Al Response:

Kinematics is a branch of classical mechanics that deals with the motion of object

Key Concepts

- 1. **Displacement (s)**: The change in position of an object. It is a vector quantit
- 2. **Distance**: The total path length traveled by an object in motion. It is a scala
- 3. **Velocity (v)**: The rate of change of displacement with respect to time. It is a
 - **Average Velocity**: \(v_{avg} = \frac{\Delta s}{\Delta t} \)
 - **Instantaneous Velocity**: The velocity at a specific moment in time.
- 4. **Acceleration (a)**: The rate of change of velocity with respect to time. It is al
 - **Average Acceleration**: \(a_{avg} = \frac{\Delta v}{\Delta t} \)
 - **Instantaneous Acceleration**: The acceleration at a specific moment in time
- 5. **Time (t)**: The duration over which motion occurs.

Equations of Motion

For uniformly accelerated motion (constant acceleration), the following kinematic

- 1. (v = u + at)
 - Where \(v \) is the final velocity, \(u \) is the initial velocity, \(a \) is accelerati
- 2. \($s = ut + \frac{1}{2}at^2 \)$
 - Where \(s \) is the displacement.
- 3. $(v^2 = u^2 + 2as)$
- 4. \($s = \frac{(u + v)}{2} t \)$
- ### Special Cases
- 1. **Free Fall**: When an object is falling under the influence of gravity, the acce
- 2. **Projectile Motion**: The motion of an object that is launched into the air and
- 3. **Circular Motion**: Motion along a circular path, where objects experience ce

Applications

Kinematics is used in various fields, including physics, engineering, robotics, bio