Zadaća 2

Inteligentni robotski sustavi

Rok predaje: 25. ožujka u 8:00

Način predaje: Rješenja zadataka smjestiti u mapu irs2022/dz02 postojećeg gitlab repozitorija.

Zadatak 1. (25 bodova)

Implementirajte inverznu kinematiku¹ Stanford manipulatora čija su početna stanja spojeva q_0 zadana u stanford_params.npy, a informacije spojeva zadane su u stanford_joints.npy. Ostale veličine zadane su u stanford_labels.npy i stanford_colors.npy. Iz stanford_joints.npy uočavamo da su varijabilne veličine θ_1 , θ_2 , d_3 , θ_4 , θ_5 i θ_6 . Stoga, ovaj robot ima 6 stupnjeva slobode kolika je i dimenzija stanja njegovog end-effector-a.

Prva ćelija retka u matrici spremljenoj u stanford_joints.npy predstavlja donju među stanja spoja, druga ćelija predstavlja gornju među stanja, treća i četvrta ćelija predstavljaju indekse trenutne vrijednosti spoja u matrici koja je inicijalizirana iz datoteke stanford_params.npy, dok zadnja ćelija predstavlja apsolutnu maksimalnu vrijednost brzine spoja.

U stanford_goal.npy nalazi se željeno stanje end-effector-a 0T_g . Rješavajući inverznu kinematiku, dobit ćete 4 moguća željena stanja spojeva, a nakon proizvoljnog odabira nekog od njih potrebno je izvesti gibanje od početnog stanja do cilja tako da brzina spojeva u trenutku t, pri čemu je \boldsymbol{q}_t stanje spojeva u trenutku t, bude zadana s

$$\dot{\boldsymbol{q}} = \frac{\boldsymbol{q}_g - \boldsymbol{q}_t}{\Delta t} \cdot p_{gain}$$

gdje je p_{gain} eksperimentalno određen realni broj. Rješenje prikažite u trodimenzionalnom grafičkom prikazu kao na videu u ovoj mapi.

-

¹ Ne inverznu diferencijalnu kinematiku.