Recurrent Neural Network & LSTM

2023-2 KUBIG 방학세션 DL

Category

- 1. Recurrent Neural Network
- 2. LSTM
- 3. Image Captioning
- 4. Q&A

0. Paper Review

0. Paper Review

1) ResNet

0. Paper Review

2)GoogLeNet

0. Preview

AlexNet & its parameters

AlexNet AlexNet: ~62M parameters

0. Preview

How to handle temporal data with Deep Learning?

Why existing convnets are insufficient?

Variable sequence length inputs and outputs!

Example task: video captioning

Input video can have variable number of frames

Output captions can be variable length.

Recurrent Neural Network

Unfolded Recurrent Neural Network

RNN hidden state update

RNN output update

Annotated Recurrent Neural Network

Vanilla Recurrent Neural Network

One step of RNN consists of functions with hidden state & output (You have seen these states already)

$$h_t = f_W(h_{t-1}, x_t)$$
 $ig|$ $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

Sequence to Sequence: Many-to-one → one-to-many

One to many: Produce output sequence from single input vector

Let's see a deeper example: How to handle NLP?

Task: Prediction of next character

Input: 'helo'

Then, What is the output?

*Expected output: 'ello'

Let's see a deeper example:

Task: Prediction of next character

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Let's see a deeper example

Task: Prediction of next character

Let's see a deeper example: H

How about Test-time?

Let's see a deeper example: Ho

How about Test-time?

Let's see a deeper example: Ho

How about Test-time?

Then, how about Backpropagation? Backward through entire sequence to compute gradient

Vanilla RNN Gradient Flow

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Vanilla RNN Gradient Flow

$$\frac{\partial h_t}{\partial h_{t-1}} = tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$= \tanh\left((W_{hh} W_{hx}) \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

Vanilla RNN Gradient Flow For Multi time step:

$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow For Multi time step:

$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow For Multi time step:

Vanilla RNN Gradient Flow For Multi-time step:

$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$

If no non-linearity? → Exploding Gradient

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow For Multi-time step:

$$rac{\partial L}{\partial W} = \sum_{t=1}^T rac{\partial L_t}{\partial W}$$
 How to handle? $ilde{ ilde{ imes}}$ Exploding Gradient: Gradient Clipping

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W}$$

Vanishing Gradient: New RNN Structure

Vanilla RNN Gradient Flow For Multi-time step:

$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$
 How to handle? \Rightarrow Exploding Gradient: Gradient Clipping

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W}$$

Vanishing Gradient: New RNN Structure

 \rightarrow LSTM!

Comparison between Vanilla RNN & LSTM

Vanilla RNN

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

LSTM Architecture

LSTM Architecture

i: input gate

f: forget gate

o: output gate

g: gate(?) gate

personally called generation gate

LSTM Architecture

vector from below (x) sigmoid sigmoid W vector from sigmoid before (h) tanh 4*h 4h 4h x 2h

i: input gate

f: forget gate

o: output gate

g: gate(?) gate

personally called generation gate

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

LSTM Block Architecture

LSTM Block Architecture

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Uninterrupted gradient flow!

But this process doesn't guarantee the stability of Gradient of other gates : i,f,o and g

3. Image Captioning

Like MultiModal

3. Image Captioning

3. Image Captioning

Q&A

Have a nice week

