Projeto PC-PO e HLS

Aline Hommerding Amorim - 301570 Bruna Casagrandra Cagliari - 290515

PC-PO

Implementação em ASM
e PC-PO.

HLS

Implementação em HLS sem otimizações.

HLS

Implementação em HLS
com otimizações

Comparação

Comparação das 3 implementações.

PC-PO

0	1	2
3	4	5
6	7	8

Matriz peso

9	10	11
12	13	14
15	16	17

Matriz máscara

18	19	20
21	22	23
24	25	26

Matriz saída

27	28	29
30	31	32
33	34	35

1	2	3
3	2	1
2	3	1

Matriz peso

3	5	7
3	5	7
3	5	7

Matriz máscara

254	253	254
252	252	252
248	248	248

Matriz saída

2	8	20
8	8	4
0	8	0

Média = 6.444


```
stim_proc: process
begin
  rst <= '1';
  wait for 100 ns;
  rst <= '0';
  wait;
end process;</pre>
```


Matriz peso

Matriz máscara

Matriz saída

Name	Value	670 ns	680 ns	69	0 ns	700 ns
୍ଲା clk	0					
₹ rst	0				100	
la done	0					
media[15:0]	o		58	χ 6	X	8
Clk_period	10000 ps					
 addra[5:0]	35					
▶ ■ addrb[5:0]	27					
douta[15:0]	0	3 (
doutb[15:0]	2	254				
dina[15:0]	2		0	\sim		
cnt[3:0]	10		9	X		

HLS (SEM OTIMIZAÇÃO)


```
short matrixmul(
   mat input input [MAT A ROWS] [MAT A COLS],
   mat peso peso[MAT B ROWS][MAT B COLS],
   mat_resultado res[MAT_A_ROWS][MAT_B_COLS],
   mat mascara masc[MAT A ROWS][MAT B COLS])
short media=0;
  Row: for(int i = 0; i < MAT A ROWS; i++) {
    Col: for(int j = 0; j < MAT B COLS; j++) {
       res[i][j] = 0;
       res[i][j] = input[i][j] * peso[i][j]
       res[i][j] = res[i][j] \& masc[i][j];
       media = media + res[i][j];
  media = media/9;
  return media;
```



```
stim_proc: process
begin

rst <= '1';

wait for 100 ns;

rst <= '0';

start <= '1';

wait for 100 ns;

start <= '0';

wait;

end process;
```


	0	1	2
0	3	5	7
3	3	5	7
6	3	5	7
9	0	0	0
12	0	0	0
15	0		

	0	1	2
0	254	253	254
3	252	252	252
6	248	248	248
9	0	0	0
12	0	0	0
15	0		

	0	1	2
0		8	20
3		8	4
6	0	8	0
9	0	0	0
12	0	0	0
15	0		
	_		

Matriz peso

Matriz máscara

Matriz saída

Média 🕨

HLS (COM OTIMIZAÇÃO)

Otimização: Loop Flattening

Explora o paralelismo das operações para otimizar o tempo de execução. Para tal, são feitas cópias do corpo do loop e o contador de iterações é ajustado de acordo.

É possível diminuir o loop overhead evitando a aritmética de ponteiros e os testes de fim de loop.

Otimização: Flattening

Sabendo-se que cada porta lógica resultante da síntese da descrição RTL de um circuito possui um atraso específico que é adicionado na propagação do sinal, busca-se reduzir ao máximo este atraso paralelizando-se ou eliminando-se níveis de lógica intermediários.

Otimização: Loop Unroll

Permite que os loops aninhados sejam nivelados em uma hierarquia de loop único com latência aprimorada, economizando ciclos de relógio..

	0	1	2
0	3	5	7
3	3	5	7
6	3	5	7
9	0	0	0
	0	0	0
15	0		

	0	1	2
0	254	253	254
3	252	252	252
6	248	248	248
9	0	0	0
12	0	0	0
15	0		

	0	1	2
0 2		8	20
3 8		8	4
6 0		8	0
9 0		0	0
12 0		0	0
15 0			

Matriz peso

Matriz máscara

Matriz saída

Média 🕨

COMPARAÇÃO

COMPARAÇÃO

	Latência	Frequência	Tempo
РСРО	62 cc.	86MHz	685ns
HLS (s/)	45 cc.	124MHz	545ns
HLS (c/)	41 cc.	128MHz	505ns

	n Summary		
Logic Utilization	Used	Available	Utilization
Total Number Slice Registers	92	1,920	4%
Number used as Flip Flops	76		
Number used as Latches	16		
Number of 4 input LUTs	94	1,920	4%
Number of occupied Slices	67	960	6%
Number of Slices containing only related logic	67	67	100%
Number of Slices containing unrelated logic	0	67	0%
Total Number of 4 input LUTs	109	1,920	5%
Number used as logic	94		
Number used as a route-thru	15		
Number of bonded <u>IOBs</u>	32	83	38%
Number of RAMB16s	1	4	25%
Number of BUFGMUXs	1	24	4%
Number of MULT 18X 18SIOs	2	4	50%
Average Fanout of Non-Clock Nets	2.67		

	Device Utilization Summary			
Logic Utilization	Used	Available	Utilization	
Number of Slice Flip Flops	85	4,896	1%	
Number of 4 input LUTs	115	4,896	2%	
Number of occupied Slices	71	2,448	2%	
Number of Slices containing only related logic	71	71	100%	
Number of Slices containing unrelated logic	0	71	0%	
Total Number of 4 input LUTs	116	4,896	2%	
Number used as logic	115			
Number used as a route-thru	1			
Number of bonded <u>IOBs</u>	20	92	21%	
Number of RAMB16s	3	12	25%	
Number of BUFGMUXs	1	24	4%	
Number of MULT 18X 18SIOs	2	12	16%	
Average Fanout of Non-Clock Nets	2.02			

Performance Estimates

∃ Timing (ns)

∃ Summary

Clock Target Estimated Uncertainty ap_clk 10.00 8.58 1.25

E Latency (clock cycles)

□ Summary

min max min max Type 45 45 46 46 none

■ Detail

III Instance

■ Loop

Utilization Estimates

■ Summary

- P----

Name	BRAM_18K	FF	LUT	MULT18x18
DSP	-			
Expression	7	0	131	2
FIFO	-	-	-	-
Instance				
Memory		-	-	-
Multiplexer		-	28	-
Register		165	4	
Total	0	165	159	2
Available	36	29504	29504	36
Utilization (%)	0	-0	-0	5

Device Utilization Summary (estimated values)						
Logic Utilization	Used	Available	Utilization			
Number of Slices	117	2448	4%			
Number of Slice Flip Flops	115	4896	2%			
Number of 4 input LUTs	222	4896	4%			
Number of bonded IOBs	20	92	21%			
Number of BRAMs	4	12	33%			
Number of MULT 18X 18SIOs	4	12	33%			
Number of GCLKs	1	24	4%			

Performance Estimates

E Timing (ns)

■ Summary

Clock Target Estimated Uncertainty ap_clk 10.00 8.13 1.25

E Latency (clock cycles)

■ Summary

min max min max Type
41 41 42 42 none

∃ Detail

- Instance
- **■** Loop

Utilization Estimates

Summary

-			-		
-		-			
		0	195		4
-			-		
-			-		
-		*	134		
		236	-		
	0	236	329		4
	36	29504	29504		36
	0	-0	1		11
	1	0 36	- 236 0 236 36 29504	- 134 - 236 - 0 236 329 36 29504 29504	134 236 0 236 329 36 29504 29504

