

Аутентификация по параметрам динамики простановки подписи на графическом планшете.

Выполнила: Михалькевич А.Э. Декабрь 2022

Введение

Объект исследования: Набор данных с параметрами подписей пользователя.

Предмет исследования: Попарное сравнение параметров и их бинарная классификация по принадлежности одному пользователю.

Цель работы: Необходимо провести исследование минимум 3 различными классификаторами в рамках анализа набора данных для решения задачи классификации на 2 класса — 0 — половины параметров от разных пользователей и 1 — половины параметров от одного и того же пользователя.

Задачи работы:

- 1. Сформировать и описать набор данных.
- 2. Создать и обучить модель нейронной сети, выбрать параметры.
- 3. Выбор классификаторов.
- 4. Балансировка данных.
- 5. Сравнить результаты классификации.
- 6. Заключение.

Формирование и описание набора данных

Размерность исходного набора данных составляет 2045*2045 запись из 144+144+1 полей, итого размер набора равен 4 182 025*289. Т.к. набор данных большой достаточно И В памяти помещается с трудом итоговую оценку 100000 проводить буду записей. на набора обрезки Процедура перемешиванием и выбором размера приведена в файле 2_Create_Small.ipynb.

В результате обрезки получаем набор данных Small.csv на 100000 записей на основании которого проводим анализ данных представленный в приложенном блокноте.

Исходный набор
[Параметры записи 1] [Принадлежность записи 1]
[Параметры записи 2] [Принадлежность записи 2]
...
[Параметры записи n] [Принадлежность записи n]

Итоговый набор [Параметры записи 1] [Параметры записи 1][1] [Параметры записи 1] [Параметры записи 2][0, если Принадлежность записи 1!= Принадлежность записи 2, иначе 1]

... [Параметры записи і] [Параметры записи ј][0, если Принадлежность записи і!= Принадлежность записи ј, иначе 1] [Параметры записи п] [Параметры записи п][1]

Создание нейронной сети

Создадим модель нейронной сети, состоящую из нескольких внутренних слоев и одного выходного слоя.

```
model = Sequential(
    Dense(units=512, activation="relu", input_shape=(X_train.shape[-1],)),
    BatchNormalization(),
    Dropout(0.3),
    Dense(units=256, activation="relu"),
    BatchNormalization(),
    Dropout(0.3),
    Dense(units=128, activation="relu"),
    BatchNormalization(),
    Dropout(0.3),
    Dense(units=32, activation="relu"),
    BatchNormalization(),
    Dropout(0.3),
    Dense(units=1, activation="sigmoid"),
```

Параметры сети

er (type)	Output Shape	Param #
se (Dense)		147968
ch_normalization (BatchN alization)	(None, 512)	2048
pout (Dropout)	(None, 512)	0
se_1 (Dense)	(None, 256)	131328
ch_normalization_1 (Batc rmalization)	(None, 256)	1024
pout_1 (Dropout)	(None, 256)	0
se_2 (Dense)	(None, 128)	32896
ch_normalization_2 (Batc rmalization)	(None, 128)	512
pout_2 (Dropout)	(None, 128)	0
se_3 (Dense)	(None, 32)	4128
ch_normalization_3 (Batc rmalization)	(None, 32)	128
pout_3 (Dropout)	(None, 32)	0
se_4 (Dense)	(None, 1)	33
se_4 (Dense)		

4

Результаты обучения модели

Обучаю модель используя следующие параметры: batch_size = 1024, epochs=300, callbacks=[early_stopping, checkpoint]

F1 score: 0.981712576941288

KNeighborsClassifier

KNeighbors (**K-ближайших соседей**): Простой алгоритм, который классифицирует объект на основе голосования ближайших соседей. Чем ближе объекты, тем больше вероятность их схожести.

К ближайших соседей

Best score: 0.658302518473915, Best params: {'n_neighbors': 9} Test: 0.7090642810321208

DecisionTreeClassifier

DecisionTree (Дерево решений): Модель, которая принимает решения, разделяя данные на ветви на основе условий. Проста в интерпретации, но склонна к переобучению.

Деревья решений

Best score: 0.7933024601594761, Best params: {'max_depth': 35, 'min_samples_leaf': 2, 'min_samples_split': 3}
Test: 0.8617933799941364

RandomForestClassifier

RandomForest (Случайный лес): Ансамбль деревьев решений, который снижает риск переобучения за счет усреднения результатов множества деревьев.

Случайный лес (классификация)

```
model forest = RandomForestClassifier(random state=RANDOM STATE)
parameters = {
    'min samples split': range(6, 9),
    'min_samples_leaf': range(9, 11),
    'max depth': range(130, 150, 10),
    'max features':['auto', "sqrt"],
    'n estimators': [100, 200],
    'class weight': [None, "balanced"]
grid_search_forest = HalvingGridSearchCV(model_forest, parameters, cv=3, n_jobs=-1, scoring='f1', verbose=False)
grid search forest.fit(X train, y train)
print(f"Best score: {abs(grid_search_forest.best_score_)}, Best params: {grid_search_forest.best_params_}")
f1_4 = f1_m(y_test, K.round(grid_search_forest.predict_proba(X_test)[:,1])).numpy()
print(f"Test: {f1 4}")
                                                                                                             Python
```

Best score: 0.8382497552315754, Best params: {'class_weight': 'balanced', 'max_depth': 130, 'max_features': 'sqrt', 'ITest: 0.9019115767750931

LGBMClassifier

LGBM (**LightGBM**): Градиентный бустинг на основе деревьев, оптимизированный для скорости и производительности. Хорошо работает с большими данными.

Light Gradient Boosted Machine LGBMClassifier

```
model_light = LGBMClassifier(random_state=RANDOM_STATE)
parameters = {
    'n estimators': range(300, 500, 50),
    'max_depth': range(9, 14),
    'learning rate': [0.5, 0.05]
grid_search_light = HalvingGridSearchCV(model_light, parameters, cv=3, n_jobs=-1,
                                       scoring='f1', verbose=False)
grid search light.fit(X train, y train)
print(f"Best score: {abs(grid search light.best score )}, Best params: {grid search light.best params }")
f1_5 = f1_m(y_test, K.round(grid_search_light.predict_proba(X_test)[:,1])).numpy()
print(f"Test: {f1_5}")
                                                                                                             Python
```

Best score: 0.952911893293984, Best params: {'learning_rate': 0.5, 'max_depth': 12, 'n_estimators': 400} Test: 0.9777517063955328

Балансировка данных с помощью метода SMOTE

Сделаю балансировку данных с помощью метода SMOTE для трех моделей, чтобы попробовать улучшить результаты классификации.

SMOTE это алгоритм предварительной обработки данных, используемый для устранения дисбаланса классов в наборе данных. SMOTE позволяет увеличить количество примеров миноритарных классов, избегая при этом чрезмерного обучения. В результате создаются новые синтезированные образцы, близкие к другим точкам (принадлежащим к миноритарному классу) в пространстве признаков.

1. Light Gradient Boosted Machine LGBMClassifier SMOTE

Best score: 0.9608880581293929, Best params: {'light__learning_rate': 0.5, 'light__max_depth': 10, 'light__n_estimators': 450} Test: 0.9772195761201705

2. DecisionTreeClassifier SMOTE

Best score: 0.5658607041006616, Best params: {'tree__max_depth': 35, 'tree__min_samples_leaf': 2, 'tree__min_samples_split': 2} Test: 0.6124323825925387

3. RandomForestClassifier SMOTE

Best score: 0.8817099059912076, Best params: {'forest__class_weight': None, 'forest__max_depth': 130, 'forest__max_features': 'sqrt', 'forest__min_samples_leaf': 9, 'forest__min_samples_split': 6, 'forest__n_estimators': 200} Test: 0.9289417006466919

Сравнение результатов классификации.

Наивысшую точность показала модель **Keras** (0.9817), что делает её наиболее эффективной среди всех протестированных моделей.

Модели **LGBM** и **LGBM + SMOTE** также показали высокие результаты (0.9778 и 0.9772 соответственно).

RandomForest и RandomForest + SMOTE демонстрируют хорошую точность (0.9019 и 0.9289), что делает их надежными вариантами для решения текущей задачи классификации.

KNeighbors и DecisionTree показали более низкие результаты (0.7091 и 0.8618 соответственно), а использование SMOTE для DecisionTree значительно снизило точность (0.6124).

В целом, модели на основе нейронных сетей и ансамблевые методы показывают наилучшие результаты, в то время как более простые модели, такие как KNeighbors и DecisionTree, требуют дополнительной настройки или улучшения.

Модель	Точность
Keras	0.9817
KNeighbors	0.7091
DecisionTree	0.8618
RandomForest	0.9019
LGBM	0.9778
LGBM + SMOTE	0.9772
DecisionTree + SMOTE	0.6124
RandomForest + SMOTE	0.9289

Заключение

При решении задачи аутентификации по динамике подписи с применением попарного сравнения образцов на наборе данных с параметрами подписи было проведено исследование с использованием различных классификаторов, а именно: К ближайших соседей (KNeighborsClassifier), Деревья решений(DecisionTreeClassifier), Случайный лес (RandomForestClassifier), LGBMClassifier, а также с применением балансировки данных с помощью SMOTE.

Все классификаторы были протестированы на наборе данных с параметрами подписи.

SMOTE был использован для улучшения качества классификации на несбалансированных данных.

Метрики оценки (Accuracy, Precision, Recall, F1-score, ROC-AUC) показали, что использование балансировки данных и ансамблевых методов (например, RandomForest и LGBM) с помощью SMOTE значительно улучшает качество классификации.

Ансамблевые методы, такие как RandomForest и LGBM, показали себя лучше, чем простые классификаторы, такие как KNN и DecisionTree.

Для задачи аутентификации по динамике подписи важно учитывать дисбаланс классов и использовать методы, которые могут справляться с этим, такие как SMOTE.

В результате проведенного эксперимента по подбору параметров видно, что, исходя из перебранного множества значений можно рекомендовать выбор классификатора на основе LightGBMClassifier (классификатор повышения градиента в машинном обучении, который использует древовидные алгоритмы обучения) обеспечивающий следующие показатели качества работы системы: 0.9777517063955328, а также классификатора RandomForest сбалансированного с помощью метода SMOTE, обеспечивающий следующие показатели качества работы системы: 0.9289417006466919.

Стек технологий:

Языки программирования: Python Среда разработки: Google Colab

Библиотеки: TensorFlow/Keras, Pandas, NumPy, Matplotlib, Plotly, Seaborn,

sklearn

Обученные модели: Keras, KNeighbors, DecisionTree, RandomForest, LGBM,

LGBM + SMOTE, DecisionTree + SMOTE, RandomForest + SMOTE.

Балансировка данных: SMOTE

Дополнительные инструменты: Github, OpenAI ChatGPT

Спасибо за внимание!

Мои контакты:

@hakunaaa_matataaaaa
anelia.education@yahoo.com