Elements of Econometrics. Lecture 7. MLR Model. Predictions.

FCS, 2022-2023

PREDICTION

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

Fitted model

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

Prediction conditional on $X^{^st}$

$$\hat{Y}^* = \hat{\beta}_1 + \hat{\beta}_2 X^*$$

Prediction Error
$$PE = Y^* - \hat{Y}^*$$

$$Y^* = \beta_1 + \beta_2 X^* + u^*$$

$$PE = Y^* - \hat{Y}^* = (\beta_1 + \beta_2 X^* + u^*) - (\hat{\beta}_1 + \hat{\beta}_2 X^*)$$

$$E(PE) = E(\beta_1 + \beta_2 X^* + u^*) - E(\hat{\beta}_1 + \hat{\beta}_2 X^*)$$

$$= \beta_1 + \beta_2 X^* + E(u^*) - E(\hat{\beta}_1 + \hat{\beta}_2 X^*)$$

$$= \beta_1 + \beta_2 X^* - \beta_1 - X^* \beta_2 = 0$$

Variance of prediction error: proof

$$\sigma_{PE}^2 = \left\{ 1 + \frac{1}{n} + \frac{(X^* - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right\} \sigma_u^2$$

$$Var(PE) = Var(Y^* - \hat{Y}^*) = Var(Y^*) + Var(\hat{Y}^*) + 0 = \sigma_u^2 + Var(\hat{\beta}_1 + \hat{\beta}_2 X^*) = 0$$

$$= \sigma_u^2 + \left(\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum (X_i - \overline{X})^2}\right) \sigma_u^2 = \left(1 + \frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum (X_i - \overline{X})^2}\right) \sigma_u^2$$

$$\operatorname{var}(\hat{\beta}_{1} + \hat{\beta}_{2}X^{*}) = \sigma_{u}^{2} \left(\frac{1}{n} + \frac{\bar{X}^{2}}{\sum (X_{i} - \bar{X})^{2}} \right) + (X^{*})^{2} \frac{\sigma_{u}^{2}}{\sum (X_{i} - \bar{X})^{2}} + 2X^{*} \frac{-\bar{X}\sigma_{u}^{2}}{\sum (X_{i} - \bar{X})^{2}} = 0$$

$$= \left(\frac{1}{n} + \frac{(\bar{X}^2 - 2X^*\bar{X} + (X^*)^2)}{\sum (X_i - \bar{X})^2}\right)\sigma_u^2 = \left(\frac{1}{n} + \frac{(X^* - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right)\sigma_u^2$$

Variance of prediction error: auxiliary proofs

Prove
$$Cov(Y^*, \hat{Y}^*) = 0$$
:

$$Cov(Y^*, \hat{Y}^*) = Cov(u *, \hat{\beta}_1 + \hat{\beta}_2 X^*)$$

$$Cov(u*,\hat{\beta}_2X^*) = X*Cov(u*,\beta_2 + \sum_i u_i a_i) = 0 \quad \text{since } u* \text{ and } u_i \text{ are independent}$$

$$Cov(u*,\hat{\beta}_1) = Cov(u*,\bar{Y} - \hat{\beta}_2\overline{X}) = Cov(u*,\beta_1 + \beta_2\overline{X} + \overline{u} - \hat{\beta}_2\overline{X}) = \overline{X}Cov(u*,\hat{\beta}_2) = 0.$$

Prove:
$$Cov(\hat{\beta}_1, \hat{\beta}_2) = \frac{-\overline{X}\sigma_u^2}{\sum (X_i - \overline{X})^2}$$
 $Cov(\overline{Y}, \hat{\beta}_2) = Cov\left(\sum \frac{1}{n}Y_i, \sum a_jY_j\right) =$

$$= \sum_{i} \left(\frac{a_i}{n}\right) \operatorname{Var}(Y_i) + \sum_{i} \left(\frac{a_j}{n}\right) \sum_{i \neq j} \operatorname{Cov}(Y_i, Y_j) = \frac{\sigma_u^2}{n} \sum_{i} a_i + 0 = 0$$

$$Cov(\hat{\beta}_1, \hat{\beta}_2) = Cov(\overline{Y} - \hat{\beta}_2 \overline{X}, \hat{\beta}_2) = Cov(\overline{Y}, \hat{\beta}_2) - \overline{X} Cov(\hat{\beta}_2, \hat{\beta}_2) =$$

$$= 0 - \overline{X} \operatorname{Var}(\hat{\beta}_2) = \frac{-X \sigma_u^2}{\sum (X_i - \overline{X})^2}$$

PREDICTION

$$\sigma_{PE}^2 = \left\{ 1 + \frac{1}{n} + \frac{(X^* - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right\} \sigma_u^2 \quad \text{s.e.}(PE) = \sqrt{\left\{ 1 + \frac{1}{n} + \frac{(X^* - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right\} s_u^2}$$

PREDICTIONS: GENERAL QUALITY

$$\sqrt{\sum_{t=T+1}^{T+h} (\hat{y}_t - y_t)^2/h}$$

Mean Absolute Error

$$\sum_{t=T+1}^{T+h} |\hat{y}_t - y_t|/h$$

Mean Absolute Percent Error

$$100 \sum_{t=T+1}^{T+h} |\frac{\hat{y}_t - y_t}{y_t}| / h$$

Theil Inequality Coefficient

$$U_{1} = \frac{\sqrt{\sum_{t=T+1}^{T+h} (\hat{y}_{t} - y_{t})^{2}/h}}{\sqrt{\sum_{t=T+1}^{T+h} \hat{y}_{t}^{2}/h} + \sqrt{\sum_{t=T+1}^{T+h} y_{t}^{2}/h}}$$

$$U_{2} = \sqrt{\frac{\frac{1}{h} \sum (\hat{y}_{T+p} - y_{T+p})^{2}}{\frac{1}{h} \sum (\Delta y_{T+p})^{2}}}$$

Theil U₂ Coefficient

$$U_{2} = \sqrt{\frac{\frac{1}{h} \sum (\hat{y}_{T+p} - y_{T+p})^{2}}{\frac{1}{h} \sum (\Delta y_{T+p})^{2}}}$$

PREDICTION: RUR/USD Exchange Rate: 12/01/16-31/08/16-06/10/16

Dependent Variable: RUR USD

Method: Least Squares

Date: 10/05/16 Time: 21:31

Sample: 496 655

Included observations: 160

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C OIL_BRENT(-2)	100.3502 -0.739957	0.995850 0.022991	100.7683 -32.18508	0.0000 0.0000
R-squared	0.867658	Mean dependent var		68.67378

Forecast: RUR USDF2 Actual: RUR_USD Forecast sample: 656 681 Included observations: 26 Root Mean Squared Error 1.217824 Mean Absolute Error 1.037165 1.615266 Mean Abs. Percent Error Theil Inequality Coefficient 0.009408 Bias Proportion 0.531535 0.032971 Variance Proportion Covariance Proportion 0.435494 Theil U2 Coefficient 2.685163 Symmetric MAPE 1.598604

Forecast for 06.10.16:

62.7

Official ER 06.10.16:

62.46

PREDICTION: ICEF STUDENTS UoL GRADES, Elements of Econometrics, 2019

Dependent Variable: UOL Method: Least Squares Date: 10/05/19 Time: 21:12 Sample (adjusted): 1 199

Included observations: 149 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SEM1	37.84472 0.224676	1.768514 0.071463	21.39916 3.143929	0.0000 0.0020
MARCH	0.499192	0.080407	6.208298	0.0000
R-squared	0.641020	Mean dependent var		62.94631
Adjusted R-squared	0.636102	S.D. dependent var		16.12401
S.E. of regression	9.726637	Akaike info criterion		7.407542
Sum squared resid	13812.69	Schwarz criterion		7.468024
Log likelihood	-548.8619	Hannan-Quinn criter.		7.432115
F-statistic	130.3538	Durbin-Watson stat		2.012132
Prob(F-statistic)	0.000000			

UOLF ---- ±2 S.E.

Forecast: UOLF Actual: UOL Forecast sample: 201 211 Adjusted sample: 201 211 Included observations: 10 Root Mean Squared Error 9.051834 Mean Absolute Error 7.938863 Mean Abs. Percent Error 14.03293 Theil Inequality Coef. 0.077633 Bias Proportion 0.064915 Variance Proportion 0.003274 Covariance Proportion 0.931811 Theil U2 Coefficient 0.566297 Symmetric MAPE 14.33669

PREDICTION with logarithmic functions

Predicting Y when log(Y) is the dependent variable

$$\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

$$\Rightarrow y = \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k) \exp(u)$$

• Under the additional assumption that u is independent of $X_1, ..., X_k$:

$$\Rightarrow E(y|\mathbf{x}) = \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k) E(\exp(u))$$

$$\Rightarrow \hat{y} = \exp(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k) (\frac{1}{n} \sum_{i=1}^n \exp(\hat{u}_i))$$