Dimostrazioni per l'esame di Algebruh

Filippo Troncana, dalle note del professor W. A. De Graaf

Indice

$1 \mod \mathbb{Z}$

DEF. Siano $a, b, d \in \mathbb{Z}$. Allora $d = MCD(a, b) \Leftrightarrow (d|a \wedge d|b) \wedge (c|a \wedge c|b \Rightarrow c|d)$

1.1 Esistenza

Teorema. Siano $a,b\in\mathbb{Z}$. Allora esiste $d\in\mathbb{Z}:d=MCD(a,b)$ ed esistono $s,t\in\mathbb{Z}:d=sa+tb$

Dimostrazione. Se a=b=0 prendiamo banalmente d=0 e s=t=0. Altrimenti definiamo l'insieme:

$$I = \{xa + yb : x, y \in \mathbb{Z}\}\$$

e indichiamo con I^+ il sottoinsieme degli elementi strettamente positivi di I. Per il principio del buon ordinamento, essendo un sottoinsieme di \mathbb{N} ha un minimo che chiamiamo d = (sa + tb).

Dimostriamo che d|a e in modo assolutamente analogo avremo d|b. Facciamo una divisione con resto e otteniamo $q,r\in\mathbb{Z}$ tali che r=a-qb e $0\leq r< d$. Se avessimo $r\neq 0$ allora apparterrebbe a I^+ , ma contraddirrebbe l'ipotesi di minimalità di d, quindi abbiamo r=0 e $qd=a\Leftrightarrow d|a$.

Ora prendiamo $c \in \mathbb{Z}$ tale che c|a e c|b. Allora abbiamo che $a = a_0c$ e $b = b_0c$ per qualche $a_0, b_0 \in \mathbb{Z}$ e che $d = (sa_0 + tb_0)c$, quindi automaticamente abbiamo c|d. QED

1.2 Gli MCD sono associati

Teorema. Siano $a, b, d, d' \in \mathbb{Z}$ tali che d = MCD(a, b) e d' = MCD(a, b). Allora d e d' sono associati, ovvero $d = \pm d'$

Dimostrazione. Prendiamo $a, b, d, d' \in \mathbb{Z}$ tali che d = MCD(a, b), d' = MCD(a, b). Segue automaticamente che d|d' e d'|d, quindi $d = \pm d'$. QED Per convenzione e semplicità prendiamo il valore positivo tra i due MCD di due numeri, permettendo di definirlo come funzione $\mathbb{Z}^2 \to \mathbb{Z}$

2 Fattorizzazione di polinomi

DEF. Dato un insieme $(\mathbb{F}, +, \times)$ dotato di due leggi di composizione interna tali che esso sia un anello e $(\mathbb{F}\setminus\{0\}, \times)$ sia un gruppo abeliano. allora $(\mathbb{F}, +, \times)$ si dice **campo**.

Teorema. Sia $(\mathbb{F}, +, \times)$ un campo e $\mathbb{F}[x]$ l'anello dei suoi polinomi. Sia $f \in \mathbb{F}[x]$ un polinomio tale che esista $a \in \mathbb{F}$ tale che f(a) = 0. Allora si ha che (x - a)|f.

Dimostrazione. Prendiamo $f \in \mathbb{F}[x]$ e $a \in \mathbb{F}$ tale che f(a) = 0. Eseguiamo una divisione con resto e otteniamo $q, r \in \mathbb{F}[x]$ tali che $f = q \times (x - a) + r$ e $0 \le \deg r < \deg(x - a) = 1 \Rightarrow r \in \mathbb{F}$. Allora si ha che $f(a) = q(a) \times (a - a) + r = 0 + r = 0 \Rightarrow r = 0 \Rightarrow (x - a)|f$ QED

3 Fattorizzazione in un dominio con norma

DEF. Sia $(\mathbb{D}, +, \times)$ un dominio. $a \in \mathbb{D}$ si dice **irriducibile** in \mathbb{D} se non è 0, non è invertibile e se a = bc implica che b o c sia invertibile

Osservazione. Essendo a non invertibile per ipotesi, solo uno dei due può essere invertibile.

Teorema. Sia $(\mathbb{D}, +, \times)$ un dominio dotato di una funzione $\nu : \mathbb{D} \setminus \{0\} \to \mathbb{N}$ (che chiameremo norma nel corso della nostra trattazione) tale che $\nu(ab) > \nu(b)$ per ogni a non invertibile. Ogni elemento non zero e non invertibile di \mathbb{D} può essere scritto come prodotto di irriducibili

Dimostrazione. Sia $S \subset \mathbb{D}$ l'insieme degli $a \in \mathbb{D}$ diversi da zero e non invertibili che non possono essere scritti come prodotto di irriducibili, e supponiamolo non vuoto. Chiaramente gli elementi di S non possono essere essi stessi irriducibili. Con un abuso di notazione paragonabile al mio abuso di sostanze stupefacenti, sia $\nu(S) \subseteq \mathbb{N}$ l'insieme dei valori della norma di elementi di S, chiaramente non vuoto.

In quanto sottoinsieme non vuoto di \mathbb{N} , deve avere un minimo che chiamiamo n_0 , al quale deve corrispondere $a_0 \in S$ tale che $\nu(a_0) = n_0$. Visto che a_0 non può essere irriducibile nè prodotto di irriducibili, può essere scritto come $a_0 = b_0 c_0$ per qualche b_0 e c_0 in \mathbb{D} .

Sia b_0 che c_0 però devono appartenere a S, perchè nessuno dei due può essere

invertibile e se fossero irriducibili o prodotto di irriducibili allora a_0 stesso lo sarebbe. Ma allora avremmo $n_0 = \nu(a_0) = \nu(b_0c_0)$ quindi per ipotesi maggiore sia di $\nu(b_0)$ che di $\nu(c_0)$, entrambi elementi di $\nu(S)$, che allora deve essere vuoto (in quanto sottoinsieme di $\mathbb N$ che abbiamo dimostrato non avere minimo) e implica evidentemente che anche S sia vuoto. QED

4 Fattorizzazione essenzialmente unica se e solo se primalità di ogni irriducibile

DEF. Sia $(\mathbb{D}, +, \times)$ un dominio. $a \in \mathbb{D}$ si dice **primo** se è diverso da zero, non è invertibile e a|bc implica che a|b o a|c.

Osservazione. Una definizione un po' meno intuitiva rispetto alla solita, ma permette un'estensione più semplice oltre ai numeri primi in \mathbb{Z} .

DEF. Sia $(\mathbb{D}, +, \times)$ un dominio in cui ogni elemento a non zero e non invertibile si può scrivere come prodotto di irriducibili, ovvero $a = p_1...p_s$, con p_i irriducibile per ogni i. Una scrittura di questo tipo si dice **fattorizzazione** di a. Questa fattorizzazione si dice **essenzialmente unica** se data una qualsiasi altra fattorizzazione $a = q_1...q_t$, si ha s = t ed esiste un ordine in cui p_i e q_i sono associati per ogni i. (Un dominio a fattorizzazione unica si indica per brevità con UFD, Unique Factorization Domain.

Teorema. Sia $(\mathbb{D},+,\times)$ un dominio in cui ogni elemento diverso da zero e non invertibile può essere scritto come prodotto di irriducibili. Ogni fattorizzazione in \mathbb{D} è essenzialmente unica se e solo se ogni irriducibile in \mathbb{D} è anche primo.

Dimostrazione. Come di consueto, dividiamo in due parti la dimostrazione per dimostrare l'implicazione in entrambe le direzioni.

"UFD ⇒ primalità degli irriducibili"

Supponiamo che $(\mathbb{D}, +, \times)$ sia un dominio a fattorizzazione unica e prendiamo un irriducibile qualsiasi $a \in \mathbb{D}$ per dimostrare che è primo. Supponiamo a|bc per qualche $b, c \in \mathbb{D}$, dunque esiste $d \in \mathbb{D}$ tale che bc = ad.

Scriviamo le fattorizzazioni di bc e ad:

$$b_1...b_rc_1...c_s = ad_1...d_t$$

Per definizione di UFD, esistono i e j tali che a sia associato a b_i o c_j , supponiamo dunque $b_i = ua$ con $u \in \mathbb{D}$ invertibile, dunque si ha a|b, analogamente si ha che nel caso di c_j abbiamo a|c, perciò abbiamo che a è primo.

"Primalità degli irriducibili \Rightarrow UFD"

Supponiamo che ogni irriducibile in \mathbb{D} sia primo e prendiamo $a \in \mathbb{D}$ e due sue fattorizzazioni, ovvero $a = p_1...p_m = q_1...q_n$.

Possiamo assumere senza perdita di generalità che $n \geq m$. Dato che p_1 è primo, deve dividere almeno un q_i , quindi dopo aver riordinato in modo che si

abbia i=1 possiamo scrivere $q_1=u_1p_1$. Ma essendo q_1 irriducibile, si ha che u_1 deve essere invertibile. Otteniamo l'equazione $p_2...p_m=u_1q_2...q_n$, dove p_2 non può dividere u_1 perchè altrimenti sarebbe invertibile. Continuiamo per m passi finchè non otteniamo l'uguaglianza $1=u_1...u_mq_{m+1}...q_n$. n>m implicherebbe $q_n|1$, dunque sarebbe invertibile quando per definizione è irriducibile, dunque abbiamo necessariamente n=m, e $p_i=u_iq_i$ per ogni i, dunque ogni fattorizzazione è unica.

5 Fattorizzazione in dominio euclideo

DEF. Sia $(\mathbb{D},+,\times)$ un dominio nel quale è possibile definire una norma $\nu: \mathbb{D}\setminus\{0\} \to \mathbb{N}$ tale che $\forall a,b \in \mathbb{D}, \nu(ab) \geq \nu(a)$ e tale che è possibile eseguire la divisione con resto, ovvero $\forall a,b \in \mathbb{D}, \exists q,r \in \mathbb{D}: \nu(r) < \nu(b)$ e a=qb+r. Allora $(\mathbb{D},+,\times)$ si dice **dominio euclideo**.

Teorema. Sia $(\mathbb{D}, +, \times)$ un dominio euclideo. Allora ogni $a \in \mathbb{D}$ non zero e non invertibile si può scrivere come prodotto di irriducibili.

Suggerimento. Si può usare il teorema 3 senza fornirne la dimostrazione.

Dimostrazione. Sia $(\mathbb{D}, +, \times)$ un dominio euclideo, e $a, b \in \mathbb{D}$ diversi da zero e a non invertibile. Allora esistono $q, r \in \mathbb{D}$ tali che b = qab + r con r = 0 oppure $\nu(r) < \nu(ab)$. Se avessimo r = 0, allora avremmo 1 = qa e dunque a sarebbe invertibile, in contraddizione con l'ipotesi, dunque r deve essere diverso da zero. Dunque abbiamo $\nu(ab) > \nu(r) = \nu(b(1 - qa) \ge \nu(b))$, ovvero $\nu(ab) > \nu(b)$ e quindi otteniamo le ipotesi del teorema 3 che garantisce la fattorizzazione in irriducibili. QED

6 Primalità degli irriducibili in un dominio euclideo

Teorema. Sia $(\mathbb{D},+,\times)$ un dominio euclideo. Ogni irriducibile in \mathbb{D} è primo.

Dimostrazione. Sia $(\mathbb{D}, +, \times)$ e $a, b, c, d \in \mathbb{D}$ tali che a sia irriducibile e a|bc e d = MCD(a, b), allora si ha che d|a e dunque a = ud, ma essendo a irriducibile almeno uno tra u e d deve essere invertibile.

Assumendo u invertibile abbiamo a|d e dunque a|b.

Assumendo d invertibile, scriviamo d=sa+tb con opportuni $s,t\in\mathbb{D}$. Dunque abbiamo $1=d^{-1}sa+d^{-1}tb$ e quindi $c=d^{-1}sac+d^{-1}tbc$. Dato che a|bc, abbiamo che esiste $v\in\mathbb{D}$ tale che bc=va, dunque abbiamo $c=d^{-1}sac+d^{-1}tva$, ovvero $c=(d^{-1}sc+d^{-1}tv)a$ e quindi a|c. QED

7 Struttura di campo di $\mathbb{Z}/p\mathbb{Z}$

DEF. Dato $n \in \mathbb{Z}$ definiamo come **conguenza modulo n** la relazione di equivalenza in \mathbb{Z} data da $a \equiv b \mod n \Leftrightarrow n | (a - b)$

DEF. Dato $n \in \mathbb{Z}$ indichiamo con $\mathbb{Z}/n\mathbb{Z}$ l'insieme delle classi di congruenza modulo n.

Lemma. Dato $n \in \mathbb{Z}$ e l'insieme $\mathbb{Z}/n\mathbb{Z}$ delle classi di congruenza modulo n, esso ha esattamente n elementi, e può essere scritto come $\{[0], ..., [n-1]\}$.

Lemma. Dato $n \in \mathbb{Z}$ e l'insieme $\mathbb{Z}/n\mathbb{Z}$ delle classi di congruenza modulo n, possiamo definire una somma e un prodotto in esso:

$$[a] + [b] = [a+b]$$

$$[a][b] = [ab]$$

Date queste operazioni, $\mathbb{Z}/n\mathbb{Z}$ è un anello commutativo con unità [1].

Teorema. Sia $p \in \mathbb{Z}$ un numero primo. $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ è un campo.

Dimostrazione. Sia $p \in \mathbb{Z}$ un numero primo e $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ l'insieme delle classi di congruenza modulo p. Data la struttura di anello commutativo con unità [1], basta dimostrare che ogni elemento diverso da [0] possiede un inverso moltiplicativo

Prendiamo $a \in \mathbb{Z}$ tale che $[a] \neq [0]$, allora si ha che MCD(a,p) = 1 e perciò esistono $s,t \in \mathbb{Z}$ tali che sa + tp = 1, dunque [s][a] + [t][0] = [1] e perciò [s][a] = [1]. QED

DEF. Sia $p \in \mathbb{Z}$ un numero primo. Indichiamo il campo $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ con \mathbb{F}_p

8 Criterio di Eisenstein

Lemma (Lemma di Gauss). Sia $f \in \mathbb{Z}[x]$ e supponiamo che esistano $g, h \in \mathbb{Q}[x]$ tali che $\deg(g), \deg(h) > 0$ e f = gh. Allora esistono $\alpha, \beta \in \mathbb{Q}$ tali che $\alpha g, \beta h \in \mathbb{Z}[x]$ e $f = (\alpha g)(\beta h)$

Teorema. Sia $f = a_0, ..., a_n x^n \in \mathbb{Z}[x]$, e supponiamo che esista $p \in \mathbb{Z}$ primo tale che p divida tutti i coefficienti tranne a_n e p^2 non divida a_0 . Allora f è irriducibile in $\mathbb{Q}[x]$

Dimostrazione. Consideriamo la mappa $\psi_p : \mathbb{Z}[x] \to \mathbb{F}_p[x]$ data da $\psi_p(b_0 + ... + b_n x^n) = [b_0]_p + ... + [b_n]_p x^n$. Essa è ben definita ed omomorfismo di anelli per la definizione delle operazioni nei vari anelli considerati.

Supponiamo che $f = a_0 + ... + a_n x^n \in \mathbb{Z}[x]$ sia riducibile e che esista il primo p

di cui sopra, dunque per il lemma di Gauss esistono $g, h \in \mathbb{Z}[x]$ tali che f = gh con $\deg(g), \deg(h) \geq 1$. Per le ipotesi su p, abbiamo che $\psi_p(f) = [a_n]_p x^n$ ma anche che $\psi_p(gh) = \psi_p(g)\psi_p(h)$. per la fattorizzazione unica, abbiamo che $\psi_p(g) = [b_r]_p x^r$ e $\psi_p(h) = [c_s]_p x^s$, dunque abbiamo che $p|b_0$ e $p|c_0$, ma quindi avremmo che $p^2|a_0$, escluso per ipotesi, dunque f è irriducibile. QED

9 Teorema del resto cinese

DEF. Siano R, S due anelli. definiamo il **prodotto diretto** $R \times S$ come l'insieme $\{(r, s) | r \in R, s \in S\}$ con le seguenti operazioni:

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b) \times (c,d) = (a \times c, b \times d)$$

Chiaramente con queste operazioni, $R \times S$ è un anello a sua volta.

DEF. Siano R, S due anelli e $f: R \to S$ un omomorfismo tra loro. Il **nucleo** di f è l'insieme degli elementi $a \in R$ tali che f(a) = 0. Lo indichiamo con ker(f).

Lemma. Siano R, S due anelli e $f: R \to S$ un omomorfismo tra loro. Allora f è iniettivo se e solo se $\ker(f) = \{0\}$.

Teorema. Siano $m, n \in \mathbb{Z}^+$ tali che MCD(m, n) = 1. Allora esiste un isomorfismo σ di anelli definito come:

$$\sigma: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

$$[a]_{mn} \rightarrow ([a]_m, [a]_n)$$

Dimostrazione. Supponiamo la situazione dell'ipotesi. Immediatamente abbiamo che σ è un omomorfismo, per la definizione delle operazioni nei vari anelli (è lunga da scrivere come cosa quindi io la ometto ma è davvero banale).

Dimostriamo che $\ker(\sigma) = \{0\}$. Sia $[a]_{mn} \in \mathbb{Z}/mn\mathbb{Z}$ tale che $\sigma([a]_{mn}) = ([0]_m, [0]_n)$, allora per definizione si ha che m|a e n|a, ed essendo m e n coprimi, mn|a e dunque $[a]_{mn} = [0]_{mn}$.

Dimostrata l'iniettività di σ , notiamo che in quanto mappa iniettiva tra insiemi finiti, è suriettiva se e solo se dominio e codominio hanno la stessa cardinalità, cosa abbastanza evidente:

$$|\mathbb{Z}/mn\mathbb{Z}| = mn = |\mathbb{Z}/m\mathbb{Z}||\mathbb{Z}/n\mathbb{Z}| = |\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}|$$

QED

10 Sistema RSA

10.1 Piccolo teorema di Fermat e corollario

Teorema. Sia $p \in \mathbb{Z}$ un numero primo $e \ a \in \mathbb{Z}$ tale che p non divide a. Allora si ha che $a^p \equiv a \mod p$.

Corollario 1. Sia $p \in \mathbb{Z}$ un numero primo $e \ a \in \mathbb{Z}$ tale che p non divide a. Allora si ha che $a^{p-1} \equiv 1 \mod p$.

Dimostrazione. Dimostriamo il teorema per induzione su $a \in \mathbb{N}$, perchè se avessimo a < 0 potremmo scrivere a = -b con $b \in \mathbb{N}$ e con p dispari avremmo $a^p \equiv -b^p \equiv -b \mod p \equiv a \mod p$, mentre con p = 2 avremmo $a^2 = b^2 = b \mod 2 = a \mod 2$.

. Il caso a=0 è banale, quindi supponiamo $a\in\mathbb{N}$ e $a^p\equiv a\mod p$. Allora dimostriamo $(a+1)^p\equiv a+1\mod p$:

$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \dots + \binom{p}{p-1}a + 1$$

Per $1 \le i \le p-1$ abbiamo che $p! = \binom{p}{i}(p-i)!i!$, ma dato che p ovviamente non divide nè (p-i)! nè i!, necessariamente $p|\binom{p}{i}$, dunque abbiamo $(a+1) \equiv a+1$ mod p, dimostrando il teorema per ogni $a \in \mathbb{N}$. QED

Dimostrazione. Dimostriamo il corollario: per il teorema precedente, p divide $a^p - a = a(a^{p-1} - 1)$, ma dato che non divide a per ipotesi abbiamo automaticamente la tesi.

$10.2 \quad a^{x\varphi(pq)+1} = a \mod pq$

Teorema. Siano $p, q \in \mathbb{Z}$ due primi distinti e definiamo la funzione $\varphi(pq) = (p-1)(q-1)$. Sia $x \in \mathbb{N} \setminus \{0\}$. Allora per ogni $a \in \mathbb{Z}$, si ha che $a^{x\varphi(pq)+1} = a \mod pq$.

Dimostrazione. Dimostriamo in primo luogo che p divide $a^{x\varphi(pq)+1}-a$. Se p|a allora è evidente, altrimenti dimostriamo che p divide $a^{x(p-1)(q-1)}-1$. Chiamiamo $A=a^{x(q-1)}$, chiaramente non un multiplo di p indipendentemente dal valore di x, quindi per il piccolo teorema di Fermat si ha che $A^{(p-1)}-1\equiv 0$ mod p.

QED

Analogamente per q.

10.3 Conseguenze per il sistema RSA

Ma questa cosa perchè è utile per il sistema RSA? Beh, innanzitutto, come si cripta un messaggio in RSA?

Algoritmo. Per criptare un messaggio in RSA è necessario:

- 1. Assegnare un valore numerico a ognuno dei simboli possibili presenti nel messaggio, da 0 a k-1, dove k è il numero di simboli possibili.
- 2. Riscrivere il proprio messaggio come sequenza di numeri.
- 3. Scegliere due numeri primi distinti p e q, più grandi sono meglio è, e calcolare n = pq e $\varphi(n) = (p-1)(q-1)$.
- 4. Scegliere un r tale che $1 < r < \varphi(n)$ e che sia coprimo a $\varphi(n)$
- 5. Con l'algoritmo di Euclide esteso, calcoliamo s e t tali che $0 < s < \varphi(n)$ e $st + t\varphi(n) = 1$.
- 6. Definiamo la coppia (r,n) chiave pubblica e la coppia (s,n) chiave privata.
- 7. Dunque criptiamo l'intero $0 \le a < n$ come l'intero $0 \le b < n$ calcolando $b \equiv a^r \mod n$ e lo decriptiamo successivamente calcolando $a \equiv b^s \mod n$

Dimostrazione informale. Adesso supponiamo $p,q,r,s,n,\varphi(n)$ come sopra. Visto che assumiamo r e s positivi, t deve essere necessariamente negativo, dunque abbiamo:

$$(a^r)^s = a^{rs} = a^{-t\varphi(n)+1} \equiv a \mod n$$

Da ciò segue la correttezza dell'algoritmo, ovvero che criptazione e decriptazione sono inverse. QED

11 Omomorfismi

DEF. Sia $(R, +, \times)$ un anello. Un insieme $I \subseteq R$ si dice **ideale** se contiene lo zero, per ogni $a, b \in I$ si ha che $a - b \in I$ e per ogni $a \in R$ e $b \in I$ si ha che $ab, ba \in I$.

DEF. Sia $(R, +, \times)$ un anello e I un suo ideale. Definiamo la relazione di equivalenza $a \equiv b \Leftrightarrow a - b \in I$. Indichiamo la classe di equivalenza di un generico elemento $a \in R$ come a + I. L'insieme di queste classi di equivalenza è detto **quoziente** di R e I e si indica come R/I.

Lemma. Sia $(R, +, \times)$ un anello e I un suo ideale. Allora R/I eredita da R le definizioni di somma e prodotto e la struttura di anello:

$$(a+I) + (b+I) = (a+b) + I$$

 $(a+I)(b+I) = ab + I$

11.1 Idealità del nucleo

Teorema. Siano R, S due anelli, e sia $f: R \to S$ un omomorfismo tra loro. Il nucleo di f è un ideale di R.

Dimostrazione. Prendiamo $a, b \in \ker(f)$, segue automaticamente che in quanto omomorfismo tra anelli si ha f(a-b) = f(a) - f(b) = 0, dunque $a-b \in \ker(f)$. Allo stesso modo, f(0) = f(a-a) = f(a) - f(a) = 0, perciò $0 \in \ker(f)$ Infine, prendiamo un qualsiasi $k \in R$, abbiamo f(ka) = f(k)f(a) = 0f(k) = 0, perciò $ka \in \ker(f)$ (analogamente per ak). QED

11.2 Iniettività in $S/\ker(f)$

Teorema. Siano R, S due anelli, e sia $f: R \to S$ un omomorfismo tra loro. Allora f induce un omomorfismo iniettivo $\hat{f}: R/\ker(f) \to S$ definito come $\hat{f}(a + \ker(f)) = f(a)$

Dimostrazione. Dimostriamo innanzitutto che \hat{f} è ben definito: prendiamo $a, b \in R$ tali che $a \equiv b$ e tentiamo di dimostrare $\hat{f}(a + \ker(f)) = \hat{f}(b + \ker(f))$. Abbiamo che $a - b \in \ker(f)$, dunque $\hat{f}(a + \ker(f)) - \hat{f}(b + \ker(f)) = \hat{f}(a + \ker(f) - b + \ker(f)) = f(a - b) = 0$, perciò $\hat{f}(a + \ker(f)) = \hat{f}(b + \ker(f))$.

Il fatto che \hat{f} sia un omomorfismo segue immediatamente dalla struttura di anello di $R/\ker(f)$ ereditata da R.

Ora dimostriamo che è iniettiva, ovvero che il suo nucleo è $\{0 + \ker(f)\}$. Prendiamo $a + \ker(f) \in \ker(\hat{f})$, allora abbiamo $a \in \ker(f)$, quindi $a \equiv 0$. QED

12 Dominio euclideo \Rightarrow PID

DEF. Sia $(\mathbb{D}, +, \times)$ un dominio. Un ideale I di \mathbb{D} si dice **principale** se è della forma $I = \{ba : b \in \mathbb{D}\}$ con $a \in \mathbb{D}$ fissato, e si indica con $\langle a \rangle$.

DEF. Sia $(\mathbb{D}, +, \times)$ un dominio. Si dice **a ideali principali** (per brevità PID, *Principal Ideals Domain*) se tutti i suoi ideali sono principali.

Teorema. Sia $(\mathbb{D}, +, \times)$ un dominio euclideo. Allora \mathbb{D} è un dominio a ideali principali.

Dimostrazione. Siano $(\mathbb{D}, +, \times)$ un dominio euclideo e $\nu : \mathbb{D} \setminus \{0\} \to \mathbb{N}$ come da definizione. Prendiamo un ideale $I \subseteq \mathbb{D}$.

Se $I = \{0\}$, automaticamente $I = \langle 0 \rangle$. Altrimenti contiene elementi non zero. Sia $S = \nu(I \setminus \{0\})$. In quanto sottoinsieme di \mathbb{N} , possiede un minimo che chiamiamo m_0 , quindi prendiamo $b \in I \setminus \{0\}$ tale che $\nu(b) = m_0$. Sia $a \in I \setminus \{0\}$ ed eseguiamo la divisione con resto, quindi troviamo $s, r \in \mathbb{D}$ con $\nu(r) < \nu(b)$ oppure r = 0 tali che a = qb + r. Allora avremmo r = a - qb con $a, qb \in I$,

da cui segue $r \in I$, ma per la scelta di minimalità di $\nu(b)$ necessariamente si ha r = 0, perciò per ogni $a \in I$ si ha che a = qb e perciò $I = \langle b \rangle$. QED

13 Primalità di un ideale se e solo se quoziente è dominio

DEF. Sia $(\mathbb{A}, +, \times)$ un anello commutativo unitario e $I \subseteq \mathbb{A}$ un suo ideale. Allora I si dice **primo** se è un sottoinsieme proprio di \mathbb{A} e per ogni $ab \in I$ si ha $a \in I$ oppure $b \in I$.

Teorema. Sia $(A, +, \times)$ un anello commutativo unitario e $I \subseteq A$ un suo ideale. Allora I è primo se e solo se A/I è un dominio.

Dimostrazione. Supponiamo che I sia primo. Abbiamo che R/I è già un anello commutativo e unitario, quindi ci basta dimostrare $1\not\equiv 0$ e che non ci sono divisori dello zero. Innanzitutto, $1\equiv 0$ implicherebbe direttamente $1\in I$, dunque avremmo $I=\langle 1\rangle=\mathbb{A}$, assurdo, quindi $1\not\equiv 0$. Supponiamo $a,b\in\mathbb{A}$ tali che $ab\equiv 0$, ma quindi avremmo $ab\in I$, dunque avremmo $a\equiv 0$ o $b\equiv 0$. Ora supponiamo che \mathbb{A}/I sia un dominio. Abbiamo automaticamente $1\not\equiv 0$, dunque $I\subset\mathbb{A}$. Siano $a,b\in\mathbb{A}$ tali che $ab\equiv 0$, ma non essendoci divisori dello zero abbiamo $a\equiv 0$ o $b\equiv 0$.

14 Massimalità di un ideale se e solo se quoziente è campo

DEF. Sia $(\mathbb{A}, +, \times)$ un anello commutativo unitario e $I \subseteq \mathbb{A}$ un suo ideale. Allora I si dice **massimale** se è un sottoinsieme proprio di \mathbb{A} e gli unici ideali di \mathbb{A} in cui è contenuto sono sè stesso ed \mathbb{A} .

Teorema. Sia $(\mathbb{A}, +, \times)$ un anello commutativo unitario e $I \subseteq \mathbb{A}$ un suo ideale. Allora I è massimale se e solo se \mathbb{A}/I è un campo.

Dimostrazione. Supponiamo I massimale. Abbiamo gratis che \mathbb{A}/I è un anello commutativo e unitario, dunque basta dimostrare che $1\not\equiv 0$, che ogni elemento non zero ha un inverso moltiplicativo. Come sopra, $1\equiv 0$ implicherebbe $I=\mathbb{A}$, già escluso, dunque $I\not\equiv 0$. Prendiamo $a\in \mathbb{A}$ tale che $a\not\equiv 0$ e $J=I+\langle a\rangle$. Automaticamente $I\subset J$ e $I\not\equiv J$, dunque $J=\mathbb{A}$, quindi abbiamo $c\in I$ e $b\in R$ tali che c+ab=1, dunque $ab\equiv 1-c\equiv 1$.

Adesso supponiamo che \mathbb{A}/I sia un campo. Abbiamo subito $1\not\equiv 0$ e quindi $I\not\equiv \mathbb{A}$. Sia $J\subseteq \mathbb{A}$ un ideale tale che $I\subseteq J\subseteq \mathbb{A}$ e supponiamo $I\not\equiv J$. Prendiamo $a\in J\backslash I$ e dato che \mathbb{A}/I è un campo, esiste $b\in \mathbb{A}$ tale che $ab\equiv 1\equiv 1+c$ per ogni $c\in I$, dunque abbiamo $ab\in J$, dunque $ab-c\in J$ e quindi $1\in J$, perciò abbiamo $J=\mathbb{A}$.