2021 年度 オートマトンと言語理論 期末試験問題

1. 以下の状態遷移図で与えられる Σ ={0,1}の上の有限オートマトン M_1 \sim M_1 に対する以下の(1-1) \sim (1-6) に答えよ. (28 点)

- (1-1) 以下の(a)~(e)について,正しい記号を全て答えよ.
 - (a) M₁と M₂は等価である, (b) M₂は完全決定性有限オートマトンである. (c) M₃は空記号列を受理する,
 - (d)M1は空動作を持つ,(e) M4は記号列 101010001000101010101010100001010001010 を受理する
- (1-2) 3つの有限オートマトン M_1 , M_2 , M_4 に共通して受理される長さ5の記号列の例を2つ答えよ $\begin{pmatrix} 0 & 11000 & 11000 & 11000 & 11000 & 11000 & 11000 & 11000 & 11000 & 11000 & 11000$
- (1-3) Maを最簡形の完全決定性有限オートマトンに変換し、その状態遷移図を示せ.
- (1-4) M を最簡形の完全決定性有限オートマトンに変換し、その状態遷移図を示せ.
- (1-5) L(M₃)の補集合を認識する最簡形の完全決定性有限オートマトンの状態遷移図を示せ.
- (1-6) L(M₄)-L(M₃)を認識する最簡形の完全決定性有限オートマトンの状態遷移図を示せ. 1/M+) O ((M3)
- 2. ∑={0,1}とする.以下の(2-1)~(2-8)について,正しい場合は○を,正しくない場合は×を記入せよ. ただし、 $|x|_a$ は記号列 $x \in \Sigma^*$ に含まれる記号 $a \in \Sigma$ の個数を表す. (24 点)
- \checkmark (2-1) Σ の上の言語{ $xx \mid x \in \Sigma^*$ }は正規言語である.
- \bigvee (2-2) Σ の上の言語{ $xxw \mid x \in \Sigma^*$, $w \in \Sigma^*$ }は正規言語である.
- $_{\circ}$ (2-3) Σ の上の言語{ $x \mid x \in \Sigma^*$, $|x|_{\circ} |x|_{\iota}$ が 3 の倍数 }は正規言語である.
- χ (2-4) Σ の上の言語{ $x \mid x \in \Sigma^*$, $|x|_0 |x|_1 \leq 3$ }は正規言語である.
- (2-5) Σの上の言語{0ⁿ1ⁿ | 1≤n<m≤999}は正規言語である.</p>
- χ (2-6) Σ の上の言語 L を生成する文脈自由文法が存在するならば L は正規言語である.
- o(2-7) Σ の上の m 個の言語 L_1, L_2, \dots, L_m に対し、 $L_1 \cap L_2 \cap \dots \cap L_m$ が正規言語でないならば、 L₁, L₂, …, L_nの中の少なくとも一つは正規言語ではない.
- χ (2-8) Σ の上の 2 つの言語 L_1 , L_2 の連接 L_1L_2 が正規言語ならば、 L_1 と L_2 は共に正規言語である.
- 3. $\Sigma = \{a,b\}$ 上の言語 L_1,L_2 について以下の(3-1),(3-2)に答えよ. ただし, m,nは自然数(0 を含む)とす る. (20点)
- (3-1) 言語 $L_1 = \{a^n b^m | n \ge 1, m \ge 0\}$ を認識する最簡形の完全決定性有限オートマトンの状態遷移図 を示せ.

- 4. 以下の形式文法 G_1 , G_2 , G_3 に関して, $(4-1) \sim (4-4)$ に答えよ. (なお, 文法それぞれの非終端記号は、同じ文字であっても他の文法の文字とは異なるものを表す.) (28 点)
 - (1) $G_1 = (\{S, A\}, \{a, b\}, \{S_i \rightarrow A, A \rightarrow AA, A \rightarrow AaAb, A \rightarrow aAbA, A \rightarrow \varepsilon\}, S),$
 - $(2) \qquad G_2 = (\{S,A,B\}, \ \{a,b\}, \{S_3 \rightarrow AB,S \rightarrow BA,S \rightarrow SS,A \rightarrow a,B \rightarrow b\}, \ S),$
 - $(3) \qquad G_3 = (\{S,A,B\}, \{a,b,c\}, \{S_3 \rightarrow aS,S \rightarrow bA,S \rightarrow bB,A \rightarrow \varepsilon,A \rightarrow cA,B \rightarrow bA\}, S)$
 - (4-1) 上記の形式文法 $(1)G_1$, $(2)G_2$, $(3)G_3$ それぞれについて,以下の説明 (a) \sim (d) のうち正しい,もしくは,成り立つものをすべて選び,記号で答えよ. (i) (c) (d) (2) (c) (3) (3) (3) (3)
 - (a) チョムスキー標準形である. エリスス・ひには
- (b) 生成する言語を認識する有限オートマトンが存在する.
- (c) 生成する言語を認識する有限オートマトンは存在しないが、生成する言語を認識する<u>プッシュダウンオートマトン</u>が存在する. → 文介作的の文SE
- (d) 既約ではない(空記号列生成規則,単位生成規則,無効記号のいずれかもしくは複数を持つ).
- (4-2) 以下の語 (記号列) すべてを生成できる (言語に含む) 文法を(1)~(3)からすべて選び番号で答えよ.

ab, ba, abab, baab

(4-3) 以下の語 (記号列) (a) \sim (d) から, $L(G_3)$ に含まれるものをすべて選べ.

(4-4) 形式文法 (1) G_1 , (2) G_2 , (3) G_3 の三つは、すべてチョムスキー標準形に変換できるか、すべて変換できる場合は「はい」を、変換できないものがあればその文法の番号を(1) \sim (3)からすべて選び番号で答えよ.

