元素及其化合物·九·「硅 $\left(\mathrm{Si}\right)$ 及其化合物」

单晶硅 Si

- 1. 单晶硅的结构与金刚石的相似,为正四面体的立体网状结构。晶体中每个 Si 原子与其他 $\mathrm{4}$ 个 Si 原子相连接
- 2. 单晶硅是带有金属光泽的灰黑色固体,熔点高、硬度大、有脆性,在常温下化学性质不活泼
- 3. 单晶硅的导电性介于导体和绝缘体之间,是良好的半导体材料

化学性质

1. 与非金属单质反应

$$egin{array}{lll} {
m Si} + 2\, {
m F}_2 &= {
m SiF}_4 \ {
m Si} + 4\, {
m HF} &= {
m SiF}_4 \uparrow + 2\, {
m H}_2 \uparrow \ {
m Si} + 2\, {
m NaOH} + {
m H}_2 {
m O} &= {
m Na}_2 {
m SiO}_3 + 2\, {
m H}_2 \uparrow \end{array}$$

Si 与 Al 都可以和 NaOH 反应生成 H_2 ,而且前者是非金属,后者是金属。在元素推断题中常出现

$$egin{aligned} \operatorname{Si} + 2\operatorname{Cl}_2 & \stackrel{\Delta}{=} \operatorname{SiCl}_4 \ \operatorname{Si} + \operatorname{O}_2 & \stackrel{\widehat{=}}{=} \operatorname{SiO}_2 \ \operatorname{Si} + \operatorname{C} & \stackrel{\widehat{=} \operatorname{\mathbb{Z}iC}}{=} \operatorname{SiC} \end{aligned}$$

2. 与水反应

野外制氢: $Si + H_2O + 2 NaOH = Na_2SiO_3 + 2 H_2 \uparrow$

二氧化硅 SiO_2

1. 结构

- 1. 杂化方式: sp^3 杂化
- 2. 在 SiO_2 晶体中,每个硅原子均与 4 个氧原子结合;每个氧原子与 2 个硅原子结合
- 3. 在 SiO_2 晶体中硅原子与氧原子个数之比是 1:2
- 4. 在 SiO_2 晶体中,每个硅原子形成 4 个共价键;每个氧原子形成 2 个共价键
- 5. 在 SiO_2 晶体中,最小环为十二元环,有 6 个硅原子和 6 个氧原子
- 6. 硅原子个数与 Si-O 共价键个数之是 1:4 ;氧原子个数与 Si-O 共价键个数之比是 1:2
- 7. SiO_2 晶体中并不存在 SiO_2 分子

2. 物理性质

硬度大、熔沸点高、常温下为固体、难溶于水、不导电

3. 化学性质

SiO_2 是一种酸性氧化物

1. 与强碱反应:

$$\mathrm{SiO}_2 + 2\,\mathrm{NaOH} \ = \ \mathrm{Na}_2\mathrm{SiO}_3 + \mathrm{H}_2\mathrm{O}$$
(装 NaOH 溶液不用玻璃塞)

2. 与唯一一种酸氢氟酸反应:

$$SiO_2 + 4HF = SiF_2 \uparrow + 2H_2O$$
 (腐蚀玻璃、玻璃雕花)

- 3. 与碱性氧化物反应:氧化硅与碱性氧化物反应,不与水反应(与水反应产物为硅酸,是沉淀,阻止反应进行)
- 4. 与碱性盐反应

•
$$\mathrm{SiO}_2 + \mathrm{Na}_2\mathrm{CO}_3 \stackrel{ar{\mathrm{Bll}}}{=\!\!=\!\!=} \mathrm{Na}_2\mathrm{SiO}_3 + \mathrm{CO}_2$$
 \uparrow (制作玻璃)

•
$$\mathrm{SiO}_2 + \mathrm{CaCO}_3 \stackrel{ar{\mathrm{Bll}}}{=\!=\!=\!=} \mathrm{CaSiO}_3 + \mathrm{CO}_2 \uparrow$$
 (造渣反应)

5. 与碳反应

•
$$\mathrm{SiO}_2 + 2\,\mathrm{C} \stackrel{\bar{\mathbb{A}}}{=\!\!\!=\!\!\!=} \mathrm{Si} + 2\,\mathrm{CO}\uparrow$$

•
$$\operatorname{SiO}_2 + 3\operatorname{C} \stackrel{\text{\text{siC}}}{=\!\!\!=\!\!\!=} \operatorname{SiC} + 3\operatorname{CO} \uparrow$$

6. 精炼

- 1. $SiO_2 + 4 Mg$ = Mg $_2Si + 2 MgO$
- 2. $Mg_2Si + 4HCl = 2MgCl_2 + SiH_4 \uparrow$
- 3. ${
 m SiH_4} + 2\,{
 m O_2} \,=\, {
 m SiO_2} + 2\,{
 m H_2O}$ (自然)

硅酸 H₂SiO₃

- 白色胶状沉淀
- 弱酸性

不使酸碱指示剂变色,酸性小于碳酸

• 不稳定性

 $\mathrm{H_2SiO_3} \, \stackrel{\Delta}{=\!\!\!=} \, \mathrm{SiO_2} + \mathrm{H_2O}$

- 硅酸浓度大时在水中易聚合形成透明、胶冻状的硅酸凝胶)硅酸凝胶经干燥脱水后得到多孔的硅酸干凝胶,成为"硅胶"硅胶是多孔状,吸附水分子能力强,常用作(食品级)干燥剂,或作催化剂的载体
- 向硅酸盐溶液中加入盐酸或通入 ${
 m CO}_2$,可制得硅酸胶体(凝胶)或沉淀

 $Na_2SiO_3 + 2HCl = H_2SiO_3(胶体) + 2NaCl$

 $\mathrm{Na_2SiO_3} + \mathrm{CO_2} + \mathrm{H_2O} \ = \ \mathrm{Na_2CO_3} + \mathrm{H_2SiO_3} \downarrow$

制备硅酸的原理是"强酸制弱酸",这一原理可用来设计酸性强弱比较的实验,如:证明盐酸 > 碳酸 > 硅酸

- CaCO₃ + 2 HCl = CaCl₂ + H₂O + CO₂ ↑ 证明酸性: 盐酸 > 碳酸
- $NaHCO_3$ 饱和溶液用于除去 CO_2 中的 HCl,防止其挥发而干扰实验
- Na₂SiO₃ + CO₂ + H₂O = Na₂CO₃ + H₂SiO₃ ↓ 证明酸性: 碳酸 > 硅酸
- lacktriangleright 注意:该实验不能用于验证非金属性 $\mathrm{Cl}{>}\mathrm{C}{>}\mathrm{S}$,用于其要用最高价氧化物对应的水化物的酸性强弱来比较

硅酸钠 Na₂SiO₃

最简单的硅酸盐

- 1. 白色、可溶于水的粉末状固体,其水溶液俗称水玻璃,是一种矿物胶,有很强的粘合性(所以装 ${f NaOH}$ 溶液不用玻璃塞)
- 2. 可以与酸(盐酸、碳酸等)反应,生成硅酸凝胶
- 3. 用途:制备硅胶,作木材、纺织品的防腐剂、防火剂

