Respuestas a los ejercicios de autoevaluación

UNIDAD I

PARTE I

1	2	3	4	5	6	7	8	9	10	11
d	b	С	С	С	b	С	b	d	С	a

PARTE II

1) a) El sistema tiene infinitas soluciones: $\begin{cases} x_3 = 3\alpha \\ x_2 = -4\alpha \\ x_1 = 2 - \alpha \end{cases}, \ \alpha \in \mathbb{R}$

b) Solución del sistema homogéneo: $\begin{pmatrix} -\frac{1}{3}x_3 \\ -\frac{4}{3}x_3 \\ x_3 \end{pmatrix}$

2)
$$A^{-1} = \begin{pmatrix} \frac{-1}{10} & \frac{3}{10} & \frac{1}{5} \\ \frac{-3}{10} & \frac{-1}{10} & \frac{3}{5} \\ \frac{4}{5} & \frac{-2}{5} & \frac{-3}{5} \end{pmatrix}, \quad X = \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \\ -1 \end{pmatrix}$$

3) a) Sistema lineal: $x + 2y + z + 3w = 120 \leftarrow \text{Mar\'ia}$ $2x + 5y + w = 100 \leftarrow \text{Jos\'e}$ $3x + 6y + 4z + 10w = 400 \leftarrow \text{Antonio}$

La solución es:
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 200 - 9w \\ -60 + 3w \\ 40 - w \\ w \end{pmatrix}$$

b) w es la variable libre y puede tomar valores entre 15 y 20 para que los valores de todas las variables resulten no negativas.

UNIDAD II

PARTE I

1	2	3	4	5	6	7	8	9	10	11	12
V	F	F	F	F	F	V	F	V	V	V	V

PARTE II

1)
$$gen(M) = \{(x, y, z) \in \mathbb{R}^3 / 2x + y + 2z = 0\}, \quad dim(S) = 2$$

2) a) B_1 y B_2 generan a \mathbb{R}^2 y son conjuntos linealmente independientes, por lo tanto B_1 y B_2 son bases para \mathbb{R}^2 .

b)
$$[u_1]_{B_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, [u_2]_{B_2} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-3}{2} \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & \frac{-1}{2} \\ 1 & \frac{-3}{2} \end{pmatrix}$$

d)
$$[v]_{B_1} = {4 \choose 6}$$
, $[v]_{B_2} = {1 \choose -5}$

e)
$$P[v]_{B_1} = \begin{pmatrix} 1 & \frac{-1}{2} \\ 1 & \frac{-3}{2} \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \end{pmatrix} = [v]_{B_2}$$

3) El conjunto B es una base de \mathbb{R}^3 ya que B es linealmente independiente y $card(B) = dim(\mathbb{R}^3) = 3$. Una base ortonormal de \mathbb{R}^3 es:

$$B' = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \left(\frac{\sqrt{6}}{6}, \frac{-\sqrt{6}}{3}, \frac{\sqrt{6}}{6} \right) \right\}$$

4) i)
$$x_1 = 1, x_2 = -2, x_3 = 3, x_4 = 4, y_1 = 4, y_2 = 5, y_3 = -1, y_4 = 1$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}, \quad y = \begin{pmatrix} 4 \\ 5 \\ -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \frac{25}{7} \\ \frac{-37}{7} \end{pmatrix}$$

La recta de mejor ajuste tiene

ecuación $y = \frac{-37}{42}x + \frac{25}{7}$.

UNIDAD III

PARTE I

1	2	3	4	5	6	7	8	9
V	V	F	F	V	F	V	F	V

PARTE II

1	2	3	4	5
b	С	b	a	b

PARTE III

- 1) a) No es posible hallar tal transformación lineal pues no se cumple la propiedad de homogeneidad.
 - **b)** Si es posible hallarla: $f(x,y) = \frac{-8x+7y}{2}$

2) a)
$$A = [f]_{B_1}^{B_2} = \begin{pmatrix} \frac{-1}{2} & 1 & \frac{3}{2} \\ 1 & 1 & 0 \end{pmatrix}$$

b)
$$f(-2,2,-3) = (4,-1)$$

c)
$$B = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

- d) $N(f) = \{(x, y, z) \in \mathbb{R}^3 : x = 2z, y = -z\} = \{z(2, -1, 1) \text{ con } z \in \mathbb{R}, \}$ Base para N(f) es $\{(2, -1, 1)\}$ y dim(N(f)) = 1
- e) dim(Im(f)) = 2, $Im(f) = \mathbb{R}^2$

f)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x = 2z - 1 , y = 3 - z , z \in \mathbb{R} \}$$

UNIDAD IV

PARTE I

1	2	3	4	5	6	7	8	9	10
V	V	V	F	V	F	F	F	V	F

PARTE II

1) a) Valor propio de $F: \lambda = 1$, los vectores propios asociados son:

$$\binom{a}{0} = a \binom{1}{0} + c \binom{0}{0}$$
 con $a \ y \ b$ no ambos nulos

$$\mathbf{b)} \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

c) Polinomio característico: $P(\lambda) = (\lambda - 1)^3$

Valor propio: $\lambda = 1$, $m_a(1) = 3$.

Vector propio: $\begin{pmatrix} a \\ 0 \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ con $a \ y \ b$ no ambos nulos

d) Los resultados obtenidos en a y c son iguales.

2) Matriz A:

- a) Polinomio característico: $P(\lambda) = -\lambda(\lambda 2)(\lambda 1)$
- b) Valores propios $\lambda=0$, $\lambda=2$, $\lambda=1$ cada uno con $m_a=1$.

Para
$$\lambda = 0$$
: $a \begin{pmatrix} -2 \\ \frac{3}{2} \\ 1 \end{pmatrix}$

Para
$$\lambda = 1$$
: $b \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}$ con a, b, c distintos de cero.

Para
$$\lambda = 2 : c \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

c) Una base de cada subespacio propio.

$$S_{\lambda=0} = \left\{ X \in \mathbb{R}^3 \ / \ X = a \begin{pmatrix} -2 \\ \frac{3}{2} \\ 1 \end{pmatrix}, \ a \in \mathbb{R} \right\}, \quad \text{Base: } \left\{ \begin{pmatrix} -2 \\ \frac{3}{2} \\ 1 \end{pmatrix} \right\}$$

$$S_{\lambda=1} = \left\{ X \in \mathbb{R}^3 \ / \ X = b \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}, \ b \in \mathbb{R} \right\}, \quad \text{Base: } \left\{ \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$S_{\lambda=2} = \left\{ X \in \mathbb{R}^3 \ / \ X = c \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \ c \in \mathbb{R} \right\}, \quad \text{Base: } \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}$$

d) Como los valores propios son distintos, entonces a cada valor propio le corresponde un solo vector propio linealmente independiente, por lo tanto la multiplicidad geométrica de cada vector propio es 1.

Matriz B:

a) Polinomio característico: $P(\lambda) = (\lambda + 2)^2(\lambda - 1)$

b) Valores propios:
$$\lambda = 1$$
 con $m_a(1) = 1$ y $\lambda = -2$ con $m_a(-2) = 2$

c) Vectores propios: Para
$$\lambda = 1$$
: $a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, y para $\lambda = -2$:

$$b \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 con a, b, c distintos de cero.

d) Una base de cada subespacio propio.

$$S_{\lambda=1} = \left\{ X \in \mathbb{R}^3 \ / \ X = a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ a \in \mathbb{R} \right\} \quad , \quad \text{Base: } \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$S_{\lambda=-2} = \left\{ X \in \mathbb{R}^3 \ / \ X = b \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \ b, c \in \mathbb{R} \right\},$$

Base:
$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$

e)
$$m_g(1) = 1$$
, $m_g(-2) = 2$

3) Sea $P(\lambda) = |A - \lambda I|$ el polinomio característico de la matriz A: como

el determinante de una matriz y el determinante de su traspuesta son iguales entonces se tiene que:

$$P(\lambda) = |A - \lambda I| = |(A - \lambda I)^t| = |A^t - \lambda I^t| = |A^t - \lambda I|$$

A y A^t tienen el mismo polinomio característico, por lo tanto tienen los mismos valores propios.

UNIDAD V

PARTE I

1	2	3	4	5	6	7	8	9	10	11	12
F	F	V	V	V	F	V	F	F	F	V	V

PARTE II

a) Polinomio característico: $P(\lambda) = -(\lambda - 2)^2(\lambda - 3)$

Matriz de paso
$$P = \begin{pmatrix} -1 & 1 & -1 \\ 3 & -2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$
 o $P = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 3 & -2 \\ 1 & 1 & 0 \end{pmatrix}$

b) Bloques de Jordan: $B_2(2) = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, $B_1(3) = (3)$

c)

Radios	centro	Círculos D _i
$r_1 = 1 + 2 = 3$	$a_{11} = 3$	$D_1 = \{ z \in \mathbb{C} : z - 3 \le 3 \}$
$r_2 = -1 + 5 = 6$	$a_{22}=0$	$D_2 = \{ z \in \mathbb{C} : z - 0 \le 6 \}$
$r_3 = -1 + -1 = 2$	$a_{33} = 4$	$D_3 = \{ z \in \mathbb{C} : z - 4 \le 2 \}$

d)
$$A^{-1} = \frac{-1}{a_0} [-A^2 + a_2 A + a_1 I] \rightarrow A^{-1} = \frac{1}{12} [A^2 - 7A + 16I]$$

Se sustituye A se efectúan las operaciones obteniéndose:

$$A^{-1} = \begin{pmatrix} \frac{5}{12} & \frac{-2}{12} & \frac{5}{12} \\ \frac{-1}{12} & \frac{10}{12} & \frac{-13}{12} \\ \frac{1}{12} & \frac{2}{12} & \frac{1}{12} \end{pmatrix}$$

UNIDAD VI

PARTE I

1	2	3	4	5	6	7	8	9	10
b	b	С	a	b	d	d	b	С	b

PARTE II

1) a) $\{f_1, f_2\}$ es linealmente independiente y genera a $V^* = (\mathbb{R}^2)^*$.

También se puede probar así: $\{f_1, f_2\}$ es linealmente independiente y card = 2, y como $dim(\mathbb{R}^2)^* = 2$ entonces $\{f_1, f_2\}$ es una base para $(\mathbb{R}^2)^*$.

b) Coordenadas para f_1 son $\binom{-1}{2}$ y para f_2 son $\binom{-7}{-1}$.

c)
$$u_1 = (\frac{-3}{5}, \frac{-1}{5})$$
, $u_2 = (\frac{-1}{5}, \frac{-2}{5})$

2) Se expresar (a, b, c) en \mathbb{R}^3 como combinación lineal de $\{u_1, u_2, u_3\}$:

$$(a,b,c) = \underbrace{(a-b)}_{f_1} (1,0,-1) + \underbrace{(a-b+c)}_{f_2} (1,1,1) + \underbrace{(b-\frac{a+c}{2})}_{f_3} (2,2,0)$$

De donde

$$f_1(a,b,c) = a - b$$
, $f_2(a,b,c) = a - b + c$, $f_3(a,b,c) = b - \frac{1}{2}(a+c)$

3) a) $(T^t(h))(x, y) = 13x - 18y$,

$$\mathbf{b}) [T^t]_{B^*} = \begin{pmatrix} 2 & -1 \\ -3 & 1 \end{pmatrix}$$

c)
$$[T]_B = \begin{pmatrix} 2 & -3 \\ -1 & 1 \end{pmatrix}$$
, $([T]_B)^t = \begin{pmatrix} 2 & -1 \\ -3 & 1 \end{pmatrix} = [T^t]_{B^*}$

UNIDAD VII

PARTE I

1	2	3	4	5	6	7	8	9	10	11	12	13
F	V	V	V	F	F	V	F	V	V	F	F	V

PARTE II

1) $M(f) = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$, la cual es simétrica, por lo tanto f es simétrica.

Valores propios de $f: \lambda = 5, \lambda = -5$.

$$P = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \end{pmatrix}, \qquad P^t M(f) P = \begin{pmatrix} 5 & 0 \\ 0 & -5 \end{pmatrix} = D$$

2)
$$g(x,y) = 3x^2 + 8xy - 3y^2$$

- 3) g es indefinida.
- 4) $-130 \le g(-1.5) \le 130$
- 5) Forma cuadrática restringida: $g_S(x,y) = -25x^2$ y es definida negativa.

Bibliografia general

- Burgos, J. (1993). Álgebra Lineal. (Primera edición). Madrid. McGraw Hill.
- Friedberg, S., Insel, A., Spence, L. (1979). *Linear Algebra*. New Jersey. Prentice-Hall.
- Grossman, S., Flores, J. (2012). Álgebra Lineal. (séptima edición). México. McGraw Hill.
- Herstein, I. (1976). Álgebra moderna. (Tercera edición). México. Editorial Trillas.
- Howard, A. (1979). Introducción al Álgebra Lineal. (Tercera edición). México.
 Editorial Limusa.
- Kolman B., Hill, D. (2006). Álgebra Lineal. (Octava edición). México. Pearson Prentice Hall.
- Kenneth H, Kunze R. (1973). Álgebra Lineal. México. Prentice- Hall.
- Lang, S. (1990). *Introducción al Álgebra Lineal*. México. Addison-Wesley Iberoamericana.
- Lay, D. (2012) Algebra Lineal y sus aplicaciones (cuarta edición). México. Pearson Educación
- Rojo, A. (1973). Álgebra II. (Cuarta edición). Buenos Aires. Librería El Ateneo
 Editorial.
- Strang, G. (2016). Álgebra Lineal y sus aplicaciones (quinta edición). Wellesley. Wellesley-Cambridges Press.
- Tucker, A. (1993). *Linear Algebra*. New York. Macmillan Publishing Company.

Esta edición del libro Á*lgebra lineal* se terminó de imprimir en agosto de 2019, en los talleres de la unidad de reproducciones de la UAPA, Santiago, República Dominicana.