ZJUI SP2024

ECE 313 Homework 9 solution

Problem 1 -

a) $E[T] = 0.25 = 1/\lambda$.

Therefore $\lambda = 4$.

$$f(t) = 4e^{-4t}$$
 (in minutes)

b) $\lambda = 4$ queries/minutes = 4/60 = 1/15 queries/second = 0.067 queries per second $P(N_t = i) = e^{-0.067t} \frac{(0.067t)^i}{i!}, i=0, 1, 2, ... \quad (t \text{ is in seconds})$

c)
$$P(N_{10} > 4) = 1 - P(N_{10} \le 4) = 1 - \sum_{i=0}^{4} e^{-0.067 \times 10} \frac{(0.067 \times 10)^{i}}{i!} = 6.33e-4$$

d) 2 minutes = 120 seconds

$$P(N_{120} \le 5) = \sum_{i=0}^{5} e^{-0.067 \times 120} \frac{(0.067 \times 120)^{i}}{i!} = 0.10$$

Problem 2 - (20 pts)

(a) Observe that Y takes values in the interval $[1, +\infty)$.

$$F_Y(c) = P[\exp(X) \le c] = \begin{cases} P[X \le \ln c] = 1 - \exp(-\lambda \ln c) = 1 - c^{-\lambda} & c \ge 1 \\ 0 & c < 1 \end{cases}$$

Differentiate to obtain

$$f_Y(c) = \left\{ \begin{array}{cc} \lambda c^{-(1+\lambda)} & c \ge 1 \\ 0 & c < 1 \end{array} \right.$$

(b) Observe that Z takes values in the interval [0,3].

$$F_Z(c) = P[\min\{X, 3\} \le c] = \begin{cases} 0 & c < 0 \\ P[X \le c] = 1 - \exp(-\lambda c) & 0 \le c < 3 \\ 1 & c > 3 \end{cases}$$

(a) 10 pts (b) 10 pts

Problem 3 – (15 pts)

a)

$$f_X(x) = \int_0^\infty e^{-\frac{x}{\alpha}} y e^{-y^2} dy = e^{-\frac{x}{\alpha}} \int_0^\infty y e^{-y^2} dy = e^{-\frac{x}{\alpha}} \left[-\frac{1}{2} e^{-y^2} \right]_0^\infty = \frac{1}{2} e^{-\frac{x}{\alpha}}$$
(5pts)
$$f_Y(x) = \int_0^\infty e^{-\frac{x}{\alpha}} y e^{-y^2} dx = y e^{-y^2} \int_0^\infty e^{-\frac{x}{\alpha}} dx = y e^{-y^2} \left[-\alpha e^{-\frac{x}{\alpha}} \right]_0^\infty = \alpha y e^{-y}$$
(5pts)

ZJUI SP2024

b) For X and Y to be independent, $f_{X,Y}(x,y) = f_X(x)f_Y(y) = \frac{1}{2}\alpha e^{-\frac{x}{\alpha}}ye^{-y}$ Therefore, $\alpha = 2$ (5pts)

Problem 4 - (20 pts)

(a) Z takes values in the positive real line. So let $z \geq 0$.

$$\begin{split} P[Z \leq z] &= P[\min\{X_1, X_2\} \leq z] = P[X_1 \leq z \text{ or } X_2 \leq z] \\ &= 1 - P[X_1 > z \text{ and } X_2 > z] = 1 - P[X_1 > z] P[X_2 > z] = 1 - e^{-\lambda_1 z} e^{-\lambda_2 z} = 1 - e^{-(\lambda_1 + \lambda_2) z} \end{split}$$

Differentiating yields that

$$f_Z(z) = \left\{ egin{array}{ll} (\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2)z}, & z \geq 0 \ 0, & z < 0 \end{array}
ight.$$

That is, Z has the exponential distribution with parameter $\lambda_1 + \lambda_2$.

(b) R takes values in the positive real line and by independence the joint pdf of X_1 and X_2 is the product of their individual densities. So for $r \geq 0$,

$$P[R \le r] = P[\frac{X_1}{X_2} \le r] = P[X_1 \le rX_2]$$

$$= \int_0^\infty \int_0^{rx_2} \lambda_1 e^{-\lambda_1 x_1} \lambda_2 e^{-\lambda_2 x_2} dx_1 dx_2$$

$$= \int_0^\infty (1 - e^{-r\lambda_1 x_2}) \lambda_2 e^{-\lambda_2 x_2} dx_2 = 1 - \frac{\lambda_2}{r\lambda_1 + \lambda_2}.$$

Differentiating yields that

$$f_R(r) = \begin{cases} \frac{\lambda_1 \lambda_2}{(\lambda_1 r + \lambda_2)^2} & r \ge 0\\ 0, & r < 0 \end{cases}$$

(a) -10pts, (b) -10pts

Problem 5 – (15 pts)

- (a) The density must integrate to one, so c = 4/19.
- (b)

$$f_X(x) = \begin{cases} \frac{4}{19} \int_1^2 (1+xy) dy = \frac{4}{19} [1+\frac{3x}{2}] & 2 \le x \le 3\\ 0 & \text{else} \end{cases}$$
$$f_Y(y) = \begin{cases} \frac{4}{19} \int_2^3 (1+xy) dx = \frac{4}{19} [1+\frac{5y}{2}] & 1 \le y \le 2\\ 0 & \text{else} \end{cases}$$

Therefore $f_{X|Y}(x|y)$ is well defined only if $1 \le y \le 2$. For $1 \le y \le 2$:

$$f_{X|Y}(x|y) = \begin{cases} \frac{1+xy}{1+\frac{5}{2}y} & 2 \le x \le 3\\ 0 & \text{for other } x \end{cases}$$

(a) 5pts, (b) 10 pts