	组件详细设计		号
		文件编·	号
		版本	页 1

信号处理详细设计

文件编号

本模板的使用建立在假设用户已经基本了解了"软件开发指引(独立文件)"的内容的基础上。在使用本模板时出现关于其用法的问题,请参考"软件开发指引"相关章节

Compliant with Functional safety Standard (ISO26262)
□Required 需要 ☑ No 不符合功能安全标准(ISO26262) □

批准	审核	审核	编制

发行日期 2021/07/23 发行单位

变更历史

版	本	☆₩,□₩	ルー土	17 17 1	极步中家
当前	新版	甲批口别 	审批日期 作者 审核人		修改内容
	V1.0				基础版本
	V1.1				CR-1: 修改 3.1 静态设计框图 CR-2: 修改用语、缩略语定义 CR-3: 修改 3.1.2 ADC 静态框图 CR-4: 修改 2.1 组件约束 CR-5: 修改 3.1.1 波形 CR-5: 修改 3.1 2DFFT 静态图

项目编·	号
文件编	号
版本	页 2

目录

信	言号处理详细设计	1
1	概要	3
	1.1 目的	3
	1.2 参考文件	3
	1.3 用语、缩略语等定义	
2	制约条件	3
	2.1 组件约束	3
3	软件组件设计	4
	3.1 组件静态设计	4
	3.1.1 波形配置	
	3.1.2 ADC 数据采集	
	3.1.3 一维 FFT	
	3.1.4 二维 FFT	6
	3.1.5 二维幅值矩阵	
4	功能函数详述	8
	4.1 配置 ADCBUF 驱动程序的函数	8
	4.2 一维 FFT 功能函数	8
	4.3 二维 FFT 功能函数	9
	4.4 二维幅值矩阵功能函数	10

	组件详细设计		号
		T 11 40 -	号
		版本	页 3

1 概要

1.1 目的

本详细设计说明书编写的目的是为了说明程序模块的设计考虑,包括程序描述、输入/输出、算法和流程逻辑等,为软件编程和系统维护提供基础。本说明书的预期读者为系统设计人员、软件开发人员、软件测试人员和项目评审人员。

1.2 参考文件

编号	参考文档	版本	发行者	理由
1	mmwave_sdk_user_guide			
2	IWR68xxIndustrial Radar Technical Reference Manual			
3	iwr6843			

1.3 用语、缩略语等定义

编号 用语、缩略语 含义、定义和正式名称 1 SoC 系统级芯片 2 CFAR 恒虚警率 3 EDMA 快速数据交换 4 BSS Business support system 5 MSS Management support System 6 DSS Decision Support System 7 ADC 数模转换器 8 FFT 傅里叶变换 9 TDM 时分复用技术	/ 13 4H / MH	711111111111111111111111111111111111111	
2CFAR恒虚警率3EDMA快速数据交换4BSSBusiness support system5MSSManagement support System6DSSDecision Support System7ADC数模转换器8FFT傅里叶变换	编号	用语、缩略语	含义、定义和正式名称
3EDMA快速数据交换4BSSBusiness support system5MSSManagement support System6DSSDecision Support System7ADC数模转换器8FFT傅里叶变换	1	SoC	系统级芯片
4BSSBusiness support system5MSSManagement support System6DSSDecision Support System7ADC数模转换器8FFT傅里叶变换	2	CFAR	恒虚警率
5MSSManagement support System6DSSDecision Support System7ADC数模转换器8FFT傅里叶变换	3	EDMA	快速数据交换
6DSSDecision Support System7ADC数模转换器8FFT傅里叶变换	4	BSS	Business support system
7 ADC 数模转换器 8 FFT 傅里叶变换	5	MSS	Management support System
8 FFT 傅里叶变换	6	DSS	Decision Support System
	7	ADC	数模转换器
9 TDM 时分复用技术	8	FFT	傅里叶变换
1 1 7 2 7 1 3 2 7 1	9	TDM	时分复用技术
10 Ping-pong 数据缓冲的手段	10	Ping-pong	数据缓冲的手段
11 Front End 前端多指声频系统中的信号源	11	Front End	前端多指声频系统中的信号源
12 MIMO 多进多出	12	MIMO	多进多出
13 MMIC 单片式微波集成电路	13	MMIC	单片式微波集成电路

2 制约条件

2.1 组件约束

软件设计和实现约束条件如下:

- 1、供信号处理使用的 L2 空间最大为 256K, L3 空间大小最大为 768K;
- 2、需要考虑兼容性以及软件的可移植性,便于后续维护及开发;
- 3、模块实现需要遵循 MISRA C:2012 规范。

组件详细设计 项目编号 版本 页 4

3 软件组件设计

3.1 组件静态设计

ADC & 1DFFT

2DFFT

图 1 目标模块静态框图

3.1.1 波形配置

考虑到内存限制此次调试波形设置为1发4收,当前波形如下:

sensorStop

flushCfg

Ex:刷新旧配置并提供新配置

 $dfeDataOutputMode\ 1$

Ex:基于帧的 chirp

channelCfg 15 1 0

Ex:通道配置为 4 收、1 发

adcCfg 2 1

Ex:adc 数据格式为 16b、复数

adcbufCfg -1 0 0 1 1

Ex:设置 legacy 模式、输出为复数、低位为复数高位为实数、数据为不交叉的、Chirp 阈值为 1

profileCfg 0 60 48.5 5 31.6 0 0 120 0 128 5000 0 0 40

Ex:、起始频率为 60GHz、空闲时间为 48.5u、ADC 起始时间为 5u、斜坡结束时间为 31.6u、Tx 输出功率为 0、Tx 移相器为 0、频率斜率为 120、Tx 开始时间为 0u、Adc 采样数为 128、采样频率为 5000、(高通录波器 1)转角频率为 175kHz、(高通录波器 2)转角频率为 350kHz、Rx 与 Rf 增益目标 OR 为 40

chirpCfg 0 0 0 0 0 0 0 1

Ex:chirp 起始索引 0、chirp 结束索引 0、配置文件标识符、起始频率变化 0、单位斜率变化 0、空闲时间 0、ADC 开始时间变化 0、打开 1 天线

frameCfg 0 0 128 0 50 1 0

Ex:chirp 起始索引 0、chirp 结束索引 0、loops 为 128、帧数为无限、帧周期为 50ms、软件触发、帧触发延 迟为 0

lowPower 0 1

Ex:Adc 模式为低功耗

sensorStart

	组件详细设计	项目编	号
		文件编·	号
		版本	页 5

3.1.2 ADC 数据采集

ADCBuf 是在 DSS 程序中进行的配置,因为它是 C674x 的外设。内存大小为 32KB,如下图:

DSS_ADCBUF	0x2100_0000	0x2100_7FFC	32KiB	DSS_ADCBUF (ADC buffer) memory space

ADCBuf 驱动的配置以及启用:

- 1. 调用 ADCBuf 驱动
- 2. 对 adcBufParams 进行赋值,完成参数初始化
- 3. 开启天线接收并讲接受的数据储存(32KB ADC Buffer)

3.1.3 一维 FFT

图 2 一维 FFT 处理流程

RangeProcDSP 有 3 个处理阶段:

- 1.通过 dataIn EDMA 通道引入 ADC 数据
- 2.使用 DSPlib/mmwavelib 进行 FFT 处理
- 3.通过 dataOut EDMA 通道将 FFT 结果传输到雷达立方体

使用案例:

无论 TX 天线的数量如何,距离 FFT 都需要 2 个输入 EDMA 通道和 2 个输出 EDMA 通道才能以 Ping Pang 方式工作。

Ping 输入通道将数据带入本地内存"adcDataIn"的 Ping 区域,pong 通道将数据带入pong 区域。 FFT 后,对于 2 TX 天线,本地存储器"fftout1D"中的 ping 结果被复制到雷达立方体中的 TX1 区域。 Pong 结果被复制到雷达立方体中的 TX2 区域。

对于 3 TX 天线, ping 总是处理奇数 chirp 数据, pong 总是处理偶数 chirp 数据。距离 FFT 结果以下列格式复制到雷达立方体:

组化	‡详	细	设	计
		74	~	

项目编·	号
文件编	号
版本	页 6

3.1.4 二维 FFT

图 3 二维 FFT 处理流程

如上图,二维 FFT 模块的输入为一维 FFT 的结果,输出为二维 FFT 的结果。二维 FFT 主要做速度维的傅里叶变换。首先读取一维 FFT 的结果,将数据转置为速度维数据存储在一起的格式,之后进行相应点数的 FFT 操作,最终得到二维 FFT 的结果并输出到 L3 中存储。

	项目编	号		
组件详细设计	文件编	文件编号		
	版本	页 7		

3.1.5 二维幅值矩阵

图 4 二维幅值矩阵计算流程

如上图,二维幅值矩阵的输入值为单个接收通道的二维 FFT 的结果,输出为单通道的二维幅值矩阵。其中只计算单个通道的二维幅值,最终得出单通道的二维幅值矩阵用以速度解模糊使用。

项目编·	号
文件编	号
版本	页 8

4 功能函数详述

4.1 配置 ADCBUF 驱动程序的函数

功能名称	$MmwDemo_dssDataPathConfigAdcBuf()$			
			精度	1
输入	ADCBuf 的数据格式	当前 ADCBuf 的格式	值域	
			分辨率	1
			精度	1
输入	使能 Rx channels	开启 Rx 天线	值域	0x2100_0000 - 0x2100_7FFC
			分辨率	1
输入	设置 ping/pang 阈值	缓存大小	精度	
解释		ADC 数据采集函数		

4.2 一维 FFT 功能函数

淮111 为此因从					
功能 名称	${\bf MmwDemo_processChirp()}$				
		MMIC 采样通过总线传输 — 到 SRAM(ADC data Buffer)的地址 —	精度	1	
输入	原始数据地址		值域	0x2100_0000 - 0x2100_7FFC	
			分辨率	1	
	发射通道 1 的	发射通道1的原始数据通过	精度	1	
输入	ping pang 缓存 EDMA 数		值域	0x007E_0000 - 0x0081_FFFF	
		分辨率	1		

项目编·	号
文件编	号
版本	页 9

				精度	
	输入	帧类型	当前帧的制式	值域	
				分辨率	
				精度	
	输入	入 波形类型	类型 波形的用途	值域	
				分辨率	
				精度	1
	输出	 一维 FFT 结果 	一维 FFT 结果地址(L3)	值域	0x2000_0000-0 x201F_FFFF
				分辨率	1
	解释	一维 FFT 功能函数			

4.3 二维 FFT 功能函数

功能名称	MmwDemo_interFrameProcessing			
			精度	1
输入	一维 FFT 数据 一维 FFT 数据结果在 地址 SRAM(L3)中的存放地址	值域	0x2000_0000-0 x201F_FFFF	
		分辨率	1	
		一维 FFT 结果经过二维	精度	1
输入	二维 FFT 数据 地址 SRAM(L3)中的地址	值域	0x2000_0000-0 x201F_FFFF	
			分辨率	1

项目编·	号
文件编	号
版本	页 10

				精度	
	输入	帧类型	当前帧的制式	值域	
				分辨率	
٠				精度	
	输入	波形类型	波形的用途	值域	t
				分辨率	
				精度	1
	输出	二维 FFT 结果	推 FFT 结果 対一维 FFT 结果进行处理 之后的二维 FFT 结果	值域	0 65535
				分辨率	1
	解释	二维 FFT 功能函数			

4.4 二维幅值矩阵功能函数

功能名称	${\bf Aoa Dsp Doppler Magnitude Calculate}$			
			精度	1
输入	高入 二维 FFT 结果 二维 FFT 结果的 SRAM L (L3) 地址	值域	0x2000_0000-0 x201F_FFFF	
		分辨率	1	
		对多通道的二维 FFT 进行	精度	1
输入	幅值矩阵地址 值矩阵在 SRAM 中的存储 地址	值域	0x2000_0000-0 x201F_FFFF	
		分辨率	1	

项目编号 文件编号 版本 页 11

			精度	
输入	帧类型	当前帧的制式	值域	teMrModeFram e, teSrModeFram e
			分辨率	
			精度	
输入	波形类型	波形的用途	值域	teReferenceChi rp, teBaseChirp
			分辨率	
			精度	1
输出	二维幅值矩阵结果	对二维 FFT 结果进行处理 之后的二维幅值矩阵结果	值域	0 65535
			分辨率	1
解释		幅值计算函数		