

AZ432

General Description

The AZ432 series ICs are low voltage three-terminal adjustable regulators with guaranteed thermal stability over a full operation range. These ICs feature sharp turn-on characteristics, low temperature coefficient and low output impedance, which make them ideal substitutes for Zener diodes in applications such as switching power supply, charger, motherboard and other adjustable regulators.

The output voltage can be set to any value between 1.25V and 18V with two external resistors.

The AZ432 precision reference is offered in two bandgap tolerance: 0.5% and 1%.

These ICs are available in 4 packages: TO-92, SOT-23-3, SOT-23-5, SOT-89.

Features

- Wide Programmable Precise Output Voltage from 1.25V to 18V
- High Stability under Capacitive Load
- Low Temperature Deviation: 3mV Typical
- Low Equivalent Full-Range Temperature Coefficient: 20PPM/°C Typical
- Low Dynamic Output Resistance: 0.05Ω Typical
- High Sink Current Capacity from 55μA to 100 mA
- Low Output Noise
- Wide Operating Range of -40 to 125°C

Applications

- · Graphic Card
- PC Motherboard
- Voltage Adapter
- Switching Power Supply
- Charger

Figure 1. Package Types of AZ432

AZ432

Pin Configuration

Figure 2. Pin Configuration of AZ432 (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ432

AZ432

Ordering Information

Package	Tempera-	Voltage Tolerance	Part	Number	Mark	Packing	
1 ackage	ture Range		Tin Lead	Lead Free	Tin Lead	Lead Free	Type
TO-92	-40 to 125°C	0.50%	AZ432AZ	AZ432AZ-E1	AZ432AZ	AZ432AZ-E1	Bulk
		0.50%	AZ432AZTR	AZ432AZTR-E1	AZ432AZ	AZ432AZ-E1	Ammo
		1%	AZ432BZ	AZ432BZ-E1	AZ432BZ	AZ432BZ-E1	Bulk
		1%	AZ432BZTR	AZ432BZTR-E1	AZ432BZ	AZ432BZ-E1	Ammo
SOT-23-3	-40 to 125°C	0.50%	AZ432ANTR	AZ432ANTR-E1	N48	EA8	Tape/Reel
301-23-3		1%	AZ432BNTR	AZ432BNTR-E1	N49	EA9	Tape/Reel
SOT-23-5	-40 to 125°C	0.50%	AZ432AKTR	AZ432AKTR-E1	K43	E7A	Tape/Reel
		1%	AZ432BKTR	AZ432BKTR-E1	K44	E8A	Tape/Reel
SOT-89	-40 to 125°C	0.50%	AZ432ARTR	AZ432ARTR-E1	R42A	E42A	Tape/Reel
		1%	AZ432BRTR	AZ432BRTR-E1	R42B	E42B	Tape/Reel

The listed part numbers are used during the transition to lead-free products. After the transition completed, lead-free products will be considered as the "standard" and we will resume the original part numbers.

Advanced Analog Circuits Data Sheet

LOW VOLTAGE (1.25V) ADJUSTABLE PRECISION SHUNT REGULATOR

AZ432

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Cathode Voltage	V_{KA}	20		V
Cathode Current Range (Continuous)	I_{KA}	-100 to 100		mA
Reference Input Current Range	I _{REF}	10		mA
Power Dissipation	D_	Z,R Package	770	mW
Tower Dissipation	P_{D}	N,K Package	370	111 VV
Storage Temperature Range	T_{STG}	-65 to 150		°C
		TO-92	130	
Package Thermal Impedance	Q_{JA}	SOT-23-3	330	°C/W
		SOT-23-5	250	1
		SOT-89	100	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operation Ratings

Parameter	Symbol	Min	Max	Unit
Cathode Voltage	V_{KA}	V _{REF}	18	V
Cathode Current	I_{KA}	0.1	100	mA
Operating Ambient Temperature Range		-40	125	°C

AZ432

Electrical Characteristics

(Typical and limits apply for $T_J=25^{\circ}C$ unless otherwise noted.)

Parameter		Test Circuit	Sym- bol	Conditions		Min	Тур	Max	Unit
Reference Voltage	0.5%	4	V _{REF}	$V_{KA} = V_{REF, I_{KA}} = 10 \text{mA}$		1.244	1.250	1.256	V
	1%					1.238	1.250	1.262	
Deviation of Reference Voltage Over-Temperature		4	$\Delta\mathrm{V}_\mathrm{REF}$	$V_{KA} = V_{REF}$ $I_{KA} = 10mA$	0 to 70°C		2	10	mV
					-40 to 85°C		3	10	
Ratio of Change in V _{REF} to the Change in Cathode Voltage		5		I_{KA} =10mA, ΔV_{KA} : V_{REF} to 16V			-0.5	-1.5	mV/V
Reference Input Current		5		I_{KA} =10mA, R1=10KΩ, R2=∞			0.15	0.4	μА
Deviation of Reference Current Over Full Temperature Range		5	ΔI_{REF}	I_{KA} =10mA, R1=10KΩ, R2=∞ T_{A} =-40 to 85°C			0.1	0.4	μΑ
Minimum Cathode Current for Regulation		4	I _{KA} (MIN)	V _{KA} =V _{REF}			55	80	μА
Off-State Cathode		6	I_{KA}	$V_{REF}=0, V_{KA}=18V$			0.04	0.10	μА
Current		(OFI		$V_{KA}=6V, V_{REF}=0$			0.01	0.05	μ11
Dynamic Impedance		4	Z _{KA}	$V_{KA} = V_{REF}$, $I_{KA} = 1$ to 100mA f≤1.0kHz			0.05	0.15	Ω

Electrical Characteristics (Continued)

Figure 4. Test Circuit 4 for V_{KA} = V_{REF}

Figure 5. Test Circuit 5 for $V_{KA} > V_{REF}$

Figure 6. Test Circuit 6 for I_{OFF}

Typical Performance Characteristics

Figure 7. Reference Voltage vs. Ambient Temperature

Figure 8. Reference Current vs. Ambient Temperature

Figure 9. Cathode Current vs. Cathode Voltage

Figure 10. Current vs. cathode Voltage

AZ432

Typical Performance Characteristics (Continued)

Figure 11. Small Signal Voltage Gain vs. Frequency

Figure 12. Dynamic Impedance vs. Frequency

AZ432

Typical Performance Characteristics (Continued)

Figure 13. Pulse Response of Input and Output Voltage

Figure 14. Ratio of Delta Reference Voltage to the Ratio of Delta Cathode Voltage vs. Ambient Temperature

AZ432

LOW VOLTAGE (1.25V) ADJUSTABLE PRECISION SHUNT REGULATOR

Typical Applications

Figure 15: Shunt Regulator

Figure 16: High Current Shunt Regulator

Figure 17: Current Source or Current Limit

AZ432

Typical Applications (Continued)

Figure 18: Precision 2.5V/1A Regulator

Figure 19: PWM Converter with Reference

AZ432

Mechanical Dimensions

TO - 92 Unit: mm

AZ432

Unit: mm

Mechanical Dimensions (Continued)

SOT - 23-3

AZ432

Mechanical Dimensions (Continued)

SOT - 23 - 5

Unit: mm

AZ432

Mechanical Dimensions (Continued)

SOT - 89 Unit: mm

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

http://www.aacmicro.com

BCD Semiconductor Corporation

860 Hillview Court, Suite 160, Milpitas, CA 95035, USA Tel: +1-408-586 8809, Fax: +1-408-586 8802

Shanghai SIM-BCD Semiconductor manufacturing Co., Ltd.

800 Yi Shan Road, Shanghai 200233, PRC Tel: +86-21-6485-1491, Fax: +86-21-5450-0008

Advanced Analog circuits (Shanghai) Corporation

8F, B Zone, 900 Yi Shan Road, Shanghai 200233, PRC Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

BCD Semiconductor (Taiwan) company Limited

Room 2210, 22nd Fl, 333, Keelung Road, Sec. 1, TaiPei (110), Taiwan Tel: +886-2-2758 6828, Fax: +886-2-2758 6892

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.