

Algebra relacji

Relacyjne języki zapytań

- » Model relacyjny zbiór tabel do reprezentacji danych i zależności między nimi
 - opisuje dane na poziomie logicznym i widoku.
- » Języki zapytań
 - w jaki sposób użytkownicy określają żądania pobierania i aktualizowania danych
- » Proceduralne vs nieprocedurale, lub deklaratywne
- » "Czyste" języki:
 - Algebra relacji
 - Wnioskowane na krotkach (tuple relational calculus)
 - Wnioskowanie dziedzinowe (domain relational calculus)

Algebra relacji

Język proceduralny składający się z zestawu operacji, które przyjmują jedną (unarne) lub dwie (binarne) relacje jako dane wejściowe, a ich wynikiem jest nowa relacja.

- Sześć podstawowych operatorów:
 - 1. selekcja (select): σ
 - 2. projekcja (project): Π
 - **3.** unia (*union*): ∪
 - 4. różnica zbiorów (set difference): -
 - 5. produkt kartezjański (Cartesian product): x
 - 6. przemianowanie (assignment): ρ
- Dodatkowe operatory:
 - przecięcie zbiorów (set intersection): ∩
 - złączenie naturalne (natural join): ⋈
 - przypisanie (assignment): ←

Operacja selekcji

- » Operacja **selekcji** wybiera krotki spełniające dany predykat.
- » Notacja: $\sigma_p(r)$
- » p zwane predykatem selekcji
- » Np: wybierz te krotki relacji instructor gdzie instruktor pracuje na wydziale "Physics".
 - Zapytanie

 $\sigma_{dept_name="Physics"}(instructor)$

Wynik

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
33456	Gold	Physics	87000

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Operacja selekcji c.d.

AG,**H** Dozwolone korzystanie z porównań

w predykacie selekcji.

» Można łączyć kilka predykatów w większy predykat za pomocą łączników :

$$\land$$
 (and), \lor (or), \neg (not)

» Np : Znajdź instruktorów z Physics zarabiających więcej niż \$90,000:

- » Predykat selekcji może zawierać porównania między dwoma atrybutami.
 - Np znajdź wszystkie wydziały, których nazwa jest taka sama jak nazwa ich budynku:
 - σ dept name=building (department)

Operacja projekcji/rzutowania

- » Operator jednoargumentowy, który zwraca relację będącą argumentem pomijając pewne atrybuty.
- » Notacja:

$$\prod_{A_1,A_2,A_3...A_k} (r)$$

gdzie A_1 , A_2 – nazwy atrybutów i r - nazwa relacji.

- » Wynik: relacja z k kolumnami uzyskana w wyniku usunięcia tych niewymienionych
- » Zduplikowane wiersze usunięte z wynikowej relacji, bo relacje są zbiorami

Operacja projekcji c.d.

- » Np : eliminacja atrybutu dept_name z instructor
- » Zapytanie:

 $\prod_{ID, name, salary}$ (instructor)

» Wynik:

ID	name	salary
10101	Srinivasan	65000
12121	Wu	90000
15151	Mozart	40000
22222	Einstein	95000
32343	El Said	60000
33456	Gold	87000
45565	Katz	75000
58583	Califieri	62000
76543	Singh	80000
76766	Crick	72000
83821	Brandt	92000
98345	Kim	80000

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Złożenie operacji relacyjnych

- » Wynikiem operacji algebry relacji jest relacja i dlatego operacje algebry relacji można łączyć w wyrażenie algebry relacji.
- » Np. zapytanie Znajdź nazwiska wszystkich instruktorów na wydziale fizyki.

$$\prod_{name} (\sigma_{dept \ name = "Physics"} (instructor))$$

» Zamiast podawać nazwę relacji jako argument operacji projekcji, można podać wyrażenie, które zwraca relację.

Operacja unii

- » Operator unii pozwala łączyć dwie relacje
- » Notacja: $r \cup s$
- » Aby $r \cup s$ było poprawne.
 - 1. *r*, *s* muszą mieć ten sam **stopień** (tę samą liczbę atrybutów)
 - 2. Dziedziny atrybutów muszą być **kompatybilne** (np: druga kolumna *r* ma ten sam typ wartości co druga kolumna *s*)
- » Np.: znajdź wszystkie kursy prowadzone w semestrze jesiennym 2017 lub wiosennym 2018 lub w obydwu

$$\prod_{course_id} (\sigma_{semester="Fall" \land year=2017}(section)) \cup$$

$$\Pi_{course_id} (\sigma_{semester="Spring"} \land year=2018 (section))$$

Operacja unii c.d.

» Wynik:

 Π_{course_id} ($\sigma_{semester="Fall"}$ \land year=2017 (section)) \cup

 Π_{course_id} ($\sigma_{semester="Spring"} \land year=2018$ (section))

course_id
CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	H
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

Operacja różnicy zbiorów

- » Pozwala znaleźć krotki, które występują jednej relacji ale nie w drugiej.
- » Notacja r s
- » Rożnica zbiorów musi zachodzić między kompatybilnymi relacjami.
 - r i s muszą mieć ten sam stopień
 - dziedziny atrybutów r i s muszą być kompatybilne
- » Np : aby znaleźć wszystkie kursy prowadzone w semestrze jesiennym 2017 ale nie w wiosennym 2018

$$\Pi_{course_id}(\sigma_{semester="Fall" \ \land \ year=2017}(section)) - \Pi_{course_id}(\sigma_{semester="Spring" \ \land \ year=2018}(section))$$

Operacja iloczyny kartezjańskiego

- » Operator iloczynu kartezjańskiego (oznaczony przez X) pozwala łączyć informację z dowolnych dwóch relacji.
- » Np: Iloczyn kartezjański relacji instructor i teaches: instructor X teaches
- » Krotka wynikowa tworzona z każdej możliwej pary krotek: jedna z relacji instructor i jedna z relacji teaches
- » Ponieważ ID instruktora występuje w obydwu relacjach, rozróżnia się te atrybuty dołączając do atrybutu nazwę relacji, z której pierwotnie pochodził atrybut.
 - instructor.ID
 - teaches.ID

lloczyn kartezjański teaches

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
1 201-2		T1	0000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1 1	Fall	2009

Inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2009
	• • •	•••	•••		•••		•••	• • •
***	• • •		•:•:•	•••		•••	•••	
12121	Wu	Finance	90000	10101	CS-101	1	Fall	2009
12121	Wu	Finance	90000	10101	CS-315	1	Spring	2010
12121	Wu	Pinance	90000	10101	CS-347	1	Fall	2009
12121	Wu	Pinance	90000	12121	FIN-201	1	Spring	2010
12121	Wu	Finance	90000	15151	MU-199	1	Spring	2010
12121	Wu	Pinance	90000	22222	PHY-101	1	Fall	2009
•••	• • •			•••	•••	•••	•••	
Sec. ed.				•••	***			

Operacja przemianowania

- » Wyniki wyrażeń algebry relacji nie mają nazwy, do której można by się było odwoływać. Do tego służy operator przemianowania ρ
- » Wyrażenie:

$$\rho_{x}(E)$$

zwraca wynik wyrażenia *E* pod nazwą *x*

» Jeżeli wyrażenie algebry relacji E ma liczność n, to wtedy :

$$\rho_{\scriptscriptstyle X(A1,A2,...An)}(E)$$

zwraca wynik wyrażenia E pod nazwą X z atrybutami przemianowanymi na A_1 , A_2 ,, A_n .

Operacja przemianowania - przykład

- » Znajdź najwyższą pensję
- (1) Oblicz relację tymczasową składającą się z tych wynagrodzeń, które nie są największe:

 $\Pi_{instructor.salary}(\sigma_{instructor.salary < d.salary}(instructor \times \rho_d(instructor)))$

(2) Znajdź różnicę między Π_{salry} (instructor) a tą relacją tymczasową

 Π_{salary} (instructor) - $\Pi_{instructor.salary}$ ($\sigma_{instructor.salary}$ (instructor)

 $\rho_{o}(instructor))$

salary
65000
90000
40000
60000
87000
75000
62000
72000
80000
92000

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Formalna definicja wyrażenia algebry relacji

- » Podstawowe wyrażenie w algebrze relacji składa się z:
 - relacji w bazie danych albo
 - stałej relacja (np. {(22222, Einstein, Physics, 95000),

(76543, Singh, Finance, 80000)})

- Niech E_1 i E_2 będą wyrażeniami algebry relacji; to poniższe są również wyrażeniami algebry relacji:
 - $E_1 \cup E_2$
 - $E_1 E_2$
 - $-E_1 \times E_2$
 - $-\sigma_{D}(E_{1})$, P jest predykatem na atrybutach w E_{1}
 - $-\prod_{s}(E_1)$, S jest listą zwierającą wybrane atrybuty z E_1
 - $-\rho_{x}(E_{1})$, x jest nową nazwą dla wyniku E_{1}

Operacja przecięcia zbiorów

Pozwala znaleźć krotki, które są w obydwu relacjach wejściowych.

- » Notacja: r ∩ s
- » Założenie:
 - r, s mają ten sam stopień
 - atrybuty relacji r i s są kompatybilne
- » Np : Znajdź wszystkie kursy prowadzone zarówno w semestrze jesiennym 2017 semester jak i w wiosennym 2018.

$$\Pi_{course_id}$$
 ($\sigma_{semester="Fall" \land year=2017}(section)$) \cap Π_{course_id} ($\sigma_{semester="Spring" \land year=2018}(section)$)

Relacja section

course_id	sec _ id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

Operacja złączenia

» Iloczyn kartezjański

instructor X teaches

kojarzy każda krotkę z *instructor* z każdą krotką z *teaches*.

- Większość powstałych wierszy zawiera informacje o instruktorach, którzy NIE nauczali konkretnego kursu.
- » Aby uzyskać tylko te krotki z "instructor X teaches" które odnoszą się do instruktorów i kursów, które nauczali:

 $\sigma_{instructor.id = teaches.id}$ (instructor x teaches))

 dostajemy tylko te krotki "instructor X teaches" które dotyczą instruktorów i kursów, których nauczali.

Wspólny atrybut ID

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
	10101 12121 15151 22222 32343 33456 45565 58583 76543 76766 83821	10101 Srinivasan 12121 Wu 15151 Mozart 22222 Einstein 32343 El Said 33456 Gold 45565 Katz 58583 Califieri 76543 Singh 76766 Crick 83821 Brandt	10101 Srinivasan Comp. Sci. 12121 Wu Finance 15151 Mozart Music 22222 Einstein Physics 32343 El Said History 33456 Gold Physics 45565 Katz Comp. Sci. 58583 Califieri History 76543 Singh Finance 76766 Crick Biology 83821 Brandt Comp. Sci.

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

Į	ID	nar		dept_	_name	sala	ry		ID	C	ourse_ia	d sec_id	semes	ster	year
П	10101	202	ivasan		np. Sci.	650	1 45 1041		10101	C	CS-101	1	Fall		2009
Ш	12121			Fina		900			10101	C	CS-315	1	Sprir	ıg	2010
Ш	15151		1	Mus		400			10101	C	CS-347	1	Fall		2009
	22222		tein	Phys		950			12121	F	IN-201	1	Sprin	ıg	2010
	32347	ID	name	LITA	dept_na		saları	,	course_ia	1	sec_id	semester	year	3	2010
Ш	3345				- 1		·	/		1	3CC_111		-		2009
Ш	455€				Comp.	5000000 Barry					1	Fall	2009	3	2010
Ш	5858	10101	Sriniv	asan	Comp.			- 1	CS-315		1	Spring	2010	5	2010
Ш	7654	10101	Sriniv	asan	Comp.	Sci.	65000	0	CS-347		1	Fall	2009	3	2010
Ш	767€	12121	Wu		Financ	e	90000	0	FIN-201		1	Spring	2010	ıer	2009
	8382 9834	15151	Mozai	rt	Music		40000	0	MU-199		1	Spring	2010	ıer	2010
l l	9034	22222	Einste	in	Physic	s	95000	0	PHY-101	1	1	Fall	2009	5	2009
		32343	El Said	d	Histor	y	60000	0	HIS-351		1	Spring	2010	5	2009 2010
		45565	Katz		Comp.	Sci.	75000	0	CS-101		1	Spring	2010	5	2010
		45565	Katz		Comp.				CS-319		1	Spring	2010		2007
		76766	Crick		Biolog	y	72000	0	BIO-101		1	Summer	2009		
		76766	Crick		Biolog	y	72000	0	BIO-301		1	Summer	2010		
		83821	Brand	t	Comp.		92000	0	CS-190		1	Spring	2009		
		83821	Brand	t	Comp.	Sci.	92000	0	CS-190		2	Spring	2009		
		83821	Brand	t	Comp.	Sci.	92000	0	CS-319		2	Spring	2010		
		98345	Kim		Elec. E	ng.	80000	0	EE-181		1	Spring	2009		

» Znajdź nazwiska wszystkich instruktorów wraz z "course_id" wszystkich prowadzonych przez nich kursów"

 $\prod_{\textit{name, course_id}} (\textit{instructor} \bowtie \textit{teaches})$

name	course_id
Srinivasan	CS-101
Srinivasan	CS-315
Srinivasan	CS-347
Wu	FIN-201
Mozart	MU-199
Einstein	PHY-101
El Said	HIS-351
Katz	CS-101
Katz	CS-319
Crick	BIO-101
Crick	BIO-301
Brandt	CS-190
Brandt	CS-319
Kim	EE-181

- » Rozważmy dwie relacje r(R) i s(S).
- » Złączenie naturalne między r i s oznaczane $r \bowtie s$ jest relacją o schemacie $R \cup S$ zdefiniowaną jako:

$$r\bowtie s = \prod_{R \cup S} (\sigma_{r,A1 = s,A1 \land r,A2 = s,A2 \land ... \land \land r,An = s,An} (r \times s))$$

gdzie $R \cap S = \{A_1, A_2, ..., An\}$

» Znajdź imiona i nazwiska wszystkich instruktorów z wydziału Comp. Sci. wraz z nazwami wszystkich kursów przez nich prowadzonych

 $\Pi_{name,title}(\sigma_{dept_name="Comp.Sci"}(instructor \bowtie teaches \bowtie course))$

name	title
Brandt	Game Design
Brandt	Image Processing
Katz	Image Processing
Katz	Intro. to Computer Science
Srinivasan	Intro. to Computer Science
Srinivasan	Robotics
Srinivasan	Database System Concepts

 $instructor \bowtie (teaches \bowtie course)$ $(instructor \bowtie teaches) \bowtie course$

Złączenie naturalne - problemy

- Znajdź nazwiska wszystkich wykładowców z wydziału informatyki wraz z nazwami prowadzonych przez nich kursów
 - − $\prod_{name, title}$ ($\sigma_{dept_name="Comp. Sci."}$ (instructor \bowtie teaches \bowtie course))

```
teaches(ID,name,dept_name,salary,course_id,sec_id)
  course(course_id,title,dept_name,credits)
  instructor(ID,name,dept_name,salary)
```

Niepoprawne dopasowanie: course.dept_name=instructor.dept_name

Złączenie theta

- Operator złączenia pozwala łączyć operację selekcji i iloczynu kartezjańskiego w pojedynczą operację.
- Rozważmy relacje r (R) i s (S)
- Niech "theta" bądź predykatem atrybutów w schemacie R "union" S. Operator złaczenia r ⋈_θ s jest zdefiniowany następująco:

$$r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$$

Tak więc

```
\sigma_{instructor.id} = teaches.id (instructor x teaches ))
```

Można równoważnie zapisać:

instructor ⋈ _{Instructor.id} = _{teaches.id} teaches.

Operacja przypisania

- Czasami wygodnie jest napisać wyrażenie algebry relacji poprzez przypisanie jego części do zmiennych relacji tymczasowych.
- Operator przypisania oznaczany ← działa jak przypisanie w języku programowania.
- Np..: Znajdź instruktorów z wydziału "Physics" i "Music".

```
Physics \leftarrow \sigma_{dept\_name="Physics"}(instructor)
Music \leftarrow \sigma_{dept\_name="Music"}(instructor)
Physics \cup Music
```

 Za pomocą operatora przypisania zapytanie można zapisać jako program sekwencyjny składający się z serii przypisań, po których następuje wyrażenie, którego wartość jest pokazywana jako wynik zapytania.

Złączenie zewnętrzne (outer join)

- Rozszerzenie operatora złączenia, który zapobiega utracie danych.
- Wylicza złączenie, a następnie dodaje do wyniku krotki z jednej z relacji, które nie pasują do krotek w drugiej relacji.
- Używa wartości null:
 - null oznacza, że wartość jest nieznana lub nie istnieje
 - wszystkie porównania z null są (generalnie) z definicji false.

Przykład – złączenie zewnętrzne

• Relacja instructor

ID	name	dept_name
10101	Srinivasan	Comp. Sci.
12121	Wu	Finance
15151	Mozart	Music

□ Relacja *teaches*

ID	course_id	
10101	CS-101	
12121	FIN-201	
76766	BIO-101	

Przykład – złączenie zewnętrzne

• Złączenie

instructor ⋈ *teaches*

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201

Left Outer Join

ID	name	dept_name	course_id
10101 12121		Comp. Sci. Finance	CS-101 FIN-201
15151	Wu Mozart	Music	F1N-201 <i>null</i>

Przykład – złączenie zewnętrzne

☐ Right Outer Join

instructor ⋈ *teaches*

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
76766	null	null	BIO-101

☐ Full Outer Join

instructor teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	null
76766	null	null	BIO-101

Równoważne zapytania

- » Najczęściej istnieje więcej niż jeden sposób napisania zapytania w algebrze relacji.
- » Np.: Znajdź informacje o kursach prowadzonych przez instruktorów na wydziale fizyki, których wynagrodzenie przekracza 90 000
- » Zapytanie 1

```
\sigma_{dept\_name="Physics"} \land_{salary > 90,000} (instructor)
```

» Zapytanie 2

```
\sigma_{dept\_name="Physics"}(\sigma_{salary>90.000}(instructor))
```

» Dwa zapytania nie są identyczne; są jednak równoważne dają taki sam wynik w dowolnej bazie danych.

Równoważne zapytania c.d.

- » Np.: Znajdź informacje o kursach prowadzonych przez instruktorów na wydziale fizyki
- » Zapytanie 1

```
\sigma_{dept\_name="Physics"} (instructor \bowtie_{instructor.ID=teaches.ID} teaches)
```

» Zapytanie 2

```
(\sigma_{dept\ name="Physics"}(instructor)) \bowtie_{instructor.ID = teaches.ID} teaches
```

» Dwa zapytania nie są identyczne; są jednak równoważne dają taki sam wynik w dowolnej bazie danych.

Operatory rozszerzonej algebry relacji

Dostarczają możliwości pisania zapytań, które nie mogą być wyrażone przy pomocy podstawowych operatorów algebry relacji

- Uogólniona projekcja
- Funkcje agregujące

Uogólniona projekcja

 Rozszerza operację projekcji zezwalając aby operatory arytmetyczne były użyte w liście projekcji.

$$\prod_{F_1,F_2,...,F_n} (E)$$

- E jest dowolnym wyrażeniem algebry relacji
- Każdy F_1 , F_2 , ..., F_n jest wyrażeniem arytmetycznym ze stałymi i atrybutami ze schematu E.
- Dana relacja instructor(ID, name, dept_name, salary)
 gdzie salary jest roczną pensją, pokaż te same dane, ale
 z pensją miesięczną

 $\prod_{ID, name, dept name, salary/12}$ (instructor)

Funkcje i operacje agregujące

• Relacja *r*:

Α	В	С
α	α	7
α	β	7
β	β	3
β	β	10

$$\square \mathcal{G}_{\mathbf{sum(c)}}(\mathbf{r})$$

27

Funkcja agregująca bierze zbiór wartości i zwraca w wyniku pojedynczą wartość: avg, min, max, sum, count

$$G_{sum(salary)}$$
 (instructor)

(Kaligraficzne G)

Operacje agregujące - przykład

• Znajdź średnią pensję na każdym wydziale $_{dept_name}$ \mathcal{G} $_{avg(salary)}$ (instructor)

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg_salar
Biology	⁷ 72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Operacje agregacji G

• Operacja agregacji w algebrze relacji

$$_{G_1,G_2,...,G_n} \mathcal{G}_{F_1(A_1),F_2(A_2,...,F_n(A_n))}(E)$$

E jest dowolnym wyrażeniem algebry relacji

- G_1 , G_2 ..., G_n lista atrybutów po której ma być grupowanie (może być pusta)
- Każde F_i jest funkcją agregującą
- Każde A_i jest nazwą atrybutu
- Uwaga: Czasem używane jest γ zamiast \mathcal{G}

Modyfikacje bazy danych

- Zawartość bazy danych może być zmieniana przy użyciu następujących operatorów :
 - Usuwanie

$$\circ$$
 r ← r − E (r- relacja, E − wyrażenie algebry relacji)

- Wstawianie

$$\circ r \leftarrow r \cup E$$

- Modyfikacja

$$\circ$$
 $r \leftarrow \prod_{F_1,F_2,...,F_L}(r)$

 Wszystkie te operacje mogą być wyrażone przy pomocy operatora przypisania

Algebra relacji wielozbiorów

- "Czysta" algebra relacji usuwa wszystkie duplikaty
 - np. po projekcji
- Algebra relacji wielozbiorów pozostawia duplikaty aby dopasować się do semantyki SQL
 - zostawianie duplikatów w SQL było początkowo zrobione w celach efektywnościowych, ale teraz jest jego cechą
- Algebra wielozbiorów definiowana następująco
 - selekcja: ma tyle duplikatów krotki co na wejściu, jeżeli krotka spełnia warunek selekcji
 - projekcja: jedna krotka na krotkę wejściową, nawet jeżeli jest duplikatem
 - iloczyn kartezjański: jeżeli jest m kopii t1 w r i n kopii t2 w s, to jest m x n kopii t1.t2 w r x s
 - pozostałe operacje podobnie definiowane
 - o np. unia: m + n kopii, przecięcie: min(m, n) kopii różnica: max(0, m n) kopii

SQL i algebra relacji

select A1, A2, ... An
 from r1, r2, ..., rm
 where P

jest równoważne następującemu wyrażeniu w algebrze relacji wielozbiorów

$$\prod_{A1,...,An} (\sigma_P (r1 \times r2 \times ... \times rm))$$

select A1, A2, sum(A3)
 from r1, r2, ..., rm
 where P
 group by A1, A2

jest równoważne następującemu wyrażeniu w algebrze relacji wielozbiorów

$$A1, A2$$
 G $sum(A3)$ $(\prod_{A1, ..., An} (\sigma_P (r1 \times r2 \times ... \times rm)))$

Podstawowe kroki w przetwarzaniu zapytań

- 1. Parsowanie i translacja
- 2. Optymalizacja

Zapytanie i plan jego wykonania

select salary from instructor where salary < 75000

może być przetłumaczone na jedno z wyrażeń algebry relacji:

 $\sigma_{salary < 75000} (\prod_{salary} (instructor))$ $\prod_{salary} (\sigma_{salary < 75000} (instructor))$ π_{salary}

 σ salary < 75000; use index 1

instructor

Optymalizacja planu

