Abdelmouhaimen Sarhane Encadrants: Félix Girard, Manuela Grippa, Laurent Kergoat

DEEP LEARNING POUR L'IDENTIFICATION DES LACS EN AFRIQUE DE L'OUEST

Observatoire **Z**

OMP es

Contexte

Objectif de recherche : Étudier les surfaces en eau ouest-africaines par télédétection sur une période de 1984 à aujourd'hui en utilisant les images Landsat.

Challenges:

- Dynamique de surface d'eau des lacs
- Les lacs végétalisés et turbides sont souvent mal détectés ou sous-représentés dans les bases de données actuelles.
- Initiative précédente : Adaptation de CNN U-Net pour Sentinel-2 (2015-présent) par Mathilde de Fleury en 2023, démontrant une détection efficace des plans d'eau végétalisés.
- Adaptation actuelle: Adapter l'algorithme pour Landsat (1984-présent) afin d'étendre l'analyse sur une plus longue période.

Mohammad Al-Saidi, From scenario to mounting risks: COVID-19's perils for development and supply security in the Sahel

de Fleury Mathilde, 2023

OC

L'Indice de Différence Normalisé Modifié pour l'Eau (MNDWI) utilise les bandes verte et SWIR pour améliorer les caractéristiques des surfaces d'eau ouvertes. Il réduit également les caractéristiques des zones bâties, souvent corrélées aux surfaces d'eau dans d'autres indices.

$$MNDWI = \frac{Green - SWIR}{Green + SWIR}$$

Bien que des indices comme le MNDWI soient utilisés pour la détection de l'eau, ils présentent des limites, surtout avec des eaux turbides ou végétalisées. Les CNN, comme le U-Net, permettent une détection plus précise en apprenant les caractéristiques complexes des plans d'eau, surmontant les limitations des méthodes de seuillage simples.

0000

Architecture Couche d'entré Couche d'entré U-Net

Kariryaa, A. 2020. ankitkariryaa/An-unexpectedly-large-count-of-trees-in-the-westernSahara-and-Sahel: Paper version. Version 1.0.0. doi:10.5281/zenodo.3978185.

0000

Bandes Landsat-8 et Sentinel-2

	Sentinel-2A MSI			Landsat 8 OLI		
Band	Spectral region	Wavelength range (nm)	Resolution (m)	Spectral region region	Wavelength range (nm)	Resolution (m)
B1				Blue	435-451	30
B2	Blue	458-523	10	Blue	452-512	30
В3	Green peak	543-578	10	Green	533-590	30
B4	Red	650-680	10	Red	636-673	30
B5	Red edge	698-713	20	NIR	851-879	30
B6	Red edge	733-748	20	SWIR1	1566-1651	30
В7	Red edge	773-793	20	SWIR2	2107-2294	30
В8	NIR	785-899	10			
B8A	NIR narrow	855-875	20			
B11	SWIR	1565-1655	20	Source: Cerasoli, Sofia & Campagnolo, Manuel & Faria, Joana & Nogueira, Carla & Caldeira, Maria. (2018). On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance. Biogeosciences. 15. 5455-5471. 10.5194/bg-15-5455-2018.		
B12	SWIR	2100-2280	20			

Landsat-8 possède des bandes similaires à celles de Sentinel-2, notamment les bandes SWIR et NIR, qui sont cruciales pour la détection de l'eau. Cela permet d'adapter efficacement les méthodes de détection développées pour Sentinel-2 aux images Landsat-8.

Paramètres

Paramètres	Valeurs		
Bands	RGB, NIR,SWIR1, SWRI2, MNDWI		
Patch size	64×64 px		
Prediction stride	32 px		
epochs/steps	100 epochs / 30 steps		
Batch Size	16		

o o o o Aperçu des Tuiles Traitées

- Training
- Testing

: Test sur des lacs non végétalisés

: : : Test sur des lacs végétalisés

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$\mathsf{Recall} = \frac{\mathit{True\ Positive}}{\mathit{True\ Positive} + \mathit{False\ Negative}}$

TN >> TP --> Déséquilibre des classes

- La perte de Tversky améliore les performances malgré le déséquilibre des classes.
- Grande proportion de pixels de lacs correctement identifiés tout en minimisant les faux positifs (FP) et les faux négatifs (FN).

Métriques	Valeurs
Accuracy	99.37%
Precision	99.62%
Recall	84%

91.15%

F1 Score

Résultats et métriques

MNDWI

Groundtruth

Prediction

0000

Améliorations et Futurs Travaux

- Qualité des données disponibles : Améliorer la précision des contours pour les polygones de test et en ajouter de nouveaux si besoin.
- Utilisation de Landsat-5 (1987-2012) : Comparer les résultats obtenus avec d'autres périodes historiques en utilisant les données de Landsat-5.
- Optimisation du modèle : Continuer à affiner les paramètres du modèle pour améliorer ses performances.
- Masquage des nuages

Conclusion

- Méthode performante : La segmentation est efficace même avec un ensemble de données limité.
- Adaptation réussie de Sentinel-2 à Landsat: L'adaptation du modèle de Sentinel-2 aux données Landsat montre les lacs sont bien détectés.

Merci pour votre Attention!

Questions?

