

Deep Traffic Perception:

from Regional Flow to Online OD Prediction

Lingbo Liu
Sun Yat-sen University

My Research

Machine Learning + Intelligent Transportation

1 Crowd Counting

Application

• Security Monitoring, Traffic Management

Papers

- IJCAI 2018: Spatial-Aware Refinement
- ICCV 2019: Structured Learning (Feature, Loss)
- Under Review: KD-based Lightweight Model
- Under Review: Multimodal (RGBT) Alignment

Papers

- Under Review: Cross-modal Dual Refinement
- Under Review: Multimodal (RGBT) Alignment

My Research

Machine Learning + Intelligent Transportation

3 Traffic State Prediction

Grid-based Flow

Origin-Destination Demand

Online Origin-Destination Ridership

Papers

- ACM MM 2018: Attentive Crowd Flow Machines
- TITS 2020: Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction
- TITS 2019: Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction
- Submit to TITS: Physical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership Prediction

Outline

- Grid-based Flow Prediction
- Origin-Destination Demand Prediction
- **3** Online Origin-Destination Prediction

Outline

- Grid-based Flow Prediction
- 2 Origin-Destination Demand Prediction
- **3** Online Origin-Destination Prediction

Grid-based Flow Prediction

Attentive Crowd Flow Machines

Lingbo Liu, Ruimao Zhang, Jiefeng Peng, Guanbin Li, Bowen Du, Liang Lin ACM Multimedia 2018

Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction

Lingbo Liu, Jiajie Zhen, Guanbin Li, Geng Zhan, Zhaocheng He, Bowen Du and Liang Lin TITS 2020

Background

Following ST-ResNet [1], we partition the studied city into a regular grid map and measure the inflow/outflow of each region $\implies M \in \mathbb{R}^{2*h*w}$

[1] Deep spatio-temporal residual networks for citywide crowd flows prediction, AAAI 2017

Motivation

- ➤ **Temporal Dynamic**: Traffic flow data can vary greatly in temporal sequences and capturing such dynamic variations is non-trivial.
- > Spatial Dynamic: The spatial dependencies are not strictly stationary and the relation significance of a specific region may change from time to time.
- ➤ **Fusion Dynamic**: Some periodic laws (e.g., rush hours) and external factors (e.g., a precipitate rain) can dynamically affect the situation of traffic flow.

> Spatial Dynamic

> Temporal Dynamic

> Fusion Dynamic

Attentive Traffic Flow Machine (ATFM)

$$\begin{split} H_{i}^{1}, C_{i}^{1} &= \mathbf{ConvLSTM}(H_{i-1}^{1}, C_{i-1}^{1}, X_{i}). \\ W_{i} &= \mathbf{Conv}_{1 \times 1}(H_{i}^{1} \oplus X_{i}, w_{a}), \\ H_{i}^{2}, C_{i}^{2} &= \mathbf{ConvLSTM}(H_{i-1}^{2}, C_{i-1}^{2}, X_{i} \odot W_{i}) \end{split}$$

Method: Long-term Prediction

> Spatial Dynamic

> Temporal Dynamic

> Fusion Dynamic

Long-term Sequential-Periodic Network (SPN-LONG)

Experiments: Compare with State-of-the-art

Dateset: TaxiBJ \ BikeNYC

Metric: RMSE, MAE

Short-term Prediction

Method	TaxiBJ		BikeNYC	
Method	RMSE	MAE	RMSE	MAE
HA	57.79	-	21.57	-
SARIMA	26.88	-	10.56	-
VAR	22.88	-	9.92	-
ARIMA	22.78	-	10.07	-
ST-ANN	19.57	-	-	-
DeepST	18.18	-	7.43	-
VPN	16.75	9.62	6.17	3.68
ST-ResNet	16.69	9.52	6.37	2.95
PredNet	16.68	9.67	7.45	3.71
PredRNN	16.34	9.62	5.99	4.89
SPN (Ours)	15.31	9.14	5.59	2.74

Long-term Prediction on TaxiBJ

	Time Interval				
Method	1	2	3	4	
	(0.5 h)	(1.0 h)	(1.5 h)	(2.0 h)	
ST-ResNet	16.75	19.56	21.46	22.91	
VPN	17.42	20.50	22.58	24.26	
PredNet	27.55	254.68	255.54	255.47	
PredRNN	16.08	19.51	20.66	22.69	
SPN (Ours)	15.31	19.59	23.70	28.61	
SPN-LONG (Ours)	15.42	17.63	19.08	20.83	

Long-term Prediction on BikeNYC

Method	Time Interval			
Methou	1	2	3	4
	(1.0 h)	(2.0 h)	(3.0 h)	(4.0 h)
ST-ResNet	6.45	7.47	8.77	10.28
VPN	6.55	8.01	8.86	9.41
PredNet	7.46	8.95	10.08	10.93
PredRNN	5.97	7.37	8.61	9.40
SPN (Ours)	5.59	7.81	11.96	15.74
SPN-LONG (Ours)	5.81	6.80	7.54	7.90

Experiments: Compare with State-of-the-art

Superiority!

Experiments: Ablation Study

"SRNN-w/o-Attention vs SRNN"
"PRNN-w/o-Attention vs PRNN"
"SPN w/o Ext vs SPN"

"SPN-w/o-Ext vs. SPN"

"SPN-w/o-Fusion vs. SPN"

- → the effectiveness of spatial attention.
- → the effectiveness of external factors
- → the effectiveness of Temporally-Varying Fusion (TVF)

Model	RMSE	MAE
PCNN	33.91	17.16
PRNN-w/o-Attention	33.51	16.70
PRNN	32.89	16.64
SCNN	17.15	9.56
SRNN-w/o-Attention	16.20	9.43
SRNN	15.82	9.34
SPN-w/o-Ext	16.84	9.83
SPN-w/o-Fusion	15.67	9.40
SPN	15.31	9.14

Effectiveness!

Experiments: More Discussion

Attention Map Visualization

Fusion Weight Visualization

Page 14

Outline

- **Grid-based Flow Prediction**
- Origin-Destination Demand Prediction
- **3** Online Origin-Destination Prediction

Origin-Destination Demand Prediction

Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction

Lingbo Liu, Zhilin Qiu, Guanbin Li, Qing Wang, Wanli Ouyang, Liang Lin

TITS 2019

Background

2D Tensor

divide a city into a $H \times W$ grid map based on geographical coordinate

Taxi Demand Prediction

- \blacktriangleright the taxi demand heat map at each time interval is denoted as a 2D tensor $X_t \in R^{H \times W}$
- predict the taxi demand in each region

Method	Task and Scope	_
Zhang et al. [4]	Traffic Inflow and Outflow Prediction	AAAI 2017
Jin et al. [5]	in all regions	ICCDA 2018
Tong et al. [6]	Taxi Demand Prediction	KDD 2017
Yao et al. [7]	in all regions	AAAI 2018
Toqu et al. [8]	Traffic Flow or Demand Prediction	ITSC2016
Azzouni et al. [9]	between some well-designed positions	Arxiv 2017
Yang et al. [10]	(e.g., highway toll booths, subway and bus stations)	ITSC 2017
Zhou et al. [11]	Passenger Pickup/Dropoff Demand Prediction	- ICWSDM
Zhou et al. [11]	in all regions	2018
Ours	Taxi Demand Prediction	
Ours	between all regions	

Background

3D Tensor

$X_i: N \times H \times W$

Taxi Demand Prediction

- \blacktriangleright the taxi demand heat map at each time interval is denoted as a 2D tensor $X_t \in R^{H \times W}$
- predict the taxi demand in each region

Taxi Origin-Destination Demand Prediction

- forecast the taxi demand between any two regions
- The taxi demand heat map at each time interval is denoted as a 3D tensor $X_t \in \mathbb{R}^{N \times H \times W}$
- ➤ each channel of X_t is the demand from all regions to a special region

Challenge

Key Point: how to effectively capture the diverse contextual information to learn the demand patterns

➤ Local Spatial Context

Some regions that are spatially adjacent usually have the similar demand patterns.

➤ Global Correlation Context

Even though two regions are spatially distant, their patterns may still have some correlation, if they share similar functionality.

> Temporal Evolution Context

Taxi OD demand is time-varying and its evolution is related to many factors.

Method: Contextualized Spatial-Temporal Network

Three modules:

- **► Local Spatial Context Modeling (LSC)**
- **➤ Temporal Evolution Context Modeling (TEC)**
- **➢** Global Correlation Context Modeling (GCC)

Local Spatial Context Modeling (LSC)

- Captures the local spatial context of taxi demand from both the origin view and destination view
- Implemented by a Two-View CNN

Fig. 3. The generation process of DO matrix from OD matrix. N is equal to $H \cdot W$ and T is a matrix transposition operation.

Temporal Evolution Context Modeling (TEC)

- Learn the evolving tendency of taxi demand along the temporal dimension
- Incorporate the historical demand and the ever-changing weather to model TEC with ConvLSTM

Influence of weather conditions on taxi demand

Global Correlation Context Modeling (GCC)

- Model the relationship between any two regions
- Global Feature Fusion
 - (1) calculate the similarity of region pairs with a dot-product operation

$$S = \mathbf{Softmax}(F_s^T \otimes F_s),$$

(2) generate the global correlation feature by combining the features of all regions with the similarity weights

$$F^g = F^{lt} \otimes S$$
,

Experiments: Dataset

NYC-TOD: the first benchmark for taxi OD demand prediction

- ➤ Choose New York as our studied city
- ➤ Collect the taxi demand data of YNC during 2014
 - Train our network with the data of the first ten months
 - Test on the remaining two months

Experiments: Compare with State-of-the-art

A 1 1 1 4 1 4 1 4

On	wnoie	test	set	

Method	OD-MAPE	OD-RMSE	O-MAPE	O-RMSE
HA-All	37.71%	1.93	45.04%	52.44
HA-Rec	35.46%	1.89	47.59%	54.33
Lasso	33.85%	1.65	34.89%	33.00
OLSR	33.86%	1.65	33.09%	32.68
XGBoost	32.04%	1.54	37.78%	31.23
MLP	30.70%	1.49	25.24%	25.60
ST-ResNet	28.53%	1.38	24.16%	22.43
ConvLSTM	27.99%	1.36	19.89%	21.02
CSTN	27.37 %	1.32	18.48%	19.85

On high-demand region

Method	OD-MAPE	OD-RMSE	O-MAPE	O-RMSE
HA-All	36.96%	5.69	46.47%	93.38
HA-Rec	35.65%	5.67	49.62%	97.16
Lasso	31.51%	4.59	24.88%	57.32
OLSR	31.55%	4.58	24.28%	56.80
XGBoost	29.63%	4.28	34.30%	53.20
MLP	27.81%	4.01	17.18%	42.15
ST-ResNet	25.98%	3.71	16.13%	37.09
ConvLSTM	25.81%	3.65	13.80%	35.33
CSTN	24.93%	3.58	12.92%	33.73

On different days of the week

Our CSTN outperforms other methods on two tasks

(1) taxi OD demand prediction (2) taxi demand prediction

Experiments: Ablation Study

Effectiveness of the Two-View ConvNet in LSC

Method	OD-MAPE	O-MAPE
Origin View Origin View + Destination view	28.94% 28.54%	23.03% 20.80%
Origin view + Destination view	26.34%	20.80%

Effectiveness of Different Context

Method	LSC	LSC+TEC	LSC+TEC+GCC
OD-MAPE	28.54%	27.80%	27.27%
O-MAPE	20.80%	19.41%	18.48%

The performance can be gradually improved with more context.

Outline

- **Grid-based Flow Prediction**
- **Origin-Destination Demand Prediction**
- **Online Origin-Destination Prediction**

Online Origin-Destination Prediction

Physical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership Prediction

Lingbo Liu, Jingwen Chen, Hefeng Wu, Jiajie Zhen, Guanbin Li, Liang Lin

Submit to TITS (major revision)

Background

Urban Metro

- > an efficient and economical travel mode
- > plays an important role in the daily life of residents

✓ Beijing : 10.54 million (2018 daily avg)

✓ Shanghai: 10.16 million (2018 daily avg)

	Inflow	Outflow
Station 1	137	99
Station 2	59	74
Station 3	99	85
	•••	•••
Station N	106	121

This image is quoted from [1]

Motivation

How to construct the graph of metro system?

> Physical Topology

> Inter-station Flow Similarity

 Two metro stations in different regions may have similar evolution patterns of passenger flow

> Inter-station Flow Correlation

• The ridership between every two stations is not uniform and the direction of passenger flow implicitly represents the correlation of two stations.

> Station-level Metro Ridership Prediction

$$egin{aligned} m{X}_t &= (m{X}_t^1, m{X}_t^2, ..., m{X}_t^N) \quad m{X}_t^i \, \in \, \mathbb{R}^2, \ &\hat{m{X}}_{t+1}, \hat{m{X}}_{t+2}, ..., \hat{m{X}}_{t+m} = ext{PVCGN}(m{X}_{t-n+1}, m{X}_{t-n+2}, ..., m{X}_t) \end{aligned}$$

Online Origin-Destination Ridership Prediction

Defined Later

$$\mathcal{G}_p = (\mathcal{V}, \mathcal{E}_p, W_p)$$

$$\mathcal{G}_p = (\mathcal{V}, \mathcal{E}_p, W_p)$$
 $\mathcal{G}_s = (\mathcal{V}, \mathcal{E}_s, W_s)$ $\mathcal{G}_c = (\mathcal{V}, \mathcal{E}_c, W_c)$

$$\mathcal{G}_c = (\mathcal{V}, \mathcal{E}_c, W_c)$$

(a) Physical Graph

(b) Physical Connection Matrix

		1.00				
	0.50		0.50			
		0.25		0.25	0.25	0.25
1			1.00			
			1.00			
			1.00			

Row-Norm

(c) Physical Edge Weight

(d) Similarity Graph

		0.71	0.02	0.05	0.08	0.54
١	0.71		0.07	0.04	0.45	0.06
	0.02	0.07		0.38	0.01	0.51
	0.05	0.04	0.38		0.44	0.05
	0.08	0.45	0.01	0.44		0.48
	0.54	0.06	0.51	0.05	0.48	

(e) Similarity Score Matrix

		0.57				0.43
	0.61				0.39	
Selection				0.43		0.57
Row-Norm			0.46		0.54	
		0.33		0.32		0.35
	0.35		0.34		0.31	

(f) Similarity Edge Weight

(g) Correlation Graph

0.01	1	0.56	0.02	0.04	0.03	0.34
0.48	8	0.02	0.40	0.05	0.03	0.02
0.04	1	0.03	0.01	0.35	0.54	0.03
0.05	5	0.02	0.03	0.03	0.45	0.42
0.31	1	0.25	0.34	0.04	0.01	0.05
0.04	1	0.36	0.29	0.26	0.04	0.01

		0.62				0.38
	0.55		0.45			
Selection				0.39	0.61	
Row-Norm					0.52	0.48
	0.34	0.28	0.38			
		0.40	0.32	0.28		

(h) Correlation Ratio Matrix

(i) Correlation Edge Weight

> Graph Convolution Gated Recurrent Unit

> Full-connection Gated Recurrent Unit

$$I_t^e = FC(I_t), \quad H_{t-1}^e = FC(\tilde{H}_{t-1}),$$
 $global\ context$ $H_t^g = FC\text{-}GRU(I_t^e, H_{t-1}^e),$

Collaborative Gated Recurrent Module

more flexible/universal more comprehensive

Experiments: Setting

two benchmarks, three evaluation metrics

Dataset	SHMetro	HZMetro		
City	Shanghai, China	Hangzhou, China		
# Station	288	80		
# Physical Edge	958	248		
Ridership/Day	8.82 M	2.35 M		
Time Interval	15 min	15 min		
Training Timespan	7/01/2016 - 8/31/2016	1/01/2019 - 1/18/2019		
Validation Timespan	9/01/2016 - 9/09/2016	1/19/2019 - 1/20/2019		
Testing Timespan	9/10/2016 - 9/30/2016	1/21/2019 - 1/25/2019		

$$\begin{aligned} \text{RMSE} &= \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\hat{X}_i - X_i\right)^2}, \\ \text{MAE} &= \frac{1}{n} \sum_{i=1}^{n} |\hat{X}_i - X_i|, \\ \text{MAPE} &= \frac{1}{n} \sum_{i=1}^{n} \frac{|\hat{X}_i - X_i|}{X_i} \end{aligned}$$

Experiments: Station-level Metro Ridership Prediction

SHMetro Dataset

Time	Metric	HA	RF	GBDT	MLP	LSTM	GRU	DCRNN	GCRNN	Graph-WaveNet	PVCGN (Ours)
	RMSE	136.97	66.63	62.59	48.71	55.53	52.04	46.02	46.09	46.98	44.97
15 min	MAE	48.26	34.37	32.72	25.16	26.68	25.91	24.04	24.26	24.91	23.29
	MAPE	31.55%	24.09%	23.40%	19.44%	18.76%	18.87%	17.82%	18.06%	20.05%	16.83%
	RMSE	136.81	88.03	82.32	51.80	57.37	54.02	49.90	50.12	51.64	47.83
30 min	MAE	47.88	41.37	39.50	26.15	27.25	26.39	25.23	25.42	26.53	24.16
	MAPE	31.49%	28.89%	28.17%	20.38%	19.04%	19.20%	18.35%	18.73%	20.38%	17.23%
	RMSE	136.45	118.65	113.95	57.06	60.45	56.97	54.92	54.87	58.50	52.02
45 min	MAE	47.26	50.91	49.14	27.91	28.08	27.17	26.76	26.92	28.78	25.33
	MAPE	31.27%	41.34%	40.76%	22.20%	19.61%	19.84%	19.30%	19.81%	21.99%	17.92%
	RMSE	135.72	143.5	137.5	63.33	63.41	59.91	58.83	58.67	65.08	55.27
60 min	MAE	46.40	59.15	57.31	29.92	28.94	28.08	28.01	28.18	30.90	26.29
	MAPE	30.80%	52.91%	52.60%	23.96%	20.59%	21.03%	20.44%	21.07%	24.36%	18.69%

HZMetro Dataset

Time	Metric	HA	RF	GBDT	MLP	LSTM	GRU	DCRNN	GCRNN	Graph-WaveNet	PVCGN (Ours)
	RMSE	64.19	53.52	51.50	46.55	45.30	45.10	40.39	40.24	40.78	37.76
15 min	MAE	36.37	32.19	30.88	26.57	25.76	25.69	23.76	23.84	24.07	22.68
	MAPE	19.14%	18.34%	17.60%	16.26%	14.91%	15.13%	14.00%	14.08%	14.27%	13.70%
	RMSE	64.10	64.54	61.94	47.96	45.52	45.26	42.57	41.95	42.80	39.34
30 min	MAE	36.37	38.00	36.48	27.44	26.01	25.93	25.22	25.14	25.48	23.33
	MAPE	19.31%	21.46%	20.49%	17.10%	15.10%	15.35%	14.99%	14.86%	15.23%	13.81%
	RMSE	63.92	80.06	76.70	50.66	46.30	46.13	46.26	45.53	45.84	40.95
45 min	MAE	36.23	45.78	44.12	28.79	26.38	26.36	26.97	26.82	27.15	24.22
	MAPE	19.57%	26.51%	25.75%	19.01%	15.40%	15.79%	16.19%	16.05%	17.34%	14.45%
	RMSE	63.72	94.29	91.21	54.62	47.53	47.69	49.35	50.28	49.89	42.61
60 min	MAE	35.99	52.95	51.10	30.52	26.76	26.98	28.47	28.75	29.14	24.93
	MAPE	20.01%	37.12%	38.10%	22.56%	16.34%	17.20%	18.16%	17.89%	19.37%	15.49%

Experiments: Station-level Metro Ridership Prediction

Effectiveness of Different Graphs

Time	Metric	ric SHMetro						HZMetro				
	Wictife	P	P+S	P+C	S+C	P+S+C	P	P+S	P+C	S+C	P+S+C	
	RMSE	50.45	47.38	46.18	46.52	44.97	41.80	38.89	39.46	39.92	37.73	
15 min	MAE	25.89	24.16	23.88	23.74	23.29	24.81	23.23	23.34	23.84	22.69	
	MAPE	19.04%	17.13%	17.12%	16.94%	16.83%	14.84%	13.93%	14.08%	14.38%	13.72%	
	RMSE	58.09	50.86	50.29	50.18	47.83	45.31	40.63	41.26	41.59	39.38	
30 min	MAE	28.13	25.28	25.13	24.74	24.16	26.63	24.22	24.22	24.59	23.35	
	MAPE	20.19%	17.72%	17.73%	17.32%	17.23%	15.50%	14.49%	14.36%	14.60%	13.83%	
	RMSE	65.81	55.98	55.54	54.45	52.02	50.26	42.63	43.96	44.81	40.88	
45 min	MAE	30.51	26.90	26.68	2 6.01	25.33	29.02	25.31	25.42	25.91	24.23	
	MAPE	21.65%	18.66%	18.44%	18.03%	17.92%	16.76%	15.35%	15.26%	15.23%	14.48%	
60 min	RMSE	73.06	60.08	60.59	58.93	55.27	56.32	44.46	44.93	45.49	42.51	
	MAE	32.55	27.92	27.94	27.14	26.29	31.41	26.16	26.13	26.54	24.90	
	MAPE	23.43%	19.56%	19.30%	18.87%	18.69%	18.33%	16.31%	16.32%	16.69%	15.48%	

Influences of Local and Global Context

Time	Metric	S	SHMetro	HZMetro		
Time	Wictife	Local	Local + Global	Local	Local + Global	
	RMSE	45.64	44.97	38.46	37.76	
15 min	MAE	23.51	23.29	23.00	22.68	
	MAPE	17.23%	16.83%	13.86%	13.70%	
	RMSE	48.79	47.83	39.65	39.34	
30 min	MAE	24.48	24.16	23.78	23.33	
	MAPE	17.59%	17.23%	14.30%	13.81%	
	RMSE	52.70	52.02	41.45	40.95	
45 min	MAE	25.58	25.33	24.60	24.22	
	MAPE	18.16%	17.92%	14.88%	14.45%	
	RMSE	56.56	55.27	43.11	42.61	
60 min	MAE	26.50	26.29	25.36	24.93	
	MAPE	18.64%	18.69%	16.06%	15.49%	

Experiments: Online Origin-Destination Prediction

Fig. 4. Illustration of the incomplete origin-destination (OD) distribution. In online metro systems, the complete OD distribution can not be obtained immediately. Suppose there were 385 passengers entered at the *i*-th station in the past 15 minutes and 244 of them have arrived at their destinations by now. The destinations of remaining passengers are unaware. In this case, we can only construct an incomplete OD vector from the finished orders.

Online Spatio-temporal Crowd Flow Distribution Prediction for Complex Metro System, TKDE 2020

Experiments: Online Origin-Destination Prediction

Online origin-destination ridership on the SHMetro dataset

Time	Metric	HA	LSTM	GRU	DCRNN	GCRNN	PVCGN (Ours)
	RMSE	29.17	24.67	23.06	16.26	16.29	15.54
15 min	MAE	5.76	5.47	5.30	4.69	4.69	4.54
	MAPE	34.63%	25.50%	25.37%	24.56%	24.56%	23.63%
	RMSE	29.1	24.49	23.44	17.88	17.66	16.51
30 min	MAE	5.68	5.47	5.37	4.83	4.79	4.63
	MAPE	34.57%	25.57%	25.54%	24.88%	24.78%	23.87%
	RMSE	28.98	24.53	23.66	19.26	19.08	17.7
45 min	MAE	5.59	5.47	5.42	4.93	4.91	4.77
	MAPE	34.48%	25.55%	25.71%	25.28%	25.13%	24.20%
	RMSE	28.75	24.71	23.75	20.88	20.6	18.61
60 min	MAE	5.48	5.49	5.42	5.10	5.08	4.87
	MAPE	34.40%	25.57%	25.67%	25.78%	25.66%	24.52%

Conclusion

Account of the Company of the Compan

Grid-based Flow

Origin-Destination Demand

Online Origin-Destination Ridership

Attentive Crowd Flow Machines, **ACM MM 2018**Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction, **TITS 2020**https://github.com/liulingbo918/ATFM

Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction,, **TITS 2019** https://github.com/liulingbo918/CSTN

Physical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership Prediction, **submit to TITS**https://github.com/liulingbo918/PVCGN
Page 40

Thank