3. előadás

Asszociatív adatszerkezetek

Asszociatív adatszerkezetek, a tömb, háromszögmátrixok és ritka mátrixok

Adatszerkezetek és algoritmusok előadás 2011. február 23.

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Dinamikus tömb

Kósa Márk és Pánovics János Debreceni Egyetem Informatikai Kar

Asszociatív adatszerkezetek

Az asszociatív adatszerkezetek olyan adatszerkezetek, amelyekből bizonyos adott feltételeknek eleget tevő részhalmazokat választhatunk ki. A legfontosabb művelet tehát a részhalmaz kiválasztásának, a részhalmazképzésnek a művelete

A részhalmazok – ahogy az ábrán is látható – átfedhetik egymást. Egyes esetekben a részhalmazok egyeleműek, máskor akárhány eleműek lehetnek.

Asszociatív

Kósa Márk Pánovics János

sszociatív

A tömb

Háromszögmátrixok

Ritka mátrixok

A tömb adatszerkezet

helyzete a lényeges.

hívjuk.

Kósa Márk

Asszociatív adatszerkezetek

Háromszögmátrixok

Ritka mátriyok

Dinamikus tömb

Ha mást nem mondunk, a tömb elemeinek az indexelése mindegyik dimenzióban 1-től indul.

indexeknek nevezzük, segítségükkel tudjuk az adatelemet

kiválasztani. Az indexek darabszámát a tömb dimenziójának

Statikus, homogén és asszociatív adatszerkezet. A felépítése definiálja: benne az adatelemek egymáshoz viszonyított

A tömb bármelyik eleme egész számok sorozatán keresztül

tartozik, így az asszociativitást biztosító részhalmazok

egyeleműek és diszjunktak. A számsorozat számait

érhető el. Minden adatelemhez különböző egészszám-sorozat

A tömb adatszerkezet

A legegyszerűbb eset: egydimenziós tömb (vektor1).

Kétdimenziós tömb (mátrix).

Léteznek magasabb dimenziójú tömbök is. A dimenziók száma tetszőlegesen nagy lehet, de mindig véges.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

Háromszögmátrixok

Ritka mátrixok

¹A vektor szó minden egyéb jelző nélküli használatakor statikus, egydimenziós tömbre gondolunk.

Tömbökkel végezhető műveletek

- Létrehozás: rögzítjük a dimenziók számát és az indextartományokat. Ezzel egyben meghatározzuk a tömb elemszámát is. A szerkezet kialakításával párhuzamosan elemeket is elhelyezhetünk a tömbben.
- Bővítés: nincs, ugyanis a tömb statikus.
- Csere:
 - bármely (létező) elem értékét felülírhatjuk egy új értékkel
 - elhelyezhetünk elemet oda, ahová a létrehozáskor nem tettünk
- Törlés: csak logikai.
- Elérés: az adatelemek elérése közvetlen, az indexek segítségével.
- Rendezés: egydimenziós tömbök esetén értelmezhető, ott bármelyik rendezési algoritmus alkalmazható.
- Keresés: reprezentációfüggő művelet, egydimenziós tömbök esetén nagy a jelentősége, ott bármelyik keresési algoritmus alkalmazható.
- Bejárás: többdimenziós tömbök esetén reprezentációfüggő művelet (lásd később).
- A feldolgozás alapja a közvetlen elérés.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tomb

Háromszögmátrixok

Ritka mátrixok

Az A[s..t] egydimenziós tömb leképezése:

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

4 tomb

Háromszögmátrixok

Ritka mátrixok

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

Háromszögmátrixok

Dinamikus tömb

Ritka mátriyok

Az *A*[*s*..*t*] egydimenziós tömb leképezése:

A tároláshoz szükséges tárterület mérete: $\ell \cdot (t - s + 1)$ bájt, ahol ℓ az egy adatelem tárolásához szükséges tárhely mérete.

Asszociatív adatszerkezetek

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

tomb

Háromszögmátrixok

Ritka mátrixok

Dinamikus tömb

Az A[s..t] egydimenziós tömb leképezése:

A tároláshoz szükséges tárterület mérete: $\ell \cdot (t-s+1)$ bájt, ahol ℓ az egy adatelem tárolásához szükséges tárhely mérete. Ha ismerjük a tárterület kezdőcímét (K), akkor a következő címfüggvény segítségével bármely elem tárbeli címe meghatározható:

az i indexű elem címe = $K + \ell \cdot (i - s)$

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A ton

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tom

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tom

Háromszögmátrixok

Ritka mátrixok

Az *A*[*s..n*, *t..m*] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A loi

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Sorfolytonos tárolás esetén ha ismerjük a tárterület kezdőcímét (K), akkor a következő címfüggvény segítségével bármely elem tárbeli címe meghatározható:

az
$$(i,j)$$
 indexű elem címe $= K + \ell \cdot (i-s) \cdot (m-t+1) + \ell \cdot (j-t)$

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

(tollib

Háromszögmátrixok

Ritka mátrixok

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

Háromszögmátrixok

Ritka mátriyok

Dinamikus tömb

leképezése esetén a címfüggvény a következő (K továbbra is a tárterület kezdőcímét, ℓ pedig az egy adatelem tárolásához szükséges tárhely méretét jelöli):

Az $A[s_1..n_1, s_2..n_2, ..., s_d..n_d]$ d dimenziós tömb sorfolytonos

az
$$(x_1, x_2, \dots, x_d)$$
 indexű elem címe =

$$=K+\ell\cdot\sum_{i=1}^d\left((x_i-s_i)\cdot\prod_{j=i+1}^d(n_j-s_j+1)\right)$$

Háromszögmátrixok

A háromszögmátrixok négyzetes (kvadratikus) mátrixok.

Kétfajta háromszögmátrixot szoktunk megkülönböztetni:

- a felső és
- az alsó

háromszögmátrixot.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok
Ritka mátrixok

Háromszögmátrixok

A háromszögmátrixok négyzetes (kvadratikus) mátrixok.

Az olyan négyzetes mátrixot, amelynek <mark>főátlója alatt</mark> csupa 0 elem található, <mark>felső</mark> háromszögmátrixnak nevezzük.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok
Ritka mátrixok

Háromszögmátrixok

A háromszögmátrixok négyzetes (kvadratikus) mátrixok.

Ha a négyzetes mátrix <mark>főátlója fölött</mark> lévő elemek mindegyikének értéke 0, akkor alsó háromszögmátrixról beszélünk.

Asszociatív adatszerkezetek

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok
Ritka mátrixok

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok Ritka mátriyok

Dinamikus tömb

A négyzetes mátrixokkal szemben, ahol az értékes elemek száma n², a háromszögmátrixoknál az értékes elemek száma csupán

 $\frac{n\cdot(n+1)}{2}$.

Az értékes elemeket emiatt – sor- vagy oszlopfolytonosan – egy $\frac{n \cdot (n+1)}{2}$ elemű V vektorra szoktuk leképezni.

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n \cdot (n+1)}{2}$ elemű V vektorra:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok
Ritka mátrixok

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok
Ritka mátrixok

Ritka matrixo

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok
Ritka mátrixok

ilka malrixoi

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok
Ritka mátrixok

titka matrixok

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

 $(a_{3,3})$

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A felső háromszögmátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

	1.	2.	3.	4.	5.	6.	$\frac{(n-1)\cdot n}{2} + 1$			$\frac{(n-1)\cdot n}{2} + n$					
V:	$a_{1,1}$	$a_{1,2}$	$a_{2,2}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$				$a_{1,n}$	$a_{2,n}$	$a_{3,n}$		$a_{n,n}$	

Asszociatív adatszerkezetek

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A V vektorból a következő képlet segítségével kaphatjuk vissza az eredeti mátrix (i,j) indexű elemének az értékét:

$$a_{i,j} = egin{cases} 0, & ext{ha } i > j, \ V_t, & ext{egy\'ebk\'ent, ahol } t = rac{j\cdot (j-1)}{2} + i. \end{cases}$$

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ritka mátrixok

amelyekben a legtöbb elem értéke ugyanaz (általában 0). Az ettől eltérő értékkel rendelkező elemeket ritka elemeknek nevezzük.

A ritka mátrixok olyan (általában nagyméretű) mátrixok,

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Helytakarékossági okból a ritka mátrixnak csak az értékes elemeit (a ritka elemeket), valamint azok sor- és oszlopindexeit célszerű tárolni három vektorban, mégpedig a sorindexek, azon belül pedig az oszlopindexek szerint növekvő sorrendben. Ezt a módszert 3 soros reprezentációnak nevezzük:

	1	2	3	4	5	6
1	1	2	0	0	0	6
2	0	4	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	(0)	(0)	(0)	(0)	(0)	(2

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

HITKA MAT

A 3 soros reprezentáció létrehozása

Az algoritmus bemenete az A $m \times n$ -es mátrix, kimenete: k, SOR, OSZLOP, $\acute{E}RT\acute{E}K$.

```
1: procedure LÉTREHOZÁS(A)
    k \leftarrow 0
 2:
    for i \leftarrow 1 to m do
 3:
 4:
             for i \leftarrow 1 to n do
                 if A[i, j] \neq 0 then
 5:
                     k \leftarrow k + 1
 6:
                      SOR[k] \leftarrow i
 7:
                     OSZLOP[k] \leftarrow i
 8:
                      ERTEK[k] \leftarrow A[i, i]
 9:
10:
                 end if
             end for
11:
        end for
12:
13: end procedure
```

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mat

Elérés a 3 soros reprezentációban

Az algoritmus bemenete: k, SOR, OSZLOP, ÉRTÉK, i, j, kimenete a mátrix (i,j) indexű elemének az értéke.

```
1: function ELÉRÉS(k, SOR, OSZLOP, ÉRTÉK, i, j)
       for \ell \leftarrow 1 to k do
 2:
           if SOR[\ell] = i then
 3:
               if OSZLOP[\ell] = j then
 4:
                   return ÉRTÉK[ℓ]
 5:
               end if
 6:
               if OSZLOP[\ell] > j then
 7:
 8:
                  return 0
              end if
 9:
           end if
10:
           if SOR[\ell] > i then
11:
               return 0
12:
13:
           end if
    end for
14:
       return 0
15:
16: end function
```

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka matrix

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6
1 (1) (2) (0) (0) (6)
2 (0) (4) (0) (0) (0)
4 (0) (0) (0) (0) (0)
5 (0) (0) (0) (0) (2)
```

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

HITKA MAI

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6
1 (1) (2) (0) (0) (6)
2 (0) (4) (0) (0) (0)
3 (0) (0) (0) (0) (0)
4 (0) (0) (0) (0) (0)
5 (0) (0) (0) (0) (2)
```

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

HITKA MAI

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6
1 1 2 0 0 0 0 6
2 0 4 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
```

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

нітка та

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6
1 1200006
2 040000
3 0000000
4 0000000
```

```
\begin{array}{cccc} SOR &=& 1 & 2 & 3 & 4 & 5 \\ SOR &=& (1, \, 1, \, 1, \, 2, \, 5) \\ OSZLOP &=& (1, \, 2, \, 6, \, 2, \, 6) \\ \acute{E}RT\acute{E}K &=& (1, \, 2, \, 6, \, 4, \, 2) \\ K\ddot{O}VINDEX &=& (0, \, 4, \, 5, \, 0 & ) \end{array}
```

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

HITKA MAI

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

	1	2	3	4	5	6
1	1	2	0	0	0	6
2	0	4	0	0	0	0
3	0	0	0	0	\bigcirc	\bigcirc
4	0	0	0	0	0	0
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\widehat{2}$

```
\begin{array}{cccc} SOR &=& 1 & 2 & 3 & 4 & 5 \\ SOR &=& (1, \ 1, \ 1, \ 2, \ 5) \\ OSZLOP &=& (1, \ 2, \ 6, \ 2, \ 6) \\ \acute{E}RT\acute{E}K &=& (1, \ 2, \ 6, \ 4, \ 2) \\ K\ddot{O}VINDEX &=& (0, \ 4, \ 5, \ 0, \ 0) \end{array}
```

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

HITKA MAI

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
   OSZLOP = (1, 2, 6, 2, 6)
    ERTEK = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1)

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka má

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
   OSZLOP = (1, 2, 6, 2, 6)
    ERTEK = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1, 4)

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka ma

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
     OSZLOP = (1, 2, 6, 2, 6)
       \acute{\mathbf{E}}\mathbf{R}\mathbf{T}\acute{\mathbf{E}}\mathbf{K} \equiv (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1, 4, 0, 0)

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka ma

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

 $K\ddot{O}VINDEX = (0, 4, 5, 0, 0)$

S = (1, 4, 0, 0, 5)

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka ma

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
   OSZLOP = (1, 2, 6, 2, 6)
    ERTEK = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1, 4, 0, 0, 5)

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mát

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
   OSZLOP = (1, 2, 6, 2, 6)
    ERTEK = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
           S = (1, 4, 0, 0, 5)
```

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mát

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
    OSZLOP = (1, 2, 6, 2, 6)
     \dot{E}RT\dot{E}K = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
            S = (1, 4, 0, 0, 5)
```

O = (1, 2, 0, 0, 0)

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka má

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
    OSZLOP = (1, 2, 6, 2, 6)
     \dot{E}RT\dot{E}K = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1, 4, 0, 0, 5)O = (1, 2, 0, 0, 0, 3) Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mát

A folytonos reprezentáció hátránya, hogy nem tudjuk előre, hány ritka elem van a mátrixban, így azt sem tudjuk, mekkora vektorokra lesz szükségünk. Megoldás: tároljuk a ritka elemeket és azok indexeit egy egyirányban láncolt listában sorindex, azon belül oszlopindex szerinti növekvő sorrendben!

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka má

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

- 1 2 3 4 5 6
- 1 1 2 0 0 0 6
- $2 \ (0) \ (4) \ (0) \ (0) \ (0)$
- 3 (0) (0) (0) (0)
- $4 \stackrel{\smile}{\bigcirc} \stackrel{\smile}{\smile} \stackrel{$
- 5 (0) (0) (0) (0) (2)

2 2 4

5 6 2

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

ilita matrixon

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrix

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Dinamikus tömb

Általában egydimenziós tömböt értünk alatta, ekkor más szavakkal (dinamikus) vektornak is nevezzük.

- A dinamikus tömb mérete szűkebb értelemben a feldolgozás során tetszőlegesen (dinamikusan) változik.
 Ebben az esetben gyakorlatilag egy szekvenciális lista adatszerkezetet kapunk (lásd később).
- Tágabb értelemben fizikailag továbbra is statikus tömbről beszélünk, a logikai adatszerkezet létrehozáskor megadott elemszámát viszont később bizonyos határok között – a lefoglalt tárterület méretétől függően – módosíthatjuk. Ilyenkor a tömb végén lehetnek fel nem használt adatelemek.
- Bővítés a dinamikus tömb tetszőleges helyén végrehajtható.
- Fizikai törlés bármely elem esetén értelmezhető.
- A dinamikus tömb egyéb műveletei megegyeznek a (statikus) tömb műveleteivel.

Asszociatív

Kósa Márk Pánovics János

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok