WYPEŁNIA ZDAJĄCY WYBRANE: (system operacyjny) (program uzytkowy) Miejsce na identyfikację szkoły (środowisko programistyczne) ARKUSZ PRÓBNEJ MATURY 2021/2022 **Z OPERONEM** INFORMATYKA, CZ. I POZIOM ROZSZERZONY Czas pracy: 60 minut Instrukcja dla zdajacego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu. 3. Pisz czytelnie. Używaj tylko długopisu/pióra z czarnym tuszem/atra-4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 6. Wpisz zadeklarowany przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne. 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin. 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. Za rozwiązanie Życzymy powodzenia! wszystkich zadań można otrzymać łącznie 15 punktów. Wpisuje zdający przed rozpoczęciem pracy

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione.

PESEL ZDAJĄCEGO

ZDAJACEGO

Zadanie 1. Podzbiory spójne (0-6)

Podciągiem spójnym ciągu liczbowego A o długości m nazywamy fragment zbioru zawierający n kolejnych wartości, gdzie n <= m.

Jeżeli ciąg A będzie miał postać (6, -3, -4, 5, -2, -1, 7, -3, 4), to podciąg spójny o największej sumie będzie miał postać SA = (5, -2, -1, 7, -3, 4), jego suma wynosi 10, a jego długość wynosi 6.

Zadanie 1.1. (0-3)

Dla podanych ciągów podaj podciągi o największej sumie. Uzupełnij tabelę – zapisz podciąg oraz wartość sumy.

${ m Ciag}A$	Maksymalna suma	Podciąg
(6, -3, -4, 5, -2, -1, 7, -3, 4)	10	(5, -2, -1, 7, -3, 4)
(3, -2, 2, 4, -3, 1)	oracy: 60 minut	Czas
(4, -6, 2, -3, 1)		astrakcja dla zdającego
(5, -3, 4, -2, 3, -1, 2)	naroine sauriero 10 styon. Even	imema varrha ven Mauro 2

Miejsce na obliczenia:

Zadanie 1.2. (0-3)

```
Dany jest algorytm:
Specyfikacja:
      k – liczba elementów ciągu, liczba naturalna
      A[1..k] – tablica z wartościami ciągu liczbowego
Wynik:
      s – największa suma spójnego podciągu
wczytaj k
dla i=1, 2, 3 ... k
     wczytaj A[i]
s=A[1]
dla i=1, 2, 3 ... k
      p=0
      dla j=i, i+1, i+2 ... k
```

wypisz s

p=p+A[j]

jeżeli s<p (*) s=p

Dokonaj analizy algorytmu i podaj, ile razy wykona się instrukcja warunkowa (*) dla odpowiednich wartości k. Podaj ogólny wzór wyznaczania liczby operacji. Odpowiedzi zapisz w tabeli poniżej.

k	Liczba operacji instrukcji warunkowej
2	3
4	
11	
n	

Miejsce na obliczenia:

	Nr zadania	1.1.	1.2.
Wypełnia egzaminator	Maks. liczba pkt	3	3
	Uzyskana liczba pkt		

Zadanie 2. Liczby czworacze (0-6)

Liczby czworacze to liczby pierwsze, które mają postać: p, p+2, p+6, p+8, a p jest pewną liczbą pierwszą.

Zatem są to pary liczb bliźniaczych w najbliższym możliwym sąsiedztwie. Można zauważyć przy tym, że określenie "liczby czworacze" w odniesieniu do liczb postaci p, p+2, p+4, p+6 nie miałoby sensu, ponieważ z trzech (a tym bardziej z czterech) kolejnych liczb nieparzystych co najmniej jedna jest podzielna przez 3.

Zadanie 2.1. (0-3)

Jedną z metod znajdowania liczb pierwszych jest sito Eratostenesa. Eratostenesowi z Cyreny przypisano stworzenie algorytmu wyznaczania liczb pierwszych z zadanego przedziału [2, n]. Algorytm Eratostenesa polega na wykreślaniu kolejnych wielokrotności liczb pierwszych, a pierwszą wykreśloną jest liczba 2.

1. W kroku pierwszym ze zbioru liczb naturalnych z przedziału [2, n] wybieramy najmniejszą, czyli 2, i wykreślamy wszystkie jej wielokrotności większe od niej samej, to jest 4, 6, 8...

2. W kroku drugim z pozostałych liczb wybieramy najmniejszą niewykreśloną liczbę (3) i usuwamy wszystkie jej wielokrotności większe od niej samej 6, 9, 12...

3. W kolejnych krokach postępujemy według tej samej procedury dla liczb: 5, 7, 11... k, dla $k \le n$.

Niech A będzie tablicą wartości logicznych indeksowaną liczbami całkowitymi od 1 do 200 000, początkowo wypełnioną wartościami *true*. Napisz specyfikację i algorytm, który metodą sita Eratostenesa oznaczy wszystkie liczby pierwsze (*true*) i złożone (*false*).

Miejsce na algorytm:

Zadanie 2.2. (0-2)

Dla tablicy utworzonej w zadaniu 2.1. napisz algorytm (w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który wyznaczy liczby czworacze. Miejsce na algorytm:

Zadanie 2.3. (0-1)

Wyznacz trzy pierwsze zestawy liczb czworaczych.

Miejsce na obliczenia:

Zestaw 1.	Zestaw 2.	Zestaw 3.

Wypełnia egzaminator	Nr zadania	2.1.	2.2.	2.3.
	Maks. liczba pkt	3	2	1
	Uzyskana liczba pkt			

Zadanie 3. Test (0-3)

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Po obliczeniu sumy trzech liczb 223101 $_4$, 3741 $_8$ oraz F0A $_{16}$ zapisanych odpowiednio w systemie czwórkowym, ósemkowym i szesnastkowym otrzymamy:

1.	10000110111100_2	P	F
2.	20123204	P	F
3.	20670 ₈	P	F
4.	21BC ₁₆	P	F

Zadanie 3.2. (0-1)

1.	POP (<i>Post Office Protocol</i>) to protokół internetowy z warstwy aplikacji pozwalający na wysyłanie poczty elektronicznej ze zdalnego serwera do lokalnego komputera poprzez połączenie TCP/IP.	P	F
2.	SMTP (Simple Mail Transfer Protocol) to protokół TCP/IP, czyli zbiór zasad i wytycznych, których musi przestrzegać system, wykorzystywany do wysyłania i odbierania informacji w formie poczty elektronicznej.	P	F
3.	IMAP (Internet Message Access Protocol) to protokół warstwy aplikacji służący do uzyskiwania dwukierunkowego dostępu do korespondencji e-mail. Protokół IMAP jest oparty na protokole transportu TCP, a port 143 służy do wykonywania przydzielonych mu zadań (lub 993 dla połączeń SSL/TLS). Wykorzystywany do wysyłania, przeglądania i odbierania informacji w formie poczty elektronicznej.	P	F

Zadanie 3.3. (0-1) (syrsyno poslovog sim) 2190MGUMA

Tabela dane

Lp.	Nazwa	Cena	Sztuki
1.	Makaron	3,50	. 2
2.	Mąka	2,20	3
3.	Chleb	4,50	3
4.	Ogórek	2,40	1
5.	Sałata	2,10	2

Po wykonaniu podanego zapytania SQL dla tabeli o nazwie dane:

SELECT nazwa, cena FROM dane ORDER BY cena DESC wyniki będą uporządkowane malejąco według pola <i>cena</i> .	P	F
SELECT nazwa, cena FROM dane ORDER BY wartosc DESC wyniki będą uporządkowane malejąco według pola <i>nazwa</i> .	P	F
SELECT sum(cena*sztuki) FROM dane wynikiem będzie wartość 33,7.	P	F

Wypełnia egzaminator	Nr zadania	3.1.	3.2.	3.3.
	Maks. liczba pkt	1	1	1
	Uzyskana liczba pkt			

BRUDNOPIS (nie podlega ocenie)

	Uzyskana liczba pkt	