

Partially Ordered Sets

Motivation: Generalize the Inclusion-Exclusion Principle.

and Möbius Inversion Formula in Number theory:

If $F,G:\mathbb{N} \to \mathbb{C}$ such that $G(n) = \sum_{d \in \mathbb{N}} F(d)$ $\forall n > d$

then $F(n) = \int M(d) \cdot G(\frac{n}{d}) \quad \forall n \ge 1$

where M is the Möbius function: M(n) = 0 if n is not sq. free. $M(n) = (-1)^{\#}$ prime factors

1) Definitions & Examples

Oet: An order relation on a set P is a binary relation

on P for which: $x \in x$, $\forall x \in P$ (reflexive) $x \in y \in X$ $\forall x \in P$ (reflexive) $x \in y \in Y \in P$ $\forall x \in P$ (from the) $x \in y \in P$ $\forall x \in P$ (anti-symmetry)

The pair (P, ε) is called a <u>partial ordered set</u> (or poset). If $x \in Y$, we say they are <u>comparable</u>.

Examples . (N/505.1) . (Z, x) . (R, x)

- · (Lin. Subspaces of IRd, C) · (2)
- · (Partitions, order \= M & \implies \i
- . (Partitions of n, dominance order)

- If x = y of y = x $\forall x, y \in P$, then z'' is a total order and P is totally ordered.

 (Z, z') is totally ordered ($N \leq z'$) is not.
- Two posets P, Q are isomorphic when there excists an order preserving bi-jection 4 between P and Q: $P: P \hookrightarrow Q$ st. if $x \in Y$ with $x, y \in P$ then $P(x) \in Q(x)$
- then $\varphi(x) \in \varphi(y)$.

 An interval [x,y] with $x \in y \in S$ is the poset: $[x,y] = \{z \in S \mid x \in z \in y \}$ with the order π .
- · If every interval in (P, ϵ) is finite, then (P, ϵ) is a locally finite poset.
 - Example: (M*0,25,1) and (\mathbb{Z}, \mathbb{S}) are locally finite. (\mathbb{R}, \mathbb{S}) is not.
- . If [sc, y] = {x,ys, then y is a cover of x.
- Det: The Hasse diagram of (P, F) is a drawing (... a graph) where vertices are the elements of P and edges are over relations and the cover is placed with higher 'ordinate', "on top" of the element.

Examples |P|=1: |P|=2: |P|=3: |

· We say P has a greatest element ÎEP, if xxî, YxeP.

| least element ÔEP, if Ôxx, YxEP.

· An element $x \in P$ is a maximal element if $a \in P$ such that $x \in A$ and $a \neq x$.

minimal element if ZaeP

such that asx and a+x.

Example: In (IV) [0,2], 1), there is no 0, 1 or maximal element. The minimal elements are prime numbers.

·In (IN/sos, 1) there is a least element 0=1.

·In ([n], \subseteq) [n]= $\hat{1}$, $\beta = \hat{0}$.

· A ch	ain is	the in	nage of	an	order	preserving	map	(
IX.	([n], x)		_	**		, ,		
Since	[[n], z]	is to	tally on	dened	, so i	s φ([n])		

{2,8}, {2,4}, {2,12}, ... They don't need to be covers!

are chains of (IN/80,3,1).

The length of a chain is n-1. This is the number of up-steps.

. The rank of a finite poset is the max length of chains in it.

· If every maximal chain of P has the same length n, we say that P is graded of rank n.

Lemma: If P is graded of rank n, then there exists a unique order preserving map from (P, K) to (Fo,..., n F, K)

P(0) are the minimal elements. P is a rank function.

Ex:

d is not graded.

is graded of rank 1.

•	A	finite	poset	is.	ranked	f	there	exists	a	morphism	E
	9	: (P, 5	$(\Gamma_{i}) \longrightarrow (\Gamma_{i})$	7, 7)	, where	n	is the	rank	to	P, such	
	4	nat	$e(\alpha) = \epsilon$?(v) -1	L when	ever	u -V	is a	COAG	r relation of	P.

Example:

is not ranked

Some state of the state of the

The rank of an element is then its image under P.

Det: An antichain of (P, T) is a subset of elements of P that are pairwise in comparable.

Example: In ([5], c) {2,38, {3,45 are incomparable.

Def: An order ideal of (P, \vec{x}) is a subset I of elements of P that is "down-closed": if $x \in I$ and $y \in x$ then $y \in I$. An order filter is similar, but "up-closed".

Ex: What are the order ideals of?

de de

ø, {a, , {a, b, . , a, c, , {a, b, c, d, e}}

Lemma: If P is finite, then antichains of P are
Lemma: If P is finite, then antichains of P are 6 in bijection with order ideal of P.
Proof: Given an order ideal I since P is linite, I has a finite number of maximal elements M We can write
I = Fx EP I mem, st. mem]
But M is an antichain and it uniquely describes I. A.
Given a finite poset P, its order ideals are ordered by
inclusion. If $ M = 1$, we say that I is <u>principal</u> generated by meM.
Def: The dual P^* of a poset P is (P^*, x^*) where $x x^* y \stackrel{def}{\Longrightarrow} y x x$.
$x \in Y \implies y < x$. $\Rightarrow If reverses the order of P.$
Adding: If P and Q are possets on disjoint sets, P+Q is the poset on PuQ st. SC XY in P+Q () x,y \in P and \in \in \in Y 2 xy \in Q and \in \in \in Y
Multiplying: It Pand Q are posets then PXQ is the poset on the cartesian product PXQ such that
$(x,y) \leq (x',y')$ if $x \leq x'$ and $y \leq y'$.
If P# 1+B for any AB poset then P is connected.

In contrast:

$$\cdot \left(\left[3\right] \times \left[3\right] , \leq_{\text{lex}} \right)$$

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (3,3)

Def: Let A be a poset (alphabet), (usually totally ordered).

The monoid Ax over A is ordered lexicographically by Tlexe as follows:

w₁ < w₂ = w₁ is a prefix of w₂

 $\exists u,v,w \in A^*$ (possibly empty and $x \in A$ Such that

 $w_1 = u \times V$. $w_2 = u \times W$.

Det: A well-order relation is a total order such that every non-empty subset has a least element.

Ex: Is (Faxbs, Flex) well-ordered? No!

[anb|17,1] does not have a least element!

Oct: A linear extension of a poset P is a morphism (from P to ([n], π), where $n = P $.	3
Ex: What are the linear extensions of de ?	
[a, c, b, d, e] ~> "Neasure" the complexity of P. [a, b, d, c, e]	-
Example: (Chains) How many maximal chains (image of covers are covers) are the in the Boolean poset (2 th) =)? longer chain	re
Answer: n! A maximal chain looks like: or crascra, b]c c[n] So, for each max. chain, write of (a b) n) where o(i) is the i-th element added in the chain.	
Ex: Fix n=1. Take P(n) = { partitions of n} and order them. Follows: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Dominance order $n = 4$ $(4,4,4,)$	
(a,4,4,-)	
(2,3,4,4) 日	

n=6

Conjugating the partitions (NW-SE swap) is an order-neversing map of the dominance order poset.

$$\hat{0} = (1, -1, 1)$$
 $\hat{1} = (h)$

CANAL CALABATE SERVICE

Theorem (Existence of linear extension) Let P be a finite poset. There exists a linear extension of P, Pf By induction, it IP=1, we are done as P is already alin. orden. Chaim: P has a minimal element sco Pf of claim: To each sep, there are mix < 00 many element yep.

such that yes.

Pick ∞ minimizing this number m_X . (see a problem here?)
If $m_X = 1$, we are done x is a min. element.

Else take $y < \infty$, then $m_Y < m_X$

Ву	induction	'n,	get	a	linear	extension A	of	P\{x0\	into	[1,,n]	(10)
and	send	\mathcal{X}^{o}	to	0.		M					

Det: Let $\alpha(P)$ be the maximum size of an antichain in a poset P. (It may be infinite)

Let $\beta(P)$ be the maximum size of a chain in a poset P. (The rank of P+1, it may be infinite).

($\beta(P)$ is the beight of P)

Thm: Let P be a finite poset. Then & (P). B(P) 7/1P/.

Proof: If $\beta(P)=1$, then P is an antichain => $\alpha(P)=|P|$ /
• By induction, if $\beta(P)>1$, let M₁ be the minimal elements of P. M₁ is an antichain = $\Delta z |M| = \alpha(P)$.

Let M2 be the minimal elements of P/N2.

and so on with M3, M4, until we partition P completely.

P=M2 LI M2 LI LI Mx

But $t \in B(P)$ because else we would have a longer chain to

Corollary: (Erdős-Szekeres Theorem)

An arbitrary sequence of nº+1 real numbers contains a monotone sub-sequence of length n+1.

where s is the i-th element in the sequence.

Claim: This is a poset. (Check this!) $\propto ([\nu_3+1]^{\vee}) \cdot \beta([\nu_3+1]^{\vee}) > \nu_3+1$ $\alpha(L_{M_3}+7]^2)> \nu \text{ or } \beta(L_{V_3}+7]^2 \neq)> \nu$ A chain in this order give an increasing subseq.

An antichain in this order gives a strictly de creasing subseq. Corollary: (Mirsky's Theorem) A poset P of height B(P) can be partitioned into B(P) antichains. Proof: In the proof, $t = \beta(P)$. 3. Lattices Det. Given SCP, an apper bound of S is an element ZEP s.t. ZZX, YXES. · A <u>least apper bound</u> (or "sup") of S is an upper bound z of S such that every upper bound y of S satisties y717. We also say "join" of S. and dende it Vs or x v y if 5= {x,y}.

If the join excists, it is unique (by det).

Similarly, define the lower bound, greatest lower bound, (ID)
"Int" or meet noted 15. (Think of "1")

Det: A lattice L is a poset such that every pair x, y \in L has a join and a meet.

. A latice is complete if the same is true YSEL.

. A poset where the join of pairs exists is a join-semilattice.

Similarly for meet, we get a meet-semilatice.

Lemma: In a latice L, the join v and meet 1 operations

- · assocjative · commutative · idem potent

 - $\cdot \propto \Lambda(\propto Vy) = \propto = \propto V(\propto \Lambda y)$ (Absorbtion)
 - · x v \ = x < = x x x = x & x = x

is not a lattice.

is a latice.

Dis is a big driving research question in combinatories of polytopes.

Proposition: (Criterions to get a finite lattice) Let P be a finite meet-semilative with 1. Then P is a lattice.

Onally, a finite join-semilattice with 0 is a lattice.

PF The intersection F of the filters SEEP/Z SZEP/ZZYJ is finite and non-empty because	7 2 5 and
By induction; Fis a smaller meet-semilattice	(1 A
	with 1
the meet of elements in F exists " X/ y EF	
So define $x y$ as the meet Λz . join	X

Example: (Young's lattice) Let $Y = \gamma$ integer of their Ferrers diagrams:

HITH HE HE Let Y= { integer partitions} and order Y

· It is graded.

· Meet: intersection of diagrams

· Join: union of diagrams

> Representations of Sn and branchings > Algebraic Combinatorics.