National University of Computer and Emerging Sciences, Lahore Campus

CS317 Fall 2018

10 3.3% 2

STONAL UNIVERSIT	Course:	Information Retrieval	Course Code:
	Program:	BS(Computer Science)	Semester:
£ 6	Duration:	25 Minutes	Total Marks:
OKENGES.	Paper Date:	30-Nov-18	Weight
Sallan a Hills	Section:	A	Page(s):
WINI 8	Exam:	Quiz 3	Roll No:

Q1) Compute normalized mutual information of following clusters with classes. There are 2 classes of data. [7 Marks]

Solution:

H (cluster) =
$$5/14 * \lg (14/5) + 4/14 * \lg (14/4) + 5/14 * \lg (14/5) = 1.57$$

H (class) = $8/14 * \lg (14/8) + 6/14 * \lg (14/6) = 0.98$
I (Class, cluster) = $(3/14) \lg ((14*3) / (5*8)) + (2/14) \lg ((14*2) / (5*6)) + (1/14) \lg ((14*1) / (4*8))$
+ $(3/14) \lg ((14*3) / (4*6)) + (4/14) \lg ((14*4) / (5*8)) + (1/14) \lg ((14*1) / (5*6))$
= 0.15
NMI = $0.15/((1.57)*(0.98)) = 0.097$

Name Section	
•	is RSS value in K Means clustering? Can we use RSS value for determining of K in K Means algorithm? Justify your answer. [3 Marks]
	Solution:
centro	RSS is residual sum of squares. It is sum of distance of each object with roid of its cluster.
and R	RSS should not be used for deciding K since RSS decreases as K increases RSS is 0 for $K = N$ where N is total objects.

Page 2