These are notes for the class Math 340 at UW. The notes are a WORK IN PROGRESS

Notation. We will use the notation A := B whenever we define A by means of B.

We denote by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ the set of the natural, integer, rational, real and complex numbers. The notation $\mathbb{Z}_{>0}$ denotes the set of all positive integers.

1. Logic notation

We use the following notation in this course: \forall means for all, and \exists means exists as quantifiers (you should have seen this is math 300). We will also use the symbol \Rightarrow for implication.

2. Sets and Relations

In an informal way we will use the term set to indicate a collection of objects. Such collection might be finite or infinite. In this sense $X = \{a, b, c\}$ will be a set consisting of three objects that we will call its *elements*, and we will use the notation $a \in X$ to indicate that a is an element of X. On the other hand the set of all integers, usually denoted by the letter \mathbb{Z} , is the infinite set

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

Its elements are all the integers and we might write the tautology $1 \in \mathbb{Z}$.

Given two sets X and Y we say that Y is a subset of X, denoted by $Y \subset X$ if every element of Y is also an element of X (in logic terms this can be written as $\forall y \in Y \Rightarrow y \in X$). For example if $X = \{a, b, c\}$ and $Y = \{b, c\}$ then $Y \subset X$ since every element of Y is an element of X. On the other hand the set $Z = \{a, f\}$ is not a subset of X since $f \in Z$, i.e. f is an element of Z but $f \notin X$, i.e. f is not an element of X (sometimes this is denote by $Z \not\subset X$).

If X and Y are two sets we say that X = Y if $X \subset Y$ and $Y \subset X$ (this is also the strategy one should use when trying to prove that 2 sets are equal).

Standard operation between sets are: union, intersection, power set, difference that we quickly recall here: given two sets X and Y we have

- the union $X \cup Y = \{a : a \in X \text{ or } a \in Y\};$
- the intersection $X \cap Y = \{a : a \in X \text{ and } a \in Y\};$
- the difference $X \setminus Y = \{a : a \in X \text{ and } a \notin Y\};$
- the power set $\mathcal{P}(X) := \{A : A \subset X\}.$

Given two sets X and Y, their Cartesian product, often called just product, is the set $X \times Y$ defined by

$$X \times Y = \{(a, b) : a \in X, b \in Y\}$$

i.e. is the set of all ordered pair (a,b) such that the first element is in X and the second element is in Y. Note that the order here is fundamental; in particular the sets $X \times Y$ and $Y \times X$ are in general different sets.

Given a set X a partition of X is a collection of subsets $\mathcal{Y} = \{Y_i\}_{i \in I} = \{Y_1, Y_2, \dots\} \subset \mathcal{P}(X)$, i.e. a subset of the power set of X, such that

- (1) The union of all elements in the partition verifies $\bigcup \mathcal{Y} = \bigcup_{i \in I} Y_i := Y_1 \cup Y_2 \cup \cdots = X$;
- (2) For every two elements Y_i and Y_j in the partition, $Y_i \cap Y_j = \emptyset$ (i.e. they are disjoint).

We will focus on the notion of relation.

Definition 2.1. Given two sets X and Y a relation \mathscr{R} is a subset of the set $X \times Y$, i.e. $\mathscr{R} \subset X \times Y^{(1)}$. We say that two elements $a \in X$ and $b \in Y$ are \mathscr{R} -related if $(a,b) \in \mathscr{R}$. The notations for this are the following

$$(a,b) \in \mathcal{R} \iff a \mathcal{R} b \iff a \sim_{\mathcal{R}} b$$

Thus one can describe a relation either as a subset of the Cartesian product $X \times Y$ or by describing which elements are \mathcal{R} -related.

A relation $\mathscr{R} \subset X \times X$ is called an *equivalence relation* (on X) if it satisfies the following properties:

Reflexivity: : for every $a \in X$ one has $a \sim_{\mathscr{R}} a$;

Symmetry: : if $a \sim_{\mathscr{R}} b$ then $b \sim_{\mathscr{R}} a$;

Transitivity: : if $a \sim_{\mathscr{R}} b$ and $b \sim_{\mathscr{R}} c$ then $a \sim_{\mathscr{R}} c$.

One way to think of a relation on a set X is as a law that singles out couples of elements of X (this is equivalent to specify a subset of $X \times X$ after all). For example given the set of all integers \mathbb{Z} one can define a relation as $x \sim y$ if x = y for every $x, y \in \mathbb{Z}$. This indeed is a relation and corresponds to the subset of $\mathbb{Z} \times \mathbb{Z}$ given by $\{(a, a) : a \in Z\}$, i.e. the subset of $\mathbb{Z} \times \mathbb{Z}$ consisting of all the couples in which both elements are the same. This relation is a formal way of describing the same kind of abstract operation you do when you write 2 = 2: in fact one can use the symbol = instead of \sim in this precise setting. Moreover one can also see that such relation is in fact an equivalence relation since = verifies both Reflexivity, symmetry and transitivity.

Exercise 2.2. (1) Show that for every two sets X, Y the following law describes a relation: $a \sim b$ for every $a \in X$ and $b \in Y$. Prove that if X = Y such relation is an equivalence relation.

(2) Show that for every $n \in \mathbb{Z}_{>0}$ the following is an equivalence relation on \mathbb{Z} :

$$x \equiv_n y$$
 if and only if $x - y = n \cdot t$ for some $t \in \mathbb{Z}$

(you should read \equiv_n as "congruent modulo n").

(3) Given the set $X = \{a, b\}$ write down all possible equivalence relations on X.

Definition 2.3. Given an equivalent relation \sim on a set X and an element $a \in X$ the equivalence class of a for \sim is the subset

$$[a]_{\sim} := \{x \in X : x \sim a\}.$$

Given the relation \sim the quotient set of X with respect to \sim is the set

$$X_{/\sim} := \{ [a]_{\sim} : a \in X \}$$

i.e. is the set whose elements are the equivalence classes of elements of X for \sim .

Exercise 2.4. Prove the following facts:

- If \sim is an equivalence relation on X, then for every $a,b\in X$, $[a]_{\sim}=[b]_{\sim}$ if and only if $a\sim b$;
- The quotient set $X_{/\sim}$ is a subset of the power set of X and it is a partition of X.

3. Functions

The informal definition of a function $f: X \to Y$ is a law that associates to every element of the domain X a unique element of the codomain Y. One can formalize this by using relations.

Definition 3.1. Given two sets X and Y a function with domain X and codomain Y, notation $f: X \to Y$ is a relation on $X \times Y$ such that for every $a \in X$ there is exactly one pair containing a.

In other words a function $f: X \to Y$ is defined by a set of pairs in $X \times Y$; this is equivalent to the usual definition of function since having the pair (a,b) in the relation amounts to the fact that f sends a to b, which we usually write f(a) = b, or $f: a \mapsto b$. The requirement that there is exactly one pair for every element of the domain is equivalent to the fact that a function associates to every element of the domain a unique element of the codomain.

⁽¹⁾this is sometimes called the graph of the relation but we will not make this distinction here.

The set of pairs inside $X \times Y$ is called the *graph* of the function $f: X \to Y$. We can rephrase the definition by saying that to specify a function f is the same as describing its domain, its codomain and its graph.

Given $a \in X$, $A \subset X$, $B \subset Y$ and $b \in Y$ we can define

$$f(a)$$
 — the image of a
 $f(A) = \{f(a) : a \in A\}$ — the image of A
 $f^{-1}(b) = \{a \in X : f(a) = b\}$ — the pre-image of b
 $f^{-1}(B) = \{a \in X : f(a) \in B\}$ — the pre-image of B

Given a function $f: X \to Y$ the function is called

- (1) injective if f(a) = f(b) implies a = b;
- (2) surjective if for every $b \in Y$ there is $a \in X$ such that f(a) = b;
- (3) bijective if it is injective and surjective.

Given two functions $f: X \to Y$ and $g: Y \to Z$ such that the domain of g is the same as the codomain of f (it would be sufficient that the domain of g contains the domain of f) the composition of f and g is the function $g \circ f: X \to Z$ defined as $g \circ f(x) = g(f(x))$.

Exercise 3.2. Prove the following facts:

- Two sets X and Y have the same cardinality (i.e. the same number of elements) if there exists a bijective function $f: X \to Y$;
- If X is a finite set and $f: X \to X$ is an injective function then f is also surjective.
- A set X is infinite is there exists an injective function $f: X \to X$ which is not surjective.
- If f and g are two injective functions then $g \circ f$ is injective.
- If f and g are two surjective functions then $g \circ f$ is surjective.
- If $g \circ f$ is injective then f is injective.
- If $g \circ f$ is surjective then g is surjective.