

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Il metodo del simplesso: descrizione geometrica

Sommario

- Esempio 1
- Esempio 2
- Esempio 3: base degenere
- Esempio 4: base non ammissibile

Consideriamo il problema di PL in forma standard

P: min
$$3x_1 + 5x_2 - x_3$$

 $10x_1 + 6x_2 + 15x_3 = 30$
 $x_1, x_2, x_3 \ge 0$

dove quindi $\mathbf{c}, \mathbf{x} \in \mathrm{IR}^3, \mathbf{b} \in \mathrm{IR}^1, \mathbf{A} \in \mathrm{IR}^{1\times 3}$, ed evidentemente $\mathrm{rg}(\mathbf{A}) = 1$.

Il poliedro del problema P è un triangolo con vertici (3, 0, 0), (0, 5, 0) e (0, 0, 2)

Consideriamo il problema di PL in forma standard

P: min
$$3x_1 + 5x_2 - x_3$$
$$10x_1 + 6x_2 + 15x_3 = 30$$
$$x_1, x_2, x_3 \ge 0$$

dove quindi $\mathbf{c}, \mathbf{x} \in \mathrm{IR}^3, \mathbf{b} \in \mathrm{IR}^1, \mathbf{A} \in \mathrm{IR}^{1\times 3}$, ed evidentemente $\mathrm{rg}(\mathbf{A}) = 1$.

Per $B = \{2\}$ la sottomatrice $\mathbf{A}_B = [6]$ è chiaramente non singolare, dunque B è una base per P. Premoltiplicando l'equazione del

problema per $\mathbf{A}_{B}^{-1} = [1/_{6}]$, ricavando x_{2} ed eliminandola si ricava il problema equivalente

P': min
$$-\frac{16}{3}x_1 - \frac{27}{2}x_3 + 25$$
$$\frac{5}{3}x_1 + \frac{5}{2}x_3 \le 5$$
$$x_1, x_3 \ge 0$$

Il poliedro di P' è un triangolo di vertici (0, 0), (3, 0) e (0, 2).

La soluzione associata alla base $B = \{2\}$ corrisponde

- nel poliedro di P, al vertice (0, 5, 0);
- nel poliedro di P', al vertice (0, 0).

In entrambi i problemi il suo valore è 25.

Poiché il coefficiente (di costo ridotto) della x_1 nel problema P' è < 0, il versore (1, 0) rappresenta una direzione di miglioramento per P'.

Premoltiplicando l'equazione del problema per $\mathbf{A}_{B}^{-1} = [1/6]$, ricavando x_2 ed eliminandola si ricava il problema equivalente

P': min
$$-\frac{16}{3}x_1 - \frac{27}{2}x_3 + 25$$
$$\frac{5}{3}x_1 + \frac{5}{2}x_3 \le 5$$
$$x_1, x_3 \ge 0$$

Il poliedro di P' è un triangolo di vertici (0, 0), (3, 0) e (0, 2).

La soluzione associata alla base $B = \{2\}$ corrisponde

- nel poliedro di P, al vertice (0, 5, 0);
- nel poliedro di P', al vertice (0, 0).

In entrambi i problemi il suo valore è 25.

Poiché il coefficiente (di costo ridotto) della x_1 nel problema P' è < 0, il versore (1, 0) rappresenta una direzione di miglioramento per P'.

> Infatti la soluzione $(x_1, x_3) = (0, 0) + \lambda(1, 0)$ è ammissibile per P' purché $\lambda \in [0, 3]$.

Il massimo miglioramento si ottiene scegliendo $\lambda = 3$, cioè portandosi nel vertice (3, 0).

cioè portandosi nel vertice (3, prima)

P': min
$$-\frac{16}{3}x_1 - \frac{27}{2}x_3 + 25$$

$$\frac{5}{3}x_1 + \frac{5}{2}x_3 \le 5$$

$$x_1, x_3 \ge 0$$

La corrispondente nuova soluzione di base di P è (3, 0, 0).

Modifichiamo il problema cambiando obiettivo e aggiungendo un'equazione:

P: min
$$5x_1 + 3x_2 - x_3$$
$$10x_1 + 6x_2 + 15x_3 = 30$$
$$15x_1 + 4x_2 - 15x_3 = 30$$
$$x_1, x_2, x_3 \ge 0$$

Si ha quindi $\mathbf{c}, \mathbf{x} \in IR^3, \mathbf{b} \in IR^2, \mathbf{A} \in IR^{2\times 3}, \operatorname{rg}(\mathbf{A}) = 2.$

La nuova equazione rappresenta un piano passante per i punti (0, 0, -2), $(0, \frac{15}{2}, 0)$, (2, 0, 0) e intersecante il poliedro dell'Esempio 1.

Il poliedro del problema P è ora un segmento di estremi (vertici) $(^{12}/_{5}, 0, ^{2}/_{5})$ e $(3, ^{6}/_{5}, 0)$

Modifichiamo il problema cambiando obiettivo e aggiungendo un'equazione:

P: min
$$5x_1 + 3x_2 - x_3$$
$$10x_1 + 6x_2 + 15x_3 = 30$$
$$15x_1 + 4x_2 - 15x_3 = 30$$
$$x_1, x_2, x_3 \ge 0$$

Si ha quindi $\mathbf{c}, \mathbf{x} \in IR^3, \mathbf{b} \in IR^2, \mathbf{A} \in IR^{2\times 3}, rg(\mathbf{A}) = 2.$

Per
$$B = \{1, 2\}$$
 la sottomatrice

$$\mathbf{A}_B = \begin{pmatrix} 10 & 6 \\ 15 & 4 \end{pmatrix}$$

è non singolare: dunque B è una base per P.

In particulare, $det(\mathbf{A}_{B}) = -50$, e

$$\mathbf{A}_{B}^{-1} = -\frac{1}{50} \begin{bmatrix} 4 & -6 \\ -15 & 10 \end{bmatrix} = \begin{bmatrix} -2/25 & 3/25 \\ 3/10 & -1/5 \end{bmatrix}$$

Premoltiplicando il sistema di equazioni per A_B^{-1} si ottiene il problema

P: min
$$5x_1 + 3x_2 - 2x_3$$

 $x_1 - 3x_3 = \frac{6}{5}$ base ammissibile $x_2 + \frac{15}{2}x_3 = 3$
 $x_1, x_2, x_3 \ge 0$

Eliminando x_1 e x_2 dalla funzione obiettivo si ha il problema equivalente in IR¹:

P': min
$$15 - 17x_3$$
 $x_3 \ge \frac{-2}{5}$ $x_3 \le \frac{2}{5}$ $x_3 \ge 0$

Il poliedro di P' ha per vertici i punti $x_3 = \frac{2}{5}$ e $x_3 = 0$, che corrispondono ai vertici $(\frac{12}{5}, 0, \frac{2}{5})$ e $(3, \frac{6}{5}, 0)$ del poliedro di P (soluzioni di base).

Il costo ridotto di x_3 è < 0. Dunque il versore $\mathbf{d} = (0, 0, 1)$ costituisce una direzione di miglioramento per il problema P'.

Tuttavia un'operazione di pivot consente di portare x_3 in base al valore $^2/_5$, e allo stesso tempo di aggiornare la soluzione corrente di P da $(3, ^6/_5, 0)$ a $(^{12}/_5, 0, ^2/_5)$.

Dalla tabella

0	0	-17	-15
1	0	-3	6/5
0	1	15/2	3

si passa infatti alla tabella (ottima)

0	34/15	0	-41/5
1	6/15	0	12/5
0	² / ₁₅	1	$^{2}/_{5}$

Consideriamo ora il problema di PL in forma standard

P:
$$\max 3x_1 + 5x_2 - 2x_3$$

 $10x_1 + 6x_2 + 15x_3 = 30$
 $10x_1 + 2x_2 - 5x_3 = 10$
 $x_1, x_2, x_3 \ge 0$

dove quindi $\mathbf{c}, \mathbf{x} \in \mathrm{IR}^3, \mathbf{b} \in \mathrm{IR}^2, \mathbf{A} \in \mathrm{IR}^{2\times 3}$, e ancora $\mathrm{rg}(\mathbf{A}) = 2$.

Stavolta il poliedro dell'Esempio 1 è intersecato da un piano passante per i punti (0, 0, -2), $(0, \frac{15}{2}, 0)$, (2, 0, 0).

Il poliedro del problema P è quindi un segmento di estremi (vertici) (0, 5, 0) e $(\frac{3}{2}, 0, 1)$

Consideriamo ora il problema di PL in forma standard

P:
$$\max 3x_1 + 5x_2 - 2x_3$$

 $10x_1 + 6x_2 + 15x_3 = 30$
 $10x_1 + 2x_2 - 5x_3 = 10$
 $x_1, x_2, x_3 \ge 0$

dove quindi $\mathbf{c}, \mathbf{x} \in \mathbb{IR}^3, \mathbf{b} \in \mathbb{IR}^2, \mathbf{A} \in \mathbb{IR}^{2\times 3}$, e ancora $\operatorname{rg}(\mathbf{A}) = 2$.

Per
$$B = \{1, 2\}$$
 la sottomatrice

$$\mathbf{A}_B = \begin{pmatrix} 10 & 6 \\ 10 & 2 \end{pmatrix}$$

è chiaramente non singolare: dunque B è una base per P.

In particolare, $det(\mathbf{A}_{B}) = -40$, e

$$\mathbf{A}_{B}^{-1} = -\frac{1}{40} \begin{bmatrix} 2 & -6 \\ -10 & 10 \end{bmatrix} = \begin{bmatrix} -1/20 & 3/20 \\ 1/4 & -1/4 \end{bmatrix}$$

Premoltiplicando il sistema di equazioni per A_B^{-1} si ottiene il problema

P: max
$$3x_1 + 5x_2 - 2x_3$$

$$x_1 - \frac{3}{2}x_3 = 0$$

$$x_2 + 5x_3 = 5$$

$$x_1, x_2, x_3 \ge 0$$
base ammissibile ma degenere

Eliminando x_1 e x_2 dalla funzione obiettivo si ha il problema equivalente in IR¹:

P':
$$\max 25 - \frac{45}{2}x_3$$

$$x_3 \ge 0$$

$$x_3 \le 1$$

$$x_3 \ge 0$$

Il poliedro di P' ha per vertici i punti $x_3 = 0$ e $x_3 = 1$, che corrispondono ai vertici (0, 5, 0) e $(\sqrt[3]{2}, 0, 1)$ del poliedro di P (soluzioni di base).

Consideriamo infine il problema di PL in forma standard

P:
$$\max 3x_1 + 5x_2 - x_3$$

 $10x_1 + 6x_2 + 15x_3 = 30$
 $2x_1 + 2x_2 - x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

dove come sempre $\mathbf{c}, \mathbf{x} \in \mathrm{IR}^3, \mathbf{b} \in \mathrm{IR}^2, \mathbf{A} \in \mathrm{IR}^{2\times 3}, \mathrm{rg}(\mathbf{A}) = 2.$

In questo caso il poliedro dell'Esempio 1 è intersecato da un piano passante per i punti (0, 0, -2), $(0, \frac{15}{2}, 0)$, (2, 0, 0).

Il poliedro del problema P è un segmento di estremi (vertici) $(0, \frac{5}{3}, \frac{4}{3})$ e $(\frac{3}{2}, 0, 1)$

Consideriamo infine il problema di PL in forma standard

P:
$$\max 3x_1 + 5x_2 - x_3$$

 $10x_1 + 6x_2 + 15x_3 = 30$
 $2x_1 + 2x_2 - x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

dove come sempre $\mathbf{c}, \mathbf{x} \in \mathrm{IR}^3, \mathbf{b} \in \mathrm{IR}^2, \mathbf{A} \in \mathrm{IR}^{2\times 3}, \mathrm{rg}(\mathbf{A}) = 2.$

Per
$$B = \{1, 2\}$$
 la sottomatrice

$$\mathbf{A}_B = \begin{bmatrix} 10 & & 6 \\ & & \\ 2 & & 2 \end{bmatrix}$$

è chiaramente non singolare: dunque B è una base per P. In particolare, $det(\mathbf{A}_B) = 8$, e

$$\mathbf{A}_{B}^{-1} = \frac{1}{8} \begin{bmatrix} 2 & -6 \\ -2 & 10 \end{bmatrix} = \begin{bmatrix} 1/4 & -3/4 \\ -1/4 & 5/4 \end{bmatrix}$$

Premoltiplicando il sistema di equazioni per A_B^{-1} si ottiene il problema

P: max
$$3x_1 + 5x_2 - 2x_3$$

 $x_1 + \frac{9}{2}x_3 = 6$
 $x_2 - 5x_3 = -5$

 $x_1, x_2, x_3 \ge 0$

base non ammissibile

Eliminando x_1 e x_2 dalla funzione obiettivo si ha il problema equivalente in IR¹:

P': max
$$7 - 2x_3$$
$$x_3 \le \frac{4}{3}$$
$$x_3 \ge 1$$
$$x_3 \ge 0$$

Il poliedro di P' ha per vertici i punti $x_3 = \frac{4}{3}$ e $x_3 = 1$, che corrispondono ai vertici (soluzioni di base) $(0, \frac{5}{3}, \frac{4}{3})$ e $(\frac{3}{2}, 0, 1)$ del poliedro di P.