Polynomial Division Jacob Zante	
September 9th, 2024 1. Factor:	
a) $z^3 - 27$ $(z - 3)(z^2 + 3z + 9)$ b) $y^3 + 1$	
$(y+1)(y^2 - y + 1)$ c) $8x^3 - 64$ $(2x+4)(4x^2 - 8x + 16)$	
d) $a^3 - 8b^3$ $(a - 2b)(a^2 + 2ab + 4b^2)$	
e) $8x^3 + 27y^3$ $(2x + 3y)(4x^2 - 6xy + 9y^2)$ f) $64x^3 + 1$	
$(4x+1)(16x^2 - 4x + 1)$	
2. Express as a product and simplify all factors: a) $(x+1)^3 - 1$ $((x+1)-1)((x+1)^2 + (x+1) + 1)$	
$x(x^{2} + 2x + 1 + x + 2)$ $x(x^{2} + 3x + 3)$ b) $(2x)^{3} + 1$	
$(2x+1)((2x)^2 - 2x + 1)$ $(2x+1)(4x^2 - 2x + 1)$ c) $(x+2)^3 - x^3$	
$((x+2) - x)$ $((x+2) - x)((x+2)^2 + x(x+2) + x^2)$ $2(x^2 + 4x + 4 + x^2 + 2x + x^2)$ $2(3x^2 + 6x + 4)$	
d) $(2x+1)^3 + (2y)^3$ $((2x+1)+2y)((2x+1)^2 - 2y(2x+1) + 4y^2)$ $(2x+2y+1)(4x^2 + 4x + 1 - 4xy - 2y + 4y^2)$	
$(2x + 2y + 1)(4x^{2} + 4y^{2} - 4xy + 4x - 2y + 1)$ $e) (a + 2b)^{3} - (a - 2b)^{3}$ $((a + 2b) - (a - 2b))((a + 2b)^{2} + (a + 2b)(a - 2b) + (a - 2b)^{2})$	$(2b)^2$
$4b(a^{2} + 4ab + 4b^{2} + a^{2} - 4b^{2} + a^{2} - 4ab + 4b^{2})$ $4b(3a^{2} + 4b^{2})$	
g) $(x+3)^3 + (x-3)^3$ $((x+3) + (x-3))((x+3)^2 - (x+3)(x-3) + (x-3)^2)$ $2x(x^2 + 6x + 9 - x^2 + 9 + x^2 - 6x + 9)$ $2x(x^2 + 27)$	
3. Factor:	
a) $x^6 - y^6$ b) $x^6 + y^6$	
c) $64a^6 - 1$ d) $1 + 64y^6$	
e) $(x+y)^6 - (x-y)^6$ f) $(x+y)^6 + (x-y)^6$	
4. The volume, $\it V$, of the frustrum of a right circular height $\it h$ is given by:	c cone of radii $a,\ b$ an
$V = \frac{1}{3}\pi h(\frac{b^3-a^3}{b-a})$ a) Express V as a polynomial in a and b .	
b) Show that when $a = b$ the formula becomes $V = b$	$=\pi a^2 h$.