

Keywords — Regressão Linear, Ruído Térmico, Constante de Boltzmann, Densidade Espectral de Potência

I. Introdução

Em 1902, Albert Einstein sugeriu em um periódico da época que seria teoricamente possível medir a constante de Stefan-Boltzmann, fundamental nos fenômenos termodinâmicos, observando os efeitos da energia térmica em componentes eletrônicos. Em 2017, 115 anos depois, Todor M. Mishonov, do Laboratório de Medidas de Constantes Fundamentais, e seus colegas da Universidade de Sofia, na Bulgária, decidiram colocar as ideias de Einstein em prática em um experimento para estudantes durante a 5ª Olimpíada de Física Experimental dos Bálcãs. Curiosamente, essa proposta nunca havia sido implementada de forma direta até então.

A abordagem utilizada, embora engenhosa, foi bastante simples. Ela explorou o fato de que o movimento aleatório dos elétrons (movimento browniano), uma manifestação de energia térmica, em uma resistência elétrica gera o que é conhecido como Ruído de Johnson-Nyquist, ou simplesmente Ruído Térmico: um ruído gaussiano de média zero. Assim, ao mensurar esse ruído, seria possível, em teoria, relacionar a energia elétrica com a energia térmica e calcular a constante de Boltzmann. Mas, como extrair informações úteis de uma variável aleatória com média nula? Estatisticamente, é simples: basta observar sua variância! Afinal, apesar da média ser zero, a variância do ruído está diretamente relacionada à sua energia—aquilo que, ao refletir um pouco, faz perfeito sentido.

Para implementar essa ideia, o experimento envolve acoplar um capacitor (C [F]) em paralelo com uma resistência (R [Ω]). Quando o sistema está em equilíbrio térmico, a potência quadrática média ($< U^2 > [V^2]$) nos terminais do circuito pode ser expressa como:

$$\langle U^2 \rangle = \frac{k_b T}{C}$$

onde T é a temperatura em Kelvin e k_b é a constante de Boltzmann e Joule por Kelvin $(J.K^{-1})$. Essa relação estabelece que, para uma temperatura constante, a tensão quadrática média é inversamente proporcional à capacitância do sistema. Isso significa que, ao variar a capacitância e medir a tensão quadrática média em uma série de experimentos, é possível determinar o valor de k_b . Um ponto interessante desse modelo é que a resistência R não influencia o resultado final—ela "se cancela" matematicamente durante as deduções, deixando a resposta dependente apenas da capacitância e da temperatura. Dessa forma, o experimento se torna não apenas engenhoso, mas também direto e eficiente.

II. Analise dos dados

Classes C_n $[nF]$	Média	Mediana	Moda	Desvio Padrão	Mínimo	Máximo	F. Abs
[4.573 - 18.652)	11.459	10.870	4.755	4.772	4.755	17.711	13
[18.652 - 32.732)	29.410	29.410	28.780	0.891	28.780	30.040	2
[32.732 - 46.811)	36.570	36.950	35.710	0.746	35.710	37.050	3
[46.811 - 60.891)	51.690	50.805	48.290	4.204	48.290	59.620	6
[60.891 - 74.97)	66.287	63.770	62.640	5.814	62.640	74.970	4
Geral	30.944	28.780	4.573	22.180	4.573	74.970	29

Table 1: A table

TODO...

Carlos H.C.A.Veras - 12547187 (Engenharia de Computação)

Figure 1: An Image

Classes U_1^2 [mV^2]	Média U_2 [V]	Desvio Padrão [V]	Frequência Absoluta
[416.025 - 782.82)	0.072	0.011	4
[782.82 - 1149.615)	0.114	0.014	4
[1149.615 - 1516.41)	0.152	0.000	2
[1516.41 - 1883.205)	0.181	0.000	2
[1883.205 - 2250.0)	0.230	0.021	4

Table 2: A table

III. REGRESSÃO LINEAR

Os parâmetros...

Classes $C_n^{-1} [10^6 F^{-1}]$	Média $(U_2^2T^{-1})$	Desvio Padrão	Freq. Absoluta
	$[10^{-6}V^2K^{-1}]$	$[10^{-6}V^2K^{-1}]$	
[13.3 - 54.4)	25,059	2,864	15
[54.4 - 95.5)	42,410	7,223	7
[95.5 - 136.5)	55,824	0,730	2
[136.5 - 177.6)	76,708	8,414	2
[177.6 - 218.7)	99,124	3,011	3

Table 3: A table

Figure 2: An Image

• Coeficiente Angular (a): $1,401.10^{-2}$ • k_b (medido): $1,40.10^{-23} \pm 3,0.10^{-25} J.K^{-1}$ • $\mathbf{R^2}$: 0,9881• k_b (real): $1,38.10^{-23}$ • Erro Relativo (%): 1,5%

Figure 3: Resultados da Regressão Linear

IV. Referências

- T. M. Mishonov, V. N. Gourev, I. M. Dimitrova, N. S. Serafimov, A. A. Stefanov, E. G. Petkov, and A. M. Varonov, "Determination of the Boltzmann constant by the equipartition theorem for capacitors," **European Journal of Physics**, vol. 40, no. 3, p. 035102, Apr. 2019. doi: [10.1088/1361-6404/ab07e0](https://doi.org/10.1088/1361-6404/ab07e0).
- B. P. Lathi and Z. Ding, **Modern Digital and Analog Communication Systems**, Oxford series in electrical and computer engineering. Oxford University Press, 2019. Available: https://books.google.com.br/books?id=KZpnswEACAAJ.