Package 'contingencytables'

August 29, 2024
Title Statistical Analysis of Contingency Tables
Version 3.0.1
Description Provides functions to perform statistical inference of data organized in contingency tables. This package is a companion to the ``Statistical Analysis of Contingency Tables" book by Fagerland et al. <isbn 9781466588172="">.</isbn>
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
<pre>URL https://contingencytables.com/</pre>
https://ocbe-uio.github.io/contingencytables/
BugReports https://github.com/ocbe-uio/contingencytables/issues
Imports MASS, boot, methods
Suggests testthat
Date 2024-08-28
NeedsCompilation no Author Morten Wang Fagerland [aut], Stian Lydersen [ctb], Petter Laake [ctb], Waldir Leoncio [cre], Ole Christian Lingjærde [trl], Brad J. Biggerstaff [ctb]
Maintainer Waldir Leoncio <w.l.netto@medisin.uio.no></w.l.netto@medisin.uio.no>
Repository CRAN
Date/Publication 2024-08-29 05:50:01 UTC
Contents
.onAttach

Adjusted_log_CI_2x2	
AgrestiCaffo_CI_2x2	
AgrestiCoull_CI_1x2	9
Arcsine_CI_1x2	10
BaptistaPike_exact_conditional_CI_2x2	11
BaptistaPike_midP_CI_2x2	. 12
bentur_2009	
Bhapkar_test_paired_cxc	
Blaker_exact_CI_1x2	
Blaker_exact_test_1x2	
Blaker_midP_CI_1x2	
Blaker_midP_test_1x2	
BonettPrice_hybrid_Wilson_score_CI_CC_paired_2x2	
BonettPrice_hybrid_Wilson_score_CI_paired_2x2	
Bonferroni_type_CIs_paired_cxc	18
Bonferroni_type_CIs_rxc	
Brant_test_2xc	
BreslowDay_homogeneity_test_stratified_2x2	
calculate_limit_lower	
calculate_limit_upper	
calc_prob	
calc_Pvalue_4x2	
calc_Pvalue_5x2	
cavo_2012	
Chacko_test_1xc	
chap1	
chap10	
chap2	
chap3	
chap4	
chap5	
chap6	
chap7	
chap8	
chap9	
ClopperPearson exact CI 1x2	
ClopperPearson_exact_CI_1x2	
ClopperPearson_midP_CI_1x2	
CochranArmitage_CI_rx2	
e – –	
CochranArmitage_exact_cond_midP_tests_rx2	
e – – –	
CochranMantelHaenszel_test_stratified_2x2	
Cochran_Q_test_stratified_2x2	
contingencytables	
contingencytables_result	
Cornfield_exact_conditional_CI_2x2	
Cornfield_midP_CI_2x2	
Cumulative models for 2xc	41

Cumulative_models_for_rxc		
doll_hill_1950		
Exact_binomial_test_1x2		
Exact_cond_midP_linear_rank_tests_2xc		
Exact_cond_midP_tests_rxc		
Exact_cond_midP_unspecific_ordering_rx2		
Exact_multinomial_test_1xc		. 46
Exact_unconditional_test_2x2		
ezra_2010	 	. 48
fischer_1999	 	. 48
FisherFreemanHalton_asymptotic_test_rxc		. 49
Fisher_exact_test_2x2		
Fisher_midP_test_2x2		. 50
FleissEveritt_test_paired_cxc		. 51
FleissLevinPaik_test_paired_cxc		. 51
fleiss_2003		. 52
fontanella_2008		
gamma_coefficient_rxc		. 53
gamma_coefficient_rxc_bca		
Gart_adjusted_logit_CI_2x2		
Gold_Wald_CIs_1xc		
Goodman_Wald_CIs_1xc		
Goodman_Wald_CIs_for_diffs_1xc		
Goodman_Wilson_score_CIs_1xc		
hine_1989		
hypothetical		
Independence_smoothed_logit_CI_2x2		
indredavik_2008		
Inverse Variance_estimate_stratified_2x2		
Inv_sinh_CI_OR_2x2		
Inv_sinh_CI_ratio_2x2		
Jeffreys_CI_1x2		
JonckheereTerpstra_test_rxc		
Katz_log_CI_2x2		
Kendalls_tau_b_rxc		
Kendalls tau b rxc bca		
Koopman_asymptotic_score_CI_2x2		
KruskalWallis_asymptotic_test_rxc		
lampasona 2013		
ligarden_2010		
linear_by_linear_test_rxc		
list_functions		
LR_CI_1x2		
LR test 1x2		
LR test 1xc		
LR_test_2x2		
lydersen_2012a		
MantelHaenszel estimate stratified 2x2		
minimum in the continuity of a contract the contract of the co		

MantelHaenszel_test_2xc	. 72
McNemarBowker_test_paired_cxc	. 72
McNemar_asymptotic_test_CC_paired_2x2	. 73
McNemar_asymptotic_test_paired_2x2	. 74
McNemar_exact_cond_test_paired_2x2	. 74
McNemar_exact_unconditional_test_paired_2x2	
McNemar_midP_test_paired_2x2	
Mee_asymptotic_score_CI_2x2	
MidP_binomial_test_1x2	
MidP_multinomial_test_1xc	
MiettinenNurminen_asymptotic_score_CI_difference_2x2	
MiettinenNurminen_asymptotic_score_CI_OR_2x2	
MiettinenNurminen_asymptotic_score_CI_ratio_2x2	
mills_graubard_1987	
ML_estimates	
ML_estimates_and_CIs_stratified_2x2	
MOVER_R_Wilson_CI_OR_2x2	
MOVER_R_Wilson_CI_ratio_2x2	
MOVER_Wilson_score_CI_paired_2x2	. 84
Newcombe_hybrid_score_CI_2x2	
Newcombe_square_and_add_CI_paired_2x2	
Pearson_chi_squared_test_1xc	. 86
Pearson_chi_squared_test_2x2	. 87
Pearson_chi_squared_test_CC_2x2	. 88
Pearson_correlation_coefficient_rxc	. 89
Pearson_correlation_coefficient_rxc_bca	
Pearson_LR_homogeneity_test_stratified_2x2	
Pearson_LR_tests_cum_OR_2xc	
Pearson_LR_tests_rxc	
Pearson_LR_tests_unspecific_ordering_rx2	
Pearson_LR_test_common_effect_stratified_2x2	
Pearson_residuals_rxc	
perondi_2004	
peterson_2007	
Peto_homogeneity_test_stratified_2x2	
Peto OR estimate stratified 2x2	
PriceBonett_approximate_Bayes_CI_2x2	
to the state of th	
print.contingencytables_result	
QuesenberryHurst_Wilson_score_CIs_1xc	
RBG_test_and_CI_stratified_2x2	
ritland_2007	
Scheffe_type_CIs_paired_cxc	
Scheffe_type_CIs_rxc	
Score_test_1x2	
Score_test_and_CI_marginal_mean_scores_paired_cxc	
Score_test_CC_1x2	
Score_test_for_effect_in_the_probit_model_2xc	. 104
score test statistic	. 105

singh_2010_1	105
snp6498169	106
Spearman_correlation_coefficient_rxc	106
Spearman_correlation_coefficient_rxc_bca	107
stratified_2x2_tables	108
Stuart test paired exc	108
table_7.3	
table_7.4	
table_7.5	
table_7.6	
table_7.7	
table_7.8	
table_7.9	
Tango_asymptotic_score_CI_paired_2x2	
Tang_asymptotic_score_CI_paired_2x2	
tea	
the_1x2_table_CIs	
the_1x2_table_tests	
the_1xc_table_CIs	117
the_1xc_table_tests	117
the_2x2_table_CIs_difference	118
the_2x2_table_CIs_OR	119
the 2x2 table CIs ratio	119
the_2x2_table_tests	
the_2xc_table	
the_paired_2x2_table_CIs_difference	
the_paired_2x2_table_CIs_OR	
the_paired_2x2_table_CIs_ratio	
the_paired_2x2_table_tests	
_i	
the_paired_cxc_table_nominal	
the_paired_cxc_table_ordinal	
the_rx2_table	
the_rxc_table	
Transformed_Blaker_exact_CI_paired_2x2	
Transformed_Clopper_Pearson_exact_CI_paired_2x2	
Transformed_Clopper_Pearson_midP_CI_paired_2x2	
Transformed_Wilson_score_CI_paired_2x2	129
Trend_estimate_CI_tests_rx2	130
Uncorrected_asymptotic_score_CI_2x2	131
validateArguments	132
Wald CI 1x2	
Wald_CI_2x2	
Wald_CI_AgrestiMin_paired_2x2	
Wald_CI_BonettPrice_paired_2x2	
Wald_CI_CC_1x2	
Wald_CI_CC_2x2	
Wald_CI_diff_CC_paired_2x2	
Wald_CI_diff_paired_2x2	130

Index		150
	Z_unpooled_test_2x2	. 148
	Woolf_test_and_CI_stratified_2x2	
	Woolf_logit_CI_2x2	. 147
	Wilson_score_CI_CC_1x2	. 146
	Wilson_score_CI_1x2	. 145
	Wald_test_CC_1x2	. 144
	Wald_test_and_CI_marginal_mean_scores_paired_cxc	. 144
	Wald_test_and_CI_marginal_mean_ranks_paired_cxc	. 143
	Wald_test_and_CI_common_ratio_stratified_2x2	. 142
	Wald_test_and_CI_common_diff_stratified_2x2	. 141
	Wald_test_1x2	. 140
	Wald_CI_ratio_paired_2x2	. 140
	Wald_CI_OR_paired_2x2	. 139
	Wald_CI_OR_Laplace_paired_2x2	. 138

.onAttach

Prints welcome message on package load

Description

Prints package version number and welcome message on package load

Usage

```
.onAttach(libname, pkgname)
```

Arguments

library location. See ?base::.onAttach for details pkgname package name. See ?base::.onAttach for details

Adjusted_inv_sinh_CI_OR_2x2

The adjusted inverse hyperbolic sine confidence interval for the odds ratio

Description

The adjusted inverse hyperbolic sine confidence interval for the odds ratio.

Described in Chapter 4 "The 2x2 Table"

Usage

```
Adjusted_inv_sinh_CI_OR_2x2(n, psi1 = 0.45, psi2 = 0.25, alpha = 0.05)
```

Arguments

n	the observed counts (a 2x2 matrix)
psi1	pseudo-frequency (should be > 0)
psi2	pseudo-frequency (should be > 0)
alpha	the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Adjusted_inv_sinh_CI_OR_2x2(lampasona_2013)
Adjusted_inv_sinh_CI_OR_2x2(ritland_2007)
```

```
Adjusted_inv_sinh_CI_ratio_2x2
```

The adjusted inverse hyperbolic sine confidence interval for the ratio of probabilities

Description

The adjusted inverse hyperbolic sine confidence interval for the ratio of probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
Adjusted_inv_sinh_CI_ratio_2x2(
    n,
    psi1 = 0,
    psi2 = 0,
    psi3 = 0,
    psi4 = 1,
    alpha = 0.05
)
```

Arguments

n	the observed counts (a 2x2 matrix)
psi1	pseudo-frequency
psi2	pseudo-frequency
psi3	pseudo-frequency
psi4	pseudo-frequency
alpha	the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Adjusted_inv_sinh_CI_ratio_2x2(perondi_2004)
Adjusted_inv_sinh_CI_ratio_2x2(ritland_2007)
```

Adjusted_log_CI_2x2

The adjusted log confidence interval for the ratio of probabilities

Description

The adjusted log confidence interval for the ratio of probabilities

Described in Chapter 4 "The 2x2 Table"

Usage

```
Adjusted_log_CI_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Adjusted_log_CI_2x2(perondi_2004)
Adjusted_log_CI_2x2(ritland_2007)
```

AgrestiCaffo_CI_2x2 9

AgrestiCaffo_CI_2x2 The Agresti-Caffo confidence interval for the difference between probabilities

Description

The Agresti-Caffo confidence interval for the difference between probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
AgrestiCaffo_CI_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
AgrestiCaffo_CI_2x2(perondi_2004)
AgrestiCaffo_CI_2x2(ritland_2007)
```

Description

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
AgrestiCoull_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

10 Arcsine_CI_1x2

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Agresti A, Coull BA (1998) Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician; 52:119-126

See Also

```
Wald_CI_1x2
```

Examples

```
AgrestiCoull_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
AgrestiCoull_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
AgrestiCoull_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], AgrestiCoull_CI_1x2(X, n)) # alternative syntax
AgrestiCoull_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

Arcsine_CI_1x2

Arcsine confidence interval

Description

The Arcsine confidence interval for the binomial probability (with Anscombe variance stabilizing transformation) Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Arcsine_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Anscombe FJ (1948) The transformation of Poisson, binomial and negative binomial data. Biometrika; 35:246-254

Examples

```
Arcsine_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
Arcsine_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
Arcsine_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], Arcsine_CI_1x2(X, n)) # alternative syntax
Arcsine_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

```
BaptistaPike_exact_conditional_CI_2x2
```

The Baptista-Pike exact conditional confidence interval for the odds ratio

Description

The Baptista-Pike exact conditional confidence interval for the odds ratio

Described in Chapter 4 "The 2x2 Table"

Usage

```
BaptistaPike_exact_conditional_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95# CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
BaptistaPike_exact_conditional_CI_2x2(tea)
BaptistaPike_exact_conditional_CI_2x2(perondi_2004)
BaptistaPike_exact_conditional_CI_2x2(lampasona_2013)
BaptistaPike_exact_conditional_CI_2x2(ritland_2007)
```

12 bentur_2009

```
BaptistaPike_midP_CI_2x2
```

The Baptista-Pike mid-P confidence interval for the odds ratio

Description

The Baptista-Pike mid-P confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
BaptistaPike_midP_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
BaptistaPike_midP_CI_2x2(tea)
BaptistaPike_midP_CI_2x2(perondi_2004)
BaptistaPike_midP_CI_2x2(lampasona_2013)
BaptistaPike_midP_CI_2x2(ritland_2007)
```

bentur_2009

Airway hyper-responsiveness before and after stem cell transplantation

Description

Airway hyper-responsiveness before and after stem cell transplantation

Usage

```
bentur_2009
```

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

References

Bentur et al. (2009)

```
Bhapkar_test_paired_cxc
```

The Bhapkar test for marginal homogeneity

Description

The Bhapkar test for marginal homogeneity

Described in Chapter 9 "The Paired exc Table"

Usage

```
Bhapkar_test_paired_cxc(n)
```

Arguments

n the

the observed table (a cxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Bhapkar_test_paired_cxc(peterson_2007)
```

Blaker_exact_CI_1x2

The Blaker exact confidence interval

Description

The Blaker exact confidence interval for the binomial probability Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Blaker_exact_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Blaker H (2000) Confidence curves and improved exact confidence intervals for discrete distributions. The Canadian Journal of Statistics; 28:783-798

Examples

```
Blaker_exact_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
Blaker_exact_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
Blaker_exact_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], Blaker_exact_CI_1x2(X, n)) # alternative syntax
Blaker_exact_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

```
Blaker_exact_test_1x2 The Blaker exact test
```

Description

The Blaker exact test for the binomial probability (pi) H_0 : pi = pi0 vs H_A : pi ~= pi0 (two-sided) Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Blaker_exact_test_1x2(X, n, pi0)
```

Arguments

Χ	the number of successes
n	the total number of observations
pi0	a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Blaker H (2000) Confidence curves and improved exact confidence intervals for discrete distributions. The Canadian Journal of Statistics; 28:783-798

Blaker_midP_CI_1x2

Examples

```
Blaker_exact_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = 0.513)
Blaker_exact_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = 0.513)
Blaker_exact_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = 0.513)
Blaker_exact_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = 0.513)
Blaker_exact_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = 0.5)
```

Blaker_midP_CI_1x2

The Blaker mid-P confidence interval for the binomial probability

Description

The Blaker mid-P confidence interval for the binomial probability Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Blaker_midP_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Blaker H (2000) Confidence curves and improved exact confidence intervals for discrete distributions. The Canadian Journal of Statistics; 28:783-798

Examples

```
Blaker_midP_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
Blaker_midP_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
Blaker_midP_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], Blaker_midP_CI_1x2(X, n)) # alternative syntax
Blaker_midP_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

Description

The Blaker mid-P test for the binomial probability (pi) H_0 : pi = pi0 vs H_A : $pi \sim = pi0$ (two-sided) Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Blaker_midP_test_1x2(X, n, pi0)
```

Arguments

X the number of successes

n the total number of observations
pi0 a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Blaker H (2000) Confidence curves and improved exact confidence intervals for discrete distributions. The Canadian Journal of Statistics; 28:783-798

Examples

```
Blaker_midP_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = 0.513)
Blaker_midP_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = 0.513)
Blaker_midP_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = 0.513)
Blaker_midP_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = 0.513)
Blaker_midP_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = 0.5)
```

```
BonettPrice_hybrid_Wilson_score_CI_CC_paired_2x2
```

The Bonett-Price hybrid Wilson score confidence interval for the ratio of paired probabilities

Description

The Bonett-Price hybrid Wilson score confidence interval for the ratio of paired probabilities with continuity correction

Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
BonettPrice_hybrid_Wilson_score_CI_CC_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
BonettPrice_hybrid_Wilson_score_CI_CC_paired_2x2(bentur_2009)
BonettPrice_hybrid_Wilson_score_CI_CC_paired_2x2(cavo_2012)
```

```
BonettPrice_hybrid_Wilson_score_CI_paired_2x2
```

The Bonett-Price hybrid Wilson score confidence interval for the ratio of paired probabilities

Description

The Bonett-Price hybrid Wilson score confidence interval for the ratio of paired probabilities Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
BonettPrice_hybrid_Wilson_score_CI_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
BonettPrice_hybrid_Wilson_score_CI_paired_2x2(bentur_2009)
BonettPrice_hybrid_Wilson_score_CI_paired_2x2(cavo_2012)
```

```
Bonferroni_type_CIs_paired_cxc
```

Bonferroni-type confidence intervals for differences of marginal probabilities

Description

Bonferroni-type confidence intervals for differences of marginal probabilities Described in Chapter 9 "The Paired kxk Table"

Usage

```
Bonferroni_type_CIs_paired_cxc(n, alpha = 0.05)
```

Arguments

n the observed table (a cxc matrix)

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Bonferroni_type_CIs_paired_cxc(peterson_2007)
```

```
Bonferroni_type_CIs_rxc
```

The Bonferroni-type simultaneous confidence intervals for the differences pi_1\i - pi_1\j

Description

The Bonferroni-type simultaneous confidence intervals for the differences pi_1li - pi_1lj Described in Chapter 7 "The rxc Table"

Usage

```
Bonferroni_type_CIs_rxc(n, alpha = 0.05)
```

Arguments

n the observed counts (an rx2 vector) alpha the nominal level, e.g. 0.05 for 95% CIs

Brant_test_2xc 19

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Bonferroni_type_CIs_rxc(table_7.3)
```

Brant_test_2xc

The Brant test for the proportional odds assumption

Description

The Brant test for the proportional odds assumption

Described in Chapter 6 "The Ordered 2xc Table"

Usage

```
Brant_test_2xc(n)
```

Arguments

n

the observed table (a 2xc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Brant_test_2xc(fontanella_2008)
Brant_test_2xc(lydersen_2012a)
```

20 calculate_limit_lower

```
BreslowDay_homogeneity_test_stratified_2x2
```

The Breslow-Day test of homogeneity of odds ratios over strata

Description

The Breslow-Day test of homogeneity of odds ratios over strata with

Tarone correction

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
BreslowDay_homogeneity_test_stratified_2x2(n)
```

Arguments

n

the observed table (a 2x2xk matrix, where k is the number of strata)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
BreslowDay_homogeneity_test_stratified_2x2(dol1_hill_1950)
BreslowDay_homogeneity_test_stratified_2x2(hine_1989)
```

Description

Calculate the lower limit of a confidence interval

Usage

```
calculate_limit_lower(...)
```

Arguments

... arguments passed to methods

Note

This function has little use to the user, it is exported so that it can be used by stats::uniroot().

calculate_limit_upper 21

calculate_limit_upper Calculate the upper limit of a confidence interval

Description

Calculate the upper limit of a confidence interval

Usage

```
calculate_limit_upper(...)
```

Arguments

... arguments passed to methods

Note

This function has little use to the user, it is exported so that it can be used by stats::uniroot().

calc_prob

Calculate probability

Description

Calculate probability

Usage

```
calc_prob(...)
```

Arguments

... arguments passed to methods

Note

This function has little use to the user, it is exported for confirmity to R package standards.

22 calc_Pvalue_5x2

calc_Pvalue_4x2

Calculate probability

Description

Calculate probability

Usage

```
calc_Pvalue_4x2(...)
```

Arguments

... arguments passed to methods

Note

This function has little use to the user, it is exported for confirmity to R package standards.

calc_Pvalue_5x2

Calculate probability

Description

Calculate probability

Usage

```
calc_Pvalue_5x2(...)
```

Arguments

... arguments passed to methods

Note

This function has little use to the user, it is exported for confirmity to R package standards.

cavo_2012 23

cavo_2012

Complete response before and after consolidation therapy

Description

Complete response before and after consolidation therapy

Usage

cavo_2012

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

References

Cavo et al. (2012)

Chacko_test_1xc

The Chacko test for order-restriction

Description

Described in Chapter 3, "The 1xc Table and the Multinomial Distribution", Chacko (1966) derived a test based on the Pearson chi-square statistic to test the hypothesis that the categories of a multinomial variable with c possible outcomes have a natural ordering. The test statistic is asymptotically chi-squared distributed.

Usage

```
Chacko_test_1xc(n)
```

Arguments

n

the observed counts (a 1xc vector, where c is the number of categories)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

24 chap10

References

Chacko, V. J. (1966). Modified chi-square test for ordered alternatives. Sankhyā: The Indian Journal of Statistics, Series B, 185-190.

Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL.

Examples

Chacko_test_1xc(hypothetical)

chap1

Chapter 1: Introduction

Description

There are no functions for Chapter 1 (Introduction), only from Chapters 2 to 10.

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- · https://contingencytables.com/

chap10

Chapter 10: Stratified 2x2 Tables and Meta-Analysis

Description

These are the functions related to chapter 10:

- 1. BreslowDay_homogeneity_test_stratified_2x2
- 2. CochranMantelHaenszel_test_stratified_2x2
- 3. Cochran_Q_test_stratified_2x2
- 4. InverseVariance_estimate_stratified_2x2
- 5. ML_estimates_and_CIs_stratified_2x2
- 6. MantelHaenszel_estimate_stratified_2x2
- 7. Pearson_LR_homogeneity_test_stratified_2x2
- 8. Pearson_LR_test_common_effect_stratified_2x2
- 9. Peto_homogeneity_test_stratified_2x2
- 10. Peto_OR_estimate_stratified_2x2

chap2 25

- 11. RBG_test_and_CI_stratified_2x2
- 12. Wald_test_and_CI_common_diff_stratified_2x2
- 13. Wald_test_and_CI_common_ratio_stratified_2x2
- 14. Woolf_test_and_CI_stratified_2x2
- 15. stratified_2x2_tables

Note

You can also print the list above with list_functions(10).

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- $\bullet \ https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658$

chap2

Chapter 2: The 1x2 Table and the Binomial Distribution

Description

These are the functions related to chapter 2:

- 1. AgrestiCoull_CI_1x2
- 2. Arcsine_CI_1x2
- 3. Wald_CI_1x2
- 4. Blaker_exact_CI_1x2
- 5. Blaker_exact_test_1x2
- 6. Blaker_midP_CI_1x2
- 7. Blaker_midP_test_1x2
- 8. ClopperPearson_exact_CI_1x2
- 9. ClopperPearson_midP_CI_1x2
- 10. Exact_binomial_test_1x2
- 11. Jeffreys_CI_1x2
- 12. LR_CI_1x2
- 13. LR_test_1x2
- 14. MidP_binomial_test_1x2
- 15. Score_test_1x2
- 16. Score_test_CC_1x2
- 17. Wald_CI_CC_1x2

26 chap3

- 18. Wilson_score_CI_1x2
- 19. Wilson_score_CI_CC_1x2
- 20. the_1x2_table_CIs
- 21. Wald_test_1x2
- 22. Wald_test_CC_1x2
- $23.\ the_1x2_table_tests$

Note

You can also print the list above with list_functions(2).

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

chap3

Chapter 3: The 1xc Table and the Multinomial Distribution

Description

These are the functions related to chapter 3:

- 1. Chacko_test_1xc
- 2. Exact_multinomial_test_1xc
- 3. Gold_Wald_CIs_1xc
- 4. Goodman_Wald_CIs_1xc
- 5. Goodman_Wald_CIs_for_diffs_1xc
- 6. Goodman_Wilson_score_CIs_1xc
- 7. LR_test_1xc
- 8. MidP_multinomial_test_1xc
- 9. Pearson_chi_squared_test_1xc
- 10. QuesenberryHurst_Wilson_score_CIs_1xc
- 11. the_1xc_table_CIs
- 12. the_1xc_table_tests

Note

You can also print the list above with list_functions(3).

chap4 27

References

Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL

- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

chap4

Chapter 4: The 2x2 Table

Description

These are the functions related to chapter 4:

- 1. Adjusted_inv_sinh_CI_OR_2x2
- 2. Adjusted_inv_sinh_CI_ratio_2x2
- 3. Adjusted_log_CI_2x2
- 4. AgrestiCaffo_CI_2x2
- 5. Wald_CI_2x2
- 6. BaptistaPike_exact_conditional_CI_2x2
- 7. BaptistaPike_midP_CI_2x2
- 8. Cornfield_exact_conditional_CI_2x2
- 9. Cornfield_midP_CI_2x2
- 10. Fisher_exact_test_2x2
- 11. Exact_unconditional_test_2x2
- 12. Fisher_midP_test_2x2
- 13. Gart_adjusted_logit_CI_2x2
- 14. Independence_smoothed_logit_CI_2x2
- 15. Inv_sinh_CI_OR_2x2
- 16. Inv_sinh_CI_ratio_2x2
- 17. Katz_log_CI_2x2
- 18. Koopman_asymptotic_score_CI_2x2
- 19. LR_test_2x2
- 20. Mee_asymptotic_score_CI_2x2
- 21. MiettinenNurminen_asymptotic_score_CI_difference_2x2
- 22. MiettinenNurminen_asymptotic_score_CI_OR_2x2
- 23. MiettinenNurminen_asymptotic_score_CI_ratio_2x2
- 24. MOVER_R_Wilson_CI_OR_2x2
- 25. MOVER_R_Wilson_CI_ratio_2x2

28 chap5

- 26. Newcombe_hybrid_score_CI_2x2
- 27. Pearson_chi_squared_test_2x2
- 28. Pearson_chi_squared_test_CC_2x2
- 29. PriceBonett_approximate_Bayes_CI_2x2
- 30. Wald_CI_CC_2x2
- 31. Woolf_logit_CI_2x2
- 32. Uncorrected_asymptotic_score_CI_2x2
- 33. Z_unpooled_test_2x2
- 34. the_2x2_table_CIs_difference
- 35. the_2x2_table_CIs_OR
- 36. the 2x2_table_CIs_ratio
- 37. the_2x2_table_tests

Note

You can also print the list above with list_functions(4).

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

chap5

Chapter 5: The Ordered rx2 Table

Description

These are the functions related to chapter 5:

- 1. CochranArmitage_CI_rx2
- 2. CochranArmitage_exact_cond_midP_tests_rx2
- 3. CochranArmitage_MH_tests_rx2
- 4. Exact_cond_midP_unspecific_ordering_rx2
- 5. Pearson_LR_tests_unspecific_ordering_rx2
- 6. the_rx2_table
- 7. Trend_estimate_CI_tests_rx2

Note

You can also print the list above with list_functions(5).

chap6 29

References

Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL

- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

chap6

Chapter 6: The Ordered 2xc Table

Description

These are the functions related to chapter 6:

- 1. Brant_test_2xc
- 2. Cumulative_models_for_2xc
- 3. Exact_cond_midP_linear_rank_tests_2xc
- 4. ClopperPearson_exact_CI_1x2_beta_version
- 5. Exact_cond_midP_unspecific_ordering_rx2
- 6. MantelHaenszel_test_2xc
- 7. Pearson_LR_tests_cum_OR_2xc
- 8. Score_test_for_effect_in_the_probit_model_2xc
- 9. the_2xc_table

Note

You can also print the list above with list_functions(6).

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

30 chap7

chap7

Chapter 7: The rxc Table

Description

These are the functions related to chapter 7:

- 1. Bonferroni_type_CIs_rxc
- 2. Cumulative_models_for_rxc
- 3. Exact_cond_midP_tests_rxc
- 4. FisherFreemanHalton_asymptotic_test_rxc
- 5. gamma_coefficient_rxc_bca
- 6. gamma_coefficient_rxc
- 7. JonckheereTerpstra_test_rxc
- 8. Kendalls_tau_b_rxc
- 9. Kendalls_tau_b_rxc_bca
- 10. KruskalWallis_asymptotic_test_rxc
- 11. linear_by_linear_test_rxc
- 12. Pearson_correlation_coefficient_rxc
- 13. Pearson_correlation_coefficient_rxc_bca
- 14. Pearson_LR_tests_rxc
- 15. Pearson_residuals_rxc
- 16. Scheffe_type_CIs_rxc
- 17. Spearman_correlation_coefficient_rxc
- 18. Spearman_correlation_coefficient_rxc_bca
- 19. the_rxc_table

Note

You can also print the list above with list_functions(7).

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

chap8 31

chap8

Chapter 8: The Paired 2x2 Table

Description

These are the functions related to chapter 8:

- 1. BonettPrice_hybrid_Wilson_score_CI_CC_paired_2x2
- 2. BonettPrice_hybrid_Wilson_score_CI_paired_2x2
- 3. ClopperPearson_exact_CI_1x2_beta_version
- 4. McNemar_asymptotic_test_CC_paired_2x2
- 5. McNemar_asymptotic_test_paired_2x2
- 6. McNemar_exact_cond_test_paired_2x2
- 7. McNemar_exact_unconditional_test_paired_2x2
- 8. McNemar_midP_test_paired_2x2
- 9. Tang_asymptotic_score_CI_paired_2x2
- 10. Tango_asymptotic_score_CI_paired_2x2
- 11. MOVER_Wilson_score_CI_paired_2x2
- 12. Newcombe_square_and_add_CI_paired_2x2
- 13. Transformed_Blaker_exact_CI_paired_2x2
- 14. Transformed_Clopper_Pearson_exact_CI_paired_2x2
- 15. Transformed_Clopper_Pearson_midP_CI_paired_2x2
- 16. Transformed_Wilson_score_CI_paired_2x2
- 17. Wald_CI_diff_paired_2x2
- 18. Wald_CI_diff_CC_paired_2x2
- 19. Wald_CI_AgrestiMin_paired_2x2
- 20. Wald_CI_BonettPrice_paired_2x2
- 21. Wald_CI_OR_Laplace_paired_2x2
- 22. Wald_CI_OR_paired_2x2
- 23. Wald_CI_ratio_paired_2x2
- 24. the_paired_2x2_table_CIs_difference
- 25. the_paired_2x2_table_CIs_OR
- 26. the_paired_2x2_table_CIs_ratio
- 27. the_paired_2x2_table_tests

Note

You can also print the list above with list_functions(8).

32 chap9

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

chap9

Chapter 9: The Paired cxc Table

Description

These are the functions related to chapter 9:

- 1. Bhapkar_test_paired_cxc
- 2. Bonferroni_type_CIs_paired_cxc
- 3. FleissEveritt_test_paired_cxc
- 4. FleissLevinPaik_test_paired_cxc
- 5. McNemarBowker_test_paired_cxc
- 6. Scheffe_type_CIs_paired_cxc
- 7. Score_test_and_CI_marginal_mean_scores_paired_cxc
- 8. Stuart_test_paired_cxc
- 9. Wald_test_and_CI_marginal_mean_ranks_paired_cxc
- 10. Wald_test_and_CI_marginal_mean_scores_paired_cxc
- 11. the_paired_cxc_table_nominal
- 12. the_paired_cxc_table_ordinal

Note

You can also print the list above with list_functions(9).

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658

```
ClopperPearson_exact_CI_1x2
```

The Clopper-Pearson exact confidence interval

Description

The Clopper-Pearson exact confidence interval for the binomial probability Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
ClopperPearson_exact_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95#' CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
ClopperPearson_exact_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
ClopperPearson_exact_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
ClopperPearson_exact_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], ClopperPearson_exact_CI_1x2(X, n)) # alternative syntax
ClopperPearson_exact_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

```
ClopperPearson_exact_CI_1x2_beta_version
```

The Clopper-Pearson exact confidence interval for the binomial probability (beta version)

Description

The Clopper-Pearson exact confidence interval for the binomial probability (defined via the beta distribution)

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
ClopperPearson_exact_CI_1x2_beta_version(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Brown LD, Cai T, DasGupta A (2001) Interval estimation for a binomial proportion. Statistical Science; 16:101-133

See Also

ClopperPearson_exact_CI_1x2

Examples

```
ClopperPearson_exact_CI_1x2_beta_version(singh_2010["1st", "X"], singh_2010["1st", "n"])
ClopperPearson_exact_CI_1x2_beta_version(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
ClopperPearson_exact_CI_1x2_beta_version(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th",], ClopperPearson_exact_CI_1x2_beta_version(X, n)) # alternative syntax
ClopperPearson_exact_CI_1x2_beta_version(ligarden_2010["X"], ligarden_2010["n"])
```

ClopperPearson_midP_CI_1x2

The Clopper-Pearson mid-P confidence interval

Description

The Clopper-Pearson mid-P confidence interval for the binomial probability Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
ClopperPearson_midP_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
ClopperPearson_midP_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
ClopperPearson_midP_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
ClopperPearson_midP_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], ClopperPearson_midP_CI_1x2(X, n)) # alternative syntax
ClopperPearson_midP_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

```
CochranArmitage_CI_rx2
```

The Cochran-Armitage confidence interval for trend in the linear model

Description

The Cochran-Armitage confidence interval for trend in the linear model Described in Chapter 5 "The Ordered rx2 Table"

Usage

```
CochranArmitage_CI_rx2(n, a = seq_len(nrow(n)), alpha = 0.05)
```

Arguments

```
n the observed counts (an rx2 matrix)
a scores assigned to the rows
alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
CochranArmitage_CI_rx2(mills_graubard_1987, c(1, 2, 3, 4, 5))
CochranArmitage_CI_rx2(indredavik_2008, c(1, 2, 3, 4, 5))
```

```
CochranArmitage_exact_cond_midP_tests_rx2
```

The Cochran-Armitage exact conditional and mid-P tests

Description

The Cochran-Armitage exact conditional and mid-P tests Described in Chapter 5 "The Ordered rx2 Table"

Usage

```
CochranArmitage_exact_cond_midP_tests_rx2(n, a)
```

Arguments

- n the observed counts (an rx2 matrix)
- a scores assigned to the rows

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
## Not run:
CochranArmitage_exact_cond_midP_tests_rx2(mills_graubard_1987, c(1, 2, 3, 4, 5))
## End(Not run)
CochranArmitage_exact_cond_midP_tests_rx2(indredavik_2008, c(1, 2, 3, 4, 5))
```

```
CochranArmitage_MH_tests_rx2
```

The Cochran-Armitage, modified Cochran-Armitage, and Mantel-Haenszel tests for trend

Description

Described in Chapter 5 "The Ordered rx2 Table"

Usage

```
CochranArmitage_MH_tests_rx2(n, a)
```

Arguments

- n the observed counts (an rx2 matrix)
- a scores assigned to the rows

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
CochranArmitage_MH_tests_rx2(mills_graubard_1987, c(1, 2, 3, 4, 5))
CochranArmitage_MH_tests_rx2(indredavik_2008, c(1, 2, 3, 4, 5))
```

CochranMantelHaenszel_test_stratified_2x2

The Cochran-Mantel-Haenszel test of a common odds ratio

Description

The Cochran-Mantel-Haenszel test of a common odds ratio

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
CochranMantelHaenszel_test_stratified_2x2(n)
```

Arguments

n the observed table (a 2x2xk matrix, where k is the number of strata)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
CochranMantelHaenszel_test_stratified_2x2(doll_hill_1950)
CochranMantelHaenszel_test_stratified_2x2(hine_1989)
```

38 contingencytables

```
Cochran_Q_test_stratified_2x2
```

The Cochran Q test of homogeneity of effects over strata

Description

The Cochran Q test of homogeneity of effects over strata

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Cochran_Q_test_stratified_2x2(n, link = "linear", estimatetype = "MH")
```

Arguments

n the observed table (a 2x2xk matrix, where k is the number of strata)

link the link function ('linear', 'log', or 'logit')

estimatetype Mantel-Haenszel or inverse variance estimate ('MH' or 'IV')

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Cochran_Q_test_stratified_2x2(doll_hill_1950)
Cochran_Q_test_stratified_2x2(hine_1989)
```

contingencytables

Statistical Analysis of Contingency tables

Description

Statistical Analysis of Contingency Tables is an invaluable tool for statistical inference in contingency tables. It covers effect size estimation, confidence intervals, and hypothesis tests for the binomial and the multinomial distributions, unpaired and paired 2x2 tables, rxc tables, ordered rx2 and 2xc tables, paired cxc tables, and stratified tables. This package provides functions that accompany the "Statistical Analysis of Contingency Tables" book by Fagerland et. al. <ISBN 9781466588172>.

Author(s)

Maintainer: Waldir Leoncio <w.l.netto@medisin.uio.no>

Authors:

• Morten Wang Fagerland <morten.fagerland@medisin.uio.no>

Other contributors:

- Stian Lydersen [contributor]
- Petter Laake [contributor]
- Ole Christian Lingjærde [translator]
- Brad J. Biggerstaff [contributor]

References

- Fagerland MW, Lydersen S, Laake P (2017) Statistical Analysis of Contingency Tables. Chapman & Hall/CRC, Boca Raton, FL
- https://contingencytables.com/
- https://www.routledge.com/Statistical-Analysis-of-Contingency-Tables/Fagerland-Lydersen-Laake/p/book/978146658
- · https://ocbe-uio.github.io/contingencytables/

See Also

print.contingencytables_result to read about printing alternatives.

contingencytables_result

contingencytables_result class

Description

A class for output of the main functions on this package

Usage

```
contingencytables_result(statistics, print_structure)
```

Arguments

statistics Either a value or a list of values to be filled by print_format print_structure

Either a string of a function instructing how to print the values from statistics

Value

an object of class contingencytables_result

Author(s)

Waldir Leoncio

See Also

print.contingencytables_result

```
Cornfield_exact_conditional_CI_2x2
```

The Cornfield exact conditional confidence interval for the odds ratio

Description

The Cornfield exact conditional confidence interval for the odds ratio

Described in Chapter 4 "The 2x2 Table"

Usage

```
Cornfield_exact_conditional_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2 matrix)
```

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Cornfield_exact_conditional_CI_2x2(tea)
Cornfield_exact_conditional_CI_2x2(perondi_2004)
Cornfield_exact_conditional_CI_2x2(lampasona_2013)
Cornfield_exact_conditional_CI_2x2(ritland_2007)
```

Cornfield_midP_CI_2x2 The Cornfield mid-P confidence interval for the odds ratio

Description

The Cornfield mid-P confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
Cornfield_midP_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95# CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Cornfield_midP_CI_2x2(tea)
Cornfield_midP_CI_2x2(perondi_2004)
Cornfield_midP_CI_2x2(lampasona_2013)
Cornfield_midP_CI_2x2(ritland_2007)
```

```
Cumulative_models_for_2xc
```

Cumulative logit and probit models

Description

Cumulative logit and probit models

Described in Chapter 6 "The Ordered 2xc Table"

Usage

```
Cumulative_models_for_2xc(n, linkfunction = "logit", alpha = 0.05)
```

Arguments

n the observed table (a 2xc matrix) with at least 3 columns

linkfunction either "logit" or "probit"

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Cumulative_models_for_2xc(fontanella_2008)
Cumulative_models_for_2xc(lydersen_2012a)
```

```
Cumulative_models_for_rxc
```

Cumulative logit and probit models

Description

Cumulative logit and probit models

Described in Chapter 7 "The rxc Table"

Usage

```
Cumulative_models_for_rxc(n, linkfunction = "logit", alpha = 0.05)
```

Arguments

n the observed table (an rxc matrix) with at least 3 columns

linkfunction either "logit" or "probit"

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Cumulative_models_for_rxc(table_7.5)
Cumulative_models_for_rxc(table_7.6)
```

doll_hill_1950 43

doll_hill_1950

Smoking and lung cancer

Description

Smoking and lung cancer

Usage

```
doll_hill_1950
```

Format

An object of class array of dimension 2 x 2 x 2.

References

Doll and Hill (1950)

Exact_binomial_test_1x2

The exact binomial test for the binomial probability (pi)

Description

```
H_0 pi = pi0 vs H_A: pi ~= pi0 (two-sided)
```

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Exact_binomial_test_1x2(X, n, pi0)
```

Arguments

X the number of successes

n the total number of observations

pi0 a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Exact_binomial_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = 0.513)

Exact_binomial_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = 0.513)

Exact_binomial_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = 0.513)

Exact_binomial_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = 0.513)

Exact_binomial_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = 0.5)
```

```
Exact_cond_midP_linear_rank_tests_2xc

Exact conditional and mid-P linear rank tests
```

Description

Exact conditional and mid-P linear rank tests

Described in Chapter 6 "The Ordered 2xc Table"

Usage

```
Exact_cond_midP_linear_rank_tests_2xc(n, b = 0)
```

Arguments

- n the observed table (a 2xc matrix)
- b scores assigned to the columns (if b=0, midranks will be used as scores)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Exact_cond_midP_linear_rank_tests_2xc(lydersen_2012a)
## Not run: Exact_cond_midP_linear_rank_tests_2xc(fontanella_2008)
```

```
Exact_cond_midP_tests_rxc
```

Exact conditional and mid-P tests for the rxc table

Description

Exact conditional and mid-P tests for the rxc table: the Fisher-Freeman-Halton, Pearson, likelihood ratio, Kruskal-Wallis, linear-by-linear, and Jonckheere-Terpstra tests.

Described in Chapter 7 "The rxc Table"

Usage

```
Exact_cond_midP_tests_rxc(n)
```

Arguments

n

the observed counts (an rxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Note

Works only for 3x2 and 3x3 tables

Examples

```
Exact_cond_midP_tests_rxc(table_7.3) # a 3x2 table
## Not run:
    Exact_cond_midP_tests_rxc(table_7.6) # a 3x3 table
## End(Not run)
```

Exact_cond_midP_unspecific_ordering_rx2

The exact conditional and mid-P tests for unspecific ordering

Description

The exact conditional and mid-P tests for unspecific ordering. May also be used for 2xc tables, after flipping rows and columns (i.e. if n is a 2xc table, call this function with n' (the transpose of n) as the first argument).

Described in Chapter 5 "The Ordered rx2 Table"

Usage

```
Exact_cond_midP_unspecific_ordering_rx2(n, direction, statistic = "Pearson")
```

Arguments

n the observed counts (an rx2 matrix)

direction the direction of the success probabilities ("increasing" or "decreasing")

statistic the Pearson test statistic ("Pearson") or the likelihood ratio test statistic ("LR").

Can also be used for cumulative ORs in 2xc tables with "PearsonCumOR" or

"LRCumOR".

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Chapter 6: Postoperative nausea (Lydersen et al., 2012a)
n <- t(lydersen_2012a)
Exact_cond_midP_unspecific_ordering_rx2(n, "decreasing")
Exact_cond_midP_unspecific_ordering_rx2(n, "decreasing", "PearsonCumOR")</pre>
```

```
Exact_multinomial_test_1xc
```

The exact multinomial test for multinomial probabilities

Description

The exact multinomial test for multinomial probabilities

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
Exact_multinomial_test_1xc(n, pi0)
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories)

pi0 given probabilities (a 1xc vector)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Genotype counts for SNP rs 6498169 in RA patients
Exact_multinomial_test_1xc(n = snp6498169$complete$n, pi0 = snp6498169$complete$pi0)
# subset of 10 patients
Exact_multinomial_test_1xc(n = snp6498169$subset$n, pi0 = snp6498169$subset$pi0)
```

Exact_unconditional_test_2x2

Exact unconditional test for association in 2x2 tables

Description

Exact unconditional test for association in 2x2 tables Described in Chapter 4 "The 2x2 Table"

Usage

```
Exact_unconditional_test_2x2(n, statistic = "Pearson", gamma = 1e-04)
```

Arguments

n the observed counts (a 2x2 matrix)
statistic 'Pearson' (Suissa-Shuster test default), 'LR' (likelihood ratio), 'unpooled' (unpooled Z), or 'Fisher' (Fisher-Boschloo test)
gamma parameter for the Berger and Boos procedure (default=0.0001 gamma=0: no

adj)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Note

Somewhat crude code with maximization over a simple partition of the nuisance parameter space into 'num_pi_values' equally spaced values (1000, hardcoded). This method could be improved with a better algorithm for the maximization however, it works well for most purposes. plot() the results to get an indication of the precision. A refinement of the maximization can be done with a manual restriction of the parameter space.

```
Exact_unconditional_test_2x2(tea)
Exact_unconditional_test_2x2(perondi_2004)
Exact_unconditional_test_2x2(lampasona_2013)
Exact_unconditional_test_2x2(ritland_2007)
```

48 fischer_1999

ezra_2010

Floppy eyelid syndrome vs obstructive sleep apnea

Description

Floppy eyelid syndrome vs obstructive sleep apnea

Usage

ezra_2010

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

References

Ezra et al. (2010)

fischer_1999

A comparison between serial and retrospective measurements

Description

A comparison between serial and retrospective measurements

Usage

fischer_1999

Format

An object of class matrix (inherits from array) with 5 rows and 5 columns.

References

Fischer et al. (1999)

FisherFreemanHalton_asymptotic_test_rxc

The Fisher-Freeman-Halton asymptotic test for unordered rxc tables

Description

The Fisher-Freeman-Halton asymptotic test for unordered rxc tables Described in Chapter 7 "The rxc Table"

Usage

```
FisherFreemanHalton_asymptotic_test_rxc(n)
```

Arguments

n the observed counts (an rxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Note

May not give results for all tables, due to overflow

Examples

```
FisherFreemanHalton_asymptotic_test_rxc(table_7.3)
```

Fisher_exact_test_2x2 The Fisher exact test for association in 2x2 tables

Description

The Fisher exact test for association in 2x2 tables Described in Chapter 4 "The 2x2 Table"

Usage

```
Fisher_exact_test_2x2(n, statistic = "Pearson")
```

Arguments

```
n the observed counts (a 2x2 matrix)
```

statistic 'hypergeometric' (i.e. Fisher-Irwin; default), 'Pearson', or 'LR' (likelihood ra-

tio)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Fisher_exact_test_2x2(tea)
Fisher_exact_test_2x2(perondi_2004)
Fisher_exact_test_2x2(lampasona_2013)
Fisher_exact_test_2x2(ritland_2007)
```

Description

The Fisher mid-P test for association in 2x2 tables Described in Chapter 4 "The 2x2 Table"

Usage

```
Fisher_midP_test_2x2(n, statistic = "hypergeometric")
```

Arguments

```
n the observed counts (a 2x2 matrix)
statistic 'hypergeometric' (i.e. Fisher-Irwin default), 'Pearson', or 'LR' (likelihood ratio)
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Fisher_midP_test_2x2(tea)
Fisher_midP_test_2x2(perondi_2004)
Fisher_midP_test_2x2(lampasona_2013)
Fisher_midP_test_2x2(ritland_2007)
```

```
FleissEveritt_test_paired_cxc
```

The Fleiss-Everitt version of the Stuart test for marginal homogeneity

Description

The Fleiss-Everitt version of the Stuart test for marginal homogeneity Described in Chapter 9 "The Paired cxc Table"

Usage

```
FleissEveritt_test_paired_cxc(n)
```

Arguments

n the observed table (a cxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
FleissEveritt_test_paired_cxc(fleiss_2003)
```

```
FleissLevinPaik_test_paired_cxc
```

The Fleiss-Levin-Paik test for three-level ordinal outcomes

Description

The Fleiss-Levin-Paik test for three-level ordinal outcomes

Described in Chapter 9 "The Paired exc Table"

Usage

```
FleissLevinPaik_test_paired_cxc(n)
```

Arguments

n the observed table (a cxc matrix)

52 fontanella_2008

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Pretherapy susceptability of pathogens *without the N / A category*
FleissLevinPaik_test_paired_cxc(peterson_2007[-4, -4])
```

fleiss_2003

Table 13.6, page 382, of Fleiss et al. (2003)

Description

Table 13.6, page 382, of Fleiss et al. (2003)

Usage

fleiss_2003

Format

An object of class matrix (inherits from array) with 3 rows and 3 columns.

References

Fleiss et al. (2003)

fontanella_2008

The Adolescent Placement Study

Description

The Adolescent Placement Study

Usage

fontanella_2008

Format

An object of class matrix (inherits from array) with 2 rows and 4 columns.

References

Fontanella et al. (2008)

gamma_coefficient_rxc 53

```
gamma_coefficient_rxc The gamma coefficient
```

Description

The gamma coefficient

Described in Chapter 7 "The rxc Table"

Usage

```
gamma_coefficient_rxc(n)
```

Arguments

n the observed table (an rxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
gamma_coefficient_rxc(table_7.7)
gamma_coefficient_rxc(table_7.8)
gamma_coefficient_rxc(table_7.9)
```

```
gamma_coefficient_rxc_bca
```

The gamma coefficient with the bias-corrected and accelerated boostrap confidence interval

Description

The gamma coefficient with the bias-corrected and accelerated boostrap confidence interval Described in Chapter 7 "The rxc Table"

Usage

```
gamma_coefficient_rxc_bca(n, nboot = 10000, alpha = 0.05)
```

Arguments

n the observed table (an rxc matrix)
nboot number of bootstrap samples

alpha the nominal significance level, used to compute a 100(1-alpha) confidence inter-

val

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
set.seed(9623)
gamma_coefficient_rxc_bca(table_7.7, nboot = 800)
gamma_coefficient_rxc_bca(table_7.8, nboot = 200)
## Not run:
    gamma_coefficient_rxc_bca(table_7.9, nboot = 3000, alpha = 0.2)
## End(Not run)
```

```
Gart_adjusted_logit_CI_2x2
```

The Gart adjusted logit confidence interval for the odds ratio

Description

The Gart adjusted logit confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
Gart_adjusted_logit_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Gart_adjusted_logit_CI_2x2(lampasona_2013)
Gart_adjusted_logit_CI_2x2(ritland_2007)
```

Gold_Wald_CIs_1xc 55

Gold_Wald_CIs_1xc	The Gold Wald simultaneous intervals for the multinomial probabili-
	ties

Description

The Gold Wald simultaneous intervals for the multinomial probabilities (with Scheffe adjustment) Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
Gold_Wald_CIs_1xc(n, alpha = 0.05)
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories) alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Gold_Wald_CIs_1xc(n = snp6498169$complete$n)
```

```
{\tt Goodman\_Wald\_CIs\_1xc} \quad \textit{The Goodman Wald simultaneous intervals for the multinomial probabilities}
```

Description

The Goodman Wald simultaneous intervals for the multinomial probabilities (with Bonferroni adjustment)

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
Goodman_Wald_CIs_1xc(n, alpha = 0.05)
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories) alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Goodman_Wald_CIs_1xc(n = snp6498169$complete$n)
```

```
Goodman_Wald_CIs_for_diffs_1xc
```

The Goodman Wald simultaneous intervals for the differences between the

Description

The Goodman Wald simultaneous intervals for the differences between the multinomial probabilities (with Scheffe or Bonferroni adjustment)

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
Goodman_Wald_CIs_for_diffs_1xc(n, alpha = 0.05, adjustment = "Bonferroni")
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories)

alpha the nominal level, e.g. 0.05 for 95# CIs

adjustment Scheffe or Bonferroni adjustment ("Scheffe" or "Bonferroni")

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Goodman_Wald_CIs_for_diffs_1xc(n = snp6498169$complete$n)
```

Goodman_Wilson_score_CIs_1xc

The Goodman Wilson score simultaneous intervals for the multinomial probabilities

Description

The Goodman Wilson score simultaneous intervals for the multinomial probabilities (with Bonferroni adjustment)

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
Goodman_Wilson_score_CIs_1xc(n, alpha = 0.05)
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories)

alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Goodman_Wilson_score_CIs_1xc(n = snp6498169$complete$n)
```

hine_1989

Prophylactice use of Lidocaine in myocardial infarction

Description

Prophylactice use of Lidocaine in myocardial infarction

Usage

hine_1989

Format

An object of class array of dimension 2 x 2 x 6.

References

Hine et al. (1989)

hypothetical

Hypothetical experiment

Description

Hypothetical experiment

Usage

hypothetical

Format

An object of class numeric of length 5.

Independence_smoothed_logit_CI_2x2

The Independence-smoothed logit confidence interval for the odds ratio

Description

The Independence-smoothed logit confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
Independence_smoothed_logit_CI_2x2(n, alpha = 0.05)
```

Arguments

n the observed table (a 2x2 matrix)

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Independence_smoothed_logit_CI_2x2(lampasona_2013)
Independence_smoothed_logit_CI_2x2(ritland_2007)
```

indredavik_2008 59

indredavik_2008

Elevated troponin T levels in stroke patients

Description

Elevated troponin T levels in stroke patients

Usage

indredavik_2008

Format

An object of class matrix (inherits from array) with 5 rows and 2 columns.

References

Indredavik et al. (2008)

InverseVariance_estimate_stratified_2x2

The inverse variance estimate of the overall effect across strata

Description

The inverse variance estimate of the overall effect across strata Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
InverseVariance_estimate_stratified_2x2(n, link = "logit")
```

Arguments

n the observed table (a 2x2xk matrix, where k is the number of strata)

link the link function ('linear', 'log', or 'logit')

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
InverseVariance_estimate_stratified_2x2(doll_hill_1950)
InverseVariance_estimate_stratified_2x2(hine_1989)
```

Inv_sinh_CI_OR_2x2

The inverse hyperbolic sine confidence interval for the odds ratio

Description

The inverse hyperbolic sine confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
Inv_sinh_CI_OR_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Inv_sinh_CI_OR_2x2(lampasona_2013)
Inv_sinh_CI_OR_2x2(ritland_2007)
```

Inv_sinh_CI_ratio_2x2 The inverse hyperbolic sine confidence interval for the ratio of probabilities

Description

The inverse hyperbolic sine confidence interval for the ratio of probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
Inv_sinh_CI_ratio_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Jeffreys_CI_1x2 61

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Inv_sinh_CI_ratio_2x2(perondi_2004)
Inv_sinh_CI_ratio_2x2(ritland_2007)
```

Jeffreys_CI_1x2

Jeffreys confidence interval for the binomial probability

Description

Jeffreys confidence interval for the binomial probability

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Jeffreys_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Jeffreys_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
Jeffreys_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
Jeffreys_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], Jeffreys_CI_1x2(X, n)) # alternative syntax
Jeffreys_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

62 Katz_log_CI_2x2

JonckheereTerpstra_test_rxc

The Jonckheere-Terpstra test for association

Description

The Jonckheere-Terpstra test for association Described in Chapter 7 "The rxc Table"

Usage

```
JonckheereTerpstra_test_rxc(n)
```

Arguments

n

the observed table (an rxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
JonckheereTerpstra_test_rxc(table_7.7)
JonckheereTerpstra_test_rxc(table_7.8)
JonckheereTerpstra_test_rxc(table_7.9)
```

Katz_log_CI_2x2

The Katz log confidence interval for the ratio of probabilities

Description

The Katz log confidence interval for the ratio of probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
Katz_{log_CI_2x2(n, alpha = 0.05)}
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Kendalls_tau_b_rxc 63

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Katz_log_CI_2x2(perondi_2004)
Katz_log_CI_2x2(ritland_2007)
```

Kendalls_tau_b_rxc

Kendall's tau-b with confidence interval based on the Fieller standard deviation

Description

Kendall's tau-b with confidence interval based on the Fieller standard deviation

Described in Chapter 7 "The rxc Table"

Usage

```
Kendalls_tau_b_rxc(n, alpha = 0.05)
```

Arguments

n the observed table (an rxc matrix)

alpha the nominal significance level, used to compute a 100(1-alpha)% confidence

interval

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Kendalls_tau_b_rxc(table_7.7)
Kendalls_tau_b_rxc(table_7.8)
Kendalls_tau_b_rxc(table_7.9)
```

```
Kendalls_tau_b_rxc_bca
```

Kendall's tau-b with the bias-corrected and accelerated boostrap confidence interval

Description

Kendall's tau-b with the bias-corrected and accelerated boostrap confidence interval Described in Chapter 7 "The rxc Table"

Usage

```
Kendalls_tau_b_rxc_bca(n, nboot = 10000, alpha = 0.05)
```

Arguments

n the observed table (an rxc matrix)
nboot number of bootstrap samples

alpha the nominal significance level, used to compute a 100(1-alpha) confidence inter-

val

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
set.seed(9974)
Kendalls_tau_b_rxc_bca(table_7.7, nboot = 800)
Kendalls_tau_b_rxc_bca(table_7.8, nboot = 200)
## Not run:
   Kendalls_tau_b_rxc_bca(table_7.9)
## End(Not run)
```

```
{\tt Koopman\_asymptotic\_score\_CI\_2x2}
```

The Koopman asymptotic score confidence interval for the ratio of probabilities

Description

The Koopman asymptotic score confidence interval for the ratio of probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
Koopman_asymptotic_score_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Note

This versions uses the score test statistic of the Miettinen-Nurminen interval without the variance correction term.

Examples

```
Koopman_asymptotic_score_CI_2x2(perondi_2004)
Koopman_asymptotic_score_CI_2x2(ritland_2007)
```

```
KruskalWallis_asymptotic_test_rxc
```

The Kruskal-Wallis asymptotic test for singly ordered rxc tables

Description

The Kruskal-Wallis asymptotic test for singly ordered rxc tables Described in Chapter 7 "The rxc Table"

Usage

```
KruskalWallis_asymptotic_test_rxc(n)
```

Arguments

n the observed counts (an rxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
KruskalWallis_asymptotic_test_rxc(table_7.5)
KruskalWallis_asymptotic_test_rxc(table_7.6)
```

ligarden_2010

lampasona_2013

A case-control study of GADA exposure on IPEX syndrome

Description

A case-control study of GADA exposure on IPEX syndrome

Usage

lampasona_2013

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

References

Lampasona et al. (2013)

ligarden_2010

Ligarden et al., 2010

Description

Ligarden et al., 2010

Usage

ligarden_2010

Format

An object of class numeric of length 2.

References

ligarden_2010

```
linear_by_linear_test_rxc
```

The linear-by-linear test for association

Description

The linear-by-linear test for association Described in Chapter 7 "The rxc Table"

Usage

```
linear_by_linear_test_rxc(n, a = seq_len(ncol(n)), b = seq_len(nrow(n)))
```

Arguments

n the observed table (an rxc matrix)
a scores assigned to the rows
b scores assigned to the columns

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
linear_by_linear_test_rxc(table_7.7)
linear_by_linear_test_rxc(table_7.8)
linear_by_linear_test_rxc(table_7.9)
```

list_functions

List functions from a chapter

Description

Complements the ?chapX command by printing a list of functions related to a particular chapter X on the R console.

Usage

```
list_functions(chap_num)
```

Arguments

chap_num

Number of book chapter (from 2 to 10)

68 LR_CI_1x2

Value

List of functions from that chapter

Author(s)

Waldir Leoncio

LR_CI_1x2

The likelihood ratio confidence interval for the binomial probability

Description

The likelihood ratio confidence interval for the binomial probability. Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
LR_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
LR_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
LR_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
LR_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], LR_CI_1x2(X, n)) # alternative syntax
LR_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

 LR_test_1x2 69

 LR_test_1x2

The likelihood ratio test for the binomial probability (pi)

Description

The likelihood ratio test for the binomial probability (pi) H_0 : pi = pi0 vs H_A : pi ~= pi0 (two-sided). Described in Chapter 2 "The 1x2 Table and the Binomial Distribution".

Usage

```
LR_test_1x2(X, n, pi0)
```

Arguments

X the number of successes

n the total number of observations

pi0 a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
LR_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = .5)
LR_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = .5)
LR_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = .5)
LR_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = .5)
LR_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = .5)
```

LR_test_1xc

The likelihood ratio test for multinomial probabilities

Description

The likelihood ratio test for multinomial probabilities

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
LR_test_1xc(n, pi0)
```

 LR_{test} 2x2

Arguments

```
n the observed counts (a 1xc vector, where c is the number of categories)
pi0 given probabilities (a 1xc vector)
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Genotype counts for SNP rs 6498169 in RA patients
LR_test_1xc(n = snp6498169$complete$n, pi0 = snp6498169$complete$pi0)
# subset of 10 patients
LR_test_1xc(n = snp6498169$subset$n, pi0 = snp6498169$subset$pi0)
```

LR_test_2x2

The likelihood ratio test for association in 2x2 tables

Description

The likelihood ratio test for association in 2x2 tables

Described in Chapter 4 "The 2x2 Table"

Usage

```
LR_test_2x2(n)
```

Arguments

n the observed counts (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
LR_test_2x2(tea)
LR_test_2x2(perondi_2004)
LR_test_2x2(lampasona_2013)
LR_test_2x2(ritland_2007)
```

lydersen_2012a 71

lydersen_2012a

Postoperative nausea

Description

Postoperative nausea

Usage

```
lydersen_2012a
```

Format

An object of class matrix (inherits from array) with 2 rows and 4 columns.

References

Lydersen et al. (2012a)

MantelHaenszel_estimate_stratified_2x2

The Mantel-Haenszel estimate of the overall effect across strata

Description

The Mantel-Haenszel estimate of the overall effect across strata Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
MantelHaenszel_estimate_stratified_2x2(n, link = "logit")
```

Arguments

```
n the observed table (a 2x2xk matrix, where k is the number of strata)

link the link function ('linear', 'log', or 'logit')
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
MantelHaenszel_estimate_stratified_2x2(doll_hill_1950)
MantelHaenszel_estimate_stratified_2x2(hine_1989)
```

MantelHaenszel_test_2xc

The Mantel-Haenszel test of association with column scores

Description

The Mantel-Haenszel test of association with column scores Described in Chapter 6 "The Ordered 2xc Table"

Usage

```
MantelHaenszel_test_2xc(n, b = 0)
```

Arguments

- n the observed counts (a 2xc matrix)
- b scores assigned to the columns (if b=0, midranks will be used as scores)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
MantelHaenszel_test_2xc(lydersen_2012a)
```

```
McNemarBowker_test_paired_cxc
```

The McNemar-Bowker test for marginal symmetry

Description

The McNemar-Bowker test for marginal symmetry Described in Chapter 9 "The Paired cxc Table"

Usage

```
McNemarBowker_test_paired_cxc(n)
```

Arguments

n the observed table (a cxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Pretherapy susceptability of pathogens (Peterson et al., 2007)
McNemarBowker_test_paired_cxc(peterson_2007)
```

```
McNemar_asymptotic_test_CC_paired_2x2
```

The McNemar asymptotic test with continuity correction

Description

The McNemar asymptotic test with continuity correction

Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
McNemar_asymptotic_test_CC_paired_2x2(n)
```

Arguments

n

the observed table (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
McNemar_asymptotic_test_CC_paired_2x2(bentur_2009)
McNemar_asymptotic_test_CC_paired_2x2(cavo_2012)
McNemar_asymptotic_test_CC_paired_2x2(ezra_2010)
```

Description

The McNemar asymptotic test
Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
McNemar_asymptotic_test_paired_2x2(n)
```

Arguments

n the observed table (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
McNemar_asymptotic_test_paired_2x2(bentur_2009)
McNemar_asymptotic_test_paired_2x2(cavo_2012)
McNemar_asymptotic_test_paired_2x2(ezra_2010)
```

```
McNemar_exact_cond_test_paired_2x2
```

The McNemar exact conditional test

Description

The McNemar exact conditional test

Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
McNemar_exact_cond_test_paired_2x2(n)
```

Arguments

n the observed table (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
McNemar_exact_cond_test_paired_2x2(bentur_2009)
McNemar_exact_cond_test_paired_2x2(cavo_2012)
McNemar_exact_cond_test_paired_2x2(ezra_2010)
```

```
McNemar_exact_unconditional_test_paired_2x2

The McNemar exact unconditional test
```

Description

The McNemar exact unconditional test
Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
McNemar_exact_unconditional_test_paired_2x2(
    n,
    gamma = 1e-04,
    num_pi_values = 1000L
)
```

Arguments

```
n the observed table (a 2x2 matrix)
gamma parameter for the Berger and Boos procedure (default=0.0001; gamma=0: no adj)
num_pi_values number of values to use in the partition of the nuisance parameter space (default=1000)
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Note

Somewhat crude code with maximization over a simple partition of the nuisance parameter space into 'num_pi_values' equally spaced values The number may be changed. This method could be improved with a better algorithm for the maximization; however, it works well for most purposes. Try showplot=1 to get an indication of the precision. A refinement of the maximization can be done with a manual restriction of the parameter space.

Examples

```
McNemar_exact_unconditional_test_paired_2x2(bentur_2009)
## Not run:
    McNemar_exact_unconditional_test_paired_2x2(cavo_2012, gamma = 0)
    McNemar_exact_unconditional_test_paired_2x2(ezra_2010)
## End(Not run)
```

McNemar_midP_test_paired_2x2

The McNemar mid-P test

Description

The McNemar mid-P test

Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
McNemar_midP_test_paired_2x2(n)
```

Arguments

n

the observed table (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
McNemar_midP_test_paired_2x2(bentur_2009)
McNemar_midP_test_paired_2x2(cavo_2012)
McNemar_midP_test_paired_2x2(ezra_2010)
```

```
Mee_asymptotic_score_CI_2x2
```

The Mee asymptotic score confidence interval for the difference between probabilities

Description

The Mee asymptotic score confidence interval for the difference between probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
Mee_asymptotic_score_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004):
Mee_asymptotic_score_CI_2x2(perondi_2004)

# The association between CHRNA4 genotype and XFS (Ritland et al., 2007):
Mee_asymptotic_score_CI_2x2(ritland_2007)
```

```
MidP_binomial_test_1x2
```

The mid-P binomial test for the binomial probability (pi)

Description

The mid-P binomial test for the binomial probability (pi) H_0 : pi = pi0 vs H_A : $pi \sim pi0$ (two-sided) Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

```
MidP_binomial_test_1x2(X, n, pi0)
```

Arguments

Χ	the number of successes
n	the total number of observations
pi0	a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# The number of 1st order male births (Singh et al. 2010, adapted)
MidP_binomial_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = .5)
# The number of 2nd order male births (Singh et al. 2010, adapted)
MidP_binomial_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = .5)
# The number of 3rd order male births (Singh et al. 2010, adapted)
MidP_binomial_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = .5)
# The number of 4th order male births (Singh et al. 2010, adapted)
MidP_binomial_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = .5)
# Ligarden et al. (2010, adapted)
MidP_binomial_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = .5)
```

```
MidP_multinomial_test_1xc
```

The mid-P multinomial test for multinomial probabilities

Description

The mid-P multinomial test for multinomial probabilities

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
MidP_multinomial_test_1xc(n, pi0)
```

Arguments

```
n the observed counts (a 1xc vector, where c is the number of categories)
pi0 given probabilities (a 1xc vector)
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Genotype counts for SNP rs 6498169 in RA patients
MidP_multinomial_test_1xc(n = snp6498169$complete$n, pi0 = snp6498169$complete$pi0)
# subset of 10 patients
MidP_multinomial_test_1xc(n = snp6498169$subset$n, pi0 = snp6498169$subset$pi0)
```

MiettinenNurminen_asymptotic_score_CI_difference_2x2

The Miettinen-Nurminen asymptotic score confidence interval for the

Description

The Miettinen-Nurminen asymptotic score confidence interval for the difference between probabilities

Described in Chapter 4 "The 2x2 Table"

Usage

```
MiettinenNurminen_asymptotic_score_CI_difference_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004): MiettinenNurminen_asymptotic_score_CI_difference_2x2(perondi_2004)
# The association between CHRNA4 genotype and XFS (Ritland et al., 2007): MiettinenNurminen_asymptotic_score_CI_difference_2x2(ritland_2007)
```

MiettinenNurminen_asymptotic_score_CI_OR_2x2

The Miettinen-Nurminen asymptotic score CI for the odds ratio

Description

The Miettinen-Nurminen asymptotic score confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
MiettinenNurminen_asymptotic_score_CI_OR_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# A case-control study of GADA exposure on IPEX syndrome (Lampasona et al., 2013)
MiettinenNurminen_asymptotic_score_CI_OR_2x2(lampasona_2013)
# The association between CHRNA4 genotype and XFS (Ritland et al., 2007)
MiettinenNurminen_asymptotic_score_CI_OR_2x2(ritland_2007)
```

MiettinenNurminen_asymptotic_score_CI_ratio_2x2

The Miettinen-Nurminen asymptotic score confidence interval for the ratio of probabilities

Description

The Miettinen-Nurminen asymptotic score confidence interval for the ratio of probabilities Described in Chapter 4 "The 2x2 Table"

```
MiettinenNurminen_asymptotic_score_CI_ratio_2x2(n, alpha = 0.05)
```

mills_graubard_1987

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004) MiettinenNurminen_asymptotic_score_CI_ratio_2x2(perondi_2004) # The association between CHRNA4 genotype and XFS (Ritland et al., 2007) MiettinenNurminen_asymptotic_score_CI_ratio_2x2(ritland_2007)
```

mills_graubard_1987

Alcohol consumption and malformations

Description

Alcohol consumption and malformations

Usage

```
mills_graubard_1987
```

Format

An object of class matrix (inherits from array) with 5 rows and 2 columns.

References

Mills and Graubard (1987)

ML_estimates

Calculate ML estimates

Description

Calculate ML estimates

Usage

```
ML_estimates(...)
```

Arguments

... arguments passed to methods

Note

This function has little use to the user, it is exported for confirmity to R package standards.

```
ML_estimates_and_CIs_stratified_2x2
```

Maximum likelihood estimates with CIs of the grouping and strata effects

Description

Maximum likelihood estimates with CIs of the grouping and strata effects Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
ML_estimates_and_CIs_stratified_2x2(n, link = "log", alpha = 0.05)
```

Arguments

n the observed table (a 2x2xk matrix, where k is the number of strata)

1ink the link function ('linear', 'log', or 'logit')
alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
ML_estimates_and_CIs_stratified_2x2(doll_hill_1950)
# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
ML_estimates_and_CIs_stratified_2x2(hine_1989)
```

MOVER_R_Wilson_CI_OR_2x2

The MOVER-R Wilson confidence interval for the odds ratio

Description

The MOVER-R Wilson confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
MOVER_R_Wilson_CI_OR_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# A case-control study of GADA exposure on IPEX syndrome (Lampasona et al., 2013):
MOVER_R_Wilson_CI_OR_2x2(lampasona_2013)

# The association between CHRNA4 genotype and XFS (Ritland et al., 2007):
MOVER_R_Wilson_CI_OR_2x2(ritland_2007)
```

```
MOVER_R_Wilson_CI_ratio_2x2
```

The MOVER-R Wilson confidence interval for the ratio of probabilities

Description

The MOVER-R Wilson confidence interval for the ratio of probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
MOVER_R_Wilson_CI_ratio_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004)
MOVER_R_Wilson_CI_ratio_2x2(perondi_2004)

# The association between CHRNA4 genotype and XFS (Ritland et al., 2007)
MOVER_R_Wilson_CI_ratio_2x2(ritland_2007)
```

```
MOVER_Wilson_score_CI_paired_2x2
```

The MOVER Wilson score confidence interval for the ratio of paired probabilities

Description

The MOVER Wilson score confidence interval for the ratio of paired probabilities Described in Chapter 8 "The Paired 2x2 Table"

```
MOVER_Wilson_score_CI_paired_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
MOVER_Wilson_score_CI_paired_2x2(bentur_2009)
MOVER_Wilson_score_CI_paired_2x2(cavo_2012)
```

```
Newcombe_hybrid_score_CI_2x2
```

The Newcombe hybrid score confidence interval for the difference between probabilities

Description

The Newcombe hybrid score confidence interval for the difference between probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
Newcombe_hybrid_score_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004)
Newcombe_hybrid_score_CI_2x2(perondi_2004)

# The association between CHRNA4 genotype and XFS (Ritland et al., 2007)
Newcombe_hybrid_score_CI_2x2(ritland_2007)
```

```
Newcombe_square_and_add_CI_paired_2x2
```

The Newcombe square-and-add confidence interval for the difference

Description

The Newcombe square-and-add confidence interval for the difference between paired probabilities. Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Newcombe_square_and_add_CI_paired_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95# CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Newcombe_square_and_add_CI_paired_2x2(bentur_2009)
# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Newcombe_square_and_add_CI_paired_2x2(cavo_2012)
```

```
Pearson_chi_squared_test_1xc
```

The Pearson chi-squared test for multinomial probabilities

Description

The Pearson chi-squared test for multinomial probabilities

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

```
Pearson_chi_squared_test_1xc(n, pi0)
```

Arguments

```
n the observed counts (a 1xc vector, where c is the number of categories)
pi0 given probabilities (a 1xc vector)
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Genotype counts for SNP rs 6498169 in RA patients
Pearson_chi_squared_test_1xc(n = snp6498169$complete$n, pi0 = snp6498169$complete$pi0)
# subset of 10 patients
Pearson_chi_squared_test_1xc(n = snp6498169$subset$n, pi0 = snp6498169$subset$pi0)
```

Pearson_chi_squared_test_2x2

The Pearson chi-squared test for association in 2x2 tables

Description

The Pearson chi-squared test for association in 2x2 tables Described in Chapter 4 "The 2x2 Table"

Usage

```
Pearson_chi_squared_test_2x2(n)
```

Arguments

n the observed counts (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Example: A lady tasting a cup of tea
Pearson_chi_squared_test_2x2(tea)

# Example: Perondi et al. (2004)
Pearson_chi_squared_test_2x2(perondi_2004)

# Example: Lampasona et al. (2013)
Pearson_chi_squared_test_2x2(lampasona_2013)
```

```
# Example: Ritland et al. (2007)
Pearson_chi_squared_test_2x2(ritland_2007)
```

```
Pearson_chi_squared_test_CC_2x2
```

The Pearson chi-squared test for association in 2x2 tables

Description

The Pearson chi-squared test for association in 2x2 tables with continuity correction

Described in Chapter 4 "The 2x2 Table"

Usage

```
Pearson_chi_squared_test_CC_2x2(n)
```

Arguments

n

the observed counts (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Example: A lady tasting a cup of tea
Pearson_chi_squared_test_CC_2x2(tea)

# Example: Perondi et al. (2004)
Pearson_chi_squared_test_CC_2x2(perondi_2004)

# Example: Lampasona et al. (2013)
Pearson_chi_squared_test_CC_2x2(lampasona_2013)

# Example: Ritland et al. (2007)
Pearson_chi_squared_test_CC_2x2(ritland_2007)
```

```
Pearson_correlation_coefficient_rxc
```

The Pearson correlation coefficient

Description

The Pearson correlation coefficient

Described in Chapter 7 "The rxc Table"

Usage

```
Pearson_correlation_coefficient_rxc(
   n,
   a = seq_len(nrow(n)),
   b = seq_len(ncol(n)),
   alpha = 0.05
)
```

Arguments

```
n the observed table (an rxc matrix)

a scores assigned to the rows

b scores assigned to the columns

alpha the nominal significance level, used to compute a 100(1-alpha) confidence interval
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Pearson_correlation_coefficient_rxc(table_7.7)
Pearson_correlation_coefficient_rxc(table_7.8)
Pearson_correlation_coefficient_rxc(table_7.9)
```

```
Pearson_correlation_coefficient_rxc_bca
```

The Pearson correlation coefficient with the bias-corrected and accelerated

Description

The Pearson correlation coefficient with the bias-corrected and accelerated

boostrap confidence interval

Described in Chapter 7 "The rxc Table"

Usage

```
Pearson_correlation_coefficient_rxc_bca(
    n,
    nboot = 10000,
    a = seq_len(nrow(n)),
    b = seq_len(ncol(n)),
    alpha = 0.05
)
```

Arguments

n	the observed table (an rxc matrix)
nboot	number of bootstrap samples
a	scores assigned to the rows
b	scores assigned to the columns
alpha	the nominal significance level, used to compute a 100(1-alpha) confidence interval
	1 444

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
set.seed(3509)
Pearson_correlation_coefficient_rxc_bca(table_7.7, nboot = 800)
Pearson_correlation_coefficient_rxc_bca(table_7.8, nboot = 200)
## Not run:
    Pearson_correlation_coefficient_rxc_bca(table_7.9)
## End(Not run)
```

Pearson_LR_homogeneity_test_stratified_2x2

The Pearson chi-squared and likelihood ratio tests for homogeneity over strata

Description

The Pearson chi-squared and likelihood ratio tests for homogeneity over strata Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Pearson_LR_homogeneity_test_stratified_2x2(n, link = "logit")
```

Arguments

```
n the observed table (a 2x2xk matrix, where k is the number of strata)
link the link function ('linear', 'log', or 'logit')
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
Pearson_LR_homogeneity_test_stratified_2x2(doll_hill_1950)
# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
Pearson_LR_homogeneity_test_stratified_2x2(hine_1989)
```

```
Pearson_LR_tests_cum_OR_2xc
```

The Pearson chi-squared and likelihood ratio tests for cumulative ORs in 2xc tables

Description

The Pearson chi-squared and likelihood ratio tests for cumulative ORs in 2xc tables Described in Chapter 6 "The Ordered 2xc Table"

```
Pearson_LR_tests_cum_OR_2xc(n, direction = "decreasing")
```

Arguments

```
n the observed counts (a 2xc matrix)
direction the direction of column probabilities ("increasing" or "decreasing")
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Postoperative nausea (Lydersen et al., 2012a)
Pearson_LR_tests_cum_OR_2xc(lydersen_2012a)
```

Pearson_LR_tests_rxc The Pearson chi-squared and likelihood ratio tests for association in rxc tables

Description

The Pearson chi-squared and likelihood ratio tests for association in rxc tables Described in Chapter 7 "The rxc Table"

Usage

```
Pearson_LR_tests_rxc(n)
```

Arguments

n the observed counts (an rxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Examples from Chapter 5 (ordered rx2 tables)

## Alcohol consumption and malformations (Mills and Graubard, 1987):
Pearson_LR_tests_rxc(mills_graubard_1987)

## Elevated troponin T levels in stroke patients (Indredavik et al., 2008):
Pearson_LR_tests_rxc(indredavik_2008)

# Examples from Chapter 6 (ordered 2xc tables)
## The Adolescent Placement Study (Fontanella et al., 2008):
```

```
Pearson_LR_tests_rxc(fontanella_2008)
## Postoperative nausea (Lydersen et al., 2012a):
Pearson_LR_tests_rxc(lydersen_2012a)
# Examples from Chapter 7 (unordered rxc tables)
## Treatment for ear infection (van Balen et al., 2003):
Pearson_LR_tests_rxc(table_7.3)
## Psychiatric diagnoses vs PA (Mangerud et al., 2004):
Pearson_LR_tests_rxc(table_7.4)
## Psychiatric diag. vs BMI (Mangerud et al., 2004):
Pearson_LR_tests_rxc(table_7.5)
```

Pearson_LR_tests_unspecific_ordering_rx2

The Pearson chi-squared and likelihood ratio tests for unspecific ordering in rx2 tables

Description

The Pearson chi-squared and likelihood ratio tests for unspecific ordering in rx2 tables. Described in Chapter 5 "The Ordered rx2 Table". May also be used for 2xc tables, after flipping rows and columns (i.e. if n is a 2xc table, call this function with n' (the transpose of n) as the first argument).

Usage

```
Pearson_LR_tests_unspecific_ordering_rx2(n, direction)
```

Arguments

```
n the observed counts (an rx2 matrix)
direction the direction of the success probabilities ("increasing" or "decreasing")
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Chapter 5: Alcohol consumption and malformations (Mills and Graubard, 1987)
Pearson_LR_tests_unspecific_ordering_rx2(mills_graubard_1987, "increasing")
# Chapter 5: Elevated troponin T levels in stroke patients (Indredavik et al., 2008)
Pearson_LR_tests_unspecific_ordering_rx2(indredavik_2008, "decreasing")
```

```
# Chapter 6: Postoperative nausea (Lydersen et al., 2012a)
Pearson_LR_tests_unspecific_ordering_rx2(t(lydersen_2012a), "decreasing")
```

```
Pearson_LR_test_common_effect_stratified_2x2
```

The Pearson chi-squared and likelihood ratio tests of a common difference

Description

The Pearson chi-squared and likelihood ratio tests of a common difference

between probabilities (link = 'linear'), ratio of probabilities (link =

'log'), or odds ratio (link = 'logit')

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Pearson_LR_test_common_effect_stratified_2x2(n, link = "logit")
```

Arguments

```
n the observed table (a 2x2xk matrix, where k is the number of strata)

link the link function ('linear', 'log', or 'logit')
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Smoking and lung cancer (Doll and Hill, 1950)
Pearson_LR_test_common_effect_stratified_2x2(doll_hill_1950)
# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
Pearson_LR_test_common_effect_stratified_2x2(hine_1989)
```

Pearson_residuals_rxc 95

Pearson_residuals_rxc The Pearson residuals and the standardized Pearson residuals

Description

The Pearson residuals and the standardized Pearson residuals Described in Chapter 7 "The rxc Table"

Usage

```
Pearson_residuals_rxc(n)
```

Arguments

n

the observed counts (an rxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
## Treatment for ear infection (van Balen et al., 2003):
Pearson_residuals_rxc(table_7.3)

## Psychiatric diagnoses vs PA (Mangerud et al., 2004):
Pearson_residuals_rxc(table_7.4)

## Psychiatric diag. vs BMI (Mangerud et al., 2004):
Pearson_residuals_rxc(table_7.5)
```

perondi_2004

An RCT of high vs standard dose of epinephrine

Description

An RCT of high vs standard dose of epinephrine

Usage

```
perondi_2004
```

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

References

Perondi et al. (2004)

peterson_2007

Pretherapy susceptability of pathogens

Description

Pretherapy susceptability of pathogens

Usage

peterson_2007

Format

An object of class matrix (inherits from array) with 4 rows and 4 columns.

References

Peterson et al. (2007)

Peto_homogeneity_test_stratified_2x2

The Peto test for homogeneity of odds ratios over strata

Description

The Peto test for homogeneity of odds ratios over strata

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Peto\_homogeneity\_test\_stratified\_2x2(n)
```

Arguments

n

the observed table (a 2x2xk matrix, where k is the number of strata)

```
# Smoking and lung cancer (Doll and Hill, 1950)
Peto_homogeneity_test_stratified_2x2(doll_hill_1950)
```

```
# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
Peto_homogeneity_test_stratified_2x2(hine_1989)
```

```
Peto_OR_estimate_stratified_2x2
```

The Peto estimate of the common odds ratio across strata

Description

The Peto estimate of the common odds ratio across strata

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Peto_OR_estimate_stratified_2x2(n)
```

Arguments

n

the observed table (a 2x2xk matrix, where k is the number of strata)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
Peto_OR_estimate_stratified_2x2(doll_hill_1950)

# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
Peto_OR_estimate_stratified_2x2(hine_1989)
```

 ${\tt PriceBonett_approximate_Bayes_CI_2x2}$

The Price-Bonett approximate Bayes confidence interval for the ratio of probabilities

Description

The Price-Bonett approximate Bayes confidence interval for the ratio of probabilities Described in Chapter 4 "The 2x2 Table"

```
PriceBonett_approximate_Bayes_CI_2x2(n, a = 1.25, b = 2.5, alpha = 0.05)
```

Arguments

n	the observed counts (a 2x2 matrix)
a, b	parameters of the beta distribution
alpha	the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004)
PriceBonett_approximate_Bayes_CI_2x2(perondi_2004)

# The association between CHRNA4 genotype and XFS (Ritland et al., 2007)
PriceBonett_approximate_Bayes_CI_2x2(ritland_2007)
```

```
{\it Output from a contingency tables method}
```

Description

Output from a contingency tables method

Usage

```
## S3 method for class 'contingencytables_result'
print(x, as_list = FALSE, ...)
```

Arguments

X	The output from a function from the contingencytables package
as_list	Print the elements of x as a list
	unused (kept for consistency with the generic base::print())

```
QuesenberryHurst_Wilson_score_CIs_1xc
```

The Quesenberry-Hurst Wilson score simultaneous intervals for the multinomial probabilities

Description

The Quesenberry-Hurst Wilson score simultaneous intervals for the multinomial probabilities (with Scheffe adjustment)

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Usage

```
QuesenberryHurst_Wilson_score_CIs_1xc(n, alpha = 0.05)
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories)

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Genotype counts for SNP rs 6498169 in RA patients
QuesenberryHurst_Wilson_score_CIs_1xc(n = snp6498169$complete$n)
```

```
RBG_test_and_CI_stratified_2x2
```

The RBG test and CI for a common odds ratio

Description

The RBG test and CI for a common odds ratio

(A Wald-type test and CI based on the Mantel-Haenszel estimate)

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

```
RBG_test_and_CI_stratified_2x2(n, alpha = 0.05)
```

100 ritland_2007

Arguments

n the observed table (a 2x2xk matrix, where k is the number of strata)

alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
RBG_test_and_CI_stratified_2x2(doll_hill_1950)
# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
RBG_test_and_CI_stratified_2x2(hine_1989)
```

ritland_2007

The association between CHRNA4 genotype and XFS

Description

The association between CHRNA4 genotype and XFS

Usage

ritland_2007

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

References

Ritland et al. (2007)

```
Scheffe_type_CIs_paired_cxc
```

Scheffe-type confidence intervals for differences of marginal probabilities

Description

Scheffe-type confidence intervals for differences of marginal probabilities Described in Chapter 9 "The Paired kxk Table"

Usage

```
Scheffe_type_CIs_paired_cxc(n, alpha = 0.05)
```

Arguments

n the observed table (a cxc matrix)

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Pretherapy susceptability of pathogens (Peterson et al., 2007)
Scheffe_type_CIs_paired_cxc(peterson_2007)
```

```
Scheffe_type_CIs_rxc The Scheffe-type simultaneous confidence intervals for the differences <math>pi\_1|i-pi\_1|j
```

Description

The Scheffe-type simultaneous confidence intervals for the differences pi_1li - pi_1lj Described in Chapter 7 "The rxc Table"

Usage

```
Scheffe_type_CIs_rxc(n, alpha = 0.05)
```

Arguments

n the observed counts (an rx2 vector) alpha the nominal level, e.g. 0.05 for 95# CIs

Score_test_1x2

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Example: Treatment for ear infection
Scheffe_type_CIs_rxc(table_7.3)
```

Score_test_1x2

The score test for the binomial probability (pi)

Description

The score test for the binomial probability (pi) H_0 : pi = pi0 vs H_A : $pi \sim pi0$ (two-sided) Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Score_test_1x2(X, n, pi0)
```

Arguments

X the number of successes

n the total number of observations
pi0 a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# The number of 1st order male births (Singh et al. 2010, adapted)
Score_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = .5)
# The number of 2nd order male births (Singh et al. 2010, adapted)
Score_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = .5)
# The number of 3rd order male births (Singh et al. 2010, adapted)
Score_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = .5)
# The number of 4th order male births (Singh et al. 2010, adapted)
Score_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = .5)
# Ligarden et al. (2010, adapted)
Score_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = .5)
```

```
Score_test_and_CI_marginal_mean_scores_paired_cxc

Score test and CI marginal mean scores paired CxC
```

Description

The score test and confidence interval for the difference between marginal mean scores Described in Chapter 9 "The Paired cxc Table"

Usage

```
Score_test_and_CI_marginal_mean_scores_paired_cxc(
   n,
   a = seq_len(nrow(n)),
   alpha = 0.05
)
```

Arguments

```
n the observed table (a cxc matrix)
a scores assigned to the outcome categories
alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# A comparison between serial and retrospective measurements
# (Fischer et al., 1999)
a <- c(8, 3.5, 0, -3.5, -8)
Score_test_and_CI_marginal_mean_scores_paired_cxc(fischer_1999, a)</pre>
```

Score_test_CC_1x2

The score test with continuity correction for the

Description

The score test with continuity correction for the binomial probability (pi). H_0 : pi = pi0 vs H_A : $pi \sim pi0$ (two-sided). Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

```
Score_test_CC_1x2(X, n, pi0)
```

Arguments

n the total number of observations

pi0 a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# The number of 1st order male births (Singh et al. 2010, adapted)
Score_test_CC_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = .5)
# The number of 2nd order male births (Singh et al. 2010, adapted)
Score_test_CC_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = .5)
# The number of 3rd order male births (Singh et al. 2010, adapted)
Score_test_CC_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = .5)
# The number of 4th order male births (Singh et al. 2010, adapted)
Score_test_CC_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = .5)
# Ligarden et al. (2010, adapted)
Score_test_CC_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = .5)
```

```
Score_test_for_effect_in_the_probit_model_2xc

Score test for effect in the cumulative probit model
```

Description

The score test for effect in the cumulative probit model described in Chapter 6 "The Ordered 2xc Table"

Usage

```
Score_test_for_effect_in_the_probit_model_2xc(n, alphahat0)
```

Arguments

n the observed counts (a 2xc matrix)

alphahat0 a column vector with c-1 estimated coefficients (alpha_j) under the null hypothesis (beta = 0)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

score_test_statistic 105

Note

Must give the alphahats under the null hypothesis as input, because Matlab does not calculate an intercept-only probit model (and this may apply to R code as well). alphahat0 can be calculated in, for instance, Stata.

Examples

```
# The Adolescent Placement Study (Fontanella et al., 2008)
alphahat0 <- c(-1.246452, -0.5097363, 0.2087471)
Score_test_for_effect_in_the_probit_model_2xc(fontanella_2008, alphahat0)
# Postoperative nausea (Lydersen et al., 2012a)
alphahat0 <- c(-0.1923633, 0.5588396, 1.271953)
Score_test_for_effect_in_the_probit_model_2xc(lydersen_2012a, alphahat0)</pre>
```

```
score_test_statistic Calculate ML estimates
```

Description

Calculate ML estimates

Usage

```
score_test_statistic(...)
```

Arguments

... arguments passed to methods

Note

This function has little use to the user, it is exported for confirmity to R package standards.

singh_2010_1

The number of n-th order male births

Description

The number of n-th order male births

```
singh_2010
```

Format

An object of class data. frame with 4 rows and 2 columns.

References

Singh et al. (2010)

snp6498169

Genotype counts for SNP rs 6498169 in RA patients

Description

Genotype counts for SNP rs 6498169 in RA patients

Usage

snp6498169

Format

An object of class list of length 2.

Spearman_correlation_coefficient_rxc

The Spearman correlation coefficient

Description

The Spearman correlation coefficient

Described in Chapter 7 "The rxc Table"

Usage

```
Spearman_correlation_coefficient_rxc(n, alpha = 0.05)
```

Arguments

n the observed table (an rxc matrix)

alpha the nominal significance level, used to compute a 100(1-alpha)# confidence in-

terval

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Spearman_correlation_coefficient_rxc(table_7.7)
Spearman_correlation_coefficient_rxc(table_7.8)
Spearman_correlation_coefficient_rxc(table_7.9)
```

```
Spearman_correlation_coefficient_rxc_bca
```

The Spearman correlation coefficient with the bias-corrected and accelerated

Description

The Spearman correlation coefficient with the bias-corrected and accelerated

boostrap confidence interval

Described in Chapter 7 "The rxc Table"

Usage

```
Spearman_correlation_coefficient_rxc_bca(n, nboot = 10000, alpha = 0.05)
```

Arguments

n the observed table (an rxc matrix)

nboot number of bootstrap samples

alpha the nominal significance level, used to compute a 100(1-alpha) confidence interval

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
set.seed(2921)
Spearman_correlation_coefficient_rxc_bca(table_7.7, nboot = 800)
Spearman_correlation_coefficient_rxc_bca(table_7.8, nboot = 200)
## Not run:
    Spearman_correlation_coefficient_rxc_bca(table_7.9)
## End(Not run)
```

stratified_2x2_tables Stratified 2x2 tables

Description

Stratified 2x2 tables

Usage

```
stratified_2x2_tables(n, alpha = 0.05)
```

Arguments

n the observed table (a 2x2xk matrix, where k is the number of strata)

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

NULL. This function should be called for its printed output

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
stratified_2x2_tables(doll_hill_1950)

# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
stratified_2x2_tables(hine_1989)
```

Stuart_test_paired_cxc

The Stuart test for marginal homogeneity

Description

The Stuart test for marginal homogeneity

Described in Chapter 9 "The Paired cxc Table"

Usage

```
Stuart_test_paired_cxc(n)
```

Arguments

n the observed table (a cxc matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Pretherapy susceptability of pathogens (Peterson et al., 2007)
Stuart_test_paired_cxc(peterson_2007)
```

table_7.3

Treatment for ear infection

Description

Status after 21 days treatment of the ear infection acute otitis externa (Van Balen et al., 2003).

Van Balen et al. (2003) report a randomized, double-blind, controlled trial comparing three treatments for an ear infection. The numbers and proportions of patients reported cured and not cured after 21 days of treatment are summarized in Table 7.3. Because there is no ordering between the treatments, we regard Table 7.3 as an unordered 3×2 table.

Usage

```
table_7.3
vanbalen 2003
```

Format

An object of class matrix (inherits from array) with 3 rows and 2 columns.

References

```
Fagerland MW, Lydersen S, Laake P (2017)
Van Balen et al. (2003)
```

table_7.4

Psychiatric Diagnoses and Physical Activity

Description

Psychiatric diagnoses and participation in team sports (Mangerud et al., 2014)

Table 7.4 shows the number of subjects participating in team sports within each of six psychiatric diagnoses, based on data from a study of physical activity in adolescents aged 13 to 18 years who were referred to a child and adolescent psychiatric clinic from 2009 to 2001 (Mangerud et al., 2014). The psychiatric diagnoses are unordered, and we shall treat this as an unordered 6 x 2 table

Usage

```
table_7.4 mangerud_2014_PA
```

Format

An object of class matrix (inherits from array) with 6 rows and 2 columns.

References

Fagerland MW, Lydersen S, Laake P (2017)

table_7.5

Psychiatric diag. vs BMI with hyperkinetic disorders as reference category

Description

Psychiatric diagnoses and weight categories based on age- and sex-adjusted BMI (Mangerud et al., 2014).

Table 7.5 shows the number of thin, normal weight, and overweight subjects within each of six psychiatric diagnoses, based on the same study as in Section 7.2.2 (Mangerud et al., 2014). Body mass index (BMI) is calculated as the weight in kg divided by the squared height in meters. In subjects aged 18 years or older, the cut-off points for being categorized as thin, normal weight, and overweight are BMI less than 18.5, BMI between 18.5 and 25, and BMI above 25, respectively. For younger subjects (below 18 years of age), the categorization was done following internationally adopted cut-off points for age and sex (Cole et al., 2000, 2007). For example, the cut-off point for being overweight at age 13 is 21.91 for males and 22.58 for females.

Usage

```
table_7.5
mangerud_2014_BMI
```

Format

An object of class matrix (inherits from array) with 6 rows and 3 columns.

References

```
Fagerland MW, Lydersen S, Laake P (2017)
Mangerud et al. (2014)
```

table_7.6

Low Birth Weight vs psychiatric morbitidy with control as reference category

Description

Categories of birth weight and psychiatric problems at age 20 years (Lund et al., 2012).

Lund et al. (2012) report psychiatric morbidity in young adulthood in two low birth weight groups and a control group. The subjects were born between 1986 and 1988. The very low birth weight (VLBW) group consisted of babies born preterm with birth weight up to 1500 grams. The small for gestational age at term (SGA) group was born at term with birth weight below the 10th percentile adjusted for gestational age, sex, and parity. The control group was born at term, and was not small for gestational age. Table 7.6 shows the severity level of psychiatric problems at age 20 years. We shall regard the birth groups as unordered; however, the diagnostic groups are naturally ordered. Hence, Table 7.6 is a singly ordered 3×3 table with unordered rows and ordered columns.

Usage

table_7.6 lund_2012

Format

An object of class matrix (inherits from array) with 3 rows and 3 columns.

References

```
Fagerland MW, Lydersen S, Laake P (2017)
Lund et al. (2012)
```

table_7.7

Colorectal cancer (Table 7.7)

Description

Duration of symptoms and tumor stage for patients treated for colorectal cancer (Jullumstroe et al., 2009).

Early detection and treatment of colorectal cancer is beneficial, because advanced stages of colorectal cancer have poorer prognosis. Table 7.7 displays duration of symptoms (rows) versus tumor stage (columns) in a study of 784 patients treated for colorectal cancer at a regional hospital in Norway from 1980 to 2004 (Jullumstroe et al., 2009). The rows as well as the columns are ordered, and Table 7.7 can be regarded as a doubly ordered 4×4 table.

Usage

```
table_7.7
jullumstroe_2009
```

Format

An object of class matrix (inherits from array) with 4 rows and 4 columns.

References

```
Fagerland MW, Lydersen S, Laake P (2017)
Jullumstroe et al. (2009)
```

table_7.8

Breast Tumor

Description

Nuclear pleomorphism from fine needle aspiration smears and breast tumor type (Bofin et al., 2004).

Bofin et al. (2004) studied associations between different findings in fine needle aspiration (FNA) smears from breast tumors and the final histological diagnosis of tumor type in 133 patients. The aim of the study was to identify variables developed from FNA smears that could differentiate between the different tumor diagnoses. Table 7.8 presents the cross-classification of the FNA variable nuclear pleomorphism with tumor types. Both variables can be considered as ordered, with tumor type ordered from benign (as in NPBD) to most malign (as in IDC).

Usage

```
table_7.8
bofin_2004
```

Format

An object of class matrix (inherits from array) with 3 rows and 5 columns.

References

```
Fagerland MW, Lydersen S, Laake P (2017)
Bofin et al. (2004)
```

table_7.9

Self-rated health (Table 7.9)

Description

Self-rated health for 12 to 17 years old adolescents in Young-HUNT 1 and four years later in Young-HUNT 2 (Breidablik et al., 2008).

In the HUNT study (Nord-Trøndelag county health survey), one of the questions is: "How is your overall health at the moment?" The outcome categories are "Very good", "Good", "Not very good", and "Poor". Table 7.9 shows the counts for the adolescents aged 12 to 17 years in 1995 to 1997 (Young-HUNT 1), and for the same individuals four years later (Young-HUNT 2; Breidablik et al. (2008)). Both the rows and the columns are ordered. In this example, it may be appropriate to regard self-rated health as an unobserved (latent) continuous variable, where only a categorized version has been observed. Table 7.9 is actually an example of a paired $c \times c$ table with ordinal data.

Usage

```
table_7.9
breidablik_2008
```

Format

An object of class matrix (inherits from array) with 4 rows and 4 columns.

References

```
Fagerland MW, Lydersen S, Laake P (2017)
Breidablik et al. (2008)
```

```
Tango_asymptotic_score_CI_paired_2x2
```

The Tango asymptotic score confidence interval for the difference between paired probabilities

Description

The Tango asymptotic score confidence interval for the difference between paired probabilities Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Tango_asymptotic_score_CI_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Tango_asymptotic_score_CI_paired_2x2(bentur_2009)
# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Tango_asymptotic_score_CI_paired_2x2(cavo_2012)
```

Tang_asymptotic_score_CI_paired_2x2

The Tang asymptotic score confidence interval for the ratio of paired probabilities

Description

The Tang asymptotic score confidence interval for the ratio of paired probabilities Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Tang_asymptotic_score_CI_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed table (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

tea 115

Examples

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Tang_asymptotic_score_CI_paired_2x2(bentur_2009)

# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Tang_asymptotic_score_CI_paired_2x2(cavo_2012)
```

tea

A lady tasting a cup of tea

Description

A lady tasting a cup of tea

Usage

tea

Format

An object of class matrix (inherits from array) with 2 rows and 2 columns.

the_1x2_table_CIs

The 1x2 Table CIs

Description

The 1x2 Table CIs

Usage

```
the_1x2_table_CIs(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

NULL. This function should be called for its printed output

the_1x2_table_tests

Examples

```
# The number of 1st order male births (Singh et al. 2010)
the_1x2_table_CIs(singh_2010["1st", "X"], singh_2010["1st", "n"])
# The number of 2nd order male births (Singh et al. 2010)
the_1x2_table_CIs(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
# The number of 3rd order male births (Singh et al. 2010)
the_1x2_table_CIs(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
# The number of 4th order male births (Singh et al. 2010)
with(singh_2010["4th", ], the_1x2_table_CIs(X, n)) # alternative syntax
# Ligarden et al. (2010)
the_1x2_table_CIs(ligarden_2010["X"], ligarden_2010["n"])
```

the_1x2_table_tests The 1x2 Table tests

Description

The 1x2 Table tests

Usage

```
the_1x2_table_tests(X, n, pi0)
```

Arguments

X the number of successes

n the total number of observations
pi0 a given probability

Value

NULL. This function should be called for its printed output

```
# Example: The number of 1st order male births (Singh et al. 2010)
the_1x2_table_tests(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = 0.513)
# Example: The number of 2nd order male births (Singh et al. 2010)
the_1x2_table_tests(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = 0.513)
# Example: The number of 3rd order male births (Singh et al. 2010)
the_1x2_table_tests(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = 0.513)
# Example: The number of 4th order male births (Singh et al. 2010)
the_1x2_table_tests(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = 0.513)
# Example: Ligarden et al. (2010)
the_1x2_table_tests(ligarden_2010["X"], ligarden_2010["n"], pi0 = 0.5)
```

the_1xc_table_CIs 117

the_1xc_table_CIs

The 1xc table CIs

Description

The 1xc table CIs

Usage

```
the_1xc_table_CIs(n, alpha = 0.05)
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories)

alpha the nominal level, e.g. 0.05 for 95# CIs

Value

NULL. This function should be called for its printed output

Examples

```
# Genotype counts for SNP rs 6498169 in RA patients
the_1xc_table_CIs(n = snp6498169$complete$n)
```

the_1xc_table_tests

The 1xc table tests

Description

The 1xc table tests

Usage

```
the_1xc_table_tests(n, pi0, chacko.test = FALSE)
```

Arguments

n the observed counts (a 1xc vector, where c is the number of categories)

pi0 given probabilities (a 1xc vector)

chacko.test if TRUE, only performs the Chacko test

Value

NULL. This function should be called for its printed output

Examples

```
# Genotype counts for SNP rs 6498169 in RA patients
the_1xc_table_tests(n = snp6498169$complete$n, pi0 = snp6498169$complete$pi0)
# subset of 10 patients
the_1xc_table_tests(n = snp6498169$subset$n, pi0 = snp6498169$subset$pi0)
# Example for the Chacko test: Hypothetical experiment
the_1xc_table_tests(n = hypothetical, pi0 = c(0.402, 0.479, 0.119), TRUE)
```

```
the_2x2_table_CIs_difference
```

The 2x2 table CIs difference

Description

Wrapper for _CI_2x2 functions on Chapter 4.

Usage

```
the_2x2_table_CIs_difference(n, alpha = 0.05)
```

Arguments

n frequency matrix

alpha type I error

Value

NULL. This function should be called for its printed output

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004) the_2x2_table_CIs_difference(perondi_2004)
```

```
\# The association between CHRNA4 genotype and XFS (Ritland et al., 2007) the _2x2\_table\_CIs\_difference (ritland <math display="inline">_2007)
```

the_2x2_table_CIs_OR The 2x2 table CIs odds ratio

Description

Wrapper for _CI_OR_2x2 functions on Chapter 4.

Usage

```
the_2x2_table_CIs_0R(n, alpha = 0.05)
```

Arguments

n frequency matrix alpha type I error

Value

NULL. This function should be called for its printed output

Examples

```
# Example: A lady tasting a cup of tea
the_2x2_table_CIs_OR(tea)

# Example: Perondi et al. (2004)
the_2x2_table_CIs_OR(perondi_2004)

# Example: Lampasona et al. (2013)
the_2x2_table_CIs_OR(lampasona_2013)

# Example: Ritland et al. (2007)
the_2x2_table_CIs_OR(ritland_2007)
```

```
the_2x2_table_CIs_ratio
```

The 2x2 table CIs ratio

Description

Wrapper for _CI_2x2 functions on Chapter 4.

Usage

```
the_2x2_table_CIs_ratio(n, alpha = 0.05)
```

the_2x2_table_tests

Arguments

n frequency matrix

alpha type I error

Value

NULL. This function should be called for its printed output

See Also

```
the 2x2_table_CIs_difference the 2x2_table_CIs_OR the 2x2_table_tests
```

Examples

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004)
the_2x2_table_CIs_ratio(perondi_2004)

# The association between CHRNA4 genotype and XFS (Ritland et al., 2007)
the_2x2_table_CIs_ratio(ritland_2007)
```

the_2x2_table_tests

The 2x2 table tests

Description

Wrapper for _test_2x2 functions on Chapter 4.

Usage

```
the_2x2_table_tests(n, gamma = 1e-04)
```

Arguments

n frequency matrix

gamma parameter for the Berger and Boos procedure

Value

NULL. This function should be called for its printed output

the_2xc_table 121

Examples

```
# Example: A lady tasting a cup of tea
the_2x2_table_tests(tea)

# Example: Lampasona et al. (2013)
the_2x2_table_tests(lampasona_2013)

## Not run:
    the_2x2_table_tests(perondi_2004) # Example: Perondi et al. (2004)
    the_2x2_table_tests(ritland_2007) # Example: Ritland et al. (2007)

## End(Not run)
```

the_2xc_table

The 2xc table

Description

The 2xc table

Usage

```
the_2xc_table(n, alpha = 0.05, direction = "increasing")
```

Arguments

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs direction the direction of the success probabilities

Value

NULL. This function should be called for its printed output.

```
## Not run:
# The Adolescent Placement Study (Fontanella et al., 2008)
the_2xc_table(fontanella_2008)

# Postoperative nausea (Lydersen et al., 2012a)
the_2xc_table(lydersen_2012a, direction = "decreasing")
## End(Not run)
```

```
the_paired_2x2_table_CIs_difference

The Paired 2x2 table CIs difference
```

Description

The Paired 2x2 table CIs difference

Usage

```
the_paired_2x2_table_CIs_difference(n, alpha = 0.05)
```

Arguments

n frequency matrix alpha type I error

Value

NULL. This function should be called for its printed output.

Examples

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
the_paired_2x2_table_CIs_difference(bentur_2009)

# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
the_paired_2x2_table_CIs_difference(cavo_2012)
```

```
the_paired_2x2_table_CIs_OR

The Paired 2x2 table CIs OR
```

Description

The Paired 2x2 table CIs OR

Usage

```
the_paired_2x2_table_CIs_OR(n, alpha = 0.05)
```

Arguments

n frequency matrix alpha type I error

Value

NULL. This function should be called for its printed output.

Examples

```
the_paired_2x2_table_CIs_OR(ezra_2010)
```

```
the_paired_2x2_table_CIs_ratio

The Paired 2x2 table CIs ratio
```

Description

The Paired 2x2 table CIs ratio

Usage

```
the_paired_2x2_table_CIs_ratio(n, alpha = 0.05)
```

Arguments

n frequency matrix alpha type I error

Value

NULL. This function should be called for its printed output.

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
the_paired_2x2_table_CIs_ratio(bentur_2009)

# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
the_paired_2x2_table_CIs_ratio(cavo_2012)
```

```
the_paired_2x2_table_tests
```

The Paired 2x2 table tests

Description

The Paired 2x2 table tests

Usage

```
the_paired_2x2_table_tests(n, gamma = 1e-04, num_pi_values = 1000L)
```

Arguments

n frequency matrix

gamma parameter for the Berger and Boos procedure

num_pi_values number of values to use in the partition of the nuisance parameter space (de-

fault=1000)

Value

NULL. This function should be called for its printed output.

Examples

```
the_paired_2x2_table_tests(bentur_2009)
the_paired_2x2_table_tests(cavo_2012, gamma = 0, num_pi_values = 10)
the_paired_2x2_table_tests(ezra_2010, gamma = 0, num_pi_values = 20)
```

```
the_paired_cxc_table_nominal
```

The Paired CxC table - nominal

Description

The Paired CxC table - nominal

Usage

```
the_paired_cxc_table_nominal(n, alpha = 0.05)
```

Arguments

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

NULL. This function should be called for its printed output.

Examples

```
# Pretherapy susceptability of pathogens (Peterson et al., 2007)
the_paired_cxc_table_nominal(peterson_2007)
```

```
the_paired_cxc_table_ordinal
```

The Paired CxC table - ordinal

Description

The Paired CxC table - ordinal

Usage

```
the_paired_cxc_table_ordinal(n, a = seq_len(nrow(n)), alpha = 0.05)
```

Arguments

n	the total	number	of	observations

a scores assigned to the outcome categories

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

NULL. This function should be called for its printed output.

```
the_paired_cxc_table_ordinal(fischer_1999, c(8, 3.5, 0, -3.5, -8))
```

the_rxc_table

the_rx2_table

The rx2 table

Description

The rx2 table

Usage

```
the_rx2_table(n, alpha = 0.05, direction = "increasing", skip_exact = FALSE)
```

Arguments

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs direction the direction of the success probabilities

skip_exact If FALSE, skips the exact conditional and mid-P tests for unspecific ordering

(often saves calculation time) ("increasing" or "decreasing")

Value

NULL. This function should be called for its printed output.

Examples

```
the_rx2_table(mills_graubard_1987, skip_exact = TRUE)
the_rx2_table(indredavik_2008, direction = "decreasing", skip_exact = TRUE)
```

the_rxc_table

The rxc table

Description

The rxc table

Usage

```
the_rxc_table(n, alpha = 0.05, nboot = 10000)
```

Arguments

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

nboot number of boostrap samples. If 0, skips tests that use bootstrapping

Value

NULL. This function should be called for its printed output.

Examples

```
set.seed(8047)
# Unordered tables
## Treatment for ear infection (van Balen et al., 2003)
the_rxc_table(table_7.3, nboot = 200)
## Psychiatric diagnoses vs PA (Mangerud et al., 2004)
the_rxc_table(table_7.4, nboot = 0)
# Singly ordered tables
## Psychiatric diag. vs BMI (Mangerud et al., 2004)
the_rxc_table(table_7.5, nboot = 0)
## Low birth weight vs psychiatric morbitidy (Lund et al., 2012)
the_rxc_table(table_7.6, nboot = 150)
# Doubly ordered tables
## Colorectal cancer (Jullumstroe et al., 2009)
the_rxc_table(table_7.7, nboot = 0)
## Breast Tumor (Bofin et al., 2004)
the_rxc_table(table_7.8, nboot = 200)
## Self-rated health (Breidablik et al., 2008)
the_rxc_table(table_7.9, nboot = 0)
```

```
Transformed_Blaker_exact_CI_paired_2x2
```

The Transformed Blaker exact confidence interval for the conditional odds ratio

Description

The Transformed Blaker exact confidence interval for the conditional odds ratio Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Transformed_Blaker_exact_CI_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

Transformed_Blaker_exact_CI_paired_2x2(ezra_2010)

Transformed_Clopper_Pearson_exact_CI_paired_2x2

The Transformed Clopper-Pearson exact confidence interval for the conditional odds ratio

Description

The Transformed Clopper-Pearson exact confidence interval for the conditional odds ratio Described in Chapter 8 "The Paired 2x2 Table"

Usage

Transformed_Clopper_Pearson_exact_CI_paired_2x2(n, alpha = 0.05)

Arguments

n the observed counts (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

Transformed_Clopper_Pearson_exact_CI_paired_2x2(ezra_2010)

Transformed_Clopper_Pearson_midP_CI_paired_2x2

The Transformed Clopper-Pearson mid-P confidence interval for the conditional odds ratio

Description

The Transformed Clopper-Pearson mid-P confidence interval for the conditional odds ratio Described in Chapter 8 "The Paired 2x2 Table"

Usage

Transformed_Clopper_Pearson_midP_CI_paired_2x2(n, alpha = 0.05)

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

Transformed_Clopper_Pearson_midP_CI_paired_2x2(ezra_2010)

Transformed_Wilson_score_CI_paired_2x2

The Transformed Wilson score confidence interval for the conditional odds ratio

Description

The Transformed Wilson score confidence interval for the conditional odds ratio Described in Chapter 8 "The Paired 2x2 Table"

Usage

Transformed_Wilson_score_CI_paired_2x2(n, alpha = 0.05)

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Transformed_Wilson_score_CI_paired_2x2(ezra_2010)
```

```
Trend_estimate_CI_tests_rx2
```

Trend estimate for linear and logit models

Description

Trend estimate for linear and logit models

- The Wald test and CI
- · Likelihood ratio test
- The Pearson goodness-of-fit test
- Likelihood ratio (deviance) goodness-of-fit test

Described in Chapter 5 "The Ordered rx2 Table"

Usage

```
Trend_estimate_CI_tests_rx2(
   n,
   a = seq_len(nrow(n)),
   linkfunction = "logit",
   alpha = 0.05
)
```

Arguments

```
n the observed counts (an rx2 matrix)
a scores assigned to the rows
linkfunction Link function for the binomial distribution see ?family for more details
```

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Alcohol consumption and malformations (Mills and Graubard, 1987)
Trend_estimate_CI_tests_rx2(mills_graubard_1987, 1:5)
# levated troponin T levels in stroke patients (Indredavik et al., 2008)
Trend_estimate_CI_tests_rx2(indredavik_2008, 1:5)
```

```
Uncorrected_asymptotic_score_CI_2x2
```

The uncorrected asymptotic score confidence interval for the odds ratio

Description

The uncorrected asymptotic score confidence interval for the odds ratio

Described in Chapter 4 "The 2x2 Table"

Usage

```
Uncorrected_asymptotic_score_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# A case-control study of GADA exposure on IPEX syndrome
# (Lampasona et al., 2013):
Uncorrected_asymptotic_score_CI_2x2(lampasona_2013)
# The association between CHRNA4 genotype and XFS (Ritland et al., 2007):
Uncorrected_asymptotic_score_CI_2x2(ritland_2007)
```

validateArguments

validateArguments

Validate arguments of a function

Description

This is an internal function used by user-level functions to validate their arguments.

Usage

```
validateArguments(x, types = "default")
```

Arguments

x named list containing function arguments and their values types named vector of types for x

Details

Accepted validation types are:

- "counts"
- "positive"
- "probability"
- "linear, log or logit"
- "MH or IV"
- "logit or probit"
- "increasing or decreasing"
- A vector of possible values

Value

Nothing if all arguments fit their type. An error message otherwise.

Note

Types are evaluated alphabetically, and errors accuse no more than one invalid argument at a time.

Author(s)

Waldir Leoncio

```
Adjusted_inv_sinh_CI_OR_2x2(ritland_2007)
## Not run: Adjusted_inv_sinh_CI_OR_2x2(-ritland_2007)
```

Wald_CI_1x2 133

Wald_CI_1x2

The Wald confidence interval for the binomial probability

Description

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Wald_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Wald_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
Wald_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
Wald_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
with(singh_2010["4th", ], Wald_CI_1x2(X, n)) # alternative syntax
Wald_CI_1x2(ligarden_2010["X"], ligarden_2010["n"]) # Ligarden et al. (2010)
```

Wald_CI_2x2

The Wald confidence interval for the difference between probabilities

Description

The Wald confidence interval for the difference between probabilities Described in Chapter 4 "The 2x2 Table"

Usage

```
Wald_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004): Wald_CI_2x2(n = perondi_2004) # The association between CHRNA4 genotype and XFS (Ritland et al., 2007): Wald_CI_2x2(n = ritland_2007)
```

Wald_CI_AgrestiMin_paired_2x2

The Wald confidence interval for the difference between paired probabilities

Description

The Wald confidence interval for the difference between paired probabilities with the pseudo-frequency adjustment suggested by Agresti and Min (2005) Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Wald_CI_AgrestiMin_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Wald_CI_AgrestiMin_paired_2x2(bentur_2009)
# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Wald_CI_AgrestiMin_paired_2x2(cavo_2012)
```

```
Wald_CI_BonettPrice_paired_2x2
```

The Wald confidence interval for the difference between paired probabilities

Description

The Wald confidence interval for the difference between paired probabilities with the pseudo-frequency adjustment suggested by Bonett and Price(2012) Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Wald_CI_BonettPrice_paired_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Wald_CI_BonettPrice_paired_2x2(bentur_2009)

# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Wald_CI_BonettPrice_paired_2x2(cavo_2012)
```

Wald_CI_CC_1x2

The Wald CI with CC for the binomial probability

Description

The Wald confidence interval with continuity correction for the binomial probability. Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Wald_CI_CC_1x2(X, n, alpha = 0.05)
```

136 Wald_CI_CC_2x2

Arguments

Χ	the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# The number of 1st order male births (Singh et al. 2010)
Wald_CI_CC_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
# The number of 2nd order male births (Singh et al. 2010)
Wald_CI_CC_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
# The number of 3rd order male births (Singh et al. 2010)
Wald_CI_CC_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
# The number of 4th order male births (Singh et al. 2010)
with(singh_2010["4th", ], Wald_CI_CC_1x2(X, n)) # alternative syntax
# Ligarden et al. (2010)
Wald_CI_CC_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

Wald_CI_CC_2x2

The Wald confidence interval for the difference between probabilities

Description

The Wald confidence interval for the difference between probabilities with Yates's continuity correction. Described in Chapter 4 "The 2x2 Table"

Usage

```
Wald_CI_CC_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# An RCT of high vs standard dose of epinephrine (Perondi et al., 2004)
Wald_CI_CC_2x2(perondi_2004)

# The association between CHRNA4 genotype and XFS (Ritland et al., 2007)
Wald_CI_CC_2x2(ritland_2007)
```

```
Wald_CI_diff_CC_paired_2x2
```

The Wald confidence interval for the difference between paired probabilities

Description

The Wald confidence interval for the difference between paired probabilities with continuity correction

Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Wald_CI_diff_CC_paired_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Wald_CI_diff_CC_paired_2x2(bentur_2009)

# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Wald_CI_diff_CC_paired_2x2(cavo_2012)
```

```
Wald_CI_diff_paired_2x2
```

The Wald confidence interval for the difference between paired probabilities

Description

The Wald confidence interval for the difference between paired probabilities Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Wald_CI_diff_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Wald_CI_diff_paired_2x2(bentur_2009)

# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Wald_CI_diff_paired_2x2(cavo_2012)
```

```
Wald_CI_OR_Laplace_paired_2x2
```

The Wald confidence interval for the conditional odds ratio with Laplace adjustment

Description

The Wald confidence interval for the conditional odds ratio with Laplace adjustment Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Wald_CI_OR_Laplace_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
Wald_CI_OR_Laplace_paired_2x2(ezra_2010)
```

Wald_CI_OR_paired_2x2 The Wald confidence interval for the conditional odds ratio

Description

The Wald confidence interval for the conditional odds ratio Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Wald_CI_OR_paired_2x2(n, alpha = 0.05)
```

Arguments

n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
Wald_CI_OR_paired_2x2(ezra_2010)
```

140 Wald_test_1x2

```
Wald_CI_ratio_paired_2x2
```

The Wald confidence interval for the ratio of paired probabilities

Description

The Wald confidence interval for the ratio of paired probabilities Described in Chapter 8 "The Paired 2x2 Table"

Usage

```
Wald_CI_ratio_paired_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed counts (a 2x2 matrix) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Airway hyper-responsiveness before and after stem cell transplantation
# (Bentur et al., 2009)
Wald_CI_ratio_paired_2x2(bentur_2009)

# Complete response before and after consolidation therapy
# (Cavo et al., 2012)
Wald_CI_ratio_paired_2x2(cavo_2012)
```

Wald_test_1x2

The Wald test for the binomial probability (pi)

Description

```
The Wald test for the binomial probability (pi) H_0: pi = pi0 vs H_A: pi \sim= pi0 (two-sided)
```

Usage

```
Wald_test_1x2(X, n, pi0)
```

Arguments

Χ	the number of successes
n	the total number of observations
pi0	a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# The number of 1st order male births (adapted from Singh et al. 2010) Wald_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = 0.1) # The number of 2nd order male births (adapted from Singh et al. 2010) Wald_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = 0.1) # The number of 3rd order male births (adapted from Singh et al. 2010) Wald_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = 0.1) # The number of 4th order male births (adapted from Singh et al. 2010) Wald_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = 0.1) # Ligarden et al. (2010) Wald_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = 0.1)
```

```
Wald_test_and_CI_common_diff_stratified_2x2
```

The Wald test and CI for a common difference between probabilities

Description

The Wald test and CI for a common difference between probabilities based on either the Mantel-Haenszel or inverse variance estimate

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Wald_test_and_CI_common_diff_stratified_2x2(
   n,
   estimatetype = "MH",
   alpha = 0.05
)
```

Arguments

```
n the observed table (a 2x2xk matrix, where k is the number of strata) estimatetype Mantel-Haenszel or inverse variance estimate ('MH' or 'IV') alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
Wald_test_and_CI_common_diff_stratified_2x2(doll_hill_1950)
# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
Wald_test_and_CI_common_diff_stratified_2x2(hine_1989)
```

```
Wald_test_and_CI_common_ratio_stratified_2x2

The Wald test and CI for a common ratio of probabilities
```

Description

The Wald test and CI for a common ratio of probabilities based on either the Mantel-Haenszel or inverse variance estimate

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Wald_test_and_CI_common_ratio_stratified_2x2(
   n,
   estimatetype = "MH",
   alpha = 0.05
)
```

Arguments

```
n the observed table (a 2x2xk matrix, where k is the number of strata) estimatetype Mantel-Haenszel or inverse variance estimate ('MH' or 'IV') alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
Wald_test_and_CI_common_ratio_stratified_2x2(doll_hill_1950)
# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
Wald_test_and_CI_common_ratio_stratified_2x2(hine_1989)
```

```
Wald_test_and_CI_marginal_mean_ranks_paired_cxc

The Wald test and confidence interval for the difference between marginal mean ranks / ridits
```

Description

The Wald test and confidence interval for the difference between marginal mean ranks / ridits Described in Chapter 9 "The Paired cxc Table"

Usage

```
Wald_test_and_CI_marginal_mean_ranks_paired_cxc(n, alpha = 0.05)
```

Arguments

```
n the observed table (a exe matrix)
alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# A comparison between serial and retrospective measurements
# (Fischer et al., 1999)
Wald_test_and_CI_marginal_mean_ranks_paired_cxc(fischer_1999)
```

144 Wald_test_CC_1x2

```
Wald_test_and_CI_marginal_mean_scores_paired_cxc

The Wald test and confidence interval for the difference between marginal mean scores
```

Description

The Wald test and confidence interval for the difference between marginal mean scores Described in Chapter 9 "The Paired exc Table"

Usage

```
Wald_test_and_CI_marginal_mean_scores_paired_cxc(
   n,
   a = seq_len(nrow(n)),
   alpha = 0.05
)
```

Arguments

```
n the observed table (a cxc matrix)
a scores assigned to the outcome categories
alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# A comparison between serial and retrospective measurements
# (Fischer et al., 1999)
a <- c(8, 3.5, 0, -3.5, -8)
Wald_test_and_CI_marginal_mean_scores_paired_cxc(fischer_1999, a)</pre>
```

Wald_test_CC_1x2

The Wald test with continuity correction for the binomial probability

Description

```
The Wald test with continuity correction for the binomial probability (pi) H_0: pi = pi0 vs H_A: pi \sim pi0 (two-sided)
```

Wilson_score_CI_1x2

145

Usage

```
Wald_test_CC_1x2(X, n, pi0)
```

Arguments

pi0

X the number of successes
n the total number of observations

a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# The number of 1st order male births (adapted from Singh et al. 2010)
Wald_test_CC_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = 0.1)
# The number of 2nd order male births (adapted from Singh et al. 2010)
Wald_test_CC_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = 0.1)
# The number of 3rd order male births (adapted from Singh et al. 2010)
Wald_test_CC_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = 0.1)
# The number of 4th order male births (adapted from Singh et al. 2010)
Wald_test_CC_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = 0.1)
# Ligarden et al. (2010)
Wald_test_CC_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = 0.1)
```

Description

The Wilson score confidence interval

Usage

```
Wilson_score_CI_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Reference Wilson EB (1927) Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association 22209-212

Examples

```
# birth order 1, Singh et al. (2010)
Wilson_score_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
# birth order 2, Singh et al. (2010)
Wilson_score_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
# birth order 3, Singh et al. (2010)
Wilson_score_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
# birth order 4, Singh et al. (2010)
with(singh_2010["4th", ], Wilson_score_CI_1x2(X, n)) # alternative syntax
# Ligarden (2010)
Wilson_score_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

```
Wilson_score_CI_CC_1x2
```

The Wilson score confidence interval with continuity correction for the binomial probability

Description

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Usage

```
Wilson_score_CI_CC_1x2(X, n, alpha = 0.05)
```

Arguments

X the number of successes

n the total number of observations

alpha the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Reference Wilson EB (1927) Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association; 22209-212

Woolf_logit_CI_2x2

Examples

```
# The number of 1st order male births (Singh et al. 2010)
Wilson_score_CI_CC_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
# The number of 2nd order male births (Singh et al. 2010)
Wilson_score_CI_CC_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
# The number of 3rd order male births (Singh et al. 2010)
Wilson_score_CI_CC_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
# The number of 4th order male births (Singh et al. 2010)
with(singh_2010["4th", ], Wilson_score_CI_CC_1x2(X, n)) # alternative syntax
# Ligarden et al. (2010)
Wilson_score_CI_CC_1x2(ligarden_2010["X"], ligarden_2010["n"])
```

Woolf_logit_CI_2x2

The Woolf logit confidence interval for the odds ratio

Description

The Woolf logit confidence interval for the odds ratio Described in Chapter 4 "The 2x2 Table"

Usage

```
Woolf_logit_CI_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2 matrix)
alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# A case-control study of GADA exposure on IPEX syndrome
# (Lampasona et al., 2013):
Woolf_logit_CI_2x2(lampasona_2013)
# The association between CHRNA4 genotype and XFS (Ritland et al., 2007):
Woolf_logit_CI_2x2(ritland_2007)
```

```
Woolf_test_and_CI_stratified_2x2
```

The Woolf test and CI for a common odds ratio

Description

The Woolf test and CI for a common odds ratio

(A Wald-type test and CI based on the inverse variance estimate)

Described in Chapter 10 "Stratified 2x2 Tables and Meta-Analysis"

Usage

```
Woolf_test_and_CI_stratified_2x2(n, alpha = 0.05)
```

Arguments

```
n the observed table (a 2x2xk matrix, where k is the number of strata) alpha the nominal level, e.g. 0.05 for 95% CIs
```

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

```
# Smoking and lung cancer (Doll and Hill, 1950)
Woolf_test_and_CI_stratified_2x2(doll_hill_1950)

# Prophylactice use of Lidocaine in myocardial infarction (Hine et al., 1989)
Woolf_test_and_CI_stratified_2x2(hine_1989)
```

Z_unpooled_test_2x2 The Z-unpooled test for association in 2x2 tables

Description

The Z-unpooled test for association in 2x2 tables Described in Chapter 4 "The 2x2 Table"

Usage

```
Z_unpooled_test_2x2(n)
```

Z_unpooled_test_2x2 149

Arguments

n the observed counts (a 2x2 matrix)

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

```
# Example: A lady tasting a cup of tea
Z_unpooled_test_2x2(tea)

# Example: Perondi et al. (2004)
Z_unpooled_test_2x2(perondi_2004)

# Example: Lampasona et al. (2013)
Z_unpooled_test_2x2(lampasona_2013)

# Example: Ritland et al. (2007)
Z_unpooled_test_2x2(ritland_2007)
```

Index

```
* datasets
                                                base::list(), 7-20, 23, 33-38, 40-47,
    bentur_2009, 12
                                                         49-65, 67-95, 97-104, 106, 107,
    cavo_2012, 23
                                                         109, 114, 128–131, 133–149
    doll_hill_1950, 43
                                                base::print(), 98
                                                bentur_2009, 12
    ezra_2010, 48
    fischer_1999, 48
                                                Bhapkar_test_paired_cxc, 13
    fleiss_2003, 52
                                                Blaker_exact_CI_1x2, 13
    fontanella_2008, 52
                                                Blaker_exact_test_1x2, 14
    hine_1989, 57
                                                Blaker_midP_CI_1x2, 15
    hypothetical, 58
                                                Blaker_midP_test_1x2, 16
    indredavik_2008, 59
                                                bofin_2004 (table_7.8), 112
    lampasona_2013, 66
                                                BonettPrice_hybrid_Wilson_score_CI_CC_paired_2x2,
    ligarden_2010,66
                                                BonettPrice_hybrid_Wilson_score_CI_paired_2x2,
    lydersen_2012a, 71
    mills_graubard_1987, 81
    perondi_2004, 95
                                                Bonferroni_type_CIs_paired_cxc, 18
    peterson_2007, 96
                                                Bonferroni_type_CIs_rxc, 18
    ritland_2007, 100
                                                Brant_test_2xc, 19
                                                breidablik_2008 (table_7.9), 113
    singh_2010_1, 105
                                                BreslowDay_homogeneity_test_stratified_2x2,
    snp6498169, 106
    table_7.3, 109
    table_7.4, 109
                                                calc_prob, 21
    table_7.5, 110
                                                calc_Pvalue_4x2, 22
    table_7.6, 111
                                                calc_Pvalue_5x2, 22
    table_7.7, 111
                                                calculate_limit_lower, 20
    table_7.8, 112
                                                calculate_limit_upper, 21
    table_7.9, 113
                                                cavo_2012, 23
    tea, 115
                                                Chacko_test_1xc, 23
.onAttach, 6
                                                chap1, 24
Adjusted_inv_sinh_CI_OR_2x2, 6
                                                chap10, 24
                                                chap2, 25
Adjusted_inv_sinh_CI_ratio_2x2, 7
                                                chap3, 26
Adjusted_log_CI_2x2, 8
                                                chap4, 27
AgrestiCaffo_CI_2x2,9
                                                chap5, 28
AgrestiCoull_CI_1x2, 9
                                                chap6, 29
Arcsine_CI_1x2, 10
                                                chap7, 30
BaptistaPike_exact_conditional_CI_2x2,
                                                chap8, 31
                                                chap9, 32
BaptistaPike_midP_CI_2x2, 12
                                                ClopperPearson_exact_CI_1x2, 33
```

INDEX 151

ClopperPearson_exact_CI_1x2_beta_version, 33	Goodman_Wald_CIs_for_diffs_1xc, 56 Goodman_Wilson_score_CIs_1xc, 57
ClopperPearson_midP_CI_1x2, 34	
Cochran_Q_test_stratified_2x2,38	hine_1989, 57
CochranArmitage_CI_rx2, 35	hypothetical, 58
<pre>CochranArmitage_exact_cond_midP_tests_rx2,</pre>	T
36	Independence_smoothed_logit_CI_2x2, 58
CochranArmitage_MH_tests_rx2,36	indredavik_2008, 59
<pre>CochranMantelHaenszel_test_stratified_2x2,</pre>	Inv_sinh_CI_OR_2x2, 60
37	Inv_sinh_CI_ratio_2x2, 60
contingencytables, 38, 98	<pre>InverseVariance_estimate_stratified_2x2,</pre>
contingencytables-package	59
(contingencytables), 38	Jeffreys_CI_1x2, 61
contingencytables_result, 7-20, 23,	JonckheereTerpstra_test_rxc, 62
33–38, 39, 40–47, 49–65, 67–95,	jullumstroe_2009 (table_7.7), 111
97–104, 106, 107, 109, 114,	Juliums 11 0e_2009 (table_7 . 7), 111
128–131, 133–149	Katz_log_CI_2x2, 62
Cornfield_exact_conditional_CI_2x2, 40	Kendalls_tau_b_rxc, 63
Cornfield_midP_CI_2x2, 41	Kendalls_tau_b_rxc_bca, 64
Cumulative_models_for_2xc, 41	Koopman_asymptotic_score_CI_2x2, 64
Cumulative_models_for_rxc, 42	KruskalWallis_asymptotic_test_rxc, 65
/	Ni donarnarro_doymptotro_test_i xe, os
doll_hill_1950, 43	lampasona_2013, 66
	ligarden_2010,66
<pre>Exact_binomial_test_1x2, 43</pre>	linear_by_linear_test_rxc, 67
<pre>Exact_cond_midP_linear_rank_tests_2xc,</pre>	list_functions, 67
44	LR_CI_1x2, 68
<pre>Exact_cond_midP_tests_rxc, 45</pre>	LR_test_1x2, 69
<pre>Exact_cond_midP_unspecific_ordering_rx2,</pre>	LR_test_1xc, 69
45	LR_test_2x2, 70
<pre>Exact_multinomial_test_1xc, 46</pre>	lund_2012 (table_7.6), 111
Exact_unconditional_test_2x2, 47	lydersen_2012a, 71
ezra_2010, 48	3
	mangerud_2014_BMI (table_7.5), 110
fischer_1999,48	mangerud_2014_PA(table_7.4), 109
Fisher_exact_test_2x2, 49	MantelHaenszel_estimate_stratified_2x2,
Fisher_midP_test_2x2, 50	71
FisherFreemanHalton_asymptotic_test_rxc,	MantelHaenszel_test_2xc,72
49	<pre>McNemar_asymptotic_test_CC_paired_2x2,</pre>
fleiss_2003, <u>52</u>	73
FleissEveritt_test_paired_cxc, 51	<pre>McNemar_asymptotic_test_paired_2x2,74</pre>
FleissLevinPaik_test_paired_cxc, 51	<pre>McNemar_exact_cond_test_paired_2x2,74</pre>
fontanella_2008, 52	McNemar_exact_unconditional_test_paired_2x2
	75
<pre>gamma_coefficient_rxc, 53</pre>	<pre>McNemar_midP_test_paired_2x2,76</pre>
<pre>gamma_coefficient_rxc_bca, 53</pre>	<pre>McNemarBowker_test_paired_cxc, 72</pre>
<pre>Gart_adjusted_logit_CI_2x2, 54</pre>	Mee_asymptotic_score_CI_2x2,77
<pre>Gold_Wald_CIs_1xc, 55</pre>	MidP_binomial_test_1x2,77
Goodman Wald CIs 1xc, 55	MidP multinomial test 1xc. 78

152 INDEX

MiettinenNurminen_asymptotic_score_CI_differ	e ରch eୁଅରିନ୍ଦ୍ରtype_CIs_paired_cxc, 101
79	Scheffe_type_CIs_rxc, 101
MiettinenNurminen_asymptotic_score_CI_OR_2x2	, Score_test_1x2, 102
80	Score_test_and_CI_marginal_mean_scores_paired_cxc
MiettinenNurminen_asymptotic_score_CI_ratio_	2x2, 103
80	Score_test_CC_1x2, 103
mills_graubard_1987, 81	<pre>Score_test_for_effect_in_the_probit_model_2xc,</pre>
ML_estimates, 82	104
ML_estimates_and_CIs_stratified_2x2,	score_test_statistic, 105
82	singh_2010 (singh_2010_1), 105
MOVER_R_Wilson_CI_OR_2x2, 83	singh_2010_1, 105
MOVER_R_Wilson_CI_ratio_2x2, 84	snp6498169, 106
MOVER_Wilson_score_CI_paired_2x2, 84	Spearman_correlation_coefficient_rxc,
	106
Newcombe_hybrid_score_CI_2x2, 85	Spearman_correlation_coefficient_rxc_bca,
Newcombe_square_and_add_CI_paired_2x2,	107
86	stats::uniroot(), 20, 21
	stratified_2x2_tables, 108
Pearson_chi_squared_test_1xc, 86	Stuart_test_paired_cxc, 108
Pearson_chi_squared_test_2x2, 87	
Pearson_chi_squared_test_CC_2x2, 88	table_7.3, 109
Pearson_correlation_coefficient_rxc,	table_7.4, 109
89	table_7.5, 110
Pearson_correlation_coefficient_rxc_bca,	table_7.6, 111
90	table_7.7, 111
Pearson_LR_homogeneity_test_stratified_2x2,	table_7.8, 112
91	table_7.9, 113
Pearson_LR_test_common_effect_stratified_2x2 94	Tang_asymptotic_score_CI_paired_2x2,
Pearson_LR_tests_cum_OR_2xc, 91	<pre>Tango_asymptotic_score_CI_paired_2x2,</pre>
Pearson_LR_tests_rxc, 92	113
<pre>Pearson_LR_tests_unspecific_ordering_rx2,</pre>	tea, 115
93	the_1x2_table_CIs, 115
Pearson_residuals_rxc, 95	the_1x2_table_tests, 116
perondi_2004, 95	the_1xc_table_CIs, 117
peterson_2007, 96	the_1xc_table_tests, 117
Peto_homogeneity_test_stratified_2x2,	the_2x2_table_CIs_difference, 118
96	the_2x2_table_CIs_OR, 119
Peto_OR_estimate_stratified_2x2, 97	the_2x2_table_CIs_ratio, 119
<pre>PriceBonett_approximate_Bayes_CI_2x2,</pre>	the_2x2_table_tests, 120
97	the_2xc_table, 121
print.contingencytables_result, 39, 40, 98	the_paired_2x2_table_CIs_difference,
	the_paired_2x2_table_CIs_OR, 122
QuesenberryHurst_Wilson_score_CIs_1xc,	the_paired_2x2_table_CIs_ratio, 123
99	the_paired_2x2_table_tests, 124
	the_paired_cxc_table_nominal, 124
RBG_test_and_CI_stratified_2x2,99	the_paired_cxc_table_ordinal, 125
ritland_2007, 100	the_rx2_table, 126

INDEX 153

```
the_rxc_table, 126
Transformed_Blaker_exact_CI_paired_2x2,
        127
Transformed_Clopper_Pearson_exact_CI_paired_2x2,
Transformed_Clopper_Pearson_midP_CI_paired_2x2,
Transformed_Wilson_score_CI_paired_2x2,
Trend_estimate_CI_tests_rx2, 130
Uncorrected_asymptotic_score_CI_2x2,
utils::str(), 7-20, 23, 33-38, 40-47,
        49–65, 67–95, 97–104, 106, 107,
        109, 114, 128–131, 133–149
validateArguments, 132
vanbalen_2003 (table_7.3), 109
Wald_CI_1x2, 133
Wald_CI_2x2, 133
Wald_CI_AgrestiMin_paired_2x2, 134
Wald_CI_BonettPrice_paired_2x2, 135
Wald_CI_CC_1x2, 135
Wald_CI_CC_2x2, 136
Wald_CI_diff_CC_paired_2x2, 137
Wald_CI_diff_paired_2x2, 138
Wald_CI_OR_Laplace_paired_2x2, 138
Wald_CI_OR_paired_2x2, 139
Wald_CI_ratio_paired_2x2, 140
Wald_test_1x2, 140
Wald_test_and_CI_common_diff_stratified_2x2,
Wald_test_and_CI_common_ratio_stratified_2x2,
Wald_test_and_CI_marginal_mean_ranks_paired_cxc,
Wald_test_and_CI_marginal_mean_scores_paired_cxc,
Wald_test_CC_1x2, 144
Wilson_score_CI_1x2, 145
Wilson_score_CI_CC_1x2, 146
Woolf_logit_CI_2x2, 147
Woolf_test_and_CI_stratified_2x2, 148
Z_unpooled_test_2x2, 148
```