Matemática

Vitor Lima (vitor_lp@yahoo.com)

01/03/2012

Capítulo 1

Equações de Segundo Grau

1.1 Introdução

Neste capítulo vamos estudar um tipo diferente de equações: as equações do segundo grau.

Elas diferem das equações lineares pelo fato de que a icógnita aparece elevada ao quadrado.

Só isto já torna este tipo de equação muito mais interessante (alguns vão dizer mais difíceis, mas eu discordo dos que dizem isto).

Também é um tipo de equação muito comum nos vestibulares.

1.2 Definição

Uma equação do segundo grau (também conhecida como equação quadrática) é uma equação da forma (ou que pode ser escrita na forma)

$$a \cdot x^2 + b \cdot x + c = 0$$

com $a \neq 0$ e x sendo a icógnita.

1.3 Propriedades

Diferente de uma equação do primeiro grau, uma equação quadrática nem sempre tem solução, isto quer dizer que as vezes não existem um valor real que a satisfaça.

Por exemplo, se considerarmos a equação

$$x^2 = -9$$

Como não há nenhum valor real que elevado ao quadrado resulte em um número negativo, esta equação não tem solução (neste caso, dizemos que o conjunto solução é vazio).

Mas, se retirássemos o sinal de menos, ficando com a equação

$$x^2 = 9$$

então, poderíamos tirar a raíz dos dois lados e obter

$$x = \pm \sqrt{9} = \pm 3$$

ou seja, os valores 3 e - 3 seriam solução. 1 .

Neste caso, a equação tem duas soluções distintas.

Além disto, como veremos mais adiante, ainda pode acontecer de haver apenas uma solução para uma equação do segundo grau.

Assim, notamos a primeira propriedade interessante de uma equação quadrática:

Uma equação do segundo grau pode ter duas, uma ou nenhuma solução.

1.4 Resolvendo

Sabemos reconhecer uma equação do 2º grau, sabemos que ela pode ou não ter solução, mas como é que encontramos essas soluções?

Em geral, usamos a famosa fórmula de Baskara:

Considere a equação

$$ax^2 + bx + c = 0$$

com a diferente de zero.

Se divirmos ambos os lados por a, obtemos

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

Agora, notando que $1 = \frac{2}{2}$, podemos multiplicar o segundo termo por essa fração sem alterar a igualdade:

$$x^2 + 2\frac{b}{2a}x + \frac{c}{a} = 0$$

 $^{^{1}}$ Em uma equação do segundo grau, sempre que tiramos a raíz de ambos os lados, temos que colocar os sinais de mais e menos (\pm) , pois tanto o valor negativo quanto o positivo é solução.

1.5. EXEMPLOS 5

Podemos então completar um quadrado, somando $(\frac{b}{2a})^2$ em ambos os lados:

$$x^{2} + 2\frac{b}{2a}x + (\frac{b}{2a})^{2} + \frac{c}{a} = (\frac{b}{2a})^{2}$$

Assim, usando a fatoração do quadrado perfeito, obtemos

$$(x + \frac{b}{2a})^2 + \frac{c}{a} = (\frac{b}{2a})^2$$

Que equivale a

$$(x + \frac{b}{2a})^2 = (\frac{b}{2a})^2 - \frac{c}{a}$$

Simplificando a parte esquerda (multiplicando e dividindo $\frac{c}{a}$ por 4a e somando)

$$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}$$

Tirando a raíz quadrada, obtemos:

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Subtraindo $\frac{b}{2a}$ de ambos os lados, chegamos finalmente em

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Que nos diz que existem dois valores possíveis para o x: um somando a raíz e outro subtraindo.

Portanto, nos casos em que esta raíz dá zero (ou seja, quando $b^2 - 4ac = 0$), o x assume apenas um valor (pois iremos somar ou subtrair zero). Este é o único caso em que a equação quadrática tem apenas uma solução.

Por conveniência, muitos fazem $\Delta = b^2 - 4ac$ e escrevem a fórmula de Baskara como:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

1.5 Exemplos

1. Vamos resolver a equação $3x^2 + x - 4 = 0$:

Comecemos identificando os coeficientes: neste caso $a=3,\ b=1$ e c=-4.

Agora, calculemos o discriminante:

$$\Delta = b^2 - 4ac = (1)^2 - 4 \cdot 3 \cdot (-4) = 1 + 48 = 49$$

Assim, as soluções são:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + 7}{2 \cdot 3} = \frac{6}{6} = 1$$

e

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - 7}{2 \cdot 3} = \frac{-8}{6} = -\frac{4}{3}$$

2. Quais são as soluções da equação $x^2 + 2x = 0$?

Neste caso, a = 1, b = 2 e c = 0.

Assim, temos $\Delta = b^2 - 4ac = 2^2 - 0 = 4$.

Portanto, as soluções são:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{4}}{2 \cdot 1} = \frac{-2 + 2}{2} = \frac{0}{2} = 0$$

е

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{4}}{2 \cdot 1} = \frac{-2 - 2}{2} = -\frac{4}{2} = -2$$

Ou seja, as soluções desta equação são os valores 0 e -2.

Poderíamos ainda resolver esta equação sem o uso da fórmula de Baskara, colocando o x em evidência e usando o fato de que, quando um produto dá zero, então um de seus fatores é zero.

Ou seja,

$$x^2 + 2x = 0 \Leftrightarrow x(x+2) = 0$$

Então, x = 0 ou x + 2 = 0, que implica x = -2.

Logo, as soluções são $\{0, -2\}$ (note que são as mesmas de quando resolvemos com a fórmula de Baskara).

1.6 Dicas

É possível resolver algumas equações do $2^{\rm o}$ grau sem usar a fórmula de Baskara, economizando tempo na resolução.

Quando a equação é da forma

$$ax^2 + bx = 0$$

ou seja, quando ela tem c=0, podemos resolver simplesmente colocando x em evidência, conforme fizemos no exemplo anterior, obtendo então

$$x = 0$$
 ou $x = -\frac{b}{a}$

1.7. EXERCÍCIOS

7

Figura 1.1: Triângulo retângulo.

Quando a equação é da forma

$$ax^2 + c = 0$$

ou seja, com b=0, basta passar o c para o outro lado e tirar a raíz, obtendo

$$x = \pm \sqrt{-c}$$

1.7 Exercícios

1. Resolva as seguintes equações do segundo grau (não é necessário usar a fórmula de Baskara em todas):

(a)
$$3x^2 - 2x - 1 = 0$$

(b)
$$2x^2 - 2x - 4 = 0$$

(c)
$$x^2 + x - 12 = 0$$

(d)
$$x^2 - 16 = 0$$

(e)
$$4x^2 - 16x = 0$$

(f)
$$x^2 + 3x + 2 = 0$$

(g)
$$3x^2 - 20 = 1 + 6$$

- 2. Usando o teorema de Pitágoras, descubra o comprimento da hipotenusa do triângulo retângulo.
- 3. Sartre e Mariane vão dividir os 2 quartos que têm em 4 quartos, pois eles adotaram duas crianças, Beethoven e Russel, e precisam de dois novos quartos para os dois.

Os quartos serão divididos conforme a figura, onde x é a largura e ao mesmo tempo o comprimento do quarto que será de Russel.

Legenda:

R: Quarto do Russel

B: Quarto do Beethoven

Como Beethoven adora tocar piano, seu quarto precisa ser maior, já que um piano ocupa muito espaço.

Assim, Russel, que é muito bom em matemática, encontrou um valor para x que fizesse com que o seu quarto ficasse com aproximadamente metade da área do quarto de Beethoven. Que valor foi esse?

- (a) 25
- (b) 6
- (c) 4
- (d) 12