

CLAIMS

What is claimed is:

- 1 1. A method for deterring, inhibiting, preventing or reversing stenosis,
 2 restenosis or unwanted proliferation of cells in blood vessel walls or other
 3 anatomical structures of a human or veterinary patient, said method comprising the
 4 step of:
 5
 6 administering to the patient a therapeutically effective amount of a
 7 compound having the structural formula
 8

9

10 Wherein,
 11 X, Y and Z are same or different and are independently
 12 selected from CH₂, O, S, NR₁, N=CH, CH=N and R₂-
 13 C=C-R₃, where R₂ and R₃ are H or may combine to form
 14 a saturated or unsaturated carbocyclic or heterocyclic
 15 ring, optionally substituted with one or more R groups;
 16

17 R₁ is selected from H, alkyl, alkenyl, alkynyl, cycloalkyl,
 18 aryl, acyl and aroyl, optionally substituted with hydroxy,
 19 amino, substituted amino, cyano, alkoxy, halogen,
 20 trihaloalkyl, nitro, thio, alkylthio, carboxy and
 21 alkoxy carbonyl groups;

22 R is selected from H, halogen, trihaloalkyl, hydroxy,
 23 acyloxy, alkoxy, alkenyloxy, thio, alkylthio, nitro, cyano,
 24 ureido, acyl, carboxy, alkoxy carbonyl, N-(R₄)(R₅) and
 25 saturated or unsaturated, chiral or achiral, cyclic or
 26 acyclic, straight or branched hydrocarbyl group with
 27 from 1 to 20 carbon atoms, optionally substituted with
 28

hydroxy, halogen, trihaloalkyl, alkylthio, alkoxy, carboxy, alkoxycarbonyl, oxoalkyl, cyano and N-(R₄)(R₅) group,

32 R₄ and R₅ are selected from H, alkyl, alkenyl, alkynyl,
33 cycloalkyl and acyl or R₄ and R₅ may combine to form a
34 ring, wherein a carbon may be optionally substituted by
35 a heteroatom selected from O, S or N-R₆,

37 R₆ is H, alkyl, alkenyl, alkynyl, cycloalkyl, hydroxyalkyl or
38 carboxyalkyl.

39 n is 1-5; m is 1 or 2; with the proviso that
40 when m is 1, Q is selected from OH, CN, carboxyalkyl,
41 N-(R₇)(R₈), where R₇ and R₈ are selected from H, lower
42 alkyl (1-4C), cycloalkyl, aryl, acyl, amido, or R₇ and R₈
43 may combine to form a saturated or unsaturated
44 heterocyclic ring and optionally substituted with up to 3
45 additional heteroatoms selected from N, O, and S; or
46 -NH-heterocycle, where the heterocycle is represented
47 by thiazole, oxazole, isoxazole, pyridine, pyrimidine, and
48 purine and
49

where U and V are selected from H and O; and

when m is 2, Q is a spacer of from 2-10 carbons as a straight or branched, chiral or achiral, cyclic or acyclic, saturated or unsaturated, hydrocarbon group, such as phenyl.

In the most preferred embodiment of this invention, X, Y, and Z are R₂-C=C-R₃, where R₂ and R₃ are H; R is selected from H and halogen, preferably, F and Cl; m is 1; and

Q is $-N-(R_7)(R_8)$, where R_7 and R_8 are selected from H, acyl, amido, and R_7 and R_8 combine to form a saturated or unsaturated heterocyclic ring, optionally substituted with up to three heteroatoms selected from N, O, or S, for example, pyrrolidine, piperidine, pyrazole, imidazole, oxazole, isoxazole, tetrazole, azepine, etc., which may be optionally substituted with a lower alkyl or amino group.

- 1 2. A method according to Claim 1 wherein the X, Y, and Z are each R₂-C=C-R₃
2 (where R₂ and R₃ are H; R is selected from H and halogen, preferably, F and Cl); m

3 is 2; and Q is a spacer of from 2-10 carbons either as a straight or branched
4 hydrocarbon chain, or containing a hydrocarbon ring.

1 3. A method according to Claim 1 wherein the compound is 1-[(2-
2 chlorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 4. A method according to Claim 1 wherein the compound is 1-[(2-
2 fluorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 5. A method according to Claim 1 wherein the compound is 1-[(4-
2 chlorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 6. A method according to Claim 1 wherein the compound is 1-[(2-
2 fluorophenyl)diphenylmethyl]-1*H*-pyrazole .

1 7. A method according to Claim 1 wherein the compound is 1-[(2-
2 chlorophenyl)diphenylmethyl]-1*H*-1,2,3,4-tetrazole.

1 8. A method according to Claim 1 wherein the compound is administered to the
2 patient orally.

1 9. A method according to Claim 1 wherein the compound is administered to the
2 patient by injection.

1 10. A method according to Claim 1 wherein the compound is administered to the
2 patient transdermally.

1 11. A method according to Claim 1 wherein the compound is administered to the
2 patient transmucosally.

1 12. A method according to Claim 1 wherein the compound is on or in an
2 implantable device and wherein the compound is administered to the patient by
3 implanting the device within the patient's body such that the compound elutes from
4 the implanted device.

- 1 13. A method according to Claim 12 wherein the device comprises a stent.
- 1 14. A method according to Claim 13 wherein the stent is implanted in an artery
2 of the patient such that a therapeutically effective amount of the compound elutes
3 from the stent and deters reocclusion of the artery in which the stent is implanted.
- 1 15. A method according to Claim 13 wherein the stent is implanted in a
2 coronary artery of the patient such that a therapeutically effective amount of the
3 compound elutes from the stent and deters reocclusion of the coronary artery in
4 which the stent is implanted.
- 1 16. A method according to Claim 1 wherein the compound is administered to a
2 patient who has undergone or will undergo an angioplasty, atherectomy and/or
3 stent implantation to treat an occluded blood vessel and wherein the compound is
4 administered in an amount and by a route of administration that is effective to deter
5 reocclusion of the blood vessel.
- 1 17. A method for deterring, inhibiting, preventing or reversing stenosis,
2 restenosis or unwanted proliferation of cells in blood vessel walls or other
3 anatomical structures of a human or veterinary patient, said method comprising the
4 step of:
 - 5 (A) inhibiting flux through or blocking Ca^{2+} -activated K^+ channels (K_{Ca})
6 so as to inhibit vascular smooth muscle cell proliferation.
- 1 18. A method according to Claim 17 wherein Step A comprises inhibiting or
2 blocking the IKCa1 Ca^{2+} -activated K^+ channel.
- 1 19. A method according to Claim 17 wherein Step A is carried out in a patient
2 who has undergone, or who will undergo, an angioplasty procedure and/or stent
3 implantation.
- 1 20. A method according to Claim 17 wherein Step A comprises administering to
2 the patient a therapeutically effective amount of a compound having the structural

3 formula:

4

5

6 Wherein,

7 X,Y and Z are same or different and are independently selected from
8 CH₂, O, S, NR₁, N=CH, CH=N and R₂-C=C-R₃, where R₂ and R₃ are
9 H or may combine to form a saturated or unsaturated carbocyclic or
10 heterocyclic ring, optionally substituted with one or more R groups;

11

12 R₁ is selected from H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, acyl and
13 aroyl, optionally substituted with hydroxy, amino, substituted amino,
14 cyano, alkoxy, halogen, trihaloalkyl, nitro, thio, alkylthio, carboxy and
15 alkoxy carbonyl groups;

16

17 R is selected from H, halogen, trihaloalkyl, hydroxy, acyloxy, alkoxy,
18 alkenyloxy, thio, alkylthio, nitro, cyano, ureido, acyl, carboxy,
19 alkoxy carbonyl, N-(R₄)(R₅) and saturated or unsaturated, chiral or
20 achiral, cyclic or acyclic, straight or branched hydrocarbyl group with
21 from 1 to 20 carbon atoms, optionally substituted with hydroxy,
22 halogen, trihaloalkyl, alkylthio, alkoxy, carboxy, alkoxy carbonyl,
23 oxoalkyl, cyano and N-(R₄)(R₅) group,

24

25 R₄ and R₅ are selected from H, alkyl, alkenyl, alkynyl, cycloalkyl and
26 acyl or R₄ and R₅ may combine to form a ring, wherein a carbon may
27 be optionally substituted by a heteroatom selected from O, S or N-R₆,

28

29 R₆ is H, alkyl, alkenyl, alkynyl, cycloalkyl, hydroxyalkyl or
30 carboxyalkyl,

31

32 n is 1-5; m is 1 or 2; with the proviso that
33 when m is 1, Q is selected from OH, CN, carboxyalkyl, N-(R₇)(R₈),
34 where R₇ and R₈ are selected from H, lower alkyl (1-4C), cycloalkyl,
35 aryl, acyl, amido, or R₇ and R₈ may combine to form a saturated or
36 unsaturated heterocyclic ring and optionally substituted with up to 3
37 additional heteroatoms selected from N, O, and S; or
38 -NH-heterocycle, where the heterocycle is represented by thiazole,
39 oxazole, isoxazole, pyridine, pyrimidine, and purine and

40 where U and V are selected from H and O; and

41

42 when m is 2, Q is a spacer of from 2-10 carbons as a straight or
43 branched, chiral or achiral, cyclic or acyclic, saturated or unsaturated,
44 hydrocarbon group, such as phenyl.

45 In the most preferred embodiment of this invention,

46 X, Y, and Z are R₂-C=C-R₃, where R₂ and R₃ are H;

47 R is selected from H and halogen, preferably, F and Cl;

48 m is 1; and

49 Q is -N-(R₇)(R₈), where R₇ and R₈ are selected from H, acyl, amido,
50 and R₇ and R₈ combine to form a saturated or unsaturated
51 heterocyclic ring, optionally substituted with up to three heteroatoms
52 selected from N, O, or S, for example, pyrrolidine, piperidine,
53 pyrazole, imidazole, oxazole, isoxazole, tetrazole, azepine, etc., which
54 may be optionally substituted with a lower alkyl or amino group.

1 21. A method according to Claim 20 wherein the X, Y, and Z are each R₂-C=C-
2 R₃ (where R₂ and R₃ are H; R is selected from H and halogen, preferably, F and
3 Cl); m is 2; and Q is a spacer of from 2-10 carbons either as a straight or branched
4 hydrocarbon chain, or containing a hydrocarbon ring.

1 22. A method according to Claim 20 wherein the compound is 1-[(2-
2 chlorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 23. A method according to Claim 20 wherein the compound is 1-[(2-
2 fluorophenyl)diphenylmethyl]-1*H*-pyrazole .

1 24. A method according to Claim 20 wherein the compound is 1-[(4-
2 chlorophenyl)diphenylmethyl]-1*H*-pyrazole .

1 25. A method according to Claim 20 wherein the compound is 1-[(2-
2 fluorophenyl)diphenylmethyl]-1*H*-pyrazole .

1 26. A method according to Claim 20 wherein the compound is 1-[(2-
2 chlorophenyl)diphenylmethyl]-1*H*-1,2,3,4-tetrazole.

1 27. A method according to Claim 20 wherein the compound is administered to
2 the patient orally.

1 28. A method according to Claim 20 wherein the compound is administered to
2 the patient by injection.

1 29. A method according to Claim 20 wherein the compound is administered to
2 the patient transdermally.

1 30. A method according to Claim 20 wherein the compound is administered to
2 the patient transmucosally.

1 31. A method according to Claim 20 wherein the compound is on or in an
2 implantable device and wherein the compound is administered to the patient by
3 implanting the device within the patient's body such that the compound elutes from
4 the implanted device.

1 32. A method according to Claim 21 wherein the device comprises a stent.

1 33. A method according to Claim 32 wherein the stent is implanted in an artery
2 of the patient such that a therapeutically effective amount of the compound elutes
3 from the stent and deters reocclusion of the artery in which the stent is implanted.

1 34. A method according to Claim 32 wherein the stent is implanted in a
2 coronary artery of the patient such that a therapeutically effective amount of the
3 compound elutes from the stent and deters reocclusion of the coronary artery in
4 which the stent is implanted.

1 35. A method according to Claim 20 wherein the compound is administered to a
2 patient who has undergone or will undergo an angioplasty, atherectomy and/or
3 stent implantation to treat an occluded blood vessel and wherein the compound is
4 administered in an amount and by a route of administration that is effective to deter
5 reocclusion of the blood vessel.

1 36. A device for implantation in a stenotic blood vessel, said device comprising,
 2 in an amount that is therapeutically effective to inhibit restenosis of the blood
 3 vessel, a compound having the structural formula:

4

5

6 Wherein,
 7 X, Y and Z are same or different and are independently selected from
 8 CH₂, O, S, NR₁, N=CH, CH=N and R₂-C=C-R₃, where R₂ and R₃ are
 9 H or may combine to form a saturated or unsaturated carbocyclic or
 10 heterocyclic ring, optionally substituted with one or more R groups;

11

12 R₁ is selected from H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, acyl and
 13 aroyl, optionally substituted with hydroxy, amino, substituted amino,
 14 cyano, alkoxy, halogen, trihaloalkyl, nitro, thio, alkylthio, carboxy and
 15 alkoxy carbonyl groups;

16

17 R is selected from H, halogen, trihaloalkyl, hydroxy, acyloxy, alkoxy,
 18 alkenyloxy, thio, alkylthio, nitro, cyano, ureido, acyl, carboxy,
 19 alkoxy carbonyl, N-(R₄)(R₅) and saturated or unsaturated, chiral or
 20 achiral, cyclic or acyclic, straight or branched hydrocarbyl group with
 21 from 1 to 20 carbon atoms, optionally substituted with hydroxy,
 22 halogen, trihaloalkyl, alkylthio, alkoxy, carboxy, alkoxy carbonyl,
 23 oxoalkyl, cyano and N-(R₄)(R₅) group,

24

25 R₄ and R₅ are selected from H, alkyl, alkenyl, alkynyl, cycloalkyl and
 26 acyl or R₄ and R₅ may combine to form a ring, wherein a carbon may
 27 be optionally substituted by a heteroatom selected from O, S or N-R₆,

28

29 R₆ is H, alkyl, alkenyl, alkynyl, cycloalkyl, hydroxyalkyl or
 30 carboxyalkyl,

31

32 n is 1-5; m is 1 or 2; with the proviso that
 33 when m is 1, Q is selected from OH, CN, carboxyalkyl, N-(R₇)(R₈),
 34 where R₇ and R₈ are selected from H, lower alkyl (1-4C), cycloalkyl,
 35 aryl, acyl, amido, or R₇ and R₈ may combine to form a saturated or

36 unsaturated heterocyclic ring and optionally substituted with up to 3
 37 additional heteroatoms selected from N, O, and S; or
 38 -NH-heterocycle, where the heterocycle is represented by thiazole,
 39 oxazole, isoxazole, pyridine, pyrimidine, and purine and
 40 where U and V are selected from H and O; and

41
 42 when m is 2, Q is a spacer of from 2-10 carbons as a straight or
 43 branched, chiral or achiral, cyclic or acyclic, saturated or unsaturated,
 44 hydrocarbon group, such as phenyl.
 45 In the most preferred embodiment of this invention,
 46 X, Y, and Z are R₂-C=C-R₃, where R₂ and R₃ are H;
 47 R is selected from H and halogen, preferably, F and Cl;
 48 m is 1; and
 49 Q is -N-(R₇)(R₈), where R₇ and R₈ are selected from H, acyl, amido,
 50 and R₇ and R₈ combine to form a saturated or unsaturated
 51 heterocyclic ring, optionally substituted with up to three heteroatoms
 52 selected from N, O, or S, for example, pyrrolidine, piperidine,
 53 pyrazole, imidazole, oxazole, isoxazole, tetrazole, azepine, etc., which
 54 may be optionally substituted with a lower alkyl or amino group.

1 37. A device according to Claim 36 wherein the X, Y, and Z are each R₂-C=C-
 2 R₃ (where R₂ and R₃ are H; R is selected from H and halogen, preferably, F and
 3 Cl); m is 2; and Q is a spacer of from 2-10 carbons either as a straight or branched
 4 hydrocarbon chain, or containing a hydrocarbon ring.

1 38. A device according to Claim 36 wherein the compound is 1-[(2-
 2 chlorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 39. A device according to Claim 36 wherein the compound is 1-[(2-
 2 fluorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 40. A device according to Claim 36 wherein the compound is 1-[(4-
 2 chlorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 41. A devidece according to Claim 36 wherein the compound is 1-[(2-
 2 fluorophenyl)diphenylmethyl]-1*H*-pyrazole.

1 42. A device according to Claim 36 wherein the compound is 1-[2-
2 chlorophenyl)diphenylmethyl]-1*H*-1,2,3,4-tetrazole.

1 43. A device according to Claim 36 wherein the device comprises a stent.

1 44. A device according to Claim 36 wherein the device comprises a stent-graft.

1 45. A device according to Claim 36 wherein the device is at least partially coated
2 with a coating that contains the compound.

1 46. A device according to Claim 36 wherein the compound is associated with the device
2 in a manner that causes the compound to elute from the device and into the wall of the
3 blood vessel in which the device is implanted.