

ජාජනීය විද්*පා*ලය - නෙන Royal College - Colon

රාජකීය විදනාලය - කොළඹ 67 🕫 කොළඹ 07 රාජකීය විදනලය -Colombo 07 Royal College

රසායන විදහාව I Chemistry

පැය දෙකයි Two hours

- මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.
- සියලුම පුශ්තවලට පිළිතුරු සපයන්න.
- ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- උක්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 1 සිට 50 ලකක් එක් එක් පුශ්නයට (1) (2) (3) (4) (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන පිළිතුර තෝරාගෙන, එය උත්තර පතුයේ කතිරයක් යොදා දක්වන්න.

සාර්වතු වායු නියනය R

 $= 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

ඇවගාඩ්රෝ නියනය $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

ජලැන්ක්ගේ නියතය h = 6.626 x 10⁻³⁴ Js

- $= 3 \times 10^8 \,\mathrm{m \ s^{-1}}$ ආලෝකයේ පුවේගය C
- (01)X නම් ආන්තරික නොවන මූදුවසයක්, $X{
 m O}_2{
 m F}_2$ නම් වතුස්තලිය හැඩැති අණුව සාදයි. මෙම X මූලදුවසයේ උපරිම සහ අවම ඔක්සිකරණ අංක විය හැක්කේ
 - 1) +7 කහ -1
- 2) +6 සහ -2
- 3) +5 exx -2

- 4) +5 esso -3
- 5) +4 esto -4
- (02)ද්විධුැව සූර්ණය ශුණා වනුගේ මීන් කවර සංයෝග සමූහයේද?
 - 1) SF₄, SiCl₄, PCl₅
- 2) CIF₃, CCl₄, NO₃
- 3) SF₆, GaCl₃, CO_3^{2-}

- 4) XeF₂, XeF₄, XeF₆
- 5) BeCl₂, BF₃, NF₃
- P හා Q දුව දෙක පරිපූර්ණ දුාවණ සාදයි. P හි මවුල පුතිගතය 25% ක් වන දුාවණ සමග සමතුලිතව පවතින (03)වීට වාෂ්ප කලාපයේ ${f P}$ හි මවුල පුකිශතය 50% ක් වේ.. සංශුද්ධ ${f P}$ හා සංශුද්ධ ${f Q}$ හි වාෂ්ප පීඩන අනුපාතය වන්නේ

 - 1) $\frac{P^0_{p}}{P^0_{Q}} = \frac{3}{1}$ 2) $\frac{P^0_{p}}{P^0_{Q}} = \frac{1}{3}$ 3) $\frac{P^0_{p}}{P^0_{Q}} = \frac{1}{2}$
 - 4) $\frac{P^0_{\rho}}{P^0_{0}} = \frac{1}{4}$ 5) $\frac{P^0_{\rho}}{P^0_{0}} = \frac{3}{4}$
- පරමාණුවක ක්වොන්ටම් අංක කුලකය 3, 1, 0, +1/2 ලෙස පැවතිය නොහැකි මූලදුවා වන්නේ (04)
 - 1) P
- 2) Si
- 3) Mg
- 5) Cl
- වීලින Al_2O_3 තුළින් 3.21A ධාරාවක් මිනින්තු 10 ක් තුළ යවන ලදී. කැතෝඩයක තැන්පත් වන Al ස්කත්ධය වන්නේ (Al = 27)
 - 1) 1.88 g
- 2) 0.127 g
- 3) 0.188 g
- 4) 0.157g
- 5) 1.57 g
- එක්තරා විදාුත් චූම්බක වීකිරණයක ලෝටෝනයක ශක්තිය 4.85x10⁻¹⁹J නම එහි තරංග ආයාමය (06)කොපමණ වේද?
- (ප්ලාන්ක් අයනය $6.63 \times 10^{-34} \mathrm{JS}$; ආලෝකයේ පුවේගය $3 \times 10^8 \mathrm{ms}^{-1}$)

- 1) 970 nm
- 2) 810 nm
- 3) 485 nm
- 4) 410 nm
- 243 nm .

(07)දුබල අම්ලයක් වන දර්ශකයක් (Hin) ජලීය මාධායේදී පහත සමතුලිතතාව ඇති කරයි.

 $HIn_{(aq)} + H_2O_{(l)} \longrightarrow H_3O_{(aq)}^+ + In_{(aq)}^-$

මෙම දර්ශකයේ විඝටන නියතය $K_{\rm in}=1 imes 10^{-10} ext{ moldm}^{-3}$ වේ. $P^{
m H}$ අගය 7 වන දර්ශකයේ ජලීය දාවණයක් සම්බන්ධයෙන් කුමන පුකාශය සකා වෙද?

- 1) $[In_{(aq)}^{-}] < [HIn_{(aq)}]$
- 2) $[In_{(aq)}^{-}] = [HIn_{(aq)}]$ 3) $[In_{(aq)}^{-}] > [HIn_{(aq)}]$
- 4) $[In_{(aq)}^{-}] = [H_3O_{(aq)}^{+}]$ 5) $[In_{(aq)}^{-}] = [OH_{(aq)}^{-}]$
- පහත කවර යුගලයක් ජලය සමග ඓගවත් පුතිකිුිිිිියාවක් දක්වයිද? (08)
 - 1) CH3CONH2 to CH3COCl
- 2) CH₃COCl Exp CH₃NH₂
- 3) CH₃MgBr too $C_6H_5N_7^*Cl^{-1}$
- 4) CH₃CH₂OH ess CH₃OCH₃
- 5) CH₃COOH as C₆H₅COOH
- (09)පහත කවර කාබනික සංයෝගය පහත පරීක්ෂාවන් සියල්ලටම පිළිතුරු ලබාදේද?
 - a) උදාසීන FeCl₃ දුාවණය දම්පාට වේ.
 - b) 2, 4, DNP පුතිකාරකය සමග කහ තැඹීලි අවක්ෂේපයක් ලබා දේ.
 - c) OH /KMnO4 මගින් ඔක්සිකරණය කර ලැබෙන ජලය ආම්ලික කළ විට සුදු අවක්ෂේපයක් ලබා දේ.
- COOH 2) OH O OCH₃

 CONH₂
 OH O CHO

 CHO

 CHO

- සංශුද්ධ දුවාහයක් සහිත පද්ධතියකට ඒකාකාර සිසුතාවයකින් ශක්තිය සපයනු ලැබේ. එහි උෂ්ණක්වය කාලය 10) සමග විචල<mark>නය පහ</mark>ක ැක්වේ,

B - C රේඛාව සමග වඩාත් සමීපව සම්බන්ධ වනුයේ.

- 1) විලයනය වීමේදී සිදුවන තාප විපර්යාසය
- 2) වාෂ්පීකරණයේදී සිදුවන තාප විපර්යාසය
- 3) වායුවේ විශිෂ්ට තාප ධාරිතාව
- ඝනයේ විශිෂ්ට තාප ධාරිතාව 4)

- 5) ඝනලය් දුවාංකය
- 200° C දී $1\mathrm{dm}^3$ පරිමාවක් ඇති භාජනයක් තුළ $P_{(g)}+Q_{(g)}\Longrightarrow 2R_{(g)}$ යන සමතුලිතතාවය පවතින විව (11)P, Q, R සාන්දුණ පිළිවෙලින් 0.2 moldm⁻³ , 3.0 moldm⁻³ , 0. 5moldm⁻³ වේ. 200⁰C දී සමතුලිකව පවතින $R_{(g)}$ සාන්දුණය $0.7 ext{moldm}^{-3}$ පුමාණයකින් වැඩි කිරීම සඳහා පද්ධතියට එක් කළ යුතු $P_{(g)}$ පුමාණය වන්නේ
 - 1) 0.225 mol
- 0.305 mol
- 3) 0.417 mol
- 4) 0.61 mol
- $A_{2\ (g)}+B_{2\ (g)} \implies 2AB_{(g)}$ යන තනි පියවර පුතිවර්තා පුතිකියාවේ ඉදිරි හා ආපසු පුතිකියාවල සකියන (12)ශක්තීන් පිළිවෙලින් 250kJmol⁻¹ සහ 170kJmol⁻¹ වේ. උන්ජේරකයක් එක් කළ විට මෙම පුතිකිුයාවේ ඉදිරි හා ආපසු පියවරවල සකියන ශක්තීන් 90kJmol ් පුමාණයකින් අඩු වන අතර පියවර ගණන වෙනසක් නොවේ. උත්පේරකය ඇති විට පුතිකිුයාවේ එන්තැල්පි විපර්යාසය කුමක්ද?
 - 1) -30kJmol⁻¹
- 2) -80kJmol⁻¹
- 3) +80kJmol⁻¹
- 4) 190kJmol⁻¹
- 5) +30kJmol-1

- (13) කාබනික සංයෝගයක ආම්ලිකතා ආරෝහණය පිළිබඳ පහත කවරක් නි්රවදා නොවේද?
 - 1) CH₃ CH₂ CH₂ COOH < CH₃ CH₂ COOH < CH₃ COOH < HCOOH
 - 2) $C_2H_6 < C_2H_4 < C_2H_2 < CH_3CH_2OH$
 - 3) CH₃ COOH < FCH₂COOH < ClCH₂COOH < BrCH₂ -COOH
 - 4) CH₂=CH -CH₂COOH < CH₂=CH -CH (CH₃)COOH < CH₂=C(CH₃)-C(CH₃)₂ COOH < CH₂= CH-C(CH₃)₂ COOH

5)
$$\bigcirc$$
 $\stackrel{NH_2}{\bigcirc}$ $\stackrel{NH_2}{\bigcirc}$ $\stackrel{NO_2}{\bigcirc}$ $\stackrel{NH_2}{\bigcirc}$ $\stackrel{NO_2}{\bigcirc}$ $\stackrel{NH_2}{\bigcirc}$ $\stackrel{NO_2}{\bigcirc}$ $\stackrel{NO_2}{\bigcirc}$ $\stackrel{NO_2}{\bigcirc}$

- (14) A,B,C,D පුකිකියා ඇසුරින් සැබෑ ලෙස සිදුවන පුකිකියා මොනවාද?'
 - A) CH_3CHO $CH_3 C \equiv CNa$ $CH_3 CH C \equiv C CH_3$
 - B) $C_6H_5 C O C_6H_5$ NaOH $C_6H_5C ONa + C_6H_5OH$
 - C) CH₃CH₂Cl CH₃ONa CH₂=CH₂ + CH₃- CH₂-O-CH₃

1) A හා C පමණි

- 2) A, B, C පමණි
- 3) A, B, C ,D සියල්ලම

4) A හා B පමණි

- 5) A, C, D පමණි
- (15) දෑඩ සංවෘත බඳුනක් තුළ පහත සමකුලිනතාවය පවතී.

 $PCl_{5 (g)} \iff PCl_{5 (g)} + Cl_{2 (g)}$ මෙම පද්ධතියට Cl_2 වායුව යම් පුමාණයක් එකතු කළ විට ආපසු පුතිකියා**වේ වේගය විචලනය** වන ආකාරය භෞදින්ම දැක්වෙනුගේ පහත කුමන පුස්ථාරයේද?

2)

Royal College - Colombo 07

:

Chemistry-2017 June Grade 13

- ජලීය HCl මෙන්ම ජලය NaOH සමග ද අවක්ෂේපයක් ලබාදෙන සංයෝගය වනුයේ (16)
 - a) ජලීය AgNO₃

- b) ජලීය Ba(OH)₂
- c) ජලීය BiCla

d) ජලීය Na₃AsO₃

e) Pb(NO₃)₂

- 1) a,b,c = 0 43
- 2) a,e පමණි
- 3) a,d,e පමණි 4) a,c,d,e පමණි
- 5) a,d,e = 0.43
- එලයක් ලෙස ක්ලෝරීන් වායුව නිදහස් නො<mark>වන්නේ</mark> පහත දැක්වෙන කුමන පුතිකිුයාවලදීද? (17)
 - 1) NaCl + සාන්දු H_2SO_4 \rightarrow

2) $OCl_{(aq)}^- + Cl_{(aq)}^- + H_{(aq)}^+ \rightarrow$

3) MnO_{2(s)} + සාන්දු HC]

4) KMnO_{4(s)} + සාන්දු HCl →

- 5) Ca(OCl)_{2(aq)}
- $H C C = CH CH_2 C O CH_2 CH_3$ (18)CH2 - CH3
 - 1) ethyl 4 ethyl 5 formylpent 3 enoate
 - 2) ethyl 4 ethyl 5- oxopent -3 enoate
 - 3) ethyl 4 ethyl 4 formylbut 3 enoate
 - 4) 4 formylhex 3 en ethanoate
 - 5) ethyl 4 formylhex 3 enoate
- පහත සඳහන් පුකාශ අතරින් අසතා පුකාශය වන්නේ (19)
 - i) ගංවතුර තත්ව ඇති වීම මගින් පසේ කාබනික පොහොර පුතිශකය ඉහල යා හැක. .
 - 2) රසායනික අවි ගබඩාවක් ගිනි ගැනීමේදී පිටවන $\mathrm{NH_3}$, CO පරිසරයට එකතු වේ.
 - 3) කුණු කන්දක් අසල වායු ගෝලය පරීක්ෂා කළ විට මිහෝන් වායුව වැඩි පුමාණයක් පවතී.
 - 4) නොරොච්චෝලේ ගල් අඟුරු බලාගාරය අවට පරිසරයේ වර්ෂාව ඇති වනවිට අම්ල වැසි ඇතිවේ.
 - 5) අකුණු ගැසීම සහ ලෙගුමීනාසේ කුලයේ ශාක වර්ග මගින් පසේ නයිටුජන් පුතිශනය ඉහල යා හැක.
- (20)නයිලෙන්න් පිළිබඳ සභා වගන්තිය වනුයේ
 - කෘතීම සංගණන තාප සුවිකාර්ය බහුඅවයව්කයකි.
 - 2) ස්වභාවික සංගණන බහුඅවයව්කයකි.
 - 3) බහුඅවයවිකයේ -CONH2 ඇමුම් පවති.
 - ්' 4) කෘතුීම ආකලත තාව <u>හ</u>ුවිකාර්ය බහුඅවයව්කයකි.
 - 5) ඩයි ඇමිනයක් සහ ඩයි මධාසාරයක් සමග සංගණනගයන් නිපදවේ.
- ඝණ ලවණ ස්වල්පයකට තනුක අම්ල එක් කිරිමේදී රතු දුඹුරු වායුවක් ලබා දුන් අතර ඇමෝනියම් (21)හයිඩුොක්සයිඩ් ස්වල්පය බැගින් එක්වන විට අවක්ෂේපයක් ලැබී තව දුරටත් එක් කිරීමේදී අවර්ණ දුාවණයක් ලැබුණි. ලවණය වන්නේ
 - 1) $Zn(NO_3)_2$
- 2) ZnBr₂
- 3) Al(NO2)2
- 4) Zn(NO₂)₂
- 5) ZnI₂
- A ඇරෝමැටික කාබනික සංයෝගයේ අණුක සූතුය $C_{s}H_{s}O_{2}$ වේ. මෙම සංයෝගය
 - i) Na සමග පුතිකිුියාවෙන් H2 ලබා දේ.
- ii) Na₂CO₃ සමග පුතිකිුියා නොකරයි.
- iii) උදාසීන FeCl3 සමග දම් වර්ණයක් ලබා දේ. A විය හැක්කේ

 $Q - O - CH_2CH_3$

- පහත කවර කාබනික සංයෝගය වඩාත්ම පහසුවෙන්ම ආම්ලික ජලවීච්ඡේදනයට භාජනය වේද? (23)
 - 1) CH₃-C-C-O-C₂H₅
- CH₃ O 2) CH₃ - CH - C - O - C₂H₅
- 3) CH₃ CH C O CH₃
- CH₃ O 4) CH₃ − C − C − CH₃ CH₃
- 5) CH₃ CH₂ CH₂ C O CH₃
- M ලෝහ ඉලෙක්ටෝඩ යොදා CuSO4 ජලීය දාවණය විදයුත් විච්ඡේදනය කළ විට කිසියම් කාලයකට පසු (24)කැතෝඩයේ ස්කන්ධය 0.65g වැඩි වූ අතර ඇනෝඩයේ ස්කන්ධය 0.18g කින් අඩු විය. ඉලෙක්ටුෝඩ සඳහා යොදා ගත් ලෝහය M විය හැක්කේ ('Cu = 63.5 , Fe = 56, Al = 27, Zn = 65, Mg = 24)
- 2) Mg
- 3) Fe
- 4) Al
- 5) Zn
- (25) පහත කවර සංශයාග යුගලය නිල් ලිට්මස් රතු පැහැයට හරවයිද?
 - 1) NH₄NO₃ , NH₄ClO₃
- 2) CH₃COONa, Na₂CO₃
- 3) Na₃PO₄ , NH₄NO₃
- 4) NH₄Cl , HCOONa
- 5) CH₃COONH₄, CH₃COONa
- පහත කවර යුගලයක මුල් පුභේදය, දෙවැන්නට වඩා නියු<mark>ක්ලියෝෆිලික පහරදීමට ලක් චේද</mark>? (26)
 - 1) CH₃-C-OH —; CH₃-C-H 2) CH₃-C-Cl ; CH₃-C-NH₂

 - 5) CH₃ C CH₃ ; CH₃ C H
- $A_{(g)}+2B_{(g)}\iff C_{(g)}+3D_{(g)}$ යන පුතිකියාව සලකන්න. මෙම පුතිකියාවේ සීසුකාවය $R=K[A]^1$ ෙන. A හා B සම මවුල මිශුණයකින් ආරම්භ කරමින් පුතිකියාව සිදුවුවහොත් කාලය සමග A හා B සාන්දුණය වෙනස් වන අංකාරය වඩාත් නොඳින් ම නිරුපනය වන්නේ

Royal College - Colombo 07

5

Chemistry-2017 June Grade 13

- (28) පහත කවර කාබනික සංලයාගය ඉතා පහසුවෙන් සාන්දු H_2SO_4 සමග $170^{6}C$ උෂ්ණන්වයක්දී වීජලනයට භාජනය වේද?
 - CH₃ CH CH₂ OH
 OH
 CH₂ OH

- 3) CH₂ CH OH
- CH₃ CH₃
 4) CH₃ C CH C CH₃
 CH₃ OH CH₃
- 5) CH₃ CH₃ CH CH₃ CH₃
- (29) පහත වගන්ති අතුරින් ක්වර වගන්තිය සකෘ නොචේද?
 - 1) H_2S හා NH_3 වායු වියලීමට සාන්දු H_2SO_4 භාවිතා කළ හැකිය.
 - 2) FeCl3 දාවණය , AgNO3 දාවණයකට එකතු කළ විට සුදු පැහැ අවක්ෂේපයක් ලබා දී කාලයත් සමග අඳුරු පැහැ වේ.
 - 3) $Na_2S_2O_3$ දාවණයක් , $Pb(NO_3)_2$ දාවණයක් සමග සුදු පැහැ අවක්ෂේපයක් ලබා දේ.
 - 4) NaNO2 හා NaBr වෙන්කර ගැනීමට සාන්දු HNO3 භාවිතා කළ නොහැකිය.
 - 5) MgCl₂ මෙන්ම CaCl₂ තෙත් වායූන් වියලීමට යොදාගත හැකිය.
- (30) පහත කවර කියාවලිය සඳහා LiAlH₄ මෙන්ම NaBH₄ යන දෙකම භාවිතා කළ නොහැකි වේද?

2) COOCH₃

5)
$$CH_3 - CH - CH = CH - CHO$$

$$CH_3 - CH - CH_2 - CH_2 - CH_2OH$$

$$NH_2$$

$$NH_2$$

• 31 සිට 40 දක්වා පුශ්න සඳහා උපදෙස්

එක් එක් පුශ්නයේ දක්වා ඇති (a), (b), (c) සහ (d) යන පුතිචාර 4 අතරෙන් එකක් හෝ වැඩි සංඛxාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය / පුතිචාර කවරේ දයි තෝරා ගන්න.

- (a) සහ (b) පමණක් නිවැරදි නම් (i) මත ද
- (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
- (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
- (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

ලවනත් පුතිචාර සංඛ්‍යාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද උත්තර පතුයෙහි දක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

උපදෙස් සම්පිණ්ඩනය							
(1)	(2)	(3)	(4) ,	(5)			
(a) සහ (b)	(b) සහ (c)	(c) සහ (d) පමණක්	(d) සහ (a) පමණක්	වෙනත් පුතිචාර සංඛඎවක්			
පමණක්	පමණක් නිවැරදියි	නීවැරදි යි	නිවැරදියි	ලභා සංයෝජනයක් හෝ			
නිවැරදියි				නිවැරදිය			

- $SO_3^{2-};SO_4^{2-}$ ම්ශුණයකින් අදාල SO_3^{2-} ඇනායන සාන්දුණ නිර්ණය කිරීම සම්බන්ධයෙන් පහත කවරක් සහා වේද?
 - a) ආම්ලික KMnO4 මගින් අනුමාපනය කිරීම
- b) BaCl₂ හා HNO₃ එක් කිරීම

c) Br₂ බුබුලනය කර BaCl₂ එක් කිරීම

d) සාන්දු HNO3 සමග රත් කිරීම

- (32) පහත කවර පුකාශය/පුකාශ සතා වේද?
 - a) \cdot CH $_3$ CONH $_2$ මෙන්ම CH $_3$ NH $_2$ කාමර උෂ්ණත්වයේදී NaOH සමග NH $_3$ ලබා දේ.
 - b) CH3COOCH3 මෙන්ම C6H5COCH3 ; LiATH4 සමග පුතිකිුියා කර මධාසාර ලබා දේ.
 - c) (CH₃)₂ NH ; CH₂ = CH NH CH₃ වලට වඩා භාෂ්මික වේ.
 - d) $CH_3\ COCl$; සාන්දු NH_3 සමග නියුක්ලියෝපිලක ආකලන පුතිකියා දක්වයි.

(33)
$$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)} \Delta H < O - (1)$$

 $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)} \Delta H < O - (2)$

ඉහත සඳහන් (1) සහ (2) සමතුලික පුතිවර්තා පුතිකිුයාවන් සලකන්න. ඒ අනුව පහත සඳහන් පුකාශ පිළිබඳව සකා වන්නේ ;

- අවතුලිත පද්ධති දෙකෙහිම උෂ්ණත්වය ඉහල දැමූ විට ප්‍රතිකියා සිසුතාව වැඩිවේ.
- b) දෙවන සමතුලිත පුතිකියාව සඳහා $K_C = K_p(RT)^2$ වේ.
- c) පද්ධති දෙකෙහි පුතිකියක පුමාණය වැඩිකළ විට K, අගය වැඩි වේ
- d) මෙහිදී පුතිකිුයක සම මවූල පුමාණ භාවිතා කළ විට SO සහ NH3 එකම පුමාණයක් ලබා දේ.
- (34) පහත කුමන සංයෝග ම්ශු කළ විට තාපදායක පුතිකිුයාවක් සිදු වේද?
 - a) CH₃COCH₃ as CHCl₃
 - b) CH₃ 888 C₂H₅ OH

- d) CH₃-CH₂-CHO mm CHCl₃

RC/13

రిందు

- (35) ඉණා පෙළ පුතිකියා පිළිබඳ සතා වනුගේ
 - ප්‍රතික්‍රියක සාන්දුණය කාලය සමග වෙනස් නොවේ.
 - b) එක් පුතිකියක සාන්දුණය සෙසු පුතිකියකවලට වඩා ඉතා ඉහල විය හැක.
 - c) පුතිකියාව මූලික පුතිකියාවක් විය නොහැකිය.
 - d) සමස්ත පෙළ ශුණා නම් සිහුතා නියතය සඳහා ඒකක නොමැත.
- (36) ඉලෙක්ටුෝඩ සහ විදයුත් රසායනික කෝෂ සම්බන්ධයෙන් පහත කවර පුකාශ/පුකාශය සතා චේද?
 - 2) දාවණ සන්ධ්යක් සේතුවක් සම්බන්ධ නොවන අවස්ථාවකදී වුවද බාහිර පරිපථය තුළින් ධාරාව ගමන් කරයි.
 - b) මක්සිහරණය වන ඉලෙක්ටෝඩයක්දී උෂ්ණත්වය වැඩිකරන විට ඔක්සිහරණ විභවය වැඩීවේ.
 - c) විදාපුත් රසායනික කෝෂයක්දී කැතෝඩ දුාවණයේ සාන්දුණය වැඩිකළ විට ඉලෙක්ටුෝඩ විභවය වැඩි වේ
 - d) සමතුලිතතාවයේ පවතින ඉලෙක්ටෝඩයකට එහි සමතුලිත විභවයට වඩා සෑණ විභවයක් යෙදු විට ඉලෙක්ටෝඩයේ සමස්ත ඔක්සිහරණ පුතිකි්යාවක් සිදුවේ.
- (37) $[Ni(H_2O)_4\,(NH_3)_2]\,SO_4$ යන d ගොනුවේ සංකීර්ණ සංයෝගය සලකන්න. මේ සම්බන්ධයෙන් පහත කවර පුකාශ/පුකාශය සතා වේද?
 - මෙහි අයනික, දායක, සහ ධැවීය සහ සංයුජ යන බන්ධන පවතී.
 - b) මෙම සංකීර්ණ සංයෝගයේ Ni හි ඔක්සිකරණ අංකය +4 මව්.
 - c) tetraaquadiamminenickel(II) sulphate යන IUPAC නාමයට අදාල චේ.
 - d) මෙම සංකීර්ණ සංයෝගයට තනුක ඇමෝනියාවලින් වැඩිපුර එක්කළ විට දාවණය නිල් පැහැවේ.
- 33) ස්වභාවික රබර් සම්බන්ධයෙන් අසභාග පුකාශ/පුකාශය වන්නේ
 - a) ස්වභාවික රබර්වල ඇදීමේ ගුණයට හේතුව cis polyisoprene දාම පැවතීමයි.
 - b) ස්වභාවිකව සජිවී පද්ධති තුළ නිපද**ෙව**.
 - c) ස්වභාවික රබර් සමග බර අනුව 35% ක් පමණ සල්ෆර් යොදා රත් කළ විට එබනයිට ලැබේ.
 - d) cis polyisoprene ස්වභාවික රබර්වල කැලුම් ඒකකය වන අතර එහි ද්වීක්ව බන්ධන පවතී.
- (39) මිශු ලෝග කැබැල්ලක යකඩ (Fe) අඩංගු වේ. එහි අඩංගු යකඩ පුතිශනය නිර්ණය කිරීමට ශිෂාගයකු කරන ලද පරීක්ෂණයක් සම්බන්ධයෙන් වඩාත්ම අසනා පුකාශ/පුකාශය වන්නේ
 - a) මෙහිදි සිදුකරන අනුමාපනයේදී KMnO4 ස්වයං දර්ශකයක් ලෙස කි්යාකරයි.
 - b) මෙහිදී සිදුකරන අනුමාපනයේදී MnO_{2} අවක්ෂේප වීම වැළැක්වීමට $\mathrm{H}_{2}\mathrm{SO}_{4}$ එක් කරනු ලැබේ.
 - c) යකඩ කැබැල්ල දුාවණ ගත කිරීම සඳහා HNO3 භාවිතා කෙරේ.
 - මෙම පරීක්ෂණයේදී අනුමාපනය සිදුකරන විට පද්ධතිය රක් කරමින් අනුමාපනය කෙරේ.
- (40) පහත දක්වා ඇති එන්තැල්පි ව්පර්යාස නිවැරදි ලෙස නිරුපනය වී ඇත්තේ කුමන පුතිචාරයකද?/පුනිචාරවලද?

එන්තැල්පි විපර්යාස	අදාළ පුතිකුියාව	
(a) අයඩිත්වල සම්මත ඌර්ධවපාතන එන්තැල්පිය	$I_2(s) \rightarrow 2I(g)$	
(b) CH3OH(l) හි සම්මත දහන එන්නැල්පිය	$CH_3OH(1) + 3O_2(g) \rightarrow CO_2(g) + 4H_2O(1)$	
(c) CaBr ₂ (s) හි සම්මත දැලිස් එන්කැල්පිය	$Ca^{2+}(g) + 2Br'(g) \rightarrow CaBr_2(s)$	
(b) Cl₂(g) හි පරමාණුකරන එන්නැල්පිය	$Cl_2(g) \rightarrow 2Cl(g)$	

Royal College - Colombo 07

8

Chemistry-2017 June Grade 13

අංක 41 සිට 50 තෙක් පුශ්නවලට උපදෙස්

පුතිචාරය	පළමුවැති වගන්තිය	දෙවැති වගන්තිය	
(1)	සතාය	සතා වන අතර පළමුවැන්න නිවැරදිව පහදා දෙයි	
(2)	සතාපය	සතා වන නමුත් පළමුවැන්න නිවැරදිව පහදා නොදෙයි	
(3)	සතාය	අසතායයි	
(4)	අසතායෙයි	සකය	
(5)	අසතාපයයි	අසතායෙයි	

	පළමු පුකාශය	, දෙවන පුකාශය
1)		0^0 C දී $ mH_2$ වායු අණු අතර අන්තර් අණුක ආකර්ශන බල නොපවතී.
42)	HCOOH සහ CH₃COOH අම්ලය වෙන් කර හඳුනාගැනීමට වොලන් පුතිකාරකය භාවිතා කළ හැක.	HCOOH හි CHO කාණ්ඩය ඇති බැවින් එය ටොලන් පුතිකාරකය මගින් ඔක්සිකරණය වේ
(43)	රත් කරන ලද Cu ලෝහ උත්පේුරක හමුවේ වාතය මහින් NH3 ඔක්සිකරණය වේ.	$_{ m th}$ ත $ m H_2O$ බවට ඔක්සිකරණය වේ.
(44) Al(NO3)3 සහ Na2 CO3 අතර පුතිකියාවේදී CO2 පිටවේ.	Al ³⁺ ජලීය දුංචණය Na ₂ CO ₃ සමග [Al(OH)(H ₂ O) ₅]CO ₃ ලබා දෙයි.
(4:	අවාෂ්පශීලී දුවපයක් වාත්පශීලී දුාවකයක දිය කළ විට දුාවකයේ වාෂ්ප පීඩන පහනයක් සිදුවේ.	වාෂ්ප පීඩන පතනය ඇසුරෙන් අවාෂ්පශීලී දුවායේ මවුලික ස්කන්ධය නිර්ණය කළ නොහැක.
(4	6) Lil වායුගෝලයට නිරාවරණය කළ පසු ලා දුඹුරු පැහැයක් ලබා දෙයි.	I_2 ක්ෂාරීය මාධානයේදී ද්විධාකරණයට භාජනය වේ.
(4	$H_2C_2O_4$ අතර පුතිකියාවේ Mn^{2+} අයනය ස්වයං උක්පේරක ලෙස කියාකරයි.	
($A_{(g)} = 2B_{(g)}$ යන සමතුලිත පුතිකියාවේ $\Delta H/\Delta S = T(K)$ ලෙස පුකාශ කළ හැක.	සමතුලිත ලකුෂායේදි පුතතාවර්ත පුතිකියාවක එත්තැල්පි විපර්යාසය ශුණා වේ.
	(49) KBr සහ KNO2 අඩංගු දුංචණයක් සාන්ද H ₂ SO ₄ මගින් චෙන් කර හඳුනාගත හැකිය.	සාන්දු H2SO4 විජලකාරක මෙන්ම ව්යලිකාරකද ජේ
1	(50) වාහනවල පිටාර දුමෙහි විෂ වායු පුමාණය අ කිරීමට Cr2O3 භාවිතා කෙරේ.	ඩු ඇතැම් පාංශු ජීවිත් මගින් වායුගෝලයේ CO ඔක්සිකරණය , උත්පේුරණය කරයි.

9

2017.07.03

1	Royal 2017 Chen	Date.
D 2	29 4	
3 3	D 3	
3	છે <u>૩</u> છે ૩	
3 3 3 1 9 3 9 3 9 4	9 1	
3 3	多 2	
6 4	<u></u>	
33		
9 3	<u>න</u> ර	
3 3 7 2	<u></u>	<u> </u>
D) 2	39 S	
	39 5 39 3	
B 3		•
<u> </u>	39 4	,
(g) 2	99.5 29.3	
B 3	495	
(b) 2-	95 95	
D 1	⊕ I	
	<i>ધ</i> ો3	- C
(B) 5 (D) 2		
SP 1	4 3	
2) 4 2) 4 2) 4 2) 5 3) 4	4) 3 4) 2 4) 2 4) 3 4) 4 3) 4	
2 2, 4	D 2	
£3, 5	9 2 2 8 3 9 4	
<u> </u>	9 1 4	
١٩	39 2	
71		100
28		
23		
30	The second secon	

BUYPAST PAPERS 071 777 4440

Buy Online - www.LOL.lk

Protect Yourself From Coronavirus

YOU STAY AT HOME

WE DELIVER!

ORDER NOW

075 699 9990 WWW.LOL.LK

ISLANDWIDE DELIVERY Free delivery on all orders over Rs. 3500 \$

More than 1000+ Papers For all major Subjects and mediums (24)

ONLINE SUPPORT 24/7 Shopping Hotline 071 777 4440

FEATURED PRODUCTS

SORT BY

☐ GCE O/L Exam

GCE O/L EXAM, SCIENCE

O/L Science Past Paper Book

රු 350.00

ADD TO CART

GCE O/L EXAM, MUSIC

O/L Music Past Paper Book

රු **350.00**

ADD TO CART

GCE O/L EXAM, MATHEMATICS

O/L Mathematics Past Paper Book

රු 350.00

GCE O/L EXAM, INFORMATION & COMMUNICATION TECHNOL... O/L Information & Communication Tec... O/L History Past Paper Book

රු 350.00

GCE O/L EXAM, HISTORY

රු 350.00

GCE O/L EXAM, HEALTH & PHYSICAL EDUCATION O/L Health & Physical Education Past P...

ძდ 350.00