K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Design of single-stage Amplifier

Design 1

Design a single stage RC coupled JFET amplifier for the following $V_o = 2.5V$, $f_L \leq 20Hz$, $|A_V| \geq 10$. Calculate A_V , $Z_i \& Z_o$ of the amplifier. Select suitable transistor from datasheet. Use Mid Point Biasing technique.

Solution:

1) Data:

$$|A_V| \ge 10, V_o = 2.5V, f_L \le 20Hz$$

2) Selection of JFET:

We select N-channel JFET BFW 11 from the data sheet with the following specifications:

$$V_P = -2.5V, r_d = 50\Omega, I_{DSS} = 7mA \& g_{mo} = 5600\mu$$

3) Selection of biasing network

We select self bias circuit for our design

Figure 1: Circuit for Design 1

4) Selection of Q-Point:

i) Calculation of I_D

For mid point biasing, $I_D = \frac{I_{DSS}}{2}$

i.e.
$$I_D = \frac{7mA}{2}$$

$$\therefore I_D = 3.5 mA$$

ii) Calculation of V_{GS}

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

i.e.
$$V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right) = -2.5 \left(1 - \sqrt{\frac{3.5}{7}} \right)$$

$$\mathbf{V_{GS}} = -0.732\mathbf{V}$$

iii) Calculation of g_m

$$g_m = g_{mo} \left(1 - \frac{V_{GS}}{V_P} \right) = 5600 \times 10^{-6} \left(1 - \frac{(-0.732)}{(-2.5)} \right)$$

$$\therefore \mathbf{g_m} = 3.96 \mathbf{m} \mho$$

5) Calculation of R_S:

For self-bias,

$$V_{GS} = -I_D R_s$$

$$R_S = \frac{-V_{GS}}{I_D} = \frac{-(-0.732)}{3.5mA}$$

$$\therefore R_S = 209\Omega$$

Select $R_S = 220\Omega_{(std)}, 1/4W.....(HSV)$

6) Selection of R_D:

$$A_V = -g_m(r_d \parallel R_D)$$

$$-10 = -3.96 \times 10^{-3} (50k \parallel R_D) = -3.96 \times 10^{-3} \left(\frac{50k\Omega \times R_D}{50k\Omega + R_D} \right)$$

Solving the above equation we get,

$$\therefore R_D = 2.67k\Omega$$

$$\mathbf{Select}\ \mathbf{R_D} = \mathbf{2.7k}\Omega_{(\mathbf{std})}, 1/4\mathbf{W.....}(\mathbf{HSV})$$

7) Selection of R_G :

Select
$$R_G = 1M\Omega_{(std)}, 1/4W$$

8) Selection of V_{DD} :

 $V_{DS} \ge V_{o_{peak}} + |V_P|$(Condition for undistorted output)

$$V_{DS} = 1.5(V_{o_{neak}} + |V_p|)$$

$$V_{DS} = 1.5(V_{o_{peak}} + 2.5)$$

The value is multiplied by 1.5 to take care of saturation voltages, tolerance in resistance value, variation in supply voltage and device parameter variation.

$$V_{o_{rms}} = 2.5V$$

$$\therefore V_{o_{neak}} = 2.5\sqrt{2}$$

i.e.
$$V_{DS} = 1.5(2.5\sqrt{2} + 2.5) = 9.045V$$

Select $\mathbf{V_{DS}} = 9\mathbf{V}$

Figure 2: JFET Circuit D-S loop

Applying KVL to the D-S loop shown in figure 2 we get,

$$V_{DD} - I_D R_D - V_{DS} - I_D R_S = 0$$

 $V_{DD} = V_{DS} + I_D (R_D + R_S)$
 $V_{DD} = 9 + 3.5 \times 10^{-3} (2.7k + 220)$
 $\therefore V_{DD} = 19.22V$
Select $V_{DD} = 20V$

9) Selection of C_S:

$$f_L = 20Hz$$
 $X_{C_S} \le 0.1R_S$ i.e. $\frac{1}{2\pi f_L C_S} \le 0.1R_S$ i.e. $C_S \ge \frac{1}{2\pi f_L \times 0.1R_S} \ge \frac{1}{2\pi \times 20 \times 0.1 \times 220}$ $C_S \ge 361.715\mu F$ Select $C_S = 390\mu F/25V.....(H.S.V)$

10) Selection of C_{C1} :

Figure 3: JFET Small Signal Equivalent Input Circuit

$$\begin{split} C_{C1} &= \frac{1}{2\pi f_{L_{CC1}} R_{eq}} \\ f_{C_{C1}} &= f_L = 20 Hz \\ R_{eq} &= R_G = 1 M\Omega \\ C_{C1} &= \frac{1}{2\pi \times 20 \times 1 M\Omega} = 7.957 nF \\ \textbf{Select C}_{C1} &= 8.2 nF/25 V....(\textbf{H.S.V}) \end{split}$$

11) Selection of C_{C2}:

Figure 4: JFET Small Signal Equivalent Output Circuit

$$C_{C2} = \frac{1}{2\pi f_{L_{CC2}} R_{eq}}$$

$$f_{L_{CC2}} = f_L = 20 Hz$$

$$R_{eq} = r_d ||R_D + R_L|$$

If R_L is not given, Select $R_L = R_i(nextstage)$ $R_L = R_G = 1M\Omega$ $R_{eq} = 50k||2.7k + 1M\Omega$ $R_{eq} = 2.562k + 1M\Omega = 1.00256M\Omega$ $C_{C2} = \frac{1}{2\pi \times 20 \times 1.00256 M\Omega}$ $C_{C2} = 7.937nF$ $Select~C_{C2}=8.2nF/25V.....(H.S.V)$ 12) Designed circuit: VDD = 20V2.7k CC2 Vout 8.2nf J2 BFW 11

CC1

8.2nf

RG 1Meg

Figure 5: Designed JFET Amplifier Circuit using Mid-Point Biasing Technique

RS 220

-390μ

AC Analysis:

The small signal equivalent circuit is shown in figure 6

Figure 6: Small Signal Equivalent Circuit

Calculation of voltage gain (A_V)

$$A_V = -g_m(R_D \parallel r_d) = -3.96 \times 10^{-3} \times (2.7k \parallel 50k)$$

$$\therefore \mathbf{A_V} = -10.15$$

Calculation of $Z_i \& Z_o$

From figure 2 we get,

$$Z_i = R_G$$

$$Z_i=1M\Omega$$

$$Z_o = r_d \parallel R_D = 50k \parallel 2.7k$$

$$Z_o=2.56 k\Omega$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 7: Circuit Schematic: Results

The input and output waveforms are shown in figure 4

Figure 8: Input and Output Waveforms

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
I_{DQ}	3.4mA	3.5mA
A_V	> -10	-10.15

Table 1: Design 1

