CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Mark Scheme Syllabus		
	GCE AS/A LEVEL – May/June 2014	9709	63	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	
	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

1	(i)	Adults 8 6 5 4 7 4 3 3 2 8 4 3	1 6 1 7 8 9	1 2 7 8 2 7 1 3 4 6 9 2 5	_	B1		Single stem and key correct – including adults, children and seconds Right hand leaves correct shape
		key 3 5 4 adults and 5	represo 4 secon	ents 53 seconds for child	nds for Iren	B1	3	Left hand leaves correct shape
	(ii) Two from: Children's estimates more spread out Adults estimates lower Adults are symmetrical whereas children are skewed			B1 B1	2	oe oe oe		
2	(i)	$np = 252 \times npq =$			7	B1		Unsimplified 36 and 30.857 seen, oe
	$P\left(z < \left(\frac{29.5 - 36}{\sqrt{30.857}}\right)\right) + P\left(z > \left(\frac{44.5 - 36}{\sqrt{30.857}}\right)\right)$			M1 M1		any standardising, sq rt needed any continuity correction either 29.5, 30.5, 43.5, 44.5		
	= P(z < -1.170) + P(z > 1.530)							
	= 1 - 0.8790 + 1 - 0.9370			M1		correct area $2 - (\Phi_1 + \Phi_2)$		
		= 0.184				A1	5	correct answer
	(ii)	np and nq a	re both	> 5		B1	1	must have both
3	(i)	$P(2) = {}^{6}C_{3} > OR$				M1 OR		Using combinations ${}^{a}C_{b} \times {}^{c}C_{d}/{}^{e}C_{f}$
	$\frac{{}^{6}C_{3} \times {}^{3}C_{2}}{{}^{6}C_{5} + {}^{6}C_{4} \times {}^{3}C_{1} + {}^{6}C_{3} \times {}^{3}C_{2} + {}^{6}C_{2} \times {}^{3}C_{3}}$ OR $3/9 \times 2/8 \times 6/7 \times 5/6 \times 4/5 \times {}^{5}C_{2} = 10/21$ $= 60/126 \text{ AG}$		M1 OR M1	2	Mult 5 probs with a ${}^{p}C_{q}$ If ${}^{5}C_{2}$ replace by 10, oe must be justified Legit method, as answer given			
	(ii)							
	x		1 15/4	2 20/42	3	B1		0, 1, 2, 3 only seen in table. Condone $x = 4.5$ in table if $P(x) = 0$ or blank and values in table for $x = 0.1, 2.3$
	P	Prob 2/42	15/4		5/42	D.1		
	$P(0) = {}^{6}C_{5}/{}^{9}C_{5} = 6/126$ $P(1) = {}^{6}C_{4} \times {}^{3}C_{1}/{}^{9}C_{5} = 45/126$ $P(3) = {}^{6}C_{2} \times {}^{3}C_{3}/126 = 15/126$					B1 B1 B1√	4	Any correct prob other than P(2) Any other correct prob $\Sigma P(x) = 1, 3 < n(x) < 6$

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

			1		
4	(i)	new mean $\frac{172.6 \times 28 - 161.8}{27} = 173$	M1 A1	2	Mult by 28, subt 161.8 and dividing by 27 or 28 Correct ans
	(ii)	original $\Sigma x^2 = (4.58^2 + 172.6^2) \times 28$	M1		Subst in formula to find Σx^2 and attempt to make Σx^2 subject, with 2 terms both squared
		= 834728.6 (835000)	A1		Correct answer
		Remaining $\Sigma x^2 = 834728.6 - 161.8^2$ = 808549.36	M1		Subtract 161.8 ² from their original Σx^2
		sd of remaining = $\sqrt{\frac{808549.36}{27} - 173^2}$			
		= 4.16	A1	4	Correct ans, accept 4.15 or 3.93
5	(i)	z = -1.282	B1		Rounding to ± 1.28 seen
		$-1.282 = \frac{t - 6.5}{1.76}$	M1		Standardising, no cc, no sq or sq rt, $z \neq \pm 0.9, \pm 0.1$
		t = 4.24	A1	3	Correct answer, accept 4.25
	(ii)	P(z < 1) = 0.8413	M1		z = 1 used to find a probability
		P(within 1sd of mean) = $2\Phi - 1$ = 0.6826	B1		correct prob, accept answer rounding to 0.66, 0.67, 0.68, not from wrong working. If quoted, then implies first M1.
		$P(8, 9) = {}^{9}C_{8}(0.6826)^{8}(0.3174) + (0.6826)^{9}$	M1 M1		Binomial term $p^r(1-p)^{9-r}{}^9C_r$, 9C_r must be seen Binomial expression for P(8)+P(9), any p
		= 0.167	A1	5	Correct ans
6	(i)	$P(B \text{ champ}) = 0.7 \times 0.7 = 0.49$	B1	1	
	(ii)	P (B champ) = $P(WW) + P(WLW) + P(LWW)$ = $(0.7 \times 0.7) + (0.7 \times 0.3 \times 0.7) +$	M1		Summing at least 2 options, at least one of which is 3-factor
		$(0.3 \times 0.7 \times 0.7)$ = 0.49 + 0.147 + 0.147	B1		0.147 seen, unsimplified
		= 0.784	A1	3	Correct answer
	(iii)	$P(T2 T) = \frac{P(T2 \cap T)}{P(T)}$	M1		Attempt P(T2∩T) seen anywhere sum of 2 terms
		$=\frac{0.3\times0.3+0.7\times0.3\times0.3}{0.216}$	A1		Correct unsimplified num of a fraction
		= 0.708	M1 A1	4	Dividing by their $(1 - (ii) \sqrt[n]{})$ oe Correct answer
					ı

Page 6	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2014	9709	63	

7 (i)	(a)	6! (×) 4! OR (×) 4 × 3	M1 M1		Seen in a single term expression as numerator Seen in a single term expression as numerator
		÷ 2!2!3! OR ÷ 2!3!	M1		(denominator may be 1) Seen in a single term expression as denominator
		Total 720 ways	A1	4	Correct ans
(i)	(b)	$1******3 = \frac{7!}{3!2!} = 420$ $3******1 = 420$ $3******3 = 420$	B1 M1		$\frac{7!}{3!2!}$ seen oe Attempting to evaluate and sum at least 2 of 1***3, 3***1, 3***3
		Total = 1260 ways	A1	3	Correct ans
(ii)	(a)	$5 \times 4 \times 3 = 60 \text{ ways } (^5P_3)$	M1 A1	2	⁵ P ₃ or ⁵ C ₃ ×3! (can be implied) Correct ans
(ii)	(b)	2** in 212, 213, 214, 216, 221, 223, 224, 226, 231, 232, 233, 234, 236, 241, 242, 243, 246 261, 262, 263, 264, 266	M1		Listing attempt starting with 2, at least 10 correct entries
		Total = 22 ways	A1	2	Correct ans
		Alternative Methods: $3 \times {}^{4}C_{1} + 2 \times {}^{5}C_{1}$	M1		$p \times {}^{4}\text{C}_{1} + q \times {}^{5}\text{C}_{1}$, oe $p + q > 2$
		OR ${}^{5}P_{2} + {}^{2}C_{1}$	OR M1		⁵ P ₂ seen
		OR ${}^{4}P_{2} + 2 \times {}^{4}P_{1} + {}^{2}C_{1}$	OR M1		Any 2 terms added