Введение:

- 1. Работа выполнил студент группы БПИ217 Татауров Матвей.
- 2. Работа выполнена с использованием clion, графики были построены в Excel.
- 3. Были выполнены все пункты условия.
- 4. В качестве четвёртого алгоритма была взята модификация алгоритма Дейкстры A-star(A*).
- 5. Более подробные графики лежат в файлах results.xlsx(статистика по вершинам) и results2.xlsx(статистика по рёбрам)
- 6. В целом, данные на графиках по рёбрам и по вершинам практически идентичны, существенных отличий нет. Поэтому в данном отчёте представлены лишь графики со статистикой по вершинам их можно смело менять на графики со статистикой по рёбрам, и ничего не поменяется.

1. Дейкстра:

- Время растёт приблизительно линейно (гораздо более плавно, чем у двух других обязательных алгоритмов) с увеличением числа вершин в графе для всех трёх типов графов, особенно для более разреженных.

Рисунок 1. Примерные ровные линии для сравнения

- Наибольшее время выполнения для полных графов, наименьшее для разреженных.
- Алгоритм прекрасно подходит для всех графов, которые были протестированы.

2. Флойд-Уоршелл:

- Время выполнения растёт кубически с увеличением числа вершин в графе для всех трёх типов графов.
- Данный алгоритм является наиболее медленным из рассмотренных вариантов и крайне неэффективен для графов с большим числом вершин.
- Время одинаково для всех типов графов с отличиями на уровне погрешности.

Рисунок 2. Флойд-Уоршелл работает одинаково неэффективно для всех типов графов

3. Беллман-Форд:

- Время выполнения растёт нелинейно, для полных графов ближе к кубическому, для дерева чуть ближе к линии, но в любом случае он не является эффективным.
- По времени выполнения находится между Флойдом-Уоршеллом и Дейкстрой, приближаясь к последнему по мере уменьшения плотности графа.
- Однако этот алгоритм может обрабатывать отрицательные веса рёбер, в отличие от других, так что может быть применим в ряде случаев.

Рисунок 3. Беллман-Форд лежит где-то между Флойдом-Уоршеллом и Дейкстрой

4. A-star:

- Является модификацией алгоритма Дейкстры, поэтому работает ещё эффективнее.
- В качестве эвристики взят модуль разности индексов текущей и целевой вершин, что не является самым лучшим выбором, но всё равно показывает неплохие результаты.
- Время выполнения растёт практически линейно.
- Хорошая производительность для всех типов графов, особенно для графов с пониженной и низкой плотностью.

Рисунок 4. Данный алгоритм может практически двукратно превосходить Дейкстру по времени

Небольшое дополнение

Рисунок 5. Выбросы на графике

Порой на графиках случались подобные выбросы. Так как они встречались лишь на одном из алгоритмов, могу смело утверждать что где-то с вероятностью 0.95 это были фоновые процессы ОС, которые неожиданно включились именно в этот момент. Хотя, конечно, это может быть какой-тио неудачный график конкретно для этого алгоритма

Рисунок 6. На других алгоритмах при этом значении всё хорошо