МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА № 1

по дисциплине 'ПРОГРАММИРОВАНИЕ'

Вариант №824728

Выполнил: Студент группы Р3113 Свиридов Дмитрий Витальевич Преподаватель: Письмак Алексей Евгеньевич

Санкт-Петербург, 2019

Задание:

- 1. Создать одномерный массив f типа short. Заполнить его числами от 4 до 20 включительно в порядке убывания.
- 2. Создать одномерный массив x типа float. Заполнить его 10-ю случайными числами в диапазоне от -11.0 до 2.0.
- 3. Создать двумерный массив t размером 17x10. Вычислить его элементы по следующей формуле (где x = x[j]):

$$\circ$$
 если f[i] = 15, то $t[i][j] = \left(rac{2}{3}\cdot\left(rac{2}{(x)^{1-x}}
ight)^2
ight)^3;$

∘ если f[i] ∈ {5, 6, 11, 13, 14, 17, 18, 20}, то

$$t[i][j] = \left(\left(\left(rac{x}{3}
ight)^x
ight)^{rcsin\left(rac{x-4.5}{13}
ight)}
ight)^{2\cdot\left(\sin(x)
ight)^{rac{1-rcsin\left(rac{x-4.5}{13}
ight)}{1}/3}$$

$$\circ$$
 для остальных значений f[i]: $t[i][j] = rcsin \Biggl(rac{1}{e^{\sqrt{e^{\left(rac{x}{1-x}
ight)^3}}}}\Biggr).$

4. Напечатать полученный в результате массив в формате с пятью знаками после запятой.

Исходный код:

```
// Лабораторная работа №1
// Вариант 824728
public class Lab {
    public static void main(String[] args) {
        // Объявление и заполнение первого массива
        final int F_SIZE = 17;
        final int F MAX = 20;
        short[] f = new short[F SIZE];
        for (int i=0; i<F_SIZE; i++) {
            f[i] = (short) (F_MAX-i);
        }
        // Объявление и заполнение второго массива
        final int X SIZE = 10;
        final float MIN RANGE = -11.0f;
        final float MAX RANGE = 2.0f;
        float[] x = new float[X SIZE];
        for (int i=0; i<X_SIZE; i++) {</pre>
            x[i] = (float) ((Math.random() * (MAX_RANGE-MIN_RANGE)) + MIN_RANGE);
      // Объявление и заполнение третьего (итогового) массива
        final int T FIRST SIZE = 17;
        final int T SECOND SIZE = 10;
        double[][] t = new double[T_FIRST_SIZE][T_SECOND_SIZE];
        double cache;
        for (int i=0; i<T_FIRST_SIZE; i++) {</pre>
            for (int j=0; j<T_SECOND_SIZE; j++) {</pre>
                if (f[i] == 15) {
                     cache = 2 / Math.pow(x[j], 1 - x[j]);
                    cache = Math.pow(cache, 2);
                     cache = Math.pow(cache * 2 / 3, 3);
                } else if (f[i] == 5 || f[i] == 6 || f[i] == 11 || f[i] == 13 ||
                                       f[i] == 14 \mid \mid f[i] == 17 \mid \mid f[i] == 18 \mid \mid f[i] == 20) 
                     cache = Math.pow(x[j] / 3, x[j]);
                     cache = Math.pow(cache, Math.asin((x[j] - 4.5) / 13));
                     cache = Math.pow(cache, 2 * Math.sin(x[j]));
                     cache = Math.pow(cache, (1 - Math.asin((x[j] - 4.5) / 13)) / 3);
                } else {
                     cache = Math.pow(x[j] / (1-x[j]), 3);
                     cache = Math.pow(Math.E, cache);
                    cache = Math.pow(Math.E, cache);
                    cache = Math.sqrt(cache);
                     cache = 1 / Math.pow(Math.E, cache);
                     cache = Math.asin(cache);
                t[i][j] = cache;
            }
        }
        // Вывод третьего (итогового) массива
        for (int i=0; i<T_FIRST_SIZE; i++) {</pre>
            for (int j=0; j<T_SECOND_SIZE; j++) {</pre>
                System.out.format("%.5f ", t[i][j]);
            System.out.println();
        }
    }
}
```

Результат работы:

Результат 1.

NaN	1,24616								
0,19463	0,26486	0,27154	0,26669	0,28714	0,23645	0,28624	0,28573	0,28563	0,37673
NaN	1,24616								
NaN	1,24616								
0,19463	0,26486	0,27154	0,26669	0,28714	0,23645	0,28624	0,28573	0,28563	0,37673
NaN	24,49087								
NaN	1,24616								
NaN	1,24616								
0,19463	0,26486	0,27154	0,26669	0,28714	0,23645	0,28624	0,28573	0,28563	0,37673
NaN	1,24616								
0,19463	0,26486	0,27154	0,26669	0,28714	0,23645	0,28624	0,28573	0,28563	0,37673
0,19463	0,26486	0,27154	0,26669	0,28714	0,23645	0,28624	0,28573	0,28563	0,37673
0.19463	0.26486	0.27154	0.26669	0.28714	0.23645	0.28624	0.28573	0.28563	0.37673
0.19463	0.26486	0.27154	0.26669	0.28714	0.23645	0.28624	0.28573	0.28563	0.37673
NaN	1,24616								
NaN	1,24616								
0.19463	0.26486	0.27154	0.26669	0.28714	0.23645	0.28624	0.28573	0.28563	0.37673

Результат 2.

NaN	NaN	1,17319	NaN							
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	
NaN	NaN	1,17319	NaN							
NaN	NaN	1,17319		NaN	NaN	NaN	NaN	NaN	NaN	
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	
NaN	NaN	237,4090	05	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	1,17319	NaN							
NaN	NaN	1,17319	NaN							
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	
NaN	NaN	1,17319	NaN							
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	
NaN	NaN	1,17319	NaN							
NaN	NaN	1,17319	NaN							
0,20646	0,28478	0,37673	0,26301	0,20397	0,27229	0,22312	0,25141	0,21219	0,27882	

Вывод:

Во время выполнения лабораторной работы я ознакомился с синтаксисом языка Java и библиотекой Math, научился использовать основные средства JDK, работать с примитивными типами данных, одномерными и двумерными массивами, логическими операторами и оператором for. Полученные знания являются необходимыми для разработки более крупных проектов и дальнейшего изучения языка Java.