DIALOG(R)File 347:JAPIO (c) 2006 JPO & JAPIO. All rts. reserv.

04617513 **Image available**
LIQUID CRYSTAL DISPLAY DEVICE

PUB. NO.: **06-289413** [JP 6289413 A]

PUBLISHED: October 18, 1994 (19941018)

INVENTOR(s): AKANUMA HIDEYUKI

APPLICANT(s): SEIKO EPSON CORP [000236] (A Japanese Company or Corporation)

, JP (Japan)

APPL. NO.: 05-079865 [JP 9379865]

FILED: April 06, 1993 (19930406)

INTL CLASS: [5] G02F-001/1345

JAPIO CLASS: 29.2 (PRECISION INSTRUMENTS -- Optical Equipment)

JAPIO KEYWORD:R004 (PLASMA); R011 (LIQUID CRYSTALS); R119 (CHEMISTRY --

Heat Resistant Resins)

JOURNAL: Section: , Section No. FFFFFF, Vol. 94, No. 10, Pg. FFFFFF,

FF, FFFF (FFFFFFF)

ABSTRACT

PURPOSE: To provide the liquid crystal display device which is small in size, is large in opening rate, is decreased in the moisture infiltrating from a sealing boundary and has improved reliability by insulating signal lines and pixel electrodes with polyimide and arranging driver circuits on a substrate on the side inner than seals.

CONSTITUTION: Display regions 202, driver circuits 203, etc., are formed on a transparent element substrate 201. The driver circuits 203 are formed between the seals 206 and the display regions 202. Pixel driving transistors 209, the pixel electrodes 210, scanning lines included in wiring layers 211 and the signal lines included in the wiring layers 212 are formed in the display regions 202. The wiring layers 211, 212 are insulated by interlayer insulating films 213. The wiring layers 212 and the pixel electrodes 210 are insulated by interlayer insulating films 214 consisting of polyimide. Further, the parts on the driver circuits 203 and

under the seals 206 are removed from the interlayer insulating films 214.

The parts overlapping on the seals 206 and the parts facing the driver circuits 203 are removed from the common electrode 21 on a counter substrate 207.

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-289413

(43)公開日 平成6年(1994)10月18日

(51) Int. Cl. 5

識別記号

FΙ

G02F 1/1345

8507-2K

審査請求 未請求 請求項の数2 OL (全5頁)

(21)出願番号

(22)出願日

特願平5-79865

平成5年(1993)4月6日

(71)出願人 000002369

セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 赤沼 英幸

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外1名)

(54) 【発明の名称】液晶表示装置

(57)【要約】

【目的】小型で開口率が大きく信頼性の高いドライバー 回路一体型の液晶表示装置を実現する。

【構成】ポリイミドで信号線と画素電極を絶縁して間隔を小さくする。ドライバー回路はシールより内部に配置してシールを横切る配線数を減らす。ドライバー回路上とシールの下になるポリイミドは取り除く。

2

【特許請求の範囲】

【請求項1】少なくともマトリクス状に配置された画素 電極、前記画素電極のそれぞれに接続された画素駆動薄 膜トランジスタ、前記画素駆動薄膜トランジスタに接続 された一組の信号配線と一組の走査配線、さらに前記信 号配線及び走査配線をそれぞれ駆動するドライバー回路 を有する素子基板と、共通電極を有し前記素子基板に対 向する対向基板と、前記素子基板と前記対向基板の間に 封止した液晶からなるアクティブマトリクス型液晶表示 装置において、前記素子基板上の画素駆動用薄膜トラン ジスタ上、前記信号配線上及び前記走査配線上に有機膜 があり、前記有機膜上に前記画素電極があり、前記ドラ イバー回路が前記素子基板と前記対向電極とを接合する と同時に液晶を封止するシール部より画素電極側にあ り、前記ドライバー回路上及び前記シール部には前記有 機膜が無く、前記ドライバー回路に対向する部分には前 記対向基板上の前記共通電極が無いことを特徴とする液

1

【請求項2】前記有機膜がポリイミド膜である事を特徴 とする請求項1の液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は2枚の基板間に封入された液晶を用いて表示を行う、ドライバー回路一体形成のアクティブマトリクス型液晶表示装置の構造に関する。 【0002】

【従来の技術】従来のドライバー回路内蔵アクティブマ トリクス型液晶表示装置(以下、単に液晶表示装置とす る)の一例を図1を用いて説明する。図1 (a)は従来 の液晶表示装置の概略の外観図であり、図1(b)は図 30 1 (a) のA-Aにおける縦断面図、図1 (c) は図1 (a) のB-B縦断面図である。素子基板101上には 表示領域102、走査線及び信号線のドライバー回路1 03及び104、外部接続端子105が形成され、対向 基板106がシール107で素子基板101に接合さ れ、素子基板101と対向基板106の間に液晶108 が封入されている。対向基板106上には共通電極10 9が設けられ、この共通電極109は素子基板101上 のコモン端子110に導通剤111で接続されている。 また、対向基板106上には遮光層112が設けられて 40 いる。素子基板101の表示領域102には、画素駆動 トランジスタ113が設けられ、画素電極114が画素 駆動トランジスタ113に接続されている。画素駆動ト ランジスタ113及びドライバー回路103(104) のゲート電極と走査線を含む第1の配線層115は層間 絶縁膜116で第2の配線層117と隔てられ、必要な 箇所で第2の配線層117と接続されている。第2の配 線層117は表示領域の信号線を含み、画素電極114 と同層に設けられている。第2の配線層117の上層は 液晶保護絶縁膜118で第2の配線層117の信号が液 50

晶に直接漏れるのを防ぐために設けられる。液晶保護絶縁膜118は画素電極114上は通常取り除いておく。素子基板101上と対向基板106上には更に配向膜119がある。

【0003】図1の液晶表示装置では画素電極114と 信号線(第2の配線層117)が同層にあり、短絡を避 けるため有る程度の間隔を確保する必要があり、その間 隔の部分は表示に寄与しない。これは液晶表示装置の高 開口率化や高精細化の妨げとなる。この問題を解決する ため、信号線上に更に層間絶縁膜を設け、この上層に画 素電極を設ける事で画素電極と信号線を絶縁し、画素電 極と信号線の距離を小さくする、あるいは信号線と画素 電極を重ねるといった方法がとられる場合がある。上記 の信号線上の層間絶縁膜はSiO2あるいはポリイミド 等の有機薄膜が用いられる。信号線上の層間絶縁膜は、 その形成方法の簡便さ、誘電率の小ささ(信号線と画素 電極の結合容量を小さくするため)、ストレスが小さい 事による厚膜化の容易さ(誘電率と同じ理由による)、 さらには膜表面の平坦性をSiO2よりも良くしやすい 20 ので表示品質が良い等の観点からポリイミドを用いるの が有利である。

[0004]

【発明が解決しようとする課題】図1のような従来の液晶表示装置では、ドライバー回路がシールよりも外側にあるため装置自体が大きくなってしまい、また、素子基板と対向基板の接合後の製造途上における取扱い中にドライバー回路を傷つけ易く故障を招き易いという問題があった。また、ドライバー回路がシールよりも外側にあるため、シールを横切る配線(信号線と走査線)が多く、ドライバー回路から表示領域につながる配線とシールの界面を通じて水分が液晶中に浸入し、液晶を劣化させるという問題があった。

[0005]

【課題を解決するための手段】本発明の液晶表示装置は、素子基板上に形成された素子駆動薄膜トランジスタ、信号線及び走査線を有機膜で覆い、前記有機膜上に画素電極を設ける事で信号線と画素電極を絶縁し、ドライバー回路を素子基板と対向基板を接合するシールより画素電極側に形成し、ドライバー回路上には有機膜を設けず、かつドライバー回路に対向する部分の対向基板上の共通電極が無いことを特徴とする。

[0006]

【実施例】以下に、本発明のドライバー回路内蔵アクティブマトリクス型液晶表示装置とその製造工程について 実施例に基づき詳しく説明する。

【0007】図2に本実施例の液晶表示装置の構造を示す。図2(a)は本実施例の液晶表示装置の平面図であり、図2(b)、図2(c)はそれぞれ図2(a)のA-A、B-Bにおける縦断面図である。透明な素子基板201上には表示領域202、ドライバー回路203、

外部接続端子204、コモン端子205およびこれらを 接続する配線等が形成されており、シール206によっ て素子基板201と対向基板207が接合され、両基板 間に液晶208が封入されている。ドライバー回路20 3はシール206と表示領域202の間に設けてある。 こうすることでドライバー回路203が表示領域202 より外側にある場合に比べ液晶表示装置を小型にでき る。表示領域202には画素駆動トランジスタ209、 画素電極210、画素駆動トランジスタ209及びドラ イバー回路203のゲート電極と共に第1の配線層21 10 1に含まれる走査線、第2の配線層212に含まれる信 号線が形成され、第1の配線層211と第2の配線層2 12は第1の層間絶縁膜213で、また、第2の配線層 212と画素電極210は第2の層間絶縁膜214で絶 縁されている。第2の層間絶縁膜214は、ドライバー 回路203上とシール206の下の部分を取り除いてお く。これは、主にポリイミドが用いられる第2の層間絶 縁膜214がドライバー回路203の配線の電界によっ て恒常的な分極を起こし、長期的には大きな面積に及ん で液晶の配向を乱すことによる表示品質の劣化を防ぐこ 20 とが目的であると共に、ポリイミドを通じて水分や不純 物が液晶中に浸入するのをふせぐ。素子基板201上に は、さらに液晶を配向するための配向膜215が形成さ れている。コモン端子205と対向基板207上の共通 電極216は導通剤217で電気的に接続され共通電極 216の電位が制御される。対向基板207上には共通 電極216の他に配向膜215と必要に応じて遮光膜2 18及びカラーフィルターが予め形成されている。(本 実施例ではカラーフィルターは省略してある。) 対向基 板207上の共通電極216は、シール206と重なる 30 部分とドライバー回路203に対向する部分を取り除い ておく。こうすることで素子基板201上のコモン端子 205以外の配線と共通電極216が、シール206中 やドライバー回路203上のごみ等により短絡すること を防ぐ。

【0008】次に、本実施例の液晶表示装置の製造工程を図3を用いて説明する。図3は本実施例の液晶表示装置の構造を説明した図2(b)に相当する部分の縦断面で製造工程を説明する図である。

【0009】まず、素子基板301上に画素駆動トランジスタ302、ドライバー回路303を形成する。走査線及び画素駆動トランジスタ302とドライバー回路303のゲート電極を含む第1の配線層304、第1の層間絶縁膜305、信号線を含む第2の配線層306をこの時形成する(図3(a))。本実施例では画素トランジスタ302とドライバー回路303は多結晶シリコン薄膜トランジスタで構成される。第1の配線層304には多結晶シリコンを用いるが、金属シリサイドあるいは金属を用いても良く、第1の層間絶縁膜305はシリコン酸化膜(SiO)かシリコン窒化膜(SiN)、

あるいはそれらの多層膜である。第2の配線層306に は通常アルミニウム(A1)合金(銅とシリコンを含む)を用いる。

【0010】次に、素子基板301上に第2の層間絶縁 膜307を形成し、その上に画素電極308を形成し、 画素駆動トランジスタ302に第2の層間絶縁膜307 に開けたコンタクト孔を通じて接続する。さらに配向膜 309を形成する(図3(b))。図3(b)の工程を より詳しく説明すると、本実施例では第2の層間絶縁膜 307 (ここではポリイミドである) をスピンコートで 塗布成膜した後、画素電極308と画素トランジスタ3 02とを接続するコンタクト孔をフォトリソグラフ法で 形成するが、この時第2の配線層306が露出しない様 にする。即ちドライバー回路303の上やシールの下に なる部分にはこの時点ではまだ第2の層間絶縁膜307 が残っている。次に画素電極308を形成し、その後ド ライバー回路303の上とシールの下になる部分の第2 の層間絶縁膜307を取り除く。これは画素電極308 に酸化インジウムスズ(ITO)を用い、そのエッチン グ成形に王水系のエッチング剤(硝酸と塩酸を含む水溶 液)を用いる場合、第2の配線層306即ちA1が露出 しているとITOのエッチング剤にAIが侵されるため である。IT〇(即ち画素電極308)を例えば水素や メタンを含むプラズマ中でエッチング成形する場合には 第2の配線層306は露出していてもかまわないので、 第2の層間絶縁膜307成形工程を1回にすることもで きる。第2の層間絶縁膜307はここではポリイミド薄 膜であるが、他の樹脂薄膜でも比較的耐熱性が高く、透 明であれば用いる事が出来る。また、第2の層間絶縁膜 307はポリイミドとSiO,あるいはSi,N,との多 層膜でも良い。この場合にはドライバー回路303上及 びシール下となる第2の層間絶縁膜307のうち必ず取 り除く必要のあるのはポリイミドで他は残しても取り去 っても良い。また配向膜309もポリイミド薄膜であ り、形成は印刷技術(フレキソ印刷等)を用いて行い、 液晶を配向するために必要な部分にのみ形成する。配向 膜309の形成はスピンコート法で行うこともある。

【0011】配向膜309を形成した素子基板301はシール310で対向基板311と接合し、液晶312を封入する(図3(c))。さらに外部回路を外部接続端子に接続して液晶表示装置を完成する。

[0012]

【発明の効果】本発明の液晶表示装置では、信号線と画素電極がポリイミドを層間絶縁膜として別層に形成されることで開口率を大きくすることが可能な上に、ポリイミドはスピンコート法で形成されるので、素子基板表面が平坦なため液晶の配向の乱れが無く高品質な表示が得られる。さらに素子基板上のドライバー回路がシールより表示領域側にあるためドライバー回路から画素領域に延びる延べ数百本に及ぶ信号線や走査線がシールを横切

ることがなく、シールを横切る配線を外部接続端子から ドライバー回路につながる電源線、クロック線、ビデオ 信号線など高々数十本と従来比べ格段に少なくできるの で、シールを横切る配線とシール界面から浸入する水分 を格段に少なくでき、信頼性が高い。また、ドライバー 回路がシールの内側にあるのでドライバー回路がシール の外にある場合に比べて装置を小型にできる効果があ り、また素子基板と対向基板を接合した後の取扱い(例 えばダイシング工程)でドライバー回路を傷つけるよう なこともない。

【図面の簡単な説明】

【図1】従来のドライバー回路内蔵のアクティブマトリ クス型液晶表示装置の構造図。

【図2】本発明のドライバー回路内蔵のアクティブマト リクス型液晶表示装置の構造図。

【図3】本発明のドライバー回路内蔵のアクティプマト リクス型液晶表示装置の製造方法を説明する工程図。

【符号の説明】

101, 201, 301

…素子基板

102, 202

…表示領域

103、104、203、303…ドライバー回路

105, 204

…外部接続端子

106, 207, 311

…対向基板

107, 206, 310

…シール

108, 208, 312

…液晶

109,216

…共通電極

…コモン端子

110,205 111, 217

…導通剤

112, 218

…遮光層

10 113, 209, 302

…画素駆動トランジス

114, 210, 308

…画素電極 115, 211, 304 …第1の配線層

1 1 6

…層間絶縁膜

117, 212, 306

20

…第2の配線層

1 1 8

…液晶保護絶縁膜

119, 215, 309

…配向膜

213, 305

…第1の層間絶縁膜

214,307

…第2の層間絶縁膜

【図1】

【図2】

【図3】

