Assignment 2

CS540- Advanced Database Management Systems Arash Termehchy

Question 1:

Using B+ trees with degrees of two (2) whose keys are integer values, give an example of a B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show your structure before and after the insertion. A B+ tree with a single node has height of 1.

Answer:

Before Inserting:

After Inserting 25:

Question 2:

Consider the join of the relation R and S on attributes R.a=S.b, given the following information about the relations to be joined. Relation R contains 10,000 tuples and has 10 tuples per block. Relation S contains 2000 tuples and also has 10 tuples per block. Attribute b of relation S is the primary key for S. Neither relation has any indexes built on it. 52 buffer pages are available in main memory. What is the cost of joining R and S using a sort-merge join? You should use a version of sort-merge algorithm that provides the minimum cost. The cost metric is the number of block I/Os.

```
Answer:
```

```
B(r) = 10,000/10 = 1000 \\ B(s) = 2000/10 = 200 \\ M = 52 \\ Total cost = sorting + 2B(r) + 2B(s) - B(r) \\ Sorting cost(r) = No. of passes*2*B(r) \\ Sorting cost(s) = No. of passes*2*B(s) \\ No. of passes = 1 + log [B(r)/M] to the base M-1 \\ Sorting Cost(r) = 2*1000*ceil of [1+log20 to base 51] \\ = 2000*[1+1] = 4000 \\ Sorting Cost(s) = 2*200*ceil of [1+log4 to base 51] \\ = 400*[1+1] = 800 \\ Total cost = 2000+400+800+4000-1000 \\ = 6200
```

Optimized:

When B(r) + B(s)
$$\leq$$
 M²
Total Cost = 3.B(r) + 3.B(s)
 $1000+200 \leq$ 52*52
 $1200 < 2704 \rightarrow$ True
Total Cost = 3*1000 + 3 *200
= 3600 \rightarrow Lowest I/O Cost

Question 3:

Consider the following relational schema and SQL query: Suppliers (sid, sname, city), Supply (sid, pid), Parts(pid, pname, price). SELECT S.sname, P.pname FROM Suppliers S, Parts P, Supply Y WHERE S.sid = Y.sid AND Y.pid = P.pid. How many different join orders, assuming that cross products are disallowed, does a System R style query optimizer consider when deciding how to process the given query? List the join orders.

Answer:

The only possible left deep join orders are:

- 1. (Suppliers X Supply) X Parts
- 2. (Supply X Parts) X Suppliers

Question 4:

Consider the schedule shown at Table 1.

- (a) What is the equivalent serialization order for this schedule? If no order is possible, you may state so.
- (b) When all transactions run in the above schedule, identify the transactions with degree 3 consistency. Answer the same question when transaction T3 does not exist in the schedule.

	T1	T2	T3
0		start	
1		$\operatorname{read} X$	
2	start		
3	read Y		
4		write X	
5			start
6			$\operatorname{read} X$
7			write X
8			Commit
9	read X		
10	write Y		
11	write X		
12	Commit		
13		read Y	
14		write Y	
15		Commit	

Table 1: Transaction schedule

Answer:

a. There is no Serialization schedule possible. Because there is a loop in the Serialization Graph from T1 to T2.

$$T2$$
 $T3$ $T1$

b. T2 can be of degree 3 consistency because If we apply locks on T2, T2 holds long shared read locks on X and long exclusive write locks on X which will prevent other transactions from dirty any data.

Question 5:

In this problem, you need to simulate the actions taken by ARIES. Consider the following log records and buffer actions:

$_{\rm time}$	LSN	Log	Buffer actions
0	00	update: T1 updates P7	P7 brought in
1	10	update: T0 updates P9	P9 brought in; P9 kicked out
2	20	update: T1 updates P8	P8 brought in; P8 kicked out
3	30	begin_checkpoint	
4	40	end_checkpoint	
5	50	update: T1 updates P9	P9 brought in
6	60	update: T2 updates P6	P6 brought in
7	70	update: T1 updates P5	P5 brought in
8	80	update: T1 updates P7	P6 kicked out
9		CRASH RESTART	

- (a) For the actions listed above, show Transaction Table (XT) and Dirty Page Table (DPT) after each action. Assume that DPT holds pageID and recLSN, and XT contains transID and lastLSN.
- (b) Simulate Analysis phase to reconstruct XT and DPT after crash. Identify the point where the Analysis phase starts scanning log records and show XT and DPT after each action.
- (c) Simulate Redo phase: First identify where the Redo phase starts scanning the log records. Then, for each action identify whether it needs to be redone or not.
- (d) Simulate Undo phase: identify all actions that need to be undone. In what order will they be undone?

Answer:

a.	Transaction Trans ID	Table Last LSN	Dirty Page T Page ID	able rec LSN
Step-0	T1	00	P7	00
Step-1	T1	00	P7	00
	T0	10	P9	10 Kicked Out
Step-2	T1	20	P7	00
	T0	10	P8	20 Kicked Out
Step-3 Step-4	Start CheckPoint End Checkpoint			
Step-5	T1	50	P7	00
	T0	10	P9	50
Step-6	T2	60	P6	60
	T1	50	P7	00
	T0	10	P9	50
Step-7	T1 T2 T0	70 60 10	P5 P6 P9 P7	70 60 50 00
Step-8	T1	80	P5	70
	T2	60	P9	50
	T0	10	P7	00

b. Analysis Phase: We start from Last checkpoint and check which transactions committed/failed since checkpoint.

Step-3	Start CheckPoint			
Step-4	End Checkpoint Reconstruct the state at start check point			
	T1	20	P7	00
	T0	10		
Step-5	T1	50	P7	00
	T0	10	P9	50
Step-6	T2	60	P6	60
1	T1	50	P7	00
	T0	10	P9	50
Step-7	T1	70	P5	70
	T2	60	P6	60
	T0	10	P9	50
			P7	00
Step-8	T1	80	P5	70
-	T2	60	P9	50
	T0	10	P7	00

c. REDO Phase: Start from Smallest recLSN in Dirty Page Table

		Transaction Table		Dirty Page Table		
		T1	80	P5	70	
		T2	60	P9	50	
		T0	10	P7	00	
Step-0	Redo	T1	00 because recLSN of P7 <=	LSN		
Step-1	No Redo	T1 T0	00 10 because recLSN of P9 in DPT i.e. 50 > LSN i.e 10			
Step-2	No Redo	T1 T0	20 because P8 not in Dirty Pa 00	age Table after	Analysis	
Step-3	Step-3 Begin Checkpoint					
Step-4	Step-4 End checkpoint					
Step-5	Redo	T1	50 because recLSN of P9 <=	LSN		
		T0	00			
Step-6	No Redo	T2 T1 T0	60 because P6 not in Dirty Pa 50 00	age Table after	Analysis.	
Step-7	Redo	T1	70 because recLSN of P5 <=	LSN		

Step-8 Redo T1 80 because recLSN of P7
$$\leq$$
=LSN T0 00

d. UNDO Phase: Start from end, Undo all Transactions active during crash.

Submitted By:

Lakshman Madhav Kollipara

ONID Name-kollipal