Cognited Legenie Model	
1) Preproses deta ito 45 file.	
- loop thugh all rings	Sperl
- Nerria to 64x64. 2 count to RoB.	Max
-any label + (1=cet 0=not cet).	tue lein
- Court to arry	Has.
- tran_test Split () 80; tring }	
20% testing	
h 5 Cresta file	
) Sad date out of hs.	
	6. Pictures.
) Slages: train_x= (207, 64, 64, 3) 20	E. Pictures.
Shape: $4vain_x = (207, 64, 64, 3)$ (labels): $4vain_x = (207, 1) + []$ (4 vert	u Vojn
4	cut.
tet - x = (50 - ,-)	
tet ~ x = (50) test - y = (50 ,1)	

Von fletten into a metris:

train-1x = (209, 64, 64, 3)

$$Z^{(i)} = w^{T} x^{(i)} + b.$$

$$\hat{y} = a^{(i)} = O(Z^{(i)}) \Rightarrow \text{Nedution}$$

$$L(a^{(i)}, y^{(i)}) = -y^{(i)} \log(a^{(i)}) - (1-y^{(i)}) \log(1-a^{(i)})$$

$$Loos Fin$$

Ultimbels this is a MIE problem

CMA XIMM LIKEZIHOOD ESTIMATED

Estudo =) $\hat{y} = \sigma(w^T x + b)$.

 $\sigma(z) = \frac{1}{1+c^{-2}}$

What is He libelihood fon?

Definition: { (data (1) = ? brien Some Whenever probablish of use lessure we true of what is the probability of getty the data, of we arms of

Assimple me have x, untit is probable of y / 9 Bic me're ming y to estate y.

Ble He mapping of x to yhot to CO, II, is for true intervalable

Neumon of on Clampation being 0 or 1, and that the

gir He probability of we Cat.

In legitive represent, sessence l(y=1|x)=y=o(z)is a 800000014 Pust provident

Success on failure.

: Ply=0127= 1-9. :The main Reason is the probabilities one by other cuise
we could see a Softmax Fow inited of rigorrow's

Mor we have the true, but what is $f(y=|1|x)=\hat{y}. \qquad f(y=0|x)=1-\hat{y}.$ $f(y=y|x)=\hat{y}'. (1-\hat{y})''^{2}$ $\therefore \hat{y} y=1 \Rightarrow \hat{y}'' (1-\hat{y})''=\hat{y}$ $y y=0 \Rightarrow \hat{y}^{0}. (1-\hat{y})' = 1-\hat{y}$

in $\{(Y=Y|Y)=\hat{y}^2|1-y^2\}^{1-y}$. Likelihood fan Live Lux to fint he MLE for \hat{y} . Tale log.

Not fit X, as we and \hat{b} .

Log $\{(Y=y|x)\}=y|\log \hat{y}+(1-y)|\log (1-\hat{y})$ Igh (w,b)) = 4 log g + (1-y) log (1-ý). enu fon
or Willhad? - log probubility of the observed data y= 0(2)=0 (~12+6) gian farmets 0(2)= 1 1+e-2 So we need to musuing MLE of log (L(le, b)) -Leg [((/ - y /2, w, b)) = y leg (o (w T x + b) + (1-y) legs (o (w T x + b)) + (1-y) le 2000 and dL(W,b) g but flore one po lo's Je db. wi--lun So fit, recall we have m examples: $log(L(w,b)) = \iiint_{i} y^{(i)} log(\hat{y}^{(i)}) + (l-y^{(i)}) log(l-\hat{y}^{(i)})$ Now Counter He Usin reale and Her How are $\frac{\partial u}{\partial x^{i}} = \frac{\partial u}{\partial x$ L(w,b)

$$= \left(\frac{y}{1-y} \frac{y-y\hat{y}-\hat{y}+y\hat{y}}{\hat{y}(1-\hat{y})}\right)\left(\frac{y}{1}\right)$$

$$= \left(\frac{\cancel{2}}{\cancel{2}} \frac{\cancel{3} - \cancel{y}}{\cancel{y}(1-\cancel{y})}\right) \left(\sigma(\cancel{z^{(i)}}) \left(1 - \sigma(\cancel{z^{(i)}})\right) \left(\cancel{x^{(i)}}\right)$$

$$= \left(\frac{\cancel{2}}{\cancel{y}} \frac{\cancel{y^{(i)}} - \cancel{y^{(i)}}}{\cancel{y^{(i)}}}\right) \left(\cancel{x^{(i)}}\right) \left(\cancel{x^{(i)}}\right) \left(\cancel{x^{(i)}}\right)$$

$$= \left(\frac{\cancel{y}}{\cancel{y}} \frac{\cancel{y^{(i)}} - \cancel{y^{(i)}}}{\cancel{y^{(i)}}}\right) \left(\cancel{x^{(i)}}\right) \left(\cancel{x^{(i)}}\right) \left(\cancel{x^{(i)}}\right)$$

$$\frac{\partial}{\partial w} = \left(\frac{y^{(i)} - \hat{y}^{(i)}}{1 - i} \right) \chi^{(i)}$$

hinterly we can get
$$\frac{\partial}{\partial b} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial t} \cdot \frac{\partial Z}{\partial t}$$

$$\Rightarrow \frac{\partial}{\partial b} = \left(\frac{M}{2}y^{(i)} - y^{(i)}\right)$$

★ Step 4: Could We Just Use Gradient Ascent?

Yes, we **could** use gradient ascent to maximize $\log L(w,b)$ directly. However:

- Most ML frameworks (like TensorFlow, PyTorch, Scikit-Learn) are built around minimization.
- Using a minimization approach keeps it consistent with other models (like linear regression, which minimizes squared error).
- It's easier to interpret a "loss function" than a "likelihood function."

★ Step 5: Summary

Approach	Goal	Why We Do It
MLE (Maximize Likelihood)	Find parameters that maximize $\log L(w,b)$	Theoretical foundation for logistic regression
Gradient Descent (Minimization)	Find parameters that minimize the $oldsymbol{negative}$ log-likelihood $oldsymbol{J}(w,b)$	Works better with standard ML optimization algorithms
Why Negative?	So we can minimize instead of maximize	Consistent with other ML models (e.g., squared error in linear regression)

Allugh eno here we unt to maximize mit

it who more logid some to mil to mininge the loss overnu.

Loops for = -log (L(W,b))

= 1 2 = 5 Lyi) - yj/ki)

 $\frac{\partial L}{\partial b} = \mathcal{Z}(y(i) - y(i))$

We cent to any the own for hote the loss ptive

J(w,b)= 1 2 L(w,b).

 $\frac{25}{2w} = \frac{1}{m} = \frac{y(i)}{y(i)} = \frac{y(i)}{x^{(i)}}$

 $\frac{2J}{2i} = \frac{1}{m} \left(y^{(i)} y^{(i)} \right)$

Rynnid Fon is nonlein, let jet not =0 and Solve for walb. USE ITERATIVE OFTIMIZATION TEXTENDANS INSTEAD

brazione DESENT Imye

Revision Step does

W= W-d dw. To Minimuse J (vo, b) ad

lewig rule.

Neurining Witelihood

b- b- x \frac{725}{26}.

Here by of a Stag to tale.

Differt Kings lile needom wetherd to fit bot is expecsive

[TANOUNT, ETC. CAIC 2]

NOTES

-: TRAND (OFAFICAT VESCONT)

Why it work by y is the devotice deputs on w, and b,

So it'll uplite itself us it your.