

4 Types of Flip-Flops

SR flip-flop

	S	R	Q _{t+1}	Q' _{t+1}
T Q	0	0	Qt	Q' _t
T	0	1	0	1
\rightarrow \overline{Q}			I	I

JK flip-flop

J	K	Q _{t+1}	Q' _{t+1}
0	0	Qt	Q' _t
0	1	0	1

Flip-Flops

Apontamentos sobre as tabelas de estado, os diagramas de estado, a codificação de estados e o estudo dos diferentes flip-flops (J-K, T e D)

Page

- CIRCUITOS COMBINATÓRIOS As saídas só dependem das entradas nesse instante
- **CIRCUITOS SEQUENCIAIS** As saídas podem depender das entradas nesse instante mas também das entradas em instantes anteriores
- TABELAS DE ESTADOS Descreve o comportamento de um circuito sequencial

Estado	Actual	Estado Seguinte		
0	0	1	0	
0	1	1	1	
1	0	0	0	
1	1	0	1	

Diagrama de estados

- O que representam:
 - vértices os estados do circuito sequencial
 - arestas as transições entre os estados
 - x1/S as variáveis externas de entrada/saída

Como existem 2 configurações de entrada possíveis X=0 ou X=1 saem 2 arcos de cada vértice

Codificação de estados

- As variáveis que traduzem o comportamento dos elementos de memória chamam-se variáveis de estado
- Codificação de estados processo de correspondência entre os estados de um dispositivo físico e os estados de um circuito sequencial

Estudo dos flip-flops

- Flip-flop Circuito lógico capaz de armazenar 1 bit. Possui 2 estados distintos: 0 ou 1 conforme o bit que memorizar.
- Para funcionar como um elemento de memória, um flip-flop deve:
 - Ser capaz de permanecer num dos estados por tempo indefinido enquanto n\u00e3o for actuado exteriormente
 - Ter uma ou mais entradas que sob acção externa permitam alterar o seu estado
 - Poder ser lida para o exterior a informação que memoriza

- Existem 4 tipos de flip-flops, mas só estudamos 3 deles
 - R-S (não estudado, devido à sua tabela funcional ter uma saída indefinida)
 - J-K
 - D
 - T

Flip-flop J-K

Flip-flop T

Flip-flop D

Síntese de circuitos sequenciais síncronos