Lines

Equation of a line : y=mx+b m = slope, b = y-intercept

If we have start of (x_1, y_1) and end of (x_2, y_2) , we have...

Slope:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Y-Intercept: $b = y_1 - mx_1$

Y Interval :
$$\Delta y = m\Delta x$$
 X Interval : $\Delta x = \frac{\Delta y}{m}$

Types of Line Drawing Algorithms

Drawing a line is also known as rasterization; convert a conceptual line to a raster display. A term we have seen before, and will use again when speaking of drawing other primitives.

Scan Conversion Techniques

- Slope-Intercept (DeltaX = 1 or DeltaY = 1)
- Bresenham (plus Symmetric)
- Midpoint
- Two-Step
- Symmetric Two-Step

Digital Differential Analyzer (DDA)

Sample the equation of a line at unit intervals in either the X or Y coordinate.

Step 1 : Compute ΔX & ΔY

- $\bullet \qquad \Delta X = X_2 X_1$
- $\Delta Y = Y_2 Y_1$

Step 2: Determine How Many Points to Compute

if
$$|(\Delta X)| > |(\Delta Y)|$$
 then
NumPoints = $|(\Delta X)| + 1$
else
NumPoints = $|(\Delta Y)| + 1$

Step 3 : Compute X & Y Increments

```
\delta x = \Delta X / \text{NumPoints}
\delta y = \Delta Y / \text{NumPoints}
```

Step 4: Plot The Points

```
plotX = x_1

plotY = y_1

while PointCurrent <= NumPoints

plotX = x_1 + PointCurrent * \delta x

plotY = y_1 + PointCurrent * \delta y
```

Problems With DDA

- 1. Initial Divisions
- 2. Round off error can lead to drift: $Y_{k+1} = Y_k + m$ where Y_{k+1} (int) Y_k (int) m (float)
- 3. Memory overhead of floating point
- 4. Float to Integer conversion

We don't care too much about 1 and 3 now, computers are FAST; float and int operations happen at same speed on today's CPUs. Regardless, there are still faster approaches.

Bresenham Algorithm

Line scan conversion that uses only incremental integer calculations.

Concept: Difference of distances, using a decision parameter P_k

Again, equation of a line: y=mx+b This algorithm valid where: $0 \le m \le 1$

 P_k is the current decision parameter

 P_{k+1} is the next decision parameter

 d_1 is the distance from the y-intercept at P_{x+1} : $y - y_k$ or $m(x_k+1)+b-y_k$

 d_2 is the distance from the y-intercept at P_{x+1} : $(y_k + 1) - y$ or $y_k + 1 + m(x_k + 1) - b$

The next pixel to draw is:

$$x_{k+1} = x_k + 1$$

$$y_{k+1} = d_1 - d_2 \ge 0 ? y_k + 1 : y_k$$

if $d_{\scriptscriptstyle 1}-d_{\scriptscriptstyle 2}$ is positive, then $y_{\scriptscriptstyle k}\text{+}1$ else $y_{\scriptscriptstyle k}$

We use this to create a Decision Parameter, P_k , below...

Difference of Distances

$$d_1-d_2=(y-y_k)-(y_k+1)-y$$
 (substituting from above)

$$d_1 = y - y_k \rightarrow m(x_k + 1) + b - y_k$$

$$d_2 = (y_k + 1) - y \rightarrow y_k + 1 - m(x_k + 1) - b$$

$$d_1-d_2=m(x_k+1)+b-y_k-y_k-1+m(x_k+1)+b$$

$$d_1 - d_2 = 2m(x_k + 1) - 2_{y_k} + 2b - 1$$

where

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

 $d_1 - d_2$ is floating point arithmetic, we want it (P_k) in terms of integer arithmetic. We can do this by substituting m with $\frac{\Delta y}{\Delta x}$

$$P_{k} = \Delta x (d_{1} - d_{2}) = \Delta x (\frac{\Delta y}{\Delta x} (x_{k} + 1) + b) - \Delta x y_{k} - \Delta x y_{k} - \Delta x + \Delta x (\frac{\Delta y}{\Delta x} (x_{k} + 1) + b))$$

$$P_k = 2 \Delta x (\frac{\Delta y}{\Delta x} (x_k + 1) + b) - 2 \Delta x y_k - \Delta x$$

...eventually...

$$P_k = 2\Delta y x_k - 2\Delta x y_k + 2\Delta y + \Delta x (2b-1)$$

Notice that $2\Delta y + \Delta x(2b-1)$ is constant for all X, can compute one time for all pixels. We will call this c: $c=2\Delta y + \Delta x(2b-1)$

$$P_k = 2\Delta y x_k - 2\Delta x y_k + c$$

$$P_{k+1} = 2 \Delta y x_{k+1} - 2 \Delta x y_{k+1} + c$$

$$P_{k+1} - P_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$$
 Remember $x_{k+1} = x_k + 1$

$$P_{k+1} - P_k = 2 \Delta y (x_k - x_k + 1) - 2 \Delta x (y_{k+1} - y_k)$$

$$P_{k+1} - P_k = 2 \Delta y - 2 \Delta x (y_{k+1} - y_k)$$

$$P_{k+1} = P_k + 2\Delta y(x_k - x_k + 1) - 2\Delta x(y_{k+1} - y_k) \leftarrow \text{Decision Parameter!}$$

Here is how we use it (again)

if
$$P_k \ge 0$$
 then $y_{k+1} = y_k + 1$

$$P_{k+1} = P_k + 2\Delta y - 2\Delta x$$

if
$$P_k < 0$$
 then $y_{k+1} = y_k$

$$P_{k+1} = P_k + 2\Delta y$$

What about P_0 ?

$$P_k = 2\Delta y x_k - 2\Delta x y_k + c$$

$$b = y_1 - mx_1 \qquad m = \frac{\Delta y}{\Delta x}$$

$$P_0 = 2\Delta y - \Delta x$$

Guess what else? The algorithm is symmetric! Can draw two pixels from a single calculation.