

Vellore – 632014, Tamil Nadu, India DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES FALL SEMESTER 2022-2023

CONTINUOUS ASSESSMENT TEST – I

Programme Name & Branch

: B. Tech

Course Code

: BMAT201L

Course Name

: Complex Variables and Linear Algebra

Slot

: A1+TA1+TAA1

Date of Exam

: 28-08-2022

Duration

: 90 minutes

Max. Marks : 50

General instruction(s): Answer all the questions

Q. No	Question	Mar ks	Course Outcome (CO)	Bloom's Taxonomy (BL)
V.	Find the analytic function $f(z)=u+iv$ if $2u+v=e^{x}(cosy-siny)$ and also find the functions u and :	10	C 01	BL2
₽.	Verify whether the equation $\psi(x, y) = \frac{-y}{x^2 + y^2}$ can represent the path of electric current flow in an electric field. If so, find the complex potential and the equation of the potential lines.	10	COI	BL3
3.	Find the image of the region bounded by the lines $1 \le x \le 2$ under the transformation $w = \frac{1}{z}$. Also show the regions graphically. Determine the bilinear transformation that maps the points 1, i , -1	10	CO2	BL3
W .	in z-plane into the points 2, 1, -2 respectively in w-plane. Also find	10	CO2	BL3
5/	Expand $f(z) = \frac{z-1}{z+1}$ in Taylor's series about $z = 0$ and $z = 1$.	10	CO3	BL1

Abbroaml Mitor

Vellore – 632014, Tamil Nadu, India DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES FALL SEMESTER 2022-2023

CONTINUOUS ASSESSMENT TEST - I

Programme Name & Branch

: B. Tech

Course Code

BMAT201L

Course Name

: Complex Variables and Linear Algebra

Slot

: A2+TA2+TAA2

Date of Examination

: 28-08-2022

Duration

: 90 minutes

Max. Marks : 50

General instruction(s): Answer all the questions

Q.	Question	Marks
No Y.	Find the analytic function $f(z)=u+iv$ if $3u+2v=y^2-x^2+16xy$ and also find the functions u and v.	10
2.	Verify whether the equation $\psi = e^{-x}[2xycosy - (x^2 - y^2)siny]$ can represent the path of electric current flow in an electric field. If so, find the complex potential and the equation of the potential lines.	10
3/	Find the image of the region of the w-plane bounded by the circle $x^2 + y^2 - 6x = 0$ in the z-plane under the transformation $w = \frac{1}{z}$.	10
4/	Determine the bilinear transformation that maps the points 0; 1; i; in z-plane into the points 1+i; -i; 2-i respectively in w-plane. Also find its invariant points.	10
5.	Expand $f(z) = \frac{1}{z^2 - z - 6}$ in Taylor's series about (i) the point $z = 1$ and (ii) the point $z = 2$.	10

Vellore - 632014, Tamil Nadu, India DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES FALL SEMESTER 2022-2023

CONTINUOUS ASSESSMENT TEST - I

Programme Name & Branch

: B. Tech

Course Code

: BMAT201L

Course Name

Complex Variables and Linear Algebra

: B2+TB2+TBB2

: 29-08-2022

Date of the Examination Duration

: 90 minutes

Max. Marks

General instruction(s): Answer All The Questions

Q. No	instruction(s): Answer All The Questions Question	Marks	Outcome (CO)	(BL)
1.	Construct an analytic function whose real part is $u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$	10	COI	BL
2,/	In the two dimensional fluid flow, the stream function is given by $\psi(x, y) = e^{x^2 - y^2} \sin 2xy$. Find the complex potential function $f(z) = \phi + i\psi$ and hence find the velocity potential function $\phi(x, y)$.	10	CO1	BL3
3.	Find the image of the region bounded by the lines $x = 2$, $x = 4$ in the z-plane under the transformation $w = z^2$.	- 10	CO2	BL3
4.	Determine the bilinear transformation that maps the points $1-2i$, $2+i$, $2+3i$ in z-plane into the points $2+2i$, $1+3i$, 4 respectively in w-plane.	10	CO2	BL
	Expand $f(z) = \frac{1}{z^2 - z - 6}$ as a Taylor's series about $z = 1$ and $z = -1$.	10	CO3	BL

Vellore – 632014, Tamil Nadu, India DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES FALL SEMESTER 2022-2023

CONTINUOUS ASSESSMENT TEST - I

Programme Name & Branch

: B.Tech. & ALL

Course Code

: BMAT201L

Course Name

: Complex Variables and Linear Algebra

Slot

: C1+TC1+TCC1

Date of the Examination

: 30-Aug-2022

Duration

: 90 minutes

Max. Marks : 50

General instruction(s): Answer ALL questions (5x10=50 Marks)

1. Check whether the following functions can be the real parts of an analytic function f(z) = u + iv.

$$a) \quad u = x^3 - y^3$$

b)
$$u = x^2 - y^2 + y$$

If so, determine the analytic function f(z).

2. In a two dimensional fluid flow, if $\phi(x,y) = x^4 + y^4 - 6x^2y^2$ represents the velocity potential, find the corresponding stream function and also the complex potential.

Determine the region of the w - plane into which the region bounded by the lines x = 1, y = 1, x + y = 1 is mapped by the transformation $w = z^2$.

4. If the points $\{0, 1, -2\}$ in the z-plane are mapped onto the points $\{-\frac{1}{2}, 0, \infty\}$ in the w - plane respectively, then

- a) Find the corresponding bilinear transformation w = f(z).
- b) Find the invariant points of this transformation.
- c) Find the image of the region $0 < x < \infty$, $0 < y < \infty$ under this transformation.

5. Express the function $f(z) = \frac{1}{(z+1)(z+2)^2}$ in Taylor series about

- a) the origin,
- b) the point z = 1.

Indicate the region of validity in each case.

Vellore – 632014, Tamil Nadu, India DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES FALL SEMESTER 2022-2023

CONTINUOUS ASSESSMENT TEST – I

Programme Name & Branch

: B.Tech. (All branches)

Course Code

: BMAT201L

Course Name

: Complex Variables and Linear Algebra

Slot

: C2+TC2+TCC2

Date of the Examination

: 30.8.22

Duration

: 90 minutes

Max. Marks: 50

Answer all the Questions (5*10=50)

Q. No	Question	Marks	Course	Bloom's
			Outcome	Taxonomy
			(CO)	(BL)
1./	Examine whether the given function $\cos x \cosh y$ can be the		1	BL2
	real part of an analytic function $f(z)$. If so, find its conjugate	10		
	and also the analytic function $f(z) = u + iv$.			
2.	Prove that w/w 2 2 2 2 2 2		1	BL3
	Prove that $u(x, y) = x^2 - y^2$ and $v(x, y) = \frac{y}{x^2 + y^2}$ are			DES
	harmonic functions and Examine whether $f(z) = u + iv$ is not	10		
	analytic.			
3.	Show that the transformation $w = \frac{2z+3}{z-4}$ transforms circle		2	BL3
	$w = \frac{1}{z-4}$ transforms circle	10	_	BES
	$x^2 + y^2 - 4x = 0$ into a straight line $4u + 3 = 0$.			
4.	Find the bilinear transformation which maps $z = 0$ onto $w =$		2	BL3
	-i and has -1 and 1 as the invariant points. Also show that			DL3
	under this transformation the upper half of the z-plane maps	10		
	onto the interior of the unit circle in the w-plane.			
5.	Find the Taylor's series for $f(z) = \frac{e^z}{1-z}$ about $z = 0$. Give the		3	BL1
	This the rayion's series for $f(z) = \frac{1}{1-z}$ about $z = 0$. Give the	10		
	radius of convergence.			