

Orthoss®

Matriz Óssea

Orthoss® – Matriz Óssea

Sua matriz óssea inorgânica tem uma estrutura macro e micro porosa, que é semelhante ao osso humano esponjoso. Com a estrutura de poros intercomunicantes e a elevada área de superfície interna, Orthoss® é uma matriz osteocondutora ideal, estruturalmente integrada no osso circundante e incorporada no processo fisiológico de remodelação.

Como resultado da excelente biofuncionalidade, Orthoss® é um substituto ósseo ideal, que pode ser usado sozinho ou durante uma enxertia óssea combinada utilizando osso autógeno ou aspirado de medula óssea no tratamento de grandes defeitos.

Orthoss® está disponível em grânulos de diferentes tamanhos e blocos com várias dimensões.

Indicações

Regeneração óssea em indicações assépticas. Estão incluidas nessas indicações o preenchimento de defeitos, reconstrução em ortopedia e cirurgia da coluna vertebral.

Orthoss® é usado como uma alternativa ao osso autólogo no preenchimento de defeitos ósseos menores. Durante o tratamento de defeitos grandes, Orthoss® é adequado como um incremento de volume para enxertia óssea combinada usando 25% de osso autólogo¹ ou de aspirado de medula óssea^{2,3}.

Orthoss® pode ser usado:

- > para o preenchimento e reconstrução de defeitos ósseos em condições assépticas, por exemplo
- após tratamentos envolvendo fixação de fraturas
- após osteotomia
- para preenchimento de áreas doadoras de osso autógeno
- após a ressecção de um tumor benigno e a curetagem de cisto ósseo
- após a remoção de implantes metálicos
- > em cirurgia da coluna vertebral, por exemplo, durante a reconstrução de defeitos vertebrais ou durante a fusão intercorporal como material de preenchimento da gaiola ou de fusão póstero-lateral
- > para reconstrução óssea durante a artroplastia e a artroplastia de revisão
- > como enxerto composto no tratamento de fraturas não consolidadas e pseudartroses
- > durante a artrodese

^{1.} Thorwarth, M. et al. (2006). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3): p. 309-316.

^{2.} Jaeger, M. et al. (2009). 5th International Meeting of the Stem Cell Network North Rhine-Westphalia, Germany.

^{3.} Jaeger, M. (2008). Kompendium Orthopädie / Unfallchirurgie: p. 19-21.

^{4.} Luethkehermoelle, W. et al. (2008). Medizintechnik - Life Science Engineering: p. 1365-1378.

^{5.} Bufler, M. (2007). International Osteology Symposium. Monaco: P-63. 6. Bereiter, H., et al. (1991). Hefte zur Unfallheilkunde, 216: p. 117-126.

^{7.} Rüttner, J.R. (1990). Unpublished.

^{8.} Schlickewei, W. et al. (1991). Hefte zur Unfallheilkunde, 216: p. 59-69.

^{9.} Tapety, F.I. et al. (2004). Clin Oral Impl. Res.: p. 315-324.

^{10.} Busenlechner, D. et al. (2008). Biomaterials, 29(22): p. 3195-3200.

^{11.} Rumpel, E. et al. (2006). Folia Morphologica, 65(1): p. 43-48. 12. Bufler, M. (2007). International Osteology Symposium. Monaco: P-64.

^{13.} Hing, K.A. et al. (2007). Spine J., Jul-Aug; 7(4): 475-90. Epub 2007 Jan 24.

Orthoss® - Benefícios

- > Orthoss® apresenta uma excelente biofuncionalidade com:
- morfologia semelhante ao osso humano
- sistema de poros interconectados⁴
- notória alta porosidade e grande área de superfície interna comparável ao osso humano⁵
- exclusiva estrutura de poros bimodal⁵
- osseointegração e osteocondutividade excepcionais¹
- > Orthoss® é altamente biocompatível com excelente contato interfacial entre Orthoss® e o ambiente biológico⁶⁻¹⁰.
- > Orthoss® é incorporado ao processo fisiológico de remodelação¹¹ e, portanto, tem um efeito mantenedor de volume durante o processo de consolidação óssea.
- > Orthoss® combinado com 25% de osso autógeno é suficiente para acelerar a formação de osso novo no tratamento de defeitos de tamanhos críticos¹, limitando, assim, a quantidade de osso coletado e reduzindo as complicações potenciais.
- > Orthoss® é caracterizado como uma matriz ideal de transporte de concentrado de células de medula óssea².
- > Os blocos e grânulos de Orthoss[®] possuem boa hidrofilia¹² e excelentes propriedades de manipulação³ devido à porosidade elevada e à grande área da superfície interna. Os blocos podem adquirir facilmente a forma necessária com a ajuda de um instrumento adequado, por exemplo, um bisturi.
- > Orthoss $^{\circledR}$ possui uma excelente relação preço/volume.
- > Os materiais de regeneração óssea da Geistlich vêm sendo utilizados com sucesso em mais de 4 milhões de pacientes.
- > Mais de 20 anos de experiência clínica comprovam o elevado nível de segurança e a eficácia do Orthoss®.

Biofuncionalidade do Orthoss®

As propriedades estruturais internas, tais como a porosidade, a geometria dos poros, o tamanho dos poros e a sua distribuição, a área de superfície interna e a morfologia dos elementos estruturais têm efeitos distintos sobre a biofuncionalidade das estruturas de suporte usadas na regeneração óssea.

Semelhança com o osso humano

Durante o processo de produção, são removidas todas as proteínas e outros materiais orgânicos, deixando a hidroxiapatita carbonatada nanocristalina natural. A matriz de Orthoss® resultante tem uma morfologia e uma composição química semelhantes ao osso autógeno.

Comparação da microestrutura (SEM 50 x)

Osso humano

Orthoss®

Osso bovino sinterizado

Hidroxiapatita sintética

Sistema de poros intercomunicantes

A rapidez e a extensão da formação de novo osso é fortemente influenciada pela interconexão estrutural entre os poros. A formação de uma rede vascular, bem como a migração, fixação e diferenciação das células progenitoras osteoblásticas, são pré-requisitos importantes, na medida em que facilitam a regeneração óssea em todo o defeito.

Orthoss® oferece um sistema de poros intercomunicantes que é superior a outros materiais de enxerto ósseo. Em comparação, os materiais sintéticos atualmente disponíveis não fornecem um sistema de poros fisiologicamente equivalente.

Sistema de poros intercomunicantes de Orthoss®

Alta porosidade e grande área de superfície interna

A área de superfície interna de um sistema de poros intercomunicantes é a medida da quantidade de sangue, proteínas e fatores de crescimento que podem ser absorvidos e adsorvidos ao longo de toda a matriz da estrutura do biomaterial.

Orthoss® com sua alta porosidade e sistema de poros intercomunicantes facilita a angiogênese e a migração de osteoblastos ao longo de toda a matriz e permite o acesso a nutrientes e a eliminação de resíduos metabólicos.

Este sistema de poros intercomunicantes e a alta porosidade de Orthoss® resultam em uma área de superfície interna que é significativamente maior do que em outros substitutos de enxerto ósseo disponíveis, sendo semelhante à do osso autógeno.

Área de superfície (interna) específica medida com adsorção de gás de materiais substitutos de enxerto ósseo disponíveis no comércio em comparação com Orthoss® e osso autógeno (Medição: Departamento de Análise de Pesquisa, Geistlich Pharma AG, Wolhusen, Suíça, 2006)

Biofuncionalidade do Orthoss®

Exclusiva estrutura de poros bimodal

O tamanho dos poros é um parâmetro crítico que rege os processos dinâmicos de vascularização e osseointegração de substitutos ósseos. Orthoss® possui uma exclusiva estrutura bimodal de nano e macroporos que facilita esses processos dinâmicos, melhora as propriedades de manuseio e cria um ambiente ideal para formação de novo osso.

- > Os nanoporos (10 20 nm) criam uma excelente hidrofilia e capilaridade, resultando na penetração completa e espontânea de líquido e, portanto, também no acesso a nutrientes. Esses nanoporos não existem em substitutos de enxerto ósseo comparáveis.
- > Os macroporos (100 300 nm) permitem a passagem de osteoblastos através da matriz e facilitam sua adesão e a deposição de osso recém-formado.

Como resultado da estrutura de poros bimodal, o Orthoss® é super-hidrofílico, podendo assim ser aplicado imediatamente com excelentes propriedades de aderência e manipulação. O Orthoss® distingue-se como uma matriz transportadora ideal para uso com concentrado de células de medula óssea como resultado da exclusiva estrutura de poros bimodal, da alta porosidade e da área de superfície interna, bem como do sistema de poros interconectados.

Estrutura de poros bimodal de Orthoss®

Distribuição natural dos poros como no osso autógeno, com macroporos (**) e nanoporos (*) – Medição: Departamento de Análise de Pesquisa, Geistlich Pharma AG, Wolhusen, Suíça, 2006

Matriz Orthoss® com os poros ampliados à escala micrométrica, permitindo a passagem e a adesão de células (**)

Uma alta ampliação da matriz Orthoss® revela os poros na escala nanométrica responsáveis pela penetração dos fluidos teciduais (*)

Osseointegração e osteocondutividade excepcionais

Orthoss® integra-se estruturalmente ao osso circundante e é submetido ao processo fisiológico de remodelação. A matriz Orthoss® tem, portanto, um efeito mantenedor de volume durante o processo de consolidação óssea e proporciona um ambiente protetor para a formação de novo osso, aumentando assim a qualidade do osso.

As biópsias colhidas durante a remoção do material de osteossíntese revelam a formação de uma rede vascular e de novo osso ao longo de toda a matriz Orthoss[®].

A biópsia transpedicular, colhida quando da remoção do implante metálico, 9 meses pós-operatório, mostra a fixação direta de tecido ósseo ao Orthoss® ao longo de toda a matriz. Os poros interconectados (a) entre as partículas de Orthoss® (b) são preenchidos com trabéculas ósseas

Poros internos de Orthoss® revitalizados pelo osso novo e pela rede vascular (seta) em uma biópsia colhida 21 meses pós-operatório

A capacidade regenerativa do osso local é suportada pela baixa taxa de reabsorção de Orthoss[®]. Por outro lado, um substituto de osso sintético (ß-TCP) com sua rápida taxa de reabsorção pode prejudicar o processo de consolidação¹³. Outros atributos do ß-TCP que diminuem a capacidade regenerativa são a persistência insuficiente da estrutura de suporte osteocondutora para promover a aposição óssea e a desestabilização mecânica da aposição óssea precoce através da desintegração da estrutura de suporte e de uma resposta inflamatória de níveis elevados dos produtos de degradação de partículas.

Casos clínicos

Enxertia óssea na cirurgia de pseudoartrose

Diagnóstico clínico

Em uma paciente de 66 anos de idade foram diagnosticados sintomas de pseudoartrose na tíbia esquerda. Ela tinha sido tratada 5 meses antes de uma osteoartrose medial do joelho através de uma osteotomia valgizante com cunha de abertura, que fora preenchida com osso autógeno.

Tratamento

Após o desbridamento, o defeito foi reconstruído com 8 cm³ de Orthoss[®] (3 g com grânulos de 2-4 mm) complementado com osso autógeno da crista ilíaca.

Resultado

Não houve complicações pós-operatórias. A neoformação óssea foi visível após 3 meses. Não ocorreu uma reabsorção rápida do material de enxerto ósseo, nem migração do implante após 15 meses. A osseointegração foi excelente.

Referência

Prof. Dr. med. K. Ruhnau, Buer, Alemanha

3 meses pós-op.

Enxertia óssea em cirurgia da coluna vertebral

Diagnóstico clínico

Em um paciente de 26 anos de idade foi diagnosticada uma fratura da primeira vértebra lombar com deformidade em cunha (40°).

Tratamento

Foi usada instrumentação posterior para restaurar a posição anatômica original. Para preencher o defeito foi usado substituto ósseo Orthoss® em conjunto com osso autógeno da crista ilíaca.

Resultado

Não houve complicações pós-operatórias. O paciente foi submetido a remoção do implante após 23 meses. A fratura estava completamente consolidada, sendo visível na radiografia uma excelente remodelação óssea. Após 7 anos, o Orthoss® foi completamente remodelado e o paciente ficou sem quaisquer limitações ou complicações.

Referência

Dr. med. H. Bereiter, Chur, Suíça

Pós-op.

23 meses pós-op.

7 anos pós-op.

Enxertia óssea em cirurgia de revisão do quadril

Diagnóstico clínico

Uma paciente de 83 anos de idade apresentou-se com afrouxamento da cúpula acetabular e quebra da cúpula acetabular do lado esquerdo, 18 anos após a implantação cimentada de um sistema de quadril. A paciente apresentava osteólise significativa do acetábulo com um defeito de Paprosky de tipo IIIa.

Tratamento

Durante a artroplastia de revisão do quadril foi implantado um anel de Burch-Schneider (Zimmer). O defeito ósseo foi preenchido com 60 cm^3 de Orthoss® ($3 \times 7 \text{ g com grânulos}$ de 2-4 mm) para restaurar o osso receptor defeituoso.

Resultado

Não houve complicações pós-operatórias. A neoformação óssea foi visível após 3 meses. Não ocorreu uma reabsorção rápida do material de enxerto ósseo, nem migração do implante após 15 meses. A osseointegração foi excelente.

Referência

Prof. Dr. med. M. Wagner, Chemnitz, Alemanha

15 meses pós-op.

Enxertia óssea em cirurgia de tumor ósseo

Diagnóstico clínico

Em uma paciente de 21 anos de idade foi diagnosticado um mieloma de células gigantes no côndilo femoral lateral.

Tratamento

Após a remoção do tumor, a cavidade do defeito foi reconstruída com Orthoss® (grânulos de 2-4 mm) complementado com osso autógeno da crista ilíaca. O defeito foi estabilizado com uma placa condilar femoral angular estável.

Resultado

A placa foi removida 8 meses pós-operatório. Foi observado um alto grau de osseointegração, revascularização e remodelação do Orthoss®.

Referência

Prof. Dr. med. R. P. Neugebauer, Regensburg, Alemanha

Pré-op.

Pós-op.

8 meses pós-op., vista AP

8 meses pós-op., vista lateral

Segurança

Orthoss® é composto por hidroxiapatita carbonatada nanocristalina natural de origem bovina. O processo de purificação altamente eficaz remove proteínas e inativa vírus e outros agentes patogênicos. O processo de fabricação e seu monitoramento, bem como toda a documentação e estudos clínicos, são cuidadosamente revisados, em intervalos regulares, por órgãos regulatórios.

Orthoss® cumpre integralmente os rigorosos requisitos de segurança para produtos médicos em vigor na Europa, nos EUA e em outros países. Entre as inúmeras diretrizes e normas que a Geistlich Pharma AG deve cumprir, a ISO 22442 é a mais importante, na medida em que regula os produtos médicos que utilizam tecidos animais e seus derivados. A Geistlich Pharma AG demonstrou que os vírus e os agentes transmissíveis são eliminados ou inativados durante a produção de Orthoss®.

Orthoss® é um dos primeiros produtos médicos a atender os rigorosos requisitos da EDQM (European Directorate for Medical Quality - Direção Europeia da Qualidade dos Medicamentos). Este certificado confirma que o suprimento da matéria-prima utilizada para o Orthoss®, bem como o respectivo processo de fabricação, cumprem os requisitos de segurança da Farmacopeia Europeia.

O elevado nível de segurança de Orthoss[®] baseia-se nos seguintes aspectos durante a produção:

As matérias-primas utilizadas são provenientes de fornecedores selecionados e certificados da Austrália. Não ocorreram, até agora, quaisquer casos de BSE na Austrália, razão pela qual é considerado como um país livre da BSE. Durante a produção são utilizados apenas os ossos das extremidades. Em publicações recentes (OMS, 2000 e EMEA/410/01 Rev. 2, 2003), o tecido ósseo foi classificado como tecido sem nenhuma infecciosidade da BSE detectada (categoria C).

2. Métodos de inativação

Orthoss® é altamente purificado em um processo de purificação multiestágios patenteado, sendo depois esterilizado com raios gama para inativar vírus e prions.

3. Controles de qualidade

Cada lote de Orthoss® é testado em termos de pureza usando métodos altamente sensíveis (intervalo de ppm) e validados. O lote não é liberado antes de ficar demonstrada a ausência de quaisquer proteínas usando três métodos de detecção diferentes.

A Geistlich Pharma AG mantém um sistema de qualidade que atende os requisitos da norma ISO 13485: 2003 relativa à concepção, ao desenvolvimento e à produção de produtos médicos para regeneração óssea e tecidual. Na Europa, o Orthoss® é classificado como um produto médico de classe III, de acordo com o anexo IX da diretiva sobre produtos médicos 93/42/CEE (M5) e, nos EUA, como classe II de acordo com o CFR 21 parte 888.

Portfólio de produtos

Orthoss® está disponível em grânulos de osso esponjoso em dois tamanhos de partículas e blocos de osso esponjoso.

Nº de refª	Descrição
30869.1	Orthoss [®] 3 g Grânulos esponjosos 2 – 4 mm Volume de aprox. 8 cm ³
30865.1	Orthoss® 5 g Grânulos esponjosos 1 – 2 mm Volume de aprox. 13 cm³
30870.7	Orthoss® 7 g Grânulos esponjosos 2 – 4 mm Volume de aprox. 20 cm ³

30867.5	Bloco Orthoss® 1 x 1 x 2 cm
	Bloco esponjoso com tamanho
	1 cm x 1 cm x 2 cm
30944.3	Bloco Orthoss® 2 x 2 x 1,3 cm
	Bloco esponjoso com tamanho
	2 cm x 2 cm x 1.3 cm

Geistlich Pharma do Brasil Av. Brigadeiro Faria Lima, 1461, cj 131 e cj 134 Edifício Centro Empresarial Mario Garnero Torre Sul Pinheiros - São Paulo/SP CEP: 04152-921 Tel. +55 11 3097-2555 Fax +55 11 3097-2550 surgery@geistlich.com www.geistlich.com.br

Sede na Suíça Geistlich Pharma AG Business Unit Surgery Bahnhofstrasse 40 CH-6110 Wolhusen Tel. + 41 41 492 55 55 Fax + 41 41 492 56 39 surgery@geistlich.com www.geistlich.com