Homework 3

Hussein Zamzami Math 322 Dr. Jay Shapiro

September 29, 2015

Let $V = \mathbb{R}^2$, let β be the standard basis of V, and let L be the line y = mxfor m a non-zero real number. $\beta = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$

$$\beta = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

Question 1

Let T be the reflection of V across the line L. Find a basis γ for V in which $[T]_{\gamma}$ is diagonal. Then find $[T]_{\beta}$

for T_{γ} to be diagonal, the entries across the diagonal must be equal to 0. Let that basis be $\left\{ \begin{pmatrix} 1 \\ m \end{pmatrix}, \begin{pmatrix} -m \\ 1 \end{pmatrix} \right\}$ Then T(1,m) is equivalent to itself, as it is on the line

y = mx and T(-m, 1) is flipped in reverse, so is equal $-1 {-m \choose 1}$ Therefore, the

coordinates for the matrix are $\begin{pmatrix} 1 * V_1 & 0 * V_1 \\ 0 * V_2 & -1 * V_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Which is a diagonal matrix as desired. To find $[T]_{\beta}$, we note that $[T]_{\beta}$ is similar to $[T]_{\gamma}$ by way of

nal matrix as desired. To find
$$[T]_{\beta}$$
, we note that $[T]_{\beta}$ is similar to $[T]_{\gamma}$ by way of $[1]_{\gamma}^{\beta}$ such that $[T]_{\beta} = [1]_{\gamma}^{\beta}[T]_{\gamma}[1]_{\gamma}^{\beta-1}$ where $[1]_{\gamma}^{\beta} = \begin{pmatrix} 1 & -m \\ m & 1 \end{pmatrix}$ and whose inverse is $\begin{pmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{-m}{1+m^2} & \frac{1}{1+m^2} \end{pmatrix}$ so that $[T]_{\beta} = \begin{pmatrix} 1 & -m \\ m & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{-m}{1+m^2} & \frac{1}{1+m^2} \end{pmatrix} = \frac{1}{1+m^2} \begin{pmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{pmatrix}$

$$\frac{1}{1+m^2} \begin{pmatrix} 1 - m^2 & 2m \\ 2m & m^2 - 1 \end{pmatrix}$$

$\mathbf{2}$ Question 2

Let T be the projection of V onto the line L, do as above. There is no basis that will provide with a diagonal transformation matrix, as all transformation matrices for projections are of the form: $\begin{pmatrix} 1 & m \\ m & m^2 \end{pmatrix}$ since every projection will be a multiple of any vector on the line y = mx, therefore, one cannot find a linearly independent set of vectors to form a diagonal matrix with, therefore

there does not exist a basis γ that provides a diagonal transformation matrix. The projection applied to β equals $\begin{pmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{m}{1+m^2} & \frac{m^2}{1+m^2} \end{pmatrix}$ so $[T]_{\beta} = \begin{pmatrix} \frac{1}{1+m^2} & \frac{m}{1+m^2} \\ \frac{m}{1+m^2} & \frac{m^2}{1+m^2} \end{pmatrix}$ As those are its coordinates with respect to β