Amendments to the Claims

1 (currently amended). A production method for aminophosphonic acid derivatives comprising reacting an α-iminophosphonate ester represented by the formula below [Chemical Formula 1]

$$R^1O \bigcirc P$$
 NR^2

, wherein R^1 represents an alkyl group and R^2 represents a protective group for an amino group, and a nucleophilic agent in the presence of a chiral copper catalyst represented by the formula $\frac{1}{2}$

[Chemical Formula 2]

, wherein R^3 and R^4 , may be identical or different, represent an aryl group or an aralkyl group.

2 (currently amended). The production method of claim 1, wherein the nucleophilic agent is a silyl enol ether represented by the formula below

[Chemical Formula 3]

$$\begin{array}{ccc}
R^5 & OSi(R^8)_3 \\
R^6 & R^7
\end{array}$$

, wherein R⁵ and R⁶, may be identical or different, represent hydrogen atoms, alkyl groups, aryl groups or aralkyl groups, R⁷ represents an alkyl group, aryl group, aralkyl group, alkoxy group or sulfide group represented by -SR⁹, wherein R⁹

TIP 050 -2-

PCT/JP2005/003851

represents an alkyl group or an aryl group, and R⁸, may be identical or different, represents an alkyl group or a phenyl group.

3 (currently amended). The production method of claim 1-or 2, wherein a compound having an activated proton is added to the reaction medium as an additive.

4 (original). The production method of claim 3, wherein the additive is hexafluoro isopropyl alcohol (HFIP).

5 (currently amended). The production method of <u>claim 1</u> any one of <u>claims 1-4</u>, wherein the aminophosphonic acid derivative represented by the formula below: [Chemical Formula 4]

, wherein, R¹ represents an alkyl group, R² represents a protective group for an amino group, R³ and R⁴, which may be identical or different, each represent an aryl group or an aralkyl group, R⁵ and R⁶, which may be identical or different, each represent hydrogen atoms, alkyl groups, aryl groups or aralkyl groups, and R⁷ represents an alkyl group, aryl group, aralkyl group or sulfide group represented by ·SR⁹, wherein R⁹ represents an alkyl group or an aryl group R¹ to R⁷ are as defined as above.

6 (new). The production method of claim 2, wherein a compound having an activated proton is added to the reaction medium as an additive.

7 (new). The production method of claim 6, wherein the additive is hexafluoro isopropyl alcohol (HFIP).

TIP 050

8 (new). The production method of claim 2, wherein the aminophosphonic acid derivative represented by the formula

$$R^{1}O \bigvee_{P}^{0} R^{5}R^{6}$$

, wherein, R¹ represents an alkyl group, R² represents a protective group for an amino group, R³ and R⁴, which may be identical or different, each represent an aryl group or an aralkyl group, R⁵ and R⁶, which may be identical or different, each represent hydrogen atoms, alkyl groups, aryl groups or aralkyl groups, and R⁷ represents an alkyl group, aryl group, aralkyl group, alkoxy group or sulfide group represented by SR⁹, wherein R⁹ represents an alkyl group or an aryl group.

9 (new). The production method of claim 3, wherein the aminophosphonic acid derivative represented by the formula

$$R^{1}O \cap P \cap R^{5}R^{6}$$
 $R^{1}O \cap P \cap R^{5}R^{6}$
 $R^{1}O \cap R^{5}R^{6}R^{6}$
 R^{1}

, wherein, R¹ represents an alkyl group, R² represents a protective group for an amino group, R³ and R⁴, which may be identical or different, each represent an aryl group or an aralkyl group, R⁵ and R⁶, which may be identical or different, each represent hydrogen atoms, alkyl groups, aryl groups or aralkyl groups, and R⁷ represents an alkyl group, aryl group, aralkyl group, alkoxy group or sulfide group represented by ·SR⁹, wherein R⁹ represents an alkyl group or an aryl group.

TIP 050 -4-

PCT/JP2005/003851

10 (new). The production method of claim 4, wherein the aminophosphonic acid derivative represented by the formula

$$R^{1}O \cap P \cap R^{5}R^{6}$$
 $R^{7}O \cap R^{1}O \cap R^{5}R^{6}$
 $R^{1}O \cap R^{5}R^{6} \cap R^{7}$
 $R^{1}O \cap R^{5}R^{6}$
 $R^{1}O \cap R^{5$

, wherein, R^1 represents an alkyl group, R^2 represents a protective group for an amino group, R^3 and R^4 , which may be identical or different, each represent an aryl group or an aralkyl group, R^5 and R^6 , which may be identical or different, each represent hydrogen atoms, alkyl groups, aryl groups or aralkyl groups, and R^7 represents an alkyl group, aryl group, aralkyl group, alkoxy group or sulfide group represented by SR^9 , wherein R^9 represents an alkyl group or an aryl group.

[rest of page intentionally blank]

TIP 050