0	1701	Date	/ / Subject	
Nemeen	Elamany	Alrect Canse,	but designed	
	perates at low temper	stre because	ful bas	
2 neg 	e neutron leakage	bach when increase we eventually	the coolant teny	sortre
(3) Hig	th margin from because it requires in gasas state	liquid state	e to gas staget to sodio	n rig
_Q)N	Ta has high heat C	pacity -		

			en leginale	
	A CONTRACTOR OF THE PARTY OF TH			

0	I we allow worriven because by adding 2r to the wario.
	we decrease the temperature of the gamme phase
	boundaries and lewering the diffusion rate.
	boundaries and levering the diffusion rate. and gamma these has isotropic swelling because
	it is a cibic conjetal structure
	also 2r decreege the pass pometron and swelling.
	adding pu to vanium increase the lission rates and gives higher burnup but it increases the dishusion rate and increases swelling
	and gives higher burnup but it increases the
	dillusion rate and increases swelling
	-increme Tomest
	[3] metallic huel get swelled by fission gas bubbles formation in case of gamana utranium
,	bubbles formation in case of gamana uranium
10	or by forming loups of Interstitud or vacancies
	like the cesc of alpha uranium.
	it was observed that by having more space between the huel and the clad this let the fission gas
-	the fivel and the clad this let the hission gas
-	released to the gap before FCMI and
	released to the gap before FCMI and the reliablithm shows an the cladding
	the large pleasum helps in containing the rare earl
	fission products, alkali and affilian fo
	- reduces the pressure mide challing

(A)	Thermal Conductivity des	Date / / Subject
	by sodium infultration, we related bubbles are he to the plenum then so how the thermal conclu	hen his forthers hission gas ormed, then the gas is wested dium log in and that is chivily increased again.
	1) The constituent distril	ation of metallic heels
	3 25 as Jubicated	on J
	-why?	

	A. A
(6)	fuel cladding chemical interaction happens in metallic
	The as localized when Creek happens in the huel
	the the inner whale of the dadding.
	adjacent to the inner surface of the aladding more likely, but not required
	chatching cause the moterial to lose their mechanical
	Charlet of Cause the material
	strong the and even their thermal properities.
	Causing material degradation and tours
	Cause its tailue - cladding wastage
	Class, J. Waltage
	Bygen 14 the princip demand
1	
	The rind layer that protective layer which
	The Course I was
	mold when this layer cracks this make it essien
	for FCCI.
	- fission products coming to the crack in
	the chadding deposite their and FCCI State
	the chadding deposition
	-FDs liffuse down Tymlient
-	
	- low melting phases
	-brittle :-braefallics

€ 1/2-	
mex violestabilion	
- Central void region, borns due to accomba	tion of voids
and lacancies	
Columnate grains.	
elongated grains, forms due to irradict	ion - large
- assistered region.	gruty
due to pose migration, we have lenticuled	pores
which are very small pores moves allerdin	g to the
temperature gradient (Sort discusion) when i	t moves
from hot to cold region in the huel, it	tonns
Columnar region cossing destroying the	microstructure
- not Soret, but evaporation/Condens-tie	
- very high T required for pore migra	+100

3	pu and oxgen vary axinly in clox huel pin
7 8	the cold region on the hull porter surface.
	Same with pu concentrate in the hot regions.
in summit	- why does for concentrate around central agid? - oxygen has concentration profile, not necessarily high concentration; gradual gradient - on agglomerates?

	ľ
To G is oxide build up layer between hel slug poller	:+
7	
it occurs because when hission products form oxides	+
it goes to condense in the colder region which is at the edges of the hel.	
- volodite FDs diffuse down Tymber	\vdash
- (an form oxides w/ excess 0 p mm	
-impacts?	
(b) Sociem Corrosion material elements.	
(1) Type 1 , Lissian popularity dissolves in the cool	Vant
@ Type 2, oxygen dissolved in the codat interest with	
Components.	
for maintainance or relief	es
for maintainance or relying	
	-
then hission happens two oxygen are formed and	
they don't bond together but the oxygen interacts with the surroundings forming oxides	
- this is so fuel, sadium corresion occuring	
on Golant side	
- differential solubility w/ temperature	