Centrifugation

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Separation Processes

Sedimentation is driven by gravity and follows Stoke's law at low velocity

- Sedimentation separates solid particles dispersed in liquid
- Stoke's law describes flow around a sphere at low velocity (Re < 1)

$$\circ$$
 $v_{\infty}=rac{(
ho_p-
ho_f)}{18\mu}D_p^2$ for $ho_p=rac{D_p v_{\infty}
ho_f}{\mu}<1$

- ullet v_{∞} terminal velocity
- ρ_p particle density
- ρ_f fluid density
- \blacksquare μ fluid viscosity
- D_p particle diameter
- Sedimentation is slow... How can we speed it up?

Centrifugation is driven by centrifugal force and also follows Stoke's law

- Centrifugation separates solid particles dispersed in liquid faster
- Stoke's law describes flow around a sphere at low velocity (Re < 1)

$$\circ$$
 $v_{\infty}=rac{(
ho_p-
ho_f)}{18\mu}D_p^2\omega^2r$ for $ho_f=rac{D_pv_{\infty}
ho_f}{\mu}<1$

- ullet ω angular velocity of centrifuge bowl
- r centrifuge bowl radius

• G-force normalizes centrifugal driving force by gravitational driving force

$$\circ \left[Z = \frac{\omega^2 r}{g} \right] = \frac{\text{centrifical}}{\text{gravitational}} = x_0$$

Sigma factor compares performance of continuous centrifuges of the same type

• **Sigma factor** - effective area of a continuous centrifuge

$$\circ$$
 $\left[\Sigma = rac{\dot{V}}{2v_{\infty}}
ight]$ $rac{ ext{flow rate}}{ ext{velocity}} = ext{J}$ \sim

2:
$$\frac{2}{\sqrt{2}} |\nabla_{00}| = \frac{1}{\sqrt{2}}$$
 ratio
2: $\frac{2}{\sqrt{2}} |\nabla_{00}| = \frac{1}{\sqrt{2}}$

• Ex. At small scale, cells can be centrifuged at $\Sigma_1=200$ and $\dot{V}_1=15~\mathrm{mL/min}$. At large scale, cells can be centrifuged at $\Sigma_2=9000$ and $\dot{V}_2=700~\mathrm{mL/min}$ at the same speed. The densities and viscosity are unchanged. Quantify the changed physical property.

$$\frac{|V_{00}| \leq i}{|V_{02}|} = \frac{|V_i|}{|V_c|}$$

$$\frac{|V_{00}| \leq i}{|V_c|} = \frac{|V_{00}|}{|V_c|}$$

$$\frac{|V_{00}| = i}{|V_c|}$$