Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_st-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_2 - a_1 = 3$	3p
	$a_3 = 10$	2p
2.	$x_1 + x_2 = 4$, $x_1 x_2 = 1$	2p
	$4x_1x_2 - (x_1 + x_2) = 4 \cdot 1 - 4 = 0$	3 p
3.	$2^{2x+1} = 2^{-3} \Leftrightarrow 2x+1 = -3$	3p
	x = -2	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, multiplii de 15 sunt numerele 15, 30, 45, 60, 75 și 90, deci sunt 6 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{90} = \frac{1}{15}$	1p
5.	$m_{AB} = 0$, $m_{AC} = \frac{a-1}{3}$	2p
	$m_{AB} = m_{AC} \Leftrightarrow \frac{a-1}{3} = 0 \Leftrightarrow a = 1$	3 p
6.	$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow \sin B = \frac{4 \cdot \frac{\sqrt{3}}{2}}{4\sqrt{3}} =$	3p
	$=\frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} =$	2p
	=0-1=-1	3 p
b)	$A(x)A(y) = \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix} \begin{pmatrix} 0 & y \\ y & 0 \end{pmatrix} = \begin{pmatrix} xy & 0 \\ 0 & xy \end{pmatrix} =$	3 p
	$= xy \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = xyI_2, \text{ pentru orice numere reale } x \text{ și } y$	2p
c)	$A\left(3^{a}\right)A\left(3^{a+1}\right)A\left(3^{a+2}\right) = A\left(3^{3a+3}\right)$	3p
	$A(3^{3a+3}) = A(27) \Rightarrow 3^{3a+3} = 3^3$, de unde obţinem $a = 0$	2p
2.a)	$f = X^3 + X^2 + 2X - 4 \Rightarrow f(1) = 1^3 + 1^2 + 2 \cdot 1 - 4 =$	3 p
	=1+1+2-4=0	2 p

b)	$f(-2) = 0 \Rightarrow m = 4$, deci $f = X^3 + 4X^2 + 2X - 4$	3 p
	f(-3) = -27 + 36 - 6 - 4 = -1	2 p
c)	$x_1 + x_2 + x_3 = -m$, $x_1x_2 + x_2x_3 + x_3x_1 = 2$, $x_1x_2x_3 = 4$	3 p
	$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + x_1 + x_2 + x_3 = \frac{x_1 x_2 + x_2 x_3 + x_3 x_1}{x_1 x_2 x_3} + (x_1 + x_2 + x_3) = \frac{1}{2} - m, \text{ deci } m = 0$	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{(x+2017)'e^x - (x+2017)(e^x)'}{(e^x)^2} =$	3 p
	$= \frac{e^x (1 - x - 2017)}{(e^x)^2} = \frac{-(x + 2016)}{e^x}, \ x \in \mathbb{R}$	2p
b)	f(0) = 2017, f'(0) = -2016	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = -2016x + 2017$	3 p
c)	$f''(x) = \frac{x + 2015}{e^x}, x \in \mathbb{R}$	2p
	$f''(x) \ge 0$ pentru orice $x \in [-2015, +\infty)$, deci f este convexă pe $[-2015, +\infty)$	3 p
2.a)	$\int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} =$	3p
	$=\frac{1}{3}+1=\frac{4}{3}$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \operatorname{arctg} x + c$, unde $c \in \mathbb{R}$	2p
	$F(1) = \frac{\pi}{4} + c \Rightarrow c = 1$, deci $F(x) = \operatorname{arctg} x + 1$	3p
c)	$\int_{0}^{n} x f(x) dx = \int_{0}^{n} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \ln(x^{2} + 1) \Big _{0}^{n} = \frac{1}{2} \ln(n^{2} + 1)$	3р
	$\frac{1}{2}\ln\left(n^2+1\right) = \frac{1}{2}\ln 5$, deci $n^2+1=5$, de unde obţinem $n=2$	2p