1. Start a EC2 Instance with Parameter KEY NAME, VPC, Subnet using Cloudformation Template.

Create yml file and set up all the parameters you want to take as input.

```
home> babanjot> exercise > cloudformationassignment> ! Parameters.

| Parameters: | InstanceType: | Description: WebServer EC2 instance type (has default, AllowedValues) | Type: String | Default: t2.micro | AllowedValues: | - t1.micro | - t2.maco | - t2.small | ConstraintDescription: must be a valid EC2 instance type. | KeyName: | Description: Name of an existing EC2 KeyPair to enable SSH access to the instances. Linked to AWS Parameter | Type: AWS::EC2::KeyPair::KeyName | ConstraintDescription: must be the name of an existing EC2 KeyPair. | MyVPC: | Description: VPC to operate in | Type: AWS::EC2::VPC::Id | MySubnetIDs: | Description: Subnet IDs that is a List of Subnet Id | Type: "List=AWS::EC2::Subnet::Id>" | Description: "Comma-delimited list of three CIDR blocks" | Type: CommaDelimitedList | Default: "10.0.48.0/24, 10.0.112.0/24," | Properties: | Type: "AWS::EC2::Instance" | Type: Ty
```

Define the resources

```
Resources:

MyEC2Instance:
Type: "AWS::EC2::Instance"
Properties:

InstanceType: Ref InstanceType parameter
InstanceType: Ref InstanceType
KeyName: Ref KeyName
ImageId: "ami-a4c7edb2"
# here we reference an internal CloudFormation resource
SubnetId: !Ref Subnet1

Subnet1:
Type: AWS::EC2::Subnet
Properties:
VpCId: !Ref MyVPC
# the select function allows us to select across a list
CidrBlock: !Select [0, !Ref SubnetIpBlocks]

Subnet2:
Type: AWS::EC2::Subnet
Properties:
VpCId: !Ref MyVPC
# the select function allows us to select across a list
CidrBlock: !Select [1, !Ref SubnetIpBlocks]

VpCId: !Ref MyVPC
# the select function allows us to select across a list
CidrBlock: !Select [1, !Ref SubnetIpBlocks]
```

Go to cloudformation and create a stack and upload youryml file.

Now Enter all the values

Choose the correct configuration.

Now stack is up.

- 2. Instll Nginx in EC2 and put it in a ASG.
- i) First by Userdata

Create yml file

Write resource block for ASG and also userdata

```
DeployAppLaunchConfig:

Type: AWS::AutoScaling::LaunchConfiguration
Properties:

ImageId: ami-07ebfd5b3428b6f4d
InstanceType: !Ref InstanceType
KeyName: !Ref KeyName
SecurityGroups:
- !Ref MySecurityGroup
UserData:
Fn::Sabse64:
Fn::Sub: |
#!/bin/bash
sudo apt-get update -y
sudo apt-get install nginx -y
sudo apt-get install nginx
sudo systemctl enable nginx
sudo systemctl enable nginx

DeployAppASG:
Type: AWS::AutoScaling::AutoScalingGroup
Properties:
VPCZoncIdentifier:
- !Ref MySubnetIDa
- !Ref MySubnetIDb
DesiredCapacity: 1

■ Ln84,Col26 Spaces 2 UTF8 LF YAML  

□ DesiredCapacity: 1
```

Now upload the yml file and create stack in CLoud Formation

Choose the correct configuration and then create the stack

Stack is created

ii) By Metadata

Ln 17, Col 20 Spaces: 2 UTF-8 LF YAML &

VPCZoneIdentifier:
- !Ref MySubnetIDa
- !Ref MySubnetIDb

MinSize: 1 MaxSize: 2

:::

LaunchTemplateId:
Ref: NginxLaunchTemplate

3. Create a Sample Index file and copy this file using MetaData into EC2 Instance Ans.

Step 1: Create a cloudformation template

```
SecurityGroupDescription:
   Description: Security Group for instance
Type: String
SecurityGroupPort:
   Description: Mention port
   Type: Number MinValue: 0
   MaxValue: 65535
InstanceType:
   Description: EC2 instance type
   Type: String
Default: t2.micro
   AllowedValues:
      - t2.nano
- t2.micro
       - t2.small
   ConstraintDescription: Must be a valid EC2 instance type.
KeyName:
   Description: Name of an existing EC2 KeyPair to enable SSH access to the instances.
Type: AWS::EC2::KeyPair::KeyName
ConstraintDescription: must be an existing EC2 KeyPair.
SecurityGroupIngressCIDR:
Description: The IP address range that can be used to communicate to the EC2 instances
  Description: The IP address Tange that can be used to communicate to the EC.

Type: String
MinLength: '9'
MaxLength: '18'
Default: 0.0.0.0/0
AllowedPattern: (\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,2})
ConstraintDescription: must be a valid IP CIDR range of the form x.x.x.x/x.
 exercise/cloudformationassignment/sampleINdex.yml" 79L, 2391C/
```

```
Description: VPC to operate in Type: AWS::EC2::VPC::Id MySubnetID:
    Description: Subnet IDs that is a List of Subnet Id
    Type: AWS::EC2::Subnet::Id
esources:
MyEC2Instance:
    Type: "AWS::EC2::Instance"
   Metadata:
      Comment: Create a file index.txt
AWS::CloudFormation::Init:
          config:
  files:
                   content: |
Copied file from Metadata
Hello 1.2.3.4.5.6.
mode: '000400'
owner: root
                    group: root
   Properties:
      InstanceType: !Ref InstanceType
KeyName: !Ref KeyName
ImageId: "ami-0323c3dd2da7fb37d"
SubnetId: !Ref MySubnetID
       SecurityGroupIds:
- !Ref MySecurityGroup
       UserData:
            'Fn::Base64":
```

Step 2: Go to Cloudformation → Create Stack

Prepare template Every stack is based on a t the stack.	emplate. A template is a J	SON or YAML file that conta	ains configuration informa	ation about the AWS resou	rces you want to in	clude in
Template is ready			emplate	O Create templ	ate in Designer	
Template source Selecting a template gene	rates an Amazon S3 URL v	where it will be stored.				
O Amazon S3 URL			O Upload a temp	plate file		

Step 3: Specify Parameters

Now ssh into the ec2 and check for the file

- 4. Changing the content of Index should reload the nginx config automatically in EC2 Instance
- 5. Perform ASG Rolling Update with the change in UserData in above Cloudformation Template


```
Activities Visual Studio Code Tue 6:59 PM

Ques-Habanyami - Visual Studio Code

Ques-
```

Create the stack

After stack is created

Now apply changes in template

```
Activities Visual Studio Code * Tue 7/02 PM

Pues-4-babanyami - Ques-4-babanyami - Visual Studio Code

| Ques-4-babanyami - Ques-4-babanyami - Visual Studio Code | Qu
```

Update the stack

🍃 AWS Manage...

🤵 Dashboard [Je... 🔼 DevOps Boot...

Hello World Stay home and Stay safe

🏢 Apps 🍐 Devops Traine... 🔭 DevOps Sched... 🧯