

# Deep Learning

**Session 9** 

Regularization

Applied Data Science 2024/2025

### Regularization



- What is it?
  - A technique that constrains our optimization problem to discourage complex models by limiting the model's capacity, preventing it from fitting the noise in the training data.

"any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error."

- Ch. 5.2 of Goodfellow book on Deep Learning

- Why do we need it?
  - To improve the generalization of our model on unseen data by balancing model capacity, ensuring it captures the underlying patterns without overfitting.

## **Preventing Overfitting**



 Get more data: Increasing the amount of data helps the model generalize better.

- Use a model with the right capacity:
  - Too much capacity: The model becomes overly complex and learns noise (overfitting).
  - Too little capacity: The model fails to capture important patterns (underfitting).
- **Early stopping:** Stop training when the model starts to overfit, based on validation performance.
- Parameter Norm Penalty: Add a penalty to the loss function for large weights, discouraging complexity.

# **Preventing Overfitting**



• **Dropout:** Randomly drop neurons during training to prevent coadaptation and reduce overfitting.

• Batch Normalization: Normalize activations in each layer, stabilizing learning and acting as a regularizer.

• **Ensemble methods:** Combine predictions from multiple models (like bagging or boosting) to reduce variance and improve generalization.

#### **Get More Data**



- If possible, gathering more data is always the best solution!
  - However, data collection can be expensive or time-consuming.
  - More data may require more computational resources.

#### Data Augmentation:

 Data augmentation involves applying various transformations to your existing dataset to artificially increase its size and diversity.

#### Leverage Pre-trained Models:

 Transfer learning from models trained on larger datasets can help when gathering more data is difficult.

### **Data Augmentation**





https://towardsdatascience.com/smote-synthetic-data-augmentation-for-tabular-data-1ce28090debc

## **Data Augmentation**





https://www.labellerr.com/blog/what-is-data-augmentation-techniques-examples-benefits/

#### **Data Augmentation**





https://www.catalyzex.com/paper/auggpt-leveraging-chatgpt-for-text-data

## **Early Stopping**



Stop training before we have a chance to overfit





Validation loss/accuracy

- - - - Training loss/accuracy

### **Parameter Norm Penalty**



• Key Insight: Large weights are often a sign of overfitting.

• **Solution:** Apply a penalty to the size of the weights to reduce overfitting.

Analogy: It's like tightening a belt on oversized pants.

#### **Parameter Norm Penalty**



- Idea: Penalize large weights in the objective function
- e.g., objective is to minimize sum of squared errors over training examples
- L2 norm (Ridge): penalize squated weight values

$$Error = \sum_{i=1}^{n} (y^{(i)} - \widehat{y}^{(i)})^2 + \alpha \sum_{j=1}^{m} w_j^2$$

• L1 norm (Lasso): penalize absolute weight values

$$Error = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2 + \alpha \sum_{j=1}^{m} |w_j|$$

Note: only weights are penalized, not bias terms

#### **Parameter Norm Penalty**



• e.g., objective is to minimize sum of squared errors over training examples.

• L2 norm (Ridge): penalize squated weight values

$$Error = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2 + \alpha \sum_{j=1}^{m} w_j^2$$

• L1 norm (Lasso): penalize absolute weight values

$$Error = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2 + \alpha \sum_{j=1}^{m} |w_j|$$

 Hyperparameter determines relative contribution of norm penalty term.

### Parameter Norm Penalty: How to Set Alpha?



 Shown is the same neural network with different levels of regularization. Which model has the largest value for alpha (i.e., largest norm penalty contribution)?



## **Dropout**



- Dropout is a stochastic regularization method.
- In each forward pass, randomly set some neurons to zero for one pass.
- Forces the network to not rely on any single node.
- The probability of dropping a neuron is defined by an hyperparameter;
   0.5 is commonly used.

Note: During inference dropout is not applied!

### **Dropout**





(a) Standard Neural Net



(b) After applying dropout.

#### **Dropout**







#### **Batch Normalization**



• **Motivation:** Features on different scales can cause learning to be slower and poor performance

 We normalize all training data so that it resembles a normal distribution (that means, zero mean and a unitary variance)

- In the intermediate layers the distribution of the activations is constantly changing during training
  - This slows down the training process because each layer must learn to adapt themselves to a new distribution in every training step.
  - Batch normalization is a method we can use to normalize the inputs of each layer, in order to fight the internal covariate shift problem.

#### **Batch Normalization**



- During training time, a batch normalization layer does the following:
  - Calculate the mean and variance of the layers input
  - Normalize the layer inputs using the previously calculated batch statistics
  - Scale and shift in order to obtain the output of the layer
  - γ and β are learned during training along with the original parameters of the network.
- During inference, the mean and the variance are fixed. They are estimated using the previously calculated means and variances of each training batch.



**Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\}$ ; Parameters to be learned:  $\gamma$ ,  $\beta$ 

Output:  $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ 

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}$$
 // mini-batch mean
$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2}$$
 // mini-batch variance
$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$
 // normalize
$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i})$$
 // scale and shift

#### **Ensemble Methods**



Idea: Use the wisdom of the crowd

- Why Choose Ensemble vs One Predictor?
  - Reduces probability for making a wrong prediction



#### **Ensemble Methods**



- Suppose:
  - n classifiers for binary classification task
  - lacktriangle Each classifier has same error rate  $m{\mathcal{E}}$
  - Classifiers are independent (not true in practice!)
  - Probability mass function indicates the probability of error from an ensemble:



• e.g., n = 11,  $\mathcal{E}$  = 0.25; k = 6: probability of error is ~0.034 which is much lower than probability of error from a single algorithm (0.25)

#### How to Produce an Ensemble?









#### **Ensembles for Neural Networks**



- Why could ensembling neural networks be difficult?
  - Hyperparameter Tuning: Finding optimal hyperparameters for each model is time-consuming.
  - High Resource Usage: Ensembles require significant memory and computational power.
  - Extended Training Time: Training multiple models increases total time.
  - Increased Complexity: Managing multiple architectures and data pipelines adds complexity.
  - Diminishing Returns: Additional models may only slightly improve performance.
  - Deployment Issues: Ensemble models increase inference time and hardware needs.

#### **Ensembles for Neural Networks**



• Idea: approximate bagging with dropout during training so different sub-models in the network are trained with different training data



(a) Standard Neural Net



(b) After applying dropout.

e.g., drop 50% of units in hidden layers

e.g., drop 20% of units in input layers

## Regularization with Pytorch



- Dropout: <a href="https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html">https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html</a>
- L2 Regularization: <a href="https://discuss.pytorch.org/t/how-to-add-a-l2-regularization-term-in-my-loss-function/17411/5">https://discuss.pytorch.org/t/how-to-add-a-l2-regularization-term-in-my-loss-function/17411/5</a>
- Batch Normalization: <a href="https://medium.com/@aidant0001/batch-normalization-with-pytorch-959744b05325">https://medium.com/@aidant0001/batch-normalization-with-pytorch-959744b05325</a>
- Early Stopping: <a href="https://www.geeksforgeeks.org/how-to-handle-overfitting-in-pytorch-models-using-early-stopping/#step-6-train-the-model-with-early-stopping">https://www.geeksforgeeks.org/how-to-handle-overfitting-in-pytorch-models-using-early-stopping/#step-6-train-the-model-with-early-stopping</a>