Cvičení 4: Posloupnosti II

Zahřívací příklady

Spočtěte následující limity

(a)
$$\lim_{n\to\infty} (n-\frac{2n}{2}),$$

(b)
$$\lim_{n\to\infty} n!$$
,

(c)
$$\lim_{n\to\infty} (\pi n + 10^{10} \sin(n!)),$$

(d)
$$\lim_{n\to\infty} \frac{2^n + (-2)^n}{3^n}$$
,

(e)
$$\lim_{n\to\infty} \sqrt[n]{n!}$$
,

(f)
$$\lim_{n\to\infty} \frac{6n^4+3n^2+24}{10n^3+n^2-4}$$
,

(g)
$$\lim_{n\to\infty} \frac{(-1)^n}{n^2}$$
,

(h)
$$\lim_{n\to\infty} \frac{n^2+2n+1}{\sqrt{2n^4+4n^2+2}}$$

(i)
$$\lim_{n\to\infty} \frac{3^n + (-3)^n}{2^n}$$
.

Složitější příklady

Spočtěte následující limity pro $k,l\in\mathbb{N}$ a $\delta,\beta\in\mathbb{R}$

(a)
$$\lim_{n\to\infty} \sqrt[n]{n}$$
,

(b)
$$\lim_{n\to\infty} \frac{n(n+1)-2\sum_{i=1}^{n} i}{n^2}$$
,

(c)
$$\lim_{n\to\infty} \frac{\arctan(\pi n)}{n^3}$$
,

(d)
$$\lim_{n\to\infty} \frac{q^n}{n!}$$
, $q\in\mathbb{R}$,

(e)
$$\lim_{n\to\infty} \frac{\sqrt[4]{16-\frac{1}{n}}-2}{\sqrt{16-\frac{1}{n}}-4}$$
,

(f)
$$\lim_{n\to\infty} n^{\frac{2}{n} + \frac{5}{\ln(n)}}$$
,

(g)
$$\lim_{n\to\infty} n\left(\sqrt[k]{1+\frac{\delta}{n}}\sqrt[l]{1+\frac{\beta}{n}}-1\right)$$
,

(h)
$$\lim_{n\to\infty} \frac{3^n + n^5}{n^5 + n!}$$
,

(i)
$$\lim_{n\to\infty} \frac{\sqrt{n+\sqrt{n+\sqrt{n}}}}{\sqrt{n+1}}$$
,

(j)
$$\lim_{n\to\infty} n(\sqrt{n^2+2} - \sqrt[3]{n^3+1}),$$

(k)
$$\lim_{n\to\infty} \left(\frac{1+2+\cdots+n}{n+2} - \frac{n}{2}\right)$$
,

(l)
$$\lim_{n\to\infty} \frac{2n^2+3}{\cos(\pi n)}$$
,

(m)
$$\lim_{n\to\infty} \frac{1}{n} \left[\left(\delta + \frac{\beta}{n} \right) + \left(\delta + \frac{2\beta}{n} \right) + \dots + \left(\delta + \frac{(n-1)\beta}{n} \right) \right],$$

Rekurentní posloupnosti

Najděte limity posloupností zadaných jako $a_{n+1} = f(a_n)$

(a)
$$a_1 = 1$$
, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$,

(b)
$$a_1 = 1$$
, $a_{n+1} = a_n + 1$,

(c)
$$a_1 = \sqrt{c}, \ a_{n+1} = \sqrt{a_n + c} \quad c > 0.$$

Užitečné vztahy

Pro $a \in \mathbb{R}$ jsou definované výrazy $a \pm \infty$, $\pm (\infty + \infty)$, $a \cdot (\pm \infty)$, $\frac{a}{\pm \infty}$ a pro $a \neq 0$ i $\frac{\pm \infty}{a}$. Jiné výrazy s nekonečny nejsou dobře definované.

Nechť a_n, b_n a c_n jsou posloupnosti a $a \in \mathbb{R}$. Potom

- 1. $\lim_{n\to\infty} a_n = 0 \Leftrightarrow \lim_{n\to\infty} |a_n| = 0$.
- 2. Nechť $\lim_{n\to\infty}a_n=a\in\mathbb{R}\cup\{\pm\infty\}$ a b_n je podposloupnost a_n . Potom $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.
- 3. Nechť $k \in \mathbb{N}$ je nezávislé na n, $\lim_{n \to \infty} a_n = a$, $a_n \ge 0, \forall n \in \mathbb{N}$. Potom $\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{a}$.
- 4. Nechť $\lim_{n\to\infty}a_n=0$ a b_n je omezená. Potom $\lim_{n\to\infty}a_nb_n=0$.
- 5. Nechť $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=a$ a nechť $\exists n_0\in\mathbb{N}\ \forall n>n_0:a_n\leq c_n\leq b_n.$ Potom $\lim_{n\to\infty}c_n=a.$
- 6. Nech
f $a_n \geq 0 \ \forall n > n_0 \in \mathbb{N}.$ Potom $\lim_{n \to \infty} a_n^{b_n} = \lim_{n \to \infty} e^{b_n \ln(a_n)}.$

Nechť $a, b \in \mathbb{R}$ a $k \in \mathbb{N}$. Pak

$$a^{k} - b^{k} = (a - b)(a^{k-1} + a^{k-2}b + \dots + ab^{k-2} + b^{k-1}).$$