

Wochenplan Nr.: _____ Erledigt: Zeitraum: <u>29.10 - 02.11</u>

Teil 1: Legen Sie für die folgenden Funktionen eine Wertetabelle an:

(a)
$$f(x) = 2x^2 - 8x + 6$$

X	0	1	2	3	4
у	6	0	-2	0	6

(b)
$$f(x) = -x^2 - 4$$

(c)
$$f(x) = \frac{1}{4}x^2 - 2x + \frac{15}{4}$$

×	-2	-1	0	1	2
У	8,75	6	3,75	2	0,75

Teil 2: Überführen Sie die Funktionen aus **Teil 1** in Scheitelpunktform $(f_{SP}(x) = a \cdot (x - x_{SP}) + y_{SP}).$

Um von der <u>allgemeinen Form</u> in die **Scheitelpunktform** zu gelangen, nutzen wir die quadratische Ergänzung.

(a)
$$f(x) = 2x^2 - 8x + 6$$

$$= 2 \cdot (x^{2} - 4x + 3)$$

$$= 2 \cdot (x^{2} - 2 \cdot 2 x + 2^{2} - 2^{2} + 3)$$

$$= 2 \cdot (x^{2} - 2 \cdot 2 x + 2^{2} - 2^{2} + 3)$$

$$= 2 \cdot (x^{2} - 2 \cdot 2x + 2^{2} - 2^{2} + 3)$$

$$= 2 \cdot [(x - 2)^{2} - 1]$$

$$= 2 \cdot (x - 2)^{2} - 2$$

(b)
$$f(x) = -x^2 - 4$$

$$= -1 \cdot (x^{2} + 4)$$

$$= -1 \cdot (x^{2} + 2) \cdot 0x$$

$$= -1 \cdot (x^{2} + 2) \cdot 0x + 0^{2} - 0^{2}$$

$$= -1 \cdot (x^{2} + 2) \cdot 0x + 0^{2} - 0^{2}$$

$$= -1 \cdot (x^{2} + 2) \cdot 0x + 0^{2} - 0^{2}$$

$$= -1 \cdot [(x + 0)^{2} + 4]$$

$$= -(x - 0)^{2} - 45$$
+4)

Teil 3: Bestimmen Sie die Funktionswerte der folgenden Funktionen für x=-4, x=-2, x=1, x=3 und x=5.

(a)
$$f(x) = 0.5 \cdot (x-2)^2 + 2$$
 (b) $f(x) = 2 \cdot (x-2)(x+4)$ (c) $f(x) = -x^2 + 8x - 16$ (d) $f(x) = -2 \cdot (x+4)^2 + 1$ (e) $f(x) = x^2 + 4$ (f) $\frac{2}{5} \cdot (x+3)(x-4)$

Teil 4: Geben Sie zu jeder der Funktionen aus **Teil 1** und **Teil 3** jeweils den Streckungs- bzw. Stauchungsfaktor an.

Erläutern Sie jeweils, welche Aussage Sie mit ihm über den Graphen der Funktion machen können.

