Alessandro Toigo

### Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
   (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica
   (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

#### Statistica e Probabilità

STATISTICA analisi dei risultati del passato

INFERENZA taratura del modello

PROBABILITÀ previsione dei risultati del futuro

PRIMA dell'esperimento

DOPO l'esperimento

|                                    | PRIMA                                                                                                                                                                                          | DOPO          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                    | dell'esperimento                                                                                                                                                                               | l'esperimento |
| variabili<br>aleatorie «<br>i.i.d. | $X_1 = \left( \begin{array}{c} x_1 = \left( \begin{array}{c} x_1 & x_2 \\ x_3 & x_4 \end{array} \right) \\ X_2 = \left( \begin{array}{c} x_1 & x_2 \\ x_3 & x_4 \end{array} \right) \\ \cdots$ |               |









|             | PRIMA dell'esperimento                                                  |               | DOPO<br>l'esperimento                                  |               |
|-------------|-------------------------------------------------------------------------|---------------|--------------------------------------------------------|---------------|
| variabili   | $X_1 = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$            | $\rightarrow$ | $x_1 = 1.2$                                            |               |
| aleatorie { | $X_2 = \sum_{\substack{0 \in \mathcal{V}_2 \\ >_{\theta} }} z^{\theta}$ | $\rightarrow$ | $x_2 = 0.6$                                            | realizzazioni |
| i.i.d.      |                                                                         | $\rightarrow$ |                                                        | (dati)        |
| densità {   | $X_i \sim f_{	heta}$                                                    | $\rightarrow$ | *                                                      |               |
| parametri { | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$                  | $\rightarrow$ | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$ | } parametri   |

|                                    | PRIMA dell'esperimento                                                                                                  |               | DOPO<br>l'esperimento                                  |               |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------|---------------|
| variabili<br>aleatorie {<br>i.i.d. | $X_1 = \begin{pmatrix} 0.6 & 7^2 \\ \sqrt{2} & \sqrt{2} & 2^9 \end{pmatrix}$                                            | $\rightarrow$ | $x_1 = 1.2$                                            |               |
|                                    | $X_2 = \sum_{\substack{0.6 \ 2^{\circ} \\ \lambda_{\scriptscriptstyle \theta} \ \nu_{\scriptscriptstyle 0}}} x^{\circ}$ | $\rightarrow$ | $x_2 = 0.6$                                            | realizzazioni |
|                                    | •••                                                                                                                     | $\rightarrow$ | •••                                                    | (dati)        |
| densità {                          | $X_i \sim f_{	heta}$                                                                                                    | $\rightarrow$ | *                                                      |               |
| parametri {                        | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$                                                                  | $\rightarrow$ | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$ | } parametri   |

Vogliamo approssimare  $\theta$  in base ai dati!

|             | PRIMA dell'esperimento                                       |               | DOPO<br>l'esperimento      |               |
|-------------|--------------------------------------------------------------|---------------|----------------------------|---------------|
| variabili   | $X_1 = \begin{pmatrix} 0.6 & 7.2 \\ 7.2 & 7.2 \end{pmatrix}$ | $\rightarrow$ | $x_1 = 1.2$                |               |
| aleatorie < | $X_2 = \begin{pmatrix} 0.6 & 7^2 \\ 2 & 20 \end{pmatrix}$    | $\rightarrow$ | $x_2 = 0.6$                | realizzazioni |
| i.i.d.      |                                                              | $\rightarrow$ | •••                        | (dati)        |
| densità <   | $\left( -X_i \sim N(\mu, \sigma^2)  ight)$                   | $\rightarrow$ | *                          |               |
| parametri « | $\mu=1.5$ $\sigma=0.8$                                       | $\rightarrow$ | $\mu =$ 1.5 $\sigma =$ 0.8 | } parametri   |

Vogliamo approssimare  $\mu$  e  $\sigma$  in base ai dati!

**STATISTICA** = qualsiasi funzione del campione aleatorio  $X_1, \ldots, X_n$ 

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

Una statistica è una variabile aleatoria!

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

 $\frac{\text{STIMATORE}}{\text{statistica usata per approssimare}} = \frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$ 

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

**ESEMPIO:** la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

 $\frac{\text{STIMATORE}}{\text{statistica usata per approssimare}} = \frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$ 

**ESEMPIO:**  $\overline{X}$  si usa spesso come stimatore di  $\mu = \mathbb{E}[X_i]$ 

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

STIMATORE =  $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$ 

**ESEMPIO:**  $\overline{X}$  si usa spesso come stimatore di  $\mu = \mathbb{E}[X_i]$ 

Uno stimatore è una variabile aleatoria!

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

STIMATORE =  $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$ 

**ESEMPIO:**  $\overline{X}$  si usa spesso come stimatore di  $\mu = \mathbb{E}[X_i]$ 

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

STIMATORE =  $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$ 

**ESEMPIO:**  $\overline{X}$  si usa spesso come stimatore di  $\mu = \mathbb{E}[X_i]$ 

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

**ESEMPIO:** dopo n = 3 misure trovo  $x_1 = 1.2$ ,  $x_2 = 0.6$ ,  $x_3 = 2.9$ 

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

**ESEMPIO:** la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

STIMATORE =  $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$ 

**ESEMPIO:**  $\overline{X}$  si usa spesso come stimatore di  $\mu = \mathbb{E}[X_i]$ 

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

**ESEMPIO:** dopo 
$$n = 3$$
 misure trovo  $x_1 = 1.2$ ,  $x_2 = 0.6$ ,  $x_3 = 2.9$ 

$$\Rightarrow$$
  $\overline{x} = \frac{1.2 + 0.6 + 2.9}{3} = 1.567$  è una stima di  $\mu$ 

STATISTICA = qualsiasi funzione del campione aleatorio  $X_1, \dots, X_n$ 

**ESEMPIO:** la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove  $h(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$ 

STIMATORE =  $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$ 

**ESEMPIO:**  $\overline{X}$  si usa spesso come stimatore di  $\mu = \mathbb{E}[X_i]$ 

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

**ESEMPIO:** dopo 
$$n = 3$$
 misure trovo  $x_1 = 1.2$ ,  $x_2 = 0.6$ ,  $x_3 = 2.9$ 

$$\Rightarrow$$
  $\overline{x} = \frac{1.2 + 0.6 + 2.9}{3} = 1.567$  è una stima di  $\mu$ 

Una stima è un numero!

$$\begin{array}{c} \text{PRIMA} & \text{DOPO} \\ \text{dell'esperimento} & \text{l'esperimento} \\ \end{array} \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \text{aleatorie} & X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{i.i.d.}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \text{aleatorie} & X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_2 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 \\ \end{array} }_{\text{variabili}} \\ \\ \begin{array}{c} X_1 = \underbrace{ \begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 \\$$

 $\theta$  non si può misurare, ma  $\hat{\Theta}$  sì!

|                                    | PRIMA dell'esperimento                                                             |               | DOPO<br>l'esperimento                      |                      |
|------------------------------------|------------------------------------------------------------------------------------|---------------|--------------------------------------------|----------------------|
| variabili<br>aleatorie 〈<br>i.i.d. | $X_1 = \begin{pmatrix} x_1 & x_2 \\ y_2 & y_3 \end{pmatrix}$                       | $\rightarrow$ | $x_1 = 1.2$                                |                      |
|                                    | $X_2 = \left( \begin{array}{c} 0.6 \\ \begin{array}{c} 2 \\ \end{array} \right)^2$ | $\rightarrow$ | $x_2 = 0.6$                                | realizzazioni (dati) |
|                                    | $X_3 = \sqrt[3]{2}$                                                                | $\rightarrow$ | $x_3 = 2.9$                                | ) (daii)             |
| densità {                          | $X_i \sim N(\mu, \sigma^2)$                                                        | $\rightarrow$ | *                                          |                      |
| parametri {                        | $\mu=$ 1.5 $\sigma=$ 0.8                                                           | $\rightarrow$ | $\mu=$ 1.5 $\sigma=$ 0.8                   | } parametri          |
| stimatore $\left\{  ight.$         | $\overline{X} = \frac{X_1 + X_2 + X_3}{3}$                                         | $\rightarrow$ | $\overline{X} = \frac{1.2 + 0.6 + 2.9}{3}$ | } stima              |

Se  $\hat{\Theta}$  è un buono stimatore del parametro incognito  $\theta$ :

ullet  $\hat{\Theta}$  non deve dipendere da heta

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio

- ullet  $\hat{\Theta}$  non deve dipendere da  $\theta$ 
  - ⇒ si vede a occhio
- ullet la densità di  $\hat{\Theta}$  deve essere centrata in heta

- ullet  $\hat{\Theta}$  non deve dipendere da  $\theta$ 
  - ⇒ si vede a occhio
- la densità di  $\hat{\Theta}$  deve essere centrata in  $\theta$

$$\Rightarrow$$
  $\mathbb{E}[\hat{\Theta}] \simeq \theta$ 

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio
- la densità di  $\hat{\Theta}$  deve essere centrata in  $\theta$

$$\Rightarrow$$
  $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow \mathbf{0} \simeq \mathbb{E}[\hat{\Theta}] - \theta$ 

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio
- la densità di  $\hat{\Theta}$  deve essere centrata in  $\theta$

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: \underbrace{\text{bias}(\hat{\Theta}; \theta)}_{\text{distorsione}}$$

Se  $\hat{\Theta}$  è un buono stimatore del parametro incognito  $\theta$ :

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio
- la densità di  $\hat{\Theta}$  deve essere centrata in  $\theta$

$$\Rightarrow$$
  $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow \mathbf{0} \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$ 

 $bias(\hat{\Theta}; \theta) = 0 \Leftrightarrow \hat{\Theta} \Leftrightarrow non-distorto (o corretto)$ 

Se  $\hat{\Theta}$  è un buono stimatore del parametro incognito  $\theta$ :

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio
- la densità di  $\hat{\Theta}$  deve essere centrata in  $\theta$

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

ullet la densità di  $\hat{\Theta}$  deve essere dispersa il meno possibile

Se  $\hat{\Theta}$  è un buono stimatore del parametro incognito  $\theta$ :

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio
- ullet la densità di  $\hat{\Theta}$  deve essere centrata in heta

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

ullet la densità di  $\hat{\Theta}$  deve essere dispersa il meno possibile

$$\Rightarrow \underbrace{\operatorname{mse}(\hat{\Theta}; \theta)}_{\substack{\text{errore} \\ \text{quadratico} \\ \text{medio}}} := \mathbb{E}[(\hat{\Theta} - \theta)^2] \qquad \text{deve esser piccolo}$$

Se  $\hat{\Theta}$  è un buono stimatore del parametro incognito  $\theta$ :

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio
- la densità di  $\hat{\Theta}$  deve essere centrata in  $\theta$

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: \text{bias}(\hat{\Theta}; \theta)$$
$$\text{bias}(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \hat{\Theta} \quad \text{enon-distorto (o corretto)}$$

ullet la densità di  $\hat{\Theta}$  deve essere dispersa il meno possibile

$$\Rightarrow \underbrace{\frac{\mathsf{mse}(\hat{\Theta}; \theta)}{\underset{\underline{\mathsf{square}}}{\mathsf{mean}}} := \mathbb{E}[(\hat{\Theta} - \theta)^2] \qquad \text{deve esser piccolo}$$

### Proprietà degli stimatori

Se  $\hat{\Theta}$  è un buono stimatore del parametro incognito  $\theta$ :

- ullet  $\hat{\Theta}$  non deve dipendere da heta
  - ⇒ si vede a occhio
- la densità di  $\hat{\Theta}$  deve essere centrata in  $\theta$

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

 $\bullet$  la densità di  $\hat{\Theta}$  deve essere dispersa il meno possibile

$$\Rightarrow \operatorname{mse}(\hat{\Theta}; \theta) := \mathbb{E}[(\hat{\Theta} - \theta)^2]$$
 deve esser piccolo Se  $\hat{\Theta}_n = h_n(X_1, \dots, X_n)$ , allora

$$\operatorname{mse}(\hat{\Theta}_n; \theta) \underset{n \to \infty}{\longrightarrow} 0 \iff \hat{\Theta}_n \text{ è consistente in media quadratica}$$

### Proprietà degli stimatori

#### Se $\hat{\Theta}_n$ è un buono stimatore del parametro incognito $\theta$ :

- $\bullet$   $\hat{\Theta}_n$  non deve dipendere da  $\theta$ 
  - ⇒ si vede a occhio
- ullet la densità di  $\hat{eta}$  deve essere centrata in heta

$$\Rightarrow$$
  $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$ 

 $bias(\hat{\Theta}; \theta) = 0 \Leftrightarrow \hat{\Theta}_n \text{ è non-distorto (o corretto)}$ 

• la densità di Ô deve essere dispersa il meno possibile

$$\Rightarrow \operatorname{mse}(\hat{\Theta}; \theta) := \mathbb{E}[(\hat{\Theta} - \theta)^2]$$
 deve esser piccolo

Se 
$$\hat{\Theta}_n = h_n(X_1, \dots, X_n)$$
, allora

$$\operatorname{mse}(\hat{\Theta}_n;\theta) \xrightarrow[n \to \infty]{} 0 \Leftrightarrow \hat{\Theta}_n$$
 è consistente in media quadratica

bias(
$$\hat{\Theta}$$
;  $\theta$ ) =  $\mathbb{E}[\hat{\Theta}] - \theta$   
mse( $\hat{\Theta}$ ;  $\theta$ ) =  $\mathbb{E}[(\hat{\Theta} - \theta)^2]$ 

bias(
$$\hat{\Theta}$$
;  $\theta$ ) =  $\mathbb{E}[\hat{\Theta}] - \theta$   
mse( $\hat{\Theta}$ ;  $\theta$ ) =  $\mathbb{E}[(\hat{\Theta} - \theta)^2]$ 

- $\bullet$  bias( $\hat{\Theta}$ ;  $\theta$ )  $\in$  ( $-\infty$ ,  $+\infty$ )

bias(
$$\hat{\Theta}$$
;  $\theta$ ) =  $\mathbb{E}[\hat{\Theta}] - \theta$   
mse( $\hat{\Theta}$ ;  $\theta$ ) =  $\mathbb{E}[(\hat{\Theta} - \theta)^2]$ 

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in$  ( $-\infty$ ,  $+\infty$ )

bias(
$$\hat{\Theta}$$
;  $\theta$ ) =  $\mathbb{E}[\hat{\Theta}] - \theta$   
mse( $\hat{\Theta}$ ;  $\theta$ ) =  $\mathbb{E}[(\hat{\Theta} - \theta)^2]$ 

DISTORSIONE
ERRORE QUADRATICO MEDIO

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

perché mse ≥ 0

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in$  ( $-\infty$ ,  $+\infty$ )

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in$  ( $-\infty$ ,  $+\infty$ )

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in$  ( $-\infty$ ,  $+\infty$ )

bias
$$(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
 DIS  
mse $(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$  ERF

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta$

bias
$$(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
 DISTORSIONE  
mse $(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$  ERRORE QUAI

ERRORE QUADRATICO MEDIO

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \underset{\mathbb{P}(E) \leq 1}{\geq} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right)$$

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \underset{\mathbb{E}[\hat{\Theta}_{n}] = \theta}{=} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in$  ( $-\infty$ ,  $+\infty$ )

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$\begin{array}{ccc} \mathbf{1} & \geq & \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) & = & \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right) \\ \\ & \geq & 1 - \frac{\mathrm{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} \end{array}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$
$$\geq 1 - \frac{\operatorname{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} = 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$
$$\geq 1 - \frac{\operatorname{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} = 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}}$$

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \ge \mathbb{P}\left(\left|\hat{\Theta}_n - \theta\right| < \varepsilon\right) \ge 1 - \frac{\operatorname{mse}(\hat{\Theta}_n; \theta)}{\varepsilon^2}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \geq 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}} \xrightarrow[n \to \infty]{} 1$$

perché  $\operatorname{mse}(\hat{\Theta}_n; \theta) \xrightarrow[n \to \infty]{} 0$ 

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \geq 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}} \xrightarrow[n \to \infty]{} 1$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = 1$$

bias
$$(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
  
mse $(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$ 

- **1** bias( $\hat{\Theta}$ ;  $\theta$ )  $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta$

Vogliamo stimare il parametro  $\mu := \mathbb{E}\left[X_i\right]$  usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_n = \mu$$
  $\hat{M}'_n = X_3$   $\hat{M}''_n = \overline{X}_n$ 

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_n = \mu$$
  $\hat{M}'_n = X_3$   $\hat{M}''_n = \overline{X}_n$ 

$$\hat{M}_n$$
 NO

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_n = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_n = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \mathsf{S}$$

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n=X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n=X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 SÌ

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_n = X_3$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì  $\mathbb{E}[\hat{M}'_n] = \mu$  Sì

$$\mathbb{E}[\hat{M}'_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 SÌ

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime}=\overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \xrightarrow[n \to \infty]{} 0$$
 Sì

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[ (X_3 - \mu)^2 \right] = \operatorname{var}\left[ X_3 \right]$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n}$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \xrightarrow[n \to \infty]{} 0$$
 Sì

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[ (X_3 - \mu)^2 \right] = \operatorname{var}\left[ X_3 \right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[ X_3 \right]$$

NO

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n}$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì  $\mathbb{E}[\hat{M}'_n] = \mu$  Sì

$$\mathbb{E}[\hat{M}'_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

NO

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Si}$$

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2\right] = \operatorname{var}\left[X_3\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_3\right]$$

$$\operatorname{mse}(\hat{M}_{n}^{"}; \mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2}$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n}$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n'] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

NO

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_{3}\right]$$

$$\operatorname{mse}(\hat{M}_{n}'';\mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n};\mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n}$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì  $\mathbb{E}[\hat{M}'_n] = \mu$  Sì

$$\mathbb{E}[\hat{M}'_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

SÌ

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2\right] = \operatorname{var}\left[X_3\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_3\right]$$
 NO

$$\operatorname{mse}(\hat{M}_{n}'';\mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n};\mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n} \underset{n \to \infty}{\longrightarrow} 0$$

Vogliamo stimare il parametro  $\mu := \mathbb{E}[X_i]$  usando gli stimatori

$$\hat{M}_n = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$  ?

$$\hat{M}_n$$
 NO  $\hat{M}'_n$  Sì  $\hat{M}''_n$  Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}''_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}''_n] = \mu \quad \text{Si}$$

$$\operatorname{mse}(\hat{M}_{n}; \mu) = \mathbb{E}\left[(\mu - \mu)^{2}\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \quad \text{Si}$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \underset{n \to \infty}{\longrightarrow} \operatorname{var}\left[X_{3}\right] \quad \text{NO}$$

$$\operatorname{mse}(\hat{M}''_{n}; \mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n} \underset{n \to \infty}{\longrightarrow} 0 \quad \text{Si}$$

Vogliamo stimare il parametro  $\; \mu := \mathbb{E}\left[ X_i 
ight] \;$  usando gli stimatori

$$\hat{M}_n = \overline{X}_n$$

• Lo stimatore è indipendente da  $\mu$ ?

$$\hat{M}_n$$
 NO  $\overline{X}_n$  è lo stimatore migliore di  $\mu = \mathbb{E}\left[X_i\right]$ 

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì  $\mathbb{E}[\hat{M}_n'] = \mu$  Sì  $\mathbb{E}[\hat{M}_n''] = \mu$  Sì

$$\operatorname{mse}(\hat{M}_{n}; \mu) = \mathbb{E}\left[(\mu - \mu)^{2}\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Sì}$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \underset{n \to \infty}{\longrightarrow} \operatorname{var}\left[X_{3}\right] \qquad \operatorname{NC}$$

$$\operatorname{mse}(\hat{M}''_{n}; \mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n} \underset{n \to \infty}{\longrightarrow} 0$$

## Altre quantità

• ERRORE STANDARD = 
$$\underbrace{\operatorname{se}(\hat{\Theta}; \theta)}_{\substack{\text{standard} \\ \text{error}}} := \sqrt{\operatorname{mse}(\hat{\Theta}; \theta)}$$

## Altre quantità

- ERRORE STANDARD =  $se(\hat{\Theta}; \theta) := \sqrt{mse(\hat{\Theta}; \theta)}$
- EFFICIENZA RELATIVA di  $\hat{\Theta}$  contro  $\hat{\Theta}' := \frac{\operatorname{mse}(\hat{\Theta}'; \theta)}{\operatorname{mse}(\hat{\Theta}; \theta)}$

# Altre quantità

- ERRORE STANDARD =  $se(\hat{\Theta}; \theta) := \sqrt{mse(\hat{\Theta}; \theta)}$
- EFFICIENZA RELATIVA di  $\hat{\Theta}$  contro  $\hat{\Theta}' := \frac{\operatorname{mse}(\hat{\Theta}'; \theta)}{\operatorname{mse}(\hat{\Theta}; \theta)}$

Se supera 1, lo stimatore  $\hat{\Theta}$  è meglio di  $\hat{\Theta}'$  in termini di mse

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \left( \sum_{i=1}^n X_i^2 \right) - n \cdot \overline{X}_n^2 \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

Vogliamo stimare  $\sigma^2 := var[X_i]$  con la *varianza campionaria* 

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

• Lo stimatore è indipendente da  $\sigma^2$ ?

Vogliamo stimare  $\sigma^2 := var[X_i]$  con la *varianza campionaria* 

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

• Lo stimatore è indipendente da  $\sigma^2$ ?

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = ???$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2 \quad \Rightarrow \quad \mathbb{E}\left[Z^2\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2} = \sigma^{2} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2} = \sigma^{2} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_{n}^{2}\right] = \operatorname{var}\left[\overline{X}_{n}\right] + \mathbb{E}\left[\overline{X}_{n}\right]^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_{n}^{2}\right] = \operatorname{var}\left[\overline{X}_{n}\right] + \mathbb{E}\left[\overline{X}_{n}\right]^{2} = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n \left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2 \quad \Rightarrow \quad \mathbb{E}\left[Z^2\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^2$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_n^2\right] = \operatorname{var}\left[\overline{X}_n\right] + \mathbb{E}\left[\overline{X}_n\right]^2 = \frac{\sigma^2}{n} + \mu^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$  ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum_{i=1}^{n} \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$
$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$
$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + p\mu^2\right) \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + p\mu^2\right) \right\}$$

$$= \frac{1}{n-1} (n-1) \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left(n-1\right) \sigma^2 = \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left(n-1\right) \sigma^2 = \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ? Sì
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ? Sì
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\mathsf{mse}\big(S_n^2\,;\,\sigma^2\big) = \mathsf{var}\left[S_n^2\right] + \mathsf{bias}\big(S_n^2\,;\,\sigma^2\big)^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$  ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$

$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \qquad \text{(più complicato)}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$ ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$
$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \xrightarrow[n \to \infty]{} 0$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$  ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$
$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \xrightarrow[n \to \infty]{0}$$

### Varianza campionaria

Vogliamo stimare  $\sigma^2 := var[X_i]$  con la *varianza campionaria* 

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da  $\sigma^2$  ? Sì
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica? SÌ

 $S_n^2$  è un buono stimatore di  $\sigma^2$ 

IPOTESI:  $\left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \;\; {\sf parametri}\; {\sf con}\;\; \theta = {\it g}(\alpha,\beta) \\ \end{array} \right.$ 

IPOTESI:  $\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$ 

 $\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$ 

Qual è uno stimatore non distorto di  $\theta$ ?

```
 \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} -\alpha,\beta,\theta & parametric con $\theta=g(\alpha,\beta)$\\ -\hat{A} & stimatore non-distorto di $\alpha$\\ -\hat{B} & stimatore non-distorto di $\beta$\\ \end{tabular}
```

 $\hat{\Theta} := g(\hat{A},\hat{B})$  è uno stimatore approssimativamente non-distorto di heta

 $\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})]$ 

```
 \text{IPOTESI:} \begin{array}{l} \left\{ \begin{array}{l} \text{-} & \alpha,\beta,\,\theta \text{ parametri con } \theta=g(\alpha,\beta) \\ \text{-} & \hat{A} \text{ stimatore non-distorto di } \alpha \\ \text{-} & \hat{B} \text{ stimatore non-distorto di } \beta \end{array} \right. \\ \hat{\Theta}:=g(\hat{A},\hat{B}) \text{ è uno stimatore approssimativamente non-distorto di } \theta:
```

```
 \mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.
```

 $\hat{\Theta} := g(\hat{A},\hat{B})$  è uno stimatore approssimativamente non-distorto di heta :

$$\mathbb{E}[\hat{\Theta}] \ = \ \mathbb{E}[g(\hat{A}, \hat{B})] \underset{\text{metodo} \\ \text{delta}}{\simeq} \ g\big(\mathbb{E}[\hat{A}], \ \mathbb{E}[\hat{B}]\big)$$

```
 \mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.
```

 $\hat{\Theta}:=g(\hat{A},\hat{B})$  è uno stimatore approssimativamente non-distorto di  $\, heta$  :

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta)$$

```
IPOTESI:  \begin{cases} -\alpha, \beta, \theta \text{ parametri con } \theta = g(\alpha, \beta) \\ -\hat{A} \text{ stimatore non-distorto di } \alpha \\ -\hat{B} \text{ stimatore non-distorto di } \beta \end{cases}
```

$$\hat{\Theta}:=g(\hat{A},\hat{B})$$
 è uno stimatore approssimativamente non-distorto di  $\theta$  :

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

```
 \mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.
```

 $\hat{\Theta} := g(\hat{A},\hat{B})$  è uno stimatore approssimativamente non-distorto di heta :

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

IPOTESI: 
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$  è uno stimatore approssimativamente non-distorto di  $\, heta$  :

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

#### **OSSERVAZIONE:**

$$\theta = a\alpha + b\beta \quad \Rightarrow \quad \hat{\Theta} = a\hat{A} + b\hat{B} \, \hat{e} \,$$
esattamente non-distorto

IPOTESI: 
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$  è uno stimatore approssimativamente non-distorto di  $\, heta$  :

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

#### **OSSERVAZIONE:**

$$\theta = a\alpha + b\beta \quad \Rightarrow \quad \hat{\Theta} = a\hat{A} + b\hat{B}$$
 è esattamente non-distorto

E per stimare l'errore  $mse(\hat{\Theta}; \theta)$ ?

```
IPOTESI: \begin{cases} -&\alpha,\beta,\,\theta \text{ parametri con }\theta=g(\alpha,\beta)\\ -&\hat{A} \text{ stimatore non-distorto di }\alpha\\ -&\hat{B} \text{ stimatore non-distorto di }\beta \end{cases} \hat{\Theta}:=g(\hat{A},\hat{B}) \text{ è uno stimatore approssimativamente non-distorto di }\theta
```

 $\operatorname{mse}(\hat{\Theta}; \theta) = e(\alpha, \beta, \operatorname{var}[\hat{A}], \operatorname{var}[\hat{B}])$  con e funzione opportuna

$$\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$$

$$\hat{\Theta}:=g(\hat{A},\hat{B})$$
 è uno stimatore approssimativamente non-distorto di  $\theta$  
$$\mathrm{mse}(\hat{\Theta};\theta)=e\left(\alpha,\beta,\mathrm{var}[\hat{A}],\mathrm{var}[\hat{B}]\right) \quad \mathrm{con} \ \ e \ \ \mathrm{funzione} \ \mathrm{opportuna}$$

IPOTESI ULTERIORI:  $\begin{cases} - & S_A^2 \text{ stimatore non-distorto di } \text{var}[\hat{A}] \\ - & S_B^2 \text{ stimatore non-distorto di } \text{var}[\hat{B}] \end{cases}$ 

$$\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$$

 $\hat{\Theta} := g(\hat{A}, \hat{B})$  è uno stimatore approssimativamente non-distorto di  $\theta$  $mse(\hat{\Theta}; \theta) = e(\alpha, \beta, var[\hat{A}], var[\hat{B}])$  con e funzione opportuna

IPOTESI ULTERIORI:  $\begin{cases} - & S_A^2 \text{ stimatore non-distorto di } \text{var}[\hat{A}] \\ - & S_B^2 \text{ stimatore non-distorto di } \text{var}[\hat{B}] \end{cases}$ 

$$\widehat{\mathrm{MSE}} := e(\hat{A}, \hat{B}, S_A^2, S_B^2)$$

 $\widehat{\text{MSE}} := e\left(\hat{A}, \hat{B}, S_A^2, S_B^2\right) \quad \text{stimatore approssimativamente} \\ \quad \text{non-distorto di } \mathsf{mse}(\hat{\Theta}; \theta)$ 





m=5 misure di tensione  $V_1,\ldots,V_5$  i.i.d. no errore sistematico  $\Rightarrow$   $\mathbb{E}\left[V_i\right]=v$ 



m=5 misure di tensione  $V_1,\ldots,V_5$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[V_i\right]=v$  n=3 misure di corrente  $I_1,I_2,I_3$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[I_i\right]=i$ 



m=5 misure di tensione  $V_1,\ldots,V_5$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[V_i\right]=v$  n=3 misure di corrente  $I_1,I_2,I_3$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[I_i\right]=i$ 

•  $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$  è uno stimatore non-distorto di V



m=5 misure di tensione  $V_1,\ldots,V_5$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[V_i\right]=v$  n=3 misure di corrente  $I_1,I_2,I_3$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[I_i\right]=i$ 

•  $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$  è uno stimatore non-distorto di v, perché  $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i]$ 



m=5 misure di tensione  $V_1,\ldots,V_5$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[V_i\right]=v$  n=3 misure di corrente  $I_1,I_2,I_3$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[I_i\right]=i$ 

•  $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$  è uno stimatore non-distorto di v, perché  $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i] = v$ 



m=5 misure di tensione  $V_1,\ldots,V_5$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[V_i\right]=v$  n=3 misure di corrente  $I_1,I_2,I_3$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[I_i\right]=i$ 

•  $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$  è uno stimatore non-distorto di v, perché  $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i] = v \quad \Rightarrow \quad \text{bias}(\overline{V}; v) = 0$ 



m=5 misure di tensione  $V_1,\ldots,V_5$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[V_i\right]=v$  n=3 misure di corrente  $I_1,I_2,I_3$  i.i.d. no errore sistematico  $\Rightarrow \mathbb{E}\left[I_i\right]=i$ 

- $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$  è uno stimatore non-distorto di v, perché  $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = v \quad \Rightarrow \quad \mathrm{bias}(\overline{V}; v) = 0$
- $\bar{I} = \frac{1}{3}(I_1 + I_2 + I_3)$  è uno stimatore non-distorto di i (idem)



m = 5 misure di tensione  $V_1, \ldots, V_5$  i.i.d.  $r = \frac{v}{i}$  no errore sistematico  $\Rightarrow \mathbb{E}[V_i] = v$  n = 3 misure di corrente  $I_1, I_2, I_3$  i.i.d. no errore sistematico  $\Rightarrow$   $\mathbb{E}[I_i] = i$ 

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$  è uno stimatore non-distorto di V, perché  $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \operatorname{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$  è uno stimatore non-distorto di *i* (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$  è uno stimatore approx. non-distorto di r



m = 5 misure di tensione  $V_1, \ldots, V_5$  i.i.d.  $r = \frac{v}{i}$  no errore sistematico  $\Rightarrow \mathbb{E}[V_i] = v$  n = 3 misure di corrente  $I_1, I_2, I_3$  i.i.d. no errore sistematico  $\Rightarrow$   $\mathbb{E}[I_i] = i$ 

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$  è uno stimatore non-distorto di V, perché  $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$  è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$  è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left[\frac{\overline{V}}{\overline{I}}\right]$$



m = 5 misure di tensione  $V_1, \ldots, V_5$  i.i.d.  $r = \frac{v}{i}$   $no errore sistematico <math>\Rightarrow \mathbb{E}[V_i] = v$   $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico  $\Rightarrow$   $\mathbb{E}[I_i] = i$ 

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$  è uno stimatore non-distorto di V, perché  $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$  è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$  è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left[\frac{\overline{V}}{\overline{I}}\right] \underset{\text{metodo} \\ \text{delta}}{\simeq} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]}$$



m = 5 misure di tensione  $V_1, \ldots, V_5$  i.i.d.  $r = \frac{v}{i}$   $no errore sistematico <math>\Rightarrow \mathbb{E}[V_i] = v$   $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico  $\Rightarrow$   $\mathbb{E}[I_i] = i$ 

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$  è uno stimatore non-distorto di V, perché  $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = v \quad \Rightarrow \quad \text{bias}(\overline{V}; v) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$  è uno stimatore non-distorto di *i* (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$  è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{delta}}{\sim} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i}$$



m = 5 misure di tensione  $V_1, \ldots, V_5$  i.i.d.  $r = \frac{v}{i}$  no errore sistematico  $\Rightarrow \mathbb{E}[V_i] = v$  i n = 3 misure di corrente  $I_1, I_2, I_3$  i.i.d. no errore sistematico  $\Rightarrow$   $\mathbb{E}[I_i] = i$ 

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$  è uno stimatore non-distorto di V, perché  $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$  è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$  è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{metodo} \text{ obta}}{\sim} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i} = r$$



m = 5 misure di tensione  $V_1, \ldots, V_5$  i.i.d.  $r = \frac{v}{i}$   $no errore sistematico \Rightarrow \mathbb{E}[V_i] = v$   $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico  $\Rightarrow$   $\mathbb{E}[I_i] = i$ 

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$  è uno stimatore non-distorto di V, perché  $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$  è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$  è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{metodo}}{\overset{\sim}{\sim}} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i} = r$$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$ 

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; V) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; V)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \mathrm{var}\left[I_j\right]$ 

• 
$$\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}, \overline{V})^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$$
  
 $\Rightarrow \widehat{MSE}_V := \frac{S_V^2}{m}$  è uno stimatore non-distorto di  $\operatorname{mse}(\overline{V}; v)$ 

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \mathrm{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \underline{\operatorname{bias}}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$  $\Rightarrow \widehat{\mathrm{MSE}}_V := \frac{S_V^2}{m}$  è uno stimatore non-distorto di  $\operatorname{mse}(\overline{V}; v)$
- $\operatorname{mse}(\bar{l}; i) = \ldots = \frac{\sigma_l^2}{n}$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var} \left[ I_j \right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$  $\Rightarrow \widehat{MSE}_V := \frac{S_V^2}{m}$  è uno stimatore non-distorto di  $\operatorname{mse}(\overline{V}; v)$
- $\operatorname{mse}(\bar{I}; i) = \ldots = \frac{\sigma_{\bar{I}}^2}{n}$  $\Rightarrow \widehat{\mathrm{MSE}}_I := \frac{S_I^2}{n}$  è uno stimatore non-distorto di  $\operatorname{mse}(\bar{I}; i)$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var} \left[ I_j \right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di  $r = \frac{v}{\overline{I}}$ 

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$  approx. non-distorto di  $r = \frac{v}{\overline{I}}$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \mathrm{var}\left[I_j\right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di  $r = \frac{v}{\overline{I}}$ 

• 
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \underbrace{\operatorname{bias}(\hat{R}; r)^2}_{\simeq 0}$$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \mathrm{var}\left[I_j\right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di  $r = \frac{v}{\overline{I}}$ 

• 
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \underbrace{\operatorname{bias}(\hat{R}; r)^2}_{\approx 0} \simeq \operatorname{var}[\hat{R}]$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$  approx. non-distorto di  $r = \frac{V}{\overline{I}} = g(V, I)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R}=rac{\overline{V}}{\overline{I}}=g\left(\overline{V},\overline{I}
  ight)$  approx. non-distorto di  $r=rac{V}{\overline{I}}=g\left(V,I
  ight)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$

$$\underset{\text{delta}}{\simeq} \left[ \partial_{1} g \left( \mathbb{E} \left[ \overline{V} \right], \mathbb{E} \left[ \overline{I} \right] \right) \right]^{2} \text{var} \left[ \overline{V} \right] + \left[ \partial_{2} g \left( \mathbb{E} \left[ \overline{V} \right], \mathbb{E} \left[ \overline{I} \right] \right) \right]^{2} \text{var} \left[ \overline{I} \right]$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \mathrm{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}\right)$  approx. non-distorto di  $r = \frac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}\right)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$  $\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$

$$\partial_1 g(x,y) = \frac{\partial}{\partial x} \left( \frac{x}{y} \right) = \frac{1}{y} \qquad \partial_2 g(x,y) = \frac{\partial}{\partial y} \left( \frac{x}{y} \right) = -\frac{x}{y^2}$$

Per stimare gli mse, ricordiamo gli stimatori

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var} \left[ I_j \right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di  $r = \frac{V}{\overline{I}} = g(V, I)$ 

• 
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$
  

$$\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i$$

14/79

- 
$$S_V^2 = rac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = ext{var} \left[ V_i 
ight]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di  $r = \frac{v}{\overline{I}} = g(v, \overline{I})$ 

• 
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$
  

$$\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \operatorname{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \operatorname{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

Per stimare gli mse, ricordiamo gli stimatori

- 
$$S_V^2 = rac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = ext{var} \left[ V_i 
ight]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var} \left[I_j\right]$ 

- 
$$\hat{R} = rac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}
ight)$$
 approx. non-distorto di  $r = rac{v}{\overline{I}} = g\left(v,\overline{I}
ight)$ 

• 
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq \left[\partial_1 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^2 \operatorname{var}[\overline{V}] + \left[\partial_2 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^2 \operatorname{var}[\overline{I}]$$

$$= \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n}$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \operatorname{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \operatorname{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

4/79

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \operatorname{var}\left[V_i\right]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$ 

- 
$$\hat{R} = rac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}
ight)$$
 approx. non-distorto di  $r = rac{v}{\overline{I}} = g\left(v,i
ight)$ 

• 
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$
  

$$\simeq \left[\partial_1 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^2 \operatorname{var}[\overline{V}] + \left[\partial_2 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^2 \operatorname{var}[\overline{I}]$$

$$\begin{bmatrix} 1 \end{bmatrix}^2 \sigma_V^2 \qquad \begin{bmatrix} V \end{bmatrix}^2 \sigma_I^2$$

$$= \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n}$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \text{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \text{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var} \left[ I_j \right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di  $r = \frac{v}{\overline{I}} = g(v, I)$ 

- $\overline{V}$  non-distorto di v
- $\bar{I}$  non-distorto di i

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di  $r = \frac{v}{\overline{I}} = g(v, I)$ 

- $\overline{V}$  non-distorto di v
- $\bar{I}$  non-distorto di i

• 
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{V}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n}$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$  approx. non-distorto di  $r = \frac{V}{\overline{I}} = g(V, I)$
- $\overline{V}$  non-distorto di v
- $\bar{I}$  non-distorto di i
- $\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e(v, i, \sigma_V^2, \sigma_I^2)$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var} \left[ I_j \right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di  $r = \frac{V}{\overline{I}} = g(V, I)$ 

- $\overline{V}$  non-distorto di v
- $\bar{I}$  non-distorto di i

• 
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e(v, i, \sigma_V^2, \sigma_I^2)$$

$$\Rightarrow$$
  $\widehat{\mathrm{MSE}}_R := e(\overline{V}, \overline{I}, S_V^2, S_I^2)$  è uno stimatore approx. non-distorto di  $\mathrm{mse}(\hat{R}; r)$ 

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$  non-distorto di  $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$  non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$  approx. non-distorto di  $r = \frac{V}{\overline{I}} = g(V, I)$
- $\overline{V}$  non-distorto di v
- $\bar{I}$  non-distorto di i

• 
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e\left(v, i, \sigma_V^2, \sigma_I^2\right)$$

$$\Rightarrow \widehat{MSE}_R := e\left(\overline{V}, \overline{I}, S_V^2, S_I^2\right)$$

$$= \left[\frac{1}{\overline{I}}\right]^2 \cdot \frac{S_V^2}{m} + \left[-\frac{\overline{V}}{\overline{I}^2}\right]^2 \cdot \frac{S_I^2}{n}$$

- 
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di  $\sigma_V^2 = \text{var}[V_i]$ 

- 
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di  $\sigma_I^2 = \text{var}\left[I_j\right]$ 

- 
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di  $r = \frac{v}{\overline{I}} = g(v, I)$ 

- $\overline{V}$  non-distorto di v
- $\bar{I}$  non-distorto di i

• 
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e\left(v, i, \sigma_V^2, \sigma_I^2\right)$$

$$\Rightarrow \widehat{MSE}_R := e\left(\overline{V}, \overline{I}, S_V^2, S_I^2\right)$$

$$= \frac{1}{\overline{I}^2} \cdot \frac{S_V^2}{m} + \frac{\overline{V}^2}{\overline{I}^4} \cdot \frac{S_I^2}{n}$$

$$v_1 = 3.4$$
  $v_2 = 3.3$   $v_3 = 2.7$   $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ 

Dopo le misure:

$$v_1 = 3.4$$
  $v_2 = 3.3$   $v_3 = 2.7$   $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$   $i_1 = 1.8$   $i_2 = 1.5$   $i_3 = 2.2$   $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$ 

Dopo le misure: 
$$v_1 = 3.4$$
  $v_2 = 3.3$   $v_3 = 2.7$   $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$   $i_1 = 1.8$   $i_2 = 1.5$   $i_3 = 2.2$   $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$ 

|   | parametro                             | stimatore                                                                                                                            |  |
|---|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
|   | V                                     | $\overline{V}$                                                                                                                       |  |
|   | i                                     | 7                                                                                                                                    |  |
|   | r                                     | $\frac{\overline{V}}{\overline{I}}$                                                                                                  |  |
| - | $\operatorname{mse}(\overline{V}; v)$ | $\frac{S_V^2}{m}$                                                                                                                    |  |
|   | $mse(\bar{I}; i)$                     | $\frac{S_l^2}{n}$                                                                                                                    |  |
|   | $mse(\hat{R}; r)$                     | $\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}$ |  |
|   |                                       | $\overline{}$                                                                                                                        |  |

Dopo le misure: 
$$v_1 = 3.4$$
  $v_2 = 3.3$   $v_3 = 2.7$   $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$   $i_1 = 1.8$   $i_2 = 1.5$   $i_3 = 2.2$   $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$ 

| parametro                             | stimatore                                                                                                                            | stima |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|
| V                                     | $\overline{V}$                                                                                                                       | 3.12  |
| i                                     | Ī                                                                                                                                    | 1.83  |
| r                                     | $\frac{\overline{V}}{\overline{I}}$                                                                                                  |       |
| $\operatorname{mse}(\overline{V}; v)$ | $\frac{S_V^2}{m}$                                                                                                                    |       |
| $mse(\overline{I}; i)$                | $\frac{S_l^2}{n}$                                                                                                                    |       |
| $mse(\hat{R}; r)$                     | $\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{l}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{l}}$ |       |
|                                       | $\overline{}$                                                                                                                        |       |

prima dell'esperimento

15/79

dopo l'esperimento

Dopo le misure: 
$$v_1 = 3.4$$
  $v_2 = 3.3$   $v_3 = 2.7$   $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$   $i_1 = 1.8$   $i_2 = 1.5$   $i_3 = 2.2$   $\Rightarrow \begin{cases} \overline{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$ 

| parametro                             | stimatore                                                                                                                            | stima                       |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| V                                     | $\overline{V}$                                                                                                                       | 3.12                        |
| i                                     | 7                                                                                                                                    | 1.83                        |
| r                                     | $\frac{\overline{V}}{\overline{I}}$                                                                                                  | $\frac{3.12}{1.83} = 1.70$  |
| $\operatorname{mse}(\overline{V}; v)$ | $\frac{S_V^2}{m}$                                                                                                                    |                             |
| $mse(\overline{I}; i)$                | $\frac{S_l^2}{n}$                                                                                                                    |                             |
| $mse(\hat{R}; r)$                     | $\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}$ |                             |
|                                       | $\overline{}$                                                                                                                        | $\underbrace{\hspace{1cm}}$ |

dopo l'esperimento

15/79

prima dell'esperimento

Dopo le misure: 
$$v_1 = 3.4$$
  $v_2 = 3.3$   $v_3 = 2.7$   $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$   $i_1 = 1.8$   $i_2 = 1.5$   $i_3 = 2.2$   $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$ 

| parametro                             | sumatore                                                                                                       | suma                       |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|
| V                                     | $\overline{V}$                                                                                                 | 3.12                       |
| i                                     | 7                                                                                                              | 1.83                       |
| r                                     | $\frac{\overline{V}}{\overline{I}}$                                                                            | $\frac{3.12}{1.83} = 1.70$ |
| $\operatorname{mse}(\overline{V}; v)$ | $\frac{S_V^2}{m}$                                                                                              | $\frac{0.092}{5} = 0.018$  |
| $\operatorname{mse}(\overline{I}; i)$ | $\frac{S_l^2}{n}$                                                                                              | $\frac{0.123}{3} = 0.041$  |
| $mse(\hat{R}; r)$                     | $\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{m} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{n}$ |                            |
|                                       | $\overline{}$                                                                                                  |                            |

prima dell'esperimento

dopo l'esperimento

Dopo le misure: 
$$v_1 = 3.4 \quad v_2 = 3.3 \quad v_3 = 2.7 \\ v_4 = 3.3 \quad v_5 = 2.9 \end{cases} \Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$$
 $i_1 = 1.8 \quad i_2 = 1.5 \quad i_3 = 2.2 \Rightarrow \begin{cases} \overline{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$ 

$$\frac{\text{parametro}}{v} \qquad \overline{V} \qquad 3.12$$
 $i_1 = 1.83$ 
 $v_1 = 3.4 \quad v_2 = 3.3 \quad v_3 = 2.7 \Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_1^2 = 0.092 \end{cases}$ 

$$\frac{v_1}{v} \qquad \overline{v} \qquad 3.12$$

$$\frac{v_1}{v} \qquad \overline{v} \qquad 3.12$$

$$\frac{v_1}{v} \qquad \overline{v} \qquad 3.12$$

| V                                         | <i>V</i>                                                                                                                             | 3.12                                                                                           |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| i                                         | 7                                                                                                                                    | 1.83                                                                                           |  |  |
| r                                         | $\frac{\overline{V}}{\overline{I}}$                                                                                                  | $\frac{3.12}{1.83} = 1.70$                                                                     |  |  |
| $\operatorname{mse}(\overline{V}; v)$     | $\frac{S_V^2}{m}$                                                                                                                    | $\frac{0.092}{5} = 0.018$                                                                      |  |  |
| $mse(\overline{I}; i)$                    | $\frac{S_l^2}{n}$                                                                                                                    | $\frac{0.123}{3} = 0.041$                                                                      |  |  |
| $mse(\hat{R}; r)$                         | $\frac{1}{\overline{I}^2} \cdot \frac{S_V^2}{\overline{I}} + \frac{\overline{V}^2}{\overline{I}^4} \cdot \frac{S_I^2}{\overline{I}}$ | $\frac{1}{1.83^2} \cdot \frac{0.092}{5} + \frac{3.12^2}{1.83^4} \cdot \frac{0.123}{3} = 0.041$ |  |  |
| prima dell'asparimenta dena l'asparimenta |                                                                                                                                      |                                                                                                |  |  |

prima dell'esperimento

dopo l'esperimento

**PROBLEMA:** anche se  $\hat{\Theta}$  è un buono stimatore di  $\theta$ , può capitare che  $\mathbb{P}\left(\hat{\Theta}=\theta\right)=0$ 

**PROBLEMA:** anche se  $\hat{\Theta}$  è un buono stimatore di  $\theta$ , può capitare che

$$\mathbb{P}\left(\hat{\Theta} = \theta\right) = \mathbf{0}$$

**SOLUZIONE:** costruire un intervallo in cui siamo (relativamente)

sicuri di trovare il parametro  $\theta$ 

### Definizione

Siano 
$$L = \ell(X_1, \dots, X_n)$$
 e  $U = u(X_1, \dots, X_n)$  due statistiche tali che 
$$\mathbb{P}(L < \theta < U) = \gamma \qquad \text{(con } \gamma \in (0, 1) \text{ fissato)}$$

#### Definizione

Siano 
$$L = \ell(X_1, ..., X_n)$$
 e  $U = u(X_1, ..., X_n)$  due statistiche tali che  $\mathbb{P}(L < \theta < U) = \gamma$  (con  $\gamma \in (0, 1)$  fissato)

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si dice che  $(\ell(x_1, \ldots, x_n), u(x_1, \ldots, x_n))$ 

è un *intervallo di confidenza* di livello  $\gamma$  per il parametro  $\theta$  ( $IC_{\theta}(\gamma)$ )

#### Definizione

Siano 
$$L = \ell(X_1, ..., X_n)$$
 e  $U = u(X_1, ..., X_n)$  due statistiche tali che  $\mathbb{P}(L < \theta < U) = \gamma$  (con  $\gamma \in (0, 1)$  fissato)

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si dice che  $(\ell(x_1, \ldots, x_n), u(x_1, \ldots, x_n))$ 

è un *intervallo di confidenza* di livello  $\gamma$  per il parametro  $\theta$  ( $IC_{\theta}(\gamma)$ )

**TIPICAMENTE:**  $\gamma = 90\%$  o 95% o 99%

# Inferenza statistica

|             | PRIMA dell'esperimento                                                                                     |               | DOPO<br>l'esperimento            |   | _                       |
|-------------|------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|---|-------------------------|
| variabili   | $X_1 = \left( \begin{array}{c} 0.6  7.2 \\ 0.6  7.2 \end{array} \right)$                                   | $\rightarrow$ | $x_1 = 1.2$                      |   |                         |
| aleatorie { | $X_2 = \left( \begin{array}{c} 0.6  7^2 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right)^2$ | $\rightarrow$ | $x_2 = 0.6$                      | } | realizzazioni<br>(dati) |
|             |                                                                                                            | $\rightarrow$ | • • •                            |   | (====)                  |
| densità {   | $X_i \sim f_{	heta}$                                                                                       | $\rightarrow$ | *                                |   |                         |
|             | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$                                                     |               |                                  |   |                         |
| stimatore { | $\hat{\Theta}=h(X_1,X_2,\ldots)$                                                                           | $\rightarrow$ | $\hat{\theta}=h(1.2,0.6,\ldots)$ | } | stima                   |

# Inferenza statistica

|                     | PRIMA dell'esperimento                                                                                    |               | DOPO<br>l'esperimento                                  |                      |
|---------------------|-----------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------|----------------------|
| variabili           | $X_1 = \begin{pmatrix} 0.6 & 0.0 \\ 0.6 & 0.0 \end{pmatrix}$                                              | $\rightarrow$ | $x_1 = 1.2$                                            |                      |
| aleatorie<br>i.i.d. | $\left\langle X_2 = \left( \begin{array}{c} 0.6         $                                                 | $\rightarrow$ | $x_2 = 0.6$                                            | realizzazioni (dati) |
|                     |                                                                                                           | $\rightarrow$ |                                                        |                      |
| densità             | $\left\{ X_i \sim f_{	heta}  ight.$                                                                       | $\rightarrow$ | *                                                      |                      |
| parametri           | $\begin{cases} & \theta \in \mathbb{R} \\ & \text{oppure } \theta \in \mathbb{R}^k \end{cases}$           | $\rightarrow$ | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$ | } parametri          |
| stimatore           | $\left\{ \hat{\Theta} = h(X_1, X_2, \ldots) \right.$                                                      | $\rightarrow$ | $\hat{\theta} = h(1.2, 0.6, \ldots)$                   | stima                |
| probabilità         | $\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$ | ,             |                                                        |                      |

# Inferenza statistica

|                     | PRIMA dell'esperimento                                                                                    |               | DOPO<br>l'esperimento                                   |               |
|---------------------|-----------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------|---------------|
| variabili           | $X_1 = \begin{pmatrix} 0.6 & 0.6 \\ 0.6 & 0.6 \end{pmatrix}$                                              | $\rightarrow$ | $x_1 = 1.2$                                             |               |
| aleatorie<br>i.i.d. | $X_2 = (0.6 \frac{1}{\sqrt{2}} e^{-2})$                                                                   | $\rightarrow$ | $x_2 = 0.6$                                             | realizzazioni |
| 1.1.4.              |                                                                                                           | $\rightarrow$ |                                                         | (dati)        |
| densità             | $\left\{ X_i \sim f_{\theta} \right.$                                                                     | $\rightarrow$ | *                                                       |               |
| parametri           | $\begin{cases} & \theta \in \mathbb{R} \\ & \text{oppure } \theta \in \mathbb{R}^k \end{cases}$           | $\rightarrow$ | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$  | } parametri   |
| stimatore           | $\Big\{ \hat{\Theta} = h(X_1, X_2, \ldots)$                                                               | $\rightarrow$ | $\hat{\theta} = h(1.2, 0.6, \ldots)$                    | } stima       |
| probabilità         | $\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$ | $\rightarrow$ | $\ell(1.2, 0.6, \ldots) < \theta < u(1.2, 0.6, \ldots)$ | ) IC          |

# Definizione (IC unilateri)

Sia 
$$L = \ell(X_1, \dots, X_n)$$
 una statistica tale che

$$\mathbb{P}(\theta > L) = \gamma$$
 (con  $\gamma \in (0,1)$  fissato)

# Definizione (IC unilateri)

Sia  $L = \ell(X_1, ..., X_n)$  una statistica tale che

$$\mathbb{P}(\theta > L) = \gamma$$
 (con  $\gamma \in (0,1)$  fissato)

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si dice che

$$(\ell(x_1,\ldots,x_n),+\infty)$$

è un *intervallo di confidenza* di livello  $\gamma$  per il parametro  $\theta$  ( $IC_{\theta}(\gamma)$ )

# Definizione (IC unilateri)

Sia 
$$U = u(X_1, ..., X_n)$$
 una statistica tale che

$$\mathbb{P}(\theta < U) = \gamma$$
 (con  $\gamma \in (0,1)$  fissato)

#### Stima intervallare

#### Definizione (IC unilateri)

Sia  $U = u(X_1, ..., X_n)$  una statistica tale che

$$\mathbb{P}\left(\theta < U\right) = \gamma$$
 (con  $\gamma \in (0,1)$  fissato)

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si dice che

$$(-\infty, u(x_1,\ldots,x_n))$$

è un *intervallo di confidenza* di livello  $\gamma$  per il parametro  $\theta$  ( $IC_{\theta}(\gamma)$ )

#### Stima intervallare

#### Definizione (IC unilateri)

Sia  $U = u(X_1, ..., X_n)$  una statistica tale che

$$\mathbb{P}\left(\theta < U\right) = \gamma$$
 (con  $\gamma \in (0, 1)$  fissato)

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si dice che

$$(-\infty, u(x_1,\ldots,x_n))$$

è un intervallo di confidenza di livello  $\gamma$  per il parametro  $\theta$  (  $IC_{\theta}(\gamma)$  )

**SPESSO:**  $L = \hat{\Theta} - E$ ,  $U = \hat{\Theta} + E$  con

- $-\hat{\Theta} = \text{stimatore di } \theta$
- E = errore (costante o aleatorio)

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

**DIMOSTRAZIONE:** Dobbiamo verificare che

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \gamma$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < Z_{\frac{1+\gamma}{2}}\right)$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\begin{split} \mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) &= \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\sqrt{n}}}_{X \cap A} < z_{\frac{1+\gamma}{2}}\right) \end{split}$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\begin{split} \mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) &= \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\sqrt{n}}}_{\sim N(0,1)} < z_{\frac{1+\gamma}{2}}\right) &= \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right) \end{split}$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < Z_{\frac{1+\gamma}{2}}\right) = \Phi\left(Z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-Z_{\frac{1+\gamma}{2}}\right)$$

$$= \frac{1+\gamma}{2} - \left[1 - \Phi\left(Z_{\frac{1+\gamma}{2}}\right)\right]$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right)$$

$$= \frac{1+\gamma}{2} - \left[1 - \Phi\left(z_{\frac{1+\gamma}{2}}\right)\right] = \frac{1+\gamma}{2} - \left[1 - \frac{1+\gamma}{2}\right]$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

#### DIMOSTRAZIONE:

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \Phi\left(z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-z_{\frac{1+\gamma}{2}}\right)$$

 $=\frac{1+\gamma}{2}-\left[1-\Phi\left(z_{\frac{1+\gamma}{2}}\right)\right]=\frac{1+\gamma}{2}-\left[1-\frac{1+\gamma}{2}\right]=\gamma$ 

9/79

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) =$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < Z_{\frac{1+\gamma}{2}}\right) = \Phi\left(Z_{\frac{1+\gamma}{2}}\right) - \Phi\left(-Z_{\frac{1+\gamma}{2}}\right)$$

$$= \frac{1+\gamma}{2} - \left[1 - \Phi\left(Z_{\frac{1+\gamma}{2}}\right)\right] = \frac{1+\gamma}{2} - \left[1 - \frac{1+\gamma}{2}\right] = \gamma$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\sqrt{n}}}_{\sim N(0,1)} < Z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2) \underset{\text{riprod. di } N}{\Rightarrow} \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\sim N(0,1)} < z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$
STATISTICA PIVOT

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:** 
$$X_1, ..., X_n$$
 i.i.d. con  $n$  grande  $\Rightarrow \overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$  approssimato

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\sqrt{n}}}_{\approx N(0,1)} < z_{\frac{1+\gamma}{2}}\right) \simeq \dots \simeq \gamma$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande o  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande o  $X_i \sim N(\mu, \sigma^2)$ 

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, \, +\infty\right) \\ \\ \left(-\infty, \, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right) \end{array} \right\} \quad \text{sono} \quad \textit{IC}_{\mu}(\gamma)$$

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande o  $X_i \sim N(\mu, \sigma^2)$ 

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, \, +\infty\right) \\ \\ \left(-\infty, \, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right) \end{array} \right) \quad \text{sono} \quad IC_{\mu}(\gamma)$$

- $\overline{X}$  stimatore di  $\mu$
- $e = z_{...} \frac{\sigma}{\sqrt{n}}$  errore <u>costante</u>

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande o  $X_i \sim N(\mu, \sigma^2)$ 

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, \, +\infty\right) \\ \\ \left(-\infty, \, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right) \end{array} \right) \quad \text{sono} \quad \textit{IC}_{\mu}(\gamma)$$

- $\overline{X}$  stimatore di  $\mu$
- $-e = z_{...} \frac{\sigma}{\sqrt{n}}$  errore <u>costante</u>  $\longrightarrow$  0 se  $n \to \infty$  (più misure)

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande o  $X_i \sim N(\mu, \sigma^2)$ 

$$\begin{array}{l} \textbf{TESI:} \quad \left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} \,,\, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} \right) \\ \\ \left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}} \,,\, +\infty \right) \\ \\ \left(-\infty \,,\, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}} \right) \end{array} \right\} \quad \text{sono} \quad IC_{\mu}(\gamma)$$

- $\overline{X}$  stimatore di  $\mu$
- $e=z_{...}\frac{\sigma}{\sqrt{n}}$  errore <u>costante</u>  $\longrightarrow$  0 se  $n\to\infty$  (più misure) o  $\sigma\to0$  (più precisione)

**SIMBOLO:**  $z_{\gamma} = \text{quantile di ordine } \gamma \text{ di } N(0,1)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande o  $X_i \sim N(\mu, \sigma^2)$ 

TESI: 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

$$\left(\overline{X} - Z_{\gamma} \frac{\sigma}{\sqrt{n}}, +\infty\right)$$
Ma se non so quanto vale  $\sigma$ ?
$$\left(-\infty, \overline{X} + Z_{\gamma} \frac{\sigma}{\sqrt{n}}\right)$$

- $\overline{X}$  stimatore di  $\mu$
- $e=z_{\cdots}\frac{\sigma}{\sqrt{n}}$  errore costante  $\longrightarrow$  0 se  $n\to\infty$  (più misure) o  $\sigma\to0$  (più precisione

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}}$$

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

ha densità t di Student con n-1 gradi di libertà (t(n-1)).



• t(k) è simmetrica

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$

| Tavola dei quantili della distribuzione T(n |                                       |        |         |        |         |         |         |        |
|---------------------------------------------|---------------------------------------|--------|---------|--------|---------|---------|---------|--------|
| n                                           | Valore della funzione di ripartizione |        |         |        |         |         |         |        |
|                                             | 0.75                                  | 0.8    | 0.85    | 0.9    | 0.95    | 0.975   | 0.99    | 0.995  |
| 1                                           | 1.0000                                | 1.3764 | 1.9626  | 3.0777 | 6.3137  | 12.7062 | 31.8210 | 63.655 |
| 2                                           | 0.8165                                | 1.0607 | 1 3862  | 1.8856 | 2.9200  | 4.3027  | 6.9645  | 9.925  |
| 3                                           | 0.7649                                | 0.9785 | 1.2498  | 1.6377 | 2.3534  | 3.1824  | 4.5407  | 5.840  |
| 4                                           | 0.7407                                | 0.9410 | 1.1896  | 1.5332 | 2.1318  | 2.7765  | 3.7469  | 4.604  |
| 5                                           | 0.7267                                | 0.9195 | 1.1558  | 1.4759 | 2.0150  | 2.5706  | 3.3649  | 4.032  |
| 6                                           | 0.7176                                | 0.0057 | 1 13/12 | 1./308 | 1 0.132 | 2 4460  | 3 1/197 | 3.703  |

- t(k) è simmetrica
- i quantili  $t_{\gamma}(k)$  sono tabulati

$$t_{0.85}(3) = 1.2498$$

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



- t(k) è simmetrica
- i quantili  $t_{\gamma}(k)$  sono tabulati

• 
$$t_{\gamma}(k) > z_{\gamma}$$

$$ullet t_{\gamma}(k) > z_{\gamma} \ ullet t_{\gamma}(k) \downarrow z_{\gamma} ext{ per } k 
ightarrow \infty iggr\} egin{align*} ext{se} \ \gamma > 50\% \ \end{array}$$

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



- t(k) è simmetrica
- i quantili  $t_{\gamma}(k)$  sono tabulati

• 
$$t_{\gamma}(k) > z_{\gamma}$$

$$ullet t_{\gamma}(k) > z_{\gamma} \ ullet t_{\gamma}(k) \downarrow z_{\gamma} ext{ per } k 
ightarrow \infty iggr\} egin{align*} ext{se} \ \gamma > 50\% \ \end{array}$$

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



- t(k) è simmetrica
- i quantili  $t_{\gamma}(k)$  sono tabulati

• 
$$t_{\gamma}(k) > z_{\gamma}$$

$$egin{aligned} \bullet & t_\gamma(k) > z_\gamma \ \bullet & t_\gamma(k) \downarrow z_\gamma ext{ per } k o \infty \end{aligned} egin{cases} ext{se} \ \gamma > 50\% \end{cases}$$

#### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{\overline{X}_n - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{S_n} \sqrt{n}$$



- t(k) è simmetrica
- i quantili  $t_{\gamma}(k)$  sono tabulati

- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} t_{\gamma}(k) > z_{\gamma} \ & t_{\gamma}(k) \downarrow z_{\gamma} \ ext{per} \ k 
  ightarrow \infty \end{aligned} \end{aligned} egin{aligned} ext{se} \ \gamma > 50\% \end{aligned}$

**TESI:** 
$$\left(\overline{x} - \frac{t_{\frac{1+\gamma}{2}}}{(n-1)} \frac{s}{\sqrt{n}}, \overline{x} + \frac{t_{\frac{1+\gamma}{2}}}{(n-1)} \frac{s}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}, \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-t_{\frac{1+\gamma}{2}}(n-1) < \underbrace{\frac{\mu - \overline{X}}{S}}_{\sim t(n-1)} < t_{\frac{1+\gamma}{2}}(n-1)\right) = \dots = \gamma$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}, \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right)$$
 è un  $C_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-t_{\frac{1+\gamma}{2}}(n-1) < \underbrace{\frac{\mu - \overline{X}}{S}}_{\sim t(n-1)} < t_{\frac{1+\gamma}{2}}(n-1)\right) = \dots = \gamma$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}, \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{1+\gamma}{2}}(n-1)\frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-t_{\frac{1+\gamma}{2}}(n-1) < \underbrace{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}}_{\sim t(n-1)} < t_{\frac{1+\gamma}{2}}(n-1)\right) = \dots = \gamma$$
STATISTICA PIVOT

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\,,\; \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\,,\; +\infty\right) \\ & \left(-\infty\,,\; \overline{x} + t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\right) \end{array} \right\} \quad \text{sono} \quad \textit{IC}_{\mu}(\gamma)$$

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}} \,,\; \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - t_{\gamma}(n-1)\frac{s}{\sqrt{n}} \,,\; +\infty\right) \\ & \left(-\infty \,,\; \overline{x} + t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\right) \end{array} \right\} \quad \text{sono} \quad IC_{\mu}(\gamma)$$

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

- $\overline{X}$  stimatore di  $\mu$
- $E = t_{...}(n-1)\frac{S}{\sqrt{n}}$  errore <u>aleatorio</u>

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}} \;,\; \overline{x} + t_{\frac{1+\gamma}{2}}(n-1)\frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - t_{\gamma}(n-1)\frac{s}{\sqrt{n}} \;,\; +\infty\right) \\ & \left(-\infty \;,\; \overline{x} + t_{\gamma}(n-1)\frac{s}{\sqrt{n}}\right) \end{array} \right\} \text{ sono } \textit{IC}_{\mu}(\gamma)$$

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

- $\overline{X}$  stimatore di  $\mu$
- $E = t_{...}(n-1)\frac{S}{\sqrt{n}}$  errore <u>aleatorio</u> non riducibile a priori

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - \frac{\mathbf{Z}_{\frac{1+\gamma}{2}}}{\sqrt{n}}, \overline{X} + \frac{\mathbf{Z}_{\frac{1+\gamma}{2}}}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$
$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} \left\{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}\right\} Z_{\frac{1+\gamma}{2}}\right)$$
STATISTICA PIVOT

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\sigma}{S}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\sigma}{S} \qquad \text{con} \qquad \begin{cases} \frac{\mu - X}{\frac{\sigma}{\sqrt{n}}} \approx N(0, 1) \\ \frac{\sigma}{\sqrt{n}} = \frac{N(0, 1)}{\sqrt{n}} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\sigma}{S} \qquad \text{con} \qquad \begin{cases} \frac{\mu - X}{\frac{\sigma}{\sqrt{n}}} \underset{\text{TLC}}{\approx} N(0, 1) \\ S_n^2 \xrightarrow{P} \sigma^2 \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{I}}{\mathscr{I}}}_{\approx 1} \qquad \text{con} \qquad \begin{cases} \frac{\mu - X}{\frac{\sigma}{\sqrt{n}}} \underset{\text{TLC}}{\approx} N(0,1) \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \sigma^2 \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < z_{\frac{1+\gamma}{2}}\right)$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{I}}{\mathscr{S}}}_{\simeq 1} \approx N(0,1) \quad \text{con} \quad \begin{cases} \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \underset{n \to \infty}{\approx} N(0,1) \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{R}} \sigma^2 \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{S}}_{\approx N(0,1)} < Z_{\frac{1+\gamma}{2}}\right)$$

$$\mu - \overline{X} \qquad \mu - \overline{X} \qquad \emptyset \qquad \text{A.1.5.4.3}$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \underbrace{\frac{\mathscr{S}}{\mathscr{S}}}_{\approx 1} \approx N(0,1) \quad \text{con} \quad \begin{cases} \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \underset{\text{TLC}}{\approx} N(0,1) \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{R}} \sigma^2 \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-z_{\frac{1+\gamma}{2}} < \underbrace{\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}}}_{\approx N(0,1)} < z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{S}}{S}}_{\approx N(0,1)} \approx N(0,1) \quad \text{con} \quad \begin{cases} \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} & \approx N(0,1) \\ S_n^2 & \xrightarrow{n \to \infty} \sigma^2 \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $C_{\mu}(\gamma)$ 

$$\mathbb{P}\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) = \dots$$

$$= \mathbb{P}\left(-Z_{\frac{1+\gamma}{2}} < \frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} < Z_{\frac{1+\gamma}{2}}\right) = \dots = \gamma$$

$$\frac{\mu - \overline{X}}{\frac{S}{\sqrt{n}}} = \underbrace{\frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}}}_{\approx N(0,1)} \cdot \underbrace{\frac{\mathscr{I}}{S}}_{\approx N(0,1)} \approx N(0,1) \quad \text{con} \quad \begin{cases} \frac{\mu - \overline{X}}{\frac{\sigma}{\sqrt{n}}} \underset{\text{TLC}}{\approx N(0,1)} \\ S_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \\ \xrightarrow{n \to \infty} \sigma^2 \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim$  qualsiasi e n grande

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} \,,\; \overline{x} + z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \\ & \left(\overline{x} - z_{\gamma} \frac{s}{\sqrt{n}} \,,\; +\infty\right) \\ & \left(-\infty \,,\; \overline{x} + z_{\gamma} \frac{s}{\sqrt{n}}\right) \end{array} \right\} \text{ sono } \textit{IC}_{\mu}(\gamma)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e *n* grande

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, \mathbf{q})$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}, \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma)$$

con 
$$\mu = \mathbb{E}[X_i]$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma)$ 

con 
$$\mu = \mathbb{E}[X_i] = q$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

con 
$$\mu = \mathbb{E}[X_i] = q$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un  $IC_{\mu}(\gamma) = IC_{q}(\gamma)$ 

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^2 = \frac{1}{n-1} \left( \sum_{i=1}^n x_i^2 - n \cdot \overline{x}^2 \right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{x}-z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\;,\;\overline{x}+z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\right)\quad \text{è un }IC_{\mu}(\gamma)=IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^2 = \frac{1}{n-1} \left( \sum_{i=1}^n x_i^2 - n \cdot \overline{x}^2 \right)$$
 perché  $0^2 = 0$  e  $1^2 = 1$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \underbrace{\frac{1}{n} \sum_{i=1}^{n} x_{i}}_{-} - n \cdot \overline{x}^{2} \right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{x}-z_{rac{1+\gamma}{2}}\,rac{s}{\sqrt{n}}\;,\;\overline{x}+z_{rac{1+\gamma}{2}}\,rac{s}{\sqrt{n}}
ight) \;\;\; ext{è un } \emph{IC}_{\mu}(\gamma)=\emph{IC}_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \underbrace{\frac{1}{n} \sum_{i=1}^{n} x_{i}}_{\overline{x}} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left( n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left( n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x})$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{x} + z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

con 
$$\mu = \mathbb{E}[X_i] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left( n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} \left( 1 - \overline{x} \right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} \;,\; \overline{x} + z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } \textit{IC}_{\mu}(\gamma) = \textit{IC}_{q}(\gamma)$$

$$con \mu = \mathbb{E}[X_i] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left( n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \underbrace{\frac{n}{n-1}}_{\text{otherwise}} \overline{x} \left( 1 - \overline{x} \right) \simeq \overline{x} \left( 1 - \overline{x} \right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{x}-z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\;,\;\overline{x}+z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\right)\quad \text{è un }IC_{\mu}(\gamma)=IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E} \left[ X_i \right] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left( n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x}) \simeq \overline{x} (1 - \overline{x})$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left( n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x}) \simeq \overline{x} (1 - \overline{x}) \implies s \simeq \sqrt{\overline{x} (1 - \overline{x})}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$con \mu = \mathbb{E}[X_i] = q$$

$$s^{2} = \frac{1}{n-1} \left( n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left( n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x}) \simeq \overline{x} (1 - \overline{x}) \implies s \simeq \sqrt{\overline{x} (1 - \overline{x})}$$

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$  e n grande

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

-  $\overline{X}$  = frequenza empirica (stimatore di q)

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

- $\overline{X}$  = frequenza empirica (stimatore di q)
- $E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}$  errore <u>aleatorio</u>

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

- $\overline{X}$  = frequenza empirica (stimatore di q)
- $-E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}$  errore <u>aleatorio</u>



$$\overline{x} \in [0,1] \quad \Rightarrow \quad \overline{x}(1-\overline{x}) \leq \frac{1}{4}$$

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

- $\overline{X}$  = frequenza empirica (stimatore di q)
- $-E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}} \leq z_{\frac{1+\gamma}{2}} \sqrt{\frac{\frac{1}{4}}{n}}$



$$\overline{x} \in [0,1] \quad \Rightarrow \quad \overline{x}(1-\overline{x}) \le \frac{1}{4}$$

**TESI:** 
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

- $\overline{X}$  = frequenza empirica (stimatore di q)
- $-E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}} \leq z_{\frac{1+\gamma}{2}} \sqrt{\frac{\frac{1}{4}}{n}} = z_{\frac{1+\gamma}{2}} \frac{1}{2\sqrt{n}}$



$$\overline{x} \in [0,1] \quad \Rightarrow \quad \overline{x}(1-\overline{x}) \leq \frac{1}{4}$$

**TESI:** 
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un  $IC_q(\gamma)$ 

**OSSERVAZIONE:** 
$$L = \overline{X} - E$$
,  $U = \overline{X} + E$  con

- $\overline{X}$  = frequenza empirica (stimatore di q)
- $E \le z_{\frac{1+\gamma}{2}} \frac{1}{2\sqrt{n}}$  riducibile a priori

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}} \;,\; \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right) \\ & \left(\overline{x} - z_{\gamma} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}} \;,\; 1\right) \\ & \left(0 \;,\; \overline{x} + z_{\gamma} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right) \end{array} \right\} \text{ sono } IC_{q}(\gamma)$$

### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica  $(n-1)S_n^2$ 

| n | 0.0005    | 0.001     | 0.005     | 0.01   | <br>99    | 0.995   | 0.999   | 0.9995  |
|---|-----------|-----------|-----------|--------|-----------|---------|---------|---------|
| 1 | 3.929E-07 | 1.570E-06 | 3.927E-05 | 1.571E | <br>.6349 | 7.8794  | 10.8274 | 12.1153 |
| 2 | 9.997E-04 | 2.001E-03 | 0.0100    | 0.02   | <br>.2104 | 10.5965 | 13.8150 | 15.2014 |
| 3 | 0.0153    | 0.0243    | 0.0717    | 0.11   | <br>.3449 | 12.8381 | 16.2660 | 17.7311 |
| 4 | 0.0639    | 0.0908    | 0.2070    | 0.29   | <br>.2767 | 14.8602 | 18.4662 | 19.9977 |
| 5 | 0.1581    | 0.2102    | 0.4118    | 0.55   | <br>.0863 | 16.7496 | 20.5147 | 22.1057 |
| 6 | 0.2994    | 0.3810    | 0.6757    | 0.87   | <br>.8119 | 18.5475 | 22.4575 | 24.1016 |
| 7 | 0.4849    | 0.5985    | 0.9893    | 1.23   | <br>.4753 | 20.2777 | 24.3213 | 26.0179 |
| 8 | 0.7104    | 0.8571    | 1.3444    | 1.64   | <br>.0902 | 21.9549 | 26.1239 | 27.8674 |
| a | 0.9718    | 1 1510    | 1 7349    | 2.08   | 6660      | 23 5803 | 27 8767 | 20 6660 |

- supp  $\chi^2(k) = [0, +\infty)$
- i quantili  $\chi^2_{\gamma}(k)$  sono tabulati

### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



- supp  $\chi^2(k) = [0, +\infty)$
- i quantili  $\chi^2_{\gamma}(k)$  sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$  per  $k \to \infty$

### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



- supp  $\chi^2(k) = [0, +\infty)$
- i quantili  $\chi^2_{\gamma}(k)$  sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$  per  $k \to \infty$

### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



- supp  $\chi^2(k) = [0, +\infty)$
- i quantili  $\chi^2_{\gamma}(k)$  sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$  per  $k \to \infty$

### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



- supp  $\chi^2(k) = [0, +\infty)$
- i quantili  $\chi^2_{\gamma}(k)$  sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$  per  $k \to \infty$

### Teorema (non dimostrato)

Se  $X_1, \ldots, X_n$  sono i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ , allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$



- supp  $\chi^2(k) = [0, +\infty)$
- i quantili  $\chi^2_{\gamma}(k)$  sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$  per  $k \to \infty$
- $\chi_{\gamma}^2(k) \simeq \frac{(z_{\gamma} + \sqrt{2k-1})^2}{2}$ se k è grande

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

**DIMOSTRAZIONE:** Dobbiamo verificare che

$$\mathbb{P}\left(\frac{(n-1)\,S^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)} < \sigma^2 < \frac{(n-1)\,S^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right) = \gamma$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\frac{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)}{(n-1)S^{2}} > \frac{1}{\sigma^{2}} > \frac{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}{(n-1)S^{2}}\right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \frac{(n-1)S^{2}}{\sigma^{2}} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi^{2}_{\frac{1+\gamma}{2}}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi^{2}_{\frac{1-\gamma}{2}}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi^{2}_{\frac{1+\gamma}{2}}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi^{2}_{\frac{1-\gamma}{2}}(n-1)\right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

$$= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) \\
= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) = \frac{1+\gamma}{2} - \frac{1-\gamma}{2}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{1+\gamma}(n-1)}, \frac{(n-1)s^2}{\chi^2_{1-\gamma}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

### **DIMOSTRAZIONE:**

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

$$= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) = \frac{1+\gamma}{2} - \frac{1-\gamma}{2}$$

25/79

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $C_{\sigma^2}(\gamma)$ 

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) \\
= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) = \frac{1+\gamma}{2} - \frac{1-\gamma}{2}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**TESI:** 
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un  $IC_{\sigma^2}(\gamma)$ 

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) = \dots$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \frac{(n-1)S^{2}}{\sigma^{2}} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

$$= \dots = \gamma$$
STATISTICA PIVOT

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

$$\begin{aligned} \text{TESI:} & \left( \frac{(n-1)\,s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)} \,,\, \frac{(n-1)\,s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)} \right) \\ & \left( \frac{(n-1)\,s^2}{\chi^2_{\gamma}(n-1)} \,,\, +\infty \right) \\ & \left( 0 \,,\, \frac{(n-1)\,s^2}{\chi^2_{\gamma}(n-1)} \right) \end{aligned} \right\} \text{ sono } IC_{\sigma^2}(\gamma)$$

### Verifica d'ipotesi

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim f_{\theta}$ 

**OBIETTIVO:** Decidere tra due affermazioni opposte sul parametro  $\theta$ 

# Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

## Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

AFFERMAZIONE 0: l'amico è onesto

AFFERMAZIONE 1: l'amico è un baro

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

**AFFERMAZIONE 0:** l'amico è onesto  $\Leftrightarrow q = 1/2$ 

**AFFERMAZIONE 1:** l'amico è un baro  $\Leftrightarrow$  q < 1/2

ESEMPIO: Dei fisici misurano la velocità dei neutrini

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

AFFERMAZIONE 0: i neutrini rispettano la relatività

AFFERMAZIONE 1: i neutrini violano la relatività

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

AFFERMAZIONE 0: i neutrini rispettano la relatività

$$\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

**AFFERMAZIONE 1:** i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim f_\theta$ 

**OBIETTIVO:** Decidere tra due affermazioni opposte sul parametro  $\theta$ 

IPOTESI STATISTICHE = affermazioni su  $\theta$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim f_\theta$ 

**OBIETTIVO:** Decidere tra due affermazioni opposte sul parametro  $\theta$ 

IPOTESI STATISTICHE = affermazioni su  $\theta$ 

 $H_0 = IPOTESI NULLA$ : ipotesi di default, vera fino a prova contraria

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim f_\theta$ 

**OBIETTIVO:** Decidere tra due affermazioni opposte sul parametro  $\theta$ 

IPOTESI STATISTICHE = affermazioni su  $\theta$ 

 $H_0 = IPOTESI NULLA$ : ipotesi di default, vera fino a prova contraria

 $H_1 = IPOTESI ALTERNATIVA$ : vera solo se c'è evidenza a suo favore

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim f_\theta$ 

**OBIETTIVO:** Decidere tra due affermazioni opposte sul parametro  $\theta$ 

IPOTESI STATISTICHE = affermazioni su  $\theta$ 

 $H_0 = IPOTESI NULLA$ : ipotesi di default, vera fino a prova contraria

 $H_1 = IPOTESI ALTERNATIVA: vera solo se c'è evidenza a suo favore$ 

 $H_0$  e  $H_1$  NON sono intercambiabili!

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i - ext{esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

**AFFERMAZIONE 0:** l'amico è onesto  $\Leftrightarrow$  q=1/2 ipotesi statistiche

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i - ext{esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

**AFFERMAZIONE 0:** l'amico è onesto  $\Leftrightarrow$  q = 1/2 **DEFAULT** 

**AFFERMAZIONE 1:** l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$  DEFAULT

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

**AFFERMAZIONE 0:** i neutrini rispettano la relatività

$$\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

**AFFERMAZIONE 1:** i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

ipotesi statistiche

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

AFFERMAZIONE 0: i neutrini rispettano la relatività DEFAULT

 $\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$ 

**AFFERMAZIONE 1:** i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$ 

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

H<sub>0</sub>: i neutrini rispettano la relatività

 $\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$ 

DEFAULT

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim f_\theta$ 

**OBIETTIVO:** Decidere tra due affermazioni opposte sul parametro  $\theta$ 

IPOTESI STATISTICHE = affermazioni su  $\theta$ 

 $H_0 = IPOTESI NULLA$ : ipotesi di default, vera fino a prova contraria

 $H_1$  = IPOTESI ALTERNATIVA: vera solo se c'è evidenza a suo favore

TEST D'IPOTESI = regola per scegliere tra  $H_0$  e  $H_1$ 

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y \,:=\, X_1 + X_2 + \ldots + X_{10} \,\,\leq\, 1$$

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività

$$\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

 $H_1$ : i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

### Test d'ipotesi

#### Per costruire un test:

• si sceglie una statistica test  $T_0 = t(X_1, \dots, X_n)$ 

#### Test d'ipotesi

#### Per costruire un test:

- si sceglie una statistica test  $T_0 = t(X_1, \dots, X_n)$
- si fissa una *regione di rifiuto* (o *critica*)  $RC \subset \mathbb{R}$  (tipicamente:  $(-\infty, c)$  o  $(c, +\infty)$  o  $(-\infty, a) \cup (b, +\infty)$ )

### Test d'ipotesi

#### Per costruire un test:

- si sceglie una statistica test  $T_0 = t(X_1, \dots, X_n)$
- si fissa una *regione di rifiuto* (o *critica*)  $RC \subset \mathbb{R}$  (tipicamente:  $(-\infty,c)$  o  $(c,+\infty)$  o  $(-\infty,a) \cup (b,+\infty)$ )
- si stabilisce la regola del test:

"rifiuto  $H_0$  se trovo  $T_0 \in RC$ "

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$\underbrace{Y := X_1 + X_2 + \ldots + X_{10}}_{} \leq 1$$

statistica test

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$\underbrace{Y := X_1 + X_2 + \ldots + X_{10}}_{\text{statistica test}} \underbrace{\leq 1}_{\substack{\text{regione} \\ \text{critica}}}$$

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività

$$\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

 $H_1$ : i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{\overline{X}} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \, \text{m/s}$$

statistica test

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività

$$\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

 $H_1$ : i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \, \text{m/s}$$
statistica test
regione critica

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> |                     |             |
| rifiuto H <sub>0</sub> |                     |             |

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> |                     |             |

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> |                     | OK!         |

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!         |

 ${\sf ERRORE\ DI\ I\ TIPO\ =\ errore\ molto\ più\ grave}$ 

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!         |

ERRORE DI I TIPO = errore molto più grave

 $\Rightarrow$  voglio fissare <u>a priori</u> la probabilità di commetterlo

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!         |

ERRORE DI I TIPO = errore molto più grave

 $\Rightarrow$  voglio fissare <u>a priori</u> la probabilità di commetterlo

SIGNIFICATIVITÀ = probabilità di errore di I tipo

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!         |

ERRORE DI I TIPO = errore molto più grave

⇒ voglio fissare <u>a priori</u> la probabilità di commetterlo

SIGNIFICATIVITÀ = probabilità di errore di I tipo  $= \mathbb{P}_{H_0 \text{ vera}} \text{"rifiuterò } H_0 \text{"})$   $\mathbb{P} \text{ calcolata coi parametri}$ 

che soddisfano Ho

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!         |

ERRORE DI I TIPO = errore molto più grave

⇒ voglio fissare <u>a priori</u> la probabilità di commetterlo

SIGNIFICATIVITÀ = probabilità di errore di I tipo =  $\mathbb{P}_{H_0 \text{ vera}}$  ("rifiuterò  $H_0$ ")

**TIPICAMENTE:** significatività = 5% o 2.5% o 1%

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} \emph{\emph{i}}\text{-esimo lancio} \ 0 & ext{ altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

SIGNIFICATIVITÀ = 
$$\mathbb{P}_{q=\frac{1}{2}}(\mathbf{Y} \leq \mathbf{1})$$

## Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y \,:=\, X_1 + X_2 + \ldots + X_{10} \,\,\leq\, 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

SIGNIFICATIVITÀ = 
$$\mathbb{P}_{q=\frac{1}{2}}(Y \le 1) = \sum_{k=0}^{1} \binom{10}{k} \left(\frac{1}{2}\right)^k \left(1 - \frac{1}{2}\right)^{10-k}$$

### Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y \,:=\, X_1 + X_2 + \ldots + X_{10} \,\,\leq\, 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

SIGNIFICATIVITÀ = 
$$\mathbb{P}_{q=\frac{1}{2}}(Y \le 1) = \sum_{k=0}^{1} {10 \choose k} (\frac{1}{2})^k (1 - \frac{1}{2})^{10-k} \simeq 1\%$$

## Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

SIGNIFICATIVITÀ = 
$$\mathbb{P}_{q=\frac{1}{2}}(Y \le 1)$$
 Va bene!  $\left(\frac{1}{2}\right)^k \left(1 - \frac{1}{2}\right)^{10-k} \simeq 1\%$ 

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'i-esimo neutrino

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

SIGN. = 
$$\mathbb{P}_{\mu=3}(\overline{X} \geq 3.2)$$

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

$$\mathsf{SIGN.} = \mathbb{P}_{\mu=3}\big(\overline{X} \geq 3.2\big) = \mathbb{P}_{\mu=3}\Big(\tfrac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \geq \tfrac{3.2-3}{\frac{0.4}{\sqrt{5}}}\Big)$$

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

SIGN. = 
$$\mathbb{P}_{\mu=3}(\overline{X} \geq 3.2) = \mathbb{P}_{\mu=3}\left(\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \geq \frac{3.2-3}{\frac{0.4}{\sqrt{5}}}\right) = 1 - \Phi(1.12)$$

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

$$\mathsf{SIGN.} = \mathbb{P}_{\mu=3}\big(\overline{X} \geq 3.2\big) = \mathbb{P}_{\mu=3}\Big(\tfrac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \geq \tfrac{3.2-3}{\tfrac{0.4}{\sqrt{5}}}\Big) = 1 - \Phi(1.12) \, \tfrac{\sim}{\sim} \, 13\%$$

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  nota

$$H_0$$
: i neutrini rispettano la relativ $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

SIGN. 
$$= \mathbb{P}_{\mu=3}(\overline{X} \geq 3.2) = \mathbb{F}$$
 Troppo grande!  $= 1 - \Phi(1.12) \simeq 13\%$ 

**ESEMPIO:** Dei fisici misurano la velocità dei neutrini

 $X_i$  = velocità misurata per l'*i*-esimo neutrino

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$  notal

 $H_0$ : i neutrini rispettano la relatività

 $H_1$ : i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \, \text{m/s}$$

ERRORE DI I TIPO

Però è una buona idea...

SIGN. =  $\mathbb{P}_{\mu=3}(\overline{X} \ge 3.2) = \mathbb{P}_{\mu=3}(\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}} \ge \frac{3.2-3}{\frac{0.4}{\sqrt{5}}}) = 1 - \Phi(1.12) \simeq 13\%$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu = \mu_0$$
 vs.  $H_1: \mu > \mu_0$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu = \mu_0$$
 vs.  $H_1: \mu > \mu_0$ 

**DIMOSTRAZIONE:** Dobbiamo verificare che

$$\mathbb{P}_{H_0 \text{ vera}}(\text{"rifluter\'o } H_0\text{"}) = \alpha$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu=\mu_0$$
 vs.  $H_1: \mu>\mu_0$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad {
m vs.} \qquad H_1: \mu>\mu_0$$

$$\begin{split} \mathbb{P}_{H_0 \text{ vera}}\big(\text{``rifiuter\'o } H_0\text{''}\big) &= \\ &= \mathbb{P}_{\mu = \mu_0}\left(\overline{X} > \mu_0 + z_{1-\alpha}\frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}_{\mu = \mu_0}\left(\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha}\right) \end{split}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trov  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipot si statistiche

$$H_0: \mu = \mu_0$$
 vs.  $H_1: \mu > \mu_0$ 

$$\begin{split} \mathbb{P}_{H_0 \text{ vera}}\big(\text{``rifiuter\'o } H_0\text{''}\big) &= \\ &= \mathbb{P}_{\mu = \mu_0}\left(\overline{X} > \mu_0 + z_{1-\alpha}\frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}_{\mu = \mu_0}\left(\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha}\right) \end{split}$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{p}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu = \mu_0$$
 vs.  $H_1: \mu > \mu_0$ 

$$\mathbb{P}_{H_0 \text{ vera}}(\text{"rifiuterò } H_0\text{"}) =$$

$$= \mathbb{P}_{\mu = \mu_0} \left( \overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right)$$

$$= \mathbb{P}_{\underline{\mu} = \underline{\mu_0}} \left( \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha} \right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{p}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad {
m vs.} \qquad H_1: \mu>\mu_0$$

$$\mathbb{P}_{H_0 \text{ vera}}(\text{"rifiuterò } H_0\text{"}) =$$

$$= \mathbb{P}_{\mu=\mu_0} \left( \overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right)$$

$$= \mathbb{P}_{\mu=\mu_0} \left( \underbrace{\overline{X} - \mu_0}_{\sim N(0,1)} > z_{1-\alpha} \right) = 1 - \Phi(z_{1-\alpha})$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad {
m vs.} \qquad H_1: \mu>\mu_0$$

$$egin{aligned} \mathbb{P}_{\mathcal{H}_0 ext{ vera}}ig( ext{"rifiuter\'o} \; \mathcal{H}_0 \; ext{"}ig) &= \\ &= \mathbb{P}_{\mu=\mu_0}\left(\overline{X} > \mu_0 + z_{1-lpha}rac{\sigma}{\sqrt{n}}
ight) \\ &= \mathbb{P}_{\mu=\mu_0}ig(rac{\overline{X} - \mu_0}{rac{\sigma}{\sqrt{n}}} > z_{1-lpha}ig) = 1 - \Phi(z_{1-lpha}) = 1 - (1-lpha) \end{aligned}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{p}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad {
m Vs.} \qquad H_1: \mu>\mu_0$$

$$\begin{split} \mathbb{P}_{H_0 \text{ vera}}\big(\text{``rifiuter\'o } H_0\text{'`}\big) &= \\ &= \mathbb{P}_{\mu = \mu_0}\left(\overline{X} > \mu_0 + z_{1-\alpha}\frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}_{\mu = \mu_0}\left(\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha}\right) = 1 - \Phi(z_{1-\alpha}) = 1 - (1 - \alpha) \\ &= \alpha \end{split}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{p}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$

$$\mathbb{P}_{H_0 \text{ vera}}(\text{"rifiuter\'o } H_0\text{"}) =$$

$$= \mathbb{P}_{\mu=\mu_0} \left( \overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right)$$

$$= \mathbb{P}_{\mu=\mu_0} \left( \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha} \right) = 1 - \Phi(z_{1-\alpha}) = 1 - (1 - \alpha)$$

$$= \alpha$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

$$H_0: \mu = \mu_0$$
 vs.  $H_1: \mu > \mu_0$ 

**IPOTESI:** 
$$X_1, \ldots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

TESI: La regola

"rifiuto 
$$H_0$$
 se trovo  $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività  $\alpha$  per le ipotesi statistiche

più comodo 
$$\longrightarrow \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha}$$

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

| H <sub>0</sub> | H <sub>1</sub> | rifiuto <i>H</i> <sub>0</sub> se |
|----------------|----------------|----------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$  | $Z_0 > z_{1-\alpha}$             |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

| H <sub>0</sub> | H <sub>1</sub> | rifiuto $H_0$ se     | se $H_0$ è vera, $Z_0 \sim \dots$ |
|----------------|----------------|----------------------|-----------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$  | $Z_0 > z_{1-\alpha}$ | $\sum_{Z_{1-\alpha}}$             |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

| H <sub>0</sub> | H <sub>1</sub> | rifiuto $H_0$ se     | se $H_0$ è vera, $Z_0 \sim \dots$ |
|----------------|----------------|----------------------|-----------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$  | $Z_0 > Z_{1-\alpha}$ | $Z_{1-\alpha}$                    |
| $\mu = \mu_0$  | $\mu < \mu_0$  | $Z_0 < Z_{\alpha}$   | $Z_{\alpha}$                      |

$$= o$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

| H <sub>0</sub> | H <sub>1</sub>   | rifiuto $H_0$ se                                             | se $H_0$ è vera, $Z_0 \sim \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$                                         | $\sum_{z_{1-\alpha}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mu = \mu_0$  | $\mu < \mu_0$    | $Z_0 < z_{\alpha}$                                           | $Z_{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\mu = \mu_0$  | $\mu \neq \mu_0$ | $Z_0 < z_{rac{lpha}{2}}$ oppure $Z_0 > z_{1-rac{lpha}{2}}$ | $\begin{array}{c c} & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\$ |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

| H <sub>0</sub> | H <sub>1</sub>   | rifiuto $H_0$ se                                             | se $H_0$ è vera, $Z_0 \sim \dots$               |
|----------------|------------------|--------------------------------------------------------------|-------------------------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$                                         | $\sum_{z_{1-\alpha}}$                           |
| $\mu = \mu_0$  | $\mu < \mu_0$    | $Z_0 < -Z_{1-\alpha}$                                        | $-Z_{1-\alpha}$                                 |
| $\mu = \mu_0$  | $\mu \neq \mu_0$ | $Z_0 < z_{rac{lpha}{2}}$ oppure $Z_0 > z_{1-rac{lpha}{2}}$ | $Z_{\frac{\alpha}{2}}$ $Z_{1-\frac{\alpha}{2}}$ |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

| H <sub>0</sub> | H <sub>1</sub>   | rifiuto $H_0$ se                            | se $H_0$ è vera, $Z_0 \sim \dots$                                                                 |
|----------------|------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$                        | $\sum_{z_{1-\alpha}}$                                                                             |
| $\mu = \mu_0$  | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$                       | $-Z_{1-\alpha}$                                                                                   |
| $\mu = \mu_0$  | $\mu \neq \mu_0$ | $\left Z_{0}\right >Z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline -z_{1-\frac{\alpha}{2}} & & z_{1-\frac{\alpha}{2}} \end{array}$ |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

| H <sub>0</sub> | H <sub>1</sub>   | rifiuto $H_0$ se                 | se $H_0$ è vera, $Z_0 \sim \dots$                                                        |
|----------------|------------------|----------------------------------|------------------------------------------------------------------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $\sum_{z_{1-\alpha}}$                                                                    |
| $\mu = \mu_0$  | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $-Z_{1-\alpha}$                                                                          |
| $\mu = \mu_0$  | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$ |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

 $H_1$  fissa la forma di  $RC_{\alpha}$  ...

**TESI:** Posto  $Z_0 := \frac{\sqrt{n}}{\sigma} \sqrt{n}$ , questr sono test ar significatività  $\alpha$ :

| H <sub>0</sub> | H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | se $H_0$ è vera, $Z_0 \sim \dots$                       |
|----------------|------------------|----------------------------------|---------------------------------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $\sum_{z_{1-\alpha}}$                                   |
| $\mu = \mu_0$  | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $-Z_{1-\alpha}$                                         |
| $\mu = \mu_0$  | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ | $-z_{1-\frac{\alpha}{2}} \qquad z_{1-\frac{\alpha}{2}}$ |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

 $\dots$  mentre  $\alpha$  fissa la sua ampiezza

**TESI:** Posto  $Z_0 = \frac{1}{\sigma}$  γ n, questi sono test ui significatività  $\alpha$ :

| H <sub>0</sub> | H <sub>1</sub>   | rifiuto $H_0$ se                              | se $H_0$ è vera, $Z_0 \sim \dots$                                                               |
|----------------|------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$                          | $z_{1-\alpha}$                                                                                  |
| $\mu = \mu_0$  | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$                         | $-Z_{1-\alpha}$                                                                                 |
| $\mu = \mu_0$  | $\mu \neq \mu_0$ | $\left  Z_0 \right  > z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline -z_{1-\frac{\alpha}{2}} & z_{1-\frac{\alpha}{2}} \end{array}$ |

### Inferenza statistica

|                     | PRIMA                                                                                                          |               | DOPO                                                         |                      |
|---------------------|----------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------|----------------------|
|                     | dell'esperimento                                                                                               |               | l'esperimento                                                |                      |
| variabili           | $X_1 = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \end{pmatrix}$                                       | $\rightarrow$ | $x_1 = 1.2$                                                  |                      |
| aleatorie<br>i.i.d. | $X_2 = \begin{pmatrix} x_2 & x_3 & x_4 \\ x_4 & x_5 & x_4 \end{pmatrix}$                                       | $\rightarrow$ | $x_2 = 0.6$                                                  | realizzazioni (dati) |
|                     |                                                                                                                | $\rightarrow$ | •••                                                          |                      |
| densità             | $\left\{ X_i \sim f_{\theta} \right.$                                                                          | $\rightarrow$ | *                                                            |                      |
|                     | $\left\{ \begin{array}{c} \theta \in \mathbb{R} \\ \text{oppure } \theta \in \mathbb{R}^k \end{array} \right.$ |               | • •                                                          |                      |
| stimatore           | $\Big\{ \hat{\Theta} = h(X_1, X_2, \ldots)$                                                                    | $\rightarrow$ | $\hat{\theta} = h(1.2, 0.6, \ldots)$                         | } stima              |
| probabilità         | $\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$      | $\rightarrow$ | $\ell(1.2, 0.6, \ldots) < \theta$<br>< $u(1.2, 0.6, \ldots)$ | } IC                 |
|                     |                                                                                                                |               |                                                              |                      |

## Inferenza statistica

|                                  | PRIMA dell'esperimento                                                                                                                    |               | DOPO<br>l'esperimento                           |                      |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|----------------------|
|                                  | $X_1 = (0.6 \% 2^3)$                                                                                                                      | $\rightarrow$ | $x_1 = 1.2$                                     |                      |
| variabili<br>aleatorie<br>i.i.d. | $X_2 = (0.6)^2$                                                                                                                           | $\rightarrow$ | $x_2 = 0.6$                                     | realizzazioni (dati) |
|                                  |                                                                                                                                           | $\rightarrow$ |                                                 |                      |
| densità                          | $\left\{ X_i \sim f_{	heta}  ight.$                                                                                                       | $\rightarrow$ | *                                               |                      |
|                                  | $\left\{ \begin{array}{c} \theta \in \mathbb{R} \\ \text{oppure } \theta \in \mathbb{R}^k \end{array} \right.$                            |               |                                                 |                      |
| stimatore                        | $\Big\{ \; \hat{\Theta} = \textit{h}(\textit{X}_{1}, \textit{X}_{2}, \ldots)$                                                             | $\rightarrow$ | $\hat{\theta} = h(1.2, 0.6, \ldots)$            | } stima              |
| probabilità                      | $ \left\{ \begin{array}{l} \mathbb{P} \big( \ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots) \big) = \gamma \end{array} \right. $ | $\rightarrow$ | $\ell$ (1.2, 0.6,) < $\theta$ < $u$ (1.2, 0.6,) | } IC                 |
| significatività                  | $\left\{  \mathbb{P}_{H_0 \text{ vera}} (T_0 \in RC) \right.$                                                                             |               |                                                 |                      |
|                                  |                                                                                                                                           |               |                                                 | 43/79                |

## Inferenza statistica

|                     | PRIMA dell'esperimento                                                                                         |               | DOPO<br>l'esperimento                                  |                      |
|---------------------|----------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------|----------------------|
| variabili           | $X_1 = \begin{pmatrix} 0.6 & 0.0 \\ 0.6 & 0.0 \end{pmatrix}$                                                   | $\rightarrow$ | $x_1 = 1.2$                                            |                      |
| aleatorie<br>i.i.d. | $\left\{ X_2 = \left( \begin{array}{c} 0.6 & 7^2 \\ 7^2 & 7^3 \end{array} \right) \right.$                     |               | $x_2 = 0.6$                                            | realizzazioni (dati) |
| -                   |                                                                                                                | $\rightarrow$ | •••                                                    |                      |
| densità             | $\left\{ X_i \sim f_{	heta}  ight.$                                                                            | $\rightarrow$ | *                                                      |                      |
| parametri           | $\left\{ \begin{array}{c} \theta \in \mathbb{R} \\ \text{oppure } \theta \in \mathbb{R}^k \end{array} \right.$ | $\rightarrow$ | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$ | } parametri          |
| stimatore           | $\Big\{ \hat{\Theta} = h(X_1, X_2, \ldots)$                                                                    | $\rightarrow$ | $\hat{\theta} = h(1.2, 0.6, \ldots)$                   | } stima              |
|                     | $\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$      |               | $\ell$ (1.2, 0.6,) < $\theta$ < $u$ (1.2, 0.6,)        | } IC                 |
| significatività     | $\Big\{  \mathbb{P}_{H_0 \text{ vera}} ig( T_0 \in RC ig)$                                                     | $\rightarrow$ | ?                                                      |                      |

### p-value di un test

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto  $H_0$  se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 



#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $t(x_1,\ldots,x_n)$   $RC_{\alpha}$   $\alpha=0.5\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $t(x_1,\ldots,x_n)$   $RC_{\alpha}$   $\alpha=1\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 



#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $t(x_1,\ldots,x_n)$   $RC_{\alpha}$   $\alpha=5\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ 
 $RC_{\alpha}$ 
 $\alpha=10\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$  :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $t(x_1,\ldots,x_n)$   $RC_{\alpha}$   $\alpha=20\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 



#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 



#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $t(x_1, \dots, x_n)$   $RC_{\alpha}$   $\alpha = 26\% = p$ -value

Se  $H_0$  fosse vera, la probabilità di trovare questi dati sarebbe il 26%

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $t(x_1, \dots, x_n)$   $RC_{\alpha}$   $\alpha = 26\% = p$ -value

Se  $H_0$  fosse vera, la probabilità di trovare questi dati sarebbe il 26%

 $\Rightarrow$  nessuna evidenza contro  $H_0$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ 
 $t = 0.25\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ 
 $\epsilon$ 
 $\alpha = 0.5\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $RC_{\alpha}$   $\alpha = 1\%$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $RC_{\alpha}$   $\alpha = 1\% = p$ -value

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $RC_{\alpha}$   $\alpha = 1\% = p$ -value

Se  $H_0$  fosse vera, la probabilità di trovare questi dati sarebbe l'1%

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $RC_{\alpha}$   $\alpha = 1\% = p$ -value

Se  $H_0$  fosse vera, la probabilità di trovare questi dati sarebbe l'1%:

- o sono stato molto sfortunato

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $RC_{\alpha}$   $\alpha = 1\% = p$ -value

Se  $H_0$  fosse vera, la probabilità di trovare questi dati sarebbe l'1%:

- o sono stato molto sfortunato
- o H<sub>0</sub> non è vera

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $RC_{\alpha}$   $\alpha = 1\% = p$ -value

Se  $H_0$  fosse vera, la probabilità di trovare questi dati sarebbe l'1%:

- o sono stato molto sfortunato
- o H<sub>0</sub> non è vera

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$ 

$$RC_{\alpha}$$
  $RC_{\alpha}$   $\alpha = 1\% = p$ -value

Se  $H_0$  fosse vera, la probabilità di trovare questi dati sarebbe l'1%

 $\Rightarrow$  forte evidenza contro  $H_0$ 

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \ldots, x_n) \in RC_\alpha\}$ 

*p*-value alto 
$$(>5\%)$$
  $\Rightarrow$  non rifiuto  $H_0$  (conclusione debole)

#### Definizione

Supponiamo che questa regola sia un test di significatività  $\alpha$ :

"rifiuto 
$$H_0$$
 se trovo  $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se  $x_1, \ldots, x_n$  sono le realizzazioni di  $X_1, \ldots, X_n$ , si definisce

$$p$$
-value = min{ $\alpha \mid t(x_1, ..., x_n) \in RC_{\alpha}$ }

*p*-value alto (>5%)  $\Rightarrow$  non rifiuto  $H_0$  (conclusione debole)

*p*-value basso ( $\leq 5\%$ )  $\Rightarrow$  accetto  $H_1$  (conclusione forte)

# Inferenza statistica

| _                                | PRIMA dell'esperimento                                                                                                                  |               | DOPO<br>l'esperimento                                  |                      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------|----------------------|
| voriobili                        | $X_1 = \begin{pmatrix} 0.6 & 7^2 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$                         | $\rightarrow$ | $x_1 = 1.2$                                            |                      |
| variabili<br>aleatorie<br>i.i.d. | $\left\langle X_2 = \left( \begin{array}{c} 0.6 \\ \begin{array}{c} 7.2 \\ \begin{array}{c} 0.6 \\ \end{array} \right)^2 \right\rangle$ |               | $x_2 = 0.6$                                            | realizzazioni (dati) |
|                                  |                                                                                                                                         | $\rightarrow$ |                                                        |                      |
| densità                          | $\left\{ \qquad X_i \sim f_{	heta}  ight.$                                                                                              | $\rightarrow$ | *                                                      |                      |
| parametri                        | $\begin{cases} & \theta \in \mathbb{R} \\ & \text{oppure } \theta \in \mathbb{R}^k \end{cases}$                                         | $\rightarrow$ | $	heta \in \mathbb{R}$ oppure $	heta \in \mathbb{R}^k$ | } parametri          |
| stimatore                        | $\left\{ \hat{\Theta} = h(X_1, X_2, \ldots) \right.$                                                                                    | $\rightarrow$ | $\hat{\theta} = h(1.2, 0.6, \ldots)$                   | } stima              |
| probabilità                      | $\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$                               | $\rightarrow$ | $\ell$ (1.2, 0.6,) < $\theta$ < $u$ (1.2, 0.6,)        | ) IC                 |
| significatività                  | $\left\{ egin{array}{l} \mathbb{P}_{H_0 \ vera} ig( T_0 \in \mathit{RC} ig) \end{array}  ight.$                                         | $\rightarrow$ | ?                                                      |                      |

# Inferenza statistica

|                   | PRIMA dell'esperimento                                                                                    |               | DOPO<br>l'esperimento                        |                      |
|-------------------|-----------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------|----------------------|
| variabili         | $X_1 = \sum_{\substack{0 \leq 1/2 \\ 1 \leq 2}} 19$                                                       | $\rightarrow$ | $x_1 = 1.2$                                  |                      |
| aleatorie 4       | $X_2 = \begin{pmatrix} 0.6 & 7^2 \\ \sqrt{2} & 7^2 \end{pmatrix}$                                         | $\rightarrow$ | $x_2 = 0.6$                                  | realizzazioni (dati) |
|                   |                                                                                                           | $\rightarrow$ | •••                                          | ) (dail)             |
| densità 🕆         | $\left\{ egin{array}{cc} X_i \sim f_{	heta} \end{array}  ight.$                                           | $\rightarrow$ | *                                            |                      |
|                   | $egin{array}{ll} 	heta \in \mathbb{R} \ 	ext{oppure } 	heta \in \mathbb{R}^k \end{array}$                 |               |                                              |                      |
| stimatore <       | $\left\{ \hat{\Theta} = h(X_1, X_2, \ldots) \right.$                                                      | $\rightarrow$ | $\hat{\theta} = h(1.2, 0.6, \ldots)$         | } stima              |
|                   | $\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$ |               | ,                                            |                      |
| significatività « | $\left\{ egin{array}{l} \mathbb{P}_{H_0 	ext{ vera}} ig( \mathcal{T}_0 \in RC ig) \end{array}  ight.$     | $\rightarrow$ | minimo $\alpha$ t.c.<br>$t(1,2,0,6,) \in BC$ | } p-value            |

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value |
|------------------|----------------------------------|-----------------|
| $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             |                 |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |                 |
| $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |                 |

 $z_0 = \text{realizzazione di } Z_0 \text{ dopo l'esperimento}$ 

| H <sub>1</sub>   | rifiuto $H_0$ se               | <i>p</i> -value           |
|------------------|--------------------------------|---------------------------|
| $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$           | $z_0 \equiv z_{1-\alpha}$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          |                           |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ |                           |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto H <sub>0</sub> se      | <i>p</i> -value                                                             |
|------------------|--------------------------------|-----------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$           | $z_0 \equiv z_{1-lpha} \ \Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-lpha})$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          |                                                                             |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ |                                                                             |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                                                                                 |
|------------------|----------------------------------|-------------------------------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             | $z_0 \equiv z_{1-\alpha}$<br>$\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\alpha}) = 1 - \alpha$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |                                                                                                 |
| $\mu \neq \mu_0$ | $ Z_0 >Z_{1-\frac{\alpha}{2}}$   |                                                                                                 |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                                                                                                                       |
|------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             | $z_0 \equiv z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\alpha}) = 1 - \alpha$ $\Leftrightarrow \alpha = 1 - \Phi(z_0)$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |                                                                                                                                       |
| $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |                                                                                                                                       |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto H <sub>0</sub> se      | <i>p</i> -value                                                                                                                       |
|------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$           | $z_0 \equiv z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\alpha}) = 1 - \alpha$ $\Leftrightarrow \alpha = 1 - \Phi(z_0)$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          |                                                                                                                                       |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ |                                                                                                                                       |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto H <sub>0</sub> se      | <i>p</i> -value              |
|------------------|--------------------------------|------------------------------|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$           | $p$ -value $= 1 - \Phi(z_0)$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          |                              |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ |                              |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value              |
|------------------|----------------------------------|------------------------------|
| $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $p$ -value $= 1 - \Phi(z_0)$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $z_0 \equiv -z_{1-\alpha}$   |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$   |                              |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                                                                      |
|------------------|----------------------------------|--------------------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $p$ -value $= 1 - \Phi(z_0)$                                                         |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $z_0 \equiv -z_{1-\alpha}$<br>$\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha})$ |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$   |                                                                                      |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                                                                                         |
|------------------|----------------------------------|---------------------------------------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             | $p$ -value $= 1 - \Phi(z_0)$                                                                            |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $z_0 \equiv -z_{1-\alpha}$<br>$\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha}) = \Phi(z_{\alpha})$ |
| $\mu \neq \mu_0$ | $ Z_0 >Z_{1-\frac{\alpha}{2}}$   |                                                                                                         |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                                                                                                       |
|------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $p$ -value $= 1 - \Phi(z_0)$                                                                                          |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $z_0 \equiv -z_{1-\alpha}$<br>$\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha}) = \Phi(z_{\alpha})$<br>$= \alpha$ |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$   |                                                                                                                       |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                                                                                                       |
|------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $p$ -value $= 1 - \Phi(z_0)$                                                                                          |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $z_0 \equiv -z_{1-\alpha}$<br>$\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha}) = \Phi(z_{\alpha})$<br>$= \alpha$ |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$   |                                                                                                                       |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto H <sub>0</sub> se      | <i>p</i> -value              |
|------------------|--------------------------------|------------------------------|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$           | $p$ -value $= 1 - \Phi(z_0)$ |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          | $p$ -value $=\Phi(z_0)$      |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ |                              |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                       |  |
|------------------|----------------------------------|---------------------------------------|--|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             | $p$ -value $= 1 - \Phi(z_0)$          |  |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $p	ext{-value} = \Phi(z_0)$           |  |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$   | $ z_0  \equiv z_{1-\frac{\alpha}{2}}$ |  |

 $z_0$  = realizzazione di  $Z_0$  dopo l'esperimento

| H <sub>1</sub>   | rifiuto H <sub>0</sub> se      | <i>p</i> -value                                                                                         |  |
|------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|--|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$           | $p$ -value = 1 $-\Phi(z_0)$                                                                             |  |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          | $p$ -value $=\Phi(z_0)$                                                                                 |  |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ | $ z_0  \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi( z_0 ) \equiv \Phi(z_{1-\frac{\alpha}{2}})$ |  |

 $z_0 = \text{realizzazione di } Z_0 \text{ dopo l'esperimento}$ 

| H <sub>1</sub>   | rifiuto H <sub>0</sub> se      | <i>p</i> -value                                                                                                                |  |
|------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$           | $p$ -value = 1 $-\Phi(z_0)$                                                                                                    |  |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          | $p	ext{-value} = \Phi(z_0)$                                                                                                    |  |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ | $ z_0  \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi( z_0 ) \equiv \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$ |  |

 $z_0 = \text{realizzazione di } Z_0 \text{ dopo l'esperimento}$ 

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                                                                                                                                                                          |  |
|------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             | $p$ -value = 1 $-\Phi(z_0)$                                                                                                                                                              |  |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $p	ext{-value} = \Phi(z_0)$                                                                                                                                                              |  |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$   | $ z_0  \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi( z_0 ) \equiv \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$ $\Leftrightarrow \alpha = 2 \left[1 - \Phi( z_0 )\right]$ |  |

 $z_0 = \text{realizzazione di } Z_0 \text{ dopo l'esperimento}$ 

| H <sub>1</sub>   | rifiuto H <sub>0</sub> se      | <i>p</i> -value                                                                                                                                                                          |  |
|------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$           | $p$ -value = 1 $-\Phi(z_0)$                                                                                                                                                              |  |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$          | $p	ext{-value} = \Phi(z_0)$                                                                                                                                                              |  |
| $\mu \neq \mu_0$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ | $ z_0  \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi( z_0 ) \equiv \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$ $\Leftrightarrow \alpha = 2 \left[1 - \Phi( z_0 )\right]$ |  |

 $z_0 = \text{realizzazione di } Z_0 \text{ dopo l'esperimento}$ 

| H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value                          |  |
|------------------|----------------------------------|------------------------------------------|--|
| $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             | $p$ -value = 1 $-\Phi(z_0)$              |  |
| $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $p$ -value $=\Phi(z_0)$                  |  |
| $\mu \neq \mu_0$ | $ Z_0 >Z_{1-\frac{\alpha}{2}}$   | $p$ -value $=2\left[1-\Phi( z_0 ) ight]$ |  |

 $z_0 = \text{realizzazione di } Z_0 \text{ dopo l'esperimento}$ 

... ... ... ...

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s}$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha}$$

... ... ... ...

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \text{m/s}$ 

$$Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha}$$

... ... ... ...

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \text{ m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{\sigma} \sqrt{n} > z_{1-\alpha}$$

... ... ... ...

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \text{m/s}$ 

$$Z_0 := \underbrace{\frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8}} \sqrt{n} > z_{1-\alpha}$$

$$\sigma = 0.4 \cdot 10^8 \text{ nota}$$

... ... ... ... ...

 $H_0$ : i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \text{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \stackrel{\boxed{5}}{\longrightarrow} Z_{1-\alpha}$$

$$z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \stackrel{\boxed{5}}{\longrightarrow} Z_{1-\alpha}$$

... ... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > z_{1-\alpha}$$
 significatività = 5%

... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} >$$
 significatività = 5%

... ... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \overline{X} - 3 \cdot 10^8 \sqrt{5} > 1.645 \leftarrow \text{significatività} = 5\%$$

... ... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$x_1 = 3.4$$
  $x_2 = 3.3$   $x_3 = 2.7$   
 $x_4 = 3.3$   $x_5 = 2.9$   $(\dots \cdot 10^8)$ 

... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \text{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$x_1 = 3.4$$
  $x_2 = 3.3$   $x_3 = 2.7$   
 $x_4 = 3.3$   $x_5 = 2.9$   $(\dots \cdot 10^8)$   $\Rightarrow$   $z_0 = 0.671$ 

... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

Dopo le misure: 
$$x_1 = 3.4$$
  $x_2 = 3.3$   $x_3 = 2.7$ 

$$x_1 = 3.4$$
  $x_2 = 3.3$   $x_3 = 2.7$   
 $x_4 = 3.3$   $x_5 = 2.9$   $(\dots \cdot 10^8)$   $\Rightarrow z_0 = 0.671$ 

$$z_0 > 1.645 \Rightarrow \text{non posso rifiutare } H_0 \text{ al } 5\%$$

... ... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$z_0 \geqslant 1.645 \Rightarrow \text{non posso rifiutare } H_0 \text{ al } 5\%$$
  
 $p\text{-value} = 1 - \Phi(z_0)$ 

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

Dopo le misure: 
$$x_1 = 3.4 \quad x_2 = 3.3 \quad x_3 = 2.7$$
  $\Rightarrow z_0 = 0.67$ 

$$z_0 > 1.645 \Rightarrow \text{non posso rifiutare } H_0 \text{ al } 5\%$$

$$p$$
-value =  $1 - \Phi(z_0) = 1 - \Phi(0.671) = 25.1\%$ 

... ... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$z_0 \geqslant 1.645 \Rightarrow \text{non posso rifiutare } H_0 \text{ al } 5\%$$

$$p$$
-value = 1 -  $\Phi(z_0)$  = 1 -  $\Phi(0.671)$  = 25.1%  $\Rightarrow$  nessuna evidenza contro  $H_0$ 

### Z-test per il valore atteso di un campione normale

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

**TESI:** Posto  $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$ , questi sono test di significatività  $\alpha$ :

| H <sub>0</sub> | H <sub>1</sub>   | rifiuto $H_0$ se                 | se $H_0$ è vera, $Z_0 \sim \dots$                                                                      |
|----------------|------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$  | $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $\sum_{z_{1-\alpha}}$                                                                                  |
| $\mu = \mu_0$  | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $-Z_{1-\alpha}$                                                                                        |
| $\mu = \mu_0$  | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline \end{array}$ |

## Z-test per il valore atteso di un campione normale

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2), \quad \mu_0 \in \mathbb{R}$  fissato

TESI: Posto

H<sub>0</sub> determina univocamente ℙ (ipotesi semplice)

| H <sub>0</sub>        | H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se | se $H_0$ è vera, $Z_0 \sim \dots$                                                                      |
|-----------------------|------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
| $\boxed{\mu = \mu_0}$ | $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $z_{1-\alpha}$                                                                                         |
| $\boxed{\mu = \mu_0}$ | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $-Z_{1-\alpha}$                                                                                        |
| $\boxed{\mu = \mu_0}$ | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline \end{array}$ |

nificatività  $\alpha$ :

## Z-test per il valore atteso di un campione normale

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2), \quad \mu_0 \in \mathbb{R}$  fissato

TESI: Posto

Ma se non la determinasse? (ipotesi composta)

| H <sub>0</sub>                         | H <sub>1</sub>   | rifiuto $H_0$ se                 | se $H_0$ è vera, $Z_0 \sim \dots$                                                                      |
|----------------------------------------|------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
| $\boxed{\qquad \qquad \mu \leq \mu_0}$ | $\mu > \mu_0$    | $Z_0 > Z_{1-\alpha}$             | $\sum_{z_{1-\alpha}}$                                                                                  |
| $\boxed{\mu \geq \mu_0}$               | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $-Z_{1-\alpha}$                                                                                        |
| $\mu = \mu_0$                          | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline \end{array}$ |

nificatività  $\alpha$ :

SIGNIFICATIVITÀ (con  $H_0$  composta)

:= massima probabilità di errore di I tipo

```
SIGNIFICATIVITÀ (con H_0 composta)
```

```
:= massima probabilità di errore di I tipo =\max_{H_0 \text{ vera}} \mathbb{P} \big( \text{"rifiuterò } H_0 \text{"} \big)
```

```
SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con H_0 composta) = \max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})
```

**ESEMPIO:** nello *Z*-test con

$$H_0: \mu \leq \mu_0$$
 vs.  $H_1: \mu > \mu_0$  "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}>z_{1-\alpha}$ "

SIGNIFICATIVITÀ = ???

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$H_0: \mu \leq \mu_0 \qquad \text{vs.} \qquad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n} > z_{1-\alpha}$ " SIGNIFICATIVITÀ  $=\max_{\mu \leq \mu_0}\,\mathbb{P}_\mu\bigg(\frac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n} > z_{1-\alpha}\bigg)$ 

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 
**ESEMPIO:** nello  $Z$ -test con 
$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
"rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "

SIGNIFICATIVITÀ =  $\max_{\mu \leq \mu_0} \mathbb{P}_{\mu}\left(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\right)$ 

quella di  $X_i \sim N(\mu, \sigma^2)$ 

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

ESEMPIO: nello  $Z$ -test con
$$H_0: \mu \leq \mu_0 \qquad \text{vs.} \qquad H_1: \mu > \mu_0$$
"rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "

SIGNIFICATIVITÀ =  $\max_{\mu \leq \mu_0} \mathbb{P}_{\mu}\left(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\right)$  quella di  $Z_0$ 

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \qquad \text{vs.} \qquad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " 
$$\text{SIGNIFICATIVITÀ} \qquad = \max_{\mu \leq \mu_0} \mathbb{P}_{\mu} \left( \frac{\overline{X}-\mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$$

non sono la stessa cosa

 $\Rightarrow \overline{X}$  va ancora standardizzata

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$\begin{aligned} \textit{ESEMPIO:} & \text{ nello } \textit{Z}\text{-test con} \\ H_0: \mu \leq \mu_0 & \text{ vs. } & H_1: \mu > \mu_0 \\ & \text{``rifiuto } & H_0 \text{ se } \textit{Z}_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > \textit{z}_{1-\alpha} \text{'`} \\ & \text{SIGNIFICATIVIT\`A} & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > \textit{z}_{1-\alpha} \bigg) \\ & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X} - \mu}{\sigma} \sqrt{n} + \frac{\mu - \mu_0}{\sigma} \sqrt{n} > \textit{z}_{1-\alpha} \bigg) \end{aligned}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

ESEMPIO: nello Z-test con 
$$H_0: \mu \leq \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " 
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X}-\mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg)$$
 
$$= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X}-\mu}{\sigma} \sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma} \sqrt{n} \bigg)$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " 
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \ \mathbb{P}_{\mu}\bigg(\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\bigg)$$
 
$$= \max_{\mu \leq \mu_0} \mathbb{P}_{\mu}\bigg(\dfrac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha}-\dfrac{\mu-\mu_0}{\sigma}\sqrt{n}\bigg)$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$\begin{split} H_0: \mu &\leq \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \text{ se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \\ \text{SIGNIFICATIVITÀ} &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X} - \mu}{\sigma} \sqrt{n} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ &= \max_{\mu \leq \mu_0} \bigg[ 1 - \Phi \bigg( z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \bigg] \end{split}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

crescente in  $\mu$ 

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " 
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha} \bigg)$$
 
$$= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg)$$
 
$$= \max_{\mu \leq \mu_0} \bigg[ 1 - \Phi \bigg( z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg) \bigg]$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " 
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \ \mathbb{P}_{\mu}\bigg(\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\bigg)$$
 
$$= \max_{\mu \leq \mu_0} \ \mathbb{P}_{\mu}\bigg(\dfrac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha}-\dfrac{\mu-\mu_0}{\sigma}\sqrt{n}\bigg)$$

 $= \max_{u \le \mu_0} \left[ 1 - \Phi \left( z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \right) \right]$ 

decrescente in  $\mu$ 

49/79

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " 
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha} \bigg)$$
 
$$= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg)$$
 
$$= \max_{\mu \leq \mu_0} \bigg[ 1 - \Phi \bigg( z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg) \bigg]$$

decrescente in  $\mu$ 

49/79

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " SIGNIFICATIVITÀ 
$$=\max_{\mu \leq \mu_0} \mathbb{P}_{\mu} \bigg(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\bigg)$$
 
$$=\max_{\mu \leq \mu_0} \mathbb{P}_{\mu} \bigg(\frac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n}\bigg)$$
 
$$=\max_{\mu \leq \mu_0} \underbrace{\bigg[1-\Phi\bigg(z_{1-\alpha}-\frac{\mu-\mu_0}{\sigma}\sqrt{n}\bigg)\bigg]}_{\text{crescente in }\mu}$$

49/79

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0$$
 vs.  $H_1: \mu > \mu_0$  "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

$$\begin{split} & \mathsf{SIGNIFICATIVIT\grave{A}} &= \max_{\mu \leq \mu_0} \ \mathbb{P}_{\mu} \bigg( \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \ \mathbb{P}_{\mu} \bigg( \underbrace{\frac{\overline{X} - \mu}{\sigma} \, \sqrt{n}}_{\sim N(0,1)} \, > \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \bigg) \\ &= \max_{\mu \leq \mu_0} \bigg[ 1 - \Phi \bigg( \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \bigg) \, \bigg] \qquad \text{if max \grave{e} preso in } \mu = \mu_0 \end{split}$$

crescente in  $\mu$ 

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$\begin{split} H_0: \mu & \leq \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \text{ se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \\ \text{SIGNIFICATIVITÀ} & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg( \frac{\overline{X} - \mu}{\sigma} \sqrt{n} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ & = \max_{\mu \leq \mu_0} \bigg[ 1 - \Phi \bigg( z_{1-\alpha} - \frac{\mu_0 - \mu_0}{\sigma} \sqrt{n} \bigg) \bigg] \end{split}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " 
$$\text{SIGNIFICATIVITÀ} = \max_{\mu \leq \mu_0} \mathbb{P}_{\mu} \bigg( \frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha} \bigg)$$
 
$$= \max_{\mu \leq \mu_0} \mathbb{P}_{\mu} \bigg( \frac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg)$$
 
$$= \max_{\mu \leq \mu_0} \bigg[ 1 - \Phi \bigg( z_{1-\alpha} - \frac{\mu_0-\mu_0}{\sigma}\sqrt{n} \bigg) \bigg] = 1 - \Phi(z_{1-\alpha})$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$\begin{aligned} \textit{ESEMPIO:} & \text{ nello } \textit{Z}\text{-test con} \\ H_0: \mu \leq \mu_0 & \text{ vs.} & H_1: \mu > \mu_0 \\ & \text{"rifiuto } H_0 & \text{ se } Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \end{aligned}$$
 
$$\begin{aligned} & \text{SIGNIFICATIVIT\`A} &= \max_{\mu \leq \mu_0} \, \mathbb{P}_{\mu} \bigg( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \mathbb{P}_{\mu} \bigg( \frac{\overline{X} - \mu}{\sigma} \sqrt{n} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \bigg[ 1 - \Phi \bigg( z_{1-\alpha} - \frac{\mu_0 - \mu_0}{\sigma} \sqrt{n} \bigg) \bigg] = 1 - \Phi(z_{1-\alpha}) = \alpha \end{aligned}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con 
$$H_0$$
 composta) =  $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$ 

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
"rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "

SIGNIFICATIVITÀ  $=\max_{\mu \leq \mu_0} \mathbb{P}_{\mu} \left(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\right)$ 
 $=\max_{\mu \leq \mu_0} \mathbb{P}_{\mu} \left(\frac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n}\right)$ 
 $=\max_{\mu \leq \mu_0} \left[1-\Phi\left(z_{1-\alpha}-\frac{\mu_0-\mu_0}{\sigma}\sqrt{n}\right)\right] = 1-\Phi(z_{1-\alpha}) = \alpha$ 

```
SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con H_0 composta) = \max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0 \text{"})
```

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \qquad ext{vs.} \qquad H_1: \mu > \mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

 ${\sf SIGNIFICATIVIT\grave{A}} \ = \alpha \qquad \Rightarrow \qquad {\sf tutto} \ {\sf come} \ {\sf prima}$ 

### Z-test per il valore atteso di un campione normale

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

**TESI:** Posto  $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$ , questi sono test di significatività  $\alpha$ :

| H <sub>0</sub>                       | H <sub>1</sub>   | rifiuto $H_0$ se                 | se $\mu=\mu_0, \ Z_0\sim\dots$                                                                         |
|--------------------------------------|------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$ oppure $\mu \le \mu_0$ | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             | $\sum_{z_{1-\alpha}}$                                                                                  |
| $\mu = \mu_0$ oppure $\mu \ge \mu_0$ | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            | $-Z_{1-\alpha}$                                                                                        |
| $\mu = \mu_0$                        | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline \end{array}$ |

|                        | H <sub>0</sub> vera | $H_0$ falsa |
|------------------------|---------------------|-------------|
| accetto H <sub>0</sub> | OK!                 |             |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!         |

ERRORE DI I TIPO = errore molto più grave SIGNIFICATIVITÀ = probabilità di errore di I tipo

|                        | H <sub>0</sub> vera | $H_0$ falsa          |
|------------------------|---------------------|----------------------|
| accetto H <sub>0</sub> | OK!                 | errore di<br>II tipo |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!                  |

ERRORE DI I TIPO = errore molto più grave SIGNIFICATIVITÀ = probabilità di errore di I tipo ERRORE DI II TIPO = errore meno grave

|                        | H <sub>0</sub> vera | $H_0$ falsa          |
|------------------------|---------------------|----------------------|
| accetto H <sub>0</sub> | OK!                 | errore di<br>II tipo |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!                  |

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

 $\Rightarrow$  tollero anche una grossa probabilità di commetterlo

|                        | H <sub>0</sub> vera | $H_0$ falsa          |
|------------------------|---------------------|----------------------|
| accetto H <sub>0</sub> | OK!                 | errore di<br>II tipo |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!                  |

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

⇒ tollero anche una grossa probabilità di commetterlo

POTENZA = probabilità di non commettere errore di II tipo

|                        | H <sub>0</sub> vera | $H_0$ falsa          |
|------------------------|---------------------|----------------------|
| accetto H <sub>0</sub> | OK!                 | errore di<br>II tipo |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!                  |

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

⇒ tollero anche una grossa probabilità di commetterlo

POTENZA = probabilità di non commettere errore di II tipo = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò } H_0\text{"})$$

|                        | H <sub>0</sub> vera | $H_0$ falsa          |
|------------------------|---------------------|----------------------|
| accetto H <sub>0</sub> | OK!                 | errore di<br>II tipo |
| rifiuto H <sub>0</sub> | errore di<br>I tipo | OK!                  |

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

⇒ tollero anche una grossa probabilità di commetterlo

POTENZA = probabilità di <u>non</u> commettere errore di II tipo

$$= \mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò } H_0\text{"})$$
 può essere molto piccola

## Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

ERRORE DI II TIPO = non accusare l'amico quando in realtà bara

## Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

 $H_0$ : l'amico è onesto  $\Leftrightarrow q = 1/2$ 

 $H_1$ : l'amico è un baro  $\Leftrightarrow q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \leq 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

ERRORE DI II TIPO = <u>non</u> accusare l'amico quando in realtà bara

POTENZA = 
$$\mathbb{P}_{q<\frac{1}{2}}(Y \leq 1)$$

## Esempio: l'amico è un baro?

**ESEMPIO:** Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim B(1, q)$ 

$$H_0$$
: l'amico è onesto  $\Leftrightarrow q = 1/2$ 

$$H_1$$
: l'amico è un baro  $\Leftrightarrow$   $q < 1/2$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

ERRORE DI II TIPO =  $\underline{\text{non}}$  accusare l'amico quando in realtà bara

POTENZA = 
$$\mathbb{P}_{q<\frac{1}{2}}(Y \le 1)$$
 dipende da  $q$ 

# Esempio: i neutrini sono più veloci della luce?

... ... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \text{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

ERRORE DI I TIPO = rigettare la relatività quando in realtà è vera

ERR. DI II TIPO = non rigettare la relatività quando in realtà è falsa

## Esempio: i neutrini sono più veloci della luce?

... ... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

ERRORE DI I TIPO = rigettare la relatività quando in realtà è vera

ERR. DI II TIPO = non rigettare la relatività quando in realtà è falsa

$$\mathsf{POTENZA} = \, \mathbb{P}_{\mu > 3} \big( Z_0 > 1.645 \big)$$

# Esempio: i neutrini sono più veloci della luce?

... ... ... ...

$$H_0$$
: i neutrini rispettano la relatività  $\Leftrightarrow \mu = 3 \cdot 10^8 \, \text{m/s} =: \mu_0$ 

 $H_1$ : i neutrini violano la relatività  $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$ 

**REGOLA:** rifiuto  $H_0$  ( $\Leftrightarrow$  rigetto la teoria della relatività) se trovo

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

ERRORE DI I TIPO = rigettare la relatività quando in realtà è vera

ERR. DI II TIPO = non rigettare la relatività quando in realtà è falsa

POTENZA = 
$$\mathbb{P}_{\mu>3}(Z_0>1.645)$$
 dipende da  $\mu$ 

**ESEMPIO:** nello *Z*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = ???

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

$$POTENZA = \mathbb{P}_{H_0 \text{ falsa}}(\text{"rifluter\'o } H_0\text{"})$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0\text{"})$$
  
=  $\mathbb{P}_{\mu > \mu_0} \left( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$ 

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0 \text{"})$$
  
=  $\mathbb{P}_{\mu_0} \mu_0 \left( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$   
quella di  
 $X_i \sim N(\mu, \sigma^2)$ 

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0 \text{"})$$
  
=  $\mathbb{P}_{\mu > \mu_0} \left( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$   
quella di  $Z_0$ 

#### **ESEMPIO:** nello *Z*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0\text{"})$$
  
=  $\mathbb{P}_{\mu} \mu_0 \left(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha}\right)$ 

non sono la stessa cosa

 $\Rightarrow \overline{X}$  va ancora standardizzata

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o } \; H_0 \text{'`} \big) \\ &= \mathbb{P}_{\mu > \mu_0} \bigg( \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} \, \bigg) \\ &= \mathbb{P}_{\mu > \mu_0} \bigg( \; \frac{\overline{X} - \mu}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \end{aligned}$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0\text{"})$$
  
=  $\mathbb{P}_{\mu>\mu_0}\left(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n}>z_{1-\alpha}\right)$   
=  $\mathbb{P}_{\mu>\mu_0}\left(\underbrace{\frac{\overline{X}-\mu}{\sigma}\sqrt{n}}>z_{1-\alpha}-\frac{\mu-\mu_0}{\sigma}\sqrt{n}\right)$ 

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} &\mathsf{POTENZA} = \, \mathbb{P}_{H_0 \; \mathsf{falsa}}\big(\, \text{``rifiuter\'o } \; H_0 \, \text{'`} \, \big) \\ &= \, \mathbb{P}_{\mu > \mu_0} \bigg( \, \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} \, \bigg) \\ &= \, \mathbb{P}_{\mu > \mu_0} \bigg( \, \underbrace{\frac{\overline{X} - \mu}{\sigma} \, \sqrt{n}}_{\sim N(0,1)} \, > \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \\ &= \, 1 - \Phi \bigg( \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \end{split}$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

$$\begin{split} &\mathsf{POTENZA} = \, \mathbb{P}_{H_0 \, \mathsf{falsa}} \big( \, \mathsf{``rifiuter\'o} \ \, H_0 \, \mathsf{``} \big) \\ &= \, \mathbb{P}_{\mu > \mu_0} \bigg( \, \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} \, \bigg) \\ &= \, \mathbb{P}_{\mu > \mu_0} \bigg( \, \underbrace{\frac{\overline{X} - \mu}{\sigma} \, \sqrt{n}}_{\sim N(0,1)} \, > \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \\ &= \, 1 - \Phi \bigg( \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \, = \, \Phi \bigg( \, \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} - z_{1-\alpha} \, \bigg) \end{split}$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0\text{"})$$
  
=  $\mathbb{P}_{\mu > \mu_0} \left( \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$   
=  $\mathbb{P}_{\mu > \mu_0} \left( \underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \right)$   
=  $1 - \Phi \left( z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \right) = \Phi \left( \frac{\mu - \mu_0}{\sigma} \sqrt{n} - z_{1-\alpha} \right)$ 

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\Phi\left(\frac{\mu - \mu_0}{\sigma}\sqrt{n} - z_{1-\alpha}\right)$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\Phi\left(\frac{\mu-\mu_0}{\sigma}\sqrt{n}-z_{1-\alpha}\right)$$
 dipende da  $\mu$ 

#### Potenza di uno Z-test

**ESEMPIO:** nello Z-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\Phi\left(\frac{\mu - \mu_0}{\sigma}\sqrt{n} - z_{1-\alpha}\right)$$
 aumenta se:

- aumenta  $\mu$  (non controllabile)



#### Potenza di uno Z-test

**ESEMPIO:** nello Z-test con

$$\begin{aligned} H_0: \mu = \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \ \text{se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} > z_{1-\alpha} \, \text{"} \end{aligned}$$
 
$$\text{POTENZA} = \Phi \bigg( \frac{\overbrace{\mu - \mu_0}^{\geq 0}}{\sigma} \, \sqrt{n} - z_{1-\alpha} \bigg) \quad \text{aumenta se:}$$

- aumenta  $\mu$  (non controllabile)
- aumenta *n* (più misure)



#### Potenza di uno Z-test

#### ESEMPIO: nello Z-test con

$$\begin{aligned} H_0: \mu &= \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \ \text{ se } \ Z_0: &= \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} > z_{1-\alpha} \, \text{"} \\ \text{POTENZA} &= \Phi \bigg( \underbrace{\frac{\overset{\geq 0}{\mu - \mu_0}}{\sigma} \, \sqrt{n} - z_{1-\alpha}} \bigg) \quad \text{aumenta se:} \end{aligned}$$

- aumenta  $\mu$  (non controllabile)
- aumenta *n* (più misure)
- diminuisce  $\sigma$  (più precisione)



**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,

 $\mu_0$  fissato

**TESI:** Se  $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$ , sono test di significatività  $\alpha$ :

| H <sub>0</sub>                       | H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se |
|--------------------------------------|------------------|----------------------------------|
| $\mu = \mu_0$ oppure $\mu \le \mu_0$ | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             |
| $\mu = \mu_0$ oppure $\mu \ge \mu_0$ | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |
| $\mu = \mu_0$                        | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,

 $\mu_0$  fissato

**TESI:** Se  $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$ , sono test di significatività  $\alpha$ :

| $H_0$                                | H <sub>1</sub>   | rifiuto $H_0$ se                 |
|--------------------------------------|------------------|----------------------------------|
| $\mu=\mu_0$ oppure $\mu\leq\mu_0$    | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             |
| $\mu = \mu_0$ oppure $\mu \ge \mu_0$ | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |
| $\mu = \mu_0$                        | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

$$\overline{X} \underset{\text{di }N}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,

 $\mu_0$  fissato

**TESI:** Se  $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$ , sono test di significatività  $\alpha$ :

| $H_0$                             | H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se |
|-----------------------------------|------------------|----------------------------------|
| $\mu=\mu_0$ oppure $\mu\leq\mu_0$ | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             |
| $\mu=\mu_0$ oppure $\mu\geq\mu_0$ | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |
| $\mu = \mu_0$                     | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0$ 

 $\mu_0$  fissato

**TESI:** Se  $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$ , sono test di significatività  $\alpha$ :

| $H_0$                             | H <sub>1</sub>   | rifiuto $H_0$ se                 |
|-----------------------------------|------------------|----------------------------------|
| $\mu=\mu_0$ oppure $\mu\leq\mu_0$ | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             |
| $\mu=\mu_0$ oppure $\mu\geq\mu_0$ | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |
| $\mu = \mu_0$                     | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$$

$$\Rightarrow Z_0 \sim N(0, 1) \text{ se } \mu = \mu_0$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,

 $\mu_0$  fissato

**TESI:** Se 
$$Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$$
, sono test di significatività  $\simeq \alpha$ :

| $H_0$                             | H <sub>1</sub>   | rifiuto $H_0$ se                 |
|-----------------------------------|------------------|----------------------------------|
| $\mu=\mu_0$ oppure $\mu\leq\mu_0$ | $\mu > \mu_0$    | $Z_0 > z_{1-\alpha}$             |
| $\mu=\mu_0$ oppure $\mu\geq\mu_0$ | $\mu < \mu_0$    | $Z_0 < -z_{1-\alpha}$            |
| $\mu = \mu_0$                     | $\mu \neq \mu_0$ | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

$$\overline{X} \underset{\text{TLC}}{\approx} N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \approx N(0, 1)$$

$$\Rightarrow Z_0 \approx N(0,1)$$
 se  $\mu = \mu_0$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $X_i \sim B(1, q)$ ,  $q_0$  fissato

**TESI:** Se  $Z_0 := \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$ , sono test di significatività  $\simeq \alpha$ :

| H <sub>0</sub>                                                                                                   | H <sub>1</sub> | rifiuto <i>H</i> <sub>0</sub> se |
|------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|
| $q = q_0$ oppure $q \le q_0$                                                                                     | $q > q_0$      | $Z_0 > z_{1-\alpha}$             |
| $egin{aligned} oldsymbol{q} &= oldsymbol{q}_0 \ &	ext{oppure} \ oldsymbol{q} &\geq oldsymbol{q}_0 \end{aligned}$ | $q < q_0$      | $Z_0 < -z_{1-\alpha}$            |
| $q=q_0$                                                                                                          | $q \neq q_0$   | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

$$\overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \approx N(0, 1)$$

$$\Rightarrow$$
  $Z_0 \approx N(0,1)$  se  $\mu = \mu_0$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $X_i \sim B(1, q)$ ,  $q_0$  fissato

**TESI:** Se 
$$Z_0 := \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$$
, sono test di significatività  $\simeq \alpha$ :

| H <sub>0</sub>                                                     | H <sub>1</sub> | rifiuto H <sub>0</sub> se        |
|--------------------------------------------------------------------|----------------|----------------------------------|
| $q=q_0 \ 	ext{oppure} \ q \leq q_0$                                | $q > q_0$      | $Z_0 > z_{1-\alpha}$             |
| $egin{array}{c} q = q_0 \ 	ext{oppure} \ q \geq q_0 \ \end{array}$ | $q < q_0$      | $Z_0 < -z_{1-\alpha}$            |
| $q=q_0$                                                            | $q  eq q_0$    | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

#### **DIMOSTRAZIONE:**

$$\overline{X} \underset{\text{TLC}}{\approx} N\left(q, \frac{q(1-q)}{n}\right)$$

$$\Rightarrow \ \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \approx \ N(0, 1)$$

$$\Rightarrow$$
  $Z_0 \approx N(0,1)$  se  $\mu = \mu_0$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $X_i \sim B(1, q)$ ,  $q_0$  fissato

**TESI:** Se 
$$Z_0 := \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$$
, sono test di significatività  $\simeq \alpha$ :

| H <sub>0</sub>                                                     | H <sub>1</sub> | rifiuto H <sub>0</sub> se        |
|--------------------------------------------------------------------|----------------|----------------------------------|
| $q=q_0 \ 	ext{oppure} \ q \leq q_0$                                | $q > q_0$      | $Z_0 > z_{1-\alpha}$             |
| $egin{array}{c} q = q_0 \ 	ext{oppure} \ q \geq q_0 \ \end{array}$ | $q < q_0$      | $Z_0 < -z_{1-\alpha}$            |
| $q=q_0$                                                            | $q  eq q_0$    | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

#### **DIMOSTRAZIONE:**

$$\overline{X} \approx N\left(q, \frac{q(1-q)}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - q}{\sqrt{q(1-q)}}\sqrt{n} \approx N(0,1)$$

$$\Rightarrow$$
  $Z_0 pprox {\it N}(0,1)$  se  $\mu=\mu_0$ 

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $X_i \sim B(1, q)$ ,  $q_0$  fissato

**TESI:** Se 
$$Z_0 := \frac{X - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$$
, sono test di significatività  $\simeq \alpha$ :

| H <sub>0</sub>                                                     | H <sub>1</sub> | rifiuto <i>H</i> <sub>0</sub> se |
|--------------------------------------------------------------------|----------------|----------------------------------|
| $q=q_0 \ 	ext{oppure} \ q \leq q_0$                                | $q > q_0$      | $Z_0 > z_{1-\alpha}$             |
| $egin{array}{c} q = q_0 \ 	ext{oppure} \ q \geq q_0 \ \end{array}$ | $q < q_0$      | $Z_0 < -z_{1-\alpha}$            |
| $q=q_0$                                                            | $q \neq q_0$   | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

#### **DIMOSTRAZIONE:**

$$\overline{X} \approx N\left(q, \frac{q(1-q)}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - q}{\sqrt{q(1-q)}}\sqrt{n} \approx N(0,1)$$

$$\Rightarrow Z_0 \approx N(0,1) \text{ se } q = q_0$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $X_i \sim B(1, q)$ ,  $q_0$  fissato

**TESI:** Se  $Z_0 := \frac{X - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$ , sono test di significatività  $\simeq \alpha$ :

| H <sub>0</sub>                      | H <sub>1</sub> | rifiuto <i>H</i> <sub>0</sub> se |
|-------------------------------------|----------------|----------------------------------|
| $q=q_0 \ 	ext{oppure} \ q \leq q_0$ | $q > q_0$      | $Z_0 > z_{1-\alpha}$             |
| $q=q_0 \ 	ext{oppure} \ q\geq q_0$  | $q < q_0$      | $Z_0 < -z_{1-\alpha}$            |
| $q=q_0$                             | $q \neq q_0$   | $ Z_0  > z_{1-\frac{\alpha}{2}}$ |

E la potenza?

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $X_i \sim B(1, q)$ ,  $q_0$  fissato

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=\dfrac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

POTENZA = ???

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\mathsf{POTENZA} = \mathbb{P}_{H_0 \text{ falsa}}(\text{"rifluter\'o } H_0\text{"})$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0 \text{"})$$
  
=  $\mathbb{P}_{q>q_0} \left( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n} > z_{1-\alpha} \right)$ 

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0\text{"})$$
  
=  $\mathbb{P}_{q_0} \left( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n} > z_{1-\alpha} \right)$   
quella di  
 $X_i \sim B(1,q)$ 

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o} \; \; H_0 \; \text{''} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - \overline{q_0}}{\sqrt{q_0(1 - q_0)}} \sqrt{n} \, > \, z_{1 - \alpha} \, \Bigg) \\ &\text{quella di } Z_0 \end{aligned}$$

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $X_i \sim B(1, q)$ ,  $q_0$  fissato

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\mathsf{POTENZA} = \mathbb{P}_{H_0 \text{ falsa}}\big(\text{``rifiuter\'o } H_0\text{''}\big)$$

$$= \mathbb{P}_{q_0} \left( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n} > z_{1-\alpha} \right)$$

non sono la stessa cosa

 $\Rightarrow \overline{X}$  va ancora standardizzata

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o } \; H_0 \, \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q_0}{\sqrt{q_0 (1 - q_0)}} \, \sqrt{n} \, > \, z_{1 - \alpha} \\ \Bigg) \end{aligned}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0\text{"})$$
  
=  $\mathbb{P}_{q>q_0}\left(\frac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{q}>z_{1-\alpha}\sqrt{\frac{q_0(1-q_0)}{n}}\right)$ 

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o } \; H_0 \; \text{''} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - \mathbf{q_0}}{\sqrt{q_0 (1 - q_0)}} \sqrt{q} > z_{1-\alpha} \sqrt{\frac{q_0 (1 - q_0)}{n}} + \mathbf{q_0} \Bigg) \end{split}$$

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o } \; H_0 \, \text{''} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - \overline{q_0}}{\sqrt{q_0(1 - \overline{q_0})}} \sqrt{q} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \Bigg) \end{split}$$

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o } \; H_0 \, \text{''} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - \mathsf{q_0}}{\sqrt{q_0(1 - q_0)}} \, > \, z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \, \Bigg) \end{aligned}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \text{ falsa}} \big( \text{``rifiuter\'o } H_0 \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg( \overline{X} &> \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0}{\sqrt{\frac{q_0(1 - q_0)}{n}}} + q_0 \Bigg) \end{aligned}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \text{ falsa}} \big( \text{``rifiuter\'o } H_0 \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q}{>} > \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{>} \Bigg) \end{aligned}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} &\mathsf{POTENZA} = \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o } \; H_0 \; \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q}{\sqrt{q(1 - q)}} \quad > \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \, \Bigg) \end{aligned}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \text{ falsa}} \big( \text{``rifiuter\'o } H_0 \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \vee \overline{n} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n} > \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \, \Bigg) \end{split}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} &\mathsf{POTENZA} = \mathbb{P}_{H_0 \; \mathsf{falsa}} \big( \text{``rifiuter\'o} \;\; H_0 \; \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q_0}{\sqrt{g_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg( \underbrace{\frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n}}_{\approx N(0 \; 1)} > \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \Bigg) \end{aligned}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò  $H_0$ ")
$$= \mathbb{P}_{q > q_0} \left( \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1-\alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \right)$$

$$= \mathbb{P}_{q > q_0} \left( \frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n} > \frac{z_{1-\alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \right)$$

$$= 1 - \Phi \left( z_{1-\alpha} \sqrt{\frac{q_0(1 - q_0)}{q(1 - q)}} + \frac{q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \right)$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò  $H_0$ ")
$$= \mathbb{P}_{q>q_0} \left( \frac{\overline{X} - q_0}{\sqrt{q_0(1-q_0)}} > z_{1-\alpha} \sqrt{\frac{q_0(1-q_0)}{n}} + q_0 \right)$$

$$= \mathbb{P}_{q>q_0} \left( \frac{\overline{X} - q}{\sqrt{q(1-q)}} \sqrt{n} > \frac{z_{1-\alpha} \sqrt{\frac{q_0(1-q_0)}{n}} + q_0 - q}{\sqrt{q(1-q)}} \sqrt{n} \right)$$

$$= 1 - \Phi \left( z_{1-\alpha} \sqrt{\frac{q_0(1-q_0)}{q(1-q)}} + \frac{q_0 - q}{\sqrt{q(1-q)}} \sqrt{n} \right)$$

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} &\mathsf{POTENZA} = \, \mathbb{P}_{H_0 \, \mathsf{falsa}} \big( \, \mathsf{``rifiuter\'o} \ \, H_0 \, \mathsf{``} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q_0}{\sqrt{q_0 (1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0 (1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg( \frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n} > \frac{z_{1 - \alpha} \sqrt{\frac{q_0 (1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \Bigg) \\ &= 1 - \Phi \left( z_{1 - \alpha} \sqrt{\frac{q_0 (1 - q_0)}{q(1 - q)}} + \frac{q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \right) \quad \mathsf{dipende} \, \mathsf{da} \, n, q \end{split}$$

E se non conosciamo  $\sigma^2$ ?

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

**TESI:** Posto  $T_0 := \frac{\overline{X} - \mu_0}{S} \sqrt{n}$ , questi sono test di significatività  $\alpha$ :

| H <sub>0</sub>                       | H <sub>1</sub>  | rifiuto <i>H</i> <sub>0</sub> se                                       | se $\mu=\mu_0, \ T_0\sim \dots$      |
|--------------------------------------|-----------------|------------------------------------------------------------------------|--------------------------------------|
| $\mu = \mu_0$ oppure $\mu \le \mu_0$ | $\mu > \mu_0$   | $T_0 > t_{1-\alpha}(n-1)$                                              | $ \uparrow t(n-1) $ $ t_{1-\alpha} $ |
| $\mu = \mu_0$ oppure $\mu \ge \mu_0$ | $\mu < \mu_0$   | $T_0 < t_{\alpha}(n-1)$                                                | $t_{\alpha}$                         |
| $\mu = \mu_0$                        | $\mu  eq \mu_0$ | $T_0 < t_{rac{lpha}{2}}(n-1)$ oppure $T_0 > t_{1-rac{lpha}{2}}(n-1)$ | $t_{1-\frac{\alpha}{2}}$             |

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\mu_0 \in \mathbb{R}$  fissato

**TESI:** Posto  $T_0 := \frac{\overline{X} - \mu_0}{S} \sqrt{n}$ , questi sono test di significatività  $\alpha$ :

| H <sub>0</sub>                       | H <sub>1</sub>   | rifiuto <i>H</i> <sub>0</sub> se    | se $\mu=\mu_0, \ T_0\sim \dots$                                                                                     |
|--------------------------------------|------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$ oppure $\mu \le \mu_0$ | $\mu > \mu_0$    | $T_0 > t_{1-\alpha}(n-1)$           | $\underbrace{\qquad \qquad }_{t_{1-\alpha}}$                                                                        |
| $\mu = \mu_0$ oppure $\mu \ge \mu_0$ | $\mu < \mu_0$    | $T_0 < -t_{1-\alpha}(n-1)$          | $-t_{1-\alpha}$                                                                                                     |
| $\mu = \mu_0$                        | $\mu \neq \mu_0$ | $ T_0 >t_{1-\frac{\alpha}{2}}(n-1)$ | $\begin{array}{c} \uparrow \\ \hline -t_{1-\frac{\alpha}{2}} \end{array} \qquad t_{1-\frac{\alpha}{2}} \end{array}$ |

PROBLEMA: nel T-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

**PROBLEMA:** nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il *p*-value?

**PROBLEMA:** nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{\alpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

**PROBLEMA:** nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$
  
 $\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$ 

**PROBLEMA:** nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$
  
 $\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$ 

|   | Tavola dei quantili della distribuzione T(n) |                                       |         |          |         |         |         |       |
|---|----------------------------------------------|---------------------------------------|---------|----------|---------|---------|---------|-------|
|   |                                              | Valore della funzione di ripartizione |         |          |         |         |         |       |
| n | 0.75                                         | 0.8                                   | 0.85    | 0.9      | 0.95    | 0.975   | 0.99    | 0.995 |
| 1 | 1.0000                                       | 1.3764                                | 1.9626  | 3.0777   | 6.3137  | 12.7062 | 31.8210 | 63.65 |
| 2 | 0.8165                                       | 1.0607                                | 1,3862  | 1.8856   | 2.9200  | 4.3027  | 6.9645  | 9.92  |
| 3 | 0.7649                                       | 0.9785                                | 1.2498  | 1.6377   | 2.3534  | 3.1824  | 4.5407  | 5.840 |
| 4 | 0.7407                                       | 0.9410                                | 1.1896  | 1.5332   | 2.1318  | 2.7765  | 3.7469  | 4.60  |
| 5 | 0.7267                                       | 0.9195                                | 1.1558  | 1.4759   | 2.0150  | 2.5706  | 3.3649  | 4.032 |
| 6 | 0.7176                                       | 0.0057                                | 1 13/19 | 1 // 208 | 1 0/132 | 2 4460  | 3 1/127 | 3.70  |

**PROBLEMA:** nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$
  
 $\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$   
 $\Rightarrow 0.85 < 1 - \frac{\alpha}{2} < 0.9$ 

|   | Tavola dei quantili della distribuzione T(n) |        |         |          |         |         |         | 1)     |  |
|---|----------------------------------------------|--------|---------|----------|---------|---------|---------|--------|--|
|   | Valore della funzione di ripartizione        |        |         |          |         |         |         |        |  |
| n | 0.75                                         | 8.0    | 0.85    | 0.9      | 0.95    | 0.975   | 0.99    | 0.995  |  |
| 1 | 1.0000                                       | 1.3764 | 1.9626  | 3.0777   | 6.3137  | 12.7062 | 31.8210 | 63.655 |  |
| 2 | 0.8165                                       | 1.0607 | 1,3862  | 1.8856   | 2.9200  | 4.3027  | 6.9645  | 9.925  |  |
| 3 | 0.7649                                       | 0.9785 | 1.2498  | 1.6377   | 2.3534  | 3.1824  | 4.5407  | 5.840  |  |
| 4 | 0.7407                                       | 0.9410 | 1.1896  | 1.5332   | 2.1318  | 2.7765  | 3.7469  | 4.604  |  |
| 5 | 0.7267                                       | 0.9195 | 1.1558  | 1.4759   | 2.0150  | 2.5706  | 3.3649  | 4.032  |  |
| 6 | 0.7176                                       | 0.0057 | 1 13/12 | 1 // 208 | 1 0/132 | 2 4460  | 3 1/127 | 3 707  |  |

#### **PROBLEMA:** nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$
  
 $\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$   
 $\Rightarrow 0.85 < 1 - \frac{\alpha}{2} < 0.9$ 

$$\Rightarrow$$
 0.2 <  $\alpha$  < 0.3

#### **PROBLEMA:** nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu 
eq \mu_0$$
 "rifiuto  $H_0$  se  $|T_0|:=\left|rac{\overline{X}-\mu_0}{\mathcal{S}}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

$$\Rightarrow$$
 1.4783 =  $t_{1-\frac{\alpha}{2}}(3)$ 

$$\Rightarrow$$
 0.85 < 1 -  $\frac{\alpha}{2}$  < 0.9

$$\Rightarrow$$
 0.2 < p-value < 0.3

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con n grande,  $\mu_0 \in \mathbb{R}$  fissato

**TESI:** Posto  $T_0 := \frac{\overline{X} - \mu_0}{S} \sqrt{n}$ , questi sono test di significatività  $\alpha$ :

| H <sub>0</sub>                       | H <sub>1</sub>   | rifiuto $H_0$ se               | se $\mu=\mu_0,$ $T_0\sim\dots$                                                                         |
|--------------------------------------|------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$ oppure $\mu \le \mu_0$ | $\mu > \mu_0$    | $T_0 > Z_{1-\alpha}$           | $z_{1-\alpha}$                                                                                         |
| $\mu = \mu_0$ oppure $\mu \ge \mu_0$ | $\mu < \mu_0$    | $T_0 < -\mathbf{z}_{1-\alpha}$ | $-Z_{1-\alpha}$                                                                                        |
| $\mu = \mu_0$                        | $\mu \neq \mu_0$ | $ T_0 >z_{1-\frac{\alpha}{2}}$ | $\begin{array}{c c} & & \\ \hline \end{array}$ |

## $X^2$ -test per la varianza di un campione normale

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma_0 > 0$  fissato

**TESI:** Posto  $X_0^2 := \frac{(n-1)S^2}{\sigma_0^2}$ , questi sono test di significatività  $\alpha$ :

| H <sub>0</sub>                                    | H <sub>1</sub>        | rifiuto <i>H</i> <sub>0</sub> se                                                     | se $\sigma=\sigma_0,$ $X_0^2\sim\dots$                   |
|---------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|
| $\sigma = \sigma_0$ oppure $\sigma \leq \sigma_0$ | $\sigma > \sigma_0$   | $X_0^2 > \chi_{1-\alpha}^2(n-1)$                                                     | $ \begin{array}{c}                                     $ |
| $\sigma = \sigma_0$ oppure $\sigma \geq \sigma_0$ | $\sigma < \sigma_0$   | $X_0^2 < \chi_\alpha^2(n-1)$                                                         | $ \begin{array}{c}                                     $ |
| $\sigma = \sigma_0$                               | $\sigma  eq \sigma_0$ | $X_0^2 < \chi_{rac{lpha}{2}}^2(n-1)$ oppure $X_0^2 > \chi_{1-rac{lpha}{2}}^2(n-1)$ |                                                          |

# $X^2$ -test per la varianza di un campione normale

**IPOTESI:**  $X_1, \ldots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma_0 > 0$  fissato

**TESI:** Posto  $X_0^2 := \frac{(n-1)S^2}{\sigma_0^2}$ , questi sono test di significatività  $\alpha$ :

| H <sub>0</sub>                                                   | H <sub>1</sub>        | rifiuto <i>H</i> <sub>0</sub> se                                                       | se $\sigma=\sigma_0,$ $X_0^2\sim\dots$ |
|------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|----------------------------------------|
| $\sigma = \sigma_0$ oppure $\sigma \leq \sigma_0$                | $\sigma > \sigma_0$   | $X_0^2 > \chi_{1-\alpha}^2(n-1)$                                                       |                                        |
| $ \sigma = \sigma_0 \\ \text{or } Vanno \\ \sigma \ge \sigma_0 $ | controllate e         | $\int_{\chi^2_{co}}^{\chi^2(n-1)}$                                                     |                                        |
| $\sigma = \sigma_0$                                              | $\sigma  eq \sigma_0$ | $X_0^2 < \chi_{rac{lpha}{2}}^2 (n-1)$ oppure $X_0^2 > \chi_{1-rac{lpha}{2}}^2 (n-1)$ |                                        |

## $X^2$ -test per la varianza di un campione normale

**IPOTESI:**  $X_1, \dots, X_n$  i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ ,  $\sigma_0 > 0$  fissato

**TESI:** Posto  $X_0^2 := \frac{(n-1)S^2}{\sigma_0^2}$ , questi sono test di significatività  $\alpha$ :

| $H_0$                                             | H <sub>1</sub>        | accetto H <sub>0</sub> se                                                                                | se $\sigma=\sigma_0,$ $X_0^2\sim\dots$ |
|---------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|
| $\sigma = \sigma_0$ oppure $\sigma \leq \sigma_0$ | $\sigma > \sigma_0$   | $X_0^2 \leq \chi_{1-\alpha}^2(n-1)$                                                                      | $\frac{1}{x_{1-\alpha}^2}$             |
| $\sigma = \sigma_0$ oppure $\sigma \geq \sigma_0$ | $\sigma < \sigma_0$   | $X_0^2 \ge \chi_\alpha^2(n-1)$                                                                           |                                        |
| $\sigma = \sigma_0$                               | $\sigma  eq \sigma_0$ | $\chi_{\frac{\alpha}{2}}^{2}(n-1) \le \\ \le \chi_{0}^{2} \le \\ \le \chi_{1-\frac{\alpha}{2}}^{2}(n-1)$ |                                        |

$$\begin{array}{lll} \textbf{IPOTESI:} & X_1, \dots, X_m & \text{i.i.d.} & \text{con} & X_i \sim \textit{N}(\mu_X, \sigma_X^2) \\ & & & & \\ Y_1, \dots, Y_n & \text{i.i.d.} & \text{con} & Y_j \sim \textit{N}(\mu_Y, \sigma_Y^2) \end{array} \right\} & \text{indipendenti} \\ \end{array}$$

$$X_1, \ldots, X_m$$
 i.i.d. con  $X_i \sim N(\mu_X, \sigma_X^2)$   $Y_1, \ldots, Y_n$  i.i.d. con  $Y_j \sim N(\mu_Y, \sigma_Y^2)$  indipendenti

$$\Rightarrow \quad \overline{X}_m \sim \mathcal{N}\left(\mu_X, \frac{\sigma_X^2}{m}\right) \\ \Rightarrow \quad \overline{Y}_n \sim \mathcal{N}\left(\mu_Y, \frac{\sigma_Y^2}{n}\right) \quad \text{indipendenti}$$

$$X_1, \ldots, X_m$$
 i.i.d. con  $X_i \sim N(\mu_X, \sigma_X^2)$   $Y_1, \ldots, Y_n$  i.i.d. con  $Y_j \sim N(\mu_Y, \sigma_Y^2)$  indipendenti  $\overline{X}_m \sim N\left(\mu_X, \frac{\sigma_X^2}{m}\right)$   $\overline{Y}_n \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$  indipendenti  $\overline{Y}_n \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$   $\Rightarrow$   $\overline{X}_m - \overline{Y}_n \sim N\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}\right)$ 

$$\begin{array}{l} X_1, \dots, X_m \quad \text{i.i.d.} \quad \text{con} \quad X_i \sim N(\mu_X, \sigma_X^2) \\ Y_1, \dots, Y_n \quad \text{i.i.d.} \quad \text{con} \quad Y_j \sim N(\mu_Y, \sigma_Y^2) \end{array} \right\} \quad \text{indipendenti}$$
 
$$\Rightarrow \quad \overline{X}_m \sim N\left(\mu_X, \frac{\sigma_X^2}{m}\right) \\ \overline{Y}_n \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right) \end{array} \right\} \quad \text{indipendenti}$$
 
$$\Rightarrow \quad \overline{X}_m - \overline{Y}_n \sim N\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}\right)$$
 
$$\Rightarrow \quad \overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y) \\ \overline{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \sim N(0, 1)$$

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

$$H_1: \mu_X - \mu_Y > \delta$$

**ESEMPIO:** Se  $\delta_0 = 0$ .

$$H_0: \mu_X = \mu_Y$$
 vs.  $H_1: \mu_X > \mu_Y$ 

$$H_1: \mu_X > \mu_Y$$

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

$$H_1: \mu_X - \mu_Y > \delta_0$$

**ESEMPIO**: Se  $\delta_0 = 0$ .

$$H_0: \mu_X = \mu_Y$$
 vs.  $H_1: \mu_X > \mu_Y$ 

$$H_1: \mu_X > \mu_Y$$

Userò la statistica test

$$Z_0 := \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$$

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

**ESEMPIO:** Se  $\delta_0 = 0$ ,

$$H_0: \mu_X = \mu_Y$$
 vs.  $H_1: \mu_X > \mu_Y$ 

Userò la statistica test

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} \sim N(0, 1)$$
 se e solo se  $\mu_X - \mu_Y = \delta_0$ 

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

**ESEMPIO:** Se  $\delta_0 = 0$ ,

$$H_0: \mu_X = \mu_Y$$
 vs.  $H_1: \mu_X > \mu_Y$ 

Userò la statistica test

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} \sim N(0, 1)$$
 se e solo se  $\mu_X - \mu_Y = \delta_0$ 

e la regola

"Rifiuto 
$$H_0$$
 se  $Z_0 > z_{1-\alpha}$ "

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

$$H_1: \mu_X - \mu_Y > \delta_0$$

**ESEMPIO**: Se  $\delta_0 = 0$ .

$$H_0: \mu_X = \mu_Y$$
 vs.  $H_1: \mu_X > \mu_Y$ 

$$H_1: \mu_X > \mu_Y$$

Userò la statistica test

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} \sim \textit{N}(0,1)$$
 se e solo se  $\mu_X - \mu_Y = \delta_0$ 

e la regola

"Rifiuto 
$$H_0$$
 se  $Z_0 > z_{1-\alpha}$ "

Questo è un test di significatività  $\alpha$ !

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$  "Rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

SIGNIFICATIVITÀ =  $\mathbb{P}_{H_0 \text{ vera}}$  ("rifiuterò  $H_0$ ")

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se} \ \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{SIGNIFICATIVIT\`A} &= \mathbb{P}_{H_0 \text{ vera}} \left( \text{``rifiuter\'o } H_0 \text{''} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}} > z_{1-\alpha} \right) \end{split}$$

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se} \ \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{SIGNIFICATIVIT\`A} &= \mathbb{P}_{H_0 \text{ vera}} \left( \text{``rifiuter\'o } H_0 \text{'`} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left( \underbrace{\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}}_{\sim \textit{N}(0,1)} > z_{1-\alpha} \right) \end{split}$$

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se} \ \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{SIGNIFICATIVIT\`A} &= \mathbb{P}_{H_0 \text{ vera}} \left( \text{``rifiuter\'o } H_0 \text{'`} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}} > z_{1-\alpha} \right) \end{split}$$

 $= 1 - \Phi(z_{1-\alpha})$ 

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se} \ \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{SIGNIFICATIVIT\`A} &= \mathbb{P}_{H_0 \text{ vera}} \left( \text{``rifiuter\'o } H_0 \text{'`} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}} > z_{1-\alpha} \right) \end{split}$$

 $= 1 - \Phi(z_{1-\alpha}) = 1 - (1 - \alpha)$ 

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$  "Rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

SIGNIFICATIVITÀ = 
$$\mathbb{P}_{H_0 \text{ vera}}$$
 ("rifiuterò  $H_0$ ")  
=  $\mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$   
=  $1 - \Phi(z_{1-\alpha}) = 1 - (1 - \alpha)$   
=  $\alpha$ 

$$H_0: \mu_X - \mu_Y = \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0$$
"Rifiuto  $H_0$  se  $Z_0:=\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha}$ "

SIGNIFICATIVITÀ = 
$$\mathbb{P}_{H_0 \text{ vera}}$$
 ("rifiuterò  $H_0$ ")  
=  $\mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$   
=  $1 - \Phi(z_{1-\alpha})$   
=  $\alpha$ 

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$  "Rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò  $H_0$ ")

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se } \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{POTENZA} &= \mathbb{P}_{H_0 \ \text{falsa}} \left( \text{``rifiuter\'o } H_0 \text{''} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right) \end{split}$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$  "Rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ " POTENZA =  $\mathbb{P}_{H_0 ext{ falsa}}$  ("rifiuterò  $H_0$ ") 
$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left( rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{2} + rac{\sigma_Y^2}{2}}} > z_{1-lpha} 
ight)$$

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > Z_{1-\alpha} + \frac{\delta_0 - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right)$$

 $H_0: \mu_X - \mu_Y = \delta_0$  vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

"Rifiuto 
$$H_0$$
 se  $Z_0 := \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha}$ "

POTENZA =  $\mathbb{P}_{H_0 \text{ falsa}}$  ("rifiuterò  $H_0$ ")

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$$

$$\left( \frac{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right)$$

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right) > z_{1-\alpha} + \frac{\delta_0 - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right)$$

$$N(0,1)$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$  "Rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò  $H_0$ ")

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}} \left( \frac{\overline{X}_{m} - \overline{Y}_{n} - \delta_{0}}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} > z_{1-\alpha} \right)$$

$$= \left( \overline{X}_{m} - \overline{Y}_{n} - (\mu_{X} - \mu_{Y}) \right)$$

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}}\left(\frac{\overline{X}_{m} - \overline{Y}_{n} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} > z_{1-\alpha} + \frac{\delta_{0} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}}\right)$$

$$= 1 - \Phi\left(z_{1-\alpha} + \frac{\delta_{0} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}}\right)$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$  "Rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò  $H_0$ ")

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}} \left( \frac{\overline{X}_{m} - \overline{Y}_{n} - \delta_{0}}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} > z_{1-\alpha} \right)$$

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}} \left( \frac{\overline{X}_{m} - \overline{Y}_{n} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} > z_{1-\alpha} + \frac{\delta_{0} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} \right)$$

$$= \Phi \left( -z_{1-\alpha} + \frac{(\mu_X - \mu_Y) - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right)$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$  "Rifiuto  $H_0$  se  $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA = 
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò  $H_0$ ")

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left( \frac{X_m - Y_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$$

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left( \frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > Z_{1-\alpha} + \frac{\delta_0 - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right)$$

$$= \Phi\left(-z_{1-\alpha} + \frac{(\mu\chi - \mu\gamma) - \delta_0}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}}\right) \quad \text{crescente in } m, n!$$

Per i due campioni normali precedenti, questi sono tutti test di livello  $\alpha$ :

| H <sub>0</sub>                                                 | H <sub>1</sub>                      | rifiuto $H_0$ se               | <i>p</i> -value       |
|----------------------------------------------------------------|-------------------------------------|--------------------------------|-----------------------|
| $\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \le \delta_0$ | $\mu_{X} - \mu_{Y} > \delta_{0}$    | $Z_0 > z_{1-\alpha}$           | $1-\Phi(z_0)$         |
| $\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \ge \delta_0$ | $\mu_{X} - \mu_{Y} < \delta_{0}$    | $Z_0 < -z_{1-\alpha}$          | $\Phi(z_0)$           |
| $\mu_{X} - \mu_{Y} = \delta_{0}$                               | $\mu_{X} - \mu_{Y} \neq \delta_{0}$ | $ Z_0 >z_{1-\frac{\alpha}{2}}$ | 2 $[1 - \Phi( z_0 )]$ |

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}}$$

| H <sub>0</sub>                                    | H <sub>1</sub>      | rifiuto <i>H</i> <sub>0</sub> se | <i>p</i> -value       |
|---------------------------------------------------|---------------------|----------------------------------|-----------------------|
| $\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \leq \mu_{Y}$ | $\mu_X > \mu_Y$     | $Z_0 > z_{1-\alpha}$             | $1-\Phi(z_0)$         |
| $\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \ge \mu_{Y}$  | $\mu_{X} < \mu_{Y}$ | $Z_0 < -z_{1-\alpha}$            | Φ(z <sub>0</sub> )    |
| $\mu_{X} = \mu_{Y}$                               | $\mu_X \neq \mu_Y$  | $ Z_0 >z_{1-\frac{\alpha}{2}}$   | 2 $[1 - \Phi( z_0 )]$ |

$$Z_0 := \frac{\overline{X}_m - \overline{Y}_n}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$$

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

$$H_1: \mu_X - \mu_Y > \delta$$

senza conoscere il valore di  $\sigma_X$  e  $\sigma_Y$ !

**OBIETTIVO:** Fissato  $\delta_0 \in \mathbb{R}$ , fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs.  $H_1: \mu_X - \mu_Y > \delta_0$ 

senza conoscere il valore di  $\sigma_X$  e  $\sigma_Y$ !

#### Teorema (non dimostrato)

Se i due campioni normali precedenti hanno  $\sigma_X = \sigma_Y$ , allora

$$\frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{S_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}} \sim t(m + n - 2)$$

dove  $S_p^2$  è la *varianza pooled* 

$$S_p^2 := \frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}$$

Per i due campioni normali precedenti, con in più l'ipotesi  $\sigma_X = \sigma_Y$ , questi sono tutti test di livello  $\alpha$ :

| H <sub>0</sub>                                                 | H <sub>1</sub>                      | rifiuto <i>H</i> <sub>0</sub> se      |
|----------------------------------------------------------------|-------------------------------------|---------------------------------------|
| $\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \le \delta_0$ | $\mu_{X} - \mu_{Y} > \delta_{0}$    | $T_0 > t_{1-\alpha}(m+n-2)$           |
| $\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \ge \delta_0$ | $\mu_{X} - \mu_{Y} < \delta_{0}$    | $T_0 < -t_{1-\alpha}(m+n-2)$          |
| $\mu_X - \mu_Y = \delta_0$                                     | $\mu_{X} - \mu_{Y} \neq \delta_{0}$ | $ T_0 >t_{1-\frac{\alpha}{2}}(m+n-2)$ |

$$T_0 := \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{S_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

Per i due campioni normali precedenti, con in più l'ipotesi  $\sigma_X = \sigma_Y$ , questi sono tutti test di livello  $\alpha$ :

| H <sub>0</sub>                                    | H <sub>1</sub>      | rifiuto $H_0$ se                      |
|---------------------------------------------------|---------------------|---------------------------------------|
| $\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \leq \mu_{Y}$ | $\mu_X > \mu_Y$     | $T_0 > t_{1-\alpha}(m+n-2)$           |
| $\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \ge \mu_{Y}$  | $\mu_{X} < \mu_{Y}$ | $T_0 < -t_{1-\alpha}(m+n-2)$          |
| $\mu_{X} = \mu_{Y}$                               | $\mu_X \neq \mu_Y$  | $ T_0 >t_{1-\frac{\alpha}{2}}(m+n-2)$ |

$$\mathcal{T}_0 := rac{\overline{X}_m - \overline{Y}_n}{\sqrt{\mathcal{S}^2_p\left(rac{1}{m} + rac{1}{n}
ight)}}$$

Per i due campioni normali precedenti, con in più l'ipotesi  $\sigma_X = \sigma_Y$ , questi sono tutti test di livello  $\alpha$ :

| H <sub>0</sub>                                     | H <sub>1</sub>                      | rifiuto <i>H</i> <sub>0</sub> se                                    |  |  |  |  |
|----------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|--|--|--|--|
| $\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \leq \mu_{Y}$  | $\mu_X > \mu_Y$                     | $T_0 > t_{1-\alpha}(m+n-2)$                                         |  |  |  |  |
| $\mu_X = T_0 \sim 0$ oppui $\mu_X \geq T_0 \sim 0$ | ??? quando $\mu_X$ la potenza non : | $ \frac{-\mu_Y \neq \delta_0}{\text{si sa calcolare}} \vdash n-2) $ |  |  |  |  |
| $\mu_{X} = \mu_{Y}$                                | $\mu_X \neq \mu_Y$                  | $ T_0 >t_{1-\frac{\alpha}{2}}(m+n-2)$                               |  |  |  |  |

$$T_0 := \frac{X_m - Y_n}{\sqrt{S_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

Ma come si fa a capire se  $\sigma_X = \sigma_Y$ ?

Ma come si fa a capire se  $\sigma_X = \sigma_Y$ ?

Servirebbe un test per le ipotesi

$$H_0: \sigma_X \neq \sigma_Y$$
 vs.  $H_1: \sigma_X = \sigma_Y$ 

(evidenza forte per  $\sigma_X = \sigma_Y \quad \Rightarrow \quad$  sarebbe meglio)

Ma come si fa a capire se  $\sigma_X = \sigma_Y$ ?

Servirebbe un test per le ipotesi

$$H_0: \sigma_X \neq \sigma_Y$$
 vs.  $H_1: \sigma_X = \sigma_Y$  (evidenza forte per  $\sigma_X = \sigma_Y$   $\Rightarrow$  sarebbe meglio)

o almeno per

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X \neq \sigma_Y$  (evidenza forte per  $\sigma_X \neq \sigma_Y$ )

Ma come si fa a capire se  $\sigma_X = \sigma_Y$ ?

Servirebbe un test per le ipotes

$$H_0: \sigma_X \neq \sigma_Y$$
 vs.  $H_1: \sigma_X = \sigma_Y$   
evidenza forte per  $\sigma_X = \sigma_Y$   $\Rightarrow$  sarebbe meglio)

o almeno per

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X \neq \sigma_Y$  (evidenza forte per  $\sigma_X \neq \sigma_Y$ )

Purtroppo si sa fare solo questo!

#### Teorema (non dimostrato)

Se i due campioni normali precedenti hanno  $\sigma_X = \sigma_Y$ , allora

$$F_0 := \frac{S_\chi^2}{S_V^2}$$

ha densità di Fisher con m-1 e n-1 gradi di libertà (f(m-1, n-1))

#### Teorema (non dimostrato)

Se i due campioni normali precedenti hanno  $\sigma_X = \sigma_Y$ , allora

$$F_0 := \frac{S_X^2}{S_Y^2}$$

ha densità di Fisher con m-1 e n-1 gradi di libertà (f(m-1,n-1))



Un test di significatività  $\alpha$  per le ipotesi

$$H_0: \sigma_X = \sigma_Y \quad \left( \Leftrightarrow \frac{\sigma_X^2}{\sigma_Y^2} = 1 \right) \quad \text{vs.} \quad H_1: \sigma_X > \sigma_Y \quad \left( \Leftrightarrow \frac{\sigma_X^2}{\sigma_Y^2} > 1 \right)$$

è dato dalla regola

"Rifiuto 
$$H_0$$
 se  $F_0 > f_{1-\alpha}(m-1, n-1)$ "











#### Proprietà della densità di Fisher:

• supp  $f(h, k) = [0, +\infty)$ 





- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq 90\%$  sono tabulati:

$$f_{0.975}(3,7) = 5.890$$

|   |       |        |        |        |        |       |       |       |       |       |       |       | Та    | vola  | dei q | uanti | 0.9   | 75 de | lla di | strib | uzion   | e F(r | n,n)  |       |     |
|---|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|---------|-------|-------|-------|-----|
|   |       |        |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       | n     |        |       |         |       |       |       |     |
| m | 1     | 2      | 3      | 4      | 5      | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19     | 20    | 22      | 24    | 26    | 28    | 2   |
| 1 | 647.8 | 38.506 | 17.443 | 12.218 | 10.007 | 8.813 | 8.073 | 7.571 | 7.209 | 6.937 | 6.724 | 6.554 | 6.414 | 6.298 | 6.200 | 6.115 | 6.042 | 5.978 | 5.922  | 5.871 | 5.786   | 5.717 | 5.659 | 5.610 | 5.  |
| 2 | 799.5 | 39.000 | 16.044 | 10.649 | 8.434  | 7.260 | 6 542 | 6.059 | 5.715 | 5.456 | 5.256 | 5.096 | 4.965 | 4.857 | 4.765 | 4.687 | 4.619 | 4.560 | 4.508  | 4.461 | 4.383   | 4.319 | 4.265 | 4.221 | 4.1 |
| 3 | 864.2 | 39.166 | 15.439 | 9.979  | 7.764  | 6.599 | 5.890 | 5.416 | 5.078 | 4.826 | 4.630 | 4.474 | 4.347 | 4.242 | 4.153 | 4.077 | 4.011 | 3.954 | 3.903  | 3.859 | 3.783   | 3.721 | 3.670 | 3.626 | 3.5 |
| 4 | 899.6 | 39.248 | 15.101 | 9.604  | 7.388  | 6.227 | 5.523 | 5.053 | 4.718 | 4.468 | 4.275 | 4.121 | 3.996 | 3.892 | 3.804 | 3.729 | 3.665 | 3.608 | 3.559  | 3.515 | 3.440   | 3.379 | 3.329 | 3.286 | 3.: |
| 5 | 921.8 | 39.298 | 14.885 | 9.364  | 7.146  | 5.988 | 5.285 | 4.817 | 4.484 | 4.236 | 4.044 | 3.891 | 3.767 | 3.663 | 3.576 | 3.502 | 3.438 | 3.382 | 3.333  | 3.289 | 3.215   | 3.155 | 3.105 | 3.063 | 3.  |
| 6 | 937.1 | 39.331 | 14.735 | 9.197  | 6.978  | 5.820 | 5.119 | 4.652 | 4.320 | 4.072 | 3.881 | 3.728 | 3.604 | 3.501 | 3.415 | 3.341 | 3.277 | 3.221 | 3.172  | 3.128 | 3.055   | 2.995 | 2.945 | 2.903 | 2.5 |
| 7 | 948.2 | 39.356 | 14 624 | 9.074  | 6.853  | 5 695 | 4 995 | 4 529 | 4 197 | 3.950 | 3.759 | 3.607 | 3.483 | 3 380 | 3 203 | 3 210 | 3.156 | 3 100 | 3.051  | 3.007 | 2 9 3 4 | 2 874 | 2.824 | 2.782 | 2:  |



- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq$  90% sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$



- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq 90\%$  sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$



- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq 90\%$  sono tabulati



- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq 90\%$  sono tabulati



- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq 90\%$  sono tabulati



- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq$  90% sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$

#### Proprietà della densità di Fisher:



- supp  $f(h, k) = [0, +\infty)$
- i quantili con  $\alpha \geq$  90% sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$

• i quantili con  $\alpha \le 10\%$  si ricavano da

$$f_{\alpha}(h,k) = \frac{1}{f_{1-\alpha}(k,h)}$$

$$\mathbb{P}_{\sigma_X = \sigma_Y} \Big( \frac{S_X^2}{S_Y^2} \le \frac{1}{f_{1-\alpha}(n-1, m-1)} \Big)$$

$$\mathbb{P}_{\sigma_X = \sigma_Y} \Big( \frac{S_X^2}{S_Y^2} \le \frac{1}{f_{1-\alpha}(n-1, m-1)} \Big)$$

$$= \mathbb{P}_{\sigma_X = \sigma_Y} \left( \frac{S_Y^2}{S_X^2} \ge f_{1-\alpha}(n-1, m-1) \right)$$

$$\mathbb{P}_{\sigma_X = \sigma_Y} \Big( \frac{S_X^2}{S_Y^2} \le \frac{1}{f_{1-\alpha}(n-1, m-1)} \Big)$$

$$\begin{split} &= \mathbb{P}_{\sigma_X = \sigma_Y} \Big( \frac{S_Y^2}{S_X^2} \ge f_{1-\alpha}(n-1, m-1) \Big) \\ &= 1 - \mathbb{P}_{\sigma_X = \sigma_Y} \Big( \frac{S_Y^2}{S_X^2} < f_{1-\alpha}(n-1, m-1) \Big) \end{split}$$

$$\begin{split} \mathbb{P}_{\sigma_{X}=\sigma_{Y}} \Big( & \frac{S_{X}^{2}}{S_{Y}^{2}} & \leq \frac{1}{f_{1-\alpha}(n-1,m-1)} \Big) \\ & = \mathbb{P}_{\sigma_{X}=\sigma_{Y}} \Big( \frac{S_{Y}^{2}}{S_{X}^{2}} \geq f_{1-\alpha}(n-1,m-1) \Big) \\ & = 1 - \mathbb{P}_{\sigma_{X}=\sigma_{Y}} \Big( & \underbrace{\frac{S_{Y}^{2}}{S_{X}^{2}}}_{f(n-1,m-1)} & \leq f_{1-\alpha}(n-1,m-1) \Big) \\ & = 1 - (1-\alpha) \end{split}$$

$$\mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{X}^{2}}{S_{Y}^{2}} & \leq \frac{1}{f_{1-\alpha}(n-1,m-1)} \right)$$

$$= \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\frac{S_{Y}^{2}}{S_{X}^{2}} \geq f_{1-\alpha}(n-1,m-1) \right)$$

$$= 1 - \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\underbrace{\frac{S_{Y}^{2}}{S_{X}^{2}}} < f_{1-\alpha}(n-1,m-1) \right)$$

$$= 1 - (1 - \alpha)$$

$$= \alpha$$

$$\mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{X}^{2}}{S_{Y}^{2}} \leq \frac{1}{f_{1-\alpha}(n-1,m-1)} \\ f(m-1,n-1) = \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\frac{S_{Y}^{2}}{S_{X}^{2}} \geq f_{1-\alpha}(n-1,m-1) \right) \\ = 1 - \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{Y}^{2}}{S_{X}^{2}} < f_{1-\alpha}(n-1,m-1) \\ f(n-1,m-1) \end{array}\right) \\ = 1 - (1-\alpha) \\ = \alpha$$

$$\mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{X}^{2}}{S_{Y}^{2}} \leq \frac{1}{f_{1-\alpha}(n-1,m-1)} \right)$$

$$= \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\frac{S_{Y}^{2}}{S_{X}^{2}} \geq f_{1-\alpha}(n-1,m-1)\right)$$

$$= 1 - \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{Y}^{2}}{S_{X}^{2}} \leq f_{1-\alpha}(n-1,m-1) \right)$$

$$= 1 - (1-\alpha)$$

$$= \alpha$$

$$\Rightarrow f_{\alpha}(m-1,n-1) \equiv \frac{1}{f_{1-\alpha}(n-1,m-1)}$$

| H <sub>0</sub>                                                                                                             | H <sub>1</sub>            | rifiuto <i>H</i> <sub>0</sub> se                                               |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------|
| $\sigma_{\mathcal{X}} = \sigma_{\mathcal{Y}}$ oppure $\sigma_{\mathcal{X}} \leq \sigma_{\mathcal{Y}}$                      | $\sigma_{X} > \sigma_{Y}$ | $F_0 > f_{1-\alpha}(m-1, n-1)$                                                 |
| $ \begin{aligned} \sigma_{\chi} &= \sigma_{\gamma} \\ \text{oppure} \\ \sigma_{\chi} &\geq \sigma_{\gamma} \end{aligned} $ | $\sigma_{X} < \sigma_{Y}$ | $F_0 < f_{\alpha}(m-1, n-1)$                                                   |
| $\sigma_{X} = \sigma_{Y}$                                                                                                  | $\sigma_X \neq \sigma_Y$  | $F_0 < f_{rac{lpha}{2}}(m-1,n-1)$ oppure $F_0 > f_{1-rac{lpha}{2}}(m-1,n-1)$ |

$$F_0 := \frac{S_X^2}{S_Y^2}$$

| H <sub>0</sub>                                                                                                             | H <sub>1</sub>            | rifiuto <i>H</i> <sub>0</sub> se                                               |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------|
| $ \begin{aligned} \sigma_{\chi} &= \sigma_{\gamma} \\ \text{oppure} \\ \sigma_{\chi} &\leq \sigma_{\gamma} \end{aligned} $ | $\sigma_{X} > \sigma_{Y}$ | $F_0 > f_{1-\alpha}(m-1, n-1)$                                                 |
| $\sigma_{X} = \sigma_{Y}$ Vanno controll $\sigma_{X} \leq \sigma_{Y}$                                                      | ate entrambe!             | $F_0 < f_{\alpha}(m-1, n-1)$                                                   |
| $\sigma_{X} = \sigma_{Y}$                                                                                                  | $\sigma_X \neq \sigma_Y$  | $F_0 < f_{rac{lpha}{2}}(m-1,n-1)$ oppure $F_0 > f_{1-rac{lpha}{2}}(m-1,n-1)$ |

$$F_0 := \frac{S_X^2}{S_Y^2}$$

| H <sub>0</sub>                                                                                             | H <sub>1</sub>            | accetto H <sub>0</sub> se                                                                       |
|------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------|
| $\sigma_{\mathcal{X}} = \sigma_{\mathcal{Y}}$ oppure $\sigma_{\mathcal{X}} \leq \sigma_{\mathcal{Y}}$      | $\sigma_{X} > \sigma_{Y}$ | $F_0 \leq f_{1-\alpha}(m-1, n-1)$                                                               |
| $ \begin{aligned} \sigma_{X} &= \sigma_{Y} \\ \text{oppure} \\ \sigma_{X} &\geq \sigma_{Y} \end{aligned} $ | $\sigma_{X} < \sigma_{Y}$ | $F_0 \geq f_{\alpha}(m-1, n-1)$                                                                 |
| $\sigma_{X} = \sigma_{Y}$                                                                                  | $\sigma_X \neq \sigma_Y$  | $f_{\frac{\alpha}{2}}(m-1, n-1) \leq \\ \leq F_0 \leq \\ \leq f_{1-\frac{\alpha}{2}}(m-1, n-1)$ |

$$F_0 := \frac{S_X^2}{S_Y^2}$$

**PROBLEMA:** Calcolare il p-value dell'F-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs.  $H_1:\sigma_X>\sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m=4 misure  $X_i$  e n=18 misure  $Y_j$  abbiamo trovato  $f_0=2.903$ 

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X > \sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2} > f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3,17)$$

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs.  $H_1:\sigma_X>\sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3,17)$$
  
 $\Rightarrow 0.9 < 1 - \alpha$ 

|   |       |       |       |     |  | la  | la dei quant li 0.9 della distribuz |       |       |       |       |       |    |  |
|---|-------|-------|-------|-----|--|-----|-------------------------------------|-------|-------|-------|-------|-------|----|--|
|   |       |       |       |     |  |     |                                     |       |       | n     |       |       |    |  |
| m | 1     | 2     | 3     | 4   |  |     | 15                                  | 16    | 17    | 18    | 19    | 20    | 1  |  |
| 1 | 39.86 | 8.526 | 5.538 | 4.5 |  |     | 3.073                               | 3.048 | 3.026 | 3.007 | 2.990 | 2.975 | 2. |  |
| 2 | 49.50 | 9.000 | 5.462 | 4.3 |  | 1   | 2.695                               | 2.668 | 2.645 | 2.624 | 2.606 | 2.589 | 2. |  |
| 3 | 53.59 | 9.162 | 5.391 | 4.1 |  | 1   | 2.490                               | 2.462 | 2.437 | 2.416 | 2.397 | 2.380 | 2. |  |
| 4 | 55.83 | 9.243 | 5.343 | 4.1 |  | - 1 | 2.361                               | 2.333 | 2.308 | 2.286 | 2.266 | 2.249 | 2. |  |
| 5 | 57.24 | 9.293 | 5.309 | 4.0 |  |     | 2.273                               | 2.244 | 2.218 | 2.196 | 2.176 | 2.158 | 2. |  |
|   | E0 20 | 0.220 | E 20E | 4.0 |  |     | 2 200                               | 0 470 | 2452  | 2 420 | 2 400 | 2.004 | ٠. |  |

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs.  $H_1:\sigma_X>\sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3, 17)$$
  
 $\Rightarrow 0.9 < 1 - \alpha < 0.95$ 

|   |        |        |        | _    | <br>la   | la dei quanti i 0.95 della distribu |       |       |         |       |       |    |  |  |
|---|--------|--------|--------|------|----------|-------------------------------------|-------|-------|---------|-------|-------|----|--|--|
| m | 1      | 2      | 3      | 4    | <br>_    | 15                                  | 16    | 17    | n<br>18 | 19    | 20    | :  |  |  |
| 1 | 161.45 | 18.513 | 10.128 | 7.7  | <br>. 10 | 4.543                               | 4.494 | 4.451 | 4.414   | 4.381 | 4.351 | 4. |  |  |
| 2 | 199.50 | 19.000 | 9.552  | 6.9  | <br>19   | 3.682                               | 3.634 | 3.592 | 3.555   | 3.522 | 3.493 | 3. |  |  |
| 3 | 215.71 | 19.164 | 9.277  | 6.5  | <br>. 4  | 3.287                               | 3.239 | 3.197 | 3.160   | 3.127 | 3.098 | 3. |  |  |
| 4 | 224.58 | 19.247 | 9.117  | 6.3  | <br>2    | 3.056                               | 3.007 | 2.965 | 2.928   | 2.895 | 2.866 | 2. |  |  |
| 5 | 230.16 | 19.296 | 9.013  | 6.2  | <br>i8   | 2.901                               | 2.852 | 2.810 | 2.773   | 2.740 | 2.711 | 2. |  |  |
| o | 200 00 | 40.990 | 0.044  | D 4. | 0        | 0.700                               | 0.744 | 2000  | 0.004   | 2 020 | 2500  | ٥. |  |  |

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs.  $H_1:\sigma_X>\sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3, 17)$$
  
 $\Rightarrow 0.9 < 1 - \alpha < 0.95$   
 $\Rightarrow 0.05 < \alpha < 0.1$ 

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs.  $H_1:\sigma_X>\sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3,17)$$

$$\Rightarrow$$
 0.9 < 1 -  $\alpha$  < 0.95

$$\Rightarrow$$
 0.05 < p-value < 0.1

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X < \sigma_Y$  "rifiuto  $H_0$  se  $F_0:= \frac{S_X^2}{S_Y^2} < f_{\alpha}(m-1,n-1)$ " se dopo  $m=4$  misure  $X_i$  e  $n=18$  misure  $Y_j$  abbiamo trovato  $f_0=0.021$ 

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X < \sigma_Y$  "rifiuto  $H_0$  se  $F_0:= \frac{S_X^2}{S_Y^2} < f_{\alpha}(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3,17)$$

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs.  $H_1:\sigma_X<\sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}< f_lpha(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3, 17)$$

$$\Rightarrow \frac{1}{0.021} = \frac{1}{f_{\alpha}(3, 17)}$$

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y \qquad ext{vs.} \qquad H_1:\sigma_X<\sigma_Y$$
 "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}< f_lpha(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3, 17)$$

$$\Rightarrow \frac{1}{0.021} = \frac{1}{f_{\alpha}(3, 17)}$$

$$\Rightarrow 47.619 = f_{1-\alpha}(17, 3)$$

**PROBLEMA:** Calcolare il p-value dell'F-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X < \sigma_Y$  "rifiuto  $H_0$  se  $F_0:= rac{S_X^2}{S_Y^2} < f_lpha(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_i$  abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3, 17)$$

$$\Rightarrow \frac{1}{0.021} = \frac{1}{f_{\alpha}(3, 17)}$$

$$\Rightarrow 47.619 = f_{1-\alpha}(17, 3)$$

$$\Rightarrow 1 - \alpha > 0.995$$



**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y \qquad ext{vs.} \qquad H_1:\sigma_X<\sigma_Y$$
 "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2}< f_lpha(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3,17)$$

$$\Rightarrow \quad \frac{1}{0.021} = \frac{1}{f_{\alpha}(3,17)}$$

$$\Rightarrow$$
 47.619 =  $f_{1-\alpha}(17,3)$ 

$$\Rightarrow$$
 1 –  $\alpha$  > 0.995

$$\Rightarrow$$
  $\alpha$  < 0.005

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X < \sigma_Y$  "rifiuto  $H_0$  se  $F_0:=rac{S_X^2}{S_Y^2} < f_lpha(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3,17)$$

$$\Rightarrow \quad \frac{1}{0.021} = \frac{1}{f_{\alpha}(3,17)}$$

$$\Rightarrow$$
 47.619 =  $f_{1-\alpha}(17,3)$ 

$$\Rightarrow$$
 1 –  $\alpha$  > 0.995

$$\Rightarrow$$
 *p*-value  $< 0.005$ 

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y \qquad \text{vs.} \qquad H_1: \sigma_X \neq \sigma_Y$$
 "accetto  $H_0$  se  $\frac{f_{\alpha}}{2}(m-1,n-1) < F_0:= \frac{S_X^2}{S_Y^2} < \frac{f_{1-\frac{\alpha}{2}}(m-1,n-1)}{2}$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = \dots$$

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y \qquad \text{vs.} \qquad H_1: \sigma_X \neq \sigma_Y$$
 "accetto  $H_0$  se  $f_{\frac{\alpha}{2}}(m-1,n-1) < F_0:=\frac{S_X^2}{S_Y^2} < f_{1-\frac{\alpha}{2}}(m-1,n-1)$ "

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_j$  abbiamo trovato

$$f_0 = \dots$$

• se 
$$f_0 < 1$$
,  
 $f_0 \equiv f_{\frac{\alpha}{2}}(3, 17)$ 

**PROBLEMA:** Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs.  $H_1: \sigma_X \neq \sigma_Y$ 

$$\text{``accetto $H_0$ se $f_{\frac{\alpha}{2}}(m-1,n-1) < F_0 := \frac{S_X^2}{S_Y^2} < f_{1-\frac{\alpha}{2}}(m-1,n-1)$''}$$

se dopo m = 4 misure  $X_i$  e n = 18 misure  $Y_i$  abbiamo trovato

$$f_0 = \dots$$

• se 
$$f_0 < 1$$
,

$$f_0 \equiv f_{\frac{\alpha}{2}}(3,17)$$

• se 
$$f_0 > 1$$
,

$$f_0 \equiv f_{1-\frac{\alpha}{2}}(3,17)$$

### Test differenza medie x pop. numerose indipendenti

### Test differenza medie x pop. numerose indipendenti

**IPOTESI:** 

$$X_1, \dots, X_m$$
 i.i.d. con  $m$  grande  $Y_1, \dots, Y_n$  i.i.d. con  $n$  grande  $M$  indipendenti

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}} \approx N(0, 1)$$

### Test differenza medie x pop. numerose indipendenti

#### **IPOTESI:**

$$X_1, \dots, X_m$$
 i.i.d. con  $m$  grande  $Y_1, \dots, Y_n$  i.i.d. con  $n$  grande  $Y_n, \dots, Y_n$  i.i.d. con  $Y_n$  grande  $Y_n, \dots, Y_n$  i.i.d. con  $Y_n$  grande

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}} \approx \textit{N}(0, 1)$$

 $\Rightarrow$  Z-test per  $\mu_X - \mu_Y$  approssimati

**IPOTESI:** 

$$X_1,\ldots,X_m$$
 i.i.d. con  $m$  grande,  $X_i\sim B(1,q_X)$   $Y_1,\ldots,Y_n$  i.i.d. con  $n$  grande,  $Y_j\sim B(1,q_Y)$  indip.

$$X_1, \ldots, X_m$$
 i.i.d. con  $m$  grande,  $X_i \sim B(1, q_X)$   $Y_1, \ldots, Y_n$  i.i.d. con  $n$  grande,  $Y_j \sim B(1, q_Y)$  indip.

$$\Rightarrow \frac{\overline{X}_m - \overline{Y}_n - (q_X - q_Y)}{\sqrt{\hat{P}(1 - \hat{P})(\frac{1}{m} + \frac{1}{n})}} \approx N(0, 1) \quad \text{con} \quad \hat{P} = \frac{m\overline{X}_m + n\overline{Y}_n}{m + n}$$

$$X_1, \ldots, X_m$$
 i.i.d. con  $m$  grande,  $X_i \sim B(1, q_X)$   $Y_1, \ldots, Y_n$  i.i.d. con  $n$  grande,  $Y_j \sim B(1, q_Y)$  indip.

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (q_X - q_Y)}{\sqrt{\hat{P}(1 - \hat{P})(\frac{1}{m} + \frac{1}{n})}} \approx N(0, 1) \quad \text{con} \quad \hat{P} = \frac{m\overline{X}_m + n\overline{Y}_n}{m + n}$$

 $\Rightarrow$  Z-test per  $q_X - q_Y$  approssimati

$$X_1, \ldots, X_m$$
 i.i.d. con  $m$  grande,  $X_i \sim B(1, q_X)$   $Y_1, \ldots, Y_n$  i.i.d. con  $n$  grande,  $Y_j \sim B(1, q_Y)$  indip.

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (q_X - q_Y)}{\sqrt{\hat{P}(1 - \hat{P})\left(\frac{1}{m} + \frac{1}{n}\right)}} \approx N(0, 1) \quad \text{ con } \quad \hat{P} = \frac{m\overline{X}_m + n\overline{Y}_n}{m + n}$$

 $\Rightarrow$  Z-test per  $q_X - q_Y$  approssimati

In alternativa: Z-test per campioni numerosi, ma convergenza a N(0,1) più lenta

### Inferenza non parametrica

Supponiamo che

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim f$ ,  $f$  densità incognita

#### Inferenza non parametrica

Supponiamo che

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim f$ ,  $f$  densità incognita

Vogliamo fare inferenza su tutta f (e non solo su un suo parmetro)

#### Inferenza non parametrica

Supponiamo che

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim f$ ,  $f$  densità incognita

Vogliamo fare inferenza su tutta f (e non solo su un suo parmetro)

Ci sono due modi:

- metodi grafici
- test non parametrici

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
  
 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$ 

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
  
 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$ 

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
  
 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$ 

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

allora i *quantili empirici* 

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ rac{1}{2} \Big( X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & \text{se } n\gamma \in \mathbb{N} \end{cases}$$

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
  
 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$ 

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

allora i quantili empirici

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma 
floor + 1)} & ext{se } n\gamma 
otin \mathbb{N} \ rac{1}{2} \Big( X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a  $q_{\gamma}^{X}$ 

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
  
 $\Rightarrow \quad q_{\gamma}^{X} = \sigma Z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$ 

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

dalle tavole

allora i *quantili empirici* 

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma 
floor + 1)} & ext{se } n\gamma 
otin \mathbb{N} \ rac{1}{2} \Big( X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a  $q_{\gamma}^{X}$ 

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
  
 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$ 

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

allora i quantili empirici

$$\widehat{Q}_{\gamma}^{X} = \begin{cases}
X_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\
\frac{1}{2} \left( X_{(n\gamma)} + X_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N}
\end{cases}$$

convergono in probabilità a  $q_{\gamma}^{X}$ 

dall'esperimento

**OSSERVAZIONE I:** Se  $X \sim N(\mu, \sigma^2)$ , allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
  
 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$ 

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con  $X_i \sim N(\mu, \sigma^2)$ 

allora i quantili empirici

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma 
floor + 1)} & ext{se } n\gamma 
otin \mathbb{N} \ rac{1}{2} \Big( X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a  $q_{\gamma}^{X}$ 

$$\Rightarrow$$
  $\hat{q}_{\gamma}^{X}$  e  $z_{\gamma}$  si devono allineare!

Se 
$$\gamma = \frac{k}{n}$$
 con  $k = 1, 2, ..., n$ : 
$$\hat{q}^X_{\gamma} = \hat{q}^X_{\frac{k}{n}}$$

Se 
$$\gamma=\frac{k}{n}$$
 con  $k=1,2,\ldots,n$ : 
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big)$$

Se 
$$\gamma = \frac{k}{n}$$
 con  $k = 1, 2, ..., n$ : 
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se 
$$\gamma=\frac{k}{n}$$
 con  $k=1,2,\ldots,n$ : 
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece  $\gamma=\frac{k-0.5}{n}$  con  $k=1,2,\ldots,n$ : 
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X$$

Se 
$$\gamma=\frac{k}{n}$$
 con  $k=1,2,\ldots,n$ : 
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece  $\gamma=\frac{k-0.5}{n}$  con  $k=1,2,\ldots,n$ : 
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X = x_{(k)}$$

Se 
$$\gamma=\frac{k}{n}$$
 con  $k=1,2,\ldots,n$ : 
$$\hat{q}_{\gamma}^X=\hat{q}_{\frac{k}{n}}^X=\frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece  $\gamma=\frac{k-0.5}{n}$  con  $k=1,2,\ldots,n$ : 
$$\hat{q}_{\gamma}^X=\hat{q}_{\frac{k-0.5}{n}}^X=x_{(k)} \qquad \text{più semplice.} \ldots$$

Se 
$$\gamma = \frac{k}{n}$$
 con  $k = 1, 2, ..., n$ : 
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece 
$$\gamma = \frac{k-0.5}{n}$$
 con  $k = 1, 2, ..., n$ :

$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(Z_{\frac{k-0.5}{n}}, \hat{q}_{\frac{k-0.5}{n}}^X\right)$$

con 
$$k = 1, 2, ..., n$$

Se 
$$\gamma = \frac{k}{n}$$
 con  $k = 1, 2, ..., n$ : 
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece 
$$\gamma = \frac{k-0.5}{n}$$
 con  $k = 1, 2, ..., n$ :

$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{\rho}}^X = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(z_{\frac{k-0.5}{n}}, \ \hat{q}_{\frac{k-0.5}{n}}^{X}\right) = \left(z_{\frac{k-0.5}{n}}, \ x_{(k)}\right) \quad \text{con } k = 1, 2, \dots, n$$

Se 
$$\gamma = \frac{k}{n}$$
 con  $k = 1, 2, ..., n$ : 
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece 
$$\gamma = \frac{k-0.5}{n}$$
 con  $k = 1, 2, ..., n$ :

$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k-0.5}{n}}^{X} = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(z_{\frac{k-0.5}{n}}, \ \hat{q}_{\frac{k-0.5}{n}}^{X}\right) = \left(z_{\frac{k-0.5}{n}}, \ x_{(k)}\right) \quad \text{con } k = 1, 2, \dots, n$$

punti quasi allineati  $\Rightarrow$  è verosimile che  $X_i \sim N(\mu, \sigma^2)$ 

Si può fare (con R) un test per le ipotesi

 $H_0$ : le  $X_i$  hanno densità normale vs.  $H_1$ :  $H_0$  è falsa

Si può fare (con R) un test per le ipotesi

 $H_0$ : le  $X_i$  hanno densità normale vs.  $H_1$ :  $H_0$  è falsa

p-value alto  $\Rightarrow$  non possiamo escludere  $X_i$  normali

Si può fare (con R) un test per le ipotesi

 $H_0$ : le  $X_i$  hanno densità normale vs.  $H_1$ :  $H_0$  è falsa

*p*-value alto  $\Rightarrow$  non possiamo escludere  $X_i$  normali

p-value basso  $\Rightarrow$  normalità delle  $X_i$  poco verosimile



Non posso rifiutare la gaussianità





Non posso rifiutare la gaussianità

Devo rifiutare la gaussianità