

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

Nº de publication :

(A nutiliser que pour le classement et les commandes de reproduction.)

69.36157

2.024.807

(21) Nº d'enregistrement national :

(A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec l'I.N.P.I.)

DEMANDE DE BREVET D'INVENTION

11º PUBLICATION

(22)	Date de dépôt22 o	ctobre 1969 à 11 h 30 mn.
41)	Date de la mise à la disposition du public de la demande B.O.I	P.I. — « Listes » nº 32 du 4-9-1970
(51) (71)	Classification internationale (Int. Cl.) C 09 Déposant : Société dite : CIBA SOCIÉTÉ A	
·	Mandataire : Alain Casalonga, 8, Avenue Percie	er, Paris (8°).
• 54	Nouveaux colorants exempts de groupes cédé de préparation et leur emploi.	12.
	$(1, \dots, \frac{1}{2}, 1, \dots, \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2$	The service of the se
72	Invention:	
33 23 31	Priorité conventionnelle : Demande de breve	et déposée en Suisse le 7 no-

ne, -0H-0H-0O-naiogéne et -0H -0HT-00-halogéne, Les éclerants conformes à l'invention contingues nas exemple, un groupé l'illé à un groupe endnogène ét avail

vembre 1968, nº 16590/68 au nom de la demanderesse.

Vente des fascicules à l'IMPRIMERIE NATIONALE, 27, rue de la Convention PARIS (15")

CODY

ATTORNEY DOCKET NUMBER: 10624-053-999 SERIAL NUMBER: 10/071,390

REFERENCE: AD

20

30

35

groupes

L'invention a pour objet de nouveaux composés précieux et exempts de groupes acides aquasolubilisants, composés ayant le caractère d'un colorant et contenant au moins un reste acyle Z capable de réagir sur la fibre et lié à un groupe aminogène, reste provenant d'un acide cycloaliphatique halogéné et surtout d'un reste carbonique ayant la formule

dans laquelle T_1 , T_2 sont des atomes d'hydrogène ou de chlore ou des groupes carboxyliques, cyano, nitro ou sulfoniques ou des groupes -T', -OT', -COOT''', $-SO_2-NT'T''$, $-SO_2T'$ ou -CO-NT'-T'', les deux substituants T_1 pouvant indiquer conjointement une liaison supplémentaire entre les atomes de carbone C_1-C_4 ; T' et T'' désignent des atomes d'hydrogène ou des groupes alkyles ou aryles, T''' un groupe alkyle ou aryle, X un atome d'hydrogène ou d'halogène, de préférence de fluor ou de chlore, B l'un des

et T' et T" ont les significations mentionées ci-dessus.

Pour l'introduction de ce groupement dans un colorant ou un composant de colorant contenant au moins un groupe -NHT', T' ayant la signification déjà indiquée, on utilise un composé ayant la formule générale

dans laquelle T₁, T₂ et X ont la signification mentionnée et E est un groupe -CO-halogène, -SO₂-halogène, -CH₂-CH₂-SO₂-halogène, -CH=CH-CO-halogène et -CHT'-CHT"-CO-halogène.

Les colorants conformes à l'invention contiennent, par exemple, un groupe Z' lié à un groupe aminogène et ayant la formule

L'invention a pour objet par exemple des colorants azolques, surtout mono- et disazolques, anthraquinoniques, 5 de périnone, de quinophtalone ainsi que des colorants styryliques et nitro.

Colorants azolques.

Parmi les colorants particulièrement précieux, on cite les colorants monoazolques ayant la formule

D-N=N-A-NR $_1$ R $_2$, dans laquelle D est le reste d'un composant diazolque, A un reste arylène, surtout un reste 1,4-phénylène portant éventuellement des substituants, R $_1$ et R $_2$ chacun un groupe alkyle portant éventuellement des substituants, au moins un des restes D, A,

15 R₁ et R₂ contenant un reste Z réagissant sur la fibre, Z indiquant le reste acyle cycloaliphatique et halogéné tel qu'il est défini ci-dessus.

Le reste D diazolque provient principalement d'amines mono- ou bicycliques ayant la formule

20 D-NH₂

telles que des amines hétérocycliques quelconques et diazotables qui ne contiennent pas de substituants acides aquasolubilisants, mais, de préférence d'amines contenant un noyau pentagonal hétérocyclique ayant 2 ou 3 atomes hétérogènes, surtout

un atome d'azote et 1 ou 2 atomes de soufre, d'oxygène ou d'azote comme hétéroatomes et d'aminobenzènes, surtout de ceux ayant la formule a

dans laquelle a est un atome d'hydrogène ou d'halogène, un grou-

pe alkyle, alcoxy, phénoxy, nitro, cyano, carbalcoxy ou alkylsulfone, b un atome d'hydrogène ou d'halogène, un groupe alkyle, cyano ou trifluorométhyle et c' est un groupe nitro, cyano-, carbalcoxy, sulfonamide ou alkylsulfonyle.

Comme exemples de telles amines, on mentionne les suivantes :

- 2-aminothiazole,

35

2-amino-5-nitrothiazole,

40 2-amino-5-méthylsulfonyl-thiazole,

```
2-amino-5-cyanothiazole,
        2-amino-4-méthyl-5-nitrothiazole, .
        2-amino-4-méthylthiazole,
        2-amino-4-phénylthiazole,
        2-amino-4-(4'-chloro)-phénylthiazole,
        2-amino-4-(4'-nitro)-phénylthiazole,
         3-aminopyridine,
         3-aminoquinoléine,
         3-aminopyrazole,
         3-amino-l-phénylpyrazole,
10
         3-aminoindazole,
         3-amino-1,2,4-triazole,
         5-(méthyl-, éthyl-, phényl- ou benzyl-)-1,2,4-triazole,
         3-amino-1-(4'-méthoxyphényl)-pyrazole,
         2-aminobenzothiazole,
15
          2-amino-6-méthylbenzothiazole,
          2-amino-6-méthoxybenzothiazole,
          2-amino-6-chlorobenzothiazole,
          2-amino-6-cyanobenzothiazole,
          2-amino-6-thiocyanobenzothiazole,
 20
          2-amino-6-nitrobenzothiazole,
          2-amino-6-carboéthoxybenzothiazole,
           2-amino-(4- ou 6-)méthylsulfonylbenzothiazole,
        2-amino-1,3,4-thiadiazole,
          2-amino-1,3,5-thiadiazole,
 25
           2-amino-4-phényl- ou -4-méthyl-1,3,5-thiadiazole,
           2-amino-5-phényl-1,3,4-thiadiazole,
           2-amino-3-nitro-5-méthylsulfonylthiophène,
           2-amino-3,5-bis-(méthylsulfonyl)-thiophène,
  30 5-amino-3-méthyl-isothiazole,
            2-amino-4-cyáno-pyrazole,
           2-(4'-nitrophényl)-3-amino-4-cyanopyrazole,
            3-- ou 4-aminophtalimide,
            1-amino-4-chlorobenzène, a so poi engri de la guardina de la companya de la compa
           1-amino-4-bromobenzène,
            l-amino-4-méthylbenzène,
                                                                                                                 : Leo Tevido
             l-amino-4-nitrobenzène,
                                                                                                     2 uninothingole.
                                                                                  Jeloublifordin-Pabalon-L
             l-amino-4-cyanobenzène,
            1-amino-2,5-dicyanobenzène, and the traditional control of the
```

```
1-amino-4-méthylsulfonylbenzène,
```

1-amino-4-carbalcoxybenzène,

1-amino-2, 4-dichlorobenzène,

1-amino-2,4-dibromobenzène,

5 1-amino-2-méthyl-4-chlorobenzène,

1-amino-2-trifluorométhyl-4-chlorobenzène,

1-amino-2-cyano-4-chlorobenzène,

1-amino-2-carbométhoxy-4-chlorobenzène,

1-amino-2-carbométhoxy-4-nitrobenzène,

10 l-amino-2-chloro-4-cyanobenzène,

1-amino-2-chloro-4-nitrobenzène,

1-amino-2-bromo-4-nitrobenzène,

1-amino-2-chloro-4-carbéthoxybenzène,

1-amino-2-chloro-4-méthylsulfonylbenzène,

15 1-amino-2-méthylsulfonyl-4-chlorobenzène,

1-amino-2-méthylsulfonyl-4-nitrobenzène,

1-amino-2, 4-dinitrobenzène,

1-amino-2, 4-dicyanobenzène,

1-amino-2-cyano-4-méthylsulfonylbenzène,

20 l-amino-2,6-dichloro-4-cyanobenzène;

1-amino-2,6-dichloro-4-nitrobenzène,

1-amino-2, 4-dicyano-6-chlorobenzène,

4-aminobenzo-cyclohexylester,

1-amino-2, 4-dinitro-6-chlorobenzène et surtout :

25 1-amino-2-cyano-4-nitrobenzène,

1-aminobenzène-2-, -3- ou -4-sulfonamides, comme le

N-méthyl- ou N, N-diméthyl- ou -diéthylamide.

On signale surtout les composants diazolques d'amines ayant la formule

30 Z-NR-D^t-NH₂

dans laquelle R est un atome d'hydrogène ou un groupe alkyle ou aralkyle, par exemple méthyle, éthyle ou benzyle, D' un reste phénylène portant éventuellement des substituants et Z a la signification déjà indiquée.

Le groupe A est, de préférence, un reste de

formule

35

dans laquelle c et d sont des atomes d'hydrogène ou des restes 40 méthyles, éthyles, méthoxy, éthoxy, phénylthio ou phénoxy.

15

20

25

30

Le groupe c est lié avantageusement en position ortho du groupe azolque et peut indiquer en plus des groupes déjà mentionnés aussi un atome de chlore ou de brome, un groupe trifluorométhyle, álkylsulfonyle, et surtout méthylsulfonyle et un groupe acylamino alkylé éventuellement sur l'atome d'azote et de préférence méthylé, dans lequel le reste acyle provient d'un acide monocarboxylique organique, monosulfonique organique comme l'acide méthane-, éthane- ou p-toluènesulfonique ou le reste d'un acide carbaminique ou d'un monoester ou monoamide de l'acide carbonique comme le phénoxycarbonyle, méthoxycarbonyle et aminocarbonyle ou encore le reste Z précité.

Les groupes R₁ et R₂ peuvent être des atomes d'hydrogène ou des groupes alkyles inférieurs contenant 1 à 4 et, de préférence, 2 à 4 atomes de carbone comme les groupes méthyles, éthyles, n-propyles ou n-butyles, pouvant en outre porter des substituants habituels comme dans les groupes benzyl-, β-phényléthyl-, alkyles ou de tels groupes halogénés par exemple β-chloréthyl-, β,β,β-trifluoréthyl-, β, γ-dichloropropyl-,β-cyanoéthyl-, alcoxyalkyl- comme les groupes \$-éthoxyéthyl- ou 6-méthoxybutyl-, hydroxyalkyl- par exemple \$-hydroxyéthyl-, 6, f-dihydroxypropyl-, nitroalkyl-, tels que β-nitroéthyl-, carbalcoxy-, β -carbo-(méthoxy-, éthoxy- ou propoxy)-éthyl-7 (le groupe alkyle terminal pouvant porter en position ω des groupes cyano-, carbalcoxy, acyloxy- et amino), β- ou Υ-carbo(méthoxy- ou éthoxy)propyl-, acylaminoalkyl-, par exemple β-(acétyl- ou formyl)aminoéthyl-, acyloxyalkyl-, tels que : β-acétyloxyéthyl-, β , Υ -diacétoxypropyl-, β -propionyloxyéthyl-, Υ -butyryloxypropyl-, β-(alkyl- ou aryl)-sulfonylalkyl-, tels que β-méthanesulfonyléthyl-, β -éthanesulfonyléthyl- ou β -(p-chlorobenzènesulfonyl)éthyl-, alkyl- ou arylcarbamoyloxyalkyl-, tels que β-méthylcarbamyloxyéthyl- et \$-phénylcarbamyloxyéthyl-, alkyloxycarbonyloxyalkyl-, tels que β-(méthoxy-, éthoxy- ou isopropyloxy)-carbonyloxyéthyl-, γ-acétamidopropyl-, β-(p-nitrophénoxy)-éthyl-, β -(p-hydroxyphénoxy)-éthyl-, β --(β !-acétyléthoxycarbonyl)éthyl-, $\beta - (\beta' - cyano -, hydroxy -, méthoxy - ou acétoxy -) - éthyxycarbony 17$ éthyl-, cyanalcoxyalkyl-, tels que cyanéthoxyéthyl-, β-carboxyéthyl-, β-acétyléthyl-, β-diéthylaminoéthyl-, β-cyanacétoxyéthyl-, β-benzoyl-oxyéthyl- et β-(p-alcoxy- ou phénoxy-benzoyl)oxyéthyl-.

On préfère surtout pour R, et/ou R un reste de for-

mule

-alkylène-NH-Z

où Z a la signification déjà indiquée.

Les groupes R_1 et R_2 ne contiennent en général pas 5 plus de 18 atomes de carbone.

Un autre type préféré de colorants monoazolques répond à la formule

$$Z-NR-D'-N=\dot{N}-A'$$

dans laquelle D' est un reste phénylène portant éventuellement des substituants et A' est le reste d'un copulant, à l'exclusion du phénol ou de l'anisol, par exemple un énol, une amine aromatique ou une pyrazolone. D' est de préférence un reste de formule

15

. 20

30 .

35

10

dans laquelle a, b, Z et R ont la signification mentionnée cidessus. Comme colorants disazolques, on indique par exemple ceux dans lesquels deux molécules identiques ou différentes de colorant monoazolque du type général

(formule dans laquelle D et A' ont la signification ci-dessus et A' peut aussi être un reste de formule $-AR_1R_2$) sont liées ensemble par l'intermédiaire de leurs composants de copulation au moyen d'un pont bivalent Z' n'ayant pas le caractère d'un colorant, les restes des colorants ou le pont Z' portant dans ce cas un reste ayant la formule -NR-Z.

On mentionne également les colorants disazolques ayant la formule

 $Z-NH-D^{\dagger}-N=N-D^{\dagger\dagger}-N=N-A^{\dagger}$

dans laquelle D', A' et Z ont la signification donnée ci-dessus et D" est un reste paraphénylène portant éventuellement des substituants.

Colorants styryliques.

Les colorants styryliques préférés sont ceux ayant la formule

dans laquelle A, R₁ et R₂ ont la signification donnée ci-dessus 40 et Y est un groupe cyano, carbalcoxy ou arylsulfonyle, par exem-

15

20

25

30

35

40

ple un groupe carbéthoxy ou phénylsulfonyle.

On préfère surtout les colorants ayant la formule

dans laquelle R_I et Z ont la signification indiquée plus haut.

Les colorants bistyryliques pré.férés sont ceux dans lesquels deux molécules de colorants monostyryliques du type

qui peuvent être identiques ou différents, et dans lesquels Y, R_1 , R_2 et A ont la signification mentionnée ci-dessus sont reliés ensemble au moyen d'un reste A ou du groupe R_1 , à l'aide d'un pont Z' bivalent n'ayant pas le caractère d'un colorant, au moins un des restes R_1 , R_2 , A et Z' portant un reste Z capable de réagir sur la fibre.

Colorants anthraquinoïdes.

Les colorants conformes à l'invention faisant partie de la série anthraquinonique sont, par exemple, des dérivés ayant la formule

$$A \longrightarrow NR \longrightarrow Z$$
 n

dans laquelle n est le nombre 2 ou de préférence 1, R et Z ont la signification déjà indiquée et A est un reste d'anthraquinone à 3 ou 4 noyaux condensés, qui contiennent un ou plusieurs autres substituants, par exemple des atomes d'halogène tels que le fluor, le chlore ou le brome, des groupes hydroxy, alcoxy, amino, acylamino, alkylamino ayant 1 à 3 atomes de carbone, acyloxy, des restes aryles portant éventuellement des substituants ou des restes hétérocycliques ayant des substituants, des groupes arylamino, le reste aryle étant de préférence un groupe phényle qui peut porter à son tour comme substituants un ou plusieurs atomes d'halogène, des groupes alkyles ou alcoxy ou des groupes phénylsulfonyles ou des groupes alkyl- ou phénylsulfonyles portant éventuellement des substituants, des restes de phénylthioéther ayant éventuellement des substituants ainsi que des groupes nitro, cyano, carboxyesters et acétyles.

10

15

Comme exemples de restes anthraquinoniques à 4 cycles on mentionne la 1,9-isothiazolanthrone, la 1,9-anthrapyrimidine ou la 1,9-pyrazolanthrone. Les restes alkyles sont de préférence des restes alkyles inférieurs pouvant avoir jusqu'à 6 atomes de carbone.

On prépare ces nouveaux colorants :

- a) en faisant réagir un colorant portant au moins un groupe de formule -NHR où R a la signification déjà mentionnée sur au moins un halogénure d'acide cycloaliphatique et halogéné de formule Z-Hal, Hal désignant un atome d'halogène,
- b) en combinant deux composants dont l'un au moins contient un groupe Z lié à un groupe aminogène, par condensation ou par co-pulation pour former un colorant contenant au moins un groupe Z, ce dernier ayant également la même signification que ci-dessus.

 I. Variante a) du procédé.

A. Agents d'acylation réagissant sur la fibre.

Comme agents d'acylation réagissant sur la fibre et servant à introduire le reste Z, on utilise par exemple les suivants : 2,2,3,3-tétrafluorocyclobutanecarbochlorure-1, 2-chloro-2,3,3-trifluorocyclobutanecarbochlorure-1, 2,2-dichlo-

- 20 2-chloro-2,3,3-trifluorocyclobutanecarbochlorure-1, 2,2-dichlo-ro-3,3-difluorocyclobutanecarbochlorure-1, 1-chloro-2,2,3,3-tétrafluorocyclobutanecarbochlorure-1, 1,2-dichloro-2,3,3-trifluorocyclobutanecarbochlorure-1, 1,2,2-trichloro-3,3-di-fluorocyclobutanecarbochlorure-1, 2,2,3,3-tétrafluorocyclobu-
- tène-4-carbochlorure-1, 2,2,3,3-tétrafluorocyclobutanesulfochlorure-1, 1-méthyl-2,2-dichloro-3,3-difluorocyclobutanecarbochlorure-1, 2,2,3,3-tétrafluoro-4,4-diméthylcyclobutanecarbochlorure-1, 2-chloro-2,3,3-trifluoro-4-phénylcyclobutanecarbochlorure-1, 3-(2',2',3',3'-tétrafluorocyclobutyl)-acrylo-chlorure.

B. Composants pouvant former le colorant.

Comme composants réactifs, on mentionne par exemple les colorants suivants :

1) Colorants azolques.

OH

OH

OH

$$O_2N - \bigcirc -N = N - \bigcirc -NH_2$$
, $H_3CO - \bigcirc -N = N - \bigcirc -NH_2$
 $H_2N - \bigcirc -N = N - \bigcirc -N -$

30

35

$$H_2N NO_2$$
 $HO-C$
 N
 NO_2
 $HO-C$
 N
 NO_2
 $HO-C$
 N
 NO_2
 $HO-C$
 N
 NO_2
 NO_2

9

20 2) Colorants anthraquinoniques.

1,4-diaminoanthraquinone,

1-amino-4-hydroxyanthraquinone,

1,4-bis-(p-amino-anilino)-5-hydroxyanthraquinone,

1,4-bis-(p-amino-anilino)-5,8-dihydroxyanthraquinone,

25 l,4-bis-(p-amino-anilino)-2-méthylanthraquinone,

1,5-bis-(p-amino-anilino)-4,8-dihydroxyanthraquinone,

1-hydroxy-4-(p-amino-anilino)-anthraquinone,

5-amino-1,9-isothiazolanthrone,

4-amino-1,9-anthrapyrimidine,

5-amino-1,9-anthrapyrimidine,

2- ou 3-aminobenzanthrone,

5- ou 8-amino-1,9-pyrazolanthrone.

3) Colorants nitrés.

$$H_2N \longrightarrow$$
 $-NH \longrightarrow$ $-SO_2NHC_2H_5$

4) Colorants styryliques.

5) Colorants de quinophtalone.

6) Colorants de pyridone.

7) Colorants de périnone.

Les mélanges des colorants ayant la formule

ou la formule
$$V$$

l'un des X étant dans chaque cas un groupe -NH2 et l'autre X un atome d'hydrogène.

C. Conditions réactionnelles.

La réaction sur les agents d'acylation se fait généralement en ajoutant les halogénures d'acides aux amines à acyler, ceci en opérant généralement dans des solvants organiques tels que le chlorure de méthylène, le chloroforme, le tétrachlorure de carbone,/benzène, les benzènes chlorés ou

les hydrocarbures aromatiques supérieurs chlorés, le diisopropyléther, le dioxane, l'acétonitrile, l'acide acétique glacial ou à 80% ou en opérant en solution aqueuse acide ou encore en utilisant des suspensions du colorant à acyler.

5 II. Variante b) du procédé.

A. Colorants azolques (copulation).

On peut obtenir les colorants azolques conformes à l'invention par exemple par copulation du diazolque d'une amine avec un copulant, au moins l'un des composants devant obligatoi10 rement comporter un groupe Z réagissant sur la fibre.

1. Composants diazoīques.

Les composants diazolques appropriés contenant le groupe Z réagissant sur la fibre sont obtenus par acylation d'un composé nitré ou hétérocyclique ayant au moins un groupe de formule -NHR, par exemple du 2-amino-4-méthylsulfonylnitrobenzène, 4-amino-2-méthylsulfonyl-nitrobenzène ou 2,6-dichloro-4-amino-nitrobenzène à l'aide d'un chlorure d'acide réagissant sur la fibre et ayant la formule Z-Hal, Hal étant un atome d'halogène puis par réduction subséquente du groupe nitro.

En outre, on peut acyler des diamines aromatiques appropriées comme la paraphénylènediamine au moyen d'un équivalent du chlorure d'acide réagissant sur la fibre et ayant la formule Z-Hal.

Comme composants diazolques ne comportant pas de grou25 pe Z réagissant sur la fibre, on peut utiliser les composants
diazolques précités ayant la formule D-NH₂.

2. Composants de copulation.

Les copulants appropriés contenant un groupe Z réagissant sur la fibre s'obtiennent par réaction d'un des composants ci-après sur un halogénure d'acide de formule Z-Hal.

3-amino-N,N-bis-β,β-acétoxyéthyl-aniline,

3-amino-N,N-bis-β,β-cyanéthyl-aniline,

N,γ-aminopropyl-N-éthyl-aniline,

Comme copulants n'ayant pas de groupe Z réagissant

sur la fibre, on mentionne les suivants :

N,β-cyanéthyl-N-méthyl-aminobenzène,

N,N-di-β-hydroxyéthyl-aminobenzène,

1-N-β-cyanéthyl-N-éthyl-amino-3-méthylbenzène,

2-hydroxy-3-naphto---o-anisidide,

40 1-N-β-cyanéthyl-amino-3-méthylbenzène,

```
1-N, N-d1-β-hydroxyéthyl-amino-3-rhodanobenzène,
```

 $N-\beta$ -cyanéthyl-naphtasultame-(1,8),

1-N, N-di-β-cyanéthyl-3-méthyl-aminobenzène,

 $N-\beta$ -cyanéthyl- N,β -hydroxyéthyl-aminobenzène,

5 N-β-cyanéthyl-2-méthyl-indole,

N,β-cyanéthyl-tétrahydroquinokine,

N-phényl-aminobenzène,

4-hydroxy-1-méthylquinoléine-(2),

1-hydroxy-3-méthylbenzène,

10 8-hydroxyquinoléine,

20

25

30

35

40

3-cyano-2,6-dihydroxy-4-méthylpyridine,

1,3-dihydroxybenzène,

2-naphtylamine-5-sulfométhylamide,

1-hydroxy-3-cyanométhylbenzène,

15 l-phényl-3-méthyl-5-pyrazolone et l'ester acéto-acétique.

3. Diazotation et copulation.

La diazotation des composants diazolques précités peut se faire selon des procédés connus, par exemple à l'aide d'un acide minéral et de nitrite de sodium ou avec une solution d'acide nitrosylsulfurique dans l'acide sulfurique concentré.

La copulation peut également être effectuée selon des procédés connus, par exemple en milieu neutre ou acide, éventuel-lement en présence d'acétate de sodium ou de substances-tampons similaires agissant sur la vitesse de copulation ou encore de catalyseurs comme le diméthylformamide, la pyridine ou les sels de cette dernière.

On effectue la copulation avantageusement en combinant les composants dans une buse mélangeuse. Il s'agit d'un dispositif dans lequel on combine ensemble les liquides à mélanger dans un espace relativement restreint, l'un au moins des liquides passant dans une buse d'injection, de préférence sous pression élevée. La buse mélangeuse peut être construite par exemple selon le principe d'une pompe à jet d'eau et fonctionne de la même manière, l'introduction de l'un des liquides correspondant dans la buse à l'injection de l'eau dans une pompe à eau, et celle de l' autre liquide au raccordement formé par la partie à évacuer de la pompe à eau, cette dernière introduction du liquide pouvant également avoir lieu sous pression élevée.

Pour mélanger les composants de cette manière dans un espace restreint d'une façon rapide et éventuellement conti-

15

20

25

35

2:0

nue, on peut cependant aussi utiliser d'autres dispositifs appropriés.

III. Emploi des colorants.

Les nouveaux colorants insolubles dans l'eau, leur mélanges entre eux et avec d'autres colorants azolques conviennent parfaitement à la teinture et à l'impression du cuir, de la laine, de la soie et surtout des fibres synthétiques, par exemple acryliques ou d'acrylonitrile, de polyacrylonitrile, de polymères mixtes d'acrylonitrile avec d'autres composés vinyliques comme les esters acryliques, amides acryliques, la vinylpyridine, le chlorure de vinyle ou de vinylidène, les polymères mixtes de dicyanoéthylène et d'acétate de vinyle et les polymères mixtes bloqués à base d'acylonitrile, les fibres de polyuréthanes, les polyoléfines modifiées par traitement basique comme le polypropylène, le triacétate et 2½-acétate de cellulose et surtout les fibres polyamidiques comme le "Nylon-6, Nylon-6,6 ou Nylon-12" et les fibres de polyesters aromatiques comme celles à base d'acide téréphtalique et d'éthylèneglycol ou de 1,4-diméthylcyclohexane et enfin les polymères mixtes d'acide téréphtalique et isophtalique avec l'éthylèneglycol.

La présente invention a par conséquent également pour objet un procédé de teinture ou d'impression de fibres cellulosiques, surtout de coton, de laine et de fibres synthétiques principalement de fibres contenant des groupes d'amines et/cu amidiques, procédé caractérisé par le fait qu'on utilise des composés ayant le caractère d'un colorant qui sont exempts de groupes aquasolubilisants et contiennent au moins un`reste acyle Z réagissant sur la fibre et lié à un groupe aminogène d'un acide cycloaliphatique halogéné et surtout de l'acide 2,2,3,3-tétrafluorocyclobutane-l-carboxylique ou de l'acide \$-(2,2,3,3-tétrafluorocyclobutyl)-acrylique.

Pour la teinture en bain aqueux, on utilise les colorants insolubles dans l'eau avantageusement sous forme finement divisée et on effectue la teinture avec addition de dispersants comme la lessive résiduaire de cellulose sulfitique ou des détergents synthétiques ou encore une combinaison de divers agents mouillants et dispersants. En général, il est recommandé de transformer les colorants à utiliser avant la teinture en une préparation tinctoriale qui contient un dispersant et le colorant finement divisé sous une forme telle que par dilution

20

25

30.

35

de ces préparations tinctoriales avec de l'eau, on obtienne une fine dispersion. De telles préparations peuvent être obtenues de manière connue par exemple en broyant le colorant à l'état sec ou mouillé avec ou sans addition de dispersants lors de ce broyage.

Les colorants nouveaux conformes à l'invention teignent les fibres contenant des groupes aminogènes et/ou amidiques, surtout la laine, en bain alcalin neutre et principalement faiblement acide, par exemple acétique. Dans certains cas, il est recommandé pour l'obtention de teintures unies sur la laine d'ajouter au bain des dérivés de polyglycoléther qui contiennent en moyenne au moins 10 groupes -CH₂-CH₂-O- et qui proviennent de monoamines contenant un reste hydrocarburé aliphatique ayant au moins 20 atomes de carbone. Les colorants conformes à l'invention présentent l'avantage de teindre de manière satisfaisante les fibres de "Nylon" dans un intervalle très large du pH allant des valeurs acids jusqu'aux valeurs alcalines de ce dernier.

Les teintures ou impressions obtenues avec ces colorants sur les fibres de polyamide et de laine se distinguent par des solidités remarquables au mouillé et surtout par une solidité excellente à la lumière, au lavage, à la sueur, au foulon et à l'eau.

Les composés nouveaux convienment également de préférence à la teinture de fibres entièrement synthétiques, par exemple de polyester ou de "Nylon", au sein de solvants organiques, par exemple dans du perchloréthylène contenant ou non une addition de 10% de diméthylformamide.

Pour obtenir en milieu aqueux des teintures corsées sur des fibres de téréphtalate de polyéthylène, il est indiqué d'aputer au bain de teinture un agent de gonflement ou d'effectuer l'opération de teinture sous pression et à des températures supérieures à 100°C, par exemple à 120°C. Comme agents de gonflement, on peut utiliser des acides carboxyliques aromatiques, comme l'acide salicylique, des phénols comme le o- ou p-hydroxydiphényle et des composés aromatiques halogénés comme le o-dichlorobenzène ou le diphényle.

Pour la thermofixation du colorant, on chauffe le tissu foulardé de polyester avantageusement après un séchage préalable, effectué par exemple dans un courant d'air sec à des températures dépassant 100°C et comprises, le cas échéant,

entre 180 et 210°C.

Les teintures obtenues selon le procédé de l'invention peuvent subir un traitement subséquent par exemple par chauffage dans une solution aqueuse d'un détergent non ionique Au lieu de l'imprégnation, on peut aussi appliquer selon le procédé de l'invention les colorants précités par impression. A cet effet, on utilise par exemple une couleur d'impression qui contient en plus des agents auxiliaires habituels en impression, tels que des mouillants et des épaississants, le colorant finement dispersé.

Selon le procédé de l'invention, on obtient des teintures et des impressions corsées ayant de bonnes solidités.

On peut également utiliser les colorants insolubles dans l'eau conformes à l'invention pour la teinture dans la masse de filage de polyamides, polyesters et polyoffines. Le polymère à colorer est mélangé avantageusement sous forme de poudre, de granules ou de copeaux, ou à l'état d'une solution de filage terminée ou encore à l'état fondu avec le colorant, lequel est incorporé à l'état sec ou sous forme de dispersions ou solutions dans un solvant éventuellement volatil. Après la dispersion homogène du colorant dans la solution ou dans le produit fondu formé par le polymère, on transforme de manière connue le mélange par coulée, à la presse ou/extrudage en des fibres, des filés, des monofils, des pellicules, etc.

Dans les exemples non limitatifs ci-après, les parties et pourcent s'entendent, sauf mention contraire, en poids et les températures sont indiquées en degrés centigrades.

Procédé I.

N-bis- β -cyanéthyl- $3-\sqrt{\beta}-(2', 2', 3', 3'-t$ étrafluorocyclobutyl-acryl $\sqrt{\beta}$ -amido-aniline.

On dissout 5,3 parties de N-bis- β -cyanéthyl-3-amino-aniline dans de l'acide acétique glacial, on fait réagir avec un léger excès de β -(2,2,3,3-tétrafluorocyclobutyl)-acrylochlorure et on agite le mélange pendant un certain temps. On obtient une solution du produit ayant la formule

30

Procédé II.

N-bis- β -acétoxyéthyl-3- β -(2',2',3',3'-tétrafluorocyclobutyl-acryl)/-amido-aniline.

On dissout 14 parties de N-bis-acétoxyéthyl-3-amino-5 aniline dans de l'acide acétique glacial. On ajoute un excès de \$-(2,2,3,3-tétrafluorocyclobutyl)-acrylo-chlorure et on agite le mélange pendant un certain temps. Après la détermination du titre de copulation, le produit ayant la formule

10

15 peut être utilisé sans purification supplémentaire.

De manière analogue, on prépare les copulants ci-après:

20

25

35

30 Procédé III.

On dissout 9,7 parties de N- β -hydroxyéthyl-N- γ -amino-propyl-aniline dans de l'acide acétique glacial, on ajoute un excès de β -(2,2,3,3-tétrafluorocyclobutyl)-acrylo-chlorure et on agite la solution pendant un certain temps. Après détermination du titre de copulation, le produit ayant la formule

20

peut être utilisé sans nouvelle purification. Procédé IV.

On dissout 24,8 parties de chlorure 5-nitro-isophtalique dans du chlorobenzène. On ajoute goutte à goutte une solution
de 35,8 parties de N-éthyl-N-hydroxyéthyl-m-toluidine dans du
chlorobenzène et on agite le mélange pendant un certain temps à
100°C. On verse ensuite la solution chaude dans une solution diluée d'hydroxyde de sodium. On agite le précipité pendant un délai
court puis un élimine le chlorobenzène par entraînement à la vapeur d'eau. On sépare la phase aqueuse et on reprend le produit
gommeux dans du chloroforme. On élimine l'eau restante et on distille le chloroforme. On obtient le produit ayant la formule

On met en suspension 10,6 parties du produit ainsi obtenu dans de l'alcool éthylique et on effectue l'hydrogénation en ajoutant du charbon palladié comme catalyseur. On distille ensuite l'alcool et on laisse reposer le produit huileux pendant un temps prolongé à la température ordinaire, ce qui le fait cristalliser; on obtient un produit ayant la formule

On dissout 11,9 parties de l'amine ainsi obtenue dans de l'acide acétique glacial à la température ordinaire. On ajoute ensuite un excès de β-(2,2,3,3-tétrafluorocyclobutyl)-acrylochlorure et on agite le tout pendant la nuit à la température ordinaire. Après détermination du titre de copulation, on peut utiliser le produit ayant la formule

30

. 35

sans purification supplémentaire. Procédé V.

10 On met en suspension 161 parties de chlorure de p-nitrobenzoyle (à 95,1%) dans du chlorobenzène et on chauffe le mélange à 80°. On ajoute goutte à goutte une solution de 147,4 parties de N-éthyl-N-β-hydroxyéthyl-m-toluidine dans du chlorobenzène. On agite pendant un certain temps puis on verse le mélange réactionnel dans une solution diluée d'hydroxyde de sodium, on agite encore, la solution au début fortement alcaline devenant progressivement acide. On règle le pH à 7 au moyen d'hydroxyde de sodium, on élimine le chlorobenzène par entraînement à la vapeur d'eau et on laisse refroidir le résidu aqueux 20 ce qui fait cristalliser le produit. Après filtration, on lave le résidu soigneusement avec de l'eau et on le sèche. Le produit obtenu est remis en suspension dans de l'éthanol et hydrogéné en ajoutant du charbon palladié comme catalyseur. On chauffe ensuite la suspension jusqu'à l'ébullition, on la filtre à chaud 25 et on concentre le filtrat. On filtre le précipité et on le lave avec de l'éthanol. Après séchage sous vide, on obtient un produit ayant la formule

$$C_{H_3}$$
 $C_{2^{H_4}-0-C_0}$ $-N_{H_2}$

On dissout 14,9 parties de ce produit dans de l'acide acétique glacial. On ajoute un faible excès de β -(2,2,3,3-té-trafluorocyclobutyl)-acrylo-chlorure et on agite la solution pendant un certain temps. On obtient le produit ayant la formule

$$\bigcirc -\text{N} < \begin{array}{c} \text{C}_2^{\text{H}_5} \\ \text{C}_2^{\text{H}_4} - \text{O} - \text{CO} - \bigcirc \\ \text{CF}_2 - \text{CF}_2 \end{array}$$

qui est dissous dans l'acide acétique glacial. Après détermination du titre de copulation, on peut utiliser directement cette solution.

De la même manière, on prépare le composant copulant 5 ayant la formule

10

EXEMPLE 1

On introduit 1,4 partie de nitrite de sodium dans 30 parties en volume d'acide sulfurique et on agite le mélange pendant 30 minutes. A une température de 20-25°, on ajoute 4,11 parties de 4-amino-3-chloro-phényl-méthylsulfone et on agite pendant un moment. Après cela, on détruit le nitrite en excès à l'aide d'urée.

On ajoute goutte à goutte cette solution à une température d'au plus 10° à une solution de 9,2 parties de N-bis- β -acétoxyéthyl-3- β -(2',2',3',3'-tétrafluorocyclobutyl-acrylo)/-amido-aniline dans 125 parties d'acide acétique à 80%, on agite pendant la nuit à 0-10° puis on précipite le colorant par addition d'eau glacée. Après filtration, on lave le colorant jusqu'à neutralité et on le sèche sous vide. On obtient un colorant ayant la formule

30

qui teint les fibres de "Nylon" en des nuances orange ayant une excellente solidité au lavage.

EXEMPLE 2

Quand on utilise à la place de la N-bis-β-acétoxyéthyl-3-[β-(2',2',3',3'-tétrafluorocyclobutyl-acrylo]]/-amidoaniline précitée 7,9 parties de N-bis-β-cyanéthyl-3-[β-(2',2', 3',3'-tétrafluorocyclobutyl-acrylo]]/-amido-aniline, on obtient un colorant ayant la formule

25

30

$$\begin{array}{c} \text{H}_{3}\text{CO}_{2}\text{S}- & \begin{array}{c} \text{C1} \\ \text{-N=N-} \end{array} \\ \text{-N=N-} & \begin{array}{c} \text{-N} \\ \text{-N} \end{array} \\ \begin{array}{c} \text{C}_{2}\text{H}_{4}\text{CN} \\ \text{C}_{2}\text{H}_{4}\text{CN} \\ \text{-N} \end{array} \\ \text{-CF}_{2} & \begin{array}{c} \text{CF}_{2} \\ \text{-CF}_{2} \end{array} \end{array}$$

qui teint les filés de laine en des nuances de couleur orange.

EXEMPLE 3

On introduit 3,1 parties de 2-cyano-4-chloro-aniline

dans 20 parties en volume d'acide chlorhydrique 2n. A une température de 0-5°, on diazote le produit avec de la solution 4n
de nitrite de sodium et on agite pendant un certain temps. On
détruit ensuite à l'aide d'urée le nirite en excès.

On introduit goutte à goutte cette solution à une température d'au plus 10° dans une solution de 9,2 parties de
N-bis-β-acétoxyéthy1-3-/β-(2',2',3',3'-tétrafluorocyclobuty1acrylo)/-amido-aniline dans 125 parties d'acide acétique à 80%,
on agite pendant la nuit à 0-10° et on précipite le colorant
par addition d'eau glacée. Après filtration, on lave le colorant
jusqu'à neutralité et on le sèche sous vide. On obtient un colorant ayant la formule

$$\begin{array}{c} \text{C1-} & \xrightarrow{\text{C2}^{\text{H}_4}-\text{O-COCH}_3} \\ & \xrightarrow{\text{NH-CO-CH=CH-CH-CH}_2} \\ & \text{CF}_2\text{--CF}_2 \end{array}$$

qui teint les fibres de "Nylon" en des nuances rouge jaunâtre ayant une excellente solidité au lavage.

EXEMPLE 4

Quand on utilise à la place de la N-bis-\(\beta\)-acétoxyé-thyl-3-\(\beta\)-(2',2',3',3'-tétrafluorocyclobutyl-acrylo)\(\beta\)-amido-aniline précitée, 7,9 parties de N-bis-\(\beta\)-cyanétyl-3-\(\beta\)-(2',2',3',3'-tétrafluorocyclobutyl-acrylo)\(\beta\)-amido-aniline, on obtient un colorant ayant la formule

$$\begin{array}{c} \text{C1-} & \begin{array}{c} \text{CN} \\ \text{-N=N-} \end{array} \\ \begin{array}{c} \text{-N=N-} \\ \text{-N-CO-CH=CH-CH-CH-CH_2} \\ \end{array}$$

40 qui teint les fibres de laine en des nuances rouge orange.

Lorsqu'on copule les diazolques des amines indiquées dans la colonne I du tableau ci-après avec les copulants indiqués dans la colonne II dans les conditions mentionnées dans l'exemple l, on obtient des colorants de dispersion réactifs qui teignent les fibres polyamidiques dans la nuance donnée dans la cdonne III, sauf l'application à un autre genre de fibres.

	ı	II	III
1	C2H50 SC-NH2	C ₂ H ₄ -O-CO-CH ₃ C ₂ H ₄ -O-CO-CH ₃ HN -CO-CH=CH-CH-CH ₂ CFCF	violet rougeâtre
2	HC—N II II O2N—C C—NH2	CF ₂ —CF ₂ C ₂ H ₄ —O—CO—CH ₃ C ₂ H ₄ —O—CO—CH ₃ HN—CO—CH=CH—CH——CH ₂ CF ₂ ——CF ₂	bleu
3	о ₂ n-— NH ₂	$\begin{array}{c} C_2H_4-O-CO-CH_3\\ \hline \\ C_2H_4-O-CO-CH_3\\ \hline \\ HN-CO-CH=CH-CH-CH_2\\ \hline \\ CF_2-CF_2\\ \end{array}$	rouge
4	CN O ₂ N—NH ₂	$\begin{array}{c} C_2^{\text{H}_4-\text{O-CO-CH}_3} \\ \hline \\ C_2^{\text{H}_4-\text{O-CO-CH}_3} \\ \\ \text{HN-CO-CH=CH-CH-CH-CH}_2 \\ \hline \\ CF_2^{\text{CF}_2} \\ \end{array}$	V violet

	I	, II	III
5	C1-NH ₂	C ₂ H ₅	rouge
		HN -CO-CH=CH-CH-CH ₂ CF ₂ CF ₂	
6	C ₆ H ₅ -CN N C-NH ₂	C ₂ H ₄ -0-c0-cH ₃	rouge
		HN -CO-CH=CH-CH-CH ₂ CF ₂ CF ₂	
7	O ₂ N s C-NH ₂	C ₂ H ₄ -0-c0-cH ₃	violet
		HN -CO-CH=CH-CH-CH ₂ . CF ₂ —CF ₂	
8	NCNH ₂	C ₂ H ₄ -0CO-CH ₃ C ₂ H ₄ -0-CO-CH ₃	rouge
		HN -CO-CH=CH-CH-CH ₂ CF ₂ CF ₂	• .

1	Λ	1	Λ	0	^	7
2	U	Z	4	O	U	1

i		II	III
 	C1	1.1	
9	H ₃ CO ₂ S-NH ₂	CH ₃	rouge orange
-	CN	HN -co-ch=ch-ch-ch ₂ cf ₂ cf ₂	
10	O ₂ N-\rightarrow NH ₂	n	violet sur poly- ester
11	o ₂ n——NH ₂	n	rouge
-	G1 ————————————————————————————————————	^C 2 ^H 5	
1.2	H ₃ CO ₂ S—NH ₂	HN -CO-CH=CH-CH-CH ₂	rouge
		CF ₂ —CF ₂	
13	O ₂ N-NH ₂	11	rouge
14	O ₂ N—NH ₂	CH ³	violet rougeâtre
		HN -CO-CH=CH-CH-CH ₂ CF ₂ CF ₂	

	I	II	III
15	C2H5O-NH2OC2H5	C ₂ H ₄ -cn	jaune orange
16	CH ₃ 0 ₂ SNH ₂	HN -CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂ C ₂ H ₄ -O-CO-CH ₃ C ₃ H ₄ -O-CO-CH ₃	orange
		C ₂ H ₄ -O-CO-CH ₃ HN-CO-CH=CH-CH-CH-CH ₂ CF ₂ -CF ₂ C ₂ H ₄ -O-CO-CH ₃	
17	C1——NH ₂ — CF ₃	C ₂ H ₄ -O-CO-CH ₃ HN-CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂	orange rouge
18	п	C ₂ H ₄ -cn	orange
		HN -CO-CH=CH-CH-CH ₂ CF ₂ CF ₂	

	ī	II	III
19	COOCH ₃ NH ₂ COOCH ₃	$\begin{array}{c} C_2^{\text{H}_4} - 0 - \text{CO} - \text{CH}_3 \\ \hline \\ C_2^{\text{H}_4} - 0 - \text{CO} - \text{CH}_3 \\ \hline \\ \text{HN} - \text{CO} - \text{CH} = \text{CH} - \text{CH} - \text{CH}_2 \\ \hline \\ \text{CF}_2 - \text{CF}_2 \end{array}$	rouge orange
20	11	$C_{2}H_{4}-CN$ $C_{2}H_{4}-CN$ $C_{2}H_{4}-CN$ $NH-CO-CH=CH-CH-CH_{2}$ $CF_{2}-CF_{2}$	jaune d'or
21`	CH ₃ O ₂ S-\rightarrow NH ₂	$C_2^{H_5}$ $C_2^{H_4}$ $C_2^{H_4}$ $C_2^{H_4}$ $C_2^{H_4}$ $C_2^{H_4}$ $C_2^{H_4}$	rouge orange
		F ₂ C—Ch	- · :
22	"	C_2H_4CN $C_2H_4-O-CO-$	orange
-		CO CH=CH CH-CE F ₂ CCF	i

	ı	II	III
23	O ₂ N-CN NH ₂	C ₂ H ₄ -OH C ₃ H ₆ -NH-CO-CH=CH CH—CH ₂	. violet
24	CI CH ₃ O ₂ S—NH ₂	CF ₂ —CF ₂ CG ₂ H ₄ —OH CG ₃ H ₅ —N CO-CH=CH-CH—CH ₂ CGE—CGE	orange
25	о ₂ n-—-nн ₂	c_2H_4 -OH c_3H_6 -N	orange
26	OCH ₃ NC-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	$C_2^{H_4-CN}$ $C_2^{H_4-CN}$ $NH-CO-CH=CH-CH-CH_2$ CF_2-CF_2	écarlate

	I .	II	III
27	NC——NH ₂	$C_{2}^{H_{5}}$ $C_{2}^{H_{4}-0-C0}$ $C_{2}^{H_{4}-0-C0}$	écarlate €H-ÇH-ÇH ₂
28	0-C ₆ H ₄ -C1(-o)	C ₂ H ₄ -0-C0CH ₃ C ₂ H ₄ -0-C0CH ₃	CF ₂ —CF ₂ rouge bleuté sur polyester
29	0-C ₆ H ₄ -Cl(-o) 0 ₂ N-NH ₂	NH-CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂ CF ₂ -CF ₂ H CH ₃ CF ₂ -CO-CO-N CO-	rouge bleuté sur polyester CH=CH-CH-CH ₂ CF ₂ -CF ₂
30	C1 NH ₂	C ₂ H ₄ -0-co-NH	rouge bleuté
31	H N C-NH ₂ COCH ₃	H ₂ C—CH-CH=CH-CO F ₂ C—CF ₂ C ₂ H ₄ -O-CO-CH ₃ C ₂ H ₄ -O-CO-CH ₃	violet
	,	NH -CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂	

		- T	III
	I	II	
32	H ₂ NO ₂ S-_NH ₂	C ₂ H ₄ -OH C ₂ H ₄ -OH	drange jaune
		NH -CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂	
*	Ç1.		
33	H ₃ C-O ₂ SNH ₂	n e	rouge orange
		C ₂ H ₄ -0-COCH ₃	
34	H ₂ NO ₂ SNH ₂	NH -CO-CH-CH-CH-CH ₂	orange jaune
	***	CF ₂ CF ₂	
	No. 100 and 14 m	CH2-CH2-O-COCH3	rouge.
35	4-Nitro-anilin	CH2-CH2-O-COCH3	
		NH-CO-CH=CH-CH-CH ₂ CF-CF ₂	:

N° .	I.	II	III
36	2-chloro-4-nitro- aniline	O II C2H4-C-O-C2H5	rouge bleu- té
		С ₂ H ₄ -С-О-С ₂ H ₅ 0	
		CF ₂ CF ₂	
37	2-cyano-4.chloro- aniline	C ₂ H ₄ -0-C-NH-C ₂ H ₅ C ₂ H ₄ -0-C-NH-C ₂ H ₅	rouge jaunâtre
		Ö	
		NH-CO-CH=CH-CH-CH ₂ CF ₂ CF ₂	
38	2-chloro-4-nitro- aniline	$C_2H_4-O-C_2H_4-ON$ $C_2H_4-O-C-O-NH-C$	rouge jaunatre
		Ö	CF ₂ CF ₂
39	2-chloro-4-méthyl- sulfonyl-aniline	C ₂ H ₄ -O-CH ₃	orange
		0 CO H ₂ CCHCH=CH 2 F ₂ CCF ₂	* * * * * * * * * * * * * * * * * * * *

N°.	I	II	III
40	2-chloro-4-méthyl- sulfonyl-aniline	о сн ₂ -сн ₂ -о-с-о-с ₂ н	orange sur 5 laine
		СН ₂ -СН ₂ -О-С-О-С ₂ Н	5
		NH-CO-CH=CH-CH-CH ₂ : CF ₂ -CF ₂	
41	2-cyano-4-chloro- aniline	C ₂ H ₅	rouge Jaunâtre
		0	сн=сн-сн—сн ₂ сг ₂ -сг ₂
42	.11	C ₂ H ₄ -O-C-NH	rouge jaunâtre CH=CH-ÇH-ÇH,
43	11	C ₂ H ₅ 0	CF ₂ -CF ₂ rouge jaunatre
		C ₂ H ₄ -O-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	€H=CH-CH-CH ₂ CF ₂ -CF ₂

		ZUZ40U/			
N°.	I	II III			
44	4-nitro-aniline	CH2-CH2-CH3 rouge			
	t in the same section	Сн -сн -сн -сн			
		СH ₂ -СH ₂ -СH ₂ -СH ₃			
		_			
		NH-CO-CH=CH-CH-CH ₂			
		CF ₂ OF ₂			
		0			
45	2-cyano-4-nitro- aniline	CH2-CH2-CH2-O-C-CH3 violet			
		СH ₂ -СH ₂ -СH ₂ -О-С-СH ₃			
		0 1			
		NH-CO-CH=CH-CH-CH ₂			
j		CF ₂ -CF ₂			
	•	0 moure			
46	2-cyano-4-chloro- aniline	CH2-CH2-O-C-CH2-CH2 rouge Jaunatre			
		CH ₂ -CH ₂ -O-C-CH ₂ -CH ₂			
		NH-CO-CH=CH-CH-CH ₂			
		ĊF ₂ -ĊF ₂			
		CH _z			
47	2-cyano-4-chloro- aniline	jaunâtre			
		сн ₂ -с ₆ н ₅			
.					
		NH- CO-CH=CH-CH-CH ₂			
		CF ₂ -CF ₂			

, J		. 22	2024807	
n°.	I	II	•	III
48	2-chloro-4-nitro aniline	C ₂ H ₅ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		rouge bleuté
•		NH-CO-CH=CH-CH-CH ₂ CF ₂ CF ₂	•	
		•		• • •
49	2-trifluorométhyl- 4-chloro-aniline	C ₂ H ₄ -0-CH ₃	•	rouge orange
		°с ₂ н ₄ -о-сн ₃	·	
		NH-CO-CH-CH-CH-CH		
		CF ₂ CF ₂	. ,	
			·	
50	2,5-diméthoxy-4- cyano-aniline	C_2H_4 -C1		rouge
•		C ₂ H ₄ -C1		•
			ì	• •
		NH-CO-CH=CH-CH-CH ₂		•
		CF ₂ CF ₂		
51	2-chloro-4-méthyl- sulfonyl-aniline	$\bigcirc ^{C_2H_4-O-C_2H_4-CN}$		orange
	<u></u>	C2H4-O-C2H4-CN		•
-		•		in the second
		NH-CO-CH=CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	:	•

·			·		
Ný.	r	II ,	III		
52	4-aminosulfonyl- aniline	C ₂ H ₅	orange jaune		
		C ₂ H ₄ -C ₆ H ₅			
	; ;	NH- CO-CH=CH-CH-CH ₂			
		CF ₂ CF ₂			
53 53	2-cyano-4-chloro- aniline	C ₂ H ₅	orange .		
	aniline	C ₂ H ₄ -N ^C 3	orange .		
		CO-CH=CH-CH-	14		
	:	ĊF ₂	^{VF} 2		
54	2-chloro-4-méthyl- sulfonyl-aniline	n	orange		
			<u>.</u>		

EXEMPLE 5

On met en suspension 4 parties de 1-hydroxy-4-(p-ami-nophényl-)-amino-anthraquinone dans 50 parties en volume d'acide acétique glacial. On ajoute un faible excès de β -(2,2,3,3-tétra-fluorocyclobutyl)-acrylo-chlorure et on agite le mélange pendant un certain temps. On verse ensuite le produit dans de l'eau glacée, on le filtre et on lave le résidu soigneusement avec de l'eau. Après séchage sous vide, on obtient un colorant ayant la formule

10

5

15

qui teint les fibres de "Nylon" en des nuances bleues.

De manière analogue, on peut obtenir à partir des aminoanthraquinones appropriées les colorants suivants :

		Nuance sur polyamide
1	ș—n	101ma
		jaune
	- I	
	O NH-CO-CH=CH-CH-CH ₂	
	· · ·	
	CF ₂ CF ₂	
	0.377	· omenge
2	O NH	rouge orange
	NH-CO-CH=CH-CH-CH ₂	
	CF_CF ₂	
,	o ZZ	
3	•	
	O NH- CO-CH=CH-CH-CH ₂	
1	CF ₂ CF ₂	
1		jaune d'or
	O OCH_	
	, ,	
.4	,	
		écarlate
	O NH-CO-CH=CH-CH-CH	ecartate
1	GR—GR	
	CF ₂ -CF ₂	
	O NH-CO-C ₆ H ₅	
1	0 Mi 00 06 ¹² 5	
1		
5		
	O NH	bleu
	, " o"	
1 .		
	1 41	
	O NH-CO-CH=CH-CH-CH ₂	

		,
	O NH ₂	Wuance sur poly- amide
6		
	O NH ———————————————————————————————————	bleu
•	CF ₂ CF ₂	
7	O NH—C ₂ H ₄ —OH	bleu
	ни ин —с ₂ н ₄ —он со—сн=сн—сн	
8	О ОН	
		bleu
	O NH	
	NH-CO-CH=CH-CH-CH ₂	
	GF ₂ -GF ₂	
9	ONH ₂	
J	NH- CO-CH-CH-CH-CH	
•	ONH ₂	2
10	0 NH ₂	· :
		bleu
	O NH—CO—CH=CH—CH—CH2	
	CF ₂ -CF ₂	
	2 .2	

		
		Nuance sur Polya-
		<u>mide</u>
	O NH ₂	
11	↑↑↑-0- ^C 6 ^H 5	
		violet
	0 NH ——NH-CO-CH=CH-CH-CH ₂	
	^{CF} 2−CF ₂	
		,
	O NH ₂	•
12	Br -	
		violet
٠	``	violet
	O NH ——NH-CO-CH=CH-CH-CH ₂	.
		! .
•	CF ₂ -CF ₂	
	O NH ₂	7
- ~)	
13	OCH ₃	· ·
		violet
	O NH ———————————————————————————————————	
	ĊF ₂ ĊF ₂	
	·	
١.	O NH ₂	
14:	CN	
	 	
	l ĭĭ _	bleu verdâtre
	0 NH——NH-CO-CH-CH-CH ₂	Died verdaure
ŀ		
	O NH ₂ CF ₂ CF ₂	
15	NO ₂	vert bleuté
	I V.Y -	
1	O NH——NH—CO—CH=CH—CH—CH	
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	CF ₂ -CF ₂	
'	O NH ₂	
126		
16	C NIN GO GIL GIL GIL	bleu .
	NH-CO-CH=CH-CH-CH ₂	
	O NH ₂ CF ₂ CF ₂	
	O NH ₂ CF ₂ CF ₂	

		Nuance sur polyamide
	0 NH ₂	Muarice sur pory
17	NH-C ₂ H ₄ -NH-CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂	bleu
18	O NH ₂ O NH-C ₂ H ₄ -NH-CO-CH=CH-CH-CH ₂ O NH ₂ CF ₂ -CF ₂	bleu
19	O NH ₂ -NH-(CH ₂) ₆ -NH-CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂	bleu
20	O NH ₂ O NH-(CH ₂) ₆ -NH-CO-CH=CH-CH-CH O NH ₂ O F ₂ CF	
21	O NH ₂ O-C ₂ H ₄ -NH-CO-CH=CH-CH-CH ₂ CF ₂ -CF ₂	bleu

EXEMPLE 6

A une suspension de 3,9 parties de 4'-thiophénoxy-1,2-naphtoylène-4-aminobenzimidazole dans 80 parties d'acide acétique glacial, on ajoute à la température ordinaire et goutte à goutte un faible excès de β -(2,2,3,3-tétrafluorocyclobutyl)-acrylo-chlorure, on agite le mélange pendant une nuit et on précipite le colorant par addition d'eau glacée. Après filtration, on lave le colorant jusqu'à neutralité et on le sèche sous vide. Il répond à la formule

10

5

15

50

et il teint les fibres de polyamide et de polyester en des nuances jaune d'or ayant de bonnes solidités générales.

EXEMPLE 7

25

30

On met en suspension 11,4 parties de 4-amino-naphtoylène-benzimidazole dans 160 parties d'acide acétique glacial. On introduit goutte à goutte à 25° un faible excès de \$\beta\$-(2,2-3,3-tétrafluorocyclobutyl)-acrylo-chlorure, on chauffe à 40-45° et on agite pendant une nuit, puis on précipite le colorant par addition d'eau glacée, on le filtre, on le lave jusqu'à neutralité et on le sèche sous vide. On obtient un colorant ayant la formule_NH_CO-CH=CH-CH_CH

35

qui teint les fibres de polyamide ou de polyester en des nuances jaune verdâtre.

De manière analogue, on obtient à partir de l'aminopérinone correspondante le colorant

5

10

15

20

EXEMPLE 8

On diazote 2,3 parties de 3-chloro-4-amino-phénylèneméthylsulfone (à 90,5%) à 20-25° au moyen de 100 parties en volume d'acide nitrosylsulfurique à 0,5n, on agite le mélange pendant 1 heure et on le dilue avec 20 parties en volume d'un mélange d'acide acétique glacial et d'acide propionique (6:1). On introduit goutte à goutte cette solution du diazoïque à 0-5° dans une solution de 3,6 parties de l'amine utilisée (procédé IV) dans 100 parties en volume d'acide acétique glacial/ acide propionique 6:1. Après 3 heures, la copulation est terminée. On précipite le colorant ayant la formule

25

30

par addition de solution d'acétate de sodium, on le filtre, on le lave à neutralité et on le sèche. On obtient un produit rouge orange qui teint les fibres de "Nylon" en des nuances rouges.

EXEMPLE 9

35

On soumet 4 parties du produit ayant la formule

$$\begin{array}{c} \text{NC} \\ \text{C=CH-} \\ \text{CH}_{3} \\ \text{C}_{2}\text{H}_{4}\text{O-CO-} \\ \text{O-NO}_{2} \\ \end{array}$$

15

20

35

à l'hydrogénation dans de l'acétonitrile contenant un catalyseur à 10% de palladium sur du charbon jusqu'à absorption de la quan tité d'hydrogène nécessaire pour réduire le groupe nitro. La chromatographie en couche mince n'indique plus la présence du produit de départ. On élimine par distillation l'acétonitrile et on fait réagir le résidu dans de l'acide acétique glacial sur un faible excès de β-(2,2,3,3-tétrafluorocyclobutyl)-acrylo-chlorure. On obtient le colorant ayant la formule

10 NC
$$C = CH - CH_3 - N C_2H_5$$
 $C_2H_4 - O - CO - CH - CH - CH_2$
 $CF_2 - CF_2$

qui teint les fibres de "Nylon" en des nuances jaune verdâtre.

On obtient également le même produit par acylation du composé ayant la formule

$$\begin{array}{c}
\text{CN} \\
\text{CH}_{3}
\end{array}$$

au moyen du chlorure d'acide ayant la formule

$$\begin{array}{c} \text{C1-C0-} & \begin{array}{c} \text{-NH-CO-CH=CH-CH-CH-} \\ \text{CF}_2 & \begin{array}{c} \text{CF}_2 \end{array} \end{array}$$

25 Ce chlorure d'acide est obtenu par acylation de l'acide p-aminobenzolque à l'aide de β-(2,2,3,3-tétrafluorocyclobutyl)-acrylo-chlorure et réaction subséquente sur le chlorure de thionyle.

De manière analogue, on obtient les colorants ci-après qui
teignent tous les fibres de polyamide en des nuances jaune
verdâtre.

20

25

30

35

40

EXEMPLE 10

Par condensation de la p-nitro-aniline avec l'acide cyano-acétique dans du toluène et élimination azéotrope de l'ea\formule libérée, on obtient le dérivé ayant la formule

 $CN-CH_2-CONH-CONH-CONH$

On condense 4,3 parties de ce produit dans 50 parties en volume de méthanol en présence de 5 gouttes de pipéridine avec 5,9 parties de N,N-di-\$\beta\$-acétoxyéthyl-p-aminobenzaldéhyde. On obtient avec un bon rendement le produit ayant la formule

 $\begin{array}{c} \text{CN} \\ \text{C=CH-} \\ \text{CONH-} \\ \text{OO_2} \end{array}$

Par réduction catalytique au moyen de nickel de Raney dans du diméthylformamide, jusqu'à absorption de la quantité d'hydrogène nécessaire pour réduire le groupe nitro, on obtient ensuite le produit ayant la formule

 $\begin{array}{c} c_{\text{CONH}} - c_{\text{CH}} - c_{\text{NH}^{2}} \\ c_{\text{CONH}} - c_{\text{NH}^{2}} \\ c_{\text{NH}^{2}} -$

On ajoute à 2,25 parties de ce produit dans 20 parties en volume d'acide acétique glacial et à 15-20° un faible excès de \$\theta-(2,2,3,3-t\u00e9trafluorocyclobutyl)-acrylo-chlorure et on agite le tout pendant 20 heures à 15-20°. On filtre par aspiration le colorant ayant la formule

CONH—CO-CH=CH-CH—CH₂
CF₂-CF₂

on le lave avec du méthanol et on le sèche. Il teint les fibres de polyamide en des nuances jaune verdâtre très vives.

EXEMPLE 11

On diazote de façon habituelle 19,55 parties de 3-amino-4-chlorobenzotrifluorure et on copule/diazoïque avec 19 parties de 1-(3'-aminophényl)-3-méthyl-5-pyrazolone. On isole le nouveau colorant monoazoïque et on le sèche.

 $_{0n}$ disperse 19,77 parties de ce colorant dans 200 parties de toluène et on ajoute goutte à goutte à 60° et en 20 minutes un faible excès de β -(2,2,3,3-tétrafluorocyclobu-

20

30

:35

tyl)-acrylo-chlorure contenu dans 20 parties de toluène. On chauffe le mélange à 60° et on l'agite encore 6 heures. Après refroidissement, on isole le colorant nouveau ayant la formule

on le lave avec de l'éther de pétrole et on le sèche. Il est une poudre jaune qui teint les fibres de polyamides en de belles nuances jaunes d'excellente solidité.

On obtient un colorant ayant les mêmes qualités avantageuses quand on utilise comme copulant la 1-(4'-aminophényl)-3-méthyl-5-pyrazolone.

EXEMPLE 12

On dissout 33,6 parties de 4'-amino-3-nitro-diphényla-mine-l-sulfonyl-N-éthylamide dans de l'acide acétique glacial et on agite la solution avec un léger excès de β -(2,2,3,3-tétrafluorocyclobutyl)-acrylo-chlorure jusqu'à l'achèvement de la réaction. On précipite le colorant par addition d'eau, on l'isole et on le sèche sous vide.

Le colorant difficilement soluble dans l'eau, mais soluble dans les solvants organiques, a la formule

25
$$\begin{array}{c} \text{HN} \longrightarrow \text{-NH} \longrightarrow \text{-SO}_2 \text{NHC}_2 \text{H}_5 \\ \text{NO}_2 \\ \text{CO-CH=CH-CH-CH}_2 \\ \text{CF}_2 \longrightarrow \text{CF}_2 \end{array}$$

et il est une poudre jaune teignant les fibres de polyamide en des nuances jaunes d'une très bonne solidité au mouillé.

EXEMPLE 13

On diazote 20,55 parties de 4-amino-3-chlorophényl-méthylsulfone et on copule à 0-5° le diazolque avec 37,3 parties de 1-\(\sigma^-(2',2',3',3'-tétrafluorocyclobutyl-acrylo)\sigma^-ami-no-7-hydroxynaphtalène en milieu faiblement alcalin pour obtenir le colorant monoazolque.

Le colorant insoluble dans l'eau mais soluble dans les solvants organiques et ayant la formule

$$\begin{array}{c} \text{C1} \\ \text{H}_{3}\text{C-O}_{2}\text{S-} \\ & \text{HO-} \\ \end{array} \\ \begin{array}{c} \text{NH--CO-CH=CH-CH--CH}_{2} \\ \text{CF}_{2}\text{--CF}_{2} \\ \end{array}$$

est isolé et séché sous vide. Il est une poudre foncée qui teint les fibres de polyamide et de laine en des nuances rouge écarlate brillantes, ayant de très bonnes solidités au mouillé.

EXEMPLE 14

10

15

On met en suspension dans du chlorobenzène 5,9 parties de 5-amino-1,9-pyrazolanthrone. On ajoute goutte à goutte à la température ordinaire un faible excès de β -(2,2,3,3-tétra-fluorocyclobutyl)-acrylo-chlorure, on chauffe à 80° et on agite le mélange pendant un certain temps. On laisse refroidir, on filtre le produit et on le lavec avec du chlorobenzène froid. Après séchage sous vide, on obtient le N- β -(2',2',3',3'-tétra-fluorocyclobutyl)-acrylamide de la 5-amino-1,9-pyrazolanthrone qui teint les polyamides en des nuances jaunes.

EXEMPLE 15

20

25

On entre à 30° avec 10 parties d'un tricot de "Nylon. 6,6 (Helanca)" dans un bain de teinture contenant dans 400 parties en volume d'eau 8 parties de bicarbonate de sodium et 2 parties d'une dispersion aqueuse à 5% du colorant préparé selon l'exemple 1, laquelle a un pH de 7,9. On chauffe le tout en 45 minutes à l'ébullition et on effectue la teinture pendant 75 minutes au bouillon. On rince à fond la matière textile avec de l'eau et on la sèche. On obtient ainsi une teinture de couleur orange.

EXEMPLE 16

30

35

40

Dans un bain de teinture contenant dans 400 parties d'eau 0,8 partie du produit d'addition de 9 moles d'oxyde d'éthylène avec 1 mole de nonylphénol et 2 parties d'une dispersion à 5% du colorant décrit dans l'exemple 1, on commence à 30° et dans un appareil de teinture à haute température, à teindre 10 parties d'un tissu tricot de polyester (tricot de polyester texturé "Crimplene"). Le pH du bain est de 7,0. On porte la température en 15 minutes jusqu'à 120°, ceci sous une pression d'environ 2 atm. On effectue la teinture à 120° pendant 45 minutes puis on refroidit en l'espace de 10 minutes jusqu'à 65°. On rince à froid le textile et on le sèche. On

10

obtient une teinture orange.

EXEMPLE 17

On entre à 30° avec 10 parties d'un tricot de "Nylon 6,6 (Helanca)" dans un bain de teinture contenant dans 400 parties en volume d'eau 0,2 partie d'acide acétique à 80% et 2 parties d'une dispersion aqueuse à 5% du colorant préparé selon l'exemple 1, ce bain ayant un pH de 4-5. En 45 minutes, on porte la température à l'ébullition et on effectue la teinture pendant 30 minutes au bouillon. Après cela, on règle le pH à 12 par addition de carbonate de sodium et on fait encore bouillir pendant 30 minutes. On rince à fond la matière textile avec de l'eau et on la sèche. On obtient une teinture orange contenant un taux élevé de colorant non extrayable.

EXEMPLE 18

On effectue la teinture comme indiqué dans l'exemple 16 mais on utilise un tissu tricot de polyacrylonitrile bouclé (tricot "Orlon high bulk"). On obtient une teinture orange.

On prépare les dispersions des colorants utilisées comme ci-dessus en broyant 20 parties de colorant avec 140 parties d'eau et 40 parties de dinaphtylméthanedisulfonate de sodium.

REVENDICATIONS

1. Composés ayant le caractère d'un colorant et étant exempts de groupes acides aquasolubilisants, lesdits composés contenant au moins un reste acyle Z capable de réagir sur la fibre et lié à un groupe aminogène, reste qui provient d'un acide cycloaliphatique halogéné.

2. Composés selon la revendication 1, caractérisés par le fait que le groupe Z est un groupe ayant la formule

dans laquelle T₁, T₂ sont des atomes d'hydrogène ou de chlore ou des groupes carboxyliques, cyano, nitro ou sulfoniques ou des groupes -T', -OT', -COOT''', -SO₂-NT'T", -SO₂T' ou -CO-NT' -T", les deux substituants T₁ pouvant indiquer conjointement une liaison supplémentaire entre les atomes de carbone C₁-C₁, tandis que T' et T" désignent des atomes d'hydrogène ou des groupes alkyles ou aryles, T''' un groupe alkyle ou aryle, X un atome d'hydrogène ou d'halogène, et B l'un des groupes

25

30

10

3. Composés selon la revendication 2, caractérisés par le fait que X est un atome de fluor ou de chlore.

4. Composés selon la revendication 2, caractérisés par le fait qu'ils contiennent un groupe 2,2,3,3-tétrafluoro-cyclobutylacrylique lié à un groupe aminogène.

5. Composés selon l'une quelconque des revendications 1 à 4, caractérisés par le fait qu'ils contiennent un reste 2, 2,3,3-tétrafluorocyclobutylcarbonyle.

6. Composés selon l'une quelconque des revendications
15 1 à 5, caractérisés par le fait qu'ils sont des colorants azoïques.

7. Composés selon la revendication 6, caractérisés par le fait qu'ils sont des colorants monoazolques.

8. Composés selon l'une quelconque des revendications l à 5, caractérisés par le fait qu'ils sont des colorants

disazofques.

9. Composés selon l'une quelconque des revendications 1 à 5, caractérisés par le fait qu'ils sont des colorants anthraquinoniques.

49

- 10. Composés selon l'une quelconque des revendications 5 l à 5, caractérisés par le fait qu'ils sont des colorants styryliques.
- 11. Composés selon 1º une quelconque des revendications 1 à 5, caractérisés par le fait qu'ils sont des colorants de 10 périnone, de quinophtalone ou des colorants nitrés.
 - 12. Composés aminoazolques selon la revendication 7, caractérisés par le fait qu'ils ont la formule

C-N=N-A-NR₁R₂

- dans laquelle D est le reste d'un composant diazofque, A un reste 15 arylène surtout un reste 1,4-phénylène ne portant de préférence pas de substituants en position m- du groupe azolque, R_1 et R_2 désignent chacun un groupe alkyle, au moins un des restes D, A, R₁ et R₂ contenant un reste Z lié à un groupe aminogène et réagissant sur la fibre, Z indiquant le reste d'un acide cycloalipha-20 tique halogéné.
 - 13. Composés selon la revendication 11, caractérisés par le fait que le composant diazoïque provient d'une amine ayant la formule Z-NR-D'-NH2, R étant un atome d'hydrogène ou un groupe alkyle ou aralkyle par exemple un groupe méthyle, éthyle ou
- benzyle, D'étant un reste phénylène et Z ayant la même signification que celle iniquée à la revendication 12.
- 14. Composés selon la revendication 12, caractérisés par le fait que le groupe A porte en position ortho du groupe azoīque un groupe de formule -NR-Z, R et Z ayant la même signification 30 que celle indiquée dans la revendication 13.
 - 15. Composés selon la revendication 12, caractérisés par le fait qu'ils ont la formule

D-N=N-A-NR₁-alkylène-NH-Z

dans laquelle D, A, $R_{f 1}$ et Z ont la signification indiquée dans 35 1 une quelconque des revendications 12 et 13.

16. Composés selon la revendication 7, caractérisés par le fait qu'ils ont la formule

Z-NR-D'-N=N-A'

dans laquelle D' est un reste aromatique ayant deux valences

libres et A' le reste d'un copulant, par exemple un phénol, un énol, une amine aromatique ou une pyrazoline, R et Z ayant la signification indiquée dans la revendication 13.

17. Composés selon la revendication 6, caractérisés par le fait qu'ils contiennent deux molécules identiques ou différentes les unes des autres de colorants monoazofques du type général.

D-N=N-A

dans laquelle D et A' ont la même signification que celle déjà

mentionnée et A' peut aussi être un reste de formule -AR₁R₂

ces molécules étant reliées ensemble par l'intermédiaire de leurs copulants et au moyen d'un pont Z' bivalent n'ayant pas le caractère d'un colorant, les restes des colorants précités ou le pont Z' portant un reste de formule -NR-Z, dans laquelle R et Z ont la signification indiquée à la revendication 13.

18. Composés selon la revendication 10, caractérisés par le fait qu'ils ont la formule

dans laquelle A, R₁ et R₂ ont la signification mentionnée à la revendication 12 et Y est un groupe cyano, carbalcoxy ou arylsulfonyle, par exemple un groupe carbéthoxy ou phénylsulfonyle.

19Composés selon la revendication 9, caractérisés par le fait qu'ils ont la formule

25

30

dans laquelle n est le nombre 2 ou le nombre 1, R a la signification déjà indiquée et A est un reste anthraquinonique ayant 3 ou 4 noyaux condensés, qui contiennent un ou plusieurs autres substituants, tandis que Z et R ont la même signification que celle mentionnée à la revendication 13.

20. Procédé de préparation de composés ayant le caractère d'un colorant qui sont exempts de groupes acides aquaso-lubilisants, caractérisé par le fait qu'on introduit par copulation ou condensation dans le produit au moins un reste acyle réagissant sur la fibre et lié à un groupe aminogène, ce reste provenant d'un acide cycloaliphatique halogéné.

21. Procédé de teinture et d'impression de fibres synthétiques en particulier de fibres contenant des groupes aminogènes, amidiques et/ou esters, caractérisé par le fait qu'on utilise les colorants mentionnés dans l'une quelconque des revendications 1 à 20.

22. Procédé pour teindre et imprimer des polyamides naturels, surtout de la laine, caractérisé par le fait qu'on utilise les colorants décrits dans l'une quelconque des revendications 1 à 20.

23. Procédé de teinture et d'impression de fibres 10 contenant des groupes esters, surtout de fibres de polyesters linéaires, caractérisé par le fait qu'on utilise les colorants mentionnés dans l'une quelconque des revendications 1 à 20.

24.- Les matières et articles teints ou imprimés selon le procédé indiqué dans l'une quelconque des revendications 21 à 15 23.

25. Les amines ayant la formule

20

30

35

dans laquelle R", et R", indiquent chacun un groupe alkyle pouvant porter des substituants, d' est un atome d'hydrogène, un groupe alcoxy C1-4, un groupe ményloxy ou phénylmercapto, c" un atome d'hydrogène ou un reste méthyle, éthyle, méthoxy, éthoxy, phényl-25 thio ou phényloxy ou un atome de chlore ou de brome ou un groupe trifluorométhyle, un groupe alkylsulfonyle et un groupe acylamino pouvant être alkylé à l'atome d'azote, groupe dans lequel le reste acyle est celui d'un reste monocarboxylique organique, d'un acide monosulfonique organique comme l'acide méthane- éthane- ou p-toluène-monosulfonique ou le reste d'un acide carbamidique ou d'un monoester ou monoamide carbonique comme le phénoxycarbonyle, méthoxycarbonyle ou aminocarbonyle ou encore un feste Z, Z étant un reste acyle capable de réagir sur la fibre et lié à un groupe aminogène de l'acide 2,2,3,3-tétrafluorocyclobutane-1-carboxylique ou de l'acide β -(2,2,3,3-tétrafluorocyclobutyl)-acrylique.