Международная научная конференция «Ломоносов-2011» Секция «Математика и механика»

О применении марковских случайных полей в шумоочистке

Петюшко А.А. МГУ им. М.В. Ломоносова

Содержание

- Введение
 - MRF
 - Примеры
 - Распределение Гиббса и теорема
 Хаммерсли-Клиффорда
- Датчик Гиббса
- Условное MRF
- Результаты экспериментов

Введение. MRF

- **A** конечный алфавит, $|A| < \infty$
- **S** множество индексов, $S = \{1, 2, ..., N\}$
- **X** многомерная дискретная случайная величина, $X = \{X_i | i \in S\}$

Множество индексов **S** задает точки на плоскости => **X** – **случайное поле** (**Random Field**, RF).

Рассмотрим случайное поле **X** над **A**, $\forall i \in S \ x_i \in A$

Конфигурация - совместное событие $(X_1=x_1,...,X_N=x_N)$, или X=x

Множество всех конфигураций $\chi=A^N$

Система соседства – множество шаблонов соседства.

Шаблон соседства элемента \mathbf{i} – множество $\partial i \in 2^S$

$$\begin{cases} i \notin \partial i, \\ i \in \partial j \Leftrightarrow j \in \partial i. \end{cases}$$

Случайное поле X в соответствии с системой соседства - марковское случайное поле (Markov Random Field, MRF) тогда и только тогда, когда для всех і

$$\begin{cases}
P(X = x) > 0 \ \forall x \in \chi, \\
P(X_i = x_i | X_j = x_j, j \in S \setminus \{i\}) = P(X_i = x_i | X_j = x_j, j \in \partial i)
\end{cases}$$

Введение. Примеры

 $P(X_i|X_{i-3}, X_{i-1}, X_{i+1}, X_{i+3})$

Распределение Гиббса и теорема Хаммерсли-Клиффорда

Клика с – множество элементов из **S**, т.ч. $\forall s, r \in c \Rightarrow r \in \partial s$. Минимальная клика – одноэлементное множество.

Пусть x_c - набор значений X_i где $i \in c$. Потенциальная функция $V_c(x_c)$ - любая функция от x_c (например, \log).

Распределение Гиббса – дискретное распределение при

$$\mathbf{P}(X = x) = \frac{1}{Z} \exp \left(-\sum_{c \in C} V_c(x_c)\right)$$

где **С** – множество всех клик, а **Z** – нормирующая константа, т.ч.

$$Z = \sum_{x \in \chi} \exp\left(-\sum_{c \in C} V_c(x_c)\right)$$

Теорема (*Hammersley-Clifford*, 1971). **X** – марковское случайное поле \Leftrightarrow $\mathbf{P}(X=x)$ - распределение Гиббса.

Датчик Гиббса

Цель: построить датчик марковского случайного поля.

Решение: конструирование эргодической марковской цепи (с вероятностью перехода X(t) → X(t+1) Pt), состояния которой – конфигурации MRF.

Две реализации X(t) и X(t+1) отличаются не более чем в одной точке x_s

Вероятность перехода (биноминальное распр-ие) легко вычисляется из распределения Гиббса:

$$P_t = P(X_s = x_s | X_r = x_r, r \neq s) = \frac{1}{Z_s} \exp\left(-\sum_{c:s \in c} V_c(x_c)\right)$$
, где $Z_s = \sum_{x_s} \exp\left(-\sum_{c:s \in c} V_c(x_c)\right)$

Справедлива следующая

Теорема (Geman, 1984). $\forall x, x_0 \lim_{t \to \infty} P(X(t) = x | X(0) = x_0) = \pi(x)$, где $\pi(x)$ - распределение Гиббса на \mathbf{x} .

Условное MRF

Обозначим
$$U(x) = \sum_{c \in C} V_c(x_c)$$
 .

Пусть **D** - заданное на множестве индексов **S** случайное поле, а **d** - его конфигурация, которая соответствует зашумленному **x**, т.е. $d_i = x_i + n_i, i \in S$. При этом будем полагать, что компоненты шума независимы и одинаково распределены по нормальному закону, т.е.

$$n_i \sim N(\mu, \sigma^2)$$

Назовем распределением условного MRF распределение p(X|D).

Теорема.
$$\mathbf{P}(X = x | D = d) = \frac{1}{Z_1} \exp \left(-U(x) - \frac{1}{2\sigma^2} \sum_{i \in S} (\mu - (d_i - x_i))^2 \right)$$

Следствие. p(X|D) – распределение Гиббса.

Запуск датчика Гиббса на зашумленном изображении при условии:

- Изображение монохромно
- Параметры гауссова шума (μ, σ^2) известны
- Любая потенциальная функция на клике мощности 2 это сумма по модулю два $x_1 \oplus x_2$
- Система соседства типа «крест»
- Начальное приближение зашумленное изображение

Результаты экспериментов

