机器学习导论 (2021 春季学期)

三、线性模型

主讲教师: 周志华

对率回归

以对率函数为联系函数:

$$y = \frac{1}{1 + e^{-z}}$$
 要为 $y = \frac{1}{1 + e^{-(\mathbf{w}^{\mathrm{T}}\mathbf{x} + b)}}$

即: $\ln \frac{y}{1-y} = w^{\mathrm{T}}x + b$ 家(odds), 反映了

"对数几率"

(log odds, 亦称 logit)

"对数几率回归" (logistic regression) 简称"对率回归"

- 无需事先假设数据分布
- 可得到"类别"的近似概率预测
- 可直接应用现有数值优化算法求取最优解

x 作为正例的相对可能性

求解思路

若将 y 看作类后验概率估计 $p(y=1 \mid \boldsymbol{x})$,则

$$\ln \frac{y}{1-y} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b \quad \text{可写为} \quad \ln \frac{p(y=1 \mid \boldsymbol{x})}{p(y=0 \mid \boldsymbol{x})} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

于是,可使用 "极大似然法" → 第7章 (maximum likelihood method)

给定数据集 $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^m$

最大化"对数似然"(log-likelihood)函数

$$\ell(\boldsymbol{w}, b) = \sum_{i=1}^{m} \ln p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}, b)$$

求解思路

$$\Rightarrow$$
 $m{eta}=(m{w};b)$, $\hat{m{x}}=(m{x};1)$, 则 $m{w}^{\mathrm{T}}m{x}+b$ 可简写为 $m{eta}^{\mathrm{T}}\hat{m{x}}$

再令
$$p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 1 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta}) = \frac{e^{\boldsymbol{w}^T \boldsymbol{x} + b}}{1 + e^{\boldsymbol{w}^T \boldsymbol{x} + b}}$$

$$p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 0 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta}) = 1 - p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = \frac{1}{1 + e^{\boldsymbol{w}^T \boldsymbol{x} + b}}$$

则似然项可重写为 $p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}_i, b) = y_i p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) + (1 - y_i) p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})$

于是,最大化似然函数
$$\ell(\boldsymbol{w},b) = \sum_{i=1}^{m} \ln p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w},b)$$

等价为最小化
$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{m} \left(-y_i \boldsymbol{\beta}^{\mathrm{T}} \hat{\boldsymbol{x}}_i + \ln \left(1 + e^{\beta^{\mathrm{T}} \hat{\boldsymbol{x}}_i} \right) \right)$$

高阶可导连续凸函数,可用经典的数值优化方法 如梯度下降法/牛顿法 [Boyd and Vandenberghe, 2004]

线性模型做"分类"

如何"直接"做分类?

线性判别分析 (Linear Discriminant Analysis)

由于将样例投影到一条直线(低维空间),因此也被视为一种"监督降维"技术 降维 → 第10章

LDA的目标

给定数据集 $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^m$

第i类示例的集合 X_i

第i类示例的均值向量 μ_i

第i类示例的协方差矩阵 Σ_i

两类样本的中心在直线上的投影: $oldsymbol{w}^{\mathrm{T}}oldsymbol{\mu}_0$ 和 $oldsymbol{w}^{\mathrm{T}}oldsymbol{\mu}_1$

两类样本的协方差: $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{0}\boldsymbol{w}$ 和 $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{1}\boldsymbol{w}$

同类样例的投影点尽可能接近 $\rightarrow w^{\mathrm{T}}\Sigma_0w + w^{\mathrm{T}}\Sigma_1w$ 尽可能小异类样例的投影点尽可能远离 $\rightarrow \|w^{\mathrm{T}}\mu_0 - w^{\mathrm{T}}\mu_1\|_2^2$ 尽可能大

于是,最大化
$$J = \frac{\|\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\mu}_{0} - \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\mu}_{1}\|_{2}^{2}}{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{0}\boldsymbol{w} + \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Sigma}_{1}\boldsymbol{w}} = \frac{\boldsymbol{w}^{\mathrm{T}}(\boldsymbol{\mu}_{0} - \boldsymbol{\mu}_{1})(\boldsymbol{\mu}_{0} - \boldsymbol{\mu}_{1})^{\mathrm{T}}\boldsymbol{w}}{\boldsymbol{w}^{\mathrm{T}}(\boldsymbol{\Sigma}_{0} + \boldsymbol{\Sigma}_{1})\boldsymbol{w}}$$

LDA的目标

类内散度矩阵 (within-class scatter matrix)

$$egin{aligned} \mathbf{S}_w &= \mathbf{\Sigma}_0 + \mathbf{\Sigma}_1 \ &= \sum_{oldsymbol{x} \in X_0} \left(oldsymbol{x} - oldsymbol{\mu}_0
ight) \left(oldsymbol{x} - oldsymbol{\mu}_0
ight)^{\mathrm{T}} + \sum_{oldsymbol{x} \in X_1} \left(oldsymbol{x} - oldsymbol{\mu}_1
ight) \left(oldsymbol{x} - oldsymbol{\mu}_1
ight)^{\mathrm{T}} \end{aligned}$$

类间散度矩阵 (between-class scatter matrix)

$$\mathbf{S}_b = \left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight) \left(oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight)^{\mathrm{T}}$$

LDA的目标:最大化广义瑞利商 (generalized Rayleigh quotient)

$$J = \frac{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{b} \boldsymbol{w}}{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{w} \boldsymbol{w}}$$

w 成倍缩放不影响 J 值 仅考虑方向

求解思路

令 $\boldsymbol{w}^{\mathrm{T}}\mathbf{S}_{w}\boldsymbol{w}=1$,最大化广义瑞利商等价形式为

$$\min_{oldsymbol{w}} \ - oldsymbol{w}^{\mathrm{T}} \mathbf{S}_b oldsymbol{w}$$

s.t.
$$\boldsymbol{w}^{\mathrm{T}}\mathbf{S}_{w}\boldsymbol{w}=1$$

运用拉格朗日乘子法,有 $\mathbf{S}_b \boldsymbol{w} = \lambda \mathbf{S}_w \boldsymbol{w}$

由
$$\mathbf{S}_b$$
定义,有 $\mathbf{S}_b \boldsymbol{w} = (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1) (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)^{\mathrm{T}} \boldsymbol{w}$

注意到 $(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)^{\mathrm{T}} \boldsymbol{w}$ 是标量,令其等于 λ

于是
$$\boldsymbol{w} = \mathbf{S}_w^{-1} \left(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1 \right)$$

实践中通常是进行奇异值分解 $\mathbf{S}_w = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$ \longrightarrow $\mathbb{M}_{\mathbb{R}} \mathbf{A}$

然后
$$\mathbf{S}_w^{-1} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathrm{T}}$$

推广到多类

假定有 N 个类

日全局散度矩阵
$$\mathbf{S}_t = \mathbf{S}_b + \mathbf{S}_w = \sum_{i=1}^m \left(\boldsymbol{x}_i - \boldsymbol{\mu} \right) \left(\boldsymbol{x}_i - \boldsymbol{\mu} \right)^T$$

口 类内散度矩阵
$$\mathbf{S}_w = \sum_{i=1}^N \mathbf{S}_{w_i} \quad \mathbf{S}_{w_i} = \sum_{m{x} \in X_i} (m{x} - m{\mu}_i) \left(m{x} - m{\mu}_i\right)^T$$

□ 类间散度矩阵
$$\mathbf{S}_b = \mathbf{S}_t - \mathbf{S}_w = \sum_{i=1}^N m_i \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right) \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right)^T$$

多分类LDA有多种实现方法:采用 \mathbf{S}_b , \mathbf{S}_w , \mathbf{S}_t 中的任何两个

例如,
$$\max_{\mathbf{W}} \frac{\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{S}_{b}\mathbf{W}\right)}{\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{S}_{w}\mathbf{W}\right)}$$
 $\mathbf{S}_{b}\mathbf{W} = \lambda \mathbf{S}_{w}\mathbf{W}$

$$\mathbf{W} \in \mathbb{R}^{d \times (N-1)}$$

W的闭式解是 $\mathbf{S}_{w}^{-1}\mathbf{S}_{b}$ 的 d' ($\leq N$ -1) 个最大 非零广义特征值对应的特征向量组成的矩阵

多分类学习

拆解法:将一个多分类任务拆分为若干个二分类任务求解

- 训练N(N-1)/2个分类器, 存储开销和测试时间大
- 训练只用两个类的样例, 训练时间短

训练用到全部训练样例, 训练时间长

 $\Rightarrow f_5 \to C_2$

 $\Rightarrow f_6 \to C_3$

预测性能取决于具体数据分布, 多数情况下两者差不多

纠错输出码 (ECOC)

多对多(Many vs Many, MvM):将若干类作为正类,若干类作为反类

一种常见方法:纠错输出码 (Error Correcting Output Code)

编码:对 N 个类别做 M 次划分,每次将一部分类别划为正类,一部分划为反类

解码:测试样本交给 M 个 分类器预测

长为 M 的预测结果编码

纠错输出码

(a) 二元 ECOC 码

[Dietterich and Bakiri,1995]

(b) 三元 ECOC 码

[Allwein et al. 2000]

- ECOC编码对分类器错误有一定容忍和修正能力,编码越长、纠错能力越强
- 对同等长度的编码,理论上来说,任意两个类别之间的编码距离越远,则纠错能力越强

类别不平衡 (class-imbalance)

不同类别的样本比例相差很大;"小类"往往更重要

基本思路:

若
$$\frac{y}{1-y} > 1$$
 则 预测为正例.

若
$$\frac{y}{1-y} > \frac{m^+}{m^-}$$
 则 预测为正例.

基本策略

—— "再缩放" (rescaling):

$$\frac{y'}{1-y'} = \frac{y}{1-y} \times \frac{m^-}{m^+}$$

然而,精确估计 m^-/m^+ 通常很困难!

常见类别不平衡学习方法:

- 过采样 (oversampling) 例如: SMOTE
- 欠采样 (undersampling)例如: EasyEnsemble
- 阈值移动 (threshold-moving)

前往第四站.....

机器学习导论 (2021 春季学期)

四、决策树

主讲教师: 周志华

决策树模型

决策树基于"树"结构进行决策

- □ 每个"内部结点"对应于某个属性上的"测试"(test)
- 每个分支对应于该测试的一种可能结果(即该属性的某个取值)
- □ 每个"叶结点"对应于一个"预测结果"

学习过程:通过对训练样本的分析来确定"划分属性"(即内部结点所对应的属性)

预测过程:将测试示例从根结点开始,沿着划分属性所构成的"判定测试序列"下行,直到叶结点

图 4.1 西瓜问题的一棵决策树

基本流程

策略: "分而治之" (divide-and-conquer)

自根至叶的递归过程

在每个中间结点寻找一个"划分" (split or test)属性

三种停止条件:

- (1) 当前结点包含的样本全属于同一类别, 无需划分;
- (2) 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;
- (3) 当前结点包含的样本集合为空,不能划分.

基本算法

```
输入: 训练集 D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};
      属性集 A = \{a_1, a_2, \dots, a_d\}.
过程: 函数 TreeGenerate(D, A)
1: 生成结点 node;
                                  递归返回,
2: if D 中样本全属于同一类别 C then
                                  情形(1)
    将 node 标记为 C 类叶结点; return
4: end if
                                                          递归返回,
5: if A = \emptyset OR D 中样本在 A 上取值相同 then
                                                          情形(2)
     将 node 标记为叶结点, 其类别标记为 D 中样本数最多的类; return
 7: end if
                              利用当前结点的后验分布
8: 从 A 中选择最优划分属性 a_*;
9: for a_* 的每一个值 a_*^v do
    为 node 生成一个分支; \Diamond D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
10:
                                                             递归返回,
11:
    if D_v 为空 then
                                                             情形(3)
       将分支结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
12:
13:
    else
                                            将父结点的样本分布作为
       以 TreeGenerate(D_v, A \setminus \{a_v\}) 为分支结点
14:
                                            当前结点的先验分布
    end if
15:
16: end for
                              决策树算法的
输出:以 node 为根结点的一棵决策树
                                 核心
```

信息增益 (information gain)

信息熵 (entropy) 是度量样本集合"纯度"最常用的一种指标假定当前样本集合 D 中第 k 类样本所占的比例为 p_k ,则 D 的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

》 计算信息熵时约定: 若 p = 0, 则 $p \log_2 p = 0$.

Ent(D) 的最小值为 0, 最大值为 $log_2 |\mathcal{Y}|$.

 $\operatorname{Ent}(D)$ 的值越小,则D 的纯度越高

信息增益直接以信息熵为基础,计算当前划分对信息熵所造成的变化

信息增益

离散属性 a 的取值: $\{a^1, a^2, \dots, a^V\}$

 D^v : D 中在 a 上取值 = a^v 的样本集合

以属性 a 对 数据集 D 进行划分所获得的信息增益为:

一个例子

表 4.1 西瓜数据集 2.0

该数据集包含17~	\
训练样例, $ \mathcal{Y} = 2$,	
其中正例占 $p_1 = \frac{5}{1}$	$\frac{3}{7}$
反例占 $p_2 = \frac{9}{17}$	

根结点的信息熵为

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	- 硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰。	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	/ 稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

以属性"色泽"为例,其对应的3个子集分别为:

对**D**¹(色泽=青绿), 正例3/6, 反例3/6 于是:

表 4.1 西瓜数据集 2.0

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	一硬滑)	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰人	四陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$\operatorname{Ent}(D^1) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000$$

D²(色泽=乌黑), 正例4/6, 反例2/6

Ent(
$$D^2$$
) =
$$-(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}) = 0.918$$

D³(色泽=浅白), 正例1/5, 反例4/5

Ent
$$(D^3)$$
 = $-(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}) = 0.722$

表 4.1	西瓜数据集	2.0

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷人	硬滑	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
	9	乌黑	稍蜷	(沉闷)	稍糊	稍凹	硬滑	否
	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
- 4								

于是,属性"色泽"的信息增益为

$$Gain(D, 色泽) = Ent(D) - \sum_{v=1}^{3} \frac{|D^{v}|}{|D|} Ent(D^{v})$$
$$= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right) = 0.109$$

类似的, 其他属性的信息增益为

Gain(D, 根蒂) = 0.143

Gain(D, 敲声) = 0.141

Gain(D, 纹理) = 0.381

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

属性"纹理"的信息增益最大,被选为划分属性

对每个分支结点做进一步划分, 最终得到决策树

决策树简史

个决策树算法: CLS (Concept Learning System)

[E. B. Hunt, J. Marin, and P. T. Stone's book "Experiments in *Induction*" published by Academic Press in 1966

• 使决策树受到关注、成为机器学习主流技术的算法: ID3

[J. R. Quinlan's paper in a book "Expert Systems in the Micro Electronic Age" edited by D. Michie, published by Edinburgh

University Press in 1979]

• 最常用的决策树算法: C4.5

[J. R. Quinlan's book "C4.5: Programs for Machine Learning" published by Morgan Kaufmann in 1993

J. Ross Quinlan (1943 -)

决策树简史(con't)

•可以用于回归任务的决策树算法: CART (Classification and Regression Tree)

[L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone's book "Classification and Regression Trees" published by Wadsworth in 1984]

● 基于决策树的最强大算法之一: RF (Random Forest)

[L. Breiman's MLJ'01 paper "Random Forest"]

这是一种"集成学习"方法→第8章

Leo Breiman (1928-2005)