JAN 1, 2005

The that this correspondence is being deposited with the

I hereby contry that this correspondence is being deposited with the U.S. Postal Service with prize and postage First Class Mail, in an envelope addressed to: Commissioner to call the Commissioner

date shown below.

Dated: January 11, 2005

Signature:

Docket No.: LOREAL 3.0-016

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Sabbagh et al.

Application No.: 10/809,565

Group Art Unit: FR

Filed: March 25, 2004

Examiner: Not Yet Assigned

FOY: USE OF HYDROXYCARBOXYLIC ACIDS AND SALTS THEREOF AS COMPLEXING AGENTS IN REDUCING COMPOSITIONS FOR BLEACHING OR PERMANENTLY RESHAPING KERATINFIBRES

CLAIM FOR PRIORITY AND SUBMISSION OF DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign application filed in the following foreign country on the date indicated:

Country Application No. Date

France 0350065 March 25, 2003

In support of this claim, a certified copy of the original foreign application is filed herewith.

Dated: January 11, 2005

Respectfully submitted,

Kelly Hwang

Registration No.: 32,862 LERNER, DAVID, LITTENBERG,

KRUMHOLZ & MENTLIK, LLP

Westfield, New Jersey 07090

(908) 654-5000

Attorney for Applicant

537047_1.DOC

THIS PAGE BLANK (USPTO)

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

> 2 9 MARS 2004 Fait à Paris, le .

> > Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

> > > Martine PLANCHE

SIEGE 75800 PARIS cedex 08 Téléphone: 33 (0)1 53 04 53 04 Télécopie : 33 (0)1 53 04 45 23 www.inpi.fr

THIS PAGE BLANK (USPTO)

BREVET D'INVENTION **CERTIFICAT D'UTILITE**

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES: 25.03.253

N° D'ENREGISTREMENT NATIONAL: 035065 Gérard POULIN
DÉPARTEMENT DE DÉPÔT: 45
DATE DE DÉPÔT: 0 - - - BREVALEX

3, rue du Docteur Lancereaux 75008 PARIS

France

Vos références pour ce dossier: SP 22423 SL

1 NATURE DE LA DEMANDE			
Demande de brevet			
2 TITRE DE L'INVENTION			
	UTILISATION D'ACIDES HYDROXYCARBOXYLIQUES ET DE LEURS SELS COMME AGENTS COMPLEXANTS DANS DES COMPOSITIONS REDUCTRICES POUR LA DECOLORATION OU LA DEFORMATION PERMANENTE DE FIBRES KERATINIQUES		
3 DECLARATION DE PRIORITE OU	Pays ou organisation Date N°		
REQUETE DU BENEFICE DE LA DATE DE			
DEPOT D'UNE DEMANDE ANTERIEURE			
FRANCAISE			
4-1 DEMANDEUR			
Nom	L'OREAL		
Rue	14, rue Royale		
Code postal et ville	75008 PARIS		
Pays	France		
Nationalité	France		
5A MANDATAIRE	·		
Nom	POULIN		
Prénom	Gérard		
Qualité	CPI, Pas de pouvoir		
Cabinet ou Société	BREVALEX		
Rue	3, rue du Docteur Lancereaux		
Code postal et ville	75008 PARIS		
N° de téléphone	01 53 83 94 00		
N° de télécopie	01 45 63 83 33		
Courrier électronique	brevets.patents@brevalex.com Fichier électronique Pages Détails		
6 DOCUMENTS ET FICHIERS JOINTS	Tremer electromages 1 eggs		
Texte du brevet	textebrevet.pdf 63 D 49, R 13, AB 1		
7 MODE DE PAIEMENT			
Mode de paiement	Prélèvement du compte courant		
Numéro du compte client	714		

8 RAPPORT DE RECHERCHE				
Etablissement immédiat				
9 REDEVANCES JOINTES	Devise	Taux	Quantité	Montant à payer
062 Dépôt	EURO	0.00	0.00	0.00
063 Rapport de recherche (R.R.)	EURO	320.00	1.00	320.00
068 Revendication à partir de la 11ème	EURO	15.00	28.00	420.00
Total à acquitter	EURO		20.00	740.00

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantil un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, Brevalex, G. Poulin
Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

Mandataire agréé (Mandataire 1)

BREVET D'INVENTION **CERTIFICAT D'UTILITE**

Réception électronique de la soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

> Demande de brevet: X

		Demande de CU:
DATE DE RECEPTION	25 mars 2003	
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X Dépôt sur support CD:
№ D'ENREGISTREMENT NATIONAL	0350065	
ATTRIBUE PAR L'INPI		
Vos références pour ce dossier	SP 22423 SL	
DEMANDEUR		
Nom ou dénomination sociale	L'OREAL	
Nombre de demandeur	1	
Pays	FR	
TITRE DE L'INVENTION		
UTILISATION D'ACIDES HYDROXYCARI	BOXYLIQUES ET DE LEURS SELS COM	ME AGENTS COMPLEXANTS
DANS DES COMPOSITIONS REDUCTRI	CES POUR LA DECOLORATION OU LA	DEFORMATION
PERMANENTE DE FIBRES KERATINIQU	JES	

DOC	IMEN	2TL	FNVO	YES

pkgheader.xml	ValidLog.PDF	fee-sheet.xml
package-data.xml	Comment.PDF	textebrevet.pdf
FR-office-specific-info.xml	application-body.xml	request.xml
Requetefr.PDF	indication-bio-deposit.xml	

EF	FE	CT	UE	PA	ιR

Effectué par:	G. Poulin
Date et heure de réception électronique:	25 mars 2003 16:24:31
Empreinte officielle du dépôt	39:E2:CD:85:5B:82:6C:9C:60:6F:F3:B9:B9:6F:CC:F6:D0:62:04:95

/ PARIS, Section Dépôt /

SIEGE SOCIAL

INSTITUT 26 bis, rue de Saint Petersbourg NATIONAL DE 75800 PARIS codox 08

LA PROPRIETE

Téléphone: 01 53 04 53 04 INDUSTRIELLE Télécopie: 01 42 93 59 30

ETABLISSEMENT PUBLIC NATIONAL CREE PAR LA LOI No 51-444 DU 19 AVRIL 1961

UTILISATION D'ACIDES HYDROXYCARBOXYLIQUES ET DE LEURS SELS COMME AGENTS COMPLEXANTS DANS DES COMPOSITIONS REDUCTRICES POUR LA DECOLORATION OU LA DEFORMATION PERMANENTE DE FIBRES KERATINIQUES

5

10

DESCRIPTION

DOMAINE TECHNIQUE

La présente invention se rapporte à l'utilisation d'acides hydroxycarboxyliques et de leurs sels en tant qu'agents complexants dans des compositions réductrices destinées à la décoloration ou à la déformation permanente de fibres kératiniques, en particulier de fibres kératiniques humaines et plus spécialement de cheveux.

15 Elle se rapporte également à des compositions réductrices particulières pour décoloration ou la déformation permanente de fibres kératiniques, qui renferment de tels complexants, à des procédés et des dispositifs ou "kits" de décoloration ou de déformation permanente de 20 fibres kératiniques, ainsi qu'à l'utilisation de ces compositions, procédés et dispositifs pour décoloration ou la déformation permanente de fibres kératiniques humaines et, plus spécialement, de 25 cheveux.

ETAT DE LA TECHNIQUE ANTERIEURE

Pour décolorer des fibres kératiniques, on utilise deux types de compositions : des compositions dites oxydantes car elles renferment un ou plusieurs

agents aptes à oxyder la mélanine des cheveux et, partant, à la solubiliser pour en obtenir l'élimination totale ou partielle, et des compositions dites, au contraire, réductrices car elles contiennent un ou plusieurs agents réducteurs comme l'acide ascorbique, les sulfites et les sulfinates, et qui sont plus spécialement destinées à la décoloration de cheveux ayant été antérieurement teints avec des pigments exogènes.

10 Par ailleurs, pour la déformation permanente des cheveux, il est usuel d'appliquer sur la chevelure préalablement mise sous tension, par exemple à l'aide de bigoudis si la déformation recherchée est une frisure, une composition contenant un ou plusieurs agents réducteurs de manière à induire l'ouverture des 15 ponts disulfures formés par les résidus cystéine de la des cheveux, puis, généralement kératine après un rinçage, de réoxyder la chevelure pour en fixer 1a déformation.

Les réducteurs préférentiellement utilisés dans le cadre de la déformation permanente des cheveux sont les thiols tels que l'acide thioglycolique et l'acide thiolactique, leurs sels et leurs esters, et les sulfites.

Qu'elles soient destinées à la décoloration ou à la déformation permanente, les compositions réductrices contiennent en principe un agent destiné à complexer les cations métalliques susceptibles de se trouver à l'état de traces dans ces compositions, ainsi que ceux pouvant être présents sur les cheveux et provenant de l'air ambiant, de l'eau avec laquelle les

5

25

cheveux ont été lavés ou encore des shampoings ou autres produits capillaires avec lesquels ils ont été traités.

Il est, en effet, très important de neutraliser ces cations métalliques, dans la mesure où ils sont susceptibles de catalyser la réaction de réduction et ce, de façon non contrôlée, ce qui peut se traduire par des effets indésirables sévères tels qu'une cassure des cheveux ou des brûlures du cuir chevelu.

Actuellement, les agents complexants plus couramment utilisés dans les compositions réductrices pour la décoloration ou la déformation permanente de fibres kératiniques sont l'acide éthylènediamine tétraacétique (EDTA) et ses dérivés comme l'acide diéthylènetriamine pentaacétique (DPTA), généralement dans des proportions pondérales de l'ordre de 0,1 à 1%.

Toutefois, dans le cadre de ses travaux, la 20 Demanderesse a constaté que l'EDTA et ses dérivés présentent, dans ce type de compositions, des propriétés insuffisantes.

Un agent complexant destiné à entrer dans la constitution de compositions réductrices pour la décoloration ou la déformation permanente de fibres kératiniques, doit satisfaire à de nombreuses exigences.

En effet, outre qu'il doit présenter un pouvoir complexant élevé vis-à-vis des métaux de manière à supprimer ou, à tout le moins, réduire le plus possible le risque d'une catalyse de la réaction

15

25

les métaux susceptibles d'être réduction par même à l'état de traces, dans ces . présents, compositions et sur ces fibres, il doit être compatible, et notamment ne pas réagir, avec les autres constituants de ces compositions, et en particulier avec le ou les agents réducteurs.

Il doit également être stable en milieu aqueux, les compositions réductrices étant, en effet, appliquées généralement sur les fibres kératiniques sous forme de compositions aqueuses.

Il doit aussi être d'une innocuité totale pour ces fibres et pour la peau, et être notamment dénué de tout caractère allergène.

est, en outre, souhaitable, de l'environnement, 15 respect qu'il biodégradable, et que son coût de production ou d'achat dans compositions. autorise son utilisation des vendues, seulement destinées à être non professionnels, mais également dans la distribution 20 grand public.

Or, après de longues recherches menées sur la question, la Demanderesse a constaté que, de manière surprenante, certains acides hydroxycarboxyliques et leurs sels sont susceptibles de répondre à toutes ces exigences et de représenter, par conséquent, des agents complexants de choix dans des compositions réductrices pour la décoloration et la déformation permanente de fibres kératiniques.

C'est cette constatation qui est à la base 30 de l'invention.

5

10

EXPOSÉ DE L'INVENTION

L'invention a, en premier lieu, pour objet l'utilisation d'un ou plusieurs composés répondant à la formule générale (I) suivante :

5

$$R-(CHOH)_4-CO_2X$$
 (I)

dans laquelle :

- R représente un groupe CH2OH ou CO2X, et
- X représente un atome d'hydrogène ou un cation monovalent ou divalent issu d'un métal alcalin, d'un métal alcalino-terreux, d'un métal de transition, d'une amine organique, ou un cation ammonium,
- dans une composition réductrice pour la décoloration ou la déformation permanente de fibres kératiniques, pour complexer les cations métalliques présents dans cette composition et/ou sur les fibres kératiniques sur lesquelles ladite composition est destinée à être appliquée.

Ainsi, les agents complexants utilisés dans le cadre de l'invention correspondent à des acides hydroxycarboxyliques et aux carboxylates correspondants.

- La formule (I) comprenant 4 groupes d'atomes H-C-OH chiraux, il va de soi que cette formule englobe tous les énantiomères et tous les diastéréoisomères des composés susceptibles de répondre à cette formule.
- 30 Conformément à l'invention, le cation monovalent ou divalent est choisi dans le groupe

constitué par les cations monovalents de métaux alcalins, les cations divalents de métaux alcalinoterreux, les cations divalents de métaux de transition, les cations monovalents issus d'amines organiques ou d'ammonium.

A titre d'exemples de cations monovalents de métaux alcalins, on peut notamment citer le sodium (Na^+) et le potassium (K^+) , tandis qu'à titre d'exemples de cations divalents de métaux alcalino-terreux, on peut notamment citer le calcium (Ca^{2+}) et le magnésium (Mg^{2+}) .

Au sens de la présente invention, on entend par "métal de transition", un métal comportant une sous-couche d incomplète, plus particulièrement à l'état d'oxydation II, tel que le cobalt $({\rm Co}^{2+})$, le fer $({\rm Fe}^{2+})$, le manganèse $({\rm Mn}^{2+})$, le zinc $({\rm Zn}^{2+})$ et le cuivre $({\rm Cu}^{2+})$.

En ce qui concerne les cations monovalents.

issus d'amines organiques, on peut citer les cations

d'amines primaires, secondaires ou tertiaires, ou encore d'alcanolamines.

Les dites amines présentent un ou plusieurs radicaux, identiques ou non, de type alkyle, linéaire ou ramifié en C_1 à C_{20} , comprenant éventuellement un hétéroatome comme l'oxygène.

Pour ce qui a trait aux cations monovalents d'ammonium quaternaires, ces derniers comprennent trois radicaux, identiques ou non, choisis parmi l'hydrogène, un radical alkyle, linéaire ou ramifié en C_1 à C_{20} , comprenant éventuellement un hétéroatome comme l'oxygène.

5

10

15

25

Conformément à l'invention, le cation monovalent ou divalent est, de préférence, choisi dans le groupe constitué par les cations monovalents de métaux alcalins, les cations divalents de métaux alcalino-terreux et les cations divalents de métaux de transition.

Lorsque R représente un groupe CH_2OH , alors le ou les composés de formule (I) sont, de préférence, choisis dans le groupe constitué par l'acide gluconique $(C_6H_{12}O_7)$, ses sels de métaux alcalins, ses sels de métaux de transition, ses sels d'amines organiques, ses sels d'ammonium, et leurs mélanges comme, par exemple, des mélanges d'acide gluconique et de gluconate de sodium.

15 Plus particulièrement, le ou les composés de formule (I) sont choisis dans le groupe constitué l'acide gluconique, le gluconate de $(C_6H_{11}O_7Na)$, le gluconate de potassium $(C_6H_{11}O_7K)$, le gluconate de calcium anhydre ($C_{12}H_{22}O_{14}Ca$), le gluconate 20 monohydraté $(C_{12}H_{22}O_{14}Ca.H_2O)$, calcium gluconate de calcium ($C_{12}H_{22}O_{14}Ca.H_2O+H_5BO_5$), le gluconate magnésium $(C_{12}H_{22}O_{14}Mg)$, le gluconate de $(C_{12}H_{22}O_{14}Fe)$, le gluconate de manganèse $(C_{12}H_{22}O_{14}Mn)$, le gluconate de zinc $(C_{12}H_{22}O_{14}Zn)$ et le gluconate de cuivre 25 $(C_{12}H_{22}O_{14}Cu)$.

Lorsque R représente un groupe CO_2X , alors le ou les composés de formule (I) sont, de préférence, choisis dans le groupe constitué par l'acide mucique $(C_6H_{10}O_8)$ - encore connu sous le nom d'acide galactarique -, l'acide glucarique $(C_6H_{10}O_8)$, l'acide mannarique $(C_6H_{10}O_8)$, leurs sels de métaux alcalins,

30

10

15

20

25

30

8

leurs sels de métaux alcalino-terreux, leurs sels de métaux de transition, leurs sels d'amines organiques, leurs sels d'ammonium, et leurs mélanges comme, par exemple, des mélanges d'acide mucique et de mucate de sodium $(C_6H_8O_8Na_2)$.

De manière particulièrement préférée, le ou les composés de formule (I) sont choisis parmi l'acide gluconique et l'acide mucique.

De préférence, le ou les composés de formule (I) représentent de 0,001 à 10% en poids et, mieux encore, de 0,001 à 5% en poids du poids total de la composition réductrice.

Conformément à l'invention, la composition réductrice comprend un ou plusieurs agents réducteurs, qui sont à la base de ses propriétés réductrices et qui peuvent être indifféremment choisis parmi tous les agents réducteurs dont l'utilisation a déjà été proposée dans le domaine de la décoloration et la déformation permanente de fibres kératiniques.

}

Toutefois, dans le cas d'une composition destinée à la décoloration, ce ou ces agents réducteurs sont, de préférence, choisis dans le groupe constitué par les réductones telles que l'acide ascorbique, l'acide érythorbique, leurs sels et leurs esters, les sulfites comme le sulfite de sodium, et les sulfinates comme l'hydroxyméthane-sulfinate de sodium, tandis que, dans le cas d'une composition destinée à la déformation permanente, on préfère utiliser un ou plusieurs thiols comme l'acide thioglycolique, l'acide thiolactique, la cystéamine, la cystéine, leurs sels et leurs esters, et/ou un ou plusieurs sulfites ou sulfinates, et tout

particulièrement l'acide thioglycolique, l'acide thiolactique, leurs sels et leurs esters.

Il est rappelé que les réductones sont des lactones à caractère réducteur.

Dans tous les cas, le ou les agents réducteurs représentent, préférentiellement, de 0,1 à 30% en poids et, mieux encore, de 0,5 à 20% en poids du poids total de la composition réductrice.

De préférence, la composition réductrice comprend, en plus du ou des composés de formule (I) et des agents réducteurs, un ou plusieurs constituants choisis parmi (A) les polymères conditionneurs cationiques ou amphotères, (B) les polymères amphiphiles non ioniques, anioniques, cationiques ou amphotères, comportant une chaîne hydrophobe, (C) les agents tensioactifs, (D) les agents d'ajustement de la rhéologie différents des polymères (B), (E) les agents d'ajustement du pH, et/ou (F) les solvants.

20

15

. 10

(A) <u>les polymères conditionneurs cationiques ou</u> amphotères :

Au sens de la présente invention, on entend par "polymère conditionneur cationique", tout polymère qui comprend des groupes cationiques ou des groupes 25 ionisables en groupes cationiques et qui d'améliorer les propriétés cosmétiques des fibres kératiniques, en particulier le démêlage, la douceur, la brillance, le volume.

20

25

30

10

Les polymères conditionneurs cationiques ou amphotères convenables sont, de manière avantageuse, choisis parmi ceux déjà connus en soi comme améliorant les propriétés cosmétiques des cheveux, à savoir notamment ceux décrits dans les brevets et demandes de brevets EP 337 354, FR 2 270 846, FR 2 383 660, FR 2 598 611, FR 2 470 596, FR 2 519 863, FR 2 788 974, et FR 2 788 976.

Cependant, à titre d'exemples plus précis de polymères conditionneurs cationiques, on peut notamment citer les polymères cationiques comprenant au moins des groupements amine primaire, secondaire, tertiaire et/ou quaternaire pouvant, soit faire partie de la chaîne principale polymère, soit être portés par un substituant latéral directement relié à celle-ci. Ainsi, on peut citer:

(1)les copolymères d'acrylamide diméthyl-amino-éthyl méthacrylate quaternisé au sulfate diméthyle ou avec un halogénure de (Hercofloc de Hercules) ; les copolymères d'acrylamide et de chlorure de méthacryloyloxy-éthyltriméthylammonium (Bina Quat P 100 de Ciba Geigy) ; le copolymère d'acrylamide et de méthosulfate méthacryloyloxy-éthyl-triméthylammonium Hercules) ; les copolymères vinylpyrrolidone/acrylate ou méthacrylate de dialkylaminoalkyle quaternisés ou non (gamme Gafquat d'ISP ; Copolymer 845, 958 et 937 ; les terpolymères méthacrylate de diméthyl amino éthyle/vinylcaprolactame/vinylpyrrolidone (Gaffix VC 713 d'ISP) les copolymères vinylpyrrolidone/méthacrylamidopropyl diméthylamine

(Styleze CC 10 d'ISP) ; les copolymères vinylpyrrolidone/méthacrylamide de diméthyl-amino-propyle quaternisés (Gafquat HS 100 d'ISP) ;

- (2) les dérivés d'éthers de cellulose comportant des groupements ammonium quaternaire tels que décrits dans FR 1 492 597. Ces polymères sont également définis dans le dictionnaire CTFA comme des ammonium quaternaires d'hydroxyéthylcellulose ayant réagi avec un époxyde substitué par un groupement triméthylammonium;
- (3) les dérivés de cellulose cationiques tels que les copolymères de cellulose ou les dérivés de cellulose greffés avec un monomère hydrosoluble d'ammonium quaternaire, et décrits notamment dans 15 US 4,131,576, tels que les hydroxyalkylcelluloses, comme les hydroxyméthyl-, hydroxyéthylou hydroxypropylcelluloses greffées notamment avec un sel méthacryloyléthyl triméthylammonium, méthacrylamido propyl-triméthylammonium, de diméthyl-20 diallylammonium ;
 - (4) les polysaccharides cationiques décrits plus particulièrement dans les brevets US 3,589,578, US 4,031,307, tels que les gommes de guar contenant des groupements cationiques trialkylammonium. On utilise par exemple des gommes de guar modifiées par un sel, comme le chlorure notamment, de 2,3-époxypropyl triméthylammonium;
- (5) les polymères constitués de motifs pipérazinyle et de radicaux divalents alkylène ou 30 hydroxyalkylène à chaînes droites ou ramifiées, éventuellement interrompues par des atomes d'oxygène,

10

25

12

de soufre, d'azote ou par des cycles aromatiques ou hétérocycliques, ainsi que les produits d'oxydation et/ou de quaternisation de ces polymères. De tels polymères sont notamment décrits dans FR 2 162 025, FR 2 280 361;

- (6) les polyaminoamides solubles dans l'eau préparés en particulier par polycondensation composé acide avec une polyamine, éventuellement réticulés, éventuellement alcoylés ou s'ils comportent ou plusieurs fonctions amines quaternisées. Ces polymères sont notamment décrits dans FR 2 252 840 et FR 2 368 508;
- (7) les dérivés de polyaminoamides résultant' de la condensation de polyalkylènes 15 polyamines avec des acides polycarboxyliques suivie d'une alcoylation par des agents bifonctionnels. On peut citer par exemple les polymères acide adipique= hydroxyalkyl dialkylène dialkylamino triamine lesquels le radical alkyle est en C_1-C_4 . De tels polymères sont notamment décrits dans FR 1 583 363 ; 20
 - les polymères obtenus par (8) réaction polyalkylène polyamine comportant ' groupements amine primaire et au moins un groupement amine secondaire avec un acide dicarboxylique choisi parmi l'acide diglycolique et les dicarboxyliques aliphatiques saturés en C3-C8, puis avec l'épichlorhydrine. De tels polymères sont notamment décrits dans US 3,227,615, US 2,961,347 ;
- (9) les cyclopolymères d'alkyl diallyl 30 amine ou de dialkyl diallyl ammonium, sous forme d'homopolymères ou de copolymères, tels que décrits

dans FR 2 080 759 et dans son certificat d'addition n^2 190 406 ;

quaternaire tels que décrits dans FR 2 320 330, FR 2 270 846, FR 2 316 271, FR 2 336 434, FR 2 413 907, US 2,273,780, US 2,375,853, US 2,388,614, US 2,454,547, US 3,206,462, US 2,261,002, US 2,271,378, US 3,874,870, US 4,001,432, US 3,929,990, US 3,966,904, US 4,005,193, US 4,025,617, US 4,025,627, US 4,025,653, US 4,026,945, US 4,027,020; par exemple, on peut citer ceux comprenant les motifs récurrents suivants:

dans laquelle les radicaux R^1 , R^2 , R^3 et R^4 , identiques ou différents, désignent un radical alkyle ou hydroxyalkyle en C_1 - C_4 , n et p sont des nombres entiers variant de 2 à 20 et, X^- est un anion dérivé d'un acide minéral ou organique ;

(11) les polymères de poly(ammonium 20 quaternaire) constitués de motifs récurrents de formule :

dans laquelle p désigne un nombre entier variant de 1 à 6 environ, D peut être nul ou peut représenter un groupement $-(CH_2)_r$ -CO- dans lequel r désigne un nombre

5

10

égal à 4 ou à 7, X⁻ est un anion. De tels polymères peuvent être préparés selon les procédés décrits dans US 4,157,388, US 4,702,906, US 4,719,282, EP 122 324;

- (12) les polymères quaternaires de 5 vinylpyrrolidone et de vinylimidazole;
 - (13) les polyamines du type polyéthylèneglycol (15) Tallow Polyamine (dénomination du dictionnaire CTFA);
- les polymères réticulés de sels (14) $m\acute{e}thacryloyloxyalkyl(C_1-C_4)$ trialkyl(C_1-C_4) ammonium tels 10 que les polymères obtenus par homopolymérisation quaternisé par le diméthylaminoéthylméthacrylate copolymérisation de par chlorure de méthyle, ou diméthylaminoéthylméthacrylate avec le l'acrylamide quaternisé par le chlorure de méthyle, l'homo ou 15 copolymérisation étant suivie d'une réticulation par un composé à insaturation oléfinique, en particulier le méthylène bis acrylamide. On peut plus particulièrement utiliser un copolymère réticulé acrylamide/chlorure de méthacryloyloxyéthyl triméthylammonium (20/80 en poids) 20 sous forme de dispersion contenant 50% en poids dudit copolymère dans de l'huile minérale (Salcare® SC 92 de également utiliser un homopolymère peut Ciba). On réticulé du chlorure de méthacryloyl triméthylammonium contenant environ 50% en poids de 25 l'homopolymère dans de l'huile minérale ou dans ester liquide (Salcare[®] SC 95, SC 96 de Ciba).

D'autres polymères conditionneurs cationiques utilisables dans le cadre de l'invention sont des polyalkylèneimines, en particulier des polyéthylèneimines, des polymères contenant des motifs

vinylpyridine ou vinylpyridinium, des condensats de polyamines et d'épichlorhydrine, des polyuréylènes quaternaires et les dérivés de la chitine.

Le ou les polymères conditionneurs 5 substantifs amphotères susceptibles d'être présents dans la composition oxydante peuvent, eux, notamment être choisis parmi ceux comportant des motifs K et Mrépartis statistiquement dans la chaîne polymère, où K désigne un motif dérivant d'un monomère comportant au 10 moins un atome d'azote basique et M désigne un motif dérivant d'un monomère acide comportant un ou plusieurs groupements carboxyliques ou sulfoniques ; ou bien K et désigner peuvent des groupements dérivant monomères zwittérioniques de carboxybétaïnes de 15 sulfobétaïnes ; ou encore K et M désignent une chaîne polymère cationique comportant des groupements amine primaire, secondaire, tertiaire ou quaternaire, dans laquelle au moins l'un des groupements amine porte un groupement carboxylique ou sulfonique relié 20 l'intermédiaire d'un radical hydrocarboné ; ou bien K et M font partie d'une chaîne d'un polymère à motif éthylène α, β -dicarboxylique dont l'un des groupements carboxyliques a réagi avec une polyamine comportant un ou plusieurs groupements amine primaire ou secondaire.

25 Les polymères conditionneurs amphotères répondant à la définition donnée ci-dessus plus particulièrement préférés, sont choisis parmi polymères suivants :

(1) les polymères résultant de la 30 copolymérisation d'un monomère dérivé d'un composé vinylique portant un groupement carboxylique tel que

10

15

20

25

30

16

plus particulièrement l'acide (méth)acrylique, l'acide maléique, l'acide alpha-chloracrylique, ou encore un sel de dialkyldiallylammonium tel que le chlorure de diméthyldiallylammonium, et d'un monomère basique dérivé d'un composé vinylique substitué contenant au moins un atome basique tel que plus particulièrement les dialkyl-amino-alkyl-méthacrylate et acrylate, dialkyl-amino-alkyl-méthacrylamide et acrylamide, comme décrits dans US 3,836,537. On peut citer le copolymère sodium/chlorure d'acrylamido de acrylate triméthyl ammonium (Polyquart KE 3033 de Cognis), le copolymère acide acrylique/chlorure de diméthyldiallyl ammonium (Merquat 280, 295, Plus 3330, de Nalco); (2) les polymères comportant des motifs dérivant : a) d'au moins monomère choisi un parmi .les (méth)acrylamides N-substitués par un radical alkyle, notamment en C_2 - C_{12} , b) d'au moins un monomère acide contenant un ou plusieurs groupements carboxyliques exemple acides (méth) acrylique, réactifs (par crotonique, itaconique, et les monoesters des acides ou anhydrides maléique, fumarique), et c) d'au moins un monomère basique tel que des esters à substituant amine primaire, secondaire, tertiaire et quaternaire acides (méth)acrylique, fumarique, maléique, produit de quaternisation du méthacrylate de diméthylamino-éthyle avec le sulfate de diméthyle ou diéthyle. utilise particulièrement les copolymères On octylacrylamide/acrylate/butylaminoéthyl méthacrylate (Amphomer ou Lovocryl 47 par la société National

Starch) ;

- (3) les polyaminoamides réticulés partiellement ou totalement alcoylés, dérivant polyaminoamides de formule générale -[CO-R5-CO-Z]- dans laquelle R⁵ est un radical divalent dérivé d'un acide dicarboxylique saturé ou non (par exemple les acides 5 adipique, triméthyl-2,2,4-adipique et triméthyl-2,4,4téréphtalique, itaconique), adipique, d'un monocarboxylique insaturé (comme l'acide (méth)acrylique), d'un ester d'alcool en C_1 - C_6 des 10 acides précités ou d'un radical dérivant de l'addition de l'un de ces acides avec une amine bis-primaire ou secondaire, et Z désigne un radical d'une polyalkylènepolyamine bis-primaire, mono- ou bis-secondaire. préférence, Z représente entre 60 et 100 moles %, le radical $-NH-[(CH_2)_x-NH]_p-$ avec x=2 et p=2 ou 3, ou x=315 et p=2 ; ce radical dérivant de la diéthylène triamine, de la triéthylène tétraamine ou de la dipropylène triamine; entre 0 et 40 moles % le radical ci-dessus, lequel x=2et p=1et qui dérive de 20 l'éthylènediamine, ou le radical dérivant de la pipérazine -N[CH₂CH₂]₂N- ; entre 0 et 20 moles %, -NH-(CH₂)₆-NHradical dérivant de l'hexaméthylène diamine. L'agent réticulant de ces polymères est un agent bifonctionnel choisi parmi les épihalohydrines, 25 les diépoxydes, les dianhydrides, les dérivés bis insaturés, et alcoylés par action d'acide acrylique, d'acide chloracétique ou d'une alcane sultone ou de leurs sels de métaux alcalins ;
- (4) les polymères comportant au moins des 30 motifs zwittérioniques, comme par exemple le copolymère de méthacrylate de butyle/méthacrylate de diméthyl

carboxy-méthyl-ammonio-éthyle (Diaformer Z301, Sandoz);

(5) les polymères dérivés du chitosane comportant des motifs monomères répondant aux formules (I), (II), (III) suivantes:

avec (I) représentant de 0 à 30%, (II) de 5 à 50% et (III) de 30 à 90% dans lequel R^6 représente un radical de formule :

$$R^{7}-C-(O)_{q}-C-H$$

10

15

20

25

5

dans laquelle q désigne zéro ou 1 ; et si q=0, les R⁷, R⁸, R⁹, identiques ou différents, représentent un hydrogène, un groupement méthyle, hydroxyle, acétoxy, amino, mono- ou di-alkylamine éventuellement interrompus par un ou plusieurs atomes d'azote et/ou éventuellement substitués par un ou plusieurs groupes amine, hydroxyle, carboxyle, alkylthio éventuellement porteur d'un groupe amino, sulfonique ; ou si q=1, les R⁷, R⁸, R⁹, identiques ou différents, représentent un hydrogène, ainsi que les sels formés par ces composés avec des bases ou des acides ;

(6) les polymères dérivés de la N-carboxyalkylation du chitosane comme le N-carboxyméthyl chitosane ou le N-carboxybutyl chitosane (Evalsan de Jan Dekker);

- dans laquelle R¹⁰ est un hydrogène, CH₃O-, CH₃CH₂O-, phényle, R¹¹ et R¹⁴, identiques ou différents, représentent un hydrogène, un radical alkyle (méthyle, éthyle), R¹³ représente un radical alkyle (méthyle, éthyle) ou un radical de formule -R¹²-N(R¹⁴)₂, R¹² représentant -(CH₂)₂-, -(CH₂)₃-, -CH₂-CH(CH₃)-, ainsi que les homologues supérieurs de ces radicaux et contenant jusqu'à 6 atomes de carbone, r est tel que le poids moléculaire est compris entre 500 et 6000000 et de préférence entre 1000 et 10000000;
- 15 (8) les polymères amphotères du type $-D^1-X-D^1-X-$ choisis parmi:
 - a) les polymères obtenus par action de l'acide chloracétique ou le chloracétate de sodium sur les composés comportant au moins un motif de formule $-D^1-X-D^1-X-D^1-$ où D^1 désigne un radical pipérazinyle et X désigne le symbole E ou E', E ou E' identiques ou différents désignent un radical bivalent qui est un radical alkylène à chaîne droite ou ramifiée comportant jusqu'à 7 atomes de carbone dans la chaîne principale substituée ou non par des groupements hydroxyle et pouvant comporter en outre des atomes d'oxygène,

d'azote, de soufre, 1 à 3 cycles aromatiques et/ou hétérocycliques; les atomes d'oxygène, d'azote et de soufre étant présents sous forme de groupements éther, thioéther, sulfoxyde, sulfone, sulfonium, alkylamine, alkénylamine, des groupements hydroxyle, benzylamine, oxyde d'amine, ammonium quaternaire, amide, imide, alcool, ester et/ou uréthanne;

- b) les polymères de formule $-D^1-X-D^1-X-$ où D¹ désigne un radical pipérazinyle et X désigne le symbole E ou E' et au moins une fois E'; E ayant la signification indiquée ci-dessus et E' est un radical bivalent qui est un radical alkylène à chaîne droite ou ramifiée ayant jusqu'à 7 atomes de carbone dans la chaîne principale, substitué ou non par un ou plusieurs radicaux hydroxyle et comportant un ou plusieurs atomes d'azote, l'atome d'azote étant substitué par une chaîne éventuellement par alkyle interrompue obligatoirement comportant d'oxygène et fonctions carboxyle ou une ou plusieurs plusieurs fonctions hydroxyle et bétaïnisées par réaction avec l'acide chloracétique ou du chloracétate de soude ;
 - (9) les copolymères alkyl(C₁-C₅)-vinyléther/anhydride maléique modifié partiellement par semi-amidification avec une N,N-dialkylaminoalkylamine telle que la N,N-diméthyl-amino-propylamine, ou par semi-estérification avec une N,N-dialcanolamine. Ces copolymères peuvent également comporter d'autres comonomères vinyliques tels que le vinylcaprolactame.

Parmi les polymères conditionneurs 30 cationiques ou amphotères utilisables, on préfère notamment:

10

15

20

(i) parmi les cationiques :

- l'homopolymère de chlorure de diméthyldiallylammonium (Merquat 100 de Nalco);
- les copolymères de chlorure de diméthyl5 diallylammonium et d'acrylamide (Merquat 2200 de Nalco);
 - les polymères de type poly(ammonium quaternaire) préparés et décrits dans FR 2 270 846, constitués de motifs récurrents de formules (W) et (U) suivantes :

$$\begin{array}{c|ccccc} CH_{3} & CH_{3} \\ & & \\ \hline - N^{+}_{C\Gamma} (CH_{2})_{3} - N^{+}_{C\Gamma} (CH_{2})_{6} \end{array} \qquad \textbf{(W)}$$

$$CH_{3} & CH_{3}$$

et notamment ceux dont le poids moléculaire, déterminé par chromatographie par perméation de gel, est compris entre 9500 et 9900 ;

$$\begin{array}{c|cccc}
CH_3 & C_2H_5 \\
 & | & | \\
\hline
-N^+ & (CH_2)_3 & N^+ & (CH_2)_3 & \hline
& | Br & | Br & |
\end{array}$$

$$\begin{array}{c|ccccc}
CH_3 & C_2H_5 & |
\end{array}$$

$$\begin{array}{c|ccccc}
CH_3 & C_2H_5 & |
\end{array}$$

et notamment ceux dont le poids moléculaire, déterminé par chromatographie par perméation de gel, est d'environ 1200;

- les polymères de type poly(ammonium quaternaire) de la famille (11) avec X⁻ désignant le chlore, et notamment ceux dont la masse moléculaire moyenne en poids est inférieure à 100 000, de préférence inférieure ou égale à 50 000;

10

(ii) parmi les polymères amphotères :

- le copolymère chlorure de diméthyldiallylammonium/acide acrylique (80/20) (Merquat 280 de Nalco-dénomination CTFA : Polyquaternium 22);
- 5 le copolymère chlorure de diméthyldiallylammonium /acide acrylique (95/5) (Merquat 295 de Nalco);
 - le copolymère de chlorure de méthacrylamidopropyl trimonium, d'acide acrylique et d'acrylate d'éthyle (Merquat 2001 de Nalcodénomination CTFA: Polyquaternium 47);
 - le terpolymère acrylamide/chlorure de diméthyldiallyl ammonium/acide acrylique (Merquat Plus 3330 de Nalco-dénomination CTFA: Polyquaternium 39).
- Lorsque la composition réductrice comprend un ou plusieurs polymères conditionneurs cationiques ou amphotères, alors celui-ci ou ceux-ci représentent généralement de 0,01 à 10% en poids et, mieux encore, de 0,05 à 5% du poids total de cette composition.

20

10

(B) <u>les polymères amphiphiles non ioniques, anioniques, cationiques ou amphotères, comportant une chaîne hydrophobe</u>:

Plus particulièrement, la chaîne hydrophobe 25 une chaîne hydrocarbonée, saturée aromatique ou non, linéaire ou ramifiée, en $C_6 - C_{30}$, comprenant éventuellement un ou plusieurs motifs oxyalkylénés (oxyéthylénés et/ou oxypropylénés).

Parmi les polymères amphiphiles cationiques 30 comportant une chaîne hydrophobe, on peut trouver des polyuréthannes cationiques ou des copolymères cationiques comprenant des motifs vinyllactame et en particulier vinylpyrrolidone.

De préférence, les polymères amphiphiles comportant une chaîne hydrophobe sont de nature non ionique ou anionique.

A titre d'exemples de polymères amphiphiles non ioniques à chaîne hydrophobe, on peut citer entre autres :

- (1)les celluloses modifiées des 10 groupements comportant au moins une chaîne hydrocarbonée, saturée ou non, linéaire ou ramifiée, en C_6-C_{30} , comme les hydroxyéthylcelluloses modifiées par groupements comportant au moins une chaîne hydrophobe telle que définie auparavant, comme notamment Natrosol Plus Grade 330 CS (alkyles en C_{16} -15 commercialisé par la société Aqualon) ; Bermocoll EHM (commercialisé par la société Berol Nobel), Amercell Polymer HM-1500 (hydroxyéthylcellulose modifiée par un groupement polyéthylène glycol (15) éther de nonylphénol - commercialisé par la société 20 Amerchol) ;
- (2) les hydroxypropylguars modifiés par des groupements comportant au moins une chaîne hydrophobe telle que définie, par exemple Jaguar XC-95/3 (chaîne alkyle en C₁₄ commercialisé par la société Rhodia Chimie) ; Esaflor HM 22 (chaîne alkyle en C₂₂ commercialisé par la société Lamberti) ; RE210-18 (chaîne alkyle en C₁₄) et RE205-1 (chaîne alkyle en C₂₀) commercialisés par la société Rhodia Chimie ;
- 30 (3) les copolymères de vinylpyrrolidone et de monomères hydrophobes à chaîne hydrophobe telle que

définie auparavant comme par exemple Antaron ou Ganex V216 (copolymères vinylpyrrolidone/hexadécène); Antaron ou Ganex V220 (copolymères vinylpyrrolidone / eicosène), commercialisés par la société I.S.P;

- (4) les copolymères de (méth)acrylates d'alkyles en C_1-C_6 et de monomères amphiphiles comportant une chaîne hydrophobe;
 - (5) les copolymères de (méth)acrylates hydrophiles et de monomères hydrophobes comportant au moins une chaîne hydrophobe, tels que par exemple le copolymère méthacrylate de polyéthylèneglycol/méthacrylate de lauryle;
 - (6) les polymères à squelette aminoplaste éther possédant au moins une chaîne grasse, tels que les composés Pure Thix commercialisés par la société Süd-Chemie;
 - polyuréthannes, polyéthers (7) les linéaires (structure à blocs), greffés ou en étoile, comportant dans leur chaîne, au moins une séquence généralement polyoxyéthylénée et pouvant hydrophile, comprendre entre 50 et 1000 motifs oxyéthylène environ, hydrophobe, quï peut séquence une moins aliphatiques seuls, groupements comprendre des à des enchaînements éventuellement combinés cycloaliphatiques et/ou aromatiques. De préférence, les polyéthers polyuréthannes comportent au moins deux chaînes hydrophobes hydrocarbonées en C₆-C₃₀, séparées par une séquence hydrophile ; les chaînes hydrophobes pouvant être des chaînes pendantes ou des chaînes à l'une ou plusieurs des extrémités de la séquences hydrophiles.

10

15

20

25

Les polyéthers polyuréthannes comportent une liaison uréthanne entre les séquences hydrophiles, mais peuvent aussi comprendre des séquences hydrophiles liées aux séquences lipophiles par d'autres liaisons chimiques.

Les polyéthers polyuréthannes sont particulier ceux décrits dans l'article de G. Fonnum, Bakke et Fk. Hansen - Colloid Polym. 380-389 titre d'exemples (1993).A de polyéthers polyuréthannes, peut on citer Nuvis FX 1100 (désignation I.N.C.I. européenne et américaine "Steareth-100/PEG-136/H.M.D.I. Copolymer" commercialisé par la société Servo Delden) ; Rheolate 205, 208, 204 ou 212 (commercialisés par la société Rheox) ; Elfacos T210 (chaîne alkyle en C_{12} - C_{14}) Elfacos T212 (chaîne alkyle en C_{18}) commercialisés par la société Akzo.

Les polymères amphiphiles anioniques à chaîne hydrophobe, susceptibles d'être mis en œuvre comportent au moins à titre de chaîne hydrophobe, une chaîne hydrocarbonée, saturée ou non, aromatique ou non, linéaire ou ramifiée, en C_8 - C_{30} .

Plus particulièrement les polymères amphiphiles anioniques comportant au moins une chaîne hydrophobe, réticulés ou non, comprennent au moins un motif hydrophile dérivé d'un ou de plusieurs monomères à insaturation éthylénique portant une fonction acide carboxylique, ou une fonction acide sulfonique, libre ou partiellement ou totalement neutralisée, et au moins un motif hydrophobe dérivé d'un ou de plusieurs monomères à insaturation éthylénique portant une chaîne latérale hydrophobe, et éventuellement au moins un

5

10

15

20

25

motif de réticulation dérivés d'un ou plusieurs monomères polyinsaturés.

Des polymères amphiphiles anioniques du type décrit ci-dessus sont décrits et préparés, par exemple dans les brevets US 3,915,921 et US 4,509,949 (copolymères d'acide (méth)acrylique et de (méth)acrylates d'alkyles en C_{10} - C_{30}) ou dans le brevet EP 216 479 (copolymères d'acide (méth)acrylique et d'éthers allyliques d'alcools gras).

Les polymères amphiphiles comportant au moins un groupement sulfonique, sous forme libre ou partiellement ou totalement neutralisée et au moins une partie hydrophobe sont, par exemple, décrits dans FR 00 16954 et FR 01 00328 dont le contenu fait partie intégrante de la présente invention.

On peut citer plus particulièrement parmi eux le copolymère acide acrylamido-2-méthyl-2-propane-sulfonique (AMPS)/n-dodécylacrylamide neutralisé par la soude, le copolymère réticulé par du méthylène-bis-acrylamide constitué de 75% en poids de motifs AMPS neutralisés par NH3 et de 25% en poids de motifs acrylate de Genapol T-250, le copolymère réticulé par du méthacrylate d'allyle constitué de 90% en poids de motifs AMPS neutralisés par NH3 et de 10% en poids de motifs méthacrylate de Genapol T-250, ou le copolymère réticulé par du méthacrylate d'allyle constitué de 80% en poids de motifs AMPS neutralisés par NH3 et de 20% en poids de motifs AMPS neutralisés par NH3 et de 20% en poids de motifs méthacrylate de Genapol T-250.

On peut citer à titre d'exemples de 30 polymères préférés, Carbopol ETD-2020 (copolymère acide acrylique/méthacrylate d'alkyle en C₁₀-C₃₀, réticulé -

5

20

commercialisé par la société Noveon); Carbopol 1382, Pemulen TR1, Pemulen TR2 (copolymères acrylique/acrylate d'alkyle en C₁₀-C₃₀, réticulés commercialisés par la société Noveon) le copolymère acide méthacrylique/acrylate d'éthyle/méthacrylate de stéaryle oxyéthyléné (55/35/10); le copolymère acide (méth)acrylique/acrylate d'éthyle/méthacrylate de béhényle oxyéthyléné 25 OE (Aculyn 28 commercialisé par Haas) et le copolymère réticulé acide méthacrylique/acrylate d'éthyle/stéareth-10 allyl éther.

Lorsque la composition réductrice comprend un ou polymères amphiphiles à chaîne hydrophobe, alors celui-ci ou ceux-ci représentent généralement de 0,05 à 20 % en poids et, mieux encore, de 0,1 à 10 % du poids total de cette composition.

(C) les agents tensioactifs :

Le ou les agents tensioactifs susceptibles d'être présents dans la composition réductrice peuvent être indifféremment choisis parmi les tensioactifs anioniques, non ioniques, amphotères et cationiques.

Des agents tensioactifs anioniques, non ioniques, amphotères ou cationiques convenant à la mise 25 en œuvre de l'invention sont notamment les suivants :

• tensioactifs anioniques :

A titre d'exemples d'agents tensioactifs anioniques susceptibles d'être utilisés, seuls ou en mélanges, on peut citer les sels, en particulier les sels alcalins (sels de sodium, sels de magnésium, sels d'ammonium, sels d'amines, sels d'aminoalcools, ...) des

5

10

15

20

composés suivants : alkylsulfates, alkyléthersulfates, alkylamidoéthersulfates, alkylarylpolyéthersulfates, monoglycérides. sulfates alkylsulfonates, ; alkylphosphates, alkylamidesulfonates, alkylarylsulfonates, α -oléfine-sulfonates, paraffine-sulfonates; alkyl(C_6 -C₂₄) sulfosuccinates, alkyl(C_6-C_{24})éthersulfosuccinates, alkyl (C_6-C_{24}) amidesulfosuccinates, $alkyl(C_6-C_{24})sulfo$ acétates ; $acyl(C_6-C_{24})$ sarcosinates et $acyl(C_6-C_{24})$ glutamates.

10 On peut aussi citer les esters d'alkyl(C6-C₂₄) polyglycosides carboxyliques tels que alkylpolyglucoside citrates, les alkylpolyglucoside tartrates, les alkylpolyglucoside sulfosuccinates les alkylpolyglucoside sulfosuccinamates ; les .acyl-15 iséthionates et les N-acyltaurates, le radical alkyle acyle de tous ces composés comportant, de préférence, de 12 à 20 atomes de carbone, et le radical aryle désignant, de préférence, un groupement phéhyle ou benzyle.

20 Sont également utilisables les d'acides gras tels que les sels des acides oléique, ricinoléique, palmitique et stéarique, des acides d'huile de coprah ou d'huile de coprah hydrogénée ; les acyllactylates dont le radical acyle comporte de 8 à 20 25 atomes de carbone ; les acides d'alkyl D galactoside uroniques et leurs sels ; les acides alkyl (C_6-C_{24}) éther carboxyliques polyoxyalkylénés, les acides alkyl(C6-C₂₄) amido éther carboxyliques polyoxyalkylénés et leurs sels, en particulier ceux comportant de 2 à 50 groupes 30 oxydes d'alkylène et, plus spécialement oxydes d'éthylène, et leurs mélanges.

• tensioactifs non ioniques :

5

10

.15

20

25

Les agents tensioactifs non ioniques sont des composés bien connus en eux-mêmes (voir, par exemple, le "Handbook of Surfactants", M.R. PORTER, Ed. Blackie & Son, Glasgow and London, 1991, 116-178) et leur nature ne revêt pas, dans le cadre de la présente invention, de caractère critique.

Ainsi, utilisés seuls ou en mélanges, peuvent notamment être choisis parmi les alcools, α -diols, les alkylphénols polyéthoxylés propoxylés ayant une chaîne grasse comportant, exemple, de 8 à 18 atomes de carbone, le nombre de groupes oxydes d'éthylène ou oxydes de propylène pouvant être notamment de 2 à 50 ; les copolymères d'oxyde d'éthylène et de propylène, les condensats d'oxyde d'éthylène et de propylène sur des alcools gras, les amides gras polyéthoxylés ayant, préférence, de 2 à 30 moles d'oxyde d'éthylène ; les amides gras polyglycérolés comportant en moyenne de 1 à 5 et, plus spécialement, de 1,5 à 4, groupes glycérol ; esters d'acide gras du sorbitan oxyéthylénés comportant de 2 à 30 moles d'oxyde d'éthylène ; les esters d'acides gras du sucrose, les esters d'acides gras du polyéthylèneglycol ; les alkylpolyglycosides ; les dérivés de N-alkyl glucamine et les oxydes d'amines tels que les oxydes d'alkyl $(C_{10}-C_{14})$ amines ou oxydes de N-acylaminopropylmorpholine.

• tensioactifs amphotères :

Les agents tensioactifs amphotères (ou 30 zwittérioniques); dont la nature ne revêt pas de caractère critique dans le cadre de la présente

invention, peuvent notamment être choisis, seuls ou en mélanges, parmi les dérivés d'amines secondaires ou tertiaires aliphatiques dont le radical aliphatique est une chaîne linéaire ou ramifiée comportant de 8 à 18 atomes de carbone et contenant au moins un groupe anionique hydrosolubilisant, par exemple un carboxylate, un sulfonate, un sulfate, un phosphonate ou un phosphonate.

On peut également citer les alkyl(C_8 - C_{20}) bétaïnes, les sulfobétaïnes, les alkyl(C_8 - C_{20}) amidoalkyl(C_1 - C_6) bétaïnes et les alkyl(C_8 - C_{20}) amidoalkyl(C_1 - C_6) sulfobétaïnes.

Parmi les dérivés d'amines, on peut notamment citer les composés commercialisés par société Rhodia Chimie sous la dénomination commerciale Miranol[®], qui sont décrits dans US 2,528,378 US 2,781,354 et qui sont classés dans le Dictionnaire CTFA, 5 ème édition, 1993, sous les désignations anglosaxonnes "disodium cocoamphodiacetate", lauroamphodiacetate", "disodium caprylamphodiacetate", "disodium capryloamphodiacetate", "disodium cocoamphodipropionate", "disodium lauroamphodipropionate", "disodium caprylamphodipropionate", "disodium capryloamphodipropionate", "lauroamphodiproponic acid" et "cocoamphodipropionic acid".

• tensioactifs cationiques :

Comme agents tensioactifs cationiques aptes à être utilisés seuls ou en mélanges, on peut citer les sels d'amines grasses primaires, secondaires et tertiaires, éventuellement polyoxyalkylénées; les sels d'ammonium quaternaire tels que les chlorures et les

5

15

20

25

bromures de tétraalkylammonium, d'alkylamidoalkyltrialkylammonium, de trialkylbenzylammonium, de trialkylhydroxyalkylammonium et d'alkylpyridinium; les dérivés d'imidazoline et les oxydes d'amines à caractère cationique.

Lorsque la composition réductrice comprend un ou plusieurs agents tensioactifs, alors celui-ci ou ceux-ci représentent généralement de 0,01 à 40% en poids et, mieux encore, de 0,1 à 30% du poids total de cette composition.

(D) <u>les agents d'ajustement de la rhéologie autres que</u> <u>les polymères (B):</u>

Au sens de la présente invention, on entend 15 par "agent d'ajustement de la rhéologie", tout composé propre à conférer une viscosité à la composition réductrice telle que, une fois appliquée sur des fibres kératiniques, cette dernière ne coule pas et reste parfaitement localisée au point d'application.

20 Notons que ledit agent est dépourvu chaîne hydrophobe, c'est-à-dire de chaîne hydrocarbonée, saturée ou non, aromatique ou non, linéaire ramifiée, ou en C_8-C_{30} , comprenant éventuellement un ou plusieurs motifs oxyalkylénés 25 (oxyéthylénés et/ou oxypropylénés).

Le ou les agents d'ajustement la rhéologie susceptibles d'être présents dans la composition réductrice sont des polymères d'origine naturelle les polymères ou synthétiques, avantageusement choisis parmi ceux utilisés classiquement dans le domaine cosmétique.

5

10

Comme exemples de polymères synthétiques, la polyvinylpyrrolidone, l'acide peut citer, on polyacrylamide, l'acide polyacrylique, le poly-2acrylamidopropanesulfonique non réticulé (Simugel EG de 5 société SEPPIC), l'acide poly-2-acrylamido-2la méthylpropane sulfonique réticulé, libre partiellement neutralisé par l'ammoniaque (Hostacerin Clariant), des mélanges d'acide acrylamido-2-méthylpropane sulfonique non réticulé avec éthers d'hydroxyalkylcellulose 10 ou poly(oxyde d'éthylène) tels que décrits dans le brevet US 4,540,510 des mélanges d'acide poly (méth) acrylamido-alkyl (C_1-C_4) -sulfonique, de préférence réticulé, avec un copolymère réticulé de 15 l'anhydride maléique et d'un alkyl (C_1-C_5) vinyléther. (Hostacerin AMPS/Stabileze QM de la société ISF).

Les polymères épaississants d'origine naturelle sont de préférence des polymères comportant au moins un motif sucre, comme les gommes de guar non 20 ioniques, modifiées ou non des par groupements $C_1 - C_6$ les gommes de hydroxyalkyle en ; biopoly saccharides d'origine microbienne telles que les gommes de scléroglucane ou de xanthane ; les gommes issues d'exudats végétaux telles que les gommes arabique, ghatti, karaya, tragacanthe, carraghénanne, caroube ; les pectines ; les alginates ; les amidons ; les hydroxyalkyl(C_1 - C_6)celluloses et carboxyalkyl(C_1 -C₆) celluloses.

"motif Notons que les termes sucre" 30 désignent une portion monosaccharidique (c'est-à-dire monosaccharide ou oside ou sucre simple), une portion

oligosaccharidique (chaînes courtes formées de l'enchaînement d'unités monosaccha ridiques, éventuellement différentes) ou une polysaccharidique [longues chaînes constituées d'unités monosaccharidiques, éventuellement différentes, à-dire polyholosides ou polyosides]. Les saccharidiques peuvent être en outre substituées par des radicaux alkyle, ou hydroxyalkyle, ou alcoxy, ou acyloxy, ou carboxyle, les radicaux alkyle en C_1 - C_4 .

A titre d'exemples de gommes de guar non ioniques non modifiées, on peut citer entre autres Guargel D/15 (Noveon); Vidogum GH 175 (Unipectine), Meypro-Guar 50 et Jaguar C (Meyhall/Rhodia Chimie); et à titre de gommes de guar non ioniques modifiées, Jaguar HP8, HP60, HP120, DC 293, HP 105 (Meyhall/Rhodia Chimie); Galactasol 4H4FD2 (Aqualon).

Les gommes de biopolysaccharides d'origine microbienne, végétale sont bien connues de l'homme de l'art et décrites notamment dans l'ouvrage de Robert L. Davidson intitulé "Handbook of Water soluble gums and resins" édité chez Mc Graw Hill Book Company (1980).

Parmi ces gommes, citons les scléroglucanes comme notamment Actigum CS de Sanofi Bio Industries; Amigel de Alban Muller International, ainsi que les scléroglucanes traités au glyoxal décrits dans FR 2 633 940); les gommes xanthanes comme Keltrol, Keltrol T, Keltrol Tf, Keltrol Bt, Keltrol Rd, Keltrol Cg (Nutrasweet Kelco), Rhodicare S, Rhodicare H (Rhodia Chimie); les dérivés d'amidon comme Primogel (Avebe); les hydroxyéthylcelluloses telles que Cellosize QP3L, QP4400H, QP30000H, HEC30000A, Polymer PCG10 (Amerchol),

5

20

25

Natrosol 250HHR, 250MR, 250M, 250HHXR, 250HHX, 250HR, HX (Hercules), Tylose H1000 (Hoechst); les hydroxypropylcelluloses comme Klucel EF, H, LHF, MF, G (Aqualon); les carboxyméthylcelluloses comme Blanose 7M8/SF, raffinée 7M, 7LF, 7MF, 9M31F, 12M31XP, 12M31P, 9M31XF, 7H, 7M31, 7H3SXF (Aqualon), Aquasorb A500 (Hercules), Ambergum 1221 (Hercules), Cellogen HP810A, HP6HS9 (Montello), Primellose (Avebe).

La composition peut de plus comprendre, en remplacement ou en association avec au moins un agent d'ajustement de la rhéologie, au moins un alkylamide d'acide carboxylique en C₆-C₃₀, linéaire ou non, saturé ou non, et portant éventuellement un ou plusieurs groupements hydroxyle.

Par ailleurs, l'azote du groupement amide peut être mono- ou disubstitué. Il est de préférence monosubstitué.

L'amide peut comprendre de 1 à 20 motifs oxyalkylénés (oxyéthylénés et/ou oxypropylénés), de préférence, oxyéthylénés.

Lorsque la composition réductrice comprend un ou plusieurs agents d'ajustement de la rhéologie, alors celui-ci ou ceux-ci représentent généralement de 0,05 à 20% en poids et, mieux encore, de 0,1 à 10% du poids total de cette composition.

(E) les agents d'ajustement du pH :

Le pH de la composition réductrice peut être compris entre 1,5 et 12.

Toutefois, on préfère que ce pH soit compris entre 1,5 et 10 et, mieux encore, entre 1,5 et

5

20

. 25

7 dans le cas où la composition réductrice est destinée à la décoloration de fibres kératiniques, et qu'il soit compris entre 6 et 12 et, de préférence, entre 7 et 11 lorsque ladite composition est destinée à la déformation permanente de fibres kératiniques.

De telles valeurs de pH peuvent être obtenues au moyen d'agents acidifiants ou alcalinisants.

A titre d'exemples d'agents acidifiants 10 susceptibles d'être utilisés, on peut citer les acides minéraux ou organiques comme l'acide chlorhydrique, phosphorique, l'acide l'acide orthophosphorique, l'acide acétique, l'acide tartrique, l'acide citrique, l'acide lactique, l'acide borique et les acides 15 sulfoniques.

Les agents alcalinisants peuvent, eux, être notamment choisis parmi l'ammoniaque, les carbonates alcalins ou d'ammonium, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxyalkylamines, les éthylène-diamines oxyéthylénées et/ou oxypropylénées, les hydroxydes de sodium ou de potassium et les composés répondant à la formule (XIX) suivante :

$$R^{16}$$
 $N - R^{15}$ N^{18} R^{18}

(XIX)

dans laquelle :

5

20

- R^{15} est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en $C_1\text{-}C_4$; tandis que
- R^{16} , R^{17} , R^{18} et R^{19} , qui sont identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_4 ou un radical hydroxyalkyle en C_1 - C_4 .

Lorsque la composition réductrice comprend un ou plusieurs agents acidifiants ou un ou plusieurs 10 agents alcalinisants, alors celui-ci ou ceux-ci représentent généralement de 0,01 à 30% en poids du poids total de cette composition.

(F) les solvants :

5

15 Les solvants susceptibles d'être présents dans la composition réductrice sont notamment l'eau et . mélanges composés d'eau et d'un ou plusieurs solvants organiques acceptables sur le plan cosmétique, 🕫 solvants organiques pouvant être 20 particulier des alcools tels que l'éthanol, l'isopropanol, l'alcool benzylique, l'alcool phényléthylique ou l'alcool cétylique, des polyols comme le propylèneglycol et le glycérol ; des éthers de glycols éthers monométhylique, monoéthylique les monobutylique d'éthylèneglycol, ainsi que des alkyl-25 éthers de glycols comme le monoéthyléther ou le monobutyléther du diéthylèneglycol.

Ce ou ses solvants organiques, lorsqu'ils sont présents dans la composition réductrice, représentent généralement de 0,5 à 20% en poids et,

mieux encore, de 2 à 10% en poids du poids total de cette composition.

composition réductrice La peut comprendre, selon l'usage auquel elle est destinée et les propriétés particulières que l'on souhaite lui 5 conférer en fonction de cet usage, un ou plusieurs adjuvants choisis parmi les charges minérales organiques telles que la silice ou les argiles, les liants tels que la vinylpyrrolidone, les huiles ou les 10 les polyalkylèneglycols ou les dérivés polyalkylèneglycols, les lubrifiants tels que de polyols ou les stéarates de stéarates alcalins ou alcalino-terreux, les agents antimousse, les silicones volatiles ou non volatiles, cycliques, linéaires ou ramifiées, et éventuellement modifiées, 15 notamment par des groupements amines, les colorants, les agents matifiants comme les oxydes de titane, les conservateurs, et/ou les parfums.

Chacun de ces adjuvants peut représenter, 20 lorsqu'il est présent dans la composition réductrice, jusqu'à 30% en poids du poids total de cette composition.

Conformément à l'invention, la composition réductrice est, de préférence, destinée à la décoloration ou à la déformation permanente de fibres kératiniques humaines et, plus spécialement, de cheveux.

L'utilisation des composés de formule (I) en tant qu'agents complexants dans des compositions 30 pour la décoloration ou la déformation permanente de

fibres kératiniques, et notamment de fibres capillaires, présente de nombreux avantages.

effet, non seulement manifestent de remarquables propriétés complexantes vis-à-vis des cations métalliques et réduisent, ainsi, considérablement le risque de voir la décoloration ou déformation permanente s'accompagner indésirables du type cassure des cheveux ou brûlures du cuir chevelu, mais il s'avère qu'ils sont, de plus, très solubles dans l'eau et stables en milieu aqueux, compatibles avec l'ensemble des composés susceptibles d'entrer dans la constitution de compositions réductrices à visée capillaire, très bien tolérés par la peau, biodégradables, et relativement peu onéreux.

L'invention a également pour objet une composition réductrice pour la décoloration déformation permanente de fibres kératiniques, comprenant au moins un agent réducteur, composition étant caractérisée en ce qu'elle comprend de plus au moins un composé répondant à la formule générale (I) suivante :

$$R-(CHOH)_4-CO_2X$$
 (I)

25 dans laquelle :

5

10

15

- R représente un groupe CH2OH ou CO2X, et
- X représente un atome d'hydrogène ou un cation monovalent ou divalent, issu d'un métal alcalin, d'un métal alcalino-terreux, d'un métal de transition, d'une amine organique, ou un cation ammonium,

à la condition que, lorsque R est égal à CH_2OH , ledit agent réducteur est choisi parmi la cystéine, la cystéamine, leurs sels et leurs esters, les sulfites, les sulfinates et les réductones.

Il est rappelé que les réductones sont plus particulièrement choisies parmi l'acide ascorbique, l'acide érythorbique, leurs sels ou leurs esters.

Le cation monovalent ou divalent est, préférence, choisi dans le groupe constitué par les cations monovalents de métaux alcalins, les cations alcalino-terreux, divalents de métaux les divalents de métaux de transition, les cations monovalents issus d'amines organiques ou d'ammonium.

Comme précédemment, lorsque R représente un groupe CH₂OH, alors le ou les composés de formule (I) sont choisis, de préférence, dans le groupe constitué par l'acide gluconique, ses sels de métaux alcalins, ses sels de métaux alcalino-terreux, ses sels de métaux de transition, ses sels d'amines organiques, ses sels d'ammonium, et leurs mélanges.

Plus préférentiellement, le ou les composés de formule (I) sont choisis dans le groupe constitué par l'acide gluconique, le gluconate de sodium, potassium, le gluconate gluconate de de calcium anhydre, le gluconate de calcium monohydraté, borogluconate de calcium, le gluconate de magnésium, le fer, le gluconate de manganèse, gluconate de gluconate de zinc et le gluconate de cuivre.

Lorsque R représente un groupe CO_2X , alors le ou les composés de formule (I) sont, de préférence, choisis dans le groupe constitué par l'acide mucique,

10

l'acide glucarique, l'acide mannarique, leurs sels de métaux alcalins, leurs sels de métaux alcalino-terreux, leurs sels de métaux de transition, et leurs mélanges, auquel cas le ou les agents réducteurs sont, préférence, choisis parmi les réductones et en particulier l'acide ascorbique, l'acide érythorbique, leurs sels et leurs esters, les thiols, particulier l'acide thioglycolique, l'acide diglycolique, l'acide thiolactique, la cystéamine, cystéine, leurs sels et leurs esters, les sulfites et les sulfinates.

De manière particulièrement préférée, le ou les composés de formule (I) sont choisis parmi l'acide gluconique et l'acide mucique.

- 15 Conformément à l'invention, on préfère notamment les compositions réductrices comprenant : :
 - de l'acide gluconique et/ou de l'acide mucique en tant qu'agent(s) complexant(s), et d'éliacide ascorbique et/ou du sulfite de sodium et/ou de l'hydroxyméthane sulfinate de sodium en tant qu'agent(s) réducteur(s);
 - de l'acide mucique en tant qu'agent complexant, et de l'acide thioglycolique et/ou de l'acide thiolactique et/ou de la cystéine en tant qu'agent(s) réducteur(s).

De manière encore plus préférée, le composé de formule (I) est l'acide mucique.

Dans tous les cas, le ou les composés de formule (I) représentent, de préférence, de 0,001 à 10% en poids et, mieux encore, de 0,001 à 5% en poids du poids total de la composition réductrice, tandis que le

5

10

20

25

ou les agents réducteurs représentent, avantageusement, de 0,1 à 30% en poids et, mieux encore, de 0,5 à 20% en poids du poids total de cette composition.

précédemment, la Comme composition réductrice comprend de préférence, en plus du ou des composés de formule (I) et du ou des agents réducteurs, plusieurs (A) polymères conditionneurs ou : amphotères, et/ou (B) polymères cationiques ou amphiphiles non ioniques, anioniques, cationiques ou amphotères, comportant une chaîne hydrophobe, et/ou (C) agents tensioactifs, et/ou (D) agents d'ajustement de la rhéologie différents des polymères (B), et/ou (E) agents d'ajustement du pH, et/ou (F) solvants.

Ces polymères, agents tensioactifs, agents d'ajustement de la rhéologie, agents d'ajustement du pH et solvants peuvent être choisis parmi ceux énumérés ci-avant et sont, de préférence, présents dans la composition réductrice dans des proportions analogues à celles précédemment indiquées.

Selon l'usage auquel elle est destinée et les propriétés particulières que l'on souhaite composition réductrice conférer, la peut comprendre un ou plusieurs adjuvants choisis parmi les charges minérales ou organiques, les liants, lubrifiants, les agents antimousse, les silicones, les les agents colorants, agents matifiants, les conservateurs, et/ou les parfums.

L'invention a aussi pour objet un procédé de décoloration ou de déformation permanente de fibres kératiniques, comprenant les étapes consistant à :

5

10

15

20

25

- a) appliquer sur les fibres kératiniques une composition réductrice telle que précédemment définie;
- b) laisser reposer la composition 5 réductrice sur les fibres kératiniques pendant un temps suffisant pour obtenir la décoloration ou la déformation recherchée;
 - c) rincer les fibres kératiniques pour en éliminer la composition réductrice ;
- d) laver les fibres kératiniques une ou plusieurs fois, les rincer après chaque lavage et, éventuellement, les sécher;

ledit procédé comprenant de plus, entre les étapes c) et d), dans le cas d'une déformation permanente, les étapes consistant à : i) appliquer sur les fibres kératiniques une composition oxydante, par exemple à base de peroxyde d'hydrogène ; ii) laisser reposer là composition oxydante sur les fibres kératiniques pendant un temps suffisant pour obtenir la déformation recherchée ; et iii) rincer les fibres kératiniques à

l'eau pour en éliminer la composition oxydante.

A l'étape b), le temps pendant lequel on laisse la composition réductrice reposer sur les fibres kératiniques peut varier de 1 à 60 minutes, mais est, de préférence, compris entre 10 et 45 minutes, tandis que, à l'étape ii), le temps de repos de la composition oxydante sur les fibres kératiniques est de l'ordre de 1 à 20 minutes et, de préférence, de 1 à 10 minutes.

Dans le cas d'une déformation permanente, 30 des moyens mécaniques de mise sous tension des fibres kératiniques tels que des bigoudis, peuvent être

utilisés avant, pendant ou après application de la composition réductrice et être ôtés avant ou après le rinçage de la composition oxydante.

L'invention a aussi pour objet un dispositif ou "kit" pour la décoloration de fibres kératiniques, comprenant au moins deux compositions A et B destinées à être mélangées ensemble pour obtenir une composition réductrice prête à l'emploi, ledit dispositif étant caractérisé en ce que l'une au moins des compositions A et B contient un ou plusieurs agents réducteurs, et l'une au moins des compositions A et B contient un ou plusieurs composés répondant à la formule générale (I) suivante :

 $R-(CHOH)_4-CO_2X$ (I)

dans laquelle :

5

10

20

30

- R représente un groupe CH_2OH ou CO_2X , et
- X représente un atome d'hydrogène ou un cation monovalent ou divalent issu d'un métal alcalin, d'un métal alcalino-terreux, d'un métal de transition, d'une amine organique, ou un cation ammonium,

à la condition que, lorsque R est égal à CH₂OH, ledit 25 agent réducteur est choisi parmi la cystéine, la cystéamine, leurs sels et leurs esters, les sulfites, les sulfinates et les réductones.

L'invention a encore pour objet un dispositif ou "kit" pour la déformation permanente de fibres kératiniques, comprenant, d'une part, soit une composition A, soit au moins deux compositions A' et B'

destinées à être mélangées ensemble pour obtenir une composition réductrice prête à l'emploi, et, d'autre part, une composition oxydante C prête à l'emploi ou au moins deux compositions D et E destinées à mélangées ensemble pour obtenir une composition oxydante prête à l'emploi, ledit dispositif étant caractérisé en ce que, soit la composition A, l'une au moins des compositions A' et B' contient un ou plusieurs agents réducteurs, et, soit la composition A, soit l'une au moins des compositions A' et B' contient au moins un ou plusieurs composés répondant à formule générale (I) suivante :

$$R-(CHOH)_4-CO_2X$$
 (I)

15

20

30

10

5

dans laquelle :

- R représente un groupe CH2OH ou CO2X, et
- X représente un atome d'hydrogène ou un cation monovalent ou divalent issu d'un métal alcalin, d'un métal alcalino-terreux, d'un métal de transition, d'une amine organique, ou un cation ammonium,

à la condition que, lorsque R est égal à CH₂OH, ledit agent réducteur est choisi parmi la cystéine, la 25 cystéamine, leurs sels et leurs esters, les sulfites, les sulfinates et les réductones.

Que les dispositifs soient destinés à la décoloration ou à la déformation permanente, les compositions A, A' et B' peuvent être des solutions ou se présenter, l'une sous la forme d'une poudre ou d'une

crème, et l'autre sous la forme d'une composition aqueuse.

L'invention a, en outre, pour objet l'utilisation d'une composition réductrice, d'un procédé de décoloration ou de déformation permanente, ou d'un dispositif tels que précédemment définis pour la décoloration ou à la déformation permanente de fibres kératiniques humaines et, plus spécialement, de cheveux.

10 Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions qui ressortiront du complément de description qui suit, qui se réfère à des exemples de réalisation de compositions réductrices pour la décoloration d'une part, et pour la 15 déformation permanente d'autre part, de fibres kératiniques.

Il va de soi que ces exemples sont donnés à titre illustratif et en aucun cas limitatif de l'objet de l'invention.

20

5

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

EXEMPLE 1 : compositions réductrices prêtes à l'emploi pour la décoloration de fibres kératiniques

On a préparé trois compositions réductrices prêtes à l'emploi - respectivement A, B et C - pour la décoloration de fibres kératiniques. Leur composition qualitative et quantitative est présentée dans le tableau I ci-après, dans lequel les quantités des différents constituants sont exprimées en grammes.

TABLEAU I

	Y	·	Τ
Constituants	Α	В	C
Hydroxyméthane			
sulfinate de Na	7	7	
Acide ascorbique			10
Sulfite de sodium			3
Alcool cétylique	3	3	3 .
Laurylsufate de Na	0,7	0,7	0,5
·			
Alcool benzylique	2	2	2
Propylèneglycol.	10	10	10
·			*
Acide mucique*		0,02	0,03
Solution aqueuse à		·	
50% d'acide	0,1		
gluconique**			
Solution aqueuse à	q.s.p. pH = 2,7		
85% de H ₂ PO ₄			
			•
Eau	q.s.p. 100 g		
L			1

^{*} Muciliance - Société SOLIANCE

^{**} Gluconal® GA-50-SG - Société AKZO NOBEL

Les compositions A, B et C ont été appliquées, dans un rapport de bain de 10 g de composition pour 1 g de cheveux, sur des cheveux naturellement gris (à 90% de cheveux blancs) et préalablement teintés par la nuance 6.66 de la gamme l'OREAL MAJIROUGE®.

Après 30 minutes de pose, les cheveux ont été rincés abondamment à l'eau, puis traités par une solution aqueuse de H_2O_2 à 3% pendant 2 minutes au terme desquelles les cheveux ont été à nouveau rincés abondamment à l'eau. Les cheveux ont été alors lavés avec un shampooing standard, puis séchés au sèchecheveux.

On a observé une décoloration puissante et homogène des cheveux traités par les compositions A, B et C. En effet, dans les trois cas, les reflets rouges intenses conférés par la teinture ont pratiquement totalement disparu, laissant apparaître à nouveau les cheveux presque tels qu'ils étaient avant de subir cette teinture.

EXEMPLE 2 : compositions réductrices prêtes à l'emploi pour la déformation permanente de fibres kératiniques

On a préparé deux compositions réductrices prêtes à l'emploi - respectivement D et E - pour la déformation permanente de fibres kératiniques. Leur composition qualitative et quantitative est présentée dans le tableau II ci-après, dans lequel les quantités des différents constituants sont exprimées en grammes.

5

TABLEAU II

		T
Constituants	ם	E
Acide thioglycolique	9,2	9,2
200		
Solution aqueuse à 20%		
de NH_3	9,3	9,3
Carbonate d'ammonium	4,5	. 4,5
	·	·
		·
Solution aqueuse à 30% de		
cocoylamidopropylbétaïne/	1,3 .	1,3
monolaurate de glycérol		
(25:5)		
, i		•
Solution aqueuse à 60%		`7
d'un polymère cationique	1,7	1,7
de formule W		
	· 	
Acide mucique*	0,03	
Merce macrque	0,03	-
Solution aqueuse à 50%		. 1
d'acide gluconique**		•
•		
Eau	asn	100 g
· Lau	4.5.5.	
	,	-

- * Muciliance Société SOLIANCE
- ** Gluconal® GA-50-SG Société AKZO NOBEL

Les compositions D et E ont été appliquées sur des cheveux humides préalablement enroulés sur des bigoudis de 9 mm de diamètre.

Après 15 minutes de pose, les cheveux ont 60 été rincés abondamment à l'eau, puis traités par une solution aqueuse de H_2O_2 à 8 volumes et de pH 3 pendant 60 minutes au terme desquelles les cheveux ont été rincés une nouvelle fois abondamment à l'eau.

Les bigoudis ont été alors otés et les 10 cheveux séchés.

Ces cheveux, qu'ils aient été traités par la composition D ou la composition E, ont présenté une belle frisure homogène.

REVENDICATIONS

 Utilisation d'au moins un composé répondant à la formule générale (I) suivante :

5

25

 $R-(CHOH)_4-CO_2X$ (I)

dans laquelle :

- R représente un groupe CH2OH ou CO2X, et
- X représente un atome d'hydrogène ou un cation monovalent ou divalent issu d'un métal alcalin, d'un métal alcalino-terreux, d'un métal de transition, d'une amine organique, ou un cation ammonium,
- dans une composition réductrice pour la décoloration ou la déformation permanente de fibres kératiniques, pour complexer les cations métalliques présents dans cette composition et/ou sur les fibres kératiniques sur lesquelles ladite composition est destinée à être appliquée.
 - 2. Utilisation selon la revendication 1, dans laquelle le cation monovalent ou divalent est choisi dans le groupe constitué par les cations monovalents de métaux alcalins, les cations divalents de métaux alcalino-terreux, les cations divalents de métaux de transition, et les cations monovalents issus d'amines organiques ou d'ammonium.
- 3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle le ou les composés de

formule (I) sont choisis dans le groupe constitué par l'acide gluconique, ses sels de métaux alcalins, ses sels de métaux alcalino-terreux, ses sels de métaux de transition, ses sels d'amines organiques, ses sels d'ammonium, et leurs mélanges.

- 4. Utilisation selon l'une quelconque des revendications 1 à 3, dans laquelle le ou les composés de formule (I) sont choisis dans le groupe constitué par l'acide gluconique, le gluconate de sodium, gluconate de potassium, le gluconate de le gluconate de calcium monohydraté, anhydre, borogluconate de calcium, le gluconate de magnésium, le gluconate de fer, le gluconate de manganèse, le gluconate de zinc et le gluconate de cuivre.
- 5. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle le ou les composés de formule (I) sont choisis dans le groupe constitué par l'acide mucique, l'acide glucarique, l'acide mannarique, leurs sels de métaux alcalins, leurs sels de métaux alcalino-terreux, leurs sels de métaux de transition, leurs sels d'amines organiques, leurs sels d'ammonium, et leurs mélanges.

25

5

10

15

6. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le ou les composés de formule (I) sont choisis parmi l'acide gluconique et l'acide mucique.

7. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le ou les composés de formule (I) représentent de 0,001 à 10% en poids du poids total de la composition réductrice.

5

8. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le ou les composés de formule (I) représentent de 0,001 à 5% en poids du poids total de la composition réductrice.

10

15

- 9. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la composition réductrice comprend un ou plusieurs agents réducteurs choisis dans le groupe constitué par les réductones, leurs sels et leurs esters, les sulfites et les sulfinates.
- 10. Utilisation selon l'une quelconque des revendications 1 à 8, dans laquelle la composition réductrice comprend un ou plusieurs agents réducteurs choisis dans le groupe constitué par les thiols, leurs sels et leurs esters, les sulfites et les sulfinates.
- 11. Utilisation selon la revendication 10,
 25 dans laquelle le ou les agents réducteurs sont choisis
 dans le groupe constitué par l'acide thioglycolique,
 l'acide thiolactique, la cystéine, la cystéamine, leurs
 sels et leurs esters.
- 30 12. Utilisation selon l'une quelconque des revendications 9 à 11, dans laquelle le ou les agents

réducteurs représentent de 0,1 à 30% en poids du poids total de la composition réductrice.

13. Utilisation selon l'une quelconque des revendications 9 à 12, dans laquelle le ou les agents réducteurs représentent de 0,5 à 20% en poids du poids total de la composition réductrice.

14. Utilisation selon l'une quelconque des 10 revendications précédentes, dans laquelle la composition réductrice comprend, de plus, polymères conditionneurs cationiques plusieurs amphotères, dans des proportions de 0,01 à 10% en poids et, de préférence, de 0,05 à 5% en poids du poids total 15 de ladite composition.

15. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la composition réductrice comprend, de plus, plusieurs polymères amphiphiles non ioniques, anioniques, cationiques ou amphotères, comportant une chaîne hydrophobe, dans des proportions de 0,05 à 20% en poids et, de préférence, de 0,1 à 10% en poids du poids total de ladite composition.

25

30

20

16. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la composition réductrice comprend, de plus, un ou plusieurs agents tensioactifs, dans des proportions de 0,01 à 40% en poids et, de préférence, de 0,1 à 30% en poids du poids total de ladite composition.

17. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la composition réductrice comprend, de plus, un ou agents d'ajustement de la rhéologie plusieurs différents des polymères amphiphiles non ioniques, anioniques, cationiques ou amphotères, comportant une chaîne hydrophobe, dans des proportions de 0,05 à 20% en poids et, de préférence, de 0,1 à 10% en poids du poids total de ladite composition.

18. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la composition réductrice comprend, de plus, un ou plusieurs agents acidifiants ou alcalinisants, dans des proportions de 0,01 à 30% en poids du poids total de ladite composition.

- 19. Utilisation selon l'une quelconque des 20 revendications précédentes, dans laquelle la composition réductrice comprend, de plus, ou plusieurs solvants choisis dans le groupe constitué par l'eau et les mélanges composés d'eau et d'un ou plusieurs solvants organiques acceptables sur le plan 25 cosmétique, ce ou ces solvants représentant de 0,5 à 20% en poids et, de préférence, de 2 à 10% en poids du poids total de ladite composition.
- 20. Utilisation selon l'une quelconque des 30 revendications précédentes, dans laquelle la composition réductrice comprend, de plus, un ou

5

10

plusieurs adjuvants choisis dans le groupe constitué par les charges minérales ou organiques, les liants, les lubrifiants, les agents antimousse, les silicones, les agents colorants, les agents matifiants, les conservateurs et les parfums.

- 21. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la composition réductrice est une composition destinée à la décoloration ou à la déformation permanente de fibres kératiniques humaines et, de préférence, de cheveux.
- 22. Composition réductrice pour la décoloration ou la déformation permanente de fibres kératiniques, comprenant au moins un agent réducteur, caractérisée en ce qu'elle comprend de plus au moins un composé répondant à la formule générale (I) suivante :

20 $R-(CHOH)_4-CO_2X$ (I)

dans laquelle :

5

10

- R représente un groupe CH_2OH ou CO_2X , et
- X représente un atome d'hydrogène ou un cation
 25 monovalent ou divalent issu d'un métal alcalin,
 d'un métal alcalino-terreux, d'un métal de
 transition, d'une amine organique, ou un cation
 ammonium,

à la condition que, lorsque R est égal à CH_2OH , ledit 30 agent réducteur est choisi parmi la cystéine, la

cystéamine, leurs sels et leurs esters, les sulfites, les sulfinates et les réductones.

- 23. Composition selon la revendication 22, caractérisée en ce que le cation monovalent ou divalent est choisi dans le groupe constitué par les cations monovalents de métaux alcalins, les cations divalents de métaux alcalino-terreux, les cations divalents de métaux de transition, et les cations monovalents issus d'amines organiques ou d'ammonium.
- 24. Composition selon la revendication 22 ou la revendication 23, caractérisée en ce que le ou les composés de formule (I) sont choisis dans le groupe constitué par l'acide gluconique, se's sels de métaux alcalins, ses sels de métaux alcalino-terreux, ses sels de métaux de transition, ses sels d'amines organiques, ses sels d'ammonium, et leurs mélanges.
- 25. Composition selon l'une quelconque des revendications 22 à 24, caractérisée en ce que le ou les composés de formule (I) sont choisis dans le groupe constitué par l'acide gluconique, le gluconate de sodium, le gluconate de potassium, le gluconate de calcium anhydre, le gluconate de calcium monohydraté, le borogluconate de calcium, le gluconate de magnésium, le gluconate de fer, le gluconate de manganèse, le gluconate de zinc et le gluconate de cuivre.
- 26. Composition selon la revendication 22 ou la revendication 23, caractérisée en ce que le ou.

les composés de formule (I) sont choisis dans le groupe constitué par l'acide mucique, l'acide glucarique, l'acide mannarique, leurs sels de métaux alcalins, leurs sels de métaux alcalino-terreux, leurs sels de métaux de transition, leurs sels d'amines organiques, leurs sels d'ammonium, et leurs mélanges.

- 27. Composition selon la revendication 26, caractérisée en ce que le ou les agents réducteurs sont choisis dans le groupe constitué par les réductones, les thiols, leurs sels et leurs esters, les sulfites et les sulfinates.
- 28. Composition selon la revendication 22 ou la revendication 23, caractérisée en ce que le ou les composés de formule (I) sont choisis parmi l'acide gluconique et l'acide mucique.
- 29. Composition selon la revendication 28, caractérisée en ce qu'elle comprend de l'acide gluconique et/ou de l'acide mucique en tant qu'agent(s) complexant(s) et de l'acide ascorbique et/ou du sulfite de sodium et/ou de l'hydroxyméthane sulfinate de sodium en tant qu'agent(s) réducteur(s).

25

30

30. Composition selon la revendication 28, caractérisée en ce qu'elle comprend de l'acide mucique en tant qu'agent complexant et de l'acide thioglycolique et/ou de la cystéine et/ou de l'acide lactique en tant qu'agent(s) réducteur(s).

31. Composition selon l'une quelconque des revendications 22 à 30, caractérisée en ce que le ou les composés de formule (I) représentent de 0,001 à 10% en poids et, de préférence, de 0,001 à 5% en poids du poids total de ladite composition.

32. Composition selon l'une quelconque des revendications 22 à 31, caractérisée en ce que le ou les agents réducteurs représentent de 0,1 à 30% en poids et, de préférence, de 0,5 à 20% en poids du poids total de ladite composition.

33. Composition selon l'une quelconque des revendications 22 à 32, caractérisée en ce qu'elle comprend, de plus, un ou plusieurs constituants choisis constitué par les le groupe conditionneurs cationiques ou amphotères, les polymères amphiphiles non ioniques, anioniques, cationiques ou comportant une chaîne hydrophobe, amphotères, agents tensioactifs, les agents d'ajustement de rhéologie différents des polymères amphiphiles non ioniques, anioniques, cationiques ou amphotères, hydrophobe, les agents une chaîne comportant d'ajustement du pH et les solvants.

25

30

5

10

15

20

34. Composition selon l'une quelconque des revendications 22 à 33, caractérisée en ce qu'elle comprend, de plus, un ou plusieurs adjuvants choisis dans le groupe constitué par les charges minérales ou organiques, les liants, les lubrifiants, les agents

antimousse, les silicones, les agents colorants, les agents matifiants, les conservateurs et les parfums.

- 35. Procédé de décoloration ou de 5 déformation permanente de fibres kératiniques, comprenant les étapes consistant à :
 - a) appliquer sur les fibres kératiniques une composition réductrice selon l'une quelconque des revendications $22 \ aarange 34$;
- b) laisser reposer la composition réductrice sur les fibres kératiniques pendant un temps suffisant pour obtenir la décoloration ou la déformation recherchée;
- c) rincer les fibres kératiniques pour en 15 éliminer la composition réductrice ;
 - d) laver les fibres kératiniques une ou plusieurs fois, les rincer après chaque lavage et, éventuellement, les sécher;
- ledit procédé comprenant de plus, entre les étapes c) et d), dans le cas d'une déformation permanente, les 20 étapes consistant à : i) appliquer sur les fibres kératiniques une composition oxydante ; ii) laisser reposer la composition oxydante sur les fibres kératiniques pendant un temps suffisant pour obtenir la 25 fixation de la déformation recherchée ; et iii) rincer les fibres kératiniques à l'eau pour en éliminer la composition oxydante.
- 36. Dispositif ou "kit" pour la décoloration de fibres kératiniques, comprenant au moins deux compositions A et B destinées à être

mélangées ensemble pour obtenir une composition réductrice prête à l'emploi, caractérisé en ce que l'une au moins des compositions A et B contient un ou plusieurs agents réducteurs, et l'une au moins des compositions A et B contient un ou plusieurs composés répondant à la formule générale (I) suivante :

 $R-(CHOH)_4-CO_2X$ (I)

10 dans laquelle:

15

20

25

30

- R représente un groupe CH2OH ou CO2X, et
- X représente un atome d'hydrogène ou un cation monovalent ou divalent issu d'un métal alcalin, d'un métal alcalino-terreux, d'un métal de transition, d'une amine organique, ou un cation ammonium,

à la condition que, lorsque R est égal à CH₂OH, ledit agent réducteur est choisi parmi la cystéine, la cystéamine, leurs sels et leurs esters, les sulfites, les sulfinates et les réductones.

37. Dispositif ou "kit" pour la déformation permanente de fibres kératiniques, comprenant, d'une part, soit une composition A, soit au moins deux compositions A' et B' destinées à être mélangées ensemble pour obtenir une composition réductrice prête à l'emploi, soit une composition A, soit au moins deux compositions A' et B' destinées à être mélangées ensemble pour obtenir une composition réductrice prête à l'emploi et, d'autre part, une composition oxydante C prête à l'emploi ou au moins deux compositions D et E

destinées à être mélangées ensemble pour obtenir une composition oxydante prête à l'emploi, caractérisé en ce que, soit la composition A, soit l'une au moins des compositions A' et B' contient un ou plusieurs agents réducteurs, et soit la composition A, soit l'une au moins des compositions A' et B' contient au moins un ou plusieurs composés répondant à la formule générale (I) suivante :

 $R-(CHOH)_4-CO_2X$ (I)

dans laquelle :

- R représente un groupe CH_2OH ou CO_2X , et
- X représente un atome d'hydrogène ou un cation
 monovalent ou divalent issu d'un métal alcalin, d'un métal alcalino-terreux, d'un métal de transition, d'une amine organique, ou un cation ammonium,
- à la condition que, lorsque R est égal à CH₂OH, ledit 20 agent réducteur est choisi parmi la cystéine, la cystéamine, leurs sels et leurs esters, les sulfites, les sulfinates et les réductones.
- 38. Utilisation d'une composition selon dans l'une quelconque des revendications 22 à 34, ou d'un procédé selon la revendication 35, ou d'une trousse selon la revendication 36 ou la revendication 37, pour la décoloration ou à la déformation permanente de fibres kératiniques humaines et, plus spécialement, de cheveux.