4.2 连续函数的性质

一、连续函数的局部性质

定理1(局部有界性): 若函数 f(x) 在点 x_0 连续,则 $\exists M > 0$,使得 $\forall x \in U(x_0)$,有 $|f(x)| \leq M$.

定理2(局部保号性): 若 f 在 x_0 连续且 $f(x_0) > 0$, 则 $\forall r \in (0, f(x_0)), \exists \delta > 0, \exists x \in U(x_0, \delta)$ 时, 有 f(x) > r > 0.

定理3: 若函数 f(x), g(x) 在点 x_0 连续,则

(1)
$$f(x) \pm g(x)$$
; (2) $f(x)g(x)$;

$$(3)\frac{f(x)}{g(x)}(g(x_0) \neq 0)$$

在点 x_0 也连续.

注: 有理函数
$$R(x) = \frac{P(x)}{Q(x)}$$
, $\tan x$, $\cot x$ 在定义域

的每一点连续.

定理4: 设 $\lim_{x \to x_0} \varphi(x) = a$,函数 f(u) 在点 a 连续,则 $\lim_{x \to x_0} f[\varphi(x)] = f(a) = f[\lim_{x \to x_0} \varphi(x)].$

定理 4': 设 y = f(u) 在 u = a 连续, $u = \varphi(x)$ 在 $x = x_0$ 连续, 且 $\varphi(x_0) = a$, 则复合函数 $y = f[\varphi(x)]$ 在 $x = x_0$ 连续. lim $f[\varphi(x)] = f[\lim \varphi(x)] = f[\varphi(x)]$.

 $x \rightarrow x_0$

例1、求
$$(1)$$
 $\lim_{x\to 0}\sqrt{2-\frac{\sin x}{x}}$.

(2)
$$\lim_{x\to 1} \sin(1-x^2)$$
.

二、闭区间上连续函数的基本性质

定义: (1) 设函数 f(x) 定义在数集 D 上, 若 $\exists x_0 \in D$, 使得 $\forall x \in D$, 有:

$$f(x) \le f(x_0),$$

则称 f(x) 在数集 D 上有最大值 $f(x_0)$.记为

$$f(x_0) = \max_{x \in D} f(x).$$

(2) 设函数 f(x) 定义在数集 D 上, 若∃ $x_0 \in D$, 使得 $\forall x \in D$, 有:

$$f(x) \ge f(x_0),$$

则称 f(x) 在数集 D 上有最小值 $f(x_0)$.记为

$$f(x_0) = \min_{x \in D} f(x).$$

例2、求下列函数的最大值和最小值。

(1)
$$f(x) = x - [x], x \in [0,1]$$
.

(2)
$$f(x) = \tan x, x \in (0, \frac{\pi}{2})$$
.

(3) $f(x) = \ln(1+x), x \in [0,1]$.

 $f(x) = \tan x \Delta$

引理: 若 $f(x) \in C[a,b]$,则 f(x) 在 [a,b] 上有界.

定理5(最值定理): 若 $f(x) \in C[a,b]$,则 f(x) 在 [a,b]上有最大值和最小值.

$$\sup_{x\in D} f(x) = M.$$

$$\inf_{x\in D}f(x)=m.$$

定理6(根的存在定理): 设 $f(x) \in C[a,b]$, f(a)f(b) < 0, 则 $\exists \xi \in (a,b)$,使得 $f(\xi) = 0$.

例3、证明:方程 $x^3 - 4x^2 + 1 = 0$ 在 (0,1)内至少有一个实根.

注: 若 $f(x) \in C[a,b]$ 且严格单调,若 f(a)f(b) < 0,则 f(x) = 0有唯一实根.

定理7(介值定理): 若 $f(x) \in C[a,b]$, 且 $f(a) \neq f(b)$, 则对介于 f(a)与 f(b)之间的任一实数 μ , 存在 $\xi \in (a,b)$, 使得 $f(\xi) = \mu$.

推论: 设 $f(x) \in C[a,b]$, 且 M 和 m 分别是 f(x) 在 [a,b] 上的最大值与最小值,则对任意 $\mu \in (m,M)$,存在 $\xi \in (a,b)$,使得 $f(\xi) = \mu$.

例4、设 a > 0, n 为正整数, 证明存在唯一正数 x_0 , 使得 $x_0^n = a$.

例5、设 $f(x) \in C[a,b]$,且

 $f([a,b]) \subset [a,b].$

证明:存在 $x_0 \in [a,b]$,使得 $f(x_0) = x_0$.

三、反函数的连续性

定理8: 若 y = f(x) 在 [a,b] 上严格单增 (减) 且连续,则其反函数 $x = f^{-1}(y)$ 在区间 [f(a), f(b)] (或[f(b), f(a)])上严格单增 (减)且连续.

注: 反三角函数的连续性

arcsin x与arccos x在[-1,1]连续;

 $\arctan x 与 arc \cot x$ 在 $(-\infty, +\infty)$ 连续.

四、一致连续性

定义2: 设 f(x)为定义在区间 I 上的函数, 若任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对任意 $x_{1,}x_{2} \in I$, 只要 $|x_{1} - x_{2}| < \delta$, 就有

$$|f(x_1)-f(x_2)|<\varepsilon,$$

则称 f(x) 在区间 I 上一致连续.

注: 若 f(x) 在区间 I 上一致连续,则 f(x) 在 I 上连续. 反之不真.

例6、证明函数
$$f(x) = \frac{1}{x}$$
在 $(a,1]$ 上一致连续 (其中 $0 < a < 1$),在 $(0,1]$ 上不一致连续.

• f(x)在区间 I 上不一致连续:

$$\exists \varepsilon_0 > 0, \forall \delta > 0, \exists x_1, x_2 \in I,$$

虽然 $|x_1 - x_2| < \delta,$ 但
 $|f(x_1) - f(x_2)| \ge \varepsilon_0.$

思考:函数 f(x) 在区间 I 上连续与一致连续的区别。

(1) 对于 $\varepsilon > 0$,

若f(x)在区间I上连续,则 $\delta = \delta(x_0, \varepsilon)$. 若f(x)在区间I上一致连续,则 $\delta = \delta(\varepsilon)$.

(2) 设 f(x) 在区间 I 上连续,则 $\delta = \delta(x_0, \varepsilon)$,若 $\delta(x_0, \varepsilon)$ 随着 x_0 的变化有一个正下界 η ,则 f(x) 在 I 上一致连续.

命题: 设函数 f(x)定义在区间 I 上.证明: f(x) 在 I 上一致连续的充要条件 是对任意数列 $\{x'_n\},\{x''_n\}\subset I, 若 \lim_{n\to\infty}(x'_n-x''_n)=0, 则$ $\lim_{n\to\infty}[f(x'_n)-f(x''_n)]=0.$

• f(x) 在 I 上不一致连续 \Leftrightarrow

存在
$$\{x'_n\}, \{x''_n\} \subset I$$
, 虽然 $\lim_{n\to\infty} (x'_n - x''_n) = 0$,

但
$$\lim_{n\to\infty} [f(x'_n)-f(x''_n)]\neq 0.$$

例7、证明: $f(x) = \sin \frac{1}{x}$ 在(0,1)上不一致连续.

问题: 连续函数在什么条件下是一致连续的?

定理9(一致连续性定理)若函数 f(x) 在闭区间 [a,b] 上连续,则 f(x) 在 [a,b] 上一致连续.

例8、证明: 若 f(x) 分别在区间 I_1 和 I_2 上一致连续,且 $I_1 \cap I_2 = \{c\}$,则 f(x) 在 $I_1 \cup I_2$ 上一致连续。

例9、证明 $f(x) = \sin \sqrt{x}$ 在 $[0,+\infty)$ 上一致连续。

作业

习题4-2: 8、9、12、14、17