Aula 03 – Descritores/Extração de Características

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Tópicos

- Discussão Inicial
- Descritores
 - Bordas
 - Formas
 - Texturas
- Classificação

Visão Computacional (Workflow)

PATTERN RECOGNITION SYSTEM

Extração de Características

- Descritor de característica converte um dado de alta dimensão em um espaço de característica
- Um vetor de característica representa o dado
- Então, um modelo computacional aprende a representação

- Dada uma imagem representada pelas suas dimensões, então uma imagem que pertence a classe X é representada por:
 - f(I,X) = [I.width,I.heigth,X]

A característica é representativa?

Visão Computacional - Prof. André Hochuli

Aula 03

A característica é representativa?

Visão Computacional - Prof. André Hochuli

A característica é representativa?

Visão Computacional - Prof. André Hochuli

Aula 03

A característica é representativa?

Visão Computacional - Prof. André Hochuli

- Como produzir um espaço de características discriminativo?
- As características devem ser singulares para uma boa generalização do problema

- Baseados em Gradiente
 - Projeção

Convolucionais (Filtros)

Sobel

Visão Computacional - Prof. André Hochuli

Aula 03

Sobel

-1	0	+1	+1	+2	+1
-2	0	+2	0	0	0
-1	0	+1	-1	-2	-1
Gx			Gy		

Laplace

$$\left[egin{matrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \ \end{bmatrix}
ight.$$

- Canny (John F. Canny 1986)
 - Gaussian Based

$$\mathbf{B} = \frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix} * \mathbf{A}.$$

- Moments
 - Determinam informações espaciais e de intensidade (forma)
 - Média ponderada de todas as intensidades de pixell (x,y)
 - Potências, p e q, são os pesos das dimensões horizontal e vertical

$$M_{pq} = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} x^p y^q I(x,y)^{-1}$$

- HuMoments (Hu 1962)
 - 7 Momentos Invariantes a Translação e Scala

$$\begin{split} h_1 &= \eta_{20} + \eta_{02} \\ h_2 &= (\eta_{20} - \eta_{02})^2 + 4(\eta_{11})^2 \\ h_3 &= (\eta_{30} - 3\eta_{12})^2 + 3(\eta_{03} - 3\eta_{21})^2 \\ h_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{03} + \eta_{21})^2 \\ h_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{03} + \eta_{21})^2] + (3\eta_{21} - \eta_{03})(\eta_{03} + \eta_{21})[3(\eta_{30} + \eta_{12})^2 - (\eta_{03} + \eta_{21})^2] \\ h_6 &= (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - 7(\eta_{03} + \eta_{21})^2] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{03} + \eta_{21}) \\ h_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{03} + \eta_{21})^2] + (\eta_{30} - 3\eta_{12})(\eta_{03} + \eta_{21})[3(\eta_{30} + \eta_{12})^2 - (\eta_{03} + \eta_{21})^2] \end{split}$$

- HoG Histogram of Oriented Gradients
 - Calcula o gradiente e orientação das arestas
 - Utiliza um kernel para calcular os gradientes (ex: 9x1)
 - Histograma Baseado em Patches (8x8, 16x16..)

Descritores de Imagem – Texturas

- Gabor Filters
 - Convolve a imagem usando vários kernels gaussianos (Kernel Bank)

Descritores de Imagem – Texturas

- Local Binary Patterns
 - Convolve a imagem usando um kernel circular
 - O pixel resultante é calculado na vizinhança binária

Codificação

Siga o [LINK]