

Name	Description	Example
	Creating Arrays	
np.array()	Creates an array with a list of values	x = np.array([1, 2, 3]) #1d a = np.array([[1, 2, 3], [4, 5, 6]]) #2d
np.ones((i, j))	Creates an array with all 1s. (i, j) is the shape of the array	np.ones((3, 4))
np.eye(n)	Creates an identity matrix of size n	np.eye(5) #creates 5x5 matrix
np.full(shape)	Creates an array or matrix of specified dimensions with a single value	<pre>np.full((2, 3), 10) #creates 2x3 matrix with all 10</pre>
<pre>np.arange(n) np.arange(i, j, k)</pre>	Creates an array of ascending integers from 0 to n or from i to j with step size k	<pre>np.arange(5) #returns array([0, 1, 2, 3, 4])</pre>
		<pre>np.arange(0, 10, 2) #returns array([0, 2, 4, 6, 8])</pre>
<pre>np.linspace(i, j, k)</pre>	Creates an array of k evenly divided values from i to j	<pre>np.linspace(0, 0.5, 3) #returns array([0., 0.25, 0.5])</pre>
<pre>np.random.rand(i) np.random.rand(i, j)</pre>	Creates an array or matrix of samples from the uniform distribution with values between 0 and 1	np.random.rand(100) #1D np.random.rand(4, 5) #2D
<pre>np.random.rand(i) np.random.randn(i, j)</pre>	Creates an array or matrix of samples from the standard normal distribution	np.random.randn(100) #1D np.random.randn(4, 5) #2D
np.random.choice(a, size)	Generates a random sample of specified size from a specified 1-D array or up to a given integer value	<pre>np.random.choice(5, 3) #returns array([0, 3, 4]) #5 is same as np.arange(5)</pre>
	Properties & Type Conversion	
array.shape	Returns the shape of the array	a.shape #returns (2, 3)
a.dtype	Returns the type of the elements in an array	a.dtype #returns dtype(int32)
a.astype(dtype)	Converts the array 'a' to specified 'dtype'	a.astype('int64')
np.argmax() np.argmin()	Returns the index of the max or min value respectively	<pre>np.argmax(a) #returns 5 for 6 np.argmin(a) #returns 0 for 1</pre>
a.tolist()	Converts an array to a Python list	a.tolist() #[[1, 2, 3], [4, 5, 6]]

	Statistics	
np.mean(array, axis)	Returns the mean along a specific axis	np.mean(a, axis=0) #row average
<pre>np.percentile(a, q, axis) np.quantile(a, q, axis)</pre>	Compute the q-th percentile / quantile value of the data along the specified axis	<pre>np.percentile(a, 99) #returns 5.95 np.quantile(a, 0.5) #returns 3.5</pre>
np.std(array, axis)	Returns standard deviation	np.std(a, axis=1)
a.max(axis) np.amax(a, axis)	Returns the max or min value in an array or along a specified axis	<pre>a.max() #returns 6 np.amax(a, 1) #returns array([3, 6])</pre>
<pre>a.min(axis) np.amin(a, axis)</pre>		<pre>a.min() #returns 1 np.amin(a, 1) #return array([1, 4])</pre>
np.histogram(array, bins)	Compute the occurrences of the values from a flattened array that fall within each given bin. If bin is an integer, you will have equal size bins	<pre>np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) #returns array([0,2,1]) since 1 occurs twice between bin [1,2] and 2 occurs once between [2,3]</pre>
	Mathematics	
np.add(a, b) a+b	Adds 'b' to each value in 'a' if 'b' is a scalar. Performs element-wise additions if 'a' and 'b' are arrays	np.add(a, 1) np.add(array1, array2)
np.subtract(a, b) a-b	Subtracts 'b' from each value in 'a' if 'b' is a scalar. Performs element-wise subtraction if 'a' from 'b' are arrays	<pre>np.subtract(a, 1) np.subtract(array1, array2)</pre>
np.multiply(a, b) a*b	Multiply each value in 'a' by 'b' if 'b' is a scalar. Perform element-wise multiplication if 'a' and 'b' are arrays	np.multiply(a, 2) np.multiply(array1, array2)
np.divide(a, b) a/b	Divides each value in 'a' by 'b' if 'b' is a scalar. Performs element-wise division is 'a' and 'b' are arrays	np.divide(a, 2) np.divide(array1, array2)
np.array_equal(a, b)	Returns True if array 'a' and 'b' are equal	<pre>np.array_equal(a, array([1, 2, 3])) #returns False</pre>
np.unique(a)	Returns the unique values in an array. 'return_counts=True' will return the counts of each unique value as well	<pre>np.unique(array([5, 5, 6])) #returns array([5, 6]) np.unique(array([5, 5, 6]), return_counts=True) #returns array([5, 6], [2, 1])</pre>
np.sqrt(a)	Square root of each element in an array	np.sqrt(a)
np.log(a)	Natural log of each element in an array	np.log(a)
np.exp(a)	Returns exponential of all the elements in the input array	<pre>np.exp([1, 3, 5]) #returns [2.718, 20.085, 148.413]</pre>

Numpy Cheat Sheet

np.abs(a)	Returns absolute value	np.abs(a)
np.ceil(a)	Rounds up each element to nearest integer	np.ceil(a)
np.floor(a)	Rounds down each element to nearest int	np.floor(a)
<pre>np.round(a) np.round(a, decimals)</pre>	Rounds each element to nearest integer or decimal place if specified as second argument	<pre>np.round(a) #nearest integer np.round(a, 2) #two decimals</pre>
np.matmul(a,b)	Performs matrix multiplication for a,b	np.matmul(matrix1, matrix2)
	Boolean Logic	
np.logical_and(arr1, arr2)	Returns whether conditions of arr1 AND arr2 equate to True	<pre>np.logical_and(True, False) #returns False</pre>
np.logical_or(arr1, arr2)	Returns whether conditions of arr1 OR arr2 equate to True	<pre>np.logical_and(True, False) #returns True</pre>
np.all(a, axis)	Returns whether all of elements in an array are True or along a specified axis	<pre>np.all([[True, False], [True, False]]) #returns True</pre>
np.any(a, axis)	Returns whether any of the elements in an array are True or along a specified axis	<pre>np.any([[True, False], [True, False]]) #returns True</pre>
np.invert(a) ~	Inverts a boolean array	<pre>np.invert(array([True, False, True])) #returns array([False, True, False])</pre>
		<pre>~array([True, False, True]) #returns array([False, True, False])</pre>
	Transforming/Sorting	
a.sort()	Sorts array in ascending order	a.sort()
<pre>a.flatten() a.ravel() np.ravel(a)</pre>	Flattens 2D array into 1D. Flatten returns a copy and ravel returns a view of original array	<pre>a.flatten(a) #returns array([1, 2, 3, 4, 5, 6]) np.ravel(a) #returns array([1, 2, 3, 4, 5, 6])</pre>
а.Т	Transposes array (switches rows and columns)	a.T #array([[1, 4],
<pre>np.reshape(a, (i, j)) a.reshape(i, j)</pre>	Reshapes array to i rows, j columns. Has to have the same size as the original. e.g. 2x3 matrix can only be reshaped into 3x2, 1x6, or 6x1.	<pre>a.reshape(3, 2) #array([[1, 2],</pre>
np.flip(a, axis)	Reverses the order of elements along an axis	np.flip(a, axis=1)
np.squeeze(a)	Removes all dimensions of size 1 from an array	b.shape # (1, 3, 3) c = np.squeeze(b) c.shape # (3, 3)

Numpy Cheat Sheet

np.expand_dims()	Opposite of squeeze, adds a dimension of 1 before (axis=0) or after (axis=1) those existing	<pre>c.shape # (3, 3) b = np.expand_dims(c, axis=0) b.shape # (1, 3, 3)</pre>		
Indexing / Slicing / Subsetting				
a[row, column] a[index]	Returns the element(s) at specified index or indices	a[1, 2] #returns 6		
a[i] = n	Assigns array element at index i with value 'n'	a[1] = 4		
a[i:j]	Returns values from index i to j	a[0:2]		
a[i, :]	Returns all the columns at row 'i'	a[1, :] #returns array([4, 5, 6]		
a[:, j]	Returns all the rows at column 'j'	a[:, 1] #returns array([2, 5])		
a[a == n] a[a < n] a[a > n]	Returns values that return True for the boolean condition specified	<pre>a[a < 5] #returns values <5 a[a == 5] #returns values == 5</pre>		
np.where(condition, a, b)	Replaces values in array 'a' where 'condition' is True with the corresponding value in array 'b'	<pre>np.where(a>3, a, a*10) #np.array([[1, 2, 3], [40, 50, 60]])</pre>		
	Combining / Adding			
<pre>np.concatenate([arr1, arr2], axis)</pre>	Combines list of arrays row-wise or column-wise (axis=0, axis=1)	<pre>np.concatenate([a1, a2], axis=0) #concatenates a1 and a2 row-wise</pre>		
		<pre>np.concatenate([a1, a2], axis=1) #concatenates a1 and a2 column-wise</pre>		
<pre>np.hstack([array1, array2]) np.vstack([array1,</pre>	Stacks the arrays either horizontally 'hstack' or vertical 'vstack'. When stacking ensure the dimension of the rows or columns are equal.	a1 = array([1, 2]) a2 = array([3, 4])		
array2])	differision of the rows of columns are equal.	<pre>np.hstack(a1, a2) #array([1, 2, 3, 4]) np.vstack(a1, a2) #array([[1, 2],</pre>		
np.append(array, values)	Appends values to the end of array 'a'. Note: this will flatten a 2D array into 1D	<pre>np.append(a, 3) #returns array([1, 2, 3, 4, 5, 6, 3])</pre>		
np.insert(array, index, values)	Inserts values before a specified index	<pre>np.insert(a, 2, 0) #returns array([1, 2, 0, 3, 4, 5, 6, 3])</pre>		
<pre>np.delete(array, index, axis)</pre>	Deletes row or column at index	<pre>np.delete(a, 2, axis=1) #returns array([[1, 2],</pre>		
Data Import / Export				
np.loadtxt()	Load a text file from a relative path from the notebook's current working directory	<pre>np.loadtxt('file.txt')</pre>		
np.genfromtxt()	Loads CSV file	<pre>np.genfromtxt('file.csv', delimiter=',')</pre>		
np.savetxt()	Saves to a TXT or CSV file	<pre>np.savetxt('newfile.csv')</pre>		