# Kukdo Epoxy Resins & Hardeners

Oct. 2003





#### **Epoxy Resin and Its Classification**

#### **Definition of Epoxy group**

A three-membered ring consisting of an oxygen atom attached to two carbon atoms.

Epoxy resin means 'polymer (liquid or solid) that contains at least two reactive Epoxy groups'.

#### **Type of Epoxy Resins**

< DGEBA: Bisphenol-A type Epoxy >

< Bisphenol-F type Epoxy >



#### < Brominated Epoxy resin >

#### < Novolac Epoxy resin >

Phenol Novolac Epoxy Resin (YDPN-631/638)

Cresol Novolac Epoxy Resin (YDCN-500 series)

#### < Multi-functional Epoxy resin >

Tetra-functional Epoxy resin YH-434

$$\begin{array}{c} \mathsf{CH}_2 - \mathsf{O} - \mathsf{CH}_2 - \mathsf{CH} - \mathsf{CH}_2 \\ \mathsf{H}_3 \mathsf{C} - \mathsf{H}_2 \mathsf{C} - \mathsf{CH}_2 - \mathsf{O} - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{O} - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \end{array}$$

Tri-functional Epoxy resin YH-300

#### < Cycloaliphatic Epoxy resin >

#### **Performance and Characteristics of Epoxy resin**

Epoxy group with good reactivity and secondary Alcoholic hydroxyl group are present in Epoxy resin.

- (1) Curing by Epoxy group
  - a) Amine
- b) Anhydride
- c) Others
- (2) Curing by Hydroxyl group

  - a) Isocyanate b) Phenolic resin c) Urea resin ring
- 2) Free rotation of benzene core is difficult because of the strong bonding strength between benzene core and Isopropyl group ---> Providing Excellent chemical resistance, Adhesion Strength, high heat resistance.
- 3) Ether group in molecule gives chemical resistance and flexibility.
- 4) Regular distribution of hydrophilic hydroxyl group and hydrophobic hydrocarbon in the molecular structure gives excellent adhesion.

#### < Cured Properties >

|               |             | Molecular wt.    | Flexibility | <b>Impact</b> | Compressive | Chemical   |
|---------------|-------------|------------------|-------------|---------------|-------------|------------|
|               | n           | $\mathbf{E.E.W}$ |             | resistance    | strength    | Resistance |
| <b>YD-128</b> | 0.12 - 0.13 | Low              | Poor        | Poor          | Good        | Good       |
| <b>YD-134</b> | 0.15 - 0.16 | <b>†</b>         | <b>†</b>    | <b>†</b>      | <b>†</b>    | <b>†</b>   |
| <b>YD-011</b> | 2.1 - 2.2   |                  |             |               |             |            |
| <b>YD-014</b> | 5.4 - 5.5   | <b>\</b>         | <b>↓</b>    | <b>↓</b>      | <b>+</b>    | <b>\</b>   |
| <b>YD-017</b> | 11.0 - 12.0 | High             | Good        | Good          | Poor        | Poor       |

#### **Cured Properties vs Terminated Functional Group of EPOXY RESIN**

#### **Epoxy resin's Terminated Functional Group**

E.E.W. + a-Diol + Hydrolyzable Chlorine + Phenolic OH





#### < Important Factors to decide Formulation and Cured properties>

- 1) Base Epoxy resins: Chemical structure, Molecular weight
- 2) Curatives: Chemical structure, Mixing ratio
- 3) Curing condition: Temperature (ambient cure, heat cure), Curing Time
- 4) Application: Substrate, Materials, Applying method and final Usage
- 5) Fillers: Organic and inorganic pigment
- 6) Additives: functional additives, Diluents, Solvent
- 7) Modifier: Extender, other resin, reactive monomer and oligomer
- 8) Pot life and shelf life



#### **KUKDO EPOXY Resins and Curatives**

#### **DGEBPA Type Epoxy resins**

#### < Taffy Process >

#### < Fusion Process >

Taffy process is suitable for the mass production scale with consistency of the qualities and Fusion process is suitable for the various grades of small production scale with some acceptable allowance of the qualities in every batch.

#### < COMPARISON BETWEEN TAFFY & FUSION METHOD PRODUCTS>

| Items                                    | TAFFY PROCESS                      | FUSION PROCESS |  |  |
|------------------------------------------|------------------------------------|----------------|--|--|
| Resin viscosity                          | Low                                | High           |  |  |
| <b>Deviation of the batches</b>          | Small                              | High           |  |  |
| Consistency of the resin                 | Good                               | Relatively bad |  |  |
| Pigment loading                          | High                               | Low            |  |  |
| Viscosity of the Formulated paint        | Low                                | High           |  |  |
| Flowing property Of the formulated paint | High                               | Low            |  |  |
| Flexibility of cured film                | Comparably high                    | Comparably low |  |  |
| Theoretical chemical resistance          | It depends on the resin impurities |                |  |  |
| Reactivity                               | It depends on the resin impurities |                |  |  |

| 7         | TAFFY PROCESS |                 |                  |          | FUSION PROCESS |                 |                           |  |
|-----------|---------------|-----------------|------------------|----------|----------------|-----------------|---------------------------|--|
| PRODUCT   | E.E.W.        | <b>S.P.(°C)</b> | <b>M.P.</b> (°C) | PRODUCT  | E.E.W.         | <b>S.P.(°C)</b> | <b>M.P.</b> (° <b>C</b> ) |  |
| YD-012    | 649.2         | 83              | 53.88            | KD-242G  | 664.1          | 88              | 58.73                     |  |
| YD-053    | 725           | 88              | 56.54            | KD-243C  | 756.3          | 93              | 57.68                     |  |
| YD-013K   | 797.7         | 92              | 58.22            | KD-213   | 774.8          | 94              | 59.33                     |  |
| YD-013K55 | 820           | 93.5            | 58.76            | KD-213C  | 790.8          | 109             | 61.65                     |  |
| YD-057    | 900           | 96              | 61.55            | KD-214CR | 900.2          | 99.6            | 62.59                     |  |
| YD-014    | 938.1         | 97.5            | 64.85            | KD-214C  | 934.3          | 102             | 70.53                     |  |

# **KUKDO High Solid & Non-solvent System**

| Grade           | EEW<br>g/eq | Viscosity cps @ 25°C | Hy-CI<br>wt %   | Color<br>Gardner | Comment                                           |
|-----------------|-------------|----------------------|-----------------|------------------|---------------------------------------------------|
| <b>YD-112</b>   | 170-185     | 500-700              | 0.1 max.        | 1 max.           | PGE modified BPA                                  |
| <b>YD-113</b>   | 170-185     | 500-700              | 0.2 max.        | 1 max.           | CGE modified BPA                                  |
| <b>YD-114</b>   | 190-210     | 500-700              | 0.05 max.       | 0.7 max.         | C <sub>12</sub> ~C <sub>14</sub> modified BPA     |
| <b>YD-114E</b>  | 190-210     | 700-1,000            | 0.05 max.       | 0.7 max.         | C <sub>12</sub> ~C <sub>14</sub> modified BPA     |
| <b>YD-114F</b>  | 185-205     | 450-750              | 0.05 max.       | 1 max.           | C <sub>12</sub> ~C <sub>14</sub> modified BPA/BPF |
| <b>YD-114EF</b> | 180-200     | 750-1,200            | 0.05 max.       | 1 max.           | C <sub>12</sub> ~C <sub>14</sub> modified BPA/BPF |
| <b>YD-114BR</b> | 195-215     | 800-1,200            | 0.05 max.       | 1 max.           | C <sub>12</sub> ~C <sub>14</sub> modified BPA/BPF |
| <b>YD-115</b>   | 185-205     | 1,100-2,800          | 0.2~0.3 max.    | 0.7 max.         | C <sub>12</sub> ~C <sub>14</sub> modified BPA     |
| <b>YD-119</b>   | 180-200     | 200-600              | <b>0.1 max.</b> | 1 max.           | Neo-E modified BPA                                |
| <b>YD-153</b>   | 190-200     | 1,000-1,500          | 0.1 max.        | 1 max.           | C <sub>12</sub> ~C <sub>14</sub> modified BPA/BPF |
| <b>YDF-170</b>  | 160-180     | 2,000-4,000          | 0.1 max.        | 1 max.           | Standard BPF                                      |
| <b>YDF-175</b>  | 160-180     | 2,000-5,000          | 0.2 max.        | 1 max.           | Less crystalline BPF                              |
| <b>YDF-175S</b> | 165-180     | 2,000-5,000          | 0.3 max.        | 1 max.           | Non crystalline BPF                               |
| <b>YDF-161</b>  | 170-180     | 5,000-7,000          | 0.1 max.        | 1 max.           | BPA/BPF                                           |
| <b>YDF-161H</b> | 170-180     | 6,000-8,000          | 0.1 max.        | 1 max.           | BPA/BPF                                           |
| <b>YDF-162</b>  | 170-180     | 7,000-10,000         | 0.1 max.        | 1 max.           | BPA/BPF                                           |
| <b>YDF-164</b>  | 180-190     | 500-800              | 0.1 max.        | 1 max.           | C <sub>12</sub> ~C <sub>14</sub> modified BPA     |
| <b>YD-134L</b>  | 213-225     | N-R *1               | 0.1 max.        | 1 max.           | BPA                                               |
| <b>YD-134C</b>  | 225-250     | P-U *1               | 0.1 max.        | 1 max.           | BPA                                               |
| <b>YD-134</b>   | 230-270     | P-U *1               | 0.1 max.        | 1 max.           | BPA                                               |
| <b>YD-158</b>   | 400-450     | 2,000-4,000          | <b>0.1 max.</b> | 1 max.           | modified BPA                                      |

<sup>\*1</sup> Gardner viscosity Butyl Carbitol NV =70% solution viscosity



# **EPOXY Resin for Packaging and Coil coating(PCM)**

| Grade            | EEW         | Viscosity                            | <b>Softening Point</b> | Comment                      |
|------------------|-------------|--------------------------------------|------------------------|------------------------------|
|                  | g/eq        | Gardner                              | Ball & Ring (°C)       |                              |
| <b>YD-134</b>    | 230-270     | $\mathbf{P}\text{-}\mathbf{U}$       | -                      | Semi-solid                   |
| <b>YD-011</b>    | 450-500     | D-F                                  | 60-70                  | Type 1 Taffy                 |
| <b>YD-011H</b>   | 530-570     | F-J                                  | 70-80                  | Type 1.5 Taffy               |
| <b>KD-211E</b>   | 455-485     | E-G                                  | 65-75                  | Type 1 Fusion                |
| <b>KD-211G</b>   | 500-550     | F-J                                  | 70-80                  | Type 1.5 Fusion              |
| <b>YD-014</b>    | 900-1,000   | $\mathbf{Q}\text{-}\mathbf{U}$       | 91-102                 | Type 4 Taffy                 |
| <b>KD-214C</b>   | 875-975     | $2,000-4,000^{*2}$                   | 95-105                 | Type 4 Fusion                |
| <b>KD-214M</b>   | 1,150-1,250 | $5,000-6,000^{*2}$                   | 105-110                | Type 5 Fusion                |
| <b>YD-216</b>    | 1,515-1,665 | 1,450-1,680*1                        | 105-115                | Type 6 Fusion                |
| <b>YD-216H</b>   | 1,650-1,800 | $1,500-1,800^{*1}$                   | 115-125                | Type 6.5 Fusion              |
| <b>YD-017T</b>   | 1,700-1,900 | X-Z                                  | 115-130                | Type 7 Fusion / Packaging    |
| <b>YD-017</b>    | 1,750-1,950 | $\mathbf{Y}$ - $\mathbf{Z}_1$        | 117-127                | Type 7 Fusion / Packaging    |
| <b>YD-017KC</b>  | 2,000-2,200 | $1,500-2,\overline{2}00^{*1}$        | 110-120                | Type 7 Fusion / Coil, PCM    |
| <b>YD-019</b>    | 2,550-2,900 | 5,000-10,000 <sup>*1</sup>           | 130-145                | Type 9 Fusion / Packaging    |
| <b>YD-020L</b>   | 3,500-4,300 | $\mathbb{Z}_3 \sim \mathbb{Z}_5$     | 135-145                | Type 10 Fusion / Packaging   |
| <b>YD-020</b>    | 4,000-5,500 | $\mathbf{Z}_{5} \sim \mathbf{Z}_{6}$ | 140-155                | Type 10 Fusion / Packaging   |
| <b>KU-400T40</b> |             | 3,000-4,800                          | -                      | Mw=20,000-30,000 / Coil, PCM |
| KU-420K40        |             | 1,700-3,000                          | -                      | Mw=18,000-28,000 / Coil, PCM |

<sup>\*1</sup> Gardner Holdt Method Butyl Carbitol NV=40%, \*2 Melt viscosity cps at 175°C



# **KUKDO Epoxy Molding/Potting/Encapsulation system**

| Grade         | EEW<br>g/eq | Viscosity cps @ 25°C | Softening Point(°C) | NV (wt%) | Comment                                  |
|---------------|-------------|----------------------|---------------------|----------|------------------------------------------|
| YC-195        | 360-400     | $500-700^{1)}$       | 50-60               | 100      | Large scale electrical molding, YC-195H  |
| YC-195B       | 370-420     | $380-550^{1)}$       | -                   | 100      | Large scale electrical molding, YC-195H  |
| <b>YC-205</b> | 200-250     | 900-1500             | -                   | 100      | Ambient temp.curing type, Good Impact    |
| <b>YC-220</b> | 180-195     | 10,000-13,000        | -                   | 100      | Potting, molding, encapsulation, KC-305H |
| KC-305        | 185-195     | 9,500-13,000         | -                   | 100      | Potting, molding, encapsulation          |
| <b>YC-230</b> | 185-200     | 10,000-15,000        | -                   | 100      | Electrical casting molding, YC-230H      |
| KC-335        | 185-195     | 8,500-15,000         | -                   | 100      | Electrical casting molding, KC-335H      |
| <b>YD-158</b> | 400-450     | 2,000-4,000          | -                   | 100      | Potting, molding, Good Impact            |

<sup>1)</sup> cps @ 120°C

# KUKDO Epoxy F/W,Laminating/Pultrusion/Composite system

| Grade           | EEW     | Viscosity   | NV(wt%) | Comment                                     |
|-----------------|---------|-------------|---------|---------------------------------------------|
|                 | g/eq    | cps @ 25°C  |         |                                             |
| <b>KBR-1728</b> | 175-190 | 6,500-9,500 | 100     | F/W, Laminating, Composite, KBH-1085/1085S  |
| <b>KBR-1727</b> | 180-190 | 8,000-9,000 | 100     | F/W, Laminating, Composite, KBH-1085/1085S  |
| <b>KBR-1729</b> | 170-190 | 5,000-6,000 | 100     | <b>F/W, Laminating, RTM, KBH-1085,1085S</b> |
| <b>KBR-1753</b> | 175-190 | 6,500-9,500 | 100     | F/W, Laminating, Composite, KBH-1085/1085S  |
| <b>KBR-1760</b> | 180-190 | 5,000-6,000 | 100     | Pultrusion for pipe, rod(~100mmØ)           |



#### **BADGE/BPA free Epoxy Resin**

\* DGEBA (General BPA type Epoxy)

$$H_{2}C-CH-CH_{2} \\ O \\ CH_{3} \\ CH_{3} \\ O-CH_{2}-CH-CH_{2} \\ CH_{3} \\ O-CH_{2}-CH-CH_{2} \\ CH_{3} \\ O-CH_{2}-CH-CH_{2} \\ O-CH_{3} \\ O-CH_{3} \\ O-CH_{2}-CH-CH_{2} \\ O-CH_{3} \\ O-CH_{3} \\ O-CH_{2}-CH-CH_{2} \\ O-CH_{3} \\ O-CH_{3}$$

\* **BADGE** (n=0)

$$H_2C - CH - CH_2 - O - CH_2 - H_2C - CH_2$$

$$CH_3 - O - CH_2 - H_2C - CH_2$$

$$CH_3 - O - CH_2 - CH_2 - CH_2$$

\* BADGE free type Epoxy (KD-6812)

 $n = 1, 2, 3, 4 \dots$ 

\* KD-452 (BPA Free Phenolic Hardener)

$$H = \begin{bmatrix} CH_3 & OH \\ CC & CH_2 & CH - CH_2 \end{bmatrix} O - \begin{bmatrix} CH_3 & C$$

n = 1, 2, 3, 4 ...



# **BADGE/BPA** free Epoxy Resin

| Grade   | EEW(g/eq)             | Melt Viscosity <sup>1)</sup> | Softening Point(°C) | BPA(ppm) | BADGE(ppm)     | Comment            |
|---------|-----------------------|------------------------------|---------------------|----------|----------------|--------------------|
| KD-6712 | 600-700               | 750-1750                     | 80-90               | Max.1    | Max.500        | For powder coating |
| KD-6714 | 900-1,000             | 3,000-7,000                  | 90-105              | Max.1    | Max.400        | For powder coating |
| KD-6717 | 1,700-1,900           | $2,000-3,500^{2)}$           | 115-130             | Max.1    | <b>Max.50</b>  | For can coating    |
| KD-6719 | 2,500-2,900           | $5,000-11,000^{2)}$          | 130-145             | Max.1    | <b>Max.50</b>  | For can coating    |
| KD-6812 | 600-700               | 1,000-2,000                  | 80-90               | Max.1    | Max.500        | For powder coating |
| KD-6814 | 850-950               | 4,000-8,000                  | 90-105              | Max.1    | <b>Max.400</b> | For powder coating |
| KD-6817 | 1,700-1,900           | $2,000-3,500^{2)}$           | 115-130             | Max.1    | <b>Max.50</b>  | For can coating    |
| KD-6819 | 2,500-2,900           | $5,000-11,000^{2)}$          | 130-145             | Max.1    | <b>Max.50</b>  | For can coating    |
| KD-452  | 490-570 <sup>3)</sup> | 2,000-4,000                  | 95-105              | Max.500  | -              | For powder coating |

<sup>&</sup>lt;sup>1)</sup> Melt Viscosity cps at 150°C



<sup>&</sup>lt;sup>2)</sup> Solution Viscosity cps at 25°C, Butyl Carbitol NV=40%

<sup>3)</sup> Ph-OH equivalent weight

#### **Bisphenol F type Epoxy Resins**

#### < Taffy Process >

# BPF(Bisphenol-F) + ECH(Epichlorohydrine) HO -O -C -O - OH + CH2 - CH - CH2CI NaOH O / O / DGEBF KUKDO YDF-100, 2000Series

#### < Fusion Process for BPA/F >

YDF-170 Standard Liquid BPF Resin

YDF-175 Non Crystallization BPF Liquid Resin

YDF-161, 162 BPA/BPF Modified Liquid Epoxy Resin

YD-114F, 114EF BPA/BPF/Reactive Diluents Modified Epoxy Resin

YDF-2001 ~ 2004 BPF Taffy Process Solid Epoxy Resin

**YDF-2022 ~ 2030** BPF Fusion Process Solid Epoxy Resin

< Properties >

1) Low viscosity for good flow 2) High reactivity

3) Good Chemical resistance 4) Good corrosive resistance

Phenol Novolac Epoxy Resin (YDPN series)

Cresol Novolac Epoxy Resin (YDCN series)

| <b>YDPN-631</b> | Low Viscosity Phenol Novolac Epoxy Resin          |
|-----------------|---------------------------------------------------|
| <b>YDPN-636</b> | Medium Viscosity Phenol Novolac Epoxy Resin       |
| <b>YDPN-637</b> | DGEBA Modified Phenol Novolac Epoxy Resin         |
| <b>YDPN-644</b> | <b>High Viscosity Phenol Novolac Epoxy Resin</b>  |
| <b>YDPN-638</b> | Standard Phenol Novolac Epoxy Resin               |
| <b>YDPN-641</b> | Solid Phenol Novolac Epoxy Resin                  |
| <b>YDCN-500</b> | Taffy process Series o-Cresol Novolac Epoxy Resin |
|                 |                                                   |

< Properties >

**KDCN-500** 

- 1) High reactivity (Heat-curing system)
- 4) Good Mechanical properties

2) Excellent Heat resistance

5) Good Adhesion

3) Excellent Chemical resistance



Fusion Method Series o-Cresol Novolac Epoxy Resin

#### Phenol Novolac/Cresol Novolac EPOXY Resin

| Grade               | EEW<br>g/eq | Viscosity        | Softening Point<br>Ball & Ring (°C) | Comment                           |
|---------------------|-------------|------------------|-------------------------------------|-----------------------------------|
| <b>YDPN-631</b>     | 165-185     | 1,000-3,000 *1   | -                                   | Low viscosity n=0.2               |
| <b>YDPN-636</b>     | 170-180     | 2,000-8,000 *1   | -                                   | Medium Viscosity n=1.0            |
| <b>YDPN-637</b>     | 180-190     | 3,000-6,000 *1   | -                                   | BPA/PN Epoxy                      |
| <b>YDPN-638</b>     | 170-180     | 16,000-25,000 *3 | -                                   | Standard PN Epoxy n=1.6           |
| <b>YDPN-641</b>     | 170-190     | 800-1,100 *2     | -                                   | <b>High Molecular Taffy n=2.5</b> |
| <b>YDPN-644</b>     | 195-235     | 32,000-52,000 *3 | -                                   | <b>High Molecular Fusion</b>      |
| *1 cps@50°C,        | *2 cps@1    | 50°C, *3 cps@6   | 0°C                                 |                                   |
| <b>YDCN-500-4P</b>  | 220-212     | -                | 60-63                               | Taffy OCN Epoxy                   |
| <b>YDCN-500-5P</b>  | 200-212     | -                | 63-66                               | Taffy OCN Epoxy                   |
| <b>YDCN-500-7P</b>  | 200-212     | -                | 66-70                               | Taffy OCN Epoxy                   |
| <b>YDCN-500-8P</b>  | 200-212     | -                | 68-72                               | Taffy OCN Epoxy                   |
| <b>YDCN-500-10P</b> | 200-212     | -                | 70-74                               | Taffy OCN Epoxy                   |
| <b>YDCN-500-80P</b> | 190-220     | -                | 75-85                               | Taffy OCN Epoxy                   |
| <b>YDCN-500-90P</b> | 190-220     | -                | 85-95                               | Taffy OCN Epoxy                   |
| <b>KDCN-527</b>     | 210-230     | -                | 68-78                               | <b>Fusion OCN Epoxy</b>           |
| <b>KDCN-528</b>     | 215-235     | -                | 75-85                               | Fusion OCN Epoxy                  |
| <b>KDCN-529</b>     | 215-235     | -                | 90-100                              | <b>Fusion OCN Epoxy</b>           |
|                     |             |                  |                                     |                                   |

#### **Brominated Epoxy Resins**

#### < Properties >

**KB-562P** 

**KB-563P** 

1) Flame Retardant Properties

High Bromine(58%) 1,700-2,300

High Bromine(55%) 3,000-4,000

2) Good Mechanical Properties

113-120°C

135-145°C

- 3) Good Electrical Properties
- 4) Good Chemical Properties
- 5) Good Dimension Stability



ENPLA(ABS,HIPS)Full Capped type

ENPLA(ABS,PBT)Full Capped type

#### **Non-Halogen Flame Retardant Epoxy Resins**

| Grade              | $\mathbf{EEW}$ | S.P/Solvent | Viscosity   | Characteristics     |
|--------------------|----------------|-------------|-------------|---------------------|
|                    | g/eq           |             | cps@25 °C   |                     |
| <b>KDP-550</b>     | 560-620        | 95-105      | -           | RCC type            |
| <b>KDP-550MC65</b> | 560-620        | M.C 35%     | 2,000-3,000 | FR-4 Epoxy Laminate |

#### < Properties >

- 1) Non-Halogen Flame Retardant Properties 2) Good Mechanical Properties
- 3) Good Electrical Properties
- 5) Good Dimension Stability

- 4) Good Chemical Properties
- 6) Good Thermal Stability



### **HBPA Type Epoxy Resin**

#### HBPA + ECH -----> DGEHBA

| Grade    | EEW(g/eq)         | Viscosity (cps@25°C) | <b>Softening Point(°C)</b> | Comment                       |
|----------|-------------------|----------------------|----------------------------|-------------------------------|
| ST-1000  | 190-210           | 1,000-2,000          | _                          | Modified HBPA Liquid resin    |
| ST-2000  | 200-220           | 2,000-3,000          |                            | Low Viscosity Liquid HBPA     |
| ST-3000  | 220-240           | 2,500-4,000          |                            | Standard Liquid HBPA resin    |
| ST-5080  | 550-650           | -                    | 78 - 88                    | Solid BPA/HBPA Epoxy resin    |
| ST-5100  | 900-1,100         | -                    | 95 - 105                   | Solid BPA/HBPA Epoxy resin    |
| ST-4000D | 650-750           | -                    | 85 - 95                    | 100% Hydrogenated Solid Epoxy |
| ST-4100D | 900-1,050         | -                    | 95 - 105                   | 100% Hydrogenated Solid Epoxy |
| KT-5500  | <b>Solid 100%</b> | Hvdrogenated         | d Epoxy Resin with H       | High EEW                      |

KT-6000,8000 Solid 100% Hydrogenated Epoxy Resin with Low EEW/High Functionality <Properties>

- 1) Excellent weathering resistance, Excellent Chalking Resistance
- 2) Low viscosity

- 3) Good Chemical Resistance
- 4) Good compatibility with other Resins such as Alkyd, Polyester, Acrylic Resin
- 5) Slightly slower curable reactivity 6) Moderate Mechanical Properties



# **Q-UV TEST(45°C)**



#### **KUKDO Flexible Epoxy**

**Polyaliphatic Epoxy** 

$$H_2C-CH-CH_2-O-CH_2-CH-O-CH_2-CH-O-CH_2-CH-CH_2$$
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_2$ 
 $CH_2-CH-CH_2$ 
 $CH_2-CH-CH_2$ 
 $CH_3$ 
 $C$ 

< Properties >

- 1) Excellent Flexibility 4) Dimensional Stability
- 2) Low Viscosity

- 5) Good reactivity as a chain extender
- 3) Excellent Clarity & low Color

#### **Dimer modified Epoxy**

< Taffy Process Product >

< Fusion Process Product >

YD-172 type

< Properties >

- 1) Good Flexibility
- 2) Semi-solid 3) Excellent Adhesion 4) Non-Volatile



#### **IPN Epoxy Resins**

#### **Urethane Modified Epoxy resin**

#### **Rubber modified Epoxy resin**

**ATBN** 

CTBN + DGEBA -----> Rubber modified Epoxy Resin

**NBR** 

BR KR-100~200 Series : BR Modified Epoxy Resin

Acrylic Rubber KR-600 series: Acrylic Rubber Modified Epoxy

#### < Properties >

- 1) Toughness 2) Flexibility 3) Small Heat resistance Defect 4) Good Adhesion
- 5) Good mechanical properties

#### **Acrylic Core-Shell Rubber Modified Epoxy Resins**

KUKDO KR-600 series resins contain specially designed for fine particle of Acrylic rubber Core-shell homogeneously. It provides the products with good heat resistance resistance and mechanical properties (flexibility strength, tensile strength, modulus of elasticity, break strength, and shear adhesion strength, etc.).

Shell Tg= 
$$110^{\circ}$$
C

Core Tg= $-40^{\circ}$ C

Especially, with the various types curing agent (Anhydride acid, DICY, DDM, Polyamide amine, etc.), it offers improvement and reinforcement of uniform properties. Fine particle  $(0.5\mu)$  of Core shell gives uniform properties compared to rubber blended epoxy resin and graft modified epoxy resin.

Similar concept with Acrylic Core shell, Silicone Core-Shell system is considerable as a commercial product for high performance flexible application.

Shell Tg= 
$$70 \sim 140 \, ^{\circ}$$
C

Core Tg=  $-110 \, ^{\circ}$ C

# **Specification of Rubber modified Epoxy Resins**

| ITEM        | EEW         | Softening<br>Point(°C) | Color       | Viscosity(cps) Melt viscosity(cps) | Acid value<br>(mgKOH/g) | Comment         |
|-------------|-------------|------------------------|-------------|------------------------------------|-------------------------|-----------------|
| KR-628      | 220-240     | -                      | Milky white | 40,000-60,000                      | -                       | A.Core-shell    |
| KR-627      | 190-215     | -                      | Milky white | 15,000-30,000                      | -                       | A.Core-shell    |
| KR-692      | 675-775     | 82-98                  | Milky white | -                                  | -                       | A.Core-shell    |
| KR-693      | 800-900     | 90-105                 | Milky white | -                                  | -                       | A.Core-shell    |
| KR-170      | 200-235     | -                      | 5 max.      | 30,000-60,000                      | 0.1 max.                | CTBN rubber     |
| KR-207      | 175-205     | -                      | 5 max.      | 2,000-3,000                        | 0.1 max.                | CTBN rubber     |
| KR-208      | 270-330     | -                      | 5 max.      | 8,000-12,000                       | 0.1 max.                | NBR rubber      |
| KR-450      | 400-500     | -                      | 5 max.      | 250,000-400,000                    | 0.1 max.                | CTBN rubber     |
| KR-102      | 1,100-1,300 | 100-110                | 5 max.      | 4,000-15,000 *1)                   | 0.1 max.                | CTBN rubber     |
| KR-102F     | 1,100-1,300 | 100-110                | 5 max.      | 4,000-15,000 *1)                   | 0.1 max.                | FDA grade       |
| KR-140L     | 1,100-1,300 | 95-105                 | 5 max.      | 3,000-15,000 *1)                   | 0.1 max.                | CTBN rubber     |
| KR-104F     | 1,100-1,300 | 95-105                 | 5 max.      | 3,000-15,000 *1)                   | 0.1 max.                | FDA grade       |
| KR-224      | 1,100-1,300 | -                      | 5 max.      | 4,000-25,000 *1)                   | 0.1 max.                | CTBN rubber     |
| KR-225      | 1,100-1,300 | -                      | 5 max.      | 4,000-25,000 *1)                   | 0.1 max.                | CTBN rubber     |
| KSR-1000*3) | 1,100-1,300 | -                      | Milky white | 1,000-5,000 *2)                    | -                       | Silicone rubber |

 $<sup>^{*1)}</sup>$  Melt viscosity cps at 150 °C



 $<sup>^{*2)}</sup>$  Melt viscosity cps at 175  $^{\circ}$ C

<sup>\*3)</sup> Patent No.: US 6,355,740

#### **Multi-functional Epoxy Resins**

#### **Tri-Functional Epoxy Resin**

$$\begin{array}{c} \mathsf{CH}_2\mathsf{-O}\mathsf{-CH}_2\mathsf{-CH}_\mathsf{-CH}_2\\ \mathsf{H}_3\mathsf{C}\mathsf{-H}_2\mathsf{C}\mathsf{-C}\mathsf{-CH}_2\mathsf{-O}\mathsf{-CH}_2\mathsf{-CH}_\mathsf{-CH}_2\\ \mathsf{CH}_2\mathsf{-O}\mathsf{-CH}_2\mathsf{-CH}_\mathsf{-CH}_2\\ \mathsf{CH}_2\mathsf{-O}\mathsf{-CH}_2\mathsf{-CH}_\mathsf{-CH}_2\\ \end{array}$$

< Properties >

- 1) Low Viscosity 2) Good Reactivity
- 3) Good Compatibility

- 4) Low Volatile
- 5) Good mechanical properties

**Tetra-Functional Epoxy Resin** 

< Properties >

1) High Heat Resistance 2) Good Adhesion 3) Good Chemical Resistance

# **KUKDO** Waterborne **EPOXY** Emulsion System

| Grade             | EEW *1<br>(g/eq) | Viscosity cps @ 25 °C | NV (wt%)  | Basic<br>Resin      | Specific<br>Gravity | pН   | Particle<br>Size (µm) |
|-------------------|------------------|-----------------------|-----------|---------------------|---------------------|------|-----------------------|
| KEM-128R          | 195-215          | 2,000-8,000           | 100       | <b>YD-128</b>       | 1.13                | 6~7  | -                     |
| <b>KEM-128M</b>   | 200-220          | 7,000-15,000          | 100       | <b>YD-128</b>       | 1.13                | 6 ~7 | -                     |
| <b>KEM-128-70</b> | 195-210          | 1,000-1,0000          | <b>70</b> | <b>YD-128</b>       | 1.14                | 6~7  | 1 max.                |
| <b>KEM-134-60</b> | 260-300          | 1,000-1,0000          | 60        | <b>YD-134</b>       | 1.08                | 6~7  | 1 max.                |
| <b>KEM-101-50</b> | 450-550          | 1,000-1,0000          | <b>47</b> | <b>YD-011</b>       | 1.08                | 6~7  | 2 max.                |
| <b>KEM-012-50</b> | 600-670          | 1,000-10,000          | <b>50</b> | <b>YD-012</b>       | 1.08                | 6~7  | 2 max.                |
| <b>KEM-014-50</b> | 930-990          | 1,000-10,000          | 50        | <b>YD-014</b>       | 1.07                | 6~7  | 2 max.                |
| KEM-500-90P40     | 205-245          | 10-100                | 40        | <b>YDCN-500-90P</b> | -                   | 6~7  | 2 max.                |
| <b>KEM-638-60</b> | 190-210          | 1,000-10,000          | 60        | <b>YDPN-638</b>     | 1.07                | 6~7  | 2 max.                |
| <b>KEM-172-60</b> | 380-430          | 1,000-10,000          | 60        | <b>YD-172</b>       | 1.07                | 6~7  | 2 max.                |

<sup>\*1</sup> solid base resin

| Crada  | Amine value  | Viscosity     | NV    | Color   | <b>Specific</b> | Mixing ratio |
|--------|--------------|---------------|-------|---------|-----------------|--------------|
| Grade  | (mgKOH/g) *1 | cps @ 25°C    | (wt%) | Gardner | Gravity         | phr(YD-128)  |
| KH-723 | 260-300      | 20,000-45,000 | 100   | 12 max. | 1.05            | 70           |
| KH-721 | 190-240      | 10,000-20,000 | 80    | 6 max.  | 1.12            | 80 ~ 100     |
| KH-748 | 190-250      | 5,000-15,000  | 80    | 6 max.  | 1.10            | 80 ~ 100     |
| KH-700 | 200-260      | 3,000-10,000  | 80    | 6 max.  | 1.10            | 80 ~ 100     |

<sup>\*1</sup> solid base hardener



#### **KUKDO Epoxy Hardener**

#### POLYAMIDE AMINE G-700, 5022, 0331, 0930, 0240, 1034, 640

- < Properties >
- 1) Excellent Flexibility 2) Long Pot life 3) Good Adhesion
- 4) Low Exothermic in Reaction 5) Excellent Water Resistance

| Polyamide Properties | G-700 | G-5022      | G-0331  | G-0240  |
|----------------------|-------|-------------|---------|---------|
| Amine value          | 95    | 220         | 310     | 400     |
| Viscosity            | High  | <b>←</b>    |         | → Low   |
| Color                | _     | None v      | ariable |         |
| Mixing ratio         | High  | <del></del> |         | → Low   |
| Curing time          | Long  | <del></del> |         | → Short |
| HDT                  | Low   | <b>←</b>    |         | → High  |
| Hardness             | Low   | <b>←</b>    |         | → High  |
| Adhesion             |       | None v      | ariable |         |
| Flexibility          | High  | •           |         | → Low   |
| Acid resistance      | High  | •           |         | → Low   |
| Alkali resistance    |       | None v      | ariable |         |
| Solvent resistance   | Low   | <b>←</b>    |         | → High  |
| Water resistance     | High  | <b>←</b>    |         | → Low   |
| Weathering           | High  | +           |         | → Low   |

# **Epoxy Curing Agent Polyamide**

| Curing agent | Туре                  | Amine value<br>(mgKOH/g) | Viscosity        | color<br>(Gardner)<br>Max. | Gel time<br>(min@25°C,<br>150g Scale) | PRINCIPAL APPLICATION                                                                               |
|--------------|-----------------------|--------------------------|------------------|----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|
| G-700        | Amide                 | 95                       | Semisolid        | 12                         | -                                     | Solvent-based maintenance coating<br>Fast dry, good water resistance                                |
| G-5022       | Amide/<br>Imidazoline | 220                      | 60,000(cps@40°C) | 12                         | 200                                   | High-viscosity polyamide provide<br>high flexibility, long pot-life and<br>good chemical resistance |
| G-0930       | Amide                 | 300                      | 10,000(cps@40°C) | 12                         | 100                                   | Sealants and Putties: Flexible cable-<br>joining compounds                                          |
| G-0331       | Amide                 | 310                      | 3500             | 12                         | 70                                    | Epoxy tile grouts                                                                                   |
| G-1034       | Amide                 | 340                      | 15,000           | 12                         | 140                                   | Adhesives                                                                                           |
| G-640        | Amide/<br>Imidazoline | 350                      | 10,000           | 12                         | 140                                   | Standard high imidazoline content polyamide. coatings, castings, adhesives, laminating              |
| G-0240       | Amide                 | 400                      | 2,250            | 12                         | 50                                    | Low viscosity polyamide.<br>faster cure than G-5022,G-0930<br>linings, coatings                     |



#### **Polyamido Amine**

G-A0533, G-A0432

- < Properties >
  - 1) Fast Curing 2) Low Viscosity 3) Good Mechanical Properties

| Curing Agent | Amine Value (mgKOH/g) | Viscosity (cps@25°C) | Color(G) Max. | Acid Value (mgKOH/g) | Principal Application |
|--------------|-----------------------|----------------------|---------------|----------------------|-----------------------|
| G-A0533      | 310-350               | 500-1,000            | 14            | 3 max.               | Construction, Mortar  |
| G-A0432      | 320-380               | 200-600              | 14            | 7 max.               | Construction, Mortar  |

#### **High-solids Hardener**

GX-460, GX-483

- < Properties >
  - 1) High solid coating system 2) Good compatibility with liquid epoxy resin

| <b>Curing Agent</b> | Amine Value | Viscosity   | Color(G) | <b>N.V</b> (wt%) | Principal                                 |
|---------------------|-------------|-------------|----------|------------------|-------------------------------------------|
| Curing Agent        | (mgKOH/g)   | (cps@25°C)  | Max.     | Theoretical      | Application                               |
| GX-460              | 230-270     | 3,000-6,000 | 12       | 90               | High solid coating (Maintenance & Marine) |
| GX-483              | 180-220     | 2,700-6,400 | 12       | 100              | High solid coating (Maintenance & Marine) |

### **Polyamide Adduct**

GX-328K, 422, 433, 450TI60, 450XB70, 451XB70, 533

- < Properties >
  - 1) Excellent workability 2) Fast drying of coated film 3) High gloss

| <b>Curing Agent</b> | Amine Value<br>(mgKOH/g) |                      | Color(G) Max. | , ,       | Acid Value<br>(mgKOH/g) | Solvents            |
|---------------------|--------------------------|----------------------|---------------|-----------|-------------------------|---------------------|
| GX-328K             | 210-250                  | 1,500-4,500          | 12            | 75-77     | 3 max.                  | Xylene              |
| GX-422              | 110-150                  | Z-Z <sub>3</sub> *1) | 12            | 58-62     | 3 max.                  | Xylene/Butanol      |
| GX-433              | 165-185                  | 1,000-2,000          | 12            | 63-67     | 3 max.                  | Xylene              |
| GX-450TI60          | 120-140                  | 800-1,500            | 12            | 58.5-61.5 | 3 max.                  | Toluene/Isopropanol |
| GX-450XB70          | 145-165                  | 4,500-8,500          | 12            | 68.5-71.5 | 3 max.                  | Xylene/Butanol      |
| GX-451XB70          | 145-165                  | 4,500-8,500          | 12            | 68.5-71.5 | 3 max.                  | Xylene/Butanol      |
| GX-533              | 260-320                  | 800-2,000            | 9             | 100       | 3 max.                  | -                   |

<sup>\*1)</sup> Solution Viscosity : Gardner Holdt Method

#### **Aromatic Amine Modified Hardener**

#### **DDM Modified and Adducts**

#### **TH-400 Series**

- < Properties >
  - 1) Good Chemical Resistance
  - **3) Good Electrical Properties**

- 2) Good Mechanical Properties
- 4) Good Heat Resistance

| <b>Curing Agent</b> | Viscosity (cps@25°C) | A.H.E.W<br>(g/eq) | Mixing Ratio (vs. YD-128) | Appearance                 |
|---------------------|----------------------|-------------------|---------------------------|----------------------------|
| TH-431              | 3,200-6,300          | 110-120           | 60 phr                    | Reddish brown clear liquid |
| TH-432              | 300-1,000            | 110-120           | 60 phr                    | Reddish brown clear liquid |
| TH-451              | 14,000-23,000        | 110-120           | 60 phr                    | Reddish brown clear liquid |
| TH-452              | 1,500-2,500          | 110-120           | 60 phr                    | Reddish brown clear liquid |
| TH-427U             | 200-800              | 110-120           | 60 phr                    | Reddish brown clear liquid |
| TH-438D             | 2,500-5,000          | 110-120           | 60 phr                    | Reddish brown clear liquid |
| TH-436              | 1,000-2,500          | 70-80             | 40 phr                    | Reddish brown clear liquid |
| TH-439              | 200-800              | 85-105            | 50 phr                    | Reddish brown clear liquid |
| TH-430              | 3,000-6,000          | 110-120           | 60 phr                    | Reddish brown clear liquid |
| TH-438              | 14,000-23,000        | 110-120           | 60 phr                    | Reddish brown clear liquid |

<sup>\*</sup> Reference Data



### **Aliphatic Amine Modified Hardener**

#### KH-500 Series

- < Properties >
  - 1) Good Chemical Resistance
- 2) Fast Drying and Low Temperature curable
- 3) High Humidity Curing
- **4) Good Mechanical Properties**

| 5) Amine-Blushing | Improvement |
|-------------------|-------------|
| ,                 | •           |

| <b>Curing Agent</b> | Amine Value<br>(mgKOH/g) | Viscosity<br>(cps@25°C) | Color(G) Max. | Mixing Ratio (vs. YD-128) |
|---------------------|--------------------------|-------------------------|---------------|---------------------------|
| KH-500              | 450-500                  | 500-4,000               | 10            | 30-40 phr                 |
| KH-500F             | 450-500                  | 500-4,000               | 10            | 35-40 phr                 |
| KH-505              | 300-370                  | 500-2,500               | 10            | 45-60 phr                 |
| KH-506              | 340-400                  | 500-2,500               | 9             | 35-40 phr                 |
| KH-550              | 360-420                  | 100-200                 | 8             | 44-55 phr                 |



#### **Cycloaliphatic Amine Modified Hardener**

#### KH-800 Series

#### IPDA, 1,3-BAC Adduct

< Properties >

- 1) Excellent Chemical Resistance
- 2) Fast Drying and Low Temperature Curable
- 3) Self Leveling Low Viscosity
- 4) Good Mechanical Properties

5) Long Pot life

6) Good Color, Clarity

#### **Base amine of product & Counter type**

| Product | Viscosity <sup>1</sup> | phr <sup>2</sup> | Pot life <sup>3</sup> | Base Amine | <b>Counter type</b> |
|---------|------------------------|------------------|-----------------------|------------|---------------------|
| KH-811  | 2,000-6,000            | 35               | 25min                 | TMD        | HY-837              |
| KH-812  | 30-150                 | 45               | 25min                 | IPDA       | HY-2963             |
| KH-814  | 30-100                 | 45               | 30min                 | IPDA       | HY-2964             |
| KH-815  | 100-1,000              | 60               | 20min                 | IPDA       | -                   |
| KH-816  | 300-500                | 60               | 40min                 | IPDA       | A-1618              |
| KH-817  | 1,000-3,000            | 50               | 60min                 | IPDA       | -                   |
| KH-818B | 100-300                | 60               | 15min                 | 1.3BAC     | -                   |
| KH-819  | 80-100                 | 45               | 20min                 | IPDA       | A-2489              |
| KH-831  | 400-1,000              | 45               | 40min                 | 1.3BAC     | -                   |

1. Viscosity: cps at 25°C

2. E.E.W: 186, parts per a hundred resin

3. Pot life: scale 100g



| Product<br>Comparison         | KH-531      | KH-506    | KH-809      | KH-808  | KH-831      | KH-816       | KH-819      |
|-------------------------------|-------------|-----------|-------------|---------|-------------|--------------|-------------|
| Gel time/25°C<br>(100g scale) | 40min       | 15min     | 40min       | 8min    | 50min       | 50min        | 30min       |
| Viscosity(cps/25°C)           | 300-1,000   | 500-2,000 | 400-900     | 200-500 | 400-1,000   | 300-500      | 50-150      |
| Water-spot resistance         | G           | EX        | G           | EX      | G           | G            | G           |
| Amine-blush                   | G           | EX        | G           | EX      | G           | $\mathbf{G}$ | G           |
| Leveling                      | EX          | G         | EX          | EX      | EX          | EX           | EX          |
| ShoreD<br>After 5 days        | 75          | 86        | 74          | 84      | 81          | 78           | 82          |
| Odor                          | low odor    | low odor  | general     | strong  | general     | general      | General     |
| Characteristic                | spring,fall | winter    | spring,fall | winter  | spring,fall | spring,fall  | spring,fall |

EX: Excellent, G: Good, P: Poor, B: bad

**Anhydride Curing Agent** 

KH-1085, 1085S, 1088

(MNA, MTHPA, MHHPA)

< Properties >

1) Long Pot life

- 2) High Heat Resistance
- 3) Low Exothermic & Shrink
- **4) Excellent Electrical Properties**



#### **Cured Properties of Epoxy Hardeners**

- 1) Color and Appearance (Good>Poor)

  Cycloaliphatic amine>Aliphatic amine>Polyamide>Aromatic amine
- 2) Pot life (Short>Long)
  Aliphatic amine>Cycloaliphatic amine>Aromatic amine>Polyamide
- 3) Film Drying Property (Fast>Slow)
  Aliphatic amine Solvent Type>Aliphatic amine (Non solvent type)>Polyamide
  Adduct>Cycloaliphatic>Modified Aromatic>amine Polyamide>Aromatic amine
- 4) Low temperature curable property (Mannich reaction or at using accelerator) (Good>Poor)

Aliphatic amine>Cycloaliphatic>Modified Aromatic amine>Polyamide Adduct> Amido amine>Polyamide>Aromatic amine

- 5) Adhesion (Good>Poor)
  Polyamide>Amido Amine>Cycloaliphatic amine>Aliphatic amine>Aromatic amine
- 6) Solvent resistance (Good>Poor) Cycloaliphatic>Modified Aromatic amine>Amido amine>Aliphatic amine>Polyamide
- 7) Acid resistance (Good>Poor) Aromatic amine>Cycloaliphatic amine>Amido amine>Aliphatic amine>Polyamide
- 8) Water resistance (Good>Poor) Polyamide>Amido Amine>Cycloaliphatic amine>Aliphatic amine>Aromatic amine



#### **Stoichiometry of curing agents**

Mixing ratio (phr) = 
$$\frac{A.H.E.W.(Active Hydrogen equivalent Weight)}{Epoxy equivalent} \times 100$$
a) Polyamine Curatives

A.H.E.W. = 
$$\frac{\text{Amine molecular weight}}{\text{No. of activated hydrogen}}$$

**b) Polyamide amine Curatives** 

phr(Per hundred resin) = Alpha $\times \frac{\text{A.H.E.W.(Active Hydrogen Equivalent Weight)}}{\text{Epoxy Equivalent Weight}} \times 100$ 

| Alpha Value | Tensile strength            | 0.9 ~ 1        |  |
|-------------|-----------------------------|----------------|--|
| -           | Bending strength            | $0.7 \sim 0.8$ |  |
|             | <b>Compressive strength</b> | $0.6 \sim 0.7$ |  |
|             | Adhesion strength           | $0.8 \sim 1.4$ |  |
|             | H.D.T.                      | 1.0            |  |

| Targeted Properties       | Portion of Polyamide Amine |                 |          |  |  |
|---------------------------|----------------------------|-----------------|----------|--|--|
| Targeted Properties       | Low                        | Mid.            | High     |  |  |
| Flexibility               | <b></b>                    | Increase        | -        |  |  |
| Hardness                  | <b></b>                    | <b>Decrease</b> | <b>—</b> |  |  |
| <b>Curing time</b>        | <b>→</b>                   | <b>Decrease</b> | •        |  |  |
| Pot life                  | <b></b>                    | <b>Decrease</b> | -        |  |  |
| <b>Acid resistance</b>    | <b>→</b>                   | <b>Decrease</b> | <b>-</b> |  |  |
| Alkali resistance         |                            | No change       | •        |  |  |
| <b>Solvent resistance</b> |                            | <b>Decrease</b> | <b>—</b> |  |  |
| Water resistance          |                            | <b>Increase</b> | -        |  |  |

#### c) Anhydride Curatives

$$(phr) = C X \frac{A.H.E.W.(Active Hydrogen Equivalent Weight)}{Epoxy Equivalent Weight} X 100$$

$$C = 0.85 \text{ (without accelerator)}$$

$$C = 0.55 \text{ (when using acid as accelerator)}$$

$$C = 1.0 \text{ (when using tertiary-amine as an accelerator)}$$

$$Anhydride A.H.E.W. = \frac{Molecular \text{ weight of Anhydride}}{No. \text{ of anhydride functionality}}$$

#### d) Amine/Epoxy Adduct Curatives

( Amine M mole(Mw) / Epoxy M' mole(Mw') system )

Adduct A.H.E.W. = 
$$\frac{\text{Amine Mw} \times \text{M} \times \text{Epoxy Mw'} \times \text{M'}}{\text{activated hydrogen No of Amine} \times \text{M} - \text{Functionality of Epoxy} \times \text{M'}}$$

#### e) Amines Mixture Curatives

$$\frac{\text{Amount of Amine A}}{\text{A.H.E.W of Amine A}} + \frac{\text{Amount of Amine B}}{\text{A.H.E.W of Amine B}} = \frac{100}{\text{A.H.E.W. of Mixture (g/eq)}}$$