2,$$

czyli

$$||Ah||^2 = \sum_{i=1}^m y_i^2 \le \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2 ||h||^2 = ||A||_{HS}^2 ||h||^2.$$

Twierdzenie 3.9. Jeśli funkcja f(x) jest różniczkowalna w punkcie $a \in \mathbb{R}^n$, to f(x) jest ciągła w a.

 $Dow \acute{o}d.$ Trzeba udowodnić, że $\lim_{h \to 0} \|f(a+h) - f(a)\| = 0.$ Oznaczmy

$$u(h) = f(a+h) - f(a) - Ah$$
, gdzie $A = Df(a)$.

Dla $h \neq 0$ mamy

$$||f(a+h) - f(a)|| = ||u(h) + Ah|| \le ||u(h)|| + ||Ah||$$

$$\le ||u(h)|| + ||A||_{HS} ||h|| = \left[\frac{||u(h)||}{||h||} + ||A||_{HS} \right] ||h||$$

Z różniczkowalności pierwszy składnik w nawiasie kwadratowym dąży do zera, gdy $h \to 0$. Zatem całe wyrażenie dąży do zera, gdy $h \to 0$.

Twierdzenie 3.10. Załóżmy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}^m$ jest różniczkowalna w punkcie $a \in \mathbb{R}^n$ natomiast funkcja $g: \mathbb{R}^m \to \mathbb{R}^p$ jest różniczkowalna w punkcie b = f(a). Wtedy funkcja złożona $g \circ f: \mathbb{R}^n \to \mathbb{R}^p$ jest różniczkowalna w punkcie a oraz

$$D(g \circ f)(a) = Dg(b) Df(a).$$

Uwagi.

- (a) Macierze Dg(b) i Df(a) mają wymiary $p \times m$ i $m \times n$ odpowiednio. Po pomnożeniu otrzymamy macierz wymiaru $p \times n$.
- (b) Wzór na pochodną funkcji złożonej wielu zmiennych zgadza się ze wzorem dla jednej zmiennej:

$$(g \circ f)'(a) = g'(b) f'(a), \quad b = f(a).$$

(c) Można nieformalnie wyjaśnić wzór w twierdzeniu. Oznaczmy A = Df(a), B = Dg(b). Różniczkowalność oznacza, że

$$f(a+h) \approx f(a) + Ah$$
, gdy $h \to 0$,
 $g(b+k) \approx g(b) + Bk$, gdy $k \to 0$.

Zatem

$$g(f(a+h)) \approx g(f(a) + Ah) = g(b+Ah)$$

$$\approx g(b) + BAh = g(f(a)) + BAh, \quad \text{gdy } h \to 0.$$

Stad
$$D(g \circ f)(a) = BA$$
.

Dowód. Posłużymy się oznaczeniami z Uwagi (c). Trzeba udowodnić, że

$$\lim_{h \to 0} \frac{\|g \circ f(a+h) - g \circ f(a) - BAh\|}{\|h\|} = 0.$$

Wtedy teza wynika z Lematu 3.6. Oznaczmy

$$u(h) = f(a+h) - f(a) - Ah,$$
 $v(k) = g(b+k) - g(b) - Bk.$

Przyjmijmy k = f(a+h) - f(a) = u(h) + Ah. Wtedy

$$g \circ f(a+h) - g \circ f(a) - BAh = g(f(a+h)) - g(f(a)) - BAh$$

= g(b+k) - g(b) - BAh = v(k) + Bk - BAh
= v(k) + B(k - Ah) = v(k) + Bu(h).

Wprowadzamy oznaczenie

$$\varphi(k) = \begin{cases} \frac{\|v(k)\|}{\|k\|} & k \neq 0, \\ 0 & k = 0 \end{cases}.$$

Wtedy

$$\frac{\|g \circ f(a+h) - g \circ f(a) - BAh\|}{\|h\|} \le \frac{\|v(k)\|}{\|h\|} + \frac{\|Bu(h)\|}{\|h\|} \le \varphi(k) \frac{\|k\|}{\|h\|} + \|B\|_{HS} \frac{\|u(h)\|}{\|h\|}$$

Z różniczkowalności funkcji f drugi składnik dąży do zera, gdy $h \to 0$. Ponadto, gdy $h \to 0$, to również $k \to 0$. Zatem $\varphi(k) \to 0$. Dalej

$$\frac{\|k\|}{\|h\|} \leqslant \frac{\|u(h)\|}{\|h\|} + \frac{\|Ah\|}{\|h\|} \leqslant \frac{\|u(h)\|}{\|h\|} + \|A\|_{HS} \xrightarrow[h \to 0]{} \|A\|_{HS}.$$

Przykład.

$$f(x,y) = (x^2 + 1, y^2),$$
 $a = (2,1),$
 $g(u,v) = (u+v, u, v^2),$ $b = f(2,1) = (5,1).$

Mamy

$$Df(x,y) = \begin{bmatrix} 2x & 0 \\ 0 & 2y \end{bmatrix}, \qquad Dg(u,v) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2v \end{bmatrix}.$$

Zatem

$$Df(2,1) = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}, \qquad Dg(5,1) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Otrzymujemy

$$D(g \circ f)(2,1) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 4 & 0 \\ 0 & 4 \end{bmatrix}.$$

Twierdzenie 3.11. Jeśli funkcja $f : \mathbb{R}^n \to \mathbb{R}$ ma ciągłe pochodne cząstkowe w punkcie $a \in \mathbb{R}^n$, to f jest różniczkowalna w a.

Dowód. Dla $h \in \mathbb{R}^n$ określamy ciąg wektorów v_i wzorami $v_0 = a$, $v_1 = v_0 + h_1e_1$, $v_2 = v_1 + h_2e_2$, ... $v_n = v_{n-1} + h_ne_n = a + h$. Wtedy punkty v_j i v_{j-1} różnią się tylko na j-tej współrzędnej o h_j . Zatem

$$f(a+h) - f(a) = f(v_n) - f(v_0) = \sum_{j=1}^{n} [f(v_j) - f(v_{j-1})]$$
$$= \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(w_j) h_j,$$

gdzie punkt w_j leży na odcinku pomiędzy v_{j-1} i v_j . Otrzymujemy

$$\left| f(a+h) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a) h_{j} \right| = \left| \sum_{j=1}^{n} \left[\frac{\partial f}{\partial x_{j}}(w_{j}) - \frac{\partial f}{\partial x_{j}}(a) \right] h_{j} \right|$$

$$\leq \sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_{j}}(w_{j}) - \frac{\partial f}{\partial x_{j}}(a) \right| |h_{j}| \leq \sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_{j}}(w_{j}) - \frac{\partial f}{\partial x_{j}}(a) \right| ||h||.$$

Zatem

$$\frac{\left| f(a+h) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a) h_{j} \right|}{\|h\|} \leqslant \sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_{j}}(w_{j}) - \frac{\partial f}{\partial x_{j}}(a) \right|.$$

Gdy $h \to 0$, to $v_j \to a$ dla j = 1, 2, ..., n. Wtedy $w_j \to a$. Reasumując, prawa strona ostatniego wzoru dąży do zera.

Uwaga. Z twierdzenia wynika, że jeśli pochodne cząstkowe funkcji $f: \mathbb{R}^n \to \mathbb{R}^m$ są ciągłe w punkcie a, to f jest różniczkowalna w a.

Twierdzenie 3.12 (reguła łańcucha). Załóżmy, że funkcje f_1, f_2, \ldots, f_m : $\mathbb{R}^n \to \mathbb{R}$ mają ciągłe pochodne cząstkowe w punkcie a. Załóżmy też, że funkcja $g: \mathbb{R}^m \to \mathbb{R}$ ma ciągłe pochodne cząstkowe w punkcie $b = (f_1(a), f_2(a), \ldots, f_m(a))$. Przyjmijmy, że $f_j(x) = f_j(x_1, x_2, \ldots, x_n)$ oraz $g(y) = g(y_1, y_2, \ldots, y_m)$. Wtedy funkcja złożona $G: \mathbb{R}^n \to \mathbb{R}$ określona wzorem

$$G(x_1, x_2, \dots, x_n) = g(f_1(x), f_2(x), \dots, f_m(x))$$

jest różniczkowalna w punkcie a oraz

$$\frac{\partial G}{\partial x_i}(a) = \frac{\partial g}{\partial y_1}(b)\frac{\partial f_1}{\partial x_i}(a) + \frac{\partial g}{\partial y_2}(b)\frac{\partial f_2}{\partial x_i}(a) + \ldots + \frac{\partial g}{\partial y_m}(b)\frac{\partial f_m}{\partial x_i}(a).$$

Dowód. Tworzymy funkcję $F: \mathbb{R}^n \to \mathbb{R}^m$ wzorem

$$F(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}.$$

Wtedy G(x) = g(F(x)). Zatem funkcja G jest różniczkowalna w punkcie a oraz DG(a) = Dg(b) DF(a). Ale

$$DG(a) = \left(\frac{\partial G}{\partial x_1}(a), \frac{\partial G}{\partial x_2}(a), \dots, \frac{\partial G}{\partial x_n}(a)\right)$$
$$Dg(b) = \left(\frac{\partial g}{\partial y_1}(b), \frac{\partial g}{\partial y_2}(b), \dots, \frac{\partial g}{\partial y_m}(b)\right)$$

$$DF(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \frac{\partial f_m}{\partial x_2}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{bmatrix}.$$

Aby obliczyć $\frac{\partial G}{\partial x_i}(a)$ mnożymy skalarnie wiersz Dg(b) przez *i*-tą kolumnę macierzy DF(a).

Twierdzenie 3.13. Jeśli dla funkcji n zmiennych $f: \mathbb{R}^n \to \mathbb{R}$ i ustalonych $i \neq j$ pochodne cząstkowe $\frac{\partial^2 f}{\partial x_i \partial x_j}$ oraz $\frac{\partial^2 f}{\partial x_j \partial x_i}$ są ciągłe w punkcie a, to

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a).$$

 $Dow \acute{o}d.$ Ustalmy i< j. Przy obliczaniu $\frac{\partial^2 f}{\partial x_i\partial x_j}(a)$ i $\frac{\partial^2 f}{\partial x_j\partial x_i}(a)$ w punkcie aużywamy funkcji

$$g(x,y) = f(a_1, \ldots, \underbrace{a_j}_x, \ldots, \underbrace{a_j}_y, \ldots, a_n).$$

Wystarczy zatem rozważyć przypadek funkcji $g: \mathbb{R}^2 \to \mathbb{R}$ zakładając, że pochodne mieszane $\frac{\partial^2 g}{\partial x \partial y}$ i $\frac{\partial^2 g}{\partial y \partial x}$ są ciągłe w punkcie (c,d). Dla przyrostu $h = (h_1, h_2)$ rozważmy wyrażenie

$$I = g(c + h_1, d + h_2) - g(c, d + h_2) - g(c + h_1, d) + g(c, d).$$

Oznaczmy $\varphi(y) = g(c + h_1, y) - g(c, y)$. Wtedy

$$I = \varphi(d+h_2) - \varphi(d) = \varphi'(d+\theta_1 h_2) h_2$$

$$= \left[\frac{\partial g}{\partial y} (c+h_1, d+\theta_1 h_2) - \frac{\partial g}{\partial y} (c, d+\theta_1 h_2) \right] h_2 = \frac{\partial^2 g}{\partial x \partial y} (c+\theta_2 h_1, d+\theta_1 h_2) h_1 h_2.$$

Zamieniając rolami x i y otrzymamy

$$I = \frac{\partial^2 g}{\partial y \partial x} (c + \theta_2' h_1, d + \theta_1' h_2) h_1 h_2.$$

Przyjmijmy, że $h_1, h_2 > 0$. Wtedy

$$\frac{\partial^2 g}{\partial x \partial y}(c + \theta_2 h_1, d + \theta_1 h_2) = \frac{\partial^2 g}{\partial y \partial x}(c + \theta_2' h_1, d + \theta_1' h_2).$$

Przechodzimy do granicy, gdy $h_1, h_2 \rightarrow 0$ i otrzymujemy

$$\frac{\partial^2 g}{\partial x \partial y}(c, d) = \frac{\partial^2 g}{\partial y \partial x}(c, d).$$

Zauważmy, że

$$\frac{\partial^2 g}{\partial x \partial y}(a_i, a_j) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a), \qquad \frac{\partial^2 g}{\partial y \partial x}(a_i, a_j) = \frac{\partial^2 f}{\partial x_i \partial x_i}(a).$$

Uwaga. Z poprzednich twierdzeń otrzymujemy hierarchię własności funkcji: ciągłe pochodne cząstkowe dają różniczkowalność, z której wynika istnienie pochodnych cząstkowych.

3.4 Geometria odwzorowań z \mathbb{R}^n w \mathbb{R}^m

Rozważmy odwzorowanie $c:\mathbb{R}\to\mathbb{R}^3.$ Takie odwzorowanie nazywamy krzywą

$$c(t) = \begin{pmatrix} c_1(t) \\ c_2(t) \\ c_3(t) \end{pmatrix}.$$

Wektorem siecznym odpowiadajacym dwu momentom czasu t i t+h jest

$$\frac{c(t+h)-c(t)}{h}.$$

Wektor styczny do krzywej w punkcie c(t) otrzymujemy przez przejście graniczne

$$c'(t) = \lim_{h \to 0} \frac{c(t+h) - c(t)}{h}.$$

Mamy c'(t) = Dc(t).

Przykład. Znaleźć wektor styczny do krzywej

$$c(t) = \begin{pmatrix} -\sin t \\ \cos t \\ t \end{pmatrix}$$

odpowiadający momentowi $t=\pi.$ Chodzi więc o wektor styczny w punkcie

$$c(\pi) = \begin{pmatrix} 0 \\ -1 \\ \pi \end{pmatrix}$$

$$c'(t) = \begin{pmatrix} -\cos t \\ -\sin t \\ 1 \end{pmatrix}, \qquad c'(\pi) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Niech $f:\mathbb{R}^3 \to \mathbb{R}^3$. Wtedy $\sigma(t)=f(c(t))$ jest nową krzywą. Różniczkując otrzymamy

$$\sigma'(t) = Df(c(t)) c'(t).$$

Funkcja f przekształca c(t) na $\sigma(t)$. Odw
zorowanie Df(c(t)) przekształca wektor styczny c'(t) na wektor styczny $\sigma'(t)$. Podobna interpretacja dotyczy krzywych $c: \mathbb{R} \to \mathbb{R}^n$ i funkcji $f: \mathbb{R}^n \to \mathbb{R}^m$.

3.5 Gradient i poziomice funkcji

Pochodne cząstkowe w jednym punkcie nie dają pełnej informacji o zachowaniu się funkcji.

Definicja 3.14. Załóżmy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}$ jest różniczkowalna w punkcie $a \in \mathbb{R}^n$. Gradientem nazywamy wektor

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right).$$

 $Tzn. \nabla f(a) = Df(a)$

Ustalmy punkt x i wektor $v \in \mathbb{R}^n$. Chcemy zbadać tempo zmiany wartości funkcji $f: \mathbb{R}^n \to \mathbb{R}$ w punkcie x wzdłuż prostej x+tv, gdzie $t \in \mathbb{R}$. W tym celu obliczamy $\frac{d}{dt}f(x+tv)\Big|_{t=0}$. Z definicji mamy

$$\left. \frac{d}{dt} f(x+tv) \right|_{t=0} = \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h}.$$

To wyrażenie nazywamy pochodną kierunkową w punkcie x w kierunku v. Dla $v=e_j$ otrzymamy w wyniku $\frac{\partial f}{\partial x_j}(x)$. Tzn. pochodne cząstkowe są również pochodnymi kierunkowymi w kierunkach równoległych do poszczególnych osi współrzędnych. Ze wzoru na pochodną funkcji złożonej otrzymujemy

$$\frac{d}{dt}f(x+tv) = \frac{\partial f}{\partial x_1}(x+tv)v_1 + \ldots + \frac{\partial f}{\partial x_n}(x+tv)v_n,$$

zatem

$$\left. \frac{d}{dt} f(x+tv) \right|_{t=0} = \nabla f(x) \circ v. \tag{3.5}$$

Przykład. $f(x,y) = e^{xy} \sin z$. Chcemy obliczyć pochodną kierunkową w punkcie $(0,1,\frac{\pi}{2})$ w kierunku wektora (2,1,1). Mamy

$$\nabla f(x, y, z) = (ye^{xy}\sin z, xe^{xy}\sin z, e^{xy}\cos z), \qquad \nabla f(0, 1, \frac{\pi}{2}) = (1, 0, 0).$$

Zatem

$$\nabla f(0, 1, \frac{\pi}{2}) \circ (2, 1, 1) = 2.$$

Przy porównywaniu pochodnych kierunkowych w różnych kierunkach wybiera się wektory v o długości 1. Liczbę $\nabla f(x) \circ v$ można interpretować jako tempo zmiany wartości funkcji f w kierunku v, gdy prędkość zmiany argumentu wynosi 1.

Twierdzenie 3.15. Załóżmy, że $\nabla f(x) \neq 0$. Wtedy wektor $\nabla f(x)$ wskazuje kierunek najszybszego wzrostu wartości funkcji f, startując z punktu x. Z kolei wektor $-\nabla f(x)$ wskazuje kierunek najszybszego spadku wartości funkcji.

 $Dow \acute{o}d$. Niech v będzie dowolnym wektorem o długości 1. Tempo zmiany wartości funkcji w kierunku v wynosi

$$\nabla f(x) \circ v \leqslant \|\nabla f(x)\| \|v\| = \|\nabla f(x)\|.$$

Równość zachodzi tylko wtedy, gdy wektory v i $\nabla f(x)$ mają ten sam kierunek i zwrot, tzn. $v = \frac{\nabla f(x)}{\|\nabla f(x)\|}$.

Przykład. W którym kierunku od punktu (0,1) funkcja $f(x,y) = x^2 - y^2$ rośnie najszybciej? Mamy $\nabla f(x,y) = (2x,-2y)$. Zatem $\nabla f(0,1) = (0,-2)$. Funkcja rośnie najszybciej w kierunku (0,-1).

Definicja 3.16. Poziomicą funkcji $f: \mathbb{R}^n \to \mathbb{R}$ nazywamy zbiór postaci $\{x \in \mathbb{R}^n : f(x) = c\}$ dla ustalonej wartości c.

Przykład. $f(x, y, z) = x^2 + y^2 + z^2$. Poziomica $\{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ jest sferą. Mamy $\nabla f(x, y, z) = 2(x, y, z)$. Zatem gradient jest prostopadły do sfery.

Wartość funkcji, gdy argument porusza się po poziomicy nie zmienia się. Wydaje się, że gradient powinien być zawsze prostopadły do poziomicy.

Twierdzenie 3.17. Załóżmy, że funkcja $f : \mathbb{R}^n \to \mathbb{R}$ jest różniczkowalna w punkcie $x_0 \in \mathbb{R}^n$. Wtedy gradient $\nabla f(x_0)$ jest prostopadły do poziomicy $S = \{x \in \mathbb{R}^n : f(x) = f(x_0)\}$ w następującym sensie: dla dowolnej krzywej c(t) leżącej na poziomicy S, spełniającej $c(0) = x_0$ i c'(0) = v, mamy $\nabla f(x_0) \perp v$.

Dowood. Funkcja f(c(t)) jest stała. Zatem

$$0 = \frac{d}{dt}f(c(t)) = Df(c(t)) c'(t) = \nabla f(c(t)) \circ c'(t).$$

Dla t = 0 otrzymujemy $\nabla f(x_0) \circ v = 0$.

Definicja 3.18. Niech $S = \{x \in \mathbb{R}^n : f(x) = c\}$. Przestrzenią styczną do poziomicy S w punkcie x_0 nazywamy hiperprzestrzeń określoną przez

$$\nabla f(x_0) \circ (x - x_0) = 0$$
, o ile $\nabla f(x_0) \neq 0$.

Przykład. Znaleźć równanie płaszczyzny stycznej do powierzchni $3xy+z^2=4$ w punkcie (1,1,1). Chodzi o poziomicę funkcji $f(x,y,z)=3xy+z^2$. Obliczamy

$$\nabla f(x, y, z) = (3y, 3x, 2z), \qquad \nabla f(1, 1, 1) = (3, 3, 2).$$

Równanie ma postać 3(x-1) + 3(y-1) + 2(z-1) = 0, po uproszczeniu 3x + 3y + 2z = 8.

Uwaga. Określenie płaszczyzny stycznej do poziomicy zgadza sie z określeniem płaszczyzny stycznej do wykresu funkcji z = f(x, y). Rzeczywiście, niech $z_0 = f(x_0, y_0)$. Rozważamy funkcję F(x, y, z) = f(x, y) - z. Wykres funkcji f można utożsamić z poziomicą funkcji F przy c = 0. Mamy

$$\nabla F(x_0, y_0, z_0) = \left(\underbrace{\frac{\partial f}{\partial x}(x_0, y_0)}_{a}, \underbrace{\frac{\partial f}{\partial y}(x_0, y_0)}_{b}, -1\right).$$

Równanie ma postać $a(x-x_0) + b(y-y_0) - (z-z_0) = 0$, czyli $z-z_0 = a(x-x_0) + b(y-y_0)$.

Definicja 3.19. Zbiór $D \subset \mathbb{R}^n$ nazywamy ograniczonym, jeśli

$$D \subset \{x \in \mathbb{R}^n : ||x|| \leqslant K\}$$

 $dla\ pewnej\ stalej\ liczby\ K.$

Uwagi.

- (a) Dla n=3 warunek w definicji oznacza, że zbiór D jest zawarty w kuli ośrodku w (0,0,0) i promieniu K.
- (b) Jeśli $||x|| \le K$, to $|x_i| \le K$ dla i = 1, 2, ..., n. Zatem współrzędne punktów ze zbioru ograniczonego D są wspólnie ograniczone. Odwrotnie, jeśli współrzędne punktów z D są wspólnie ograniczone, tzn. $|x_i| \le K$ dla i = 1, 2, ..., n i $x \in D$, to

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \leqslant \sqrt{nK^2} = K\sqrt{n}.$$

Definicja 3.20. Mówimy, że zbiór $D \subset \mathbb{R}^d$ jest domknięty, jeśli dla dowolnego ciągu $x^{(n)} \in D$ z warunku $||x^{(n)} - x|| \xrightarrow{n} 0$ wynika $x \in D$.

Przykład. Dla funkcji ciągłej $f: \mathbb{R}^d \to \mathbb{R}$ zbiór $\{x \in \mathbb{R}^d : f(x) \leq c\}$ jest domknięty. Rzeczywiście, niech $f(x^{(n)}) \leq c$ oraz $||x^{(n)} - x|| \xrightarrow{n} 0$. Wtedy z ciągłości mamy $f(x) = \lim_{n} f(x^{(n)})$. Zatem $f(x) \leq c$.

Zbiory

$$B = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}, \qquad S = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$$

są domknięte.

Definicja 3.21. Zbiór $D \subset \mathbb{R}^d$ nazywamy zwartym, jeśli D jest domknięty i ograniczony.

Twierdzenie 3.22. Funkcja ciągła określona na zbiorze zwartym jest ograniczona i osiąga swoje kresy dolny i górny.

Lemat 3.23. Niech D będzie zwartym podzbiorem $w \mathbb{R}^d$. Każdy ciąg $x^{(n)}$ punktów z D zawiera podciąg zbieżny do punktu ze zbioru D.

Dowód. Wiemy, że ciągi współrzędnych $x_1^{(n)}, x_2^{(n)}, \ldots, x_d^{(n)}$ są ograniczone. Z twierdzenia Bolzano-Weierstrassa istnieje ciąg wskaźników n_k taki, że ciągi $x_1^{(n_k)}, x_2^{(n_k)}, \ldots, x_d^{(n_k)}$ są zbieżne. Oznaczmy $\lim_k x_i^{(n_k)} = x_i$. Wtedy dla $x = (x_1, x_2, \ldots, x_d)$ mamy $\|x^{(n_k)} - x\| \longrightarrow 0$. Z domkniętości zbioru D mamy $x \in D$.

Dowód twierdzenia. Załóżmy nie wprost, że istnieje ciąg $x^{(n)} \in D$ taki, że $|f(x^{(n)})| > n$. Z ciągu $x^{(n)}$ wybieramy podciąg $x^{(n_k)}$ zbieżny np. do x. Z ciągłości mamy $f(x^{(n_k)}) \xrightarrow{k} f(x)$. Ale $|f(x^{(n_k)})| > n_k \xrightarrow{k} \infty$. Dowód drugiej części tezy można przeprowadzić tak samo jak dowód Twierdzenia 3.18 z części I.

Dla funkcji $f: \mathbb{R}^n \to \mathbb{R}$ odwzorowanie $x \mapsto \nabla f(x)$ nazywamy gradientowym polem wektorowym. Dla n=3 wykres pola leży w \mathbb{R}^6 .

Przykład. W początku układu \mathbb{R}^3 umieszczamy dużą masę M. Na masę m umieszczoną w punkcie (x, y, z) działa siła przyciągania

$$F(x, y, z) = -\frac{GMm}{r^2} \frac{(x, y, z)}{r}, \quad r = \sqrt{x^2 + y^2 + z^2}.$$

Określamy funkcję

$$V(x, y, z) = \frac{GMm}{\sqrt{x^2 + y^2 + z^2}}.$$

Wtedy $\nabla V = F$. Funkcję V(x, y, z) nazywamy potencjałem grawitacyjnym.

3.6 Ekstrema funkcji wielu zmiennych

Definicja 3.24. Załóżmy, że funkcja ciągła f o wartościach rzeczywistych jest określona na podzbiorze \mathbb{R}^n . Mówimy, że punkt x_0 jest lokalnym minimum funkcji f, jeśli dla pewnej liczby $\delta > 0$ mamy $f(x) \ge f(x_0)$ dla $||x - x_0|| < \delta$.

Przykłady.

- (a) $f(x,y) = x^2 + y^2$. W punkcie (0,0) występuje minimum.
- (b) $g(x,y) = x^2 y^2$. W punkcie (0,0) nie ma lokalnego minimum ani maksimum.

Twierdzenie 3.25. Załóżmy, że $f : \mathbb{R}^n \to \mathbb{R}$ jest różniczkowalna i posiada lokalne ekstremum w punkcie x_0 . Wtedy $\nabla f(x_0) = 0$.

Dowód. Ustalmy wektor $v \in \mathbb{R}^n$. Rozważamy funkcję $g(t) = f(x_0 + tv)$. Jeśli x_0 jest lokalnym minimum funkcji f(x), to funkcja g(t) posiada lokalne minimum w punkcie t = 0. Zatem g'(0) = 0. Ale

$$0 = g'(0) = \frac{d}{dt} f(x_0 + tv) \Big|_{t=0} = \nabla f(x_0) \circ v.$$

Ponieważ v jest dowolnym wektorem, to $\nabla f(x_0) = 0$. ‡

Definicja 3.26. Punkty x_0 , dla których $\nabla f(x_0) = 0$ nazywamy stacjonarnymi.

Definicja 3.27. Mówimy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}$ jest klasy C^2 jeśli jest dwukrotnie różniczkowalna i wszystkie pochodne cząstkowe drugiego rzędu są ciągłe. Dla funkcji klasy C^2 macierz

$$Hf(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{i,j=1}^n$$

 $^{^{\}ddagger}$ Jeśli $a\circ v=0$ dla $v\in\mathbb{R}^n,$ to a=0.Rzeczywiście $\|a\|^2=a\circ a=0.$

nazywamy hessjanem. Hessjan jest macierzą symetryczną, bo

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x).$$

Definicja 3.28. Macierz kwadratowa A wymiaru $n \times n$ jest dodatnio określona, jeśli $Av \circ v > 0$ dla $v \in \mathbb{R}^n$, $v \neq 0$.

Uwaga.

$$Av \circ v = \sum_{i=1}^{n} (Av)_i v_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} v_j \right) v_i = \sum_{i,j=1}^{n} a_{ij} v_i v_j.$$

Lemat 3.29. Dla macierzy dodatnio określonej A istnieje liczba $\delta > 0$ taka, że jeśli $|b_{ij} - a_{ij}| < \delta$, to macierz $B = (b_{ij})_{i,j=1}^n$ też jest dodatnio określona.

Dowód. Wystarczy sprawdzić, że $Bv \circ v > 0$ dla ||v|| = 1. Rzeczywiście,każdy wektor $w \neq 0$ można zapisać jako $w = \lambda v$, gdzie ||v|| = 1, oraz $\lambda = ||w||$. Wtedy $Bw \circ w = \lambda^2 Bv \circ v$. Zbiór $S = \{v \in \mathbb{R}^n : v_1^2 + v_2^2 + \ldots + v_n^2 = 1\}$ jest zwarty. Funkcja

$$S \ni v \longmapsto Av \circ v = \sum_{i,j}^{n} a_{ij} v_i v_j$$

jest ciągła. Ta funkcja osiąga minimum w pewnym punkcie v_0 na zbiorze S. Tzn.

$$Av \circ v \geqslant Av_0 \circ v_0 =: m > 0$$
, dla $v \in S$.

Załóżmy, że $|b_{ij} - a_{ij}| < \delta$. Wtedy dla ||v|| = 1 mamy

$$Bv \circ v = Av \circ v + (B - A)v \circ v \geqslant m + \sum_{i,j=1}^{n} (b_{ij} - a_{ij})v_{i}v_{j}$$

$$\geqslant m - \sum_{i,j=1}^{n} |b_{ij} - a_{ij}| |v_{i}| |v_{j}| \geqslant m - \delta \sum_{i,j=1}^{n} |v_{i}| |v_{j}|$$

$$= m - \delta \left(\sum_{i=1}^{n} |v_{i}|\right)^{2} \geqslant m - n^{2}\delta.$$

Przyjmijmy
$$\delta = \frac{m}{2n^2}$$
. Wtedy $Bv \circ v > 0$.

Twierdzenie 3.30. Załóżmy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}$ jest klasy C^2 oraz $\nabla f(x_0) = 0$ dla pewnego punktu $x_0 \in \mathbb{R}^n$.

- (i) Jeśli macierz $Hf(x_0)$ jest dodatnio określona, to w punkcie x_0 funkcja f(x) posiada lokalne minimum.
- (ii) Jeśli macierz $-Hf(x_0)$ jest dodatnio określona, to w punkcie x_0 funkcja f(x) posiada lokalne maksimum.
- (iii) Jeśli macierz $Hf(x_0)$ posiada wartości własne różnych znaków, to w punkcie x_0 nie ma lokalnego ekstremum.

 $Dow \acute{o}d$. Zastosujemy oznaczenie $x:=x_0$. Ustalmy wektor $0 \neq v \in \mathbb{R}^n$ i rozważmy funkcję jednej zmiennej g(t)=f(x+tv). Z reguły łańcucha mamy

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x + tv)v_i = \nabla f(x + tv) \circ v.$$

Zatem $g'(0) = \nabla f(x) \circ v = 0$. Obliczamy g''(t).

$$g''(t) = \frac{d}{dt} \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x + tv) v_i \right) = \sum_{i=1}^{n} \frac{d}{dt} \left(\frac{\partial f}{\partial x_i} (x + tv) v_i \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i} (x + tv) v_j v_i = H f(x + tv) v \circ v.$$

Zatem $g''(0) = Hf(x)v \circ v > 0$. To oznacza, że funkcja g(t) posiada ścisłe lokalne minimum w punkcie t=0. Ze wzoru MacLaurina dla n=2 otrzymujemy

$$g(t) = g(0) + g'(0)t + \frac{1}{2}g''(\theta)t^2$$

dla pewnej wartości $0 < \theta < 1$. Dla t = 1 otrzymujemy

$$f(x+v) = f(x) + \frac{1}{2} \sum_{i,j=1}^{n} \tilde{h}_{ij} v_i v_j,$$

gdzie

$$\widetilde{h}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} (x + \theta v).$$

Jeśli wektor v ma odpowiednio małą normę, to liczby \tilde{h}_{ij} leżą blisko liczb $h_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$, z założenia o ciągłości drugich pochodnych cząstkowych.

Wtedy z lematu macierz $\widetilde{H} = (\widetilde{h}_{ij})_{i,j=1}^n$ jest dodatnio określona, jeśli tylko norma ||v|| jest odpowiednio mała, np. $||v|| < \eta$ dla pewnej liczby $\eta > 0$. Wtedy

$$f(x+v) = f(x) + \frac{1}{2} \sum_{i,j=1}^{n} \tilde{h}_{ij} v_i v_j > f(x)$$

dla $0 < ||v|| < \eta$.

Załóżmy, że macierz Hf(x) ma wartości własne $\lambda_1>0$ i $\lambda_2<0$. Niech v_1 i v_2 oznaczają odpowiadające jednostkowe wektory własne. Rozważmy funkcje

$$g_1(t) = f(x + tv_1),$$
 $g_2(t) = f(x + tv_2).$

Wtedy pochodne tych funkcji w t=0 zerują się. Ponadto

$$g_1''(0) = Hf(x)v_1 \circ v_1 = \lambda_1 v_1 \circ v_1 = \lambda_1 > 0,$$

$$g_2''(0) = Hf(x)v_2 \circ v_2 = \lambda_2 v_2 \circ v_2 = \lambda_2 < 0.$$

Zatem g_1 posiada ścisłe lokalne minimum w punkcie 0, natomiast g_2 posiada ścisłe lokalne maksimum w tym punkcie. To oznacza, że na prostej $t \mapsto x + tv_1$ funkcja f posiada minimum w punkcie x natomiast na prostej $t \mapsto x + tv_2$ ma w punkcie x lokalne maksimum.

Uwaga. Wektory v_1 i v_2 z ostatniej części dowodu są do siebie prostopadłe.

Zadanie. Znaleźć funkcję f(x,y) taką, że funkcja $t \mapsto f(tu,tv)$ przyjmuje minimum dla t=0 dla dowolnego wektora $(u,v) \neq 0$, ale f(x,y) nie posiada minimum w punkcie (0,0).

3.7 Ekstrema warunkowe-metoda mnożników Lagrange'a

Często chcemy znaleźć maksimum i minimum funkcji wielu zmiennych, ale przy pewnych ograniczeniach.

Przykład. Firma sprzedaje produkty A i B. Zysk ze sprzedaży wynosi f(x,y), gdzie x i y oznaczają ilości sprzedanych produktów A i B, odpowiednio. Ze względu na ograniczone zasoby finansowe musi być spełniony warunek g(x,y)=c.

Twierdzenie 3.31 (Lagrange). Załóżmy, że funkcje $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ i $g: U \subseteq \mathbb{R}^n \to \mathbb{R}$ są klasy C^1 . Niech $S = \{x \in U: g(x) = c\}$. Jeśli funkcja $f|_S$ przyjmuje minimum lub maksimum w punkcie x_0 oraz $\nabla g(x_0) \neq 0$, to $\nabla f(x_0) = \lambda \nabla g(x_0)$ dla pewnej stałej λ . Tzn. gradienty $\nabla f(x_0)$ i $\nabla g(x_0)$ są równoległe.

Dowód nieścisły. Wiemy, że przestrzeń styczna do poziomicy S w punkcie x_0 składa się z wektorów prostopadłych do $\nabla g(x_0)$. Niech $\sigma(t): (-1,1) \to S$ będzie krzywą klasy C^1 przechodzącą przez x_0 w chwili t=0, tzn. $\sigma(0)=x_0$. Wtedy funkcja złożona $f(\sigma(t))$ przyjmuje ekstremum w chwili t=0. Zatem

$$0 = \frac{d}{dt} f(\sigma(t)) \Big|_{t=0} = Df(\sigma(t))\sigma'(t) \Big|_{t=0} = Df(x_0)\sigma'(0) = \nabla f(x_0) \circ \sigma'(0).$$

 $\sigma'(0)$ jest wektorem stycznym do S w punkcie x_0 . Tzn. gradient $\nabla f(x_0)$ jest prostopadły do każdego wektora stycznego do S w punkcie x_0 . Np. jeśli v jest takim wektorem stycznym, to istnieje krzywa $\sigma: (-1,1) \to S$ taka, że $\sigma(0) = x_0$ i $\sigma'(0) = v$. Zatem $\nabla f(x_0)$ jest prostopadły do przestrzeni stycznej do S w punkcie x_0 . Ale $\nabla g(x_0)$ jest też prostopadły do tej przestrzeni stycznej. To oznacza, że $\nabla f(x_0)$ i $\nabla g(x_0)$ są równoległe.

Uwaga. Nieścisłość polega na tym, że dla wektora v z przestrzeni stycznej do S w x_0 trzeba znaleźć krzywą $\sigma(t)$ taką, że $\sigma(t) \in S$ oraz $\sigma(0) = x_0, \sigma'(0) = v$. Taką krzywą można łatwo znaleźć, gdy poziomica S jest wykresem funkcji n-1 zmiennych.

Przykład. Załóżmy, że $S = \{(x,y,z) : g(x,y,z) = 0\}$. Przypuśćmy, że g(x,y,z) = h(x,y) - z. Wtedy S jest wykresem funkcji z = h(x,y). Niech (x_0,y_0,z_0) będzie punktem z S, tzn. $z_0 = h(x_0,y_0)$. Rozważmy krzywą

$$\sigma(t) = (x_0 + at, y_0 + bt, h(x_0 + at, y_0 + bt)).$$

Wtedy

$$\sigma'(0) = (a, b, c)$$
, gdzie $c = \nabla h(x_0, y_0) \circ (a, b)$,

jest wektorem stycznym do S w punkcie (x_0, y_0, z_0) . Przestrzeń złożona z takich wektorów ma wymiar 2. Ale przestrzeń styczna do S w punkcie (x_0, y_0, z_0) ma również wymiar 2. Zatem przestrzenie te są równe.

3.7.1 Stosowanie metody Lagrange'a

Trzeba znaleźć punkt $x \in U$ i stałą λ takie, że

$$\frac{\partial f}{\partial x_1}(x_1, x_2, \dots, x_n) = \lambda \frac{\partial g}{\partial x_1}(x_1, x_2, \dots, x_n)$$

$$\vdots \qquad \vdots$$

$$\frac{\partial f}{\partial x_n}(x_1, x_2, \dots, x_n) = \lambda \frac{\partial g}{\partial x_n}(x_1, x_2, \dots, x_n)$$

$$g(x_1, x_2, \dots, x_n) = c$$

Mamy układ n+1 równań z n+1 zmiennymi x_1, x_2, \ldots, x_n i λ .

Przykłady.

- (a) Niech S będzie prostą przechodzącą przez (-1,0) o nachyleniu 45° . Chcemy znaleźć minimum funkcji $f(x,y)=x^2+y^2$ na S. Prosta ma równanie y=x+1. Możemy rozwiązać zadanie na dwa sposoby.
 - (i) Podstawiamy y = x + 1 do funkcji f(x, y) i obliczamy minimum funkcji kwadratowej.
 - (ii) Stosujemy metodę Lagrange'a. Prosta S jest poziomicą funkcji g(x,y)=x-y+1=0. Mamy $\nabla f(x,y)=(2x,2y)$ oraz $\nabla g(x,y)=(1,-1)$. Gradienty są równoległe tylko wtedy, gdy y=-x. W połączeniu z równaniem y=x+1 otrzymamy $x=-\frac{1}{2},\ y=\frac{1}{2}$.
- (b) $f(x,y) = x^2 y^2$, $S = \{(x,y) : x^2 + y^2 = 1\}$.
 - (i) Podstawiamy $y^2 = 1 x^2$. Wtedy $f(x, y) = 2x^2 1$. Obliczamy ekstrema na przedziale [-1, 1].
 - (ii) Parametryzujemy okrąg $x = \cos t$, $y = \sin t$ i obliczamy ekstrema funkcji $\cos 2t$.
 - (iii) $\nabla f(x,y) = (2x,-2y)$ oraz $\nabla g(x,y) = (2x,2y)$. Wektory są równoległe, gdy x=0 lub y=0. Otrzymujemy cztery rozwiązania $(\pm 1,0)$ i $(0,\pm 1)$. Mamy $f(\pm 1,0)=1$ oraz $f(0,\pm 1)=-1$.

(c)
$$f(x,y,z) = x + z$$
, $S = \{(x,y,z) : x^2 + y^2 + z^2 = 1\}$. Mamy $\nabla f(x,y,z) = (1,0,1)$, $\nabla g(x,y,z) = (2x,2y,2z)$.

Wektory te są równoległe, gdy y=0 oraz z=x. Zatem $2x^2=1$. Otrzymujemy dwa rozwiązania $\pm\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$ oraz

$$f\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = \sqrt{2}, \qquad f\left(-\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right) = -\sqrt{2}.$$

(d) Rozważmy macierz symetryczną A wymiaru $n \times n$. Określamy

$$f(x) = (Ax, x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j, \quad x = (x_1, x_2, \dots, x_n).$$

Chcemy znaleźć ekstrema funkcji f(x) na

$$S = \{(x_1, x_2, \dots, x_n) : g(x) := x_1^2 + x_2^2 + \dots + x_n^2 = 1\}.$$

Określmy

$$F(x,y) = (Ax,y) = \sum_{i,j=1}^{n} a_{ij}x_iy_j.$$

Wtedy f(x) = F(x, x). Obliczamy pomocniczo pochodne cząstkowe funkcji F.

$$\frac{\partial F}{\partial x_k}(x,y) = \sum_{j=1}^n a_{kj} y_j, \qquad \frac{\partial F}{\partial y_k}(x,y) = \sum_{i=1}^n a_{ik} x_i.$$

Mamy zatem

$$\begin{split} \frac{\partial f}{\partial x_k}(x) &= \frac{\partial F}{\partial x_k}(x, x) + \frac{\partial F}{\partial y_k}(x, x) = \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n a_{ik} x_i \\ &= \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n a_{ki} x_i = 2 \sum_{j=1}^n a_{kj} x_j. \end{split}$$

Dalej

$$\frac{\partial g}{\partial x_k}(x) = 2x_k.$$

Otrzymujemy więc układ równań

$$\sum_{j=1}^{n} a_{1j}x_{j} = \lambda x_{1},$$

$$\sum_{j=1}^{n} a_{2j}x_{j} = \lambda x_{2},$$

$$\vdots$$

$$\sum_{j=1}^{n} a_{nj}x_{j} = \lambda x_{n}.$$

To oznacza, że $Ax = \lambda x$. Czyli x jest wektorem własnym o długości 1. Uporządkujmy wartości własne macierzy A według wielkości: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Niech v_1, v_2, \ldots, v_n oznaczają odpowiadające wektory własne o długości 1. Wtedy

$$f(v_k) = (Av_k, v_k) = \lambda_k(v_k, v_k) = \lambda_k.$$

Reasumując

$$\min_{\|x\|=1} (Ax, x) = \lambda_1, \qquad \max_{\|x\|=1} (Ax, x) = \lambda_n.$$

3.7.2 Procedura znajdowania wartości największej i najmniejszej funkcji na zbiorze zwartym

- Znaleźć punkty krytyczne funkcji wewnątrz zbioru, tzn. punkty stacjonarne oraz punkty, w których nie można obliczyć pochodnych cząstkowych.
- 2. Znaleźć punkty krytyczne funkcji obciętej do brzegu zbioru, np. metodą mnożników Lagrange'a.
- 3. Obliczyć wartości funkcji w znalezionych punktach.
- 4. Wybrać wartość największą i najmniejszą.

3.7.3 Metoda mnożników Lagrange'a przy kilku warunkach

Załóżmy, że powierzchnia $S \subset \mathbb{R}^n$ jest określona przez k warunków

$$g_1(x_1, x_2, \dots, x_n) = c_1,$$

 $g_2(x_1, x_2, \dots, x_n) = c_2,$
 \vdots
 $g_k(x_1, x_2, \dots, x_n) = c_k.$

Twierdzenie 3.32. Jeśli funkcja $f|_{S}$ posiada ekstremum w punkcie $x_0 \in S$, to

$$\nabla f(x_0) = \lambda_1 \nabla g_1(x_0) + \lambda_2 \nabla g_2(x_0) + \ldots + \lambda_k \nabla g_k(x_0)$$

dla pewnych stałych $\lambda_1, \lambda_2, \dots, \lambda_k$.

Uwaga. Aby znaleźć punkt x_0 trzeba rozwiązać n+k równań przy n+k niewiadomych.

Przykład. Znaleźć ekstrema funkcji f(x,y,z)=y+z przy warunkach $x^2+z^2=1$ i $y^2+z^2=4$. Możemy przyjąć $g_1(x,y,z)=x^2+y^2$ oraz $g_2(x,y,z)=y^2+z^2$. Rozwiązujemy równanie $\nabla f=\lambda_1\nabla g_1+\lambda_2\nabla g_2$. Otrzymujemy 3 równania

$$0 = 2\lambda_1 x,$$

$$1 = 2\lambda_2 y,$$

$$1 = 2\lambda_1 z + 2\lambda_2 z.$$

Rozpatrzymy dwa przypadki.

- (a) x = 0. Wtedy $z = \pm 1$ oraz $y = \pm \sqrt{3}$.
- (b) $\lambda_1=0.$ Wtedy y=z, zatem $z^2=2.$ Otrzymujemy sprzeczność z warunkiem $x^2+z^2=1.$

Wartość największa jest osiągnięta w punkcie $(0, \sqrt{3}, 1)$ a wartość najmniejsza w $(0, -\sqrt{3}, -1)$.

Nieścisły dowód twierdzenia. Niech $\sigma(t)$ będzie krzywą klasy C^1 leżącą w powierzchni S taką, że $\sigma(0) = x_0$. Mamy

$$g_i(\sigma(t)) = c_i$$
, dla $j = 1, 2, ..., k$.

Zatem

$$0 = \frac{d}{dt}g_j(\sigma(t)) = \nabla g_j(\sigma(t)) \circ \sigma'(t).$$

Dla t = 0 otrzymujemy

$$\nabla g_j(x_0) \circ \sigma'(0) = 0$$
, dla $j = 1, 2, \dots, k$.

To oznacza, że wektor $\sigma'(0)$ jest prostopadły do wektorów

$$\nabla g_1(x_0), \ \nabla g_2(x_0), \ldots, \ \nabla g_k(x_0).$$

Wektor $\sigma'(0)$ jest styczny do powierzchni S w punkcie x_0 . Wymiar przestrzeni liniowej V_1 rozpiętej przez wszystkie wektory styczne $\sigma'(0)$ wynosi n-k. Z kolei wymiar przestrzeni V_2 rozpiętej przez wektory $\nabla g_1(x_0)$, $\nabla g_2(x_0)$, ..., $\nabla g_k(x_0)$ wynosi k, o ile gradienty są liniowo niezależne. Ale V_1 i V_2 są do siebie prostopadłe, zatem $V_1^{\perp} = V_2$. Rozważmy funkcję $t \mapsto f(\sigma(t))$. Funkcja ta osiąga ekstremum dla t = 0. Czyli

$$0 = \frac{d}{dt} f(\sigma(t)) \Big|_{t=0} = \nabla f(x_0) \circ \sigma'(0),$$

dla dowolnej wyżej opisanej krzywej σ . Zatem $\nabla f(x_0) \in V_1^{\perp} = V_2$.

3.8 Twierdzenie o funkcji uwikłanej

Z teorii funkcji jednej zmiennej y = f(x) wiemy, że jeśli f jest klasy C^1 oraz $f'(x_0) \neq 0$, to równanie f(x) = y dla y w pobliżu $y_0 = f(x_0)$ ma jednoznaczne rozwiązanie $x = f^{-1}(y)$ leżące w pobliżu x_0 . Rzeczywiście, rozważmy przypadek $f'(x_0) > 0$. Zatem f'(x) > 0 dla x w pewnym przedziale wokół x_0 , np. w $(x_0 - \delta, x_0 + \delta)$. Wtedy f(x) jest ściśle rosnąca w $(x_0 - \delta, x_0 + \delta)$. Zatem posiada funkcję odwrotną x = g(y). Proces odwracania jest ważny również dla funkcji wielu zmiennych.

Przykład. Współrzędne biegunowe na płaszczyźnie punktu (x, y) wyrażają się wzorami $x = r \cos \theta$, $y = r \sin \theta$. Dla x, y > 0 mamy

$$r = \sqrt{x^2 + y^2}, \qquad \theta = \operatorname{arctg} \frac{y}{x}.$$

Rozważmy równanie F(x,y,z)=0. Przypuśćmy, że $F(x_0,y_0,z_0)=0$. Interesuje nas obliczenie zmiennej z z równania w pobliżu (x_0,y_0,z_0) . Tzn. chcemy, aby dla (x,y) blisko (x_0,y_0) znaleźć z blisko z_0 tak, aby F(x,y,z)=0. Np. niech $F(x,y,z)=x^2+y^2+z^2-1$ oraz F(0,0,1)=0. Wtedy

$$z = \sqrt{1 - x^2 - y^2}$$

jest rozwiązaniem równania. Podobnie dla F(0,0,-1) rozwiązaniem jest

$$z = -\sqrt{1 - x^2 - y^2}.$$

Z kolei dla $F(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ mamy dwa rozwiązania

$$z = \pm \sqrt{1 - x^2 - y^2}$$

lub brak rozwiązań, jeśli $x^2 + y^2 > 1$.

Twierdzenie 3.33. Załóżmy, że funkcja $F: \mathbb{R}^{n+1} \to \mathbb{R}$ jest klasy C^1 . Będziemy stosować oznaczenie $(x, z) \in \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}$. Załóżmy, że

$$F(x_0, z_0) = 0$$
, oraz $\frac{\partial F}{\partial z}(x_0, z_0) \neq 0$.

Wtedy równanie F(x,z) = 0 ma jednoznaczne rozwiązanie w pobliżu (x_0, z_0) . Tzn. istnieje kula otwarta $U \subset \mathbb{R}^n$ o środku w x_0 oraz przedział otwarty V wokół z_0 takie, że dla dowolnego wyboru $x \in U$ istnieje jedyne rozwiązanie $z \in V$ takie, że F(x,z) = 0. Ponadto funkcja z = g(x) jest klasy C^1 na U.

Przykład. Dla funkcji $F(x, y, z) = x^2 + y^2 + z^2 - 1$ mamy

$$\frac{\partial F}{\partial z}(0,0,\pm 1) = \pm 2, \qquad \frac{\partial F}{\partial z}\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) = 0.$$

Uwaga. Przyjmijmy, że funkcja $F(x_1, x_2, ..., x_n, z)$ jest liniowa. Możemy obliczyć zmienną z z równania F(x, z) = 0, o ile współczynnik przy zmiennej z jest niezerowy. Tzn. $\frac{\partial F}{\partial z} \neq 0$.

Twierdzenie nabiera istotnego znaczenia, gdy nie jesteśmy w stanie obliczyć z=g(x) jawnym wzorem. Okazuje się jednak, że wiele informacji o

funkcji g można uzyskać mimo braku jawnego wzoru. Wiemy, że $z_0=g(x_0)$ oraz F(x,g(x))=0 dla $x\in U$. Zatem

$$0 = \frac{\partial}{\partial x_i} F(x, g(x)) = \frac{\partial F}{\partial x_i} (x, g(x)) + \frac{\partial F}{\partial z} (x, g(x)) \frac{\partial g}{\partial x_i} (x).$$

Otrzymujemy

$$\frac{\partial g}{\partial x_i}(x) = -\frac{\frac{\partial F}{\partial x_i}(x, g(x))}{\frac{\partial F}{\partial z}(x, g(x))}.$$

Z założenia $\frac{\partial F}{\partial z}(x_0, z_0) \neq 0$, zatem $\frac{\partial F}{\partial z}(x, g(x)) \neq 0$, dla x w pobliżu x_0 , bo funkcje F i g są klasy C^1 . Podstawiamy $x = x_0$, aby otrzymać

$$\frac{\partial g}{\partial x_i}(x_0) = -\frac{\frac{\partial F}{\partial x_i}(x_0, z_0)}{\frac{\partial F}{\partial z}(x_0, z_0)}.$$
(3.6)

Przykłady.

(a) Rozważamy równanie $F(x,y,z)=xy+z+3xz^5=4$ i rozwiązanie (1,0,1). Wtedy

$$\frac{\partial F}{\partial z}(1,0,1) = 1 + 15xz^4 \Big|_{(1,0,1)} = 16,$$

$$\frac{\partial F}{\partial x}(1,0,1) = y + 3z^5 \Big|_{(1,0,1)} = 3,$$

$$\frac{\partial F}{\partial y}(1,0,1) = x \Big|_{(1,0,1)} = 1.$$

Na podstawie wzoru (3.6) otrzymujemy

$$\frac{\partial g}{\partial x}(1,0) = -\frac{3}{16}, \quad \frac{\partial g}{\partial y}(1,0) = -\frac{1}{16}.$$

(b) Niech $F(x, y, z) := x^3 + 3y^2 + 8xz^2 - 3yz^3 = 1$. W pobliżu jakich punktów powierzchnia zadana równaniem może być przedstawiona jako wykres funkcji z = g(x, y)? Obliczamy

$$\frac{\partial F}{\partial z} = 16xz - 9yz^2 \neq 0.$$

Zatem muszą być spełnione warunki $z \neq 0$ oraz $16x - 9yz \neq 0$. Jeśli chcemy obliczyć x = h(y, z), to

$$\frac{\partial F}{\partial x} = 3x^2 + 8z^2 \neq 0.$$

Wystarczy zatem, aby $x \neq 0$ lub $z \neq 0$.

Wniosek 3.34. Jeśli funkcja $f(x_1, x_2, ..., x_n)$ spełnia $f(a_1, a_2, ..., a_n) = 0$ oraz $\nabla f(a_1, a_2, ..., a_n) \neq 0$, to z równania

$$f(x_1, x_2, \dots, x_n) = 0$$

 $można \ obliczyć jedną \ zmienną \ względem \ pozostałych \ w \ pobliżu \ (a_1,a_2,\ldots,a_n).$

Dowód. Oznaczmy $a=(a_1,a_2,\ldots,a_n)$. Z założenia $\frac{\partial f}{\partial x_i}(a)\neq 0$ dla pewnej wartości i. Przez zmianę numeracji możemy przyjąć, że $\frac{\partial f}{\partial x_n}(a)\neq 0$. Funkcja f zależy od x_1,x_2,\ldots,x_{n-1} oraz od $z=x_n$. Z poprzedniego twierdzenia z równania

$$f(x_1, x_2, \dots, x_{n-1}, z) = 0$$

można obliczyć z w zależności od $x_1, x_2, \ldots, x_{n-1}$.

Dowód twierdzenia. Z założenia mamy $\frac{\partial F}{\partial z}(x_0, z_0) \neq 0$. Rozważymy przypadek $\frac{\partial F}{\partial z}(x_0, z_0) > 0$. Z ciągłości pochodnych cząstkowych można znaleźć liczby dodatnie a i b takie, że jeśli $||x - x_0|| \leqslant a$ oraz $|z - z_0| \leqslant a$, to $\frac{\partial F}{\partial z}(x, z) > b$. Zbiór określony warunkami $||x - x_0|| \leqslant a$, $|z - z_0| \leqslant a$ jest domknięty i ograniczony, zatem z ciągłości pochodnych cząstkowych mamy

$$\left| \frac{\partial F}{\partial x_i}(x, z) \right| \le M, \quad \left| \frac{\partial F}{\partial z}(x, z) \right| \le M \quad \text{dla } ||x - x_0|| \le a, \ |z - z_0| \le a.$$

Lemat 3.35. Dla funkcji $f : \mathbb{R}^n \to \mathbb{R}$ klasy C^1 mamy

$$f(x) - f(x_0) = \nabla f(x_0 + \theta(x - x_0)) \circ (x - x_0)$$

dla pewnej liczby θ , $0 < \theta < 1$.

Dowód lematu. Określamy funkcję $g(t) = f(x_0 + t(x - x_0))$ przy ustalonych punktach x i x_0 . Wtedy z twierdzenia Lagrange'a otrzymujemy

$$f(x) - f(x_0) = g(1) - g(0) = g'(\theta) = \nabla f(x_0 + \theta(x - x_0)) \circ (x - x_0).$$

Z lematu mamy

$$F(x,z) = F(x,z) - F(x_0, z_0)$$

= $\nabla F(x_0 + \theta(x - x_0), z_0 + \theta(z - z_0)) \circ (x - x_0, z - z_0)$

Oznaczmy

$$x_{\theta} = x_0 + \theta(x - x_0), \ z_{\theta} = z_0 + \theta(z - z_0), \quad \nabla_x F = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}\right).$$

Wtedy

$$F(x,z) = \nabla_x F(x_{\theta}, z_{\theta}) \circ (x - x_0) + \frac{\partial F}{\partial z}(x_{\theta}, z_{\theta})(z - z_0). \tag{3.7}$$

Dla $||x-x_0|| \le a$, $|z-z_0| \le a$ mamy $||x_\theta-x_0|| \le a$ oraz $|z_\theta-z_0| \le a$. Stąd otrzymujemy

$$\|\nabla_x F(x_\theta, z_\theta)\| \leqslant M\sqrt{n}.$$

Zatem

$$|\nabla_x F(x_\theta, z_\theta) \circ (x - x_0)| \leqslant M\sqrt{n} ||x - x_0||. \tag{3.8}$$

Rozważamy tylko $z = z_0 \pm a$. Wtedy

$$\left| \frac{\partial F}{\partial z}(x_{\theta}, z_{\theta})(z - z_{0}) \right| = \left| \frac{\partial F}{\partial z}(x_{\theta}, z_{\theta})(\pm a) \right| > ab.$$

Z (3.7) otrzymujemy

$$\left| F(x,z) - \frac{\partial F}{\partial z}(x_{\theta}, z_{\theta})(z - z_0) \right| = \left| \nabla_x F(x_{\theta}, z_{\theta}) \circ (x - x_0) \right| \leqslant M \sqrt{n} \|x - x_0\|.$$

Wybierzmy liczbę 0 < $\delta \leqslant a$ taką, że $M\sqrt{n}\delta < ab.$ Niech $\|x-x_0\| < \delta.$ Wtedy

$$\left| F(x, z_0 \pm a) - \frac{\partial F}{\partial z}(x_{\theta}, z_{\theta})(\pm a) \right| < M\sqrt{n}\delta < ab < \left| \frac{\partial F}{\partial z}(x_{\theta}, z_{\theta})(\pm a) \right|.$$

Lemat 3.36. Jeśli |u-v| < |v|, to liczby u i v mają ten sam znak.

Z lematu wynika, że $F(x, z_0 + a) > 0$ oraz $F(x, z_0 - a) < 0$. Z własności Darboux mamy F(x, z) = 0 dla pewnej liczby z z przedziału $(z_0 - a, z_0 + a)$. Takie rozwiązanie jest jedyne w tym przedziałe, bo funkcja

$$(z_0 - a, z_0 + a) \ni z \mapsto F(x, z)$$

jest ściśle rosnąca, co wynika z dodatniości pochodnej cząstkowej względem z. Reasumując pokazaliśmy, że dla $||x-x_0|| < \delta$ istnieje jedyne rozwiązanie z w przedziale (z_0-a,z_0+a) spełniające F(x,z)=0. W ten sposób otrzymujemy funkcję z=g(x). Sprawdzimy, że g jest funkcją ciągłą. Załóżmy nie wprost, że $x_m \to x$, ale $g(x_m) \not\to g(x)$. Ciąg $g(x_m)$ jest ograniczony. Istnieje zatem podciąg $g(x_{m_k})$ zbieżny do liczby $\tilde{z} \neq g(x)$ z przedziału $[z_0-a,z_0+a]$. Mamy

$$0 = F(x_{m_k}, g(x_{m_k})) \xrightarrow{k} F(x, \tilde{z}).$$

Stąd $F(x, \tilde{z}) = 0$. Ale $\tilde{z} \neq z_0 \pm a$, bo $F(x, z_0 \pm a) \neq 0$. Czyli \tilde{z} leży w przedziale $(z_0 - a, z_0 + a)$. Ale F(x, g(x)) = 0, więc otrzymujemy sprzeczność z jednoznacznością rozwiązania.

Zbadamy różniczkowalność funkcji g(x). Przyjmujemy $x = x_0 + he_i$. Wtedy

$$\nabla_x F(x_\theta, z_\theta) \circ (x - x_0) = \frac{\partial F}{\partial x_i}(x_\theta, z_\theta) h.$$

We wzorze (3.7) podstawiamy z = g(x). Lewa strona wzoru zeruje się. Otrzymujemy więc

$$\frac{g(x_0 + he_i) - g(x_0)}{h} = -\frac{\frac{\partial F}{\partial x_i}(x_\theta, z_\theta)}{\frac{\partial F}{\partial z}(x_\theta, z_\theta)}.$$

Mamy

$$x_{\theta} = x_0 + \theta(x - x_0) = x_0 + \theta h e_i \xrightarrow[h \to 0]{} x_0,$$

$$z_{\theta} = z_0 + \theta(z - z_0) = g(x_0) + \theta[g(x_0 + h e_i) - g(x_0)] \xrightarrow[h \to 0]{} g(x_0) = z_0,$$

bo q jest ciągła. Zatem

$$\frac{\partial g}{\partial x_i}(x_0) = -\frac{\frac{\partial F}{\partial x_i}(x_0, z_0)}{\frac{\partial F}{\partial z}(x_0, z_0)}.$$

Ten sam dowód daje

$$\frac{\partial g}{\partial x_i}(x) = -\frac{\frac{\partial F}{\partial x_i}(x,z)}{\frac{\partial F}{\partial z}(x,z)}\Big|_{z=g(x)}.$$

Widzimy, że pochodne cząstkowe funkcji g są ciągłe, zatem g jest funkcją różniczkowalną.

Uwaga. Jeśli wiemy, że funkcja z = g(x) jest różniczkowalna, to jej pochodne cząstkowe można obliczyć stosując różniczkowanie niejawne. Mamy $F(x, g(x)) \equiv 0$. Różniczkujemy względem x_i aby otrzymać

$$\frac{\partial F}{\partial x_i}(x, g(x)) + \frac{\partial F}{\partial z}(x, g(x)) \frac{\partial g}{\partial x_i}(x) = 0.$$

Chcemy obliczyć wielkości z_1, z_2, \ldots, z_m z równań

$$F_{1}(x_{1}, x_{2}, \dots, x_{n}; z_{1}, z_{2}, \dots, z_{m}) = 0,$$

$$F_{2}(x_{1}, x_{2}, \dots, x_{n}; z_{1}, z_{2}, \dots, z_{m}) = 0,$$

$$\vdots$$

$$F_{m}(x_{1}, x_{2}, \dots, x_{n}; z_{1}, z_{2}, \dots, z_{m}) = 0,$$

$$(3.9)$$

i otrzymać rozwiązanie w postaci

$$z_{1} = g_{1}(x_{1}, x_{2}, \dots, x_{n}),$$

$$z_{2} = g_{2}(x_{1}, x_{2}, \dots, x_{n}),$$

$$\vdots$$

$$z_{m} = g_{m}(x_{1}, x_{2}, \dots, x_{n}).$$
(3.10)

Będziemy stosować zapis

$$x = (x_1, x_2, \dots, x_n), \quad z = (z_1, z_2, \dots, z_m).$$

Załóżmy, że $(x_0,z_0)\in\mathbb{R}^n\times\mathbb{R}^m$ jest rozwiązaniem układu. Rozważamy wyznacznik

$$\Delta = \begin{vmatrix} \frac{\partial F_1}{\partial z_1}(x_0; z_0) & \frac{\partial F_1}{\partial z_2}(x_0; z_0) & \dots & \frac{\partial F_1}{\partial z_m}(x_0; z_0) \\ \frac{\partial F_2}{\partial z_1}(x_0; z_0) & \frac{\partial F_2}{\partial z_2}(x_0; z_0) & \dots & \frac{\partial F_2}{\partial z_m}(x_0; z_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial z_1}(x_0; z_0) & \frac{\partial F_m}{\partial z_2}(x_0; z_0) & \dots & \frac{\partial F_m}{\partial z_m}(x_0; z_0) \end{vmatrix}$$

Twierdzenie 3.37 (o funkcji uwikłanej). Załóżmy, że funkcje $F_1, F_2, \ldots F_m$ są klasy C^1 . Niech punkt $(x_0; z_0)$ będzie rozwiązaniem układu równań (3.9) oraz $\Delta \neq 0$. Wtedy istnieją liczby $\delta > 0$ i a > 0 takie, że dla $||x - x_0|| < \delta$ istnieje jedyny z spełniający $||z - z_0|| < a$ taki, że (x, z) jest rozwiązaniem układu równań (3.9). Ponadto funkcje z (3.10) są klasy C^1 .

Przykład. Czy w pobliżu (x,y;u,v)=(1,1;1,1) można obliczyć u i v z równań

$$xu + yuv^2 = 2,$$

$$xu^3 + y^2v^4 = 2$$

jako funkcje zmiennych x i y ? Przyjmujemy

$$F_1(x, y; u, v) = xu + yuv^2 - 2,$$

$$F_2(x, y; u, v) = xu^3 + y^2v^4 - 2.$$

Mamy

$$\Delta = \begin{vmatrix} x + yv^2 & 2yuv \\ 3xu^2 & 4y^2v^3 \end{vmatrix}_{x=1} = \begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = 2 \neq 0.$$

Chcemy obliczyć $\frac{\partial u}{\partial x}(1,1)$ i $\frac{\partial v}{\partial x}(1,1)$. Stosujemy różniczkowanie niejawne. Otrzymujemy

$$u + x \frac{\partial u}{\partial x} + yv^2 \frac{\partial u}{\partial x} + 2yuv \frac{\partial v}{\partial x} = 0,$$

$$u^3 + 3xu^2 \frac{\partial u}{\partial x} + 4y^2v^3 \frac{\partial v}{\partial x} = 0.$$

Podstawiamy x = 1, y = 1, v = 1, u = 1. Po uproszczeniu otrzymujemy

$$2\frac{\partial u}{\partial x} + 2\frac{\partial v}{\partial x} = -1,$$
$$3\frac{\partial u}{\partial x} + 4\frac{\partial v}{\partial x} = -1.$$

Zatem

$$\frac{\partial u}{\partial x}(1,1) = \frac{\begin{vmatrix} -1 & 2 \\ -1 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix}} = -1, \qquad \frac{\partial v}{\partial x}(1,1) = \frac{\begin{vmatrix} 2 & -1 \\ 3 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix}} = \frac{1}{2}.$$

Dowód. Przyjmijmy oznaczenia $a=x_0$ i $b=z_0$. Wyznacznik Δ w punkcie (a,b) nie znika, zatem jedna z liczb $\frac{\partial F_j}{\partial z_m}(a;b)$ w ostatniej kolumnie jest niezerowa. Możemy przyjąć, że $\frac{\partial F_m}{\partial z_m}(a;b)\neq 0$, ewentualnie zmieniając numerację równań. Na podstawie Twierdzenia 3.33 możemy z równania

$$F_m(x_1, x_2, \dots, x_n; z_1, z_2, \dots, z_m) = 0$$

obliczyć

$$z_m = g(x_1, x_2, \dots, x_n; z_1, z_2, \dots, z_{m-1}) = g(x, \tilde{z}).$$

Ponadto $g(a, \tilde{b}) = b_m$. Po podstawieniu $z_m = g(x, \tilde{z})$ ostatnie równanie staje się tożsamością

$$F_m(x; \tilde{z}, g(x, \tilde{z})) \equiv 0. \tag{3.11}$$

Podstawiamy obliczoną wartość z_m do pierwszych m-1równań. Otrzymamy układ

$$H_1(x, \tilde{z}) := F_1(x; \tilde{z}, g(x, \tilde{z})) = 0,$$

 $H_2(x, \tilde{z}) := F_2(x; \tilde{z}, g(x, \tilde{z})) = 0,$
 \vdots
 $H_{m-1}(x, \tilde{z}) := F_{m-1}(x; \tilde{z}, g(x, \tilde{z})) = 0.$

Chcemy obliczyć $z_1, z_2, \ldots, z_{m-1}$ z nowego układu równań. Mamy rozwiązanie $x = a, \ \tilde{z} = \tilde{b}$, bo wtedy $g(a; \tilde{b}) = b_m$. Sprawdzamy, czy założenia twierdzenia o funkcji uwikłanej są spełnione dla nowego układu. Obliczamy

$$\frac{\partial H_i}{\partial z_j} = \frac{\partial F_i}{\partial z_j} + \frac{\partial F_i}{\partial z_m} \frac{\partial g}{\partial z_j}, \qquad j = 1, 2, \dots, m - 1.$$
 (3.12)

Różniczkujemy tożsamość (3.11) względem z_j , aby otrzymać

$$\frac{\partial F_m}{\partial z_j} + \frac{\partial F_m}{\partial z_m} \frac{\partial g}{\partial z_j} = 0, \qquad j = 1, 2, \dots, m - 1.$$
 (3.13)

Rozważamy wyznacznik

$$\Delta(x; \tilde{z}) := \det \left(\frac{\partial F_i}{\partial z_j} (x; \tilde{z}, g(x, \tilde{z})) \right)_{i,j=1,2,\dots,m}.$$

Wiemy, że dla x = a, $\tilde{z} = \tilde{b}$ mamy $g(a, \tilde{b}) = b_m$. Zatem

$$\Delta(a; \tilde{b}) \neq 0.$$

W wyznaczniku $\Delta(x; \tilde{z})$ mnożymy ostatnią kolumnę przez liczbę $\frac{\partial g}{\partial z_j}(x; \tilde{z})$ i dodajemy do j-tej kolumny, dla wszystkich $j = 1, 2, \dots, m-1$. Otrzymamy

$$\Delta(x,\tilde{z}) = \begin{vmatrix} \frac{\partial F_1}{\partial z_1} + \frac{\partial F_1}{\partial z_m} \frac{\partial g}{\partial z_1} & \dots & \frac{\partial F_1}{\partial z_{m-1}} + \frac{\partial F_1}{\partial z_m} \frac{\partial g}{\partial z_{m-1}} & \frac{\partial F_1}{\partial z_m} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F_{m-1}}{\partial z_1} + \frac{\partial F_{m-1}}{\partial z_m} \frac{\partial g}{\partial z_1} & \dots & \frac{\partial F_{m-1}}{\partial z_{m-1}} + \frac{\partial F_{m-1}}{\partial z_m} \frac{\partial g}{\partial z_{m-1}} & \frac{\partial F_{m-1}}{\partial z_m} \\ \frac{\partial F_m}{\partial z_1} + \frac{\partial F_m}{\partial z_m} \frac{\partial g}{\partial z_1} & \dots & \frac{\partial F_m}{\partial z_{m-1}} + \frac{\partial F_m}{\partial z_m} \frac{\partial g}{\partial z_{m-1}} & \frac{\partial F_m}{\partial z_m} \end{vmatrix}$$

Z (3.13) ostatni wiersz zeruje się poza ostatnim elementem. Z (3.12) otrzymujemy więc

$$\Delta(x,\tilde{z}) = \frac{\partial F_m}{\partial z_m} \begin{vmatrix} \frac{\partial H_1}{\partial z_1}(x;\tilde{z}) & \dots & \frac{\partial H_1}{\partial z_{m-1}}(x;\tilde{z}) \\ \vdots & & \vdots \\ \frac{\partial H_{m-1}}{\partial z_1}(x;\tilde{z}) & \dots & \frac{\partial H_{m-1}}{\partial z_{m-1}}(x;\tilde{z}) \end{vmatrix},$$

gdzie $\frac{\partial F_m}{\partial z_m}$ jest obliczone w $(x; \tilde{z}, g(x, \tilde{z}))$. Ponieważ $\Delta(a, \tilde{b}) \neq 0$, to wyznacznik nowego układu dla $x = a, \ \tilde{z} = \tilde{b}$ jest różny od zera.

Możemy zatem kontynuować obliczając kolejne zmienne

$$z_{m} = g_{1}(x_{1}, \dots, x_{n}; z_{1}, \dots, z_{m-1}),$$

$$z_{m-1} = g_{2}(x_{1}, \dots, x_{n}; z_{1}, \dots, z_{m-2}),$$

$$\vdots$$

$$z_{2} = g_{m-1}(x_{1}, \dots, x_{n}; z_{1}),$$

$$z_{1} = g_{m}(x_{1}, \dots, x_{n}).$$

Wykonujemy podstawienie wstecz, aby ostatecznie obliczyć zmienne z_1, z_2, \ldots, z_m za pomocą x_1, x_2, \ldots, x_n .

Szczególnym przypadkiem twierdzenia o funkcji uwikłanej jest twierdze-

nie o funkcji odwrotnej. Chcemy z układu równań

$$f_{1}(x_{1}, x_{2}, ..., x_{n}) = y_{1},$$

$$f_{2}(x_{1}, x_{2}, ..., x_{n}) = y_{2},$$

$$\vdots$$

$$f_{n}(x_{1}, x_{2}, ..., x_{n}) = y_{n},$$

$$(3.14)$$

obliczyć x_1, x_2, \ldots, x_n , jako funkcje od y_1, y_2, \ldots, y_n . Załóżmy, że x = a i y = b jest rozwiązaniem układu. Rozważamy

$$F_1(x_1, \dots, x_n; y_1, \dots, y_n) = f_1(x_1, \dots, x_n) - y_1 = 0,$$

$$F_2(x_1, \dots, x_n; y_1, \dots, y_n) = f_2(x_1, \dots, x_n) - y_2 = 0,$$

$$\vdots$$

$$F_n(x_1, \dots, x_n; y_1, \dots, y_n) = f_n(x_1, \dots, x_n) - y_n = 0.$$

Z twierdzenia o funkcji uwikłanej badamy wyznacznik

$$\Delta = \begin{vmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_n} \end{vmatrix}_{\substack{x=a \\ y=b}} = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}_{x=a}$$

Wyznacznik

$$\begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$

nazywamy jakobianem odwzorowań f_1, f_2, \ldots, f_n .

Twierdzenie 3.38 (o funkcji odwrotnej). Niech $U \subset będzie$ otwartym podzbiorem przestrzenia \mathbb{R}^n . Rozważamy funkcje f_1, f_2, \ldots, f_n klasy C^1 na U. Załóżmy, że układ równań (3.14) ma rozwiązanie x = a, y = b dla $a \in U$. Jeśli

$$\Delta = \det\left(\frac{\partial f_i}{\partial x_j}(a)\right) \neq 0,$$

to układ ma jednoznaczne rozwiązanie dla y w pobliżu b i x w pobliżu a. Tzn. istnieje liczba $\delta > 0$ taka, że dla $||y - b|| < \delta$ istnieje jedyny punkt $x \in U$ taki,

 $\dot{z}e \|x-a\| < \delta \text{ oraz } x \text{ i } y \text{ są rozwiązaniem układu (3.14). Ponadto funkcje}$

$$x_1 = g_1(y_1, y_2, \dots, y_n),$$

 $x_2 = g_2(y_1, y_2, \dots, y_n),$
 \vdots
 $x_n = g_n(y_1, y_2, \dots, y_n)$

 $sq klasy C^1$.

Przykład. Rozważmy układ równań

$$\frac{x^4 + y^4}{x} = u,$$

$$\sin x + \cos y = v.$$

W pobliżu jakich punktów możemy obliczyć xi ywzględem ui v? Obliczamy jakobian

$$\Delta = \begin{vmatrix} 3x^2 - \frac{y^4}{x^2} & \frac{4y^3}{x} \\ \cos x & -\sin y \end{vmatrix}$$

Powinien być spełniony warunek $\Delta \neq 0$. Wyznacznik jest niezerowy dla $x=\frac{\pi}{2}$ i $y=\frac{\pi}{2}$. Zatem można rozwiązać układ w pobliżu $u=\frac{\pi^3}{4}$ i v=1. Rozwiązania będą leżały w pobliżu $x=\frac{\pi}{2},\ y=\frac{\pi}{2}$.

Twierdzenie o funkcji odwrotnej można sformułować w postaci zbliżonej w zapisie do twierdzenia dla jednej zmiennej. Dla funkcji $f_1, f_2, \ldots, f_n : U \to \mathbb{R}$ tworzymy funkcję $f: U \to \mathbb{R}^n$ wzorem

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix} \in \mathbb{R}^n, \qquad x = (x_1, x_2, \dots, x_n).$$

Wtedy układ równań w twierdzenia o funkcji odwrotnej ma postać f(x) = y, gdzie

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

Zauważmy, że $\Delta = \det(Df(a)) \neq 0$. Załóżmy, że f(a) = b dla $a \in U$. Wtedy dla y w pobliżu b istnieje jedyne rozwiązanie x w pobliżu a. Ponadto x = g(y), gdzie g jest klasy C^1 . Tzn. g jest funkcją odwrotną do funkcji f. Obliczmy Dg(y). Mamy

$$q(f(x)) = x.$$

Różniczkujemy obie strony. Wtedy

$$Dg(f(x)) Df(x) = I,$$

czyli

$$Dg(y) = (Df(x))^{-1}, \quad y = f(x).$$

Dla funkcji jednej zmiennej wzory mają postać y = f(x), x = g(y) oraz

$$g'(y) = \frac{1}{f'(x)}.$$

Przykład. W pobliżu jakich punktów funkcja $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x,y) = (x - y, x^5 + y^5)$$

jest odwracalna?

$$\det Df(x,y) = \begin{vmatrix} 1 & -1 \\ 5x^4 & 5y^4 \end{vmatrix} = 5(x^4 + y^4).$$

Funkcja jest odwracalna poza punktem (0,0).

3.9 Różniczka

Rozważmy funkcję różniczkowalną $f: \mathbb{R}^n \to \mathbb{R}$. Wtedy

$$f(x) \approx f(a) + \nabla f(a) \circ (x - a),$$

gdy $x, a \in \mathbb{R}^n$ są blisko siebie. Istotnie wiemy, że

$$\lim_{x \to a} \frac{|f(x) - f(a) - \nabla f(a) \circ (x - a)|}{\|x - a\|} = 0.$$

Wyrażenie $\nabla f(a) \circ (x-a)$ nazywamy różniczką odpowiadającą przyrostowi x-a. Podobnie dla $f: \mathbb{R}^n \to \mathbb{R}^n$ możemy zapisać $f(x) \approx f(a) + Df(a) (x-a)$. Oznaczmy Df(a) = A. Dla x blisko a mamy $y = f(x) \approx f(a) + A(x-a)$. Załóżmy, że y = f(a) + A(x-a). Wtedy $x = a + A^{-1}(y-b)$. W rzeczywistości mamy $x \approx a + A^{-1}(y-b)$.

Całki podwójne

4 Całki podwójne

Niech R będzie prostokątem $[a,b] \times [c,d]$. Rozważamy nieujemną funkcję f(x,y) określoną na R. Wykres ma postać powierzchni leżącej nad R. Powierzchnia z=f(x,y) oraz cztery pionowe płaszczyzny x=a, x=b, y=c i y=d ograniczają obszar trójwymiarowy B. Chcemy obliczyć objętość tego obszaru. Załóżmy, że całka podwójna została określona tak, aby

67

$$\iint\limits_{R} f(x,y) \, dx \, dy = \int\limits_{a}^{b} \int\limits_{c}^{d} f(x,y) \, dx \, dy = \text{vol}(B).$$

Przykłady.

(a) $f(x,y) = k, k \ge 0$. Obszar jest prostopadłościanem o wysokości k.

$$\int_{a}^{b} \int_{c}^{d} k \, dx \, dy = k(b-a)(d-c).$$

(b) f(x,y) = 1 - x, $0 \le x \le 1$, $0 \le y \le 1$. Obszar jest połową sześcianu o boku 1.

$$\int_{0}^{1} \int_{0}^{1} (1-x) \, dx \, dy = \frac{1}{2}.$$

4.1 Zasada Cavalieriego

Przy bardziej złożonych funkcjach f(x,y) możemy zastosować zasadę Cavalieriego. Załóżmy, że bryła ma własność, że pola przekroju płaszczyznami równoległymi do ustalonej płaszczyzny, w odległości x od tej płaszczyzny, wynoszą A(x). Bryła mieści się pomiędzy płaszczyznami x=a i x=b. Wtedy

$$V = \int_{a}^{b} A(x) \, dx.$$

Rozważmy nieujemną funkcję f(x,y) na $[a,b] \times [c,d]$. Pole przekroju płaszczyzną pionową $x=x_0$ wynosi

$$A(x_0) = \int_a^d f(x_0, y) \, dy.$$

Zatem objętość bryły wynosi

$$V = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx.$$

Można też zastosować cięcia płaszczyznami równoległymi do płaszczyzny pionowej y=0. Wtedy

$$V = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy.$$

Przykład. $f(x,y) = x^2 + y^2, -1 \le x \le 1, 0 \le y \le 1.$

$$V = \int_{-1}^{1} \left(\int_{0}^{1} (x^{2} + y^{2}) \, dy \right) \, dx = \int_{-1}^{1} \left(x^{2} + \frac{1}{3} \right) dx = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}.$$

4.2 Ścisłe określenie całki podwójnej Riemanna

Podziałem prostokąta $R = [a, b] \times [c, d]$ nazywamy parę $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2)$, gdzie \mathcal{P}_1 jest podziałem przedziału [a, b], a \mathcal{P}_2 podziałem przedziału [c, d]:

$$\mathcal{P}_1 = \{x_0, x_1, \dots, x_n\}, \qquad \mathcal{P}_2 = \{y_0, y_1, \dots, y_m\}.$$

Podprzedziałem nazywamy każdy z prostokątów

$$S_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j].$$

Rozważamy funkcję f(x,y) określoną na R. Dla podprzedziału S niech

$$m_S(f) = \inf_{(x,y) \in S} f(x,y), \qquad M_S(f) = \sup_{(x,y) \in S} f(x,y).$$

Symbolem ΔS oznaczamy pole powierzchni prostokąta S. Sumy dolne i górne są zdefiniowane wzorami

$$L(\mathcal{P}, f) = \sum_{S \in \mathcal{P}} m_S(f) \Delta S, \qquad U(\mathcal{P}, f) = \sum_{S \in \mathcal{P}} M_S(f) \Delta S.$$

Uwaga. Jeśli $f(x,y) \ge 0$, to objętość obszaru pod wykresem mieści pomiędzy liczbami $L(\mathcal{P},f)$ i $U(\mathcal{P},f)$.

Podział $\mathcal{P}' = (\mathcal{P}_1, \mathcal{P}_2)$ nazywamy rozdrobnieniem podziału $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2)$, jeśli \mathcal{P}'_1 jest rozdrobnieniem \mathcal{P} , a \mathcal{P}'_2 rozdrobnieniem \mathcal{P}_2 .

Całki podwójne 69

Lemat 4.1. Jeśli \mathcal{P}' jest rozdrobnieniem \mathcal{P} , to

$$L(\mathcal{P}, f) \leq L(\mathcal{P}', f), \qquad U(\mathcal{P}, f) \geqslant U(\mathcal{P}', f).$$

Określamy całki dolną i górną wzorami

$$\iint\limits_{\mathcal{B}} f(x,y)\,dx\,dy = \sup\limits_{\mathcal{P}} L(\mathcal{P},f), \qquad \iint\limits_{\mathcal{B}} f(x,y)\,dx\,dy = \inf\limits_{\mathcal{P}} U(\mathcal{P},f).$$

Mówimy, że funkcja f(x,y) jest całkowalna jeśli

$$\iint\limits_{\overline{R}} f(x,y) \, dx \, dy = \iint\limits_{R} f(x,y) \, dx \, dy.$$

Twierdzenie 4.2. Funkcja ograniczona f(x,y) na prostokącie R jest calkowalna wtedy i tylko wtedy, gdy dla dowolnej liczby $\varepsilon > 0$ można znaleźć podział \mathcal{P} spełniający

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon.$$

Uwaga. Dowód jest bardzo podobny do przypadku jednej zmiennej. Implikacja \Leftarrow jest użyteczna.

Lemat 4.3. Każda funkcja ciągła f(x), o wartościach liczbowych, określona na zwartym podzbiorze $R \subset \mathbb{R}^2$ jest jednostajnie ciągła, tzn. gdy dwa argumenty funkcji są położone blisko siebie, to również wartości funkcji leżą blisko siebie. Czyli

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in R \ \|x - y\| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Dowódnie wprost. Załóżmy, że istnieje (złośliwa) liczba $\varepsilon>0$ taka, że dla $\delta_n=\frac{1}{n}$ istnieją punkty x_n i y_n w R spełniające

$$||x_n - y_n|| < \frac{1}{n}, \qquad |f(x_n) - f(y_n)| \geqslant \varepsilon.$$

Z ciągu x_n można wybrać zbieżny podciąg x_{n_k} . Niech $x_{n_k} \xrightarrow{k} x_0$. Wtedy

$$||y_{n_k} - x_0|| \le ||y_{n_k} - x_{n_k}|| + ||x_{n_k} - x_0|| \le \frac{1}{n_k} + ||x_{n_k} - x_0|| \xrightarrow{k} 0.$$

Czyli $y_{n_k} \xrightarrow{k} x_0$. Zatem $f(x_{n_k}) \xrightarrow{k} f(x_0)$ oraz $f(y_{n_k}) \xrightarrow{k} f(x_0)$. Otrzymujemy sprzeczność, bo $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$.

Twierdzenie 4.4. Funkcja ciągła jest całkowalna na prostokącie.

 $Dow \acute{o}d$. Z jednostajnej ciągłości, jeśli podział \mathcal{P} jest wystarczająco drobny, to $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \varepsilon$.

Twierdzenie 4.5. Rozważmy dwie funkcje f i g, całkowalne na prostokącie R. Wtedy

(i)
$$\iint\limits_R (f+g) \, dx \, dy = \iint\limits_R f \, dx \, dy + \iint\limits_R g \, dx \, dy.$$

(ii)
$$\iint\limits_R cf \, dx \, dy = c \iint\limits_R f \, dx \, dy.$$

(iii) Jeśli $f(x,y) \leq g(x,y)$ na R, to

$$\iint\limits_R f \, dx \, dy \leqslant \iint\limits_R g \, dx \, dy.$$

(iv) Jeśli R_i , i = 1, 2, ..., n, są prostokątami o bokach równoległych do osi takimi, że f jest całkowalna na każdym z nich oraz $R = R_1 \cup ... \cup R_n$, to f jest całkowalna na R oraz

$$\iint\limits_R f \, dx \, dy = \sum_{i=1}^n \iint\limits_{R^i} f \, dx \, dy,$$

przy założeniu, że wnętrza prostokątów R_i są rozłączne pomiędzy sobą.

Uwaga. Prostokąty R_i , $i=1,2,\ldots,n$, nie muszą tworzyć podziału prostokąta R. Ale można rozdrobnić każdy z prostokątów R_i , aby uzyskać podział prostokąta R.

Twierdzenie 4.6 (Fubini). Załóżmy, że funkcja f(x,y) jest ciągła na prostokącie $[a,b] \times [c,d]$. Wtedy

$$\iint\limits_R f(x,y) \, dx \, dy = \int\limits_a^b \left(\int\limits_c^d f(x,y) \, dy \right) \, dx = \int\limits_c^d \left(\int\limits_a^b f(x,y) \, dx \right) dy.$$

Całki podwójne

71

Dowód. Rozważamy podziały $a = x_0 < x_1 < \ldots < x_n = b$ i $c = y_0 < y_1 < \ldots < y_m = d$.

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left(\sum_{j=1}^{m} \int_{y_{j-1}}^{y_{j}} f(x, y) \, dy \right) dx$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_{i}} \underbrace{\left(\int_{y_{j-1}}^{y_{j}} f(x, y) \, dy \right)}_{F_{j}(x)} dx = \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{x_{i-1}}^{x_{i}} F_{j}(x) \, dx.$$

 $F_i(x)$ jest funkcją ciągłą na $[x_{i-1}, x_i]$, co wynika z lematu poniżej.

Lemat 4.7. Dla funkcji f(x,y) ciągłej na $[a,b] \times [c,d]$ funkcja $F(x) = \int_{c}^{d} f(x,y) dy$ jest ciągła na [a,b].

Dowód lematu.

$$|F(x_1) - F(x_2)| = \left| \int_c^d f(x_1, y) \, dy - \int_c^d f(x_2, y) \, dy \right| \le \int_c^d |f(x_1, y) - f(x_2, y)| \, dy.$$

Z jednostajnej ciągłości dla $\varepsilon>0$ można znaleźć liczbę $\delta>0$ taką, że

$$\|(x_1, y_1) - (x_2, y_2)\| < \delta \implies |f(x_1, y_1) - f(x_2, y_2)| < \frac{\varepsilon}{d - c}.$$

Wtedy dla $|x_1 - x_2| < \delta$ mamy $|f(x_1, y) - f(x_2, y)| < \frac{\varepsilon}{d - c}$. Ostatecznie

$$|F(x_1) - F(x_2)| \le \frac{\varepsilon}{d-c}(d-c) = \varepsilon.$$

Z twierdzenia o wartości średniej istnieją punkty ξ_{ij} , dla których

$$\int_{x_{i-1}}^{x_i} F_j(x) dx = F_j(\xi_{ij}) \Delta x_i, \quad x_{i-1} \leqslant \xi_{ij} \leqslant x_i.$$

Dalei

$$F_{j}(\xi_{ij}) = \int_{y_{j-1}}^{y_{j}} f(\xi_{ij}, y) \, dy = f(\xi_{ij}, \eta_{ij}) \Delta y_{j}, \quad y_{j-1} \leqslant \eta_{ij} \leqslant y_{j},$$

dla pewnych punktów η_{ij} . Zatem

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_{ij}, \eta_{ij}) \underbrace{\Delta x_{i} \Delta y_{j}}_{\Delta S_{ij}},$$

gdzie $S_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$. Punkt (ξ_{ij}, η_{ij}) leży w S_{ij} , stąd

$$L(\mathcal{P}, f) \leqslant \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx \leqslant U(\mathcal{P}, f),$$

gdzie \mathcal{P} jest podziałem wyznaczonym przez prostokąty S_{ij} . Ale

$$L(\mathcal{P}, f) \leqslant \iint\limits_{R} f(x, y) \, dx \, dy \leqslant U(\mathcal{P}, f).$$

Funkcja F jest całkowalna, więc można wybrać podział $\mathcal P$ taki, że $U(\mathcal P,f)-L(\mathcal P,f)<\varepsilon.$ Wtedy

$$\left| \iint\limits_R f(x,y) \, dx \, dy - \int\limits_a^b \left(\int\limits_c^d f(x,y) \, dy \right) \, dx \right| < \varepsilon.$$

Niekiedy będziemy musieli obliczać całki z funkcji nieciągłych, np. przy wyznaczaniu objętości brył, których podstawa nie jest prostokątem.

Przykład. Niech f(x,y) będzie nieujemną funkcją ciągła określoną w kole $x^2+y^2\leqslant 1$. Chcemy obliczyć objętość obszaru pod wykresem. Wkładamy koło w kwadrat $[-1,1]\times[-1,1]$ i określamy funkcję

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & x^2 + y^2 \le 1, \\ 0 & x^2 + y^2 > 1. \end{cases}$$

Wtedy
$$V = \iint_{[-1,1]\times[-1,1]} \tilde{f}(x,y) dx dy$$
.

Ogólnie, jeśli chcemy obliczyć całkę $\iint_C f(x,y)\,dx\,dy$, gdzie $C\subset\mathbb{R}^2$, to wkładamy C w prostokąt o bokach równoległych do osi i obliczamy

$$\iint\limits_R f(x,y) \mathbb{1}_C(x,y) \, dx \, dy.$$

Pojawia się problem całkowalności funkcji $f(x,y)\mathbb{1}_C(x,y)$. Jeśli $\mathbb{1}_C(x,y)$ jest całkowalna a f(x,y) jest ciągła, to iloczyn jest funkcją całkowalną, bo iloczyn funkcji całkowalnych jest całkowalny.

73

Przykład. $C = \{(x,y) : x^2 + y^2 \leq 1.\}$. Funkcja $\mathbb{I}_C(x,y)$ jest nieciągła w punktach okręgu $x^2 + y^2 = 1$. Ogólnie funkcja $\mathbb{I}_C(x,y)$ jest nieciągła na brzegu zbioru C oznaczanym symbolem ∂C .

Definicja 4.8. Mówimy, że zbiór $A \subset \mathbb{R}^2$ ma miarę zero, jeśli dla dowolnej liczby $\varepsilon > 0$ istnieją prostokąty $\{R_n\}_{n=1}^{\infty}$ takie, że

$$A \subset \bigcup_{n=1}^{\infty} R_n, \qquad \sum_{n=1}^{\infty} \Delta R_n < \varepsilon.$$

Przykłady.

- (a) Punkt ma miarę zero. Skończony zbiór punktów ma miarę zero.
- (b) Przeliczalny zbiór punktów ma miarę zero. W szczególności zbiór punktów w kwadracie $[0,1]^2$ o obu współrzędnych wymiernych ma miarę zero
- (c) Poziomy odcinek ma miarę zero. Również ukośny odcinek ma miarę zero.
- (d) Zbiór punktów kwadratu $[0,1]^2$ o obu współrzędnych niewymiernych nie ma miary zero.

Twierdzenie 4.9. Ograniczona funkcja na prostokącie jest całkowalna wtedy i tylko wtedy, gdy zbiór jej punktów nieciągłości ma miarę zero.

Twierdzenie 4.10. Niech f będzie funkcją całkowalną na prostokącie $R = [a, b] \times [c, d]$. Dla $a \le x \le b$ niech

$$\int_{\frac{d}{a}}^{d} f(x,y) \, dy = \mathcal{L}(x) \leqslant \mathcal{U}(x) = \int_{a}^{\frac{d}{a}} f(x,y) \, dy.$$

Wtedy funkcje $\mathcal{L}(x)$ i $\mathcal{U}(x)$ są całkowalne na [a,b] oraz

$$\iint\limits_{\mathcal{B}} f(x,y) \, dx \, dy = \int\limits_{a}^{b} \mathcal{L}(x) \, dx = \int\limits_{a}^{b} \mathcal{U}(x) \, dx.$$

Uwagi.

1. Jeśli funkcja $y \mapsto f(x,y)$ jest całkowalna na [c,d]dla $a \leqslant x \leqslant b,$ to

$$\iint\limits_R f(x,y) \, dx \, dy = \int\limits_a^b \left(\int\limits_c^d f(x,y) \, dy \right) dx.$$

2. Zamieniając rolami x i y i przyjmując, że funkcja $x\mapsto f(x,y)$ jest całkowalna na [a,b] dla $c\leqslant y\leqslant d$, otrzymamy

$$\iint\limits_R f(x,y) \, dx \, dy = \int\limits_c^d \left(\int\limits_a^b f(x,y) \, dx \right) dy.$$

 $Dow \acute{o}d.$ Niech $\mathcal{P}=(\mathcal{P}_1,\mathcal{P}_2)$ będzie podziałem prostokąta R.Rozważmy jeden prostokąt podziału $S=S_1\times S_2.$ Mamy

$$m_S(f) = m_{S_1 \times S_2}(f) \le m_{S_2}(f(x, \cdot)), \text{ dla } x \in S_1.$$

Zatem

$$\sum_{S_2 \in \mathcal{P}_2} m_{S_1 \times S_2}(f) \Delta S_2 \leqslant \sum_{S_2 \in \mathcal{P}_2} m_{S_2}(f(x, \cdot)) \Delta S_2$$

$$= L(\mathcal{P}_2, f(x, \cdot)) \leqslant \int_{\overline{c}}^d f(x, y) \, dy = \mathcal{L}(x), \quad \text{dla } x \in S_1.$$

Po wzięciu kresu dolnego względem $x \in S_1$ otrzymujemy

$$\sum_{S_2 \in \mathcal{P}_2} m_{S_1 \times S_2}(f) \Delta S_2 \leqslant m_{S_1}(\mathcal{L}).$$

Zatem

$$L(\mathcal{P}, f) = \sum_{S_1 \in \mathcal{P}_1} \sum_{S_2 \in \mathcal{P}_2} m_{S_1 \times S_2}(f) \Delta S_1 \Delta S_2 \leqslant \sum_{S_1 \in \mathcal{P}_1} m_{S_1}(\mathcal{L}) \Delta S_1 = L(\mathcal{P}_1, \mathcal{L}).$$

Podobnie pokazujemy, że $U(\mathcal{P}, f) \geqslant U(\mathcal{P}_1, \mathcal{U})$. Reasumując otrzymujemy

$$L(\mathcal{P}, f) \leq L(\mathcal{P}_1, \mathcal{L}) \leq U(\mathcal{P}_1, \mathcal{L}) \leq U(\mathcal{P}_1, \mathcal{U}) \leq U(\mathcal{P}, f).$$

Całki podwójne 75

Z założenia f(x, y) jest całkowalna. Stąd wynika, że $\mathcal{L}(x)$ jest całkowalna na [a, b]. Ponadto

$$L(\mathcal{P}, f) \leqslant \iint_{R} f(x, y) dx dy \leqslant U(\mathcal{P}, f),$$

 $L(\mathcal{P}, f) \leqslant \int_{a}^{b} \mathcal{L}(x) dx \leqslant U(\mathcal{P}, f).$

Zatem
$$\iint_R f(x,y) dx dy = \int_a^b \mathcal{L}(x) dx.$$

Przykład. $D = \{(x,y) : x^2 + y^2 \le 1\}$. Znaleźć objętość obszaru pod wykresem funkcji f(x,y) = 2x + y + 5 na D. Obliczamy

$$\iint_{D} f(x,y) \, dx \, dy = \iint_{[-1,1]^{2}} (2x+y+5) \mathbb{I}_{D}(x,y) \, dx \, dy$$

$$= \int_{-1}^{1} \left(\int_{-1}^{1} (2x+y+5) \mathbb{I}_{D}(x,y) \, dy \right) dx = \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} (2x+y+5) \, dy \, dx$$

$$= 2 \int_{-1}^{1} (2x+5) \sqrt{1-x^{2}} \, dx = 10 \int_{-1}^{1} \sqrt{1-x^{2}} \, dx = 5\pi.$$

Twierdzenie 4.11. Niech y = f(x) będzie funkcją ciągłą na [a,b]. Wtedy wykres funkcji f ma miarę zero.

Dowód. Ustalmy $\varepsilon > 0$. Można znaleźć liczbę naturalną N taką, że

$$|x - x'| < \frac{b-a}{N} \Rightarrow |f(x) - f(x')| < \frac{\varepsilon}{8(b-a)}.$$

Dzielimy przedział [a,b] na N równych części punktami $a=x_0 < x_1 < \ldots < x_N = b$. Określmy $x_{-1} = a - \frac{b-a}{N}$, $x_{N+1} = b + \frac{b-a}{N}$. Każdy z punktów x przedziału [a,b] leży w jednym z przedziałów (x_{i-1},x_{i+1}) dla $i=1,2,\ldots,N$. Jeśli $x \in (x_{i-1},x_{i+1})$, to $|f(x)-f(x_i)| < \frac{\varepsilon}{8(b-a)}$. To oznacza, że

$$f(x) \in \left(f(x_i) - \frac{\varepsilon}{8(b-a)}, f(x_i) + \frac{\varepsilon}{8(b-a)} \right).$$

Zatem wykres jest zawarty w zbiorze

$$\bigcup_{i=1}^{N} (x_{i-1}, x_{i+1}) \times \left(f(x_i) - \frac{\varepsilon}{8(b-a)}, f(x_i) + \frac{\varepsilon}{8(b-a)} \right).$$

Suma pól składników tego zbioru wynosi

$$\frac{2(b-a)}{N} \cdot \frac{\varepsilon}{4(b-a)} = \frac{\varepsilon}{2}.$$

4.2.1 Obliczanie pól

Dla ograniczonego podzbioru $D\subset\mathbb{R}^2$ takiego, że ∂D ma miarę zero określamy

$$A(D) = \iint_D dx \, dy = \iint_R \mathbb{I}_D(x, y) \, dx \, dy,$$

gdzie R jest prostokatem zawierającym D. Niech \mathcal{P} będzie podziałem prostokąta R. Wtedy

$$L(\mathcal{P}, \mathbb{1}_D) = \sum_{S} m_S(\mathbb{1}_D) \Delta S, \qquad U(\mathcal{P}, \mathbb{1}_D) = \sum_{S} M_S(\mathbb{1}_D) \Delta S.$$

Wielkość $L(\mathcal{P}, \mathbb{I}_D)$ jest sumą pól prostokątów podziału całkowicie zawartych w D, natomiast $U(\mathcal{P}, \mathbb{I}_D)$ jest sumą pól prostokątów podziału mających część wspólną z D. Polem wewnętrznym nazywamy kres górny liczb $L(\mathcal{P}, \mathbb{I}_D)$ a polem zewnętrznym kres dolny liczb $U(\mathcal{P}, \mathbb{I}_D)$. Mówimy, że obszar D ma pole, jeśli pole wewnętrzne jest równe polu zewnętrznemu. Obszar D ma pole wtedy i tylko wtedy, gdy ∂D ma miarę zero. Mówimy wtedy, że obszar jest mierzalny w sensie Jordana.

Twierdzenie 4.12. Jeśli f(x,y) jest funkcją ciągłą w prostokącie R i $D \subset R$ jest mierzalny w sensie Jordana, to całka

$$\iint\limits_{D} f(x,y) \, dx \, dy$$

jest dobrze określona.

Całki podwójne

77

Dowód.

$$\iint\limits_D f(x,y) \, dx \, dy = \iint\limits_R f(x,y) \mathbb{1}_D(x,y) \, dx \, dy.$$

Funkcja $f(x,y)\mathbb{I}_D(x,y)$ jest nieciągła tylko w punktach ∂D .

Twierdzenie 4.13. Niech D_1 i D_2 będą ograniczonymi rozłącznymi podzbiorami \mathbb{R}^2 mierzalnymi w sensie Jordana. Dla funkcji f(x,y) ciągłej na $D_1 \cup D_2$ mamy

$$\iint_{D_1 \cup D_2} f(x, y) \, dx \, dy = \iint_{D_1} f(x, y) \, dx \, dy + \iint_{D_2} f(x, y) \, dx \, dy.$$

Dowód. Wkładamy D_1 i D_2 w prostokąt R. Wtedy

$$\iint_{D_1 \cup D_2} f \, dx \, dy = \iint_R f \, \mathbb{1}_{D_1 \cup D_2} \, dx \, dy = \iint_R f \, [\mathbb{1}_{D_1} + \mathbb{1}_{D_2}] \, dx \, dy$$

$$\iint_R f \, \mathbb{1}_{D_1} \, dx \, dy + \iint_R f \, \mathbb{1}_{D_2} \, dx \, dy = \iint_{D_1} f \, dx \, dy + \iint_{D_2} f \, dx \, dy.$$

Przykład. Dwa boki równoległoboku D znajdują się na poziomach y = c i y = d. Dolny bok mieści się pomiędzy x = a i x = b a górny pomiędzy a' i b' oraz a' > a. Wkładamy D w prostokąt $R = [a, b'] \times [c, d]$. Wtedy

$$A(D) = \iint\limits_R \mathbb{I}_D(x, y) \, dx \, dy = \int\limits_c^d \left(\int\limits_a^{b'} \mathbb{I}_D(x, y) \, dx \right) \, dy.$$

Przy ustalonej wartości y funkcja $\mathbb{I}_D(x,y)$ jest równa 1 na przedziale długości b-a. Zatem

$$A(D) = \int_{c}^{d} (b-a) \, dy = (b-a)(d-c).$$

4.2.2 Zmiana kolejności całkowania

Rozważmy całkę iterowaną

$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-y^{2}} \, dy \, dx = \iint_{D} \sqrt{a^{2}-y^{2}} \, dx \, dy$$

$$= \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \sqrt{a^{2}-y^{2}} \, dx \, dy = \int_{0}^{a} (a^{2}-y^{2}) \, dy = a^{3} - \frac{a^{3}}{3} = \frac{2}{3}a^{3}.$$

Przy zmienionej kolejności całkowania obliczenia okazały się łatwiejsze. Podobnie

$$\int_{1}^{2} \int_{0}^{\log x} (x-1)\sqrt{1+2e^{y}} \, dy \, dx = \int_{0}^{\log 2} \int_{e^{y}}^{2} (x-1)\sqrt{1+2e^{y}} \, dx \, dy$$
$$= \int_{0}^{\log 2} \sqrt{1+2e^{y}} \, (2-e^{y}) \frac{1}{2} (1+e^{y}-1) \, dy.$$

W ostatniej całce wykonujemy podstawienie $u=1+2e^y$. Wtedy

$$e^y = \frac{u-1}{2} \qquad du = 2e^y \, dy.$$

Otrzymujemy

$$\int_{3}^{5} \sqrt{u} \left(2 - \frac{u-1}{2}\right) \frac{1}{4} du.$$

Definicja 4.14. Obszar $D \subset \mathbb{R}^2$ nazywamy łukowo spójnym, jeśli dla dowolnych dwóch punktów (x_1, y_1) i (x_2, y_2) w D można znaleźć funkcję ciągłą $\varphi : [0, 1] \to D$ taką, że $\varphi(0) = (x_1, y_1)$ oraz $\varphi(1) = (x_2, y_2)$.

Twierdzenie 4.15 (o wartości średniej). Niech f(x,y) będzie funkcją ciąglą na zwartym obszarze $D \subset \mathbb{R}^2$ mierzalnym w sensie Jordana i łukowo spójnym. Wtedy

$$\iint\limits_{D} f(x,y) \, dx \, dy = f(x_0, y_0) A(D)$$

dla pewnego punktu (x_0, y_0) w D.

Całki podwójne

79

Dowód. Mamy

$$m = \min_{(x,y)\in D} f(x,y) = f(x_1,y_1), \qquad M = \max_{(x,y)\in D} f(x,y) = f(x_2,y_2)$$

dla pewnych punktów (x_1, y_1) i (x_2, y_2) w D. Dalej

$$m A(D) \leqslant \iint\limits_D f(x, y) dx dy \leqslant M A(D).$$

Jeśli A(D) = 0, to teza jest spełniona. Niech A(D) > 0. Wtedy

$$f(x_1, y_1) = m \leqslant \underbrace{\frac{1}{A(D)} \iint\limits_{D} f(x, y) \, dx \, dy}_{\alpha} \leqslant M = f(x_2, y_2).$$

Niech φ będzie funkcją ciągłą taką, że $\varphi:[0,1]\to D$ oraz $\varphi(0)=(x_1,y_1)$, $\varphi(1)=(x_2,y_2)$. Rozważmy funkcję $g(t)=f(\varphi(t))$. Wtedy g jest funkcją ciągłą oraz $g(0)=f(x_1,y_1)$ i $g(1)=f(x_1,y_1)$. Ponadto $g(0)\leqslant\alpha\leqslant g(1)$. Z własności Darboux mamy $g(t_0)=\alpha$ dla pewnej wartości $0\leqslant t_0\leqslant 1$. Tzn. $f(\varphi(t_0))=\alpha$ oraz $\varphi(t_0)=(x_0,y_0)$.

4.2.3 Geometria odwzorowań z \mathbb{R}^2 w \mathbb{R}^2

Przykłady.

(a) Niech $D = [0, 1] \times [0, 2\pi)$. Określamy

$$T(r,\varphi) = (r\cos\varphi, r\sin\varphi).$$

T odwzorowuje prostokąt D w koło jednostkowe.

(b) $T(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$, $D = [-1,1] \times [-1,1]$. T jest odwzorowaniem liniowym. Aby wyznaczyć obraz T(D) wystarczy więc znaleźć obraz wierzchołków obszaru D. Można też wskazać warunki jakie muszą spełniać punkty z T(D). Niech $u = \frac{x+y}{2}$ i $v = \frac{x-y}{2}$. Wtedy x = u+v i y = u-v. Zatem punkt (u,v) spełnia $|u+v| \leqslant 1$ i $|u-v| \leqslant 1$. To oznacza, że $|u|+|v| \leqslant 1$.

4.3 Twierdzenie o zamianie zmiennych

Dane są dwa zbiory D i D^* w \mathbb{R}^2 i odwzorowanie $T:D^*\to D$ klasy C^1 , różnowartościowe oraz $T(D^*)=D$. Zakładamy, że D i D^* są mierzalne w sensie Jordana. Chcemy wyrazić wielkość $\iint\limits_D f(x,y)\,dx\,dy$ jako całkę po zbiorze D^* z funkcji złożonej $f\circ T$.

Uwaga. Dla funkcji jednej zmiennej mamy

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(u))\varphi'(u) du, \qquad [a, b] \xrightarrow{\varphi} [\varphi(a), \varphi(b)].$$

Zaczniemy od przypadku $f\equiv 1$. Tzn. chcemy obliczyć $\iint_D dx\,dy=A(D)$ za pomocą całki po obszarze D^* z funkcji 1 ewentualnie domnożonej przez jakąś funkcję zależną od T.

Wiemy, że jeśli T jest odwzorowaniem różniczkowalnym w (u_0, v_0) , to dla odwzorowania liniowego $DT(u_0, v_0)$ zadanego macierzą

$$DT(u_0, v_0) = \begin{pmatrix} \frac{\partial x}{\partial u}(u_0, v_0) & \frac{\partial x}{\partial v}(u_0, v_0) \\ \frac{\partial y}{\partial u}(u_0, v_0) & \frac{\partial y}{\partial v}(u_0, v_0) \end{pmatrix}$$

mamy

$$T(u,v) \approx T(u_0,v_0) + DT(u_0,v_0) \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix} =: \widetilde{T}(u,v),$$

gdzie $\Delta u = u - u_0$ oraz $\Delta v = v - v_0$. Jeśli S jest małym prostokątem, o bokach równoległych do osi, wewnątrz D^* , którego dolnym lewym wierzchołkiem jest punkt (u_0, v_0) , to obraz T(S) jest w przybliżeniu równoległobokiem oraz

$$A(T(S)) \approx A(\widetilde{T}(S)) = |\det(DT(u_0, v_0))| A(S).$$

Przypuśćmy, że obszar D^* został włożony w prostokąt R, który następnie podzieliliśmy na małe prostokąty S_k . Rozważamy tylko prostokąty S_k całkowicie zawarte w D^* . Niech (u_k, v_k) oznacza lewy dolny wierzchołek prostokąta S_k . Wtedy

$$\iint\limits_{D} dx \, dy = A(D) = A(T(D^*)) \approx \sum\limits_{k} |\det(DT(u_k, v_k))| \, A(S_k).$$

Całki podwójne 81

W granicy, gdy średnica podziału dąży do zera, otrzymamy

$$\iint\limits_{D} dx \, dy = \iint\limits_{D^*} |\det DT(u, v)| \, du \, dv.$$

Jakobianem odwzorowania T nazywamy wyznacznik

$$J_T(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}.$$

Oznaczmy $(x_k, y_k) = T(u_k, v_k)$. Mamy

$$\iint\limits_D f(x,y) \, dx \, dy \approx \sum\limits_k f(x_k, y_k) \, A(T(S_k))$$

$$\approx \sum\limits_k f(x_k, y_k) |J_T(u_k, v_k)| \, A(S_k) \approx \iint\limits_{D^*} f(T(u, v)) \, |J_T(u, v)| \, du \, dv.$$

Ostatecznie otrzymujemy wzór

$$\iint_{D} f(x,y) \, dx \, dy = \iint_{D^{*}} f(T(u,v)) \, |J_{T}(u,v)| \, du \, dv. \tag{4.1}$$

Przykład. Rozważmy całkę $\int_{-\infty}^{\infty} e^{-x^2} dx$. Mamy

$$\int_{-\infty}^{\infty} e^{-x^2} dx = 2 \int_{0}^{\infty} e^{-x^2} dx$$

$$= 2 \left[\lim_{R \to \infty} \left(\int_{0}^{R} e^{-x^2} dx \right) \left(\int_{0}^{R} e^{-y^2} dy \right) \right]^{1/2} = 2 \left[\lim_{R \to \infty} \iint_{[0,R]^2} e^{-(x^2 + y^2)} dx dy \right]^{1/2}$$

Niech D_R oznacza część koła o środku w początku układu i promieniu R leżącą w pierwszej ćwiartce. Wtedy

$$\iint\limits_{D_R} e^{-(x^2+y^2)} \, dx \, dy \leqslant \iint\limits_{[0,R]^2} e^{-(x^2+y^2)} \, dx \, dy \leqslant \iint\limits_{D_{R\sqrt{2}}} e^{-(x^2+y^2)} \, dx \, dy.$$

Użyjemy współrzędnych biegunowych

$$x = r\cos\varphi, \ y = r\sin\varphi, \quad 0 \leqslant \varphi \leqslant \frac{\pi}{2}, \ 0 \leqslant r \leqslant R.$$

Mamy

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r.$$

Prostokąt $[\delta,R]\times[0,\frac{\pi}{2}]$ jest przekształcony na ćwiartkę pierścienia

$$D_{\delta,R} = \{(x,y) : x,y \geqslant 0, \ \delta^2 \leqslant x^2 + y^2 \leqslant R^2\}.$$

Zatem

$$\begin{split} \iint\limits_{D_R} e^{-(x^2+y^2)} \, dx \, dy &= \lim_{\delta \to 0^+} \iint\limits_{D_{\delta,R}} e^{-(x^2+y^2)} \, dx \, dy \\ &= \lim_{\delta \to 0^+} \int\limits_{\delta}^R \int\limits_{0}^{\frac{\pi}{2}} e^{-r^2} r \, d\varphi \, dr = \frac{\pi}{2} \lim_{\delta \to 0^+} \int\limits_{\delta}^R e^{-r^2} r \, dr = \frac{\pi}{2} \int\limits_{0}^R e^{-r^2} r \, dr \\ &= \frac{\pi}{2} \left(-\frac{1}{2} e^{-r^2} \Big|_{0}^R \right) = \frac{\pi}{4} (1 - e^{-R^2}) \underset{R \to \infty}{\longrightarrow} \frac{\pi}{4}. \end{split}$$

W świetle poprzednich obliczeń otrzymujemy

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

Uwaga. Współrzędne biegunowe są użyteczne, gdy funkcja podcałkowa zawiera x^2+y^2 a obszar całkowania jest kołem lub fragmentem koła. Rozważmy całkę $\iint\limits_{D}\log(x^2+y^2)\,dx\,dy$, gdzie D jest wycinkiem koła opisanym przez warunki $a\leqslant r\leqslant b$ i $0\leqslant \varphi\leqslant \frac{\pi}{2}$. Po zamianie zmiennych otrzymujemy

$$\int_{a}^{b} \int_{0}^{\frac{\pi}{2}} \log(r^{2}) r dr = \frac{\pi}{2} \int_{a}^{b} \log(r^{2}) r dr.$$

Niekiedy warto użyć współrzędnych biegunowych mimo, że obszar nie jest "wygodny". Rozważmy całkę

$$\iint_{[0,1]^2} \sqrt{x^2 + y^2} \, dx \, dy.$$

Ze względu na symetrię mamy

$$\iint\limits_{[0,1]^2} \sqrt{x^2 + y^2} \, dx \, dy = 2 \iint\limits_{\substack{[0,1]^2 \\ y \leqslant x}} \sqrt{x^2 + y^2} \, dx \, dy.$$

Mamy $0 \leqslant \varphi \leqslant \frac{\pi}{4}$ oraz $0 \leqslant r \cos \varphi \leqslant 1$. Tzn. $0 \leqslant r \leqslant \frac{1}{\cos \varphi}$. Otrzymujemy więc

$$\iint_{[0,1]^2} \sqrt{x^2 + y^2} \, dx \, dy = 2 \int_0^{\frac{\pi}{4}} \int_0^{\frac{1}{\cos \varphi}} r^2 \, dr \, d\varphi = \frac{2}{3} \int_0^{\frac{\pi}{4}} \frac{d\varphi}{\cos^3 \varphi} = \frac{2}{3} \int_0^{\frac{\pi}{4}} \frac{\cos \varphi}{(1 - \sin^2 \varphi)^2} \, d\varphi.$$

W ostatniej całce po podstawieniu $u = \cos \varphi$ otrzymamy całkę z funkcji wymiernej.

5 Całki potrójne i wielokrotne

Przedziałem $R \subset \mathbb{R}^N$ nazywamy iloczyn kartezjański

$$R = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_N, b_N].$$

Objetościa przedziału jest wielkość

$$\Delta R = (b_1 - a_1)(b_2 - a_2) \dots (b_N - a_N).$$

Podział \mathcal{P} przedziału R oznacza rodzinę podziałów $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_N)$, gdzie \mathcal{P}_i jest podziałem przedziału $[a_i, b_i]$ na k_i części. W ten sposób otrzymujemy podział R na $k_1k_2 \dots k_N$ części (podprzedziałów). Dla podprzedziału S określmy

$$m_S(f) = \inf_{x \in S} f(x), \qquad M_S(f) = \sup_{x \in S} f(x),$$

gdzie f(x) jest funkcją ograniczoną na przedziale R. Sumy dolne, górne, całkę dolną i górną oraz całkę określamy tymi samymi wzorami co dla funkcji jednej i dwu zmiennych. Można podobnie udowodnić, że funkcje ciągłe są całkowalne.

Definicja 5.1. Mówimy, że zbiór $A \subset \mathbb{R}^N$ jest miary zero, jeśli istnieje ciąg przedziałów S_n taki, że

$$A \subset \bigcup_{n=1}^{\infty} S_n \qquad \sum_{n=1}^{\infty} \Delta S_n < \varepsilon,$$

dla dowolnie wcześniej ustalonej liczby dodatniej ε .

Twierdzenie 5.2. Ograniczona funkcja f określona na przedziale $R \subset \mathbb{R}^N$ jest całkowalna wtedy i tylko wtedy, gdy zbiór jej punktów nieciągłości ma miarę zero.

Twierdzenie 5.3 (Fubini). Niech $A \subset \mathbb{R}^N$ i $B \subset \mathbb{R}^M$ będą przedziałami. Załóżmy, że funkcja f określona na $A \times B \subset \mathbb{R}^N \times \mathbb{R}^M(\S)$ jest całkowalna. Dla $x \in A$ niech

$$\mathcal{L}(x) = \int_{\mathcal{B}} f(x, y) \, dy, \qquad \mathcal{U}(x) = \int_{\mathcal{B}} \bar{f}(x, y) \, dy.$$

Wtedy funkcje $\mathcal{L}(x)$ i $\mathcal{U}(x)$ są całkowalne na A oraz

$$\int_{A\times B} f(x,y) dx dy = \int_{A} \mathcal{L}(x) dx = \int_{A} \mathcal{U}(x) dx$$
$$= \int_{A} \left(\int_{B} f(x,y) dy \right) dx = \int_{A} \left(\int_{B} \bar{f}(x,y) dy \right) dx.$$

Jeśli funkcja f(x,y) jest ciągła, to można pominąć znaki całki dolnej i górnej.

Przykład. Rozważmy funkcję trzech zmiennych f(x, y, z) ciągłą na $R = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$. Określmy $A = [a_1, b_1] \times [a_3, b_3]$ i $B = [a_2, b_2]$.

[§]Punkty z $\mathbb{R}^N \times \mathbb{R}^M$ będziemy oznaczać przez (x,y)

Wtedy

$$\iiint\limits_R f(x,y,z) \, dx \, dy \, dz = \iint\limits_A \left(\int\limits_{a_2}^{b_2} f(x,y,z) \, dy \right) \, dx \, dz$$
$$= \int\limits_{a_1}^{b_1} \left(\int\limits_{a_3}^{b_2} \left(\int\limits_{a_2}^{b_2} f(x,y,z) \, dy \right) \, dz \right) \, dx.$$

Mogliśmy zamienić całkę podwójną po A na całkę iterowaną bo całkowana funkcja zależy w sposób ciągły od x i z. Przy funkcji trzech zmiennych mamy sześć możliwości zamiany na całkę iterowaną.

Uwaga. Inny zapis całki iterowanej to:

$$\int_{a_1}^{b_1} \int_{a_3}^{b_3} \int_{a_2}^{b_2} f(x, y, z) \, dy \, dz \, dx = \int_{a_1}^{b_1} dx \int_{a_3}^{b_3} dz \int_{a_2}^{b_2} f(x, y, z) \, dy.$$

Twierdzenie 5.4. Dla funkcji ciągłej φ określonej na przedziałe $R \subset \mathbb{R}^{N-1}$ wykres funkcji φ , czyli zbiór $D = \{(x, \varphi(x)) : x \in R\}$ jest miary zero w \mathbb{R}^N .

Przykład. Przesunięta podprzestrzeń (N-1)-wymiarowa w \mathbb{R}^N ma miarę zero. Podprzestrzeń zadana jest wzorem

$$a_1x_1 + a_2x_2 + \ldots + a_Nx_N = b.$$

Mamy $a_k \neq 0$ dla pewnego k. Wtedy

$$x_k = \frac{b}{a_k} - \frac{1}{a_k} (a_1 x_1 + \ldots + \underline{a_k} x_k + \ldots + a_N x_N)$$

opisuje wykres funkcji ciągłej na \mathbb{R}^{N-1} . Jeśli $D \subset \mathbb{R}^N$ nie jest przedziałem, to określamy

$$\int_{D} f(x) dx = \int_{R} f(x) \mathbb{1}_{D}(x) dx$$

dla przedziału R zawierającego D. Załóżmy, że f(x) jest funkcją ciągłą. Wtedy funkcja $f(x)\mathbb{I}_D(x)$ może byc nieciągła tylko w punktach brzegu ∂D . Jeśli ∂D ma miarę zero, to $f(x)\mathbb{I}_D(x)$ jest całkowalna, np. gdy zbiór ∂D jest sumą kilku wykresów funkcji ciągłych N-1 zmiennych.

Przykład. W jest obszarem w \mathbb{R}^3 określonym przez warunki $x,y\geqslant 0$ oraz $x^2+y^2\leqslant z\leqslant 2$. Chcemy obliczyć $\iiint_W x\,dx\,dy\,dz$. Niech D będzie obszarem w płaszczyźnie (x,y) określonym przez $x,y\geqslant 0$ i $x^2+y^2\leqslant 2$. Wtedy

$$\iiint_{W} x \, dx \, dy \, dz = \iint_{D} dx \, dy \int_{x^{2} + y^{2}}^{2} x \, dz = \iint_{D} x(2 - x^{2} - y^{2}) \, dx \, dy$$

$$= \int_{0}^{\sqrt{2}} dx \int_{0}^{\sqrt{2} - x^{2}} x(2 - x^{2} - y^{2}) \, dy = \int_{0}^{\sqrt{2}} \left[x(2 - x^{2})^{3/2} - \frac{1}{3}x(2 - x^{2})^{3/2} \right] \, dx$$

$$= \frac{2}{3} \int_{0}^{\sqrt{2}} x(2 - x^{2})^{3/2} \, dx = -\frac{2}{15} (2 - x^{2})^{5/2} \Big|_{0}^{\sqrt{2}} = \frac{8}{15} \sqrt{2}.$$

Ścisłe uzasadnienie przejść do całek iterowanych jest następujące. Mamy

$$W \subset [0, \sqrt{2}] \times [0, \sqrt{2}] \times [0, 2] =: R.$$

$$\iiint_{W} x \, dx \, dy \, dz = \iiint_{R} x \mathbb{I}_{W}(x, y, z) \, dx \, dy \, dz = \iint_{[0, \sqrt{2}]^{2}} dx \, dy \int_{0}^{2} x \mathbb{I}_{W}(x, y, z) \, dz$$

$$= \iint_{[0, \sqrt{2}]^{2}} dx \, dy \int_{x^{2} + y^{2}}^{2} x \mathbb{I}_{D}(x, y) \, dz = \iint_{[0, \sqrt{2}]^{2}} x(2 - x^{2} - y^{2}) \mathbb{I}_{D}(x, y) \, dx \, dy$$

$$= \int_{0}^{\sqrt{2}} dx \int_{0}^{\sqrt{2 - x^{2}}} x(2 - x^{2} - y^{2}) \, dy.$$

Twierdzenie 5.5 (o zamianie zmiennych). Niech D i D^* będą obszarami w \mathbb{R}^n . Załóżmy, że T jest odwzorowaniem różnowartościowym klasy C^1 takim, że $T(D^*) = D$. Wtedy dla funkcji f(x) ciągłej (lub całkowalnej) określonej na D mamy

$$\int_{D} f(x) dx = \int_{D^*} f(T(u)) |J_T(u)| du,$$

 $gdzie J_T(u)$ jest jakobianem odwzorowania T w punkcie u.

Uwaga. Dla u' blisko u mamy

$$T(u') \approx T(u) + DT(u)(u'-u),$$

czyli odwzorowanie T zachowuje się w przybliżeniu jak złożenie dwu przesunięć i przekształcenia liniowego o macierzy DT(u). Przy takim przekształceniu objętość obrazu małego przedziału S obliczamy wzorem

$$\Delta T(S) \approx \Delta S |J_T(u)|$$
, gdzie $u \in S$.

Przykłady.

(a) $\iiint\limits_D e^{(x^2+y^2+z^2)^{3/2}}\,dx,\,dy\,dz,\,\text{gdzie}\,\,D\,\,\text{jest fragmentem kuli jednostkowej}$ leżącym w pierwszym oktancie. Zastosujemy współrzędne sferyczne

$$x = r \sin \varphi \cos \psi,$$

$$y = r \sin \varphi \sin \psi,$$

$$z = r \cos \varphi,$$

$$(5.1)$$

gdzie $0\leqslant \varphi,\ \psi\leqslant \frac{\pi}{2},\ 0\leqslant r\leqslant 1$. Przyporządkowanie $(r,\varphi,\psi)\mapsto (x,y,z)$ określone wzorami wyżej nie jest różnowartościowe na $D^*=[0,1]\times [0,\frac{\pi}{2}]\times [0,\frac{\pi}{2}],$ ale staje się takie, gdy r>0. Określamy $T(r,\varphi,\psi)=(x,y,z)$ wg wzorów (5.1). Mamy

$$|J_T(r,\varphi,\psi)| = r^2 \sin \varphi.$$

Dalei

$$\begin{split} & \iiint\limits_{D} e^{(x^2+y^2+z^2)^{3/2}} \, dx \, dy \, dz = \iiint\limits_{D^*} e^{r^3} r^2 \sin \varphi \, dr \, d\varphi \, d\psi \\ & = \int\limits_{0}^{1} \int\limits_{0}^{\frac{\pi}{2}} \int\limits_{0}^{\frac{\pi}{2}} r^2 e^{r^3} \sin \varphi \, d\varphi \, d\psi \, dr = \frac{\pi}{2} \int\limits_{0}^{1} r^2 e^{r^3} \, dr \int\limits_{0}^{\frac{\pi}{2}} \sin \varphi \, d\varphi = \frac{\pi}{6} e^{r^3} \bigg|_{0}^{1} = \frac{\pi}{6} (e-1). \end{split}$$

(b) Obliczymy objętość kuli $D=\{(x,y,z): x^2+y^2+z^2\leqslant R^2\}.$ Mamy $V=\iiint\limits_V dx\,dy\,dz.$

Przechodzimy do współrzędnych sferycznych.

$$V = \int_{0}^{\pi} d\varphi \int_{0}^{2\pi} d\psi \int_{0}^{R} r^{2} \sin\varphi \, dr = 2\pi \int_{0}^{R} r^{2} \, dr \int_{0}^{\pi} \sin\varphi \, d\varphi = \frac{4}{3}\pi R^{3}.$$

Obliczenia nie są do końca ścisłe, bo współrzędne nie są jednoznaczne na pełnej kuli. Można je uściślić następująco. Rozważamy podzbiór kuli D_{ε} , dla $\varepsilon>0$, określony warunkami

$$\varepsilon \leqslant r \leqslant R, \quad \varepsilon \leqslant \varphi \leqslant \pi - \varepsilon, \quad 0 \leqslant \psi \leqslant 2\pi - \varepsilon.$$

Wtedy

$$V = \lim_{\varepsilon \to 0^+} V_{\varepsilon} = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{\pi - \varepsilon} d\varphi \int_{0}^{2\pi - \varepsilon} d\psi \int_{\varepsilon}^{R} r^2 \sin \varphi \, dr.$$

Współrzędne cylindryczne określone są przez

$$x = r \cos \varphi,$$

$$y = r \sin \varphi,$$

$$z = z,$$

co oznacza, że w płaszczyźnie (x,y) przechodzimy do współrzędnych biegunowych. Wtedy

$$J = \frac{\partial(x, y, z)}{\partial(r, \varphi, z)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r.$$

Przykład.
$$I=\int\limits_0^2 dx\int\limits_0^{\sqrt{2x-x^2}}dy\int\limits_0^az\sqrt{x^2+y^2}\,dz$$
. Obszar całkowania względem

x i y jest opisany warunkami $0 \le x \le 2$, $0 \le y \le \sqrt{2x-x^2}$. Po przekształceniu otrzymujemy $x^2+y^2 \le 2x$, $y \ge 0$. Rozpoznajemy górne półkole o promieniu 1 i środku w punkcie (1,0). Po przejściu do współrzędnych biegunowych otrzymujemy warunki $r \le 2\cos\varphi$ oraz $0 \le \varphi \le \pi/2$. Zatem

$$I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} dr \int_{0}^{a} zr^{2} dz = \frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{r^{3}}{3} \Big|_{0}^{2\cos\varphi} d\varphi = \frac{4a^{2}}{3} \int_{0}^{\frac{\pi}{2}} \cos^{3}\varphi d\varphi$$
$$= \frac{4a^{2}}{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{2}\varphi) \cos\varphi d\varphi = \frac{4a^{2}}{3} \left(\sin\varphi - \frac{1}{3}\sin^{3}\varphi\right) \Big|_{0}^{\frac{\pi}{2}} = \frac{8a^{2}}{9}.$$

Górne półkole sugeruje, że podstawienie

$$x = 1 + r\cos\varphi, \ y = r\sin\varphi, \quad \text{dla } 0 \leqslant r \leqslant 1, \ 0 \leqslant \varphi \leqslant \pi,$$

mogłoby być przydatne. Jednak po takim podstawieniu otrzymujemy "nie-przyjazną" całkę

$$I = \int_{0}^{\pi} d\varphi \int_{0}^{1} dr \int_{0}^{a} zr \sqrt{r^{2} + 2r\cos\varphi + 1} \, dz = \frac{a^{2}}{2} \int_{0}^{\pi} d\varphi \int_{0}^{1} r \sqrt{r^{2} + 2r\cos\varphi + 1} \, dr.$$

5.0.1 Środek masy

W punktach P_1, P_2, \ldots, P_n umieszczamy masy m_1, m_2, \ldots, m_n . Środek masy P układu spełnia

$$\vec{OP} = \frac{\sum_{i=1}^{n} m_i \vec{OP_i}}{\sum_{i=1}^{n} m_i}.$$

Niech $P_i = (x_i, y_i, z_i), m = \sum_i m_i \text{ oraz } P = (\overline{x}, \overline{y}, \overline{z}).$ Wtedy

$$\overline{x} = \frac{1}{m} \sum_{i=1}^{n} m_i x_i, \quad \overline{y} = \frac{1}{m} \sum_{i=1}^{n} m_i y_i, \quad \overline{z} = \frac{1}{m} \sum_{i=1}^{n} m_i z_i.$$

Jeśli masa jest rozłożona w sposób ciągły w obszarze D z gęstością masy $\varrho(x,y,z)$ w punkcie (x,y,z), to środek masy wyraża się wzorem

$$\overline{x} = \frac{\iiint\limits_{D} x \varrho(x, y, z) \, dx \, dy \, dz}{\iiint\limits_{D} \varrho(x, y, z) \, dx \, dy \, dz}.$$

Podobnie wzory mamy dla współrzędnych \overline{y} i \overline{z} .

Przykład. Znaleźć środek masy górnej półkuli o promieniu 1, czyli obszaru $x^2 + y^2 + z^2 \le 1$, $z \ge 0$. Przyjmujemy stałą gęstość masy $\varrho \equiv 1$. Ze względu na symetrię obszaru środek masy ma współrzędne $(0,0,\overline{z})$. Obliczamy

$$\overline{z} = \frac{3}{2\pi} \iiint_{D} z \, dx \, dy \, dz = \frac{3}{2\pi} \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\pi} d\psi \int_{0}^{1} r \cos \varphi \, r^{2} \sin \varphi \, dr = 3 \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{3}{8}$$

5.0.2 Moment bezwładności

Rozważamy ciało D o gęstości masy $\varrho(x,y,z)$ w punkcie (x,y,z). Moment bezwładności względem osi x wyraża się wzorem

$$I_x = \iiint_D (y^2 + z^2) \varrho(x, y, z) \, dx \, dy \, dz.$$

Podobnie określa się momenty I_y oraz I_z .

Przykład. Obliczyć moment bezwładności względem osi z obszaru pomiędzy paraboloidą $z=x^2+y^2$, cylindrem $x^2+y^2=a^2$ oraz płaszczyzną z=0, przyjmując $\rho\equiv 1$. Obszar opisany jest warunkami

$$0 \leqslant z \leqslant x^2 + y^2 \leqslant a^2.$$

Użyjemy współrzędnych cylindrycznych. Wtedy

$$I_z = \iiint_D (x^2 + y^2) \, dx \, dy \, dz = \int_0^{2\pi} d\varphi \int_0^{a^2} dz \int_{\sqrt{z}}^a r^2 \cdot r \, dr$$
$$= 2\pi \int_0^{a^2} \frac{1}{4} (a^4 - z^2) \, dz = \frac{\pi}{2} \left(a^6 - \frac{1}{3} a^6 \right) = \frac{\pi}{3} a^6.$$

5.0.3 Potencjał grawitacyjny

W punkcie (x,y,z) umieszczamy masę M. Siła oddziaływania na masę m umieszczoną w punkcie (x_1,y_1,z_1) jest gradientem potencjału

$$V(x_1, y_z, z_1) = \frac{GmM}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}}.$$

Zakładamy, że masa jest rozmieszczona w obszarze D z gęstością $\varrho(x,y,z)$. Wtedy potencjał wyraża się wzorem

$$V(x_1, y_1, z_1) = \iiint_D \frac{Gm\varrho(x, y, z)}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}} dx dy dz.$$

Siła oddziaływania na masę m umieszczoną w punkcie (x_1, y_1, z_1) jest równa $\nabla V(x_1, y_1, z_1)$.

 $\mathbf{Przykład}$. Załóżmy, że D jest obszarem zawartym pomiędzy sferami

$$x^{2} + y^{2} + z^{2} = r_{1}^{2}, \ x^{2} + y^{2} + z^{2} = r_{2}^{2},$$

gdzie $r_1 < r_2$. Przyjmujemy $\varrho \equiv 1$ oraz m = 1. Obliczymy wartość potencjału w punktach przestrzeni poza D. Ze względu na niezmienniczość na obroty względem początku układu wystarczy obliczyć V(0,0,R). W obliczeniach użyjemy współrzędnych sferycznych.

$$\begin{split} &\frac{1}{G}V(0,0,R) = \iiint\limits_{D} \frac{dx\,dy\,dz}{\sqrt{x^2 + y^2 + (z-R)^2}} \\ &= \int\limits_{0}^{\pi} d\varphi \int\limits_{0}^{2\pi} d\psi \int\limits_{r_1}^{r_2} \frac{r^2\sin\varphi}{\sqrt{r^2 - 2rR\cos\varphi + R^2}}\,dr = 2\pi \int\limits_{r_1}^{r_2} dr \int\limits_{0}^{\pi} \frac{r^2\sin\varphi}{\sqrt{r^2 - 2rR\cos\varphi + R^2}}\,d\varphi \end{split}$$

W wewnętrznej całce stosujemy podstawienie

$$u = r^2 - 2rR\cos\varphi + R^2$$
, $du = 2rR\sin\varphi d\varphi$.

$$\frac{1}{G}V(0,0,R) = \frac{\pi}{R} \int_{r_1}^{r_2} r \, dr \int_{(r-R)^2}^{(r+R)^2} \frac{du}{\sqrt{u}} \, du = \frac{2\pi}{R} \int_{r_1}^{r_2} r[r+R-|r-R|] \, dr.$$

Załóżmy, że $R < r_1$. Wtedy

$$\frac{1}{G}V(0,0,R) = \frac{2\pi}{R} \int_{r_1}^{r_2} 2Rr \, dr = 2\pi (r_2^2 - r_1^2).$$

Z kolei dla $R > r_2$ mamy

$$\frac{1}{G}V(0,0,R) = \frac{2\pi}{R} \int_{r_1}^{r_2} 2r^2 dr = \frac{4\pi}{3R} (r_2^3 - r_1^3).$$

Reasumując, wewnątrz obszaru potencjał jest stały (niezależny od R) zatem nie ma siły grawitacji. Z kolei na zewnątrz potencjał jest odwrotnie proporcjonalny do odległości punktu od początku układu. Zatem siła grawitacji jest odwrotnie proporcjonalna do kwadratu tej odległości.

6 Całki krzywoliniowe i powierzchniowe

6.1 Całka krzywoliniowa niezorientowana

Rozważamy funkcję $f: \mathbb{R}^3 \to \mathbb{R}$. Chcemy obliczyć całkę z funkcji f(x,y,z) wzdłuż krzywej $\sigma: [a,b] \stackrel{1-1}{\longrightarrow} \mathbb{R}^3$, $\sigma(t) = (x(t),y(t),z(t))$. Można myśleć, że obraz krzywej opisuje przewód, a wielkość f(x,y,z) reprezentuje gęstość masy przewodu w punkcie (x,y,z). Chcemy, aby całka dała w wyniku całkowitą masę przewodu. Określamy całkę wzorem

$$\int_{\sigma} f(x, y, z) ds := \int_{a}^{b} f(\sigma(t)) \|\sigma'(t)\| dt$$

$$= \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt.$$

Jeśli $\sigma(t)$ jest kawałkami klasy C^1 lub $f(\sigma(t))$ jest kawałkami ciągła, to rozbijamy przedział czasu na skończoną liczbę przedziałów, na których można zastosować powyższy wzór.

Przykład. Rozważmy spiralę $\sigma(t)=(\cos t,\sin t,t),\ 0\leqslant t\leqslant 2\pi.$ Niech $f(x,y,z)=x^2+y^2+z^2.$ Mamy $\sigma'(t)=(-\sin t,\cos t,1).$ Wtedy $\|\sigma'(t)\|=\sqrt{2}.$ Zatem

$$\int_{\sigma} (x^2 + y^2 + z^2) \, ds = \int_{0}^{2\pi} (1 + t^2) \sqrt{2} \, dt = \sqrt{2} \left(2\pi + \frac{8}{3} \pi^3 \right).$$

6.1.1 Interpretacja całki

Podzielimy przedział czasu [a,b] punktami $a=t_0 < t_1 < \ldots < t_n = b$. W ten sposób krzywa zostanie podzielona na n fragmentów. Przyjmujemy, że gęstość masy na danym fragmencie jest stała i wynosi $f(\sigma(s_i))$, gdzie $t_{i-1} \le s_i \le t_i$. Zakładamy, że długość fragmentu wynosi $\|\sigma(t_i) - \sigma(t_{i-1})\|$. Masa fragmentu wynosi w przybliżeniu

$$m_i \approx f(\sigma(s_i)) \| \sigma(t_i) - \sigma(t_{i-1}) \|.$$

Dalej z twierdzenia Lagrange'a mamy

$$x(t_i) - x(t_{i-1}) = x'(\alpha_i) \Delta t_i \approx x'(s_i) \Delta t_i,$$

$$y(t_i) - y(t_{i-1}) = y'(\beta_i) \Delta t_i \approx y'(s_i) \Delta t_i,$$

$$z(t_i) - z(t_{i-1}) = x'(\gamma_i) \Delta t_i \approx z'(s_i) \Delta t_i,$$

gdzie $t_{i-1} \leqslant \alpha_i, \beta_i, \gamma_i \leqslant t_i$. Całkowita masa krzywej wynosi w przybliżeniu

$$\sum_{i=1}^{n} f(\sigma(s_i)) \sqrt{x'(s_i)^2 + y'(s_i)^2 + z'(s_i)^2} \, \Delta t_i \, \underset{n \to \infty}{\longrightarrow} \, \int_{a}^{b} f(\sigma(t)) \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, dt.$$

Sprawdzimy jeszcze, że różnica pomiędzy sumami

$$\sum_{i=1}^{n} f(\sigma(s_i)) \sqrt{x'(\alpha_i)^2 + y'(\beta_i)^2 + z'(\gamma_i)^2} \, \Delta t_i$$

i sumą określoną wyżej dąży do zera, gdy $n\to\infty.$ Skorzystamy z nierówności trójkąta

$$\left| \sqrt{a_1^2 + b_1^2 + c_1^2} - \sqrt{a_0^2 + b_0^2 + c_0^2} \right| \leqslant \sqrt{(a_1 - a_0)^2 + (b_1 - b_0)^2 + (c_1 - c_0)^2}.$$

Różnica miedzy sumami co do wartości bezwględnej nie przekracza

$$\sum_{i=1}^{n} |f(\sigma(s_i))| \left| \sqrt{x'(\alpha_i)^2 + y'(\beta_i)^2 + z'(\gamma_i)^2} - \sqrt{x'(s_i)^2 + y'(s_i)^2 + z'(s_i)^2} \right| \Delta t_i$$

$$\leq \sum_{i=1}^{n} |f(\sigma(s_i))| \sqrt{[x'(\alpha_i) - x'(s_i)]^2 + [y'(\beta_i) - y'(s_i)]^2 + [z'(\gamma_i) - z'(s_i)]^2} \Delta t_i.$$

Funkcja f jest ograniczona na krzywej, np. $|f(\sigma(t))| \leq M$. Funkcje x'(t), y'(t) i z'(t) są jednostajnie ciągłe. Możemy założyć, że przedział [a,b] dzielimy na n równych części tak, aby oscylacja każdej z funkcji x', y' i z' była mniejsza niż $\varepsilon > 0$ na każdym podprzedziałe podziału. Wtedy ostatnie wyrażenie jest mniejsze niż

$$\sum_{i=1}^{n} M\sqrt{\varepsilon^2 + \varepsilon^2 + \varepsilon^2} \, \Delta t_i = M(b-a)\sqrt{3}\varepsilon.$$

Jeśli rozważamy funkcję f(x,y) dwu zmiennych i krzywą $\sigma:[a,b]\to\mathbb{R}^2,$ to $\sigma(t)=(x(t),y(t))$ oraz

$$\int_{\sigma} f(x,y) \, ds = \int_{a}^{b} f(\sigma(t)) \|\sigma'(t)\| \, dt = \int_{a}^{b} f(x(t),y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt.$$

Jeśli $f(x,y) \ge 0$, to całkę można interpretować jako pole powierzchni płotu, którego podstawą jest krzywa σ a wysokość w punkcie (x,y) wynosi f(x,y).

Przykład. Ciocia Tomka Sawyera kazała wybiałkować płot z obu stron. Za każdy metr kwadratowy Tomek otrzymuje 2 \$. Płot opisany jest przez

$$\sigma(t) = (30\cos^3 t, 30\sin^3 t), \quad 0 \le t \le \pi, \quad f(x,y) = 1 + \frac{y}{3}.$$

Mamy

$$\sigma'(t) = 30(-3\cos^2 t \sin t, 3\sin^2 t \cos t), \quad \|\sigma'(t)\| = 90\sin t |\cos t|.$$

Powierzchnia płotu wynosi

$$90 \int_{0}^{\pi} (1 + 10 \sin^{3} t) \sin t |\cos t| dt = 180 \int_{0}^{\frac{\pi}{2}} (1 + 10 \sin^{3} t) \sin t \cos t dt$$
$$180 \left[\frac{1}{2} \sin^{2} t + 2 \sin^{5} t \right] \Big|_{0}^{\frac{\pi}{2}} = 180 \cdot \frac{5}{2} = 450.$$

Zarobek Tomka wyniesie zatem $450 \cdot 2 \cdot 2 = 1800$ \$.

6.2 Całka krzywoliniowa zorientowana

Niech F(x,y,z) będzie polem sił w \mathbb{R}^3 (np. sił grawitacyjnych lub elektrycznych). Tzn. $F=(F_1,F_2,F_3)$. Załóżmy, że obiekt porusza się pod działaniem pola sił F wzdłuż krzywej $\sigma:[a,b]\to\mathbb{R}^3$. Przyjmijmy, że σ jest linią prostą i obiekt został przesunięty o wektor d. Załóżmy też, że pole sił jest stałe, tzn. F(x,y,z) nie zależy od (x,y,z). Wykonana praca wynosi wtedy $\|F_d\|\|d\|$, gdzie F_d oznacza składową siły F równoległą do przesunięcia d. Niech α oznacza kąt pomiędzy F i d. Wtedy praca wynosi

$$||F_d|| \, ||d|| = ||F|| \, ||d|| \cos \alpha = F \circ d.$$

Ogólnie, gdy σ nie jest linią prostą oraz F(x, y, z) nie jest stałym polem sił, to dzielimy przedział [a, b] na n równych części. Przyjmujemy, że fragment od $\sigma(t_{i-1})$ do $\sigma(t_i)$ jest odcinkiem i, że siła F jest stała na tym odcinku i wynosi $F(\sigma(s_i))$, gdzie $t_{i-1} \leq s_i \leq t_i$. Wykonana praca wynosi wtedy

$$W \approx \sum_{i=1}^{n} F(\sigma(s_i)) \circ [\sigma(t_i) - \sigma(t_{i-1})].$$

Dalej

$$\sigma(t_i) - \sigma(t_{i-1}) = (x(t_i) - x(t_{i-1}), y(t_i) - y(t_{i-1}), z(t_i) - z(t_{i-1}))$$

= $(x'(\alpha_i), y'(\beta_i), z'(\gamma_i)) \Delta t_i \approx (x'(s_i), y'(s_i), z'(s_i)) \Delta t_i = \sigma'(s_i) \Delta t_i,$

gdzie $t_{i-1} \leq \alpha_i, \beta_i, \gamma_i \leq t_i$. Zatem

$$W \approx \sum_{i=1}^{n} F(\sigma(s_i)) \circ \sigma'(s_i) \Delta t_i \xrightarrow[n \to \infty]{} \int_{a}^{b} F(\sigma(t)) \circ \sigma'(t) dt.$$

Przyjmujemy więc

$$W = \int_{a}^{b} F(\sigma(t)) \circ \sigma'(t) dt.$$

Tę wielkość nazywamy całką krzywoliniową zorientowaną. Stosuje się też inne oznaczenie na tę całkę

 $W = \int\limits_{\mathbb{R}} F \circ ds.$

Uwaga. Praca jest równa całce z iloczynu skalarnego siły i wektora stycznego do krzywej, czyli wektora prędkości. Załóżmy, że $\sigma'(t) \neq 0$ dla $a \leq t \leq b$. Wtedy

$$T(t) = \frac{\sigma'(t)}{\|\sigma'(t)\|}$$

jest jednostkowym wektorem stycznym. Zatem

$$\int_{\sigma} F \circ ds = \int_{a}^{b} F(\sigma(t)) \circ \sigma'(t) dt$$

$$= \int_{a}^{b} F(\sigma(t)) \circ T(t) \|\sigma'(t)\| dt = \int_{\sigma} (F \circ T) ds. \quad (6.1)$$

Całka zorientowana jest zatem równa całce niezorientowanej z iloczynu skalarnego siły F z jednostkowym wektorem stycznym do σ .

Przykład. $\sigma(t) = (\sin t, \cos t, t) \ 0 \le t \le \pi$, oraz F(x, y, z) = (x, y, z). Wtedy $\sigma'(t) = (\cos t, -\sin t, 1)$ oraz

$$\int_{\sigma} F \circ ds = \int_{0}^{\pi} (\sin t, \cos t, t) \circ (\cos t, -\sin t, 1) dt = \int_{0}^{\pi} t dt = \frac{\pi^{2}}{2}.$$

Używamy też innych oznaczeń na całkę zorientowaną. Jeśli $F=(F_1,F_2,F_3)$ oraz $\sigma(t)=(x(t),y(t),z(t)),$ to

$$\int_{a}^{b} F(\sigma(t)) \circ \sigma'(t) dt$$

$$= \int_{a}^{b} [F_{1}(x(t), y(t), z(t)) x'(t) + F_{2}(x(t), y(t), z(t)) y'(t) + F_{3}(x(t), y(t), z(t)) z'(t)] dt$$

$$= \int_{a}^{b} F_{1} dx + F_{2} dy + F_{3} dz.$$

W niektórych przypadkach całkę zorientowaną można obliczyć bez odwoływania się do definicji. Dotyczy to tzw. pól gradientowych.

Twierdzenie 6.1. Jeśli $F(x,y,z) = \nabla f(x,y,z)$ dla funkcji f(x,y,z) klasy C^1 , to

$$\int_{\sigma} F \circ ds = f(\sigma(b)) - f(\sigma(a)),$$

 $gdzie \ \sigma: [a,b] \to \mathbb{R}^3.$

Dowód.

$$\begin{split} \int\limits_{\sigma} F \circ ds &= \int\limits_{a}^{b} F(\sigma(t)) \circ \sigma'(t) \, dt = \int\limits_{a}^{b} \nabla f(\sigma(t)) \circ \sigma'(t) \, dt \\ &= \int\limits_{a}^{b} \frac{d}{dt} f(\sigma(t)) \, dt = f(\sigma(b)) - f(\sigma(a)). \end{split}$$

Przykład. $\int_{\sigma} y \, dx + x \, dy$, gdzie $\sigma(t) = \left(\frac{t^4}{4}, \sin^3 \frac{\pi t}{2}, 0\right)$, dla $0 \le t \le 1$. Mamy F = (y, x, 0). Wtedy $\nabla f = F$ dla f(x, y, z) = xy. Zatem

$$\int_{\sigma} y \, dx + x \, dy = xy \Big|_{(0,0,0)}^{(\frac{1}{4},1,0)} = \frac{1}{4}.$$

Uwaga. Nie każde pole wektorowe jest gradientem jakiejś funkcji. Załóżmy,

żе

$$F = (F_1, F_2, F_3) = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right),$$

gdzie f jest klasy C^2 . Wtedy

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}, \quad \frac{\partial^2 f}{\partial z \partial x} = \frac{\partial^2 f}{\partial x \partial z}, \quad \frac{\partial^2 f}{\partial z \partial y} = \frac{\partial^2 f}{\partial y \partial z}.$$

Czyli

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \quad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}.$$

Przykłady.

(a)
$$F(x, y, z) = (x^2 + yz, x + y, z)$$
. Mamy $\frac{\partial F_1}{\partial y} = z$, $\frac{\partial F_2}{\partial x} = 1$.

(b)
$$F(x, y, z) = (yz, zx, xy)$$
. Wtedy $F = \nabla(xyz)$.

(c)
$$F = -\frac{GMm}{r^3}(x, y, z)$$
. Dla $V(x, y, z) = \frac{GMm}{r}$ mamy $F = \nabla V$.

(d)
$$F = (0, 0, -mg)$$
. Dla $V = -mgz$ mamy $F = \nabla V$.

Definicja 6.2. C nazywamy krzywą Jordana (simple curve) jeśli C jest obrazem odwzorowania $\sigma:[a,b]\to\mathbb{R}^3$ takiego, że σ jest kawałkami klasy C^1 oraz σ jest różnowartościowe. Tzn. C nie ma samoprzecięć. Punkty $\sigma(a)$ i $\sigma(b)$ nazywamy końcami krzywej C. Każda krzywa Jordana ma dwie orientacje. Krzywą Jordana z wybraną orientacją nazywamy zorientowaną krzywą Jordana.

Definicja 6.3. Zamkniętą krzywą Jordana nazywamy obraz przez odwzorowanie $\sigma: [a,b] \to \mathbb{R}^3$, kawałkami klasy C^1 , gdzie σ jest różnowartościowe na [a,b) oraz $\sigma(a) = \sigma(b)$.

Przykład. $C = \{x^2 + y^2 = 1, z = 0\}$ jest okręgiem obieganym przeciwnie do wskazówek zegara (analogowego). Chcemy obliczyć $\int_C (y,0,0) \circ ds = \int_C y \, dx$.

Parametryzujemy C (zgodnie z orientacja)

$$\sigma(t) = (\cos t, \sin t, 0), \quad 0 \leqslant t \leqslant 2\pi.$$

Wtedy

$$\int_C y \, dx = \int_0^{2\pi} \sin t (-\sin t) \, dt = -\pi.$$

Trzeba uważać, aby parametryzacja σ była różnowartościowa i zgodna z orientacją krzywej C. Np. parametryzacja

$$\eta(t) = (\cos 2t, \sin 2t, 0) \quad 0 \leqslant t \leqslant 2\pi,$$

nie jest różnowartościowa. Okrąg C jest obiegany dwukrotnie. Z kolei

$$\eta(t) = (\sin t, \cos t, 0) \quad 0 \leqslant t \leqslant 2\pi,$$

jest parametryzacją niezgodną z orientacją okręgu C.

Dla zorientowanej krzywej Jordana C symbolem C^- oznaczymy tę samą krzywą, ale z przeciwną orientacją. Wtedy z (6.1) wynika

$$\int\limits_{C^{-}} F \circ ds = -\int\limits_{C} F \circ ds,$$

bo przy zmianie orientacji wektor T zmienia się na wektor przeciwny.

Jeśli C jest złożona z fragmentów C_1, C_2, \ldots, C_n , to parametryzujemy każdy fragment osobno. Obliczamy

$$\int_{C} F \circ ds = \int_{C_{1}} F \circ ds + \ldots + \int_{C_{n}} F \circ ds.$$

Przykład. C jest brzegiem kwadratu jednostkowego w pierwszej ćwiartce układu współrzędnych zorientowanego przeciwnie do wskazówek zegara (dodatnio). Kolejne boki kwadratu parametryzujemy przedziałem [0,1] następująco

$$t \mapsto (t,0), \quad t \mapsto (1,t), \quad t \mapsto (1-t,1), \quad t \mapsto (0,1-t).$$

Wtedy

$$\int_{C} x^{2} dx + xy dy = \int_{0}^{1} t^{2} dt + \int_{0}^{1} t dt + \int_{0}^{1} (1 - t)^{2} (-1) dt = \frac{1}{2}.$$

7 Całki powierzchniowe

7.1 Powierzchnie w \mathbb{R}^3

Przykładem powierzchni jest wykres funkcji dwu zmiennych z = f(x, y). Można zmienne zamienić rolami i otrzymać x = h(y, z) lub y = g(x, z).

Przykłady.

- (a) $x=z-z^3$. W płaszczyźnie xz wykresem jest krzywa trzeciego stopnia. Do wykresu wraz punktem $(z-z^3,0,z)$ należy też cała prosta $(z-z^3,y,z)$ równoległa do osi y. Wykres ma postać wygiętego nieskończonego arkusza papieru.
- (b) Torus, czyli powierzchnia powstała przez obrót wokół osi z okręgu w płaszczyźnie yz, nie jest wykresem funkcji. Można tę powierzchnię podzielić na dwie części górną i dolną, które są wykresami funkcji zmiennych xy.

Definicja 7.1. Powierzchnią sparametryzowaną nazywamy funkcję $\Phi: D \to \mathbb{R}^3$, gdzie D jest podzbiorem płaszczyzny. Powierzchnią nazywamy obraz $S = \Phi(D)$. Stosujemy zapis

$$\Phi(u, v) = (x(u, v), y(u, v), z(u, v)), \quad (u, v) \in D.$$

Mówimy, że powierzchnia jest klasy C^1 jeśli funkcje x, y i z są klasy C^1 .

Można myśleć, że odwzorowanie Φ skręca, wygina, rozciąga i ściska obszar D, aby otrzymać powierzchnię S.

7.2 Płaszczyzna styczna do powierzchni

Rozważamy odwzorowanie

$$t \to (x(t, v_0), y(t, v_0), z(t, v_0)) = \Phi(t, v_0),$$

gdzie (u_0, v_0) jest ustalonym punktem w D. To odwzorowanie opisuje krzywą w \mathbb{R}^3 leżącą w powierzchni S i przechodzącą w chwili $t = u_0$ przez punkt

$$\Phi(u_0, v_0) =: (x_0, y_0, z_0).$$

Wektorem stycznym do tej krzywej w punkcie (x_0, y_0, z_0) jest

$$T_{u} = \left(\frac{\partial x}{\partial u}(u_{0}, v_{0}), \frac{\partial y}{\partial u}(u_{0}, v_{0}), \frac{\partial z}{\partial u}(u_{0}, v_{0})\right).$$

Podobnie rozpatrując krzywą $t \to \Phi(u_0, t)$ otrzymamy inny wektor styczny w punkcie (x_0, y_0, z_0)

$$T_v = \left(\frac{\partial x}{\partial v}(u_0, v_0), \frac{\partial y}{\partial v}(u_0, v_0), \frac{\partial z}{\partial v}(u_0, v_0)\right).$$

 T_u i T_v są wektorami stycznymi w punkcie (x_0, y_0, z_0) do krzywych leżących w powierzchni S. Płaszczyzna rozpięta przez te wektory jest zatem styczna do powierzchni w tym punkcie. Wektorem normalnym do powierzchni w (x_0, y_0, z_0) nazywamy wektor $T_u \times T_v$.

Definicja 7.2. Mówimy, że powierzchnia jest gładka w punkcie $\Phi(u_0, v_0) = (x_0, y_0, z_0)$ jeśli $T_u \times T_v \neq 0$. Intuicyjnie oznacza to, że punkt (x_0, y_0, z_0) nie leży na krawędzi ani też nie jest rogiem powierzchni.

Przykład. $x = u \cos v, y = u \sin v, z = u$. Powierzchnia jest klasy C^1 . Mamy

$$T_u = (\cos v, \sin v, 1), \qquad T_v = (-u \sin v, u \cos v, 0).$$

Wektory T_u i T_v są równoległe tylko, gdy $T_v = 0$. Tzn. u = 0. Zauważmy, że powierzchnia jest zapisana równaniem $x^2 + y^2 = z^2$, czyli opisuje dwa stożki stykające się w początku układu.

Przypuśćmy, że powierzchnia jest gładka w punkcie $(x_0, y_0, z_0) = \Phi(u_0, v_0)$. Wtedy równanie płaszczyzny stycznej ma postać

$$(x-x_0, y-y_0, z-z_0) \circ \eta = 0,$$

gdzie $\eta = T_u \times T_v$ obliczone w (u_0, v_0) .

Uwaga.

$$(a_1, b_1, c_1) \times (a_2, b_2, c_2) = \begin{pmatrix} \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}, \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix}, \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \end{pmatrix}.$$

Otrzymany wektor jest prostopadły do (a_1, b_1, c_1) i (a_2, b_2, c_2) . Rzeczywiście

$$a_1 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} + b_1 \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} + c_1 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0.$$

Przykład. $x=u\cos v,\ y=u\sin v,\ z=u^2+v^2.$ Chcemy znaleźć punkty, w których płaszczyzna styczna jest dobrze określona. Mamy

$$T_u = (\cos v, \sin v, 2u),$$
 $T_v = (-u \sin v, u \cos v, 2v).$

$$T_u \times T_v = \begin{pmatrix} \begin{vmatrix} \sin v & 2u \\ u \cos v & 2v \end{vmatrix}, \begin{vmatrix} 2u & \cos v \\ 2v & -u \sin v \end{vmatrix}, \begin{vmatrix} \cos v & \sin v \\ -u \sin v & u \cos v \end{vmatrix} \end{pmatrix}$$
$$= (2v \sin v - 2u^2 \cos v, -2u^2 \sin v - 2v \cos v, u).$$

Zatem $T_u \times T_v = 0$ tylko, gdy u = v = 0. Przykładowo w punkcie $(u_0, v_0) = (1, 0)$ mamy

$$(x_0, y_0, z_0) = (1, 0, 1), T_u \times T_v \Big|_{\substack{u=1 \ v=0}} = (-2, 0, 1).$$

Równanie płaszczyzny stycznej w punkcie (1,0,1) ma zatem postać

$$-2(x-1) + (z-1) = 0$$

czyli po uproszczeniu

$$2x - z = 1.$$

Zauważmy, że

$$x^2 + y^2 = u^2, \qquad \frac{y}{x} = \operatorname{tg} v.$$

Zatem równanie powierzchni ma postać

$$z = x^2 + y^2 + \operatorname{arctg}^2\left(\frac{y}{x}\right).$$

Przypuśćmy, że powierzchnia jest wykresem funkcji z=f(x,y), dla $(x,y)\in D$. Naturalną parametryzacją jest $x:=x,\ y:=y$ i z=f(x,y). Wtedy

$$T_x = \left(1, 0, \frac{\partial f}{\partial x}\right), \quad T_y = \left(0, 1, \frac{\partial f}{\partial y}\right), \quad T_x \times T_y = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right).$$

Równanie płaszczyzny stycznej w punkcie (x_0, y_0, z_0) , gdzie $z_0 = f(x_0, y_0)$ to

$$(x-x_0, y-y_0, z-z_0) \circ \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right) = 0.$$

Po przekształceniu otrzymujemy

$$z - z_0 = \frac{\partial f}{\partial x} (x - x_0) + \frac{\partial f}{\partial y} (y - y_0),$$

gdzie pochodne cząstkowe obliczane są w punkcie (x_0, y_0) .

Przykłady.

(a) Chcemy sparametryzować powierzchnię (hiperboloidę) o równaniu $x^2 + y^2 - z^2 = 1$. Dla ustalonej wartości z punkty (x, y) leżą na okręgu o środku w (0, 0) i promieniu $\sqrt{z^2 + 1} = r \geqslant 1$. Możemy przyjąć, że

$$x = r\cos\varphi, \quad y = r\sin\varphi, \quad 0 \leqslant \varphi \leqslant 2\pi.$$

Mamy $r^2 - z^2 = 1$. Zatem możemy przyjąć

$$r = \cosh \psi, \quad z = \sinh \psi, \quad \psi \in \mathbb{R}.$$

Ostatecznie uzyskujemy

 $x = \cosh \psi \cos \varphi,$ $y = \cosh \psi \sin \varphi,$ $z = \sinh \psi.$

ν επιπ φ.

(b) Torus uzyskujemy obracając wokół osi z okrąg o promieniu r. Równanie okręgu w płaszczyźnie (y,z) ma postać

$$y = R + r\cos\varphi, \quad z = r\sin\varphi, \quad 0 \leqslant \varphi \leqslant 2\pi.$$

Niech d oznacza odległość punktu (x,y,z) torusa od osi z czyli $d=\sqrt{x^2+y^2}$. Otrzymamy więc

$$d = R + r\cos\varphi, \quad z = r\sin\varphi.$$

Zatem

$$x = d\cos\psi = (R + r\cos\varphi)\cos\psi,$$

$$y = d\sin\psi = (R + r\cos\varphi)\sin\psi,$$

$$z = r\sin\varphi.$$

7.3 Pole powierzchni w \mathbb{R}^3

Definicja 7.3. Niech S będzie powierzchnią sparametryzowaną przez funkcję $\Phi: D \xrightarrow{1-1} \mathbb{R}^3$ klasy C^1 , gdzie $D \subset \mathbb{R}^2$. Tzn. $S = \Phi(D)$. Polem powierzchni nazywamy liczbę

$$A(S) = \iint\limits_{D} \|T_u \times T_v\| \, du \, dv.$$

Wyjaśnienie. Przeanalizujemy sumy całkowe całki określającej A(S). Załóżmy, że D jest prostokątem podzielonym na n^2 małych prostokątów R_{ij} . Wtedy

$$\Phi(D) = \bigcup_{i,j=1}^{n} \Phi(R_{ij}).$$

Prostokąty R_{ij} nie są rozłączne, bo mogą mieć wspólne boki. Ale część wspólna każdych dwu zbiorów postaci $\Phi(R_{ij})$ ma miarę zero. Zatem

$$A(S) = \sum_{i,j=1}^{n} A(\Phi(R_{ij})).$$

Rozważamy mały prostokąt R w płaszczyźnie (u, v) o lewym dolnym rogu w (u, v) a prawym górnym w $(u + \Delta u, v + \Delta v)$. Obraz $\Phi(R)$ jest w przybliżeniu równoległobokiem o bokach

$$\Phi(u + \Delta u, v) - \Phi(u, v) \approx \left(\frac{\partial x}{\partial u}(u, v), \frac{\partial y}{\partial u}(u, v), \frac{\partial z}{\partial u}(u, v)\right) \Delta u,
\Phi(u, v + \Delta v) - \Phi(u, v) \approx \left(\frac{\partial x}{\partial v}(u, v), \frac{\partial y}{\partial v}(u, v), \frac{\partial z}{\partial v}(u, v)\right) \Delta v.$$

Czyli

$$\begin{split} & \Phi(u + \Delta u, v) - \Phi(u, v) & \approx & T_u(u, v) \, \Delta u, \\ & \Phi(u, v + \Delta v) - \Phi(u, v) & \approx & T_v(u, v) \, \Delta v. \end{split}$$

Pole równoległoboku wynosi $A(\varphi(R)) \approx ||T_u \times T_v|| \Delta u \Delta v$. Rzeczywiście niech $u = \frac{T_u \times T_v}{||T_u \times T_v||}$. Wtedy

$$A(\varphi(R)) \approx |\det(u, T_u \Delta u, T_v \Delta v)| = ||T_u \times T_v|| \Delta u \Delta v.$$

Ostatecznie

$$A(S) = \sum_{i,j=1}^{n} \|T_u \times T_v\|_{v=v_{j-1}}^{u=u_{i-1}} \Delta u_i \, \Delta v_j \longrightarrow \iint_{D} \|T_u \times T_v\| \, du \, dv.$$

Przykłady.

(a) $D = \{(r, \theta) : 0 \le \theta \le 2\pi, 0 \le r \le 1\}$. Określamy $\Phi(r, \theta) = (x, y, z)$, gdzie

$$x = r\cos\theta, \quad y = r\sin\theta, \quad z = r.$$

Obliczamy

$$T_r = (\cos \theta, \sin \theta, 1), \quad T_\theta = (-r \sin \theta, r \cos \theta, 0).$$

Zatem

$$T_r \times T_\theta = (-r\cos\theta, -r\sin\theta, r), \quad ||T_r \times T_\theta|| = r\sqrt{2}.$$

Dla $S = \Phi(D)$ mamy więc

$$A(S) = \int_{0}^{2\pi} \int_{0}^{1} ||T_r \times T_\theta|| \, dr \, d\theta = \int_{0}^{2\pi} \int_{0}^{1} r\sqrt{2} \, dr \, d\theta = \pi\sqrt{2}.$$

(b) Helikoida jest opisana przez

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = \theta$,

dla parametrów spełniających $0 \le r \le 1$, $0 \le \theta \le 2\pi$. Dla ustalonej wartości kąta θ otrzymujemy odcinek prostopadły do osi z łączący punkty $(0,0,\theta)$ i $(\cos\theta,\sin\theta,\theta)$. Powstała powierzchnia przypomina wałek do mielenia mięsa. Mamy

$$T_r = (\cos \theta, \sin \theta, 0), \qquad T_\theta = (-r \sin \theta, r \cos \theta, 1),$$

zatem

$$T_r \times T_\theta = (\sin \theta, -\cos \theta, r), \quad ||T_r \times T_\theta|| = \sqrt{r^2 + 1}.$$

Dalej

$$A(S) = \int_{0}^{2\pi} \int_{0}^{1} \sqrt{r^2 + 1} \, dr \, d\theta$$
$$= 2\pi \left[\frac{1}{2} r \sqrt{r^2 + 1} + \frac{1}{2} \log(r + \sqrt{r^2 + 1}) \right]_{r=0}^{r=1} = \pi \left[\sqrt{2} + \log(\sqrt{2} + 1) \right].$$

Załóżmy, że powierzchnia jest wykresem funkcji z=g(x,y), dla $(x,y)\in D.$ Wtedy

$$T_x \times T_y = \left(-\frac{\partial g}{\partial x}, -\frac{\partial g}{\partial y}, 1\right),$$

zatem

$$A(S) = \iint\limits_{\mathcal{D}} \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \, dx \, dy.$$

Przykład. Obliczymy pole półsfery o promieniu 1. Mamy

$$z = \sqrt{1 - x^2 - y^2}, \quad D = \{(x, y) : x^2 + y^2 \le 1\}.$$

Niech

$$D_R = \{(x, y) : x^2 + y^2 \le R^2\}, \quad R < 1.$$

Wtedy

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{1 - x^2 - y^2}}, \quad \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{1 - x^2 - y^2}}.$$

Zatem

$$1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \frac{1}{1 - x^2 - y^2}.$$

Otrzymujemy

$$A(S_R) = \iint_{D_R} \frac{dx \, dy}{\sqrt{1 - x^2 - y^2}} = \int_0^{2\pi} \int_0^R \frac{r \, dr \, d\theta}{\sqrt{1 - r^2}}$$
$$= 2\pi \left(-\sqrt{1 - r^2} \right) \Big|_{r=0}^{r=R} = 2\pi \left(1 - \sqrt{1 - R^2} \right) \xrightarrow[R \to 1^-]{} 2\pi.$$

7.4 Całki powierzchniowe funkcji skalarnych (niezorientowane)

Rozważamy powierzchnię S sparametryzowaną za pomocą funkcji $\Phi:D\to\mathbb{R}^3,\,\Phi(D)=S,$

$$\Phi(u,v) = (x(u,v), y(u,v), z(u,v)).$$

Dla funkcji ciągłej f(x, y, z) określonej na S definiujemy całkę wzorem

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x(u, v), y(u, v), z(u, v)) ||T_{u} \times T_{v}|| du dv.$$

Po rozpisaniu otrzymujemy wyrażenie

$$\iint\limits_D f(x(u,v),y(u,v),z(u,v)) \sqrt{\left(\frac{\partial(y,z)}{\partial(u,v)}\right)^2 + \left(\frac{\partial(z,x)}{\partial(u,v)}\right)^2 + \left(\frac{\partial(x,y)}{\partial(u,v)}\right)^2} \, du \, dv,$$

przy czym

$$\frac{\partial(f,g)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \\ \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} \end{vmatrix}.$$

7.4.1 Interpretacja całki powierzchniowej

Przypuśćmy, że funkcja $\varrho(x,y,z)$ opisuje gęstość masy powierzchni S w punkcie (x,y,z). Chcemy obliczyć całkowitą masę powierzchni. Załóżmy, że D jest prostokątem. Dzielimy D na n^2 mniejszych prostokątów D_{ij} . Oznaczmy $S_{ij} = \Phi(D_{ij})$. Symbol $A(S_{ij})$ oznacza pole powierzchni fragmentu S_{ij} . Dla dużych wartości n fragment S_{ij} jest "mały". Uznajemy, że gęstość masy na S_{ij} jest stała i wynosi $\varrho(\Phi(u_i, v_j))$, gdzie $(u_i, v_j) \in D_{ij}$ (np. (u_i, v_j) jest prawym górnym rogiem prostokąta D_{ij}). Całkowita masa wynosi w przybliżeniu

$$\sum_{ij,j=1}^{n} \varrho(\Phi(u_i, v_j)) A(S_{ij}) \approx \sum_{ij,j=1}^{n} \varrho(\Phi(u_i, v_j)) \|T_u \times T_v\| \Big|_{\substack{u=u_i \\ v=v_j}} \Delta u_i \, \Delta v_j$$

$$\longrightarrow \iint_{D} \varrho(\Phi(u, v)) \|T_u \times T_v\| \, du \, dv$$

$$= \iint_{D} \varrho(x(u, v), y(u, v), z(u, v)) \|T_u \times T_v\| \, du \, dv.$$

Jeśli
$$\varrho(x,y,z) \equiv 1$$
, to $A(S) = \iint_S dS$.

Przykłady.

(a) Rozważamy funkcję $f(x,y,z) = \sqrt{x^2 + y^2 + 1}$ i helikoidę S określoną przez

$$x = r\cos\varphi, \ y = r\sin\varphi, \ z = \theta, \qquad 0 \leqslant \theta \leqslant 2\pi, \ 0 \leqslant r \leqslant 1.$$

Wtedy $||T_r \times T_\theta|| = \sqrt{r^2 + 1}$. Zatem

$$\iint\limits_{S} \sqrt{x^2 + y^2 + 1} \, dS = \int\limits_{0}^{2\pi} \int\limits_{0}^{1} \sqrt{r^2 + 1} \sqrt{r^2 + 1} \, dr \, d\theta = 2\pi \left(\frac{1}{3} + 1\right) = \frac{8\pi}{3}.$$

(b) $\iint_S z^2 dS$, gdzie S jest sferą jednostkową $x^2 + y^2 + z^2 = 1$. Można użyć do obliczeń współrzędnych sferycznych. Inaczej, zauważamy, że

$$\iint\limits_{S} z^2 \, dS = \iint\limits_{S} x^2 \, dS = \iint\limits_{S} y^2 \, dS.$$

Zatem

$$\iint_{S} z^{2} dS = \frac{1}{3} \iint_{S} (x^{2} + y^{2} + z^{2}) dS = \frac{1}{3} \iint_{S} dS = \frac{1}{3} A(S) = \frac{4\pi}{3}.$$

Przypuśćmy, że powierzchnia S jest wykresem funkcji z=g(x,y), dla $(x,y)\in D.$ Wtedy

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^{2} + \left(\frac{\partial g}{\partial y}\right)^{2}} dx dy. \quad (7.1)$$

Przykład. Powierzchnia Sjest określona przez $z=x^2+y$ dla (x,y)z prostokąta Dopisanego przez warunki $0\leqslant x\leqslant 1$ i $-1\leqslant y\leqslant 1.$ Wtedy

$$\iint_{S} x \, dS = \int_{0}^{1} \int_{-1}^{1} x \sqrt{4x^{2} + 2} \, dy \, dx = 2\sqrt{2} \int_{0}^{1} x \sqrt{2x^{2} + 1} \, dx$$
$$= 2\sqrt{2} \frac{1}{6} (2x^{2} + 1)^{3/2} \Big|_{0}^{1} = \frac{\sqrt{2}}{3} [3\sqrt{3} - 1].$$

Rozważmy wykres z = g(x, y). Równanie powierzchni ma postać

$$\Phi(x, y, z) := -q(x, y) + z = 0,$$

tzn. powierzchnia jest poziomicą funkcji Φ . Wiemy, że wektorem normalnym do powierzchni w punkcie (x,y,z) jest gradient funkcji Φ podzielony przez swoją długość, czyli wektor

$$n = \frac{\left(-\frac{\partial g}{\partial x}, -\frac{\partial g}{\partial y}, 1\right)}{\sqrt{\left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2 + 1}}.$$

Niech θ oznacza kat pomiędzy wektorem n i wektorem (0,0,1). Wtedy

$$\cos \theta = \frac{1}{\sqrt{\left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2 + 1}}.$$

Zatem

$$\iint\limits_{S} f(x, y, z) dS = \iint\limits_{D} f(x, y, g(x, y)) \frac{1}{\cos \theta} dx dy,$$

gdzie θ jest kątem pomiędzy wektorem normalnym i dodatnią półosią z.

Uwaga. Dla małego obszaru ΔA w płaszczyźnie (x, y) pole powierzchni fragmentu ΔS odpowiadającego ΔA wynosi w przybliżeniu

$$\operatorname{Pole}(\Delta S) \approx \frac{\operatorname{Pole}(\Delta A)}{\cos \theta}.$$

Przykład. Obliczyć $\iint\limits_S x\,dS,$ gdzie Sjest trójkątem o wierzchołkach (1,0,0),

(0,1,0)i (0,0,1). Równanie powierzchni to x+y+z=1, czyli z=1-x-y, dla (x,y) z trójkąta D w płaszczyźnie (x,y) opisanego przez $x,y\geqslant 0$ i $x+y\leqslant 1$. Mamy $n=\frac{1}{\sqrt{3}}(1,1,1)$. Zatem

$$\iint\limits_{S} x \, dS = \int\limits_{0}^{1} dx \int\limits_{0}^{1-x} x\sqrt{3} \, dy.$$

Inaczej:

$$\iint\limits_{S} x \, dS = \frac{1}{3} \iint\limits_{S} \underbrace{(x+y+z)}_{1} \, dS = \frac{1}{3} A(S) = \frac{1}{3} \frac{\sqrt{3}}{4} (\sqrt{2})^{2} = \frac{\sqrt{3}}{6}.$$

7.5 Całki powierzchniowe pól wektorowych (zorientowane)

Definicja 7.4. Niech F(x, y, z) będzie polem wektorowym określonym na powierzchni $S = \Phi(D), \ \Phi: D \to \mathbb{R}^3$. Określamy całkę powierzchniową zorientowaną wzorem

$$\iint\limits_{S_{\Phi}} F \circ dS = \iint\limits_{D} F \circ (T_{u} \times T_{v}) \, du \, dv,$$

gdzie w całce po prawej stronie $F = F(\Phi(u, v))$.

Uwaga. Możemy powiązać tę całkę z całką niezorientowaną. Załóżmy, że $T_u \times T_v \neq 0$. Wtedy dla $n=\frac{T_u \times T_v}{\|T_u \times T_v\|}$ mamy

$$\iint\limits_D F \circ (T_u \times T_v) \, du \, dv = \iint\limits_D (F \circ n) \, \|T_u \times T_v\| \, du \, dv = \iint\limits_S (F \circ n) \, dS.$$

Otrzymujemy więc

$$\iint\limits_{S_F} F \circ dS = \iint\limits_{S} (F \circ n) \, dS.$$

Zwrot wektora normalnego n zależy od parametryzacji, nawet od kolejności zmiennych u i v, bo $T_u \times T_v = -(T_v \times T_u)$.

Przykład. Niech S będzie sferą jednostkową oraz F(x, y, z) = (x, y, z). Użyjemy współrzędnych sferycznych.

$$x = \sin \varphi \cos \psi,$$

$$y = \sin \varphi \sin \psi,$$

$$z = \cos \varphi$$
.

$$T_{\varphi} = (\cos \varphi \cos \psi, \cos \varphi \sin \psi, -\sin \varphi),$$

$$T_{\psi} = (-\sin \varphi \cos \psi, \sin \varphi \cos \psi, 0),$$

zatem

$$T_{\varphi} \times T_{\psi} = (\sin^2 \varphi \cos \psi, \sin^2 \varphi \sin \psi, \cos \varphi \sin \varphi) = \sin \varphi (x, y, z).$$

Wektor normalny to

$$n = (x, y, z).$$

$$\iint\limits_{S_{\pi}} F \circ dS = \iint\limits_{S} (n \circ n) \, dS = \iint\limits_{S} \, dS = 4\pi.$$

Definicja 7.5. Powierzchnią zorientowaną nazywamy powierzchnię dwustronną, w której jedna strona została określona jako zewnętrzna (dodatnia) a druga jako wewnętrzna (ujemna).

W każdym punkcie powierzchni mamy dwa wektory normalne n_1 i n_2 , $n_2=-n_1$. Załóżmy, że w każdym punkcie wybraliśmy jeden wektor normalny n tak, że wybrane wektory wskazują jedną stronę powierzchni. Niech $\Phi:D\to\mathbb{R}^3$ będzie parametryzacją powierzchni S. Wektor $T_u\times T_v$ jest prostopadły do powierzchni S w punkcie $\Phi(u,v)$. Zatem $T_u\times T_v=\lambda(u,v)\,n$, gdzie n jest wybranym wektorem normalnym w punkcie $\Phi(u,v)$. Jeśli $\lambda(u,v)>0$ dla $(u,v)\in D$, to mówimy, że parametryzcja jest zgodna z orientacją. Jeśli $\lambda(u,v)<0$ dla $(u,v)\in D$, to parametryzacja jest niezgodna z orientacją (jest przeciwna).

Niech S będzie wykresem funkcji z=g(x,y). Domyślna orientacja jest wyznaczona przez

$$n = \frac{\left(-\frac{\partial g}{\partial x}, -\frac{\partial g}{\partial y}, 1\right)}{\sqrt{\left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2 + 1}}.$$

To oznacza, że górna część wykresu jest zewnętrzna.

Twierdzenie 7.6. Niech S będzie powierzchnią zorientowaną, a Φ_1 i Φ_2 dwiema parametryzacjami gładkimi zachowującymi orientację. Wtedy

$$\iint\limits_{S_{\Phi_1}} F \circ dS = \iint\limits_{S_{\Phi_2}} F \circ dS.$$

Jeśli Φ_1 zachowuje orientację, a Φ_2 zmienia orientację, to

$$\iint\limits_{S_{\Phi_1}} F \circ dS = -\iint\limits_{S_{\Phi_2}} F \circ dS.$$

Jeśli f(x,y,z) jest funkcją ciągłą na S, to

$$\iint\limits_{S_{\Phi_1}} f\,dS = \iint\limits_{S_{\Phi_2}} f\,dS,$$

tzn. całka niezorientowana nie zależy od wyboru parametryzacji.

Dowód. Rozważamy dwie parametryzacje powierzchni S

$$\Phi_1: D_1 \to \mathbb{R}^3 \quad \text{oraz} \quad \Phi_2: D_2 \to \mathbb{R}^3, \quad \text{dla} \quad D_1, D_2 \subset \mathbb{R}^2.$$

Dla ustalonego punktu (x, y, z) powierzchni mamy

$$(x, y, z) = \Phi_1(u, v) = \Phi_2(u', v')$$

dla jedynych $(u,v)\in D_1$ oraz $(u',v')\in D_2$. Uzyskujemy w ten sposób odw
zorowanie $g:D_1\to D_2$

$$(u', v') = g(u, v).$$

Załóżmy, że q jest klasy C^1 . Mamy

$$\Phi_1(u, v) = \Phi_2(u', v') = \Phi_2(g(u, v)).$$

Obliczamy macierz pochodnych obu stron.

$$D\Phi_1(u,v) = [T_u \ T_v] = D\Phi_2(\underbrace{g(u,v)}_{(u',v')}) Dg(u,v) = [T_{u'} \ T_{v'}] Dg(u,v).$$

Lemat 7.7. a i b sq wektorami w \mathbb{R}^3 a M macierzq wymiaru 2×2 . Jeśli $[c \ d] = [a \ b] \ M$, to $c \times d = \det M \cdot (a \times b)$.

 $Dow \acute{o}d\ lematu.$ Niech $M=\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}.$ Wtedy

$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} \alpha a + \gamma b & \beta a + \delta b \end{bmatrix} = \begin{bmatrix} c & d \end{bmatrix}.$$

$$c \times d = (\alpha a + \gamma b) \times (\beta a + \delta b) = \alpha \delta a \times b + \gamma \beta b \times a$$
$$= (\alpha \delta - \gamma \beta) a \times b = \det M \cdot (a \times b).$$

Z lematu otrzymujemy

$$T_u \times T_v = \det Dq(u, v) T_{u'} \times T_{v'}$$
.

Wykonujemy obliczenia stosując w trakcie podstawienie (u', v') = g(u, v).

$$\iint_{S_{\Phi_2}} F \circ dS = \iint_{D_2} F(\Phi_2(u', v')) \circ (T_{u'} \times T_{v'}) \, du' \, dv'$$

$$= \iint_{D_1} F(\Phi_2(g(u, v))) \circ (T_{u'} \times T_{v'}) \, |\det Dg(u, v)| \, du \, dv.$$

Załóżmy, że det Dg(u,v) > 0 dla $(u,v) \in D_1$. Wtedy w wyniku otrzymujemy

$$\iint\limits_{D_1} F(\Phi_1(u,v)) \circ (T_u \times T_v) \, du \, dv = \iint\limits_{S_{\Phi_1}} F \circ dS.$$

Jeśli det Dg(u,v) < 0 dla $(u,v) \in D_1$, to w wyniku dostaniemy

$$-\iint\limits_{S_{\Phi_1}} F \circ dS.$$

Dalej w wyniku tego samego podstawienia mamy

$$\iint_{S_{\Phi_2}} f \, dS = \iint_{D_2} f(\Phi_2(u', v')) \| T_{u'} \times T_{v'} \| \, du' \, dv'$$

$$= \iint_{D_1} f(\Phi_1(u, v)) \underbrace{\| T_{u'} \times T_{v'} \| \, | \det D_g(u, v)|}_{\| T_u \times T_v \|} \, du \, dv = \iint_{S_{\Phi_1}} f \, dS.$$

7.5.1 Interpretacja fizyczna całki powierzchniowej zorientowanej

Zbadamy sumy Riemanna całki

$$\iint\limits_{S} F \circ dS = \iint\limits_{D} F(\Phi(u, v)) \circ (T_u \times T_v) \, du \, dv.$$

Niech R będzie małym prostokątem leżącym w D o bokach Δu i Δv równoległych do osi współrzędnych. Lewy dolny róg prostokąta R oznaczymy przez (u, v). Obraz $\Phi(R)$ prostokąta jest w przybliżeniu równoległobokiem o bokach $T_u \Delta u$ i $T_v \Delta v$. Rozważmy wielkość

$$F(\Phi(u,v)) \circ (T_u \Delta u \times T_v \Delta v).$$

Ze wzoru

$$\det(a, b, c) = a \circ (b \times c), \quad \text{dla } a, b, c \in \mathbb{R}^3.$$

wynika, że jest to plus minus objętość równoległościanu rozpiętego przez wektory $F(\Phi(u,v))$, $T_u\Delta u$ i $T_v\Delta v$. Zakładamy, że powierzchnia S jest zorientowana i parametryzacja Φ jest zgodna z orientacją. Jeśli wektor F jest skierowany w stronę dodatnią powierzchni, to otrzymujemy objętość równoległościanu, a jeśli w stronę ujemną, to otrzymamy minus objętość równoległościanu.

Niech F oznacza prędkość przepływu jakiegoś płynu w punkcie $(x, y, z) = \Phi(u, v)$. Wtedy F wskazuje kierunek przepływu a liczba

$$|F(\Phi(u,v)) \circ (T_u \Delta u \times T_v \Delta v)|$$

mierzy ilość płynu jaki przepłynął przez fragment powierzchni $\Phi(R)$ w jednostce czasu. Ilość płynu jaka przepłynie w jednostce czasu jest równa zatem plus minus objętości równoległościanu rozpiętego przez $F(\Phi(u,v))$, $T_u\Delta u$ i $T_v\Delta v$. Znak zależy od tego, czy siła F jest skierowana na zewnątrz czy do wewnątrz powierzchni. Reasumując $F \circ (T_u \times T_v) \Delta u \Delta v$ jest prędkością przepływu na stronę zewnętrzną przez fragment powierzchni $\Phi(R)$. Podzielmy obszar D na małe prostokąty R_{ij} . Wtedy

$$\sum_{i,j=1}^{n} F \circ (T_u \times T_v) \bigg|_{\substack{u=u_{i-1} \\ v=v_{j-1}}} \Delta u_i \, \Delta v_j$$

jest sumaryczną prędkością przepływu na zewnątrz powierzchniS. Ostatecznie całka

$$\iint\limits_{S} F \circ dS$$

jest prędkością przepływu na zewnątrz powierzchni S.

Całka powierzchniowa służy do obliczania przepływu ciepła. Niech T(x, y, z) oznacza temperaturę w punkcie (x, y, z). Rozważmy pole wektorowe

$$F = -k\nabla T = -k\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right),\,$$

gdzie k jest stałym współczynnikiem dodatnim, zależnym od ośrodka. Wtedy całka $\iint_S F \circ dS$ opisuje tempo przepływu ciepła na zewnątrz powierzchni S.

Przykład. $T(x,y,z) = x^2 + y^2 + z^2$, $S = \{(x,y,z) : x^2 + y^2 + z^2 = 1\}$. Załóżmy, że k = 1, czyli

$$F = -\nabla T = -2(x, y, z).$$

Wtedy $F \circ n = -2$ oraz

$$\iint\limits_{S} F \circ dS = \iint\limits_{S} (F \circ n) \, dS = -8\pi.$$

7.5.2 Całka powierzchniowa dla wykresów funkcji

Przypuśćmy, że S jest wykresem funkcji z=g(x,y) dla $(x,y)\in D.$ Stosujemy parametryzację

$$x := x, \ y := y, \ z = g(x, y).$$

Wtedy

$$T_x = \left(1, 0, \frac{\partial g}{\partial x}\right), \quad T_y = \left(1, 0, \frac{\partial g}{\partial y}\right), \quad T_x \times T_y = \left(-\frac{\partial g}{\partial x}, -\frac{\partial g}{\partial y}, 1\right).$$

Dla pola wektorowego F = (P, Q, R) w \mathbb{R}^3 otrzymujemy

$$\iint_{S} F \circ dS = \iint_{D} F \circ (T_x \times T_y) \, dx \, dy = \iint_{D} \left[-P \, \frac{\partial g}{\partial x} - Q \, \frac{\partial g}{\partial y} + R \right] \, dx \, dy, \quad (7.2)$$

przy czym funkcje P, Q i R są obliczone w (x, y, g(x, y)).

8 Wzór Greena

Twierdzenie podaje związek pomiędzy całką krzywoliniową zorientowaną, wzdłuż krzywej zamkniętej C w \mathbb{R}^2 a całką podwójną po obszarze D ograniczonym przez tę krzywą.

Definicja 8.1. Obszar D nazywamy elementarnym typu I jeśli

$$D = \{(x, y) : a \leqslant x \leqslant b, \ \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\},\$$

gdzie φ_1 i φ_2 są funkcjami ciągłymi. D nazywamy elementarnym typu II jeśli

$$D = \{(x, y) : c \leq y \leq d, \ \psi_1(y) \leq x \leq \psi_2(y)\}.$$

D nazywamy obszarem elementarnym, jeśli jest jednocześnie elementarny typu I i typu II.

Wzór Greena 115

Brzeg każdego obszaru orientujemy przeciwnie do wskazówek zegara (analogowego).

Lemat 8.2. Niech P(x,y) będzie funkcją klasy C^1 na obszarze D typu I. Wtedy

$$\int_{C} P dx = -\iint_{D} \frac{\partial P}{\partial y} dx dy,$$

gdzie C jest brzegiem obszaru D.

Uwaga. Przypuśćmy, że pole wektorowe F w \mathbb{R}^3 ma postać F=(P,0,0). Wtedy

$$\int\limits_{C} F \circ ds = \int\limits_{C} P \, dx.$$

Dowód. Brzeg obszaru D składa się dwu odcinków pionowych odpowiadających x=a i x=b oraz z dwu fragmentów wykresu C_1^+ i C_2^- dla funkcji φ_1 i φ_2 . Na odcinkach pionowych mamy dx=0. Zatem

$$\int_{C} P \, dx = \int_{C_{1}^{+}} P \, dx - \int_{C_{2}^{+}} P \, dx.$$

$$\begin{split} \iint\limits_{D} \frac{\partial P}{\partial y} \, dx \, dy &= \int\limits_{a}^{b} \int\limits_{\varphi_{1}(x)}^{\varphi_{2}(x)} \frac{\partial P}{\partial y} \, dy \, dx = \int\limits_{a}^{b} P(x,y) \Big|_{y=\varphi_{1}(x)}^{y=\varphi_{2}(x)} dx \\ &= \int\limits_{a}^{b} P(x,\varphi_{2}(x)) \, dx - \int\limits_{a}^{b} P(x,\varphi_{1}(x)) \, dx \\ &= \int\limits_{C_{2}^{+}} P(x,y) \, dx - \int\limits_{C_{1}^{+}} P(x,y) \, dx = -\int\limits_{C} P \, dx. \end{split}$$

Zamienia jac rolami P i Q oraz x i y otrzymamy

Lemat 8.3. Niech Q(x,y) będzie funkcją klasy C^1 na obszarze D typu II. Wtedy

$$\int\limits_{C} Q \, dy = \iint\limits_{D} \frac{\partial Q}{\partial x} \, dx \, dy,$$

gdzie C jest brzegiem obszaru D.

Uwaga. Zmiana znaku z "—" na "+" wynika z tego, że zamieniając rolami x i y zmieniamy orientację.

Dowód. Brzeg obszaru D składa się dwu odcinków poziomych odpowiadających y=c i y=d oraz z dwu fragmentów wykresu C_1^- i C_2^+ dla funkcji ψ_1 i ψ_2 . Na odcinkach poziomych mamy dy=0. Zatem

$$\iint_{D} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} Q(x, y) \Big|_{x=\psi_{1}(y)}^{x=\psi_{2}(y)} dy$$

$$= \int_{c}^{d} Q(\psi_{2}(y), y) dy - \int_{c}^{d} Q(\psi_{1}(y), y) dy$$

$$= \int_{C_{2}^{+}} Q(x, y) dy + \int_{C_{1}^{-}} Q(x, y) dy = \int_{C} Q dy.$$

Lematy dają w wyniku

Twierdzenie 8.4 (wzór Greena). Niech D będzie obszarem elementarnym z brzegiem C zorientowanym dodatnio. Niech P(x,y) i Q(x,y) będą funkcjami klasy C^1 określonymi na D. Wtedy

$$\int_{C} P(x,y) dx + Q(x,y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Uwaga. Wzór Greena jest prawdziwy dla obszarów, które można podzielić na kilka obszarów elementarnych. Przypuśćmy, że $D=D_1\cup D_2$ oraz wnętrza obszarów D_1 i D_2 są rozłączne. Niech C_0 oznacza część wspólną brzegów obszarów ∂D_1 i ∂D_2 . Wtedy

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint\limits_{D_1} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy + \iint\limits_{D_2} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$
$$= \int\limits_{\partial D_1} P dx + Q dy + \int\limits_{\partial D_2} P dx + Q dy = \int\limits_{\partial D} P dx + Q dy,$$

bo całki wzdłuż C_0 zniosą się.

Wzór Greena 117

Uwaga. Przypuśćmy, że funkcja P zeruje się na brzegu obszaru D, ale $\frac{\partial P}{\partial y}$ nie jest zerowa w D. Otrzymamy

$$\iint\limits_{D} \frac{\partial P}{\partial y} dx dy = -\int\limits_{\partial D} P(x, y) dx = 0.$$

Np. niech $D=\{(x,y)\,:\,x^2+y^2\leqslant 1\}$ i $P(x,y)=1-x^2-y^2$

Twierdzenie 8.5. Niech D będzie obszarem, dla którego można zastosować wzór Greena. Wtedy

$$A(D) = \frac{1}{2} \int_{\partial D} (x \, dy - y \, dx).$$

 $Dow \acute{o}d$. Przyjmijmy P(x,y)=-y oraz Q(x,y)=x. Mamy

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2.$$

Zatem

$$\int_{\partial D} (x \, dy - y \, dx) = \iint_{D} 2 \, dx \, dy = 2 \, A(D).$$

Przykład. Hipocykloida jest określona równaniem

$$x^{2/3} + y^{2/3} = a^{2/3}, \qquad a > 0.$$

Chcemy obliczyć pole obszaru ograniczonego przez tę krzywą. Zastosujemy parametryzację

$$x^{1/3} = a^{1/3}\cos\theta, \quad y^{1/3} = a^{1/3}\sin\theta, \qquad 0 \le \theta \le 2\pi.$$

Wtedy

$$x = a\cos^3\theta, \quad y = a\sin^3\theta.$$

Dalej

$$A(D) = \frac{1}{2} \int_{\partial D} (x \, dy - y \, dx) = \frac{a^2}{2} \int_{0}^{2\pi} [3\cos^3\theta \sin^2\theta \cos\theta + 3\sin^3\theta \cos^2\theta \sin\theta] \, d\theta$$
$$= \frac{3a^2}{2} \int_{0}^{2\pi} \sin^2\theta \cos^2\theta \, d\theta = \frac{3a^2}{8} \int_{0}^{2\pi} \sin^22\theta \, d\theta = \frac{3a}{16} \int_{0}^{2\pi} [\sin^22\theta + \cos^22\theta] \, d\theta = \frac{3\pi}{8} a^2.$$

8.1 Rotacja

Dla pola wektorowego F = (P, Q) na płaszczyźnie wielkość

$$\operatorname{curl} F = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$$

nazywamy rotacją. Wyobrażamy sobie, że F(x,y) określa prędkość przepływu w punkcie (x,y). Załóżmy, że obiekt pod wpływem działania F(x,y) przesuwa się w kierunku poziomym (równolegle do osi x) z punktu (x,y) o $\Delta x > 0$. Wtedy obiekt ten uzyska przyrost prędkości w górę (czyli w lewo) o

$$\frac{\partial Q}{\partial x}\Delta x \approx Q(x + \Delta x, y) - Q(x, y).$$

Czyli przyrost prędkości w górę na jednostkę przesunięcia w prawo wynosi $\frac{\partial Q}{\partial x}$. Tzn. wielkość $\frac{\partial Q}{\partial x}$ określa tendencję do obrotu obiektu w kierunku dodatnim (w lewo). Podobnie przy przesunięciu obiektu w górę o Δy z punktu (x,y) obiekt uzyskuje przyrost prędkości w prawo wynoszący

$$P(x, y + \Delta y) - P(x, y) \approx \frac{\partial P}{\partial y}(x, y) \, \Delta y.$$

Tzn. wielkość $\frac{\partial P}{\partial y}$ określa tendencję do skrętu w kierunku ujemnym. Reasumując wielkość $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ określa wypadkową tendencję do skrętu obiektu w kierunku dodatnim.

9 Twierdzenie Stokesa

Twierdzenie Stokesa podaje związek pomiędzy całką krzywoliniową zorientowaną wzdłuż krzywej zamkniętej C w \mathbb{R}^3 a całką powierzchniową zorientowaną po powierzchni S, dla której krzywa C jest brzegiem, tzn. $C=\partial S$. Na brzegu wprowadzamy orientację zgodną z orientacją powierzchni, tzn. idąc wzdłuż brzegu z głową podniesioną w kierunku dodatniej strony powierzchni, powierzchnia znajduje się po naszej lewej stronie. Twierdzenie Stokesa przypomina twierdzenie Greena tyle, że powierzchnia S nie musi być płaska. Rozważymy przypadek, gdy S jest wykresem funkcji z=g(x,y), dla $(x,y)\in D\subset \mathbb{R}^2$.

Twierdzenie Stokesa 119

Twierdzenie 9.1 (wzór Stokesa). Niech S będzie zorientowaną powierzchnią będącą wykresem funkcji $z = g(x,y), (x,y) \in D$, gdzie g jest klasy C^2 . Zakładamy, że do obszaru D można zastosować wzór Greena. Wtedy

$$\int_{\partial S} F \circ ds = \iint_{S} \operatorname{curl} F \circ dS,$$

gdzie $\operatorname{curl} F$ jest polem wektorowym określonym dla F = (P, Q, R) wzorem

$$\operatorname{curl} F = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Uwaga. Jeśli $R \equiv 0$, oraz P i Q nie zależą od z, to curl $F = (0, 0, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$.

Dowód. Ze wzoru (7.2) mamy

$$\iint_{S} \operatorname{curl} F \circ dS$$

$$= \iint_{D} \left[-\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \frac{\partial z}{\partial x} - \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \frac{\partial z}{\partial y} + \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx dy$$

Niech $\sigma(t)=(x(t),y(t))$ będzie parametryzacją brzegu $\partial D,$ dla $a\leqslant t\leqslant b.$ Wtedy

$$\eta(t) = (x(t), y(t), g(x(t), y(t)), \quad a \leqslant t \leqslant b$$

jest parametryzacją brzegu ∂S . Zatem

$$\int_{\partial S} F \circ ds = \int_{a}^{b} \left[P \frac{dx}{dt} + Q \frac{dy}{dt} + R \left(\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \right) \right] dt$$

$$= \int_{a}^{b} \left[\left(P + R \frac{\partial z}{\partial x} \right) \frac{dx}{dt} + \left(Q + R \frac{\partial z}{\partial y} \right) \frac{dy}{dt} \right]$$

$$= \int_{\partial D} \left(P + R \frac{\partial z}{\partial x} \right) dx + \left(Q + R \frac{\partial z}{\partial y} \right) dy$$

$$= \iint_{D} \left[\frac{\partial Q}{\partial x} + \frac{\partial Q}{\partial z} \frac{\partial z}{\partial x} + \left(\frac{\partial R}{\partial x} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial x} \right) \frac{\partial z}{\partial y} + R \frac{\partial^{2} z}{\partial x \partial y} \right] dx dy$$

$$- \frac{\partial P}{\partial y} - \frac{\partial P}{\partial z} \frac{\partial z}{\partial y} - \left(\frac{\partial R}{\partial y} + \frac{\partial R}{\partial z} \frac{\partial z}{\partial y} \right) \frac{\partial z}{\partial x} - R \frac{\partial^{2} z}{\partial y \partial x} \right] dx dy$$

$$= \iint_{S} \operatorname{curl} F \circ dS$$

Przykłady.

(a) $F(x,y,z)=(ye^z,xe^z,xye^z)$. Przypuśćmy, że powierzchnia S spełnia warunki twierdzenia. Mamy

$$\operatorname{curl} F = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ ye^z & xe^z & xye^z \end{vmatrix} = 0.$$

Zatem

$$\int\limits_{\partial S} F \circ ds = \iint\limits_{S} \operatorname{curl} F \circ dS = 0.$$

(b) C jest krzywą będącą przecięciem cylindra $x^2+y^2=1$ oraz płaszczyzny x+y+z=1. Orientacja krzywej wyznacza dodatnią orientację po zrzutowaniu na okrąg $x^2+y^2=1$. C jest brzegiem powierzchni S,

która jest wyznaczona przez wykres funkcji z=1-x-y określonej na kole $x^2+y^2\leqslant 1$. Obliczamy

$$\int_{C} -y^{3} dx + x^{3} dy - z^{3} dz = \iint_{S} \operatorname{curl}(-y^{3}, x^{3}, -z^{3}) \circ dS.$$

Mamy

$$\operatorname{curl}(-y^3, x^3, -z^3) = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^3 & x^3 & -z^3 \end{vmatrix} = (0, 0, 3(x^2 + y^2)).$$

Zatem ze wzoru (7.2) otrzymujemy

$$\int_{C} -y^{3} dx + x^{3} dy - z^{3} dz = \iint_{x^{2} + y^{2} \le 1} 3(x^{2} + y^{2}) dx dy = \int_{0}^{2\pi} \int_{0}^{1} 3r^{3} dr d\theta = 2\pi \cdot \frac{3}{4} = \frac{3\pi}{2}.$$

Wzór Stokesa jest prawdziwy dla powierzchni sparametryzowanych, a nie tylko dla wykresów funkcji $z = g(x, y), (x, y) \in D$. Pewna komplikacja dotyczy brzegu ∂S , gdy S jest sparametryzowana.

Przykład. Rozważmy sferę jednostkową S i parametryzację przez współrzędne sferyczne $0 \le \varphi \le \pi, \ 0 \le \psi \le 2\pi$. Parametryzacja nie jest różnowartościowa.

$$\int_{\partial S} F \circ ds = \iint_{S} \operatorname{curl} F \circ dS.$$

Przykład. Niech S będzie powierzchnią klosza $x^2+y^2+(z-1)^2=2, z\geqslant 0$. Brzegiem klosza jest okrąg $x^2+y^2=1, z=0$. Dla pola $F=(y,-x,e^{xz})$ chcemy obliczyć

 $\iint\limits_{S} \operatorname{curl} F \circ dS = \int\limits_{\partial S} F \circ ds.$

Parametryzujemy ∂S poprzez $x=\cos t,\ y=\sin t,\ z=0$ dla $0\leqslant t\leqslant 2\pi.$ Otrzymujemy w wyniku

$$\int_{0}^{2\pi} (-\sin^2 t - \cos^2 t) \, dt = -2\pi.$$

9.1 Interpretacja rotacji $\operatorname{curl} F$

Wybierzmy wektor jednostkowy n i punkt P przestrzeni \mathbb{R}^3 . Niech F będzie polem wektorowym w \mathbb{R}^3 . Symbolem S_r oznaczamy koło o promieniu r i środku w P, prostopadłe do wektora n. Ze wzoru Stokesa mamy

$$\int_{\partial S_r} F \circ ds = \iint_{S_r} \operatorname{curl} F \circ dS = \iint_{S_r} (\operatorname{curl} F \circ n) dS = [\operatorname{curl} F(Q_r) \circ n] A(S_r),$$

gdzie Q_r jest pewnym punktem w S_r . Otrzymujemy więc

$$\operatorname{curl} F(Q_r) \circ n = \frac{1}{A(S_r)} \int_{\partial S_r} F \circ ds = \frac{1}{A(S_r)} \int_{\partial S_r} (F \circ T) \, ds,$$

gdzie T jest jednostkowym wektorem stycznym do krzywej. Przechodząc do granicy, gdy $r \to 0^+$ otrzymamy

$$\operatorname{curl} F(P) \circ n = \lim_{r \to 0^+} \frac{1}{A(S_r)} \int_{\partial S_r} (F \circ T) \, ds.$$

9.2 Interpretacja całki $\int\limits_C (F \circ T) \, ds$ dla krzywej zamkniętej C

(a) Załóżmy, że pole F jest styczne do krzywej C w kierunku zgodnym z orientacją C. Wtedy $F \circ T > 0$. Zatem $\int_C (F \circ T) \, ds > 0$.

- (b) Jeśli pole F jest styczne do krzywej C w kierunku przeciwnym, to $F\circ T<0$. Zatem $\int\limits_C (F\circ T)\,ds<0$.
- (c) Przypuśćmy, że pole F jest prostopadłe do C. Wtedy $\int_C (F \circ T) \, ds = 0$.

Ogólnie wielkość $\int_C (F \circ T) \, ds$ oznacza ilość płynu przepływającego w jednostce czasu, w kierunku dodatnim wokół krzywej C, jeśli F oznacza prędkość przepływu. Wielkość $\int_C F \circ ds$ nazywamy cyrkulacją pola F wokół krzywej C.

Zatem curl $F(P) \circ n$ jest cyrkulacją pola na jednostkę powierzchni w punkcie P w płaszczyźnie prostopadłej do wektora n. Przy ustalonym punkcie P niech

$$n = \frac{\operatorname{curl} F(P)}{\|\operatorname{curl} F(P)\|},$$

przy założeniu, że curl $F(P) \neq 0$. Wtedy wielkość curl $F(P) \circ n$ jest największa z możliwych. Tzn. w płaszczyźnie prostopadłej do wektora curl F(P) mamy największą tendencję do cyrkulacji.

Uwaga. Wzór Stokesa można zapisać następująco, po przejściu do całek niezorientowanych.

$$\iint_{\partial S} (F \circ T) \, ds = \iint_{S} (\operatorname{curl} F \circ n) \, dS.$$

10 Wzór Gaussa-Ostrogradskiego

Dla pola wektorowego klasy $F=(F_1,F_2,F_3)$ w \mathbb{R}^3 klasy C^1 dywergencją nazywamy funkcję

$$\operatorname{div} F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \circ (F_1, F_2, F_3).$$

Twierdzenie Gaussa-Ostrogradskiego mówi, że przepływ pola F na zewnątrz zorientowanej powierzchni zamkniętej jest równy całce potrójnej z dywergencji pola F po obszarze ograniczonym przez powierzchnię S.

Definicja 10.1. Mówimy, że obszar $\Omega \subset \mathbb{R}^3$ jest elementarny, jeśli ma jedną z trzech postaci:

(a)
$$\Omega = \{(x, y, z) : (x, y) \in D_1, \varphi_1(x, y) \le z \le \varphi_2(x, y)\},\$$

(b)
$$\Omega = \{(x, y, z) : (x, z) \in D_2, \psi_1(x, z) \le y \le \psi_2(x, z)\},\$$

(c)
$$\Omega = \{(x, y, z) : (y, z) \in D_3, \eta_1(y, z) \le x \le \eta_2(y, z)\},\$$

gdzie funkcje φ_1 , φ_2 , ψ_1 , ψ_1 , η_1 , η_2 są ciągłe, a obszary D_1 , D_2 i D_3 takie jak we wzorze Greena. Obszar Ω jest elementarny w trzech kierunkach, jeśli ma każdą z tych postaci.

Przykłady. Prostopadłościan $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ i kula w \mathbb{R}^3 są elementarne w trzech kierunkach.

Powierzchnię zamkniętą orientujemy domyślnie tak, że zewnętrzna część jest dodatnia. Jeśli S składa się z kilku części S_1, S_2, \ldots, S_n , to

$$\iint\limits_{S} F \circ dS = \iint\limits_{S_{1}} F \circ dS + \ldots + \iint\limits_{S_{n}} F \circ dS.$$

Przykład. Niech S będzie brzegiem sześcianu $[-1,1]^3$. Zewnętrzne wektory normalne do poszczególnych ścian mają postać

$$n_1 = (0, 0, -1),$$
 $n_2 = (0, 0, 1),$
 $n_3 = (0, -1, 0),$ $n_4 = (0, 1, 0),$
 $n_5 = (-1, 0, 0),$ $n_6 = (1, 0, 0).$

Zatem

$$\iint_{S} F \circ dS = \iint_{S} (F \circ n) \, dS = \sum_{i=1}^{6} \iint_{S_{i}} (F \circ n_{i}) \, dS$$
$$= -\iint_{S_{1}} F_{3} \, dS + \iint_{S_{2}} F_{3} \, dS - \iint_{S_{3}} F_{2} \, dS + \iint_{S_{4}} F_{2} \, dS - \iint_{S_{5}} F_{1} \, dS + \iint_{S_{6}} F_{1} \, dS.$$

Twierdzenie 10.2 (wzór Gaussa Ostrogradskiego). Niech Ω będzie obszarem elementarnym w trzech kierunkach w \mathbb{R}^3 . Brzeg $\partial\Omega$ orientujemy dodatnio. Wtedy dla pola wektorowego F klasy C^1 w \mathbb{R}^3 mamy

$$\iint_{\partial\Omega} F \circ dS = \iiint_{\Omega} \operatorname{div} F \, dx \, dy \, dz.$$

Dowód. Mamy

$$\iiint_{\Omega} \operatorname{div} F \, dx \, dy \, dz = \iiint_{\Omega} \frac{\partial F_{1}}{\partial x} \, dx \, dy \, dz + \iiint_{\Omega} \frac{\partial F_{2}}{\partial y} \, dx \, dy \, dz + \iiint_{\Omega} \frac{\partial F_{3}}{\partial z} \, dx \, dy \, dz.$$

$$\iint_{\partial \Omega} F \circ dS = \iint_{\partial \Omega} (F \circ n) \, dS = \iint_{\partial \Omega} F_{1} n_{1} \, dS + \iint_{\partial \Omega} F_{2} n_{2} \, dS + \iint_{\partial \Omega} F_{3} n_{3} \, dS.$$

Wystarczy pokazać, że odpowiednie składniki są sobie równe.

Pokażemy, że

$$\iiint_{\Omega} \frac{\partial F_3}{\partial z} dx dy dz = \iint_{\partial \Omega} F_3 n_3 dS.$$

 Ω ma postać

$$\Omega = \{(x, y, z) : \varphi_1(x, y) \le z \le \varphi_2(x, y), (x, y) \in D_1\}.$$

$$\iiint_{\Omega} \frac{\partial F_3}{\partial z} dx dy dz = \iint_{D_1} \int_{\varphi_1(x,y)}^{\varphi_2(x,y)} \frac{\partial F_3}{\partial z} dz dx dy$$

$$= \iint_{D_1} \left[F_3(x, y, \varphi_2(x, y)) - F_3(x, y, \varphi_1(x, y)) \right] dx dy$$

$$= \iint_{D_1} F_3(x, y, \varphi_2(x, y)) dx dy - \iint_{D_1} F_3(x, y, \varphi_1(x, y)) dx dy.$$

Brzeg obszaru Ω składa się z powierzchni dolnej S_1^- i górnej S_2^+ związanych z wykresami funkcji $z = \varphi_1(x, y)$ i $z = \varphi_2(x, y)$ dla $(x, y) \in D_1$ oraz z powierzchni pionowej pomiędzy tymi wykresami. Wektory normalne do powierzchni pionowej mają postać $(n_1, n_2, 0)$, tzn. $n_3 = 0$. Zatem

$$\iint_{\partial\Omega} F_3 n_3 \, dS = \iint_{S_2^+} F_3 n_3 \, dS - \iint_{S_1^+} F_3 n_3 \, dS.$$

Dla S_2 wektor normalny ma postać

$$n = \frac{\left(-\frac{\partial \varphi_2}{\partial x}, -\frac{\partial \varphi_2}{\partial y}, 1\right)}{\sqrt{\left(\frac{\partial \varphi_2}{\partial x}\right)^2 + \left(\frac{\partial \varphi_2}{\partial y}\right)^2 + 1}}.$$

Stad na podstawie (7.1) otrzymujemy

$$\iint_{S_2^+} F_3 n_3 dS$$

$$= \iint_{D_1} F_3(x, y, \varphi_2(x, y)) \frac{1}{\sqrt{\left(\frac{\partial \varphi_2}{\partial x}\right)^2 + \left(\frac{\partial \varphi_2}{\partial y}\right)^2 + 1}} \sqrt{\left(\frac{\partial \varphi_2}{\partial x}\right)^2 + \left(\frac{\partial \varphi_2}{\partial y}\right)^2 + 1} dx dy$$

$$= \iint_{D_1} F_3(x, y, \varphi_2(x, y)) dx dy.$$

Podobnie uzyskujemy

$$\iint_{S_{+}^{+}} F_{3}n_{3} dS = \iint_{D_{1}} F_{3}(x, y, \varphi_{1}(x, y)) dx dy.$$

Przykłady.

(a) $F = (2x, y^2, z^2)$ oraz $S = \{x^2 + y^2 + z^2 = 1\}$. Niech B oznacza kulę jednostkową. Wtedy

$$\iint\limits_S F \circ dS = \iiint\limits_B (2+2y+2z)\,dx\,dy\,dz = \iiint\limits_B 2\,dx\,dy\,dz = 2\operatorname{vol}(B) = \frac{8\pi}{3}.$$

(b) Chcemy obliczyć całkę niezorientowaną $\iint_S (x^2 + y + z) dS$, gdzie S jest sferą jednostkową. Mamy n = (x, y, z). Niech F = (x, 1, 1). Wtedy

$$\iint_{S} (x^{2} + y + z) \, dS = \iint_{S} (x, 1, 1) \circ dS = \iiint_{B} dx \, dy \, dz = \frac{4\pi}{3}.$$

10.1 Interpretacja fizyczna dywergencji

Rozważamy pole wektorowe F klasy C^1 w \mathbb{R}^3 . Dla ustalonego punktu P niech B_r oznacza kulę o promieniu r i środku w punkcie P. Ze wzoru Gaussa-Ostrogradskiego mamy

$$\iiint_{B_r} \operatorname{div} F \, dx \, dy \, dz = \int_{\partial B_r} (F \circ n) \, dS = \int_{\partial B_r} F \circ dS.$$

Z twierdzenia o wartości średniej mamy

$$\iiint\limits_{B_r} \operatorname{div} F \, dx \, dy \, dz = \operatorname{div} F(Q_r) \cdot \operatorname{vol}(B_r)$$

dla pewnego punktu Q_r z B_r . Zatem

$$\operatorname{div} F(Q_r) = \frac{1}{\operatorname{vol}(B_r)} \int_{\partial B_r} F \circ dS.$$

Przechodząc do granicy $r \to 0^+$ otrzymujemy

$$\operatorname{div} F(P) = \lim_{r \to 0^+} \frac{1}{\operatorname{vol}(B_r)} \int_{\partial B_r} F \circ dS.$$

Wyrażenie

$$\frac{1}{\operatorname{vol}(B_r)} \int_{\partial B_r} F \circ dS$$

jest prędkością przepływu na zewnątrz sfery ∂B_r na jednostkę objętości. Jeśli div F(P) > 0, to punkt P nazywamy źródłem. Jeśli div F(P) < 0, to punkt P nazywamy odpływem.

10.2 Potencjały i funkcje harmoniczne

Rozważać będziemy funkcje dwu zmiennych. Przypuśćmy, że $F = \nabla V$, gdzie V jest funkcją dwu zmiennych klasy C^1 . Niech C będzie krzywą łączącą punkt A z punktem B. Wtedy z Twierdzenia 6.1 otrzymujemy

$$\int_{C} F \circ ds = V(B) - V(A).$$

Oznaczmy F=(P,Q). Powstaje problem jak stwierdzić, czy $F=\nabla V$ dla pewnego potencjału V. Szukamy funkcji V spełniającej

$$P = \frac{\partial V}{\partial x}, \qquad Q = \frac{\partial V}{\partial y}.$$

Załóżmy, że Pi Qsą klasy $C^1.$ Tzn. potencjał Vmusiałby być klasy $C^2.$ Wtedy

$$\frac{\partial P}{\partial y} = \frac{\partial^2 V}{\partial y \partial x} = \frac{\partial^2 V}{\partial x \partial y} = \frac{\partial Q}{\partial x}.$$

Powstaje następny problem, czy warunek

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

jest wystarczający dla istnienia potencjału V. Przypuśćmy, że warunek ten jest spełniony. Wtedy dla krzywej zamkniętej C otaczającej obszar D mamy

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx dy = 0.$$

Załóżmy, że pole wektorowe F=(P,Q) spełnia $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ w obszarze spójnym i jednospójnym D. Jednospójność oznacza, że dopełnienie D jest również spójne. Ustalmy punkt (x_0,y_0) w D. Dla punktu (x_1,y_1) z D określamy

$$V(x_1, y_1) = \int_{C_{x_1, y_1}} F \circ ds = \int_{C_{x_1, y_1}} P dx + Q dy,$$

gdzie C_{x_1,y_1} jest łamaną o skończonej liczbie poziomych i pionowych odcinków, łączącą (x_0,y_0) z (x_1,y_1) . Całka nie zależy od wyboru łamanej C_{x_1,y_1} . Rzeczywiście niech \widetilde{C}_{x_1,y_1} będzie inną taką łamaną. Łamane mogą przecinać się w kilku punktach. Rozważmy dwa kolejne punktu przecięcia i obszar D ograniczony przez łamane pomiędzy tym punktami. Niech C i \widetilde{C} oznaczają odcinki łamanych C_{x_1,y_1} i \widetilde{C}_{x_1,y_1} tworzące brzeg obszaru D. Wtedy $\partial D = C \cup \widetilde{C}^-$ lub $\partial D = C^- \cup \widetilde{C}$. Rozważymy pierwszy przypadek. Ze wzoru Greena mamy

$$0 = \iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy = \int\limits_{\partial D} P \, dx + Q \, dy = \int\limits_{C} P \, dx + Q \, dy - \int\limits_{\widetilde{C}} P \, dx + Q \, dy.$$

Zatem

$$\int_{C} P \, dx + Q \, dy = \int_{\widetilde{C}} P \, dx + Q \, dy.$$

Poprzez zsumowanie otrzymamy

$$\int\limits_{C_{x_{1},y_{1}}}P\,dx+Q\,dy=\int\limits_{\widetilde{C}_{x_{1},y_{1}}}P\,dx+Q\,dy.$$

Pokażemy, że $\nabla V = F = (P,Q)$. Rozważamy punkty (x_1,y_1) oraz $(x_1 + h,y_1)$ dla małych wartości h. Możemy przyjąć, że $C_{x_1+h,y_1} = C_{x_1,y_1} \cup l_h$, gdzie l_h jest poziomym odcinkiem od (x_1,y_1) do (x_1+h,y_1) . Odcinek ten możemy sparametryzować za pomocą

$$x = x_1 + t$$
, $y = y_1$, $0 \le t \le h$.

Wtedy

$$V(x_1 + h, y_1) - V(x_1, y_1) = \int_{C_{x_1 + h, y_1}} P dx + Q dy - \int_{C_{x_1, y_1}} P dx + Q dy$$
$$= \int_{l_h} P dx + Q dy = \int_0^h P(x_1 + t, y_1) dt.$$

Zatem

$$\frac{V(x_1+h,y_1)-V(x_1,y_1)}{h} = \frac{1}{h} \int_{0}^{h} P(x_1+t,y_1) dt \xrightarrow[h\to 0]{} P(x_1,y_1).$$

To oznacza, że $\frac{\partial V}{\partial x}=P$. Podobnie pokazujemy, że $\frac{\partial V}{\partial y}=Q$.

Definicja 10.3. Mówimy, że funkcja u(x,y) klasy C^2 jest harmoniczna jeśli

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Przypuśćmy, że u(x,y) jest określona w obszarze spójnym i jednospójnym D. OKreślmy

$$P = -\frac{\partial u}{\partial y}, \qquad Q = \frac{\partial u}{\partial x}.$$

Wtedy

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Z poprzedniego rozumowania istnieje potencjał v(x,y) taki, że

$$\nabla v = (P, Q) = \left(-\frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right),$$

130

tzn.

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}, \qquad \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}.$$
 (10.1)

Otrzymujemy

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = -\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial x} = 0,$$

czyli v(x,y) jest też funkcją harmoniczną. Funkcję v(x,y) określoną przez (10.1) nazywamy funkcją harmoniczną sprzężoną do funkcji u(x,y).

Przykład. $u=x^2-y^2$ i 2xy są sprzężonymi funkcjami harmonicznymi. Zauważmy, że dla z=x+iy mamy

$$z^{2} + (x + iy)^{2} = x^{2} - y^{2} + i 2xy.$$

10.3 Inny zapis całki $\iint_S F \circ dS$

Niech F = (P, Q, R) będzie polem wektorowym. Wtedy

$$\iint\limits_{S} F \circ dS = \iint\limits_{S} (F \circ n) \, dS = \iint\limits_{S} P \, n_1 \, dS + \iint\limits_{S} Q \, n_2 \, dS + \iint\limits_{S} R \, n_3 \, dS.$$

Rozważmy mały fragment dS powierzchni S i rzut $dS_{x,y}$ tego fragmentu na płaszczyznę xy. Wtedy stosunek pól tych fragmentów zależy od trzeciej współrzędnej wektora normalnego do dS

$$n_3 \text{Pole}(dS) = \text{Pole}(dS_{x,y}).$$

Stad

$$n_3 dS = dx dy$$
.

Podobnie

$$n_1 dS = dy dz,$$
 $n_2 dS = dz dx.$

Stosuje się więc alternatywny zapis

$$\iint\limits_{S} F \circ dS = \iint\limits_{S} P \, dy \, dz + \iint\limits_{S} Q \, dz \, dx + \iint\limits_{S} R \, dx \, dy.$$