HOMEWORK PROBLEMS 06, ANLY 561, FALL 2018 DUE 10/20/18

Exercises:

1. Create Python functions

 $logistic_objective(\texttt{x},\texttt{y}), \\ dlogistic_objective(\texttt{x},\texttt{y}), \\ d2logisitic_objective(\texttt{x},\texttt{y})$

satisfying the following specifications:

- All functions expect two arrays/numpy arrays x and y where x[i] = x_i , y[i] = y_i , and $\{(x_i, y_i)\}_{i=1}^N \subset \mathbb{R} \times \{-1, 1\}$ are training data for logistic regression.
- logistic_objective(x,y) returns a function f satisfying the following specifications:
 - f expects a single array/numpy array b such that $b[0] = \beta_0$ and $b[1] = \beta_1$ for some logistic model parameters (β_0, β_1)
 - f(b) computes the negative log-likelihood of the parameters (β_0, β_1) . That is,

$$\mathbf{f(b)} = \ell(\beta) = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_i(\beta_0 + \beta_1 x_k)} \right).$$

- dlogistic_objective(x,y) returns a function df satisfying the following specifications:
 - df expects a single array/numpy array b such that b[0] = β_0 and b[1] = β_1 for some logistic model parameters (β_0, β_1)
 - df (b) computes the gradient of negative log-likelihood at (β_0, β_1) . That is,

$$\mathrm{df}(\mathrm{b}) = \nabla_{\beta} \ell(\beta) = \begin{pmatrix} \frac{\partial \ell}{\partial \beta_0}(\beta) \\ \frac{\partial \ell}{\partial \beta_1}(\beta) \end{pmatrix}.$$

- d2logistic_objective(x,y) returns a function d2f satisfying the following specifications:
 - d2f expects a single array/numpy array b such that b[0] = β_0 and b[1] = β_1 for some logistic model parameters (β_0, β_1)
 - d2f(b) computes the Hessian of negative log-likelihood at (β_0, β_1) . That is,

$$\mathtt{d2f(b)} = \nabla_{\beta}^2 \ell(\beta) = \begin{pmatrix} \frac{\partial^2 \ell}{\partial \beta_0^2}(\beta) & \frac{\partial^2 \ell}{\partial \beta_0 \partial \beta_1}(\beta) \\ \frac{\partial^2 \ell}{\partial \beta_0 \partial \beta_1}(\beta) & \frac{\partial^2 \ell}{\partial \beta_1^2}(\beta) \end{pmatrix}$$

Use these implementations and the data from Exercise 2 in Homework 05 to perform backtracking with both gradient descent and Newton increments. For the Newton increments, note that the computation of $\left(\nabla_{\beta}^{2}\ell(\beta)\right)^{-1}\nabla_{\beta}\ell(\beta)$ is carried out by the command

For each type of increment, initialize with $\beta^{(0)} = \begin{pmatrix} 10 \\ 10 \end{pmatrix}$, run 30 steps of backtracking and provide a y-semilog plot of the point residuals $\{\|\beta^{(k+1)} - \beta^{(k)}\|\}_{i=1}^{30}$ and the function residuals $\{|\ell(\beta^{(k+1)}) - \ell(\beta^{(k)})|\}_{i=1}^{30}$. For backtracking, use $\alpha = 0.2$ and $\beta = 0.8$.

2. Consider the program

$$\min_{(x,y)\in\mathbb{R}^2} 2x + 3y \text{ subject to } -1 \le x \le 1 \text{ and } -1 \le y \le 1.$$

Such a program is called a **linear program** because the objective function and all the constraint functions are affine.

- (a) Exhibit the KKT conditions for this program.
- (b) Show that (-1, -1) is the only point which satisfies the KKT conditions, and that (1, 1) satisfies all the KKT conditions except dual feasibility.
- (c) Explain why the point (0,0) is an interior point of this program, and carry out the log-barrier method to numerically produce a solution to this program using (0,0) to initialize. Use M=10, 10 centering steps, 5 iterations in the outer loop, and 3 iterations in each inner loop. Whenever backtracking is called, use Newton increments and the standard parameters $\alpha=0.2$ and $\beta=0.8$. Display the answer you compute. You may find it helpful to note that

$$\nabla \phi(x,y) = \begin{pmatrix} -\frac{a}{ax+by+c} \\ -\frac{b}{ax+by+c} \end{pmatrix} \text{ and } \nabla^2 \phi(x,y) = \begin{pmatrix} \frac{a^2}{(ax+by+c)^2} & \frac{ab}{(ax+bx+c)^2} \\ \frac{ab}{(ax+bx+c)^2} & \frac{b^2}{(ax+by+c)^2} \end{pmatrix}$$

for $\phi(x,y) = -\log(-(ax+bx+c))$ on the set $\{(x,y) \in \mathbb{R}^2 : ax+by+c < 0\}$ and where $a,b,c \in \mathbb{R}$.