Advanced Network Technologies

Review

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dr. Wei Bao | Lecturer School of Computer Science

- application: supporting network applications
 - FTP, SMTP, HTTP

Assignment Project Exam Help

- - TCP, UDP

- https://powcoder.com
 network: routing of datagrams from source to destination
 - Add WeChat powcoder
 - IP, routing protocols
- > link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi)
- physical: bits "on the wire"

application

transport

network

link

physical

Internet Protocol Stack: Practice

Internet Protocol Stack: Theory

Internet Protocol Stack: Programming/Experiment

Internet Protocol Stack

application HTTP, FTP, SMTP, DNS, P2P Assignment Project Exam Help transport https://powcoder.com network Add WeChat powcoder link physical

HTTP: hypertext transfer protocol

Web's application layer protocol Assignment Project Exam

client/server model

- client: browser that https://powcoder.com requests, receives, (using HTTP protocol) and WeChat powcoder "displays" Web objects

- server: Web server sends (using HTTP protocol) objects in response to requests

TTP request response server running Apache Web server

iPhone running Safari browser

non-persistent HTTP

persistent HTTP

- over TCP connection sent over single TCP
 - connection the trassepwcodeneotion between
- client, server downloading multipleWeChat powcoder objects required multiple
 - connections

FTP: the file transfer protocol

- > SMTP: delivery/storagettps:cepervsender.com
- mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server
 - HTTP: Using a browser to access a webmail https://webmail.sydney.edu.au

TLD DNS server .edu DNS server

gaia.cs.umass.edu

host at cis.poly.edu wants
IP address for
gaia.cs.umass.edssignment Project Exam Help

iterated query: https://powcode

* contacted server replies with named WeChatspowerode server to contact

"I don't know this name, but ask this server"

root DNS server

recursive query:

puts burden of name resolution Assignment Project Exam Help contacted name https://powcode om server

* heavy load at uppend WeChatspoweGoder levels of hierarchy?

> requesting host cis.poly.edu

TLD DNS server edu DNS server authoritative DNS server dns.cs.umass.edu

root DNS server

gaia.cs.umass.edu

BitTorrent: tit-for-tat

- (I) Alice sends chunks to those four peers currently sending her chunks at highest rate
- (2) Alice randomly unchokes Bob
- (3) Alice becomes one of Bob's top-four providers;

Circular DHT with shortcuts

• each peer keeps track of predecessor, successor, short cuts.

Internet Protocol Stack

application

Assignment Project Exam Help
transport
https://powcoder.com
network
Add WeChat powcoder
link

physical

- CoAP provides a request/response interaction like HTTP.
- Over UDP.
- GET, PUT, observement Project Exam Help

- MQTT: Lightweight, publish-subscribe network protocol that transports messages between devices.
- Runs over TCP
- Two types of entires. Project Exam Help
 - Broker: server receives and forwards messages. Client: device connected to broker

https://mqtt.org/

Over UDP Avoid head-of-line blocking.

Assignment Project Exam Help

QUIC owcoder. https QUIC header Frame Frame Frame Frame oder Chat pow Connection Other Stream 2 Stream 1 ID ACK frame Offset Offset type Length Length Packet number

application Socketsignment Project Exam Hel TCP, UDP, Transport Protocol transport network Add WeChat powcoder link physical

Multiplexing/demultiplexing

Stop and wait

Selective repeat

TCP flow control

receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segmentssignment Project Examples 2015

- RcvBuffer size set via socket

options (typical defaultitp@%/powcoder.combytes)

- many operating system add to wjetchat powerder RcvBuffer

 sender limits amount of unacked ("in-flight") data to receiver's
 rwnd value

y guarantees receive buffer will not overflow

to application process

The puffered data

free buffer space

TCP segment payloads

receiver-side buffering

TCP Congestion Control

LastByteSent-LastByteAcked < cwnd

 cwnd is dynamic, function of perceived network congestion

rate
$$\approx \frac{\text{cwnd}}{\text{RTT}}$$
 bytes/sec

TCP Congestion Control

TCP round trip time, timeout

> timeout interval: EstimatedRTT plus "safety margin"

EstimatedRTTASSIGNMCntsPinjocddRXxxm WelampleRTT

https://powcoder.com

DevRTT = $(1-\beta)*DevRTT +$

And shace Chritipus Condecarti

(typically, $\beta = 0.25$)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT

"safety margin"

application Socketsignment Project Exam Hel **MPTCP** transport network Add WeChat powcoder link physical

- Initialization: MP_CAPABLE, JOIN, Token
- Sequence number: Subflow sequence number + Assignment Project Exam Help data sequence number
- Flow control: Receive Window size is for all subflows.
- Congestion coathol Web chatego Ale Marifor fairness.

Internet Protocol Stack

Multimedia networking

Streaming multimedia: DASH

Adaptive playout delay

- goal: low playout delay, low delay loss rate
- approach: adaptive playout delay adjustment:
 - estimate network delay, adjust playout delay at beginning of each talk spurt Assignment Project Exam Help - silent periods compressed and elongated
- > adaptively estimate happet/delegy/(FWMMAcorporatially weighted moving average):

Add WeChat powcoder

$$d_{i} = (1-\alpha)d_{i-1} + \alpha (r_{i} - t_{i})$$

$$delay \ estimate \ small \ constant, \ time \ received \ - \ time \ sent \ (timestamp) \ measured \ delay \ of \ ith \ packet$$

also useful to estimate average deviation of delay, v_i

 $V_i = (1-\beta)V_{i-1} + \beta | r_i - t_i - d_i |$ Assignment Project Exam Help
• estimates d_i , v_i calculated for every received packet, but used only

at start of talk spurthttps://powcoder.com

Add WeChat powcoder for first packet in talk spurt, playout time is:

$$playout-time_i = t_i + d_i + Kv_i$$

payload	sequence	time stamp	Synchronization	Miscellaneous
type	number		Source ID (SSRC)	fields

- payload type (7 bits): indicates type of encoding currently being used.

 Assignment Project Exam Help
- being used. Assignment Project Exam Help
 sequence # (16 bits): increment by one for each RTP packet sent
 https://powcoder.com
- packet sent https://powcoder.com
 timestamp field (32 bits long): sampling instant of first byte in this RTP data packet eChat powcoder
- Sequence + timestamp: packet loss or new talk spurt.

Scheduling policies: priority

high priority queue

(waiting area)

priority scheduling: send highest priority queued packet

non-preemptive

Assignment Project Exam

multiple classes, with different priorities

- class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.

real world example?

Scheduling policies (con't)

Round Robin (RR) scheduling:

- multiple classes, with equal priority
- ocyclically scan class queues, sending one complete packet from each class (if axailable) ment Project Exam Help

Scheduling policies (con't)

Weighted Fair Queuing (WFQ):

- Each class i is assigned a weight w_i
- Guarantee: if there are class i packets to send (during some interval) then class i receives a fraction of service which is $w_i/(\sum w_j)$ Assignment Project Exam Help
- On a link with transmission rate R, class i achieves throughput $Rw_i/(\sum w_j)$ https://powcoder.com

Policing mechanisms: implementation

token bucket: limit input to specified burst size and average rate (useful to police the flow)

- bucket can hold b tokens
- a packet must remove a token from bucket to be transmitted into the network
- > tokens generated at rate *r token/sec* unless bucket full (token ignored)
- over interval of length t: number of packets admitted less than or equal to (rt + b)
- > Token-generation rate r limits the rate at which packets enter the network

Wireless Physical layer

- Different physical layer modulation:

10-1

In final exam.

QAM256 (8 Mbps)

SNR(dB)

QAM16 (4 Mbps)

BPSK (1 Mbps)

CDMA

Hidden terminal and exposed terminal

Hidden terminal problem

Exposed terminal problem

Mobility via indirect routing

Mobility via direct routing

4G LTE

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- Assignment Project Exam Help

 ... but performance-wise:
- - packet loss/delay due to pit pro/spoissarded packets 14 lays for link-layer retransmissions), and handoff
 - TCP interprets loss as condestion, will heartene to rwindow un-necessarily

Internet Protocol Stack: Theory

- W: average waiting time in queue
 X: average service time dd WeChat powcoder
- T: average time spent in system (T = W + X)
- N_O = average number of customers in queue
- ρ = utilization = average number of customers in service
- N = average number of customer in system $(N = N_O + \rho)$
- Want to show later: $N = \lambda T$ (Little's theorem)
- λ Average arrival rate

Stationary Distribution Derivation

Add WeChat powcoder Transition diagram and balanced equations Stationary distribution Average # of users Average waiting time

In final exam.

Internet Protocol Stack

application Assignment Project Exam Hel transport Max min fairness https://powcoder.com network d WeChat powcoder link physical

How to judge if max-min fairness is satisfied. How to find max-min fairness: Bottleneck approach

Assignment 1 common mistake

Question 4 (P2P Tit-for-Tat, 18%). As shown in the figure below, A and B are communicating with their top-4 partners in a BitTorrent system. A's uploading and downloading data rates of the ith partner are u_i and d_i respectively; B's uploading and downloading data rates of the ith partner are u_i' and d_i' respective. For $i = 1, 2, 3, 4, u_i, u_i', d_i, d_i'$ are randomly distributed. They are independent random variables, following uniform distribution in [0,1] Mbps.

Now A optimistically unchoked B, with a sending data rate of r_{ab} . If A becomes a top-4 sender of B, B will start to serve A with a sending data rate of r_{ba} . A sending data rate of r_{ba} .

What is the probability that both A and B find each other a top-4 sender? Show your mathematical derivations.

Correct solution

Let $D = \min(d_1, d_2, d_3, d_4)$. We first need to find the cdf of D. Let $x \in [0, 1]$

$$cdf_D(x)$$
 (1)

$$=P(D \le x) \tag{2}$$

$$=1 - P(\min(d_1, d_2, d_3, d_4) > x) \tag{3}$$

where the last step is because $P(d_i > x) = 1 - x$ as d_i is uniformly distributed in [0, 1]

Therefore, pdf of D is

https://powcoder.com $pdf_D(x) = 4(1-x)^3, x \in [0,1]$

$$pdf_D(x) = 4(1-x)^3, x \in [0,1]$$
(6)

Now, we compare r_{ba} and D, to get probability $P(r_{ba})$ to $P(r_{ba})$

$$Aua_{P(r_{ba})}$$
 vector poweoder (7)

$$= \int_0^1 \int_0^1 p df_D(x) p df_{r_{ba}}(y) \mathbf{1}(x < y) dy dx$$
 (8)

$$= \int_0^1 \int_0^y p df_D(x) p df_{r_{ba}}(y) dx dy \tag{9}$$

$$= \int_0^1 \int_0^y 4(1-x)^3 dx dy \tag{10}$$

$$=\frac{4}{5}\tag{11}$$

The probability that r_{ba} is larger than the min of the current four providers of A is $P(r_{ba} > \min(d_1, d_2, d_3, d_4)) = \frac{4}{5}$. For the same reason, the probability that r_{ab} is larger than the min of the current four providers of B is $P(r_{ab} > \min(d'_1, d'_2, d'_3, d'_4)) = \frac{4}{5}$. Since the above two events are independent, the probability that $P(r_{ba} > \min(d_1, d_2, d_3, d_4), r_{ab} > \min(d'_1, d'_2, d'_3, d'_4)) = \frac{16}{25}$.

Common mistake

$$P(r_{ab} \ge \min(d'_1, d'_2, d'_3, d'_4) \text{ and } r_{ba} \ge \min(d_1, d_2, d_3, d_4))$$
 $= [1 - P(d'_1 \ge r_{ba})P(d'_2 \ge r_{ba})P(d'_3 \ge r_{ba})P(d'_4 \ge r_{ba})]$
 $* [1 - P(d_1 > r_{ba})P(d_2 > r_{ba})P(d_3 > r_{ba})P(d_4 > r_{ba})]$
 $P(r_{ab} \ge \min(d'_1, d'_2, d'_3, d'_4) \text{ and } r_{ba} \ge \min(d_1, d_2, d_3, d_4))$
 $= [1 - 0.5^4]^2 \text{Add WeChat powcoder}$

Why is it wrong?

$$P(r_{ab} \ge \min(d'_1, d'_2, d'_3, d'_4) \text{ and } r_{ba} \ge \min(d_1, d_2, d_3, d_4))$$
 $= [1 - P(d'_1 \ge r_{ab}) P(d'_2 \ge r_{ba}) P(d'_3 \ge r_{ba}) P(d'_4 \ge r_{ba})]$
 $* [1 - P(d_1 > r_{ba}) P(d_2 > r_{ba}) P(d_3 > r_{ba}) P(d_4 > r_{ba})]$
 $P(r_{ab} \ge \min(d'_1, d'_2, d'_3, d'_4) and r_{ba} \ge \min(d'_1, d'_2, d'_3, d'_4))$
 $= [1 - 0.5^4]^2 \text{Add WeChat powcoder}$

These are not independent events!

P(A and B) = P(A) P(B) is true for independent events.

 $d_1'>r_{ab}$ is happens, -> more likely r_{ab} is small -> more likely $d_2'>r_{ab}$ is also true.

Q: Could you give an example when the above approach is correct? A: r_{ab} is a constant. d_1' , d_2' , d_3' , d_4' are independent and thus $d_1' > r_{ab}$, $d_1' > r_{ab}$, $d_3' > r_{ab}$, $d_4' > r_{ab}$ are independent!

Another correct way

Because r_{ab} , d_1 ', d_2 ', d_3 ', d_4 ' are continuous random variable, and independent and they follow the same distribution, (i.i.d. independent and identically distributed), so that they have the same probability, i.e., 1/5, to be the smallest one. Assignment Project Exam Help

Add WeChat powcoder

Simple way to verify 4/5

- The marks of final exam sum up to 100 and it is worth 60% of your overall mark.
- Online, open book, (type C)
- 130 minutes Assignment Project Fxam Help
- Double-pass policys://powcoder.com
- 7 questions in total Add WeChat powcoder
 Calculation, short answer and extended response
- Type your answers in the blank below, or write down, scan/photograph, and upload in the end.
- Spend time wisely. Question 1 doesn't mean easiest.

No programming questions

No Wireshark questions Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- By appointment
 - wei.bao@sydney.edu.au
 - zhengjie.yang@sydney.edu.au
 - zwan5430@uni.sycheignment Project Exam Help
- Assignment 2 common mistakes and Q&A session https://powcoder.com
 - 4-Dec-2020 (Fri), 3pm (tentative), Zoom
 - Non-compulsory, no recorded WeChat powcoder
- Last-chance office hour
 - 7-Dec-2020 (Mon), 3pm (tentative), Zoom
 - Non-compulsory, no recording

- Unit of Study Surveys (USS) for Semester 2 are now open!
- Login to the University's Student Survey System now to complete a survey:
- https://student-Austignment-Project/FrammeHelp
- Survey completed will give them an entry into a prize draw to win a range of Apple products including a 64gb Apple iPad Air, an Apple Watch and JB HiFi Gift Cards

 Add WeChat powcoder