

数据分析、展现与R语言 第4周

假设检验原理

第一步 提出原假设

如例 8.1.1 中, H_0 : a = 2. 例 8.1.2 中, H_0 : $F(x) = F_0(x)$, 对于光通量 ξ 来说, $F_0(x)$ 是正态分布, 对于呼唤次数 η 来说, $F_0(x)$ 是泊松分布. 可见, 原假设(又称作零假设) H_0 是我们所要进行检验的对象.

假设检验的原理

第二步 建立检验统计量

建立检验统计量是假设检验中重要的环节.比如例 8.1.1 中,在总体 ξ 服从正态 $N(a,\sigma_0)$ 的假定下,当原假设 $H_0: a=a_0$ 成立

时,建立检验统计量 $U = \frac{\xi - a_0}{\sigma_0 / \sqrt{n}}$, U 服从标准正态 N(0,1). 注意,

检验统计量是样本的函数,要求不带有任何未知参数.

对于总体 ξ 的分布函数 $F(x;\theta_1,\theta_2)$ 中参数 θ_1 、 θ_2 的假设检验,在 ξ 的分布函数为正态 $N(a,\sigma)$ 的基本假定下,常用的检验统计量有 t 一分布、 χ^2 一分布、F 一分布,这些适合于小样问题.如果总 ξ 不服从正态分布,或总体 ξ 的分布函数未知,这时检验统计量的精确分布难于求出或相当复杂,如有可能求出其渐近分布,只适用于大样问题.非参数性的检验问题,一般都是大样问题,从 ξ 8.3 中所讨论的检验问题.

假设检验的原理

第三步 确定 H₀ 的否定域

如例 8.1.1 中, 当原假设 H。成立时, 检验统计量 U服从

态 N(0,1), 那么给定满足 $0 < \alpha < 1$ 的 α 值, 在标准正态分布表

查得临界值 ॥, 使得

$$P\{\mid U\mid \geqslant u_{\alpha}\} = \alpha,$$

否定域

不否定<>正确

T分布密度函数

定理 2.4.4(t-分布) 设 ξ, z 为相互独立随机变量, ξ 服从

正态N(0,1), z 服从自由度为n的 χ^2 - 分布,则 $t=\xi/\sqrt{\frac{z}{n}}$ 的密

度函数为

$$f_{t}(x) = f_{\varepsilon/\sqrt{\varepsilon/n}}(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \cdot \left(1 + \frac{x^{2}}{n}\right)^{-\frac{n+1}{2}},$$

(2.4.17)

称 $f_t(x)$ 是自由度为 n 的 t - 分布(或 Student 分布)的密度函数.

T分布密度函数

T检验法

例 8-2-1 药厂制剂车间用自动装瓶机封装药液,在装瓶机工作正常时,每瓶药液净重500 克。某日随机抽取了10 瓶成品,称重为:504,498,496,487,509,476,482,510,469,472。问这时的装瓶机工作是否正常?

因此, 当原假设 H。成立时, 记

$$T = \sqrt{n-1} \frac{\overline{\xi} - a_0}{S} \sim t_{(n-1)},$$
 (8.2.2)

即统计量 T 服从自由度为n-1 的 t-分布,且不带有未知参数,它可作为判断 H_0 的检验统计量,这种检验法,称之为t 检验法.

lm()线性模型函数

适应于多元线性模型的基本函数是 lm(), 其调用形式是

fitted.model <- lm(formula, data = data.frame)</pre>

其中 formula 为模型公式. data.frame 为数据框. 返回值为线性模型结果的 对象存放在 fitted.model 中. 例如

 $fm2 \leftarrow lm(y \sim x1 + x2, data = production)$

适应于 y 关于 x1 和 x2 的多元回归模型(隐含着截距项)。

- y~1+x或y~x均表示y=a+bx有截距形式的线性模型
- 通过原点的线性模型可以表达为:y~x-1或y~x+0或y~0+x

参见help(formula)

建立数据:身高-体重

x=c(171,175,159,155,152,158,154,164,168,166,159,164)

y=c(57,64,41,38,35,44,41,51,57,49,47,46)

建立线性模型

 $a=Im(y\sim x)$

求模型系数

> coef(a)

(Intercept) x

-140.36436 1.15906

提取模型公式

> formula(a)

y ~ x

计算残差平方和 (什么是残差平方和)

> deviance(a)

[1] 64.82657

绘画模型诊断图(很强大,显示残差、拟合值和一些诊断情况)

> plot(a)

计算残差

> residuals(a)

1

2

3

4

5

-0.8349544 1.5288044 -2.9262307 -1.2899895 -0.8128086 1.2328296 2.8690708

8

9

10

11

12

1.2784678 2.6422265 -3.0396529 3.0737693 -3.7215322

打印模型信息

> print(a)

Call:

 $Im(formula = y \sim x)$

Coefficients:

(Intercept) x

-140.364 1.159

14

计算方差分析表

1

提取模型汇总资料

```
> summary(a)
Call:
lm(formula = v \sim x)
Residuals:
  Min 10 Median 30 Max
-3.721 -1.699 0.210 1.807 3.074
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -140.3644 17.5026 -8.02 1.15e-05 ***
              1.1591 0.1079 10.74 8.21e-07 ***
X
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.546 on 10 degrees of freedom
Multiple R-squared: 0.9203, Adjusted R-squared: 0.9123
F-statistic: 115.4 on 1 and 10 DF, p-value: 8.21e-07
                            2012.5.28
```


作出预测

```
> z=data.frame(x=185)
```

> predict(a,z)

1

74.0618

> predict(a,z,interval="prediction", level=0.95)

fit lwr upr

1 74.0618 65.9862 82.13739

课后阅读:薛毅书,p308,计算实例

多元线性相关分析

- 研究多个变量之间的关系
- 例子:iris数据集,研究花 瓣和花萼的长度、宽度之间 的联系

准备数据:

x=iris[which(iris\$Species

== "setosa"),1:4]

画出散点图集:plot(x)

多元线性相关分析

- 计算相关系数矩阵, cor()函数
- 暂时没有发现可以在多元情况下进行相关性检验的函数,只能对变量两两进行检验

> cor(x)

```
Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSepal.Length1.00000000.74254670.26717580.2780984Sepal.Width0.74254671.00000000.17770000.2327520Petal.Length0.26717580.17770001.00000000.3316300Petal.Width0.27809840.23275200.33163001.0000000
```


■ Swiss数据集: Swiss Fertility and Socioeconomic Indicators (1888) Data

		200				
	_	_				Infant.Mortality
Courtelary	80.2	17.0	15	12	9.96	22.2
Delemont	83.1	45.1	6	9	84.84	22.2
Franches-Mnt	92.5	39.7	5	5	93.40	20.2
Moutier	85.8	36.5	12	7	33.77	20.3
Neuveville	76.9	43.5	17	15	5.16	20.6
Porrentruy	76.1	35.3	9	7	90.57	26.6
Broye	83.8	70.2	16	7	92.85	23.6
Glane	92.4	67.8	14	8	97.16	24.9
Gruyere	82.4	53.3	12	7	97.67	21.0
Sarine	82.9	45.2	16	13	91.38	24.4
Veveyse	87.1	64.5	14	6	98.61	24.5
Aigle	64.1	62.0	21	12	8.52	16.5
Aubonne	66.9	67.5	14	7	2.27	19.1
Avenches	68.9	60.7	19	12	4.43	22.7
Cossonay	61.7	69.3	22	5	2.82	18.7
Echallens	68.3	72.6	18	2	24.20	21.2
Grandson	71.7	34.0	17	8	3.30	20.0
Lausanne	55.7	19.4	26	28	12.11	20.2
La Vallee	54.3	15.2	31	20	2.15	10.8
Lavaux	65.1	73.0	19	9	2.84	20.0
Morges	65.5	59.8	22	10	5.23	18.0

建立多元线性模型

> s=lm(Fertility ~ ., data = swiss)

模型汇总信息

> summary(s)

```
Call:
lm(formula = Fertility ~ ., data = swiss)
Residuals:
    Min
            10 Median 30 Max
-15.2743 -5.2617 0.5032 4.1198 15.3213
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              66.91518 10.70604 6.250 1.91e-07 ***
Agriculture
              -0.17211 0.07030 -2.448 0.01873 *
              -0.25801 0.25388 -1.016 0.31546
Examination
             -0.87094 0.18303 -4.758 2.43e-05 ***
Education
Catholic
              Infant.Mortality 1.07705 0.38172 2.822 0.00734 **
             0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 7.165 on 41 degrees of freedom
```

Multiple R-squared: 0.7067, Adjusted R-squared: 0.671 F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10

- 多元线性回归的核心问题: **应该选择哪些变量?**
- 一个非典型例子(薛毅书p325)
- RSS(残差平方和)与R²(相关系数平方)选择法:遍历所有可能的组合,选出使RSS 最小,R²最大的模型
- AIC (Akaike information criterion) 准则与BIC (Bayesian information criterion) 准则

AIC=n ln (RSS
$$_p$$
/n)+2p

n为变量总个数,p为选出的变量个数,AIC越小越好

- 逐步回归
- 向前引入法:从一元回归开始,逐步增加变量,使指标值达到最优为止
- 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止。

■ 逐步筛选法:综合上述两种方法

■ step()函

数

> s1=step(s,direction="forward")

Start: AIC=190.69

Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality

> s1=step(s,direction="backward")

Start: AIC=190.69
Fertility ~ Agricultu

Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality

	Df	Sum of Sq	RSS	AIC
- Examination	1	53.03	2158.1	189.86
<none></none>			2105.0	190.69
- Agriculture	1	307.72	2412.8	195.10
- Infant.Mortality	1	408.75	2513.8	197.03
- Catholic	1	447.71	2552.8	197.75
- Education	1	1162.56	3267.6	209.36

Step: AIC=189.86

Fertility ~ Agriculture + Education + Catholic + Infant.Mortality

	Df	Sum of Sq	RSS	AIC
<none></none>			2158.1	189.86
- Agriculture	1	264.18	2422.2	193.29
- Infant.Mortality	1	409.81	2567.9	196.03
- Catholic	1	956.57	3114.6	205.10
- Education	1	2249.97	4408.0	221.43

> s1=step(s,direction="both")

Start: AIC=190.69

Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality

ATC

Df Sum of Sq RSS

- Examination	1	53.03	2158.1	189.86
<none></none>			2105.0	190.69
- Agriculture	1	307.72	2412.8	195.10
- Infant.Mortality	1	408.75	2513.8	197.03
- Catholic	1	447.71	2552.8	197.75
- Education	1	1162.56	3267.6	209.36

Step: AIC=189.86

Fertility ~ Agriculture + Education + Catholic + Infant.Mortality

	Df	Sum of Sq	RSS	AIC
<none></none>			2158.1	189.86
+ Examination	1	53.03	2105.0	190.69
- Agriculture	1	264.18	2422.2	193.29
- Infant.Mortality	1	409.81	2567.9	196.03
- Catholic	1	956.57	3114.6	205.10
- Education	1	2249.97	4408.0	221.43
> I				

- 是否还有优化余地?
- 使用drop1作删除试探,使用add1函数作增加试探

```
> drop1(s1)
Single term deletions
```

Model:

■ 薛毅书, p330例子

Thanks

FAQ时间