Diferenças entre comunicação Serial e Paralela

Comunicação Paralela:

- Todos os bits são transmitidos de uma única vez.
- Cada canal necessita de diversos fios.

<u>Vantagens</u>

- Maior velocidade
- Interfaces mais simples

<u>Desvantagens</u>

- Mais fios, maior custo
- ruído / perda de sincronismo
- menores distâncias

Comunicação Serial:

- Os bits são transmitidos em um único fio, bit a bit.

<u>Vantagens</u>

- Menos fios
- Maiores distâncias

<u>Desvantagens</u>

- Menor velocidade
- Maior complexidade das interfaces

Tipos de interface seriais:

- Síncrona
 Transmissor e receptor utilizam o mesmo clock.
- Assíncrona
 Cada interface possui seu clock, porém com o mesmo valor.
 Haverá um pequena diferença (erro) entre o clock do transmissor e do receptor.

Baud rate:

- É o numero de eventos por segundo. No caso do RS232, é contado a cada bit, isto é, o baud rate será bits por segundo.

Ex.: 9600 bps = 9600 bits por segundo.

Exemplo de transmissão de 1 byte

Paridade:

- É um bit utilizado para a verificação da informação enviada/recebida.

Paridade Par:

___- Deve-se somar os bits em 1 e adicionar 0 ou 1 para que o resultado seja um número par.

Paridade Impar

___- Deve-se somar os bits em 1 e adicionar 0 ou 1 para que o resultado seja um número impar.

Conector DB9

Conector DB9

Somente o 2, 3 e 5 são utilizados para comunicação entre dispositivos ficando os demais para o controle do tráfego de dados. No padrão RS232, o nível 1 está associado a uma tensão de –3V a –18V enquanto o 0 está associado a uma tensão de 3V a 18V.