Induce Pedagogical Strategy Using Reinforcement Learning

Min Chi, Shitian Shen
591/791: ML for User Adaptive System
March, 2017

Reinforcement Learning in practice

- Induce policy to make Intelligent Tutoring Systems:
 - Adaptive
 - Effective
- Reinforcement Learning in practice:

What is the best **action** for the **agent** (tutor)
to take in any **state** (learning context)
in order to maximize **reward** (student learning)

- Real dataset
- Including all the necessary steps for RL project

Process

Markov Decision Processes (MDPs)

```
S = \{S_1, ..., S_n\} state space;
Student Competence, Concept Difficulty
```

$$A = \{A_1, ..., A_m\}$$
 action space;
 $\{Elicit, Tell\}$

R: reward

Student Learning Gain

T: is a set of transition probabilities between states.

Output:

 $\pi: S \to A$ is defined as a policy.

An Example Log File

Pretest =0

t1	T: Which principle will help you calculate the KE of the rock?
t2	S: Definition of energy.
t3	T: No, we should apply the Definition of Kinetic Energy
t4	T: Please write the equation
t5	S: KE=0.5*m*v1^2
t6	T: Go ahead calculate the equation.
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J
t423	T: SInce the kinetic energy

No State:

Action: {Elicit, Tell}

Reward:

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	
t6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	
t423	T: SInce the kinetic energy	Tell

State feature:

Student Competence

Pretest =0

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	\
t6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	V
t423	T: Since the kinetic energy	Tell

Pretest =0

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	V
t6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	V
t423	T: Since the kinetic energy	Tell

Number of Correct

Pretest =0

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	
t6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	V
t423	T: Since the kinetic energy	Tell

0

O

1

• • •

55

IC CTATE LINUVEDOITY

Number Correct → Student Competence if ≤ 40, *Low*; otherwise, *High*

t1	T: Which principle will help you calculate the KE of the rock?	Elicit	U	Low
t2	S: Definition of energy.			
t3	T: No, we should apply the Definition of Kinetic Energy		0	Low
t4	T: Please write the equation	Elicit		
t5	S: KE=0.5*m*v1^2		1	Low
t6	T: Go ahead calculate the equation.	Elicit		
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J			
			•••	•••
t423	T: Since the kinetic energy	Tell	55	High
	Posttest =0.8			

State: Student Competence {*Low, High*}

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	
t 6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	
t423	T: Since the kinetic energy	Tell

Low

Low

Low

• •

High

State: Student Competence {*Low, High*}

Action: {Elicit, Tell}

Reward:

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	
t6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	
t423	T: Since the kinetic energy	Tell

Posttest = 0.8

Low ↓ Elicit Low ↓ Elicit Low ↓ Elicit High

⊥ Tell

Reward: Normalized Learning Gain (NLG) X100

Pretest =0

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	
t6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	
t423	T: Since the kinetic energy	Tell

$$NLG = \frac{\text{Posttest} - \text{Pretest}}{1 - \text{Pretest}}$$

$$NLG \times 100$$

$$= \frac{0.8 - 0}{1 - 0} \times 100 = 80$$

Posttest = 0.8

State: Student Competence {*Low, High*}

Action: {Elicit, Tell}

Reward: NLG × 100

t1	T: Which principle will help you calculate the KE of the rock?	Elicit
t2	S: Definition of energy.	
t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	S: KE=0.5*m*v1^2	
t6	T: Go ahead calculate the equation.	Elicit
t7	S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	
t423	T: Since the kinetic energy	Tell

Posttest = 0.8

Low ↓ Elicit,0 Low ↓ Elicit,0 Low ↓ Elicit,0 High

⊥ Tell,80

nc state university one student's Log File - One **Trajectory**

Training Dataset Trajectories

$$Low \xrightarrow{\text{Elicit}, 0} Low \xrightarrow{\text{Elicit}, 0} Low \xrightarrow{\text{Elicit}, 0} Low \xrightarrow{\text{Elicit}, 0} + High^{\text{Tell}, 80} + High^{\text{Tell}, 80} + Low \xrightarrow{\text{Elicit}, 0} Low \xrightarrow{\text{Elicit}, 0} + Low \xrightarrow{\text{Elicit}, 0} + Low \xrightarrow{\text{Elicit}, 0} + High^{\text{Tell}, 20} + Low \xrightarrow{\text{Elicit}, 0} + Low$$

$$High \xrightarrow{Elicit, 0} High \xrightarrow{Tell, 0} High \xrightarrow{Elicit, 0} High \xrightarrow{Elicit, -30}$$

Training Dataset Trajectories

$$High \xrightarrow{Elicit, 0} High \xrightarrow{Tell, 0} High \xrightarrow{Elicit, 0} High \xrightarrow{Elicit, -30}$$

Transition Probabilities T estimated from Training Dataset.

17

An Example of P(Low|High, Elicit)

$$Low \stackrel{Elicit, 0}{\longrightarrow} Low \stackrel{Elicit, 0}{\longrightarrow} High \stackrel{Elicit}{\longrightarrow} Low = \frac{1}{4} High \stackrel{Elicit}{\longrightarrow} Low + \# High \stackrel{Elicit}{\longrightarrow} High = \frac{1}{4}$$

An Example Single-feature Policy

$$< Low > \rightarrow Tell$$

 $< High > \rightarrow Elicit$

Two state features:

Competence; Difficulty

4 states:

```
{<Low, <u>Easy</u>>, <Low, <u>Difficult</u>>,
```

<High, <u>Easy</u>>, <High, <u>Difficult</u>>}

t3	T: No, we should apply the Definition of Kinetic Energy	
t4	T: Please write the equation	Elicit
t5	s: KE=0.5*m*v1^2	
t6	T: Go ahead calculate the equation.	Elicit
t6 t7	T: Go ahead calculate the equation. S: 0.5*0.6kg*2.0 m/s^2 = 1.2 J	Elicit

Posttest = 0.8

ile

```
<Low, <u>Easy</u>>
↓ Elicit, 0
```

```
<Low, <u>Difficult</u>>

↓ Elicit, 0
```

<High, <u>Difficult</u>>

⊥ Tell, 80

A Two-Feature Policy Example

```
< Low, Easy > \rightarrow Elicit
< High, Difficult > \rightarrow Elicit
< High, Easy > \rightarrow Tell
< Low, Difficult > \rightarrow Tell
```

Value Iteration

1. Initial value of each state: V(s)

Value Iteration

- Initial value of each state: V(s)
- 2. Update each state's V(s) using neighboring V(s')s:

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \cdot V(s') \right]$$

landing on a neighboring state.

Probability of Reward/Cost of going to the neighboring state.

Value of the neighboring state

Value Iteration

- 1. Initial value of each state: V(s)
- 2. Update each state's V(s) using neighboring V(s')s:

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) \ [R(s,a,s') + \gamma \cdot V(s')]$$

Probability of Reward/Cost of going landing on a to the neighboring neighboring state state.

3. Induce the policy:

$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma \cdot V(s') \right]$$
For any state s, take an action to
the neighboring s' with highest V(s')
Adapted from: Sutton & Barto (1998)

24

Purpose

- Induce policy to make Intelligent Tutoring System:
 - Adaptive: Feature Discretization/Selection/Extraction
 - Effective: ECR
- Reinforcement Learning in practice:
 - What is the best action for the agent (tutor)
 to take in any state (learning context)
 in order to maximize reward (student learning)
 - Real dataset
 - Including all the necessary steps for RL project.

Policy Evaluation

Expected Cumulative Reward (Tetreault, 2006)

$$ECR = \sum_{i=1}^{m} \frac{N_i}{N_1 + N_2 + \dots + N_m} \times V^{\pi}(S_i)$$

Where S_i is the starting state, N_i is the times that S_i exists as starting state

The higher ECR of the policy means the better policy

Shitian's Work

Deep Thought (Dr. Barnes, 2015)

- A rule-based tutoring system for teaching logic proof problems
- Student solves 1-3 problems per level (Total 6 levels)
- Level score ($LevelScore_i$, $i \in [1,6]$) is given for each student based on his/her performance on the last problem in the level i

Problem Solving

Work Example

Deep Thought Data Sets

- Total 303 students
- Average time spend in tutor is 416.60 minutes
- Total 4 categories and 124 features
- Action set
 - should it ask student to solve the next problem (PS)
 - should it provide an example to show the student how to solve the next problem (WE)

Four categories: 124 State Features

- Autonomy: the amount of work done by the student
 - PSCount,
 - PercPS
- Temporal Situation: the time related information about the work process
 - TotalTime,
 - avgPSTime,
- Student Action: the statistical measurement of student's behavior
 - AppCount,
 - hintCount
- Performance: Students' performance on current problem
 - ruleScore,
 - wrongApp

Feature Discretization

Median split

```
TotalTime [0: <=172.34, 1: >172.34] avgTime [0: <=6.25, 1: >6.25] hint [0: <=0.04, 1: >0.04]
```

Kmeans

- Data points didn't uniformly distribute
- Particular data points may group together
- Avoid unbalanced clustering

CurrPro_NumProbRule [0: close to 4.1, 1: close to 6.4]

Feature-Selection: Correlation Metrics

Given labeled data, we can compute some simple score S(i) that measures how informative each feature X is about class labels Y.

• Chi-square (CHI) (Zibran, 2007)

$$\chi^2 = \sum_i \frac{(X_i - Y_i)^2}{Y_i}$$

Information Gain (IG) (C. Lee, 2010)

$$IG(X,Y) = H(Y) - H(Y|X)$$

Feature-Selection: Correlation Metrics

Information Gain Ratio (IGR) (J. T. Kent, 1983)

$$IGR(X,Y) = \frac{H(Y) - H(Y|X)}{H(X)}$$

Symmetric Uncertainty (SU) (L. Yu, H. Liu, 2003)

$$SU(X,Y) = \frac{H(Y) - H(Y|X)}{H(X) + H(Y)}$$

Weighted Information Gain (WIG) (We proposed)

$$WIG(X,Y) = \frac{H(Y) - H(Y|X)}{(H(X) + H(Y))H(X)}$$

Correlation-based Feature Selection Methods

- Feature Selection for model-based RL
- Apply correlation between current optimal feature set and potential feature as the feature selection criteria
- Forward feature selection strategy

10 Correlation-based Methods

- Explore both high and low correlation
- Obtain 10 correlation-based feature selection methods (5 correlation metrics × 2 correlation types)

	High	Low
CHI	CHI-High	CHI-Low
IG	IG-High	IG-Low
IGR	IGR-High	IGR-Low
SU	SU-High	SU-Low
WIG	WIG-High	WIG-Low

Correlation-based Methods: Algorithm

Algorithm

14:

```
Require: \Omega: Feature Space; \mathcal{D}: Training Data;
```

 \mathcal{N} : Maximun Number of Selected Features;

Ensure: S^* : *Optimal Feature Set*

```
for f_i in \Omega do
1:
2:
          ECR_i \leftarrow CalculateECR(\mathcal{D}, f_i)
     end for
3:
     Add f^* with highest ECR to S^*
4:
```

while $SIZE(S^*) < \mathcal{N}$ do 5:

```
for f_i in \Omega - S^* do
6:
               C_i \leftarrow CalculateCORRELATION(S^*, f_i, m)
7:
8:
           end for
          \mathcal{F} \leftarrow SelectTop(C, 5, reverse)
9:
           for f_i in \mathcal{F} do
10:
11:
              ECR_i \leftarrow CalculateECR(\mathcal{D}, \mathcal{S}^* + f_i)
12:
           end for
           Replace S^* by S^* + f_i with highest ECR
13:
      end while
```

Initialization

Feature Selection

Updating Feature Set

Ensemble Methods

- Integrate multiple selection methods
- 10 correlation-based methods
- 4 other RL based methods

Result: High vs Low correlation

Results: Overall Evaluation

The Assigned Project:

Process

Process

Goals for Feature Selection or Extraction

- Representing interactive environment effectively (Maximize ECR)
- Please Note:
 - Discrete features
 - Maximum feature size is 8

Suggestion: Discretization Procedure

- Feature Selection
 - Discretize features first
 - Explain how to discretize features in report
 - Keep the original names of selected features
- Feature Extraction
 - Not necessary to discretize features first
 - Explain how to extract features in report
 - Get a new name the extracted features: f1, f2....

To run MDP package, all features must be discretized.

Suggested: Feature Selection

- Discrete features (median split, distribution)
- Filtering approach
 - Design a ranking function and select top n features
 - ECR of each single-feature policy
- Forward feature selection
 - Good selection strategy
 - Use ECR as a selection standard
 - Maintain a limited search space
 - · Apply correlation, mutual information gain as the condition

Try other methods.

Additional points for exploring novel methods.

Suggested: Feature Extraction

- PCA
 - How to deal with discrete features
 - Factor analysis of mixed data (FAMD)
- Fuzzy Clustering
 - Data point can belong to multiple clusters
 - Specify distance function, handing continuous and discrete features
- Autoencoder
 - Do Not recommend
- Output Discrete Features
 - Explain how to extract features in report
 - Transfer extracted features into discrete ones

Suggested: Feature Extraction

- Unsupervised feature extraction
- Construct connection between feature extraction with reinforcement learning
- Apply ECR as the condition in the feature extraction process

Markov Decision Process

1	student	currProb	course	session	priorTutorAc	reward	Level	probDiff
2	0006-F14	1.0.1.0	226-001-BAR	1	PS	0	1	0
3	0006-F14	1.0.2.0	226-001-BAR	1	WE	0	1	0
4	0006-F14	1.0.3.0	226-001-BAR	1	WE	0	1	0
5	0006-F14	1.0.4.0	226-001-BAR	1	PS	-94.078947	1	0
6	0006-F14	2.1.1.0	226-001-BAR	1	PS	0	2	1
7	0006-F14	2.1.2.0	226-001-BAR	1	WE	0	2	1
8	0006-F14	2.1.3.0	226-001-BAR	1	PS	161.81004	2	1
9	0006-F14	3.1.1.0	226-001-BAR	1	WE	0	3	1
10	0006-F14	3.1.2.0	226-001-BAR	1	WE	0	3	1
11	0006-F14	3.1.3.0	226-001-BAR	1	PS	-43.265073	3	1

States:

- Level=1, probDiff=0, then state = '1:0',
- Level=2, probDiff=1, then state = '2:1',
- Level=3, probDiff=1, then state = '3:1'

Policy Example

```
Policy:
state -> action, value-function
1:0 -> WE, 36.2980141792
2:1 -> PS, 50.6234894691
3:-1 -> WE, 30.7327270058
4:1 -> PS, 38.0276536834
5:1 -> PS, 31.1271670497
6:1 -> PS, 38.7017874912
3:1 -> PS, 37.5870989962
2:-1 -> WE, 28.4686139413
4:-1 -> WE, 26.6276418488
5:-1 -> WE, 26.4065388562
6:-1 \rightarrow WE, 0.0
ECR value: 36.2980141792
```

Policy Visualization- For your Presentation

Policy 1

64 rules associated with WE (White)
21 rules associated with PS (Black)
43 no rules (Gray)

Policy 2

18 rules associated with WE 48 rules associated with PS 30 no rules

Demo

Q & A

Thank you!