Linear Complementarity Problems and their Sources

The Linear Complementarity Problem (LCP) $(q,\,M)$ is defined as follows:

Given a real $n\times n$ matrix M and an $n\text{-vector }q\text{, find }z\in R^n$ such that

$$z \ge 0,$$
 $q + Mz \ge 0,$ $z^{T}(q + Mz) = 0.$

Define the mapping F(z) := q + Mz.

Then F is an affine transformation from \mathbb{R}^n into itself.

Some notation

Given the LCP $\left(q,M\right)$ we write

$$FEA(q, M) = \{z : q + Mz \ge 0, z \ge 0\}$$

and

$$SOL(q, M) = \{z : q + Mz \ge 0, z \ge 0, z^{T}(q + Mz) = 0.\}$$

These are the feasible set (region) and solution set of the LCP (q,M), respectively.

Note that if $FEA(q, M) \neq \emptyset$, it is a closed polyhedral set.

How do such problems arise?

Optimality criterion for Linear Programming (LP)

Consider the LP

$$\begin{array}{ll} \text{minimize} & c^{\mathrm{T}}\!x\\ \text{(P)} & \text{subject to} & Ax \geq b\\ & x \geq 0. \end{array}$$

According to the theory of linear programming, a vector \bar{x} is optimal for (P) if and only if it is feasible and there exists a vector \bar{y} such that

$$\bar{y}^{T}A \le c^{T}$$
, $\bar{y} \ge 0$, $\bar{y}^{T}(A\bar{x} - b) = 0$, $(\bar{y}^{T}A - c^{T})\bar{x} = 0$.

Now arrange these conditions as follows:

$$u = c + - A^{T}y \ge 0$$

 $v = -b + Ax \ge 0$
 $x \ge 0, \quad y \ge 0$
 $x^{T}u = 0, \quad y^{T}v = 0.$

Next define

$$w = \begin{bmatrix} u \\ v \end{bmatrix}, \quad q = \begin{bmatrix} c \\ -b \end{bmatrix}, \quad M = \begin{bmatrix} 0 & -A^{\mathrm{T}} \\ A & 0 \end{bmatrix}, \quad z = \begin{bmatrix} x \\ y \end{bmatrix}.$$

The optimality conditions of the LP then become the LCP (q,M).

Optimality conditions for Quadratic Programming (QP)

Consider the QP

(P) minimize
$$c^{T}x + \frac{1}{2}x^{T}Qx$$

subject to $Ax \ge b$
 $x \ge 0$.

According to the Karush-Kuhn-Tucker (KKT) Theorem, if the vector \bar{x} is a local minimizer for (P), there exists a vector \bar{y} such that

$$c + Q\bar{x} - A^{\mathsf{T}}\bar{y} \geq 0, \quad \bar{y} \geq 0, \quad \bar{y}^{\mathsf{T}}\!(A\bar{x} - b) = 0, \quad \bar{x}^{\mathsf{T}}\!(c + Q\bar{x} - A^{\mathsf{T}}\bar{y}) = 0.$$

If we assemble these conditions along with the feasibility of the vector x, we obtain the LCP $(q,\,M)$ where

$$w = \begin{bmatrix} u \\ v \end{bmatrix}, \quad q = \begin{bmatrix} c \\ -b \end{bmatrix}, \quad M = \begin{bmatrix} Q & -A^{\mathrm{T}} \\ A & 0 \end{bmatrix}, \quad z = \begin{bmatrix} x \\ y \end{bmatrix}.$$

Remark. The above necessary conditions of optimality for QP are also sufficient for (global) optimality when Q is positive semi-definite.

Note that if Q is positive semi-definite, then so is

$$M = \begin{bmatrix} Q & -A^{\mathrm{T}} \\ A & 0 \end{bmatrix}.$$

Bimatrix Games as LCPs

The initial set up

Let A and B denote two $m \times n$ matrices.

These are "payoff matrices" for Players I and II, respectively.

Let
$$\sigma_m = \{x \in R^m_+ : e^T x = 1\}$$
 and $\sigma_n = \{y \in R^n_+ : e^T y = 1\}.$

If $x \in \sigma_m$ and $y \in \sigma_n$, the *expected losses* of Players I and II are, respectively:

$$x^{\mathrm{T}}\!Ay$$
 and $x^{\mathrm{T}}\!By$.

Let $\Gamma(A,B)$ denote the corresponding two person game.

Nash Equilibrium Point of $\Gamma(A, B)$

The pair $(x^*,y^*)\in\sigma_m\times\sigma_n$ is a Nash Equilibrium Point (NEP) for $\Gamma(A,B)$ if

$$\begin{array}{lll} (x^*)^{\mathrm{T}}\!Ay^* & \leq & x^{\mathrm{T}}\!Ay^* & \text{ for all } x \in \sigma_m \\ (x^*)^{\mathrm{T}}\!By^* & \leq & (x^*)^{\mathrm{T}}\!By & \text{ for all } y \in \sigma_n \end{array}$$

It is crucial to note that given $(x^*, y^*) \in \sigma_m \times \sigma_n$, each of the vectors x^*, y^* is optimal in a simple linear program defined in terms of the other. The LP's are:

$$\label{eq:minimize} \mbox{minimize } (Ay^*)^{\rm T}\!x \quad \mbox{subject to} \quad e^{\rm T}\!x = 1, \ x \geq 0$$

and

$$\label{eq:minimize} \ (B^{\mathrm{T}}\!x^*)^{\mathrm{T}}\!y \quad \text{subject to} \quad e^{\mathrm{T}}\!y = 1, \ y \geq 0$$

Let E be the $m \times n$ matrix whose entries are all 1. For a suitable scalar $\theta>0$, all the entries of the matrices $A+\theta E$ and $B+\theta E$ are positive.

It is easy to see that $\Gamma(A,B)$ and $\Gamma(A+\theta E,B+\theta E)$ have the same equilibrium points (if any).

Thus, it is not restrictive to assume that A and B are (elementwise) positive matrices.

Now consider the LCP

$$u = -e_m + Ay \ge 0, \quad x \ge 0, \quad x^{\mathrm{T}}u = 0$$

 $v = -e_n + B^{\mathrm{T}}x \ge 0, \quad y \ge 0, \quad y^{\mathrm{T}}v = 0$

In this case, we have

$$w = \begin{bmatrix} u \\ v \end{bmatrix}, \quad q = \begin{bmatrix} -e_m \\ -e_n \end{bmatrix}, \quad M = \begin{bmatrix} 0 & A \\ B^{\mathrm{T}} & 0 \end{bmatrix}, \quad z = \begin{bmatrix} x \\ y \end{bmatrix},$$

where

$$e_m = (1, \dots, 1) \in \mathbb{R}^m$$
 $e_n = (1, \dots, 1) \in \mathbb{R}^n$.

We wish to show that

to every solution of this LCP, there corresponds a Nash equilibrium point of $\Gamma(A,B)$ —and vice versa.

The correspondences are as follows:

 \bullet If (x^*,y^*) is a Nash equilibrium of $\Gamma(A,B)\text{, then}$

$$(x', y') = (x^*/(x^*)^T B y^*, y^*/(x^*)^T A y^*)$$

solves the LCP $\left(q,M\right)$ given above.

 \bullet If (x^{\prime},y^{\prime}) solves the LCP (above), then

$$(x^*, y^*) = (x'/e_m^{\mathrm{T}} x', y'/e_n^{\mathrm{T}} y')$$

is a Nash equilibrium point for $\Gamma(A,B)$.

A Market Equilibrium Problem

Here we seek to determine prices at which there is a balance between supplies and demands.

The supply side

$$\begin{array}{ll} \text{minimize} & c^{\text{T}}\!x\\ \text{subject to} & Ax \geq b\\ & Bx \geq r^*\\ & x \geq 0 \end{array}$$

The demand side

$$r* = Q(p^*) = Dp^* + d$$

Equilibration

$$p^* = \pi^*$$

Formulation as an Equilibrium Problem

$$y^* = c - A^{\mathsf{T}}v^* - B^{\mathsf{T}}\pi^* \ge 0, \quad x^{\mathsf{T}} \ge 0, \quad (x^*)^{\mathsf{T}}y^* = 0$$

$$u^* = -b + Ax^* \ge 0, \qquad v^* \ge 0, \quad (v^*)^{\mathsf{T}}u^* = 0$$

$$\delta^* = -r^* + Bx^* \ge 0, \qquad \pi^* \ge 0, \quad (\pi^*)^{\mathsf{T}}\delta^* = 0$$

Substitute $Dp^* + d$ for r^* and π^* for p^* .

Then we get the LCP (q, M) with

$$q = \begin{bmatrix} c \\ -b \\ -d \end{bmatrix} \qquad M = \begin{bmatrix} 0 & -A^{\mathrm{T}} & -B^{\mathrm{T}} \\ A & 0 & 0 \\ B & 0 & -D \end{bmatrix} \quad \text{and} \quad z = \begin{bmatrix} x^* \\ v^* \\ \pi^* \end{bmatrix}$$

What sort of matrix is D? Having it be negative (semi)definite and symmetric would be nice.

Convex Hulls in the Plane

Given $\{(x_i, y_i)\}_{i=0}^{n+1} \subset R^2$ find the *extreme points* and the *facets* of their convex hull and the order in which they appear.

First find the *lower envelope* of the convex hull.

If $x_i = x_j$ and $y_i \leq y_j$, we can ignore (x_j, y_j) without changing the lower envelope.

Thus, assume $x_0 < x_1 < \cdots < x_n < x_{n+1}$. In practice, this would require *sorting*.

The lower envelope is a piecewise linear convex function f(x), the pointwise maximum of all convex functions g(x) such that $g(x_i) \leq y_i$ for $i = 0, 1, \ldots, n+1$.

• •

Define $t_i = f(x_i)$ and let $z_i = y_i - t_i$, for $i = 0, 1, \dots, n + 1$.

Note that $z_0 = z_{n+1} = 0$.

If (x_i, y_i) is a breakpoint, then $t_i = y_i$ and $z_i = 0$.

The segment of the lower envelope between (x_{i-1}, t_{i-1}) and (x_i, t_i) has a different slope than the segment between (x_i, t_i) and (x_{i+1}, t_{i+1}) .

Since f(x) is convex, the former (left-hand) segment must have a smaller slope than the latter (right-hand) segment.

Hence strict inequality holds in

$$\frac{t_i - t_{i-1}}{x_i - x_{i-1}} \le \frac{t_{i+1} - t_i}{x_{i+1} - x_i}.$$

If $z_i > 0$, then (x_i, y_i) cannot be a breakpoint of f(x).

In that case, equality holds in the inequality above.

The vector $z=\{z_i\}_{i=1}^n$ must solve the LCP (q,M) where $q\in R^n$ and $M\in R^{n\times n}$ are defined by

$$q_i = \beta_i - \beta_{i-1} \qquad \text{and} \qquad m_{ij} = \begin{cases} \alpha_{i-1} + \alpha_i & \text{if } j = i, \\ -\alpha_i & \text{if } j = i+1, \\ -\alpha_j & \text{if } j = i-1, \\ 0 & \text{otherwise,} \end{cases}$$

and where

$$\alpha_i = 1/(x_{i+1} - x_i)$$
 and $\beta_i = \alpha_i(y_{i+1} - y_i)$ for $i = 0, \dots, n$.

This LCP has a unique solution.

The matrix M associated with this LCP has several nice properties which can be exploited to produce very efficient solution procedures.