Connecting the Dots with Landmarks:

Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation

Boqing Gong University of Southern California

Joint work with Kristen Grauman and Fei Sha

The perils of mismatched domains

Poor cross-domain generalization

Different underlying distributions

Overfit to datasets' idiosyncrasies

Common to many areas

Computer vision

Text processing

Speech recognition

Language modeling

etc.

Unsupervised domain adaptation

Setup

Source domain (with labeled data)

$$D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$$

Target domain (no labels for training)

$$D_{\mathcal{T}} = \{(x_n, y_n)\}_{n=1}^{N} \sim P_{\mathcal{T}}(X, Y)$$

Unsupervised domain adaptation

Setup

Source domain (with labeled data)

$$D_{\mathcal{S}} = \left\{ (x_m, y_m) \right\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$$

$$D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$$
 Target domain (no labels for training)
$$D_{\mathcal{T}} = \{(x_n, y_n)\}_{n=1}^{\mathsf{N}} \sim P_{\mathcal{T}}(X, Y)$$

Objective

Different distributions

Learn classifier to work well on the target

Correcting sampling bias

Correcting sampling bias

Adjusting mismatched models

Correcting sampling bias

Adjusting mismatched models

Correcting sampling bias

Adjusting mismatched models

Snags

Forced adaptation

Attempting to adapt all source data points, including "hard" ones

Implicit discrimination

Learning discrimination biased to source, rather than optimized w.r.t. target

Our key insights

Forced adaptation

→ Select the best instances for adaptation

Implicit discriminations

→ Approximate discriminative loss on target

Landmarks are labeled source instances distributed similarly to the target domain.

Landmarks are labeled source instances distributed similarly to the target domain.

Landmarks are labeled source instances distributed similarly to the target domain.

Landmarks are labeled source instances distributed similarly to the target domain.

Roles

Ease adaptation difficulty

Provide discrimination (biased to target)

1 Identify landmarks

at multiple scales.

Construct auxiliary domain adaptation tasks

Construct auxiliary domain adaptation tasks

Obtain domaininvariant features

Construct auxiliary domain adaptation tasks

Obtain domaininvariant features

Predict target labels

1 Identify landmarks

at multiple scales.

Identifying landmarks

Objective

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$

Identifying landmarks

Objective

$$P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$$

$$\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$$

Identifying landmarks

Objective

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$

min landmarks

Maximum mean discrepancy (MMD)

Empirical estimate [Gretton et al. '06]

$$d(P_{\mathcal{L}}, P_{\mathcal{T}}) = \left\| \frac{1}{\mathsf{L}} \sum_{l=1}^{\mathsf{L}} \phi(x_l) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}$$

 ${\cal H}$ a universal RKHS

 $\phi(\cdot)$ kernel function induced by \mathcal{H}

 x_l the l-th landmark (from the source domain)

Integer programming

$$\min_{\{\alpha_m\}} \quad \left\| \frac{1}{\sum_i \alpha_i} \sum_{m=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

where

$$\alpha_m = \begin{cases} 1 & \text{if } x_m \text{ is a landmark for the target} \\ 0 & \text{else} \end{cases}$$

$$m=1,2,\cdots,\mathsf{M}$$

Convex relaxation

$$\min_{\{\alpha_m\}} \quad \left\| \frac{1}{\sum_i \alpha_i} \sum_{m=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

Convex relaxation

$$\min_{\{\alpha_m\}} \quad \left\| \sum_{i=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

Convex relaxation

$$\min_{\{\alpha_m\}} \quad \left\| \sum_{i=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

$$\beta_m = \frac{\alpha_m}{\sum_i \alpha_i} \to \text{Quadratic programming}$$

$$\min_{\beta} \quad \beta^T K^s \beta - \frac{2}{\mathsf{N}} \beta^T K^{st} \mathbf{1}$$

How to choose the kernel functions?

$$\min_{\beta} \quad \beta^T K^s \beta - \frac{2}{\mathsf{N}} \beta^T K^{st} \mathbf{1}$$

Gaussian kernels

Plus: universal (characteristic)

Minus: how to choose the bandwidth?

How to choose the kernel functions?

$$\min_{\beta} \quad \beta^T K^s \beta - \frac{2}{\mathsf{N}} \beta^T K^{st} \mathbf{1}$$

Gaussian kernels

Plus: universal (characteristic)

Minus: how to choose the bandwidth?

Our solution: bandwidth---granularity

Examining distributions at multiple granularities Multiple bandwidths, multiple sets of landmarks

Other details

Class balance constraint

Recovering
$$\alpha_m^{\star}$$
 from $\beta_m^{\star} (= \frac{\alpha_m}{\sum_i \alpha_i})$ (See paper for details)

What do landmarks look like?

What do landmarks look like?

What do landmarks look like?

Construct auxiliary domain adaptation tasks

Constructing easier auxiliary tasks

At each scale σ

New source = Source \setminus Landmarks

New target = $Target \cup Landmarks$

Intuition: distributions are closer (cf. Theorem 1)

Constructing easier auxiliary tasks

At each scale σ

New source = Source \setminus Landmarks

New target = $Target \cup Landmarks$

Intuition: distributions are closer (cf. Theorem 1)

Auxiliary tasks → new basis of features

by a geodesic flow kernel (GFK) based method

$$K_{\sigma}(x_i, x_j) = \int_0^1 (\Phi_{\sigma}(t)'x_i)'(\Phi_{\sigma}(t)'x_j) dt = x_i G_{\sigma} x_j$$

- -Integrate out domain changes
- -Obtain domain-invariant representation [Gong, et al. '12]

Key steps

Construct auxiliary domain adaptation tasks

Key steps

Construct auxiliary domain adaptation tasks

Obtain domaininvariant features

Combining features discriminatively

Multiple kernel learning on the labeled landmarks

$$F = \sum_{\sigma} w_{\sigma} G_{\sigma}$$
, s.t. $w_{\sigma} \ge 0$, $\sum_{\sigma} w_{\sigma} = 1$

Arriving at domain-invariant feature space

Discriminative loss biased to the target

Key steps

Construct auxiliary domain adaptation tasks

Obtain domaininvariant features

Key steps

Construct auxiliary domain adaptation tasks

Obtain domaininvariant features

Predict target labels

Experimental study

Four vision datasets/domains on visual object recognition

[Griffin et al. '07, Saenko et al. 10']

Four types of product reviews on sentiment analysis

Books, DVD, electronics, kitchen appliances [Biltzer et al. '07]

Comparing with

Correcting sampling bias

Adjusting mismatched models

Comparing with

Correcting sampling bias

Object recognition

Object recognition

Object recognition

Sentiment analysis

Auxiliary tasks easier to solve

Empirical results on visual object recognition

Auxiliary tasks easier to solve

Empirical results on visual object recognition

Auxiliary tasks easier to solve

Empirical results on visual object recognition

Landmarks good proxy to target discrimination

Summary

landmarks

an intrinsic structure, shared between domains

labeled source instances distributed similarly to the target

auxiliary tasks provably easier to solve

discriminative loss despite unlabeled target

Outperformed the state-of-the-art

What do landmarks look like?

Dropping class balance constraint $P_{\mathcal{L}}(Y|X) = P_{\mathcal{S}}(Y|X)$?

