1 基本逻辑

1.1 基础概念

- 1. 全称命题: $\forall x$, 均有 A 成立
- 2. 特称命题: $\exists x$, 使得 A 成立
 - (a) 全称命题和特称命题互为否定命题
 - (b) 全称命题否定命题: $\exists x$, 使得 \overline{A} 成立
 - (c) 特称命题否定命题: $\forall x$, 均有 \overline{A} 成立
 - (d) Case: $\forall x \in \mathbb{R}$ 均有 $x^2 \geq 0$ 成立。否定命题: $\exists x \in \mathbb{R}$, 使得 $x^2 < 0$ 成立
 - (e) Case: $\exists x \in \mathbb{R}$ 使得 $x^2 \geq 0$ 。否定命题: $\forall x \in \mathbb{R}$, 均有 $x^2 < 0$ 成立
- 3. 蕴称命题: $A \Rightarrow B(若 A 成立, 则 B 成立)$
 - (a) 其否定命题: A 成立且 \overline{B} 成立
 - (b) 逆否命题: 若 B 不成立则 A 不成立 $(\overline{B} \Rightarrow \overline{A})$ 。与蕴含命题等价
 - (c) 其否命题: $\overline{A} \Rightarrow \overline{B}$ 。原命题真,其否命题可真可假
- 4. 多元命题: $\forall x, \forall y,$ 均有 A 成立; 或 $\forall x, \exists y,$ 使得 A 成立

$$\lim_{n \to \infty} x_n = a \qquad \Leftrightarrow \forall \epsilon > 0, \exists N > 0, \forall n > N \Rightarrow |x_n - a| < \epsilon$$

其否定命题: a 不是 x_n 的极限 $\Leftrightarrow \exists \epsilon > 0, \forall N > 0, \exists n > N \Rightarrow |x_n - a| \geq \epsilon$

- 1.2 定理
- 1.3 运算
- 1.4 公式
- 1.5 方法步骤
- 1.6 条件转换思路
- 1.7 理解