Naive Boyes, Example.

training data =>	Text Tap label
•	"A great game" Spoots
	"The election was over" Not Spoots
	" Very clean match" Spoots
	"A clean but forgettable sports game"
	"It was close election" Not Spook

test data to predict: " A very close game" Probability

Bayes' Theorem P(B/A) × P(A)

P(a very close genne)

We can discard the disser-which is same for both tags and just compase

p (a very close gene)x p(spoots) With

P(avery close gare) P(Not Not sports) P(Sports)

Now Now Haire - assuming every word is independent P(a very close game) = p(a) xp(very) xp(close)xp(game) P(a very close game) = P(grows) x P(very) x P(close) x P(game) sports) x P(sports) x P(sports) porpublily of each tage P(sports) = 3/5 P(Non sports) = 2/5 Laplace smoothing - adding I to every count so its never gen Calculations P (wood/Not- Sports P (wood/spools) Wood 9+14 resy 9 +14 11+14 cluse 0+1 11 + 14 game 11 + 14 = 0.572×10-5 = 2.76×10-5 = 0.0000276 0,00000572 winner