Learning Objectives - Bayes' Rule

The following questions will help you review what you learned in the Bayes' Rule lesson.

Prior knowledge

For questions 1-3, assume you already have the following knowledge:

You're interested in finding out the probability of a car stopping if it sees a *yellow* traffic light.

- Past data tells you that the probability of a car stopping at a traffic light intersection is P(S) = 0.40. $P(\sim S) = 0.60$
- You also know that the past probability of a traffic light being yellow (as opposed to red or green) is P(Y) = 0.10. $P(\sim Y) = 0.90$

Car stopping at a yellow light

Traffic Light q1

When a car is stopped at an intersection, data shows that 12% of the time the light is yellow. So if we know a car is stopped, there's a 12% chance the light is yellow. This is called a *conditional probability*.

notation?
$\bigcirc P(S Y) = 0.12$
○ P(S) = 0.12
P(Y S) = 0.12
$\bigcirc P(Y,S) = 0.12$
Traffic Light q2
Using what you know from question 1, answer the following: if the traffic light is yellow, what is the chance that the car will stop?
O 0.04
○ 0.33
O 0.40
0.48
O 0.50
○ 0.52
Traffic Light q3
Knowing that a car stopping at an intersection and the presence of a yellow traffic light are related events, what are P(S) and P(Y) known as?
Posterior probabilities
○ Past probabilities
O Prior probabilities
○ Total probabilities

Questions 4 and 5 are different scenarios.

Prior knowledge for question 4:

On a four-lane highway, cars are either going fast or not fast. Faster cars should go in the leftmost lanes.

• At any given time, 20% of cars are in the left-most lane. P(L) = 0.2, $P(\sim L) = 0.8$

• Overall, $\frac{40\%}{6}$ of cars on the highway are classified as going $\frac{1}{6}$ P(F) = 0.4, $P(\sim F) = 0.6$

• Out of all the cars in the leftmost lane, 90% are going fast. P(F|L) = 0.9

Bayes q2

Given the above information, if a car is going fast, what is the probability that it will be in the leftmost lane?

0.125

$$O(0.25)$$
 $P(L|F) = \frac{P(F|L) * P(L)}{P(F)} = (0.9*0.2)/0.4 = 0.45$

0.45

 \bigcirc 0.55

Bayes' rule is not only used to incorporate sensor data into an estimate; it's also often used to incorporate test data into a medical diagnosis.

Prior knowledge for question 5:

- 1% of all people have cancer.
- 90% of people who have cancer test positive when given a cancer-detecting blood test, meaning the test detects cancer 90% of the time.
- 5% of people will have false positives, meaning that 5% of the time, this test will produce a positive result when people *do not* have cancer.

Bayes q3

Given the above data, what is the probability that a person has cancer if they have a positive cancer-test result? (Note: answers are rounded to the nearest 4th decimal place).

O 0.1125	Prior	P(C)=0.001	$P(\sim C) = 0.99$
		P(P C)=0.9	P(N C)=0.1
0.1538		$P(P C)=0.9$ $P(P \sim C)=0.05$ $P(C,P) = 0.1*0.9 = 0.009$ $P(\sim C,P) = 0.99*0.05 = 0.009$	$P(N \sim C)=0.95$
O.2687			
		P(C,P) = 0.1*0.9 = 0.00	9
○ 0.8924		$P(\sim C,P) = 0.99 * 0.05 =$	0.495
	P(P) = 0.009 + 0.495 = 0.0585		
		P(C P) = 0.009/0.0585	= 0.1538

Next Concept