Geometria Diferencial Global. Um estudo sobre a rigidez da esfera.

XXX Seminário de Iniciação científica 2019

Discente: Rafael Sergio Sampaio Emidio

Bolsa PIBIC/PRODOUTOR

Instituto de Ciências exatas e naturais

Orientador: Adam Oliveira da Silva

Introdução

O objetivo deste trabalho é mostrar que a esfera é uma superfície rígida através de relações entre propriedades locais e globais de curvas e superfícies da Geometria Diferencial. Iremos verificar que se uma superfície regular S conexa e compacta possui curvatura gaussiana K constante, então S é uma esfera.

Palavras-chave: superfícies regulares, esfera, curvaturas.

Superfície regular

Uma superfície regular S é um subconjunto do espaço tal que para todo ponto p, existe uma aplicação $X: U \to V \cap S$, onde U é um aberto em R^2 , V uma vizinhança de p e X satisfaz as seguintes condições:

- 1) X é diferenciável;
- 2) X é homeomorfismo;
- 3) A diferencial dXq: $R^2 \rightarrow R^3$ é injetiva.

Neste caso, chamamos X de um parametrização de S. Assim, dado $(u, v) \in U$ temos X(u, v) = (x(u, v), y(u, v), z(u, v)).

Aplicação de Gauss

Dada uma parametrização $X: U \subset R^2 \to S$ de uma superfície regular S em um ponto $p \in S$. Desde que $\{X_u, X_v\}$ constitui uma base para T_qS , podemos definir para cada ponto $q \in X(U)$, um vetor normal unitário da seguinte maneira:

$$N(q) = \frac{X_u \wedge X_v}{|X_u \wedge X_v|}(q), \quad q \in X(q)$$

Se a superfície S possui uma orientação N, podemos garantir a existência da aplicação $N: S \to R^3$ que toma seus valores em uma esfera unitária

Logo a aplicação N: $S \to S^2$ é chamada de aplicação normal de Gauss de S. Podemos verificar que a diferencial dN_p : $T_pS \to T_pS$ é uma aplicação linear auto-adjunta.

Portanto, Para cada ponto $p \in S$ existe uma base ortonormal $\{e_1, e_2\}$ de T_pS , tal que

$$dN_p(e_1) = k_1 e_1$$

$$dN_p(e_2) = k_2 e_2$$

Onde onde k_1 e k_2 são respectivamente, o máximo e o mínimo da segunda forma fundamental $II_p(v) = - \langle dN_p(v), v \rangle$, ou seja, são os valores extremos da curvatura normal em p, tal que $k_1 \geq k_2$.

Os autovalores k_1 e k_2 são chamados de curvaturas principais e os autovetores e_1 e e_2 são chamados de direções principais.

• Curvatura gaussiana (K): É o determinante da diferencial dN_p de S em p:

$$K = k_1 k_2$$
.

• Curvatura média (H): É o negativo do traço da diferencial dN_p de S em p:

$$H = \frac{1}{2}(k_1 + k_2)$$

Um ponto de uma superfície regular S é chamado de:

- 1 Elíptico se K > 0;
- 2 Hiperbólico se K < 0;
- 3 Parabólico se K = 0, com $dN_p \neq 0$;
- $4 Planar se dN_p = 0.$

Obs: Se $k_1(p) = k_2(p)$ então dizemos que p é um ponto umbílico de S.

Obs 2: Se todos os pontos de uma superfície S são umbílicos, então S está contida em um plano ou em uma esfera.

Aplicação de Gauss em coordenadas locais

Através do estudo da aplicação de Gauss em coordenadas locais, obtemos as seguintes equações para a curvatura Gaussiana K e a curvatura média H:

$$K = \frac{eg - f^2}{EG - F^2}$$
 $H = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}$

Onde:

- E, F e G são os coeficientes da primeira forma fundamental $I_p(w) = \langle w, w \rangle = |w|^2$;
- e, f e g são os coeficientes da segunda forma fundamental II (v) = < $dN_p(v)$, v>.

Equações de compatibilidade

As equações de compatibalidade são dadas pelas fórmulas de Gauss e pelas equações de Mainardi-Codazzi.

• Os coeficientes Γ_{ij}^k , i,j,k=1,2 são chamados de símbolos de Christoffel, obtidos nas derivadas dos vetores X_u , X_v e N.

Feitas várias demonstrações, foram encontradas as quatro equações de compatibilidade:

$$(\Gamma_{12}^{2})_{u} - (\Gamma_{11}^{2})_{v} + \Gamma_{12}^{1}\Gamma_{11}^{2} + \Gamma_{12}^{2}\Gamma_{12}^{2} - \Gamma_{11}^{2}\Gamma_{22}^{2} - \Gamma_{11}^{1}\Gamma_{12}^{2} = -EK$$
 (1)

$$(\Gamma_{12}^{1})_{u} - (\Gamma_{11}^{1})_{v} + \Gamma_{12}^{2} \Gamma_{12}^{1} - \Gamma_{11}^{2} \Gamma_{22}^{1} = FK$$
 (2)

$$e_{\rm v} - f_{\rm u} = e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2$$
 (3)

$$f_{v} - g_{u} = e\Gamma_{22}^{1} + f(\Gamma_{22}^{2} - \Gamma_{12}^{1}) - g\Gamma_{12}^{2}$$
(4)

Obs: Equações de compatibilidade quando as curvas coordenadas são linhas de curvaturas (F = f = 0)

$$K = -\frac{1}{2\sqrt{EG}} \left\{ \left(\frac{E_{v}}{\sqrt{EG}} \right)_{v} + \left(\frac{G_{u}}{\sqrt{EG}} \right)_{u} \right\}$$
 (1)

$$e_{\rm v} = \frac{\rm E_{\rm v}}{2} \left(\frac{e}{\rm E} + \frac{g}{\rm G} \right) \tag{3}$$

$$g_{\rm u} = \frac{G_{\rm u}}{2} \left(\frac{e}{E} + \frac{g}{G} \right) \tag{4}$$

Rigidez da esfera

Teorema 1. Seja S uma superfície conexa e compacta com curvatura gaussiana K constante. Então S é uma esfera.

Para provar o Teorema 1, serão necessários alguns resultados. Estes resultados serão demonstrados através de 2 lemas.

Lema 1. Seja S uma superfície regular e $p \in S$ satisfazendo as seguintes condições:

- 1. K(p) > 0; isto é, a curvatura gaussiana em p é positiva.
- 2. p é ao mesmo tempo um ponto de máximo local da função k_1 e um ponto de mínimo local da função k_2 ($k_1 \ge k_2$).

Então p é um ponto umbílico de S.

<u>Demonstração</u>: Vamos supor que p não é um ponto umbílico e obter uma contradição.

Se p não é um ponto umbílico de S, podemos parametrizar uma vizinhança coordenada de p por coordenadas (u,v) tais que as curvas coordenas são linhas de curvaturas. Então vamos ter que F = f = 0. Logo as curvaturas principais k_1 e k_2 serão dadas por

$$k_1 = \frac{e}{E} \quad , \quad k_2 = \frac{g}{G}. \tag{5}$$

Nestas condições as equações (3) e (4) de Mainardi-Codazzi são escritas como

$$e_{v} = \frac{E_{v}}{2} (k_{1} + k_{2})$$

$$g_{u} = \frac{G_{u}}{2} (k_{1} + k_{2})$$
(6)

$$g_{u} = \frac{G_{u}}{2} (k_{1} + k_{2}) \tag{7}$$

Derivando a primeira equação de (5) com relação a v e usando (6), obtemos

$$E(k_1)_{v} = \frac{E_{v}}{2} (-k_1 + k_2)$$
(8)

Analogamente, derivando a segunda equação de (5) com relação u e usando (7), obtemos

$$G(k_2)_{u} = \frac{G_{u}}{2} (k_1 - k_2)$$
(9)

Por outro lado, quando F = 0, a formula de Gauss (1) para K se reduz

$$\mathbf{K} = -\frac{1}{2\sqrt{\mathbf{E}\mathbf{G}}} \left\{ \left(\frac{\mathbf{E}_{\mathbf{v}}}{\sqrt{\mathbf{E}\mathbf{G}}} \right)_{\mathbf{v}} + \left(\frac{\mathbf{G}_{\mathbf{u}}}{\sqrt{\mathbf{E}\mathbf{G}}} \right)_{\mathbf{u}} \right\}$$

Logo,

$$-2KEG = E_{vv} + G_{uu} + ME_v + NG_u$$
 (10)

A partir de (8) e (9), obtemos expressões para $E_{\rm v}$ e $G_{\rm u}$ que depois de derivadas, introduzimos na equação (10) obtendo

$$-2KEG = -\frac{2E}{k_1 - k_2} (k_1)_{vv} + \frac{2G}{k_1 - k_2} (k_2)_{uu} + \overline{M}(k_1)_{v} + \overline{N}(k_2)_{u}$$

Donde,

$$-2(k_1 - k_2)KEG = -2E(k_1)_{vv} + 2G(k_2)_{uu} + \widetilde{M}(k_1)_v + \widetilde{N}(k_2)_u$$
(11)

Como k_1 atinge um máximo local em p e k_2 atinge um mínimo local em p, temos

$$(k_1)_v = 0,$$
 $(k_2)_u = 0,$ $(k_1)_{vv} \le 0,$ $(k_2)_{uu} \ge 0$

em p. No entanto, isto implica que o segundo membro da equação (11) é positivo ou nulo, o que é uma contradição, logo o ponto p é um ponto umbílico de S.

Lema 2. Uma superfície regular compacta $S \subset \mathbb{R}^3$ tem pelo menos, um ponto elíptico.

Demonstração: Como S é compacta, S é limitada. Portanto S está contida em alguma esfera em R^3 , consideremos uma esfera Σ. Através de sucessivas diminuições do raio da esfera Σ, obtemos um ponto onde a mesma irá tocar em S, chamaremos de ponto p. Portanto, Σ e S são tangentes em p. Observando as sessões normais em p, notamos que qualquer curvatura normal de S em p é maior ou igual que a curvatura normal de Σ em p. Logo concluímos que $K_{S(p)} \ge K_{\Sigma(p)} > 0$, portanto p é um ponto elíptico desejado.

Demonstração do teorema 1: Como S é compacta, ela possui um ponto elíptico pelo Lema 2. Como K é constante, devemos ter K > 0 em S. Como $K = k_1k_2$ é uma constante positiva, pelo lema 1 p é um ponto umbílico de S, isto é, $k_1(p) = k_2(p)$. Agora seja um ponto $q \in S$, tal que $k_1(q) \ge k_2(q)$ temos

$$k_1(p) \ge k_1(q) \ge k_2(q) \ge k_2(p) = k_1(p).$$

Portanto $k_1(q) = k_2(q)$ para todo $q \in S$. Podemos concluir de uma maneira definitiva que todos os pontos de S são umbílicos. Como K > 0, S está contida em uma esfera Σ pela observação Σ . Por compacidade, Σ é fechada em Σ , e como Σ é uma superfície regular, Σ é aberta em Σ . Como Σ é conexa e Σ é aberta e fechada em Σ , teremos que Σ e Σ . Portanto Σ é uma esfera.

Obrigado pela atenção!