TJU-MM Submission to Pre-training for Video Understanding Challenge 2021

Anonymous submission Tianjin University

Anonymous submission Tianjin University

1 METHOD

As shown in Fig 1, our method includes feature extraction, transformer encoder, cross-encoder, and decoder.

Figure 1: Illustration of our proposed framework.

Pre-processing. To obtain more informative features, we employ three types of feature extractors. Specifically, we adopt the Bert-base [2] to extract text information for all input transcripts during training. For the visual information, we use the CLIP [4] model to extract frame-level features, the S3D [7] and TimeSformer [1] are employed to extract clip-level features. The S3D and TimeSformer are pre-trained on the large-scale HowTo100M dataset [5] and the S3D is trained with the MIL-NCE loss. We sample videos at 1 fps and resize the spatial size of each frame to 224×224 . The maximum number of sampled frames is 64, and the maximum input words is 48.

Model Details. We employ five pre-training objectives proposed in UniVL [3]: (1) video text joint, (2) conditioned masked language model, (3) conditioned masked frame model, (4) video-text alignment, and (5) language reconstruction. The transformer encoder consists of 6 attention blocks. The cross-encoder can combine visual and text features and fed them into the decoder.

2 EXPERIMENTS

2.1 Details.

We pre-train our model on the ACTION dataset [6] and fine-tune it on the MSR-VTT dataset [8]. During pre-training, we train our model with the multi-stage learning and a warm-up strategy. The initial learning rate is 1e-5.

Anonymous submission Tianjin University

Anonymous submission Tianjin University

Table 1: The performance of video caption task on MSR-VTT

	Models	B@4	M	С	S
validation dataset	UniVL[3]	41.79	28.94	50.04	
	UniVL (s3d+CLIP)	45.28	29.92	54.72	
	UniVL (s3d+CLIP+Res+ViT)	45.98	29.93	55.93	
test online	UniVL s3d+CLIP	21.32	17.26	23.55	5.55
	UniVL (s3d+CLIP+Res+ViT)	21.37	17.32	23.84	5.45
	model result fusion	22.80	18.87	27.95	6.40

2.2 Results.

We show the performance of our method in Table 1.The UniVL model with s3d and CLIP feature fuision are evaluated on validation dataset and test server, and it's BLUE-4 performance is 45.28 and 21.32 respectively. the BLUE-4 performance of UniVL(s3d+CLIP+Res+ViT) is 45.98 on validation dataset and 21.37 on test server.By ensembling more models like UniVL(s3d+CLIP) and UniVL(s3d+CLIP+Res+ViT), the BLUE-4 can be further boosted.

REFERENCES

- Gedas Bertasius, Heng Wang, and Lorenzo Torresani. 2021. Is Space-Time Attention All You Need for Video Understanding? arXiv preprint arXiv:2102.05095 (2021).
- [2] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT. 4171–4186.
- [3] Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan Duan, Tianrui Li, Jason Li, Taroon Bharti, and Ming Zhou. 2020. Univl: A unified video and language pre-training model for multimodal understanding and generation. arXiv preprint arXiv:2002.06353 (2020).
- [4] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. 2021. Clip4clip: An empirical study of clip for end to end video clip retrieval. arXiv preprint arXiv:2104.08860 (2021).
- [5] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef Sivic. 2019. Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. In Proceedings of the IEEE International Conference on Computer Vision. 2630–2640.
- [6] Yingwei Pan, Yehao Li, Jianjie Luo, Jun Xu, Ting Yao, and Tao Mei. 2020. Autocaptions on GIF: A Large-scale Video-sentence Dataset for Vision-language Pretraining. arXiv preprint arXiv:2007.02375 (2020).
- [7] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. 2018. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In Proceedings of the European Conference on Computer Vision. 305– 221.
- [8] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description dataset for bridging video and language. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 5288–5296.