∞ Baccalauréat S Centres étrangers 1 13 juin 2019 ∾

EXERCICE 1 4 points
Commun à tous les candidats

Cet exercice est un questionnaire à choix multiples (Q. C. M.) qui envisage quatre situations relatives à une station de ski.

Les quatre questions sont indépendantes.

Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse exacte. Aucune justification n'est demandée. Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse ne rapporte ni n'enlève aucun point.

Une étude statistique a établi qu'un client sur quatre pratique le surf.
 Dans une télécabine accueillant 80 clients de la station, la probabilité arrondie au millième qu'il y ait exactement 20 clients pratiquant le surf est :

- **a.** 0,560
- **b.** 0,25
- **c.** 1
- **d.** 0,103

2. L'épaisseur maximale d'une avalanche, exprimée en centimètre, peut être modélisée par une variable aléatoire X qui suit une loi normale de moyenne $\mu = 150$ cm et d'écart-type inconnu. On sait que $P(X \ge 200) = 0,025$. Quelle est la probabilité $P(X \ge 100)$?

- **a.** On ne peut **b.** 0,025 pas répondre car
- **c.** 0,95
- **d.** 0,975

pas répondre car il manque des éléments dans l'énoncé.

3. Dans un couloir neigeux, on modélise l'intervalle de temps séparant deux avalanches successives, appelé temps d'occurrence d'une avalanche, exprimé en année, par une variable aléatoire T qui suit une loi exponentielle.

On a établi qu'une avalanche se déclenche en moyenne tous les 5 ans. Ainsi E(T)=5. La probabilité $P(T\geqslant 5)$ est égale à :

- **a.** 0,5
- **b.** $1 e^{-1}$
- **c.** e^{-1}
- **d.** e^{-25}

4. L'office de tourisme souhaite effectuer un sondage pour estimer la proportion de clients satisfaits des prestations offertes dans la station de ski.

Pour cela, il utilise un intervalle de confiance de longueur 0,04 avec un niveau de confiance de 0,95.

Le nombre de clients à interroger est :

- **a.** 50
- **b.** 2500
- **c.** 25
- **d.** 625

EXERCICE 2 6 points

Commun à tous les candidats

Le but de cet exercice est d'étudier la suite (u_n) définie par la donnée de son premier terme u_1 et, pour tout entier naturel n supérieur ou égal à 1, par la relation :

$$u_{n+1} = (n+1)u_n - 1.$$

Partie A

- **1.** Vérifier, en détaillant le calcul, que si $u_1 = 0$ alors $u_4 = -17$.
- **2.** Recopier et compléter l'algorithme ci-dessous pour qu'en saisissant préalablement dans U une valeur de u_1 il calcule les termes de la suite (u_n) de u_2 à u_{13} .

Pour
$$N$$
 allant de 1 à 12 $U \leftarrow$ Fin Pour

3. On a exécuté cet algorithme pour $u_1 = 0.7$ puis pour $u_1 = 0.8$. Voici les valeurs obtenues.

Pour $u_1 = 0,7$	Pour $u_1 = 0.8$				
0,4	0,6				
0,2	0,8				
-0,2	2,2				
-2	10				
-13	59				
-92	412				
-737	3 2 9 5				
-6634	29 654				
-66 341	296 539				
-729 752	3 261 928				
-8757025	39 143 135				
-113 841 326	508 860 754				

Quelle semble être la limite de cette suite si $u_1 = 0.7$? Et si $u_1 = 0.8$?

Partie B

On considère la suite (I_n) définie pour tout entier naturel n, supérieur ou égal à 1, par :

$$I_n = \int_0^1 x^n \mathrm{e}^{1-x} \, \mathrm{d}x.$$

On rappelle que le nombre e est la valeur de la fonction exponentielle en 1, c'est-à-dire que $e = e^1$.

- **1.** Prouver que la fonction F définie sur l'intervalle [0;1] par $F(x)=(-1-x)e^{1-x}$ est une primitive sur l'intervalle [0;1] de la fonction f définie sur l'intervalle [0;1] par $f(x)=xe^{1-x}$.
- **2.** En déduire que $I_1 = e 2$.
- **3.** On admet que, pour tout entier naturel n supérieur ou égal à 1, on a :

$$I_{n+1} = (n+1)I_n - 1.$$

Utiliser cette formule pour calculer I_2 .

4. a. Justifier que, pour tout nombre réel x de l'intervalle [0; 1] et pour tout entier naturel n supérieur ou égal à 1, on a : $0 \le x^n e^{1-x} \le x^n e$.

- **b.** Justifier que : $\int_0^1 x^n e \, dx = \frac{e}{n+1}.$
- **c.** En déduire que, pour tout entier naturel n supérieur ou égal à 1, on a : $0 \le I_n \le \frac{e}{n+1}$.
- **d.** Déterminer $\lim_{n\to+\infty} I_n$.

Partie C

Dans cette partie, on note n! le nombre défini, pour tout entier naturel n supérieur ou égal à 1, par :

l!=1

 $2! = 2 \times 1$

et si $n \ge 3$: $n! = n \times (n-1) \times ... \times 1$

On a ainsi par exemple

 $3! = 3 \times 2 \times 1 = 3 \times (2 \times 1) = 3 \times 2!$

 $4! = 4 \times 3 \times 2 \times 1 = 4 \times (3 \times 2 \times 1) = 4 \times 3!$

 $8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 8 \times (7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1) = 8 \times 7!$

Et, plus généralement :

$$(n+1)! = (n+1) \times n!$$

1. Démontrer par récurrence que, pour tout entier naturel *n* supérieur ou égal à 1, on a :

$$u_n = n! (u_1 - e + 2) + I_n$$
.

On rappelle que, pour tout entier naturel n supérieur ou égal à 1, on a :

$$u_{n+1} = (n+1)u_n - 1$$
 et $I_{n+1} = (n+1)I_n - 1$.

- **2.** On admet que : $\lim_{n \to +\infty} n! = +\infty$.
 - **a.** Déterminer la limite de la suite (u_n) lorsque $u_1 = 0, 7$.
 - **b.** Déterminer la limite de la suite (u_n) lorsque $u_1 = 0.8$.

EXERCICE 3 5 points

Commun à tous les candidats

Le plan est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

Le but de cet exercice est de déterminer les nombres complexes z non nuls tels que les points d'affixes 1, z^2 et $\frac{1}{z}$ soient alignés.

Sur le graphique fourni en annexe, le point A a pour affixe 1.

Partie A: étude d'exemples

1. Un premier exemple

Dans cette question, on pose z = i.

- a. Donner la forme algébrique des nombres complexes z^2 et $\frac{1}{z}$.
- **b.** Placer les points N_1 d'affixe z^2 , et P_1 d'affixe $\frac{1}{z}$ sur le graphique donné en annexe. On remarque que dans ce cas les points A, N_1 et P_1 ne sont pas alignés.

2. Une équation

Résoudre dans l'ensemble des nombres complexes l'équation d'inconnue $z: z^2 + z + 1 = 0$.

3. Un deuxième exemple

Dans cette question, on pose : $z = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

- **a.** Déterminer la forme exponentielle de z, puis celles des nombres complexes z^2 et $\frac{1}{z}$.
- **b.** Placer les points N_2 d'affixe z^2 et P_2 , d'affixe $\frac{1}{z}$ sur le graphique donné en annexe. On remarque que dans, ce cas les points A, N_2 et P_2 sont alignés.

Partie B

Soit z un nombre complexe non nul.

On note N le point d'affixe z^2 et P le point d'affixe $\frac{1}{z}$.

1. Établir que, pour tout nombre complexe différent de 0, on a :

$$z^{2} - \frac{1}{z} = (z^{2} + z + 1) \left(1 - \frac{1}{z}\right).$$

- 2. On rappelle que si, \overrightarrow{U} est un vecteur non nul et \overrightarrow{V} un vecteur d'affixes respectives $z_{\overrightarrow{U}}$ et $z_{\overrightarrow{V}}$, les vecteurs \overrightarrow{U} et \overrightarrow{V} sont colinéaires si et seulement si il existe un nombre réel k tel que $z_{\overrightarrow{V}} = kz_{\overrightarrow{U}}$. En déduire que, pour $z \neq 0$, les points A, N et P définis ci-dessus sont alignés si et seulement si $z^2 + z + 1$ est un réel.
- **3.** On pose z = x + iy, où x et y désignent des nombres réels. Justifier que : $z^2 + z + 1 = x^2 y^2 + x + 1 + i(2xy + y)$.
- **4. a.** Déterminer l'ensemble des points M d'affixe $z \neq 0$ tels que les points A, N et P soient alignés.
 - b. Tracer cet ensemble de points sur le graphique donné en annexe.

EXERCICE 4
Candidats n'ayant pas suivi l'enseignement de spécialité

Dans l'espace, on considère un cube ABC-DEFGH de centre Ω et d'arête de longueur 6. Les points P, Q et R sont définis par :

$$\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$$
, $\overrightarrow{AQ} = \frac{1}{3}\overrightarrow{AE}$ et $\overrightarrow{HR} = \frac{1}{3}\overrightarrow{HE}$.

Dans tout ce qui suit on utilise le repère orthonormé $(A; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ avec :

$$\overrightarrow{i} = \frac{1}{6}\overrightarrow{AB}, \overrightarrow{j} = \frac{1}{6}\overrightarrow{AD} \text{ et } \overrightarrow{k} = \frac{1}{6}\overrightarrow{AE}.$$

Dans ce repère, on a par exemple :

$$B(6; 0; 0), F(6; 0; 6) \text{ et } R(0; 4; 6).$$

1. a. Donner, sans justifier, les coordonnées des points P, Q et Ω .

5 points

- **b.** Déterminer les nombres réels b et c tels que $\overrightarrow{n}(1;b;c)$ soit un vecteur normal au plan (PQR).
- **c.** En déduire qu'une équation du plan (PQR) est : x y + z 2 = 0.
- 2. a. On note Δ la droite perpendiculaire au plan (PQR) passant par le point Ω , centre du cube. Donner une représentation paramétrique de la droite Δ .
 - **b.** En déduire que la droite Δ coupe le plan (PQR) au point I de coordonnées $\left(\frac{8}{3}; \frac{10}{3}; \frac{8}{3}\right)$.
 - **c.** Calculer la distance Ω I.
- 3. On considère les points J(6; 4; 0) et K(6; 6; 2).
 - a. Justifier que le point J appartient au plan (PQR).
 - b. Vérifier que les droites (JK) et (QR) sont parallèles.
 - c. Sur la figure donnée en annexe, tracer la section du cube par le plan (PQR).
 On laissera apparents les traits de construction, ou bien on expliquera la démarche.

EXERCICE 4 5 points

Candidats ayant suivi l'enseignement de spécialité

Le but de cet exercice est d'envisager plusieurs décompositions arithmétiques du nombre 40.

Partie A:

Les questions 1., 2. et 3. sont indépendantes

- 1. Sans justifier, donner deux nombres premiers x, et y tels que 40 = x + y.
- **2.** On considère l'équation 20x + 19y = 40, où x et y désignent deux, entiers relatifs. Résoudre cette équation.
- **3.** Le nombre 40 est une somme de deux carrés puisque : $40 = 2^2 + 6^2$. On veut savoir si 40, est aussi différence de deux carrés, autrement dit s'intéresser à l'équation $x^2 y^2 = 40$, où x et y désignent deux entiers naturels.
 - a. Donner la décomposition de 40 en produit de facteurs premiers.
 - **b.** Montrer que, si x et y désignent des entiers naturels, les nombres x y et x + y ont la même parité.
 - **c.** Déterminer toutes les solutions de l'équation $x^2 y^2 = 40$ où x et y désignent deux entiers naturels.

Partie B: « sommes » de cubes

Les questions 1. et 2. sont indépendantes.

Certains nombres entiers peuvent se décomposer en somme ou différence de cubes d'entiers naturels.

Par exemple:

$$\begin{array}{rcl} 13 & = & 4^3 + 7^3 + 7^3 - 9^3 - 2^3 \\ 13 & = & -1^3 - 1^3 - 1^3 + 2^3 + 2^3 \\ 13 & = & 1^3 + 7^3 + 10^3 - 11^3 \end{array}$$

Dans tout ce qui suit, on écrira pour simplifier « sommes » de cubes à la place de « sommes ou différence de cubes d'entiers naturels ».

Les deux premiers exemples montrent que 13 peut se décomposer en « somme » de 5 cubes. Le troisième exemple montre que 13 peut se décomposer en « somme » de 4 cubes.

1. **a.** En utilisant l'égalité $13 = 1^3 + 7^3 + 10^3 - 11^3$, donner une décomposition de 40 en « somme » de 5 cubes.

b. On admet que pour tout entier naturel *n* on a :

$$6n = (n+1)^3 + (n-1)^3 - n^3 - n^3$$

En déduire une décomposition de 48 en « somme » de 4 cubes, puis une décomposition de 40 en « somme » de 5 cubes, différente de celle donnée en $\bf 1.a.$)

2. Le nombre 40 est une « somme » de 4 cubes : $40 = 4^3 - 2^3 - 2^3 - 2^3$.

On veut savoir si 40 peut être décomposé en « somme » de 3 cubes.

a. Recopier et compléter sans justifier :

Reste de la division euclidienne de <i>n</i> par 9	0	1	2	3	4	5	6	7	8
Reste de la division euclidienne de n^3 par 9					1				

b. On déduit du tableau précédent que, pour tout entier naturel n, l'entier naturel n^3 est congru modulo 9 soit à 0, soit à 1, soit à -1.

Prouver que 40 ne peut pas être décomposé en « somme » de 3 cubes.

Annexe (à rendre avec la copie)

