Real & Fake News Classification: How & Why

To Begin With...

分类准确性 vs 可解释性?

My Framework

如何分类?——How

NLTK文本处理

CountVectorizer

功能: 先拟合提取出样本的整体特征,再进行降维等操作将文本向量化。

```
[25]: from sklearn.feature_extraction.text import CountVectorizer
      vectorizer = CountVectorizer()
      corpus = [
           'This is the first document.',
           'This document is the second document.',
           'And this is the third one.',
           'Is this the first document?',
      X = vectorizer.fit_transform(corpus)
      print(X.toarray())
      [[0 1 1 1 0 0 1 0 1]
       [0 2 0 1 0 1 1 0 1]
       [1 0 0 1 1 0 1 1 1]
       [0 1 1 1 0 0 1 0 1]]
```

Classification Model

	Model	Avg_Accuracy	Avg_Precision	Avg_Recall	Avg_F1Score
0	Logistic Regresstion	0.995	0.994	0.995	0.995
1	Random Forest	0.991	0.991	0.991	0.990
2	SVM	0.995	0.993	0.995	0.995
3	KNN	0.617	0.563	0.719	0.719

Bert

Bert

Bert-MiniSample

样本大小: 50条真、50条假

训练集: 80 测试集: 20

训练轮数:5

训练时间:约10分钟

Bert-LargeSample

样本大小: 1000条真、1000条假

训练集: 1600 测试集: 400

训练轮数: 3

训练时间:约7.5小时

```
50/50 [2:38:47<00:00, 190.54s/it]
Epoch 1/3: 100%
Epochs: 1
             Train Accuracy: 1.000
             Train Precision: 1.000
             Train Recall: 1.000
             Train F1Score: 1.000
             Val Accuracy: 1.000
             Val Precision: 1.000
             Val Recall: 1.000
             Val F1Score: 1.000
                          50/50 [2:38:58<00:00, 190.76s/it]
Epoch 2/3: 100%
Epochs: 2
             Train Accuracy: 1.000
             Train Precision: 1.000
             Train Recall: 1.000
             Train F1Score: 1.000
             Val Accuracy: 1.000
             Val Precision: 1.000
             Val Recall: 1.000
             Val F1Score: 1.000
Epoch 3/3: 100%
                          50/50 [2:37:58<00:00, 189.57s/it]
Epochs: 3
             Train Accuracy: 1.000
             Train Precision: 1.000
             Train Recall: 1.000
             Train F1Score: 1.000
             Val Accuracy: 1.000
             Val Precision: 1.000
             Val Recall: 1.000
             Val F1Score: 1.000
```

But...

为什么分类准确性这么高?——Why

My Framework

词频挖掘

But...

真新闻: 34806条 假新闻: 43642条

比较词语出现频率差距可能更有意义

$$frequency = \frac{Word_count}{len(category)}$$

词频挖掘

词频挖掘

语义挖掘

语义挖掘——极性

语义挖掘——主观性

语义挖掘——主观性

Summary

- 1. 无论是常用的特征提取+分类模型还是Bert都能够很好地分类。
- 2. 两类新闻在文本上有一定的特征:
 - (1) 假新闻的主观性更强,可能是由于编写中杜撰成分更多
 - (2) 真新闻的 "Said" 词汇明显更多,可能由于真新闻更敢于引用
 - (3) 假新闻的"Hilary"词汇明显更多,可能由于数据集所属时间问题

后续方向

1. 基于TextBlob词表,进一步挖掘主观的词汇(假新闻特征)。

2. 试着将可视化做的更美观(比如左右柱状图)。

3. 将Bert模型在全样本上进行预测检验。

感谢聆听 敬请批评指正

赵煜东 12月22日