Kontrolltöö nr. 1

10. variant

Joosep Näks

1. Olgu F korpus ning olgu $a, b \in F, a \neq 0$. Tuginedes ainult korpuse aksioomidele, tõestage, et

$$(-a^{-1})b = -(a^{-1}b).$$

Tõestus:

Vaatlen nullelemendi korrutist korpuse elemendiga, millele liidan A3 järgi nullelemendi:

$$0b = 0b + 0$$

A4 järgi saan võtta, et nullelement on sama, mis b^2 ja selle vastandelemendi summa:

$$0b + 0 = 0b + (b + (-b))$$

A2 järgi muudan liitmisjärjekorda:

$$0b + 0 = (0b + b) + (-b)$$

M3 järgi on saan elemendi b läbi korrutada ühikelemendiga:

$$(0b+b) + (-b) = (0b+1b) + (-b)$$

Distributiivsuse järgi võtan b sulgude ette:

$$(0b+1b) + (-b) = (0+1)b + (-b)$$

A3 järgi saab nullelemendi liitmise ära kaotada:

$$(0+1)b + (-b) = 1b + (-b)$$

M3 järgi saab ühikelemendiga korrutamise ära kaotada:

$$1b + (-b) = b + (-b)$$

A4 järgi on see võrdne 0ga:

$$b + (-b) = 0$$

Seega olen näidanud, et korpuse elemendi ja nullelemendi korrutis on võrdne nullelemendiga. Liidan A3 järgi tõestatava võrrandi paremale poolele nullelemendi:

. 1 . . . 1 .

$$-(a^{-1}b) = -(a^{-1}b) + 0$$

Varem näidatud omaduse põhjal korrutan nullelemendi läbi elemendiga \boldsymbol{b}

$$-(a^{-1}b) + 0 = -(a^{-1}b) + 0b$$

A4 järgi kehtib
$$0 = a^{-1} + (-a^{-1})$$

 a^{-1} on korpuse element, kuna a on korpuse element ning M4 kohaselt on sel

juhul ka tema pöördelement korpuse element. Asendan selle võrrandisse.

$$-(a^{-1}b) + 0b = -(a^{-1}b) + (a^{-1} + (-a^{-1}))b$$

Distributiivsuse järgi teen sulud lahti:

$$-(a^{-1}b) + (a^{-1} + (-a^{-1}))b = -(a^{-1}b) + (a^{-1}b + (-a^{-1})b)$$

A2 järgi muudan liitmise järjekorda ning A4 järgi kaovad element ja vastandelement

$$-(a^{-1}b) + (a^{-1}b + (-a^{-1})b = 0 + (-a^{-1})b$$

A3 järgi saab nullelemendi eemaldada:

$$0 + (-a^{-1})b = (-a^{-1})b$$

Sellega olen näidanud, et algse võrrandi pooled on võrdsed.

2. Olgu X ja Y sellised mittetühjad reaalarvude hulgad, et iga $x \in X$ ja $y \in Y$ korral $y \ge x$. Tõestage, et X on ülalt ja Y alt tõkestatud inf $Y \ge \sup X$.

Lahendus:

Hulk X on ülalt tõkestatud parajasti siis, kui leidub selline naturaalarv a, et iga $x \in X$ korral kehtib $x \le a$. Kuna Y on mittetühi reaalarvude hulk, saab võtta sealt suvalise elemendi $y_0 \in Y$ ning kuna iga Y elemendi puhul kehtib $y \ge x$, kehtib ka $y_0 \ge x$. Seega on y_0 hulga X ülemine tõke.

Hulk Y on alt tõkestatud parajasti siis, kui leidub selline naturaalarva, et iga $y \in Y$ korral kehtib $y \ge a$. Kuna X on mittetühi reaalarvude hulk, saab võtta sealt suvalise elemendi $x_0 \in X$ ning kuna iga X elemendi puhul kehtib $y \ge x$, kehtib ka $y \ge x_0$. Seega on x_0 hulga Y alumine tõke.

Tõestamaks, et kehtib inf $Y \ge \sup X$ väidan vastuäiteliselt, et inf $Y < \sup X \Leftrightarrow 0 < \sup X - \inf Y$. Defineerin $\varepsilon_0 := \sup X - \inf Y$. Infiinumi definitsiooni kohaselt iga positiivse $\varepsilon \in \mathbb{R}$ puhul leidub selline $y_0 \in Y$, et $y_0 < \inf Y + \varepsilon$. Kui võtta $\varepsilon = \varepsilon_0$, saab: $y_0 < \inf Y + \varepsilon_0 \Leftrightarrow y_0 < \inf Y - \inf Y + \sup X \Leftrightarrow y_0 < \sup X$. Supreenumi definitsiooni kohaselt iga $c \in \mathbb{R}$ korral, mis rahuldab võrratust $c < \sup X$, leidub $x_0 \in X$, et $c < x_0$. Võtan $c = y_0$, varem on näidatud, et kehtib $y_0 < \sup X$, seega peab kehtima ka $y_0 < x_0$. Kuid ülesande püstituse järgi iga $x \in X$ ja $y \in Y$ korral $y \ge x$, seega tekkis vastuolu ning inf $Y < \sup X$ ei saa kehtida ehk kehtib inf $Y \ge \sup X$.

3. Olgu (x_n) ja (y_n) tõkestatud arvjadad. Tõestage, et

$$\underline{\lim}_{n \to \infty} (\min\{x_n, y_n\}) = \min\{\underline{\lim}_{n \to \infty} x_n, \underline{\lim}_{n \to \infty} y_n\}$$

1) Näitan, et kehtib $\varliminf_{n\to\infty}(\min\{x_n,y_n\})\leq \min\{\varliminf_{n\to\infty}x_n,\varliminf_{n\to\infty}y_n\}$:

Olgu jada ($\min\{x_n, y_n\}$) osajada ($\min\{x_{n_k}, y_{n_k}\}$) $_{k=1}^{\infty}$ selline, et $\lim_{k \to \infty} (\min\{x_{n_k}, y_{n_k}\}) = \lim_{n \to \infty} (\min\{x_n, y_n\})$. Sellise osajada olemasolu tuleneb loengukonspekti teoreemist 2.22, mis ütleb, et iga jada osapiirväärtuste hulgas on olemas vähim, mis on võrdne selle jada alumise piirväärtusega. Kuna jada (x_{n_k}) on tõkestatud, leidub tal Bolzano-Weierstrassi teoreemi kohaselt koonduv osajada $(x_{n_{k_j}})_{j=1}^{\infty}$. Kuna $(x_{n_{k_j}})_{j=1}^{\infty}$ ja $(y_{n_{k_j}})_{j=1}^{\infty}$ on koonduvad jadad, on nende miinumumi piirväärtus võrdne nende piirväärtuste miinumumidega. Seega kehtib:

$$\varliminf_{n\to\infty}(\min\{x_n,y_n\})=\lim_{j\to\infty}(\min\{x_{n_{k_j}},y_{n_{k_j}}\})=\min\{\lim_{j\to\infty}x_{n_{k_j}},\lim_{j\to\infty}y_{n_{k_j}}\}\geq\min\{\varliminf_{n\to\infty}x_n,\varliminf_{n\to\infty}y_n\}$$

2) Näitan, et kehtib $\lim_{n\to\infty} (\min\{x_n,y_n\}) \ge \min\{\lim_{n\to\infty} x_n, \lim_{n\to\infty} y_n\}$:

Kuna (x_n) ja (y_n) on tõkestatud, on ka $\min\{x_n, y_n\}$ tõkestatud, seega on jadade alumised piirväärtused reaalarvud. Defineerin $u_n := \inf_{k \ge n} x_k$ ja $v_n := \inf_{k \ge n} y_k$. Siis kehtib iga $n \in \mathbb{N}$ korral võrratus:

$$\min\{u_n, v_n\} \ge \inf\{\min\{x_k, y_k\} : k \ge n\}$$

Piirväärtuse monotoonsuse kohsalt saab võtta mõlemast poolest piirväärtuse:

$$\begin{split} \min\{ &\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n \} = \min\{ \lim_{n \to \infty} u_n, \lim_{n \to \infty} v_n \} = \lim_{n \to \infty} \min\{ u_n, v_n \} \geq \\ &\geq \lim_{n \to \infty} \inf\{ \min\{ x_k, y_k \} : k \geq n \} = \inf_{n \to \infty} \{ \min\{ x_k, y_k \} \} \end{split}$$

4. Lähtudes funktsiooni piirväärtuse ε - δ -definitsioonist tõestage, et

$$\lim_{x \to \infty} \frac{x^2}{4 - x} = -\infty$$

Lahendus: Funktsiooni piirväärtuse ε -definitsiooni järgi kehtib $\lim_{x\to\infty}f(x)=-\infty$ parajasti siis, kui kehtib

$$\forall M < 0 \; \exists N > 0 : [x \in \mathbb{R}, x > N] \Rightarrow f(x) < M$$

$$\begin{split} M < 0 &\Leftrightarrow 4M < 0 \\ x > N > 0 \Leftrightarrow x > 0 \\ \text{Valin } N &= \max\{-M, 4\} \Leftrightarrow N \geq -M \text{ ja } N \geq 4 \\ x > N \geq -M \Leftrightarrow x + M > 0 \\ x(x+M) > 0 > 4M \Leftrightarrow x^2 > 4M - xM \Leftrightarrow x^2 > M(4-x) \\ x > N \geq 4 \Leftrightarrow 4-x < 0 \\ \frac{x^2}{4-x} < M \end{split}$$

Seega kehtib $\lim_{x \to \infty} \frac{x^2}{4-x} = -\infty.$

5. Leida piirväärtus $\lim_{|x|\to\infty} \left(\frac{2x+3}{2x+1}\right)^{x+1+\sin 1}$.

$$\lim_{|x| \to \infty} \left(\frac{2x+3}{2x+1}\right)^{x+1+\sin 1} = \lim_{|x| \to \infty} \left(\frac{2x+1+2}{2x+1}\right)^{x+1+\sin 1} = \lim_{|x| \to \infty} \left(1+\frac{2}{2x+1}\right)^{x+1+\sin 1}$$

Teen muutujavahetuse $u:=\frac{2x+1}{2}$, kui kehtib $|x|\to\infty$ siis kehtib ka ka $|u|\to\infty$

$$x = u - \frac{1}{2}$$

$$\lim_{|x| \to \infty} \left(1 + \frac{2}{2x+1} \right)^{x+1+\sin 1} = \lim_{|u| \to \infty} \left(1 + \frac{1}{u} \right)^{u - \frac{1}{2} + 1 + \sin 1}$$

$$\lim_{|u| \to \infty} \left(1 + \frac{1}{u} \right)^{u - \frac{1}{2} + 1 + \sin 1} = \lim_{|u| \to \infty} \left(\left(1 + \frac{1}{u} \right)^{u} \left(1 + \frac{1}{u} \right)^{\frac{1}{2}} \left(1 + \frac{1}{u} \right)^{\sin 1} \right)$$

 $\lim_{|u|\to\infty}f(u)=A$ kehtib parajasti siis, kui kehtivad $\lim_{u\to\infty}f(u)=A$ ja $\lim_{-u\to\infty}f(u)=A$

Vaatlen juhtu $u \to \infty$:

$$\lim_{u \to \infty} \left(\left(1 + \frac{1}{u} \right)^u \left(1 + \frac{1}{u} \right)^{\frac{1}{2}} \left(1 + \frac{1}{u} \right)^{\sin 1} \right) = \lim_{u \to \infty} \left(1 + \frac{1}{u} \right)^u \lim_{u \to \infty} \left(1 + \frac{1}{u} \right)^{\frac{1}{2}} \lim_{u \to \infty} \left(1 + \frac{1}{u} \right)^{\sin 1}$$

$$= e \left(\lim_{u \to \infty} (1 + \frac{1}{u}) \right)^{\frac{1}{2}} \left(\lim_{u \to \infty} (1 + \frac{1}{u}) \right)^{\sin 1}$$

$$= e(1)^{\frac{1}{2}} (1)^{\sin 1}$$

$$= e$$

Vaatlen juhtu $-u \to \infty$, teen muutujavahetuse t=-u

$$\lim_{t \to \infty} \left(\left(1 + \frac{1}{-t} \right)^{-t} \left(1 + \frac{1}{-t} \right)^{\frac{1}{2}} \left(1 + \frac{1}{-t} \right)^{\sin 1} \right) = \lim_{t \to \infty} \left(1 + \frac{1}{-t} \right)^{-t} \lim_{t \to \infty} \left(1 + \frac{1}{-t} \right)^{\frac{1}{2}} \lim_{t \to \infty} \left(1 + \frac{1}{-t} \right)^{\sin 1}$$

$$= e^{(-1)(-1)} \left(\lim_{t \to \infty} (1 + \frac{1}{-t}) \right)^{\frac{1}{2}} \left(\lim_{t \to \infty} (1 + \frac{1}{-t}) \right)^{\sin 1}$$

$$= e(1)^{\frac{1}{2}} (1)^{\sin 1}$$

$$= e$$

$$\text{Kuna} \lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1+\sin 1} = \lim_{x \to -\infty} \left(\frac{2x+3}{2x+1} \right)^{x+1+\sin 1} = e, \text{ siis ka } \lim_{|x| \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1+\sin 1} = e.$$

6. Olgu $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$. Tõestage, et $\lim_{x \to 0} f(x) = A$ parajasti siis, kui $\lim_{x \to 0} f(\tan x) = A$. Lahendus:

1) Näitan, et kehtib $\lim_{x\to 0} f(\tan x) = A \Rightarrow \lim_{x\to 0} f(x) = A$

Eeldasin, et kehtib:

$$\forall \varepsilon > 0 \ \exists \delta_0 > 0 : [x \in \mathbb{R}, 0 < |x| < \delta_0] \Rightarrow |f(\tan x) - A| < \varepsilon$$

Fikseerin epsiloni väärtuse: $\varepsilon_0 = \varepsilon$. Tean, et kehtib:

$$\forall \varepsilon > 0 \; \exists \delta > 0 : [x \in \mathbb{R}, 0 < |x| < \delta] \Rightarrow |\tan x| < \varepsilon$$

Valin $\varepsilon = \varepsilon_0$

 $\exists \delta_1 > 0 : [x \in \mathbb{R}, 0 < |x| < \delta_1] \Rightarrow |\tan x| < \varepsilon_0$

Võtan
$$\delta_m = \min\{\delta_0, \delta_1\}$$

Sel juhul kehtib:

$$\forall \varepsilon_0 > 0 \; \exists \delta_m > 0 : [x \in \mathbb{R}, 0 < |x| < \delta_m] \Rightarrow |f(\tan x) - A| < \varepsilon_0 \; \text{ja} \; |\tan x| < \varepsilon_0 \quad (1)$$

Kui eeldada, et f(x) piirväärtus ei ole A, tähendab see, et

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in \mathbb{R} : 0 < |x| < \delta \text{ ja } |f(x) - A| \ge \varepsilon$$
 (2)

Kuna väide (1) kehtib iga epsiloni korral, saab võtta $\varepsilon_0 = \varepsilon$, ning kuna (2) kehtib iga delta puhul, saab võtta $\delta = \delta_m$.

Kuna epsilon ja delta vähenevad ning $|\tan x| < \varepsilon$ ja $|x| < \delta$ ning $f(\tan x)$ koondub, kuid f(x)

ei koondu, oleme jõudnud vastuoluni. Seega peab kehtima $\lim_{x\to 0} f(x) = A$.

2) Näitan, et kehtib $\lim_{x\to 0}f(x)=A\Rightarrow \lim_{x\to 0}f(\tan x)=A$ ε - δ -definitsiooni järgi kehtib $\lim_{x\to 0}f(x)=A$ parajasti siis, kui kehtib

$$\forall \varepsilon > 0 \ \exists \delta > 0 : [x \in \mathbb{R}, 0 < |x| < \delta] \Rightarrow |f(x) - A| < \varepsilon$$

On teada ka et kehtib $\lim_{x\to 0} \tan x = 0$ ehk

$$\forall \varepsilon_1 > 0 \ \exists \delta_1 > 0 : [x \in \mathbb{R}, 0 < |x| < \delta_1] \Rightarrow |\tan x| < \varepsilon_1$$

Kuna viimane kehtib iga ε_1 korral, saab võtta $\varepsilon_1=\delta$:

$$\exists \delta_1 > 0 : [x \in \mathbb{R}, 0 < |x| < \delta_1] \Rightarrow |\tan x| < \delta$$

Seega eelneva tingimuse põhjal kehtib

$$\forall \varepsilon > 0 \ \exists \delta_1 : [x \in \mathbb{R}, 0 < |x| < \delta_1] \Rightarrow |f(\tan x) - A| < \varepsilon$$

Seega kehtib
$$\lim_{x\to 0} f(\tan x) = A$$
.