```
In [1]: #Problem Statement
        #Yulu is India's leading micro-mobility service provider, which offers unique vehicles for the daily commute.
        #Starting off as a mission to eliminate traffic congestion in India, Yulu provides the safest commute solution
        #through a user-friendly mobile app to enable shared, solo and sustainable commuting.
        #Yulu zones are located at all the appropriate locations (including metro stations, bus stands, office spaces, residential areas
        #to make those first and last miles smooth, affordable, and convenient!
        #Yulu has recently suffered considerable dips in its revenues.
        #They have contracted a consulting company to understand the factors on which the demand for these shared electric cycles depend
        #Specifically, they want to understand the factors affecting the demand for these shared electric cycles in the Indian market.
In [2]: #Importing all important libraries
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from scipy.stats import ttest_ind, f_oneway,chi2_contingency
In [3]: #Reading data
        df=pd.read csv("bike sharing.csv")
In [4]: #Checking how data Looks Like
        df.head()
Out[4]:
                    datetime season holiday workingday weather temp atemp humidity windspeed casual registered count
         0 2011-01-01 00:00:00
                                        0
                                                  0
                                                             9.84
                                                                 14.395
                                                                                      0.0
                                                                                                             16
         1 2011-01-01 01:00:00
                                       0
                                                  0
                                                          1
                                                             9.02 13.635
                                                                             80
                                                                                      0.0
                                                                                              8
                                                                                                       32
                                                                                                            40
         2 2011-01-01 02:00:00
                                       0
                                                  0
                                                             9.02 13.635
                                                                             80
                                                                                      0.0
                                                                                              5
                                                                                                       27
                                                                                                            32
         3 2011-01-01 03:00:00
                                       0
                                                  0
                                                          1 9.84 14.395
                                                                             75
                                                                                      0.0
                                                                                              3
                                                                                                       10
                                                                                                            13
         4 2011-01-01 04:00:00
                                       0
                                                  0
                                                          1 9.84 14.395
                                                                             75
                                                                                      0.0
                                                                                              0
                                                                                                       1
                                                                                                             1
In [5]: #Checking Size of data
        df.shape
Out[5]: (10886, 12)
In [6]: #Checking data types of columns
        df.info()
        #Insights: dateime coulumn has object data type
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10886 entries, 0 to 10885
        Data columns (total 12 columns):
             Column
                         Non-Null Count Dtype
         #
         ---
             datetime
                         10886 non-null object
             season
                         10886 non-null
         1
                                          int64
         2
             holidav
                         10886 non-null int64
         3
             workingday 10886 non-null int64
         4
             weather
                          10886 non-null
         5
                          10886 non-null float64
             temp
                          10886 non-null float64
         6
             atemp
         7
             humidity
                          10886 non-null int64
             windspeed
                         10886 non-null float64
                         10886 non-null int64
             casual
         10 registered 10886 non-null int64
         11 count
                          10886 non-null int64
        dtypes: float64(3), int64(8), object(1)
        memory usage: 1020.7+ KB
```

```
In [7]: #Checking null counts
        df.isna().sum()
        #Insights: No Null Values found in records
Out[7]: datetime
        season
                       0
        holiday
                       0
        workingday
                       0
        weather
                       0
        temp
                       0
        atemp
        humidity
                       0
        windspeed
                       0
        casual
        registered
                       0
        count
                       0
        dtype: int64
In [8]: #Null values not found but there can be missing values
        df1=pd.read_csv("bike_sharing.csv")
        df1["datetime"]=pd.to_datetime(df1["datetime"])
        df1["datetime"]=df1["datetime"].dt.time
df1["datetime"].value_counts()
        #Insights:
        #Total 456 days data we have but for few time frames no of readings are less than 456
        #missing data is very less so we can go ahead with original data
Out[8]: 12:00:00
        13:00:00
                     456
        22:00:00
                     456
        21:00:00
                     456
        20:00:00
                     456
        19:00:00
                     456
        18:00:00
                     456
        17:00:00
                     456
        16:00:00
                     456
        15:00:00
                     456
        14:00:00
                     456
        23:00:00
                     456
        11:00:00
                     455
        10:00:00
                     455
        09:00:00
                     455
        08:00:00
                     455
        07:00:00
                     455
        06:00:00
                     455
        00:00:00
                     455
        01:00:00
                     454
        05:00:00
                     452
        02:00:00
                     448
        04:00:00
                     442
        03:00:00
                     433
        Name: datetime, dtype: int64
In [9]: #Stastistical oveview of data
        df.describe()
```

Out[9]:

|       | season       | holiday      | workingday   | weather      | temp        | atemp        | humidity     | windspeed    | casual       | registered   | c        |
|-------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|----------|
| count | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.00000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.00 |
| mean  | 2.506614     | 0.028569     | 0.680875     | 1.418427     | 20.23086    | 23.655084    | 61.886460    | 12.799395    | 36.021955    | 155.552177   | 191.57   |
| std   | 1.116174     | 0.166599     | 0.466159     | 0.633839     | 7.79159     | 8.474601     | 19.245033    | 8.164537     | 49.960477    | 151.039033   | 181.14   |
| min   | 1.000000     | 0.000000     | 0.000000     | 1.000000     | 0.82000     | 0.760000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 1.00     |
| 25%   | 2.000000     | 0.000000     | 0.000000     | 1.000000     | 13.94000    | 16.665000    | 47.000000    | 7.001500     | 4.000000     | 36.000000    | 42.00    |
| 50%   | 3.000000     | 0.000000     | 1.000000     | 1.000000     | 20.50000    | 24.240000    | 62.000000    | 12.998000    | 17.000000    | 118.000000   | 145.00   |
| 75%   | 4.000000     | 0.000000     | 1.000000     | 2.000000     | 26.24000    | 31.060000    | 77.000000    | 16.997900    | 49.000000    | 222.000000   | 284.00   |
| max   | 4.000000     | 1.000000     | 1.000000     | 4.000000     | 41.00000    | 45.455000    | 100.000000   | 56.996900    | 367.000000   | 886.000000   | 977.00   |
| 4     |              |              |              |              |             |              |              |              |              |              | <b>•</b> |

```
In [10]: #unique attributes
          df.nunique()
Out[10]: datetime
                          10886
          season
                               4
          holiday
                               2
          workingday
                               2
          weather
                               4
          temp
                              49
          atemp
                             60
          humidity
                             89
          windspeed
                             28
          casual
                             309
          registered
                             731
          count
                             822
          dtype: int64
In [11]: #Finding out categorical variables
          print("Different types of Seasons = ",df["season"].unique())
          print("Different types of Workingday = ",df["workingday"].unique())
print("Different types of Weather = ",df["weather"].unique())
          #Insights
          #there are 4 types of seasons,
                                                  1:Spring 2:Summer 3:Fall 4:Winter
          #there are 2 types of working day, 0:Not a working day 1:working day
          #there are 4 types of weather:
                                                  1: Clear, Few clouds, partly cloudy, partly cloudy
                                                  2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
                                                  3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
          #
                                                  4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
          Different types of Seasons = [1 2 3 4]
          Different types of Workingday = [0 1]
Different types of Weather = [1 2 3 4]
In [12]: #Converting continuous variables to categorical variables
          df["humidity_bins"]=pd.cut(df["humidity"],5)
          df["temp_bins"]=pd.cut(df["temp"],3)
          df["windspeed_bins"]=pd.cut(df["windspeed"],6)
          df.head()
Out[12]:
              datetime season holiday workingday weather temp atemp humidity windspeed casual registered count humidity_bins temp_bins windspeed_bins
              2011-01-
                                                                                                                                      (0.78)
                                    0
                                                0
                                                           9.84 14.395
                                                                             81
                                                                                        0.0
                                                                                                 3
                                                                                                          13
                                                                                                                 16
                                                                                                                      (80.0, 100.0]
                                                                                                                                               (-0.057, 9.499]
                                                                                                                                     14.213]
              00:00:00
              2011-01-
                                    0
                                                0
                                                           9.02 13.635
                                                                             80
                                                                                        0.0
                                                                                                8
                                                                                                          32
                                                                                                                40
                                                                                                                       (60.0, 80.0]
                                                                                                                                               (-0.057, 9.499]
                   01
                            1
                                                        1
                                                                                                                                     14.213]
              01:00:00
              2011-01-
                                                                                                                                      (0.78)
                                                                                                                       (60.0, 80.0]
           2
                            1
                                    0
                                                0
                                                           9.02 13.635
                                                                             80
                                                                                        0.0
                                                                                                 5
                                                                                                          27
                                                                                                                32
                                                                                                                                               (-0.057, 9.499]
```

02:00:00 2011-01-

03:00:00 2011-01-

04:00:00

0

0

1

0

0

9.84 14.395

1 9.84 14.395

75

75

0.0

0.0

3

0

10

1

13

1

(60.0, 80.0]

(60.0, 80.0]

3

14.213]

(0.78.

14.213]

14.213]

(-0.057, 9.499]

(-0.057, 9.499]

```
In [13]: #to do analysis on working days and season, we need day wise data
          #step1: converting datetime column into only date
          df["datetime"]=pd.to_datetime(df["datetime"])
          df["datetime"]=df["datetime"].dt.date
          df.head()
Out[13]:
              datetime season holiday workingday weather temp atemp humidity windspeed casual registered count humidity_bins temp_bins windspeed_bins
              2011-01-
                                                                                                                                      (0.78,
                                    0
                                                                                                                                               (-0.057, 9.499]
                                                           9.84
                                                                 14.395
                                                                                                          13
                                                                                                                16
                                                                                                                      (80.0, 100.0]
                                                                                                                                     14.2131
                   01
              2011-01-
                                                                                                                                      (0.78)
           1
                                    0
                                               0
                                                           9.02 13.635
                                                                             80
                                                                                        0.0
                                                                                                8
                                                                                                          32
                                                                                                                40
                                                                                                                       (60.0, 80.0]
                                                                                                                                               (-0.057, 9.499]
                                                                                                                                     14.213]
              2011-01-
                                                                                                                                      (0.78,
                                    0
                                               0
                                                           9.02 13.635
           2
                            1
                                                        1
                                                                             80
                                                                                       0.0
                                                                                                5
                                                                                                          27
                                                                                                                32
                                                                                                                       (60.0, 80.01
                                                                                                                                               (-0.057, 9.4991
                                                                                                                                     14.213]
              2011-01-
                                                                                                                                      (0.78,
                                               0
                                                           9.84 14.395
                                                                                        0.0
                                                                                                          10
                                                                                                                       (60.0, 80.0]
                                                                                                                13
                                                                                                                                               (-0.057, 9.499]
                                                                                                                                     14.213]
                   01
              2011-01-
                                                                                                                                      (0.78.
                            1
                                    0
                                               0
                                                           9.84 14.395
                                                                             75
                                                                                       0.0
                                                                                                0
                                                                                                           1
                                                                                                                 1
                                                                                                                       (60.0, 80.0]
                                                                                                                                               (-0.057, 9.499]
                                                                                                                                     14.213]
In [14]:
          #Checking how many days data we have
          df.groupby("datetime").ngroups
          #Insights
          #we have total 456 days of data
Out[14]: 456
In [15]: #grouping data
          df_new=df.groupby(["datetime","season","workingday"])["count"].sum().reset_index()
          df_new.head()
Out[15]:
               datetime season workingday count
           0 2011-01-01
                                              985
           1 2011-01-02
                              1
                                         0
                                              801
           2 2011-01-03
                                             1349
           3 2011-01-04
                                         1
                                             1562
           4 2011-01-05
                                             1600
In [16]: #Stastistical overview for new data
          df_new.describe()
          #Count of total rental bikes per day. Mean and median dont have much difference (4573 and 4585 respectively)
Out[16]:
                     season
                             workingday
                 456.000000
                             456.000000
                                         456.000000
           count
                    2.500000
                               0.682018 4573.412281
           mean
             std
                    1.119262
                               0.466204 1868.740135
             min
                    1.000000
                               0.000000
                                         605.000000
            25%
                    1.750000
                               0.000000 3305.500000
```

50%

75%

max

2.500000

3.250000

4.000000

1.000000 4585.500000

1.000000 5987.500000

1.000000 8714.000000

```
In [17]: #Graphocal Analysis
   plt.figure(figsize=(20,10))
   plt.subplot(2,3,1)
   sns.countplot(data=df_new, x="season")
   plt.title("Day wise Data")
   plt.subplot(2,3,2)
   sns.countplot(data=df_new, x="workingday")
   plt.title("Day wise Data")
   plt.subplot(2,3,3)
   sns.countplot(data=df, x="weather")
   plt.title("Hour wise Data")
```

# Out[17]: Text(0.5, 1.0, 'Hour wise Data')



```
In [18]: #humidity in city-hourly count and how much bikes rented
    plt.figure(figsize=(6,3))
    sns.countplot(data=df,x="humidity_bins")
    plt.title("Hour wise Data")
    humidity_wise_count=pd.DataFrame(df.groupby("humidity_bins")["count"].sum()).T
    humidity_wise_count

#Figure show humidity distribution
#chart shows usage of bikes
```

## Out[18]:

# humidity\_bins (-0.1, 20.0] (20.0, 40.0] (40.0, 60.0] (60.0, 80.0] (80.0, 100.0] count 14070 453412 786017 579255 252722



```
In [19]: df["humidity_bins"].value_counts()
```

```
In [20]: #insights

#Mostly humidity in city stays more than 40

#lets compare bikes rented per hours for humidity bins of 40-60, 60-80 and 80-100

#No of bikes/no of hours

print("Rented Bikes/hour for humidity between 40 and 60 =",786017//3564)

print("Rented Bikes/hour for humidity between 60 and 80 =",579255//3382)

print("Rented Bikes/hour for humidity between 80 and 100 =",252722//2302)

#insights: 40-60 hymidity is perfect weather for bike rental. as humidity increases less people prefer bikes
```

```
Rented Bikes/hour for humidity between 40 and 60 = 220 Rented Bikes/hour for humidity between 60 and 80 = 171 Rented Bikes/hour for humidity between 80 and 100 = 109
```

```
In [21]: plt.figure(figsize=(6,3))
    sns.countplot(data=df,x="temp_bins")
    plt.title("Hour wise Data")
    plt.show()
    temp_wise_count=pd.DataFrame(df.groupby("temp_bins")["count"].sum()).T
    temp_wise_count

#Figure show temperature distribution
#chart shows usage of bikes
```



# Out[21]: temp\_bins (0.78, 14.213] (14.213, 27.607] (27.607, 41.0] count 301965 1114051 669460

```
In [22]: df["temp_bins"].value_counts()
Out[22]: (14.213, 27.607]
                             5712
         (0.78, 14.213]
                             2926
         (27.607, 41.0]
                             2248
         Name: temp_bins, dtype: int64
In [23]: #insights
         #Mostly temperature in city stays between 14 and 27
         #lets compare bikes rented per hours for temperature bins
         #No of bikes/no of hours
         print("Rented Bikes/hour for temperature upto 14 =",301965//2926)
         print("Rented Bikes/hour for temperature between 14 and 27 =",1114051//2926)
         print("Rented Bikes/hour for temperature above 27=",669460//2248)
         #insights: Ideal temp when people prefer bike is betwenn 14 and 27
         #less people prefer bikes when its cold outside
```

Rented Bikes/hour for temperature upto 14 = 103 Rented Bikes/hour for temperature between 14 and 27 = 380 Rented Bikes/hour for temperature above 27= 297

```
In [24]: plt.figure(figsize=(6,3))
    sns.countplot(data=df,x="windspeed_bins")
    plt.title("Hour wise Data")
    plt.xticks(rotation=90)
    plt.show()
    windspeed_wise_count=pd.DataFrame(df.groupby("windspeed_bins")["count"].sum()).T
    windspeed_wise_count

#Figure show windspeed distribution
#chart shows usage of bikes
```



```
Out[24]:
windspeed_bins (-0.057, 9.499) (9.499, 18.999) (18.999, 28.498) (28.498, 37.998) (37.998, 47.497) (47.497, 56.997)
count 712814 804180 482118 75113 10255 996
```

```
In [25]: df["windspeed_bins"].value_counts()
Out[25]: (-0.057, 9.499]
                             4339
         (9.499, 18.999]
                             3884
         (18.999, 28.498]
                             2236
         (28.498, 37.998]
                              360
         (37.998, 47.497]
                               61
         (47.497, 56.997]
         Name: windspeed_bins, dtype: int64
In [26]: #insights
         #Mostly Windspeed in city stays from 0-28.5
         #lets compare bikes rented per hours for Windspeed bins 0-9.5, 9.5-19 and 19-28.5
         #No of bikes/no of hours
         print("Rented Bikes/hour for Windspeed upto 9.5 =",712814//4339)
         print("Rented Bikes/hour for Windspeed between 9.5 and 19 =",804180//3884)
         print("Rented Bikes/hour for Windspeed between 19 and 28.5=",482118//2236)
         #insights: when windpeed is less than 9.5, comparitively less people rent bike
         Rented Bikes/hour for Windspeed upto 9.5 = 164
         Rented Bikes/hour for Windspeed between 9.5 and 19 = 207
         Rented Bikes/hour for Windspeed between 19 and 28.5= 215
In [27]: print("casual users demand/hour=",df["casual"].sum()//len(df["casual"]))
         print("registered users demand/hour=",df["registered"].sum()//len(df["registered"]))
         #insights
         #registred user demand is more than casual
```

casual users demand/hour= 36
registered users demand/hour= 155

```
In [28]: #Bivariate Analysis between No of vehicles and working day/non working day
sns.boxplot(data=df_new,x="workingday",y="count")

#Insights
#We can see there is not much difference in medians of both groups
#but based on above information we cant conclude no effect on No of vehicles rented if working or non working day
#we need to do 2t t test to check stastistically
```

### Out[28]: <AxesSubplot:xlabel='workingday', ylabel='count'>



```
In [29]: #segregating samples for working day and non working day
df_workingday=df_new[df_new["workingday"]==1]
df_non_workingday=df_new[df_new["workingday"]==0]
```

```
In [30]: #basic info about samples
print("Basic Stats about working Days data")
print("Mean for no of bikes rented on working days =",round(df_workingday["count"].mean()))
print("Std Deviation for no of bikes rented on working days =",round(df_workingday["count"].std()))
print("Total no of working days =",len(df_workingday))
print("")
print("Basic Stats about non working Days data")
print("Mean for no of bikes rented on non working days =",round(df_non_workingday["count"].mean()))
print("Std Deviation for no of bikes rented on non working days =",round(df_non_workingday["count"].std()))
print("Total no of non working days =",len(df_non_workingday))
```

Mean for no of bikes rented on working days = 4600
Std Deviation for no of bikes rented on working days = 1829
Total no of working days = 311

Basic Stats about non working Days data
Mean for no of bikes rented on non working days = 4516
Std Deviation for no of bikes rented on non working days = 1956
Total no of non working days = 145

Basic Stats about working Days data

```
In [31]: #Checking if there is any effect on number of bikes rented based on if its working day or non working day

#Data we have: sample data
#Data we dont have: Population data
#As we dont have Population std deviation, we cant use Z test. 2 sample t test can be used in this case
#Sample size is more than 30 so t test will give similar results like z test

#Null Hypothesis: There is no effect of working days on No of bikes rented
#Alternate Hypothesis: No of bikes rented depends on if its a working day or not

#Test statistics: No of bikes rented per day
#Samples whoich we gonna use: df_workingday["counts"] and df_non_workingday["count"]
#significance level: 0.05
```

```
In [32]: #performing T test and getting t stat and p value
    t_stat_workingday,p_workingday=ttest_ind(df_non_workingday["count"],df_workingday["count"])
    print("tstat=",t_stat_workingday)
    print("p=",p_workingday)

    tstat= -0.44477221614881995
    p= 0.656696335987859

In [33]: #Concluding 2 sample T test
    if p_workingday<0.05:
        print("reject null hypothesis")
    else:
        print("fail to reject null hypothesis")
    fail to reject null hypothesis</pre>
```

```
In [34]: #insights
#There is No EFFECT if day is working or not on no of bikes rented
```

```
In [35]: #Bivariate Analysis between No of vehicles and working day/non working day
sns.boxplot(data=df_new,x="season",y="count")
```

Out[35]: <AxesSubplot:xlabel='season', ylabel='count'>



```
In [36]: #segregating samples of different seasons
df_season1=df_new[df_new["season"]==1]
df_season2=df_new[df_new["season"]==2]
df_season3=df_new[df_new["season"]==3]
df_season4=df_new[df_new["season"]==4]
```

```
In [37]: #basic info about samples
         print("Basic Stats about season1 data")
         print("Mean for no of bikes rented on season1 =",round(df_season1["count"].mean()))
         print("Std Deviation for no of bikes rented on season1 days =",round(df_season1["count"].std()))
         print("Total no of season1 days =",len(df_season1))
         print("")
         print("Basic Stats about season2 data")
         print("Mean for no of bikes rented on season2 =",round(df_season2["count"].mean()))
         print("Std Deviation for no of bikes rented on season2 days =",round(df season2["count"].std()))
         print("Total no of season2 days =",len(df_season2))
         print("")
         print("Basic Stats about season3 data")
         print("Mean for no of bikes rented on season3 = ",round(df_season3["count"].mean()))
         print("Std Deviation for no of bikes rented on season3 days =",round(df_season3["count"].std()))
         print("Total no of season3 days =",len(df_season3))
         print("")
print("Basic Stats about season4 data")
         print("Mean for no of bikes rented on season4 =",round(df_season4["count"].mean()))
         print("Std Deviation for no of bikes rented on season4 days =",round(df_season4["count"].std()))
         print("Total no of season4 days =",len(df_season4))
         print("")
         Basic Stats about season1 data
         Mean for no of bikes rented on season1 = 2741
         Std Deviation for no of bikes rented on season1 days = 1458
         Total no of season1 days = 114
         Basic Stats about season2 data
         Mean for no of bikes rented on season2 = 5160
         Std Deviation for no of bikes rented on season2 days = 1684
         Total no of season2 days = 114
         Basic Stats about season3 data
         Mean for no of bikes rented on season3 = 5620
         Std Deviation for no of bikes rented on season3 days = 1433
         Total no of season3 days = 114
         Basic Stats about season4 data
         Mean for no of bikes rented on season4 = 4772
         Std Deviation for no of bikes rented on season4 days = 1472
         Total no of season4 days = 114
In [38]: #Checking if there is any effect on number of bikes rented based on season
         #Here we have 4 seasons. we need to check if no of bikes rented samples are statistically different for all 4 seasons
         #here we are gonna compare more than 2 samples so Anova can be used
         #Null Hypothesis: No of vehicles rented in all 4 seasons are same
         #Alternate Hypothesis: No of vehicles rented in atleast 1 season is different than others
         #Ftest is right tailed distribution which will tell us if samples are statistically significant or not by comparing p and alpha
         #significance Level: 0.05
In [39]: #performing Anova and getting f ratio and p values
         f_ratio_season,p_season=f_oneway(df_season1["count"],df_season2["count"],df_season3["count"],df_season4["count"])
         print("F-Ratio=",f_ratio_season)
         print("P=",p_season)
         F-Ratio= 80.0504789788067
         P= 1.506580502991204e-41
In [40]: #Concluding Anova
         if p_season<0.05:</pre>
             print("reject null hypothesis")
         else:
             print("fail to reject null hypothesis")
         reject null hypothesis
In [41]: #Insights
         #we are rejecting null hypothesis that all samples are same
         #Number of bikes rented depends on season
In [42]: #for working days and season, data we used was per day
         #weather may change during day,so will be using hour data to do statistical analysis of how weather influence No of bikes rented
```

```
In [43]: #Bivariate Analysis between No of vehicles and weather
sns.boxplot(data=df,x="weather",y="count")

#insights
#from graphs we can see there is difference in medians for no of bikes rented for all weathers
#we can also see outliers which are on higher side, will be ignoring for this analysis
#sample 4 data looks abnormal, will be investigating it
```

#### Out[43]: <AxesSubplot:xlabel='weather', ylabel='count'>



```
In [45]: #basic info about samples
         print("Basic Stats about weather1 data")
         print("Mean for no of bikes rented on weather1 =",round(df_weather1["count"].mean()))
         print("Std Deviation for no of bikes rented on weather1=",round(df_weather1["count"].std()))
         print("Total no of weather1 hours =",len(df_weather1))
         print("")
print("Basic Stats about weather2 data")
         print("Mean for no of bikes rented on weather2 =",round(df_weather2["count"].mean()))
         print("Std Deviation for no of bikes rented on weather2=",round(df_weather2["count"].std()))
         print("Total no of weather2 hours =",len(df_weather2))
         print("")
         print("Basic Stats about weather3 data")
         print("Mean for no of bikes rented on weather3 = ",round(df_weather3["count"].mean()))
         print("Std Deviation for no of bikes rented on weather3=",round(df_weather3["count"].std()))
         print("Total no of weather3 hours =",len(df_weather3))
         print("")
         print("Basic Stats about weather4 data")
         print("Mean for no of bikes rented on weather4 =",round(df_weather4["count"].mean()))
         print("Total no of weather4 hours =",len(df_weather4))
```

```
Basic Stats about weather1 data
Mean for no of bikes rented on weather1 = 205
Std Deviation for no of bikes rented on weather1= 188
Total no of weather1 hours = 7192

Basic Stats about weather2 data
Mean for no of bikes rented on weather2 = 179
Std Deviation for no of bikes rented on weather2= 168
Total no of weather2 hours = 2834

Basic Stats about weather3 data
Mean for no of bikes rented on weather3 = 119
Std Deviation for no of bikes rented on weather3= 139
Total no of weather3 hours = 859

Basic Stats about weather4 data
Mean for no of bikes rented on weather4 = 164
Total no of weather4 hours = 1
```

```
In [46]: #Checking if there is any effect on number of bikes rented based on weather
         #Here we have 4 weather. we need to check if no of bikes rented samples are statistically different for all 4 weather
         #here we are gonna compare more than 2 samples so Anova can be used
         #Null Hypothesis: No of vehicles rented in all 4 weather are same
         #Alternate Hypothesis: No of vehicles rented in atleast 1 weather is different than others
         #Ftest is right tailed distribution which will tell us if samples are statistically significant or not by comparing p and alpha
         #significance level: 0.05
In [47]: #performing Anova and getting f ratio and p values
         f\_ratio\_weather,p\_weather=f\_oneway(df\_weather1["count"],df\_weather2["count"],df\_weather3["count"])
         print("F-Ratio=",f_ratio_weather)
         print("P=",p_weather)
         F-Ratio= 65.53024112793271
         P= 5.482069475935669e-42
In [48]: #Concluding Anova
         if p_weather<0.05:</pre>
             print("reject null hypothesis")
         else:
             print("fail to reject null hypothesis")
```

reject null hypothesis

```
In [49]: #Insights

#we are rejecting null hypothesis that all samples are same

#Number of bikes rented depends on weather
```

In [50]: #Bivariate Analysis between No of vehicles with weather and season
sns.boxplot(data=df, x="season", y="count", hue="weather")

Out[50]: <AxesSubplot:xlabel='season', ylabel='count'>



In [51]: #season and weather both are categorical variables
 #from diagram we can see there is some relation between by comparing medians
 #to check stastistically we need to perfoem chi-square test
 chi2\_data=pd.crosstab(index=df["season"],columns=df["weather"])
 chi2\_data

### Out[51]:

```
        weather season
        1
        2
        3
        4

        1
        1759
        715
        211
        1

        2
        1801
        708
        224
        0

        3
        1930
        604
        199
        0
```

4 1702 807 225 0

```
In [52]: #Chi-square test
         #Null Hypothesis: Season and weather does not depend on each other
         #Alternate Hypothesis: Season and weather depends on each other
         #significance level=0.05
         tstat cat,P cat,df cat,exp=chi2 contingency(chi2 data)
         print("tstat=",tstat_cat)
         print("P=",P_cat)
         tstat= 49.158655596893624
         P= 1.549925073686492e-07
In [53]: #Concluding Anova
         if P_cat<0.05:</pre>
             print("reject null hypothesis")
         else:
             print("fail to reject null hypothesis")
         reject null hypothesis
In [54]: #insights
         #we fail to reject null hypothesis
         #weather and season are dependednt on each other
In [55]: #Collective insights
         #we have hourly data for 456 days
         #Overall count if we see then not much difference between mean and median of no of rental bikes.
         #40-60 humidity is perfect weather for bike rental. As humidity increases less people prefer bikes.
         #Ideal temp when people prefer bike is betwenn 14 and 27. less people prefer bikes when its cold outside
         #When windspeed is less than 9.5, comparitively less people rent bike
         #Registred user demand is more than casual
         #number of vehicles rented is not influenced by if its working day or not working day
         #number of vehicles rented is influenced by seasons
         #season3 (fall) has highest demand
         #season1 (spring) has lowest demand
         #number of vehicles rented is influenced by weather
         #weather1 (Clear, Few clouds, partly cloudy, partly cloudy) has highest demand
         #weather3 has Lowest demand(Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds)
         #No of bikes rented depends on weather and season, also weather and season depends on each other
In [56]: #recommendations
         #Yulu should allocate some budget on weather forecasting as demand is highly dependent on such factors
         #before fall season starts Yulu should make sure thta maintenance of all bikes and bike stastion is done and
         #they are ready to tackle high demand during fall season
         #spring season when demand is less, Yulu can focus on maintenance
         #when windspeed is less, people dont prefer bikes. special discounts may increase the count
         #when its cold people dont prefer bikes. Yulu can join hands with another startups which rents EV cars and divert customers
         #who prefer cars rather than bike. in return they can get comission
         #during less humid environment people dont prefer bikes, reason may be dehydration.
         #yulu can provide drinks near bike stastions (collaboration with cold drink company sounds good for buissness)
         #when weather is clear, demand is high so extra bikes can be kept in stick for such weather forecasting
```

#demand is more in registered customers, so focus should be convert casual user into registered by giving offers

#awareness aboout environment and EV is must. EV bike rallies on environment day soinds good idea to reach more people