FICHE DE VALIDATION DU LOGICIEL MASCARET V7P0

Validation du noyau de calcul permanent

Canal rectangulaire

Numéro du cas test: 1

Auteur: N. Goutal

Description

Ce cas test a pour but de valider le noyau de calcul en régime permanent, dans le cas très simple d'un canal rectangulaire et de s'assurer qu'il n'y a pas de régression par rapport la version 5.0 de Mascaret. De plus, on a ajouté les comparaisons par rapport aux états convergés des noyaux transitoires.

Données géométriques

Le calcul est réalisé dans un canal de pente 5.10^{-4} , de longueur 10000~m, dont chaque section en travers est de forme rectangulaire de 100~m de large. La géométrie du canal est décrite par deux profils en travers situés aux abscisses X=0~m et X=10000~m.

Données physiques

Le coefficient de rugosité est choisi de manière à ce que la hauteur normale soit $h_n = 5 m$, d'où une valeur $K = 30.6 m^{1/3}.s^{-1}$ (application de la formule de Strickler).

- Conditions aux limites :
 - -cote imposée à l'aval égale à 3 m
 - débit imposé à l'amont constant égal à 1000 $m^3.s^{-1}$
- Conditions initiales : aucune

Données numériques

Le domaine a été divisé en 100 mailles de longueur constante égale à 100 m. Le pas de planimétrage est homogène dans le domaine égal à 1 m (10 pas de planimétrage).

Solution analytique

En régime permanent, le système des équations de Saint-Venant se réduit à la seule équation dynamique, elle - même simplifiée. De plus, dans un canal uniforme, de géométrie rectangulaire, l'expression du terme de frottement se simplifie encore lorsque ce frottement est supposé nul sur les berges : le rayon hydraulique est alors égal à la hauteur d'eau h, c'est-à-dire la variable à déterminer. La solution s'écrit alors :

$$\frac{\partial h}{\partial x} = \frac{I - \frac{q^2}{K^2 h^{10/3}}}{1 - \frac{q^2}{gh^3}} \tag{1}$$

avec

I: pente du fond

K: coefficient de rugosité de Strickler

q : débit par unité de largeur

Cette équation différentielle sur h est résolue en employant une méthode de Runge-Kutta (pas de 10~m, ordre 4).

Résultats

Le tableau suivant donne les hauteurs d'eau obtenues tous les $1000\ m$ pour les noyaux permanent et transitoire transcritique implicite et explicite par convergence vers un état permanent :

		version Mascaret		version Mascaret 7.0	
Abscisse X en	Solution analytique	Noyau permanent		Noyau transcritique	
m	m	Version 7.0	Version 5.0	$_{ m Implicite}$	$\operatorname{Explicite}$
0	4.978	4.977	4.977	4.972	4.973
1000	4.968	4.967	4.967	4.972	4.973
2000	4.954	4.953	4.953	4.945	4.947
3000	4.933	4.932	4.932	4.932	4.926
4000	4.903	4.901	4.901	4.890	4.895
5000	4.857	4.855	4.855	4.843	4.850
6000	4.787	4.786	4.786	4.772	4.782
7000	4.678	4.677	4.677	4.663	4.769
8000	4.495	4.494	4.494	4.820	4.509
9000	4.148	4.147	4.147	4.140	4.196

Les figures 1 et 2 suivantes comparent les lignes d'eau obtenues avec la version Mascaret 7.0 : noyau permanent et noyau transitoire transcritique explicite avec la solution analytique. Ces résultats sont très bons. Les solutions analytiques et calculées avec les deux versions sont quasi-identiques. De plus, sur les figures, on peut voir qu'à l'amont, la solution calculée tend à se rapprocher asymptotiquement de la hauteur normale h_n ce qui est théoriquement exact.

FIGURE 1 – Comparaison des hauteurs d'eau calculées

FIGURE 2 – Zoom de la figure précédente entre 9000 et 10000 m

Conclusion

Le traitement des termes de pesanteur - frottement dans l'équation dynamique est tout - à - fait satisfaisant. De plus, la comparaison avec la solution analytique des solutions calculées montre le bon comportement des 2 noyaux de calcul. Il peut donc être validé dans ce cas.