departamento de matemática

universidade de aveiro

- 1. No espaço vectorial real \mathbb{R}^3 , considere os vectores u=(1,2,-4) e v=(2,5,-6).
 - (a) Escreva o vector w = (1, -1, -10) como combinação linear de $u \in v$.
 - (b) Verifique que o vector a = (0, 1, 1) não é combinação linear de u e v.
 - (c) Para que valor do parâmetro real k, o vector c=(1,0,k) é combinação linear de u e v?
- 2. No espaço vectorial real indicado escreva, sempre que for possível, o vector:
 - (a) u = (1, 1, 0) como combinação linear dos vectores v = (2, 1, -2), w = (1, 0, 0) e $t = (1, 1, 1), \text{ em } \mathbb{R}^3$.
 - (b) a=(2,-3,-4,3) como combinação linear dos vectores b=(4,1,-2,3) e c=(1,2,1,0), em \mathbb{R}^4 .
 - (c) $p(x) = 5x^2 + 9x + 5$ como combinação linear dos vectores $p_1(x) = 4x^2 + x + 2$, $p_2(x) = 3x^2 x + 1$ e $p_3(x) = 5x^2 + 2x + 3$, em $P_2[x]$.
 - (d) $p(x) = -x^3 + x + 4$ como combinação linear dos vectores $p_1(x) = x^3 + 2x + 1$, $p_2(x) = x^3 + 3$ e $p_3(x) = x 1$, em $P_3[x]$.
 - (e) $A = \begin{bmatrix} 6 & 3 \\ 0 & 8 \end{bmatrix}$ como combinação linear dos vectores $B = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$ e $D = \begin{bmatrix} 4 & -2 \\ 0 & -2 \end{bmatrix}$, em $M_{2\times 2}(\mathbb{R})$.
 - (f) f(x) = 1 como combinação linear dos vectores $g(x) = \cos^2 x$ e $h(x) = \sin^2 x$, em $\mathcal{F}(\mathbb{R})$;
- 3. No espaço vectorial real $M_{2\times 2}(\mathbb{R})$, considere as matrizes

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix} \quad e \quad C = \begin{bmatrix} 4 & -2 \\ 0 & -2 \end{bmatrix}$$

Quais das seguintes matrizes são combinação linear das matrizes $A, B \in \mathbb{C}$?

(a)
$$\begin{bmatrix} 6 & 3 \\ 0 & 8 \end{bmatrix}$$
; (b) $\begin{bmatrix} -1 & 7 \\ 5 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

- 4. Determine os valores do parâmetro real a para os quais:
 - (a) u = (1, -2, a) é combinação linear de v = (3, 0, -2) e w = (2, -1, -5), no espaço vectorial real \mathbb{R}^3 .
 - (b) $p(x) = ax^2 + x + 2$ é combinação linear de $q(x) = x^2 + 2x + 1$ e r(x) = x + 1, no espaço vectorial real $P_2[x]$.
 - (c) $p(x) = (a-1)x^3 + x$ é combinação linear de $q(x) = x^3 + 1$ e r(x) = 3x 1, no espaço vectorial real $P_3[x]$.

4.2. combinações lineares

página 2/3

- 5. Considere o espaço vectorial real \mathbb{R}^3 . Determine uma condição que relacione os parâmetros x, y e z de modo a que o vector u = (x, y, z) seja combinação linear dos vectores indicados em cada uma das alíneas.
 - (a) $u_1 = (1, -3, 2)$ e $u_2 = (2, 4, -1)$;
 - (b) $w_2 = (2, 1, 0) e w_2 = (1, -1, 2);$
 - (c) $v_1 = (1, 1, -1)$ e $v_2 = (2, 3, 5)$.
- 6. Considere, no espaço vectorial real \mathbb{R}^3 , os vectores $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$.
 - (a) Escreva o vector v = (-4, -18, 7) como combinação linear de v_1 e v_2 .
 - (b) Mostre que o vector w = (4, 3, -6) não é combinação linear de v_1 e v_2 .
 - (c) Determine o valor do parâmetro k de modo a que o vector a = (-1, k, -7) seja combinação linear de v_1 e v_2 .
 - (d) Determine uma condição que relacione os parâmetros x, y e z de modo a que o vector u = (x, y, z) seja combinação linear de v_1 e v_2 .
- 7. Considere o espaço vectorial real $P_2[x]$. Determine uma condição que relacione os parâmetros a, b e c de modo a que o polinómio $p(x) = ax^2 + bx + c$ seja combinação linear dos polinómios $q(x) = x^2 + 5x 6$ e $r(x) = x^2 + 1$.

- 1. (a) w = 7u 3v;
 - (c) k = -8.
- 2. (a) $u = \frac{1}{3}v \frac{1}{3}w + \frac{2}{3}t;$ (b) a = b 2c;

 - (c) $p(x) = 3p_1 4p_2 + p_3$;
 - (d) não é combinação linear;
 - (e) A = 2B + C + D;
 - (f) f = g + h.
- 3. São combinação linear as matrizes das alíneas (a) e (c) .
- 4. (a) a = -8;
 - (b) a = -1;
 - (c) $a = \frac{4}{3}$.
- 5. (a) -x + y + 2z = 0;
 - (b) 2x 4y 3z = 0;
 - (c) 8x 7y + z = 0.
- 6. (a) $v = 2v_1 3v_2$;
 - (c) k = 13;
 - (d) y = x 2z.
- 7. $c-a+\frac{7}{5}b=0$.