

i.MX-RT – mikroprocesorowy

crossover

Produkowana przez NXP rodzina układów i.MX jednoznacznie kojarzy się z klasycznymi mikroprocesorami, co jest między innymi wynikiem ich wieloletniej rynkowej tradycji. W połowie 2018 roku NXP te tradycję zaczęło modyfikować, wprowadzając na rynek układy i.MX-RT, które nominalnie należą do rodziny mikroprocesorów, ale pod wieloma względami jest im bliżej do zaawansowanych mikrokontrolerów.

System Control	Main CPI	Connectivity		
Secure JTAG	C	eMMC 4.5/SD 3.0 x 2		
PLL, OSO	Arm® Co up to 6	8 x UART		
eDMA	32 KB I-cache	8 x 8 Keypad		
4 x Watchdog	FPU Up to 512 KB TCM		4 x I ² C	
6 x GP Timer		4 x SPI		
	Multi	media		
4 x Quadrature ENC	8-/16-bit Paralle	GPIO		
4 x QuadTimer	24-bit Paral	3 x I ² S/SAI		
4 x FlexPWM	Pixel Processi	S/PDIF Tx/Rx		
IOMUX	2-D Graphic Resize, CSC,	2 x CAN		
Internal Memory	Externa	Memory	2 x USB 2.0 OTG	
Up to 512 KB SRAM/TCM	Dual-Channel C	with PHY		
	Encrypt	1 x 10/100 ENET		
96 KB ROM	Estampl Mar	mory Controller	with IEEE® 1588	
Power Management	8-/16-b	ADC/DAC		
DC/DC & LDO	Parallel NAN	2 x ADC (20-ch.)		
Temp Monitor	Sec	4 x ACMP		
Ciphers & RNG	Secure RTC	HAB		

Main CDII Blotform

Connectivity

Available on certain product families

Rys. 1. Schemat blokowy mikrokontrolerów i.MX-RT1050

roducent układów i.MX-RT używa wobec nich określenia "crossover processor", które – podobnie jak w przypadku niezwykle obecnie popularnych na rynku samochodów klasy crossover, łaczacych swoja konstrukcją, cechami i możliwościami odmienne światy zastosowań – doskonale oddaje intencje przyświecające firmie: układy i.MX-RT to platforma przejściowa pomiędzy zaawansowanymi mikroprocesorami aplikacyjnymi, a zaawansowanymi mikrokontrolerami. Sufiks nazwy nowej rodziny mikrokontrolerów – RT - pochodzi od słów real-time, co dobrze charakteryzuje te układy o ambicjach mikroprocesorowych i mikrokontrolerowej "duszy".

Ze świata mikrokontrolerów pochodzi rdzeń układów i.MX-RT - ARM Cortex-M7 (architektura ARMv7-M), który komunikuje się z pamięcią za pomocą szybkich buforów cache dla instrukcji i danych oraz pamięcią TCM. Rozwiązania zastosowane w rdzeniu użytym w prezentowanych układach przypominają te stosowane w rdzeniach Cortex-A, co pozwoliło uzyskać duża wydajność obliczeniową, dochodząca do 3020 CoreMark/1284 DMIPS przy częstotliwości taktowania CPU wynoszaca 600 MHz. Ze świata mikrokontrolerów wywodzą się także wbudowane w układy i.MX-RT pamięci RAM i Flash o sporych pojemnościach, mikrokontrolerowe są także obudowy układów o relatywnie niewielkiej licz-

Rys. 2. Schemat blokowy mikrokontrolerów i.MX-RT685

bie wyprowadzeń, w tym także łatwe w montażu obudowy LQFP (tabela 1).

Na tym kończą się cechy mikrokontrolerowe nowych układów, peryferia w jakie je wyposażono pochodzą w większości z klasycznych mikroprocesorów i.MX6UL/ULL – dotyczy to zarówno interfejsów graficznych, komunikacyjnych, timerów itd.

Ponieważ układy crossover będą się w wielu przypadkach zmagać z dużymi wymaganiami aplikacji dotyczącymi pojemności pamięci RAM, pojemności pamięci wbudowanych w struk-

Technika | Mikrokontrolery i loT

Tabela 1. Ze	Tabela 1. Zestawienie najważniejszych cech i parametrów rodzin i.MX-RT												
Тур	CPU	DSP Core	Obudowa	Pamięć	Koprocesor grafiki	LCD	CSI	USB z PHY	Ethernet	CAN	Quad ENC/ Quad Timer/ FlexPWM		
i.MX RT1064	Cortex-M7 600 MHz	-	BGA196	4 MB Flash 1 MB SRAM 32 KB I-cache 32 KB D-cache				2× 10/100	2x FlexCAN,	4/4/4			
i.MX RT1060	Cortex-M7 600 MHz	-	BGA196	1 MB SRAM 32 KB I-cache 32 KB D-cache	P×P	8/16/24-bit parallel	/24-bit 8/10/16-bit rallel parallel		2× 10/100	1x CANFÓ	4/4/4		
i.MX RT1050	Cortex-M7 600 MHz	_	BGA196	512 KB SRAM 32 KB I-cache 32 KB D-cache				1× 10/100	2x	4/4/4			
i,MX RT1020	Cortex-M7 500 MHz	_	LQFP100 LQFP144	256 KB SRAM 16 KB I-cache 16 KB D-cache	-	-	-	OTG, HS/ FS ×1	1× 10/100	FlexCAN	2/2/2		
i.MX RT1015	Cortex-M7 500 MHz	_	LQFP100	128 KB SRAM 16 KB I-cache 16 KB D-cache	-	-	-		-	-	1/1/1		
i.MX RT600	Cortex-M33 300 MHz	Cadence Tensilica HiFi 4 600MHz	VFBGA176	4,5 MB SRAM, 128 KB TCM, 96 KB I & D cache (DSP Access)	-	-	-	HS ×1	-	-	SCTimer/PWM		

Fot. 3. Widok zestawu ewaluacyjnego MIMXRT1060-EVK

Fot. 4. Widok zestawu MIMXRT1050-EVK

Rys. 5. Okno programu i.MX Pin Tool z konfiguratorem i.MX-RT

tury prezentowanych układów nie zawsze będą wystarczające. Żeby zaspokoić ten wymóg, producent wyposażył układy w interfejsy zewnętrznych pamięci, dzięki czemu do układów i.MX-RT można wygodnie dołączyć zewnętrzne pamięci SDRAM (także z 16-bitową magistralą danych), pamięci Flash (NOR lub NAND). W systemach bazujących na układach i.MX-RT można także korzystać z pamięci stałych eMMC (do tego celu służy wydzielony interfejs sprzętowy SDIO) oraz pamięci QuadSPI, z których każda może spełniać rolę pamięci bootującej system.

Schemat blokowy mikrokontrolerów i.MX-RT1050 pokazano na rys. 1. Osoby interesujące się mikroprocesorami produkowanymi przez NXP dostrzegą duże podobieństwo budowy wewnętrznej prezentowanego układu do mikroprocesora i.MX6ULL.

Zestawienie najważniejszych cech i wyposażenia rodzin mikrokontrolerów i.MX-RT przedstawiono w tabeli 1. Znajduje się w niej także odmienna pod względem budowy wewnętrznej i obszaru zastosowań grupa układówoznaczonychsymbolemi.MX-RT-600. Wyposażono je w dwa niezależne rdzenie:

- Cortex-M33 (architektura ARMv8-M)

 jeden z najnowszych rdzeni mikrokontrolerów firmy ARM, wyposażony m.in. w platformę TrustZone, taktowany sygnałem zegarowym o częstotliwości do 300 MHz,
- Cadence Xtensa Hi-Fi 4 Audio DSP

 zaawansowany koprocesor DSP
 dla aplikacji audio, taktowany sygnałem zegarowym o częstotliwości do 600 MHz.

Budowa tych układów wyraźnie predestynuje je do stosowania w różnego rodzaju aplikacjach audio, w tym także IoT z rozpoznawaniem głosu. Schemat blokowy układu i.MX-RT685, pierwszego na rynku członka rodziny i.MX-RT600, pokazano na rysunku 2.

Firma NXP przygotowała dla konstruktorów zainteresowanych aplikowaniem platformy i.MX-RT dużą liczbę narzędzi oraz rozbudowany support programowy i sprzętowy. Dostępne są m.in. duże zestawy ewaluacyjne i uruchomieniowe – jak na przykład MIMXRT1060-EVK z mikrokontrolerem i.MX-RT1064 (fot. 3) czy też MIMXRT1050-EVK (fot. 4). Charakterystyka sprzętowa mikrokontrolerowych "serc" prezentowanych roz-

Fot. 7. Moduły SoM polskiej produkcji z rodziny Vision-SOM, wyposażone w układ z rodziny i.MX-RT1050

wiązań powoduje, że NXP przygotowało własne dystrybucje systemów operacyjnych Zephyr oraz Amazon FreeRTOS, dostępne są także narzędzia wspomagające konfigurację wbudowanych peryferiów – graficzny kreator i.MX Pin Tool (rys. 5). Producent udostępnia także bezpłatne środowisko programistyczne MCUXpresso oraz SDK z kompletami bibliotek i driverów.

Potencjał układów i.MX-RT docenili już producenci komputerów przemysłowych oraz miniaturowych komputerów SoM (System-on-Module). Jedną z pierwszych na świecie firm oferujących komputer z układem z rodziny i.MX-RT1050 była szwedzka firma Embedded Artists (fot. 6), a także polski producent SoM-ów – firma SoMLabs – która oferuje moduł z rodziny VisionSOM (fot. 7), który jest pin-pin zgodny z modułami VisionSOM tego samego producenta, wyposażonymi w mikroprocesory i.MX6ULL.

Prezentowany w artykule pomysł firmy NXP wydaje się koncepcyjnie ryzy-

Fot. 6. Moduł SoM z układem z rodziny i.MX-RT1050 firmy Embedded Artists

kowny, bo przecież i.MX-RT to zbyt wiele jak na mikrokontroler i zbyt mało jak na mikroprocesor, a czy jest miejsce na crossover na współczesnym rynku elektroniki? Przypomnę, że pod koniec lat

90. za ekstremalnie ryzykowny uchodził pomysł firmy Honda, która przedstawiła prototyp swojego nowego modelu – HR-V – który był pierwszym na rynku crossoverem, choć wtedy nikt jeszcze nie używał tego określenia. Nie wróżono tej konstrukcji rynkowego powodzenia, a spójrzmy na dzisiejsze drogi i ulice.

Piotr Zbysiński

SomLabs sp. z o.o. www.somlabs.com