B.SC., MATHEMATICS

SYLLABUS FROM THE ACADEMIC YEAR 2023-2024

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

CONTENTS

- 1. Introduction
- 2. Value Additions to the revamped curriculum
- 3. Curriculum Design & Structure of Course
- 4. Learning and Teaching Activities
- **5.** Template for UG Programme in Mathematics
- 6. Illustrative Template Semester wise
- 7. Different Types of Courses
 - 7.1 Core Courses
 - 7.2 Elective Courses (Generic / Discipline Centric)
 - 7.3 Skill Development Courses
 - 7.4 Institution-Industry-Interaction
- 8. Core Component Model Syllabus

1. Introduction

B.Sc. Mathematics: Programme Outcome, Programme Specific Outcome and Course Outcome

Mathematics is the study of quantity, structure, space and change, focusing on problem solving, with wider scope of application in science, engineering, technology, social sciences etc. The key core areas of study in Mathematics include Algebra, Analysis (Real & Complex), Differential Equations, Geometry, and Mechanics. The Bachelor's Degree B.Sc. Mathematics is awarded to the students on the basis of knowledge, understanding, skills, attitudes, values and academic achievements expected to be acquired by learners at the end of the Programme. Learning outcomes of Mathematics are aimed at facilitating the learners to acquire these attributes, keeping in view of their preferences and aspirations for gaining knowledge of Mathematics.

Bachelor's degree in Mathematics is the culmination of in-depth knowledge of algebra, calculus, geometry, differential equations and several other branches of Mathematics. This also leads to study of related areas like Computer science, Financial Mathematics, Statistics and many more. Thus, this programme helps learners in building a solid foundation for higher studies in Mathematics. The skills and knowledge gained have intrinsic aesthetics leading to proficiency in analytical reasoning. This can be utilised in Mathematical modelling and solving real life problems.

Students completing this programme will be able to present Mathematics clearly and precisely, make abstract ideas precise by formulating them in the language of Mathematics, describe Mathematical ideas from multiple perspectives and explain fundamental concepts of Mathematics to non-Mathematicians.

Completion of this programme will also enable the learners to join teaching profession, enhance their employability for government jobs, jobs in banking, insurance and investment sectors, data analyst jobs and jobs in various other public and private enterprises.

	LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK GUIDELINES BASED REGULATIONS FOR UNDER GRADUATE PROGRAMME										
Programme:	B.Sc., MATHEMATICS										
Programme Code:											
Duration:	3 years [UG]										
Programme Outcomes:	PO1: Disciplinary knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate Programme of study PO2: Communication Skills: Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups. PO3: Critical thinking: Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development. PO4: Problem solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of nonfamiliar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations. PO5: Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints. PO6: Research-related skills: A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a com										
	conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective. PO9: Reflective thinking: Critical sensibility to lived experiences, with										

self awareness and reflexivity of both self and society.

PO10 Information/digital literacy: Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

PO 11 Self-directed learning: Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.

PO 12 Multicultural competence: Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13: Moral and ethical awareness/reasoning: Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstratingthe ability to identify ethical issues related to one"s work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

PO 14: Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 15: Lifelong learning: Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Under Graduate Programme

Programme Outcomes:

PO1: Disciplinary Knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.

PO2: Critical Thinking: Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development.

PO3: Problem Solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's earning to real life situations.

PO4: Analytical Reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples and addressing opposing viewpoints.

PO5: Scientific Reasoning: Ability to analyse, interpret and draw conclusions from quantitative / qualitative data; and critically evaluate ideas, evidence, and experiences from an open minded and reasoned perspective.

PO6: Self-directed & Lifelong Learning: Ability to work independently, identify and manage a project. Ability to acquire knowledge and skills, including "learning how to learn", through self-placed and self-directed learning aimed at personal development, meeting economic, social and cultural objectives.

B.Sc Mathematics

Programme Specific Outcomes:

PSO1: Acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics.

PSO2: Understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.

PSO3: To prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions. To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

Mapping of Course Learning Outcomes (**CLOs**) with Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)can be carried out accordingly, assigning the appropriate level in the grids:

			PC	S		PSC				
	1	2	3	4	5	6	•••	1	2	
CLO1										
CLO2										
CLO3										
CLO4										
CLO5										

Highlights of the Revamped Curriculum:

- ➤ Student-centric, meeting the demands of industry & society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- ➤ The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- ➤ The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.
- > The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
- ➤ The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- The Internship during the second year vacation will help the students gain valuable work experience, that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
- ➤ Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- > State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest Artificial Intelligence.

Value additions in the Revamped Curriculum:

Semester	Newly introduced	Outcome / Benefits
	Components	
I	Foundation Course	 Instil confidence among students
	To ease the transition of	 Create interest for the subject
	learning from higher	
	secondary to higher	
	education, providing an	
	overview of the	
	pedagogy of learning	
	abstract Mathematics and	
	simulating mathematical	
	concepts to real world.	
I, II, III,	Skill Enhancement	Industry ready graduates
IV	papers (Discipline	Skilled human resource
	centric / Generic /	• Students are equipped with essential skills to make
	Entrepreneurial)	them employable
		• Training on Computing / Computational skills
		enable the students gain knowledge and exposure
		on latest computational aspects
		• Data analytical skills will enable students gain
		internships, apprenticeships, field work involving
		data collection, compilation, analysis etc.
		• Entrepreneurial skill training will provide an
		opportunity for independent livelihood
		• Generates self – employment
		• Create small scale entrepreneurs
		• Training to girls leads to women empowerment
		• Discipline centric skill will improve the Technical
		knowhow of solving real life problems using ICT
		tools
III, IV, V	Elective papers-	Strengthening the domain knowledge
& VI	An open choice of topics	• Introducing the stakeholders to the State-of Art
	categorized under	techniques from the streams of multi-disciplinary,
	Generic and Discipline	cross disciplinary and inter disciplinary nature
	Centric	• Students are exposed to Latest topics on Computer
		Science / IT, that require strong mathematical
		background
		• Emerging topics in higher education / industry /
		reliance and manage and and a manage is

IV	Industrial Statistics	•	communication network / health sector etc. are introduced with hands-on-training, facilitates designing of mathematical models in the respective sectors Exposure to industry moulds students into solution providers Generates Industry ready graduates Employment opportunities enhanced
II year Vacation activity	Internship / Industrial Training	•	Practical training at the Industry/ Banking Sector / Private/ Public sector organizations / Educational institutions, enable the students gain professional experience and also become responsible citizens.
V Semester	Project with Viva – voce	•	Self-learning is enhanced Application of the concept to real situation is conceived resulting in tangible outcome
VI Semester	Introduction of Professional Competency component	•	Curriculum design accommodates all category of learners; 'Mathematics for Advanced Explain' component will comprise of advanced topics in Mathematics and allied fields, for those in the peer group / aspiring researchers; 'Training for Competitive Examinations' –caters to the needs of the aspirants towards most sought - after services of the nation viz, UPSC, CDS, NDA, Banking Services, CAT, TNPSC group services, etc.
Extra Credits: For Advanced Learners / Honours degree		•	To cater to the needs of peer learners / research aspirants

Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional
the Courses	Competency, Professional Communication and Transferrable Skill

2. Template for Curriculum Design for UG Programme in Mathematics

Credit Distribution for UG Programme in Mathematics B.Sc Mathematics First Year Semester-I

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	4
Part-III	Core Courses 2 (CC1, CC2)	8	10
	Elective Course 1 (Generic / Discipline Specific)EC1	3	4
	Skill Enhancement Course SEC-1 (Non Major Elective)	2	2
Part-IV	Foundation Course FC	2	2
	Ability Enhancement Compulsory Course (AECC 1) Soft Skill-1	2	2
		23	30

Semester-II

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	4
Part-III	Core Courses 2 (CC3, CC4)	8	10
	Elective Course 1 (Generic / Discipline Specific) EC2	3	4
	Skill Enhancement Course -SEC-2 (Non Major Elective)	2	2
Part-IV	Skill Enhancement Course -SEC-3 (Discipline Specific / Generic)	2	2
	Ability Enhancement Compulsory Course (AECC 2) Soft Skill-2	2	2
		23	30

Second Year Semester-III

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	4
Part-III	Core Courses 2 (CC5, CC6)	8	10
	Elective Course 1 (Generic / Discipline Specific) EC3	3	4
	Skill Enhancement Course -SEC-4 (Entrepreneurial Based)	1	1
Part-IV	Skill Enhancement Course -SEC-5 (Discipline Specific/ Generic)	2	2
	Ability Enhancement Compulsory Course (AECC 3) Soft Skill-3	2	2
	Environmental Studies (EVS)	1	1
		23	30

Semester-IV

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	4
Part-III	Core Courses 2 (CC7, CC8)	8	9
	CC7: Core Industry Module -1 - Industrial Statistics		
	CC8: Any Core paper		
	Elective Course 1 (Generic / Discipline Specific) EC4	3	4
Part-IV	Skill Enhancement Course -SEC7	2	2
	Skill Enhancement Course -SEC-8 (Discipline Specific / Generic)	2	2
	Ability Enhancement Compulsory Course (AECC 4) Soft Skill-4	2	2
	Environmental Studies EVS	1	1
		24	30

Third Year - Semester-V

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-III	Core Courses 3(CC9, CC10, CC11)	12	15
	Elective Courses 2 (Generic / Discipline Specific) EC5, EC6	6	10
	Core /Project with Viva voce CC12	4	4
Part-IV	Value Education	1	1
	Internship / Industrial Training (Carried out in II Year Summer	2	
	vacation) (30 hours)		
		25	30

Semester-VI

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-III	Core Courses 3 (CC13, CC14, CC15)	12	15
	Elective Courses 2 (Generic / Discipline Specific) EC7, EC8	6	10
Part IV	Professional Competency Skill Enhancement Course SE8	2	4
	Value Education	1	1
Part-V	Extension Activity (Outside college hours)	1	-
		22	30

Total Credits: 140

Credit Distribution for UG Programmes

Sem I	Credit	Н	Sem II	Credit	Н	Sem III	Credit	Н	Sem IV	Credit	Н	Sem V	Credit	Н	Sem VI	Credit	Н
Part 1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	Part1. Language – Tamil	3	6	5.1 Core Course – \CC IX	4	5	6.1 Core Course – CC XIII	4	6
Part.2 English	3	6	Part2 English	3	6	Part2 English	3	6	Part2 English	3	6	5.2 Core Course – CC X	4	5	6.2 Core Course – CC XIV	4	6
1.3 Core Course – CC I	5	5	23 Core Course – CC III	5	5	3.3 Core Course – CC V	5	5	4.3 Core Course – CC VII Core Industry Module	5	5	5. 3.Core Course CC -XI	4	5	6.3 Core Course – CC XV	4	6
1.4 Core Course – CC II	5	5	2.4 Core Course – CC IV	5	5	3.4 Core Course – CC VI	5	5	4.4 Core Course – CC VIII	5	5	5. 4.Core Course –/ Project with viva- voce CC -XII	4	5	6.4 Elective -VII Generic/ Discipline Specific	3	5
1.5 Elective I Generic/ Discipline Specific	3	4	2.5 Elective II Generic/ Discipline Specific	3	4	3.5 Elective III Generic/ Discipline Specific	3	4	4.5 Elective IV Generic/ Discipline Specific	3	3	5.5 Elective V Generic/ Discipline Specific	3	4	6.5 Elective VIII Generic/ Discipline Specific	3	5
1.6 Skill Enhancement Course SEC-1	2	2	2.6 Skill Enhancement Course SEC-2	2	2	3.6 Skill Enhancement Course SEC-4, (Entrepreneurial Skill)	1	1	4.6 Skill Enhancement Course SEC-6	2	2	5.6 Elective VI Generic/ Discipline Specific	3	4	6.6 Extension Activity	1	-
1.7 Skill Enhancement -(Foundation Course)	2	2	2.7 Skill Enhancement Course –SEC- 3	2	2	3.7 Skill Enhancement Course SEC-5	2	2	4.7 Skill Enhancement Course SEC-7	2	2	5.7 Value Education	2	2	6.7 Professional Competency Skill	2	2
						3.8 E.V.S.	-	1	4.8 E.V.S	2	1	5.8 Summer Internship /Industrial Training	2				
	23	30		23	30		22	30		25	30		26	30		21	30

Total – 140 Credits

Consolidated Semester wise and Component wise Credit distribution

Parts	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Total
							Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	13	13	13	13	22	18	92
Part IV	4	4	3	6	4	1	22
Part V	-	-	-	-	-	2	2
Total	23	23	22	25	26	21	140

^{*}Part I. II, and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programme and the other components. IV, V have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the UG degree.

5. Illustration for B.Sc Mathematics Curriculum Design First Year Semester-I

Part	List of Courses	Credit	Hours per
			week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	6
Part-III	Core – I, Algebra &Trigonometry	5	5
	Core – II, Differential Calculus	5	5
	Elective – I, Numerical Methods with Applications	3	4
	Skill Enhancement Course (Non Major Elective)	2	2
Part-IV	Foundation Course FC	2	2
		23	30

Semester-II

Part	List of Courses	Credit	Hours per
			week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	6
Part-III	Core – III, Analytical Geometry (Two & Three Dimensions)	5	5
	Core – IV, Integral Calculus	5	5
	Elective – II, Calculus of Finite Differences	3	4
Part-IV	Skill Enhancement Course – Data Analytic Skill,	2	2
	Skill Enhancement Course (Discipline / Subject Specific) –	2	2
	Computational Mathematics		
		23	30

Second Year Semester-III

Part	List of Courses	Credit	Hours per
			week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	6
Part-III	Core – V, Vector Calculus and Applications	5	5
	Core – VI, Differential Equations and Applications	5	5
	Elective – III, Mathematical Statistics Theory & Practical	3	4
Part-IV	Skill Enhancement Course (Entrepreneurial Based)	1	1
	Statistics with R Programming	2	2
	Environmental Studies	-	1
		22	30

Semester-IV

Part	List of Courses	Credit	Hours per
			week (L/T/P)
Part-I	Language –Tamil	3	6
Part-II	English	3	6
Part-III	Core – VII, Industry Module – Industrial Statistics	5	5
	Core – VIII, Elements of Mathematical Analysis	5	5
	Elective – IV, Transformation Techniques	3	3
Part-IV	Skill Enhancement Course -(Introduction to Data Science)	2	2
	Skill Enhancement Course - (Computing Mathematics)	2	2
	Environmental Studies	2	1
		25	30

Third Year Semester-V

Part	List of Courses	Credit	Hours per
			week (L/T/P)
Part-III	Core – IX, Abstract Algebra	4	5
	Core – X, Real Analysis	4	5
	Core – XI, Mathematical Modelling	4	5
	Core - XII, Project with Viva voce	4	5
	Elective – V, Optimization Techniques	3	4
	Elective – VI, Introduction to Machine Learning – Theory &	3	4
	Practical		
Part-IV	Value Education	2	2
	Internship / Industrial Training	2	-
	(Summer vacation at the end of IV semester activity)		
		26	30

Semester-VI

Part	List of Courses	Credit	Hours per
			week (L/T/P)
Part-III	Core – XIII, Linear Algebra	4	6
	Core – XIV, Complex Analysis	4	6
	Core – XV, Mechanics	4	6
	Elective – VII, Programming Language with C++ with Practical	3	5
	Elective – VIII, Graph Theory and Applications	3	5
Part-IV	Professional Competency Skill	2	2
	Extension Activity	1	
		21	30

Total Credits: 140

7 7.1 Suggestive Topics in Core Component

- Classical Algebra
- Trigonometry
- Differential Calculus
- Integral Calculus
- Analytical Geometry (2D / 3D)
- Vector Analysis
- Differential Equations
- Abstract Algebra
- Linear Algebra
- Sequences & Series
- Fourier Series
- Real Analysis
- Transform Techniques (Laplace, Fourier)
- Complex Analysis
- Mechanics (Statics / Dynamics)
- Mathematical Modeling
- Industrial Mathematics and more

7.2 Suggestive Topics in Elective Courses (Generic / Discipline-centric)

Group I:

- Allied Physics
- Allied Chemistry
- Statistical Methods
- Bio Mathematics
- Bio Statistics
- Programming Language with practical (C, Python, Java, R, etc.)
- Object Oriented Programming with C++
- Principles of Econometrics
- Introduction to Actuarial Science
- Principles of Accounting practices
- Logistics & Supply chain management
- Forecasting Techniques
- Simulation
- Introduction to Data Science
- Cloud Computing
- Introduction to Machine Learning
- Data Structures
- Introduction to Artificial Intelligence
- Neural network models
- Financial Mathematics and more

Group II – Suggestive Elective Courses (Discipline-centric)

- Numerical Methods with Applications
- Mathematical Statistics
- Optimization Techniques
- Graph Theory & Applications
- Special functions with Applications
- Discrete Mathematics
- Combinatorial Mathematics
- Number Theory & Cryptography
- Difference equations with application
- Formal Languages & Automata Theory
- Astronomy / Elements of Space Science
- Stochastic Processes
- Fuzzy Sets & its applications
- Introduction to Research Methodology
- Integral Transforms & Z Transforms
- Algorithms
- Computational Geometry and more

7.3 Suggestive Topics in Skill Enhancement Courses (SEC)

Group III - Skill Enhancement Courses (SEC)

- Statistics with R / Excel / SPSS
- LaTeX
- E- Commerce & Tally
- Computing skills (Office Automation)
- Android App development
- Web Designing
- Mathematics for Competitive examinations
- Computational Mathematics
- Data Analysis using latest package
 - (R / Matlab / Maxima/ Torus / GeoGebra /GIMP) and more

B.Sc Mathematics
Core Component Model Syllabus
20

8. Model Syllabus for different Courses of B.Sc Mathematics

Title of the	Course	Foundation course - Bridge Mathematics							
Paper Nun	nber	FOUNDATION 1							
Category	Core	Year	I	Credits	2	Cou	rse	FC	
		Semester	I			Cod	Code		
Instruction	nal Hours	Lecture	Tuto	rial	Lab Pract	tice	Tota	ા	
per week		2	-				2		
Pre-requis		12 th Standa							
Objectives	of the	To bridge t	he gap a	and facilitat	e transition	from	highe	r secondary to	
Course		tertiary edu	cation;						
		To instil co	nfidenc	e among sta	akeholders a	and in	culcat	te interest for	
		Mathemati	cs;						
Course Ou	ıtline	UNIT-I: A	Algebra:	Binomial	theorem, G	lenera	l term	n, middle term,	
		problems b	ased on	these conce	epts				
		Unit II: Sequences and series (Progressions). Fundamental							
		principle of counting. Factorial n.							
		Unit III: Permutations and combinations, Derivation of formulae							
		and their connections, simple applications, combinations with							
		repetitions, arrangements within groups, formation of groups.							
		Unit IV: Trigonometry: Introduction to trigonometric ratios, proof							
		of sin(A+B), cos(A	+B), tan(A	+B) formul	ae, m	ultiple	and sub	
		multiple angles, sin(2A), cos(2A), tan(2A) etc., transformations sum							
		into product and product into sum formulae, inverse trigonometric							
		functions, sine rule and cosine rule							
		Unit V: Calculus: Limits, standard formulae and problems,							
		differentiat	ion, fir	st principl	e, uv rule	e, u/v	v rule	e, methods of	
		differentiat	differentiation, application of derivatives, integration - product rule						
		and substit	ution m	ethod.					
Recommen	nded Text	1. NCERT	class X	I and XII te	xt books.				
		2. Any Stat	e Board	l Mathemati	cs text bool	ks of	class 2	XI and XII	

Website and	
e-Learning Source	https://nptel.ac.in

Course Learning Outcome

After completion of this course successfully, the students will be able to

CLO 1: Prove the binomial theorem and apply it to find the expansions of any $(x + y)^n$ and also, solve the related problems

CLO 2: Find the various sequences and series and solve the problems related to them. Explain the principle of counting.

CLO 3: Find the number of permutations and combinations in different cases. Apply the principle of counting to solve the problems on permutations and combinations

CLO 4: Explain various trigonometric ratios and find them for different angles, including sum of the angles, multiple and submultiple angles, etc. Also, they can solve the problems using the transformations.

CLO 5: Find the limit and derivative of a function at a point, the definite and indefinite integral of a function. Find the points of min/max of a function.

Mapping of Course Learning Outcomes (CLOs) with Programme Learning Outcomes (PLOs) and Programme Specific Outcomes (PSOs)

		PSOs						
	1	2	3	4	5	6	1	2
CLO1	1	1	1	1	1	1	1	1
CLO2	2	1	1	2	2	1	2	1
CLO3	2	1	1	2	2	1	2	1
CLO4	1	1	1	1	1	1	2	1
CLO5	1	1	1	1	1	1	2	1

Title of the	· Course	ALGEBRA & TRIGONOMETRY							
	Paper Number		CORE M1						
Category	Core	Year	Ι	Credits	4	Cou	rse		
		Semester	Ι			Cod	le		
Instruction	nal	Lecture	Tu	torial	Lab Prac	tice	Tota	ıl	
Hours		4	1				5		
per week									
Pre-requis		12 th Standa	ard Math	ematics					
Objectives	of the	• Basic	ideas on	the Theory	of Equation	ons, N	Aatric	es and Number	
Course		Theory	•						
		Knowle	edge to	find expansi	ons of trig	zonom	netrv	functions, solve	
			_	pplied proble		5			
Course Ou	itline	Unit I: Re	eciprocal	Equations-S	tandard for	m–Inc	reasın	ng or decreasing	
		the roots	of a g	ven equatio	n- Remova	al of	term	s, Approximate	
		solutions of roots of polynomials by Horner's method - related							
		problems.							
		Unit II: Summation of Series: Binomial—Exponential—Logarithmic							
		series (Theorems without proof) – Approximations - related problems.							
		Unit III: Characteristic equation – Eigen values and Eigen Vectors-							
		Similar matrices - Cayley - Hamilton Theorem (Statement only) -							
		Finding powers of square matrix, Inverse of a square matrix up to order							
		3, Diagonalization of square matrices - related problems.							
		Unit IV: Expansions of $sinn\theta$, $cosn\theta$ in powers of $sin\theta$, $cos\theta$ -							
		Expansion of $tann\theta$ in terms of $tan \theta$, Expansions of $cos^n\theta$, $sin^n\theta$,							
		$\cos^{m}\theta\sin^{n}\theta$ –Expansions of $\tan(\theta_{1}+\theta_{2}+,,+\theta_{n})$ -Expansions of $\sin\theta$,							
		$\cos\theta$ and $\tan\theta$ in terms of θ - related problems.							
		Unit V: Hyperbolic functions – Relation between circular and							
		hyperbolic functions Inverse hyperbolic functions, Logarithm of							
		complex quantities, Summation of trigonometric series - related							
		problems.							

Extended	Questions related to the above topics, from various competitive						
Professional	examinations UPSC / TNPSC / others to be solved						
Component (is a	(To be discussed during the Tutorial hour)						
part of internal							
component only,							
Not to be included							
in the External							
Examination							
question paper)							
Skills acquired	Knowledge, problem solving, analytical ability, professional						
from this course	competency, professional communication and transferable skill.						
Recommended	1. W.S. Burnstine and A.W. Panton, Theory of equations						
Text	2. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson						
	Education Asia, Indian Reprint, 2007						
	3. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005						
	4.C. V. Durell and A. Robson, Advanced Trigonometry, Courier						
	Corporation, 2003						
	5.J. Stewart, L. Redlin, and S. Watson, Algebra and Trigonometry,						
	Cengage Learning, 2012.						
	6. Calculus and Analytical Geometry, G.B. Thomas and R. L. Finny,						
	Pearson Publication, 9 th Edition, 2010.						
Website and	https://ental.ag.in						
e-Learning Source	https://nptel.ac.in						

Students will be able to

CLO 1: Classify and Solve reciprocal equations

CLO 2: Find the sum of binomial, exponential and logarithmic series

CLO 3: Find Eigen values, eigen vectors, verify Cayley – Hamilton theorem and diagonalize a given matrix

CLO 4: Expand the powers and multiples of trigonometric functions in terms of sine and cosine

CLO 5: Determine relationship between circular and hyperbolic functions and the summation of trigonometric series

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	-	-	-	3	2	1
CLO2	2	1	3	1	-	-	3	2	1
CLO3	3	1	3	1	-	-	3	2	1
CLO4	3	1	3	-	-	-	3	2	1
CLO5	3	1	3	-	-	-	3	2	1

Title of the Cou	rse	DIFFERI	ENTIA	L CALCULU	S					
Paper Number		CORE M	2		_	_				
Category Core	;	Year	I	Credits	4	Cou				
		Semester	I			Cod	le			
Instructional		Lecture	ŗ	Futorial	Lab Practice Total			l		
Hours		4	-	L			5			
per week		10th Gt 1	134	1						
Pre-requisite Objectives of	tho	12 th Standa • The ba			tiation and	naaggir	vo diff	arantiation and		
Course	ше				nanon, suc	cessiv	e unit	erentiation, and		
		their applications.								
		• Basic	knowle	dge on the no	tions of cu	ırvatuı	e, evo	lutes, involutes		
		and po	lar co-c	ordinates and in	solving re	lated p	oroblen	ns.		
Course Outline		UNIT-I:	Success	sive Differenti	ation: Intr	oduct	ion (R	eview of basic		
	concepts) - The n^{th} derivative - Standard results - Fra									
		expression	s – Tri	gonometrical tr	ansformati	on – F	ormati	ion of equations		
		involving	derivat	ives – Leibnit	z formula	for th	e n^{th}	derivative of a		
		product –]	Feynma	an's method of	differentiat	tion.				
		UNIT-II:	Partia	l Differentiat	ion: Partia	l deri	vatives	s – Successive		
		partial der	rivative	s – Function of	of a function	on rul	e – To	otal differential		
		coefficient	-A sp	ecial case – Im	plicit Func	tions.				
		UNIT-III:	Part	tial Different	ciation (C	Contin	ued):	Homogeneous		
		functions -	– Partia	l derivatives of	f a function	of tw	o varia	ables – Maxima		
		and Minir	na of	functions of tv	vo variable	es - I	agrang	ge's method of		
		undetermi	ned mu	ltipliers.						
		UNIT-IV:	Enve	lope: Method	of finding	g the	envel	ope – Another		
		definition of envelope – Envelope of family of curves which quadratic in the parameter.								
		UNIT-V:	Curva	ture: Definition	on of Curv	ature	– Circ	cle, Radius and		
		Centre of	Curvatı	ire – Evolutes	and Involu	tes – F	Radius	of Curvature in		
		Polar Co-c	ordinate	es.						

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / / TNPSC / others to be solved
Component (is a part	(To be discussed during the Tutorial hour)
of internal	
component only,	
Not to be included in	
the External	
Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferrable Skill
Recommended	1. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons,
Text	Inc., 2002.
	2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2010.
	3. M.J. Strauss, G.L. Bradley and K. J. Smith, Calculus, 3rd Ed., Dorling Kindersley (India) P. Ltd. (Pearson Education), Delhi, 2007.
Reference Books	1. R. Courant and F. John, Introduction to Calculus and Analysis
	(Volumes I & II), Springer- Verlag, New York, Inc., 1989.
	2. T. Apostol, Calculus, Volumes I and II.
	3. S. Goldberg, Calculus and mathematical analysis.
Website and	https://putal.co.in
e-Learning Source	https://nptel.ac.in

Students will be able to

- **CLO 1:** Find the nth derivative, form equations involving derivatives and apply Leibnitz formula
- **CLO 2:** Find the partial derivative and total derivative coefficient
- **CLO 3:** Determine maxima and minima of functions of two variables and to use the Lagrange's method of undetermined multipliers
- **CLO 4:** Find the envelope of a given family of curves
- **CLO 5:** Find the evolutes and involutes and to find the radius of curvature using polar coordinates

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	-	-	-	3	2	1
CLO2	2	1	3	-	-	-	3	2	1
CLO3	3	2	3	2	-	-	3	2	1
CLO4	3	2	3	2	1	-	3	2	1
CLO5	3	2	3	2	1	-	3	2	1

Title of the	e Course	ANALYT	ICAL	GEO	DMETRY	(Two & Th	ree I	Dimen	sions)
Paper Nur	nber	CORE M							
Category	Core	Year	I		Credits	4	Cou	rse	
		Semester	II				Cod	le	
Instruction	nal	Lecture	,	Tuto	rial	Lab Pract	tice	Tota	ıl
Hours		5		1				5	
per week									
Pre-requis		12 th Standard Mathematics							
Objectives	of the	 Necess 	ary ski	ills t	o analyze	characterist	ics a	nd pro	operties of two-
Course		and thr	ee-dim	nensio	onal geome	tric shapes.			
		• To pres	sent ma	athen	natical argu	ments abou	ıt geo	metric	relationships.
		• To solv	e real	worl	d problems	on geometr	ry and	d its ap	oplications.
Course Ou	ıtline	UNIT-I: P	ole, Po	olar -	conjugate	points and	conju	gate li	ines – diameters
		– conjuga	te dia	mete	rs of an	ellipse - s	semi	diame	eters- conjugate
		diameters				_			
		UNIT-II:	Polar	coo	rdinates: Go	eneral pola	r equa	ation o	of straight line –
		Polar equa	tion of	f a ci	rcle given a	diameter,	Equa	tion o	f a straight line,
		circle, con	ic – E	Equat	ion of cho	rd, tangent,	, nori	nal. E	Equations of the
		asymptotes	s of a h	nyper	bola.				
		UNIT-III:	Syste	m of	Planes-Le	ngth of the	perp	endici	ular–Orthogonal
		projection.							
		UNIT-IV:	Repr	esent	ation of lir	ne–angle be	etwee	n a lin	ne and a plane –
		co – plana	r lines-	-sho	rtest distan	ce between	two	skew	lines –length of
		the perpendicular–intersection of three planes.							
		UNIT-V: Equation of a sphere-general equation-section of a sphere						n of a sphere by	
		a plane-eq	uation	of th	ne circle- ta	angent plar	ne- an	igle of	f intersection of
		two sphere	s- cond	ditio	n for the ort	hogonality	- radi	cal pla	ine.

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TNPSC / others to be solved
Component (is a	(To be discussed during the Tutorial hour)
part of internal	
component only,	
Not to be included	
in the External	
Examination	
question paper)	Vacualedas Ducklam Calvina Analytical akility Duckasianal
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferrable Skill
Recommended	1. S. L. Loney, Co-ordinate Geometry.
Text	2. Robert J. T. Bell, Co-ordinate Geometry of Three Dimensions.
	3. William F. Osgood and William C. Graustein, Plane and Solid
	Analytic Geometry, Macmillan Company, New York, 2016.
	Timary tre Geometry, Machiman Company, 130% 1010,
Reference Books	1. Calculus and Analytical Geometry, G.B. Thomas and R. L. Finny,
	Pearson Publication, 9 th Edition, 2010.
	2. Robert C. Yates, Analytic Geometry with Calculus, Prentice Hall,
	Inc., New York, 1961.
	3. Earl W. Swokowski and Jeffery A. Cole, Algebra and Trigonometry
	with Analytic Geometry, Twelfth Edition, Brooks/Cole, Cengage
	Learning, CA, USA, 2010.
	4. William H. McCrea, Analytical Geometry of Three Dimensions,
	Dover Publications, Inc, New York, 2006.
	5. John F. Randelph, Calculus and Analytic Geometry, Wadsworth
	Publishing Company, CA, USA, 1969.
	6. Ralph Palmer Agnew, Analytic Geometry and Calculus with
	Vectors, McGraw-Hill Book Company, Inc. New York, 1962.
	rectors, tricoraw Tim Book Company, me. 1904 Tork, 1702.
Website and e-Learning Source	https://nptel.ac.in

Students will be able to

CLO 1: Find pole, polar for conics, diameters, conjugate diameters for ellipse and hyperbola

CLO 2: Find the polar equations of straight line and circle, equations of chord, tangent and normal and to find the asymptotes of hyperbola

CLO 3: Explain in detail the system of Planes

CLO 4: Explain in detail the system of Straight lines

CLO 5: Explain in detail the system of Spheres

			Po	PSOs					
	1	2	3	4	5	6	1	2	3
CLO1	2	2	2	1	-	-	3	2	1
CLO2	2	2	2	1	-	-	3	2	1
CLO3	3	2	2	1	-	-	3	2	1
CLO4	3	2	3	1	-	-	3	2	1
CLO5	3	2	3	1	-	-	3	2	1

Title of the	Course	INTEGRA	L CAL	CULUS					
Paper Nun	nber	CORE M	ı		_				
Category	Core	Year	I	Credits	4	Cou	ırse		
		Semester				Cod			
Instruction	nal	Lecture	Tu	torial	Lab Prac	tice	Tota	ıl	
Hours		4	1				5		
per week	•4 .	10th G. 1	137.4						
Pre-requis		12 th Standard Mathematics							
Objectives	of the	• Knowle	edge on i	ntegration an	d its geome	etrical	l appli	cations, double,	
Course		triple ir	ntegrals a	nd improper	integrals.				
		• Knowle	edge ab	out Beta	and Gamı	ma 1	functio	ons and their	
		applications.							
				ine Fourier s					
Course Ou	ıtline	UNIT-I: R	Reduction	formulae -T	ypes, integr	ration	of pr	oduct of powers	
		of algebra	ic and t	rigonometric	functions,	integ	gration	of product of	
		powers of	algebrai	and logarit	hmic functi	ions -	Bern	oulli's formula,	
		Feyman's 1	technique	of integration	on.				
		UNIT-II:	Multiple	Integrals	- definitio	on of	dou	ble integrals -	
		evaluation	of doubl	e integrals –	double inte	grals	in pol	lar coordinates -	
		Change of	order of	ntegration.					
		UNIT-III:	Triple	integrals –	applications	s of	multi	ple integrals -	
		volumes of	f solids	of revolution	- areas of	curve	ed surf	faces-change of	
		variables -	Jacobian						
		UNIT-IV: Beta and Gamma functions – infinite integral - defin							
		recurrence formula of Gamma functions - properties of l							
		Gamma functions- relation between Beta and Gamma functi							
		Application	ns.						
		UNIT-V:	Geometri	c and Physica	al Applicati	ons o	f Integ	gral calculus.	

Extended	Questions related to the above topics, from various competitive									
Professional	examinations UPSC / TNPSC / others to be solved									
Component (is a	(To be discussed during the Tutorial hour)									
part of internal										
component only,										
Not to be included										
in the External										
Examination										
question paper)										
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional									
from this course	Competency, Professional Communication and Transferrable Skill									
Recommended	1. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons,									
Text	Inc., 2002.									
	2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.									
	3. D. Chatterjee, Integral Calculus and Differential Equations, Tata-									
	McGraw Hill Publishing Company Ltd.									
	4. P. Dyke, An Introduction to Laplace Transforms and Fourier Series,									
	Springer Undergraduate Mathematics Series, 2001 (second edition).									
Website and e-Learning Source	https://nptel.ac.in									

Students will be able to

CLO 1: Determine the integrals of algebraic, trigonometric and logarithmic functions and to find the reduction formulae

CLO 2: Evaluate double and triple integrals and problems using change of order of integration

CLO 3: Solve multiple integrals and to find the areas of curved surfaces and volumes of solids of revolution

CLO 4: Explain beta and gamma functions and to use them in solving problems of integration

CLO 5: Explain Geometric and Physical applications of integral calculus

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	-	-	-	3	2	1
CLO2	3	1	3	-	-	-	3	2	1
CLO3	3	1	3	-	-	-	3	2	1
CLO4	3	1	3	-	-	-	3	2	1
CLO5	3	1	3	-	2	1	3	2	1

Title of the Course	VECTOR CA	ALCUI	LUS AND I	TS APPL	ICAT	IONS				
Paper Number	CORE M5		1			1				
Category Core	Year II		Credits	4	Cou					
	Semester III				Cod					
Instructional	Lecture		orial	Lab Prac	ctice	Total				
Hours	4					5				
per week	10th G. 1 13	M 41								
Pre-requisite	12 th Standard 1			· · · · · · ·		1 1:00 4:1				
Objectives of the Course	• Knowledge	e abou	t differenti	ation of v	ectors	s and on differential				
Course	operators.	Knowle	edge about	derivatives	of vec	ctor functions.				
	• Skills in ev	Skills in evaluating line, surface and volume integrals.								
	• The ability	to an	alvze the n	hysical an	plicati	ons of derivatives of				
	·	to un	aryze are p	nij sieur up	Pirouti	ons of defivatives of				
	vectors.									
Course Outline	UNIT-I: Vect	or poin	t function -	Scalar poi	nt fun	ction - Derivative of a				
	vector and der	ivative	of a sum o	f vectors -	Deriva	ative of a product of a				
	scalar and a v	ector p	oint functio	on - Deriva	tive o	f a scalar product and				
	vector product	•								
	UNIT-II: The	vecto	r operator	'del', The	gradi	ent of a scalar point				
	function - Div	ergenc	e of a vect	or - Curl o	of a ve	ector - solenoidal and				
	irrotational vec	ctors –	simple appl	ications.						
	UNIT-III: La	aplacia	n operator,	Vector i	dentiti	es - Line integral -				
	simple probler	ns.								
	UNIT-IV: Su	ırface i	ntegral - Vo	olume integ	gral – .	Applications.				
	UNIT-V: Ga	uss di	vergence 7	heorem,	Stoke'	s Theorem, Green's				
	Theorem in tw	o dime	nsions –	Applicatio	ns to r	eal life situations.				
Extended	Questions rel	ated to	the abov	e topics,	from	various competitive				
Professional	examinations l	UPSC /	TNPSC / c	thers to be	solve	d				
Component (is a	(To be discuss	ed duri	ng the Tuto	rial hour)						
part of internal										
component only,										
Not to be included										
in the External										
Examination										
question paper)										

Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional							
from this course	Competency, Professional Communication and Transferrable Skill							
Recommended	1. J.C. Susan ,Vector Calculus, , (4th Edn.) Pearson Education,							
Text	Boston, 2012.							
	2. A. Gorguis, Vector Calculus for College Students, Xilbius							
	Corporation, 2014.							
	3. J.E. Marsden and A. Tromba ,Vector Calculus, , (5 th edn.) W.H.							
	Freeman, New York, 1988.							
Website and								
e-Learning Source	https://nptel.ac.in							

Students will be able to

CLO 1: Find the derivative of vector and sum of vectors, product of scalar and vector point function and to Determine derivatives of scalar and vector products

CLO 2: Applications of the operator 'del' and to Explain soleonidal and ir-rotational vectors

CLO 3: Solve simple line integrals

CLO 4: Solve surface integrals and volume integrals

CLO 5: Verify the theorems of Gauss, Stoke's and Green's (Two Dimension)

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	2	3	1	-	-	3	2	1	
CLO2	3	2	3	1	2	-	3	2	1	
CLO3	3	3	3	3	-	-	3	3	1	
CLO4	3	3	3	3	-	-	3	3	1	
CLO5	3	3	3	3	2	-	3	3	1	

Title of the Course	DIFFERENT	IAL E	QUATION	S AND AF	PPLIC	CATIO	ONS	
Paper Number	CORE M6							
Category Core	Year II		Credits	4	Cou			
	Semester III				Cod			
Instructional	Lecture	_	orial	Lab Prac	tice	Total		
Hours	4	1				5		
per week Pre-requisite	12 th Standard I	Mothon	notics					
Objectives of the				ods of sol	vina	Ordin	ary and Partial	
Course				ous of sof	vilig	Orain	ary and Fartian	
	Differentia	I Equat	tions.					
	• The unders	tandin	g of how D	ifferential	Equat	ions c	can be used as a	
	powerful to	ool in s	olving prob	lems in scie	ence.			
Course Outline	UNIT-I: Ordin	ary	Differentia	al Equati	ons: V	/ariab	le separable -	
	Homogeneous	Equat	ion-Non-Ho	omogeneou	s Equ	ations	of first degree	
	in two varia	bles -	Linear Equ	uation - H	3ernoi	ulli's	Equation-Exact	
	differential equ	ations						
	UNIT-II: Equ	ation	of first orde	er but not	of hig	gher d	egree: Equation	
	solvable for d	y/dx- l	Equation so	olvable for	y-Equ	ation	solvable for x-	
	Clairauts' forn	n - Lin	ear Equation	ns with con	stant	coeffic	cients-Particular	
	integrals of al	gebrai	c, exponent	ial, trigono	ometri	c fund	ctions and their	
	products.							
	UNIT-III: S	imulta	neous line	ear differ	ential	equ	ations- Linear	
	Equations of the	ne Seco	ond Order -	Complete s	olutio	n in te	erms of a known	
	integrals-Redu	ction 1	to the Nor	nal form-C	Chang	e of t	he Independent	
	Variable-Meth	od of V	Variation of	Parameters	s.			
	UNIT-IV: Pa	artial	differential	equation:	For	matior	n of PDE by	
	Eliminating as	rbitrary	constants	and arbit	rary 1	functio	ons – complete	
	integral – s	ingula	r integral-	General i	ntegra	ıl-Lagı	range's Linear	
	Equations –Sir	nple A	pplications.					
	UNIT-V: Spe	cial n	nethods –	Standard f	orms-	Charp	it's Methods -	
	Simple Applica	ations						

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TNPSC / others to be solved
Component (is a	(To be discussed during the Tutorial hour)
part of internal	(
component only,	
Not to be included	
in the External	
Examination	
question paper)	
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferrable Skill
Recommended	1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and
Text	Sons, 1984.
	2. I. Sneddon, Elements of Partial Differential Equations, McGraw-
	Hill, International Edition, 1967.
	3. G.F. Simmons, Differential equations with applications and
	historical notes, 2 nd Ed, Tata Mcgraw Hill Publications, 1991.
D 0 D 1	
Reference Books	1. D.A. Murray, Introductory course in Differential Equations, Orient
	and Longman
	2. H.T. H. Piaggio, Elementary Treaties on Differential Equations and
	their applications, C.B.S Publisher & Distributors, Delhi,1985.
	3. Horst R. Beyer, Calculus and Analysis, Wiley, 2010.
	4. Braun, M. Differential Equations and their Applications. (3rd
	Edn.), Springer- Verlag, New York. 1983.
	5. Tyn Myint-U and Lognath Debnath. Linear Partial Differential
	Equations for Scientists and Engineers. (4th Edn.) Birhauser,
	-
	Berlin. 2007.
	6. 6 Boyce, W.E. and R.C.DiPrima. Elementary Differential
	Equations and Boundary Value Problems. (7th Edn.) John Wiley
	and Sons, Inc., New York. 2001.
	7. Sundrapandian, V. Ordinary and Partial Differential Equations,
	Tata McGraw Hill Education Pvt.Ltd. New Delhi, 2013
Website and	https://nptel.ac.in
e-Learning Source	

Students will be able to

CLO 1: Determine solutions of homogeneous equations, non-homogeneous equations of degree one in two variables, solve Bernoulli's equations and exact differential equations

CLO 2: Find the solutions of equations of first order but not of higher degree and to Determine particular integrals of algebraic, exponential, trigonometric functions and their products

CLO 3: Find solutions of simultaneous linear differential equations, linear equations of second order and to find solutions using the method of variations of parameters

CLO 4: Form a PDE by eliminating arbitrary constants and arbitrary functions, find complete, singular and general integrals, to solve Lagrange's equations

CLO 5: Explain standard forms and Solve Differential equations using Charpit's method

		POs							PSOs			
	1	2	3	4	5	6	1	2	3			
CLO1	3	1	3	2	1	-	3	2	1			
CLO2	3	1	3	2	1	-	3	2	1			
CLO3	3	1	3	2	1	-	3	3	1			
CLO4	3	1	3	2	2	1	3	3	1			
CLO5	3	1	3	2	2	1	3	3	1			

Title of the	e Course	INDUSTR	IAL	MAT	HEMATI	CS				
Paper Nur	nber	CORE M	7							
Category	Core	Year II			Credits	4	Cou	rse		
		Semester	IV				Cod	le		
Instruction	nal	Lecture		Tuto	rial	Lab Prac	tice	Total		
Hours		4		1				4		
per week										
Pre-requis	ite	12 th Standa	ırd M	lathem	natics					
Objectives	of the	To bridge	the g	gap be	tween indu	stry acader	nia in	terfac	e – to apply the	
Course		theory lear	nt to	indust	rial applica	tions				
Course Ou	ıtline	Core Industry Module / Industrial Statistics can be designed as per								
		HEI's need	HEI's need.							
Skills	acquired	Knowledge	e, F	roble	n Solving	g, Analyt	ical	ability	y, Professional	
from this o	course	Competend	ey, F	Profess	sional Com	nmunication	n, Tra	ansfer	rable Skill and	
		designing	mat	themat	tical mode	els towar	ds s	olving	mathematical	
		application	S							
Recommen	ıded	1. Papoul	is A.	Proba	bility, Rand	dom Varial	oles a	nd Sto	chastic process,	
Text		Tata M	cGra	w Hil	l Education	Pvt. Ltd.,	New I	Delhi		
		2. Baisna	b A.,	, Jas 1	M., Elemen	nts of Prob	abilit	y and	Statistics, Tata	
		McGra	w Hi	ll Edu	cation Pvt.	Ltd., New	Delhi,	, 1993		
		3. Fruend	Johr	E, M	athematical	Statistics,	Prent	ice Ha	all of India, New	
		Delhi								
XX 7.1. *4	. 1									
Website an		https://npte	l ac ii	n						
e-Learning	g Source			<u></u>						

Title of the	e Course	ELEMENTS OF MATHEMATICAL ANALYSIS							
Paper Nur	nber	CORE M8	3						
Category	Core	Year	II		Credits	4	Cou		
		Semester IV					Code		
Instruction	nal	Lecture		Tuto	rial	Lab Pract	tice	Tota	ıl
Hours		4		1				5	
per week									
Pre-requis		12 th Standa	ırd M	athem	natics				
Objectives	of the	 Identify 	and	chara	acterize set	s and func	tions	and U	Understand, test
Course		and ana	lyze	the co	nvergence a	and diverge	ence o	of sequ	ences, series.
		• Unders	tand 1	metric	spaces with	h suitable e	xamp	les	
Course Ou	ıtline	UNIT-I: S	Sets a	nd Fu	inctions: Se	ets and eler	nents	- Ope	rations on sets-
		functions-	real	val	ued functi	ons- equi	valen	ce-cou	ıntability- real
		numbers- l	east u	ipper l	bounds.				
		UNIT-II:	Seque	ences	of Real Nu	ımbers: De	finiti	on of	a sequence and
		subsequen	ce-lim	nit of	a sequenc	e – conve	rgent	sequ	ences-divergent
		sequences-	boun	nded s	equences-m	nonotone se	quen	ces	
		UNIT-III:	Ope	eration	ns on con	vergent se	quenc	ces –	operations on
		divergent	seque	ences	– limit	superior a	nd 1	imit	inferior-Cauchy
		sequences.							
		UNIT-IV:	Seri	es of	Real Num	bers: Conv	erger	nce an	d divergence –
		series wi	th r	non	-negative	terms-alte	rnatin	ig se	eries-conditional
		convergen	ce and	d abso	lute conver	gence- tests	s for a	absolu	te convergence.
		UNIT-V:	Limits	s and	Metric Spa	ces: Limit o	of a fu	ınctio	n on a real line -
		Metric spa	ices -	Limi	its in metri	c spaces –	Con	tinuou	is Functions on
		Metric Spa	ices: l	Functi	on continue	ous at a poi	int on	there	a line-Function
		continuous	on a	metri	c space.				

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TNPSC / others to be solved
Component (is a	(To be discussed during the Tutorial hour)
part of internal	
component only,	
Not to be included	
in the External	
Examination	
question paper)	
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferrable Skill
Recommended	1. Richard R. Goldberg, Methods of Real Analysis: Oxford and IBH
Text	Publishing, (1 January 2020).
	2. Ethan D. Bloch, The Real Numbers and Real Analysis, Springer,
	2011.
	3. G.M. The fundamentals of Mathematical Analysis, vol I. Pergamon
	Press, New York, 1965.
Reference Books	1. T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.,
	2002.
	2. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John
	Wiley and Sons (Asia) P. Ltd., 2000.
	3. E. Fischer, Intermediate Real Analysis, Springer Verlag, 1983.
	4. K.A. Ross, Elementary Analysis- The Theory of Calculus Series-
	Undergraduate Texts in Mathematics, Springer Verlag, 2003.
Website and e-Learning Source	https://nptel.ac.in

Students will be able to

CLO 1: Explain in detail about sets and functions, equivalence and countability and the LUB axiom

CLO 2: Explain Sequence and Subsequence of real numbers and to find the limit of sequence to test for convergent, divergent, bounded and monotone sequences

CLO 3: Explain the operations on convergent and divergent sequences and to Explain the concepts of limit superior and limit inferior and the notion of Cauchy sequences

CLO 4: Classify the series of real numbers and the alternating series and their convergence and divergence, the conditional convergence and absolute convergence and solve problems on convergence of the sequences

CLO 5: Explain about the metric spaces and functions continuous on a Metric space

		POs							PSOs			
	1	2	3	4	5	6	1	2	3			
CLO1	3	3	2	3	2	-	3	2	1			
CLO2	3	3	2	3	2	-	3	2	1			
CLO3	3	3	3	3	2	-	3	2	1			
CLO4	3	3	3	3	2	-	3	2	1			
CLO5	3	3	2	3	2	-	3	2	1			

Title of the Course	ABSTR	ACT AL	GEBRA	ABSTRACT ALGEBRA						
Paper Number	CORE M9)								
Category Core	Year	III	Credits	4	Cour	rse				
	Semester	V]	Cod		e				
Instructional Hours	Lecture	Tut	orial	Lab Prac	tice	Total				
per week	4	1		5						
Pre-requisite	12 th Standa	12 th Standard Mathematics								
Objectives of the	• Concep	 Concepts of Sets, Groups and Rings. 								
Course	• Constru	ction, cha	racteristics a	and applicat	tions of	f the abstract				
	algebra	ic structure	es							
Course Outline	UNIT-I:	Introducti	on to gro	ups- Subg	roups-	cyclic groups and				
	properties	of cyclic	groups- Lag	grange's Th	eorem-	-A counting principle				
	– Example	es								
	UNIT-II:	Normal s	subgroups a	and Quotie	nt gro	up- Homomorphism-				
	Automorp	hism -Exa	mples.							
	UNIT-III	: Cayley's	Theorem-Po	ermutation	groups	- Examples				
	UNIT-IV:	Definitio	n and exan	nples of rin	ıg- Soı	me special classes of				
	rings- hon	nomorphis	m of rings-	Ideals and	quotie	ent rings- More ideals				
	and quotie	nt rings.								
	UNIT-V:	The field	of quotients	of an integ	ral dor	main-Euclidean Rings				
	- The parti	cular Eucl	idean Ring-	– Examples						
Extended	Questions	related t	o the above	ve topics,	from	various competitive				
Professional	examination	ns UPSC	TNPSC / o	thers to be	solved					
Component (is a	(To be disc	cussed duri	ng the Tuto	rial hour)						
part of internal										
component only,										
Not to be included										
in the External										
Examination										
question paper)										
Skills acquired	Knowledg	e, Proble	em Solvin	g, Analyt	ical	ability, Professional				
from this course	Competend	ey, Profess	ional Comn	nunication a	and Tra	nsferrable Skill				
Recommended	Topics	in Algebra	–I.N.Herste	in, Wiley I	Eastern	Ltd. Second Edition				
Text	(1st Janu	ary 2006)								

Reference Books	1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed.,
	Pearson, 2002.
	2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
	3. Joseph A Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa,
	1999.
Website and e-Learning Source	https://nptel.ac.in

Students will be able to

CLO 1: Explain groups, subgroups and cyclic groups

CLO 2: Explain about Normal subgroup, Quotient groups, Homomorphisms and Automorphisms and verify the functions for homomorphism and automorphism properties

CLO 3: Explain Permutation groups and apply Cayley's theorem to problems

CLO 4: Explain Rings, Ideals and Quotient Rings and examine their structure

CLO 5: Discuss about the field of quotient of an integral domain and to Explain in detail about Euclidean Rings

		POs							PSOs		
	1	2	3	4	5	6	1	2	3		
CLO1	3	3	2	3	1	-	3	3	1		
CLO2	3	3	2	3	1	-	3	3	1		
CLO3	3	3	2	3	2	-	3	3	1		
CLO4	3	3	2	3	1	-	3	3	1		
CLO5	3	3	2	3	2	-	3	3	1		

Title of the Course	REAL AN	IALY	SIS							
Paper Number	CORE M	10								
Category Core	Year	II		Credits	4	Cou	ırse			
	Semester	IV				Cod	le			
Instructional Hour	s Lecture		Tuto	rial	Lab Prac	tice	Total			
per week	4		1				5			
Pre-requisite	12 th Stand	12 th Standard Mathematics								
Objectives of the	e • Real N	umbe	rs and	properties	of Real-va	lued fi	unctions.			
Course	• Connec	ctedne	ess, Co	ompactness.	, Complete	ness o	f Metric spaces.			
	Conver	gence	e of s	seguences	of function	ne F	xamples and counter			
	examp	_	OI i	sequences	of functio	nis, 12	namples and counter			
Course Outline	UNIT-I:	Cont	inuous	Functions	on Metric	Spac	es: Open sets- closed			
						-	ess, Completeness and			
							· •			
	Compactr	ess: N	More a	bout open s	sets-Connec	cted se	ets.			
	UNIT-II:	Bou	nded	sets and to	otally bour	nded s	sets: Complete metric			
	spaces- c	ompa	ct me	tric spaces	. continuo	us fur	nctions on a compact			
	-	-		-			form continuity.			
	metric spe)IIIIIIIII	ity of mivers	se functions	s, umi	omin continuity.			
	UNIT-III	: Cal	lculus:	Sets of m	easure zero	o, defi	nition of the Riemann			
	integral,	existe	nce o	f the Rie	mann integ	gral-pı	roperties of Riemann			
	integral.									
	UNIT-IV	: De	rivativ	es-Rolle's	theorem,	Law c	of mean, Fundamental			
	theorems				,		,			
	UNIT-V:	Taylo	or's tl	neorem-Poi	nt wise co	onverg	gence of sequences of			
	functions,	unifo	orm co	nvergence (of sequence	es of fi	unctions.			
Extended					=		various competitive			
Professional				TNPSC / o		solved	d			
`	`	cussed	d durir	ng the Tutor	rial hour)					
part of interna										
component only	´									
Not to be included										
in the Externa	I									
Examination										
question paper)										

Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional								
from this course	Competency, Professional Communication and Transferrable Skill								
Recommended	Methods of Real Analysis-Richard R.Goldberg (John Wiley & sons, 2 nd								
Text	edition) (Indian edition –Oxford and IBH Publishing Co, New Delhi, 1st								
	January 2020)								
Reference Books	1. Principles of Mathematical Analysis by Walter Rudin, Tata McGraw								
	Hill Education, Third edition (1 July 2017).								
	2. Mathematical Analysis Tom M A postal, Narosa Publishing House,								
	2 nd edition (1974), Addison-Wesley publishing company, New Delhi.								
Website and									
e-Learning Source	https://nptel.ac.in								

Students will be able to

CLO 1: Explain the concepts of Continuous and Discontinuous functions, open and close sets, Connectedness, Completeness and Compactness

CLO 2: Explain the concepts of bounded and totally bounded sets, continuity of inverse functions and Uniform continuity

CLO 3: Define the sets of measure zero, to Explain about the existence and properties of Riemann integral

CLO 4: Explain the concept of differentiability and to Explain Rolle's theorem, Law of mean, and Fundamental theorem of calculus

CLO 5: Explain the point wise and uniform convergence of sequence of function and to derive the Taylor's theorem

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	3	1	3	1	-	3	1	1
CLO2	3	3	1	3	1	-	3	1	1
CLO3	3	3	1	3	1	-	3	1	1
CLO4	3	3	1	3	1	-	3	1	1
CLO5	3	3	1	3	1	-	3	1	1

Title of the	e Course	MATHEN	MATICA	L MODEL	LING				
Paper Nur	nber	CORE M	1						
Category	Core	Year	II	Credits	4	Cou	rse		
		Semester	IV			Cod	le		
Instruction	nal	Lecture	Tu	torial	Lab Prac	ctice	Tota	l	
Hours		4	1				5		
per week									
Pre-requis	ite	12 th Standa	rd Mathe	matics					
Objectives	of the	• Constru	action an	d Analysis o	of Mathem	atical	model	s found in real	
Course		life pro	blems.						
		1		-1- 1:CC ·	-1 1 1100				
				gh differentia			•		
Course Ou	ıtline	UNIT-I:	Mathem	atical Mode	elling: Si	mple	situat	ions requiring	
		mathematic	cal mode	ling, charact	eristics of 1	nather	natical	models.	
		UNIT-II:	Mathe	matical Mod	lelling thro	ough o	lifferei	ntial equations:	
		Linear Gre	owth and	l Decay Mo	dels. Non	-Linea	ar grov	wth and decay	
		models, Co	ompartme	nt models.					
		UNIT-III:	Mather	natical Mod	elling, thr	ough	systen	n of Ordinary	
		differential	equation	s of first ord	ler: Prey-pr	edator	mode	els, Competition	
		models M	odel with	removal and	l model wi	th imn	nigratio	ons. Epidemics:	
							_	_	
		1 1					•	ele (SIS) model,	
		SIS model	with co	onstant numl	per of car	riers.	Medici	ine: Model for	
		Diabetes M	Iellitus.						
		UNIT – IV: Introduction to difference equations.							
		UNIT-V: Mathematical Modelling through difference equations:							
					_	_		-	
		narrou MC	uei, cob	web model a	ppiication t	o Acti	iariai S	Science	

Extended Professional Component (is a part of internal component only, Not to be included in the External Examination	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
question paper)	
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferrable Skill
Recommended	J N Kapur, Mathematical Modeling, New Age International
Text	publishers (2009).
Reference Books	 Mathematical Modeling by Bimalk. Mishra and Dipak K.Satpathi. Ane Books Pvt. Ltd(1 January 2009) Mathematical Modeling Models, Analysis and Applications, by Sandip Banerjee, CRC Press, Taylor & Francis group, 2014 Mathematical Modeling applications with Geogebra by Jonas Hall & Thomas Ligefjard, John Wiley & Sons, 2017 Mark M. Meerschaert: Mathematical Modeling, Elsevier Publ., 2007. Edward A. Bender: An introduction to mathematical Modeling, CRC Press, 2002 Walter J. Meyer, Concepts of Mathematical Modeling, Dover Publ., 2000
Website and e-Learning Source	https://nptel.ac.in

Students will be able to

CLO 1: Explain simple situations requiring Mathematical Modelling and to Determine the characteristics of such models

CLO 2: Model using differential equations in-terms of linear growth and Decay models

CLO 3: Model using systems of ordinary differential equations of first order, to discuss about various models under the categories 'Epidemics' and 'Medicine'

CLO 4: Explain in detail about difference equations

CLO 5: Model using difference equations

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	2	3	3	3	2	2	2	3	2
CLO2	2	3	3	3	2	2	2	3	2
CLO3	2	3	3	3	2	2	2	3	2
CLO4	3	2	2	2	-	1	2	3	2
CLO5	2	3	3	3	2	2	2	3	2

Title of the	e Course	PROJECT WITH VIVA VOCE							
Paper Nur	Tumber CORE M12								
Category	Core	Year III			Credits	4	4 Course		
		Semester	Semester V				Cod	e	
Instruction	nal	Lecture		Tutorial		Lab Practice		Tota	ıl
Hours		4		-				4	
per week									

Title of the Co	ourse	LINEAR	ALG	EBRA	\							
Paper Numbe	r	CORE M	13									
Category Co	re	Year	II		Credits	4	Cou	rse				
		Semester	IV				Cod	le				
Instructional		Lecture		Tuto	rial	Lab Practice		Tota	ıl			
Hours		4		1				5				
per week												
Pre-requisite		12 th Standa	12 th Standard Mathematics									
Objectives of	f the	• Vector	Spac	es, lin	ear depende	ence and in	depend	dence o	of vectors . Dual			
Course		spaces,	Inne	r prod	uct and norr	n – orthogo	onaliza	ition p	rocess.			
		• Linear	trans	format	tions. Vario	ous operato	rs on	vector	spaces			
Course Outlin	ie	UNIT-I:	Vecto	or spac	es – Subsp	aces – Lin	ear Co	mbina	ations and linear			
		span - Sys	stems	of Li	near equati	ions – Hon	nogen	ous E	quations – Non-			
		homogeno	ous E	Equation	ons – Elei	mentary N	I atrice	es – 1	Row reduced -			
		Echelon fo		1		J						
		UNIT-II:	Li	near I	Dependence	and Line	ar ind	epend	ence – Bases –			
		Dimension	ns									
		UNIT-III	: Lin	ear tr	ansformatio	ons, null s	paces	and r	anges – Matrix			
		representa	tion	of	a linear	transforn	nation	-in	vertibility and			
		isomorphi	sms -	– dual	spaces							
		UNIT – I	V: E	igen v	alues, eige	n vectors,	diagon	alizab	ility – invariant			
		subspaces	– Ca	yley–	Hamilton t	heorem						
		UNIT-V:	In	ner	products	and nor	rms	- C	Fram Schmidt			
		Orthogona	alizat	ion Pr	ocess - Ortl	hogonal co	mplen	nents				
Extended		_							ous competitive			
Professional		examination					solve	d				
Component	•	(To be disc	cusse	d durii	ng the Tuto	rial hour)						
*	ternal											
component	only,											
Not to be inc												
	ternal											
Examination												
question pape												
·	quired	Knowledg						_	y, Professional			
from this cour	rse	Competend	ey, Pı	ofessi	onal Comn	nunication	and T	ransfe	rable Skill			

Recommended	Linear Algebra - Stephen H Friedberg, Arnold J Insel and Lawrence
Text	E Spence, 5 th edition (2018) Pearson
Reference Books	1. I.N.Herstein, Topics in Algebra, Wiley EasternLtd. Second Edition,
	2006.
	2. N.S.Gopalakrishnan, University Algebra, New Age International
	Publications, Wiley Eastern Ltd.
	3. John B.Fraleigh, First course in Algebra, Addison Wesley.
	4. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear
	Algebra, 4th Ed., Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
	5. David C. Lay, Linear Algebra and its Applications, 3rd Ed.,
	Pearson Education Asia, Indian Reprint, 2007.
	6. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
	7. Gilbert Strang, Linear Algebra and its Applications, Thomson,
	2007.
Website and e-Learning Source	https://nptel.ac.in

Students will be able to

- **CLO 1:** Acquire a detailed knowledge about vector spaces and subspaces
- **CLO 2:** Explain the concepts of Linear Dependence, Linear Independence, Bases and Dimension of basis
- **CLO 3:** Explain the concept of Linear Transformations, their Matrix representation and the notion of dual spaces
- **CLO 4:** Find the Eigen values and Eigen vectors, to apply the concepts for diagonalisation
- **CLO5:** Explain about Inner product and norms and to apply Gram Schmidt Orthogonalization Process to problems on inner product spaces

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	3	2	3	-	-	3	3	1
CLO2	3	3	3	3	-	-	3	3	1
CLO3	3	3	2	3	1	-	3	3	1
CLO4	3	3	3	3	-	-	3	3	1
CLO5	3	3	3	3	1	-	3	3	1

Title of the Course	COMPLEX	ANAL	YSIS		rse COMPLEX ANALYSIS							
Paper Number	CORE M14			1	1							
Category Core	Year II		Credits	4	Cou							
	Semester IV				Cod							
Instructional	Lecture		orial	Lab Practice		Total						
Hours	4	4 1 5										
per week	12th Standon	12 th Standard Mathematics										
Pre-requisite Objectives of the				nces of ana	lyticity	y and C-R equations.						
Course		-	-			-						
	• Understan	d the co	oncept of m	appings and	d trans	formations.						
	• Compute	complex	contour in	tegrals and	apply	ing Cauchy's integral						
	in various	version	s.									
	• Understan	d zeros	and singu	larities of	an ana	alytic function, apply						
	their prope	erties in	the evaluat	ion of defin	nite int	tegral.						
Course Outline	UNIT-I: Analytic functions : Functions of a Complex variable –Limits											
	-Theorem on limits -Continuity - Derivatives - Differentiation											
	formulas – Ca	auchy R	tiemann equ	uation – co	nditio	ns for differentiability						
	– Polar coord	inates-	Analytic fu	nctions- H	armon	ic functions.						
	UNIT-II:	UNIT-II: Conformal mapping: Mappings – Mapping by										
	exponential fu	unction	– Linear tra	ansformatio	on – Tl	he transformation w=						
	$\frac{1}{z}$ Mappings	by $\frac{1}{z}$ – L	inear fracti	onal transfo	ormati	ons (bilinear)						
	UNIT-III: C	omplex	Integratio	n: Contou	r integ	rals- Some examples						
	- Simply and	Multip	ly connecte	d domains-	- Cauc	chy integral formula –						
	Formula for d	erivativ	es– Liouvil	le's theore	m –Fu	ndamental theorem of						
	Algebra- Max	kimum 1	modulus pri	inciple.								
	UNIT – IV:	Seque	nces and	Series: Co	onverg	ence of sequences -						
	Convergence	of serie	s– Taylor's	series – L	Laurent	t series- Absolute and						
	uniform conv	ergence	of power	Series – C	ontinu	ity of sums of power						
	series–Integra	tion &	differentiati	on of powe	er serie	es						

	UNIT-V: Residues and Poles: Isolated singular points - Residues
	- Cauchy Residue theorem - Residue at infinity - The three types of
	isolated singular points – Residues at poles – Zeros of analytical
	functions – Zeros and poles – Evaluation of real improper integrals
	(excluding poles on the real axis).
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TNPSC / others to be solved
Component (is a	(To be discussed during the Tutorial hour)
part of internal	
component only,	
Not to be included	
in the External	
Examination	
question paper) Skills acquired	Vnoviledge Ducklem Colving Analytical shility Duckseignel
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended	Complex variables and application, Seventh Edition by James Ward
Text	
	Brown and Ruel V. Churchill, Mc-Graw Hill Book Co., International
	Edition, 2009.
Reference Books	1. Theodore W. Gamelan, Complex Analysis, Springer Verlag, 2008
	2. Joseph Bak and Donald J. Newman, Complex analysis, 2nd Ed.,
	Undergraduate Texts in Mathematics, Springer-Verlag New York,
	Inc., New York, 1997.
	3. Richard A. Silverman, Introductory Complex Analysis. Dover
	Publications, 1972.
	4. S. Ponnusamy and H. Silverman, Complex variables with
	applications, Birkhauser, 2006.
Website and	
e-Learning Source	https://nptel.ac.in

Students will be able to

CLO 1: Explain about analytic functions, their differentiation and continuity and to verify the Harmonic functions using analyticity conditions

- **CLO 2:** Explain the concept of Conformal mappings and mappings by linear transformations and linear fractional transformations
- **CLO 3:** Explain about the integrations of functions over simply and multiply connected domains and to derive the Cauchy integral formula, Liouvlle's theorem, Fundamental theorem of Algebra and Maximum Module Principle
- **CLO 4:** Find the convergence the sequences and series, to derive Taylor's and Laurent's series **CLO 5:** Find the nature of singularities, to find the residue of a given function at a given singular point, to Explain about zeros and poles and to evaluate real improper integrals (Excluding poles on the real axis)

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	3	3	2	1	-	3	3	2
CLO2	3	3	3	2	1	-	3	3	2
CLO3	3	3	3	2	1	-	3	3	2
CLO4	3	3	3	2	1	-	3	3	2
CLO5	3	3	3	2	1	-	3	3	2

Title of the	Course	MECHAN	NICS								
Paper Nun	nber	CORE M	15								
Category	Core	Year	II	Cre	edits	4	Cou	rse			
		Semester	IV				Cod	le			
Instruction	nal	Lecture	ŗ	Tutorial		Lab Pra	nctice	Tota	l		
Hours		4		1				5			
per week			12 th Standard Mathematics								
Pre-requis		12 th Standa	ard Ma	thematics	.						
Objectives	of the	• Equilib	rium o	f a partic	le und	er the acti	on of gi	ven fo	rces		
Course		• Simple	Harmo	onic Moti	on						
		• Project	iles								
Course Ou	ıtline	UNIT-I:	Force:	Newton's	laws	of motion	- Resu	ıltant c	of two forces on		
		a particle	- Equ	ilibrium	of a	Particle:	Equilib	rium	of a particle –		
		Limiting 6	equilib	rium of a	partic	le on an ir	nclined	plane.			
		UNIT-II:	Ford	ces on a	Rigid	Body: M	oment	of a F	Force – General		
		motion of	a bod	ly – Equ	ivalent	t systems	of force	ces- Pa	arallel Forces –		
		Forces acting along a Triangle - A specific reduction of Forces:									
		Reduction of coplanar forces into a force and couple – Problems									
		involving frictional forces.									
		UNIT-III: Work, Energy and Power: Work – Conservative field of									
		force – Power -Rectilinear Motion under Varying Force: Simple									
		Harmonic Motion - along a horizontal line – along a vertical line.									
		UNIT – IV: Projectiles: Forces on a projectile – Projectile projected									
		on an inclined plane									
		UNIT-V:	Centra	al Orbits:	Gene	ral orbits	- Cent	ral orb	oit – Conic as a		
		centered o	rbit								
Extended		Questions	relate	d to the	abov	ve topics.	, from	vario	us competitive		
Profession	al	examinatio	ns UP	SC / TNF	SC / c	others to b	e solve	d			
Componen	nt (is a	(To be disc	cussed	during th	e Tuto	rial hour)					
part of	internal										
componen	•										
Not to be											
	External										
Examinati											
question p	aper)										

Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional							
from this course	Competency, Professional Communication and Transferrable Skill							
Recommended	1. A. Ruina and R. Pratap, Introduction to Statics and Dynamics, ,							
Text	Oxford University Press, 2014.							
	2. S.L. Loney, The Elements of Statics and Dynamics, Cambridge							
	University Press, 1904.							
Reference Books	1. J.L. Meriam and L. G. Kraige, Engineering Mechanics: Statics,							
	Seventh Edition, Wiley and sons Pvt ltd., New York, 2012.							
	2. J.L. Meriam, L. G. Kraige, and J.N. Bolton, Engineering							
	Mechanics: Dynamics, 8 th edn, Wiley and sons Pvt ltd., New York,							
	2015.							
	3. A. K. Dhiman, P.Dhinam and D. Kulshreshtha, Engineering							
	Mechanics (Statics and Dynamics) ,McGraw Hill Education(India)							
	Private Limited, New Delhi, 2015.							
Website and e-Learning Source	https://nptel.ac.in							

Students will able to

- **CLO 1:** Define Resultant, Component of a Force, Coplanar forces, like and unlike parallel forces, Equilibrium of a Particle, Limiting equilibrium of a particle on an inclined plane.
- **CLO 2:** Define Moment of a force and Couple with examples. Define Parallel Forces and Forces acting along a Triangle, Solve problems on frictional forces
- **CLO 3:** Define work, energy, power, rectilinear motions under varying forces. Define Simple Harmonic Motion and find its Geometrical representation.
- **CLO 4:** Define Projectile, impulse, impact and laws of impact. Prove that the path of a projectile is a parabola. Find the direct and oblique impact of smooth elastic spheres
- **CLO 5:** Define central orbits, explain conic as centered orbits and solve problems related to central orbits

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	2	3	2	1	1	3	3	2	
CLO2	3	2	3	2	1	1	3	3	2	
CLO3	3	2	3	2	1	1	3	3	2	
CLO4	3	2	3	2	1	1	3	3	2	
CLO5	3	2	3	2	1	1	3	3	2	