OPENSTACK Y PROXMOX

José Domingo Muñoz Rodríguez

© 0 O

IES GONZALO NAZARENO

ABRIL 2022

PRESENTACIÓN

- José Domingo Muñoz Rodríguez
- Doy clases en el IES Gonzalo Nazareno (Dos Hermanas)
- Correo: josedom24@josedomingo.org
- Web: www.josedomingo.org
- Twitter: pledin_jd

•

Introducción a OpenStack

CONCEPTOS PREVIOS. HORIZON.

- **Horizon**: Aplicación web escrita en python/django para la gestión de OpenStack.
- Acceso mediante usuario/contraseña.
- El **Dominio** nos permite escoger los usuarios del LDAP.
- Podemos realizar muchas operaciones:
 - ► Gestionar instancias
 - ► Gestiona claves ssh
 - ► Gestionar volúmenes
 - Gestionar redes
 - ► Gestionar el cortafuego de la instancia
 - ► Gestionar la IP flotantes para acceder a las instancias
 - ▶ ..
- Otras operaciones es necesario el uso del CLI (cliente de terminal): openstack-client.

:

CONCEPTOS PREVIOS. INSTANCIAS

- Imagen: Imagen de sistema preconfigurado que se utiliza como base para crear instancias. Get images. Normalmente ficheros qcow2 o img. El componente que gestiona las imágenes es Glance.
- Instancia: Clon de una imagen que se crea a demanda del usuario en uno de los nodos de computación del cloud.
- Las instancias son gestionadas por el componente **Nova** de Openstack.

¿Cómo accedemos a las instancias?

- Se puede usar distintos protocolos (ssh,RDP,...).
- Par de claves ssh: Utilizadas para acceder por ssh a las instancias desde fuera del cloud.

N

CONCEPTOS PREVIOS. CONFIGURACIÓN DE LA INSTANCIA

- Al crear una instancia se elige el Sabor: Que nos determina el nº de vCPU, RAM y HD de la máquina.
- Al crear una instancia desde una imagen se ejecuta Cloud-init que es el programa encargado de configurar la máquina.

¿Qué se configura?

- El hostname de la máquina.
- Se inyecta la clave pública para que podamos acceder por ssh.
- Se configura la red.
- Se puede configurar las contraseñas de los usuarios.
- **...**

N

CONCEPTOS PREVIOS. REDES.

Las instancias se crean conectas a redes privada definidas por el usuario.

- La instancia toma por DHCP una **IP fija** en el direccionamiento de la red interna.
- Para acceder desde el exterior asignamos a la instancia una **IP flotante** en el direccionamiento de la red externa.
- La **IP flotante** se configura como una regla DNAT en el router que une la red interna con la externa.
- Cada interface de red tiene un cortafuego que controlamos con el Grupo de Seguridad donde podemos abrir distintos puertos y protocolos.
- Las redes son gestionadas por el componente **Neutron** de Openstack.

DEMO 1: CREACIÓN Y GESTIÓN DE UNA INSTANCIA

CONCEPTOS PREVIOS. VOLÚMENES.

- La instancia que hemos creado en la DEMO 1 pierde toda la información cuando la eliminamos.
- Si queremos trabajar con información persistente necesitamos usar los **Volumenes**.
- Los volúmenes son gestionados por el componente **Cinder** de Openstack.
- Varias funcionalidades:
 - Creación de volúmenes que podemos conectar a una instancia para guardar información.
 - Creación de instancias sobre volúmenes. Si eliminamos la instancia la información no se pierde.
 - ▶ ...

,

DEMO 2: CREACIÓN DE UNA INSTANCIA SOBRE UN VOLUMEN. TRABAJO CON VOLÚMENES.

Introducción a Proxmox

CONCEPTOS PREVIOS

- Proxmox nos permite gestionar de forma sencilla la virtualización de máquinas virtuales y LXC.
- Podemos gestionar el almacenamiento (volúmenes) con los que trabaja cada MV.
- Podemos crear distintos linux bridge para conectar las MV en redes internas.

Definiciones

- **Plantillas**: Podemos convertir una MV en una plantilla desde la que crearemos nuevas MV mediante un proceso de clonación.
- Clonación: Tenemos dos tipos:
 - ► **Completa**: Se crea una nuevo medio de almacenamiento para la nueva MV copiando el original.
 - ► **Ligera**: Se crea el almacenamiento de la nueva máquina con <u>aprovisionamiento</u> ligero.
- Pool de recursos: Nos permite agrupar MV, LXC y almacenamiento. No se puede agrupar las redes.

N

¿Qué queríamos conseguir?

- Queremos crear usuario en proxmox que controlen sus recursos (MV, LXC, almacenamiento).
- Una limitación es que las redes no la pueden controlar los usuarios.
- Aunque siempre un usuario puede crear una MV desde una ISO, queremos que los usuarios creen de forma rápida nuevas MV. Para ello podrán clonar plantillas que ya tenemos predefinidas.

¿Cómo podemos conseguir qué cada usuario controle sus recursos?

■ **Permisos**: Nos permite asignar a un recurso y a un usuario un conjunto de permisos (rol). De esta manera podemos controlar las operaciones que puede hacer un usuario sobre un recurso.

¿CÓMO PODEMOS CONSEGUIRLO?

- Los usuarios se pueden agrupar en **Grupos**. Por ejemplo, podemos crear grupos por cursos (<u>asir1</u>) o simplemente creamos un grupo <u>alumnos</u>.
- Vamos a crear distintos **Pools de recursos**:
 - ► Un pool que se asigna a cada usuario. Nosotros lo hemos llamado <u>Proyecto de usuario</u>. Cada usuario creará sus recursos en su pool.
 - ► Un pool que hemos llamado <u>Imágenes</u>, donde vamos a guardar las plantillas que los usuarios pueden clonar.
- Vamos a crear dos nuevos <u>roles</u> (conjunto de permisos): **rol_proyecto**: rol para asignar a los pools de los usuarios, y **rol_imágenes**: rol para asignar al pool <u>Imágenes</u>.

CREANDO LOS NUEVOS ROLES

■ Rol rol_proyecto:

Datastore AllocateSpace Datastore Audit Permissions Modify Pool Audit Sys. Audit Sys. Console Sys. Modify Sys. Syslog VM. Allocate VM. Audit VM. Backup VM. Config. CDROM VM. CDROM VM.

■ Rol rol_imágenes:

Pool.Audit VM.Audit VM.Clone

ASIGNACIÓN DE PERMISOS

- A cada <u>Pool</u> de cada usuario le asignamos el rol **rol_proyecto**.
- Al grupo Imágenes le asignamos el rol rol_imágenes.
- En nuestro caso los roles se llaman iesgn y iesgn-template-clone.

Path ↑	User/Group/API Token	Role
1	admin@pve	Administrator
/pool/Imagenes	@profesores-ldap	iesgn-template-clone
/pool/Imagenes	@asir1-ldap	iesgn-template-clone
/pool/Imagenes	@asir2-ldap	iesgn-template-clone
/pool/Proyecto_	@ldap	iesgn

DEMO 1: CLONACIÓN DE MV DE UN USUARIO

CLOUD-INIT

- Los <u>Templates</u> que hemos creado en el grupo <u>Imágenes</u> son máquinas virtuales con el programa cloud-init instalado.
- Por lo tanto podemos configurar la MV al iniciarla:
 - ► hostname de la máquina
 - usuario y contraseña de la máquina
 - ► Clave pública ssh para el acceso a la máquina
 - Configuración de red
 - ► DNS

CLOUD-INIT

■ En el apartado **Hardware** del <u>Template</u> hemos añadido un componente llamado **Cloud-init**, donde podemos indicar los parámetros de configuración.

DEMO 2: CONFIGURACIÓN DE UNA MV CON CLOUD-INIT

