Group Theory

Let A be a non-empty set. A binary operation 'x' on A is a mapping from AXA > A.

i.e., axb EA whenever a,b EA

Eg! on N, define $a \times b = a + b$, $a, b \in N$ 't' is a binary operation.

Eg: On N, define $a \times b = a - b$, $a, b \in N$ $-i \quad is \quad not \quad a \quad b \in N$

Eg: On Q, $a \times b = a/b$, $a, b \in Q$ '/' is not a binary operation

Eg: But if $a \times b = \frac{a}{b}$, $a, b \in \mathbb{Q} \setminus \{0\}$ I's a binary operation.

Let A be a non-empty set. If * is a binary operation on A, then we can say that

- (i) 'x' is closure if axbeA, + a, beA
- 11) 't' is associative if $a \times b \times c$ = $(a \times b) \times c$, $\forall a,b,c \in A$
- iii) an element $e \in A$ is called an identity element $w \cdot \lambda \cdot to \times if a \times e = e \times a = a$, $\forall a \in A$
- iv) For given $a \in A$, an element $b \in A$ is said to be inverse a = b = b = b = a = e, a = b = b = a = e, a = b = b = a = e, a = b = b = a = e
- V) 'x' is commutative it axb = bxa, &a,ben

Semigroup! Let A be a nonempty set with binary open
(A, X) 9s said to be a Semigroup it it satisfy the following properties:
(i) closure ii) Associative
Eq! (N,+), (N,.), (Q,.)
Monoid: (A,*) is said to be monoid if it satisfy the following properties;
(i) closme
ii) Associative iii) identity
$= \underbrace{Eg^{!}}_{Sg}(N, \bullet)$
Group: (A, X) is said to be a group, it it satisfy the
(i) Closure ii) Associative
iv) identity iv) inverse
Eg!(z,+) is a group
(Z, ·) is not a group, because inverse dues not exist.

Eq? Show that cube root if unity form a group under multipication.

- closure & associative anims satisfy

- closure & associative anims satisfy

- identity element is 1

w w w² !

w w w² !

w w w² !

Hence it forms a group.

Abelian group! (A,*) is said to be an abelian group, if the following axioms one Satisfied; i) Closure ii) Associative iii) identity iv) inverse v) Commutative. Properties of a group? Theorem: In a group (G, X) identity element is unique. Proof? Let e, and e2 be the two identity elements of G Suppose e, is an identity element and ezeG a, b, e, $a \neq e \neq a = a$ $e_1 \times e_2 = e_2 \times e_1 = e_2$ $(\geq,+)$ III ea is an et sdentity elt, and e, EG 3,52 3 + (0) = 3 $e_1 \times e_a = e_a \times e_1 = e_1$

=> e, = e2 ; identity elt in a group is unique.