MMA/MMAI 869 Machine Learning and AI

Ensembles

Stephen Thomas

Updated: Nov 3, 2022

Outline

- Ensemble methods
 - Voting/Committee
 - Bagging
 - Boosting
- Comparison

ENSEMBLES

Combining Classifiers

- So far, we have only discussed individual models
- Can we combine multiple models to produce a better model?
 - Yes! Called "ensembles" or "combinations"
- In practice, ensembles are very effective
 - E.g., ensemble of DTs shown to be better than NNs for tabular data
- Many popular ways:
 - Committee, aka Voting
 - Bagging (incl. Random Forests, Extra Trees)
 - Boosting (incl. Adaboost, GBM, XGBoost)
- While you can create an ensemble manually, you mostly just use one of the above

COMMITTEES

Committee

Committee is a parallel ensemble: each model is built independently

- Training: train several models as normal
 - Decision trees, NB, SVMs, whatever you want!
 - Each classifier gets full training data
- Prediction: Each model votes, majority (or average) wins

Example: Default Data


```
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier
clf1 = DecisionTreeClassifier(max depth=4)
clf2 = KNeighborsClassifier(n neighbors=7)
clf3 = SVC(kernel='rbf', probability=True, gamma='scale')
classifiers = [('DT', clf1), ('KNN', clf2), ('SVM', clf3)]
cclf = VotingClassifier(estimators=classifiers, voting='soft', weights=[2, 1, 2])
cclf = cclf.fit(X train, y train)
```


Bagging

Parallel

BAGGING

Bagging

- Bagging is the same as committees, except:
 - Instead of getting the full training data, each model only gets
 a bootstrap sample of the training data
 - Bootstrap described on next slide
- Popular examples: Random Forests, Extra Trees

What is a Bootstrap Sample?

Bootstrap sampling: random with replacement

Bagging Properties

- Helps to decrease variance
 - E.g., DTs
- Fast because model training can be parallel
- Almost always helps

Random Forests

Random Forests are a bag of trees, but also:

- Each DT gets a random subset of features
- Why? Want to create trees that are not correlated with each other

Example: Default Data


```
from sklearn.ensemble import RandomForestClassifier

clf_rf = RandomForestClassifier(
    n_estimators=100, max_depth=None, min_samples_split=2, random_state=0)
clf_rf.fit(X_train, y_train)
```

Main RF Hyperparameters

Name	Description	Default	Uncle Steve's Recommendation	
n_estimators	Number of trees	100	Set to big number; don't tune	
max_depth	Max depth of each tree	None	Don't tune; tune other hyperparams to control size	
max_features	How many features each tree sees	'sqrt'	Don't tune; default is good	
max_samples	% of instances each tree sees	None	Usually want 0.5 – 0.7. OK to tune	
min_samples_split	Min number of instances in node to consider splitting	2	Higher = less overfitting. Good to tune	

• Other hyperparameters exist, but these are the main ones

Boosting

Sequential

BOOSTING

Boosting

- **Boosting**: train models sequentially to improve previous models
- Very popular! Great results in many domains
- Variants:
 - Adaptive Boosting (e.g., AdaBoost): Original, but not the best anymore
 - Gradient Boosting (e.g., XGBoost): Very popular! Great results

StatQuest

4-part series on Gradient Boosting

XGBoost

- Popular gradient boosting algorithm from DMLC at CMU
- But more than just a boosting algorithm!
- Key features:
 - Built-in regularization
 - Memory efficient
 - Parallel/Distributed Learning
 - Sparsity-Aware Split Finding
 - Supports missing values
 - Weighted Quantile Sketch
 - **–** ...

LightGBM (LGBM)

- Gradient boosting package from Microsoft
- Key Features:
 - Faster
 - Lower memory usage
 - Better accuracy (?)
 - Support for parallel and GPU learning
 - Built-in support for categorical features

Catboost

- Gradient boosting package from Yandex
- Key Features:
 - Support for categorical features
 - Support for textual features
 - Less hyperparameter tuning required

Main LGBM Hyperparameters

Name	Description	Default	Uncle Steve's Recommendation
n_estimators	Number of trees	100	Set to medium number; don't tune
learning_rate	Amount each tree contributes	0.1	smaller -> bigger n_estimators larger -> smaller n_estimators Good to tune
num_leaves	Max number of leaves in one tree	31	Lower = less overfitting. Good to tune
max_depth	Max depth of each tree	-1	Lower = less overfitting. Good to tune
min_samples_leaf	Min num of instances in leaf	20	Higher = less overfitting. Good to tune
max_bin	Max number of bins to bucket features in	255	Lower = less overfitting. Good to tune
lambda_l1, lambda_l2	L1 and L2 regularization	0.0	Higher = less overfitting. Good to tune

- Many other hyperparameters exist that can be tuned
- https://lightgbm.readthedocs.io/en/latest/Parameters.html

Uncle Steve's Ultimate Boosting Comparison

	Adaboost	XGBoost	LightGBM	Catboost
Developer	Freund and Schapire	Tianqi Chen (CMU)	Microsoft	Yandex
Initial Release	1997	2014	2016	2017
Base learner	Stumps	Trees	Trees	Trees
Uses gradients?	No	Yes	Yes	Yes
Parallel learning?	No	Yes	Yes	Yes
GPU learning?	No	Yes	Yes	Yes
Handles categorical internally?	No	No	Yes	Yes
Grows trees via:	Levels	Levels	Leaves	Levels
Built-in regularization	No	Yes	Yes	Yes

- All help decrease bias
- Prone to overfitting
- More hyperparameters compared to Random Forests

Resources

- slides_ensemble.ipynb
- slides_ensemble_study.ipynb

SUMMARY

Summary

Ensembles: Combining classifiers to increase performance

- Committee: parallel model building with full training data
 - Not used much in practice
- Bagging: parallel model building with bootstrap samples
 - Great choice overall
- Boosting: sequential models predict errors of previous models
 - Best choice, but requires more tuning and watch out for overfitting

Some Art

APPENDIX

Feature Importance

- RFs have better performance than a single decision tree
- But, RFs are harder to interpret
 - Hundreds of trees
 - Which features are most important to the model?
- Can still get an overall summary of the importance of each feature using *Feature Importance*
- Works by calculating the mean decrease in impurity for reach node that uses that feature

Example: Default Data


```
clf_rf.feature_importances_
array([0.5594513, 0.4405487])
```

Example: Housing Data

- Red line is performance of a single tree
- Black line is performance of tree bagging

Example: Housing Data

- Median Income is by far the most important variable.
- Longitude, Latitude and Average occupancy are the next most important.

Example

rf2_fit = randomForest(formula, data=train, mtry=3, ntree=100, importance=TRUE)

varImpPlot(rf2_fit)

Example


```
## Confusion Matrix and Statistics
##
           Actual
## Predicted
              no yes
         no 7102 464
##
        yes 207 464
##
##
                 Accuracy : 0.9185
                   95% CI: (0.9124, 0.9244)
##
       No Information Rate: 0.8873
##
       P-Value [Acc > NIR] : < 2.2e-16
##
                    Kappa : 0.5365
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
              Sensitivity: 0.50000
              Specificity: 0.97168
##
            Pos Pred Value : 0.69151
            Neg Pred Value: 0.93867
                Prevalence: 0.11266
##
            Detection Rate: 0.05633
##
##
      Detection Prevalence: 0.08146
         Balanced Accuracy: 0.73584
##
##
          'Positive' Class : yes
##
##
```

Example


```
## Confusion Matrix and Statistics
##
##
           Actual
## Predicted no yes
        no 6992 431
        yes 317 497
                 Accuracy : 0.9092
                   95% CI: (0.9028, 0.9153)
       No Information Rate: 0.8873
       P-Value [Acc > NIR] : 5.845e-11
##
##
##
                    Kappa: 0.5201
    Mcnemar's Test P-Value: 3.601e-05
##
              Sensitivity: 0.53556
              Specificity: 0.95663
           Pos Pred Value: 0.61057
           Neg Pred Value: 0.94194
               Prevalence: 0.11266
##
           Detection Rate: 0.06034
      Detection Prevalence: 0.09882
         Balanced Accuracy: 0.74609
          'Positive' Class : yes
##
##
```

Example: Default Data


```
from sklearn.ensemble import GradientBoostingClassifier

clf_gt = GradientBoostingClassifier(
    n_estimators=100, learning_rate=0.1, max_depth=1, max_features=1,
    random_state=0)
clf_gt.fit(X_train, y_train)
```

Example: Default Data


```
## Confusion Matrix and Statistics
##
##
            Actual
## Predicted
               no yes
         no 6992 431
        ves 317 497
##
##
                  Accuracy : 0.9092
                    95% CI: (0.9028, 0.9153)
##
      No Information Rate: 0.8873
##
       P-Value [Acc > NIR] : 5.845e-11
##
##
##
                     Kappa : 0.5201
    Mcnemar's Test P-Value : 3.601e-05
##
##
##
              Sensitivity: 0.53556
               Specificity: 0.95663
##
            Pos Pred Value: 0.61057
##
            Neg Pred Value: 0.94194
##
                Prevalence: 0.11266
            Detection Rate: 0.06034
##
      Detection Prevalence: 0.09882
##
##
         Balanced Accuracy: 0.74609
##
          'Positive' Class : yes
##
```



```
ctrl = trainControl(
            method="boot", number=10,
            savePredictions="final",
            classProbs=TRUE,
            index=createResample(train$bought, 10),
            summaryFunction=twoClassSummary,
            allowParallel = TRUE)
model_list <- caretList(</pre>
            bought~., data=train, trControl=ctrl,
            methodList=c("pls", "rpart") )
stack_fit <- caretStack(</pre>
  model_list, method="glm", metric="ROC",
  trControl=trainControl(
    method="boot",
    number=10,
    savePredictions="final",
    classProbs=TRUE,
    summaryFunction=twoClassSummary))
```


summary(stack_fit)

```
##
## Call:
## NULL
## Deviance Residuals:
     Min
              1Q Median
                             30
                                    Max
## -3.1899 -0.3152 -0.2775 -0.2530 2.6794
## Coefficients:
            Estimate Std. Error z value Pr(>|z|)
## pls
        8.71604 0.15620 55.80 <2e-16 ***
                      0.05815 71.68 <2e-16 ***
## rpart
        4.16808
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 85824 on 121629 degrees of freedom
## Residual deviance: 56948 on 121627 degrees of freedom
## AIC: 56954
## Number of Fisher Scoring iterations: 6
```



```
## Confusion Matrix and Statistics
##
           Actual
## Predicted
              no yes
        no 7109 536
        yes 200 392
##
##
                 Accuracy : 0.9106
                   95% CI: (0.9043, 0.9167)
##
      No Information Rate: 0.8873
##
##
      P-Value [Acc > NIR] : 2.799e-12
##
##
                    Kappa: 0.4692
   Mcnemar's Test P-Value : < 2.2e-16
##
              Sensitivity: 0.42241
##
              Specificity: 0.97264
##
           Pos Pred Value: 0.66216
##
           Neg Pred Value : 0.92989
##
               Prevalence: 0.11266
           Detection Rate: 0.04759
##
     Detection Prevalence: 0.07187
##
##
         Balanced Accuracy: 0.69753
##
          'Positive' Class : yes
##
##
```



```
rpart_fit <- train(formula, data = train, method="rpart", trControl = ctrl, metric="Kappa")
rpart_pred = predict(rpart_fit, test)

nb_fit <- train(formula, data = train, "naive_bayes", trControl = ctrl, metric="Kappa")
nb_pred = predict(nb_fit, test)

pls_fit <- train(formula, data = train, "pls", trControl = ctrl)
pls_pred = predict(pls_fit, test)</pre>
```


head(committee_pred, n=30)

```
V1
           V2
                V3 yes_count no_count vote
## 1
                             0
                                       3
       no
            no
                no
                                           no
## 2
       no
            no
                no
                                           no
## 3
       no
            no
                no
                                           no
## 4
       no
           no
                no
                                           no
## 5
            no
                no
                                           no
       no
## 6
                                           no
       no
           no
                no
## 7
                                       3
       no
           no
                no
                                           no
## 8
                no
                                           no
       no
            no
## 9
                no
                                           no
       no
           no
## 10
                             0
       no
           no
                no
                                           no
## 11
      yes
            no yes
                                          yes
## 12
                             0
       no
            no
                no
                                           no
## 13
       no
           no
                no
                                           no
## 14
       no
                no
            no
                                           no
## 15 yes
            no yes
                                          yes
                             0
## 16
       no
            no
                no
                                           no
## 17
                             0
       no
            no
                no
                                           no
## 18
                                           no
       no
            no
                no
## 19
                                       3
           no
                             0
       no
                no
                                           no
## 20
       no
            no
                no
                                           no
## 21
       no
            no
                no
                                           no
## 22
                             0
       no
                no
                                           no
           no
## 23
                             0
       no
            no
                no
                                           no
## 24
           no yes
       no
                                           no
## 25
                             2
      yes
            no yes
                                          yes
## 26
       no
            no
                no
                                           no
## 27
       no
           no
                no
                                           no
## 28
                             0
       no
           no
                no
                                           no
## 29
                                       3
       no
            no
                no
                                           no
## 30
                                           no
       no
           no
                no
```



```
## Confusion Matrix and Statistics
##
            Actual
## Predicted
              no yes
##
         no 5747
                  76
        yes 1562 852
##
                 Accuracy : 0.8011
                    95% CI: (0.7924, 0.8097)
       No Information Rate: 0.8873
##
       P-Value [Acc > NIR] : 1
##
##
##
                    Kappa : 0.4146
    Mcnemar's Test P-Value : <2e-16
              Sensitivity: 0.9181
##
              Specificity: 0.7863
##
            Pos Pred Value : 0.3529
           Neg Pred Value : 0.9869
##
                Prevalence: 0.1127
##
            Detection Rate: 0.1034
      Detection Prevalence: 0.2931
##
         Balanced Accuracy: 0.8522
##
##
##
          'Positive' Class : yes
##
```



```
## Confusion Matrix and Statistics
##
            Actual
## Predicted
              no yes
##
         no 6420
                  217
        yes 889 711
##
                 Accuracy : 0.8657
                    95% CI: (0.8582, 0.873)
       No Information Rate: 0.8873
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.4897
    Moneman's Test P-Value : <2e-16
              Sensitivity: 0.76616
##
              Specificity: 0.87837
##
            Pos Pred Value: 0.44438
            Neg Pred Value: 0.96730
##
                Prevalence: 0.11266
##
            Detection Rate: 0.08632
      Detection Prevalence: 0.19425
##
         Balanced Accuracy: 0.82227
##
          'Positive' Class : yes
##
##
```


Pseudo Code

- 1 Let one class be represented with a value of +1 and the other with a value of -1
- **2** Let each sample have the same starting weight (1/n)
- 3 for k = 1 to K do
- Fit a weak classifier using the weighted samples and compute the kth model's misclassification error (err_k)
- 5 Compute the kth stage value as $\ln ((1 err_k) / err_k)$.
- 6 Update the sample weights giving more weight to incorrectly predicted samples and less weight to correctly predicted samples
- 7 end
- 8 Compute the boosted classifier's prediction for each sample by multiplying the kth stage value by the kth model prediction and adding these quantities across k. If this sum is positive, then classify the sample in the +1 class, otherwise the -1 class.

Algorithm 14.2: AdaBoost algorithm for two-class problems


```
from sklearn.ensemble import BaggingClassifier

clf_bag = BaggingClassifier(
    DecisionTreeClassifier(max_depth=None, min_samples_split=2),
    n_estimators=100, max_samples=.10, max_features=0.5,random_state=0)

clf_bag.fit(X_train, y_train)
```

Random Forests

AdaBoost

- AdaBoost (Adaptive Boosting) was the first implementation of boosting
 - Won the 2003 Gödel Prize
- Like RFs, with three main differences:
 - Boosting
 - Stumps, not trees
 - Not all equal: stumps get different "say" in final classification

AdaBoost Algorithm

- Train a DT stump as normal*
 - *DTs now use Weighted Gini Index metric to account for weights
- Get list incorrectly-classified instances
- Increase weights for next DT
- Rinse and repeat for other DTs

Visual Example (Wikipedia)

Visual Example (Textbook)

 Say we have a loan default dataset with two features, Age and Income

Source: https://www.youtube.com/watch?v=ix6lvwbVpw0

- Each individual decision stump is very simple
- Final ensemble works very well!

Predictions

- Each DT's "amount of say" in final prediction is determined by how accurate that DT was on training data
 - (Amount of Say formula omitted here)
- To predict new, unlabeled data:
 - Each DT makes prediction
 - Prediction with highest Amount of Say wins


```
from sklearn.ensemble import AdaBoostClassifier

clf_ada = AdaBoostClassifier(
    base_estimator=DecisionTreeClassifier(max_depth=1),
    n_estimators=100, random_state=0)

clf_ada.fit(X_train, y_train)
```



```
from xgboost import XGBClassifier

clf_xg = XGBClassifier(n_estimators=100, max_depth=3)

clf_xg.fit(X_train, y_train)
```


STACKING

Stacking (Super Learning)

 Like bagging, except uses predictions of each model as additional features for a new model


```
from mlxtend.classifier import StackingClassifier
from sklearn.linear model import LogisticRegression
clf1 = DecisionTreeClassifier(max depth=4)
clf2 = KNeighborsClassifier(n neighbors=7)
clf3 = SVC(kernel='rbf', probability=True)
classifiers=[('DT', clf1), ('KNN', clf2), ('SVM', clf3)]
sclf = StackingClassifier(
    classifiers=classifiers, meta_classifier=LogisticRegression(),
    use probas=True, average probas=False)
clf1 = clf1.fit(X train, y train)
clf2 = clf2.fit(X_train, y_train)
clf3 = clf3.fit(X train, y train)
sclf = cclf.fit(X_train, y_train)
```


COMPARISON

Uncle Steve's Guide to Ensemble Techniques

Technique	Summary	Pros	Cons
All		✓ Improves accuracy✓ More robust	× Reduces interpretability× Time consuming
Bagging (RF, ET)	Build N models in parallel; combine their output	✓ Fastest	
Boosting (Ada, XG, Cat, LGBM)	Build N models sequentially, using the previous models' errors; combine their output	✓ Higher accuracy	× Slower
Stacking	Like bagging, but the model weights are learned via supervised learning	✓ Highest accuracy	× Slowest

Example on Diabetes Dataset

	Dataset	Method	Time	Accuracy	Recall	Precision	F1	AUC	Rank
7	Diabetes	Adaboost	0.367171	0.772727	0.648148	0.686275	0.666667	0.744074	1
8	Diabetes	GBC	0.300580	0.753247	0.629630	0.653846	0.641509	0.724815	2
3	Diabetes	Voting	0.045212	0.746753	0.592593	0.653061	0.621359	0.711296	3
5	Diabetes	RF	0.377052	0.746753	0.592593	0.653061	0.621359	0.711296	4
4	Diabetes	Bagging	0.619293	0.746753	0.574074	0.659574	0.613861	0.707037	5
1	Diabetes	NB	0.002234	0.707792	0.648148	0.573770	0.608696	0.694074	6
9	Diabetes	Stacking	4.499238	0.733766	0.555556	0.638298	0.594059	0.692778	7
6	Diabetes	ExtraTrees	0.288043	0.727273	0.555556	0.625000	0.588235	0.687778	8
2	Diabetes	DT	0.006047	0.727273	0.500000	0.642857	0.562500	0.675000	9
0	Diabetes	LR	0.038450	0.714286	0.518519	0.608696	0.560000	0.669259	10

Example on German Credit Dataset

	Dataset	Method	Time	Accuracy	Recall	Precision	F1	AUC	Rank
8	GermanCredit	GBC	0.431021	0.760	0.857143	0.810811	0.833333	0.695238	1
6	GermanCredit	ExtraTrees	0.359332	0.745	0.857143	0.794702	0.824742	0.670238	2
5	GermanCredit	RF	0.408510	0.735	0.885714	0.770186	0.823920	0.634524	3
9	GermanCredit	Stacking	6.353294	0.725	0.828571	0.789116	0.808362	0.655952	4
4	GermanCredit	Bagging	1.137991	0.720	0.828571	0.783784	0.805556	0.647619	5
0	GermanCredit	LR	0.125056	0.700	0.792857	0.781690	0.787234	0.638095	6
3	GermanCredit	Voting	0.166601	0.705	0.771429	0.800000	0.785455	0.660714	7
7	GermanCredit	Adaboost	0.482291	0.695	0.778571	0.784173	0.781362	0.639286	8
2	GermanCredit	DT	0.011358	0.675	0.742857	0.781955	0.761905	0.629762	9
1	GermanCredit	NB	0.004378	0.685	0.714286	0.813008	0.760456	0.665476	10

	Dataset	Method	Time	Accuracy	Recall	Precision	F1	AUC	Rank
7	Adult	Adaboost	8.848156	0.871488	0.652423	0.777947	0.709677	0.796687	1
8	Adult	GBC	13.333880	0.872563	0.642857	0.788732	0.708363	0.794128	2
5	Adult	RF	8.524249	0.856902	0.636480	0.733824	0.681694	0.781637	3
4	Adult	Bagging	46.175066	0.854445	0.637755	0.724638	0.678426	0.780455	4
9	Adult	Stacking	93.588830	0.857362	0.605230	0.753773	0.671383	0.771270	5
6	Adult	ExtraTrees	10.342284	0.836634	0.616709	0.676224	0.645097	0.761540	6
2	Adult	DT	0.331754	0.814525	0.635204	0.610294	0.622500	0.753295	7
3	Adult	Voting	0.965517	0.809304	0.306760	0.756289	0.436479	0.637708	8
1	Adult	NB	0.089855	0.799324	0.317602	0.677551	0.432479	0.634837	9
0	Adult	LR	0.504623	0.799478	0.274235	0.719064	0.397045	0.620130	10

Rank on 12 Datasets

	count	mean	std	min	25%	50%	75%	max
Method								
Stacking	12.0	3.666667	2.708013	1.0	1.75	3.5	4.25	10.0
Bagging	12.0	4.083333	1.729862	1.0	3.00	4.0	5.00	8.0
GBC	12.0	4.333333	2.870962	1.0	2.00	4.0	5.75	9.0
RF	12.0	4.500000	2.430862	1.0	3.00	4.5	5.25	10.0
Adaboost	12.0	4.583333	3.175426	1.0	1.00	5.5	7.25	9.0
ExtraTrees	12.0	4.916667	2.644319	1.0	2.75	5.0	6.50	9.0
Voting	12.0	5.750000	2.340357	1.0	3.75	7.0	7.00	8.0
DT	12.0	7.333333	2.059715	3.0	6.00	7.5	9.00	10.0
NB	12.0	7.666667	3.025147	2.0	6.00	9.0	10.00	10.0
LR	12.0	8.166667	1.800673	5.0	6.75	8.5	10.00	10.0

Runtime on 12 Datasets

	count	mean	std	min	25%	50%	75%	max
Method								
NB	12.0	0.023328	0.031528	0.001997	0.004321	0.009829	0.023199	0.089855
DT	12.0	0.228829	0.414707	0.003030	0.010509	0.041785	0.132864	1.282202
ExtraTrees	12.0	2.084052	2.888931	0.208411	0.355067	0.777813	3.060318	10.342284
LR	12.0	2.714115	6.718642	0.038450	0.168958	0.441879	1.223718	23.816978
Voting	12.0	2.906445	6.829440	0.045212	0.196348	0.657037	1.546212	24.277507
RF	12.0	4.127439	7.658385	0.284079	0.407788	1.305802	3.204870	27.195963
Adaboost	12.0	5.404998	9.917278	0.294612	0.464008	1.154748	4.589717	34.736051
GBC	12.0	11.356762	25.335455	0.170561	0.405727	1.557293	6.126897	88.876732
Bagging	12.0	27.121253	48.869182	0.371966	1.036678	3.529258	16.347215	140.105755
Stacking	12.0	61.200335	97.879150	4.492594	6.205815	19.862836	48.011568	320.393715

Boosting

- Boosting: trains new models to correct mistakes of previous models
- Variants:
 - Adaptive Boosting (e.g., AdaBoost): Original, but not the best anymore
 - Gradient Boosting (e.g., XGBoost): Very popular! Great results

