

Introduction to RNA-Seq – Differential Expression

Wandrille Duchemin

DE – the goal

- Sequencing depth varies across libraries
- High dynamic range
- Limited number of samples
- Large number of genes

Sequencing depth varies across libraries

High dynamic range

Limited number of samples

Large number of genes to test

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND A WE FOUND NO LINK BETWEEN LINK BETWEEN GREEN JELLY MAUVE JELLY BEANS AND ACNE BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN BLUE JEILY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN BEIGE JEILY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN LILAC JEILY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLACK JEILY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN PEACH JEILY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN SALMON JEILY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05)

xkcd.com/882

WE FOUND NO LINK BETWEEN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO WE FOUND A LINK BETWEEN LINK BETWEEN CYAN JELLY GREEN JELLY BEANS AND ACNE BEANS AND ACNE (P>0.05). (P<0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BEIGE JELLY

Apply p-value

WE FOUND NO LINK BETWEEN LILAC JEILY

WE, FOUND NO

WE FOUND NO LINK BETWEEN PEACH JEILY BEANS AND ACNE (P>0.05)

WE FOUND NO

LINK BETWEEN

ORANGE JEILY

BEANS AND ACNE

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P>0.05)

WE F LINK BEAN

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P>0.05).

xkcd.com/882

DE – Input for Gene Differential Expression

- Counts from mapping
 - Handling of overlap? Stranding?
 - Multi-mapping reads?
 - Affected by library size
- TPM from pseudo-aligners
 - Tximport aggregates counts at the gene-level

DE – Input for Gene Differential Expression

- Counts from mapping
 - Handling of overlap? Stranding?
 - Multi-mapping reads?
 - Affected by library size
- TPM from pseudo-aligners
 - Tximport aggregates counts at the gene-level

EdgeR and DESeq2 expect raw counts

DE – digression: "naive" normalization

- CPM (Count Per Million): count / library size * 10⁶
- RPKM (Reads Per Kilobase per Million):
 - CPM / gene length (kb)

- TPM (Transcript Per Million):
 - RPK = Count / gene length (kb)
 - RPK / sum(RPK) * 10⁶

DE – "naive" normalization

- CPM (Count Per Million) : count / library size * 10⁶
- RPKM (Reads Per Kilobase per Million):
 - CPM / gene length (kb)

Sum RPKM different between samples

- TPM (Transcript Per Million):
 - RPK = Count / gene length (kb)
 - RPK / sum(RPK) * 106

Sum TPM constant between samples

DE – "naive" normalization

- CPM (Count Per Million) : count / library size * 10⁶
- RPKM (Reads Per Kilobase per Million):
 - CPM / gene length (kb)

How do you compute "gene length"?

- TPM (Transcript Per Million):
 - RPK = Count / gene length (kb)
 - RPK / sum(RPK) * 10⁶

DE – Filtering low count genes

Very low counts genes :

- Very little information. No chance of DE.
- Filter: less p-value correction

EdgeR: CPM > 10/(min lib size) in at least N samples

DESeq2: mean normalized count optimizing # of DEG

DE - Normalization

Table 3: Summary of comparison results for the seven normalization methods under consideration

Method	Distribution	Intra-Variance	Housekeeping	Clustering	False-positive rate
TC	_	+	+	_	_
UQ	++	++	+	++	_
Med	++	++	_	++	_
DES eq	++	++	++	++	++
TMM	++	++	++	++	++
Q	++	_	+	++	_
RPKM	_	+	+	_	_

A'—' indicates that the method provided unsatisfactory results for the given criterion, while a '+' and '++' indicate satisfactory and very satisfactory results for the given criterion.

Dillies et al 2013 https://doi.org/10.1093/bib/bbs046

DE – Normalization

- EdgeR: "Trimmed Mean of M-Values" (TMM)
- DESeq2 : "Relative Log Expression" (RLE)

Both presume that most genes are not DE!

QC – MDS or PCA of the samples

DE – negative binomial model

- Generalized Poisson with over-dispersion
- count of a gene in a sample ~ NB(μ , θ)
 - Variance = $\mu + \theta \mu^2$
 - θ: dispersion parameter

Anders, S., Huber, W. 2010 https://doi.org/10.1186/gb-2010-11-10-

Shrinkage of dispersion estimates

- Problem: we often have few replicates
- Solution: take advantage of the large number of genes
 - shrink gene-wise estimates towards the center value observed of dispersion across genes with similar expression

Shrinkage dispersion estimation

Shrinkage dispersion estimation

Shrinkage dispersion estimation

Tests for differential expression – DESeq2

- For each gene:
 - Z-score = shrunken LFC / estimate standard error
- Z-score → standard normal distribution → p-value (Wald test)
- Benjamini-Hochberg procedure to adjust p-values

Tests for differential expression – edgeR

- "simple" 1 factor : exactTest() ,
 - using the computed conditional distribution for the sum of counts in a group
- Otherwise a GLM framework in used :
 - QL F-test: preferred → normally stricter error rate control
 - LRT: when "the dispersions are very large and the counts are very small, whereby some of the approximations in the QL framework seem to fail"

MA plot

Shrinkage of log-fold change

edgeR vs DESeq2

- P EdgeR-exactTest() : more sensitive
- EdgeR-QL : more conservative
- DESeq2 : tight FDR control

Practical

Go to the website and follow the Differential Expression practical

Contributors:

Geoffrey Fucile
Walid Gharib
Irene Keller
Pablo Escobar Lopez
Charlotte Soneson

