Particle spectrograph

Wave operator and propagator

_	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1^{-}lpha}^{ ext{#2}}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_{1-lpha}^{\#2}$
$\sigma_{1}^{\#1}\dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_1 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2 i k^3 (2 r_1 + r_5) + i k t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
$\tau_1^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_1 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
$\sigma_1^{\!\#1}\dagger^lpha$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2(r_1+r_5)(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$-\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2(r_1\!+\!r_5)(t_1\!+\!t_3))}$
$\sigma_1^{\!\#2}\dagger^lpha$	0	0	0	$-\frac{\sqrt{2} \ (t_1 - 2 t_3)}{(1 + 2 k^2) (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$	$\frac{6 k^2 (r_1 + r_5) + t_1 + 4 t_3}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$	0	$\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
$ au_1^{\#1} \dagger^{lpha}$	0	0	0	0	0	0	0
$\tau_1^{#2} \uparrow^{\alpha}$	0	0	0	$\frac{2 i k (t_1 - 2 t_3)}{(1 + 2 k^2) (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$	$-\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 (r_1 + r_5) + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	
	$4 \bar{\imath} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\chi} \sigma^{\delta\varepsilon} \delta) == 0$	
Total constraints/gau	ige generators:	16

Massive and massless spectra

Massive particle						
Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))}>0$					
Polarisations:	3					
Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$					
Spin:	1					
Parity:	Odd					

	Massive particle			
? /	Pole residue:	$-\frac{1}{r_1} > 0$		
$J^P = 2^-$	Polarisations:	5		
$\frac{1}{k^{\mu}}$?	Square mass:	$-\frac{t_1}{2r_1} >$		
?	Spin:	2		
	Parity:	Odd		

Massive particl	le
Pole residue:	$-\frac{1}{r_1} > 0$
Polarisations:	5
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Odd

	$\mathcal{A}_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\mathcal{A}_0^{\sharp 1}$		$\mathcal{A}_{2^{+}lphaeta}^{\sharp1}$	$f_{2+\alpha\beta}^{\#1}$	${\mathcal A}_{2^-lphaeta\chi}^{\#1}$
$\mathcal{A}_{0}^{\#1}\dagger$		$-i \sqrt{2} kt_3$	0	0	$\mathcal{A}_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{0}^{#1}$ †	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0	_			0
$f_{0}^{#2}$ †	0	0	0	0	$f_{2}^{#1} \dagger^{\alpha\beta}$	٧ -	$k^2 t_1$	U
$\mathcal{A}_0^{\sharp_1}$ †	0	0	0	$-t_1$	$\mathscr{A}_{2}^{\sharp 1} \dag^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	${\mathscr R}^{\#1}_{1^+lphaeta}$	$\mathcal{A}_{1}^{\#2}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	${\mathcal H}_1^{\sharp 1}{}_{lpha}$	${\mathcal H}_1^{\#2}{}_lpha$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
${\cal R}_1^{\sharp 1}\dagger^{lphaeta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\mathcal{A}_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\mathcal{A}_{1}^{\sharp 1}\! \uparrow^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 \left(r_1 + r_5 \right) + t_1 + 4 t_3 \right)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ <i>i k</i> (t_1 - 2 t_3)
$\mathcal{A}_{1}^{\#2}\dagger^{lpha}$	0	0	0	<u>t₁-2 t₃</u> 3 √2	<u>t</u> 1+t3 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{i} k (t_1 - 2 t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

Unitarity conditions

 $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0 \&\& t_3 < -t_1 || t_3 > 0$