令和 6 年度 東北大学 大学院理学研究科 数学専攻 入学試験問題

数学 共通問題

令和5年8月23日(9時30分から12時まで)

注意事項

- 1) 開始の合図があるまで問題冊子を開けないこと.
- 2) 問題は 4 題ある. 全間に解答すること.
- 3) 解答は各問題ごとに指定された解答用紙を用いること.
- 4) 受験番号をすべての解答用紙の()内に記入すること.また,氏名は書かないこと.
- 5) 問題冊子は、このページを含め全3ページである。

記号

図:整数全体のなす集合

Z_{>0}:正の整数全体のなす集合

①: 有理数全体のなす集合

限: 実数全体のなす集合

ℂ: 複素数全体のなす集合

 $oxed{1}$ 複素数 a に対し、3 次正方行列 A(a) を

$$A(a) = \begin{pmatrix} 3-2a & 4 & a-2 \\ 2 & 2 & -1 \\ 6-2a & 8 & a-4 \end{pmatrix}$$

と定める. 以下の問いに答えよ.

- (1) A(a) の固有多項式を求めよ.
- (2) A(a) の固有多項式が重根をもつような a をすべて求めよ.
- (3) (2) で求めた a を一つ選び、そのときの A(a) のジョルダン標準形を決定せよ.
- [2] $(\mathbb{R}, \mathcal{O})$ を \mathbb{R} 上の通常のユークリッド距離から定まる位相 \mathcal{O} をもつ位相空間とする. また $X = \{x \in \mathbb{R} \mid x \notin \mathbb{Q}, x^2 \leq 2\}$ とし, \mathcal{O}_X を \mathcal{O} から定まる X 上の相対位相とする. 以下の問いに答えよ.
 - (1) X の部分集合 $U = \{x \in X \mid 0 < x < 1\}$ は位相空間 (X, \mathcal{O}_X) の開集合かつ閉集合 であることを示せ.
 - (2) 位相空間 (X, \mathcal{O}_X) の空でない連結な部分集合は一点からなる集合であることを示せ.
 - (3) 任意の連続写像 $h:(\mathbb{R},\mathcal{O})\to (X,\mathcal{O}_X)$ は定値写像であることを示せ.
 - (4) 位相空間 (X, \mathcal{O}_X) はコンパクトであるか、理由とともに答えよ.

3 正の整数 n に対し,開区間 I=(-1,1) 上の関数 $f_n:I o\mathbb{R}$ を

$$f_n(x) = x(1 - x^2)^n \qquad (x \in I)$$

と定める. 以下の問いに答えよ.

- (1) 各 $x \in I$ に対して極限 $\lim_{n \to \infty} f_n(x)$ を求めよ.
- (2) 関数列 $\{f_n\}_{n=1}^\infty$ は $f(x) = \lim_{n \to \infty} f_n(x) \ (x \in I)$ によって定まる関数 $f: I \to \mathbb{R}$ に I 上で一様収束することを示せ、
- (3) 各 $x \in I$ に対して極限 $\lim_{n \to \infty} f_n'(x)$ を求めよ. ただし f_n' は f_n の導関数を表す.
- (4) 関数列 $\{f'_n\}_{n=1}^{\infty}$ は $g(x) = \lim_{n \to \infty} f'_n(x)$ $(x \in I)$ によって定まる関数 $g: I \to \mathbb{R}$ に I 上で一様収束するか、理由とともに答えよ.
- 4 実数からなる数列 $\{a_n\}_{n=1}^\infty$ において, $a_1>0$ とし,さらに任意の正の整数 n に対して $|a_{n+1}|<|a_n|$ および $a_n\,a_{n+1}<0$ が成り立つとする.また数列 $\{S_m\}_{m=1}^\infty$ を

$$S_m = \sum_{n=1}^{2m} a_n \qquad (m \in \mathbb{Z}_{>0})$$

と定める. 以下の問いに答えよ.

- (1) 数列 $\{S_m\}_{m=1}^\infty$ は狭義単調増加であることを示せ.
- (2) 極限 $\lim_{m\to\infty} S_m$ が存在することを示せ.
- (3) 関数 $g:[0,\infty)\to\mathbb{R}$ を

$$g(x) = \begin{cases} 1 & (x \in [2j-2, 2j-1)) \\ -1 & (x \in [2j-1, 2j)) \end{cases}$$
 $(j \in \mathbb{Z}_{>0})$

と定める. このとき,数列 $\{T_m\}_{m=1}^\infty$ を

$$T_m = \int_0^{2m} \frac{g(x)}{\log(e+x)} dx \qquad (m \in \mathbb{Z}_{>0})$$

と定めると,極限 $T = \lim_{m \to \infty} T_m$ が存在し

$$0 < T < \int_0^1 \frac{1}{\log(e+x)} \, dx$$

を満たすことを示せ.