Въпроси за интервю - Мрежи

1. OSI модел: мрежови протоколи

#	Слой	Описание	Протоколи	
7	Application	Позволява на по потребителските приложения	DNS, FTP, HTTP,	
		да заявяват услуги или информация, а на сървър	NFS, NTP, DHCP,	
		приложенията – да се регистрират и	SMTP, Telnet	
		предоставят услуги в мрежата		
6	Presentation	Конвертиране, компресиране и криптиране на	мпресиране и криптиране на TLS/SSL	
		данни		
5	Session	Създаването, поддържането и терминирането	Sockets	
		на сесии. Сигурност. Логически портове		
4	Transport	Грижи се за целостта на съобщенията, за	TCP, UDP	
		пристигането им в точна последователност,		
		потвърждаване за пристигане, проверка за		
		загуба и дублиращи се съобщения		
3	Network	Управлява пакетите в мрежата. Рутиране.	IPv4, IPv6,	
		Фрагментация на данните. Логически адреси	IPX, ICMP	
2	Data Link	Предаване на фреймове от един възел на друг.	ATM, X.25, DSL,	
		Управление на последователността на	IEEE 802.11	
		фреймовете. Потвърждения. Проверка за		
		грешки. МАС		
1	Physical	Отговаря за предаването и приемането на	IEEE 802.11,	
		неструктурини потоци от данни по физическия	IEEE 1394,	
		носител. Кодиране/декодиране на данните.	Bluetooth	
		Свързване на физическия носител		

- 2. Какво е мрежов адаптор? Осъществява връзката между компютърна система и мрежа (NetworkInterface)
- з. Какво е IP адрес? Всеки компютър, свързан към мрежа, се индентифицира с логически адрес (InetAddress)
- 4. Какво е порт? Крайна точка на една комуникация. Използват се от TCT/UDP протоколите, за да идентифицират за кое приложение са предназначени данните
- 5. Каква е разликата между TCP и UDP протокола?

Характеристика	ТСР	UDP
Connection	Connection-based	Connection-less
Надеждност	висока	ниска
Ред на пакетите	гарантиран	не гарантиран
Скорост на доставка	по-ниска от UDP	по-висока от ТСТ
Проверка за грешки	да, с възстановяване	да, без възстан.
Потвърджаване при получаване	да	не
Имплементация	ServerSocket/Socket	DatagramSocket

- 6. Какво е сокет (socket)? Сокетите представляват крайните точки на двупосочна мрежова връзка (connection) между две приложение. Всеки сокет се идентифицира чрез комбинация от IP адрес и номер на порт
- 7. **Какво е сесия?** Сесията е група от взаимодействия на потребител с уебсайт в рамките на определен период от време
- **8. Характеристики на HTTP:**
 - Модел заявка-отговор(request-response) служи за комуникационен канал в клиент-сървър архитектура
 - Не пази състояния (stateless) всяка клиентска заявка е независима сама по себе си
 - Клиентът и сървърът съдържат информация един за друг, единствено по време на комуникацията (connectionless)
 - Всеки тип данни могат да бъдат изпращани, докато и клиентът и сървърът знаят типът (media independent)
 - НТТР транзакция
 - 1. Клиентът отваря комуникационен канал (ТСР сокет)
 - 2. Клиентът изпраща заявка към сървъра
 - з. Сървърът връща отговор на клиента
 - 4. Сървърът затваря сокета

• HTTP: Заявка — инициатор е клиентът — подава информация на сървъра, достъп до кой ресурс иска да получи и каква операция иска да извърши с него:

GET en.wikipedia.org/w/index.php HTTP/1.1

Connection: Keep-Alive

Host: en.wikipedia.org

1. Начален ред:

- НТТР Метод указва типа операция, която клиентът иска да извърши със заявления ресурсz
- URL уникален локатор на заявления ресурс
- Версия на НТТР версията на протокола, която ще се използва за комуникацията
- 2. Хедъри Предоставят информация за заявката
- з. Данни (Тяло) опционални (GET Request няма тяло)
- Основни НТТР методи
 - 1. GET за зареждане на ресурс от сървъра
 - 2. HEAD идентичен с GET, с различката, че отговорът няма да върне тяло, само хедъри
 - з. POST изпраща данни (например от HTML форма) за обработка от сървъра. Данните се съдържат в тялото на заявката
 - 4. PUT ъплоудва даден ресурс
 - 5. **DELETE трие даден ресурс**
- HTTP: Отговор изпраща се от уеб сървъра, като резултат от изпълнението на клиентска заявка: *HTTP/1.1 200 OK*

Date: Tue, 18 Oct 2018 19:08:15 GMT

Server: Apache

- 1. Начален ред:
 - Версия на НТТР
 - Статус код обяснява резултата от изпълнението на заявката
 - Причина кратко обяснение на статус кода
- 2. Хедъри Предоставят информация за отговора
- 3. Данни (Тяло) отговорите обикновено връщат данни, като тук най-често се съдържа HTML документът, получен на базата на клиентската заявка
- HTTP статус кодова трицифрени кодове, идентифициращи какъв е резултатът от обработката на клиентските заявка, групирани в 5 категории, на базата на първата цифра
 - 1. Група 100 (Information) Служат за "временни" кодове, т.е. заявката е пристигнала, но сървърът все още не е готов с резултата
 - 100 Continue
 - 101 Switching protocols
 - 2. Група 200 (Successful) Сървърът е обработил успешко клиентската заявка
 - 200 OK
 - 206 Partial content
 - з. Група 300 (Redirection) Ресурсът е наличен, но е разположен на друго място
 - 301 Moved permanently
 - 304 Not Modified
 - 307 Temporary redirect
 - 4. Група 400 (Client Error) Клиентска грешка

- 400 Bad Request
- 401 Not Authorized
- 404 Not Found
- 408 Request Timeout
- 5. Група 500 (Server Error) Сървърна грешка
 - 500 Internal Server Error
 - 501 Not implemented
 - 503 Service Unavailable
- НТТР Хедъри:
 - 1. Основни (General Headers) могат да се ползват едновременно и в заявки, и в отговори. Съдържат информация (мета-данни) за самото съобщение или за метода на комуникация
 - Connection: keep-alive
 - Data: Sat, 17 Nov 2018 16:08:15 GMT
 - 2. Завка (Request Headers) специфични са само за заявката и могат да съдържат данни за самата заявка или за клиента
 - Accept: text/html
 - Accept-Charset: utf-8
 - Accept-Language: en-US
 - User-Agent : Mozilla/4.0
 - 3. Отговор (Response Headers) съдържат информация (метаданни) за сървъра и формата на съобщението
 - Server: Apache
 - Allow: GET, HEAD

- 4. Същински (Entity Headers) информация за самото съдържание на данни (тяло) и/или за ресурса, заявен от клиента
- 5. User Agent софтуер, който извършва действие от името на потрибителя: E-mail клиенти, Web Browser-и, Месинджъри: Skype, WhatsApp
- НТТР сесии За да може сървърът да корелира заявките, идващи от един и същ клиент като логически принадлежности към една последователст, се използват:
 - 1. Бисквитки (Cookies) Cookie-тата са малки текстови файлове, генерирани от сървъра и изпратени на клиента в header-ите. Чрез информацията в тях може да се идентифицира сесията
 - 2. Hidden fields в HTML forms HTML страницата съдържа форма с поле, което е скрито и не се визуализира в браузъра, но стойността му се праща като част от заявката и стойността му идентифицира сесията
 - 3. URL rewriting добавяме в края на всяко URL данни, които да идентифицират сесията
- HTTP Port: 80 | HTTPs Port: 443
- HTTP/2:
 - 1. Двоичен, вместо текстови
 - 2. Постига паралелизъм само с една TCP връзка между клиента и сървара
- 9. Принципи на Representational State Transfer (REST) Стил софтуерна архитектура за реализация на уеб услуги, има за цел да подобри и улесни комуникацията между две системи
 - Клиент-Сървър архитектура
 - Клиентът и сървърът имат различни задачи

- Сървърът най-често съдържа бизнес логиката и се грижи за съхранението на данните
- Клиентът най-често извлича данни от сървъра
- 2. Предоставя единен интерфейс (конкрат)
- з. Не пази състояния (stateless)
- 4. Предлага възможности за кеширане
- 5. Многослойна система
- 6. Предоставя code on demand
- 10. **Какво e JSON?** JavaScript Object Notation (JSON) е един от найпопулярните формати за обмен на данни и се използва за предаване на структурирани данни по мрежова комуникация

Java библиотека за работа с JSON: google/json

Gson gson = new Gson(); String json = gson.toJson(object);

11. Каква е разликата между:

- Encoding Процес, който променя данните в нов формат чрез схема, като данните не са защитени
- Hashing Процес, който изчислява фиксиран размер математическо обощение на данни. Хашингът не може да се 'reverse-не'. Предпочитана техника в удоствоверителния процес
- Encryption Процес на защитене 'encoding', по такъв начин, че само удостворени клиенти имат ключ или парола и могат да декриптират данните, за да получат оригинала