MATHÉMATIQUES GÉNÉRALES

Durée : 6 heures

PRÉAMBULE

L'objet du problème est de déterminer les endomorphismes de l'espace vectoriel des matrices carrées complexes d'ordre n conservant certaines propriétés de ces matrices. La première partie étudie la conservation du rang 1 et celle de l'inversibilité. Les deuxième et troisième parties, qui sont indépendantes de la première, préparent à l'étude, effectuée dans la quatrième partie, de la conservation du groupe unitaire et de celle de certaines normes.

Dans tout le problème, n désigne un entier supérieur ou égal à 2, $\mathbb C$ le corps des nombres complexes, $\mathbb U$ l'ensemble des nombres complexes de module 1.

 $M_{p, q}$ (C) étant l'espace vectoriel des matrices complexes à p lignes et q colonnes, dont l'élément nul est noté 0, on pose :

- $\mathcal{E} = M_{n, n}(\mathbb{C})$ (ensemble des matrices carrées d'ordre n);
- $\mathcal{C} = M_{n, 1}$ (C) (ensemble des matrices colonnes à n lignes);
- $\mathcal{E} = M_{1,n}$ (C) (ensemble des matrices lignes à n colonnes);
- B' = B\{0}
- $\mathcal{L}' = \mathcal{L} \setminus \{0\}$

Le groupe linéaire $\mathrm{GL}_n(\mathbb{C})$, ensemble des matrices inversibles de \mathcal{E} , sera noté \mathcal{E} .

Enfin, \mathcal{R}_i désignera l'ensemble des matrices de rang 1 de \mathcal{E} et $\overline{\mathcal{R}}_i$ l'ensemble des matrices de rang inférieur ou égal à 1 de \mathcal{E} . On a donc $\overline{\mathcal{R}}_i = \mathcal{R}_i \cup \{0\}$.

PREMIÈRE PARTIE

Pour P et Q éléments de \mathcal{G} , on définit deux endomorphismes $T_{P,\,Q}$ et $T'_{P,\,Q}$ de \mathcal{E} par :

$$\forall A \in \mathcal{E}$$
 $T_{P,Q}'(A) = PAQ$ $T'_{P,Q}(A) = P'AQ$ ('A est la transposée de A)

et on désigne par γ (resp. γ') l'ensemble des endomorphismes $T_{P,Q}$ (resp. $T'_{P,Q}$) pour P et Q décrivant G. On pose $\Gamma = \gamma \cup \gamma'$.

 γ et Γ sont, de manière immédiate, des sous-groupes du groupe linéaire GL (5). On ne demande pas de le démontrer.

On se propose d'établir ici que les endomorphismes T de $\mathcal E$ tels que T $(\mathcal R_i)$ $\subset \mathcal R_i$ sont les éléments de Γ .

- 1º Montrer que si T appartient à Γ alors T (\mathcal{R}_1) \subset \mathcal{R}_1 .
- 2º Établir que \mathcal{R}_i est égal à l'ensemble \mathcal{C}' \mathcal{L}' des produits XV d'un élément X de \mathcal{C}' par un élément V de \mathcal{L}' .
- 3º Soient alors XV et X'V' deux éléments de \mathcal{R}_1 . Montrer que si XV + X'V' appartient à $\overline{\mathcal{R}}_1$, alors l'un au moins des deux couples (X, X') et (V, V') est lié.
 - 4º On désigne par Σ l'ensemble des sous-espaces vectoriels de dimension n de \mathcal{E} inclus dans $\widetilde{\mathcal{R}}_i$.

Montrer que Σ est exactement constitué des éléments de l'une des deux formes suivantes :

- a. XL (ensemble des produits XV quand V décrit L) avec X dans \mathfrak{C}' .
- b. $\operatorname{\mathcal{C}V}$ (ensemble des produits XV quand X décrit $\operatorname{\mathcal{C}}$) avec V dans $\operatorname{\mathcal{L}}'$.

X et X' étant deux éléments de \mathscr{C}' , préciser $X\mathscr{L} \cap X'\mathscr{L}$.

X et V étant respectivement éléments de \mathscr{C}' et \mathscr{L}' , préciser $X\mathscr{L} \ \cap \ \mathscr{C} \ V$.

5º Dans cette question et les deux suivantes, T désigne un endomorphisme de $\mathcal E$ tel que T $(\mathcal R_1) \subset \mathcal R_2$.

Montrer que l'image par T d'un élément de Σ est un élément de Σ .

- 6º On suppose ici l'existence de deux éléments non colinéaires de \mathfrak{C}' , X_i et X_2 , tels que $T(X_1\mathfrak{L})=Y_1\mathfrak{L}'$ et $T(X_2\mathfrak{L})=Y_2\mathfrak{L}$ avec Y_i et Y_2 dans \mathfrak{C}' .
 - a. Prouver l'existence d'une matrice Q de $\mathcal G$ telle que :

$$\forall \ V \in \mathfrak{L} \qquad T(X,V) = Y,VQ.$$

- b. En déduire que $T(X_1 \mathcal{L}) \neq T(X_2 \mathcal{L})$.
- c. Montrer que pour tout V appartenant à \mathcal{L}' , T (\mathcal{C} V) est de la forme \mathcal{C} U avec U dans \mathcal{L}' . Que peut-on dire de T (X \mathcal{L}) pour X appartenant à \mathcal{C}' ?
- d. En déduire, pour tout X dans \mathscr{C}' , l'existence d'un élément Y dans \mathscr{C}' tel que : $\forall V \in \mathscr{L}$ T(XV) = YVQ où Q est la matrice obtenue au a.
- e. Montrer que T appartient à y.
- $7^{
 m o}$ Établir que si l'hypothèse du 6º n'est pas satisfaite, alors T appartient à γ' .

В

On se propose maintenant d'établir que les endomorphismes T de $\mathcal E$ tels que $T(\mathcal G)\subset \mathcal G$ sont les éléments de Γ .

- 1º Montrer que si T appartient à Γ alors $T(\mathcal{G}) \ \subset \ \mathcal{G}$.
- 2º Soit A une matrice non inversible de & et r son rang.

 - b. Montrer de même l'existence d'une matrice N de ψ telle que $N-\lambda A$ soit non inversible pour exactement ϵ valeurs distinctes de λ .

3º On considère dans cette question un endomorphisme T de $\mathcal E$ tel que T $(\mathcal E)\subset \mathcal E$. Utiliser la question 2º pour établir, pour toute matrice A de $\mathcal E$:

- a. Si A est non inversible alors T(A) est non inversible.
- b. Le rang de T(A) est supérieur ou égal au rang de A. Prouver alors que T conserve le rang et que T appartient à Γ .

DEUXIÈME PARTIE

On considère un espace hermitien E de dimension n, dont la norme est notée $x \longrightarrow ||x||$ et le produit scalaire $(x, y) \longrightarrow (x \mid y)$; $\mathcal{L}(E)$ est l'algèbre de ses endomorphismes, $\mathcal{L}(E)$ son groupe unitaire. L'adjoint d'un sont des réels positifs ou nuls.

A

1º Vérifier que pour tout endomorphisme u de E, $u^* \circ u$ est hermitien positif, et de même rang que u. Les n valeurs propres (distinctes ou non) de $u^* \circ u$ sont rangées en ordre décroissant $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$ et on pose, pour $i=1,\,2,\,\ldots,\,n,\,\alpha_i=\sqrt{\lambda_i}$.

Ces nombres α_i sont appelés les valeurs singulières de l'endomorphisme u.

2º Montrer l'existence de deux bases orthonormales de E, (e_1, e_2, \ldots, e_n) et $(e'_1, e'_2, \ldots, e'_n)$ telles que pour tout $i = 1, 2, \ldots, n$ $u(e_i) = \alpha_i e'_i$. (On prendra pour (e_i) une base de vecteurs propres de $u^* \circ u$).

En déduire l'existence d'un endomorphisme hermitien h de valeurs propres α_1 , α_2 , ..., α_n et d'un endomorphisme unitaire w tels que $u=w\circ h$.

- 3º Queiles sont les valeurs singulières d'un endomorphisme hermitien?
- 4º Montrer que deux endomorphismes u et v de E ont les mêmes valeurs singulières si, et seulement si, il existe w et w' unitaires tels que $u = w \circ v \circ w'$.

On dira alors que u et v sont unitairement équivalents.

В

k étant un entier compris entre 1 et n, on définit $\varphi_k: \mathcal{L}(E) \to \mathbb{R}_+$ en posant, pour tout endomorphisme u de E, $\varphi_k(u) = \alpha_1 + \alpha_2 + \ldots + \alpha_k$ où α_1 , α_2 , \ldots sont les valeurs singulières de u rangées, on le rappelle, en ordre décroissant.

On définit également $\psi:\mathcal{L}(E)\to\mathbb{R}_+$ par

$$\psi(u) = (\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2)^{1/2} = (\text{Tr } (u^* \circ u))^{1/2}.$$
 (Tr désigne la trace.)

- 10 Montrer que ϕ est une norme hermitienne sur \mathcal{L} (E).
- \mathcal{F}_k désignant l'ensemble des familles orthonormales (x_1,\ldots,x_k) d'éléments de E, on se propose d'établir, pour tout endomorphisme u de È :

(1)
$$\varphi_{k}(u) = \sup_{\substack{(x_{1}, \ldots, x_{k}) \in \mathcal{J}_{k} \\ (y_{1}, \ldots, y_{k}) \in \mathcal{J}_{k} \\ i = 1}} \left| \begin{array}{ccc} (u & (x_{i}) & | & y_{i}) \end{array} \right|$$

2º Soit h hermitien positif et (x_1, \ldots, x_k) un élément de $\overline{\mathcal{F}}_k$.

Établir que $\sum_{i=1}^{n} (h(x_i) \mid x_i) \le \phi_k(h)$ (on pourra, par exemple, vérifier que le premier membre s'écrit $\operatorname{Tr}(p \circ h)$ où p est la projection orthogonale sur le sous-espace vectoriel engendré par (x_1, \ldots, x_k) et exprimer cette trace dans une base convenable).

En déduire que
$$\varphi_k(h) = \sup_{(x_1, \dots, x_k) \in \mathcal{I}_k} \sum_{i=1}^k (h(x_i), x_i)$$

- 3º Établir l'égalité (1) pour un endomorphisme hermitien positif, puis pour tout endomorphisme u de E.
- 4º Montrer que φ_k est une norme sur \mathfrak{L} (E).

C

Soit F un C-espace vectoriel de dimension finie, muni d'une norme N, et S la sphère unité de F. Un élément x de F sera dit élément extrémal de S ou S-extrémal si les deux conditions suivantes sont vérifiées :

- ii. $\forall (y, z) \in S^2$ $x = \frac{1}{2}(y + z) \Rightarrow x = y = z$

Ceci équivaut à

- i. $x \in S$
- ii. $\forall (y, z) \in S^2, \forall \lambda \in]0, 1[$ $x = \lambda y + (1 \lambda)z \Rightarrow x = y = z$

(On ne demande pas de vérifier cette équivalence.)

1º Montrer que si x est S-extrémal et si deux éléments y et z de F vérifient

$$x = \frac{1}{2}(y+z)$$
 et $N(y) + N(z) = 2$, alors $y = N(y) x$ et $z = N(z) x$.

2º Établir que si N est hermitienne, tout élément de S est S-extrémal.

D

- S_k désigne la sphère unité de l'espace vectoriel normé (\mathfrak{L} (E), φ_k).
- 1º On écrit u appartenant à \mathcal{L} (E) sous la forme w o h obtenue au A 2º . Montrer l'équivalence : u S_k -extrémal $\Leftrightarrow h$ S_k -extrémal.

2º Soit h un endomorphisme hermitien positif, autre qu'une homothétie, et de valeurs propres $\alpha_1 \geqslant \alpha_2 \geqslant \ldots \geqslant \alpha_n$.

a. En utilisant une base orthonormale dans laquelle la matrice de h est diagonale, montrer que si h est S_k -extrémal alors :

(2)
$$k \neq 1$$
 et $(\alpha_1, \alpha_2, \ldots, \alpha_n) = (1, 0, \ldots, 0)$.

- b. Réciproquement, montrer que si (2) est vérifiée, h est S_k -extrémal. (On pourra d'abord montrer que si $h=\frac{1}{2}\left(u_1+u_2\right)$ avec u_1 et u_2 dans S_k , alors $\psi\left(u_1\right)=\psi\left(u_2\right)=1$.)
- 3º On suppose maintenant que h est l'homothétie de rapport 1/k.
 - a. Montrer que si h est S_k -extrémal alors $k \neq n$.
 - b. Réciproquement, établir que si $k \neq n$, h est S_k extrémal.
- 4º Quels sont les éléments extrémaux de S_k ?

TROISIÈME PARTIE

On conserve les notations de la deuxième partie; on considère un endomorphisme t de l'espace vectoriel $\mathcal{L}(E)$ (donc t élément de $\mathcal{L}(\mathcal{L}(E))$), tel que $t(\mathcal{U}(E)) \subset \mathcal{U}(E)$. On rappelle que $\mathcal{U}(E)$ est connexe.

On se propose de prouver que l'image par t d'un endomorphisme de rang 1 est un endomorphisme de rang 1.

1º Soient u et v deux endomorphismes de E tels que, pour tout λ dans U, $\lambda u + v$ soit unitaire.

Montrer que $u^* \circ v = 0$ et que $(u^* \circ u) + (v^* \circ v) = \mathrm{Id}_{\mathbb{R}}$.

2º Soient $u_1, u_2, \ldots, u_p \ (p \ge 2)$ des endomorphismes de E tels que pour tout $(\lambda_1, \lambda_2, \ldots, \lambda_p) \in \mathbf{U}^p$, $\lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_p u_p$ soit unitaire.

a. Montrer que pour tout (i, j) avec $i \neq j$ $u_i^* \circ u_j = 0$, et que $\sum_{i=1}^p u_i^* \circ u_i = \mathrm{Id}_{\mathbf{E}}$.

En déduire que $\sum_{i=1}^{p} \operatorname{rg}(u_i) = n$. (rg(u) désigne le rang de u).

- b. Montrer que, pour tout endomorphisme unitaire w, $\sum_{i=1}^{p} \operatorname{rg}(t(u_{i} \circ w)) = n$.
- c. En déduire que, pour i donné, le rang de t (u, o w) reste constant lorsque w décrit II (E).
- d. Montrer que, pour tout endomorphisme u unitairement équivalent à u_i , rg $(t(u)) = rg(t(u_i))$.
- 3º Vérifier que l'on peut trouver un entier p et des endomorphismes u_1 , ..., u_p de rang 1 tels que l'hypothèse du 2º soit satisfaite.

En déduire que l'image par t d'un endomorphisme de rang 1 est un endomorphisme de rang 1.

QUATRIÈME PARTIE

On reprend les notations de la première partie et on désigne par \mathfrak{A} le groupe unitaire d'ordre n, constitué des matrices A de \mathcal{B} telles que $A^*A = I_n$ où A^* est l'adjointe de A.

Pour A dans \mathcal{E} et k entier compris entre 1 et n, on pose :

$$\Phi_k(A) = \alpha_1 + \alpha_2 + \ldots + \alpha_k,$$

 $\alpha_1 \geqslant \alpha_2 \geqslant \ldots \geqslant \alpha_n$ désignant les racines des valeurs propres, distinctes ou non, de la matrice hermitienne positive A*A.

D'après la deuxième partie, Φ_k est une norme sur $\mathcal S$.

On désigne par γ_o (resp. γ_o') l'ensemble des endomorphismes $T_{P,Q}$ (resp. $T_{P,Q}'$) obtenus pour P et Q décrivant U; on pose $\Gamma_o = \gamma_o \cup \gamma_o'$.

1º Vérifier que si T appartient à $\Gamma_{\rm o}$ alors T possède les propriétés suivantes :

Pour tout entier k compris entre 1 et n et toute matrice A de \mathcal{E} , $\Phi_k(T(A)) = \Phi_k(A)$.

- 2º En utilisant les différents résultats établis dans le problème, démontrer, pour T endomorphisme de & , les réciproques des propriétés établies au 1º. On démontrera successivement :
 - a. Si T(U) = U alors T appartient à Γ,;
 - b. Si pour toute matrice A de S, $\Phi_{i}(T(A)) = \Phi_{i}(A)$, alors T est dans Γ_{o} ;
 - c. Si pour toute matrice A de E, $\Phi_n(\Gamma(A)) = \Phi_n(A)$, alors T est dans Γ_c ;
 - d. Si pour toute matrice A de \mathcal{E} , Φ_k (T (A)) = Φ_k (A) où $k \neq 1$ et $k \neq n$, alors T est dans Γ_o .