Lab #4 — Path tracing (part 2)

Informática Gráfica

Adolfo Muñoz - Julio Marco Pablo Luesia - J. Daniel Subías — Óscar Pueyo

Before we begin...

Today: calculate direct illumination and indirect illumination

Previous session (direct light)

Full path tracing (+ indirect light)

Before we begin...

Today: calculate direct illumination and indirect illumination

Previous session (direct light)

Full path tracing (+ indirect light)

Before we begin...

- Warning: there is a lot of theory on these slides, handle with care
 - If you want to go straight to the point/programming, go to the end
- Lab 4 (path tracing) is the first submitted work
 - Recommended deadline: November 13th
 - Moodle: January 11th
 - You will use most of today's code for Lab 5 (photon mapping) too
- Remember: Final work is 80% of the final grade

Previously: only direct illumination

$$L_{o}(\mathbf{x}, \omega_{o}) = L_{o}(\mathbf{x}, \omega_{o}) + \int_{\Omega} L_{i}(\mathbf{x}, \omega_{i}) f_{r}(\mathbf{x}, \omega_{i}, \omega_{o}) |\mathbf{n} \cdot \omega_{i}| d\omega_{i}$$

But just the direct light

Which color do we fill each pixel with?

$$L_o(\mathbf{x}, \omega_o) = L_o(\mathbf{x}, \omega_o) + \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i$$

The full integral

How do we compute

$$\left| \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i \right| ?$$

On the previous session (direct light):

$$= \sum_{i=1}^{n} \frac{p_i}{|\mathbf{c_i} - \mathbf{x}|^2} f_r\left(\mathbf{x}, \frac{\mathbf{c_i} - \mathbf{x}}{|\mathbf{c_i} - \mathbf{x}|}, \omega_{\mathbf{o}}\right) \left|\mathbf{n} \cdot \frac{\mathbf{c_i} - \mathbf{x}}{|\mathbf{c_i} - \mathbf{x}|}\right|$$

- Paths have exactly one bounce
- Closed-form solution

How do we compute

$$\left| \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i \right| ?$$

Today (direct light + indirect light):

$$= \int_{\Omega_1} L_i(\mathbf{x_1}, \omega_{i1}) f_r(\mathbf{x_1}, \omega_{i1}, \omega_{o1}) |\mathbf{n_1} \cdot \omega_{i1}| d\omega_{i1}$$

Integrate over the whole hemisphere

How do we compute
$$\int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i$$
?

Today (direct light + indirect light):

$$= \int_{\Omega_1} \left(\int_{\Omega_2} L_i(\mathbf{x_2}, \omega_{i2}) f_r(\mathbf{x_2}, \omega_{i2}, -\omega_{i1}) |\mathbf{n_2} \cdot \omega_{i2}| d\omega_{i1} \right)$$

$$f_r(\mathbf{x_1}, -\omega_{i1}, \omega_{o1}) |\mathbf{n_1} \cdot \omega_{i1}| d\omega_{i1}$$

Integrate over the whole hemisphere^2

• How do we compute
$$\left| \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i \right| ?$$

Today (direct light + indirect light):

$$= \int_{\Omega_1} \cdots \int_{\Omega_N} L_i(\mathbf{x_N}, \omega_{\mathbf{N2}}) \left(\prod_{k=2}^N f_r\left(\mathbf{x_k}, \omega_{\mathbf{il}}, -\omega_{\mathbf{i(k-1)}}\right) \right) f_r(\mathbf{x_1}, \omega_{\mathbf{i1}}, \omega_{\mathbf{o1}})$$
$$\left(\prod_{k=1}^N |\mathbf{n_k} \cdot \omega_{\mathbf{ik}}| \right) d\omega_{\mathbf{iN}} \cdots d\omega_{\mathbf{i1}}$$

- Paths can have 1..N bounces
- How do we solve this integral?

How do we compute

$$\left| \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i \right| ?$$

• How do we compute

$$\left| \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i \right| ?$$

How do we compute

$$\left| \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i \right| ?$$

How do we compute

$$\left| \int_{\Omega} L_i(\mathbf{x}, \omega_i) f_r(\mathbf{x}, \omega_i, \omega_o) |\mathbf{n} \cdot \omega_i| d\omega_i \right| ?$$

Compute this green area under the curve

• There are infinite values for $[\omega_i]$

- ullet There are infinite values for $\omega_{f i}$
- Idea 1: approximate using a finite amount of (evenly spaced) samples

- There are infinite values for $\omega_{\mathbf{i}}$
- Idea 1: approximate using a finite amount of (evenly spaced) samples

- There are infinite values for $\omega_{\mathbf{i}}$
- Idea 1: approximate using a finite amount of (evenly spaced) samples

- There are infinite values for $\omega_{\mathbf{i}}$
- Idea 1: approximate using a finite amount of (evenly spaced) samples

- There are infinite values for $\omega_{\mathbf{i}}$
- Idea 1: approximate using a finite amount of (evenly spaced) samples
 - Example of one deterministic sample

- If all rays go towards **n**, you ignore the rest of the hemisphere
 - Notice this will also happen with N samples
- Produces what's called a biased result (ignores

- There are infinite values for $\omega_{\mathbf{i}}$
- Idea 1: approximate using a finite amount of (evenly spaced) samples
- Idea 2: Monte Carlo estimator, use the mean of N random samples

- There are infinite values for $\omega_{\mathbf{i}}$
- Idea 1: approximate using a finite amount of (evenly spaced) samples
- Idea 2: Monte Carlo estimator, use the mean of N random samples

- There are infinite values for $\omega_{\mathbf{i}}$
- Idea 2: Monte Carlo estimator, use the mean of N random samples

What happens if you approximate integrals using N samples?

One ray from the camera

What happens if you approximate integrals using N samples?

N rays for the first bounce

What happens if you approximate integrals using N samples?

N rays for the first bounce

What happens if you approximate integrals using N samples?

N² rays for the second bounce

What happens if you approximate integrals using N samples?

N^N rays for the Nth bounce

- There are infinite values for $|\omega_{\mathbf{i}}|$
- Idea 3: Monte Carlo estimator, use the mean of N = 1 random sample

for a randomly chosen direction ____

Monte Carlo estimation for the path integral

One random ω_i on each bounce

One ray from the camera

Monte Carlo estimation for the path integral

One random ω_i on each bounce

One random ray for the first bounce

Monte Carlo estimation for the path integral

One random ω_i on each bounce

One random ray for the second bounce

Monte Carlo estimation for the path integral

One random ω_i on each bounce

- Monte Carlo estimation for the path integral
 - Sum of multiple random paths
 - \circ More paths \rightarrow better approximation of the integral (better result)

Generating random paths

How to generate a value for $|\omega_{\mathbf{i}}|$

 ω_{i}

Generating random paths

How to generate a value for

• Spherical coordinates:

$$heta \in \left[0, \frac{\pi}{2}\right)$$
 (hemisphere) $arphi \in \left[0, 2\pi\right)$

Convert spherical to cartesian

Generating random paths

How to generate a value for $|\omega_{\mathbf{i}}|$

Remember your old job:

• Spherical coordinates:

$$\theta \in [0, \frac{\pi}{2})$$
 (hemisphere)

$$\varphi \in [0, 2\pi)$$

Convert spherical to cartesian

Uniform θ , $\phi \neq$ Uniform solid angle ω_i

Generating random paths

How to generate a value for $|\omega_{\mathbf{i}}|$

Remember your old job:

Uniform θ , $\phi \neq$ Uniform solid angle ω_i

Top view (more samples near **n**)

Uniform angle vs uniform solid angle

Uniform angle sampling

Uniform solid angle sampling

$$\xi_{\theta} \in [0,1)$$
 c^{-1}

$$\xi_{\varphi} \in [0,1)$$

$$oldsymbol{c}^{-1}(\xi_{ heta_i}) = rac{\pi}{2} \xi_{ heta_i}$$

$$\boldsymbol{c}^{-1}(\xi_{\phi_i}) = 2\pi \xi_{\phi_i}$$

$$\boldsymbol{c}^{-1}(\xi_{\theta_i}) = \arccos \xi_{\theta_i}$$

$$\boldsymbol{c}^{-1}(\xi_{\phi_i}) = 2\pi \xi_{\phi_i}$$

Importance sampling

Importance sampling

Monte Carlo works better when f and p
 have similar distributions

Importance sampling: diffuse materials

Monte Carlo works better when f and p
 have similar distributions

Importance sampling: diffuse materials

- Monte Carlo works better when f and p have similar distributions
- Make *p* follow $\|\mathbf{n} \cdot \omega_{\mathbf{i}}\|$
- Cosine-weighted

$$\boldsymbol{c}^{-1}(\xi_{\theta_i}) = \arccos\sqrt{1 - \xi_{\theta_i}}$$
 $\boldsymbol{c}^{-1}(\xi_{\phi_i}) = 2\pi \xi_{\phi_i}$

$$\mathbf{c}^{-1}(\xi_{\phi_i}) = 2\pi \xi_{\phi_i}$$

• Enough maths, let's code

- Enough maths, let's code
- Recommendation: you can separate your code in functions

- Enough maths, let's code
- Recommendation: you can separate your code in functions
 - From previous session
 - Diffuse **BRDF evaluation** function

$$f_r\left(\mathbf{x}, \frac{\mathbf{c_i} - \mathbf{x}}{|\mathbf{c_i} - \mathbf{x}|}, \omega_{\mathbf{o}}\right)$$

- Enough maths, let's code
- Recommendation: you can separate your code in functions
 - From previous session
 - Diffuse **BRDF evaluation** function
 - Next-event estimation (direct lights at x)

$$\left| \sum_{i=1}^{n} \frac{p_i}{|\mathbf{c_i} - \mathbf{x}|^2} f_r\left(\mathbf{x}, \frac{\mathbf{c_i} - \mathbf{x}}{|\mathbf{c_i} - \mathbf{x}|}, \omega_{\mathbf{o}}\right) \left| \mathbf{n} \cdot \frac{\mathbf{c_i} - \mathbf{x}}{|\mathbf{c_i} - \mathbf{x}|} \right| \right|$$

- Enough maths, let's code
- Recommendation: you can separate your code in functions
 - From previous session
 - Diffuse **BRDF evaluation** function
 - \blacksquare Next-event estimation (direct lights at \blacksquare)
 - Today's session
 - Diffuse BRDF sample function

$$\xi_{\theta} \in [0,1) \qquad \qquad \qquad \theta \in [0,\frac{\pi}{2}) \qquad \qquad \omega_{i}$$

$$\xi_{\varphi} \in [0,1) \qquad \qquad \qquad \varphi \in [0,2\pi) \qquad \qquad \omega_{i}$$

- Enough maths, let's code
- Recommendation: you can separate your code in functions
 - From previous session
 - Diffuse **BRDF evaluation** function
 - Next-event estimation (direct lights at x)
 - Today's session
 - Diffuse **BRDF sample** function
 - Return ω_i and $f_r(\mathbf{x}, \omega_i, \omega_o)$
 - Call it on every bounce
 - Intersect ray (\mathbf{x}, ω_i) with geometry

- Enough maths, let's code
- Recommendation: you can separate your code in functions
 - From previous session
 - Diffuse **BRDF evaluation** function
 - Next-event estimation (direct lights at x)
 - Today's session
 - Diffuse **BRDF sample** function
 - Return ω_i and $f_r(\mathbf{x}, \omega_i, \omega_o)$
 - Call it on every bounce
 - Intersect ray (x, ω_i) with geometry

- Enough maths, let's code
- Recommendation: you can separate your code in functions
 - From previous session
 - Diffuse **BRDF evaluation** function
 - Next-event estimation (direct lights at x)
 - Today's session
 - Diffuse **BRDF sample** function

Problem: it is **impossible** to hit a point light with a random ray (\mathbf{x}, ω_i)

- Enough maths, let's code
- Recommendation: you can separate your code in functions
 - From previous session
 - Diffuse **BRDF evaluation** function
 - Next-event estimation (direct lights at x)
 - Today's session
 - Diffuse **BRDF sample** function
 - Generate $\omega_{\mathbf{i}}$ and intersect ray
 - Call next-event estimation on every bounce x

- Path tracing algorithm: Want to calculate $L_o(\mathbf{x}, \omega_o)$
 - Intersect ray with geometry at point x with its own BRDF
 - Search for light sources at x
 - \circ Sample BRDF \mathbf{x} for a new ray (\mathbf{x} , $\omega_{\mathbf{i}}$)
 - Repeat the same steps again

- Path tracing algorithm: Want to calculate $L_o(\mathbf{x}, \omega_o)$
 - Intersect ray with geometry at point x with its own BRDF
 - Search for light sources at x
 - \circ Sample BRDF \mathbf{x} for a new ray (\mathbf{x} , $\omega_{\mathbf{i}}$)
 - Repeat the same steps again
- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- When do we stop generating rays?
 (aka. path termination conditions)

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- When do we stop generating rays?
 (aka. path termination conditions)
 - (1) When hitting an area light source

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- When do we stop generating rays?
 (aka. path termination conditions)
 - (1) When hitting an area light source
 - (2) When ray does not hit anything

$$L_o(\mathbf{x}, \omega_o) = \mathbf{0}$$

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- When do we stop generating rays?
 (aka. path termination conditions)
 - (1) When hitting an area light source
 - (2) When ray does not hit anything
 - (3) When there are >N bounces

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- Important: account for light bounces correctly
 - You should sum four contributions

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- Important: account for light bounces correctly
 - In this example, you should sum four contributions
 - Light at 1 should be multiplied by BRDF/cosine terms at 1

$$|\mathbf{f_r}(\mathbf{x}, \omega_{\mathbf{i}}, \omega_{\mathbf{o}})|\mathbf{n} \cdot \omega_{\mathbf{i}}|$$

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- Important: account for light bounces correctly
 - In this example, you should **sum** four contributions
 - Light at (2) should be multiplied by
 BRDF/cosine terms at (2) (1)

$$|f_r(\mathbf{x}, \omega_{\mathbf{i}}, \omega_{\mathbf{o}})| \mathbf{n} \cdot \omega_{\mathbf{i}}|$$

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- Important: account for light bounces correctly
 - In this example, you should **sum** four contributions
 - Light at (3) should be multiplied by
 BRDF/cosine terms at (3) (2) (1)

 $|f_r(\mathbf{x}, \omega_{\mathbf{i}}, \omega_{\mathbf{o}})|\mathbf{n} \cdot \omega_{\mathbf{i}}|$

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- Important: account for light bounces correctly
 - In this example, you should sum four contributions
 - Light at (4) should be multiplied by
 BRDF/cosine terms at (4) (3) (2) (1)

$$|f_r(\mathbf{x}, \omega_{\mathbf{i}}, \omega_{\mathbf{o}})|\mathbf{n} \cdot \omega_{\mathbf{i}}|$$

- Function can be written as:
 - Recursive (recommended)
 - Iterative (faster, caution)
- Important: account for light bounces correctly
 - In this example, you should sum four contributions
 - Total: 1 + 2 + 3 + 4
 - Easy to do recursively
 - Tricky to do iteratively

Geometry

Planes defined by normal (n) and distance (d)

Left plane n = (1, 0, 0), d = 1

Right plane n = (-1, 0, 0), d = 1

Floor plane n = (0, 1, 0), d = 1

Ceiling plane n = (0, -1, 0), d = 1

Back plane n = (0, 0, -1), d = 1

Spheres defined by center (c) and radius (r)

Left sphere c = (-0.5, -0.7, 0.25), r = 0.3

Right sphere c = (0.5, -0.7, -0.25), r = 0.3

Camera & light sources

Camera and image plane defined by

Origin O = (0, 0, -3.5)

Left L = (-1, 0, 0)

Up U = (0, 1, 0)

Forward F = (0, 0, 3)

Size 256x256 pixels

Light sources

Center and power (emission)

```
Center c = (0, 0.5, 0)
Power can be any number e.g. p = (1, 1, 1)
Just be careful with the #MAX
```

```
1 P3
2 # feep.ppm
3 #MAX=<maximum of your RGB memory values>
4 4 4
5 15
6 0 0 0 0 0 0 0 0 0 15 0 15
```


Results (no area lights + point light)

Using a point light

With tone mapping

Results (no point light + ceiling plane is an area light)

Using an area light

With tone mapping

Questions

DO ASK questions, either now or after the lab

But be reasonable, please:)

<u>pluesia@unizar.es</u> | <u>dsubias@unizar.es</u> | <u>o.pueyo@unizar.es</u>

What to expect from this session

In the programming language of your choice implement:

- Diffuse BRDF (\mathbf{k}_d for each material)
 - "Evaluate" function: Return $f(\mathbf{x},\omega_i,\omega_o)$ (you should have already programmed this)
 - "Sample" function: Return random direction ω_i and $f(\mathbf{x},\omega_i,\omega_o)$
- Find point light sources using next-event estimation on each bounce
- Terminate paths when: (1) no intersection (2) area light is hit (3) >N bounces
- Recommended deadline: November 13th (moodle: January 11th)
 - Extensions (do not count towards recommended deadline):
 - ullet **Textures:** make diffuse coefficient ${
 m k}_d$ epend on hit position ${
 m k}_d({f x})$
 - ullet Fresnel effects: make diffuse coefficient $old k_d$ epend on viewing direction $old k_d(\omega_{f o})$
 - **Parallelization:** divide work between several threads, estimate time to finish execution
 - More: importance sampling next-event estimation, etc. (see the lab assignment or ask us)