GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

		٦
	NOARDE DE LA ACIONATUDA	ł
- 1	NOMBRE DE LA ASIGNATURA	ı
į		١
	Resistencia de Materiales	ı
		J

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto Semestre	3041	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Dar al alumno las aptitudes y habilidad para establecer las relaciones entre las fuerzas externas y los esfuerzos y deformaciones para que tenga la capacidad de diseñar objetos.

TEMAS Y SUBTEMAS

- 1. Introducción
- 1.1 Definición de resistencia de materiales
- 1.2 Mecánica clásica y resistencia de materiales

2. Fuerza y Cargas

- 2.1 Definición de carga externa
- 2.2 Clasificación de cargas según su tipo
- 2.3 Clasificación de cargas según su forma de aplicación
- 2.4 Clasificación de cargas según su punto de aplicación
- 2.5 Clasificación de cargas según la forma de deformar el elemento
- 2.6 Clasificación de cargas según la forma de deformar el elemento
- 2.7 Análisis de fuerzas internas

3. Esfuerzos

- 3.1 Definición de esfuerzo
- 3.2 Esfuerzo normal de compresión o tensión
- 3.3 Esfuerzo cortante
- 3.4 Esfuerzo de aplastamiento o contacto
- 3.5 Ejemplos
- 3.6 Ejercicios

4. Deformación Simple

- 4.1 Definición de deformación
- 4.2 Deformación unitaria
- 4.3 Curva esfuerzo deformación
- 4.4 Hipótesis fundamentales
- 4.5 Ley de Hooke
- 4.6 Deformación angular
- 4.7 Elementos Hiperestáticos
- 4.8 Ejemplos
- 4.9 Ejercicios

5. Torsión

- 5.1 Definición de torsión
- 5.2 Hipótesis fundamentales
- 5.3 Deducción de las fórmulas
- 5.4 Eiemplos
- 5.5 Ejercicios

6. Esfuerzos por Flexión en Vigas

- 6.1 Hipótesis fundamentales
- 6.2 Deducción de la fórmula de la flexión
- 6.3 Perfiles comerciales
- 6.4 Deducción de la fórmula de esfuerzo cortante horizontal
- 6.5 Relación entre los esfuerzos cortantes verticales y horizontales
- 6.6 Diseño de vigas por flexión y cortante
- 6.7 Ejemplos
- 6.8 Ejercicios

7. Deformación por Flexión en Vigas

- 7.1 Introducción
- 7.2 Método de la doble integración
- 7.3 Diseño de vigas por deflexión
- 7.4 Ejemplos
- 7.5 Ejercicios

8. Columnas

- 8.1 Introducción
- 8.2 Carga crítica
- 8.3 Relación de esbeltez
- 8.4 Carga crítica para columnas largas o muy esbeltas
- 8.5 Fórmulas para el diseño de columnas de esbeltez intermedia
- 8.6 Diseño de columnas cargadas excéntricamente
- 8.7 Ejemplos
- 8.8 Ejercicios

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

- 3 Exámenes parciales 50%
- 1 Examen final 50%

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y N° DE EDICIÓN)

Libros Básicos:

Resistencia de Materiales. Vázquez, Manuel. Segunda edición. NOELA. 1991.

Resistencia de Materiales. Nash A. William. Segunda edición. McGraw Hill. 1993.

Introducción a la Mecánica de Sólidos. P. Popov, Egor. Primera edición. LIMUSA. 1981.

Resistencia de Materiales Aplicada, Mott, Robert L. México: Prentice-Hall Hispanoamericana, 1996.

Libros de Consulta.

Tratado de construcción Tomo I. Saad, Antonio Miguel. C. E. C. S. A.1983. Decimocuarta edición.

Manual de Resistencia de Materiales, Pisarenko, G. S. Yakovlev A. P. Rumania: MIR, 1979.

Resistencia de Materiales, Colín Vázquez, José. México: UNAM, ENEP-Aragón, 1988.

Resistencia de Materiales, Stiopin, P. A. URSS: MIR, 1988.

PERFIL PROFESIONAL DEL DOCENTE	
Ingeniero Industrial con Maestría en Materiales.	