Longest Common Subsequence

Subsequences

- A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.
- In LCS, we have to find Longest Common Subsequence that is in the same relative order.
- String of length n has 2ⁿ different possible subsequences.
- E.g.—
- Subsequences of "ABCDEFG".
- "ABC","ABG","BDF","AEG",'ACEFG",......

Common Subsequences

Suppose that X and Y are two sequences over a set S.

X: ABCBDAB

Y: BDCABA

Z: BCBA

We say that Z is a common subsequence of X and Y if and only if

- Z is a subsequence of X
- · Z is a subsequence of Y

The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

$$Z=(B,C,A)$$
 Length 3

$$Z=(B,C,A,B)$$
 Length 4

$$Z=(B,D,A,B)$$
 Length 4

Longest

LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of longest common subsequences of X and Y.

LCS(X,Y)

Functional notation, but not a function

A Poor Approach to the LCS Problem

- A Brute-force solution:
 - Enumerate all subsequences of X
 - Test which ones are also subsequences of Y
 - Pick the longest one.
- Analysis:
 - If X is of length n, then it has 2ⁿ subsequences
 - This is an exponential-time algorithm!

Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.

Optimal Substructure

```
Let X = (x_1, x_2, ..., x_m)
and Y = (y_1, y_2, ..., y_n) be two sequences.
Let Z = (z_1, z_2, ..., z_k) is any LCS of X and Y.
a) If x_m = y_n then certainly x_m = y_n = z_k
and Z_{k-1} is in LCS(X_{m-1}, Y_{n-1})
```

Optimal Substructure (2)

```
Let X = (x_1, x_2, ..., x_m)
and Y = (y_1, y_2, ..., y_n) be two sequences.
Let Z = (z_1, z_2, ..., z_k) is any LCS of X and Y.
b) If x_m = |y_n| then x_m = |z_k| implies that Z is
  in LCS(X_{m-1}, Y)
c) If x_m = |y_n| then y_n = |z_k| implies that
                                                 Zis
  in LCS(X, Y_{n-1})
```

Recursive Solution

Let X and Y be sequences.

Let c[i,j] be the length of an element in LCS(X_i , Y_j).

Dynamic Programming Solution

- Define L[i,j] to be the length of the longest common subsequence of X[0..i] and Y[0..j].
- L[i,j-1] = 0 and L[i-1,j]=0, to indicate that the null part of X or Y has no match with the other.
- Then we can define L[i,j] in the general case as follows:
 - 1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
 - 2. If $xi \neq yj$, then $L[i,j] = max\{L[i-1,j], L[i,j-1]\}$ (we have no match here)

X:ABCB Y:BDCA LCS:BC

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing c[i,j].

Example

T	y j	В	D	C	A
Xi	0	0	0	0	0
A	0	1 0	10	10	\1
В	0	1	- 1	1	1
C	0	1	1	\^2	2
В	0	1	\^1	^2	^2

Start at b[m,n]. Follow the arrows. Each diagonal array gives one element of the LCS.

ALGORITHM LCS(X,Y)

```
m \leftarrow length[X]
n \leftarrow length[Y]
for i \leftarrow 1 to m do
c[i,0] \leftarrow 0
for j \leftarrow 1 to n do
c[0,j] \leftarrow 0
```

LCS(X,Y)

```
for i \leftarrow 1 to m do
     for j ← 1 to n do

if x = y

c[i, j] ← c[i-1, j-1]+1

b[i, j] ← "D"
            else
                  if c[i-1, j] \ge c[i, j-1]

c[i, j] \leftarrow c[i-1, j]

b[i, j] \leftarrow "U"
                   else
                            c[i, j] \leftarrow c[i, j-1]
b[i, j] \leftarrow L''
return c and b
```

CONSTRUCTING AN LCS

- PRINT-LCS(b, X, i, j)
- 1. If i=0 or j=0
- 2. then return
- 3. If b[i, j]="D"
- 4. then PRINT- LCS(b,X,i-1,j-1)
- 5. print xi
- 6. Else if b[i, j]="U"
- 7. then PRINT-LCS(b,X,i-1,j)
- 8. Else PRINT-LCS(b,X,i,j-1)

Analysis of LCS Algorithm

- We have two nested loops
 - The outer one iterates n times
 - The inner one iterates m times
 - A constant amount of work is done inside each iteration of the inner loop
 - Thus, the total running time is O(nm)
- Answer is contained in L[n,m] (and the subsequence can be recovered from the T table).

usage

- Biological applications often need to compare the DNA of two (or more) different organisms.
- We can say that two DNA strands are similar if one is a substring of the other.