Искусственные Нейронные сети. Персептрон

Гончаров Павел Нестереня Игорь

kaliostrogoblin3@gmail.com nesterione@gmail.com

Как заставить машину мыслить?

Ученые уже в 50-х годах прошлого века задумывались о том, как заставить ЭВМ мыслить. Одним из решений было **создать упрощенную копию нейрона человека**.

Человеческий мозг пластичен и обладает рядом полезных свойств:

- способность выполнять в параллельном режиме логические, распознающие и оптимизирующие функции;
- давать приемлемый ответ даже при неполных или ошибочных входных данных;
- устойчиво работать при сбоях или выходе из строя одного или даже группы нейронов (Луи Пастер);
- обучаться, т. е. улучшать свои характеристики в процессе обработки данных.

Модель биологического нейрона

Биологический нейрон – это клетка, состоящая из тела нейрона, **сомы**, сигналы извне поступают к телу через отростки – **дендриты**. Информация от нейрона к

Немного истории

- 1. В 1907 году Santiago Ramón у Cajal и Camillo Golgi получили Нобелевскую премию за теорию нейронных систем.
- 2. Позже, в 1943 году, ученые MacKallok и Pitts предложили математическую модель биологического нейрона.
- 3. В 1949 году D.Hebb сформулировал правило обучения нейронов : при повторном или настойчивом возбуждении одним нейроном другого их синаптическая связь усиливается.
- 4. Эти идеи развил в своих работах Фрэнк Розенблатт (1958). И 23 июня 1960 года в Корнеллском университете, был продемонстрирован первый нейрокомпьютер «Марк-1», который был способен распознавать некоторые буквы английского алфавита.
- 5. в 1969 г. Марвин Минский и Сеймур Паперт опубликовали книгу «Перцептроны», в которой разгромили персептрон. Так как Розенблатт трагически погиб во время плавания на яхте в день своего рождения, то не смог ответить на критику и финансирование исследований было урезано.

Модель искусственного нейрона

Искусственный нейрон — это упрощенный вариант биологического нейрона. Нейрон представляет собой <u>взвешенный сумматор</u>: мы умножаем входной набор признаков X на вектор параметров W, после чего суммируем результат — S. Полученное значение проходит через **пороговую функцию активации F**.

Входы Синапсы $X_1 \bigcirc W_1$ Ячейка нейрона $X_2 \bigcirc W_2$ $W_3 \bigcirc S$ Аксон Выход $X_3 \bigcirc W_1$ $X_4 \bigcirc S$ $X_5 \bigcirc S$ $X_6 \bigcirc$

Нейрон как логическая функция

Предпосылки: нелинейность

Представим себе задачу классификации, где решением является **сложная нелинейная функция**. Для нее нужно найти гипотезу с полиномом высокой степени.

Теперь представим, что входной набор признаков — **изображения** 50x50 = 2500 признаков.

Если взять полином второй степени (квадраты исходных признаков), то количество входных значений ≈ 3 млн.

Выход – искусственные нейронные сети (ИНС), многослойный персептрон.

Обучение нейронной сети онлайн: http://playground.tensorflow.org/

Архитектура многослойной ИНС

g _ функция активации, сигмоид

$$h_w(x) = a_k = \frac{1}{1 + e^{-z_k}}$$

Нужно для градиентного спуска:

- а хранит все активации нейронов
- z состояния ячеек нейронов

Целевая функция, cost function

Функция ошибки для логистической регрессии:

$$Loss = -ylog(h_w(x)) - (1 - y)log(1 - h_w(x))$$

Для ИНС многоклассовой классификации целевая функция — это средняя величина Loss на обучающем примере, где Loss — это сумма расхождений между logits и labels.

Задача – найти минимум cost: *min Cost*

Обратное распространение ошибки

Ссылка: https://www.coursera.org/learn/machine-learning/lecture/1z9WW/backpropagation-algorithm

Алгоритм обратного распространения ошибки

Алгоритм:

- задать начальное значение параметров W, близкие к нулю значения (**но не нули!**)
- Задать число эпох epochs
- задать **скорость обучения** α
- For i in range(epochs):
 - Задать начальные смещения для параметров $delta_W = 0$, $delta_b = 0$. Смещения задаются для каждого слоя (несколько матриц параметров)
 - Для каждого примера (x,y) в обучающей выборке:
 - \circ $(a,z) = forward_prop(x)$ [слайд 7]
 - $\delta = backprop(y, a, z)$ [слайд 9]
 - \circ delta_W = delta_W + δ_W
 - \circ delta_b = delta_b + δ_b
 - $W = W \frac{\alpha}{m} delta_{-}W$ $b = b \frac{\alpha}{m} delta_{-}b$

- все активации и состояния
 - ошибки на каждом слое

Пора распространять ошибки обратно!

