IAPWS Equations for Transport Properties and Surface Tension of Water and Steam

A summary by Bernhard Spang, Hamburg, Germany, at

The Chemical Engineers' Resource Page

URL: http://www.cheresources.com/staff.shtml

E-Mail: b.spang@hamburg.de

Thanks to Kelvin B. Hales of Kelvin Hales Associates Ltd., E-mail: khales@khace.com , Web: http://www.khace.com , who provided the correct equations for partial derivatives in the Appendix.

For details see http://www.cheresources.com/iapwsif97.shtml

Symbols

I, J	exponents
n	coefficient
p	pressure
R	specific gas constant, $R = 0.461 526 \text{ kJ/(kg K)}$
T	temperature
Λ	reduced thermal conductivity
Ψ	reduced dynamic viscosity
δ	reduced density
φ	dimensionless Helmholtz free energy
γ	dimensionless Gibbs free energy
η	dynamic viscosity
λ	thermal conductivity
π	reduced pressure
θ	reduced temperature
ρ	density
σ	surface tension
τ	inverse reduced temperature

1. Dynamic Viscosity

Range of validity: 273.15 K $\le T \le 423.15$ K and $p \le 500$ MPa

423.15 K < $T \le 873.15$ K and $p \le 350$ MPa 873.15 K < $T \le 1173.15$ K and $p \le 300$ MPa

Reduced dynamic viscosity: $\Psi(\mathbf{d}, \mathbf{t}) = \Psi_0(\mathbf{t})\Psi_1(\mathbf{d}, \mathbf{t})$

where $\Psi = h/h^*$ with $h^* = 55.071$ E-6 Pa s

 $d = r/r^*$ with $r^* = 317.763 \text{ kg/m}^3$

$$t = T */T$$
 with $T^* = 647.226 \text{ K}$

Ideal gas part:
$$\Psi_0(\mathbf{t}) = \left[\mathbf{t}^{0.5} \sum_{i=0}^3 n_i^0 \mathbf{t}^i\right]^{-1}$$

Real fluid part:
$$\Psi_{1}(\mathbf{d}, \mathbf{t}) = \exp \left[\mathbf{d} \sum_{i=1}^{19} n_{i} (\mathbf{d} - 1)^{I_{i}} (\mathbf{t} - 1)^{J_{i}} \right]$$

Table 1: Coefficients of the ideal gas part

i	n_i
0	0.100 000 E+01
1	0.978 197
2	0.579 829
3	-0.202 354

Table 2: Coefficients and exponents of the real fluid part

i	I_i	J_i	n_i
1	0	0	0.513 204 7
2	0	1	0.320 565 6
3	0	4	-0.778 256 7
4	0	5	0.188 544 7
5	1	0	0.215 177 8
6	1	1	0.731 788 3
7	1	2	0.124 104 4 E+01
8	1	3	0.147 678 3 E+01
9	2	0	-0.281 810 7
10	2	1	-0.107 078 6 E+01
11	2	2	-0.126 318 4 E+01
12	3	0	0.177 806 4
13	3	1	0.460 504 0
14	3	2	0.234 037 9
15	3	3	-0.492 417 9
16	4	0	-0.417 661 0 E-01
17	4	3	0.160 043 5
18	5	1	-0.157 838 6 E-01
19	6	3	-0.362 948 1 E-02

2. Thermal Conductivity

Range of validity: 273.15 K $\le T \le 398.15$ K and $p \le 400$ MPa

398.15 K < $T \le 523.15$ K and $p \le 200$ MPa 523.15 K < $T \le 673.15$ K and $p \le 150$ MPa 673.15 K < $T \le 1073.15$ K and $p \le 100$ MPa

Reduced thermal conductivity:
$$\Lambda(\boldsymbol{d}, \boldsymbol{t}) = \Lambda_0(\boldsymbol{t})\Lambda_1(\boldsymbol{d}, \boldsymbol{t}) + \Lambda_2(\boldsymbol{d}, \boldsymbol{t})$$

where
$$\Lambda = I/I^*$$
 with $h^* = 0.4945$ W/(m K) $d = r/r^*$ with $r^* = 317.763$ kg/m³ $t = T^*/T$ with $T^* = 647.226$ K

Ideal gas part:
$$\Lambda_0(t) = \left[t^{0.5} \sum_{i=0}^3 n_i^0 t^i\right]^{-1}$$

First real fluid part:
$$\Lambda_1(\boldsymbol{d}, \boldsymbol{t}) = \exp \left[\boldsymbol{d} \sum_{i=0}^4 \sum_{j=0}^5 n_{ij} (\boldsymbol{t} - 1)^i (\boldsymbol{d} - 1)^j \right]$$

Second real fluid part:

$$\Lambda_{2}(\boldsymbol{d},\boldsymbol{t}) = \frac{0.0013848}{\Psi(\boldsymbol{d},\boldsymbol{t})}(\boldsymbol{t}\boldsymbol{d})^{-2} \left(\frac{\partial \boldsymbol{p}}{\partial (\boldsymbol{t}^{-1})}\right)_{\boldsymbol{d}}^{2} \left[\boldsymbol{d}\left(\frac{\partial \boldsymbol{d}}{\partial \boldsymbol{p}}\right)_{\boldsymbol{t}}\right]^{0.4678} \boldsymbol{d}^{0.5} \exp\left[-18.66(\boldsymbol{t}^{-1}-1)^{2}-(\boldsymbol{d}-1)^{4}\right]$$

where
$$p = p / p^*$$
 with $p^* = 22.115$ MPa

Ψ according to above equations for the dynamic viscosity

Partial derivatives $\left(\frac{\partial \boldsymbol{p}}{\partial (\boldsymbol{t}^{-1})}\right)_d$ and $\left(\frac{\partial \boldsymbol{d}}{\partial \boldsymbol{p}}\right)_t$ from the corresponding equations of IAPWS-IF97 (see Appendix)

Table 3: Coefficients of the ideal gas part

i	n_i
0	0.100 000 0 E+01
1	0.697 826 7 E+01
2	0.259 909 6 E+01
3	-0.998 254 0

Table 4: Coefficients n_{ij} of the first real fluid part

i ®	0	1	2	3	4
j -					
0	0.132 930 46 E+01	0.170 183 63 E+01	0.522 461 58 E+01	0.871 276 75 E+01	-0.185 259 99 E+01
1	-0.404 524 37	-0.221 568 45 E+01	-0.101 241 11 E+02	-0.950 006 11 E+01	0.934 046 90
2	0.244 094 90	0.165 110 57 E+01	0.498 746 87 E+01	0.437 866 06 E+01	0.
3	0.186 607 51 E-01	-0.767 360 02	-0.272 976 94	-0.917 837 82	0.
4	-0.129 610 68	0.372 833 44	-0.430 833 93	0.	0.
5	0.448 099 53 E-01	-0.112 031 60	0.133 338 49	0.	0.

3. Surface tension between liquid and vapor phase

Range of validity: from the triple point to the critical point

Surface tension:
$$\frac{S}{1 \text{ mN m}^{-1}} = 235.8(1 - \boldsymbol{q})^{1.256}[1 - 0.625(1 - \boldsymbol{q})]$$

where $q = T/T^*$ with $T^* = T_c = 647.096 \text{ K}$

References

- 1. William T. Parry *et al.*, ASME International Steam Tables for Industrial Use, American Society of Mechanical Engineers 2000.
- 2. W. Wagner, A. Kruse, Properties of Water and Steam, Springer-Verlag, Berlin 1998.

Appendix: Partial derivatives
$$\left(\frac{\partial \boldsymbol{p}}{\partial (\boldsymbol{t}^{-1})}\right)_d$$
 and $\left(\frac{\partial \boldsymbol{d}}{\partial \boldsymbol{p}}\right)_t$

For region boundaries see http://www.cheresources.com/iapwsif97.shtml

Region 1:
$$\left(\frac{\partial \boldsymbol{p}}{\partial (\boldsymbol{t}^{-1})}\right)_{d} = \frac{\widetilde{T} *}{\widetilde{p} *} \frac{p * (\boldsymbol{g}_{pt} T * - \boldsymbol{g}_{p} T)}{T^{2} \boldsymbol{g}_{pp}}$$

$$\left(\frac{\partial \boldsymbol{d}}{\partial \boldsymbol{p}}\right)_{t} = -\frac{\widetilde{p}^{*}}{\widetilde{\boldsymbol{r}}^{*}RT}\frac{\boldsymbol{g}_{pp}}{\boldsymbol{g}_{p}^{2}}$$

$$\tilde{T}$$
 * = 647.226 K, \tilde{p} * = 22.115 MPa, \tilde{r} * = 317.763 kg/m³

$$T^* = 1386 \text{ K}, p^* = 16.53 \text{ MPa}$$

For the partial derivatives \mathbf{g}_{t} and $\mathbf{g}_{t\pi}$ in region 1 see http://www.cheresources.com/iapwsif97.shtml

Region 2:
$$\left(\frac{\partial \boldsymbol{p}}{\partial (\boldsymbol{t}^{-1})}\right)_{d} = \frac{\widetilde{T} *}{\widetilde{p} *} \frac{p * ((\boldsymbol{g}_{pt}^{0} + \boldsymbol{g}_{pt}^{r})T * - (\boldsymbol{g}_{p}^{0} + \boldsymbol{g}_{p}^{r})T)}{T^{2}(\boldsymbol{g}_{pp}^{0} + \boldsymbol{g}_{pp}^{r})}$$

$$\left(\frac{\partial \boldsymbol{d}}{\partial \boldsymbol{p}}\right)_{t} = -\frac{\widetilde{p} *}{\widetilde{\boldsymbol{r}} * RT} \frac{\left(\boldsymbol{g}_{pp}^{0} + \boldsymbol{g}_{pp}^{r}\right)}{\left(\boldsymbol{g}_{p}^{0} + \boldsymbol{g}_{p}^{r}\right)^{2}}$$

$$\widetilde{T}$$
 * = 647.226 K, \widetilde{p} * = 22.115 MPa, \widetilde{r} * = 317.763 kg/m³ T * = 540 K, p * = 1 MPa

For the partial derivatives \mathbf{g}_p^0 , \mathbf{g}_p^r , \mathbf{g}_{pp}^0 and \mathbf{g}_{pp}^r in region 2 see http://www.cheresources.com/iapwsif97.shtml

$$\left(\frac{\partial \boldsymbol{p}}{\partial (\boldsymbol{t}^{-1})}\right)_{d} = \frac{\widetilde{T}^{*}}{\widetilde{p}^{*}} \frac{R\boldsymbol{r}^{2}}{\boldsymbol{r}^{*}} \left(\boldsymbol{f}_{d} - \frac{T^{*}}{T} \boldsymbol{f}_{dt}\right)$$

$$\left(\frac{\partial \boldsymbol{d}}{\partial \boldsymbol{p}}\right)_{t} = \frac{\tilde{p}^{*}}{\tilde{\boldsymbol{r}}^{*}} \frac{\boldsymbol{r}^{*}}{\boldsymbol{r}RT\left(2\boldsymbol{f}_{d} + \frac{\boldsymbol{r}}{\boldsymbol{r}^{*}}\boldsymbol{f}_{dd}\right)}$$

$$\tilde{T}$$
 * = 647.226 K, \tilde{p} * = 22.115 MPa, \tilde{r} * = 317.763 kg/m³

$$T^* = 647.096 \text{ K}, \mathbf{r}^* = 322 \text{ kg/m}^3$$

For the partial derivatives \mathbf{f}_{δ} , $\mathbf{f}_{\delta\delta}$, and $\mathbf{f}_{\delta\tau}$ in region 3 see http://www.cheresources.com/iapwsif97.shtml