2021 HR Analytics Case Study

How "Anonymous" get a better prediction towards their candidates

Purwadhika Jakarta Batch 11

William Andreas

JOB CONNECTOR

Data Science

&

Machine Learning

The problem

Company

An anonymous company that's dynamic in Big Data and Data Science.

Context

- Needs to enlist data scientists.
- Needs to know which of these candidates are really wants to work for the company or not.

Problem statement

- To predict whether or not candidates alter their occupations after they have completed their training.
- Sorting out candidates that are false predicted

Challenges deep-dive

Challenge 1

Exploratory Data Analysis

A thorough examination meant to uncover the underlying structure of a data set and exposes trends, patterns, and relationships that are not readily apparent.

Challenge 2

Cleaning and **Pre-Processing**

- Transform the raw dataset into an understandable format.
- Improve data efficiency.

Challenge 3

Modeling

Best possible predictive machine learning model to answer those in need.

Tackle Challenges

Steps

- Load Dataset
- 2. EDA
- 3. Handling Columns
- 4. Splitting Dataset
- 5. Handling Missing Values
- 6. Handling Outliers
- 7. Handling Imbalanced Data
- 8. Encoding
- Feature Selection
- 10. Building Machine Learning Models
- 11. Hyperparameter Tuning
- 12. Evaluating Best Model
- 13. Saving and Deploy Model

Exploratory Data Analysis

Dataset
https://www.kaggle.com/arashn
ic/hr-analytics-job-change-of-data-a-scientists

enrollee_id	city	
city_ development _index	gender	
relevent_experience	enrolled_university	
education_level	major_discipline	
experience	company_size	
company_type	lastnewjob	
training_hours	target	

Cleaning and Pre-Processing

Steps

- Drop rows containing ID and training hours of candidates.
- Impute missing values using their most frequent values.
- Encode categorical columns of data to numerical using Binary Encoder, and ordinal columns of data to numerical using Ordinal Encoder.
- Scale numerical column of data using RobustScaler.
- 5. Generate polynomial and interaction features using PolynomialFeatures for numerical column of data after it's scaled.

Modeling

Supervised Machine Learning Classification

Model	Before	After
Logistic Regression	0.656	0.652
Decision Tree Classifier	0.496	0.697
Random Forest Classifier	0.454	0.658
Support Vector Classifier	0.641	0.714
Ada Boost Classifier	0.576	0.580
Gradient Boosting Classifier	0.582	0.607
XGBoost Classifier	0.584	0.612
K Nearest Classifier	0.650	0.521

Implementation

Decision Tree Classifier

Confusion Matrix

Decision Tree Classifier

Confusion Matrix

Decision Tree Classifier

Comparison

Predicted not changed actually changed

Before: 468/(2229+468)*100 = 17.35%

After: 179/(1560+179)*100 = 10.29%

Predicted changed actually not

Before: 648/(487+648)*100 = 57.09%

After: 1317/(776+1317)*100 = 62.92%

Impact

Trade-off
7.06% reduction in predicted not changed actually changed

5.83% addition in predicted changed actually not

Problem Solved!

Thank You