MLL 100

Introduction to Materials Science and Engineering

Lecture-12 (February 01, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

What have we learnt in Lecture-11?

- ☐ Cooling curve
- ☐ Microstructure
- Solidification of an alloy in an isomorphous system
- ☐ Solid solution
- ☐ Hume Rothery rule

Possible scenarios in a binary phase diagram

 Complete solubility in both liquid and solid states

 Complete Solubility in liquid state, but limited solubility in the solid state

 Limited Solubility in both liquid and solid states

Isomorphous ——— Eutectic phase diagram

- Eutēktos: Easily melted
- Any homogeneous material melting or solidifying at a particular temperature which is lower than the melting point of any of the components.

Eutectic phase diagram

Invariant point

Invariant: Remains unchanged

- Eutectic point ('E') is an invariant point which occurs at a fixed composition and temperature for a given binary phase diagram.
- At 'E', eutectic reaction takes place:

$$L(C_o) \xrightarrow{\text{cooling}} \alpha + \beta$$

- Green line is the invariant line.
- **Solvus phase boundary**: Boundary line that divides a solid solution and a two-phase solid solution region.

Hypo- and Hyper-eutectic alloy

Microstructural evolution of hypoeutectic alloy and eutectic alloy

α solid solution eutectic β_{pre} solid solution eutectic α solid solution time

Solidification of a hypoeutectic alloy

Cooling curve

Solidification of an eutectic alloy

Solidification of a hypereutectic alloy

What are the fractions of 'L' and ' β ' phases present at T = 830 °C for an alloy with composition of C₀?

$$f_{\beta} = \frac{\left(C_o - C^L\right)}{\left(C^{\beta} - C^L\right)}$$

$$f_{\beta} = \frac{(60 - 45)}{(92 - 45)}$$

$$f_{\beta} = 32\%$$

$$f_L = 68\%$$

What are the fractions of ' α ' and ' β ' phases present at T = 530 °C for an alloy with composition of C₀?

$$f_{\beta} = \frac{(C_o - C^{\alpha})}{(C^{\beta} - C^{\alpha})}$$

$$f_{\beta} = \frac{(60 - 2)}{(98 - 2)}$$

$$f_{\beta} = 60.4\%$$

$$f_{\alpha} = \frac{(C^{\beta} - C_o)}{(C^{\beta} - C^{\alpha})}$$

$$f_{\alpha} = \frac{(98 - 60)}{(98 - 2)}$$

$$f_{\alpha} = 39.6\%$$

What are the fractions of 'L' and 'pro-eutectic β ' phases present at the eutectic temperature for an alloy with composition of C_0 ?

$$f_{\beta} = \frac{(C_o - C^L)}{(C^{\beta} - C^L)}$$

$$f_{\beta} = \frac{(60 - 28)}{(92 - 28)}$$

$$f_{\beta} = 50\%$$

$$f_L = \frac{(C^{\beta} - C_o)}{(C^{\beta} - C^L)}$$

$$f_L = \frac{(92 - 60)}{(92 - 28)}$$

$$f_L = 50\%$$

Isomorphous

$$L \xrightarrow{\text{cooling}} S$$

Eutectic

