Conquering Cities

Time Limit per test file: 3 seconds
Memory Limit per test file: 256 megabytes

There exists a kingdom with \mathbf{N} cities. The evil emperor wishes to rule it. With the help of those who oppose the current ruler, he has managed to take over the capital, which is city number $\mathbf{0}$. In this kingdom however, if a city (\mathbf{u}) receives help (like food, artillery, etc) from any other city (\mathbf{v}), then \mathbf{u} cannot be taken over or conquered. It is obvious that if a city is taken over by the evil emperor, then that city will not help any other city fight against the evil emperor.

The capital is at level $\mathbf{0}$. A city, \mathbf{u} , is said to be at level \mathbf{i} if maximum level of any city, \mathbf{v} , it receives help from is \mathbf{i} - $\mathbf{1}$. To capture a city at the \mathbf{i}^{th} level, the evil emperor incurs a cost equal to the \mathbf{i}^{th} prime number. What is the total cost that the evil emperor incurs?

Also, there may be cases when all the cities cannot be captured. This happens when there exists a cycle of cities that help each other.

Input:

The first line of input contains a single integer, **T**, indicating the number of test cases.

The first line of each test case contains two integers, \mathbf{N} and \mathbf{M} where \mathbf{N} denotes the number of cities and \mathbf{M} , the number of helping relations.

This is followed by \mathbf{M} lines where each line contains two space separated integers, \mathbf{u} and \mathbf{v} . This denotes that \mathbf{u} receives help from \mathbf{v} .

Output:

A single integer for each test case (on a new line) which is the total cost that the evil emperor incurs. But, if all the cities cannot be conquered, output the message "evil emperor loses" (without double quotes).

Constraints:

```
1 \le T \le 13

1 \le N, M \le 5 * 10^5

0 \le u, v \le N - 1
```

Sample Input:

1

44

10

2 0

2 1

3 1

Sample Output:

8

Explanation:

Initially, the capital is captured. Now, **1** has no city to help it. So, **1** is at level 1 and gets captured. Once, **0** and **1** are captured, **2** and **3** have no cities to help them. So, these two cities get captured, and they are at level 2. Hence, the total cost of capturing the cities is (1st prime + 2^{nd} prime + 2^{nd} prime) \rightarrow 2 + 3 + 3 \rightarrow 8

