Package 'BoneDensityMapping'

July 25, 2025

• ,
Type Package
Title Maps Bone Densities from CT Scans to Surface Models
Version 0.1.1
Maintainer Scott Telfer < scott.telfer@gmail.com>
Description Allows local bone density estimates to be derived from CT data and mapped to 3D bone models in a reproducible manner. Processing can be performed at the individual bone or group level. Also includes tools for visualizing the bone density estimates. Example methods are described in Telfer et al., (2021) <doi:10.1002 jor.24792="">, Telfer et al., (2021) <doi:10.1016 j.jse.2021.05.011=""></doi:10.1016></doi:10.1002>
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
Imports cowplot, ggplot2, ggpubr, methods, oro.nifti, ptinpoly, rdist, rjson, concaveman, geometry, sp, jsonlite, rgl, RNifti, Rvcg, FNN, nat
Depends R (>= 2.10)
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Scott Telfer [aut, cre, cph] (ORCID: https://orcid.org/0000-0002-0104-4027), Lucas Lacambra [aut]
Repository CRAN
Date/Publication 2025-07-25 10:10:14 UTC
Contents
bone_scan_check 2 color_bar 3

bone_scan_check

color_mapping	4
color_mesh	5
ct_calibration	6
fill_bone_points	7
import_lmks	7
import_mesh	8
import_scan	9
landmark_check	9
plot_cross_section_bone	10
plot_mesh	12
reorientate_landmarks	13
rm_local_sig	14
surface_normal_intersect	14
surface_points_new	16
surface_points_template	17
voxel_point_intersect	18
	20
	_

bone_scan_check

Check if surface model is fully contained within scan volume

Description

Check if surface model is fully contained within scan volume

Usage

Index

```
bone_scan_check(surface_mesh, nifti, return_limits = FALSE)
```

Arguments

surface_mesh mesh object (class mesh3d) or numeric matrix/dataframe of vertex coordinates

(cols: X, Y, Z)

nifti NIfTI image object representing CT scan.

return_limits Logical. If TRUE returns a summary of the bounding boxes of the scan and

mesh

Value

If any vertices lie outside the scan volume, it raises an error.

Author(s)

Scott Telfer <scott.telfer@gmail.com>

color_bar 3

Examples

```
# Download CT scan
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_hip.nii.gz"
scan_filepath <- tempfile(fileext = ".nii.gz")
download.file(url, scan_filepath, mode = "wb")
nifti <- import_scan(scan_filepath)
url2 <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_femur.stl"
bone_filepath <- tempfile(fileext = ".stl")
download.file(url2, bone_filepath, mode = "wb")
surface_mesh <- import_mesh(bone_filepath)
bone_scan_check(surface_mesh, nifti, return_limits = TRUE)</pre>
```

color_bar

Produce stand alone color bar

Description

Produce stand alone color bar

Usage

```
color_bar(
  colors,
  mini,
  maxi,
  orientation = "vertical",
  breaks,
  title = "",
  text_size = 11,
  plot = TRUE
)
```

Arguments

```
colors
                 String
mini
                 Numeric
maxi
                 Numeric
                 "horizontal" or "vertical"
orientation
breaks
                 Numeric vector
title
                 String
text_size
                 Numeric
plot
                 Logical
```

Value

ggplot object

4 color_mapping

Examples

```
colors <- c("darkblue", "blue", "lightblue", "green", "yellow", "red", "pink")
color_bar(colors, 0, 2000, breaks = c(0, 500, 1000, 1500, 2000))</pre>
```

color_mapping

maps numeric values to a color

Description

maps numeric values to a color

Usage

```
color_mapping(x, maxi, mini, color_sel)
```

Arguments

Χ	Vector.
maxi	Numeric. Maximum value. Defaults to maximum value in vector. Can be useful to set this manually if there are outliers in the scan data
mini	Numeric. Minimum value. Defaults to minimum value in vector. Can be useful to set this manually if there are outliers in the scan data
color_sel	Vector. Colors to use for map. Defaults to a scale of "grey", "blue", "green",

"yellow", "orange", "red", "pink".

Value

Vector of hex color values same length as x

Author(s)

```
Scott Telfer < scott.telfer@gmail.com>
```

color_mesh 5

color_mesh	Takes a density vector mapped to standardized coordinates and maps
	it to a surface mesh for visualization.

Description

Takes a density vector mapped to standardized coordinates and maps it to a surface mesh for visualization.

Usage

```
color_mesh(
   surface_mesh,
   template_pts,
   density_vector,
   maxi = NULL,
   mini = NULL,
   export_path,
   color_sel
)
```

Arguments

```
surface_mesh Mesh object
template_pts Matrix
density_vector Vector
maxi Numeric
mini Numeric
export_path Character
color_sel String
```

Value

mesh3d object with added color dimension

Author(s)

```
Scott Telfer <scott.telfer@gmail.com>
```

```
# Download CT scan
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.1/test_CT_hip.nii.gz"
scan_filepath <- tempfile(fileext = ".nii.gz")
download.file(url, scan_filepath, mode = "wb")
nifti <- import_scan(scan_filepath)</pre>
```

6 ct_calibration

ct_calibration

Sigma beta CT calculations

Description

Sigma beta CT calculations

Usage

```
ct_calibration(ct_nos, calibration_type, params)
```

Arguments

ct_nos Numeric vector. CT numbers from scan

calibration_type

String. Currently only linear supported.

params Numeric vector. beta and sigma values for calibration eqn

Value

Vector with estimated density values in mg/cm³

Author(s)

Scott Telfer < scott.telfer@gmail.com>

fill_bone_points 7

fill_bone_points

Fills bone with orthogonally spaced points for internal analysis

Description

Fills bone with orthogonally spaced points for internal analysis

Usage

```
fill_bone_points(surface_mesh, spacing)
```

Arguments

```
surface_mesh Mesh object spacing Numeric
```

Value

Matrix with internal point coordinates

Examples

```
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_femur.stl"
bone_filepath <- tempfile(fileext = ".stl")
download.file(url, bone_filepath, mode = "wb")
surface_mesh <- import_mesh(bone_filepath)
internal_fill <- fill_bone_points(surface_mesh, 2)</pre>
```

import_lmks

import landmark coordinates

Description

import landmark coordinates

Usage

```
import_lmks(landmark_path)
```

Arguments

landmark_path String. File path to landmark data. .json or .fcsv format

Value

dataframe. Columns are landmark name, x, y, and z coordinates

8 import_mesh

Author(s)

```
Scott Telfer <scott.telfer@gmail.com>
```

Examples

import_mesh

import surface mesh

Description

import surface mesh

Usage

```
import_mesh(surface_mesh_filepath)
```

Arguments

```
surface_mesh_filepath
String. File path to bone models. .stl or .ply
```

Value

mesh object

Author(s)

```
Scott Telfer <scott.telfer@gmail.com>
```

```
# Download bone model
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_femur.stl"
bone_filepath <- tempfile(fileext = ".stl")
download.file(url, bone_filepath, mode = "wb")
import_mesh(bone_filepath)</pre>
```

import_scan 9

import_scan

import CT scan

Description

```
import CT scan
```

Usage

```
import_scan(scan_filepath)
```

Arguments

scan_filepath String. File path to CT scan data. Should be .nii or .nrrd

Value

scan object

Author(s)

```
Scott Telfer < scott.telfer@gmail.com>
```

Examples

```
# Download CT scan
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_hip.nii.gz"
scan_filepath <- tempfile(fileext = ".nii.gz")
download.file(url, scan_filepath, mode = "wb")
import_scan(scan_filepath)</pre>
```

landmark_check

Check landmarks are close to the mesh

Description

Check landmarks are close to the mesh

Usage

```
landmark_check(surface_mesh, landmarks, threshold = 1)
```

Arguments

surface_mesh mesh object

landmarks Dataframe. Columns are landmark name, x, y, and z coords

threshold Numeric. Distance landmark can be from surface without warning being thrown

Value

String. Returns a message warning that landmarks are not on bone surface

Author(s)

```
Scott Telfer < scott.telfer@gmail.com>
```

Examples

```
plot_cross_section_bone
```

Plot Cross-Sectional Bone Visualization in 3D

Description

Visualizes a 3D cross-section of a bone using surface mesh and internal density (fill) points. Clips the surface mesh at a given axis and value, and overlays a 2D projection of internal density.

Usage

```
plot_cross_section_bone(
  surface_mesh,
  surface_colors = NULL,
  fill_coords,
  fill_colors,
  slice_axis,
  slice_val,
  slice_thickness = 1,
  IncludeSurface = FALSE,
  title = "Bone Cross-Section",
  userMat = NULL,
  legend = TRUE,
  legend_color_sel = NULL,
  legend_maxi = NULL,
  legend_mini = NULL
)
```

plot_cross_section_bone

11

Arguments

surface_mesh A 'mesh3d' object representing the outer surface of the bone. surface_colors Optional. A vector of colors for each vertex of the surface mesh. If NULL, uses mesh's own material colors. fill_coords A numeric matrix of internal fill point coordinates. fill colors A vector of colors corresponding to fill points. Character. "x", "y", or "z". Axis along which to slice. slice_axis slice val Numeric (0 to 1). Relative slice location along selected axis. slice_thickness Numeric. Width of the slice (default = 1). IncludeSurface Logical. Whether to include the clipped surface mesh. title Character. Title for the plot. userMat Optional. A 4x4 matrix controlling view orientation. legend Logical. Optional color bar. legend_color_sel Optional character with color gradient legend_maxi Numeric. Maximum bone density. legend_mini Numeric. Minimum bone density.

Value

Generates an 'rgl' plot

```
# Download CT scan
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.1/test_CT_hip.nii.gz"
scan_filepath <- tempfile(fileext = ".nii.gz")</pre>
download.file(url, scan_filepath, mode = "wb")
nifti <- import_scan(scan_filepath)</pre>
url2 <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_femur.stl"
bone_filepath <- tempfile(fileext = ".stl")</pre>
download.file(url2, bone_filepath, mode = "wb")
surface_mesh <- import_mesh(bone_filepath)</pre>
landmark_path <- system.file("extdata", "test_femur.mrk.json",</pre>
                               package = "BoneDensityMapping")
landmarks <- import_lmks(landmark_path)</pre>
mapped_coords <- surface_points_template(surface_mesh, landmarks,</pre>
                                            no_surface_sliders = 100)
mat_peak <- voxel_point_intersect(mapped_coords, nifti)</pre>
colored_mesh <- color_mesh(surface_mesh, mapped_coords, mat_peak)</pre>
internal_fill <- fill_bone_points(surface_mesh, 3)</pre>
internal_density <- voxel_point_intersect(internal_fill, nifti,</pre>
                                             ct_eqn = "linear",
                                             ct_params = c(68.4, 1.106))
internal_colors <- color_mapping(internal_density)</pre>
```

plot_mesh

plot_mesh

plot mesh

Description

plot mesh

Usage

```
plot_mesh(
   surface_mesh,
   density_color = NULL,
   title = NULL,
   legend = TRUE,
   legend_color_sel = NULL,
   legend_maxi = 2000,
   legend_mini = 0,
   userMat = NULL
)
```

Arguments

surface_mesh Mesh object

density_color Vector. Colors mapped from density values.

title String. Plot title.

legend Logical. Optional color bar.

legend_color_sel

Optional character with color gradient

legend_maxi Numeric. Maximum bone density.
legend_mini Numeric. Minimum bone density.

userMat Optional matrix. Controls graph orientation.

Value

plot of mesh with color

Author(s)

```
Scott Telfer <scott.telfer@gmail.com>
```

reorientate_landmarks 13

Examples

```
# Download CT scan
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.1/test_CT_hip.nii.gz"</pre>
scan_filepath <- tempfile(fileext = ".nii.gz")</pre>
download.file(url, scan_filepath, mode = "wb")
nifti <- import_scan(scan_filepath)</pre>
url2 <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_femur.stl"
bone_filepath <- tempfile(fileext = ".stl")</pre>
download.file(url2, bone_filepath, mode = "wb")
surface_mesh <- import_mesh(bone_filepath)</pre>
vertices <- t(surface_mesh$vb)[, c(1:3)]</pre>
landmark_path <- system.file("extdata", "test_femur.mrk.json",</pre>
                               package = "BoneDensityMapping")
landmarks <- import_lmks(landmark_path)</pre>
mapped_coords <- surface_points_template(surface_mesh, landmarks,</pre>
                                            no_surface_sliders = 5000)
mat_peak <- surface_normal_intersect(surface_mesh, mapped_coords,</pre>
                                        normal_dist = 3.0, nifti, rev_y=FALSE)
color_mesh <- color_mesh(surface_mesh, mapped_coords, mat_peak, maxi = 2000,</pre>
                           mini = 0)
plot <- plot_mesh(color_mesh)</pre>
```

reorientate_landmarks Reorientate landmarks

Description

Reorientate landmarks

Usage

```
reorientate_landmarks(landmark_path, x = 1, y = 1, z = 1)
```

Arguments

landmark_path	String
Х	Integer Value to apply to convert mesh i.e1 will mirror x coords
У	Integer Value to apply to convert mesh i.e1 will mirror y coords
Z	Integer Value to apply to convert mesh i.e1 will mirror z coords

Value

Overwritten landmark file

Author(s)

```
Scott Telfer <scott.telfer@gmail.com>
```

Examples

rm_local_sig

local significance

Description

local significance

Usage

```
rm_local_sig(vertices, sig_vals, changes, sig_level = 0.05, dist)
```

Arguments

vertices Matrix

sig_vals Numeric vector changes Numeric vector

sig_level Numeric. Default 0.05

dist Numeric. Distance to check for vertices

Value

Numeric vector

Author(s)

Scott Telfer < scott.telfer@gmail.com>

surface_normal_intersect

Find material properties of bone at surface point using surface normal

Description

Find material properties of bone at surface point using surface normal

surface_normal_intersect 15

Usage

```
surface_normal_intersect(
   surface_mesh,
   mapped_coords = NULL,
   normal_dist = 3,
   nifti,
   ct_eqn = NULL,
   ct_params = NULL,
   rev_x = FALSE,
   rev_y = FALSE,
   rev_z = FALSE,
   check_in_vol = FALSE
)
```

Arguments

surface_mesh	Mesh object
mapped_coords	Data frame. 3D coords of remapped surface points. If NULL, surface_mesh vertices will be used
normal_dist	Numeric. Distance surface normal should penetrate surface
nifti	Nifti CT scan image
ct_eqn	String. Equation to use for density calibration. Currently "linear" supported.
ct_params	Numeric vector. Calibration parameters for density calculation. For linear, first value is beta coefficient (y intercept), second value is sigma coefficient (gradient)
rev_x	Logical. Reverses x voxel coordinates
rev_y	Logical. Reverses y voxel coordinates
rev_z	Logical. Reverses z voxel coordinates
check_in_vol	Logical. Include check that model is in scans volume and print dimensions

Value

Vector. Vector with value for each point on surface

Author(s)

```
Scott Telfer < scott.telfer@gmail.com>
```

```
# Download CT scan
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_hip.nii.gz"
scan_filepath <- tempfile(fileext = ".nii.gz")
download.file(url, scan_filepath, mode = "wb")
nifti <- import_scan(scan_filepath)
url2 <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_femur.stl"
bone_filepath <- tempfile(fileext = ".stl")</pre>
```

16 surface_points_new

surface_points_new

New mapped surface points from template

Description

New mapped surface points from template

Usage

```
surface_points_new(
   surface_mesh,
   landmarks,
   template,
   mirror = FALSE,
   plot_check = FALSE)
```

Arguments

surface_mesh List. Mesh data imported via ply_import function landmarks Data frame. Contains 3D coords of landmarks template Data frame. 3D coords of remapped surface points

mirror Logical or character. Set to "x", "y", or "z" to mirror the mesh and landmarks

across that axis before remapping.

plot_check Logical. If TRUE, generates a 3D plot showing the mirrored mesh, mirrored

landmarks, remapped surface points, and original template points to visually

verify correct orientation and laterality.

Value

Data frame. 3D coords of remapped surface points

Author(s)

Scott Telfer <scott.telfer@gmail.com> Adapted from geomorph

surface_points_template 17

Examples

```
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/SCAP001.stl"
bone_filepath <- tempfile(fileext = ".stl")</pre>
download.file(url, bone_filepath, mode = "wb")
scap_001_mesh <- import_mesh(bone_filepath)</pre>
landmark_path <- system.file("extdata", "SCAP001_landmarks.fcsv",</pre>
                               package = "BoneDensityMapping")
scap_001_lmk <- import_lmks(landmark_path)</pre>
template_coords <- surface_points_template(scap_001_mesh, scap_001_lmk,
                                               1000)
url2 <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/SCAP002.stl"
bone_filepath <- tempfile(fileext = ".stl")</pre>
download.file(url2, bone_filepath, mode = "wb")
scap_002_mesh <- import_mesh(bone_filepath)</pre>
landmark_path <- system.file("extdata", "SCAP002_landmarks.fcsv",</pre>
                               package = "BoneDensityMapping")
scap_002_lmk <- import_lmks(landmark_path)</pre>
scap_002_remapped <- surface_points_new(scap_002_mesh, scap_002_lmk,</pre>
                                           template_coords, mirror = "x",
                                           plot_check = FALSE)
```

surface_points_template

Redefine surface points. Adds additional surface points ("sliders") that are spatially distributed across the mesh surface. Adapted from geomorph

Description

Redefine surface points. Adds additional surface points ("sliders") that are spatially distributed across the mesh surface. Adapted from geomorph

Usage

```
surface_points_template(surface_mesh, landmarks, no_surface_sliders)
```

Arguments

Value

Data frame. 3D coordinates for the combined set of original landmarks and the new surface points

Author(s)

```
Scott Telfer < scott.telfer@gmail.com>
```

Examples

voxel_point_intersect Finds material properties of bone at any point

Description

Finds material properties of bone at any point

Usage

```
voxel_point_intersect(
  vertex_coords,
  nifti,
  ct_eqn = NULL,
  ct_params = NULL,
  rev_x = FALSE,
  rev_y = FALSE,
  rev_z = FALSE,
  check_in_vol = FALSE)
```

Arguments

vertex_coords	Matrix
nifti	nifti object
ct_eqn	String. Equation to use for density calibration. Currently only "linear" is supported.
ct_params	Numeric vector. Calibration parameters for density calculation. For linear, first value is beta coefficient (y intercept), second value is sigma coefficient (gradient)
rev_x	Logical. Reverses x voxel coordinates
rev_y	Logical. Reverses y voxel coordinates
rev_z	Logical. Reverses z voxel coordinates
check_in_vol	Logical. Include check that model is in scans volume and print dimensions

voxel_point_intersect 19

Value

Vector. Vector with value for each point on surface

Author(s)

Scott Telfer < scott.telfer@gmail.com>

```
# Download CT scan
url <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_hip.nii.gz"</pre>
scan_filepath <- tempfile(fileext = ".nii.gz")</pre>
download.file(url, scan_filepath, mode = "wb")
nifti <- import_scan(scan_filepath)</pre>
url2 <- "https://github.com/Telfer/BoneDensityMapping/releases/download/v1.0.2/test_CT_femur.stl"
bone_filepath <- tempfile(fileext = ".stl")</pre>
download.file(url2, bone_filepath, mode = "wb")
surface_mesh <- import_mesh(bone_filepath)</pre>
# get density of surface bone directly
mat_peak <- voxel_point_intersect(surface_mesh, nifti,</pre>
                                    ct_eqn = "linear",
                                     ct_params = c(68.4, 1.106),
                                     check_in_vol = FALSE)
# remap and get density (for group level comparisons)
landmark_path <- system.file("extdata", "test_femur.mrk.json",</pre>
                               package = "BoneDensityMapping")
landmarks <- import_lmks(landmark_path)</pre>
mapped_coords <- surface_points_template(surface_mesh, landmarks,</pre>
                                            no_surface_sliders = 1000)
mat_peak <- voxel_point_intersect(mapped_coords, nifti,</pre>
                                    ct_eqn = "linear",
                                    ct_params = c(68.4, 1.106),
                                     check_in_vol = FALSE)
```

Index

```
bone\_scan\_check, \\ 2
color_bar, 3
{\tt color\_mapping, 4}
color_mesh, 5
ct_calibration, 6
fill_bone_points, 7
import_lmks, 7
import_mesh, 8
import_scan, 9
landmark_check, 9
plot\_cross\_section\_bone, 10
plot_mesh, 12
reorientate_landmarks, 13
rm_local_sig, 14
surface_normal_intersect, 14
surface\_points\_new, 16
surface_points_template, 17
voxel_point_intersect, 18
```