

Benoit Nguyen

European Central Bank

Discussion of 'Liquidity risk and funding cost'

by A. Bechtel, A. Ranaldo and J. Wrampelmeyer

ECB workshop on money market and central bank balance sheet

November 6, 2018

Overview

- 1 This paper in a nutshell
- 2 Heterogeneity in funding costs
- A closer look to the paper's assumptions
- 4 Comments and suggestions
- 5 Conclusion

1. This paper in a nutshell

Research question:

- How much would you be willing to (over)pay to secure short-term funding?
- This paper: heterogeneity in funding costs depends on your liquidity risk, here identified as how much impatient you are to secure your funding

Model:

- A fraction θ of banks faces high frequency liquidity shocks, arrives later in the market and has a higher probability of not being executed with limit order
- Intuitive model to derive the equilibrium rates depending on execution probabilities, motivating the empirical exercises

Data:

- 10y (2006-2016) of overnight transactions in GC pooling ECB basket repo, cleared by Eurex, with timestamp, volume, repo rate, bank id.
- Panel data: 96 banks during 2807 trading days.
- Controls for bank profitability, leverage, credit risk, balance sheet structure

Identification: order type reveals whether a bank faces liquidity risk or not

- market order (impatient, facing liquidity risk) or limit order (patient, less concerned about liquidity risk)
- a bank with a majority of market orders is identified as high liquidity risk bank for the day

1. This paper in a nutshell

$$r^{e}_{i,t} = r_{i,t} - \overline{r_{t}}$$

$$r^{e}_{i,t} = \alpha LiquidityRisk_{i,t} + \beta X_{i,t} + FE_{i} + FE_{t} + \varepsilon_{i,t}$$

OLS estimator with fixed effects: FE_i captures bank invariant characteristics, eg. business model; FE_t captures common variation of the day, eg. Level of excess liquidity

Controls for bank time-varying credit risk (CDS), balance sheet structure and leverage

Robustness: dynamic panel regression (Arellano-Bover) to take into account the possible autocorrelation of the dependent variable $(r^e_{i,t})$ not independent from $r^e_{i,t-1}$

$$r^{e}_{i,t} = \gamma r^{e}_{i,t-1} + \alpha LiquidityRisk_{i,t} + \beta X_{i,t} + FE_{i} + \varepsilon_{i,t}$$

Additional exercises: on subperiods, using alternative thresholds...

1. This paper in a nutshell

Results:

- High liquidity risk borrowers are willing to pay up to 2bps more than low liquidity risk peers
- Heterogeneity also present for impatient lenders
- This result is robust to controls for the bank business model, credit risk, size, leverage.
- This difference is systematic and persistent over the 10 years of observations
- About 3 to 4 times higher in times of crisis
- This markup has halved with the floor system
- There is a "term structure" of the $r^e_{i,t}$ spread of banks in high liquidity risk: higher for ON than for TN and SN.

2. Evidence of heterogeneity in funding costs in the money market

- Heterogeneity in funding costs at the central bank ('tender spread') linked to liquidity risk:
 Välimäki (2006), Eisenschmidt et al. (2009), Drehman and Nikolaou (2010)
- Since Oct 2008, GC repo market is a natural field to monitor this relationship

Spread between banks' individual bid rates and marginal rate at ECB refinancing operations

Source: Eisenschmidt et al. (2009)

Note: Sample of variable-rate refinancing operations (MRO+LTRO) between March 2004 and October 2008. Y-axis in %.

Cross-section of average excess rates in the GC pooling repo market

Source: Bechtel et al. (2018)

Note: Excess rate is computed as the difference between daily volumeweighted average of repo rate pay by bank i at date t and the volumeweighted average of all overnight transactions from the GC Pooling ECB basket.

3. A closer look to empirical assumptions

Identification strategy and empirical setup highly dependent on a number of (strong) assumptions

Assumption 1: The only motive for the transactions observed is funding. Market making, arbitrage or other motives can be discarded.

Assumption 2: A bank liquidity risk profile can be revealed by its propensity to use market orders

Assumption 3: There is neither counterparty risk nor trading relationship priced in these transactions

3. A closer look to empirical assumptions

Assumption 1: the only motive for the transactions observed is funding

- ✓ GC Pooling ECB basket: safe to assume it is not security-driven, robustness with ECB extended basket
- ✓ Evidence provided that a large fraction of banks stays in the same side along the day (borrower or lender) : seems to exclude market making + bid ask spread 0.01!
- Spread is found significant both for impatient lenders and impatient borrowers: is it sufficient to discard arbitrage?

Assumption 2: A bank liquidity risk profile can be revealed by its propensity to use market orders

- ✓ Bank levels controls and bank fixed effects.
- Could be more directly double-checked? eg. exposure to wholesale market
- Is there a way to discriminate between 'stop loss' and 'take profit' limit orders?
- Is there a bank intraday pattern in the use of market orders(MO)/limit orders (LO)?
 - eg. Bank A starts its day with LO, after several stop losses switches to MO

Assumption 3

- There is neither counterparty risk nor trading relationship priced in these transactions
 - ✓ CCP design, anonymity and common participation rules (eg. same haircuts)
 - "In addition to entering quotes two participants may agree on a trade bilaterally and enter the repo transaction into the system by using the pre-arranged trading functionality" (http://www.eurexrepo.com/repo-en/markets/gc-pooling-market/)

3. Identification assumptions: Liquidity shock or market timing?

- One additional exercise focuses on banks switching direction during the day (eg. from lender to borrowers) as a liquidity shock. Those banks have 79% more odds to use market orders when switching directions
- Intraday patterns in the GC repo market: rates tend to be lower in the afternoon (Abassi et al. (2017))
- Also found in your panel regression results (negative coefficient of 'TradeTime')
- Could it be the case they lend in the morning, borrow in the afternoon?

Intraday term structure in the GC Pooling market (narrow and extended baskets)

Source: Abbassi et al. (2017) Sample period: 2008-2012

4. Questions and suggestions

- Day-FE and floor system subsample capture the excess liquidity effects, could be interesting to document the impact of quick tenders, LTROs, introduction of FRFA, decrease of reserve requirement...
- Since the end of your sample, GC pooling rate started to trade below the DFR, could it be linked to your spread?
- Other possible explanation: some GC
 Pooling participants doe not have access to
 the central bank (eg. some GB and CH
 banks), do you have them in your sample,
 and do they have a specific behaviour?
- Having the full order book (both executed and non-executed orders, time of the limit order request) could be a future avenue for extensions: document the probability of not being executed with limit order, etc.

Cross-section of average excess rates in the GC pooling repo market

Source: Eurex, ECB, Arrata et al. (2017)

Note: GC Pooling O/N rate Last observation: 9 May 2017

5. To sum up

- Elegant idea and interesting paper
- Many interesting results, long time frame (10y of transactions data)
- Policy relevant: how much excess liquidity and floor system contributed to lower the funding costs volatility; links with financial stability and bank lending channel; extremely useful to extend the 'tender spread' literature
- Strong assumptions, but clever use of the GC repo market design...
- ... and backed by considerable amount of tests and robustness checks
- Careful econometric setup and convincing robustness tests
- I strongly recommend its reading!