MOOC Statistique pour ingénieur Thème 0 : statistique descriptive

Vidéo 2 : Statistiques à deux variables

F. Delacroix M. Lecomte

Institut Mines-Télécom École Nationale Supérieure des Mines de Douai

Sommaire

Distributions à deux caractères

2 Covariance

3 Coefficient de corrélation linéaire

Un exemple

- Test en compression d'éprouvettes de béton
- X=teneur en ciment (kg/m^3)
- Y=résistance à la compression (MPa)

n = 90 mesures

X	60	80	100
300	15	4	1
350	10	20	10
400	5	10	15

X	y_1	 Уј	 Ус	Total
x_1		n_{1j}		
:		:		
Xi	n _{i1}	 n _{ij}	 n _{ic}	n _i .
:		÷		
X _r		n _{rj}		
Total		n.j		n

 n_{ij} = nombre d'observations avec $X = x_i$ et $Y = y_j$

n = 90 mesures

X	60	80	100
300	15	4	1
350	10	20	10
400	5	10	15

X	y_1	 Уj	 Уc	Total
x_1		n_{1j}		
:		:		
Xi	n _{i1}	 n _{ij}	 n _{ic}	n _i .
:		:		
X_{Γ}		n _{rj}		
Total		n.j		n

$$n_{i.}=$$
 effectif marginal de la $i^{
m eme}$ ligne $=\sum_{i=1}^{c}n_{ij}$

n = 90 mesures

X	60	80	100
300	15	4	1
350	10	20	10
400	5	10	15

X	y ₁	 y _j	 Ус	Total
x_1		n_{1j}		
:		:		
Xi	n _{i1}	 n _{ij}	 n _{ic}	n _i .
:		÷		
Xr		n _{rj}		
Total		n.j		n

$$n_{\cdot j}=$$
 effectif marginal de la $j^{
m ème}$ colonne $=\sum_{i=1}^{r}n_{ij}$

n = 90 mesures

X	60	80	100
300	15	4	1
350	10	20	10
400	5	10	15

X	y ₁	 <i>y_j</i>	 Ус	Total
x_1		n_{1j}		
:		:		
Xi	n _{i1}	 n _{ij}	 n _{ic}	n _i .
:		÷		
Xr		n _{rj}		
Total		n.j		n

$$n = \sum_{j=1}^{c} \sum_{i=1}^{r} n_{ij} = \sum_{i=1}^{r} n_{i\cdot} = \sum_{j=1}^{c} n_{\cdot j}$$

Distribution conjointe

Fréquence de la cellule $C_{ij}: f_{ij} = \frac{n_{ij}}{n}$

X	60	80	100	Total
300	15	4	1	n_1 . = 20
350	10	20	10	n_2 . = 40
400	5	10	15	n_3 . = 30
Total	$n_{.1} = 30$	$n_{.2} = 34$	$n_{.3} = 26$	90

X	60	80	100	f_{i} .
300	16,7%	4,4%	1,1%	$22,\!2\%$
350	11,1%	$22,\!2\%$	$11,\!1\%$	44,4%
400	$5,\!6\%$	$11,\!1\%$	16,7%	$33,\!3\%$

$$f_{i.} = \frac{n_{i.}}{n}$$
 distribution marginale en X

Distribution conjointe

Fréquence de la cellule $C_{ij}: f_{ij} = \frac{n_{ij}}{n}$

X	60	80	100	Total
300	15	4	1	n_1 . = 20
350	10	20	10	n_2 . = 40
400	5	10	15	n_3 . = 30
Total	$n_{.1} = 30$	$n_{.2} = 34$	$n_{.3} = 26$	90

X	60	80	100	f _i .
300	16,7%	4,4%	1,1%	$22,\!2\%$
350	11,1%	$22,\!2\%$	$11,\!1\%$	44,4%
400	$5,\!6\%$	$11,\!1\%$	16,7%	$33,\!3\%$
$f_{\cdot j}$	$33,\!3\%$	37,8%	28,9%	

$$f_{i.} = \frac{n_{i.}}{n}$$
 distribution marginale en X
 $f_{.j} = \frac{n_{.j}}{n}$ distribution marginale en Y

Distributions marginales

• diagramme en barres

• teneur moyenne en ciment des éprouvettes

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{r} n_i x_i = \sum_{i=1}^{r} f_i x_i \simeq 355,5 \, kg/m^3$$

Distribution conditionnelles

X	60	80	100	Total
300	15	4	1	20
350	10	20	10	40
400	5	10	15	30
Total	30	34	26	90

X	y ₁	 y _j	 Ус	Total
y_j sachant que $X = x_i$	n _{i1}	 n _{ij}	 n _{ic}	n _i .

Distribution conditionnelles

X	60	80	100	Total		
300	15	4	1	20		
$f_{j/i}$	75%	20%	5%			

X	y_1	 y j	 Уc	Total
y_j sachant que $X = x_i$	n _{i1}	 n _{ij}	 n _{ic}	n _i .

Fréquence de $Y = y_i$ sachant que $X = x_i$:

$$f_{j/i} = \frac{n_{ij}}{n_{i\cdot}} = \frac{f_{ij}}{f_{i\cdot}}$$

Indépendance

Définition

X et Y sont indépendantes si la distribution conditionnelle de Y sachant $X = x_i$ ne dépend pas de i:

$$\forall i,j, \quad f_{j/i} = f_{,j}$$

$$f_{ij} = f_{i.} \times f_{,j}$$

X	60	80	100	f_i .	
300	16,7%	$4,\!4\%$	1,1%	22,2%	
350	$11,\!1\%$	$22,\!2\%$	$11,\!1\%$	44,4%	
400	$5,\!6\%$	$11,\!1\%$	16,7%	33,3%	
f.j	$33,\!3\%$	37,8%	28,9%		

$$0.333 \times 0.222 \neq 0.167$$

X et Y ne sont pas indépendantes.

Sommaire

Distributions à deux caractères

2 Covariance

3 Coefficient de corrélation linéaire

Covariance : un exemple

$$\mathbb{C}\operatorname{ov}(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$
$$= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \overline{y}$$

Covariance: un exemple

$$\bar{x} = \frac{1}{10} \sum_{i=1}^{10} x_i = 30,4$$

$$\bar{y} = \frac{1}{10} \sum_{i=1}^{10} y_i = 26,1$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i y_i = 828,6$$

$$\mathbb{C}\text{ov}(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$
$$= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \overline{y}$$

$$Cov(X,Y) = 828.6 - 30.4 \times 26.1 = 35.16$$

Propriétés de la covariance

Proposition

- Symétrie : \mathbb{C} ov $(X,Y) = \mathbb{C}$ ov (Y,X)
- lien avec la variance : \mathbb{C} ov $(X,X) = \mathbb{V}(X)$
- transformation affine : $\mathbb{C}\text{ov}\left(aX+b,cY+d\right)=a\,c\,\mathbb{C}\text{ov}\left(X,Y\right)$
- Si X et Y sont indépendantes alors \mathbb{C} ov (X,Y) = 0.

 \mathbb{C} ov (X,Y)=0 n'entraîne pas que X et Y sont indépendantes

Variance d'une somme

Théorème

$$\mathbb{V}\left(X+Y\right) = \mathbb{V}\left(X\right) + 2\mathbb{C}\mathrm{ov}\left(X,Y\right) + \mathbb{V}\left(Y\right)$$

Cas de variables décorrélées : $\mathbb{V}(X + Y) = \mathbb{V}(X) + \mathbb{V}(Y)$.

Inégalité de Cauchy-Schwarz

Pour $t \in \mathbb{R}$:

$$0 \leqslant \mathbb{V}(X + tY) = \mathbb{V}(X) + 2t \operatorname{Cov}(X,Y) + t^{2} \mathbb{V}(Y)$$

$$\Delta = \left[2\mathbb{C}\mathrm{ov}\left(\mathbf{X},\mathbf{Y}\right)\right]^{2} - 4\mathbb{V}\left(\mathbf{X}\right)\mathbb{V}\left(\mathbf{Y}\right) = 4\left[\mathbb{C}\mathrm{ov}\left(\mathbf{X},\mathbf{Y}\right)^{2} - \mathbb{V}\left(\mathbf{X}\right)\mathbb{V}\left(\mathbf{Y}\right)\right] \leqslant 0$$

Théorème (Inégalité de Cauchy-Schwarz)

$$|\mathbb{C}\mathrm{ov}(X,Y)| \leqslant \sqrt{\mathbb{V}(X)\mathbb{V}(Y)} = \sigma(X)\,\sigma(Y)$$

Sommaire

Distributions à deux caractères

2 Covariance

3 Coefficient de corrélation linéaire

Coefficient de corrélation linéaire

Définition

$$r(X,Y) = \frac{\mathbb{C}\mathrm{ov}(X,Y)}{\sigma(X)\,\sigma(Y)}$$

On a

$$-1 \leqslant r(X,Y) \leqslant 1$$

 $r(X,Y) \simeq 0 \Rightarrow$ absence de relation linéaire (décorrélation) \Rightarrow indépendance

Exemple

Corrélation entre rendement et quantité d'engrais d'une parcelle de blé

X engrais	20	24	28	22	32	28	32	36	41	41
<i>Y</i> rendement	16	18	23	24	28	29	26	31	32	34

$$\sigma(X) \simeq 7.40$$

$$\sigma(Y) \simeq 5.91$$

$$\sigma(X) \simeq 7.40$$
 $\sigma(Y) \simeq 5.91$ $\mathbb{C}\text{ov}(X,Y) \simeq 35.16$

$$r(X,Y) \simeq \frac{35,16}{7.40 \times 5.91} \simeq 0.89$$

Il y a corrélation linéaire forte.

