Project 1

Author: Maciej Ogórek | WIMiIP | 306686

Git: https://github.com/MaciejOgorek/Project_FoDS

1. I started the work with deleting all restaurants not located in Poland to reduce the size of dataset and to speed up all the operations.

```
In [51]: df = df[df.country == 'Poland']
```

As a result I got a dataset consisting of 24698 restaurants.

```
In [54]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 24698 entries, 886009 to 910706
         Data columns (total 42 columns):
                                                 Non-Null Count Dtype
          #
              Column
         ---
          0
              restaurant link
                                                 24698 non-null object
          1 restaurant_name
                                                 24698 non-null object
          2 original location
                                                 24698 non-null object
             country
          3
                                                 24698 non-null object
              region
                                                 24698 non-null object
          4
              province
                                                 24697 non-null object
```

I took a look on the dataset and realized that dataset required lots of recoding. I decided to drop non relevant columns and columns consisting of data that couldn't be converted into numerical value:

```
In [519]: df = df.drop(columns = "region")
In [520]: df = df.drop(columns = "country")
In [521]: df = df.drop(columns = "restaurant_name")
In [522]: df = df.drop(columns = "original_location")
In [523]: df = df.drop(columns = "province")
In [524]: df = df.drop(columns = "city")
In [525]: df = df.drop(columns = "address")
In [526]: df = df.drop(columns = "restaurant link")
In [527]: df = df.drop(columns = "default_language")
In [528]: df = df.drop(columns = "keywords")
In [529]: df = df.drop(columns = "latitude")
In [530]: df = df.drop(columns = "longitude")
In [531]: df = df.drop(columns = "original_open_hours")
In [532]: df = df.drop(columns = "popularity_detailed")
In [533]: df = df.drop(columns = "popularity_generic")
In [534]: df = df.drop(columns = "meals")
In [535]: df = df.drop(columns = "cuisines")
In [536]: df = df.drop(columns = "reviews_count_in_default_language")
In [537]: df = df.drop(columns = "total_reviews_count")
In [538]: df = df.drop(columns = "price_range")
In [539]: df = df.drop(columns = "atmosphere")
In [540]: df = df.drop(columns = "awards")
```

Since I didn't want to lose 20% of data I decided to replace all missing values of avg_rating with mean value of this variable divided by 2.

```
In [567]: df.avg_rating.mean()
Out[567]: 4.109489402697495
In [568]: df['avg_rating'] = df['avg_rating'].fillna(4.109489402697495/2)
```

Where it was possible I filled missing records with appropriate values.

```
In [552]: df['open_days_per_week'] = df['open_days_per_week'].fillna(7)
In [553]: df['working_shifts_per_week'] = df['working_shifts_per_week'].fillna(9)
In [554]: df['open_hours_per_week'] = df['open_hours_per_week'].fillna(56)
In [555]: df['excellent'] = df['excellent'].fillna(0)
In [556]: df['very_good'] = df['very_good'].fillna(0)
In [557]: df['average'] = df['average'].fillna(0)
In [558]: df['poor'] = df['poor'].fillna(0)
In [559]: df['terrible'] = df['terrible'].fillna(0)
In [560]: df['food'] = df['food'].fillna(0)
In [561]: df['service'] = df['service'].fillna(0)
```

Where it was possible I recalculated the data to the values that were suitable for the analysis.

2. When the data was ready I prepared statistical summary of the data.

In [573]: df.describe().transpose()[['mean', 'std', 'min', 'max']]
Out[573]:

	mean	std	min	max
claimed	0.375658	0.484302	0.0	1.000000
price_level	0.391125	0.515608	0.0	2.000000
vegetarian_friendly	0.139404	0.346375	0.0	1.000000
vegan_options	0.058831	0.235312	0.0	1.000000
gluten_free	0.031582	0.174887	0.0	1.000000
open_days_per_week	6.852782	0.551613	1.0	7.000000
open_hours_per_week	67.513497	24.131297	0.0	167.883333
working_shifts_per_week	7.794599	1.289164	1.0	14.000000
avg_rating	3.781868	1.001736	1.0	5.000000
excellent	8.498502	45.176975	0.0	3120.000000
very_good	3.687424	17.116831	0.0	787.000000
average	1.318852	6.099053	0.0	435.000000
poor	0.628067	2.742321	0.0	164.000000
terrible	0.757227	3.234466	0.0	132.000000
food	1.697121	2.077531	0.0	5.000000
service	1.701879	2.071220	0.0	5.000000
value	1.661430	2.035065	0.0	5.000000

The results look solid all the numbers are logical. There are no values which would be totally abstract but of course there are some outliers.

3. I started to identify outliers using univariate and multivariate methods:

Variable: price_level Method: univariate

Variables: open_days_per_week, open_hours_per_week

Method: Multivariate

```
In [579]: fig, ax = plt.subplots(figsize = (18,10))
ax.scatter(df['open_days_per_week'], df['open_hours_per_week'])
Out[579]: 
(matplotlib.collections.PathCollection at 0x1f521de5730)
```


Variable: working_shifts_per_week

Method: univariate

Out[580]: <AxesSubplot:xlabel='working_shifts_per_week'>

Variable: avg_rating Method: univariate

Variable: excellent Method: univariate

Out[582]: <AxesSubplot:xlabel='excellent'>

Variable: very_good Method: univariate

<AxesSubplot:xlabel='very_good'>

Variable: average Method: univariate

<AxesSubplot:xlabel='average'>

Variable: poor Method: univariate

<AxesSubplot:xlabel='poor'>

Variable: terrible Method: univariate

<AxesSubplot:xlabel='terrible'>

Variable: food Method: univariate

<AxesSubplot:xlabel='food'>

Variable: service Method: univariate

<AxesSubplot:xlabel='service'>

Variable: value Method: univariate

<AxesSubplot:xlabel='value'>

On the charts we can see that the outliers can be seen when a variable has a wide range. Not all variables have an outliers but when data has strict limits for example grading scale its very hard to get an outlier.

4. I used an elbow method to get an optimal K for K-means method of clustering

```
In [591]: cluster = df
In [592]: mms = MinMaxScaler()
            mms.fit(cluster)
           data_transformed = mms.transform(cluster)
In [597]: Sum_of_squared_distances = []
            K = range(1,15)
            for k in K:
                km = KMeans(n_clusters=k)
km = km.fit(data_transformed)
                Sum_of_squared_distances.append(km.inertia_)
In [598]: plt.plot(K, Sum_of_squared_distances, 'bx-') plt.xlabel('k')
            plt.ylabel('Sum_of_squared_distances')
           plt.title('Elbow Method For Optimal k')
            plt.show()
                                 Elbow Method For Optimal k
               25000
               20000
               15000
             10000 أ<sup>ح</sup>
                5000
                                                      10
```

5. Using K = 2 I clustered a dataset:

6. I calculated Pearson's coefficient for variable avg_rating and every other variable.

Variables: avg_rating, claimed Coefficient: 0.26849398078191256

Correlation level: low

Variables: avg_rating, price_level Coefficient: 0.20351258296287972

Correlation level: low

Variables: avg_rating, vegetarian_friendly

Coefficient: 0.18230732451365278

Correlation level: low

Variables: avg_rating, vegan_options Coefficient: 0.1407207567915803

Correlation level: low

Variables: avg_rating, gluten_free Coefficient: 0.10776230260222618

Correlation level: low

Variables: avg_rating, open_days_per_week

Coefficient: -0.08531272277307349

Correlation level: low

Variables: avg_rating, open_hours_per_week

Coefficient: -0.1959115717325771

Correlation level: low

Variables: avg_rating, working_shifts_per_week

Coefficient: -0.11487516310817568

Correlation level: low

Variables: avg_rating, very_good Coefficient: 0.07826583524069713

Correlation level: low

Variables: avg_rating, average Coefficient: 0.04541742766669098

Correlation level: low

Variables: avg_rating, poor

Coefficient: 0.02073421845377288

Correlation level: low

Variables: avg_rating, terrible

Coefficient: -0.028069473993855537

Correlation level: low

Variables: avg_rating, food Coefficient: 0.2996473700779129

Correlation level: low

Variables: avg_rating, service Coefficient: 0.2991681221982498

Correlation level: low

Variables: avg_rating, value Coefficient: 0.3020495451493288

Correlation level: low

I estimated correlation level on a fact that Pearson's coefficient indicates strong link between variables when is between <-1;-0,5> and <0,5;1>. Weaker connection between variables is between <-0,5;0) and(0;0,5>. If the coefficient is equal to 0 two variables are not correlated.

7. I divided the dataset into two parts and created regression model

```
In [713]: def plot_loss(histpry):
    plt.plot(history.history['loss'], label = 'loss')
    plt.plot(history.history['val_loss'], label = 'val_loss')
    #plt.ylim([0, 40])
    plt.ylim([0, 2])
    plt.xlabel('Eproch')
    plt.ylabel('Erroch')
    plt.ylabel('Erroch')
    plt.legend()
    plt.grid(True)
In [714]: def build_and_compile_model(norm):
    model = keras.Sequential([
                   norm,
layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
                   layers.Dense(1)
               model.compile(
#loss='mean_absolute_percentage_error',
loss-'mean_absolute_error',
optimizer = tf.keras.optimizers.Adam(0.001))
In [715]: dnn_model = build_and_compile_model(normalizer)
dnn_model.summary()
           Model: "sequential_1"
           Layer (type)
                                         Output Shape
                                                                   Param #
           normalization (Normalization (None, 16)
                                                     33
           dense_3 (Dense)
                                                                   1088
                                        (None, 64)
           dense 4 (Dense)
                                         (None, 64)
                                                                   4160
           dense_5 (Dense)
                                         (None, 64)
                                                                   4160
           dense_6 (Dense)
                                                                   65
                                         (None, 1)
           Total params: 9,506
Trainable params: 9,473
Non-trainable params: 33
In [716]: %%time
              history = dnn_model.fit(
train_features, train_labels,
validation_split = 0.2,
                    verbose=1, epochs = 100)
               Epoch 92/100
                                                ========] - 0s 536us/step - loss: 0.1874 - val_loss: 0.2041
               494/494 [====
               Epoch 93/100
               494/494 [===
                                                ========] - 0s 548us/step - loss: 0.1846 - val_loss: 0.2060
               Epoch 94/100
               Epoch 95/100
               494/494 [===
                                                                 ===] - 0s 558us/step - loss: 0.1784 - val_loss: 0.2044
               Epoch 96/100
               494/494 [====
                                             =========] - 0s 560us/step - loss: 0.1804 - val_loss: 0.1999
               Epoch 97/100
               494/494 [====
                                                    =======] - 0s 570us/step - loss: 0.1831 - val_loss: 0.2015
               Epoch 98/100
               494/494 [====
                                                -----] - 0s 609us/step - loss: 0.1804 - val_loss: 0.1984
               Epoch 99/100
               494/494 [====
                                              =======] - 0s 561us/step - loss: 0.1765 - val_loss: 0.1965
               Epoch 100/100
               494/494 [====
                                                        ======] - 0s 557us/step - loss: 0.1825 - val_loss: 0.2218
               Wall time: 28.1 s
plot_loss(history)
       2.00
                                                                                              loss
      1.75
                                                                                              val loss
      1.50
```


As it can be seen on the charts regression model returned a value 0.2 which is not a wanted value. However we can see that the value of error is very close to the predicted value. The unwanted result could be a result of some mistake made during the preparation of dataset. I don't think that the model was over-taught.