2A - L1 images as functions

- 1. 2017/11/02 15:21
- 2. Sum
 - a. one image is a function
 - b. manipulation of the image through the matrix
 - i. add, multiply, subtract, blend, crop
 - c. display the image
 - i. imshow, plot
 - d. Octave/matlab functions
 - i. imread, imshow, hist,
 - e. noise
 - i. Gaussian noise
 - ii. sigma
- 3. Images as Functions mathematical view
 - a. One image can be regarded as a function. I(x, y), the value of the light intensity
 - i. can be shown in matlab
 - ii. function grey scaled
 - 1. mapping: $R \times R \rightarrow R$
 - 2. f: [a, b] x [c, d] \rightarrow [min, max]
 - 3. each (x, y) corresponding to a value i

Images as functions

We think of an image as a *function*, f or I, from R^2 to R:

f(x, y) gives the intensity or value at position (x, y)

Practically define the image over a rectangle, with a finite range:

 $f: [a,b] \times [c,d] \rightarrow [min,max]$

- b. function colored
 - i. mapping: $R \times R \rightarrow R \times R \times R$
 - ii. f: [a, b] x [c, d] \rightarrow [min, max] x [min, max] x [min, max]
 - iii. each (x, y) corresponding to a vector (r, g, b)
 - iv. each channel can be taken out alone as a r/g/b plane

A color image is just three functions "stacked" together. We can write this as a "vector-valued" function: $f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$

c. #we do in grey scale images, it's easier cuz it only has one channel

i.

- 1. Digital Images
 - a. It's the discrete-valued image, so we require two discretions: Sample and Quantize
 - i. ATT: when computing, regard the value as floating point
 - ii. # pixel : an image element

In computer vision we typically operate on digital (discrete) images:

Sample the 2D space on a regular grid

Quantize each sample (round to "nearest integer")

- b. Image thus represented as a matrix of integer values.
 - i. matlab typically with interger values
 - ii. index
 - 1. x, y used in math, x is along the column, y is along the row
 - 2. i, j used in computation, i is along the row, j is along the column
 - iii. 1 D signals are just represented as vectors
- 1. Quiz: Compute Image Size Quiz
 - a. image size = #row x #column x #channel #value size
- 2. Matlab Images are Matrices
 - a. Matlab Images are Matrices, (r, c, rgb), so that you can manipulate them as matrices.
- 3. Load and Display an Image
 - a. imread('xx.xxx')
- 4. Quiz: Image Size and Data Type Quiz

- a. size
 - i. size()
- b. class type
 - i. e.g. uint8
 - 1. u: unsigned means only non-negative value
 - 2. int: integer
 - 3. 8: 8 bits, 1 byte

4.

- 5. Inspect Image Values
 - a. as to access matrix
 - i. but to show a row/column, better to use plot(img(1, :))
- 6. Crop an Image
 - a. to take a big part of the image
 - b. for index, both the start and end row/column are included
- 7. Color Planes
 - a. im images, bright area represents higher values, while dark area represents lower values.
- 8. Add 2 Images Demo
 - a. img [0, 255], when the value exceeds, round to 255;
 - b. Octave rounds the value to the nearest integer for uint8, 1.5 \Rightarrow

2

- c. add
- d. average: $\langle 2 \rangle$ +; not + => $\langle 2 \rangle$
- 9. Multiply by a Scalar Demo
- 10. Quiz: Blend 2 Images
 - a. Rule: keep the sum of the weights equal to 1; the bigger the weight, the more the effect of this image.
- 11. <u>Common Types of Noise</u>
 - a. $\eta(x, y)$
 - b. salt and pepper noise: random occurrences of black and white pixels
 - c. Impulse noise: random occurrences of white pixels
 - d. Gaussian noise -- most common
 - i. variations in intensity drawn from a Gaussian normal distribution
 - ii. rand(size(img)) .* sigma

- 1. zero mean, sigma standard deviation
- iii. imgnew = img + noise
- 12. Image Difference Demo
 - a. directly substract may lose some values, since unit8 is [0, 255];
 - b. so use imabsdiff(a, b) order doesn't matter
- 13. Generate Gaussian Noise
 - a. e.g.
 - i. noise = randn(1, 10000);
 - ii. noise2 = noise .* 2:
 - iii. std(noise)
 - iv. % noise2 has doubled standard deviation of noise
 - v. because the GD represents the distribution the number of values in certain bin rather than the values themselves.
 - b. when add the noise to certain signal, what should be the concern is the noise magnitude compared to image magnitude. that's the effect of the sigma
- 14. Displaying Images in Matlab
 - a. determine how to show the image
 - i. imshow(im)
 - 1. original range
 - ii. imshow(im, [low, high])
 - 1. rescaled, low represents the darkest black, high represents the whitest white
 - iii. imshow(im, [])
 - 1. rescaled, low is the min, high is the max in the original image
 - b. ATT
 - i. only the display may require rescale, never the computation