

Generalizing Back-Translation in Neural Machine Translation

Miguel Graça, <u>Yunsu Kim</u>, Julian Schamper, Shahram Khadivi* and Hermann Ney

{surname}@i6.informatik.rwth-aachen.de skhadivi@ebay.com*

WMT 2019, August 1st 2019

Human Language Technology and Pattern Recognition Group RWTH Aachen University, Germany

*eBay Inc., Aachen, Germany

Back-Translation

Back-translation (BT) [Sennrich & Haddow⁺ 16]

- State-of-the-art way to use monolingual target corpora
- ► Generate target-to-source translations to obtain synthetic data
- Recent variants:
 - Sampling [Edunov & Ott⁺ 18, Imamura & Fujita⁺ 18]
 - Sum over N-best [Zhang & Liu⁺ 18]

This work

- ▶ A general formulation for all BT variants: the role of synthetic data in NMT
- Clarifies the advantage of sampling approaches over beam search
- ► Highlights deficiencies in SOTA models and proposes solutions for them

Training Criterion of NMT

Notations

- lacksquare Source sentence $f_1^J=f_1\dots f_j\dots f_J$, target sentence $e_1^I=e_1\dots e_i\dots e_I$
- ▶ Distributions: Pr (true), \hat{p} (empirical from data), p_{θ} (model)

Training criterion $L(\theta)$ for parameters θ : cross-entropy

Standard scenario

► Empirical distribution $\hat{p}(f_1^J, e_1^I)$

Back-translation scenario

- lacktriangle Known target distribution $\hat{p}(e_1^I)$
- ▶ How to approximate $Pr(f_1^J|e_1^I)$?

General Formulation of Training with Back-Translation

$$egin{aligned} L(heta) &= -\sum_{e_1^I} Pr(e_1^I) \cdot rac{1}{I} \sum_{f_1^J} Pr(f_1^J|e_1^I) \cdot \log p_{ heta}ig(e_1^I|f_1^J) \ &pprox - \sum_{e_1^I} \hat{p}(e_1^I) \cdot rac{1}{I} \sum_{f_1^J} m{q}(f_1^J|e_1^I; m{p}_\Omega) \cdot \log p_{ heta}ig(e_1^I|f_1^J) \end{aligned}$$

Synthetic data generation procedure $q(f_1^J|e_1^I;p_\Omega)$

- lacksquare Uses a target-to-source translation model $p_\Omega(f_1^J|e_1^I)$
- lacktriangle Can be designed to correct deficiencies of p_Ω
- ▶ Intractable to enumerate all possible sentences $(\sum_{f_1^J})$

Desired properties

- lacksquare Approximates $Pr(f_1^J|e_1^I)$ well
- ► High weights to representative hypotheses ("sample efficiency")
 - Due to restricted sample size, often just one

Why is beam search inappropriate?

$$q_{\mathsf{beam}}(f_1^J|e_1^I;p_\Omega) = \left\{egin{array}{l} 1, \ f_1^J = \mathop{\mathsf{argmax}} \left\{rac{1}{\hat{J}}\log p_\Omega(\hat{f}_1^{\hat{J}}|e_1^I)
ight\} \ \hat{J},\hat{f}_1^{\hat{J}} \ 0, \ \mathsf{otherwise} \end{array}
ight.$$

Consider the scenario of word translation when synonyms are available:

Natural data		Synthetic data		
$Pr(\text{hound} \mid \text{Hund}) = 49\%$	\rightarrow	$Pr(\text{hound} \mid \text{Hund}) = 0\%$		
$Pr(\text{dog} \mid \text{Hund}) = 51\%$		$Pr(\text{dog} \mid \text{Hund}) = 100\%$		

- ► Every occurrence of "Hund" will be translated to "dog"
- ▶ Beam search collapses to the most likely translation option

Consequences:

- **▶** Biases the distribution of words in the synthetic corpus
- ► Results in oversimplified corpora [Burlot & Yvon 18]

Sampling from Target-to-source Model

Unrestricted sampling [Edunov & Ott+ 18, Imamura & Fujita+ 18]

$$q_{\mathsf{sample}}(f_1^J|e_1^I;p_\Omega) = p_\Omega(f_1^J|e_1^I)$$

- ▶ Does not enforce a bias, based on the choice of q
- lacktriangle Relies completely on a good fitting $p_\Omega(f_1^J|e_1^I)$

In practice...

- ► NMT models smear probability mass to low quality hypotheses [Ott & Auli⁺ 18]
 - > Hurts sample efficiency
- ► Label smoothing increases the probability of low quality hypotheses

$$L(heta) = -rac{1}{J}\sum_{j=1}^J\sum_{f\in V}\left[lpha\cdotrac{1}{|V|} + (1-lpha)\delta_{f,f_j}
ight]\cdot\log p_ heta(f|e_1^I,f_1^{j-1})$$

▶ Larger variability: good for regularization, bad when sampling from it

The Middle-ground: Restricting the Search Space

Only consider high probability hypotheses:

- Thresholded sampling
 - hd Sample from $p_{\Omega}(f|e_1^I,f_1^{j-1})$ only if probability is over $au\in(0,1)$
 - Marginal overhead on top of standard sampling
- ► N-best list sampling
 - \triangleright Sample a sentence from N-best list according to the model scores
 - \triangleright Computational resources grow linearly w.r.t. N
- ► Top-k sampling [Edunov & Ott+ 18]:
 - Still allows low probability sentences to be sampled

Benefits:

- ▶ Dodge low probability hypotheses → Higher sample efficiency
- Still profit from the variability of sampling

Experimental Setup: Controlled Scenario

WMT 2018 German ↔ English news translation task

► Original parallel training data: around 6M sentence pairs

Controlled scenario

- ► Parallel training data: subsample 1M sentence pairs from the original parallel data
- ► Remaining 5M sentence pairs
 - ▶ Target: use as monolingual data for synthetic data generation
 - Source: reference for the generated hypothesis
 - Upper bound for synthetic data quality

Results: Controlled Scenario

► Entropy of IBM-1 lexicon model: variability of word-by-word translations

	Entropy		PpL	BLE	${f U}^{[\%]}$
Source hypothesis	$\textbf{En} \rightarrow \textbf{De}$	Train	test2015	test2015	test2017
Beam search ($b=5$)	2.60	2.74	5.77	30.9	31.9
Unrestricted sampling	3.13	9.07	5.55	30.4	31.0
+ without label smoothing	2.93	5.17	5.31	30.4	31.3
Thresholded sampling ($ au=0.1$)	2.66	3.34	5.61	31.1	32.1
N-best list sampling ($N=50$)	2.62	2.84	5.70	31.1	31.9
Reference	2.91	5.18	4.50	32.6	33.5

- Unrestricted sampling lags behind beam search considerably
- Statistics for the data are well matched for sampling without label smoothing
- ► Restricted search space makes the sampling more effective
- ► Clear inconsistency between PPL and BLEU

Experimental Setup: Real-world Scenario

Results: Real-world Scenario

	De o En	(BLEU $^{[\%]}$)	En o De	\mathbf{e} (BLEU $^{[\%]}$)
Source hypothesis	test2017	test2018	test2017	test2018
Baseline	33.4	39.5	26.9	39.4
Beam search ($b=5$)	35.7	43.6	28.2	41.3
Unrestricted sampling	35.8	42.3	28.6	41.5
+ without label smoothing	35.9	42.5	29.1	41.7
Thresholded sampling ($ au=0.1$	35.9	43.0	28.7	41.6
N-best list sampling ($N=50$)	36.0	43.6	28.6	41.8

- **▶** Unrestricted sampling: large drop in performance on De→En test2018
 - Consistent improvements by removing label smoothing
- ► *N*-best list sampling: best in 3 of 4 test sets

Scalability of Sampling Methods

- **▶** Beam search: not scalable except test2018
- ► Unrestricted sampling: only scales in test 2017
- ► Thresholded sampling: always scales

Conclusion

Generalizing back-translation

- ► Synthetic data generation is not the same as decoding/inference!
- ▶ Main goal: match the true translation probability $Pr(f_1^J|e_1^I)$
 - riangle Approximated by sampling from a target-to-source model: $q(f_1^J|e_1^I;p_\Omega)$

What can we do (consistently) better?

- ▶ No label smoothing in training the target-to-source model
- Sample instead of beam search: better & faster!
 - ▶ Restrict the search space of the sampling

Thank you for your attention

Yunsu Kim

kim@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

References

- [Burlot & Yvon 18] F. Burlot, F. Yvon: Using monolingual data in neural machine translation: a systematic study. In *Proceedings of the Third Conference on Machine Translation (WMT 2018)*, pp. 144–155, 2018. 5
- [Edunov & Ott⁺ 18] S. Edunov, M. Ott, M. Auli, D. Grangier: Understanding back-translation at scale. *arXiv preprint arXiv:1808.09381*, 2018. Version 2. 2, 6, 7
- [Imamura & Fujita⁺ 18] K. Imamura, A. Fujita, E. Sumita: Enhancement of encoder and attention using target monolingual corpora in neural machine translation. In *Proceedings of the 2nd Workshop on Neural Machine Translation and Generation (WNMT 2018)*, pp. 55–63, 2018. 2, 6
- [Ott & Auli⁺ 18] M. Ott, M. Auli, D. Granger, M. Ranzato: Analyzing uncertainty in neural machine translation. *arXiv preprint arXiv:1803.00047*, 2018. Version 4. 6
- [Sennrich & Haddow⁺ 16] R. Sennrich, B. Haddow, A. Birch: Improving neural machine translation models with monolingual data. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016)*, pp. 86–96, 2016. 2

[Zhang & Liu⁺ 18] Z. Zhang, S. Liu, M. Li, M. Zhou, E. Chen: Joint training for neural machine translation models with monolingual data. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018. 2

Back-translation generation: English → **German samples**

Source: it is seen as a long saga full of surprises.

Reference: er wird als eine lange Saga voller Überraschungen angesehen.

Beam search: es wird als eine lange Geschichte voller Überraschungen angesehen.

Sampling: es wird als eine lange Saga voller Überraschungen angesehen. injury, Skepsis, Feuer), Duschen verursachter Körper ...

Sampling w/o LS: es wurde als eine lange Geschichte voller Überraschungen gesehen.

Restricted sampling: es wird als lange Sage voller Überraschungen angesehen.

50-best sampling: es wird als eine lange Sage voller Überraschungen gesehen.

Back-translation generation: English → **German samples**

Source: in our opinion, this should also be the motto of a hotel.

Reference: wir meinen, dass dieser Spruch auch in einem Hotel gelten sollte.

Beam search: das sollte unserer Meinung nach auch das Motto eines Hotels sein.

Sampling: das sollte auch meiner Ansicht nach ein vorzüglicher Wunsch boote Tragfähigkeit.

Restricted sampling: das sollte auch unserer Ansicht nach das Motto eines Hotels sein.

Back-translation generation: English → **German samples**

Source: something else that needs to be improved in future is the House's internal democracy.

Reference: noch etwas, das sich in Zukunft verbessern ließe, ist die Demokratie im Innern dieses Hauses.

Beam search: ein weiterer Punkt, der in Zukunft verbessert werden muss, ist die innere Demokratie des Parlaments.

Sampling: ein weiteres, künftig verbessertes Element ist die integrierte Demokratie des Europäischen ganzer Aufbauwerks.

Restricted sampling: eine weitere Verbesserung muss künftig in der internen Demokratie des Parlaments bestehen.

Translation model hyperparameters

Training parameters:

- Glorot initialization
- ► Maximum sequence length: 100
- ► Learning rate: $3 \cdot 10^{-4}$
- ▶ Decay learning rate by 30% after every 3 checkpoints without improvement
- Gradient clipping whenever value is over 1

Model parameters:

- ▶ 6 layer Transformer model and word embedding size: 512
- ► Attention heads: 8
- ► Feed-forward projection dimension: 2048
- **▶** Dropout throughout architecture: 10%
- ► Label smoothing 0.1
- ► Tied source and target embeddings and output layer

Translation model update strategies

German \rightarrow English controlled scenario (word batch size 16k):

► All translation models: to convergence

German ↔ **English** (word batch size 4k):

- **▶** Back-translation model: 1M updates
- **►** Translation model:
 - ▶ without synthetic data: 1M updates
 - ▶ with synthetic data: fine-tune model without synthetic data for 1M updates

Sampling measures: Word-by-word sampling

Sample a word f_j from $p_{\Omega}(\cdot|f_1^{j-1},e_1^I)$ until sentence end is reached or $J=2\cdot I$:

$$lacksquare q(f_1^J|e_1^I;p_\Omega)=p_\Omega(f_1^J|e_1^I)$$

Restricted sampling:

$$egin{aligned} q(f|e_1^I,f_1^{j-1};p_\Omega) = \ & \left\{ egin{aligned} & \operatorname{softmax}ig(p_\Omega(f|e_1^I,f_1^{j-1}),Cig), & |C| > 0 \ 1, & |C| = 0 \land \ & f = rgmaxig\{p_\Omega(f'|e_1^I,f_1^{j-1})ig\} \ 0, & \operatorname{otherwise} \end{aligned}
ight.$$

 $C\subseteq V_f$: subset of words of the source vocabulary V_f with at least au probability:

$$C = ig\{ f \mid p_\Omega(f|e_1^I,f_1^{j-1}) \geq au ig\}$$

Sampling measures: N-best list sampling

Sample from N-best list weighted by hypothesis score:

- lacksquare score: $s(f_1^J|e_1^I)=rac{1}{J^lpha}\log p_\Omega(f_1^J|e_1^I)$
- ightharpoonup assign 0 probability to the non-N best candidates

Sentence probability:

$$q(f_1^J|e_1^I;p_\Omega) = egin{cases} ext{softmax}(s(f_1^J|e_1^I),C), & f_1^J \in C \ 0, & ext{otherwise} \end{cases}$$

with $C \subseteq \mathbb{D}_{src}$ being the set of N-best translations:

$$C = rgmax_{\mathcal{D} \subset \mathbb{D}_{src}: |\mathcal{D}| = N} igg\{ \sum_{f_1^J \in \mathcal{D}} s(f_1^J | e_1^I) igg\}$$

