ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Fall 2016

Instructor: Prof. Stanley H. Chan

Final

Fall 2016 (Dec 16, 2016)

Name:	PUID:	
Please copy and	d write the following statement:	
٠	I certify that I have neither given nor received unauthorized aid on this exam.	
(Please copy ar	nd write the above statement.)	
		(Signature)

Problem	Score
Q1	
Q2	
Q3	
Q4	
Q5	
Total	

Problem 1. (20 POINTS)

Determine whether the following statements are TRUE or FALSE. (A statement is true if it is *always* true. Otherwise it is false.) Circle your answer. No partial credit will be given.

(a) Let A, B, X be three events, and assume that $A \cup B = \Omega$. Then,

$$\mathbb{P}[X] = \mathbb{P}[X \mid A \backslash B] + \mathbb{P}[X \mid A \cap B] + \mathbb{P}[X \mid B \backslash A].$$

TRUE or FALSE.

(b) For any random variable X, the variance has the property that Var[aX + b] = aVar[X] + b.

TRUE or FALSE.

(c) Let $X \ge 0$ and $Y \ge 0$ be two independent random variables. Then,

$$\mathbb{P}[X+Y\leq 1]\leq \mathbb{P}[X\leq 1\ \cap\ Y\leq 1].$$

TRUE or FALSE.

(d) Let $X \sim \text{Uniform}[-1, 1]$. Then

$$F_X(x) = \frac{x+1}{2}.$$

TRUE or FALSE.

(e) Let X be a random variable with a PDF

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}, & x < 0, \\ c\lambda \exp\{-\lambda x\}, & x \ge 0. \end{cases}$$

Then, c = 1.

TRUE or FALSE.

(f) The probability $\mathbb{P}[X=b]$ is determined by

$$\mathbb{P}[X=b] = \lim_{h \to 0} F_X(b+h) - F_X(b).$$

TRUE or FALSE.

(g) Let X be a random variable with CDF $F_X(x)$. Let Y = 2X + 3. Then,

$$F_Y(y) = F_X\left(\frac{y-3}{2}\right).$$

TRUE or FALSE.

Not Required (h) Let $M_N = \frac{1}{N} \sum_{n=1}^N X_n$ be the sample mean of a sequence of random variables X_1, \dots, X_N . If $M_N \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{N}\right)$, then

$$\sqrt{N}\left(\frac{M_N-\mu}{\sigma}\right) \sim \mathcal{N}(0,1).$$

TRUE or FALSE.

(i) Let X, Y, Z be three random variables. It is given that X and Y are uncorrelated. Let a be a constant. Then,

$$Cov(X, Y + aZ) = aCov(X, Z).$$

TRUE or FALSE.

(j) Let X, Y be two independent random variables such that $X \sim \text{Bernoulli}(p)$ and $Y \sim \text{Exponential}(\alpha)$. Let U = 3XY. Then, the moment generating function of U is

$$M_U(s) = 1 - p + p \left(\frac{3\alpha}{\alpha - s}\right).$$

TRUE or FALSE.

Problem 2. (20 POINTS)

Circle one and only one answer. If I cannot tell which answer you are circling, I will give you a zero. There is no partial credit for this problem.

1. Consider a pair of random variables X and Y with joint PMF given by the following table.

The conditional expectation $\mathbb{E}[X \,|\, \{Y=1 \,\cup\, Y=2\}]$ is

- (a) 1
- (b) 2
- (c) $\frac{7}{3}$
- (d) $\frac{21}{20}$
- (e) $\frac{9}{2}$
- $(f) \frac{5}{2}$
- (g) $\frac{7}{2}$
- (h) $\frac{4}{3}$
- (i) None of the above
- (j) Problem undefined

2. Let $X \sim \text{Exponential}(\lambda)$. Let Y be a random variable such that

$$Y = \begin{cases} X - c, & X \ge c, \\ 0, & X < c. \end{cases}$$

Then, the PDF of Y is

- (a) $f_Y(0) = 0$ and $f_Y(y) = \lambda e^{-\lambda y}$ for y > 0.
- (b) $f_Y(0) = 1$ and $f_Y(y) = \lambda e^{-\lambda y}$ for y > 0.
- (c) $f_Y(0) = e^{-\lambda c}$ and $f_Y(y) = \lambda e^{-\lambda y}$ for y > 0.
- (d) $f_Y(0) = 1 e^{-\lambda c}$ and $f_Y(y) = \lambda e^{-\lambda y}$ for y > 0.
- (e) $f_Y(0) = e^{-\lambda c}$ and $f_Y(y) = \lambda e^{-\lambda(y-c)}$ for y > 0.
- (f) $f_Y(0) = e^{-\lambda c}$ and $f_Y(y) = \lambda e^{-\lambda(y+c)}$ for y > 0.
- (g) $f_Y(0) = 1 e^{-\lambda c}$ and $f_Y(y) = \lambda e^{-\lambda(y-c)}$ for y > 0.
- (h) $f_Y(0) = 1 e^{-\lambda c}$ and $f_Y(y) = \lambda e^{-\lambda(y+c)}$ for y > 0.
- (i) None of the above.
- (j) Problem undefined.

- 3. Let X and Y be two independent random variables with PDF $f_X(x)$ and $f_Y(y)$, respectively. Let Z = X + Y. Then, $F_Z(z) =$
 - (a) $\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_X(x) f_Y(y) dx dy$
 - (b) $\int_{-\infty}^{\infty} \int_{-\infty}^{y-z} f_X(x) f_Y(y) dx dy$
 - (c) $\int_{-\infty}^{\infty} \int_{-\infty}^{y+z} f_X(x) f_Y(y) dx dy$
 - (d) $\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_X(x) f_Y(y) dy dx$
 - (e) $\int_{-\infty}^{\infty} \int_{-\infty}^{x-z} f_X(x) f_Y(y) dy dx$
 - (f) $\int_{-\infty}^{\infty} \int_{-\infty}^{x+z} f_X(x) f_Y(y) dy dx$
 - (g) (a) and (d)
 - (h) (b) and (e)
 - (i) (c) and (f)
 - (j) None of the above
- Not Required 4. Let Θ be a random parameter with prior distribution $\Theta \sim \mathcal{N}(0,1)$. Let X be a Gaussian random variable with mean Θ and variance σ^2 . Suppose that we have observed two realizations x_1 and x_2 . The maximum-a-posteriori (MAP) estimate of Θ is
 - (a) $\widehat{\theta}_{MAP} = \frac{x_1 + x_2}{2}$
 - (b) $\widehat{\theta}_{MAP} = \frac{x_1 + x_2}{2\sigma^2}$
 - (c) $\hat{\theta}_{\text{MAP}} = \frac{x_1}{\sigma^2} + x_2$
 - (d) $\widehat{\theta}_{MAP} = x_1 + \frac{x_2}{\sigma^2}$
 - (e) $\widehat{\theta}_{MAP} = \frac{x_1 \sigma^2 + x_2}{2}$
 - (f) $\widehat{\theta}_{MAP} = \frac{x_1 + x_2 \sigma^2}{2}$
 - (g) $\widehat{\theta}_{\text{MAP}} = \frac{\sigma^2(x_1 + x_2)}{2}$
 - (h) $\hat{\theta}_{MAP} = \frac{x_1 + x_2}{2 + \sigma^2}$
 - (i) $\hat{\theta}_{MAP} = \frac{\sigma^2 x_1 + x_2}{2 + \sigma^2}$
 - (i) None of the above.
 - 5. Let X(t) be a WSS process with power spectral density $S_X(\omega)$. Let Y(t) = X(t) X(t-d) for some positive constant d. The power spectral density $S_Y(\omega)$ is
 - (a) $2S_X(\omega)(1+\cos(\omega d))$
 - (b) $2S_X(\omega)(1-\cos(\omega d))$
 - (c) $2S_X(\omega)\cos(\omega d)$
 - (d) $2S_X(\omega)(1+\sin(\omega d))$
 - (e) $2S_X(\omega)(1-\sin(\omega d))$
 - (f) $S_X(\omega)(1 e^{-j\omega d} e^{j\omega d})$
 - (g) $S_X(\omega)(1+e^{-j\omega d})$
 - (h) $S_X(\omega)(1-e^{j\omega d})$
 - (i) $S_X(\omega)(1 + e^{-|\omega d|})$
 - (j) None of the above.

Problem 3. (20 Points) Let X and Y have a joint PDF

$$f_{X,Y}(x,y) = c(x+y),$$

for $0 \le x \le 1$ and $0 \le y \le 1$.

(a) (3 points) Find c.

(b) (4 points) Find $f_X(x)$ and $f_Y(y)$.

(c) (3 points) Find $\mathbb{E}\left[\frac{1}{X+\frac{1}{2}}\right]$.

(d) (3 points) Find $f_{Y|X}(y|x)$.

(e) (3 points) Find $\mathbb{E}[Y^2|X=x]$.

(f) (4 points) Find $\mathbb{P}[Y > X \mid X > \frac{1}{2}]$.

Problem 4. (20 POINTS)

Let θ be an unknown scalar. Let $W_n \sim \mathcal{N}(0, \sigma^2)$ be an i.i.d. Gaussian noise. Let $Y_n = \theta + W_n$, for n = 1, ..., N. Suppose that we have observed realizations $y_1, ..., y_N$ for $Y_1, ..., Y_N$.

(a) (5 points) Find the joint PDF of Y_1, \ldots, Y_N given the parameter θ , i.e., $f_{Y_1, \ldots, Y_N}(y_1, \ldots, y_N \mid \theta)$.

Not Required (b) (5 points) Recall that the maximum likelihood estimate $\widehat{\theta}_{ML}$ is defined as

$$\hat{\theta}_{\mathrm{ML}} = \underset{\theta}{\operatorname{argmax}} \ f_{Y_1, \dots, Y_N}(y_1, \dots, y_N \mid \theta)$$

Find $\widehat{\theta}_{\mathrm{ML}}$. Express your answer in terms of y_1, \ldots, y_N .

/ > /	1 — N			
(c) (5 points) Let M_N	$Y = \frac{1}{N} \sum_{n=1}^{N} Y_n$.	Find the moment	generating function	of M_N .

Not Required (d) (5 points) Use central limit theorem, find the probability

$$\mathbb{P}[|M_N - \theta| \le \sigma].$$

Express your answer in terms of the $\Phi(\cdot)$ function.

Problem 5. (20 POINTS)

Let X(t) be a WSS process with autocorrelation function $R_X(\tau)$ and power spectral density $S_X(\omega)$ as shown below

Let $\Theta \sim \text{Uniform}[0,2\pi]$ be a uniformly distributed random variable. Define

$$Y(t) = \sqrt{2}X(t)\cos(\omega_0 t + \Theta).$$

(a) (5 points) Find $\mathbb{E}[Y(t+\tau)Y(t)]$, i.e., $R_Y(\tau)$.

(b) (5 points) Find $S_Y(\omega)$. Express your answer in terms of $S_X(\omega)$. (Hint: $f(t)e^{j\omega_0t}\longleftrightarrow F(\omega-\omega_0)$.)

Now, assume that Y(t) is passed through an LTI system shown in the following block diagram.

(c) (5 points) Find and sketch $S_U(\omega)$. Express your answer in terms of $S_X(\omega)$. Mark and label your figure clearly.

(d) (5 points) Assume that $H(\omega)$ is given by

$$H(\omega) = \begin{cases} 1, & -W \le \omega \le W, \\ 0, & \text{otherwise.} \end{cases}$$

Find $R_Z(\tau)$.

Useful Identities

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$

2.
$$\sum_{n=0}^{\infty} k = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

3.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$$
 6. $(a+b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k}$

4.
$$\sum_{k=1}^{\infty} kr^{k-1} = 1 + 2r + 3r^2 + \dots = \frac{1}{(1-r)^2}$$

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$
2.
$$\sum_{k=1}^{n} k = 1 + 2r + 3r^2 + \dots = \frac{1}{(1-r)^2}$$
3.
$$\sum_{k=1}^{n} k = 1 + 2r + 3r + \dots + n = \frac{n(n+1)}{2}$$
5.
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

6.
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Common Distributions

Bernoulli
$$\mathbb{P}[X=1]=p$$

$$\mathbb{E}[X] = p$$
 $\operatorname{Var}[X] = p(1 - p)$

$$Var[X] = p(1-p)$$
 $M_X(s) = 1 - p + pe^s$

Binomial
$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}[X] = np$$
 $\operatorname{Var}[X] = np(1 - 1)$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $\mathbb{E}[X] = np$ $Var[X] = np(1-p)$ $M_X(s) = (1-p+pe^s)^n$

Geometric
$$p_X(k) = p(1-p)^{k-1}$$

$$[X] = \frac{1}{p}$$
 $\operatorname{Var}[X] = \frac{1}{p^2}$

$$M_X(s) = \frac{pe^s}{1 - (1 - p)e^s}$$

Poisson
$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$\mathbb{E}[X] = \lambda$$
 $Var[X] = \lambda$

$$M_X(s) = e^{\lambda(e^s - 1)}$$

Geometric
$$p_X(k) = p(1-p)^{k-1}$$
 $\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}[X] = \frac{1-p}{p^2}$ $M_X(s) = \frac{pe^s}{1-(1-p)e^s}$ Poisson $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $\mathbb{E}[X] = \lambda$ $\operatorname{Var}[X] = \lambda$ $M_X(s) = e^{\lambda(e^s-1)}$ Gaussian $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\mathbb{E}[X] = \mu$ $\operatorname{Var}[X] = \sigma^2$ $M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$ Exponential $f_X(x) = \lambda \exp\{-\lambda x\}$ $\mathbb{E}[X] = \frac{1}{\lambda}$ $\operatorname{Var}[X] = \frac{1}{\lambda^2}$ $M_X(s) = \frac{\lambda}{\lambda - s}$

$$\operatorname{E}[X] = \mu \quad \operatorname{Var}[X] =$$

$$M_X(e) = \frac{\lambda}{2}$$

Exponential
$$f_X(x) = \lambda \exp \{-\lambda x\}$$

$$\mathbb{E}[X] = \frac{1}{\lambda} \qquad \text{Var}[X] = \frac{1}{\lambda^2}$$

$$M_X(s) = \frac{\lambda}{\lambda - s}$$

Uniform
$$f_X(x) = \frac{1}{b-a}$$

$$\mathbb{E}[X] = \frac{a+b}{2} \quad \text{Var}[X] = \frac{(b-a)^2}{12} \qquad M_X(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$$

$$M_X(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$$

Fourier Transform Table

$$f(t) \longleftrightarrow F(w)$$

$$f(t) \longleftrightarrow F(w)$$

1.
$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, a>0$$

$$\operatorname{sinc}^2(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$$

2.
$$e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, \ a > 0$$

$$f(t) \longleftrightarrow F(w)$$

$$1. \qquad e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, \ a > 0$$

$$10. \qquad \operatorname{sinc}^{2}(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$$

$$2. \qquad e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, \ a > 0$$

$$11. \qquad e^{-at}\sin(w_{0}t)u(t) \longleftrightarrow \frac{w_{0}}{(a+jw)^{2}+w_{0}^{2}}, \ a > 0$$

$$3. \qquad e^{-a|t|} \longleftrightarrow \frac{2a}{a^{2}+w^{2}}, \ a > 0$$

$$12. \qquad e^{-at}\cos(w_{0}t)u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^{2}+w_{0}^{2}}, \ a > 0$$

$$4. \qquad \frac{a^{2}}{a^{2}+t^{2}} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$$

$$13. \qquad e^{-\frac{t^{2}}{2\sigma^{2}}} \longleftrightarrow \sqrt{2\pi} \sigma e^{-\frac{\sigma^{2}w^{2}}{2}}$$

$$5. \qquad t e^{-at}u(t) \longleftrightarrow \frac{1}{(a+jw)^{2}+w_{0}^{2}}, \ a > 0$$

$$14. \qquad \delta(t) \longleftrightarrow 1$$

3.
$$e^{-a|t|} \longleftrightarrow \frac{2a}{a^2 + w^2}, a > 0$$

12.
$$e^{-at}\cos(w_0t)u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^2+w_0^2}, a > 0$$

4.
$$\frac{a^2}{a^2+t^2} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$$

13.
$$e^{-\frac{t^2}{2\sigma^2}} \longleftrightarrow \sqrt{2\pi}\sigma e^{-\frac{\sigma^2 w^2}{2}}$$

5.
$$te^{-at}u(t) \longleftrightarrow \frac{1}{(a+jw)^2}, \ a>0$$

$$\delta(t) \longleftrightarrow 1$$

6.
$$t^n e^{-at} u(t) \longleftrightarrow \frac{n!}{(a+jw)^{n+1}}, \ a > 0$$

7. $\operatorname{rect}(\frac{t}{a}) \longleftrightarrow \tau \operatorname{sinc}(\frac{w\tau}{2})$

$$1 \longleftrightarrow 2\pi\delta(w)$$

8.
$$\operatorname{sinc}(Wt) \longleftrightarrow \frac{\pi}{W} \operatorname{rect}(\frac{w}{2W})$$

$$\delta(t-t_0)\longleftrightarrow e^{-jwt_0}$$

8.
$$\operatorname{sinc}(Wt) \longleftrightarrow \frac{\pi}{W}\operatorname{rect}(\frac{\omega}{2W})$$

17.
$$e^{jw_0t} \longleftrightarrow 2\pi\delta(w-w_0)$$

9.
$$\Delta(\frac{t}{\tau}) \longleftrightarrow \frac{\tau}{2} \operatorname{sinc}^2(\frac{w\tau}{4})$$

Some definitions:

$$\operatorname{sinc}(t) = \frac{\sin(t)}{t} \qquad \operatorname{rect}(t) = \begin{cases} 1, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases} \qquad \Delta(t) = \begin{cases} 1 - 2|t|, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases}$$

14.

15.

16.

Basic Trigonometry

$$e^{j\theta} = \cos\theta + j\sin\theta$$
, $\sin 2\theta = 2\sin\theta\cos\theta$, $\cos 2\theta = 2\cos^2\theta - 1$.

$$\cos A \cos B = \frac{1}{2}(\cos(A+B) + \cos(A-B)) \quad \sin A \sin B = -\frac{1}{2}(\cos(A+B) - \cos(A-B))$$
$$\sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B)) \quad \cos A \sin B = \frac{1}{2}(\sin(A+B) - \sin(A-B))$$