Abstract (Basic): DE 29905385 U1

NOVELTY - Uniform short wave IR heating equipment for glasses and/or glass-ceramics, including an arrangement for indirect incidence of most of the IR radiation, is new.

DETAILED DESCRIPTION - Equipment for uniformly heating (semi-)transparent glasses and/or glass-ceramics, preferably at 20-3000 especially 700-1705)degreesC, comprises short wave IR sources (1) and an arrangement for causing indirect incidence of more than 50% of the total IR radiation power onto the glasses and/or glass-ceramics (5).

Preferred Features: The indirect incidence production arrangement comprises reflectors (3), diffusers and/or an absorbent support body (7) in thermal contact with the glasses and/or glass-ceramics (5).

USE - The equipment is useful in the ceramicizing of or heating prior to shaping of glasses and/or glass-ceramics.

ADVANTAGE - The equipment redirects non-absorbed radiation back to the glasses and/or glass-ceramics to provide homogeneous deep heating and improved energy utilization.

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Gebrauchsmusterschrift[®] DE 299 05 385 U 1

(a) Int. CI.7: C 03 B 32/00

DEUTSCHES
PATENT- UND
MARKENAMT

) Aktenzeichen:) Anmeldetag:

(4) Eintragungstag:

43 Bekanntmachung im Patentblatt: .299 05 385.7 23. · 3. 1999

3. 8. 2000

7. 9.2000

(73) Inhaber:

Schott Glas, 55122 Mainz, DE

Wertreter:

Dr. Weitzel & Partner, 89522 Heidenheim

Worrichtung zum homogenen Erwärmen von Gläsern und/oder Glaskeramiken mit Hilfe von Infrarot-Strahlung

Vorrichtung zum homogenen Erwärmen von semitransparenten und/oder transparenten Gläsern und/oder Glaskeramiken, insbesondere im Bereich von 20°C bis 3000°C, insbesondere im Bereich von 700°C bis 1705°C, mit

1.1 Infrarot-Strahlungsquellen (1) zur Emission kurzwelliger Infrarot-Strahlung;

1.2 Mittel zur Erzeugung von indirekt auf die Gläser und/ oder Glaskeramiken einwirkender Infrarot-Strahlung; dadurch gekennzeichnet, daß

1.3 die Mittel zur Erzeugung von indirekt auf die Gläser und/oder Glaskeramiken einwirkender Infrarot-Strahlung derart angeordnet und beschaffen sind, daß der Anteil der indirekt auf das Glas und/oder die Glaskeramik einwirkenden Strahlung mehr als 50% der Gesamtstrahlungsleistung beträgt.

G 14719 / 299 05 385.7 / Schott Glas / DrS/ bs0001 Vitre 11. August 1990

ı

Vorrichtung zum homogenen Erwärmen von Gläsern und/oder Glaskeramiken mit Hilfe von Infrarot-Strahlung

5

Die Erfindung betrifft eine Vorrichtung zum homogenen Erwärmen von semitransparenten und/oder transparenten Gläsern und/oder Glaskeramiken mit Hilfe von Infrarot-Strahlung, wodurch die Gläser und/oder Glaskeramiken einer Wärmebehandlung, im Bereich von 20° C bis 3000° C unterzogen werden.

15

10

Transparentes Glas und/oder Glaskeramiken werden zum Einstellen von bestimmten Materialeigenschaften, beispielsweise der Keramisierung meist auf Temperaturen erwärmt, die vorzugsweise über dem unteren Kühlpunkt (Viskosität $\eta = 10^{14.5}$ dPas) liegen. Bei formgebenden Prozessen, insbesondere der Heißnachverarbeitung, wird das transparente Glas und/oder die Glaskeramik bis zum Verarbeitungspunkt (Viskosität $\eta = 10^4$ dPas) oder darüber hinaus erwärmt. Typische untere Kühlpunkte können je nach Glasart zwischen 282° C und 790° C, und typischerweise der Verarbeitungspunkt bis zu 1705° C betragen.

20

Bislang wurden transparente Gläser und/oder Glaskeramiken beispielsweise zur Keramisierung nach dem Stand der Technik vorzugsweise mit Oberflächenheizungen erwärmt. Als Oberflächenheizung werden solche Verfahren bezeichnet, bei denen mindestens 50 % der gesamten Wärmeleistung der Heizquelle in die Oberfläche bzw. oberflächennahen Schichten des zu erwärmenden Objektes eingetragen werden.

30

25

Weist die Strahlungsquelle eine Farbtemperatur von 1500 K auf, so strahlt die Quelle 51 % der Gesamtstrahlungsleistung in einem Wellenlängenbereich über 2,7 μ m ab. Beträgt die Farbtemperatur weniger als 1500 K, wie bei den

10

25

30

meisten elektrischen Widerstandsheizelementen, so wird noch wesentlich mehr als 51 % der Strahlungsleistung oberhalb von 2,7 μ m abgegeben.

Da die meisten Gläser in diesem Wellenlängenbereich eine Absorptionskante aufweisen, wird 50 % oder mehr der Strahlungsleistung von der Oberfläche oder in oberflächennahen Schichten absorbiert. Es kann somit von Oberflächenheizungen gesprochen werden. Eine andere Möglichkeit besteht in der Erwärmung von Glas und Glaskeramiken mit einer Gasflamme, wobei typische Flammtemperaturen bei 1000° C liegen. Eine derartige Erwärmung erfolgt zum größten Teil durch direkte Übertragung der Wärmeenergie des heißen Gases an die Oberfläche des Glases oder der Glaskeramik, so daß hier von einer überwiegenden Oberflächenheizung ausgegangen werden kann.

Im allgemeinen werden bei den zuvor beschriebenen Oberflächenheizungen die Oberfläche bzw. oberflächennahe Schichten an den Stellen des Glases oder der Glaskeramik erwärmt, die der Heizquelle gegenüber liegen. Das übrige Glasvolumen beziehungsweise Glaskeramikvolumen muß somit entsprechend durch Wärmeleitung innerhalb des Glases oder der Glaskeramik aufgeheizt werden.

Da Glas bzw. Glaskeramik in der Regel eine sehr geringe Wärmeleitfähigkeit im Bereich von 1 W / (m K) aufweist, muß Glas bzw. Glaskeramik mit steigender Materialdicke immer langsamer aufgeheizt werden, um Spannungen im Glas bzw. der Glaskeramik klein zu halten.

Ein weiterer Nachteil bekannter Systeme ist, daß, um eine homogene Aufheizung der Oberfläche zu erzielen, die Oberfläche des Glases oder der Glaskeramik möglichst vollständig mit Heizelementen bedeckt sein muß. Herkömmlichen Beheizungsverfahren sind dabei Grenzen gesetzt. Mit elektrischen Widerstandsheizungen aus Kanthaldrähten, wie sie vorzugsweise

eingesetzt werden, ist beispielsweise bei 1000° C nur eine Wandbelastung von maximal 60 kW/m² möglich, während ein schwarzer Strahler eine Leistungsdichte von 149 kW/m² abstrahlen könnte.

Bei einer dichteren Packung der Heizelemente, gleichzusetzen mit einer höheren Wandbelastung, würden diese sich selbst gegenseitig aufheizen, was durch den resultierenden Wärmestau eine extreme Verkürzung der Lebensdauer der Heizelemente nach sich ziehen würde.

Wenn eine homogene Aufheizung des Glases oder der Glaskeramik nicht oder nur unzureichend gelingt, so hat dies unweigerlich Ungleichmäßigkeiten beim Prozeß und/oder der Produktqualität zur Folge. Beispielsweise führt jede Irregularität in der Prozeßführung beim Keramisierungsprozeß von Glaskeramiken zu einem Durchbiegen oder Ausplatzen der Glaskeramik.

15

20

Aus der DE 42 02 944 C2 ist ein Verfahren und eine Vorrichtung umfassend IR-Strahler zum schnellen Erwärmen von Materialien, die oberhalb von 2500 nm eine hohe Absorption aufweisen, bekanntgeworden. Um die von den IR-Strahlern abgegebene Wärme in das Material schnell eintragen zu können, schlägt die DE 42 02 944 C2 die Verwendung eines Strahlungswandlers vor, aus dem Sekundärstrahlung mit einem Wellenlängenbereich emittiert wird, der gegenüber der Primärstrahlung ins Langwellige verschoben ist.

Eine in der Tiefe homogene Erwärmung von transparentem Glas unter

Verwendung kurzwelliger IR-Strahler beschreibt die US-A-3620706. Das

Verfahren gemäß der US-A-3620706 beruht darauf, daß die Absorptionslänge der verwendeten Strahlung im Glas sehr viel größer ist als die Abmessungen der zu erwärmenden Glasgegenstände, so daß der größte Teil der auftreffenden Strahlung vom Glas hindurchgelassen wird und die absorbierte Energie pro Volumen an jedem Punkt des Glaskörpers nahezu gleich ist. Nachteilig an diesem Verfahren ist jedoch, daß keine über die Fläche

homogene Bestrahlung der Glasgegenstände gewährleistet ist, so daß die Intensitätsverteilung der IR-Strahlungsquelle auf dem zu erwärmenden Glas abgebildet wird. Zudem wird bei diesem Verfahren nur ein geringer Teil der eingesetzten elektrischen Energie zur Erwärmung des Glases ausgenutzt.

5

Aufgabe der Erfindung ist es somit eine Vorrichtung zur homogenen Aufheizung von semitransparenten beziehungsweise transparenten Gläsern und Glaskeramiken anzugeben, mit dem die zuvor beschriebenen Nachteile überwunden werden.

10

15

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß bei einer oberbegrifflichen Vorrichtung Mittel zur Erwärmung des semitransparenten und/oder transparenten Glases bzw. Glaskeramik mit einem Anteil direkt auf die Gläser und/oder Glaskeramik einwirkender Infrarot-Strahlung sowie einen Anteil indirekt auf die Gläser und/oder Glaskeramik einwirkender Infrarot-Strahlung vorgesehen sind, wobei der Anteil der indirekt auf das Glas beziehungsweise die Glaskeramik einwirkenden Strahlung mehr als 50 % der Gesamtstrahlungsleistung beträgt.

20

Bevorzugt ist es, wenn die Infrarot-Strahlung kurzwellige Infrarot-Strahlung mit einer Farbtemperatur größer als 1500 K, besonders bevorzugt größer als 2000 K ist.

25

30

In einer ersten Ausgestaltung der Erfindung ist vorgesehen, daß die indirekt auf die Gläser und/oder Glaskeramik einwirkende Infrarot-Strahlung mindestens einen Anteil reflektierter und/oder gestreuter, insbesondere diffus gestreuter Strahlung umfaßt. Vorteilhafterweise beträgt der Anteil der kurzwelligen Infrarot-Strahlung, der vom Glas beziehungsweise der Glaskeramik beim einmaligen Auftreffen nicht absorbiert wird, d.h. reflektiert, gestreut oder durchgelassen wird, im Mittel mehr als 50 % der von IR-Strahlern abgegebenen Gesamt-Strahlungsleistung.

10

15

20

25

Will man beispielsweise langsam Kühlen oder schnell Aufheizen, so ist in einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, daß das Verfahren in einem umgrenzten Raum, vorzugsweise einem IR-Strahlungshohlraum, durchgeführt wird. In einer besonders vorteilhaften Ausgestaltung eines derartigen Verfahrens ist vorgesehen, daß die reflektierte und/oder gestreute Infrarot-Strahlung von mindestens einem Teil der Wandflächen reflektiert und/oder gestreut werden. IR-Strahlungshohlräume zeigen beispielsweise die US-A-4789771 sowie die EP-A-0 133 847, deren Offenbarungsgehalt in die vorliegende Anmeldung vollumfänglich miteinbezogen wird. Vorzugsweise beträgt der Anteil der von dem Teil der Wandflächen reflektierten und/oder gestreuten Infrarot-Strahlung mehr als 50 % der auf diese Flächen auftreffenden Strahlung.

Besonders bevorzugt ist es, wenn der Anteil der von dem Teil der Wandflächen reflektierten und/oder gestreuten Infrarot-Strahlung mehr als 90 %, insbesondere mehr als 98 %, beträgt.

Ein besonderer Vorteil der Verwendung eines IR-Strahlungshohlraumes ist des weiteren, daß es sich bei Verwendung von sehr stark reflektierender Wandmaterialien um einen Resonator hoher Güte Q handelt, der nur mit geringen Verlusten behaftet ist und daher eine hohe Energieausnutzung gewährleistet.

In einer alternativen Ausgestaltung der Erfindung ist vorgesehen, daß die indirekt auf die Gläser und/oder Glaskeramik einwirkende Infrarot-Strahlung einen Anteil von Infrarot-Strahlung umfaßt, der von einem Trägerkörper absorbiert, in Wärme umgewandelt und an das thermisch mit dem Trägerkörper verbundene Glas und/oder die Glaskeramik abgegeben wird.

In einer ersten Ausgestaltung dieser Alternative ist vorgesehen, daß als Trägerkörper Keramikplatten verwendet werden. aus SiSiC in Form von Scheiben handelt.

Besonders vorteilhaft ist es, wenn es sich bei dem Trägerkörper um einen hochwärmeleitfähigen Trägerkörper möglichst hoher Emissivität, vorzugsweise

Besonders bevorzugt ist die Wärmeleitfähigkeit des Trägerkörpers im Bereich der Wärmebehandlungstemperatur mindestens fünfmal so groß wie die des zu behandelnden Glases oder der Glaskeramik.

Bevorzugt ist vorgesehen, daß die Mittel zur Erzeugung von indirekt auf die Gläser und/oder Glaskeramiken einwirkende Infrarot-Strahlung Reflektoren und/oder Diffusoren zur Reflexion beziehungsweise Streuung von Infrarot-Strahlung umfassen.

Als diffus streuendes Material finden beispielsweise geschliffene Quarzal-Platten mit beispielsweise einer Dicke von 30 mm Verwendung.

Auch andere die IR-Strahlung reflektierende Materialien sind möglich, beispielsweise eine oder mehrere der nachfolgenden Materialien:

Al₂O₃; BaF₂; BaTiO₃; CaF₂; CaTiO₃; MgO 3,5 Al₂O₃; MgO, SrF₂; SiO₂; SrTiO₃; TiO₂; Spinell; Cordierit; Cordierit-Sinterglaskeramik

15

30

25 Strebt man ein schnelles Heizen oder eine langsame Kühlung an, so ist mit Vorteil vorgesehen, die Vorrichtung in einem umgrenzten Raum, insbesondere einem IR-Strahlungshohlraum, unterzubringen.

In einer besonderen Ausgestaltung der Erfindung ist vorgesehen, daß die Oberfläche der Wände des umgrenzten Raumes, vorzugsweise des IR-Strahlungshohlraumes, die Reflektoren beziehungsweise Diffusoren umfaßt.

Eine Ausgestaltung eines Diffusors wäre beispielsweise eine Streuscheibe.

Besonders bevorzugt ist es, wenn die Reflektoren beziehungsweise Diffusoren derart ausgestaltet sind, daß mehr als 50 % der auf diese Flächen auftreffenden Strahlung reflektiert beziehungsweise gestreut werden.

In einer alternativen Ausführungsform ist vorgesehen, daß die Mittel zur Erzeugung von indirekter Strahlung einen Trägerkörper umfassen, der in thermischem Kontakt mit den zu erwärmenden Gläsern und/oder Glaskeramiken steht und einen Anteil der indirekten Infrarot-Strahlung absorbiert.

Besonders bevorzugt ist es, wenn der Trägerkörper Keramikplatten, vorzugsweise aus SiSiC umfaßt und die Emissivität des Trägerkörpers größer als 0,5 ist. SiSiC weist eine hohe Wärmeleitfähigkeit sowie niedrige Porosität auf sowie eine geringe Klebeneigung gegenüber Glas. Die niedrige Porosität hat zur Folge, daß sich nur wenige unerwünschte Partikel in den Poren sammeln können. Daher ist SiSiC für Arbeiten im direkten Kontakt mit Glas besonders geeignet.

In einer besonders vorteilhaften Ausgestaltung ist vorgesehen, daß die Wärmeleitfähigkeit des Trägerkörpers im Bereich der Wärmebehandlungstemperatur mindestens fünfmal so groß ist, wie die des zu behandelnden Glases oder der Glaskeramik.

Die Erfindung soll nachfolgend beispielhaft anhand der Figuren sowie der Ausführungsbeispiele beschrieben werden.

Es zeigen:

5

10

15

20

	Figur 1	den Transmissionsverlauf bei einer Dicke von 1 cm eines typischen zu erwärmenden Glases.
5	Figur 2	die Planck-Kurve des verwendeten IR-Strahlers mit einer Temperatur von 2400 K.
	Figur 3A	den prinzipiellen Aufbau einer Heizvorrichtung gemäß der Erfindung mit Strahlungshohlraum.
10	Figur 3B	die die Remissionskurve über der Wellenlänge von Al ₂ O ₃ Sintox Al der Morgan Matroc, Troisdorf, mit einem Remissionsgrad > 95 % im nahen IR-Wellenlängenbereich.
15	Figur 4	die Aufheizkurve eines Glases in einer Vorrichtung mit einem absorbierenden Trägerkörper.
	Figur 5	die Aufheizkurve eines Glases in einer Heizvorrichtung umfassend Diffusoren und Reflektoren.
20	Figur 1 zeigt die Transmissionskurve über der Wellenlänge des für die Vergleichsversuche der vorliegenden Erfindung verwendeten Glases. Das Glas weist eine Dicke von 10 mm auf D. utt.	

Figur 1 zeigt die Transmissionskurve über der Wellenlänge des für die Vergleichsversuche der vorliegenden Erfindung verwendeten Glases. Das Glas weist eine Dicke von 10 mm auf. Deutlich zu erkennen ist die typische Absorptionskante bei 2,7 μm, über der Glas oder Glaskeramiken opak sind, so daß die gesamte auftreffende Strahlung an der Oberfläche bzw. in den oberflächennahen Schichten absorbiert wird.

Figur 2 zeigt die Intensitätsverteilung der vorzugsweise zum Einsatz gelangenden IR-Strahlungsquelle. Die zur Anwendung gelangenden IR-Strahler sind lineare Halogen IR-Quarzrohrstrahler mit einer Nennleistung von 2000 W bei einer Spannung von 230 V, welche eine Farbtemperatur von 2400 K besitzen. Die IR-Strahler haben entsprechend dem Wienschen

Verschiebungsgesetz ihr Strahlungsmaximum bei einer Wellenlänge von 1210 nm.

Die Intensitätsverteilung der IR-Strahlungsquellen ergibt sich entsprechend aus der Planck-Funktion eines schwarzen Körpers mit einer Temperatur von 2400 K. So folgt, daß eine nennenswerte Intensität, das heißt größer als 5 % des Strahlungsmaximums, im Wellenlängenbereich von 500 bis 5000 nm abgestrahlt wird und insgesamt ca. 75 % der gesamten Strahlungsleistung auf den Bereich über 1210 nm Wellenlänge entfallen.

In einer ersten Ausführungsform der Erfindung wird nur das Glühgut erwärmt, während die Umgebung kalt bleibt. Die am Glühgut vorbeigehende Strahlung wird durch Reflektoren auf das Glühgut gelenkt. Im Falle hoher Leistungsdichten sind die Reflektoren wassergekühlt, da das Reflektormaterial ansonsten anlaufen würde. Diese Gefahr besteht insbesondere bei Aluminium, das wegen seiner guten Reflexionseigenschaften im kurzwelligen IR-Bereich gerne für Strahler besonders großer Strahlungsleistung verwendet wird. Alternativ zu metallischen Reflektoren können keramische Reflektoren oder glasierte keramische Reflektoren, beispielsweise Al₂O₃, verwendet werden.

Ein Aufbau, bei dem nur das Glühgut erwärmt wird, kann nur dann angewandt werden, wenn nach dem Aufheizen keine langsame Kühlung erforderlich ist, die ohne isolierenden Raum nur mit ständigem Nachheizen und nur mit sehr großem Aufwand mit einer akzeptablen Temperaturhomogenität darstellbar ist.

Der Vorteil eines derartigen Aufbaues ist aber die leichte Zugänglichkeit des Glühgutes, beispielsweise für einen Greifer, was insbesondere bei der Heißformgebung von großem Interesse ist.

25

5

10

15

In einer alternativen Ausführungsform befindet sich die Heizeinrichtung und das Glühgut in einem mit IR-Strahlern bestückten IR-Strahlungshohlraum. Das setzt voraus, daß die Quarzglasstrahler selbst genügend temperaturbeständig sind. Das Quarzglasrohr ist bis etwa 1100° C einsetzbar. Bevorzugt ist es, die Quarzglasrohre erheblich länger auszubilden als die Heizwendel und aus dem Heißbereich herauszuführen, so daß die Anschlüsse im Kaltbereich sind, um die elektrischen Anschlüssen nicht zu überhitzen. Die Quarzglasrohre können mit und ohne Beschichtung ausgeführt sein.

10

In Figur 3A ist eine Ausführungsform einer erfindungsgemäßen
Heizvorrichtung mit einem IR-Stahlungshohlraum dargestellt mit der die
Durchführung des erfindungsgemäßen Verfahrens möglich ist, ohne daß die
Erfindung hierauf beschränkt wäre.

Die in Figur 3A dargestellte Heizvorrichtung umfaßt eine Vielzahl von IR-Strahlern 1, die unterhalb eines Reflektors 3 angeordnet sind. Durch den Reflektor 3 wird erreicht, daß das zu erwärmende Glas bzw. Glaskeramik 5 von der Oberseite erhitzt wird. Die von den IR-Strahlern abgegebene IR-Strahlung durchdringt die in diesem Wellenlängenbereich weitgehend transparente Glaskeramik 5 und trifft auf eine Trägerplatte 7 aus stark reflektierendem beziehungsweise stark streuendem Material. Besonders geeignet hierfür ist Quarzal, das auch im Infraroten ungefähr 90 % der auftreffenden Strahlung reflektiert. Alternativ hierzu könnte auch hochreines, gesintertes Al₂O₃ Verwendung finden, das einen Remissionsgrad von ungefähr 98 % bei hinreichender Dicke aufweist. Auf die Trägerplatte 7 wird die Glaskeramik 5 mit Hilfe von beispielsweise Quarzal- oder Al₂O₃-Streifen 9 aufgesetzt. Die Temperatur der Glas- bzw. Glaskeramikunterseite kann durch ein Loch 11 in der Trägerplatte mittels eines nicht dargestellten Pyrometers gemessen werden.

25

5

15

15

20

25

30

Die Wände 10 können zusammen mit Reflektor 3 und Trägerplatte 7 bei entsprechender Ausgestaltung mit reflektierendem Material, beispielsweise Quarzal oder Al₂O₃, einen IR-Strahlungshohlraum hoher Güte ausbilden.

Figur 4 zeigt die Heizkurve eines Borosilicatglases gemäß einem erfindungsgemäßen Verfahren, wobei die Glasprobe Abmessungen von etwa 100 mm bei einer Dicke von 3 mm aufwies.

Das Heizverfahren beziehungsweise die Wärmebehandlung erfolgte wie nachfolgend beschrieben:

Die Erwärmung der Glasproben erfolgte zunächst in einem mit Quarzal umbauten IR-Strahlungshohlraum gemäß Fig. 3A, dessen Decke durch einen Aluminiumreflektor mit darunter befindlichen IR-Strahlern gebildet wurde. Die Glasproben beziehungsweise Glaskeramikkörper wurden in geeigneter Art und Weise auf Quarzal gelagert.

Im IR-Strahlungshohlraum wurde das Glas oder die Glaskeramik durch mehrere Halogen IR-Strahler direkt angestrahlt, die sich in einem Abstand von 10 mm bis 150 mm über dem Glas oder der Glaskeramik befanden.

Das Aufheizen des Glases oder der Glaskeramik fand nunmehr mittels Ansteuerung der IR-Strahler über einen Thyristorsteller auf Grundlage von Absorptions-, Reflexions- und Streuprozesse statt, wie nachfolgend eingehend beschrieben:

Da die Absorptionslänge der verwendeten kurzwelligen IR-Strahlung im Glas beziehungsweise in der Glaskeramik sehr viel größer ist als die Abmessungen der zu erwärmenden Gegenstände, wird der größte Teil der auftreffenden Strahlung durch die Probe hindurchgelassen. Da andererseits die absorbierte Energie pro Volumen an jedem Punkt des Glas- beziehungsweise

10

15

20

25

Glaskeramikkörpers nahezu gleich ist, wird eine über das gesamte Volumen homogene Erwärmung erzielt. Bei dem Verfahren gemäß Figur 4 befinden sich die IR-Strahler und das zu erwärmende Glas in einem Hohlraum, dessen Wände aus einem Material mit einer Oberfläche hoher Reflektivität besteht, wobei zumindest ein Teil der Wandfläche die auftreffende Strahlung überwiegend diffus zurückstreut. Dadurch gelangt der überwiegende Teil der zunächst von dem Glas beziehungsweise der Glaskeramik hindurchgelassenen Strahlung nach Reflexion beziehungsweise Streuung an der Wand erneut in den zu erwärmenden Gegenstand und wird wiederum teilweise absorbiert. Der Weg der auch beim zweiten Durchgang durch das Glas beziehungsweise die Glaskeramik hindurchgelassenen Strahlung setzt sich analog fort. Mit diesem Verfahren wird nicht nur eine in der Tiefe homogene Erwärmung erreicht, sondern auch die eingesetzte Energie deutlich besser als bei nur einfachem Durchgang durch das Glas beziehungsweise die Glaskeramik ausgenutzt. Besonders bevorzugt für das hier beschriebene Verfahren ist außerdem, daß zumindest von einem Teil der Wandfläche die auftreffende Strahlung nicht gerichtet reflektiert, sondern diffus zurückgestreut wird. Dadurch gelangt Strahlung aus allen Richtungen und unter allen möglichen Winkeln in das Glas beziehungsweise die Glaskeramik, so daß die Erwärmung zugleich auch über die Fläche homogen erfolgt und eine Abbildung der Intensitätsverteilung der Strahlungsquelle auf die zu erwärmenden Gegenstände, wie bislang im Stand der Technik, nicht erfolgt.

Figur 5 zeigt die Heizkurve eines Borosilicat-Glases gemäß einem alternativen erfindungsgemäßen Verfahren mit einem Durchmesser von 100 mm bei einer Dicke von 10 mm.

Die Erwärmung erfolgte wie nachfolgend beschrieben:

Zunächst wurde die Glasprobe außerhalb des Strahlungshohlraumes auf einen Trägerkörper aus SiSiC mit einer Dicke von 5 mm aufgebracht.

15

20

25

30

13

Anschließend wird der Träger aus SiSiC in einen mit Quarzal umbauten IR-Strahlungshohlraume eingebracht.

Im Anschluß wird das Glas oder die Glaskeramik mit einem oder entsprechend der Geometrie des Glases oder der Glaskeramik auch mehreren Halogen IR-Strahlern direkt angestrahlt, die sich in einem Reflektor über dem Glas oder der Glaskeramik in einem Abstand von 10 mm bis 150 mm befinden.

Das Aufheizen des Glases oder der Glaskeramik findet nunmehr durch die Ansteuerung der IR-Strahler über einen Thyristorsteller durch eine Kombination von direkter und indirekter Erwärmung statt.

Bedingt durch die Transparenz des Glases oder der Glaskeramik wird ein erheblicher Anteil der Strahlungsleistung das Glas oder die Glaskeramik direkt auf den Träger durchstrahlen. Der schwarze SiSiC-Träger absorbiert die gesamte Strahlung und verteilt sie in Form von Wärme auf Grund seiner hohen Wärmeleitfähigkeit schnell und homogen über die gesamte Oberfläche des Träges. Die Wärme des Trägers wird nun gleichermaßen homogen an das Glas oder die Glaskeramik abgegeben und erwärmt diese(s) von der Unterseite her. Dieser Vorgang stellt in vorliegendem Verfahren den indirekten Anteil der Aufheizung dar.

Der direkte Beitrag der Aufheizung untergliedert sich in zwei Bestandteile. Der erste Anteil ergibt sich daraus, daß bei allen Wellenlängen außerhalb des transparenten Bereichs, das Glas oder die Glaskeramik opak ist und damit die Strahlung lediglich die Oberfläche bzw. oberflächennahe Schichten erwärmen kann. Den zweiten Beitrag zur direkten Aufheizung liefert der gering absorbierte Teil der Strahlung, deren Wellenlänge in einem Bereich liegt, in welchem das Glas oder die Glaskeramik schwach absorbiert. Dieser Anteil

führt zu einer Aufheizung von tieferen Schichten des Glases oder der Glaskeramik.

Der größte Teil der IR-Strahlung durchstrahlt jedoch das Glas und hat eine indirekte Aufheizung über den Träger zur Folge. Auch bei diesem Verfahren wird eine hohe Temperaturhomogenität über die Glasfläche hinweg erreicht und so ein Abbilden der Strahlungsquelle auf das Glas wie im Stand der Technik vermieden.

Erfindungsgemäß beträgt der indirekte Anteil der Aufheizung des Glases oder der Glaskeramik bei beiden in Fig. 4 und 5 beschriebenen Verfahren mehr als 50 %.

Mit der Erfindung werden erstmals Verfahren und Vorrichtungen zum
Erwärmen von Gläsern beziehungsweise Glaskeramiken angegeben, die eine homogene Erwärmung derselben gewährleisten, eine hohe Energieausnutzung aufweisen sowie ein Abbilden der Strahlungsquelle auf den zu erwärmenden Gegenstand vermeiden.

15

20

25

30

Ansprüche

- 1. Vorrichtung zum homogenen Erwärmen von semitransparenten und/oder transparenten Gläsern und/oder Glaskeramiken, insbesondere im Bereich von 20° C bis 3000° C, insbesondere im Bereich von 700° C bis 1705° C, mit
- 1.1 Infrarot-Strahlungsquellen (1) zur Emission kurzwelliger Infrarot-Strahlung;
- 1.2 Mittel zur Erzeugung von indirekt auf die Gläser und/oder
 Glaskeramiken einwirkender Infrarot-Strahlung;
 dadurch gekennzeichnet, daß
 - die Mittel zur Erzeugung von indirekt auf die Gläser und/oder Glaskeramiken einwirkender Infrarot-Strahlung derart angeordnet und beschaffen sind, daß der Anteil der indirekt auf das Glas und/oder die Glaskeramik einwirkenden Strahlung mehr als 50 % der Gesamtstrahlungsleistung beträgt.
 - Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß
 die Mittel zur Erzeugung von indirekt auf die Gläser und/oder
 Glaskeramiken (5) einwirkender Infrarot-Strahlung Reflektoren (3) oder
 Diffusoren zur Reflektion beziehungsweise Streuung von InfrarotStrahlung umfassen.
 - Vorrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Vorrichtung in einem umgrenzten Raum, insbesondere einem IR-Hohlraum angeordnet ist.
 - 4 Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Oberfläche der Wände des umgrenzenden Raumes die Reflektoren beziehungsweise Diffusoren umfaßt.

- 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Reflektoren beziehungsweise Diffusoren derart ausgestaltet sind, daß mehr als 50 % der auf diese Flächen auftreffenden Strahlung reflektiert beziehungsweise gestreut werden.
- 6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Reflektoren (3) eines oder Mischungen aus mehreren der nachfolgenden Materialien umfaßt:

Al₂O₃; BaF₂; BaTiO₃; CaF₂; CaTiO₃; MgO 3,5 Al₂O₃; MgO; SrF₂; SiO₂; SrTiO₃; TiO₂; Quarzal; Spinell; Cordierit; Cordierit-Sinterglaskeramik

- Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch
 gekennzeichnet, daß die Mittel zur Erzeugung von indirekt auf das Glas und/oder die Glaskeramik einwirkender Strahlung einen Trägerkörper
 umfassen, der in thermischem Kontakt mit den Gläsern (5)
 beziehungsweise Glaskeramiken steht und einen Anteil der indirekten Infrarot-Strahlung absorbiert.
 - 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Trägerkörper (7) Keramikplatten umfaßt.
 - Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Trägerkörper (7) SiC, insbesondere SiSiC umfaßt.
 - Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Emissivität des Trägerkörpers (7) größer als 0,5 ist.

25

20

5

11. Vorrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Wärmeleitfähigkeit des Trägerkörpers (7) im Bereich der Wärmebehandlungstemperatur mindestens fünf mal so groß ist, wie die des zu behandelnden Glases oder der Glaskeramik (5).

