Chem 1141 Fall 2012 Exam 2A

Name:
Please write your full name, and which exam version (2A) you have on the scantron sheet.
Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron
Q1. What is the mass of a single atom of Carbon-12? a) 12.01 u b) 12 u (exactly) c) 12.01 g d) 12 g (exactly) e) 6.022 x 10 ⁻²³ g
Q2. How many moles of Li are in a 4.0-g sample? a) 28 b) 0.58 c) 1.7 d) 0.29 e) 6.9 4.0-gLi Imol Li = 0.58 mol l 6.945 Li
Q3. What is the name of the instrument that can "weigh" individual atoms and molecules by converting them into ions, and measuring their deflection as they move through a magnetic field? a) Analytical Balance b) Nuclear Magnetic Spectrometer c) Mass Spectrometer d) Gas-Chromatograph e) Magnetron 6xC=6x12.01=72.06 = 39.99
Q4. Calculate the percent by mass of carbon in the compound $C_6H_{12}O_6$. a) 25% b) 33% c) 40.% d) 50.% e) 72% $C_6H_{12}O_6$ (2) 416.00 = 46.00 12.1 12.1 12.1 13.1
Q5. 3.0 mol of N_2 reacts with 4.0 mol of H_2 according to the balanced chemical equation: $N_2 + 3H_2 \longrightarrow 2NH_3$ The limiting reagent is: (b) H_2 (c) NH_2 (d) There is no limiting reagent (e) $N_2 + 3H_2 \longrightarrow 2NH_3$ (f) $N_2 + 3H_3 \longrightarrow 2NH_3$ (h) $N_3 - 3H_3 \longrightarrow 2H_3$ (ii) $N_4 - 3H_3 \longrightarrow 2H_3$ (iii) $N_4 - 3H_3 \longrightarrow 2H_3$ (iiii) $N_4 - 3H_3 \longrightarrow 2H_3$ (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Q6. An example of a weak electrolyte is: Strong electrolytes 1.3 mol 1. N=cle the lyte a) C ₆ H ₁₂ O ₆ b) NH ₃ weak boar c) HCl d) NaOH e) KCl 3 mol H ₂ **East!
Q7. Aqueous lead(II) acetate is mixed with aqueous potassium chloride. The precipitate formed is: a) PbCl b) PbCl ₂ c) KC ₂ H ₃ O ₂ d) PbK e) PbK ₂ Pb((2A ₃ O ₃) ₂ (ag) +2KCl(ag) ->PbCl ₂ (s) ->P
a) HCl b) H_2SO_4 c) HClO ₄ d) HNO ₃ (e) HF HQ HNO ₃ HBr H_2SO_4
Q9. The oxidation number of Mn in the MnO_4^- ion is: a) +3 b) +4 c) +7 d) +8 e) -8
Q10. How many moles of H_2SO_4 are there in a 54.0 g sample? (a) 0.551 b) 98.1 c) 1.82 d) 1.59 e) 0.130
2+H=2+1.01 1x5=32.07 4+0=4+16.00 18.09 18.09 18.09 18.09 18.09

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q11. [10 pts.] Calculate the empirical formula of a compound that contains 64.26% C, 7.21% H, and 28.54% O by mass. If the molar mass of this compound is 168.2 g, then what is its molecular formula?

Q12. [15 pts.] 38.4 g of C_2H_6 undergoes a combustion reaction with 41.0 g of O_2 , and forms 31.4 g of CO_2 . Calculate the percent yield of this reaction.

Hint: Start by writing out a balanced chemical equation.

Combunding
$$2C_2H_6 + 70_2 \rightarrow 4(0_2 + 6H_20)$$
 $\frac{C_2H_6}{2 \times C} = 2 \times 12.01$
 $6 \times H = \frac{6 \times 1.01}{30.08}$
 $\frac{O_2}{2 \times C} = 2 \times 16.00 = \frac{32.00}{44.01}$
 $\frac{O_2}{4 \times C} = \frac{32.00}{32.00}$
 $\frac{O_2}{4 \times C} = \frac{32.00}{44.01}$
 $\frac{O_2}{4 \times C} = \frac{32.00}{32.25}$

Q13. [10 pts.] Write out the balanced molecular, full-ionic, and net-ionic equations for the following reaction:

Be sure to include all state symbols and charges where necessary.

- Q14. [6 pts.] Write formulas for the following polyatomic ions:
 - a) sulfite Sos
 - b) nitrite No.
 - c) bicarbonate HO3
 - d) ammonium
 - e) cyanide CNT
 - f) nitrate NO_3^-
- Q15. [6 pts.] How many protons, neutrons, and electrons are there in the common ion of calcium-38?

20 Ca 20pt

$$18e^{-1} (2 \text{ less since } 2 + \text{ charge } 1)$$
 $18n^{\circ} (A = 38 = \#p^{+} + \#n^{\circ})$
 $Z = 20 = \#p^{+}$

Q16. [5 pts.] Calculate the oxidation number of the underlined atom in each of the following compounds:

d) Li**H**

e) K₂SO₄

13 -1 +6 k¹ So² Soooo² Soooo² K² Completely neutralize Q17. [12 pts.] A 5.00 mL sample of H₂SO₄(aq) required 13.4 g of KOH to completely neutralize it. Calculate the molar concentration of the H₂SO₄.

H2SO4+2KOH -> K2SO4+2H,0

Q18. [6 pts.] Give one example of an intensive property, and one example of an extensive property.

INTENSIVE:

EXTENSIVE:

mass

BONUS Question. [3 pts.]

Do you prefer me to use the over-head projector, or to write on the white-board? WHY?

Chem 1141 Fall 2012 Exam 2B

Name:
Please write your full name, and which exam version (2B) you have on the scantron sheet.
Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet.
Q1. An example of a weak electrolyte is: a) $C_6H_{12}O_6$ b) NH_1 c) HCl d) $NaOH$ e) KCl Q2. Aqueous lead(II) acetate is mixed with aqueous potassium chloride. The precipitate formed is: a) $PbCl$ b) $PbCl_2$ c) $KC_2H_3O_2$ d) PbK e) PbK_2
Q2. Aqueous lead(II) acetate is mixed with aqueous potassium chloride. The precipitate formed is: a) PbCl b) PbCl ₂ c) KC ₂ H ₃ O ₂ d) PbK e) PbK ₂
Q3. Which of the following compounds is NOT a strong acid: a) HCl b) H ₂ SO ₄ c) HClO ₄ d) HNO ₃ e) HF
Q4. The oxidation number of Mn in the MnO_4 ion is: a) +3 b) +4 c) +7 d) +8 e) -8
Q5. How many moles of H_2SO_4 are there in a 54.0 g sample? a) 0.551 b) 98.1 c) 1.82 d) 1.59 e) 0.130
Q6. What is the mass of a single atom of Carbon-12? a) 12.01 u b) 12 u (exactly) c) 12.01 g d) 12 g (exactly) e) 6.022 x 10 ⁻²³ g
Q7. How many moles of Li are in a 4.0-g sample? a) 28 b) 0.58 c) 1.7 d) 0.29 e) 6.9
Q8. What is the name of the instrument that can "weigh" individual atoms and molecules by converting them into ions, and measuring their deflection as they move through a magnetic field? a) Analytical Balance b) Nuclear Magnetic Spectrometer c) Mass Spectrometer d) Gas-Chromatograph e) Magnetron
Q9. Calculate the percent by mass of carbon in the compound $C_6H_{12}O_6$. a) 25% b) 33% c) 40.% d) 50.% e) 72%
Q10. 3.0 mol of N_2 reacts with 4.0 mol of H_2 according to the balanced chemical equation: $N_2 + 3H_2 \longrightarrow 2NH_3$ The limiting reagent is: a) N_2 b) H_2 c) NH_3 d) There is no limiting reagent

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q11. [10 pts.] Write out the balanced molecular, full-ionic, and net-ionic equations for the following reaction: Be sure to include all state symbols and charges where necessary.

MOLECULAR:

 $_$ HBr(aq) + $_$ Na₂CO₃(aq) \longrightarrow

FULL-IONIC:

See Exam 2A, Q13

NET-IONIC:

Q12. [6 pts.] Write formulas for the following polyatomic ions:

- a) sulfite
- b) nitrite
- c) bicarbonate
- d) ammonium
- e) cyanide
- f) nitrate

See Exam 2A, Q14

Q13. [6 pts.] Give one example of an intensive property, and one example of an extensive property.

INTENSIVE:

EXTENSIVE:

See Exam 2A, Q18

Q14. [6 pts.] How many protons, neutrons, and electrons are there in the common ion of sulfur-33?

$$\frac{33}{16}$$
 \sum_{16}^{2}

Q15. [10 pts.] Calculate the empirical formula of a compound that contains 64.26% C, 7.21% H, and 28.54% O by mass. If the molar mass of this compound is 168.2 g, then what is its molecular formula?

See Exam 2A, Q11.

Q16. [15 pts.] 32.1 g of C_2H_6 undergoes a combustion reaction with 42.0 g of O_2 , and forms 31.4 g of CO_2 . Calculate the percent yield of this reaction.

Hint: Start by writing out a balanced chemical equation.

See Exam 2A, Q12 for general approach!

	a) <u>I</u> Br ₃				016	16	
	b) K <u>H</u>	V <u>====</u> <u>#</u>	See	exam	ZA, C	V 10	
	c) Li ₂ S O ₄	<u> </u>					
	d) KH <u>C</u> O ₃	SE					
	e) <u>C</u> ₂ H ₃ OH	:					
-	12 pts.] A 5.00 mL sam concentration of the H	ple of H ₂ SO ₄ (aq) requ ₂ SO ₄ . Su <i>O</i> 10	exam	of NaOH to	completely Q 17	neutralize For	it. Calculate the

Q17. [5 pts.] Calculate the oxidation number of the <u>underlined</u> atom in each of the following compounds:

BONUS Question. [3 pts.]

Do you prefer me to use the over-head projector, or to write on the white-board? WHY?