The Zwanzig Relation: In Practice

- . Using the definition of $\rho_{s}(r^{N})$, $\beta(A_{1}-A_{0})=-\ln\int\rho_{0}(r^{N})e^{-\beta\Delta U(r^{N})}dr^{N}$.
- The Zwanzig relation [2] is
 - $\beta(A_1 A_0) = -\ln\left\langle e^{-\beta\Delta U}\right\rangle_0$ in a simpler notation.
 - . $\beta(A_1-A_0)=-\ln\left\langle e^{\beta\Delta U}\right\rangle_1$ can be derived with similar steps
- This shows us that
 - The free energy difference can be computed based on an average over configurations taken from one of the states of interest
 - We can generate these configurations with MC or MD
 - The free energy comes from evaluating the energies of these configurations in both potentials U_0 and U_1 , and taking an appropriate average of the energy difference

The Zwanzig Relation: Limitations

• In terms of an integral over the distribution of ΔU (instead of over $\rho_o(r^N)$) the Zwanzig relation is,

$$\beta(A_1 - A_0) = -\ln \int e^{-\beta \Delta U} \rho_0(\Delta U) d\Delta U.$$

- Sampling is from the red curve
- Accurate estimation requires the purple curve
- The calculation will not be accurate if U_0 and U_1 are very different!

