

Cours Modélisation et Vérification des Systèmes Informatiques (MVSI)

Modélisation, spécification et vérification CM4

Dominique Méry Telecom Nancy, Université de Lorraine

Année universitaire 2024-2025

- 1 Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal Defining processes in PlusCal Macros and Procedures
- Vérification d'un contrat avec un solveur 73
- 6 Conclusion et limites

Sommaire

- 1 Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- 6 Conclusion et limites

Initialisation

Le modèle relationnel ${\cal M}(P)$ pour le programme P annoté est donc défini comme suit :

 $M(P) \stackrel{def}{=}$

 $(Th(s,c),(pc,v), \text{Locations} \times \text{Memory}, Init(\ell,v), \{r_{\ell,\ell'}|\ell,\ell' \in \text{Locations} \wedge \ell \longrightarrow \ell'\}).$

La définition de Init(x) est dépendante de la précondition de P :

$$Init(x) \stackrel{def}{=} .x = (\ell_0, v) \land \mathbf{pre}(P)(v).$$

Conditions initiales

Les deux propriétés suivantes sont équivalentes :

- $\blacktriangleright \ \forall x_0 \in \text{VALS} : \textit{Init}(x_0) \Rightarrow J(x_0, x_0)$
- $\forall v \in \text{MEMORY.pre}(P)(v) \land v = v_0 \Rightarrow P_{\ell_0}(v_0, v)$

Pas d'induction

- Les relations r_i correspondent aux transitions satisfaisant $\ell \longrightarrow \ell'$ et on associe à chaque r_i la relation $r_{\ell,\ell'}$
- ► $J(x_0, x) \stackrel{def}{=} \exists v_0, \ell, v. (\ell \in \text{Locations} \land v_0, v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v_0, v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x_0, x. (x_0, x \in \text{VALS} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$

Pas d'induction

Les deux propriétés suivantes sont équivalentes :

- $\forall i \in \{0, \dots, n\} : J(x_0, x) \land x \ r_i \ x' \Rightarrow J(x_0, x')$
- $\forall \ell, \ell' \in \text{Locations} : \ell \longrightarrow \ell' \Rightarrow P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$

- ▶ $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$

- ► $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x \in \text{Vals} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$

- ► $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x \in \text{VALS} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$
- $J(x_0 n x) \equiv pc = \ell \wedge P_{\ell}(v_0, v)$

- ► $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x \in \text{Vals} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$
- $J(x_0, x') \equiv pc = \ell' \land P_{\ell}(v_0, v')$

- ► $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x \in \text{VALS} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$

- ▶ $pc = \ell \land P_{\ell}(v_0, v) \land (pc = \ell \land cond_{\ell, \ell'}(v) \land \land v' = f_{\ell, \ell'}(v) \land pc' = \ell' \Rightarrow pc = \ell' \land P_{\ell}(v_0, v')$

- ► $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x \in \text{VALS} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$
- $J(x_0, x') \equiv pc = \ell' \land P_{\ell}(v_0, v')$
- ▶ $pc = \ell \land P_{\ell}(v_0, v) \land (pc = \ell \land cond_{\ell, \ell'}(v) \land \land v' = f_{\ell, \ell'}(v) \land pc' = \ell' \Rightarrow pc = \ell' \land P_{\ell}(v_0, v')$
- ▶ $pc = \ell \land P_{\ell}(v_0, v) \land (pc = \ell \land cond_{\ell, \ell'}(v) \land \land v' = f_{\ell, \ell'}(v) \land pc' = \ell' \Rightarrow pc = \ell'$ (Tautologie)

- ► $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x \in \text{VALS} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$

- ▶ $pc = \ell \land P_{\ell}(v_0, v) \land (pc = \ell \land cond_{\ell, \ell'}(v) \land \land v' = f_{\ell, \ell'}(v) \land pc' = \ell' \Rightarrow pc = \ell' \land P_{\ell}(v_0, v')$
- ▶ $pc = \ell \land P_{\ell}(v_0, v) \land (pc = \ell \land cond_{\ell, \ell'}(v) \land \land v' = f_{\ell, \ell'}(v) \land pc' = \ell' \Rightarrow pc = \ell'$ (Tautologie)
- ▶ $pc = \ell \wedge P_{\ell}(v) \wedge (pc = \ell \wedge cond_{\ell,\ell'}(v) \wedge \wedge v' = f_{\ell,\ell'}(v) \wedge pc' = \ell' \Rightarrow P_{\ell'}(v_0,v')$

- ► $I(x) \stackrel{def}{=} \exists \ell, v. (\ell \in \text{Locations} \land v \in \text{Memory} \land x = (\ell, v) \land P_{\ell}(v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x \in \text{Vals} \land x = (\ell, v) \land x_0 = (\ell_0, v_0) \land J(x_0, x))$
- $J(x_0, x') \equiv pc = \ell' \land P_{\ell}(v_0, v')$
- ▶ $pc = \ell \land P_{\ell}(v_0, v) \land (pc = \ell \land cond_{\ell, \ell'}(v) \land \land v' = f_{\ell, \ell'}(v) \land pc' = \ell' \Rightarrow pc = \ell' \land P_{\ell}(v_0, v')$
- ▶ $pc = \ell \land P_{\ell}(v_0, v) \land (pc = \ell \land cond_{\ell, \ell'}(v) \land \land v' = f_{\ell, \ell'}(v) \land pc' = \ell' \Rightarrow pc = \ell'$ (Tautologie)
- $pc = \ell \wedge P_{\ell}(v) \wedge (pc = \ell \wedge cond_{\ell,\ell'}(v) \wedge \wedge v' = f_{\ell,\ell'}(v) \wedge pc' = \ell' \Rightarrow P_{\ell'}(v_0,v')$
- $P_{\ell}(v_0, v) \wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$

Conclusion

- ► $J(x_0, x) \stackrel{def}{=} \exists \ell, v, v_0. (\ell \in \text{Locations} \land v, v_0 \in \text{Memory} \land x = (\ell, v) wedgex_0 = (\ell_0, v_0) \land P_{\ell}(v_0, v))$
- $P_{\ell}(v_0, v) \stackrel{def}{=} \exists x. (x, x_0 \in \text{VALS} \land x = (\ell, v) wedgex_0 = (\ell_0, v_0) \land J(x_0), x)$
- $ightharpoonup J(x_0, x) \Rightarrow A(x_0, x)$
- ▶ $\exists \ell, v, v_0. (\ell \in \text{Locations} \land v, v_0 \in \text{Memory} \land x = (\ell, v) wedgex_0 = (\ell_0, v_0) \land P_{\ell}(v_0, v)) \Rightarrow A(x_0, x)$
- $\forall \ell, v, v_0. (\ell \in \text{Locations} \land v, v_0 \in \text{Memory} \land x = (\ell, v) wedgex_0 = (\ell_0, v_0) \land P_{\ell}(v_0, v)) \Rightarrow A(x_0, x)$
- $\forall \ell \in \text{Locations}, v, v_0 \in \text{Memory}. P_{\ell}(v_0, v) \Rightarrow A(\ell_0, v_0, \ell, v)$

Conclusion

Les deux propriétés suivantes sont équivalentes :

- $ightharpoonup J(x_0, x) \Rightarrow A(x_0, x)$
- $\forall \ell \in \text{Locations}, v, v_0 \in \text{Memory}. P_{\ell}(v_0, v) \Rightarrow A(\ell_0, v_0, \ell, v)$

Les conditions de vérification suivantes sont équivalentes :

- $\forall x_0, x, x' \in \text{Locations} \times \text{Memory} :$

 - $\begin{cases}
 (1) & \operatorname{Init}(x_0) \Rightarrow \operatorname{J}(x_0, x_0) \\
 (2) & \operatorname{J}(x_0, x) \Rightarrow \operatorname{A}(x_0, x) \\
 (3) & \forall i \in \{0, \dots, n\} : \operatorname{J}(x_0, x) \land x \ r_i \ x' \Rightarrow \operatorname{J}(x_0, x')
 \end{cases}$
- $\forall v_0, v, v' \in MEMORY:$

 - $\begin{cases} (1) & \mathbf{pre}(\mathbf{P})(v_0) \wedge v = v_0 \Rightarrow P_{\ell_0}(v_0, v) \\ (2) & \forall \ell \in \mathbf{Locations}. P_{\ell}(v_0, v) \Rightarrow \mathbf{A}(\ell_0, v_0, \ell, v) \\ (3) & \forall \ell, \ell' \in \mathbf{Locations}: \\ \ell \longrightarrow \ell' \Rightarrow P_{\ell}(v_0, v) \wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v') \end{cases}$

- Le programme est annoté.
- Les annotations définissent un invariant à vérifier selon les conditions de vérification.
- \blacktriangleright $A(\ell, v)$ est l'énoncé de la propriété de sûreté à vérifier.

Méthode relationnelle de correction de propriétés de sûreté

Soit $A(\ell_0, v_0, \ell, v)$ une propriété d'un programme P. Soit une famille d'annotations famille de propriétés $\{P_{\ell}(v_0,v): \ell \in \text{Locations}\}$ pour ce programme. Si les conditions suivantes sont vérifiées :

alors $A(\ell_0, v_0, \ell, v)$ est une propriété de sûreté pour le programme P.

Equivalence Floyd/Hoare

□ DefinitionCondition de vérification

L'expression $P_{\ell}(v_0,v) \wedge cond_{\ell,\ell'}(v) \wedge v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v_0,v')$ où ℓ,ℓ' sont deux étiquettes liées par la relation \longrightarrow , est appelée une condition de vérification.

Floyd and Hoare

- ▶ $\forall v_0, v, v' \in \text{MEMORY.} \forall \ell, \ell' \in \text{Locations.} \ell \longrightarrow \ell' \Rightarrow$ $P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v') \text{ est \'equivalent \`a}$ $\forall \ell, \ell' \in \text{Locations.} \ell \longrightarrow \ell' \Rightarrow \forall v' \in$ $\text{Memory.} P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v \mapsto f_{\ell, \ell'}(v))$
- ▶ $\forall v_0, v, v' \in \text{MEMORY}. \forall \ell, \ell' \in \text{Locations}. \ell \longrightarrow \ell' \Rightarrow$ $P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v') \text{ est \'equivalent \`a}$ $\forall \ell, \ell' \in \text{Locations}. \ell \longrightarrow \ell' \Rightarrow \forall v' \in$ $\text{Memory}. (\exists v \in \text{Memory}. P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v)) \Rightarrow$ $P_{\ell'}(v_0, v')$

Condition de vérification pour l'affectation

Nous pouvons resumer les deux formes possibles de l'affectation suivante :

▶
$$\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$$

 $\ell : P_{\ell}(v_0, v)$ $V := f_{\ell, \ell'}(V)$ $\ell' : P_{\ell'}(v_0, v)$

Condition de vérification pour l'affectation

Nous pouvons resumer les deux formes possibles de l'affectation suivante :

- ▶ $\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$
- ▶ $\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land TRUE \land v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$

$$\ell : P_{\ell}(v_0, v)$$

 $V := f_{\ell, \ell'}(V)$
 $\ell' : P_{\ell'}(v_0, v)$

Nous pouvons resumer les deux formes possibles de l'affectation suivante :

▶
$$\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$$

- ▶ $\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land TRUE \land v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$
- $\forall v, v' \in \text{MEMORY}. P_{\ell}(v_0, v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$

$$\ell : P_{\ell}(v_0, v)$$

 $V := f_{\ell, \ell'}(V)$
 $\ell' : P_{\ell'}(v_0, v)$

Condition de vérification pour l'affectation

Nous pouvons resumer les deux formes possibles de l'affectation suivante :

▶
$$\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$$

- ▶ $\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land TRUE \land v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$
- $\forall v, v' \in \text{MEMORY}. P_{\ell}(v_0, v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$
- ▶ $\forall v \in \text{MEMORY}.P_{\ell}(v_0, v) \Rightarrow P_{\ell'}(v_0, v \mapsto f_{\ell,\ell'}(v))$ (l'axiomatique de Hoare).

 $\ell: P_{\ell}(v_0, v)$ $V := f_{\ell, \ell'}(V)$ $\ell': P_{\ell'}(v_0, v)$

Nous pouvons resumer les deux formes possibles de l'affectation suivante :

$$\forall v, v' \in \text{MEMORY}. P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$$

- ▶ $\forall v, v' \in \text{MEMORY}.P_{\ell}(v_0, v) \land TRUE \land v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$
- $\forall v, v' \in \text{MEMORY}. P_{\ell}(v_0, v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')$
- ▶ $\forall v \in \text{MEMORY}.P_{\ell}(v_0, v) \Rightarrow P_{\ell'}(v_0, v \mapsto f_{\ell,\ell'}(v))$ (l'axiomatique de Hoare).
- ▶ $\forall v \in$ MEMORY. $(\exists v' \in \text{MEMORY}. P_{\ell}(v_0, v) \land v' = f_{\ell, \ell'}(v)) \Rightarrow P_{\ell'}(v_0, v')$ correspond à la règle d'affectation de Floyd.

 $\ell: P_{\ell}(v_0, v)$ $V:= f_{\ell,\ell'}(V)$ $\ell': P_{\ell'}(v_0, v)$

Conditions de vérification pour l'itération

$$\begin{array}{c} \ell_1: P_{\ell_1}(v_0,v) \\ \textbf{WHILE} \quad B(v) \quad \textbf{DO} \\ \ell_2: P_{\ell_2}(v_0,v) \\ \dots \\ \ell_3: P_{\ell_3}(v_0,v) \\ \textbf{FND} \end{array}$$

 $\ell_4: P_{\ell_4}(v_0,v)$

Pour la structure d'itération, les conditions de vérification sont les suivantes :

$$P_{\ell_1}(v_0, v) \wedge B(v) \Rightarrow P_{\ell_2}(v_0, v)$$

$$P_{\ell_1}(v_0, v) \land \neg B(v) \Rightarrow P_{\ell_4}(v_0, v)$$

$$P_{\ell_3}(v_0,v) \wedge B(v) \Rightarrow P_{\ell_2}(v_0,v)$$

$$P_{\ell_3}(v_0, v) \land \neg B(v) \Rightarrow P_{\ell_4}(v_0, v)$$

Conditions de vérification pour la conditionnelle

$$\begin{array}{l} \ell_1: P_{\ell_1}(v_0,v) \\ \text{IF} \quad B(v) \quad \text{THEN} \\ \ell_2: P_{\ell_2}(v_0,v) \\ \dots \\ \ell_3: P_{\ell_3}(v_0,v) \\ \text{ELSE} \\ m_2: P_{\ell_2}(v_0,v) \\ \dots \\ m_3: P_{\ell_3}(v_0,v) \\ \text{FI} \\ \ell_4: P_{\ell_4}(v_0,v) \end{array}$$

Pour la structure de conditionnelle, les conditions suivantes :

- $ightharpoonup P_{\ell_1}(v_0,v) \wedge B(v) \Rightarrow P_{\ell_2}(v_0,v)$
- $P_{\ell_3}(v_0, v) \Rightarrow P_{\ell_4}(v_0, v)$
- $P_{\ell_1}(v_0, v) \wedge \neg B(v) \Rightarrow P_{m_2}(v_0, v)$
- $P_{m_3}(v_0,v) \Rightarrow P_{\ell_4}(v_0,v)$

Correction partielle d'un programme

La correction partielle vise à établir qu'un programme P est partiellement correct par rapport à sa précondition et à sa postcondition.

- la spécification des données de P **pre** $(P)(v_0)$
- ▶ la spécification des résultats de P post(P)(v₀,v)
- ▶ une famille d'annotations de propriétés $\{P_{\ell}(v_0, v) : \ell \in \text{Locations}\}$ pour ce programme.
- une propriété de sûreté définissant la correction partielle $pc=\ell_f\Rightarrow \mathbf{post}(\mathrm{P})(v_0,v_f)$ où ℓ_f est l'étiquette marquant la fin du programme P

.....

□ Definition

Le programme P est partiellement correct par rapport à $\mathbf{pre}(P)(v_0)$ et $\mathbf{post}(P)(v_0,v)$, si la propriété $pc = \ell_f \Rightarrow \mathbf{post}(P)(v_0,v)$ est une propriété de sûreté pour ce programme.

Correction partielle d'un programme

Si les conditions suivantes sont vérifiées :

- $\forall v_0, v \in Memory : pre(P)(v_0) \land v = v_0 \Rightarrow P_{\ell_0}(v_0, v)$
- $\forall v_0, v \in MEMORY : P_{\ell_f}(v_0, v) \Rightarrow post(P)(v_0, v)$
- ▶ $\forall \ell, \ell' \in \text{Locations} : \ell \longrightarrow \ell' : \forall v_0, v, v' \in \text{Memory}. (P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')),$

alors le programme P est partiellement correct par rapport à $\mathbf{pre}(P)(v_0)$ et $\mathbf{post}(P)(v_0,v)$.

- ► La correction partielle indique que si le programme termine normalement, alors la postcondition est vérifiée par les variables courantes.
- La sémantique du contrat est donc assez simple à donner :

Reformulation du calcul

- $\begin{array}{c} \blacktriangleright \ pc_0 = \ell_0 \land \mathsf{pre}(v_0) \land (pc_0, v_0) \stackrel{\mathsf{Next}^\star}{\longrightarrow} (pc, v) \land pc = \ell_f \Rightarrow \mathsf{post}(v_0, v_f) \\ & \qquad \qquad \big(\mathsf{big}\text{-step semantics et small-step semantics equivalence}\big) \end{array}$
- $pc_0 = \ell_0 \land \mathsf{pre}(v_0) \land (pc_0, v_0) \overset{\mathsf{Next}^*}{\longrightarrow} (pc, v) \Rightarrow (pc = \ell_f \Rightarrow \mathsf{post}(v_0, v_f))$ (implication and conjunction property)
- $Init(x_0) \land x_0 \stackrel{\mathsf{Next}^*}{\longrightarrow} x \Rightarrow \mathsf{PC}(x_0, x)$

$$(Init(x_0) \stackrel{def}{=} pc_0 = \ell_0 \land \mathsf{pre}(v_0)$$

$$x_0 \stackrel{def}{=} (\ell_0, v_0) \text{ and } x \stackrel{def}{=} (pc, v)$$

$$\mathsf{PC}(x_0x) \stackrel{def}{=} x_0 = (\ell_0, v_0) \land x = (\ell_f, v) \Rightarrow (pc = \ell_f \Rightarrow \mathsf{post}(v_0, v))$$

Partial correctness is a safety property and the relational method for safety properties is applied.

Un programme P remplit un contrat (pre,post) :

- ▶ P transforme une variable v à partir d'une valeur initiale v_0 et produisant une valeur finale $v_f: v_0 \stackrel{\mathsf{P}}{\longrightarrow} v_f$
- ightharpoonup v $_0$ satisfait pre : $\mathsf{pre}(v_0)$ and v $_f$ satisfait post : $\mathsf{post}(v_0,v_f)$
- $\qquad \qquad \mathsf{pre}(v_0) \wedge v_0 \overset{\mathsf{P}}{\longrightarrow} v_f \Rightarrow \mathsf{post}(v_0, v_f)$

```
requires pre(v_0)
ensures post(v_0, v_f)
variables V
         begin 0: P_0(v_0, v) instruction<sub>0</sub>
         instruction_{f-1} f: P_f(v_0, v)
```

- Pour toute paire d'étiquettes ℓ,ℓ' telle que $\ell \longrightarrow \ell'$, on vérifie que, pour toutes valeurs $v,v' \in \mathrm{MEMORY}$

$$\begin{pmatrix}
P_{\ell}(v_0, v)) \\
\wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v)
\end{pmatrix},$$

$$\Rightarrow P_{\ell'}(v_0, v')$$

An Early Program Proof by Alan Turing

Turing, A. M. 1949. "Checking a Large Routine." In Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge,pp. 67-69.

- ► Turing se pose une question fondamentale de la correction des routines ou programmes en 1949.
- ► Il s'agit sans doute (Jones!) de la méthode d'annotation et d'induction sur les programmes qui sera finalisée par Floyd en 1967.

Méthode de Floyd

- ▶ Au point 0, $pre(x_0) \land x = x_0 \Rightarrow P_0(x_0, x)$
- Annotations : au point i, l'assertion $P_i(x_0, x)$ est vraie.
- ▶ Au point final f, $pre(x_0) \land P_f(x_0, x) \Rightarrow post(x_0, x)$

Absence d'erreurs à l'exécution

- La transition à exécuter est celle allant de ℓ à ℓ' et caractérisée par la condition ou garde $cond_{\ell,\ell'}(v)$ sur v et une transformation de la variable $v, v' = f_{\ell,\ell'}(v)$.
- ▶ Une condition d'absence d'erreur est définie par $DOM(\ell, \ell')(v)$ pour la transition considérée. $\mathbf{DOM}(\ell, \ell')(v)$ signifie que la transition $\ell \longrightarrow \ell'$ est possible et ne conduit pas à une erreur.
- ▶ Une erreur est un débordement arithmétique, une référence à un élément de tableau qui 'existe pas, une référence à un pointeur nul,

exemple

1 La transition correspond à une affectation de la forme x := x + y ou y := x + y:

$$\mathbf{DOM}(x+y)(x,y) \stackrel{def}{=} \mathbf{DOM}(x)(x,y) \wedge \mathbf{DOM}(y)(x,y) \wedge x + y \in int$$

2 La transition correspond à une affectation de la forme x := x+1 ou y := x+1:

$$\mathsf{DOM}(x+1)(x,y) \overset{def}{=} \mathsf{DOM}(x)(x,y) \land x+2 \in int$$

Définition RTE

L'absence d'erreurs à l'exécution vise à établir qu'un programme P ne va pas produire des erreurs durant son exécution par rapport à sa précondition et à sa postcondition.

- la spécification des données de P **pre**(P)(v)
- ▶ la spécification des résultats de P post(P)(v₀,v)
- une famille d'annotations de propriétés $\{P_{\ell}(v): \ell \in \text{Locations}\}$ pour ce programme.
- une propriété de sûreté définissant l'absence d'erreurs à l'exécution :

$$\bigwedge_{\ell \in \text{Locations} - \{output\}, n \in \text{Locations}, \ell \longrightarrow n} (\mathsf{DOM}(\ell, n)(v))$$

 □ Definition Le programme P ne produira pas d'erreurs à l'exécution par rapport à

pre(P)(v) et $post(P)(v_0,v)$, si la propriété

 $(\mathbf{DOM}(\ell, n)(v))$ est une propriété

 $\ell \in \text{Locations} - \{output\}, n \in \text{Locations}, \ell \longrightarrow n$ de sûreté pour ce programme.

Modélisation, spécification, et vérification CM4 (9 octobre 2024) (Dominique Méry)

RTE = Run Time Error

Si les conditions suivantes sont vérifiées :

- $\forall v_0, v \in \text{Memory} : \mathsf{pre}(P)(v_0) \land v = v_0 \Rightarrow P_{\ell_0}(v_0, v)$
- ▶ $\forall m \in \text{Locations} \{\ell_f\}, n \in \text{Locations}, \forall v_0, v, v' \in \text{Memory} : m \longrightarrow n : P_m(v_0, v) \Rightarrow \textbf{DOM}(m, n)(v)$
- ▶ $\forall \ell, \ell' \in \text{Locations} : \ell \longrightarrow \ell' : \forall v_0, v, v' \in \text{Memory}. (P_{\ell}(v_0, v) \land cond_{\ell, \ell'}(v) \land v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')),$

alors le programme P ne produira pas d'erreurs à l'exécution par rapport à $\mathbf{pre}(P)(v_0)$ et $\mathbf{post}(P)(v_0,v)$.

- ▶ On doit d'abord vérifier la correction partielle puis renforcer les assertions de la correction partielle par des conditions de domaine.
- On peut donc en déduire un contrat qui intègre aussi la vérification de l'absence d'erreurs à l'exécution.

Méthode relationnelle de vérification pour RTE

Un programme P remplit un contrat (pre,post) :

- P transforme une variable v à partir d'une valeur initiale v₀ et produisant une valeur finale $v_f: v_0 \stackrel{P}{\longrightarrow} v_f$
- \triangleright v₀ satisfait pre : pre(v_0) and v_f satisfait post : post(v_0, v_f)
- $ightharpoonup \operatorname{pre}(v_0) \wedge v_0 \stackrel{\mathsf{P}}{\longrightarrow} v_f \Rightarrow \operatorname{post}(v_0, v_f)$
- D est le domaine RTE de V

Current Summary

- 1 Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- 6 Conclusion et limites

Simple contrat (I)

$$v = v_0 \land pre(v_0) \land v_f = f(v) \Rightarrow post(v_0, v_f)$$
 (I)

Liste des conditions à vérifier pour prouver (I)

- $\triangleright v = v_0 \land pre(v_0) \Rightarrow P_0(v_0, v)$
- $pre(v_0) \wedge P_0(v_0, v) \wedge v' = f(v) \Rightarrow P_f(v_0, v')$
- ▶ (I) et (II) sont équivalents et (II) est la définition de l'invariance de $A(x_0,x) \stackrel{def}{=} (x=(f,v) \Rightarrow post(v_0,v)).$

$$x_0 = (0, v_0) \land pre(v_0) \land x_0 \xrightarrow{[\mathbf{V} := \mathbf{f}(\mathbf{V})]} x \Rightarrow (x = (f, v) \Rightarrow post(v_0, v))$$
 (II)

$$v = v_0 \land pre(v_0) \land v_f = g(f(v)) \Rightarrow post(v_0, v_f)$$
 (I)

requires $pre(v_0)$ ensures $post(v_0,v_f)$ variables V $\begin{bmatrix} \text{begin} \\ 0:P_0(v_0,v) \\ V:=f(V) \\ 1:P_1(v_0,v) \\ V:=g(V) \\ f:P_f(v_0,v) \\ \text{end} \end{bmatrix}$

Liste des conditions à vérifier pour prouver (I)

- $\triangleright v = v_0 \land pre(v_0) \Rightarrow P_0(v_0, v)$
- $pre(v_0) \wedge P_0(v_0, v) \wedge v' = f(v) \Rightarrow P_1(v_0, v')$
- $pre(v_0) \wedge P_1(v_0, v) \wedge v' = g(v) \Rightarrow P_f(v_0, v')$
- ▶ (I) et (II) sont équivalents et (II) est la définition de l'invariance de $A(x_0,x) \stackrel{def}{=} (x=(f,v) \Rightarrow post(v_0,v)).$

$$x_0 = (0, v_0) \land pre(v_0) \land x_0 \overset{[\mathbf{V} := \mathbf{f}(\mathbf{V}) : \mathbf{V} := \mathbf{g}(\mathbf{V})]}{\longrightarrow} x \Rightarrow (x = (f, v) \Rightarrow post(v_0, v)) \text{ (II)}$$

Current Summary

- 1 Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- 6 Conclusion et limites

Méthode de correction de propriétés de sûreté

Soit $A(\ell_0, v_9, \ell, v)$ une propriété d'un programme P. Soit une famille d'annotations famille de propriétés $\{P_{\ell}(v_0,v): \ell \in \text{Locations}\}\$ pour ce programme. Si les conditions suivantes sont vérifiées :

 $\forall v0, v, v' \in Memory:$

- $\begin{array}{l} (1) \ \operatorname{pre}(\mathsf{P})(v_0) \wedge v = v_0 \Rightarrow P_\ell(v_0,v) \\ (2) \ \forall \ell \in \mathsf{Locations}. P_\ell(v_0,v) \Rightarrow \mathsf{A}(\ell_0,v_0,\ell,v) \\ (3) \ \forall \ell,\ell' \in \mathsf{Locations}: \\ \ell \longrightarrow \ell' \Rightarrow P_\ell(v_0,v) \wedge cond_{\ell,\ell'}(v) \wedge v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v_0,v') \end{array}$

alors $A(\ell_0, v_9, \ell, v)$ est une propriété de sûreté pour le programme P.

- \bigcirc Définir la précondition **pre**(P)(v_0, v)
- 2 Annoter le programme avec des prédicats $P_{\ell}(v_0, v)$ où $\ell \in \text{Locations}$
- 3 Vérifier que $\operatorname{pre}(P)(v_0) \wedge v = v_0 \Rightarrow P_{\ell}(v)$ où $\ell \in \operatorname{INPUTS}$ (ensemble des points d'entrée.
- 4 Vérifier que $P_{\ell}(v_0, v) \Rightarrow A(\ell, v)$ où $\ell \in LOCATIONS$
- **5** Pour chaque paire de points de contrôle (ℓ, ℓ') telle que $\ell \longrightarrow \ell'$ (successifs), vérifier que $(P_{\ell}(v_0, v) \wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')).$

Conditions de vérification

- **1** Vérifier que $\operatorname{pre}(P)(v_0) \wedge v = v_0 \Rightarrow P_{\ell}(v_0, v)$ où $\ell \in \operatorname{Inputs}$ (ensemble des points d'entrée.
- 2 Vérifier que $P_{\ell}(v_0, v) \Rightarrow A(\ell_0, v_0, \ell, v)$ où $\ell \in Locations$
- **3** Pour chaque paire de points de contrôle (ℓ, ℓ') telle que $\ell \longrightarrow \ell'$ (successifs), vérifier que $(P_{\ell}(v_0, v) \wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')).$

Conditions de vérification

- **1** Vérifier que $\operatorname{pre}(P)(v_0) \wedge v = v_0 \Rightarrow P_{\ell}(v_0, v)$ où $\ell \in \operatorname{INPUTS}$ (ensemble des points d'entrée.
- 2 Vérifier que $P_{\ell}(v_0, v) \Rightarrow A(\ell_0, v_0, \ell, v)$ où $\ell \in \text{Locations}$
- **3** Pour chaque paire de points de contrôle (ℓ, ℓ') telle que $\ell \longrightarrow \ell'$ (successifs), vérifier que $(P_{\ell}(v_0, v) \wedge cond_{\ell, \ell'}(v) \wedge v' = f_{\ell, \ell'}(v) \Rightarrow P_{\ell'}(v_0, v')).$

Exemples de propriétés de sûreté

- ► Correction partielle : $A_1(\ell_0, v_0, \ell, v) \stackrel{def}{=} \ell = \ell_f \Rightarrow \mathbf{post}(P)(v_0, v)$
- Absence d'erreurs à l'exécution : $A_2(\ell_0, v_0, \ell, v) \stackrel{def}{=} \wedge_{\ell', \ell \to \ell'} \mathbf{DOM}(\ell, \ell')(v)$

Mécanisation et automatisation de la vérification

- Les vérifications sont longues et nombreuses
- Les vérifications sont parfois élémentaires et assez faciles à prouver
- ▶ Approche par vérification algorithmique via TLA et ses outils
- Approche par mécanisation du raisonnement symbolique via Event-B et ses outils

Current Subsection Summary

- 1 Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- **5** Conclusion et limites

Traduction des annotations

l0: v = 3 v := v+2;l1: v = 5

Traduction des annotations

$$l0: v = 3$$

 $v := v+2;$
 $l1: v = 5$

- Annotation du code
- Traduction de l'invariant à vérifier
- Expression de la propriété de correction partielle
- ► Vérification de la propriété

Traduction des annotations

$$l0: v = 3$$

 $v := v+2;$
 $l1: v = 5$

- Annotation du code
- Traduction de l'invariant à vérifier
- Expression de la propriété de correction partielle
- Vérification de la propriété

```
-----MODULE an0-----
EXTENDS Integers, TLC
-----
CONSTANTS v0,pc0
VARIABLES v.pc
-----
(* extra definitions *)
min == -2^{31}
\max == 2^{31}-1
D == min..max
(* precondition pre(x0,y0,z0,pc0) *)
pre(fv) == fv=3
ASSUME pre(v0)
(* initial conditions *)
Init == pc = "10" /\ v=3
(* actions *)
skip == UNCHANGED <<pc, v>>
al011 == pc="10" /\ TRUE /\ pc'="11" /\ v'=v+2
(* next relation *)
Next == skip \/ al011
(* invariant properties *)
   /\ pc \in {"10","11"}
   /\ pc="10" => v=3
   /\ pc="11" => v=5
(* safety properties *)
suretecorrectionpartielle == pc="11" => v=5
sureteabsencederreurs == v \in D /\ v+2 \in D
-----
tocheck == i
```

Méthode de vérification avec le toolset TLAPS et TLA/TLA+

Le programme ou l'algorithme est annoté à des points de contrôle $\ell \in \text{Locations}$ et à chaque point de contrôle ℓ se trouve une assertion $P_{\ell}(v_0,v)$.

- Le programme ou l'algorithme est annoté à des points de contrôle $\ell \in \text{Locations}$ et à chaque point de contrôle ℓ se trouve une assertion $P_{\ell}(v_0,v)$.
- ▶ Si les deux points de contrôle ℓ,ℓ' définissent un calcul élémentaire, alors on définit une action $\mathcal{E}(\ell,\ell')$ comme suit :

$$\mathcal{E}(\ell, \ell') \triangleq \\ \land c = \ell \\ \land cond_{\ell, \ell'}(v) \\ \land c' = \ell' \\ \land v' = f_{\ell, \ell'}(v)$$

- Le programme ou l'algorithme est annoté à des points de contrôle $\ell \in \text{Locations}$ et à chaque point de contrôle ℓ se trouve une assertion $P_{\ell}(v_0,v)$.
- Si les deux points de contrôle ℓ,ℓ' définissent un calcul élémentaire, alors on définit une action $\mathcal{E}(\ell,\ell')$ comme suit :

$$\mathcal{E}(\ell, \ell') \triangleq \\ \land c = \ell \\ \land cond_{\ell, \ell'}(v) \\ \land c' = \ell' \\ \land v' = f_{\ell, \ell'}(v)$$

- v est la variable de l'état mémoire ou la liste des variables de l'tat mémoire; v inclut les variables locales et les variables résultat.
- c est une nouvelle variable qui modélise le flôt de contrôle de type LOCATIONS.
- $\mathcal{E}(\ell,\ell')$ simule le calcul débutant en ℓ et terminant en o ℓ' ; v est mise à jour.

$$\begin{split} i &\triangleq \\ & \land c \in \text{Locations} \\ & \land v \in Type \\ & \dots \\ & \land c = \ell \Rightarrow P_{\ell}(v_0, v) \\ & \land c = \ell' \Rightarrow P_{\ell'}(v_0, v) \\ & \dots \\ & safety \triangleq S(c, v_0, v) \end{split}$$

Méthode de vérification avec le toolset TLAPS et TLA/TLA+

$$\begin{split} i &\triangleq \\ & \land \ c \in \text{Locations} \\ & \land \ v \in Type \\ & \cdots \\ & \land \ c = \ell \Rightarrow P_{\ell}(v_0, v) \\ & \land \ c = \ell' \Rightarrow P_{\ell'}(v_0, v) \\ & \cdots \\ & safety \triangleq \ S(c, v_0, v) \end{split}$$

- ► Type est le type des variables v et est un ensemble de valeurs possibles.
- L'annotation donne gratuitement les conditions satisfaites par v qyand le contrôle est en ℓ, (resp. en ℓ').
- ▶ $S(c, v_0, v)$ est une propriété de sûreté à vérifier et est une théorème dans le cas de Fvent-B

Méthode de vérification exhaustive ou algorithmique

Méthode de vérification exhaustive ou algorithmique

La relation de transition *Next* est définie par :

$$Next \triangleq \ldots \vee \mathcal{E}(\ell, \ell') \vee \ldots$$

Méthode de vérification exhaustive ou algorithmique

► La relation de transition *Next* est définie par :

$$Next \triangleq \ldots \vee \mathcal{E}(\ell, \ell') \vee \ldots$$

Les conditions initiales des variables sont à définir par un prédicat Init

Current Summary

- Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- **5** Conclusion et limites

PlusCal un langage algorithmique plongé dans TLA/TLA+

- ▶ Définition d'un langage algorithmique simple.
- ► Commentaire spécifique dans entre (* et *) --algorithm nom { definitions }
- Génération d'une spécification TLA⁺ avec introduction d'une nouvelle variable pc modélisant le contrôle.
- L'outil ToolBox dispose d'une fonctionnalité de traduction.

Exemple (I)

CM4 (9 octobre 2024) (Dominique Méry)

```
MODULE exemple ----
EXTENDS Naturals, Integers, TLC
CONSTANTS x0, y0, z0, min, max, undef
(* precondition *)
ASSUME x0 = y0 + 3*z0
(*
--algorithm ex {
  variables x=x0,
             y = y0,
             z=z0:
10: assert x = y + 3*z/\ /\ y=y0 /\ z=z0;
    x := y+3*z;
11: assert x = y0+3*z0 / y=y0 / z=z0;
                                             4 □ ▶ 4 □ ▶ 4 ≧ ▶ 4 ≧ ▶ 34/54 900
₩odélisation, spécification et vérification
```

Exemple (II)

```
ISDEF(X,Y) == X # undef => X \setminus in Y
DD(X) == X \# undef => X \setminus in min..max
i ==
   /\ pc \in {"10","11","Done"}
   /\ pc = "10" => x = y + 3*z
   /\ pc = "11" => x+y+z \ geq y
post == x = y0+3*z0 / y=y0 / z=z0
safetyrte ==DD(x) / DD(y) / DD(z)
safetypc == pc="Done" => post
```

Current Subsection Summary

- Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- 6 Conclusion et limites

General form for processes

```
—— MODULE module name -
\* TLA+ code
(* — algorithm algorithm_name
variables global_variables
process p_name = ident
variables local_variables
begin
 \* pluscal code
end process
process p_group \in set
variables local_variables
begin
 \* pluscal code
end process
```

Example 1

```
process pro = "test"
begin
  print << "test">>;
end process
```

Process in PlusCal

- ▶ A multiprocess algorithm contains one or more processes.
- ► A process begins in one of two ways :
 - defining a set of processes : process (ProcName ∈ IdSet)
 - defining one process with an identifier process (ProcName = Id)
- ▶ self designates the current procees

```
—algorithm ex_process {
   variables
     input = <<>>, output = <<>>,
     msgChan = \langle \langle \rangle \rangle, ackChan = \langle \langle \rangle \rangle,
     newChan = <<>>:
\* defining macros
   process (Sender = "S")
   }; \* end Sender process block
  process (Receiver = "R")
   }; \* end Receiver process block
} \* end algorithm
```

Using macros for defining sending and receiving prilmitives

```
—algorithm ex_process {
  variables
    input = <<>>, output = <<>>,
    msgChan = <<>>, ackChan = <<>>,
    newChan = <<>>:
  macro Send(m, chan) {
    chan := Append(chan, m);
  macro Recv(v, chan) {
    await chan \# <<>>:
    v := Head(chan);
    chan := Tail(chan);
* Processes S and R
} \* end algorithm
```

Defining processes S and R

```
—algorithm ex_process {
  variables
    input = <<>>, output = <<>>,
    msgChan = <<>>, ackChan = <<>>,
    newChan = <<>>:
\* defining macros
  process (Sender = "S")
  variables msg;
  sending: Send("Hello", msgChan);
  printing: print << "Sender", input >>;
  }; \* end Sender process block
  process (Receiver = "R")
  waiting: Recv(msg, msgChan);
  adding: output := Append(output, msg);
  printing: print <<" Receiver", output >>;
  }; \* end Receiver process block
 \* end algorithm
```

Current Subsection Summary

- Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- **5** Conclusion et limites

```
macro Name(var1, ...)
begin
\* something to write
end macro:
procedure Name(arg1, ...)
variables var1 = ... \setminus * not \setminus in, only =
begin
  Label:
  \* something
  return;
end procedure;
```

Current Summary

- 1 Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- 6 Conclusion et limites

Vérification du contrat avec le solveur Z3

```
requires x0 \ge 0;
ensures x_f = x0+2;
variables X
```

begin

$$intX = x0;$$

 $0: x = x0$
 $X = X+2;$
 $1: x = x0+$

end

$$x0 \ge 0 \land x = x_0 \Rightarrow x = x0$$

$$x = x0+2 \Rightarrow x = x0+2$$

- conditions de vérification $0 \longrightarrow 1$: $x = x0 \land x' = x+2 \Rightarrow x' = x0+2$
- (x0 >= 0, x == x0, x! = x0)
- (x == x0+2, x! = x0+2)
- (x == x0, xp == x+2, xp! = x0+2)

Listing 1 – z3 en Python

```
from numbers import Real
from z3 import *
x = Real('x')
xp = Real('x')
x0 = Real('xo')
x0 = Real('xo')
s = Solver()
s.add(x0 >= 0, x == x0, x != x0)
print(s.check())
s.add(x == x0+2, x != x0+2)
print(s.check())
s.add(x == x0, xp == x + 2, xp != x0+2)
print(s.check())
```

Current Summary

- 1 Exemples de correction partielle (affectation simple)
- 2 Annotation et vérification outillée avec TLA/TLA+ Vérification avec TLA et ses outils
- 3 Le langage PlusCal
 Defining processes in PlusCal
 Macros and Procedures
- 4 Vérification d'un contrat avec un solveur Z3
- **6** Conclusion et limites

Tryptique $(\mathcal{D}, \mathcal{S}, \mathcal{R})$

 $ightharpoonup \mathcal{R}$: exigences du système.

 $ightharpoonup \mathcal{R}$: exigences du système.

 $ightharpoonup \mathcal{D}$: domaine du problème.

 $ightharpoonup \mathcal{R}$: exigences du système.

 $ightharpoonup \mathcal{D}$: domaine du problème.

 $ightharpoonup \mathcal{S}$: système répondant aux spécifications.

 $ightharpoonup \mathcal{R}$: exigences du système.

 $ightharpoonup \mathcal{D}$: domaine du problème.

 $ightharpoonup \mathcal{S}$: système répondant aux spécifications.

 \mathcal{D}, \mathcal{S} satisfait \mathcal{R}

- $ightharpoonup \mathcal{R}$: exigences du système.
- $ightharpoonup \mathcal{D}$: domaine du problème.
- $ightharpoonup \mathcal{S}$: système répondant aux spécifications.

\mathcal{D}, \mathcal{S} satisfait \mathcal{R}

- $ightharpoonup \mathcal{R}$: pre/post.
- $ightharpoonup \mathcal{D}$: entiers, réels, . . .
- $ightharpoonup \mathcal{S}$: code, procédure, programme, . . .

$$\mathcal{D}, \text{Alg} \quad \text{SATISFAIT} \quad \left\{ egin{array}{l} \mathsf{pre}(\text{Alg})(v) \\ \mathsf{post}(\text{Alg})(v_0, v) \end{array} \right.$$

 \mathcal{D} $\mathbf{pre}(\mathrm{ALG})(v)$ $\mathbf{post}(\mathrm{ALG})(v_0,v)$ ALG

$$\mathcal{D}, \text{Alg} \quad \text{satisfait} \quad \left\{ \begin{array}{l} \textbf{pre}(\text{Alg})(v) \\ \textbf{post}(\text{Alg})(v_0, v) \end{array} \right.$$

Vérification de conditions de vérification

 \mathcal{D} pre(ALG)(v) $post(ALG)(v_0, v)$ ALG

$$\mathcal{D}, \text{Alg} \quad \text{satisfait} \quad \left\{ egin{array}{ll} \mathbf{pre}(\text{Alg})(v) \\ \mathbf{post}(\text{Alg})(v_0,v) \end{array}
ight.$$

Vérification de conditions de vérification

 \mathcal{D} pre(ALG)(v) $\mathsf{post}(\mathsf{ALG})(v_0,v)$ ALG

 Vérification des conditions de vérification avec un model-checker par exploration de tous les états.

$$\mathcal{D}, \text{Alg} \quad \text{satisfait} \quad \left\{ \begin{array}{l} \textbf{pre}(\text{Alg})(v) \\ \textbf{post}(\text{Alg})(v_0, v) \end{array} \right.$$

Vérification de conditions de vérification

- Vérification des conditions de vérification avec un model-checker par exploration de tous les états.
- Vérification des conditions de vérification avec un outil de preuve formelle.

▶ Vérifier les énoncés de la forme $\Gamma \vdash P$ (séquents)

- \blacktriangleright Vérifier les énoncés de la forme $\Gamma \vdash P$ (séquents)
- ightharpoonup Enoncer ou calculer les invariants d'un modèle : REACHABLE(M).

- \blacktriangleright Vérifier les énoncés de la forme $\Gamma \vdash P$ (séquents)
- ightharpoonup Enoncer ou calculer les invariants d'un modèle : REACHABLE(M).
- ► TLA⁺ versus Event-B
 - Plate-formes: TLA+ avec TLAPS et Toolbox, Event-B avec Rodin
 - Langage de la théorie des ensembles avec quelques différences
 - Fonctionnalités des outils
 - ► Editeurs de modèles : TLA+ et Event-B
 - Model-Checking: TLA+ et Event-B
 - Assistant de preuve : Event-B
 - Animateur et Model-Checker ProB

- ▶ Vérifier les énoncés de la forme $\Gamma \vdash P$ (séquents)
- ightharpoonup Enoncer ou calculer les invariants d'un modèle : REACHABLE(M).
- ► TLA⁺ versus Event-B
 - Plate-formes: TLA+ avec TLAPS et Toolbox, Event-B avec Rodin
 - Langage de la théorie des ensembles avec quelques différences
 - Fonctionnalités des outils
 - Editeurs de modèles : TLA+ et Event-B
 - ► Model-Checking : TLA⁺ et Event-B
 - Assistant de preuve : Event-B
 - Animateur et Model-Checker ProB
- Développement d'outils symboliques comme les solveurs SMT ou des procédures de décision

Revue des outils

- ► TLA⁺ et TLA Toolbox : logique temporelle, théorie des ensembles, calcul des prédicats, model-checker
- ► Event-B et Rodin : théorie des ensembles, assistant de preuve, model-checker, animateur
- B et Event-B et ProB : théorie des ensembles, model-checker, animateur, validation
- ▶ Promela et SPIN : logique temporelle, model-checking
- C et Frama-C : analyse sémantique des programmes, assistants de preuve, solveurs SMT.
- ► Spec# et Rise4fun : pre/post, contrats
- ► PAT : cadre générique pour créer son propre model-checker (classique, temps réel, probabiliste, stochastique)
- ► C et cppcheck : analyse statique de programmes C ou C++

Vérification à faire mais comment automatiquement?

▶ Application de la correction du principe d'induction : si on vérifie les trois propriétés, alors *A* est une propriété de sûreté pour le modèle en question : outil de déduction.

Vérification à faire mais comment automatiquement?

- Application de la correction du principe d'induction : si on vérifie les trois propriétés, alors A est une propriété de sûreté pour le modèle en question : outil de déduction.
- ➤ Si on veut montrer que A est une propriété de sûreté, alors on doit utiliser l'invariant pour induire des annotations pour le modèle : outil d'induction.

Point d'étape

- $\forall x_0, x \in \text{VALS}.Init(x_0) \land \text{Next}^*(x_0, x) \Rightarrow A(x)$
- $\forall x \in \text{VALS.}(\exists x_0.x_0 \in \text{VALS} \land Init(x_0) \land \text{Next}^*(x_0, x)) \Rightarrow A(x).$
- ▶ REACHABLE(M) = { $u|u \in \text{VALS} \land (\exists x_0.x_0 \in \text{VALS} \land Init(x_0) \land \text{Next}^*(x_0,u)$)} est l'ensemble des états accessibles à partir des états initiaux.
- ▶ Model Checking : on doit montrer l'inclusion REACHABLE $(M) \subseteq \{u | u \in VALS \land A(u)\}.$
- ▶ Preuves : définir un invariant $I(\ell,v) \equiv \bigvee_{\ell \in \text{LOCATIONS}} \left(\bigvee_{v \in \text{MEMORY}} P_{\ell}(v)\right)$ avec la famille d'annotations $\{P_{\ell}(v) : \ell \in \text{LOCATIONS}\}$ et démontrer les conditions de vérification.
- ► Analyse automatique :
 - Mécaniser la vérification des conditions de vérification
 - Calculer REACHABLE(M)
 - Calculer une valeur approchée de REACHABLE(M)

$$\begin{split} &(\mathcal{P}(\mathsf{VALS}),\subseteq) \overset{\gamma}{\underset{\alpha}{\longleftarrow}} (D,\sqsubseteq) \\ &\alpha(\mathsf{REACHABLE}(M)) \sqsubseteq A \; \mathsf{ssi} \; \mathsf{REACHABLE}(M) \sqsubseteq \gamma(A) \\ &\mathsf{Si} \; \gamma(A) \subseteq \{u|u \in \mathsf{VALS} \land A(u)\}, \; \mathsf{alors} \end{split}$$

Analyse automatique

- ► Mécaniser la vérification des conditions de vérification
- ightharpoonup Calculer REACHABLE(M) comme un point-fixe.
- ightharpoonup Calculer une valeur approchée de REACHABLE(M)

$$(\mathcal{P}(\mathrm{Vals}),\subseteq) \xleftarrow{\gamma}_{\alpha} (D,\sqsubseteq)$$

$$\alpha(\mathrm{Reachable}(M)) \sqsubseteq A \text{ ssi } \mathrm{Reachable}(M) \sqsubseteq \gamma(A)$$

Si
$$A$$
 vérifie $\gamma(A)\subseteq\{u|u\in\mathrm{VALS}\wedge A(u)\}$, alors $\mathrm{REACHABLE}(M)\subseteq\{u|u\in\mathrm{VALS}\wedge A(u)\}$

Method for verifying program properties

correctness and Run Time Errors

A program P satisfies a (pre,post) contract :

- P transforms a variable v from initial values v_0 and produces a final value $v_f: v_0 \stackrel{P}{\longrightarrow} v_f$
- ightharpoonup v $_0$ satisfies pre : $\operatorname{pre}(v_0)$ and v $_f$ satisfies post : $\operatorname{post}(v_0,v_f)$
- ▶ D est le domaine RTE de V

(9 octobre 2024) (Dominique Méry)

Summry of concepts

