Reg. No.:

Name :

VIT

0. 1 + TIF -

Vellore Institute of Technology
(Decemed to be University under section 3 of UGC Act, 1956)

Continuous Assessment Test I - September 2022

Programme	: B.Tech (CSE, CSE(AIR), CSE(CPS), CSE(AI&ML))	Semester	:	FS 2022-23
Course	DIGITAL SYSTEM DESIGN	Code	:	BECE102L
		Class Nbr	:	CH2022231001870
Faculty	: Dr. SELVENDRAN S	Slot	:	E2+TE2
Time	: 90 Minutes	Max. Marks	:	50

Answer Any 5 questions

Q. No.	Sub. Sec.	CHICALOR			
1.	a)/	Simplify the expression using Boolean laws $AB + (AC)' + AB'C(AB + C)$	[5]		
	b)	Implement the following expression using the CMOS structure and explain the operation of the circuit using any one input combination. Y = (ABC+DE)'	[5]		
2.		Reduce the following function using K-map technique. $F(A, B, C, D) = \prod M(0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6)$. Implement the function using only NOR gates.			
	كلأ	Examine the input, output conditions of the gates given in Fig. 1 and identify the faulty gates. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[3]		
3.		Design a combinational logic circuit using Verilog HDL in data flow modelling which is used to instruct a Floor cleaning robot to recharge (R=1) itself only when a specific set of following conditions are met. (i). When its battery is low (B = 1) or (ii). When the working time is over (T=1) or (iii). When vacuuming is complete (V=1), and when waxing is complete (W=1).	[10]		

2.		Find all the errors (syntax and logical module Exmpl-3(A, B, C, D, F) inputs A, b, C, Output D, F, output B; and (A, B, D); and g1(y,A,B); not g2(D, A, C); OR (F, B; C); endmodule;	I) in the following Verilog declarations. // Line 1 // Line 2 // Line 3 // Line 4 // Line 5 // Line 6 // Line 7 // Line 8	[10]
5.		Design a full-subtractor circuit with three inputs x , y , B_{in} and two outputs $Diff$ and B_{out} . The circuit subtracts $x - y - B_{in}$, where B_{in} is the input borrow, B_{out} is the output borrow, and $Diff$ is the difference.		[10]
6.	a)	Implement the function $f(w_1, w_2, w_3) = \sum m(1, 3, 5, 7)$ by using a 3-to-8 binary decoder and an OR gate.		
	(6)	Implement a full adder combinational	circuit using two half adders.	[5]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$