Outils Logiques Groupe 3 & 4 – DM 1

à rendre avant le 8 février 2021 par email à chaitanya@irif.fr Les exercices étoilés $(\star - \star \star \star)$ sont facultatifs.

Dans ce sujet, $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ est l'ensemble des entiers naturels, $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ est l'ensemble des entiers (relatifs), et \mathbb{R} est l'ensemble des nombre réels.

Exercice 1

Pour chacun des ordres partiels suivants, dire s'il est un ordre bien fondé. Si oui, essayer de le justifier. Si ce n'est pas le cas, trouver une suite infinie décroissante.

- 1. Les entiers $(\mathbb{Z}, >)$ avec l'ordre habituel.
- 2. Les entiers naturels $(\mathbb{N}, >)$ avec l'ordre habituel.
- 3. $(\mathbb{Z}, >_{|-|})$ Les entiers avec l'ordre absolu $(n >_{|-|} m \text{ ssi } |n| > |m|)$.
- 4. L'intervalle $[0,1] \subset \mathbb{R}$ avec l'ordre > habituel.

Exercice 2

Pour deux entiers $m, n \in \mathbb{Z}$, on dit que m est un diviseur propre de n si $m \neq n$ et s'il existe un $k \in \mathbb{Z}$ tel que $m \times k = n$. Introduisons la relation binaire $>_d$ sur \mathbb{Z} telle que $n >_d m$ ssi m est un diviseur propre de n. Est-ce que $(\mathbb{Z}, >_d)$ est un ordre partiel? Si oui, est-il bien fondé?

Exercice 3

L'ensemble X^* des mots sur un ensemble X (appelé l'alphabet) est l'ensemble des suites finies d'éléments de X. On considére le système de réécriture suivant sur les mots sur l'alphabet $\{a,b\}$: pour tous $u,v\in\{a,b\}^*$, on a $uaabv\to uabbv$ et $uababv\to uaabv$. Est-il un système terminant? Justifier.

Exercice 4

Pour deux ensembles A, B, on note $B \supseteq A$ ssi $A \subset B$ et $A \neq B$. Soit X un ensemble quelconque.

- 1. Montrer que $(\mathcal{P}(X), \supseteq)$ (l'ensemble de parties de X muni de la relation \supseteq) est un ordre partiel.
- 2. Montrer que si X est fini (c'est-à-dire X a un nombre fini d'éléments distincts), alors $(\mathcal{P}(X), \supseteq)$ est un ordre bien fondé.
- 3. $(\star\star)$ Montrer qu'il en est de même pour X quelconque. (Indice : utiliser le Lemme de Kuratowski-Zorn.)