Osmá přednáška

NAIL062 Výroková a predikátová logika

 ${\sf Jakub\ Bul\'{in}\ (KTIML\ MFF\ UK)}$

Zimní semestr 2024

Osmá přednáška

Program

- korektnost a úplnost, kanonický model
- věta o kompaktnosti, Löwenheim-Skolemova věta
- hilbertovský kalkulus

Materiály

Zápisky z přednášky, Sekce 7.4-7.6 z Kapitoly 7 (+ Sekce 4.8)

Stejně jako ve výrokové logice:

Stejně jako ve výrokové logice:

dokazatelnost je totéž, co platnost

Stejně jako ve výrokové logice:

dokazatelnost je totéž, co platnost

- $T \vdash \varphi \Rightarrow T \models \varphi$ (korektnost) "co jsme dokázali, platí"
- $T \models \varphi \Rightarrow T \vdash \varphi$ (úplnost) "co platí, lze dokázat"

Stejně jako ve výrokové logice:

dokazatelnost je totéž, co platnost

- $T \vdash \varphi \Rightarrow T \models \varphi$ (korektnost) "co jsme dokázali, platí"
- $T \models \varphi \Rightarrow T \vdash \varphi$ (úplnost) "co platí, lze dokázat"

(Důkazy mají stejnou strukturu, liší se jen v implementačních detailech pomocných lemmat.)

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Model $\mathcal A$ se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal A\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal A\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model A teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze A expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu.

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu.

NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu. NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Důkaz:

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu.

NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Důkaz: Indukcí podle konstrukce $\tau = \bigcup_{i \geq 0} \tau_i$ najdeme posloupnost větví $V_0 \subseteq V_1 \subseteq \ldots$ a expanzí \mathcal{A}_i o konstanty na V_i tak, že:

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu. NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Důkaz: Indukcí podle konstrukce $\tau = \bigcup_{i \geq 0} \tau_i$ najdeme posloupnost větví $V_0 \subseteq V_1 \subseteq \ldots$ a expanzí \mathcal{A}_i o konstanty na V_i tak, že:

• V_i je větev v tablu au_i shodující se s modelem \mathcal{A}_i

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu. NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Důkaz: Indukcí podle konstrukce $\tau = \bigcup_{i \geq 0} \tau_i$ najdeme posloupnost větví $V_0 \subseteq V_1 \subseteq \ldots$ a expanzí \mathcal{A}_i o konstanty na V_i tak, že:

- V_i je větev v tablu au_i shodující se s modelem \mathcal{A}_i
- V_{i+1} je prodloužením V_i a \mathcal{A}_{i+1} je expanzí \mathcal{A}_i

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu. NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Důkaz: Indukcí podle konstrukce $\tau = \bigcup_{i \geq 0} \tau_i$ najdeme posloupnost větví $V_0 \subseteq V_1 \subseteq \ldots$ a expanzí \mathcal{A}_i o konstanty na V_i tak, že:

- V_i je větev v tablu au_i shodující se s modelem \mathcal{A}_i
- V_{i+1} je prodloužením V_i a \mathcal{A}_{i+1} je expanzí \mathcal{A}_i

Hledaná větev v τ je $V=\bigcup_{i\geq 0}V_i,\ L_C$ -expanze $\mathcal A$ je 'limita' $\mathcal A_i$: vyskytuje-li se $c\in C$ na V_i , interpretuj jako v $\mathcal A_i$, jinak libovolně.

Model \mathcal{A} se shoduje s položkou P, pokud $P = T\varphi$ a $\mathcal{A} \models \varphi$, nebo $P = F\varphi$ a $\mathcal{A} \not\models \varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka $L_{\mathcal{C}}$ (interpretovat symboly $c_i \in \mathcal{C}$) tak, že se shoduje s některou větví v tablu. NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Důkaz: Indukcí podle konstrukce $\tau = \bigcup_{i \geq 0} \tau_i$ najdeme posloupnost větví $V_0 \subseteq V_1 \subseteq \ldots$ a expanzí \mathcal{A}_i o konstanty na V_i tak, že:

- V_i je větev v tablu au_i shodující se s modelem \mathcal{A}_i
- V_{i+1} je prodloužením V_i a \mathcal{A}_{i+1} je expanzí \mathcal{A}_i

Hledaná větev v τ je $V=\bigcup_{i\geq 0}V_i,\ L_C$ -expanze $\mathcal A$ je 'limita' $\mathcal A_i$: vyskytuje-li se $c\in C$ na V_i , interpretuj jako v $\mathcal A_i$, jinak libovolně.

Báze: $A_0 = A$ se shoduje s kořenem, tj. s (jednoprvkovou) V_0 v τ_0 .

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $A_{i+1} = A_i$.

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $\mathcal{A}_{i+1} = \mathcal{A}_i$. Pokud jsme připojili $T\alpha$ (pro $\alpha \in \mathcal{T}$) na konec V_i , definujeme V_{i+1} jako tuto prodlouženou větev, $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový symbol). Protože $\mathcal{A} \models \mathcal{T}$, máme i $\mathcal{A}_{i+1} \models \alpha$, tedy se shoduje.

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $A_{i+1} = A_i$.

Pokud jsme připojili $T\alpha$ (pro $\alpha \in T$) na konec V_i , definujeme V_{i+1} jako tuto prodlouženou větev, $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový symbol). Protože $\mathcal{A} \models T$, máme i $\mathcal{A}_{i+1} \models \alpha$, tedy se shoduje.

Nechť τ_{i+1} vzniklo připojením atomického tabla pro P na konec V_i .

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $A_{i+1} = A_i$. Pokud jsme připojili $T\alpha$ (pro $\alpha \in T$) na konec V_i , definujeme V_{i+1} jako tuto prodlouženou větev, $A_{i+1} = A_i$ (nepřidali jsme nový symbol). Protože $A \models T$, máme i $A_{i+1} \models \alpha$, tedy se shoduje.

Nechť au_{i+1} vzniklo připojením atomického tabla pro P na konec V_i .

• logická spojka: $A_{i+1} = A_i$ se shoduje s kořenem atomického tabla, tedy i s některou větví, o tu prodloužíme V_i na V_{i+1}

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $\mathcal{A}_{i+1} = \mathcal{A}_i$. Pokud jsme připojili $T\alpha$ (pro $\alpha \in \mathcal{T}$) na konec V_i , definujeme V_{i+1} jako tuto prodlouženou větev, $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový symbol). Protože $\mathcal{A} \models \mathcal{T}$, máme i $\mathcal{A}_{i+1} \models \alpha$, tedy se shoduje.

Nechť τ_{i+1} vzniklo připojením atomického tabla pro P na konec V_i .

- logická spojka: $A_{i+1} = A_i$ se shoduje s kořenem atomického tabla, tedy i s některou větví, o tu prodloužíme V_i na V_{i+1}
- **typ** "svědek": SÚNO $P = T(\exists x)\varphi(x)$: $\mathcal{A}_i \models (\exists x)\varphi(x)$, tedy existuje $a \in A$, že $\mathcal{A}_i \models \varphi(x)[e(x/a)]$. V_{i+1} je prodloužení V_i o nově přidanou $T\varphi(x/c)$, \mathcal{A}_{i+1} je expanze \mathcal{A}_i o $c^{\mathcal{A}_{i+1}} = a$.

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $\mathcal{A}_{i+1} = \mathcal{A}_i$. Pokud jsme připojili $T\alpha$ (pro $\alpha \in \mathcal{T}$) na konec V_i , definujeme V_{i+1} jako tuto prodlouženou větev, $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový symbol). Protože $\mathcal{A} \models \mathcal{T}$, máme i $\mathcal{A}_{i+1} \models \alpha$, tedy se shoduje.

Nechť au_{i+1} vzniklo připojením atomického tabla pro P na konec V_i .

- logická spojka: $A_{i+1} = A_i$ se shoduje s kořenem atomického tabla, tedy i s některou větví, o tu prodloužíme V_i na V_{i+1}
- **typ** "svědek": SÚNO $P = T(\exists x)\varphi(x)$: $\mathcal{A}_i \models (\exists x)\varphi(x)$, tedy existuje $a \in A$, že $\mathcal{A}_i \models \varphi(x)[e(x/a)]$. V_{i+1} je prodloužení V_i o nově přidanou $T\varphi(x/c)$, \mathcal{A}_{i+1} je expanze \mathcal{A}_i o $c^{\mathcal{A}_{i+1}} = a$.
- typ "všichni": V_{i+1} je prodloužení V_i o atomické tablo. SÚNO nová položka $\mathrm{T}\varphi(x/t)$ pro nějaký L_C -term t.

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $A_{i+1} = A_i$.

Pokud jsme připojili $T\alpha$ (pro $\alpha \in T$) na konec V_i , definujeme V_{i+1} jako tuto prodlouženou větev, $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový symbol). Protože $\mathcal{A} \models T$, máme i $\mathcal{A}_{i+1} \models \alpha$, tedy se shoduje.

Nechť τ_{i+1} vzniklo připojením atomického tabla pro P na konec V_i .

- logická spojka: $A_{i+1} = A_i$ se shoduje s kořenem atomického tabla, tedy i s některou větví, o tu prodloužíme V_i na V_{i+1}
- **typ** "svědek": SÚNO $P = T(\exists x)\varphi(x)$: $\mathcal{A}_i \models (\exists x)\varphi(x)$, tedy existuje $a \in A$, že $\mathcal{A}_i \models \varphi(x)[e(x/a)]$. V_{i+1} je prodloužení V_i o nově přidanou $T\varphi(x/c)$, \mathcal{A}_{i+1} je expanze \mathcal{A}_i o $c^{\mathcal{A}_{i+1}} = a$.
- **typ** "všichni": V_{i+1} je prodloužení V_i o atomické tablo. SÚNO nová položka $T\varphi(x/t)$ pro nějaký L_C -term t. Model \mathcal{A}_{i+1} je libovolná expanze \mathcal{A}_i o nové symboly z t. $\mathcal{A}_i \models (\forall x)\varphi(x) \Rightarrow \mathcal{A}_{i+1} \models (\forall x)\varphi(x) \Rightarrow \mathcal{A}_{i+1} \models \varphi(x/t)$, tedy se shoduje. \square

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Myšlenka důkazu: Protipříklad by se [po vhodné interpretaci pomocných symbolů] shodoval s některou větví, ty jsou ale sporné.

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Myšlenka důkazu: Protipříklad by se [po vhodné interpretaci pomocných symbolů] shodoval s některou větví, ty jsou ale sporné.

Důkaz:

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Myšlenka důkazu: Protipříklad by se [po vhodné interpretaci pomocných symbolů] shodoval s některou větví, ty jsou ale sporné.

Důkaz: Sporem, nechť $T \not\models \varphi$, tj. existuje $A \in M(T)$, že $A \not\models \varphi$.

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \models \varphi \Rightarrow T \models \varphi$.

Myšlenka důkazu: Protipříklad by se [po vhodné interpretaci pomocných symbolů] shodoval s některou větví, ty jsou ale sporné.

Důkaz: Sporem, nechť $T \not\models \varphi$, tj. existuje $\mathcal{A} \in \mathsf{M}(T)$, že $\mathcal{A} \not\models \varphi$. Protože $T \models \varphi$, existuje tablo důkaz φ z T, což je sporné tablo z T s položkou $F\varphi$ v kořeni.

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \models \varphi \Rightarrow T \models \varphi$.

Myšlenka důkazu: Protipříklad by se [po vhodné interpretaci pomocných symbolů] shodoval s některou větví, ty jsou ale sporné.

Důkaz: Sporem, nechť $T \not\models \varphi$, tj. existuje $A \in M(T)$, že $A \not\models \varphi$.

Protože $T \models \varphi$, existuje tablo důkaz φ z T, což je sporné tablo z T s položkou $F\varphi$ v kořeni.

Model $\mathcal A$ se shoduje s kořenem $F\varphi$, tedy podle Lemmatu lze interpretovat symboly $c\in \mathcal C$ tak, že se výsledná $L_{\mathcal C}$ -expanze $\mathcal A'$ shoduje s nějakou větví V.

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Myšlenka důkazu: Protipříklad by se [po vhodné interpretaci pomocných symbolů] shodoval s některou větví, ty jsou ale sporné.

Důkaz: Sporem, nechť $T \not\models \varphi$, tj. existuje $A \in M(T)$, že $A \not\models \varphi$.

Protože $T \models \varphi$, existuje tablo důkaz φ z T, což je sporné tablo z T s položkou $F\varphi$ v kořeni.

Model $\mathcal A$ se shoduje s kořenem $F\varphi$, tedy podle Lemmatu Ize interpretovat symboly $c\in C$ tak, že se výsledná L_C -expanze $\mathcal A'$ shoduje s nějakou větví V. Všechny větve jsou ale sporné, musela by se shodovat s $T\psi$ a zároveň $F\psi$ pro nějakou L_C -sentenci ψ . \square

Kanonický model: jazyk bez rovnosti

Kanonický model: jazyk bez rovnosti

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

Je-li $L = \langle \mathcal{F}, \mathcal{R} \rangle$ bez rovnosti, kanonický model pro bezespornou dokončenou V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$, kde:

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

Je-li $L = \langle \mathcal{F}, \mathcal{R} \rangle$ bez rovnosti, kanonický model pro bezespornou dokončenou V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$, kde:

doména A je množina všech konstantních L_C-termů

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

Je-li $L = \langle \mathcal{F}, \mathcal{R} \rangle$ bez rovnosti, kanonický model pro bezespornou dokončenou V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$, kde:

- doména A je množina všech konstantních L_C-termů
- pro *n*-ární relační symbol $R \in \mathcal{R}$ a " s_1 ", . . . , " s_n " z A:

$$("s_1",\ldots,"s_n")\in R^{\mathcal{A}} \Leftrightarrow \mathsf{na}\ V$$
 je položka $\mathrm{T}R(s_1,\ldots,s_n)$

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

Je-li $L = \langle \mathcal{F}, \mathcal{R} \rangle$ bez rovnosti, kanonický model pro bezespornou dokončenou V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$, kde:

- doména A je množina všech konstantních L_C-termů
- pro *n*-ární relační symbol $R \in \mathcal{R}$ a " s_1 ", . . . , " s_n " z A:

$$("s_1",\ldots,"s_n")\in R^{\mathcal{A}} \Leftrightarrow \mathsf{na}\; V$$
 je položka $\mathrm{T}R(s_1,\ldots,s_n)$

• pro n-ární funkční symbol $f \in \mathcal{F}$ a " s_1 ", . . . , " s_n " z A:

$$f^{\mathcal{A}}("s_1", \ldots, "s_n") = "f(s_1, \ldots, s_n)"$$

6

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

Je-li $L = \langle \mathcal{F}, \mathcal{R} \rangle$ bez rovnosti, kanonický model pro bezespornou dokončenou V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$, kde:

- doména A je množina všech konstantních L_C-termů
- pro *n*-ární relační symbol $R \in \mathcal{R}$ a " s_1 ", . . . , " s_n " z A:

$$("s_1",\ldots,"s_n")\in R^{\mathcal{A}} \Leftrightarrow \mathsf{na}\ V$$
 je položka $\mathrm{T}R(s_1,\ldots,s_n)$

• pro *n*-ární funkční symbol $f \in \mathcal{F}$ a " s_1 ", ..., " s_n " z A:

$$f^{\mathcal{A}}("s_1",\ldots,"s_n") = "f(s_1,\ldots,s_n)"$$

• speciálně, pro konstantní symbol c máme $c^{\mathcal{A}} = "c"$

6

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

Je-li $L = \langle \mathcal{F}, \mathcal{R} \rangle$ bez rovnosti, kanonický model pro bezespornou dokončenou V je L_C -struktura $\mathcal{A} = \langle \mathcal{A}, \mathcal{F}^{\mathcal{A}} \cup \mathcal{C}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$, kde:

- doména A je množina všech konstantních L_C-termů
- pro *n*-ární relační symbol $R \in \mathcal{R}$ a " s_1 ", . . . , " s_n " z A:

$$("s_1",\ldots,"s_n")\in R^{\mathcal{A}} \Leftrightarrow \mathsf{na}\ V$$
 je položka $\mathrm{T}R(s_1,\ldots,s_n)$

• pro n-ární funkční symbol $f \in \mathcal{F}$ a " s_1 ", . . . , " s_n " z A:

$$f^{\mathcal{A}}("s_1",\ldots,"s_n") = "f(s_1,\ldots,s_n)"$$

• speciálně, pro konstantní symbol c máme $c^{\mathcal{A}}="c"$

(funkce $f^{\mathcal{A}}$ je "vytvoření" termu ze symbolu f a vstupních termů)

 $T = \{(\forall x)R(f(x))\}\$ v jazyce $L = \langle R, f, d \rangle$ bez rovnosti (R unární relační, f unární funkční, d konstantní). Protipříklad: $T \not\models \neg R(d)$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ "d", "f(d)", "f(f(d))", \dots, "c_0", "f(c_0)", "f(f(c_0))", \dots, "c_1", "f(c_1)", "f(f(c_1))", \dots \}$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ \text{"}d\text{"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}c_0\text{"}, \text{"}f(c_0)\text{"}, \\ \text{"}f(f(c_0))\text{"}, \dots, \text{"}c_1\text{"}, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}$
- interpretace symbolů jsou:

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ \text{"}d\text{"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}c_0\text{"}, \text{"}f(c_0)\text{"}, \\ \text{"}f(f(c_0))\text{"}, \dots, \text{"}c_1\text{"}, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}$
- interpretace symbolů jsou:
 - $d^{\mathcal{A}} = "d"$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ \text{"}d\text{"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}c_0\text{"}, \text{"}f(c_0)\text{"}, \\ \text{"}f(f(c_0))\text{"}, \dots, \text{"}c_1\text{"}, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}$
- interpretace symbolů jsou:
 - $d^{\mathcal{A}} = "d"$
 - $c_i^{\mathcal{A}} = "c_i"$ pro všechna $i \in \mathbb{N}$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ \text{"}d\text{"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}c_0\text{"}, \text{"}f(c_0)\text{"}, \\ \text{"}f(f(c_0))\text{"}, \dots, \text{"}c_1\text{"}, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}$
- interpretace symbolů jsou:
 - $d^{\mathcal{A}} = "d"$
 - $c_i^{\mathcal{A}} = "c_i"$ pro všechna $i \in \mathbb{N}$
 - $f^{\mathcal{A}}("d") = "f(d)", f^{\mathcal{A}}("f(d)") = "f(f(d))", \dots$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ "d", "f(d)", "f(f(d))", \dots, "c_0", "f(c_0)", "f(f(c_0))", \dots, "c_1", "f(c_1)", "f(f(c_1))", \dots \}$
- interpretace symbolů jsou:
 - $d^{\mathcal{A}} = "d"$
 - $c_i^{\mathcal{A}} = "c_i"$ pro všechna $i \in \mathbb{N}$
 - $f^{\mathcal{A}}("d") = "f(d)", f^{\mathcal{A}}("f(d)") = "f(f(d))", \dots$
 - $R^A = A \setminus C = \{ \text{"}d\text{"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}f(c_0)\text{"}, \\ \text{"}f(f(c_0))\text{"}, \dots, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}.$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ "d", "f(d)", "f(f(d))", \dots, "c_0", "f(c_0)", "f(f(c_0))", \dots, "c_1", "f(c_1)", "f(f(c_1))", \dots \}$
- interpretace symbolů jsou:
 - $d^{\mathcal{A}} = "d"$
 - $c_i^{\mathcal{A}} = "c_i"$ pro všechna $i \in \mathbb{N}$
 - $f^{\mathcal{A}}("d") = "f(d)", f^{\mathcal{A}}("f(d)") = "f(f(d))", \dots$
 - $R^A = A \setminus C = \{ \text{"}d\text{"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}f(c_0)\text{"}, \\ \text{"}f(f(c_0))\text{"}, \dots, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}.$
- redukt na původní jazyk $L: A' = \langle A, R^A, f^A, d^A \rangle$

Je-li *L* s rovností:

ullet vezmeme kanonický model ${\mathcal B}$ pro V jako by byl L bez rovnosti

- ullet vezmeme kanonický model ${\mathcal B}$ pro V jako by byl L bez rovnosti
- definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

$$"s_1" = ^B "s_2" \Leftrightarrow \mathsf{na} \ V$$
 je položka $\mathrm{T} s_1 = s_2$

Je-li *L* s rovností:

- ullet vezmeme kanonický model ${\mathcal B}$ pro V jako by byl L bez rovnosti
- definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

"
$$s_1$$
" $=^B$ " s_2 " \Leftrightarrow na V je položka $\mathrm{T} s_1 = s_2$

• kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$

- vezmeme kanonický model \mathcal{B} pro V jako by byl L bez rovnosti
- definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

"
$$s_1$$
" $=^B$ " s_2 " \Leftrightarrow na V je položka $\mathrm{T} s_1 = s_2$

- kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$
- tablo je nyní z teorie T* (rozšíření o axiomy rovnosti)

- vezmeme kanonický model \mathcal{B} pro V jako by byl L bez rovnosti
- definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

"
$$s_1$$
" $=^B$ " s_2 " \Leftrightarrow na V je položka $\mathrm{T} s_1 = s_2$

- kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$
- tablo je nyní z teorie T* (rozšíření o axiomy rovnosti)
- ullet = B je opravdu kongruence struktury ${\mathcal B}$ a = $^{\mathcal A}$ je identita na A

- vezmeme kanonický model \mathcal{B} pro V jako by byl L bez rovnosti
- definujeme relaci =^B stejně jako pro ostatní relační symboly:

"
$$s_1$$
" $=^B$ " s_2 " \Leftrightarrow na V je položka $\mathrm{T} s_1 = s_2$

- kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$
- tablo je nyní z teorie T* (rozšíření o axiomy rovnosti)
- $=^B$ je opravdu kongruence struktury \mathcal{B} a $=^{\mathcal{A}}$ je identita na A
- Pozorování: pro lib. formuli φ platí $\mathcal{B} \models \varphi$ právě když $\mathcal{A} \models \varphi$ (symbol = interpretujeme jako = B v \mathcal{B} a jako identitu v \mathcal{A})

Je-li *L* s rovností:

- vezmeme kanonický model \mathcal{B} pro V jako by byl L bez rovnosti
- definujeme relaci =^B stejně jako pro ostatní relační symboly:

$$"s_1"=^B"s_2" \Leftrightarrow \mathsf{na}\ V$$
 je položka $\mathrm{T}s_1=s_2$

- kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$
- tablo je nyní z teorie T* (rozšíření o axiomy rovnosti)
- $=^B$ je opravdu kongruence struktury \mathcal{B} a $=^{\mathcal{A}}$ je identita na A
- Pozorování: pro lib. formuli φ platí $\mathcal{B} \models \varphi$ právě když $\mathcal{A} \models \varphi$ (symbol = interpretujeme jako = B v \mathcal{B} a jako identitu v \mathcal{A})

Všimněte si:

Je-li *L* s rovností:

- vezmeme kanonický model \mathcal{B} pro V jako by byl L bez rovnosti
- definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

"
$$s_1$$
" $=^B$ " s_2 " \Leftrightarrow na V je položka $\mathrm{T} s_1 = s_2$

- kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$
- tablo je nyní z teorie T* (rozšíření o axiomy rovnosti)
- $=^B$ je opravdu kongruence struktury \mathcal{B} a $=^{\mathcal{A}}$ je identita na A
- Pozorování: pro lib. formuli φ platí $\mathcal{B} \models \varphi$ právě když $\mathcal{A} \models \varphi$ (symbol = interpretujeme jako = B v \mathcal{B} a jako identitu v \mathcal{A})

Všimněte si:

v jazyce bez rovnosti je kanonický model spočetně nekonečný

Je-li *L* s rovností:

- vezmeme kanonický model \mathcal{B} pro V jako by byl L bez rovnosti
- definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

"
$$s_1$$
" $=^B$ " s_2 " \Leftrightarrow na V je položka $\mathrm{T} s_1 = s_2$

- kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$
- tablo je nyní z teorie T* (rozšíření o axiomy rovnosti)
- $=^B$ je opravdu kongruence struktury \mathcal{B} a $=^{\mathcal{A}}$ je identita na A
- Pozorování: pro lib. formuli φ platí $\mathcal{B} \models \varphi$ právě když $\mathcal{A} \models \varphi$ (symbol = interpretujeme jako = $^{\mathcal{B}}$ v \mathcal{B} a jako identitu v \mathcal{A})

Všimněte si:

- v jazyce bez rovnosti je kanonický model spočetně nekonečný
- v jazyce s rovností může být i konečný

 $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$ s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

```
T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle s rovností opět chceme protipříklad ukazující, že T \not\models \neg R(d)
```

• dokončené tablo z T^* pro $\operatorname{F} \neg R(d)$ má jedinou, bezespornou V

9

```
T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle s rovností opět chceme protipříklad ukazující, že T \not\models \neg R(d)
```

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

'=' jako obyčejný symbol:

 $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$ s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

• '=' jako obyčejný symbol: $s_1 = {}^B s_2 \Leftrightarrow s_1 = f(\cdots(f(s_2))\cdots)$ nebo $s_2 = f(\cdots(f(s_1))\cdots)$ pro sudý počet f

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots \}$$

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

• '=' jako obyčejný symbol: $s_1 = {}^B s_2 \Leftrightarrow s_1 = f(\cdots(f(s_2))\cdots)$ nebo $s_2 = f(\cdots(f(s_1))\cdots)$ pro sudý počet f

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots \}$$

 $\bullet \quad \mathsf{kanonick\acute{y}} \; \mathsf{model} \colon \mathcal{A} = \mathcal{B}/_{=^B} = \langle \mathcal{A}, \mathcal{R}^\mathcal{A}, f^\mathcal{A}, d^\mathcal{A}, c_0^\mathcal{A}, c_1^\mathcal{A}, c_2^\mathcal{A}, \dots \rangle$

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots\}$$

- kanonický model: $\mathcal{A} = \mathcal{B}/_{=^B} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, c_2^{\mathcal{A}}, \dots \rangle$
 - $A = B/_{=^B}$, $d^A = ["d"]_{=^B}$, $c_i^A = ["c_i"]_{=^B}$ pro všechna $i \in \mathbb{N}$,

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots\}$$

- $\bullet \quad \mathsf{kanonick\acute{y}} \; \mathsf{model} \colon \mathcal{A} = \mathcal{B}/_{=^{\mathcal{B}}} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, c_2^{\mathcal{A}}, \dots \rangle$
 - $A = B/_{=^B}$, $d^A = ["d"]_{=^B}$, $c_i^A = ["c_i"]_{=^B}$ pro všechna $i \in \mathbb{N}$,
 - $f^{\mathcal{A}}(["d"]_{=^{\mathcal{B}}}) = ["f(d)"]_{=^{\mathcal{B}}},$ $f^{\mathcal{A}}(["f(d)"]_{=^{\mathcal{B}}}) = ["f(f(d))"]_{=^{\mathcal{B}}} = ["d"]_{=^{\mathcal{B}}}, \dots$

 $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$ s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots\}$$

- kanonický model: $\mathcal{A} = \mathcal{B}/_{=^{\mathcal{B}}} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, c_2^{\mathcal{A}}, \dots \rangle$
 - $A = B/_{=^B}$, $d^A = ["d"]_{=^B}$, $c_i^A = ["c_i"]_{=^B}$ pro všechna $i \in \mathbb{N}$,
 - $f^{\mathcal{A}}(["d"]_{=^{\mathcal{B}}}) = ["f(d)"]_{=^{\mathcal{B}}},$ $f^{\mathcal{A}}(["f(d)"]_{=^{\mathcal{B}}}) = ["f(f(d))"]_{=^{\mathcal{B}}} = ["d"]_{=^{\mathcal{B}}}, \dots$
 - $R^{A} = A = B/_{=B}$.

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots\}$$

- $\bullet \quad \mathsf{kanonick\acute{y}} \; \mathsf{model} \colon \mathcal{A} = \mathcal{B}/_{=^{\mathcal{B}}} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, c_2^{\mathcal{A}}, \dots \rangle$
 - $A = B/_{=^B}$, $d^A = ["d"]_{=^B}$, $c_i^A = ["c_i"]_{=^B}$ pro všechna $i \in \mathbb{N}$,
 - $f^{A}(["d"]_{=^{B}}) = ["f(d)"]_{=^{B}},$ $f^{A}(["f(d)"]_{=^{B}}) = ["f(f(d))"]_{=^{B}} = ["d"]_{=^{B}}, \dots$
 - $R^{A} = A = B/_{=B}$.
- redukt na původní jazyk $L: A' = \langle A, R^A, f^A, d^A \rangle$

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

Důkaz:

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

Důkaz: Jazyk bez rovnosti: indukcí podle struktury sentence v P

atomická sentence: stejně jako ve VL (báze indukce)

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- typ "svědek":

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- typ "svědek": $P = T(\exists x)\varphi(x)$, potom je na V i $T\varphi(x/c)$ pro nějaké "c"

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- **typ** "svědek": $P = \mathbf{T}(\exists x)\varphi(x)$, potom je na V i $T\varphi(x/c)$ pro nějaké "c" $\in A$; z indukčního předpokladu $\mathcal{A} \models \varphi(x/c)$, tj. $\mathcal{A} \models \varphi(x)[e(x/"c")]$ tedy i $\mathcal{A} \models (\exists x)\varphi(x)$

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- **typ** "svědek": $P = \mathbf{T}(\exists x)\varphi(x)$, potom je na V i $T\varphi(x/c)$ pro nějaké "c" $\in A$; z indukčního předpokladu $A \models \varphi(x/c)$, tj. $A \models \varphi(x)[e(x/"c")]$ tedy i $A \models (\exists x)\varphi(x)$
- typ "všichni":

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- **typ** "svědek": $P = \mathbf{T}(\exists x)\varphi(x)$, potom je na V i $T\varphi(x/c)$ pro nějaké "c" $\in A$; z indukčního předpokladu $A \models \varphi(x/c)$, tj. $A \models \varphi(x)[e(x/"c")]$ tedy i $A \models (\exists x)\varphi(x)$
- typ "všichni": $P = T(\forall x)\varphi(x)$, na V jsou i položky $T\varphi(x/t)$ pro každý konstantní L_C -term, tj. pro každý prvek "t" $\in A$;

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- **typ** "svědek": $P = \mathbf{T}(\exists x)\varphi(x)$, potom je na V i $T\varphi(x/c)$ pro nějaké "c" $\in A$; z indukčního předpokladu $A \models \varphi(x/c)$, tj. $A \models \varphi(x)[e(x/"c")]$ tedy i $A \models (\exists x)\varphi(x)$
- **typ** "všichni": $P = \mathbf{T}(\forall x)\varphi(x)$, na V jsou i položky $T\varphi(x/t)$ pro každý konstantní L_C -term, tj. pro každý prvek "t" $\in A$; z ind. předpokladu je $\mathcal{A} \models \varphi(x/t)$, tj. $\mathcal{A} \models \varphi(x)[e(x/"t")]$ pro každé "t" $\in A$, tedy $\mathcal{A} \models (\forall x)\varphi(x)$

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

Důkaz: Jazyk bez rovnosti: indukcí podle struktury sentence v P

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- **typ** "svědek": $P = \mathbf{T}(\exists x)\varphi(x)$, potom je na V i $T\varphi(x/c)$ pro nějaké "c" $\in A$; z indukčního předpokladu $A \models \varphi(x/c)$, tj. $A \models \varphi(x)[e(x/"c")]$ tedy i $A \models (\exists x)\varphi(x)$
- **typ** "všichni": $P = \mathbf{T}(\forall x)\varphi(x)$, na V jsou i položky $T\varphi(x/t)$ pro každý konstantní L_C -term, tj. pro každý prvek "t" $\in A$; z ind. předpokladu je $\mathcal{A} \models \varphi(x/t)$, tj. $\mathcal{A} \models \varphi(x)[e(x/"t")]$ pro každé "t" $\in A$, tedy $\mathcal{A} \models (\forall x)\varphi(x)$

Jazyk s rovností: $A = B/_{=B}$, pro B máme, zbytek z Pozorování \Box

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz:

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz: Ukážeme, že libovolné dokončené (např. systematické) tablo z T s $F\varphi$ v kořeni je nutně sporné, tedy je tablo důkazem.

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz: Ukážeme, že libovolné dokončené (např. systematické) tablo z T s $F\varphi$ v kořeni je nutně sporné, tedy je tablo důkazem.

Sporem: Není-li sporné, má bezespornou (dokončenou) větev V, a dle Lemmatu se kanonický model $\mathcal A$ s větví V shoduje.

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz: Ukážeme, že libovolné dokončené (např. systematické) tablo z T s $F\varphi$ v kořeni je nutně sporné, tedy je tablo důkazem.

Sporem: Není-li sporné, má bezespornou (dokončenou) větev V, a dle Lemmatu se kanonický model $\mathcal A$ s větví V shoduje.

Buď \mathcal{A}' redukt \mathcal{A} na jazyk teorie \mathcal{T} (zapomeň pomocné symboly).

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz: Ukážeme, že libovolné dokončené (např. systematické) tablo z T s $F\varphi$ v kořeni je nutně sporné, tedy je tablo důkazem.

Sporem: Není-li sporné, má bezespornou (dokončenou) větev V, a dle Lemmatu se kanonický model $\mathcal A$ s větví V shoduje.

Buď \mathcal{A}' redukt \mathcal{A} na jazyk teorie T (zapomeň pomocné symboly).

Protože je V dokončená, obsahuje $T\alpha$ pro všechny axiomy T. Model A, tedy i A', splňuje všechny axiomy a máme $A' \models T$.

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz: Ukážeme, že libovolné dokončené (např. systematické) tablo z T s $F\varphi$ v kořeni je nutně sporné, tedy je tablo důkazem.

Sporem: Není-li sporné, má bezespornou (dokončenou) větev V, a dle Lemmatu se kanonický model $\mathcal A$ s větví V shoduje.

Buď \mathcal{A}' redukt \mathcal{A} na jazyk teorie \mathcal{T} (zapomeň pomocné symboly).

Protože je V dokončená, obsahuje $\mathrm{T}\alpha$ pro všechny axiomy T. Model \mathcal{A} , tedy i \mathcal{A}' , splňuje všechny axiomy a máme $\mathcal{A}' \models T$.

Protože se ale \mathcal{A} , tedy i \mathcal{A}' , shoduje i s položkou $F\varphi$ v kořeni, máme $\mathcal{A}' \not\models \varphi$, což dává protipříklad, a máme $\mathcal{T} \not\models \varphi$, spor.

7.5 Důsledky korektnosti a úplnosti

$$\vdash = \models$$

$$\mathsf{Thm}_L(T) = \{ \varphi \mid \varphi \text{ je L-sentence a } T \models \varphi \}$$

$$\vdash = \models$$

$$\mathsf{Thm}_L(T) = \{ \varphi \mid \varphi \text{ je L-sentence a } T \models \varphi \}$$

Z korektnosti a úplnosti okamžitě dostáváme:

- $\qquad \qquad T \models \varphi \text{ právě když } T \models \varphi$
- $\mathsf{Thm}_L(T) = \mathsf{Csq}_L(T)$

$$\vdash = \models$$

$$\mathsf{Thm}_L(T) = \{ \varphi \mid \varphi \text{ je L-sentence a } T \models \varphi \}$$

Z korektnosti a úplnosti okamžitě dostáváme:

- $T \models \varphi$ právě když $T \models \varphi$
- $\mathsf{Thm}_L(T) = \mathsf{Csq}_L(T)$

Všude můžeme nahradit 'platnost' pojmem 'dokazatelnost'. Např:

- T je sporná, je-li v ní dokazatelný spor (tj. T ⊢ ⊥)
- T je kompletní, je-li pro každou sentenci buď $T \models \varphi$ nebo $T \models \neg \varphi$, ale ne obojí (jinak by byla sporná)

$$\vdash = \models$$

$$\mathsf{Thm}_L(T) = \{ \varphi \mid \varphi \text{ je L-sentence a } T \models \varphi \}$$

Z korektnosti a úplnosti okamžitě dostáváme:

- $T \models \varphi$ právě když $T \models \varphi$
- Thm_L $(T) = Csq_L(T)$

Všude můžeme nahradit 'platnost' pojmem 'dokazatelnost'. Např:

- T je sporná, je-li v ní dokazatelný spor (tj. $T \vdash \bot$)
- T je kompletní, je-li pro každou sentenci buď $T \vdash \varphi$ nebo $T \vdash \neg \varphi$, ale ne obojí (jinak by byla sporná)

Věta (O dedukci): $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$.

$$\vdash = \models$$

$$\mathsf{Thm}_L(T) = \{ \varphi \mid \varphi \text{ je L-sentence a } T \models \varphi \}$$

Z korektnosti a úplnosti okamžitě dostáváme:

- $T \models \varphi$ právě když $T \models \varphi$
- Thm_L $(T) = Csq_L(T)$

Všude můžeme nahradit 'platnost' pojmem 'dokazatelnost'. Např:

- T je sporná, je-li v ní dokazatelný spor (tj. T ⊢ ⊥)
- T je kompletní, je-li pro každou sentenci buď $T \vdash \varphi$ nebo $T \vdash \neg \varphi$, ale ne obojí (jinak by byla sporná)

Věta (O dedukci): $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$.

Důkaz: Stačí dokázat: $T, \varphi \models \psi \Leftrightarrow T \models \varphi \to \psi$. To je snadné. \square

Löwenheim-Skolemova věta & Věta o kompaktnosti

Löwenheim-Skolemova věta & Věta o kompaktnosti

Věta (Löwenheim-Skolemova): Je-li L spočetný bez rovnosti, potom každá bezesporná L-teorie má spočetně nekonečný model.

Věta (Löwenheim-Skolemova): Je-li *L* spočetný bez rovnosti, potom každá bezesporná *L*-teorie má spočetně nekonečný model. (Později ukážeme i verzi s rovností, kan. model může být konečný.)

Věta (Löwenheim-Skolemova): Je-li *L* spočetný bez rovnosti, potom každá bezesporná *L*-teorie má spočetně nekonečný model. (Později ukážeme i verzi s rovností, kan. model může být konečný.)

Důkaz: V T není dokazatelný spor. Dokončené tablo z T s $F \perp v$ kořeni tedy musí obsahovat bezespornou větev. Hledaný model je L-redukt kanonického modelu pro tuto větev.

Věta (Löwenheim-Skolemova): Je-li *L* spočetný bez rovnosti, potom každá bezesporná *L*-teorie má spočetně nekonečný model. (Později ukážeme i verzi s rovností, kan. model může být konečný.)

Důkaz: V T není dokazatelný spor. Dokončené tablo z T s $F \perp v$ kořeni tedy musí obsahovat bezespornou větev. Hledaný model je L-redukt kanonického modelu pro tuto větev.

Věta o kompaktnosti, vč. důkazu, je stejná jako ve výrokové logice:

Věta (Löwenheim-Skolemova): Je-li *L* spočetný bez rovnosti, potom každá bezesporná *L*-teorie má spočetně nekonečný model. (Později ukážeme i verzi s rovností, kan. model může být konečný.)

Důkaz: V T není dokazatelný spor. Dokončené tablo z T s $F \perp v$ kořeni tedy musí obsahovat bezespornou větev. Hledaný model je L-redukt kanonického modelu pro tuto větev.

Věta o kompaktnosti, vč. důkazu, je stejná jako ve výrokové logice: Věta (O kompaktnosti): Teorie má model, právě když každá její konečná část má model.

Věta (Löwenheim-Skolemova): Je-li *L* spočetný bez rovnosti, potom každá bezesporná *L*-teorie má spočetně nekonečný model. (Později ukážeme i verzi s rovností, kan. model může být konečný.)

Důkaz: V T není dokazatelný spor. Dokončené tablo z T s $F \perp v$ kořeni tedy musí obsahovat bezespornou větev. Hledaný model je L-redukt kanonického modelu pro tuto větev.

Věta o kompaktnosti, vč. důkazu, je stejná jako ve výrokové logice:

Věta (O kompaktnosti): Teorie má model, právě když každá její konečná část má model.

Důkaz: Model teorie je modelem každé části. Naopak, pokud T nemá model, je sporná, tedy $T \models \bot$. Vezměme nějaký konečný tablo důkaz \bot z T. K jeho konstrukci stačí konečně mnoho axiomů T, ty tvoří konečnou podteorii $T' \subseteq T$, která nemá model.

• $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury $\mathsf{Th}(\underline{\mathbb{N}})$: všechny sentence pravdivé v $\underline{\mathbb{N}}$

- $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$ je standardní model přirozených čísel
- teorie struktury $\mathsf{Th}(\underline{\mathbb{N}})$: všechny sentence pravdivé v $\underline{\mathbb{N}}$
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

- $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}$$

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

Přidáme nový konstantní symbol c a vyjádříme, že je ostře větší než každý n-tý numerál:

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

každá konečná část T má model

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

- každá konečná část T má model
- dle věty o kompaktnosti: i T má model

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

- každá konečná část T má model
- dle věty o kompaktnosti: i T má model
- říkáme mu nestandardní model (označme A)

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

- každá konečná část T má model
- dle věty o kompaktnosti: i T má model
- říkáme mu nestandardní model (označme A)
- platí v něm tytéž sentence, které platí ve standardním modelu

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

- každá konečná část T má model
- dle věty o kompaktnosti: i T má model
- říkáme mu nestandardní model (označme A)
- platí v něm tytéž sentence, které platí ve standardním modelu
- ale zároveň obsahuje prvek $c^{\mathcal{A}}$, který je větší než každé $n \in \mathbb{N}$ (tzn. větší než hodnota termu \underline{n} v nestandardním modelu \mathcal{A})

Hilbertovský kalkulus

jiný, původní dokazovací systém

- jiný, původní dokazovací systém
- \bullet používá jen logické spojky \neg , \rightarrow

- jiný, původní dokazovací systém
- ullet používá jen logické spojky \lnot , ightarrow
- schémata logických axiomů (φ, ψ, χ jsou lib. výroky/formule)

- jiný, původní dokazovací systém
- lacktriangle používá jen logické spojky \lnot , ightarrow
- schémata logických axiomů $(\varphi, \psi, \chi$ jsou lib. výroky/formule) (i) $\varphi \to (\psi \to \varphi)$

- jiný, původní dokazovací systém
- používá jen logické spojky ¬, →
- schémata logických axiomů $(\varphi, \psi, \chi$ jsou lib. výroky/formule)
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

- jiný, původní dokazovací systém
- používá jen logické spojky ¬, →
- schémata logických axiomů (φ, ψ, χ jsou lib. výroky/formule)
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$ v predikátové logice navíc:

- jiný, původní dokazovací systém
- ullet používá jen logické spojky \lnot , ightarrow
- schémata logických axiomů (φ, ψ, χ jsou lib. výroky/formule)
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$ v predikátové logice navíc:
 - (iv) $(\forall x) \varphi \to \varphi(x/t)$ je-li t substituovatelný za x do φ

- jiný, původní dokazovací systém
- používá jen logické spojky ¬, →
- schémata logických axiomů $(\varphi, \psi, \chi$ jsou lib. výroky/formule)
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$ v predikátové logice navíc:
 - (iv) $(\forall x) \varphi \to \varphi(x/t)$ je-li t substituovatelný za x do φ
 - $(v) \ (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) \qquad \qquad \text{nen\'i-li } x \text{ voln\'a ve } \varphi$

- jiný, původní dokazovací systém
- používá jen logické spojky ¬, →
- schémata logických axiomů $(\varphi, \psi, \chi$ jsou lib. výroky/formule)
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$ v predikátové logice navíc:
 - (iv) $(\forall x) \varphi o \varphi(x/t)$ je-li t substituovatelný za x do φ
 - $(\mathsf{v}) \ (\forall \mathsf{x})(\varphi \to \psi) \to (\varphi \to (\forall \mathsf{x})\psi) \qquad \qquad \mathsf{nen\'i-li} \ \mathsf{x} \ \mathsf{voln\'a} \ \mathsf{ve} \ \varphi$
 - (vi) axiomy rovnosti, je-li jazyk s rovností

- jiný, původní dokazovací systém
- lacktriangle používá jen logické spojky \lnot , ightarrow
- schémata logických axiomů (φ, ψ, χ) jsou lib. výroky/formule)
 - (i) $\varphi \to (\psi \to \varphi)$
 - (ii) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$ v predikátové logice navíc:
 - (iv) $(\forall x) \varphi \to \varphi(x/t)$ je-li t substituovatelný za x do φ
 - $\text{(v) } (\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi) \\ \qquad \qquad \text{nen\'i-li } x \text{ voln\'a ve } \varphi$
 - (vi) axiomy rovnosti, je-li jazyk s rovností
- odvozovací pravidla:

 $\frac{\varphi, \varphi \to \psi}{\psi}$ (modus ponens)

v predikátové logice navíc:

$$\frac{\varphi}{(\forall x)\varphi}$$
 (generalizace)

• hilbertovský důkaz výroku φ z teorie T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$, ve které pro každé $i \leq n$:

- hilbertovský důkaz výroku φ z teorie T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$, ve které pro každé $i \leq n$:
 - φ_i je logický axiom, nebo

- hilbertovský důkaz výroku φ z teorie T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$, ve které pro každé $i \leq n$:
 - φ_i je logický axiom, nebo
 - φ_i je axiom teorie $(\varphi_i \in T)$, nebo

- hilbertovský důkaz výroku φ z teorie T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$, ve které pro každé $i \leq n$:
 - φ_i je logický axiom, nebo
 - φ_i je axiom teorie $(\varphi_i \in T)$, nebo
 - φ_i lze odvodit z předchozích pomocí odvozovacího pravidla

- hilbertovský důkaz výroku φ z teorie T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$, ve které pro každé $i \leq n$:
 - φ_i je logický axiom, nebo
 - φ_i je axiom teorie $(\varphi_i \in T)$, nebo
 - φ_i lze odvodit z předchozích pomocí odvozovacího pravidla
- existuje-li hilbertovský důkaz, píšeme: Τ ⊢_H φ

Příklad (jen ve výrokové logice)

Příklad (jen ve výrokové logice)

Ukažme, že pro teorii
$$T=\{\neg\varphi\}$$
 a pro libovolný výrok ψ platí:
$$T \models_H \varphi \to \psi$$

Příklad (jen ve výrokové logice)

Ukažme, že pro teorii $T=\{\neg\varphi\}$ a pro libovolný výrok ψ platí:

$$T \vdash_{H} \varphi \rightarrow \psi$$

Hilbertovský důkaz:

1.
$$\neg \varphi$$

2.
$$\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$$

3.
$$\neg \psi \rightarrow \neg \varphi$$

4.
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

5.
$$\varphi \rightarrow \psi$$

axiom teorie

logický axiom (i)

modus ponens na 1. a 2.

logický axiom (iii)

modus ponens na 3. a 4.

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

Věta (o korektnosti hilbertovského kalkulu): $T \models_H \varphi \Rightarrow T \models \varphi$

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

Důkaz: Indukcí dle délky důkazu: každá φ_i (vč. $\varphi_n = \varphi$) platí v T

logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T

Věta (o korektnosti hilbertovského kalkulu): $T \models_H \varphi \Rightarrow T \models \varphi$

- logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T
- axiomy z T jistě v T také platí

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

- logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T
- axiomy z T jistě v T také platí
- modus ponens i generalizace jsou korektní inferenční pravidla:

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

- logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T
- axiomy z T jistě v T také platí
- modus ponens i generalizace jsou korektní inferenční pravidla:
 - je-li $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, potom $T \models \psi$

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

- logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T
- axiomy z T jistě v T také platí
- modus ponens i generalizace jsou korektní inferenční pravidla:
 - je-li $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, potom $T \models \psi$
 - je-li $T \models \varphi$, potom $T \models (\forall x)\varphi$

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

Důkaz: Indukcí dle délky důkazu: každá φ_i (vč. $\varphi_n = \varphi$) platí v T

- logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T
- axiomy z T jistě v T také platí
- modus ponens i generalizace jsou korektní inferenční pravidla:
 - je-li $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, potom $T \models \psi$
 - je-li $T \models \varphi$, potom $T \models (\forall x)\varphi$

Věta (o úplnosti hilbertovského kalkulu): $T \models \varphi \Rightarrow T \vdash_H \varphi$ Důkaz vynecháme.