Exercise 5.1

a) There are 5 equivalence relations over the set $M = \{a, b, c\}$.

$$\sim = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}$$

$$\sim = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle \}$$

$$\sim = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, c \rangle, \langle c, a \rangle \}$$

$$\sim = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle c, b \rangle, \langle b, c \rangle \}$$

$$\sim = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle c, b \rangle, \langle b, c \rangle \}$$

b)
$$[a]_{\sim} = \{a\}, [b]_{\sim} = \{b, d\}, [c]_{\sim} = \{c, e\}$$

Exercise 5.2

- a) Proof. Let x be an arbitrary element in S. Since an equivalence relation is reflexive, we have $\langle x, x \rangle \in \sim$ which means that $x \in [x]_{\sim} \subseteq E$.
- b) *Proof.* We will do a proof by contradiction. Let x, y, z be arbitrary elements in S and assume that $x \in [y]_{\sim}$ and $x \in [z]_{\sim}$ but $[y]_{\sim} \neq [z]_{\sim}$.

Since $x \in [y]_{\sim}$ we have that $\langle y, x \rangle \in \sim$. Since $x \in [z]_{\sim}$ we have that $\langle z, x \rangle \in \sim$ and since an equivalence relation is symmetric we also have that $\langle x, z \rangle \in \sim$.

Because an equivalence relation is also transitive, we have $\langle y, z \rangle \in \sim$.

We now claim that $[y]_{\sim} = [z]_{\sim}$ if $\langle y, z \rangle \in \sim$. This would be the needed contradiction to finish the proof.

Proof of the claim: Let $a \in [y]_{\sim}$ be arbitrary. Then $\langle a, y \rangle \in \sim$ and thus $\langle a, z \rangle \in \sim$ since $\langle y, z \rangle \in \sim$ i.e. $a \in [z]_{\sim}$. Thus $[y]_{\sim} \subseteq [z]_{\sim}$. Analogously $[z]_{\sim} \subseteq [y]_{\sim}$. But this means that $[y]_{\sim} = [z]_{\sim}$.

Exercise 5.3

$$R = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle c, b \rangle \}$$

Our relation R is a partial order because it is reflexive, antisymmetric and transitive. It is reflexive because $\langle x, x \rangle \in R$ for all $x \in S$, antisymmetric because $\langle a, b \rangle \in R$ but $\langle b, a \rangle \notin R$, similarly for $\langle c, b \rangle$ and transitive because $\langle a, b \rangle \in R$ but b does not relate something else except itself and similarly for $\langle c, b \rangle$.

Our minimal elements are a and c.

Exercise 5.4

- a) False. It should be [...] at least one of xRy and yRx (so possible also both) is true [...].
- b) You can always take the relation $R = \emptyset$. This way all $x \in S$ stand in no relation to each other and are therefore each a maximum and minimum.

Exercise 5.5

a)
$$A^{-1} = \{ \langle 2x, x \rangle \mid x \in \mathbb{N}_0 \}$$

b)
$$B \setminus A^{-1} = \{ \langle i \cdot x, x \rangle \mid i, x \in \mathbb{N}_0, i \neq 2 \}$$

c)
$$C \circ A = \{ \langle 2, 2 \rangle, \langle 2, 7 \rangle, \langle 3, 4 \rangle, \langle 4, 2 \rangle \}$$

d)
$$A \circ (A \circ A) = \{ \langle x, 8x \rangle \mid x \in \mathbb{N}_0 \}$$

e)
$$A^* = \{ \langle x, 2^n \cdot x \rangle \mid x, n \in \mathbb{N}_0 \}$$

f)
$$A \circ B = \{ \langle i \cdot x, 2x \rangle \mid i, x \in \mathbb{N}_0 \}$$