Calculus with Exercises A — Report 01

DO LE DUY (ID:) June 13, 2020

Problem 1.1

• Let y be any solution of the equation a + x = b. Then,

$$a+y=b$$
 $-a+a+y=-a+b$ by (A4): Existence of negative $(-a+a)+y=-a+b$ by (A2): Associative law $0+y=b+(-a)$ by (A1): Commutative law $y=b+(-a)$ by (A3): Existence of 0

• Because the applications of axioms here go both ways, in this proof of **Uniqueness**, we have proved that $a + x = b \iff x = b + (-a)$. As the proof of **Existence** is equivalent to the proof of $(x = b + (-a) \Rightarrow a + x = b)$, we have demonstrated both the **Uniqueness** and **Existence** characteristic of the solution to the equation a + x = b.

Problem 1.2

• The following definition will be used.

Bounded Set: Let E be a set of real numbers. A number M is said to be an upper bound for E if $x \leq M$ for all $x \in E$. A number m is said to be an lower bound for E if $m \leq x$ for all $x \in E$. A set that has an upper bound and a lower bound is called bounded.

• Prove: $\exists r > 0 : |x| < r \ \forall x \in E \Rightarrow \mathbf{E}$ is bounded. (1)

$$\exists r > 0 : |x| < r \ \forall x \in E$$

$$\Rightarrow \exists r > 0 : -r < x < r \ \forall x \in E$$

$$\Rightarrow \text{-r and r are a lower bound and a upper bound of E}$$

$$\Rightarrow \mathbf{E} \text{ is bounded}$$

• Prove: **E** is bounded $\Rightarrow \exists r > 0 : |x| < r \ \forall x \in E.$ (2)

E is bounded $\Rightarrow \exists a, b : a < x < b \ \forall x \in E$. We will now prove (2) with case analysis:

- If
$$a < -b \Rightarrow a < x < -a \ \forall x \in E \Rightarrow \exists r = |a| : |x| < r \ \forall x \in E$$
.
- If $a > -b \Rightarrow -b < x < b \ \forall x \in E \Rightarrow \exists r = |b| : |x| < r \ \forall x \in E$.
- If $a = -b \Rightarrow \exists r = |b| = |a| : |x| < r \ \forall x \in E$.

• (1) and (2): **E** is bounded $\iff \exists r > 0 : |x| < r \ \forall x \in E.$

Problem 1.3

The following definition will be used.

- Supremum and Infimum: Let E be a nonempty set of real numbers that is bounded above. If M is the least of all the upper bounds, then M is said to be the least upper bound of E or the supremum of E, denoted by $M = \sup E$. Similarly, let E be a nonempty set of real numbers that is bounded below. If m is the greatest of all the lower bounds, then m is said to be the greatest lower bound of E or the infimum of E, denoted by $m = \inf E$.
- **3.1**) Collocation of Supremum: Let A be a set of real numbers. Show that a real number x is the supremum of A if and only if $a \le x$ for all $a \in A$ and for every positive number ε there is an element $a' \in A$ such that $x \varepsilon < a'$.

Proof:

- Prove the forward of the collocation using contradiction:
 - Assume that x is the least upper bound of A. If exists a positive ϵ such that $x \epsilon > a'$ for all $a' \in A$, $(x \epsilon)$ will also be an upper bound of A and $(x \epsilon) < x$. This contradicts with our assumption that x is the least upper bound.
- Prove the backward of the collocation using contradiction:
 - Assume that x is an upper bound of A and for every positive number ε there is an element $a' \in A$ such that $x \varepsilon < a'$. If $x' \neq x$ is the least upper bound then x' < x and there exists positive $\varepsilon < (x x')$ such that $x \varepsilon > a'$ for all $a' \in A$. This contradicts with our assumption that for every positive number ε there is an element $a' \in A$ such that $x \varepsilon < a'$.
- **3.2**) Collocation of Infimum: Let A be a set of real numbers. Show that a real number x is the infimum of A if and only if $a \ge x$ for all $a \in A$ and for every positive number ε there is an element $a' \in A$ such that $x + \varepsilon > a'$

Problem 1.4

4.1) $E = \{ \sqrt[n]{n} : n \in \mathbb{N} \}$

The least upper bound is $\sqrt[3]{3}$ as it satisfies two conditions in the collocation about supremum of a set (Problem 1.3):

- $e \leq \sqrt[3]{3}$ for all $e \in E$
- for any $\varepsilon > 0$ there exists $e' = \sqrt[3]{3} \in E$ such that $e' > \sqrt[3]{3} \varepsilon$

Similarly, the greatest lower bound is 1. The maximum is $\sqrt[3]{3}$ and minimum is 1.

4.2) $E = \{ p \in \mathbb{Q} : p^2 \le 7 \}$

The least upper bound is $\sqrt{7}$ as it satisfies two conditions of the collocation of the supremum of a set E (Problem 1.3):

- $e < \sqrt{7}$ for all $e \in E$
- for any $\varepsilon > 0$ there exists $e' \in E$ such that $e' > \sqrt{7} \varepsilon$

Similarly, the greatest lower bound is $-\sqrt{7}$. The maximum is $\sqrt{7}$ and minimum is $-\sqrt{7}$.

4.3) $E = \{n^{(-1)^n} : n \in \mathbb{N}\}$

The set is unbounded above so sup $E=\infty$ and bounded below with inf E=0. There is no maximum and minimum.