1. Backpropagation (3 pts)

Let $J: \mathbb{R}^m \to \mathbb{R}$ be a loss function of an affine transformation Wx + b, where $W \in \mathbb{R}^{m \times d}$, $x \in \mathbb{R}^d$, and $b \in \mathbb{R}^m$. Our goal is to find the partial derivative of J with respect to each element of W, $\frac{\partial J}{\partial W_{ij}}$ as well as the $\frac{\partial J}{\partial b_i}$, for each element of b. For convenience, let y = Wx + b, so J(y) is a function of y. Suppose we have already computed the partial derivative of J with respect to the entries of $y = (y_1, \dots, y_m)^{\top}$, $\frac{\partial J}{\partial y_i}$ for $i = 1, \dots, m$. Then by the chain rule, we have

$$\frac{\partial J}{\partial W_{ij}} = \sum_{k=1}^{m} \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial W_{ij}}.$$

- (a) (1 pts) Show that $\frac{\partial J}{\partial W_{ij}} = \frac{\partial J}{\partial y_i} x_j$, where $x = (x_1, \dots, x_d)^{\top}$. (not required, but you might want to use Dirac delta function, $\delta_{ij} = 1$, if i = j, otherwise 0)
- (b) (1 pts) Give a vectorized expression for $\frac{\partial J}{\partial W}$ in terms of the column vectors $\frac{\partial J}{\partial y}$ and x.
- (c) (1 pts) Show that

$$\frac{\partial J}{\partial x} = W^{\top} \frac{\partial J}{\partial y}.$$

- 2. [Coding problem] GMM (Gaussian Mixture Model) (7 pts)
 - (a) (2 pts) Write the code to generate the dataset. There are 3 clusters, $x^{(i)} \in \mathbb{R}^2$. The mean of each clusters are $\mu_1 = [7.0, -1.0], \mu_2 = [3.0, -1.5], \mu_3 = [5.5, 1.0]$., and standard deviation is same for all clusters, $\sigma = 0.7$. You generate dataset by sampling 100 data points for each cluster. Plot the generated dataset in 2D scatter plot (using different colors (or shapes) for different clusters).
 - (b) (2 pts) Using K-means algorithm to cluster the dataset you generated (you are not allowed to use any kmeans libraries, implement it by yourself). Try to run k-means algorithm for k=2, 3, 4 and 6. Provide training curve every iterations (x-axis: training iteration, y-axis: distortion, you can run multiple times with different initializations, and pick the best one to plot). Plot the final centroids (marker ='x', like cs229 lecture note in Figure 1) over the dataset plot you provided in (a) for each different k. So you would provide 4 different plots w/ 4 different k.
 - (c) (3 pts) Using GMM to dataset you generated. In this problem, you can use any GMM libraries if you want, but I strongly recommend you to implement by yourself. Try to run GMM algorithm for k=2, 3, 4 and 6. Plot the obtained μ (marker ='x') over the dataset plot you provided in (a) for each different k. So you would provide 4 different plots w/ 4 different k.