Module Interface Specification for Kaplan

Jen Garner

November 20, 2018

1 Revision History

Date	Version	Notes
November 20, 2018 (Tuesday)	1.0	Initial draft

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at [give url —SS] [Also add any additional symbols, abbreviations or acronyms —SS]

Contents

1	Rev	vision I	History		
2	Syn	nbols,	Abbreviations and Acronyms		
3	Inti	oducti	ion		
4	Not	ation			
5	Mo	dule D	Decomposition		
6	MIS	S of G	A Input		
	6.1	Modul	<u>lle</u>		
	6.2	Uses			
	6.3	Syntax	X		
		6.3.1	Exported Constants		
		6.3.2	Exported Access Programs		
	6.4	Seman	ntics		
		6.4.1	State Variables		
		6.4.2	Environment Variables		
		6.4.3	Assumptions		
		6.4.4	Access Routine Semantics		
		6.4.5	Local Functions		
7	MIS	S of G	A Control		
	7.1	Modul	ıle		
	7.2	Uses			
	7.3	Syntax	x		
		7.3.1	Exported Constants		
		7.3.2	Exported Access Programs		
	7.4	Seman	ntics		
		7.4.1	State Variables		
		7.4.2	Environment Variables		
		7.4.3	Assumptions		
		7.4.4	Access Routine Semantics		
		7.4.5	Local Functions		
3	MIS	\mathbf{S} of Fi	it_G		
	8.1	Modul	<mark>lle</mark>		
	8.2	Uses			
	8.3		x		
		8.3.1	Exported Constants		
		8.3.2	Exported Access Programs		

	8.4	Seman	ntics	7
		8.4.1	State Variables	7
		8.4.2	Environment Variables	7
		8.4.3	Assumptions	7
		8.4.4	Access Routine Semantics	7
		8.4.5	Local Functions	8
9	MIS	of To	purnament	9
	9.1	Modul	le	9
	9.2			9
	9.3	Syntax	<u>x</u>	9
		9.3.1	Exported Constants	9
		9.3.2	Exported Access Programs	9
	9.4	Seman	ntics	9
		9.4.1	State Variables	9
		9.4.2	Environment Variables	9
		9.4.3	Assumptions	9
		9.4.4	Access Routine Semantics	9
		9.4.5	Local Functions	10
10	MIS	of Cr	cossover & Mutation	11
10			le	11
				11
			x	
	10.0	•	Exported Constants	11
			Exported Access Programs	11
	10.4		atics	
	10.4		State Variables	11
			Environment Variables	
			Assumptions	11
			Access Routine Semantics	11
		10.4.5	Local Functions	12
11		of Ri		13
			<u>le</u>	
	11.3		X	
			Exported Constants	
			Exported Access Programs	
	11.4	Seman	ntics	13
		11.4.1	State Variables	13
		11.4.2	Environment Variables	13
		11 / 2	Assumptions	12

	11.4.4 Access Routine Semantics	13 14
12 MI	IS of Output	15
	1 Module	15
	2 Uses	15
	3 Syntax	15
	12.3.1 Exported Constants	15
	12.3.2 Exported Access Programs	15
12.4	4 Semantics	15
	12.4.1 State Variables	15
	12.4.2 Environment Variables	15
	12.4.3 Assumptions	15
	12.4.4 Access Routine Semantics	15
	12.4.5 Local Functions	16
	IS of Molecule Input	17
	1 Module	17
13.5	2 Uses	17
13.	3 Syntax	17
	13.3.1 Exported Constants	17
	13.3.2 Exported Access Programs	17
13.4	4 Semantics	17
	13.4.1 State Variables	17
	13.4.2 Environment Variables	17
	13.4.3 Assumptions	17
	13.4.4 Access Routine Semantics	17
	13.4.5 Local Functions	18
14 MI	IS of Energies	19
	1 Module	19
	2 Uses	19
	3 Syntax	19
11.	14.3.1 Exported Constants	19
	14.3.2 Exported Access Programs	19
14	4 Semantics	19
14.	14.4.1 State Variables	19
	14.4.2 Environment Variables	19
	14.4.3 Assumptions	19
	14.4.4 Access Routine Semantics	19 19
	14.4.5 Local Functions	20
	144 4 A 1 100 CM 1010 CM 100 S	/11

15 MIS of RMSD	21
15.1 Module	. 21
15.2 Uses	. 21
15.3 Syntax	. 21
15.3.1 Exported Constants	. 21
15.3.2 Exported Access Programs	. 21
15.4 Semantics	. 21
15.4.1 State Variables	. 21
15.4.2 Environment Variables	. 21
15.4.3 Assumptions	
15.4.4 Access Routine Semantics	. 21
15.4.5 Local Functions	. 22
16 Appendix	2 4

3 Introduction

The following document details the Module Interface Specifications for [Fill in your project name and description —SS]

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at [provide the url for your repo —SS]

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Kaplan.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Kaplan uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Kaplan uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	GA Input GA Control Fit_G Tournament Crossover & Mutation Ring Output
Software Decision Module	Molecule Input Energies RMSD

Table 1: Module Hierarchy

6 MIS of GA Input

[You can reference SRS labels, such as R1.—SS]
[It is also possible to use LaTeXfor hypperlinks to external documents.—SS]

6.1 Module

[Short name for the module —SS]

- 6.2 Uses
- 6.3 Syntax
- 6.3.1 Exported Constants
- 6.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	r -	-	_
SS			

6.4 Semantics

6.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

6.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

6.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

6.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

6.4.5 Local Functions

7 MIS of GA Control

[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R1. —SS]
[It is also possible to use LATEX for hypperlinks to external documents. —SS]

7.1 Module

[Short name for the module —SS]

7.2 Uses

7.3 Syntax

7.3.1 Exported Constants

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS			

7.4 Semantics

7.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory.—SS]

7.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

7.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

7.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

7.4.5 Local Functions

8 MIS of Fit_G

[You can reference SRS labels, such as R1.—SS]
[It is also possible to use LATEX for hypperlinks to external documents.—SS]

8.1 Module

[Short name for the module —SS]

8.2 Uses

8.3 Syntax

8.3.1 Exported Constants

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS			

8.4 Semantics

8.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

8.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

8.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

8.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

8.4.5 Local Functions

9 MIS of Tournament

```
[Use labels for cross-referencing —SS]
[You can reference SRS labels, such as R1. —SS]
[It is also possible to use LATEX for hypperlinks to external documents. —SS]
```

9.1 Module

[Short name for the module —SS]

- 9.2 Uses
- 9.3 Syntax
- 9.3.1 Exported Constants
- 9.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	_
SS			

9.4 Semantics

9.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

9.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

9.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

9.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. --SS]

9.4.5 Local Functions

10 MIS of Crossover & Mutation

[You can reference SRS labels, such as R1.—SS]
[It is also possible to use LATEX for hypperlinks to external documents.—SS]

10.1 Module

[Short name for the module —SS]

- 10.2 Uses
- 10.3 Syntax
- 10.3.1 Exported Constants

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	g -	-	_
—SS]			

10.4 Semantics

10.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

10.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

10.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

10.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

10.4.5 Local Functions

11 MIS of Ring

[You can reference SRS labels, such as R1. —SS] [It is also possible to use LATEX for hypperlinks to external documents. —SS]

11.1 Module

[Short name for the module —SS]

11.2 Uses

11.3 Syntax

11.3.1 Exported Constants

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	r -	-	_
SS			

11.4 Semantics

11.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

11.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

11.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

11.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

11.4.5 Local Functions

12 MIS of Output

[You can reference SRS labels, such as R1. —SS] [It is also possible to use LaTeXfor hypperlinks to external documents. —SS]

12.1 Module

[Short name for the module —SS]

12.2 Uses

12.3 Syntax

12.3.1 Exported Constants

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
—SS]			

12.4 Semantics

12.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

12.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

12.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

12.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- ullet exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

12.4.5 Local Functions

13 MIS of Molecule Input

[You can reference SRS labels, such as R1. —SS] [It is also possible to use LaTeXfor hypperlinks to external documents. —SS]

13.1 Module

[Short name for the module —SS]

13.2 Uses

13.3 Syntax

13.3.1 Exported Constants

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	g -	-	_
—SS]			

13.4 Semantics

13.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

13.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

13.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

13.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

13.4.5 Local Functions

14 MIS of Energies

[You can reference SRS labels, such as R1. —SS] [It is also possible to use LaTeXfor hypperlinks to external documents. —SS]

14.1 Module

[Short name for the module —SS]

14.2 Uses

14.3 Syntax

14.3.1 Exported Constants

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS			

14.4 Semantics

14.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

14.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

14.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

14.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

14.4.5 Local Functions

15 MIS of RMSD

[You can reference SRS labels, such as R1.—SS]
[It is also possible to use LATEX for hypperlinks to external documents.—SS]

15.1 Module

[Short name for the module —SS]

15.2 Uses

15.3 Syntax

15.3.1 Exported Constants

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	r -	-	_
SS			

15.4 Semantics

15.4.1 State Variables

[Not all modules will have state variables. State variables give the module a memory. —SS]

15.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

15.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

15.4.4 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

15.4.5 Local Functions

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

16 Appendix

 $[{\bf Extra~information~if~required~--SS}]$