Introduction

Course Themes

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Instructor

Justin Solomon

Office: Clark S297

Telephone: (650) 725-6521

Email: justin.solomon@stanford.edu

Office hours: W, 10am-12pm

Course Assistants

Joongyeub Yeo

Email: yeo@stanford.edu
Office hours: T, 1pm-3pm

Location: Gates B26A

Yang Zhao

Email: yzhao3@stanford.edu **Office hours:** F, 2pm-4pm

Location: Gates B26A

Section

Fridays, 4:15pm-5:05pm Hewlett 102

Course Information

000000

On the Web

Course Themes

Course website:

http://cs205a.stanford.edu

Piazza:

http://piazza.com/stanford/fall2013/cs205a

Office hours (GChat):

cs205a.ta

Texts

- Official text: Scientific Computing, Heath
- Course notes: On website
 - Warning: May contain typos!
 - Responsible for textbook material
 - Corrections, comments, and suggestions encouraged

Course Themes

- ▶ Homeworks (approx. weekly): 60%
- **▶ Midterm:** 15%
- Final exam: 25%
- Participation: $\pm 5\%$
 - Corrections or comments on notes
 - Participation in lecture, office hours, and Piazza

Course Topics I

1. Numerics

Course Information

- Stability and error analysis
- Floating-point representations

2. Linear algebra

- Gaussian elimination and LU
- Column spaces and QR
- Eigenproblems
- Applications

3. Root-finding and optimization

- Single-variable
- Multivariable
- Constrained optimization

Course Topics II

Iterative linear solvers: Conjugate gradients and friends

4. Interpolation and quadrature

- Approximating integrals
- Approximating derivatives

5. Differential equations

- ODEs: time-stepping, discretization
- PDEs: Poisson equation, heat equation, waves
- Techniques: Differencing, finite elements (time-permitting)

Two Roles

Client of numerical methods

Designer of numerical methods

Variational Viewpoint

Minimize objective subject to constraints

- $A\vec{x} = \vec{b} \iff \min \|A\vec{x} \vec{b}\|^2$
- $A^{\top}A\vec{x} = \lambda \vec{x} \iff \min \|A\vec{x}\| \text{ s.t. } \|\vec{x}\| = 1$

Official Prerequisites

Math 51 and CS 106B

Typical Linear Algebra

$$||A\vec{x} - \vec{b}||^{2} = (A\vec{x} - \vec{b}) \cdot (A\vec{x} - \vec{b})$$

$$= (A\vec{x} - \vec{b})^{\top} (A\vec{x} - \vec{b})$$

$$= (\vec{x}^{\top} A^{\top} - \vec{b}^{\top}) (A\vec{x} - \vec{b})$$

$$= \vec{x}^{\top} A^{\top} A \vec{x} - \vec{x}^{\top} A^{\top} \vec{b} - \vec{b}^{\top} A \vec{x} + \vec{b}^{\top} \vec{b}$$

$$= ||A\vec{x}||^{2} - 2(A^{\top} \vec{b}) \cdot \vec{x} + ||\vec{b}||^{2}$$

Necessary Calculus

- Gradient vector ∇f for $f: \mathbb{R}^n \to \mathbb{R}$
- ▶ Jacobian Df for $f: \mathbb{R}^m \to \mathbb{R}^n$
- Lagrange multipliers for minimizing $f(\vec{x})$ subject to $q(\vec{x}) = \vec{0}$

Homework 0

Due one week from today!

To review:

- Linear algebra
- Calculus

