NOIP 2024 模拟

试题解答

代讲人: xza

 \mathbf{F}

$$\left\lfloor \sum_{i=l}^r \left\lfloor rac{2^i}{3}
ight
floor = rac{1}{3} \cdot \sum_{i=l}^r (2^i - 2^i mod 3)
ight
floor$$

- 前者 $\sum_{i=l}^{i=r} 2^i$ 使用等比数列求和公式
- 后者 $\sum_{i=l}^{i=r} (2^i \mod 3)$ 中 $2^i \mod 3$ 存在 $1, 2, 1, 2, 1, \cdots$ 的周期

la

- 注意到 b 是一个排列,操作 $x \rightarrow b_x$ 就是在环上走一步
- 假设 a_1, \dots, a_n 所属的环大小分别为 l_1, \dots, l_n , 那么需要的步数就是 $lcm(l_1, \dots, l_n)$
- 注意到 1+2+···+14>100, 所以不同的环长最多只会有 13 种
- 可以 213 枚举这些环长是否出现,接着我们需要算出恰好出现这些环长的概率
- 考虑容斥原理: 假设出现的环长集合为 S, 我们枚举所有 $T \subseteq S$, 考虑所有出现的环长均属于 T 的概率
 - \circ 假设排列中属于 T 的环长之和为 x,则概率为 $(x/m)^n$
 - 容斥系数为 $(-1)^{|S|-|T|}$
- 时间复杂度 $O(3^{13} \cdot 13)$

- 假设最终的序列为 $a_1 = x_1, a_2 = x_2, \dots, a_n = x_n$ 。注意到当 x_n 确定后,前面的元素可以通过倒着操作复原,于是可以从后往前确定每个 x_i
- 归纳证明: $x_i \in a_i \oplus \operatorname{span}\{a_1, \dots, a_{i-1}\}$ (计算异或时 a_i 必选, a_1, \dots, a_{i-1} 可选可不选)
 - \circ 假设 i=k-1 的情形已经被证明。考虑 a_1,\dots,a_{i-1} 中被选中的元素,若 a_{i-1} 是被选中的,则可将前面的数异或到 a_{i-1} 上,最后将 a_{i-1} 异或到 a_i 上
 - 若 a_{i-1} 未被选中,则可先将 a_{i-1} 异或到 a_i 上,后续步骤和前一种情况一样。这样 i=k 的情形也是正确的了
- LIS 可以考虑另一种的 DP 状态: $f_{i,j}$ 表示考虑 x_1, \dots, x_i 选出长度为 j 的最长上升子 序列时,结尾元素的最小值
- 从 $f_{i-1,j-1}$ 向 $f_{i,j}$ 转移,就要构造出 $\geq f_{i-1,j-1}+1$ 的最小的 x_i

- 求出 a_1, \dots, a_{i-1} 的线性基,同时使得每个主元列上有唯一的主元
- 我们要找出 $\geq v(v = f_{i-1,j-1} + 1)$ 且最小的能被异或出的数 x_i 。从高到低位考虑,碰到第一次 x_i 与 v 不同的位,只要这一位 x_i 为 1 而 v 为 0 即可
- 从高到低枚举第 k 高位,维护两种情况的值:一种是高 k 位相同时的值;另一种是高 k 位 x_i 更大时的最小值。
 - 为了保持高 k 位相同,可以推出线性基的第 k 行是否选择
 - 高 k-1 位相同,可以转移到高 k 位 x_i 更大
 - 如果高 k-1 位已经更大了,选择线性基的第 k 行有可能变得更小
- Bonus: 如果 *n* 高达 10⁵ 怎么做?
 - \circ 线性基至多改变 $O(\log_2 a_i)$ 次;根据是否满足 $a_i \in \text{span}\{a_1, \dots, a_{i-1}\}$ 分类;贪心,DP?

e

- 将三个属性都离散化,方便起见,属性的值相同也按多次计算,不去除重复(若去重,则后续 DP 转移更复杂)
- 按照三种属性从小到大变化的顺序 DP(感性理解为三维立方体上的一条路径): 设 $f_{x,y,z}$ 表示只考虑 e,i,π 排名不超过 x,y,z 的人,使其合法地排列的最小代价
- 下面以转移到 $f_{x+1,y,z}$ 为例,取出 e 排名为 x+1 的人 p,如果 p 的 i 或 π 属性超过 y,z 了,则忽略它。否则,一定是使得它的 i,π 属性变为 y,z 最优(如果变得更大,不会更优)。转移到 $f_{x,y+1,z}$ 或者 $f_{x,y,z+1}$ 是类似的
- 时间复杂度 $O(n^3)$