Cursul 5

Spaţiul liniar real \mathbb{R}^n . Aspecte algebrice

În acest curs, vom prezenta câteva *aspecte algebrice* pentru mulțimea $\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{\text{de n ori}}$ unde $n \in \mathbb{N}^*$,

iar $\mathbb R$ reprezintă mulțimea numerelor reale.

Legi de compoziție. Grupuri. Inele. Corpuri

Definiția 4.1 Fie M o mulțime nevidă. Numim operație algebrică sau lege de compoziție pe M o funcție $\varphi: M \times M \to M$. Pentru $x, y \in M$, elementul $\varphi(x, y) \in M$ se numește compusul lui x cu y prin operația φ . Pentru simplificarea scrierii, de regulă, $\varphi(x, y)$ se redă prin $x \circ y$.

Definiția 4.2 Fie M o mulțime nevidă. Spunem că operația algebrică "o" pe M se numește

- i) asociativă, dacă $(x \circ y) \circ z = x \circ (y \circ z), \forall x, y, z \in M;$
- *ii)* comutativă, dacă $x \circ y = y \circ x, \forall x, y \in M$;
- iii) cu element neutru, dacă există $e \in M$, astfel încât $x \circ e = e \circ x = x, \forall x \in M$.

Definiția 4.3 Un dublet (M, \circ) , unde M este o mulțime nevidă, iar " \circ " este o operație algebrică pe M, se numește **semigrup** dacă operația " \circ " este asociativă. În plus, dacă operația " \circ " are și element neutru, atunci (M, \circ) se numește **monoid**. Dacă " \circ " este și comutativă, **monoidul** (M, \circ) se numește **comutativ**.

Definiția 4.4 Fie (M, \circ) un monoid. Un element $x \in M$ se numește inversabil (simetrizabil) în raport cu "o", dacă există $\tilde{x} \in M$ (numit inversul sau simetricul lui x), astfel încât $x \circ \tilde{x} = \tilde{x} \circ x = e$ (unde e este elementul neutru, din M, față de "o").

Mulțimea tuturor elementelor simetrizabile ale unui monoid (M, \circ) constituie ansamblul unităților lui M și se notează cu U(M).

Definiția 4.5 Numim **grup** un monoid (G, \circ) pentru care U(G) = G. Un grup (G, \circ) se numește **abelian** (comutativ) dacă operația " \circ " este comutativă.

Definiția 4.6 Un triplet $(A, +, \cdot)$, unde A este o mulțime nevidă, iar "+" și ": " sunt operații algebrice pe A, se numește **inel** dacă:

- i) (A, +) este grup comutativ;
- ii) (A, \cdot) este semigrup;
- iii) Operația "· " este distributivă față de "+ ", adică

$$x \cdot (y+z) = x \cdot y + x \cdot z \ \S i$$
$$(x+y) \cdot z = x \cdot z + y \cdot z, \ \forall x, y, z \in A.$$

Dacă "·" este o operație comutativă, atunci inelul A se numește comutativ. Dacă "·" are element neutru, atunci inelul A se numește unitar. Dacă elementul neutru în raport cu "+" coincide cu cel în raport cu "·", atunci inelul se numește nul. În caz contrar, el se numește inel nenul.

Mulțimea unităților unui inel unitar A, notată cu U(A), este următoarea $\{a \in A \mid \exists b \in A \text{ așa încât } a \cdot b = b \cdot a = 1\}$ (1 fiind notația pentru elementul neutru în raport cu "·").

Definiția 4.7 Fie $(A, +, \cdot)$ un inel. Un element $a \in A$ se numește divizor al lui zero (0) la stânga (respectiv la dreapta) dacă există $b \in A^*$, așa încât $a \cdot b = 0$ (respectiv $b \cdot a = 0$).

Definiția 4.8 Numim domeniu de integritate (inel integru) un inel comutativ, nenul și fără divizori ai lui zero, diferiți de zero.

Definiția 4.9 Un inel unitar $(K, +, \cdot)$ se numește **corp** dacă $U(K) = K^* \equiv K \setminus \{0\}$.

Spaţii liniare. Subspaţii liniare

Definiția 4.10 Fie V o mulțime nevidă și K un corp comutativ. Spunem că pe V, este definită o **structură** algebrică de spațiu liniar peste corpul K dacă și numai dacă există o lege internă "+": $V \times V \to V$ și o lege de compoziție externă " \cdot ": $K \times V \to V$, așa încât sunt îndeplinite următoarele cerințe (axiome):

- **SL1)** (V, +) este un grup comutativ;
- **SL2)** $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y, \forall \alpha \in K, x, y \in V;$
- **SL3)** $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}, \forall \alpha, \beta \in K, \mathbf{x} \in V;$
- **SL4)** $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \beta) \cdot \mathbf{x}, \forall \alpha, \beta \in K, \mathbf{x} \in V;$
- **SL5)** $1 \cdot x = x$, $\forall x \in V$ (unde 1 este elemental unitate din K).

Ansamblul $(V, K, +, \cdot)$ se numește **spațiu liniar** (sau **vectorial**) peste K (sau K-**spațiu liniar**). Elementele K-spațiului liniar V se numesc **vectori**, iar elementele lui K se numesc, într-un astfel de context, **scalari**. Legea de compoziție internă "+" poartă denumirea de **adunare a vectorilor**, iar legea de compoziție externă " \cdot " se numește **înmulțire cu scalari**.

Când K este corpul $\mathbb R$ al numerelor reale, atunci **spațiul liniar** în cauză se numește **real**. Elementul neutru (din V) în raport cu operația internă "+" se numește **vector nul** și se notează, uzual, cu **0**. Simetricul unui element $u \in V$, relativ la "+", se numește **vectorul opus** lui u și se notează cu -u.

Propoziția 4.11 Fie $(V, K, +, \cdot)$ un spațiu liniar. Atunci:

- *i*) $0 \cdot \mathbf{x} = \alpha \cdot \mathbf{0} = \mathbf{0}, \ \forall x \in V, \alpha \in K$;
- *ii)* $(-\alpha) \cdot \mathbf{x} = \alpha \cdot (-\mathbf{x}) = -\alpha \cdot \mathbf{x}, \forall \alpha \in K, \mathbf{x} \in V$;
- *iii*) $(-\alpha) \cdot (-x) = \alpha \cdot x, \forall \alpha \in K, x \in V;$
- *iv*) $\alpha \cdot \mathbf{x} = \mathbf{0} \Rightarrow \alpha = 0 \ sau/si \ \mathbf{x} = \mathbf{0}$.

Demonstraţie: i) $0 \cdot \mathbf{x} = (0+0) \cdot \mathbf{x} = 0 \cdot \mathbf{x} + 0 \cdot \mathbf{x}, \ \forall \mathbf{x} \in V \Rightarrow 0 \cdot \mathbf{x} + (-0 \cdot \mathbf{x}) = (0 \cdot \mathbf{x} + 0 \cdot \mathbf{x}) + (-0 \cdot \mathbf{x}) \Rightarrow \mathbf{0} = 0 \cdot \mathbf{x} + ((0 \cdot \mathbf{x} + (-0 \cdot \mathbf{x}))) \Rightarrow \mathbf{0} = 0 \cdot \mathbf{x} + \mathbf{0} = 0 \cdot \mathbf{x}.$ Totodată, avem: $\alpha \cdot \mathbf{0} = \alpha \cdot (\mathbf{0} + \mathbf{0}) = \alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0} \Rightarrow \alpha \cdot \mathbf{0} + (-\alpha \cdot \mathbf{0}) = (\alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}) + (-\alpha \cdot \mathbf{0}) = \alpha \cdot \mathbf{0} + (\alpha \cdot \mathbf{0} + (-\alpha \cdot \mathbf{0})) = \alpha \cdot \mathbf{0} + \mathbf{0} \Rightarrow \mathbf{0} = \alpha \cdot \mathbf{0}, \ \forall \alpha \in K.$

- ii) $\mathbf{0} = 0 \cdot \mathbf{x} = (\alpha \alpha) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + (-\alpha) \cdot \mathbf{x} \Rightarrow (-\alpha) \cdot \mathbf{x} = -\alpha \cdot \mathbf{x}$ şi $\mathbf{0} = \alpha \cdot \mathbf{0} = \alpha \cdot (-\mathbf{x} + \mathbf{x}) = \alpha \cdot (-\mathbf{x}) + \alpha \cdot \mathbf{x}$ $\Rightarrow \alpha \cdot (-\mathbf{x}) = -\alpha \cdot \mathbf{x}, \ \forall \ \alpha \in K, \mathbf{x} \in V.$
 - iii) $(-\alpha) \cdot (-x) = -\alpha \cdot (-x) = -(-(\alpha \cdot x)) = \alpha \cdot x, \forall \alpha \in K, x \in V.$
- iv) Dacă $\alpha \neq 0$ și $\alpha \cdot \mathbf{x} = \mathbf{0}$, atunci: $\mathbf{x} = \mathbf{1} \cdot \mathbf{x} = (\alpha^{-1} \cdot \alpha) \cdot \mathbf{x} = \alpha^{-1} \cdot (\alpha \cdot \mathbf{x}) = \alpha^{-1} \cdot \mathbf{0} = \mathbf{0}$. Altfel, $\alpha = 0$ și \mathbf{x} este arbitrar în V.

Propoziția 4.12 Mulțimea \mathbb{R}^n , $n \in \mathbb{N}^*$, are structură de spațiu liniar real în raport cu operația algebrică internă de adunare a n-uplelor, definită prin

$$(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \in \mathbb{R}^n,$$

$$\forall \mathbf{x} = (x_1, x_2, \dots, x_n), \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$

și legea de înmulțire a unui n-uplu oarecare cu un scalar real arbitrar, definită prin

$$(\alpha, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^n \longrightarrow \alpha \cdot \mathbf{x} = (\alpha x_1, \alpha x_2, \dots, \alpha x_n),$$

 $\forall \alpha \in \mathbb{R}, \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$

Demonstraţie: Asociativitatea şi comutativitatea adunării pe \mathbb{R} implică, evident, asociativitatea şi respectiv comutativitatea adunării pe \mathbb{R}^n . Totodată, se vede că $\mathbf{0} = (0,0,\ldots,0) \in \mathbb{R}^n$ este vectorul nul, adică elementul neutru al adunării pe \mathbb{R}^n şi, pentru orice $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, există opusul $-\mathbf{x} = (-x_1, -x_2, \ldots, -x_n) \in \mathbb{R}^n$. Prin urmare, în raport cu adunarea n-uplelor reale, $(\mathbb{R}^n, +)$ este grup (aditiv) comutativ, fiind satisfăcută astfel axioma SL1) din Definiţia 4.10. În ceea ce priveşte îndeplinirea axiomelor SL2)-SL5) constatăm, pe rând, că avem:

$$\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) = (\alpha(x_1 + y_1), \alpha(x_2 + y_2), \dots, \alpha(x_n + y_n)) =$$

$$= (\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2, \dots, \alpha x_n + \alpha y_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n) + (\alpha y_1, \alpha y_2, \dots, \alpha y_n) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y},$$

$$\forall \alpha \in \mathbb{R}, \mathbf{x} = (x_1, x_2, \dots, x_n), \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n,$$

$$(\alpha + \beta) \cdot \mathbf{x} = (\alpha + \beta) \cdot (x_1, x_2, \dots, x_n) = ((\alpha + \beta)x_1, (\alpha + \beta)x_2, \dots, (\alpha + \beta)x_n) =$$

$$= (\alpha x_1 + \beta x_1, \alpha x_2 + \beta x_2, \dots, \alpha x_n + \beta x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n) + (\beta x_1, \beta x_2, \dots, \beta x_n) =$$

$$= \alpha \cdot (x_1, x_2, \dots, x_n) + \beta \cdot (x_1, x_2, \dots, x_n) = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}, \forall \alpha, \beta \in \mathbb{R}, \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n,$$

$$\alpha \cdot (\beta \cdot \mathbf{x}) = \alpha \cdot (\beta \cdot (x_1, x_2, \dots, x_n)) = \alpha \cdot (\beta x_1, \beta x_2, \dots, \beta x_n) =$$

$$= ((\alpha \beta)x_1, (\alpha \beta)x_2, \dots, (\alpha \beta)x_n) = (\alpha \beta) \cdot (x_1, x_2, \dots, x_n) = (\alpha \beta) \cdot \mathbf{x},$$

$$\forall \alpha, \beta \in \mathbb{R}, \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \text{ si}$$

$$\mathbf{1} \cdot \mathbf{x} = \mathbf{1} \cdot (x_1, x_2, \dots, x_n) = (1 \cdot x_1, 1 \cdot x_2, \dots, 1 \cdot x_n) =$$

$$= (x_1, x_2, \dots, x_n) = \mathbf{x}, \forall \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

În concluzie, $(\mathbb{R}^n, +, \cdot)$ este un spațiu liniar real.

Alte exemple de spații liniare: Fie X o mulțime nevidă, K un corp comutativ, $(V, K, +, \cdot)$ un spațiu liniar peste K și $\mathcal{F}(X, V) = \{f : X \to V\}$. Se poate vedea că $\mathcal{F}(X, V)$ are o structură algebrică de spațiu liniar în raport cu adunarea funcțiilor, definită în mod obișnuit prin

(*)
$$(f+g)(x) = f(x) + g(x), \forall x \in X, \forall f, g \in \mathcal{F}(X, V)$$

și înmulțirea funcțiilor cu scalari din K, definită prin

$$(**) \quad (\alpha \cdot f)(x) = \alpha \cdot f(x), \forall \alpha \in K, \forall x \in X, \forall f \in \mathcal{F}(X, V).$$

Aceasta deoarece, în virtutea faptului că V este un K-spațiu liniar, $\mathcal{F}(X,V)$ satisface, în raport cu operațiile algebrice menționate, axiomele SL1)-SL5) din Definiția 4.10.

Particularizând X, K, şi V, obţinem diverse exemple de spaţii vectoriale. Astfel, dacă m şi n sunt numere naturale proprii, iar $X = \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ şi $V = K = \mathbb{R}$, atunci $\mathcal{F}(X, V)$ se identifică cu mulţimea $\mathcal{M}_{m,n}(\mathbb{R})$ a tuturor matricilor de tip $m \times n$ şi cu elemente din \mathbb{R} , mulţime care, în raport cu adunarea matricilor şi cu înmulţirea cu scalari din \mathbb{R} este, aşadar, un spaţiu liniar real.

În situația în care $X \subseteq \mathbb{R}$ și $V = K = \mathbb{R}$, se obține \mathbb{R} -spațiul liniar $\mathcal{F}(X,\mathbb{R})$ al funcțiilor reale, de o singură variabilă reală, definite pe X.

Dacă X este o submulțime nevidă a lui \mathbb{R}^n $(n \in \mathbb{N}^*)$, $K = \mathbb{R}$ și $V = \mathbb{R}^m$ $(m \in \mathbb{N}^*)$, atunci $\mathcal{F}(X, V)$ reprezintă, în raport cu adunarea (*) și înmulțirea (**), spațiul liniar real al funcțiilor de n-variabile reale, definite pe X și cu valori vectoriale, de câte m componente reale.

Atunci când $X = \mathbb{N}$ şi $V = K = \mathbb{R}$, mulțimea $\mathcal{F}(X, V)$ este, în raport cu operațiile (*) şi (**), spațiul liniar real al şirurilor de numere reale.

Definiția 4.13 Fie $(V, K, +, \cdot)$ un spațiu liniar peste un corp comutativ K și W o submulțime nevidă a lui V. Dacă, $\forall x, y \in W$, rezultă că $x + y \in W$ și, $\forall \alpha \in K, x \in W$, reiese că $\alpha \cdot x \in W$, atunci $(W, K, +, \cdot)$ este numit subspațiu liniar al lui $(V, K, +, \cdot)$.

Exemple:

- 1) Mulţimea $\{\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}$ este, în raport cu adunarea *n*-uplelor din \mathbb{R}^n şi înmulţirea acestora cu scalari din \mathbb{R} , un subspaţiu liniar al lui $(\mathbb{R}^n, \mathbb{R}, +\cdot)$.
- 2) Mulţimea $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(x) = f(-x), \forall x \in \mathbb{R}\}$ a funcţiilor reale, scalare şi pare este un subspaţiu liniar al spaţiului liniar real $(\mathcal{F}(\mathbb{R}, \mathbb{R}), \mathbb{R}, +, \cdot)$.

Definiția 4.14 Dacă $n \in \mathbb{N}^*$ şi x_1, x_2, \ldots, x_n sunt elemente ale unui spațiu liniar V peste un corp comutativ K, iar $\alpha_1, \alpha_2, \ldots, \alpha_n$ sunt scalari din K, atunci elementul

$$\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{x}_k$$

se numește combinație liniară a elementelor x_1, x_2, \ldots, x_n .

Definiția 4.15 O submulțime nevidă W a unui spațiu liniar $(V, K, +, \cdot)$ se numește **subspațiu liniar** al lui V dacă și numai dacă orice combinație liniară de oricare două elemente ale lui W aparține lui W, adică

$$\forall \alpha, \beta \in K, x, y \in W \Rightarrow \alpha \cdot x + \beta \cdot y \in W.$$

Definiția 4.16 Fie U o submulțime nevidă a unui spațiu liniar $(V, K, +, \cdot)$. Mulțimea tuturor combinațiilor liniare (cu scalari din K) de elemente din U se numește **acoperire liniară** a lui U și se notează cu Lin(U).

Se poate constata ușor că Lin(U) este un subspațiu liniar al lui $(V, K, +, \cdot)$ care o include pe U.

Propoziția 4.17 i) Intersecția oricăror două subspații, W_1 și W_2 , ale unui spațiu liniar $(V, K, +, \cdot)$ este un subspațiu liniar al lui V.

ii) Reuniunea a două subspații liniare ale lui V nu este întotdeauna un subspațiu liniar al lui V.

Demonstrație: i) Ținând seama de Propoziția 4.11 și de Definiția 4.13, putem afirma că orice subspațiu liniar al lui V conține vectorul nul $\mathbf{0}$. Așadar $W_1 \cap W_2 \neq \emptyset$.

Fie $x, y \in W_1 \cap W_2$. Cum W_1 și W_2 sunt subspații liniare ale lui $(V, K, +, \cdot)$, reiese că,

$$\forall \alpha, \beta \in K \Rightarrow \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W_1 \text{ si } \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W_2.$$

Deci $\alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W_1 \cap W_2$, $\forall \alpha, \beta \in K$, $\forall \mathbf{x}, \mathbf{y} \in W_1 \cap W_2$, adică $W_1 \cap W_2$ este un subspațiu liniar al lui V.

ii) Observăm că deși mulțimile $V_1 = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_n = 0\}$ și $V_2 = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}$ sunt subspații liniare ale lui \mathbb{R}^n , iar vectorii $(1, 0, \dots, 0)$, din V_1 și $(0, 0, \dots, 1)$, din V_2 , aparțin reuniunii $V_1 \cup V_2$, suma lor, adică vectorul $(1, 0, \dots, 0, 1)$, nu mai aparține acestei reuniuni. Deci, în acest caz, reuniunea subspațiilor liniare V_1 și V_2 nu este un subspațiu liniar al lui $V = \mathbb{R}^n$.

Definiția 4.18 Fie $(V, K, +, \cdot)$ un spațiu liniar și U o submulțime nevidă a sa. Se numește subspațiu generat de submulțimea U, intersecția tuturor subspațiilor liniare ale lui V care conțin elementele lui U. Notăm acest subspațiu liniar al lui V cu Sp(U).

Propoziția 4.19 Oricare ar fi submultimea nevidă U a unui subspațiu liniar $(V, K, +, \cdot)$, avem:

$$Lin(U) = Sp(U) = \{ \mathbf{x} \in V \mid \exists n \in \mathbb{N}^*, \alpha_i \in K, \mathbf{x}_i \in U, 1 \leqslant i \leqslant n, \ asa \ \hat{i}nc\hat{a}t \ \mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{x}_i \}.$$

Demonstrație: Întrucât Lin(U) este un subspațiu liniar al lui V care include pe U, intersecția tuturor subspațiilor liniare ale lui V cu proprietatea că o includ pe U, cu alte cuvinte $Sp(U) \subseteq Lin(U)$.

Reciproc, cum orice subspațiu liniar al lui V, care conține pe U, conține și orice combinație liniară de elemente din U (cu scalari din K), adică include subspațiul liniar Lin(U). Considerând intersecția tuturor acestor subspații, obținem $Lin(U) \subseteq Sp(U)$. Așadar, obținem Lin(U) = Sp(U).

Liniară dependență și independență

Definiția 4.20 Fie $(V, K, +, \cdot)$ un spațiu liniar și x_1, x_2, \ldots, x_n din V.

- a) Elementele $x_1, x_2, ..., x_n$ se numesc liniar dependente dacă există scalarii $\alpha_1, \alpha_2, ..., \alpha_n \in K$, dintre care cel puțin unul nenul, astfel încât combinația liniară $\sum_{k=1}^{n} \alpha_k x_k$ să fie vectorul nul $\mathbf{0}$ ($\in V$).
- b) Elementele $x_1, x_2, ..., x_n \in V$ se numesc liniar independente dacă din

$$\sum_{k=1}^{n} \alpha_k \mathbf{x}_k = \mathbf{0} \text{ rezultă } \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$$

c) O submulţime nevidă U a unui subspaţiu liniar V se numeşte liniar independentă dacă oricare n $(n \in \mathbb{N}^*)$ elemente distincte x_1, x_2, \ldots, x_n ale lui U sunt liniar independente. Dacă există $n \in \mathbb{N}^*$ şi x_1, x_2, \ldots, x_n elemente din U ce sunt liniar dependente, atunci mulţimea U se numeşte liniar dependentă.

Observații: O submulțime liniar independentă a unui spațiu liniar nu conține vectorul nul 0.

Teorema 4.21 Vectorii $x_1, x_2, ..., x_n$ ai unui spațiu liniar sunt liniar dependenți dacă și numai dacă unul dintre vectori se poate scrie ca o combinație liniară a celorlalți.

că avem: $\mathbf{x}_1 = -\sum_{k=2}^n \left(\alpha_1^{-1} \cdot \alpha_k\right) x_k$. Deci, unul dintre elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, aici \mathbf{x}_1 , ar fi o combinație liniară de celelalte.

"\(\infty:\)" Dacă
$$\mathbf{x}_j = \sum_{\substack{k=1\\k\neq j}}^n \beta_k \mathbf{x}_k$$
, atunci $\mathbf{x}_j - \sum_{\substack{k=1\\k\neq j}}^n \beta_k \mathbf{x}_k = \mathbf{0}$, ceea ce înseamnă că, pentru elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$,

există scalarii $\beta_1, \ldots, \beta_{j-1}, 1, \beta_{j+1}, \ldots, \beta_n$, evident nu toți nuli, așa încât se poate vorbi despre o combinație liniară a respectivelor elemente egală cu vectorul nul.

Dimensiunea unui spațiu liniar. Bază algebrică. Schimbare de bază

Definiția 4.22 Fie $(V, K, +, \cdot)$ un spațiu liniar.

- i) Se numește dimensiune (algebrică) a spațiului liniar V numărul maxim de elemente liniar independente din V. Vom nota dimensiunea spațiului V cu dim(V).
- ii) Spațiul liniar V este numit **infinit-dimensional** dacă există cel puțin o submulțime infinită și liniar independentă a lui V. În caz contrar, V este numit **spațiu liniar finit-dimensional**.

Observație: Dacă, într-un spațiu liniar finit-dimensional există n $(n \in \mathbb{N})$ elemente liniar independente și oricare n+1 elemente din acel spațiu sunt liniar dependente, atunci spunem că respectivul spațiu este n-dimensional (sau, echivalent, de dimensiune n). Exemple:

- 1. $\dim_{\mathbb{R}}(\mathbb{R}^n) = n;$
- 2. $\dim_{\mathbb{R}} \mathcal{M}_{m,n}(\mathbb{R}^n) = m \cdot n$.

Definiția 4.23 O mulțime $B \neq \emptyset$, dintr-un spațiu liniar $(V, K, +, \cdot)$, se numește bază algebrică (sau bază Hamel) a lui V dacă B este liniar independentă și Sp(B) = V (adică subspațiul liniar generat de B este V).

În cazul unui spațiu liniar n-dimensional V, o bază a lui V este o mulțime B alcătuită din n elemente, b_1, b_2, \ldots, b_n , liniar independente, din V. Fiecare element $x \in V$ se reprezintă atunci, în mod unic, sub forma

$$\mathbf{x} = \sum_{k=1}^{n} \gamma_k \mathbf{b}_k,$$

K-scalarii $\gamma_1, \gamma_2, \dots, \gamma_n$ numindu-se **coordonatele lui** x **în baza** B.

Orice bază a unui spațiu liniar V are un număr de vectori egal cu dimensiunea lui V. Altfel spus, dim(V) nu depinde de baza lui V.

Propoziția 4.24 Spațiul liniar $(\mathbb{R}^n, \mathbb{R}, +, \cdot)$ este n-dimensional. O mulțime de m $(m \leq n)$ elemente din \mathbb{R}^n este liniar independentă dacă și numai dacă matricea având drept coloane cele m n-uple reale corespunzătoare elementelor în cauză are rangul egal cu m.

Demonstrație: În \mathbb{R}^n există elementele $\mathbf{e}_1 = (1, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, \dots, 0), \ \dots, \mathbf{e}_n = (0, 0, \dots, 1)$ care alcătuiesc o bază, numită **baza canonică a lui** \mathbb{R}^n .

Într-adevăr, mulțimea $B = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ este liniar independentă în \mathbb{R} , întrucât avem

$$\alpha_1 \cdot \mathbf{e}_1 + \alpha_2 \cdot \mathbf{e}_2 + \ldots + \alpha_n \cdot \mathbf{e}_n = \mathbf{0} \iff \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$$

În plus, $Sp(B) = \mathbb{R}^n$, deoarece orice element $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ se exprimă (în mod unic) prin $\mathbf{x} = x_1 \cdot \mathbf{e}_1 + x_2 \cdot \mathbf{e}_2 + \dots + x_n \cdot \mathbf{e}_n$. Aşadar, $dim(\mathbb{R}^n) = n$.

În al doilea rând, dacă $\mathbf{x}_1 = (x_{11}, x_{12}, \dots, x_{1n})$, $\mathbf{x}_2 = (x_{21}, x_{22}, \dots, x_{2n})$, \dots şi $\mathbf{x}_m = (x_{m1}, x_{m2}, \dots, x_{mn})$ (cu $m \leq n$) sunt m elemente din \mathbb{R}^n , atunci acestea sunt liniar independente dacă şi numai dacă relația $\alpha_1 \cdot \mathbf{x}_1 + \alpha_2 \cdot \mathbf{x}_2 + \dots + \alpha_m \cdot \mathbf{x}_m = \mathbf{0}$ este posibilă doar când $\alpha_1 = \alpha_2 = \dots = \alpha_m = 0$. Altfel spus, dacă şi numai dacă sistemul liniar algebric (de n ecuații, cu m necunoscute $\alpha_1, \alpha_2, \dots, \alpha_m$) şi omogen

$$\begin{cases} \alpha_1 x_{11} + \alpha_2 x_{21} + \ldots + \alpha_m x_{m1} &= 0 \\ \alpha_1 x_{12} + \alpha_2 x_{22} + \ldots + \alpha_m x_{m2} &= 0 \\ \ldots \\ \alpha_1 x_{1n} + \alpha_2 x_{2n} + \ldots + \alpha_m x_{mn} &= 0 \end{cases}$$

are numai soluția banală $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$, lucru care se petrece dacă și numai dacă rangul matricii sistemului, ale cărei coloane sunt tocmai n-uplele celor m elemente $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m$ din \mathbb{R}^n , este exact m.

Observație: O submulțime nevidă a unui spațiu liniar finit dimensional $(V, K, +, \cdot)$, $B = \{b_1, b_2, \dots, b_n\}$, este o bază a lui V dacă și numai dacă orice vector $\mathbf{x} \in V$ se exprimă, în mod unic, sub forma $\mathbf{x} = \sum_{k=1}^{n} x_k \mathbf{b}_k$, scalarii x_1, x_2, \dots, x_n din K fiind coordonatele lui \mathbf{x} în baza B.

Dacă notăm cu X_B matricea coloană

$$\left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right]$$

a coordonatelor vectorului x în baza B și cu $\tilde{B} = [b_1, b_2, \dots, b_n]$ matricea linie a vectorilor bazei B, relația $\mathbf{x} = \sum_{k=1}^{n} x_k \mathbf{b}_k$ se poate reda, matriceal, sub forma:

$$\mathbf{x} = \tilde{B} \cdot X_{B}$$

Propoziția 4.25 Fie $(V, K, +, \cdot)$ un spațiu liniar cu dim(V) = n. Atunci

1. Orice multime de m elemente din V, cu m > n, este liniar dependentă;

- $2. \quad Orice mulțime de <math>n$ elemente din V este bază a lui V dacă și numai dacă este mulțime liniar independentă.
- 3. Orice mulțime de n vectori din V este bază a lui V dacă și numai dacă mulțimea este un sistem de generatori al lui V.

Exemplu: Să se arate că mulțimea $\mathcal{B} = \{v_1 = (1, 0, -1), v_2 = (2, 1, 0), v_3 = (0, 1, 1)\}$ este o bază a spațiului vectorial \mathbb{R}^3 . Determinați coordonatele vectorului v = (1, 2, 3) în această bază.

Soluție: Cum mulțimea \mathcal{B} are 3 elemente, iar $\dim_{\mathbb{R}}(\mathbb{R}^3) = 3$, este suficient să arătăm, conform Propoziției 4.25, că \mathcal{B} este o mulțime liniar independentă.

Fie $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ astfel încât $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0_{\mathbb{R}^3} \Rightarrow \alpha_1(1, 0, -1) + \alpha_2(2, 1, 0) + \alpha_3(0, 1, 1) = (0, 0, 0)$. Atunci, utilizând proprietățiile operațiilor "+" și "·" pe mulțimea \mathbb{R}^3 , deducem:

$$\begin{cases} \alpha_1 + 2\alpha_2 = 0 \\ \alpha_2 + \alpha_3 = 0 \\ -\alpha_1 + \alpha_3 = 0. \end{cases}$$

Avem astfel un sistem liniar și omogen de trei ecuații cu trei necunoscute. Deoarece determinantul

$$\Delta = \left| \begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{array} \right| = -1 \neq 0,$$

este nenul, rezultă că sistemul omogen are soluția banală $\alpha_1 = \alpha_2 = \alpha_3$. Așadar, vectorii mulțimii \mathcal{B} sunt liniar independenți.

Pentru a doua parte a exercițiului, trebuie să determinăm scalarii $\beta_1, \beta_2, \beta_3$ cu proprietatea că

$$v = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3.$$

Aşadar, rezolvând sistemul

$$\begin{cases} \beta_1 + 2\beta_2 = 1 \\ \beta_2 + \beta_3 = 2 \\ -\beta_1 + \beta_3 = 3, \end{cases}$$

ce are soluția $\beta_1 = -3, \beta_2 = 2, \beta_3 = 0.$

Definiția 4.26 Se numește **rang al unei mulțimi** U de vectori din spațiul vectorial $(V, K, +, \cdot)$ dimensiunea subspațiului generat de U, adică dim (Sp(U)) și se notează cu rang(U).

Observație: Dacă V este un K-spațiu liniar n-dimensional, atunci orice mulțime de n vectori liniar independenți din V este o bază a lui V și, de asemenea, orice sistem de n vectori din V care generează spațiul liniar V alcătuiește o bază a lui V.

Definiția 4.27 Fie $(V, K, +, \cdot)$ un spațiu liniar cu dim(V) = n, $B = \{b_1, b_2, \dots, b_n\}$ o bază a sa şi $B' = \{b'_1, b'_2, \dots, b'_m\}$ o mulțime de m elemente ale lui V.

Se numește matrice de trecere (schimbare) de la baza B la sistemul de vectori B' matricea $S = (s_{ij})_{i,j} \in \mathcal{M}_{n,m}(K)$, unde $1 \le i \le n$ și $1 \le j \le m$, care are, pe coloane, coordonatele vectorilor din B' în baza B, adică

$$S = \begin{pmatrix} s_{11} & s_{21} & \dots & s_{m1} \\ s_{12} & s_{22} & \dots & s_{m2} \\ \vdots & \vdots & & \vdots \\ s_{1n} & s_{2n} & \dots & s_{mn} \end{pmatrix},$$

unde $s_{ij} \in K$ sunt aşa încât

$$\begin{cases} b'_1 &= s_{11}b_1 + s_{12}b_2 + \dots + s_{1n}b_n \\ b'_2 &= s_{21}b_1 + s_{22}b_2 + \dots + s_{2n}b_n \\ \vdots &\vdots &\vdots \\ b'_m &= s_{m1}b_1 + s_{m2}b_2 + \dots + s_{mn}b_n \end{cases}$$

Altfel spus, matricial, avem $\tilde{B}' = \tilde{B} \cdot S$, unde $\tilde{B}' = [b'_1, b'_2, \dots, b'_m]$ și $\tilde{B} = [b_1, b_2, \dots, b_n]$.

Observație: Când m = n, sistemul de vectori B' este o bază pentru V dacă și numai dacă matricea S, adică matricea $\tilde{B}^{-1}\tilde{B}'$, de trecere de la B la B', este nesingulară (adică cu determinantul diferit de 0).

Propoziția 4.28 Fie B şi B' două baze distincte ale unui spațiu liniar $(V, K, +, \cdot)$, finit-dimensional şi $x \in V$. Dacă X_B şi $X_{B'}$ sunt matricile coloane ale coordonatelor lui x în baza B şi respectiv în baza B', iar S este matricea de trecere de la B la B', atunci formula de transformare a coordonatelor lui x la schimbarea bazei de la B la B' este următoarea:

$$X_{B'} = S^{-1}X_B.$$

Demonstrație: Întrucât $\mathbf{x} = \tilde{B}X_B = \tilde{B}'X_{B'}$ și $\tilde{B}' = \tilde{B} \cdot S$, avem: $\tilde{B}X_B = \tilde{B}SX_{B'}$. De aici, cum \tilde{B} este nesingulară, prin înmulțirea la stânga cu \tilde{B}^{-1} , rezultă: $X_B = SX_{B'}$. În fine, deoarece S este nesingulară, reiese că are loc formula $X_{B'} = S^{-1}X_B$.

Definiția 4.29 Fie $(V, K, +, \cdot)$ un spațiu liniar, finit-dimensional și două baze ale sale, B și B'. Spunem că bazele B și B' sunt la fel orientate dacă determinantul matricii S de trecere de la B la B' este pozitiv. Bazele B și B' se numesc contrar orientate dacă det(S) < 0.

Produs scalar. Norme în \mathbb{R}^n

Definiția 4.30 Fie $(V, K, +, \cdot)$ un spațiu vectorial peste un corp comutativ și ordonat K.

- a) Se numeste produs scalar pe V o aplicație $\langle \cdot, \cdot \rangle$: $V \times V$ la K, care satisface următoarele proprietăți:
 - PS1) $\langle \cdot, \cdot \rangle$ este **pozitiv definită**, adică
 - $i. \langle \mathbf{x}, \mathbf{x} \rangle \geqslant 0, \ \forall \mathbf{x} \in V \ si$
 - ii. $\langle x, x \rangle = 0$, dacă și numai dacă $x = \mathbf{0} \in V$;
 - $PS2\rangle \langle \cdot, \cdot \rangle$ este **simetrică**, adică

i.
$$\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in V;$$

- PS3) $\langle \cdot, \cdot \rangle$ este **biliniară**, adică
 - i. $\langle \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$, şi
 - ii. $\langle x, \alpha \cdot y + \beta \cdot z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle, \forall \alpha, \beta \in K, x, y, z \in V.$
- b) Perechea $(V, \langle \cdot, \cdot \rangle)$, în care V este un spațiu liniar peste un corp comutativ și ordonat, iar $\langle \cdot, \cdot \rangle$ este un produs scalar pe V se numește **spațiu prehilbertian**.
- c) Un spațiu prehilbertian pentru care $K = \mathbb{R}$ se numește spațiu euclidian.

Propoziția 4.31 Spațiul liniar real $(\mathbb{R}^n, \mathbb{R}, +, \cdot)$, dotat cu produsul scalar canonic, definit prin

$$\langle x, y \rangle_c = \sum_{i=1}^n x_i y_i, \quad \forall x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n,$$

este un spațiu euclidian.

Demonstrație: Se verifică ușor că aplicația

$$(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \langle \mathbf{x}, \mathbf{y} \rangle_c = \sum_{i=1}^n x_i y_i \in \mathbb{R},$$

unde $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ şi $\mathbf{y}=(y_1,y_2,\ldots,y_n)$, satisface axiomele *PS1*)-*PS3*) din Definiția 4.30 a), fiind întradevăr un produs scalar pe \mathbb{R}^n . Astfel, pentru *PS1*), avem $\langle \mathbf{x},\mathbf{x}\rangle_c = \sum_{k=1}^n x_i^2 \geqslant 0, \ \forall \ \mathbf{x}=(x_1,x_2,\ldots,x_n) \in \mathbb{R}^n$ şi

 $<\mathbf{x},\mathbf{x}>_c=0$, adică $\sum_{k=1}^n x_i^2=0$, dacă și numai dacă $x_1=x_2=\ldots=x_n=0$, ceea ce înseamnă $\mathbf{x}=(0,0,\ldots,0)=0$

 $\mathbf{0}_{\mathbb{R}^n}$. Pentru PS2), vedem că $\langle \mathbf{x}, \mathbf{y} \rangle_c = \sum_{k=1}^n x_i y_i = \sum_{k=1}^n y_i x_i = \langle \mathbf{y}, \mathbf{x} \rangle_c, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. În fine, pentru PS3), avem:

$$\langle \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y}, \mathbf{z} \rangle_c = \sum_{k=1}^n (\alpha x_i + \beta y_i) z_i = \sum_{k=1}^n (\alpha x_i z_i + \beta y_i z_i) = \alpha \sum_{k=1}^n x_i z_i + \beta \sum_{k=1}^n y_i z_i = \alpha \langle \mathbf{x}, \mathbf{z} \rangle_c + \beta \langle \mathbf{y}, \mathbf{z} \rangle_c, \, \forall \, \alpha, \beta \in \mathbb{R},$$

$$\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n. \text{ Analog si pentru } PS3). \text{ Prin urmare, } (\mathbb{R}^n, \langle \cdot, \cdot \rangle_c) \text{ este un spațiu euclidian.}$$

Observație: Produsul scalar $\langle \cdot, \cdot \rangle_c$ pe \mathbb{R}^n se mai numește și **produs scalar euclidian**.

Definiția 4.32 Fie $(V, K, +, \cdot)$ un spațiu prehilbertian, dotat cu produsul scalar $\langle \cdot, \cdot \rangle$.

- a) Două elemente x şi y din V se numesc ortogonale dacă şi numai dacă $\langle x, y \rangle = 0$.
- b) Spunem că un vector $x \in V$ este **ortogonal pe o mulțime** $U \subset V$ $(U \neq \emptyset)$ dacă $\langle x, y \rangle = 0$, $\forall y \in U$.
- c) Un **sistem** de vectori din V se numește **ortogonal** dacă este alcătuit din vectori ortogonali doi câte doi. Mai exact, dacă $\langle x, y \rangle = 0$, $\forall x, y$ din respectivul sistem, cu $x \neq y$.
- d) Dacă U este o submulțime nevidă a lui V, atunci prin **suplimentul ortogonal al lui** U, notat cu U^{\perp} , înțelegem mulțimea tuturor vectorilor ortogonali pe U.

Observație: Notăm prin $x \perp y$ faptul că vectorul $x \in V$ este ortogonal pe vectorul $y \in V$. De asemenea, ortogonalitatea unui element x pe o submulțime U a lui V o vom marca prin notația $x \perp U$.

Definiția 4.33 Fie $(V, K, +, \cdot, \langle \cdot, \cdot \rangle)$ un spațiu euclidian și $x, y \in V \setminus \{0\}$. Unghiul dintre vectorii x și y, notat prin $\triangleleft(x, y)$ sau $\widehat{(x, y)}$, se definește prin relația:

$$\widehat{(x,y)} = \arccos \frac{\langle x,y \rangle}{\sqrt{\langle x,x \rangle} \sqrt{\langle y,y \rangle}}.$$

Observație: Într-un spațiu euclidian, doi vectori sunt ortogonali dacă și numai dacă unghiul dintre ei este $\frac{\pi}{2}$

Definiția 4.34 Fie $(V, \mathbb{R}, +, \cdot)$ un spațiu liniar real.

a) Se numește normă pe V o aplicație de la V la \mathbb{R} , notată simbolic prin $\|\cdot\|$, care satisface următoarele ariome:

AN1)
$$\|\mathbf{x}\| \ge 0$$
, $\forall \mathbf{x} \in V$ $si \|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$;

$$AN2$$
) $\|\alpha \cdot \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \ \forall \alpha \in \mathbb{R}, \ \forall \mathbf{x} \in V$;

$$AN3$$
) $\|x + y\| \le \|x\| + \|y\|$, $\forall x, y \in V$.

b) Perechea $(V, \|\cdot\|)$ se numește spațiu normat.

Propoziția 4.35 Spațiul liniar real $(\mathbb{R}^n, \mathbb{R}, +, \cdot)$, înzestrat cu așa-numita normă euclidiană, definită prin

$$\|\mathbf{x}\|_e = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}, \forall \, \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n,$$

este un spațiu normat.

Demonstrație: Se verifică lesne axiomele AN1), AN2) și AN3), din Definiția 4.34. Astfel, pentru AN1),

avem
$$\|\mathbf{x}\|_e = \left(\sum_{k=1}^n x_i^2\right)^{1/2} \geqslant 0, \ \forall \ \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \ \text{si} \ \|\mathbf{x}\|_e = 0 \Leftrightarrow \sum_{k=1}^n x_i^2 = 0 \Leftrightarrow x_1 = x_2 = \dots = 0$$

$$x_n = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$$
. Pentru $AN2$), vedem că $\|\alpha \cdot \mathbf{x}\|_e = \left(\sum_{k=1}^n \alpha^2 x_i^2\right)^{1/2} = |\alpha| \left(\sum_{k=1}^n x_i^2\right)^{1/2} = |\alpha| \|\mathbf{x}\|, \ \forall \alpha \in \mathbb{R},$

 $\forall \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. În fine, ținând seama de inegalitatea lui Minkowski, cu p = 2, are loc și AN3), cu $\|\cdot\|_e$.

Observație: Orice spațiu euclidian V este și spațiu normat. Într-adevăr, prin intermediul produsului scalar din dotarea spațiului euclidian respectiv, fie el notat cu $\langle \cdot, \cdot \rangle$, se poate defini o normă (numită norma indusă de produsul scalar în cauză) prin:

$$\|\cdot\|: V \to \mathbb{R}, \|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}, \forall \mathbf{x} \in V.$$

Există și norme neinduse de vreun produs scalar.

Definiția 4.36 a) Fie $(V, \|\cdot\|)$ un spațiu normat și $x \in V$. Elementul x se numește **versor** dacă $\|x\| = 1$.

b) Fie V un spațiu euclidian și U un sistem nevid de vectori din V. U se numește **ortonormat** dacă, în raport cu produsul scalar de pe V, avem:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\{ \begin{array}{ll} 0, & c\hat{a}nd \ \mathbf{x} \neq \mathbf{y} \\ 1, & c\hat{a}nd \ \mathbf{x} = \mathbf{y} \end{array} \right., \forall \ \mathbf{x}, \mathbf{y} \in U.$$

Baze ortonormate. Procedeul de ortonormalizare Gram-Schmidt

Fie $B = \{b_1, b_2, \dots b_n\}$ o bază a unui spațiu euclidian, finit-dimensional, V (cu dim(V) = n).

Vom nota cu $G = (g_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$, matricea cu elementele $g_{ij} = \langle \mathbf{b}_i, \mathbf{b}_j \rangle$, unde $\langle \cdot, \cdot \rangle$ este produsul scalar definit pe V. Determinantul matricii G se numește **determinant Gram**.

Dat fiind faptul că, pentru doi vectori arbitrari din $x, y \in V$, avem reprezentările (în baza B) $\mathbf{x} = BX_B$ şi $\mathbf{y} = BY_B$, unde X_B şi respectiv Y_B sunt matricile unicolonare ale coordonatelor lui \mathbf{x} şi respectiv \mathbf{y} în baza B, găsim **expresia analitică a produsului scalar** $\langle \cdot, \cdot \rangle$ **în baza** B, şi anume

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i,j=1}^{n} g_{ij} x_i y_j = X_B^T G Y_B,$$

în care $X_B^T = (x_1, x_2, \dots, x_n)$ este transpusa matricei unicolonare de coordonate ale lui x în baza B.

Baza B este numită **ortogonală** ori de câte ori matricea G este diagonală, adică $g_{ij} = 0, \forall i, j \in \{1, 2, ..., n\}, i \neq j$.

Spunem că baza B este **ortonormată** dacă şi numai dacă G este matricea unitate I_n .

Teorema 4.1 (Procedeul de ortonormalizare Gram-Schmidt)

În orice spațiu euclidian finit-dimensional există baze ortonormate.

Demonstrație: Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu euclidian n-dimensional și $B = \{b_1, b_2, \dots, b_n\}$ o bază a lui. Plecând de la B, se poate construi o bază $B' = \{b'_1, b'_2, \dots, b'_n\}$, ortogonală, a aceluiași spațiu V, utilizând algoritmul lui Gram-Schmidt, după cum urmează:

- 1. Pasul 1: $b'_1 = b_1$.
- 2. Pasul 2: Se determină scalarul $\lambda_1 \in \mathbb{R}$, așa încât vectorul $b_2' = b_2 + \lambda_1 b_1'$ să fie ortogonal pe b_1' , adică să avem $0 = \langle b_1', b_2 \rangle + \lambda_1 \langle b_1', b_1' \rangle$. Rezultă $\lambda_1 = -\frac{\langle b_1', b_2 \rangle}{\langle b_1', b_1' \rangle}$. Astfel, $b_2' = b_2 \frac{\langle b_1', b_2 \rangle}{\langle b_1', b_1' \rangle} b_1'$.

3. Pasul 3: Se caută scalarii μ_1 și μ_2 din \mathbb{R} , așa încât $b_3' = b_3 + \mu_1 b_1' + \mu_2 b_2'$ să fie ortogonal pe sistemul $\{b_1', b_2'\}$, adică să avem $\langle b_3', b_1' \rangle = 0$ și $\langle b_3', b_2' \rangle = 0$.

$$\text{G\"{a}sim } \mu_1 = -\frac{\langle b_1', b_3 \rangle}{\langle b_1', b_1' \rangle} \text{ si } \mu_2 = -\frac{\langle b_2', b_3 \rangle}{\langle b_2', b_2' \rangle}. \text{ Prin urmare, avem: } b_3' = b_3 - \frac{\langle b_1', b_3 \rangle}{\langle b_1', b_1' \rangle} b_1' - \frac{\langle b_2', b_3 \rangle}{\langle b_2', b_2' \rangle} b_2'.$$

4. Pasul k: Continuând procedeul, obținem formula generală:

$$\mathbf{b}'_k = \mathbf{b}_k - \sum_{i=1}^{k-1} \frac{\langle \mathbf{b}'_i, \mathbf{b}_k \rangle}{\langle \mathbf{b}'_i, \mathbf{b}'_i \rangle} \mathbf{b}'_i, k = \overline{2, n}.$$

În cele din urmă, plecând de la baza B', putem obţine baza ortonormată $B'' = \{b''_1, b''_2, \dots, b''_n\}$, dacă luăm $b''_k = \frac{b'_k}{\|b'_k\|}$, $k = \overline{1, n}$, unde $\|\cdot\|$ este norma indusă de produsul scalar $\langle \cdot, \cdot \rangle$, considerat pe V.

Bibliografie orientativă

- [1] D. Buşneag, D. Piciu Lecții de algebră, Ed. Universitaria, Craiova, 2002.
- [2] Rodica Luca-Tudorache Analiză matematică, Editura Tehnopress, Iași, 2005.
- [3] Mihai Onucu Drâmbe Inegalități. Idei și metode., Ed. GIL, Zalău, 2003.
- [4] S. Burris, H. P. Sankappanavar A Course in Universal Algebra, The Millenium Edition, 2000.
- [5] F. L. Ţiplea Introducere în teoria mulțimilor, Ed. Univ. "Al. I. Cuza", Iași, 1998.
- [6] T. Albu, I.D. Ion Itinerar elementar in algebra superioară, Matrix Rom București, 2012.
- [7] J. Harcet, L Heinrichs, P. M. Seiler Mathematics. Higher Lever, Oxford Univ. Press, 2012.
- [8] R. Solomon Notes on Ordinals and Cardinals, math.uconn.edu, 2014.