UNIVERSIDAD NACIONAL DE COLOMBIA, SEDE MEDELLÍN- ESCUELA DE ESTADÍSTICA PRIMER EXAMEN DE ESTADÍSTICA II, SEMESTRE 01 - 2021

EL EXAMEN CONSTA DE 15 PREGUNTAS DE SELECCIÓN MÚLTIPLE CON 4 OPCIONES DE RESPUESTA, DE LAS CUALES SOLO UNA ES CORRECTA

Tenga en cuenta el siguiente enunciado, para responder las preguntas 1 a 6.

Para determinar la relación que existe entre el tiempo (en días) de una reacción y la cantidad de células por milímetro (Cel.mL) de una variedad de cacao en una reacción química se hizo un experimento. Los datos se muestran en la siguiente tabla:

Tiempo (días)	9	12	15	18	21	24
	0.7917	1.5417	11.8750	2.0000	21.9375	32.4375
Cel.mL	0.2292	0.1041	2.6667	3.6458	8.2708	4.1458
	1.1458	0.6042	1.3125	24.2708	44.0625	8.2917

Considere el modelo Cel.mL vs Tiempo (Tablas 1 y 2 del Anexo) para las preguntas 1 y 2.

- 1. Al completar la tabla ANOVA incluida en la tabla 1 se obtiene como valor correcto:
 - a. MSE = 1859.93 con 16 grados de libertad
 - b. Los grados de libertad del SSE son 18
 - c. SSR = 1859.93 con 1 grado de libertad
 - d. SSE = 1859.93 con 16 grados de libertad
- 2. Se puede afirmar que:
 - a. Los gráficos en la tabla 2, sugieren que el supuesto de varianza constante no se cumple
 - b. $1 R^2 = 0.01183$
 - c. La prueba de significancia de la regresión concluye que el modelo no es significativo a un nivel α = 0.05
 - d. Las opciones a, b y c son falsas

Considere el modelo log(Cel.mL) vs. Log(Tiempo) (Tablas 3 y 4 del Anexo) para las preguntas 3 a 6. (La abreviatura .log indica logaritmo natural)

- 3. De los resultados para el modelo 1: Cel.mL vs Tiempo y del modelo 2:log(Cel.mL) vs log(Tiempo), podemos afirmar que:
 - a. El modelo 1 no parece cumplir e supuesto de homogeneidad de varianza de los errores.
 - b. El modelo 1 tiene mejor R² que el modelo 2
 - c. En el modelo 2 el supuesto de normalidad de los errores no se cumple
 - d. A y b son correctas
- 4. De las siguientes opciones señale la correcta:

- a. Al inicio de la reacción (tiempo = 0) se estima que el logaritmo natural de la cantidad de Cel.mL es -9.4080
- b. 59.52% de la variabilidad total de la cantidad de Cel.mL la explica el tiempo
- c. La variable logaritmo natural del tiempo explica el 59.52% de la variabilidad total del logaritmo natural de la cantidad de Cel.mL
- d. Se estima que por cada día de aumento en el tiempo aumenta el promedio de la cantidad de Cel.mL en 3.8446
- 5. Sean t (0.025,16) = 2.12, t (0.025,17) = 2.11, t (0.05,16) = 1.746. t (0.05,17) = 1.74, algunos percentiles de la distribución t, y s.e $(\widehat{y_0^*}) = 0.3281$ para $X_0 = 20$ dado. Del modelo de regresión $Y^* = log(Cel, mL)$ vs $X^* = log(Tiempo)$, se obtiene que:
 - a. Un intervalo de confianza del 95% para la cantidad promedio de Cel.mL cuando el tiempo es 20, es (1.4138, 2.8050)
 - b. Un intervalo de predicción del 95% para el logaritmo natural de la cantidad futura de Cel.mL cuando el tiempo es 20, es (0.6921, 98.1798)
 - c. Un intervalo de predicción del 95% para la cantidad futura de Cel,mL resultante cuando el tiempo es 20, es (-0.3680,
 4.5868)
 - d. Un intervalo de confianza del 95% para la cantidad promedio de Cel.mL cuando el tiempo es 20, es (4.115, 16.5271)
- 6. Para una reacción que se deja 15 días es correcto:
 - a. Se puede estimar que la cantidad promedio de Cel.mL es de 1.0034
 - b. Como X₀ = 15 no está en el rango de la predictora, no se puede estimar la cantidad promedio de Cel.mL en 15 días
 - c. Se puede estimar que el promedio del logaritmo natural de la cantidad de Cel.mL es de 1.0034
 - d. Ninguna de las afirmaciones anteriores es correcta.
- 7. La función de regresión que relaciona Y, el puntaje de una estudiante en una prueba después de asistir a un curso nivelatorio (Y en puntos) y X, el correspondiente puntaje del estudiante en una prueba antes del nivelatorio (X en puntos) es E [Y|X = x] = 32 + 0.90x, donde X es una variable fija con valores entre 60 y 97 puntos. De las siguientes afirmaciones señala cuál es la correcta:
 - a. Se puede predecir que un estudiante con 90 puntos antes del curso obtendrá en la prueba después del curso 113 puntos
 - b. Se puede concluir que el promedio en la prueba después del curso para los estudiantes que sacaron 50 puntos en la prueba antes del curso nivelatorio, es 77 puntos
 - c. Se puede concluir que para los estudiantes que sacaron cero en el examen antes del curso nivelatorio, el promedio en la prueba después del curso es 32 puntos
 - d. Las opciones a, b y c son correctas
- 8. Si un investigador está interesado en probar la hipótesis de falta de ajuste o linealidad del modelo, donde SSE = SSLOF + SSPE, con las siglas LOF para falta de ajuste y PE para error puro, y F₀ es el estadístico de prueba a ser utilizado.
 ¿Cuál de los siguientes estadísticos le recomendaría?

a.
$$F0 = \frac{\text{SSLOF}/(\text{m}-2)}{\text{SSPE}/(\text{n}-\text{m})}$$

b. $F0 = \frac{\text{SSLOF}/\text{m}}{\text{SSE}/(\text{n}-2)}$
c. $F0 = \frac{\text{SSLOF}/\text{m}}{\text{SSE}/(\text{n}-2)}$
d. $F0 = \frac{\text{SSLOF}/\text{m}}{\text{SSPE}/(\text{n}-\text{m})}$

- 9. Relacionado con el coeficiente de determinación R2, se puede afirmar lo siguiente:
 - a. El R² nos da la proporción de variabilidad total de la variable Y que es explicada por el error aleatorio
 - b. Un R² grande (cercano a 1) nos garantiza que el modelo es lineal
 - c. Un R2 pequeño (cercano a 0) nos dice que no existe ninguna relación entre las dos variables consideradas
 - d. 1 R² nos da la proporción de variabilidad total de la variable Y que es explicada por el modelo considerado
- 10. De la figura 1 que incluye dos gráficas propias del análisis de un modelo de RLS, se puede afirmar que:

Figura 1: Gráfico de dispersión Y vs. X y Gráfico de residuales ei vs. Predichos $\widehat{y_i}$

- a. Los errores provienen de una distribución normal
- b. El modelo lineal no parece apropiado
- c. La varianza de los errores no parece constante
- d. La varianza de los errores disminuye a medida que aumentan los valores predichos
- 11. Para definir un intervalo de confianza del 90% para la respuesta media E [Y|x₀], dado un valor apropiado X = x₀, señale cuál de las siguientes expresiones es correcta: (Tenga en cuenta que $\widehat{y_0} = \widehat{\beta_0} + \widehat{\beta_1} x_0$, $t_{v, gl}$ es el valor de la distribución con gl grados de libertad que deja una probabilidad a derecha de v, y $S_{\chi\chi} = \sum_{i=1}^{n} (x_i x^{-})^2$

a.
$$\widehat{y_0} \pm t_{(0.05,n-2)} \sqrt{\text{MSE}\left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\text{Sxx}}\right)}$$
 c. $\widehat{y_0} \pm t_{(0.025,n-2)} \sqrt{\text{MSE}\left(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\text{Sxx}}\right)}$

$$\text{b.} \quad \widehat{y_0} \pm t_{(0.025, \text{n-2})} \sqrt{\text{MSE} \left(1 + \frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}}\right)} \\ \text{d.} \quad \widehat{y_0} \pm t_{(0.05, \text{n-2})} \sqrt{\text{MSE} \left(\frac{1}{\text{n}} + \frac{\left(x_{0-\overline{x}}\right)^2}{\text{Sxx}$$

- 12. En relación a un valor futuro $y_0 = Y | x_0$, y a la respuesta media $E[Y | x_0]$ para un punto apropiado y fijo $X = x_0$. Se puede afirmar que:
 - a. A un nivel de confianza (1- α) 100%, los intervalos de predicción para los valores futuros son más estrechos que los intervalos de confianza para la respuesta media.
 - b. Los valores futuros son estimados de forma insesgada usando la ecuación de regresión ajustada evaluada en el valor $X = x_0$
 - c. La estimación por intervalo de la respuesta media es más precisa que la correspondiente estimación por intervalo de un valor futuro de la respuesta.
 - d. La estimación puntual de la respuesta media y de un valor futuro de la respuesta son diferentes.
- 13. En relación a la estimación por mínimo cuadrados del intercepto β₀ y de la pendiente β₁ de un modelo de RLS, diga cuál de las siguientes afirmaciones es falsa:
 - a. El método de estimación por mínimos cuadrados requiere supuestos distribucionales
 - b. $\widehat{\beta_0}$ Es el estimador por mínimos cuadrados del intercepto del modelo RLS
 - c. Los estimadores mínimo cuadrático para β_0 y β_1 resultan como solución a las ecuaciones normales de mínimos cuadrados
 - d. Algunas de las afirmaciones es falsa
- 14. Dado el modelo de regresión lineal simple $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, ¿Cuál de los siguientes enunciados No es un supuesto?
 - a. $\varepsilon_i \sim \text{Normal}$, para todo i = 1, 2, ..., n

- c. $V[\epsilon_i] = \sigma^2$, para todo i = 1, 2, ..., n
- b. Los ε_i 's son v.a.s' dependientes, i = 1, 2, ..., n d. E [Y| x_i] = $\beta_0 + \beta_1 x_i$
- 15. En el modelo exponencial $Y_i = \beta_0 e^{\{xi \beta_1 + \epsilon i \}}$, aplique la transformación $Y_i^* = \log(Y_i)$, y para el modelo de RLS resultante diga cuales son los supuestos que debe cumplir: (Nota: log indica logaritmo natural)
 - a. $\varepsilon_i^{i.i.d}$ N (0, σ^2)

c. $\log(\epsilon_i)^{i.i.d} N (\beta_0^* + \beta_1^* x_i, \sigma^2)$

b. $\log(\varepsilon_i)^{i.i.d}$ N (0, σ^2)

d. $\epsilon_{i}^{i.i.d}$ N $(\beta_{0}^{*} + \beta_{1}^{*} x_{i}, \sigma^{2})$

Anexo 1

Tabla 1. Modelo Cel.ml vs. Tiempo

Analysis of Variance Table

Response: Concentración

	Df	Sum Sq	Mean Sq	F value	Pr(> F)
Tiempo			937.33		0.01183
Residuals					
Total		2797.26			

Solution

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Tiempo	1	937.33	937.33	8.06	0.01183
Residuals	16	1859.93	116.246		
Total	17	2797.26			

Anexo 2

Coefficients: (Parámetros Estimados)

	Estimate	Std. Error	T value	Pr (> t)
(Intercept)	-13.832	8.570	-1.614	0.1260
Tiempo	1.409	0.496	2.840	0.0118

Tabla 2. Análisis gráfico del modelo Cel.ml vs. Tiempo

Tabla 3. Modelo log(Cel.ml) vs. log(Tiempo)

Response: log(Concentración)

	Df	Sum Sq	Mean Sq	F value	Pr(> F)
log(Tiempo)	1	29.589	29.5894	23.524	0.0001773
Residuals	16	20.126	1.2579		

Coefficients: (Parámetros Estimados)

	Estimate	Std. Error	T value	Pr (> t)
(Intercept)	-9.4080	2.1963	-4.284	0.000570
log(Tiempo)	3.8446	0.7927	4.850	0.000177

Tabla 4. Análisis Gráfico del Modelo log(Cel.ml) vs. log(Tiempo)

