농마분해활성이 높은 저온미생물 Aeromonas salmonicida의 최적배양조건

문 혜 경

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《풍력과 조수력, 생물질과 대양에네르기에 의한 전력생산을 늘이며 자연에네르기의 리용범위를 계속 확대하여야 합니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》 단행본 50폐지)

세계적으로 자연에네르기를 리용하기 위한 연구가 활발해지는 속에 우리 나라에서도 메란발효에 대한 연구[1, 3]가 심화되고있다. 메란발효는 한가지 미생물에 의하여 진행되는 단순한 과정이 아니라 여러가지 미생물의 복합작용에 의하여 진행되는 복잡한 과정이므로 발효과정의 첫단계인 유기질분해단계에 참가하는 물작용분해미생물이 중요한 역할을 수행한다.[1, 4] 이로부터 우리는 낮은 온도에서도 농마분해활성이 높은 A. salmonicida를 메란발효에 리용하기 위한 최적배양조건확립에 관한 연구를 하였다.

재료 및 방법

저온성농마분해미생물로서 Aeromonas salmonicida[1]를 리용하였다.

액체배양을 위한 배지로서 포도당-펩톤배지(펩톤 5g, 포도당 10g, 효모추출물 3g, 증류수 1000mL, pH 7.0~7.2, 콩물(물에 불쿤 콩을 분쇄한 액)을 리용하였다.

실험은 포도당—펩톤배지에서 Aeromonas salmonicida를 액체배양(15℃에서 정치배양)한 후해당한 각이한 조건의 시험구들에 같은 량으로 접종(균수 10⁸CFU/mL)하고 배양한 다음 균수를 혈구계산법으로 측정하는 방법으로 진행하였다.

결과 및 론의

 $A. \ salmonicida$ 의 최적배양조건을 확립하기 위하여 직교실험계획 $(L_9(2^1 \times 3^3))[2]$ 에 따르는 복합인자실험을 진행하였다.

인자와 수준은 표 1과 같이 정하였다.

L₉(2¹×3³)형직교실험계획에 따르는 *A. salmonicida*의 증식실험결과 와 그것에 대한 SN비를 계산한 결과는 표 2와 같다.

표 2로부터 매 인자들에 해당한 수준합을 계산한 보조표(표 3)와 분 산분석표(표 4)를 작성하였다.

표 1. A. salmonicida에 대한 복합인자실험의 인자와 수준

인자		수준				
		1	2	3		
A	배양방법	정치배양 48h	진탕배양 18h			
В	온도/℃	10	15	20		
C	pН	6.5	7.0	7.5		
D	콩물농도/%	0.1	0.5	1.0		

No.	직교표				균수/(×10 ⁸ CFU·mL ⁻¹)			SN ^H]
NO.	A	В	С	D	y_1	y_2	<i>y</i> ₃	/dB
1	1	1	1	1	25.3	24.8	24.6	28.0
2	1	2	2	2	26.8	27.2	26.6	28.6
3	1	3	3	3	29.4	28.6	30.2	29.3
4	2	1	2	3	32.6	33.1	33.2	30.3
5	2	2	3	1	30.4	31.6	27.8	29.7
6	2	3	1	2	29.6	29.9	28.6	29.4
7	2	1	3	2	28.6	27.4	29.3	29.0
8	2	2	1	3	28.6	29.6	29.2	29.3
9	2	3	2	1	28.5	27.4	28.7	28.9

표 2. 복합인자실험에 따르는 A. salmonicida의 증식과 SN비

표 3. A. salmonicida에 대한 복합인자실험의 보조표

표 4. A. salmonicida에 대한 복합인자실험의 분산분석표

수준 -	인자			 인자	a	Г	17	/0/	
	A	В	C	D	인사	S	F	V	ho/%
1	85.9	87.3	86.7	86.6	A	1.38	1	1.38	37.73
2	89.5	87.6	87.9	87.0	В	0.03	2	0.01	
2	97.2	97.7	99 A	99.0	C	0.36	2	0.18	9.20
3	87.2	87.7	88.0	88.9	D	0.99	2	0.49	26.32
계	262.6	262.6	262.6	262.6	(e)	(0.03)	(2)	(0.02)	(26.75)

표 3, 4에서 보는바와 같이 기여률이 큰 인자는 A, C, D이며 최적조건은 $A_2B_3C_3D_3$ 이다.

 $A_2B_3C_3D_3$ 에서 기여률이 큰 인자 A와 C, D를 가지고 공정평균값을 추정하면 다음과 같이 계산된다.

$$\hat{\mu} = \frac{X_{\rm T}}{N} + \left(\frac{X_{\rm A_2}}{r_2} - \frac{X_{\rm T}}{N}\right) + \left(\frac{X_{\rm C_3}}{r_3} - \frac{X_{\rm T}}{N}\right) + \left(\frac{X_{\rm D_3}}{r_3} - \frac{X_{\rm T}}{N}\right) = 30.44$$

여기서 $\hat{\mu}$ 의 믿음한계는 $F_{0.05}(1, 2)=18.5$, $n_{\rm e}=1.3$ 이므로

$$\Delta = \pm \sqrt{F_{0.05}(1, 2) \cdot \frac{V_{\rm R}}{n_{\rm e}}} = \pm 0.84$$

이다. 따라서 최적조건에서 공정평균의 추정구간은 (30.44±0.84)dB이다.

이 최적배양조건의 재현성검토를 위한 확인실험을 진행하여 계산한 SN비값은 η =30.25로서 검정식 μ - $\Delta \le \eta \le \mu$ + Δ 을 만족시켰다. 그리므로 우에서 확증한 균증식을 위한 최적배양조건(진탕배양, 배양온도 20° C, pH 7.5, 콩물농도 1.0%)은 믿음확률 95%로서 재현성이 보장된다는것을 알수 있다.

이상의 실험을 통하여 낮은 온도에서 농마분해활성이 높은 *A. salmonicida*의 최적배양 조건은 1.0%의 콩물에서 배양온도 20℃, 배양pH 7.5로 보장하면서 18h 진탕배양하는것이라 는것을 알수 있다.

맺 는 말

농마분해활성이 높은 저온미생물 A. salmonicida의 최적배양조건은 1.0%의 콩물에서 배양온도 20%, 배양pH 7.5로 보장하면서 18h 진탕배양하는것이다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 63, 3, 133, 주체106(2017).
- [2] 김천을 등; 생물통계학, **김일성**종합대학출판사, 182~189, 주체92(2003).
- [3] 민경찬 등; 미생물학연구통보, 2, 6, 주체105(2016).
- [4] Marta Cieslik et al.; Energy, 115, 1495, 2016.
- [5] Xingyao Meng et al.; Bioresource Technology, 241, 1050, 2017.

주체107(2018)년 10월 5일 원고접수

Optimal Condition for Culture of *Aeromonas salmonicida*, Cold-Adapted Bacteria with High Amylolytic Activity

Mun Hye Gyong

We examined optimal condition for culture of *Aeromonas salmonicida*, cold-adapted bacteria with high amylolytic activity.

The optimal condition is as follows: 1.0% soybean milk, temperature of culture 20°C, pH 7.5 and shaking culture for 18h.

Key words: Aeromonas salmonicida, amylolytic activity