Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения» Отчет по рубежному контролю №2 «Методы построения моделей машинного обучения» Вариант №2

Выполнил: студент группы ИУ5-63Б Ахтамбаев Лев Николаевич	Проверил: преподаватель каф. ИУ5 Гапанюк Юрий Евгеньевич		
Подпись:	Подпись:		
Дата:	Дата:		

Выполнение работы

Для выполнения задачи построения моделей классификации был представлен набор данных sklearn wine dataset, загруженный с помощью функции load_wine().

```
BBOA [110]: import numpy as np import pandas as pd from sklearn.datasets import load_wine import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz from sklearn.metrics import accuracy_score, fl_score, mean_squared_error, r2_score, precision_score, recall_score from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import MinMaxScaler from typing import Dict, Tuple

BBOA [111]: wine = load_wine()
```

Был создан датафрейм, содержащий 13 нецелевых признаков и 1 целевой – класс вина.

	wine_x_ds = pd.DataFrame(data=wine[' <mark>data'],</mark>												
ut[112]:		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	
	173	13.71		2.45	20.5	95.0	1.68	0.61	0.52	1.06		0.64	
	174	13.40		2.48	23.0	102.0	1.80	0.75	0.43	1.41		0.70	
	175	13.27		2.26	20.0	120.0	1.59	0.69	0.43	1.35	10.20		
	176	13.17		2.37	20.0	120.0	1.65	0.68	0.53	1.46		0.60	
	177	14.13	4.10	2.74	24.5	96.0	2.05	0.76	0.56	1.35	9.20	0.61	
	4		3 columns	rame	'data-wine['ta	rget'l)							,
д [113]:	<pre>√</pre> <pre>wine</pre>			rame((data=wine['tam	rget'])							•
д [113]:	<pre>√</pre> <pre>wine</pre>	_y_ds =		rame((data=wine['tam	rget'])							•
ı [113]:	wine wine	_y_ds = _y_ds		rame((data=wine['tan	rget'])							•
ı [113]:	wine wine	_y_ds = _y_ds =		rame((data=wine['tar	rget'])							•
ı [113]:	wine wine	e_y_ds = e_y_gs = e_y_ds = e_y		rame((data=wine['tar	rget'])							•
ı [113]:	wine wine	_y_ds = _y_ds =		rame((data=wine['tam	rget'])							•
դ [113]։	wine wine	e_y_ds = e_y_gs = e_y_ds = e_y		rame((data=wine['t <mark>a</mark> n	rget'])							•
դ [113]։	wine wine 0 1 2 3 4	e_y_ds = e_y_gs = e_y_ds = e_y		rame((data=wine['tan	rget'])							•
	wine wine 173	0 0 0 0 0 0 0		rame(data=wine['tar	rget'])							•
դ [113]։	wine wine 1 2 3 4 4 173 174	e_y_ds = e_y_gs = e_y_ds = e_y		rame('data=wine['tan	rget'])							•
д [113]:	wine wine 173 174 175	o 0 0 0 0 0 0 0 0 0 2 2		rame((data=wine['t <mark>a</mark> n	rget'])							•
д [113]:	wine wine 1 2 3 4 4 173 174	0 0 0 0 0 0 0 0 0 0 2 2 2		rame((data=wine['tan	rget'])							•

```
Ввод [114]: wine_ds = pd.DataFrame(data=wine['data'], columns=wine['feature_names'])
              wine_ds['target'] = wine['target']
              wine_ds
 Out[114]:
                    alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od280/od3
                     14.23
                                 1.71 2.43
                                                        15.6
                                                                   127.0
                                                                                 2.80
                                                                                             3.06
                                                                                                                  0.28
                                                                                                                                   2.29
                                                                                                                                                  5.64 1.04
                 1
                      13.20
                                  1.78 2.14
                                                        11.2
                                                                   100.0
                                                                                 2.65
                                                                                             2.76
                                                                                                                  0.26
                                                                                                                                   1.28
                                                                                                                                                  4.38 1.05
                      13.16
                                 2.36 2.67
                                                        18.6
                                                                   101.0
                                                                                  2.80
                                                                                             3.24
                                                                                                                  0.30
                                                                                                                                   2.81
                                                                                                                                                  5.68 1.03
                 3
                      14.37
                                  1.95 2.50
                                                        16.8
                                                                   113.0
                                                                                  3.85
                                                                                             3.49
                                                                                                                  0.24
                                                                                                                                                  7.80 0.86
                      13.24
                                 2.59 2.87
                                                        21.0
                                                                   118.0
                                                                                  2.80
                                                                                             2.69
                                                                                                                  0.39
                                                                                                                                   1.82
                                                                                                                                                  4.32 1.04
               173
                    13.71
                                  5.65 2.45
                                                        20.5
                                                                    95.0
                                                                                  1.68
                                                                                             0.61
                                                                                                                  0.52
                                                                                                                                   1.06
                                                                                                                                                  7.70 0.64
                                                                                                                                   1.41
                                  3.91 2.48
                                                                                                                                                  7.30 0.70
               175
                     13.27
                                  4.28 2.26
                                                        20.0
                                                                   120.0
                                                                                             0.69
                                                                                                                  0.43
                                                                                                                                   1.35
                                                                                                                                                 10.20 0.59
                                                                                  1.59
               176
                     13.17
                                  2.59 2.37
                                                                   120.0
                                                                                                                  0.53
                                                                                                                                   1.46
                                                                                                                                                  9.30 0.60
                                                        20.0
                                                                                  1.65
                                                                                             0.68
               177
                     14.13
                                 4.10 2.74
                                                        24.5
                                                                    96.0
                                                                                  2.05
                                                                                             0.76
                                                                                                                  0.56
                                                                                                                                   1.35
                                                                                                                                                  9.20 0.61
              178 rows × 14 columns
```

Типы данных всех полей являются числовыми.

```
Ввод [115]: wine_ds.dtypes
 Out[115]: alcohol
                                              float64
                                              float64
            malic acid
                                              float64
            ash
            alcalinity_of_ash
                                              float64
                                              float64
            magnesium
            total phenols
                                              float64
            flavanoids
                                              float64
            nonflavanoid phenols
                                              float64
            proanthocyanins
                                              float64
            color intensity
                                              float64
                                              float64
            od280/od315 of diluted wines
                                              float64
            proline
                                              float64
                                                int32
            target
            dtype: object
```

В наборе данных отсутствуют пропуски и дубликаты.

```
Ввод [116]: # Проверим наличие пустых значений
              # Цикл по колонкам датасета
             for col in wine_ds.columns:
                  # Количество пустых значений - все значения заполнены
                  temp_null_count = wine_ds[wine_ds[col].isnull()].shape[0]
print('{} - {}'.format(col, temp_null_count))
             alcohol - 0
             malic_acid - 0
             ash - 0
             alcalinity_of_ash - 0
             magnesium - 0
             total_phenols - 0
             flavanoids - 0
             nonflavanoid_phenols - 0
             proanthocyanins - 0
              color_intensity - 0
             hue - 0
             od280/od315_of_diluted_wines - 0
             proline - 0
             target - 0
Ввод [117]: wine_ds.duplicated().sum()
  Out[117]: 0
```

Проведем корреляционный анализ, чтобы оценить вклад признаков для построения моделей классификации. Для визуализации корреляционной матрицы была использована "тепловая карта".

С целевым признаком наиболее сильную корреляцию имеют признаки "flavanoids" (-0,85), "od280/od315_of_diluted_wines" (-0,79), "total_phenols" (-0,72), "proline" (-0,63) и "hue" (-0,62). Эти признаки будут наиболее информативными при построении моделей машинного обучения. Целевой признак отчасти коррелирует с признаками "alcalinity_of_ash" (0,52), "proanthocyanins" (-0,5), "nonflavanoid_fenols" (0,49) и "malic_acid" (0,44). Эти признаки также стоит использовать при обучении модели. Признаки "alcohol" (-0,33), "color_intensity" (0,27), "magnesium" (-0,21) и "ash" (-0,05) слабо коррелируют с целевым признаком и могут негативно сказаться на модели машинного обучения, поэтому, скорее всего, их стоит исключить из модели.

Но не все признаки, которые имеют сильную и среднюю корреляцию с целевым признаком, стоит использовать для построения модели машинного обучения. Между признаками "flavanoids" и "total_phenols" наблюдается очень сильная корреляция (0,86). Это связано с тем, что флавоноиды относятся к классу полифенолов. Поэтому из этих двух признаков стоит оставить тот, который имеет наибольшую корреляцию с целевым признаком, т.е.

"flavanoids". Остальные нецелевые признаки не коррелируют друг с другом так сильно и между ними не наблюдается почти линейной зависимости.

Таким образом, на основе признаков "flavanoids", "od280/od315_of_diluted_wines", "proline", "hue", "alcalinity_of_ash", "proanthocyanins", "nonflavanoid_phenols" и "malic_acid" могут быть построены модели машинного обучения, первые четыре признака могут иметь наиболее весомый вклад в их обучение. Для обучения моделей классификации будут использоваться эти 8 нецелевых признаков.

Выборка экземпляров вина, принадлежащих разным классам, является сбалансированной.

```
Ввод [119]: wine_y_ds.value_counts()

Out[119]: 1 71
0 59
2 48
Name: count, dtype: int64
```

Разобьем исходную выборку на обучающую и тестовую.

```
Ввод [120]: wine_X_train, wine_X_test, wine_y_train, wine_y_test = train_test_split(
    wine_ds[['malic_acid', 'alcalinity_of_ash', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'hue', 'od280/od315_of_o
    wine_ds['target'].values, test_size=0.2, random_state=2)
```

Было произведено MinMax масштабирование данных.

```
Ввод [121]: mms = MinMaxScaler()

Ввод [122]: wine_X_train_scaled = mms.fit_transform(wine_X_train)
wine_X_test_scaled = mms.transform(wine_X_test)
```

Для оценки качества моделей машинного обучения были использованы метрики ассигасу и F1-мера. Метрика ассигасу подходит для оценки качества моделей классификации для заданного набора данных, так как классификация производится по трем равноценным классам и нет необходимости в более точном определении того или иного класса. Также она подходит, так как выборка является сбалансированной, поэтому точность по всем классам, которую и отражает ассигасу, не будет скрывать малую точность для отдельного класса. Метрика F1-мера подходит для оценки качества моделей классификации для заданного набора данных, так как в случае классификации по трем равноценным классам precision и recall имеют равное значение, поэтому их оценку можно совместить в метрике F1-мера. Распределение экземпляров вина из набора данных по классам не будет иметь отрицательного влияния на значение метрики

F1-мера, так как выборка является сбалансированной.

Функции для вывода значения метрики accuracy для каждого класса:

```
Ввод [151]: def accuracy score for classes(
                y true: np.ndarray,
                y pred: np.ndarray) -> Dict[int, float]:
                d = {'t': y true, 'p': y pred}
                df = pd.DataFrame(data=d)
                classes = np.unique(y_true)
                res = dict()
                for c in classes:
                    temp data flt = df[df['t']==c]
                    temp acc = accuracy score(
                        temp_data_flt['t'].values,
                        temp_data_flt['p'].values)
                    res[c] = temp acc
                return res
            def print_accuracy_score_for_classes(
                y true: np.ndarray,
                y pred: np.ndarray):
                accs = accuracy_score_for_classes(y_true, y_pred)
                if len(accs)>0:
                    print('Label \t Accuracy')
                for i in accs:
                    print('{} \t {}'.format(i, accs[i]))
```

Была обучена модель Дерева Решений.

```
ВВОД [139]: # Обучим дерево решений tree = DecisionTreeClassifier() tree.fit(wine_X_train_scaled, wine_y_train)

# Получим значения важности каждого признака importances = tree.feature_importances_ features = wine.feature_names indices = np.argsort(importances)[::-1] # отсортированные индексы признаков по убыванию важности
```

И визуализирован график

```
ВВОД [134]:

# Визуализируем дерево решений

from sklearn.tree import plot_tree

plt.figure(figsize=(15,10))

plot_tree(tree, filled=True, feature_names=wine.feature_names[:-1])

plt.show()
```


Ввод [155]:	<pre>print_accuracy_score_for_classes(wine_y_test, y_pred_tree)</pre>				
	Label	Accuracy			
	0	1.0			
	1	1.0			
	2	1.0			

Была обучена модель случайного леса.

```
Ввод [144]: wine_rf_cl = RandomForestClassifier(random_state=2)
wine_rf_cl.fit(wine_X_train_scaled, wine_y_train)

Out[144]: RandomForestClassifier

RandomForestClassifier(random_state=2)
```

Результаты классификации с использованием модели случайного леса:

Значение метрики ассигасу для модели случайного леса:

```
Ввод [147]: accuracy_score(wine_y_test, pred_wine_rf_y_test)
Out[147]: 0.972222222222222
```

Значение метрики ассигасу для каждого класса:

Значение метрики F1-мера для модели случайного леса для каждого класса:

```
Ввод [154]: f1_score(wine_y_test, pred_wine_rf_y_test, average=None)

Out[154]: array([0.97142857, 0.94736842, 1. ])
```

Таким образом, каждая из моделей машинного обучения классифицирует вино с высокой точностью. Модель случайного леса имеет слегка худший показатель определения вина класса 0, чем модель дерева решений, что видно по показателям метрик.