	Bayesians	Frequentists
probability is	subjective (but not arbitrary)	objective
it is	degree of belief	long-run frequency
it is in	in beliefs of rational agents	in the world
it applies to	anything you can believe in	only to repeatable events

Probabilities go from 0 to 1 And must sum to 1!

Playing with distributions in R

	Definition	Binomial	Normal
d	Probability of specifc outcome	x=outcome, size,prob	NA
р	Chance outcome doesn't exceed threshold	q=threshold, size,prob	q=threshold, mean,sd
q	Some quantile	p=quantile, size,prob	p=quantile, mean,sd
r	Sample random numbers	r=#of draws, size,prob	r=# of draws, mean,sd

Two important distributions

Binomial

Count data with two outcomes (coin toss)

Discrete

size = # of trials

prob = "weight" of coin

Normal

"Bell curve"

Continuous

mean = centre of mass

sd = measure of spread

thing	"usual" symbol	thing	"usual" symbol	what is it?	do we know its value?
true population mean	μ	true population sd	σ	the truth	no
estimated population mean	$\hat{\mu}$	estimated population sd	$\hat{\sigma}$	a statistical inference	yes
sample mean	$ar{X}$ or M	sample sd	S	a description of our dataset	yes

Sampling distribution
of the mean is a
theoretical idea that
captures what you would
expect the means of lots
of samples from a
population to look like

It is less variable than the original distribution

 Central limit theorem: As sample size goes to infinity, the sampling distribution of the mean becomes normal, regardless of the shape of the underlying distribution

the 95% confidence interval (CI) is the range that covers the mean 95% of the time

$$CI_{95} = \bar{X} \pm 1.96 \frac{\hat{\sigma}}{\sqrt{N}}$$

library(lsr)
 ciMean(x)

ciMean(data)

ciMean(x,conf=.8)

	accept H_0	reject H_0	
H_0 is true	Correct!	Type I error: false positive	
		α Type I error rate significance level	
H_0 is false	Type II error: false negative	Correct!	
	eta Type II error rate	1- β power	

Things you can say	Things you can't say	
p is the Type 1 error rate you are willing to tolerate to reject H0	p is the probability the null hypothesis is true	
p is the probability, if H0 is true, of observing a test statistic at least as extreme as yours	the null hypothesis is true / false	
we reject / retain the null / alternative hypothesis	p is the probability that the result	
the test was / was not significant	was due to chance	

Designing a statistical

- 1) A diagnostic test statistic, T (e.g., mean)
- 2) Sampling distribution of T if the null is true
- 3) The observed T in your data

test requires: 4) A rule that maps every value of T onto a decision (accept or reject H0)

Two kinds of tests vary by whether the rejection region is on both sides of the distribution (depends on your research hypothesis)

One-taile

