

Logické obvody

3. cvičení

Jiří Zacpal

KMI/ZVT – Základy výpočetní techniky

Logické funkce

Logický výraz

- = korektně vytvořená posloupnost (symbolů) logických proměnných a funkcí (operátorů) spolu se závorkami
- priority sestupně: negace, log. součin, log. součet
- např. $x \cdot \overline{y} + f(x, z) = (x \cdot \overline{y}) + f(x, z)$
- = zápis logické funkce

Logické rovnice

- ekvivalentní úpravy: negace obou stran, logický součin/součet obou stran se stejným výrazem, . . . , log. funkce obou stran se stejnými ostatními operandy funkce
- NEekvivalentní úpravy: "krácení" obou stran o stejný (pod)výraz, např. x + y = x + z není ekvivalentní s y = z

Axiomy (Booleovy algebry)

komutativita:

$$X \cdot y = y \cdot X$$
 $X + y = y + X$

distributivita:

$$x \cdot (y + z) = x \cdot y + x \cdot z \qquad (x + y) \cdot z = (x + y) \cdot (x + z)$$

identita (existence neutrální hodnoty):

$$1 \cdot x = x$$
 $0 + x = x$

komplementárnost:

$$x \cdot \overline{x} = 0$$
 $x + \overline{x} = 1$

Vlastnosti základních logických operací

nula a jednička:

• idempotence:

$$X \cdot X = X$$
 $X + X = X$

asociativita:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 $x + (y + z) = (x + y) + z$

involuce (dvojí negace):

$$\bar{\bar{\mathbf{x}}} = \mathbf{x}$$

• De Morganovy zákony:

$$\overline{x \cdot y} = \overline{x} + \overline{y} \qquad \overline{x + y} = \overline{x} \cdot \overline{y}$$

absorpce:

$$x \cdot (x + y) = x$$
 $x + x \cdot y = x$

Základní tavr logické funkce

- zadání pravdivostní tabulkou:
 - úplně funkční hodnota f (x_i) definována pro všech 2ⁿ možných přiřazení hodnot proměnným x_i; 0 < i < n
 - neúplně funkční hodnota pro některá přiřazení není definována (např. log. obvod realizující funkci ji neimplementuje)
- základní tvary (výrazu):
 - součinový (úplná konjunktivní normální forma, ÚKNF)
 log. součin log. součtů všech proměnných nebo jejich negací (úplných elementárních disjunkcí, ÚED)

$$(x_0 + \cdots + x_{n-1}) \cdot \cdots \cdot (x_0 + \cdots + x_{n-1}), X_i = x_i \text{ nebo } \overline{x_i},$$

 součtový (úplná disjunktivní normální forma, ÚDNF) log. součet log. součinů všech proměnných nebo jejich negací (úplných elementárních konjunkcí, ÚEK)

$$(x_0 \cdot \cdots \cdot x_{n-1}) + \cdots + (x_0 \cdot \cdots \cdot x_{n-1}), X_i = x_i \text{ nebo } \overline{x_i}$$

Převod log. funkce f(x_i) na základní tvar

- ekvivalentními úpravami a doplněním chybějících proměnných nebo jejich negací
- tabulkovou metodou:
 - 1. pro řádky s f $(x_i) = 0(1)$ sestroj log. součet (součin) všech x_i pro $x_i = 0(1)$ nebo $\overline{x_i}$ pro $x_i = 1(0)$.
 - 2. výsledná ÚKNF (ÚDNF) je log. součinem (součtem) těchto log. součtů (součinů)

х	У	z	f(x,y,z)	ÚED	ÚEK
0	0	0	0	x + y + z	
0	0	1	0	$x + y + \overline{z}$	
0	1	0	0	$x + \bar{y} + z$	
0	1	1	1		$\bar{x} \cdot y \cdot z$
1	0	0	0	$\bar{x} + y + z$	
1	0	1	1		$x \cdot \overline{y} \cdot z$
1	1	0	1		$x \cdot y \cdot \overline{z}$
1	1	1	1		

$$\begin{array}{l} \text{ $\acute{\text{U}}$KNF(f(x,y,z)): $(x+y+z)\cdot(x+y+\overline{z})\cdot(x+\overline{y}+z)\cdot(\overline{x}+y+z)$} \\ \text{ $\acute{\text{U}}$DNF(f(x,y,z)): $(\overline{x}\cdot y\cdot z)+(x\cdot \overline{y}\cdot z)+(x\cdot y\cdot \overline{z})+(x\cdot y\cdot z)$} \end{array}$$

Úkol

Vyjádřete v základním tvaru ÚKNF a ÚDNF:

x	у	Z	f
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

Zjednodušení výrazu logické funkce

- optimalizace za účelem dosažení co nejmenšího počtu operátorů (v kompromisu s min. počtem typů operátorů)
- důvod: méně (typů) log. obvodů realizujících funkci (menší, levnější, nižší spotřeba, . . .)
- metody:
 - algebraické úpravy
 - Karnaughova metoda (Karnaughova mapa)

Úplný systém logických funkcí

= množina log. funkcí, pomocí kterých je možné vyjádřit jakoukoliv log. funkci (libovolného počtu proměnných) →množina log. funkcí dvou proměnných

- (1) negace \bar{x} , log. součin $x \cdot y$ a log. součet x + y
- (2) negace \bar{x} a implikace $x \to y$ a další
- Minimální úplný systém logických funkcí

= úplný systém, ze kterého nelze žádnou funkci vyjmout tak, aby zůstal úplný

- (1) NENÍ: $x \cdot y = \overline{x} + \overline{y}$, $x + y = \overline{x} \cdot \overline{y}$ (De Morganovy zákony)
- (2) je
- (3) \bar{x} , log. součin $x \cdot y$
- (4) \bar{x} , log. součet x + y a další

Minimální úplný systém logických funkcí

- Jediná funkce:
 - Shefferova ↑ (negace log. součinu)
 - Piercova ↓ (negace log. součtu)
 - důkaz: vyjádření negace a log. součinu (součtu)
 - Vyjádření logické funkce pomocí Shefferovy nebo Piercovy funkce
 - 1. vyjádření funkce v základním součtovém tvaru
 - zjednodušení výrazu funkce, např. pomocí Karnaughovy metody
 - aplikace De Morganových zákonů pro převedení výrazu do tvaru, který obsahuje pouze Shefferovy nebo pouze Piercovy funkce

Úkol

Dokažte, že lze pomocí Shefferovy funkce lze vyjádřit logickou negaci a součet.

Příklad – realizace funkce XOR

 pravdivá, když operandy mají různou hodnotu, jinak nepravdivá

x	у	$x \oplus y$
0	0	0
1	0	1
0	1	1
1	1	0

 operátory: x ⊕ y, y ≠ x, x XOR y (výrokově i algebraicky negace ekvivalence), X ≠Y (množinově negace ekvivalence)

Příklad – realizace funkce XOR

1. zápis funkce v základním tvaru

x	у	$x \oplus y$	ÚEK
0	0	0	
1	0	1	$x \cdot \overline{y}$
0	1	1	$\bar{x} \cdot y$
1	1	0	

• ÚDNF(f(x,y)): $(x \cdot \overline{y}) + (\overline{x} \cdot y)$

Nonekvivalence pomocí NAND

úprava funkce a převod za použití Shafferovy funkce

$$x \cdot \underline{\overline{y} + \overline{x} \cdot y} = \overline{\overline{x \cdot \overline{y}} + \overline{x} \cdot y} = \overline{\overline{x} \cdot \overline{y}} \cdot \overline{\overline{x} \cdot y}$$

$$= \overline{\overline{x} \cdot \overline{y} \cdot \overline{y}} \cdot \overline{\overline{x} \cdot x} \cdot y = (x \uparrow (y \uparrow y)) \uparrow ((x \uparrow x) \uparrow y)$$

Úkol

Realizujte funkci XOR pomocí funkce NAND v programu Deeds.