1 Forme Quadratiche

1.1 Definizione

Sia $A \in \mathbb{R}^{n \times n}$ $A = A^T$ considero $q_A : \mathbb{R}^n \to \mathbb{R}$ $q_A(h) = \langle Ah, h \rangle$ $\forall h = (h_1, \dots, h_n) \in \mathbb{R}$ $A \in \mathbb{R}^{n \times n}, h \in \mathbb{R}^{n \times 1}, Ah \in \mathbb{R}^{n \times 1}$

 q_A è la forma quadratica associata alla matrice quadrata e simmetrica A quadrata: matrice che ha lo stesso numero di righe e colonne simmetrica: matrice che è uguale alla sua trasposta

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} = A^{T}$$

$$q_{A} = \langle \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix}, \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} \rangle = \langle \begin{bmatrix} ah_{1} + bh_{2} \\ bh_{1} + ch_{2} \end{bmatrix}, \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} \rangle = ah_{1}^{2} + 2bh_{1}h_{2} + ch_{2}^{2}$$

Caso con n generico:

$$q_A = \sum_{j,k=1}^{n} a_{jk} h_k h_j = \sum_{j=1}^{n} a_{jj} h_j^2 + \sum_{1 \le j < k \le n} a_{jk} h_j h_k$$

Osservazione informale: Abbiamo trovato un polinomio di grado 2, quindi possiamo dire che le forme quadratiche sono delle funzioni associate a delle matrici che rappresentano polinomi

1.2 Segno di una forma quadratica

Definizione: $A^T = A \in \mathbb{R}^{n \times n}$

- 1. Si dice che A è definita positiva se vale $\langle Ah, h \rangle > 0 \ \forall h \neq 0 \in \mathbb{R}^n$
- 2. Si dice che A è definita negativa se vale $\langle Ah,h\rangle < 0 \ \forall h \neq 0 \in \mathbb{R}^n$
- 3. Si dice che A è indefinita se $\exists h^+, h^- \in \mathbb{R}^n$ t.c. $\langle Ah^-, h^- \rangle \leq 0 \leq \langle Ah^+, h^+ \rangle$

Osservazione informale: La matrice A è positiva se per ogni vettore h è positiva, stessa cosa vale per il negativo. Invece si dice indefinita se per alcuni vettori h è negativa e per altri è positiva, quindi non possiamo assegnarli un segno preciso.

Osservazione informale: I segni di disuguaglianza devono essere stretti (<,>), altrimenti si dice che A è semidefinita positiva.

Forme quadratiche non singolari:

1.
$$A > 0 \Leftrightarrow \begin{cases} a > 0 \\ ac - b^2 > 0 \end{cases}$$
 determinante positivo

2.
$$A < 0 \Leftrightarrow \begin{cases} a < 0 \\ ac - b^2 > 0 \end{cases}$$
 determinante positivo

3. A è indefinita $\Leftrightarrow ac - b^2 < 0$ determinante negativo

Forme quadratiche singolari:

4. se $ac-b^2=0$, quindi $determinante\ nullo$, si tratta di una matrice singolare, quindi A è semidefinita

1.3 Proposizione

Se $A = A^T \in \mathbb{R}^{n \times n}$ è definita positiva, allora $\exists m > 0$ t.c.

$$\langle Ah, h \rangle \ge m|h|^2 \quad \forall h \in \mathbb{R}$$

Allo stesso modo se A è definita negativa, allora $\exists m>0$ t.c.

$$\langle Ah, h \rangle \le m |h|^2 \quad \forall h \in \mathbb{R}$$

Dimostrazione: (n=2) Scriviamo $h = (r \cos \theta, r \sin \theta)$ con $r \ge 0, r = |h|$ e $\theta \in [0, 2\pi]$

Allora vale $\langle Ah, h \rangle = a_{11} r^2 \cos^2 \theta + 2a_{12} r^2 \cos \theta \sin \theta + a_{22} r^2 \sin^2 \theta = r^2 [a_{11} \cos^2 \theta + 2a_{12} \cos \theta \sin \theta + a_{22} \sin^2 \theta]$

Poniamo $g(\theta) = [\dots]$ per $\theta \in [0, 2\pi]$

Per ipotesi $g(\theta) > 0 \quad \forall \theta \in [0, 2\pi]$ (infatti $r^2 g(\theta) > 0 \quad \forall r > 0 \text{ e } \theta \in [0, 2\pi]$)

Essendo f continua su $[0, 2\pi]$ per il teorema di Weistrass $\exists \overline{\theta} \in [0, 2\pi]$ tale che $g(\overline{\theta}) = \min g$.

Tale minimo è positivo e lo chiamiamo m. Dunque $\langle Ah,h\rangle=r^2g(\theta)\geq r^2m=m|h|^2\quad\forall h$

2 Formula di Taylor di ordine 2

 $A \subseteq \mathbb{R}^n$ aperto, $f: A \to \mathbb{R}$, f è di classe C^2 Allora vale $\forall \overline{x} \in A$ vale lo sviluppo

$$f(\overline{x} + h) = f(\overline{x}) + \langle \nabla f(\overline{x}), h \rangle + \frac{1}{2} \langle Hf(\overline{x})h, h \rangle + o(|h|^2) \quad \text{per } h \to 0$$

Dimostrazione: Dimostriamo la seguente formula con resto "non uniforme"

$$\forall v \in \mathbb{R}^n, |v| = 1, \forall x \in A$$

vale la formula

$$f(\overline{x} + tv) = f(\overline{x}) + \langle \nabla f(\overline{x}), tv \rangle + \frac{1}{2} \langle Hf(\overline{x})tv, tv \rangle + o(t^2) \quad \text{per } t \to 0 \in \mathbb{R}$$
 (1)

Consideriamo la funzione $g:]-\varepsilon, \varepsilon[\to \mathbb{R}, g(t) = f(\overline{x}+tv)$ definita per ε sufficientemente piccolo.

Poichè f è di classe C^2 , si vede che $\exists g'(t) = \langle \nabla f(\overline{x} + tv), v \rangle \quad \forall t \in] - \varepsilon, \varepsilon[$ inoltre esiste ed è continua $g''(t) = \langle Hf(\overline{x} + tv)v, v \rangle$

Scriviamo la Taylor in t per g con punto iniziale t=0. Otteniamo:

$$g(t) = g(0) + g'(0)t + g''(0)\frac{t^2}{2} + o(t^2)$$

Trascrivendo in termini di f si trova esattamente la formula 1 da dimostrare.

3 Teorema di classificazione dei punti critici

Se $f: A \to \mathbb{R}$ è C^2 sull'aperto $A \subseteq \mathbb{R}^n$, vale quanto segue, per $\overline{x} \in A$

1.
$$\begin{cases} \nabla f(\overline{x}) = 0 \\ Hf(\overline{x}) > 0 \end{cases} \implies \overline{x} \text{ è punto di minimo locale}$$

2.
$$\begin{cases} \nabla f(\overline{x}) = 0 \\ Hf(\overline{x}) < 0 \end{cases} \implies \overline{x} \text{ è punto di massimo locale}$$

3.
$$\begin{cases} \nabla f(\overline{x}) = 0 \\ Hf(\overline{x}) \text{ indefinita} \end{cases} \implies \overline{x} \text{ è punto di sella}$$

Nota: \overline{x} punto critico di f si dice di sella se $\forall r > 0 \ \exists x_+, x_- \in B(\overline{x}, r)$ tale che $f(x_-) < f(\overline{x}) < f(x_+)$

Dimostrazione Sia $A \subseteq \mathbb{R}^n$ aperto e $f: A \to \mathbb{R}$ di classe C^2 . Sia $\overline{x} \in A$ un punto critico con $Hf(\overline{x}) > 0$. Dobbiamo dimostrare che $\exists \delta > 0$ tale che:

$$f(\overline{x} + h) - f(\overline{x}) \ge 0 \quad \forall h \in B(0, \delta)$$

Usiamo la formuala di Taylor.

$$f(\overline{x} + h) - f(\overline{x}) = f(\overline{x}) + \langle \nabla f(\overline{x}), h \rangle + \frac{1}{2} \langle Hf(\overline{x})h, h \rangle + o(|h|^2) \quad \text{per } h \to 0$$

visto che $\nabla f(\overline{x}) = 0$, analizziamo $\frac{1}{2}\langle Hf(\overline{x})h,h\rangle + o(|h|^2) \geq 0$ Per il teorema sulle forme positive $\exists m>0$ tale che

$$\langle Hf(x)h, h \rangle \ge m|h|^2 \quad \forall h \in \mathbb{R}^2$$

Usando la definizione di o-piccolo con $\varepsilon = \frac{m}{4}, \, \exists \delta > 0$ tale che

$$-\frac{m}{4} \le \frac{o(|h|^2)}{|h|^2} \le \frac{m}{4} \quad \forall h \in B(0, \delta)$$

Dunque, per $|h| < \delta$ vale

$$f(\overline{x}+h) - f(\overline{x}) \ge |h|^2 \left(\frac{1}{2}m + \frac{o(|h|^2)}{|h|^2}\right) \ge$$
$$\ge |h|^2 \left(\frac{m}{2} - \frac{m}{4}\right) = \frac{m}{4}|h|^2 \ge 0 \quad \forall h \in B(0,\delta)$$

Il teorema è dimostrato. I casi di punto di massimo o sella sono analoghi.

3.1 Condizioni necessarie affinchè \bar{x} sia di minimo

Siamo nel secondo ordine. Se $A\subseteq \mathbb{R}^n$ è aperto, f è C^2 su A e \overline{x} è di minimo, allora:

$$\begin{cases} \nabla f(\overline{x}) = 0 \\ \langle Hf(\overline{x})h, h \rangle \ge 0 \quad \forall h \in \mathbb{R}^n \end{cases}$$

Si dice in tal caso che $Hf(\overline{x})$ è semidefinita positiva