

Optimal Control

Introduction to Convex Optimization

Instructor: Yanjie Li (李衍杰)

Office: G1011

Email: autolyj@hit.edu.cn

Teacher:

Yanjie Li 李衍杰

Office: G1011

Email: autolyj@hit.edu.cn

Teach Assistant

Xiongtao Shi 石雄涛

Office: A415

群名称: 2022年秋季最优控制

群号: 522737987

About This Course

Grading System:

In-class Quizzes: 10%

Homework: 20%

Final Exam: 70%

Daily performance

Artificial intelligence (Deep learning)

$$\mathbf{Min} \quad \sum_{i} \left\| f(x_i, \omega) - y_i \right\|$$

Artificial intelligence (Reinforcement learning)

Total reward: $V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \mid s_0 = s, \pi\right]$. Maximization or minimization

Background

Content of this Course

- Convex optimization (Static optimization) (70%)
 - Covex set/ Convex function
 - Duality/Algorithms
- Calculus of variations
- Pontryagin maximum principle
- Bellman dynamic programming

(Dynamic optimization) (30%)

Content

- Static optimization
 - A simple example
 - General mathematical formulation
- Least squares problem
 - An example
- Linear programming
 - An example
- Convex optimization

Portfolio optimization

Portfolio optimization

- X: Capital

 $-X_i$: Investment in the *i* assets

- Constraints:

$$x_1 + x_2 + \dots + x_n \le X$$

$$x_i \ge 0, i = 1, 2, 3, \dots, n$$

$$\sum_{i=1}^{n} f_i(x_i)$$

Static optimization

Choosing the best element from some set of available alternatives

$$\max_{x} f_0(x)$$
s.t. $x \in C \subset \mathbb{R}^n$

General mathematical formulation

Optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

Optimal Solution: x^* has smallest value of f_0 among all vectors that satisfy the constraints

Solving optimization problem

General optimization problem

- very difficult to solve
- methods involve some compromise, e.g.
 - very long computation time
 - not always finding the solution

What problems are easy to solve?

- least-squares problems
- linear programming problems

Least-squares problems (LS)

Example: weight & height (Assumption: Linear)

LS: minimize
$$||Ax - b||_2^2$$

Solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software

Linear programming problems (LP)

Example

- **diet problem:** choose quantities x_1, \ldots, x_n of n foods
 - one unit of food j costs c_i , contains amount a_{ij} of nutrient i
 - healthy diet requires nutrient i in quantity at least b_i

LP:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \succeq b, \quad x \succeq 0 \\ \end{array}$$

Solving linear programming problem

- no analytical formula for solution
- reliable and efficient algorithms (simplex) and software

Extend LS and LP

Linear function:

2-norm function:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \qquad \|\alpha x + \beta y\|_{2} \le \alpha \|x\|_{2} + \beta \|y\|_{2}$$

$$\int \int \int \int \int dx dx + \beta y \le \alpha f(x) + \beta f(y)$$

Convex function

Convex function $f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

Convex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

objective and constraint functions are convex

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

Summary

Static optimization

Convex nonlinear programming

An engineering example

m lamps illuminating n (small, flat) patches

Model

intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} with bounded lamp powers

$$0 \leq p_j \leq p_{max}$$

Optimization

- 1. Use uniform power: $p_j = p$, vary p
- 2. Use least-squares:

Researching

minimize
$$\sum_{k=1}^{n} (I_k - I_{\text{des}})^2$$

round
$$p_j$$
 if $p_j > p_{\text{max}}$ or $p_j < 0$

3. Use weighted least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{\text{des}})^2 + \sum_{j=1}^{m} w_j (p_j - p_{\text{max}}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\text{max}}$

easy to recognize

Linear programming

$$\begin{array}{ll} \text{minimize} & \max_{k=1,\ldots,n} |I_k - I_{\mathsf{des}}| \\ \text{subject to} & 0 \leq p_j \leq p_{\mathsf{max}}, \quad j = 1,\ldots,m \end{array}$$

$$\begin{cases}
\min \| x \|_1 \\
s \cdot t \cdot Ax = b
\end{cases}$$

$$\begin{cases} \min e^{T} x^{+} + e^{T} x^{-} \\ s \cdot t \cdot A x^{+} - A x^{-} = b \\ x^{+} \geqslant 0, x^{-} \geqslant 0 \end{cases}$$

$$x_{j}^{+} = \frac{1}{2}(|x_{j}| + x_{j}), x_{j}^{-} = \frac{1}{2}(|x_{j}| - x_{j})$$

minimize
$$t$$

subject to $\left|I_k - I_{des}\right| \le t$
 $0 \le p_j \le p_{\max}, \ j = 1,...,m$

Pr oblem

min imize
$$\sum_{k=1}^{n} |I_k - I_{des}|$$

s.t.
$$0 \le p_j \le p_{\text{max}}, j = 1, 2, ..., m$$

Convex optimization

minimize
$$\max_{k=1,...,n} |\log I_k - \log I_{\text{des}}|$$

subject to $0 \le p_j \le p_{\text{max}}, \quad j = 1,...,m$

minimize
$$f_0(p) = \max_{k=1,...,n} h(I_k/I_{\text{des}})$$

subject to $0 \le p_j \le p_{\text{max}}, \quad j=1,...,m$

with
$$h(u) = \max\{u, 1/u\}$$

 f_0 is convex because maximum of convex functions is convex

Problems

additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_j > 0)$
- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

$$I(p_1 > 0) + I(p_2 > 0) + \dots + I(p_m > 0) \le m/2$$

Research is going on!

Dynamic optimization

\diamondsuit Dynamic process x(t)

Max performance
$$g_0(u) = \Phi_0(x(T)) + \int_0^T L_0(t, x(t), u(t)) dt$$

S.t. State evolution rule
$$\begin{cases} \frac{dx}{dt} = f(t, x(t), u(t)), & t \in (0, T] \\ x(0) = x^0 \end{cases}$$

Find a sequence or functional to optimize the performance

Two Examples

Standard Optimal Control Problem

Minimize subject to

$$g_0(\mathbf{u}) = \Phi_0(\mathbf{x}(T)) + \int_0^T L_0(t, \mathbf{x}(t), \mathbf{u}(t)) dt$$

State equation
$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)), & t \in (0, T] \\ \mathbf{x}(0) = \mathbf{x}^0 \end{cases}$$

Terminal constraint

$$\psi_i(\mathbf{x}(T)) \le 0$$
, and / or = 0, $i = 1,..., N_T$
 $h_i(t, \mathbf{x}(t)) \le 0$, $t \in [0, T]$, $i = 1,..., N$

Continuous constraint Control constraint

$$a_i \le u_i(t) \le b_i, \ \forall t \in [0,T], \ i = 1,...,r.$$

$$\boldsymbol{x} = [x_1,...,x_n]^T, \boldsymbol{u} = [u_1,...,u_r]^T$$

Lunar Module Soft Landing

Aposelene: 100km above the moon surface

Perilune: 15km above the moon surface

Optimal Control of Container Cranes

Example: Pursuit-Evasion: A Competitive Optimization Problem

- Pursuer's goal: minimize final miss distance
- · Evader's goal: maximize final miss distance
- "Minimax" (saddle-point) cost function
- Optimal control laws for pursuer and evader

$$\mathbf{u}(t) = \begin{bmatrix} \mathbf{u}_{P}(t) \\ \mathbf{u}_{E}(t) \end{bmatrix} = - \begin{bmatrix} \mathbf{C}_{P}(t) & \mathbf{C}_{PE}(t) \\ \mathbf{C}_{EP}(t) & \mathbf{C}_{E}(t) \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_{P}(t) \\ \hat{\mathbf{x}}_{E}(t) \end{bmatrix}$$

Example of a differential game, Isaacs (1965), Bryson & Ho (1969)

Example: Minimize Concentrations of Virus, Infected Cells, and Drug Usage

- x₁ = Concentration of a pathogen, which displays antigen
- x₂ = Concentration of plasma cells, which are carriers and producers of antibodies
- x₃ = Concentration of antibodies, which recognize antigen and kill pathogen
- x₄ = Relative characteristic of a damaged organ [0 = healthy, 1 = dead]

Example: Simultaneous Location and Mapping (SLAM)

- Build or update a local map within an unknown environment
 - Stochastic map, defined by mean and covariance
 - SLAM Algorithm = State estimation with extended Kalman filter
 - Landmark and terrain tracking

Conclusion

Static

- Optimal state, x*, and control, u*, are fixed,
 i.e., they do not change over time
 - $J^* = J(x^*, u^*)$
 - Functional minimization (or maximization)
 - Parameter optimization

Dynamic

- Optimal state and control vary over time
 - $J^* = J[x^*(t), u^*(t)]$
 - Optimal trajectory
 - Optimal feedback strategy
- Optimized cost function, J*, is a scalar, real number in both cases

What is optimization

- Choice of best parameter
- Choice of best strategy
- Choice of best control
- Choice of best estimate

Choosing the best element from some set of available alternatives

Thank You