

همطراحی سختافزار نرمافزار

جلسه هفتم: توصیف سیستم-زبان

ارائهدهنده: آتنا عبدی a_abdi@kntu.ac.ir

مباحث این بخش

• توصیف یک سیستم (System Specification)

• مدلهای محاسباتی

• معماريها

• اشنایی با زبان توصیف سیستم SystemC

توصيف سيستم

توصيف سيستم

- در ابتدای فرایند طراحی لازم است سیستم، براساس الزامات آن توصیف شود
 - فرایند توصیف سیستم توسط مدلها، معماریها و زبانها انجام می گیرد
 - مدل: دید مفهومی از رفتار و عملکرد سیستم (ساختار داده و کنترل)
- معماری: پیادهسازی کلی مدل با مشخص کردن نوع اجزای موردنیاز، تعداد آنها، اتصالات و
 - زبان: نگاشت مدل محاسباتی به معماری سیستم در سطح
 - سختافزار: Verilog ، VHDL
 - نرمافزار: Java ، C++ ، C
 - سیستم: SDL ،SystemC

زبان

- هدف از زبان، نگاشت مدل محاسباتی به معماری میباشد
 - توصیف کارکرد سیستم در سطوح مختلف تجرید
 - ارزیابی و اصلاح کارکرد سیستم در حین توصیف
- زبان توصیف مناسب میبایست تمامی ویژگیهای مدل را درنظر بگیرد
 - نگاشت متناظر بین ویژگیهای مدل و اجزای زبان
- همروندی، گذار بین حالات، سلسلهمراتب، مدیریت شرایط خاص، زمانبندی، ارتباطات و ...

زبان

- زبانهای توصیف سختافزار:
 - Verilog 'VHDL •
- زبانهای برنامهنویسی نرمافزار:
 - Java 'C++ 'C •
 - زبانهای توصیف سیستم:
- SLDL 'SDL 'SystemC
 - زبانهای ارزیابی
 - OpenVERA 'PSL •

- مدلسازی سختافزار و نرمافزار در طراحی سطح سیستم
 - قابلیت پیادهسازی
 - الگوریتمهای نرمافزاری
 - معماریهای سختافزاری
 - زمانبندی سختافزاری، همروندی، رفتار واکنشی و ...
 - واسطهای طراحی سطح سیستم

• تفکیک توصیف سختافزار و نرمافزار

• تفکیک توصیف سختافزار و نرمافزار

• یکپارچگی توصیف سختافزار و نرمافزار در سطح سیستم

• یکپارچگی توصیف سختافزار و نرمافزار در سطح سیستم

- قابلیتهای مختلف توصیف در سطوح مختلف تجرید
- با پیچیده شدن کاربردها، روال حرکت به سمت سطوح بالا

SystemC

- یکپارچگی توصیف سختافزار و نرمافزار در سطح سیستم
 - نیاز به محیطی جهت توصیف همزمان سختافزار و نرمافزار
- افزودن قابلیتهای لازم در توصیف سختافزار به زبانهای برنامهنویسی
- Z زمان بندی بین رخدادها، همروندی، نوع دادههای خاص مانند
 - زبان HDL + C++ :SystemC
 - C یک class library در زبان

روال طراحی در SystemC

- طراحی یکپارچه سختافزار و نرمافزار
 - نیاز به یک زبان برنامهنویسی
- پیادهسازی سطح بالای مختصر که حجم کمتر و مدلسازی سادهتر دارد
 - توصیف در مراحل کوچک، بهبود داده میشود
 - افزودن تدریجی قابلیتهای موردنیاز مانند همروندی، زمانبندی و ...
 - پیادهسازی ساده تغییرات
 - تست تدریجی و کشف دقیق تر اشکالات

محیط توسعه SystemC

قابلیتهای SystemC

- Modules: ساختار هر سیستم توسط یک یا چند ماژول توصیف می شود
 - Processes: داخل ماژول تعریف شده و کارکرد را توصیف می کند
- Ports: هر ماژول پورتهایی برای اتصال به سایر ماژولها دارد (پورتهای یکطرفه/دوطرفه)
 - Signals: انتقال داده برای اتصال ماژولها و پروسهها
 - پشتیبانی از انواع زیاد دادهها
 - C++ منطق دو مقداره، منطق چهارمقداره، تمامی دادههای موجود در

قابلیتهای SystemC

- Clock: امكان تعريف سيگنال كلاك
- مدلسازی در چندین سطح تجرید: مدلهای کارکردی سطح بالا تا توصیفهای جزئی
 - پروتکلهای ارتباطی متنوع: توصیف واسطها و پروتکلها در سطوح مختلف تجرید
 - امكان Debug برخط
 - ارائه شکل موج سیگنالها و ...

- زبان SystemC همان ++ است
 - مرور بر syntax کلی زبان ++
- تمامی عبارات ++Cout, Cin و اینجا مجاز است (Cout, Cin و ...)
- تمامی کامپایلرهای ++C برای SystemC هم قابل استفاده است
 - MS VC++
 - GCC
 - دانلود از
- https://www.accellera.org/downloads/standards/systemc •

Module •

- مفهومی مشابه module در Verilog دارد که در واقع یک کلاس ++C است
 - دادههای داخلی و الگوریتمها داخل این واحد قرار داده میشوند
 - بکارگیری:
 - SC_MODULE(module_name){ •

Process •

- تعریف تابع در ماژول
- معادل Function در ++
- پروسهها بهصورت همروند اجرا میشوند
- کارکرد موردنظر (functionality) در این بخش تعریف می شود
 - دو نوع method و thread دارد
- هر پروسه لیستی از رخدادها دارد که به آنها حساس است (Sensitivity List)
 - با تغییر در این رخدادها، تابع پروسه اجرا میشود

- Ports: برقراری ارتباط ماژول با محیط
 - به سه صورت تعریف می شوند:
 - IN, OUT, INOUT •
- مشابه Verilog در ابتدای ماژول تعریف می شود

```
sc_in <type> port_name •
```

- sc_out <type> port_name •
- sc_inout <type> port_name •

Signals •

- اتصالات محلى بين اجزاي داخلي سيستم جهت انتقال داده
- تخصیص در نمونهسازی از ماژولها (module instantiation)
 - توصيف بهصورت
 - sc_signal <type> signal_name
 - Data Type •
- تمامی انواع موجود در ++، تمامی انواع موردنیاز در توصیف سیستم، امکان تعریف موارد موردنیاز

ساختار ماژول و اجزای آن در SystemC

مباحثی که این جلسه آموختیم

- توصيف سيستم
 - زبان
- اهمیت استفاده از زبان در فرایند توصیف
 - توصیف مجزا و یکپارچه سیستم
- زبان SystemC بعنوان زبان یکپارچه سطح سیستم

مباحث جلسه آینده

- گام اول فرایند طراحی
 - توصيف سيستم
- آشنایی بیشتر با زبان SystemC و توصیف مدل در این زبان

