Unilateral Laplace Transform

$$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$

Theorems

x(t)	X(s)	ROC
$x(t-t_0)$	$e^{-st_0}X(s)$	R
$e^{s_0t}x(t)$	$X(s-s_0)$	$R + Re(s_0)$
x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	aR
$x^*(t)$	$X(s^*)^*$	R
$(x_1 * x_2)(t)$	$X_1(s)X_2(s)$ dX	$R_1 \bigcap R_2$
-tx(t)	$\frac{\mathrm{d}X}{\mathrm{d}s}$	R
$\frac{\mathrm{d}^n x}{\mathrm{d}t^n}$	$s^{n}X(s) - \sum_{i=0}^{n-1} s^{n-i-1} \frac{\mathrm{d}^{i}x}{\mathrm{d}t^{i}} _{t=0}$	R

Transforms

Signal	Transform	ROC
$\delta(t-T)$	e^{-sT}	\mathbb{C}
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	Re(s) > 0
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(s+a)^n}$	Re(s) > a
$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	Re(s) > a
$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0}$	Re(s) > a

Electro-Mechanical Equivalence

Equivalent Quantities

Translational Mechanical System	Rotational Mechanical System	Electrical System	
Force (F)	Torque	Voltage (V)	
$\mathrm{Mass}\;(M)$	Moment of Inertia (J) Inductance (L)		
Damping Coefficient (B)	Rotational Damping Coefficient (B)	Resistance (R)	
Spring Constant (K)	Torsional Spring Constant (K)	Reciprocal of Capacitance $\left(\frac{1}{C}\right)$	
Displacement (x)	Angular Displacement (θ)	Charge (Q)	
Velocity (v)	Angular Velocity (ω)	Current (I)	

Equation Equivalence

Translational Mechanical System	Rotational Mechanical System	Electrical System
$Ms^2X(s)$	$Js^2\Theta(s)$	LsI(s)
BsX(s)	$Bs\Theta(s)$	RI(s)
KX(s)	$K\Theta(s)$	$\frac{1}{Cs}I(s)$
-	$\frac{T_2(s)}{T_1(s)} = \frac{\Theta_1(s)}{\Theta_2(s)} = \frac{N_2}{N_1}$	$rac{N_p}{N_s} = rac{V_p(s)}{V_s(s)} = rac{I_s(s)}{I_p(s)}$

Conversion Rules

- 1. The force at two ends of a damper (or spring) must be equal \Leftrightarrow the voltage across the resistor (or capacitor) must be equal
- 2. Parallel in one domain \implies Series in the other domain
- 3. $\sum F = 0$ at a massless node $\Leftrightarrow \sum V = 0$ at an electrical node
- 4. Rotational impedances are reflected through gear trains by multiplying by $\left(\frac{N_{dest}^2}{N_{source}^2}\right)$

Conversion Procedure

Electrical to Mechanical

- 1. Label all currents such that only one current flows through inductors
- 2. Write loop equations for each loop
- 3. Re-write equations using the analogous quantities. Each loop is replaced by a position
- 4. Draw mechanical system corresponding to equations

Mechanical to Electrical

- 1. Write force equations for each position
- 2. Re-write equations using analogous quantities. Each equation becomes a loop
- 3. Draw loops such that only one current flows through each inductor

Second-Order System

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2}$$

Poles are at
$$s = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}$$
.

Cases of Interest

 $\zeta = 0$: $s = \pm \omega_n j$. The system is marginally stable.

 $0 < \zeta < 1$: $s = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2}$. The system is underdamped.

 $\zeta = 1$: $s = -\omega_n$. The system is critically damped.

 $\zeta > 1$: $s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$. The system is overdamped

Underdamped systems

Time to Peak: $T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$

% Overshoot: $e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}}$

Settling Time: $T_s = \frac{4}{\zeta \omega_n}$

Rule of Thumb: If two poles are at $s=-a\pm bj$, then if $Re\{c\} \leq 5 \cdot Re\{a\}$, the system is approximately second order.

Steady-State Errors

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$K_p = \lim_{s \to 0} G(s)$$
 $K_v = \lim_{s \to 0} sG(s)$ $K_a = \lim_{s \to 0} s^2G(s)$

The **type** of a system is how many poles at 0 the open loop system has.

		Type 0	Type 0		Type 1		Type 2	
Input	SSE	Constant	Error	Constant	Error	Constant	Error	
u(t)	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0	
tu(t)	$rac{1}{K_v}$	$K_v = 0$	∞	$K_v = \text{Constant}$	$\frac{1}{K_v}$	$K_v = \infty$	0	
$\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$	

Bode Diagrams

First-Order Zeros

First-Order Poles

Pole/Zero at $\omega - 0$

Second-Order behavior

Nyquist Diagrams

In the standard negative feedback setup with plant G and controller H,

- 1. Poles of 1+GH are the poles of the open loop system.
- 2. Zeros of 1 + GH are the poles of the closed loop system.

Where N is the number of CCW encirclements of -1, P is the number of RHP poles of GH, and Z is number of RHP zeros of 1 + GH

$$N = P - Z$$

If Z = 0, then the system is stable.

Design by Frequency Response

Gain Margin: The change in open loop gain that will make the closed loop system unstable.

$$\angle G(j\omega_{GM}) = (2k+1)\pi \implies G_m = \frac{1}{G(j\omega_{GM})}$$

Phase Margin: The change in open loop phase to make the closed loop system unstable.

$$|G(j\omega_{PM})| = 1 \implies \phi_m = (2k+1)\pi + \angle G(j\omega_{PM})$$

For a second-order system,

$$\omega_{PM} = \omega_n \sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}$$
$$\phi_M = \tan^{-1} \frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}}$$

Lag Controller

$$G_c(s) = \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha^T}}, \quad \alpha > 1$$

Purpose: To reduce static error constant by increasing low frequency gain and to increase the phase margin of the system.

Design Procedure

- 1. Set gain K to the value that satisfies the SSE specification and plot the Bode diagram at that gain.
- 2. Find ω_{PM} such that ϕ_M is 5°to 12°larger than required.
- 3. Let the high frequency asymptote be $-20 \log K_{PM} dB$ at ω_{PM} where $K_{PM} = |G(j\omega_{PM})|$.
- 4. Choose the upper break frequency to be $\frac{\omega_{PM}}{10}$
- 5. Set the low frequency asymptote to be 0 dB and locate the lower break frequency.
- 6. Reset the system gain K to compensate for attenuation.

Lead Controller

$$G_c(s) = \frac{1}{\beta} \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}}, \quad \beta < 1$$

Purpose: To change the phase margin and decrease percent overshoot and reduce rise/settling time. The lead controller has a peak phase ϕ_{max} .

$$\omega_{max} = \frac{1}{T\sqrt{\beta}}$$
 , $\phi_{max} = \sin^{-1}\frac{1-\beta}{1+\beta}$, $|G_c(j\omega_{max})| = \frac{1}{\sqrt{\beta}}$

Design Procedure

- 1. Set gain K of the uncompensated system to a value satisfying SSE requirement.
- 2. Plot bode diagram for system with gain K and determine ϕ_M .
- 3. Find ϕ_M needed to meet requirements and evaluate additional phase contribution from compenstor.
- 4. Determine β .
- 5. Determine $|G_c(j\omega_{max})|$.
- 6. Determine ω_{PM} where $|G(j\omega)| = -20 \log |G_c(j\omega_{max})|$
- 7. Find the break frequencies.
- 8. Reset the gain
- 9. Simulate and tweak.