

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

Держапольский Юрий Витальевич

МОДЕЛИРОВАНИЕ ТРОФИЧЕСКИХ СЕТЕЙ (Особенности динамики видов в трофических цепях)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по образовательной программе подготовки бакалавров по направлению 01.03.02 «Прикладная математика и информатика»

г. Владивосток

	Автор работы			
	«»			
	Консультант (если имеется)			
	(Ф.И.О.) (подпись) 2025 г.			
	Руководитель ВКР проф. д.фм.н.	ie)		
Защищена с оценкой:	<u> Абакумов А. И.</u> (подпись)			
Секретарь	«»2025 г.			
(Ф.И.О.) (подпись) « 2025 г.	$\frac{4}{(\Phi.H.O.)} {(nodnucb)}$			

Оглавление

1	Введение		4	
2 Математические модели				5
3	Анализ моделей		8	
	3.1	Незам	кнутая трофическая цепь	8
		3.1.1	Равновесные состояния	8
		3.1.2	Условия существования цепи фиксированной длины	11
4	Заключение		12	
5 Список литературы		13		

1. Введение

Есть такие структуры сообществ с переносом энергии, которые называются трофическими цепями. Незамкнутые и замкнутые. Энергия лимитируется каким-то фактором.

Исследуется поведение трофической цепи при изменении лимитирующего фактора. Обычная устойчивость и знак-устойчивость.

2. Математические модели

«Ресурс» в реальных экосистемах можно разделить на два вида:

- Энергия, например, солнечный свет. Тогда экосистема с данным ресурсом является незамкнутой, и энергия «протекает» через систему, в ходе этого рассеиваясь в виде тепла.
- Биологические вещества, например, углерод, азот, фосфор. В этом случае экосистема является замкнутой по отношению к ресурсам. Достигается это деятельностью так называемых «разлагателей», которые разлагают мёртвую органику до необходимых минеральных компонентов, необходимых первичным уровням трофической цепи.

Соответственно будем рассматривать два типа трофической цепей: незамкнутые («проточные») и замкнутые («циклы»).

Рост и развитие экосистем во многих системах лимитируется каким-либо фактором (*принцип Либаха*). Опять же, например, солнечный свет — это невозобновимый ресурс и цепь является незамкнутой, а химические вещества за счёт разлагателей снова вовлекаются в деятельность замкнутой экосистемы.

Рис. 1: Описание

а) Незамкнутая цепь:

$$\frac{dR}{dt} = Q - V_0(R)N_1,
\frac{dN_1}{dt} = -m_1N_1 + k_1V_0(R)N_1 - V_1(N_1)N_2,
\dots
\frac{dN_i}{dt} = -m_iN_i + k_iV_{i-1}(N_{i-1})N_i - V_i(N_i)N_{i+1}, \quad i = \overline{2, n-1},
\dots
\frac{dN_n}{dt} = -m_nN_n + k_nV_{n-1}(N_{n-1})N_n.$$
(1)

б) Замкнутая цепь:

$$\frac{dR}{dt} = Q - V_0(R)N_1 + \sum_{i=1}^n a_i m_i N_i,
\frac{dN_1}{dt} = -m_1 N_1 + k_1 V_0(R) N_1 - V_1(N_1) N_2,
\dots
\frac{dN_i}{dt} = -m_i N_i + k_i V_{i-1}(N_{i-1}) N_i - V_i(N_i) N_{i+1}, \quad i = \overline{2, n-1},
\dots
\frac{dN_n}{dt} = -m_n N_n + k_n V_{n-1}(N_{n-1}) N_n.$$
(2)

По биологическому смыслу параметры k_i и a_i удовлетворяют ограничениям $0 \le k_i, a_i \le 1.$

Если считать, что ни один вид не имеет в избытке трофического ресурса, т.е. трофические связи «напряжены», то в этом случае

$$V_0(R) = \alpha_0 R, \quad V_i(N_i) = \alpha_i N_i \quad (i = \overline{1, n})$$
(3)

и уравнения (1) и (2) переходят в уравнения вольтерровского типа, за исключением первых уравнений, содержащих слагаемое Q. Тогда, формально полагая $R \equiv N_0$ и $N_{n+1} \equiv 0$, получим две системы, которые описывают динамику двух трофических цепей.

а) Незамкнутая цепь:

$$\frac{dN_0}{dt} = Q - \alpha_0 N_0 N_1,
\frac{dN_i}{dt} = N_i (-m_i + k_i \alpha_{i-1} N_{i-1} - \alpha_i N_{i+1}), \quad i = \overline{1, n}.$$
(4)

б) Замкнутая цепь:

$$\frac{dN_0}{dt} = Q - \alpha_0 N_0 N_1 + \sum_{i=1}^n a_i m_i N_i,
\frac{dN_i}{dt} = N_i (-m_i + k_i \alpha_{i-1} N_{i-1} - \alpha_i N_{i+1}), \quad i = \overline{1, n}.$$
(5)

Исследуем равновесия и их устойчивость при изменении параметра Q.

3. Анализ моделей

3.1. Незамкнутая трофическая цепь

3.1.1. Равновесные состояния

Поскольку единственное положительное слагаемое, которое описывает вносимое количество биомассы, в каждой строке зависит от количества биомассы предыдущего вида, то можно сделать вывод, что если в каком-то состоянии равновесия будет вид с нулевой биомассой, то и все последующие виды так же окажутся вымершими.

Поэтому в системе (5) при Q>0 могут существовать n равновесных состояний типа $\left[N_0,N_1,\dots,N_q,0,\dots,0\right]$, которые можно определить из уравнений

$$\frac{dN}{dt} = 0 \Rightarrow \begin{cases}
N_1 = \frac{Q}{\alpha_0 N_0}, \\
\alpha_i N_{i+1} = k_i \alpha_{i-1} N_{i-1} - m_i, \quad i = \overline{1, q}
\end{cases}$$
(6)

Из условия $N_{q+1}=0$ вытекает, что

$$N_{q-1} = \frac{m_q}{\alpha_{q-1}k_q} \tag{7}$$

Отметим, что в уравнениях (6) есть связь только между (i+1) и (i-1) уравнениями (кроме 0 и 1), поэтому формулы вычисления будут зависеть от чётности q.

Введём обозначения:

$$g_{i} = \frac{k_{i}\alpha_{i-1}}{\alpha_{i}}, \quad \mu_{i} = \frac{m_{i}}{\alpha_{i}}, \quad H_{2s-1} = g_{1}g_{3}\cdots g_{2s-1}, \quad H_{2s} = g_{2}g_{4}\cdots g_{2s},$$

$$f_{2s-1} = \frac{\mu_{1}}{H_{1}} + \frac{\mu_{3}}{H_{3}} + \cdots + \frac{\mu_{2s-1}}{H_{2s-1}}, \quad f_{2s} = \frac{\mu_{2}}{H_{2}} + \frac{\mu_{4}}{H_{4}} + \cdots + \frac{\mu_{2s}}{H_{2s}}$$

$$(8)$$

Последовательно выражая значения N_i

$$N_{i} = \frac{k_{i-1}\alpha_{i-2}}{\alpha_{i-1}}N_{i-2} - \frac{m_{i-1}}{\alpha_{i-1}} = g_{i-1}N_{i-2} - \mu_{i-1} =$$

$$= g_{i-1}(g_{i-3}N_{i-4} - \mu_{i-3}) - \mu_{i-1} = g_{i-1}g_{i-3}N_{i-5} - g_{i-1}\mu_{i-3} - \mu_{i-1} = \dots$$

Пусть i=2s, тогда

$$N_{2s} = (g_{2s-1}g_{2s-3}\cdots g_1)N_0 - (g_{2s-1}\cdots g_3)\mu_1 - (g_{2s-1}\cdots g_5)\mu_3 - \cdots - g_{2s-1}\mu_{2s-3} - \mu_{2s-1} = g_{2s-1}\cdots g_1\left(N_0 - \frac{\mu_1}{g_1} - \cdots - \frac{\mu_{2s-1}}{g_1\cdots g_{2s-1}}\right) = (9)$$

$$= H_{2s-1}\left(N_0 - \frac{\mu_1}{H_1} - \cdots - \frac{\mu_{2s-1}}{H_{2s-1}}\right) = H_{2s-1}\left(N_0 - f_{2s-1}\right).$$

Аналогично получаются значения при i = 2s + 1:

$$N_{2s+1} = H_{2s}(N_1 - f_{2s}). (10)$$

3десь $s = 1, 2, \dots$

Для вычисления всех значений не хватает формулы для N_0 или N_1 . Отдельно рассмотрим два случая чётности.

1. Пусть q = 2s -чётное. Тогда

$$N_{q-1} = N_{2s-1} = \frac{m_{2s}}{\alpha_{2s-1}k_{2s}} \frac{\alpha_{2s}}{\alpha_{2s}} = \frac{\mu_{2s}}{g_{2s}}, \quad N_{2s-1} = H_{2s-2}(N_1 - f_{2s-2}).$$

Откуда получаем

$$N_1 = \frac{\mu_{2s}}{g_{2s}H_{2s-2}} + f_{2s-2} = \frac{\mu_{2s}}{H_{2s}} + f_{2s-2} = f_{2s}.$$

Используя первое уравнение в (6), будем иметь

$$N_0 = \frac{Q}{\alpha_0 N_1} = \frac{Q}{\alpha_0 f_{2s}}.$$

2. Пусть q=2s+1 – нечётное. Аналогично предыдущему получаем

$$N_{q-1} = N_{2s} = \frac{m_{2s+1}}{\alpha_{2s}k_{2s+1}} \frac{\alpha_{2s+1}}{\alpha_{2s+1}} = \frac{\mu_{2s+1}}{g_{2s+1}}, \quad N_{2s} = H_{2s-1}(N_0 - f_{2s-1}).$$

откуда

$$N_0 = \frac{\mu_{2s+1}}{g_{2s+1}H_{2s-1}} + f_{2s-1} = f_{2s+1}, \quad N_1 = \frac{Q}{\alpha_0 f_{2s+1}}.$$

Теперь легко можно получить явные выражения N_i , подставив N_0 и N_1 в (9) и (10).

Очевидно, что стационарные значения численностей N_i имеют смысл, только когда они положительные.

Утверждение 1. Если в трофической цепи длины q численность $N_q>0$, то $N_i>0~(i=\overline{1,q-1}).$

Доказательство. Для начала заметим, что f_{2s} и f_{2s+1} положительны и монотонно возрастают с увеличением s. Величины N_0 и N_1 также положительны и зависят от параметра q — длины трофической цепи. Поскольку все параметры положительные, то численность $N_{q-1}>0$.

Из условия $N_q>0$ и (9, 10) получим неравенство

$$Q > \alpha_0 f_{q-1} f_q \tag{11}$$

Предположим противное: $\exists p < q : N_p \leq 0$. Возможны 4 варианта: p и q одинаковой чётности и разной чётности.

- 1. Пусть q=2s и p=2u, т.е. оба чётны. Тогда из (9) следует, что $N_p=N_{2u}\leq 0$, если $N_0\leq f_{2u-1}$. При q=2s имеем $N_0=\frac{Q}{\alpha_0f_{2s}}$ и условие $N_{2u}\leq 0$ выполняется, если справедливо $Q\leq \alpha_0f_{2u-1}f_{2s}$.
- 2. Пусть q=2s и $N_0=rac{Q}{lpha_0 f_{2s}}, N_1=f_{2s}.$
 - (a) $p=2u\,(u< s)$, тогда из (9) следует, что $N_p=N_{2u}\leq 0$, если $N_0\leq f_{2u-1}$. Значит $Q\leq \alpha_0 f_{2u-1}f_{2s}$. Сравнивая с (11) получаем

$$\alpha_0 f_{2s-1} f_{2s} < Q \le \alpha_0 f_{2u-1} f_{2s} \Rightarrow f_{2s-1} < f_{2u-1}$$

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

- (b) p=2u+1 (2u<2s-1), тогда из (10) следует, что $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $f_{2s}\leq f_{2u}$. Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.
- 3. Пусть q=2s+1 и $N_0=f_{2s+1}, N_1=rac{Q}{lpha_0 f_{2s+1}}.$
 - (a) $p=2u\,(2u-1<2s)$, тогда $N_p=N_{2u}\leq 0$ при $N_0\leq f_{2u-1}$. Значит $f_{2s+1}< f_{2u-1}$.

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

(b) p=2u+1 (u< s), тогда $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $Q\leq \alpha f_{2u}f_{2s+1}$. Сравнивая с (11) получаем

$$\alpha_0 f_{2s} f_{2s+1} < Q \le \alpha f_{2u} f_{2s+1} \Rightarrow f_{2s} < f_{2u}$$

Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.

Следствие 1.1. *Из (11) следует, что если длина трофической цепи равна q, то скорость поступления ресурса Q должна превосходить критическое значение*

$$Q^*(q) = \alpha_0 f_{q-1} f_q.$$

3.1.2. Условия существования цепи фиксированной длины

4. Заключение

Вот так влияет изменение Q на модель.

5. Список литературы

[1] Свирежев, Ю. М. Устойчивость биологических сообществ // Ю. М. Свирежев, Д. О. Логофет – М.: Наука, 1978.