

Part 8: Actor-Critic algorithms

EL 2805 - Reinforcement Learning

Alexandre Proutiere

KTH, The Royal Institute of Technology

Objectives of this part

- Going back to policy gradient methods
- Solve infinite horizon problem using a *critic*

References

- Barto-Sutton's book chapter 13
- David Silver's lecture 7
- Sutton, McAllester, Singh, Mansour (1999). Policy gradient methods for reinforcement learning with function approximation: actor-critic algorithms

Actor-critic methods

- Function-based methods: evaluate the Q-function or the (state, action) value function of a policy to be improved
- Policy-based methods: a direct gradient on the policy
- Actor-critic methods: a policy-gradient method where function evaluation is needed

Infinite horizon discounted RL problems

Discounted RL problems:

- Unknown stationary transition probabilities p(s'|s,a) and rewards r(s,a), uniformly bounded: $\forall a,s,\ |r(s,a)| \leq 1$
- Objective: for a given discount factor $\lambda \in [0,1)$, from the data, find a policy $\pi^* \in MD$ maximizing (over all possible policies)

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=1}^{T} \lambda^{t-1} r(s_t^{\pi}, a_t^{\pi},) | s_1^{\pi} = s\right]$$

Objective function and its gradient

Objective: maximize $J(\theta) = \mathbb{E}_{s_1 \sim p}[V^{\pi_{\theta}}(s_1)]$ Discounted stationary distribution ρ_{θ} under π_{θ} :

$$\forall s \in \mathcal{S}, \quad \rho_{\theta}(s) = (1 - \lambda) \sum_{s'} p(s') \sum_{k=0}^{\infty} \lambda^k \mathbb{P}_{\pi_{\theta}}[s_k = s | s_1 = s']$$

Theorem. The gradient of the objective function w.r.t. the policy is:

$$\nabla J(\theta) = \frac{1}{1 - \lambda} \mathbb{E}_{s \sim \rho_{\theta}, a \sim \pi_{\theta}(s, \cdot)} \left[\nabla \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a) \right]$$

Policy evaluation

How can we evaluate $Q^{\pi_{\theta}}$?

TD learning and function approximation $Q^{\pi_{\theta}} \approx Q_{\phi}$: when the experience (s,a,r,s',a') is observed, update ϕ following the semi-gradient descent algorithm

$$\phi \leftarrow \phi + \beta(r + \lambda Q_{\phi}(s', a') - Q_{\phi}(s, a)) \nabla_{\phi} Q_{\phi}(s, a)$$

Q Actor-critic algorithm

QAC Algorithm:

- 1. **Initialization:** θ , ϕ , state $s = s_1$
- 2. Iterations: Loop

Take action $a \sim \pi_{\theta}(s, \cdot)$

Observe r, s' (reward, next state)

Sample the next action $a' \sim \pi_{\theta}(s',\cdot)$

Update the parameters

$$\phi \leftarrow \phi + \beta(r + \lambda Q_{\phi}(s', a') - Q_{\phi}(s, a)) \nabla_{\phi} Q_{\phi}(s, a)$$
$$\theta \leftarrow \theta + \alpha \left(\nabla_{\theta} \log \pi_{\theta}(s, a) Q_{\phi}(s, a) \right)$$

$$s \leftarrow s', \ a \leftarrow a'$$

Reducing the variance: baseline

Instead of $Q^{\pi_{\theta}}(s,a)$, use $Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$.

Advantage: $A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$

$$\nabla_{\theta} J(\theta) = \frac{1}{1 - \lambda} \mathbb{E}_{s \sim \rho_{\theta}, a \sim \pi_{\theta}(s, \cdot)} \left[\nabla \log \pi_{\theta}(s, a) A^{\pi_{\theta}}(s, a) \right]$$

Now when (s, a, r, s', a') is observed under π_{θ} , we get:

$$A^{\pi_{\theta}}(s, a) = r + \lambda \mathbb{E}[V^{\pi_{\theta}}(s')] - V^{\pi_{\theta}}(s)$$

Hence we can use and fit $V^{\pi_{\theta}} \approx V_{\phi}$ only! Using TD learning we get the following update:

$$\phi \leftarrow \phi + \beta(r + \lambda V_{\phi}(s') - V_{\phi}(s)) \nabla_{\phi} V_{\phi}(s)$$

Actor-critic algorithm with baseline

AC Algorithm:

- 1. Initialization: θ , ϕ , state $s = s_1$
- 2. Iterations: Loop

Take action $a \sim \pi_{\theta}(s, \cdot)$

Observe r, s' (reward, next state)

Sample the next action $a' \sim \pi_{\theta}(s', \cdot)$

Update the parameters

$$\phi \leftarrow \phi + \beta (r + \lambda V_{\phi}(s') - V_{\phi}(s)) \nabla_{\phi} V_{\phi}(s)$$

$$\theta \leftarrow \theta + \alpha \left(\nabla_{\theta} \log \pi_{\theta}(s, a) (r + \lambda V_{\phi}(s') - V_{\phi}(s)) \right)$$

$$s \leftarrow s', \ a \leftarrow a'$$

Examples

A3C: Asynchronous Advantage Actor Critic algorithm (better than DQN?)

https://arxiv.org/pdf/1602.01783.pdf

https://youtu.be/xXP77QiHFTs

https://www.youtube.com/watch?v=gMpK7IOvHUc&t=76s