

Week 3: Tabular Data

MY472: Data for Data Scientists

https://lse-my472.github.io/

Autumn Term 2025

Ryan Hübert

Associate Professor of Methodology

Setting the scene

Goal of data science: move from data to information

Last week, we focused on technical aspects of how data is represented in a digital format

This week, we move further down the chain from data to information

- What (conceptual) types of data do data scientists work with?
- A common "shape" of data: tabular data
- Working with tabular data

Outline

- 1 Types and shapes of data
- 2 Tabular data in R
- 3 Transforming, summarising and manipulating data
- 4 Tidy data
- 5 Databases

Types of data

Almost all data science involves numerical data

This is data that is represented as numbers

This does not mean that everything is quantitative

- Quantitative: Capturing a quantity as a continuous or discrete variable
- > Qualitative: Capturing a quality as a categorical variable

We will convert almost all data to numerical data

Types of data

Continuous (numerical) data takes values within a range

- Interval: meaningful differences, arbitrary zero (e.g., temperature)
- ▶ Ratio: meaningful differences and meaningful ("absolute") zero (e.g., weight)

Discrete data only takes specific values, often whole numbers

- Count: non-negative integers representing number of occurrences
- ▶ Ordinal: numbers (usually integers) with meaningful order, but no meaningful difference between values (e.g., rankings)
- ▶ Nominal: categories with no inherent order (e.g., colours)
- ▶ Binary: special case of nominal data with only two categories

A motivating example: peaches

Source: The Today Show, Peach Benefits

A motivating example: peaches

There are many varieties of peaches

▶ Peach variety is qualitative data, e.g. Donut, Nectarine, White

Their quality differs in many ways

▷ Colour, taste, fuzziness are all qualitative data

But they also differ in quantitatively measurable ways

▶ Price per peach is quantitative data, e.g. £1, £0.55, £1.15

Some ways they differ can be qualitative or quantitative

 Size can be qualitative (e.g., small or large), or quantitative (e.g., average weight in kg)

Shapes of data

When a data scientist works with data, it comes in a "shape"

```
peach.json
                                                        UNREGISTERED
    peach.ison
          "Nectarine" : {
               "colour" : "red",
               "taste" : "sweet",
               "price_gbp" : 0.75,
          },
               "colour" : "yellow",
               "taste" : "tangy".
I Line 14, Column 2
                                               Tab Size: 4
                                                          JSON
```

Shapes of data

There are many shapes of data, e.g.:

- Key-value or array structures: semi-structured data such as JSON (week 5)
- Hierarchical or tree-structured data: formats expressing nested relationships such as HTML and XML (week 7)
- ▷ Geometric or spatial data: coordinates, shapes (week 4)

The most common shape of data is tabular

- ▶ Tabular data is arranged in tables with rows and columns
- ▷ Often called "datasets," "data frames," etc.
- ▶ Many data shapes are converted to tabular data for analysis

Peaches as tabular data

Units and observations

Units are the entities or subjects being studied

▷ E.g., individuals, countries, companies

An **observation** is a single "peek" at a unit under specific conditions, such as in a time period

In a **cross-sectional dataset**, units = observations

▶ Take a slice (cross-section) at a single point in time

In a **hierarchical dataset**, units \neq observations

▶ Each unit can have multiple observations, e.g. time series and longitudinal (panel) data

In tabular data, rows are observations

Features (variables)

Features are attributes of a unit specified for each observation

These are also called **variables** since their values *vary* depending on the observation

In tabular data, all columns are features

▷ They could be quantitative or qualitative, or merely identifiers

All tabular datasets should have a **primary key**: a variable which uniquely identifies each observation

➤ This could be implicit (a combination of two or more variables) or explicit, like a unique ID number

Features (variables)

What is the primary key for this tabular data?

Outline

- 1 Types and shapes of data
- 2 Tabular data in R
- 3 Transforming, summarising and manipulating data
- 4 Tidy data
- 5 Databases

From concepts to practice: tabular data in R

R has special object types for tabular data

- → A matrix object, such as matrix(1:6, nrow=2)
- A array object, such as array(1:8, dim=c(2,2,2))
- A data frame object, such as data.frame(a=1:3, b=4:6)

Matrices and arrays:

- must contain homogenous object types
- differ in dimensions: matrices are 2D, arrays can be an arbitrary number of dimensions

Data frames can contain heterogenous object types

Data frames "look like" matrices (2-dimensional), but they are technically named list() objects in R

From concepts to practice: tabular data in R

We'll develop ideas around a hypothetical peach seller in the UK

- Can create tabular data on the fly in R using data.frame()

```
sales = data.frame(
  variety = c("Donut", "Nectarine", "White"),
  colour = c("Yellow", "Red", "White"),
  kg_sold = c(150, 100, 120),
  gbp_per_kg = c(4.4, 7.75, 5)
)
print(sales)
```

```
        variety colour kg_sold gbp_per_kg

        1 Donut Yellow 150 4.40

        2 Nectarine Red 100 7.75

        3 White White 120 5.00
```

From concepts to practice: tabular data in R

Note the heterogeneous column types by using str()

```
str(sales)
```

```
'data.frame': 3 obs. of 4 variables:

$ variety : chr "Donut" "Nectarine" "White"

$ colour : chr "Yellow" "Red" "White"

$ kg_sold : num 150 100 120

$ gbp_per_kg: num 4.4 7.75 5
```

Each column is a variable that

- ▷ Is a vector of same length (4)
- Has homogenous object types

Tabular data in R can have "standard" object types (num, chr, etc.), or more specialised types (factor, date, etc.)

Data frames in the tidyverse

We will mostly use the **tidyverse** collection of packages to work with tabular data

- These packages contain a bunch of useful tools; it's worth familiarising yourself at https://www.tidyverse.org/
- You can use base R for your own work, but your assignments must replicate the tidyverse way of doing things
- ▷ Can load all the packages with library("tidyverse")

In the tidyverse, tabular data is stored in a tibble object

- ▷ Differences between base R data.frame and tibble are somewhat in-the-weeds

Data frames in the tidyverse

Data for the hypothetical peach seller, now in a tibble

```
library("tidyverse")
sales = tibble(
  variety = c("Donut", "Nectarine", "White"),
  colour = c("Yellow", "Red", "White"),
  kg_sold = c(150, 100, 120),
  gbp_per_kg = c(4.4, 7.75, 5)
)
print(sales)
```

Storing tabular data

Common file formats for storing tabular data:

- Comma-separated values (.csv) ubiquitous and simple
 - Each line is an observation
 - Each variable value is separated by a comma
- ▶ Application specific (proprietary) formats (.dta, .sav, .xlsx etc.)
 - Can allow for richer representations including meta-data
 - More complex, and not necessarily human-readable
 - Can cause problems (for example lost Covid-19 data)

Often choice is dictated by the source (and size) of the data

Packages like {haven} allow for reading in non-csv formats

Reading and writing tabular data in R

We can use the {readr} package to:

1. Write tabular data to our computer's storage device

```
library("readr")
write_csv(sales, "data/peach_sales.csv")
```

2. Read tabular data to our computer's storage device

```
sales <- read_csv("data/peach_sales.csv")</pre>
```

With base R, you can use write.csv() and read.csv()

Adding data

You can add data—either columns or rows—by "binding" them

```
▷ In the tidyverse: bind_cols() and bind_rows()
▷ In base R: rbind() and cbind()
```

Suppose the peach sales data was from a specific date (1st July 2025), and she wants to indicate this

```
sales <- bind_cols(sales, date = "2025-07-01")
print(sales)</pre>
```

```
# A tihhle: 3 \times 5
 variety colour kg_sold gbp_per_kg date
 <chr> <chr>
                   <fh1>
                             <dhl> <chr>
1 Donut Yellow
                    150
                             4.4 2025-07-01
2 Nectarine Red
                    100
                              7 75 2025-07-01
3 White
          White
                    120
                              5
                                  2025-07-01
```

Adding data

Suppose she wants to add data in her notebook from another date (1st August 2025)

```
sales2 = tibble(
  variety = c("Donut", "Nectarine", "White"),
  colour = c("Yellow", "Red", "White"),
  kg_sold = c(140, 200, 60),
  gbp_per_kg = c(4, 7.5, 5.1),
  date = "2025-08-01"
)
sales <- bind_rows(sales, sales2)
sales</pre>
```

```
# A tibble: 6 x 5
 variety colour kg_sold gbp_per_kg date
                            <dhl> <chr>
 <chr> <chr>
                  <fd>< fdb>
1 Donut Yellow
                    150
                             4.4 2025-07-01
                             7.75 2025-07-01
2 Nectarine Red
                    100
3 White White
                    120
                                 2025-07-01
4 Donut Yellow
                    140
                                 2025-08-01
5 Nectarine Red
                    200
                             7.5 2025-08-01
6 White
                   60
                             5.1 2025-08-01
          White
```

Dealing with dates

Dates are challenging — my advice:

- Always try to use ISO 8601 format for dates: YYYY-MM-DD
- ▷ Sometimes, even safer: YYYYMMDD format
- Read and write as chr; convert to date format for analysis only
- Avoid editing .csv files in Excel (or other GUIs)

Dealing with dates

Suppose the seller saves her data to .csv

```
write_csv(sales, "data/peach_sales.csv")
```

She opens the file in Excel to look at something and it autosaves Next time she imports it, she gets January dates:

```
sales <- read_csv("data/peach_sales.csv")
sales</pre>
```

```
# A tibble: 6 \times 5
 variety colour kg_sold gbp_per_kg date
 <chr> <chr>
                   <fdbl>
                              <dhl> <chr>
1 Donut Yellow
                     150
                               4.4 7/1/25
2 Nectarine Red
                     100
                               7.75 7/1/25
3 White
           White
                     120
                               5
                                   7/1/25
                     140
                                   8/1/25
4 Donut Yellow
                               7.5 8/1/25
5 Nectarine Red
                     200
                               5.1 8/1/25
6 White
           White
                      60
```

Dealing with dates

The tidyverse includes a great package called {lubridate}

▷ If dates are your thing, check out the docs

Assuming I know the correct order of day and month:

```
sales$date <- lubridate::mdy(sales$date)
sales$date</pre>
```

```
[1] "2025-07-01" "2025-07-01" "2025-07-01" "2025-08-01" [5] "2025-08-01" "2025-08-01"
```

Can re-save, and also use date format directly for analysis:

```
sales$date + 14
```

```
[1] "2025-07-15" "2025-07-15" "2025-07-15" "2025-08-15"
```

[5] "2025-08-15" "2025-08-15"

Dealing with qualitative data

Tabular datasets usually contain qualitative data

▶ Here: variety and colour are both qualitative

Often you want to leave these as is

Here: variety is more like an unique identifier

But if you want to do statistical analysis, you will need to convert to numeric data

- ▷ One approach: convert to factor variable
- ▷ A much better approach: create dummy variables

R automatically converts factor variables to dummies when, e.g., running regressions—get in habit of doing it yourself!

Dealing with qualitative data

```
sales$colour_Yellow <- ifelse(sales$colour == "Yellow", 1, 0)
sales$colour_Red <- ifelse(sales$colour == "Red", 1, 0)
sales$colour_White <- ifelse(sales$colour == "White", 1, 0)
sales$colour <- NULL # remove colour column, as no longer needed
sales[,c("variety", "colour_Yellow", "colour_Red", "colour_White")]</pre>
```

Outline

- 1 Types and shapes of data
- 2 Tabular data in R
- 3 Transforming, summarising and manipulating data
- 4 Tidy data
- 5 Databases

Wrangling data in base R

To work with data in base R, we will typically have to manipulate objects directly:

```
# add a new variable
sales$revenue <- sales$kg_sold * sales$gbp_per_kg
# keep only these columns
sales <- sales[, c("variety", "revenue")]
# sort by revenue in descending order
sales <- sales[order(-sales$revenue), ]
head(sales)</pre>
```

```
variety revenue
5 Nectarine 1500
2 Nectarine 775
1 Donut 660
3 White 600
4 Donut 560
6 White 306
```

Wrangling data in tidyverse

Tidy R gives us an alternative approach

{dplyr} gives us useful and literal tools for wrangling data in R:

- mutate(): Add or modify variables in a data frame
- select(): Choose specific columns from a data frame
- filter(): Subset rows based on conditions
- > arrange(): Sort rows by one or more variables
- and many more (also see other tidyverse packages)

Wrangling data in tidyverse

Using the pipe |> (or %>%) allows us to chain operations:

```
sales <- read_csv("data/peach_sales.csv")
sales |>
mutate(revenue = kg_sold * gbp_per_kg) |> # add variable
select(variety, revenue) |> # select columns
arrange(desc(revenue)) # sort
```

```
# A tibble: 6 x 2
variety revenue
<chr> <chr> 1 Nectarine 2 Nectarine 3 Donut 660
4 White 600
5 Donut 560
6 White 306
```

Grouping and hierarchies

Sometimes data has a nested structure, such as:

- 1. Repeated observations of the same units:
 - ▶ each observation is nested under a single unit
- 2. Hierarchical data:
 - ▷ each unit is nested under a higher-level unit (cluster)
- 3. Binned data:
 - ▷ each observation is *nested* under a bin based on a variable

Might want to restructure data given a hierarchy

Grouping in tidyverse

Consider data where each *unit* belongs to some hierarchy

Suppose the peach seller has a dataset of each peach's weight

```
variety weight
1 Donut 0.9634350
2 Nectarine 1.4178032
3 Donut 0.7276818
4 White 1.4602638
5 Nectarine 0.7056252
6 White 1.1796567
```

Unit = a peach; higher-level cluster = variety

Grouping in tidyverse

We can group by a higher variable and summarise across that variable:

```
# A tibble: 3 x 4
 variety count total_weight mean_weight
 <chr>
           <int>
                       < fdb>
                                  <fdh>>
1 Donut
             34
                        31.3
                                  0.921
2 Nectarine
              30
                        30.9 1.03
3 White
             36
                        36.9
                                  1.03
```

Reshaping in R

Now consider data with multiple observations per unit

Suppose the seller has some data on yield per variety over time

```
# Simulate a hypothetical dataset
# (variety = unit, observed over 25 time periods)
peach_panel <- tibble(
  variety = rep(c("Donut", "Nectarine", "White"), 25),
  year = rep(2000:2024, each = 3),
  yield = runif(75, 50, 200)
)
head(peach_panel)</pre>
```

Merges and joins

We often have multiple datasets with "related" data that we want to join (or merge) together

Tables are joined/merged on columns that appear in each table

Columns appearing in all tables to be joined are called keys

All joins will create a new table with the columns from the tables being joined but they differ on what *rows* they keep, e.g.:

- Inner join: keep only rows with matching keys in both tables
- ▶ Left (right) join: keep all rows from the left (right) table, and any matching rows from the right (left) table
- ▶ Full join: keep all rows from both tables

Always check your data after joins/merges!

Merges and joins

The seller has a chart with the various culinary qualities of different peach varieties, which she enters into R

```
peach_features = tibble(
  variety = c("Donut", "Redhaven", "White"),
  taste = c("Tangy", "Sweet", "Sweet"),
  fuzziness = c("Fuzzy", "Fuzzy", "Fuzzy")
)
peach_features
```

Suppose she eventually wants to analyse how her sales of peach varieties correlates with culinary features

Merges and joins

So, she needs to merge the peach feature data into her sales data

- ▶ The key is variety, which is in both tables
- A left join (with sales on left) makes most sense here (why?)

```
sales |>
select(variety, kg_sold, gbp_per_kg) |> # only needs sales data
left_join(peach_features, by = "variety") # join on 'variety'
```

```
# A tibble: 6 x 5
 variety kg sold gbp per kg taste fuzziness
 <chr>
             <dbl>
                        <dbl> <chr> <chr>
1 Donut
               150
                         4.4 Tangy Fuzzy
2 Nectarine
               100
                         7.75 < NA > < NA >
3 White
               120
                         5
                              Sweet Fuzzy
4 Donut
               140
                         4 Tangy Fuzzy
5 Nectarine
                         7.5 <NA> <NA>
               200
6 White
               60
                         5.1 Sweet Fuzzy
```

Outline

- 1 Types and shapes of data
- 2 Tabular data in R
- 3 Transforming, summarising and manipulating data
- 4 Tidy data
- 5 Databases

Tabular data should be tidy

Tidy data is data that follows three rules:

- 1. Each observation is a row
- 2. Each variable is a column
- 3. Each cell is a value

Source: Hadley Wickham, Data Tidying

What does "tidy" data look like in R?

The seller's original sales data is tidy

sales

```
# A tibble: 6 x 5
 variety colour kg_sold gbp_per_kg date
 <chr>
           <chr>
                    <dbl>
                              <dbl> <date>
1 Donut Yellow
                      150
                               4.4 2025-07-01
2 Nectarine Red
                      100
                               7.75 2025-07-01
                               5
3 White
           White
                      120
                                    2025-07-01
4 Donut Yellow
                     140
                               4 2025-08-01
                               7.5 2025-08-01
5 Nectarine Red
                      200
                               5.1 2025-08-01
6 White
           White
                       60
```

What can go wrong?

Untidy example 1: columns represent values of a variable

untidy1

Note:

- Bad (in part) because we don't know what the data is
- Variable names are also bad (see backticks??)

How to fix it?

To "tidy" untidy1: pivot columns using {tidyr} function

Specifically: pivoted from wide to long format

What else can go wrong?

Untidy example 2: observations scattered across multiple rows

untidy2

```
# A tibble: 12 x 5
  variety colour date
                                        value
                            var
  <chr>
            <chr> <date>
                            <chr>
                                        <dbl>
1 Donut Yellow 2025-07-01 kg_sold
                                       150
2 Donut Yellow 2025-07-01 gbp_per_kg
                                        4.4
3 Nectarine Red
                  2025-07-01 kg_sold
                                       100
4 Nectarine Red 2025-07-01 gbp_per_kg
                                         7.75
           White 2025-07-01 kg_sold
                                       120
5 White
6 White
            White
                  2025-07-01 qbp_per_kq
7 Donut
           Yellow 2025-08-01 kg sold
                                       140
8 Donut Yellow 2025-08-01 gbp_per_kg
9 Nectarine Red
                  2025-08-01 kg_sold
                                       200
10 Nectarine Red
                  2025-08-01 gbp_per_kg
                                         7.5
11 White
            White 2025-08-01 kg_sold
                                        60
12 White
            White
                  2025-08-01 gbp_per_kg
                                        5.1
```

How to fix it?

To "tidy" untidy2: pivot those rows into a new pair of columns

```
# A tibble: 6 x 5
 variety colour date kg_sold gbp_per_kg
 <chr> <chr> <date> <dbl>
                                <fdbl>
1 Donut Yellow 2025-07-01
                         150
                               4.4
2 Nectarine Red 2025-07-01 100 7.75
3 White White 2025-07-01 120
                                 5
4 Donut Yellow 2025-08-01 140
                                 4
5 Nectarine Red 2025-08-01 200 7.5
6 White
        White 2025-08-01 60
                                 5.1
```

Specifically: pivoted from long to wide format

Why care?

Data exists in service of producing useful information

Untidy data obscures informational content of data

But sometimes untidy data is appropriate

- > Dummy variables are not tidy, but it's okay!
- Long formats (e.g. untidy2) can be useful for storage/memory management (very wide data frames are computationally taxing)

Best practice:

- Convert to untidy on the fly, only when needed

Outline

- 1 Types and shapes of data
- 2 Tabular data in R
- 3 Transforming, summarising and manipulating data
- 4 Tidy data
- 5 Databases

Databases

Database system: an organized collection of data that is stored and accessed via a computer

- The way a database is organized is a schema
- Since a database is used for data storage, a user typically "reads" and "writes" to a database
- Access data via queries
- Queries are often constructed/written in domain-specific languages like SQL, but not always
- A user can typically read and write via R (or python)

Types of databases

Relational databases

- data is stored in multiple tables to avoid redundancy
- tables are linked based on common keys
- SQL is dominant DSL used to access data

Non-relational databases

- data stored in a way that is not based on tabular relations
- Data is accessed using a wide variety of (sometimes customised) languages

SQL: Structured Query Language

SQL is a **domain specific language (DSL)** designed to define, control access to, manipulate, and query *relational* databases

Pronounced both "S-Q-L" and "SEQUEL"

Unlike R, it is a **nonprocedural/declarative language**: user defines what to do, inputs, and outputs, but not the control flow

- Performance will vary, but generally faster than standard data frame manipulation in R (and much more scalable)

SQL and tidyverse

You just learned how to work with, and manipulate, tabular data using {tidyverse}, which is conceptually identical to SQL

Many SQL queries "resemble" {tidyverse} functions, e.g.:

SQL	{tidyverse}
SELECT column1	select(column1)
FROM table	table >
WHERE condition	filter(condition)
GROUP BY column	group_by(column)
ORDER BY column	arrange(column)
LIMIT n	<pre>slice_head(n = n)</pre>
SUM(), COUNT(), AVG()	<pre>summarize() with sum(), n(), mean()</pre>
LEFT JOIN, INNER JOIN, etc	<pre>left_join(), inner_join(), etc</pre>

- Every SQL query needs at least SELECT and FROM
- Result of both SQL queries and {dplyr} pipelines is a table

Table 1 named client

Table 2 named account

```
# A tibble: 3 x 2
    id balance
    <dbl>    <dbl>
1    101    5000
2    102    3000
3    103    7000
```

Returns a table with name, account_id columns of client:

```
SELECT name, account_id FROM client;
```

```
client |>
  select(name, account_id)
```

Returns a table with all columns of client but only rows where the gender variable is "F":

```
SELECT * FROM client WHERE gender = 'F';
```

```
client |>
  filter(gender == "F")
```

This returns a table with two columns, total_billed and avg_billed and one row giving the total billed and average billed amounts for female clients in client table:

```
SELECT SUM(billed) AS total_billed,
        AVG(billed) AS avg_billed
FROM client
WHERE gender = 'F';
```

SQL join examples

This returns a table with two columns name and balance created by inner joining tables client and account by their shared keys, account_id and id:

```
SELECT client.name, account.balance
FROM client JOIN account
ON client.account_id = account.id;
```

```
client |>
  inner_join(account, by = c("account_id" = "id")) |>
  select(name, balance)
```