Technische Universität Berlin Fakultät II – Institut für Mathematik Böse, Penn-Karras, Schneider

 $\begin{array}{c} {\rm WS} \ 11/12 \\ 05.04.2012 \end{array}$

April – Klausur Analysis II für Ingenieure

Name: Vorname:				
MatrNr.: Studiengang:				
Neben einem handbeschriebenen A4 Blatt mit Notizen sind keine Hilfsmittel zugelassen.				
Die Lösungen sind in lesbarer Schrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden. Beachten Sie ferner, dass nicht angemeldete Klausuren ebenfalls nicht gewertet werden.				
Die Klausur besteht aus zwei Teilen, einem Rechen- und einem Verständnisteil. Geben Sie im Rechenteil immer den vollständigen Rechenweg und im Verständnisteil, wenn nichts anderes gesagt ist, immer eine kurze Begründung an.				
Die Bearbeitungszeit beträgt 90 Minuten.				
Die Gesamtklausur ist mit 30 von 60 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 10 von 30 Punkten erreicht werden.				
Korrektur				
	1	2	3	Σ
	4	5	6	Σ

Rechenteil

1. Aufgabe 13 Punkte

Bestimmen Sie mit Hilfe des Lagrange-Verfahrens Maximum und Minimum der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = x + 3y$$

auf der Ellipse

$$\{(x,y) \in \mathbb{R}^2 : 10x^2 + 10y^2 + 12xy = 1\}!$$

Zeigen Sie insbesondere, daß der singuläre Fall nicht auftritt, und begründen Sie die Art der Extrema.

2. Aufgabe 10 Punkte

Sei

$$H := \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2 + y^2}{1/10 + z^2} + z^2 \le 1\}.$$

1. Stellen Sie H in Zylinderkoordinaten (ρ, ϕ, z) dar und geben Sie Grenzen für ρ, ϕ und z an! Zeigen Sie dabei insbesondere

$$0 \le \rho \le \sqrt{(\frac{1}{10} + z^2)(1 - z^2)}.$$

2. Berechnen Sie das Volumen von H!

3. Aufgabe 7 Punkte

Zeigen Sie mit Hilfe des Fehlerschrankensatzes, daß der kapazitive Widerstand

$$(R,C)\mapsto W(R,C):=\sqrt{R^2+\frac{1}{C^2}}$$

im Intervall [1,25] liegt, falls R=12 mit einer Genauigkeit von $\Delta R=2$ bzw. $C=\frac{1}{5}$ mit einer Genauigkeit von $\Delta C=\frac{1}{10}$ gemessen wird. (Hinweis: $13^2=169$.)

Verständnisteil

4. Aufgabe 10 Punkte

1. Bestimmen Sie alle Matrizen $A \in \mathbb{R}^{3\times 3}$,

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix}$$

so daß das Vektorfeld

$$\vec{F}_A: \mathbb{R}^3 \to \mathbb{R}^3, \qquad \vec{F}_A(\vec{x}) = A\vec{x}$$

ein globales Potential besitzt.

2. Bestimmen Sie für jedes Vektorfeld \vec{F}_A , für das dies möglich ist, ein Potential.

5. Aufgabe 10 Punkte

Ermitteln Sie unter Ausnutzung eines geeigneten Integralsatzes ein Vektorfeld der Form

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3, \vec{v}(x, y, z) = \begin{pmatrix} a \cdot x \\ e^{-b(x^2 + y^2 + z^2)} - y^2 x \\ c \cdot (xyz + z) \end{pmatrix},$$

 $a,b,c\in\mathbb{R}$, so daß für jeden kompakten Bereich $K\subset\mathbb{R}^3$

$$\iint_{\partial K} \vec{v} \cdot d\vec{O} = \text{vol}(K)$$

gilt. Hierbei sei $\operatorname{vol}(K)$ das Volumen von K. Auf der parametrisierten Randfläche ∂K von K sei das Oberflächenelement d \vec{O} nach außen orientiert.

6. Aufgabe 10 Punkte

Begründen oder widerlegen Sie folgende Aussagen:

- 1. Das Produkt zwischen einer stetigen und einer unstetigen Funktion ist unstetig.
- 2. Das Integral einer skalaren Funktion über die Oberfläche einer kompakten Menge ist immer Null.
- 3. Existieren für alle $\vec{x}, \vec{v} \in \mathbb{R}^n$ mit $\|\vec{v}\| = 1$ die Richtungsableitungen $\frac{\partial f}{\partial \vec{v}}(\vec{x})$ einer Funktion $f: \mathbb{R}^n \to \mathbb{R}$ und sind diese überall stetig, so ist die Funktion überall total differenzierbar.
- 4. Das Potential eines stetigen Vektorfeldes ist stetig, falls es existiert.
- 5. Ist eine Funktion zweimal stetig partiell differenzierbar, so ist ihre Hessematrix symmetrisch.