Learning from Data Lecture 4: Neural Networks I Perceptrons & Word Embeddings

Hessel Haagsma@rug.nl room 1311.0411

5th of December 2016

Outline

- Introduction
- 2 Perceptrons
 - Biology
 - Structure
 - Training
- Word Embeddings
 - Popularity
 - Words as Vectors
 - Applications
 - Training
 - Evaluating Embeddings
 - Demo
- 4 Assignment

Most NLP research focuses on literal language.

Most NLP research focuses on **literal** language. But what about the rest? *metaphor, idiom, sarcasm, humor, ...*

- Literal translation: It costs a rib from my body.
- Correct translation: It costs me an arm and a leg.
- Alternative translation: It is very expensive.

- Literal translation: It costs a rib from my body.
- Correct translation: It costs me an arm and a leg.
- Alternative translation: It is very expensive.

It costs an arm and my body.

Create an idiom processing pipeline:

- **1** Take a sentence: 'My grandfather kicked the bucket yesterday.'
- 2 Detect: 'My grandfather [kicked the bucket] yesterday.'
- Oisambiguate: 'My grandfather [kicked the bucket]_{idiom} yesterday.
- **4** Align: $[kick]_1$ $[the]_2$ $[bucket]_3$ $[to]_0$ $[die]_1$
- Paraphrase: 'My grandfather kicked die the bucket yesterday.'
- Clean and smooth: 'My grandfather died the bucket yesterday.'
- Result: 'My grandfather died yesterday.'

Perceptrons

VS.

Word Embeddings

- Ancient (1943-)
- Mostly obsolete
- Relatively simple
- Computationally cheap
- Classifier
- Algorithm

- Recent (1990s/2010s)
- Highly popular in NLP
- Conceptually simple
- Computationally expensive and complex
- Features
- Representations

Perceptrons

&

Word Embeddings

The connection: both are neural network approaches

Softmax classifier

Hidden layer

Projection layer

Perceptrons

&

Word Embeddings

The connection: both are neural network approaches

More about (deep) neural networks next week

What is a perceptron?

- The simplest neural network variant
 - a.k.a. single-layer feed-forward neural network
- Neural networks consist of nodes
 - a.k.a. artificial neurons
 - a.k.a. threshold logic units (TLUs)
- More powerful version: the multi-layer perceptron (next week)

What is a perceptron?

- The simplest neural network variant
 - a.k.a. single-layer feed-forward neural network
- Neural networks consist of nodes
 - a.k.a. artificial neurons
 - a.k.a. threshold logic units (TLUs)
- More powerful version: the multi-layer perceptron (next week)

What is a perceptron?

- The simplest neural network variant
 - a.k.a. single-layer feed-forward neural network
- Neural networks consist of nodes
 - a.k.a. artificial neurons
 - a.k.a. threshold logic units (TLUs)
- More powerful version: the multi-layer perceptron (next week)

Supervised Learning

The Human Neuron

Source: Kevin Gurney - An Introduction to Neural Networks (1997)

The Artificial Neuron

Source: Kevin Gurney - An Introduction to Neural Networks (1997)

- neural network

- neural network
- units/nodes

- neural network
- units/nodes
- weights

- neural network
- units/nodes
- weights
- (supervised) learning

- neural network
- units/nodes
- weights
- (supervised) learning

Components

- neural network
- inputs
- weights
- node(s)
- activation
- output

From Activation to Output

- Activation = $a = \sum_{i=1}^{n} *w_i *x_i$
- Output = y = h(a)
- Activation function h(a):
 - Threshold θ :

$$y = \begin{cases} 1 & \text{if } a \ge \theta \\ 0 & \text{if } a < \theta \end{cases}$$

 Continuous squashing (e.g. sigmoid):

$$y = \sigma(a) = \frac{1}{1 + e^{-(a-\theta)/\rho}}$$

Training the Neural Network Model

Training the Neural Network Model

Single Layer Perceptron

Where is the model?

The Perceptron Rule

- The intuition: figure out who's to blame
 - Learning a task == Learning the weights
 - How? Initialize randomly, then adapt
 - How? Compare predicted and gold values, play the blame game
 - ullet Bigger contribution to error o Bigger change

The Perceptron Rule

- The intuition: figure out who's to blame
 - Learning a task == Learning the weights
 - How? Initialize randomly, then adapt
 - How? Compare predicted and gold values, play the blame game
 - $\bullet \ \mathsf{Bigger} \ \mathsf{contribution} \ \mathsf{to} \ \mathsf{error} \to \mathsf{Bigger} \ \mathsf{change}$
- The rule: $\Delta w_i = \alpha * (t y) * x_i$
 - Δw : change in weight
 - α : learning rate
 - t: target (gold label)
 - y: output (predicted label)
 - x: input

Perceptron Training Example

- The Rule: $\Delta w_i = \alpha * (t y) * x_i$
- Learning Rate: 0.25
- Threshold Input: -1

Perceptron Training Example

								$\alpha * (t - y)$			
								0			
0	0.0	1	0.4	0.4	0.3	1	0	-0.25	0	-0.25	+0.25

• The Rule: $\Delta w_i = \alpha * (t - y) * x_i$

• Learning Rate: 0.25

 \bullet Threshold Input: -1

Perceptron Training Example

x_1	w_1	<i>x</i> ₂	w_2	а	θ	y	t	$\alpha * (t - y)$	Δw_1	Δw_2	$\Delta \theta$
0	0.0	0	0.4	0	0.3	0	0	0	0	0	0
0	0.0	1	0.4	0.4	0.3	1	0	-0.25	0	-0.25	+0.25
1	0.0	0	0.15	0	0.55	0	0	0	0	0	0

• The Rule: $\Delta w_i = \alpha * (t - y) * x_i$

• **Learning Rate:** 0.25

• Threshold Input: -1

Perceptron Training Example

<i>x</i> ₁	w_1	<i>x</i> ₂	w_2	a	θ	у	t	$\alpha * (t - y)$	Δw_1	Δw_2	$\Delta \theta$
0	0.0	0	0.4	0	0.3	0	0	0	0	0	0
0	0.0	1	0.4	0.4	0.3	1	0	-0.25	0	-0.25	+0.25
1	0.0	0	0.15	0	0.55	0	0	0	0	0	0
1	0.0	1	0.15	0.15	0.55	0	1	0.25	+0.25	+0.25	-0.25

• The Rule: $\Delta w_i = \alpha * (t - y) * x_i$

• **Learning Rate:** 0.25

• Threshold Input: -1

Perceptron Training Example

x_1	w_1	<i>x</i> ₂	W_2	a	θ	у	t	$\alpha * (t - y)$	Δw_1	Δw_2	$\Delta \theta$
0	0.0	0	0.4	0	0.3	0	0	0	0	0	0
0	0.0	1	0.4	0.4	0.3	1	0	-0.25	0	-0.25	+0.25
1	0.0	0	0.15	0	0.55	0	0	0	0	0	0
1	0.0	1	0.15	0.15	0.55	0	1	0.25	+0.25	+0.25	-0.25
-	0.25	-	0.40	-	0.3	-	-	-	-	-	-

• The Rule: $\Delta w_i = \alpha * (t - y) * x_i$

• Learning Rate: 0.25

• Threshold Input: -1

Perceptron Training Properties & Parameters

Weight Initialization: how to set starting weights

Stochastic Learning: update weights after each training example

Batch Learning: update weights after a batch of training examples

Learning Rate: update the weights a lot, or just a little?

Stopping Criterion: when have we trained enough?

Threshold/Bias: in practice, a weight with fixed input of -1

Error Function: how to define the size of the mistake

Perceptron Capabilities

- So far: binary classification, with categorical output
- ullet Threshold function o categorical output
- Also possible: regression, with continous output

- ullet Sigmoid function o continuous output
- Also possible: multiple outputs, for multi-class classification
- Get probability for each class → select highest

Perceptron Capabilities

- So far: binary classification, with categorical output
- ullet Threshold function o categorical output
- Also possible: regression, with continous output

- ullet Sigmoid function o continuous output
- Also possible: multiple outputs, for multi-class classification
- ullet Get probability for each class o select highest

Perceptron Capabilities

- So far: binary classification, with categorical output
- ullet Threshold function o categorical output
- Also possible: regression, with continous output

- ullet Sigmoid function o continuous output
- Also possible: multiple outputs, for multi-class classification
- ullet Get probability for each class o select highest

Perceptron Limitations

Limitations:

- Only handles linearly separable problems
- AND, OR, but not XOR

Perceptron Limitations

Limitations:

- Only handles linearly separable problems
- AND, OR, but not XOR

Solution:

• Use multi-layer networks (next week)

Word Embeddings

Intuition

"You shall know a word by the company it keeps"

J.R. Firth, 1957

Terminology

- Word Embeddings: words, embedded in a vector space
- A distributional semantic representation
- Dense, real-valued, high-dimensional vectors
- Also known as:
 - (semantic) word vectors
 - neural (word) embeddings
 - semantic vector space models

The Rise and Rise of Embeddings

Google Scholar hits for "word embeddings":

- 2009: 8
- 2010: 9
- 2011: 13
- 2012: 37
- 2013: 100
- 2014: 342
- 2015: > 1250
- 2016: > 2180
- 2017: ?

http://aclanthology.info/events/acl-2016

Early Days

The idea of embedding words in a vector space is **not** new Earliest ideas from the 50s and 60s

- Take count-based statistics, apply dimensionality reduction
- LSA, topic models, LDA, PCA
- SOM, SRN

Early Days

The idea of embedding words in a vector space is **not** new Earliest ideas from the 50s and 60s From 1990 onwards, **precursors** arise:

- Take count-based statistics, apply dimensionality reduction
- LSA, topic models, LDA, PCA
- Early neural language model approaches
- SOM. SRN

All distributional semantic models

- Idea of pre-training (Collobert and Weston, 2008)

- Idea of pre-training (Collobert and Weston, 2008)
- Effective toolkit for pre-training (Mikolov, 2013)

- Idea of pre-training (Collobert and Weston, 2008)
- Effective toolkit for pre-training (Mikolov, 2013)

- Idea of pre-training (Collobert and Weston, 2008)
- Effective toolkit for pre-training (Mikolov, 2013)
- Impressive performance on different tasks sparks hype
- Also: availability of big data
- Also: increase computational power (GPUs)

- Idea of pre-training (Collobert and Weston, 2008)
- Effective toolkit for pre-training (Mikolov, 2013)
- Impressive performance on different tasks sparks hype
- Also: availability of big data
- Also: increase computational power (GPUs)

- Idea of pre-training (Collobert and Weston, 2008)
- Effective toolkit for pre-training (Mikolov, 2013)
- Impressive performance on different tasks sparks hype
- Also: availability of big data
- Also: increase computational power (GPUs)

Words as Vectors - Principle

Previously: count vectors, tf-idf vectors Why represent documents as vectors?

Words as Vectors - Principle

Previously: count vectors, tf-idf vectors Why represent documents as vectors?

Simple: math doesn't work with words! So, represent words as vectors as well

Words as Vectors - Example

- Represent four adjectives: great, terrible, good, bad
- Two main dimensions: intensity, positivity

Word	Intensity	Positivity		
great	0.8	1		
terrible	0.9	0		
good	0.5	1		
bad	0.5	0		

- More dimensions → more information
- Not just intensity, positivity, but also simplicity, comparative, colour-related, rudeness, register, etc.
- ullet Adjectives o all words
- Represent all words in all dimensions

- More dimensions → more information
- Not just intensity, positivity, but also simplicity, comparative, colour-related, rudeness, register, etc.
- Adjectives → all words
- Represent all words in all dimensions
- Manual → automatic
- Labelled → unlabelled
- Optimal semantic representation, meaningless dimensions
- Alternatively: interpretable, non-distributional, 'linguistic'

- More dimensions → more information
- Not just intensity, positivity, but also simplicity, comparative, colour-related, rudeness, register, etc.
- Adjectives → all words
- Represent all words in all dimensions
- Manual → automatic
- Labelled → unlabelled
- Optimal semantic representation, meaningless dimensions
- Alternatively: interpretable, non-distributional, 'linguistic'

- More dimensions → more information
- Not just intensity, positivity, but also simplicity, comparative, colour-related, rudeness, register, etc.
- Adjectives → all words
- Represent all words in all dimensions
- Manual → automatic
- Labelled → unlabelled
- Optimal semantic representation, meaningless dimensions
- Alternatively: interpretable, non-distributional, 'linguistic' representations (Farugui & Dyer, 2015)

Applications

Word Embeddings can (and have) been used as features for almost every NIP task:

- Tokenization
- Part-of-speech tagging
- Sentiment analysis
- Syntactic parsing
- Paraphrase detection
- Machine translation
- Named entity recognition

Can be used with various models, from 'traditional' SVMs to very deep neural networks

Why does it work?

- Prior Knowledge
- Generalization
- Unlabelled Big Data
- Beyond Training Data

Training

Don't count, predict! (Baroni et al., 2014)

Training

Don't count, predict! (Baroni et al., 2014)

Nico Rosberg quits Formula One after xxxxx world title

Training

Don't count, predict! (Baroni et al., 2014)

Arsenal dealt massive blow as midfield maestro out for three xxxxxx

One method: Continuous Bag-of-Words (CBoW)

Given a context, predict a word

Source: https://www.tensorflow.org/tutorials/word2vec/index.html

Other method: Skip-Gram

Given a word, predict its context

Source: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

But: many different variants exist!

Extrinsic Evaluation vs. Intrinsic Evaluation

How to evaluate word embeddings?

Extrinsic Evaluation vs. Intrinsic Evaluation

Extrinsic: evaluate model as part of a bigger system

Intrinsic: evaluate a model by itself, stand-alone

Extrinsic: assess effect of new tokenizer on parsing accuracy

Intrinsic: compare new tokenizer output to gold tokenization

Evaluating Embeddings

Many different ways to train embeddings, which is better?

Extrinsic Evaluation

- Use embeddings in parser, PoS-tagger, etc.
- Pro: useful, realistic, meaningful
- Con: selection of tasks, datasets, systems, expensive

Intrinsic Evaluation

- Use embeddings to measure similarity, analogies, etc.
- **Pro:** cheap, fewer confounding factors
- Con: too specific, imperfect human judgements, different datasets

Similarities

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	$_{\mathrm{MB/S}}$
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	$_{ m BIT/S}$
ITALY	SATAN	IPOD	PURPLISH	POPPED	$_{ m BAUD}$
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	$^{ m HD}$	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	$_{\rm GBIT/S}$
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Source: Collobert et al., Natural Language Processing (Almost) from Scratch (2011)

Similarities

- Visualizing embeddings: 2D/3D plot using t-SNE (https:// lvdmaaten.github.io/tsne/)
- Plot: Common English Words
- Plot: Netflix (3D as 2D + color)
- Demo: similarity querying (/net/shared/word2vec/ distance)

Relations

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Source: Collobert et al., Natural Language Processing (Almost) from Scratch (2011)

Relations

Demo: analogy querying (/net/shared/word2vec/word-analogy)

Source: https://deeplearning4j.org/word2vec

Assignment Overview

Assignment Week 4

Part 1: explore pre-trained word embeddings

Part 2: improve and analyse perceptron performance

Deadline: December 14, 23.00

Note: use LWP **or** use SSH **or** install word2vec