

Lineare Algebra

für Informatiker [MA 0901]

Übungsblatt 2

Tutorium

T2.1 Bilden Sie – sofern möglich – mit den folgenden Matrizen und Vektoren

$$A = \begin{pmatrix} -2 & 3 \\ 4 & 1 \\ -1 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ 1 & -7 \end{pmatrix}, C = \begin{pmatrix} 1 & 4 \\ 0 & -2 \\ 3 & 5 \end{pmatrix} \text{ und } x = \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}, y = \begin{pmatrix} 8 \\ -5 \end{pmatrix}, z = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

die Ausdrücke

$$A+C, \quad 2B, \quad A(y+z), \quad C(-4z), \quad (A+C)y, \quad AB, \quad BA, \quad AC^\top, \quad A^2, \quad B^2, \quad x^\top A, \quad y^\top z, \quad yz^\top \,.$$

T2.2 Bestimmen Sie in (a)-(c) die Inversen der angegebenen Matrizen bzw. begründen Sie dass die Matrizen nicht invertierbar sind. Überlegen Sie in (d)-(g) wie Sie die Inversen der Matrizen bestimmen könnten, ohne die Rechnungen durchzuführen und ohne nochmals den Gauß-Algorithmus anzuwenden.

(a)
$$A := \begin{pmatrix} -1 & 1 & 4 \\ 1 & 1 & 1 \\ -2 & -1 & 1 \end{pmatrix}$$
, (b) $B := \begin{pmatrix} 2 & 2 & 1 \\ -2 & -3 & -2 \\ 3 & 3 & 2 \end{pmatrix}$, (c) $C := \begin{pmatrix} 3 & 1 & 4 \\ 2 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$

(d)
$$D := AB$$
, (e) $E := A^{\top}$, (f) $F = ((A^{-1}B^{-1})^{\top})^{-1}$ (g) $G = 3A$.

$$\text{Zur Selbstkontrolle: } A^{-1} = \begin{pmatrix} -2 & 5 & 3 \\ 3 & -7 & -5 \\ 1 & 3 & 2 \end{pmatrix}, \ B^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 2 & -1 & -2 \\ -3 & 0 & 2 \end{pmatrix}, \ C \text{ n. inv., } B^{-1}A^{-1}, \ (A^{-1})^\top, \ (B^{-1})^\top, \ (B^{-$$

T2.3 Bestimmen Sie den Rang folgender Matrizen:

(a)
$$\begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} -1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$

Zur Selbstkontrolle: a) 2, b) 0, c) 2, d) 3

T2.4 Lösen Sie die folgenden linearen Gleichungssysteme mit Hilfe des Gauß'schen Eliminationsverfahrens:

(a)
$$3x_1 - 5x_2 = 2$$

 $-9x_1 + 15x_2 = -6$
(b) $-2x_1 + x_2 + 3x_3 - 4x_4 = -12$
 $-4x_1 + 3x_2 + 6x_3 - 5x_4 = -21$
 $2x_1 - 2x_2 - x_3 + 6x_4 = 10$
 $-6x_1 + 6x_2 + 13x_3 + 10x_4 = -22$

Zur Selbstkontrolle: a)
$$L = \left\{ \begin{pmatrix} 2/3 \\ 0 \end{pmatrix} + s \begin{pmatrix} 5/3 \\ 1 \end{pmatrix} \mid s \in \mathbb{R} \right\}$$
, b) $L = \left\{ \begin{pmatrix} 1, 0, -2, 1 \end{pmatrix} \right\}$

Zusätzliche Übungen

Z2.1

- (a) Ist das Inverse einer invertierbaren symmetrischen Matrix wieder symmetrisch?
- (b) Folgt aus der Invertierbarkeit einer Matrix A stets die Invertierbarkeit der Matrix A^{\top} ?
- (c) Ist die Summe invertierbarer Matrizen stets invertierbar?
- (d) Ist das Produkt invertierbarer Matrizen stets invertierbar?
- **Z2.2** Gegeben sind die Matrizen

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 1 & -2 & 3 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}.$$

- (a) Berechnen Sie A^{-1} , B^{-1} , $(AB)^{-1}$ und $(2A)^{-1}$.
- (b) Ist A + B invertierbar?
- **Z2.3** Lösen Sie die folgenden linearen Gleichungssysteme mit Hilfe des Gauß'schen Eliminationsverfahrens:

Z2.4 Bestimmen Sie den Rang folgender Matrizen:

(a)
$$\begin{pmatrix} -2 & -3 \\ 4 & 6 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 3 & 3 & 3 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$

$$\text{(d)} \quad \left(\begin{array}{ccc}
 0 & 0 & 1 \\
 2 & 1 & 0 \\
 1 & 2 & 3
 \end{array} \right)$$

Z2.5 Bestimmen Sie die Lösungsmenge des folgenden LGS über \mathbb{R} in Abhängigkeit von $r \in \mathbb{R}$:

Tipp: Achten Sie darauf Fallunterscheidungen so lange wie möglich zu vermeiden!