Лекция 25

Уравнения эллиптического типа

Уравнение Лапласа

Классическим примером уравнения эллиптического типа является уравнение Лапласа

$$\Delta u(x,y,z) = 0. (1)$$

Функция $u \in C^2(\Omega)$ называется гармонической в открытой ограниченной области $\Omega \subset \mathbf{R}^3$, если она удовлетворяет уравнению Лапласа (1) во всех точках области Ω ; функция $u \in C^2(\Omega)$ называется гармонической в неограниченной области $\Omega \subset \mathbf{R}^3$, если она удовлетворяет уравнению Лапласа (1) и равномерно стремится к нулю при $x^2 + y^2 + z^2 \to \infty$. Последнее означает, что для любого $\varepsilon > 0$ существует R_ε , вообще говоря, зависящее от ε такое, что

$$|u(x,y,z)| < \varepsilon$$

при $x^2 + y^2 + z^2 > R_{\varepsilon}^2$.

Справедлива следующая

Лемма 1. Пусть $M_0(x_0,y_0,z_0)$, M(x,y,z) — точки пространства ${\bf R}^3$, Ω — открытая область в ${\bf R}^3$. Тогда функция

$$u = \frac{1}{r} = \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}}$$

– гармоническая функция переменных (x,y,z) в любой области Ω , не содержащей точки M_0 .

Для доказательства леммы достаточно заметить, что

$$\frac{\partial u}{\partial x} = -\frac{x}{r^3}, \frac{\partial u}{\partial y} = -\frac{y}{r^3}, \frac{\partial u}{\partial z} = -\frac{z}{r^3},$$

$$\frac{\partial^2 u}{\partial x^2} = -\frac{1}{r^3} + \frac{3x^2}{r^5}, \frac{\partial^2 u}{\partial y^2} = -\frac{1}{r^3} + \frac{3y^2}{r^5}, \frac{\partial^2 u}{\partial z^2} = -\frac{1}{r^3} + \frac{3z^2}{r^5},$$

откуда следует, что функция u вида (2) удовлетворяет (1) во всех точках, где $r \neq 0$.

Функция u вида (2) называется фундаментальным решением уравнения Лапласа (1).

Замечание. В двумерном случае $\Omega \subset \mathbf{R}^2, \ u = u(x,y), \ \Delta u = u_{xx}(x,y) + u_{yy}(x,y)$ фундаментальным решением называется функция

$$u = \ln \frac{1}{r} = \ln \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}},$$

удовлетворяющая уравнению Лапласа

$$u_{xx} + u_{yy} = 0 \tag{2}$$

во всех точках $M(x,y) \in \Omega$, отличных от $M_0(x_0,y_0,z_0)$.

Формулы Грина и интегральное представление произвольной функции

Пусть Ω — открытое ограниченное подмножество в \mathbf{R}^3 с границей Γ , в каждой точке которой определен единичный вектор внешней нормали $\vec{n}\{n_1,n_2,n_3\}$ ($n_1=\cos(nx),\,n_2=\cos(ny),\,n_3=\cos(nz)$ — направляющие косинусы нормали \vec{n}). Для произвольных функций $P,Q,R\in C^1(\overline{\Omega})$ справедлива формула Гаусса—Остроградского

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iint_{\Gamma} [P\cos(nx) + Q\cos(ny) + R\cos(nz)] d\Gamma.$$
 (3)

Пусть $u, v \in C^2(\overline{\Omega})$. Положим в (3)

$$P = u \frac{\partial v}{\partial x}, Q = u \frac{\partial v}{\partial y}, R = u \frac{\partial v}{\partial z},$$

тогда

$$\iiint_{\Omega} \left[\frac{\partial}{\partial x} \left(u \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(u \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(u \frac{\partial v}{\partial z} \right) \right] dx dy dz =$$

$$\iint_{\Gamma} u \left[\left(\frac{\partial v}{\partial x} \right) \cos(nx) + \left(\frac{\partial v}{\partial y} \right) \cos(ny) + \left(\frac{\partial v}{\partial z} \right) \cos(nz) \right] d\Gamma = \iint_{\Gamma} u \frac{\partial v}{\partial n} d\Gamma.$$

Применяя к первому интегралу этого уравнения формулы дифференцирования произведения, получим первую формулу Грина

$$\iiint_{\Omega} \left[\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \right) + \left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \right) + \left(\frac{\partial u}{\partial z} \frac{\partial v}{\partial z} \right) \right] dx dy dz = \iint_{\Gamma} u \frac{\partial v}{\partial n} d\Gamma - \iiint_{\Omega} u \Delta v dx dy dz . \tag{4}$$

Если в первой формуле Грина (4) поменять u и v местами и вычесть из получившегося выражения (4), то получим вторую формулу Грина

$$\iiint_{\Omega} [u\Delta v - v\Delta u] dx dy dz = \iint_{\Gamma} \left[u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right] d\Gamma.$$
 (5)

Справедлива

Лемма 2. Пусть $u \in C^2(\overline{\Omega}), \Omega$ — открытое ограниченное множество в ${\bf R}^3$ с регулярной границей Γ. Тогда для любой точки $M_0(x_0,y_0,z_0) \in \Omega$ справедливо представление

$$u(x_0, y_0, z_0) = \iint_{\Gamma} \left[\frac{1}{r} \frac{\partial v}{\partial n} - u \frac{\partial \frac{1}{r}}{\partial n} \right] d\Gamma - \frac{1}{4\pi} \iint_{\Omega} \frac{\Delta u}{r} dx dy dz, \qquad (6)$$

где $r=|MM_0|=\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}$ — расстояние между точками M(x,y,z) и $M_0(x_0,y_0,z_0)$ (M_0 — точка наблюдения, M — переменная точка интегрирования).

Доказательство. Пусть $M_0\in\Omega,\,B_{\varepsilon}(M_0)$ — шар радиуса $\varepsilon>0$ с центром в точке M_0 такой, что его замыкание $\overline{B}_{arepsilon}(M_0)\!\subset\!\Omega$. Обозначим $\Omega_{arepsilon} = \Omega \setminus \overline{B}_{arepsilon}(M_0)$ — открытое ограниченное подмножество в ${f R}^3$ с границей Γ_{ε} = $\Gamma \cup S_{\varepsilon}(M_0)$, $S_{\varepsilon}(M_0)$ — сфера радиуса $\varepsilon > 0$ с центром в точке M_0 . Тогда, как было отмечено выше, функция $v = \frac{1}{r} = \frac{1}{|MM_0|}$ как функция переменных (x,y,z) будет гармонической в Ω_{ε} и, в частности, будет выполнено

$$\Delta \frac{1}{r} = 0, \ (x, y, z) \in \Omega_{\varepsilon}. \tag{7}$$

Поэтому, применяя вторую формулу Грина (5) для $v = \frac{1}{n}$, получим в Ω_{ε}

$$\iiint_{\Omega_{\varepsilon}} \frac{\Delta u}{r} dx dy dz = \iint_{\Gamma} \left(\frac{1}{r} \frac{\partial u}{\partial n} - u \frac{\partial \frac{1}{r}}{\partial n} \right) d\Gamma + \iint_{S_{\varepsilon}} \left(\frac{1}{r} \frac{\partial u}{\partial n} - u \frac{\partial \frac{1}{r}}{\partial n} \right) d\Gamma.$$
 (8)

Рассмотрим в последнем выражении предел при $\varepsilon \to 0$.

Отметим, что из включения $u \in C^2(\overline{\Omega})$ по теореме Вейерштрасса существует такая положительная постоянная M > 0, что

$$\max_{\overline{O}} |u| \le M, \tag{9}$$

$$\max_{\overline{O}} |u_x| \le M, \max_{\overline{O}} |u_y| \le M, \max_{\overline{O}} |u_z| \le M,$$
 (10)

$$\max_{\overline{\Omega}} |u_x| \leq M, \max_{\overline{\Omega}} |u_y| \leq M, \max_{\overline{\Omega}} |u_z| \leq M,
\max_{\overline{\Omega}} |u_{xx}| \leq M, \max_{\overline{\Omega}} |u_{yy}| \leq M, \max_{\overline{\Omega}} |u_{zz}| \leq M.$$
(10)

Поэтому для любого единичного вектора \vec{n}

$$\max_{\overline{\Omega}}\left|\frac{\partial u}{\partial n}\right| = \max_{\overline{\Omega}} \mid u_x \cos(nx) + u_y \cos(ny) + u_z \cos(nz) \mid \leq \max_{\overline{\Omega}} \sqrt{u_x^2 + u_y^2 + u_z^2} \leq \sqrt{3}M \text{ , (12)}$$
 откуда

$$\max_{\overline{\Omega}} \left| \frac{\partial u}{\partial n} \right| \le \sqrt{3} M \,, \tag{13}$$

$$\max_{\overline{O}} |\Delta u| \le 3M . \tag{14}$$

Рассмотрим

$$I_{\varepsilon}^{(1)} = \iiint_{\Omega_{\varepsilon}} \frac{\Delta u}{r} dx dy dz = \iiint_{\Omega} \frac{\Delta u}{r} dx dy dz - \iiint_{B_{\varepsilon}(M_0)} \frac{\Delta u}{r} dx dy dz.$$
 (15)

В сферической системе координат с центром в точке M_0

$$\iiint\limits_{B_{\varepsilon}(M_0)}\frac{\Delta u}{r}dxdydz=\int\limits_{0}^{2\pi\pi}\int\limits_{0}^{\varepsilon}\frac{\Delta u}{r}r^2\sin\theta d\theta d\phi dr=\int\limits_{0}^{2\pi\pi}\int\limits_{0}^{\varepsilon}\Delta u\cdot r\sin\theta d\theta d\phi dr\,.$$

Поэтому с учетом (14)

$$\left| \iiint_{B_{\varepsilon}(M_0)} \frac{\Delta u}{r} dx dy dz \right| \leq \frac{3M\varepsilon^2 \cdot 2\pi \cdot 2}{2} = 6\pi M\varepsilon^2.$$

Сопоставляя последнюю оценку с (15), получим

$$\lim_{\varepsilon \to 0} I_{\varepsilon}^{(1)} = \iiint_{\Omega} \frac{\Delta u}{r} dx dy dz . \tag{16}$$

Рассмотрим далее

$$I_{\varepsilon}^{(2)} = \iint_{S_{\varepsilon}} \frac{1}{r} \frac{\partial u}{\partial n} d\Gamma . \tag{17}$$

На S_{ε} согласно (13) выполнено

$$r=\varepsilon, \left|\frac{\partial u}{\partial n}\right| \leq \sqrt{3}M$$
,

поэтому

$$|I_{\varepsilon}^{(2)}| \leq \frac{\sqrt{3}M}{\varepsilon} \cdot 4\pi\varepsilon^2 = 4\pi\sqrt{3}M\varepsilon.$$

откуда

$$\lim_{\varepsilon \to 0} I_{\varepsilon}^{(2)} = 0. \tag{18}$$

Пусть

$$I_{\varepsilon}^{(3)} = \iint_{S_{\varepsilon}} u \frac{\partial \frac{1}{r}}{\partial n} d\Gamma.$$

Очевидно, на $S_{\varepsilon}(M_0)$ r = ε и

$$\frac{\partial \frac{1}{r}}{\partial n} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \right) = \frac{1}{\varepsilon^2},$$

поэтому

$$I_{\varepsilon}^{(3)} = \frac{1}{\varepsilon^2} \iint_{S_{\varepsilon}} u d\Gamma . \tag{19}$$

По теореме о среднем

$$\frac{1}{\varepsilon^2} \iint_{S_{\varepsilon}} u d\Gamma = 4\pi \varepsilon^2 u(x_{\varepsilon}^*, y_{\varepsilon}^*, z_{\varepsilon}^*)$$
 (20)

где $M_{\epsilon}^*(x_{\epsilon}^*,y_{\epsilon}^*,z_{\epsilon}^*)$ – некоторая точка сферы $S_{\epsilon}(M_{\epsilon})$. Поскольку $M_{\epsilon}^*\to M_0$ при $\epsilon\to 0$, то

$$\lim_{\varepsilon \to 0} I_{\varepsilon}^{(3)} = 4\pi u(x_0, y_0, z_0). \tag{21}$$

Переходя к пределу в (8) при $\varepsilon \to 0$ и учитывая (15)–(19), (21), получим (6). Лемма доказана.

Список литературы

- 1. Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Основные дифференциальные уравнения математической физики. http://eqworld.ipmnet.ru/ru/library/mathematics/pde.htm.
- 2. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Hayka, 1977. http://eqworld.ipmnet.ru/ru/library/mathematics/pde.htm.