

ANATOMY OF SPINAL CORD

BY RAJEEV KUMAR MUKHIA

INTRODUCTION

- The spinal cord is the lower elongated part of the central nervous system (CNS).
- Cylindrical in shape
- Slightly flattened anteroposteriorly
- Mesaures about 45cm in adult male & 42 cm in female
- 30gm in weight

EXTENSION

- It extends as downward continuation of medulla oblongata from upper border of first cervical vertebra (C1) to the lower border of first lumbar vertebra(L1)
- Its lower tapering end is called as conus medullaris.
- Apex of the conus medullaris continues as a thin filament called filum terminale.

POSITIONAL CHANGES OF THE CORD

- 3rd month (IU Life) Spinal cord is as long as vertebral canal.
- At birth Spinal cord lies at L3.
- In adults Spinal cord lies at lower border of L1.
- The knowledge of these variation in the vertebral level of the lower end of cord is imp. to avoid injury to the cord while performing lumbar puncture, specially in children.

SPINAL MENINGES

From outside inwards

Dura mater

Arachnoid mater

Pia mater

SPINAL DURAMATER

- Extends from foramen magnum to lower border of second sacral vertebra (S2)
- The space between spinal dura and vertebral canal is called as epidural space
- The space between duramater and arachnoid mater is called subdural space

Differences between spinal & cranial dura

SPINAL DURA	CRANIAL DURA
Single layered & consists of meningeal layer only	Double layered. Consists of inner meningeal layer and outer endosteal layer
Does not form folds	Forms dural folds viz. Falx cerebri, falx cerebelli, tentorium cerebelli, diaphragma sella
Epidural space present	Epidural space absent

ARACHNOID MATER

- Thin transparent, avascular membrane which invests the spinal cord loosely.
- Above it is continuous with the arachnoid mater of the brain
- Below it extends upto the level of lower border of S2.

PIAMATER

- Thin highly vascular membrane that closely invests the spinal cord.
- Continues below the spinal cord as filum terminale.
- The space between the pia mater and arachnoid mater is called as subarachnoid space and is filled with CSF

LUMBAR CISTERN

- The subarachnoid space around the filum terminale becomes roomy forming a pool of CSF called lumbar cistern.
- The lumbar puncture is done at this site to take out the CSF.

LUMBAR PUNCTURE

- It is done to withdraw
 CSF for various
 diagnostic and
 therapeutic procedures.
- Most preferred site: Interspinous space between L3 and L4.
- LANDMARK:

An imaginary line joining highest point on the iliac crest passes through the spine of L4.

- Filum terminale
- Subarachnoid septum
- Ligamenta
 - denticulata

FILUM TERMINALE

- Delicate, white thread like structure
- Extends from tip of the conus medullaris to the first coccygeal vertebra.
- About 20cm long
- It has 2 parts
- Filum terminale
 Internum 15cm long & lies within the dural sac.
- Filum terminale
 Externum 5cm long &
 lies outside the dural sac.

SUBARACHNOID SEPTUM

It is a mid-sagittal fenestrated pial septum which connects the dorsal surface of the spinal cord with the arachnoid mater.

LIGAMENTA DENTICULATA

- Two transparent ribbon like thickened bands of pia mater
- Extending laterally between anterior and posterior nerve roots
- The lateral margin of each band presents 21 tooth like processes which pierce the arachnoid.

EXTERNAL FEATURES OF THE SPINAL CORD

Fissure and sulci

Attachment of spinal nerves

Enlargements

FISSURES AND SULCI

- Thirty-one pairs of spinal nerves emerge from the sides of the cord.
- Cervical-8
- Thoracic-12
- Lumbar-5
- Sacral-5
- Coccygeal-I

- Each spinal nerve is attached to the cord by the two roots, anterior motor root & posterior sensory root.
- The posterior root has a ganglion.

SPINAL SEGMENTS

 The part of spinal cord to which a pair of spinal nerves is attached is known as spinal segment.

 But there is no actual surface indication of segmentation.

ENLARGEMENTS

- The spinal cord is roughly cylindrical in shape with an average diameter of 1.25cm.
- The spinal cord presents definite swellings called Cervical (C4-T2) & Lumbar (L2-S3) enlargements.
- These enlargements are produced due to the presence of large no. of large motor neurons in these regions.

- H shaped gray matter which consists of cell bodies of neurons and neuroglia.
 - White matter surrounds the gray and consists of myelinated and unmyelinated nerve fibers with neuroglia.
- Gray matter has anterior column/ horn and posterior horn on each side
- The central canal of the cord passes through the centre of gray commissure.

INTERNAL STRUCTURE

- White matter is divided into two halves by anterior median fissure and posterior median septum
- Each half is again divided in to anterior, lateral and posterior funiculi
- Small strip of white matter connects the two halves in front of the gray commissure. This called the white or anterior commissure.

GREY MATER

- Butterfly/H shaped.
- Has cell bodies of multipolar neurons and interneurons (Renshaw cells)
- It is divided in to three horns —
- anterior (motor neuron)
- Posterior (sensory neuron)
- lateral (motor neuron)

NUCLEI AND LAMINAE

TRACTS

Major Ascending tracts

- Spinothalamic
- Fasciculus gracilis
- Fasciculus cuneatus
- Spinocerebellar

Major Descending tracts

- Cortico spinal
- Rubro spinal
- Reticulo spinal

BLOOD SUPPLY

Anterior spinal artery

Two posterior spinal arteries

Segmental arteries

Venous drainage:

Form 6 longitudinal venous channel around the cord.

- Two median longitudinal
- Two anterolateral
- Two posterolateral

Internal vertebral venous plexus

Basilar venous plexus

CLINICAL ANATOMY

Anterior Spinal Artery Syndrome

LUMBAR DISC HERNIATION

BLOOD SUPPLY OF THE BRAIN

Blood Supply of The Brain

 The brain receives it arterial supply from two pairs of vessels, the **vertebral** and internal carotid arteries which are interconnected in the cranial cavity to produce an arterial circle (of Willis).

Internal Carotid Artery

- Begins at bifurcation of common carotid artery
- Perforates base of skull enters into carotid canal
- Enters middle cranial fossa beside dorsum sellae
- In the cavernous sinus
 - Horizontal
- Emerge out medial side of Anterior clinoid process – perforates dura & arachnoid mater – enters subarachnoid space
- Turns posteriorly below optic nerve
- Turns upward lateral to optic chiasma
- Now is under anterior perforated susbtance
- Divides into ANTERIOR & MIDDLE cerebral arteries.

Vertebral Artery

- Branch of first part of subclavian A
- Passes foramen transvesarium C6 C1
- Enters through foramen magnum perforates dura & arachnoid mater – enters subarachnoid space
- Turns upward, forward, medially medulla oblongata
- Lower border of pons joins opposite side
 - BASILAR artery

Branches of:-

INTERNAL CAROTID ARTERY

- Anterior cerebral artery
 - Middle cerebral artery
- Ophthalmic artery
- Ant Com artery
- Post Com artery
- Choroidal artery

VERTEBRAL ARTERY

- Meningeal
- Post Spinal
- Ant Spinal
- Post Inf Cerebellar
- Medullary

BASILAR ARTERY

- Pontine
- Labyrinthine
- Ant Inf Cerebellar
- Sup Cerebellar
- Post Cerebral artery

Circle of Willis

- Interpeduncular fossa
 - base of brain
- Anastomosis
 - 2 internal carotid arteries
 - 2 vertebral arteries
- In the subarachnoid space

INFERIOR VIEW

Anterior cerebral artery

Middle cerebral artery

Posterior cerebral artery

