Homework 1

Due Monday, January 23, 2016

Exercise 1. For $n=1,2,\ldots$ let X_n be a random variable uniformly distributed over the n+1 points k/n for $k=0,1,\ldots,n$. Show that as $n\to\infty$, $X_n \stackrel{\mathcal{D}}{\to} X$ where $X\sim Uniform(0,1)$.

Exercise 2. For $n=1,2,\ldots$ let G_n be a random variable with a Geometric distribution. Show that if $\mu_n:=E(G_n)\to\infty$ as $n\to\infty$, then $X_n:=G_n/\mu_n\stackrel{\mathcal{D}}{\to} X$ where X is a standard exponential random variable.

Exercise 3. Let $\delta(x) := e^{-e^{-x}}e^{-x}$ be the density (with respect to Lebesque measure on \mathbb{R}) of the random variable X with . Show $\phi_X(t) = \gamma(1-it)$ and $F_X(x) = e^{-e^{-x}}$ for $t, x \in \mathbb{R}$ where ϕ_X and F_X are the characteristic function and cdf for X, respectivley. Hint: for ϕ_X use the substitution principle from Lecture 12 on generating functions and moments.

Exercise 4. Let Y_1, Y_2, \ldots be iid standard exponential random variables with density $\delta(x) := I_{(0,\infty)}e^{-x}$ (with respect to Lebesque measure on \mathbb{R}). For each n set $X_n := \max(Y_1, Y_2, \ldots, Y_n)$. Show that as $n \to \infty$, $X_n - \log(n) \xrightarrow{\mathcal{D}} X$, where X is a random variable with distribution function $F(x) = e^{-e^{-x}}$ for $x \in \mathbb{R}$.

Exercise 5. Show that a sequence X_n of integer-valued random variables converges in distribution to a random variable X if and only if X is an integer-valued random variable and for every $k \in \mathbb{Z}$

$$\lim_{n \to \infty} P(X_n = k) = P(X = k).$$

Exercise 6. Let $X_n \sim Binomial(n, p_n)$. Show that if $np_n \to \lambda > 0$ then $X_n \stackrel{\mathcal{D}}{\to} X$ where $X \sim Poisson(\lambda)$ has density $\delta(k) := \frac{\lambda^k}{k!} e^{-\lambda}$ with respect to counting measure on \mathbb{Z} .