HOJA DE EJERCICIOS 1: Lógica proposicional EDyL 2022-2023

NOTA: Incluye explicaciones para tus respuestas. Un ejercicio cuya respuesta es correcta, pero que no incluye explicaciones podrá ser valorado como incompleto.

EJERCICIO 1.

Considera la base de conocimiento: $\Delta = \{A \Leftrightarrow ((\neg B \lor \neg C) \Rightarrow \neg A), B \Rightarrow (\neg A \land C)\}$

(i) Sin utilizar reglas de equivalencia, escribe la tabla de verdad de la base de conocimiento Δ e indica qué interpretaciones son modelos de Δ .

A	В	С	$\neg A$	$\neg B$	$\neg C$	$\neg B \lor \neg C$	$(\neg B \lor \neg C)$	$A \Leftrightarrow ((\neg B \lor \neg C)$	$\neg A \wedge C$	В	Modelos
							$\Rightarrow \neg A$	$\Rightarrow \neg A)$		$\Rightarrow (\neg A \land C)$	
٧	٧	٧	F	F	F	F	V	V	F	F	-
٧	٧	F	F	F	٧	V	F	F	F	F	-
٧	F	٧	F	٧	F	V	F	F	F	V	-
٧	F	F	F	٧	٧	V	F	F	F	V	-
F	٧	٧	٧	F	F	F	V	F	V	V	-
F	٧	F	٧	F	٧	V	V	F	F	F	-
F	F	٧	٧	٧	F	V	V	F	V	V	-
F	F	F	٧	٧	٧	٧	V	F	F	V	-

Basándote en esta tabla de verdad, proporciona respuestas a las siguientes preguntas. Explica el razonamiento que justifica tu respuesta.

(ii) ¿Es la base de conocimiento UNSAT, SAT, pero no tautología o una tautología? Explica por qué.

La base de conocimiento es UNSAT. Esto se debe a que ninguna de sus interpretaciones, es decir, las distintas asignaciones de valores de verdad a los átomos (A, B, C), tiene valor de verdad verdadero para las dos FBFs de la base de conocimiento $(A \Leftrightarrow ((\neg B \lor \neg C) \Rightarrow \neg A), B \Rightarrow (\neg A \land C))$.

(iii) ¿Es la FBF $(A \Leftrightarrow B)$ consecuencia lógica de la base de conocimiento Δ ? Justifica tu respuesta.

Se dice que la FBF $(A \Leftrightarrow B)$ es consecuencia lógica de la base de conocimiento Δ , $\Delta = \{A \Leftrightarrow \big((\neg B \lor \neg C) \Rightarrow \neg A \big), B \Rightarrow (\neg A \land C) \} \vDash (A \Leftrightarrow B)$, ya que al no tener la base de conocimiento ningún modelo, se puede considerar que todos los modelos de Δ son modelos de Δ .

EJERCICIO 2.

Utilizando únicamente una tabla de verdad (no se permite el uso de reglas de equivalencia), determina si la fórmula bien formada $w = \{ \neg A \Longrightarrow B \}$ es consecuencia lógica de la base de conocimiento $\Delta = \{ \neg (B \land C) \Longrightarrow \neg (B \Longleftrightarrow A), B \lor \neg C \}.$

A	В	С	$\neg A$	$\neg C$	$B \wedge C$	$\neg (B \land C)$	$B \iff A$	$\neg (B \Leftrightarrow A)$	$\neg (B \land C) \Rightarrow \neg (B \Leftrightarrow A)$	$B \vee \neg C$	Modelos	$\neg A$
												$\implies B$
٧	٧	٧	F	F	٧	F	V	F	V	V	М	V
٧	٧	F	F	٧	F	٧	V	F	F	V	-	V
٧	F	٧	F	F	F	V	F	V	V	F	-	V
٧	F	F	F	٧	F	V	F	٧	V	V	М	V
F	٧	٧	٧	F	V	F	F	V	V	V	M	V
F	٧	F	٧	٧	F	V	F	V	V	V	M	V
F	F	٧	٧	F	F	V	V	F	F	F	-	F
F	F	F	٧	٧	F	٧	V	F	F	V	-	F

A partir de la anterior tabla de verdad, se puede concluir que $w \models \Delta$, ya que todos los modelos de la base de conocimiento Δ son también modelos de la FBF w.

EJERCICIO 3.

Sean w_1 , w_2 y w FBFs en lógica formal para las que se cumple $\{w_1, w_2, w\}$ es SAT, $\{w_1, w_2, \neg w\}$ es SAT. Indica cuáles de las siguientes aseveraciones son correctas, cuáles son incorrectas y para cuáles de ellas no es posible determinar con la información disponible si son correctas o incorrectas. Explica tus respuestas.

- a. $\{w_1, w_2\} \models w$. Es incorrecta. Que w sea consecuencia lógica de $\{w_1, w_2\}$ implica que $\{w_1, w_2, \neg w\}$ sea UNSAT, ya que todos los modelos de la base de conocimiento deben ser modelos de w. Como en la información aportada se dice que $\{w_1, w_2, \neg w\}$ es SAT, la afirmación no puede ser correcta.
- b. $\{w_1, w_2\} \vDash \neg w$. Es incorrecta. De la misma forma que en el apartado a., que $\neg w$ sea consecuencia lógica de $\{w_1, w_2\}$, implica que $\{w_1, w_2, w\}$ sea UNSAT. Como en la información aportada se dice que $\{w_1, w_2, w\}$ es SAT, la afirmación no puede ser correcta.
- c. Ni w ni $\neg w$ son consecuencia lógica de la base de conocimiento $\{w_1, w_2\}$. Es correcta. Siguiendo el razonamiento expuesto en los apartados anteriores, para que una FBF sea consecuencia de una base de conocimiento Δ , al incluirla en dicha base, la nueva base Δ' debe ser SAT; y, al incluir la FBF negada, la base Δ'' debe ser UNSAT. Como esta situación no se da, ninguna de las FBF w y $\neg w$ pueden ser consecuencia lógica de la base de conocimiento $\{w_1, w_2\}$.
- d. $w_1 \wedge w_2$ es una tautología. No se puede determinar. A partir de la información dada, se deduce que las FBFs w_1 y w_2 tienen interpretaciones con valor de verdad *verdadero* en común, pero no es posible determinar si son todas las interpretaciones de ambas lo tienen.
- e. w es una tautología. Es incorrecta. Dado que las bases de conocimiento $\{w_1, w_2, w\}$ y $\{w_1, w_2, \neg w\}$ son SAT, la FBF w debe, necesariamente, tomar valores verdaderos y falsos, por lo que no puede ser una tautología.

EJERCICIO 4.

Consideremos la base de conocimiento $\Delta_1 = \{w_1, w_2, w_3, w_4\}$, la cual es UNSAT, y la base de conocimiento $\Delta_2 = \{w_1, w_2, \neg w_3, \neg w_4\}$, que es SAT. Determina cuales de las siguientes frases son correctas, incorrectas o para cuáles no es posible determinar si son correctas o incorrectas con la información dada. Justifica tus respuestas y proporciona ejemplos que las ilustren utilizando fórmulas bien formadas que involucren únicamente a los átomos A y B.

Frase	Correcta / Incorrecta /	Ejemplo
	Indeterminado	
$\{w_1, w_2\} \vDash \neg w_3 \lor \neg w_4$	Correcta	${A,B,\neg(A\lor B)}$
		$= \{A, B, \neg A, \neg B\}$ es UNSAT
		$\Rightarrow \{A, B\} \vDash A \lor B$
$\{w_1, w_2\} \vDash w_3 \land w_4$	Incorrecta	$\{A, B, \neg A, \neg B\} \ es \ UNSAT \Rightarrow$
		${A,B} \not\models \neg A \land \neg B$
$\{w_1, w_2\}$ es UNSAT	Incorrecta	{A, B} es SAT
		\Rightarrow {A} es SAT \land {B} es SAT
$Si\{w_1,w_2\}$	Correcta	$\{A, B, \neg (A \lor \neg B)\}$
$\models \neg w_3$		$= \{A, B, \neg A, B\} $ es $UNSAT$
$\forall w_4 \text{ entonces } \{w_1, w_2\}$		${A,B,\neg(\neg B)}$
$\models \neg w_3$		$= \{A, B, B\} $ es SAT
-		${A,B} \vDash A, {A,B} \not\vDash \neg B$

EJERCICIO 5.

En una isla remota coexisten de manera pacífica criaturas de dos especies distintas. Las especies son los *verosus*, quienes siempre dicen la verdad, y los *falacius*, quienes siempre mienten. En un encuentro con seis de estas criaturas oímos las siguientes aseveraciones:

A: B es falacius o D es falacius.

B: D y G son de la misma especie.

C: A es verosus o G es falacius.

D: B es verosus.

E: A es verosus.

G: B y yo o bien somos ambos verosus o bien falacius.

Para obtener la solución solo es posible utilizar la inferencia; no está permitido utilizar razonamiento natural, semiformal, o basado en casos.

a. Indica los átomos necesarios para formalizar esta base de conocimiento (tantos como sea necesario).

	Símbolo	Denotación
	Α	"A dice la verdad"
0.5	В	"B dice la verdad"
Átom	С	"C dice la verdad"
Át	D	"D dice la verdad"
	E	"E dice la verdad"
	G	"G dice la verdad"

b. Escribe las fórmulas bien formadas (FBFs) en lógica proposicional de las que se compone la base de conocimiento (tantas como sean necesarias).

	Aseveración	FBF
se de imiento	B es falacius o D es falacius	$A \Leftrightarrow (\neg B \lor \neg D)$
e de mier	D y G son de la misma especie	$B \Leftrightarrow ((D \land G) \lor (\neg D \land \neg G))$
323	A es verosus o G es falacius	$C \Leftrightarrow (A \lor \neg G)$
E	B es verosus	$D \Leftrightarrow B$
	A es verosus	$E \Leftrightarrow A$

B y G o bien son ambos verosus o bien falacius $G \Leftrightarrow (B \land G) \lor (\neg B \land \neg G)$

c. Transforma las FBFs de la base de conocimiento en forma normal conjuntiva (FNC) indicando en cada paso la regla de equivalencia utilizada.

[5]
$$E \Leftrightarrow A \equiv [def. \Leftrightarrow](E \Rightarrow A) \land (A \Rightarrow E) \equiv [def. \Rightarrow](\neg E \lor A) \land (\neg A \lor E)$$

[6] $G \Leftrightarrow ((B \land G) \lor (\neg B \land \neg G))$

$$\equiv [def. \Leftrightarrow](G \Rightarrow ((B \land G) \lor (\neg B \land \neg G))) \land (((B \land G) \lor (\neg B \land \neg G)) \Rightarrow G)$$

$$\equiv [def. \Rightarrow](\neg G \lor ((B \land G) \lor (\neg B \land \neg G)))$$

$$\land (\neg ((B \land G) \lor (\neg B \land \neg G)) \lor G)$$

$$\equiv [De Morgan](\neg G \lor ((B \land G) \lor (\neg B \land \neg G)))$$

$$\land ((\neg (B \land G) \land \neg (\neg B \land \neg G)) \lor G)$$

$$\equiv [De Morgan](\neg G \lor ((B \land G) \lor (\neg B \land \neg G)))$$

$$\land (((\neg B \lor \neg G) \land (\neg \neg B \lor \neg \neg G)) \lor G)$$

$$\equiv [elim. \neg \neg](\neg G \lor ((B \land G) \lor (\neg B \land \neg G)))$$

$$\land (((\neg B \lor \neg G) \land (B \lor G)) \lor G)$$

$$\equiv [elim. \neg \neg](\neg G \lor ((B \land G) \lor (\neg B \land \neg G)))$$

$$\land ((((\neg B \lor \neg G) \land (B \lor G)) \lor G)$$

$$\equiv [dist.](\neg G \lor (((B \land G) \lor \neg B) \land ((B \land G) \lor \neg G))))$$

$$\land ((((\neg B \lor \neg G) \land B) \lor ((\neg B \lor \neg G) \land G)) \lor G)$$

$$\equiv [dist.](\neg G \lor (((B \lor \neg B) \land (G \lor \neg B)) \land ((B \lor \neg G) \land (G \lor \neg G))))$$

$$\land ((((\neg B \land B) \lor (\neg G \land B)) \lor ((\neg B \land G) \lor (\neg G \land G))) \lor G)$$

$$\equiv [asoc.](\neg G \lor (((B \lor \neg B) \land (G \lor \neg B) \land (B \lor \neg G) \land (G \lor \neg G)))$$

$$\land (((\neg B \land B) \lor (\neg G \land B) \lor (\neg B \land G) \lor (\neg G \land G) \lor G)$$

$$\equiv [dist.](\neg G \lor B) \land (\neg G \lor G) \land (B \lor G)$$

$$\land (\neg B \lor B) \lor (\neg G \land B) \lor (\neg G \land G) \lor (\neg G \land G) \lor G)$$

$$\equiv [dist.](\neg G \lor B) \land (\neg G \lor G) \land (B \lor G)$$

$$\land (\neg B \lor D \lor \neg G) \land (\neg B \lor G \lor \neg G) \land (\neg D \lor \neg G \lor B)$$

$$\land (\neg B \lor D \lor \neg G) \land (\neg B \lor G \lor \neg G) \land (\neg D \lor \neg G \lor B)$$

$$\land (\neg B \lor D \lor \neg G) \land (\neg B \lor G \lor \neg G) \land (\neg D \lor \neg G \lor B)$$

$$\land (\neg B \lor D \lor \neg G) \land (\neg B \lor G \lor \neg G) \land (\neg D \lor \neg G \lor B)$$

$$\land (\neg B \lor D), (\neg E \lor A) \land (\neg A \lor E), (\neg G \lor B) \land (\neg G \lor G) \land (B \lor G)$$

d. Utiliza refutación basada en resoluciones para determinar si A es $verosus$ o $falacius$.

$$\iota \Delta \vDash A?$$

$$\mathcal{L}\Delta \vDash A$$
?

$$\begin{split} \alpha_{FNC} &\equiv \{\Delta_{FNC}, (\neg A)_{FNC}\} \\ &\equiv \{(\neg A \vee \neg B \vee \neg D) \wedge (A \vee B) \wedge (A \vee D), (\neg B \vee G \vee \neg D) \\ & \wedge (\neg B \vee G \vee \neg G), (\neg C \vee A \vee \neg G) \wedge (C \vee \neg A) \wedge (C \vee G), (\neg D \vee B) \\ & \wedge (\neg B \vee D), (\neg E \vee A) \wedge (\neg A \vee E), (\neg G \vee B) \wedge (\neg G \vee G) \wedge (B \vee G), \neg A\} \end{split}$$

$$[2] + [16] \{A \lor B, \neg A\} \vdash_{[RES\ en\ A]} B [17]$$

$$[3] + [16] \{A \lor D, \neg A\} \vdash_{[RES\ en\ A]} D[18]$$

$$[11] + [16] \{ \neg E \lor A, \neg A \} \vdash_{[RES\ en\ A]} \neg E [19]$$

$$[4] + [17] \{ \neg B \lor G \lor \neg D, B \} \vdash_{[RES\ en\ B]} G \lor \neg D [20]$$

$$[18] + [20] \{D, G \lor \neg D\} \vdash_{[RES\ en\ D]} G [21]$$

$$[6] + [16] \{ \neg C \lor A \lor \neg G, \neg A \} \vdash_{[RES\ en\ A]} \neg C \lor \neg G [22]$$

$$[21] + [22] \{G, \neg C \lor \neg G\} \vdash_{[RES\ en\ G]} \neg C [23]$$

$$\alpha_{FNC} \equiv \{\neg A, B, \neg C, D, \neg E, G\}$$
es SAT, luego $\Delta \not\models A$

A es falacius.

e. Utiliza resolución directa sobre las cláusulas obtenidas para determinar si las otras criaturas con *verosus* o *falacius*.

A partir de los resultados obtenidos anteriormente, se puede determinar que A, C y E son *falacius*, mientras que B, D y G son *verosus*.

EJERCICIO 6. Alguien se comió la mayor parte de la tarta que el padre de Mira había hecho para su cumpleaños. Los únicos amigos que podrían haberlo hecho son Kieran, Diana, o Coco. Cuando Mira les preguntó, Diana dijo: "La culpa es de Coco". "Sí, claro que me la comí", respondió Coco con enigmática sonrisa. Kieran exclamó: "Te prometo que yo no fui".

Sabiendo que la persona que comió la tarta miente, que al menos uno de los otros dice la verdad y que podrían haber sido varios, ¿quién comió la tarta?

Utilizando únicamente inferencia directa en lógica proposicional (no se pueden usar tablas de verdad, razonamiento basado en casos, natural o semiformal), ¿puedes deducir quién comió la tarta, quien mintió y quién dijo la verdad?

a. Especifica los átomos necesarios para formalizar el problema en lógica proposicional.

	Símbolo	Denotación
	С	"Coco comió la tarta"
	D	"Diana comió la tarta"
	K	"Kieran comió la tarta"
Átomos	CC	"Como dijo la verdad"
ion	DD	"Diana dijo la verdad"
Á	KK	"Kieran dijo la verdad"

b. Formaliza en lógica proposicional la base de conocimiento. Utiliza para ello tantas filas como sean necesarias.

de		FBF	Lenguaje natural
	[1]	$DD \Leftrightarrow (C \land \neg CC \land \neg D)$	Si Diana dice la verdad, Coco comió la tarta, Coco
			miente y Diana no comió la tarta, y viceversa.
	[2]	$CC \Leftrightarrow (C \land \neg CC \land \neg C)$	Si Coco dice la verdad, Coco comió la tarta, Coco
			miente y Coco no comió la tarta, y viceversa
Base	[3]	$KK \Leftrightarrow \neg K$	Si Kieran dice la verdad, Kieran no comió la tarta, y
Ř			viceversa.

[4]	$DD \lor CC \lor KK$	Diana dice a verdad o Coco dice la verdad o Kieran
		dice la verdad
[5]	$D \lor C \lor K$	Diana comió tarta o Coco comió tarta o Kieran comió
		tarta

c. Transforma la base de conocimiento a forma normal conjuntiva, indicando en cada paso la regla de equivalencia utilizada.

$$\Delta = \{DD \Leftrightarrow (C \land \neg CC \land \neg D), CC \Leftrightarrow (C \land \neg CC \land \neg C), KK \Leftrightarrow \neg K, DD \lor CC \lor KK\}$$

$$[1] DD \Leftrightarrow (C \land \neg CC \land \neg D)$$

$$\equiv [def. \Leftrightarrow] (DD \Rightarrow (C \land \neg CC \land \neg D)) \land ((C \land \neg CC \land \neg D) \Rightarrow DD)$$

$$\equiv [def. \Rightarrow] (\neg DD \lor (C \land \neg CC \land \neg D)) \land (\neg (C \land \neg CC \land \neg D) \lor DD)$$

$$\equiv [De Morgan] (\neg DD \lor (C \land \neg CC \land \neg D)) \land ((\neg C \lor \neg CC \lor \neg \neg D) \lor DD)$$

$$\equiv [elim. \neg \neg] (\neg DD \lor (C \land \neg CC \land \neg D)) \land ((\neg C \lor CC \lor D) \lor DD)$$

$$\equiv [distr.] ((\neg DD \lor C) \land (\neg DD \lor \neg CC) \land (\neg DD \lor \neg D))$$

$$\land (\neg C \lor CC \lor D \lor DD)$$

$$\equiv [asoc.] (\neg DD \lor C) \land (\neg DD \lor \neg CC) \land (\neg DD \lor \neg D) \land (\neg C \lor CC \lor D \lor DD)$$

$$[2] CC \Leftrightarrow (C \land \neg CC \land \neg C) \equiv [def. \Leftrightarrow] (CC \Rightarrow (C \land \neg CC \land \neg C)) \land ((C \land \neg CC \land \neg C) \lor CC)$$

$$\equiv [def. \Rightarrow] (\neg CC \lor (C \land \neg CC \land \neg C)) \land ((\neg C \lor \neg CC \land \neg C) \lor CC)$$

$$\equiv [dist. \neg] (\neg CC \lor (C \land \neg CC \land \neg C)) \land ((\neg C \lor \neg CC \lor \neg C) \lor CC)$$

$$\equiv [distr.] ((\neg CC \lor C) \land (\neg CC \lor \neg CC) \land (\neg CC \lor \neg C))$$

$$\land (\neg C \lor CC \lor C \lor CC) \equiv [asoc.] \neg CC \land (\neg C \lor CC \lor C)$$

$$[3] KK \Leftrightarrow \neg K \equiv [def. \Leftrightarrow] (KK \Rightarrow \neg K) \land (\neg K \lor KK)$$

$$\equiv [elim. \neg \neg] (\neg KK \lor \neg K) \land (\neg K \lor KK)$$

$$\equiv [elim. \neg \neg] (\neg KK \lor \neg K) \land (K \lor KK)$$

$$\equiv [elim. \neg \neg] (\neg KK \lor \neg K) \land (K \lor KK)$$

 $[5] D \lor C \lor K$

$$\Delta_{FNC} = \{ (\neg DD \lor C), (\neg DD \lor \neg CC), (\neg DD \lor \neg D), (\neg C \lor CC \lor D \lor DD), \neg CC, (\neg C \lor CC \lor C), (\neg KK \lor \neg K), (K \lor KK), DD \lor CC \lor KK, D \lor C \lor K \}$$

d. Aplica resolución para derivar nuevas cláusulas. Proporciona una interpretación para las cláusulas resultantes.

$$[2] + [9] \{\neg DD \lor \neg CC, DD \lor CC \lor KK\} \vdash_{[RES\ en\ DD][RES\ en\ CC]} KK\ [11]$$

$$[7] + [11] \{ \neg KK \lor \neg K, KK \} \vdash_{[RES\ en\ KK]} \neg K [12]$$

$$[3] + [4] \{ \neg DD \lor \neg D, \neg C \lor CC \lor D \lor DD \} \vdash_{[RES\ en\ D][RES\ en\ DD]} \neg C \lor CC\ [13]$$

$$[5] + [13] \{\neg CC, \neg C \lor CC\} \vdash_{[RES\ en\ CC]} \neg C [14]$$

$$[10] + [12] \{D \lor C \lor K, \neg K\} \vdash_{[RES\ en\ K]} D \lor C \ [15]$$

$$[14] + [15] \{ \neg C, D \lor C \} \vdash_{[RES\ en\ C]} D\ [16]$$

$$[3] + [16] \{ \neg DD \lor \neg D, D \} \vdash_{[RES\ en\ D]} \neg DD [17]$$

Con los resultados obtenidos en las cláusulas [5], [11], [12], [14], [16] y [17], se puede afirmar que Diana comió la tarta, Diana y Coco mintieron y Kieran dijo la verdad.

La interpretación que hace que todas las cláusulas de la base de conocimiento tengan valor de verdad *verdadero* es:

D	С	K	DD	СС	KK
٧	F	F	F	F	V