Differences Design

Prof. Tzu-Ting Yang 楊子霆

Institute of Economics, Academia Sinica 中央研究院經濟研究所

April 9, 2023

Difference-in-Differences Design: Main Idea

Main Idea of Difference-in-Differences (DID)

- If we can observe group-level outcomes several times
 - At least before and after treatment
- Assume in the absence of treatment, outcomes of treatment and control group move in parallel way
- Then, we can construct the counterfactual trend in outcomes of treatment group by using
 - Trend in outcomes of control group
- Comparing observed trend with counterfactual trend in outcome of treatment group, we can get causal effect of treatment

Card & Krueger (1994)

David Card and Alan B. Krueger (1994) "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania" AER

 They want to estimate the causal effect of raising minimum wage on employment of low-skilled workers

Card & Krueger (1994)

- What is the effect of increasing the minimum wage on employment?
- Minimum wage is effective only in certain jobs:
 - Low-skilled jobs
- How much does an increase in the minimum wage reduce demand for low-skilled workers?
 - In a competitive labour market, increases in the minimum wage would move up a downward-sloping labour demand curve.
 - Employment would fall.

Card & Krueger (1994)

- Card & Krueger (1994) analyse the effect of a minimum wage increase in New Jersey (NJ) using a DID methodology
- In February 1992 NJ increased the state minimum wage from \$4.25 to \$5.05
- Pennsylvania (PA)'s minimum wage stayed at \$4.25.

 They surveyed about 400 fast food stores both in NJ and in PA both before and after the minimum wage increase in NJ.

Card & Krueger (1994)

- Two groups:
 - treatment group: NJ
 - control group: PA
- Two periods:
 - Pre-treatment period: February 1992
 - Post-treatment period: November 1992
- ullet Let Y_{st} denote the average employment in state s at time t

- To estimate the effect of minimum wage on employment in NJ, we would like to know the following counterfactual:
 - In absence of raising minimum wage to \$5.05, what the average employment level in NJ would be?
- DID method suggests us construct the counterfactual employment in NJ by using:
 - Average employment level in NJ before reform +
 - The trend in average employment level in PA (control group)

$$Y_{NJ,Feb} + (Y_{PA,Nov} - Y_{PA,Feb})$$

 We can identify the effect of minimum wage on employment in NJ by taking difference in realized employment and counterfactual employment in NJ:

$$\alpha_{DID} = Y_{NJ,Nov} - [Y_{NJ,Feb} + (Y_{PA,Nov} - Y_{PA,Feb})]$$
$$= (Y_{NJ,Nov} - Y_{NJ,Feb}) - (Y_{PA,Nov} - Y_{PA,Feb})$$

- If PA is a good control group
- The trend in employment rate of PA should absorb any other changes in employment that are unrelated to increase minimum wage

Card & Krueger (1994)

Employment

Card & Krueger (1994)

		Stores by state		
Variable		PA (i)	NJ (ii)	Difference, NJ-PA (iii)
1.	Mean employment at February 1992	23.33 (1.35)	20.44 (0.51)	-2.89 (1.44)
2.	Mean employment at November 1992	21.17 (0.94)	21.03 (0.52)	-0.14 (1.07)
3.	Change in mean employment between Feb and Nov	-2.16 (1.25)	0.59 (0.54)	2.76 (1.44)

• Surprisingly, employment rose in NJ relative to PA after the minimum wage change.

$$\alpha_{DID} = (Y_{NJ,Nov} - Y_{NJ,Feb}) - (Y_{PA,Nov} - Y_{PA,Feb})$$

$$= (21.03 - 20.44) - (21.17 - 23.33)$$

$$= 0.59 - (-2.16) = 2.76$$

- Instead of comparing the employment of NJ in February (before reform) and November (after reform)
- DID suggests we need to adjust for change (trend) in labor demand when there was no increase in minimum wage

Difference-in-Differences Design: Potential Outcomes Framework

DID and Potential Outcomes Framework

- Basic setup: two time periods, two groups
- Two periods
 - In period t = 1: one of the groups is treated
 - In period t = 0: neither group is treated
- Two groups
 - $D_i = 1$: those that are treated at t = 1 (treatment group)
 - $D_i = 0$: those that are always untreated (control group)

DID and Potential Outcomes Framework

Potential Outcomes

- Y¹_{it}: the potential outcome for unit i if he would receive treatment at time t
- Y_{it}^0 : the potential outcome for unit i if he would NOT receive treatment at time t

DID and Potential Outcomes Framework

Observed Outcomes

- Y_{it} is the observed outcome for unit i at time t
- Observed outcomes Y_{it} are realized as

$$Y_{it} = Y_{it}^0(1 - D_i) + Y_{it}^1D_i$$

• Observed outcomes at t = 0:

$$Y_{i0} = Y_{i0}^0$$

• Observed outcomes at t = 1:

$$Y_{i1} = Y_{i1}^0(1 - D_i) + Y_{i1}^1D_i$$

Identification Results for DID

- Our main interest is average treatment effect on treated (ATT):
- DID can help us identify ATT

$$\alpha_{\mathsf{ATT}} = E[Y_{i1}^1 - Y_{i1}^0 | D_i = 1]$$

• Missing data problem: $E[Y_{i1}^0|D_i=1]$ is unknown

Common Trend Assumption

$$E[Y_{i1}^{0} - Y_{i0}^{0}|D_{i} = 1] = E[Y_{i1}^{0} - Y_{i0}^{0}|D_{i} = 0]$$
$$= E[Y_{i1} - Y_{i0}|D_{i} = 0]$$

- The treatment group and control group would have exhibited the same trend in the absence of the treatment
- We can use common trend assumption to construct a counterfactual for treatment group at t=1

$$E[Y_{i1}^{0}|D_{i} = 1] = E[Y_{i0}^{0}|D_{i} = 1] + E[Y_{i1}^{0} - Y_{i0}^{0}|D_{i} = 0]$$
$$= E[Y_{i0}|D_{i} = 1] + E[Y_{i1} - Y_{i0}|D_{i} = 0]$$

• We can use **observed outcomes** to represent **unobserved** $\mathrm{E}[\mathrm{Y}^0_n | D_i = 1]$

Identification Results for DID

Apply common trend assumption:

$$\begin{split} \alpha_{\mathsf{ATT}} &= \mathrm{E}[\mathrm{Y}_{\it{i}1}^1 - \mathrm{Y}_{\it{i}1}^0|D_i = 1] \\ &= \mathrm{E}[\mathrm{Y}_{\it{i}1}^1|D_i = 1] - \mathrm{E}[\mathrm{Y}_{\it{i}1}^0|D_i = 1] \\ &= \mathrm{E}[\mathrm{Y}_{\it{i}1}^1|D_i = 1] - \mathrm{E}[\mathrm{Y}_{\it{i}0}^0|D_i = 1] - \mathrm{E}[\mathrm{Y}_{\it{i}1}^0 - \mathrm{Y}_{\it{i}0}^0|D_i = 0] \\ &= \mathrm{E}[\mathrm{Y}_{\it{i}1}^1 - \mathrm{Y}_{\it{i}0}^0|D_i = 1] - \mathrm{E}[\mathrm{Y}_{\it{i}1}^0 - \mathrm{Y}_{\it{i}0}^0|D_i = 0] \\ &= \mathrm{E}[\mathrm{Y}_{\it{i}1} - \mathrm{Y}_{\it{i}0}|D_i = 1] - \mathrm{E}[\mathrm{Y}_{\it{i}1} - \mathrm{Y}_{\it{i}0}|D_i = 0] = \alpha_{\mathsf{DID}} \end{split}$$

 The average treatment effect on treated (ATT) can be identified by difference in trend of outcome between treatment and control groups

Identification Results for DID

Graphical Interpretation

Difference-in-Differences Design: Estimation

DID Estimation

Regression DID

- We can estimate the DID estimator in a regression framework
- Advantages:
 - It is easy to calculate standard errors
 - We can control for other variables which may reduce the selection bias further
 - It is easy to include multiple periods
 - We can study treatments with different treatment intensity (e.g. varying increases in the minimum wage for different states): continous DID

DID Estimation

Basic Two Periods/Groups

- Basic case: two groups and two periods
- We can estimate the DID estimator in a regression framework
- To implement DID method in a regression framework, we estimate:

$$Y_{ist} = \mu + \gamma D + \delta Post + \alpha (D \cdot Post) + \varepsilon_{ist},$$

- D is a dummy indicating treatment group
- Post is a dummy indicating post-treatment period
- $\bullet \ \gamma$ captures differences across groups that are constant over time
- \bullet $\,\delta$ captures differences over time that are common to all groups

$$Y_{ist} = \mu + \gamma D + \delta Post + \alpha (D \cdot Post) + \varepsilon_{ist},$$

- \bullet α is the coefficient of interest
 - Capture the different trends in outcome between treatment and control group
- ullet We will show that lpha can represent the DID estimator:

$$\alpha = \{ E[Y_{ist}|D = 1, Post = 1] - E[Y_{ist}|D = 1, Post = 0] \}$$

$$- \{ E[Y_{ist}|D = 0, Post = 1] - E[Y_{ist}|D = 0, Post = 0] \}$$

$$Y_{ist} = \mu + \gamma D + \delta Post + \alpha (D \cdot Post) + \varepsilon_{ist},$$

- If $E[\varepsilon_{st}|D,Post]=0$ Then, we can show that
 - Pre-treatment mean of outcome for control group: $\mathrm{E}[\mathrm{Y}_{\mathit{ist}}|D=0,\mathit{Post}=0]=\mu$
 - Post-treatment mean of outcome for control group: $\mathrm{E}[Y_{\mathit{ist}}|D=0, \mathit{Post}=1] = \mu + \delta$
 - Pre-treatment mean of outcome for treatment group: $\mathrm{E}[\mathrm{Y}_{\mathit{ist}}|D=1,\mathit{Post}=0] = \mu + \gamma$
 - Post-treatment mean of outcome for treatment group: $\mathrm{E}[Y_{\mathit{ist}}|D=1, Post=1] = \mu + \gamma + \delta + \alpha$

• α can represent treatment effect identified by DID design $\alpha_{\it DID}$:

$$\begin{split} \alpha_{DID} &= \{ \mathrm{E}[\mathrm{Y}_{ist} | D = 1, Post = 1] - \mathrm{E}[\mathrm{Y}_{ist} | D = 1, Post = 0] \} \\ &- \{ \mathrm{E}[\mathrm{Y}_{ist} | D = 0, Post = 1] - \mathrm{E}[\mathrm{Y}_{ist} | D = 0, Post = 0] \} \\ &= \{ (\mu + \gamma + \delta + \alpha) - (\mu + \gamma) \} - \{ (\mu + \delta) - \mu \} \\ &= \alpha \end{split}$$

DID Estimation

Basic Two Periods/Groups

	Pre	Post	Pre/Post difference
Control Group Treatment Group DID	$\mu \\ \mu + \gamma$	$\mu + \delta \\ \mu + \gamma + \delta + \alpha$	$\begin{array}{c} \delta \\ \delta + \alpha \\ \alpha \end{array}$

Difference-in-Differences Design: STATA Example

Empirical Example 1: Eissa and Jeffrey (1996)

Eissa, Nada, and Jeffrey B. Liebman. (1996) "Labor Supply Responses to the Earned Income Tax Credit" QJE

• They want to look at the effect of tax credit on labor supply

Empirical Example 1: Eissa and Jeffrey (1996) STATA Implementation

- See DID.do
- Use eitc.dta

Empirical Example 1: Eissa and Jeffrey (1996)

- Earned Income Tax Credit (EITC) is a refundable tax credit that subsidizes earnings of working poor in US
- The amount of cash transfer depends on the number of children and previous year earnings
- In 1994, the amount of EITC had large increase for those who have children
- The author examined how did labor supply respond to this change in tax credit using DID design

EITC benefit rule

Step 1: Define treatment and control groups

- The first step of DID analysis is to define treatment and control groups
 - Treatment group: those who have at least one children
 - They receive much more tax credit after 1994
 - Control group: those who do not have children
 - Their tax credit did not increase after 1994

Step 1: Define treatment and control groups

 D: a dummy that indicate whether individual i had children or not

$$D = \begin{cases} 1 & \text{if individual } i \text{ had at least one children} \\ 0 & \text{if individual } i \text{ did not have children} \end{cases}$$

Step 1: Define treatment and control groups

 Post: a dummy that indicate whether individual i was observed after 1994 (Post-treatment period)

$$Post = \begin{cases} 1 & \text{if individual } i \text{ was observed after } 1994 \\ 0 & \text{if individual } i \text{ was observed before } 1994 \end{cases}$$

 D × Post: a treatment dummy that indicate whether individual i was affected by 1994 EITC expansion

STATA Command

Step 1: Define treatment and control groups

• Example:

```
** a dummy for treatment group
gen anykids = (children >= 1)

** a dummy for post-treatment period
gen post93 = (year >= 1994)

** treatment variable (DID key variable)
gen eitc = post93*anykids
```

Step 2: Graphical Analysis

- Plot the time trend of outcomes for treatment and control groups
 - Check whether there is a common trend in outcomes of treatment and control groups before reform
 - Examine whether the outcomes of treatment group exhibits different trend after reform

Example:

- collapse: This command converts the data into a dataset of summary statistics, such as sums, means, medians, and so on
- Line 2: converts the data into mean of "work" (Labor Force Participation Rates) by group and year group and year mean

STATA Command

Step 2: Graphical Analysis

• Example:

```
** for control group
gen work0 = work if anykids==0
label var work0 "Single women, no children"

** for treatment group
gen work1 = work if anykids==1
label var work1 "Single women, children"
```

Example:

 Create a twoway gragh ("work" by "year") for treatment and control groups

DID graph

STATA Command

Step 3: Show the group means in the pre/post-treatment period

• Example:

```
** pre-treatment
mean work if post93==0 & anykids==0
mean work if post93==0 & anykids==1

** post-treatment
mean work if post93==1 & anykids==0
mean work if post93==1 & anykids==1
```

• We can estimate the following DID regression:

$$Y_i = \mu + \gamma D_i + \delta Post_i + \alpha (D_i \cdot Post_i) + X_i'\beta + \varepsilon_i,$$

STATA Command

Step 4: DID regression

• Simpe DID regression:

```
** Simpe DID regression reg work post93 anykids eitc,r
```

STATA Command

Step 4: DID regression

Control more covariates :

```
** add more variables
**Create age-squared variable
gen age2 = age^2

** Create Non-labor income
gen nonlaborinc = finc - earn
** Control more covariates^I
reg work post93 anykids eitc nonwhite age age2 ed
    finc nonlaborinc,r
```

DID Results

. reg work post93 anykids eitc nonwhite age age2 ed finc nonlaborinc,r

Linear regression Number of obs = 13,746 F(9, 13736) = 122.54 Prob > F = 0.0000 R-squared = 0.1993 Root MSF = .44741

work	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
post93	008003	.011667	-0.69	0.493	030872	.014866
anykids	072796	.0118336	-6.15	0.000	0959914	0496006
eitc	.0429062	.0156294	2.75	0.006	.0122704	.0735421
nonwhite	0636661	.0081387	-7.82	0.000	0796191	0477131
age	.0333505	.003121	10.69	0.000	.0272328	.0394681
age2	0004231	.0000427	-9.92	0.000	0005067	0003395
ed	.0144307	.001531	9.43	0.000	.0114297	.0174317
finc	9.02e-06	7.44e-07	12.13	0.000	7.56e-06	.0000105
nonlaborinc	000027	1.18e-06	-22.83	0.000	0000293	0000247
_cons	1554345	.0584772	-2.66	0.008	2700577	0408112

• Show the treatment effect by treatment intensity:

DID Results

. reg work post93 onekid twokid eitc_one eitc_two nonwhite age age2 ed finc nonlaborinc,r

Linear regression

Number of obs = 13,746 F(11, 13734) = 111.21 Prob > F = 0.0000 R-squared = 0.2018 Root MSE = .44676

work	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
post93	0080963	.0116636	-0.69	0.488	0309584	.0147659
onekid	0257933	.0140935	-1.83	0.067	0534185	.0018319
twokid	1084904	.0134775	-8.05	0.000	1349081	0820726
eitc_one	.0194807	.0202555	0.96	0.336	0202229	.0591842
eitc_two	.0576754	.0175247	3.29	0.001	.0233244	.0920263
nonwhite	0589521	.0081535	-7.23	0.000	0749341	0429702
age	.0353075	.0031283	11.29	0.000	.0291756	.0414394
age2	0004527	.0000428	-10.57	0.000	0005366	0003688
ed	.0145814	.0015276	9.55	0.000	.0115872	.0175756
finc	8.95e-06	7.41e-07	12.08	0.000	7.50e-06	.0000104
nonlaborinc	0000266	1.18e-06	-22.59	0.000	000029	0000243
_cons	1873079	.0584447	-3.20	0.001	3018675	0727482

STATA Command

Step 5: Examine Common Trend

- use i.yeari.anykids to generate a set of dummy variables representing the interaction term between year and treatment group
 - reg work i.year##i.anykids nonwhite age age2 ed
 finc nonlaborinc,r

DID Results

. reg work i.year##i.anykids nonwhite age age2 ed finc nonlaborinc,r

Linear regression Number of obs = 13,746 F(17, 13728) = 66.34

Prob > F = 0.0000 R-squared = 0.1998 Root MSE = .44742

work	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
year						
1992	.0024691	.0189465	0.13	0.896	0346686	.0396068
1993	.004421	.0192407	0.23	0.818	0332934	.0421354
1994	.0106316	.0192887	0.55	0.582	027177	.0484401
1995	0139931	.020325	-0.69	0.491	0538328	.0258466
1996	0158603	.0212575	-0.75	0.456	0575279	.0258074
1.anykids	0581311	.0187154	-3.11	0.002	0948158	0214463
year#anykids						
1992 1	0216739	.0250962	-0.86	0.388	0708658	.027518
1993 1	02384	.0253685	-0.94	0.347	0735658	.0258858
1994 1	.0000791	.0256784	0.00	0.998	050254	.0504122
1995 1	.0558004	.02687	2.08	0.038	.0031315	.1084693
1996 1	.0314123	.0281061	1.12	0.264	0236796	.0865041

- Creating a placebo DID model is when you arbitrarily choose a treatment time before your actual treatment time
- Test to see if you get a "significant" treatment effect (Hope not)

```
gen placebo = (year >= 1992)
```

- gen placeboXany = anykids*placebo
- ₃ | reg work anykids placebo placeboXany **if** year<1994

DID Results

. reg work anyk	ids placebo	placeboXany	y if year<1	1994		
Source	SS	df	MS	Number of obs	=	7,401
				F(3, 7397)	=	41.89
Model	30.910802	3	10.3036007	7 Prob > F	=	0.0000
Residual	1819.32944	7,397	.245955041	1 R-squared	=	0.0167
				- Adj R-squared	=	0.0163
Total	1850.24024	7,400	.250032465	Root MSE	=	.49594
work	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]
anykids placebo placeboXany _cons	1229792 0116737 0101282 .5830325	.0196401 .0184985 .0244038 .014899	-6.26 -0.63 -0.42 39.13	0.000161479 0.5280479 0.67805796 0.000 .55382	36 56	0844791 .0245885 .0377103 .6122388

Difference-in-Differences Design: Examine Common Trend Assumption

- The key assumption for any DID strategy is common trend assumption
- The outcome in treatment and control group would follow the same time trend in the absence of the treatment.
 - This does not mean that they have to have the same mean of the outcome!
 - Common trend assumption is difficult to verify.
 - We can use pre-treatment data to show that the trends are the same:
 - Graphical evidence
 - DID event-study design

Graphical Evidence

Graphical Evidence

DID Event-Study Design

- We can include leads and lags into the DID design:
 - 1 Examine common trend assumption.
 - 2 Analyze whether the treatment effect changes over time after treatment happens
- It is so-called DID event-study design.

DID Event-Study Design

The estimated regression would be:

$$Y_{it} = \alpha + \beta D_i + \sum_{k=-m}^{q} \delta_t \mathbf{I}[t - E_i = k]$$

$$+ \sum_{k=-m}^{q} \gamma_t D_i \cdot \mathbf{I}[t - E_i = k] + X'_{it} \theta + \varepsilon_{it},$$

- E_i represents the timing when treatment happens.
- $I[t E_i = k]$ is an indicator for being k years from the treatment event
- t is the calendar year
 - Treatment occurs in k = 0 ($t = E_i$)
 - For example, $I[t-E_i=-1]$ is a dummy variable indicating one year before treatment occurs
 - ullet We usually use time k=-1 as baseline year

DID Event-Study Design

• The estimated regression would be:

$$Y_{it} = \alpha + \beta D_i + \sum_{k=-m}^{q} \delta_t \mathbf{I}[t - E_i = k]$$

$$+ \sum_{k=-m}^{q} \gamma_t D_i \cdot \mathbf{I}[t - E_i = k] + X'_{it} \theta + \varepsilon_{it},$$

- $\gamma_{-2}, \gamma_{-3}, ..., \gamma_{-m}$ represent pre-trend
 - These coefficients should be zero if common trend assumption holds
- $\gamma_0, \gamma_1, ..., \gamma_q$ represent post-treatment effects

DID Event-Study Design

Example

Hsing-Wen Han, Kuang-Ta Lo, Yung-Yu Tsai, and Tzu-Ting Yang (2023), "The Effect of Financial Resources on Fertility: Evidence from Administrative Data on Lottery Winners", Working Paper

- During the past fifty years, fertility rates in developed countries have declined dramatically
- Low fertility rate leads to the growth of an aging population, workforce shortages, and reductions in tax revenue.
- Many countries initiated child-related cash transfer policies to encourage childbearing.
 - On average, the public spending of child-related cash benefits accounts for 1.1% of GDP in OECD countries.
- The rationale behind these policies is that people do not have enough income to afford the expense of raising children, so the government needs to subsidize them.

Motivation

- Empirically, there is an endogenous problem between income and fertility.
 - Reverse Causality
 - Income effect confounds with substitution effect
 - Both working and raising children are time-consuming activities
 - A sudden increase in wage income can increase the relative price of having children
 - Higher wage income would make people work more and reduce demand for children

DID Event-Study Design

- This paper examines the fertility impact of the large and permanent income shock generated by winning lottery prizes.
- We implement an DID event-study design to examine the causal effect of large income shock on fertility.
- Compare the trend in fertility before and after receiving a windfall gain between:
 - Households winning 1,000,000 NT\$ from lottery prizes.
 - Households winning less than 10,000 NT\$.

DID Event-Study Design

We estimate the following regression:

$$Y_{it} = \alpha + \beta D_i + \sum_{k=-3}^{6} \delta_t \mathbf{I}[t - E_i = k]$$

$$+ \sum_{k=-3}^{6} \gamma_t D_i \cdot \mathbf{I}[t - E_i = k] + X'_{it} \theta + \varepsilon_{it},$$

- ullet D_i represents treatment group dummy.
- Treatment Group:
 - Households who earn more than 1,000,000 NT\$ by winning lotteries in a given year
- Control group:
 - Households who earn less than 10,000 NT\$ from winning lotteries during sample period

DID Event-Study Design

• We estimate the following regression:

$$Y_{it} = \alpha + \beta D_i + \sum_{k=-3}^{6} \delta_t \mathbf{I}[t - E_i = k]$$
$$+ \sum_{k=-3}^{6} \gamma_t D_i \cdot \mathbf{I}[t - E_i = k] + X'_{it} \theta + \varepsilon_{it},$$

- Outcome variable Y_{it} :
 - Cumulative number of children for household i in the year t
- E_i is the lottery-winning year
- We use $I[t E_i = k]$, where k = -3, -2, 0, 1, 2, 3, 4, 5, 6, to denote dummy variables for the year before and after winning lottery.
- For example, $I[t-E_i=1]$ represents a dummy for the first year after winning lottery.

Raw Data: Cumulative Number of Children

Raw Data: Cumulative Number of Children

• Since we focus on trend rather than level, we sometimes subtract the baseline mean (k=-1) from the outcome at each time period

Subtract the Baseline Mean: Cumulative Number of Children

Raw Data: Cumulative Number of Children

- We can formally examine common trend assumption by showing the estimated coefficients $\gamma_{-2}, \gamma_{-3}, ..., \gamma_{6}$
- If common trend assumption is valid γ_{-2}, γ_{-3} should be close to zero
- $\gamma_0, \gamma_1, ..., \gamma_6$ represent the treatment effects of winning lotteries

DID Event-Study Design: Cumulative Number of Children

Another Way to Test Common Trend Assumption

- Conduct a DID estimation using pre-treatment data
- Arbitrarily choose a "treatment timing" in the pre-treatment period

$$Y_i = \mu + \gamma D_i + \delta Placebo_i + \alpha (D_i \cdot Placebo_i) + X_i'\beta + \varepsilon_i,$$

- Placebo is a dummy indicating fake "post-treatment" period
- ullet If common trend assumption is valid, we would expect lpha=0

Difference-in-Differences Design: Other Issues

Change in Sample Composition

- In repeated cross-sectional data, it is possible the treatment might result in composition change of treatment and control groups
 - Example: Policy reform could induce migration
- This could bias the estimates of causal effect
- Valid DID estimate requires: The distribution of covariates
 X in treatment and control groups should be similar for the
 pre-treatment and post-treatment periods
- Conduct a DID estimation using covariates as "outcomes"
 - Hope to see there is NO effect of DID estimator

Statistical Inference in DID Estimation

- Many papers using a DD strategy use data from many years (not only 1 pre and 1 post period)
- The variables of interest in many of these setups only vary at a group level (say state) and outcome variables are often serially correlated
- As Bertrand, Duflo, Mullainathan (2004) point out, conventional standard errors often severely understate the standard deviation of the estimators

Statistical Inference in DID Estimation

- Simple solution:
 - Clustering standard errors at the group level
 - In STATA one would simply add cl(state) to the regression equation if one analyzes state level variation
- Other solutions:
 - Block bootstrapping standard errors
 - Wild bootstrap clustering standard errors

Suggested Readings

- Chapter 5, Mastering Metrics: The Path from Cause to Effect
- Chapter 5, Mostly Harmless Econometrics
- Chapter 9, Causal Inference: The Mixtape