Matlab Project: Least-Squares Problems Name: Lewis Collum

ANSWER SHEET

Step 2: Least-square line for student number data

Student number: 0621539

 $\beta_0 = 0.5526$

 $\beta_1 = 0.9511$

Step 3: Matrices and vectors in terms of the <u>symbols</u> t_i , β_0 , β_1 , β_2 , and β_3 (the first is done for you)

Linear:

$$A = \begin{bmatrix} 1 & t_i \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix}^T$$

Quadratic:

$$A = \begin{bmatrix} 1 & t_i & t_i^2 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 \end{bmatrix}^T$$

$$\text{Linear+cycle:} \quad \textit{A} = \begin{bmatrix} 1 & t_i & \sin(2\pi t_i) & \cos(2\pi t_i) \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 & \beta_3 \end{bmatrix}^T$$

$$\cos(2\pi t_i)$$
 $\mathbf{x} = \begin{bmatrix} \beta_0 \end{bmatrix}$

$$\beta_2 \quad \beta_3$$

Solutions (full data set):

Function	$oldsymbol{eta}_0$	β_1	β_2	β_3	T (2100)
Linear	11.107	0.02132			55.880947
Quadratic	-432.84	0.4757	-0.0001162		53.572368
Linear+cycle	11.381	0.02127	-11.912	-19.707	56.046488

Solutions (only using data from 2000 on):

Function	eta_0	$oldsymbol{eta}_1$	eta_2	β_3	T (2100)
Linear	-42.566	0.046765	_	_	55.639285
Quadratic	-65247.72838	64.985	-0.016168	_	-80.169157
Linear+cycle	-47.061	0.049066	2.5408	-10.180	55.977387

Circle the value of T (2100) which you trust most, and briefly explain why here:

The linear function has a low coefficient of determination, the quadratic function has a t² term which doesn't match the pattern of the data (based on its residuals plot). The Linear+cycle function has a higher coefficient of determination and there is homoscedasticity. So, I trust the Linear+cycle model the most.

Upload to Moodle: Scan and upload this sheet to Moodle along with your **M-file** and two plots.